네트워크 계층 구조

OSI7계층

개념: 국제표준기구에서 정리한 네트워크 구조에 대한 기본 모델

OSI7계층 필요성: 복잡한 구성을 유사한 기능별로 계층홯여 처리되는 정보들을 캡슐화하여 구성하고

각 계층에 사용되는 통신 규격을 프로토콜로 표준화함으로써 응용소프트웨어 개발자, 서버/네트우크 엔지니어들이 본인이 연관된 계층만 고려하며 업무를 수행 할 수 있도록 한다

		사용자에 서비스 제공				
Application Layer	7. Application Layer	사용자 입출력 정의				
		응용프로세스 관리				
	0.5	송수신지의 다른 데이터 표현방식을	message			
	6. Presentation Layer	상호인식 가능하도록 변환				
		송수신지의 프로세스 간 연결관리				
	5. Session Layer	통신오류 복구 및 재전송				
		세그먼트구성 , 송수신의 포트지정				
	4. Transport Layer	메시지분할 및 재조립	메시지분할 및 재조립			
		프로세스 간 혼잡제어, 흐름제어 , 오류제어 및 재전송				
Data Flow	2. Naturally I may a	패킷구성 , 송수신지의 논리주소(IP) 지정				
Layer	3. Network Layer	최적경로 탐색 및 전송	최적경로 탐색 및 전송			
	2. DataLink Layer 프레임구성 , 송수신지의 물리주소(MAC)지정					
	1 Physical Layer	비트 스트림의 전기 신호 전송	비트 스트림의 전기 신호 전송			
	1. Physical Layer	비트의 부호화 및 복호화, 물리적 연결설정 및 해제				

7 응 용	여러가지 서비스를 제공하는 실질적인 프로그램, 사용자 인터페이스
6표현	데이터를 어떤 형식으로 전달할지 정하는 계층 ex) 그림파일(jpeg,png), 압축파일(zip, tar.gz), 일반 텍스트
5세션	논리적인 연결을 정의하는 계층, 네트워크 장치들간의 연결 설정의 유지 동기화 등을 어떻게 수행할지를 정의
4전 송	포트주소를 이용해서 통신, 오류 제어(신뢰성 유무), 특정 프로그램 간의 통신(웹 브라우저 and 웹 서버)
3네트워크	IP주소를 이용해서 통신, 전송 경로를 선택하여 어느 경로로 가는 것이 최선인지를 결정, 특정 네트워크를 찾아가는 역할
2데이터 링크	MAC주소를 이용해서 통신, 특정 네트워크에서 특정 PC를 찾아가는 역할
1 물리	상위 계층에서 캡슐화된 데이터를 bit 단위로 변경, 전기신호로 전송하고 받은 전기신호를 bit단위로 해석하는 역할

TCP/IP 프로토콜

OSI	TCP/IP	프로토콜		
Application, Presentation	Application	HTTP, FTP, SMTP, TELNET		
Session	Application	HITP, FIP, SMIP, TELNET		
Transport	Transport	TCP , UDP		
Nationalis	Internat	ARP : IP의 MAC주소 변환용 ,ipv4		
Network	Internet	ICMP:NW제어용		
		RS-232 : 직렬포트용		
DataLink, Physical	Network Access	V.35: 케이블 랜선용		
		FDD :광섬유 케이블용		

ICMP 정의에서 ICMP가 사용되는 주요 방법 중 하나는 데이터가 대상에 도달하는지와 도달 시간이 적절한지를 확인하는 것입니다ICMP는 네트워크가 데이터를 얼마나 잘 전송하는지 알 수 있는 오류 보고 프로세스 및 테스트의 중요한 측면입니다

■라우팅 유형

데이터가 송신지에서 수신지까지 이동하는 경로를 형성하는 것을 라우팅이라고 하며 크게 정적 라우팅과 동적 라우팅이라고 함 정적라우팅: 네트워크관리자가 직접 라우팅 테이블에 라우팅 경로를 입력하여 관리

동적라우팅:

라우터간 정보를 교환하면서 라우팅경로를 관리하는 방법을 동적 라우팅이라고 한다

- 거리벡터라우팅알고리즘Routing Information Protocol

인접라우터와 라우팅 테이블 정보를 교혼하여 패킷전송을 위해 거쳐야 하는 라우터의 개수로 거리를 산정하여 최적의 라우팅 경로를 수립하는 방법

(RIP: 거쳐야 하는 라우터들의 최대수가 중요함)Protocol

- 링크상태라우팅 알고리즘(Link State Routing Algorithm)

연결된 모든 라우터로부터 연결상태 정보를 수신하여 각 라우터까지 최단경로를 라우팅 테이블로 만드는 방법 (OSPF (open shortest path First) Protocol

cmd실행

c:\> ipconfig /all (내 컴퓨터 ip조회 , 맥주소 , 컴퓨터이름 확인함)

nslookup: 도메인에 해당하는 ip 검색하기

c:\ \rangle nslookup ncs.go.kr

■접속하고자 하는 시스템의 ip또는 url를 입력하여 접속여부를 확인 (접속서버 상태 확인) c:\> ping 8.8.8.8 ping ncs.go.kr

■ trace router

(네트워크 추적)

몇 개의 네트워크를 거쳐 구글서버에 도착하는지 확인할 수 있다

(거처간 네트워크 수)

▶ tracert 8.8.8.8

■미들웨어

개념: 하나의 시스템에서 다양한 목적의 응용소프트웨어가 동시에 수행되거나 복수 시스템의 응용소프트웨어가 서로 연계되어 수행되는 경우에도 안정적으로 실행될 수 있도록 운영체제와 응용소프트웨어 사이에서 다양한 기능을 지원하는 소프트웨어이다.

■ 미들웨어 주요기능

분산시스템 SW : 물리적으로 분산되어 구축되어 있는 다수의 컴퓨팅 환경에서 사용자가 하나의 시스템처럼 사용할 수 있도록 구성된 소프트웨어

IT자원관리 : IT자원에 대한 관리 정책을 기반으로 지속적으로 모니터링하고 성능과 가용성을 관리하는 기능을 제공하는 소 프트웨어

서비스 플랫폼 : 서로 다른 서비스들을 하나의 통합 환경에서 인터랙티브하게 사용할 수 있도록 해주는 인터넷 기반 환경 구성 기술

네트워크 보안 : 네트워크에 연결된 호스트들의 송수신 정보 탈취 및 변조를 통한 불법적인 서비스 이용을 방지하는 기술

■분산시스템 SW

웹애플리케이션 서버 : 웹 시스템에서 전달된 request를 처리하기 위해 트랜잭션 관리, 세션유지, 부하분산등의 역할을 하는 서버 소프트웨어

연계통합솔루션: 시스템 간 표준화된 데이터 송수신처리를 통해 통합환경 구성지원 , EAI 실시간데이터처리: 지속적으로 발생하는 데이터를 실시간 분석하고 반응하는 시스템 , CEP 분산 병렬처리: 대규모 데이터를 실시간 처리, 분석하기 위해 다수의 노드에서 분할 처리

DDS

TP모니터: 트랜잭션 처리 모니터링 및 제어 시스템

■IT자원

시스템관리 :서버의 리소스 및 프로세스 관리 시스템 SW실행관리 : 시스템 소프트웨어 실행 상태 관리 시스템 네트워크 관리 : 네트워크 장비, 회선, 트랙픽 등 관리시스템 IT서비스운영관리 : IT시스템의 운영과정 모니터링 및 관리시스템

• 웹서버 (WAS)

- 클라이언트/서버 환경보다는 웹 환경을 구현하기 위한 미들웨어(웹 애플리케이션을 지원하는 미들웨어)
- 이전에는 Client-Server의 2-Tir 아키텍처로 Client에서 업무로직 처리를 하고 Server에서 데이터 처리 형태였지만, 현재는 대용량 환경으로 일반적으로 Client를 분리해서 중간에 WAS(Web Application Server)를 두어 3계층 구조가 생겼다

 • 즉, WAS도 미들웨어의 종류 중 하나

TP-monitor; Transaction Processing Monitor; Teleprocessing monitor 트랜잭션이 온전하게 처리되고 있는지, 오류가 발생하면 적절한 조치를 취하는지에 대해 여러 개의 로컬, 원격 터미널 간의 데 이터 전송을 감시하는 통제 프로그램

• 각종 프로토콜에서 동작하는 세션과 시스템과 데이터베이스 사이의 최소 처리단위인 트랜잭션을 감시 및 유지관리하는 미들웨 어

■서비스 플랫폼

IoT플랫폼: IoT 장치를 연결하고 응용 서비스의 설치, 구동, 정지, 해제 등을 제어하고 관리하는 플랫폼 클라우드서비스 플랫폼: 클라우드 서버 기반 서비스 제공 플랫폼

UI/Ux 프레임워크 : 사용자와 소프트웨어 간 소통 기능 구성을 위해 필요한 라이브러리 및 응용소프트웨어 집합

CDN: context delivery Network:

다수의 노드에 콘테츠를 복제 저장하여 사용자가 인접노드에서 빠르게 콘텐츠를 받을 수 있도록 지원하는 시스템 (이클립스 다운로드 !! 아시아, 유럽, 한국, 일본)

■네트워크 보안 네트워크 접근제어 보안통신 침입방지/사고 대응 보안관리

■데이터베이스 기초 활용

데이터개녕: 관찰이나 측정으로 수집한 사실을 수치또는 문자형태로 표현한 최소의 단위 값 (데이터 -〉 정보 -〉 지식 -〉 지혜)

■데이터베이스의 개념

데이터베이스는 공용으로 활용하기 위해 통합하여 저장한 운영 데이터의 집합이다

- 데이터베이스의 특성
- : 실시간 접근성, 계속적 변화, 동시공용, 내용에 의한 참조

■데이터베이스관리시스템:DBMS

다수의 응용소프트웨어 및 사용자가 데이터베이스에 접근하여 원활하게 사용할 수 있도록 중간에서 관리해주는 시스템

데이터베이스관리시스템기능:

동시성제어, 회복관리, 성능관리, 보안관리

■ 트랜잭션

트랜잭션개념: 트랜잭션은 데이터베이스의 상태를 변화시키기 위한 최소 작업 단위로 한 번에 처리되어야 하는 질의어 묶음 이다

■ 트랜잭션의 특징

- Aotomicity(원자성) :데이터베이스에 트랜잭션은 모두 반영되거나 전혀 반영되지 않아야 함
- Consistency(일관성) : 트랜잭션 시작 시점에 참조한 데이터는 종료까지 일관성을 유지해야 함
- Isolation(고립성) : 동시에 다수 트랜잭션이 처리되는 경우 서로의 연산에 개입하면 안됨
- Durability(지속성) : 트랜잭션이 성공적으로 완료되면 처리결과는 영속적으로 반영되어야 함

■ 트랜잭션 고립화 수준

Isolation Level

- Read UnCommitted : commit되지 않은 데이터의 Read 허용
- Read Committed: 질의 시작전 Commit된 데이터의 Read만 허용
- Repeatable read : 트랜잭션 시작전 Commit된 데이터의 Read만 허용
- Serializable : 병행 처리되지 않고 순차적으로 처리되는 것과 동일한 수준

■ 관계형 데이터베이스 테이블 정의

데이터모델링 개념

시스템으로 구성하기 위한 데이터의 집합을 도출한 후 각 집합을 구성하는 세부속성과 식별자를 정의하고 각 데이터 집합 간의 관계를 정해진 표기법으로 시각화하는 과정

■ 데이터 모델링 유형

1.요구사항 수집/분석

2.설계: 개념모델링 : 현실세계의 정보를 추상화하여 주제 영역을 정의하고 식별자/관계/속성을 도출해 개념 ERD작성

논리모델링 : 개념데이터 모델을 특정 데이터베이스에 적합하도록 구조화하여 논리ERD작성

물리모델링 : 특정DBMS에서 활용 가능하도록 물리ERD 및 테이블 정의서 작성과정

3.데이터베이스 구현 : 물리 ERD 및 테이블 정의서를 이용해 특정 DBMS에 데이터베이스를 구축하는 과정

■ER데이터 모델:

현실세계의 구성요소들을 데이터베이스로 관리하기 위해 유형화, 집단화, 일반화 과정을 통해 추상화하여 개체(Entity), 관계(Relationship)로 구조화한 데이터 모델이다

■ ER모델 구성요소

개체(Entity) : 사람, 사물, 사건, 개념등의 유무형의 특성을 공유하는 독립적인 실체로 인스턴스의 집합

유일한 식별자에 의해 식별 가능해야 하며 반드시 하나 이상의 속성(Attribute)

하나이상의 관계(Relation)로 구성되어야 함

속성(Attribute): 개체를 구성하는 특성 (개체가 가지는 값)

관계(RelationShip) : 개체간의 상호 연관성을 표현하는 페어링의 집합

(1:1, 1:다, 다:다)

인스턴스 각각은 자신의 연관성을 가지고 있을 수 있음. 이것을 집합하여 '강의'라는 관계 도출 [그림 l-1-31] 관계의 패어링

■관계표기법: 정보공학(IE), 바커(Barker)

■ 관계형 데이터베이스 테이블 개념

: 데이터 모델링을 통해 도출된 개체와 관계를 데이터베이스에서 관리하기 위한 2차원 표형태의 저장공간

■ 속성표기법

	바케(Barker)		
THEIT NO	속성 앞에 * 기호 표기		
구얼아시 않음	속성 앞에 o 기호 표기		
개체 상단 박스에 표기	속성 앞에 # 기호 표기		
속성 뒤에 (FK) 표기	속성 뒤에 (FK) 표기		
Entity_Name	(
Primary Key	# Primary Key * Attribute_Name_1 o Attribute_Name_2 o Attribute_Name_3 (FK)		
Attribute_Name_1 Attribute_Name_2 Attribute_Name_3 (FK)			
	개체 상단 박스에 표기 속성 뒤에 (FK) 표기 Entity_Name Primary Key Attribute_Name_1 Attribute_Name_2		

테이블구조

관계형 데이터베이스 구조 [편집]

■ 관계형 데이터베이스 테이블 조작

SQL : 데이터베이스를 조작하기 위한 구조화된 질의어로 사용자가 처리 결과를 얻기위한 질의어

■ SQL유형:DDL, DML, DCL

-DDL : 데이터를 정의하는 언어로 데이터베이스 스키마구조를 변경하는 목적으로 데이터베이스관리자나 설계자가 주로사용 CREATE, ALTER, DROP, TRUNCATE

-DML: 데이터를 조작하는 언어로 데이터를 조회하거나 입력, 수정 삭제하기 위한 목적으로 데이터 베이스 관리자나 응요 소프트웨어 개발자가 주로 사용한다

SELECT , INSERT , UPDATE , MERGE, DELETE

-DCL :데이터를 제어하는 언어로 데이터베이스 접근을 위한 권한을 부여하거나 회수하는 목적으로 데이터베이스 관리자가 주로 사용함

GRANT (권한부여), REVOKE(권한 회수)

■ ER-Master (ERD작성도구)

이클립스 실행

1) help -> install new software > add 버튼

2) name: ERMaster

location: http://ermaster.sourceforgenet/update-site/

선택후 next 버튼 클릭 설치함

■ ER 다이어그램 실행

File \rightarrow new \rightarrow other \rightarrow ERMaster

- 테이블생성 및 속성(필드) 지정한다
- 관계(relationship) 추가한다

■ ERD 내보내기

그리드화면에서 - 〉 우클릭 - 〉 내보내기 -〉 ddl 또는 html 또는 이미지

1. 관계형 데이터베이스 테이블 생성 쿼리를 작성한다.

ERMaster 그리드에서 마우스 오른쪽 클릭하여 표시되는 내보내기에서 DDL을 클릭하고 위치를 지정하여 저장하면 테이블 생성 쿼리가 자동으로 생성된다.

4-1. THE THE AND A CO.

프로토콜 데이터 단위(Protocol Data Unit)

OSI	역할	PDU	프로토콜	포트번호	주소 체계	장비	TCP/IP
Application (응용)	네트워크를 이용하는 소프트웨어 그 자체, 사용자 인터페이스를 담당		FTP Telnet SMTP	TCP 20, 21 TCP 23 TCP 25			
Presentation (표현)	Encoding, Decoding, 암호, 압축, 데이터의 포맷 결정	Message	HTTP	TCP 80 UDP 67, 68			
Sesstion (세선)	프로그램 간 논리적인 연결		TFTP SNMP DNS SSH NetBIOS	UDP 69 UDP 161, 162 TCP/UDP 53 TCP 22 TCP 137, 138, 139			Application
Transport (전송)	Process-Process간의 통신	segment	TCP, UDP		포트 주소		Transport (Host to Host)
Network (네트워크)	라우팅, 목적지까지 데이터를 전송	packet	ICMP IP ARP		ip 주소	라우터	Internet
Data-Link (데이터 링크)	물리적인 연결, Flow Control(흐름 제어), Error Control(에러 제어)	frame	Ethernet		MAC 주소	스위치, 브릿지	Network Interface
Physical (물리)	bit신호를 물리적인 전송 매체로 전달, 배선, 커넥터 등과 같은 물리적 연결·구조	bit				리피터, 허브	

차이점	OSI	TCP/IP			
시스템의 유연성	복잡한 통신망의 상황변환에 유연하게 적응이 어렵다.	하나의 계층에 네트워크 환경에 따라 여러개의 프로토콜을 어용하는 유연성을 가진다.			
서비스 특성	연결형(Connection Oriented)서비스를 위주	연결형(Connection Oriented)서비스, 비연결성(Connectionless)서비스 둘 다 제공한다.			
계층 수	7 계층	4 계층 (Network Interface를 Network Interface와 Physical로 나누면 5계층			
참조	참조하는 개념적인 모델	실제로 구현된 모델 이게 더 먼저 나옴			
□ 人 フ	1977년	1968년			

