Curtin University Department of Computing Quiz 1 – Semester 2, 2016

Subject:	Foundations of Computer Science	ce 2001
----------	---------------------------------	---------

Index No.: COMP2001

Name:

Student ID:

Practical Time:

Time Allowed: 45 MINUTES

- 1. Represent the following statements in a propositional logic. You are required to define all necessary **propositions and predicates** used in your answers.
 - (i) There is no largest positive integer.
 - (ii) All students in this class can remember Antoni's full name.
 - (iii) You will pass this quiz if you have attended all the lectures and tutorials.
 - (iv) You cannot drive a car if you are not taller than 5 feet unless you are older than 20 years old
 - (v) Every student in this class has a .unique student ID.

(5 marks)

2. State at least three approaches to prove: $p \rightarrow q$.

(5 marks)

3..

(a) Using the absorption rule

$$p \lor (p \land q) \equiv p; p \land (p \lor q) \equiv p$$

to prove the following assertion

$$(p \land (p \lor q \lor r)) \lor (p \land q \land r) \lor \neg p \equiv T \quad (Tauto \log y)$$
(4 marks)

- (b) **Prove or disprove** the following statements.
 - (i) If the sum of two numbers is positive, then both of them are positive. .
 - (ii) If Dr. Wanquan Liu is not teaching this unit (COMP2001) in this semester, I will get high distinction.
 - (iii) If $x \mod 8 \equiv 0$, then $x \mod 4 \equiv x \mod 2$ (6 marks)

- 4. Find the negations for the following propositions and **simplify them if possible.**
 - a) $\neg (\exists x \in D, \{(P(x) \lor Q(x)) \land R(x)\}) = ?$

b) $\neg (q \land (\neg p \lor q \lor r)) = ?$

c) $\neg(\forall \varepsilon > 0, \exists \delta > 0, (|x - x_0| < \delta \rightarrow |f(x) - f(x_0)| < \varepsilon)) = ?$ (5 marks)

.

Rule of Inference

Rule of Inference	Tautology	Name
$\frac{p}{\therefore (p \lor q)}$	$p \to (p \lor q)$	Addition
<u>(p ∧ q)</u> ∴ p	$(b \vee d) \to b$	Simplification
$\frac{p}{p \to q}$	$[\ p \wedge (p \to q)] \to q$	Modus Ponens
$ \begin{array}{c} \neg q \\ p \to q \\ \hline \vdots \neg p \end{array} $	$[\neg \ q \land (p \rightarrow q)] \rightarrow \neg \ p$	Modus Tollens
$ \begin{array}{c} p \to q \\ q \to r \\ \hline \therefore p \to r \end{array} $	$[(p \to q) \land (q \to r)]$ $\to (p \to r)$	Hypothetical syllogism
p∨q _¬p ∴ q	$[(p \lor q) \land \neg p] \to q$	Disjunctive syllogism

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$
$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$
$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

 $(p \land q) \land r \equiv p \land (q \land r)$