CSC 411 Design and Analysis of Algorithms

Chapter 9 Algorithm Design using Greedy Techniques Part 1

Instructor: Minhee Jun

Greedy Technique

- Constructs a solution to an optimization problem piece by piece through a sequence of choices
- On each step, it suggests a "greedy" grab of the best alternative available in the hope of finding a global optimum
- For <u>some</u> problems, yields an optimal solution for every instance.
- For most, does not yield an optimal solution but can be useful for fast approximations.

Change-Making Problem

- Given unlimited amounts of coins of denominations
 - $d_1 > ... > d_m$,
- give change for amount n with the least number of coins
- Example:
 - d_1 = 25c, d_2 =10c, d_3 = 5c, d_4 = 1c and n = 48c
 - 1 quarter, 2 dimes, and 3 pennies
- Greedy technique yield an optimal solution.
 - Question: Does Greedy method also yield an optimal solution for another set of coin denominations?

Change-Making Problem

- Example:
 - $d_1 = 7c$, $d_2 = 5c$, $d_3 = 1c$ and n = 25c
- Greedy solution:
 - 3 d_1 and 4 $d_3 \rightarrow 7$ coins
- Optimal solution:
 - $5 d_2 \rightarrow 5$ coins
- Greedy technique does not give optimal solution

Change-Making Problem

- Greedy solution:
 - Greedy solution is optimal for any amount and "normal" set of denominations
 - may not be optimal for arbitrary coin denominations

Applications of the Greedy Strategy

- Optimal solutions:
 - Change making for "normal" coin denominations
 - Minimum spanning tree (MST)
 - Prim's algorithm
 - Kruskal's algorithm
 - Single-source shortest paths in a weighted graph
 - Dijkstra's algorithm
 - · Data compression method
 - Huffman codes
 - Approximations:
 - traveling salesman problem (TSP)
 - knapsack problem
 - other combinatorial optimization problems

Minimum Spanning Tree (MST)

- Spanning tree of a connected graph G
 - a connected acyclic subgraph of G that includes all of G's vertices
- Minimum spanning tree of a weighted, connected graph G
 - a spanning tree of G of minimum total weight
- Example:

Minimum spanning tree: Exhaustive search

- Serious obstacles
 - # spanning trees grows exponentially with the graph size
 - Generating all spanning trees for a given graph is not easy
 - Not efficient
- Proposed efficient algorithms
 - Prim's algorithm
 - Kruskal's algorithm

1. Prim's algorithm

- Start with tree T₁ consisting of one (any) vertex and "grow" tree one vertex at a time to produce MST through a series of expanding subtrees T₁, T₂, ..., T_n
- On each iteration, construct T_{i+1} from T_i by adding vertex not in T_i that is <u>closest</u> to those already in T_i (this is a "greedy" step!)
- Stop when all vertices are included

Prim's algorithm: Pseudocode

```
ALGORITHM
                  Prim(G)
    //Prim's algorithm for constructing a minimum spanning tree
    //Input: A weighted connected graph G = \langle V, E \rangle
    //Output: E_T, the set of edges composing a minimum spanning tree of G
     V_T \leftarrow \{v_0\} //the set of tree vertices can be initialized with any vertex
    E_T \leftarrow \emptyset
    for i \leftarrow 1 to |V| - 1 do
         find a minimum-weight edge e^* = (v^*, u^*) among all the edges (v, u)
         such that v is in V_T and u is in V - V_T
         V_T \leftarrow V_T \cup \{u^*\}
         E_T \leftarrow E_T \cup \{e^*\}
    return E_T
```

Prim's algorithm: Example 1

Find the MST using Prim's algorithm

Prim's algorithm: Example 2

Tree vertices	Remaining vertices	Illustration
a(-, -)	$b(a, 3) c(-, \infty) d(-, \infty)$ e(a, 6) f(a, 5)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
b(a, 3)	$c(b, 1) d(-, \infty) e(a, 6)$ f(b, 4)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Prim's algorithm: Example 2

Does Prim's give you a unique MST?

 If the edge weights in the graph are <u>all different</u> from each other, then the graph has a **unique** minimum spanning tree

• If the edge weights in the graph are <u>not all different</u>, then you may have **more than one** MST.

Analysis of Prim's algorithm

- Efficiency
 - weight matrix representation of graph and array implementation of priority queue: $\Theta(|V|^2)$
 - adjacency list representation of graph and heap implementation of priority queue: $\Theta(|E|\log|V|)$

Notes about Prim's algorithm

- How to prove that this construction actually yields Minimum Spanning Tree (MST)?
 - Proof by induction
- What data structure to use when implementing Prim's algorithm?
 - Needs priority queue for locating closest fringe vertex

2. Kruskal's algorithm

- Another greedy algorithm for MST:
 - The sum of the edge weights is the smallest
 - However, not necessarily connected on the intermediate stages of the algorithm
- How?
 - Sort the graph's edges in nondecreasing order of their weights
 - "Grow" tree one edge at a time to produce MST through a series of expanding forests F₁, F₂, ..., F_{n-1}
 - Star with the empty subgraph
 - On each iteration, add the next edge on the sorted list if such an inclusion does not create a cycle.
 (otherwise, skip the edge.)

Kruskal's Algorithm: Pseudocode

```
ALGORITHM Kruskal(G)
```

```
//Kruskal's algorithm for constructing a minimum spanning tree
//Input: A weighted connected graph G = \langle V, E \rangle
//Output: E_T, the set of edges composing a minimum spanning tree of G
sort E in nondecreasing order of the edge weights w(e_{i_1}) \leq \ldots \leq w(e_{i_{|E|}})
E_T \leftarrow \emptyset; ecounter \leftarrow 0 //initialize the set of tree edges and its size
k \leftarrow 0
                                //initialize the number of processed edges
while ecounter < |V| - 1 do
    k \leftarrow k + 1
if E_T \cup \{e_{i_k}\} is acyclic
         E_T \leftarrow E_T \cup \{e_{i_t}\}; \quad ecounter \leftarrow ecounter + 1
return E_T
```

Kruskal's Algorithm: Example 1

Find the MST using Kruskal's algorithm

Kruskal's Algorithm: Example 2

Tree edges	Sorted list of edges	Illustration
------------	----------------------	--------------

bc ef ab bf cf af df ae cd de 1 2 3 4 4 5 5 6 6 8

bc bc ef ab bf cf af df ae cd de 1 2 3 4 4 5 5 6 6 8

Kruskal's Algorithm: Example 2

ef 2 bc ef **ab** bf cf af df ae cd de 1 2 3 4 4 5 5 6 6 8

ab 3 bc ef ab **bf** cf af df ae cd de 1 2 3 4 4 5 5 6 6 8

bf 4 bc ef ab bf cf af **df** ae cd de 1 2 3 4 4 5 5 6 6 8

Analysis of Kruskal's algorithm

• Efficiency: $O(|E|\log|E|)$

Notes about Kruskal's algorithm

- Question: Prim's or Kruskal's algorithm,
 Which algorithm is better??
 - Kruskal's algorithm looks easier than Prim's algorithm but is *harder* to implement because of cycle checking
 - Cycle checking: a cycle is created iff added edge connects vertices in the same connected component

Notes about Kruskal

- Question: Does Prim's and Kruskal give the same MST?
 - If the edge weights in your graph are all <u>different</u> from each other, then your graph has a **unique** minimum spanning tree
 - so Kruskal's and Prim's algorithms are guaranteed to return the same tree.
- If the edge weights in your graph are <u>not</u> all different, then neither algorithm is necessarily deterministic.
 - They both have steps of the form "choose the lowestweight edge that satisfies some condition" that might yield ambiguous results.

Example: Minimum Spanning Tree

Question: Does Prim's and Kruskal give the same MST?

find subset of edges that span all the nodes, create no cycle, and minimize sum of weights

Example: Prim's MST algorithm

Starting from any node, add an edge that will connect a node and the tree with a minimum weight

Example: Kruskal's MST algorithm

Sort the edges in increasing order of weight, add in an edge iff it does not cause a cycle