F19T1A3

Beweise folgende Aussagen:

a) Es sei $x_0 \in]-\pi,\pi[$ und $\varphi:I_{\max}\to\mathbb{R}$ die maximale Lösung des Anfangswertproblems

$$x' = 1 + \cos(x),$$
 $x(0) = x_0.$

Dann ist φ auf ganz \mathbb{R} definiert (also $I_{\max} = \mathbb{R}$) und $\varphi(t) \in]-\pi,\pi[$ für alle $t \in \mathbb{R}$

b) Es sei $f: \mathbb{R} \to \mathbb{R}$ lokal Lipschitz-stetig. Dann ist jede nicht-konstante Lösung der autonomen Differentialgleichung x' = f(x) streng monoton.

Zu a):

Wir schreiben die Differentialgleichung als x' = g(x) mit $\begin{array}{ccc} g: & \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & 1 + \cos(x) \end{array}$

Die Funktion g ist dabei offensichtlich in $C^1(\mathbb{R})$ und das gegebene Anfangswertproblem hat eine eindeutige maximale Lösung $\varphi: I_{\text{max}} \to \mathbb{R}$. Dies gilt insbesondere auch für beliebige Anfangswerte $x_0 \in \mathbb{R}$. Wegen $|g(x)| \leq 2$ für alle $x \in \mathbb{R}$ ist die rechte Seite linear beschränkt und es gilt $I_{\text{max}} = \mathbb{R}$.

Weil $\pm \pi$ zwei Nullstellen von g sind, sind die konstanten Funktionen

$$\mu_1: \mathbb{R} \to \mathbb{R} \quad \text{und} \quad \mu_2: \mathbb{R} \to \mathbb{R} \quad t \mapsto \pi$$

die eindeutigen (s.o.) Lösungen der Anfangswertprobleme

$$x' = g(x), \qquad x(0) = \pm \pi.$$

Weil die Graphen maximaler Lösungen zu gegebener Differentialgleichung entweder disjunkt oder identisch sind, folgt aus $x_0 \neq \pm \pi$ die Inklusion $\varphi(\mathbb{R}) \subseteq \mathbb{R} \setminus \{\pm \pi\}$. Weil das Bild der zusammenhängenden Menge \mathbb{R} unter der stetigen Funktion φ wieder zusammenhängend ist, folgt aus $\varphi(0) = x_0 \in]-\pi, \pi[$ auch $\varphi(t) \in]-\pi, \pi[$ für alle $t \in \mathbb{R}$.

Zu b):

Sei I ein Intervall und $\varphi: I \to \mathbb{R}$ eine nicht-konstante Lösung der Differentialgleichung x' = f(x). Weil f lokal Lipschitz-stetig (und \mathbb{R} ein Gebiet) ist, folgt die Existenz einer eindeutigen maximalen Lösung $\mu_{(\tau,\xi)}: I_{(\tau,\xi)} \to \mathbb{R}$ zum Anfangswertproblem

$$x' = f(x), \quad x(\tau) = \xi$$

 $mit (\tau, \xi) \in \mathbb{R}^2.$

Gibt es nun ein $t_0 \in I$ mit $\varphi'(t_0) = 0$, so ist auch $0 = \varphi'(t_0) = f(\varphi(t_0))$. Damit ist φ auch eine Lösung des Anfangswertproblems

$$x' = f(x), \quad x(t_0) = \varphi(t_0),$$

genauso wie die konstante Lösung $\lambda:t\mapsto \varphi(t_0)$ für $t\in\mathbb{R}$. Aufgrund der Eindeutigkeitsaussage aus dem globalen Existenz- und Eindeutigkeitssatz ist φ damit Einschränkung von λ und insbesondere konstant. Im Widerspruch zu unserer Annahme.

Damit ist $\varphi'(\mathbb{R}) \subseteq \mathbb{R} \setminus \{0\}$ und weil φ' stetig und daher $\varphi'(\mathbb{R})$ zusammenhängend ist, gilt: $\varphi'(t) > 0$ für alle $t \in I$ oder $\varphi'(t) < 0$ für alle $t \in \mathbb{R}$. Also ist φ in jedem Falle streng monoton.