§3 ЗАДАЧА ВЫПУКЛОЙ ОПТИМИЗАЦИИ

Рассмотрим следующую задачу условной оптимизации

$$\begin{cases} f_0(x) \to \min; \\ f_i(x) \le 0, \quad 1 \le i \le m; \\ x \in X; \end{cases}$$
 (3.1)

где $f_j\colon\mathbb{R}^n\to\mathbb{R}$ — выпуклые функции, $0\leq j\leq m,$ а $X\subset\mathbb{R}^n$ — произвольное выпуклое множество. Задача (3.1) называется задачей выпуклой оптимизации (выпуклого программирования), а функция $f_0(x)$ — целевой функцией задачи (3.1). Множество $Y\stackrel{\mathrm{def}}{=} X\cap\{x\colon f_i(x)\leq 0, 1\leq i\leq m\}\subset\mathbb{R}^n$ будем называть множеством допустимых векторов (точек). Очевидно, что Y — выпуклое множество. Допустимую точку $x\in Y$, для которой выполнены неравенства $f_i(x)<0, 1\leq i\leq m,$ будем называться строго допустимой. Ограничение $f_j(x)\leq 0$ называется активным в допустимой точке $x\in Y$, если $f_j(x)=0$. Множество индексов активных ограничений обозначим через $I(x)\stackrel{\mathrm{def}}{=} \{j\colon f_j(x)=0, 1\leq j\leq m\}.$

Опр. 3.1. Допустимый вектор $x^* \in Y$ называется решением задачи (3.1), если $f_0(x^*) \leq f_0(x)$ при $x \in Y$.

В общем случае, когда функции f_j не обязательно выпуклы, приводят определения локального и глобального экстремумов. Однако, очевидно, что для выпуклых задач эти понятия совпадают. Более того, если дополнительно известно, что f_0 — строго выпуклая функция, то задача (3.1) имеет не более одного решения.

Иногда к ограничением задачи (3.1) добавляют следующее Ax=b, где $A\in \mathbb{R}^{k\times n},\ b\in \mathbb{R}^k$ (отметим, что поверхность уровня $\{x\colon f(x)=c\}$ произвольной выпуклой функции f(x), вообще говоря, не является выпуклым множеством). Пусть \widetilde{x} — какое-либо решение линейного уравнения Ax=b и $K\in \mathbb{R}^{n\times d}$ — матрица, столбцы которой образуют базис $\ker A$, $\dim \ker A=d$. Тогда, $\{\widetilde{x}+Ky\colon y\in \mathbb{R}^d\}$ — множество всех решений системы Ax=b. Таким образом, исходная задача равносильна задаче (3.1) для функций $\widetilde{f}_i(y)\stackrel{\mathrm{def}}{=} f_i(\widetilde{x}+Ky),\ 0\leq i\leq m$, и множества $\widetilde{X}=K^{-1}(X-\widetilde{x})$.

Пемма 3.1. Пусть функция f_0 из задачи (3.1) является дифференцируемой, тогда точка $x^* \in Y$ — решение задачи (3.1), если и только если для любой точки $x \in Y$ справедливо неравенство

$$\nabla f_0(x^*)^{\mathsf{T}}(x - x^*) \ge 0. \tag{3.2}$$

ightharpoonup Пусть x^* — решение задачи (3.1), докажем, что верно неравенство (3.2). Предположим противное, т.е., что нашлась такая допустимая точка $\widetilde{x} \in Y$, что $\nabla f(x^*)^\mathsf{T}(\widetilde{x}-x^*) < 0$. Так как f_0 — дифференцируемая функция, то имеет место равенство $f_0(x^*+t(\widetilde{x}-x^*)) = f_0(x^*) + t \nabla f_0(x^*)^\mathsf{T}(\widetilde{x}-x^*) + o(t), \ t \in [0,1]$. При

достаточно малом t > 0 слагаемое $t(\nabla f_0(x^*)^\mathsf{T}(\widetilde{x} - x^*) + o(t)/t)$ отрицательное, а значит, $f_0(x^* + t(\widetilde{x} - x^*)) < f_0(x^*)$, что противоречит выбору x^* .

Предположим, что для некоторой точки $x^* \in Y$ выполнено неравенство (3.2). Так как $f_0(x) \ge f_0(x^*) + \nabla f_0(x^*)^\mathsf{T}(x-x^*), x \in Y$, то $f_0(x) \ge f_0(x^*)$, а значит, x^* — решение задачи (3.1). \lhd

Опр. 3.2. Говорят, что для задачи (3.1) выполнено условие Слейтера, если множество строго допустимых точек задачи (3.1) не пусто.

Следуя [1, с. 52–58], перейдём к доказательству фундаментального результата, который является прямым аналогом метода множителей Лагранжа. Напомним, что функция $\mathcal{L}(x;\lambda_0,\lambda) \stackrel{\text{def}}{=} \sum_{j=0}^m \lambda_j f_j(x)$, где $\lambda = (\lambda_1,\lambda_2,\ldots,\lambda_m)$, называется функцией Лагранжа задачи (3.1), а числа $\lambda_0,\lambda_1,\ldots,\lambda_m$ — множителями Лагранжа.

Теорема 3.1 (Кун, Таккер). Пусть $f_j \colon \mathbb{R}^n \to \mathbb{R}$, $0 \le j \le m$, — выпуклые функции, а X — выпуклое множество. Если x^* является решением задачи (3.1), то найдутся такие множители Лагранжа λ_0^* и $\lambda^* = (\lambda_1^*, \lambda_2^*, \dots, \lambda_m^*)$, что

- а) (условие невырожденности) числа $\lambda_0^*, \lambda_1^*, \dots, \lambda_m^*$ не равны 0 одновременно;
- b) (условие неотрицательности) $\lambda_i^* \geq 0, \ 0 \leq j \leq m;$
- c) (условия дополняющей нежёсткости) $\lambda_i^* f_i(x^*) = 0, 1 \le i \le m.$
- $d) \ (npuнuun минимума) \min_{x \in X} \mathcal{L}(x; \lambda_0^*, \lambda^*) = \mathcal{L}(x^*; \lambda_0^*, \lambda^*);$

Пусть для некоторых множителей λ_0^* , λ^* и допустимой точки $x^* \in Y$ выполнены условия a)-d), тогда

- A) x^* решение задачи (3.1), если $\lambda_0^* \neq 0$;
- В) $\lambda_0^* \neq 0$, если для задачи (3.1) справедливо условие Слейтера.

ightharpoonup Пусть x^* — решение задачи (3.1). Без нарушения общности будем считать, что $f_0(x^*)=0$. Действительно, если это не так, то определим новую функцию $\widetilde{f}_0(x)=f_0(x)-f_0(x^*)$. Рассмотрим множество $C\subset \mathbb{R}^{m+1}$, состоящее из таких векторов $\mu=(\mu_0,\mu_1,\ldots,\mu_m)^\mathsf{T}$, для которых найдётся точка $x_\mu\in X$, такая что выполнены неравенства

$$f_0(x_\mu) < \mu_0, \quad f_1(x_\mu) \le \mu_1, \quad \dots, \quad f_m(x_\mu) \le \mu_m.$$
 (3.3)

Установим ряд свойств множества C. Сперва докажем, что множество C непусто и выпукло. Действительно, любой вектор $\mu \in \mathbb{R}^{m+1}$ с положительными компонентами принадлежит C, так как в (3.3) для такого вектора достаточно положить $x=x^*$. Выпуклость множества C устанавливается аналогично доказательству выпуклости надграфика ері f произвольной выпуклой функции f.

Докажем, что нулевой вектор $\mathbf{0} \in \mathbb{R}^{m+1}$ не принадлежит C. Предположим противное. Тогда существует такая точка $\widetilde{x} \in X$, что $f_0(\widetilde{x}) < 0$ и $f_i(\widetilde{x}) \leq 0$, $1 \leq i \leq m$, а значит, x^* не является решением задачи (3.1).

Поскольку C — выпуклое множество и $\mathbf{0} \notin C$, то из теоремы 1.2 отделимости следует, что найдутся такие числа $\lambda_0^*, \lambda_1^*, \ldots, \lambda_m^*$, неравные одновременно нулю,

что $\sum\limits_{i=0}^m \lambda_j^* \mu_j \geq 0, \, \mu \in C$. Докажем, что $\lambda_0^*, \, \lambda^*$ — искомые множители Лагранжа.

Множители $\lambda_j^*,\ 0 \leq j \leq m$, неотрицательны. Действительно, очевидно, что вектор $(\delta,\ldots,\delta,1,\delta,\ldots\delta)^\mathsf{T}$, где $\delta>0$ и 1 стоит на j_0 -м месте, принадлежит C, а значит, $\lambda_{j_0}^*\geq -\delta\sum\limits_{j\neq j_0}\lambda_j^*$. Так как $\delta>0$ выбрано произвольно, то $\lambda_{j_0}^*\geq 0$.

Множители λ_i^* , $1 \leq i \leq m$, удовлетворяют условиям дополняющей нежёсткости. Выберем индекс i_0 . Если $f_{i_0}(x^*)=0$, то $\lambda_{i_0}^*f_{i_0}(x^*)=0$. Предположим, что $f_{i_0}(x^*)<0$. Очевидно, что вектор $(\delta,0,\ldots,0,f_{i_0}(x^*),0,\ldots,0)^\mathsf{T}$, где $\delta>0$ и число $f_{i_0}(x^*)$ стоит на i_0 -м месте, принадлежит C. Следовательно, $\lambda_{i_0}^*f_{i_0}(x^*)\geq -\lambda_{i_0}^*\delta$. Таким образом, $\lambda_{i_0}^*f_{i_0}(x^*)\geq 0$, а значит, $\lambda_{i_0}^*=0$, т.е. $\lambda_{i_0}^*f_{i_0}(x^*)=0$.

В точке x^* выполнен принцип минимума. Действительно, пусть $x \in X$. Тогда вектор $(f_0(x) + \delta, f_1(x), \dots, f_m(x))^\mathsf{T}$, где $\delta > 0$, принадлежит множеству C. Следовательно, $\lambda_0^* f_0(x) + \sum\limits_{i=1}^m \lambda_i^* f_i(x) \geq -\lambda_0^* \delta$, а значит, $\mathcal{L}(x; \lambda_0^*, \lambda^*) \geq 0$. С другой стороны, $f_0(x^*) = 0$ и выполнены условия дополняющей нежёсткости, поэтому $\mathcal{L}(x^*; \lambda_0^*, \lambda^*) = 0$. Таким образом, $\mathcal{L}(x; \lambda_0^*, \lambda^*) \geq \mathcal{L}(x^*; \lambda_0^*, \lambda^*)$ для любого $x \in X$.

Пусть теперь для некоторых множителей λ_0^* , λ^* и допустимой точки $x^* \in Y$ выполнены условия а) – d). Предположим, что $\lambda_0^* \neq 0$. Без нарушения общности будем считать, что $\lambda_0^* = 1$. Тогда для любой допустимой точки $x \in Y$ получаем

$$f_0(x) \ge f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) = \mathcal{L}(x; 1, \lambda^*) \ge \mathcal{L}(x^*; 1, \lambda^*).$$

Так как $\mathcal{L}(x^*; 1, \lambda^*) = f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) = f_0(x^*)$, то x^* — решение задачи (3.1).

Предположим, что для задачи (3.1) выполнено условие Слейтера. Следовательно, существует точка $\widetilde{x} \in Y$, такая что $f_i(\widetilde{x}) < 0, \ 1 \leq i \leq m$. Докажем, что $\lambda_0^* \neq 0$. Предположим противное. Тогда $\mathcal{L}(\widetilde{x};0,\lambda^*) = \sum\limits_{i=1}^m \lambda_i^* f_i(\widetilde{x}) < 0$, так как не все множители $\lambda_i^*, \ 1 \leq i \leq m$, равны нулю. С другой стороны, $\mathcal{L}(x^*;0,\lambda^*) = 0$, а значит, $\mathcal{L}(\widetilde{x};0,\lambda^*) < \mathcal{L}(x^*;0,\lambda^*)$. Получено противоречие. \lhd

Функция $\mathcal{L}(x;\lambda) \stackrel{\text{def}}{=} f_0(x) + \sum_{i=1}^m \lambda_i f_i(x)$, заданная на множестве $X \times \mathbb{R}^m_+$, где $\mathbb{R}^m_+ \stackrel{\text{def}}{=} \{\lambda \in \mathbb{R}^m \colon \lambda_i \geq 0\}$, называется нормальной функцией Лагранжа.

Лемма 3.2. Пусть $(x^*,\lambda^*) \in X \times \mathbb{R}^m_+$. Тогда точка x^* допустимая, т.е. $x^* \in Y$, и для пары (x^*,λ^*) выполнены условия a)-d) теоремы Куна — Таккера, если и только если (x^*,λ^*) — седловая точка нормальной функции Лагранжа, т.е.

$$\min_{x \in X} \mathcal{L}(x; \lambda^*) = \mathcal{L}(x^*; \lambda^*) = \max_{\lambda \in \mathbb{R}^m_+} \mathcal{L}(x^*; \lambda). \tag{3.4}$$

ightharpoonup Действительно, пусть для пары $(x^*, \lambda^*) \in Y \times \mathbb{R}^m_+$ выполнены условия а) — d). Необходимо доказать только правое неравенство в (3.4). Для произвольных

множителей $\lambda \in \mathbb{R}^m_+$ в силу условий b) и c) имеем

$$\mathcal{L}(x^*; \lambda^*) = f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) = f_0(x^*) \ge f_0(x^*) + \sum_{i=1}^m \lambda_i f_i(x^*) = \mathcal{L}(x^*; \lambda).$$

Пусть теперь пара $(x^*, \lambda^*) \in X \times \mathbb{R}^m_+$ — седловая точка функции $\mathcal{L}(x; \lambda)$. Докажем, только что $x^* \in Y$ и справедливо условие c), так как остальные условия, очевидно, выполнены. Если $f_{i_0}(x^*) > 0$ для некоторого $i_0 \geq 1$, то имеет место неравенство $\mathcal{L}(x^*; \lambda^*) < \mathcal{L}(x^*; \widetilde{\lambda})$, где $\widetilde{\lambda} \stackrel{\mathrm{def}}{=} (\lambda_1^*, \dots, \lambda_{i_0}^* + \delta, \dots, \lambda_m^*)^\mathsf{T}$ и $\delta > 0$, которое противоречит (3.4). Следовательно, x^* — допустимая точка задачи (3.1). Так как $\mathcal{L}(x^*; \lambda^*) \geq \mathcal{L}(x^*; 0)$, то $\sum_{i=1}^m \lambda_i^* f_i(x^*) \geq 0$, а значит, $\lambda_i^* f_i(x^*) = 0$, $1 \leq i \leq m$. \lhd

Приведём критерий существования седловой точки, из доказательства которого, в частности, будет следовать способ её построения.

Теорема 3.2. Пусть $f(x,y): X \times Y \to \mathbb{R}$ — непрерывная функция, заданная на произведении компактных множеств X и Y. Тогда

$$\min_{x} \max_{y} f(x, y) \ge \max_{y} \min_{x} f(x, y). \tag{3.5}$$

При этом равенство в (3.5) достигается тогда и только тогда, когда существует седловая точка (x_0, y_0) функции f:

$$f(x_0, y) \le f(x_0, y_0) \le f(x, y_0), \quad x \in X, y \in Y.$$

ightharpoonup Выберем произвольную точку $\widetilde{y} \in Y$. Так как $\max_{y} f(x,y) \geq f(x,\widetilde{y}), \, x \in X$, то $\min_{x} \max_{y} f(x,y) \geq \min_{x} f(x,\widetilde{y})$, а значит, в силу произвольного выбора \widetilde{y} выполнено неравенство (3.5).

Предположим, что $\min_x \max_y f(x,y) = \max_y \min_x f(x,y)$. Выберем точки $x_0 \in X$ и $y_0 \in Y$ из условий $\max_y f(x_0,y) = \min_x \max_y f(x,y)$ и $\min_x f(x,y_0) = \max_y \min_x f(x,y)$. Тогда $f(x_0,y_0) \geq \min_x f(x,y_0) = \max_y \min_x f(x,y) = \min_x \max_y f(x,y)$. Поэтому, справедливо неравенство $f(x_0,y_0) \geq \max_y f(x_0,y)$. Аналогично, получаем

$$f(x_0, y_0) \le \max_y f(x_0, y) = \min_x \max_y f(x, y) = \max_y \min_x f(x, y) = \min_x f(x, y_0).$$

Таким образом, (x_0, y_0) — седловая точка.

Пусть теперь известно, что (x_0, y_0) — седловая точка. Тогда

$$\max_{y} \min_{x} f(x, y) \ge \min_{x} f(x, y_{0}) \ge f(x_{0}, y_{0}),$$

$$\min_{x} \max_{y} f(x, y) \le \max_{y} f(x_{0}, y) \le f(x_{0}, y_{0}).$$

Следовательно, $\max_y \min_x f(x,y) \ge \min_x \max_y f(x,y)$ и неравенство (3.5) обращается в равенство. \lhd

Отметим, что в доказательстве теоремы 3.2 условия компактности множеств X, Y и непрерывности функции f(x,y) мы неявно использовали лишь для существования векторов x_0, y_0 при построении седловой точки.

Пример 3.1 (Метод опорных векторов, SVM). Сформулируем задачу обучения с учителем. Пусть $f: X \to Y$ — отображение из пространства объектов X в множество ответов Y. Отображение f, вообще говоря, не известно, однако, дана обучающая выборка $S = \{(x_i, y_i)\}_{i=1}^N$ размера N, где $x_i \in X$ и $y_i = f(x_i) \in Y$, $1 \le i \le N$. Требуется построить отображение $\widehat{f}: X \to Y$, аппроксимирующее f на всём пространстве X.

Рассмотрим частный случай задачи обучения с учителем — задачу бинарной классификации, в которой $Y=\{-1,1\}$ и объекты описываются n-мерными вещественными векторами, т.е. $X=\mathbb{R}^n$. Далее будем считать, что в обучающей выборе содержатся объекты двух классов, а искомое отображение \widetilde{f} будем строить в форме линейного порогового классификатора $\widetilde{f}(x)=\mathrm{sign}(\omega^\mathsf{T} x-\omega_0)$, где $\omega\in\mathbb{R}^n\setminus\{\mathbf{0}\}$ и $\omega_0\in\mathbb{R}$ — параметры, которые необходимо определить.

Предположим, что выборка S строго линейно разделима, т.е. существуют такие значения параметров ω и ω_0 , при которых справедливы неравенства $y_i(\omega^{\mathsf{T}}x_i-\omega_0)>0$, $1\leq i\leq N$. В этом случае разделяющая гиперплоскость, вообще говоря, не единственна. Идея метода опорных векторов (support vector machine) состоит в выборе такой разделяющей гиперплоскости, которая максимально далеко отстоит от ближайших к ней точек обоих классов.

Заметим, что параметры ω и ω_0 линейного порогового классификатора \widetilde{f} определяются с точностью до умножения на одну и ту же ненулевую константу. Поэтому, без ограничения общности будем считать, что $\min_{1 \le i \le N} y_i(\omega^T x_i - \omega_0) = 1$. Ориентированное расстояние от точки x_i до гиперплоскости, заданной уравнением $\omega^T x = \omega_0$, равно $(\omega^T x_i - \omega_0)/||\omega||$. Поэтому для определения параметров ω и ω_0 необходимо решить задачу

$$\begin{cases} \|\omega\| \to \min; \\ \min_{1 \le i \le N} y_i(\omega^\mathsf{T} x_i - \omega_0) = 1; \end{cases}$$

которая эквивалентна следующей

$$\begin{cases} \frac{1}{2} \|\omega\|^2 \to \min; \\ y_i(\omega^\mathsf{T} x_i - \omega_0) \ge 1, \quad 1 \le i \le N. \end{cases}$$
 (3.6)

В силу предположения о строгой линейной разделимости множество строго допустимых точек задачи (3.6) не пусто, а значит, выполнено условие Слейтера. Несложно показать, что задача (3.6) имеет решение. Действуя согласно теореме Куна – Таккера и лемме 3.2, найдём седловую точку нормальной функции Лагранжа:

$$\mathcal{L}(\omega, \omega_0; \lambda) = \frac{1}{2} \|\omega\|^2 - \sum_{i=1}^N \lambda_i (y_i(\omega^\mathsf{T} x_i - \omega_0) - 1) \to \min_{\omega, \omega_0} \max_{\lambda}.$$
 (3.7)

Фиксируя $\lambda \in \mathbb{R}^N_+$, решим задачу $\mathcal{L}(\omega,\omega_0;\lambda) o \min_{\omega,\omega_0}$. Из условия стационарности имеем

$$\frac{\partial \mathcal{L}}{\partial \omega} = \omega - \sum_{i=1}^{N} \lambda_i y_i x_i = 0, \quad \text{r.e.} \quad \omega = \sum_{i=1}^{N} \lambda_i y_i x_i; \quad \frac{\partial \mathcal{L}}{\partial \omega_0} = \sum_{i=1}^{N} \lambda_i y_i = 0.$$
 (3.8)

Из (3.8), в частности, следует, что вектор ω является линейной комбинацией тех векторов обучающей выборки, для которых $\lambda_i \neq 0$. Согласно условиям дополняющей нежёсткости для этих векторов справедливы равенства $\omega^{\mathsf{T}} x_i - \omega_0 = y_i$. Такие векторы называются опорными. Используя равенства (3.8), преобразуем задачу (3.7) к задаче квадратичного программирования, содержащую только двойственные переменные:

$$\begin{cases}
-\mathcal{L}(\lambda) \stackrel{\text{def}}{=} -\min_{\omega,\omega_0} \mathcal{L}(\omega,\omega_0;\lambda) = -\sum_{i=1}^N \lambda_i + \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \lambda_i \lambda_j y_i y_j x_i^\mathsf{T} x_j \to \min_{\lambda}; \\
\sum_{i=1}^N \lambda_i y_i = 0; \\
\lambda \ge 0.
\end{cases} (3.9)$$

Пусть λ — решение задачи (3.9). Тогда вектор ω вычисляется согласно (3.8). Для определения порога ω_0 достаточно взять произвольный опорный вектор x_i и положить $\omega_0 = \omega^\mathsf{T} x_i - y_i$. Однако, из-за возможных погрешностей вычислений рекомендуется брать такой опорный вектор x_i при определении ω_0 , для которого двойственная переменная λ_i максимальна.

Рассмотрим общий случай, не делая предположений о линейной разделимости выборки. При любом выборе параметров ω и ω_0 линейный классификатор \widetilde{f} может ошибаться на объектах выборки. Введём набор дополнительных переменных $\xi_i \geq 0$, характеризующих величину ошибки на объектах x_i , $1 \leq i \leq N$. Уточним задачу (3.6):

$$\begin{cases} \frac{1}{2} \|\omega\|^2 + C \sum_{i=1}^{N} \xi_i \to \min_{\omega, \omega_0, \xi}; \\ y_i(\omega^\mathsf{T} x_i - \omega_0) \ge 1 - \xi_i, \quad 1 \le i \le N; \\ \xi \ge 0; \end{cases}$$
 (3.10)

где C>0— некоторый заданный гиперпараметр, определяющий компромисс между максимизацией ширины разделяющей полосы и минимизацией суммарной ошибки. Очевидно, что задача (3.10) имеет решение и множество строго допустимых точек не пусто, а значит, выполнено условие Слейтера. Рассмотрим функцию Лагранжа для задачи (3.10):

$$\mathcal{L}(\omega, \omega_0, \xi; \lambda, \eta) = \frac{1}{2} \|\omega\|^2 - \sum_{i=1}^{N} \lambda_i (y_i (\omega^\mathsf{T} x_i - \omega_0) - 1) - \sum_{i=1}^{N} \xi_i (\lambda_i + \eta_i - C),$$

где $\eta=(\eta_1,\eta_2,\ldots,\eta_N)^\mathsf{T}$ — вектор переменных, двойственных к вектору переменных $\xi=(\xi_1,\xi_2,\ldots,\xi_N)^\mathsf{T}$. Согласно теореме Куна – Таккера и лемме 3.2 задача (3.10) сводится к поиску седловой точки функции Лагрнажа: $\mathcal{L}(\omega,\omega_0,\xi;\lambda,\eta) \to \min_{\omega,\omega_0,\xi} \max_{\lambda,\eta}$. Зафиксируем произвольные векторы λ и η . Из условия стационарности по аргументам ω и ω_0 получаем

$$\frac{\partial \mathcal{L}}{\partial \omega} = \omega - \sum_{i=1}^{N} \lambda_i y_i x_i = 0, \quad \text{r.e.} \quad \omega = \sum_{i=1}^{N} \lambda_i y_i x_i; \quad \frac{\partial \mathcal{L}}{\partial \omega_0} = \sum_{i=1}^{N} \lambda_i y_i = 0; \quad (3.11)$$

Если для некоторого индекса $1 \leq i \leq N$ верно неравенство $\lambda_i + \eta_i > C$, то, очевидно, $\min_{\omega,\omega_0,\xi} \mathcal{L}(\omega,\omega_0,\xi;\lambda,\eta) = -\infty$, а значит, такие множители Лагранжа λ и η не могут

быть компонентами седловой точки. Поэтому будем предполагать, что $\lambda_i + \eta_i \leq C$. При этом, выполнено равенство $\xi_i(\lambda_i + \eta_i - C) = 0$, а именно, если $\lambda_i + \eta_i < C$, то мы должны положить $\xi_i = 0$. Используя (3.11), сведём задачу поиска седловой точки к задаче квадратичного программирования:

$$\begin{cases}
-\mathcal{L}(\lambda) \stackrel{\text{def}}{=} - \min_{\omega, \omega_0, \xi} \mathcal{L}(\omega, \omega_0, \xi; \lambda, \eta) = -\sum_{i=1}^{N} \lambda_i + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_i \lambda_j y_i y_j x_i^{\mathsf{T}} x_j \to \min_{\lambda}; \\
\sum_{i=1}^{N} \lambda_i y_i = 0; \\
0 \le \lambda_i \le C, \quad 1 \le i \le N.
\end{cases} (3.12)$$

Пусть λ — решение задачи (3.12). Аналогично случаю линейной разделимой выборки, вектор ω вычисляется согласно (3.11). Порог ω_0 определим как $\omega_0 = \arg\min_{\omega_0} \sum_{i=1}^N \xi_i(\omega_0)$, где $\xi_i(\omega_0) = \max(0, 1-y_i(\omega^\mathsf{T} x_i-\omega_0))$. Несложно показать, что решение имеет вид $\omega_0 = \omega^\mathsf{T} x_i - y_i$ для некоторого i, а значит, ω_0 может быть найдено за не более чем $O(N\log N)$ арифметических операций. Однако, как правило, ω_0 удаётся определить гораздо быстрее следующим образом. Без нарушения общности будем считать, что $\eta_i = C - \lambda_i, 1 \le i \le N$. Если для некоторого индекса i выполнено двойное неравенство $0 < \lambda_i < C$, то $\eta_i > 0$. Из теоремы Куна – Таккера следует, что $\xi_i = 0$ и $y_i(w^\mathsf{T} x_i - \omega_0) = 1$, а значит, $\omega_0 = \omega^\mathsf{T} x_i - y_i$.

Упражнения

- 9. Постройте эффективный алгоритм решения задачи $\sum_{i=1}^{n} \max(0, a_i x + b_i) \to \min_{x}$, где a_i и b_i , $1 \le i \le n$, заданные действительные числа.
- 10. Докажите, что квадратичная функция $f(x) = x^{\mathsf{T}} A x + b^{\mathsf{T}} x$ либо достигает своей нижней грани на \mathbb{R}^n , либо не ограничена снизу.
- 11. Докажите, что для того, чтобы точка $x^* \in X$ была решением задачи выпуклого программирования (3.1), достаточно, чтобы для любого вектора v, удовлетворяющего системе неравенств $v^\mathsf{T} \nabla f_j(x^*) \leq 0, j \in I(x^*)$, было верно $v^\mathsf{T} \nabla f_0(x^*) \geq 0$.

Литература

1. Алексеев В.М., Тихомиров В.М., Фомин С.В. *Оптимальное управление* – М.: Наука, 1979. – 432 с.