Chapter 5: Diffusion

- Outline
- Introduction
- Diffusion mechanisms
- ☐ Steady-state diffusion
- Nonsteady-state diffusion
- ☐ Factors that influence diffusion

Introduction Diffusion: the phenomenon of material transport by atomic motion Interdiffusion: In an alloy, atoms tend to migrate from regions of high concentration. Initially Adapted from Figs. 5.1 and 5.2. Callister 6e. Adapted from Figs. 5.2 Callister 6e. Concentration Profiles

Diffusion phenomenon (2)

• Self-diffusion: In an elemental solid, atoms also migrate.

Label some atoms

After some time

Diffusion mechanisms

- Vacancy diffusion
- ☐ Interstitial diffusion
 - small atoms

Interstitial is more rapid than vacancy diffusion®

Processing using diffusion

☐ Case Hardening:

- --Diffuse carbon atoms into the host iron atoms at the surface.
- --Example of interstitial diffusion is a case hardened gear.

The presence of C atoms makes iron (steel) harder.

Steady-state diffusion

□ Diffusion flux

$$J = \text{Flux} = \frac{\text{moles (or mass) diffusing}}{(\text{surface area})(\text{time})} = \frac{\text{mol}}{\text{cm}^2 \text{s}} \text{ or } \frac{\text{kg}}{\text{m}^2 \text{s}} \qquad J = \frac{M}{At}$$

- ☐ Steady-state diffusion: the diffusion does not change with time
- Concentration profile

Flux vs concentration profile

Concentration profile, C: [kg/m³]

Fick's FirstLaw:

flux in x-dir.0

[kg/m²-s]

The steeper the concentration profile, the greater the flux!

Steady-state diffusion (continue)

- ☐ Concentration gradient=dC/dx
- ☐ Linear concentration gradient

Examples (steady state)

- Steel plate at 700°C with geometry shown:
- Q: How much carbon transfers from the rich to the deficient side?

$$J = -D\frac{C_2 - C_1}{x_2 - x_1} = 2.4 \times 10^{-9} \frac{kg}{m^2 s}$$

Nonsteady-state diffusion

- ☐ Fick's second law
 - C changes with time

Concentration, C, in the box

To conserve matter:

$$\frac{J(\text{right})^{-}J(\text{left})}{dx} = -\frac{dC}{dt}$$

$$J = -D\frac{dC}{dx} \quad o$$

$$\frac{dJ}{dx} = -\frac{dC}{dt}$$

$$\frac{dJ}{dx} = -D\frac{d^{2}C}{dx^{2}}$$

• Governing Eqn.: $\Rightarrow \frac{dC}{dt} = D \frac{d^2C}{dx^2}$

Non-steady state diffusion

- □ The concentration of diffucing species is a function of both time and position C = C(x, t)
- ☐ In this case Fick's Second Law is used

Fick's Second Law

$$\frac{\partial \mathbf{C}}{\partial t} = D \frac{\partial^2 \mathbf{C}}{\partial x^2}$$

Non-steady state diffusion □ Copper diffuses into a bar of aluminum. C_S of Cu atoms pre-existing conc., C_o of copper atoms t3 > t2 > t1 > 0 C(x,t)Co Position, x at t = 0, $C = C_o$ for $0 \le x \le \infty$

Surface conc.,

B.C.

Solution $\frac{C(\mathbf{x},\mathbf{t}) - C_o}{C_s - C_o} = 1 - \operatorname{erf}\left($ $C(x, \mathbb{Z}) = \text{Conc. at point } x \text{ at}$ time t $t_3 > t_2 > t_1$ erf(z) = error functionC(x,t) $=\frac{2}{\sqrt{\pi}}\int_0^z e^{-y^2}dy$ Coerf(z) values are given in Distance Table 5.1

at t > 0, $C = C_S$ for x = 0 (const. surf. conc.)

 $C = C_o$ for $x = \infty$

Nonsteady-state diffusion

Table 5.1 Tabulation of Error Function Values

z	erf(z)	2	erf(z)	2	erf(z)
0	0	0.55	0.5633	1.3	0.9340
0.025	0.0282	0.60	0.6039	1.4	0.9523
0.05	0.0564	0.65	0.6420	1.5	0.9661
0.10	0.1125	0.70	0.6778	1.6	0.9763
0.15	0.1680	0.75	0.7112	1.7	0.9838
0.20	0.2227	0.80	0.7421	1.8	0.9891
0.25	0.2763	0.85	0.7707	1.9	0.9928
0.30	0.3286	0.90	0.7970	2.0	0.9953
0.35	0.3794	0.95	0.8209	2.2	0.9981
0.40	0.4284	1.0	0.8427	2.4	0.9993
0.45	0.4755	1.1	0.8802	2.6	0.9998
0.50	0.5205	1.2	0.9103	2.8	0.9999

Examples (non-steady state)

- □ Sample Problem: An FCC iron-carbon alloy initially containing 0.20 wt% C is carburized at an elevated temperature and in an atmosphere that gives a surface carbon concentration constant at 1.0 wt%. If after 49.5 h the concentration of carbon is 0.35 wt% at a position 4.0 mm below the surface, determine the temperature at which the treatment was carried out.
- □ Solution: use Eqn. 5.5

$$\frac{C(x,t) - C_o}{C_s - C_o} = 1 - \operatorname{erf}\left(\frac{x}{2\sqrt{Dt}}\right)$$

Solution (cont.)

$$\frac{C(x,t) - C_o}{C_s - C_o} = 1 - \text{erf}\left(\frac{x}{2\sqrt{Dt}}\right)$$

- t = 49.5 h
- $x = 4 \times 10-3 \text{ m}$
- Cx = 0.35 wt%
- Cs = 1.0 wt%
- Co = 0.20 wt%

$$\frac{C(x,t) - C_O}{C_S - C_O} = \frac{0.35 - 0.20}{1.0 - 0.20} = 1 - \operatorname{erf}\left(\frac{x}{2\sqrt{Dt}}\right) = 1 - \operatorname{erf}(z)$$

$$\therefore$$
 erf(z) = 0.8125

Solution (cont.)

We must now determine from Table 5.1 the value of z for which the error function is 0.8125. An interpolation is necessary as follows

$$\frac{\mathbf{z} - 0.90}{0.95 - 0.90} = \frac{0.8125 - 0.7970}{0.8209 - 0.7970}$$

z = 0.93

Now solve for D

$$z = \frac{x}{2\sqrt{Dt}} \implies D = \frac{x^2}{4z^2t}$$

$$\therefore D = \left(\frac{x^2}{4z^2t}\right) = \frac{(4 \times 10^{-3} \text{m})^2}{(4)(0.93)^2 (49.5 \text{ h})} \frac{1 \text{h}}{3600 \text{ s}} = 2.6 \times 10^{-11} \text{ m}^2/\text{s}$$

Factors that influence diffusion

□ Diffusing species

Table 5.2 A Tabulation of Diffusion Data

Diffusing	Host		Activation Energy Qd		Calculated Values	
Species	Metal	$D_0(m^2/s)$	kJ/mol	eV/atom	T(°C)	$D(m^2/s)$
Fe	α-Fe (BCC)	2.8×10^{-4}	251	2.60	500 900	3.0×10^{-2} 1.8×10^{-15}
Fe	γ-Fe (FCC)	5.0×10^{-5}	284	2.94	900 1100	1.1×10^{-17} 7.8×10^{-16}
C	α-Fe	6.2×10^{-7}	80	0.83	500 900	2.4×10^{-12} 1.7×10^{-18}
\mathbf{c}	γ-Fe	2.3×10^{-5}	148	1.53	900 1100	5.9 × 10 ⁻¹² 5.3 × 10 ⁻¹¹
Cu	Cu	7.8×10^{-5}	211	2.19	500	4.2×10^{-8}
Zn	Cu	2.4×10^{-5}	189	1.96	500	4.0×10^{-1}
Al	Al	2.3×10^{-4}	144	1.49	500	4.2×10^{-14}
Cu	Al	6.5×10^{-5}	136	1.41	500	4.1×10^{-14}
Mg	Al	1.2×10^{-4}	131	1.35	500	1.9×10^{-8}
Cu	Ni	2.7×10^{-5}	256	2.65	500	1.3 × 10 ⁻²

Source: E. A. Brandes and G. B. Brook (Editors), Smithells Metals Reference Book, 7th edition, Butterworth-

Diffusion and temperature

 \square Diffusion coefficient increases with increasing T

$$D = D_o \exp\left(-\frac{Q_d}{RT}\right)$$

 $D = \text{diffusion coefficient } [\text{m}^2/\text{s}]$

 $D_o = \text{pre-exponential } [\text{m}^2/\text{s}]$

 Q_d = activation energy [J/mol or eV/atom]

R = gas constant [8.314 J/mol-K]

T = absolute temperature [K]

Diffusion and temperature

\square D has exponential dependence on T

Example: At 300°C the diffusion coefficient and activation energy for Cu in Si are

$$D(300^{\circ}C) = 7.8 \times 10^{-11} \text{ m}^2/\text{s}$$

 $Q_d = 41.5 \text{ kJ/mol}$

What is the diffusion coefficient at 350°C?

$$\ln \frac{D_2}{D_2} = \ln D_0 - \frac{Q_d}{R} \left(\frac{1}{T_2}\right) \quad \text{and} \quad \ln \frac{D_1}{D_1} = \ln D_0 - \frac{Q_d}{R} \left(\frac{1}{T_1}\right)$$

Example (cont.)

$$\boxed{\frac{D_2}{P_2} = \frac{D_1}{P_2} \exp \left[-\frac{Q_d}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) \right]}$$

$$T_1 = 273 + 300 = 573 K$$

$$T_2 = 273 + 350 = 623 \text{ K}$$

$$\frac{D_2}{D_2} = (7.8 \times 10^{-11} \,\text{m}^2/\text{s}) \exp \left[\frac{-41,500 \,\text{J/mol}}{8.314 \,\text{J/mol} \cdot \text{K}} \left(\frac{1}{623 \,\text{K}} - \frac{1}{573 \,\text{K}} \right) \right]$$

$$D_2 = 15.7 \times 10^{-11} \,\text{m}^2/\text{s}$$

Summary

Diffusion FASTER for...

- open crystal structures
- materials w/secondary bonding
- smaller diffusing atoms
- lower density materials

Diffusion SLOWER for...

- close-packed structures
- materials w/covalent bonding
- larger diffusing atoms
- higher density materials