```
ln[167]: vals = {alfai \rightarrow 30°, alfaj \rightarrow 60°, m \rightarrow 2, L \rightarrow 1};
 In[168]:= TBi = ConstantArray[0, {8, 14}];
      TBi[[1;; 2, 1;; 2]] = IdentityMatrix[2];
      TBi[[3;; 4, 3;; 4]] = IdentityMatrix[2];
      TBi[[5;;6,5;;6]] = IdentityMatrix[2];
      TBi[[7;; 8, 7;; 8]] = Cos[alfai] * IdentityMatrix[2];
      TBi[[7;; 8, 9;; 10]] = Sin[alfai] * IdentityMatrix[2];
      MatrixForm[TBi]
      TBj = ConstantArray[0, {8, 14}];
      TBj[[1;;2,5;;6]] = IdentityMatrix[2];
      TBj[[3;; 4, 7;; 8]] = Cos[alfaj] * IdentityMatrix[2];
      TBj[[3;; 4, 9;; 10]] = Sin[alfaj] * IdentityMatrix[2];
      TBj[[5;; 6, 11;; 12]] = IdentityMatrix[2];
      TBj[[7;; 8, 13;; 14]] = IdentityMatrix[2];
      MatrixForm[TBj]
Out[174]//MatrixForm=
       (1 0 0 0 0 0
                                                                    0 0 0 0
                          0
                                      0
                                                 0
                                                             0
       0 1 0 0 0 0
                          0
                                      0
                                                 0
                                                             0
                                                                    0 0 0 0
       0 0 1 0 0 0
                                      0
                                                             0
                                                                         0 0
                          0
                                                                       0
       0 0 0 1 0 0
                          0
                                      0
                                                 0
                                                             0
                                                                    0 0 0 0
       0 0 0 0 1 0
                          0
                                      0
                                                 0
                                                             0
                                                                    0 0 0 0
       0 0 0 0 0 1
                          0
                                      0
                                                 Ω
                                                             0
                                                                    0 0 0 0
       0 0 0 0 0 Cos[alfai]
                                     0
                                             Sin[alfai]
                                                            0
                                                                    0 0 0 0
      000000
                                 Cos[alfai]
                                                 0
                                                        Sin[alfai] 0 0 0 0
Out[181]//MatrixForm=
       (0 0 0 0 1 0
                                      0
                                                                    0 0 0 0
                          0
                                                 0
                                                             0
                                      0
                                                             0
                                                                    0 0 0 0
       0 0 0 0 0 1
                          0
                                                 0
       0 0 0 0 0 Cos[alfaj]
                                      0
                                             Sin[alfaj]
                                                             0
                                                                    0 0 0 0
                                 Cos[alfaj]
       0 0 0 0 0
                          0
                                                 0
                                                         Sin[alfaj] 0 0 0 0
       0 0 0 0 0
                                      0
                                                             0
                                                                    1 0 0 0
                          0
                                                 0
       0 0 0 0 0 0
                                                                    0 1 0 0
                          0
                                      0
                                                 0
                                                             0
       0 0 0 0 0
                          0
                                      0
                                                 0
                                                             0
                                                                    0 0 1 0
                                                                    0 0 0 1
      (000000
                          0
                                      0
                                                 0
                                                             0
```

Out[260]//Ma	atrixFo	rm=
	,	_

Matr	xForm=								
	26 35	0	11 105	0	<u>9</u> 35	0	$-\frac{13}{140\sqrt{3}}$	0	$-\frac{13}{420}$
	0	26 35	0	11 105	0	<u>9</u> 35	0	$-\frac{13}{140\sqrt{3}}$	0
	11 105	0	2 105	0	13 210		$-\frac{\sqrt{3}}{140}$		
	0	11 105	0	2 105	0	13 210	0	$-\frac{\sqrt{3}}{140}$	0
	<u>9</u> 35	0	13 210	0	<u>52</u> 35	0	$\frac{11}{210} - \frac{11}{70\sqrt{3}}$	0	$-\frac{11}{210} + {70}$
		<u>9</u> 35				<u>52</u> 35	0	$\frac{11}{210} - \frac{11}{70\sqrt{3}}$	0
					$\frac{11}{210} - \frac{11}{70\sqrt{3}}$		2 105		$\frac{1}{35\sqrt{3}}$
	0	$-\frac{13}{140\sqrt{3}}$	0	$-\frac{\sqrt{3}}{140}$	0	$\frac{11}{210} - \frac{11}{70\sqrt{3}}$	0	2 105	0
	$-\frac{13}{420}$	0	$-\frac{1}{140}$	0	$-\frac{11}{210}+\frac{11}{70\sqrt{3}}$	0	$\frac{1}{35\sqrt{3}}$	0	2 105
	0	$-\frac{13}{420}$	0	$-\frac{1}{140}$	0	$-\frac{11}{210}+\frac{11}{70\sqrt{3}}$	0	$\frac{1}{35\sqrt{3}}$	0
	0	0	0	0	<u>9</u> 35	0	13 420	0	$\frac{13}{140\sqrt{3}}$
	0	0	0	0	0	<u>9</u> 35	0	13 420	0
	0	0	0	0	$-\frac{13}{210}$	0	$=\frac{1}{140}$	0	$-\frac{\sqrt{3}}{140}$
	0	0	0	0	0	$-\frac{13}{210}$	0	$-\frac{1}{140}$	0

Out[261]//MatrixForm=

lall	IXFUIII-						
	0.742857	0.	0.104762	0.	0.257143	0.	-0.0536
	0.	0.742857	0.	0.104762	0.	0.257143	0.
	0.104762	0.	0.0190476	0.	0.0619048	0.	-0.0123
	0.	0.104762	0.	0.0190476	0.	0.0619048	0.
	0.257143	0.	0.0619048	0.	1.48571	0.	-0.0383
	0.	0.257143	0.	0.0619048	0.	1.48571	0.
	-0.0536111	0.	-0.0123718	0.	-0.0383455	0.	0.01904
	0.	-0.0536111	0.	-0.0123718	0.	-0.0383455	0.
	-0.0309524	0.	-0.00714286	0.	0.0383455	0.	0.01649
	0.	-0.0309524	0.	-0.00714286	0.	0.0383455	0.
	0.	0.	0.	0.	0.257143	0.	0.03095
	0.	0.	0.	0.	0.	0.257143	0.
	0.	0.	0.	0.	-0.0619048	0.	-0.00714
	(o.	0.	0.	0.	0.	-0.0619048	0.

ksi = x1/1;

MatrixForm[%]

$$\begin{pmatrix} -6 + 12 \text{ ksi} & 0 & (-4 + 6 \text{ ksi}) 1 & 0 & 6 - 12 \text{ ksi} & 0 & (-2 + 6 \text{ ksi}) 1 \\ 0 & -6 + 12 \text{ ksi} & 0 & (-4 + 6 \text{ ksi}) 1 & 0 & 6 - 12 \text{ ksi} & 0 \\ \end{pmatrix}$$

ddST[ksi_] = Transpose[ddS[ksi]];

MatrixForm[%]

$$\begin{pmatrix} -6+12 \text{ ksi} & 0 \\ 0 & -6+12 \text{ ksi} \\ (-4+6 \text{ ksi}) & 1 & 0 \\ 0 & (-4+6 \text{ ksi}) & 1 \\ 6-12 \text{ ksi} & 0 \\ 0 & 6-12 \text{ ksi} \\ (-2+6 \text{ ksi}) & 1 & 0 \\ 0 & (-2+6 \text{ ksi}) & 1 \end{pmatrix}$$

Dot[ddST[ksi], ddS[ksi]];

MatrixForm[%]

$$\begin{pmatrix} (-6+12\,\mathrm{ksi})^2 & 0 & (-4+6\,\mathrm{ksi}) \; (-6+12\,\mathrm{ksi}) \; 1 \\ 0 & (-6+12\,\mathrm{ksi})^2 & 0 & (-4+6\,\mathrm{ksi}) \; 1 \\ (-4+6\,\mathrm{ksi}) \; (-6+12\,\mathrm{ksi}) \; 1 & 0 & (-4+6\,\mathrm{ksi})^2 \; 1^2 \\ 0 & (-4+6\,\mathrm{ksi}) \; (-6+12\,\mathrm{ksi}) \; 1 & 0 \\ (6-12\,\mathrm{ksi}) \; (-6+12\,\mathrm{ksi}) & 0 & (6-12\,\mathrm{ksi}) \; (-4+6\,\mathrm{ksi}) \; 1 \\ 0 & (6-12\,\mathrm{ksi}) \; (-6+12\,\mathrm{ksi}) & 0 & (6-12\,\mathrm{ksi}) \; 1^2 \\ (-2+6\,\mathrm{ksi}) \; (-6+12\,\mathrm{ksi}) \; 1 & 0 & (-4+6\,\mathrm{ksi}) \; 1^2 \\ 0 & (-2+6\,\mathrm{ksi}) \; (-6+12\,\mathrm{ksi}) \; 1 & 0 & (-4+6\,\mathrm{ksi}) \; 1^2 \\ \end{pmatrix}$$

Integrate[Dot[ddST[ksi], ddS[ksi]], ksi]; MatrixForm[%]

```
36 \text{ ksi} - 72 \text{ ksi}^2 + 48 \text{ ksi}^3
                                                                              0
                                                                                                             (24 \text{ ksi} - 42 \text{ ksi}^2 + 24 \text{ ksi}^3) 1
                                                       36 \text{ ksi} - 72 \text{ ksi}^2 + 48 \text{ ksi}^3
                        Ω
                                                                                                                                          Λ
                                                                                                                         -\frac{1}{18} (4-6 \text{ ksi})^3 1^2
(24 \text{ ksi} - 42 \text{ ksi}^2 + 24 \text{ ksi}^3) 1
                                                      (24 \text{ ksi} - 42 \text{ ksi}^2 + 24 \text{ ksi}^3) 1
  -36 \text{ ksi} + 72 \text{ ksi}^2 - 48 \text{ ksi}^3
                                                                                                                (-24 \text{ ksi} + 42 \text{ ksi}^2 - 24 \text{ ksi}^3) 1
                                                                                 0
                                                        -36 \text{ ksi} + 72 \text{ ksi}^2 - 48 \text{ ksi}^3
                        0
                                                                                                              (8 \text{ ksi} - 18 \text{ ksi}^2 + 12 \text{ ksi}^3) 1^2
(12 \text{ ksi} - 30 \text{ ksi}^2 + 24 \text{ ksi}^3) 1
                                                    (12 \text{ ksi} - 30 \text{ ksi}^2 + 24 \text{ ksi}^3) 1
```

Integrate[Dot[ddST[ksi], ddS[ksi]], {ksi, 0, 1}]; MatrixForm[%]

```
D[s1, {ksi, 2}]
D[s2, {ksi, 2}]
D[s3, {ksi, 2}]
D[s4, {ksi, 2}]
-6+12 ksi
(-4 + 6 \text{ ksi}) 1
```

(-2 + 6 ksi) 1

6 - 12 ksi

D[s1, ksi] D[s2, ksi]

D[s3, ksi] D[s4, ksi]

 $-6 \text{ ksi} + 6 \text{ ksi}^2$

 $(1 - 4 \text{ ksi} + 3 \text{ ksi}^2) 1$

 $6 \text{ ksi} - 6 \text{ ksi}^2$

 $(-2 \text{ ksi} + 3 \text{ ksi}^2) 1$

D[S[ksi], ksi]; MatrixForm[%]

$$\begin{pmatrix} -6 \text{ ksi} + 6 \text{ ksi}^2 & 0 & (1 - 4 \text{ ksi} + 3 \text{ ksi}^2) \\ 0 & -6 \text{ ksi} + 6 \text{ ksi}^2 & 0 & (1 - 4 \text{ ksi} + 3 \text{ ksi}^2) \\ 1 & 0 & 6 \text{ ksi} + 6 \text{ ksi}^2 \end{pmatrix}$$

STS = Dot[Transpose[S[x1]], S[x1]]

$$\begin{split} & \left\{ \left[\left(1 - \frac{3 \times 1^2}{1^2} + \frac{2 \times 1^3}{1^3} \right)^2, \ 0, \ 1 \left(\frac{x_1}{1} - \frac{2 \times 1^2}{1^2} + \frac{x_1^3}{1^3} \right) \left(1 - \frac{3 \times 1^2}{1^2} + \frac{2 \times 1^3}{1^3} \right), \ 0, \ 1 \left(-\frac{3 \times 1^2}{1^2} - \frac{2 \times 1^3}{1^3} \right) \left(1 - \frac{3 \times 1^2}{1^2} + \frac{2 \times 1^3}{1^3} \right), \ 0, \ 1 \left(-\frac{x_1^2}{1^2} + \frac{x_1^3}{1^3} \right) \left(1 - \frac{3 \times 1^2}{1^2} + \frac{2 \times 1^3}{1^3} \right), \ 0, \ 1 \left(-\frac{x_1^2}{1^2} + \frac{x_1^3}{1^3} \right) \left(1 - \frac{3 \times 1^2}{1^2} + \frac{2 \times 1^3}{1^3} \right), \ 0, \ 1 \left(-\frac{x_1^2}{1^2} + \frac{x_1^3}{1^3} \right) \left(1 - \frac{3 \times 1^2}{1^2} + \frac{2 \times 1^3}{1^3} \right), \ 0, \ 1 \left(-\frac{x_1^2}{1^2} + \frac{x_1^3}{1^3} \right) \left(1 - \frac{3 \times 1^2}{1^2} + \frac{2 \times 1^3}{1^3} \right), \ 0, \ 1 \left(-\frac{x_1^2}{1^2} + \frac{x_1^3}{1^3} \right) \left(1 - \frac{3 \times 1^2}{1^2} + \frac{2 \times 1^3}{1^3} \right), \ 0, \ 1^2 \left(\frac{x_1}{1} - \frac{2 \times 1^2}{1^2} + \frac{x_1^3}{1^3} \right)^2, \ 0, \ 1 \left(\frac{3 \times 1^2}{1^2} - \frac{2 \times 1^3}{1^3} \right) \left(\frac{x_1}{1} - \frac{2 \times 1^2}{1^2} + \frac{x_1^3}{1^3} \right), \ 0, \ 1^2 \left(\frac{x_1}{1} - \frac{2 \times 1^2}{1^2} + \frac{x_1^3}{1^3} \right) \left(-\frac{x_1^2}{1^2} + \frac{x_1^3}{1^3} \right), \ 0, \ 1^2 \left(\frac{x_1}{1} - \frac{2 \times 1^2}{1^2} + \frac{x_1^3}{1^3} \right) \left(-\frac{x_1^2}{1^2} + \frac{x_1^3}{1^3} \right), \ 0, \ 1^2 \left(\frac{x_1}{1} - \frac{2 \times 1^2}{1^2} + \frac{x_1^3}{1^3} \right) \left(-\frac{x_1^2}{1^2} + \frac{x_1^3}{1^3} \right), \ 0, \ 1^2 \left(\frac{x_1}{1} - \frac{2 \times 1^2}{1^2} + \frac{x_1^3}{1^3} \right) \left(-\frac{x_1^2}{1^2} + \frac{x_1^3}{1^3} \right), \ 0, \ 1^2 \left(\frac{x_1}{1} - \frac{2 \times 1^2}{1^2} + \frac{x_1^3}{1^3} \right) \left(-\frac{x_1^2}{1^2} + \frac{x_1^3}{1^3} \right), \ 0, \ 1^2 \left(\frac{x_1}{1} - \frac{2 \times 1^2}{1^2} + \frac{x_1^3}{1^3} \right) \left(-\frac{x_1^2}{1^2} + \frac{x_1^3}{1^3} \right), \ 0, \ 1^2 \left(\frac{x_1}{1} - \frac{2 \times 1^2}{1^2} + \frac{x_1^3}{1^3} \right) \left(-\frac{x_1^2}{1^2} + \frac{x_1^3}{1^3} \right), \ 0, \ 1^2 \left(\frac{x_1}{1} - \frac{2 \times 1^2}{1^2} + \frac{x_1^3}{1^3} \right) \left(-\frac{x_1^2}{1^2} + \frac{x_1^3}{1^3} \right), \ 0, \ 1^2 \left(\frac{x_1}{1} - \frac{2 \times 1^2}{1^2} + \frac{x_1^3}{1^3} \right) \left(-\frac{x_1^2}{1^2} + \frac{x_1^3}{1^3} \right), \ 0, \ 1^2 \left(\frac{x_1}{1} - \frac{2 \times 1^2}{1^2} + \frac{x_1^3}{1^3} \right), \ 0, \ 1^2 \left(\frac{x_1}{1} - \frac{2 \times 1^2}{1^3} + \frac{x_1^3}{1^3} \right), \ 0, \ 1^2 \left(\frac{x_1}{1} - \frac{2 \times 1^2}{1^3} + \frac{x_1^3}{1^3} \right), \ 0, \ 1^2 \left(\frac{x_1}{1} - \frac{2 \times 1^2}{1^3} + \frac{x_1^3}{1^3} \right), \ 0, \ 1^2 \left(\frac{x_1}{1} - \frac{x_$$

STS == Transpose[STS]

True

MatrixForm[%]

FullSimplify[%]

$$\left\{ \left\{ \frac{(1-x1)^4 \; (1+2\,x1)^2}{1^6}, \; 0, \; \frac{(1-x1)^4 \; x1 \; (1+2\,x1)}{1^5}, \; 0, \right. \right. \\ \left. \frac{(3\,1-2\,x1) \; (1-x1)^2 \; x1^2 \; (1+2\,x1)}{1^6}, \; 0, -\frac{(1-x1)^3 \; x1^2 \; (1+2\,x1)}{1^5}, \; 0 \right\}, \\ \left\{ 0, \; \frac{(1-x1)^4 \; (1+2\,x1)^2}{1^6}, \; 0, \; \frac{(1-x1)^4 \; x1 \; (1+2\,x1)}{1^5}, \; 0, \right. \\ \left. \frac{(3\,1-2\,x1) \; (1-x1)^2 \; x1^2 \; (1+2\,x1)}{1^6}, \; 0, -\frac{(1-x1)^3 \; x1^2 \; (1+2\,x1)}{1^5} \right\}, \\ \left\{ \frac{(1-x1)^4 \; x1 \; (1+2\,x1)}{1^5}, \; 0, \; \frac{(1-x1)^4 \; x1^2}{1^4}, \; 0, \; \frac{(3\,1-2\,x1) \; (1-x1)^2 \; x1^3}{1^5}, \\ 0, -\frac{(1-x1)^3 \; x1^3}{1^4}, \; 0 \right\}, \left\{ 0, \; \frac{(1-x1)^4 \; x1 \; (1+2\,x1)}{1^5}, \; 0, -\frac{(1-x1)^3 \; x1^3}{1^4} \right\}, \\ \left\{ \frac{(3\,1-2\,x1) \; (1-x1)^2 \; x1^2 \; (1+2\,x1)}{1^6}, \; 0, -\frac{(3\,1-2\,x1) \; (1-x1)^2 \; x1^3}{1^5}, \\ 0, \; \frac{(3\,1-2\,x1) \; (1-x1)^2 \; x1^2 \; (1+2\,x1)}{1^6}, \; 0, -\frac{(3\,1-2\,x1) \; (1-x1) \; x1^4}{1^5}, \\ 0, \; \frac{(3\,1-2\,x1) \; (1-x1)^2 \; x1^2 \; (1+2\,x1)}{1^6}, \; 0, -\frac{(3\,1-2\,x1) \; (1-x1) \; x1^4}{1^5}, \\ 0, \; \frac{(3\,1-2\,x1) \; (2+2\,x1) \; (1-x1)^2 \; x1^3}{1^5}, \\ \left\{ -\frac{(1-x1)^3 \; x1^2 \; (1+2\,x1)}{1^5}, \; 0, -\frac{(3\,1-2\,x1) \; (1-x1) \; x1^4}{1^5}, \\ 0, \; \frac{(3\,1-2\,x1)^2 \; x1^4}{1^4}, \; 0 \right\}, \left\{ 0, -\frac{(1-x1)^3 \; x1^3}{1^4}, \; 0, -\frac{(3\,1-2\,x1) \; (1-x1) \; x1^4}{1^5}, \\ 0, \; \frac{(1-x1)^2 \; x1^4}{1^4}, \; 0 \right\}, \left\{ 0, -\frac{(1-x1)^3 \; x1^2 \; (1+2\,x1)}{1^5}, \; 0, -\frac{(3\,1-2\,x1) \; (1-x1) \; x1^4}{1^5}, \\ 0, \; \frac{(1-x1)^2 \; x1^4}{1^4}, \; 0 \right\}, \left\{ 0, -\frac{(1-x1)^3 \; x1^2 \; (1+2\,x1)}{1^5}, \; 0, -\frac{(3\,1-2\,x1) \; (1-x1) \; x1^4}{1^5}, \\ 0, \; \frac{(1-x1)^3 \; x1^3}{1^4}, \; 0, -\frac{(3\,1-2\,x1) \; (1-x1) \; x1^4}{1^5}, \; 0, -\frac{(3\,1-2\,x1) \; (1-x1) \; x1^4}{1^5}, \\ 0, \; \frac{(1-x1)^3 \; x1^3}{1^4}, \; 0, -\frac{(3\,1-2\,x1) \; (1-x1) \; x1^4}{1^5}, \; 0, -\frac{(3\,1-2\,x1) \; (1-x1) \; x1^4}{1^5}, \\ 0, \; \frac{(1-x1)^3 \; x1^3}{1^4}, \; 0, -\frac{(3\,1-2\,x1) \; (1-x1) \; x1^4}{1^5}, \; 0, -\frac{(3\,1-2\,x1) \; (1-x1) \; x1^4}{1^5}, \\ 0, \; \frac{(1-x1)^3 \; x1^3}{1^4}, \; 0, -\frac{(3\,1-2\,x1) \; (1-x1) \; x1^4}{1^5}, \; 0, -\frac{(3\,1-2\,x1) \; (1-x1) \; x1^4}{1^5}, \\ 0, \; \frac{(3\,1-2\,x1) \; (1-x1) \; x1^4}{1^5}, \; 0, -\frac{(3\,1-2\,x1) \; (1-x1) \; x1^4}{1^5}, \; 0, -\frac{(3\,1-2\,x1) \; (1-x1) \; x1^4}{1^5}, \\ 0, \; \frac{(3\,1-2\,x1) \; (1-x1) \; x1^4}{$$

MatrixForm[%]

$\frac{(1-x1)^4 (1+2 x1)^2}{1^6}$	0	$\frac{(1-x1)^{4} x1 (1+2 x1)}{1^{5}}$	0	<u>(3 1-2 x1</u>
0	$\frac{(1-x1)^{4} (1+2 x1)^{2}}{1^{6}}$	0	$\frac{(1-x1)^{4} x1 (1+2 x1)}{1^{5}}$	
$\frac{(1-x1)^4 x1 (1+2 x1)}{1^5}$	0	$\frac{(1-x1)^4 x1^2}{1^4}$	0	<u>(31-</u>
0	$\frac{(1-x1)^{4} x1 (1+2 x1)}{1^{5}}$	0	$\frac{(1-x1)^4 x1^2}{1^4}$	
$\frac{(3 1 - 2 x1) (1 - x1)^2 x1^2 (1 + 2 x1)}{1^6}$	0	$\frac{(3 \ 1-2 \ x1) \ (1-x1)^2 \ x1^3}{1^5}$	0	_(
0	$\frac{(3 1 - 2 x1) (1 - x1)^2 x1^2 (1 + 2 x1)}{1^6}$	0	$\frac{(3 1-2 x1) (1-x1)^2 x1^3}{1^5}$	
$= \frac{(1-x1)^3 x1^2 (1+2 x1)}{1^5}$	0	$-\frac{(1-x1)^3 x1^3}{1^4}$	0	_ (3.
0	$- \frac{(1-x1)^3 x1^2 (1+2 x1)}{1^5}$	0	$-\frac{(1-x1)^3 x1^3}{1^4}$	