Data Mining Tasks

INFS4203 / INFS7203 Data Mining

- Clustering (I)

Clustering vs. Classification

What is Cluster Analysis?

- Finding groups of objects such that the objects in a group will be
 - similar (or related) to one another; and
 - 2. **different** from (or unrelated to) the objects in other groups

Applications of Cluster Analysis

Australia

Understanding

- Group related documents for browsing,
- group genes and proteins that have similar functionality, or
- group stocks with similar price fluctuations

Summarization

 Reduce the size of large data sets

Clustering as a Preprocessing Tool (Utility)

Summarization:

Preprocessing for:

easy for expert to clean the data

- Classification
- Recommendation

Outlier detection:

Outliers are often viewed as "far away" from any cluster

...

What is a Good Clustering?

- A "good" clustering method will produce high quality clusters
 - high intra-class similarity:
 - cohesive within clusters
 - low inter-class similarity:
 - distinctive between clusters

- The "quality" of a clustering method depends on
 - the similarity measure used by the method

Notion of a Cluster can be Ambiguous

How many clusters?

Six Clusters

Two Clusters

Four Clusters

Types of Clusterings

- A clustering is a set of clusters
- A Cluster: a collection of data objects
 - Similar to one another within the same group
 - Dissimilar to the objects in other groups

- Partitional Clustering
 - A division of data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of **nested** clusters organized as a hierarchical tree

Partitional vs. Hierarchical Clustering

Original Points

Hierarchical Clustering

A Partitional Clustering

Dendrogram

website navigation

Clustering Algorithms

- K-means
- Hierarchical clustering
- Density-based clustering

K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters K must be specified

K-Means Algorithm

Steps:

Select K points as the initial centroids

Repeat

Form K clusters by Assigning all points to the nearest centroid

Re-compute the centroid of each cluster

Until all the centroids do not change

Example: Assigning Clusters

x ... data point

... centroid

Example: Assigning Clusters

x ... data point ... centroid

Example: Assigning Clusters

x ... data point

... centroid

K-Means: Example

K-Means: Example

K-means Clustering – Details

Select

- Initial centroids are often chosen randomly
 - Clusters produced vary from one run to another

Nearest

 Closeness is measured by Euclidean distance, cosine similarity, etc.

Re-compute

A centroid is typically the mean of the points in a cluster

Example

Suppose the data mining task is to cluster the following measurements of age into **three** groups:

18, 22, 25, 42, 27, 43, 33, 35, 56, 28,

Use *k-means* algorithm to show the clustering procedure

Suppose the initial centroids are 22, 35 and 43, show the final three clusters.

Example

Cluster#	Old Centroid	Cluster Elements	new Centroid
1	22	18, 22, 25, 27, 28	24
2	35	33, 35	34
3	43	42, 43, 56	47

Cluster#	Old Centroid	Cluster Elements	new Centroid
1	24	18, 22, 25, 27, 28	24
2	34	33,35	34
3	47	42,43,56	47

K-means Clustering – Details

- K-means will converge for the common similarity measures mentioned above
- Most of the convergence happens in the <u>first few</u> <u>iterations</u>
 - Often the stopping condition is changed to:

'Until relatively few points change clusters'

- Convergence does not necessarily mean optimal clustering!
 - How to evaluate clustering?

Evaluating K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - To get SSE, we square these errors and sum them

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(c_i, x)$$
 value is high, this is bad

- *K* is the number of clusers
- x is a data point in cluster C_i
- c_i is the centroid point for cluster C_i
- SSE is basically the <u>sum of SSE of each cluster</u>
- Given two clusters, we choose the one with <u>smaller</u> error

How to select *k*?

- Try different k, looking at the change in the average distance to centroid as k increases
- Average falls rapidly until right k, then changes little

Example: Picking k

Too few; many long distances to centroid.

Example: Picking k

Just right; distances rather short.

Example: Picking k

Too many;

little improvement in average distance.

Two different K-means Clusterings

Importance of Choosing Initial Centroids ...

Problems with Selecting Initial Points

- Sometimes the initial centroids will readjust themselves in the 'right' way,
 - and sometimes they don't!

 Consider the following example of five pairs of clusters..

10 Clusters Example

Starting with two initial centroids in one cluster of each pair of clusters

Starting with two initial centroids in one cluster of each pair of clusters

10 Clusters Example Iteration 4 8 ⊦-6 4 -4 -6 __r 20 15 5 10 X

Starting with some pairs of clusters having **three** initial centroids, while other have only **one**.

10 Clusters Example Iteration 1 Iteration 2 Iteration 3 Iteration 4 15 15 10 **X** 10 15 15

Starting with some pairs of clusters having **three** initial centroids, while other have only **one**.

Solutions to Initial Centroids Problem

- Multiple runs
- Select more than k initial centroids and then select among these initial centroids
 - Select most widely separated

- Postprocessing
 - Eliminate 'small' clusters that may represent outliers
 - Split 'loose' clusters (clusters with relatively high SSE)
 - Merge 'close' clusters (clusters with relatively low SSE)

Limitations of K-means

- K-means is simple and suitable for many types of data
- K-means has problems when clusters are of different:
 - Sizes
 - Densities
 - Non-spherical shapes

Limitations of K-means: Different Sizes

Original Points

K-means (3 Clusters)

Limitations of K-means: Different Density

Original Points

K-means (3 Clusters)

Limitations of K-means: Non-spherical Shapes

Original Points

K-means (2 Clusters)

Clustering Algorithms

- K-means
- Hierarchical clustering
- Density-based clustering
- But, first...

Complex Data Types

- Complex data
 - Text Data
 - Temporal data
 - Spatial data
 - Spatial-temporal data
 - Multimedia data

How to measure "distance"?