Graphs and Community Detection

James D. Wilson MATH 373

Plan for this Lecture

- Networks
- Exploratory analysis of networks via community detection
 - Spectral clustering
 - Modularity optimization methods
 - Stochastic block modeling methods
 - Extraction-based methods
- Inference on networks via random graph models
- Software and useful resources

Networks

- Means to visualize and model interactions of a complex system
- Treat an "actor" of the system as a vertex and place edges
 between actors that interact

Application: Urovirulence and Antibiotic Resistance

- Interactions of virulence factor genes of E. coli from UTI patients

Reference: Parker et al. "Network analysis reveals sex- and antibiotic resistance-associated antivirulence targets in clinical uropathogens" American Chemical Society: Infectious Diseases (2015)

Application: Social Networks

- Friendships among my friends on Facebook

Reference: Wilson et al. "A testing based extraction algorithm for identifying significant communities in networks" *Annals of Applied Statistics* (2014)

Statistical Analysis of Networks

Primary goal: Analyze and interpret relational data

- Exploratory analysis and visualization
- Simulation and inference of graphical models
- Development of scalable algorithms
- Comparison of statistical algorithms and methodology

Notation

Graph G = ([n], E):

- Vertices ($[n] = \{1, ..., n\}$): actors of the system
- Edges $(E \subseteq [n] \times [n])$: placed between actors w/ relationship
- Adjacency Matrix $A \in \mathbb{R}^{n \times n}$:

$$A(u, v)$$
 = edge weight between nodes $u, v \in [n]$

• Degree sequence: $\mathbf{d} = (d(1), \dots, d(n))$ where

$$d(i) = \#$$
 of edges incident on node i
= $\sum_{v \in [n]} A(u, v)$

Community Detection

Informally: Identify communities $C_1, \ldots, C_k \subseteq [n]$ such that

- Edge density within sets C_i is large
- ullet Edge density between sets C_i is small

Aim: Capture relevant structure of a complex system

Community Detection Methods

Min-cut

Identify cut of vertices that "cuts" the fewest edges

Modularity

Partition that deviates most from organization in random graph

Spectral

Focus on spectral properties of graph Laplacian

Stochastic Block Model

Approximate Maximum Likelihood Estimation

Extraction

• Identify dense communities one at a time

Spectral Clustering and The Graph Laplacian

G = (V, E) undirected graph on $V = \{1, \dots n\}$ and adjacency matrix S

- Define $D = \operatorname{diag}(d(1), \dots, d(n)) \in \mathbb{R}^{n \times n}$ where
- Graph Laplacian L:

$$L = D - S$$

Normalized graph laplacian L_{norm}:

$$L_{norm} = D^{-1}L = I - D^{-1}S$$

Properties of the Graph Laplacian

- λ is an eigenvalue of L_{norm} with eigenvector v iff λ and v solve the eigenproblem $Lv = \lambda Dv$
- 0 is an eigenvalue of *L* and *L*_{norm} with eigenvector **1**
- L and L_{norm} are nonnegative definite and have n real-valued eigenvalues $0 = \lambda_1 \leq \ldots \leq \lambda_n$
- L is symmetric

Key Property of the Graph Laplacian

Theorem 1.

Let G be an undirected graph with non-negative weights and let L_{norm} be its normalized graph laplacian.

Let $k = the multiplicity of the eigenvalue 0 of L_{norm}$. Then,

- (1) k is the number of connected components C_1, \ldots, C_k in G
- (2) The eigenspace of 0 is spanned by the indicator vectors $\mathbf{1}_{C_i}$

Remark:

 If G clustered into k disjoint connected components, then we can perfectly identify the k clusters using the k smallest eigenvectors

Spectral Clustering

Algorithm

Input: Adjacency matrix $A \in \mathbb{R}^{n \times n}_+$, number of communities k

- 1 Calculate normalized graph laplacian L_{norm}
- 2 Compute

X =the $n \times k$ matrix of the k smallest eigenvectors of L_{norm}

3 Cluster the rows of X using k-means

Output: Clusters C_1, \ldots, C_k

Properties of Spectral Clustering

- Requires a prespecified number of clusters k
- Works perfectly in an ideal scenario
- Requires the use of another clustering method (k-means)
- The solution to a relaxed version of the normalized-cut problem

Reference: Ulrike Von Luxburg "A tutorial on spectral clustering" (2006)

A Quick Comparison

- Spectral can find special structure due to connectivity/similarity
- k-means is faster and better suited for compact clusters

Stochastic Block Model (SBM)

- Model-based approach to community detection
- G = (V = [n], E) with binary adjacency matrix A
- Assumes that G has k blocks generated as follows:
 - **①** Community labels $\mathbf{c} = (c_1, \dots, c_n)$ generated at random:

$$c_1, \ldots, c_n \stackrel{\textit{iid}}{\sim} \text{multinomial}(1, \pi = \{\pi_1, \ldots, \pi_k\})$$

2 Conditional on **c**, A(u, v) are independent Bernoulli rvs with

$$\mathbb{E}[A(u,v)|\mathbf{c}] = P_{c_u,c_v}$$

Reference: Holland, et al. "Stochastic block models: first steps" (1983)

Stochastic Block Model (SBM)

- Observe $G = G_o$, calculate likelihood $\mathcal{L}(\Theta|G_o, k)$ with $\Theta = \{P, c\}$
- Finding *c* becomes an estimation problem:

$$\widehat{\Theta} = \arg\max_{\Theta} \mathcal{L}(\Theta|G_o, k)$$

- Requires approximate algorithms like MCMC or variational EM
- Issue: Approximate algorithms can be slow!

Properties of SBM

- Requires pre-specified k
- "Best" performance on identifying disjoint communities
- Block labels are consistent (as $n \to \infty$) if for all $i \neq \ell$:

$$nP_{i,i} - nP_{i,\ell} \ge \sqrt{k(nP_{i,i} + (k-1)nP_{i,\ell})}$$

Algorithms like MCMC and variational EM can be slow!

Modularity

 Aim: find the partition of G whose communities contain the highest density of edges relative to the expected density of edges

Remarks:

- Requires a notion of what a random network looks like
- The choice of a null network model affects resulting communities

Reference: Mark E Newman "Modularity and community structure in networks" (2004)

Modularity

- Graph G = (V = [n], E), adjacency matrix $A = [A_{u,v}]$
- Modularity (Q): Measures the "significance" of partition c:

$$Q(\mathbf{c}) = \frac{1}{2|E|} \sum_{u,v} \left[\left(A(u,v) - \frac{d(u)d(v)}{2|E|} \right) \mathbb{I} \{ c_u = c_v \} \right]$$

 Measures the average departure of observed edge density from expected edge density

Modularity Maximization

Aim: Find the labels $c^* \in \{1, ..., k\}^n$ that maximizes modularity:

$$c^* = \arg \max_{c} \{Q\}$$

- NP hard optimization problem
- Many approximate algorithms developed

Reference: Santo Fortunato, "Community detection in graphs" (2009). [100+ page review paper]

Community Extraction

Basic Idea:

- Identify communities $C_i \subseteq V$ one at a time via iterative search
- Remove/avoid C_1, \ldots, C_i when searching for C_{i+1}

Virtues:

- Possible to accommodate overlap
- Automatic selection of number of communities
- Parallelizable! Can easily scale to large networks.

Community Extraction Methods

Methods:

- OSLOM: Lancichinetti, et al. "Finding statistically significant communities in networks" (2011) – resampling based method
- Extraction: Zhao, et al. "Community extraction for social networks"
 (2011) score-based residualizing
- ESSC: Wilson, et al. "A testing based extraction algorithm for identifying significant communities in networks" (2014) – hypothesis testing based extraction

Statistical Inference via Random graph models

Aim: Model the occurrence of an observed graph G = ([n], E) from a family of graphs G.

Use: the distribution on \mathcal{G} gives a means to make inference on complicated network systems.

Reference: Anna Goldenberg et al. "A Survey of Statistical Network Models" (2009)

Applications of Random graph models

- "Small-world brain networks" (2006)
- "Exponential random graphs for social networks" (2012)
- "The structure of adolescent romantic and sexual networks" (2004)
- "Childhood peer network characteristics: genetic influences and links with early mental health trajectories" (2015)
- "Network biology: understanding the cellâs functional organization" (2004)

Statistical Network Models

• Erdős-Rényi model: Independent edges with probability

$$\mathbb{P}(\{u,v\}\in E)=p$$

Configuration model: Independent edges with probability

$$\mathbb{P}(\{u,v\}\in E)=\frac{d(u)d(v)}{\sum_{w}d(w)}$$

• Beta model: Let $\beta \in (0, \infty)^n$. Independent edges with probability

$$logit(\mathbb{P}(\{u,v\} \in E)) = \beta_u + \beta_v$$

Statistical Network Models

Latent space model: Independent edges with

$$logit(\mathbb{P}(\{u,v\} \in E)) = X\beta - \delta_{u,v}$$

- X = design matrix of covariates
- $\delta_{u,v}$ = latent distance between nodes $u, v \in [n]$
- Stochastic block model: Conditional on community labels c, edges are independent with probability

$$\mathbb{P}(\{u,v\}\in E)=P_{c_u,c_v}$$

Statistical Network Models

 Exponential Random Graph model (ERGM): let A denote the observed binary adjacency matrix. Then,

$$P(A = A) \propto \exp\{\theta^T h(A)\}$$

- $h(A): \{0,1\}^{\binom{n}{2}} \to \mathcal{R}^p$ = network statistics (both endogeneous and exogeneous).
- Generalized Exponential Random Graph model (GERGM): extension of ERGM to general weighted networks.

Reference: Wilson et al. "Stochastic weighted graphs: flexible model specification and simulation" (2015)

Network Model Challenges

- Appropriately incorporating edge dependencies
- Models that do incorporate dependencies are intractable and rely on approximation / MCMC methods (e.g, ERGM and GERGM)
- Scalability
- Dynamic random graph models

Useful Network Resources

Useful R packages: igraph (also available in python); statnet; gergm