Robust Mechanism Design with Support Information

Jerry Anunrojwong

Santiago R. Balseiro Omar Besbes

Columbia Business School

May 15, 2023

Problem Motivation

Mechanism Design: How To Optimally Sell Things

- Suppose you have an item and *n* potential buyers but you don't know their willingness-to-pay. What do you do?
- Many possible mechanisms: posted price, second-price auction, etc.
- Mechanism design: design the rules of the game (mechanism) to optimize an objective (e.g. maximize revenue) while taking into account incentives

Mechanism Design: How To Optimally Sell Things

- Suppose you have an item and *n* potential buyers but you don't know their willingness-to-pay. What do you do?
- Many possible mechanisms: posted price, second-price auction, etc.
- Mechanism design: design the rules of the game (mechanism) to optimize an objective (e.g. maximize revenue) while taking into account incentives

Mechanism Design: How To Optimally Sell Things

- Suppose you have an item and *n* potential buyers but you don't know their willingness-to-pay. What do you do?
- Many possible mechanisms: posted price, second-price auction, etc.
- Mechanism design: design the rules of the game (mechanism) to optimize an objective (e.g. maximize revenue) while taking into account incentives

- Why robust mechanism design?
 - Classical theory assumes the seller *knows the environment perfectly*.
 - Elegant theory, but strong assumptions on knowledge
- Why partial information?
 - Robust mechanism design protects against the worst-case.
 - But the *really* worst case is often too extreme.
 - The resulting mechanism is detail-free but sometimes too conservative.
- We may know something!
 - Here, we know the **scale**: lower & upper bounds [a, b]
 - \bullet e.g. cost-per-click in search ads \sim \$2 4.

How does the mechanism change depending on information?
What features of the robust mechanism are important?
What is the value of support ("scale") information?

- Why robust mechanism design?
 - Classical theory assumes the seller *knows the environment perfectly*.
 - Elegant theory, but strong assumptions on knowledge
- Why partial information?
 - Robust mechanism design protects against the worst-case.
 - But the really worst case is often too extreme.
 - The resulting mechanism is detail-free but sometimes too conservative.
- We may know something!
 - Here, we know the **scale**: lower & upper bounds [a, b]
 - e.g. cost-per-click in search ads \sim \$2 4.

How does the mechanism change depending on information? What features of the robust mechanism are important? What is the value of support ("scale") information?

- Why robust mechanism design?
 - Classical theory assumes the seller *knows the environment perfectly*.
 - Elegant theory, but strong assumptions on knowledge
- Why partial information?
 - Robust mechanism design protects against the worst-case.
 - But the *really* worst case is often too extreme.
 - The resulting mechanism is detail-free but sometimes too conservative.
- We may know something!
 - Here, we know the **scale**: lower & upper bounds [a, b]
 - \bullet e.g. cost-per-click in search ads \sim \$2 4.

How does the mechanism change depending on information? What features of the robust mechanism are important? What is the value of support ("scale") information?

- Why robust mechanism design?
 - Classical theory assumes the seller *knows the environment perfectly*.
 - Elegant theory, but strong assumptions on knowledge
- Why partial information?
 - Robust mechanism design protects against the worst-case.
 - But the *really* worst case is often too extreme.
 - The resulting mechanism is detail-free but sometimes too conservative.
- We may know something!
 - Here, we know the **scale**: lower & upper bounds [a, b]
 - \bullet e.g. cost-per-click in search ads \sim \$2 4.

How does the mechanism change depending on information?

What features of the robust mechanism are important? What is the value of support ("scale") information?

- Why robust mechanism design?
 - Classical theory assumes the seller *knows the environment perfectly*.
 - Elegant theory, but strong assumptions on knowledge
- Why partial information?
 - Robust mechanism design protects against the worst-case.
 - But the *really* worst case is often too extreme.
 - The resulting mechanism is detail-free but sometimes too conservative.
- We may know something!
 - Here, we know the **scale**: lower & upper bounds [a, b]
 - e.g. cost-per-click in search ads \sim \$2 4.

How does the mechanism change depending on information? What features of the robust mechanism are important?

What is the value of support ("scale") information?

- Why robust mechanism design?
 - Classical theory assumes the seller *knows the environment perfectly*.
 - Elegant theory, but strong assumptions on knowledge
- Why partial information?
 - Robust mechanism design protects against the worst-case.
 - But the *really* worst case is often too extreme.
 - The resulting mechanism is detail-free but sometimes too conservative.
- We may know something!
 - Here, we know the **scale**: lower & upper bounds [a, b]
 - \bullet e.g. cost-per-click in search ads \sim \$2 4.

How does the mechanism change depending on information? What features of the robust mechanism are important? What is the value of support ("scale") information?

Problem Formulation

- Selling one indivisible good to *n* buyers.
- Optimize over mechanisms $(x, p) \in \mathcal{M}$.
- each bidder *i* submits her bid $v_i \in [a, b] \Rightarrow \mathbf{v} \in [a, b]^n$
- each bidder i is allocated with prob $x_i(\mathbf{v})$, pays $p_i(\mathbf{v})$
- subject to dominant strategy incentive compatibility and individual rationality constraints
 - IC: each person prefers to report her true value
 - IR: each person prefers to participate rather than the outside option
 - dominant strategy = IC & IR hold for every valuation (does NOT require: bidders are Bayesian or know about other bidders)
- We will mostly focus on \mathcal{M}_{all} , all DSIC mechanisms. (Later will look at other mechanism classes too.)

- Selling one indivisible good to *n* buyers.
- Optimize over mechanisms $(x, p) \in \mathcal{M}$.
- each bidder i submits her bid $v_i \in [a, b] \Rightarrow \mathbf{v} \in [a, b]^n$
- each bidder i is allocated with prob $x_i(\mathbf{v})$, pays $p_i(\mathbf{v})$
- subject to dominant strategy incentive compatibility and individual rationality constraints
 - IC: each person prefers to report her true value
 - IR: each person prefers to participate rather than the outside option
 - dominant strategy = IC & IR hold for every valuation (does NOT require: bidders are Bayesian or know about other bidders)
- We will mostly focus on \mathcal{M}_{all} , all DSIC mechanisms. (Later will look at other mechanism classes too.)

- Selling one indivisible good to *n* buyers.
- Optimize over mechanisms $(x, p) \in \mathcal{M}$.
- each bidder i submits her bid $v_i \in [a, b] \Rightarrow \mathbf{v} \in [a, b]^n$
- each bidder i is allocated with prob $x_i(\mathbf{v})$, pays $p_i(\mathbf{v})$
- subject to dominant strategy incentive compatibility and individual rationality constraints
 - IC: each person prefers to report her true value
 - IR: each person prefers to participate rather than the outside option
 - dominant strategy = IC & IR hold for every valuation (does NOT require: bidders are Bayesian or know about other bidders)
- We will mostly focus on \mathcal{M}_{all} , all DSIC mechanisms. (Later will look at other mechanism classes too.)

- Selling one indivisible good to *n* buyers.
- Optimize over mechanisms $(x, p) \in \mathcal{M}$.
- each bidder *i* submits her bid $v_i \in [a, b] \Rightarrow \mathbf{v} \in [a, b]^n$
- each bidder i is allocated with prob $x_i(\mathbf{v})$, pays $p_i(\mathbf{v})$
- subject to dominant strategy incentive compatibility and individual rationality constraints
 - IC: each person prefers to report her true value
 - IR: each person prefers to participate rather than the outside option
 - dominant strategy = IC & IR hold for every valuation (does NOT require: bidders are Bayesian or know about other bidders)
- We will mostly focus on \mathcal{M}_{all} , all DSIC mechanisms. (Later will look at other mechanism classes too.)

- Selling one indivisible good to *n* buyers.
- Optimize over mechanisms $(x, p) \in \mathcal{M}$.
- each bidder *i* submits her bid $v_i \in [a, b] \Rightarrow \mathbf{v} \in [a, b]^n$
- each bidder i is allocated with prob $x_i(\mathbf{v})$, pays $p_i(\mathbf{v})$
- subject to dominant strategy incentive compatibility and individual rationality constraints
 - IC: each person prefers to report her true value
 - IR: each person prefers to participate rather than the outside option
 - dominant strategy = IC & IR hold for every valuation (does NOT require: bidders are Bayesian or know about other bidders)
- We will mostly focus on \mathcal{M}_{all} , all DSIC mechanisms. (Later will look at other mechanism classes too.)

- Selling one indivisible good to *n* buyers.
- Optimize over mechanisms $(x, p) \in \mathcal{M}$.
- each bidder *i* submits her bid $v_i \in [a, b] \Rightarrow \mathbf{v} \in [a, b]^n$
- each bidder i is allocated with prob $x_i(\mathbf{v})$, pays $p_i(\mathbf{v})$
- subject to dominant strategy incentive compatibility and individual rationality constraints
 - IC: each person prefers to report her true value
 - IR: each person prefers to participate rather than the outside option
 - dominant strategy = IC & IR hold for every valuation (does NOT require: bidders are Bayesian or know about other bidders)
- We will mostly focus on \mathcal{M}_{all} , all DSIC mechanisms. (Later will look at other mechanism classes too.)

- Selling one indivisible good to *n* buyers.
- Optimize over mechanisms $(x, p) \in \mathcal{M}$.
- each bidder *i* submits her bid $v_i \in [a, b] \Rightarrow \mathbf{v} \in [a, b]^n$
- each bidder i is allocated with prob $x_i(\mathbf{v})$, pays $p_i(\mathbf{v})$
- subject to dominant strategy incentive compatibility and individual rationality constraints
 - IC: each person prefers to report her true value
 - IR: each person prefers to participate rather than the outside option
 - dominant strategy = IC & IR hold for every valuation (does NOT require: bidders are Bayesian or know about other bidders)
- We will mostly focus on \mathcal{M}_{all} , all DSIC mechanisms. (Later will look at other mechanism classes too.)

- We want the mechanism to perform well against *any* distribution \mathbf{F} in a given class \mathcal{F} : objective is worst-case over all $\mathbf{F} \in \mathcal{F}$.
- We know the **lower bound** *a* and **upper bound** *b* of the support.
- We consider different distribution classes but "positively dependent" distribution classes turn out to be equally powerful as n i.i.d. bidders; will focus on \mathcal{F}_{iid} .

```
a/b low = less information a/b high = more information a = 0: minimal information
```

- We want the mechanism to perform well against *any* distribution \mathbf{F} in a given class \mathcal{F} : objective is worst-case over all $\mathbf{F} \in \mathcal{F}$.
- We know the **lower bound** a and **upper bound** b of the support.
- We consider different distribution classes but "positively dependent" distribution classes turn out to be equally powerful as n i.i.d. bidders; will focus on \mathcal{F}_{iid} .

```
a/b low = less information a/b high = more information a = 0: minimal information
```

- We want the mechanism to perform well against *any* distribution \mathbf{F} in a given class \mathcal{F} : objective is worst-case over all $\mathbf{F} \in \mathcal{F}$.
- We know the **lower bound** a and **upper bound** b of the support.
- We consider different distribution classes but "positively dependent" distribution classes turn out to be equally powerful as n i.i.d. bidders; will focus on \mathcal{F}_{iid} .

```
a/b low = less information a/b high = more information a = 0: minimal information
```

- We want the mechanism to perform well against *any* distribution \mathbf{F} in a given class \mathcal{F} : objective is worst-case over all $\mathbf{F} \in \mathcal{F}$.
- We know the **lower bound** a and **upper bound** b of the support.
- We consider different distribution classes but "positively dependent" distribution classes turn out to be equally powerful as n i.i.d. bidders; will focus on \mathcal{F}_{iid} .

```
a/b low = less information a/b high = more information a = 0: minimal information
```

Problem Formulation: Objective

Compare revenue $\mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\sum_{i=1}^{n} p_i(\mathbf{v}) \right]$ to benchmark $\mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\max(\mathbf{v}) \right]$.

absolute gap = Regret
$$(m, \mathbf{F}) = \mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\max(\mathbf{v}) \right] - \mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\sum_{i=1}^{n} p_i(\mathbf{v}) \right]$$
relative gap = Ratio $(m, \mathbf{F}) = \frac{\mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\sum_{i=1}^{n} p_i(\mathbf{v}) \right]}{\mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\max(\mathbf{v}) \right]}$

$$\begin{aligned} & \mathsf{MinimaxRegret}(\mathcal{M}, \mathcal{F}) := \inf_{m \in \mathcal{M}} \sup_{\mathbf{F} \in \mathcal{F}} \mathsf{Regret}(m, \mathbf{F}) \\ & \mathsf{MaximinRatio}(\mathcal{M}, \mathcal{F}) := \sup_{m \in \mathcal{M}} \inf_{\mathbf{F} \in \mathcal{F}} \mathsf{Ratio}(m, \mathbf{F}) \end{aligned}$$

Problem Formulation: Objective

Compare revenue $\mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\sum_{i=1}^{n} p_i(\mathbf{v}) \right]$ to benchmark $\mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\max(\mathbf{v}) \right]$.

absolute gap = Regret
$$(m, \mathbf{F}) = \mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\max(\mathbf{v}) \right] - \mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\sum_{i=1}^{n} p_i(\mathbf{v}) \right]$$
relative gap = Ratio $(m, \mathbf{F}) = \frac{\mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\sum_{i=1}^{n} p_i(\mathbf{v}) \right]}{\mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\max(\mathbf{v}) \right]}$

$$\begin{aligned} & \mathsf{MinimaxRegret}(\mathcal{M}, \mathcal{F}) := \inf_{m \in \mathcal{M}} \sup_{\mathbf{F} \in \mathcal{F}} \mathsf{Regret}(m, \mathbf{F}) \\ & \mathsf{MaximinRatio}(\mathcal{M}, \mathcal{F}) := \sup_{m \in \mathcal{M}} \inf_{\mathbf{F} \in \mathcal{F}} \mathsf{Ratio}(m, \mathbf{F}) \end{aligned}$$

Problem Formulation: Objective

Compare revenue $\mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\sum_{i=1}^{n} p_i(\mathbf{v}) \right]$ to benchmark $\mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\max(\mathbf{v}) \right]$.

absolute gap = Regret
$$(m, \mathbf{F}) = \mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\max(\mathbf{v}) \right] - \mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\sum_{i=1}^{n} p_i(\mathbf{v}) \right]$$

relative gap = Ratio $(m, \mathbf{F}) = \frac{\mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\sum_{i=1}^{n} p_i(\mathbf{v}) \right]}{\mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\max(\mathbf{v}) \right]}$

$$\begin{aligned} & \mathsf{MinimaxRegret}(\mathcal{M}, \mathcal{F}) := \inf_{m \in \mathcal{M}} \sup_{\boldsymbol{F} \in \mathcal{F}} \mathsf{Regret}(m, \boldsymbol{F}) \\ & \mathsf{MaximinRatio}(\mathcal{M}, \mathcal{F}) := \sup_{m \in \mathcal{M}} \inf_{\boldsymbol{F} \in \mathcal{F}} \mathsf{Ratio}(m, \boldsymbol{F}) \end{aligned}$$

Problem	Scale Info	Regret	Ratio
pricing $(n=1)$	any level	Bergemann-Schlag'08	Eren-Maglaras'10
auctions (any n)	no info	Our previous work	
auctions (any n)	any level	This work	This work

- Minimax regret on general distributions with bounded support:
 - Caldentey et al. (2017) 1 buyer (pricing), multiple time periods
 - Kocyigit et al. (2021) *n* correlated buyers (reduce to 1 buyer)
- Classical mechanism design, pioneered by Myerson (1981)
- One or two i.i.d. bidders with benchmark:
 - Dhangwatnotai et al. (2015), Fu et al. (2015), Allouah and Besbes (2020), Hartline and Johnsen (2021)
- Maximizing worst-case revenue:
 - Bandi and Bertsimas (2014), Bachrach and Talgam-Cohen (2022)
- Approximation ratio results for many buyers:
 - Hartline and Roughgarden (2009), Talgam-Cohen (2021)

Problem	Scale Info	Regret	Ratio
pricing $(n=1)$	any level	Bergemann-Schlag'08	Eren-Maglaras'10
/			_
auctions (any <i>n</i>)	no info	Our previous work	0

- Minimax regret on general distributions with bounded support:
 - Caldentey et al. (2017) 1 buyer (pricing), multiple time periods
 - Kocyigit et al. (2021) *n* correlated buyers (reduce to 1 buyer)
- Classical mechanism design, pioneered by Myerson (1981)
- One or two i.i.d. bidders with benchmark:
 - Dhangwatnotai et al. (2015), Fu et al. (2015), Allouah and Besbes (2020), Hartline and Johnsen (2021)
- Maximizing worst-case revenue:
 - Bandi and Bertsimas (2014), Bachrach and Talgam-Cohen (2022)
- Approximation ratio results for many buyers:
 - Hartline and Roughgarden (2009), Talgam-Cohen (2021)

Problem	Scale Info	Regret	Ratio
pricing $(n=1)$	any level	Bergemann-Schlag'08	Eren-Maglaras'10
auctions (any <i>n</i>)	no info	Our previous work	0
auctions (any n)	any level	This work	This work

- Minimax regret on general distributions with bounded support:
 - Caldentey et al. (2017) 1 buyer (pricing), multiple time periods
 - Kocyigit et al. (2021) *n* correlated buyers (reduce to 1 buyer)
- Classical mechanism design, pioneered by Myerson (1981)
- One or two i.i.d. bidders with benchmark:
 - Dhangwatnotai et al. (2015), Fu et al. (2015), Allouah and Besbes (2020), Hartline and Johnsen (2021)
- Maximizing worst-case revenue:
 - Bandi and Bertsimas (2014), Bachrach and Talgam-Cohen (2022)
- Approximation ratio results for many buyers:
 - Hartline and Roughgarden (2009), Talgam-Cohen (2021)

Problem	Scale Info	Regret	Ratio
pricing $(n=1)$	any level	Bergemann-Schlag'08	Eren-Maglaras'10
auctions (any n)	no info	Our previous work	0
auctions (any n)	any level	This work	This work

- Minimax regret on general distributions with bounded support:
 - Caldentey et al. (2017) 1 buyer (pricing), multiple time periods
 - Kocyigit et al. (2021) n correlated buyers (reduce to 1 buyer)
- Classical mechanism design, pioneered by Myerson (1981)
- One or two i.i.d. bidders with benchmark:
 - Dhangwatnotai et al. (2015), Fu et al. (2015), Allouah and Besbes (2020), Hartline and Johnsen (2021)
- Maximizing worst-case revenue:
 - Bandi and Bertsimas (2014), Bachrach and Talgam-Cohen (2022)
- Approximation ratio results for many buyers:
 - Hartline and Roughgarden (2009), Talgam-Cohen (2021)

Problem	Scale Info	Regret	Ratio
pricing $(n=1)$	any level	Bergemann-Schlag'08	Eren-Maglaras'10
auctions (any <i>n</i>)	no info	Our previous work	0
auctions (any n)	any level	This work	This work

- Minimax regret on general distributions with bounded support:
 - Caldentey et al. (2017) 1 buyer (pricing), multiple time periods
 - Kocyigit et al. (2021) *n* correlated buyers (reduce to 1 buyer)
- Classical mechanism design, pioneered by Myerson (1981)
- - Dhangwatnotai et al. (2015), Fu et al. (2015), Allouah and Besbes
- Maximizing worst-case revenue:
 - Bandi and Bertsimas (2014), Bachrach and Talgam-Cohen (2022)
- Approximation ratio results for many buyers:
 - Hartline and Roughgarden (2009), Talgam-Cohen (2021)

Problem	Scale Info	Regret	Ratio
pricing $(n=1)$	any level	Bergemann-Schlag'08	Eren-Maglaras'10
auctions (any <i>n</i>)	no info	Our previous work	0
auctions (any n)	any level	This work	This work

- Minimax regret on general distributions with bounded support:
 - Caldentey et al. (2017) 1 buyer (pricing), multiple time periods
 - Kocyigit et al. (2021) n correlated buyers (reduce to 1 buyer)
- Classical mechanism design, pioneered by Myerson (1981)
- One or two i.i.d. bidders with benchmark:
 - Dhangwatnotai et al. (2015), Fu et al. (2015), Allouah and Besbes (2020), Hartline and Johnsen (2021)
- Maximizing worst-case revenue:
 - Bandi and Bertsimas (2014), Bachrach and Talgam-Cohen (2022)
- Approximation ratio results for many buyers:
 - Hartline and Roughgarden (2009), Talgam-Cohen (2021)

Problem	Scale Info	Regret	Ratio
pricing $(n=1)$	any level	Bergemann-Schlag'08	Eren-Maglaras'10
auctions (any n)	no info	Our previous work	0
auctions (any n)	any level	This work	This work

- Minimax regret on general distributions with bounded support:
 - Caldentey et al. (2017) 1 buyer (pricing), multiple time periods
 - Kocyigit et al. (2021) n correlated buyers (reduce to 1 buyer)
- Classical mechanism design, pioneered by Myerson (1981)
- One or two i.i.d. bidders with benchmark:
 - Dhangwatnotai et al. (2015), Fu et al. (2015), Allouah and Besbes (2020), Hartline and Johnsen (2021)
- Maximizing worst-case revenue:
 - Bandi and Bertsimas (2014), Bachrach and Talgam-Cohen (2022)
- Approximation ratio results for many buyers:
 - Hartline and Roughgarden (2009), Talgam-Cohen (2021)

Problem	Scale Info	Regret	Ratio
pricing $(n=1)$	any level	Bergemann-Schlag'08	Eren-Maglaras'10
auctions (any <i>n</i>)	no info	Our previous work	0
auctions (any n)	any level	This work	This work

- Minimax regret on general distributions with bounded support:
 - Caldentey et al. (2017) 1 buyer (pricing), multiple time periods
 - Kocyigit et al. (2021) n correlated buyers (reduce to 1 buyer)
- Classical mechanism design, pioneered by Myerson (1981)
- One or two i.i.d. bidders with benchmark:
 - Dhangwatnotai et al. (2015), Fu et al. (2015), Allouah and Besbes (2020), Hartline and Johnsen (2021)
- Maximizing worst-case revenue:
 - Bandi and Bertsimas (2014), Bachrach and Talgam-Cohen (2022)
- Approximation ratio results for many buyers:
 - Hartline and Roughgarden (2009), Talgam-Cohen (2021)

Main Results

Unifying Regret and Ratio with λ -Regret

For $\lambda \in (0,1]$ constant:

$$R_{\lambda}(\mathcal{M},\mathcal{F}) := \inf_{m \in \mathcal{M}} \sup_{\mathbf{F} \in \mathcal{F}} R_{\lambda}(m,\mathbf{F}) := \mathbb{E}_{\mathbf{v} \sim \mathbf{F}} \left[\lambda \max(\mathbf{v}) - \sum_{i=1}^{n} p_{i}(\mathbf{v}) \right]$$

Regret is $\lambda = 1$. Ratio is the largest λ such that $R_{\lambda}(\mathcal{M}, \mathcal{F}) \leq 0$.

- Typically robust DSIC mechanism design gives SPA.
- But SPA with random reserve is not optimal when a/b is large!
- Imagine a/b is very close to 1. So we know the scale very well.
- Among SPAs, setting any reserve is risky: guaranteed payoff too high.
- So among SPAs, no reserve is optimal. Anything better?
- What if ... rather than not allocating below the threshold, we sometimes allocate to the non-highest bidder?

- Typically robust DSIC mechanism design gives SPA.
- ullet But SPA with random reserve is not optimal when a/b is large!
- Imagine a/b is very close to 1. So we know the scale very well.
- Among SPAs, setting any reserve is risky: guaranteed payoff too high.
- So among SPAs, no reserve is optimal. Anything better?
- What if ... rather than not allocating below the threshold, we sometimes allocate to the non-highest bidder?

- Typically robust DSIC mechanism design gives SPA.
- But SPA with random reserve is not optimal when a/b is large!
- Imagine a/b is very close to 1. So we know the scale very well.
- Among SPAs, setting any reserve is risky: guaranteed payoff too high.
- So among SPAs, no reserve is optimal. Anything better?
- What if ... rather than not allocating below the threshold, we sometimes allocate to the non-highest bidder?

- Typically robust DSIC mechanism design gives SPA.
- But SPA with random reserve is not optimal when a/b is large!
- Imagine a/b is very close to 1. So we know the scale very well.
- Among SPAs, setting any reserve is risky: guaranteed payoff too high.
- So among SPAs, no reserve is optimal. Anything better?
- What if ... rather than not allocating below the threshold, we sometimes allocate to the non-highest bidder?

- Typically robust DSIC mechanism design gives SPA.
- But SPA with random reserve is not optimal when a/b is large!
- Imagine a/b is very close to 1. So we know the scale very well.
- Among SPAs, setting any reserve is risky: guaranteed payoff too high.
- So among SPAs, no reserve is optimal. Anything better?
- What if ... rather than not allocating below the threshold, we sometimes allocate to the non-highest bidder?

- Typically robust DSIC mechanism design gives SPA.
- But SPA with random reserve is not optimal when a/b is large!
- Imagine a/b is very close to 1. So we know the scale very well.
- Among SPAs, setting any reserve is risky: guaranteed payoff too high.
- So among SPAs, no reserve is optimal. Anything better?
- What if ... rather than not allocating below the threshold, we sometimes allocate to the non-highest bidder?

SPA is not optimal.

Contribution: a new building block for mechanisms.

Define the threshold mechanism with threshold r and default player is

- If the highest is above r, allocate to the highest
- Otherwise, allocate to the default player i (can be $\emptyset, 1, 2, ..., n$)

Figure: default player ∅

Figure: default player 1

Figure: default player 2

SPA is not optimal.

Contribution: a new building block for mechanisms.

Define the *threshold mechanism* with threshold r and default player i:

- If the highest is above r, allocate to the highest
- Otherwise, allocate to the default player i (can be $\emptyset, 1, 2, \ldots, n$)

Figure: default player ∅

Figure: default player 1

Figure: default player 2

SPA is not optimal.

Contribution: a new building block for mechanisms.

Define the threshold mechanism with threshold r and default player i:

- If the highest is above r, allocate to the highest
- Otherwise, allocate to the default player i (can be $\emptyset, 1, 2, ..., n$)

Figure: default player ∅

Figure: default player 1

Figure: default player 2

SPA is not optimal.

Contribution: a new building block for mechanisms.

Define the threshold mechanism with threshold r and default player i:

- If the highest is above r, allocate to the highest
- Otherwise, allocate to the default player i (can be $\emptyset, 1, 2, \dots, n$)

Figure: default player ∅

Figure: default player 1

Figure: default player 2

SPA(r) and $POOL(\tau)$ mechanism families

Figure: IRON(au)

Main Theorem

Theorem (Minimax λ -regret mechanism m^* over $\mathcal{M}_{\mathsf{all}}$ against $\mathcal{F}_{\mathsf{iid}})$

There are thresholds a_l , a_h such that

- For $a/b \le a_l$ (low information), $m^* = SPA(\Phi)$ with Φ on [a, b].
- For $a/b \ge a_h$ (high information), $m^* = POOL(\Psi)$ with Ψ on [a, b]
- For a_I ≤ a/b ≤ a_h (moderate information),
 m* is a convex combination of SPA(Φ) for Φ in [a, v*]
 and POOL(Ψ) for Ψ in [v*, b] for some v*.

We can characterize Φ and Ψ in closed form.

- We use a saddle point argument.
- Saddle Point Theorem. If the following saddle inequalities hold then m^* is an optimal mechanism and F^* a worst-case distribution

F* is optimal over all
$$F$$
 given m^*

$$R(m^*, F) \leq R(m^*, F^*) \leq R(m, F^*) \quad \forall m, F$$

$$m^* \text{ is optimal over all } m \text{ given } F^*$$

- Nash equilibrium (best-response on both sides) of a zero-sum game
 - Seller chooses mechanism *m* to minimize regret
 - Nature chooses distribution F to maximize regret
- Pin down m^* and F^* with (necessary) first-order conditions
- Prove that (m^*, \mathbf{F}^*) are actually saddle points beyond FOCs.

- We use a saddle point argument.
- Saddle Point Theorem. If the following saddle inequalities hold then m^* is an optimal mechanism and F^* a worst-case distribution.

F* is optimal over all
$$F$$
 given m^*

$$R(m^*, F) \leq R(m^*, F^*) \leq R(m, F^*) \quad \forall m, F$$

$$m^* \text{ is optimal over all } m \text{ given } F^*$$

- Nash equilibrium (best-response on both sides) of a zero-sum game
 - Seller chooses mechanism *m* to minimize regret
 - Nature chooses distribution F to maximize regret
- Pin down m^* and F^* with (necessary) first-order conditions
- Prove that (m^*, \mathbf{F}^*) are actually saddle points beyond FOCs.

- We use a saddle point argument.
- Saddle Point Theorem. If the following saddle inequalities hold then m^* is an optimal mechanism and F^* a worst-case distribution.

F* is optimal over all
$$F$$
 given m^*

$$R(m^*, F) \leq R(m^*, F^*) \leq R(m, F^*) \quad \forall m, F$$

$$m^* \text{ is optimal over all } m \text{ given } F^*$$

- Nash equilibrium (best-response on both sides) of a zero-sum game
 - Seller chooses mechanism *m* to minimize regret
 - Nature chooses distribution **F** to maximize regret
- Pin down m^* and F^* with (necessary) first-order conditions
- Prove that (m^*, \mathbf{F}^*) are actually saddle points beyond FOCs.

- We use a saddle point argument.
- Saddle Point Theorem. If the following saddle inequalities hold then m^* is an optimal mechanism and F^* a worst-case distribution.

$$F^*$$
 is optimal over all F given m^*

$$R(m^*, F) \leq R(m^*, F^*) \leq R(m, F^*) \quad \forall m, F$$

$$m^*$$
 is optimal over all m given F^*

- Nash equilibrium (best-response on both sides) of a zero-sum game
 - Seller chooses mechanism *m* to minimize regret
 - Nature chooses distribution F to maximize regret
- Pin down m^* and F^* with (necessary) first-order conditions
- Prove that (m^*, \mathbf{F}^*) are actually saddle points beyond FOCs.

General Insights

Quantifying the value of scale information and competition

more	cca	Δ١	into	mation
HIOLE	Scal	ıc	111101	mation

more	$\frac{a/b}{n=1}$	0.01	0.10	0.25	0.50	0.75	0.99
	n=1	0.1784	0.3028	0.4191	0.5906	0.7766	0.9900
cor	n = 2	0.2158	0.4038	0.5660	0.7463	0.8841	0.9957
ಗ್ಗ	n=3	0.2406	0.4529	0.6110	0.7779	0.9001	0.9963
etit	<i>n</i> = 5	0.2686	0.4864	0.6408	0.7981	0.9102	0.9967
on	n = 2 $n = 3$ $n = 5$ $n = 8$	0.2836	0.5035	0.6556	0.8080	0.9150	0.9969

Table: Maximin ratio as a function of a/b for each number of buyers n.

Takeaway: *just a little* scale info gives very good guarantees! With 2 agents, $a/b = 0.1 \Rightarrow \sim 40\%$, $a/b = 0.5 \Rightarrow \sim 75\%$.

Quantifying importance of mechanism features

We show **strict separation** between mechanism classes. Important to **allocate to the non-highest**.

Gaps capture the **cost of simplicity**.

Same results hold for other \mathcal{F} with **positive dependence**!

The same mechanism (SPA and POOL) is minimax optimal across many distribution classes.

- Closed-form characterization of a minimax optimal mechanism, knowing only the **lower** & **upper** bounds on the support.
- General framework: n agents, several distribution classes \mathcal{F} , several mechanism classes \mathcal{M} , both regret and ratio objectives.
- ullet Propose new mechanism classes with bases ${\sf SPA}(r)$ and ${\sf POOL}(au)$
- Quantify value of scale information and competition.
- Distribution classes don't matter but mechanism classes do matter!
- Biggest gap is between all versus standard mechanisms: in robust settings, should sometimes allocate to the non-highest!
- Broader agenda: robust mechanism design with partial information

- Closed-form characterization of a minimax optimal mechanism, knowing only the **lower** & **upper** bounds on the support.
- General framework: n agents, several distribution classes \mathcal{F} , several mechanism classes \mathcal{M} , both regret and ratio objectives.
- ullet Propose new mechanism classes with bases ${\sf SPA}(r)$ and ${\sf POOL}(au)$
- Quantify value of scale information and competition.
- Distribution classes don't matter but mechanism classes do matter!
- Biggest gap is between all versus standard mechanisms: in robust settings, should sometimes allocate to the non-highest!
- Broader agenda: robust mechanism design with partial information

- Closed-form characterization of a minimax optimal mechanism, knowing only the **lower** & **upper** bounds on the support.
- General framework: n agents, several distribution classes \mathcal{F} , several mechanism classes \mathcal{M} , both regret and ratio objectives.
- ullet Propose new mechanism classes with bases SPA(r) and POOL(au)
- Quantify value of scale information and competition.
- Distribution classes don't matter but mechanism classes do matter!
- Biggest gap is between all versus standard mechanisms: in robust settings, should sometimes allocate to the non-highest!
- Broader agenda: robust mechanism design with partial information

- Closed-form characterization of a minimax optimal mechanism, knowing only the **lower** & **upper** bounds on the support.
- General framework: n agents, several distribution classes \mathcal{F} , several mechanism classes \mathcal{M} , both regret and ratio objectives.
- ullet Propose new mechanism classes with bases SPA(r) and POOL(au)
- Quantify value of scale information and competition.
- Distribution classes don't matter but mechanism classes do matter!
- Biggest gap is between all versus standard mechanisms: in robust settings, should sometimes allocate to the non-highest!
- Broader agenda: robust mechanism design with partial information

- Closed-form characterization of a minimax optimal mechanism, knowing only the **lower** & **upper** bounds on the support.
- General framework: n agents, several distribution classes \mathcal{F} , several mechanism classes \mathcal{M} , both regret and ratio objectives.
- ullet Propose new mechanism classes with bases SPA(r) and POOL(au)
- Quantify value of scale information and competition.
- Distribution classes don't matter but mechanism classes do matter!
- Biggest gap is between all versus standard mechanisms: in robust settings, should sometimes allocate to the non-highest!
- Broader agenda: robust mechanism design with partial information

- Closed-form characterization of a minimax optimal mechanism, knowing only the lower & upper bounds on the support.
- General framework: n agents, several distribution classes \mathcal{F} , several mechanism classes \mathcal{M} , both regret and ratio objectives.
- ullet Propose new mechanism classes with bases SPA(r) and POOL(au)
- Quantify value of scale information and competition.
- Distribution classes don't matter but mechanism classes do matter!
- Biggest gap is between all versus standard mechanisms: in robust settings, should sometimes allocate to the non-highest!
- Broader agenda: robust mechanism design with partial information

- Closed-form characterization of a minimax optimal mechanism, knowing only the **lower** & **upper** bounds on the support.
- General framework: n agents, several distribution classes \mathcal{F} , several mechanism classes \mathcal{M} , both regret and ratio objectives.
- ullet Propose new mechanism classes with bases SPA(r) and POOL(au)
- Quantify value of scale information and competition.
- Distribution classes don't matter but mechanism classes do matter!
- Biggest gap is between all versus standard mechanisms: in robust settings, should sometimes allocate to the non-highest!
- Broader agenda: robust mechanism design with partial information

Appendix

