Today's class:

NMR Spectroscopy

This lecture follows the materials from the following books

- Physical Chemistry for Life Sciences, by PW Atkins and JD Paula, Oxford, 2006
- Physical Biochemistry by David Sheehan, 2nd Ed, Wiley, 2009

Barton's Pendulum

Nuclear spins

- Protons and neutrons are made of quarks which have spin and charge like electrons.
- This impart spin to protons and neutrons
- They are half-spin particles
- Depending on the composition of the nucleus it may or may not have net spin

E.g.
$${}^{1}H$$
 nucleus = 1 proton : spin = 1/2 ${}^{2}H$ nucleus = 1 proton + 1 neutron : spin = 1 or 0

Nuclear magnetic moment

Non-zero nuclear "spin" provides a "quantum magnetic moment" to the atomic nucleus.

$$\mu = \gamma I$$

 $\mu =$ magnetic moment of the nucleus

 γ = magnetogyric or gyromagnetic ratio unique to a nucleus

I = spin angular momentum of the nucleus

The spin angular momentum of the nucleus is quantized

The spin angular momentum of the nucleus can be written as

$$I=m_l\hbar$$

Where m_l = spin quantum number

In NMR spectroscopy, I is often expressed as just characteristic nuclear spin which results from pairing of the spins of protons and neutrons present in the nucleus.

I values for different nuclear compositions

C	Number of protons	Number of neutrons	I
	Even Odd Even Odd	Even Odd Odd Even	0 Integer (1, 2, 3,) Half-integer ($\frac{1}{2}$, $\frac{3}{2}$, $\frac{5}{2}$,) Half-integer ($\frac{1}{2}$, $\frac{3}{2}$, $\frac{5}{2}$,)

Magnetic properties for nuclei important in biology

Nucleus	Natural abundance/percent	Spin, I	$\gamma_{\rm N}/(10^7~{\rm T}^{-1}~{\rm s}^{-1})$
1H	99.98	1/2	26.752
² H (D)	0.0156	1	4.1067
¹² C	98.99	0	_
¹³ C	1.11	1/2	6.7272
¹⁴ N	99.64	1	1.9328
¹⁶ 0	99.96	0	_
¹⁷ 0	0.037	5/2	-3.627
¹⁹ F	100	1/2	25.177
³¹ P	100	1/2	10.840
³⁵ Cl	75.4	3/2	2.624
³⁷ Cl	24.6	3/2	2.184

T = Tesla, unit of magnetic field

1 T = magnetic field which exert 1 N force on a 1 C charge moving at a speed 1 m/s

$$1 T = \frac{N.s}{C.m} = \frac{kg}{A.s^{-2}}$$

Nuclear spins in external magnetic field

- In external magnetic field, nucleus with finite spin can adopt a 'parallel' or an 'anti-parallel' orientation to the field
- Nucleus undergo precessional motion around the field Larmor Precession
- The frequency of this precession in called Larmor frequency

Spin states for nuclear spin in external magnetic field

No spin (I = 0) no such splitting in external magnetic field

Nuclear energy levels split in two spin states of high and low energies due to coupling with the external magnetic field

$$E = \mu B_0 = m_l \gamma \hbar B_0$$

Low energy state:
$$\alpha$$
 $m_l = -1/2 \implies E_\alpha = -\frac{1}{2}\gamma\hbar B_0$
High energy state: β $m_l = 1/2 \implies E_\beta = \frac{1}{2}\gamma\hbar B_0$

$$m_l = 1/2 \implies E_\beta = \frac{1}{2} \gamma \hbar B_0$$

Difference between the states

$$\Delta E_{\alpha\beta} = \gamma \hbar B_0$$

Nuclear Magnetic Resonance

With no external magnetic field...

The nuclear magnets are randomly oriented.

In a magnetic field...

$$\Delta E_{\alpha\beta} \approx 0$$
 if $B_0 = 0$

$$\Delta E_{\alpha\beta} = \gamma \hbar B_0 \quad \text{if } B_0 \neq 0$$

The nuclear magnets are oriented with or against B_0 .

- Immediately after, population in the states are related as: $N_{\beta} < N_{\alpha}$
- If the sample is exposed to radiation of frequency ν , the energy separations come into resonance with the radiation when the frequency satisfies the resonance condition:

$$h\nu = \gamma \hbar B_0 \implies \nu = \frac{\gamma B_0}{2\pi}$$

- At resonance there is strong coupling between the nuclear spins and the radiation, and strong absorption occurs as the spins flip from α (low energy) to β (high energy).
- We refer to these transitions as nuclear magnetic resonance (NMR) transitions.

Selection rule for NMR: $\Delta m_l = \pm 1$

NMR transitions absorb radiowaves!

NMR transition frequencies for important nuclei

Table 3.6. Magnetic properties of some nuclei important in biochemistry

Nucleus	Ι	Natural abundance (%)	$\gamma \text{ rad} \cdot \text{s}^{-1}$ T^{-1}	NMR ν at $T = 2.3488 (MHz)$
1 H	1/2	99.98	26.752	100
^{2}H	1/2	0.015	4.107	15.35
12 C	0	98.9	_	
13 C	1/2	1.10	6.7283	25.144
^{14}N	1	99.63	1.9338	7.224
^{16}O	0	99.76	_	
32 S	0	95.02	_	
$^{31}\mathbf{P}$	1/2	100	10.8394	40.481
³⁵ C1	3/2	75.77	2.642	9.798
¹⁵ N	1/2	0.37	-2.7126	10.133