

Video 18A

FET

18.6

FET amplifiers-ac amplifier

Equivalent

Circuit

Where **Transconductance**

$$g_m = dI_D/dV_{GS}$$

$$= i_{D}/u_{GS}$$

 $r_i \approx R_G$ can be made very big

$$r_o \approx R_D$$
 all for $r_d >> R_D$

and the small letters refer to

only the AC part (e.g. $u_{\rm DD}$ =0)

A negative feedback amplifier

 Feedback can be used not only to stabilise the biasing conditions of a circuit, but also its <u>(low)</u> voltage gain

voltage gain =
$$\frac{v_o}{v_i} \approx -\frac{R_D}{R_S}$$

$$r_i \approx R_1 // R_2$$

$$r_0 \approx R_D$$

characteristics set by <u>stable passive components</u>

Bipolar junction transistors

- Introduction
- An overview of bipolar transistors
- Bipolar transistor operation
- A simple amplifier
- Bipolar transistor characteristics
- Bipolar amplifier circuits
- Bipolar transistor applications
- Circuit examples

An overview of bipolar transistors

19.2

- FET is a single pn-junction
 - control is due to an electric field or potential at gate,
- Bipolar transistor has two pn-junctions
 - control is considered to be due to a current at the base
 - Current into one terminal determines the current between two others
 - As with a FET, a
 bipolar transistor
 can be used as a
 'control device'

Neil Storey, Electronics: A Systems Approach, 5th Edition © Pearson Education Limited 2013

- Relationship between the collector current and the base current in a bipolar transistor
 - approximately linear
 - Collector currentgenerally >> base current
 - the device providescurrent gain

Construction

two polarities: ₀npn and pnp

(a) An npn transistor

(b) An pnp transistor

Bipolar transistor operation

- We will consider npn transistors
 - pnp devices are similar but with different polarities of voltage and currents
 - when using npn transistors
 - collector is normally more positive than the emitter
 - *V_{CF}* might be a few volts
 - device resembles two back-to-back diodes but has very different characteristics
 - with the base open-circuit negligible current flows from the collector to the emitter

- If the base is made more positive than the emitter
 - This forward biases the base-emitter junction
 - The base region is lightly doped and very thin
 - Because it is lightly doped, the current produced is mainly electrons flowing from the emitter to the base
 - Because the base region is thin, most of the electrons entering the base get swept across the base-collector junction (by E field there) into the collector
 - This produces a collector current (I in opposite direction of electron motion) that is much larger than the base current – this gives current amplification

NPN ⇒ Not Pointing iN Negative-Positive-Negative = on

Transistor action

Set the way-back machine, Sherman

A NPN transistor!

- Off state,
 - Electrons emitted but shielded from +V_C by grid that is at ground or slightly negative –V_G
 - Only a few make it to collector

On state

- Emitted electrons accelerate towards grid at +V_G
- Most pass through the grid (a few electrons collected)
- Remainder see +V_C (>V_G), and accelerate towards it
- Large number of electrons collected at collector.
- Small Base current, large Collector→Emitter current 18.10

Neil Storey, Electronics: A Systems Approach, 5th Edition © Pearson Education Limited 2013

NPN transistor in "on" bias state

- Bias creates current flow from emitter to collector
- Electrons in collector recombine with holes from battery
- Electrons in emitter get repelled and pushed into base by electrons from battery
- Very few recombine in base. The few that do, create the small base current
- Most get pushed into the depletion region of the base-collector
- There they accelerate through the electric field into the collector
- Get large, continuous I_{CE} current

Is it a current or voltage device? Answer: Yes

- How do I increase I_B?
- Increase the forward bias (I_B = I_{BS}·e^{40·V_{BE}})
 - Where I_{RS} is a constant for the device
 - This lowers the base-emitter pn-barrier
 - This also makes the depletion region smaller
- More electrons are pushed through barrier
- I_C increases proportionately with I_B

Behaviour can be described by the current gain, h_{fe} or by the transconductance, g_m of the device

The AC gain of the device $i_c = h_{fe} \cdot i_b$ ($I \Rightarrow DC$, $i \Rightarrow AC$, or $\triangle I$)

Looks like a diode since I_C is \approx linear with I_B ! Note g_m depends on where device is operated $(I_C \text{ and } I_E)$

(b) Relationship between output current and input voltage

Video 19A

19.4

- A simple amplifier $(\pm u_i)$
- The circuit shows a simple amplifier
 - R_B is used to 'bias' the transistor by injecting an appropriate base current
 - Forward biases B-E
 - C is a coupling capacitor and is used to couple the AC signal while preventing external circuits from affecting the bias

Base more +, increase i_C and more drop across $R_C \Rightarrow u_0$ decreases (inverting)

This is an AC-coupled amplifier

Bipolar transistor characteristics

19.5

Transistor configurations

- Transistors can be used in a number of configurations
- Most common is as shown
- Emitter terminal is common to input and output circuits
- This is a common-emitter configuration
- We will look at the characteristics of the device in this configuration

Input characteristics

- The input takes the form of a forwardbiased pn junction
- The input
 characteristics are
 therefore similar to
 those of a
 semiconductor diode

Output characteristics

- region near to the origin is the saturation region
- this is normally avoided in linear circuits
- slope of lines
 represents the
 output resistance
 (r_o)

$$V_{CC}$$
 V_{CC}
 V

$$V_o = V_{CC} - I_C \cdot R_C$$
 $v_o = 0 - i_c \cdot R_c$

Choice of operating point in a simple amplifier

Neil Storey, Electronics: A Systems Approach, 5th Edition © Pearson Education Limited 2013

Transfer characteristics

- can be described by either the current gain or by the transconductance
- DC current gain h_{FE} or β is given by I_C/I_B
- AC current gain h_{fe} is given by i_c/i_b
- transconductance g_m (=dI_C/dV_{BE}) is given approximately by $g_m \approx 40 \cdot I_C \approx 40 \cdot I_E$ siemens (Since $I_C \approx Constant \cdot e^{40V_{BE}}$)

- the units of g_m are those of admittance
- therefore $1/g_m$ has the units of resistance
- the quantity $1/g_m$ is termed the **emitter** resistance r_e
- therefore $r_e = \frac{1}{g_m} \approx \frac{1}{40I_C} \approx \frac{1}{40I_E} \Omega$

Simple equivalent circuits for a bipolar transistor

Base current control $v_{be} \qquad h_{ie} \qquad h_{fe}i_{b} \qquad v_{ce}$ Base voltage producing a base current control $v_{be} \qquad h_{ie} \qquad h_{ge}i_{b} \qquad v_{ce}$

(b)

V_{CE} affects the base bias Called the Early effect

Limitations of the simple models

- While the simple models shown above give a reasonable representation of the behaviour of devices they do not show the effects of the output voltage on the input (as shown here)
- This can be modelled by the reverse transfer ratio h_{re}

The hybrid-parameter model (accounting for Early effect)

The hybrid-π model

- gives a better representation at high frequencies
- High $f \Rightarrow$ base, emitter and collector coupled capacitively

Bipolar transistors at high frequencies

BJT parameters for common emitter configuration (subscript _e)

Input_i Output_o Forward_f Reverse_r

h _{FE}	DC gain	I_{C}/I_{B}	
h_{fe}	AC gain	$i_{\rm c}/i_{\rm b}$	h _{FE} ≈h _{fe} (mostly)
g _m	Transconductance	$\Delta I_{\rm C} / \Delta V_{\rm BE} = i_{\rm c} / v_{\rm be}$	$\sim 40 \cdot I_C \approx 40 \cdot I_E$
h _{ie}	Small signal input resistance	$\Delta V_{BE} / \Delta I_{B} = v_{be} / i_{b}$	$\sim 1 / (40 \cdot I_B) \Omega \approx h_{fe} / (40 \cdot I_C)$
h _{oe}	Output admittance (1/r _o)	$\Delta I_{\rm C} / \Delta V_{\rm CE} = i_{\rm c} / v_{\rm ce}$	
	where r_o = Slope in the active region		
r _e	Emitter resistance	$\Delta V_{BE} / \Delta I_{C} = v_{be} / i_{c} = 1/g_{m}$	$\approx v_{\rm be} / i_{\rm e}$ that is, $h_{\rm ie} = h_{\rm fe} \cdot r_{\rm e}$
h _{re}	Early effect (V _{CE} affects bias V _{BE})	$\Delta V_{CE} / \Delta V_{BE}$	

$$h_{FE} = \frac{I_C}{I_B}$$

$$I_E = I_C + I_B = (h_{FE} + 1) \cdot I_B$$
but because $h_{FE} >> 1$,
$$I_E \approx h_{FE} \cdot I_B = I_C$$

$$I_B = I_{BS} \cdot e^{40 \cdot V_{BE}}$$
 where I_{BS} is constant
$$I_C = h_{FE} \cdot I_B = h_{FE} \cdot I_{BS} \cdot e^{40 \cdot V_{BE}}$$

$$g_m = \frac{\Delta I_C}{\Delta V_{BE}} = \frac{dI_C}{dV_{BE}} = 40 \cdot h_{FE} \cdot I_{BS} \cdot e^{40 \cdot V_{BE}}$$

$$g_m = \frac{40 \cdot I_C}{\Delta V_{BE}} \approx 40 \cdot I_C$$

BJT parameters for common emitter configuration (subscript _e)

Key points

- Bipolar transistors are widely used in both analogue and digital circuits
- They can be considered as either voltage-controlled or current-controlled devices
- Their characteristics may be described by their current gain or by their transconductance
- Many amplifier circuits use transistors in a common-emitter configuration where the input is applied to the base and the output is taken from the collector

Next time: Bipolar junction transistors

- Introduction
- An overview of bipolar transistors
- Bipolar transistor operation
- A simple amplifier
- Bipolar transistor characteristics
- Bipolar amplifier circuits

19.6

Bipolar amplifier circuits

Analysis of a simple amplifier

- Earlier we looked at a simple amplifier
- This is an AC-coupled amplifier
- It is convenient to look at its
 DC (or quiescent) behaviour
 separately from its
 AC (or small signal) behaviour

DC analysis of a simple amplifier

Example – see Example 19.1 from course text
Determine the quiescent collector current and the quiescent output voltage of the following circuit, given that the h_{FF} of the transistor is 100

Example (continued)

- The base-to-emitter voltage V_{BE} is approximately 0.7 V.
- Therefore

$$I_B = \frac{V_{CC} - V_{BE}}{R_B} = \frac{10 - 0.7 \text{ V}}{910 \text{ k}\Omega} = 10.2 \,\mu\text{A}$$

$$I_C = h_{FE}I_B = 100 \times 10.2 \,\mu\text{A} = 1.02 \,\text{mA}$$

and

$$V_0 = V_{CC} - I_C R_C = 10 - 1.02 \times 10^{-3} \times 4.7 \times 10^3 \approx 5.2 \text{ V}$$

Small signal analysis of an amplifier

- To determine the small-signal behaviour of the circuit, we first construct a small-signal equivalent circuit
 - We start with our model of the transistor
 - Then add the other components

From the equivalent circuit,

$$V_{be} = V_i$$

and therefore

$$v_o = -g_m v_{be} \left(\frac{1}{h_{oe}} // R_C \right) = -g_m v_i \left(\frac{1}{h_{oe}} // R_C \right)$$

SO

voltage gain =
$$\frac{v_o}{v_i} = -g_m \left(\frac{1}{h_{oe}} // R_C \right) = -g_m \frac{R_C}{h_{oe} R_C + 1}$$

Usually,
$$1/h_{oe} >> R_C$$
, so voltage gain = $\frac{v_o}{v_i} = -g_m R_C = -\frac{R_C}{r_e}$

voltage gain =
$$\frac{v_o}{v_i} = -g_m R_C = -\frac{R_C}{r_e}$$

Had h_{FE} = 100 and h_{oe} = 100 μ S, calculated $I_E \approx I_C$ = 1.02 mA, I_B =10.2 μ A So we need to get g_m for the gain, and h_{ie} , for the input resistance

■ Same Example — see Example 19.2 from course text Determine the small signal voltage gain, input resistance and output resistance of the following circuit, given that $h_{fe} = 100$ and $h_{oe} = 100 \mu S$

Example (continued)

The small signal equivalent circuit and we want g_m and h_{ie}

Definitions:

$$g_{m} = \frac{i_{c}}{v_{be}} \Rightarrow i_{c} = g_{m} \cdot v_{be}$$

$$h_{fe} = \frac{i_{c}}{i_{b}} \Rightarrow i_{c} = h_{fe} \cdot i_{b}$$

$$then i_{b} \cdot h_{fe} = g_{m} \cdot v_{be}$$

$$h_{ie} = \frac{v_{be}}{i_{b}} \Rightarrow i_{b} = \frac{v_{be}}{h_{ie}}$$

$$so \frac{v_{be}}{h_{ie}} \cdot h_{fe} = g_{m} \cdot v_{be}$$

$$or h_{ie} = \frac{h_{fe}}{g}$$

Remember:

$$I_{B} = I_{BS} \cdot e^{40 \cdot V_{BE}}$$

$$g_{m} = \frac{i_{c}}{v_{be}} = \frac{\Delta I_{C}}{\Delta V_{BE}} = \frac{\partial \left(h_{FE} \cdot I_{B}\right)}{\partial V_{BE}} = 40 \cdot I_{C}$$

And:

$$h_{ie} = \frac{h_{fe}}{g_m}$$

We first need to establish q_m and h_{ie} . From the earlier $|_{v_i}$ example $I_F \approx I_C = 1.02 \text{ mA}$ Therefore

$$g_m = \frac{dI_c}{dv_{be}} \approx 40 \cdot I_C \approx 40 \cdot I_E \approx 40.8 \text{ mS}$$

$$g_m = \frac{dI_c}{dv_{be}} \approx 40 \cdot I_C \approx 40 \cdot I_E \approx 40.8 \text{ mS}$$
 $h_{ie} \approx \frac{h_{fe}}{40 I_E} \approx \frac{100}{40 \times 1.02 \times 10^{-3}} \approx 2.45 \text{ k}\Omega$

Voltage gain

voltage gain =
$$-g_m \frac{R_C}{h_{oe} R_C + 1} = -40.8 \times 10^{-3} \frac{4700}{10 \times 10^{-6} \times 4700 + 1} \approx -183$$

or, using the approximation

voltage gain ≈
$$-g_m R_C = -40.8 \times 10^{-3} 4700 \approx -192$$

Given all the \approx , this seems a reasonable approximation

Input resistance

- from the equivalent circuit the input resistance is simply R_B//h_{ie}
- Since $R_B >> h_{ie}$ $r_i = R_B // h_{ie} \approx h_{ie} \approx 2.4 \text{ k}\Omega$

Output resistance

- from the equivalent circuit the output resistance is R_C //(1/ h_{oe})

$$r_{\rm o} = R_{\rm C} //(1/h_{\rm oe}) \approx 4700 //100,000 \approx 4.5 \,\rm k\Omega$$

- Since $R_C << 1/h_{oe}$ then $R_C //(1/h_{oe}) \approx R_C$ and therefore $r_o \approx R_C$

Summary: bipolar transistor-no feedback

DC-large signal

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B}} :$$

$$I_{C} = h_{FE}I_{B}$$

$$V_{o} = V_{CC} - I_{C}R_{C}$$

$$\frac{v_o}{v_i} = -g_m \cdot \frac{R_C}{h_{oe} \cdot R_C + 1} \qquad R_C << \frac{1}{h_{oe}} \implies \frac{v_o}{v_i} \approx -g_m \cdot R_C$$

$$r_i = \frac{h_{ie}}{\frac{h_{ie}}{R_B} + 1} \qquad R_B >> h_{ie} \implies r_i \approx h_{ie}$$

$$r_o = \frac{R_C}{h_{oe} \cdot R_C + 1} \qquad R_C << \frac{1}{h_{oe}} \implies r_o = R_C$$

19.39

Neil Storey, Electronics: A Systems Approach, 5th Edition © Pearson Education Limited 2013

Problems with this circuit

AC gains depend on:

Properties of transistor

And since $g_m \approx 40 \cdot I_C$, $v_o/v_i \approx -40 \cdot V_{RC}$

the signal gain changes with DC operating point

 R_L interacts with R_C to change gain

AC-small signal
$$\frac{v_o}{v_i} = -g_m \cdot \frac{R_C}{h_{oe} \cdot R_C + 1} \qquad R_C << \frac{1}{h_{oe}} \Rightarrow \qquad \frac{v_o}{v_i} \approx -g_m \cdot R_C$$

$$r_i = \frac{h_{ie}}{\frac{h_{ie}}{R_B} + 1} \qquad R_B >> h_{ie} \Rightarrow \qquad r_i \approx h_{ie}$$

$$r_o = \frac{R_C}{h_{oe} \cdot R_C + 1} \qquad R_C << \frac{1}{h_{oe}} \Rightarrow \qquad r_o = R_C$$
19.40

Problems with this circuit

AC gains depend on:

Properties of transistor

And since $g_m \approx 40 \cdot I_C$, $V_o/V_i \approx -40 \cdot V_{RC}$

the signal gain changes with DC operating point

 R_L interacts with R_C to change gain

AC-small signal
$$\frac{v_o}{v_i} = -g_m \cdot \frac{R_C}{h_{oe} \cdot R_C + 1} \qquad R_C << \frac{1}{h_{oe}} \Rightarrow \frac{v_o}{v_i} \approx -g_m \cdot R_C$$

$$r_i = \frac{h_{ie}}{\frac{h_{ie}}{R_B} + 1} \qquad R_B >> h_{ie} \Rightarrow r_i \approx h_{ie}$$

$$r_o = \frac{R_C}{h_{oe} \cdot R_C + 1} \qquad R_C << \frac{1}{h_{oe}} \Rightarrow r_o = R_C$$
19.41

The use of feedback

 Feedback can be used to overcome the effects of device variability. Consider the following circuits

How does this work?

- As $v_i \approx v_b$ rises, v_{be} forward bias increases and more i_b flows
- This causes more current, i_c, to flow
- This increases the voltage at the top of R_F (catches up to v_i)
- And this reduces the v_{be} forward bias
- Voltage at the top of R_E tracks $v_b \approx v_i$, and reduces gain

19.43

Analysis of amplifier with feedback

- See Example 19.3 from course text
 Determine the quiescent voltages and currents in the following circuit
- See Example 19.4 from course text
 Determine the small-signal behaviour of the following circuit

Results: Bipolar transistor-with feedback

DC-large signal

$$V_B \approx V_{CC} \frac{R_2}{R_1 + R_2}$$

$$V_E = V_B - V_{BE}$$

$$V_{RE} \approx \text{constant} \approx 0.7 \text{V}$$

$$I_{\scriptscriptstyle B} << I_{\scriptscriptstyle C} pprox I_{\scriptscriptstyle E}$$

$$I_E \approx I_C = \frac{V_E}{R_E}$$

$$V_o = V_{CC} - I_C R_C$$

 $I_E \approx I_C = \frac{V_E}{R_E}$ Gain, r_i and r_o only depend on passive components

AC-small signal
$$\frac{v_o}{v_i} = -\frac{R_C}{R_E + \frac{1}{g_m}}$$

$$R_E >> \frac{1}{g_m}$$

$$\Rightarrow \frac{v_o}{v_i} \approx -\frac{R_C}{R_E}$$

$$R_E >> \frac{1}{g_m}$$

$$R_m$$
 V_i R_E

$$r_b = h_{ie} + \left(h_{fe} + 1\right)R_E$$

$$h_{fe} \cdot R_E >> h_{ie} >> 1$$

$$r_b \approx h_{fe} \cdot R_E$$

$$r_i = R_1 \parallel R_2 \parallel r_b$$

$$r_b >> R_1 \approx R_2 \implies r_i \approx$$

$$r_i \approx \frac{R_1 \cdot R_2}{R_1 + R_2}$$

$$r_o = R_C \parallel \left(\frac{1}{h_{oe}} + R_E \right)$$

$$r_{b} = h_{ie} + (h_{fe} + 1)R_{E} \quad h_{fe} \cdot R_{E} >> h_{ie} >> 1 \implies r_{b} \approx h_{fe} \cdot R_{E}$$

$$r_{i} = R_{1} \parallel R_{2} \parallel r_{b} \qquad r_{b} >> R_{1} \approx R_{2} \implies r_{i} \approx \frac{R_{1} \cdot R_{2}}{R_{1} + R_{2}}$$

$$r_{o} = R_{C} \parallel \left(\frac{1}{h_{oe}} + R_{E}\right) \qquad R_{C} << \frac{1}{h_{oe}} + R_{E} \implies r_{o} \approx R_{C}$$

$$19.45$$

Neil Storey, *Electronics: A Systems Approach*, 5th Edition © Pearson Education Limited 201

Reduces the amount of AC negative feedback while maintaining DC feedback.

This <u>increases the small-signal gain of the circuit</u> but <u>does not affect the DC feedback</u>,

This provides stability to the bias conditions of the circuit

Use of a decoupling capacitor

A decoupling capacitor removes small-signal feedback

19.46

 Small-signal equivalent circuit of an amplifier using a decoupling capacitor (Shorts out R_E in signal band)

Remember $r_e = 1/g_m$ and gain was $g_m \cdot R_c$

- A comparison of the frequency responses of various amplifiers
 - for simplicity, the figure shows the responses of amplifiers that are not fitted with coupling capacitors

With an ac coupling capacitor

Summary

- DC and small-signal (AC) gains no feedback
 - Gain depends on characteristics of specific transistor
- DC and small-signal gains with negative feedback
 - Small-gain but depends on stable passive resistors
- Decoupling capacitor
 - Claw back some of the lost gain within the signal band