

EXECUTIVE SUMMARY

EEAP, NORFOLK DISTRICT

ABERDEEN PROVING GROUNDS, MARYLAND

BOILER/ CHILLER

DEPARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS P.O. BOX 9005 CHAMPAIGN, ILLINOIS 61826-9005

REPLYTO ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakeffeld, Librarian Engineering

FINAL REPORT

EXECUTIVE SUMMARY

EEAP, NORFOLK DISTRICT

ABERDEEN PROVING GROUNDS, MARYLAND

BOILER/ CHILLER

Prepared for:

Department of the Army Norfolk District, Corps of Engineers Norfolk, Virginia 23510

Under Contract No. DACA-65-84-C-0105

November 1986

B. N. Gidwani, P.E. Project Manager

Straway

Approved to public relocated biocomputation that the contraction of th

ROY F. WESTON, INC.
Weston Way
West Chester, Pennsylvania 19380

W.O. #0335-72-01

TABLE OF CONTENTS

Section		<u>Page</u>
	ABERDEEN AREA	
	Executive Summary	
1.1	Introduction	1-1
1.2	Historical Energy Consumption	1-1
1.3	Findings	1-1
1.4	Recommended Projects	1-21
	Volume I: Survey and Test Results	
	Table of Contents	i
1	Introduction	1-1
2	<pre>Energy Conservation Opportunities (ECO's Investigated)</pre>	2-1
	<pre>1.1 Chiller Plant ECO's 1.2 Boiler Plant ECO's</pre>	2-1 2-6
3	Summary of Energy Conservation Opportunities Applicable for Boiler and Chiller Plant	3-1
4	Field Data for Boiler Plants	4-1
5	Field Data for Chiller Plants	5-1
6	Boiler and Chiller Performance Tests	6-1

TABLE OF CONTENTS (CONTINUED)

Section	ABERDEEN A	REA	Page
	Volume	II: Evaluation of ECO's	
		of Contents f Tables and Figures	i iii
1	Introd	uction	1-1
2	Basis	of Analysis	
	2.1	Fuel Oil Cost Plus Historical Fuel Consumption	2-1
	2.3	Electricity Costs Fuel Conversion Factors Factors Used for Calculating SIR Fuel Cost per MBtu	2-1 2-4 2-4 2-4
3	Chille	r PLant ECO's	
	3.2	Chilled Water Temperature Reset Condenser Water Reset Small Chiller Application - Building E3300	3-1 3-35 3-62
	3.5 3.6 3.7	Free Cooling Automatic Variable Pitch Tower Fans Variable Speed Tower Fan Drives Optimization of Chiller Operation Shutting Off/Cycling the Circulating Pumps	3-67 3-68 3-75 3-88
		Condenser Water Treatment Reduce Chilled Water Flow with Load (Variable Speed Drive on Chilled Water Pumps)	3-90 3-91
	3.11	Chiller Replacement Study	3-118
4	Boiler	Plant ECO's	
	4.2 4.3 4.4 4.5	Boiler Economizer Boiler Trim Controls Combustion Air From Ceiling Blowdown Controls Installation of New Burner Equipment	4-1 4-45 4-58 4-77 4-85
	4.8	Small Boiler Application Reduce Steam Pressure Reduction in Makeup Water Quantities Variable Speed ID Fans and FD Blowers	4-97 4-98 4-99 4-100
		Air vs. Steam Atomization Boiler Replacement Study	4-104 4-105
5	Operat	ion and Maintenance Procedures	5-1

TABLE OF CONTENTS (CONTINUED)

ABERDEEN AREA		Page
	Volume III: Appendix	
	Table of Contents	i
APPENDIX A	Life Cycle Cost Analysis for Chiller Plant ECO's	A-1
APPENDIX B	Life Cycle Cost Analysis for Boiler Plant ECO's	B-1
APPENDIX C	Response to Review Comments of Preliminary Submittal	C-1
APPENDIX D	Response to Review Comments of Interim and Pre-Final Submittal	D-1
APPENDIX E	Scope of Work and minutes of negotiation meeting	E-1

TABLE OF CONTENTS

Section		<u>Page</u>
	EDGEWOOD AREA	
	Executive Summary	
1.1	Introduction	1-1
1.2	Historical Energy Consumption	1-1
1.3	Findings	1-1
1.4	Recommended Projects	1-21
	Volume I: Survey and Test Results	
	Table of Contents	i
1	Introduction	1-1
2	<pre>Energy Conservation Opportunities (ECO's Investigated)</pre>	2-1
	<pre>1.1 Chiller Plant ECO's 1.2 Boiler Plant ECO's</pre>	2-1 2-6
3	Summary of Energy Conservation Opportunities Applicable for Boiler and Chiller Plant	3-1
4	Field Data for Boiler Plants	4-1
5	Field Data for Chiller Plants	5-1
6	Boiler and Chiller Performance Tests	6-1

TABLE OF CONTENTS (CONTINUED)

Section	EDGEWOOD AREA	Page
	Volume II: Evaluation of ECO's	
	Table of Contents List of Tables and Figures	i iii
1	Introduction	1-1
2	Basis of Analysis	
	2.1 Fuel Oil Cost Plus Historical Fuel Consumption 2.2 Electricity Costs 2.3 Fuel Conversion Factors 2.4 Factors Used for Calculating SIR 2.5 Fuel Cost per MBtu	2-1 2-1 2-4 2-4 2-4
3 .	Chiller Plant ECO's	
•	3.1 Chilled Water Temperature Reset3.2 Condenser Water Reset3.3 Small Chiller Application -	3-1 3-36 3-58
	Building E3300 3.4 Free Cooling 3.5 Automatic Variable Pitch Tower Fans 3.6 Variable Speed Tower Fan Drives 3.7 Optimization of Chiller Operation 3.8 Shutting Off/Cycling the Circulating Pumps 3.9 Condenser Water Treatment 3.10 Reduce Chilled Water Flow with Load (Variable Speed Drive on Chilled Water Pumps)	3-62 3-63 3-74 3-93 3-118 3-120
4	3.11 Chiller Replacement Study Boiler Plant ECO's	5 140
-	4.1 Boiler Economizer 4.2 Boiler Trim Controls 4.3 Combustion Air From Ceiling 4.4 Blowdown Controls 4.5 Installation of New Burner	4-1 4-17 4-28 4-43 4-51
	Equipment 4.6 Small Boiler Application 4.7 Reduce Steam Pressure 4.8 Reduction in Makeup Water Ouantities	4-56 4-60
	4.9 Variable Speed ID Fans and	4-65
	FD Blowers 4.10 Air vs Steam Atomization 4.11 Boiler Replacement Study	4-66 4-67
5	Operation and Maintenance Procedures	5-1

TABLE OF CONTENTS (CONTINUED)

EDGEWOOD AREA		Page
	Volume III: Appendix	
	Table of Contents	i
APPENDIX A	Life Cycle Cost Analysis for Chiller Plant ECO's	A-1
APPENDIX B	Life Cycle Cost Analysis for Boiler Plant ECO's	B-1
APPENDIX C	Response to Review Comments of Preliminary Submittal	C-1
APPENDIX D	Response to Review Comments of Interim and Pre-Final Submittal	D-1
APPENDIX E	Scope of Work and minutes of negotiation meeting	E-1

LIST OF TABLES

Table No.		Page
1.1	Total Fuel Oil (Gallons) Consumption for FY '84	1-2
1.2	Total Electricity (KWH) Consumption for FY '84	1-3
1.3	Annual Fuel Oil Consumption for FY '84 for Aberdeen Area	1-4
1.4	Annual Fuel Oil Consumption for FY'84 for Edgewood Area	1-5
1.5	Energy Conservation Opportunities Matrix (Aberdeen Area)	1-7
1.6	Energy Conservation Opportunities Matrix (Edgewood Area)	1-11
1.7	Summary of All Energy Conservation Opportunities Having SIR > 1 (Aberdeen Area)	1-14
1.8	Summary of All Energy Conservation Opportunities Having SIR > 1 (Edgewood Area)	1-17
1.9	PECIP Projects Recommended Considering Synergism	1-22

SECTION 1

EXECUTIVE SUMMARY

1.1 INTRODUCTION

This report presents the results of the Energy Engineering Analysis Program conducted by Roy F. Weston, Inc. at the Aberdeen and Edgewood Areas of Aberdeen Proving Grounds under Contract No. DACA-65-84-C-0105. The study includes evaluation of boiler and chiller plant performance by tests, identification and analysis of specific efficiency improvements, evaluation of existing equipment condition and maintenance procedures, and project development and documentation preparation.

The report consists of six volumes - one set of three for the Aberdeen Area and one set of three for the Edgewood Area. Each set consists of:

Volume I: Survey and Test Results

Volume II: Evaluation of Energy Conservation Opportunities

Volume III: Appendix

Volume I contains results of the field survey and tests performed on the boiler and chiller plants. The report evaluates the condition of existing equipment and highlights specific efficiency improvements. Volume II contains detailed calculations for the various energy conservation opportunities. Volume III contains the life cycle cost analysis for all applicable energy conservation opportunities.

1.2 HISTORICAL ENERGY CONSUMPTION

Table 1.1 and 1.2 summarizes the total annual fuel oil and electric consumption for Aberdeen and Edgewood for FY 1984. A total of 15,272,456 gallons of fuel oil and 141,463,804 kWh electricity were required from October 1983 to September 1984. Fuel oil consumption for FY84 was 10.75% higher than for FY83 and electric consumption was up 6.59% over FY83. Since this study is restricted to specific boiler and chiller plants as mentioned in the scope of work, it is helpful to summarize the annual fuel oil consumption in those specific boiler plants. Table 1.3 lists the annual fuel consumption for Aberdeen Area and Table 1.4 lists the same for the Edgewood Area. No electric metering was available for individual buildings.

1.3 FINDINGS

The work done was performed in two phases. The first phase involved site visits, data collection and performance tests on the boiler and chiller plants. Volume I summarizes these results. The second phase involved evaluation of various energy conservation opportunities (ECOs) and economic analysis.

TABLE 1.1

TOTAL FUEL OIL (GALLONS) CONSUMPTION FOR FY '84

Total	826,960	1,422,162	2,128,173	2,729,905	1,986,092	2,048,381	1,371,199	821,778	464,437	539,096	440,868	493,405	15,272,456
Edgewood Area	526,665	806,840	1,106,545	1,331,365	1 039,982	1,043,346	691,809	753,928	414,336	434,349	373,406	394,759	8,953,330
Aberdeen Area	270,295	615,322	1,021,628	1,398,540	946,110	1,005,035	673,390	67,850	50,101	104,747	67,462	98,646	6,319,126
	Oct 83	Nov 83	Dec 83	Jan 84	Feb 84	Mar 84	Apr 84	May 84	Jun 84 ·	Jul 84	Aug 84	Sep 84	TOTAL

Cost of Fuel Oil = \$1.03/gallon

Source: Utilities Division, Mr. Larry Taylor

TABLE 1.2
TOTAL ELECTRICITY CONSUMPTION FOR FY '84

Cost		425,634	386,635	444,336	401,510	402,050	418,601	404,651	418,007	849,848	879,678	897,058	798,965	\$6,726,982
		·										10	101	
	MBTU	126,002	112,202	129,577	116,907	116,677	122,570	120,346	128,134	166,871	172,165	175,376	154,145	1,640,980
Total	KWH	10,862,227	9,672,590	11,170,399	10,078,177	10,058,319	10,567,123	10,374,679	11,045,985	14,385,445	14,841,772	15,118,668	13,288,420	141,463,804
d Area	MBTU	54,314	45,129	50,985	44,594	44,790	47,115	47,467	55,135	72,634	75,239	75,571	66,549	679,522
Edgewood Area	KWH	4,682,259	3,890,416	4,395,239	3,844,291	3,861,221	4,061,672	4,091,976	4,753,010	6,261,532	6,486,103	6,514,776	5,737,019	58,579,513
en Area	MBTU	71,688	67,073	78,592	72,313	71,887	75,463	72,879	72,999	94,237	96,926	99,805	87,596	961,458
Aberdeen Area	KWH	6,179,968	5,782,175	6,775,160	6,233,886	6,197,098	6,505,451	6,282,703	6,292,975	8,123,913	8,355,669	8,693,892	7,551,401	82,884,291
		Oct 83	Nov 83	Dec 83	Jan 84	Feb 84	Mar 84	Apr 84	May 84	Jun 84	Jul 84	Aug 84	Sep 84	TOTAL

Source: Utilities Division, Mr. Larry Taylor

TABLE 1.3

ANNUAL FUEL OIL CONSUMPTION FOR FY84

FOR ABERDEEN AREA

Building #	<u>Tank Size</u>	Annual Fuel Oil Consumption (Gals.)
338 345A 345B 345C 455 507 525 629 1064 2312 2352	1-15,000 1-100,000 1-200,000 1-70,000 1-10,000 1-10,000 1-15,000 1-10,000 1-10,000 1-10,000	84,338.2 220,032.9 675,674.0 759,972.1 68,344.8 101,009.1 119,629.4 25,087.4 53,776.0 67,994.2 71,237.6
2377 2431 2457 2483 2502 2757 2915 3031 3062 3070A 3638 4119 4219 4304 4305 5033 5043 5206 5258 5413 5454	1-10,000 1-8,000 1-8,000 1-8,000 1-15,000 1-13,000 1-10,000 1-8,000 2-10,000 1-10,000 1-15,000 1-15,000 1-15,000 1-10,000 1-10,000 1-10,000 1-10,000 1-10,000 1-20,000 1-20,000 1-2,000 1-2,000 1-2,000 1-12,000	29,826.0 25,893.3 31,582.6 40,027.9 153,740.7 146,336.8 163,726.7 35,401.0 147,150.2 113,020.7 71,143.9 151,377.2 278,887.5 59,515.7 86,201.1 113,650.6 45,394.3 105,739.5 23,037.3 10,815.2 35,386.8
		4,114,950.7

Source: Utilities Division, Mr. Larry Taylor

TABLE 1.4

ANNUAL FUEL OIL CONSUMPTION FOR FY84

FOR EDGEWOOD AREA

Building #	Tank Size	Annual Fuel Oil Consumption (Gals.)
E1574	3-8,000	126,693.7
E2100	1-20,000	141,549.7
E3148	2-15,000	7,081.5
E3302	1-60,000	328,895.1
E3312	2-50,000	2,812,006.0
	1-100,000	
E4160	2-14,000	323,766.2
E5126	2-100,000	3,958,560.9
E5828A	2-8,000	124,671.8
E6560	1-15,000	249,918.7
		8,073,143.6

Source: Utilities Division, Mr. Larry Taylor

A list of Energy Conservation Opportunities (ECOs) to be investigated is contained in the Scope of Work. This list, along with previous energy conservation retrofit experience and the observations and data obtained from the site visits, provided a basis for a list of ECOs to be quantitatively analyzed. The opportunities involved are:

Boiler Plant

- o Boiler Economizer
- o Boiler Trim Controls
- o Combustion Air from Ceiling
- o Blowdown Controls
- o Installation of New Burners
- o Boiler Operation Optimization
- o Reduce Steam Pressure
- o Reduction in Make-up Water
- o Variable Speed I.D. Fans/Blowers
- o Air vs. Steam Atomization
- o Boiler Replacement Study

Chiller Plant

- o Chilled Water Temperature Reset
- o Condenser Water Temperature Reset
- o Small Chiller Application
- o Free Cooling
- o Automatic Variable Pitch Tower Fans
- o Variable Speed Tower Fans
- o Chiller Operation Optimization
- o Cycling Circulating Pumps
- o Condenser Water Treatment
- o Variable Speed Chilled Water Pumps
- o Chiller Replacement Study

Tables 1.5 and 1.6 show dot matrices for the Aberdeen and Edgewood areas which illustrate the applicable buildings for each ECO. Based on the energy calculations and financial analysis, (Volume II and III), a list of all projects having SIR > 1 is summarized in Tables 1.7 and 1.8 for the Aberdeen and Edgewood areas, respectively. Some of the ECOs are synergistic with others and totalling all the savings figures will result in double-dipping. To avoid this, only those ECOs that will not lead to double-dipping are recommended. For example, condenser water temperature reset and variable speed tower fan drives result in similar savings and only the one with the higher SIR value is recommended. Also, projects having SIR value close to unity and projects having payback of more than 10 years are not recommended.

Volume II of the report also highlights the state of maintenance at the two bases and includes operation and maintenance recommendations that should be followed.

ENERGY CONSERVATION OPPORTUNITIES **Energy Engineering Analysis Program** Location: APG, Aberdeen Area Variable Speed Tower Fan Orives Auo Variable pilon Tower Fans - Colimization of Chilles Oberation Shuming Off Choling Chounting Age of the Choling Chounting Age of the Choling Age of the Equipment: Chiller Plants Variable Speed CHW Pumps Updated: October 1985 Condenser Water Treatment Chiller Replacement Surg. Small Chiller Application Note: ● Denotes ECO's Applicable ▲ Building is Currently Served by a Temporary Chiller, Therefore no ECO's Are Recommended Remarks Installation • • Building 30 Building 120 • Building 314 • • Building 390 • Building 392 • • • Building 393 Building 394 • • Building 400 • Building 2207 • Building 2401 • Building 2501 **Building 3144 Building 3147 Building 3148** Building 3326 Building 4305

TABLE 1.5 ENERGY CONSERVATION OPPORTUNITIES MATRIX (ABERDEEN AREA)

ENERGY Energy Engineering Analysis Program CONSERVATION OPPORTUNITIES Location: APG, Aberdeen Area - Boiler Operation Opinitation | Equipment: Boiler Plants s Sleam Atomization Updated: October 1985 & Siean Pessure A Roducijon in Wake Up W J Fans Bowers Combustion Air from C 1 810 moom of controls L Pstallation of New 8 Note: ● Denotes ECO's Applicable ▲Indicates Boiler is Either Obsolete or New Boiler is Being Installed (See Remarks) · Boiler F Boiler > Installation Remarks # 345 - Boiler No. 1 • • • • • • • Boiler No. 2 • • • • • Boiler No. 3 • • . Three new boilers are being installed now. # 525 507 - Boiler No. 1 Obsolete unit. Boiler No. 2 • • Boiler No. 3 • • # 2502 - Boiler No. 1 • . • . Boiler No. 2 • • Boiler No. 3 # 3638 - Boiler No. 1 • • Status of building is unknown. Boiler No. 2 • • # 4119 - Boiler No. 1 • • • Boiler No. 2 • • • Boiler No. 3 • • • # 4219 - Boiler No. 1 • Boiler No. 2 • . Boiler No. 3 • • Boiler No. 4 • • # 4305 - Boiler No. 1 • • Boiler No. 2 • • # 338 - Boiler No. 1 • • Boiler No. 2 •

ENERGY **Energy Engineering Analysis Program** CONSERVATION OPPORTUNITIES Location: APG, Aberdeen Area - Boiler Operation Optimization 1 Installation of New Burners L Equipment: Boiler Plants 4" Vs Seam Alomization Boiler Replacement Study Alouco Sleam Property Updated: October 1985 L'S LO Famo 180 Moles l'ingin Reduction of the Control of the Cont Combustion Air from C Somoom Connois - Boiler Trim Controls Note: ● Denotes ECO's Applicable ▲ Indicates Boiler is Either Obsolete or New Boiler is Being Installed (See Remarks) . Boiler Installation Remarks 455 - Boiler No. 1 Boiler No. 2 • # 629 - Boiler No. 1 Boiler No. 2 • • • May be replaced. # 2377 - Boiler No. 1 • Boiler No. 2 • • # 2312 - Boiler No. 1 • • • Boiler No. 2 Boiler No. 3 # 2483 - Boiler No. 1 Obsolete unit is to be replaced. Boiler No. 2 # 2431 - Boiler No. 1 • Boiler No. 2 # 2457 - Boiler No. 1 • • Obsolete unit is to Boiler No. 2 be replaced. # 3062 - Boiler No. 1 Boiler No. 2 • • • # 3031 - Boiler No. 1 • # 5033 - Boiler No. 1 Boiler No. 2 • • # 5206 - Boiler No. 1 Boiler No. 2 • • # 1064 - Boiler No. 1 • Boiler No. 2

ENERGY Energy Engineering Analysis Program **CONSERVATION OPPORTUNITIES** 2 Tolle Toll Location: APG. Aberdeen Area J Sallation of New Burners L Equipment: Boiler Plants 4 dir Vs Sieam Alomization A Reduce Steam Pressure Updated: October 1985 - Reducijonin Wale Low LVS/OF FAIS/BIOWOS FFAI Combustion Air from C - Bowoom Comos - Boller Trim Controls Note: ● Denotes ECO's Applicable Indicates Boiler is Either Obsolete or New Boiler is Being Installed (See Remarks) · Boiler Installation Remarks # 5258 - Boiler No. 1 # 5454 - Boiler No. 1 • • • Boiler No. 2 • • • New boiler being installed. # 4304 - Boiler No. 1 Boiler No. 2 • # 2352 - Boiler No. 1 • # 3070 - Boiler No. 1 Boiler No. 2 # 5043 - Boiler No. 1 • • # 5413 - Boiler No. 1 • # 2757 - Boiler No. 1 • • Boiler No. 2 # 2915 - Boiler No. 1 • • Boiler No. 2

TABLE 1.5 (CONTINUED)

Energy Engineering Analysis Program Location: APG, Edgewood Area Equipment: Chiller Plants Updated: October 1985 Note • Denotes ECO's Approache		/Ho	W. 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2	F. (C) 100 Ton (4)	30/16/17 Pose Pose	(41)	7	7/	7	7	TON	Remarks
installation	S					0/3						Remarks
Building E2100	•	•			•	•	•		•	•		
Building E3081	•	•				•	•		•	•		
Building E3100	•	•			•	•	•		•	•		
Building E3220	•	•				•	•		•	•		
Building E3244	•	•				•			•	•		
Building E3300	•	•	•		•	•	•		•	•		
Building E3580	•									•		
Building E5100	•	•			•	•	•		•	•		
Building E5101 ^	•	•							•			
Building E5452	•	•							•			
Building E5951	•	•				•			•	•		

TABLE 1.6 ENERGY CONSERVATION OPPORTUNITIES MATRIX (EDGEWOOD AREA)

ANATION CONTROL SOLUTION CONTROL SOLUTIO ENERGY Energy Engineering Analysis Program **CONSERVATION OPPORTUNITIES** Location: APG, Edgewood Area Air Vs Sieam Alomization Equipment: Boiler Plants Boiler Replacement Study Reduction in Wate Colon V.S./D. Fans/Blowers | Fans Updated: October 1985 Combustion Air from C Note: ● Denotes ECO's Applicable ▲Indicates Boiler is Extre Obsolete or New Boiler is Being installed (See Remarks) 80iler 7 Remarks Installation Standby plant Building E3148 - Boxer No. 1 . Boiler has been replaced. Bover No. 2 Boiler No. 3 • • • Very old units. Building E2100 - Boiler No. 1 Boder No. 2 • • Boper No. 3 • Building E1574 - Boiler No. 1 • • Boiler No. 2 • • • Boiler No. 3 • • • Building E3312 - Boder No. 1 Boiler No. 2 • • • Boiler No 3 • • Very old units. • Bouer No. 4 Very old units. Boiler No. 5 • • • . Building E4160 - Boiler No. 1 • • Boiler No. 2 Boiler No. 3 • • Building E5126 - Boiler No. 1 Very old units. • • Very old units. • • Boiler No. 2 • Very old units Boiler No. 3 . • • • • • Very old units. • Boiler No. 4 • • • Very old units. Boiler No. 5 New unit being installed. Boiler No. 6

TABLE 1.6 (CONTINUED)

Energy Engineering Analysis Program Location: APG, Edgewood Area Equipment: Boiler Plants Updated: October 1985				/	4	co	NSE O	RV	ATI	ON	RGY OP	PORTUNITIES
Note: ● Denotes ECO's Applicable ▲Indicates Boiler is Either Observer or New Boiler is Being Installed (5 = Femarks)		Dille F.	T. Conomiz	Tomprish Control	ON TO THE	B. Sallang Control Colling		Se Colling Bull	Chicam p. Dil	10 F 10 May 8884	W 01 00 00 00 00 00 00 00 00 00 00 00 00	Remarks
Installation	\sqrt{a}					8/8						Remarks
Building E3302 - Boiler No. 1	•	•	•									
Boiler No. 2	A	A	A	A	Δ	A	A	▲	A	A	▲	New unit being installed
Building E5828 - Boiler No. 1	•	•	•	•								
Boiler No. 2	•	•	•	•								
Building E6560 - Boiler No. 1	•	•	•									
Boiler No. 2	•	•	•									

TABLE 1.6 (CONTINUED)

SUMMARY OF ALL ENERGY CONSERVATION OPPORTUNITIES HAVING SIR > 1 (ABERDEEN AREA)

		ANNUAL ENERGY SAVINGS	INGS	AMMIGAT	ANGIAI	107			
BUILDING #	Electricity	icity	Fuel Oil	ENERGY COST	DOLLAR	INVESTMENT	SIR	REMARKS	
	KVH MB	MBTU	NBTU	SAVINGS (%)	CALINGS (*)	Ē			,
CHILLED WATER TEMPERATURE RESET	TEMPERATURE	RESET							
314	18285	212.1	ŧ	1097	979	5926	1.16	NOTE 1	
394	18277	212.0		1097	979	5926	1.54	NOTE 2	
VARIABLE SPEED DRIVE ON CONDENSING UNITS	DRIVE ON C	CONDENSING UNI	TS						
4305	34930	405.2	ı	2095	1928	16743	1.07	NR	ű.
VARIABLE SPEED CHILLED WATER PUMPS	CHILLED W	NTER PUMPS							
314	76220	884.2	t	4573	4353	21957	1.39	RECOM	
394	22510	261.1	,	1350	1253	6926	1,19	NOTE 2	

1.

NOTE 1: This project is not recommended since it is synergistic with the variable speed CHW pump ECO and greater savings could be achieved by the latter.

Ei

NOTE 2: New unit has been installed recently and therefore project is not recommended.

TABLE 1.7 CONFINUED)

pg 2 of 3

SUMMARY OF ALL ENERGY CONSERVATION OPPORTUNITIES HAVING SIR > 1 (ABERDEEN AREA)

ER	} 			AMMINIAT	ANIMITAL	TOTAL		
ZER	Electricity	city	Fuel Oil	ENERGY COST	DOLLAR	INVESTMENT	SIR	REMARKS
BOILER ECONONIZER	KWH	MBTU	MBTU	CONTINUE (4)	ONTINGS (*)	•		
345 - # 1,2 k 3		ı	16329	122302	119574	272767	3.67	RECOM
2502 -#1 & 2	,	1	965	7228	7000	44670	1.02	N.
2502 -#3	ı	ı	271.3	2032	1887	14470	1.32	RECOM
4219 -#4	4	•	291.8	2186	2041	14470	2.24	RECOM
5206 -#2	,	1	559.8	4193	3943	24986	1,33	RECOM
2352 -#1		ı	245.9	1842	1683	15903	1.76	RECOM
2915 -#1		ı	751.0	5625	5379	24626	2.02	RECOM
2915 -#2	,	ı	725.0	5430	5184	24626	1.94	RECOM
BOILER TRIM CONTROLS	S							
345 -#1,2,3		ı	11373.2	85185	82898	57176	12.14	RECOM
2502 -# 1	,	1	1744.4	13066	12303	19058	4.35	RECOM
-# 2		•	1212.9	9084	8322	19058	2.95	RECOM
2352 -# 1	,		297.5	2228	1466	19058	1.46	RECOM
2915 -# 2	,	1	1939.9	14530	13767	19058	6.68	RECOM

TABLE 1.7 (CONTINUED)

pg 3 of 3

SUMMARY OF ALL ENERGY CONSERVATION OPPORTUNITIES HAVING SIR > 1 (ABERDEEN AREA)

	ANNUAL	ANNUAL ENERGY SAVINGS	INGS	3 7 11 11 1		E C			
BUILDING #	Electricity	ity	Fuel 0il	ENERGY COST	DOLLAR	INVESTMENT	SIR	REMARKS	
,	KE	MBTU	MBTU	SAVINGS (*)	SAVINGS (*)	•			
COMBUSTION AIR FI	FROM CEILING								
345 -# 1,2 & 3	ı	•	1109.6	8311	7973	56324	1.2	NR.	201
2502 -# 1 & 2	ı	•	234.9	1759	1650	10977	1.01	SN.	6
2915 -# 1 & 2	,	1	198.5	1487	1366	12125	1.05	æ	o,
BOILER BLOUDOUN									
345 -4 1,2,3	ı	ı	1121.0	8396	8238	15835	4.35	RECOM	
INSTALLATION OF	NEW BURNER								
2915 -# 1 & 2	t	i	3705.4	27754	28608	85378	3.05	RECOM	
					0	60.300			
TOTALS FOR RECOMMENDED			2916				1		
PROJECTS	76, 220	884.2	40,568	308,426	299,646	648,426			

NOTE: NR indicates projects not recommended since SIR value is close to unity.

TABLE 1.8

SUMMARY OF ALL ENERGY CONSERVATION OPPORTUNITIES HAVING SIR > 1 (EDGEWOOD AREA) Note 1 Recom REMARKS Note 1 Note 2 Note 2 RECOM RECOM Note 2 RECOM RECOM RECOM NOTE 3 NOTE 3 RECOM RECOM Note 1 Note 1 2.23 2.35 1.66 1.59 3.46 1.80 1.54 1.65 5.24 3.63 2.13 1.28 1.66 1.53 1.60 1.00 1.00 1.08 1.08 1.08 SIR TOTAL Investment 21099 21099 24179 11259 9764 27837 21099 10547 7516 7516 7516 6483 7516 7516 6879 6879 6879 6879 6879 DOLLAR SAVINGS (\$) ANNOAL 3936 3468 5514 2187 1054 8934 3246 1968 1302 1334 4239 2536 2278 1373 1726 1741 1626 1178 3389 1763 ENERGY COST SAVINGS (\$) ANNOAL 1452 1484 4389 2666 2428 1523 4147 3679 5756 2299 1151 9212 3457 2073 1864 1879 1764 1315 3527 3527 Fuel Oil MBTU ANNUAL ENERGY SAVINGS 1171.3 467.9 234.3 1874.7 843.9 703.4 379.3 382.3 358.9 267.7 717.8 295.5 302.1 893.3 542.5 494.2 310 CONDENSER WATER TEMPERATURE RESET MBTU VARIABLE SPEED TOWER FAN DRIVES CHILLED WATER TEMPERATURE RESET Electricity 72750 64540 100970 40335 20195 161610 60640 36370 25470 26040 77005 46770 42600 26720 32699 32960 30937 23077 61875 33348 至 BUILDING # E2100 E3081 E3220 E3244 E3220 E3244 E3300 E5100 E5951 E3300 E2100 E3081 E3100 E2100 E3081 E3100 E3220 E3300 E5100

SUMMARY OF ALL ENERGY CONSERVATION OPPORTUNITIES HAVING SIR > 1

	ANNUAL	ANNUAL ENERGY SAVINGS	NGS	TANKA A	To be the second	11108		
BUILDING #	Electricity	ity	Fuel Oil	ENERGY COST	DOLLAR	INVESTMENT	SIR	RENARKS
	KAH	HBTU	MBTU	SAVINGS (*)	SAVINGS (\$)	Ē		
VARIABLE SPEED CHILLED WATER PUMPS	CHILLED WATE	R PUMPS						
E2100	72750	843.9	,	4147	4008	13919	2.56	RECOM
E3081	85940	6.966	•	4899	4689	20933	5.08	RECOM
E3100	101240	1174.4	1	5771	5540	23091	1.68	RECOM
E3220	121280	1406.8	ı	6913	6648	26543	2.33	RECOM
E3300	161340	1871.5	1	9197	8918	27837	2.25	Note 4
E5100	121270	1406.7	1	6913	8299	23452	2.00	RECOM
TOTALS FOR RECOMMENDED								
PROJECTS	1,250,555.0	14,506.5	•	71,286.0	68,449.0	262,051.0		

NOTE 1: This project is not recommended since it is synergistic with the V. S. CHW pump ECO and greater savings could be achieved by the latter.

NOTE 2: This project is not recommended since it is synergistic with the V. S. Cond fan ECO and greater savings could be achieved by the latter.

NOTE 3: This project is not recommended since it is synergistic with the condenser reset ECO and greater savings could be achieved by the latter.

This project is not recommended since it is synergistic with the chilled water temperature reset ECO and higher SIR value could be achieved by the latter. Note:

TABLE 1.8 (CONTINUED)

pg 3 of 4

SUMMARY OF ALL ENERGY CONSERVATION OPPORTUNITIES HAVING SIR > 1 (EDGEWOOD AREA)

BUILDING #				AMAIITAT		TOTAL			
	Electr	Electricity	Fuel Oil	ENERGY COST	DOLLAR	INVESTMENT	SIR	REMARKS	
	ΚW	HBTU	MBTU	CA) CONTAGE		•			
BOILER ECONOMIZER	ER								
E3312 -#1	1	•	2123.3	15904	15562	34194	4.90	RECOM	
-#2	•	1	1274.0	9542	9029	51294	2.18	RECOM	
-13	1	ì	1839.1	13775	13262	51294	3.19	RECOM	
E4160 -#1	•	•	384.4	2879	2675	20375	1.63	RECOM	
-#2	ŧ	ı	594.1	4450	4246	20375	2.57	RECOM	`
-#3		,	262.8	1968	1765	20375	1.09	£	12
E5828 -11	1	ı	425.4	3186	2999	18746	2.64	RECOM	
-#2		1	425.4	3186	2999	18746	2.10	RECOM	(
E6560 -41	ı	ı	283.1	2120	1862	25869	1.07	쯫	6.5
-#2	•	,	293.6	2199	1940	25869	1.11	ž	
BOILER TRIM CONTROLS	ITROLS								
E2100 -13	,	1	523.0	3917	3155	19058	2.01	RECOM	
E3312 -#1	•	•	3058.8	22910	22148	19058	12.55	RECOM	
-12	1	1	1150.6	8618	7855	19058	5,15	RECOM	
-#3	1	ı	776.9	5819	5056	19058	3,36	RECOM	
E4160 -#1	•	•	674.9	5055	4293	19058	2.87	RECOM	
-#2	1	1	439.9	3295	2533	19058	1.74	RECOM	
E3302 -#1	•	,	441.6	3307	2545	19058	2.37	RECOM	
E5828 -#1	1	•	237.2	1776	1014	19058	1.07	W.	(%) (%)
-112	1	ı	447.5	3352	2590	19058	1.89	RECOM	

TABLE 1.8 (CONTINUED)

pg 4 of 4

	ANNUAL ENE	ANNUAL ENERGY SAVINGS	SS			£		
BUILDING #	Electricity	; ; ; ; ; ;	Fuel 0il	ENERGY COST	DOLLAR	INVESTMENT	SIR	REMARKS
	KWH MBTU		MBTU	SAVINGS (*)	SAVINGS (*)	6		
COMBUSTION AIR FROM CEILING	FROM CEILING							
E3312 -11	1		203.3	1523	1445	7767	2.02	RECOM
-#2	ı		178.4	1336	1254	8269	1.88	RECOM
<u> </u>	•		220.9	1655	1572	8269	2.35	RECOM
E4160 -#1,2,3	•		204.7	1533	1380	15336	1.13	NR //.
E3302 -#1	•		183.9	1377	1300	7766	2.76	×
E5828 -#1	ı		44.6	334	287	4994	1.05	NR JOHN
INSTALLATION OF	F NEW BURNER EQUIPMENT	IPHENT						
E3312 -41	1		2794.0	20927	22193	126632	1.86	RECOM
SHALL BOILER APPLICATION	PPLICATION							
E3302	ι		4400.0	33000	28878	203911	2.75	RECOM
REDUCTION IN M	REDUCTION IN MAKEUP WATER QUANTITY	TITY						
E5126	-29120	-337.8	13412.4	98800	97176	646900	2.79	currently
BOILER REPLACEMENT STUDY	MENT STUDY							name ign id
E5126 -#1 T0 5			70343.3	526871	545077	1,820,569	5.46	RECOM
TOTALS FOR RECOMMENDED			(26)		30 E			
PROJECTS	(29,120.0)	(337,8)	92,902.7	695,884.0	702,666.0	2,550,671.0	0.5	

1.4 RECOMMENDED PROJECTS

A list of all projects recommended is shown in Table 1.9.

The projects recommended are grouped into five PECIP projects and one locally funded project. These are:

PECIP #1: Boiler Trim Controls

PECIP #2: Boiler Economizer

PECIP #3: New Boiler Installation (E3302, E5126)

PECIP #4: Miscellaneous Boiler Projects

(Boiler Blowdown, Installation of New Burner)

PECIP #5: Miscellaneous Chiller Projects

Locally funded project: Combustion air from ceiling

Each of the above five PECIP projects has total investment exceeding \$100,000 and a combined payback period of less than four years. The only project not meeting PECIP or ECIP guidelines is: Combustion Air from the Ceiling. This project has SIR value greater than one, but payback of more than four years and total investment below \$100,000. As suggested by the base, this project should be locally funded and no documentation is required.

The total savings resulting from these projects are:

Total Annual Energy Savings, Electricity = 1,326,775 KWH

15,391 MBTU

Fuel Oil = 133,173 MBTU

• Total Annual Source Energy Savings = 148,564 MBTU

• Total Investment Required = \$3,442,090

• Total Annual Energy Cost Savings = \$1,073,367

• Annual Dollar Savings = \$1,069,295

• Simple Payback = 3.2 years

• Annual Base-wide Energy Cost = \$22,457,600

• Percent Energy Cost Savings = 4.8%

The five PECIP projects are separately documented and bound. The proposed operational date for these projects is October, 1988.

TABLE 1.9

PROJECTS RECOMMENDED CONSIDERING SYNERGISM

		ANNUAL	ANNUAL ENERGY SAVINGS	INGS	AMMITAT	ANNIER	TOTAL	SIMPLE	
PROJECT	BUILDING #	Electricity	icity	Fuel Oil	ENERGY COST	DOLLAR	INVESTMENT	PAYBACK	SIR
NAME		KWH	MBTU	MBTU	SAVINGS (*)	CONTINGE	Ē	Cul	
PECIP PROJECT # 1 :	••								
	-								
BLR TRIM CONTROLS E 3312 -#	E 3312 -#1	1	,	3,059	22,910	22,148	19,058	0.9	12.55
	345 -#1.2.3	1	•	11,373	85, 185	82,898	57,176	0.7	12.14
	2915 -#2	1	•	1,940	14,530	13,767	19,058	1.4	6.68
	E 3312 -42	ı		1,151	8,618	7,855	19,058	2.4	5.15
	2502 -#1	1	•	1,744	13,066	12,303	19,058	1.5	4.35
	E 3312 -#3	ł	1	777	5,819	5,056	19,058	3.8	3.36
	2502 -#2	•	ı	1,213	9,084	8,322	19,058	2.3	$\frac{2.95}{1}$
	E 4160 -#1	,	•	675	5,055	4,293	19,058	4.4	2.87
	E 3302 -#1	•	1	442	3,307	2,545	19,058	7.5	2.37
	E 2100 -#3	•	ż	523	3,917	3,155	19,058	0.9	2.01
	E 5828 -#2	1	,	448	3,352	2,590	19,058	7.4	1.89
	E 4160 -#2	ı	•	440	3,295	2,533	19,058	7.5	1.74
									1
TOTAL		•	1	23, 784	178,138	167,465	266,814	1.6	

TABLE 1.9(CONTD)

PROJECTS RECOMMENDED CONSIDERING SYNERGISM

		ANNUAL	ANNUAL ENERGY SAVINGS	INGS			17406	LI GREE	
PROJECT	BUILDING #	Electricity	ci ty	Fuel Oil	ENERGY COST	DOLLAR	INVESTMENT	PAYBACK (VDC)	SIR
NATE		KWH	MBTU	MBTU	CAN CONTACT	CONTACT	Ē)	
PECIP PROJECT # 2 :									
	1								
BOILER ECONOMIZER	E 3312 -#1	•		2,123	15,904	15,562	34, 194	2.2	4.90
		1	ı	16,329	122,302	119,574	272,767	2.3	3.67
	E 3312 -#3	ı	,	1,839	13,775	13,262	51,294	3.9	3.19
	E 5828 -#1	1		425	3,186	2,999	18,746	6.3	2.64
	E 4160 -#2	ı	•	594	4,450	4,246	20,375	4.8	2.57
	4219 -#4	ı	•	292	2,186	2,041	14,470	7.1	2.24
	E 3312 -#2	ı	1	1,274	9,542	9,029	51,294	5.7	2.18
	E 5828 -#2		•	425	3,186	2,999	18,746	6.3	2.10
	2915 -#1	1	,	751	5,625	5,379	24,626	4.6	2.02
	-#2	1	1	725	5,430	5,184	24,626	4.8	1.94
	2352 -#1	1	,	246	1,842	1,683	15,903	9.4	1.76
	E 4160 -#1	1	•	384	2,879	2,675	20,375	7.6	1.63
	5206 -#2	1	ı	260	4,193	3,943	24,986	6.3	1.33
	2502 -#3	1	ı	271	2,032	1,887	14,470	7.7	1.32
									1
TOTAL		,	1	26,240	196,532	190, 463	606,872	3.2	

TABLE 1.9(CONTD)

PROJECTS RECOMMENDED CONSIDERING SYNERGISM

		ANNUA	ANNUAL ENERGY SAVINGS	INGS			14 404	a idni o	
PROJECT	BUILDING #	Electi	Electricity	Fuel Oil	ENERGY COST	DOLLAR	INVESTMENT	PAYBACK (VPC)	SIR
NAME	1	KWH	MBTU	MBTU	SAVINGS (*)	(a) CONTAGE	8	(185)	
PECIP PROJECT # 3									
BLR REPLACEMENT	E5126 - # 1-5		ı	70,343	526,871	545,077	1,820,569	3.3	5.46
SMALL BOILER APPL E 3302	E 3302	ı	•	4,400	33,000	28,878	203,911	7.1	2.75
TOTALS			,	74,743	559,871	573,955	2,024,480	3.5	
PECIP PROJECT # 4									
BOILER BLOWDOWN	345 -#1,2&3	t ·	ı	1,121	8,396	8,238	15,835	1.9	4.35
NEW BURNER	2915 -#1&2 E 3312 -#1	1 1	1 1	3,705	27, 754 20, 927	28,608 22,193	85,378 126,632	3.0	3.05
TOTALS		-		7,620	57,077	59,039	227,845	3.9	

TABLE 1.9 (contd)

PROJECTS RECOMMENDED CONSIDERING SYNERGISM

	; ; ; ; ;	ANNUAL	ANNUAL ENERGY SAVINGS	NGS	1				
PROJECT	BUILDING .	Electricity	city	Fuel 0il	ENERGY COST	DOLLAR	INVESTMENT	PAYBACK	SIR
		至	MBTU	MBTU	SAVINDS (*)	SHVINDS (*)	ŝ	(TKB)	
PECIP PROJECT # 5	: 9			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		: : : : : : : : : : : : : : : : : : :	7		† 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	}								
COM RESET	E 3220	77,005	893	,	4,389	4,239	7,516	1.8	5.24
	E 3244	46,770	543	ı	2,666	2,536	6,483	2.6	3.63
	E 5100	26,720	310	ı	1,523	1,373	7,516	5.5	1.28
CHR RESET	E 3300	61,875	718		3,527	3,389	6,879	2.0	3,50
V.S. TOWER FAN		161,610	1,875	ı	9,212	8,934	27,837	3.1	2.25
	E 2100	72,750	844	ı	4,147	3,936	21,099	5.4	1.66
	E 3100	100,970	1,171	ı	5,756	5,514	24,179	4.4	1.60
	E 3081	64,540	749	•	3,679	3,468	21,099	6.1	1.53
	E 5951	36,370	422		2,073	1,968	10,547	5.4	1.31
V.S. CHW PUMPS		72,750	844	ı	4,147	4,008	13,919	3.5	2.56
	E 3220	121,280	1,407	ı	6,913	6,648	26,543	4.0	2.33
	E 3081	85,940	166	ı	4,899	4,689	20,933	4.5	2.08
	E 5100	121,270	1,407	ī	6,913	6,678	23,452	3.5	2.00
	E 3100	101,240	1,174	1	5,771	5,540	23,091	4.2	1.68
	314	76,220	98♦		4,573	4,353	21,957	5.0	1.39
				1		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	* * * * * * * * * * * * * * * * * * * *		
		1,227,310	14,237	0	70,188	67,273	263,050	3.9	

TABLE 1.9(CONTD)

PROJECTS RECOMMENDED CONSIDERING SYNERGISM

		ANN	ANNUAL ENERGY SAVINGS	INGS	ANIMITA	AWWIRE	TOTAL	CIMPLE	
PROJECT	BUILDING #	Elec	Electricity Fuel Oil	Fuel Oil	ENERGY COST	DOLLAR	INVESTMENT	PAYBACK (VRS)	SIR
NAME		KWH	MBTU	MBTU			•		
LOCAL FUNDING:									
	1								
COMB AIR FROM CLG	E 3302 -#1		1	184	1,377	1,300	7,766	0.9	2.76
	E 3312 -#3	ı	·	221	1,655	1,572	8,269	5.3	2.35
		•	ı	203	1,523	1,445	7,767	5.4	2.02
E 3312	E 3312 -#2	,	•	178	1,336	1,254	8,269	9.9	1.88
TOTALS		•		787	5,891	5,571	32,071	5.8	