Problem Statement: "Evaluating Which model is best-fit for Insurance Dataset

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
data=pd.read_csv(r"C:\Users\shaik\Downloads\insurance (2).csv")
data
```

Out[2]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

Data cleaning & preprocessing

In [3]:

data.head

Out[3]:

<pre><bound age="" es<="" method="" ndframe.head="" of="" pre=""></bound></pre>				age	sex bm	ni children smoker	region	charg	
0	19	female	27.900) yes	southwest	16884.92400		
1	18	male	33.770		ı no	southeast	1725.55230		
2	28	male	33.000		3 no	southeast	4449.46200		
3	33	male	22.705	(on no	northwest	21984.47061		
4	32	male	28.880	(on no	northwest	3866.85520		
			• • •				• • •		
1333	50	male	30.970		3 no	northwest	10600.54830		
1334	18	female	31.920	(no no	northeast	2205.98080		
1335	18	female	36.850	(no no	southeast	1629.83350		
1336	21	female	25.800	(on no	southwest	2007.94500		
1337	61	female	29.070	(9 yes	northwest	29141.36030		

[1338 rows x 7 columns]>

```
In [4]:
```

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
              Non-Null Count Dtype
#
    Column
---
0
              1338 non-null
                             int64
    age
1
              1338 non-null
    sex
2
    bmi
              1338 non-null
                              float64
    children 1338 non-null
                              int64
3
4
              1338 non-null
                              object
    smoker
5
    region
              1338 non-null
                              object
6
    charges
              1338 non-null
                              float64
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
In [5]:
#mean, median, mode, max
data.describe()
```

Out[5]:

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

In [6]:

```
#To find Unique Values
data['age'].unique()
data['children'].unique()
data['bmi'].unique()
data['sex'].unique()
data['smoker'].unique()
data['charges'].unique()
```

Out[6]:

```
array([16884.924 , 1725.5523, 4449.462 , ..., 1629.8335, 2007.945 ,
      29141.3603])
```

In [7]:

```
#To finding null values
data.isnull().sum()
```

Out[7]:

0 age 0 sex bmi 0 0 children 0 smoker region 0 charges 0 dtype: int64

```
In [ ]:
```

In [8]:

```
#we are converting string data to 0&1
convert={"sex":{"female":0,"male":1}}
data=data.replace(convert)
data
```

Out[8]:

	age	sex	bmi	children	smoker	region	charges
0	19	0	27.900	0	yes	southwest	16884.92400
1	18	1	33.770	1	no	southeast	1725.55230
2	28	1	33.000	3	no	southeast	4449.46200
3	33	1	22.705	0	no	northwest	21984.47061
4	32	1	28.880	0	no	northwest	3866.85520
							•••
1333	50	1	30.970	3	no	northwest	10600.54830
1334	18	0	31.920	0	no	northeast	2205.98080
1335	18	0	36.850	0	no	southeast	1629.83350
1336	21	0	25.800	0	no	southwest	2007.94500
1337	61	0	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

In [9]:

```
convert={'smoker':{"yes":1,"no":0}}
data=data.replace(convert)
data
```

Out[9]:

	age	sex	bmi	children	smoker	region	charges
0	19	0	27.900	0	1	southwest	16884.92400
1	18	1	33.770	1	0	southeast	1725.55230
2	28	1	33.000	3	0	southeast	4449.46200
3	33	1	22.705	0	0	northwest	21984.47061
4	32	1	28.880	0	0	northwest	3866.85520
1333	50	1	30.970	3	0	northwest	10600.54830
1334	18	0	31.920	0	0	northeast	2205.98080
1335	18	0	36.850	0	0	southeast	1629.83350
1336	21	0	25.800	0	0	southwest	2007.94500
1337	61	0	29.070	0	1	northwest	29141.36030

1338 rows × 7 columns

In [10]:

#Data visualization
sns.pairplot(data)

Out[10]:

<seaborn.axisgrid.PairGrid at 0x290e8f47100>

In [11]:

```
#heat map for data
columns=data[['age','bmi','sex','charges','smoker','children']]
subset=columns.corr()
sns.heatmap(subset,annot=True,cmap='coolwarm')
```

Out[11]:

<AxesSubplot:>

In [12]:

#feature scaling or trainning our model

In [13]:

```
from sklearn.model_selection import train_test_split
X=data[['age','bmi','sex','charges','children']]
y=data['smoker']
x_train,x_test,y_train,y_test=train_test_split(X,y,test_size=0.30,random_state=2)
```

Data Modeling

#Linear model

In [14]:

#Now we are calculating our data fit for linear regression model

In [15]:

from sklearn.linear_model import LinearRegression

In [16]:

lr=LinearRegression()

In [17]:

lr.fit(x_train,y_train)

Out[17]:

LinearRegression()

In [18]:

```
print(lr.intercept_)
coeff_data=pd.DataFrame(lr.coef_,X.columns,columns=['coefficient'])
coeff_data
```

0.42484839188702184

Out[18]:

	coefficient
age	-0.007772
bmi	-0.010035
sex	0.019906
charges	0.000030
children	-0.017475

In [19]:

```
lr.score(x_test,y_test)
```

Out[19]:

0.728894897343781

In [20]:

```
predictions=lr.predict(x_test)
plt.scatter(y_test,predictions)
```

Out[20]:

<matplotlib.collections.PathCollection at 0x290ec4f41f0>

In [21]:

```
'''In above linear regression model our insurance data is not fitted accuratly.
so now we are on logistic regression model'''
```

Out[21]:

'In above linear regression model our insurance data is not fitted accuratly.\n so now we a re on logistic regression model'

#logistic regression modeling

In [22]:

#importing libraries& dropping null values

In [23]:

```
x=np.array(data['charges']).reshape(-1,1)
y=np.array(data['smoker']).reshape(-1,1)
data.dropna(inplace=True)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=1)
from sklearn.linear_model import LogisticRegression
lg=LogisticRegression()
```

In [24]:

```
lg.fit(x_train,y_train)
```

C:\Users\shaik\anaconda3\lib\site-packages\sklearn\utils\validation.py:993: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the shape of y t
o (n_samples,), for example using ravel().
y = column_or_1d(y, warn=True)

Out[24]:

LogisticRegression()

In [25]:

```
#plotting our model
sns.regplot(x=x,y=y,data=data,logistic=True,ci=None)
```

Out[25]:

<AxesSubplot:>

In [26]:

```
#accurate score
lg.score(x_test,y_test)
```

Out[26]:

0.8930348258706468

In [27]:

Out[27]:

'Now we calculated the logistic regression , \n y with compared to linear regression\n ith DecisionTree &randomForest\n or getting more accuracy'

it gives better pridiction and accurac and also we are looking w f

Decision tree model

In [28]:

```
#Decision tree
#importing libraries&fitting our data
from sklearn.tree import DecisionTreeClassifier
clf=DecisionTreeClassifier(random_state=0)
clf.fit(x_train,y_train)
```

Out[28]:

DecisionTreeClassifier(random_state=0)

In [29]:

```
#accuracy score for desicion tree
score=clf.score(x_test,y_test)
print(score)
```

0.8880597014925373

RandomForest

In [30]:

```
#importing libraries& fittingdata
from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

C:\Users\shaik\AppData\Local\Temp\ipykernel_25988\310474025.py:4: DataConversionWarning: A col
umn-vector y was passed when a 1d array was expected. Please change the shape of y to (n_sampl
es,), for example using ravel().
 rfc.fit(x_train,y_train)

Out[30]:

RandomForestClassifier()

In [31]:

```
params={'max_depth':[3,5,7,10,20],'min_samples_leaf':[5,10,20,50,100,200],'n_estimators':[10,25,30,50,100,200]
```

In [32]:

```
#for finding optimal parameter values we are importing GridSearchCv
from sklearn.model_selection import GridSearchCV
grid_search=GridSearchCV(estimator=rfc,param_grid=params,cv=2,scoring="accuracy")
```

In [33]:

```
grid_search.fit(x_train,y_train)
  C3CIMACOL.IIC(A_CLAIN, Y_CLAIN,
C:\Users\shaik\anaconda3\lib\site-packages\sklearn\model_selection\_validation.py:680: Data
ConversionWarning: A column-vector y was passed when a 1d array was expected. Please change
the shape of y to (n_samples,), for example using ravel().
  estimator.fit(X_train, y_train, **fit_params)
C:\Users\shaik\anaconda3\lib\site-packages\sklearn\model_selection\_validation.py:680: Data
ConversionWarning: A column-vector y was passed when a 1d array was expected. Please change
the shape of y to (n_samples,), for example using ravel().
  estimator.fit(X_train, y_train, **fit_params)
C:\Users\shaik\anaconda3\lib\site-packages\sklearn\model_selection\_validation.py:680: Data
ConversionWarning: A column-vector y was passed when a 1d array was expected. Please change
the shape of y to (n_samples,), for example using ravel().
  estimator.fit(X train, y train, **fit params)
C:\Users\shaik\anaconda3\lib\site-packages\sklearn\model_selection\_validation.py:680: Data
ConversionWarning: A column-vector y was passed when a 1d array was expected. Please change
the shape of y to (n_samples,), for example using ravel().
  estimator.fit(X_train, y_train, **fit_params)
C:\Users\shaik\anaconda3\lib\site-packages\sklearn\model_selection\_validation.py:680: Data
ConversionWarning: A column-vector y was passed when a 1d array was expected. Please change
the shape of y to (n_samples,), for example using ravel().
```

In [34]:

grid_search.best_score_

Out[34]:

0.9230769230769231

In [35]:

```
rf_best=grid_search.best_estimator_
rf_best
```

Out[35]:

RandomForestClassifier(max_depth=3, min_samples_leaf=50, n_estimators=10)

In [36]:

```
from sklearn.tree import plot_tree
plt.figure(figsize=(80,40))
plot_tree(rf_best.estimators_[4],feature_names=X.columns,class_names=['1','0'],filled=True)
```

Out[36]:

age \leq 16158.987 gini = 0.332 samples = 587 value = [739, 197] class = 1

age <= 12625.673 gini = 0.014 samples = 445 value = [697, 5] class = 1 age \leq 30124.259 gini = 0.295 samples = 142 value = [42, 192] class = 0

gini = 0.0 samples = 395 value = [622, 0] class = 1 gini = 0.117 samples = 50 value = [75, 5] class = 1

gini = 0.444 samples = 78 value = [42, 84] class = 0 gini = 0.0 samples = 64 value = [0, 108] class = 0

In [37]:

```
#accurate score for random forest
score=rfc.score(x_test,y_test)
print(score)
```

0.8880597014925373

In [38]:

```
"""In above all three models we more accuracy in LINEAR REGRESSION
with respect to other two models"""
```

Out[38]:

'In above all three models we more accuracy in LINEAR REGRESSION\n with r espect to other two models'

Data prediction evaluation

In [39]:

```
#calculating r2 error
from sklearn.metrics import r2_score
```

```
In [40]:
```

```
prediction=lg.predict(x_test)
```

In [41]:

```
prediction
```

Out[41]:

```
array([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
     0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0,
     0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1,
     0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0,
     0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
     0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1,
     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
                                         0, 0, 1, 0, 0, 0,
     1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
     0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1,
     0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0,
     0, 0, 0, 0, 0, 1], dtype=int64)
```

In [42]:

```
r2=r2_score(y_test,prediction)
r2
```

Out[42]:

0.33517941617630076

In [43]:

```
#mean absolute errror
from sklearn.metrics import mean_absolute_error
from sklearn import metrics
metrics.mean_absolute_error(y_test,prediction)
```

Out[43]:

0.10696517412935323

In [44]:

```
#mean squared error
from sklearn.metrics import mean_squared_error
metrics.mean_squared_error(y_test,prediction)
```

Out[44]:

0.10696517412935323

In [45]:

```
#root mean square error
from sklearn.metrics import mean_squared_error
np.sqrt(metrics.mean_squared_error(y_test,prediction))
```

Out[45]:

0.3270553074471552

conclusion:

In [46]:

"""With this insurance Dataset we are concluded that LOGISTIC REGRESSION

is best-fit for predicting the values with respect to other regression models"""

Out[46]:

'With this insurance Dataset we are concluded that LOGISTIC REGRESSION \n is best-fit for predicting the values with respect to other regression models'