- Fungsi dapat dispesifikasikan dalam berbagai bentuk, diantaranya:
 - Himpunan pasangan terurut. Seperti pada relasi.
 - 2. Formula pengisian nilai (assignment). Contoh: f(x) = 2x + 10, $f(x) = x^2$, dan f(x) = 1/x.
 - Kata-kata
 Contoh: "f adalah fungsi yang memetakan jumlah bit 1 di dalam suatu string biner".
 - Kode program (source code)
 Contoh: Fungsi menghitung |x|

```
function abs(x:integer):integer;
begin
  if x < 0 then
    abs:=-x
else
    abs:=x;</pre>
```

Matematika Informatika 1

Contoh 26. Relasi

$$f = \{(1, u), (2, v), (3, w)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ adalah fungsi dari A ke B. Di sini f(1) = u, f(2) = v, dan f(3) = w. Daerah asal dari f adalah A dan daerah hasil adalah B. Jelajah dari f adalah $\{u, v, w\}$, yang dalam hal ini sama dengan himpunan B.

Contoh 27. Relasi

$$f = \{(1, u), (2, u), (3, v)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ adalah fungsi dari A ke B, meskipun u merupakan bayangan dari dua elemen A. Daerah asal fungsi adalah A, daerah hasilnya adalah B, dan jelajah fungsi adalah $\{u, v\}$.

Matematika Informatika 1

IF2151/Relasi dan Fungsi

dari $A = \{1, 2, 3, 4\}$ ke $B = \{u, v, w\}$ bukan fungsi, karena tidak semua elemen A dipetakan ke B.

Contoh 29. Relasi

$$f = \{(1, u), (1, v), (2, v), (3, w)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ bukan fungsi, karena 1 dipetakan ke dua buah elemen B, yaitu u dan v.

Contoh 30. Misalkan $f: \mathbf{Z} \to \mathbf{Z}$ didefinisikan oleh $f(x) = x^2$. Daerah asal dan daerah hasil dari f adalah himpunan bilangan bulat, dan jelajah dari f adalah himpunan bilangan bulat tidak-negatif.

Matematika Informatika 1

Nandy sedang melakukan presentasi

- Fungsi satu-satu (one-to-one)/injektif
- · Fungsi dipetakan pada (onto)/surjektif
- · Fungsi Korespondensi satu-satu/bijektif

Fungsi f dikatakan satu-ke-satu (one-to-one) atau injektif
 (injective) jika tidak ada dua elemen himpunan A yang
 memiliki bayangan sama.

Diagram Venn

Matematika Informatika 1

Fungsi f dikatakan satu-ke-satu (one-to-one) atau injektif
 (injective) jika tidak ada dua elemen himpunan A yang
 memiliki bayangan sama.

Diagram Venn

Matematika Informatika 1

Contoh 31. Relasi

$$f = \{(1, w), (2, u), (3, v)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w, x\}$ adalah fungsi satu-ke-satu,

Tetapi relasi

$$f = \{(1, u), (2, u), (3, v)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ bukan fungsi satu-ke-satu, karena f(1) = f(2) = u.

IF2151/Relasi dan Fungsi

Fungsi Dipetakan pada (Onto)

- Fungsi f dikatakan dipetakan pada (onto) atau surjektif (surjective) jika setiap elemen himpunan B merupakan bayangan dari satu atau lebih elemen himpunan A.
- Dengan kata lain seluruh elemen B merupakan jelajah dari f.
 Fungsi f disebut fungsi pada himpunan B.

Diagram Venn

Nandy sedang melakukan presentasiematika Informatika 1

Fungsi korespondensi satu-satu

 Fungsi f dikatakan berkoresponden satu-ke-satu atau bijeksi (bijection) jika ia fungsi satu-ke-satu dan juga fungsi pada.

Contoh 35. Relasi

$$f = \{(1, u), (2, w), (3, v)\}$$

1

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ adalah fungsi yang berkoresponden satu-ke-satu, karena f adalah fungsi satu-ke-satu maupun fungsi pada.

- Notasi: f-1
- Jika f adalah berkoresponden satu-satu dari A ke B maka dapat menemukan balikan atau inversi (invers) dari f
- Fungsi yang berkoresponden satu-satu sering dinamakan fungsi yang invertible (dapat dibalikkan) karena dapat mendefinsikan fungsi balikkannya
- Fungsi dikatakan not invertible (tidak dapat dibalikkan) jika bukan fungsi yang berkoresponden satu-satu karena fungsi balikkannya tidak ada

Nandy sedang melakukan presentas lematika Informatika 1

Contoh

• Tentukan invers fungsi f(x) = x - 1

Jawaban:

f(x) = x - 1 merupakan fungsi yang berkoresponden satusatu judi balikkan fungsinya ada

$$f(x) = y \rightarrow y = x - 1$$

Sehingga:

$$x = y + 1$$

Invers fungsi balikkannya adalah :

$$f^{-1}(y) = y + 1$$

• Tentukan invers fungsi $f(x) = x^2 + 1$

Jawaban:

 $f(x) = x^2 + 1 \rightarrow$ bukan fungsi yang berkoresponden satusatu sehingga fungsi inversinya tidak ada Sehingga $f(x) = x^2 + 1$ adalah fungsi yang not invertible

Komposisi (Composition)

Komposisi dari dua buah fungsi.

Misalkan g adalah fungsi dari himpunan A ke himpunan B, dan f adalah fungsi dari himpunan B ke himpunan C. Komposisi f dan g, dinotasikan dengan f o g, adalah fungsi dari A ke C yang didefinisikan oleh

Contoh 40. Diberikan fungsi

$$g = \{(1, u), (2, u), (3, v)\}$$

yang memetakan $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$, dan fungsi

$$f = \{(u, y), (v, x), (w, z)\}$$

yang memetakan $B = \{u, v, w\}$ ke $C = \{x, y, z\}$. Fungsi komposisi dari A ke C adalah

$$f \circ g = \{(1, y), (2, y), (3, x)\}$$

Tugas buatlah fungsi komposisi dalm bentuk diagram venn!!!

Contoh 41. Diberikan fungsi f(x) = x - 1 dan $g(x) = x^2 + 1$. Tentukan $f \circ g$ dan $g \circ f$.

Penyelesaian:

$$\overline{(i)(f \circ g)(x)} = f(g(x)) = f(x^2 + 1) = x^2 + 1 - 1 = x^2.$$

(ii)
$$(g \circ f)(x) = g(f(x)) = g(x-1) = (x-1)^2 + 1 = x^2 - 2x + 2$$
.

19

Matematika Informatika 1

Contoh 40. Diberikan fungsi

$$g = \{(1, u), (2, u), (3, v)\}$$

yang memetakan $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$, dan fungsi

$$f = \{(u, y), (v, x), (w, z)\}$$

yang memetakan $B = \{u, v, w\}$ ke $C = \{x, y, z\}$. Fungsi komposisi dari A ke C adalah

$$f \circ g = \{(1, y), (2, y), (3, x)\}$$

Tugas buatlah fungsi komposisi dalm bentuk diagram venn!!!

Contoh 41. Diberikan fungsi $f(x) = x - 1 \operatorname{dan} g(x) = x^2 + 1$. Tentukan $f \circ g \operatorname{dan} g \circ f$.

Penyelesaian:

$$\overline{(i)(f \circ g)(x)} = f(g(x)) = f(x^2 + 1) = x^2 + 1 - 1 = x^2.$$

(ii)
$$(g \circ f)(x) = g(f(x)) = g(x-1) = (x-1)^2 + 1 = x^2 - 2x + 2$$
.

Fungsi Faktorial

- Untuk sembarang bilangan bulat tidak negatif n
- Dilambangkan dengan :

n!

Didefinisikan sebagai :

$$n! = \begin{cases} 1, & n = 0 \\ 1x2x...x(n-1)xn, & n > 0 \end{cases}$$

Contoh:

$$0! = 1$$

$$2! = 1 \times 2 = 2 \times 1 = 2$$

$$5! = 1 \times 2 \times 3 \times 4 \times 5 = 5 \times 4 \times 3 \times 2 \times 1 = 120$$

20

Nandy sedang melakukan presentas

