Software Information

- Please check, whether your inputs, the equations applied and the charactersitics are displayed correctly.
- You are welcome to send your feedback via https://github.com/oemof/tespy/issues.
- \bullet LATEX packages required are:
 - graphicx
 - float
 - hyperref
 - booktabs
 - amsmath
 - units
 - cleveref
- To supress these messages, call the model documentation with the keyword draft=False.

TESPy Version: 0.4.0 - dev

Commit: d918f10d@feature/self_documenting_models

CoolProp version: 6.4.0

Python version: 3.8.0 (default, Oct 28 2019, 16:14:01) [GCC 8.3.0]

1 Connections in offdesign mode

1.1 Specified connection parameters

label	p in bar (1)	T in °C (2)	v in ^{m3} / _s (3)
consumer cycle closer:out1_district heating pump:in1	10.000	60.000	-
$condenser:out2_consumer:in1$	-	90.000	-
ambient air:out1_pump:in1	2.000	12.000	0.013
splitter:out1_superheater:in1	-	-	0.013
evaporator:out1 $_{\rm sink}$ ambient 1:in1	2.000	-	-

Table 1: Specified connection parameters

1.2 Equations applied

$$0 = p - p_{\text{spec}} \tag{1}$$

$$0 = T(p,h) - T_{\text{spec}} \tag{2}$$

$$0 = \dot{m} \cdot v(p, h) - \dot{V}_{\text{spec}} \tag{3}$$

1.3 Specified fluids

label	NH3 (4)	air (5)	water (6)
coolant cycle closer:out1_condenser:in1	1.000	0.000	0.000
consumer cycle closer:out1_district heating pump:in1	0.000	0.000	1.000
ambient air:out1_pump:in1	0.000	0.000	1.000

Table 2: Specified fluids

1.4 Equations applied

$$0 = x_{\text{NH3}} - x_{\text{NH3,spec}} \tag{4}$$

$$0 = x_{\rm air} - x_{\rm air,spec} \tag{5}$$

$$0 = x_{\text{water}} - x_{\text{water,spec}} \tag{6}$$

1.5 Referenced values for mass flow

label	reference	factor in -	delta in kg/s
evaporator reciculation pump:out1_evaporator:in2	$valve: out 1_drum: in 1$	1.250	0

Table 3: Referenced values for mass flow

1.6 Equation applied

$$0 = value - value_{ref} \cdot factor + delta$$
 (7)

2 Components in offdesign mode

2.1 Components of type CycleCloser

2.1.1 Mandatory constraints

$$0 = p_{\text{in},i} - p_{\text{out},i} \ \forall i \in [1]$$

$$\tag{8}$$

$$0 = h_{\text{in},i} - h_{\text{out},i} \,\forall i \in [1] \tag{9}$$

2.2 Components of type Condenser

2.2.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1,2]$$

$$\tag{10}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1,2]$$
(11)

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + \dot{m}_{\text{in},2} \cdot (h_{\text{out},2} - h_{\text{in},2})$$
(12)

2.2.2 Inputs specified

label	pr1 (13)	zeta2 (14)	kA_c char (15)	subcooling (16)
condenser	0.990	4850715.036	True	True

Table 4: Parameters of components of type Condenser

2.2.3 Equations applied

$$0 = p_{\text{in},1} \cdot pr1 - p_{\text{out},1} \tag{13}$$

$$0 = \begin{cases} p_{\text{in},2} - p_{\text{out},2} & |\dot{m}_{\text{in},2}| < 0.0001 \,\text{kg/s} \\ \frac{\zeta}{D^4} - \frac{(p_{\text{in},2} - p_{\text{out},2}) \cdot \pi^2}{8 \cdot \dot{m}_{\text{in},2} \cdot |\dot{m}_{\text{in},2}| \cdot \frac{v_{\text{in},2} + v_{\text{out},2}}{2}}{2}} & |\dot{m}_{\text{in},2}| \ge 0.0001 \,\text{kg/s} \end{cases}$$
(14)

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + kA_{\text{design}} \cdot f_{\text{kA}} \cdot \frac{T_{\text{out},1} - T_{\text{in},2} - T_{\text{sat}}(p_{\text{in},1}) + T_{\text{out},2}}{\ln \frac{T_{\text{out},1} - T_{\text{in},2}}{T_{\text{sat}}(p_{\text{in},1}) - T_{\text{out},2}}}$$

$$f_{\text{kA}} = \frac{2}{\frac{1}{f(X_{\text{c}})} + \frac{1}{f(X_{\text{c}})}}$$
(15)

$$0 = h_{\text{out},1} - h\left(p_{\text{out},1}, x = 0\right) \tag{16}$$

Figure 1: Characteristics of condenser (eq. 15)

Figure 2: Characteristics of condenser (eq. 15)

2.3 Components of type Pump

2.3.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \,\forall i \in [1]$$

$$\tag{17}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1]$$
(18)

2.3.2 Inputs specified

label	eta_s_char (19)
district heating pump	True
evaporator reciculation pump	True
pump	True

Table 5: Parameters of components of type Pump

2.3.3 Equations applied

$$0 = (h_{\text{out}} - h_{\text{in}}) \cdot \eta_{s,\text{design}} \cdot f(X) - (h_{out,s} - h_{in})$$
(19)

Figure 3: Characteristics of district heating pump Figure 4: Characteristics of evaporator reciculation (eq. 19)

Figure 5: Characteristics of pump (eq. 19)

2.4 Components of type HeatExchangerSimple

2.4.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \,\forall i \in [1]$$

$$(20)$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1]$$
(21)

2.4.2 Inputs specified

label	Q(22)	zeta (23)
consumer	-200000.000	4802189.049

Table 6: Parameters of components of type HeatExchangerSimple

2.4.3 Equations applied

$$0 = \dot{m}_{\rm in} \cdot (h_{\rm out} - h_{\rm in}) - \dot{Q} \tag{22}$$

$$0 = \begin{cases} p_{\text{in},1} - p_{\text{out},1} & |\dot{m}_{\text{in},1}| < 0.0001 \,\text{kg/s} \\ \frac{\zeta}{D^4} - \frac{(p_{\text{in},1} - p_{\text{out},1}) \cdot \pi^2}{8 \cdot \dot{m}_{\text{in},1} \cdot |\dot{m}_{\text{in},1}| \cdot \frac{v_{\text{in},1} + v_{\text{out},1}}{2}}{2} & |\dot{m}_{\text{in},1}| \ge 0.0001 \,\text{kg/s} \end{cases}$$
(23)

2.5 Components of type Valve

2.5.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1]$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1]$$
(25)

$$0 = h_{\text{in},i} - h_{\text{out},i} \ \forall i \in [1]$$

2.6 Components of type Drum

2.6.1 Mandatory constraints

$$0 = \sum \dot{m}_{\text{in},i} - \sum \dot{m}_{\text{out},j} \ \forall i \in \text{inlets}, \forall j \in \text{outlets}$$
 (27)

$$0 = x_{fl,\text{in},1} - x_{fl,\text{out},j} \ \forall fl \in \text{network fluids}, \ \forall j \in \text{outlets}$$
 (28)

$$0 = \sum_{i} (\dot{m}_{\text{in},i} \cdot h_{\text{in},i}) - \sum_{j} (\dot{m}_{\text{out},j} \cdot h_{\text{out},j}) \ \forall i \in \text{inlets } \forall j \in \text{outlets}$$
 (29)

$$0 = p_{\text{in},1} - p_{\text{in},i} \,\forall i \in \text{inlets} \setminus \{1\}$$

$$0 = p_{\text{in},1} - p_{\text{out},j} \,\forall j \in \text{outlets}$$
(30)

$$0 = h_{\text{out},1} - h(p_{\text{out},1}, x = 0)$$

$$0 = h_{\text{out},2} - h(p_{\text{out},2}, x = 1)$$
(31)

2.7 Components of type HeatExchanger

2.7.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1,2]$$

$$\tag{32}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1,2]$$
(33)

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + \dot{m}_{\text{in},2} \cdot (h_{\text{out},2} - h_{\text{in},2})$$
(34)

2.7.2 Inputs specified

label	pr2 (35)	zeta1 (36)	zeta2 (37)	kA_char (38)
evaporator	0.990	31802.919		True
superheater	-	32447.412	603927.870	True
intercooler	-	7186396.333	16272842.690	True

Table 7: Parameters of components of type HeatExchanger

2.7.3 Equations applied

$$0 = p_{\text{in},2} \cdot pr2 - p_{\text{out},2} \tag{35}$$

$$0 = \begin{cases} p_{\text{in},1} - p_{\text{out},1} & |\dot{m}_{\text{in},1}| < 0.0001 \,\text{kg/s} \\ \frac{\zeta}{D^4} - \frac{(p_{\text{in},1} - p_{\text{out},1}) \cdot \pi^2}{8 \cdot \dot{m}_{\text{in},1} \cdot |\dot{m}_{\text{in},1}| \cdot \frac{v_{\text{in},1} + v_{\text{out},1}}{2}}{2} & |\dot{m}_{\text{in},1}| \ge 0.0001 \,\text{kg/s} \end{cases}$$
(36)

$$0 = \begin{cases} p_{\text{in},2} - p_{\text{out},2} & |\dot{m}_{\text{in},2}| < 0.0001 \,\text{kg/s} \\ \frac{\zeta}{D^4} - \frac{(p_{\text{in},2} - p_{\text{out},2}) \cdot \pi^2}{8 \cdot \dot{m}_{\text{in},2} \cdot |\dot{m}_{\text{in},2}| \cdot \frac{v_{\text{in},2} + v_{\text{out},2}}{2}}{2} & |\dot{m}_{\text{in},2}| \ge 0.0001 \,\text{kg/s} \end{cases}$$
(37)

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + kA_{\text{design}} \cdot f_{\text{kA}} \cdot \frac{T_{\text{out},1} - T_{\text{in},2} - T_{\text{in},1} + T_{\text{out},2}}{\ln \frac{T_{\text{out},1} - T_{\text{in},2}}{T_{\text{in},1} - T_{\text{out},2}}}$$

$$f_{\text{kA}} = \frac{2}{\frac{1}{f(X_1)} + \frac{1}{f(X_2)}}$$
(38)

Figure 6: Characteristics of evaporator (eq. 38) Figure 7: Characteristics of evaporator (eq. 38)

Figure 8: Characteristics of superheater (eq. 38) Figure 9: Characteristics of superheater (eq. 38)

Figure 10: Characteristics of intercooler (eq. 38) Figure 11: Characteristics of intercooler (eq. 38)

2.8 Components of type Splitter

2.8.1 Mandatory constraints

$$0 = \sum \dot{m}_{\text{in},i} - \sum \dot{m}_{\text{out},j} \ \forall i \in \text{inlets}, \forall j \in \text{outlets}$$
(39)

$$0 = x_{fl,\text{in}} - x_{fl,\text{out},j} \ \forall fl \in \text{network fluids}, \ \forall j \in \text{outlets}$$
 (40)

$$0 = h_{in} - h_{\text{out},j} \ \forall j \in \text{outlets}$$
 (41)

$$0 = p_{\text{in},1} - p_{\text{in},i} \ \forall i \in \text{inlets} \setminus \{1\}$$

$$0 = p_{\text{in},1} - p_{\text{out},j} \ \forall j \in \text{outlets}$$
(42)

2.9 Components of type Compressor

2.9.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1]$$

$$\tag{43}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1]$$
(44)

2.9.2 Inputs specified

label	eta_s_char (45)	pr (46)
compressor 1	True	-
compressor 2	True	3.000

Table 8: Parameters of components of type Compressor

2.9.3 Equations applied

$$0 = (h_{\text{out}} - h_{\text{in}}) \cdot \eta_{\text{s,design}} \cdot f(X) - (h_{out,s} - h_{in})$$

$$\tag{45}$$

$$0 = p_{\text{in},1} \cdot pr - p_{\text{out},1} \tag{46}$$

Figure 12: Characteristics of compressor 1 (eq. 45) Figure 13: Characteristics of compressor 2 (eq. 45)