中国科学技术大学 2021-2022 学年实变函数期末考试试卷

所在院系	性 名	学 早
川	紅扣	

注意:请将所有答案写在题后空白处。所有题目的解答要有详细过程,其中使用的定理或命题需要注明。

- 1. 概念题 (20 分, 每小题 5 分)
- (a). 叙述 Lusin 定理 (提示:关于可测函数和连续性的那个定理);
- (b). 叙述控制收敛定理;
- (c). 设 $f \in \mathbb{R}^d$ 上定义的有限值可测函数, 叙述 f 的极大函数的定义;
- (d). 叙述 [a,b] 上定义的绝对连续函数的定义。

- 2. $(20\ \mathcal{G})$,每小题 $5\ \mathcal{G}$)通过分别构造具体的定义在 \mathbb{R} 上的实值函数列来说明以下的命题:
 - (a). L^1 收敛不保证几乎处处收敛;
 - (b). L^3 收敛不保证 L^2 收敛;
 - (c). 依测度收敛不保证 L^1 收敛;
 - (d). 依测度收敛不保证几乎处处收敛。

3. $(10\ eta)$ 设 $f:[0,1]\to\mathbb{R}$ 有连续的导数。问 f 是不是有界变差函数? 为什么?

4. (15 分) 设 $B \in \mathbb{R}^d$ 中的单位球, $f_n: B \to \mathbb{R}$ 是一列可测函数,而且满足 (a). f_n 几乎处处收敛于函数 f; (b). $\|f_n\|_{L^2(B)} \le 1$ 对于任何的 n; 求证:

$$\lim_{n \to \infty} \int_B f_n = \int_B f.$$

5. (15 分) 设 f_n 是定义在 [a,b] 上的单调增的绝对连续函数。如果函数项级数 $\sum_{n=1}^{\infty} f_n$ 在 [a,b] 上点点收敛于 f,求证: f 也是绝对连续的。

- 6. (15 分) 设 $\phi \in L^1(\mathbb{R}^d)$, 而且 $\int_{\mathbb{R}^d} \phi = 1$, 对于任何 t > 0, 定义 $\phi_t(x) = t^{-d}\phi(\frac{x}{t})$.
- (a). 若 f 是有紧支集的连续函数,求证: 当 $t \to 0$ 时, $f * \phi_t$ 一致收敛于 f; (10 分)
- (b). 若 $f \in L^1(\mathbb{R}^d)$, 求证: $\lim_{t\to 0} \|f * \phi_t f\|_{L^1} = 0$ (5 分)。

7. (5 分) 设 $E \in \mathbb{R}$ 上指定的零测度集合,证明存在一个单调的函数 f,使得 f 在集合 E 上不可导。