

GENOME ASSEMBLY FINAL PIPELINE AND RESULTS

Faction 1

Yanxi Chen | Carl Dyson | Sean Lucking | Chris Monaco Shashwat Deepali Nagar | Jessica Rowell | Ankit Srivastava Camila Medrano Trochez | Venna Wang | Seyed Alireza Zamani

CREATING THE NEXT®

OBJECTIVES

- Research industry standard tools for cleaning reads, assembling genomes, and evaluating the assemblies
 - Identify and evaluate new tools
- Devise a pipeline for read quality assessment, cleaning, assembly, evaluation, and polishing
- Assemble reads using two standard methods
- Compare results and choose the best assembly, considering the downstream analyses planned

DATA AND BACKGROUND

What do we have?

- Reads for 24 isolates of Salmonella enterica subsp. enterica serovar Heidelberg from an outbreak in 2013
- Short paired-end reads sequenced using Illumina MiSeq (2nd Generation)

Species characteristics

• GC Content: 52.8% | 1 chromosome + plasmids | Genome size 4.7 - 5.1 Mb

FINAL PIPELINE

QUALITY CONTROL

 Did iterative blanket trimming and filtering of reads using TrimGalore! and assessed the quality using FastQC

• There were a few problematic samples, which were handled separately (OB0012, OB0015, OB0022)

QUALITY CONTROL - KAT

Raw data (left) has strong divergence at low kmer frequency and the slight shift to lower kmer frequencies compared to the corrected (right) graph

After trimming

QUALITY CONTROL - FASTQC

Raw reads

Clip: 18 on 5' end, 5 on 3' end

Learningthauttofff::17050

KMER CONTENT: A CLOSER LOOK

• Warning occurs if any kmer is imbalanced with a binomial 10^{-5} < p-value < 10^{-2}

Before Trimming

GC CONTENT: A CLOSER LOOK

Warning occurs if sum of deviations from theoretical (Gaussian) distribution differs by between 15% and 30%

SEQUENCE LENGTH DISTRIBUTION: A CLOSER LOOK

Warning occurs if all the sequences are not of the same length

SEQUENCE DUPLICATION LEVELS: A CLOSER LOOK

Warning occurs if non-unique sequences are between 20% and 50% of total

DE NOVO ASSEMBLERS

- Used four De Bruijn graph based de novo assemblers:
 ABySS, SOAPdenovo2, SPAdes, and Velvet
- ABySS and SOAPdenovo2 require kmer size as input
 - Used KmerGenie for getting the optimal kmer size

KMERGENIE: OPTIMAL KMER SELECTION

KmerGenie gave k=71 as the optimal kmer size for all the samples, except for two

$$score = log \left(\frac{N50 \times \% cov}{\# of contigs} \right)$$

For validating the KmerGenie prediction, we ran the assemblers for different kmer sizes

RESULTS: DE NOVO ASSEMBLY

 SPAdes gave the best assembly scores among the de novo assemblers

$$score = \log\left(\frac{N50 \times \% cov}{\# of contigs}\right)$$

 Some samples scored consistently low across all the assemblers (OB0012, OB0015, OB0022)

CHOOSING A REFERENCE GENOME

• For choosing a reference genome, we compared 26 different assemblies of *S. enterica* ser. Heidelberg with our *de novo* assembled samples

- Used a Python library called *pyani* for aligning whole genomes against each other (using MUMmer) and calculating average nucleotide identity (ANI)
- Relied on two parameters for making the choice:
 - Alignment length
 - Percentage Identity

CHOOSING A REFERENCE GENOME: ANI

RESULTS: SMALT VS. DE NOVO ASSEMBLERS

 SMALT assembly scores were consistent across all the samples, and better than those for *de novo* assemblies

$$score = \log\left(\frac{N50 \times \% cov}{\# of contigs}\right)$$

 SPAdes and SMALT scores were consistent across all the samples, whereas SOAPdenovo2 and Velvet scores showed a lot of variation

META ASSEMBLY

- Every assembly tool implements its own features for selecting the assembly
- We used a meta-assembly tool to integrate contigs from all the *de novo* assemblers
- We chose CISA (Contig Integrator for Sequence Assembly)
 - Specific for paired end reads
 - Implements 4 phases to integrate contigs:
 - 1. Identification of representative contigs and possible extensions
 - 2. Removal and splitting of misassembled contigs
 - 3. Iterative merging of contigs with a minimum 30% overlap
 - 4. Merging of contigs based on size of repetitive regions

META ASSEMBLY: CISA

- CISA-generated meta-assembly scores were higher than scores for de novo assemblies
- SMALT scores were higher than CISA scores
- Meta-assemblies produces longer length assemblies

FINAL ASSEMBLIES: SUMMARY TABLE

Sample	Genome Length	N50	L50	GC (%)	# of Contigs
OB0001	5091201	368767	5	52.06	39
OB0002	4870895	411917	4	52.03	54
OB0003	4787899	380392	5	52.08	37
OB0004	5011647	204220	7	52.1	46
OB0005	4807094	439006	4	52.11	21
OB0006	4797153	412049	4	52.05	23
OB0007	5132398	395938	5	52.06	35
OB0008	4468280	548552	4	52.18	14
OB0009	5040559	440299	5	52.04	16
OB0010	4785987	221278	7	52.08	47
OB0011	4763307	397502	5	52.08	36
OB0012	4814729	156944	9	52.09	56
OB0013	5052251	426056	4	52.04	35
OB0014	5022308	539810	4	52.03	18
OB0015	5020248	270079	5	52.07	38
OB0016	5073863	412034	4	52.09	33
OB0017	4818198	298803	5	52.11	39
OB0018	4826057	286074	5	52.08	46
OB0019	4981537	381484	4	52.03	35
OB0020	4832658	298639	5	52.1	41
OB0021	4869918	270023	6	52.12	41
OB0022	4774807	235849	5	52.08	43
OB0023	4894310	276120	6	52.03	43
OB0024	4894310	276120	6	52.03	43

ASSEMBLY SELECTION

- Reference-guided assembly might perform more poorly than de novo assembly on bacterial genomes that contain mobile elements like plasmid DNA and/or transposons
 - Plasmids are extra-chromosomal segments of DNA
 - A mechanism for antibiotic resistance so of interest to preserve them
 - Transposons are sequences of DNA that can move within the genome
 - Can be found in plasmid or chromosomal DNA
 - Horizontal gene transfer may also result in the reference-guided assembly performing poorly

CONCLUSION

- The reference-guided assembly performed better than the best de novo assembly and the best meta-assembly
 - ANI plots showed the 26 references to be over 99% similar to our 24 samples
 - Since the goal of this exercise is to explore the pathogenicity of the samples, it would be wise to use a *de novo* assembly-based methodology to help identify novel* genes involved in pathogenesis.
- Although the reference-guided assembly performed better, it may have dropped some indels, genes, and transposable elements that didn't align to the reference
 - The assembly may be better, but we are interested in capturing these elements for downstream analysis
 - The best de novo meta assembly is the best compromise to maintain specificity and sensitivity for mobile DNA elements

MORE INFORMATION

Our github page:

https://github.com/GenomeAssembly2017

Our Wiki:

http://compgenomics2017.biology.gatech.edu/index.php/Faction_I_Genome_Assembly_Group

Our final assemblies are in: /data/home/jrowell32/data/final_assemblies

THANK YOU!