Algèbre II Clément Chivet

TD2.2 : Extensions de corps

26/09/2023

Exercice 1:

Soit $K \hookrightarrow L$ une extension algébrique de corps et $Q \in L[X]$ un polynôme irréductible. Montrer qu'il existe un polynôme irréductible $P \in K[X]$ tel que Q divise P dans L[X].

Exercice 2 : Extensions de degré 2

Soit L une extension d'un corps K de degré 2, de caractéristique différente de 2.

- **1.** Montrer qu'il existe $a \in K$ tel que $L \simeq K[X]/(X^2 a)$ (que l'on note par definition $K(\sqrt{a})$.
- 2. A quelle condition deux extensions de cette forme sont isomorphes?
- **3.** Décrire les K automorphismes de $K(\sqrt{a})$.

Exercice 3: Une extension purement transcendante

Montrer que $k(x, \sqrt{1-x^2})$ est purement transcendante.

Exercice 4:

On veut montrer dans cet exercice que si $F \subset K \subset L$ est une tour d'extensions de corps, alors il est équivalent que :

- (i) K/F et L/K sont de type fini
- (ii) L/F est de type fini.
 - 1. Traiter les cas faciles et identifier la partie difficile.
 - 2. On va avoir ensuite besoin de quelques résultats sur les extensions transcendantes :
- a. Soit E/F et S une partie de E algébriquement indépendante sur F. Soit $\alpha \in E \setminus S$, alors $S \cup \{\alpha\}$ est algébriquement indépendante si et seulement si α est transcendant sur F(S).
- b. Une extension purement transcendante est totalement transcendante (c'est à dire que tout élément de $E \setminus F$ est transcendant).
- **3.** Soit E/F une extension et $S \subset E$ une partie algébriquement indépendante sur F. Soit $A \subset E$ une extension algébrique de F.
 - a. Montrer que S est algébriquement indépendante sur A.
 - b. Montrer que A est l'ensemble des éléments de A(S) algébriques sur F.
 - c. Montrer que $[E:F(S)] < \infty \Rightarrow [A:F] < \infty$.
 - 4. Conclure la preuve du théorème.

Exercice 5: Un contre-exemple

Soit $K = \mathbb{Q}(T)$, et deux sous corps $K_1 = \mathbb{Q}(T^2)$ et $K_2 = \mathbb{Q}(T^2 - T)$. Montrer que K est algébrique sur K_1 et K_2 mais pas sur $K_1 \cap K_2$.

Exercice 6: Théorème de Lüroth

- 1. On admet le résultat suivant, que l'on verra plus tard dans le cours : Soit A un anneau factoriel $(K[X_i]_i)$ est factoriel de corps des fractions F. Si $f \in A[X] \setminus \{0\}$ s'écrit f = gh avec g et h dans F[X], alors il existe $g_0 = \alpha g \in A[X]$ et $h_0 = \beta h \in A[X]$ tel que $f = g_0 h_0$.
- a. Soient $P, Q \in F[X]$ premiers entre eux et $U, V \in F[Y]$ premiers entre eux, et on suppose que U et V ne sont pas tous deux constants. Notons f(X,Y) = U(Y)P(X) V(Y)Q(X). Supposons que f = gh avec $g \in F[X,Y]$ et $h \in F[X]$. Montrer que h est constant.

Algèbre II Clément Chivet

b. Soient $P, Q \in F[X]$ premiers entre eux et notons $d = \max(\deg P, \deg Q)$. Soit $E = F(\beta)$ où β est transcendant, et soit $f = p - \beta q \in E[X]$. Montrer que $\deg(f) = d$ et f est irréductible si d > 0.

- **2.** On veut montrer le théorème de Lüroth : Soit $L = F(\alpha)$, avec α transcendant sur F. Soit E une extension intermédiaire L/E/F. Alors $E = F(\beta)$ pour un certain $\beta \in E$.
- a. Soit $\beta \in E \setminus F$. Montrer que $d(\beta) \stackrel{\text{def}}{=} [L : F(\beta)] < \infty$, puis que $n \stackrel{\text{def}}{=} [L : E] < \infty$, puis conclure qu'il suffit de trouver un β tel que $d(\beta) = n$.
 - b. Soit $g = \min_{E}(\alpha)$. Quel est le degré de g, et est-ce que $g \in F[X]$?
- c. Soit β un coefficient de g dans $E \setminus F$. Montrer que β convient. On pourra partir de $q(\alpha)p(X)-p(\alpha)q(X)=g(X)h(X)$ dans L[X), où $\beta=\frac{p(\alpha)}{q(\alpha)}$, puis remplacer α par Y, et enfin remarquer que le degré en Y du terme à gauche est d, alors que le degré en X du terme à droite est n.