

§ 3 練習問題の解答

問3.1

二項分布 b(n,x,p) の平均と分散は 3.4 節に示したように次のようになる .

$$E[X] = np, \quad V[X] = np(1-p)$$

となる.

$$n \to \infty$$
, $p \to 0$, $np = \lambda$

という極限をとることより ,ポアソン分布 $f(x) = e^{-\lambda} \lambda^x / x!$ の平均と分散は

$$E[X] = \lambda, \quad V[X] = \lambda$$

となることが分かる.

問 3.2

問3.1 でも述べたように二項分布b(n,x,p)の平均と分散は次のようになる.

$$E[X] = np, \quad V[X] = np(1-p)$$

標本比率の標準偏差 (標準誤差) を求めるためには . X/n の分散を , まず計算する必要がある . 分散の計算においては , 二乗を求める計算が含まれることより ,

$$V[X/n] = V[X]/n^2 = \frac{p(1-p)}{n}$$

となる.この平方根を計算することにより,標準偏差(標準誤差)は

$$\sqrt{\frac{p(1-p)}{n}}$$

となる.

問 3.3

表 3.1 を再掲しておく.

システムの システムの システムに故障が 故障個所 H_i 故障確率 $P(H_i)$ 生じたとき運行中止 になる確率 $P(A|H_i)$ 機体 0.307 1 0.008 ロータ 2 0.1560.048電気 3 0.1290.040 4 計器 0.1300.0525 動力 0.0800.1006 通信・運行・自動安定 0.030 0.1517 | その他 0.1710.014

表 3.1 航空機の故障と運航中止

3.2.3 節の例と同様に,ベイズの定理を用いることにより,

$$P(H_3|A) = \frac{P(H_3)P(A|H_3)}{\sum_{j=1}^{7} P(H_j)P(A|H_j)} = \frac{0.129 \times 0.040}{0.0366} = 0.141$$

となる.

問3.4

表 3.2 を再掲しておく.

$$X\sim N(50,100)$$
 であることより, $Z=rac{X-50}{\sqrt{100}}=rac{X-50}{10}$ は標準正規分布 $N(0,1)$ に従う確率変数となる.これより,

$$P(60 < X < 70) = P(1 < Z < 2)$$

であることがわかる.

q	0.0	0.1	0.2	0.3	0.4
p	0.50000	0.46017	0.42074	0.38209	0.34458
q	0.5	0.6	0.7	0.8	0.9
p	0.30854	0.27425	0.24196	0.21186	0.18406
q	1.0	1.1	1.2	1.3	1.4
p	0.15866	0.13567	0.11507	0.09680	0.08076
q	1.5	1.6	1.7	1.8	1.9
p	0.06681	0.05480	0.04457	0.03593	0.02872
q	2.0	2.1	2.2	2.3	2.4
p	0.02275	0.01786	0.01390	0.01072	0.00820
q	2.5	2.6	2.7	2.8	2.9
p	0.00621	0.00466	0.00347	0.00256	0.00187
\overline{q}	3.0	3.1	3.2	3.3	3.4
p	0.00135	0.00097	0.00069	0.00048	0.00034

表 3.2 標準正規分布の上側確率

表 3.2 より

$$P(Z \le 1) = 1 - P(Z > 1) = 1 - 0.15866 = 0.84134$$

 $P(Z \le 2) = 1 - P(Z > 2) = 1 - 0.02275 = 0.97725$

となり、これらの値を用いることで、

$$P(1 < Z \le 2) = P(Z \le 2) - P(Z \le 1) = 0.97725 - 0.84134 = 0.13591$$
となる.

問3.5

$$X_1,X_2,\cdots,X_n\sim N(50,100)$$
 , $n=100$ であることより ,
$$\bar{X}=\frac{X_1+X_2+\cdots+X_n}{n}\sim N(50,100/100)=N(50,1)$$

となる.従って, $Z=rac{ar{X}-50}{\sqrt{100/100}}=rac{ar{X}-50}{1}$ は標準正規分布 N(0,1) に従う確率変数となる.これより.

$$P(\bar{X} > 52) = P(Z > 2)$$

となり,表3.2より,

$$P(Z > 2) = 0.02275$$

となる.