Московский государственный технический университет им. Н.Э. Баумана Факультет «Радиоэлектроника и лазерная техника» Кафедра «Радиоэлектронные системы и устройства»

Домашнее задание №1 по дисциплине «Электроника»

Выполнили студенты группы РЛ-41 Филимонов С.В. Мухин Г. А. Сиятелев А.Ю.

Фамилия И.О.

Проверил проф. Крайний В.И.

Оценка в баллах_____

СОКРАЩЕНИЯ ТЕРМИНОВ И АББРЕВИАТУР

ВАХ - Вольт амперная характеристика

MC - Micro-CAP12

Оглавление

СОКРАЩЕНИЯ ТЕРМИНОВ И АББРЕВИАТУР
ДИОД
1. ИССЛЕДОВАНИЕ СТАТИЧЕСКИХ ВАХ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ
2. ИССЛЕДОВАНИЕ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ПОЛУПРОВОДНИКОВЫХ ДИОДОВ
3. ОПРЕДЕЛИТЬ ПАРАМЕТРЫ МОДЕЛИ ДИОДА ПО ДАННЫМ ЭКСПЕРИМЕНТА
4.

ДИОД

KD204B

2Д204А, 2Д204Б, 2Д204В, КД204А, КД204Б, КД204В

Диоды кремниевые, диффузионные. Предназначены для преобразования переменного напряжения частотой до 50 кГц. Выпускаются в металлостеклянном корпусе с жесткими выводами. Тип диода и схема соединения электродов с выводами приводятся на корпусе. Масса диода не более 6 г, с комплектующими деталями не более 7,5 г.

Электрические параметры

Постоянное прямое напряжение	
при $I_{nP} = 0.6$ A, не более:	
7 = +25 °C	1,4 B
	l,6 B
Импульсное прямое напряжение при	
$I_{\text{NP, N}} = 2 \text{ A}, I_{\text{NP, CP}} = 30 \text{ MA}, f = 1500 \text{ Fu},$	
$t_{\rm H} = 10$ мкс, $t_{\rm \Phi} \le 4$ мкс для 2Д204А, 2Д204Б,	
	2 B
Постоянный обратный ток при $U_{\text{обр}} = U_{\text{обр. МАКС}}$	
не более:	
T = +25 u -60 °C:	
	150 мкА
	100 мкА
	50 мкA
T = +85 °C:	O PIOT
КД204А	2 μΔ
	I MA
V 0204B	
КД204В),5 MA
T = +125 °C:	
2Д204А	2 MA
2Д204Б	1 MA
2Д204В	
	. U,3 MA
Время обратного восстановления при	
$U_{\text{OBP, H}} = 30 \text{ B}, I_{\text{ПР, H}} = 1 \text{ A}, t_{\text{H}} = 10 \text{ MKC},$	100 mm
t _Ф ≤ 0,5 мкс, не более	1,5 мкс

ИССЛЕДОВАНИЕ СТАТИЧЕСКИХ ВАХ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ

Рис. 1 Схема

Рис.2 Описание диода в программе МС

Рис.3 DC Analysyis Limits

Рис.4 ВАХ прямой ветви

Проводим многовариантный анализ(stepping)для R2 = 1K..10K, R1 = 1..10 Ом.

Рис.5 Настройка Stepping

Рис. 6 График ВАХ

Для R1=1..10 Ом. При увеличении величины сопротивления R1 BAX смещается из-за увеличения падения напряжения на R1.

Рис. 7 R1 увеличивается

Графики расположены очень близко друг к другу поскольку сопротивления R2 и диод включены параллельно и $R_{\text{диода}} << R2$.

Рис. 8 Настройка для сохранения точек.

V(V1)	I(D1)
	(A)
.000E+00	1.000E-50
2.002E-03	2.855E-15
1.004E-03	5.711E-15
5.006E-03	8.657E-15
.008E-03	1.169E-14
.001E-02	1.473E-14
.201E-02	1.799E-14
1.401E-02	2.124E-14
.602E-02	2.465E-14
.802E-02	2.817E-14
.002E-02	3.170E-14
.202E-02	3.555E-14
2.402E-02	3.939E-14
2.603E-02	4.346E-14
2.803E-02	4.771E-14
3.003E-02	5.195E-14
3.203E-02	5.667E-14
3.403E-02	6.139E-14
3.604E-02	6.644E-14
3.804E-02	7.174E-14
.004E-02	7.705E-14
.204E-02	8.305E-14
.404E-02	8.906E-14
1.605E-02	9.554E-14
.805E-02	1.024E-13

Рис.9 Точки

$$Rb = 1.106$$
 $Is = 1.331*10^-8$
 $NFt = 0.044$

$$F(x) := x \cdot Rb + \ln\left[\frac{(IS + x)}{IS}\right] \cdot NFt.$$

Рис. 10 Вах теоретический

График обратной ветви ВАХ.

Рис. 1 Схема

Строим обратную ветвь BAX диода. Диалоговое окно задания параметров для построения BAX следующее:

Рис. 2 Настройка пределов

Рис. 3 График обратного ВАХ

ИССЛЕДОВАНИЕ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ПОЛУПРОВОДНИКОВЫХ ДИОДОВ

Рис. 1 Схема

Рис.2 Описание диода в программе МС

Рис.4 Настройки графика в MC Stepping:

Проведя анализ, получим резонансные кривые:

Для построения зависимости резонансной частоты как функцию напряжения источника Vvar выберем AC→Perfomance window→Add performance window.

Нажмем Get и выберем в меню Peak_X:

Получаем следующий график:

Вывод данных:

Далее рассчитываем емкость диода и строим график ее зависимости от обратного напряжения (вольт-фарадная характеристика):

ОПРЕДЕЛИТЬ ПАРАМЕТРЫ МОДЕЛИ ДИОДА ПО ДАННЫМ ЭКСПЕРИМЕНТА

I, mA	U, B
0,05	0,05
0,1	0,10
0,5	0,16
1	0,19
2	0,22
5	0,27
7	0,29
10	0,32

Таблица 1 – Результаты снятия ВАХ для прямой ветви Д311А.

Используя экспериментальные данные из табл. 1 получим характеристики диода Д311A в программе MODEL.

Теперь соберем схему в программе Microcap и в используемом диоде используем параметры, полученные в программе MODEL.

Жирным шрифтом в параметрах диода обозначены те значения, которые были посчитаны в программе MODEL.

Получим график DC Analysis:

Из этого графика с помощью Numeric Output получим конкретные значения для силы тока и напряжения:

После чего данные из полученного файла табличных значений занесем в MATLAB для построения графика BAX и сравнения экспериментального BAX, полученного на лабораторной работе с BAX, который был построен программой Microcap с параметрами диода из программы MODEL.

BAX, полученный эксперементально почти не отличается от моделируемого, это может говорить только о высокой точности моделирования программы MODEL.

Теперь аналогично первому исследуем второй диод КД105В:

I, mA	U, B
0,05	0,4
0,1	0,43
0,5	0,49
1	0,52
2	0,56
5	0,6
7	0,62
10	0,64

Таблица 2 - Результаты снятия ВАХ для прямой ветви КД105В.

Используя экспериментальные данные из табл. 2 получим характеристики диода КД105В в программе MODEL.

Теперь соберем схему в программе Microcap и в используемом диоде используем параметры, полученные в программе MODEL.

Жирным шрифтом в параметрах диода обозначены те значения, которые были посчитаны в программе MODEL.

Получим график DC Analysis:

Из этого графика с помощью Numeric Output получим конкретные значения для силы тока и напряжения:

После чего данные из полученного файла табличных значений занесем в MATLAB для построения графика BAX и сравнения экспериментального BAX, полученного на лабораторной работе с BAX, который был построен программой Microcap с параметрами диода из программы MODEL.

