Design 1: Selecting a Motor Driver

TI Precision Labs - Motor Drivers

Presented and Prepared by Hector Hernandez

Motor drivers

Reduce

- Cost
- Debugging time

Increase

- System efficiency
- Motor drive smoothness
- Performance

Selection: motor type

Brushed-DC motor

Pros

- Cost
- Easy to drive

Cons

- Maintenance
- EMI

Applications

- Automatic gates
- Electronic door locks
- Battery-powered robotic toys
- Automotive body motors
- Shut off valves

Stepper DC motor

Pros

- Cost
- Simple control interface

Cons

- Noise & resonance
- High Heat & inefficiency

Applications

- Security cameras
- Printers
- Refrigerator dampers
- EPOS and banking automation
- Adaptive headlights in cars

Brushless-DC motor

Pros

- Operational life & reliability
- Low EMI & efficiency

Cons

- Complex drive design
- Cost

Applications

- Appliance pumps and fans
- Cordless vacuum cleaners
- E-bikes
- Automotive powertrain & safety motors

Selection: voltage

- The supply voltage applied to the motor
- Commonly called Vs, VM, PVDD, VBB, VBAT
- Examples: 24 V from wall outlet, 6-cell lithium-ion battery, 2x AAA alkaline battery
- Typical supply variation: 24V ±10%, 14 21V
- Additional supply variation caused by motor
 - Motor inrush current (supply droop)
 - Motor coasting (supply pump)
- Determine minimum and maximum voltage range acceptable for your system

Selection: current

- Current relates to the motor power
- Peak current: maximum possible current when driving the motor
 - If current lasts longer than tens of milliseconds, it is probably closer to an RMS current

- RMS, average or continuous current: typical current in the motor
 - Relates to thermal performance
- High power systems use a gate driver

Selection: integrated driver vs gate driver

TIDA-00827

- Integrated driver: MOSFETs are included
 - Low to mid-power applications
 - Easy schematic & schematic
 - Simple system design
 - Parameters: Peak Current & R_{DS(ON)}

TIDA-01485

- Gate driver: MOSFETs required outside
 - Can support high power
 - Better thermal performance
 - Selectable & scalable power
 - Parameter: Gate Drive Current

Selection: qualification and ratings

- Qualification & ratings
 - Catalog (commercial & industrial)
 - AEC-Q100 (Automotive)
 - EP (Enhanced products)
 - QMLQ, QMLV, QMLV-RHA (Military & Space)
- Operating Temperature Range:
 - -40 C to 85°C (Catalog, AEC-Q100)
 - -40 C to 125°C (Catalog, AEC-Q100)
 - -55 C to 125°C (EP, QMLQ, QMLV)
 - -40 C to 150°C (AEC-Q100)

To find more motor driver technical resources and search products, visit ti.com/motordrivers