

Popularity Analysis for Youtube Makeup Videos

Shiyi Cheng, Kexin Wang, Ruchen Zhang, Zhuocheng Shang, Chiyuan Ma

Motivation & challenges

- Motivation:
- Makeup videos are popular
- What are collative concepts among trending videos
- **Challenges:**
- Crawling data from Youtube Channels
- Select algorithms to train dataset

Data preprocessing

- **Data Collection:**
- Crawling data from Youtube
- Data Attributes
- [ID, Title, View Count, Like Count, Dislike Count, Publish Date, Description]
- **Data Cleaning:**
- (Title & Description)
- NLTK
- Bag of Word
- Tf-idf Vectorizer

Figure . Bag of word

Data Describe 38899.000000 0.973436 mean 0.019546 0.900000 0.965217 0.979620 0.987576 75% 1.000000

max

Top Cluster	TERM	WEIGHT In each cluster	Top Cluster	TERM	In each cluster
1	video	0.021817	3	affiliate link	0.022977
	makeup tutorial	0.012237	,	use code	0.020865
	use code	0.011442		coupon code	0.019308
	smokey eye	0.007478		video sponsored	0.017234
	eye makeup	0.007064			
2	use code	0.010647		makeup tutorial	0.01647
	affiliate link	0.008296	4	use code	0.014387
	Code lauralee	0.007519		code lauralee	0.0094
makeup tutorial	0.0067		affiliate link	0.00834	
	tutorial			code james	0.008169
	video like	0.006287		coupon code	0.00692

Table . analyze with DBscan

Algorithms

- Variables:
- X: [word vectors]
- Y: [like / (dislike + like)]
- Y_label:
- ["popular"] if Y(score) > mean
- ["unpopular"] if Y(score) < mean
- Models:
- Neural Network
- Linear Regression
- Logistic Regression
- K Nearest Neighbors

Linear Regression&Output

Linear Regression Summary:

of training observations: 30282 Residual Standard Error: 0.03107 r-Squared: 0.1860813189038045 Log-Likelihood: 62153.9163681 Test score: 0.17740594576943547

NeuralNetwork&Output

Logistic Regression&Output

Class 0: popular Class 1: unpopular Train Accuracy: 0.7554322699953768 Test Accuracy: 0.7494551218545671

	Pred_0	Pred_1
True_0	18528	2082
True_1	5324	4348

KNN&Output

KNN model get best accuracy 0.73 when K's value is around 11.

Conclusions

- The public pays less attention to makeup videos.
- 'View count' and 'like', 'dislike' show a linear increasing relationship
- Word choice in 'Title' and 'Description' is collated with popularity of a video. Audience pay more attention to key words such as "makeup tutorial", "eye makeup" or "coupon code".
- Neural Network works well on our dataset.
- Compared with NN, Linear Regression' accuracy is not high.
- KNN 's accuracy is almost the same as LR.

Figure . Keyword Changed in Years

References

[4] Muhammad Zubair Asghar, Shakeel Ahmad, Afsana Marwat, Fazal Masud Kundi. Sentiment Analysis on YouTube: A Brief Survey.

[7] Aliaksei Severyn, Alessandro Moschitti, Olga Uryupina, Barbara Plank, Katja Filippova. Opinion Mining on YouTube. [8] Stephanie Orme, Jared LaGroue, Arienne Ferchaud, Jenna Grzeslo. (2018). Parasocial attributes and YouTube personalities: Exploring content trends across the most subscribed YouTube channels. Computers in Human Behavior

[9] Lavanya Sunder. (2016). Predictive Model for Views In YouTube Beauty Community. [10] Phakhawat Sarakit, Thanaruk Theeramunkong, Choochart Haruechaiyasak, Manabu Okumura. (2015). Classifying emotion in Thai youtube comments. International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES)978-1-4799-8565-4/15/\$31.00 ©2015 IEEE