$12a_{1029} (K12a_{1029})$

Ideals for irreducible components 2 of X_{par}

$$I_1^u = \langle u^{40} + u^{39} + \dots - 2u^2 + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 40 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{40} + u^{39} + \dots - 2u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} - 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{4} - 3u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{8} - 5u^{6} + 7u^{4} - 2u^{2} + 1 \\ -u^{8} + 4u^{6} - 4u^{4} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{16} - 9u^{14} + 31u^{12} - 50u^{10} + 39u^{8} - 22u^{6} + 18u^{4} - 4u^{2} + 1 \\ u^{18} - 10u^{16} + 39u^{14} - 74u^{12} + 71u^{10} - 40u^{8} + 26u^{6} - 12u^{4} + u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{33} + 18u^{31} + \dots + 8u^{3} - u \\ -u^{35} + 19u^{33} + \dots - u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{12} - 7u^{10} + 17u^{8} - 16u^{6} + 6u^{4} - 5u^{2} + 1 \\ -u^{12} + 6u^{10} - 12u^{8} + 8u^{6} - u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{29} - 16u^{27} + \dots - 8u^{3} - u \\ -u^{29} + 15u^{27} + \dots - u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$\begin{array}{l} -4u^{37} + 80u^{35} - 4u^{34} - 716u^{33} + 76u^{32} + 3776u^{31} - 640u^{30} - 13020u^{29} + 3140u^{28} + \\ 30896u^{27} - 9940u^{26} - 52168u^{25} + 21336u^{24} + 65184u^{23} - 32132u^{22} - 64416u^{21} + 35572u^{20} + \\ 54464u^{19} - 31380u^{18} - 39892u^{17} + 23748u^{16} + 24224u^{15} - 15004u^{14} - 12824u^{13} + 7500u^{12} + \\ 6132u^{11} - 3152u^{10} - 2204u^9 + 1016u^8 + 768u^7 - 200u^6 - 192u^5 - 24u^4 + 40u^3 + 12u^2 - 12u + 2\\ \end{array}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{40} - 13u^{39} + \dots + 2144u - 367$
c_2, c_3, c_6 c_7	$u^{40} - u^{39} + \dots - 2u^2 + 1$
c_4, c_5, c_{10} c_{11}	$u^{40} - u^{39} + \dots - 2u^2 + 1$
c_8, c_9, c_{12}	$u^{40} + 5u^{39} + \dots - 8u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{40} - 23y^{39} + \dots + 70036y + 134689$
$c_2, c_3, c_6 \ c_7$	$y^{40} - 47y^{39} + \dots - 4y + 1$
c_4, c_5, c_{10} c_{11}	$y^{40} - 43y^{39} + \dots - 4y + 1$
c_8, c_9, c_{12}	$y^{40} + 41y^{39} + \dots - 204y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.542571 + 0.651532I	-15.0860 + 7.9109I	-4.88905 - 5.84084I
u = 0.542571 - 0.651532I	-15.0860 - 7.9109I	-4.88905 + 5.84084I
u = -0.527459 + 0.636297I	-6.73096 - 5.71035I	-3.24171 + 7.29309I
u = -0.527459 - 0.636297I	-6.73096 + 5.71035I	-3.24171 - 7.29309I
u = 0.464297 + 0.668009I	-15.3188 - 3.4663I	-5.54451 - 0.11860I
u = 0.464297 - 0.668009I	-15.3188 + 3.4663I	-5.54451 + 0.11860I
u = -0.473418 + 0.645260I	-6.89082 + 1.37781I	-3.87753 - 1.00949I
u = -0.473418 - 0.645260I	-6.89082 - 1.37781I	-3.87753 + 1.00949I
u = 0.499489 + 0.625257I	-4.40181 + 2.12074I	0.59127 - 3.19182I
u = 0.499489 - 0.625257I	-4.40181 - 2.12074I	0.59127 + 3.19182I
u = -0.618622 + 0.396214I	-7.28607 - 4.58384I	-1.01784 + 7.01456I
u = -0.618622 - 0.396214I	-7.28607 + 4.58384I	-1.01784 - 7.01456I
u = 0.718137	-5.12638	3.48520
u = 0.572228 + 0.316761I	0.05545 + 3.04563I	2.18963 - 10.11321I
u = 0.572228 - 0.316761I	0.05545 - 3.04563I	2.18963 + 10.11321I
u = 1.40155	-3.93842	0
u = -0.528521 + 0.160054I	0.971034 - 0.396253I	8.46848 + 1.43778I
u = -0.528521 - 0.160054I	0.971034 + 0.396253I	8.46848 - 1.43778I
u = -0.201519 + 0.501257I	-8.55103 + 1.48154I	-5.89219 - 0.00172I
u = -0.201519 - 0.501257I	-8.55103 - 1.48154I	-5.89219 + 0.00172I
u = -1.46893	4.21738	0
u = -1.48557 + 0.20651I	-8.98600 + 0.32573I	0
u = -1.48557 - 0.20651I	-8.98600 - 0.32573I	0
u = 1.49641 + 0.19308I	-0.46594 + 1.62239I	0
u = 1.49641 - 0.19308I	-0.46594 - 1.62239I	0
u = -1.51559 + 0.18786I	2.21863 - 5.03906I	0
u = -1.51559 - 0.18786I	2.21863 + 5.03906I	0
u = 1.53784 + 0.04515I	7.95920 + 1.14176I	0
u = 1.53784 - 0.04515I	7.95920 - 1.14176I	0
u = 1.52750 + 0.19715I	0.03564 + 8.72849I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.52750 - 0.19715I	0.03564 - 8.72849I	0
u = -1.54376 + 0.07625I	7.16214 - 4.39597I	0
u = -1.54376 - 0.07625I	7.16214 + 4.39597I	0
u = -1.53396 + 0.20587I	-8.24623 - 11.03140I	0
u = -1.53396 - 0.20587I	-8.24623 + 11.03140I	0
u = 1.55491 + 0.10083I	0.00334 + 6.33230I	0
u = 1.55491 - 0.10083I	0.00334 - 6.33230I	0
u = -1.56390	2.49097	0
u = 0.189740 + 0.365299I	-1.060900 - 0.590018I	-5.58523 + 1.45123I
u = 0.189740 - 0.365299I	-1.060900 + 0.590018I	-5.58523 - 1.45123I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{40} - 13u^{39} + \dots + 2144u - 367$
c_2, c_3, c_6 c_7	$u^{40} - u^{39} + \dots - 2u^2 + 1$
c_4, c_5, c_{10} c_{11}	$u^{40} - u^{39} + \dots - 2u^2 + 1$
c_8, c_9, c_{12}	$u^{40} + 5u^{39} + \dots - 8u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{40} - 23y^{39} + \dots + 70036y + 134689$
c_2, c_3, c_6 c_7	$y^{40} - 47y^{39} + \dots - 4y + 1$
c_4, c_5, c_{10} c_{11}	$y^{40} - 43y^{39} + \dots - 4y + 1$
c_8, c_9, c_{12}	$y^{40} + 41y^{39} + \dots - 204y + 1$