Verdadero o Falso: $100n^2+200n+15\in O(n^2)$

$$\lim_{n o\infty}rac{n^2+3n+10}{n^2}=\lim_{n o\infty}\left(1+rac{3}{n}+rac{10}{n^2}
ight)=1$$

Es verdadero debido a que tiende a 100 y no a infinito, por ende pertenece a $O(n^2)$.

Verdadero o Falso: $3n \in O(n \cdot log(n))$

$$\lim_{n o\infty}rac{3n}{n\cdot log(n)}=\lim_{n o\infty}rac{3}{log(n)}=0$$

Es verdadero debido a que tiende a 0 y es diferente a infinito, por ende pertenece a $O(n \cdot log(n))$

Verdadero o Falso: $\sqrt{n} \in \theta(n)$

$$\lim_{n o\infty}rac{\sqrt{n}}{n}=\lim_{n o\infty}rac{n^{0.5}}{n}=\lim_{n o\infty}rac{1}{n^{0.5}}=0$$

Es falso debido a que tiende a 0 y para pertenecer a θ tiene que tender a una real diferente de cero e infinito.

• Verdadero o Falso: $ln(n) \in O(\sqrt{n})$

$$\lim_{n o\infty}rac{ln(n)}{\sqrt{n}}$$

Podemos utilizar l'hopital:

$$\lim_{n o\infty}rac{ln(n)}{\sqrt{n}}=\lim_{n o\infty}rac{rac{1}{n}}{rac{1}{2}n^{-rac{1}{2}}}=\lim_{n o\infty}rac{2n^{rac{1}{2}}}{n}=\lim_{n o\infty}rac{2}{\sqrt{n}}=0$$

Es verdadero debido a que tiene a 0 por ende si pertenece a $O(\sqrt{n})$.

Verdadero o Falso: $a^n \in \theta(b^n)$, con $a \neq b$

$$\lim_{n o\infty}rac{a^n}{b^n}=\lim_{n o\infty}\left(rac{a}{b}
ight)^n$$

Para este problema podemos tener en cuando estos dos casos:

Caso 1: a > b

Para este caso $\frac{a}{b}$ seria estrictamente mayor a 1, por lo que si este numero se eleva con un n tendiendo al infinito provoca que $\left(\frac{a}{b}\right)^n$ tienda a infinito. Entonces para este caso no

pertenecería a $\theta(b^n)$

Caso 2: a < b

Para este caso $\frac{a}{b}$ seria estrictamente menor a 1, por lo que si este numero se eleva con un n tendiendo al infinito provoca que $\left(\frac{a}{b}\right)^n$ tienda a 0. Entonces para este caso no pertenecería a $\theta(b^n)$

Conclusión

Teniendo en cuenta estos dos casos podemos concluir de que la expresión es falsa.