

Aula 19: Matrizes Introdução a Programação

Túlio Toffolo & Puca Huachi http://www.toffolo.com.br

BCC201 – 2019/1 Departamento de Computação – UFOP

Aula anterior

- Vetores
- Vetores e funções
- Aritmética de ponteiros

Aula de hoje

- Motivação
- 2 Definição de matrizes
- Matrizes e funções
- 4 Exemplos
- Exercícios
- Próxima aula

Aula de hoje

- Motivação
- Definição de matrizes
- Matrizes e funções
- 4 Exemplos
- Exercícios
- Próxima aula

Fazer um programa para ler as notas de 4 provas para 50 alunos de uma turma e calcular a média do aluno e média da turma.

Solução: criar 4 vetores de 50 posições, sendo um para cada nota:

```
double nota1[50], nota2[50], nota3[50], nota4[50];
```

	Aluno		Nota1	l	Nota2	2	Nota3	3	Nota4	ı	Médi	a
0	Pedro	0	5.6	0	6.0	0	7.3	0	5.6	0	6.1	
1	Ana	1	10	1	4.0	1	5.0	1	7.3	1	6.6	
2	Luiz	2	4.5	2	2.0	2	5.5	2	1.0	2	3.3	
48	Matheus	48	7.2	48	6.6	48	8.1	48	8.8	48	7.7	
49	Andre	49	6.0	49	9.0	49	7.3	49	4.5	49	6.6	

E se tivermos que armazenar 100 notas?

	Aluno		Nota1		Nota2		Nota3		Nota9	9	Nota1	00	Média	3
0	Pedro	0	5.6	0	6.0	0	7.3	0	7.3	0	5.6	0	6.1	
1	Ana	1	10	1	4.0	1	5.0	1	5.0	1	7.3	1	6.6	
2	Luiz	2	4.5	2	2.0	2	5.5	 2	5.5	2	1.0	2	3.3	
48	Matheus	48	7.2	48	6.6	48	8.1	48	8.1	48	8.8	48	7.7	
49	Andre	49	6.0	49	9.0	49	7.3	49	7.3	49	4.5	49	6.6	

Criaremos 100 vetores com 100 nomes diferentes?

Uma solução mais eficaz para resolver o problema é o uso de matrizes:

	Aluno		0	1	2	 98	99
0	Pedro	0	5.6	6.0	7.3	 7.3	5.6
1	Ana	1	10	4.0	5.0	 5.0	7.3
2	Luiz	2	4.5	2.0	5.5	 5.5	1.0
48	Matheus	48	7.2	6.6	8.1	 8.1	8.8
49	Andre	49	6.0	9.0	7.3	 7.3	4.5

	Média
0	6.1
1	6.6
2	3.3
48	7.7
49	6.6

Aula de hoje

- Motivação
- 2 Definição de matrizes
- Matrizes e funções
- 4 Exemplos
- Exercícios
- Próxima aula

Matrizes: variáveis compostas homogêneas

- As variáveis compostas homogêneas correspondem a um conjunto de elementos de mesmo tipo e que compartilham um mesmo nome;
- Cada um dos elementos é unicamente identificado por um número inteiro (índice) que especifica a sua localização dentro da estrutura;
- Estas variáveis podem ser unidimensionais (vetores) ou multidimensionais (matrizes);

Matriz bi-dimensional

Por exemplo, uma matriz bi-dimensional pode ser vista como uma tabela de m linhas e n colunas.

Declaração de matrizes

```
<tipo> <identificador> [<linhas>] [<colunas>];
```

- <tipo>: tipo dos dados que serão armazenados no vetor (int, char, float, etc);
- <identificador>: nome dado à variável;
- linhas>: número de elementos da primeira dimensão;
- <colunas>: número de elementos da segunda dimensão;
- As linhas e colunas são numeradas de 0 até tamanho 1.

Declaração de matrizes

Exemplo:

```
//matriz com 100 linhas e 50 colunas
1
   double notas[100][50];
```

Acessando os elementos

- Forma de ter acesso ao elemento de uma matriz:
 <variável>[<indice_linha>] [<indice_coluna>]
- Exemplos:

```
//imprimir o elemento da linha 3 e coluna 10 da matriz notas
printf("%lf", notas[3][10]);

//multiplica a posição (i, j) da matriz mat por 5;
mat[i][j] = mat[i][j] * 5;
```

Observação

- C/C++ n\u00e3o verifica o limite das dimens\u00f3es das vari\u00e1veis compostas;
- Se uma instrução for feita com índices além do limite, é possível que não ocorra um erro de execução do programa e outros valores sejam sobrepostos na memória;
- É responsabilidade do programador providenciar a verificação dos limites das dimensões das variáveis compostas;

Faça um programa que leia e imprima uma matriz 4×3 (4 linhas e 3 colunas).

Declaração da matriz

Matriz (M x N)

```
#define M 4
   #define N 3
3
   int matriz[M][N]; // note que M e N são constantes
```

Leitura dos dados da matriz

Matriz $(M \times N)$

```
// capturando dados
   for (int i = 0; i < M; i++) { //para as linhas}
       for (int j = 0; j < N; j++) { //para as colunas
           scanf("%d", &matriz[i][j]);
4
5
```

Impressão da matriz

Matriz $(M \times N)$

```
// imprimindo o conteúdo da matriz
2
   for (int i = 0; i < M; i++) { //para as linhas
       for (int j = 0; j < N; j++) { //para as columns
           printf("%d ", matriz[i][j]);
5
       printf("\n"); //salta uma linha
```

```
#define M 4
1
   #define N 3
3
4
   int main()
5
      int matriz[M][N]:
6
      // capturando dados
      9
         for (int j = 0; j < N; j++) { // para as columns
10
             printf("matriz[%d][%d] = ", i, j);
11
12
            scanf("%d", &matriz[i][j]);
13
14
15
      // imprimindo o conteudo da matriz
16
      17
         for (int j = 0; j < N; j++) { // para as colunas
18
            printf("%4d ", matriz[i][j]);
19
20
         printf("\n");
21
22
23
      return 0:
24
```

Inicialização de Matrizes I

Inicializando cada elemento da matriz (m x n) com o valor 0.

```
int matriz[M][N];
1
   for (int i = 0; i < M; i++) //para as linhas
      for (int j = 0; j < N; j++) //para as columns
         matriz[i][j] = 0;
```

Inicialização de Matrizes II

Inicializando na declaração. Processo semelhante à inicialização de vetores.

Mas podemos fazer também:

```
int matriz[3][4] = { 10, 20, 30, 40,
50, 60, 70, 80,
90, 11, 22, 33 };
```

Ou ainda:

19 / 35

```
1 int matriz[3][4] = { 10, 20, 30, 40, 50, 60, 70, 80, 90, 11, 22, 33 };
```

Dada uma matriz (4×5) , calcular a soma de todos os elementos da matriz. Calcular também o somatório dos elementos de cada linha da matriz, armazenando o somatório em um vetor.

SOMALINHA

MAT

1	2	3	4	5
0	-1	0	-3	1
2	-2	-2	2	0
0	0	6	0	0

15
-3
0
6

```
int main()
1
    {
        // declaração das variáveis
        float mat[4][5], somaLinha[4], total;
5
        // total se inicia com zero
        total = 0:
        for (int i = 0; i < 4; i++) {
10
            // a soma da cada linha é inicializada com zero
            somaLinha[i] = 0:
11
12
13
            // somando os valores da linha em somaLinha[i]
            for (j = 0; j < 5; j++)
14
                somaLinha[i] += mat[i][j];
15
16
17
            // somando o total de cada linha
            total += somaLinha[i]:
18
19
20
```

Aula de hoje

- Motivação
- 2 Definição de matrizes
- Matrizes e funções
- Exemplos
- 5 Exercícios
- Próxima aula

Em C/C++ você precisa indicar o tamanho de todas as dimensões de uma matriz passada por parâmetro, exceto a dimensão mais à esquerda.

Exemplo com todas as dimensões da matriz:

```
void imprimirMatriz(int matriz[3][3], int n, int m)

for (int i = 0; i < n; ++i) {
    for (int j = 0; j < m; ++j)
        printf("%d ", matriz[i][j]);
    printf("\n");
}

printf("\n");
}</pre>
```

Em C/C++ você precisa indicar o tamanho de todas as dimensões de uma matriz passada por parâmetro, exceto a dimensão mais à esquerda.

Exemplo sem a dimensão mais a esquerda:

```
void imprimirMatriz2(int matriz[][3], int n, int m)

for (int i = 0; i < n; ++i) {
    for (int j = 0; j < m; ++j)
        printf("%d ", matriz[i][j]);
    printf("\n");
}

printf("\n");
}</pre>
```

Mas... porquê todas as dimensões menos a mais à esquerda??

- Por conta da forma como matrizes s\u00e3o representadas na mem\u00f3ria!
- As linhas são colocadas sequencialmente em um "vetorzão".
- Exemplo: seja a matriz 3×3 a seguir

Ela será representada na memória como um vetor de tamanho 9:

```
1 i ---> 0 0 0 1 1 1 2 2 2 2 1 2 1 2 3 M[i][j] ---> { 10, 20, 30, 40, 50, 60, 70, 80, 90 }
```

Logo, quando acessamos o campo [i][j] de uma matriz 4×5:

- C/C++ acessa o campo $5 \times i + j$ do "vetorzão" (em que 5 é o número de colunas).
- Para tal, o compilador deve saber quantas colunas há em cada linha
 - Ou seria impossível multiplicar por 5 neste exemplo.

Se você não quiser definir as dimensões da sua matriz em tempo de compilação, há algumas alternativas...

que aprenderemos em breve...
 (quando falarmos sobre alocação dinâmica)

Agora faz mais sentido inicializar uma matriz sem separação?

```
// inicializando uma matriz sem separação entre linhas/colunas
int matriz[3][3] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
```

Aula de hoje

- Motivação
- 2 Definição de matrizes
- Matrizes e funções
- 4 Exemplos
- Exercícios
- Próxima aula

Faça um programa em C++ que calcule a soma de duas matrizes:

$$C_{m \times n} = A_{m \times n} + B_{m \times n}$$

onde

$$c_{i,j} = a_{i,j} + b_{i,j} \quad \forall i \in \{1 \dots m\} \ e \ j \in \{1 \dots n\}$$

```
#define M 4
1
    #define N 3
3
    int main()
4
    {
5
         int a[M][N] = \{ \{1, 2, 3\}, \{4, 5, 6\}, \{7, 8, 9\}, \{10, 11, 12\} \};
6
         int b[M][N] = \{ \{1, 2, 3\}, \{4, 5, 6\}, \{7, 8, 9\}, \{10, 11, 12\} \};
         int c[M][N]; // c não precisa ser inicializada neste momento...
9
10
        // calculando o valor de cada célula da matriz c
11
        for (int i = 0; i < M; i++)
12
             for (int j = 0; j < N; j++)
13
                 c[i][j] = a[i][j] + b[i][j];
14
15
16
        // imprimindo matriz c
        for (int i = 0; i < M; i++) {
17
             for (int j = 0; j < N; j++)
18
                 printf("%d ", c[i][j]);
19
             printf("\n");
20
21
22
        return 0;
23
    }
24
```

Escrever um programa que leia uma matriz, seus elementos e sua dimensão ($m,n \leq 100$). Em seguida, o programa deve:

- solicitar ao usuário o índice de uma linha (ℓ) e um valor constante (c);
- ② multiplicar todos elementos da linha ℓ por c;
- imprimir a matriz resultante;

Lendo a matriz:

```
int matriz[100][100];
2
    // lendo as dimensões da matriz
3
    printf("Digite as dimensões m e n da matriz: ");
    scanf("%d %d", &m, &n);
5
    // lendo os elementos da matriz
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
9
            printf("Digite o valor de matriz[%d][%d]: ", i, j);
10
            scanf("%d", &matriz[i][j]);
11
12
13
```

Solicitando o índice da linha ℓ e o valor de c para, em seguida, multiplicar os elementos da linha ℓ por c e imprimir a matriz resultante:

```
1
    int linha. constante:
    printf("Digite o indice da linha a alterar: ");
    scanf("%d", &linha);
    printf("Digite o valor da constante: ");
    scanf("%d", &constante):
6
    // multiplicando valores da linha *linha* por *constante*
    for (int j = 0; j < n; j++)
        matriz[linha][j] = matriz[linha][j] * constante;
9
10
    // imprimindo a matriz resultante
11
    for (int i = 0; i < m; i++) {
12
        for (int j = 0; j < n; j++)
13
            printf("%d ", matriz[i][j]);
14
        printf("\n"):
15
16
```

Escreva um programa que declare uma matriz (5×5) e inicialize cada posição com o valor 0. Em seguida, o usuário deve digitar o índice da linha e da coluna e o valor da posição.

- A leitura será feita enquanto os índices forem não negativos.
- Após a leitura o programa deve imprimir a matriz na tela.

```
int matriz[5][5];
 1
    int linha, coluna, valor:
3
    for (int i = 0: i < 5: i++)
4
        for (int j = 0; j < 5; j++)
5
            matriz[i][j] = 0;
6
7
    do {
8
9
         printf("Usuário, digite linha, coluna e valor: ");
         scanf("%d %d %d", &linha, &coluna, &valor);
10
11
         if (linha >= 0 && coluna >= 0)
12
13
             matriz[linha][coluna] = valor;
14
    } while (linha \geq 0 && coluna \geq 0):
15
16
    for (int i = 0; i < 5; i++) {
17
        for (int j = 0; j < 5; j++)
18
            printf("%d ", matriz[i][j]);
19
20
        printf("\n");
21
```

Aula de hoje

- Motivação
- 2 Definição de matrizes
- Matrizes e funções
- Exemplos
- Exercícios
- Próxima aula

Exercícios

Exercício 1

Escreva um programa que declare e preencha uma matriz (10×10) com valores fornecidos pelo usuário.

- O programa deve imprimir o maior valor da matriz e em qual posição (linha e coluna) este valor está.
- Em seguida, o programa deve imprimir os elementos da diagonal principal e da diagonal secundária.

Aula de hoje

- Motivação
- 2 Definição de matrizes
- Matrizes e funções
- Exemplos
- 5 Exercícios
- Próxima aula

Próxima Aula

- Aula prática: Cadeia de caracteres (vetor/array de caracteres)
- Aula prática: strings, vetores e matrizes

Perguntas?