LATENT HEAT

The amount of energy required to change a material from one phase to another.

$$Q = mL$$

Q = energy in Joules

m = mass in kg

L = latent heat of the material

SPECIFIC HEAT CAPACITY

The amount of energy required to raise a kilogram of water to 1 degree Celsius (kilogram because our constants are defined with kilograms).

$$Q = mc\Delta T$$

Q = energy in Joules

m = mass in kg

c = specific heat capacity of material

 ΔT = change in temperature of the material (T_F - T_I)

SHC AND LH OF COMMON MATERIALS

specific heat capacity	J / (kg C)	latent heat	fusion (J / kg)	vaporization (J / kg)
ice	2100	positive	3.33 x 10^5	2.26 x 10^6
water	4186	negative	1.08 x 10^5	8.85 x 10^5
steam	2010	negative	1.39 x 10^4	2.13 x 10^5
aluminum	900		•	•
copper	385			

THE HEAT CURVE

EXAMPLES.

- 1. How much energy is required to melt 790 grams of ice?
 - Q = ml
 - = $(0.79 \text{ kg})(3.33 \times 10^5 \text{ J/kg})$ (convert grams to kilograms)
 - $= (0.79 \text{ kg})(3.33 \times 10^5 \text{ J/kg})$
 - = 263.07 kJ
- 2. How much heat is required to raise the temperature of 0.15kg water from 20 C to 55 C? $Q = mc\Delta T$
 - = (0.15 kg)(4186 J/kg)(55C 20C)
 - = 21.9765 kJ

3. How much energy is required to convert 3kg of ice at 0C to water at 30C? First we need energy, Q_1 , to phase change ice to water, then we need energy, Q_2 , to raise the temperature from 0C to 30C. In total, we need to add Q_1 and Q_2 .

 $Q_1 = mL$ = $(3 \text{ kg})(3.33 \times 10^5 \text{ J/kg})$ = 999 kJ $Q_2 = mc\Delta T$ = (3 kg)(4186 J/kg)(30C - 0C)= 376.74 kJ $Q_{\text{total}} = Q_1 + Q_2$ = 999 kJ + 376.74 kJ

= 1.3754 MJ