

General Identifiability and Achievability for **Causal Representation Learning**

Burak Varıcı¹ Emre Acartürk¹

Karthikeyan Shanmugam²

²Google Research India

Ali Tajer¹

¹Rensselaer Polytechnic Institute

CRL from Interventions

".. learn a representation (partially) exposing the unknown causal structure, e.g., which variables describe the system, and their relations .. " Schölkopf et al., 2021

Generic goal: Invert the unknown transformation to recover

1) latent representation and 2) the latent causal structure

Latent space

- **1. Identifiability**: Conditions for uniquely recovering Z and G_Z
- **2. Achievability**: Provably correct algorithms to recover Z and G_Z

Our contributions

Related work for perfect ID	Transform	Requirements	Provable Algorithm
Varıcı et al. 2024	Linear	1 int/node	
von Kügelgen	General	2 (coupled) int/node	Y

et al. 2023

This work

General

General

2 (uncoupled) int/node

+ faithfulness

Algorithm Overview

Sufficient Interventional Diversity:

2 different hard interventions per node in the latent space

Observed space Encoder Latent Space Decoder

Minimize $\left|\left|\left|\mathbb{E}\left[\left|\mathsf{Jac}_{\mathsf{dec}}(x)(s^1(x)-s^2(x))\right|\right]\right|\cdots \mathbb{E}\left[\left|\mathsf{Jac}_{\mathsf{dec}}(x)(s^{2n-1}(x)-s^{2n}(x))\right|\right]\right|\right|_{\mathsf{O}}$

+ Reconstruction Loss (ensures injectivity)

Observed space

Provably correct algorithm for unsupervised learning (small variations for different settings)

Experiments

Non-linear latent model: $Z_i = \sqrt{Z_{\mathrm{pa}(i)}^{ op} A_{p,i} Z_{\mathrm{pa}(i)} + N_{p,i}}$ n=8 latent variables

Input score differences $(s_X - s_X^m)$: Perfect score oracle or Sliced Score Matching

Non-linear transform: $X = \tanh(T.Z)$

Obs. dim	Norm. Z error	DAG error (SHD)	Norm. Z error	DAG error (SHD)
8	0.16	1.56	0.70	11.9
25	0.20	1.55	0.68	10.5
40	0.21	1.14	0.71	11.8
score oracle		noisy scores		

Why score functions?

$$p(z) = p_i(z_i \mid z_{\text{pa}(i)}) \prod_{j \neq i} p_j(z_j \mid z_{\text{pa}(j)})$$

$$p^{m}(z) = q_{i}(z_{i}) \prod_{j \neq i} p_{j}(z_{j} \mid z_{\operatorname{pa}(j)})$$

$$s(z) \triangleq \nabla_z \log p(z)$$

$$s^m(z) \triangleq \nabla_z \log p^m(z)$$

$$s(z) - s^{m}(z) = \nabla_{z} \log p_{i}(z_{i} \mid z_{\text{pa}(i)}) - \nabla_{z} \log q_{i}(z_{i})$$

Score functions contain all information about latent DAGs

node i intervened: $s(z) - s^m(z)$ becomes a function of only $z_{\overline{pa}(i)}$

$$s(z) - s^{m}(z) = \begin{bmatrix} 0 & 0 \times 0 \times 0 \end{bmatrix}^{\top}$$

coordinates of parents of node i

Coupled hard interventions have sparse score differences

node i intervened twice: $s^m(z) - \tilde{s}^m(z)$ becomes a function of only z_i

$$s^{m}(z) - \tilde{s}^{m}(z) = \begin{bmatrix} 0 & 0 & 0 & \mathbf{x} & 0 \end{bmatrix}^{\top}$$
coordinate of node i

Methodology

$$\rightarrow s_{\hat{z}}(\hat{z}) - s_{\hat{z}}^m(\hat{z})$$

incorrect encoder $\to s_{\hat{Z}}(\hat{z}) - s_{\hat{Z}}^m(\hat{z})$ not a function of only $z_{\overline{\mathrm{pa}}(i)}$

estimated score differences cannot be sparser than true score differences

Min. score variations over environment pairs = correct encoder

$$s_{\hat{Z}}(\hat{z}) - s_{\hat{Z}}^m(\hat{z}) = [J_{\mathsf{decoder}}(\hat{z})]^\top (s_X(x) - s_X^m(x))$$

Results

Nonparametric transform

Interventional discrepancy: $\frac{\partial}{\partial z_i} \frac{q_i(z_i)}{\tilde{q}_i(z_i)} \neq 0$

almost everywhere

Theorem: Observational data and **two hard** interventions/node

1. Latent graph recovery up to isomorphism

2. Latent variables recovery up to elementwise transform

suffice for **perfect ID**:

- Achievable algorithm
- No faithfulness assumption for identifiability
- Uncoupled two hard interventions per node

correspondence: burakvarici@gmail.com