Application of DFS

- ➤ Strongly Connected Components
 - **≻**Component graph
 - Transpose of directed graph
 - ➤ Algorithm to compute SCC
- **Biconnectivity**
- >Articulation Points
- **≻**Bridges

Strongly Connected Components

- G is strongly connected if every pair (u, v) of vertices in G is reachable from one another
- A strongly connected component (SCC) of G is a maximal set of vertices $C \subseteq V$ such that for all $u, V \in C$, both $u \sim V$ and $V \sim u$ exist
 - i.e. vertices u and v are reachable from each other

Component Graph

Component graph $G^{SCC} = (V^{SCC}, E^{SCC})$

 $V^{\text{SCC}} \rightarrow$ has one vertex for each SCC in G

 E^{SCC} has an edge if there's an edge between the corresponding SCC's in G

G

Transpose of a Directed Graph

- Transpose of directed G(V,E) is G^{T}
 - $-G^{T}=(V, E^{T}),$
 - where $E^{T} = \{(u, v) : (v, u) \in E\}.$
 - G^{T} is G with all its edges reversed
- Using Adjacency list of G
 - G^{T} created in $\Theta(V + E)$ time
- G and G^T have the same strongly connected components
 - u and v are reachable from each other in G if and only if reachable from each other in G^T

Strongly_Connected_Components(G)

- \triangleright Call DFS(G) to compute finishing times f[u] for all u
- \triangleright Compute G^{T}
- Call DFS(G^{T}), but in the main loop, consider vertices in order of decreasing f[u] (as computed in first DFS)
- Output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Linear running Time: $\Theta(V+E)$

Example

Example

Component Graph

GSCC cd abe fg

Point to Note:

→By considering vertices in second DFS in decreasing order of finishing times from first DFS

 \rightarrow actually visiting vertices of the component graph in topologically sorted order \rightarrow Since running DFS on G^T , we will not be visiting any v from a u, where v and u are in different components

Lemma

Let C and C' be distinct SCC's in G = (V, E). Suppose there is an edge $(u, V) \in E$ such that $u \in C$ and $V \in C'$ Then f(C) > f(C').

Corollary

Let C and C' be distinct strongly connected components in G = (V, E). Suppose there is an edge $(u, V) \in E^T$ such that $u \in C$ and $V \in C'$ Then f(C) < f(C').

Biconnectivity

A connected undirected graph is biconnected if there are no vertices whose removal will disconnects the rest of the graph

Example:

- --Computer→ Nodes and Links → Edges
- --if any computer goes down, mailing service of network mail unaffected, except at the down computer.

Articulation Points

- Articulation point or cut-vertex : A vertex whose removal (along with its attached arcs) makes the graph disconnected
 - →graph is not biconnected

Eg. C is an articulation point

- --Relevant to computer networks
- --Represent vulnerabilities in a network
- --In many applications these nodes are critical

Articulation points can be computed using **depth-first search** and a special numbering of the vertices in the order of their visiting

Bridges

Bridge: An edge in a graph whose removal disconnects the graph

- a bridge is any edge in a graph, that does not lie on a cycle
- a bridge has at least one articulation point at its end
- however an articulation point is not necessarily linked in a bridge

No articulation points and No bridges → **Biconnected graph**

Binconnectivity: Articulation Points

In a connected graph all articulation points can computed using DFS in a linear time:

- 1. Perform a DFS starting at any vertex
 - number the nodes as they are visited say: *dfs_num(v)* as visiting sequence of vertices *v* and
- 2. For every vertex v in the depth-first spanning tree
 - compute *dfs_low(v)*: the lowest-numbered vertex *dfs_num* that is reachable from *v* through a path by taking *zero or more tree edges* and then possibly followed by *zero or one back edge*
- 3. Vertex *v* is an articulation point of G if and only if either
 - v is the root of DFS tree and has at least two children
 - v is not the root of DFS tree and has a child u for which no vertex in subtree rooted with u has a back edge to one of the ancesstors (in DFS tree) of v
 - i.e. vertex v is an articulation point if and only if v has some child u such that $dfs_low(u) \ge dfs_num(v)$

Binconnectivity: Articulation Points

