

Neural Architecture Search for Mobile Semantic Segmentation

CS766 Spring Project, 2024

Presenters: Jidong Xu, Mingkai Wang, Ethan Fang

Introduction of NAS and semantic segmentation

What is Semantic Segmentation:

- In computer vision task, semantic segmentation is to classify each pixel in an image into a class or object.
- Aims to produce a dense pixel-wise segmentation map of an image and assign a specific class or object to each pixel.

Classes include: Pedestrian, Cars, Road, Train, Guideboard, etc.

Semantic segmentation

Existing solutions

CNN: high local feature extraction capability and computation efficiency, but limited global information capture

Vision Transformer (ViT): high global self-attention capability but lower computation efficiency

Introduction of NAS and semantic segmentation

What is Neural Architecture Search (NAS):

 Neural Architecture Search (NAS) is a process that automates the design of neural network architectures within the field of machine learning.

Architectural Hyper-parameters:

Neural architectures (# of conv layers,# of conv kernels, kernel size etc.)

Project objectives and challenges

Objective:

 Apply NAS to search for efficient semantic segmentation model on mobile and edge devices.

Main Challenges:

- How to design a search space for efficient semantic segmentation.
- How to design a search space that efficiently explores the proposed search space and obtains the optimal model for semantic segmentation.

Original Model - Topformer

Figure 2 – The architecture of the proposed Token Pyramid Transformer.

Search Space

CNN Block	Width	Depth	Kernel size	Expansion	n ratio
Stem	{16, 24}	1	3	_	
MBConv-1	$\{16, 24\}$	{1, 2}	{3, 5}	1	
MBConv-2	(16, 40, 8)	$\{1, 2, 3\}$	$\{3, 5\}$	{3, 4,	5}
MBConv-3	(24, 72, 8)	$\{1, 2, 3\}$	$\{3, 5\}$	$\{2, 3, 4\}$	-
MBConv-4	(56, 136, 8)	$\{1, 2, 3\}$	$\{3,5\}$	$\{2, 3, 4\}$, 5}
MBConv-5	(88, 176, 8)	$\{1, 2, 3, 4\}$	$\{3,5\}$	{4, 5, 6	, 7}
ViT Block	Number of heads	Key dim	Attention ratio	MLP ratio	Depth
ViT 1-4	(2, 12, 2)	(12, 20, 2)	(1.6, 2.4, 0.2)	(1.6, 2.4, 0.2)	{1, 2}

Table 1: The search space of Efficient-Topformer. Tuples of three values in parentheses represent the lowest value, the highest value, and steps. **Note:** Query dim = Key dim, Value dim = Attention ratio \times Key dim.

Search Space and Search Pipeline

Experiment and results

Dataset:

ADE20K [1] and COCO-Stuff [2]

Evaluation metrics:

mIoU: mean of class-wise intersection over union **FLOPs**: floating point operations per second **Latency**: measurements of inference time on the mobile device

Table 2: Results on COCO-Stuff val set.

Backbone	FLOPs(G)	mIoU
MobileNetV2-s8	52.9	30.14
MobileNetV2-s16	25.9	29.88
EfficientNet-s16	27.1	31.45
MobileNetV3-s16	2.3	25.16
TopFormer-B	1.8	33.43
TopFormer-S 1.2		30.83
TopFormer-T	0.6	28.34
Efficient-Topformer-B	1.8	34.64 (+1.21)
Efficient-Topformer-S	1.2	32.92 (+2.09)
Efficient-Topformer-T	0.6	30.43 (+2.09)
	MobileNetV2-s8 MobileNetV2-s16 EfficientNet-s16 MobileNetV3-s16 TopFormer-B TopFormer-S TopFormer-T Efficient-Topformer-B Efficient-Topformer-S	MobileNetV2-s8 52.9 MobileNetV2-s16 25.9 EfficientNet-s16 27.1 MobileNetV3-s16 2.3 TopFormer-B 1.8 TopFormer-S 1.2 TopFormer-T 0.6 Efficient-Topformer-B 1.8 Efficient-Topformer-S 1.2

Table 1: Results on ADE20K val set.

Method	Encoder	FLOPs(G)	mIoU(%)	Latency(ms)
PSPNet [31]	MobileNetV2	52.2	29.6	1065
FCN-8s [14]	MobileNetV2	39.6	19.7	1015
Semantic FPN [32]	ConvMLP-S	33.8	35.8	777
DeepLabV3+ [33]	EfficientNet	26.9	36.2	970
DeepLabV3+ [33]	MobileNetV2	25.8	38.1	1035
Lite-ASPP [33]	ResNet18	19.2	37.5	648
DeepLabV3+ [33]	ShuffleNetV2-1.5x	15.3	37.6	960
HRNet-W18-Small [34]	HRNet-W18-Small	10.2	33.4	639
Segformer [16]	MiT-B0	8.4	37.4	770
Lite-ASPP [33]	MobileNetV2	4.4	36.6	235
R-ASPP [27]	MobileNetV2	2.8	32.0	177
HR-NAS-B [10]	Searched	2.2	34.9	-
LR-ASPP [35]	MobileNetV3-Large	2.0	33.1	126
TopFormer [18]	TopFormer-B	1.8	37.8	110
HR-NAS-A [10]	Searched	1.4	33.2	-
LR-ASPP [35]	MobileNetV3-Large-reduce	1.3	32.3	81
TopFormer [18]	TopFormer-S	1.2	36.1	74
TopFormer [18]	TopFormer-T	0.6	32.8	43
TopFormer [18]	TopFormer-T*	0.5	32.5	32
Ours	Efficient-Topformer-B	1.8	40.5 (+2.7)	115
Ours	Efficient-Topformer-S	1.2	38.9 (+2.8)	76
Ours	Efficient-Topformer-T	0.6	36.4 (+3.6)	45
Ours	Efficient-Topformer-T*	0.5	35.2 (+2.7)	33

Experiment and results

Visualization on ADE20K validation (val) set:

Conclusion

- Successfully propose a novel architecture search method for efficient semantic segmentation, named Efficient-Topformer
- Propose a search space that takes advantage of CNN and ViT simultaneously.
- Propose a Coordinate Descent Search method, which is beneficial to search for the optimal architecture in the aforementioned search spaces.

