SUKHUM BOONDECHARAK - S3940976 Database Concept (ISYS1055): Final Project

Part B: Designing the Database

ER Diagram

Assumptions:

- 1. vaccines column in locations.csv is a list of vaccines in vaccinations_by_manufacturer.csv
- 2. location column in vaccinations_by_manufacturer can be found in location column in locations.csv
- 3. source_url column in each country file can be found in source_website column in locations.csv
- 4. daily_vaccinations_raw column in both vaccinations.csv and US_states_vaccinations can be ignored.
- 5. Only the United States has divided vaccination records into states.
- 6. location column in US states vaccinations is the list of states in the US, and not the country

FDs:

```
Locations (<u>location</u>, iso_code, last_observation_date, source_name, source_website) location → iso_code, last_observation_date, source_name source name → source website
```

```
Vaccinations (<u>date, location*</u>, iso_code, daily_vaccinations, daily_vaccinations_per_million, daily_people_vaccinated, daily_people_vaccinated_per_hundred, people_vaccinated, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, total_vaccinations, total_vaccinations_per_hundred, total_boosters, total_boosters_per_hundred) date, location → vaccine, daily_vaccinations, daily_vaccinations_per_million, daily_people_vaccinated, daily_people_vaccinated_per_hundred, people_vaccinated, people_fully_vaccinated, people_fully_vaccinated, people_fully_vaccinated, total_vaccinations, total_vaccinations_per_hundred, total_boosters, total_boosters_per_hundred location → iso_code
```

Vaccines (<u>vaccine</u>, manufacturer)
Vaccine → manufacturer

Vaccinations_by_manufacturer (<u>date, location*, vaccine*</u>, total_vaccinations) date, location, vaccine → total_vaccinations

```
Vaccinations_by_age_group (<u>age_group, date*, location*, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, people_with_booster_per_hundred) age_group, date, location → people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, people_with_booster_per_hundred</u>
```

Australia (<u>date*</u>, <u>location*</u>, vaccine, source_url, total_vaccinations, people_vaccinated, people fiully vaccinated, total boosters)

date, location → vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters

Germany (<u>date*, location*</u>, vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters)

date, location \rightarrow vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters

Italy (<u>date*, location*</u>, vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters)

date, location \rightarrow vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters

United States (<u>date*, location*</u>, vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters)

date, location → vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters

US_states_vaccinations (<u>date*</u>, <u>location*</u>, daily_vaccinations, daily_vaccinations_per_million, people_vaccinated, people_vaccinated_per_hundred, people_fully_vaccinated, people_fully_vaccinated_per_hundred, share_dose_used, distributed_per_hundred, total_distributed, total_vaccinations, total_vaccinations_per_hundred, total_boosters, total_boosters per_hundred)

date, location → daily_vaccinations, daily_vaccinations_per_million, people_vaccinated, people_vaccinated_per_hundred, people_fully_vaccinated, people_fully_vaccinated_per_hundred, share_dose_used, distributed_per_hundred, total_distributed, total_vaccinations, total_vaccinations_per_hundred, total_boosters, total_boosters per_hundred

Normalisations:

Locations

Locations (<u>location</u>, iso_code, last_observation_date, source_name, source_website) location → iso_code, last_observation_date

We simply eliminate the vaccine column since the values are not atomic and we assume the list of vaccine in the column are from vaccine column in vaccinations_by_manufacturer.csv No partial dependency because Locations' PK is single-valued No transitive dependency

Already in 3NF

Location1 (<u>location</u>, iso code, last observation date, source name, source website)

Vaccinations

Vaccinations (<u>date, location*</u>, iso_code, daily_vaccinations, daily_vaccinations_per_million, daily_people_vaccinated, daily_people_vaccinated_per_hundred, people_vaccinated, people_vaccinated, people_fully_vaccinated, people_fully_vaccinated, people_fully_vaccinated_per_hundred, total_vaccinations, total_vaccinations_per_hundred, total_boosters, total_boosters per_hundred)

date, location \rightarrow vaccine, daily_vaccinations, daily_vaccinations_per_million, daily_people_vaccinated, daily_people_vaccinated_per_hundred, people_vaccinated, people_vaccinated, people_fully_vaccinated, people_fully_vaccinated, people_fully_vaccinations, total_vaccinations_per_hundred, total_boosters, total_boosters_per_hundred location \rightarrow iso code

Partial dependency occurs, therefore;

Decompositions:

Vaccinations1 (<u>date, location</u>, vaccine, daily_vaccinations, daily_vaccinations_per_million, daily_people_vaccinated, daily_people_vaccinated_per_hundred, people_vaccinated, people_vaccinated_per_hundred, people_fully_vaccinated, people_fully_vaccinated_per_hundred, total_vaccinations, total_vaccinations_per_hundred, total_boosters, total_boosters_per_hundred Vaccinations2 (<u>location</u>, iso code)

Vaccinations1 no longer has a partial dependency \rightarrow 2NF Vaccinations2'PK is single-valued \rightarrow 2NF Both relations have no transitive dependencies \rightarrow 3NF

```
Vaccine
```

Vaccines (vaccine, manufacturer)

Vaccine → manufacturer

No partial dependency

No transitive dependency

Already in 3NF

Vaccines (<u>vaccine</u>, manufacturer)

Vaccinations by manufacturer

Vaccinations_by_manufacturer (<u>date, location*, vaccine*</u>, total_vaccinations)

date, location, vaccine → total vaccinations

No partial dependency

No transitive dependency

Already in 3NF

Vaccinations by manufacturer (date, location*, vaccine, total vaccinations)

Vaccinations by age group

Vaccinations_by_age_group (age_group, date*, location*, people_vaccinated_per_hundred,

people_fully_vaccinated_per_hundred, people_with_booster_per_hundred)

 $age_group,\,date,\,location \rightarrow people_vaccinated_per_hundred,$

 $people_fully_vaccinated_per_hundred, people_with_booster_per_hundred$

No partial dependency

No transitive dependency

Already in 3NF

Vaccinations_by_age_group (<u>age_group, date*, location*,</u> people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, people with booster per hundred)

Australia

Australia (<u>date*, location*</u>, vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters)

date, location \rightarrow vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters

Values in vaccine column is not atomic → 0NF

After separate the values into different rows with the rest of observation's value remain the same, the relation becomes 3NF

Final relation:

Australia (<u>date*, location*</u>, vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters)

Germany

Germany (<u>date*, location*</u>, vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters)

date, location \rightarrow vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters

Values in vaccine column is not atomic → 0NF

After separate the values into different rows with the rest of observation's value remain the same, the relation becomes 3NF

Final relation:

Germany (<u>date*, location*</u>, vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters)

Italy

Italy (<u>date*, location*</u>, vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters)

date, location \rightarrow vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters

Values in vaccine column is not atomic → 0NF

After separate the values into different rows with the rest of observation's value remain the same, the relation becomes 3NF

Final relation:

Italy (<u>date*</u>, <u>location*</u>, vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters)

United States

United States (<u>date*</u>, <u>location*</u>, vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters)

date, location \rightarrow vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters

Values in vaccine column is not atomic → 0NF

After separate the values into different rows with the rest of observation's value remain the same, the relation becomes 3NF

Final relation:

United States (<u>date*</u>, <u>location*</u>, vaccine, source_url, total_vaccinations, people vaccinated, people fiully vaccinated, total boosters)

US_states_vaccinations

US_states_vaccinations (<u>date*</u>, <u>location*</u>, daily_vaccinations, daily_vaccinations_per_million, people_vaccinated, people_vaccinated_per_hundred, people_fully_vaccinated, people_fully_vaccinated_per_hundred, share_dose_used, distributed_per_hundred, total_distributed, total_vaccinations, total_vaccinations_per_hundred, total_boosters, total_boosters per_hundred)

date, location → daily_vaccinations, daily_vaccinations_per_million, people_vaccinated, people_vaccinated_per_hundred, people_fully_vaccinated, people_fully_vaccinated_per_hundred, share_dose_used, distributed_per_hundred, total_distributed, total_vaccinations, total_vaccinations_per_hundred, total_boosters, total_boosters_per_hundred

No partial dependency

No transitive dependency

Already in 3NF

US_states_vaccinations (<u>date*, location*</u>, daily_vaccinations, daily_vaccinations_per_million, people_vaccinated, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, share_dose_used, distributed_per_hundred, total_distributed, total_vaccinations, total_vaccinations_per_hundred, total_boosters, total_boosters_per_hundred)

Draft Schema

R1: Location1 (<u>location</u>, iso_code, last_observation_date, source_name, source_website)

R2: Vaccinations1 (date, location, daily_vaccinations, daily_vaccinations_per_million, daily_people_vaccinated, daily_people_vaccinated_per_hundred, people_vaccinated, people_vaccinated_per_hundred, people_fully_vaccinated, people_fully_vaccinated_per_hundred, total_vaccinations, total_vaccinations_per_hundred, total_boosters, total_boosters_per_hundred

R3: Vaccinations2 (location, iso code)

R4: Vaccines (vaccine, manufacturer)

R5: Vaccinations_by_manufacturer (<u>date, location, vaccine</u>, total_vaccinations)

R6: Vaccinations_by_age_group (date, location, age_group, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, people_with_booster_per_hundred)

R7: Australia (<u>date, location</u>, vaccine, source_url, total_vaccinations, people_vaccinated, people fiully vaccinated, total boosters)

R8: Germany (<u>date, location</u>, vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters)

R9: Italy (<u>date, location</u>, vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters)

R10: United States (<u>date, location</u>, vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters)

R11: US_states_vaccinations (date, location, daily_vaccinations, daily_vaccinations_per_million, people_vaccinated, people_vaccinated_per_hundred, people_fully_vaccinated, people_fully_vaccinated_per_hundred, share_dose_used, distributed_per_hundred, total_distributed, total_vaccinations, total_vaccinations_per_hundred, total_boosters, total_boosters per_hundred)

Among these relations:

R1 and R3 have the same primary key and can be combined R2, R7, R8, R9, and R10 have the same primary key and can be combined

R1: Location1 (location, iso_code, last_observation_date, source_name, source_website)

R2: Vaccinations1 (date, location, daily_vaccinations, daily_vaccinations_per_million, daily_people_vaccinated, daily_people_vaccinated_per_hundred, people_vaccinated, people_vaccinated_per_hundred, people_fully_vaccinated, people_fully_vaccinated_per_hundred, total_vaccinations, total_vaccinations_per_hundred, total_boosters, total_boosters_per_hundred

R3: Vaccinations2 (location, iso code)

R4: Vaccines (vaccine, manufacturer)

R5: Vaccinations_by_manufacturer (date, location, vaccine, total_vaccinations)

R6: Vaccinations_by_age_group (date, location, age_group, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, people_with_booster_per_hundred)

R7: Australia (date, location, vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters)

R8: Germany (<u>date, location</u>, vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters)

R9: Italy (<u>date, location</u>, <u>vaccine</u>, <u>source_url</u>, <u>total_vaccinations</u>, <u>people_vaccinated</u>, <u>people_fiully_vaccinated</u>, <u>total_boosters</u>)

R10: United States (date, location, vaccine, source_url, total_vaccinations, people_vaccinated, people_fiully_vaccinated, total_boosters)

R11: US_states_vaccinations (date, location, daily_vaccinations, daily_vaccinations_per_million, people_vaccinated, people_vaccinated_per_hundred, people_fully_vaccinated, people_fully_vaccinated_per_hundred, share_dose_used, distributed_per_hundred, total_distributed, total_vaccinations, total_vaccinations_per_hundred, total_boosters, total_boosters_per_hundred)

Lastly, they can also be renamed to reflect what they stand for, as following:

Final Schema

R1: Countries (location, iso code, last observation date, source name)

R2: Vaccinations (<u>date, location</u>, daily_vaccinations, daily_vaccinations_per_million, daily_people_vaccinated, daily_people_vaccinated_per_hundred, people_vaccinated, people_vaccinated_per_hundred, people_fully_vaccinated, people_fully_vaccinated_per_hundred, total_vaccinations, total_vaccinations_per_hundred, total_boosters, total_boosters_per_hundred

R4: Vaccines (vaccine, manufacturer)

R5: Vaccine_types (<u>date, location, vaccine</u>, total_vaccinations)

R6: Age_Groups (<u>date, location, age_group</u>, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, people_with_booster_per_hundred)

R11: US_States (date, location, daily_vaccinations, daily_vaccinations_per_million, people_vaccinated, people_vaccinated_per_hundred, people_fully_vaccinated, people_fully_vaccinated_per_hundred, share_dose_used, distributed_per_hundred, total_distributed, total_vaccinations, total_vaccinations_per_hundred, total_boosters, total_boosters_per_hundred)