

The INFDEV Team @ HR

The logical model of computation

The INFDEV Team @ HR

Hogeschool Rotterdam Rotterdam, Netherlands

The INFDEV Team @ HR

Introduction

Introduction

The logical model of computation

The INFDEV Team @ HR

Course topics

- This course is about basic programming concepts (DEV I)
- We will discuss computational concepts
- Computational thinking
- Describing computations clearly

Introduction

The logical model of computation

The INFDEV Team @ HR

Course topics

- How does a programming language work?
- Memory, variables, conditionals, if-statements, and loops
- These are already enough to implement anything (of course not handily!)

Introduction

The logical model of computation

The INFDEV Team @ HR

At the end of the course you will be able to...

- ...describe algorithms clearly
- ...write basic programs in Python
- ...describe the semantics of a basic Python program

The INFDEV Team @ HR

A programming language

The logical model of computation

The INFDEV Team @ HR

What is programming not about?

- computers
- programming languages
- technology
- programs
- websites
- smartphones
- ...

The logical model of computation

The INFDEV Team @ HR

What is programming about?

- the encoding of logical thought
- non-ambiguity: there is only one possible mode of execution
- precision: there is no appeal to vagueness or intuition

The logical model of computation

The INFDEV Team @ HR

What is programming about?

- especially if a machine will eventually run our program
- machines are dumb as **ck^a

^arock

The logical model of computation

The INFDEV Team @ HR

A programming language specifies

- what instructions we have
- what do they perform
- in what order

The INFDEV Team @ HR

Let's start programming

The logical model of computation

The INFDEV Team @ HR

The stdNt programming language

- In stdNt we let students perform some actions
- It does not require a machine, but only a white-board and alive (and complying students)

The INFDEV Team @ HR

Following instructions¹

take 3 steps forward
sit on the chair
turn left
slide 3 steps forward

¹The teacher should ask for a volunteer ←□→←♂→←≧→←≧→ ⋅ ≧ → ⋅ ◇ ⋅ ◇

The logical model of computation

The INFDEV Team @ HR

The features of stdNt so far

- Instructions, in English
- Order of execution is left-to-right, top-to-bottom
- State made up of a living, breathing student

The logical model of

The INFDEV Team @ HR

Following instructions with state (we need a "volunteer")

Α	В	С
your age	2	-3

take A/4 steps forward sit on the chair turn left by 90 * B degrees slide C steps forward

The logical model of computation

The INFDEV Team @ HR

The features of stdNt so far

- Instructions, in English
- Order of execution is left-to-right, top-to-bottom
- **State** made up of a living, breathing student plus a bunch of cards with data written on them

The INFDEV Team @ HR

What if the state makes no sense? (we need a "volunteer")

A	В	
your age	''nice day today''	-3

take A/4 steps forward sit on the chair turn left by 90 * B degrees slide C steps forward

1 2 3

The logical model of computation

The INFDEV Team @ HR

State comes with big preconditions

- It only contains information that is:
 - used in a way that makes sense with respect to the instructions
 - logically expressed (numbers, strings, etc. rather than emotions or riddles)
 - actually accessible (there is some connection from the executor to the accessed data)

The INFDEV Team @ HR

The state may change (we need a "volunteer")

В	C	
-1	today's weather	

make a comment on C
write on C the index of the current day of the week
sit on the chair

turn left by 90 * B degrees slide C steps forward

The logical model of computation

The INFDEV Team @ HR

The features of stdNt so far

- Instructions, in English
- Order of execution is left-to-right, top-to-bottom
- Mutable state made up of a living, breathing student plus a bunch of cards with data written on them

The INFDEV Team @ HR

We can make decisions²

Α	В	С	D
shirt colour	-1	2	3

```
sit on the chair
if A is ''black'' then
turn left by 90 * B degrees
otherwise
turn left by 90 * C degrees
clap D times
```


The logical model of computation

The INFDEV Team @ HR

The features of stdNt so far

- Instructions, in English
- Order of execution is left-to-right, top-to-bottom
- Mutable state made up of a living, breathing student plus a bunch of cards with data written on them
- Decisions based on elements of the state

The INFDEV Team @ HR

We can repeat behavior³

1	while there are green soldiers	alivel	fight(a,d):
2	AND	2	if a = BAZOOKA AND d = GRENADIER then
3	there are brown soldiers	alive3	both die
4	TEAM 1:	4	else if a = BAZOOKA then
5	a = pick green soldier	5	d dies
6	d = pick brown soldier	6	else if d = GRENADIER then
7	fight(a,d)	7	a dies
8	TEAM 2:	8	else if brown team still has leader
9	a = pick green soldier	9	a dies
10	d = pick brown soldier	10	else
11	fight(a,d)	11	d dies

³The teacher should ask for two teams of volunteers ← ≥ → ← ≥ → √ へ ←

The logical model of computation

The INFDEV Team @ HR

The features of stdNt so far

- Instructions, in English
- Order of execution is left-to-right, top-to-bottom
- Mutable state made up of a living, breathing student plus a bunch of cards with data written on them
- Decisions based on elements of the state
- Repetition of code based on elements of the state

The logical model of computation

The INFDEV Team @ HR

Assignment 1 in groups of four

- Reprogram the game
- Make it so that the positioning of defending soldiers makes a difference (positive or negative)
- One group will be "randomly selected" to present

The logical model of computation

The INFDEV Team @ HR

Assignment 2 in groups of four

- Think about the actions needed for a game concept (at most 10).
- Write them down and put them in the box.
- Pick a sheet at random (if it is the one you wrote pick again).
- Write the implementation of a game using the actions you have.
- A group will be chosen to play the game.

This is it!

The logical model of computation

The INFDEV Team @ HR

The best of luck, and thanks for the attention!