buble Integrals in Polar Coordinates $I=\int_{0}^{0} \int_{0}^{\infty} f(\sigma,0) d\sigma d\theta.$ (1) Evaluate $\int \int a\cos\theta \sqrt{a^2r^2} dr dr d\theta$ Put $a^2r^2 t^2$ Sell. $I = -\int_{0}^{11h} \int_{0}^{11h} a \sin \theta t^{2} dt \int_{0}^{2} d\theta$ $= -\frac{1}{3} \int_{0}^{\pi} \frac{11/2}{11/2} \left(\frac{38030 - 3}{3} \right) dQ$ $= -\frac{1}{3} \int_{0}^{\pi} \frac{11/2}{3} \left(\frac{38030 - 3}{3} \right) dQ$ $= -\frac{\alpha^{3}}{2} \left[\frac{2}{3} - \frac{17}{2} \right] = \frac{\alpha^{3}}{10} \left(\frac{317 - 4}{3} \right)$ I= $\int_{0}^{\pi} \int_{0}^{a(r-\omega so)} \int_{0}^{2sino} dr do$ = $\int_{0}^{\pi h} sino \left(\int_{0}^{a(r-\omega so)} \int_{0}^{2dr} J dr \right) dr = \frac{4a^{2}}{3}$ $\frac{1/4}{(1+r^2)^2} \frac{\sqrt{\cos 20}}{(1+r^2)^2} \frac{dr}{do} = \frac{1}{8} (17-2)$ (Q)

