Guía práctica para la resolución de Ecuaciones de Recurrencia Lineales de coeficientes constantes

Alberto Salguero

20 de junio de 2017

1. Esquema general de resolución

1. Expresar la ecuación general de la forma

$$t(n) + a_1t(n-1) + a_2t(n-2) + \cdots + a_kt(n-k) = h(n)$$

- 2. Si h(n) = 0 (ERL Homogénea)
 - a) Definir una nueva ecuación de la forma

$$c(x) = x^k + \mathbf{a_1}x^{k-1} + a_2x^{k-2} + \dots + \mathbf{a_k}$$

b) Calcular las $R=\{r_1,r_2,\cdots,r_k\}$ raíces de c(x) y expresar la ecuación del paso 2a de la siguiente forma

$$c(x) = (x - \mathbf{r}_1)(x - \mathbf{r}_2) \cdots (x - \mathbf{r}_k)$$

c) Agrupar las raíces iguales, aumentando su multiplicidad

$$c(x) = (x - r_1)^{m_1} (x - r_2)^{m_2} \cdots (x - r_p)^{m_p}$$

- d) Si $\nexists m_p > 1$ (Raíces simples)
 - 1) Definir la base B del conjunto de soluciones como

$$B = \{ \underline{r_1}^n, \underline{r_2}^n, \cdots, \underline{r_p}^n \}$$

2) Reescribir la ecuación del paso 1 como

$$t(n) = \frac{\lambda_1 r_1^n}{\lambda_1 r_1^n} + \lambda_2 \frac{r_2^n}{\lambda_1 r_2^n} + \dots + \frac{\lambda_p r_p^n}{\lambda_p r_p^n}$$

- 3) Plantear un sistema de p ecuaciones, incluyendo los casos base, y determinar los valores de $\lambda_1, \lambda_2, \dots, \lambda_p$.
- e) Si $\exists m_p > 1$ (Raíces múltiples)
 - 1) Definir la base $B = \{b_1, b_2, \dots, b_i\}$ del conjunto de soluciones como

$$B = \{n^{0}r_{1}^{n}, n^{1}r_{1}^{n}, \cdots, n^{m_{1}-1}r_{1}^{n}, \cdots, n^{0}r_{2}^{n}, n^{1}r_{2}^{n}, \cdots, n^{m_{2}-1}r_{2}^{n}, \cdots, n^{m_{2}-1}r_{2}^{n}, \cdots, \dots, n^{0}r_{p}^{n}, n^{1}r_{p}^{n}, \cdots, n^{m_{p}-1}r_{p}^{n}, \}$$

- 2) Eliminar valores repetidos en B, teniendo en cuenta que $n^0 = 1$.
- 3) Reescribir la ecuación del paso 1 como

$$t(n) = \frac{\lambda_1 b_1}{\lambda_1 b_1} + \lambda_2 b_2 + \dots + \lambda_i b_i$$

- 4) Plantear un sistema de i ecuaciones, incluyendo los casos base, y determinar los valores de $\lambda_1, \lambda_2, \dots, \lambda_i$.
- 3. Si $h(n) \neq 0$ (ERL No Homogénea)
 - a) Reescribir h(n) como

$$\sum_{1}^{i} p(n) S_{i}^{n}$$

donde p(n) es un polinomio de grado m_i .

b) Definir una nueva ecuación de la forma

$$c_1(x) = x^k + a_1 x^{k-1} + a_2 x^{k-2} + \dots + a_k$$

$$c_2(x) = (x - S_1)^{m_1 + 1} (x - S_2)^{m_2 + 1} \cdots (x - S_i)^{m_i + 1}$$

$$c(x) = c_1(x)c_2(x)$$

donde $c_2(x)$ aporta i parámetros ligados a c(x).

- c) Realizar los pasos 2e1, 2e2 y 2e3.
- d) Para cada parámetro ligado i, hallar el valor de λ_i por sustitución, añadiendo al sistema de ecuaciones una nueva ecuación, donde

$$t(n)$$
 se sustituye por $\lambda_i b_i$
 $t(n-1)$ se sustituye por $\lambda_i b_i$, restando 1 a n en b_i
 $t(n-2)$ se sustituye por $\lambda_i b_i$, restando 2 a n en b_i

e) Plantear un sistema de ecuaciones, incluyendo los casos base, y determinar los valores de los $\lambda_1, \lambda_2, \dots, \lambda_i$ restantes.

2. Ejemplos

2.1. Ejemplo 1

Se desea hallar la solución general de la ERL

$$t(n) = \begin{cases} 5t(n-1) - 6t(n-2) & n > 1\\ 1 & n = 1\\ 0 & n = 0 \end{cases}$$

Expresar la ecuación general de la forma $t(n) + a_1t(n-1) + a_2t(n-2) + \cdots + a_kt(n-k) = h(n)$.

$$t(n) - 5t(n-1) + 6t(n-2) = 0 \Rightarrow a_1 = -5, a_2 = 6, k = 2, h(n) = 0$$

 $h(n) = 0 \Rightarrow \text{ERL Homogénea} \Rightarrow \text{Definir una nueva ecuación de la forma } c(x) = x^k + a_1 x^{k-1} + a_2 x^{k-2} + \cdots + a_k$.

$$c(x) = x^2 - 5x^{2-1} + 6x^{2-2} = x^2 - 5x^1 + 6$$

Calcular las $R = \{r_1, r_2, \cdots, r_k\}$ raíces de c(x).

$$\frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot 6}}{2} = \frac{5 \pm \sqrt{1}}{2} \Rightarrow R = \{3, 2\}$$

Expresar la ecuación de la forma $c(x) = (x - r_1)(x - r_2) \cdots (x - r_k)$.

$$c(x) = (x-3)(x-2)$$

 $\not\exists m_p > 1 \Rightarrow \text{Raíces simples}.$

$$c(x) = (x-3)^{1}(x-2)^{1}, \quad m_1 = 1, m_2 = 1$$

Definir la base B del conjunto de soluciones como $B = \{r_1^n, r_2^n, \cdots, r_p^n\}$.

$$B = \{3^n, 2^n\}$$

Reescribir la ecuación original como $t(n) = \frac{\lambda_1 r_1^n}{\lambda_2 r_2^n} + \cdots + \frac{\lambda_p r_p^n}{\lambda_p r_p^n}$.

$$t(n) = \frac{\lambda_1}{3^n} + \lambda_2 2^n$$

Plantear un sistema de p ecuaciones, incluyendo los casos base.

$$\begin{cases} t(0) = \lambda_1 3^0 + \lambda_2 2^0 = 0 \\ t(1) = \lambda_1 3^1 + \lambda_2 2^1 = 1 \end{cases} \Rightarrow \begin{cases} \lambda_1 + \lambda_2 = 0 \\ \lambda_1 3 + \lambda_2 2 = 1 \end{cases}$$

Determinar los valores de $\lambda_1, \lambda_2, \cdots, \lambda_n$

$$\lambda_2 = -\lambda_1 \Rightarrow \lambda_1 3 - \lambda_1 2 = 1$$
$$\lambda_1 = 1 \Rightarrow \lambda_2 = -1$$

$$t(n) = 1 \cdot 3^{n} + (-1) \cdot 2^{n} = 3^{n} - 2^{n}$$

Probamos la solución para n=2.

$$t(2) = 5 \cdot t(1) - 6 \cdot t(0) = 5 \cdot 1 - 6 \cdot 0 = 5 = 9 - 4 = 3^2 - 2^2$$

Probamos la solución para n=3.

$$t(3) = 5 \cdot t(2) - 6 \cdot t(1) = 5 \cdot 5 - 6 \cdot 1 = 19 = 27 - 8 = 3^3 - 2^3$$

2.2. Ejemplo 2

Se desea hallar la solución general de la ERL

$$t(n) = \begin{cases} 2t(n-1) - t(n-2) & n > 1\\ 1 & n = 1\\ 0 & n = 0 \end{cases}$$

Expresar la ecuación general de la forma $t(n) + \frac{a_1t(n-1)}{a_2t(n-2)} + \cdots + \frac{a_kt(n-k)}{a_kt(n-k)} = h(n)$.

$$t(n) - 2t(n-1) + 1t(n-2) = 0 \Rightarrow a_1 = -2, a_2 = 1, k = 2, h(n) = 0$$

 $h(n) = 0 \Rightarrow \text{ERL Homogénea} \Rightarrow \text{Definir una nueva ecuación de la forma } c(x) = x^k + a_1 x^{k-1} + a_2 x^{k-2} + \dots + a_k$.

$$c(x) = x^2 - 2x^{2-1} + 1x^{2-2} = x^2 - 2x^1 + 1$$

Calcular las $\{r_1, r_2, \cdots, r_k\}$ raíces de c(x).

$$\frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot 1}}{2} = \frac{2 \pm \sqrt{0}}{2} \Rightarrow R = \{1, 1\}$$

Expresar la ecuación de la forma $c(x) = (x - r_1)(x - r_2) \cdots (x - r_k)$.

$$c(x) = (x-1)(x-1) = (x-1)^2$$

 $\exists m_p > 1 \Rightarrow \text{Raíces múltiples}.$

$$c(x) = (x-1)^2, m_1 = 2$$

Definir la base B del conjunto de soluciones como

$$B = \{n^{0}r_{1}^{n}, n^{1}r_{1}^{n}, \cdots, n^{m_{1}-1}r_{1}^{n}, \cdots, n^{0}r_{2}^{n}, n^{1}r_{2}^{n}, \cdots, n^{m_{2}-1}r_{2}^{n}, \cdots, n^{m_{2}-1}r_{2}^{n}, \cdots, \dots, n^{0}r_{p}^{n}, n^{1}r_{p}^{n}, \cdots, n^{m_{p}-1}r_{p}^{n}, \}$$

$$B = \{n^01^n, n^11^n\} = \{1, n\}$$

Reescribir la ecuación original como $t(n) = \frac{\lambda_1 b_1 + \lambda_2 b_2 + \dots + \lambda_i b_i}{t}$.

$$t(n) = \frac{\lambda_1}{\lambda_1} \cdot 1 + \lambda_2 n = \frac{\lambda_1}{\lambda_1} + \lambda_2 n$$

Plantear un sistema de i ecuaciones, incluyendo los casos base.

$$\begin{cases} t(0) = \lambda_1 + \lambda_2 0 = 0 \\ t(1) = \lambda_1 + \lambda_2 1 = 1 \end{cases} \Rightarrow \begin{cases} \lambda_1 = 0 \\ \lambda_1 + \lambda_2 = 1 \end{cases}$$

Determinar los valores de $\lambda_1, \lambda_2, \dots, \lambda_p$.

$$\lambda_1 = 0 \Rightarrow \lambda_1 + \lambda_2 = \lambda_2 = 1$$

$$t(n) = 0 + 1 \cdot n = n$$

Probamos la solución para n=2.

$$t(2) = 2 \cdot t(1) - t(0) = 2 \cdot 1 - 0 = 2$$

Probamos la solución para n=3.

$$t(3) = 2 \cdot t(2) - t(1) = 2 \cdot 2 - 1 = 3$$

2.3. Ejemplo 3

Se desea hallar la solución general de la ERL

$$t(n) = \begin{cases} t(n-1) + 2 & n > 0 \\ 0 & n = 0 \end{cases}$$

Expresar la ecuación general de la forma $t(n) + \frac{a_1t(n-1)}{a_2t(n-2)} + \cdots + \frac{a_kt(n-k)}{a_kt(n-k)} = h(n)$.

$$t(n) - 1t(n-1) = 2 \Rightarrow a_1 = -1, k = 1, h(n) = 2$$

 $h(n) = 0 \Rightarrow \text{ERL No homogénea} \Rightarrow \text{Reescribir } h(n) \text{ como } \sum_{i=1}^{i} p(n) S_i^n$, donde p(n) es un polinomio de grado m_i .

$$h(n) = 2 = \sum_{1}^{1} 2 = \sum_{1}^{1} (2 \cdot 1 \cdot 1) = \sum_{1}^{1} 2n^{0}1^{n} \Rightarrow S_{1} = 1, m_{1} = 0$$

Definir una nueva ecuación de la forma

$$c_1(x) = x^k + a_1 x^{k-1} + a_2 x^{k-2} + \dots + a_k$$

$$c_2(x) = (x - S_1)^{m_1 + 1} (x - S_2)^{m_2 + 1} \cdots (x - S_i)^{m_i + 1}$$

$$c(x) = c_1(x)c_2(x)$$

donde $c_2(x)$ aporta i parámetros ligados a c(x).

$$c_1(x) = x^1 + (-1) = x - 1$$

$$c_2(x) = (x - 1)^{0+1} = x - 1$$

$$c(x) = c_1(x)c_2(x) = (x - 1)(x - 1)$$

Calcular las $\{r_1, r_2, \cdots, r_k\}$ raíces de c(x).

$$R = \{1, 1\}$$

Expresar la ecuación de la forma $c(x) = (x - r_1)(x - r_2) \cdots (x - r_k)$.

$$c(x) = (x-1)(x-1) = (x-1)^2$$

 $\exists m_p > 1 \Rightarrow \text{Raíces múltiples}.$

$$c(x) = (x-1)^2, m_1 = 2$$

Definir la base B del conjunto de soluciones como

$$B = \{n^{0}r_{1}^{n}, n^{1}r_{1}^{n}, \cdots, n^{m_{1}-1}r_{1}^{n}, \cdots, n^{0}r_{2}^{n}, n^{1}r_{2}^{n}, \cdots, n^{m_{2}-1}r_{2}^{n}, \cdots, n^{m_{2}-1}r_{2}^{n}, \cdots, \dots, n^{0}r_{p}^{n}, n^{1}r_{p}^{n}, \cdots, n^{m_{p}-1}r_{p}^{n}, \}$$

$$B = \{n^0 1^n, n^1 1^n\} = \{1, n\}$$

Reescribir la ecuación original como $t(n) = \lambda_1 b_1 + \lambda_2 b_2 + \cdots + \lambda_i b_i$.

$$t(n) = \lambda_1 \cdot 1 + \lambda_2 n = \lambda_1 + \lambda_2 n$$

Para cada parámetro ligado i, hallar el valor de λ_i por sustitución, añadiendo al sistema de ecuaciones una nueva ecuación, donde

t(n) se sustituye por $\lambda_i b_i$ t(n-1) se sustituye por $\lambda_i b_i$, restando 1 a n en b_i t(n-2) se sustituye por $\lambda_i b_i$, restando 2 a n en b_i ...

 c_2 aporta a c(x) el parámetro ligado λ_2 , luego se puede hallar sustituyendo en la ecuación original t(n) por $\lambda_2 n$, t(n-1) por $\lambda_2 (n-1)$, t(n-2) por $\lambda_2 (n-2)$...

$$t(n) = t(n-1) + 2 \Rightarrow \lambda_2 n = \lambda_2 (n-1) + 2$$
$$\lambda_2 n = \lambda_2 n - \lambda_2 1 + 2$$
$$\lambda_2 1 = \lambda_2 n - \lambda_2 n + 2$$
$$\lambda_2 = 2$$

Quedando la ecuación como

$$t(n) = \frac{\lambda_1}{\lambda_1} + 2n$$

Plantear un sistema de ecuaciones, incluyendo los casos base.

$$t(0) = \frac{\lambda_1}{\lambda_1} + 2 \cdot 0 = \frac{\lambda_1}{\lambda_1} = 0$$

Determinar los valores de $\lambda_1, \lambda_2, \dots, \lambda_p$.

$$\lambda_1 = 0$$

$$t(n) = 0 + 2 \cdot n = 2n$$

Probamos la solución para n=1.

$$t(1) = t(0) + 2 = 0 + 2 = 2 = 2 \cdot 1$$

Probamos la solución para n=2.

$$t(2) = t(1) + 2 = 2 + 2 = 4 = 2 \cdot 2$$

2.4. Ejemplo 4

Se desea hallar la solución general de la ERL

$$t(n) = \begin{cases} t(n-1) + 2 & n > 0 \\ 1 & n = 0 \end{cases}$$

Expresar la ecuación general de la forma $t(n) + \frac{a_1}{a_1}t(n-1) + a_2t(n-2) + \cdots + \frac{a_k}{a_k}t(n-k) = h(n)$.

$$t(n) - 1t(n-1) = 2 \Rightarrow a_1 = -1, k = 1, h(n) = 2$$

 $h(n) = 0 \Rightarrow \text{ERL No homogénea} \Rightarrow \text{Reescribir } h(n) \text{ como } \sum_{i=1}^{i} p(n) S_i^n$, donde p(n) es un polinomio de grado m_i .

$$h(n) = 2 = \sum_{1}^{1} 2 = \sum_{1}^{1} (2 \cdot 1 \cdot 1) = \sum_{1}^{1} 2n^{0}1^{n} \Rightarrow S_{1} = 1, m_{1} = 0$$

Definir una nueva ecuación de la forma

$$c_1(x) = x^k + a_1 x^{k-1} + a_2 x^{k-2} + \dots + a_k$$

$$c_2(x) = (x - S_1)^{m_1 + 1} (x - S_2)^{m_2 + 1} \cdots (x - S_i)^{m_i + 1}$$

$$c(x) = c_1(x)c_2(x)$$

donde $c_2(x)$ aporta i parámetros ligados a c(x).

$$c_1(x) = x^1 + (-1) = x - 1$$

$$c_2(x) = (x - 1)^{0+1} = x - 1$$

$$c(x) = c_1(x)c_2(x) = (x - 1)(x - 1)$$

Calcular las $\{r_1, r_2, \cdots, r_k\}$ raíces de c(x).

$$R = \{1, 1\}$$

Expresar la ecuación de la forma $c(x) = (x - r_1)(x - r_2) \cdots (x - r_k)$.

$$c(x) = (x-1)(x-1) = (x-1)^2$$

 $\exists m_p > 1 \Rightarrow \text{Raíces múltiples}.$

$$c(x) = (x-1)^2, m_1 = 2$$

Definir la base B del conjunto de soluciones como

$$B = \{n^{0}r_{1}^{n}, n^{1}r_{1}^{n}, \cdots, n^{m_{1}-1}r_{1}^{n}, \cdots, n^{0}r_{2}^{n}, n^{1}r_{2}^{n}, \cdots, n^{m_{2}-1}r_{2}^{n}, \cdots, n^{m_{2}-1}r_{2}^{n}, \cdots, \dots, n^{0}r_{p}^{n}, n^{1}r_{p}^{n}, \cdots, n^{m_{p}-1}r_{p}^{n}, \}$$

$$B = \{n^0 1^n, n^1 1^n\} = \{1, n\}$$

Reescribir la ecuación original como $t(n) = \frac{\lambda_1 b_1 + \lambda_2 b_2 + \dots + \lambda_i b_i}{t}$.

$$t(n) = \lambda_1 \cdot 1 + \lambda_2 n = \lambda_1 + \lambda_2 n$$

Para cada parámetro ligado i, hallar el valor de λ_i por sustitución, añadiendo al sistema de ecuaciones una nueva ecuación, donde

t(n) se sustituye por $\lambda_i b_i$ t(n-1) se sustituye por $\lambda_i b_i$, restando 1 a n en b_i t(n-2) se sustituye por $\lambda_i b_i$, restando 2 a n en b_i ...

 c_2 aporta a c(x) el parámetro ligado λ_2 , luego se puede hallar sustituyendo en la ecuación original t(n) por $\lambda_2 n$, t(n-1) por $\lambda_2 (n-1)$, t(n-2) por $\lambda_2 (n-2)$...

$$t(n) = t(n-1) + 2 \Rightarrow \lambda_2 n = \lambda_2 (n-1) + 2$$
$$\lambda_2 n = \lambda_2 n - \lambda_2 1 + 2$$
$$\lambda_2 1 = \lambda_2 n - \lambda_2 n + 2$$
$$\lambda_2 = 2$$

Quedando la ecuación como

$$t(n) = \frac{\lambda_1}{\lambda_1} + 2n$$

Plantear un sistema de ecuaciones, incluyendo los casos base.

$$t(0) = \lambda_1 + 2 \cdot 0 = \lambda_1 = 1$$

Determinar los valores de $\lambda_1, \lambda_2, \cdots, \lambda_p$.

$$\lambda_1 = 1$$

$$t(n) = 1 + 2 \cdot n = 1 + 2n$$

Probamos la solución para n = 1.

$$t(1) = t(0) + 2 = 1 + 2 = 3 = 1 + 2 \cdot 1$$

Probamos la solución para n=2.

$$t(2) = t(1) + 2 = 3 + 2 = 5 = 1 + 2 \cdot 2$$

2.5. Ejemplo 6

Se desea hallar la solución general de la ERL

$$t(n) = \begin{cases} t(\frac{n}{2}) + t(\frac{n}{2}) + \frac{n}{2}, & n > 1\\ 0, & n = 1 \end{cases}$$

Expresar la ecuación general de la forma $t(n) + a_1t(n-1) + a_2t(n-2) + \cdots + a_kt(n-k) = h(n)$.

$$t(n) - t(\frac{n}{2}) - t(\frac{n}{2}) = \frac{n}{2}$$

 $t(n) - 2t(\frac{n}{2}) = \frac{n}{2}$

Que es una ecuación que no sabemos resolver, pero si suponemos que n es potencia de 2, esto es, que $n=2^k$, tenemos que

$$t(2^k) - 2t(\frac{2^k}{2}) = \frac{2^k}{2}, \quad 2^k > 1$$

$$t(2^k) - 2t(2^{k-1}) = \frac{1}{2}2^k, \quad k > 0$$

Si realizamos un cambio de variable donde $T(k) = t(2^k)$, tenemos que

$$T(k) - 2T(k-1) = \frac{1}{2}2^k, \quad k > 0$$

que ya se encuentra expresada de una forma que sabemos resolver, y donde $a_1 = -2, k = 1, h(k) = \frac{1}{2}2^k$.

 $h(k) = \frac{1}{2}k \Rightarrow \text{ERL No homogénea} \Rightarrow \text{Reescribir } h(k) \text{ como } \sum_{i=1}^{i} p(k)S_{i}^{k}, \text{ donde } p(k) \text{ es un polinomio de grado } m_{i}.$

$$h(k) = \frac{1}{2}2^k = \sum_{1}^{1} \frac{1}{2}2^k = \sum_{1}^{1} (\frac{1}{2} \cdot k^0 \cdot 2^k) \Rightarrow S_1 = 2, m_1 = 0$$

Definir una nueva ecuación de la forma

$$c_1(x) = x^k + A_1 x^{k-1} + A_2 x^{k-2} + \dots + A_k$$

$$c_2(x) = (x - S_1)^{m_1 + 1} (x - S_2)^{m_2 + 1} \cdots (x - S_i)^{m_i + 1}$$

$$c(x) = c_1(x)c_2(x)$$

donde $c_2(x)$ aporta i parámetros ligados a c(x).

$$c_1(x) = x^1 + (-2) = x - 2$$

$$c_2(x) = (x - 2)^{0+1} = (x - 2)$$

$$c(x) = c_1(x)c_2(x) = (x - 2)(x - 2)$$

Calcular las $\{r_1, r_2, \cdots, r_k\}$ raíces de c(x).

$$R = \{2, 2\}$$

Expresar la ecuación de la forma $c(x) = (x - r_1)(x - r_2) \cdots (x - r_k)$.

$$c(x) = (x-2)(x-2) = (x-2)^2$$

 $\exists m_p > 1 \Rightarrow \text{Raíces múltiples}.$

$$c(x) = (x-2)^2, m_1 = 2$$

Definir la base B del conjunto de soluciones como

$$B = \{k^{0}r_{1}^{k}, k^{1}r_{1}^{k}, \cdots, k^{m_{1}-1}r_{1}^{k}, \cdots, k^{0}r_{2}^{k}, k^{1}r_{2}^{k}, \cdots, k^{m_{2}-1}r_{2}^{k}, \cdots, k^{m_{2}-1}r_{2}^{k}, \cdots, \cdots, k^{0}r_{p}^{k}, k^{1}r_{p}^{k}, \cdots, k^{m_{p}-1}r_{p}^{k}, \}$$

$$B = \{k^0 2^k, k^1 2^k\} = \{2^k, k 2^k\}$$

Reescribir la ecuación original como $t(n) = \lambda_1 b_1 + \lambda_2 b_2 + \cdots + \lambda_i b_i$.

$$T(k) = \frac{\lambda_1}{\lambda_1} \cdot 2^k + \lambda_2 k 2^k$$

Para cada parámetro ligado i, hallar el valor de λ_i por sustitución, añadiendo al sistema de ecuaciones una nueva ecuación, donde

T(k) se sustituye por $\lambda_i b_i$ T(k-1) se sustituye por $\lambda_i b_i$, restando 1 a k en b_i T(k-2) se sustituye por $\lambda_i b_i$, restando 2 a k en b_i ...

 c_2 aporta a c(x) el parámetro ligado λ_2 , luego se puede hallar sustituyendo en la ecuación original T(k) por $\lambda_2 k 2^k$, T(k-1) por $\lambda_2 (k-1) 2^(k-1)$, T(k-2) por $\lambda_2 (k-2) 2^(k-2)$...

$$T(k) = 2T(k-1) + \frac{1}{2}2^k \Rightarrow \lambda_2 k 2^k = 2(\lambda_2(k-1)2^{(k-1)}) + \frac{1}{2}2^k$$
$$\lambda_2 k 2^k = \lambda_2(k-1)2^k + \frac{1}{2}2^k$$
$$\lambda_2 k = \lambda_2(k-1) + \frac{1}{2}$$
$$\lambda_2 k = \lambda_2 k - \lambda_2 + \frac{1}{2}$$
$$\lambda_2 = \frac{1}{2}$$

Quedando la ecuación como

$$T(k) = \frac{\lambda_1}{2} \cdot 2^k + \frac{1}{2}k2^k$$

Deshaciendo el cambio $T(k) = t(2^k) = t(2^{log_2n}) = t(n)$,

$$2^{k} = n \Rightarrow k = \log_{2} n \Rightarrow t(n) = \frac{\lambda_{1}}{2}^{\log_{2} n} + \frac{1}{2}(\log_{2} n)2^{\log_{2} n}, \quad n > 1$$
$$t(n) = \frac{\lambda_{1}}{2}n^{\log_{2} 2} + \frac{1}{2}(\log_{2} n)n^{\log_{2} 2}, \quad n > 1$$
$$t(n) = \frac{\lambda_{1}}{2}n + \frac{1}{2}(\log_{2} n)n, \quad n > 1$$

Plantear un sistema de ecuaciones, incluyendo los casos base.

$$t(1) = \frac{\lambda_1}{2} 1 + \frac{1}{2} (\log_2 1) 1 = \frac{\lambda_1}{2} + \frac{1}{2} \cdot 0 \cdot 1 = \frac{\lambda_1}{2} = 0$$

Determinar los valores de $\lambda_1, \lambda_2, \dots, \lambda_p$.

$$\lambda_1 = 0$$

$$t(n) = \frac{1}{2}(\log_2 n)n$$

Probamos la solución para n = 1.

$$t(2) = t(\frac{2}{2}) + t(\frac{2}{2}) + \frac{2}{2} = t(1) + t(1) + 1 = 0 + 0 + 1 = 1 = \frac{1}{2} \cdot 1 \cdot 2 = \frac{1}{2} (\log_2 2) = 1 + 1 + 1 = 1 = \frac{1}{2} \cdot 1 \cdot 2 = \frac{1}{2} (\log_2 2) = 1 + 1 = 1 = \frac{1}{2} \cdot 1 \cdot 2 = \frac{1}{2} (\log_2 2) = 1 = 1 = \frac{1}{2} \cdot 1 \cdot 2 = \frac{1}{2} (\log_2 2) = 1 = 1 = \frac{1}{2} \cdot 1 \cdot 2 = \frac{1}{2} (\log_2 2) = 1 = 1 = \frac{1}{2} \cdot 1 \cdot 2 = \frac{1}{2} (\log_2 2) = 1 = 1 = \frac{1}{2} \cdot 1 \cdot 2 = \frac{1}{2} (\log_2 2) = 1 = 1 = \frac{1}{2} \cdot 1 \cdot 2 = \frac{1}{2} (\log_2 2) = 1 = 1 = \frac{1}{2} \cdot 1 \cdot 2 = \frac{1}{2} (\log_2 2) = 1 = 1 = \frac{1}{2} \cdot 1 \cdot 2 = \frac{1}{2} (\log_2 2) = 1 = \frac{1}{2} \cdot 1 \cdot 2 = \frac{1}{2} (\log_2 2) = \frac{1}{2}$$

Probamos la solución para n=4.

$$t(4) = t(\frac{4}{2}) + t(\frac{4}{2}) + \frac{4}{2} = t(2) + t(2) + 2 = 1 + 1 + 2 = 4 = \frac{1}{2} \cdot 2 \cdot 4 = \frac{1}{2} (\log_2 4) + 2 = 1 + 1 + 2 = 4 = \frac{1}{2} \cdot 2 \cdot 4 = \frac{1}{2} (\log_2 4) + 2 = 1 + 1 + 2 = 4 = \frac{1}{2} \cdot 2 \cdot 4 = \frac{1}{2} (\log_2 4) + 2 = 1 + 1 + 2 = 4 = \frac{1}{2} \cdot 2 \cdot 4 = \frac{1}{2} (\log_2 4) + 2 = 1 + 1 + 2 = 4 = \frac{1}{2} \cdot 2 \cdot 4 = \frac{1}{2} (\log_2 4) + 2 = 1 + 1 + 2 = 4 = \frac{1}{2} \cdot 2 \cdot 4 = \frac{1}{2} (\log_2 4) + 2 = 1 + 1 + 2 = 4 = \frac{1}{2} \cdot 2 \cdot 4 = \frac{1}{2} (\log_2 4) + 2 = 1 + 1 + 2 = 4 = \frac{1}{2} \cdot 2 \cdot 4 = \frac{1}{2} (\log_2 4) + 2 = 1 + 1 + 2 = 4 = \frac{1}{2} \cdot 2 \cdot 4 = \frac{1}{2} (\log_2 4) + 2 = 1 + 1 + 2 = 4 = \frac{1}{2} \cdot 2 \cdot 4 = \frac{1}{2} (\log_2 4) + 2 = 1 + 1 + 2 = 4 = \frac{1}{2} \cdot 2 \cdot 4 = \frac{1}{2} (\log_2 4) + 2 = 1 + 1 + 2 = 4 = \frac{1}{2} \cdot 2 \cdot 4 = \frac{1}{2} (\log_2 4) + 2 = 1 + 1 + 2 = 4 = \frac{1}{2} \cdot 2 \cdot 4 = \frac{1}{2} (\log_2 4) + 2 = 1 + 1 + 2 = 4 = \frac{1}{2} \cdot 2 \cdot 4 = \frac{1}{2} (\log_2 4) + 2 = 1 + 1 + 2 = 4 = \frac{1}{2} \cdot 2 \cdot 4 = \frac{1}{2} (\log_2 4) + 2 = 1 + 1 + 2 = 4 = \frac{1}{2} \cdot 2 \cdot 4 = \frac{1}{2} (\log_2 4) + 2 = 1 + 1 + 2 = \frac{1}{2} \cdot 2 \cdot 4 = \frac{1}{2} (\log_2 4) + 2 = \frac$$

2.6. Ejemplo 7

Se desea hallar la solución general de la ERL

$$t(n) = \begin{cases} 4t(\frac{n}{2}) + 4, & n > 1\\ 0, & n = 1 \end{cases}$$

Expresar la ecuación general de la forma $t(n) + a_1 t(n-1) + a_2 t(n-2) + \cdots + a_k t(n-k) = h(n)$.

$$t(n) - 4t(\frac{n}{2}) = 4$$

Que es una ecuación que no sabemos resolver, pero si suponemos que n es potencia de 2, esto es, que $n=2^k$, tenemos que

$$t(2^k) - 4t(\frac{2^k}{2}) = 4, \quad 2^k > 1$$

 $t(2^k) - 4t(2^{k-1}) = 4, \quad k > 0$

Si realizamos un cambio de variable donde $T(k)=t(2^k)$, tenemos que

$$T(k) - 4T(k-1) = 4, \quad k > 0$$

que ya se encuentra expresada de una forma que sabemos resolver, y donde $a_1 = -4$, k = 1, h(k) = 4. $h(k) = 4 \Rightarrow \text{ERL No homogénea} \Rightarrow \text{Reescribir } h(k) \text{ como } \sum_{i=1}^{l} p(k) S_i^k$, donde p(k) es un polinomio de grado m_i .

$$h(k) = 4 = \sum_{1}^{1} 4 = \sum_{1}^{1} (4 \cdot k^{0} \cdot 1^{k}) \Rightarrow S_{1} = 1, m_{1} = 0$$

Definir una nueva ecuación de la forma

$$c_1(x) = x^k + a_1 x^{k-1} + a_2 x^{k-2} + \dots + a_k$$

$$c_2(x) = (x - S_1)^{m_1 + 1} (x - S_2)^{m_2 + 1} \cdots (x - S_i)^{m_i + 1}$$

$$c(x) = c_1(x)c_2(x)$$

donde $c_2(x)$ aporta i parámetros ligados a c(x).

$$c_1(x) = x^1 + (-4) = x - 4$$

$$c_2(x) = (x - 1)^{0+1} = (x - 1)$$

$$c(x) = c_1(x)c_2(x) = (x - 4)(x - 1)$$

Calcular las $\{r_1, r_2, \cdots, r_k\}$ raíces de c(x).

$$R = \{4, 1\}$$

Expresar la ecuación de la forma $c(x) = (x - r_1)(x - r_2) \cdots (x - r_k)$.

$$c(x) = (x-4)(x-1)$$

 $\not\exists m_p > 1 \Rightarrow \text{Raíces simples}.$

Definir la base B del conjunto de soluciones como

$$B = \{r_1^n, r_2^n, \cdots, r_p^n\} = \{4^k, 1^k\} = \{4^k, 1\}$$

Reescribir la ecuación original como $t(n) = \frac{\lambda_1 r_1^n}{\lambda_1 r_1^n} + \lambda_2 \frac{r_2^n}{\lambda_2 r_2^n} + \dots + \frac{\lambda_p r_p^n}{\lambda_p r_p^n}$.

$$T(k) = \frac{\lambda_1}{\lambda_1} \cdot 4^k + \lambda_2 \cdot 1 = \frac{\lambda_1}{\lambda_1} \cdot 4^k + \lambda_2$$

Para cada parámetro ligado i, hallar el valor de λ_i por sustitución, añadiendo al sistema de ecuaciones una nueva ecuación, donde

T(k) se sustituye por $\lambda_i b_i$

T(k-1) se sustituye por $\lambda_i b_i$, restando 1 a k en b_i

T(k-2) se sustituye por $\lambda_i b_i$, restando 2 a k en b_i

. . .

 c_2 aporta a c(x) el parámetro ligado λ_2 , luego se puede hallar sustituyendo en la ecuación original T(k) por λ_2 , T(k-1) por λ_2 , T(k-2) por λ_2 ...

$$T(k) = 4T(k-1) + 4 \Rightarrow \lambda_2 = 4(\lambda_2) + 4$$
$$3\lambda_2 = -4$$
$$\lambda_2 = -\frac{4}{3}$$

Quedando la ecuación como

$$T(k) = \frac{\lambda_1}{\lambda_1} \cdot 4^k - \frac{4}{3}$$

Deshaciendo el cambio $T(k) = t(2^k) = t(2^{log_2n}) = t(n)$,

$$2^{k} = n \Rightarrow k = \log_{2} n \Rightarrow t(n) = \frac{\lambda_{1}}{4} \log_{2} n - \frac{4}{3}, \quad n > 1$$

$$t(n) = \frac{\lambda_{1}}{2} \log_{2} n 2^{\log_{2} n} - \frac{4}{3}, \quad n > 1$$

$$t(n) = \frac{\lambda_{1}}{4} n - \frac{4}{3}, \quad n > 1$$

$$t(n) = \frac{\lambda_{1}}{4} n^{2} - \frac{4}{3}, \quad n > 1$$

Plantear un sistema de ecuaciones, incluyendo los casos base.

$$t(1) = \frac{\lambda_1}{\lambda_1} \cdot 1^2 - \frac{4}{3} = 0$$

Determinar los valores de $\lambda_1, \lambda_2, \cdots, \lambda_p$

$$0 = \frac{\lambda_1}{1} \cdot 1^2 - \frac{4}{3} \Rightarrow \frac{\lambda_1}{1} = \frac{4}{3} \Rightarrow t(n) = \frac{4}{3}n^2 - \frac{4}{3} = \frac{4}{3}(n^2 - 1), \quad n > 1$$

Probamos la solución para n=2.

$$t(2) = 4t(\frac{2}{2}) + 4 = 4 \cdot 0 + 4 = 4 = \frac{4}{3}(3) = \frac{4}{3}(2^2 - 1)$$

Probamos la solución para n=4.

$$t(4) = 4t(\frac{4}{2}) + 4 = 4 \cdot 4 + 4 = 20 = \frac{4}{3}(15) = \frac{4}{3}(4^2 - 1)$$

2.7. Ejemplo 8

Se desea hallar la solución general de la ERL

$$t(n) = \begin{cases} 4t(\frac{n}{2}) + 4, & n > 1\\ 1, & n = 1 \end{cases}$$

Expresar la ecuación general de la forma $t(n) + a_1t(n-1) + a_2t(n-2) + \cdots + a_kt(n-k) = h(n)$.

$$t(n) - 4t(\frac{n}{2}) = 4$$

Que es una ecuación que no sabemos resolver, pero si suponemos que n es potencia de 2, esto es, que $n=2^k$, tenemos que

$$t(2^k) - 4t(\frac{2^k}{2}) = 4, \quad 2^k > 1$$

 $t(2^k) - 4t(2^{k-1}) = 4, \quad k > 0$

Si realizamos un cambio de variable donde $T(k) = t(2^k)$, tenemos que

$$T(k) - 4T(k-1) = 4, \quad k > 0$$

que ya se encuentra expresada de una forma que sabemos resolver, y donde $a_1 = -4, k = 1, h(k) = 4$. $h(k) = 4 \Rightarrow \text{ERL No homogénea} \Rightarrow \text{Reescribir } h(k) \text{ como } \sum_{i=1}^{i} p(k) S_i^k$, donde p(k) es un polinomio de grado m_i .

$$h(k) = 4 = \sum_{1}^{1} 4 = \sum_{1}^{1} (4 \cdot k^{0} \cdot 1^{k}) \Rightarrow S_{1} = 1, m_{1} = 0$$

Definir una nueva ecuación de la forma

$$c_1(x) = x^k + a_1 x^{k-1} + a_2 x^{k-2} + \dots + a_k$$

$$c_2(x) = (x - S_1)^{m_1 + 1} (x - S_2)^{m_2 + 1} + \dots + (x - S_i)^{m_i + 1}$$

$$c(x) = c_1(x)c_2(x)$$

donde $c_2(x)$ aporta i parámetros ligados a c(x).

$$c_1(x) = x^1 + (-4) = x - 4$$

$$c_2(x) = (x - 1)^{0+1} = (x - 1)$$

$$c(x) = c_1(x)c_2(x) = (x - 4)(x - 1)$$

Calcular las $\{r_1, r_2, \cdots, r_k\}$ raíces de c(x).

$$R = \{4, 1\}$$

Expresar la ecuación de la forma $c(x) = (x - r_1)(x - r_2) \cdots (x - r_k)$.

$$c(x) = (x-4)(x-1)$$

 $\not\exists m_p > 1 \Rightarrow \text{Raíces simples}.$

Definir la base B del conjunto de soluciones como

$$B = \{r_1^n, r_2^n, \cdots, r_p^n\} = \{4^k, 1^k\} = \{4^k, 1\}$$

Reescribir la ecuación original como $t(n) = \frac{\lambda_1 r_1^n}{\lambda_2 r_2^n} + \cdots + \frac{\lambda_p r_p^n}{\lambda_p r_p^n}$.

$$T(k) = \lambda_1 \cdot 4^k + \lambda_2 \cdot 1 = \lambda_1 \cdot 4^k + \lambda_2$$

Para cada parámetro ligado i, hallar el valor de λ_i por sustitución, añadiendo al sistema de ecuaciones una nueva ecuación, donde

T(k) se sustituye por $\lambda_i b_i$ T(k-1) se sustituye por $\lambda_i b_i$, restando 1 a k en b_i T(k-2) se sustituye por $\lambda_i b_i$, restando 2 a k en b_i

 c_2 aporta a c(x) el parámetro ligado λ_2 , luego se puede hallar sustituyendo en la ecuación original T(k) por λ_2 , T(k-1) por λ_2 , T(k-2) por λ_2 ...

$$T(k) = 4T(k-1) + 4 \Rightarrow \lambda_2 = 4(\lambda_2) + 4$$
$$3\lambda_2 = -4$$
$$\lambda_2 = -\frac{4}{3}$$

Quedando la ecuación como

$$T(k) = \frac{\lambda_1}{\lambda_1} \cdot 4^k - \frac{4}{3}$$

Deshaciendo el cambio $T(k) = t(2^k) = t(2^{\log_2 n}) = t(n)$,

$$2^{k} = n \Rightarrow k = \log_{2} n \Rightarrow t(n) = \frac{\lambda_{1}}{4} \log_{2} n - \frac{4}{3}, \quad n > 1$$

$$t(n) = \frac{\lambda_{1}}{2} \log_{2} n 2^{\log_{2} n} - \frac{4}{3}, \quad n > 1$$

$$t(n) = \frac{\lambda_{1}}{4} n - \frac{4}{3}, \quad n > 1$$

$$t(n) = \frac{\lambda_{1}}{4} n^{2} - \frac{4}{3}, \quad n > 1$$

Plantear un sistema de ecuaciones, incluyendo los casos base.

$$t(1) = \lambda_1 \cdot 1^2 - \frac{4}{3} = 1$$

Determinar los valores de $\lambda_1, \lambda_2, \cdots, \lambda_p$.

$$\lambda_{1} \cdot 1^{2} - \frac{4}{3} = 1$$

$$\lambda_{1} = \frac{4}{3} + 1$$

$$\lambda_{1} = \frac{4}{3} + \frac{3}{3}$$

$$\lambda_{1} = \frac{7}{3} \Rightarrow t(n) = \frac{7}{3}n^{2} - \frac{4}{3}, \quad n > 1$$

Probamos la solución para n=2.

$$t(2) = 4t(\frac{2}{2}) + 4 = 4 \cdot 1 + 4 = 8 = \frac{24}{3} = \frac{28}{3} - \frac{4}{3} = \frac{7}{3}2^2 - \frac{4}{3}$$

Probamos la solución para n = 4.

$$t(4) = 4t(\frac{4}{2}) + 4 = 4 \cdot 8 + 4 = 36 = \frac{108}{3} = \frac{112}{3} - \frac{4}{3} = \frac{7}{3}4^2 - \frac{4}{3}$$