MATH-F113 TP9

TP9: Primitives et Intégrales Définies

- 1. Déterminer l'équation de la tangente aux courbes suivantes au point indiqué :
 - a) $f(x) = \ln x$ au point (e, 1),
 - b) $g(x) = \cos^3(x) + 1$ au point $(\pi, 0)$,
 - c) $h(x) = x^5 x^3 + 2$ au point (1, 2).
- 2. Le rayon d'une sphère augmente de 0,25m/s. Lorsque le rayon vaut 3 m, quelle est la vitesse de variation de l'aire de la sphère? Du volume de la sphère?
- 3. Quel est le nombre positif qui, ajouté à son inverse, donne la plus petite somme possible?
- 4. Quelles sont les dimensions de la boîte de conserve de forme cylindrique, de contenance 1 litre et dont l'aire totale est minimum?
- 5. Calculer les intégrales définies suivantes :

$$\int_{-1}^{1} \sin^{15}(x) dx,$$

$$\int_{-2}^{2} x^{21} e^{x^2} dx$$
.

- 6. Calculer l'aire de la région du plan située dans le premier quadrant limitée par la courbe $y=x^3$, l'axe x et la droite d'équation x=3.
- 7. Calculer l'aire de la région du plan comprise entre les courbes d'équation $y=x^2$ et $y^2=x$.
- 8. Déterminer si les intégrales généralisées suivantes convergent. Dans l'affirmative, calculer leur valeur :

a)
$$\int_0^{+\infty} e^{-x} dx$$
, b) $\int_1^{+\infty} \frac{dx}{x}$, c) $\int_1^{+\infty} \frac{dx}{x^2}$, d) $\int_{-\infty}^{+\infty} \frac{dx}{1+x^2}$

$$e) \int_{1}^{+\infty} \frac{1}{\sqrt{x}} dx, \quad f) \int_{-\infty}^{+\infty} \frac{x}{1+x^2} dx, \quad g) \int_{0}^{+\infty} x e^{-2x} dx$$

9. On peut montrer que l'intégrale généralisée

$$\int_{-\infty}^{+\infty} e^{-x^2} dx$$

est convergente. Sachant cela, classer les nombres suivants en ordre croissant. Justifier votre réponse!

a)
$$\int_{0}^{+\infty} e^{-x^2} dx$$
, b) $\int_{-\infty}^{+\infty} e^{-x^2} dx$ c) $\int_{0}^{1} e^{-x^2} dx$, d) $\int_{1}^{2} e^{-x^2} dx$, e) 0.