Math 118C HW1

Zih-Yu Hsieh

April 10, 2025

1

Question 1 Rudin Pg. 239 Problem 1:

If S is a nonempty subset of a vector space X, prove that the span of S is a vector space.

Pf:

(Remark: The notation \mathbb{F} denotes the base field of the vector space X).

Let S' be the span of the set S. Then, S' is a collection of all arbitrary linear combinations of vectors in any finite subcollection of S.

Hence, for all $x \in S'$, there exists $x_1, ..., x_n \in S$, and $a_1, ..., a_n \in \mathbb{F}$, where $x = \sum_{k=1}^n a_k x_k$.

Which, the zero vector $\bar{0} \in S'$, since 0 = 0x for all $x \in S$.

For all $x, y \in S'$, there exists $x_1, ..., x_n, y_1, ..., y_m \in S$, and $a_1, ..., a_n, b_1, ..., b_m \in \mathbb{F}$, where $x = \sum_{k=1}^n a_k x_k$, and $y = \sum_{j=1}^m b_j y_j$. Then, the sum $x + y = \sum_{k=1}^n a_k x_k + \sum_{j=1}^m b_j y_j \in S'$, since it is a linear combination of $x_1, ..., x_n, y_1, ..., y_m \in S$.

Finally, for any $\lambda \in \mathbb{F}$, given $x \in S'$ above, $\lambda x \in S'$, since $\lambda x = \lambda \sum_{k=1}^{n} a_k x_k = \sum_{k=1}^{n} (\lambda a_k) x_k$, where each index $k \in \{1, ..., n\}$ satisfies $\lambda a_k \in \mathbb{F}$. Hence, λx is again a linear combination of $x_1, ..., x_n \in S$, showing that $\lambda x \in S'$.

Since the zero vector $\bar{0} \in S'$, S' is closed under addition (all $x, y \in S'$ has $x + y \in S'$), and it's closed under scalar multiplication (all $x \in S'$ and $\lambda \in \mathbb{F}$ satisfies $\lambda x \in S'$), hence S' (the span of S) is a vector space.

Question 2 Rudin Pq. 239 Problem 4:

Prove that null spaces and ranges of linear transformations are vector spaces.

Pf:

Let \mathbb{F} be an arbitrary field, and V, W be arbitrary two vector spaces over base field \mathbb{F} , and $T \in \mathcal{L}(V, W)$ (an arbitrary linear transformation from V to W).

Null Space is a vector space:

The null space of T, $null(T) \subseteq V$ satisfies the following properties:

- $\bar{0}_V \in null(T)$: By definition, since $T\bar{0}_V = \bar{0}_W$, then $\bar{0}_V \in null(T)$.
- null(T) is closed under addition: For all $u, v \in null(T)$, since $Tu, Tv = \bar{0}_W$, then $T(u+v) = Tu + Tv = \bar{0}_W + \bar{0}_W = \bar{0}_W$, hence u + v also got mapped to $\bar{0}_W$, showing that $u + v \in null(T)$.
- null(T) is closed under scalar multiplication: For all $v \in null(T)$ and $\lambda \in \mathbb{F}$, since $Tv = \bar{0}_W$, then $T(\lambda v) = \lambda Tv = \lambda \cdot \bar{0}_W = \bar{0}_W$, showing that λv also got mapped to $\bar{0}_W$, hence $\lambda v \in null(T)$.

With the above three conditions, null(T) the null space of T, is a vector space.

Range is a vector space:

The range of T, $range(T) \subseteq W$ satisfies the following properties:

- $\bar{0}_W \in range(T)$: By definition, since $T\bar{0}_V = \bar{0}_W$, then $\bar{0}_W \in range(T)$.
- range(T) is closed under addition: For all $u, v \in range(T)$, there exists $x, y \in V$, such that Tx = u, and Ty = v. Then, T(x + y) = Tx + Ty = u + v, showing that $u + v \in range(T)$.
- range(T) is closed under scalar multiplication: For all $v \in range(T)$ and $\lambda \in \mathbb{F}$, since there exists $x \in V$, such that Tx = v, then $T(\lambda x) = \lambda(Tx) = \lambda v$, showing that $\lambda v \in range(T)$.

Again, with the above three conditions, range(T) is a vector space.

3

Question 3 Rudin Pg. 239 Problem 5:

Prove that to every $A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R})$ corresponds to a unique $y \in \mathbb{R}^n$, such that $Ax = x \cdot y$. Prove also that ||A|| = |y|.

Pf:

Existence of y:

If we pick the standard orthonormal basis $e_1, ..., e_n \in \mathbb{R}^n$, which for every $A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R})$, let $a_i = Ae_i \in \mathbb{R}$ for all index $i \in \{1, ..., n\}$.

Now, consider the vector $y = \sum_{i=1}^{n} a_i e_i$:

For any $x \in \mathbb{R}^n$, there exists unique $b_1, ..., b_n \in \mathbb{R}$, such that $x = \sum_{i=1}^n b_i e_i$. Then, when apply the transformation and the dot product, we get the following:

$$Ax = A\left(\sum_{i=1}^{n} b_{i}e_{i}\right) = \sum_{i=1}^{n} b_{i}(Ae_{i}) = \sum_{i=1}^{n} b_{i}a_{i}$$

$$x \cdot y = \left(\sum_{i=1}^{n} b_{i}e_{i}\right) \cdot \left(\sum_{j=1}^{n} a_{j}e_{j}\right) = \sum_{i=1}^{n} b_{i}\left(e_{i} \cdot \sum_{j=1}^{n} a_{j}e_{j}\right) = \sum_{i=1}^{n} b_{i}a_{i}$$

(Note: Since $e_1, ..., e_n \in \mathbb{R}^n$ is an orthonormal basis, then $e_i \cdot e_j = 1$ if i = j, and $e_i \cdot e_j = 0$ if $i \neq j$). Hence,

 $Ax = x \cdot y$, showing that there exists such $y \in \mathbb{R}^n$, with $Ax = x \cdot y$.

Uniqueness of y:

Suppose $y, z \in \mathbb{R}^n$ are two vectors satisfying $Ax = x \cdot y$ and $Ax = x \cdot z$ for all $x \in \mathbb{R}^n$. Then, by the bilinearity of real dot product, we have:

$$0 = Ax - Ax = (x \cdot y) - (x \cdot z) = x \cdot (y - z)$$

However, notice that the choice of x is arbitrary. In particular, we can choose $x = (y - z) \in \mathbb{R}^n$, and get the following:

$$0 = (y - z) \cdot (y - z)$$

By the property of dot product, any $x \in \mathbb{R}^n$ satisfies $x \cdot x \ge 0$, and $x \cdot x = 0$ iff $x = \overline{0}$, hence the above equality implies $(y - z) = \overline{0}$, or y = z. This proves the uniqueness of such corresponding vector y of A.

Norm of A:

First, we need to consider the special case where A=0 as a linear functional: For all $x \in \mathbb{R}^n$, since Ax=0, and $x \cdot \bar{0}=0$, then the unique vector corresponding to A=0 the zero map, is $\bar{0}$. In this case, all $x \in \mathbb{R}^n$ with |x|=1 satisfies $|Ax|=0=|\bar{0}|$, hence $||A||=\sup_{|x|=1}|Ax|=0=|\bar{0}|$.

Now, suppose $A \neq 0$. For all $x \in \mathbb{R}^n$ with |x| = 1, based on Cauchy-Schwartz Inequality, we can get the following relationship:

$$|Ax| = |x \cdot y| \le |x| \cdot |y| = |y|$$

Hence, $||A|| = \sup_{|x|=1} |Ax| \le |y|$.

On the other hand, since $A \neq 0$, then the corresponding vector $y \neq \bar{0}$ (or else all $x \in \mathbb{R}^n$ would satisfy $Ax = x \cdot \bar{0} = 0$, which is a contradiction). Then, |y| > 0, which we can define a unit vector $\hat{y} = \frac{y}{|y|}$ with $|\hat{y}| = 1$. Because Cauchy-Schwartz Inequality achieves an equality when the two vectors are scalar multiple of each other, then since \hat{y} is a scalar multiple of y, we get the following:

$$|A\hat{y}|=|\hat{y}\cdot y|=|\hat{y}|\cdot |y|=|y|$$

Hence, $|A\hat{y}| = |y| \le ||A||$.

The above two inequalities show that ||A|| = |y|.

4

Question 4 Rudin Pg 239 Problem 7:

Suppose that f is a real-valued function defined in an open se $E \subseteq \mathbb{R}^n$, and that the partial derivatives $D_1 f, ..., D_n f$ are bounded in E. Prove that f is continuous in E.

Pf:

Question 5 Rudin Pg. 239 Problem 8:

Suppose that f is a differentiable real function in an open set $E \subseteq \mathbb{R}^n$, and that f has a local maximum at a point $x \in E$. Prove that f'(x) = Df(x) = 0.

Pf:

First, since f has a local maximum at x, then there exists a $\delta > 0$, such that any $y \in B_{\delta}(x)$ (a small open neighborhood of x), satisfies $f(y) \leq f(x)$.

Then, since f is differentiable implies the existence of all partial derivative and the uniqueness of the differential Df(x), we know it is given as follow:

$$Df(x) = \left(\frac{\partial f}{\partial x_1}(x), ..., \frac{\partial f}{\partial x_n}(x)\right)$$

So, to prove that Df(x) = 0, it suffices to prove that each partial derivative is 0 at x.

Let $x = (a_1, ..., a_n) \in \mathbb{R}^n$. For each $i \in \{1, ..., n\}$, the partial derivative is given as follow:

$$\frac{\partial f}{\partial x_i}(x) = \lim_{h \to 0} \frac{f(a_1, ..., a_i + h, ..., a_n) - f(a_1, ..., a_i, ..., a_n)}{h}$$

Now, if we consider any $0 < |h| < \delta$, since $|(a_1, ..., a_i + h, ..., a_n) - (a_1, ..., a_i, ..., a_n)| = |(0, ..., h, ..., 0)| = |h| < \delta$, then the vector $(a_1, ..., a_i + h, ..., a_n) \in B_{\delta}(x)$. Hence, $f(a_1, ..., a_i + h, ..., a_n) \le f(x) = f(a_1, ..., a_i, ..., a_n)$, so the difference $f(a_1, ..., a_i + h, ..., a_n) - f(a_1, ..., a_i, ..., a_n) \le 0$.

Then, there are two cases to consider:

• For all h > 0, the following is true:

$$\frac{f(a_1, ..., a_i + h, ..., a_n) - f(a_1, ..., a_i, ..., a_n)}{h} \le 0 \implies \lim_{h \to 0} \frac{f(a_1, ..., a_i + h, ..., a_n) - f(a_1, ..., a_i, ..., a_n)}{h} \le 0$$

• Else, for all h < 0, the following is true:

$$\frac{f(a_1, ..., a_i + h, ..., a_n) - f(a_1, ..., a_i, ..., a_n)}{h} \ge 0 \implies \lim_{h \to 0} \frac{f(a_1, ..., a_i + h, ..., a_n) - f(a_1, ..., a_i, ..., a_n)}{h} \ge 0$$

(Note: the above two inequalities are followed by the properties of limit).

Then, we can conclude the following:

$$\frac{\partial f}{\partial x_i}(x) = \lim_{h \to 0} \frac{f(a_1, ..., a_i + h, ..., a_n) - f(a_1, ..., a_i, ..., a_n)}{h} = 0$$

So, because each partial derivative is 0, the differential Df(x) = 0.

Therefore, f is differentiable over E and $x \in E$ is a local maximum, implies that Df(x) = 0.

6

Question 6 Rudin Pg. 239 Problem 11: If f and g are differentiable real functions in \mathbb{R}^n , prove that

$$D(fg) = f(Dg) + g(Df)$$

and that $D(1/f) = -f^{-2}(Df)$ wherever $f \neq 0$.

Pf: