Most real world problems concerns more than two variable. Therefore a linear brown programming problem of multi vouables are too complex for graphical solution. A procedure called the simplex method might be used to timaliable the optimal solution of multivariable linear programming problems.

Step 1: Convert the general form of linear programming problem into standard form and also convert the minimization problem into maximization type

Step 2: Write the initial simplex table and obtain the initial basic feasible

Step 3: Compute $\Delta j = Zj - Cj$ for all j.

Step 9: Select the Key column with most negative Zj-Cj value let K EJ, indenset for which Zj-Es is most negative, XK_ is entoring for which Zj-Es is most negative, XK_ is entoring Steps: Select the key now with minimum non-negative bi/aij: 9f all ratios one negative or infinity, the current solution is unbounded and stop Solution let l'es for which bi/ais is the computation let l'es for which bi/ais is departing basic minimum, re is departing basic variable. Step 6: Identify the key clement. at the intersection of and key column.

(x) Step 7: Make key element as one and the corresponding other element in that column as zerotoand prepare new simplen table with xx as new basic variable.

Step 8: Compute z_j - c_j for new simplex table: If it is negative for, the some j, then repeat Step 4 - Step 7. If z_j - c_j z_0 $\forall j$, then optimal solution is attained.

Example: Max $z = 60 \times 1 + 50 \times 2$ Subject $x_1 + 2x_2 \leq 40$ to $3x_1 + 2x_2 \leq 60$ $x_1, x_2 \geq 0$

Both constraints are \leq type. Hence introducing slack variables there introducing slack variables and x_4 , we reformulate the LPP x_3 and x_4 , we reformulate the LPP in the Standard form as

Max $z = 60 \times 4 + 50 \times 2 + 0. \times 3 + 0. \times 4$ Subject $x_1 + 2x_2 + x_3 + 0. \times 4 = 60$ to $3x_1 + 2x_2 + 0. \times 3 + x_4 = 60$

Here $(c_1, c_2, c_3, c_4) = (60, 50, 0, 0)$. $a_1 = (1)$ $a_2 = (2)$ $a_3 = (1)$ $a_4 = (0)$ $a_1 = (3)$ $a_2 = (2)$ $a_3 = (1)$ $a_4 = (0)$ We see that the vectors a_3 , a_4 form $a_1 = (1)$ $a_2 = (1)$ $a_3 = (1)$ $a_4 = (1)$ $a_5 = (1)$

$$\lambda_{B} = B'b = I \cdot \begin{pmatrix} A_{0} \\ 6_{0} \end{pmatrix} = \begin{pmatrix} 4_{0} \\ 6_{0} \end{pmatrix}$$

Thus
$$\begin{pmatrix} \chi_{B_1} \\ \chi_{B_2} \end{pmatrix} = \begin{pmatrix} 40 \\ 60 \end{pmatrix}$$
.

 $\begin{pmatrix} C_B = (C_B, C_{B_2}) = (0, 0) \end{pmatrix}$.

Interaction (1 | 0 | Min | 1/2

Iteration: 3 Min
cj 160 150 1 0 1 0 bi/aij
CB B 24 02 03 04 05 05 05 05 05 05 05
KD 02 2 15
a, 24 10 1 1
00 157 376
R1 (3)
B 1 1 2 3 Ro= R. Here Zi-cj ≥0 4 J
Re 2 R1 in rives optimal solution.
Residential solution. Hence this table gives optimal solution.
abtimal Solution 15
+ 1- 713 = 15 Kmax
20-2.15
Note -> Simplex
Row Operations in i second table (i) Divide the second row of the 1st table
(1) Divide the section
Liver element
by key element corregions
(11) New value in 1st row = old value - value (11) New value in 1st row = old value x corr key column
(11) New value in 1st row = old value - value value - ever key row value x corr key column value - ever key row value x corr key column value -
(11) New value in 1st row = old value - value value - corr key column value - corr key row value x corr key column value - corr key row value x corr key column value - corr key row value x corr key column value - corr key row value x corr key column value - corr key row value x corr key column value - corr key row value x corr key column value - corr key row value x corr key column value - corr key row value x corr key column value - corr key row value x corr key column value - corr key row value x corr key column value - corr key row value x corr key column value - corr key row value x corr key column value - corr key row value x corr key column value x corr key row value x corr key column value x corr key row value x corr key column value x corr key row value x cor
(11) New value in 1st row = Old value - value value value ever key row value x corr key column value - ever key row value x corr key column value ever key element Final iteration
(11) New value in 1st row = old value - $\frac{\text{corr keyron}}{\text{value}}$ = old value - $\frac{\text{corr key row value} \times \text{corr key column}}{\text{corr key column}}$ Second Iteration Key element Final iteration $\frac{1}{3} = 40 - \frac{1 \times 60}{3} = \frac{1}{3} \times \frac{20}{3} = \frac{10}{3}$
(11) New value in 1st row = old value - vow = old value - ever key row value x corr key column Second Iteration Key element Second Iteration Final iteration 1 = 40 - 1 × 60 = 2 20
by key element (11) New value in 1st row = Old value - $\frac{1}{2}$ corr key column = $\frac{1}{2}$ and $\frac{1}{2}$ corr key column = $\frac{1}{2}$ and
by key element (1) New value in 1st row = old value = $\frac{\text{corr keyron}}{\text{vol}}$ = old value = $\frac{\text{eorr key row value}}{\text{corr key column value}} \times \frac{\text{corr key column value}}{\text{value}} \times \text{corr key $
by key element (11) New value in 1st row = Old value = $\frac{\text{corr keyron}}{\text{vol}}$ = $0 d \text{ value} - \frac{\text{eorr key row value}}{\text{vol}} \times \text{corr key column}$ = $0 d \text{ value} - \frac{\text{eorr key row value}}{\text{vol}} \times \text{corr key column}$ Second Iteration Final iteration Final iteration $\frac{1 \times 60}{3} = 3 \times 20$ $\frac{1}{3} \times 20 = 10$ $\frac{1}{3} = 1 - \frac{1 \times 3}{3} = 0$ $\frac{1}{3} \times 20 = 10$ $\frac{1}{3} = 1 - \frac{1 \times 2}{3} = \frac{4}{3}$ $\frac{1}{3} \times 2 = \frac{1}{3} \times \frac{4}{3} = 0$ $\frac{1}{3} \times 2 = \frac{1}{3} \times 2 = \frac{1}{3} \times \frac{4}{3} = 0$ $\frac{1}{3} \times 2 = \frac{1}{3} \times 2 = \frac{1}{3} \times \frac{4}{3} = 0$
by key element (11) New value in 1st row = Old value = $\frac{1}{\sqrt{20}}$ = Old value = $\frac{1}{2}$ ears key row value x corr key column value = $\frac{1}{2}$ ears key row value x corr key column value = $\frac{1}{2}$ ears $\frac{1}{2}$ element $\frac{1}{2}$ ele
by key element (11) New value in 1st row = Old value = $\frac{\text{corr keyron}}{\text{vol}}$ = $0 d \text{ value} - \frac{\text{eorr key row value}}{\text{vol}} \times \text{corr key column}$ = $0 d \text{ value} - \frac{\text{eorr key row value}}{\text{vol}} \times \text{corr key column}$ Second Iteration Final iteration Final iteration $\frac{1 \times 60}{3} = 3 \times 20$ $\frac{1}{3} \times 20 = 10$ $\frac{1}{3} = 1 - \frac{1 \times 3}{3} = 0$ $\frac{1}{3} \times 20 = 10$ $\frac{1}{3} = 1 - \frac{1 \times 2}{3} = \frac{4}{3}$ $\frac{1}{3} \times 2 = \frac{1}{3} \times \frac{4}{3} = 0$ $\frac{1}{3} \times 2 = \frac{1}{3} \times 2 = \frac{1}{3} \times \frac{4}{3} = 0$ $\frac{1}{3} \times 2 = \frac{1}{3} \times 2 = \frac{1}{3} \times \frac{4}{3} = 0$
by key element (11) New value in 1st row = Old value = $\frac{1}{\sqrt{2}}$ = Old value - $\frac{1}{2}$ ears key row value x corr key column value. Second Iteration Key element Final iteration $\frac{1}{3}$ = $\frac{1}{3}$ = $\frac{1}{3}$ $\frac{1}{3}$ $\frac{2}{3}$ $\frac{2}{$
by key element (11) New value in 1st row = Old value = $\frac{1}{\sqrt{2}}$ = Old value - $\frac{1}{\sqrt{2}}$ Second Iteration Yey element Final iteration 2 40 - $\frac{1 \times 60}{3}$ = 20 $\frac{1}{2}$ = 20 - $\frac{2}{3}$ × 20 = 10 $\frac{1}{2}$ = $\frac{1}{2}$ = $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ = $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ = $\frac{1}{2}$

Example 2: Man = = x1 + x2 + 3x3 Subject to 3x1 + 2x2 + x3 &3 224 + 72 + 27/3 62 and 74, 72, 73 20. > Introducing slack variables X4, x5 and put the problem into Standard form, we obtain, Max Z = x1 + x2 + 3x3 + 0. x1 + 0. x5 Subject 3x4 + 2x2 + x3 + x4 + 0.x5 = 3 $2x_1 + x_2 + 2x_3 + 0.x_4 + x_5 = 2$ $a_1 = {3 \choose 2}$ $a_2 = {2 \choose 1}$ $a_3 = {1 \choose 2}$ $a_4 = {0 \choose 0}$ $a_{s}=(?).$ e=(1,1,3,0,0)So, the vectors as, as give the initial basis to matrix and 1/4, 1/ are corresponding basic variables and initial basic solution is $\chi_1=0$, $\chi_2=0$, 和76 Cj -B CB 74 04 75 as 73 () entering variable 0 no at - leaving variable

Table-2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 a3 x3 1 1 12 0 0 312
$b_1' = 3 - \frac{1 \times 2}{2} = 2$
$aii = 3 - 1 \times 2 = 2$
$a_{21} = 2 - \frac{1 \times 1}{2} = \frac{3}{2}$
$a_{31}' = 1 - \frac{1 \times 2}{2} = 0$
$a_{Ai}' = 1 - \frac{1 \times 0}{2}$
asi = 0,7 + 12 + 18 = 5 + 14 (1)
All 2j-ej ≥ 0 \ j Hence the required optimal solution is Hence the required 2 zmax = 1x0+1x0+3x1
1420, 12
322+574
Subject + 21/4 = 8
424 - 2213 + 13
$\chi_1, \chi_2, \chi_3, \chi_4 = 0, \chi_4^* = 7, 7 \text{max} = 41$ Ans: $\chi_1^* = 0, \chi_2^* = 6, \chi_3^* = 0, \chi_4^* = 7, 7 \text{max} = 41$

Minimize $z = \chi_4 - 3\chi_2 + 2\chi_3$ Subject $3\chi_4 - \chi_2 + 3\chi_3 \leq 7$ $-2\chi_4 + 4\chi_2 \leq 12$ $-2\chi_4 + 4\chi_2 \leq 10$ $-4\chi_4 + 3\chi_2 + 8\chi_3 \leq 10$ $-4\chi_4 + 3\chi_2 + 8\chi_3 \leq 0$ [Aus: $\chi_4^* = 4$, $\chi_2^* = 5$, $\chi_3^* = 0$, 2min=1] [Aus: $\chi_4^* = 4$, $\chi_2^* = 5$, $\chi_3^* = 0$, 2min=1] Subject to $\chi_4 + 2\chi_2 + 3\chi_3 \leq 430$ $3\chi_4 + 2\chi_3 \leq 460$ $\chi_4 + 4\chi_2 \leq 420$,

 $24 + 422 \le 420$, $24 + 422 \le 420$, $24, 22, 23 \ge 0$. $24, 22, 23 \ge 0$. 24 = 230, 2 = 23024 = 230, 2 = 230

A) Maximize $Z = 3x_1 + 5x_2 + 4x_3$ Subject to $2x_1 + 3x_2 \le 8$ $2x_1 + 5x_3 \le 10$ $3x_1 + 2x_2 + 4x_3 \le 15$ $3x_1 + 2x_2 + 4x_3 \le 0$

[Ans: $24^{\dagger} = 89/41$, $22^{\dagger} = 50/41$, $23^{\dagger} = 62/4$]

Zman = 765/41.]