CogSci 131: Back Propagation

Chanwut (Mick) Kittivorawong SSID: 3037251249

NEURAL NETWORK DIAGRAM

3.2 Layer 2

2 ALL VARIABLES

Below are all the variables in the neural networks.

$$\hat{X} = \begin{pmatrix} X_1 & X_2 \end{pmatrix} \qquad \hat{W}^{(1)} = \begin{pmatrix} W_{11}^{(1)} & W_{12}^{(1)} & W_{13}^{(1)} \\ W_{21}^{(1)} & W_{22}^{(1)} & W_{23}^{(1)} \end{pmatrix} \qquad \hat{Z}^{(1)} = \begin{pmatrix} Z_1^{(1)} & Z_2^{(1)} & Z_3^{(1)} \end{pmatrix} \qquad \hat{a}^{(1)} = \begin{pmatrix} a_1^{(1)} & a_2^{(1)} & a_3^{(1)} \\ W_{21}^{(1)} & W_{21}^{(1)} \end{pmatrix} \\ \hat{W}^{(1)} = \begin{pmatrix} W_{11}^{(1)} \\ W_{21}^{(1)} \\ W_{31}^{(1)} \end{pmatrix} \qquad \hat{Z}^{(2)} = \begin{pmatrix} Z_1^{(2)} \end{pmatrix} \qquad \qquad \hat{a}^{(2)} = \begin{pmatrix} a_1^{(2)} \\ a_1^{(2)} \end{pmatrix} \qquad \qquad L = \frac{1}{2}(\hat{Y} - a_1^{(2)})^2$$

3 FORWARD PROPAGATION

3.1 Layer 1

3.1.1 *Calculating*
$$\hat{Z}^{(1)}$$
. Given $\hat{Z}^{(1)} = \hat{X} \times \hat{W}^{(1)}$

Then,
$$\begin{pmatrix} Z_1^{(1)} & Z_2^{(1)} & Z_3^{(1)} \end{pmatrix} = \begin{pmatrix} X_1 & X_2 \end{pmatrix} \times \begin{pmatrix} W_{11}^{(1)} & W_{12}^{(1)} & W_{13}^{(1)} \\ W_{21}^{(1)} & W_{22}^{(1)} & W_{23}^{(1)} \end{pmatrix}$$

Thus,
$$Z_i^{(1)} = \sum_{j=1}^{j \le 2} X_j W_{ji}^{(1)}$$

3.1.2 Calculating
$$\hat{a}^{(1)}$$
. Given $\hat{a}^{(1)} = \sigma(\hat{Z}^{(1)})$
Then, $a_i^{(1)} = \sigma(\sum_{j=1}^{j \le 2} X_j W_{ji}^{(1)})$

Then,
$$a_i^{(1)} = \sigma(\sum_{j=1}^{j \le 2} X_j W_{ji}^{(1)})$$