COMP90042

SUBJECT EXAM REVIEW

PREPROCESSING

- Sentence segmentation
- Tokenization
- Word normalization
 - Derivational vs. inflectional morphology
 - Lemmatisation vs. stemming
- Stop words

TEXT CLASSIFICATION

- Building a classification system
- Evaluation metrics
- Algorithms
- ► Text classification tasks

LEXICAL SEMANTICS

- ► Lexical relationships (-nyms)
- Structure of WordNet
- Similarity metrics
- Approaches to Word Sense Disambiguation

DISTRIBUTIONAL SEMANTICS

- Matrices for distributional semantics
- Association measures
 - Calculating (P)PMI from a co-occurrence matrix
- Count-based models
 - Basics of singular value decomposition (SVD)
- Predict-based models
 - Skip-gram, CBOW
- Cosine similarity

PART OF SPEECH TAGGING

- English parts-of-speech
- Tagsets
 - ▶ not: fine-grained tags of any particular tagset
- Approaches

SEQUENCE MODELS FOR TAGGING

- Markov Models vs Hidden Markov Model
 - mathematical formulation of HMM, assumptions
- ► Training on fully observed data, e.g., tagging
- Viterbi algorithm
- Unsupervised HMMs: hard EM / soft EM
 - Forward-backward

INFORMATION EXTRACTION

- Named entity recognition
 - Models
 - Tagging formalisms (BIO)
- Relation extraction:
 - How to frame the problem using binary and multi-class classifiers
- Differences between supervised models and OpenIE.

TOPIC MODELS

- Differences between text classification and topic modelling
- Differences between LDA and HMMs
- Applications

CONTEXT-FREE GRAMMARS

- Basic syntax of English
 - ▶ **not:** detailed grammar (see Q9 from 2017)
- ► The context-free grammar formalism
- Parsing
 - CYK algorithm

PROB. CFGS

- Ambiguity in grammars
- Probabilistic context free grammars: rules, generative process, probability of a tree
- PCYK algorithm for parsing
- Comparing to Viterbi and other 'decoding' methods

DEPENDENCY GRAMMAR

- Notion of dependency between words
- Dependency grammars and dependency parse trees
 - Projectivity vs non-projectivity
 - Transition based parsing algorithm
- not: graph based parsing
- ▶ **not:** detailed dependency edge inventory

N-GRAM LANGUAGE MODELS

- Derivation
- Smoothing techniques
 - ightharpoonup Add-k
 - Interpolation vs. backoff
 - Absolute discounting
 - ▶ **not:** Kneser-Ney, continuation counts etc.
- Perplexity

RNN LANGUAGE MODELS

- Basics of neural network structure
- ► How to frame LM as a word-by-word classification task
 - feed-forward classifiers vs recurrent neural networks
- Links to seq2seq as used in MT, and classifiers used for other NLP tasks
- ▶ **not:** mathematical details of formulation

QUESTION ANSWERING

- Major approaches
- ► Information Retrieval QA pipeline
 - Passage retrieval
 - Answer extraction

INFORMATION RETRIEVAL FOUNDATIONS

- "Information need"
- ► TF*IDF weighting, components
 - Cosine similarity
- Efficient indexing
- Querying algorithm

IR INDEXING AND QUERYING

- Posting list compression
 - Use of gaps between document ids
 - vbyte encoding
 - opt-pfor-delta encoding
- WAND algorithm
- ▶ Index construction: static vs incremental
- Phrase search
 - positional index (intersection, extra information etc.)
 - ► **NOT** suffix array

IR QUERYING, EVALUATION AND L2R

- Query completion
 - trie+RMQ algorithm
 - Motivation, Data sources
- Relevance feedback (why, types)
- Evaluation methods
 - precision @ k, (Mean)AveragePrecision, RBP
 - research test collections
- Reranking IR system outputs using learned classifier

MACHINE TRANSLATION

- Motivation
- Word alignment with IBM model 1
 - ▶ **not:** mathematical derivation of alignment posterior
- Phrase based model; stack decoding algorithm
- Sequence to sequence model
 - ▶ **not:** mathematical formulation
- Evaluation
 - manual evaluation
 - automatic evaluation with BLEU

EXAM STRUCTURE

- Worth 50 marks
- Parts:
 - A: short answer [15]
 - B: method questions [17]
 - C: algorithm questions [10]
 - D: short essay [8]
- 2 hours in duration
 - ... 2 minutes 24 seconds / mark

SHORT ANSWER

- Several short questions
 - 1-2 sentence answers for each
 - 1 mark per question
- Often
 - definitional, e.g., what is X?
 - conceptual, e.g., relate X and Y? What is the purpose of Z?
 - may call for an example illustrating a technique/problem

METHOD QUESTIONS

- Longer answer
 - larger questions 5-7 marks each
 - broken down into parts
- Focus on analysis and understanding, e.g.,
 - contrast different methods
 - outline or analyze an algorithm
 - motivate a modelling technique
 - explain or derive mathematical equation

ALGORITHMIC QUESTIONS

- Perform algorithmic computations
 - numerical computations for algorithm on some given example data
 - present an outline of an algorithm on your own example
- 2 questions, each worth 4-6 marks.
- You won't be required to simplify maths, i.e., you can leave things as fractions

ESSAY QUESTION (8 MARKS)

- Expect to write 1 page
- Several broad topics in WSTA given, you should select one
 - no marks given for attempting many
- Provide
 - Definition and motivation
 - Relation to multiple tasks discussed in the class
 - Compare/contrast use across these tasks

WHAT TO EXPECT

- Even coverage of topic from the semester
- Be prepared for concepts that have not yet been assessed by homework / project
- Guest lectures are fair game
- Prescribed reading is fair game