计算机组成原理

文杰

计算机科学与技术学院

wenjie@hit.edu.cn

个人主页: http://faculty.hitsz.edu.cn/wenjie

第二章 计算机的运算方法

- 计算机中数的表示
- 定点运算与浮点运算

定点运算与浮点运算

- •移位运算: 算数移位与逻辑移位
- 定点运算
 - 加减法运算
 - 一位乘法运算
 - booth算法
 - 除法运算
- 浮点运算

移位运算

• 移位的意义

15.m = 1500.cm 小数点右移 2 位

机器用语 15 相对于小数点 左移 2 位

(小数点不动)

左移 绝对值扩大

右移 绝对值缩小

• 在计算机中,移位与加减配合,能够实现乘除运算

算术移位规则

- 符号位不变
- 机器数的移位 与 真值移位 一致

真值	码制	添补代码
正数	原码、补码、反码	0
负数	原码	0
	补码	左移添0
		右移添1
	反 码	1

$$y = +1 \ y_1 y_2 ... y_n 100...00$$
 $y = -1 \ y_1 y_2 ... y_n 100...00$
 $[y]_{\bar{\mathbb{P}}} = 1,1 y_1 y_2 ... y_n 100...00$
 $[y]_{\bar{\mathbb{P}}} = 1,0 \overline{y_1} \overline{y_2} ... \overline{y_n} 011...11$

$$[y]_{\dot{\mathbb{P}}} = 1,0 \overline{y_1} \overline{y_2} ... \overline{y_n} 011...11$$
 $\pm \dot{\mathbb{C}} + 1$
 $= 1,0 \overline{y_1} \overline{y_2} ... \overline{y_n} 100...00$

•例17. 设机器数字长为 8 位(含1位符号位),写出 *A* = +26 时,三种机器数左、右移一位和两位后的表示形式及对应的真值,并分析结果的正确性。

解:
$$A = +26 = +11010$$
 则 $[A]_{\mathbb{F}} = [A]_{\mathbb{H}} = [A]_{\mathbb{D}} = 0,0011010$

移位操作	机器数 [A] _原 =[A] _补 =[A] _反	对应的真值
移位前	0,0011010	+26
左移一位	0,0110100	+52
左移两位	0,1101000	+104
右移一位	0,0001101	+13
右移两位	0,0000110	+6

→丢1 影响精度

•例18. 设机器数字长为 8 位(含1位符号位),写出 *A* = -26时,三种机器数左、右移一位和两位后的表示形式及对应的真值,并分析结果的正确性。

解:
$$A = -26 = -11010$$

原码

移位操作	机器数	对应的真值
移位前	1,0011010	-26
左移一位	1,011010 <mark>0</mark>	- 52
左移两位	1,1101000	- 104
右移一位	1,0001101	-13
右移两位	1,0000110	-6

→丢1 影响精度

补码

移位操作	机器数	对应的真值
移位前	1,1100110	-26
左移一位	1,100110 <mark>0</mark>	- 52
左移两位	1,0011000	- 104
右移一位	1,1110011	- 13
右移两位	1,1111001	-7

→丢1 影响精度

反码

移位操作	机器数	对应的真值
移位前	1,1100101	- 26
左移一位	1,100101 <mark>1</mark>	- 52
左移两位	1,0010111	- 104
右移一位	1, <mark>1</mark> 110010	-13
右移两位	1,1111001	-6

→ 丢 0 影响精度

3. 算术移位的硬件实现

算术移位和逻辑移位的区别

算术移位 有符号数的移位

逻辑移位 无符号数的移位

逻辑左移 低位添 0, 高位移丢

逻辑右移 高位添 0, 低位移丢

例如 01010011 10110010

逻辑左移 10100110 逻辑右移 01011001

算术左移 00100110 算术右移 11011001 (补码)

高位1移丢

定点运算与浮点运算

- •移位运算: 算数移位与逻辑移位
- 定点运算
 - 加减法运算
 - 一位乘法运算
 - booth算法
 - 除法运算
- 浮点运算

加减法运算

• 补码加减运算公式

(1) 加法

整数
$$[A]_{\stackrel{}{\uparrow}_{1}} + [B]_{\stackrel{}{\uparrow}_{1}} = [A+B]_{\stackrel{}{\uparrow}_{1}} \pmod{2^{n+1}}$$

小数 $[A]_{\stackrel{}{\uparrow}_{1}} + [B]_{\stackrel{}{\uparrow}_{1}} = [A+B]_{\stackrel{}{\uparrow}_{1}} \pmod{2}$

(2) 减法

$$A-B = A+(-B)$$

$$[x]_{\nmid h} = \begin{cases} 0, x & 2^n > x \ge 0 \\ 2^{n+1} + x & 0 > x \ge -2^n \pmod{2^{n+1}} \end{cases}$$

$$[x]_{n} = \begin{cases} x & 1 > x \ge 0 \\ 2 + x & 0 > x \ge -1 \pmod{2} \end{cases}$$

整数 $[A-B]_{\stackrel{?}{\nmid h}} = [A+(-B)]_{\stackrel{?}{\mid h}} = [A]_{\stackrel{?}{\mid h}} + [-B]_{\stackrel{?}{\mid h}} \pmod{2^{n+1}}$

小数 $[A-B]_{\stackrel{?}{\uparrow}}=[A+(-B)]_{\stackrel{?}{\uparrow}}=[A]_{\stackrel{?}{\uparrow}}+[-B]_{\stackrel{?}{\uparrow}}\pmod{2}$

连同符号位一起相加,符号位产生的进位自然丢掉

例:用补码运算求A+B

• 设A = 0.1011,B = -0.0101,用补码运算求A+B=?

解:
$$[A]_{\stackrel{}{\uparrow}} = 0.1011$$

$$+[B]_{\stackrel{}{\uparrow}} = 1.1011$$

$$[A]_{\stackrel{}{\uparrow}} + [B]_{\stackrel{}{\uparrow}} = 10.0110 = [A + B]_{\stackrel{}{\uparrow}}$$

$$\therefore A + B = 0.0110$$

验证 0.1011 - 0.0101 0.0110

$$+[B]_{\stackrel{?}{\not{\uparrow}}} = 1, 1011$$

$$[A]_{\stackrel{?}{\not{\uparrow}}} + [B]_{\stackrel{?}{\not{\uparrow}}} = 1, 0010 = [A + B]_{\stackrel{?}{\not{\uparrow}}}$$

$$\therefore A + B = -1110$$

已知 $[X]_{i}$,以下哪个方法可以求出 $[-X]_{i}$?

- A 包括符号为在内按位取反
- B 包括符号位在内,每位取反,末位加 1
- © 除符号位外,每位取反,末位加1
- P 符号为取反,其他保持不变

提交

关于 $[X]_{i}$ 和 $[-X]_{i}$,哪个表述正确?

- $-[X]_{\dot{\uparrow}\dot{\uparrow}} = +[-X]_{\dot{\uparrow}\dot{\uparrow}}$
- $[X]_{\dot{\uparrow}\dot{\uparrow}} = [-X]_{\dot{\uparrow}\dot{\uparrow}}$
- $[X]_{i}$ 和 $[-X]_{i}$ 没有任何关系

提交

*例:已知小数[y]_补,求[-y]_补

设 $[y]_{i} = y_0. y_1 y_2 ... y_n$, $y \neq -1.0$, 根据符号位 y_0 为0或1分开讨论

$$\begin{aligned}
|[y]_{\stackrel{?}{\Rightarrow}} &= \mathbf{0}. \ y_{1} y_{2} \dots y_{n} \\
|[y]_{\stackrel{\nearrow}{\Rightarrow}} &= \mathbf{0}. \ y_{1} y_{2} \dots y_{n} \\
|[y]_{\stackrel{\nearrow}{\Rightarrow}} &= \mathbf{0}. \ y_{1} y_{2} \dots y_{n} \\
-y &= -\mathbf{0}. \ y_{1} y_{2} \dots y_{n} \\
|[y]_{\stackrel{\nearrow}{\Rightarrow}} &= \mathbf{1} + (\mathbf{0}. \ \overline{y_{1}} \ \overline{y_{2}} \dots \overline{y_{n}} + 2^{-n}) \\
y &= -(\mathbf{0}. \ \overline{y_{1}} \ \overline{y_{2}} \dots \overline{y_{n}} + 2^{-n}) \\
|[-y]_{\stackrel{?}{\Rightarrow}} &= \mathbf{1}. \overline{y_{1}} \ \overline{y_{2}} \dots \overline{y_{n}} + 2^{-n}
\end{aligned}$$

- $[y]_{i}$ 连同符号位在内,每位取反,末位加 1,即得 $[-y]_{i}$
- 观察发现 $[-y]_{i}^{+} = 2 \longrightarrow 0 \pmod{2}$

$$-[y]_{\dot{\uparrow}\dot{\uparrow}} = +[-y]_{\dot{\uparrow}\dot{\uparrow}}$$

*例: 已知整数 $[X]_{i}$,求 $[-X]_{i}$

设 $[X]_{\stackrel{}{\mathbb{A}}}=X_n,X_{n-1}\cdots X_lX_0$,根据符号位 X_n 为0或1分开讨论

$$<||X||_{\mathring{\mathbb{N}}} = 0, X_{n-1}X_{n-2}...X_{1}X_{0}| <||X||_{\mathring{\mathbb{N}}} = 1, X_{n-1}X_{n-2}...X_{1}X_{0}| X_{\mathbb{S}} = 0, X_{n-1}X_{n-2}...X_{1}X_{0}| X_{\mathbb{S}} = 1, (\overline{X_{n-1}X_{n-2}}...\overline{X_{1}X_{0}} + 1) [-X]_{\mathbb{S}} = 1, X_{n-1}X_{n-2}...X_{1}X_{0}| [-X]_{\mathbb{S}} = 0, (\overline{X_{n-1}X_{n-2}}...\overline{X_{1}X_{0}} + 1) [-X]_{\mathring{\mathbb{N}}} = 1, (\overline{X_{n-1}X_{n-2}}...\overline{X_{1}X_{0}} + 1) [-X]_{\mathring{\mathbb{N}}} = 0, (\overline{X_{n-1}X_{n-2}}...\overline{X_{1}X_{0}} + 1)$$

 $[X]_{\text{in}}$ 连同符号位在内,每位取反,末位加 1,即得 $[-X]_{\text{in}}$

观察发现 $[-X]_{i}^{+} + [X]_{i}^{+} = 2^{n+1} \longrightarrow 0 \pmod{2^{n+1}} + [-X]_{i}^{+} = -[X]_{i}^{+}$

例:用补码运算求A-B

设机器数字长为 8 位(含 1 位符号位)且 A = 15,B = 24,用补码求 A - B。 $[A - B]_{\mathring{A}} = [A]_{\mathring{A}} + [-B]_{\mathring{A}}$

解:
$$A = 15 = 0001111$$

$$B = 24 = 0011000$$

$$[A]_{\stackrel{?}{\uparrow}} = 0,0001111$$

$$[B]_{\stackrel{?}{\uparrow}} = 0,0011000$$

$$+[-B]_{\stackrel{?}{\uparrow}} = 1,1101000$$

$$[A]_{\stackrel{?}{\uparrow}} + [-B]_{\stackrel{?}{\uparrow}} = 1,1110111 = [A - B]_{\stackrel{?}{\uparrow}}$$

$$\therefore A - B = -1001 = -9$$

设机器数字长为 8 位(含 1 位符号位)且 A = -97, B = 41, 用补码求 A - B(8位补码表示)。 **(97**= 01100001 41=00101001)

- A 11110110
- В 01110110
- 11001000
- D 其他

提交

例:用补码运算求A-B

•设机器数字长为 8 位(含 1 位符号位)且 A = -97,B = 41,用补码求 A - B。(97=01100001 41=00101001)

解:
$$A = -97 = -11000001$$
 $[A - B]_{?} = [A]_{?} + [-B]_{?}$ $[A]_{?} = 1,0011111$ $+[-B]_{?} = 1,1010111$ $[A]_{?} + [-B]_{?} = 10,1110110 = [A - B]_{?}$ $\therefore A - B = +118$ (溢出)

练习 1 设
$$x = \frac{9}{16}$$
 $y = \frac{11}{16}$,用补码求 $x+y$

作答

练习 1 设
$$x = \frac{9}{16}$$
 $y = \frac{11}{16}$,用补码求 $x+y$ 解: $x = 9/16 = 0.1001$ $y = 11/16 = 0.1011$ $[x]_{\uparrow h} = 0.1001$ $[y]_{\uparrow h} = 0.1011$ $+ [y]_{\uparrow h} = 0.1011$ $[x]_{\uparrow h} + [y]_{\uparrow h} = 1.0100 = [x+y]_{\uparrow h}$ $x+y=-0.1100=-\frac{12}{16}$ 样

一位符号位判溢出

- •一位符号位判溢出: A+B
 - 加法[A+B]_补: 若[A]_补和[B]_补和个数符号相同,而其结果的符号与[A]_补和[B]_补的符号不同,即为溢出
 - 减法[A-B]_补=[A+(-B)]_补: 若[A]_补和[-B]_补两个数符号相同,而其结果的符号与[A]_补和[-B]_补的符号不同,即为溢出
- 硬件实现
 - •最高有效位的进位⊕符号位的进位 = 1, 溢出

$$[A]_{\stackrel{}{\uparrow}} = 1,0011111$$

$$+[-B]_{\stackrel{}{\uparrow}} = 1,1010111$$

$$[A]_{\stackrel{}{\uparrow}} + [-B]_{\stackrel{}{\uparrow}} = 10,1110110 = [A - B]_{\stackrel{}{\uparrow}}$$

$$\therefore A - B = +118 \quad (溢出)$$

两位符号位判溢出

小数变形补码

$$[x]_{\nmid h'} = \begin{cases} x & 1 > x \ge 0 \\ 4 + x & 0 > x \ge -1 \pmod{4} \end{cases}$$

整数变形补码

$$[X]_{\nmid h'} = \begin{cases} X & 2^n > X \ge 0 \\ 2^{n+2} + X & 0 > x \ge -2^n \pmod{2^{n+2}} \end{cases}$$

最高符号位 代表其 真正的符号

$$[x]_{^{1}\!\!\!/} + [y]_{^{1}\!\!\!/} = [x+y]_{^{1}\!\!\!/} \pmod{4 \, \text{inj} \, \text{mod} \, 2^{n+2}}$$

$$[x-y]_{^{*}} = [x]_{^{*}} + [-y]_{^{*}}$$
 (mod 4 \mathfrak{M} mod 2^{n+2})

结果的双符号位 相同

$$00, \times \times \times \times \times \times 00. \times \times \times \times \times$$

$$00. \times \times \times \times \times$$

11,
$$\times \times \times \times \times$$

11.
$$\times \times \times \times \times$$

结果的双符号位 不同

10,
$$\times \times \times \times \times$$

10.
$$\times \times \times \times \times$$

$$01, \times \times \times \times \times$$

$$01. \times \times \times \times \times$$

结果的双符号位相同,未溢出

• 例. 设
$$A = -\frac{11}{16} = -0.1011$$
, $B = -\frac{3}{16} = -0.0011$, 求 $[A + B]_{\dot{\Lambda}}$, 解: $[A]_{\dot{\Lambda}}$, $= 11.0101$ $+[B]_{\dot{\Lambda}}$, $= 11.1101$ $[A]_{\dot{\Lambda}}$, $+[B]_{\dot{\Lambda}}$, $= 11.0010 = [A + B]_{\dot{\Lambda}}$, 丢掉 结果的双符号位相同,未溢出

• 例. 设
$$A = +\frac{11}{16} = 0.1011$$
, $B = +\frac{7}{16} = 0.0111$, 求 $[A+B]_{N}$, $B : [A]_{N} = 00.1011$ $A : [A]_{N} = 00.0111$ $A : [A]_{N} = 00.0111$ $A : [A]_{N} = 00.0111$ $A : [A]_{N} = 00.010$ $A : [A+B]_{N} = 00.010$ 结果的双符号位不同,溢出

• 例. 设
$$A = -\frac{11}{16} = -0.1011$$
, $B = -\frac{7}{16} = -0.0111$, 求 $[A + B]_{N}$, 解: $[A]_{N} = 11.0101$ $+[B]_{N} = 11.1001$ $[A]_{N} + [B]_{N} = 110.1110 = [A + B]_{N}$, 丢掉 结果的双符号位不同,溢出

定点运算与浮点运算

- 移位运算: 算数移位与逻辑移位
- 定点运算
 - 加减法运算
 - 一位乘法运算
 - booth 算法
 - 除法运算
- 浮点运算

乘法运算

• 分析笔算乘法

$$A \times B = -\frac{0.1101}{\times 0.1011}$$

$$\frac{\times 0.1011}{1101}$$

$$\frac{1101}{0.10001111}$$

$$A = -0.1101$$
 $B = 0.1011$

$$A \times B = -0.10001111$$
 乘积的符号心算求得

- ✓ 符号位单独处理
- ✓ 乘数的某一位决定是否加被乘数
- ? 4个位积一起相加
- ✓ 乘积的位数扩大一倍

笔算乘法的改进

(8)

$$A \cdot B = A \cdot 0.1011$$

$$= 0.1A + 0.00A + 0.001A + 0.0001A$$

$$= 0.1A + 0.00A + 0.001(1 \cdot A + 0.1A)$$

$$= 0.1A + 0.01[0 \cdot A + 0.1(1 \cdot A + 0.1A)]$$

$$= 0.1\{1 \cdot A + 0.1[0 \cdot A + 0.1(1 \cdot A + 0.1A)]\}$$

$$= 0.1\{1 \cdot A + 2^{-1}[0 \cdot A + 2^{-1}(1 \cdot A + 2^{-1}(1 \cdot A + 2^{-1}(1 \cdot A + 0))]\}$$
1 被乘数A + 0
2 右移一位,得新的部分积
3 部分积 + 被乘数*系数 (0/1)
...

右移一位,得结果

 $\begin{array}{r} 0.1101 \\ \times 0.1011 \\ \hline 1101 \\ 1101 \\ 0000 \\ \hline 1101 \\ \hline 0.10001111 \end{array}$

• 改进后的笔算乘法过程(竖式)

 $A \cdot 0.1011$ = $2^{-1} \{ 1 \cdot A + 2^{-1} [0 \cdot A + 2^{-1} (1 \cdot A + 2^{-1} (1 \cdot A + 0))] \}$

$$A = -0.1101$$

 $B = 0.1011$

 $\begin{array}{r} 0.1101 \\ \times 0.1011 \\ \hline 1101 \\ 1101 \\ 0000 \\ \hline 1101 \\ \hline 0.10001111 \end{array}$

部分积	乘数	说明
0.0000	1011	初态,部分积=0
+0.1101		乘数为1,加被乘数
0.1101		
0.0110	1 1 0 <u>1</u>	→1,形成新的部分积
+0.1101		乘数为1,加被乘数
1.0011	1	
0.1001	1110	→1,形成新的部分积
+ 0.0000		乘数为0,加0
0.1001	1 1	
0.0100	111 <u>1</u>	→1,形成新的部分积
+ 0.1101		乘数为1,加被乘数
1.0001	111	
0.1000	1111	→1 ,得结果

数值部分

30

小结

- 乘法运算可用 加和移位 实现
 - n = 4, 加 4 次, 移 4 次

$$A \cdot 0.1011$$
= $2^{-1} \{ 1 \cdot A + 2^{-1} [0 \cdot A + 2^{-1} (1 \cdot A + 2 + 2^{-1}$

 $\times 0.1011$

1101

0000

1101

0.10001111

1101

•由乘数的末位决定被乘数是否与原部分积相加,然后->1 位形成新的部分积,同时乘数->1位(末位移丢),空出 高位存放部分积的低位。

•被乘数只与部分积的高位相加

硬件: 3个寄存器,其中两个具有移位功能

1个全加器:被乘数和部分积的高位相加操作(n+1位)

原码乘法

• 原码一位乘运算规则

以小数为例 设
$$[x]_{\mathbb{R}} = x_0 \cdot x_1 x_2 \cdots x_n$$
 $[y]_{\mathbb{R}} = y_0 \cdot y_1 y_2 \cdots y_n$ $[x \cdot y]_{\mathbb{R}} = (x_0 \oplus y_0) \cdot (0 \cdot x_1 x_2 \cdots x_n) (0 \cdot y_1 y_2 \cdots y_n)$ $= (x_0 \oplus y_0) \cdot x^* y^*$ 式中 $x^* = 0 \cdot x_1 x_2 \cdots x_n$ 为 x 的绝对值 $y^* = 0 \cdot y_1 y_2 \cdots y_n$ 为 y 的绝对值

乘积的符号位单独处理 $x_0 \oplus y_0$ 数值部分为绝对值相乘 $x^* \cdot y^*$

小数原码一位乘递推公式

$$x^* \cdot y^* = x^* (0.y_1 y_2 \dots y_n)$$

$$= x^* (y_1 2^{-1} + y_2 2^{-2} + \dots + y_n 2^{-n})$$

$$= 2^{-1} (y_1 x^* + 2^{-1} y_2 x^* + \dots + 2^{-n+1} y_n x^*))$$

$$= 2^{-1} (y_1 x^* + 2^{-1} (y_2 x^* + \dots + 2^{-1} (y_n x^* + 0) \dots))$$

$$z_0$$

$$z_0 = 0$$

$$z_1 = 2^{-1} (y_n x^* + z_0)$$

$$z_2 = 2^{-1} (y_{n-1} x^* + z_1)$$

$$\vdots$$

$$z_n = 2^{-1} (y_1 x^* + z_{n-1})$$

整数原码一位乘递推公式

$$X^* \times Y^* = X^* (Y_{n-1} \dots Y_1 Y_0) = 2^{n-1} Y_{n-1} X^* + 2^{n-2} Y_{n-2} X^* + \dots + 2^1 Y_1 X^* + 2^0 Y_0 X^*$$

$$= 2^n (2^{-1} Y_{n-1} X^* + 2^{-2} Y_{n-2} X^* + \dots + 2^{-n+1} Y_1 X^* + 2^{-n} Y_0 X^*)$$

$$= 2^n (2^{-1} (Y_{n-1} X^* + 2^{-1} Y_{n-2} X^* + \dots + 2^{-n+2} Y_1 X^* + 2^{-n+1} Y_0 X^*))$$

$$= 2^n (2^{-1} (Y_{n-1} X^* + 2^{-1} (Y_{n-2} X^* + \dots + 2^{-n+3} Y_1 X^* + 2^{-n+2} Y_0 X^*)))$$

$$= 2^n (2^{-1} (Y_{n-1} X^* + 2^{-1} (Y_{n-2} X^* + \dots + 2^{-n+3} Y_1 X^* + 2^{-n+2} Y_0 X^*)))$$

$$= 2^n (2^{-1} (Y_{n-1} X^* + 2^{-1} (Y_{n-2} X^* + 2^{-1} (\dots + 2^{-1} (Y_1 X^* + 2^{-1} (Y_0 X^* + 0)))) \dots)$$

$$Z_0 = 0$$

$$Z_0 = 0$$

$$Z_1 = 2^{-1}(Y_0 X^* + Z_0)$$

$$Z_2 = 2^{-1}(Y_1 X^* + Z_1)$$

 $Z_n = 2^{-1}(Y_{n-1} X^* + Z_{n-1})$

• 例. 已知 x = -0.1110, y = 0.1101,求 $[x \times y]_{\mathbb{R}}$

乘数	说 明
1101	部分积 初态 $z_0 = 0$
_	+ x*
0 1 1 0	\longrightarrow 1,得 z_1
	+ 0
0	
1011	$\frac{-1}{+x^*}$,得 z_2
_	+ x* ²
10	
1 1 0 <u>1</u>	$\frac{\longrightarrow 1}{+x^*}$,得 z_3
	+ x*
110	
0110	→1,得 z ₄
	1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1

$$z_{0} = 0$$

$$z_{1} = 2^{-1}(y_{n}x^{*}+z_{0})$$

$$z_{2} = 2^{-1}(y_{n-1}x^{*}+z_{1})$$

$$\vdots$$

$$z_{n} = 2^{-1}(y_{1}x^{*}+z_{n-1})$$

• 例结果

- ① 乘积的符号位 $x_0 \oplus y_0 = 1 \oplus 0 = 1$
- ② 数值部分按绝对值相乘

$$x^* \cdot y^* = 0.10110110$$

则
$$[x \cdot y]_{\mathbb{R}} = 1.10110110$$

- •特点
 - 绝对值运算
 - 用移位的次数判断乘法是否结束
 - 逻辑移位

补码一位乘法运算规则(小数)

设被乘数 $[x]_{\stackrel{}{\mathbb{N}}} = x_0. x_1 x_2 ... x_n$, 乘数 $[y]_{\stackrel{}{\mathbb{N}}} = y_0. y_1 y_2 ... y_n$

- ●被乘数任意,乘数为正(类似原码乘) $y_0=0$, $[x \times y]_{\stackrel{}{N}} = [x]_{\stackrel{}{N}} \times y$ 但加和移位按补码规则运算,积的符号自然形成
- ●被乘数任意,乘数为负 $[x \times y]_{N}^{+} = [x]_{N}^{+} \times 0. y_{1} y_{2} \dots y_{n}^{+} [-x]_{N}^{+}$ 乘数 $[y]_{\lambda}$,<u>去掉符号位</u>,操作同上,最后 $m[-x]_{\lambda}$,<u>校正</u> $y = [y]_{\nmid k} - 2 = 1. y_1 y_2 \dots y_n - 2 = 0. y_1 y_2 \dots y_n - 1$ $x \times y = x \times 0. y_1 y_2 \dots y_n - x$ $[x \times y]_{\stackrel{*}{h}} = [x]_{\stackrel{*}{h}} (0.y_1...y_n) + [-x]_{\stackrel{*}{h}} y_0$ $[x \times y]_{\nmid h} = [x \times 0. y_1 y_2 \dots y_n - x]_{\nmid h}$ $= [x]_{\nmid k} \times 0. y_1 y_2 \dots y_n + [-x]_{\nmid k}$

补码一位乘法运算规则(整数)

设被乘数 $[X]_{\stackrel{1}{N}} = X_n \dots X_l X_0$,乘数 $[Y]_{\stackrel{1}{N}} = Y_n \dots Y_l Y_0$

- ●被乘数任意,乘数为正($[X \times Y]_{\stackrel{}{\scriptscriptstyle h}}=[X]_{\stackrel{}{\scriptscriptstyle h}}\times[Y]_{\stackrel{}{\scriptscriptstyle h}}$, $Y_n=0$)
 - ●类似原码乘,加和移位按**补码**规则,积的符号**自然形成**
- ●被乘数**任意**,乘数为负
 - ●乘数 $[Y]_{\lambda}$,<u>去掉符号位</u>,其他操作同上,最后 $\ln 2^n[-X]_{\lambda}$ (校正)

$$[X \times Y]_{\nmid h} = [X]_{\nmid h} \times [Y_{n-1} \dots Y_1 Y_0]_{\nmid h} + 2^n [-X]_{\nmid h}$$

定点运算与浮点运算

- 移位运算: 算数移位与逻辑移位
- 定点运算
 - 加减法运算
 - 一位乘法运算
 - booth算法
 - 除法运算
- 浮点运算

Booth 算法(被乘数、乘数符号任意)

设[x]
$$= x_0.x_1x_2 \cdots x_n$$
 [y] $= y_0.y_1y_2 \cdots y_n$

[x · y] $= [x]_{\dag h} (0.y_1 \cdots y_n) + [-x]_{\dag h} y_0$

$$= [x]_{\dag h} (0.y_1 \cdots y_n) - [x]_{\dag h} \cdot y_0$$

$$= [x]_{\dag h} (y_1 2^{-1} + y_2 2^{-2} + \cdots + y_n 2^{-n}) - [x]_{\dag h} \cdot y_0$$

$$= [x]_{\dag h} (-y_0 + y_1 2^{-1} + y_2 2^{-2} + \cdots + y_n 2^{-n})$$

$$= [x]_{\dag h} [-y_0 + (y_1 - y_1 2^{-1}) + (y_2 2^{-1} - y_2 2^{-2}) + \cdots + (y_n 2^{-(n-1)} - y_n 2^{-n})]$$

$$= [x]_{\dag h} [(y_1 - y_0) + (y_2 - y_1) 2^{-1} + \cdots + (y_n - y_{n-1}) 2^{-(n-1)} + (0 - y_n) 2^{-n})]$$

$$= [x]_{\dag h} [(y_1 - y_0) + (y_2 - y_1) 2^{-1} + \cdots + (y_{n+1} - y_n) 2^{-n}]$$

$$y'_1 2^{-1} + \cdots + y'_n 2^{-n}$$

Booth 算法递推公式

$$[x \cdot y]_{\stackrel{?}{\uparrow}} = [x]_{\stackrel{?}{\uparrow}}[(y_1 - y_0) + (y_2 - y_1)2^{-1} + \cdots + (y_{n+1} - y_n)2^{-n}]$$

$$[z_0]_{\stackrel{?}{\uparrow}} = 0$$

$$[z_1]_{\stackrel{?}{\uparrow}} = 2^{-1}\{(y_{n+1} - y_n)[x]_{\stackrel{?}{\uparrow}} + [z_0]_{\stackrel{?}{\uparrow}}\}$$

$$[z_2]_{\stackrel{?}{\uparrow}} = 2^{-1}\{(y_n - y_{n-1})[x]_{\stackrel{?}{\uparrow}} + [z_1]_{\stackrel{?}{\uparrow}}\}$$

$$\vdots$$

$$[z_n]_{\stackrel{?}{\uparrow}} = 2^{-1}\{(y_2 - y_1)[x]_{\stackrel{?}{\uparrow}} + [z_{n-1}]_{\stackrel{?}{\uparrow}}\}$$

 $[x \cdot y]_{*} = [z_n]_{*} + (y_1 - y_0)[x]_{*}$

最后一步不移位

$y_i y_{i+1}$	y_{i+1} - y_i	操作
0 0	0	→1
0 1	1	$+[x]_{\not \Rightarrow \downarrow} \rightarrow 1$
1 0	-1	$+[-x]_{\uparrow \downarrow} \rightarrow 1$
1 1	0	→ 1

• 例. 已知
$$x = +0.0011$$
, $y = -0.1011$, 求 $[x \times y]_{\stackrel{|y|_{\stackrel{}}}{N}}$ 解: 00.0000 1.0101 $[x]_{\stackrel{|y|_{\stackrel{}}}{N}}$ $[x]_{\stackrel{|y|_{\stackrel{}}}{N}} = 0.0011$ $[y]_{\stackrel{\stackrel{}}{N}} = 1.0101$

		<u> </u>	Г	1	1 010	
			Ļ	$y_{ }$	1.010	1
1 101 <u>0</u>	1	→1	[$x]_{n} =$	1.110	1
		$+[x]_{*}$		V: V:+1	V: ⊥ 1−V:	_
1				0 0	0	\vdash
11 101	0	→1		0 1	1	+
		+[-x] _补		1 0	-1	+
1 1				1 1	0	
111 1 <u>0</u>	1	→1				
		$+[x]_{\dagger h}$	•	$[x \times]$	y]补	
111				=1 11	0111	11
1111 <u>1</u>	0	→1				
		+[- <i>x</i>] _₹				
1111		最后一步	不移	位		
	1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{vmatrix} y _{\uparrow h} = 1.010 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1$

$y_i y_{i+1}$	$y_{i+1} - y_i$	操作
0 0	0	→1
0 1	1	$+[x]_{i}\rightarrow 1$
1 0	-1	$+[-x]_{i}$
1 1	0	→1

$$\therefore [x \times y]_{\not=\downarrow}$$
=1.11011111

• 例. 已知
$$[x]_{\uparrow h} = 1.0101$$
, $[y]_{\uparrow h} = 1.0011$, 求 $[x \times y]_{\uparrow h}$

$$[-x]_{*} = 0.1011$$

$y_i y_{i+1}$	$y_{i+1}-y_i$	操作
0 0	0	→1
0 1	1	$+[x]_{i}\rightarrow 1$
1 0	-1	$+[-x]_{\uparrow \downarrow} \rightarrow 1$
1 1	0	→1

$$\therefore [x \times y]_{\nmid h}$$

$$= 0.10001111$$

乘法小结

- 整数乘法与小数乘法基本相同
 - 可用 逗号 代替小数点

• 原码乘: 符号位 单独处理

补码乘: 符号位 自然形成

- 原码乘去掉符号位运算, 即为无符号数乘法
- 不同的乘法运算需有不同的硬件支持

乘法器硬件示意图

- •被乘数寄存器128位
 - •被乘数64位,要左移一位64次。

改良版乘法器硬件

- A. 积寄存器129位(初值为: 65个0 和 64位的乘数)
 - 最高位用于保存加法器的进位
- B. 若乘数最右端为1
 - •取积寄存器[127:64]
 - •取出的值加上被乘数;
 - •和写入积寄存器[128:64]
- C. 积寄存器整体右移一位
- *B和C循环64次
- *结果为积寄存器[127:0]
- *快速乘法: 黑书3.3.3

黑书图3-5

1101

1101

 $\times 1011$

定点运算与浮点运算

- 移位运算: 算数移位与逻辑移位
- 定点运算
 - 加减法运算
 - 一位乘法运算
 - booth 算法
 - 除法运算
- 浮点运算

除法运算

• 分析笔算除法

$$x = -0.1011$$
 $y = 0.1101$ $\Re x \div y$

$$\begin{array}{c} 0.1101 \\ \hline 0.1101 \\ \hline 0.10110 \\ \hline 0.01101 \\ \hline 0.010010 \\ \hline 0.001101 \\ \hline 0.0001101 \\ \hline 0.00001111 \\ \hline \end{array}$$

- ✓商符单独处理
- ?心算上商
- ?余数不动低位补"0" 减右移一位的除数
- ?上商位置不固定

 $x \div y = -0.1101$ 商符心算求得 余数 0.00001111

笔算除法和机器除法的比较

$x = -0.1011 \quad y = 0.1101$ $0.1101 \quad 0.1101$ $0.1101 \quad 0.10110$ 0.01101 0.001101 0.0001101 0.00001101 0.00001101

笔算除法

商符单独处理 心算上商

余数 不动 低位补 "0" 减右移一位 的除数

2 倍字长加法器上商位置 不固定

机器除法

符号位异或形成

$$|x|-|y| \geq 0$$
上商 1

$$|x| - |y| < 0$$
上商 0

余数左移一位低位补"0"减除数

1 倍字长加法器 在寄存器 最末位上商

原码除法

• 以小数为例

$$[x]_{\bar{g}} = x_0. x_1 x_2 ... x_n$$

$$[y]_{\bar{g}} = y_0. y_1 y_2 ... y_n$$

$$[\frac{x}{y}]_{\bar{g}} = (x_0 \oplus y_0). \frac{x^*}{y^*}$$
式中 $x^* = 0. x_1 x_2 ... x_n$ 为 x 的绝对值 $y^* = 0. y_1 y_2 ... y_n$ 为 y 的绝对值

商的符号位单独处理 $x_0 \oplus y_0$ 数值部分为绝对值相除 $\frac{x^*}{y^*}$

约定 小数定点除法 $x^* < y^*$ 整数定点除法 $x^* > y^*$ 被除数不等于 0 除数不能为 0

恢复余数法

• 例.
$$x = -0.1011$$
, $y = -0.1101$, 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$

假设机器数是5 位,符号位1位

$$[x]_{\text{ff}} = 1.1011 \quad [y]_{\text{ff}} = 1.1101 \quad [y^*]_{\text{h}} = 0.1101 \quad [-y^*]_{\text{h}} = 1.0011$$

(1)
$$x_0 \oplus y_0 = 1 \oplus 1 = 0$$

上商前,比较被除数和除数:

$$[x^*-y^*]_{\stackrel{.}{N}}=[x^*]_{\stackrel{.}{N}}+[-y^*]_{\stackrel{.}{N}}$$

2	被除数(余数)	商	说明
	0.1011	0.0000	
	+ 1.0011		+[- <i>y</i> *] _*
	1.1110	0	余数为负,上商0
	+ 0.1101		恢复余数 +[y*] _补
\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	0.1011	0	恢复后的余数
逻辑左移	1.0110	0	← 1
	+ 1.0011		+[火*] _补
\m_&	0.1001	0 1	余数为正,上商1
逻辑左移	1.0010	0 1	←1
	+ 1.0011		+[- <i>y</i> *] _*

上商前,比较被除数和除数:

$$[x^*-y^*]_{\nmid h} = [x^*]_{\nmid h} + [-y^*]_{\nmid h}$$

被除数(余数)	商	说明
0.0101	0 1 1	余数为正,上商1
逻辑左移 0.1010	011	←1
+ 1.0011		+[- <i>y</i> *] _补
1.1101	0110	余数为负,上商 0
+ 0.1101		恢复余数 +[y*] _补
0.1010	0110	恢复后的余数
逻辑左移 1.0100	0 1 1 0	←1
+ 1.0011		+[- <i>y</i> *] _*
0.0111	01101	余数为正,上商1

$$\frac{x^*}{y^*} = 0.1101$$

$$\therefore \left[\frac{x}{y}\right]_{\mathbb{R}} = 0.1101$$

余数为正 上商1

余数为负 上商 0,恢复余数

上商5次

第一次上商判溢出

移 4 次

不恢复余数法(加减交替法)

• 恢复余数法运算规则

被除数 (余数)	商	说明
0.1011	0.0000	
+ 1.0011		+[- <i>y</i> *] _补
1.1110	0	余数为负,上商 0
+0.1101		恢复余数 +[y*] _补
[0.1011]	0	恢复后的余数
1.0110	0	←1
+ 1.0011		+[_v*] ₂₆
0.1001	0 1	余数为正,上商1
1.0010	0 1	←1
+ 1.0011		+[- <i>y</i> *] _补

- ① 余数 $R_i > 0$ 上商 "1", $2R_i y^*$
- ②余数 $R_i < 0$ 上商 "0", $R_i + y$ * 恢复余数

$$2(R_i + y^*) - y^* = 2R_i + y^*$$

• 不恢复余数法运算规则

加减交替

- ① 余数 $R_i > 0$: 上商"1", $2R_i y^*$
- ② 余数 $R_i < 0$: 上商"0", $2R_i + y^*$

• 例. x = -0.1011, y = -0.1101, 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$

レゴ・	<i>A</i> 0.	y	0.11019
解:	0.1011	0.0000	
	+1.0011		+[- <i>y</i> *] _*
逻辑	1.1110	0	余数为负,上商0
左移	-1.1100	0	←1
	+0.1101		+[y*] _补
逻辑	0.1001	0 1	余数为正,上商1
左移	1.0010	0 1	←1
	+1.0011		+[- <i>y</i> *] _补
逻辑	0.0101	011	余数为正,上商1
左移	0.1010	011	←1
	+1.0011		+[- <i>y</i> *] _*
逻辑	1.1101	0110	余数为负,上商 0
左移	1.1010	0110	←1
	+0.1101		+[y*] _补
	0.0111	01101	余数为正,上商1
		•	

$$[x]_{\text{ff}} = 1.1011$$

$$[y]_{\mathbb{R}} = 1.1101$$

$$[x^*]_{\begin{subarray}{l} \begin{subarray}{l} \begin{subarray}{$$

$$[y^*]_{n} = 0.1101$$

$$[-y^*]_{*} = 1.0011$$

• 不恢复余数法运算规则

- ① 余数 R_i>0 上商"1"
- $2R_i y^*$
- ② 余数 R_i<0 上商 "0"
- $2R_i + y^*$

• 例. 结果

②
$$\frac{x^*}{y^*} = 0.1101$$

$$\therefore \ \left[\frac{x}{y}\right]_{\mathbb{R}} = 0.1101$$

特点 上商 n+1 次

第一次上商判溢出

移n次,加n+1次

用移位的次数判断除法是否结束

• 例. $x = -0.1011$, $y = -0.1101$, 求[$\frac{x}{y}$] 原					
解: 0.1011	0.0000		$[x]_{\bar{\mathbb{R}}} = 1.1011$		
逻辑 +1.0011 1.1110	0	+[-y*] _补 余数为负,上商 0	$[y]_{\bar{\mathbb{R}}} = 1.1101$		
上左移 十0.1100 十0.1101	0	← 1 +[y*] _ネ }	$[x^*]_{ih} = 0.1011$		
逻辑 0.1001	0 1	余数为正,上商1	$[y^*]_{ij} = 0.1101$		
+1.0011	0 1	← 1 +[- y*] _补	$[-y^*]_{ih} = 1.0011$		
逻辑 0.0101 左移 0.1010	011 011	余数为正,上商1 ← 1	• 不恢复余数法运算规则		
+1.0011		+[- <i>y</i> *] _补	① 余数 R _i >0 上商 "1" ② 余数 R _i <0 上商 "0"	$2R_i - y^*$ $2R_i + y^*$	
逻辑 1.1101 左移 1.1010	$\begin{array}{c} 0110 \\ 0110 \end{array}$	余数为负,上商 0 ← 1	2 3.55 - 4 1 2 2 3		
$\frac{+0.1101}{0.0111}$	01101	+[y*] _*			
0.0111	01101	余数为正,上商1		47	

定点运算与浮点运算

- 移位运算: 算数移位与逻辑移位
- 定点运算
 - 加减法运算
 - 一位乘法运算
 - booth 算法
 - 除法运算
- 浮点运算

浮点四则运算

•一、浮点加减运算

$$x = S_x \cdot 2^{j_x} \qquad y = S_y \cdot 2^{j_y}$$

- 1. 对阶
 - (1) 求阶差

(1) 永所差
$$\Delta j = j_x - j_y = \begin{cases} = 0 & j_x = j_y & \text{已对齐} \\ > 0 & j_x > j_y \begin{cases} x \cap y \text{ 看齐} & S_x \leftarrow 1, j_x - 1 \\ y \cap x \text{ 看齐} & \checkmark S_y \rightarrow 1, j_y + 1 \end{cases} \\ < 0 & j_x < j_y \begin{cases} x \cap y \text{ 看齐} & \checkmark S_x \rightarrow 1, j_x + 1 \\ y \cap x \text{ 看齐} & S_y \leftarrow 1, j_y - 1 \end{cases}$$

(2) 对阶原则

小阶向大阶看齐

• 例: $x = 0.1101 \times 2^{01}$, $y = (-0.1010) \times 2^{11}$, 求[x + y] 素

解: $[x]_{34} = 00,01;00.1101$ $[y]_{34} = 00,11;11.0110$

1. 对阶

① 求阶差
$$[\Delta j]_{\stackrel{?}{\uparrow}} = [j_x]_{\stackrel{?}{\uparrow}} - [j_y]_{\stackrel{?}{\uparrow}} = 00,01$$

$$+ 11,01$$

$$\hline
11,10$$

阶差为负 (-2) $\therefore S_v \rightarrow 2$ $j_v + 2$

$$\therefore S_x \longrightarrow 2 \qquad j_x + 2$$

② 对阶
$$[x]_{*k'} = 00, 11; 00.0011$$

2. 尾数求和

3. 规格化

• (1) 规格化数的定义

$$r=2 \qquad \frac{1}{2} \leq |S| < 1$$

• (2) 规格化数的判断

原码 不论正数、负数,第一数位为1

补码 符号位和第一数位不同

特例

$$S = -\frac{1}{2} = -0.100 \cdots 0$$

$$[S]_{\mathbb{R}} = 1.100 \cdots 0$$

$$[S]_{\nmid \mid} = \boxed{1.1} \ 0 \ 0 \cdots \ 0$$

 $\therefore \left[-\frac{1}{2}\right]_{i}$ 不是规格化的数

$$S = -1$$

$$[S]_{\nmid h} = \boxed{1.0000} \cdots 0$$

∴ [-1] → 是规格化的数

• (3)左规

尾数左移一位,阶码减1,直到数符和第一数位不同为止

上例
$$[x+y]_{\stackrel{?}{\Rightarrow}} = 00, 11; 11.1001$$

左规后 $[x+y]_{\stackrel{?}{\Rightarrow}} = 00, 10; 11.0010$
 $\therefore x+y=(-0.1110)\times 2^{10}$

• (4)右规

当尾数溢出(>1)时,需右规

即尾数出现 01.×× ···×或 10.×× ···×时

尾数右移一位,阶码加1

•例. $x = 0.1101 \times 2^{10}$, $y = 0.1011 \times 2^{01}$, 求 x + y (除阶符、数符外,阶码取 3 位,尾数取 6 位)

解: $[x]_{\stackrel{>}{\uparrow}} = 00, 010; 00. 110100$ $[y]_{\stackrel{>}{\uparrow}} = 00, 001; 00. 101100$

① 对阶

$$[\Delta j]_{\stackrel{?}{\uparrow}} = [j_x]_{\stackrel{?}{\uparrow}} - [j_y]_{\stackrel{?}{\uparrow}} = 00,010 \\ + 11,111 \\ \hline 100,001$$

阶差为 +1 $\therefore S_v \rightarrow 1, j_v + 1$

 $\therefore [y]_{*k'} = 00, 010; 00.010110$

② 尾数求和

$$[S_x]_{\stackrel{}{ ext{λ}}} = 00. \ 110100$$
 $+ [S_y]_{\stackrel{}{ ext{λ}}} = 00. \ 010110$ 对阶后的 $[S_y]_{\stackrel{}{ ext{$\lambda$}}}$ 尾数溢出需右规

③ 右规

$$[x+y]_{\nmid k} = 00, 010; 01.001010$$

右规后

$$[x+y]_{3} = 00, 011; 00. 100101$$

$$\therefore x+y=0.100101\times 2^{11}$$

$$[x-y]_{**} = 11,100; 10.110001$$

右规后得 $[x-y]_{**} = 11,101; 11.011000$ [1]

采用"0 舍 1 人"法,其尾数右规时末位丢 1,则有 11.011000 + 1

• 4. 舍入

- 在 对阶 和 右规 过程中,可能出现尾数末位丢失引起误差,需考虑舍入
 - (1)0 **含** 1 入法: 类似于四舍五入,尾数右移时,被移去的最高数值位为0,则舍去;被移去的最高数值位为1,则在尾数的末位加1。
 - (2)恒置 "1" 法: 尾数右移时,不论丢掉的最高数值位是1或0,都使右移后的尾数末位横置1

•例.
$$x = (-\frac{5}{8}) \times 2^{-5}$$
, $y = (\frac{7}{8}) \times 2^{-4}$, 求 $x - y$ (除阶符、数符外, 阶码取 3 位,尾数取 6 位)

解:
$$x = (-0.101000) \times 2^{-101}$$
 $y = (0.111000) \times 2^{-100}$ $[x]_{3/2} = 11,011;11.011000$ $[y]_{3/2} = 11,100;00.111000$

① 对阶

$$[\Delta j]_{\uparrow h} = [j_x]_{\uparrow h} - [j_y]_{\uparrow h} = 11,011 + 00,100 11,111$$

阶差为
$$-1$$
 : $S_x \longrightarrow 1$, j_x+1

$$\therefore$$
 [x]_{*|·} = 11, 100; 11. 101100

② 尾数求和

$$[S_x]_{\begin{subarray}{l} | S_x| \\ + [-S_y]_{\begin{subarray}{l} | A \end{subarray}} = 11. \ 101100$$

$$= 110. \ 110100$$

③ 右规

$$[x-y]_{3} = 11, 100; 10.110100$$

右规后

$$[x-y]_{3} = 11, 101; 11.011010$$

$$\therefore x - y = (-0.100110) \times 2^{-11}$$
$$= (-\frac{19}{32}) \times 2^{-3}$$

$$x = S \cdot 2^{j}$$

溢出判断

• 设机器数为补码,尾数为 规格化形式,并假设阶符取 2 位,阶码的数值部分取 7 位,数符取 2 位,尾数取 n 位,则该 补码在数轴上的表示为

关于计算机的运算方法,哪部分有疑问?

- A 定点加减运算
- B 原码一位乘法
- **Booth**乘法
- □ 定点除法
- F 浮点运算
- F 其他可发弹幕

提交