Generative models for human activity recognition

ROY team: Ilya Zharikov, Roman Isachenko, Artem Bochkarev

Skolkovo Institute of Science and Technology Machine Learning course

March 20, 2017.

Project goal

Aim

Classification model for complex-structured objects.

Problem

Initial object has no appropriate feature description.

Applications:

- image processing;
- signal classification;
- topic modelling;
- time series analysis.

Related work

- Wang W. et al. Human activity recognition using smart phone embedded sensors // International Joint Conference on Neural Networks. 2014.
- Wwapisz, Jennifer R., Gary M. Weiss, and Samuel A. Moore. Activity recognition using cell phone accelerometers. // ACM SigKDD Explorations Newsletter. 12(2): 74-82. 2011.
- Kuznetsov M. P., and Ivkin N. P. Time series classification algorithm using combined feature description. // Journal of Machine Learning and Data Analysis. 2015.

Problem Statement

- $s \in \mathcal{S}$ complex structured object
- $y \in Y$ class label

Task

Given: $\mathfrak{D} = \{(s_i, y_i)\}_{i=1}^m$ recover

$$y = f(s) \quad \forall s \in \mathcal{S}.$$

Approach

Suppose $f = g \circ h$, where

- $h(s): \mathcal{S} \to H \in \mathbb{R}^n$;
- $g(\mathbf{h}, \theta)$ parametric map from H into Y (classification model).

Optimal parameters

- **1** Choice of feature map h(s) by
 - prior (expert) knowledge;
 - minimizing error functional.
- 2 Classification for $\{(h(s_i), y_i)\}_{i=1}^m$

$$\theta^* = \arg\min_{\theta} S(g, \theta, \mathfrak{D}).$$

E.g. g - logistic regression,

 θ - weights,

S - classification error.

Expert functions

Autoregression model

Spectral Analysis

(?!) Splines

Data

Time series example

Results

Results

Feature union

Conclusion