Seja f uma função de domínio X e contradomínio Y, $f: X \to Y$.

A função f diz-se **injetiva** se p/ cada elemento $x \in X$, existe um <u>único</u> $y \in Y$ tq f(x) = y. Ou seja: $\forall a,b \in X, \ a \neq b \Rightarrow f(a) \neq f(b)$

A função f diz-se **sobrejetiva** se p/ cada elemento $y \in Y$, existe <u>pelo menos</u> um $x \in X$ tq f(x) = y.

Nota

p/ - para

qq - qualquer

sse - se e só se (\Leftrightarrow)

tq - tal que

i.e. - isto é

então (⇒)

Ou seja: $\forall y \in Y, \exists x \in X, f(x) = y.$

A função \boldsymbol{f} diz-se **bijetiva** se for injetiva e sobrejetiva.

Dados um subconjunto A de P e $m \in P$, diz-se que m é:

- majorante de A se, para todo $a \in A$, $a \le m$;
- minorante de A se, para todo $a \in A$, $m \le a$;
- maximal de A se $m \in A$ e $\neg(\exists a \in A, m < a)$;
- minimal de A se $\mathbf{m} \in \mathbf{A}$ e $\neg(\exists a \in A, a < m)$;
- maximo de A se m é um majorante de A e $m \in A$;
- **mínimo** de A se m é um minorante de A e $m \in A$;
- supremo de A se m é um <u>majorante</u> de A e $m \le m'$, para qualquer <u>majorante</u> m' de A;
- **infimo** de A se m é um <u>minorante</u> de A e $m \le m'$, para qualquer <u>minorante</u> m' de A;

Os Rericulados podem ser definidos de duas formas equivalents:

- Conjunto Parcialmente Ordenado (c.p.o)
- Estruturas Algébricas

Num c.p.o. (P; \leq) são equivalentes as seguintes afirmações, p/ qq $a,b \in P$:

- I) $a \leq b$
- II) $\sup \{a,b\} = b$
- III) inf $\{a,b\} = a$

Um c.p.o. (P; ≤) tq P tem elemento máximo e elemento mínimo diz-se um **Conjunto Parcialmente Ordenado Limitado.**

Um Reticulado é um c.p.o. tal que para cada dois elementos a,b existe supremo e ínfimo de {a,b}

De maneira equivalente <u>um Reticulado pode ser definido como uma Estrutura Algébrica</u>, consistindo de um conjunto e duas operações - usaremos (R; \land , \lor) como exemplo - se todos elementos a,b e c de c, <u>se</u> verifiquem as seguintes equações:

```
Leis Comutativas (R1) > a \wedge b = b \wedge a a \vee b = b \vee a

Leis Associativas (R2) > a \wedge (b \wedge c) = (a \wedge b) \wedge c a \vee (b \vee c) = (a \vee b) \vee c

Leis de Idempotência (R3) > a \wedge a = a a \vee a = a

Leis de Absorção (R4) > a \wedge (a \vee b) = a a \vee (a \wedge b) = a
```

Princípio da Dualidade de Reticulados: Uma afirmação é verdadeira em qualquer Reticulado sse o mesmo acontece com a respetiva afirmação dual. Este princípio também se aplica para os c.p.o.

Princípio da Boa Organização: todo subconjunto não-vazio formado por $\mathbb N$ (ou $\mathbb Z_{0^+}$) possuí um menor elemento

Seje (\mathbf{R} ; \wedge , \vee) um Reticulado, e \mathbf{R} ' um Subconjunto não vazio de \mathbf{R} . Diz-se que (\mathbf{R} '; \wedge ', \vee ') é um **Subreticulado** de \mathbf{R} se \wedge ' e \vee ' são Operações Binárias em \mathbf{R} ' tais que p/ qq $a,b\in R$ ', $a\wedge b=a\wedge b$ e $a\vee b=a\vee b$

Dados um Reticulado (R; \leq) e um Subconjunto não vazio R' de R, um c.p.o (R'; \leq ') diz-se **Subreticulado** de (R; \leq) se \leq ' = \leq_R , e, p/ qq $a,b \in R'$, o Supremo e Ínfimo de {a,b} (determinados em (R; \leq)) pertencem a R'.

```
Um Reticulado (R_1, \land, \lor) diz-se Modular se p/ de x, y, z \in R:

x \le y \Rightarrow x \lor (y \land z) = y \land (x \lor z) (tb é o suficiente mostrar o contrário)
```

Sejam $(R_1, \Lambda_{R_1}, V_{R_1})$, $(R_2, \Lambda_{R_2}, V_{R_2})$ Reticulados e $\Lambda_{R_1 \times R_2}$ e $V_{R_1 \times R_2}$ as operações binárias de $R_1 \times R_2$, definidas por:

$$(a_1, a_2) \wedge_{R_1 \times R_2} (b_1, b_2) = (a_1 \wedge_{R_1} b_1, a_2 \wedge_{R_2} b_2)$$

$$(a_1, a_2) \vee_{R_1 \times R_2} (b_1, b_2) = (a_1 \vee_{R_1} b_1, a_2 \vee_{R_2} b_2)$$

Então $(R_1 \times R_2; \land_{R_1 \times R_2}, \lor_{R_1 \times R_2})$ é um Reticulado, designado por **Reticulado Produto** de R_1 d R_2 - representado por $R_1 \times R_2$.

Sejam $(R_1, \Lambda_{R_1}, V_{R_1})$ e $(R_2, \Lambda_{R_2}, V_{R_2})$ Reticulado, \leq_1 e \leq_2 as relações de ordem associadas, e seja \leq a relação de ordem definida em $R_1 \times R_2$ por:

$$(a_1, a_2) \le (b_1, b_2)$$
 sse $a_1 \le b_1$ e $a_2 \le b_2$

Então $(R_1 \times R_2; \leq)$ é um Reticulado. Além disso:

$$(a_{1}, a_{2}) \wedge_{R_{1} \times R_{2}} (b_{1}, b_{2}) = (a_{1}, a_{2}) \Leftrightarrow$$

$$\Leftrightarrow a_{1} \wedge_{R_{1}} b_{1} = a_{1} e a_{2} \wedge_{R_{2}} b_{2} = a_{2} \Leftrightarrow$$

$$\Leftrightarrow a_{1} \leq_{1} b_{1} e a_{2} \leq_{2} b_{2} \Leftrightarrow (a_{1}, a_{2}) \leq (b_{1}, b_{2})$$

Por conseguinte o Reticulado $(R_1 \times R_2; \land_{R_1 \times R_2}, \lor_{R_1 \times R_2})$ coincide com o Reticulado $(R_1 \times R_2; \le)$.

Sejam $(P_1; \leq)$ e $(P_2; \leq)$ dois c.p.o. e $\alpha: P_1 \rightarrow P_2$ uma aplicação, que se designa:

Aplicações entre _ c.p.o.'s

- **Isótona**, ou <u>preserva a ordem</u>, se p/ qq $a,b \in P_1$, $a \leq_1 b \Rightarrow \alpha(a) \leq_2 \alpha(b)$
- Antítona, se p/ qq $a,b \in P_1$, $a \leq_1 b \Rightarrow \alpha(a) \geq_2 \alpha(b)$
- Mergulho de Ordem se p/ qq $a,b \in P_1$, $a \leq_1 b \iff \alpha(a) \leq_2 \alpha(b)$
- ullet Isomorfismo de c.p.o.'s se lpha é um mergulho de ordem e uma aplicação sobrejetiva

Sejam (R_1, Λ, V) e (R_2, Λ, V) Reticulados e $\alpha: R_1 \to R_2$ uma aplicação, que se designa:

Aplicações entre reticulados

- $\begin{array}{ll} \bullet & \text{Homomorfismo, se p/ qq } a,b \in R_1 \text{,} \\ & \alpha \Big(a \wedge_{R_1} b \Big) = \alpha(a) \wedge_{R_2} \alpha(b) \ e \ \alpha \Big(a \vee_{R_1} b \Big) = \alpha(a) \vee_{R_2} \alpha(b) \end{array}$
- **Isomorfismo**, se α é bijetiva e um homomorfismo (de reticulados ou também um reticulado isomorfo)

Seja (R; ≤) um Reticulado.

Um elemento $a \in R$ diz-se **compacto** se sempre que existe $\vee a$ e $a \leq \vee a$ p/ algum $A \subseteq R$, então $a \leq \vee B$ p/ algum conjunto finito $A \subseteq B$.

Um Reticulado diz-se **Compactamente Gerado** se, p/ todo $a \in R$, $a = \vee S$, p/ algum subconjunto S de R formado por elementos compactos de D.

Um Reticulado diz-se Reticulado Algébrico se é um Reticulado Completo e Compactamente gerado.

Um Subreticulado (R'; \leq ') de (R; \leq) diz-se um **Subreticulado Completo** se p/ qq subconjunto S de R', \wedge S e \vee S, como definidos em (R; \leq), pertencem a R'.

Todos elementos de um Reticulado Finito são compactos.

Um Reticulado diz-se **Distributivo** se satisfaz uma das seguintes condições:

- D1 > $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z), \forall x, y, z \in R$
- D2 > $x \lor (y \land z) = (x \lor y) \land (x \lor z), \ \forall x, y, z \in R$

Estas afirmações são equivalentes.

Subuniverso: Sejam $\mathcal{A} = (A; F)$ uma álgebra, e B um subconjunto $(B \subseteq A)$, B diz-se um subuniverso de \mathcal{A} se B é fechado p/ toda a operação de F. Representa-se por $Sub\mathcal{A}$.

Subálgebra: B é subálgebra de A se:

1) B é subuniverso de A

2) p/ qq
$$f \in \sigma_n$$
, e qq $b_1, \ldots, b_n \in B$: $f^B(b_1, \ldots, b_n) = f^A(b_1, \ldots, b_n)$

Sejam $\mathcal{A}=(A;F)$ uma álgebra, e X um subconjunto. $Sg^A(X)$ - subuniverso de \mathcal{A} uma álgebra gerado por X - é por definição o menor subuniverso de \mathcal{A} gerado por $X \to Sg^{\mathcal{A}}(X)$ que contém X.

$$Sg^{\mathcal{A}}(X) = \bigcap \{B \mid B \text{ \'e subuniverso de } \mathcal{A} \text{ e } X \subseteq B\}$$

Uma **Congruência** numa álgebra é uma **Relação de Equivalência** que é compatível com as operações da álgebra. Sendo A um conjunto e θ uma relação binária em A, diz-se que θ é uma **Relação de Equivalência** em A se são satisfeitas as seguintes condições:

- I) Simetria: p/qq $a,b \in A$, $a\theta b \Rightarrow b\theta a$ ou $(a,b) \in \theta \Rightarrow (b,a) \in \theta$
- II) Reflexividade: p/ todo $a \in A$, $a\theta a$ ou $(a,a) \in \theta$
- III) Transitividade: p/ qq $a,b,c \in A$, $a\theta b$ e $b\theta c \Rightarrow a\theta c$ ou $(a,b) \in \theta$ e $(b,c) \in \theta \Rightarrow (a,c) \in \theta$

Demodemodemo, Demode de Demodemodemo de x, demo dem demodemodem.

Dado um elemento $x \in A$, chama-se **Classe de Equivalência de** x **Módulo** θ ao conjunto:

$$[x]_{\theta} = \{ y \in A | \ x \theta y \}$$

O conjunto de todas as relações de equivalência definidas em A representa-se por Eq(A).

Para $\mathcal{A} = (A; F)$, θ é uma **congruência** em \mathcal{A} se θ satisfaz a propriedade de substituição, i.e.:

$$a_i \theta b_i \Rightarrow f^A(a_1, ..., a_n) \theta f^B(b_1, ..., b_n)$$
 ou $(x, y) \in \theta \Rightarrow (f(x), f(y)) \in \theta$

ou seja

$$\begin{vmatrix} (a_1,b_1) \in \theta \\ (a_2,b_2) \in \theta \end{vmatrix} \Longrightarrow \begin{vmatrix} (a_1 \land a_2 , b_1 \land b_2) \in \theta \\ (a_1 \lor a_2 , b_1 \lor b_2) \in \theta \end{vmatrix}$$

O conjunto de todas congruências da álgebra $\mathcal A$ é denotado por $\mathit{Con}\mathcal A$.

E ao reticulado $Con\mathcal{A} = (Con\mathcal{A}, \subseteq)$ dá-se a designação de reticulado de congruências de \mathcal{A} .

Se $\mathcal{R}=(R; \land, \lor)$ é um reticulado, então $\theta \in Eq(R)$ é uma congruência em \mathcal{R} sse:

- I) cada classe de θ é um subreticulado
- II) cada classe de θ é um **subconjunto convexo** de R

(i.e.,
$$a\theta b e a \le c \le b \Rightarrow a\theta c$$
)

III) as classes de equivalência de heta são fechadas para os quadriláteros

(i.e. sempre que a, b, c, d são elementos de R distintos e tais que a < b, c < d e $(a \lor d = b \ e \ a \land d = c)$ ou $(b \lor c = d \ e \ b \land c = a)$, então $a \theta b \ sse \ c \ \theta \ d)$.

Teoremas:

1.

- ♦ Se (R; \land , \lor) é um Reticulado, então a relação ≤ definida em R por $x \le y$ sse $x = x \land y$ e sup $\{x,y\} = x \lor y$
- ♦ Se (R; ≤) é um c.p.o., então (R; \land , \lor) onde $x \land y = \inf\{x,y\}$ e $x \lor y = \sup\{x,y\}$ é um Reticulado, e p/ qq $x,y \in R$: $x \le y \Leftrightarrow x = x \land y \Leftrightarrow y = x \lor y$

2.

- 1. Dem d.d.d. (D; \leq) demod d, d, d d demodemod de P tais que $a \leq b$ e $c \leq d$.
 - 1. Se existem $Inf\{a,c\}$ e $Inf\{b,d\}$, então $Inf\{a,c\} \le Inf\{b,d\}$
 - 2. Se existem $Sup\{a,c\}$ e $Sup\{b,d\}$, então $Sup\{a,c\} \le Sup\{b,d\}$

3.

♦ Sejam $(R_1; \Lambda_1, V_1)$ e $(R_2; \Lambda_2, V_2)$ Reticulados e \leq_1 e \leq_2 relações de ordem definidos em R_1 e R_2 :

$$ightharpoonup a \le b \ sse \ a = a \land_{R_1} b, \forall a, b \in R_1$$

 \Rightarrow $a \leq b \text{ sse } a = a \land_{R_2} b, \forall a, b \in R_2$

Então os Reticulados R_1 e R_2 são **isomorfos** sse os c.p.o. $(R_1; \leq_1)$ e $(R_2; \leq_2)$ são isomorfos.

4.

♦ Todo o Reticulado <u>Finito</u> é **completo**.

5.

- ♦ Seje (R; \leq) um Reticulado tq exite $\land S$ e $\lor S$ p/ qq subconjunto S de R. Então (R; \leq) é um Reticulado Completo.
- ♦ A: infimo V: supremo

6.

♦ Todo o Reticulado Distributivo é um Reticulado Modular (contrário não se verifica)

7.

- ♦ Sejam R e S reticulados, então:
 - 1. Se R é Distributivo (modular), então qq subreticulado de R é Distributivo (modular)
 - 2. Se R e S são Distributivos (modulares), então R×S é Distributivo (modular)
 - 3. Se R é Distributivo (modular) e S é uma imagem homomorfa de R (i.e., se $S=\alpha(R)$) p/ algum homomorfismo $\alpha:R\to S$, então S é Distributivo (modular)

8.

 $\bullet~$ Seja (R; \land , V) um Reticulado. Então R é Modular sse não tem qq Subreticulado isomorfo a N_5

 M_5

10.

• Sejam $\mathcal{A} = (A; F)$ uma álgebra e $X \subseteq A$. Definem-se recursivamente,

$$X_0=X$$

$$X_{i+1}=X_i\cup\{\,f(x)\mid f\text{ \'e operação }n-\text{\'aria em }\mathcal{A}\text{ e }x\in(X_i)^n,n\in\mathbb{N}_0\}$$
 Então $Sg^A(X)=U_{i\in\mathbb{N}_n}X_i$.

11.

- 1. Sejam $\mathcal{A} = (A; F)$ uma álgebra e $X, Y \subseteq A$, então:
 - 1. $X \subseteq Sg^A(X)$
 - 2. $X \subseteq Y \Rightarrow Sg^A(X) \subseteq Sg^A(Y)$
 - 3. $Sg^{A}(Sg^{A}(X)) = Sg^{A}(X)$
 - 4. $Sg^{A}(X) = \bigcup \{ Sg^{A}(Z) \mid Z \text{ \'e subconjunto finito de } X \}$