8/27 応用数学特論II

Affine plane

An affine plane (アフィン平面) is an incidence structure $(\mathcal{P},\mathcal{L},\mathcal{I})$ such that

- **1** For any two points $p_1, p_2 \in \mathcal{P}$, there exists a unique line $\ell \in \mathcal{L}$ passing through both p_1 and p_2 , i.e. $(p_1, \ell), (p_2, \ell) \in \mathcal{I}$.
- 2 If $p \in \mathcal{P}$ is not lying on $\ell \in \mathcal{L}$, i.e. $(p,\ell) \notin \mathcal{I}$, then there exists a unique line ℓ_P passing through P, i.e. $(P,\ell_P) \in \mathcal{I}$, and ℓ_P parallel to ℓ .
- 3 There exists at least three non-collinear points.

Proposition C

There are four points such that any three of them are not lying on a same line.

Proof: By Axiom 3, let P, Q, R be three non-collinear points. Let

- ℓ_P : the unique line passing P that is $/\!/ \overline{QR}$
- ℓ_Q : the unique line passing Q that is $/\!/\overline{PR}$
- ℓ_R : the unique line passing R that is $/\!/\overline{PQ}$

By transitivity of parallelism, ℓ_P , ℓ_Q , ℓ_R are not parallel to each other. (**) Suppose ℓ_P and ℓ_Q intersect at S.

(*) Assume lp//lR (conting)

lp//QR, lp//PQ) = QR//PQ = diction,

lp and la intersect at 5

Claim: P,Q,R,Satateks.fin.

Proposition F

In an affine plane, all the lines contain the same number of points.

(Sketch)
$$l_1, l_2 \in \mathcal{L}$$

Built a bijection (pts on $l_1 \iff pts$ on l_2)

(1-1 mapping)

CaseO $l_1 \times l_2$

