PLSC 503 – Spring 2021 Multivariate Regression

February 3, 2021

The Model

$$Y = X\beta + u$$

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + ... + \beta_K X_{Ki} + u_i$$

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_N \end{bmatrix} = \begin{bmatrix} 1 & X_{11} & X_{21} & \cdots & X_{K1} \\ 1 & X_{12} & X_{22} & \cdots & X_{K2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{1N} & X_{2N} & \cdots & X_{KN} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_K \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_N \end{bmatrix}.$$

Diversion: "Added Variable Plots"

- · Regress Y on X_1 and save the residuals \hat{u}_i ,
- · Regress X_2 on X_1 and save the residuals (call these \hat{e}_i),
- · Plot \hat{u}_i (conventionally on the y-axis) vs. \hat{e}_i (conventionally on the x-axis).

Example: Infant Mortality and Health Expenditures Given DPT Immunization Rates

Estimating β

Residuals:

$$\mathbf{u} = \mathbf{Y} - \mathbf{X}\boldsymbol{\beta}$$

The inner product of **u**:

$$\mathbf{u}'\mathbf{u} = \begin{bmatrix} u_1 & u_2 & \cdots & u_N \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_N \end{bmatrix}$$
$$= u_1^2 + u_2^2 + \dots + u_N^2$$
$$= \sum_{i=1}^N u_i^2$$

Estimating β

$$\mathbf{u}'\mathbf{u} = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$
$$= \mathbf{Y}'\mathbf{Y} - 2\boldsymbol{\beta}'\mathbf{X}'\mathbf{Y}' + \boldsymbol{\beta}'\mathbf{X}'\mathbf{X}\boldsymbol{\beta}$$

Now get:

$$\frac{\partial \mathbf{u}'\mathbf{u}}{\partial \boldsymbol{\beta}} = -2\mathbf{X}'\mathbf{Y} + 2\mathbf{X}'\mathbf{X}\boldsymbol{\beta}$$

Solve:

$$-2\mathbf{X}'\mathbf{Y} + 2\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = 0$$

$$-\mathbf{X}'\mathbf{Y} + \mathbf{X}'\mathbf{X}\boldsymbol{\beta} = 0$$

$$\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \mathbf{X}'\mathbf{Y}$$

$$(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

$$\boldsymbol{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

Estimation Issues

"Do not compute the least squares estimates using $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}!$ "

- Weisberg (p. 61)

Most software uses:

$$X = QR$$

where \boldsymbol{Q} is orthogonal $\left(\boldsymbol{Q}'\boldsymbol{Q}=\boldsymbol{I}\right)$ and \boldsymbol{R} is upper-triangular.

Why??? See e.g. here, or section 3.19, here

OLS Assumptions

1. Expectation-Zero Disturbances

$$\mathsf{E}(u)=0$$

OLS Assumptions

2. Homoscedasticity / No Error Correlation

$$\mathbf{u}\mathbf{u}' = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_N \end{bmatrix} \begin{bmatrix} u_1 & u_2 & \cdots & u_N \end{bmatrix}$$

$$= \begin{bmatrix} u_1^2 & u_1 u_2 & \cdots & u_1 u_N \\ u_2 u_1 & u_2^2 & \cdots & u_2 u_N \\ \vdots & \vdots & \ddots & \vdots \\ u_N u_1 & u_N u_2 & \cdots & u_N^2 \end{bmatrix}$$

Expectation must be:

$$\mathsf{E}(\mathbf{u}\mathbf{u}') = \begin{bmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & \sigma^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma^2 \end{bmatrix} = \sigma^2 \underset{N \times N}{\mathbf{I}}$$

OLS Assumptions

3. "Fixed" **X**...

- No measurement error in the Xs, and
- Cov(X, u) = 0.

4. X is full column rank.

Means:

- no exact linear relationship among X, and
- K < N.

5. Normal Disturbances

$$\mathbf{u} \sim \mathbf{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

OLS: Unbaisedness

Unbiasedness:

$$Y = X\beta + u$$

Substitute OLS $\hat{\beta}$:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\boldsymbol{\beta} + \mathbf{u})
= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u}
= \boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u}$$

and so:

$$\hat{oldsymbol{eta}} - oldsymbol{eta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u}.$$

By $Cov(\mathbf{X}, \mathbf{u}) = \mathbf{0}$, we have $E(\hat{\beta}) = \beta$.

A Toy Example

$$\mathbf{Y} = \begin{bmatrix} 4 \\ -2 \\ 9 \\ -5 \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} 1 & 200 & -17 \\ 1 & 120 & 32 \\ 1 & 430 & -29 \\ 1 & 110 & 25 \end{bmatrix}$$

Example, continued

So:

$$\mathbf{X'X} = \begin{bmatrix} 4 & 860 & 11 \\ 860 & 251400 & -9280 \\ 11 & -9280 & 2779 \end{bmatrix}$$
$$(\mathbf{X'X})^{-1} = \begin{bmatrix} 3.2453 & -0.0132 & -0.05694 \\ -0.0132 & 0.000058 & 0.0002468 \\ -0.0569 & 0.000247 & 0.001409 \end{bmatrix}$$
$$\mathbf{X'Y} = \begin{bmatrix} 6 \\ 3880 \\ 518 \end{bmatrix}$$

So:

R Example: Correlation

```
Y<-c(4,-2,9,-5)

X1<-c(200,120,430,110)

X2<-c(-17,32,-29,25)

data<-cbind(Y,X1,X2)
```

cor(data)

Regression

```
fit < -lm(Y^X1+X2)
summary(fit)
Call:
lm(formula = Y ~ X1 + X2)
Residuals:
0.531 1.639 -0.201 -1.970
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.2643 4.7284 -0.48 0.72
X1
           0.0190 0.0200 0.95 0.52
X2
         -0.1141 0.0985 -1.16 0.45
```

Residual standard error: 2.62 on 1 degrees of freedom Multiple R-Squared: 0.941,Adjusted R-squared: 0.823 F-statistic: 7.99 on 2 and 1 DF, p-value: 0.243

Inference, In General

- Pick some \mathbf{H}_A : $\boldsymbol{\beta} = \boldsymbol{\beta}_A$
- Estimate $\hat{oldsymbol{eta}}$
- Determine distribution of $\hat{\beta}$ under \mathbf{H}_A
- ullet Form a test statistic $\hat{f S}=h(oldsymbol{eta},\hat{oldsymbol{eta}})$
- Assess $Pr(\hat{S}|H_A)$

The Importance of $\mathbf{V}(\hat{\boldsymbol{\beta}})$

$$\mathbf{V}(\hat{\boldsymbol{\beta}}) = \mathsf{E}[\hat{\boldsymbol{\beta}} - \mathsf{E}(\hat{\boldsymbol{\beta}})]^2$$
$$= \mathsf{E}\{[\hat{\boldsymbol{\beta}} - \mathsf{E}(\hat{\boldsymbol{\beta}})][\hat{\boldsymbol{\beta}} - \mathsf{E}(\hat{\boldsymbol{\beta}})]'\}$$

Rewrite:

$$V(\hat{\boldsymbol{\beta}}) = E(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'$$

$$= E\{[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u}][(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u}]'\}$$

$$= E[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u}\mathbf{u}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}]$$

The Importance of $\mathbf{V}(\hat{\beta})$

Taking expectations:

$$\begin{aligned} \mathbf{V}(\hat{\boldsymbol{\beta}}) &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathsf{E}(\mathbf{u}\mathbf{u}')\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} \\ &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\sigma^2\mathbf{I}\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} \\ &= \sigma^2(\mathbf{X}'\mathbf{X})^{-1} \end{aligned}$$

Estimating $\mathbf{V}(\hat{\boldsymbol{\beta}})$

Empirical estimate:

$$\hat{\sigma}^2 = \frac{\hat{\mathbf{u}}'\hat{\mathbf{u}}}{N - K}$$

Yields:

$$\widehat{\mathbf{V}(\hat{oldsymbol{eta}})} = \hat{\sigma}^2 (\mathbf{X}'\mathbf{X})^{-1}$$

Single Coefficient Hypothesis Tests

We know that:

$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}[\boldsymbol{\beta}, \sigma^2(\mathbf{X}'\mathbf{X})^{-1}].$$

In practice, using $\hat{\sigma}^2$ means

$$\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \sim t_{N-K}$$

Procedure:

- Choose a value of β_k that you want to test (say, $\beta_k = 0$),
- Calculate the *t*-statistic for the coefficient associated with X_k , which is:

$$\hat{t}_k = rac{\hat{eta}_k - eta_k}{\sqrt{\widehat{\mathbf{V}}(\hat{eta}_k)}}$$

• Compare \hat{t}_k to a t distribution with N-K degrees of freedom.

Multivariate Hypothesis Testing

E.g.:
$$H_0: \beta_1 = \beta_2 = ... = \beta_K = 0$$

or:
$$H_0: \beta_3 = \beta_6 = 0$$

Generally: Linear restrictions:

$$\underset{q\times k_{k\times 1}}{\mathbf{R}} \boldsymbol{\beta} = \underset{q\times 1}{\mathbf{r}}$$

E.g.:

$$\beta_2 = -2 \iff (0\ 1\ 0) \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = -2$$

Recall:

$$TSS = MSS + RSS$$

Consider:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \beta_4 X_{4i} + u_{Ui}$$

and the restriction:

$$H_a$$
 : $\beta_2 = \beta_4 = 0$.

Restricted model:

$$Y_i = \beta_0 + \beta_1 X_{1i} + 0 X_{2i} + \beta_3 X_{3i} + 0 X_{4i} + u_i$$

= $\beta_0 + \beta_1 X_{1i} + \beta_3 X_{3i} + u_{Ri}$

F-tests: Sums of Squared Residuals

"Unrestricted":

$$\mathsf{RSS}_U \equiv \hat{\mathbf{u}}_U' \hat{\mathbf{u}}_U = \sum_{i=1}^N \hat{u}_{Ui}^2$$

"Restricted":

$$\mathsf{RSS}_R \equiv \hat{\mathbf{u}}_R' \hat{\mathbf{u}}_R = \sum_{i=1}^N \hat{u}_{Ri}^2$$

The *F*-test

F-statistic:

$$\mathbf{F} = \frac{(\mathsf{RSS}_R - \mathsf{RSS}_U)/q}{\mathsf{RSS}_U/(N-K)}$$
$$= \frac{(R_U^2 - R_R^2)/q}{(1 - R_U^2)/N - K}$$

Testing:

$$\mathbf{F} \sim F_{q,N-K}$$

F-Test: Example

Consider:

$$\mathsf{H}_b$$
: $\beta_1 + \beta_4 = 1$ $\beta_1 = 1 - \beta_4$

Implies:

$$Y_{i} = \beta_{0} + (1 - \beta_{4})X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + \beta_{4}X_{4i} + u_{R'i}$$

$$= \beta_{0} + X_{1i} - \beta_{4}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + \beta_{4}X_{4i} + u_{R'i}$$

$$= \beta_{0} + X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + \beta_{4}(X_{4i} - X_{1i}) + u_{R'i}$$

implying restricted model:

$$Y_i - X_{1i} = \beta_0 + \beta_2 X_{2i} + \beta_3 X_{3i} + \beta_4 (X_{4i} - X_{1i}) + u_{R'i}$$

Confidence Regions

$$F = \frac{(\hat{\beta}_q - \beta_q^H)' \hat{\mathbf{V}}_q^{-1} (\hat{\beta}_q - \beta_q^H)}{q\hat{\sigma}^2}$$

Implies:

$$\Pr\left[\frac{(\hat{\beta}_q - \beta_q^H)'\hat{\mathbf{V}}_q^{-1}(\hat{\beta}_q - \beta_q^H)}{q\hat{\sigma}^2} \le F_{q,N-K}\right] = 1 - \alpha. \quad (1)$$

 \rightarrow "confidence region" of all points satisfying:

$$(\hat{eta}_q - oldsymbol{eta}_q^H)' \hat{oldsymbol{V}}_q^{-1} (\hat{eta}_q - oldsymbol{eta}_q^H) \le q \hat{\sigma}^2 F_{q,N-K}.$$

Multivariate Prediction

Prediction:

$$\hat{Y}_i = \mathbf{X}_i \hat{\boldsymbol{\beta}}$$

Variance:

$$\widehat{\mathbf{V}(\hat{Y}_j)} = \hat{\sigma}^2 [1 + \mathbf{X}_j (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}_j']$$

Standard error:

$$\widehat{\text{s.e.}(\hat{Y}_j)} = \sqrt{\hat{\sigma}^2[1 + \mathbf{X}_j(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_j']}$$

Example: Africa Data

- > library(RCurl)
- > temp<-getURL("https://raw.githubusercontent.com/PrisonRodeo/PLSC503-2021-git/master/Data/africa2001.csv
- > Data<-read.csv(text=temp, header=TRUE)
- > Data<-with(Data, data.frame(adrate,polity,
 - subsaharan=as.numeric(subsaharan),muslperc,literacy))

> summary(Data)

adrate	polity	subsaharan	muslperc	literacy
Min. : 0.100	Min. :-9.0000	Min. :1.00	Min. : 0.00	Min. :17.00
1st Qu.: 2.700	1st Qu.:-4.5000	1st Qu.:2.00	1st Qu.: 10.00	1st Qu.:43.00
Median : 6.000	Median : 0.0000	Median :2.00	Median : 20.00	Median :61.00
Mean : 9.365	Mean : 0.5116	Mean :1.86	Mean : 35.96	Mean :60.07
3rd Qu.:12.900	3rd Qu.: 5.5000	3rd Qu.:2.00	3rd Qu.: 55.50	3rd Qu.:78.50
Max. :38.800	Max. :10.0000	Max. :2.00	Max. :100.00	Max. :89.00

> cor(Data)

		adrate	polity	subsaharan	musiperc	literacy
	adrate	1.0000000	0.11794182	0.33129420	-0.5709233	0.51489444
	polity	0.1179418	1.00000000	0.52819844	-0.2391715	-0.05079354
	subsaharan	0.3312942	0.52819844	1.00000000	-0.5772513	0.09472968
	muslperc	-0.5709233	-0.23917151	-0.57725134	1.0000000	-0.61960385
	literacy	0.5148944	-0.05079354	0.09472968	-0.6196039	1.00000000

Africa Data

A Regression

```
> model<-lm(adrate~polity+subsaharan+muslperc+literacy,data=Data)
> summary(model)
Call:
lm(formula = adrate ~ polity + subsaharan + muslperc + literacy,
   data = Data)
Residuals:
    Min
            10 Median 30
                                     Max
-15.4681 -4.3947 -0.5251 3.4246 22.9358
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.39843 14.94744 -0.294 0.7702
polity -0.01390 0.27969 -0.050 0.9606
subsaharan 3.72969 5.43093 0.687 0.4964
muslperc -0.08689 0.06282 -1.383 0.1747
literacy 0.16575 0.09433 1.757 0.0869 .
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 8.264 on 38 degrees of freedom
Multiple R-squared: 0.3771, Adjusted R-squared: 0.3115
F-statistic: 5.751 on 4 and 38 DF, p-value: 0.001013
```

Variance-Covariance Matrix of $\hat{\beta}$

- > options(digits=4)
- > vcov(model)

```
(Intercept)
                         polity subsaharan muslperc
                                                    literacy
(Intercept)
              223,4259
                       1.088030
                                 -72.2628 -0.771309 -1.002421
polity
                1.0880
                       0.078229
                                  -0.6642 -0.000293
                                                    0.001968
subsaharan
             -72.2628 -0.664212
                                  29.4950 0.206067 0.171765
muslperc
             -0.7713 -0.000293
                                   0.2061
                                           0.003946
                                                    0.004098
literacy
               -1.0024
                       0.001968
                                   0.1718
                                           0.004098
                                                    0.008898
```

Tests...

```
Test H_0: \beta_{\mathrm{polity}} = \beta_{\mathrm{subsaharan}} = 0:

> library(lmtest)
> modelsmall<-lm(adrate~muslperc+literacy,data=Data)
> waldtest(model,modelsmall)

Wald test

Model 1: adrate ~ polity + subsaharan + muslperc + literacy
Model 2: adrate ~ muslperc + literacy
Res.Df Df F Pr(>F)

1 38
2 40 -2 0.27 0.76
```

More tests...

```
Test H_0: \beta_{\text{muslperc}} = 0.1:
> library(car)
> linearHypothesis(model, "muslperc=0.1")
Linear hypothesis test
Hypothesis:
muslperc = 0.1
Model 1: restricted model
Model 2: adrate ~ polity + subsaharan + muslperc + literacy
  Res.Df RSS Df Sum of Sq F Pr(>F)
      39 3200
1
  38 2595 1 605 8.85 0.0051 **
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

More tests...

```
Test H_0: \beta_{\text{literacy}} = \beta_{\text{muslperc}}:
> linearHypothesis(model,"literacy=muslperc")
Linear hypothesis test
Hypothesis:
- muslperc + literacy = 0
Model 1: restricted model
Model 2: adrate ~ polity + subsaharan + muslperc + literacy
  Res.Df RSS Df Sum of Sq F Pr(>F)
      39 3534
2 38 2595 1 938 13.7 0.00067 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Confidence Regions / Ellipses

Predicted Values

- > hats<-fitted(model)</pre>
- > # Or, alternatively:
- > fitted<-predict(model,se.fit=TRUE, interval=c("confidence"))</pre>
- > scatterplot(model\$fitted~adrate,log="x",smooth=FALSE,boxplots=FALSE,
 reg.line=FALSE,xlab="Observed HIV Rate",ylab="Predicted HIV Rate",
 pch=16,cex=2)

Predicted and Actual HIV/AIDS Rates (X-Axis Logged)

An Even More Useful Plot

Predicted and Actual HIV/AIDS Rates, with 95% C.I.s

