Patent

Agilent Docket No.: 10031076-1

Listing of Claims

1	1. (Original) A light-emitting device, comprising:
2	an active region configured to generate light in response to injected charge;
3	and
4	a current confinement structure located to direct charge into the active region
5	and including a strain compensating layer adjacent an oxide-forming layer.
1	2. (Original) The light-emitting device of claim 1, in which the current
2	confinement structure comprises an additional strain compensating layer adjacent the
3	oxide-forming layer, where the oxide-forming layer is sandwiched between the strain
4	compensating layers.
I	3. (Original) The light-emitting device of claim 1, in which the strain
2	compensating layer comprises gallium, indium and phosphorus.
1	4. (Original) The light-emitting device of claim 1, in which the oxide-
2	forming layer comprises aluminum, gallium and arsenic.
1	5. (Original) The light-emitting device of claim 1, in which the strain
2	compensating layer consists essentially of $Ga_{1-x}In_xP$, where $x \le 0.5$.
1	6. (Original) The light-emitting device of claim 1, in which the oxide-
2	forming layer consists essentially of $Al_xGa_{1-x}As$, where $x \ge 0.96$.

Patent

Agilent Docket No.: 10031076-1

1	7. (Original) The light-emitting device of claim 1, in which:				
2	the strain compensating layer consists essentially of gallium indium phosphid				
3	GaIπP; and				
4	the oxide-forming layer consists essentially of aluminum gallium arsenide				
5	AlGaAs.				
1	8. (Original) The light-emitting device of claim 7, in which:				
2	the strain compensating layer consists essentially of gallium indium phosphid				
3	$Ga_{1-x}In_x P$ in which $x \le 0.5$; and				
4	the oxide-forming layer essentially of aluminum gallium arsenide Al _x Ga _{1-x} As				
5	5 in which $x \ge 0.96$.				
1	9. (Original) The light-emitting device of claim 1, structured to generate				
2	light having a wavelength between 620 nm and 1650 nm.				
1	10. (Original) A method of making a strain compensating structure, the				
2	method comprising:				
3 4	providing a substrate;				
5	forming over the substrate a strain compensating layer of a first semiconductor				
6 7	material;				
8	forming an oxide-forming layer of a second semiconductor material				
9	juxtaposed with the strain compensating layer to form the strain compensating				
10	structure; and				
11	oxidizing at least part of the oxide-forming layer.				
1	11. (Original) The method of claim 10, in which:				
2	the first semiconductor material comprises indium, gallium and phosphorus;				
3	and				
4	the second semiconductor material comprises aluminum, gallium and arsenide.				

Patent Agilent Docket No.: 10031076-1

1	12. (Original) The method of claim 11, further comprising:				
2	forming the strain compensating layer using $Ga_{1-x}In_xP$, where $x \le 0.5$; and				
3	forming the oxide layer using $Al_xGa_{1-x}As$, where $x \ge .96$.				
1	13. (Original) A method for generating light, the method comprising:				
2	forming an optical cavity;				
3	locating an active region in the optical cavity, the active region configured				
4	generate light in response to injected current;				
5	forming a current confinement structure located to direct current into the active				
6	region, including:				
7	forming a strain compensating layer of a first semiconductor material				
8	including gallium (Ga), indium (In) and phosphorus (P);				
9	forming an oxide-forming layer of a second semiconductor material				
10	including aluminum (Al) gallium (Ga) and arsenic (As);				
11	oxidizing at least part of the oxide-forming layer; and				
12	injecting current into the active region using the current confinement				
13	structure.				
1	14. (Original) The method of claim 13, in which the active region is				
2	configured to generate light having a wavelength between 620 nm and 1650 nm.				
1	15. (Original) A strain compensating structure, comprising:				
2	a strain compensating layer of a first semiconductor material including gallium				
3	(Ga), indium (In) and phosphorus (P); and				
4	an oxide-forming layer of a second semiconductor material including				
5	aluminum (Al) gallium (Ga) and arsenic (As) juxtaposed with the strain compensating				
6	layer.				
1	16. (Original) The strain compensating structure of claim 15, in which the				
2	first semiconductor material consists essentially of gallium indium phosphide $Ga_{1-x}In_x$				
3	P in which $x \le 0.5$.				

Patent

Apilent	Docket	No.:	10031076-1
Agnem	DOCKEL	1 10	10031070-1

1	17. (Original) The strain compensating structure of claim 15, in which the			
2	second semiconductor material consists essentially of aluminum gallium arsenide			
3	$Al_xGa_{1-x}As$ in which $x \ge 0.96$.			
1 .	18. (Original) The strain compensating structure of claim 15, in which:			
2	the first semiconductor material consists essentially of gallium indium			
3	phosphide (GaInP); and			
4	the second semiconductor material consists essentially of aluminum gallium			
5	arsenide (AlGaAs).			
1	19. (Original) The strain compensating structure of claim 18, in which:			
2	the first semiconductor material consists essentially of gallium indium			
3	phosphide $Ga_{1-x}In_x P$ in which $x \le 0.5$; and			
4	the second semiconductor material essentially of aluminum gallium arsenide			
5	$Al_xGa_{1-x}As$ in which $x \ge 0.96$.			