

Problem sheet for chapter 8: Affine maps and homogeneous coordinates

Problem 1:

Consider the letter F and the two transforms S and T described below:

$$\mathbf{S} = \begin{pmatrix} \frac{1}{2} & 0\\ 0 & 2 \end{pmatrix}$$

T = translation by 1 unit into x-direction

- (a) Draw the letter F after the transform $S \cdot T$ has been applied to it.
- (b) Draw the letter F after the transform $\mathbf{T} \cdot \mathbf{S}$ has been applied to it.
- (c) Write down the 3×3 -matrix representations of $\mathbf{S} \cdot \mathbf{T}$ and $\mathbf{T} \cdot \mathbf{S}$.

Problem 2:

Consider an affine map that transforms the left F to the right F:

- (a) Is the map linear? Why or why not?
- (b) Determine a 3×3 matrix representing this map in terms of homogeneous coordinates. Hint: Split the map into a linear part and a translation. What does the linear part do to the unit vectors \vec{e}_x and \vec{e}_y ?

Problem 3:

Construct a 3×3 matrix that implements a (generalized) rotation of 90° in \mathbb{R}^2 around the point (2,1) in terms of homogeneous coordinates. As a test apply your matrix to the points (3,1) and (3,2). Also, construct the 3×3 matrix implementing the inverse map.