

Page: 1 of 130

SAR TEST REPORT

Test report No:	EMC-FCC-A0005
Test report ino.	EMIC-T CC-AUUUS

Type of Equipment: WiFi Phone Model Name: MWP1100A

Applicant: Moimstone.co.,Ltd FCCID: 2AAKFMWP1100A

Test standards: FCC OET Bulletin 6 supplement C

IEEE 1528 ,2003

IEC 62209:2006/IEC62209-2:2010

RSS-102

Max. SAR(1g) 0.243 W/kg

Test result: Complied

In the configuration tested, the EUT complied with the standards specified above.

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of EMC Compliance Ltd. or testing done by EMC compliance Ltd. in connection with distribution or use of the product described in this report must be approved by EMC Compliance Ltd. in writing.

Date of receipt: 2013. 06. 11	
Date of testing: 2013. 06.24 ~ 06. 29	<u>Issued date: 2013. 07. 02</u>
-63	发表是
Tested by:	Approved by:
Chang-won, Lee	Sang-Hun, Yu

Contents

	Applicant information	
2.	Laboratory information	4
3.]	Identification of Sample	5
4.7	Test Result Summary	6
5.]	Report Overview	6
6. ′	Test Lab Declaration or comments	6
7.	Applicant Declaration or Comments	6
	Measurement Uncertainty	
9. ′	The SAR Measurement System	9
	9.1 Isotropic E-field Probe EX3DV4	10
	9.2 SAM Twin Phantom	
	9.3 Device Holder for Transmitters	
10.	. Measurement for Tissue Simulant Liquid	13
11.	. SAR System Validation	16
12.	. Operation Configurations	18
	. SAR Measurement Procedures	
14.	. Test Equipment Information	21
15.	. SAR Test Results	24
16.	. Validation Test Results	28
17.	. Test Results	35
An	nnex A. Photographs	80
An	nnex B. Calibration certificate	89

Page: 3 of 130

1. Applicant information

Applicant: Moimstone.co.,Ltd

Address: 65, Heungan-daero 439 beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do,

KOREA

Telephone: +82-70-7791-3700 **Fax:** +82-31-426-9539

E-mail: nunjoa@moimstone.com

Contact name: Yoo Deok Jae

Manufacturer: Moimstone.co.,Ltd

Address: 65, Heungan-daero 439 beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do,

KOREA

2. Laboratory information

Address

EMC compliance Ltd.

480-5 Sin-dong, Yeongtong-gu, Suwon-city, Gyeonggi-do, 443-390, Korea

Telephone Number: 82 31 336 9919 Facsimile Number: 82 505 299 8311

FCC CAB.: 508785

VCCI Registration No. : C-1713, R-1606, T-258 Industry Canada Registration No. : 8035A-2

KOLAS NO.: 231

SITE MAP

3. Identification of Sample

Mode of Operation	802.11a/b/g/n(HT20)
Model Number	MWP1100A
Serial Number	N/A
Sample Version	V.1.0.0
Tx Freq.Range	2 412 MHz ~ 2 462 MHz / 5 180 MHz ~ 5 240 MHz 5 260 MHz ~ 5 320 MHz / 5 500 MHz ~ 5 700 MHz 5 745 MHz ~ 5 825 MHz
Rx Freq.Range	2 412 MHz ~ 2 462 MHz / 5 180 MHz ~ 5 240 MHz 5 260 MHz ~ 5 320 MHz / 5 500 MHz ~ 5 700 MHz 5 745 MHz ~ 5 825 MHz
Maximum AVG Conducted Power (Unit : dBm)	802.11b(2.4G band) – 14.48 dBm 802.11a(5150 band) – 12.42 dBm 802.11a(5250 band) – 12.82 dBm 802.11a(5470 band) – 12.72 dBm 802.11a(5745 band) – 17.52 dBm
Antenna Dimensions	43.70 x 10.17 x 7.23(mm)
Antenna Gain	2.11 dBi
Normal Voltae	DC 3.7 V

4. Test Result Summary

		Max	Traffic Ch	Traffic Channel			
Band & Mode	AVG Power (dBm)	tune up power (dBm)	Frequency (MHz)	Ch.	Measured 1 g SAR (W/kg)	Reported 1g SAR (W/kg)	Limit (W/kg)
802.11b RE. Cheek	13.97	15	2 437	6	0.050	0.063	1.6
802.11a RE. Cheek	12.82	13	5 300	60	0.233	0.243	1.6
802.11b Back	13.97	15	2 437	6	0.035	0.044	1.6
802.11a Back	12.82	13	5 300	60	0.157	0.164	1.6

- Contain the results of the worst test SAR including battery.
- Reported SAR = (measured SAR) x [max possible power(mW) / sample measured power(mW)]

5. Report Overview

This report details the results of testing carried out on the samples listed in section 3, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this test report is used in any configuration other than that detailed in the test report, the manufacturer must ensure the new configuration complies with all relevant standards and certification requirements. Any mention of EMC Compliance Ltd Wireless lab or testing done by EMC Compliance Ltd Wireless lab made in connection with the distribution or use of the tested product must be approved in writing by EMC Compliance Ltd Wireless lab.

6. Test Lab Declaration or comments

None

7. Applicant Declaration or Comments

None

Page: 7 of 130

8. Measurement Uncertainty

Measurements and results are all in compliance with the standards listed in section 15 of this report. All measurements and results are recorded and maintained at the laboratory performing the tests and measurement uncertainties are taken into account when comparing measurements to pass / fail criteria.

Uncertainty of SAR equipments for measurement 300 MHz to 3GHz

a	b	c	d	e = f(d,k)	g	i =	k
						cxg/e	
Uncertainty Component	Section in	Tol	Prob .	Div.	Ci	1g	Vi
Oncertainty Component	P1528	(%)	Dist.		(10g)	ui (%)	(Veff)
Measurement System							
Probe calibration	E.2.1	6.30	N	1	1	6.30	∞
Axial isotropy	E.2.2	0.50	R	1.73	0.71	0.20	∞
hemispherical isotropy	E.2.2	2.60	R	1.73	0.71	1.06	∞
Boundary effect	E.2.3	0.80	R	1.73	1	0.46	∞
Linearity	E.2.4	0.60	R	1.73	1	0.35	∞
System detection limit	E.2.5	0.25	R	1.73	1	0.14	∞
Readout electronics	E.2.6	0.30	N	1	1	0.30	∞
Response time	E.2.7	0.00	R	1.73	1	0.00	∞
Integration time	E.2.8	2.60	R	1.73	1	1.50	∞
RF ambient Condition -Noise	E.6.1	3.00	R	1.73	1	1.73	∞
RF ambient Condition - reflections	E.6.1	3.00	R	1.73	1	1.73	∞
Probe positioning- mechanical tolerance	E.6.2	0.40	R	1.73	1	0.23	∞
Probe positioning- with respect to phantom	E.6.3	2.90	R	1.73	1	1.67	∞
Max. SAR evaluation	E.5.2	2.00	R	1.73	1	1.15	∞
Test Sample Related			<u> </u>		-		
Test sample positioning	E.4.2	4.75	N	1	1	4.75	9
Device holder uncertainty	E.4.1	3.60	N	1	1	3.60	∞
Output power variation -SAR drift measurement	6.62	5.00	R	1.73	1	2.89	∞
Phantom and Setup							
Phantom uncertainty (shape and thickness tolerances)	E.3.1	6.10	R	1.73	1	3.52	∞
Liquid conductivity - deviation from target values	E.3.2	5.00	R	1.73	0.43	1.24	∞
Liquid conductivity - measurement uncertainty	E.3.2	0.46	N	1	0.43	0.20	5
Liquid permittivity - deviation from target values	E.3.3	5.00	R	1.73	0.49	1.41	∞
Liquid permittivity - measurement uncertainty	E.3.3	0.75	N	1	0.49	0.37	5
Combined standard uncertainty				RSS		10.66	244
Expanded uncertainty (95% CONFIDENCE INTERVAL)				K=2		21.33	

Page: 8 of 130

Uncertainty of SAR equipments for measurement 3 GHz to 6GHz

a	b	С	d	e = f(d,k)	g	i =	k
						cxg/e	
Harantainta Canananant	Section in	Tol	Prob .	Div.	Ci	1g	Vi
Uncertainty Component	P1528	(%)	Dist.		(10g)	ui (%)	(Veff)
Measurement System				•	•		
Probe calibration	E.2.1	6.50	N	1	1	6.50	∞
Axial isotropy	E.2.2	0.50	R	1.73	0.71	0.20	∞
hemispherical isotropy	E.2.2	2.60	R	1.73	0.71	1.06	∞
Boundary effect	E.2.3	1.80	R	1.73	1	1.04	∞
Linearity	E.2.4	0.60	R	1.73	1	0.35	∞
System detection limit	E.2.5	1.00	R	1.73	1	0.58	8
Readout electronics	E.2.6	0.30	N	1	1	0.30	8
Response time	E.2.7	0.80	R	1.73	1	0.46	8
Integration time	E.2.8	2.60	R	1.73	1	1.50	8
RF ambient Condition -Noise	E.6.1	3.00	R	1.73	1	1.73	8
RF ambient Condition - reflections	E.6.1	3.00	R	1.73	1	1.73	∞
Probe positioning- mechanical tolerance	E.6.2	0.80	R	1.73	1	0.46	∞
Probe positioning- with respect to phantom	E.6.3	9.90	R	1.73	1	5.72	∞
Max. SAR evaluation	E.5.2	4.00	R	1.73	1	2.31	∞
Test Sample Related				•			
Test sample positioning	E.4.2	5.30	N	1	1	5.30	9
Device holder uncertainty	E.4.1	3.60	N	1	1	3.60	8
Output power variation -SAR drift measurement	6.62	5.00	R	1.73	1	2.89	∞
Phantom and Setup				•			
Phantom uncertainty (shape and thickness tolerances)	E.3.1	4.00	R	1.73	1	2.31	∞
Liquid conductivity - deviation from target values	E.3.2	5.00	R	1.73	0.43	1.24	∞
Liquid conductivity - measurement uncertainty	E.3.2	0.97	N	1	0.43	0.42	5
Liquid permittivity - deviation from target values	E.3.3	5.00	R	1.73	0.49	1.41	∞
Liquid permittivity - measurement uncertainty	E.3.3	0.39	N	1	0.49	0.19	5
Combined standard uncertainty				RSS		12.25	244
Expanded uncertainty				1.00		12.20	
(95% CONFIDENCE INTERVAL)				K=2		24.51	

9. The SAR Measurement System

<SAR System Configuration>

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- Data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

.

Report No.: EMC-FCC-A0005 Page: 10 of 130

9.1 Isotropic E-field Probe EX3DV4

<EX3DV4 E-field Probe>

Construction: Symmetrical design with triangular core Built-in shielding

against static charges PEEK enclosure material (resistant to

organic solvents, e.g. DGBE).

Calibration : In air from 10 MHz to 6 GHz In brain simulating tissue

 $(accuracy \pm 6.3 \%)$

Frequency : 10 MHz to > 6 GHz; Linearity: $\pm 0.2 \text{ dB}$ (30 MHz to 6 GHz)

Directivity : ± 0.2 dB in brain tissue (rotation around probe axis)

±0.4 dB in brain tissue (rotation normal to probe axis)

Dynamic Range : $5 \mu W/g \text{ to } > 100 \text{ mW/g}$; Linearity: $\pm 0.2 \text{ dB}$

Srfce. Detect : ± 0.2 mm repeatability in air and clear liquids over diffuse

reflecting surfaces

Dimensions: Overall length: 337 mm

Tip length: 9 mm Body diameter: 10 mm Tip diameter: 2.5 mm

Distance from probe tip to dipole centers: 2 mm

Application: High precision dosimetric measurements in any exposure

scenario (e.g., very strong gradient fields). Only probe which enables compliance testing frequencies up to 6 GHz with

precision of better 30%.

9.2 SAM Twin Phantom

<SAM Twin Phantom>

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- Flat phantom

A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Phantom specification:

Description The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-2003, IEC 62209-1 and IEC 62209-2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Shell Thickness 2 + 0.2 mm, Center ear point: 6 + 0.2 mm

Filling Volume Approx.25 liters

Dimensions Length: 1000 mm, Width: 500 mm, Height: 850 mm

Page: 12 of 130

9.3 Device Holder for Transmitters

<Device Holder for Transmitters>

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. An accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions, in which the devices must be measured, are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity = 3 and loss tangent = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Page: 13 of 130

10. Measurement for Tissue Simulant Liquid

The dielectric properties for this Tissue Simulant Liquids were measured by using the Agilent Model 85070D Dielectric Probe (rates frequency band 200 MHz to 20 GHz) in conjunction with Agilent E5070B Network Analyzer (9 kHz -3000 MHz). The Conductivity (σ) and Permittivity (ρ) are listed in Table 1.For the SAR measurement given in this report. The temperature variation of the Tissue Simulant Liquids was (22 ± 2) °C

Page: 14 of 130

Frequency (MHz)	Tissue Type	Limit/Measured	Permittivity (ρ)	Conductivity (σ)	Temp (°C)
2450	Head	Recommended Limit	39.20 ± 5 % (37.24 ~ 41.16)	$1.80 \pm 5 \%$ (1.71 ~ 1.89)	22 ± 2
		Measured, 24-06, 2013	37.61	1.83	20.8
5500	Head	Recommended Limit	35.65 ± 5 % (33.87 ~ 37.43)	4.97 ± 5 % (4.72 ~ 5.22)	22 ± 2
		Measured, 25-06, 2013	34.93	4.90	20.7
5600	Head	Recommended Limit	35.50 ± 5 % (33.73 ~ 37.28)	5.07 ± 5 % (4.82 ~ 5.32)	22 ± 2
		Measured, 25-06, 2013	34.70	5.03	20.7
5800	Head	Recommended Limit	$35.30 \pm 5 \%$ (33.54 ~ 37.07)	5.27 ± 5 % (5.01 ~ 5.53)	22 ± 2
		Measured, 25-06, 2013	34.20	5.25	20.7
5200	Head	Recommended Limit	$36.00 \pm 5 \%$ (34.20 ~ 37.80)	4.66 ± 5 % (4.43 ~ 4.89)	22 ± 2
		Measured, 25-06, 2013	35.57	4.57	20.7
5300	Head	Recommended Limit	35.90 ± 5 % (34.11 ~ 37.70)	4.76 ± 5 % (4.52 ~ 5.00)	22 ± 2
		Measured, 25-06, 2013	35.34	4.68	20.7
2450	Body	Recommended Limit	52.70 ± 5 % (50.07 ~ 55.34)	$1.95 \pm 5 \%$ (1.85 ~ 2.05)	22 ± 2
	,	Measured, 26-06, 2013	51.46	2.02	21.1
5500	Body	Recommended Limit	48.61 ± 5 % (46.18 ~ 51.04)	5.65 ± 5 % (5.37 ~ 5.93)	22 ± 2
	,	Measured, 27-06, 2013	47.17	5.70	20.6
5600	Body	Recommended Limit	48.47 ± 5 % (46.05 ~ 50.89)	5.77 ± 5 % (5.48 ~ 6.06)	22 ± 2
	,	Measured, 27-06, 2013	47.04	5.86	20.6
5800	Body	Recommended Limit	48.20 ± 5 % (45.79 ~ 50.61)	$6.00 \pm 5 \%$ (5.7 ~ 6.30)	22 ± 2
	,	Measured, 27-06, 2013	46.68	60.24	20.6
5200	Body	Recommended Limit	49.01 ± 5 % (46.56 ~ 51.46)	5.30 ± 5 % (5.01 ~ 5.53)	22 ± 2
		Measured, 28-06, 2013	47.91	5.27	20.6
5300	Body	Recommended Limit	48.88 ± 5 % (46.44 ~ 51.32)	5.42 ± 5 % (5.17 ~ 5.71)	22 ± 2
		Measured, 28-06, 2013	47.70	5.44	20.6

<Measurement result of Tissue electric parameters>

Page: 15 of 130

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (Mb)									
(% by weight)	45	50	83	35	9	15	19	00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.5	56.7	41.5	55.2	42.0	56.8	40.0	53.3	39.2	52.7
Conductivity (S/m)	0.87	0.94	0.90	0.97	1.0	1.07	1.40	1.52	1.80	1.95

Salt: 99+% Pure Sodium Chloride
Water: De-ionized, 16 M + resistivity
DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and salt	2

11. SAR System Validation

The microwave circuit arrangement for system verification is sketched below picture. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10 % from the target SAR values. These tests were done at 900/1800/1950/2450 MHz. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the table C-1 (A power level of 250 mW was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range 22 °C, the relative humidity was in the range 60 % and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

Page: 17 of 130

Validation	Frequency	Tissue Type	Limit/Measurement	(Normalized to	1 W)
Kit	(MHz)	Tissue Type		1 g	10 g
			Recommended Limit	$51.40 \pm 10 \%$	$24.10 \pm 10 \%$
		Head	(Normalized)	$(46.26 \sim 56.54)$	(21.69 ~ 26.51)
D2450V2	2450		Measured, 24-06, 2013	56.00	25.64
D2430 V 2	2430		Recommended Limit	$53.60 \pm 10 \%$	$25.00 \pm 10 \%$
		Body	(Target)	$(48.24 \sim 58.96)$	$(22.5 \sim 27.5)$
			Measured, 26-06, 2013	52.00	24.20
			Recommended Limit	$80.00 \pm 10 \%$	$22.90 \pm 10 \%$
		Head	(Normalized)	$(72.00 \sim 88.00)$	$(20.61 \sim 25.19)$
D5GHzV2	5200		Measured, 25-06, 2013	77.40	22.20
DJGHZVZ	3200		Recommended Limit	$74.70 \pm 10 \%$	$20.80 \pm 10 \%$
		Body	(Target)	(67.23 ~ 82.17)	$(18.72 \sim 22.88)$
			Measured, 28-06, 2013	76.10	21.60
			Recommended Limit	$84.70 \pm 10 \%$	$24.20 \pm 10 \%$
		Head	(Normalized)	$(76.23 \sim 93.17)$	$(21.78 \sim 26.62)$
D5GHzV2	5300		Measured, 25-06, 2013	91.70	25.70
DJGHZVZ	3300		Recommended Limit	$76.20 \pm 10 \%$	21.30 ± 10 %
		Body	(Target)	$(68.58 \sim 83.82)$	$(19.17 \sim 23.43)$
			Measured, 28-06, 2013	80.80	22.40
			Recommended Limit	85.50± 10 %	24.30 ± 10 %
		Head	(Normalized)	$(76.95 \sim 94.05)$	$(21.87 \sim 26.73)$
D5GHzV2	5500		Measured, 25-06, 2013	85.50	24.10
D3GHZV2	3300		Recommended Limit	$79.80 \pm 10 \%$	$22.10 \pm 10 \%$
		Body	(Target)	$(71.82 \sim 87.78)$	$(19.89 \sim 24.31)$
			Measured, 27-06, 2013	79.70	22.30
			Recommended Limit	$84.30 \pm 10 \%$	$23.90 \pm 10 \%$
		Head	(Normalized)	$(75.87 \sim 92.73)$	(21.51 ~ 26.29)
D5GHzV2	5600		Measured, 25-06, 2013	82.70	23.30
DJGHZVZ	3000		Recommended Limit	81.60 ± 10 %	$22.50 \pm 10 \%$
		Body	(Target)	$(73.44 \sim 89.76)$	$(20.25 \sim 24.75)$
			Measured, 27-06, 2013	81.60	22.70
			Recommended Limit	79.30 ± 10 %	22.50 ± 10 %
		Head	(Normalized)	(71.37 ~ 87.23)	$(20.25 \sim 24.75)$
D5GHzV2	5800		Measured, 25-06, 2013	82.30	22.90
D3GnZv2	3800		Recommended Limit	74.60 ± 10 %	20.60 ± 10 %
		Body	(Target)	(67.14 ~ 82.06)	(18.54 ~ 22.66)
			Measured, 27-06, 2013	72.30	20.00

<SAR System Validation Result>

Page: 18 of 130

12. Operation Configurations

For the 802.11b/g/n SAR tests, a communication link is set up with the test mode software for WiFi mode test. The Absolute Radio Frequency Channel Number is allocated to 1,6and 11 respectively in the case of 2450 MHz.During the test,at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the max power data rate.

802.11b/g/n operating modes are tested independently according to the service requirements in each frquency band. 802.11b/g/n modes are tested on channel 1,6,11; however,if output power reduction is necessary for channels 1 and/or 11 to meet restricted band requirements the highest output channel closest to each 13f these channels must be tested instead.

Communication between the device and the tester was established by RS232 Port.

Measurements were performed at the lowest, middle and highest channels of the operating band. The EUT was set to maximum power level during all tests and at the beginning of each test the battery was fully charged.

Page: 19 of 130

13. SAR Measurement Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01

	≤3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°		
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz; ≤ 12 mm 4 – 6 GHz; ≤ 10 mm		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When either the x or y dimension of the test device in the measurement plane is smaller than the above, the measurement resolution must be ≤ the corresponding x and y dimensions of the test device, with at least one measurement point on the test device.			

Page: 20 of 130

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures 7x7x9 (above 4.5 GHz) or 5x5x7 (below 3 GHz) points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measument 10 MHz to 6 GHz v01

			≤3 GHz	> 3 GHz	
Maximum z resolution: A			≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm	3 – 4 GHz: ≤ 5 mm 4 – 6 GHz: ≤ 4 mm	
Maximum zoom scan spatial resolution, normal to phantom surface	uniform Δz_{Zoom}	grid:	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm	
	graded grid	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
		Δz _{Zoom} (n>1): between subsequent points	≤ 1.5·Δ	z _{Zoom} (n-1)	
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

* Z Scan Report on Liquid Measure the height Annex A.4 Liquid Depth photo to replace

14. Test Equipment Information

SPEAG DASY5

Test Platform	SPEAG DASY5 Syst	tem								
Location	EMC Compliance Lab									
Manufacture	SPEAG									
Description	450, 835, 900, 1 800,	SAR Test System (Frequency range 300MHz-6GHz) 450, 835, 900, 1 800, 1 900, 1 950, 2 450, 5 000 frequency band								
Software Reference	DASY5: V52.8.4.10 SEMCAD: V14.6.8									
Hardware Reference										
Equipment	Model	Serial Number	Calibration Date	Due date of calibration						
Robot	TX90XL Speag	F12/5L7FA1/A/01	N/A	N/A						
Phantom	TwinSAM Phantom	1724	N/A	N/A						
Phantom	TwinSAM Phantom	1728	N/A	N/A						
Data Acquisition Unit (DAE)	DAE4	1342	2012-08-09	2013-08-08						
Probes	ES3DV3	3302	2012-08-06	2013-08-05						
Probes	EX3DV4	3865	2012-08-06	2013-08-05						
Dipole Validation Kits	D300V3	1016	2012-07-24	2014-07-23						
Dipole Validation Kits	D450V3	1080	2012-07-24	2014-07-23						
Dipole Validation Kits	D850V2	1006	2012-08-07	2014-08-06						
Dipole Validation Kits	D900V2	1d138	2012-08-07	2014-08-06						
Dipole Validation Kits	D1750V2	1072	2012-07-19	2014-07-18						
Dipole Validation Kits	D1900V2	5d160	2012-07-20	2014-07-19						
Dipole Validation Kits	D2450V2	865	2012-07-24	2014-07-23						
Dipole Validation Kits	D2600V2	1050	2012-07-24	2014-07-23						
Dipole Validation Kits	D5GHzV2	1134	2012-07-27	2014-07-26						
Network Analyzer	E5071B	MY42403524	2012-07-20	2013-07-19						
Dual Directional Coupler	778D	16059	2012-09-21	2013-09-20						
Dual Directional Coupler	772D	2839A00719	2012-09-21	2013-09-20						
Signal Generator	E4438C	MY42080486	2013-02-18	2014-02-18						

Page: 22 of 130

Power Amplifier	GRF5039	1062	2012-07-20	2013-07-19
Power Amplifier	5057FE	1009	2012-08-07	2013-08-06
Power Amplifier	5190FE	1012	2012-09-21	2013-09-20
Dual Power Meter	E4419B	GB43312301	2012-07-10	2013-07-09
Power Sensor	8481H	3318A19674	2012-07-12	2013-07-11
Power Sensor	8481H	3318A19376	2012-07-12	2013-07-11
LP Filter	LA-30N	40058	2012-10-05	2013-10-05
WIDEBAND POWER SENSOR	NRP-Z81	100677	2013-05-06	2014-05-06

15. Average Power

Frequency (MHz)	Mode	Tune up power Tolerant range(dBm)	Measured Average Power (dBm)
2 412		14 ± 1	14.48
2 437	802.11b	14 ± 1	13.97
2 462	— 11 Mbps	14 ± 1	13.76
2 412		10 ± 1	10.65
2 437	802.11g 54 Mbps	10 ± 1	10.48
2 462	— 34 Mops	10 ± 1	10.27
2 412		10 ± 1	10.05
2 437	802.11nHT20 MCS 7	10 ± 1	9.96
2 462	- Wics /	10 ± 1	9.75
5 745		17 ± 1	17.47
5 785	802.11a 54 Mbps	17 ± 1	17.14
5 825	— 34 Mops	17 ± 1	17.52
5 745	202.44 *****	17 ± 1	16.79
5 785	802.11anHT20 MCS 7	17 ± 1	17.11
5 825	- Wics /	17 ± 1	17.17
5 180	002.11	12 ± 1	12.31
5 200	802.11a 54 Mbps	12 ± 1	12.37
5 240		12 ± 1	12.42
5 180	002.11 147720	12 ± 1	12.39
5 200	802.11anHT20 MCS 7	12 ± 1	12.48
5 240	Wies /	12 ± 1	12.52
5 260	002.11	12 ± 1	12.39
5 300	802.11a 54 Mbps	12 ± 1	12.82
5320		12 ± 1	12.75
5 260	000.44 XXT00	12 ± 1	12.49
5 300	802.11anHT20 MCS 7	12 ± 1	12.95
5320	IVICS /	12 ± 1	12.87
5 500	002.11	12 ± 1	12.72
5 580	802.11a 54 Mbps	12 ± 1	12.52
5 700	J-T MOPS	12 ± 1	12.11
5 500	000 11 17700	12 ± 1	12.81
5 580	802.11anHT20 MCS 7	12 ± 1	12.63
5 700	14105 /	12 ± 1	12.22

16. SAR Test Results

16.1 Measurement of SAR average value

16.1.1 Head Exposure Conditions(WLAN 2.4GHz)

			AVG	Max	Traffic Cha	nnel	Measured	Reported	
EUT Position Mode	Mode	Dist. (mm)	Power (dBm) tune up power (dBm)		Frequency (MHz)	Ch.	1 g SAR (W/kg)	1g SAR (W/kg)	Note
	802.11b		14.48	15	2412	1			1
Left Ear	11Mbps	Cheek	13.97	15	2437	6	0.050	0.06	
	TTWIOPS		13.76	15	2462	11			1
	802.11b	Tilt	14.48	15	2412	1			1
Left Ear	11Mbps		13.97	15	2437	6	0.043	0.05	
	TTMDps		13.76	15	2462	11			1
	802.11b		14.48	15	2412	1			1
Right Ear	11Mbps	Cheek	13.97	15	2437	6	0.057	0.07	
	TTMDps		13.76	15	2462	11			1
	902 11h	Tilt	14.48	15	2412	1			1
Right Ear	802.11b		13.97	15	2437	6	0.046	0.06	
	11Mbps		13.76	15	2462	11			1

16.1.2 Body Exposure Conditions(WLAN 2.4GHz)

			AVG	Max	Traffic Char	nnel	Measured	Reported		
EUT Position	Mode	Dist. (mm)	Power (dBm)	tune up power (dBm)	Frequency (MHz)	Ch.	1 g SAR (W/kg)	1g SAR (W/kg)	Note	
	802.11b		14.48	15	2412	1			1	
Front	11Mbps	15 mm	13.97	15	2437	6	0.00913	0.012		
	Triviops		13.76	15	2462	11			1	
	902 111		14.48	15	2412	1			1	
Back	802.11b	15 mm	13.97	15	2437	6	0.035	0.044		
	11Mbps		13.76	15	2462	11			1	
	902 111	15 mm	14.48	15	2412	1			1	
Edge1	802.11b		13.97	15	2437	6	0.00844	0.011		
	11Mbps		13.76	15	2462	11			1	
	000 111	002 111		14.48	15	2412	1			1
Edge2	802.11b	15 mm	13.97	15	2437	6	0.00444	0.006		
	11Mbps		13.76	15	2462	11			1	
	000 111		14.48	15	2412	1			1	
Edge3	802.11b	15 mm	13.97	15	2437	6	0.000894	0.001		
	11Mbps		13.76	15	2462	11			1	

<Note>

- 1. When the 1-g SAR for the mid-band channel, or the channel with the highest output power satisfy the following conditions, testing of the other channels in the band is not required. (Per KDB 447498)
- =0.8 W/kg and transmission band =100 MHz
- =0.6 W/kg and, 100 MHz < transmission bandwidth =200 MHz
- =0.4 W/kg and transmission band > 200 MHz
- 2. Reported SAR = (measured SAR) x [max possible power(mW) / sample measured power(mW)]

Report No.: EMC-FCC-A0005 Page: 25 of 130

16.1.3 Head Exposure Conditions(WLAN 5 GHz Bands)

			AVG	Max	Traffic Cha	nnel	Measured	Reported	
EUT Position	Mode	Dist. (mm)	Power (dBm)	tune up power (dBm)	Frequency (MHz)	Ch.	1 g SAR (W/kg)	1g SAR (W/kg)	Note
	802.11a		12.31	13	5180	36			1
Left Ear	54Mbps	Cheek	12.37	13	5200	40	0.127	0.147	
	J41010ps		12.42	13	5240	48			1
	802.11a		12.31	13	5180	36			1
Left Ear	54Mbps	Tilt	12.37	13	5200	40	0.116	0.134	
	34W10p8		12.42	13	5240	48			1
	802.11a		12.31	13	5180	36			1
Right Ear		Cheek	12.37	13	5200	40	0.133	0.154	
	54Mbps		12.42	13	5240	48			1
	000 11		12.31	13	5180	36			1
Right Ear	802.11a	Tilt	12.37	13	5200	40	0.117	0.135	
	54Mbps		12.42	13	5240	48			1
			12.39	13	5260	52			1
Left Ear	802.11a	Cheek	12.82	13	5300	60	0.173	0.180	
	54Mbps		12.75	13	5320	64	312.13	3,1233	1
			12.39	13	5260	52			1
Left Ear	802.11a	Tilt	12.82	13	5300	60	0.146	0.152	
2010 2011	54Mbps	1110	12.75	13	5320	64	0.11.0	0.122	1
			12.39	13	5260	52			1
Right Ear	802.11a	Cheek	12.82	13	5300	60	0.233	0.243	-
Right Eur	54Mbps		12.75	13	5320	64	0.233	0.2 13	1
			12.39	13	5260	52			1
Right Ear	802.11a	Tilt	12.82	13	5300	60	0.153	0.159	1
Kight Lai	54Mbps	1111	12.75	13	5320	64	0.133	0.137	1
			12.72	13	5500	100			1
Left Ear	802.11a	Cheek	12.72	13	5580	116	0.162	0.181	1
Lett Lai	54Mbps	CHECK	12.32	13	5700	140	0.102	0.161	1
			12.71	13	5500				1
Left Ear	802.11a	Tilt				102	0.185	0.207	1
Leit Ear	54Mbps	1111	12.52	13	5580	116	0.183	0.207	1
			12.11	13	5700	140			1
Dista E.	802.11a	Cl I	12.72	13	5500	100	0.161	0.100	1
Right Ear	54Mbps	Cheek	12.52	13	5580	116	0.161	0.180	1
			12.11	13	5700	140			1
Dialet Fan	802.11a	T:14	12.72	13	5500	100	0.142	0.160	1
Right Ear	54Mbps	Tilt	12.52	13	5580	116	0.143	0.160	1
			12.11	13	5700	140			1
	802.11a	~ .	17.47	18	5745	149	0.404	0.122	1
Left Ear	54Mbps	Cheek	17.14	18	5785	157	0.101	0.123	
	· r -		17.52	18	5825	165			1
	802.11a		17.47	18	5745	149			1
Left Ear	54Mbps	Tilt	17.14	18	5785	157	0.170	0.207	
	5 1110ps		17.52	18	5825	165			1
	802.11a		17.47	18	5745	149			1
Right Ear	54Mbps	Cheek	17.14	18	5785	157	0.120	0.146	
	Сорз		17.52	18	5825	165			1
	802.11a		17.47	18	5745	149			1
Right Ear	54Mbps	Tilt	17.14	18	5785	157	0.151	0.184	
	2-iviops		17.52	18	5825	165			1

Report No.: EMC-FCC-A0005 Page: 26 of 130

16.1.4 Body Exposure Conditions(WLAN 5 GHz Bands)

EUT		Dist.	AVG	Max tune	Traffic Cha	nnel	Measured	Reported	
Position	Mode	(mm)	Power (dBm)	up power (dBm)	Frequency (MHz)	Ch.	1 g SAR (W/kg)	1g SAR (W/kg)	Note
	002.11	1.5	12.31	13	5180	36			1
Front	802.11a	15	12.37	13	5200	40	0.000316	0.0004	
	54Mbps	mm	12.42	13	5240	48			1
	902.110	15	12.31	13	5180	36			1
Back	802.11a	mm	12.37	13	5200	40	0.124	0.143	
	54Mbps	111111	12.42	13	5240	48			1
	802.11a	15	12.31	13	5180	36			1
Edge1	54Mbps	mm	12.37	13	5200	40	0.051	0.059	
	J-Wiops	111111	12.42	13	5240	48			1
	802.11a	15	12.31	13	5180	36			1
Edge2	54Mbps	mm	12.37	13	5200	40	0.044	0.051	
	3-1 11 0ps	111111	12.42	13	5240	48			1
	802.11a	15	12.31	13	5180	36			1
Edge3	54Mbps	mm	12.37	13	5200	40	0.013	0.015	
	3-1 11 0ps	111111	12.42	13	5240	48			1
	802.11a	15	12.39	13	5260	52			1
Front	54Mbps	mm	12.82	13	5300	60	0.00179	0.0019	
	34W10ps	111111	12.75	13	5320	64			1
	802.11a	15 mm	12.39	13	5260	52			1
Back	54Mbps		12.82	13	5300	60	0.157	0.164	
	34W10ps		12.75	13	5320	64			1
	802.11a	15	12.39	13	5260	52			1
Edge1	54Mbps	mm	12.82	13	5300	60	0.092	0.096	
	J-Wiops	111111	12.75	13	5320	64			1
	802.11a	15	12.39	13	5260	52			1
Edge2	54Mbps	mm	12.82	13	5300	60	0.069	0.072	
	3-1 11 0ps	111111	12.75	13	5320	64			1
	802.11a	15	12.39	13	5260	52			1
Edge3	54Mbps	mm	12.82	13	5300	60	0.022	0.023	
	Эниора	111111	12.75	13	5320	64			1
	802.11a	15	12.72	13	5500	100			1
Front	54Mbps	mm	12.52	13	5580	116	0.024	0.027	
	34W10ps	111111	12.11	13	5700	140			1
	802.11a	15	12.72	13	5500	100			1
Back	54Mbps		12.52	13	5580	116	0.131	0.146	
	24Minhs	mm	12.11	13	5700	140			1
Edge1 802.11a	15	12.72	13	5500	100			1	
	54Mbps	mm	12.52	13	5580	116	0.108	0.121	
	2-1410hs	111111	12.11	13	5700	140			1
	802.11a	15	12.72	13	5500	100			1
Edge2	54Mbps	mm	12.52	13	5580	116	0.058	0.065	
	2-1410hs	111111	12.11	13	5700	140			1
	802.11a	15	12.72	13	5500	100			1
Edge3		mm	12.52	13	5580	116	0.030	0.034	
	54Mbps	111111	12.11	13	5700	140			1

Page: 27 of 130

EUT		D:-4	AVG	Max tune	Traffic Cha	nnel	Measured	Reported	
Position	Mode	Dist. (mm)	Power (dBm)	up power (dBm)	Frequency (MHz)	Ch.	1 g SAR (W/kg)	1g SAR (W/kg)	Note
	802.11a	15	17.47	18	5745	149			1
Front	54Mbps		17.14	18	5785	157	0.000445	0.0005	
	54Mbps	mm	17.52	18	5825	165			1
	902 11.	15	17.47	18	5745	149			1
Back	802.11a	mm	17.14	18	5785	157	0.071	0.087	
	54Mbps		17.52	18	5825	165			1
	802.11a	15	17.47	18	5745	149			1
Edge1	00-11-11		17.14	18	5785	157	0.087	0.106	
	54Mbps	mm	17.52	18	5825	165			1
	802.11a	15	17.47	18	5745	149			1
Edge2	54Mbps		17.14	18	5785	157	0.031	0.038	
	54Mbps	mm	17.52	18	5825	165			1
	802.11a	1.5	17.47	18	5745	149			1
Edge3		15	17.14	18	5785	157	0.018	0.022	
	54Mbps	mm	17.52	18	5825	165			1

18

<Note>

- 1. When the 1-g SAR for the mid-band channel, or the channel with the highest output power satisfy the following conditions, testing of the other channels in the band is not required. (Per KDB 447498)
- =0.8 W/kg and transmission band =100 MHz
- =0.6 W/kg and, 100 MHz < transmission bandwidth =200 MHz
- =0.4 W/kg and transmission band > 200 MHz
- 2. Reported SAR = (measured SAR) x [max possible power(mW) / sample measured power(mW)]

17. Validation Test Results

System Validation for 2 450 MHz - Head(24-06-2013)

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:895 Procedure Name: d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)

Communication System: cw1; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.83$ S/m; $\varepsilon_r = 37.613$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3865; ConvF(7.42, 7.42, 7.42); Calibrated: 06.08.2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 09.08.2012
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.8 (7028)

System Performance Check at Frequencies/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.7 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 14 W/kg; SAR(10 g) = 6.41 W/kg

Maximum value of SAR (measured) = 21.4 W/kg

0 dB = 21.4 W/kg = 13.30 dBW/kg

System Validation for 5 GHz Band - Head(25-06-2013)

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1134
Procedure Name: d=10mm, Pin=100mW, f=5200 MHz, Procedure Name: d=10mm,
Pin=100mW, f=5300 MHz, Procedure Name: d=10mm, Pin=100mW, f=5500 MHz,
Procedure Name: d=10mm, Pin=100mW, f=5600 MHz 2, Procedure Name: d=10mm,
Pin=100mW, f=5800 MHz 2 2

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz; Duty Cycle: 1:1 Medium parameters used: f=5200 MHz; $\sigma=4.565$ S/m; $\epsilon_r=35.567;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5300 MHz; $\sigma=4.682$ S/m; $\epsilon_r=35.343;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5500 MHz; $\sigma=4.904$ S/m; $\epsilon_r=34.927;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=5.026$ S/m; $\epsilon_r=34.703;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=5.026$ S/m; $\epsilon_r=34.703;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5800 MHz; $\sigma=5.248$ S/m; $\epsilon_r=34.195;$ $\rho=1000$ kg/m 3 Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3865; ConvF(4.54, 4.54, 4.54); Calibrated: 06.08.2012,
 ConvF(4.33, 4.33, 4.33); Calibrated: 06.08.2012, ConvF(4.37, 4.37, 4.37); Calibrated: 06.08.2012, ConvF(4.09, 4.09, 4.09); Calibrated: 06.08.2012, ConvF(4.25, 4.25, 4.25); Calibrated: 06.08.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 09.08.2012
- Phantom: SAM with SN1728; Type: QD000P40CC; Serial: TP:1728
- Measurement SW; DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

Validation D5GHzV2 Dipole/d=10mm, Pin=100mW, f=5200 MHz/Zoom Scan (4x4x2mm, uniform), dist=1.4mm (9x9x13)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 71.522 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 32.4 W/kg

SAR(1 g) = 7.74 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (measured) = 19.4 W/kg

Validation D5GHzV2 Dipole/d=10mm, Pin=100mW, f=5300 MHz/Zoom Scan (4x4x2mm, uniform), dist=1.4mm (8x8x13)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 76.834 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 39.5 W/kg

SAR(1 g) = 9.17 W/kg; SAR(10 g) = 2.57 W/kg

Maximum value of SAR (measured) = 23.3 W/kg

Validation D5GHzV2 Dipole/d=10mm, Pin=100mW, f=5500 MHz/Zoom Scan (4x4x2mm, uniform), dist=1.4mm (8x8x13)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 73.091 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 38.3 W/kg

SAR(1 g) = 8.55 W/kg; SAR(10 g) = 2.41 W/kg

Maximum value of SAR (measured) = 22.1 W/kg

Validation D5GHzV2 Dipole/d=10mm, Pin=100mW, f=5600 MHz 2/Zoom Scan (4x4x2mm, uniform), dist=1.4mm (8x8x13)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm

Reference Value = 73.382 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 35.5 W/kg

SAR(1 g) = 8.27 W/kg; SAR(10 g) = 2.33 W/kg

Maximum value of SAR (measured) = 21.4 W/kg

Validation D5GHzV2 Dipole/d=10mm, Pin=100mW, f=5800 MHz 2 2/Zoom Scan (4x4x2mm, uniform), dist=1.4mm (8x8x13)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm

Reference Value = 72.560 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 37.8 W/kg

SAR(1 g) = 8.23 W/kg; SAR(10 g) = 2.29 W/kg

Maximum value of SAR (measured) = 21.9 W/kg

0 dB = 21.9 W/kg = 13.40 dBW/kg

System Validation for 2 450 MHz - Body(26-06-2013)

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:895 Procedure Name: d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)

Communication System: cw1; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 2.022$ S/m; $\varepsilon_r = 51.457$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3865; ConvF(7.47, 7.47, 7.47); Calibrated: 06.08.2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 09.08.2012
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

System Performance Check at Frequencies/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 99.795 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 26.9 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.05 W/kg

Maximum value of SAR (measured) = 19.9 W/kg

0 dB = 19.9 W/kg = 12.99 dBW/kg

Page: 32 of 130

System Validation for 5 GHz Band - Body(27-06-2013)

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1134 Procedure Name: d=10mm, Pin=100mW, f=5500 MHz, Procedure Name: d=10mm, Pin=100mW, f=5600 MHz 2, Procedure Name: d=10mm, Pin=100mW, f=5800 MHz 2 2

Communication System: CW; Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz; Duty Cycle: 1:1

Medium parameters used: f=5500 MHz; $\sigma=5.703$ S/m; $\epsilon_r=47.167$; $\rho=1000$ kg/m³, Medium parameters used: f=5600 MHz; $\sigma=5.862$ S/m; $\epsilon_r=47.043$; $\rho=1000$ kg/m³, Medium parameters used: f=5800 MHz; $\sigma=6.24$ S/m; $\epsilon_r=46.679$; $\rho=1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3865; ConvF(3.89, 3.89, 3.89); Calibrated: 06.08.2012,
 ConvF(3.74, 3.74, 3.74); Calibrated: 06.08.2012, ConvF(3.87, 3.87, 3.87); Calibrated: 06.08.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 09.08.2012
- Phantom: SAM with SN1728; Type: QD000P40CC; Serial: TP:1728
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

Validation D5GHzV2 Dipole/d=10mm, Pin=100mW, f=5500 MHz/Zoom Scan (4x4x2mm, uniform), dist=1.4mm (8x8x13)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm

Reference Value = 67.242 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 33.2 W/kg

SAR(1 g) = 7.97 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 20.1 W/kg

Validation D5GHzV2 Dipole/d=10mm, Pin=100mW, f=5600 MHz 2/Zoom Scan (4x4x2mm, uniform), dist=1.4mm (8x8x13)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm

Reference Value = 67.305 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 35.3 W/kg

SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.27 W/kg

Maximum value of SAR (measured) = 21.0 W/kg

Validation D5GHzV2 Dipole/d=10mm, Pin=100mW, f=5800 MHz 2 2/Zoom Scan (4x4x2mm, uniform), dist=1.4mm (8x8x13)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm

Reference Value = 64.494 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 30.4 W/kg

SAR(1 g) = 7.23 W/kg; SAR(10 g) = 2 W/kg

Maximum value of SAR (measured) = 18.6 W/kg

System Validation for 5 GHz Band - Body(28-06-2013)

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1134 Procedure Name: d=10mm, Pin=100mW, f=5200 MHz, Procedure Name: d=10mm, Pin=100mW, f=5300 MHz

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz;Duty Cycle: 1:1 Medium parameters used: f=5200 MHz; $\sigma=5.41$ S/m; $\epsilon_r=48.618;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5300 MHz; $\sigma=5.616$ S/m; $\epsilon_r=48.324;$ $\rho=1000$ kg/m 3 Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3865; ConvF(4.28, 4.28, 4.28); Calibrated: 06.08.2012, ConvF(4.16, 4.16, 4.16); Calibrated: 06.08.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 09.08.2012
- Phantom: SAM with SN1728; Type: QD000P40CC; Serial: TP:1728
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

Validation D5GHzV2 Dipole/d=10mm, Pin=100mW, f=5200 MHz/Zoom Scan (4x4x2mm, uniform), dist=1.4mm (9x9x13)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm

Reference Value = 65.080 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 29.4 W/kg

SAR(1 g) = 7.61 W/kg; SAR(10 g) = 2.16 W/kg

Maximum value of SAR (measured) = 18.9 W/kg

Validation D5GHzV2 Dipole/d=10mm, Pin=100mW, f=5300 MHz/Zoom Scan (4x4x2mm, uniform), dist=1.4mm (8x8x13)/Cube 0: Measurement grid: dx=4mm,

dy-4mm, dz-2mm

Reference Value = 66.325 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 32.5 W/kg

SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.24 W/kg

Maximum value of SAR (measured) = 20.1 W/kg

 $0 \ dB = 20.1 \ W/kg = 13.03 \ dBW/kg$

18. Test Results

18.1 WLAN 2.4 GHz - Head 2437_Left Ear_Cheek

DUT: MWP1100A; Type: WIFI Phone; Serial: N/A Procedure Name: 802.11b ch06 f2437 Left Ear Cheek

Communication System: 2.4GWLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.817$ S/m; $\varepsilon_r = 37.669$; $\rho = 1000$

kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 SN3865; ConvF(7.42, 7.42, 7.42); Calibrated: 06.08.2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 09.08.2012
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

MWP1100A/802.11b_ch06_f2437_Left Ear_Cheek/Area Scan (7x13x1): Measurement

grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0672 W/kg

MWP1100A/802.11b_ch06_f2437_Left Ear_Cheek/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.313 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.0890 W/kg

SAR(1 g) = 0.050 W/kg; SAR(10 g) = 0.023 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0699 W/kg

0 dB = 0.0699 W/kg = -11.56 dBW/kg

2437_Left Ear_Tilt

DUT: MWP1100A; Type: WIFI Phone; Serial: N/A Procedure Name: 802.11b_ch06_f2437_Left Ear_Tilt

Communication System: 2.4GWLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; σ = 1.817 S/m; ϵ_r = 37.669; ρ = 1000

kg/m3

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 SN3865; ConvF(7.42, 7.42, 7.42); Calibrated: 06.08.2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 09.08.2012
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

MWP1100A/802.11b_ch06_f2437_Left Ear_Tilt/Area Scan (7x13x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0665 W/kg

MWP1100A/802.11b ch06 f2437 Left Ear Tilt/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.991 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.0870 W/kg

SAR(1 g) = 0.043 W/kg; SAR(10 g) = 0.020 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0660 W/kg

0 dB = 0.0660 W/kg = -11.80 dBW/kg

2437_Right Ear_Cheek

DUT: MWP1100A; Type: WIFI Phone; Serial: N/A Procedure Name: 802.11b ch.06 f2437 Right Ear Cheek

Communication System: 2.4GWLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.817$ S/m; $\epsilon_r = 37.669$; $\rho = 1000$

kg/m3

Phantom section: Right Section

DASY4 Configuration:

- Probe: EX3DV4 SN3865; ConvF(7.42, 7.42, 7.42); Calibrated: 06.08.2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 09.08.2012
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

MWP110A/802.11b_ch.06_f2437_Right Ear_Cheek/Area Scan (7x13x1): Measurement

grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0793 W/kg

MWP110A/802.11b ch.06 f2437 Right Ear Cheek/Zoom Scan (8x8x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.802 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.108 W/kg

SAR(1 g) = 0.057 W/kg; SAR(10 g) = 0.028 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0845 W/kg

2437_Right Ear_Tilt

DUT: MWP1100A; Type: WIFI Phone; Serial: N/A Procedure Name: 802.11b_ch.06_f2437_Right Ear_Tilt

Communication System: 2.4GWLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.817$ S/m; $\varepsilon_r = 37.669$; $\rho = 1000$

kg/m3

Phantom section: Right Section

DASY4 Configuration:

- Probe: EX3DV4 SN3865; ConvF(7.42, 7.42, 7.42); Calibrated: 06.08.2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 09.08.2012
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

MWP110A/802.11b ch.06 f2437 Right Ear Tilt/Area Scan (7x13x1): Measurement grid:

dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0684 W/kg

MWP110A/802.11b ch.06 f2437 Right Ear Tilt/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.728 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.0890 W/kg

SAR(1 g) = 0.046 W/kg; SAR(10 g) = 0.022 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0674 W/kg

0 dB = 0.0674 W/kg = -11.71 dBW/kg

18.2 WLAN 2.4 GHz - Body 2437_Front_gap 15 mm

DUT: MWP1100A; Type: WIFI Phone; Serial: N/A Procedure Name: 802.11b ch06 f2437 Front gap 15mm

Communication System: 2.4GWLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 2.001$ S/m; $\varepsilon_r = 51.445$; $\rho = 1000$

kg/m3

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3865; ConvF(7.47, 7.47, 7.47); Calibrated: 06.08.2012;
- · Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 09.08.2012
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

MWP1100A/802.11b_ch06_f2437_Front gap 15mm/Area Scan (7x13x1): Measurement

grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0147 W/kg

MWP1100A/802.11b_ch06_f2437_Front gap 15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.886 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.0220 W/kg

SAR(1 g) = 0.00913 W/kg; SAR(10 g) = 0.00314 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0152 W/kg

0 dB = 0.0152 W/kg = -18.18 dBW/kg

2437_Back_gap 15 mm

DUT: MWP1100A; Type: WIFI Phone; Serial: N/A Procedure Name: 802.11b ch06 f2437 Back gap 15mm

Communication System: 2.4GWLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 2.001$ S/m; $\varepsilon_r = 51.445$; $\rho = 1000$

kg/m3

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3865; ConvF(7.47, 7.47, 7.47); Calibrated: 06.08.2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 09.08.2012
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

MWP1100A/802.11b ch06 f2437 Back gap 15mm/Area Scan (7x13x1):

Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0465 W/kg

MWP1100A/802.11b_ch06_f2437_Back gap 15mm/Zoom Scan (8x8x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.601 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.0660 W/kg

SAR(1 g) = 0.035 W/kg; SAR(10 g) = 0.017 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0512 W/kg

0 dB = 0.0512 W/kg = -12.91 dBW/kg

2437_Edge1_gap 15 mm

DUT: MWP1100A; Type: WIFI Phone; Serial: N/A Procedure Name: 802.11b ch06 f2437 Edge1 gap15mm

Communication System: 2.4GWLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 2.001$ S/m; $\varepsilon_r = 51.445$; $\rho = 1000$

kg/m3

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3865; ConvF(7.47, 7.47, 7.47); Calibrated: 06.08.2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 09.08.2012
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

MWP1100A/802.11b_ch06_f2437_Edge1 gap 15mm/Area Scan (8x9x1):Measurement

grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0117 W/kg

MWP1100A/802.11b_ch06_f2437_Edge1 gap 15mm/Zoom Scan (8x8x7)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.484 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.0170 W/kg

SAR(1 g) = 0.00844 W/kg; SAR(10 g) = 0.00357 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0132 W/kg

0 dB = 0.0132 W/kg = -18.79 dBW/kg

2437_Edge2_gap 15 mm

DUT: MWP1100A; Type: WIFI Phone; Serial: N/A Procedure Name: 802.11b_ch06_f2437_Edge2 gap 15mm

Communication System: 2.4GWLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 2.001$ S/m; $\varepsilon_r = 51.445$; $\rho = 1000$

kg/m3

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3865; ConvF(7.47, 7.47, 7.47); Calibrated: 06.08.2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 09.08.2012
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

MWP1100A/802.11b ch06 f2437 Edge2 gap 15mm/Area Scan (7x13x1): Measurement

grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0104 W/kg

MWP1100A/802.11b ch06 f2437 Edge2 gap 15mm/Zoom Scan (8x9x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.298 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.0270 W/kg

SAR(1 g) = 0.00444 W/kg; SAR(10 g) = 0.00163 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

0 dB = 0.0107 W/kg = -19.71 dBW/kg

2437_Edge3_gap 15 mm

DUT: MWP1100A; Type: WIFI Phone; Serial: N/A Procedure Name: 802.11b_ch06_f2437_Edge3 gap 15mm

Communication System: 2.4GWLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 2.001$ S/m; $\varepsilon_r = 51.445$; $\rho = 1000$

kg/m3

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3865; ConvF(7.47, 7.47, 7.47); Calibrated: 06.08.2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 09.08.2012
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

MWP1100A/802.11b_ch06_f2437_Edge3 gap 15mm/Area Scan (7x13x1): Measurement

grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.00413 W/kg

MWP1100A/802.11b ch06 f2437 Edge3 gap 15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.152 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.00766 W/kg

SAR(1 g) = 0.000894 W/kg; SAR(10 g) = 0.000226 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.00375 W/kg

0 dB = 0.00375 W/kg = -24.26 dBW/kg

18.3 WLAN 5 GHz - Head 5200_Left Ear_Cheek

DUT: MWP1100A; Type: WIFI Phone; Serial: N/A Procedure Name: 802.11a_ch40_f5200_Left Ear_Cheek

Communication System: 5GWALN; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 4.565$ S/m; $\varepsilon_r = 35.567$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 SN3865; ConvF(4.54, 4.54, 4.54); Calibrated: 06.08.2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 09.08.2012
- Phantom: SAM with SN1728; Type: QD000P40CC; Serial: TP:1728
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

MWP1100A/802.11a_ch40_f5200_Left Ear_Cheek/Area Scan (9x16x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAP (measured) = 0.220 W/kg

Maximum value of SAR (measured) = 0.220 W/kg

MWP1100A/802.11a_ch40_f5200_Left Ear_Cheek/Zoom Scan (7x7x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 0 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.476 W/kg

SAR(1 g) = 0.127 W/kg; SAR(10 g) = 0.039 W/kg Maximum value of SAR (measured) = 0.265 W/kg

0 dB = 0.265 W/kg = -5.77 dBW/kg

5200_Left Ear_Tilt

DUT: MWP1100A; Type: WIFI Phone; Serial: N/A Procedure Name: 802.11a ch40 f5200 Left Ear Tilt

Communication System: 5GWALN; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 4.565 \text{ S/m}$; $\varepsilon_r = 35.567$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 SN3865; ConvF(4.54, 4.54, 4.54); Calibrated: 06.08.2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 09.08.2012
- Phantom: SAM with SN1728; Type: QD000P40CC; Serial: TP:1728
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

MWP1100A/802.11a_ch40_f5200_Left Ear_Tilt/Area Scan (9x16x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.236 W/kg

MWP1100A/802.11a_ch40_f5200_Left Ear_Tilt/Zoom Scan (7x7x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 3.113 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.510 W/kg

SAR(1 g) = 0.116 W/kg; SAR(10 g) = 0.038 W/kg

Maximum value of SAR (measured) = 0.240 W/kg

0 dB = 0.240 W/kg = -6.20 dBW/kg

5200_Right Ear_Cheek

DUT: MWP1100A; Type: WIFI Phone; Serial: N/A Procedure Name: 802.11a ch40 f5200 Right Ear Cheek

Communication System: 5GWALN; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 4.565 \text{ S/m}$; $\varepsilon_r = 35.567$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

- Probe: EX3DV4 SN3865; ConvF(4.54, 4.54, 4.54); Calibrated: 06.08.2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 09.08.2012
- Phantom: SAM with SN1728; Type: QD000P40CC; Serial: TP:1728
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

MWP110A/802.11a_ch40_f5200_Right Ear_Cheek/Area Scan (9x16x1): Measurement

grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.228 W/kg

MWP110A/802.11a_ch40_f5200_Right Ear_Cheek/Zoom Scan (7x7x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.561 W/kg

SAR(1 g) = 0.133 W/kg; SAR(10 g) = 0.042 W/kg

Maximum value of SAR (measured) = 0.282 W/kg

0 dB = 0.282 W/kg = -5.50 dBW/kg

5200_Right Ear_Tilt

DUT: MWP1100A; Type: WIFI Phone; Serial: N/A Procedure Name: 802.11a ch40 f5200 Right Ear Tilt

Communication System: 5GWALN; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 4.565 \text{ S/m}$; $\varepsilon_r = 35.567$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

- Probe: EX3DV4 SN3865; ConvF(4.54, 4.54, 4.54); Calibrated: 06.08.2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 09.08.2012
- Phantom: SAM with SN1728; Type: QD000P40CC; Serial: TP:1728
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

MWP110A/802.11a_ch40_f5200_Right Ear_Tilt/Area Scan (9x16x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.199 W/kg

MWP110A/802.11a ch40 f5200 Right Ear Tilt/Zoom Scan (7x7x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 4.832 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.424 W/kg

SAR(1 g) = 0.117 W/kg; SAR(10 g) = 0.040 W/kg

Maximum value of SAR (measured) = 0.237 W/kg

5300_Left Ear_Cheek

DUT: MWP1100A; Type: WIFI Phone; Serial: N/A Procedure Name: 802.11a ch60 f5300 Left Ear Cheek

Communication System: 5GWALN; Frequency: 5300 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5300 MHz; $\sigma = 4.682 \text{ S/m}$; $\varepsilon_r = 35.343$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 SN3865; ConvF(4.33, 4.33, 4.33); Calibrated: 06.08.2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 09.08.2012
- Phantom: SAM with SN1728; Type: QD000P40CC; Serial: TP:1728
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

MWP1100A/802.11a_ch60_f5300_Left Ear_Cheek/Area Scan (9x16x1): Measurement

grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.327 W/kg

MWP1100A/802.11a ch60 f5300 Left Ear Cheek/Zoom Scan (7x7x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.601 W/kg

SAR(1 g) = 0.173 W/kg; SAR(10 g) = 0.052 W/kg

Maximum value of SAR (measured) = 0.369 W/kg

0 dB = 0.369 W/kg = -4.33 dBW/kg

5300_Left Ear_Tilt

DUT: MWP1100A; Type: WIFI Phone; Serial: N/A Procedure Name: 802.11a_ch60_f5300_Left Ear_Tilt

Communication System: 5GWALN; Frequency: 5300 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5300 MHz; $\sigma = 4.682 \text{ S/m}$; $\varepsilon_r = 35.343$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 SN3865; ConvF(4.33, 4.33, 4.33); Calibrated: 06.08.2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 09.08.2012
- Phantom: SAM with SN1728; Type: QD000P40CC; Serial: TP:1728
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

MWP1100A/802.11a_ch60_f5300_Left Ear_Tilt/Area Scan (9x16x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.343 W/kg

MWP1100A/802.11a_ch60_f5300_Left Ear_Tilt/Zoom Scan (7x7x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 1.254 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 0.571 W/kg

SAR(1 g) = 0.146 W/kg; SAR(10 g) = 0.046 W/kg

Maximum value of SAR (measured) = 0.314 W/kg

0 dB = 0.314 W/kg = -5.03 dBW/kg