De Morgan's Laws on sets state that

- 1. $(A \cup B)^{\complement} = A^{\complement} \cap B^{\complement}$,
- 2. $(A \cap B)^{\complement} = A^{\complement} \cup B^{\complement}$.

First we prove that $(A \cup B)^{\complement} = A^{\complement} \cap B^{\complement}$.

Proof. Choose $x \in (A \cup B)^{\complement}$. Then $x \notin A \cup B$. So $x \notin A$ and $x \notin B$. So $x \in A^{\complement}$ and $x \in B^{\complement}$. So $x \in A^{\complement} \cap B^{\complement}$. So $(A \cup B)^{\complement} \subseteq A^{\complement} \cap B^{\complement}$. Now choose $x \in A^{\complement} \cap B^{\complement}$. Then $x \in A^{\complement}$ and $x \in B^{\complement}$. So $x \notin A$ and $x \notin B$. So $x \notin A \cup B$. So $x \in (A \cup B)^{\complement}$. So $A^{\complement} \cap B^{\complement} \subseteq (A \cup B)^{\complement}$. Therefore, $(A \cup B)^{\complement} = A^{\complement} \cap B^{\complement}$. □

Next we prove that $(A \cap B)^{\complement} = A^{\complement} \cup B^{\complement}$.

Proof. Choose $x \in (A \cap B)^{\complement}$. Then $x \notin A \cap B$. So $x \notin A$ or $x \notin B$. So $x \in A^{\complement}$ or $x \in B^{\complement}$. So $x \in A^{\complement} \cup B^{\complement}$. So $x \in A^{\complement} \cup B^{\complement}$. Then $x \in A^{\complement} \cup B^{\complement}$. So $x \notin A$ or $x \notin B$. So $x \notin A \cap B$. So $x \in (A \cap B)^{\complement}$. So $x \notin A \cap B$. So $x \notin A \cap B$. So $x \in (A \cap B)^{\complement}$. So $x \notin A \cap B$.