# **Factor models via Autoencoders**

A clever way of using Neural Networks to solve a familiar but important problem in Finance was proposed by <u>Gu, Kelly, and Xiu, 2019</u> (<a href="https://papers.srn.com/sol3/papers.cfm?abstract\_id=3335536">https://papers.srn.com/sol3/papers.cfm?abstract\_id=3335536</a>).

It is an extension of the Factor Model framework of Finance, combined with the tools of dimensionality reduction (to find the factors) of Deep Learning: the Autoencoder.

You can find code (https://github.com/stefan-jansen/machine-learning-for-trading/blob/main/20\_autoencoders\_for\_conditional\_risk\_factors/06\_conditional\_autoencometers for this model as part of the excellent book by Stefan Jansen (https://github.com/stefan-jansen/machine-learning-for-trading/blob/main/20\_autoencoders\_for\_conditional\_risk\_factors/06\_conditional\_autoencoders\_for\_conditional\_risk\_factors/06\_conditional\_autoencoders\_for\_conditional\_risk\_factors/06\_conditional\_autoencoders\_for\_conditional\_risk\_factors/06\_conditional\_autoencoders\_for\_conditional\_risk\_factors/06\_conditional\_autoencoders\_for\_conditional\_risk\_factors/06\_conditional\_autoencoders\_for\_conditional\_risk\_factors/06\_conditional\_autoencoders\_for\_conditional\_risk\_factors/06\_conditional\_autoencoders\_for\_conditional\_risk\_factors/06\_conditional\_autoencoders\_for\_conditional\_risk\_factors/06\_conditional\_autoencoders\_for\_conditional\_risk\_factors/06\_conditional\_autoencoders\_for\_conditional\_risk\_factors/06\_conditional\_autoencoders\_for\_conditional\_risk\_factors/06\_conditional\_autoencoders\_for\_conditional\_risk\_factors/06\_conditional\_autoencoders\_for\_conditional\_risk\_factors/06\_conditional\_autoencoders\_for\_conditional\_risk\_factors/06\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_c

- <u>Github (https://github.com/stefan-jansen/machine-learning-for-trading)</u>
- In order to run the code notebook, you first need to run a notebook for <u>data prepara</u> <u>jansen/machine-learning-for-</u>
  - trading/blob/main/20\_autoencoders\_for\_conditional\_risk\_factors/05\_conditional\_autoencoders\_for\_conditional\_risk\_factors/05\_conditional\_autoencoders\_for\_conditional\_risk\_factors/05\_conditional\_autoencoders\_for\_conditional\_risk\_factors/05\_conditional\_autoencoders\_for\_conditional\_risk\_factors/05\_conditional\_autoencoders\_for\_conditional\_risk\_factors/05\_conditional\_autoencoders\_for\_conditional\_risk\_factors/05\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_autoencoders\_for\_conditional\_au
    - This notebook relies on files created by notebooks from earlier chapters of
    - So, if you want to run the code, you have a lot of preparatory work ahead of
    - Try to take away the ideas and the coding

# **Factor Model review**

We will begin with a quick review/introduction to Factor Models in Finance.

First, some necessary notation:

- $\mathbf{r}_s^{(d)}$ : Return of ticker s on day d.
- $\hat{\mathbf{r}}_s^{(d)}$ : approximation of  $\mathbf{r}_s^{(d)}$
- $n_{
  m tickers}$ : large number of tickers
- $n_{
  m dates}$ : number of dates
- $n_{
  m factors}$ : small number of factors: independent variables (features) in our approximation
- ullet Matrix  ${f R}$  of ticker returns, indexed by date
  - lacksquare  $\mathbf{R}:(n_{\mathrm{dates}} imes n_{\mathrm{tickers}})$
  - $lacksquare ||\mathbf{R}^{(\grave{d})}|| = n_{ ext{tickers}}$ 
    - $\circ \; \mathbf{R}^{(d)}$  is vector of returns for each of the  $n_{ ext{tickers}}$  on date d
- ${f r}$  will denote a vector of single day returns:  ${f R}^{(d)}$  for some date d

#### **Notation summary**

| term                                             | meaning                                                                    |            |                                |
|--------------------------------------------------|----------------------------------------------------------------------------|------------|--------------------------------|
| s                                                | ticker                                                                     |            |                                |
| $n_{ m tickers}$                                 | number of tickers                                                          |            |                                |
| $\overline{d}$                                   | date                                                                       |            |                                |
| $n_{ m dates}$                                   | number of dates                                                            |            |                                |
| $n_{ m chars}$                                   | number of characteristics per ticker                                       |            |                                |
| $\overline{m}$                                   | number of examples                                                         |            |                                |
|                                                  | $m=n_{ m dates}$                                                           |            |                                |
| i                                                | index of example                                                           |            |                                |
|                                                  | There will be one example per date, so we use $i$ and $d$ interchangeably. |            |                                |
| $\overline{[\mathbf{X^{(i)}},\mathbf{R^{(i)}}]}$ | example $i$                                                                |            |                                |
|                                                  | \$                                                                         | \X^\ip     | = (\ntickers \times \nchars)\$ |
|                                                  | \$                                                                         | \R^\ip     | = \ntickers\$                  |
| $\mathbf{X}_{s}^{(d)}$                           | vector of ticker $s$ 's characteristics on day $d$                         |            |                                |
|                                                  | \$                                                                         | $X^{dp_s}$ | =\nchars\$                     |

#### Note

The paper actually seeks to predict  $\hat{\mathbf{r}}_s^{(d+1)}$  (forward return) rather than approximate the current return  $\hat{\mathbf{r}}_s^{(d)}$ .

We will present this as an approximation problem as opposed to a prediction problem for simplicity of presentation (i.e., to include PCA as a model).

A **factor model** seeks to approximate/explain the return of a *number* of tickers in terms of common "factors"  ${\bf F}$ 

$$egin{array}{lll} oldsymbol{\cdot} & \mathbf{F}: (n_{ ext{dates}} imes n_{ ext{factors}}) \ & \mathbf{R}_1^{(d)} &=& eta_1^{(d)} \cdot \mathbf{F}^{(d)} + \epsilon_1 \ & dots \ & \mathbf{R}_{n_{ ext{tickers}}}^{(d)} &=& eta_{n_{ ext{tickers}}}^{(d)} \cdot \mathbf{F}^{(d)} + \epsilon_{n_{ ext{tickers}}} \end{array}$$

There are several ways to create a factor model.

### Pre-defined factors, solve for sensitivities

Suppose  $\mathbf{F}$  is given: a matrix of returns of "factors" over a range of dates

- $\mathbf{F}^{(d)}$  includes the returns of multiple factor tickers
  - e.g., market, several industries, large/small cap indices

Solve for  $\beta_s$ , for each s

- $n_{
  m tickers}$  separate Linear Regression models
- Linear regression for ticker s:
  - $r_s$  and  ${f F}$  are time series (length  $n_{
    m dates}$ ) of returns for tickers/factors
  - Solve for  $\beta_s$ 
    - constant over time

$$eta_s^{(d)} = eta_s$$

$$egin{array}{c} oldsymbol{\mathbf{x}}_s^{(d)} = eta_s \\ oldsymbol{\mathbf{Y}}_s^{(1)}, oldsymbol{\mathbf{y}}_s^{(d)} 
angle = \langle oldsymbol{\mathbf{F}}^{(d)}, oldsymbol{\mathbf{r}}_s^{(d)} 
angle \\ oldsymbol{\mathbf{r}}_s^{(1)} & oldsymbol{\mathbf{F}}_s^{(1)} & \cdots & oldsymbol{\mathbf{F}}_{n_{\mathrm{factors}}}^{(1)} \\ oldsymbol{\mathbf{F}}_1^{(2)} & \cdots & oldsymbol{\mathbf{F}}_{n_{\mathrm{factors}}}^{(2)} \\ oldsymbol{\vdots} \\ oldsymbol{\mathbf{F}}_s^{(n_{\mathrm{dates}})} & \cdots & oldsymbol{\mathbf{F}}_{n_{\mathrm{factors}}}^{(n_{\mathrm{dates}})} \end{pmatrix}, \ eta_s = \begin{pmatrix} eta_{s,1} \\ eta_{s,2} \\ \vdots \\ eta_{s,n_{\mathrm{factors}}} \end{pmatrix}$$

$$\mathbf{r}_s = \mathbf{F} * eta_s$$

### **Pre-defined sensitivities, solve for factors**

Suppose  $\beta$  is given:

• for each ticker  $s: \beta_{s,i}$  is the sensitivity of s to  $\mathbf{F}_i$ 

Solve for  $\mathbf{F}^{(d)}$  for each d

- $n_{
  m dates}$  separate Linear Regressions
- Linear regression for date d
  - lacktriangledown lacktriangledown and  $eta^{(d)}$  are cross sections (width  $n_{
    m tickers}$ ) of one day ticker returns/sensitivities
  - Solve for  $\mathbf{F}^{(d)}$

$$\mathbf{r}^{(d)} = \begin{pmatrix} \mathbf{X}^{(s)}, \mathbf{y}^{(s)} \rangle = \langle \beta^{(s)}, \mathbf{r}^{(s)} \rangle \\ \mathbf{r}_1^{(d)} \\ \vdots \\ \mathbf{r}_{n_{\mathrm{tickers}}}^{(d)} \end{pmatrix}, \ \mathbf{F}^{(d)} = \begin{pmatrix} \mathbf{F}_1^{(d)} \\ \mathbf{F}_2^{(d)} \\ \vdots \\ \mathbf{F}_{n_{\mathrm{factors}}}^{(d)} \end{pmatrix}, \ \beta = \begin{pmatrix} \beta_{1,1}, & \dots & \beta_{1,n_{\mathrm{factors}}} \\ \beta_{2,1}, & \dots & \beta_{2,n_{\mathrm{factors}}} \\ \vdots \\ \beta_{n_{\mathrm{tickers}},1}, & \dots & \beta_{n_{\mathrm{tickers}},n_{\mathrm{factors}}} \end{pmatrix}$$

### Solve for sensitivities and factors: PCA

Yet another possibility: solve for  $\beta$  and  ${\bf F}$  simulataneoulsy.

**Recall Principal Components** 

- Representing  ${f X}$  (defined relative to  $n_{
m tickers}$  "standard" basis vectors) via an alternate basis  ${f V}$ 

$$\mathbf{X} = ilde{\mathbf{X}} \mathbf{V}^T$$

In this case, we identify  ${f X}$  with the returns  ${f R}$ . Thus, without dimensionality reduction:  ${f R}={f ilde R}V^T$ 

$$\mathbf{R} = ilde{\mathbf{R}} V^T$$

where

$$\mathbf{R}, ilde{\mathbf{R}}: (n_{ ext{dates}} imes n_{ ext{tickers}})$$

$$\mathbf{V}^T:(n_{ ext{tickers}} imes n_{ ext{tickers}})$$

#### PCA seeks to approximate ${f R}$ with fewer than $n_{ m tickers}$ basis vectors

- this is the dimensionality reduction
- ullet reduce from  $n_{
  m tickers}$  dimensions to  $n_{
  m factors}$  dimensions  ${f R}pprox {f F}\,eta^T$

$$\mathbf{R}pprox\mathbf{F}\,eta^T$$

- $ullet \mathbf{F}^T:(n_{ ext{dates}} imes n_{ ext{factors}})$ 
  - the "alternative" basis: the "factors"
  - lacktriangle is f V with columns eliminated b/c of dimensionality reduction
- $ullet \ eta^T:(n_{ ext{factors}} imes n_{ ext{tickers}})$ 
  - so  $\beta^{(s)}$  are sensitivities of s to factors
- Solve for  $\mathbf{F}$ ,  $\beta$  simultaneously

 ${\bf r}_s$ , the time series of returns of ticker s is approximated by a combination of returns of  $n_{\mathrm{factors}}$ .

$$\mathbf{r}_s^{(d)} = eta_s * \mathbf{F}^{(d)}$$

•  $eta_s^{(d)}$  is constant over time  $eta_s^{(d)} = eta_s$ 

The daily observation of  $n_{
m tickers}$  returns  ${f R}^{(d)}$  is replaced by  $n_{
m factors}$  returns  ${f F}^{(d)}$ 

# This paper

This paper will create a factor model that

- Solve for  ${f F}, eta$  simultaneously
  - like PCA
- $\bullet\;$  But where F and  $\beta$  are defined by Neural Networks

# **Autoencoder**

The paper refers to the model as a kind of Autoencoder.



#### Let's review the topic.

- An Autoencoder has two parts: an Encoder and a Decoder
- The Encoder maps inputs  $\mathbf{x^{(i)}}$ , of length n
- Into a "latent vectors"  $\mathbf{z^{(i)}}$  of length  $n' \leq n$
- If n' < n, the latent vector is a bottleneck
- The Decoder maps  $\mathbf{z^{(i)}}$  into  $\hat{\mathbf{x}^{(i)}}$ , of length n, that is an approximation of  $\mathbf{x^{(i)}}$

The training examples for an Autoencoder are  $\langle \mathbf{X}^{(d)}, \mathbf{y}^{(d)} 
angle = \langle \mathbf{R}^{(d)}, \mathbf{R}^{(d)} 
angle$ 

$$\langle \mathbf{X}^{(d)}, \mathbf{y}^{(d)} 
angle = \langle \mathbf{R}^{(d)}, \mathbf{R}^{(d)} 
angle$$

That is

• we want the output for each example to be identical to the input

The challenge:

- the input is passed through a "bottleneck" **z** of lower dimensions than the example  $\mathsf{length}\, n$
- information is lost
- analog: using PCA for dimensionality reduction, but with non-linear operations

Imagine that we are given  ${f R}:(n_{
m dates} imes n_{
m tickers})$ 

ullet timeseries (length  $n_{
m dates}$ ) of returns of  $n_{
m tickers}$  tickers

Suppose we map a one day set of returns  $\mathbf{R}^{(d)}$  into two separate values

- $eta^{(d)}:(n_{ ext{tickers}} imes n_{ ext{factors}})$  -- the sensitivity of each ticker to each of  $n_{ ext{factors}}$  one day "factor" returns
- ullet  $\mathbf{F}^{(d)}:(n_{ ext{factors}} imes 1)$  -- the one day returns of  $n_{ ext{factors}}$  factors

Our goal is to output 
$$\hat{\mathbf{R}}^{(d)}$$
, an approximations of  $\mathbf{R}^{(d)}$  such that 
$$\hat{\mathbf{R}}^{(d)} = \beta^{(d)} * \mathbf{F}^{(d)}$$
  $\hat{\mathbf{R}}^{(d)} \approx \mathbf{R}^{(d)}$ 

This is the same goal as an Autoencoder but subject to the constraint that  $\hat{\mathbf{R}}^{(d)}$ 

• is the product of the ticker sensitivities and factor returns

The Neural Network *simultaneously* solves for  $\beta^{(d)}$  and  $\mathbf{F}^{(d)}$ .

#### This looks somewhat like PCA

- **but**, in PCA,  $\beta$  does not vary by day: it is constant over days in this model,  $\beta^{(d)}$  varies by day

This paper goes one step further than the standard Autoencoder

ullet Inputs  ${f X}$ 

 $:(n_{\mathrm{dates}}% )\rightarrow (n_{\mathrm{dates}})$ 

 $\times n_{ ext{tickers}}$ 

 $imes n_{
m chars})$ 

ullet rather than  ${f R}$ 

 $:(n_{\mathrm{dates}}% )\rightarrow (n_{\mathrm{dates}})$ 

 $imes n_{ ext{tickers}})$ 

Each ticker s on each day d, has  $n_{
m chars} \geq 1$  "characteristic"

- ullet one of them may the daily return  ${f R}^{(d)}$
- but may also include a number of other time varying characteristics

The proposed model is a Neural Network with two sub-networks.

The Beta network computes  $eta_s^{(d)} = ext{NN}_eta(\mathbf{X}_s^{(d)}; \mathbf{W}_eta)$ 

- $\mathbf{X}_s^{(d)}$  as input
- ullet parameterized by weights  $\mathbf{W}_eta$
- ullet  $eta_s^{(d)}$  is only a function of  $\mathbf{X}_s^{(d)}$  , the characteristics of s
  - lacksquare and **not** of any other ticker s' 
    eq s
  - lacksquare  $eta_s^{(d)}$  shares  $\mathbf{W}_eta$  across all tickers s' and dates d'
  - contrast this with factor model with fixed factors
    - $\circ$  we solve for a separate  $eta_s$  for each ticker s
    - via per-ticker timeseries regression
  - contrast this with PCA
    - $\circ \; eta_s$  is influenced by  $\mathbf{R}_{s'}$  for s' 
      eq s

### The Factor network computes $\mathbf{F}^{(d)} = \mathrm{NN}_{\mathbf{F}}(\mathbf{R}^{(d)}, \mathbf{W}_{\mathbf{F}})$

- $\mathbf{R}^{(d)}$  as input (not  $\mathbf{X}^{(d)}$  as in the Beta network) parameterized by weights  $\mathbf{W_F}$   $\mathbf{R}^{(d)}$  is only a function of  $\mathbf{R}^{(d)}$  for date d
  - lacksquare and **not** of any other date d' 
    eq d
  - $lackbox{f F}^{(d)}$  shares  ${f W_F}$  across **all** dates

### This model

- has neither pre-defined Factors  ${f F}$  or pre-defined Sensitivities eta Simultaneously solve for  $eta_s^{(d)}$  and  ${f F}^{(d)}$

Here is a picture

#### $n_{ m tickers}$



# Summary of this paper

Approximate cross section of daily returns: 
$$\hat{\mathbf{r}}^{(d)} \approx \mathbf{r}^{(d)}$$

$$\mathbf{r}^{(d)} \approx \hat{\mathbf{r}}^{(d)} = \beta^{(d)} * \mathbf{F}^{(d)}$$

- like an Autoencoder
- subject
  - lacktriangledown to returns as product of sensitivities and factors:  $\hat{f r}^{(d)}=eta^{(d)}*{f F}^{(d)}$
  - $ullet eta_s^{(d)} = ext{NN}_eta(\mathbf{X}_s^{(d)}; \mathbf{W}_eta)$
  - $lacksquare \mathbf{F}^{(d)} = \mathrm{NN}_{\mathbf{F}}(\mathbf{R}^{(d)}, \mathbf{W}_{\mathbf{F}})$

#### Shapes:

- $ullet \mathbf{r}^{(d)}:(n_{ ext{tickers}} imes 1)$
- ullet eta :  $(n_{ ext{tickers}} imes n_{ ext{factors}})$
- ullet  $\mathbf{F}^{(d)}:(n_{\mathrm{factors}} imes 1)$

# **Complete Neural Network**

## Beta (Input) side of network

The Beta network  $\mathrm{NN}_{eta}$ 

- ullet input:  $n_{
  m chars}$  attributes (characteristics) for each of  $n_{
  m tickers}$  tickers
- ullet output:  $n_{
  m factors}$  factor sensitivities for each of  $n_{
  m tickers}$  tickers

$$ext{NN}_{eta}: (n_{ ext{tickers}} imes n_{ ext{chars}}) \mapsto (n_{ ext{tickers}} imes n_{ ext{factors}})$$

### Input X

 $\mathbf{X}:(n_{\mathrm{dates}} imes n_{\mathrm{tickers}} imes n_{\mathrm{chars}})$ 

 $\mathbf{X}^{(d)}:(n_{ ext{tickers}} imes n_{ ext{chars}})$ 

- $\bullet \ \ \mathsf{Example} \ \mathsf{on} \ \mathsf{date} \ d$
- ullet Consists of  $n_{
  m tickers}$  tickers, each with  $n_{
  m chars}$  characteristics

### Sub Neural network $\mathbf{N}\mathbf{N}_{\!\!\beta}$

$$ext{NN}_eta = ext{Dense} \; (n_{ ext{factors}})(\mathbf{X})$$

- Fully connected network
- ullet Dense  $(n_{ ext{factors}})$  computes a function  $(n_{ ext{tickers}} imes n_{ ext{chars}}) \mapsto (n_{ ext{tickers}} imes n_{ ext{factors}})$
- Threads over ticker dimension (<u>see</u> (<u>https://www.tensorflow.org/api\_docs/python/tf/keras/layers/Dense</u>))
  - tickers share same weights across all tickers
  - single Dense  $(n_{
    m factors})$  not  $n_{
    m tickers}$  copies of Dense  $(n_{
    m factors})$  with independent weights

$$\mathbf{W}_{eta}:(n_{ ext{factors}} imes n_{ ext{chars}})$$

- ullet weights shared across all d,s
  - $lackbox{f W}_{eta,s}^{(d)} = f W_{eta,s'}^{(d')}$  for all s',d'
  - the transformation of characteristics to beta independent of ticker
- ullet hence, size of  $\mathbf{W}_eta$  is  $(n_{ ext{factors}} imes n_{ ext{chars}})$

$$eta^{(d)} = ext{Dense}\left(n_{ ext{factors}}
ight)\!(\mathbf{X}^{(d)}) \ eta^{(d)}:\left(n_{ ext{tickers}} imes n_{ ext{factors}}
ight)$$

### Factor side of network

The Factor network  $\mathrm{NN}_F$ 

- input: vector of ticker returns (one-day)
- output: vector of factor returns

 $ext{NN}_{\mathbf{F}}:n_{ ext{tickers}}\mapsto n_{ ext{factors}}$ 

### Input ${f R}$

 $\mathbf{R}:(n_{\mathrm{dates}} imes n_{\mathrm{tickers}})$ 

 $\mathbf{R}^{(d)}:(n_{ ext{tickers}} imes 1)$ 

- ullet Example on date d
- ullet Consists of returns of  $n_{
  m tickers}$  tickers

# Sub Neural network $NN_{\!F}$

 $\mathrm{NN}_{\mathbf{F}} = \mathsf{Dense}\;(n_{\mathrm{factors}})$ 

- Fully connected network
- ullet Dense(  $n_{ ext{factors}})$  computes a function  $n_{ ext{tickers}}\mapsto n_{ ext{factors}}$

 $\mathbf{W_F}:(n_{ ext{factors}} imes n_{ ext{tickers}})$ 

- ullet Weights shared across all d,s
  - $lackbox{f W}_{{f F},s}^{(d)}={f W}_{{f F},s'}^{(d')}$  for all s',d'
  - the transformation of cross section of ticker returns to Factor returns independent of ticker
- ullet hence, size of  $\mathbf{W_F}$  is  $(n_{ ext{tickers}} imes n_{ ext{factors}})$

$$egin{aligned} \mathbf{F}^{(d)} &= \mathrm{Dense}\left(n_{\mathrm{factors}}
ight) (\mathbf{R}^{(d)}) \ \mathbf{F}^{(d)} &: n_{\mathrm{factors}} \end{aligned}$$

# Dot

$$\hat{\mathbf{r}}^{(d)} = eta^{(d)} \cdot \mathbf{F}^{(d)}$$

Dot product threads over factor dimension

- Computes  $\hat{\mathbf{r}}_s^{(d)} = eta_s^{(d)} \cdot \mathbf{F}^{(d)}$  for each s each s is a row of  $eta^{(d)}$   $\hat{\mathbf{r}}^{(d)}:n_{ ext{tickers}}$

$$\hat{\mathbf{r}}^{(d)}:n_{ ext{tickers}}$$

# Loss

Let  $\mathcal{L}_{(s)}^{(d)}$  denote error of ticker s on day d .

$$\mathcal{L}_{(s)}^{(d)} = \mathbf{r}_s^{(d)} - \hat{\mathbf{r}}_s^{(d)}$$

 $\mathcal{L}^{(d)}$  is the loss, across tickers, on date d (one training example)

$$\mathcal{L}^{(d)} = \sum_s \mathcal{L}^{(d)}_{(s)}$$

The number of examples m equals  $n_{
m dates}$ 

So the Total Loss is

$$\mathcal{L} = \sum_d \mathcal{L}^{(d)}$$

# Predicting future returns, rather than explaining contemporaneous returns

The model is sometimes presented as predicting **day ahead** returns rather than contemporaneous returns.

In that case the objective is

$$\hat{\mathbf{r}}^{(d)} = \mathbf{r}^{(d+1)}$$

and Loss for a single ticker and date becomes

$$\mathcal{L}_{(s)}^{(d)} = \mathbf{r}_{s}^{(d+1)} - \hat{\mathbf{r}}_{s}^{(d)}$$

### Code

The model is built by the function make model

(06 conditional autoencoder for asset pricing model.ipynb#Automate-model-generation)

```
def make_model(hidden_units=8, n_factors=3):
    input_beta = Input((n_tickers, n_characteristics), name='input_beta')
    input_factor = Input((n_tickers,), name='input_factor')

    hidden_layer = Dense(units=hidden_units, activation='relu', name='hidden_la
yer')(input_beta)
    batch_norm = BatchNormalization(name='batch_norm')(hidden_layer)

    output_beta = Dense(units=n_factors, name='output_beta')(batch_norm)

    output_factor = Dense(units=n_factors, name='output_factor')(input_factor)

    output = Dot(axes=(2,1), name='output_layer')([output_beta, output_factor])

    model = Model(inputs=[input_beta, input_factor], outputs=output)
    model.compile(loss='mse', optimizer='adam')
    return model
```

#### Here is what the model looks like:



#### Highlights

- Two input layers
  - one each for the Beta and Factor networks
- The model is passed a **pair** as input
  - one input for each side of the network

```
Model(inputs=[input_beta, input_factor], outputs=output)
```

and is <u>called</u>
 (<u>06 conditional autoencoder for asset pricing model.ipynb#Trail Model</u>) with a pair

• Loss function: MSE

```
model.compile(loss='mse', optimizer='adam')
```

#### Training data

```
def get_train_valid_data(data, train_idx, val_idx):
    train, val = data.iloc[train_idx], data.iloc[val_idx]
    X1_train = train.loc[:, characteristics].values.reshape(-1, n_tickers, n_characteristics)
    X1_val = val.loc[:, characteristics].values.reshape(-1, n_tickers, n_characteristics)
    X2_train = train.loc[:, 'returns'].unstack('ticker')
    X2_val = val.loc[:, 'returns'].unstack('ticker')
    y_train = train.returns_fwd.unstack('ticker')
    y_val = val.returns_fwd.unstack('ticker')
    return X1_train, X2_train, y_train, X1_val, X2_val, y_val
```

• X1 train: ticker chacteristics

```
X1_train = train.loc[:, characteristics].values.reshape(-1, n_tickers,
n_characteristics)
```

- X2\_train:tickerreturns
  - Dataframe attribute returns

```
X2_train = train.loc[:, 'returns'].unstack('ticker')
```

- y train: forward ticker returns
  - Dataframe attribute returns fwd

```
y_train = train.returns_fwd.unstack('ticker')
```