

# Artificial Intelligence for Humans, Volume 3: Deep Learning and Neural Networks

Jeff Heaton

Heaton Research, Inc. St. Louis, MO, USA Publisher: Heaton Research, Inc.

Artificial Intelligence for Humans, Volume 3: Neural Networks and Deep

Learning

December, 2015

Author: Jeff Heaton Editor: Tracy Heaton ISBN: 978-1505714340

Edition: 1.0

Copyright I 2015 by Heaton Research Inc., 1734 Clarkson Rd. #107, Chester-field, MO 63017-4976. World rights reserved. The author(s) created reusable code in this publication expressly for reuse by readers. Heaton Research, Inc. grants readers permission to reuse the code found in this publication or downloaded from our website so long as (author(s)) are attributed in any application containing the reusable code and the source code itself is never redistributed, posted online by electronic transmission, sold or commercially exploited as a stand-alone product. Aside from this specific exception concerning reusable code, no part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including, but not limited to photo copy, photograph, magnetic, or other record, without prior agreement and written permission of the publisher.

Heaton Research, Encog, the Encog Logo and the Heaton Research logo are all trademarks of Heaton Research, Inc., in the United States and/or other countries.

TRADEMARKS: Heaton Research has attempted throughout this book to distinguish proprietary trademarks from descriptive terms by following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, so the content is based upon the final release of software whenever possible. Portions of the manuscript may be based upon pre-release versions supplied by software manufacturer(s). The author and the publisher make no representation or warranties of any kind with regard to the completeness or accuracy of the contents herein and accept no liability of any kind including but not limited to performance, merchantability, fitness for any particular

purpose, or any losses or damages of any kind caused or alleged to be caused directly or indirectly from this book.

## SOFTWARE LICENSE AGREEMENT: TERMS AND CONDITIONS

The media and/or any online materials accompanying this book that are available now or in the future contain programs and/or text files (the "Software") to be used in connection with the book. Heaton Research, Inc. hereby grants to you a license to use and distribute software programs that make use of the compiled binary form of this book's source code. You may not redistribute the source code contained in this book, without the written permission of Heaton Research, Inc. Your purchase, acceptance, or use of the Software will constitute your acceptance of such terms.

The Software compilation is the property of Heaton Research, Inc. unless otherwise indicated and is protected by copyright to Heaton Research, Inc. or other copyright owner(s) as indicated in the media files (the "Owner(s)"). You are hereby granted a license to use and distribute the Software for your personal, noncommercial use only. You may not reproduce, sell, distribute, publish, circulate, or commercially exploit the Software, or any portion thereof, without the written consent of Heaton Research, Inc. and the specific copyright owner(s) of any component software included on this media.

In the event that the Software or components include specific license requirements or end-user agreements, statements of condition, disclaimers, limitations or warranties ("End-User License"), those End-User Licenses supersede the terms and conditions herein as to that particular Software component. Your purchase, acceptance, or use of the Software will constitute your acceptance of such End-User Licenses.

By purchase, use or acceptance of the Software you further agree to comply with all export laws and regulations of the United States as such laws and regulations may exist from time to time.

#### SOFTWARE SUPPORT

Components of the supplemental Software and any offers associated with them may be supported by the specific Owner(s) of that material but they are not supported by Heaton Research, Inc.. Information regarding any available support may be obtained from the Owner(s) using the information provided in the appropriate README files or listed elsewhere on the media.

Should the manufacturer(s) or other Owner(s) cease to offer support or decline to honor any offer, Heaton Research, Inc. bears no responsibility. This notice concerning support for the Software is provided for your information only. Heaton Research, Inc. is not the agent or principal of the Owner(s), and Heaton Research, Inc. is in no way responsible for providing any support for the Software, nor is it liable or responsible for any support provided, or not provided, by the Owner(s).

#### WARRANTY

Heaton Research, Inc. warrants the enclosed media to be free of physical defects for a period of ninety (90) days after purchase. The Software is not available from Heaton Research, Inc. in any other form or media than that enclosed herein or posted to www.heatonresearch.com. If you discover a defect in the media during this warranty period, you may obtain a replacement of identical format at no charge by sending the defective media, postage prepaid, with proof of purchase to:

Heaton Research, Inc.
Customer Support Department
1734 Clarkson Rd #107
Chesterfield, MO 63017-4976
Web: www.heatonresearch.com
E-Mail: support@heatonresearch.com

#### DISCLAIMER

Heaton Research, Inc. makes no warranty or representation, either expressed or implied, with respect to the Software or its contents, quality, performance, merchantability, or fitness for a particular purpose. In no event will Heaton Research, Inc., its distributors, or dealers be liable to you or any other party for direct, indirect, special, incidental, consequential, or other damages

arising out of the use of or inability to use the Software or its contents even if advised of the possibility of such damage. In the event that the Software includes an online update feature, Heaton Research, Inc. further disclaims any obligation to provide this feature for any specific duration other than the initial posting.

The exclusion of implied warranties is not permitted by some states. Therefore, the above exclusion may not apply to you. This warranty provides you with specific legal rights; there may be other rights that you may have that vary from state to state. The pricing of the book with the Software by Heaton Research, Inc. reflects the allocation of risk and limitations on liability contained in this agreement of Terms and Conditions.

### SHAREWARE DISTRIBUTION

This Software may use various programs and libraries that are distributed as shareware. Copyright laws apply to both shareware and ordinary commercial software, and the copyright Owner(s) retains all rights. If you try a shareware program and continue using it, you are expected to register it. Individual programs differ on details of trial periods, registration, and payment. Please observe the requirements stated in appropriate files.

This book is dedicated to my mom Mary, thank you for all the love and encouragement over the years.

## Contents

| Introd | luction | X                                       | cxi    |
|--------|---------|-----------------------------------------|--------|
| 0.1    | Series  | Introduction                            | xxi    |
|        | 0.1.1   | Programming Languages x                 | xii    |
|        | 0.1.2   | Online Labs x                           | xiii   |
|        | 0.1.3   | Code Repositories x                     | xiii   |
|        | 0.1.4   | Books Planned for the Series x          | xiii   |
|        | 0.1.5   | Other Resources x                       | xiv    |
| 0.2    | Neura   | al Networks Introduction x              | XV     |
| 0.3    | The K   | Kickstarter Campaign                    | xvi    |
| 0.4    | Backg   | ground Information x                    | xxiv   |
|        | 0.4.1   | Neural Network Structure x              | XXXV   |
|        | 0.4.2   | A Simple Example x                      | xxvii  |
|        | 0.4.3   | Training: Supervised and Unsupervised x | xxviii |
|        | 0.4.4   | Miles per Gallon                        | xxix   |
| 0.5    | A Net   | ural Network Roadmap                    | xli    |
| 0.6    | Data    | Sets Used in this Book                  | diii   |
|        | 0.6.1   | MNIST Handwritten Digits                | cliii  |
|        | 0.6.2   | Iris Data Set                           | cliv   |
|        | 0.6.3   | Auto MPG Data Set                       | clvi   |
|        | 0.6.4   | Sunspots Data Set                       | clvii  |

|   |      | 0.6.5   | XOR Operator xl                             | viii |
|---|------|---------|---------------------------------------------|------|
|   |      | 0.6.6   | Kaggle Otto Group Challenge xl              | viii |
| 1 | Net  | ural No | etwork Basics                               | 1    |
|   | 1.1  | Neuro   | ons and Layers                              | 2    |
|   | 1.2  | Types   | s of Neurons                                | 7    |
|   |      | 1.2.1   | Input and Output Neurons                    | 7    |
|   |      | 1.2.2   | Hidden Neurons                              | 8    |
|   |      | 1.2.3   | Bias Neurons                                | 9    |
|   |      | 1.2.4   | Context Neurons                             | 9    |
|   |      | 1.2.5   | Other Neuron Types                          | 1    |
|   | 1.3  | Activa  | ation Functions                             | 1    |
|   |      | 1.3.1   | Linear Activation Function                  | 2    |
|   |      | 1.3.2   | Step Activation Function                    | 3    |
|   |      | 1.3.3   | Sigmoid Activation Function                 | 4    |
|   |      | 1.3.4   | Hyperbolic Tangent Activation Function      | 5    |
|   | 1.4  | Rectif  | ied Linear Units (ReLU)                     | 6    |
|   |      | 1.4.1   | Softmax Activation Function                 | 7    |
|   |      | 1.4.2   | What Role does Bias Play? 2                 | 0    |
|   | 1.5  | Logic   | with Neural Networks                        | 2    |
|   | 1.6  | Chapt   | ser Summary                                 | 5    |
|   |      | . ,     | tenureumant base beginning contents. 1.40 . |      |
| 2 | Self |         | nizing Maps 29                              | 9    |
|   | 2.1  | Self-O  | rganizing Maps                              | 0    |
|   |      | 2.1.1   | Understanding Neighborhood Functions        | 4    |
|   |      | 2.1.2   | Mexican Hat Neighborhood Function           | 8    |
|   |      | 2.1.3   | Calculating SOM Error                       | 0    |
|   | 2.2  | Chapt   | er Summary                                  | 1    |
| 3 | Hor  | field & | & Boltzmann Machines                        | 3    |

| CONTREATED | ***   |
|------------|-------|
| CONTENTS   | X111  |
|            | ***** |

|   | 3.1  | Hopfield Neural Networks                                     | 44 |
|---|------|--------------------------------------------------------------|----|
|   |      | 3.1.1 Training a Hopfield Network                            | 46 |
|   | 3.2  | Hopfield-Tank Networks                                       | 50 |
|   | 3.3  | Boltzmann Machines                                           | 51 |
|   |      | 3.3.1 Boltzmann Machine Probability                          | 53 |
|   | 3.4  | Applying the Boltzmann Machine                               | 54 |
|   |      | 3.4.1 Traveling Salesman Problem                             | 54 |
|   |      | 3.4.2 Optimization Problems                                  | 58 |
|   |      | 3.4.3 Boltzmann Machine Training                             | 62 |
|   | 3.5  | Chapter Summary                                              | 62 |
|   |      | 12/12 Sett Many Chippes - Middle Distribution Chip           |    |
| 4 | Feed | dforward Neural Networks                                     | 65 |
|   | 4.1  | Feedforward Neural Network Structure                         | 66 |
|   |      | 4.1.1 Single-Output Neural Networks for Regression           | 66 |
|   | 4.2  | Calculating the Output                                       | 69 |
|   | 4.3  | Initializing Weights                                         | 73 |
|   | 4.4  | Radial-Basis Function Networks                               | 76 |
|   |      | 4.4.1 Radial-Basis Functions                                 | 77 |
|   |      | 4.4.2 Radial-Basis Function Networks                         | 80 |
|   | 4.5  | Normalizing Data                                             | 82 |
|   |      | 4.5.1 One-of-N Encoding                                      | 82 |
|   |      | 4.5.2 Range Normalization                                    | 84 |
|   |      | 4.5.3 Z-Score Normalization                                  | 85 |
|   |      | 4.5.4 Complex Normalization                                  | 88 |
|   | 4.6  | Chapter Summary                                              | 89 |
|   |      | The Charles of the Authority Sales and Market Service (1994) |    |
| 5 | Tra  | ining & Evaluation                                           | 93 |
|   | 5.1  | Evaluating Classification                                    | 94 |
|   |      | 5.1.1 Binary Classification                                  | 95 |

|   |     | 5.1.2  | Multi-Class Classification                               | 102 |
|---|-----|--------|----------------------------------------------------------|-----|
|   |     | 5.1.3  | Log Loss                                                 | 103 |
|   |     | 5.1.4  | Multi-Class Log Loss                                     | 105 |
|   | 5.2 | Evalu  | ating Regression                                         | 106 |
|   | 5.3 | Traini | ing with Simulated Annealing                             | 107 |
|   | 5.4 | Chapt  | ter Summary                                              | 110 |
| 6 | Bac | kprop  | agation Training                                         | 113 |
|   | 6.1 | Under  | estanding Gradients                                      | 114 |
|   |     | 6.1.1  | What is a Gradient                                       | 115 |
|   |     | 6.1.2  | Calculating Gradients                                    | 116 |
|   | 6.2 | Calcul | lating Output Node Deltas                                | 118 |
|   |     | 6.2.1  | Quadratic Error function                                 | 119 |
|   |     | 6.2.2  | Cross Entropy Error Function                             | 120 |
|   | 6.3 | Calcul | lating Remaining Node Deltas                             | 120 |
|   | 6.4 | Deriva | atives of the Activation Functions                       | 121 |
|   |     | 6.4.1  | Derivative of the Linear Activation Function             | 121 |
|   |     | 6.4.2  | Derivative of the Softmax Activation Function            | 121 |
|   |     | 6.4.3  | Derivative of the Sigmoid Activation Function            | 122 |
|   |     | 6.4.4  | Derivative of the Hyperbolic Tangent Activation Function | 123 |
|   |     | 6.4.5  | Derivative of the ReLU Activation Function               | 123 |
|   | 6.5 | Apply  | ing Backpropagation                                      | 125 |
|   |     | 6.5.1  | Batch and Online Training                                | 125 |
|   |     | 6.5.2  | Stochastic Gradient Descent                              | 126 |
|   |     | 6.5.3  | Backpropagation Weight Update                            | 127 |
|   |     | 6.5.4  | Choosing Learning Rate and Momentum                      | 128 |
|   |     | 6.5.5  | Nesterov Momentum                                        | 129 |
|   | 6.6 | Chapt  | er Summary                                               | 130 |

CONTENTS xv

| 7 | Oth | er Propagation Training                 | 33  |
|---|-----|-----------------------------------------|-----|
|   | 7.1 | Resilient Propagation                   | 34  |
|   | 7.2 | RPROP Arguments                         | 34  |
|   | 7.3 | Data Structures                         | 36  |
|   | 7.4 | Understanding RPROP                     | .37 |
|   |     | 7.4.1 Determine Sign Change of Gradient | 37  |
|   |     | 7.4.2 Calculate Weight Change           | 39  |
|   |     | 7.4.3 Modify Update Values              | 40  |
|   | 7.5 | Levenberg-Marquardt Algorithm           | 40  |
|   | 7.6 | Calculation of the Hessian              | 43  |
|   | 7.7 | LMA with Multiple Outputs               | 45  |
|   | 7.8 | Overview of the LMA Process             | 46  |
|   | 7.9 | Chapter Summary                         | 46  |
|   |     |                                         |     |
| 8 | NE  | AT, CPPN & HyperNEAT                    | 49  |
|   | 8.1 | NEAT Networks                           | 150 |
|   |     | 8.1.1 NEAT Mutation                     | 153 |
|   |     | 8.1.2 NEAT Crossover                    | 154 |
|   |     | 8.1.3 NEAT Speciation                   | 158 |
|   | 8.2 | CPPN Networks                           | 159 |
|   |     | 8.2.1 CPPN Phenotype                    |     |
|   | 8.3 | HyperNEAT Networks                      | 165 |
|   |     | 8.3.1 HyperNEAT Substrate               | 165 |
|   |     | 8.3.2 HyperNEAT Computer Vision         | 166 |
|   | 8.4 | Chapter Summary                         | 168 |
| 9 | Dee | ep Learning 1                           | 71  |
|   | 9.1 | Deep Learning Components                | 172 |
|   | 9.2 | Partially Labeled Data                  |     |

| 9.3     | Rectified Linear Units              | 173 |
|---------|-------------------------------------|-----|
| 9.4     | Convolutional Neural Networks       | 174 |
| 9.5     | Neuron Dropout                      | 175 |
| 9.6     | GPU Training                        | 176 |
| 9.7     | Tools for Deep Learning             | 178 |
|         | 9.7.1 H2O                           | 179 |
|         | 9.7.2 Theano                        | 179 |
|         | 9.7.3 Lasagne and NoLearn           | 180 |
|         | 9.7.4 ConvNetJS                     | 181 |
| 9.8     | Deep Belief Neural Networks         | 181 |
|         | 9.8.1 Restricted Boltzmann Machines | 185 |
|         | 9.8.2 Training a DBNN               | 186 |
|         | 9.8.3 Layer-Wise Sampling           | 187 |
|         | 9.8.4 Computing Positive Gradients  | 188 |
|         | 9.8.5 Gibbs Sampling                | 190 |
|         | 9.8.6 Update Weights & Biases       | 191 |
|         | 9.8.7 DBNN Backpropagation          | 192 |
|         | 9.8.8 Deep Belief Application       | 193 |
| 9.9     | Chapter Summary                     | 195 |
| 10 Con  | volutional Neural Networks          | 197 |
| 10.1    | LeNET-5                             | 198 |
| 10.2    | Convolutional Layers                | 200 |
| 10.3    | Max-Pool Layers                     | 203 |
| 10.4    | Dense Layers                        | 204 |
| 10.5    | ConvNets for the MNIST Data Set     | 205 |
| 10.6    | Chapter Summary                     | 207 |
| 11 Prin | ning and Model Selection            | 209 |

| CONTENTE |      |
|----------|------|
| CONTENTS | XVII |

| 11.1         | Unders | standing Pruning                           | 210 |
|--------------|--------|--------------------------------------------|-----|
|              | 11.1.1 | Pruning Connections                        | 210 |
|              | 11.1.2 | Pruning Neurons                            | 211 |
|              | 11.1.3 | Improving or Degrading Performance         | 211 |
| 11.2         | Prunin | g Algorithm                                | 212 |
| 11.3         | Model  | Selection                                  | 213 |
|              | 11.3.1 | Grid Search Model Selection                | 214 |
|              | 11.3.2 | Random Search Model Selection              | 217 |
|              | 11.3.3 | Other Model Selection Techniques           | 218 |
| 11.4         | Chapte | er Summary                                 | 219 |
| 10 D         | 1      | I D - I - ' - 4'                           | 000 |
| The state of |        | nd Regularization                          | 223 |
| 12.1         |        | L2 Regularization                          | 224 |
|              |        | Understanding L1 Regularization            | 225 |
|              | 12.1.2 | Understanding L2 Regularization            | 227 |
| 12.2         | Dropo  | ut Layers                                  | 228 |
|              | 12.2.1 | Dropout Layer                              | 228 |
|              | 12.2.2 | Implementing a Dropout Layer               | 229 |
| 12.3         | Using  | Dropout                                    | 232 |
| 12.4         | Chapte | er Summary                                 | 234 |
| 10 /0:       | α.     | 1 D                                        | 007 |
|              |        | es and Recurrent Networks                  | 237 |
| 13.1         |        | Series Encoding                            |     |
|              |        | Encoding Data for Input and Output Neurons | 239 |
|              |        | Predicting the Sine Wave                   | 241 |
| 13.2         | Simple | Recurrent Neural Networks                  | 243 |
|              | 13.2.1 | Elman Neural Networks                      | 245 |
|              | 13.2.2 | Jordan Neural Networks                     | 246 |
|              | 13.2.3 | Backpropagation through Time               | 248 |
|              |        |                                            |     |

|        | 13.2.4 Gated Recurrent Units                       | 2 |
|--------|----------------------------------------------------|---|
| 13.3   | Chapter Summary                                    | 3 |
| 14 Arc | itecting Neural Networks 25                        | 7 |
| 14.1   | Evaluating Neural Networks                         | 8 |
|        | Training Parameters                                | 9 |
|        | 4.2.1 Learning Rate                                | 9 |
|        | 4.2.2 Momentum                                     | 1 |
|        | .4.2.3 Batch Size                                  | 3 |
| 14.3   | General Hyper-Parameters                           | 4 |
|        | 4.3.1 Activation Functions                         | 4 |
|        | 4.3.2 Hidden Neuron Configurations                 | 6 |
| 14.4   | LeNet-5 Hyper-Parameters                           | 7 |
| 14.5   | Chapter Summary                                    | 8 |
|        | Tell Dedesanden in Brenderick and a control of the |   |
|        | dization 27                                        |   |
| 15.1   | Confusion Matrix                                   | 2 |
|        | 5.1.1 Reading a Confusion Matrix                   | 2 |
|        | 5.1.2 Generating a Confusion Matrix                | 3 |
| 15.2   | -SNE Dimension Reduction                           | 4 |
|        | 5.2.1 t-SNE as a Visualization                     | 6 |
|        | 5.2.2 t-SNE Beyond Visualization                   | 0 |
| 15.3   | Chapter Summary                                    | 1 |
| 16 Mod | eling with Neural Networks 28                      | 5 |
|        | 6.0.1 Lessons from the Challenge                   | 9 |
|        | 6.0.2 The Winning Approach to the Challenge 29     | 1 |
|        | 6.0.3 Our Approach to the Challenge                | 3 |
| 16.1   | Modeling with Deep Learning                        | 4 |
|        | 6.1.1 Neural Network Structure                     | 4 |

| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ONT   | NTS                                     | X  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------|----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 16.1.2 Bagging Multiple Neural Networks | 18 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.2  | Chapter Summary                         | 9  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Exa   | aples 30                                | 3  |
| CONTENTS       xix         16.1.2 Bagging Multiple Neural Networks       298         16.2 Chapter Summary       299         A Examples       303         A.1 Artificial Intelligence for Humans       303         A.2 Latest Versions       304         A.3 Obtaining the Examples       304         A.3.1 Download ZIP File       304         A.3.2 Clone the Git Repository       305         A.4 Example Contents       306         A.5 Contributing to the Project       309          References       311 | )3    |                                         |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A.2   | Latest Versions                         | )4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A.3   | Obtaining the Examples                  | )4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | A.3.1 Download ZIP File                 | )4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | A.3.2 Clone the Git Repository          | )5 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A.4   | Example Contents                        | )6 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A.5   | Contributing to the Project             | )9 |
| R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | efere | ces 31                                  | 1  |

| Qu'est |  |
|--------|--|
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |