Sabemos que $\chi(G) \geq 3$ si y solo si G contiene un ciclo impar. Asuma que G contiene un ciclo impar. Sean $x_1, x_2, x_3, \ldots, x_{2k+1} \in V$ los vértices del ciclo, tal que $x_i x_{i+1}$ es un lado para cada i (con módulo, es decir $x_{2k+1} x_1$ es un lado). La regla de transformación que va de G a G nos dice que podemos dar una dirección a cada lado en E.

Como no existen caminos dirigidos de tres vértices o más en \overrightarrow{G} , en \overrightarrow{G} sucede lo siguiente: Si $\overrightarrow{x_ix_{i+1}}$ es un lado, entonces $\overleftarrow{x_{i+1}x_{i+2}}$ es un lado. De otro modo, $\overrightarrow{x_ix_{i+1}x_{i+2}}$ sería un camino de tres vértices.

En \overrightarrow{G} , los vértices del ciclo pueden comenzar con $\overrightarrow{x_1x_2}$ o con $\overrightarrow{x_2x_1}$. De lo anterior se sigue que si se empieza con $\overrightarrow{x_1x_2}$ es un lado, entonces todos los lados del ciclo son de la forma

$$x_{2j-1} \rightarrow x_{2j} \leftarrow x_{2j+1}, \ j \in \mathbb{N}$$

Pero sabemos que $x_{2k+1}x_1$ es un lado en E. Si $\overline{x_{2k+1}x_1}$ es un lado en \overline{G} , resulta que $\overline{x_{2k+1}x_1x_2}$ es un lado de tres vértices. Si $\overline{x_{2k+1}x_1}$ es un lado en \overline{G} , resulta que $\overline{x_{2k}x_{2k+1}x_1}$ es un lado de \overline{G} . En ambos casos terminamos con lados dirigidos de tres vértices. La contradicción se sigue de asumir que G contiene un ciclo impar. Y como no contiene un ciclo impar su número cromático es $2 \Rightarrow G$ es bipartito.

La demostración para el caso en que, en \overrightarrow{G} , los vértices del ciclo comienzan con $\overrightarrow{x_2x_1}$ es análoga.

Problem 1 Recordemos que \mathbb{Z}_n denota $\{0, 1, ..., n-1\}$. Sea $G_{p,q}$ el grafo con vértices $v_{i,j}$ con $i \in \mathbb{Z}_p$, $j \in \mathbb{Z}_q$ y con lados $E = E_1 \cup E_2$, donde

$$E_{1} = \{v_{i,j}v_{i+1,j} : i \in \mathbb{Z}_{p}, j \in \mathbb{Z}_{q}\}$$

$$E_{2} = \{v_{i,j}v_{k,j+1} : i, k \in \mathbb{Z}_{p}, j \in \mathbb{Z}_{q}\}$$

Calcular $\chi(G_{p,q})$ para todo $p, q \ge 3$.

Caso 1 : q, p pares. Considere los vértices del conjunto

$$F_j := \{v_{1,j}, v_{2,j}, \dots, v_{p,j}\}$$

Llamaremos a este conjunto la *j*-écima fila.

Por def. de E_1 , los vértices de F_0 forman un ciclo. Pues q par, forman un ciclo par que requiere dos colores. Sean esos dos colores 0, 1.

Ahora bien, cada vértice de F_0 está conectado con todos los vértices de F_1 , que a su vez constituye otro ciclo par con dos colores necesarios. Luego, los dos colores necesarios para F_1 son distintos de 0, 1; digamos, 2, 3.

Una vez en F_3 , podemos volver a colorear el ciclo impar con 0, 1, F_4 con 2, 3, etc. En general, se puede dar un coloreo propio del tipo

$$c(v_{i,j}) = \begin{cases} i \mod 2 & j \text{ par} \\ (i \mod 2) + 2 & j \text{ impar} \end{cases}$$

Que este coloreo es propio es fácil de ver. Asuma que v_{xy} , v_{wz} son vecinos. Entonces o bien $v_{xy}v_{wz} \in E_1$ o bien $v_{xy}v_{wz} \in E_2$. En el segundo caso, z y y no comparten la misma paridad y la función asigna distintos colores a ellos. En el primer caso, los módulo de x y w sobre 2 son diferentes. En particular, no hay conflicto entre F_q y F_1 porque q y 1 no comparten paridad.

Caso 2 : q par, p impar. Puesto que p impar, ahora resulta que F_j es un ciclo impar para todo j y necesita tres colores. El mismo razonamiento que en el caso anterior nos lleva a proponer

$$c(v_{i,j}) = \begin{cases} i \mod 3 & j \text{ par} \\ (i \mod 3) + 3 & j \text{ impar} \end{cases}$$

Es decir, coloreamos las "filas" (los ciclos impares) con los colores $\{0, 1, 2\}$ en las filas pares, y con $\{3, 4, 5\}$ en las impares. Una vez más, como q y 1 no comparten paridad, no hay conflicto entre F_q y F_1 .

(c)
(1)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$
.
Considere el conjunto $S_1 = (A \cap B) \times C$.

$$S_1 = (A \cap B) \times C = \{(x, y) : x \in A \cap B, y \in C\}$$

Ahora consideremos $S_2 = (A \times C) \cap (B \times C)$. El conjunto $A \times C$ son los pares (a, c) con $a \in A, c \in C$; y el conjunto $B \times C$ son los pares (b, c) con $b \in B, c \in C$. Se sigue que su intersección resulta en los pares (x, c) con $x \in A \cap B$. Es decir que

$$S_2 = (A \times C) \cap (B \times C) = \{(x, y) : x \in A \cap B, y \in C\} = S_1$$

Es decir que $(A \cap B) \times C = (A \times C) \cap (B \times C)$.