1 | P a g e

Formula sheet provided: Y	хәд	
Task weighting:	% 0ī ⁻	
Marks available:	50 marks	
₫		nts, templates, notes on one unfolded sheet of to three calculators approved for use in the WACE
		oreferred), pencils (including coloured), sharpener, ape, eraser, ruler, highlighters
Materials required:	Calculator with CA	S capability (to be provided by the student)
Number of questions:	8	
Time allowed for this task:	r:42	suim.
Task type: R	Kesbouse	
Date: 24 Feb		
Student name:		Teacher name:
Course	ipad2	alistYear12_
EX		WODERN SCHOOL students.

Note: All part questions worth more than 2 marks require working to obtain full marks.

Morking out space

9 g s q | **8**

01

(3.1.1, 3.1.2, 3.1.3)

(2, 2, 3 & 3 = 10 marks)

If z = 2 + 3i and w = -1 + 2i determine exactly the following. (Simplify)

- a) ZW
- b) ww
- c) $w \div \overline{w}$
- $\frac{1}{z} + \frac{1}{v}$

Q2 (3.1.3)

(3 marks)

Determine all possible real values of a & b such that $\frac{43 - i}{a + 4i} = 5 + bi$

2 | P a g e

Mathematics Department

Q8 (3.2.3, 3.2.4)

Perth Modern

(2, 3 & 3 = 8 marks)

Consider the function f(x) drawn below.

7 | Page

- a) Sketch $y = f^{-1}(x)$ on the axes above.
- b) Given that $f(x) = -2x^2 + 12x 13$, $x \le 3$, determine the defining rule for $y = f^{-1}(x)$. Show working for full marks.

c) Consider the function $h(x) = ax^3$ where a is a positive constant. Solve in terms of a, the solution(s) to $h(x) = h^{-1}(x)$.

Mathematics Department Perth Modern

Q3 (3.1.14, 3.1.15) (3& 3 = 6 marks) Consider the quadratic equation
$$\chi^2 + b\chi + c = 0$$
 where $b \& c$ are real.

Consider the quadratic equation is x = 4 - 2i, determine b & c.

Consider the equation $x^3 + px^2 + qx + w = 0$ where $p, q \otimes w$ are real.

b) If the cubic equation above has roots $x=2\otimes x=\sqrt{3}i$, determine $\ p,q\otimes w$.

Q4 (3.1.3, 3.1.3, 3.1.3) (2 marks) Determine $\sum \& W$ in the form Γ Cis Θ with $^{-}$ T < $\theta \le T$. (Note: diagram not drawn to scale)

Маthеmatics Department Ретћ Модетп

(1, 2, 2 & 2 = 7 marks)

Q7 (3.2.1, 3.2.2) Consider the functions $\int (x) = \sqrt{x - 8}$ & $g(x) = x^3$. a) Give the defining rule for $\int g(x)$.

b) Does $\int (x)^{g(x)} dx$ Explain of $\int (x)^{g(x)} dx$

c) State the natural domain and range for $f\circ g(\chi)$.

Consider the function h(x) = x - 8 d) Does the function $\left[\int (x)\right]^2 = h(x)$? Justify your answer.

Mathematics Department

Perth Modern

Q5 (3.1.10)

(2, 2 & 3 = 7 marks)

Sketch the following regions in the complex plane showing major features.

$$Arg(z) = \frac{3\pi}{4}$$

b)
$$|z+3+4i| \ge |z-5+i|$$

c) Consider all the complex numbers z that satisfy |z-(2+5i)|=3, determine the maximum possible value of $\frac{Arg(z)}{z}$, giving your answer in radians correct to two decimal places.

4 | P a g e

Mathematics Department Perth Modern

a) Determine all the roots of $z^5 = \sqrt{3} + i$ expressing in the form $rcis\theta$ with $-\pi < \theta \le \pi$.

b) Plot all of these roots on the diagram below.

5 | Page

