MANUEL D'INSTRUCTIONS POUR TESTS DE PERFORMANCE

MOTEURS D'AIRBUS A320

DOCUMENT PÉDAGOGIQUE

Référence: MIT-A320-PERF-2025-042

Classification: STANDARD / USAGE FORMATION

Version: 2.1

Date de publication: 25 mai 2025

INTRODUCTION

Ce manuel d'instructions présente les procédures de base pour réaliser les tests de performance des moteurs équipant les Airbus A320. Il est conçu comme un outil pédagogique pour le personnel technique en formation, conformément aux exigences des autorités de l'aviation civile (EASA et FAA).

Les tests de performance sont essentiels pour évaluer l'état de fonctionnement des moteurs, détecter les dégradations précoces et garantir que les performances répondent aux spécifications du constructeur. Ce document couvre les principes fondamentaux, les équipements nécessaires et les procédures de test.

1. PRINCIPES FONDAMENTAUX

1.1 Objectifs des tests de performance

Les tests de performance des moteurs visent à: - Vérifier que les paramètres opérationnels sont dans les limites spécifiées - Détecter les tendances de dégradation avant qu'elles n'affectent la

sécurité - Optimiser la consommation de carburant et les coûts d'exploitation - Planifier les interventions de maintenance de manière proactive - Valider l'efficacité des opérations de maintenance

1.2 Paramètres clés

Les principaux paramètres surveillés lors des tests de performance sont:

Paramètre	Symbole	Unité	Importance
Poussée	FN	kN	Performance globale
Température d'échappement	EGT	°C	Santé thermique
Consommation spécifique	SFC	kg/kN/h	Efficacité énergétique
Vitesse de rotation N1	N1	% ou RPM	Performance soufflante
Vitesse de rotation N2	N2	% ou RPM	Performance compresseur HP
Rapport de pression	EPR	-	Efficacité propulsive
Débit carburant	FF	kg/h	Consommation
Vibrations	VIB	ips	Intégrité mécanique

1.3 Types de tests

Selon le contexte opérationnel, différents types de tests peuvent être réalisés:

Tests au sol: - Test de point fixe (statique) - Test de ralenti - Test d'accélération/décélération - Test de puissance maximale (limité par les contraintes aéroportuaires)

Tests en vol: - Test de croisière - Test de montée - Test de décollage - Test d'approche et atterrissage

2. ÉQUIPEMENTS ET PRÉPARATION

2.1 Équipements nécessaires

Pour réaliser des tests de performance fiables, les équipements suivants sont requis:

Équipements embarqués: - Système d'acquisition de données moteur (EADAS) - Capteurs calibrés (température, pression, vitesse) - Débitmètres carburant - Accéléromètres pour mesure des vibrations

Équipements au sol: - Ordinateur avec logiciel d'analyse (ECAT, SAGE, etc.) - Interface de téléchargement des données - Anémomètre portable - Thermomètre et baromètre calibrés

2.2 Conditions préalables

Avant de commencer les tests, vérifiez que:
□ Les conditions météorologiques sont appropriées: - Vent <15 nœuds - Absence de précipitations - Température entre -5°C et +35°C - Pression atmosphérique stable
□ L'aéronef est correctement préparé: - Masse et centrage documentés - Configuration aérodynamique standard - Systèmes de prélèvement d'air configurés selon test
□ Les autorisations nécessaires sont obtenues: - Autorisation de la tour de contrôle pour tests au sol - Plan de vol approuvé pour tests en vol - Coordination avec maintenance et opérations
2.3 Étalonnage et vérifications
□ Vérifier la calibration de tous les instruments de mesure □ Confirmer le bon fonctionnement du système d'acquisition □ Vérifier la dernière mise à jour des logiciels d'analyse □ Contrôler la synchronisation des horloges système

3. PROCÉDURES DE TEST

3.1 Test de point fixe

Le test de point fixe est la méthode la plus courante pour évaluer les performances moteur au sol.

Préparation: 1. Positionner l'aéronef dans une zone dégagée 2. Installer les cales de roues et vérifier les freins 3. S'assurer que la zone arrière est libre sur 50m minimum 4. Configurer les systèmes de prélèvement selon EMM

Exécution: 1. Démarrer les moteurs selon procédure standard 2. Stabiliser au ralenti pendant 5 minutes (warm-up) 3. Augmenter progressivement la puissance par paliers: - Ralenti (IDLE): 1 minute - 40% N1: 1 minute - 60% N1: 1 minute - 80% N1: 1 minute - Maximum autorisé: 30 secondes 4. Enregistrer les paramètres à chaque palier 5. Revenir au ralenti et stabiliser 3 minutes 6. Arrêter les moteurs selon procédure standard

Paramètres à enregistrer: - N1, N2 (%) - EGT (°C) - FF (kg/h) - Vibrations (ips) - Pressions (P2, P3, P49) - Températures (T2, T3, T49) - Conditions ambiantes (OAT, QNH)

3.2 Test d'accélération/décélération

Ce test évalue la réponse dynamique du moteur et peut révéler des problèmes non détectables en régime stabilisé.

Exécution: 1. Stabiliser le moteur au ralenti 2. Avancer la manette des gaz à la position TOGA en 1 seconde 3. Maintenir TOGA pendant 10 secondes 4. Ramener la manette au ralenti en 1 seconde 5. Maintenir ralenti pendant 30 secondes 6. Répéter la séquence 3 fois

Paramètres à surveiller: - Temps d'accélération (ralenti à 90% N1) - Temps de décélération (TOGA à ralenti) - Dépassement temporaire de N1 - Stabilité de l'EGT pendant les transitions - Absence de pompage ou de fluctuations anormales

3.3 Test en vol de croisière

Exécution: 1. Établir l'aéronef en croisière à l'altitude cible 2. Stabiliser à Mach 0.78 (ou selon plan de vol) 3. Maintenir les conditions pendant 5 minutes 4. Enregistrer tous les paramètres moteur 5. Répéter à différentes altitudes si requis

Paramètres spécifiques: - SFC (consommation spécifique) - EPR (rapport de pression moteur) - Marge EGT (différence entre EGT actuelle et limite) - Stabilité des paramètres dans le temps

4. ANALYSE DES RÉSULTATS

4.1 Correction des données

Les données brutes doivent être corrigées pour les conditions atmosphériques standard: - Température: ISA (15°C au niveau de la mer) - Pression: 1013.25 hPa - Humidité: 0%

Utilisez les formules de correction du constructeur: - N1 corrigé = N1 mesuré × √(T2 standard / T2 mesurée) - EGT corrigée = EGT mesurée + K(T2 standard - T2 mesurée) - FF corrigé = FF mesuré × (P2 standard / P2 mesurée) × √(T2 mesurée / T2 standard)

4.2 Comparaison avec les références

Comparez les valeurs corrigées avec: - Données de référence du constructeur - Données historiques du même moteur - Données de moteurs similaires de la flotte

Marges acceptables: - N1: ±0.5% de la valeur de référence - EGT: +0°C à -15°C de la valeur de référence - SFC: +0% à +5% de la valeur de référence - Vibrations: <2.5 ips (ou selon limites constructeur)

4.3 Interprétation des écarts

Paramètre dégradé	Causes possibles	Actions recommandées
EGT élevée	Détérioration compresseur, combustion inefficace, fuites air chaud	Inspection boroscopique, nettoyage compresseur
SFC élevée	Fuites d'air, détérioration turbine, mauvaise combustion	Vérification étanchéité, inspection turbine

Paramètre dégradé	Causes possibles	Actions recommandées
N1 basse pour poussée donnée	Détérioration soufflante, pertes aérodynamiques	Inspection soufflante, vérification jeux
Vibrations élevées	Balourd, désalignement, dommage aube	Inspection détaillée, équilibrage

5. DOCUMENTATION ET RAPPORTS

5.1 Contenu du rapport de test

Un rapport de test complet doit inclure: - Identification de l'aéronef et des moteurs - Date, heure et lieu du test - Conditions atmosphériques - Configuration de l'aéronef - Données brutes mesurées - Données corrigées - Comparaison avec références - Analyse des écarts - Recommandations - Identification du personnel technique

5.2 Archivage et traçabilité

\square Enregistrer le rapport dans le système de gestion de maintenance \square Mettre à jour le	livret
moteur □ Archiver les données brutes pour analyses futures □ Intégrer les résultats d	ans le
programme de suivi de tendance	

Document conforme aux exigences: - EASA Part-66 (Licences de maintenance aéronautique) - FAA AC 43-207 (Maintenance prédictive) - EASA Part-M.A.302 (Programme de maintenance)

Préparé par:

Service Formation Technique Certification EASA Part-147 #FR.147.0025

Ce manuel est un document pédagogique et ne remplace pas les procédures officielles du constructeur.