1

NCERT Discrete - 11.9.1.2

EE23BTECH11049 - Praful Kesavadas*

Question: 11.9.1.2:

Write the first five terms of the sequence whose n^{th} terms $a_n = \frac{n}{n+1}$ Solution:

Term	Value	Description
x(n)	$\frac{n+1}{n+2}u(n)$	General term
TABLE 0		
INPUT PARAMETERS		

Here, Z-transform

$$X(z) = \sum_{n = -\infty}^{\infty} x(n) . z^{-n}$$
(1)

$$=\sum_{n=-\infty}^{\infty} \frac{n+1}{n+2} . u(n) . z^{-n}$$
 (2)

$$= \sum_{n=-\infty}^{\infty} u(n) . z^{-n} - \frac{1}{n+2} u(n) . z^{-n}$$
 (3)

Now,

$$u(n) \stackrel{Z}{\longleftrightarrow} \frac{1}{1 - z^{-1}}, \quad |z| > 1 \tag{4}$$

$$\sum_{n=-\infty}^{\infty} -\frac{1}{n+2} u(n) \cdot z^{-n} = -\frac{1}{2} - \frac{z^{-1}}{3} - \frac{z^{-2}}{4} \dots$$

$$= z^2 [-z^{-1} - \frac{z^{-2}}{2} - \frac{z^{-3}}{3} \dots] + z$$

$$= z + z^2 \log(1 - z^{-1})$$

$$\frac{-1}{n+2}.u(n) \stackrel{Z}{\longleftrightarrow} z + z^2 \log(1-z^{-1}), \quad |z| > 1$$
 (5)

$$X(z) = \frac{1}{1 - z^{-1}} + \frac{1}{z^{-1}} + \frac{\log(1 - z^{-1})}{z^{-2}}, \quad |z| > 1$$
 (6)

Fig. 0. Stem plot for x(n)