CORRIGÉ PROBLÈME I (CCP PSI 2011)

I. Une étude de séries.

1.1 Etude de la fonction L.

1.1.1 $(-1)^{k-1} \frac{x^k}{k}$ est le terme général d'une suite de limite nulle si |x| < 1 et non bornée si |x| > 1. Par définition, le rayon de convergence de la série entière est donc égal à 1. L est donc définie au moins sur

Pour x=1, il y a convergence de la série (série de Riemann alternée ou critère spécial sur les séries alternées).

Pour x = -1, la série diverge (série harmonique). Ainsi

$$L$$
 est définie sur $]-1,1].$

On reconnaît un développement usuel :

$$\forall x \in]-1,1[, L(x) = \ln(1+x).$$

- $\boxed{\forall x\in]-1,1[\ ,\ L(x)=\ln(1+x)}$ 1.1.2 Soit, pour $n\in\mathbb{N}^*$: f_n : $x\mapsto\frac{(-1)^nx^n}{n}$.
 - Les f_n sont des fonctions continues sur [0,1].
 - Pour tout $x \in [0,1]$, $f_n(x)$ est le terme général d'une suite alternée, décroissante en module et de limite nulle. On peut donc dire que la série $\sum f_n(x)$ converge d'après le critère spécial et que, si on

note
$$R_n = \sum_{k=n+1}^{+\infty} f_k$$
:

$$\forall n \in \mathbb{N}^* , \ \forall x \in [0,1] , \ |R_n(x)| \le |f_{n+1}(x)| \le \frac{1}{n+1}$$

Ainsi, $||R_n||_{\infty}^{[0,1]} \leqslant \frac{1}{n+1} \underset{n \to +\infty}{\to} 0$. $\sum_{n \in \mathbb{N}^*} f_n$ est donc uniformément convergente sur [0,1].

Par théorème de continuité de la somme d'une série de fonctions,

$$L \in \mathcal{C}^0([0,1],\mathbb{R})$$
.

En particulier,

$$L(1) = \lim_{x \to 1^{-}} L(x) = \lim_{x \to 1^{-}} \ln(1+x) = \ln(2).$$

1.2 Étude de la série $\sum_{k \in \mathbb{N}_*} \frac{1}{k} \cos \left(\frac{2k\pi}{3} \right)$.

1.2.1 On découpe la somme en trois parties selon la congruence modulo 3 de l'indice puis on s'arrange pour retrouver tous les $\frac{1}{l_2}$:

$$\sum_{k=1}^{3p} a_k = \sum_{i=1}^{p} a_{3i} + \sum_{i=0}^{p-1} a_{3i+1} + \sum_{i=0}^{p-1} a_{3i+2}$$

$$= -\sum_{i=1}^{p} \frac{2}{3i} + \sum_{i=0}^{p-1} \frac{1}{3i+1} + \sum_{i=0}^{p-1} \frac{1}{3i+2}$$

$$= -3\sum_{i=1}^{p} \frac{1}{3i} + \sum_{i=1}^{p} \frac{1}{3i} + \sum_{i=0}^{p-1} \frac{1}{3i+1} + \sum_{i=0}^{p-1} \frac{1}{3i+2}$$

$$= -\sum_{i=1}^{p} \frac{1}{i} + \sum_{k=1}^{3p} \frac{1}{k} = \sum_{k=p+1}^{3p} \frac{1}{k}$$

(Rem : on pouvait aussi faire une démonstration par récurrence sur p).

On change alors d'indice (h = k - p) et on factorise :

$$\sum_{k=1}^{3p} a_k = \sum_{h=1}^{2p} \frac{1}{p+h} = \frac{1}{p} \sum_{h=1}^{2p} \frac{1}{1 + \frac{h}{p}}$$

1.2.2 • On fait ainsi apparaître une somme de Riemann associée à $\varphi: t \mapsto \frac{1}{1+t}$ sur [0,2]: en effet, les $\frac{h}{p}$ pour $1 \leqslant h \leqslant 2p$ forment une subdivision régulière de pas $\frac{1}{p}$ de l'intervalle [0,2].

Comme la fonction est continue sur le segment, on peut appliquer le théorème sur les sommes de Riemann.

$$\sum_{k=1}^{3p} a_k = \frac{1}{p} \sum_{k=1}^{2p} \varphi\left(\frac{h}{p}\right) \underset{p \to +\infty}{\to} \int_0^2 \frac{dt}{1+t}$$

c'est à dire

$$\lim_{p \to +\infty} \sum_{k=1}^{3p} a_k = \ln(3).$$

• En notant (A_n) la suite des sommes partielles de la série proposée, on a montré que $A_{3p} \to \ln(3)$. Comme $A_{3p+1} = A_{3p} + a_{3p+1}$ et $A_{3p+2} = A_{3p+1} + a_{3p+2}$ on a aussi convergence vers $\ln(3)$ des extraites (A_{3n+1}) et (A_{3n+2}) . Nos trois extraites sont convergentes de même limite et « recouvrent » toute la suite des sommes partielles. On a donc convergence de la série avec

$$\sum_{k=1}^{+\infty} a_k = \ln(3).$$

1.2.3 Soit $u_k = \frac{1}{k} \cos\left(\frac{2k\pi}{3}\right)$. On a $u_{3p} = \frac{1}{3p}$, $u_{3p+1} = -\frac{1}{2(3p+1)}$ et $u_{3p+2} = -\frac{1}{2(3p+2)}$. Ainsi, $u_p = -\frac{a_p}{2}$. La convergence de $\sum a_n$ entraı̂ne celle de $\sum u_n$ et

$$\sum_{k=1}^{+\infty} u_k = -\frac{1}{2} \sum_{k=1}^{+\infty} a_k = -\frac{1}{2} \ln(3) = \ln\left(\frac{1}{\sqrt{3}}\right).$$

- 1.3 Étude des séries $\sum_{k\geqslant 1} \frac{\cos(k\alpha)}{k}$ et $\sum_{k\geqslant 1} \frac{\sin(k\alpha)}{k}$.
- **1.3.1** $S_n(t)$ est la somme partielle d'une série géométrique de raison $e^{it} \neq 1$ et on a donc

$$S_n(t) = \frac{e^{it} - (e^{it})^{n+1}}{1 - e^{it}} = \varphi(t)(e^{i(n+1)t} - e^{it})$$

1.3.2 On sait d'après le cours que la fonction $t \mapsto e^{it}$ est de classe \mathscr{C}^{∞} sur \mathbb{R} . De plus, pour $t \in [\pi, \alpha]$, $e^{it} - 1$ ne s'annule pas donc

$$\varphi: t \mapsto \frac{1}{\mathrm{e}^{\mathrm{i}t} - 1} \text{ est de classe } \mathscr{C}^{\infty} \ \sup[\pi, \alpha].$$

1.3.3 Une intégration par parties donne

$$\int_{\pi}^{\alpha} e^{i(n+1)t} \varphi(t) dt = \left[\frac{e^{i(n+1)t}}{n+1} \varphi(t) \right]_{\pi}^{\alpha} - \frac{1}{i(n+1)} \int_{\pi}^{\alpha} e^{i(n+1)t} \varphi'(t) dt$$

 φ et φ' sont continues sur le segment $[\pi, \alpha]$ et sont donc bornées sur ce segment. En notant M_0 et M_1 des majorants sur ce segment de $|\varphi|$ et $|\varphi'|$, on a alors

$$\left| \left[\frac{\mathrm{e}^{\mathrm{i}(n+1)t}}{n+1} \varphi(t) \right]_{\pi}^{\alpha} \right| = \frac{1}{n+1} \left| \mathrm{e}^{\mathrm{i}(n+1)\alpha} \varphi(\alpha) - \mathrm{e}^{\mathrm{i}(n+1)\pi} \varphi(\pi) \right| \leqslant \frac{1}{n+1} \left| \mathrm{e}^{\mathrm{i}(n+1)\alpha} \right| \left| \varphi(\alpha) \right| + \left| \mathrm{e}^{\mathrm{i}(n+1)\pi} \right| \left| \varphi(\pi) \right| \leqslant \frac{2M_0}{n+1} \left| \frac{2M_0}{n+1} \right| + \frac{2M_$$

et

$$\left| \frac{1}{\mathrm{i}(n+1)} \int_{-\pi}^{\alpha} \mathrm{e}^{\mathrm{i}(n+1)t} \varphi'(t) \, \mathrm{d}t \right| \leqslant \frac{1}{n+1} \int_{-\pi}^{\alpha} \left| e^{\mathrm{i}(n+1)t} \right| |\varphi'(t)| \, \mathrm{d}t = \frac{1}{n+1} \int_{-\pi}^{\alpha} |f'(t)| \, \mathrm{d}t \leqslant \frac{(\alpha-\pi)M_1}{n+1}$$

d'où

$$\left| \int_{\pi}^{\alpha} e^{i(n+1)t} \varphi(t) \, \mathrm{d}t \right| \leqslant \frac{2M_0}{n+1} + \frac{(\alpha - \pi)M_1}{n+1} \underset{n \to +\infty}{\longrightarrow} 0$$

On en déduit que

$$\lim_{n \to +\infty} \int_{\pi}^{\alpha} e^{i(n+1)t} \varphi(t) dt = 0 \quad (lemme \ de \ Lebesgue).$$

 $\textit{Rem : je rappelle, car beaucoup semblent l'avoir oubli\'e, que, pour tout θ r\'eel, $\left|e^{i\theta}\right|=1 \text{ !!...}}$

1.3.4 Par linéarité de l'intégration, on a

$$\int_{\pi}^{\alpha} S_n(t) dt = \sum_{k=1}^{n} \int_{\pi}^{\alpha} e^{ikt} dt = \sum_{k=1}^{n} \frac{e^{ik\alpha} - e^{ik\pi}}{ik} = \frac{1}{i} \sum_{k=1}^{n} \frac{e^{ik\alpha}}{k} - \frac{1}{i} \sum_{k=1}^{n} \frac{(-1)^k}{k}$$

Le second terme du membre de droite tend vers $i \ln(2)$ (question 1.2). On a aussi

$$\int_{\pi}^{\alpha} S_n(t) dt = \int_{\pi}^{\alpha} \varphi(t) e^{i(n+1)t} dt - \int_{\pi}^{\alpha} e^{it} \varphi(t) dt$$

qui tend vers $-\int_{\pi}^{\alpha} e^{it} \varphi(t) dt$ quand $n \to +\infty$ (question 3.3). On en déduit que

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{e^{ik\alpha}}{k} = -\ln(2) - i \int_{\pi}^{\alpha} e^{it} \varphi(t) dt$$

ce qui prouve la convergence de $\sum_{k\geq 1} \frac{\mathrm{e}^{\mathrm{i}k\alpha}}{k}$ et donne la somme de la série.

1.3.5 On a, pour $t \neq 0[2\pi]$,

$$e^{it}\varphi(t) = \frac{e^{it/2}}{e^{it/2} - e^{-it/2}} = \frac{e^{it/2}}{2i\sin(t/2)}$$

1.3.6 En passant aux parties réelle et imaginaire dans le résultat de la question **3.4** on en déduit que les séries $\sum_{k>1} \frac{\cos(k\alpha)}{k} \text{ et } \sum_{k>1} \frac{\sin(k\alpha)}{k} \text{ convergent et que}$

$$\sum_{k=1}^{+\infty} \frac{\cos(k\alpha)}{k} = -\ln(2) - \int_{\pi}^{\alpha} \mathcal{R}e\left(ie^{it}\varphi(t)\right) dt$$

$$= -\ln(2) - \int_{\pi}^{\alpha} \frac{\cos(t/2)}{2\sin(t/2)} dt$$

$$= -\ln(2) - \left[\ln(|\sin(t/2)|)\right]_{\pi}^{\alpha}$$

$$= -\ln(2\sin(\alpha/2))$$

$$\sum_{k=1}^{+\infty} \frac{\sin(k\alpha)}{k} = -\int_{\pi}^{\alpha} \mathcal{I}m\left(ie^{it}\varphi(t)\right) dt = -\int_{\pi}^{\alpha} \frac{dt}{2} = \frac{\pi - \alpha}{2}$$

Le résultat est cohérent avec celui de **2.3** puisque $2\sin(\pi/3) = \sqrt{3}$ ($2\pi/3$ n'est pas dans $[\pi, 2\pi[$ mais l'hypothèse importante dans ce qui précède est seulement $\alpha/2 \in]0, \pi[\ldots)$.

II. Limite d'une intégrale.

- 2.1 Existence de $\tilde{f}_g(x)$.
- **2.1.** On notera M un majorant de |q| sur \mathbb{R}^+ .

Soit $x \ge 0$. $t \mapsto f(t)g(xt)$ est continue par morceaux sur \mathbb{R}^+ et le seul problème d'intégrabilité est celui au voisinage de $+\infty$. Or, $|f(t)g(x,t)| \le M|f(t)|$ et le majorant est intégrable au voisinage de $+\infty$. La fonction est donc intégrable sur \mathbb{R}^+ et a fortiori, son intégrale $\tilde{f}_q(x)$ existe. De plus

$$\forall x \geqslant 0, \ |\tilde{f}_g(x)| \leqslant M \int_0^{+\infty} |f(t)| \, \mathrm{d}t$$

ce qui montre que \tilde{f}_g est bornée sur \mathbb{R}^+ .

- $\forall x \ge 0, \ t \mapsto f(t)g(xt)$ est continue par morceaux sur \mathbb{R}^+ .
- $\forall t \geqslant 0, \ x \mapsto f(t)g(xt)$ est continue sur \mathbb{R}^+ .
- $\forall x \in \mathbb{R}^+, \ \forall t \geqslant 0, \ |f(t)g(xt)| \leqslant M|f(t)|$. Le majorant est indépendant de x et est une fonction continue et intégrable sur \mathbb{R}^+ .

D'après le théorème de continuité des intégrales à paramètres,

$$\tilde{f}_g \in \mathcal{C}^0(\mathbb{R}^+)$$
.

 $\boxed{\tilde{f}_g \in \mathcal{C}^0(\mathbb{R}^+).}$ Remarque : il n'y a pas de raison d'exclure le cas x=0 dans cette question, comme l'a fait l'énoncé.

- **2.2** Limite de $f_q(x)$ lorsque $g(t) = e^{it}$.
- **2.2.1.** D'après l'existence de l'intégrale de |f| sur \mathbb{R}^+ , on a $\int_0^a |f(t)| dt$ qui tend vers $\int_0^{+\infty} |f(t)| dt$ quand $a \to +\infty$ (c'est la définition d'une intégrale impropre convergente). En revenant à la définition de la limite, on a donc

$$\forall \varepsilon > 0, \ \exists \, A \geqslant 0 \ \mathrm{tq} \ \forall a \geqslant A, \ \left| \int_0^{+\infty} |f(t)| \ \mathrm{d}t - \int_0^a |f(t)| \ \mathrm{d}t \right| \leqslant \varepsilon \quad \mathrm{soit} \quad \left| \int_a^{+\infty} |f(t)| \ \mathrm{d}t \right| \leqslant \varepsilon$$

ce qui implique le résultat demandé.

2.2.2. Une intégration par parties donne, pour x > 0,

$$\int_0^A f(t)e^{ixt} dt = \frac{f(A)e^{ixA} - f(0)}{ix} - \frac{1}{ix} \int_0^A f'(t)e^{ixt} dt$$

f' est continue sur le segment [0,A] et donc bornée sur ce segment. Une majoration simple donne alors

$$\left| \int_0^A f(t)e^{ixt} dt \right| \le \frac{|f(A)| + |f(0)|}{x} + \frac{A||f'||_{\infty}^{[0,A]}}{x}$$

Le majorant étant de limite nulle quand $x \to +\infty$, on a donc

$$\lim_{x \to +\infty} \int_0^A f(t) e^{ixt} dt = 0.$$

2.3. Soit $\varepsilon > 0$, et soit A comme dans la question **2.1**. La question **2.2** donne alors, par définition de la limite, un x_0 tel que, pour $x \geqslant x_0$, $\left| \int_0^A f(t) e^{ixt} dt \right| \leqslant \varepsilon$. On a alors

$$\forall x \geqslant x_0, \ \left| \tilde{f}_g(x) \right| \leqslant \left| \int_0^A f(t) e^{ixt} dt \right| + \int_A^{+\infty} |f(t)| \leqslant 2\varepsilon$$

Par définition des limites, on a donc montré que

$$\lim_{x \to +\infty} \tilde{f}_g(x) = 0.$$

- 2.2 Étude pour une fonction f particulière.
- 2.3.1. On peut procéder par double intégration par parties ou, mieux, utiliser l'exponentielle complexe:

$$\theta(\gamma) = \mathcal{I}m\left(\int_0^{\pi} e^{y(\gamma+i)} dy\right) = \mathcal{I}m\left(\frac{-e^{\pi\gamma} - 1}{\gamma + i}\right) = \frac{1 + e^{\pi\gamma}}{1 + \gamma^2}$$

2.3.2. Le changement de variable u = tx, qui réalise un \mathscr{C}^1 -difféomorphisme de \mathbb{R}^+ sur \mathbb{R}^+ (puisque x > 0) donne directement

$$\tilde{E}(x) = \int_0^{+\infty} e^{-t} |\sin(xt)| dt = \frac{1}{x} \int_0^{+\infty} e^{-u/x} |\sin(u)| du$$

2.3.3. Le changement de variable $v = u - k\pi$ donne

$$\int_{k\pi}^{(k+1)\pi} e^{-\frac{u}{x}} |\sin(u)| du = \int_{0}^{\pi} e^{-\frac{v+k\pi}{x}} |\sin(v)| dv = e^{-\frac{k\pi}{x}} \theta\left(-\frac{1}{x}\right)$$

2.3.4. La série proposée est une série géométrique de raison $e^{-\frac{\pi}{x}}$. Sa raison est dans]-1,1[; la série converge donc et

$$\sum_{k=0}^{+\infty} e^{-\frac{k\pi}{x}} = \frac{1}{1 - e^{-\frac{\pi}{x}}}$$

2.3.5. $\tilde{E}(x)$ est la limite quand n tend vers $+\infty$ de $\frac{1}{x} \int_0^{(n+1)\pi} e^{-\frac{u}{x}} |\sin(u)| du$. D'après la relation de Chasles et avec les questions précédentes, on a donc

$$\tilde{E}(x) = \frac{1}{x} \sum_{k=0}^{+\infty} e^{-\frac{k\pi}{x}} \theta\left(-\frac{1}{x}\right) = \frac{x}{x^2 + \pi^2} \frac{1 + e^{-\frac{\pi}{x}}}{1 - e^{-\frac{\pi}{x}}}$$

Quand $x \to +\infty$, on a $1 - e^{-\frac{\pi}{x}} \sim \frac{\pi}{x}$ et $1 + e^{-\frac{\pi}{x}} \to 2$, ce qui permet d'obtenir

$$\lim_{x \to +\infty} \tilde{E}(x) = \frac{2}{\pi}.$$

2.4 Étude générale.

2.4.1. Notons $h_k: t \mapsto \frac{\cos(2kt)}{4k^2-1}$. (h_k) est une suite de fonctions continues sur \mathbb{R} et $||h_k||_{\infty} \leqslant \frac{1}{4k^2-1}$ qui est le terme général d'une série convergente. La série de fonctions $\sum h_k$ est ainsi normalement, donc uniformément, convergente sur \mathbb{R} et, par théorème de continuité des sommes de séries de fonctions,

$$h \in \mathcal{C}^0(\mathbb{R}^+)$$
.

 $|\sin|$ est π -périodique et paire. Ses coefficients de Fourier « en sinus » sont nuls et ceux « en cosinus » valent

$$\forall k \in \mathbb{N}, \ a_k(|\sin|) = \frac{2}{\pi} \int_0^{\pi} |\sin(t)| \cos(2kt) \, dt = \frac{4}{\pi} \frac{1}{1 - 4k^2}$$

(Pour le calcul de l'intégrale, on peut supprimer la valeur absolue et on utilise la formule $\sin(a+b)+\sin(a-b)=2\sin(a)$ c Comme $|\sin|$ est continue et de classe \mathcal{C}^1 par morceaux, elle est somme de sa série de Fourier sur \mathbb{R} , d'après le théorème de Dirichlet :

$$\forall t \in \mathbb{R} , |\sin(t)| = \frac{2}{\pi} + \frac{4}{\pi} \sum_{k \ge 1} \frac{1}{1 - 4k^2} \cos(2kt) = \frac{2}{\pi} - \frac{4}{\pi} h(t).$$

2.4.2. On a ainsi $\tilde{f}(x) = \int_0^{+\infty} f(t) \left(\frac{2}{\pi} - \frac{4}{\pi}h(xt)\right) dt$ et comme f est intégrable, on peut découper l'intégrale en deux pour obtenir

$$\tilde{f}(x) = \frac{2}{\pi} \int_0^{+\infty} f(t) dt - \frac{4}{\pi} \int_0^{+\infty} f(t)h(xt) dt$$

x > 0 étant fixé, par définition de h, on a

$$\forall t \ge 0, \ f(t)h(xt) = \sum_{k=0}^{+\infty} \frac{f(t)\cos(2kxt)}{4k^2 - 1}$$

 $H_k: t \mapsto \frac{f(t)\cos(2kt)}{4k^2-1}$ est une fonction continue sur \mathbb{R}^+ et $\sum H_k$ converge simplement sur \mathbb{R}^+ vers $t \mapsto f(t)h(xt)$ elle même continue sur \mathbb{R}^+ . De plus $|H_k(t)| \leqslant \frac{|f(t)|}{4k^2-1}$ montre que H_k est intégrable avec

$$\int_{0}^{+\infty} |H_k(t)| \, \mathrm{d}t \leqslant \frac{1}{4k^2 - 1} \int_{0}^{+\infty} |f(t)| \, \mathrm{d}t$$

qui est le terme général d'une série convergente. Le théorème d'interversion série-intégrale lorsqu'il y a convergence en norme 1 s'applique donc et permet d'écrire que

$$\int_0^{+\infty} f(t)h(xt) dt = \sum_{k=1}^{+\infty} \int_0^{+\infty} \frac{f(t)\cos(2kxt)}{4k^2 - 1} dt = \sum_{k=1}^{+\infty} \left(\frac{1}{4k^2 - 1} \int_0^{+\infty} f(t)\cos(2kxt) dt\right)$$

Posons maintenant $F_k(x) = \frac{1}{4k^2 - 1} \int_0^{+\infty} f(t) \cos(2kxt) dt = \frac{1}{4k^2 - 1} \int_0^{+\infty} f(\frac{u}{2k}) \cos(ux) du$ (on a posé u = 2kt).

- D'après la partie **2.2**, comme $u \mapsto f\left(\frac{u}{2k}\right)$ est de classe \mathcal{C}^1 alors $F_k(x) \to 0$ quand $x \to +\infty$ (on passe du résultat avec e^{ix} à celui avec $\cos(x)$ en passant à la partie réelle).
- $-\forall x>0, |F_k(x)| \leq \frac{1}{4k^2-1} \int_0^{+\infty} |f(t)| dt$. Le majorant est indépendant de x et est le terme général d'une série convergente. La série de fonctions $\sum F_k$ est donc normalement convergente sur \mathbb{R}^{+*} (et donc au voisinage de $+\infty$).

Le théorème de double limite s'applique donc et implique que

$$\lim_{x \to +\infty} \int_0^{+\infty} f(t)h(xt) dt = 0$$

En combinant tout cela on obtient finalement que

$$\lim_{x \to +\infty} \tilde{f}(x) = \frac{2}{\pi} \int_0^{+\infty} f(t) dt.$$

Comme $\int_{0}^{+\infty} e^{-t} dt = 1$, ceci est compatible avec le résultat pour \tilde{E} .

2.4.3

2.4.3.1 Il suffit de poser u = xt pour obtenir

$$F(x) = \frac{1}{x} \int_{\beta x}^{\delta x} |\sin(u)| \ du$$

Par définition de p et q, on a $p\pi \leq \beta x < (p+1)\pi$ et $q\pi \leq \delta x < (q+1)\pi$. Si $x > \frac{\pi}{\delta - \beta}$ alors $\delta x - \beta x > \pi$; or, $q\pi - (p+1)\pi > \delta x - \beta x$ et donc q - p + 1 > 1 ou encore q > p. On effectue, avec la relation de Chasles, le découpage suivant :

$$xF(x) = \int_{\beta x}^{(p+1)\pi} |\sin(u)| \, \mathrm{d}u + \sum_{k=p+1}^{q-1} \int_{k\pi}^{(k+1)\pi} |\sin(u)| \, \mathrm{d}u + \int_{q\pi}^{\delta x} |\sin(u)| \, \mathrm{d}u$$

Par π -périodicité de $|\sin|$, le terme du milieu vaut $(q-p-1)\int_0^{\pi} |\sin(u)| du = 2(q-p-1)$. On peut alors minorer les premier et troisième termes par 0, et les majorer par l'intégrale de |sin| sur une période complète d'où

$$2(q-p-1) \le xF(x) \le 2[(q-p-1)+2] = 2(q-p+1)$$

De plus $\frac{\delta x}{\pi} - 1 - \frac{\beta x}{\pi} - 1 \leqslant q - p - 1 \leqslant \frac{\delta x}{\pi} - \frac{\beta x}{\pi}$ et donc

$$\frac{2(\delta - \beta)}{\pi} - \frac{2}{r} \leqslant F(x) \leqslant \frac{2(\delta - \beta)}{\pi} + \frac{4}{r}$$

Par théorème d'encadrement, on a finalemen

$$\lim_{x \to +\infty} F(x) = \frac{2}{\pi} (\delta - \beta).$$

2.4.3.2

• Si f est en escalier sur J = [a, b], il existe une subdivision $a = a_0 < a_1 < \cdots < a_p = b$ telle que f est constante (égale à c_i) sur a_i, a_{i+1} . On a alors

$$\tilde{f}(x) = \sum_{k=0}^{p-1} c_k \int_{a_k}^{a_{k+1}} |\sin(xt)| dt \underset{x \to +\infty}{\to} \sum_{k=0}^{p-1} c_k \frac{2(a_{k+1} - a_k)}{\pi}$$

Par ailleurs,

$$\int_{J} f(t) dt = \sum_{k=0}^{p-1} c_k (a_{k+1} - a_k)$$

et finalement.

$$\lim_{x \to +\infty} \tilde{f}(x) = \frac{2}{\pi} \int_{J} f(t) dt$$

• Si f est continue par morceaux sur le segment [a,b], f est uniformément approchable sur [a,b] par une suite de fonctions en escalier. Soit $\varepsilon > 0$; il existe φ , fonction en escalier, telle que $||f - \varphi||_{\infty}^{J} \le \varepsilon$. D'après le premier cas, il existe x_0 tel que si $x > x_0$, $\left| \tilde{\varphi}(x) - \frac{2}{\pi} \int_{J} \varphi \right| \le \varepsilon$. Pour $x > x_0$, on a alors

$$\left| \tilde{f}(x) - \frac{2}{\pi} \int_J f(t) \, \mathrm{d}t \right| \leq \left| \tilde{f}(x) - \tilde{\varphi}(x) \right| + \left| \tilde{\varphi}(x) - \frac{2}{\pi} \int_J \varphi \right| + \left| \frac{2}{\pi} \int_J \varphi - \frac{2}{\pi} \int_J f \, \mathrm{d}t \right|$$

Par choix de x, le second morceau est plus petit que ε . Le troisième est plus petit que $\frac{2}{\pi}|b-a|\varepsilon$. Le premier est majoré par $\int_{-\pi}^{b}|f(t)-\varphi(t)|\,\mathrm{d}t$ et donc par $(b-a)\varepsilon$. On a donc

$$\left| \tilde{f}(x) - \frac{2}{\pi} \int_{I} f(t) \, \mathrm{d}t \right| \le \left(\frac{2}{\pi} |b - a| + |b - a| + 1 \right) \varepsilon$$

En revenant à la définition des limites, on a montré que

$$\lim_{x \to +\infty} \tilde{f}(x) = \frac{2}{\pi} \int_J f(t) \, \mathrm{d}t.$$

• Supposons f est continue par morceaux sur \mathbb{R}^+ . Soit $\varepsilon > 0$; comme en **2.1** on trouve un A tel que $\int_A^{+\infty} |f(t)| \, \mathrm{d}t \leqslant \varepsilon$. D'après le cas précédent, il existe x_0 tel que si $x > x_0$ on a $\left| \int_0^A f(t) |\sin(xt)| \, \mathrm{d}t - \frac{2}{\pi} \int_0^A f \right| \leqslant \varepsilon$. Pour $x > x_0$, on a alors

$$\left| \tilde{f}(x) - \frac{2}{\pi} \int_0^{+\infty} f(t) \, \mathrm{d}t \right| \leqslant \int_A^{+\infty} |f(t)| + \left| \int_0^A f(t) |\sin(xt)| \, \mathrm{d}t - \frac{2}{\pi} \int_0^A f \right| + \frac{2}{\pi} \int_A^{+\infty} |f| \, \mathrm{d}t$$

Avec les choix faits, on a alors

$$\left| \tilde{f}(x) - \frac{2}{\pi} \int_0^{+\infty} f(t) \, \mathrm{d}t \right| \leqslant \left(2 + \frac{2}{\pi} \right) \varepsilon$$

En revenant à la définition des limites, on a montré que

$$\lim_{x \to +\infty} \tilde{f}(x) = \frac{2}{\pi} \int_0^{+\infty} f(t) dt.$$