LATEX Condensed Concepts Notes

$saffron_{-}$

Contents

Number Sets	2
Sets	3
Logic	4
Proof Writing	6
Sets (Part 2)	7
Functions	9
The Principle of Mathmatical Induction (PMI)	11
Well-Ordering Principle	11
Binary Relations	12
Cardinality	14
Number Theory	15

Number Sets

- set: collection of objects
- $x \in X$ means x is an element of X (extends to \notin)
- N: natural numbers $(\{0, 1, 2, 3, ...\})$
 - domain $[0, \infty)$
 - +/× of two $\mathbb N$ is still $\mathbb N$
 - has commutativity, associativity, distributivity of $+/\times$
- \mathbb{Z} : integers $(\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\})$
 - domain $(-\infty, \infty)$
 - $-+/-/\times$ of two $\mathbb Z$ is still $\mathbb Z$
 - $-\mathbb{Z}^+$: positive integers $(\{1,2,3,4,\dots\})$
 - **Defn:** For $a, b \in \mathbb{Z}$, we say a divides b $(a \mid b)$, iff $\exists c \in \mathbb{Z}$ s.t. b = ac
 - Thrm 2.1.1 (Divisibility is Transitive). Let $a, b, c \in \mathbb{Z}$. If c|b and b|a, then c|a
 - **Defn:** Let $n \in \mathbb{Z}$. Then n is even iff $2 \mid n$ and odd iff $2 \nmid n$
 - **Thrm 2.1.2** (The Division Theorem). Let $a, b \in \mathbb{Z}$ with $b \neq 0$. There are unique integers q, r s.t. a = bq + r with $0 \leq r < |b|$ ie $\forall a, b \in \mathbb{Z}, (b \neq 0 \Rightarrow \exists! q, r \in \mathbb{Z}, (a = bq + r \land 0 \leq r < |b|))$
- \mathbb{Q} : rational numbers (all numbers $\frac{a}{b}$ where $a, b \in \mathbb{Z}$ and $b \neq 0$)
 - domain $(-\infty, \infty)$
 - $-+/-/\times/\div$ (except 0) of two $\mathbb Q$ is still $\mathbb Q$
- R: real numbers (the entire number line)
 - domain $(-\infty, \infty)$
 - $-+/-/\times/\div$ (except 0) of two $\mathbb R$ is still $\mathbb R$
 - \times two nonzero \mathbb{R} is nonzero (applies to the rest)
 - $\text{ real } r \in \mathbb{R} \text{ is } irrational \text{ iff } r \in \mathbb{Q}$

Sets

Polynomials over Number Sets

• $single \ variable \ polynomial \ over \ S$ with respect to x:

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 where $n \in \mathbb{N}$ and each $a_i \in S$ for $0 \le i \le n$

- $-a_0, a_1, \ldots, a_n$ are called *coefficients*
- degree of a polynomial: largest $i \in \mathbb{N}$ s.t. $a_i \neq 0$
- zero polynomial defined as degree $-\infty$
- denoted p(x) where x is the indeterminate
- ullet S[x], read "S adjoin x": set of all polynomials with coefficients from S
 - eg: $\mathbb{Z}[x]$ is set of poly.s with integer coeff.s $-5x^2+2x\in\mathbb{Z}[x],\in\mathbb{Q}[x]$, and $\in\mathbb{R}[x]$

Set Notation

- Roster notation (informal): $A = \{1, 2\}, B = \{2, 4, 6, \dots\}$
- Set-Builder notation: $\{x \in S \mid p(x)\}, A = \{x \in \mathbb{N} \mid x \leq 5\}$ (use | or :)
- Alternate Set-Builder (informal): $\{expression(x) \mid x \in S\}, E = \{2n \mid n \in \mathbb{Z}\}$

Other Special Sets

- $\emptyset = \text{empty set} = \{\}$
- for $n \in \mathbb{N}$, $[n] = \text{first n positive } \mathbb{Z} \ ([3] = \{1, 2, 3\})$

Set Equality and Subsets

- set A is a subset of set B $(A \subseteq B)$ iff every element in A is also an element of B
- A = B iff $A \subseteq B$ and $B \subseteq A$
- $A \not\subseteq B$: A not a subset of B
- $A \subseteq B$: A is a proper subset of B (ie $A \subseteq B, A \neq B$)

Logic

Symbolic Notation

- For $x \in \mathbb{R}$,
 - floor of x: greatest $n \in \mathbb{Z}, n \leq x$.
 - ceiling of x: least $n \in \mathbb{Z}, x \leq n$.
- propositional variable: a symbol representing the proposition (eg p, q, etc)
- propositional formula: either a prop. variable or expression built from them and connectives (logical operators)
 - Conjunction $(p \wedge q)$: "and"
 - **Disjunction** $(p \lor q)$: "or"
 - **Negation** $(\neg p)$: "not"
 - Logical Implication $(p \Rightarrow q)$: "if p then q"
 - * p is called the hypothesis, supposition, or antecedent
 - * q is called the *consequent* or *conclusion*
 - * $q \Rightarrow p$ is the *converse* of $p \Rightarrow q$

$$\begin{array}{c|c|c|c} p & q & p \Rightarrow q \\ \hline T & T & T \\ * & T & F & F \\ F & T & T \\ F & F & T \end{array}$$

- Biconditional Operator $(p \Leftrightarrow q)$: "p iff q"
 - * if $p \Leftrightarrow q$ is a tautology, p and q are logically equivalent (\equiv)

	p	q	$p \Rightarrow q$	$q \Rightarrow p$	$p \Rightarrow q \land q \Rightarrow p \text{ aka } p \Leftrightarrow q$
	Τ	T	T	Τ	${ m T}$
*	\mathbf{T}	F	F	Τ	\mathbf{F}
	\mathbf{F}	Γ	${ m T}$	\mathbf{F}	\mathbf{F}
	\mathbf{F}	F	Γ	Т	${f T}$

- tautology: propositional formula that is always **true** no matter how T/F is assigned
- contradiction: proposition that is known or assumed to be false

Equivalences

- Thrm 3.2.1 (DeMorgan's Laws for Connectives).
 - (i) $\neg (p \land q) \equiv \neg p \lor \neg q$
 - (ii) $\neg (p \lor q) \equiv \neg p \land \neg q$
- Other important equivalences
 - $-p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$ (distributivity)
 - $-p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ (distributivity part 2)
 - (commutativity, associativity, double negation)
 - $-p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$ (biconditional equivalence)
 - $-p \Rightarrow q \equiv \neg q \Rightarrow \neg p \text{ (contraposition)}$
 - $-p \Rightarrow q \equiv \neg p \lor q$ (disjunctive form of implication)

Quantifiers

- a variable x is free iff you can sub in elements for x. Otherwise, it is bound.
- predicate: statement involving free variables, denoted $p(x_1, x_2, \dots, x_n)$
- quantifiers: ∀: "for all," ∃: "there exists," ∃!: "there exists only one"

Maximally Negating Propositions

- Thrm 5.1.1 (DeMorgan's Laws for Quantifiers).
 - (i) $\neg(\forall x \in S, p(x)) \equiv \exists x \in S, \neg p(x)$
 - (ii) $\neg(\exists x \in S, p(x)) \equiv \forall x \in S, \neg p(x)$
- a proposition is maximally negated iff only \neg s appear immediately before a predicate or propositional variable

Proof Writing

- Proving Universal Statements $(\forall x \in S, p(x))$
 - Direct: let $x \in S$ be arbitrary and fixed, prove p(x) true
 - Indirect: AFSOC $\exists x \in S, \neg p(x)$ and find a contradiction
- Proving Existential Statements $(\exists x \in S, p(x))$
 - Direct: give an element $x \in S$, show p(x) is true
 - Indirect: AFSOC $\forall x \in S, \neg p(x)$ and find a contradiction
- Proving Conditional Statements $(p \Rightarrow q)$
 - Direct: assume p is true. show q is true
 - Indirect:
 - * by contraposition: recall $\neg q \Rightarrow \neg p$. assume $\neg q$. show $\neg p$.
 - * by contradiction: assume $p \wedge \neg q$ and find a contradiction
- Proving Biconditional Statements $(p \Leftrightarrow q)$
 - prove $p \Rightarrow q$ and $q \Rightarrow p$
- Proving Disjunctions (\vee, \wedge)
 - proving $(p \lor q) \Rightarrow r$ directly (with 2 cases)
 - * Case 1: assume p holds, show r holds
 - * Case 2: assume q holds, show r holds
 - * no distinction between cases 1 and 2? use WLOG
 - proving $p \Rightarrow (q \lor r)$ directly
 - * assume p is true
 - * if q holds then we're done, so...
 - * assume $\neg q$ holds and prove r holds
- Proving Existence and Uniqueness $(\exists! x \in S, p(x))$
 - Existence: prove $\exists x \in S, p(x)$
 - Uniqueness: Let $a, b \in S$ s.t. both p(a) and p(b) hold. show that a = b

Sets (Part 2)

- power set of A ($\mathcal{P}(A)$): set of all subsets of A
 - for any set $A, \varnothing \in \mathcal{P}(A)$ and $A \in \mathcal{P}(A)$

Set Proofs

- Containment (prove $A \subseteq B$): Fix an arbitrary $a \in A$, show $a \in B$, conclude $a \subseteq B$
- Double Con. (prove A = B): prove $A \subseteq B$, prove $B \subseteq A$, conclude A = B
- chain of \Leftrightarrow 's (prove A = B): fix arb $x \in U$, show $x \in A \Leftrightarrow x \in B$ with iff's

Set Operations

- Set Intersection: $A \cap B = \{x \in U \mid x \in A \land x \in B\}$ (A and B are disjoint iff $A \cap B = \emptyset$)
- Set Union: $A \cup B = \{x \in U \mid x \in A \lor x \in B\}$
- Set Difference: $A \setminus B = \{x \in U \mid x \in A \land x \not\in B\}$
- Family of Sets indexed by I: sets A_i for each $i \in I$, denoted $\{A_i \mid i \in I\}$ or $\{A_i\}_{i \in I}$
- Indexed Intersection: $\bigcap_{i \in I} A_i = \{x \in U \mid \forall i \in I, x \in A_i\}$
- Indexed Union: $\bigcup_{i \in I} A_i = \{x \in U \mid \exists i \in I, x \in A_i\}$
- Cartesian Product of A and B: $A \times B = \{(a,b) \mid a \in A, b \in B\}$
 - notation: $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$
 - $-A \times \emptyset = \emptyset \times A = \emptyset$
 - $-A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_1 \in A_1 \land a_2 \in A_2 \land \cdots \land a_n \in A_n\}$ $= \prod_{i=1}^n A_i \ (a_1, a_2, \dots, a_n): \text{ ordered n-tuple (eg } \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \mathbb{R}^3)$

Set Properties

- Thrm 9.1.1 (Properties of Unions and Intersections). letting A, B be sets,
 - $-A \cap B = B \cap A$
 - $-A \cup B = B \cup A$
 - $-A\cap B\subseteq A$
 - $-A \subseteq A \cup B$
 - $-A \subseteq B \Leftrightarrow A \cap B = A$
- Thrm 9.1.2 (DeMorgan's Laws for Sets). For any sets A, X, and Y, and if $\{X_i \mid i \in I\}$ is an indexed family of sets,
 - $-A\setminus (X\cup Y)=(A\setminus X)\cap (A\setminus Y)$
 - $-A\setminus (X\cap Y)=(A\setminus X)\cup (A\setminus Y)$
 - $A \setminus \bigcup_{i \in I} X_i = \bigcap_{i \in I} (A \setminus X_i)$
 - $A \setminus \bigcap_{i \in I} X_i = \bigcup_{i \in I} (A \setminus X_i)$

good luck on exam 1 < 3

Functions

- a function from a domain set X to a codomain set Y is a specification of elements $f(x) \in Y$ for each $x \in X$ s.t. $\forall x \in X, \exists ! y \in Y, y = f(x)$
- given a mapping $f: A \to B$, f is a function iff...
 - $\forall a \in A, f(a) \text{ is defined i.e. domain} = A$
 - $\forall a \in A, f(a) \in B$ i.e. codomain = B
 - $-\forall a, a' \in A, (a = a' \Rightarrow f(a) = f(a'))$ i.e. uniqueness, vertical line test
- To define the following, let $f: A \to B$ be a function.
- f = g iff $\forall a \in A, f(a) = g(a)$ i.e. for all inputs you get the same outputs
- the graph of f, $Gr(f) = \{(a,b) \in A \times B \mid b = f(a)\} \subseteq A \times B$
- for $X \subseteq A$, image of X under $f: \operatorname{Im}_f(X) = f[X] = \{b \in B \mid \exists x \in X, f(x) = b\}$
 - image of f (of the entire domain): $Im(f) = \{b \in B \mid \exists a \in A, f(a) = b\}$
- for $Y \subseteq B$, preimage of Y under f: $\operatorname{PreIm}_f(Y) = f^{-1}[y] = \{a \in A \mid f(a) \in Y\}$
- f is injective/1-to-1 iff $\forall x, y \in A, (f(x) = f(y) \Rightarrow x = y)$ (ie f passes HLT)
- f is surjective/onto iff $\forall b \in B, \exists a \in A, f(a) = b$ (ie Im(f) = B)
- f is a bijection iff f is both a injection and a surjection
- h is a composition of g with f, denoted $h = g \circ f$ iff h(a) = g(f(a))
 - when A, B, C are sets and $f: A \to B, q: B \to C$ are functions. creates $h: A \to C$
 - as long as $Im(f) \subseteq domain(g)$, this operation works
 - **Thrm 14.1.1** (Associativity of Comp.). Let $f: A \to B, g: B \to C, h: C \to D$. * $h \circ (g \circ f) = (h \circ g) \circ f$
- bruh where was the identity function
- Thrm 14.1.2. Let $f: A \to B, g: B \to C$.
 - If f and q are in/sur/bijections, then $q \circ f$ is an in/sur/bijection.
- Let $f: A \to B, g: B \to C$.
 - g is a left inverse for f iff $g \circ f = id_A$ (f is injective)
 - g is a right inverse for f iff $f \circ g = id_B$ (f is surjective)
 - -g is a (2-sided) inverse for f iff g is a left and right inverse
 - f is *invertible* iff f has a (2-sided) inverse
 - Thrm 14.1.3 (Uniqueness of Inverses). If f is invertible than its inverse f^{-1} is unique.
 - **Thrm 14.1.4**. f is invertible iff f is a bijection. (ie can prove $f: A \to B$ is a bijection by making a well defined $g: B \to A$ and proving g is an inverse of f)

wtf the natural numbers 2 electric boogaloo???

TODO

- informal definition
- formal definition w/ peano's axioms for \mathbb{N}
 - $-0 \notin \operatorname{Im}_{S}(\mathbb{N})$
 - -s is injective
 - For all sets X, if $0 \in X$ and $\forall n \in N, (n \in X \to s(n) \in X)$ then $\mathbb{N} \subseteq X$.
- Thrm 15.2.1 (Recursion Theorem).
- math with \mathbb{N} 2, electric boogaloo
- recursive function definitions

$$\sum_{k=1}^{n} a_k = \begin{cases} \sum_{k=1}^{0} a_k = 0 \\ \sum_{k=1}^{m+1} a_k = (\sum_{k=1}^{m} a_k) + a_{m+1} & \text{if } n = m+1 \end{cases}$$

$$\prod_{k=1}^{n} a_k = \begin{cases} \prod_{k=1}^{0} a_k = 1 \\ \prod_{k=1}^{m+1} a_k = (\prod_{k=1}^{m} a_k) \cdot a_{m+1} & \text{if } n = m+1 \end{cases}$$

$$n! = \sum_{k=1}^{n} k$$

The Principle of Mathmatical Induction (PMI)

- Thrm 16.2.1 (PMI).
 - WTS p(n) is true for all natural numbers $n \geq n_0$.
 - Let p(n) be a predicate defined on $\mathbb{N}, n_0 \in \mathbb{N}$, and $S = \{n \in \mathbb{N} \mid n \geq n_0\}$.
 - To prove $\forall n \in S, p(n) \dots$
 - * (Base Case) Verify that $p(n_0)$ holds.
 - * (Inductive Step) Fix $n \in S$ and assume p(n) holds.
 - · or for strong pmi: Fix that $n \in S$ s.t. $\forall i \in S$, with $n_0 \le i \le n, p(i)$ holds. n_0 should be the last base case if there are multiple.
 - * Prove that p(n+1) must also be true.
 - * By PMI, we conclude $\forall n \in S, p(n)$.

Well-Ordering Principle

- well-ordered: a set of which every nonempty subset has a least element
- Thrm 19.1.1 (Well-Ordering-Principle). $\mathbb N$ is a well-ordered set.
- Proof by Infinite Descent $(\forall n \in \mathbb{N}, p(n))$
 - AFSOC $\exists n \in \mathbb{N} \text{ st } \neg p(n) \text{ holds.}$
 - * ie $S = \{n \in \mathbb{N} \mid \neg p(n)\} \neq \emptyset$
 - Let $n \in S$ be the least such element, by the WOP.
 - Show $\exists k \in S$ with $k < n \rightarrow \leftarrow$ contradicts the minimality of n.
 - Conclude that $\forall n \in \mathbb{N}, p(n)$.

Binary Relations

- A binary relation links or compares two elements.
- A binary relation from S to T is a predicate R(s,t) defined on $S \times T$.
 - S is the domain of R
 - T is the codomain of R
 - If S = T then R is a homogenous relation and we say "R is a relation on S"
 - can also be written as the graph of R, $Gr(R) = \{(s,t) \in S \times T \mid R(s,t)\}$
 - Thrm 19.2.1. Let S and T be sets. Every subset of $S \times T$ is the graph of a unique relation from S to T.
- \bullet the discrete relation from S to T
 - $-\operatorname{Gr}(R) = S \times T$
 - ie $\forall s \in S, \forall t \in T, R(s, t)$
 - everything is related to everything
- ullet the empty relation from S to T
 - $-\operatorname{Gr}(R)=\varnothing$
 - ie $\forall s \in S, \forall \in T, \neg R(s, t)$
 - nothing is related to anything
- **Defn:** (Congruence Modulo m). Let $m \in \mathbb{Z}^+$ and $a, b \in \mathbb{Z}$. a is congruent to b modulo m, denoted $a \equiv b \pmod{m}$ or $a \equiv_m b$, iff $m \mid a b$.
 - Thrm 20.1.1. Congruence modulo m is an equivalence relation.
 - For $m \in \mathbb{Z}^+$, the set of equivalence classes for \equiv_m , called *congruence classes*, is denoted $\mathbb{Z}/m\mathbb{Z}$.

* eg,
$$\mathbb{Z}/3\mathbb{Z} = \{[0]_3, [1]_3, [2]_3\}$$

- **Defn:** Let R be an equivalence relation on a set S.
 - For $x \in S$ we define the equivalence class of x under R, $[x]_R = \{y \in S \mid R(x,y)\}$ = the set of elements in S which are equivalent to x.
 - the set of all equivalence classes is called S modulo R, $S/R = \{[x]_R \mid x \in S\}$

Properties of Homogenous Relations

Let R be a relation on S. Then R is called

- reflexive iff $\forall x \in S, R(x, x)$
- irreflexive iff $\forall x \in S, \neg R(x, x)$
- symmetric iff $\forall x, y \in S, (R(x, y) \to R(y, x))$
- antisymmetric iff $\forall x, y \in S, (R(x, y) \land R(y, x) \rightarrow x = y)$ (or equivly, its contrapos.)
- transitive iff $\forall x, y, z \in S, ((R(x, y) \land R(y, z)) \rightarrow R(x, z))$
- total iff $\forall x, y \in S, (x \neq y \rightarrow (R(x, y) \lor R(y, x)))$
- an equivalence relation iff R is reflexive, symmetric, and transitive

Partitions

- **Defn:** Let S be a set, I an index set, and $A_i \in \mathcal{P}(S)$ for each $i \in I$. The indexed family of sets $\{A_i \mid i \in I\}$ is a partition of S iff
 - 1. $\forall i \in I, A_i \neq \emptyset$
 - 2. $\forall i, j \in I, (A_i = A_j \vee A_i \cap A_j = \varnothing)$
 - 3. $\bigcup_{i \in I} A_i = S$
- Thrm (Fundamental Thrm of Equivalence Relations): Let S be a nonempty set.
 - 1. If R is an equivalence relation on S, then S/R is a partition of S.
 - 2. If $\mathcal F$ is a partition of S then there exists an equivalence relation R on S s.t. $S/R=\mathcal F$

Order Relations

Let R be a binary relation on a set S.

- R is a partial order of S iff R is reflexive, antisymmetric, and transitive.
- If R is a partial order on S, then we call (S,R) a poset $(eg(\mathcal{P}(x),\subseteq))$ and (\mathbb{R},\leq)
- R is a *strict partial order* of S iff R is irreflexive, antisymmetric, and transitive. (eg $(\mathcal{P}(x), \subsetneq)$ and $(\mathbb{R}, <)$)
- R is a total order or linear order iff R is a partial order and also total

good luck on exam 2 < 3

Cardinality

- **Defn:** Two sets A and B have the same cardinality (aka are equinumerous), iff there exists a bijection $f: A \to B$.
- A set X is finite iff $\exists n \in \mathbb{N}$ and a bijection $f:[n] \to X$. We denote this |X|=n.
- A set X is *infinite* iff X is not finite.
- Thrm: If X is a finite set then $\exists! n \in \mathbb{N}, |X| = n$. This has some corollaries.
 - For any $n \in \mathbb{N}$, all subsets of [n] are finite.
 - If $f:A\to B$ is an injection and B is finite, then $|A|\le |B|$. In particular, if $A\subseteq B$ then $|A|\le |B|$.
 - If $g: B \to A$ is a surjection and B is finite then $|A| \leq |B|$.
 - If A is finite and B is any set then $|A \cap B| \leq |A|$ and $|A \setminus B| \leq |A|$
- Thrm: If A and B are finite sets, then
 - $-|A \times B| = |A| * |B|$
 - $|A \cup B| = |A| + |B| |A \cap B|$
- Lemma: If $A \subseteq \mathbb{N}$ is finite and nonempty, then A has a maximum element.
- Thrm: \mathbb{N} is infinite.
- **Defn:** A set A is
 - countably infinite iff $|A| = |\mathbb{N}|$
 - countable (or listable or denumerable) iff A is finite or countably infinite
 - uncountable iff A is not countable
 - (Note: every set is either finite, countably infinite, or uncountable)
- Thrm:
 - For all $n \in \mathbb{Z}^+$, $|\mathbb{N}^n| = |\mathbb{N}|$
 - If $n \in \mathbb{Z}^+$ and X_1, X_2, \dots, X_n are nonempty countable sets, then
 - * $\prod_{i=1}^{n} X_1$ is countable
 - * If at least one X_i is infinite, then $\prod_{i=1}^n X_i$ is countably infinite.
- Let X be a nonempty set. Then the following are equivalent.
 - -X is countable
 - There exists an injection $f: X \to \mathbb{N}$
 - There exists a surjection $g: \mathbb{N} \to X$
- Thrm: $|\mathbb{Q}| = |\mathbb{N}|$

- Thrm (Countable Union of Countable Sets is Countable): If $\{A_n \mid n \in \mathbb{N}\}$ is a family of countable sets, then $\bigcup_{n \in \mathbb{N}} A_n$ is countable.
- \mathbb{R} is uncountable
- For any set $S, |S| \neq |\mathcal{P}(S)|$ (Cantor's theorem)
- $|A| \leq |B|$ iff there exists an injection $f: A \to B \ (\geq \text{vice versa})$
 - this is transitive
- Thrm (Schröder-Bernstein Thrm): If there exist injections $f: A \to B$ and $g: B \to A$, then there exists an injection $h: A \to B$.

Number Theory

- a *unit* is the natural number n=1
- a natural > 1 is *prime* iff its only positive divisors are 1 and itself
- a natural > 1 is composite iff n is not prime (ie $\exists a, b \in \mathbb{Z}, (1 < a \le b < n \to n = ab)$)
- coprime iff the gcd of two integers is 1
- every integer $n \geq 2$ is either prime or the product of primes (induction)
- Let m, n be nonzero integers. If m|n then $|m| \leq |n|$
 - Corollary: If $m|n \wedge n|m$ then $m=n \vee m=-n$
 - if $n \in \mathbb{Z}$ and $n \neq 0$, then n only has a finite number of divisors, since $m|n \rightarrow |m| \leq |n|$
- if $n \in \mathbb{N}$ is composite, then n has a prime factor $\leq \sqrt{n}$
- for $a, b \in \mathbb{Z}$, not both 0, define the greatest common divisor of a and b, denoted gcd(a, b), as the largest $d \in \mathbb{Z}$ s.t. $d|a \wedge d|b$.
 - ie $d = \gcd(a, b) \Leftrightarrow d|a \wedge d|b \wedge \forall c \in \mathbb{Z}, ((c|a \wedge c|b) \rightarrow c < d)$
 - $-\gcd(a,b) = \gcd(|a|,|b|)$
 - note that gcd(0, b) = |b|
- Let $a, b \in \mathbb{Z}$, not both 0, and $d = \gcd(a, b)$. Then $\frac{a}{d}$ and $\frac{b}{d}$ are coprime
- The Euclidean Algorithm
 - EA Lemma: Let $a, b \in \mathbb{Z}$ with $b \neq 0$. Then gcd(a, b) = gcd(b, a bk) for any integer k.

- Let $a, b \in \mathbb{Z}$ with a > b > 0. To find gcd(a, b): (transcribe formal)

$$148 = 40 * 3 + 28$$

$$40 = 28 * 1 + 12$$

$$28 = 12 * 2 + 4$$

$$12 = 4 * 3 + 0$$

Last nonzero remainder (4) is the gcd

- Bezout's Lemma. Let $a, b \in \mathbb{Z}$, not both 0. Then
 - $-\exists x, y \in \mathbb{Z}, (ax + by = \gcd(a, b))$
 - If $x, y \in \mathbb{Z}$ s.t. ax + by > 0 then $ax + by \ge \gcd(a, b)$
 - ie gcd(a,b) is the smallest positive integer of the form ax + by
 - Corollaries (Let $a, b \in \mathbb{Z}$, not both 0):
 - * If $d = \gcd(a, b)$ and $t \in \mathbb{Z}$ then $(t|a \wedge t|b) \Leftrightarrow t|d$
 - · (any common divisor of a and b divides gcd(a, b) and vice versa)
 - * $\forall c \in \mathbb{Z}, (\exists x, y \in \mathbb{Z}, (ax + by = c) \Leftrightarrow \gcd(a, b)|c)$
 - * a and b are coprime iff $\exists x, y \in \mathbb{Z}, (ax + by = 1)$
 - * $\forall m \in \mathbb{Z}^+, (\gcd(ma, mb) = m * \gcd(a, b))$
- Linear Diophantine Equations
 - Diophantine equations are polynomial equations, typically in several variables, in which integer solutions are desired.
 - For $a, b, c \in \mathbb{Z}$, a Diophantine equation of the form ax + by = c is called a linear Diophantine equation in 2 variables
 - We know that $\exists x, y \in \mathbb{Z}, (ax + by = c) \text{ iff } \gcd(a, b) \mid c$. We can find such x, y with reverse Euclidean alg. (transcribe)
 - how do we find all such solutions?
 - * Thrm: If $d = \gcd(a, b)$ and $d \mid c$ then there are infinitely many integer solutions to ax + by = c. Moreover, if (x_0, y_0) is one such solution, then the set of all solutions is

$$\{(x_0 + \frac{bk}{d}, y_0 - \frac{ak}{d}) \mid k \in \mathbb{Z}\}\$$

- The Least Common Multiple
 - For $a, b \in \mathbb{Z}$, not both 0, we defint the least common multiple of a and b, denoted lcm[a, b], as the smallest $c \in \mathbb{Z}^+$ s.t. $a \mid c \wedge b \mid c$
 - Let $a, b \in \mathbb{Z}$, both nonzero. Then $\forall n \in \mathbb{Z}$, $(\operatorname{lcm}[a, b] \mid n \Leftrightarrow a \mid n \land b \mid n)$
 - * ie Any common multiple is divisible by the least common multiple

- * Corollaries: Let $a, b \in \mathbb{Z}$, not both 0. Then,
 - $\cdot a \mid b \Leftrightarrow \operatorname{lcm}[a, b] = |b|$
 - $\forall m \in \mathbb{Z}^+, \operatorname{lcm}[ma, mb] = m * \operatorname{lcm}[a, b]$
- (GCD-LCM Theorem). $\forall a, b \in \mathbb{Z}^+, \gcd(a, b) * \operatorname{lcm}[a, b] = ab$

• Prime Factorizations

- Euclid's Lemma. Let $a, b, c \in \mathbb{Z}$ with gcd(a, b) = 1. If $a \mid bc$ then $a \mid c$.
 - * Corollary (also Euclid's Lemma). Let $p, a, b \in \mathbb{Z}$ with p prime. If $p \mid ab$ then $p \mid a$ or $p \mid b$.
- Fundamental Theorem of Arithmetic. Every natural number n > 1 can be written uniquely as a product of prime numbers. (Unique up to reordering of the factors).
 - * ie If $n = p_1 p_2 \dots p_r = q_1 q_2 \dots q_s$ for primes p_i, q_j s.t. $p_1 \leq p_2 \leq \dots \leq p_r$ and $q_1 \leq q_2 \leq \dots \leq q_s$ then r = s and $p_i = q_i$ for all i.
 - * Corollary: exist infinitely many primes.

• Divisors

- Let \mathbb{P} be the set of prime numbers. For each $p \in \mathbb{P}$ and $n \in \mathbb{Z}^+$, define $v_p(n) = \max\{a \in \mathbb{Z} : p^a \mid n\}$
- note: If $a \mid n$ then $\forall p \in \mathbb{P}, v_p(a) \leq v_p(n)$
- Suppose n has prime factorization ah fuck it