SYNTHESE LOGIQUE Le fréquencemètre

1. Principe

Par définition, la fréquence d'un signal est égale au nombre de périodes par seconde : $f=\frac{1}{T}$ Pour mesurer la fréquence d'un signal, il suffit donc de compter le nombre de périodes pendant une seconde. C'est ce principe qui est utilisé dans ce TP.

2. Synoptique

3. Cahier des charges

- ☑ Le signal dont il faut mesurer la fréquence est compatible TTL.
- ☑ L'affichage de la fréquence se fait sur 4 afficheurs 7 segments à LED.
- ☑ La gamme de fréquences s'étend de 10 Hz à 9998 Hz, au-delà une LED s'allume et on affiche 0000.
- ☑ Le rafraîchissement de l'affichage se fait toutes les secondes.

4. <u>Description des différents modules</u>

4.1. m_e_form:

Le bloc « m_e_form » génère une impulsion de largeur une période d'horloge après chaque front montant du signal TTL.

C'est une machine à trois états

4.2. controle:

Ce module s'occupe de la gestion des signaux « valid », « raz » et « verr » qui doivent arriver dans une séquence précise.

Le signal « valid » reste à '1' pendant une seconde exactement pour valider le comptage, revient à '0' pour 50 ns avant de repartir pour un nouveau cycle.

Le signal « verr » passe à '1' pendant un période d'horloge après le front descendant de « valid », il permet de verrouiller (mémoriser) la valeur du compteur afin d'être affichée.

Le signal « raz » arrive ensuite pour remettre à zéro le compteur et le préparer pour le prochain comptage.

C'est une machine à six états

4.3. compteur:

Ce bloc compte, pendant une seconde, le nombre d'impulsions du signal « TTL_mef ». Le compteur est constitué de 4 décades (mille, centaines, dizaines et unités) et compte en BCD. Arrivé à 9999, il s'arrête de compter, allume une LED et affiche « 0000 ».

4.4. **verrou**:

Verrouille le résultat du compteur sur front montant d'horloge lorsque le signal « verr » est à '1'. Le signal « verr » passe à '1' toutes secondes, c'est la période de rafraichissement.

4.5. Affichage:

Affiche la fréquence sur les 4 afficheurs à 7 segments de droite. Les 4 afficheurs de gauche sont éteints.

Les afficheurs partagent les mêmes broches du FPGA, il faudra multiplexer les données transmises aux 4 afficheurs.

La période de rafraîchissement doit se situer entre 1 ms et 16 ms.

Les afficheurs reçoivent tous les mêmes données à afficher, mais ils possèdent une broche de sélection chacun.

Seuls les 4 afficheurs de droite seront utilisés dans ce TP. Pour afficher des valeurs différentes sur les 4 afficheurs, il faut sélectionner chaque afficheur individuellement en lui envoyant la valeur à afficher. Cette sélection se fera de façon circulaire à une fréquence qui donnera l'impression à l'observateur que les 4 afficheurs sont allumés en permanence.

Le schéma suivant donne le synoptique du module d'affichage qui est constitué de trois blocs : le diviseur de fréquence, le multiplexeur et le décodeur hexadécimal vers 7 segments.

- ☑ **Le diviseur** : fabrique un signal sel(1) de fréquence $f = \frac{100MHz}{2^{18}}$ et un signal sel(0) de fréquence double.
- ☑ Le décodeur hex_7seg : allume les segments qui permettent d'afficher le symbole correspondant au code hexadécimal.
- ☑ **Le multiplexeur mux_4affi** : choisit la donnée à afficher en même temps qu'il sélectionne l'afficheur concerné, à la cadence imposée par les signaux sel (1 :0).

5. Pratique:

<u>Consignes</u> : Le projet doit respecter les techniques synchrones. Chaque module créé doit être validé en simulation avant de passer au suivant.

- 5.1. Concevoir le module « m_e_form » sous forme d'une machine d'états (voir les chronogrammes).
- 5.2. Faire le même travail pour le module « contrôle » (voir chronogrammes).
- 5.3. Passer ensuite au compteur, c'est le bloc le plus compliqué de cette application, un organigramme est nécessaire avant de commencer à coder.
- 5.4. Le bloc « verrou » ne doit poser aucun problème, c'est une ligne de code!
- 5.5. Le module « affichage » : déjà vu en TP de Logique, la différence est qu'ici tout est codé en VHDL au lieu de l'outil schématique.
 - 5.5.1. Concevoir le bloc « diviseur » en utilisant un compteur.
 - 5.5.2. Les modules « mux_4affi » et « hex_7seg » sont ceux vus en TP de Logique, ils sont donnés dans le répertoire « partage ».
 - 5.5.3. Assembler ces 3 blocs dans un module nommé « affichage ».
- 5.6. Ecrire le programme du niveau 1 « freq.vhd ».
- 5.7. Ecrire le fichier de contraintes pour imposer la position des signaux sur les broches du composant.
- 5.8. Compiler le projet et relever les ressources du composant utilisées ainsi que la fréquence maximale de l'horloge.
- 5.9. Générer le fichier de programmation, le télécharger dans le composant et tester le fonctionnement du fréquencemètre avec un générateur de signaux TTL.