Workshop on Algorithms for Dynamical Systems and Lyapunov Functions 17th-19th July 2013, Reykjavik University, Iceland

Tue Technische Universiteit Eindhoven University of Technology

Where innovation starts

Outline

- Setting
- Problem
- Existing approaches
- Proposed solution
- Examples

Systems

autonomous systems

$$\dot{x}(t) = Ax(t)$$
 $t \in \mathbb{R}_+$
 $x(t+1) = Ax(t)$ $t \in \mathbb{N}$ $x(t) \in \mathbb{R}^n$

systems with inputs

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m$$
$$x(t+1) = Ax(t) + Bu(t) \qquad x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m$$

systems with uncertainties

$$\dot{x}(t) \in \Phi(x(t), u(t))$$

$$x(t+1) \in \Phi(x(t), u(t))$$

$$\Phi: \mathbb{R}^n \times \mathbb{R}^m \rightrightarrows \mathbb{R}^n$$

$$\Phi(x, u) = \{Ax + Bu : A \in \mathcal{A}, B \in \mathcal{B}\}$$

$$\mathcal{A} = \operatorname{conv}(\{A_i\}_{i \in \mathbb{N}_{[1,q_A]}}) \mathcal{B} = \operatorname{conv}(\{B_i\}_{i \in \mathbb{N}_{[1,q_B]}})$$

Constraints

state constraints

$$x(t) \in \mathbb{X} \subset \mathbb{R}^n$$

$$t \in \mathbb{R}_+$$

$$t \in \mathbb{N}$$

input constraints

$$u(t) \in \mathbb{U} \subset \mathbb{R}^m$$

$$t \in \mathbb{R}_+$$

$$t \in \mathbb{N}$$

Invariance

admissible positively invariant sets
$$\dot{x}(t)=\Phi(x(t))$$
 $x(t)\in\mathbb{X}\subset\mathbb{R}^n$ $x(t+1)=\Phi(x(t))$

$$x(0) \in \mathcal{S} \subseteq \mathbb{X} \quad \Rightarrow x(t) \in \mathcal{S}, \qquad t \in \mathbb{R}_+$$

$$t \in \mathbb{N}$$

admissible λ -contractive sets

$$x(0) \in \mathcal{S} \subseteq \mathbb{X}$$
 \Rightarrow $\exists \lambda \geq 0 \text{ such that}$ $x(t) \in e^{-\lambda t} \mathcal{S}, t \in \mathbb{R}_+$ $\exists 0 \leq \lambda \leq 1 \text{ such that}$ $x(t) \in \lambda^t \mathcal{S}, t \in \mathbb{N}$

Invariance

admissible controlled invariant sets

$$\dot{x}(t) = \Phi(x(t), u(t)) \qquad x(t) \in \mathbb{X} \subset \mathbb{R}^n$$
$$x(t+1) = \Phi(x(t), u(t)) \qquad u(t) \in \mathbb{U} \subset \mathbb{R}^m$$

$$x(0) \in \mathcal{S} \subseteq \mathbb{X} \quad \Rightarrow \exists \quad f: \mathbb{X} \to \mathbb{U} \text{ such that}$$

$$\mathcal{S}$$
 is positively invariant w.r.t. $\dot{x}(t) = \Phi(x(t), f(x(t)))$ $x(t+1) = \Phi(x(t), f(x(t)))$

admissible controlled λ -contractive sets

$$x(0) \in \mathcal{S} \subseteq \mathbb{X} \quad \Rightarrow \exists \quad f: \mathbb{X} \to \mathbb{U} \text{ such that}$$

$$\exists \lambda \geq 0 \text{ such that} \quad \mathcal{S} \text{ is } \lambda \text{-contractive w.r.t.} \quad \dot{x}(t) = \Phi(x(t), f(x(t)))$$

$$\exists 0 \le \lambda \le 1 \text{ such that } \mathcal{S} \text{ is } \lambda \text{--contractive w.r.t. } x(t+1) = \Phi(x(t), f(x(t)))$$

Problem

- a. Compute the maximal λ -contractive set / the maximal controlled λ contractive set
- b. Compute a λ -contractive / controlled λ -contractive set of a non-trivial size and of a specified complexity

Polyhedral sets

Polytopic sets

$$\mathcal{S} = \{ x \in \mathbb{R}^n : Px \le 1_p \}$$

Half-space description

- 1. $P \in \mathbb{R}^{p \times n}$ has at least n+1 rows
- 2. S is in general non–symmetric
- 3. P is of full row–rank and S includes the origin in its interior

Polyhedral sets

Polytopic sets

$$\mathcal{S} = \operatorname{conv}(\{[V]_i\}_{i \in \mathbb{N}_{[1,q]}})$$

Vertex description

- 1. $V \in \mathbb{R}^{n \times q}$ has at least n+1 columns
- 2. S is in general non–symmetric
- 3. V is of full column–rank and S icludes the origin in its interior

Why search for polytopes?

- ✓ necessary to exist for stable (stabilizable) linear systems (and uncertain, switched systems)
- non-conservative for approximating the region of attraction, region of stabilizability

algebraic nec. and suff. conditions of existence

spectral properties

Norm properties

Conic partitions

Set iterations

Inverse reachability from state constraint set

<u>Inverse reachability from singleton</u> <u>equilibirium point {0}</u>

Trajectory propagation

Algebraic nec. and suff. conditions of existence of λ -contractive sets

- Molchanov, A.P., and Pyatnitskii, E.S. (1986a), "Lyapunov functions that specify necessary and sufficient conditions for absolute stability of nonlinear nonstationary control systems I," Autom. Remote Control, 47, 344–354.
- Molchanov, A.P., and Pyatnitskii, E.S. (1986b), "Lyapunov functions that specify necessary and sufficient conditions for absolute stability of nonlinear nonstationary control systems II," *Autom. Remote Control*, 47, 443–451.
- Molchanov, A.P., and Pyatnitskii, E.S. (1986c), "Lyapunov functions that specify necessary and sufficient conditions for absolute stability of nonlinear nonstationary control systems III," *Autom. Remote Control*, 47, 620–630.
- Bitsoris, G. (1988), "Positively invariant polyhedral sets of discrete-time linear systems," *International Journal of Control*, 47, 1713–1726.
- Bitsoris, G. (1991), "Existence of positively invariant polyhedral sets for continuous-time linear systems," Control Theory and advanced technology, 7, 407–427.
- Blanchini, F. (1990), "Feedback Control for Linear Time-Invariant Systems with State and Control Bounds in the Presence of Disturbances," *IEEE Transactions on Automatic Control*, 35, 1231–1234.
- Hennet, J.C. (1995), "Discrete Time Constrained Linear Systems," Control and Dynamic Systems, C.T. Leondes Ed., Academic Press, 71, 407–427.
- Polański, A. (1995), "On infinity norms as Lyapunov functions for linear systems," *IEEE Transactions on Automatic Control*, 40, 1270–1273.
- Bobyleva, O.N., and Pyatnitskii, E.S. (2001), "Piecewise-linear Lyapunov functions and localization of spectra of stable matrices," *Automation and Remote Control*, 62, 1417–1427, Translated from Avtomatika i Telemekhanika, No. 9, 2001, pp. 25–36.
- Lazar, M. (2010), "On infinity norms as Lyapunov functions: Alternative necessary and sufficient conditions," in 49th IEEE Conference on Decision and Control, Atlanta, GA, pp. 5936–5942.

$$V(x) = \max_{i} \{ [Px]_i \}$$

$$S = \{x \in \mathbb{R}^n : Px \le 1_p\} = \text{conv}(\{[V]_i\}_{i \in \mathbb{N}_{[1,q]}})$$

Conditions for existence of a λ -contractive set \mathcal{S} w.r.t. a linear system

Half-space description

continuous-time:

discrete-time:

$$PA = HP$$
 difficult to solve $H_{ij} \geq 0, \ (i,j) \in \mathbb{N}_{[1,p]} \times \mathbb{N}_{[1,p]}, \ \ i \neq j$ $H1_p \leq -\lambda 1_p$

$$PA = HP, \quad H \in \mathbb{R}^{p \times p}$$
 $H \ge 0$
 $H1_p \le \lambda 1_p$

$$V(x) = \max_{i} \{ [Px]_i \}$$

$$S = \{x \in \mathbb{R}^n : Px \le 1_p\} = \text{conv}(\{[V]_i\}_{i \in \mathbb{N}_{[1,q]}})$$

Conditions for existence of a λ -contractive set \mathcal{S} w.r.t. a linear system

Vertex description

continuous-time:

discrete-time:

$$AV = VH$$
 difficult to solve $H_{ij} \geq 0, \ (i,j) \in \mathbb{N}_{[1,q]} \times \mathbb{N}_{[1,q]}, \ \ i \neq j$ $1_q^\top H \leq -\lambda 1_q^\top$

$$AV = VH, \quad H \in \mathbb{R}^{q \times q}$$
 $H \ge 0$

$$1_a^\top H \le \lambda 1_a^\top$$

Set iterations

- Bertsekas, D.P. (1972), "Infinite-Time Reachability of State-Space Regions by Using Feedback Control," *IEEE Transactions on Automatic Control*, 17, 604-613.
- Cwikel, M., and Gutman, P.O. (1986), "Convergence of an algorithm to find maximal state constraint sets for discrete-time linear dynamical systems with bounded controls and states," *IEEE Transactions on Automatic Control*, 31, 457–459.
- Gutman, P.O., and Cwikel, M. (1987), "An algorithm to find maximal state constraint sets for discrete-time linear dynamical systems with bounded controls and states," *IEEE Transac*tions on Automatic Control, AC-32, 251–254.
- Gilbert, E.G., and Tan, K.T. (1991), "Linear systems with state and control constraints: the theory and application of maximal output admissible sets," *IEEE Transactions on Automatic Control*, 36, 1008–1020.
- Aubin, J.P., Viability theory, Systems & Control: Foundations & Applications, Birkhaüser (1991).
- Blanchini, F. (1994), "Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov functions," *IEEE Transactions on Automatic Control*, 39, 428–433.
- Kolmanovsky, I. V. and Gilbert, E. G., (1998), "Theory and Computation of Disturbance Invariant Sets for Discrete-Time Linear Systems," Mathematical Problems in Egineering, 4, 317–367.

$$S_{i+1} = \{ x \in \mathbb{X} : (\exists u \in \mathbb{U} : Ax + Bu \in S_i) \}$$

$$\mathcal{S}_0 = \{0\}$$

 $\mathcal{S}_0 = \mathbb{X}$

inner approximation

outer approximation

high complexity (not scalable)

+ only last element is contractive

Why search for polytopes?

- ✓ necessary to exist for stable (stabilizable) linear systems (and uncertain, switched systems)
- non-conservative for approximating the region of attraction, region of stabilizability

However,

- algebraic necessary and sufficient conditions cannot be used directly to provide polytopic sets of non-trivial size
- x set iteration methods usually explode
- existing methods do not account for other specifications such as complexity or other geometrical aspects of the resulting sets

<u>Problem:</u> Given a λ -contractive set $\mathcal{S} = \text{conv}([V]_i)_{i \in \mathbb{N}_{[1,q]}}$,

<u>Problem:</u> Given a λ -contractive set $\mathcal{S} = \text{conv}([V]_i)_{i \in \mathbb{N}_{[1,q]}}$, add a vector v^* to its convex hull

<u>Problem:</u> Given a λ -contractive set $\mathcal{S} = \operatorname{conv}([V]_i)_{i \in \mathbb{N}_{[1,q]}}$, add a vector v^* to its convex hull such that the resulting set $\mathcal{S}^* = \operatorname{conv}(\{[V]_i\}_{i \in \mathbb{N}_{[1,q]}}, v^*)$ is also λ -contractive

$$x(t+1) = Ax(t)$$

discrete-time case

Result: Given a λ -contractive set $\mathcal{S} = \text{conv}([V]_i)_{i \in \mathbb{N}_{[1,q]}}$ and a vector v^* , the set $\mathcal{S}^* = \text{conv}(\{[V]_i\}_{i \in \mathbb{N}_{[1,q]}}, v^*)$ is λ -contractive if and only if there exist a vector $p^* \in \mathbb{R}^q$ and a scalar p_{q+1}^* , such that

$$Av^* = Vp^* + p_{q+1}^*v^*,$$

$$1_q^\top p^* + p_{q+1}^* \le \lambda,$$

$$p^* \ge 0,$$

$$p_{q+1}^* \ge 0.$$

$$x(t+1) = Ax(t)$$

x(t+1) = Ax(t) discrete—time case + one—step backward reachability set $\mathcal{C}(\mathcal{S}) = \{x \in \mathbb{R}^n : Ax \in \mathcal{S}\}$

Result: Given a λ -contractive set $\mathcal{S} = \text{conv}([V]_i)_{i \in \mathbb{N}_{[1,q]}}$ and a vector v^* , $v^* \in \mathcal{C}(\mathcal{S})$, the set $\mathcal{S}^* = \text{conv}(\{[V]_i\}_{i \in \mathbb{N}_{[1,q]}}, v^*)$ is λ -contractive if and only if there exist a vector $p^* \in \mathbb{R}^q$ such that

$$Av^* = Vp^*,$$

$$1_q^\top p^* + p_{q+1}^* \le \lambda,$$

$$p^* \ge 0,$$

$$p_{q+1}^* \ge 0.$$

$$x(t+1) = Ax(t) + Bu(t)$$

discrete-time case+inputs

Result: Given a controlled λ -contractive set $\mathcal{S} = \operatorname{conv}([V]_i)_{i \in \mathbb{N}_{[1,q]}}$ and a vector v^* , the set $\mathcal{S}^* = \operatorname{conv}(\{[V]_i\}_{i \in \mathbb{N}_{[1,q]}}, v^*)$ is controlled λ -contractive if and only if there exist a vector $p^* \in \mathbb{R}^q$, a scalar p_{q+1}^* and a vector $u^* \in \mathbb{R}^m$, such that

$$Av^* + Bu^* = Vp^* + p_{q+1}^*v^*,$$

$$1_q^\top p^* + p_{q+1}^* \le \lambda,$$

$$p^* \ge 0,$$

$$p_{q+1}^* \ge 0.$$

$$x(t+1) \in \Phi(x(t), u(t))$$
 $\Phi(x) = \{Ax : A \in \mathcal{A}\}$ $\mathcal{A} = \operatorname{conv}(\{A_i\}_{i \in \mathbb{N}_{[1,q_A]}})$

Result: Given a λ -contractive set $\mathcal{S} = \text{conv}([V]_i)_{i \in \mathbb{N}_{[1,q]}}$ and a vector v^* , the set $\mathcal{S}^* = \text{conv}(\{[V]_i\}_{i \in \mathbb{N}_{[1,q]}}, v^*)$ is λ -contractive if and only if there exist vectors p_i^* , $i \in \mathbb{N}_{[1,q_A]}$ and scalars $p_{i,q+1}^*$, $i \in \mathbb{N}_{[1,q_A]}$, such that

$$A_{i}v^{*} = Vp_{i}^{*} + p_{i,q+1}^{*}v^{*},$$

$$1_{q}^{\top}p_{i}^{*} + p_{i,q+1}^{*} \leq \lambda,$$

$$p_{i}^{*} \geq 0,$$

$$p_{i,q+1}^{*} \geq 0.$$
for all $i \in \mathbb{N}_{[1,q_{A}]}$

 v^*

+polytopic uncertainties

$$\dot{x}(t) = Ax(t)$$

continuous-time case

Result: Given a λ -contractive set $\mathcal{S} = \text{conv}([V]_i)_{i \in \mathbb{N}_{[1,q]}}$ and a vector v^* , the set $\mathcal{S}^* = \text{conv}(\{[V]_i\}_{i \in \mathbb{N}_{[1,q]}}, v^*)$ is λ -contractive if and only if there exist a vector $p^* \in \mathbb{R}^q$ and a scalar p_{q+1}^* , such that

$$Av^* = Vp^* + p_{q+1}^* v^*,$$

$$1_q^\top p^* + p_{q+1}^* \le -\lambda,$$

$$p^* \ge 0.$$

$$Av^* \mathcal{T}_{\mathcal{S}}(v^*)$$

$$\dot{x}(t) = Ax(t) + Bu(t)$$

continuous-time case

Result: Given a controlled λ -contractive set $\mathcal{S} = \operatorname{conv}([V]_i)_{i \in \mathbb{N}_{[1,q]}}$ and a vector v^* , the set $\mathcal{S}^* = \operatorname{conv}(\{[V]_i\}_{i \in \mathbb{N}_{[1,q]}}, v^*)$ is controlled λ -contractive if and only if there exist a vector $p^* \in \mathbb{R}^q$, a scalar p_{q+1}^* and a vector $u^* \in \mathbb{R}^m$, such that

$$Av^* + Bu^* = Vp^* + p_{q+1}^*v^*,$$

$$1_q^\top p^* + p_{q+1}^* \le -\lambda,$$

$$p^* \ge 0,$$

$$\dot{x}(t) \in \Phi(x(t), u(t))$$

$$\Phi(x) = \{Ax : A \in \mathcal{A}\} \quad \mathcal{A} = \operatorname{conv}(\{A_i\}_{i \in \mathbb{N}_{[1,q_A]}})$$

Result: Given a λ -contractive set $\mathcal{S} = \text{conv}([V]_i)_{i \in \mathbb{N}_{[1,q]}}$ and a vector v^* , the set $\mathcal{S}^* = \text{conv}(\{[V]_i\}_{i \in \mathbb{N}_{[1,q]}}, v^*)$ is λ -contractive if and only if there exist vectors p_i^* , $i \in \mathbb{N}_{[1,q_A]}$ and scalars $p_{i,q+1}^*$, $i \in \mathbb{N}_{[1,q_A]}$, such that

Linear system, polytopic state and input constraints

$$x(t+1) = Ax(t) + Bu(t)$$

$$x(t) \in \mathbb{X}, \quad u(t) \in \mathbb{U}, \, \forall t \in \mathbb{N}$$

$$\mathbb{X} = \{ x \in \mathbb{R}^n : P_x x \le 1_{p_x} \}$$

$$\mathbb{U} = \{ x \in \mathbb{R}^n : P_u u \le 1_{p_u} \}$$

Compute a sequence $\{S_i\}_{i\in\mathbb{N}}$ of controlled λ -contractive polytopes such that

- 1. $S_i \subset S_{i+1}$ 2. $S_i \subseteq X$
- 3. S_i is a polytope
- 4. $\exists f_i : \mathcal{S}_i \to \mathbb{U}$ such that \mathcal{S}_i is λ -contractive w.r.t. $x(t+1) = Ax(t) + Bf_i(x(t))$

Compute a sequence $\{S_i\}_{i\in\mathbb{N}}$ of controlled λ -contractive polytopes such that

- 1. $S_i \subset S_{i+1}$ add vertices $\{v_i^*\}_{i \in \mathbb{N}_{[1,p_i]}}$ to convex hull of S_i
- 2. $S_i \subseteq X$ true if $v_i^* \in X$, $i \in \mathbb{N}_{[1,p_i]}$ (linear ineqs)
- 3. S_i is a polytope from proposed approach
- 4. $\exists f_i : \mathcal{S}_i \to \mathbb{U}$ such that \mathcal{S}_i is λ -contractive w.r.t. $x(t+1) = Ax(t) + Bf_i(x(t))$ from proposed approach true if $u_i^* \in \mathbb{U}$, $i \in \mathbb{N}_{[1,p_i]}$ (linear ineqs)

$$\min_{v^*,u^*,p^*,p^*_{q+1}}\{0\}$$

$$Av^* + Bu^* = Vp^* + p_{q+1}^* v^*,$$

$$1_q^\top p^* + p_{q+1}^* \le \lambda,$$

$$p^* \ge 0,$$

$$p_{q+1}^* \ge 0,$$

$$P_x v^* \le 1_{p_x}$$

$$P_u u^* \le 1_{p_u}$$

$$\max_{v^*,u^*,p^*,p^*_{q+1}} \{ [P_i v^*]_j \}$$

$$Av^* + Bu^* = Vp^* + p_{q+1}^* v^*,$$

$$1_q^\top p^* + p_{q+1}^* \le \lambda,$$

$$p^* \ge 0,$$

$$p_{q+1}^* \ge 0,$$

$$P_x v^* \le 1_{p_x}$$

$$P_u u^* \le 1_{p_u}$$

$$\max_{v^*,u^*,p^*,p^*_{q+1}} \{ [P_i v^*]_j \}$$

$$Av^* + Bu^* = Vp^* + p_{q+1}^* v^*,$$

$$1_q^\top p^* + p_{q+1}^* \le \lambda,$$

$$p^* \ge 0,$$

$$p_{q+1}^* \ge 0,$$

$$P_x v^* \le 1_{p_x}$$

$$P_u u^* \le 1_{p_y}$$

There exists a vector v such that $\operatorname{conv}(S_i, v)$ is controlled λ -contractive if and only if there exists a non-trivial solution to the above problems

$$\max_{v^*, u^*, p^*, p_{q+1}^*} \{ [P_i v^*]_1 \} = c_1$$

$$Av^* + Bu^* = Vp^* + p_{q+1}^*v^*,$$

$$1_q^\top p^* + p_{q+1}^* \le \lambda,$$

$$p^* \ge 0,$$

$$p_{q+1}^* \ge 0,$$

$$P_x v^* \le 1_{p_x}$$

$$P_u u^* \le 1_{p_u}$$

$$\max_{v^*, u^*, p^*, p^*_{q+1}} \{ [P_i v^*]_2 \} = c_2$$

$$Av^* + Bu^* = Vp^* + p_{q+1}^*v^*,$$

$$1_q^\top p^* + p_{q+1}^* \le \lambda,$$

$$p^* \ge 0,$$

$$p_{q+1}^* \ge 0,$$

$$P_x v^* \le 1_{p_x}$$

$$P_u u^* \le 1_{p_u}$$

$$\max_{v^*, u^*, p^*, p_{q+1}^*} \{ [P_i v^*]_3 \} = c_3$$

$$Av^* + Bu^* = Vp^* + p_{q+1}^* v^*,$$

$$1_q^\top p^* + p_{q+1}^* \le \lambda,$$

$$p^* \ge 0,$$

$$p_{q+1}^* \ge 0,$$

$$P_x v^* \le 1_{p_x}$$

$$P_u u^* \le 1_{p_u}$$

The procedure continues until no further expansion can be made or another termination criterion is met

For discrete–time systems, the set sequence converges to the maximal controlled λ –contractive set

We can compute sets of <u>prespecified</u> complexity if we choose to add vertices in specific regions of the state–space

 \mathcal{S} has 8 vertices

We can compute sets of <u>prespecified</u> complexity if we choose to add vertices in specific regions of the state–space

 \mathcal{S} has 8 vertices

 \mathcal{S}^{\star} has 9 vertices

We can compute sets of <u>prespecified</u> complexity if we choose to add vertices in specific regions of the state–space

 \mathcal{S} has 8 vertices

 \mathcal{S}^{\star} has 8 vertices

We can compute sets of <u>prespecified</u> complexity if we choose to add vertices in specific regions of the state–space

 \mathcal{S} has 8 vertices

 \mathcal{S}^{\star} has 5 vertices

We can compute sets of <u>prespecified</u> complexity if we choose to add vertices in specific regions of the state–space

Key idea: Search for enlargements by ordering the regions according to the complexity induced

$$x(t+1) = Ax(t) + Bu(t)$$

$$X = \{x \in \mathbb{R}^n : -25 \le x_1 \le 25, -5 \le x_2 \le 5\}$$

$$A = \begin{bmatrix} 1 & T_s \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} \frac{T_s^2}{2} \\ T_s \end{bmatrix},$$

$$U = \{x \in \mathbb{R}^n : -1 \le u \le 1\}$$

$$x(t+1) = Ax(t) + Bu(t) X = \{x \in \mathbb{R}^n : -25 \le x_1 \le 25, -5 \le x_2 \le 5\}$$

$$A = \begin{bmatrix} 1 & T_s \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} \frac{T_s^2}{2} \\ T_s \end{bmatrix},$$

$$\mathbb{U} = \{ x \in \mathbb{R}^n : -1 \le u \le 1 \}$$

- A. Algebraic nec. and suf. conditions:
- 1. place eigenvalues in unit rhombus.
- 2. construct set \mathcal{S} by the left eigenvectors of the closed-loop matrix

$$\mathbb{U} = \{ x \in \mathbb{R}^n : -1 \le u \le 1 \}$$

existing approaches

B. Inverse reachability map: start from the equilibrium point $S_0 = \{0\}$

$$\begin{array}{l}
 x(t+1) = Ax(t) + Bu(t) \\
 X = \{x \in \mathbb{R}^n : -25 \le x_1 \le 25, \quad -5 \le x_2 \le 5\}
 \end{array}
 A = \begin{bmatrix} 1 & T_s \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} \frac{T_s^2}{2} \\ T_s \end{bmatrix},$$

$$\mathbb{U} = \{ x \in \mathbb{R}^n : -1 \le u \le 1 \}$$

existing approaches

C. Inverse reachability map: start from the state constraint set $\mathcal{S}_0 = \mathbb{X}$

$$x(t+1) = Ax(t) + Bu(t)$$

$$X = \{x \in \mathbb{R}^n : -25 \le x_1 \le 25, -5 \le x_2 \le 5\}$$

$$A = \begin{bmatrix} 1 & T_s \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} \frac{T_s^2}{2} \\ T_s \end{bmatrix},$$

$$U = \{x \in \mathbb{R}^n : -1 \le u \le 1\}$$

D. Proposed approach

$$x(t+1) = Ax(t) + Bu(t)$$

$$X = \{x \in \mathbb{R}^n : -25 \le x_1 \le 25, -5 \le x_2 \le 5\}$$

$$A = \begin{bmatrix} 1 & T_s \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} \frac{T_s^2}{2} \\ T_s \end{bmatrix},$$

$$U = \{x \in \mathbb{R}^n : -1 \le u \le 1\}$$

D. Proposed approach

$$x(t+1) = Ax(t) + Bu(t)$$

$$X = \{x \in \mathbb{R}^n : -25 \le x_1 \le 25, -5 \le x_2 \le 5\}$$

$$A = \begin{bmatrix} 1 & T_s \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} \frac{T_s^2}{2} \\ T_s \end{bmatrix},$$

$$U = \{x \in \mathbb{R}^n : -1 \le u \le 1\}$$

D. Proposed approach

$$\mathbb{U} = \{ x \in \mathbb{R}^n : -1 \le u \le 1 \}$$

D. Proposed approach

Convergence in 19 iterations

$$\dot{x}(t) \in \Phi(x(t)), \text{ where } \Phi : \mathbb{R}^n \Rightarrow \mathbb{R}^n, \Phi(x) := \{Ax : A \in \operatorname{convh}(\{A_i\})_{i \in \mathbb{N}_{[1:2]}}\}
A_1 = \begin{bmatrix} 0.3 & 0.7 \\ -2.3 & -2.3 \end{bmatrix}, A_2 = \begin{bmatrix} -1.8 & 1.0 \\ -0.8 & 0.1 \end{bmatrix}.
\mathbb{X} = \operatorname{conv}(\{[V_x]_i\}_{i \in \mathbb{N}_{[1,4]}}) \qquad V_x = \begin{bmatrix} -1 & -1 & 1 & 1 \\ -1 & 2 & -1 & 1 \end{bmatrix}.$$

$$\dot{x}(t) \in \Phi(x(t))$$
, where $\Phi: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$, $\Phi(x) := \{Ax : A \in \operatorname{convh}(\{A_i\})_{i \in \mathbb{N}_{[1:2]}}\}$

$$A_1 = \begin{bmatrix} 0.3 & 0.7 \\ -2.3 & -2.3 \end{bmatrix}, A_2 = \begin{bmatrix} -1.8 & 1.0 \\ -0.8 & 0.1 \end{bmatrix}.$$

$$\mathbb{X} = \operatorname{conv}(\{[V_x]_i\}_{i \in \mathbb{N}_{[1,4]}})$$
 $V_x = \begin{bmatrix} -1 & -1 & 1 & 1 \\ -1 & 2 & -1 & 1 \end{bmatrix}.$

Termination criterion: Hausdorff distance between two consecutive sets S_{i-1}

and S_i is less than $d = 10^{-3}$

$$d_H(S_i, S_{i-1}) \le 0.001$$

Examples- specified complexity (1)

double integrator, discretized

Table 1. Complexity and set coverage for the computed sets.

-	\mathcal{S}_1	\mathcal{S}_2	\mathcal{S}_3	$\mathcal{S}_{ ext{max}}$
Complexity Coverage of the set $S_{\max}(\%)$	10	18	32	106
	92	98	99.63	100

Examples- specified complexity (2)

triple integrator

Table 2. Complexity and set coverage for the computed sets.

-	\mathcal{S}_1	\mathcal{S}_2	\mathcal{S}_3	\mathcal{S}_4	\mathcal{S}_5	\mathcal{S}_{EAS}
Complexity Coverage of the set $S_{EAS}(\%)$	10 38	16 45				356 100

Eindhoven University of Technology

Conclusions

- 1. Construction of invariant/ contractive sets, based on geometric properties of polytopes
- 2. Directly applicable to both discrete—time and continuous—time linear systems
- 3. Simple implementation
- 4. Other types of specifications can be addressed (such as complexity constraints)

Relevant works

- "Stability analysis and control of linear and nonlinear constrained systems via polyhedral Lyapunov functions", PhD thesis, N. Athanasopoulos, University of Patras, 2010.
- "Invariant set computation for uncertain discrete—time systems", N. Athanasopoulos and G. Bitsoris, 49th IEEE Conference on Decision and Control, 2010.
- "On the Construction of Invariant Proper C-polytopic sets for Continuous—time Systems", N. Athanasopoulos, M. Lazar, G. Bitsoris, 16th International Conference on System Theory, Control and Computing, 2012.
- "Complexity-driven Construction of Controlled Invariant Polytopic Sets", N. Athanasopoulos, G. Bitsoris, M. Lazar, 17th International Conference on System Theory, Control and Computing, 2013.
- "Enlargement of polytopes with guaranteed complexity", G. Bitsoris, report CSL-1307, Electrical and Computer Engineering Department, University of Patras, 2013.

Acknowledgments

Marie Curie IEF: "Set-Induced Comparison Principles for Complex Systems" (REA No 302345).

George Bitsoris, University of Patras, Greece

Mircea Lazar, Eindhoven University of Technology, the Netherlands

Thank you!

