Lecture Notes for

Neural Networks and Machine Learning

Self-supervised, Multi-modal, & Multi-task Learning

Logistics and Agenda

- Logistics
 - Newest Lab uses multi-task / multi-modal learning
- Agenda
 - Paper Presentation: X-vectors
 - Finish Self Supervised Learning
 - Multi-modal/task Learning
 - Techniques
 - Applications and domains
- Next Time:
 - Paper Presentation: DeepTox

Paper Presentation: Speaker Embedding

Attentive Statistics Pooling for Deep Speaker Embedding

Koji Okabe¹, Takafumi Koshinaka¹, Koichi Shinoda²

¹Data Science Research Laboratories, NEC Corporation, Japan ²Department of Computer Science, Tokyo Institute of Technology, Japan

k-okabe@bx.jp.nec.com, koshinak@ap.jp.nec.com, shinoda@c.titech.ac.jp.

Last Time

ATLAS: Active Transfer Learning for Adaptive Sampling

Started: Self Supervised Learning Auxiliary tasks to learn about the world

Active Learning Overview

- Basic Idea: Use a trained model to sample from an oracle that can magically give you a new label
 - Active Learning:

What labels should we ask the cracle about?

- Uncertainty Sampling
 - Choose instances where the model is most uncertain or most certain
 - Various ways to measure certainty
- Diversity Sampling
 - Choose instances that are similar or different from training distribution

Self-Supervised Learning

Self-supervised Learning

- Problem: deep learning is not sample efficient
- Idea: learn about the world before learning the task
- New Problem: how do we learn about the world?
- Solution: transfer learning on toy problem
 - 1. train on auxiliary task that is easy to label
 - 2. throw away anything specific to auxiliary task
 - 3. train new network with task of interest, transferring knowledge (downstream task)
 - 4. profit

Examples of Self Supervised Learning

Professor Eric C. Larson

Examples of Self Supervised Learning

$$X = (W, W); Y = 3$$

Unsupervised Visual Representation Learning by Context Prediction

Carl Doersch^{1,2} Abhinav Gupta¹ Alexei A. Efros²

¹ School of Computer Science Carnegie Mellon University

² Dept. of Electrical Engineering and Computer Science University of California, Berkeley

43

Examples of SSL

Shuffle and Learn: Unsupervised Learning using Temporal Order Verification

Ishan Missa¹ C. Lawrence Zitnick² Martial Hebert¹

The Robotics Institute, Carnegie Mellon University
² Facebook AI Research

Table 2: Mean classification accuracies over the 3 splits of UCF101 and HMDB51 datasets. We compare different initializations and finetune them for action recognition.

Dataset	Initialization	Mean Accuracy
UCF101	Random	38.6
	(Ours) Tuple verification	50.2
HMDB51	Random	13.3
	UCF Supervised	15.2
	(Ours) Tuple verification	18.1

https://www.fast.ai/2020/01/13/seli_superviseu/

Examples of Self Supervised Learning

Doesn't always work to increase performance...

Context Encoders: Feature Learning by Inpainting

Deepak Pathak

Philipp Krähenbühl Univers

henbühl Jeff Donahue Tre University of California, Berkeley

Trevor Darrell

Alexei A. Efros 45

C. Larson | ~

Consistency Loss

I'm from Canada, but live in the States now.

It took me a while to get used to writing boolean variables with an "Is" prefix, instead of the "Eh" suffix that Canadians use when programming.

For example:

MyObj.IsVisible

MyObj.VisibleEh

$$\min_{\mathbf{w}} \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{w}} + \lambda \underbrace{\mathbf{\mathcal{D}}_{\mathit{KL}}\left(p_{\mathbf{w}}(y \,|\, \mathbf{x}) \,|\, |p_{\mathbf{w}}(y \,|\, \hat{\mathbf{x}})\right)}_{\mathbf{no} \; \mathsf{back} \; \mathsf{prop}}$$

Neural Network approximates $p(y|\mathbf{x})$ by \mathbf{w} Use labeled data to minimize network

Sample new \mathbf{x} from unlabeled pool with function q function q is augmentation procedure Minimize cross entropy of two models

Get accustomed to this notation

Update Model with Back-propagation along these paths

Unsupervised Data Augmentation (UDA) for Consistency Training, Xie et al., Neurlps 2019

Figure 2: Augmented examples using back-translation and RandAugment.

48

$$\min \underbrace{\overline{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}}_{\text{Cross entropy}} + \lambda \underbrace{\qquad \qquad \qquad }_{KL} \left(p_{\mathbf{w}}(y \,|\, \mathbf{x}) \,|\, |p_{\mathbf{w}}(y \,|\, \hat{\mathbf{x}}) \right)}$$

$$E[g] = \sum p(g) \cdot g$$
 definition of expected value

$$E[-\log p(y\,|\,\mathbf{x})] = -\sum p(y) \cdot \log p(y\,|\,\mathbf{x}) \quad \text{insert -log probability, log likelihood}$$

$$NLL(y, p(y | \mathbf{x})) = -\sum_{c} p(y = c) \cdot \log p(y = c | \mathbf{x})$$
 negative log likelihood

$$CE(f,g) = -\sum f(x) \cdot \log g(x)$$
 cross entropy of two functions

$$CE(y, p(y | \mathbf{x})) = -\sum_{c} y \cdot \log p(y | \mathbf{x})$$
 if y is a probability, these are the same equation

cce = tf.keras.losses.CategoricalCrossentropy()
cce(y_true, y_pred)

$$\min \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{w}} + \lambda \underbrace{\mathbf{\mathcal{D}}_{\mathit{KL}}\left(p_{\mathbf{w}}(y \,|\, \mathbf{x}) \,|\, |p_{\mathbf{w}}(y \,|\, \hat{\mathbf{x}})\right)}_{\mathit{W}}$$

$$\mathcal{D}_{\mathit{KL}}(f \mid \mid g) = -\sum f(x) \cdot \log \frac{g(x)}{f(x)} \text{ definition of Kullback-Leibler (KL) Divergence}$$

$$\mathcal{D}_{\mathit{KL}}(p(y\,|\,\mathbf{x})\,|\,|\,p(y\,|\,\hat{\mathbf{x}})) = -\sum p(y\,|\,\mathbf{x}) \cdot \log \frac{p(y\,|\,\hat{\mathbf{x}})}{p(y\,|\,\mathbf{x})} = -\sum p(y\,|\,\mathbf{x}) \cdot \left(\log p(y\,|\,\hat{\mathbf{x}}) - \log p(y\,|\,\mathbf{x})\right)$$

$$= -\sum p(y \mid \mathbf{x}) \cdot \log p(y \mid \hat{\mathbf{x}}) + \sum p(y \mid \mathbf{x}) \cdot \log p(y \mid \mathbf{x})$$

$$= \mathbf{E}_{\mathbf{x} \in U, \hat{\mathbf{x}} \leftarrow q(\hat{\mathbf{x}} | \mathbf{x})} \left[-\log p(y | \hat{\mathbf{x}}) \right] + \mathbf{E}_{\mathbf{x} \in U} \left[\log p(y | \mathbf{x}) \right]_{\text{ignore}}$$

cross entropy of unsupervised labels after augmentation

entropy of unsupervised labels **constant**

cce = tf.keras.losses.CategoricalCrossentropy()
cce(y pred, y pred augmented)

Augmentation (# Sup examples)	Sup (50k)	Semi-Sup (4k)	
Crop & flip	5.36	16.17	
Cutout	4.42	6.42	
RandAugment	4.23	5.29	

Table 1: Error rates on CIFAR-10.

Augmentation (# Sup examples)	Sup (650k)	Semi-sup (2.5k)	
Х	38.36	50.80	
Switchout	37.24	43.38	
Back-translation	36.71	41.35	

Table 2: Error rate on Yelp-5.

(a) CIFAR-10

Unsupervised Data Augmentation (UDA) for Consistency Training, Xie et al., Neurlps 2019

(b) SVHN

Method	Model	# Param	CIFAR-10 (4k)	SVHN (1k)
Π-Model (Laine & Aila, 2016)	Conv-Large	3.1M	12.36 ± 0.31	4.82 ± 0.17
Mean Teacher (Tarvainen & Valpola, 2017)	Conv-Large	3.1M	12.31 ± 0.28	3.95 ± 0.19
VAT + EntMin (Miyato et al., 2018)	Conv-Large	3.1M	10.55 ± 0.05	3.86 ± 0.11
SNTG (Luo et al., 2018)	Conv-Large	3.1M	10.93 ± 0.14	3.86 ± 0.27
VAdD (Park et al., 2018)	Conv-Large	3.1M	11.32 ± 0.11	4.16 ± 0.08
Fast-SWA (Athiwaratkun et al., 2018)	Conv-Large	3.1M	9.05	-
ICT (Verma et al., 2019)	Conv-Large	3.1M	7.29 ± 0.02	3.89 ± 0.04
Pseudo-Label (Lee, 2013)	WRN-28-2	1.5M	16.21 ± 0.11	7.62 ± 0.29
LGA + VAT (Jackson & Schulman, 2019)	WRN-28-2	1.5M	12.06 ± 0.19	6.58 ± 0.36
mixmixup (Hataya & Nakayama, 2019)	WRN-28-2	1.5M	10	-
ICT (Verma et al., 2019)	WRN-28-2	1.5M	7.66 ± 0.17	3.53 ± 0.07
MixMatch (Berthelot et al., 2019)	WRN-28-2	1.5M	6.24 ± 0.06	2.89 ± 0.06

Methods	SSL	10%	100%
ResNet-50 w. RandAugment	×	55.09 / 77.26 58.84 / 80.56	77.28 / 93.73 78.43 / 94.37
UDA (RandAugment)	/	68.78 / 88.80	79.05 / 94.49

Table 5: Top-1 / top-5 accuracy on ImageNet with 10% and 100% of the labeled set. We use image size 224 and 331 for the 10% and 100% experiments respectively.

Lecture Notes for

Neural Networks and Machine Learning

Multi-Modal and Multi-Task

Next Time:

Demo

Reading: Papers

