Reinforcement Learning Lecture 7

 $TD(\lambda)$

Eligibility Traces

Robert Peharz

Institute of Theoretical Computer Science Graz University of Technology Winter Term 2023/24

Recap: Model-free Control with Monte Carlo

Monte Carlo Control with Exploring Starts

Image: pinterest.uk

GLIE

Greedy in the Limit with Infinite Exploration

Off-policy Monte Carlo via Importance Sampling

 $W \leftarrow W \frac{\pi(A_{\epsilon}|S_{\epsilon})}{6(A_{\epsilon}|S_{\epsilon})}$

Recap: TD-based Control

$$q(s,a) \leftarrow q(s,a) + \alpha (goal - q(s,a))$$

t	T V	+
	on-policy	off-policy
sample A	Sarsa $ \begin{array}{c} Sersa \\ Sersa \\ SARSA \end{array} $ $ \begin{array}{c} SARSA \\ Goal = \\ Re+1 + y q(Se+1, Ae+1) \end{array} $	Importance-weighted Sarga Goal = $R_{t+1} + y \frac{\pi(A_{t+1} S_{t+1})}{b(A_{t+1} S_{t+1})} q(S_{t+1}, A_{t+1})$
IE _A	Expected Sarsa $ Goal = R_{t+1} + y \sum_{a'} \pi(a' S_{t+1}) q(S_{t+1}, a') $	Goal = Rent + y max q(Sen, a')

TD(λ) and Eligibility Traces

Recall: n-step TD Updates

General update:
$$V(s) \leftarrow V(s) + \alpha (\hat{q} - V(s))$$

 $(1-step) \ TD: \hat{q} = R_{t+1} + \gamma V(S_{t+1})$
 $2-step \ TD: \hat{q} = R_{t+1} + \gamma R_{t+2} + \gamma^2 V(S_{t+2})$
 $3-step \ TD: \hat{q} = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 V(S_{t+3})$
 \vdots
 $\alpha - step \ TD: \hat{q} = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots = q_t$
 (ΠC)

Which is the best n? Which converges fastest?

Random Walk

Consider the random walk example again, but with 19 states. Difference to true un for various n and a:

Image: Sutton & Barto

Sweet spot at n=4 and $\alpha=0.39$. This is highly problem-dependent Since optimal n is hard to pick, why not take all of them?

N-step Return

(1-step)
$$TD: \hat{g} = R_{t+1} + \gamma \nu(S_{t+1})$$

=: \hat{g}_{t}

2-step $TD: \hat{g} = R_{t+1} + \gamma R_{t+2} + \gamma^2 \nu(S_{t+2})$

=: \hat{g}_{t}^2

3-step $TD: \hat{g} = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 \nu(S_{t+3})$

=: \hat{g}_{t}^3

::

 ∞ -step $TD: \hat{g} = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots = G_{t}$

=: \hat{g}_{t}^4

(MC)

$$\frac{n-step}{Gt} = \sum_{k=0}^{n-1} \chi^{k} R_{t+k+1} + \chi V(S_{t+n})$$

- · any Ĝt is a legit goal
- · any weighted average of Gi's is also a legit goal!
- · e.g. we could use $\frac{1}{2}\hat{G}_{t}^{2} + \frac{1}{2}\hat{G}_{t}^{4}$, but also average all \hat{G}_{t}^{n} 's

λ-Return

- · for $\lambda \in [0, 1]$ consider weights $(1-\lambda)\lambda^{n-1}$
- note that $\sum_{n=1}^{\infty} (1-\lambda) \lambda^{n-1} = 1$

stick breaking weights

$$h = 1$$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 - 1$
 $1 -$

Average all \hat{g}_{t}^{n} with these weights: $\frac{1 - \text{Return}}{1 - \text{Return}}$ $\hat{g}_{t}^{n} = (1 - \pi) \sum_{n=1}^{\infty} \lambda^{n-1} \hat{g}_{t}^{n}$

For finite episode length
$$T$$
:

$$G_{t}^{2} = (1-3) \sum_{n=1}^{T-t-1} \lambda^{n-1} \hat{g}_{t}^{n} + \lambda^{T-t-1} \hat{g}_{t}^{\infty}$$

Note:
$$G^{1} = \hat{G}^{1}$$

$$G^{2} = \hat{G}^{2}$$

λ-Return for Prediction

$$\frac{n-step}{G_t} \stackrel{n-1}{=} \sum_{k=0}^{K} {\binom{N}{k}} {\binom{N}{k+1}} + {\binom{N}{k}} {\binom{N}{k+1}} + {\binom{N}{k+1}} {\binom{N}{k+1}}$$

$$V(s) \leftarrow V(s) + \alpha (\hat{g}_t^n - V(s))$$

$$\frac{1-\text{return algorithm}}{G_{t}^{2}} = (1-1)\sum_{n=1}^{\infty} \lambda^{n-1} \hat{G}_{t}^{n}$$

$$V(s) \leftarrow V(s) + \alpha(G_{t}^{2} - V(s))$$

Prediction with λ-Return

Let
$$\alpha \in (0,1]$$
, $\beta \in [0,1]$
Initialize $\nu(s)$ arbitrarily, except $\nu(s) = 0$ for terminal s
- repeat

- using π generate episode

 $S_0, A_0, R_0, S_1, A_1, R_2, S_2, A_2, \ldots, S_{T-1}, A_{T-1}, R_T, S_T$

- for $t = T-1 \ldots 0$

- for $n = 1 \ldots T - t$ $\hat{G}_t^n = \begin{cases} R_{t+1} + \gamma \nu(S_{t+1}) & \text{if } n = 1 \\ R_{t+1} + \gamma \hat{G}_{t+1}^{n-1} & \text{if } 2 \leq n \leq T - t \end{cases}$

- $G_t^2 = (1-\lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} \hat{G}_t^n + \lambda^{T-t-1} \hat{G}_t^{T-t}$

- $\nu(S_t) \leftarrow \nu(S_t) + \alpha (G_t^2 - \nu(S_t))$

$$\frac{(*)}{g_t} = \sum_{k=0}^{n-1} y^k R_{t+k+1} + y^k V(S_{t+n}) = R_{t+n} + \sum_{k=1}^{n-1} y^k R_{t+k+n} + y^k V(S_{t+n})$$

$$= R_{t+1} + y \left(\sum_{k=0}^{n-2} y^k R_{t+k+2} + y^{n-1} V(S_{t+1} + n-1)\right) = R_{t+1} + y G_{t+1}$$

N-step TD vs. λ-Return

Consider the random walk example with 19 states. Difference to true up for various n(A) and a

Some intermediate value of 2=0.5 "will usually do."

Control with λ-Return

Let
$$\epsilon>0$$
, $\alpha \in (0,1]$, $\beta \in [0,1]$
Initialize $q(s,a)$ arbitrarily, except $q(s,a)=0$ for terminal s

- repeat

- using ϵ -greedy(q), generate episode

So, A_0 , R_1 , S_1 , A_1 , R_2 , S_2 , A_2 , ..., S_{T-1} , A_{T-1} , R_T , S_T

- for $t=T-1...0$

if $n=1$

$$f^{\dagger}=\begin{cases} R_{t+1}+\gamma \hat{q}_{t+1} & \text{if } 2\leq n\leq T-t \\ R_{t+1}+\gamma \hat{q}_{t+1} & \text{if } 2\leq n\leq T-t \end{cases}$$

$$-q(s^t,A^t) \leftarrow q(s^t,A^t)+\alpha(q^t,A^t)$$

What is the drawback of this algorithm?

λ-Return as Forward View Algorithm

Image: Sutton & Barto

- · A-return is a "forward view" algorithm
- · we need to wait until the end of the episode
- · same disadvantage as MC (since Gt contains gt)

Is there a Backward View?

Image: Sutton & Barto

Eligibility Traces

Do the bells or the light cause the shock?

Eligibility Traces

- · did the bells or the light cause the electric shock?
- · bells: more frequent

- · heuristic credit assignment
- · <u>eligibility traces</u> combine both heroistics

$$t = 0$$
: $e(s) \leftarrow 0$

$$t>0$$
: $e(s) \leftarrow \lambda_{\gamma}e(s) + I[S+=s]$

exponential decay pumps up by 1" if state is visited

Images: D. Silver

TD(λ)

"One the oldest and most widely used algorithms in RL"

Sutton & Barto, p. 292

Given: 11 // TD(A) is a prediction algorithm α, λ, γ initialize V(s) arbitrarily ts repeat until v has converged $e(s) \leftarrow 0 \quad \forall s$ initialize S repeat until S is terminal or v has converged A~ M(als) observe S', R // Np(s', a | S, A) e(s) - Are(s) + II[S=s] +s $\delta \leftarrow R + \gamma v(S') - v(S)$ | TD error $v(S) \leftarrow v(S) + \alpha \delta e(S)$ $S \leftarrow S'$

Forward λ -Return vs TD(λ)

Update using
$$\lambda$$
-return: $V(S_t) \leftarrow V(S_t) + \alpha(g_t^{\lambda} - V(S_t))$
error term

It can be shown that:
$$eligibility trace e$$

$$Gt - v(St) = \sum_{t=1}^{\infty} (A_{\gamma})^{t-1} (R_{t+1} + \gamma v(S_{t+1}) - v(S_{t}))$$

Hence, A-return and TD(A) are almost the same algorithm ∇ TD(A) updates immediately, while A-return waits until end of episode. Accumalating de in TD(A) until end of episode before updating would make the two equivalent

- · TD(O) is TD
- · TD(1) is akin to MC, but with immediate updates

Forward λ -Return vs TD(λ)

Image: Sutton & Barto

Sarsa(λ)

```
Given: a, A
                                               Hs,a
initialize q(s,a) arbitrarily
repeat until q has converged
      e(s,a) \leftarrow 0 \quad \forall s,a
     initialize S
      A~ E-greedy (q(S,·))
      repeat until S is terminal or q has converged
       observe S', R // Np(s', r | S, A)
         AN E-greedy (q(s',·))
         e(s,a) - Are(s,a) + 11 S=s A=a + s,a
         \delta \leftarrow R + \gamma q(s',A') - q(s,A) \qquad \text{ITD error}
q(s,a) \leftarrow q(s,a) + \alpha \delta e(s,a) + s_1 \alpha
          S,A \leftarrow S',A'
```

Eligibility Trace of Sarsa(λ)

Image: Sutton & Barto

Summary

$$g_{t}^{n} := \sum_{k=0}^{n-1} \chi^{k} R_{t+k+1} + \chi^{n} V(S_{t+n})$$

A-return algorithm

$$G_{t}^{2} = (1-3) \sum_{n=1}^{\infty} \lambda^{n-1} \hat{G}_{t}^{n}$$

$$V(s) \leftarrow V(s) + \alpha(g_t^2 - V(s))$$

eligibility traces

$$t \cdot 0$$
: $e(s) \leftarrow 0$

$$t>0$$
: $e(s) \leftarrow \lambda \gamma e(s) + I[S+=s]$

$$e(s) \leftarrow Are(s) + II[S=s] + s$$

 $\delta \leftarrow R + rv(s') - v(s)$
 $v(s) \leftarrow v(s) + \alpha \delta e(s)$

