Computer Organization and Design (4th) by Hennessy, Patterson Chapter 6.3, Problem 1E

Step 1

a) Given data:

Average seek time = 11ms

Disk transfer rate = 34MB/Sec

Controller transfer rate = 480MB/Sec

Average time =?

Step 2

Average rotational delay = $\frac{0.5 \text{ rotation}}{7200RPM}$

 $= \frac{0.5 \text{ rotation}}{7200 \text{ RPM/60}}$

= 4.16 ms

Computer Organization and Design (4th) by Hennessy, Patterson Chapter 6.3, Problem 1E

Step 3

Average time = Average seek time + average rotational delay + transfer time + controller overhead

Average time =
$$11 \text{ms} + \frac{0.5}{7200/60} + \frac{1024}{34 \times 2^{30}} + \frac{1024}{480 \times 2^{30}/8}$$

= $11 + 4.16 + 2.87 \times 10^{-5} + 1.62 \times 10^{-5}$
= 15.160ms

:. Average time =15.160ms

Step 4

b) Given data:

Average seek time = 9ms

Disk transfer rate = 34MB/Sec

Controller transfer rate = 480MB/Sec

Average time = ?

Computer Organization and Design (4th) by Hennessy, Patterson Chapter 6.3, Problem 1E

Step 5

Average time =
$$9 \text{ ms} + \frac{0.5}{7200/60} + \frac{1024}{30 \times 2^{20}} + \frac{1024}{500 \times 2^{20}/8}$$

= $9 + 4.16 \times 10^{-3} + 3.25 \times 10^{-5} + 1.56 \times 10^{-5}$
= 13.2ms

∴ Average time =13.2ms

Computer Organization and Design (4th) by Hennessy, Patterson Chapter 6.3, Problem 3E

Step 1

The seek time is a dominant factor for all disk I/O time. Although RPM would make a significant contribution as well by doubling the block size, the RW time changes very little. Thus, block size does not seem to be critical.