Übungsblatt 6 zu Modellkategorien

Aufgabe 1. Morphismen zwischen fasernden Approximationen

Seien X und X' Objekte einer Modellkategorie. Wähle fasernde Approximationen $r: X \to RX$ und $r': X' \to RX'$. Seien f und g Morphismen $X \to X'$. Zeige: Wenn $r' \circ f$ und $r' \circ g$ zueinander rechtshomotop sind, so sind auch die induzierten Morphismen $Rf, Rg: RX \to RX'$ zueinander rechtshomotop.

Aufgabe 2. Ein Kriterium für Identifizierung rechtshomotoper Morphismen

Sei \mathcal{M} eine Modellkategorie und \mathcal{C} eine beliebige Kategorie. Sei $F: \mathcal{M}_c \to \mathcal{C}$ ein Funktor, der azyklische Kofaserungen auf Isomorphismen schickt. Zeige, dass F rechtshomotope Morphismen identifiziert.

Aufgabe 3. Eigenschaften von Scheibenkategorien

Sei M eine Modellkategorie. Sei A ein Objekt von M. Zeige:

- a) Ist M linkseigentlich, so auch M/A.
- b) Ist M kofasernd erzeugt, so auch M/A.

Aufgabe 4. Lokale Präsentierbarkeit von Prägarbenkategorien

Sei \mathcal{C} eine kleine Kategorie. Sei $y: \mathcal{C} \hookrightarrow \mathrm{PSh}(\mathcal{C})$ die Yoneda-Einbettung in die Kategorie der Funktoren $\mathcal{C}^{\mathrm{op}} \to \mathrm{Set}$. Folgende Aussagen sind alle wahr. Zeige so viele du möchtest.

- a) Die Kategorie $PSh(\mathcal{C})$ ist kovollständig.
- b) Darstellbare Prägarben solche der Form y(X) für ein $X \in \mathcal{C}$ sind \aleph_0 -kompakt.
- c) Jede Prägarbe F ist ein kleiner Kolimes von darstellbaren Prägarben, und zwar gilt etwas genauer $F = \operatorname{colim}_{s \in F(X), X \in \mathcal{C}} y(X)$.
- d) Die Kategorie PSh(C) ist lokal endlich-präsentierbar.

Aufgabe 5. Regularität unendlich großer Nachfolgerkardinalzahlen

Sei κ der Nachfolger einer unendlich großen Kardinalzahl. Zeige, dass κ regulär ist.

