Note del corso di Analisi Matematica 1

Gabriel Antonio Videtta

30 marzo 2023

Esercitazioni: applicazione dei teoremi sulla continuità

Esercizio 1. Siano $I = [a, b] \in \overline{\mathbb{R}}$, $f : I \to \overline{\mathbb{R}}$ continua strettamente crescente. Allora l'eq. f(x) = y ha una sola soluzione se $f(a) \le y \le f(b)$ e nessuna soluzione se y < f(a) o se y > f(b).

Soluzione. Poiché f è strettamente crescente, f è iniettiva. Allora, se y è tale che $f(a) \leq y \leq f(b)$, per il teorema dei valori intermedi, $\exists x \mid f(x) = y$; e tale x è unica dal momento che f è iniettiva. In particolare, poiché f è crescente, f(a) e f(b) sono rispettivamente inf f(I) e sup f(I), e quindi sono anche min f(I) e max f(I), da cui, se y < f(a) o y > f(b), y = f(x) non ammette soluzione.

Esercizio 2. Si consideri l'eq. $xe^x = 4$ (*).

- (a) Mostrare che (*) ammette un'unica soluzione $\overline{x} \in \mathbb{R}$, e trovare x_0, x_1 tali che $x_0 < \overline{x} < x_1$.
- (b) Calcolare \overline{x} con errore minore a 10^{-2} .

Soluzione. Si studia la funzione $f(x) = xe^x - 4$. f è continua, e vale che f(0) = -4 e che $f(2) = 2e^2 - 4 \ge 4$. Quindi, per il teorema degli zeri su [0,2], f ammette uno zero \overline{x} in (0,2).

Si studia adesso la derivata $f'(x) = e^x + xe^x = (1+x)e^x$. $f'(x) > 0 \iff x > -1$, ossia f è crescente per x > -1. Al contrario, f decresce per x < -1; poiché allora $\lim_{x \to -\infty} f(x) = -4$, $\sup f((-\infty), -1)) = -4$, e quindi f non ha zeri per x < -1, tantomeno per x = -1 (infatti $f(-1) = -1e^{-1} - 4 \neq 0$).

Poiché per x > -1 f è allora strettamente crescente, f può ammette un solo zero, ossia quello trovato all'inizio della soluzione.

Per ricavare \overline{x} con errore minore a 10^{-2} , si applica il metodo di bisezione per 7 volte (infatti $\varepsilon(n) = \frac{1}{2^n}$ per ogni passaggio n-esimo dell'algoritmo, e $\varepsilon(7) \approx 0.0079 < 0.01$), ricavando $\overline{x} = 1.2031$.

Esercizio 3. Si consideri l'eq $x^5 + x = 10$ (*).

- (a) Mostrare che $\exists \overline{x}$ soluzione di (*) e che tale \overline{x} è unica.
- (b) Mostrare che $\overline{x} \in (0,2)$.
- (c) Trovare \overline{x} con errore minore a 10^{-2} .

Soluzione. Si consideri la funzione $f(x) = x^5 + x - 10$. Si osserva che tale funzione è sempre continua. Si osserva che f(0) = -10 e che f(2) = 24. Quindi f ammette una soluzione \overline{x} in (0,2).

Si studia la derivata di f, ossia $f'(x) = 5x^4 + 1$. Poiché $f'(x) > 0 \ \forall x \in \mathbb{R}$, f è strettamente crescente, e quindi f ammette un'unica soluzione, \overline{x} .

Per trovare la soluzione \overline{x} con errore minore a 10^{-2} , come nell'esercizio precedente, è necessario applicare il metodo di bisezione per 7 volte, ricavando $\overline{x} = 1.5469$.

Osservazione. La scelta del punto medio nell'algoritmo di bisezione è (quasi) forza. Nella costruzione degli intervalli è infatti necessario che l'intervallo, all'infinito, tenda ad un solo punto; qualora non venga scelto il punto medio degli intervalli, questo non è assolutamente garantito.

Esercizio 4. Sia I = [a, b]. Siano $f_1, f_2 : I \to \mathbb{R}$ continue tali che $f_1(a) < f_2(a)$ e che $f_1(b) > f_2(b)$. Dimostrare che $\exists \overline{x} \in I$ tale che $f_1(\overline{x}) = f_2(\overline{x})$.

Soluzione. Si consideri $g(x) = f_1(x) - f_2(x)$. g è continua in I, e g(a) < 0 e g(b) > 0 per ipotesi. Allora, per il teorema degli zeri, $\exists x \in (a, b)$ tale che g(x) = 0, ossia che $f_1(x) = f_2(x)$, da cui la tesi.

Esercizio 5. Sia I = [a,b] e sia $f: I \to \mathbb{R}$ continua. Sia P un punto che si muove in modo continuo nella striscia $I \times \mathbb{R}$. Sia in particolare $P: [0,1] \to I \times \mathbb{R}$ tale che $t \mapsto (x(t),y(t))$ con $a \le x(t) \le b \ \forall t \in [0,1]$, con y(0) > f(a), y(1) < f(b), x(0) = a e x(1) = b. Dimostrare che $\exists t \in [0,1]$ tale che (x(t),y(t)) = (x(t),f(x(t))), ossia che tale curva si interseca con la funzione f.

Soluzione. Si consideri la funzione g(t) = f(x(t)) - y(t). Poiché x ed f sono continue, lo è anche la loro composizione, e così, poiché anche y è continua, lo è in particolare g. Dal momento che g(0) = f(x(0)) - y(0) = f(a) - y(0) < 0 e g(1) = f(x(1)) - y(1) = f(b) - y(1) > 0, per il teorema dei valori intermedi, esiste $\bar{t} \in (0, 1)$ tale che g(0) = 0, ossia tale che $f(x(\bar{t})) = y(\bar{t})$, da cui la tesi.

Esercizio 6. Sia I=(a,b) e sia $f:(a,b)\to \overline{\mathbb{R}}$ continua tale che $\exists \, \ell_a=\lim_{x\to a} f(x), \, \ell_b=\lim_{x\to b} f(x)$. Si consideri allora l'estensione continua \tilde{f} :

$$\tilde{f} = \begin{cases} f(x) & \text{se } x \neq a, b, \\ \ell_a & \text{se } x = a, \\ \ell_b & \text{se } x = b. \end{cases}$$

Allora¹ vale che \tilde{f} è continua in \overline{I} .

Soluzione. Sicuramente \tilde{f} è continua in I, dacché vale quanto f in questa porzione di intervallo. Poiché $\ell_a = \lim_{x\to a} f(x)$, per ogni intorno I di ℓ_a esiste un intorno J di a tale che $f(J\cap I\setminus\{a\})=f(J\cap I)=\tilde{f}(J\cap I)\subseteq I$, ossia, per definizione, \tilde{f} è continua anche in a, e, analogamente, anche in b.

Osservazione. Come mostrato nella traccia dell'esercizio precedente, si possono estendere continuamente alcune funzioni elementari. Per esempio, detta $f(x) = \frac{1}{x^2}$, si può estendere f a $\tilde{f} : \overline{\mathbb{R}} \to \overline{\mathbb{R}}$ in modo tale che:

$$\tilde{f}(x) = \begin{cases} 0 & \text{se } x = \pm \infty, \\ +\infty & \text{se } x = 0, \\ f(x) & \text{altrimenti.} \end{cases}$$

Esercizio 7. Si trovi un esempio di funzione $f: X \to \overline{\mathbb{R}}$, dove, dato \overline{x} punto di accumulazione di X, $f(x) \xrightarrow[x \to \overline{x}]{} \ell$, ma $\exists (x_n) \subseteq X$ tale che $x_n \xrightarrow[n \to \infty]{} \overline{x}$, ma $f(x_n)$ non tende a ℓ per $n \to \infty$.

Soluzione. Sia $f: \mathbb{R} \to \mathbb{R}$ tale che:

$$f(x) = \begin{cases} 0 & \text{se } x = 0, \\ 1 & \text{altrimenti.} \end{cases}$$

Si consideri allora la successione $(x_n) \subseteq X$ tale che:

 $^{^1\}mathrm{Come}$ già riscontrato, vale un risultato ancora più forte: data un'estensione \tilde{f} di f in $\overline{I},\,\tilde{f}$ è continua se e solo se i valori estesi sono esattamente i limiti della funzione nei punti di $I\setminus\overline{I};$ e quindi l'estensione continua è ben definita, e unica del suo genere.

$$x_n = \begin{cases} 0 & \text{se } n \text{ è pari,} \\ \frac{1}{n} & \text{altrimenti.} \end{cases}$$

Si mostra che $x_n \xrightarrow[n \to \infty]{} 0$. Infatti, sia $I = [-\varepsilon, \varepsilon]$, con $\varepsilon > 0$, un intorno di 0. Allora per $n > \frac{1}{\varepsilon}$ vale che $x_n \in I$ (infatti 0 vi appartiene sempre, e $0 < \frac{1}{n} < \varepsilon$); da cui si ricava proprio che $x_n \xrightarrow[n \to \infty]{} 0$.

Chiaramente $f(x) \xrightarrow[x \to 0]{} 1$. È sufficiente mostrare allora che $f(x_n)$ non tende a 1 per $n \to \infty$. Si consideri la sottosuccessione $f(x_{2n})$: poiché $f(x_{2n}) = f(0) = 0$, la sottosuccessione presa in considerazione è costante, e quindi $f(x_{2n}) \xrightarrow[n \to \infty]{} 0$. Anche la sottosuccessione $f(x_{2n+1})$ è costante, e vale che $f(x_{2n+1}) = f(\frac{1}{n}) = 1$, e quindi $f(x_{2n+1}) \xrightarrow[n \to \infty]{} 1$. Poiché allora il limite di $f(x_n)$, se esistesse, dovrebbe essere uguale a quello di ambo le sottosuccessioni considerate, ed il limite è unico, $f(x_n)$ non ammette limite, proprio come volevasi dimostrare.

Esercizio 8. Sia $X \subseteq \mathbb{R}$ tale che ogni punto di X sia isolato. Dimostrare allora che X è al più numerabile.

Soluzione. Sia $\overline{x} \in X$. Poiché \overline{x} è per ipotesi isolato, esiste un intorno $I(\overline{x})$ di \overline{x} tale che $I \cap X = \{\overline{x}\}$. Si può sempre trovare un intorno $J(\overline{x})$ più piccolo di $I(\overline{x})$ tale che $J(\overline{x}) \cap I(x) = \varnothing \ \forall x \in X \setminus \{\overline{x}\}$. Se infatti non si potesse, esisterebbe un $x \in X \setminus \{\overline{x}\}$ tale che $J \cap I(x) \neq \varnothing$ per ogni intorno $J \subseteq I(\overline{x})$ di \overline{x} : sicuramente tale $x \notin J$, altrimenti $I(\overline{x})$ conterrebbe un elemento di X diverso da \overline{x} , assurdo dal momento che $I(\overline{x})$ non ne contiene uno per costruzione; ma x non può neanche appartenere a $X \setminus J$, dacché in tal modo si può sempre costruire con errore a piacimento un intorno più piccolo di J tale che sia disgiunto con I(x), f. Dal momento che $\mathbb Q$ è denso in $\overline{\mathbb R}$, si può allora sempre associare a $J(\overline{x})$ un numero razionale q al suo interno. In questo modo si può costruire una funzione $f: X \to \mathbb Q$, tale che $f(\overline{x}) = q$. Poiché i J(x) sono digiunti per costruzione, f è iniettiva, e quindi $|X| \leq |\mathbb Q| = |\mathbb N|$, e quindi X è al più numerabile.