TD210 Wie groß ist die Resonanzfrequenz dieser Schaltung,

wenn C = 6,8 pF, R = 10 Ω , und L = 1 μ H beträgt?

Lösung: 61,033 MHz.

Frequenz:
$$f = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$$

L = Induktivität (Henry)C = Kapazität (Farad)

(Thomson'sche Schwingungsgleichung).

Umstellung mmm $\mu\mu\mu$ nnn ppp mit Rechen- $1 \mu H = 0,000 001 000 000 Henry$ Karopapier: 6,8 pF = 0,000 000 000 006,8 Farad

L • C:
$$1^{\Lambda^{-6}} • 6,8^{\Lambda^{-12}} = 6,8^{\Lambda^{-18}}$$

Wurzel aus: $6,8^{\Lambda^{-18}} \sqrt{} = 2,60768^{\Lambda^{-9}}$
2 • Pi = $6,283 • 2,60768^{\Lambda^{-9}} = 1,63845^{\Lambda^{-8}}$
1 durch $1,63845^{\Lambda^{-8}} = 61 \ 033 \ 134 \ Hz$

Der Widerstand R ist für die Frequenz ohne Belang.