```
In [2]: import pandas as pd
import numpy as np
```

# 1. Configuración del proyecto

- Crear una carpeta llamada Proyecto Frutas.
- Dentro, crear un archivo llamado analisis frutas.py.
- Instalar pandas y numpy desde la terminal de VS Code.
- Probar una lectura básica del CSV.

```
In [3]: frutas df = pd.read csv('Fruits.csv', index col=0)
        frutas df.head()
Out[3]:
          Cherry Mango Banana Guava Litchi Wastage
           30153
                  45568
                          42342 23946
                                      15399
                                                19466
        0
           13003
                  29345
                          34255 19097 34973
                                                7116
            6619
                  12263
                          2710 6462
                                       7689
                                                25064
           32956
                  32519
                          1548 45711 35422
                                               19784
          42122 16142
                          37817 42599 10118
                                               44063
```

# 2. Lectura y limpieza de datos

- Leer el archivo fruit\_sales.csv con pandas.
- Validar nombres y tipos de columnas.
- Verificar que no hay datos faltantes o inconsistentes.
- Crear una columna Periodo para identificar cada fila.

```
In [4]: frutas df.columns
Out[4]: Index(['Cherry', 'Mango', 'Banana', 'Guava', 'Litchi', 'Wastage'], dtype
        ='object')
In [5]: frutas_df.dtypes
Out[5]:
        Cherry
                    int64
                    int64
        Mango
        Banana
                   int64
        Guava
                   int64
                   int64
        Litchi
        Wastage
                   int64
        dtype: object
In [6]: frutas_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Index: 3600 entries, 0 to 3599
Data columns (total 6 columns):
# Column Non-Null Count Dtype
--- -----
0
  Cherry
            3600 non-null
                         int64
            3600 non-null
1 Mango
                         int64
2 Banana
           3600 non-null int64
           3600 non-null int64
3 Guava
   Litchi
           3600 non-null int64
5
    Wastage 3600 non-null int64
dtypes: int64(6)
memory usage: 196.9 KB
```

### Crear una columna Periodo para identificar cada fila.

```
In [7]: frutas_df['Periodo'] = np.random.choice(a=range(10), size=3600 )
    frutas_df.head()
```

| Out[7]: |   | Cherry | Mango | Banana | Guava | Litchi | Wastage | Periodo |
|---------|---|--------|-------|--------|-------|--------|---------|---------|
|         | 0 | 30153  | 45568 | 42342  | 23946 | 15399  | 19466   | 8       |
|         | 1 | 13003  | 29345 | 34255  | 19097 | 34973  | 7116    | 7       |
|         | 2 | 6619   | 12263 | 2710   | 6462  | 7689   | 25064   | 9       |
|         | 3 | 32956  | 32519 | 1548   | 45711 | 35422  | 19784   | 0       |
|         | 4 | 42122  | 16142 | 37817  | 42599 | 10118  | 44063   | 4       |

### Calcular el total de ventas por período: TotalVentas = Cherry + Mango + Banana + Guava + Litchi

```
In [8]: frutas_df['TotalVentas'] = frutas_df[['Cherry', 'Mango', 'Banana', 'Guava
frutas_df.head()
```

| Out[8]: |   | Cherry | Mango | Banana | Guava | Litchi | Wastage | Periodo | TotalVentas |
|---------|---|--------|-------|--------|-------|--------|---------|---------|-------------|
|         | 0 | 30153  | 45568 | 42342  | 23946 | 15399  | 19466   | 8       | 157408      |
|         | 1 | 13003  | 29345 | 34255  | 19097 | 34973  | 7116    | 7       | 130673      |
|         | 2 | 6619   | 12263 | 2710   | 6462  | 7689   | 25064   | 9       | 35743       |
|         | 3 | 32956  | 32519 | 1548   | 45711 | 35422  | 19784   | 0       | 148156      |
|         | 4 | 42122  | 16142 | 37817  | 42599 | 10118  | 44063   | 4       | 148798      |

#### **Agrupando por Periodo**

```
In [9]: total_periodo = frutas_df.groupby(by='Periodo').TotalVentas.sum().to_fram
total_periodo
```

| 0 | ut[ | 9 | 1: | TotalVe | entas |
|---|-----|---|----|---------|-------|
|   |     |   |    |         |       |

| Periodo |          |
|---------|----------|
| 0       | 48633529 |
| 1       | 45992541 |
| 2       | 48489629 |
| 3       | 49063623 |
| 4       | 52683310 |
| 5       | 47345739 |
| 6       | 50863212 |
| 7       | 48344793 |
| 8       | 47221706 |
| 9       | 48901828 |

## 3. Análisis con Pandas

Fruta más vendida (suma total de todos los períodos).

La fruta más vendida fue Mango y la menos fue Banana

#### Período con menor desperdicio.

```
In [11]: desperdicio_periodos = frutas_df.groupby(by='Periodo').Wastage.sum().sort
desperdicio_periodos
```

| 0ι | ut    | [1 | 1 | :  | Wastage | 9 |
|----|-------|----|---|----|---------|---|
|    | ~ - 1 | _  |   | ٠. | wastaye | ē |

| Periodo |          |  |  |  |
|---------|----------|--|--|--|
| 2       | 9207430  |  |  |  |
| 1       | 9333524  |  |  |  |
| 3       | 9589389  |  |  |  |
| 9       | 9748423  |  |  |  |
| 8       | 9809025  |  |  |  |
| 6       | 9897764  |  |  |  |
| 0       | 9986198  |  |  |  |
| 5       | 10047652 |  |  |  |
| 7       | 10170609 |  |  |  |
| 4       | 10819326 |  |  |  |

El periodo con menor desperdicio fue el 1

#### Promedio, máximo y mínimo de ventas por fruta.

```
In [12]:
         #promedio
         frutas_df[['Cherry', 'Mango', 'Banana', 'Guava', 'Litchi']].mean().to_fra
Out[12]:
          Cherry 27161.900000
          Mango 27771.715556
          Banana 25844.960278
           Guava 27419.228333
           Litchi 27229.948611
In [13]:
         #maxima
         frutas_df[['Cherry', 'Mango', 'Banana', 'Guava', 'Litchi']].max().to_fram
Out[13]:
                     0
          Cherry 49942
          Mango 49972
          Banana 49986
           Guava 49996
           Litchi 49998
```

#### Porcentaje de desperdicio respecto al total de ventas por período.

Out[15]: TotalVentas Wastage

| Periodo |          |          |  |  |  |
|---------|----------|----------|--|--|--|
| 0       | 48633529 | 9986198  |  |  |  |
| 1       | 45992541 | 9333524  |  |  |  |
| 2       | 48489629 | 9207430  |  |  |  |
| 3       | 49063623 | 9589389  |  |  |  |
| 4       | 52683310 | 10819326 |  |  |  |
| 5       | 47345739 | 10047652 |  |  |  |
| 6       | 50863212 | 9897764  |  |  |  |
| 7       | 48344793 | 10170609 |  |  |  |
| 8       | 47221706 | 9809025  |  |  |  |
| 9       | 48901828 | 9748423  |  |  |  |

In [16]: analisis\_desperdicio['%desperdicio'] = analisis\_desperdicio.Wastage \* 100
analisis\_desperdicio

Out[16]: TotalVentas Wastage %desperdicio

| Periodo |          |          |           |
|---------|----------|----------|-----------|
| 0       | 48633529 | 9986198  | 20.533566 |
| 1       | 45992541 | 9333524  | 20.293560 |
| 2       | 48489629 | 9207430  | 18.988452 |
| 3       | 49063623 | 9589389  | 19.544804 |
| 4       | 52683310 | 10819326 | 20.536534 |
| 5       | 47345739 | 10047652 | 21.221872 |
| 6       | 50863212 | 9897764  | 19.459573 |
| 7       | 48344793 | 10170609 | 21.037651 |
| 8       | 47221706 | 9809025  | 20.772280 |
| 9       | 48901828 | 9748423  | 19.934680 |

## 4. Análisis con NumPy

```
In [17]: frutas df.columns
Out[17]: Index(['Cherry', 'Mango', 'Banana', 'Guava', 'Litchi', 'Wastage', 'Perio
         do',
                 'TotalVentas'],
               dtype='object')
In [18]:
         cherry_array = frutas_df['Cherry'].to_numpy()
         mango array = frutas df['Mango'].to numpy()
         banana array = frutas df['Banana'].to numpy()
         guava array = frutas df['Guava'].to numpy()
         litchi array = frutas df['Litchi'].to numpy()
In [19]: print(f'Media de Cherry: {cherry array.mean()}\nDesviación estándar: {che
         print(f'Media de Mango: {mango array.mean()}\nDesviación estándar: {mango
         print(f'Media de Banana: {banana array.mean()}\nDesviación estándar: {ban
         print(f'Media de Guava: {guava_array.mean()}\nDesviación estándar: {guava
        Media de Cherry: 27161.9
        Desviación estándar: 12908.99099899842
        Media de Mango: 27771.71555555555
        Desviación estándar: 12883.19991803202
        Media de Banana: 25844.96027777776
        Desviación estándar: 14508.452364774203
        Media de Guava: 27419.228333333333
        Desviación estándar: 12921.461810710181
```

## 5. Visualización y exportación

```
Out[22]:
                     Cherry
                               Mango
                                        Banana
                                                   Guava
                                                             Litchi TotalVentas
                                                                                 Wastage
          Periodo
                0
                    9972967 10064314
                                       9177004 10102566
                                                           9316678
                                                                      48633529
                                                                                  9986198
                                                                      45992541
                    9212883
                              9442550
                                       8617399
                                                 9406630
                                                           9313079
                1
                                                                                  9333524
                2
                    9866214 10065522
                                       9307822
                                                 9827407
                                                           9422664
                                                                      48489629
                                                                                 9207430
                                                          10171199
                                                                      49063623
                3
                    9687639
                              9882122
                                       9147250
                                                10175413
                                                                                  9589389
                   10785287
                            10712378
                                      10048235
                                                10755199
                                                          10382211
                                                                      52683310
                                                                                10819326
                5
                   9617503
                              9883401
                                       9029529
                                                 9099916
                                                           9715390
                                                                      47345739
                                                                                10047652
                    9963629 10686722
                                       9641238
                                                10152017
                                                          10419606
                                                                      50863212
                6
                                                                                 9897764
                7
                    9475301
                              9724767
                                       9369884
                                                 9877148
                                                           9897693
                                                                      48344793
                                                                                10170609
                8
                    9438828
                              9426863
                                       9114042
                                                 9654749
                                                           9587224
                                                                      47221706
                                                                                 9809025
                9
                    9762589 10089537
                                       9589454
                                                           9802071
                                                                      48901828
                                                                                 9748423
                                                 9658177
In [23]:
          reporte.to csv('reporte frutas.csv')
In [34]:
          reporte[frutas].sum().sort values(ascending=False).to frame()
Out[34]:
                         0
           Mango 99978176
           Guava 98709222
            Litchi 98027815
           Cherry
                  97782840
          Banana 93041857
In [44]:
          proedio desperdicio = reporte['%desperdicio'].mean()
          proedio desperdicio
Out[44]: np.float64(20.232297368032153)
          import matplotlib.pyplot as plt
In [35]:
In [41]:
          plt.plot(reporte['%desperdicio'].index,
                                                      reporte['%desperdicio'])
          plt.xlabel('periodos')
          plt.xticks(reporte['%desperdicio'].index)
          plt.ylabel('% Desperdicio Total');
```



```
desv_ventas_frutas = frutas_df[frutas].std()
In [51]:
         desv_ventas_frutas
Out[51]:
          Cherry
                    12910.784288
          Mango
                    12884.989624
                    14510.467848
          Banana
          Guava
                    12923.256832
                    13097.099309
          Litchi
          dtype: float64
In [52]:
         promedio_ventas_frutas = frutas_df[frutas].mean()
         promedio_ventas_frutas
Out[52]:
          Cherry
                    27161.900000
          Mango
                    27771.715556
          Banana
                    25844.960278
          Guava
                    27419.228333
          Litchi
                    27229.948611
          dtype: float64
         variabilidad_ventas_frutas = desv_ventas_frutas * 100 / promedio_ventas_f
In [50]:
         variabilidad_ventas_frutas
Out[50]:
          Cherry
                    47.532699
          Mango
                    46.396088
          Banana
                    56.144284
          Guava
                    47.132095
          Litchi
                    48.098142
          dtype: float64
```

### Ratio Ventas / desperdicio por frutas

```
In [57]: ventas por frutas = frutas df[frutas].sum().to frame()
         ventas por frutas
Out[57]:
          Cherry 97782840
          Mango 99978176
          Banana 93041857
           Guava 98709222
           Litchi 98027815
         ventas por frutas['ratio ventas desperdicio'] = ventas por frutas[0] /fru
In [59]:
         ventas por frutas
Out[59]:
                         0 ratio_ventas_desperdicio
          Cherry 97782840
                                         0.991618
          Mango 99978176
                                         1.013881
          Banana 93041857
                                         0.943540
           Guava 98709222
                                         1.001013
           Litchi 98027815
                                         0.994103
```

### Correlacion entre diferentes frutas

```
In [72]: import seaborn as sns
In [60]: reporte
```

| Out[60]: |         | Cherry            | Mango     | Banana    | Guav                    | a Litch   | i TotalVentas | Wastage     |
|----------|---------|-------------------|-----------|-----------|-------------------------|-----------|---------------|-------------|
|          | Periodo |                   |           |           |                         |           |               |             |
|          | 0       | 9972967           | 10064314  | 9177004   | 1010256                 | 6 931667  | 8 48633529    | 9986198     |
|          | 1       | 9212883           | 9442550   | 8617399   | 940663                  | 0 931307  | 9 45992541    | 9333524     |
|          | 2       | 9866214           | 10065522  | 9307822   | 982740                  | 7 942266  | 4 48489629    | 920743(     |
|          | 3       | 9687639           | 9882122   | 9147250   | ) 1017541               | 3 1017119 | 9 49063623    | 9589389     |
|          | 4       | 10785287          | 10712378  | 10048235  | 1075519                 | 9 1038221 | 1 52683310    | 10819326    |
|          | 5       | 9617503           | 9883401   | 9029529   | 909991                  | 6 971539  | 0 47345739    | 10047652    |
|          | 6       | 9963629           | 10686722  | 9641238   | 3 1015201               | 7 1041960 | 6 50863212    | 9897764     |
|          | 7       | 9475301           | 9724767   | 9369884   | 987714                  | 8 989769  | 3 48344793    | 10170609    |
|          | 8       | 9438828           | 9426863   | 9114042   | 965474                  | 9 958722  | 4 47221706    | 980902!     |
|          | 9       | 9762589           | 10089537  | 9589454   | 965817                  | 7 980207  | 1 48901828    | 9748423     |
|          | 1       |                   |           |           |                         |           |               | <b>&gt;</b> |
| In [70]: | cor_mat | riz = repo<br>riz | orte[frut | as].corr( | method=' <mark>r</mark> | earson')  |               |             |
| Out[70]: |         | Cherry            | Mango     | Banana    | Guava                   | Litchi    |               |             |
|          | Cherry  | 1.000000          | 0.875051  | 0.844009  | 0.797020                | 0.546790  |               |             |
|          | Mango   | 0.875051          | 1.000000  | 0.842530  | 0.686389                | 0.683917  |               |             |
|          | Banana  | 0.844009          | 0.842530  | 1.000000  | 0.731523                | 0.721375  |               |             |
|          | Guava   | 0.797020          | 0.686389  | 0.731523  | 1.000000                | 0.609366  |               |             |
|          | Litchi  | 0.546790          | 0.683917  | 0.721375  | 0.609366                | 1.000000  |               |             |
| In [79]: | 3       |                   | (0.0)     |           |                         |           |               | i1i+v       |

