Shifts between two periodic time series

1st Piotr Marian Zelewski Dundas, Ontario, Canada pzelewski@cogeco.ca 2nd Valery P Voevudsky Toronto, Ontario, Canada v.voevudsky@gmail.com

Abstract—This paper presents results on the discrete mathematics of time delay (a.k.a. cross-correlation) [4][7] between two time series f, q indexed by a discrete ordered set $\{0, 1, \dots, m-1\}$ 1 = [0, m), with the time delay modeled by circular permutations of [0,m). Vectors f,g can represent measurements of a quantity (i.e. price) changes at two distinct points x, y in the phase space, in which case interpolating the lagging signal at x by shifting the leading signal from y or even measuring the change in the lead/lag relationship is of interest. Let Z/mZ denotes the cyclic group of order m with generator σ acting freely and transitively on [0, m) by the 'circular shift' $\sigma(t) = t + 1 \mod m$ identyfying Z/mZ with [0,m) by $\sigma^t \to \sigma^t(0) = t \in [0,m)$. We equip [0, m) with a Z/mZ invariant measure giving each of its elements the equal weight. The vector space of complex valued vectors Map([0,m),C) has left action $f \rightarrow f^s$ of $\mathbb{Z}/m\mathbb{Z}$ given by the circular permutation of f given by the equation $f_i^s = f_{i+s \mod m}$. This action preserves the hermitian product $< f,g> = \sum_{t \in [0,m)} f(t) \overline{g}(t)$ and the corresponding norm ||. Given a pair $g(t), f(t) \in Map([0, m), C)$ we define the energy function $d(f,g)(s) = |g - f^s|^2$ and the crosscorrelation function [4] $\psi(f,g)(s) = Re < g, f^s >$. We define $S(f,g) = \arg\max_{t \in Z/mZ} (\psi) \subset Z/mZ$. Since $\arg\min_{t \in Z/mZ} (d(t)) = \max_{t \in Z/mZ} (d(t))$ $\arg\max_{t\in Z/mZ}(\psi(t))$, hence $s\in\mathbf{S}(f,g)$ is the circular transformation of [0,m) for which f is the best approximation to g^s in ||-norm. In section 1 we establish basic results for how perturbations of f, g affect S(f, g). In Section 2 we write out an equation relating $\psi(f^*,g^*)$ to $\psi(f,g)$ where f^*,g^* denote restrictions of f, g to a sub-interval $[0, m') \subset [0, m)$ for m' < m. In section 3 we derive the well know equation $\psi(f,g) = f * g^{\tau}$ where * denotes the convolution on Map([0, m), C) (induced by addition in [0,m)) and τ the involution on Map([0,m),C)induced by the minus operator on [0, m). Using this, we show that the associativity and commutativity of the convolution operator [6] implies, for generic, nonnegative f, g, that S(f, g) stays unchanged when the mesh [0, m) gets refined to [0, ml) by adding an equal number l of points between each consecutive pair $\{k, k+1\}$ and $q, f \in Map([0, m), C)$ are extended to [0, ml) using the customary 'as of the last available measurement' rule. We also re-proof the well known fact [5] that DFT O(mlog(m))-computes S(f,g). The last section summarizes the case when f^*,g^* are sampled from f, g that are l-periodic, nonnegative and containing sufficiently many fundamental *l*-periods \hat{f}, \hat{g} . This occurs when f^*, g^* approximate signals emitted by a high frequency cyclical process. We show that $S(\hat{f}, \hat{g}) = \{0\}$ implies $\{0\} \subset S(f^*, g^*)$ while $\mathbf{S}(\hat{f},\hat{g})=\{p\}$ with $p\neq 0$ implies $\mathbf{S}(f^*,g^*)\cap\{p,p-l\}\neq\emptyset$. Thus, asymptotically, none of these expressions contain the size m of the of data windows as dependency.

Index Terms—time series, cross-correlation, time delay, convolution, FFT, DFT, best fit

I. BEST FIT AND CROSS-CORRELATION

A. Definitions

Let $T_m = Z/mZ$ denotes the cyclic group of order m with generator σ acting freely and transitively on $[0,m)=\{0,1,\ldots,m-1\}$ by the 'circular shift' $\sigma(t)=t+1 \mod m$ identyfying T_m with [0,m) by $\sigma^t \to \sigma^t(0)=t \in [0,m)$. Let $\mathbb{C}([0,m))$ denote the vector space of functions on [0,m) with values in the field of complex numbers \mathbb{C} . Clearly, any $f\in \mathbb{C}([0,m))$ is a complex m-dimensional vector (f_0,f_1,\ldots,f_{m-1}) . We equip [0,m) with a T_m invariant measure giving each of its elements the equal weight. Then $\mathbb{C}([0,m))$ has left action $f\to f^s$ of T_m given by the circular permutations of $f\colon f_i^s=f_{i+s\mod m}$. This action preserves the hermitian product $(f,g)=\sum_{t\in [0,m)}f(t)\overline{g(t)}$ and the corresponding norm ||.

Let τ denotes the involution of [0,m) given by $t \to m-t$. Since $m-t=-t \mod m$ we can equivalently define τ as $\tau(t)=-t$ on the abelian group T_m . Then T_m and Z/2Z act on $\mathbb{C}([0,m))$ via $\sigma_m^s(f)(t)=f(\sigma_m^{-s}(t))=f(t-s \mod m)$, $\tau(f)(t)=f(-t)$ for $f\in \mathbb{C}(T_m)$. To simplify notation we will denote $\sigma_m^s(f)$ as f^s . We have $\tau(f^s)(t)=f^s(-t)=f(-t-s \mod m)$ and $\tau(f)^s(t)=\tau(f)(t-s)=f(s-t)$ from which we get formulae $\tau(f^s)=\tau(f)^{-s}$. It follows that $\mathbb{C}([0,m))$ is acted in the natural way by the dihedral group D_m [3], which is not used in this paper.

Let $\delta_k \in \mathbb{C}([0,m))$ denotes the Dirac delta function on [0,m) equal to 1 at k and 0 elswehere. Clearly δ_i , $0 \leq i \leq m$ is a basis of $\mathbb{C}([0,m))$ and $\delta_k^s = \delta_{k+s \mod m}$, $\tau(\delta_k) = \delta_{-k} = \delta_{m-k}$. Explicitely, given vector $f = (f_0, f_1, \ldots, f_{m-1}) = \sum f_i \delta_i$, we have: $f^s = (f_{m-s \mod m}, f_{m-s+1 \mod m}, \ldots, f_0, f_1, \ldots, f_{m-s-1}) = \sum f_i \delta_{i+s \mod m}$ and $\tau(f) = (f_0, f_{m-1}, f_{m-2}, \ldots, f_1) = \sum f_i \delta_{m-i \mod m}$.

Given $f,g \in \mathbb{C}([0,m))$ consider the best fit function $d(f,g):T_m \to \mathbb{R}^+$ given by $d(f,g)(t)=||f-g^t||^2$ and the circular cross-correlation function [4],[7] $\psi(f,g)(t)=Re(<f,g^t>)$ where Re(z) denotes the real part of a complex number z. Since $\|\|$ is T_m invariant, it is easy to see, using the expansion $\|f-g^t\|^2=<f-g^t,f-g^t>=||f||^2+||g||^2-2Re(<f,g^t>)$, that the minimums of d() coincide with the maximums of $\psi()$.

Definition 1.1: Define $\mathbf{S}(f,g) = \arg\max_{t \in T_m} (\psi(f,g)(t)) \subset T_m$ and gap(f,g) as the difference separating the maximum value from all other values $\psi(f,g)(t), \ t \in T_m$.

Thus $\mathbf{S}(f,g)$ consists of $s \in T_m$ for which g^t is the best approximation of f in $\| \|$ norm or, equivalently, for which the circular cross-correlation function $\psi(f,g)$ attains maximum. Clearly, for any pair $f, g \in \mathbb{C}(T_m)$, $\emptyset \neq \mathbf{S}(f, g) \subset T_m$.

B. Elementary properties of S(f,g)

Theorem 1.2:

For any $f, g, h \in \mathbb{C}([0, m])$:

- 1) $\mathbf{S}(f, \delta_0)$ (resp. $\mathbf{S}(f, -\delta_0)$ is the set of maximums (resp. minimums) of f
- 2) $S(f, f) = T_m$ if and only if f is a constant function
- 3) for any $c \in \mathbb{C}$: $\mathbf{S}(c, f) = T_m$,
- 4) for any $s,t \in T_m$ we have $\mathbf{S}(f^s,g^t) = \mathbf{S}(f,g)^{t-s} =$ $t-s+\mathbf{S}(f,g) \mod m$
- 5) for any $t \in T_m$ we have $\mathbf{S}(f,g) = \mathbf{S}(f^t,g^t)$
- 6) $\mathbf{S}(g,f) = \tau(\mathbf{S}(f,g)) = m \mathbf{S}(f,g) \mod m =$ $-\mathbf{S}(f,g) \mod m$
- 7) for any $c \in \mathbb{C}$: $\mathbf{S}(g+c,f) = \mathbf{S}(g,f)$
- 8) for $r \in \mathbb{R}, r > 0$: S(rg, f) = S(g, f)
- 9) $\mathbf{S}(-g,f) = \arg\min_{t \in T_m} (\psi(f,g)(t)) \subset T_m$

Proof: We leave this as excercise to the reader.

Given a set S write #S for the cardinality of S. Theorem 1.3:

- Given $f \in \mathbb{C}([0,m))$:
- 1) For any $g \in \mathbb{C}([0,m])$ and for any $\epsilon > 0$ there exist $h_1, h_2 \in \mathbb{C}([0,m))$ with $||h_1||^2, ||h_2||^2 < \epsilon$ such that $\#\mathbf{S}(f+h_1,g+h_2)=1$
- 2) For any $g \in \mathbb{C}([0,m))$ there exists $\epsilon > 0$ so that for any $h \in \mathbb{C}([0,m))$ with $||h||^2 < \epsilon$ we have $\mathbf{S}(f,g+h)$ $\mathbf{S}(f,g)$.
- 3) For any $h, g \in \mathbb{C}([0, m))$ there exists $\epsilon > 0$ so that for any c with $c > \epsilon$ we have $\mathbf{S}(f, cg + h)) \subset \mathbf{S}(f, g)$.

Proof: We leave it as excercise to the reader.

Corollary 1.4:

For any pair $f, g \in \mathbb{R}([0, m))$ and $k \in [0, m)$ there exists $\epsilon_1 > 0$ (respectively, $\epsilon_2 < 0$) so that for any $r_1 > \epsilon_1$ (resp. $r_2 < \epsilon_2$) for each $s \in \mathbf{S}(f, g + r_1 \delta_k)$, s + k is a maximum (resp. for each $s \in \mathbf{S}(f, g + r_2 \delta_k)$, s + k is a minimum) of f.

Proof: We leave it as excercise to the reader.

Thus, if f is a generic function and g is 'sufficiently spiked' up (resp. down) at k then S(f,g) is contained in the set of shifts from k to $\arg\max_{t\in T_m}(f)$ (resp. $\arg\min_{t\in T_m}(f))$.

Definition 1.5: A pair $f,g \in \mathbb{C}([0,m])$ is ψ -stable if $\#\mathbf{S}(f,q) = 1.$

With $||h||^2$ interpreted as the total energy of h item 1) in the theorem above asserts that a generic pair f, g, is ψ -stable. Further, from 2), if f, g, is ψ -stable then it remains such, with unchanged S(f, g) after perturbations of either argument by a function h of sufficeintly small energy. Thus, ψ -stable pairs form an open dense subset of $\mathbb{C}([0,m))\times\mathbb{C}([0,m))$. The third assertion of the theorem gives a prescription for increasing the energy of g so that the ψ - stability is preserved for an arbitrary h.

Definition 1.6: A pair $f, g \in \mathbb{C}([0, m))$ is ψ -positive if for $s \in \mathbf{S}(f, g): 0 < \psi(f, g)(s).$

It follows that, for any pair $f,g\in\mathbb{C}([0,m))$ with $f\neq 0$ there exists constant C > 0 such that f + c, g + c is ψ -positive for c > C. Both notions will be needed in Sections III.B and IV.B.

C. Monotonicity

For the reminder of this section we will restrict to the subset $\mathbb{R}([0,m)) \subset \mathbb{C}([0,m))$ of real valued functions on [0,m)and write $\mathbb{R}([0,m))^+$, $\mathbb{R}([0,m))^{++}$ (respectively $\mathbb{R}([0,m))^-$, $\mathbb{R}([0,m))^{--}$) for the subset of real valued, non-decreasing, strictly increasing (respectively, non increasing, strictly decreasing) functions.

Theorem 1.7:

- 1) If $f, g \in \mathbb{R}([0, m))^{++}$ or $f, g \in \mathbb{R}([0, m))^{--}$ then $\mathbf{S} =$
- 2) If $f \in \mathbb{R}([0,m))^{++}$ and $g \in \mathbb{R}([0,m))^{--}$ then $0 \notin \mathbf{S}$.

Proof: For (1), denote $f = (f_0, f_1, ..., f_{m-1}), g =$ $(g_0, g_1, \ldots, g_{m-1})$. We will consider the case $f_i < f_{i+1}, g_i < g_{m-1}$ g_{i+1} . Using induction on m we will show that the crosscorrelation function $\psi(s) = \langle f, s(g) \rangle$ has a maximum at s = 0. From Theorem 1 (6), we loose no generality by setting $f_0 = 0$. First consider the case m = 2. Then $\langle f, g \rangle = f_1 g_1 \langle f_1 g_0 = \langle f, 1(g) \rangle$. Recall that 1(g)denotes the circular 1-shift of g. Our inductive hypothesis is that the theorem holds for m = n. For m = n + 1, if s = 1 then, since for i > 0 we have $f_i g_{i-1} < f_i g_i$ hence $\langle f, 1(g) \rangle = f_1 g_0 + \ldots + f_n g_{n-1} \langle f_1 g_1 + \ldots f_n g_n \rangle = \langle f_1 g_1 + \ldots f_n g_n \rangle$ f,g >. For s = k, $1 < k \le n$ we have $\langle f,k(g) \rangle =$ $f_1g_{n-k+2} + \ldots + f_{k-1}g_n + f_kg_0 + \ldots + f_ng_{n-k} < f_1g_0 + \ldots$ $\dots + f_{n-k+1}g_{n-k} + f_{n-k+2}g_{n-k+2} + \dots + f_ng_n < f_1g_1 + \dots + f_ng_n < f_ng_1g_1 + \dots + f_ng_n < f_ng_n < f_ng_1g_1 + \dots + f_ng_n < f_n$ $\dots + f_{n-k+1}g_{n-k+1} + f_{n-k+2}g_{n-k+2} + \dots + f_ng_n = \langle f, g \rangle$ where the first inequality is the inductive hypothesis and the second follows from $f_i g_{i-1} < f_i g_i$.

For (2), we lose no generality by assuming that $f_0 = 0, f_i <$ f_{i+1} and $g_i > g_{i+1}$ in which case we have $\langle f, 1(g) \rangle =$ $f_1g_0 + \ldots + f_{m-1}g_{m-2} > f_1g_1 + \ldots + f_{m-1}g_{m-1} = \langle f, g \rangle.$

Closer examination of this proof shows that the theorem holds under weaker assumption that $f \in \mathbb{R}([0,m))^+$, f is not constant and g is strictly monotonic. We leave this as an excercise to the reader.

Together, both theorems give a rule of thumb for computing $\mathbf{S}(f,g)$ when m=2.

Corollary 1.8:

If m=2 then:

- 1) $\mathbf{S} = \{0, 1\}$ iff at least one of f, g is a constant
- 2) $S = \{0\}$ iff f, g are both strictly monotonic in the same
- 3) $S = \{1\}$ iff f, g are both strictly monotonic in opposite directions

Suppose that for a function $f \in \mathbb{R}([0,m))$ there exists $t \in$ T_m for which f^t is monotonic. We could call such functions 'shift-monotonic'. Notice that if f is shift-monotonic then, unless it is a constant function, it is either shift-decreasing or shift-increasing and the t for which f^t is monotonic is unique. We notice that the theorem above has a natural reformulation for a shift monotonic pair f,g, since knowing $\mathbf{S}(f^t,g^{t'})$ (with $f^t,g^{t'}$ monotonic) determines $\mathbf{S}(f,g)$, via identity given by 1.2.4 . For m=3 we have the following.

Lemma 1.9: Any $f \in \mathbb{R}([0,3))$ is shift-monotonic.

Proof: We leave ithis as excercise to the reader.

Thus, to compute $\mathbf{S}(f,g)$ for m=3, one can assume that f is monotonic and g is shift-monotonic, in which case one can write down a set of rules similar to Corollary 1.6. We leave details to the reader.

II. SAMPLING EQUATION

In this section we write out an equation relating $\psi(f^*, g^*)$ to $\psi(f, g)$ where f^*, g^* denote restrictions of f, g to a sub-interval $[0, m') \subset [0, m)$ for m' < m.

Definition 2.1:

Given $a,b \in [0,m)$ let $\sigma_{a,b} \in T_m$ denotes the unique circular permutation for which $\sigma(a) = b$. Let $T_{a,b} = \{0,1,\ldots,\sigma_{a,b}\} \subset T_m$. Denote $[a,b] = a + T_{a,b} = \cup_{t \in T_{a,b}} a^t$, $[a,b) = [a,b] - \{b\}$, $(a,b] = [a,b] - \{a\}$. Then $[a,b] \subset [0,m)$ will be called closed interval (from a to b).

With this definition, an interval is always an ordered, proper and, if closed, a nonempty subset of [0, m). Moreover:

1) For
$$s \in T_m$$
: $[a,b]^s = [a+s,b+s]$
2) $\#[a,b) = \begin{cases} b-a \text{ if } a < b \\ 0 \text{ if } a = b \\ m-\#[b,a) = m+(b-a) \text{ if } a > b \end{cases}$

3)
$$[a, b]^{\tau} = [-b, -a]$$

4)
$$[0,m) - [a,b) = [b,a)$$

If we view [0,m) as the subset $\{\mu_m^0,\mu_m^1,\ldots,\mu_m^{m-1}\}$, with $\mu_m=\exp(2\pi i/m)$, of the unit circle, then 4) reflects that a pair of points $a,b\in[0,m)$ determines two intervals [a,b), [b,a) realized by the two complementary arcs of the circle with clock-wise orientation.

Given $f \in \mathbb{C}([0,m))$ and an interval $i = [a,b) \subset [0,m)$ define $i^*(f)$ to be the restriction of $f \in \mathbb{C}([0,m))$ to the interval [b,a) = [0,m) - [a,b) and set r = #[a,b). To simplify the notation we will write $i^*(f)$ as f^* .

Theorem 2.2:

For $s \in T_{b,a}$ and $f,g \in \mathbb{C}([0,m))$ we have:

$$(f^*)^s = (\delta_{[b,a-s)}g)^s)^* + (\delta_{[a-s,a)}g)^{s+r})^*$$
 (II.1)

$$\psi(f^*, g^*)(s) = \psi(f, \delta_{[b, a-s)}g)(s) + \psi(f, \delta_{[a-s, a)}g)(s+r)$$
(II.2)

Proof.

Since both sides of the first equation are linear with respect to g and $g = \sum_{t=0}^{t=m-1} g_t \delta_t$ hence it suffices to check it on the basis $g_t = \delta_t$, $t \in [0,m)$ of $\mathbb{C}([0,m))$. We leave this as an excercise to the reader. We note that for $t \in [b,a)$ and $g = \delta_t$, the left hand side of the first equation can be interpreted as an equation of motion $\delta_t \to \delta_t^s$ on [b,a) induced by circular permutation s, with the right hand side beeing the

coresponding motion in [0, m). The second equation follows from:

$$< f^*, (g^*)^s > = < f, (\delta_{[b,a-s)}g)^s > + < f, (\delta_{[a-s,a)}g)^{s+r} >$$
 (II.3)

, which is a consequence of the first equation.

The equation II.2 is a starting point for proving Theorem 4.4 [8].

III. APPLICATIONS OF CONVOLUTION

The results in subsections A and C are well known. Since they seem scatterred across the literature [4],[7],[5] we present them here for the convienience of the reader.

A. Convolution and cross-convolution

In this section we present an alternative definition of function $\psi(f,g)$.

Let * denotes the (circular) convolution operator [6] on $\mathbb{C}(T_m)$. It is well known that * is commutative, associative and has the identity δ_0 .

Theorem 3.1:

- $1) \ \overline{f * g} = \overline{f} * \overline{g}$
- $2) f^s = \delta_s * f$
- 3) $\tau(f*g) = \tau(f)*\tau(g)$
- 4) $(f * g)^s = (f^s) * g = f * (g^s)$

Proof: For 3), use: $\tau(f*g)(t) = (f*g)(-t) = \sum_{t'} f_{-t-t'}g_s = \sum_{t'} \tau(f)_{t+t'}\tau(g)_{-t'} = \tau(f)*\tau(g)(t)$. For 4), use $(f*g)^s = \delta_s*(f*g) = (\delta_s*f)*g = (f^s)*g$ and thus $(f*g)^s = (g*f)^s = f*(g^s)$. We leave the details to the reader.

Theorem 3.2:

$$\begin{array}{ll} \psi(f,g) = f * \tau(\overline{g}). \\ Proof: & (f * \tau(\overline{g}))(t) = \sum_{t'} f_{t'} \overline{\tau(g)}_{-t'+t} = \\ \sum_{t'} f_{t'} \overline{g}_{t'-t} = < f, g^t > \\ Corollary \ 3.3: \ \psi(f * f', g * g') = \psi(f, g) * \psi(f', g') \ . \end{array}$$

Proof: We have:
$$(f*f')*\tau(\overline{(g*g')})=(f*f')*(\tau(\overline{g})*\tau(\overline{g'}))=f*\tau(\overline{g})*f'*\tau(\overline{g'})=(f*\tau(\overline{g}))*(f'*\tau(\overline{g'})).$$
 \blacksquare Definition 3.4: For $f,g\in\mathbb{C}(T_m)$ define $f\hat{*}g=f*\tau(\overline{g})$. The operator $\hat{*}$ will be called cross-convolution.

Corollary 3.5:

1)
$$\delta_s \hat{*} f = \tau(\overline{f})^s = \tau(\overline{f^{-s}}) = \tau(\delta_{-s} * \overline{f})$$

2) $(f \hat{*} g)^s = f^s \hat{*} g = f * \tau(\overline{g})^s = f * \tau(\overline{g^{-s}}) = f \hat{*} g^{-s}$

- 3) $(f * f') \hat{*} (g * g') = (f \hat{*} g) * (f' \hat{*} g')$
- 4) $(f \hat{*} f') * (g \hat{*} g') = (f * g) \hat{*} (f' * g')$
- 5) $\psi(f^s, g) = \psi(f, g)^s$, $\psi(f, g^s) = \psi(f, g)^{-s}$, $\psi(f, s^s) = \psi(f, g)$
- 6) $\psi(f * f', g * g') = \psi(f, g) * \psi(f', g')$

Proof: All these identities can be formally computed from the definitions by using associativity, commutativity of * and Theorem 3.2 . We leave the details to the reader.

Definition 3.6: Given $S \subset T_m$, let δ_S denotes the characteristic function of S: $\delta_S(s) = 1$ for $s \in S$ and $\delta_S(t) = 1$ for $t \notin S$.

We can extend the definitions of *, $\hat{*}$ to sets: for $S, S' \subset T_m$ define $S*S' = supp(\delta_S * \delta_S)$, $S\hat{*}S' = supp(\delta_S \hat{*}\delta_S)$ where

$$supp(f) = \{s : f(s) \neq 0\}.$$
 Clearly $S * S' = \bigcup_{s \in S, s' \in S'} \{s + s'\}, S \hat{*} S' = \bigcup_{s \in S, s' \in S'} \{s - s'\}.$

B. Mesh refinements

In this section we prove that for generic, nonnegative f, g, S(f,g) stays essentially unchanged when the mesh [0,m)gets refined to [0, ml) by adding an equal number l of points between each consecutive pair $\{k, k+1\}$ and $g, f \in$ Map([0,m),C) are extended to [0,ml) using the customary 'as of the last available measurement' rule.

Suppose that $m = m_1 m_2$ with $m_1, m_2 > 1$. Then, by means of the canonical injection $[0, m_1) \xrightarrow{1} [0, m)$ given by $i(k) = m_2 k$, [0, m] can be considered as the m_2 -subdivision of $[0, m_1]$. With the identifications from Section I, i is an injective homomorphism of abelian groups $T_{m_1} \subset T_m$ with the subset on the left given by the equation $t = 0 \mod m_2$.

Given $f \in \mathbb{C}([0, m_1))$, consider function $i_*(f) \in \mathbb{C}([0, m))$

$$i_*(f)(t) = \begin{cases} f(t/m_2) \text{ if } t = 0 \mod m_2\\ 0 \text{ otherwise} \end{cases}$$

To simplify notation, we will write f_* for $i_*(f)$. It is easy to see that

$$\psi(f_*, g_*) = \psi(f, g)_* \tag{III.1}$$

Observe that if f is a time series defined on mesh $[0, m_1)$ then f_* can be interpreted as this time series on the refined mesh with gaps (zero data points) for $t \in [0, m_1 m_2), t \neq 0$ mod m_2 , while $f_**\delta_{[0,m_2)}$ as this time series obtained from f_* by filling in the missing values with the 'most recent value' the usual choice for time series of prices with gaps in the data. For example, if f represents quotes of a price on mesh $[0, m_1)$ then $f * \delta_{[0,m_2)}$ represents the prices on the m_2 subdivison $[0, m_1m_2)$ of $[0, m_1)$, where the new intermediate price values are the most recent available prices. Recall Definition 1.4

Theorem 3.7: Supose for $f, g \in \mathbb{C}([0, m_1))$ is ψ -stable (cf. Definitin 1.4: $\#\mathbf{S}(f,g) = 1$). Then $\mathbf{S}(f_* * \delta_{[0,m_2)}, g_* *$ $\delta_{[0,m_2)}$) = $\mathbf{S}(f_*,g_*)$.

Proof: From 3.5.7, $\psi(f_* * \delta_{[0,m_2)}, g_* * \delta_{[0,m_2)}) =$ $\psi(f_*,g_*) * \psi(\delta_{[0,m_2)},\delta_{[0,m_2)}) = \psi(f,g)_* * \phi \text{ where } \phi =$ $\psi(\delta_{[0,m_2)},\delta_{[0,m_2)}).$ It is easy to see that ϕ has support T=

 $T_{m_2} \hat{*} T_{m_2} = \{-m_2 + 1, \ldots, 0, \ldots, m_2 - 1\} \text{ and is given by formulae } \phi(u) = \begin{cases} m_2 - |u| \text{ if } u \in T \\ 0 \text{ otherwise} \end{cases}. \text{ Since } \phi^\tau = \phi \text{ hence }$

we have $\psi(f,g)_* * \phi = \psi(f,g)_* * \phi = \psi(\psi(f,g)_*,\phi)$. Denote $\psi_u = \psi(f,g)(u)$. Any $t \in [0,m)$ can be uniquely written as $t = sm_2 + k$ with $s \in [0, m_1)$ and $k \in [0, m_2)$, and $(\psi(f_*,g_*),\phi)(sm_2+k) = \phi(-k)\psi_s + \phi(m_2-k)\psi_{s+1} =$ $(m_2 - k)\psi_s + k\psi_{s+1}$. The proof is completed using identity:

$$\arg\max_{(s,k)\in[0,m_1)\times[0,m_2)}((m_2-k)\psi_s+k\psi_{s+1}) = \\ (\arg\max_{s\in[0,m_1)}(\psi_s),0) \quad \text{(III.2)}$$

which holds for an arbitrary sequence $\psi_0, \psi_1, \dots, \psi_{m_1-1}$ of real numbers with a unique maximum.

Example 3.8: Consider the example of identity functions $f = g = \delta_{[0,m_1)}$. Then $\psi(f,g) = \delta_{[0,m_1)}, \#\mathbf{S}(f,g) = m_1$, $\mathbf{S}(f_*, g_*) = i([0, m_1))$ and, since $f_* * \delta_{[0, m_2)} = \delta_{[0, m)}$, hence $\mathbf{S}(f_* * \delta_{[0,m_2)}, g_* * \delta_{[0,m_2)}) = [0,m)$. This shows that the assumption $\#\mathbf{S}(f,g) = 1$ in the theorem above is essential.

Definition 3.9: We will say that pair $f,g \in \mathbb{C}([0,m_1))$ is ψ -convex, if it is ψ -stable and ψ -positive (cf. 1.5, 1.6). This is equivalent to : $\mathbf{S}(f, g) = \{s\}$ with $0 < \psi(f, g)(s)$.

For example, any pair f, g representing prices is ψ -convex. Lemma 3.10: Suppose $f, g \in \mathbb{C}([0, m_1))$ are ψ -positive. Then $\mathbf{S}(f_*, g_*) = i(\mathbf{S}(f, g))$. If $f, g \in \mathbb{C}([0, m_1))$ is ψ -stable then so is f_*, g_* .

Proof: Follows from the identity III.1.

Notice that for any pair of functions f, g, with f(t) > 0 and g(t) < 0 for all $t \in [0, m_1)$, the lemma fails and $\mathbf{S}(f_*, g_*) =$ $T_m - i(T_{M_1})$. Thus, the assumption of ψ -positivity is essential.

Putting together the theorem and the lemma gives the following result.

Theorem 3.11: Suppose $f, g \in \mathbb{C}([0, m_1))$ is ψ -convex. Then so is $f_* * \delta_{[0,m_2)}, g_* * \delta_{[0,m_2)} \in \mathbb{C}([0,m))$ and $\mathbf{S}(f_* * \delta_{[0,m_2)})$ $\delta_{[0,m_2)}, g_* * \delta_{[0,m_2)}) = i(S(f,g)).$

It can be shown that both, ψ -positivity and stability, are essencial assumptions. Of course, if f, g represent prices then, by perturbing them with arbitrary small energy functions f', g'if necessary, one has $\#\mathbf{S}(f+f',g+g')=1$ and the theorem applies.

C. Discrete Fourier Transfer and computability

Note that the computation of S(f,g) using the definition given in Section 1 is $O(m^2)$. Corollary 3.13 [4],[5] gives much more efficient method for computation of S(f, g) using the Fast Fourier Transform.

Given $g \in \mathbb{C}(T_m)$, denote $g_i = g(\nu_m^i), G_i = \langle g, \chi_i \rangle$ $G_i^{-1} = \langle g, \chi_{n-i} \rangle$ and $F(g)(i) = G_i, F^{-1}(g)(i) = G_i^{-1}$. Then the operator $F: \mathbb{C}(T_m) \to \mathbb{C}(T_m)$ given by $g \to F(g)$ is the well known Discrete Fourier Transform DFT with inverse $\frac{1}{m}F^{-1}$. For any f,g we have:

- 1) $\tau(\chi_t) = \overline{\chi_t} = \chi_{-t}$
- 2) $F(\tau(f)) = \tau(F(f)) = F^{-1}(f)$
- 3) $\tau(F(\overline{f})) = \overline{F}(f)$ and $\tau(F^{-1}(\overline{f})) = \overline{F^{-1}}(f)$
- 4) $F^{-1}(\tau(f)) = \tau(F^{-1}(f)) = F(f)$
- 5) $F^{-1}(F(f)) = F(F^{-1}(f)) = mf$
- 6) F(fg) = F(f) * F(g) and $F^{-1}(fg) = F^{-1}(f) * F^{-1}(g)$
- 7) F(f * g) = F(f)F(g) and $F^{-1}(f * g) = F^{-1}(f)F^{-1}(g)$
- 8) $F(\delta_t) = \chi_t$

Theorem 3.12:

 $\psi(f,g) = m^{-2} Re(F^{-1}(F(f)\overline{F(g)}))$

 $F^{-1}(F(f)\overline{F}(f)) = F^{-1}((F(f)) * F^{-1}(\overline{F}(f)) = m^2 f *$ $\tau(\overline{g}) = f \hat{*} g$. Theorem 3.2 completes the proof.

The key application is the computability of S(f, q). Corollary 3.13:

 $S(f,g) = \arg\max_{i \in \mathcal{D}}(\hat{\psi}) \text{ where } \hat{\psi} = Re(F^{-1}(F(f)\overline{F(g)})).$ Corollary 3.14:

For $m = 2^n$, S(f, g) is O(mlog(m)) computable.

Proof: It is well known that the Fast Fourier Transform algorithm FFT [2] computing F, F^{-1} is O(mlog(m)). Neither the expression for $\hat{\psi}$ nor search for $\arg\max_{t\in T_m}(\hat{\psi})$ increase the complexity.

IV. PERIODIC SIGNALS

A. Periodic extensions and restrictions

We have seen in Section 1 that for an arbitrary pair $f,g\in\mathbb{C}([0,m))$ the set $\mathbf{S}(f,g)$ is unstable under perturbations of either argument or the restriction to subintervals of T_m . In contrast, when $f,g\in\mathbb{C}([0,m))$ are sampled from a periodic signal with a common period l then Theorem 4.4 (the main result of this section) states that $\mathbf{S}(f,g)$ is quite stable. This subsection defines criterias for a function $f\in\mathbb{C}([0,m))$ to be a restriction of an l-periodic function, setting a context for Theorem 4.4.

For a pair of positive integers m,l denote $[m/l]=floor(m/l)=max\{k\in\mathbb{Z}:0\leq m-kl\}$. Define $\phi:T_m\to T_l$, $\phi(t)=t\mod l$ and the induced homomorphism of $\mathbb C$ vector spaces $\phi^*:\mathbb C(T_l)\to\mathbb C(T_m)$. We have m=[m/l]l+k with $k=m\mod l$.

Definition 4.1: Given a positive integer $l, f \in \mathbb{C}([0,m))$ is an l-periodic extension with [m/l] periods and the reminder $k = \phi(m) = m \mod l$ when there exists $\mathbf{f} \in \mathbb{C}([0,l))$ such that $f = \phi^*(\mathbf{f})$. We will call l an extended period of f.

Let $P_l(m) \subset \mathbb{C}([0,m))$ denotes the set of of l-periodic extensions. Since $P_l(m)$ is closed under pointwise addition and multiplication, hence it is a \mathbb{C}^* -sub-algebra of $\mathbb{C}(T_m)$ [1]. Lemma 4.2: The following are equivalent:

- 1) $f \in \mathbb{C}(T_m)$ is l-periodic extension with [m/l] periods and the reminder k
- 2) f can be extended to l-periodic function on T_{m+l-k}
- 3) restriction of f to any interval $[a, b] \subset T_m, 0 \le a \le b < m$ with #[a, b] divisible by l is l-periodic
- 4) f is a restriction of l-periodic $\mathbf{f} \in \mathbb{C}([0, [m/l] + k))$ to a sub-interval of length m

Proof: We leave this as excercise to the reader.

It follows that if l is the shortest extended period of f, then any extended period l' of f is divisible by l. In addition, if l divides m, then any l-periodic extension $f \in \mathbb{C}(T_m)$ is l-periodic with m/l of l-periods.

Example 4.3: Here is one more equivalent definition of $P_l(m)$. Given a natural number m let $\nu_m = e^{2\pi i/m}$ denote the primitive m'th root of unity. The set of characters $\chi_m^k \in \mathbb{C}(T_m)$, $\chi_m^k(t) = \frac{1}{\sqrt[2]{m}}\nu_m^{tk}$, $0 \le k < m$ is an orthonormal basis of $\mathbb{C}(T_m)$ with respect to the inner product <>, $\mathbb{C}(T_m)$ is a \mathbb{C}^* algebra generated by χ_m^1 . If m=nl then it is well known that $\{\chi_m^{0n},\chi_m^{1n},\ldots\chi_m^{(l-1)n}\}=\{\chi_{ln}^{nk}:k\in[0,l)\}=\{\chi_l^k:k\in[0,l)\}$ is an orthonormal basis over \mathbb{C} of $P_l(m)$. In particular, the element χ_m^n generates $P_l(m)$ as \mathbb{C}^* algebra. For an arbitrary m let m'=nl with $m\le m'$. Let i denotes the natural inclusion $[0,m)\subset[0,m']$. It follows that $P_l(m)$ is generated, as \mathbb{C}^* -algebra, by the element $i^*(\chi_{nl}^1)^n$ and $\{i^*(\chi_{nl}^1)^{nk}:k\in[0,l)\}=\{i^*(\chi_l^1)^k:k\in[0,l)\}$ is a basis (not orthonormal, unless l|m) over \mathbb{C} of $P_l(m)$. Of course, while all

 $\chi^{kn}_{m'}=\chi^k_l$ are characters of $T_{m'}$ (group homomorphisms from $T_{m'}$ to \mathbb{C}^*), none of $i^*(\chi^k_l)$, except for k=0, are characters of T_m , unless l|m.

B. Localization and sampling

In this subsection we will assume that, given $\hat{f}, \hat{g} \in \mathbb{C}(T_l)$, $f_n, g_n \in \mathbb{C}(T_{nl+k})$ are l-periodic extensions containing n fundamental l-periods $\hat{f}, \hat{g} \in \mathbb{C}(T_l)$ with a reminder k. Suppose for each n there is given an interval $[a_n, b_n) \subset T_{nl+k}$ with $\#[a_n, b_n)$ is uniformly bounded by a constant C. Denote $f^* = (1 - \delta_{[a_n, b_n)})f_n$, $g^* = (1 - \delta_{[a_n, b_n)})g_n$. Since $1 - \delta_{[a_n, b_n)} = \delta_{[b_n, a_n)}$, hence f^*, g^* are localizations of f_n, g_n to the interval $[b_n, a_n)$. The following result is a stability theorem for the functor $(\hat{f}, \hat{g}) \to \mathbf{S}(f^*, g^*)$.

Theorem 4.4: Suppose that $\mathbf{S}(f,\hat{g}) = \{s\}$ with $0 < \psi(\hat{f},\hat{g})(s)$ (equivalent to (\hat{f},\hat{g}) being ψ -convex). Then for sufficciently large n:

- 1) If s = 0 then $\{0\} \subset \mathbf{S}(f^*, g^*)$.
- 2) If $s \neq 0$ then $\mathbf{S}(f^*, g^*) \cap \{s, s l\} \neq \emptyset$

Moreover, after an arbitrarily small perturbation of f^*, g^* :

- 1) If s = 0 then $\mathbf{S}(f^*, g^*) = \{0\}.$
- 2) If $s \neq 0$ then $\#(\mathbf{S}(f^*, g^*) \cap \{s, s l\}) = 1$

These formulaes do not contain the size (given by the number of periods n and the reminder k) of data window or the size of intervals $[a_n,b_n)$ as variable. They hold,in fact, with $[a_n,b_n)$ replaced by a union of intervals with sum of cardinalities bounded by C. Authors believe that this indicates a potential for practical applications. The proof of the theorem, while completed using the framework presented here, is too lengthy for this article and can be found in [8].

REFERENCES

- Arveson, W. (1976), An Invitation to C*-Algebra, Springer-Verlag, ISBN 0-387-90176-0
- [2] Brigham, E. Oran (2002). "The Fast Fourier Transform". New York, USA: Prentice-Hall.
- [3] Humphreys, John F. (1996). A Course in Group Theory. Oxford University Press. p. 195. ISBN 9780198534594.
- [4] https://en.wikipedia.org/wiki/Cross-correlation
- [5] Press, William H. and Flannery, Brian P. and Teukolsky, Saul A. and Vetterling, William T., Numerical Recipes in C: The Art of Scientific Computing 1988, 0-521-35465-X, Cambridge University Press, New York, NY, USA. p.433.
- [6] Hewitt, Edwin; Ross, Kenneth A. (1979), Abstract harmonic analysis. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 115 (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-09434-0, MR 0551496
- [7] Weisstein, Eric W. "Cross-Correlation." From MathWorld–A Wolfram Web Resource.
- [8] Zelewski, Piotr and Voevudsky, Valery "Shifts between two periodic time series II", preprint 2018.