

ENGG1000

Electrical Stream 2018
Lecture Week 4 – Simple Sensor Circuits

Never Stand Still

Faculty of Engineering

School of Electrical Engineering and Telecommunications

Advice from Students from Previous Years

- Start early and test as much as possible. When you find a flaw, fix it to the maximum extent possible. None of this "It probably won't be a problem.." stuff.
- The internet is a great source of info
- Learnt that organisation is very necessary in all activities
- It is always better to begin early rather than regret later
- Learnt to rely on and trust my team members
- Do not expect your design to work every time
- Use components that will actually work properly with each other
- Building this was fun :P
- Working as a team is vital
- COMMUNICATION......something there wasn't enough of
- an initial plan would have been helpful
- Testing is paramount to success.....test that ***** as many times as you can!
- construction should start asap to allow sufficient testing
- be prepared to modify ur design during the construction stage, you are bound to run into small complications that you didn't foresee
- everyone needs to get involved, many hands make light work
- keep everything as simple as possible
- if things can go wrong, they usually happen at the worst time

Fundamental Laws - KVL

- Conservation of energy
- The sum of voltages around any closed loop in a circuit must be zero

$$V_1 + V_2 + V_3 + \dots = 0$$

Fundamental Laws - KCL

- Conservation of Electrical charge
- The net current flowing into any junction is always equal to the net current flowing out

Voltage, Current and Resistance

 The simplest is for current and voltage to be linearly related

Ohm's Law

 Current I is the flow of positive charge through the circuit in Amps (A)

Practical Resistors

 Standard 0.25W wire-wound

Surface mount

Variable resistors

Practical Resistors

- Measured in Ohms (Ω)
- Huge range of values
- Actual values vary

Power Dissipation

Power dissipated in a resistor is

$$P = VI = I^2 R = \frac{V^2}{R}$$

- Regular lab resistors: 0.25W
- Exceed this and they will burn!

Resistive Circuits

 Resistors connected in series increase the total equivalent resistance

$$R = R_1 + R_2 + ... + R_N$$

Resistive Circuits

 Resistors connected in parallel decrease the total equivalent resistance

$$R = R_1 // R_2 // ... // R_N = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + ... + \frac{1}{R_N}}$$

A Problem

What is the resistance between A and B?

The Voltage Divider

• Assume there is no $R_L (R_L = \infty)$

$$V = IR_2$$
 and $I = \frac{V_{in}}{R_1 + R_2}$

SO

$$V = \frac{R_2}{R_1 + R_2} V_{in}$$

The Voltage Divider

- Can use this circuit to step down voltages by a constant factor $\frac{R_2}{R_1 + R_2}$
- Take care: in practice $R_L \neq \infty$ $V = \frac{R_2 // R_L}{R_1 + R_2 // R_L} V_{in}$
 - Small $R_l \Rightarrow$ affects the voltage division
 - Large $R_L \Rightarrow$ most power dissipated in divider
- Voltage divider good as reference voltage

Voltage Sources

- Real voltage sources have internal resistance
- When a load is connected, the supplied voltage is really

$$V_O = \frac{R_L}{R_S + R_L} V_S$$

- The ideal is $R_L >> R_S$
- Important to realise this when you drive one circuit by another – may not always be possible!

Voltage Sources

- Practical Solutions for Buffers:
 - Zener Diodes
 - Transistors
 - Operational Amplifiers
- Aim of a 'Buffer':
 - From the view of the Load, make the source impedance → 0
 - Source provides same voltage, regardless of how much current is drawn
 - From the view of the Source, make the load impedance very large

Current Sources

- By analogy, can also construct current sources
 - Will use transistors and op-amps (later)
- An ideal current source can supply the same current, regardless of the load that is attached

 Non-ideal current source offers some level of shunt(parallel) resistance

 $i_s(t)$

Bridge Circuits

Useful for sensing applications:

$$Vout = \frac{V12}{2} * \left(\frac{R-Rx}{R+Rx} \right)$$

$$\frac{\text{Change in Vout}}{\text{Change in Rx}} = V12* \left[\frac{-R}{(R+Rx)^2} \right]$$

$$Rx = (R + \Delta R)$$
 $R >> \Delta R$.

Vout
$$\sim -\frac{V12}{4}*\left(\frac{\Delta R}{R}\right)$$

Example: Thermistor

- Effectively a temperature dependent resistor
- Most common are Negative Temperature Gradient (NTC) thermistors

$$T = \frac{1}{(A_0 + A_1(\ln R_T) + A_3(\ln R_T^3))}$$

$$\ln R_T = \frac{B_0 + B_1/T + B_3/T_3}{\ln R_T}$$

Constants available from Datasheets

Thermistor Circuits

- Some examples: aim to use either a fixed voltage reference or current reference:
 - To produce a voltage or current that can be sampled by ADC or a comparator

Diodes

- $V_D < V_{on}$
 - Diode is reverse-biased
 - i.e. "off" or acts as an open circuit
- $V_D > V_{on}$
 - Diode is forward-biased
 - i.e. "on" or acts as a short circuit
- Summary: a diode conducts current in one direction
 - Good for protecting sensitive components
- Caveat: $V_{on} \approx 0.6$ to 0.7V

How?

Forward biased

conductor

N: has 'spare' electrons

P: has 'missing' electrons

Conventional current flow

Holes P N Depletion region

Reverse biased

- insulator

Diode properties can be *electrically* controlled

source: Scherz, 2000

Analysis of Diode Circuits

- Split into two cases:
- $V_{in} < V_{on}$
 - No current flows through diode $\Rightarrow V = 0$
- $V_{in} > V_{on}$
 - Diode has voltage $V_D = V_{on}$, so $V = V_{in} V_{on}$

Real Diodes

- True I-V relationship:
- The forward current does
 Increase slightly as the
 voltage increases

- There is a reverse leakage current
 - Due to the thermal creation of electron-hole pairs
- As previously stated, it can break down if the reverse voltage is very large
 - A normal diode will not recover

Light Emitting Diodes (LEDs)

- Forward bias
- Light emitted when electrons combine with holes, and fall into a lower energy level

Light Emitting Diodes (LEDs)

Same operation as a diode V_{on} may be 1.5V to 3.6V Needs current to be supplied within a given range

LEDs as Test Equipment

You may not always have access to the electronics labs test equipment

You may want a visual check of several points in your circuit

LEDs can be handy for checking if a voltage is roughly what you expect

Photodiodes

Convert light into current

An absorbed photon can create an electron-

hole pair

Energy band diagram

Reverse-bias a p-n junction

 Expose this to light via a transparent enclosure - lens

Photodiodes

- The increase in reverse current is proportional to the incident light intensity
- However the current is very small for small light intensities
 - pin diode intrinsic region between the p and n regions
 - Phototransistors with internal gain
- Very rapid response (order of nanoseconds)
 - Used in high speed apps. (optical fibres)

Photodiodes

The performance and sensitivity depends on the material

- Silicon peak 850nm, sensitive 400-1000nm
- Ge peak 1500nm, sensitive 300-2000nm
- Metal-semiconductors diode (variable): eg Gold-Silicon range 300-700nm
- pin diodes often hetro-structures like InGaAs/InGaAsP
- Research and read the datasheets!

What are my Component's Specifications?

- Everything has a data sheet
 - Link on Moodle Electrical Stream -> Electrical Component Datasheets
 - Search Internet for other components' data sheets

• e.g. to find V_{on} and max operating current for an LED:

T-1 3/4 (5 mm) Oval Precision
Optical Performance LED Lamps
Technical Data

Sun Power Series
HLMP-AIXX HLMP-BIXX
HLMP-BIXX HLMP-BIXX
HLMP-BIXX HLMP-BIXX
HLMP-BIXX HLMP-BIXX
HLMP-BIXX HLMP-BIXX
HLMP-AIXX HLMP-BIXX
HLMP-AIXX
HLM

Electrical/Optical Characteristics at $T_A = 25$ °C

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Typical Viewing Angle Major Minor	$2\theta_{1/2}$		70 35		°C	
Forward Voltage			_			
Amber ($\lambda_d = 590 \text{ nm}$)	V_F		2.02	2.4	V	$I_F = 20 \text{ mA}$
Amber ($\lambda_d = 592 \text{ nm}$)			2.15	2.4		
$Red (\lambda_d = 626 nm)$			1.90	2.4		
$Red (\lambda_d = 630 nm)$			2.00	2.4		
Blue ($\lambda_d = 472 \text{ nm}$)			3.5	4.0		
Green ($\lambda_d = 526 \text{ nm}$)			3.5	4.0		

Absolute Maximum Ratings at 25°C

		Amber and Red	Blue and Green	
DC Forwa	ard Current	50 mA	30 mA	

School additional densits.

Diode – Clipper Circuit

Limits the maximum/minimum values of a signal

Figure (d): Double diode clipper

Source: http://www.daenotes.com/electronics/devices-circuits/clipper-clamper

Half-Wave Rectifier

• Circuit has sensing & AC-DC conversion applications...

Full-Wave Rectifier

Another application of the Bridge circuit:

Recap - Diodes

- Talked about LEDs and Photo-diodes
- Good application is in detecting a black-line on a surface
- Simple LED circuit emits light signal
 - Perhaps IR less prone to external interference
 - Light areas reflect more light, black line reflects less
- Simple photodiode/phototransistor to detect reflected light intensity
 - Matched to LED
 - Comparator & logic to interpret
 - Perhaps multiple sensors in different areas differential?

Announcements

- Labs Open
 - Every Monday 2-6pm and Thursday 2-6pm
 - EE labs EEG14 and EE214
- Lab Exercises
 - Lab 1 this week introduction
 - Labs 2, 3 & 4 available next week
 - Any one of them for 10%
 - Attend as convenient
- Lab Equipment
 - Breadboard would be ideal

