

INTRODUCTION

- A stock market is a public market for the trading of company stock.
- Stock market allows us to buy and sell units of stocks (ownership) of a company.
- If the company's profits go up, then we own some of the profits and if they go down, then we lose profits with them.
- If more sellers than buyers, stock prices tend to fall. Conversely, when more buyers than sellers, stock prices tend to rise

How To Read A STOCK TABLE?

PROBLEM STATEMENT

- To accurately predict the future closing value of a given stock across a given period of time in the future.
- Use different machine learning and deep learning models available and compare them in terms of graphical analysis.

Predicted Close price

DATASET

The data used in this project is of the Alphabet Inc³ from January 1, 2005 to July 30, 2017, this is a series of data points indexed in time order or a time series. Our goal was to predict the closing price for any given date after training

	Date	Open	High	Low	Close	Volume
7	20-Jul-17	997.00	998.68	984.62	992.19	1418385
	19-Jul-17	990.01	995.60	987.01	992.77	1412148
	18-Jul-17	973.36	990.85	972.04	986.95	1413335
ś	17-Jul-17	976.32	983.35	970.80	975.96	1660464
	14-Jul-17	974.00	977.54	970.15	976.91	1079608
	13-Jul-17	970.80	978.70	964.80	968.85	1524571
	12-Jul-17	960.86	969.63	957.04	967.66	1602115
3	11-Jul-17	950.52	954.89	945.12	953.53	1461247
	10-Jul-17	941.95	953.13	941.95	951.00	1451460

FEATURE IMPORTANCE

- · Process of selecting a subset of relevant features for use in model construction.
- Feature selection methods include and exclude attributes present in the data without changing them.
- Here, in our case 'Date', 'High' and 'Low' attributes are dropped.

LINEAR REGRESSION

Linear regression is an approach for predictive modeling to showcase the relationship between a scalar dependent variable 'Y', (in our case, we have 'Close' attribute) and one or more independent variables 'X' ('Trading day' attribute).

RECURRENT NEURAL NETWORK + LSTM

LSTM (Long Short Term Memory)

LSTMs are explicitly designed to avoid the long-term dependency problem. Remembering information for long periods of time is practically their default behavior, not something they struggle to learn!

LSTM

RECURRENT NEURAL NETWORK + LSTM

LSTM (How it works?)

- The key to LSTM is the Memory cell state which stores the information. It runs straight down the entire chain.
- LSTM has the ability to remove or add information to these cell state, regulated by structures called gates.
- Gates are composed of sigmoid neural net layer and a multiplication operation.
- Sigmoid layer outputs zero or one.

RECURRENT NEURAL NETWORK + LSTM

information

LSTM (How it works?)

- First, forget gate looks at h₁₋₁ and x₁ and outputs a number between 0 and 1.
- 1 represents "keep the information" and 0 represents "remove the information".
- Second, input gate decides which values will be updated, in order to do that a tanh layer creates a vector of C, (bar).
- Combining these two, create an update to the state.
- Third, It's time to update the old cell C₁₋₁ to C₁
- Fourth, output will based on our cell state.
- a sigmoid layer will decides what parts of the cell state we're going to output.

Output
$$o_t = \sigma\left(W_o\left[h_{t-1}, x_t\right] + b_o\right)$$
 $h_t = o_t * \tanh\left(C_t\right)$ Current hidden layer

CONCLUSION

Linear Regression

· Model does not fit properly

Stock price prediction is a complex problem and difficult to predict.

Machine learning model doesn't perform well as compared to Deep Learning model.

Recurrent Neural Network + LSTM

Model fits properly

THANK YOU!