ГУАП КАФЕДРА №43

ОТЧЁТ ЗАЩИЩЕН С ОЦЕНКОЙ		
ПРЕПОДАВАТЕЛЬ		
<u>к.т.н, доц</u>		А.В. Туманова
должность, уч. степень, звание	подпись, дата	инициалы, фамилия
ОТЧЁТ О	ЛАБОРАТОРНОЙ РАБОТЕ	. № 1
вычисление м.	АТЕМАТИЧЕСКИХ В	ЫРАЖЕНИЙ
по дисциплине	е: ОСНОВЫ ПРОГРАММИРОВ	АНИЯ
РАБОТУ ВЫПОЛНИЛ		
СТУДЕНТ ГР. <u>Z7431</u>		<u>М.Д.Семочкин</u> инициалы, фамилия

Санкт-Петербург 2018

1. Цель работы

Целью работы является вычисление сложных математических выражений, а также отладка программы для поиска ошибок.

2. Задание

Согласно варианту №14, Написать программу для расчёта двух выражений:

$$z_1 = \frac{\cos\alpha + \sin\alpha}{\cos\alpha - \sin\alpha}$$
$$z_2 = \operatorname{tg}2\alpha + \sec2\alpha$$

Предварительно подготовить тестовые примеры по второй формуле с помощью калькулятора (результат вычисления по первой формуле должен совпадать со второй). Значение параметров тригонометрических функций должны задаваться пользователем в градусах.

3. Описание созданных функций

Для реализации задания нам потребуются следующие функции:

Имя: degToRad

Назначение: перевести введенное пользователем значение а из градусов в радианы

Входные данные:

• angleInDegrees – угол в градусах

Выходные данные:

• вычисленное значение угла в радианах, соответствующего углу angleInDegrees в градусах

Побочный эффект: отсутствует.

Тестовые данные:

angleInDegrees	результат
35	0.61086
10	0.17453

Прототип: double degToRad(const double angleInDegrees)

Алгоритм:

• псевдокод

вернуть angleInDegrees × π / 180

• блок-схема

Имя: sec

Назначение: вычислить значение секанса

Входные данные:

• angle – угол в радианах

Выходные данные:

• вычисленное значение секанса для данного угла

Побочный эффект: отсутствует.

Тестовые данные:

angle	результат
0.6	1.21162
0.17	1.01462

Прототип: double sec(const double val)

Алгоритм:

• псевдокод

вернуть 1 / cos(angle)

• блок-схема

Имя: calcZ1

Назначение: вычислить z1

Входные данные:

• а – угол в радианах

Выходные данные:

• вычисленное значение выражения

Побочный эффект: отсутствует.

Тестовые данные:

a	результат
35	5.67128
10	1.42815

Прототип: double calcZ1(const double a)

Алгоритм:

• псевдокод

вернуть (cos(a) + sin(a)) / (cos(a) - sin(a))

• блок-схема

Имя: calcZ2

Назначение: вычислить z2

Входные данные:

• а – угол в радианах

Выходные данные:

• вычисленное значение выражения

Побочный эффект: отсутствует.

Тестовые данные:

a	результат
35	5.67128
10	1.42815

Прототип: double calcZ2(const double a)

Алгоритм:

• псевдокод

вернуть tan(2 * a) + sec(2 * a)

• блок-схема

4. Листинг программы

```
#include <iostream>
#include <math.h>
using namespace std;
const double PI =3.141592653589793238462;
double degToRad(const double angleInDegrees) {
    return angleInDegrees * PI / 180;
}
double sec(const double angle) {
  return 1 / cos(angle);
}
double calcZ1(const double a) {
    return (\cos(a) + \sin(a)) / (\cos(a) - \sin(a));
}
double calcZ2(const double a) {
    return tan(2 * a) + sec(2 * a);
}
int main() {
    double a, aInRadians;
    setlocale(LC_ALL, "russian");
    cout << "Введите значение 'a' в градусах: ";
    cin >> a;
    aInRadians = degToRad(a);
    cout << "z1 = " << calcZ1(aInRadians) << endl;</pre>
    cout << "z2 = " << calcZ2(aInRadians) << endl;</pre>
    return 0;
}
```

5. Пример выполнения программы

Ниже показан пример выполнения программы.

```
[MacBook-Pro-Mikhail:lab-1 ms$ make lab-1

c++ lab-1.cpp -o lab-1

[MacBook-Pro-Mikhail:lab-1 ms$ ./lab-1

Введите значение 'a' в градусах: 35

z1 = 5.67128

z2 = 5.67128

MacBook-Pro-Mikhail:lab-1 ms$
```

Видно, что результаты расчётов совпадают с тестовыми данными.

6. Анализ результатов и выводы

К достоинствам программы можно отнести:

- Программа выполняет поставленную задачу и работает без ошибок (для корректных тестовых данных).
- Каждое задание реализовано в виде отдельной функции, что позволяет эти функции в других проектах.

Из недостатков можно отметить:

• Не производится проверка входных данных.