Grupo N° 5

- Bibé, Delfina
- Caggiano, Juan Cruz
- Pessina, Mariano Andrés
- Sanchez, Tomas Agustín

Estudio de Simulación para la <u>Determinación Óptima de</u> <u>Desarrolladores</u> en un Proyecto con Tareas de <u>Diferente Criticidad</u>

Grupo 5 - Cátedra Simulación K4573 - 2do Cuatrimestre 2024

Contenido

#=

01

02

03

Introducción al problema

Análisis Previo a la simulación

Escenarios planteados

04

05

Resultados

Conclusión

Introducción al Problema

Introducción al Problema

Análisis Previo

Clasificación de Variables

Variables	Tipo de Variables	Nombre	Descripción			
Datos	Exógena	IA TAS TAJ	Intervalo entre arribos de tickets en minutos Tiempo de atención del ticket de seniors en minutos Tiempo de atención del ticket de juniors en minutos			
Control	Exógena	NPS NPJ	Número de seniors resolviendo tickets Número de juniors resolviendo tickets			
Estado	Endógena	NSH NSJ	Cantidad de elementos en la cola de tickets de criticidad alta Cantidad de elementos de la cola de tickets de criticidad baja			
Resultados	Endógena	PPS PTOS(i) PTOJ(j) PECS PECJ PTTS	Promedio de permanencia en el sistema por semana Porcentaje de tiempo ocioso senior Porcentaje de tiempo ocioso junior Promedio de espera en cola de seniors Promedio de espera en cola de juniors Porcentaje de tickets bajos tomados por seniors			

Tabla de Eventos Independientes

Evento	EFNC	EFC	Condicionante	
Llogada	Llegada	SalidaSenior(i)	Tickets de criticidad alta <= Número de seniors atendiendo tickets (Tickets de criticidad baja > Número de juniors atendiendo tickets && Tickets de criticidad alta <= Número de seniors atendiendo tickets)	
Llegada	Liegada	SalidaJunior(j)	Tickets de criticidad baja <= Número de juniors atendiendo tickets	
SalidaSenior(i)	-	SalidaSenior(i)	Tickets de criticidad alta > Número de seniors atendiendo tickets (Tickets de criticidad baja > Número de juniors atendiendo tickets && Tickets de criticidad alta > Número de seniors atendiendo tickets)	
SalidaJunior(j)	-	SalidaJunior(j)	Tickets de criticidad baja > Número de juniors atendiend tickets	

Tabla de Eventos Futuros

TPLL Tiempo de próxima Ilegada		Tiempo de próxima llegada de un ticket al backlog (minutos).				
TPSSenior(i)	Tiempo de próxima salida senior(i)	Tiempo de próxima salida de un ticket resuelto por un desarrolla senior (minutos).				
TPSJunior(j)	Tiempo de próxima salida junior(j)	Tiempo de próxima salida de un ticket resuelto por un desarrollador junior(minutos).				

Analisis Exploratorio

Fecha de creación de tickets

Recap z-score, 3sr

- 99.7%: mean +/- 3 std
- 95%: mean +/- 2 std
- <u>68%</u>: mean +/- std

Variables Datos

Intervalo entre arribos de tickets en minutos

halflogistic

'loc': 0.0,
'scale': 47.29

Analisis Exploratorio

Diferencia entre fechas de cierre y de creación

Variables Datos - FDP

Tiempo de atención del ticket de seniors en minutos

jf_skew_t

'a': 67.01 'b': 0.34 'loc': -7.98 'scale': 0.34

Variables Datos - FDP

Tiempo de atención del ticket de juniors en minutos

Escenarios Planteados

	N°1	N°2	N°3	N°4	N°5	N°6
Cantidad de programadores seniors	2	2	3	4	5	6
Cantidad de programadores Juniors	2	3	2	1	1	4
Cantidad total de programadores	4	5	5	5	6	10

04 Resultados de la Simulación

Resultados	N°1 (2S, 2J)	N°2 (2S, 3J)	N°3 (3S, 2J)	N°4 (4S, 1J)	N°5 (5S, 1J)	N°6 (6S, 4J)
Promedio de permanencia en el sistema (días)	28.80	24.15	15.04	9.9	5.43	5.04
Promedio de espera en cola de seniors (días)	3.02	2.61	0.9	0.35	0.09	0.22
Promedio de espera en cola de juniors (días)	3.16	1.80	1.6	0.63	1.3	0.24
Porcentaje de tiempo ocioso seniors	0.0%	0.11%	3.81%	30.45%	39.65%	88.36%
Porcentaje de tiempo ocioso juniors	0.01%	9.69%	4.48%	21.13%	17%	55.86
Porcentaje de tickets de criticidad baja tomados por seniors	19.61%	1.56%	34.34%	40.45%	50.96%	21.72%

Conclusión

2 Seniors, 3 o 4 Juniors

El secreto está en el **equilibrio**. En base a estas simulaciones, podrán tomarse mejores decisiones

Consideramos que tener más de **3 Seniors** no tiene sentido, ya que el tiempo ocioso se dispara casi **10** veces.

El total de programadores debería ser **5 o quizá 6**, luego empiezan a dispararse muchísimos los tiempos ociosos.

El número de **Juniors no debería ser menor que el de seniors**, porque estos últimos terminarían tomando muchos tickets de criticidad baja.

Cost vs Loss due to Idle

¡Gracias!