(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-278229

(43)公開日 平成11年(1999)10月12日

(51) Int.Cl.⁶

識別記号

FΙ

B 6 0 T 8/32

B60T 8/32

審査請求 未請求 請求項の数1 OL (全 10 頁)

(21)出願番号	特顧平10-84744	(71) 出顧人 000003056
		トキコ株式会社
(22)出顧日	平成10年(1998) 3 月30日	川崎市川崎区東田町8番地
		(72)発明者 久米村 洋一
		神奈川県川崎市川崎区富士見1丁目6番3
		号 トキコ株式会社内
		(72)発明者 山口 東馬
		神奈川県川崎市川崎区富士見1丁目6番3
		号 トキコ株式会社内
		(72)発明者 及川 浩隆
		神奈川県川崎市川崎区富士見1丁目6番3
		号 トキコ株式会社内
		(74)代理人 弁理士 志賀 正武 (外1名)

(54) 【発明の名称】 プレーキ制御装置

(57)【要約】

【課題】 コストアップを招くことなく、ブレーキ作動 時における鳴きを大幅に低減させる。

【解決手段】 ブレーキペダルによって生じたマスターシリンダ圧を検出する踏力センサを設ける。踏力センサからの検出信号に基づいて液圧制御弁を駆動させて外部液圧供給源からの液圧をディスクブレーキのシリンダへ供給するコントローラを設ける。ブレーキ作動時にて車速がしきい値以下となった際に、コントローラが、各ディスクブレーキにおけるブレーキ力を、しきい値における車輪の回転周波数にて加減する鳴き抑制設定値に設定し、ブレーキ作動時におけるバッドの摩擦振動によるディスクブレーキの各構成部材の共振を抑えて鳴き現象を低減させる。

Best Available Copy

1

【特許請求の範囲】

【請求項1】 ブレーキペダルと、該ブレーキペダルの 踏力を検出するセンサと、該センサからの検出信号に応 じたブレーキ力を各車輪にそれぞれ設けられたブレーキ 装置にて発生させる制御手段とを有するブレーキ制御装 置であって、

前記制御手段は、ブレーキ作動時にて車両が所定速度以下となった際に、各ブレーキ装置におけるブレーキ力を 所定サイクルにて加減させることを特徴とするブレーキ 制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、自動車等の車両に設けられるブレーキ制御装置に関するものである。 【0002】

【従来の技術】一般に、自動車等の車両では、ブレーキ ペダルが踏み込まれると、マスターシリンダにて発生し たブレーキ液圧が各車輪にそれぞれ設けられたブレーキ 装置へ供給されてブレーキ力が生じ、減速されるように なっている。ブレーキ装置としては、図9に示すような 20 ディスクブレーキ 1 が主流であり、このディスクブレー キ1にブレーキ液圧が供給されると、キャリパ2のシリ ンダ3内に摺動可能に配設されたピストン4が突出さ れ、このピストン4とキャリパ2の爪部5とによって、 図示しないキャリアに支持されたアウタパッド6及びイ ンナーパッド7がディスク8へ押し付けられてブレーキ 力が発生するようになっている。ところで、ブレーキを 作動させると、ディスクブレーキ1から鳴きが生じるこ とがある。この鳴き現象は、耳障りでありドライバーに 不快感を与えているため、その対策が求められている。 【0003】図10は、鳴きの発生に対するアウタパッ ド6の振動及び車速の関係を示すものであり、この図か らもわかるように、鳴きは、アウタパッド6の振動の発 生とともに発生し、しかも、車両が減速するにしたがっ て大きくなっていることが認められる。また、図11に は、ディスク8の軸方向への変位に対するパッド6、7 に加わる圧縮力及びせん断力の関係を示すものであり、 パッド6、7に加わる圧縮力及びせん断力が、ディスク 8の変位に対して位相が僅かに遅れて変化し、その波形 は、略一致していることが認められる。

 2

が低速になり、ディスク8の回転速度が遅くなると、ディスク1回転あたりの鳴きの発生時間が長くなって騒音となる

【0005】上記のように発生する鳴きを低減させるために、従来では、ディスクブレーキ1に、例えば、キャリパ2等の部材の剛性を高める等の構造変更を行って、パッド6,7の摩擦振動に対する共振を低減させることが行われている。

[0006]

【発明が解決しようとする課題】しかしながら、上記のような鳴きの対策にあっては、剛性を高める構造変更を行うことにより、部材のコストが嵩んでしまうという問題があり、しかも、この鳴きに関係するキャリパ2等の構成部材は共振点が多いため、この構造変更による対策では、鳴きをある程度しか低減させることができなかった。

【0007】この発明は、上記事情に鑑みてなされたもので、コストアップを招くことなく、鳴きを大幅に低減させることが可能なブレーキ制御装置を提供することを目的としている。

[0008]

【課題を解決するための手段】上記目的を達成するため、請求項1記載のブレーキ制御装置は、ブレーキペダルと、該ブレーキペダルの踏力を検出するセンサと、該センサからの検出信号に応じたブレーキ力を各車輪にそれぞれ設けられたブレーキ装置にて発生させる制御手段とを有するブレーキ制御装置であって、前記制御手段は、ブレーキ作動時にて車両が所定速度以下となった際に、各ブレーキ装置におけるブレーキ力を所定サイクルにて加減させることを特徴としている。即ち、ブレーキ作動時にて車両が所定速度以下となると、制御手段が各車輪のブレーキ装置におけるブレーキカを所定サイクルにて加減するので、ブレーキ作動時におけるパッドの摩擦振動によるブレーキ装置の各構成部材の共振が抑えられ、したがって、ブレーキ作動時に生じる鳴き現象が大幅に低減される。

[0009]

【発明の実施の形態】以下、本発明のブレーキ制御装置の実施の形態を説明する。図1に示すものは、各車輪に)設けられた前述のディスクブレーキ(ブレーキ装置)1の液圧を制御するブレーキ制御装置である。図において、符号101は、ブレーキペダルであり、このブレーキペダル101の踏み込みによってマスターシリンダ102が液圧を発生するようになっている。【0010】また、符号104は、外部液圧供給源である。この外部液圧供給源104は、モータ105aによって駆動されて液圧を発生する液圧ボンプ105を有するもので、この液圧ボンプ105の出力側には、アキュームレータ106が接続され、発生した高い液圧を貯えるようになっている。

【0011】また、液圧ポンプ105は、リザーバ107から吸い上げたブレーキ液を加圧して各車輪のそれぞれの液圧制御弁108は、前記外部液圧供給源104からディスクブレーキ1のシリンダ3に作用する圧力を調整するもので、コントローラ(制御手段)111によって駆動が制御されるようになっている。

【0012】この液圧制御弁108のボディー109の内部には、スプール112がその軸方向に移動可能に設けられており、このスプール112が移動することにより、ディスクブレーキ1のシリンダ3に接続された管路131を、外部液圧供給源104の液圧ポンプ105からの管路132あるいはリザーバ107へつながる管路133のいずれかに連通させるようになっている。

【0013】また、この液圧制御弁108には、スプール112を移動させるための推力を発生させるソレノイド113が設けられており、前記コントローラ111から出力される駆動電流の大きさに応じた推力で、スプール112を増圧側(図中左方向)に付勢する。そして、この付勢力によりスプール112が増圧側(図中左方向)に移動すると、外部液圧供給源104の液圧ポンプ105からの管路132を、ディスクブレーキ1のシリンダ3に接続された管路131に連通させるようになっている。

【0014】また、この液圧制御弁108のスプール112は、ソレノイド113と反対側にはディスクブレーキ1のシリンダ3側の液圧が作用するようになっているとともに、例えばスプリング110によって減圧側(図中右方向)に付勢されている。これにより、ソレノイド113に駆動電流が出力されていないときには、スプール112は減圧側(図中右方向)に移動され、これにより、リザーバ107へつながる管路133を、ディスクブレーキ1のシリンダ3に接続された管路131に連通させるようになっている。

【0015】したがって、この液圧制御弁108は、スプール112に作用するソレノイド113による推力とスプリング110及びディスクブレーキ1のシリンダ3側の液圧による戻し力とを適宜バランスさせることによって、ディスクブレーキ1のシリング3側に対し、増圧、減圧または液圧保持を行えるようになっている。【0016】また、前記外部液圧供給源104のアキュームレータ106と上記構造の液圧制御弁108との間の管路132には、コントローラ111からの信号によって開閉駆動される液圧通路開閉弁129が設けられている。この液圧通路開閉弁129には、前記コントローラ111によって駆動が制御されるソレノイド129a及びバネ等の付勢手段129bが設けられており、ソレノイド129aの駆動によって管路132の開閉が行われるようになっている。

【0017】つまり、ブレーキ作動時はコントローラ1 50 がマスターシリンダ102からの管路134に連通さ

^--

11によってソレノイド129aが駆動されて弁が付勢 手段129bの付勢力に抗して移動され、管路132が 開かれ、外部液圧供給源104のアキュームレータ10 6から液圧制御弁108へ液圧が供給されるようになっ ており、ブレーキ非作動時には、コントローラ111に よってソレノイド129aの駆動が停止されて弁が付勢 手段129bの付勢方向へ移動され、管路132が閉ざ され、外部液圧供給源104から液圧制御弁108へ液 圧が供給されなくなるようになっている。

【0018】つまり、ブレーキ非作動時に加圧されたブレーキ液が液圧制御弁108へ送り出されて、この液圧制御弁108の内部にてリークしてリザーバ107へ戻されることによる外部液圧供給源104のアキュームレータ106における圧力低下を防止するようになっている。

【0019】また、符号121は、フェールセーフ弁で ある。このフェールセーフ弁121は、マスターシリン ダ102と前記管路131とを接続する管路134に設 けられたものである。このフェールセーフ弁121に は、前記コントローラ111によって駆動が制御される ソレノイド121a及びバネ等の付勢手段121bが設 けられており、ソレノイド121aの駆動によってディ スクブレーキ1のシリンダ3が、液圧制御弁108から の管路131あるいはマスターシリンダ102からの管 路134のいずれかに連通されるようになっている。 【0020】つまり、通常はコントローラ111によっ てソレノイド121aが駆動されて弁が付勢手段121 bの付勢力に抗して移動され、ディスクブレーキ1のシ リンダ3に管路131が連通され、ディスクブレーキ1 のシリンダ3に液圧制御弁108からの制御液圧が加わ るようになっており、ブレーキ作動時に何らかの原因に て液圧制御弁108からの液圧が設定値よりも低下した 場合には、コントローラ111によってソレノイド12 1 aの駆動が停止されて弁が付勢手段121bの付勢方 向へ移動され、ディスクブレーキ1のシリンダ3に管路 134が連通され、ディスクブレーキ1のシリンダ3に

【0021】また、マスターシリンダ102からの管路 0 134には、切り換え弁122を介してアキュームレー タ123が接続されている。切り換え弁122には、前 記コントローラ111によって駆動が制御されるソレノ イド122a及びバネ等の付勢手段122bが設けられ ており、ソレノイド122aの駆動によってアキューム レータ123とマスターシリンダ102からの管路13 4との連通、遮断が行われるようになっている。

マスターシリンダ102からの液圧が直接加わり、制動

力を発生させるようになっている。

【0022】つまり、通常はコントローラ111によってソレノイド122aが駆動されて弁が付勢手段122 bの付勢力に抗して移動され、アキュームレータ123 がファターシリンダ102からの策略134に連通さ

11/13/04, EAST Version: 2.0.1.4

れ、マスターシリンダ102からの液圧がアキュームレータ123へ適度に逃がされてブレーキペダル101からドライバーに適度の操作感が与えられるようになっており、ブレーキ作動時に何らかの原因にて液圧制御弁108からの液圧が設定値よりも低下した場合には、コントローラ111によってソレノイド122aの駆動が停止されて弁が付勢手段122bの付勢方向へ移動され、管路134とアキュームレータ123とが遮断され、マスターシリンダ102からの液圧がアキュームレータ123へ送り込まれることなく、フェールセーフ弁121を介してディスクブレーキ1のシリンダ3へ供給されるようになっている。

【0023】また、コントローラ111には、車両の速度を検出する車速センサ120が接続されており、この車速センサ120から検出信号が入力されるようになっている。なお、符号124は、マスターシリンダ圧を検出する踏力センサ(センサ)、符号125は、ディスクブレーキ1のシリンダ3へ作用される液圧を検出する圧力センサ、符号126は、車輪の回転速度を検出する車輪速センサ、符号128は外部液圧供給源104の液圧20を検出する圧力センサであり、これら踏力センサ124、圧力センサ125、128及び車輪速センサ126からの検出信号に基づいてコントローラ111が外部液圧供給源104、液圧制御弁108及びフェールセーフ弁121、切り換え弁122、液圧通路開閉弁129の各弁のソレノイド121a、122a、129aの駆動を制御するようになっている。

【0024】次に、このブレーキ制御装置におけるブレーキの制御を図2に示すフローチャート図に基づいて説明する。コントローラ111は、踏力センサ124から 30の検出データを読み込み(ステップS1)、その検出データ値に基づいて、ドライバーがブレーキペダル101を踏み込んでブレーキをかけたかを判定する(ステップS2)。

【0025】ブレーキがかけられたと判定したコントローラ111は、各車輪に生じさせるブレーキ力を設定する(ステップS3)。ここで、これら車輪へのブレーキカの設定は、ブレーキ作動時における前輪(フロント)、後輪(リア)に加わる荷重の変動に対応させて、予め設定されている関係(例えば図3)から決定される。つまり、図3に示す例においては所定の踏力値Pまでは踏力に比例したブレーキ力を前輪及び後輪に生じさせ、所定の踏力値Pを越えた時点から前輪には引き続き踏力に比例したブレーキ力を生じさせるが、後輪には、所定の踏力値Pを越えた時点以降は、所定の踏力値Pにおけるブレーキ力を生じさせる。これにより、車両は、ブレーキの作動により路面との摩擦力が減少する後輪におけるブレーキ力が抑えられて挙動が安定される。

【0026】また、コントローラ111は、車速センサ 制制御を行うものであるので、キャリバ2等のディスク 120からの検出信号に基づいて、ブレーキの作動によ 50 ブレーキ1の構成部品を構造変更して剛性を高めるよう

6

り車速が予め定められたしきい値(所定速度)以下となったか否かを判定する(ステップS4)。なお、このしきい値は、鳴きが生じ易くなる低速に設定されている。【0027】そして、コントローラ111が、車速がしきい値よりも速い場合は、前述のように決定された図3に基づくブレーキカの設定値にて車輪にブレーキカを生じさせる。つまり、コントローラ111は、液圧通路開閉弁129のソレノイド129aへ駆動電流を出力し、管路132を開いて外部液圧供給源104から液圧制御弁108へ液圧を供給させるとともに、液圧制御弁108へ液圧を供給させるとともに、液圧制御弁108へ次にませるとともに、液圧制御弁108へ次にませるとともに、液圧制御弁108のソレノイド113へ制御駆動電流を出力し、ディスクブレーキ1のシリンダ3へ制御液圧を供給させ、各車輪にて設定された値のブレーキカを発生させる(ステップS5)。

【0028】コントローラ111が、ブレーキの作動による減速によって車速がしきい値以下となったと判定すると、コントローラ111は、ブレーキ作動時における鳴きを低減させるために、図4に示すように、各車輪におけるブレーキ力を鳴き抑制設定値に設定する鳴き抑制制御を行う(ステップS6)。

【0029】つまり、各車輪のディスクブレーキ1にて発生させるブレーキ力を、各車輪におけるディスク8に対するパッド6、7の面圧を所定周波数にて加減変動させた鳴き抑制設定値に設定する。ここで、このときの変動周波数は、前記しきい値におけるディスク8(車輪)の回転周波数とされている。

【0030】ここで、車速のしきい値を20Km/hとし、車輪の有効半径を0.3mとすると、変動周波数は、 $20/(2\times0.3\pi\times3.6)=2.95$ Hzとなる。なお、このときの変動の周波数は、左右にて互いに逆位相とされ、かつ右前輪と左後輪とが同位相とされ、左前輪と右後輪とが同位相とされている。

【0031】そして、上記のように、設定したブレーキカにて各車輪にブレーキカを生じさせるべく、コントローラ111が、液圧制御弁108のソレノイド113の駆動を制御する(ステップS5)。

【0032】このように、ディスク8の回転周波数にてディスク8に対するパッド6、7の面圧を加減変動させながらブレーキ力を生じさせて車両を減速させることにより、パッド6、7の摩擦振動によるディスクブレーキ1のキャリパ2等の各構成部材の共振が抑えられ、ディスク8の回転周波数にて生じる鳴き現象が大幅に低減される

【0033】以上説明したように、上記のブレーキ制御装置によれば、車速が、鳴き現象が発生しやすくなる速度であるしきい値以下となった際に、各車輪におけるディスク8に対するパッド6、7の面圧を、その時点におけるディスク8の回転周波数にて加減変動させる鳴き抑制制御を行うものであるので、キャリパ2等のディスク

なことなく、ブレーキ作動時におけるパッド6、7の摩擦振動によるディスクブレーキ1のキャリパ2等の各構成部材の共振を確実に抑えることができ、これにより、ディスクブレーキ1をコストアップさせることなく、ディスク8の回転周波数にて生じる鳴き現象を大幅に低減させることができる。

【0034】また、各車輪のディスクブレーキ1におけるディスク8に対するパッド6、7の面圧の変動周波数を、左右にて互いに逆位相とし、かつ右前輪と左後輪、左前輪と右後輪をそれぞれ同位相としたことにより、鳴 10き抑制制御時における車両のヨー方向の挙動の安定性を確保しつつブレーキの鳴き現象を大幅に低減させることができる。

【0035】なお、この各車輪のディスクブレーキ1におけるディスク8に対するパッド6、7の面圧の変動周波数を、左右にて互いに同位相とし、かつ前後にて互いに逆位相として、ヨー成分の変動を相殺するようにしても良い。

【0036】また、上記鳴き抑制制御は、上記構成のブレーキ制御装置に限らず、各車輪のディスクブレーキ1のブレーキ力をそれぞれ制御することができるものであればいかなるシステムであっても良い。ここで、他のシステムのブレーキ制御装置として、電動ディスクブレーキ(ブレーキ装置)を制御するものを例にとって図6~図8を参照して以下に説明する。

【0037】電動ディスクブレーキ11は、車両の非回 転部に固定されるキャリア12と、このキャリア12に ディスク13の両側に配設された状態で摺動自在に支持 される一対のインナバッド14およびアウタバッド15 と、キャリア12とで構成される二カ所の摺動案内部1 6、16において該キャリア12にディスク13の軸線 方向に摺動自在となるよう支持された、パッド14、1 5を両側から挟持可能なキャリバ17とで主に構成され ている。

【0038】キャリア12は、ガイド穴20,20がそれぞれ穿設される二カ所の支持部21と、これら支持部21のガイド穴20,20の開口側同士を連結させる第1連結部22aと、これら支持部21,21のガイド穴20,20に対し反対側同士を連結させる第2連結部22bとを有している。

【0039】そして、キャリア12は、支持部21.2 1がディスク13の周方向における両端位置となり、かつ支持部21.21に穿設されたガイド穴20、20がディスク13の軸線方向(図6、図7における左右方向)に沿うようにディスク13に対し配置された状態で車体側に固定される。

【0040】支持部21,21の内側位置には相互に対向するように一対のパッドガイド23,23が設けられており、これらパッドガイド23,23により、インナパッド14およびアウタパッド15はディスク13の動

8 線方向に沿って摺動自在となるようにそれぞれの両端位 置において支持されることになる。

【0041】キャリバ17は、略円筒状の筒状部材25と、該筒状部材25の一側に固定されこれを閉塞させる 底部材26と、筒状部材25の他側に固定される先端部 材27とを有するハウジング28を具備している。

【0042】筒状部材25には、その中心軸線を中心として相反する方向に突出する突出部30,30が形成されており、これら突出部30,30には、それぞれ、筒状部材25の軸線方向と平行してピン31が底部材26に対し反対方向に延出するように固定されている。そして、これらのピン31,31がキャリア12のガイド穴20,20に摺動自在に嵌合されることで、キャリバ17はキャリア12にディスク13の軸線方向に沿って摺動自在に支持されることになる。

【0043】ハウジング28には、モータ33と、この モータ33の回転運動を直線運動に変換するボールネジ (変換機構部)34とが設けられている。モータ33 は、筒状部材25および底部材26と、筒状部材25の 内周部に取り付けられたコイル35と、筒状部材25の 底部材26に対し反対側の内周部に取り付けられたベア リング36と、このベアリング36を介して回転自在に 支持されたボールネジ34のナット部材37の外周部に 35の内側に位置するようにナット部材37の外周部に

固定されたマグネット38とを有している。

【0044】ボールネジ34は、内周部にメネジ部37 aが形成された上記ナット部材37と、このナット部材37の内側に配置されるとともに外周部にオネジ部40 aが形成されたネジ部材40と、ナット部材37のメネジ部37aとネジ部材40のオネジ部40aとの間に介在されたボール41とを有している。ここで、ボールネジ34のネジ部材40は、底部材26に対し、相対回転が規制された状態で軸線方向移動が可能なスライド機構部43は、底部材26に形成されたスプライン穴44と、このスプライン穴44に嵌合するよう形成されるとともにネジ部材40の一端側に固定されたスプライン部材45とで構成されている。

【0045】底部材26には、スプライン穴44と同軸をなしてシリンダ穴46が形成されており、このシリンダ穴46には、スプライン部材45のネジ部材40に対し反対側に当接可能なピストン47が摺動自在に嵌合されている。そして、底部材26には、このピストン47とシリンダ穴46とでピストン47より反スプライン部材45側に形成される室48を外部に連通させるボート49が形成されている。なお、シリンダ穴46の内周部にはピストン47の外周面との隙間をシールするシール部材50が設けられている。

ており、これらパッドガイド23,23により、インナ 【0046】筒状部材25の底部材26に対し反対側のパッド14およびアウタパッド15はディスク13の軸 50 端部には、ベアリング36を筒状部材25に保持させる

取付部材52が固定されており、この取付部材52には、ナット部材37に固定された回転円板53の回転位置を検出することによりナット部材37の回転位置を検出する位置検出器54が固定されている。

【0047】筒状部材25の底部材26に対し反対側の 端部には、先端部材27が固定されている。この先端部 材27は、一端側で筒状部材25に固定されるディスク パス部56と、該ディスクパス部56の他端側から略垂 直に延出する爪部57とを有しており、爪部57がボー ルネジ34のネジ部材40に対向する状態で筒状部材2 10 5に固定されている。

【0048】ここで、キャリパ17をキャリア12に支持させた状態で、モータ33およびボールネジ34はそれぞれの軸線をディスク13の軸線に平行させることになり、ボールネジ34はそのネジ部材40がインナパッド14のディスク13に対し反対側に当接可能に対向配置され、先端部材27は、ディスクパス部56がディスク13の外周部を跨ぐように延出し爪部57がアウタパッド15のディスク13に対し反対側に当接可能に対向配置されることになる。

【0049】また、先端部材27および取付部材52には、ボールネジ34のネジ部材40の外側を覆うように蓋部材58が固定されており、この蓋部材58の内周部とネジ部材40の外周部との間には、ボールネジ34の螺合部分等にほこり等が入るのを防止するダストブーツ59が設けられている。

【0050】そして、図8に示すように、上記構成の電動ディスクブレーキ11が、車両の前後左右の各車輪に対しそれぞれ設けられており、すべての電動ディスクブレーキ11のモータ33および位置検出器54がコント30ローラ(制御手段)60に接続されている。ここで、各モータ33はそれぞれを駆動するためにコントローラ60に設けられた図示せぬモータドライバに接続されている。

【0051】ここで、図8において符号63は、運転者により操作入力がなされるブレーキペダルであり、符号64はブレーキペダル63の操作量を検出する操作量検出センサ(センサ)、符号65はブレーキペダル63への入力でブレーキ液圧を発生させるマスタシリンダをそれぞれ示しており、すべての電動ディスクブレーキ11のうち、前二輪に配置されるものには、マスタシリンダ65からのブレーキ液圧がボート49を介して室48に導入されている。

【0052】コントローラ60は、操作量検出センサ64で検出されたブレーキペダル63の操作量に応じて各車輪にブレーキ力を発生させるように、各電動ディスクブレーキ11のそれぞれについて、モータ33を位置検出器54の回転位置データに基づいてフィードバック制御する。

【0053】すなわち、コントローラ60は、後二輪の 50 ブレーキ力を鳴き抑制用の鳴き抑制設定値に設定し、こ

10

電動ディスクブレーキ11においては電動ディスクブレーキ11のみで必要なブレーキ力を発生させるように各モータ33を制御する一方、前二輪の電動ディスクブレーキ11においては必要なブレーキ力に対しマスタシリンダ65で発生するブレーキ液圧によるブレーキ力を補充するブレーキ力を電動ディスクブレーキ11で発生させるように各モータ33を制御する。

【0054】コントローラ60は、ブレーキ力を発生させる際に、モータ33でボールネジ34のナット部材37を正方向に回転させる。すると、スライド機構部43で回転が規制されたネジ部材40が、ディスク13方向に移動しインナバッド14をディスク13に接触させる一方、その反力でキャリパ17がキャリア12に対し移動して爪部57をディスク方向に移動させることになり、このようにして最終的に、ネジ部材40と爪部57とでインナバッド14およびアウタバッド15がディスク13の方向に押圧され、これらパッド14,15がディスク13に接触してブレーキ力を発生させる。

【0055】なお、マスタシリンダ65からのブレーキ) 液圧が室48に導入されている電動ディスクブレーキ11においては、上記に加えて、このブレーキ液圧による推進力がピストン47を介してネジ部材40に伝達される。すると、ボールネジ34は回転運動と直線運動との可逆性を有するため、この推進力でネジ部材40が回転しつつモータ33による推進力と合わせてパッド14.15をディスク13に押圧してブレーキ力を発生させる。

【0056】他方、コントローラ60は、この状態からブレーキ力を緩める際に、モータ33でナット部材37を上記正方向に対し逆の戻し方向に回転させる。すると、回転が規制されたネジ部材40がディスク13から離間する方向に移動し、その結果、インナパッド14およびアウタバッド15がディスク13から離間してブレーキ力を解除させる。なお、マスタシリンダ65からのブレーキ液圧が室に導入されている電動ディスクブレーキ11においては、このブレーキ液圧の低下も合わせてブレーキ力を解除させる。また、コントローラ60にも、車両の速度を検出する車速センサ66が接続されており、この車速センサ66から検出信号が入力されるようになっている。

【0057】そして、上記構造の電動ディスクブレーキ 11を制御するブレーキ制御装置においても、コントローラ60は、ブレーキの作動により車速が低下した際に、車速センサ66からの検出信号に基づいて、車速が 予め定められたしきい値以下であるか否かを判定し、しきい値以下となったことを判定した場合に、鳴き抑制制御を行うようになっている。

【0058】つまり、前述したように、コントローラ6 0は、図4あるいは図5に示すように、各車輪における ブレーキカを鳴き抑制用の鳴き抑制器定備に設定して、 11

の設定したブレーキ力を各車輪に生じさせるべく各電動 ディスクブレーキ11を制御し、各車輪におけるディス ク13に対するパッド14,15の面圧を所定周波数に て加減変動させる。

【0059】そして、このように、ディスク13の回転 周波数にてディスク13に対するパッド14,15の面 圧を加減変動させながらブレーキ力を生じさせて車両を 減速させることにより、パッド14,15の摩擦振動に よる電動ディスクブレーキ11のキャリパ17等の各構 成部材の共振が抑えられ、ディスク13の回転周波数に 10 て生じる鳴き現象が大幅に低減される。

[0060]

【発明の効果】以上、説明したように、本発明のブレー キ制御装置によれば、下記の効果を得ることができる。 請求項1記載のブレーキ制御装置によれば、ブレーキ作 動時にて車両が所定速度以下となると、制御手段が各車 輪のブレーキ装置におけるブレーキ力を所定サイクルに て加減させるので、ブレーキ装置の構成部品を構造変更 して剛性を高めるようなことなく、ブレーキ作動時にお けるパッドの摩擦振動によるブレーキ装置を構成する各 構成部材の共振を確実に抑えることができ、したがっ て、コストアップを招くことなくブレーキ作動時に生じ る鳴き現象を大幅に低減させることができる。

【図面の簡単な説明】

【図1】 本発明の実施の形態のブレーキ制御装置の全 体構成を説明するブレーキの液圧系統図である。

【図2】 本発明の実施の形態のブレーキ制御装置によ る車両の制動時の制御の流れを説明するフローチャート 図である。

【図3】 本発明の実施の形態のブレーキ制御装置にお 30 124 踏力センサ(センサ)

【図1】

ける前輪と後輪とのブレーキペダルの踏力に対するブレ

ーキカの関係を示すグラフ図である。 【図4】 本発明の実施の形態のブレーキ制御装置にお ける鳴き抑制制御時の各ディスクブレーキでのブレーキ 力の状態を示すグラフ図である。

12

【図5】 本発明の実施の形態のブレーキ制御装置にお ける鳴き抑制制御時の各ディスクブレーキでのブレーキ 力の状態の他の例を示すグラフ図である。

【図6】 本発明の他の実施の形態のブレーキ制御装置 を構成するディスクブレーキ装置の構成及び構造を説明 するディスクブレーキ装置の側断面図である。

【図7】 本発明の他の実施の形態のブレーキ制御装置 を構成する電動ディスクブレーキの構成及び構造を説明 する電動ディスクブレーキの平面図である。

【図8】 本発明の他の実施の形態のブレーキ装置の全 体構成を説明するブレーキ装置の概略構成図である。

【図9】 ディスクブレーキの構成及び構造を説明する ディスクブレーキの概略断面図である。

【図10】鳴きの音に対する車速及びパッドの摩擦振動 の関係を示すグラフ図である。

【図11】 ディスクの軸方向への変位に対するパッド に加わる圧縮力及びせん断力の関係を示すグラフ図であ

【符号の説明】

1 ディスクブレーキ (ブレーキ装置)

11 電動ディスクブレーキ (ブレーキ装置)

60,111 コントローラ (制御手段)

63.101 ブレーキペダル

64 操作量検出センサ(センサ)

ブレーキカ 102 104 ιóι 133 108 111 1226 134 1210 1216 112 109 131

【図3】

計力

11/13/04, EAST Version: 2.0.1.4

11/13/04, EAST Version: 2.0.1.4

PAT-NO:

JP411278229A

DOCUMENT-IDENTIFIER:

JP 11278229 A

TITLE:

BRAKE CONTROL DEVICE

COUNTRY

N/A

N/A

N/A

PUBN-DATE:

October 12, 1999

INVENTOR-INFORMATION:

NAME
KUMEMURA, YOICHI
YAMAGUCHI, TOUMA
OIKAWA, HIROTAKA

ASSIGNEE-INFORMATION:

NAME COUNTRY TOKICO LTD N/A

APPL-NO:

JP10084744

APPL-DATE:

March 30, 1998

INT-CL (IPC): B60T008/32

ABSTRACT:

PROBLEM TO BE SOLVED: To <u>remarkably</u> reduce the generation of <u>squeal during</u>

operation of a brake without increasing a cost.

SOLUTION: A pedalling force sensor is provided to detect a master cylinder

pressure generated by a brake pedal. A controller is provided to supply a

hydraulic pressure from an external hydraulic pressure feed source to the

cylinder of a disc brake through drive of a hydraulic pressure control valve

based on a detecting signal from the pedalling force sensor. When, during

actuation of a brake, a car speed is reduced to a value lower than a threshold,

the controller sets the brake force of each disc brake to a squeal suppression

set value regulated by the rotation frequency of a wheel at the threshold. By suppressing resonance of the constitution members of the disc brake through friction vibration of a pad during operation of a brake, the occurrence of squeal phenomenon is decreased.

COPYRIGHT: (C) 1999, JPO

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:		
☐ BLACK BORDERS		
\square IMAGE CUT OFF AT TOP, BOTTOM OR SIDES		
☐ FADED TEXT OR DRAWING		
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING		
☐ SKEWED/SLANTED IMAGES		
\square COLOR OR BLACK AND WHITE PHOTOGRAPHS		
☐ GRAY SCALE DOCUMENTS		
☐ LINES OR MARKS ON ORIGINAL DOCUMENT		
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY		
Потир		

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.