Descenso por Gradiente (Estocástico)

Laboratorio de Datos, IC - FCEN - UBA - 1er. Cuatrimestre 2024

Regresión Lineal

Queremos explicar una variable en función de otras mediante un modelo lineal, por ejemplo:

$$Y = \beta_0 + \beta_1 X$$

Queremos explicar una variable en función de otras mediante un modelo lineal, por ejemplo:

$$Y = \beta_0 + \beta_1 X$$

Dados los datos $(x_1, y_1), \ldots, (x_n, y_n)$, nuestra función de pérdida es el Error Cuadrático Medio (MSE):

$$L(\beta_0, \beta_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

Queremos explicar una variable en función de otras mediante un modelo lineal, por ejemplo:

$$Y = \beta_0 + \beta_1 X$$

Dados los datos $(x_1, y_1), \ldots, (x_n, y_n)$, nuestra función de pérdida es el Error Cuadrático Medio (MSE):

$$L(\beta_0, \beta_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

Objetivo: hallar

$$\arg\min L(\beta_0,\beta_1)$$

(o sea, β_0 y β_1 que minimicen L)

Mencionamos que el problema se puede resolver hallando la solución de:

$$A^T A \beta = A^T Y$$

(de hecho, así lo hace LinearRegression de scikit-learn)

Mencionamos que el problema se puede resolver hallando la solución de:

$$A^T A \beta = A^T Y$$

(de hecho, así lo hace LinearRegression de scikit-learn)

Problema: resolver sistemas de ecuaciones grandes es computacionalmente costoso¹

¿Qué pasa si tengo (literalmente) millones de datos?

Algoritmos de descenso

Hallar β es un problema de **optimización**: queremos hallar β que minimice

$$L(\beta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_i(\beta))^2$$

Hallar β es un problema de **optimización**: queremos hallar β que <u>minimice</u>

$$L(\beta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_i(\beta))^2$$

En nuestro ejemplo,

$$f_i(\beta) = \beta_0 + \beta_1 x_i$$

Los algoritmos de descenso son algoritmos <u>iterativos</u>: a partir de un punto inicial, en cada paso se *acercan* a un mínimo.

Se puede demostrar que si la función a optimizar cumple ciertas condiciones, en teoría convergen a un mínimo (local).

Input: L, $\beta^{(0)}$, $\varepsilon > 0$, $it_max > 0$

Output: β^* aproximación a un mínimo

$$k \leftarrow 0$$

while ($\nabla L(\beta^{(k)}) > \varepsilon$ and $k < it_max$) do

 $d_k \leftarrow$ dirección del paso

 $\eta_k \leftarrow \text{longitud del paso}$

$$\beta^{(k+1)} \leftarrow \beta^{(k)} + \eta_k \, d_k$$

$$k \leftarrow k + 1$$

end

Input: L, $\beta^{(0)}$, $\varepsilon > 0$, $it_max > 0$

Output: β^* aproximación a un mínimo

$$k \leftarrow 0$$

while ($\nabla L(\beta^{(k)}) > \varepsilon$ and $k < it_max$) do

 $d_k \leftarrow$ dirección del paso

 $\eta_k \leftarrow \text{longitud del paso}$

$$\beta^{(k+1)} \leftarrow \beta^{(k)} + \eta_k \, d_k$$

$$k \leftarrow k + 1$$

end

Input: L, $\beta^{(0)}$, $\varepsilon > 0$, $it_max > 0$

Output: β^* aproximación a un mínimo

$$k \leftarrow 0$$

while ($\nabla L(\beta^{(k)}) > \varepsilon$ and $k < it_max$) do

 $d_k \leftarrow \text{direcci\'on del paso}$

 $\eta_k \leftarrow \text{longitud del paso}$

$$\beta^{(k+1)} \leftarrow \beta^{(k)} + \eta_k \, d_k$$

$$k \leftarrow k + 1$$

end

Input: L, $\beta^{(0)}$, $\varepsilon > 0$, $it_max > 0$

Output: β^* aproximación a un mínimo

$$k \leftarrow 0$$

while ($\nabla L(\beta^{(k)}) > \varepsilon$ and $k < it_max$) do

 $d_k \leftarrow \text{direcci\'on del paso}$

 $\eta_k \leftarrow$ longitud del paso

$$\beta^{(k+1)} \leftarrow \beta^{(k)} + \eta_k \, d_k$$

$$k \leftarrow k + 1$$

end

Input: L, $\beta^{(0)}$, $\varepsilon > 0$, $it_max > 0$

Output: β^* aproximación a un mínimo

$$k \leftarrow 0$$

while ($\nabla L(\beta^{(k)}) > \varepsilon$ and $k < it_max$) do

 $d_k \leftarrow \text{direcci\'on del paso}$

 $\eta_k \leftarrow \text{longitud del paso}$

$$\beta^{(k+1)} \leftarrow \beta^{(k)} + \eta_k \, d_k$$

$$k \leftarrow k + 1$$

end

Input: L, $\beta^{(0)}$, $\varepsilon > 0$, $it_max > 0$

Output: β^* aproximación a un mínimo

$$k \leftarrow 0$$

while ($\nabla L(\beta^{(k)}) > \varepsilon$ and $k < it_max$) do

 $d_k \leftarrow \text{direcci\'on del paso}$

 $\eta_k \leftarrow \text{longitud del paso}$

$$\beta^{(k+1)} \leftarrow \beta^{(k)} + \eta_k \, d_k$$

$$k \leftarrow k+1$$

end

Input: L, $\beta^{(0)}$, $\varepsilon > 0$, $it_max > 0$

Output: β^* aproximación a un mínimo

$$k \leftarrow 0$$

while ($\nabla L(\beta^{(k)}) > \varepsilon$ and $k < it_max$) do

 $d_k \leftarrow$ dirección del paso

 $\eta_k \leftarrow \text{longitud del paso}$

$$\beta^{(k+1)} \leftarrow \beta^{(k)} + \eta_k \, d_k$$

$$k \leftarrow k + 1$$

end

En líneas generales, hay dos características que diferencian a los distintos algoritmos de descenso:

- la dirección del paso d_k
- ullet la longitud del paso η_k

En líneas generales, hay dos características que diferencian a los distintos algoritmos de descenso:

- la dirección del paso d_k
- ullet la longitud del paso η_k

La dirección del paso d_k debe ser una **dirección de descenso**, es decir, es suficiente que cumpla:

$$< d_k, \nabla L(\beta_k) > \le 0$$

Descenso por Gradiente (GD)

$$d_k = -\nabla L(\beta^{(k)})$$

$$d_k = -\nabla L(\beta^{(k)})$$

Teorema: sea $f \colon \mathbb{R}^m \to \mathbb{R}$ tal que $f \in C^1$ y sea $x \in \mathbb{R}^m$, entonces $\nabla f(x)$ es la dirección de máximo crecimiento de f.

$$d_k = -\nabla L(\beta^{(k)})$$

Teorema: sea $f \colon \mathbb{R}^m \to \mathbb{R}$ tal que $f \in C^1$ y sea $x \in \mathbb{R}^m$, entonces $\nabla f(x)$ es la dirección de máximo crecimiento de f.

Corolario: $-\nabla f(x)$ es la dirección de máximo decrecimiento de f.

ξY $η_k$?

¿Y η_k ?

Y... es todo un tema (literalmente)

¿Y η_k ?

Y... es todo un tema (literalmente)

Hay varias formas de determinar el η_k :

• dejarlo fijo: $\eta_k = \eta_0 \ \forall k$

¿Y
$$\eta_k$$
?

Y... es todo un tema (literalmente)

Hay varias formas de determinar el η_k :

- dejarlo fijo: $\eta_k = \eta_0 \ \forall k$
- hacerlo variar a lo largo de las iteraciones mediante alguna función. Por ejemplo:

 $\eta_k = \eta_0 e^{-d \cdot k}$ d es el decaimiento (otro hiperparámetro)

¿Y
$$\eta_k$$
?

Y... es todo un tema (literalmente)

Hay varias formas de determinar el η_k :

- dejarlo fijo: $\eta_k = \eta_0 \ \forall k$
- hacerlo variar a lo largo de las iteraciones mediante alguna función. Por ejemplo:

$$\eta_k = \eta_0 e^{-d \cdot k}$$
 d es el decaimiento (otro hiperparámetro)

• búsqueda lineal (Sección Áurea, Regla de Armijo, Regla de Wolfe, etc.)

Implementación

Jerga tradicional

Jerga de Machine Learning

Jerga tradicional

Iteración

Jerga de Machine Learning

• Epoch (época)

Jerga tradicional

- Iteración
- Longitud del paso

Jerga de Machine Learning

- Epoch (época)
- Learning rate

Jerga tradicional

- Iteración
- Longitud del paso
- Intercept

Jerga de Machine Learning

- Epoch (época)
- Learning rate
- Bias

Además, cambiamos la notación de β :

$$\beta = (\underbrace{\beta_0}_{b}, \underbrace{\beta_1, \beta_2, \dots, \beta_m}_{w=(w_0, w_1, \dots, w_{m-1})})$$
 weights (pesos)

Además, cambiamos la notación de β :

$$\beta = (\underbrace{\beta_0}_{\text{bias}}, \underbrace{\beta_1, \beta_2, \dots, \beta_m}_{w=(w_0, w_1, \dots, w_{m-1})})$$
weights (pesos)

Ejemplos:

$$Y = \beta_0 + \beta_1 X \rightarrow Y = b + wX$$

Además, cambiamos la notación de β :

$$\beta = (\underbrace{\beta_0}_{\text{bias}}, \underbrace{\beta_1, \beta_2, \dots, \beta_m}_{w=(w_0, w_1, \dots, w_{m-1})})$$
weights (pesos)

Ejemplos:

$$Y = \beta_0 + \beta_1 X \quad \rightarrow \quad Y = b + wX$$

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 \quad \rightarrow \quad Y = b + w_0 X + w_1 X^2$$

Además, cambiamos la notación de β :

$$\beta = (\underbrace{\beta_0}_{\text{bias}}, \underbrace{\beta_1, \beta_2, \dots, \beta_m}_{w=(w_0, w_1, \dots, w_{m-1})})$$
weights (pesos)

Ejemplos:

$$Y = \beta_0 + \beta_1 X \quad \to \quad Y = b + wX$$

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 \quad \to \quad Y = b + w_0 X + w_1 X^2$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 \quad \to \quad Y = b + w_0 X_1 + w_1 X_2 + w_2 X_1 X_2$$

Es muy importante escalar los datos para garantizar el correcto funcionamiento del algoritmo.

Regresión no lineal

•
$$Y = b + w_0 X + w_1 X^2$$

$$\bullet \ Y = b + w_0 X + w_1 X^2$$
 OK

$$\bullet \ Y = b + w_0 X + w_1 X^2$$
 OK

$$Y = b + w_0 X_1 + w_1 X_1^{w_2}$$

•
$$Y = b + w_0 X + w_1 X^2$$

•
$$Y = b + w_0 X_1 + w_1 X_1^{w_2}$$
 NO

•
$$Y = b + w_0 X + w_1 X^2$$

$$\bullet \ Y = b + w_0 X_1 + w_1 X_1^{w_2}$$

$$\bullet \ Y = b + w_0 X_1 + w_1 X_1 X_2$$

$$\bullet \ Y = b + w_0 X + w_1 X^2$$
 OK

•
$$Y = b + w_0 X_1 + w_1 X_1^{w_2}$$

•
$$Y = b + w_0 X_1 + w_1 X_1 X_2$$
 OK

•
$$Y = b + w_0 X + w_1 X^2$$

$$\bullet \ Y = b + w_0 X_1 + w_1 X_1^{w_2}$$

$$\bullet \ Y = b + w_0 X_1 + w_1 X_1 X_2$$

$$\bullet \ Y = we^X$$

$$\bullet \ Y = b + w_0 X + w_1 X^2$$

$$\bullet \ Y = b + w_0 X_1 + w_1 X_1^{w_2}$$

$$\bullet \ Y = b + w_0 X_1 + w_1 X_1 X_2$$

$$\bullet \ Y = we^X$$

OK

•
$$Y = b + w_0 X + w_1 X^2$$

$$\bullet \ Y = b + w_0 X_1 + w_1 X_1^{w_2}$$

$$\bullet \ Y = b + w_0 X_1 + w_1 X_1 X_2$$

•
$$Y = we^X$$

$$\bullet \ Y = w_0 e^{w_1 X}$$

$$\bullet \ Y = b + w_0 X + w_1 X^2$$
 OK

•
$$Y = b + w_0 X_1 + w_1 X_1^{w_2}$$
 NO

•
$$Y = b + w_0 X_1 + w_1 X_1 X_2$$
 OK

•
$$Y = we^X$$

$$\bullet \ Y = w_0 e^{w_1 X}$$
 NO

$$\bullet \ Y = b + w_0 X + w_1 X^2$$

$$\bullet \ Y = b + w_0 X_1 + w_1 X_1^{w_2}$$

$$\bullet \ Y = b + w_0 X_1 + w_1 X_1 X_2$$

•
$$Y = we^X$$

$$\bullet \ Y = w_0 e^{w_1 X}$$

$$\bullet \ Y = \frac{1}{1 + e^{-(b + wX)}}$$

OK

$$\bullet \ Y = b + w_0 X + w_1 X^2$$

•
$$Y = b + w_0 X_1 + w_1 X_1^{w_2}$$

•
$$Y = b + w_0 X_1 + w_1 X_1 X_2$$

•
$$Y = we^X$$

$$\bullet \ Y = w_0 e^{w_1 X}$$
 NO

$$\bullet \ Y = \frac{1}{1 + e^{-(b + wX)}}$$
 NO

Descenso por gradiente no tiene esta limitación. Como:

$$L(b, w) = \frac{1}{n} \sum_{i=1}^{n} \underbrace{(y_i - f_i(b, w))^2}_{g_i(b, w)} = \frac{1}{n} \sum_{i=1}^{n} g_i(b, w)$$

vale que:

$$\nabla L(b, w) = \frac{1}{n} \sum_{i=1}^{n} \nabla g_i(b, w)$$

Entonces solamente necesitamos que las f_i sean C^1

Aplicación: Regresión Logística

Tenemos que clasificar pingüinos en dos especies (Gentoo o Chinstrap) a partir de su peso. Consideramos el modelo:

$$Y = \frac{1}{1 + e^{-(b+wX)}}$$

Tenemos que clasificar pingüinos en dos especies (Gentoo o Chinstrap) a partir de su peso. Consideramos el modelo:

$$Y = \frac{1}{1 + e^{-(b + wX)}}$$

La función

$$f_i(b, w) = \frac{1}{1 + e^{-(b+wx_i)}}$$

nos dará la probabilidad de que un pingüino que pesa x_i gramos sea de la especie Gentoo.

Función de error Binary Cross-Entropy Loss o log loss para Regresión Logística:

$$L(b, w) = -\frac{1}{n} \sum_{i=1}^{n} \left(y_i \log(f_i(b, w)) + (1 - y_i) \log(1 - f_i(b, w)) \right)$$

Función de error Binary Cross-Entropy Loss o log loss para Regresión Logística:

$$L(b, w) = -\frac{1}{n} \sum_{i=1}^{n} \left(y_i \log(f_i(b, w)) + (1 - y_i) \log(1 - f_i(b, w)) \right)$$

Obs: Regresión Logística suele funcionar mejor cuando los datos están centrados además de estar escalados.

Resumiendo

	Método Matricial	Descenso por Gradiente
Dataset Pequeño	✓	X
Dataset Grande	X	✓
Solución	exacta	aproximada
Funciones	$f_i(w,b)$ lineal	$f_i(w,b) \in C^1$

Descenso por Gradiente

Lo bueno:

- (relativamente) sencillo de implementar
- más eficiente que la resolución matricial para datasets grandes
- no nos limita a modelos lineales

Lo malo:

- menos eficiente que la resolución matricial para datasets pequeños
- el resultado depende del punto inicial
- presencia hiperparámetros
- convergencia lenta cerca de un mínimo local

Descenso por Gradiente

Lo bueno:

- (relativamente) sencillo de implementar
- más eficiente que la resolución matricial para datasets grandes
- no nos limita a modelos lineales

Lo malo:

- menos eficiente que la resolución matricial para datasets pequeños
- el resultado depende del punto inicial
- presencia hiperparámetros
- convergencia lenta cerca de un mínimo local

Agregar aleatoriedad de manera inteligente suele ayudar a que los algoritmos de descenso converjan más rápido.

Descenso por Gradiente Estocástico (SGD)

$$L(b, w) = \frac{1}{n} \sum_{i=1}^{n} g_i(b, w)$$

Idea del GD:

Para cada época k:

1. da un paso en dirección

$$-\nabla L = -\sum_{i=1}^n \nabla g_i$$
 de longitud η_k

$$L(b, w) = \frac{1}{n} \sum_{i=1}^{n} g_i(b, w)$$

Idea del GD:

Para cada época k:

1. da un paso en dirección

$$-\nabla L = -\sum_{i=1}^n \nabla g_i$$
 de longitud η_k

Idea del SGD:

Para cada época k:

- 1. para cada dato de entrenamiento x_i :
 - 1.1 da un paso en dirección $-\nabla g_i$ de longitud η_k
- 2. mezclá el conjunto de entrenamiento

Idea del SGD con mini-batch:

Para cada época k:

- 1. separá los datos de entrenamiento en conjuntos (batches)
- **2.** para cada *batch B*:
 - 2.1 da un paso en dirección $-\frac{1}{|B|}\sum_{i:\tau_i\in B}\nabla g_i$ de longitud η_k
- 3. mezclá el conjunto de entrenamiento

Extras

- Learning rate schedule: se define una función para que el learning rate varíe a lo largo de las iteraciones. Algunas comunes son:
 - 1. $\eta_k = \eta_0 e^{-d \cdot k}$ d es el decaimiento (otro hiperparámetro)

$$2. \ \eta_k = \frac{\eta_{k-1}}{1 + d \cdot k}$$

3. $\eta_k = \eta_0 \cdot d^{\left \lfloor \frac{1+k}{r} \right \rfloor}$ (cada r épocas, el learning rate es multiplicado por d)

- Learning rate schedule: se define una función para que el learning rate varíe a lo largo de las iteraciones. Algunas comunes son:
 - 1. $\eta_k = \eta_0 e^{-d \cdot k}$ d es el decaimiento (otro hiperparámetro)
 - $2. \ \eta_k = \frac{\eta_{k-1}}{1 + d \cdot k}$
 - 3. $\eta_k = \eta_0 \cdot d^{\left\lfloor \frac{1+k}{r} \right\rfloor}$ (cada r épocas, el learning rate es multiplicado por d)
- Early stopping: si pasadas p épocas la función de pérdida no mejora, el entrenamiento se detiene.

