PROGRAMADOR UNIVERSITARIO LICENCIATURA EN INFORMÁTICA INGENIERIA EN INFORMÁTICA

Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán

ARQUITECTURA Y ORGANIZACIÓN DE COMPUTADORAS TRABAJO PRÁCTICO REPASO

Sistemas de Numeración - Codificación y Operaciones en Binario

Problema 1

Convertir a decimal (Base 10) los siguientes números.

- a) 10000111₂
- b) 01110010₂
- c) 01001010₂
- d) 306₈
- e) 47₈
- f) 751₈
- g) 10F₁₆
- h) AE₁₆
- i) 2D₁₆

Problema 2

Convertir los siguientes números decimales (Base 10) a las bases indicadas.

- a) $111_{10} \rightarrow Binario$
- b) $111_{10} \rightarrow \text{Octal}$
- c) $111_{10} \rightarrow \text{Hexadecimal}$
- d) $67_{10} \rightarrow Binario$
- e) $67_{10} \rightarrow Octal$
- f) $67_{10} \rightarrow \text{Hexadecimal}$
- g) $127_{10} \rightarrow Binario$
- h) $127_{10} \rightarrow \text{Octal}$
- i) $127_{10} \rightarrow \text{Hexadecimal}$

Problema 3

Convertir los siguientes números a las bases indicadas desde sus correspondientes bases.

- a) $11010010_2 \rightarrow \text{Octal}$
- b) $10111100_2 \rightarrow \text{Hexadecimal}$
- c) $356_8 \rightarrow Binario$
- d) $356_8 \rightarrow \text{Hexadecimal}$
- e) $3F_{16} \rightarrow Binario$
- f) $3F_{16} \rightarrow Octal$

Problema 4

Realizar las siguientes sumas en las bases indicadas. Explicar qué pasa en los casos que se produce rebasamiento (Overflow). Suponer que se trabaja con la cantidad de dígitos indicados.

- a) 011001012 + 101110002
- b) 011100102 + 110100102
- c) 5558 + 3408
- d) 1778 + 2468
- e) 4E16 + BC16
- f) $70_{16} + 8E_{16}$

M. Sc. Ing. Ticiano J. Torres Peralta

P.U. Pablo Rodríguez Rey

Ing. Pablo G. Toledo 20/03/2024

1

PROGRAMADOR UNIVERSITARIO LICENCIATURA EN INFORMÁTICA INGENIERIA EN INFORMÁTICA

Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán

ARQUITECTURA Y ORGANIZACIÓN DE COMPUTADORAS TRABAJO PRÁCTICO REPASO

Sistemas de Numeración – Codificación y Operaciones en Binario

Problema 5

Realizar las sumas bajo las siguientes premisas:

- 1) Suponer que se trabaja en binario natural de 8 dígitos (sin signo). Indicar si hay rebasamiento, comprobar los resultados haciendo la misma operación en decimal.
- 2) Suponer que se trabaja en complemento a dos (con signo). Indicar si hay rebasamiento, comprobar los resultad haciendo la misma operación en decimal.
- a) 00111011₂ + 00011001₂
- b) 01110011₂ + 11110101₂
- c) $10110011_2 + 01011101_2$
- d) 10000001₂ + 11000011₂

Problema 6

Representar los siguientes números decimales fraccionarios (Base 10) en las bases indicadas. Suponer que queremos resolver hasta 4 cifras en la parte fraccionaria del número.

- a) $41,27_{10} \rightarrow Binario$
- b) $25,34_{10} \rightarrow Binario$
- c) $83,15_{10} \to \text{Octal}$
- d) 122,66₁₀ \rightarrow Octal
- e) $58,88_{10} \rightarrow \text{Hexadecimal}$
- f) $110,91_{10} \rightarrow \text{Hexadecimal}$

Problema 7

Convertir a binario natural aquellos números que no lo sean y efectuar las correspondientes restas. Comprobar las operaciones trabajando en decimal. Suponer que estamos trabajando con binarios natural de 8 bits.

- a) $01111000_2 01000101_2$
- b) $01010100_2 60_{10}$
- c) $170_8 01100111_2$
- d) $7F_{16} 27_{10}$
- e) $5B_{16} 77_8$
- f) 64₁₆ 00110101₂

Problema 8

Realizar la misma operación matemática que la del ejercicio anterior, pero esta vez usando el método de complemento a dos. Es decir, codifique el sustraendo en complemento a dos y haga la correspondiente suma.

PROGRAMADOR UNIVERSITARIO LICENCIATURA EN INFORMÁTICA INGENIERIA EN INFORMÁTICA

Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán

ARQUITECTURA Y ORGANIZACIÓN DE COMPUTADORAS TRABAJO PRÁCTICO REPASO

Sistemas de Numeración – Codificación y Operaciones en Binario

Problema 9

Representar los siguientes números decimales en notación de punto flotante simple precisión según el estándar IEEE 754 single-precision-format (32 bits: 1 bit para signo, 8 bits para exponente, 23 bits para la mantisa).

- a) 27₁₀
- b) -88₁₀
- c) 0,250₁₀
- d) -0,500₁₀

Problema 10

Convertir los siguientes números decimales a su representación binaria según el tipo de dato (C data types).

20/03/2024

- a) $250_{10} \rightarrow \text{signed int (16 bits)}$
- b) $250_{10} \rightarrow \text{signed long (32 bits)}$
- c) $250_{10} \rightarrow$ float (32 bits: IEEE 754 single-precision)
- d) $-250_{10} \rightarrow \text{signed int (16 bits)}$
- e) $-250_{10} \rightarrow \text{signed long (32 bits)}$
- f) $-250_{10} \rightarrow$ float (32 bits: IEEE 754 single-precision)
- g) $-37,75_{10} \rightarrow$ float (32 bits: IEEE 754 single-precision)
- h) $-37,75_{10} \rightarrow$ double (64 bits: IEEE 754 double-precision)