Test 01 – Math

Arthur J. Redfern arthur.redfern@utdallas.edu Oct 02, 2019

O Instructions

- There are 35 numbered questions with indicated point values that sum to 100
- Write all of your answers clearly on the answer sheet and turn it in
- No reference materials are allowed
- No help from others is allowed
- Correct answers in red

1 Test

Strategy [8 points]

True / False

1. [8 points] Circle true or false for each of the following statements

True / False Neural networks are universal function approximators under some mild conditions and can be used to map from data to classes or values True / False A function always exists that maps an arbitrary input to arbitrary output True / False It's possible to design xNNs to exploit different types of structure in data True / False It's not possible to end to end train xNNs that contain max pooling or ReLU layers because these layers are not differentiable True / False Software and hardware exists for efficient xNN implementations True / False xNNs provide state of the art results for many applications True / False A 3 layer xNN is the best choice for most applications

Many tasks can be framed as a classification or regression problem

Data [8 points]

2. [4 points] Consider an image classification data set X with 2^6 classes and 2^{10} labeled examples per class for a total of 2^{16} labeled examples. What is the total information content of all of the labels?

Information content of all labels = number of labels * information per label = $2^{16} log_2(2^6)$ = $6*2^{16} bits$

3. [2 points] Consider a dataset of color images where each image **X** is a 3 x 1024 x 2048 tensor composed of elements X(c, h, w) with per channel mean μ_c and variance σ_c^2 . How would you transform the data set **X** to a per channel 0 mean unit variance data set **X**_{norm}? **X**_{norm} =

$$X_{norm}(c, :, :) = (X(c, :, :) - \mu_c)/\sigma_c$$
, c = 0, 1 and 2

4. [2 points] List the 2 image data augmentation strategies used during training data pre processing in the example code for training CNNs.

Random crop and left right flip

Weight initialization [2 points]

5. [2 points] Let's say I know the mean μ and variance σ^2 of an individual weight in a network, but I know nothing else about it. What is the entropy maximizing distribution to sample from to initialize this weight?

The entropy maximizing distribution is Gaussian with mean μ and variance σ^2

Feature extraction – CNN layers [11 points]

Consider a CNN style 2D convolution layer $\mathbf{Y}^{3D} = \mathbf{f}(\mathbf{H}^{4D} \otimes \mathbf{X}_{padded}^{3D} + \mathbf{V}^{3D})$ where \otimes is used to denote CNN style 2D convolution and

Input: X^{3D} with dimensions $N_i \times L_r \times L_c$

Pad: P_r (= sum of top + bottom pad), P_c (= sum of left + right pad)

Padded input: X_{padded}^{3D} with dimensions $N_i \times (L_r + P_r) \times (L_c + P_c)$ Filter: H^{4D} with dimensions $N_o \times N_i \times F_r \times F_c$ (no striding) Bias: V^{3D} with dimensions $N_o \times M_r \times M_c$ and constant per n_o

Nonlinearity: **f** of type ReLU

Output: Y^{3D} with dimensions $N_0 \times M_r \times M_c$

6. [2 points] What are P_r and P_c such that $M_r = L_r$ and $M_c = L_c$?

$$P_r = F_r - 1$$

$$P_c = F_c - 1$$

7. [3 points] When padding is chosen such that $M_r = L_r$ and $M_c = L_c$, what are the dimensions (rows x columns) of each of the matrices that result from the above CNN style 2D convolution

operation \otimes lowered to matrix multiplication $\mathbf{Y}^{2D} = \mathbf{H}^{2D} \mathbf{X}_{filter}^{2D}$ when there are N_o rows in \mathbf{Y}^{2D} ?

```
Y^{2D} dimensions are N_o x (L_r^*L_c)

H^{2D} dimensions are N_o x (N_i^*F_r^*F_c)

X_{filter}^{2D} dimensions are (N_i^*F_r^*F_c) x (L_r^*L_c)
```

8. [2 points] How many MACs are required in the standard matrix multiplication based implementation of CNN style 2D convolution with the pad chosen as above (not including the bias and nonlinearity)?

```
Number of MACs = L_r L_c N_o N_i F_r F_c
```

9. [2 points] Assume that the layer is part of a network and trained for a $3 \times 32 \times 64$ input **X**. Is the convolution operation mathematically compatible with a $3 \times 96 \times 96$ input **X**? Circle yes or no.

```
Yes / No
```

10. [2 points] Consider the L_r x L_c output feature map at channel n_0 . Are the same filter coefficients used for mapping inputs to outputs for all L_r * L_c output pixels in feature map n_o ? Circle yes or no.

Yes / No

Feature extraction – RNN layers [7 points]

Consider a standard RNN layer $\mathbf{y}_{t}^{\mathsf{T}} = \mathbf{f}(\mathbf{x}_{t}^{\mathsf{T}} \mathbf{H} + \mathbf{y}_{t-1}^{\mathsf{T}} \mathbf{G} + \mathbf{v}^{\mathsf{T}})$ with

Output at time t: \mathbf{y}_t with dimensions 1 x N_o

Nonlinearity: **f** of type ReLU

Input at time t: \mathbf{x}_t^T with dimensions $1 \times N_i$ Input weight matrix: \mathbf{H} with dimensions $N_i \times N_o$ Output at time t-1: \mathbf{y}_{t-1} with dimensions $1 \times N_o$ State weight matrix: \mathbf{G} with dimensions $1 \times N_o$ \mathbf{v} with dimensions $1 \times N_o$

and the sequential set of inputs $\{\mathbf{x}_0^\mathsf{T}, \mathbf{x}_1^\mathsf{T}, \mathbf{x}_2^\mathsf{T}, \mathbf{x}_3^\mathsf{T}, \mathbf{x}_4^\mathsf{T}\}$ and outputs $\{\mathbf{y}_0^\mathsf{T}, \mathbf{y}_1^\mathsf{T}, \mathbf{y}_2^\mathsf{T}, \mathbf{y}_3^\mathsf{T}, \mathbf{y}_4^\mathsf{T}\}$ with $\mathbf{y}_{-1}^\mathsf{T} = \mathbf{0}^\mathsf{T}$.

11. [2 points] Can all of the input terms $\{\mathbf{x}_t^T \mathbf{H}\}$ for t = 0, ..., 4 be computed parallel (at the same time)? Circle yes or no.

```
Yes / No
```

12. [2 points] Can all of the state terms $\{\mathbf{y}_{t-1}^{\mathsf{T}}\mathbf{G}\}$ for t=0,...,4 be computed parallel (at the same time)? Circle yes or no.

Yes / No

13. [3 points] Assume that there's an error in output y_1 . What other output(s) will potentially be in error because of this?

Output(s): **y**₂, **y**₃, **y**₄

Feature extraction – self attention layers [14 points]

Consider a single headed self attention layer $\mathbf{Y}^T = \mathbf{A}^T \mathbf{X}^T \mathbf{H}$ with

Output matrix: \mathbf{Y}^{T} with dims M x N composed of M output vectors, N features each

Attention matrix A^{T} with dims M x M where each row is a valid pmf

Input matrix: X^T with dims M x K composed of M input vectors, K features each

Weight matrix: **H** with dims K x N

14. [4 points] Circle true or false for each of the following statements

True / False The attention matrix A^T is input data independent. True / False The attention matrix A^T mixes X^T across vectors. True / False The weight matrix A^T mixes A^T across features.

True / False If the attention matrix A^T is an identity matrix then multiple input vectors

contribute to each output vector.

15. [4 points] Consider the term $\mathbf{X}^T \mathbf{W}_q \mathbf{W}_k^T \mathbf{X}$ where \mathbf{X}^T is defined as above, \mathbf{W}_q is K x P and \mathbf{W}_k^T is P x K. What is the constraint on P such that the number of MACs required to compute $\mathbf{X}^T \mathbf{W}_q \mathbf{W}_k^T \mathbf{X}$ is less than the number of MACs required to compute $\mathbf{X}^T \mathbf{W}_{qk} \mathbf{X}$ where \mathbf{W}_{qk} is K x K?

```
MKP + PKM + MPM < MKK + MKM

2KP + PM < KK + KM

P < (KK + KM) / (2K + M)
```

Side note: if K >> M then $^{\sim}$ P < K/2 (so this answer is also ok) and if K = M then P < 2K/3

Consider a hybrid self attention – dense layer $\mathbf{Y}^T = \mathbf{f}(\mathbf{A}^T \mathbf{X}^T \mathbf{H} + \mathbf{1} \mathbf{v}^T)$ where $\mathbf{f}()$ is a ReLU function, $\mathbf{1}$ is a M x 1 vector of 1s, \mathbf{v}^T is a 1 x N vector of bias values and other terms are defined as above.

16. [2 points] Circle true or false for each of the following statements

True / False This generalizes self attention to an affine transformation.

True / False This has the ability to 0 out negatively aligned features within vectors.

17. [4 points] Taking a similar approach, write down an equation for a hybrid self attention – RNN layer that enables mixing across vectors, across features and across time. Assume input \mathbf{X}_t^T at time t.

 $\mathbf{Y}_t^{\mathsf{T}} = \mathbf{f}(\mathbf{A}_t^{\mathsf{T}} \ \mathbf{X}_t^{\mathsf{T}} \ \mathbf{H} + \mathbf{Y}_{t \cdot \mathbf{1}^{\mathsf{T}}} \ \mathbf{G} + \mathbf{1} \ \mathbf{v}^{\mathsf{T}})$ where \mathbf{G} is N x N

Feature extraction – pooling layers [2 points]

Consider an input feature map X of dimension $N_i \times L_r \times L_c$ where N_i , L_r and L_c are all divisible by 4.

18. [2 points] For a 4x4/4 average pooling layer, what are the dimensions of the output **Y**? The dimensions of **Y** are $N_i \times (L_r/4) \times (L_c/4)$

Feature extraction – nonlinearity choices [8 points]

- 19. [1 points] Circle true or false for each of the following statements

 True / False It's possible to have a deep neural network without nonlinearities
- 20. [4 points] Assume that inputs to ReLU are independent random variables with uniform pmfs that can be represented by a 9 bit signed integer in {-256, ..., 255}. If the output of ReLU is optimally coded, approximately how many bits (round to the nearest integer) are needed to represent each output?

```
257 out of 512 values map to 0
255 out of 512 values map to \{1, ..., 255\} with the probability of each being 1/512
H = -(257/512) \log_2(257/512) - 255 (1/512) \log_2(1/512) \approx -(1/2) (-1) - (1/2) (-9) = 5 bits
```

- 21. [3 points] What type of common xNN nonlinearity ...
 - A. Zeros out negative outputs, does not change positive outputs

ReLU

B. Constrains the output to (-1, 1)

Tanh

C. Constrains the output to (0, 1) and is frequently used as a gate Sigmoid

Prediction [8 points]

Consider a network designed for image classification with the following sequential structure

Input \mathbf{X}_0 with dimensions $N_i \times L_r \times L_c$ Multiple CNN and pooling layers Feature map \mathbf{X}_d with dimensions $N_d \times (L_r/D) \times (L_c/D)$ Global average pooling layer with $N_d \times 1$ output \mathbf{x}_p Dense layer $\mathbf{x}_p^T \mathbf{H} + \mathbf{v}^T$ with no nonlinearity Output \mathbf{y}^T with dimensions $1 \times C$ where C = the number of classes

22. [2 points] Circle true or false for each of the following statements

True / False The global average pooling layer allows the dense layer to be mathematically compatible with feature map \mathbf{X}_d given input \mathbf{X}_0 with \sim arbitrary rows and cols

- 23. [2 points] What are the dimensions of the dense layer weight matrix H? $N_d \times C$
- 24. [2 points] What is the relationship between N_d and C for top performing image classification networks?

 $N_d > C$

25. [2 points] What is the arithmetic intensity of the dense layer (ignore the bias) in terms of MACs / data movement?

$$(N_d C) / (C + N_d + N_d C) \approx 1$$
 for large N_d and C

Error computation [8 points]

26. [2 points] Write the equation for softmax for transforming 1 x N input \mathbf{x}^T to 1 x N output \mathbf{p}^T using n to index elements within the input and output vectors. $\mathbf{p}(\mathbf{n}) = \langle \text{ans} \rangle$, $\mathbf{n} = 0$, ..., $\mathbf{N} = 1$

$$p(n) = (1/\Sigma_n e^{x(n)}) e^{x(n)}, n = 0, ..., N - 1$$

27. [2 points] Circle true or false for each of the following statements

True / False KL divergence is a method for mapping 2 pmfs to a divergence

True / False KL divergence reduces to cross entropy when the true pmf is 1 hot

28. [2 points] What does it do (in a few words) to the output of softmax if the input is scaled by a constant > 1?

It makes the output a peakier pmf

29. [2 points] Write the equation for MSE for mapping an 1 x N network output \mathbf{y}^T and a 1 x N true output \mathbf{y}^{T*} to an error e. e =

$$e = (1/N) (y^{T} - y^{T*}) (y - y^{*})$$

Back propagation [8 points]

30. [2 points] Circle true or false for each of the following statements

True / False A graph for back propagation can automatically be constructed from the graph for forward propagation

True / False For end to end training with back propagation, it's ok if a few layers are not differentiable or sub differentiable.

31. [6 points] Consider a scalar residual building block with input x, output $y = x + f_2(f_1(f_0(x)))$ and assume that de/dy, the sensitivity of the error e with respect to the output y, is given. Further, define the following terms:

```
x_0 = x

x_1 = f_0(x_0), df_0/dx_0 is known

x_2 = f_1(x_1), df_1/dx_1 is known

x_3 = f_2(x_2), df_2/dx_2 is known

y = x + x_3
```

Write de/dx, the sensitivity of the error with respect to the input, in terms of de/dy and the above known terms.

```
de/dx_0 = (dx_1/dx_0) (dx_2/dx_1) (dx_3/dx_2) (de/dx_3) = (df_0/dx_0) (df_1/dx_1) (df_2/dx_2) (de/dy)

de/dx = de/dy + de/dx_0 = de/dy + (df_0/dx_0) (df_1/dx_1) (df_2/dx_2) (de/dy)
```

Weight update [16 points]

Given:

A is symmetric positive definite α is a scalar Operator $\partial/\partial(h-h_0)$ applied to $e(h_0)=0$ Operator $\partial/\partial(h-h_0)$ applied to $(h-h_0)^T$ g=g Operator $\partial/\partial(h-h_0)$ applied to 0.5 $(h-h_0)^T$ A $(h-h_0)=A$ $(h-h_0)$

32. [4 points] Let error $e(\mathbf{h}) = e(\mathbf{h}_0) + (\mathbf{h} - \mathbf{h}_0)^T \mathbf{g} + 0.5 (\mathbf{h} - \mathbf{h}_0)^T \mathbf{A} (\mathbf{h} - \mathbf{h}_0)$. What is the optimal choice of $\mathbf{h} - \mathbf{h}_0$ to minimize the error?

$$\partial e/\partial (h - h_0)$$
 = 0 + g + A (h - h_0)
= 0
h - h_0 = - A⁻¹ g

33. [4 points] Now force $\mathbf{h} - \mathbf{h}_0 = -\alpha \, \mathbf{g}$ such that error $e(\mathbf{h}) = e(\mathbf{h}_0) - \alpha \, \mathbf{g}^T \, \mathbf{g} + 0.5 \, \alpha^2 \, \mathbf{g}^T \, \mathbf{A} \, \mathbf{g}$. What is the optimal choice of α to minimize the error?

$$\begin{array}{ll} \partial e/\partial \alpha & = - \, \mathbf{g}^{\mathsf{T}} \, \mathbf{g} + \alpha \, \mathbf{g}^{\mathsf{T}} \, \mathbf{A} \, \mathbf{g} \\ & = 0 \\ \alpha & = (\mathbf{g}^{\mathsf{T}} \, \mathbf{g}) \, / \, (\mathbf{g}^{\mathsf{T}} \, \mathbf{A} \, \mathbf{g}) \end{array}$$

34. [4 points] Under what conditions is the gradient descent update (the update in problem 33) equivalent to the Newton's method update (the update in problem 32)?

$$A^{-1} = diag(\alpha, ..., \alpha)$$

- 35. [4 points] Assume there's a critical point at $\mathbf{x}_c = [x_c(0), x_c(1), ..., x_c(1023)]$ and for each element $\mathbf{x}_c(n)$ and small positive perturbation Δ
 - It's equally likely that the function at $x_c(n) + \Delta$ is greater than or less than the function at $x_c(n)$

- It's equally likely that the function at $x_c(n) \Delta$ is greater than or less than the function at $x_c(n)$
- These properties hold independently for each vector element x_c(n)

What is the probability that \mathbf{x}_c is a local minima? Saddle point? Local maxima?

 $P(\mathbf{x}_c \text{ is a local minima}) = (1/4)^{1024}$ $P(\mathbf{x}_c \text{ is a saddle point}) = 1 - 2(1/4)^{1024}$ $P(\mathbf{x}_c \text{ is a local maxima}) = (1/4)^{1024}$