Assignment 1 - Economic History

2024-10-11

```
Packages and Environment

library(openxlsx)
library(tidyr)
library(dplyr)
```

```
##
## Attachement du package : 'dplyr'
## Les objets suivants sont masqués depuis 'package:stats':
##
## filter, lag
## Les objets suivants sont masqués depuis 'package:base':
##
## intersect, setdiff, setequal, union
library(lfe)
```

```
## Le chargement a nécessité le package : Matrix
##
## Attachement du package : 'Matrix'
## Les objets suivants sont masqués depuis 'package:tidyr':
##
## expand, pack, unpack
library(fixest)
```

```
##
## Attachement du package : 'fixest'
## L'objet suivant est masqué depuis 'package:lfe':
##
## fepois
library(jsonlite)
rm(list=ls())
```

2. Download the Excel files

```
car = read.xlsx("StateNewCarRegistrations.xlsx")
stock = read.xlsx("stock_income.xlsx")
head(car)
```

month year AL AZ AR CA CO CT DE FL GA ID IL IN IA

setwd("C:/Users/etien/OneDrive/Documents/GitHub/Econ-History")

```
676 196 581 4603 1534 620 141 1413 1271 275 3679 1804 1107
         1 1934
         1 1933
                 625
                     183 1536 5984 1175 923 241 1555 632 141
                                                                  5909 2812 1078
## 3
        1 1932
                732
                     206 1594 6830 2095 1041 255 1713 1798 214
                                                                  5164 2483 1111
         1 1931 877 423 1249 12379 2343 1337 291 3282 2455 549
## 4
                                                                  9356 3772 2679
## 5
         1 1930 2860
                     872 2555 13902 4154 1564 441 3672 2540 715 12555 5482 3851
## 6
         1 1929 1949 1301 4234 18567 5647 1747 282 2407 2816 952 14813 6210 3830
                 LA ME
                                                    MO
       KS
           ΚY
                         MD
                               MA
                                    ΜI
                                          MN
                                               MS
                                                         MT
                                                              NE
## 1 1794
         645
               894 213
                        698 1914
                                   4263
                                       977
                                                        200 1155 157
                                              282 1182
                                                                      90 1747 211
     682 1507 1235 346 1387 2782
                                   4632 1333
                                              368 1296
                                                         69
                                                             807 120 171 3047 256
## 3 1080 1041 950 430 1292 3135
                                   4137 1270
                                              437 1561
                                                       108 1149
                                                                 89 261 4450 249
## 4 3259 2055 1261 303 1609 3638
                                   5993 2361
                                             475 1983
                                                       767 3183 190 111 8059 563
## 5 1936 2828 2947 214 2298 3997
                                  9913 2581 1459 2808 1072 4603 343 127 8067 517
## 6 3034 3914 2946 273 2565 4884 12581 3082 1872 3791 1556 6037 446 82 5022 606
##
        NY
            NC
                        OH
                             OK
                                  OR
                                                 SC
                                                                 TX UT
                                                                         VT
                  ND
                                        PA RI
                                                      SD
                                                           TN
                                                                              VΑ
## 1
     6350 1400
                 177
                      4133 1438
                                 531
                                      3474 195
                                                540
                                                     217
                                                          732
                                                               3390 229
                                                                        74
                                                                             943
## 2 11273 1502
                 164
                      4817 1547
                                 362
                                      4727 367
                                                625
                                                     278 1293
                                                               4661 225 138 1209
## 3 10760 1231
                 267
                     4407 1439
                                 600
                                      6325 319
                                               644
                                                    290 1110
                                                               4119 264 167 2462
                     6723 3029 1354
## 4 10515 1616
                547
                                      6407 312 1012 1133 1592 6099 306 140 1634
## 5 11497 2837
                701 10953 3933 963 9447 379 2956 1961 4819 13241 690 222 3954
## 6 15409 5972 1540 14220 6458 3442 12184 596 3124 2843 5450 14724 975 194 3487
##
       WA
           WV
                 WI WY
                         DC
                             Total
## 1
     857
          504 994 178
                        564
                              61242
## 2
     895
          763 1134 185
                        848
                              79845
## 3 1163
          728 2236 251 1136
                             87490
## 4 2302 924 2892 240 1207 126788
## 5 3379 1493 4407 427
                        962 179096
## 6 3810 1692 4461 596 982 219645
```

head(stock)

```
state capital_gains dividend_income total_income nb_returns population
## 1
                  9440722
                                  15540573
                                               166639611
                                                               26891
                                                                        2573000
        AL
## 2
        ΑK
                                        NA
                       NA
                                                      NA
                                                                  NA
                                                                              NA
## 3
        ΑZ
                  6809589
                                   4835565
                                                66770720
                                                                         474000
                                                               11527
## 4
        AR
                  3218488
                                   7764220
                                                88936786
                                                               16660
                                                                        1944000
## 5
        CA
                                 262827381
                                              2060756201
                249109737
                                                              316738
                                                                        4556000
## 6
        CO
                 12360267
                                  27703012
                                               184367947
                                                               31091
                                                                        1090000
```

3. Create a single dataset.

```
## # A tibble: 6 x 4
     month year state car_sales
     <chr> <dbl> <chr>
                            <dbl>
## 1 1
            1934 AL
                              676
## 2 1
            1934 AZ
                              196
## 3 1
            1934 AR
                              581
## 4 1
            1934 CA
                             4603
## 5 1
            1934 CO
                             1534
## 6 1
            1934 CT
                              620
```

```
dta3 <- merge(stock, car_long, by = "state", all.x = TRUE)%>%
  filter(!is.na(year)) %>% #We merge both datasets by state, filter for NAs (and remove the "total" obs
  group_by(state)%>% #We group observations by state
  mutate(month = as.numeric(month)) %>% #We turn the class of month from character to numeric
  arrange(year, month, .by_group = TRUE) #This allows us to arrange observations by year and month with
head(dta3) #The dataset seems to corresponds to the exemple given.
## # A tibble: 6 x 9
## # Groups:
               state [1]
##
     state capital_gains dividend_income total_income nb_returns population month
##
                   <dbl>
                                    <dbl>
                                                  <dbl>
                                                             <dbl>
                                                                         <dbl> <dbl>
                                                                      2573000
                 9440722
## 1 AL
                                 15540573
                                             166639611
                                                             26891
                                                                                   1
## 2 AL
                 9440722
                                 15540573
                                             166639611
                                                             26891
                                                                      2573000
                                                                                   2
## 3 AL
                                                                                   3
                 9440722
                                 15540573
                                             166639611
                                                             26891
                                                                      2573000
## 4 AL
                 9440722
                                 15540573
                                             166639611
                                                             26891
                                                                      2573000
                                                                                   4
## 5 AL
                 9440722
                                                                      2573000
                                                                                   5
                                 15540573
                                             166639611
                                                             26891
## 6 AL
                 9440722
                                 15540573
                                             166639611
                                                             26891
                                                                      2573000
                                                                                   6
```

4. Create a post-crash dummy

```
dta4 <- dta3 %>%
  mutate (crash = ifelse(year < 1929 | (year == 1929 & month <= 10), 0, 1))</pre>
```

5. In an ideal world, what should x_s be if we're interested in the wealth channel of the crash?

The x_s should capture the impact of the exposure to the stock market crash at the state level on all the wealth of the households, being an appropriate measure of the exogenous variation in stock market exposure. But such exposure is difficult to measure, which is also why we use state-level data here. This variable would need to reflect the pre-crash financial exposure of each state in a way that captures potential heterogeneous treatment effects from the crash, but is also exogenous to consumption trends.

In other words, there must be pre-treatment exogeneity; x_s must reflect exposure before the crash.

6. Construct x_s and explain the idea behind this measure:

i 2 more variables: year <dbl>, car_sales <dbl>

```
dta6 <- dta4 %>%
  mutate (x = dividend_income / total_income)
summary(dta6$x)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.04257 0.08975 0.12748 0.13285 0.15957 0.39884
```

The idea behind this measure is to estimate the exposure of income to the stock market crash by computing the share of total income due to dividends. In other words, it should reflect the share of agents' income that depends on the stockmarket since the dividends corresponds to the reward of holdings assets. Thus, fluctuations in the stock market will affect dividends, which will in turn affect income and consumption.

7. Explain the idea behind the regression.

What are the identification concerns.

Reg (1): studies effect of stock market crash on consumption at state level by using state-level car sales as a proxy. x_s (independent variable) captures the exposure of state incomes to fluctuations in the stock

market; computed by dividing the proportion of total income from dividends in the state by the state total incomes. The interaction term enables to examine whether the relationship between the target parameter (consumption) and the independent variable (exposure to the stock market) changes with the stock market crash. Here, beta coefficient is the difference in slope between exposure before and after the crash. In terms of interpretation, if the coefficient is different from zero, then we can assume had an impact on the way exposure of income to the stock market affected consumption.

A time fixed-effect is added to control for potential time trends, while the state fixed-effect should control for potential characteristics that are specific to states, that we do not observe. These fixed-effects are designed to eliminate omitted variable bias by excluding unobserved variables that evolve over time or are specific to some states but are constant across entities.

#Identification concerns: endogeneity (check Romer) #Exposure may not be constant over the analysed period.

8. Regression (1)

```
dta8 = dta6 %>% #we prepare the data for regression
  filter(year %in% c(1929, 1930)) %>% #keeping only observations from 1929 and 1930
  mutate (log_car = log(car_sales)) %>% #create a variable for the log of car sales
  mutate (time = as.Date(paste(year, as.numeric(month), "01", sep = "-"))) #
#We use two regression methods:
reg8_felm = felm(log_car ~ x*crash | time + state, data = dta8)
## Warning in chol.default(mat, pivot = TRUE, tol = tol): the matrix is either
## rank-deficient or not positive definite
summary(reg8_felm)
## Warning in chol.default(mat, pivot = TRUE, tol = tol): the matrix is either
## rank-deficient or not positive definite
##
## Call:
##
      felm(formula = log_car ~ x * crash | time + state, data = dta8)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -2.0808 -0.1803 0.0009
                           0.1748
                                   1.7951
##
## Coefficients:
##
           Estimate Std. Error t value Pr(>|t|)
## x
                NaN
                            NA
                                   NaN
                                            NaN
## crash
                NaN
                            NA
                                   NaN
                                            NaN
                                 3.746 0.000189 ***
              1.311
                         0.350
## x:crash
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3527 on 1126 degrees of freedom
                                           Adjusted R-squared: 0.9297
## Multiple R-squared(full model): 0.934
## Multiple R-squared(proj model): 0.01231
                                             Adjusted R-squared: -0.05172
## F-statistic(full model):218.2 on 73 and 1126 DF, p-value: < 2.2e-16
## F-statistic(proj model): 4.678 on 3 and 1126 DF, p-value: 0.002968
reg8_feols = feols(log_car ~ x*crash | time + state, data = dta8)
```

```
## The variables 'x' and 'crash' have been removed because of collinearity (see $collin.var).
summary(reg8_feols)
## OLS estimation, Dep. Var.: log_car
## Observations: 1,200
## Fixed-effects: time: 24, state: 50
## Standard-errors: Clustered (time)
          Estimate Std. Error t value Pr(>|t|)
## x:crash 1.31128 0.699268 1.87522 0.073515 .
## ... 2 variables were removed because of collinearity (x and crash)
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## RMSE: 0.341664
                      Adj. R2: 0.929697
                    Within R2: 0.012311
##
#Present and explain your results
9. Assuming our measure of exposure to the stock market is the right one,
would regression (1) be appropriate to capture the wealth channel of the crash?
Would it capture the uncertainty channel that Romer writes about?
#Reg (1) appropriate to capture wealth channel?
#capture uncertainty channel (Romer)
```

- 10. Potential problem of income data coming from federal tax returns:
- 11. BONUS: variant of (1)