

Greedy Algorithms

in optimization problems the algorithm needs to make a series of choices whose overall effect is to maximise the total cost of some system always makes the choice that looks best at that moment greedy

making a locally optimal choice, hoping it leads to a globally optimal solution

not expensive to compute each individual size

but once the choice is made, it cannot be undone

Dijkstras Algorithm

does guarantee optimality in funding the shortest

path Shortest Path Problem: The problem of finding the shortest path from one

vertex in a graph G to another vertex. Shortest" can have different meanings: hast edges,

least weight etc G = (V, E) airectional or nondirectional = bidirecti-onal

vertex edge Dijkstra's works for weighted, directed graphs

weights must be non-negative

Sintial = {source node} Overview

S: set of vertices whose shortest path from source node has been determined. they form the tree V-S the remaining vertices

empty or not is the flag for termination [but what if the vertice can't be reached from the source?)

d: array. Stre |V|, stores estimate lengths of shortest path pi: array, size |V|, stores predicessors for each vertex

	word case: fully wonnected.				
	Basic Steps				
1.	initialize dand ni				
	nau				
2.	initialise d and pi set S to empty (or source node)				
3.	white there are still vertices in V-S				
	more u, the vertice with the shortest path estimate				
	from source, to S from V-S for all vertices in V-S connected to u, update shorted				
	distance to the course				
	\rightarrow update only if $d[v] > d[v']$				
	og. in d new value from u				

```
Psuedo Code of Dijkstra's
         Dijketra_ snortestPath (Graph G, Node source) 2
             for each vertex v 1
               d[v] = 6 ;
               pi[v] = nul pointer :
            ; 0 = C v J g
                                         // S[v] = 1 if vES
            d[source]=0,
          put all vertices in a priority queue, a. Sorted by d[v] in increasing order.
[v-s]
            while not Empty (Q) &
               u = Extravicheapes+(Q);
quaranteés
            Stu7 = 1
minimisation)
            for each v adjacent to u
                 if (S[v] \neq 1' and d[v] > d[u]t w[u,v])
                    remove v from a j
                    d[v] = d[u] + w[u,v];
                   pi[v] = u;
                   insert v into a accordingly
```

Time complexity wonst case : $O(|V|^2)$ fully connected graph Proof of correctness Property of Shortest Path. lemona 1 In a weighted graph G, suppose that a shortest path from $x \to z$ consists of a path P from $x \to y$ followed by a path G from $y \to z$, then P is the shortest path from $X \to y$ and Q is the shortest path from quaratees use of pi to find shortest path from all nodes to other nodes proof by contradiction

Theorem DI - proves Dijkstra is optimul

: the algo is iterative, proof by induction (wäghts Let G = (V, E, W). Let S be a subset of V and

s be a member of S. Assume d[y] is the shortest distance in G from s to y, for each y in s. Let z be the next vertex chosen to a o into c

to go into s. if edge (y, z) is chosen to minimise d[y] + w(y, z) over all edges with one vertex in S and one vertex in V-S

the the path consisting of the shortest path from stoy followed by the edge (y, z) is the shortest path from stoz

Proof of P1 P: s → y (shortest) + edge (y,z) W(P) = distance along P

P' = any shortest path different from P, ie. P'=5,Z1, first vertex in P' that's not in set S

prove pink (P) amongs > blue (P') by contradiction.

d[ZK-1) + W(ZK-1, ZK) > d[y] + W(y, Z)

Zk to Z

$$w(P) = d[y]r w[y(z)]$$

$$w(P') = d[z_{k-1}] + w(z_{k-1}, z_k) + distance from$$

always

TESTED

theorem D2 > Given a directed weighted graph G with non-negative weights and a sounce vertex s, Dijkstra's algorithm computes the shortest distance from s to each vertex of G that is reachable from S

haple pa induction: 0 first is shortest 2) assume v,.... vx all shortest 1) for vx

if all are shortest, then min d to VK will also be

shortest.

not unique

Minimum Spanning Tree

Subgraph of Graph G = (V,E) = G' = (V',E'):

V' \leq V

E' \leq E

E' \leq V' \times V'

all the edges that join V \in V'

Spanning tree: a connected, acyclic subgraph containing all vertices of a graph

(any connettions,
just no loops) V' = V, $E' \subset E$ Minimum Spanning Tree: a minimum - weight

Minimum Spanning Tree: a minimum-weight spanning tree is a weighted graph

Prim's Algonithm

works on undirected graph
builds upon a single partial minimum spanning
thee, at each step adding an edge connecting the
vertex nearest to but not already in the current
partial minimum spanning thee
J S S S S S S S S S S S S S S S S S S S

Steps T: Chosen P: V-T N adjacent 1. Venex is chosen, put in T to VET 2. initialise P

- every iteration: u & P will be connected to T, deleted from p, v adjacent to u, not in P will be added to P 4. when all vertexes are connected to T, P will be empty
- 5. Vertex to be added will be unosen by the greedy method, among all vertices in P connected to t, we choose one with minimum cost.
 - will still need d, s, pi, pg
 - minimize edges across.

we are done.

Elg V Psuedocode. Prim MST (G, S, n) initialist all vertex as unseen Reclassify s as tree vertex < pick a random Reclassify all adj v of s as fringe while (fringe is n't empty) Select edge v with minimum weight between tree and fringe Reclassify vas tree, addedge to to tree Reclassify unseen adj v of v to fringe, update scen if necessary. Update Fringe check_ update Fringe (pg, G, v) { + w ady to vh if (S[w]!=1) ← not in tree weight = weight of edge of w if $(d[w] = = \infty)$ d[w] = weight PI[W] = V ¿ weight insert (pq, w, d[w]) } else if (d'(w') > w eignx) { d[W] = weight Pi (W) = V decreasekey(pq, w, weight); 3 }

MST Property

this is a sufficient + necessary condition to say that a tree is an mst

let t be a spanning tree of G, G = (V, E, W) a connected weighted graph. Suppose for every edge (u, v) & E & and not in t, if (u, v) is added to t, it creates a cycle such that (u, v) is a maximum whight edge on that cycle. Then T has the minimum spanning tree property.

MST -> more efficient way to visit all nodes

Shortest -> " a. particular node
from another.

try with a tree diagram

Dijk VIS Prim -> visit all nodes in one tour.

goal is to find shortest path from source to one node at a time

E log E Kruskal's Algorithm · computes mst only considers edges of increasing order add next edge to tree t unless it creates cycle uses greedy strategy sort edges in increasing order select smaller one and add if y'de is there, remove, skip · Stop when all nodes · Proof of correctness by contradiction suppose tree produced kruskal is not MST there is some edge u-v which creates a cycle, in which some other edge x-y has weight W(x-y) As w(x-y) > w(u-v), edge x-y must be processed after u-v in knuskals At the time u-v is processed, it should be in T because it doesn't form a well this contradicts that u-v is not in T

kruskal checking for cycle - Unign Find. Dynamic Equivalence Relations a binary fⁿ is an equivalence relation if it is → reflexive — helps satisfy mst -> transitive → Cymmetric - undirected graph any pair of nodes on MST is equivalent dynamic equivalence ⇒ equivalence relation will change with a number of operations given Nobjects in s : def 3 operations 1) initialise the object 2) connect 2 objects: add them into relation R 3) check for path connecting them

Union-Find

connected (p,q): are they connected

find (p): which component does P belong to

these 3 methods implement dynamic equivalence relation

3 algos

Quick Find

Quick Find

Interger array id [] of (ength N)

id [p] is the id of the component p belongs to similar to roof.

union (p, q) -> change all those whose id = q to p

0(N) 0(N) 0(1) 0(1) too much

T comp :

 $find(p) \rightarrow whats the id$

connected (pg → same id?

fnit Union fund Connected

	_						
	Quick Union union						
•	integer array id[] of length N						
•	root of p is id Cid (id (id (1)						
	find(p) : root? → idCid[]						
	connected (p.9): same root?						
	connected (p,q) : same root? find(p) = = find(q)						
	union: id of p's root = id root of q						
time comp	init union find connected						
Cexity 1	O(N) $O(N)$ $O(N)$						
	, , ,						
	worst case: unked list: find worst case: O(N)						
	union: we have to use find. : O(N)						
	00 VO 1 10 VO 0 VO 0 VO 00 VO 10 VO 00 VO 10 VO						

sz(i) : 4 sz[j] : 6 Weighted Quick Union modify quick union to avoid tall trees balance by linking noo+ of smaller tree to root of larger tree. · need id of root of p · array ds sz[i] to count of of obj in tree nooted find() -> same as quickUnion: id(id[id[i]])]
connected() -> same as quickUnion · union $(p,q) \rightarrow$ i = find (p) j = find (q)
if (i = = j) return make smaller tree tower update array SZ[] if (sz[i] < sz[j]) [d[i] = j; sz[j] +=sz[i] time complexity. running time depends on depth of node id [] = i; SZ[i] + = SZTjJ

max depth ever: 1092 N

depth inc by 9 at every merge of tree with 'p'

to another tree size of the whole tree is least double of size (T1): no of a size (Tz) > Size (II)

size of tree can double at most log2N times

proof page

every merge > at least doubling nery 8x 4x 2x and no of murges = logzN max nodes in 1 tree is n and since depth increases by 2 for every merge max depth = 10g2 N init find connected wion O(N) O(1092N) O(1092N) fime comp IMPROVEIL

Weighted Quickunion w/ Path compression · when performing find, componers the path · id of the whole component is the same at the end right after computing the noot of p, set the id of each node on the path to the 1007 2 pass implementation → add second (orap to find() to set the id[] of each examined node to the root (B) 1 pass variant - make every other node point to its grandparent id x y 7 4 Z Z X = A14[x] = [d(id[x]] = Z X = Z (i = id[x]) time (nit find complexity O(N) log*N connected union log*N log*N

	Mtimus, N nodus							
	ALL TOGETHER NOW							
WCTC umtrase	Quickfind MN	Quick Union MN	Weighted Quick Union	n W/Path N+Mlog=N				
time complexity	M = no of union - find operations							
	for 1011 unions	w/ 10 ¹¹ obj	→ Quickfind: 300 WQUPC: 6 se	o yrs conds				

```
E log E
                              Back to Kruskals
          arrange edges in inc weight
      (1)
          start with the beginning
          for each edge -> fund
     (3)
                                                          if false
                                          connected
                                          union
           use id to keep track
public class KruskalMST
  private Queue<Edge> mst = new Queue<Edge>();
  public KruskalMST(EdgeWeightedGraph G)
                                                          build priority queue
                                                          (or sort)
     MinPQ < Edge > pq = new MinPQ < Edge > (G.edges()); O(|E|)
                              no edges minedeao(IVI)
     UF uf = new UF(G.V()):
     while (!pq.isEmpty() && mst.size() < G.V()-1)
                                      O(|E| log|E|)
        Edge e = pq.delMin();
                                                          greedily add edges to MST
        int v = e.either(), w = e.other(v);
        if (!uf.connected(v, w))
                                      O(|E| log*|V|)←
                                                          edge v-w does not create cycle
```

 $O(|V| \log^*|V|) \leftarrow$

O(|V|)

Overall: O(|E| log|E|)

merge sets

add edge to MST

uf.union(v, w);

mst.enqueue(e);

public Iterable<Edge> edges()

return mst; }

}