

IN THE DRAWINGS

Applicant acknowledges that the Draftsperson has objected to the drawings under 37 CFR § 1.84(1). Applicant will submit formal drawings upon receiving an indication of allowable subject matter.

	PENDL	NG CLAIMS
1	1.	A method for performing motion estimation comprising:
2	1	receiving a stream of data comprising one or more bidirectionally interpolated frames (B-
3	frame) a	and a plurality of anchor frames; and
4	1	unidirectionally predicting content of each B-frame from a temporally closest anchor
5	frame.	
1		
1	2.	The method of claim 1, wherein the content of the B-frames is unidirectionally predicted
2	from the	e content of the temporally closest anchor frame and one or more motion vectors.
1		
1	3.	The method of claim 2, wherein the one or more motion vectors represent an activity
2	measure	e of the temporally closest anchor frame.
1		
1	4.	The method of claim 3, wherein the motion vector is determined by a sum of absolute
2	differen	nces in activity within the temporally closest anchor frame.
1		
1	5.	The method of claim 1, wherein the temporally closest anchor frame selected to
2	unidire	ctionally predict the content of the B-frame may either precede or supersede the B-frame.

1

- The apparatus of claim 10, wherein the motion estimation circuit unidirectionally predicts 13. 1 the content of B-frames from a temporally closest anchor frame and one or more motion vectors 2 generated therefrom. 3 1 14. The apparatus of claim 13 wherein the motion estimation circuit generates the one or 1 2 more motion vectors from a sum of absolute differences in activity within the temporally closest anchor frame. 3 1 The apparatus of claim 8, wherein the motion estimation circuit utilizes either a preceding 15. 1 or superseding anchor frame to predict B-frame content, depending on which is temporally closer 2 to the B-frame. 3 A storage medium comprising a plurality of executable instructions which, 1 16. (Amended) when executed, cause an executing processor to implement a motion estimation function to unidirectionally predict content of each of a plurality of received bidirectionally interpolated frames (B-frames) from a select anchor frame. 1 17. The storage medium of claim 16, wherein the motion estimation function utilizes either a 1
- 2 preceding or superseding anchor frame to predict B-frame content, depending on which is

temporally closer to the B-frame.

3

1