Отчет Шуплецов, НФИбд01-22, Вариант 15, ИД3_2, 06.10.2024

1. Определиться какие переменные войдут в модель — оставить модель как минимум с двумя переменными — корреляционная матрица, vif и тест на избыточные переменные

Модель 1: МНК, использованы наблюдения 1-50 Зависимая переменная: Y

	Коэффицие	н Ст. ошибк	ra t-	р-значение	?
	m		статистик	а	
const	-4,79059	11,4212	-0,4194	0,6769	
X1	-1,31094	1,19424	-1,098	0,2782	
X2	4,17534	0,567987	7,351	< 0,0001	***
X3	0,0358755	0,393538	0,09116	0,9278	
X4	-0,436544	0,158282	-2,758	0,0084	***
Среднее завис. пе	ремен 52,	86680 Ст	. откл. завис. г	герем 22	,20317
Сумма кв. остатко	ов 235	57,363 Ст	. ошибка моде	ли 7,2	237806
R-квадрат	0,9	02411 Ис	прав. R-квадра	ат 0,8	393737
F(4, 45)	104	1,0295 P-3	значение (F)	3,	89e-22
Лог. правдоподоб	ие —167	7,2788 Kp	ит. Акаике	34	4,5576
Крит. Шварца	354	4,1178 Kr	ит. Хеннана-К	уинна 34	8,1982

Как можно заметить из корреляционной матрицы, X2 и X4 имеют высокую степень корреляции с Y, в то время как X1 и X3 нет, они требует дополнительных проверок.

```
Метод инфляционных факторов
Минимальное возможное значение = 1.0
Значения > 10.0 могут указывать на наличие мультиколлинеарности
               1,276
         X2
               4,068
         Х3
               1,071
               3,999
VIF(j) = 1/(1 - R(j)^2), где R(j) - это коэффициент множественной корреляции
между переменной ј и другими независимыми переменными
Диагностика коллинеарности Белсли-Ку-Велша (Belsley-Kuh-Welsch):
  разложение дисперсии
  lambda
           cond
                 const
                                    X2
                                             Х3
                                                     Χ4
          1,000
  4,758
                 0,000 0,001
                                  0,001
                                          0,002
                                                  0,002
  0,184 5,090
                 0,004 0,023
                                 0,008 0,011
                                                  0,147
                                        0,858
                         0,090
                 0,008
  0,036 11,426
                                  0,022
                                                  0,001
  0,017 16,833
0,005 29,834
                                  0,595
                  0,010
                          0,181
                                          0,000
                                                  0,744
                         0,705
                 0,978
                                  0,374
                                          0,129
                                                  0,107
  lambda = собственные значения обратной матрицы ковариаций (маленький 0,00534529)
  cond = условный индекс
  примечание: сумма столбцов с пропорциями дисперсии равна 1.0
Согласно ВКW, условие >= 30 указывает на "сильную" (близкую к линейной) зависимость,
и условие между 10 и 30 "умеренно сильную". Оценки параметров, чья
дисперсия в основном связана с проблемными усл. значениями, могут
считаться проблемными сами по себе.
Количество индексов состояния >= 30: 0
Количество индексов состояния >= 10: 3
Пропорции дисперсии >= 0.5, связанные с условием >= 10:
   const
                    X2
                             Х3
                                     X4
         0,976 0,991 0,987
  0,996
                                  0,851
Тестирование модели 7:
  Нулевая гипотеза: параметры регрессии нулевые
  Тестовая статистика: F(2, 45) = 0,611969, p-значение 0,546733
```

Как видно по VIF, все значения меньше 10, мультиколлинеарности нет. Также тест на избыточные переменные подтвердил, что X1 и X3 — незначимые.

Модель 3: МНК, использованы наблюдения 1-50 Зависимая переменная: Y

	Коэффициен	н Ст. ои	ибка	t-	р-значен	ue
	m			статистика		
const	-15,2583	6,299	990	-2,422	0,0194	**
X2	4,31089	0,555	636	7,758	<0,000	1 ***
X3	0,0541032	0,394	062	0,1373	0,8914	<u> </u>
X4	-0,444079	0,158	485	-2,802	0,0074	***
Среднее завис. пер	ремен 52,	86680	CT.	откл. завис. пер	рем 2	22,20317
Сумма кв. остатко	в 242	20,488	CT.	ошибка модели	ſ	7,253916
R-квадрат	0,8	99798	Исп	рав. R-квадрат	(0,893263
F(3, 46)	137	,6908	Р-зн	ачение (F)		5,48e-23
Лог. правдоподоби	ие —167	,9395	Кри	т. Акаике	•	343,8789
Крит. Шварца	351	,5270	Кри	т. Хеннана-Куг	инна .	346,7914

Модель 4: МНК, использованы наблюдения 1-50 Зависимая переменная: Y

	Коэффи	циен	Cm. ou	ибка	t-	р-значе	ние
	m				статистика		
const	-4,339	99	10,18	346	-0,4261	0,672	0.
X2	4,171	57	0,560	422	7,444	< 0,000	01 ***
X4	-0,439	129	0,154	034	-2,851	0,006	5 ***
X1	-1,315	554	1,180)24	-1,115	0,270	8
Среднее завис. пер	ремен	52,8	6680	CT.	откл. завис. пе	рем	22,20317
Сумма кв. остатко	В	2357	,798	CT.	ошибка модел	И	7,159363
R-квадрат		0,90	2393	Исп	рав. R-квадрат		0,896027
F(3, 46)		141,	7594	Р-зн	ачение (F)		3,00e-23
Лог. правдоподоби	ле -	-167,	2834	Кри	т. Акаике		342,5669
Крит. Шварца		350,	2150	Кри	т. Хеннана-Ку	инна	345,4793

Метод инфляционных факторов Минимальное возможное значение = 1.0 Значения > 10.0 могут указывать на наличие мультиколлинеарности

> X2 4,048 X4 3,871 X1 1,274

 $VIF(j) = 1/(1 - R(j)^2)$, где R(j) - это коэффициент множественной корреляции между переменной j и другими независимыми переменными

Диагностика коллинеарности Белсли-Ку-Велша (Belsley-Kuh-Welsch):

разложение дисперсии

```
lambda
         cond
                            X2
                                    Х4
                                            X1
                 const
3,803
        1,000
                 0,001
                         0,001
                                 0,003
                                         0,001
0,175
        4,665
                 0,007
                         0,005
                                 0,145
                                         0,033
0,017
       15,049
                 0,012
                         0,597
                                 0,768
                                         0,182
0,006 25,153
                 0,980
                         0,396
                                 0,083
                                         0,784
```

lambda = собственные значения обратной матрицы ковариаций (маленький 0,00601014) cond = условный индекс

примечание: сумма столбцов с пропорциями дисперсии равна 1.0

Согласно ВКW, условие >= 30 указывает на "сильную" (близкую к линейной) зависимость, и условие между 10 и 30 "умеренно сильную". Оценки параметров, чья дисперсия в основном связана с проблемными усл. значениями, могут считаться проблемными сами по себе.

Количество индексов состояния >= 30: 0

Количество индексов состояния >= 10: 2 Пропорции дисперсии >= 0.5, связанные с условием >= 10:

const X2 X4 X1 0,992 0,993 0,851 0,966

Метод инфляционных факторов

Минимальное возможное значение = 1.0

Значения > 10.0 могут указывать на наличие мультиколлинеарности

X2 3,876 X4 3,992 X3 1,069

 $VIF(j) = 1/(1 - R(j)^2)$, где R(j) - это коэффициент множественной корреляции между переменной j и другими независимыми переменными

Диагностика коллинеарности Белсли-Ку-Велша (Belsley-Kuh-Welsch):

разложение дисперсии

lambda	cond	const	X2	X4	Х3
3,826	1,000	0,002	0,001	0,003	0,003
0,135	5,329	0,041	0,005	0,199	0,067
0,028	11,642	0,222	0,139	0,114	0,742
0,011	18,701	0,736	0,854	0,684	0,188

lambda = собственные значения обратной матрицы ковариаций (маленький 0,0109398) cond = условный индекс

примечание: сумма столбцов с пропорциями дисперсии равна 1.0

Согласно ВКW, условие >= 30 указывает на "сильную" (близкую к линейной) зависимость, и условие между 10 и 30 "умеренно сильную". Оценки параметров, чья дисперсия в основном связана с проблемными усл. значениями, могут считаться проблемными сами по себе.

Количество индексов состояния >= 30: 0

Количество индексов состояния >= 10: 2 Пропорции дисперсии >= 0.5, связанные с условием >= 10:

const X2 X4 X3

Будем изучать модель с переменными X2 и X4. X1 и X3 незначимы.

2. Интерпретация коэффициентов в модели. Доверительные интервалы для коэффициентов

Модель 6: МНК, использованы наблюдения 1-50 Зависимая переменная: Y

	Коэффициен	Ст. ошибка	a t-	р-значение	
	m		статистика	a	
const	-14,6329	4,30676	-3,398	0,0014	***
X2	4,30607	0,548708	7,848	< 0,0001	***
X4	-0,448024	0,154223	-2,905	0,0056	***
Среднее завис. пер	ремен 52,8	86680 Ст.	откл. завис. п	ерем 22,	20317
Сумма кв. остатко	ов 242	1,480 Ст.	ошибка моде.	ли 7,1	77802
R-квадрат	0,89	9757 Ис	прав. R-квадра	т 0,8	95491
F(2, 47)	210	,9300 Р-з	начение (F)	3,3	35e-24
Лог. правдоподоб	ие —167.	,9497 Kpi	ит. Акаике	341	1,8994
Крит. Шварца	347	,6355 Kpi	ит. Хеннана-К	уинна 344	4,0837

Наша модель имеет следующий вид: Y = b0 + b1 * X2 + b2 * X4 = -14,6329 + 4,30607 * X2 - 0.448024 * X4

При возрастании X2 на 1 единицу своего измерения Y в среднем возрастает на 4,31 единиц своего измерения.

При возрастании X4 на 1 единицу своего измерения Y в среднем убывает на 0,45 единиц своего измерения.

$$t(47, 0.025) = 2.012$$

	коэффициент	95 доверительный интервал
const	-14,6329	[-23,2970, -5,96885]
X2	4,30607	[3,20221, 5,40993]
X4	-0,448024	[-0,758281, -0,137768]

3. Значимость модели в целом

H0: модель незначима в целом b1 = b2 = 0

H1: модель значима в целом b1 <> 0 b2 <> 0

P-значение (F) 3,35e-24

Принимаем Н1 с вероятностью 99%.

4. Значимость коэффициентов в модели

H0: b1 = 0 - незначим

H1: b1 <> 0

p<0,0001 – значим на 99%

H0: b2 = 0 незначим

H1: b2 <> 0

p = 0.0056 -значим на 99%

Описательная статистика, использованы наблюдения 1 - 50							
Переменная	Среднее	Медиана	ст. откл.	Мин.	Макс.		
Y	52,9	58,5	22,2	11,5	96,0		
X2	13,0	13,6	3,67	5,59	21,1		
X4	-26,1	-27,6	13,1	-63,1	-5,70		

5. Эластичности

$$\Im(X2, y) = b1 * X2cp / Ycp = 4,30607 * 13 / 52,9 \approx 1,058$$

$$\Im(X4, y) = b2 * X4cp / Ycp = -0.448024 * -26.1 / 52.9 \approx 0.221$$

При увеличении X2 на 1%, зависимая переменная Y увеличивается на 1,058%.

При увеличении X4 на 1%, зависимая переменная Y увеличивается на 0,221%.

6. Уравнение в стандартизированной форме и выводы о влиянии переменных

Стандартизированные коэффициенты

$$t(X2) = b1 * sX2 / sY = 4,30607 * 3,67 / 22,2 \approx 0,719$$

$$t(X4) = b2 * sX4 / sY = -0,448024 * 13,1 / 22,2 \approx -0,264$$

$$Y = t(X2) * X2 + t(X4) * X4 = 0,719 * X2 - 0,264 * X4 - уравнение в стандартизированных коэффициентах$$

Влияние X2 больше влияния X4, так как модуль стандартизированного коэффициента больше.

7. Нормальность остатков — 5 критериев, нормальная вероятностная бумага, асимметрия

Н0: остатки имеют нормальное распределение

Н1: распределение остатков отличается от нормального

р = 0,9425 – нет оснований отвергнуть Н0

Тест на нормальное распределение uhat6:

```
Тест Дурника-Хансена (Doornik-Hansen) = 0,118356, р-значение 0,942539

Тест Шапиро-Уилка (Shapiro-Wilk W) = 0,989608, р-значение 0,936593

Тест Лиллифорса (Lilliefors) = 0,0506472, р-значение ~= 1

Тест Жарка-Бера (Jarque-Bera) = 0,181848, р-значение 0,913087
```

Все тесты показывают, что нет оснований отвергнуть Н0, то есть в модели нет систематической ошибки.

Нормальная вероятностная бумага (Q-Q график):

В целом, остатки модели близки к нормальному распределению, большинство точек лежит очень близко к прямой к линии.

Описательная статистика, использованы наблюдения 1 - 50 для переменной uhat6 (50 наблюдений)

Квантили нормального распределения

дли переменной инасо (50 наотодении)						
Среднее	Медиана	Минимум	Максимум			
-1,1866e-014	0,12714	-18,598	14,957			
Ст. откл.	Вариация	Асимметрия	Эксцесс			
7,0298	5,9243e+014	-0,077132	-0,25197			
5% Проц.	95% Проц.	Межквартильный	Пропущенные			
		размах	набл.			
-11,333	11,879	9,5687	0			

Асимметрия остатков близка к нулю, распределение остатков достаточно симметрично.

8. Гетероскедастичность +подправки

Н0: гомоскедастичность остатков (дисперсия ошибок постоянна)

Н1: гетероскедастичность остатков (дисперсия ошибок изменяется с изменением значений предикторов)

Тест Вайта (White) на гетероскедастичность

МНК, использованы наблюдения 1-50

Зависимая переменная: uhat^2

	коэффициент	ст. ошибка	t-статистика	р-значение	
const	-36,3661	81,8583	-0,4443	0,6590	
X2	25,2918	17,2381	1,467	0,1494	
X4	5,39064	4,75714	1,133	0,2633	
sq_X2	0,312752	1,03885	0,3011	0,7648	
X2_X3	1,15469	0,641799	1,799	0,0789 *	
sq_X4	0,327967	0,104276	3,145	0,0030 ***	:

Неисправленный R-квадрат = 0,424379

Тестовая статистика: TR^2 = 21,218940,

р-значение = Р(Хи-квадрат(5) > 21,218940) = 0,000736

В нашей модели есть гетерескедастичность, нужно сделать поправку.

Модель 9: С поправкой на гетероскедастичность, использованы наблюдения 1-50 Зависимая переменная: Y Без квадратов в уравнении дисперсии

	Коэффициен	Ст. ошибка	t-	р-значение	
	m		статистика		
const	-11,4252	4,44991	-2,568	0,0135	**
X2	4,44004	0,532404	8,340	<0,0001	***
X4	-0,281577	0,132912	-2,119	0,0394	**

Сумма кв. остатков	142,2165	Ст. ошибка модели	1,739507
R-квадрат	0,919092	Исправ. R-квадрат	0,915649
F(2, 47)	266,9531	Р-значение (F)	2,18e-26
Лог. правдоподобие	-97,08012	Крит. Акаике	200,1602
Крит. Шварца	205,8963	Крит. Хеннана-Куинна	202,3446

(статистика.	полу	ученная	ПО	исход	ным 2	данным:

Среднее завис. перемен	52,86680	Ст. откл. завис. перем	22,20317
Сумма кв. остатков	2593,029	Ст. ошибка модели	7,427707

0,532404 0,132912

0,548708 0,154223

Как можно заметить, стандартные ошибки уменьшились.

9. R^2 и его интерпретация

Исправ. R-квадрат

R квадрат достаточно высокий, модель хорошо объясняет вариацию зависимой переменной.

10. Прогноз на средние значения и доверительный интервал прогноза

X2pr = X2sr

X4pr = X4sr

Средняя абсолютная процентная ошибка (МАРЕ) - 18,042

Вывод: МАРЕ $\approx 18\%$, модель хорошая по качеству

Для 95% доверительных интервалов, t(47, 0.025) = 2.012

Набл.	Y	прогнозиро	ст. ошибка	95% доверительный
		вание		интервал
ycr	не	53,6445	2,00858	(49,6037,57,6852)
	определено			

Ypr = 53,6445 своего измерения

Доверительный интервал (49,6037; 57,6852) с вероятностью 95% прогнозное значение попадает в этот интервал.

11. Сравним две парные модели и одну множественную по качеству

Модель 11: МНК, использованы наблюдения 1-50 Зависимая переменная: Y

	Коэффі	іциен	Cm. or	иибка	t-	р-значен	ие
	m				статистика		
const	-20,73	362	4,04	041	-5,132	< 0,000	1 ***
X2	5,678	20	0,30	0125	18,92	< 0,000	1 ***
Среднее завис. пе Сумма кв. остатко R-квадрат F(1, 48) Лог. правдоподоб Крит. Шварца)B	2856 0,88 357,9 -172,0	9446	Ст. о Испј Р-зн Кри	откл. завис. пе ошибка моделі рав. R-квадрат ачение (F) т. Акаике т. Хеннана-Ку	и У (22,20317 7,714001 0,879294 6,79e-24 348,1564 349,6127

Модель 12: МНК, использованы наблюдения 1-50 Зависимая переменная: Y

	Коэффициен	Cm. o	шибка	t-	р-значени	e
	m			статистика		
const	14,0175	3,43	3626	4,079	0,0002	***
X4	-1,48984	0,11	8056	-12,62	<0,0001	***
Среднее завис. пер	бемен 52,8	36680	Ст. с	откл. завис. пер	рем 22	2,20317
Сумма кв. остатко	в 5594	4,425	Ст. с	ошибка модели	ı 10),79586
R-квадрат	0,76	8405	Исп	рав. R-квадрат	0,	763580
F(1, 48)	159,	,2583	Р-зн	ачение (F)	7	,37e-17
Лог. правдоподоби	ие −188,	,8845	Кри	т. Акаике	38	31,7690
Крит. Шварца	385,	,5930	Кри	т. Хеннана-Куі	инна 38	33,2252

Модель 13: С поправкой на гетероскедастичность, использованы наблюдения 1-50 Зависимая переменная: Y

	Коэффициен	Cm. out	ибка	t-	р-значет	ние		
	m		CI	татистика	ı			
const	-14,2724	4,150	00	-3,439	0,0012	2	***	
X4	-0,354383	0,1444	144	-2,453	0,0179	9	**	
X2	4,52545	0,4751	73	9,524	<0,000)1	***	
	тистика, получ							
Сумма кв. остатко	ов 136,	8598	Ст. ош	пибка модел	ІИ	1,70	6432	
R-квадрат	0,89	6647	Испра	в. R-квадра	T	0,89	2249	
F(2, 47)	203,	8769	Р-знач	ение (F)		6,80	6e-24	
Лог. правдоподоб	ие –96,1	2028	Крит.	Акаике		198,	,2406	
Крит. Шварца	203,	9766	Крит.	Хеннана-К	уинна	200,	,4249	
Cramyonyu wa wanayua wa waya wa								
Статистика, полученная по исходным данным:								
Среднее завис. пе	ремен 52,8	6680	CT. OTI	кл. завис. п	ерем	22,2	20317	
Сумма кв. остатко	ов 2472	2,540	Ст. ош	пибка модел	и	7,25	3084	

Как можно заметить, модель парной регрессии X2 и Y лучше, чем модель парной регрессии X4 и Y. Множественная регрессия с участием этих переменных показывает наилучший результат.