# Master Equation & HJB Control in Stochastic Games Snakes & Ladders with Optimal Re-roll Policy

Hooman Zare

SUT

August 1, 2025

### What is the Master Equation?

$$\frac{\partial P(\mathbf{x}, t)}{\partial t} = \sum_{\mathbf{x}'} \left[ W(\mathbf{x}|\mathbf{x}')P(\mathbf{x}', t) - W(\mathbf{x}'|\mathbf{x})P(\mathbf{x}, t) \right]$$

- Probability conservation equation
- Governs Markov processes
- Balance of probability flows

#### Discrete-State Formulation

$$\frac{d\mathbf{p}}{dt} = \mathbf{W}\mathbf{p}$$



- p: Probability vector
- W: Transition matrix
- $W_{ij} \ge 0$  for  $i \ne j$
- $\sum_j W_{ij} = 0$

## Spectral Properties

$$\mathbf{W} = \sum_{k} \lambda_k \mathbf{v}_k \mathbf{u}_k^T$$

- $\lambda_0 = 0$ : Steady state
- $Re(\lambda_k) < 0$ : Relaxation modes
- $\tau_k = |\text{Re}(\lambda_k)|^{-1}$ : Characteristic times

$$\mathbf{p}(t) = \mathbf{p}_{\mathsf{ss}} + \sum_{k>0} c_k e^{\lambda_k t} \mathbf{v}_k$$

### Absorption Problems

$$\frac{dp_i}{dt} = \sum_j W_{ij} p_j - \kappa_i p_i$$



- Absorbing states:  $\kappa_i = 0$
- Mean absorption time:  $\tau_i$
- Fundamental matrix solution

#### Game as Markov Chain

board\_schematic.pdf

- States:  $s \in \{1, ..., 100\}$
- Transitions:  $s \rightarrow s + d$
- Snakes/ladders:  $s \to T(s)$

#### Transition Matrix Construction

$$P_{ij} = \frac{1}{6} \sum_{d=1}^{6} \delta_{j,T(\min(i+d,100))}$$

#### Algorithm

For each state s:

- **1** For d = 1 to 6:
- $\circ$   $s' \leftarrow \min(s + d, 100)$
- $\circ$   $s'' \leftarrow T(s')$
- **1**  $P_{s,s''} \leftarrow P_{s,s''} + \frac{1}{6}$

### Master Equation for Expected Moves

$$\mathbf{v} = (\mathbf{I} - \mathbf{Q})^{-1}\mathbf{1}$$

- v<sub>i</sub>: Expected moves from state i
- Q: Transient submatrix
- Poisson equation solution

### Extended Game: Re-roll Option



- After first roll  $d_1$ :
  - Stick: Move by  $d_1$
  - Re-roll: Move by d<sub>2</sub>
- Each turn = 1 move

#### MDP Formulation

- States:  $(s, d_1)$  pairs
- Actions: {Stick, Re-roll}
- Cost: c(s, a) = 1 per turn
- Value functions:
  - $V_0(s)$ : Pre-roll value
  - $Q(s, d_1)$ : Post-roll value

## **HJB Equation**

$$egin{align} Q(s,d_1) &= \min egin{cases} 1 + V_0(T(s+d_1)) \ 1 + rac{1}{6} \sum_{d_2} V_0(T(s+d_2)) \end{cases} \ V_0(s) &= rac{1}{6} \sum_{d_1=1}^6 Q(s,d_1) \end{cases}$$

Boundary:  $V_0(100) = 0$ 

#### Value Iteration

Initialize 
$$V_0^{(0)} \leftarrow 0$$
  $k=1$  to  $K$  each state  $s$  each roll  $d_1$   $Q^{(k)}(s,d_1) \leftarrow \min(\text{stick},\text{re-roll})$   $V_0^{(k)}(s) \leftarrow \frac{1}{6} \sum Q^{(k)}(s,d_1)$ 

## Optimal Policy

$$\pi^*(s,d_1) = egin{cases} ext{Stick} & ext{if } V_0(T(s+d_1)) \leq \mathbb{E}[V_0(s+d_2)] \ ext{Re-roll} & ext{otherwise} \end{cases}$$

- Risk-averse control
- Exploitation vs exploration

## Physical Interpretation

potential\_landscape.pdf

- $V_0(s)$ : Potential energy
- Snakes: Potential barriers
- Ladders: Potential wells
- Policy: Gradient descent

#### Conclusion

- Master Equation: Stochastic dynamics
- HJB: Optimal control extension
- Re-rolls: Entropy injection
- Physics of decision-making