Week 06 IVLE Quiz

- 1. Let u, v, w be vectors in \mathbb{R}^3 . Which of the following statements is/are definitely true?
 - (I) If x and y are both linear combinations of u, v, w, then x+2y is also a linear combination of u, v, w.
 - (II) The zero vector (0,0,0) is a linear combination of $\boldsymbol{u},\boldsymbol{v},\boldsymbol{w}$.
 - (III) If x is a linear combination of u, v, w, then x belongs to span $\{u, v, w\}$.
 - (A) (I) and (III) only.
 - (B) (II) and (III) only.
 - (C) All 3 statements.
 - (D) None of the given combinations is correct.

Answer: (C). (I) is correct. For instance, if $\mathbf{x} = a\mathbf{u} + b\mathbf{v} + c\mathbf{w}$ and $\mathbf{y} = e\mathbf{u} + f\mathbf{v} + g\mathbf{w}$, then $\mathbf{x} + 2\mathbf{y} = (a+2e)\mathbf{u} + (b+2f)\mathbf{v} + (c+2g)\mathbf{w}$ which is indeed a linear combination of \mathbf{u}, \mathbf{v} and \mathbf{w} . (II) is correct since $(0,0,0) = 0\mathbf{u} + 0\mathbf{v} + 0\mathbf{w}$. (III) is correct since span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ contains all linear combinations of $\mathbf{u}, \mathbf{v}, \mathbf{w}$.

2. Suppose you are given the following, which of the statements below is/are true?

$$\begin{pmatrix} 1 & -1 & -3 & x \\ 1 & 2 & 9 & y \\ -1 & 7 & 27 & z \end{pmatrix} \xrightarrow{\text{Gaussian}} \begin{pmatrix} 1 & -1 & -3 & x \\ 0 & 3 & 12 & y - x \\ 0 & 0 & 0 & z + 3x - 2y \end{pmatrix}.$$

- (I) There are vectors in \mathbb{R}^3 that **cannot** be written as linear combinations of $(1,1,-1)^T$, $(-1,2,7)^T$ and $(-3,9,27)^T$.
- (II) There are vectors in \mathbb{R}^3 that can be written as linear combinations of $(1, 1, -1)^T$, $(-1, 2, 7)^T$ and $(-3, 9, 27)^T$ in more than one way.
- (III) $(1, 1, -1)^T$, $(-1, 2, 7)^T$ and $(-3, 9, 27)^T$ spans \mathbb{R}^3 .
- (A) (I) only.
- (B) (III) only.
- (C) (II) and (III) only
- (D) (I) and (II) only

Answer: (D). Consider the augmented matrix below and its row-echelon form

$$\begin{pmatrix} 1 & -1 & -3 & x \\ 1 & 2 & 9 & y \\ -1 & 7 & 27 & z \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & -3 & x \\ 0 & 3 & 12 & y - x \\ 0 & 0 & 0 & z - 2y + 3x \end{pmatrix}$$

1

We see that (I) is correct since, for example, $(x, y, z)^T = (1, 0, 0)$ is not a linear combination of $(1, 1, 1)^T$, $(-1, 2, 7)^T$ and $(-3, 9, 27)^T$ (since $z - 2y + 3z \neq 0$ when x = 1, y = 0, z = 0). (II) is correct since, for example, $(x, y, z)^T = (1, 1, -1)^T$ can be written as linear combinations of the three vectors in more than one way (since z - 2y + 3z = 0 when we let x = 1, y = 1, z = -1). (III) is incorrect since there are vectors (e.g. $(1, 0, 0)^T$) in \mathbb{R}^3 that are not linear combinations of the three vectors.

3. How many of the following sets are subspaces?

$$S_1 = \{(x, y, z) \mid x = y = 0\}$$

$$S_2 = \{(a, b, c, d, e) \mid a + b + c + d + e = 1 \quad \text{and} \quad a - b + c - d - e = 0\}$$

$$S_3 = \{(x_1, x_2, x_3, x_4) \mid x_1^2 = x_2^2 \quad \text{and} \quad x_3 = x_4\}$$

- (A) None
- (B) Exactly one
- (C) Excatly two
- (D) All three

Answer: (B). S_1 is a subspace since $S_1 = \{(0,0,z) \mid z \in \mathbb{R}\} = \text{span}\{(0,0,1)\}$. S_2 is not a subspace since it does not contain the zero vector (the zero vector does not satisfy the equation a+b+c+d+e=1). S_3 is not a subspace since (1,1,0,0) and (-1,1,0,0) belongs to S_3 but (1,1,0,0)+(-1,1,0,0)=(0,2,0,0) does not.

4. Suppose u, v, w are vectors in \mathbb{R}^3 such that

$$u = 3v - 2w$$
.

Which of the following statements is/are definitely true?

- (I) $\operatorname{span}\{\boldsymbol{v}, \boldsymbol{w}\} = \operatorname{span}\{\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}\}$
- (II) $\operatorname{span}\{\boldsymbol{u}, \boldsymbol{v}\} = \operatorname{span}\{\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}\}$
- (III) $\operatorname{span}\{\boldsymbol{u}\} = \operatorname{span}\{\boldsymbol{v}, \boldsymbol{w}\}$
- (IV) span $\{\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}\}$ is a line in \mathbb{R}^3
- (A) All four statements are true.
- (B) Only (I) and (IV) are true.
- (C) Only (I) and (II) are true.
- (D) Only (II), (III) and (IV) are true.

Answer: (C). (I) is correct since \boldsymbol{u} is a linear combination of \boldsymbol{v} and \boldsymbol{w} , so the linear span of $\{\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}\}$ is the same as the linear span of $\{\boldsymbol{u}, \boldsymbol{w}\}$. (II) is also correct since \boldsymbol{w} is a linear combination of \boldsymbol{u} and \boldsymbol{v} ($\boldsymbol{w} = \frac{1}{2}(3\boldsymbol{v} - \boldsymbol{u})$). (III) is not necessarily correct since, for example, when $\boldsymbol{v} = (1,0,0), \boldsymbol{w} = (0,1,0)$ and $\boldsymbol{u} = (3,-2,0)$, then $\boldsymbol{v} = (1,0,0)$ belongs to span $\{\boldsymbol{v}, \boldsymbol{w}\}$ but does not belong to span $\{\boldsymbol{u}\}$. (IV) is not necessarily correct, for example, if $\boldsymbol{v} = (1,0,0), \boldsymbol{w} = (0,1,0)$ and $\boldsymbol{u} = (3,-2,0),$ then span $\{\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}\}$ is a plane in \mathbb{R}^3 .

- 5. Let S_1 and S_2 be subsets of \mathbb{R}^4 . Furthermore, we know that $S_1 \subseteq S_2$. Which of the following statements is/are definitely true?
 - (I) If $\mathbf{u} \in S_1$ (that is, \mathbf{u} is a vector in S_1), then $\mathbf{u} \in S_2$.
 - (II) If $\mathbf{u} \in S_1$, then $\mathbf{u} \in \text{span}(S_2)$.
 - (III) $\operatorname{span}(S_1) \subseteq \operatorname{span}(S_2)$.
 - (A) All three statements are true.
 - (B) Only (I) and (II) are true.
 - (C) Only (II) and (III) are true.
 - (D) None of the given combination given is correct.

Answer: (A). (I) is correct since S_1 is a subset of S_2 (so any element in S_1 is definitely found in S_2). (II) is correct since \boldsymbol{u} is in S_2 (since it is in S_1 and S_1 is a subset of S_2), \boldsymbol{u} will be in span(S_2) (\boldsymbol{u} is a linear combination of itself and other vectors). (III) is correct since every vector in S_1 is a linear combination of vectors in S_2 (by part (II) argument).