Paying for Inattention

Ala Avoyan and Giorgia Romagnoli

NRET Spring 2016

Introduction

- Individuals often choose from a discrete set of actions
- Outcomes of these actions aren't always known, but can be acquired with some cost
- How much information is optimal to acquire?
- What is the best action given the information?

Model

- \rightarrow We start with the model of Matejka and McKay (AER, 2014)
 - The agent chooses an action from the set $A = \{1, 2, ..., N\}$
 - The state of nature is a vector $\mathbf{v} \in \mathbb{R}^N$, prior $G \in \Delta(\mathbb{R}^N)$
 - v_i is the payoff of action $i \in A$
 - Let $V(B) := \max_{i \in A} \mathbb{E}_B[v_i]$

Model

- \rightarrow We start with the model of Matejka and McKay (AER, 2014)
 - The agent chooses an action from the set $A = \{1, 2, ..., N\}$
 - The state of nature is a vector $v \in \mathbb{R}^N$, prior $G \in \Delta(\mathbb{R}^N)$
 - v_i is the payoff of action $i \in A$
 - Let $V(B) := \max_{i \in A} \mathbb{E}_B[v_i]$

Stage 1 Choose an information structure to maximize

$$\max_{F \in \Delta(\mathbb{R}^{2N})} \int_{\boldsymbol{v}} \int_{\boldsymbol{s}} V(F(\cdot|\boldsymbol{s})) F(d\boldsymbol{s}|\boldsymbol{v}) G(d\boldsymbol{v}) - c(F)$$
s.t.
$$\int_{\boldsymbol{s}} F(d\boldsymbol{s}, \boldsymbol{v}) = G(\boldsymbol{v}), \forall \boldsymbol{v} \in \mathbb{R}^{N}$$

- \rightarrow We start with the model of Matejka and McKay (AER, 2014)
 - The agent chooses an action from the set $A = \{1, 2, ..., N\}$
 - The state of nature is a vector $v \in \mathbb{R}^N$, prior $G \in \Delta(\mathbb{R}^N)$
 - v_i is the payoff of action $i \in A$
 - Let $V(B) := \max_{i \in A} \mathbb{E}_B[v_i]$
- Stage 1 Choose an information structure to maximize

$$\max_{F \in \Delta(\mathbb{R}^{2N})} \int_{\boldsymbol{v}} \int_{\boldsymbol{s}} V(F(\cdot|\boldsymbol{s})) F(d\boldsymbol{s}|\boldsymbol{v}) G(d\boldsymbol{v}) - c(F)$$
s.t.
$$\int_{\boldsymbol{s}} F(d\boldsymbol{s}, \boldsymbol{v}) = G(\boldsymbol{v}), \forall \boldsymbol{v} \in \mathbb{R}^{N}$$

Stage 2 Choose an action $a:\Delta(\mathbb{R}^N)\to A$ to maximize expected payoff given $F(\cdot|s)$

$$a(F) = \arg \max_{i \in A} \mathbb{E}_F[v_i]$$

Cost Function

• The entropy-based cost function

$$c(F) := \lambda \left(H(G) - \mathbb{E}_{\boldsymbol{s}} \left[H(F(\cdot | \boldsymbol{s})) \right] \right)$$

where

$$H(B) = -\sum_{k} P_k \log(P_k)$$

 P_k is the probability of state k.

ullet The rationally inattentive agent's strategy is a pair (F,a)

- The rationally inattentive agent's strategy is a pair (F, a)
- Let $S_i := \{ \boldsymbol{s} \in \mathbb{R}^N \mid a(F(\boldsymbol{v}|\boldsymbol{s})) = i \}$

- The rationally inattentive agent's strategy is a pair (F, a)
- Let $S_i := \{ \boldsymbol{s} \in \mathbb{R}^N \mid a(F(\boldsymbol{v}|\boldsymbol{s})) = i \}$
- Induced probability of selecting i conditional on state v:

$$\mathcal{P}_i(\boldsymbol{v}) \equiv \int_{\mathbf{s} \in S_i} F(d\mathbf{s}|\boldsymbol{v})$$

Induced Problem

- The rationally inattentive agent's strategy is a pair (F,a)
- Let $S_i := \{ s \in \mathbb{R}^N \mid a(F(v|s)) = i \}$
- Induced probability of selecting i conditional on state v:

$$\mathcal{P}_i(\boldsymbol{v}) \equiv \int_{\mathbf{s} \in S_i} F(d\mathbf{s}|\boldsymbol{v})$$

• Unconditional probability of selecting action i

$$\mathcal{P}_i^0 \equiv \int_{m{v}} \mathcal{P}_i(m{v}) G(dm{v})$$

- The rationally inattentive agent's strategy is a pair (F,a)
- Let $S_i := \{ s \in \mathbb{R}^N \mid a(F(v|s)) = i \}$
- Induced probability of selecting i conditional on state v:

$$\mathcal{P}_i(\boldsymbol{v}) \equiv \int_{\mathbf{s} \in S_i} F(d\mathbf{s}|\boldsymbol{v})$$

• Unconditional probability of selecting action i

$$\mathcal{P}_i^0 \equiv \int_{m{v}} \mathcal{P}_i(m{v}) G(dm{v})$$

Cost in new terms

$$c(\mathcal{P}, G) = \lambda \left(-\sum_{i=1}^{N} \mathcal{P}_{i}^{0} \log(\mathcal{P}_{i}^{0}) + \sum_{i=1}^{N} \int_{\boldsymbol{v}} \mathcal{P}_{i}(\boldsymbol{v}) \log \mathcal{P}_{i}(\boldsymbol{v}) G(d\boldsymbol{v}) \right)$$

• Equivalent to initial problem

$$\max_{\mathcal{P} = \{\mathcal{P}_i(\boldsymbol{v})\}_{i=1}^N} \sum_{i=1}^N \int_{\boldsymbol{v}} v_i \mathcal{P}_i(\boldsymbol{v}) G(d\boldsymbol{v}) - c(\mathcal{P}, G)$$

subject to

$$\forall i: \quad \mathcal{P}_i(\boldsymbol{v}) \ge 0, \quad \forall \boldsymbol{v} \in \mathbb{R}^N$$
 (1)

$$\forall i: \quad \mathcal{P}_i(\boldsymbol{v}) \ge 0, \quad \forall \boldsymbol{v} \in \mathbb{R}^N$$

$$\sum_{i=1}^N \mathcal{P}_i(\boldsymbol{v}) = 1, \quad \forall \boldsymbol{v} \in \mathbb{R}^N$$
(2)

Lagrangian

$$\mathcal{L}(\mathcal{P}) = \sum_{i=1}^{N} \int_{\mathbf{v}} v_i \mathcal{P}_i(\mathbf{v}) G(d\mathbf{v}) - c(\mathcal{P}, G)$$
$$+ \int_{\mathbf{v}} \xi_i(\mathbf{v}) \mathcal{P}_i(\mathbf{v}) G(d\mathbf{v}) - \int_{\mathbf{v}} \gamma_i(\mathbf{v}) \left(\sum_{i=1}^{N} \mathcal{P}_i(\mathbf{v}) - 1 \right) G(d\mathbf{v})$$

• Lagrangian

$$\mathcal{L}(\mathcal{P}) = \sum_{i=1}^{N} \int_{\mathbf{v}} v_i \mathcal{P}_i(\mathbf{v}) G(d\mathbf{v}) - c(\mathcal{P}, G)$$

$$+ \int_{\mathbf{v}} \xi_i(\mathbf{v}) \mathcal{P}_i(\mathbf{v}) G(d\mathbf{v}) - \int_{\mathbf{v}} \gamma_i(\mathbf{v}) \left(\sum_{i=1}^{N} \mathcal{P}_i(\mathbf{v}) - 1 \right) G(d\mathbf{v})$$

FOC

$$\mathcal{P}_i(\mathbf{v}): v_i + \xi_i(\mathbf{v}) - \gamma(\mathbf{v}) + \lambda(\log \mathcal{P}_i^0 + 1 - \log \mathcal{P}(\mathbf{v}) - 1) = 0$$

• Lagrangian

$$\mathcal{L}(\mathcal{P}) = \sum_{i=1}^{N} \int_{\mathbf{v}} v_i \mathcal{P}_i(\mathbf{v}) G(d\mathbf{v}) - c(\mathcal{P}, G)$$

$$+ \int_{\mathbf{v}} \xi_i(\mathbf{v}) \mathcal{P}_i(\mathbf{v}) G(d\mathbf{v}) - \int_{\mathbf{v}} \gamma_i(\mathbf{v}) \left(\sum_{i=1}^{N} \mathcal{P}_i(\mathbf{v}) - 1 \right) G(d\mathbf{v})$$

• FOC

$$\mathcal{P}_i(\mathbf{v}): v_i + \xi_i(\mathbf{v}) - \gamma(\mathbf{v}) + \lambda(\log \mathcal{P}_i^0 + 1 - \log \mathcal{P}(\mathbf{v}) - 1) = 0$$

• Solving for $\mathcal{P}_i(\mathbf{v})$ and using $\sum_{i=1}^N \mathcal{P}_i(\mathbf{v}) = 1$ we get

$$\mathcal{P}_i(oldsymbol{v}) = rac{\mathcal{P}_i^0 e^{v_i/\lambda}}{\sum_{j=1}^N \mathcal{P}_i^0 e^{v_j/\lambda}}$$

Result

ullet Probability of choosing an action $i \in A$ given the state $oldsymbol{v}$

$$\mathcal{P}_i(oldsymbol{v}) = rac{\mathcal{P}_i^0 e^{v_i/\lambda}}{\sum_{j=1}^N \mathcal{P}_i^0 e^{v_j/\lambda}}$$

Result

• Probability of choosing an action $i \in A$ given the state v

$$\mathcal{P}_i(oldsymbol{v}) = rac{\mathcal{P}_i^0 e^{v_i/\lambda}}{\sum_{j=1}^N \mathcal{P}_i^0 e^{v_j/\lambda}}$$

- Some properties:
 - Adding an action k to the choice set can increase the likelihood of selecting action i no RUM can provide this
 - Invariant to duplicate actions
 - Monotonicity in FOSD sense

EXAMPLE

 Agent must choose between taking a red bus, a blue bus, or a train.

	State 1	State 2	State 3	State 4
red bus	0	1	0	1
blue bus	0	0	1	1
train	R	R	R	R
$G(\boldsymbol{v})$	$\frac{1}{4}(1+\rho)$	$\frac{1}{4}(1-\rho)$	$\frac{1}{4}(1-\rho)$	$\frac{1}{4}(1+\rho)$

Case 1: R > 1

Case 2: R = 1/2 and $\rho = -1$

• Agent must choose between taking a red bus, a blue bus, or a train.

	State 1	State 2	State 3	State 4
red bus	0	1	0	1
blue bus	0	0	1	1
train	≥ 1	≥ 1	≥ 1	≥ 1
$G(\boldsymbol{v})$	$\frac{1}{4}(1+\rho)$	$\frac{1}{4}(1-\rho)$	$\frac{1}{4}(1-\rho)$	$\frac{1}{4}(1+\rho)$

Case 1: $R \ge 1$

Case 2: R = 1/2 and $\rho = -1$

 Agent must choose between taking a red bus, a blue bus, or a train.

	State 1	State 2	State 3	State 4
red bus	0	1	0	1
blue bus	0	0	1	1
train	1/2	1/2	1/2	1/2
$G(\boldsymbol{v})$	0	1/2	1/2	0

Case 1: $R \ge 1$

Case 2: R = 1/2 and $\rho = -1$

 Agent must choose between taking a red bus, a blue bus, or a train.

	State 1	State 2	State 3	State 4
red bus	0	1	0	1
blue bus	0	0	1	1
train	1/2	1/2	1/2	1/2
G(v)	1/2	0	0	1/2

Case 1: $R \ge 1$

Case 2: R = 1/2 and $\rho = -1$

Probability of Choosing a Bus

Motivation

- There is no empirical evidence to support entropy based cost as a good approximation to the true information processing cost
- Study the tradeoff between attention and incentives
- Identify the attention cost function (shape but not the level)
- Attention and Risk aversion

Introduce Redistribution

• Introduce Payoff Redistribution function (creating new states, insurance)

Introduce Redistribution

- Introduce Payoff Redistribution function (creating new states, insurance)
- Consider a case with two states and two actions

	b	W
Action B	Y	0
Action W	0	Y

Introduce Redistribution

- Introduce Payoff Redistribution function (creating new states, insurance)
- Consider a case with two states and two actions

	b	W
Action B	Y	0
Action W	0	Y

• With some cost q(x) agents can transform the state space

	b	w
Action B	Y	xY
Action W	xY	Y

 $0 \le p \le 1$

The Problem

• Agent's maximization problem

$$\max_{x,p} \quad pY + (1-p)xY - q(x) - c(p)$$
 s.t.
$$0 \le x \le 1$$

Results

• Targeted probability can be expressed in terms of parameters and optimal x^*

$$p^* = 1 - q'(x_q^*)Y^{-1}$$

Results

• Targeted probability can be expressed in terms of parameters and optimal x^*

$$p^* = 1 - q'(x_q^*)Y^{-1}$$

• Derivative of the cost function

$$c'(p^*) = Y(1 - x^*)$$

Exogenous and Endogenous Transfers

Exogenous transfers:

- \bullet Choose some q function and fix some levels of x
- ullet Ask subjects to perform the task under different levels of x

Endogenous transfers:

- \bullet Choose some q functions
- Ask subjects to do choose x for every q and execute the task with chosen level of x

Exogenous Transfers

- Task count black and white balls
- Three levels of difficulty: low(65), medium(130), high(190)
- Four transfer levels: 0%, 35%, 65% and 100%
- Payoff pairs: (\$20,\$0), (\$18,\$5), (\$14,\$7), (\$8,\$8)

Sample Screen for Exogenous Transfers

Period: 1

If you SUCCEED in the task you will earn: 13.00

If you FAIL the task you will earn: 4.00

Reveal The Screen With Balls

Sample Screen for Exogenous Transfers

Time-Transfer Tradeoff

Probability-Transfer Tradeoff

Endogenous Transfers Results

Loading...

Some Discussion

- There is a lot to learn about cost of attention
- The methodology can be used for various tasks
- The methodology can be used to ex-post classify complexity of mechanisms