Lineare Algebra S2

Raphael Nambiar

Version: 19. Mai 2022

Vektorgeometrie

Begriffe

Kollinear: Es existiert eine Gerade q, zu der beide Vektoren parallel sind.

Komplanar: Existiert eine Ebene e, zu der alle drei Vektoren parallel.

Ortsvektor: Beginnt vim Ursprung. Schreibweise: $\vec{r}(P)$

Betrag

$$\mid \vec{a} \mid = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \sqrt{x^2 + y^2 + z^2}$$

Skalarprodukt

$$\vec{a} \cdot \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \cdot \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = a_x b_x + a_y b_y + a_z b_z$$
$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\varphi)$$
$$\cos(\varphi) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

Orthogonal

Wenn zwei Vektoren senkrecht zueinander sind.

$$\vec{a} \cdot \vec{b} = 0$$

Orthogonale Projektion

Projektion des Vektores \vec{b} auf den Vektor \vec{a}_{\cdot} . $\vec{b}_a = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \cdot \vec{a}$

$$\vec{b}$$

$$b_a = \frac{\vec{a} \cdot \vec{c}}{|\vec{a}|^2} \cdot \vec{a}$$

$$|\vec{b}_a| = \frac{|\vec{a}| \cdot |\vec{b}|}{|\vec{a}|}$$

$$|\vec{b}_a| = |\vec{a}| \cdot \cos(\varphi)$$

Zwischenwinkel

$$\varphi = \cos^{-1}(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|})$$

Einheitsvektor

$$\vec{e}_a = \frac{1}{|\vec{a}|} \cdot \vec{a}$$
 $|\vec{e}_a| = 1$

Vektorprodukt

$$\begin{array}{c|c}
 & a_1 \\
 & a_2 \\
 & a_3 \\
 & a_3 \\
 & a_1 \\
 & a_1 \\
 & a_1 \\
 & a_2 \\
 & b_2 \\
 & b_3 \\
 & a_1 \\
 & a_2 \\
 & a_2 \\
 & a_1 \\
 & a_1 \\
 & a_1 \\
 & a_2 \\
 & a_2 \\
 & a_2 \\
 & a_1 \\
 & a_1 \\
 & a_2 \\
 &$$

$$\mid \vec{a} \times \vec{b} \mid = \mid \vec{a} \mid \cdot \mid \vec{b} \mid \cdot \cos(\alpha)$$

$$\vec{a} \times \vec{b} \text{ ist orthogonal zu } \vec{a} \text{ und zu } \vec{b}$$

$$|\vec{a} \times \vec{b}| = \mathsf{A}$$
 Dreieck $= \frac{1}{2} \mathsf{A}$

Geraden

Normalenvektor

BD

Parameterdarstellung

$$g: \vec{r}(P) + \lambda \cdot \vec{a}$$

P: Aufpunkt

 $\vec{a} = \overrightarrow{PQ}$: = Richtungsvektor

Koordinatendarstellung

$$E: ax + by + c = 0$$

Koordinatendarstellung zu Parameterdarstellung

Parameterdarstellung zu Koordinatendarstellung

Abstand Punkt zu Geraden

Gerade g:
$$\begin{pmatrix} 1\\13\\-5 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 3\\5\\-4 \end{pmatrix}$$

Punkt A: (3, -1, 4)

$$\overrightarrow{PA} = \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} - \begin{pmatrix} 1 \\ 13 \\ -5 \end{pmatrix} = \begin{pmatrix} 2 \\ -14 \\ 9 \end{pmatrix}$$

Lage Geraden

Identisch:

Parallel:

Schneidend:

Windschief:

Lage Bestimmen

Ebene

Normalenvektor der Ebene (orthogonal zur Ebene)

Auf der Ebene E senkrecht stehnder Vektor \vec{n} .

$$\vec{n} = \vec{a} \times \vec{b}$$

Parameterdarstellung

$$E: \vec{r}(P) + \lambda \cdot \vec{a} + \mu \cdot \vec{b}$$

P: Aufpunkt

$$\vec{a} = \overrightarrow{PQ}$$
; $\vec{b} = \overrightarrow{PR} = \text{Richtungsvektoren}$

Koordinatendarstellung

$$E: ax + by + cz + d = 0$$

Parameterdarstellung zu Koordinatendarstellung

$$E: \begin{pmatrix} 2\\4\\1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1\\3\\1 \end{pmatrix} + \mu \cdot \begin{pmatrix} 2\\4\\-4 \end{pmatrix}$$
$$\vec{n} = \begin{pmatrix} 1\\3\\1 \end{pmatrix} \times \begin{pmatrix} 2\\4\\-4 \end{pmatrix} = \begin{pmatrix} -14\\6\\-4 \end{pmatrix}$$

(2) Koordinatendarstellung E: -14x + 6y - 4z + d = 0

(3) Aufpunkt einsetzen:
$$\begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} \Rightarrow E: -14 \cdot 2 + 6 \cdot 4 - 4 \cdot 1 + d = 0$$

(4) d ausrechnen: $E: -14 \cdot 2 + 6 \cdot 4 - 4 \cdot 1 + d = 0 \Rightarrow d = 8$

(5) E: -14x + 6y - 4z + 8 = 0 $\Rightarrow \frac{-14x + 6y - 4z + 8 = 0}{2} \Rightarrow E: -7x + 3y - 2z + 4 = 0$

$$\Rightarrow \frac{-14x + 6y - 4z + 8 = 0}{2} \Rightarrow E : -7x + 3y - 2z + 4 = 0$$

Koordinatendarstellung zu Parameterdarstellung

Abstand Punkt zu Geraden

Abstand
$$l=\frac{|ax_A+bx_A+cz_A+d|}{|\vec{n}|}$$

Ebene E: 7x + 4y + -4z + 3 = 0

Punkt A = (2, -3, -1)

(1) \vec{n} bestimmen: $\sqrt{a^2 + b^2 + c^2} = 9$

(2) A in E einsetzten \rightarrow in Formel einsetzten:

 $\widetilde{l} = \frac{7 \cdot 2 + 4 \cdot -3 - 4 \cdot -1}{9} = 1$

Lage Geraden

Identisch:

Parallel:

Schneidend:

Windschief:

Lage Bestimmen

Rang

Matrix muss in Zeilenstufenform sein.

$$\begin{array}{llll} rg(A) &=& \mathsf{Gesamtanzahl} & \mathsf{Zeilen} & \mathsf{-} & \mathsf{Anzahl} & \mathsf{Nullzeilen} & \mathsf{.} \\ \mathsf{A} &=& \begin{pmatrix} 1 & 2 & 3 \\ 0 & 6 & 4 \\ 0 & 3 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & 6 & 4 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \begin{array}{l} \mathsf{rang}(\mathsf{A}) = 2 \\ \mathsf{rang}(\mathsf{A}|\mathsf{b}) = 2 \\ \mathsf{A} \end{array}$$

Lösbarkeit von LGS

Das LGS $A \cdot \vec{x} = \vec{c}$ ist genau dann lösbar, wenn $\operatorname{rg}(A) = \operatorname{rg}(A \mid \vec{c})$. Es hat genau eine Lösung, falls **zusätzlich** gilt: $\operatorname{rg}(A) = n$. Es hat unendlich viele Lösungen, falls **zusätzlich** gilt: $\operatorname{rg}(A) < n$.

Begriffe

Quadratische Matrix: gleich viele Zeilen und Spalten

Hauptdiagonale: Die Diagonale von links oben nach rechts unten

Untere- und obere Dreiecksmatrix

Beispiel	(a) (1. L. J.) 	(b) (1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
Beschreibung	unles des Happdia. alles Nyl.	den des Hapldig. alles Null.
Bezeichnung	Ober Dreischundfix U=Upper	Unlere Dreichnahr

Symmetrische Matrix : symmetrisch bzgl. Hauptdiagonale

$$\begin{pmatrix} 1 & 5 & 6 \\ 5 & 2 & 3 \\ 6 & 3 & 1 \end{pmatrix}$$

Multiplikation / Rechenregeln

Transponieren

TBD

Inverse

Matrix muss quadratisch sein: $n \times n \rightarrow 2 \times 2, 3 \times 3$

2x2

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Die 2×2 -Matrix hat genau dann ein Invese wenn $ad-bc \neq 0$

3x3 und grösser

 \rightarrow Gauss - Jordan

$$\begin{pmatrix} 2 & 1 & 1 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} : 2 \qquad \qquad \begin{pmatrix} 1 & 1/2 & 1/2 & 1/2 & 0 & 0 \\ 3 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \leftarrow \begin{bmatrix} 1 & 1/2 & 1/2 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 1 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 1/2 & 1/2 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 1 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 1/2 & 1/2 & 1/2 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 1 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 1/2 & 1/2 & 1/2 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 1 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 1/2 & 1/2 & 1/2 & 0 & 0 \\ 0 & 1 & 1/3 & 1 & -2/3 & 0 \\ 0 & 0 & 1/3 & -2 & 4/3 & 1 \end{pmatrix} \cdot 3 \qquad \leftarrow \begin{bmatrix} 1 & 1/2 & 1/2 & 1/2 & 0 & 0 \\ 0 & 1 & 1/3 & 1 & -2/3 & 0 \\ 0 & 0 & 1 & -6 & 4 & 3 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 1/2 & 1/2 & 1/2 & 0 & 0 \\ 0 & 1 & 1/3 & 1 & -2/3 & 0 \\ 0 & 0 & 1 & -6 & 4 & 3 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 1/2 & 1/2 & 1/2 & 0 & 0 \\ 0 & 1 & 1/3 & 1 & -2/3 & 0 \\ 0 & 0 & 1 & -6 & 4 & 3 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 1/2 & 1/2 & 1/2 & 0 & 0 \\ 0 & 1 & 1/2 & 0 & 1/2 & 2 & -3/2 \\ 0 & 1 & 0 & 3 & -2 & -1 \\ 0 & 0 & 1 & -6 & 4 & 3 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 1/2 & 1/2 & 1/2 & 0 & 0 \\ 0 & 1 & 1/2 & 0 & 1/2 & 2 & -3/2 \\ 0 & 1 & 0 & 3 & -2 & -1 \\ 0 & 0 & 1 & -6 & 4 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 1 & 1 \\ 3 & 0 & 1 \\ -6 & 4 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -1 & -1 \\ 3 & -2 & -1 \\ -6 & 4 & 3 \end{bmatrix}$$

Determinante

2x2

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \cdot d - b \cdot c$$

3x3 Regel von Sarrus

$$\begin{vmatrix} a & b & c \\ d & e & f \\ q & h & i \end{vmatrix} = a \cdot e \cdot i + b \cdot f \cdot g + c \cdot d \cdot h - g \cdot e \cdot c - h \cdot f \cdot a - i \cdot d \cdot b.$$

Laplacescher Entwicklungssatz (>3x3)

Entwickeln nach derjenigen Zeile oder Spalte, in der die meisten Nullen stehen (hier gelb)

$$\begin{vmatrix} 2 & -1 & 3 & 0 & 5 \\ 0 & 4 & 1 & 3 & -2 \\ \hline 0 & \overline{0} & 2 & 0 & 0 \\ 6 & 2 & -1 & 0 & 3 \\ 3 & -1 & 4 & 0 & 2 \end{vmatrix} \rightarrow 2 \cdot det \begin{vmatrix} 2 & 1 & 0 & 5 \\ 0 & 4 & 3 & -2 \\ 6 & 2 & 0 & 3 \\ 3 & -1 & 0 & 2 \end{vmatrix}$$

$$A = \begin{bmatrix} a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{bmatrix}$$
 Entwicklen nach 1er
$$\det(A) = \frac{1}{2} + a_{00} \cdot \det \begin{bmatrix} a_{11} & a_{12} \\ a_{20} & a_{21} \end{bmatrix} - a_{01} \cdot \det \begin{bmatrix} a_{10} & a_{12} \\ a_{20} & a_{21} \end{bmatrix} + a_{02}$$

$$\det(A) = +\underline{a_{00}} \cdot \det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} - \underline{a_{01}} \cdot \det \begin{bmatrix} a_{10} & a_{12} \\ a_{20} & a_{22} \end{bmatrix} + \underline{a_{02}} \cdot \det \begin{bmatrix} a_{10} & a_{11} \\ a_{20} & a_{21} \end{bmatrix}
= +a_{00}(a_{11}a_{22} - a_{12}a_{21}) - a_{01}(a_{10}a_{22} - a_{12}a_{20}) + a_{02}(a_{10}a_{21} - a_{11}a_{20})
= +a_{00}a_{11}a_{22} + a_{01}a_{12}a_{20} + a_{02}a_{10}a_{21} - a_{00}a_{12}a_{21} - a_{01}a_{10}a_{22} - a_{02}a_{11}a_{20}$$

det **Dreiecksmatrix** = Produkt der Hauptdiagonale

Rechenregeln

- (1) Für die Einheitsmatrix E gilt: det(E) = 1
- (2) Für jede $n \times n$ -Dreiecksmatrix U gilt: $\det(U) = u_{11} \cdot u_{22} \cdot \dots \cdot u_{nn}$
- (3) Für jede quadratische Matrix A gilt: $det(A^T) = det(A)$
- (4) Für alle $n \times n$ -Matrizen A und B gilt: $\det(A \cdot B) = \det(A) \cdot \det(B)$
- (5) Für jede invertierbare Matrix A gilt: $\det(A^{-1}) = \frac{1}{\det(A)}$
- (6) Für jede $n \times n$ -Matrix A und jedes $\lambda \in \mathbb{R}$ gilt: $\det(\lambda \cdot A) = \lambda^n \cdot \det(A)$

$$2 \times 2 \to det(5 \cdot A) = 5^2 \cdot det(A)$$

$$3 \times 3 \rightarrow det(5 \cdot A) = 5^3 \cdot det(A)$$

Geometrische Interpretation der Determinante

2x2

Fläche von \vec{a} und \vec{b} = Betrag von $det \begin{vmatrix} a1 & b1 \\ a2 & b2 \end{vmatrix}^{\frac{1}{a}}$

3x3

Volumen von \vec{a} , \vec{b} und \vec{c} = Betrag von $det \begin{vmatrix} a1 & b1 & c1 \\ a2 & b2 & c2 \\ a3 & b3 & c3 \end{vmatrix}$

