WS2021

PPB2 —

FRET

Matteo Kumar - Leonhard Schatt —

Gruppe 3

Informationen

Versuchstag 27.09.2021

Versuchsplatz NW I

Betreuer Chenyu Jin

Gruppen Nr. 3

Inhaltsverzeichnis

1	Einleitung	5
2	Grundlagen	6
3	Auswertung und Diskussion 3.1 Sensitized Emission	7
	3.1.1 Bestimmung der Korrekturfaktoren	
4	Fazit	11
Α	Anhang	12

1 Einleitung

2 Grundlagen

3 Auswertung und Diskussion

3.1 Sensitized Emission

3.1.1 Bestimmung der Korrekturfaktoren

Da es aufgrund des Crosstalks nicht möglich ist, zur Bestimmung der Förstereffizienz E alleine den s.e.-Kanal zu messen, müssen zuerst Korrekturfaktoren $\alpha, \beta, \gamma, \delta$ aus den Messungen der Proben mit reinem CFP/YFP berechnet werden. Dies werde exemplarisch an einer YFP-Zelle durchgeführt. Als Bearbeitungsprogramm wird FIJI gewählt. ¹ Für jede Zelle stehen vier Bilder zur Verfügung: Das Bild aus dem Donorkanal D, das aus dem s.e.-Kanal S, das aus dem Akzeptorkanal A und das Brightfield BF, welche auf 32 Bit konvertiert werden. Als Erstes wird zur Bestimmung des Untergrunds eine zellfreie Region in BF als ROI1 gewählt und auf die anderen Bilder übertragen und die mittlere Graustufe gemessen. Danach wird in S die hell dargestellte Membran als ROI2 gewählt und als eine zusätzliche ROI3 die gesamte Zelle mit ein wenig Hintergrund. Die mittlere Graustufe in ROI2 wird in S und A gemessen ($M_{S,oH}$, $M_{A,oH}$ zur Bestimmung von γ ohne Hintergrundkorrektur. Die jeweils gemessenen Hintergrundwerte werden nun von D, S und A abgezogen. Um kleine und negative Zahlen, die in späteren Rechnungen stören könnten zu vermeiden, wird ein unterer Threshold auf eine Zahl zwischen zwei und drei festgelegt. Anschließend werden die mittleren Graustufen in der ROI2 ($M_{\rm D}$, $M_{\rm S},\,M_{\rm A}$ zur regulären Bestimmung der Parameter) und ROI3 von $S,\,A$ ($Z_{\rm S},\,Z_{\rm A}$ zur Bestimmung von γ für die ganze Zelle) gemessen. Die Parameter ergeben sich nach:

$$\alpha = \frac{M_{\mathrm{D}}}{M_{\mathrm{A}}}, \qquad \gamma = \frac{M_{\mathrm{S}}}{M_{\mathrm{A}}}, \qquad \delta = \frac{M_{\mathrm{D}}}{M_{\mathrm{S}}}$$

Diese und die dafür benötigten Intensitäten finden sich in Tab.3.1.1. Dabei ist für Zelle 1 eine sehr große Abweichung bei den Werten für die Parameter, insbesondere bei α und δ , zu erkennen. Dies könnten statistische Ausreißer sein. Da die Abweichung allerdings sehr groß ist und die Anzahl der Parameter, über die gemittelt wird, klein ist, soll Zelle 1 bei der Mittelwertbildung nicht berücksichtigt werden.

¹https://fiji.sc/

Zelle	$H_{ m D}$	$H_{ m S}$	$H_{ m A}$	$M_{ m D}$	$M_{ m S}$	$M_{ m A}$	α	γ	δ
1	3,469	1,716	1,647	7,368	112,042	154,957	0,048	0,723	0,066
2	3,477	1,684	1,589	27,523	160,316	239,416	0,115	0,670	0,172
3	3,398	1,525	1,501	6,836	38,770	$60,\!359$	0,113	0,642	$0,\!176$
4	3,473	1,676	1,529	6,685	$34,\!273$	57,370	0,117	$0,\!597$	0,195
5	4,406	1,747	2,015	7,719	$51,\!241$	76,791	0,101	0,667	0,151
6	4,449	2,400	2,994	6,774	45,610	74,779	0,091	0,610	0,149
7	3,722	1,543	1,824	7,721	58,728	95,628	0,081	0,614	0,131
8	3,710	1,640	1,714	7,406	$34,\!212$	$58,\!472$	$0,\!127$	0,585	0,216
9	3,708	1,673	1,812	7,349	28,602	47,971	$0,\!153$	$0,\!596$	0,257
10	$3,\!435$	1,746	1,475	7,109	$29,\!154$	50,015	0,142	0,583	0,244

Tabelle 3.1: Reine YFP-Messung: Hintergrundintensitäten H und die hintergrundbereinigten Intensitäten der Membranregionen M für die Bilder D, S und A; zudem die berechneten Korrekturfaktoren α , γ und δ .

In Tab.3.1.1 sind die Werte für γ dargestellt, die auf den oben beschriebenen alternativen Berechnungswegen berechnet wurden.

Zelle	$M_{ m S,oH}$	$M_{ m A,oH}$	$\gamma_{ m oH}$	$Z_{ m S}$	$Z_{ m A}$	$\gamma_{ m Z}$
1	113,749	156,568	0,727	40,156	59,259	0,678
2	$47,\!862$	79,515	0,602	$21,\!255$	$29,\!470$	0,721
3	40,169	61,815	0,650	20,707	$28,\!572$	0,725
4	$35,\!516$	$58,\!586$	0,606	19,698	29,688	0,664
5	$52,\!802$	78,790	0,670	32,973	50,309	0,655
6	$47,\!356$	77,142	0,614	32,922	53,921	0,611
7	$60,\!180$	97,389	0,618	$47,\!584$	77,729	0,612
8	$35,\!463$	60,068	$0,\!590$	22,609	$35,\!327$	0,640
9	$28,\!545$	48,023	$0,\!594$	20,340	31,969	0,636
10	30,350	$51,\!301$	$0,\!592$	18,508	$26,\!505$	0,698

Tabelle 3.2: Reine YFP-Messung: Alternative Werte für γ . Berechnet über die Intensitäten der Membranen ohne Hintergrundkorrektur $M_{\rm oH}$ ($\gamma_{\rm oH}$) bzw. über die Intensitäten der gesamten Zelle Z ($\gamma_{\rm Z}$).

Für die verschienen Arten von γ ergeben sich die Werte in Tab.3.1.1.

Art der Berechnung	Mittelwert	Standardabweichung
Membran hintergrundbereinigt	0,6183	0,0335
Membran nicht hintergrundbereinigt	0,6151	0,0276
ganze Zelle	0.6625	0,0434

Tabelle 3.3: Mittelwerte und Standardabweichungen für die verschiedenen Werte von γ .

Analog werden werden die Bilder aus der Messung mit reinem CFP bearbeitet. Der Parameter β ergibt sich hier aus $\beta = \frac{M_{\rm S}}{M_{\rm D}}$, wobei die M hier die Werte aus der CFP-Messung sind.

Zelle	$H_{ m D}$	$H_{ m S}$	$H_{ m A}$	$M_{ m D}$	$M_{ m S}$	$M_{ m A}$	β
1	3,418	1,686	1,577	95,440	18,973	4,167	0,199
2	$3,\!425$	1,561	1,598	112,163	$22,\!212$	4,069	$0,\!198$
3	$3,\!452$	1,781	1,620	73,191	$15,\!579$	4,062	0,213
4	3,401	1,420	1,284	$53,\!402$	11,505	$4,\!366$	$0,\!215$
5	3,560	1,379	$1,\!377$	$158,\!632$	$34,\!848$	4,220	$0,\!220$
6	$3,\!474$	1,373	1,341	112,046	$22,\!406$	4,520	0,200
7	$3,\!522$	$1,\!397$	1,484	87,322	17,689	$4,\!274$	0,203
8	3,403	1,385	1,485	$102,\!180$	$20,\!527$	4,232	0,201
9	3,400	1,430	1,473	$111,\!870$	$22,\!527$	$4,\!195$	0,201
10	3,381	1,543	$1,\!471$	130,118	26,034	4,338	0,200

Tabelle 3.4: Reine CFP-Messung: Hintergrundintensitäten H und die hintergrundbereinigten Intensitäten der Membranregionen M für die Bilder D, S und A; zudem der berechnete Korrekturfaktor β .

3.1.2 Sensitized Emission und Förstereffizienz

Zur Bestimmung der Förstereffizienz E muss erst die Sensitized Emission SE bestimmt werden. Dazu werden die Bilder aus der Messung mit den CFP- und YFP-Proben wie in 3.1.1 gezeigt vom Hintergrund bereinigt und mit einem Threshold versehen. Zudem wird auch hier die mittlere Graustufe der Zellmembranregion $M_{\rm D},\,M_{\rm S},\,M_{\rm A}$ bestimmt. Daraus folgt SE über $SE=\frac{M_{\rm S}-\beta M_{\rm D}-(\gamma-\alpha\beta)M_{\rm A}}{1-\beta\delta}$. E ergibt sich dann aus $E=\frac{SE}{\sqrt{M_{\rm A}M_{\rm D}}}$.

3 Auswertung und Diskussion

Zelle	$H_{ m D}$	$H_{ m S}$	H_{A}	$M_{ m D}$	$M_{ m S}$	$M_{ m A}$	SE	E
1	2,421	1,210	1,223	80,730	71,540	54,331	25,190	0,380
2	2,813	1,270	1,248	137,878	106,079	73,674	38,181	$0,\!379$
3	2,547	1,231	1,234	$68,\!282$	68,762	60,218	21,021	$0,\!328$
4	2,668	1,249	1,250	$84,\!578$	64,943	$52,\!319$	18,877	$0,\!284$
5	$2,\!837$	1,264	1,296	$104,\!521$	62,707	41,966	19,202	$0,\!290$
6	2,924	1,271	1,414	78,200	66,906	57,763	18,745	$0,\!279$
7	3,051	1,402	1,512	45,738	54,990	$62,\!436$	9,647	0,181
8	3,079	1,620	1,388	56,097	30,312	$25,\!544$	4,974	$0,\!131$
9	3,194	1,584	1,654	$36,\!181$	$17,\!553$	15,022	2,039	0,087
10	$3,\!528$	1,852	1,928	$58,\!512$	35,725	$32,\!398$	5,879	$0,\!135$
11	3,323	1,712	1,780	$64,\!531$	72,052	82,691	11,224	$0,\!154$
12	3,390	$1,\!397$	$1,\!497$	$63,\!450$	$45,\!478$	$43,\!365$	$8,\!256$	$0,\!157$
13	$3,\!487$	1,898	1,754	22,739	16,890	18,424	1,787	0,087
14	$3,\!596$	1,825	1,838	29,124	$18,\!328$	16,876	3,028	$0,\!137$
15	$3,\!645$	1,534	1,466	59,672	37,600	$32,\!234$	7,703	$0,\!176$

Tabelle 3.5: YFP/CFP-Messung: Hintergrundintensitäten H und die hintergrundbereinigten Intensitäten der Membranregionen M für die Bilder D, S und A; zudem die berechnete Sensitized Emission SE und Förstereffizienz E.

Anstelle die Berechnung von SE und E mit den Intensitätsmittelwerten auf der Membran durchzuführen kann diese auch pixelweise mit den gesamten Bildern erfolgen. Die Bilder finden sich in Wählt man nun in der Darstellung von E nun die gleiche Membranregion aus, über die auch die Intensität gemittelt wurde, ergeben sich die Mittelwerte $E_{\text{pixelweise}}$, die in 3.1.2 zu finden sind.

Zelle	$E_{\text{aus Mittelung}}$	$E_{\text{pixelweise}}$
1		0,413
2		0,329
3		0,370

4 Fazit

A Anhang