EXAMINATION QUESTIONS/SOLUTIONS SESSION 2002-2003	COURSE I(1)
Setters are advised that Checkers, Editors, Typists and External Examiners greatly appreciate the merits of accuracy, legibility and neatness.	SETTER Lugato/Gw
Write on one side only, between the margins, double-spaced. Not more than one question or solution per sheet, please	QUESTION NO.
(i) f is even if $f(x) = f(-x)$ for all x .	SOLUTION NO.
f is odd if $f(x) = -f(-x)$ for all x .	MARKSCHEME
Examples: $f(x) = x^2$ is even; $f(x) = x$ is odd	2
(ii) e : reitles	
χ sin x : even	4
$\chi^2 \sin \kappa$: odd. $2\pi \left/ \left(\chi^2 - 1 \right) \right.$; odd.	
$(iii) f(g(x)) = e^{i/x^2}, g(f(x)) = e^{-2x}$	2
$f'(x) = ln x$, $g'(x) = x^{-\frac{1}{2}}$.	2
(iv) In general, we can write	
$f(x) = \frac{1}{2} (f(x) + f(-x)) + \frac{1}{2} (f(x) - f(-x))$ even	5
When $f(x) = \frac{2x}{x+1}$. This gives	
$\frac{2x}{x+1} = \frac{-2x^2}{1-x^2} + \frac{2x}{1-x^2}.$	

MATHEMATICS FOR ENGINEERING STUDENTS **EXAMINATION QUESTION / SOLUTION**

2002 - 2003

Please write on this side only, legibly and neatly, between the margins

PAPER

QUESTION

$$\Gamma(x) = \frac{x(x+1)}{x-2} = \frac{x^2+x}{x-2}$$

SOLUTION 2

to find behavior > X = I 00:

$$\frac{\chi^2 + \chi}{\chi - 2} = \chi_{+3} + \frac{6}{\chi - 2}$$

Then:
$$f'(x) = \frac{(2x + 1)(x-2) - (x^2 + x)}{(x-2)^2} = \frac{x^2 - 4x - 2}{(x-2)^2}$$

2

2

$$f(2+\sqrt{6}) = \frac{(2+\sqrt{6})(3+\sqrt{6})}{\sqrt{6}} = 5+\sqrt{24}, f(2-\sqrt{6}) = 5-\sqrt{24}$$

ے ک

Maximum 2.+56 2-56

Setter : 5L

Setter's signature: Stelle Mizelle

Checker's signature:

Checker:

EXAMINATION QUESTIONS/SOLUTIONS SESSION 2002-2003	COURSE [(1)
Setters are advised that Checkers, Editors, Typists and External Examiners greatly appreciate the merits of accuracy, legibility and neatness.	SETTER R-R/CW
Write on one side only, between the margins, double-spaced. Not more than one question or solution per sheet, please	QUESTION NO.
(i) $\frac{dy}{dx} = \frac{(xe^{x})' - (xe^{x})\frac{1}{x}}{(\ln x)^{2}} =$	solution no.
$\frac{(e^{x} + x e^{x}) \ln x - e^{x}}{(\ln x)^{2}} = \frac{e^{x} (\ln x + x \ln x - 1)}{(\ln x)^{2}}.$	MARKSCHEME 4
$\frac{(ii)}{dx} = \frac{(1+2x(\frac{1}{3})(x^2+1)^{-\frac{1}{2}}}{2x+(x^2+1)^{\frac{1}{2}}} = \frac{(x^2+1)^{\frac{1}{2}}}{(x^2+1)^{\frac{1}{2}}} = \frac{(x^2+1)^{\frac{1}{2}}}{(x^2+1)^{\frac{1}{2}}}.$	3
(iii) $\ln y = \ln x \cdot \ln x = (\ln x)^2$. $\frac{dy}{dx} \frac{1}{y} = 2(\ln x) \frac{1}{x}$. $\frac{dy}{dx} = 2 \ln x \cdot x$.	4
$(iv) + \frac{dy}{dx} + \left(\frac{d}{dx}(xy)\right)e^{xy} = 0.$ $1 + \frac{dy}{dx} + \left(y + x \frac{dy}{dx}\right)e^{xy} = 0.$ $\frac{dy}{dx} = -\frac{y e^{xy} + 1}{x e^{xy} + 1}.$	4

•

EXAMINATION QUESTION / SOLUTION

2002 - 2003

QUESTION

Please write on this side only, legibly and neatly, between the margins

SOLUTION

3

3

2

(i) $\sin(x+\frac{\pi}{2}) = \sin x \cos \pi/2 + \cos x \sin \pi/2 = \cos x = \frac{d}{dx} \sin x$.

If $\frac{d^n}{dx^n} \sin x = \sin(x + n\frac{\pi}{2})$ then $\frac{d^{n+1}}{dx^{n+1}} \sin x = \cos(x + n\frac{\pi}{2})$.

But $m(x+(n+1)\frac{\pi}{2})=m((x+n\frac{\pi}{2})+\frac{\pi}{2})=cos(x+n\frac{\pi}{2})$.

so result holds for n+1. Hence by induction the result follows for n = 1. [OR Use careful and so on ... "]
argument.

(ii) $y' = (2 \times 12) e^{x^2/2} = x y$.

Applying Leibniz's formula

 $\chi^{(n-1)} = \chi \chi^{(n)} + {^{n}C_{1}} \cdot 1 \cdot \chi^{(n-1)} + 0 = \chi \chi^{(n)} + n \chi^{(n-1)}.$

Putting x = 0 gives y(n+1) = n y(n-1) so that y 5 (0) = 4 y (3) (0) from taking n = 4

[OR note that y(x) is even so that $y^{(5)}(0) = 0$, as an order derivative.]

ST = T(x + Sx) - T(x)

~ dT Sx $= \frac{\pi}{\int x \, g} \, \delta x \, .$

 $\frac{\int T}{T} \sim \frac{\pi}{\int \mathbb{R}^q} \frac{1}{2\pi} \int_{\mathbb{R}}^q \int_{\mathbb{R}}^q = \frac{1}{2} \frac{\partial x}{x} = \frac{1}{200}.$

Hence the error in T is ~ 0.5%.

alteration

RIDLER-ROWE Setter:

Setter's signature:

Checker's signature :

Checker:

CASH

EXAMINATION QUESTIONS/SOLUTIONS SESSION 2002-2003	COURSE I (1)
Setters are advised that Checkers, Editors, Typists and External Examiners greatly appreciate the merits of accuracy, legibility and neatness.	SETTER Lugato Vilan
Write on one side only, between the margins, double-spaced. Not more than one question or solution per sheet, please	
(i) $\lim_{x \to 1} \frac{(x-2)(x+2)}{(x-3)(x+1)} = \frac{(-1)(3)}{(-2)(2)} = \frac{3}{4}$	SOLUTION NO.
	MARKSCHEME 2
(ii) $\lim_{\chi \to 0} \frac{1 - \cos \chi}{\tan^2 \chi} = \lim_{\chi \to 0} \frac{\sin \chi}{2 \tan \chi \cos^2 \chi}$	
= lin 2 sec x + 2 tanx of (sec x)	5
$=\frac{1}{2+0}=\frac{1}{2}.$	
(iii) Let $y = x^{2}$, $\ln y = x \ln x$. On $x \rightarrow 0$, $\ln y \rightarrow 0$, hence $y \rightarrow 1$. i.e. $\lim_{x \to 0} x^{2} = 1$.	4
(iv) $\lim_{x \to -2} \frac{\sqrt{-2x} - 2}{x + 2} = \lim_{x \to -2} \frac{(\sqrt{-2x} - 2)(\sqrt{-2x} + 2)}{(x + 2)(\sqrt{-2x} + 2)}$	
$= \lim_{ x \to -2} \frac{-2x - 4}{(x+2)(\sqrt{-2x}(+2))} = \lim_{ x \to -2} \frac{-2}{\sqrt{-2x}(+2)} = -\frac{1}{2}$	-

EXAMINATION QUESTION / SOLUTION

2002 - 2003

Please write on this side only, legibly and neatly, between the margins

PAPER

I

QUESTION

SOLUTION 6

Solution.

(i) Use substitution $u = \sinh^{-1} x$ and

$$du = \frac{1}{(1+x^2)^{1/2}} dx$$

to obtain

$$\int \frac{\sinh^{-1} x}{(1+x^2)^{1/2}} dx = \int u \, du = \frac{1}{2} u^2 + C = \frac{1}{2} (\sinh^{-1} x)^2 + C.$$

(ii) Using standard trigonometric identities:

$$\int (\sinh x \cosh x)^2 dx = \int \left(\frac{1}{2} \sinh 2x\right)^2 dx$$
$$= \frac{1}{4} \int \frac{1}{2} (\cosh 4x - 1) dx$$
$$= \frac{1}{8} \left(\frac{1}{4} \sinh 4x - x\right) + C.$$

Hence

$$\int_0^{1/4} \left(\sinh x \cosh x\right)^2 dx = \frac{1}{8} \left[\frac{1}{4} \sinh 4x - x \right]_{x=0}^{x=1/4} = \frac{1}{32} \left(\sinh 1 - 1\right)$$

(iii) Use substitution $t = \tan(x/2)$ resulting in (formulae sheet):

$$\cos x = \frac{1 - t^2}{1 + t^2}, \qquad dx = \frac{2dt}{1 + t^2}.$$

Hence

$$\int \frac{dx}{1 - \cos x} = \int \frac{2dt}{1 + t^2 - (1 - t^2)}$$
$$= \int \frac{dt}{t^2} = -t^{-1} + C$$
$$= -\frac{1}{\tan(x/2)} + C.$$

Setter: S. REICH

Checker: N=0 R=

Setter's signature: Checker's signature: Webet

EXAMINATION QUESTION / SOLUTION

2002 - 2003

QUESTION

1

PAPER

Please write on this side only, legibly and neatly, between the margins

SOLUTION

子

5

Solution.

(i) Put

$$\frac{x+1}{x^2-x-12} = \frac{x+1}{(x-4)(x+3)} = \frac{A}{x-4} + \frac{B}{x+3}.$$

Clearing the fraction gives A = 5/7 for x = 4 and B = 2/7 for x = -3.

$$\int \frac{x+1}{x^2-x-12} dx = \frac{5}{7} \ln|x-4| + \frac{2}{7} \ln|x+3| + C.$$

(ii)

$$I_{n} = \int_{0}^{\pi} e^{x} \sin^{n} x \, dx$$

$$= [e^{x} \sin^{n} x]_{0}^{\pi} - n \int_{0}^{\pi} e^{x} \sin^{n-1} x \cos x \, dx$$

$$= -n [e^{x} \sin^{n-1} x \cos x]_{0}^{\pi} + n \int_{0}^{\pi} e^{x} ((n-1)\sin^{n-2} x \cos^{2} x - \sin^{n} x) \, dx$$

$$= n(n-1)I_{n-2} - n(n-1)I_{n} - nI_{n} = n(n-1)I_{n-2} - n^{2}I_{n}.$$

Putting n = 5 and n = 3 successively, we get

$$I_5 = \frac{20}{26}I_3 = \frac{20}{26}\frac{6}{10}I_1 = \frac{6}{13}I_1.$$

$$I_{1} = \int_{0}^{\pi} e^{x} \sin x \, dx$$

$$= -\left[e^{x} \cos x\right]_{0}^{\pi} + \int_{0}^{\pi} e^{x} \cos x \, dx$$

$$= e^{\pi} + 1 + \left[e^{x} \sin x\right]_{0}^{\pi} - I_{1}$$

$$2I_{1} = e^{\pi} + 1$$

giving

$$I_5 = rac{3}{13} \left(\mathrm{e}^\pi + 1 \right).$$

2,

3

15

S. REICH Setter:

Checker: DEREM

Setter's signature: S. Checker's signature:

EXAMINATION QUESTION / SOLUTION

2002 - 2003

T. 1

QUESTION

PAPER

Please write on this side only, legibly and neatly, between the margins

(i)
$$f(z) = \ln(1+x)$$
. $f' = \frac{1}{1+x}$, $f'' = -\frac{1}{(1+x)^2}$, $f''' = \frac{2}{(1+x)^3}$, $f''' = \frac{2}{(1+x)^4}$.

SOLUTION ૪

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + R_{\mu}$$

$$= x - \frac{x^2}{2} + \frac{x^3}{3} + R_{\mu}$$

2

where $R_{L} = \frac{f^{(4)}(\bar{z})}{4!} x^{4}$ for some \bar{z} between oand z $=\frac{-6\times^4}{(1-3)^4}$

2

2

Using the first 3 terms gives

$$\int_{0}^{\sqrt{2}} \frac{\ln(1+x)}{x} dx \simeq \int_{0}^{1} \left(1 - \frac{x}{2} + \frac{x^{2}}{3}\right) dx = 1 - \frac{1}{4} + \frac{1}{9} = \frac{31}{36}$$

with error = $\int_0^1 \frac{R_4}{z} dz = -\int_0^1 \frac{6x^3}{(1+z)^4/1} dz$

$$|\text{emor}| = \int_0^1 \frac{\dot{x}^3}{4(1+\bar{x})^4} dx$$

$$< \int_0^1 \frac{\dot{x}^3}{4} dx \quad \text{since } 1+\bar{x} > 1,$$
giving $1 \in \text{emor} 1 < \frac{1}{16}.$

(ii) (a) Applying the Ratio Test $\left|\frac{(n+1)!!}{n!!}\frac{\text{term}}{n!}\right| = \frac{(n+1)x^{n+1}}{n!} = \frac{n+1}{n}|x| \rightarrow |x| \text{ as } n \rightarrow \infty$ The series converges if the last limit is < 1 and diverges if it is > 1 Hence the radius of convergence is 1.

2

(b)
$$\left| \frac{(n+1)^{n} term}{n^{n} term} \right| = \left| \frac{(n+1)^{2} (x-1)^{n+1}}{2^{n+1}} \frac{2^{n}}{n^{2}} \right| = \left(\frac{n+1}{n} \right)^{2} \frac{|x-1|}{2} \rightarrow \frac{|x-1|}{2}$$

Hence by the Ratio Term the series converges if $\frac{|x-1|}{2} < 1$

i.e. $|x-1| < 2$, and diverges if $|x-1| > 2$.

Hence the radius of convergence is 2.

3

Setter: RIDLER-ROWE Setter's signature:

, IR Card

Checker: CASIH Checker's signature:

EXAMINATION QUESTION / SOLUTION

2002 - 2003

Please write on this side only, legibly and neatly, between the margins

PAPER

QUESTION

SOLUTION

2_

(1) (a) $(3+2i)(1-4i) = 3-10i-8i^2=11-10i$

(b) 7+6i = (1+6i)(-3i) = 1 (7-15i-18i2)

(c) (1+13i)04 = (65) + isin 3)04 = (ei73)04 $= e^{ix_34\frac{7}{3}} = e^{ix_3^2} = -\frac{1}{5} + i\sqrt{\frac{3}{3}}.$

(ii) $|z| = 5|z| \Rightarrow |z| = 5$ CIRCLE

CENTRE O

RAJIUS 5

Modows (2-i) > Modows (2+i)

(111) (GSD+isie) = GSAO+ isiAO.

6540 = Re (6,0+isio) 1 = Re[65+0+4isi063+6i2si206520 +4i3si30650+i4si40

= 65°0 - 6 xin 8 65°0 + xin 10 = 4540 - 6(1-6520)470 + (1-6520)2

 $=1-865^{2}0+865^{4}0$ BERUSHIKE Setter:

Setter's signature:

Checker's signature:

Checker:

J ELGIN

EXAMINATION QUESTION / SOLUTION

2002 - 2003

Please write on this side only, legibly and neatly, between the margins

(1) sint = ! (eit-e-it), (st= ! (eit+e-it))

 $\tan z = \frac{\sin z}{\cos z} = \frac{\chi(e^{iz} - e^{-iz})}{\chi(e^{iz} + e^{-iz})}$

 $\frac{(e^{2iz}-1)}{(e^{2iz}+1)} = 2i^2 = -2. \text{ and so } e^{2iz} = -\frac{1}{3}$

QUESTION

PAPER

SOLUTION

10

2

 $(1)_{(a)}^{2} = x + iy \Rightarrow z^{2} = (x^{2} - y^{2}) + 2ixy$

So 217 = - ln3 + i(2n+1)x.

and = (2n+1) = + = h3

 $\sin^2 2 = \sin(x^2 - y^2) \cos(2ixy)$

+ 65(x2-42) sin(Lixy)

= sin(x2-y2) 65h(2xy) + icos(x2-y2) sinh

si(22) to be rat then (4x2-y2) sinh(2xy)

(1)(x2-y2) =0 and sil(xy) =0.

(x2-y2)=(2k+1) (kinteger). x=0 and/or y=0.

SO Z is = & (REAL)

or = ip (Purk imagnary)

 $= \pm \left[y^2 + (2k+1) \right]^{n/2} + iy$

F. BERKSHIRE Setter:

JELGIN Checker:

Setter's signature :

Checker's signature:

2