Unsupervised climate clustering using autoencoders

Leander Moesinger¹

¹Vienna University of Technology, Department of Geodesy and Geoinformation

Introduction

Data

- Vegetation Optical Depth (VOD) time series
 - Related to vegetation water content and biomass
 - Global coverage
 - Since 1987
 - Daily values
 - Has data gaps
- Also mean temperature and precipitation is used

VOD time series and global mean

Network Architecture

Cluster encoding using K-Autoencoder means to generate global VOD TS size: \sim 365*30 \sim =11000 values VOD climate clusters! encoder Prec. Temp. encoding-Encoding size: 4 network network decoder **Precipitation** Temperature VOD

Results

Applied Deep Learning

Lessons learned

- Dont spend too much time optimizing hyperparameters, data used and preprocessing is much more important!
- The loss of an autoencoder does not directly translate to how good an encoding is