

Tutorial: Getting Started with Optimization: Computational Noise, Noisy Derivatives, Stochastic Methods

Todd Munson and Stefan Wild

Argonne National Laboratory, Mathematics and Computer Science Division

January 28, 2016

Do this now:

- Obtain matlab files (from Simon's cluster or at www.mcs.anl.gov/~wild/codes/zice16.zip)
- Open matlab (ideally on your own machine so that you can view graphics, otherwise on the cluster)
- \circ [Optional:] Have your function ready (a matlab function that receives x and outputs f(x))

I. Computational Noise

- What is computational noise?
- How can noise be estimated efficiently?
- How does noise affect numerical differentiation?
- How accurate are near-optimal finite-difference estimates?

Questions To Ask Yourself

- 1. Do you know how "noisy" your function is?
- 2. Do you know how accurate your derivatives are?
- 3. Is the noise/accuracy stationary (independent of x)?
- 4. What do you do with this information?

Noise May Hurt You, Or It May Not

These are the same problem:

Noise May Hurt You, Or It May Not

So are these:

Computational Noise is not a Newcomer

From Hamming's 1971 Introduction to Numerical Analysis:

Where does this noise come from? ...infinite processes in mathematics which of necessity must be approximated by finite processes.

Truncation vs. roundoff Finite number length leads to roundoff. Finite processes lead to truncation.

Competing errors Smaller steps usually reduce truncation error and may increase roundoff error.

Deterministic In practice, the same input, barring machine failures, gives the same result.

Computational Noise is not a Newcomer

From Hamming's 1971 Introduction to Numerical Analysis:

Where does this noise come from? ...infinite processes in mathematics which of necessity must be approximated by finite processes.

Truncation vs. roundoff Finite number length leads to roundoff. Finite processes lead to truncation.

Competing errors Smaller steps usually reduce truncation error and may increase roundoff error.

Deterministic In practice, the same input, barring machine failures, gives the same result.

— changing!

E16 4

Living In A Finite-Precision World

Roundoff Error

$$f_{\infty}(x) - f(x)$$

Floating Point Arithmetic

Commutative:

$$A + B = B + A$$
 and $A * B = B * A$

Non-associative:

$$A + (B + C) \neq (A + B) + C$$

 This is likely to affect the reproducibility of your calculations in the future (for performance reasons)

Many details \rightarrow [What Every Computer Scientist Should Know About Floating-Point Arithmetic, Goldberg, 1991]

Wild, ZICE16 5 4 □ >

Truncation/Approximation Error

$$R_{m+1}(x) = f_a(x) - \sum_{i=0}^{m} P_i(x)$$

Which do you prefer?

- A less noise, more error
- B less error, more noise

Computational Noise in Deterministic Simulations

Finite precision + finite processes

- Iteratively solving systems of PDEs or estimating eigenvalues
- Adaptively computing integrals
- Discretizations/meshes

destroy underlying smoothness

$\underline{\mathsf{Goal}}$: estimate the "variation" in $f(\mathbf{x})$

- ⋄ a few f evaluations
- deterministic and stochastic noise

Difference $|f(x) - f(x + Z\omega)|$,

Sparse linear large-scale system

Matlab Time

Basic tips

(Examples in runexamples.m)

- \diamond Moving from n-d to 1-d
- Deterministic function (probnum=1)
- Stochastic function (probnum=2)
- Scaling (probnum=3)
- Constraint cautions

8 🗖 🗅 🕨

Estimating Computational Noise: The Noise Level ϵ_f

Simple model for the noise

$$f(t) = f_s(t) + \varepsilon(t), \quad t \in \mathcal{I}$$

- the computed function
- a smooth, deterministic function
- ε is the noise with $\{\varepsilon(t):t\in\mathcal{I}\}$ iid

← only assumption

The noise level of f is $\varepsilon_f = (\operatorname{Var} \{ \varepsilon(t) \})^{1/2}$

(independent of t)

The k-th Order Difference $\Delta^k f(t)$

$$\Delta^{k+1} f(t) = \Delta^k f(t+h) - \Delta^k f(t), \qquad \Delta^0 f(t) = f(t)$$

$$\Delta^k f(t) = \Delta^k f_s(t) + \Delta^k \varepsilon(t)$$

- 1. Differences of smooth f_s tend to zero rapidly
- 2. Differences of noise are bounded away from zero
 - ullet If h is sufficiently small,

$$\Delta^k f(t) \approx \Delta^k \varepsilon(t)$$

• If f_s is k-times differentiable,

$$\Delta^k f(t) = f_s^{(k)}(\xi_k) h^k + \Delta^k \varepsilon(t), \qquad \xi_k \in (t, t + kh)$$

Goal: make h small enough to remove smooth component

△ Wild, ZICE16

Theory Underlying the ECNoise Algorithm

For $\{\varepsilon(t+ih): i=0,\ldots,m\}$ iid and $k\leq m$:

- 1. $\mathrm{E}\left\{\Delta^k\varepsilon(t)\right\}=0$
- 2. $\gamma_k \mathbf{E}\left\{ \left[\Delta^k \varepsilon(t) \right]^2 \right\} = \varepsilon_f^2 \qquad \gamma_k = \frac{(k!)^2}{(2k)!}$
- 3. If f_s is continuous at t, then

$$\lim_{h \to 0} \gamma_k \mathbf{E} \left\{ \left[\Delta^k f(t) \right]^2 \right\} = \varepsilon_f^2$$

4. If f_s is k-times continuously differentiable at t, then

$$\lim_{h \to 0} \frac{\gamma_k \mathbf{E} \left\{ [\boldsymbol{\Delta}^k f(t)]^2 \right\} - \boldsymbol{\varepsilon}_f^2}{h^{2k}} = \gamma_k \left[f_s^{(k)}(t) \right]^2$$

$$\Rightarrow \varepsilon_f^2 \approx \gamma_k \mathbf{E} \left\{ [\Delta^k f(t)]^2 \right\},\,$$

when the sampling distance h is sufficiently small

The ECNoise Algorithm

Uses
$$\sigma_k = \left(\frac{\gamma_k}{m+1-k}\sum_{i=0}^{m-k}[\Delta^k f(t+ih)]^2\right)^{1/2}$$

- 1. Chooses k
- 2. Verifies h is small enough
- \diamond Works for deterministic f

[Estimating Computational Noise. Moré & W., SISC 2011]

ECNoise Estimator
$$\sigma_k = \left(\frac{\gamma_k}{m+1-k}\sum_{i=0}^{m-k}[\Delta^k f(t_i)]^2\right)^{1/2}$$

For
$$f(t) = \cos(t) + \sin(t) + 10^{-3} U_{[0,2\sqrt{3}]} \ \left(m = 6, t_i = \frac{i}{100} \right)$$

$f(t_i)$	$\Delta f(t_i)$	$\Delta^2 f(t_i)$	$\Delta^3 f(t_i)$	$\Delta^4 f(t_i)$	$\Delta^5 f(t_i)$	$\Delta^6 f(t_i)$
1.003	7.54e-3	2.15e-3	1.87e-4	-5.87e-3	1.46e-2	-2.49e-2
1.011	9.69e-3	2.33e-3	-5.68e-3	8.73e-3	-1.03e-2	
1.021	1.20e-2	-3.35e-3	3.05e-3	-1.61e-3		
1.033	8.67e-3	-2.96e-4	1.44e-3			
1.041	8.38e-3	1.14e-3				
1.050	9.52e-3					
1.059						
σ_k	6.78e-3	8.96e-4	9.02e-4	9.93e-4	1.10e-3	1.14e-3

Extension to Multivariate $g: \mathbb{R}^n \mapsto \mathbb{R}$

Given base point $x_b \in \mathbb{R}^n$, unit direction $p \in \mathbb{R}^n$, consider

$$f_p(t) = g(x_b + tp), \quad t \ge 0$$

Apply univariate theory

- Directional differences, directional derivatives
- \diamond ε_f may now depend on a direction $p \in \mathbb{R}^n$
- \diamond ECnoise uses $T_{i,0} = f(x_b + ihp)$ with random unit direction $p \in \mathbb{R}^n$

Computational Experience with Stochastic Noise

Validate ECnoise and empirical properties of

$$\sigma_k^2 = \frac{\gamma_k}{m+1-k} \sum_{i=0}^{m-k} T_{i,k}^2$$

under known conditions:

- ♦ Known noise level ε_f
- Theory directly applies

Target: every estimate within a factor $\eta=4$ of the mean $% \left(1\right) =1$

Noisy Quadratic,
$$f(x) = (x^T x)(1 + R), \quad x \in \mathbb{R}^{10}$$

Estimate relative noise

$$\frac{\sigma_k}{f(x_h)} \approx \sqrt{\operatorname{Var}\{R\}} = 10^{-3}$$

- x_b random base point
 - p 10000 random unit directions
- m evaluations

Noisy Quadratic,
$$f(x) = (x^T x)(1 + R), \quad x \in \mathbb{R}^{10}$$

$$R \sim \! \mathsf{Uniform} \big[-\sqrt{3} \cdot 10^{-3}, \sqrt{3} \cdot 10^{-3} \big]$$

Estimate relative noise
$$\frac{\sigma_k}{f(x_k)} \approx \sqrt{\operatorname{Var}\left\{R\right\}} = 10^{-3}$$

 x_b random base point

 $p \ 10000$ random unit directions

m evaluations

99.2% within a factor $\eta=4$ for m=6

Noisy Quadratic,
$$f(x) = (x^T x)(1 + R), \quad x \in \mathbb{R}^{10}$$

$$R \sim \mathsf{Normal}(0, 10^{-6})$$

Estimate relative noise $\frac{\sigma_k}{f(x_k)} \approx \sqrt{\operatorname{Var}\left\{R\right\}} = 10^{-3}$

 x_b random base point

p 10000 random unit directions

m evaluations

98.9% within a factor $\eta=4$ for m=6

MC Finance Example with Higher Order Derivatives

Today's value of a \$1 payment n years from now rates [Caflisch]:

$$f(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \prod_{i=0}^n \frac{e^{-\frac{\|u\|^2}{2}}}{1 + r_i(u, x)} du, \quad r_i(u, x) = \begin{cases} \frac{1}{10} & i = 0\\ r_{i-1}(u, x) e^{x_i u_i - x_i^2/2} & i \ge 1 \end{cases}$$

10000 MC integrations (directions p) with

- n=3 years, $x_b = [.1, .1, .1]$
- tol = 5000 standard normal random variables
- no variance reduction

99.6% within a factor 4 for m=6

Finite Differences Sensitive to Choice of h

$$\frac{f(t_0+h)-f(t_0)}{h}\approx f_s'(t_0)$$

, ZICE16 18

Noisy Forward Differences

$$\mathbb{E}\left\{\mathcal{E}(h)\right\} = \mathbb{E}\left\{\left(\frac{f(t_0+h)-f(t_0)}{h} - f_s'(t_0)\right)^2\right\}$$

Our h will depend on

- Loose estimate of noise
- \diamond Loose estimate of |f''|
- Stochastic theory:
 - 1. $f(t) = f_s(t) + \epsilon$ on $I = \{t_0 + h : 0 \le h \le h_0\}$
 - 2. f_s twice differentiable
 - 3. $\mu_L < |f_s''| < \mu_M$ on I

[Estimating Noisy Derivatives. Moré & W., TOMS 2012]]

Optimal Forward Difference Parameter h

$$\frac{1}{4}\mu_{\scriptscriptstyle L}^2h^2 + 2\frac{\varepsilon_f^2}{h^2} \leq \operatorname{E}\left\{\mathcal{E}(h)\right\} \leq \frac{1}{4}\mu_{\scriptscriptstyle M}^2h^2 + 2\frac{\varepsilon_f^2}{h^2}$$

- $h \downarrow Variance (noise) dominates$
- $h \uparrow \text{ Bias } (f'') \text{ dominates}$

For h_0 sufficiently large

- 1. Upper bound minimized by $h_M = 8^{1/4} \left(\frac{\varepsilon_f}{u_M} \right)^{1/2}$
- 2. When $\mu_L > 0$, h_M is near-optimal:

$$\mathrm{E}\left\{\mathcal{E}(h_{M})\right\} = \sqrt{2}\mu_{M}\varepsilon_{f} \leq \left(\frac{\mu_{M}}{\mu_{L}}\right) \min_{0 \leq h \leq h_{0}} \mathrm{E}\left\{\mathcal{E}(h)\right\}.$$

Given uniform bound on roundoff error,

$$|f(t) - f_{\infty}(t)| \le \varepsilon_A \qquad t \in I,$$

Minimizer of (upper bound on) l_1 error is

$$h_A = 2 \left(\frac{arepsilon_A}{\mu_M} \right)^{1/2}$$

Assumes:

- $h_A \leq h_0$
- \diamond Estimate of ε_A available

Stochastic Examples

Estimate
$$f_s'(t) = E\{f(t)\}'$$
 at $t=1$ $(\varepsilon_f = 10^{-6})$

Log-log realizations of
$$\mathcal{E}(h) = \mathrm{E}\left\{\left(\frac{f(t_0+h)-f(t_0)}{h} - f_s'(t_0)\right)^2\right\}$$

Expected error and uncertainty regions predicted by the theory

Extension: Central Differences

First derivatives, $\frac{f(t_0+h)-f(t_0-h)}{2h}$

$$|h_M| = \gamma_5 \left(\frac{\varepsilon_f}{\mu_M}\right)^{1/3}, \qquad \gamma_5 = 3^{1/3} \approx 1.44$$

$$\diamond \ \mathrm{E}\left\{\mathcal{E}_{c}(h_{M})\right\} \leq \left(\frac{\mu_{M}}{\mu_{L}}\right)^{2/3} \min_{|h| \leq h_{0}} \mathrm{E}\left\{\mathcal{E}_{c}(h)\right\}$$

Second derivatives, $\frac{f(t_0+h)-2f(t_0)+f(t_0-h)}{h^2}$

$$|h_M| = \gamma_7 \left(\frac{\varepsilon_f}{\mu_M}\right)^{1/4}, \qquad \gamma_7 = 2^{5/8} \, 3^{1/8} \approx 2.33$$

$$\diamond \operatorname{E} \left\{ \mathcal{E}_{2}(h_{M}) \right\} \leq \left(\frac{\mu_{M}}{\mu_{L}} \right) \min_{|h| \leq h_{0}} \operatorname{E} \left\{ \mathcal{E}_{2}(h) \right\}$$

ullet use to obtain rough estimate of $|f_s''|$ for forward-difference h

Ex.- Highly Nonlinear MINPACK-2 Problems

25 problems, $n \le 64 \cdot 10^4$

♦ Accurate estimates obtained even when f" not constant

Compared with hand-coded derivative

Using the Noise in Nesterov's Random Gradient Method

General RG iteration

- 1. Generate direction d_k
- 2. Evaluate gradient-free oracle $g(x_k; h_k) = \frac{f(x_k + h_k d_k) f(x_k)}{h} d_k$
- 3. Compute $x_{k+1} = x_k \delta_k g(x_k; h_k)$, evaluate $f(x_{k+1})$

bicgstab quadratic: tol= 10^{-2} , $\frac{\varepsilon_f}{|f|} \approx$ 5e-3

ZICE16 25

Matlab Time II

- Start playing around with stochastic algorithms
- Notice cost of getting fd parameter wrong
- Notice cost of not using derivatives

Summary: How Loud Are Your Functions?

- Computational noise complicates analysis of real-world functions, worst-case bounds overly pessimistic
- With a few (6-8) additional evaluations, ECNoise reliably estimates the noise
- Stochastic theory for near-optimal difference parameters
- Coarse estimates of |f"| (2-4 evaluations) yield more accurate directional derivatives
- Both work on deterministic functions in practice

[Estimating Computation Noise, SISC 2011] [Estimating Derivatives of Noisy Simulations, TOMS 2012] [Do You Trust Derivatives or Differences?, JCP 2014] [Obtaining Quadratic Models of Noisy Functions, Preprint, 2014]

Computing http://mcs.anl.gov/~wild/cnoise

Part II?

Stochastic Methods for Two Types of Problems

- A. Stochastic optimization
 - Modeling and algorithms for optimization under uncertainty
 - Stochasticity from problem and/or algorithm
- B. Deterministic optimization
 - Objectives and constraints deterministic
 - Methods are "randomized"

Stochastic Methods for Two Types of Problems

- A. Stochastic optimization
 - Modeling and algorithms for optimization under uncertainty
 - Stochasticity from problem and/or algorithm
- B. Deterministic optimization
 - Objectives and constraints deterministic
 - Methods are "randomized"
- → Methods and analysis are related

A. Stochastic Optimization Problems and Methods

Stochastic Optimization

General problem

$$\min\left\{f(x) = \mathbb{E}_{\xi}\left[F(x,\xi)\right] : x \in X\right\} \tag{1}$$

- $x \in \mathbb{R}^n$ decision variables
- \diamond ξ vector of random variables
 - ullet independent of x
 - $P(\xi)$ distribution function for ξ
 - ξ has support Ξ
- \diamond $F(x,\cdot)$ functional form of uncertainty for decision x
- $\diamond \ X \subseteq \mathbb{R}^n$ set defined by deterministic constraints
 - Also: stochastic/probabilistic constraints

(not addressed here)

Wild, ZICE16

Approach of Sampling Methods for $f(x) = \mathbb{E}_{\xi}\left[F(x,\xi)\right]$

- \diamond Let $\xi^1, \xi^2, \cdots, \xi^N \sim P$
- \diamond For $x \in X$, define:

$$f_N(x) = \frac{1}{N} \sum_{i=1}^{N} F(x, \xi^i)$$

- f_N is a random variable (really, a stochastic process) (depends on $(\xi^1, \xi^2, \cdots, \xi^N)$)
- Motivated by $\mathbb{E}_{\xi}\left[f_{N}(x)\right]=f(x)$

A

Bias of Sampling Methods

$$\diamond$$
 Let $f^* = f(x^*)$ for $x^* \in X^* \subseteq X$

Bias of Sampling Methods

- \diamond Let $f^* = f(x^*)$ for $x^* \in X^* \subseteq X$
- \diamond For any $N \geq 1$:

$$\mathbb{E}_{\xi} \left[f_N^* \right] \le f^* = \mathbb{E}_{\xi} \left[F(x^*, \xi) \right]$$

because

$$\mathbb{E}_{\xi}\left[f_1^*\right] = \mathbb{E}_{\xi}\left[\min\left\{F(x,\xi): x \in X\right\}\right] \leq \min\left\{\mathbb{E}_{\xi}\left[F(x,\xi)\right]: x \in X\right\} = f^*$$

Wild, ZICE16 33

Bias of Sampling Methods

- \diamond Let $f^* = f(x^*)$ for $x^* \in X^* \subseteq X$
- For any $N \geq 1$:

$$\mathbb{E}_{\xi}\left[f_{N}^{*}\right] \leq f^{*} = \mathbb{E}_{\xi}\left[F(x^{*}, \xi)\right]$$

because

$$\mathbb{E}_{\xi} \left[f_1^* \right] = \mathbb{E}_{\xi} \left[\min \left\{ F(x, \xi) : x \in X \right\} \right] \le \min \left\{ \mathbb{E}_{\xi} \left[F(x, \xi) \right] : x \in X \right\} = f^*$$

- \diamond Sampling problems result in optimal values below f^*
- \diamond f_N^* is biased estimator of f^*

ild, ZICE16 33

Sample Average Approximation

- \diamond Draw realizations $\hat{\xi}^1, \hat{\xi}^2, \cdots, \hat{\xi}^N \sim P$ of $(\xi^1, \xi^2, \cdots, \xi^N)$
- Replace (1) with

$$\min\left\{\frac{1}{N}\sum_{i=1}^{N}F(x,\hat{\xi}^{i}):\ x\in X\right\} \tag{2}$$

- $\hat{f}_N(x) = \frac{1}{N} \sum_{i=1}^N F(x, \hat{\xi}^i)$ deterministic
- ullet Follows mean of the N sample paths defined by the (fixed) $\hat{\xi}^i$

SAA Algorithm

Input N, (maybe $x^0 \in X$)

- 1. Generate $\hat{\xi}^1, \hat{\xi}^2, \cdots, \hat{\xi}^N \sim P$
- 2. Solve the deterministic problem

$$\min\left\{\frac{1}{N}\sum_{i=1}^N F(x,\hat{\xi}^i):\ x\in X\right\}$$

Output x_N^* (or X_N^*).

Convergence with ${\cal N}$

- A sufficient condition:
 - For any $\epsilon > 0$ there exists N_{ϵ} so that

$$\left| \hat{f}_N(x) - f(x) \right| < \epsilon \quad \forall N \ge N_{\epsilon} \quad \forall x \in X$$

with probability 1 (wp1).

- Then $\hat{f}_N^* \to f^*$ wp1.
- \diamond (With additional assumptions on f and $X^* \subset X$):

$$\mathsf{dist}(x_N^*,X^*)\to 0$$

 \diamond (+ uniqueness, $X^* = x^*$):

$$x_N^* \to x^*$$

Stochastic Approximation Method

Basically just:

Input x^0

1.
$$x^{k+1} \leftarrow \mathcal{P}_X \left\{ x^k - \alpha_k s^k \right\}$$
,

$$k = 0, 1, \dots$$

- \diamond α_k a step size
- \diamond s^k a random direction

Stochastic Approximation Method

Basically just:

Input x^0

1.
$$x^{k+1} \leftarrow \mathcal{P}_X \left\{ x^k - \alpha_k s^k \right\}$$
,

$$k = 0, 1, \dots$$

- \diamond α_k a step size
- \diamond s^k a random direction

Generally assume:

$$\alpha_k$$
: $\sum_{k=0}^{\infty} \alpha_k = \infty$, $\sum_{k=0}^{\infty} \alpha_k^2 < \infty$

$$s^k$$
: $\mathbb{E}\left\{\nabla f(x^k)^T s^k\right\} > 0$

 \boldsymbol{s}^k is an ascent direction (in expectation) at \boldsymbol{x}^k

Stochastic Approximation Method

Basically just:

Input x^0

1.
$$x^{k+1} \leftarrow \mathcal{P}_X \left\{ x^k - \alpha_k s^k \right\}$$
,

$$k=0,1,\ldots$$

- $\diamond \alpha_k$ a step size
- \diamond s^k a random direction

Generally assume:

$$\alpha_k$$
: $\sum_{k=0}^{\infty} \alpha_k = \infty$, $\sum_{k=0}^{\infty} \alpha_k^2 < \infty$

$$s^k$$
: $\mathbb{E}\left\{\nabla f(x^k)^T s^k\right\} > 0$

 s^k is an ascent direction (in expectation) at x^k

 \diamond "Exact" Stochastic Gradient Descent: $s^k = \nabla f(x^k)$

Classic SA Algorithms

- "Original" method is Robbins-Monro (1951)
- Without derivatives: Kiefer-Wolfowitz (1952) replaces gradient with finite-difference approximation, e.g.,

1.
$$x^{k+1} \leftarrow x^k - \alpha_k s^k$$
, $k = 0, 1, \dots$

where

$$s^k = \frac{F(x^k + h_k I_n; \hat{\xi}^k) - F(x^k - h_k I_n; \hat{\xi}^{k+1/2})}{2h_k}$$

Classic SA Algorithms

- "Original" method is Robbins-Monro (1951)
- Without derivatives: Kiefer-Wolfowitz (1952) replaces gradient with finite-difference approximation, e.g.,

1.
$$x^{k+1} \leftarrow x^k - \alpha_k s^k$$
, $k = 0, 1, \dots$

where

$$s^k = \frac{F(x^k + h_k I_n; \hat{\xi}^k) - F(x^k - h_k I_n; \hat{\xi}^{k+1/2})}{2h_k}$$

- Requires 2n evaluations every iteration
- Can appeal to variance reduction techniques (e.g., common RNs)
- Convergence $x^k \to x^*$ if f strongly convex (near x^*), usual conditions on α_k , $h_k \to 0$, $\sum_k \frac{\alpha_k^2}{h_i^2} < \infty$
- K-W recommend: $\alpha_k = \frac{1}{k}$, $h_k = \frac{1}{k^{1/3}}$

< □ →

Classic SA Algorithms

- "Original" method is Robbins-Monro (1951)
- Without derivatives: Kiefer-Wolfowitz (1952) replaces gradient with finite-difference approximation, e.g.,

1.
$$x^{k+1} \leftarrow x^k - \alpha_k s^k$$
, $k = 0, 1, \dots$

where

$$s^k = \frac{F(x^k + h_k I_n; \hat{\xi}^k) - F(x^k - h_k I_n; \hat{\xi}^{k+1/2})}{2h_k}$$

- Requires 2n evaluations every iteration
- Can appeal to variance reduction techniques (e.g., common RNs)
- Convergence $x^k \to x^*$ if f strongly convex (near x^*), usual conditions on α_k , $h_k \to 0$, $\sum_k \frac{\alpha_k^2}{h_i^2} < \infty$
- K-W recommend: $\alpha_k = \frac{1}{k}$, $h_k = \frac{1}{k^{1/3}}$
- Extensions such as SPSA (Spall) reduce number of evaluations (see randomized methods slides...)

< □ →

Derivative-Based Stochastic Gradient Descent

- 1. Draw realization $\hat{\xi}^k \sim P$ of ξ^k
- 2. Compute $s^k = \nabla_x F(x^k; \hat{\xi}^k)$
- 3. Update $x^{k+1} \leftarrow \mathcal{P}_X \left\{ x^k \alpha_k s^k \right\}$

Derivative-Based Stochastic Gradient Descent

- 1. Draw realization $\hat{\xi}^k \sim P$ of ξ^k
- 2. Compute $s^k = \nabla_x F(x^k; \hat{\xi}^k)$
- 3. Update $x^{k+1} \leftarrow \mathcal{P}_X \left\{ x^k \alpha_k s^k \right\}$
- $\diamond \ \nabla_x F(x^k; \hat{\xi}^k)$ is an unbiased estimator for $\nabla f(x^k)$

Derivative-Based Stochastic Gradient Descent

Input x^0 ; Repeat:

- 1. Draw realization $\hat{\xi}^k \sim P$ of ξ^k
- 2. Compute $s^k = \nabla_x F(x^k; \hat{\xi}^k)$
- 3. Update $x^{k+1} \leftarrow \mathcal{P}_X \left\{ x^k \alpha_k s^k \right\}$
- $\diamond \ \,
 abla_x F(x^k; \hat{\xi}^k)$ is an unbiased estimator for $abla f(x^k)$
- Can incorporate curvature if desired
 - e.g., $B^k s^k$ an unbiased estimator for $\left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k)$
- Can work with subgradients
- \diamond Can even output $x^N = \frac{1}{N} \sum_{k=1}^N x^k$

I, ZICE16 39

Modern Stochastic Gradient Descent Codes

Stochastic gradient descent seems inherently sequential

Better in special cases, e.g.,

$$f(x) = \sum_{e \in \mathcal{E}} f_e(x_e), \qquad e \subset \{1, \dots, n\}$$

 $|\mathcal{E}|$ and n large

Modern Stochastic Gradient Descent Codes

Stochastic gradient descent seems inherently sequential

Better in special cases, e.g.,

$$f(x) = \sum_{e \in \mathcal{E}} f_e(x_e), \qquad e \subset \{1, \dots, n\}$$

 $|\mathcal{E}|$ and n large

- HOGWILD! (Niu, Recht, Ré, Wright)
 - parallel, asynchronous implementation
 - http://i.stanford.edu/hazy/victor/Hogwild/

B. Randomized Algorithms for Deterministic Problems

Randomized Algorithms for Deterministic Problems

$$\min \left\{ f(x) : x \in X \subseteq \mathbb{R}^n \right\}$$

- f deterministic
- Random variables are now generated by the method, not from the problem
- Often assume properties of f
 - e.g., ∇f is L'-Lipschitz:

$$\|\nabla f(x) - \nabla f(y)\| \le L' \|x - y\| \qquad \forall x, y \in X$$

e.g., f is strongly convex (with parameter τ):

$$f(x) \ge f(y) + (x - y)^T \nabla f(y) + \frac{\tau}{2} ||x - y||^2 \forall x, y \in X$$

Basic Algorithms

Matyas (e.g., 1965):

- Input x^0 ; repeat:
 - 1. Generate Gaussian u^k (centered about 0) 2. Evaluate $f(x^k+u^k)$

3.
$$x^{k+1} = \begin{cases} x^k + u^k & \text{if } f(x^k + u^k) < f(x^k) \\ x^k & \text{otherwise.} \end{cases}$$

Basic Algorithms

Matyas (e.g., 1965):

- Input x^0 ; repeat:
 - 1. Generate Gaussian u^k (centered about 0)
 - 2. Evaluate $f(x^k + u^k)$

3.
$$x^{k+1} = \begin{cases} x^k + u^k & \text{if } f(x^k + u^k) < f(x^k) \\ x^k & \text{otherwise.} \end{cases}$$

Poljak (e.g., 1987)

- \diamond Input x^0 , $\{h_k, \mu_k\}_k$; repeat:
 - 1. Generate a random $u^k \in \mathbb{R}^n$

2.
$$x^{k+1} = x^k - h_k \frac{f(x^k + \mu_k u^k) - f(x^k)}{\mu_k} u^k$$

- $h_k > 0$ is the step size
- $\mu_k > 0$ is called the smoothing parameter

43 ⁴ □ ▶

Componentwise Lipschitz parameter M > 0:

$$|\nabla_i f(x + he_i) - \nabla_i f(x)| \le M|h|, \quad \forall h \in \mathbb{R}, \quad i = 1, \dots, n$$

Componentwise Lipschitz parameter M>0:

$$|\nabla_i f(x + he_i) - \nabla_i f(x)| \le M|h|, \quad \forall h \in \mathbb{R}, \quad i = 1, \dots, n$$

- 1. Choose $i_k = \arg \max_{i=1,...,n} |\nabla_i f(x^k)|$
- 2. Update $x^{k+1} = x^k \frac{1}{M} \nabla_{i_k} f(x^k) e_{i_k}$

Componentwise Lipschitz parameter M>0:

$$|\nabla_i f(x + he_i) - \nabla_i f(x)| \le M|h|, \quad \forall h \in \mathbb{R}, \quad i = 1, \dots, n$$

- 1. Choose $i_k = \arg \max_{i=1,\dots,n} |\nabla_i f(x^k)|$
- 2. Update $x^{k+1} = x^k \frac{1}{M} \nabla_{i_k} f(x^k) e_{i_k}$
- \diamond Generates $f(x^k) f^* \leq \frac{2nMR^2}{k+4}$, where $R \geq \|x^0 x^*\|$

Componentwise Lipschitz parameter M>0:

$$|\nabla_i f(x + he_i) - \nabla_i f(x)| \le M|h|, \quad \forall h \in \mathbb{R}, \quad i = 1, \dots, n$$

- 1. Choose $i_k = \arg \max_{i=1,\dots,n} |\nabla_i f(x^k)|$
- 2. Update $x^{k+1} = x^k \frac{1}{M} \nabla_{i_k} f(x^k) e_{i_k}$
- \diamond Generates $f(x^k) f^* \leq \frac{2nMR^2}{k+4}$, where $R \geq \|x^0 x^*\|$
- \diamond Good: only updates x_{i_k}
- \diamond Bad: requires entire gradient $\nabla f(x^k)$

Component-wise Lipschitz parameter M>0:

$$|\nabla_i f(x + he_i) - \nabla_i f(x)| \le L_i |h|, \quad \forall h \in \mathbb{R}, \quad i = 1, \dots, n$$

Component-wise Lipschitz parameter ${\cal M}>0$:

$$|\nabla_i f(x + he_i) - \nabla_i f(x)| \le L_i |h|, \quad \forall h \in \mathbb{R}, \quad i = 1, \dots, n$$

- 1. Choose i_k uniformly at random from $\{1, \cdots, n\}$
- 2. Update $x^{k+1} = x^k \frac{1}{L_i} \nabla_{i_k} f(x^k) e_{i_k}$

Component-wise Lipschitz parameter M > 0:

$$|\nabla_i f(x + he_i) - \nabla_i f(x)| \le L_i |h|, \quad \forall h \in \mathbb{R}, \quad i = 1, \dots, n$$

- 1. Choose i_k uniformly at random from $\{1, \dots, n\}$
- 2. Update $x^{k+1} = x^k \frac{1}{L_k} \nabla_{i_k} f(x^k) e_{i_k}$
- Generates $E\{f(x^k)\} f^* \leq \frac{2nR_1^2}{k+4}$, where $R_1 = \max\{\|x - x^*\|_1 : f(x) < f(x_0)\}$

Component-wise Lipschitz parameter M > 0:

$$|\nabla_i f(x + he_i) - \nabla_i f(x)| \le L_i |h|, \quad \forall h \in \mathbb{R}, \quad i = 1, \dots, n$$

Input x^0 : Repeat:

- 1. Choose i_k uniformly at random from $\{1, \dots, n\}$
- 2. Update $x^{k+1} = x^k \frac{1}{L_i} \nabla_{i_k} f(x^k) e_{i_k}$
- Generates $E\{f(x^k)\} f^* \leq \frac{2nR_1^2}{k+4}$, where $R_1 = \max\{\|x - x^*\|_1 : f(x) < f(x_0)\}$
- \diamond Good: only updates x_{i_k}
- \diamond Better: requires only component i_k of gradient $\nabla f(x^k)$
- Can also:
 - generate i_k proportional to coordinate Lipschitz parameters $\{L_i\}_i$
 - perform block-coordinate (and other subspace) operations

45 ⁴ □ ▶

Gaussian Smoothing

- \diamond Let $f: \mathbb{R}^n \to \mathbb{R}$ be deterministic
- $\circ \ u \in \mathbb{R}^n$ from a Gaussian distribution, $\mathbb{E}_u\left[u\right] = 0$
 - Here: Covariance matrix I_n , general C OK
- \diamond For scalar $\mu > 0$, Gaussian-smoothed version of f:

$$f_{\mu}(x) = \mathbb{E}_{u} \left[f(x + \mu u) \right]$$

Gaussian Smoothing

- \diamond Let $f: \mathbb{R}^n \to \mathbb{R}$ be deterministic
- $v \in \mathbb{R}^n$ from a Gaussian distribution, $\mathbb{E}_u[u] = 0$
 - Here: Covariance matrix I_n , general C OK
- ♦ For scalar $\mu > 0$, Gaussian-smoothed version of f:

$$f_{\mu}(x) = \mathbb{E}_{u} \left[f(x + \mu u) \right]$$

- If f is convex, then $f_{\mu}(x) \geq f(x)$
- If f is convex and ∇f is L'-Lipschitz, then

$$|f_{\mu}(x) - f(x)| \le \frac{\mu^2}{2} L' n$$

46 □ ▶

Gaussian Smoothing and Directional Derivatives

$$f_{\mu}(x) = \mathbb{E}_{u} \left[f(x + \mu u) \right]$$

 \diamond Derivative of f in the direction u: $f'(x;u) = \lim_{h \downarrow 0} \frac{f(x+hu) - f(x)}{h}$

Gaussian Smoothing and Directional Derivatives

$$f_{\mu}(x) = \mathbb{E}_{u} \left[f(x + \mu u) \right]$$

- Derivative of f in the direction u: $f'(x;u) = \lim_{h\downarrow 0} \frac{f(x+hu)-f(x)}{h}$
- $q_0(x) = f'_u(x)u$
 - If f is convex, then $\mathbb{E}_u\left[g_0(x)\right]$ is a subgradient of f
 - If f is differentiable at x, then

$$\mathbb{E}_{u}\left[\|g_{0}(x)\|^{2}\right] \leq (n+4)\|\nabla f(x)\|^{2}$$

47 □ ▶ Wild, ZICE16

Gaussian Smoothing and Directional Derivatives

$$f_{\mu}(x) = \mathbb{E}_{u} \left[f(x + \mu u) \right]$$

- Derivative of f in the direction u: $f'(x;u) = \lim_{h \downarrow 0} \frac{f(x+hu) f(x)}{h}$
- $oldsymbol{q} g_0(x) = f_u'(x)u$
 - If f is convex, then $\mathbb{E}_u\left[g_0(x)\right]$ is a subgradient of f
 - If f is differentiable at x, then

$$\mathbb{E}_u \left[\|g_0(x)\|^2 \right] \le (n+4) \|\nabla f(x)\|^2$$

- - If f is differentiable at x, then $\mathbb{E}_u\left[g_\mu(x)\right] = \nabla f_\mu(x)$
 - ullet If f is differentiable at x and ∇f is L'-Lipschitz, then

$$\mathbb{E}_{u}\left[\|g_{\mu}(x)\|^{2}\right] \leq 2(n+4)\|\nabla f(x)\|^{2} + \frac{\mu^{2}}{2}L'^{2}(n+6)^{3}$$

Wild, ZICE16

Random Gradient Method

Input $x^0 \in X$, $\{h_k\}_k$; repeat:

- 1. Generate Gaussian $u^k \in \mathbb{R}^n$ and compute $g_0(x^k) = f_{u^k}'(x^k)u^k$
- 2. $x^{k+1} = \mathcal{P}_X \left\{ x^k h_k g_0(x^k) \right\}$

Random Gradient Method

Input $x^0 \in X$, $\{h_k\}_k$; repeat:

- 1. Generate Gaussian $u^k \in \mathbb{R}^n$ and compute $g_0(x^k) = f'_{u^k}(x^k)u^k$
- 2. $x^{k+1} = \mathcal{P}_X \left\{ x^k h_k g_0(x^k) \right\}$
- ♦ Key result (Nesterov) for convex (but possibly nonsmooth) f: For fixed $h_k = \frac{R}{\sqrt{n+4}\sqrt{N+1}L}$ and any $\epsilon > 0$,

$$\mathbb{E}_u\left[f(\hat{x}^N)\right] - f^* \le \epsilon, \quad \text{where} \quad \hat{x}^N = \arg\min_{i=1,\dots,N} f(x^i)$$

- in $\mathcal{O}\left(\frac{n}{\epsilon^2}\right)$ iterations
- Also works for convex stochastic optimization and convex smooth f (with improved bounds and rates)

Random Gradient-Free Method

Input $x^0 \in X$, $\mu > 0$, $\{h_k\}_k$; repeat:

- 1. Generate Gaussian $u^k \in R^n$ and compute $g_\mu(x^k) = \frac{f(x^k + u^k) f(x^k)}{\mu} u^k$
- 2. $x^{k+1} = \mathcal{P}_X \left\{ x^k h_k g_\mu(x^k) \right\}$

Random Gradient-Free Method

Input $x^0 \in X$, $\mu > 0$, $\{h_k\}_k$; repeat:

- 1. Generate Gaussian $u^k \in R^n$ and compute $g_\mu(x^k) = \frac{f(x^k + u^k) f(x^k)}{\mu} u^k$
- 2. $x^{k+1} = \mathcal{P}_X \left\{ x^k h_k g_\mu(x^k) \right\}$
- $^{\diamond}$ Key result (Nesterov) for convex (but possibly nonsmooth) f: For fixed $h_k = \frac{R}{(n+4)\sqrt{N+1}L}$, $\mu = \frac{\epsilon}{2L\sqrt{n}}$, and any $\epsilon > 0$,

$$\mathbb{E}_u\left[f(\hat{x}^N)\right] - f^* \leq \epsilon, \qquad \text{where} \quad \hat{x}^N = \arg\min_{i=1,\dots,N} f(x^i)$$

- in $\mathcal{O}\left(\frac{n^2}{\epsilon^2}\right)$ iterations
- \diamond Also works for convex stochastic optimization and convex smooth f (with improved bounds and rates)

Accelerated Random Gradient-Free Method

f strongly convex (with convexity parameter au)

Input $v^0=x^0$, $\mu>0$, $\gamma_0\geq \tau$, $\{h_k\}_k$; repeat:

- 1. Obtain $\alpha_k > 0$ satisfying $16(n+1)^2 L' \alpha_k^2 = (1-\alpha_k)\gamma_k + \tau \alpha_k$
- 2. Set $\gamma_{k+1}=(1-\alpha_k)\gamma_k+\tau\alpha_k$, $\lambda_k=\frac{\alpha_k\tau}{\gamma_{k+1}}$, $\beta_k=\frac{\alpha_k\gamma_k}{\gamma_k+\alpha_k\tau}$
- 3. Set $y^k = (1 \beta_k)x^k + \beta_k v^k$
- 4. Generate Gaussian $u^k \in R^n$ and compute $g_\mu(y^k) = \frac{f(y^k + u^k) f(y^k)}{\mu} u^k$
- 5. Update

$$\begin{array}{ll} x^{k+1} = & y^k - \frac{1}{4(n+4)L'} g_{\mu}(y^k) \\ v^{k+1} = & (1 - \lambda_k) v^k + \lambda_k y^k - \frac{1}{16(n+1)^2 L' \alpha_k} g_{\mu}(y^k) \end{array}$$

Accelerated Random Gradient-Free Method

f strongly convex (with convexity parameter au)

Input $v^0=x^0$, $\mu>0$, $\gamma_0\geq \tau$, $\{h_k\}_k$; repeat:

- 1. Obtain $\alpha_k > 0$ satisfying $16(n+1)^2 L' \alpha_k^2 = (1-\alpha_k)\gamma_k + \tau \alpha_k$
- 2. Set $\gamma_{k+1}=(1-\alpha_k)\gamma_k+\tau\alpha_k$, $\lambda_k=\frac{\alpha_k\tau}{\gamma_{k+1}}$, $\beta_k=\frac{\alpha_k\gamma_k}{\gamma_k+\alpha_k\tau}$
- 3. Set $y^k = (1 \beta_k)x^k + \beta_k v^k$
- 4. Generate Gaussian $u^k \in R^n$ and compute $g_\mu(y^k) = \frac{f(y^k + u^k) f(y^k)}{\mu} u^k$
- 5. Update

$$\begin{array}{ll} x^{k+1} = & y^k - \frac{1}{4(n+4)L'} g_{\mu}(y^k) \\ v^{k+1} = & (1 - \lambda_k) v^k + \lambda_k y^k - \frac{1}{16(n+1)^2 L' \alpha_k} g_{\mu}(y^k) \end{array}$$

 \diamond Key result (Nesterov): for $\tau=0$ functions $\exists \mu>0$ so that

$$\mathbb{E}_u\left[f(\hat{x}^N)\right] - f^* \leq \epsilon, \qquad \text{where} \quad \hat{x}^N = \arg\min_{i=1,\dots,N} f(x^i)$$

in $\mathcal{O}\left(\frac{n}{\epsilon^{1/2}}\right)$ iterations

Wild, ZICE16 50

Applying SA-Like Ideas to Special Cases

$$\min \left\{ f(x) = \frac{1}{m} \sum_{i=1}^{m} F_i(x) : x \in X \right\}$$

$$m \text{ huge}$$

Applying SA-Like Ideas to Special Cases

$$\min \left\{ f(x) = \frac{1}{m} \sum_{i=1}^{m} F_i(x) : x \in X \right\}$$

m huge

Ex.- Nonlinear Least Squares

 $F_i(x) = \|\phi(x; \theta^i) - d^i\|^2$

Warning: likely nonconvex!

Evaluating $\phi(\cdot,\cdot)$ requires solving a large PDE

Ex.- Sample Average Approximation $F_i(x) = R(x; \xi^i)$ $\hat{\xi}^i \in \Omega$ a scenario/RV realization (and R depends nontrivially on $\hat{\xi}^i$)

Applying SA-Like Ideas to Special Cases

$$\min \left\{ f(x) = \frac{1}{m} \sum_{i=1}^{m} F_i(x) : x \in X \right\}$$

m huge

Ex.- Nonlinear Least Squares

 $F_i(x) = \|\phi(x; \theta^i) - d^i\|^2$

Warning: likely nonconvex!

Evaluating $\phi(\cdot, \cdot)$ requires solving a large PDE

Ex.- Sample Average Approximation

$$F_i(x) = R(x; \hat{\xi}^i)$$

 $\hat{\xi}^i \in \Omega$ a scenario/RV realization
(and R depends nontrivially on $\hat{\xi}^i$)

The good:

$$\diamond \nabla f(x) = \sum_{i=1}^{m} \nabla F_i(x)$$

The bad:

 $\diamond \ m$ still huge

Wild, ZICE16 51

$$\min \left\{ f(x) = \frac{1}{m} \sum_{i=1}^{m} F_i(x) : x \in X \right\}$$

" $F_i(x)$ is a member of a population of size m"

$$\min \left\{ f(x) = \frac{1}{m} \sum_{i=1}^{m} F_i(x) : x \in X \right\}$$

- " $F_i(x)$ is a member of a population of size m"
 - \diamond Randomly sample \mathcal{S} , a subset of size $|\mathcal{S}|$, from $\{1,\cdots,m\}$

Δ

$$\min \left\{ f(x) = \frac{1}{m} \sum_{i=1}^{m} F_i(x) : x \in X \right\}$$

" $F_i(x)$ is a member of a population of size m"

- \diamond Randomly sample S, a subset of size |S|, from $\{1, \dots, m\}$
- Under minimal assumptions:

$$\mathrm{E}\left\{\frac{1}{|\mathcal{S}|}\sum_{i\in\mathcal{S}}F_i(x)\right\} = f(x) \qquad \text{and} \qquad \mathrm{E}\left\{\frac{1}{|\mathcal{S}|}\sum_{i\in\mathcal{S}}\nabla F_i(x)\right\} = \nabla f(x)$$

$$\min \left\{ f(x) = \frac{1}{m} \sum_{i=1}^{m} F_i(x) : x \in X \right\}$$

" $F_i(x)$ is a member of a population of size m"

- \diamond Randomly sample \mathcal{S} , a subset of size $|\mathcal{S}|$, from $\{1, \cdots, m\}$
- Under minimal assumptions:

$$\mathrm{E}\left\{\frac{1}{|\mathcal{S}|}\sum_{i\in\mathcal{S}}F_i(x)\right\} = f(x) \qquad \text{and} \qquad \mathrm{E}\left\{\frac{1}{|\mathcal{S}|}\sum_{i\in\mathcal{S}}\nabla F_i(x)\right\} = \nabla f(x)$$

 \diamond Use $-\nabla f_{\mathcal{S}} = -\frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \nabla F_i(x)$ as direction s^k

$$\min \left\{ f(x) = \frac{1}{m} \sum_{i=1}^{m} F_i(x) : x \in X \right\}$$

" $F_i(x)$ is a member of a population of size m"

- \diamond Randomly sample S, a subset of size |S|, from $\{1, \dots, m\}$
- Under minimal assumptions:

$$\mathrm{E}\left\{\frac{1}{|\mathcal{S}|}\sum_{i\in\mathcal{S}}F_i(x)\right\} = f(x) \qquad \text{and} \qquad \mathrm{E}\left\{\frac{1}{|\mathcal{S}|}\sum_{i\in\mathcal{S}}\nabla F_i(x)\right\} = \nabla f(x)$$

- Use $-\nabla f_{\mathcal{S}} = -\frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \nabla F_i(x)$ as direction s^k
- ♦ How to choose S?

$$\mathbb{E}\left\{\left\|\nabla f_{\mathcal{S}_n} - \nabla f\right\|^2\right\} = \left(1 - \frac{|\mathcal{S}|}{m}\right) \mathbb{E}\left\{\left\|\nabla f_{\mathcal{S}_r} - \nabla f\right\|^2\right\}$$

 \Rightarrow sampling without replacement (S_n) gives lower variance than does sampling with replacement (S_r)

Wild, ZICE16

Summary

- Methods for stochastic optimization and randomized methods for deterministic optimization closely related
- + Incredibly simple to code basic implementation
- + Well-studied complexity bounds, especially for convex cases; can show that asymptotic rates are optimal
- + Even useful when gradient/subgradient unavailable

Wild, ZICE16 53

Summary

- Methods for stochastic optimization and randomized methods for deterministic optimization closely related
- + Incredibly simple to code basic implementation
- + Well-studied complexity bounds, especially for convex cases; can show that asymptotic rates are optimal
- + Even useful when gradient/subgradient unavailable
- Bounds and parameters depend on characteristics of function (e.g., Lipschitz parameters, level set diameters, strong convexity)
- (Some) Practitioners remain nervous about performance deviations from the mean (active research area)

53 ← □ →

