# MIDS W207 Applied Machine Learning

Summer 2022

Week 3



## What data scientists spend the most time doing

- Building training sets: 3%
- Cleaning and organizing data: 60%
- Collecting data sets; 19%
- Mining data for patterns: 9%
- Refining algorithms: 4%
- Other: 5%

## Prediction







Tangled

Transparent



# Missing Values

|   | col1 | col2 | col3 | col4 | col5 |                   |   | col1 | col2 | col3 | col4 | col5 |
|---|------|------|------|------|------|-------------------|---|------|------|------|------|------|
| 0 | 2    | 5.0  | 3.0  | 6    | NaN  | mean()            | 0 | 2.0  | 5.0  | 3.0  | 6.0  | 7.0  |
| 1 | 9    | NaN  | 9.0  | 0    | 7.0  | $\longrightarrow$ | 1 | 9.0  | 11.0 | 9.0  | 0.0  | 7.0  |
| 2 | 19   | 17.0 | NaN  | 9    | NaN  |                   | 2 | 19.0 | 17.0 | 6.0  | 9.0  | 7.0  |

# Transforming Features



# Scaling



# Bucketing

#### **#Numerical Binning Example**

**Value** Bin 0-30 -> Low 31-70 -> Mid 71-100 -> High

#### **#Categorical Binning Example**

Value Bin
Spain -> Europe
Italy -> Europe
Chile -> South America
Brazil -> South America







# **Encoding**

# Label Encoding

| Food Name | Categorical # | Calories |
|-----------|---------------|----------|
| Apple     | 1             | 95       |
| Chicken   | 2             | 231      |
| Broccoli  | 3             | 50       |

# One Hot Encoding

| Apple | Chicken | Broccoli | Calories |
|-------|---------|----------|----------|
| 1     | 0       | 0        | 95       |
| 0     | 1       | 0        | 231      |
| 0     | 0       | 1        | 50       |

## Feature Selection

Subsetting the features

Ex: Using correlation with the dependent variable

## Feature Extraction

Creating new features when we could **NOT** have used raw features

Ex: from images to RGB values.
Automatic methods such as PCA

## Feature Engineering

Creating new features when we could have used raw features

Ex: Creating a new dummy variable for working days

## Feature Learning

Constructing features automatically

Ex: Supervised neural networks, Independent component analysis

# **Curse of Dimensionality**





# **Dimensionality Reduction**



### **Numerical**

### Standardization

$$Z = \frac{X - \mu}{\sigma}$$

#### Normalization

$$X \text{ normalized } = \frac{(X - X_{\text{minimum}})}{(X_{\text{minimum}} - X_{\text{minimum}})}$$

## Bucketing

| Age<18 19<=Age<30 | 30<=Age<40 | Age>=40 |
|-------------------|------------|---------|
|-------------------|------------|---------|

## Categorical

## One-hot encoding

Label Encoding

| Food Name | ame Categorical # |     |
|-----------|-------------------|-----|
| Apple     | 1                 | 95  |
| Chicken   | 2                 | 231 |
| Broccoli  | 3                 | 50  |

One Hot Encoding

| Apple | Chicken | Broccoli | Calories |  |
|-------|---------|----------|----------|--|
| 1     | 0       | 0        | 95       |  |
| 0     | 1       | 0        | 231      |  |
| 0     | 0       | 1        | 50       |  |

TF-IDE

$$w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

 $tf_{i,j}$  = number of occurrences of i in j  $df_i$  = number of documents containing iN = total number of documents

## Word embeddings



# Dimensionality Reduction

## Principal component analysis (PCA)



#### t-SNE

