Limites e Derivadas

2.2

O Limite de uma Função

Copyright © Cengage Learning. Todos os direitos reservados.

Copyright © Cengage Learning. Todos os direitos reservados.

O Limite de uma Função

Para encontrar as tangentes a uma curva ou a velocidade de um objeto, vamos voltar nossa atenção para os limites em geral e para os métodos de calculá-los.

Vamos analisar o comportamento da função f definida por $f(x) = x^2 - x + 2$ para valores de x próximos de x.

O Limite de uma Função

A tabela a seguir fornece os valores de f(x) para valores de x próximos de 2, mas não iguais a 2.

x	f(x)	x	f(x)
1,0	2,000000	3,0	8,000000
1,5	2,750000	2,5	5,750000
1,8	3,440000	2,2	4,640000
1,9	3,710000	2,1	4,310000
1,95	3,852500	2,05	4,152500
1,99	3,970100	2,01	4,030100
1,995	3,985025	2,005	4,015025
1,999	3,997001	2,001	4,003001

3

4

O Limite de uma Função

Da tabela e do gráfico de f (uma parábola) mostrado na Figura 1, vemos que quanto mais próximo x estiver de 2 (de qualquer lado de 2), mais próximo f(x) estará de 4.

O Limite de uma Função

De fato, parece que podemos tornar os valores de f(x) tão próximos de 4, quanto quisermos, ao tornar x suficientemente próximo de 2.

Expressamos isso dizendo que "o limite da função $f(x) = x^2 - x + 2$ quando x tende a 2 é igual a 4."

A notação para isso é $\lim_{x\to 2} (x^2 - x + 2) = 4$

5

O Limite de uma Função

Em geral, usamos a seguinte notação.

1 Definição intuitiva de limite Suponha que f(x) seja definido quando está próximo número a. (Isso significa que f é definido em algum intervalo aberto que a, exceto possivelmente no próprio a.) Então escrevemos

$$\lim_{x \to a} f(x) = L$$

e dizemos

"o limite de f(x), quando x tende a a, é igual a L"

se pudermos tornar os valores de f(x) arbitrariamente próximos de L (tão próximos de L quanto quisermos), ao tomar x suficientemente próximo de a (por ambos os lados de a), mas não igual a a

Grosso modo, isso significa que os valores de f(x) tendem a L quando x tende a. Em outras palavras, os valores de f(x)tendem a ficar cada vez mais próximos do número L à medida que x tende ao número a (por qualquer lado de a), $\max x \neq a$.

O Limite de uma Função

Uma notação alternativa para

$$\lim_{x \to a} f(x) = L$$

$$\acute{e}$$
 $f(x) \rightarrow L$ como $x \rightarrow a$

que geralmente é lida como "f(x) tende a L quando x tende

Observe a frase "mas $x \neq a$ " na definição de limite. Isso significa que ao procurar o limite de f(x) quando x tende a a, nunca consideramos x = a. Na verdade, f(x) não precisas sequer estar definida quando x = a. A única coisa que importa é como f está definida próximo de a.

8

O Limite de uma Função

A Figura 2 mostra os gráficos de três funções. Note que, na parte (c), f(a) não está definida e, na parte (b), $f(a) \neq L$.

Mas em cada caso, não importando o que acontece em a, é verdade que $\lim_{x\to a} f(x) = L$.

 $\lim_{x \to a} f(x) = L \text{ nos três casos}$

Figura 2

Exemplo 1

Estime o valor de $\lim_{x\to 1} \frac{x-1}{x^2-1}$.

Solução: Observe que a função $f(x) = (x - 1)/(x^2 - 1)$ não está definida quando x = 1, mas isso não importa, pois a definição de $\lim_{x\to a} f(x)$ diz que devemos considerar valores de x que estão próximos de a, mas não iguais a a.

10

Exemplo 1 – Solução

continuação

11

As tabelas à esquerda dão os valores de f(x) (com precisão de seis casas decimais) para os valores de x que tendem a 1 (mas não são iguais a 1).

x < 1	f(x)
0,5	0,666667
0,9	0,526316
0,99	0,502513
0,999	0,500250
0,9999	0,500025

x > 1	f(x)
1,5	0,400000
1,1	0,476190
1,01	0,497512
1,001	0,499750
1,0001	0,499975

Com base nesses valores, podemos conjecturar que

$$\lim_{x \to 1} \frac{x - 1}{x^2 - 1} = 0,5.$$

O Limite de uma Função

O Exemplo 1 está ilustrado pelo gráfico de f na Figura 3. Agora vamos mudar ligeiramente f definindo seu valor como 2 quando x = 1 e chamando a função resultante de q:

$$g(x) = \begin{cases} \frac{x-1}{x^2 - 1} & \text{se } x \neq 1 \\ 2 & \text{se } x = 1 \end{cases}$$

O Limite de uma Função

Essa nova função g tem o mesmo limite quando x tende a 1 (veja a Figura 4).

Figura 4

13

Limites Laterais

14

Limites Laterais

A função de heaviside H, é definida por

$$H(t) = \begin{cases} 0 & \text{se } t < 0 \\ 1 & \text{se } t \ge 0 \end{cases}$$

H(t) tende a 0 quando t tende a 0 pela esquerda, e H(t) tende a 1 quando t tende a 0 pela direita. Indicamos essa situação simbolicamente escrevendo

$$\lim_{t\to 0^-} H(t) = 0$$

$$\lim_{t \to 0^+} H(t) = 1$$

Limites Laterais

A notação " $t \rightarrow 0$ -" indica que estamos considerando somente valores de t menores que 0.

Da mesma forma, " $t \rightarrow 0^+$ " indica que estamos considerando somente valores de t maiores que 0.

15

Limites Laterais

2 Definição de Limites Laterais Escrevemos

 $\lim_{x \to a^{-}} f(x) = L$

e dizemos que o **limite à esquerda** de f(x) quando x tende a a [ou o **limite de** f(x) quando x tende a a pela **esquerda**] é igual a L se pudermos tornar os valores de f(x) arbitrariamente próximos de L, para x suficientemente próximo de a e x menor que a.

Perceba que a Definição 2 difere da Definição 1 somente por necessitarmos que x seja menor que a.

Limites Laterais

De maneira semelhante, se exigirmos que x seja maior que a, obtemos "o **limite a direita de** f(x) **quando** x **tende a** a e é igual a obtemos L" e escrevemos

$$\lim_{x \to a^{+}} f(x) = L$$

Dessa forma, a notação " $x \rightarrow a^+$ " indica que estamos considerando somente x maior que a. Essas definições estão ilustradas na Figura 9.

imites Laterais

Comparando a Definição 1 com as definições de limites laterais, vemos ser verdadeiro o que segue.

3
$$\lim_{x \to a} f(x) = L$$
 se e somente se $\lim_{x \to a^-} f(x) = L$ e $\lim_{x \to a^+} f(x) = L$

19

Exemplo 7

O gráfico de uma função g é apresentado na Figura 10. Use-o para estabelecer os valores (caso existam) dos seguintes limites:

(a)
$$\lim_{x \to 2^{-}} g(x)$$

(b)
$$\lim_{x \to 2^+} g(x)$$

(c)
$$\lim_{x \to 2} g(x)$$

(d)
$$\lim_{x \to 5^-} g(x)$$

(e)
$$\lim_{x \to 5^+} g(x)$$

(f)
$$\lim_{x \to 5} g(x)$$

20

Exemplo 7 – Solução

A partir do gráfico, vemos que os valores de g(x) tendem a 3 à medida que os de x tendem a 2 pela esquerda, mas tendem a 1 quando x tende a 2 pela direita. Logo

(a)
$$\lim g(x) = 3$$

(a)
$$\lim_{x \to 2^{-}} g(x) = 3$$
 e (b) $\lim_{x \to 2^{+}} g(x) = 1$

(c) Uma vez que são diferentes os limites à esquerda e à direita, concluímos de $3 \lim_{x\to 2} g(x)$ não existe.

Limites Infinitos

Exemplo 7 – Solução

continuação

O gráfico mostra também que

(d)
$$\lim_{x \to 5^{-}} g(x) = 2$$
 e (e) $\lim_{x \to 5^{+}} g(x) = 2$

(e)
$$\lim g$$

(f) Agora, os limites à esquerda e à direita são iguais; assim, de 3, temos

$$\lim_{x \to 5} g(x) = 2$$

Apesar desse fato, observe que $g(5) \neq 2$.

22

21

Limites Infinitos

4 Definição Intuitiva de Limite Indefinido Seja f uma função definida em ambos os lados de a, exceto possivelmente no próprio a. Então

$$\lim_{x \to a} f(x) = \infty$$

significa que podemos fazer os valores de f(x) ficarem arbitrariamente grandes (tão grandes quanto quisermos) tornando x suficientemente próximo de a, mas não igual a a.

$$f(x) \to \infty$$
 quando $x \to a$

23

24

Limites Infinitos

Novamente, o símbolo ∞ não é um número; todavia, a expressão $\lim_{x \to a} f(x) = \infty$ é usualmente lida como

"o limite de f(x), quando x tende a a, é infinito"

ou "f(x) se torna infinito x quando tende a a"

ou "f(x) aumenta ilimitadamente quando x tende a a"

Limites Infinitos

Essa definição está ilustrada na Figura 12.

25

Limites Infinitos

Um tipo análogo de limite, para funções que se tornam grandes em valor absoluto, porém negativas, quando \boldsymbol{x} tende a \boldsymbol{a} , cujo significado está na Definição 5, é ilustrado na Figura 13.

27

Limites Infinitos

$$\lim_{x \to a} f(x) = -\infty$$

significa que os valores de f(x) podem ser arbitrariamente grandes, porém negativos, ao tornarmos x suficientemente próximo de a, mas não igual a a.

O símbolo $\lim_{x\to a} f(x) = -\infty$ pode ser lido das seguintes fromas "o limite de f(x), quando tende a a, menos é infinito" ou "f(x) decresce ilimitadamente quando x tende a a." Como exemplo, temos

$$\lim_{x \to 0} \left(-\frac{1}{x^2} \right) = -\infty$$

28

26

Limites Infinitos

Definições similares podem ser dadas no caso de limites laterais

$$\lim_{x \to \infty} f(x) = \infty$$

$$\lim_{x \to a^+} f(x) = \infty$$

$$\lim f(x) = -\infty$$

$$\lim_{x \to a^+} f(x) = -\infty$$

lembrando que " $x \to a$ -" significa considerar somente os valores de x menores que a, ao passo que $x \to a$ + significa considerar somente x > a.

Limites Infinitos

Ilustrações desses quatro casos são dados na Figura 14.

29 Figura 14 30

Limites Infinitos

$$\lim_{x\to a}f(x)=\infty$$

$$\lim_{x \to a^{-}} f(x) = \infty$$

$$\lim_{x \to a^+} f(x) = \infty$$

$$\lim_{x \to a} f(x) = -\infty$$

$$\lim_{x \to a^{-}} f(x) = -\infty$$

$$\lim_{x \to a^+} f(x) = -\infty$$

31

Exemplo 10 – Solução

continuação

Isso mostra que a reta $x = \pi/2$ é uma assíntota vertical. Um raciocínio similar mostra que as retas $x = \pi/2 + n\pi$, onde n é um número inteiro, são todas assíntotas verticais de $f(x) = \tan x$. O gráfico da Figura 16 confirma isso.

33

Exemplo 10

Encontre as assíntotas verticais de $f(x) = \tan x$.

Solução: Como

$$\tan x = \frac{\sin x}{\cos x}$$

existem assíntotas verticais em potencial nos pontos nos quais $\cos x = 0$.

De fato, como $\cos x \to 0^+$ quando $x \to (\pi/2)^-$ e $\cos x \to 0^-$ quando $x \to (\pi/2)^+$, enquanto sen x é positivo (próximo de 1) quando x está próximo de $\pi/2$, temos

$$\lim_{x \to (\pi/2)^-} \operatorname{tg} x = \infty \qquad \text{e} \qquad \lim_{x \to (\pi/2)^+} \operatorname{tg} x = -\infty.$$

32