Formulas & Definitions: Section 14-7

Definition 1: A function of two variables has a **local maximum** at (a,b) if $f(x,y) \le f(a,b)$ when (x,y) is near (a,b). The number f(a,b) is called a **local maximum value**. If $f(x,y) \ge f(a,b)$ when (x,y) is near (a,b), then f has a **local minimum** at (a,b) and f(a,b) is a **local minimum value**.

Remark: If the inequalities in Def.1 hold for all points (x, y) in the domain of f, then f has an **absolute maximum** (or **absolute minimum**) at (a, b).

Theorem: If f has a local maximum or minimum at (a, b) and the first-order partial derivatives of f exist there, then $f_x(a, b) = 0$ and $f_y(a, b) = 0$.

Second Derivatives Test: Suppose the second partial derivatives of f are continuous on a disk with center (a,b), and suppose that $f_x(a,b) = 0$ and $f_y(a,b) = 0$. Let

$$D = D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^{2}$$

- (a) If D > 0 and $f_{xx}(a,b) > 0$, then f(a,b) is a local minimum.
- (b) If D > 0 and $f_{xx}(a, b) < 0$, then f(a, b) is a local maximum.
- (c) If D < 0, then f(a, b) is not a local maximum or minimum. In this case the point (a, b) is called a **saddle point** of f and the graph of f crosses its tangent plane at (a, b).

Remark: If D=0, the test gives no information.

Extreme Value Theorem for Functions of Two Variables: If f is continuous on a closed, bounded set D in \mathbb{R}^2 , then f attains an absolute maximum value $f(x_1, y_1)$ and an absolute minimum value $f(x_2, y_2)$ at some points (x_1, y_1) and (x_2, y_2) in D.

Algorithm of finding an absolute max and min values of f: To find the absolute maximum and minimum values of a continuous function f on a closed, bounded set D:

- 1. Find the values of f at the critical points of f in D.
- 2. Find the extreme values of f on the boundary of D.
- 3. The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.