

The continuous deformation of a body over time is called a motion. The motion of a body with ref. configuration B is described by a continuous map $\varphi\colon B\times [0,\infty)\to E^3$ where for each fixed $t\geq 0$ the function $\varphi(\cdot,t)=\varphi_b\colon B\to E^3$ is deformation of B, that maps B outo a configuration $B_t=\varphi_t(B)$, called the current or deformed configuration at time t. We assume that φ_0 is the identity map, so that $\varphi_0=B$. We assume each φ_t is admissible so that the inverse map $\psi_t=\varphi_t^{-1}\colon B_t\to B$ exists.

$$X = \overline{\Lambda}^{f}(\overline{x}) = \overline{\Lambda}(\overline{x}^{f})$$

We assume if and of are smooth.

Material and spatial fields

Some fields are naturally defined over the current configuration B_t , for example temperature $T(\mathbf{z}_i t)$. Other fields are naturally defined over the reference configuration B, for example grain size $d(\mathbf{x})$.

However, φ and φ allow up to represent any function of $\underline{X} \in B$ or of $\underline{\cong} \in B_t$. To keep track of where a field was originally defined and how it is currently being expressed we introduce following definitions.

Haterial field is a field expressed in terms of points $X \in B$, e.g., $\Omega = \Omega(X,t)$ Spatial field is a field expressed in terms of points $\mathbf{z} \in B_t$, e.g., $\Gamma = \Gamma(\mathbf{z},t)$ To any material field $\Omega(X,t)$ we associate a spahial field $\Omega_s(x,t) = \Omega(Y(x,t),t),$

and call Ω_s the spatial description of Ω .

To any spatial field $\Gamma(\underline{x},t)$ we associate a material field $\Gamma(\underline{X},t) = \Gamma(\Psi(\underline{X},t),t)$,

and call I'm the material description of I'.

Coordinate derivatives

We need to distinguish between derivatives with respect to material and spatial coordinates. Material coordinates: $\nabla_X = Grad$, Div, Curl, Lap Spatial coordinates: $\nabla_X = grad$, div, curl, lap

Velocity and acceleration fields

The <u>velocity</u> and <u>acceleration</u> of a material particle labeled X in B at time t due to motion $\mathcal{L}(X,t)$

are given by

$$\overline{\Lambda}(\overline{X}'F) = \frac{9F}{9} d(\overline{X}'F) = \frac{9F}{9\pi} |^{\overline{X}} \text{ and } \overline{\Psi}(\overline{X}'F) = \frac{9F}{3} d(\overline{X}'F) = \frac{9F}{3\pi} |^{\overline{X}}$$

The spatial descriptions of these two fields are

$$\underline{\mathcal{I}}(\overline{x}'f) = \overline{\Lambda}^2(\overline{x}'f) = \frac{2^p}{3^p} \hat{\Lambda}(\bar{\Lambda}(\overline{x}'f)'f)$$

$$\underline{a}(\mathbf{z},t) = \underline{A}_s(\mathbf{z},t) = \frac{\mathbf{z}^2}{\mathbf{z}t^2} \varphi(\mathbf{z},t),t$$

The spatial fields would a correspond to the material particle whose current coordinates are wat time t.

Note: Below we show that a ≠ == V

Example: Steady convection

At steady state T(x,t) = T(x) (spatial field)

Consider a particle P with initial location X and current position $x = \mathcal{L}(X,t)$, which passes through y once every overturn.

Its temperature is $T(\varphi(x,t)) = T_m(x,t)$ is a material field and oscillates periodically. Its derivative the "material derivative" is $T_m(x,t) \neq 0$

Consider the particles passing through y with initial locations $Y = \Psi(y,t)$. What is the change in temperature these particles experience as they pass through y? $T_m(\Psi(y,t)) = [T_m]_s$

		Description of field		
derivative	material/total	material	spatial	
		$\dot{\nabla}(\bar{X}'F) = \frac{9F}{2D} \Big ^{\bar{X}}$	$\frac{1}{2}(\overline{A}(\overline{x}';f)) = \frac{3F}{3L} + \overline{A} \cdot \triangle L$	
Time	spatial/local	$\frac{3F}{3L}(\overline{A}(\overline{X}'F)'f)$	2 5년 = 을 나(주'주) 조 교	

Different time derivatives

I) Material time derivative of material field Ω Derivative of Ω with respect to t, holding X fixed.

$$\dot{\nabla}(\bar{X}'f) = \frac{\mathcal{D} f}{\mathcal{D} \mathcal{D}}(\bar{X}'f) = \frac{9f}{9\mathcal{D}} \Big| \bar{X}$$

Also called total, substantial or convective derivative. is represents the rate of change of seen by an observer following the path line of a particle.

II) Spatial time derivative of a spatial field $\Gamma(\underline{x},t)$ Derivative of Γ with respect to t, holding \underline{x} fixed. $\frac{\partial \Gamma}{\partial t}(\underline{x},t)|_{\underline{x}} = \frac{\partial \Gamma}{\partial t}(\underline{x},t)$

Also referred to as the <u>local</u> time derivative $\frac{\partial \Gamma}{\partial t}$ represents the rate of change in Γ as seen by an <u>observer</u> at \underline{z} .

II, Material time derivative of a spatial field Derivative of scalar spatial field Γ with respect to time t, holding X fixed. The material coordinates X are fixed while the spatial coordinates change with time x = f(X,t).

$$\frac{\prod_{x'\in X} (x't)}{\prod_{x'\in X} (x't)} = \frac{2f}{2} \left(\frac{(\lambda(x't))f}{(\lambda(x't))f} \right) = \frac{2f}{2} \left(\frac{(\lambda(x't))f}{(\lambda(x't))f} \right)$$

⇒ two time dependencies, one explicit the other implicit through the motion.

By the chain rule we have for fixed X

$$\frac{\partial \Gamma}{\partial t} \left(\underline{q}(\underline{X},t),t \right) = \frac{\partial \Gamma}{\partial t} (\underline{x},t) \Big|_{\underline{x}=\underline{q}(\underline{X},t)} + \frac{\partial \Gamma}{\partial \underline{x}} (\underline{x},t) \Big|_{\underline{x}=\underline{q}(\underline{X},t)} + \frac{\partial \Gamma}{\partial t} (\underline{x},t) \Big|_{\underline{x}=\underline{q}(\underline{X},t)} \Big|_{\underline{x$$

Expressing the result in terms of spatial coords $\Gamma(\underline{x},t) = \frac{\partial \Gamma}{\partial t}(\underline{x},t) + \frac{\partial \Gamma}{\partial z_i}(\underline{x},t)v_i(\underline{x},t)$

Let $\varphi(x,t)$ be a motion with spatial velocity field \underline{v} and consider spatial scalar $\phi = \phi(x,t)$ and vector fields $\underline{w} = \underline{\omega}(x,t)$. Then total time derivatives are given by

$$\dot{\phi} = \frac{9f}{9\phi} + \Delta_{\kappa}\phi \cdot \bar{\lambda} \quad \text{and} \quad \dot{\bar{m}} = \frac{9f}{9\bar{n}} + (\Delta_{\kappa}\bar{n})\bar{\lambda}$$

The result for is follows by applying the scalar result to w:.

This result is important because it allows the computation of \$\display\$ and \$\display\$ with out knowledge of \$\varphi\$, if the velocity is known \$\varphi\$ in fluid mechanics you never see \$\varphi\$

The spatial acceleration field is defined as $\underline{a} = \underline{\dot{y}} = \frac{\partial \underline{v}}{\partial t} + (\nabla^{\underline{v}}\underline{y})\underline{y}$

Spatial acceleration is a non-linear function of spatial velocity \Rightarrow basic non-linearity in fluid mechanics

Note: $a \neq \frac{\partial v}{\partial t}$! (only true for mat. fields $A = \frac{\partial v}{\partial t}$)

Finally, many texts, in particular in fluid mechanics, use the notation $v \cdot \nabla^2 \omega$ instead of $(\nabla^2 \omega) v$.

Example: Exponential expansion

$$\psi(\underline{x},t) = e^{\lambda t} \underline{x}$$

$$\psi(\underline{x},t) = e^{\lambda t} \underline{x}$$

Haterial fields:
$$V(X,t) = \frac{1}{2} P(X,t) = -\lambda e^{-\lambda t} X$$

$$A(X,t) = \frac{1}{2} V(X,t) = \lambda^2 e^{-\lambda t} X$$

Spatial fields:

$$\underline{v}(\underline{z},t) = V_{s}(\underline{z},t) = V(\underline{\psi}(\underline{z},t),t)$$

$$= -\lambda e^{-\lambda t} (e^{\lambda t}\underline{z}) = -\lambda \underline{z}$$

$$\underline{a}(\underline{z},t) = A(\underline{\psi}(\underline{z},t),t) = \lambda^{2}e^{-\lambda t}(e^{\lambda t}\underline{z}) = \lambda^{2}\underline{z}$$

Temperature field: Tm(x,t) = & t || x ||

Material time derivative:

$$T_m = \frac{3}{3\epsilon} T_m = \alpha \| \underline{X} \|$$
(calculated directly from mat. field)

Spatial Temperature field:

T(x,t) = Tm(y(x,t),t) = at ||e^{2t} = at ||e^{2t}| =

Suppose we only know spatial fields T(x,t) and z(x,t). What is the material derivative T(x,t)?

Use
$$T = \frac{\partial f}{\partial t} + \sqrt{2}T \cdot r$$

Tot = allelle to + a lellelle to

$$\nabla T = \alpha t e^{\lambda t} \nabla_{x} (x \cdot x)^{\frac{1}{2}} = \alpha t e^{\lambda t} \frac{1}{2} (x \cdot x)^{\frac{1}{2}} \nabla_{x} (x \cdot x)$$

in components: $(x_i \times_i)_{,j} = (x_i^2)_{,j} = 2x_i \times_{i,j} = 2x_i \cdot S_{ij} = 2x_j$ $\Rightarrow \nabla_{\infty} (\underline{x} \cdot \underline{x}) = 2\underline{x}$

putting it all together:

$$\dot{T} = \underbrace{\alpha \| \underline{x} \| e^{\lambda t} + \alpha \lambda t \| \underline{x} \| e^{\lambda t}}_{\mathbf{z}} + \underbrace{\alpha t e^{\lambda t} \underline{x}}_{\mathbf{z}} \cdot (-\lambda \underline{x})$$

1125 (

 $\dot{T}(\underline{x},t) = \alpha ||\underline{x}|| e^{\lambda t}$ spatial description of mat. der. $\dot{T}_{m}(\underline{X}) = \alpha ||\underline{X}|| \quad \Rightarrow \quad \dot{T}_{m}(\underline{\psi}(\underline{x},t)) = \alpha ||\underline{x}|| e^{\lambda t} = \dot{T}(\underline{x},t)$ $\underline{X} = \psi(X,t) = e^{\lambda t}\underline{x}$