

IMPLEMENTATION OF KMAP BOOLEAN LOGIC WITH ARDUINO

L. Kiran Kumar Reddy levaku.fwc1@iiitb.ac.in

IITB Future Wireless Communication (FWC) ASSIGNMENT COMETFWC027

July 06, 2025

Abstract

The minimal sum-of-products expression for the logic function f represented by the given Karnaugh map is:

PQ/RS	00	01	11	10
00	0	1	0	0
01	0	1	1	1
11	1	1	1	0
10	0	0	1	0

Options:

(A)
$$QS + \overline{P}R\overline{S} + PQR + \overline{P}RS + P\overline{Q}R$$

(B)
$$QS + \overline{P}R\overline{S} + PQR + \overline{P}RS$$

(C)
$$\overline{P}RS + PQR + \overline{P}RS + P\overline{Q}R$$

(D)
$$\overline{P}RS + PQR + P\overline{Q}R$$

Kmap

PQ/RS	00	01	11	10
00	0	1	0	0
01	0	1	1	1
11	1	1	1	0
10	0	0	1	0

Components

Component	Value	Quantity
Arduino Board	_	1
Jumper Wires	M-F	10
Push Buttons	_	4
Breadboard	_	1
USB Cable	_	1
LED	_	1
Resistors	220 Ω , 10k Ω	5

Setup

- 1. Connect buttons to pins D2-D5 for inputs P, Q, R, S, each with a $10 \text{k}\Omega$ pulldown resistor to ground.
- 2. Connect an LED to pin D13 through a 220 Ω resistor to ground.
- 3. Write Arduino code to read inputs and $R \cdot !S + !P \cdot Q \cdot R$.
- 4. Use digitalWrite(13, f) to control the LED based on the computed output.
- 5. Upload the code and test by pressing buttons to check when the LED turns ON for f = 1.

Implementation

Connect push buttons to pins D2–D5 for inputs $P,\ Q,\ R,\ S$ with $10 \mathrm{k}\Omega$ pull-down resistors.

Connect an LED to pin D13 through a 220Ω resistor to ground.

Write Arduino code to read inputs and compute $f = !P \cdot R \cdot S + P \cdot Q \cdot R + !P \cdot R \cdot !S + !P \cdot Q \cdot R$.

Use digitalWrite(13, f) to control the LED based on the computed output.

Upload the code and test by pressing buttons to check when the LED turns ON for f = 1.