12.3 Exclusion methods Fast expected running time

2016200648

조유나

Exclusion Method

- k-mismatch, k- difference method
 - text T length *m*, pattern P length *n*
 - Worst case $\theta(km)$
- Goal
 - -faster expected running time than $\theta(km)$
 - for a reasonable range of k
- Baeza-Yates and Perleberg (BYP)
- Chang and Lawler (CL)
- Myers methods

A. Partition

•partition T (or P) into consecutive regions of a given length r

B. Search Phase

- •find length-r intervals of T that could be approximate occurrence of P using **exact matching methods**
- -> surviving intervals
- •Eliminate as many intervals as possible

C. Check Phase

•for each surviving interval R of T, use **approximate matching method** to check approximate occurrence of P in a larger interval R

A. Partition

•partition T (or P) into consecutive regions of a given length r

P

B. Search Phase

- •find length-r intervals of T that could be approximate occurrence of P using **exact matching methods**
- -> surviving intervals
- •Eliminate as many intervals as possible

Surviving

Nonsurviving

Р

C. Check Phase

•for each surviving interval R of T, use **approximate matching** method to check approximate occurrence of P in a larger interval R

C. Check Phase

•for each surviving interval R of T, use **approximate matching** method to check approximate occurrence of P in a larger interval R

Method differs

- -choice of r
- -choice of string to partition
- -exact matching method
- -definition of a region in check phase

• Baeza-Yates and Perleberg

• O(m) for for $k < (\frac{n}{\log n})$

• Partition
$$r = \left\lfloor \frac{n}{k+1} \right\rfloor$$

Lemma 12.3.1

• Suppose P matches a substring T' of T with at most k differences. Then T' must contain at least one interval of length r that exactly matches one of the r-length regions of the partition of P.

• Lemma 12.3.1

- Suppose P matches a substring T' of T with at most k differences. Then T'
 must contain at least one interval of length r that exactly matches one of
 the r-length regions of the partition of P.
- k=4

- Keyword tree
 - edge : element
- Aho-Corasick algorithm
 - String searching algorithm
 - time complexity O(m)

-Let P be the set of k+1 substrings of P taken from the first k+1 regions of P's partition.

$$- r = \left\lfloor \frac{n}{k+1} \right\rfloor$$

Т

P

- Search Phase
 - -Build a keyword tree for the set of "patterns" P
 - -Using Aho-Corasik algorithm, find *I*, the set of all starting locations in T where any pattern in *P* occurs exactly

Check Phase

-For each index $i \in I$ use an approximate matching algorithm to locate the end points of all approximate occurrences of P in the substring T[i-n-k...<math>i+n+k]

• Check Phase

-For each index $i \in I$ use an approximate matching algorithm to locate the end points of all approximate occurrences of P in the substring T[i-n-k...<math>i+n+k]

Τ		Р		Р			
Р							

Time Complexity

- a. Let P be the set of k+1 substrings of P taken from the first k+1 regions of P's partition.
- b. Build a keyword tree for the set of "patterns" P
 - > O(n)
- c. Using Aho-Corasik algorithm
 - > O(m)
- d. Approximate matching algorithm
 - > O(m) no spaces allowed, know exactly where in P any match found

Expected Time

- σ : alphabet size
- r: partition length
- any pattern $p \in P$

Expected Time

- σ : alphabet size
- r: partition length
- any pattern $p \in P$
- \triangleright p has length r
- \triangleright Expected arbitrary string = σ^r

Expected Time

- T contains roughly *m* substrings
- \triangleright Expected number of exact occurrences of p in T : $\frac{m}{\sigma^r}$
- ightharpoonup If k+1 = 3 and n = 6, r = 2

 ρ σ^r

Expected Time

- > T contains roughly *m* substrings
- \triangleright Expected number of exact occurrences of p in $T = \frac{m}{\sigma^r}$
- ightharpoonup If k+1 = 3 and n = 6, r = 2

 ρ σ^r

Expected Time

- > T contains roughly *m* substrings
- \triangleright Expected number of exact occurrences of p in $T = \frac{m}{\sigma^r}$
- ightharpoonup If k+1 = 3 and n = 6, r = 2

P σ^r σ^r σ^r

Expected Time

- \triangleright There are k+1 number of pattern p in set P
- ightharpoonup Expected total number of occurrences in T of patterns from $P: \frac{m(k+1)}{\sigma^r}$

Expected Time

- \triangleright Expected size of $I(\text{set of survival intervals}) : <math>\frac{m(k+1)}{\sigma^r}$
- \triangleright Expected Checking time [phase algorithm(O(n^2))] : $\frac{mn^2(k+1)}{\sigma^r}$
- Goal!
 - make the expected checking time linear in m for modest k

$$\bullet \quad \frac{mn^2(k+1)}{\sigma^r} < cm$$

Expected Time

• make the expected checking time linear in m for modest k

$$\frac{mn^{2}(k+1)}{\sigma^{r}} < cm$$

$$k+1 \le n \quad \forall \qquad \frac{mn^{3}}{\sigma^{r}} = cm$$

$$r = \log_{\sigma} n^{3} - \log_{\sigma} c$$

$$r \le \frac{n}{k+1}$$

$$k+1 \le \frac{n}{3\log_{\sigma} n - \log_{\sigma} c}$$

> Algorithm BYP runs in O(m) time for $k = O(\frac{n}{\log n})$

Expected Time

- σ : alphabet size
- r: partition length
- any pattern $p \in P$
- \triangleright Expected number of exact occurrences of p in T: $\frac{m}{\sigma^r}$
- \triangleright Expected total number of occurrences in T of patterns from $P: \frac{m(k+1)}{\sigma^r}$
- \triangleright Expected Checking time [phase algorithm(O(n^2))] : $\frac{mn^2(k+1)}{\sigma^r}$
- Algorithm BYP runs in O(m) time for $k = O(\frac{n}{\log n})$

Chang-Lawler method

• O(m) for $k < n/\log_{\sigma} n$

• Partition $r = \frac{n}{2}$

• Partition

- Search Phase
 - Use *matching statistics*
 - *ms(i)*: length of the longest substring starting at position *i* of T that matches a substring *somewhere* in *P*

Search Phase

- If mismatch exceed k, stop searching and exclude region from set *R*(surviving region)
- If T' has finished being mapped, leave the region in set *R* and go onto the next region.

Search Phase

- If mismatch exceed k, stop searching and exclude region from set *R*(surviving region)
- If T' has finished being mapped,
 leave the region in set R and go onto the next region.

- Check Phase
 - R is a surviving region
 - Executes approximate matching algorithm for P against a neighborhood of T that starts n/2 positions to the left of R and ends n/2 positions to its right

CL method

Check Phase

- R is a surviving region
- Executes approximate matching algorithm for P against a neighborhood of T that starts n/2 positions to the left of R and ends n/2 positions to its right

CL method

- Time Complexity
 - Search phase
 - number of regions = m(n/2) = 2m/n
 - ms(i) is repeated until either mismatches exceed k or the whole region was searched.
 - E(M): expected value of matching statistics.
 - => Expected value is less than or equal to **kE(M)**

Р ______

Lemma 12.3.3

E(M), the expected value of a matching statistic, is $O(\log_{\sigma} n)$

Proof>

- For fixed length d, roughly n substrings of length d in P

Lemma 12.3.3

E(M), the expected value of a matching statistic, is $O(\log_{\sigma} n)$

Proof>

- For fixed length d, roughly n substrings of length d in P

Lemma 12.3.3

E(M), the expected value of a matching statistic, is $O(\log_{\sigma} n)$

Proof>

- For fixed length d, roughly n substrings of length d in P

Lemma 12.3.3

E(M), the expected value of a matching statistic, is $O(\log_{\sigma} n)$

Proof>

- For fixed length d, roughly n substrings of length d in P
- For any specific string α of length d, probability that α is found somewhere in P $< \frac{n}{\sigma^d}$
- unless σ^d =n

Lemma 12.3.3

E(M), the expected value of a matching statistic, is $O(\log_{\sigma} n)$

Proof>

- Let X be the random variable that has value $\log_{\sigma} n$ for $ms(i) \leq \log_{\sigma} n$
- Fixed d until infinite
- Then $E(M) = O(\log_{\sigma} n)$

$$E(M) < E(X) < \log_{\sigma} n + \sum_{l=\log_{\sigma} n}^{\infty} \frac{l}{\sigma^{l}} = \log_{\sigma} n + 2.$$

CL method

- Time Complexity
 - Search phase
 - number of regions = m(n/2) = 2m/n
 - Matching statistics: $kE(M) = O(klog_{\sigma}n)$
 - Total expected search phase
 - = O(2mkE(M)/n)
 - $= O(2mk \log_{\sigma} n/n)$

same process as the BYP method

= O(m) for $k < n/log_{\sigma}n$

CL method

- Time Complexity
 - Check Phase
 - Expected number of regions that survived : e
 - Total check phase time
 - = O(kne)

too difficult to present analysis of e

- = $O(km/n^3)$ when e = m/n^4
 - = **O(m)** when $k = O(n/\log_{\sigma} n)$,

Problems with previous methods

- 1. They permit a large expected number of surviving regions compared to the expected number of true approximate matches
- 2. When a surviving region is first located, the method move directly to full dynamic programming computations

• Handle insertion, deletion as well as mismatches

• O($km^{p(\epsilon)}logm$) when length of the sub pattern is $log_{\sigma}n$

Too complex for detailed discussion

• Lemma 12.3.4

- Suppose α ε -matches β . Then β can be divided into two substrings β_0 and β_1 such that $\beta = \beta_0 \beta_1$, and either α_0 ε -matches β_0 or α_1 ε -matches β_1 .
- Let $\alpha = \alpha 0 \alpha 1$, where $|\alpha 0|$ is assumed equal to $|\alpha 1|$.

Error rate :
$$\frac{8}{24} = \frac{1}{3}$$

Lemma 12.3.4

- Suppose α ε -matches β . Then β can be divided into two substrings β_0 and β_1 such that $\beta = \beta_0 \beta_1$, and either α_0 ε -matches β_0 or α_1 ε -matches β_1 .
- Let $\alpha = \alpha 0 \alpha 1$, where $|\alpha 0|$ is assumed equal to $|\alpha 1|$.

Lemma 12.3.4

- Suppose α ε -matches β . Then β can be divided into two substrings β_0 and β_1 such that $\beta = \beta_0 \beta_1$, and either α_0 ε -matches β_0 or α_1 ε -matches β_1 .
- Let $\alpha = \alpha 0\alpha 1$, where $|\alpha 0|$ is assumed equal to $|\alpha 1|$.

Lemma 12.3.4

- Suppose α ε -matches β . Then β can be divided into two substrings β_0 and β_1 such that $\beta = \beta_0 \beta_1$, and either α_0 ε -matches β_0 or α_1 ε -matches β_1 .
- Let $\alpha = \alpha 0 \alpha 1$, where $|\alpha 0|$ is assumed equal to $|\alpha 1|$.

d-neighborhood

- example>
- only $\{a,b\}$, S = aba, d=1
- Condense(remove prefix): {bba, aaa, aaba, abaa, baba, abba, abab}

- First iteration
 - T has already been preprocessed into some index structure
 - Partition P into subpatterns of length $\log_{\sigma} m$
 - Construct the condensed d-neighborhood for each subpattern in P
 - Find all locations of substrings in test T that exactly match one of the substrings in one of the condensed d- neighborhoods.

- Successive iteration
 - extend each initial surviving match to become a ε -match between substring twice as long as those in the current surviving match

- Successive iteration
 - extend each initial surviving match to become a ε -match between substring twice as long as those in the current surviving match

- Time Complexity
 - when length of the sub pattern is \log_{σ} n
 - total runtime is O(km^{p(ε)}logm)
 - $p(\epsilon)$ convex increases very slowly

- Exposition given above is only the outline of Myer's method, without any analysis
- Unlike BYP and CL, error rates that establish sublinear running times do not depend on the length of P
- Although expected running times for both CL and Myers' are sublinear
 - CL: due to multiplicative factor that is less than one
 - Myers: due to an exponent that is less than one

Final comment of exclusion method

- Developed with motivation of searching large DNA and protein databases for approximate occurrences of query strings
- weak for the case of **protein database search**, error rates as high as 85% are great interest when comparing protein sequences
- The most effective practical database search methods can be considered as exclusion methods
 - ex) BLAST, FASTA, and variants