Real time optimization of a FTL transportation system

N. W. Ousmane Ali, Jean-François Côté, Leandro C. Coelho

Université Laval

14 Mai 2019

Outline

- 1. Introduction
- 2. Problem definition
- 3. Mathematical formulation
- 4. ALNS algorithm
- 5. Computational experiments
- 6. Conclusion

Introduction

- Time windows assignment [?]
- City logistics traffic [Coelho et al., 2016]
- Loading of the truck [?]
- Routing of the vehicles [Toth and Vigo, 2014]
- Customer satisfaction

Introduction

- Time windows assignment [?]
- City logistics traffic [Coelho et al., 2016]
- Loading of the truck [?]
- Routing of the vehicles [Toth and Vigo, 2014]
- Customer satisfaction
 - Delivery within desired time window [?]

Introduction

- Time windows assignment [?]
- City logistics traffic [Coelho et al., 2016]
- Loading of the truck [?]
- Routing of the vehicles [Toth and Vigo, 2014]
- Customer satisfaction
 - Delivery within desired time window [?]
 - Reduction of service time [?], [?]

Introduction

.0

- Time windows assignment [?]
- City logistics traffic [Coelho et al., 2016]
- Loading of the truck [?]
- Routing of the vehicles [Toth and Vigo, 2014]
- Customer satisfaction
 - Delivery within desired time window [?]
 - Reduction of service time [?], [?]
 - Additional services [?]

- Time windows assignment [?]
- City logistics traffic [Coelho et al., 2016]
- Loading of the truck [?]
- Routing of the vehicles [Toth and Vigo, 2014]
- Customer satisfaction
 - Delivery within desired time window [?]
 - Reduction of service time [?], [?]
 - Installation service

Introduction

Logistic companies use the following installation strategies

- Installation/assembly is performed by the deliverymen
- Installation/assembly is performed after delivery by a dedicated crew

Introduction

Logistic companies use the following installation strategies

- Installation/assembly is performed by the deliverymen
- Installation/assembly is performed after delivery by a dedicated crew
- Installation/assembly can be performed by either a deliveryman or an installer

Introduction

Logistic companies use the following installation strategies

- Installation/assembly is performed by the deliverymen
- Installation/assembly is performed after delivery by a dedicated crew
- Installation/assembly can be performed by either a deliveryman or an installer

What is the DIRPTW?

The DIRPTW is a VRPTW variant with synchronization constraints

- Installation by either deliverymen or installers
- Deliverymen and installers have different installation times
- Deliverymen have higher installation times
- Installer vehicles are faster, smaller, and cheaper than delivery vehicles

Constraints

- Each customer is served by exactly one delivery vehicle
- A deliveryman must serve a customer within its time window
- An installer must serve a customer within its time window after the delivery
- Each vehicle can wait at the customer until the time window opens
- Each installation is either performed by a deliveryman or an installer

Definition of the DIRPTW

Figure: Solution of a MCDIRP with seven customers

Variables

Introduction

- x_{ijk} equal to 1 if a deliveryman travels from i to j using vehicle k, and 0 otherwise
- y_{ijk} equal to 1 if an installer travels from i to j using vehicle k, and 0 otherwise
- z_i equal to 1 if a deliverymen installs at customer i location, and 0 otherwise

Subsets

- D is the set of delivery nodes
- I is the set of installation nodes
- ullet D^I is the subset of delivery nodes that require an installation $(D^I\subseteq D)$
- ullet n(i) is the delivery node associated with the installation node i
- ullet l(j) is the installation node associated with the delivery node j

Three-index formulation (1)

$$\min \sum_{k \in K^D} \sum_{(i,j) \in A^D} c_{ijk} x_{ijk} + \sum_{k \in K^I} \sum_{(i,j) \in A^I} c_{ijk} y_{ijk}$$
 Usage of vehicles
$$\begin{bmatrix} \sum_{j \in \delta^+(0)} x_{0jk} \leq 1 & k \in K^D, j \in D \\ \sum_{j \in \delta^+(0)} y_{0jk} \leq 1 & k \in K^I, j \in I \end{bmatrix}$$
 Assignment to deliverymen
$$\begin{cases} \sum_{k \in K^D} \sum_{j \in \delta^+(i)} x_{ijk} = 1 & i \in D \\ \sum_{k \in K^D} \sum_{j \in \delta^+(i)} x_{ijk} - \sum_{j \in \delta^+(i)} x_{ijk} = 0 & i \in N, \ k \in K^D \\ \sum_{j \in \delta^-(i)} y_{jik} - \sum_{j \in \delta^+(i)} y_{ijk} = 0 & i \in I, \ k \in K^I \end{cases}$$
 Capacity constraints
$$\begin{cases} \sum_{i \in D} q_i \sum_{j \in \delta^+(i)} x_{ijk} \leq Q & k \in K^D \\ \sum_{k \in K^I} \sum_{j \in \delta^+(i)} y_{ijk} = 1 - z_i & i \in I \end{cases}$$
 Flexibility of installation
$$\begin{cases} \sum_{k \in K^I} \sum_{j \in \delta^+(i)} y_{ijk} = 1 - z_i & i \in I \end{cases}$$

Three-index formulation (2)

$$S_{j} \geq S_{i} + s_{i}^{D} + \sum_{k \in K^{D}} t_{ijk} x_{ijk} - M \left(1 - \sum_{k \in K^{D}} x_{ijk}\right) \qquad (i,j) \in A^{D}, i \not\in D^{I}$$

$$S_{j} \geq S_{i} + s_{i}^{D} + \sum_{k \in K^{D}} (s_{ik}^{I} + t_{ijk}) x_{ijk} - M \left(2 - \sum_{k \in K^{D}} x_{ijk} - z_{l(i)}\right) \qquad (i,j) \in A^{D}, i \in D^{I}$$

$$S_{j} \geq S_{i} + \sum_{k \in K^{I}} (s_{ik}^{I} + t_{ijk}) y_{ijk} - M \left(1 - \sum_{k \in K^{I}} y_{ijk}\right) \qquad (i,j) \in A^{I}$$

$$S_{i} \geq S_{n(i)} + s_{n(i)} \qquad \qquad i \in I$$

$$a_{i} \leq S_{i} \leq b_{i} \qquad \qquad i \in N$$

$$a_{ijk} \in \{0,1\} \qquad \qquad (i,j) \in A, k \in K^{D}$$

$$y_{ijk} \in \{0,1\} \qquad \qquad (i,j) \in A, k \in K^{I}$$

$$z_{i} \in \{0,1\} \qquad \qquad i \in I.$$

Adaptive Large Neighorhood Search

First introduced in ? for the pickup and delivery routing problem

- Initial solution
- Destroy operators
- Repair operators

Adaptive Large Neighorhood Search

First introduced in ? for the pickup and delivery routing problem

- Initial solution
- Destroy operators
 - Random delivery removal
 - Related delivery removal
- Repair operators
 - Greedy sequential insertion
 - Regret-k insertion

Preprocessing procedure for insertion

Forward time slack [?]

$$F_i = \min_{i \le k \le \gamma + 1} \sum_{i$$

- \bullet γ : number of nodes in a route
- A_i: arrival time at node i
- B_i: beginning service time at node i
- W_i: waiting time at node i

Addition of the waiting time at node *i*

$$F_i = \min_{i \le k \le \gamma + 1} \sum_{i (2)$$

 $W_i = \max\{0, a_i - A_i\}$ for a delivery node i $W_{l(i)} = \max\{0, B_i + s_i - A_{l(i)}\}$ for its installation node l(i)

Delivery and installation on different routes

- compute the arrival time at all delivery nodes of the route
- compute the arrival time at all installation nodes of the route
- compute $F_{l(i)}$ using equation (2)
- compute F_i as:

$$F_i = \min \left\{ \min_{1 < k \le \gamma + 1} \sum_{i < p \le k} W_p + (b_k - B_k), \ b_i - B_i - s_i, \ F_{l(i)} - W_{l(i)} \right\} + W_i$$

Illustration of the forward time slack computation

Instances generation

Introduction

Modification of Solomon instances [?] for the VRPTW

- Customers: 15, 25, 50, 100
- Speeds of each delivery/installation vehicle: 1/2
- Costs of the delivery/installation vehicles: 2/1, 5/1 and 10/1
- Efficiency of the deliverymen when installing: [30%, 50%], [60%, 80%]
- Percentage of customers with installation: 20%, 50% and 75%

ALNS parameters tuning

ALNS parameters tuning

Operators available

- Destroy operators: random and related removal
- Repair operators: greedy sequential (seq), regret-3, regret-m, regret-3n, regret-mn

ALNS algorithm

Operators selection

Introduction

Table: Quality of the solution when combining the operators

Combination of operators	Gap (%)	Time (s)	% of improvement
seq, regret-3, regret-m, regret-3n, regret-mn, related	-1.20	643.7	86.9
seq, regret-3, regret- m , regret- $3n$, regret- mn , random, related	-1.08	648.5	85.2
seq, regret- m , regret- mn , random	-0.98	690.6	84.3
seq, regret-3, regret- m , regret- $3n$, regret- mn , random	-0.96	649.5	83.5
seq, regret-m, regret-mn, random, related	-1.10	680.8	82.6
seq, regret-3, regret-3n, related	-0.62	531.1	82.6
seq, regret-m, regret-mn, related	-0.96	667.4	80.9
seq, regret-3, regret-3n, random, related	-0.59	535.9	79.1
regret-3, regret- mn , related	-0.80	708.4	78.3
regret-3, regret-m, related	-0.80	708.6	78.2
regret- $3n$, regret- mn , related	-0.80	712.2	78.3
seq, random	-0.36	132.3	78.3
seq, related	-0.35	131.1	78.3
seq, regret-3, regret-3n, random	-0.49	534.2	77.4
regret- m , regret- $3n$, related	-0.71	707.8	75.6
regret-3, regret- mn , random	-0.61	727.5	75.6
regret-3, regret- m , random	-0.60	732.0	75.6
regret-3, regret-m, random, related	-0.82	711.8	74.8
regret- $3n$, regret- mn , random, related	-0.82	712.6	74.8
regret-3, regret- mn , random, related	-0.82	714.8	74.8
regret- $3n$, regret- mn , random	-0.58	737.2	74.8
regret- m , regret- $3n$, random	-0.87	728.5	73.9
regret- m , regret- $3n$, random, related	-0.80	720.2	73.9
seq, random, related	-0.54	133.4	73.9

Table: Results for all instances

					[60%, 80%]								
Del	%Inst	Best(%)	Avg(%)	Del	Inst	Time(s)	Gap	Best(%)	Avg(%)	Del	Inst	Time(s)	Gap
cost													
	20%	0.0	0.2	3.3	0.2	51.3	16.5	0.0	0.2	3.2	0.1	51.7	15.6
2	50%	0.1	0.4	3.5	0.4	126.8	19.5	0.0	0.2	3.5	0.2	128.7	18.5
	75%	0.0	0.4	3.8	0.6	190.2	22.6	0.0	0.4	3.7	0.3	190.2	21.3
	20%	0.0	0.2	3.3	0.3	50.5	16.6	0.0	0.2	3.2	0.2	52.4	15.7
5	50%	0.0	0.3	3.4	0.6	128.5	19.3	0.0	0.3	3.3	0.4	129.1	19.0
	75%	0.0	0.4	3.5	0.9	200.3	21.6	0.0	0.5	3.5	0.7	203.4	21.5
	20%	0.0	0.2	3.2	0.4	51.0	17.1	0.0	0.2	3.1	0.2	52.5	16.0
10	50%	0.0	0.3	3.3	0.9	131.2	18.9	0.0	0.2	3.2	0.6	127.4	18.5
	75%	0.0	0.4	3.4	1.3	200.7	21.2	0.0	0.4	3.3	0.9	197.2	21.0
A	verage	0.0	0.3	3.4	0.6	125.6	19.2	0.0	0.3	3.3	0.4	125.8	18.6

Table: Results for all optimal instances

			2				5				10		
% of inst	Perf	Opt	Best (%)	Time	Gap	Opt	Best (%)	Time	Gap	Opt	Best (%)	Time	Gap
20	[30%, 50%]	30	0.1	9	37	29	0.1	5.9	37.6	26	0.1	8.5	36.7
20	[60%, 80%]	30	0.1	5.3	33.7	30	0.0	9.6	34.7	28	0.0	8.8	34.6
50	[30%, 50%]	27	0.2	10	43.8	24	0.2	13.9	41.8	22	0.1	13.5	39.2
	[60%, 80%]	25	0.1	8.1	39.2	21	0.2	7.2	38.8	23	0.1	8.4	39
75	[30%, 50%]	18	0.0	13.4	45.1	18	0.0	14.5	43.5	16	0.0	24.6	41.1
/5	[60%, 80%]	22	0.0	14.5	44.5	17	0.0	11.2	43	18	0.0	13.2	42.4
Solved		152				139	1			133			

Introduction

$$\sum_{k \in K^I} \sum_{j \in \delta^+(i)} y_{ijk} = 1 - z_i \qquad i \in I$$

Comparison when deliverymen efficiency are within [30%, 50%]

			20%				50%				75%	
Del	Opt	$z_i = 1$	$z_i = 0$	DIRPTW	Opt	$z_i = 1$	$z_i = 0$	DIRPTW	Opt	$z_i = 1$	$z_i = 0$	DIRPTW
cost												
2	28	909.6	908.6	864.2	26	722.6	803.3	696.1	17	896.1	1106.9	855.2
5	29	2247.8	2014.7	1972.4	24	2481.6	2107.0	2020.0	28	2107.9	1860.2	1709.8
10	26	4507.6	3875.3	3838.4	22	5008.6	3985.3	3899.5	16	5887.6	4174.9	4051.2

			20%				50%				75%	
Del	Opt	$z_i = 1$	$z_i = 0$	DIRPTW	Opt	$z_i = 1$	$z_i = 0$	DIRPTW	Opt	$z_i = 1$	$z_i = 0$	DIRPTW
cost												
2	27	635.0	719.9	633.4	24	619.6	794.6	640.3	21	913.2	1268.8	920.7
5	30	2256.3	2275.2	2182.8	21	1589.9	1724.3	1574.6	17	1446.8	1630.2	1424.9
10	28	4066.8	3868.1	3795.7	23	3052.3	3112.8	2972.6	18	3429.5	3299.0	3182.9

Introduction

$$\sum_{k \in K^I} \sum_{j \in \delta^+(i)} y_{ijk} \ = 0$$
 $i \in I$ Deliverymen make all installations

Comparison when deliverymen efficiency are within [30%, 50%]

			20%				50%				75%	
Del	Opt	$z_i = 1$	$z_i = 0$	DIRPTW	Opt	$z_i = 1$	$z_i = 0$	DIRPTW	Opt	$z_i = 1$	$z_i = 0$	DIRPTW
cost												
2	28	909.6	908.6	864.2	26	722.6	803.3	696.1	17	896.1	1106.9	855.2
5	29	2247.8	2014.7	1972.4	24	2481.6	2107.0	2020.0	28	2107.9	1860.2	1709.8
10	26	4507.6	3875.3	3838.4	22	5008.6	3985.3	3899.5	16	5887.6	4174.9	4051.2

			20%				50%				75%	
Del cost	Opt	$z_i = 1$	$z_i = 0$	DIRPTW	Opt	$z_i = 1$	$z_i = 0$	DIRPTW	Opt	$z_i = 1$	$z_i = 0$	DIRPTW
2	27	635.0	719.9	633.4	24	619.6	794.6	640.3	21	913.2	1268.8	920.7
5	30	2256.3	2275.2	2182.8	21	1589.9	1724.3	1574.6	17	1446.8	1630.2	1424.9
10	28	4066.8	3868.1	3795.7	23	3052.3	3112.8	2972.6	18	3429.5	3299.0	3182.9

Introduction

$$\sum_{k \in K^I} \sum_{j \in \delta^+(i)} y_{ijk} = 1$$
 $i \in I$ Deliverymen never install

Comparison when deliverymen efficiency are within [30%, 50%]

			20%				50%				75%	
Del	Opt	$z_i = 1$	$z_i = 0$	DIRPTW	Opt	$z_i = 1$	$z_i = 0$	DIRPTW	Opt	$z_i = 1$	$z_i = 0$	DIRPTW
cost												
2	28	909.6	908.6	864.2	26	722.6	803.3	696.1	17	896.1	1106.9	855.2
5	29	2247.8	2014.7	1972.4	24	2481.6	2107.0	2020.0	28	2107.9	1860.2	1709.8
10	26	4507.6	3875.3	3838.4	22	5008.6	3985.3	3899.5	16	5887.6	4174.9	4051.2

			20%				50%				75%	
Del	Opt	$z_i = 1$	$z_i = 0$	DIRPTW	Opt	$z_i = 1$	$z_i = 0$	DIRPTW	Opt	$z_i = 1$	$z_i = 0$	DIRPTW
cost												
2	27	635.0	719.9	633.4	24	619.6	794.6	640.3	21	913.2	1268.8	920.7
5	30	2256.3	2275.2	2182.8	21	1589.9	1724.3	1574.6	17	1446.8	1630.2	1424.9
10	28	4066.8	3868.1	3795.7	23	3052.3	3112.8	2972.6	18	3429.5	3299.0	3182.9

Introduction

$$\sum_{k \in K^I} \sum_{j \in \delta^+(i)} y_{ijk} \ = 1 - z_i \qquad \quad i \in I \quad {\sf Both \ can \ install}$$

Comparison when deliverymen efficiency are within [30%, 50%]

			20%				50%				75%	
Del	Opt	$z_i = 1$	$z_i = 0$	DIRPTW	Opt	$z_i = 1$	$z_i = 0$	DIRPTW	Opt	$z_i = 1$	$z_i = 0$	DIRPTW
cost												
2	28	909.6	908.6	864.2	26	722.6	803.3	696.1	17	896.1	1106.9	855.2
5	29	2247.8	2014.7	1972.4	24	2481.6	2107.0	2020.0	28	2107.9	1860.2	1709.8
10	26	4507.6	3875.3	3838.4	22	5008.6	3985.3	3899.5	16	5887.6	4174.9	4051.2

			20%				50%				75%	
Del	Opt	$z_i = 1$	$z_i = 0$	DIRPTW	Opt	$z_i = 1$	$z_i = 0$	DIRPTW	Opt	$z_i = 1$	$z_i = 0$	DIRPTW
cost												
2	27	635.0	719.9	633.4	24	619.6	794.6	640.3	21	913.2	1268.8	920.7
5	30	2256.3	2275.2	2182.8	21	1589.9	1724.3	1574.6	17	1446.8	1630.2	1424.9
10	28	4066.8	3868.1	3795.7	23	3052.3	3112.8	2972.6	18	3429.5	3299.0	3182.9

Managerial insights

- The proposed strategy is better than the traditional strategies
- No need for installation fleet in the following cases:
 - A small number of customers with very few having an installation regardless of the cost or the performance of the deliveryman
 - Low deliveryman cost, higher efficiency, medium size of customers
- Use a distinct installation fleet is better when:
 - Deliverymen efficiency are low and the cost range from medium to high
 - Deliverymen efficiency and cost are both high

Performance on the VRPMS instances set I

? studied the delivery and installation of large items

- Two distinct fleets are used
- A deliveryman and its installer arrival must be synchronized at a certain number of customer locations
- The installer must visit the customer within ten units of time after the start of the delivery service

Results on the VRPMS instances set

Performance on the VRPMS instances

			?			А	LNS		
	Best(%)	Del	Inst	Time (s)	Best(%)	Avg (%)	Del	Inst	Time (s)
Average	6.9	8.4	3.7	63681.0	0.0	0.3	7.6	3.4	170.7

Introduction

Conclusion

Results on the VRPMS instances set

Performance on the VRPMS instances

			?		ALNS					
	Best(%)	Del	Inst	Time (s)	Best(%)	Avg (%)	Del	Inst	Time (s)	
Average	6.9	8.4	3.7	63681.0	0.0	0.3	7.6	3.4	170.7	

Results for instances solved optimally with CPLEX

	?			ALNS					Exact method					
	Best (%)	Del	Inst	Time (s)	Best (%)	Avg (%)	Del	Inst	Time (s)	Opt	Gap(%)	Del	Inst	Time (s)
Average	3.0	9.1	4.3	33319.8	0.2	0.3	8.5	4.1	72.7	20.3	34.2	8.5	4.1	505.7
Solved	44				122				139					

Introduction

Conclusion

Performance on the VRPTWDST instances set I

- Drivers have different efficiency with their customers
- Drivers have specific travel and service times in order to model their familiarity with the customers to visit
- No synchronization constraints

Performance on the VRPTWDST instances set II

Table: Lower and upper bounds for the VRPTWDST for the secondary objective of minimizing travelled distance

		?			ALNS	Exact		
	Best (%)	Opt	Time	Best (%)	Opt	Time	Gap(%)	Opt
C1	0.0	28/90	6.9	0.0	28/90	33.7	22.0	28/90
C2	0.0	24/80	10.5	0.0	24/80	46.8	4.1	24/80
R1	2.4	0/120	94.7	0.2	4/120	37.6	28.7	8/120
R2	6.6	0/110	45.3	0.1	0/110	73.2	19.6	0/110
RC1	3.8	0/80	53.1	0.3	0/80	32.6	40.2	0/80
RC2	10.7	0/80	67.4	0.1	0/80	54.1	28.6	0/80
Average	3.9	-	52.8	0.1	-	46.9	24.0	-
Solved	Ĺ	52/560			56/560	60/560		

Conclusion

Introduction

- Novel distribution strategy proposed
- Insights about existing distribution and installation strategies
- An exact and heuristic algorithm to solve the DIRPTW
- New best-know and optimal solutions for the VRPMS and the VRPTWDST

Applications of the DIRPTW

Choose between a specialist and a generalist in the home care staff scheduling problem

References I

- L.C. Coelho, J. Renaud, and G. Laporte. Road-based goods transportation: a survey of real-world logistics applications from 2000 to 2015. INFOR: Information Systems and Operational Research, 54(2):79–96, 2016.
- P. Toth and D. Vigo, editors. <u>Vehicle Routing</u>. Monographs on Discrete Mathematics and Applications. MOS-SIAM Series on Optimization, Philadelphia, 2014.