PROBLEM SET #5 DUE THURSDAY, OCTOBER 27 (Problems are from $Vector\ Calculus$ by Marsden and Tromba, sixth edition.)

1

Let S be the surface parametrized by $\vec{\Phi}: [0,4] \times [0,\pi] \to \mathbb{R}^3$, $(u,v) \mapsto (2u\cos v, 2u\sin v, u)$. Evaluate the integral of f(x,y,z) = x+y over S.

$\mathbf{2}$

Evaluate $\iint_S (x+y+z) dS$ where S is the unit sphere, i.e., $S = \{(x,y,z) \in \mathbb{R}^3 : x^2+y^2+z^2=1\}$.

3

Let S be the part of the cylinder $x^2+y^2=4$ that is bound between the planes z=0 and z=1. Orient S so that the outside of the cylinder is the positive side. Determine a parametrization $\vec{\Phi}$ of S and compute $\iint_{\vec{\Phi}} \vec{F} \cdot d\vec{S}$ where $\vec{F}: (x,y,z) \mapsto (2x,-2y,z^2)$.

4

Compute the surface integral of the vector field $\vec{V}:(x,y,z)\mapsto (3xy^2,3x^2y,z^3)$ pointing out of the unit sphere (i.e., so that the outside of the unit sphere is the positive side).