All About Memory

Lennart Armbrust

Freie Universität Berlin

Einführung

Gliederung

- Verschiedene Speichertypen
 - Zugriffszeiten
- Die Hardware
- Speicherhierarchie
 - Virtualisierung
- Unterschiede je nach Art des Rechners
- Verbesserungsmöglichkeiten

Verschiedene Speichertypen

Verschiedene Speichertypen

"TI II: Computer Architecture, Memories", S. 4, Prof. Jpchen Schiller, FU Berlin

Verschiedene Speichertypen

"TI II: Computer Architecture, Memories", S. 7, Prof. Jpchen Schiller, FU Berlin

Die Hardware

Die Hardware: Register

- Arbeitsfläche / "Schreibtisch" des Prozessors
- Verschiedene Register im Prozessor:
 - General Purpose
 - Spezialregister:
 - Instruction Pointer
 - Befehlsregister
 - Flagregister
 - ...

Die Hardware: Caches

- Lösungsansatz für den Von-Neumann-Flaschenhals
- Oft nachgefragte bzw. für ein Programm benötigte Daten werden direkt im Prozessor abgelegt
 - => man muss nicht "aus dem Prozessor raus"
- Verschiedene Ebenen und Realisierungsformen:
 - Direct-mapped
 - Vollassoziativ
 - N-fach satzassoziativ
- Wenn Cache voll: Ersetzungsstrategien:
 - First In First Out, Least Recently Used, Least Frequently Used, ...

Die Hardware: SRAM

- "Static Random Access Memory"
- Genutzt für Cache
- Flüchtig
- Einmal gespeicherter Wert bleibt erhalten, bis Betriebsspannung wegfällt
- 6 Transistoren pro Bit
- Wenn nicht zugegriffen wird: sehr geringer Stromverbrauch

Abelsson, CC BY-SA 3.0

Die Hardware: DRAM

- "Dynamic Random Access Memory"
- Genutzt für Arbeitsspeicher
- Flüchtig
- Muss periodisch aufgefrischt werden
- 1 Kondensator und 1 Transitor pro Bit

JürgenZ., CC BY-SA 3.0

Die Hardware: SSD

- "Solid State Drive"
- Basiert auf Halbleitern
- Nichtflüchtig
- Hohe Geschwindigkeit für Massenspeicher
- Energieeffizient

D-Kuru, CC BY-SA 3.0

Die Hardware: HDD

- "Hard Disk Drive"
- Basiert auf Magnetscheiben
- Nichtflüchtig
- Hohe Kapazität
- Günstig
- Bewegliche Teile: Anfällig für Stöße

Eric Gaba, CC BY-SA 3.0

Die Hardware: Vergleich

"TI II: Computer Architecture, Memories", S. 5, Prof. Jpchen Schiller, FU Berlin

Speicherhierarchie

Speicherhierarchie

Speicherhierarchie

- Man möchte:
 - Riesigen sehr schnellen Speicher
- Da das nicht geht, hierarchisiert man Speicher
- Wirkt wie ein großer, zusammenhängender Speicher, wenn:
 - Lokalität der Programmverarbeitung gegeben
 - Umlagerung der Information rechtzeitig (Umlagerungsstrategien)
 - Inhomogenität des Speichersystems für Benutzer nicht sichtbar (Virtueller Speicher)

Speicherhierarchie: Virtualisierung

"TI II: Computer Architecture, Memories", S. 102, Prof. Jpchen Schiller, FU Berlin

Speicherhierarchie: Virtualisierung

- Speicher wirkt für Programme/Benutzer völlig homogen
- Jedes Programm bekommt seinen eigenen Speicherbereich
- Weiterer Vorteil: Sicherheit => MMU sorgt dafür, dass Programme in ihrem Speicherbereich bleiben

Unterschiede nach Art des Rechners

Unterschiede

- Je nach Anwendung teilweise sehr spezielle Designs
- Z. B. Kleine Embedded Systems ohne Virtualisierung

Verbesserungsmöglichkeiten

Verbesserungsmöglichkeiten

- Speicherhierarchisierung trägt im Vergleich zu homogenem Speicher zu Effizienz bei
 - Großer Speicher & Schneller Speicher sind so zusammen möglich
 - Trägt zu effizienter und ökonomischer Speichernutzung bei
- Hardwarenahe Ansätze ermöglichen weniger Stromverbrauch bzw. erhöhte Energieeffizienz
 - SSDs ⇔ HDDs
 - Auffrischen von DRAM verbraucht viel Energie