Data Science for Speech Therapy Computer Vision and VFSS Clinical sharing for continuous education ST Benjamin Chow

Content

Data Science

- Recap
- Computer Vision
 - Image vs video
 - Reading images
 - Reading videos (image task)
 - Reading videos (action task)
 - Learning images (CNN)

Clinical Application

- Current practice
- Use cases
 - 1. hyoid bone detection
 - 2. pharyngeal phase
 - 3. PAS
 - 4. abnormal swallow
- Strategies to use CV

Computer Vision

- Data types: more than just spreadsheet

- Visual Data Source
 - Images
 - Videos/ gifs

Image vs Videos

		:15
	Image	Video
Spatial information (where?)	Yes	Yes
Temporal information (when?)	N.A.	Yes

http://dxline.info/img/new_ail/barium-swallow-and-meal_1.gif

Image vs Videos

iiiiage vs vio		*2115
	Image	Video
Spatial information (where?)	Yes	Yes
Common Tasks	SNA	Image tasks Image Classification Image Detection Image Generation
Temporal information (when?)	N.A.	Yes
Unique Tasks	Nil	Action tasks • Action recognition

180	180	50	14	34	6	10	33	48	105	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	197	251	237	239	239	228	227	87	71	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	- I		241
190	224	147	108	227	210	127	102	\sim	2	255	224
190	214	173	66	103	143	956	· <u>\</u>	V	109	249	215

- Image is made of multiple pixels
- Each pixel has an intensity value from 0 (absent colour) 255

Importing Videos for image tasks

	Image	Video
Spatial information (where?)	Yes	t me fores
Common Tasks	antation	Image tasks Image Classification Image Detection Image Generation
Temporal information (when?)	N.A.	Yes
Unique Tasks	Nil	Action tasks • Action recognition

Importing Videos for ACTION tasks

	Image	Video
Spatial information (where?)	Yes	Toyes
Common Tasks	entatic	 Image tasks Image Classification Image Detection Image Generation
Temporal information (when?)	N.A.	Yes
Unique Tasks	Nil	Action tasks • Action recognition

Optical flow

Layering the inputs

Convolution Neural Network

Image is fed into the model.

The image is read as a matrix of numbers (0-255)

Convolution Neural Network

The image goes through multiple layers of mathematic transformation.

At each layer, the model learns new features of the image.

Ethical Al

• How does CNN learn? What is CNN learning?

Sample Presentation.

- Output of a layer is not a single image

- Volume of images representing all the different slices in that layer.

Feature visualization

Generate a image of what a specific slice in a specific layer is detecting.

Creating "semantic dictionary"

Current clinical practice

- Subjectivity (e.g. extend of hyojo displacement)

 Time consuming

Current research practice

- Splice VFSS videos
- Annotate area of interest (demo)
- Reduced inter and intra-rater reliability

- Some research in using computer assistance
- Still need to annotate inputs on a calibration frame.
- Lack of scalability to operationalize for front end clinical use.

How modern CV/CNN can help

- Automaticity
- Better accuracy
- Scalability

Automatic hyoid bone detection in fluoroscopic images Contact me for details using deep learning (2018)

- 265 patients
- 1434 swallows

• 48,000 image frames. (70% train: 30%test)

Clinical findings

ndings	e for details
Model	Mean a verage precision
YOLOv2	33.10%
Faster-RCNN + ZF	69.01%
SSD300-VGG	84.37%
SSD300-ResNet	81.92%
SSD500-VGG	89.14%
SSD500-ResNet	89.03%

Potential application

- automatic segmentation of hyoid bone areas
 details
 details
- Is reduced airway protection or reduced UES 2' hyo-laryngeal excursion?

ML findings

- Radiation dosage
- Model's ability to detect small objects vs computational time
- Unexpected detections
 - Colour boxes are detected hyoid bones

Automatic Detection of the Pharyngeal Phase in VFSS Using Efficient Data Collection and 3D Convolutional Networks (2019)

- Pharyngeal phase <1s
 - Finding a needle in a haystack
- identifies the pharyngeal phase in VFSS
- without the need for spatial or temporal annotations.

3 stage process

Phase 1

- Models used can be computational taxing
- Screen VFSS video for pharyngeal frames
- Optical flow to detect vertical placement of pixels

(a) Pharyngeal phase

False positive

(a) Pharyngeal phase

(b) Head shaking

Phase 2-3

- Detection Score (F1)

- Detection Time Error

Sample Presentation. Contact me for details

Others

- Deep learning based application for videofluoroscopic swallowing study (VFSS): A pilot study (2019)
 - PAS
- A deep learning approach to VFSS exam classification_(2020)
 - Abnormal swallow

European Journal of Radiology

journal homepage: www.elsevier.com/locate/ejract

Review

success

The future of radiology augmented with Artificial Intelligence: A strategy for

Charlene Liew

Department of Radiology, Changi General Hospital, 2 Simei Street 3, 529889, Singapore

ARTICLE INFO

Keywords:
Artificial Intelligence
Deep learning
Informatics
Business
Strategy

ABSTRACT

The rapid development of Artificial Intelligence/deep learning technology and its implementation into routin clinical imaging will cause a major transformation to the practice of radiology. Strategic positioning will ensur the successful transition of radiologists into their new roles as augmented clinicians. This paper describes a overall vision on how to achieve a smooth transition through the practice of augmented radiology wher radiologists-in-the-loop ensure the safe implementation of Artificial Intelligence systems.

The future of radiology augmented with Artificial Intelligence: A strategy for success (2018)

- 1. Current state and the need for a strategy
- 2. General use cases, potential impact and implementation strategy
- 3. Impact upon cost leadership, differentiation and focus
- 4. Defining roles, technical considerations and requirements for implementation
- 5. Organizational aspects of implementation
- 6. Special considerations, job displacement and risk mitigation
- 7. Safety, privacy, moral and ethical concerns