Proper use of a Computing Cluster

A look at 3 generations of linux based clusters and their usage, in an opensource environment.

Phil Kostenbader

- Overview of the 3 clusters:
 - 3 clusters: 10 node 20 cpu Redhat Linux 7
 13 node 52 cpu Fedora 3 (pre-configured)
 16 node 128 cpu Fedora 7 (pre-configured)
 10 node 20 cpu Fedora 10
 - Ganglia 3.0.1 / 3.0.4 / 3.1.1 (3.1.2)
 - Torque 1.2.0 / 2.1.8 / 2.1.10 (2.4.0)
 - Openmpi / 1.2.5 / 1.2.4 (1.3.3)
 - Lam / 7.1.2 / 7.1.4 (7.1.4)
 - Mpich2 1.0.2 / 1.0.6 / 1.1.1 (1.1.1)
- Primary applications are scientific

The environment:

- 6 x 12' room
- Big air conditioner (~ 72° / clusters idle)
- 4 racks
- 37 nodes (8 servers, 29 cluster (227 cpus))
- Gigabit backend network (NFS, MPI, backup, scientific equipment). Network extends throughout the building
- 9 UPSs

- 1st impressions of the Redhat 7/FC3 clusters
 - Primarily used as batch environment for access to high performance hardware. (similar to the batch environment of the 70s mainframe days)
 - MPI libraries were not utilized
 - ~ 90% of the jobs are generated from weekend/nightly database processing and web applications. These jobs are supported by scientists-developers.
 - An 8 core Xeon server exists to support experiments and data analysis.
- Clusters use Torque to support the coordination and execution of hundreds of jobs.

- 1st impression of the 'new' FC7 cluster
 - Initially no difference in usage
 - New software package arrives; requires many cpus but does not support MPI. A run is designed and setup, broken into separate parts, and submitted as many individual jobs -> with data created for each job. When complete the scientist collates the data and processes the results.
 - Compatible with taking an ordinary password/shadow file and submitting individual 'john the ripper' jobs, one for each line. The administrator would examine the results and identify weak passwords.

- FC7 cluster goes into production
- Redhat 7 cluster is reinstalled as development environment with FC10
 - Ganglia
 - Torque
 - Lam-devel, mpich2-devel, Openmpi-devel
 - Compat-gcc, Intel Fortran/C compilers
 - Gsh, pdsh
- Cluster is isolated from network via iptables.
- 1 simple ssh script to manage nodes.

MPI version of 'hello world' using openmpi

- Setup ssh
 - Ssh-keyscan to update known_hosts with all node keys
 - Ssh-keygen to update authorized_keys with key of headnode
- Compile and run:

```
mpicc whello.c mpirun -n 20 ./a.out
```

MPI version of 'hello world' using mpich2:

```
mpicc whello.c
mpdboot -v -n 16 -f ~/mpd.hosts
mpiexec -n 128 ./a.out
```

```
<u>File Edit View Terminal Help</u>
#include <stdio.h> /* printf and BUFSIZ defined there */
#include <stdlib.h> /* exit defined there */
#include <mpi.h> /* all MPI-2 functions defined there */
int main(argc, argv)
int argc;
char *argv[];
   int rank, size, length;
   char name[BUFSIZ];
   MPI Init(&argc, &argv);
   MPI Comm rank(MPI COMM WORLD, &rank);
   MPI Comm size(MPI COMM WORLD, &size);
   MPI Get processor name(name, &length);
   printf("%s: hello world from process %d of %d\n", name, rank, size);
   MPI Finalize();
   exit(0);
```

```
<u>File Edit View Terminal Help</u>
[kostenba@n00 whello]$ mpirun.openmpi -n 20 ./a.out | sort
n00: hello world from process 0 of 20
n00: hello world from process 10 of 20
n01: hello world from process 11 of 20
n01: hello world from process 1 of 20
n02: hello world from process 12 of 20
n02: hello world from process 2 of 20
n03: hello world from process 13 of 20
n03: hello world from process 3 of 20
nO4: hello world from process 14 of 20
n04: hello world from process 4 of 20
n05: hello world from process 15 of 20
n05: hello world from process 5 of 20
n06: hello world from process 16 of 20
n06: hello world from process 6 of 20
n07: hello world from process 17 of 20
n07: hello world from process 7 of 20
n08: hello world from process 18 of 20
n08: hello world from process 8 of 20
n09: hello world from process 19 of 20
n09: hello world from process 9 of 20
[kostenba@n00 whello]$
```

<u>File Edit View Terminal Help</u>							
kostenba 8348 8345 0 12:54 ?	00:00:00 sshd: kostenba@notty						
kostenba 8428 8349 0 12:54 ?	00:00:00 ps -ef						
DONE for n02							
root 28137 2469 7 12:54 ?	00:00:00 sshd: kostenba [priv]						
kostenba 28162 28137 0 12:54 ?	00:00:00 sshd: kostenba@notty						
kostenba 28276 1 0 12:54 ?	00:00:00 ortedbootproxy 1name 0.0.4						
num_procs 11vpid_start 0no	odename n03universe kostenba@n00:default-un						
iverse-24967nsreplica 0.0.0;tcp:	://192.168.0.10:51339gprreplica 0.0.0;tcp:/						
/192.168.0.10:51339							
kostenba 28290 28276 0 12:54 ?	00:00:00 ./a.out						
kostenba 28292 28276 0 12:54 ?							
kostenba 28298 28163 0 12:54 ?	00:00:00 ps -ef						
DONE for n03							
kostenba 3449 1 3 12:54 ?	00:00:00 ortedbootproxy 1name 0.0.5						
num_procs 11vpid_start 0nodename n04universe kostenba@n00:default-un							
iverse-24967nsreplica 0.0.0;tcp:	://192.168.0.10:51339gprreplica 0.0.0;tcp:/						
/192.168.0.10:51339							
kostenba 3450 3449 5 12:54 ?	00:00:00 ./a.out						
kostenba 3451 3449 5 12:54 ?	00:00:00 ./a.out						
root 3452 2182 6 12:54 ?	00:00:00 sshd: kostenba [priv]						
kostenba 3455 3452 0 12:54 ?	00:00:00 sshd: kostenba@notty						
kostenba 3532 3456 3 12:54 ?	00:00:00 ps -ef						
DONE for n04							
root 4216 2101 6 12:54 ?	00:00:00 sshd: kostenba [priv]						

```
<u>File Edit View Terminal Help</u>
n013.bw03.cabm.rutgers.edu: hello world from process 105 of 128
n002.bw03.cabm.rutgers.edu: hello world from process 106 of 128
n001.bw03.cabm.rutgers.edu: hello world from process 107 of 128
n008.bw03.cabm.rutgers.edu: hello world from process 108 of 128
n007.bw03.cabm.rutgers.edu: hello world from process 109 of 128
n006.bw03.cabm.rutgers.edu: hello world from process 110 of 128
n005.bw03.cabm.rutgers.edu: hello world from process 111 of 128
master3.bw03.cabm.rutgers.edu: hello world from process 112 of 128
n004.bw03.cabm.rutgers.edu: hello world from process 113 of 128
n012.bw03.cabm.rutgers.edu: hello world from process 114 of 128
n011.bw03.cabm.rutgers.edu: hello world from process 115 of 128
n010.bw03.cabm.rutgers.edu: hello world from process 116 of 128
n009.bw03.cabm.rutgers.edu: hello world from process 117 of 128
n003.bw03.cabm.rutgers.edu: hello world from process 118 of 128
n014.bw03.cabm.rutgers.edu: hello world from process 120 of 128
n013.bw03.cabm.rutgers.edu: hello world from process 121 of 128
n015.bw03.cabm.rutgers.edu: hello world from process 119 of 128
n002.bw03.cabm.rutgers.edu: hello world from process 122 of 128
n001.bw03.cabm.rutgers.edu: hello world from process 123 of 128
n008.bw03.cabm.rutgers.edu: hello world from process 124 of 128
n007.bw03.cabm.rutgers.edu: hello world from process 125 of 128
n006.bw03.cabm.rutgers.edu: hello world from process 126 of 128
n005.bw03.cabm.rutgers.edu: hello world from process 127 of 128
[kostenba@master3 ~/test]$
```

```
File Edit View Terminal Help
nu/bin/mpd.py -h n004.bw03.cabm.rutgers.edu -p 30817 --ncpus=1 -e -d
nu/bin/mpd.py -h n004.bw03.cabm.rutgers.edu -p 30817 --ncpus=1 -e -d
kostenba 19357 19322 5 11:27 ? 00:00:00 python2.5 /opt/mpich2/ch3_sock-g
nu/bin/mpd.py -h n004.bw03.cabm.rutgers.edu -p 30817 --ncpus=1 -e -d
nu/bin/mpd.py -h n004.bw03.cabm.rutgers.edu -p 30817 --ncpus=1 -e -d
kostenba 19359 19322 6 11:27 ? 00:00:00 python2.5 /opt/mpich2/ch3 sock-g
nu/bin/mpd.py -h n004.bw03.cabm.rutgers.edu -p 30817 --ncpus=1 -e -d
nu/bin/mpd.py -h n004.bw03.cabm.rutgers.edu -p 30817 --ncpus=1 -e -d
kostenba 19361 19322 6 11:27 ? 00:00:00 python2.5 /opt/mpich2/ch3 sock-g
nu/bin/mpd.py -h n004.bw03.cabm.rutgers.edu -p 30817 --ncpus=1 -e -d
kostenba 19362 19322 5 11:27 ? 00:00:00 python2.5 /opt/mpich2/ch3_sock-g
nu/bin/mpd.py -h n004.bw03.cabm.rutgers.edu -p 30817 --ncpus=1 -e -d
                               00:00:00 python2.5 /opt/mpich2/ch3_sock-g
kostenba 19363 19322 5 11:27 ?
nu/bin/mpd.py -h n004.bw03.cabm.rutgers.edu -p 30817 --ncpus=1 -e -d
kostenba 19364 19356 0 11:27 ? 00:00:00 ./a.out
kostenba 19365 19357 0 11:27 ?
                               00:00:00 ./a.out
kostenba 19366 19358 0 11:27 ?
                               00:00:00 ./a.out
                               00:00:00 ./a.out
kostenba 19367 19359 0 11:27 ?
kostenba 19368 19360 0 11:27 ?
                               00:00:00 ./a.out
kostenba 19369 19361 0 11:27 ?
                               00:00:00 ./a.out
                 0 11:27 ?
kostenba 19370 19362
                               00:00:00 ./a.out
kostenba 19371 19363
                 0 11:27 ?
                               00:00:00 ./a.out
root
       19372 2500
                 0 11:27 ?
                               00:00:00 sshd: kostenba [priv]
kostenba 19377 19372
                               00:00:00 sshd: kostenba@notty
                 0 11:27 ?
                               00:00:00 tcsh -c ps -ef | grep kostenba
kostenba 19378 19377
                 2 11:27 ?
                               00:00:00 ps -ef
kostenba 19399 19378
                 0 11:27 ?
kostenba 19400 19378
                 0 11:27 ?
                               00:00:00 grep kostenba
DONE for noo9
```

Automated NMR Protein Structure Calculation with CYANA

 Resonance frequencies: Depending on its local environment, each atom (nuclear spin) has a characteristic resonance frequency that can be detected by NMR.

3 Peaks: The NOE interaction between nearby atoms gives rise to signals ("peaks") in NMR spectra with 2, 3 or 4 frequency dimensions.

5 Assignment: To make this information useful, it is necessary to identify for each peak in the spectrum the pair of atoms in the protein that is responsible for it.

7 Automated NOE assignment: The assignment of NOESY peaks is performed fully automatically with the program CYANA. Automation is essential for the overall efficiency of NMR protein structure determination.

9 High-performance computing: The structure calculation requires a large amount of computation power. Up to 128 processors are used in parallel for CYANA.

11 Structure-function relationship: The protein structure can reveal the function of the protein and form a basis for the development of drugs against human diseases.

2 Through-space interactions: Hydrogen atoms that are less than 5 Å (5 x 10⁻¹⁰ m) apart from each other in the protein interact by the Nuclear Overhauser Effect (NOE).

4 NOESY NMR spectrum: A NOESY spectrum provides information on a network of thousands of short distances between hydrogen atoms in the protein.

6 Overlap problem: Usually several hydrogen atoms share almost the same resonance frequencies. This "overlap" makes it difficult and very cumbersome to assign manually each peak to a unique hydrogen atom pair.

8 Structure calculation: From the knowledge of short atom-atom distances and the amino acid sequence of the protein, the arrangement of the atoms in space is calculated using CYANA.

10 Protein structure: The final result of the NMR structure determination is the three-dimensional structure of the protein in solution.

- The new version of software uses MPI
- The software is compiled using GCC and the LAM libraries
- The need for resource management becomes more obvious
- Cyana jobs run 3 to 4 hours, typically configured for 56 CPUs.

```
<u>File Edit View Terminal Help</u>
                                     grep orted | grep -v grep"
[kostenba@master3 ~]$ do.it "ps -ef
                                      00:00:00 orted --no-daemonize --bootproxy 1 --name 0.0.2 --num procs 8 --vpid start 0 --nodenam
kostenba 17171 2958 0 08:32 ?
n001 --universe kostenba@n005.bw03.cabm.rutgers.edu:default-universe-7882 --nsreplica "0.0.0;tcp://172.16.0.5:62971" --gprreplica "0.0
.0; tcp://172.16.0.5:62971"
DONE for n001
DONE for noo2
kostenba 31253 2925 0 08:32 ?
                                       00:00:00 orted --no-daemonize --bootproxy 1 --name 0.0.3 --num procs 8 --vpid start 0 --nodenam
n003 --universe kostenba@n005.bw03.cabm.rutgers.edu:default-universe-7882 --nsreplica "0.0.0;tcp://172.16.0.5:62971" --gprreplica "0.0
.0;tcp://172.16.0.5:62971"
DONE for noo3
DONE for noo4
                                       00:00:00 orted --no-daemonize --bootproxy 1 --name 0.0.1 --num procs 8 --vpid start 0 --nodenam
kostenba 7886 2925 0 08:32 ?
n005 --universe kostenba@n005.bw03.cabm.rutgers.edu:default-universe-7882 --nsreplica "0.0.0;tcp://172.16.0.5:62971" --gprreplica "0.0
.0;tcp://172.16.0.5:62971"
DONE for noos
DONE for noo6
                                       00:00:00 orted --no-daemonize --bootproxy 1 --name 0.0.7 --num procs 8 --vpid start 0 --nodename
kostenba 10819 2921 0 08:32 ?
n007 --universe kostenba@n005.bw03.cabm.rutgers.edu:default-universe-7882 --nsreplica "0.0.0;tcp://172.16.0.5:62971" --gprreplica "0.0
.0; tcp://172.16.0.5:62971"
DONE for noo7
                                       00:00:00 orted --no-daemonize --bootproxy 1 --name 0.0.4 --num procs 8 --vpid start 0 --nodename
kostenba 20755 2927 0 08:32 ?
n008 --universe kostenba@n005.bw03.cabm.rutgers.edu:default-universe-7882 --nsreplica "0.0.0;tcp://172.16.0.5:62971" --gprreplica "0.0
.0; tcp://172.16.0.5:62971"
DONE for noom
kostenba 22330 2923 0 08:32 ?
                                       00:00:00 orted --no-daemonize --bootproxy 1 --name 0.0.5 --num procs 8 --vpid start 0 --nodenam
n009 --universe kostenba@n005.bw03.cabm.rutgers.edu:default-universe-7882 --nsreplica "0.0.0;tcp://172.16.0.5:62971" --gprreplica "0.0
.0; tcp://172.16.0.5:62971"
DONE for noog
DONE for noio
DONE for n011
DONE for n012
DONE for n013
                                      00:00:00 orted --no-daemonize --bootproxy 1 --name 0.0.6 --num procs 8 --vpid start 0 --nodename
kostenba 8498 2918 0 08:32 ?
n014 --universe kostenba@n005.bw03.cabm.rutgers.edu:default-universe-7882 --nsreplica "0.0.0;tcp://172.16.0.5:62971" --gprreplica "0.0
.0; tcp://172.16.0.5:62971"
DONE for n014
DONE for n015
```

e <u>E</u> dit <u>V</u> iew <u>T</u> ermin	al <u>H</u> elp			
rep 28121 lsof.out				^
naexe. 7887 kostenba	7u	IPv4	2617120	TCP *: 28121 (LISTEN)
naexe. 7887 kostenba	8u	IPv4	2617251	TCP n005.bw03.cabm.rutgers.edu:28121->n007.bw03.cabm.rutger
du:21602 (ESTABLISHED)				
naexe. 7887 kostenba	16u	IPv4	2617252	TCP n005.bw03.cabm.rutgers.edu:28121->n007.bw03.cabm.rutger
du:21603 (ESTABLISHED)				
naexe. 7887 kostenba	17u	IPv4	2617253	TCP n005.bw03.cabm.rutgers.edu:28121->n007.bw03.cabm.rutger
du:21606 (ESTABLISHED)				
naexe. 7887 kostenba	19u	IPv4	2617285	TCP n005.bw03.cabm.rutgers.edu:28121->n014.bw03.cabm.rutger
du:17952 (ESTABLISHED)	20	TD 4	2617200	TER 005 03 1 1 1 20131 000 03 1 1
naexe. 7887 kostenba	20u	IPv4	2617289	TCP n005.bw03.cabm.rutgers.edu:28121->n008.bw03.cabm.rutger
du:50483 (ESTABLISHED)	21	TDeed	2617315	TCD moos bugs caba sutmoss adv. 20121 angoz bugs caba sutmos
naexe. 7887 kostenba du:21618 (ESTABLISHED)	21u	IPv4	2617315	TCP n005.bw03.cabm.rutgers.edu:28121->n007.bw03.cabm.rutger
naexe. 7887 kostenba	24u	IPv4	2617333	TCP_n005_by03_cabm_rutgers_edu_20121_>n001_by03_cabm_rutger
du:60712 (ESTABLISHED)	24u	11.04	2017555	TCP n005.bw03.cabm.rutgers.edu:28121->n001.bw03.cabm.rutger
naexe. 7887 kostenba	25u	IPv4	2617334	TCP n005.bw03.cabm.rutgers.edu:28121->n008.bw03.cabm.rutger
du:50493 (ESTABLISHED)	250	11 14	2017334	1c1 11005.0405.cabiii.1 d egel 5.edd.20121-211000.0405.cabiii.1 d egel
naexe. 7887 kostenba	26u	IPv4	2617335	TCP n005.bw03.cabm.rutgers.edu:28121->n003.bw03.cabm.rutger
du:41017 (ESTABLISHED)	200		202/333	
naexe. 7887 kostenba	27u	IPv4	2617336	TCP n005.bw03.cabm.rutgers.edu:28121->n014.bw03.cabm.rutger
du:17974 (ESTABLISHED)				,
naexe. 7887 kostenba	28u	IPv4	2617337	TCP n005.bw03.cabm.rutgers.edu:28121->n008.bw03.cabm.rutger
du:50494 (ESTABLISHED)				
naexe. 7887 kostenba	29u	IPv4	2617338	TCP n005.bw03.cabm.rutgers.edu:28121->n009.bw03.cabm.rutger
du:37318 (ESTABLISHED)				
naexe. 7887 kostenba	30u	IPv4	2617339	TCP n005.bw03.cabm.rutgers.edu:28121->n003.bw03.cabm.rutger
du:41018 (ESTABLISHED)				
naexe. 7887 kostenba	31u	IPv4	2617340	TCP n005.bw03.cabm.rutgers.edu:28121->n001.bw03.cabm.rutger
du:60713 (ESTABLISHED)				
naexe. 7887 kostenba	32u	IPv4	2617341	TCP n005.bw03.cabm.rutgers.edu:28121->n014.bw03.cabm.rutger
du:17975 (ESTABLISHED)		TD 4	2017242	TCD - 005 03 -
naexe. 7887 kostenba	33u	IPv4	2617342	TCP n005.bw03.cabm.rutgers.edu:28121->n007.bw03.cabm.rutger
du:21633 (ESTABLISHED)	24	TDv4	2617242	TCP n005 by 03 cabr sutgers edu 30131 angos by 03 cabr sutger
naexe. 7887 kostenba du:41019 (ESTABLISHED)	34u	IPv4	2617343	TCP n005.bw03.cabm.rutgers.edu:28121->n003.bw03.cabm.rutger
naexe. 7887 kostenba	35u	IPv4	2617344	TCP_n005.bw03.cabm.rutgers.edu:28121->n001.bw03.cabm.rutger
du:60714 (ESTABLISHED)	JJu	TL A+	2017344	Ter 11005. bwos. cabiii. Turgers. edu. 20121-211001. bwos. cabiii. Turger
dd.00/14 (ESTABLISHED)				▽

```
=>cat tcp.txt
tcpdump -i eth0 -w tcp.out net 172.16.0.0/24 and not udp port 8649 and not port 123 and not icmp and not host falcon
tcpdump -r tcp.out | wc -l
reading from file tcp.out, link-type EN10MB (Ethernet)
116667
tcpdump -r tcp.out port nfs | wc -l (81%)
reading from file tcp.out, link-type EN10MB (Ethernet)
94953
tcpdump -r tcp.out port 28121 | wc -l (10%)
reading from file tcp.out, link-type EN10MB (Ethernet)
11949
tcpdump -r tcp.out port 62971 | wc -l (2%)
reading from file tcp.out, link-type EN10MB (Ethernet)
3367
tcpdump -r tcp.out port ssh | wc -l (1%)
reading from file tcp.out, link-type EN10MB (Ethernet)
1422
```

Security

- Follow basic unix guidelines
- Torque allows configuration for job submission from other servers or desktops. Encryption and authentication are not supported, a UID check is done. (not recommended)
- There are no restrictions on the jobs, they can execute any unix command and will assume the privilages of the user.
- By default root can not submit jobs
- Treat all nodes as a single unit, not much can be done to restrict access from the cluster head to the nodes.

- Use iptables to restrict access to cluster
- Torque logging is good but cumbersome
- There is no logging of MPI.
- Configure use of NTP and central syslog host.
- If a separate NFS server is used, access must be enabled on the cluster nodes too.
- Best scenario, configure cluster as a 'dead end' using outbound firewall restrictions. Cluster nodes on backend network only, restrict access to backend and use firewall to block all non-backend traffic.
- Audit key config files on entire cluster to be all the same (use cron to sync files)

Accounting

- PBSACCT available from sourceforge
 - Author: Ole Holm Nielsen

Department of Physics, University of Denmark

- Collates Torque logs from the head node
- Generate and store reports once a month via cron
- May need to tweek depending on Torque version – possible changes in log format.

```
<u>F</u>ile <u>E</u>dit <u>V</u>iew <u>T</u>erminal <u>H</u>elp
```

=>cat Report.August_2009

Portable Batch System USER accounting statistics

A total of 25 accounting files will be processed. The first record is dated 08/01/2009, last record is dated 08/28/2009.

Username	Group	#jobs	Wallclock		Average #nodes		Full name
usernalie	or oup	# 1003	uays	rercenc	willoues	q-uays	ruce name
TOTAL		137054	413.17	100.00	1.45	0.00	
binchen	nmr	82995	10.89	2.64	1.00	0.00	Mao Binchen
spine	apache	41241	268.08	64.88	1.00	0.00	
yphuang	nmr	11801	1.40	0.34	1.00	0.00	
mani	nmr	756	0.36	0.09	1.00	0.00	Rajeswari Mani
psvs	nobody	216	0.64	0.15	1.00	0.00	
kostenba	nmr	23	14.22	3.44	11.60	0.00	
prossi	nmr	17	103.70	25.10	48.00	0.00	
guan	nmr	5	13.88	3.36	15.90	0.00	

Portable Batch System NODE accounting statistics

A total of 25 accounting files will be processed. The first record is dated 08/01/2009, last record is dated 08/28/2009.

Total number of nodes is 483, and the accounting period is 25 days.

Average number of busy nodes= 11.91 which is 2.47 percent of total.

Average number of busy cpus= 16.53.

=>

- Monitoring the 3 clusters using Ganglia
- Provides a simple drill down graphical view of cluster resources.
- Client processes run on cluster nodes and report to a master process running on the cluster head node.
- Master processes from other clusters report to a central master process running on a cluster head node.

Look at a large European grid

- Provides access world wide for the scientific community.
- Clusters located throughout the Europe
- Rigorous registration process.
- Uses 2 factor authentication using key and user/pass.
- Job submission can use gLite/linux or web based front end.

