MATH2019 PROBLEM CLASS

EXAMPLES 3

DIV, GRAD, CURL AND LINE INTEGRALS

1996 1. A moving particle has position vector

$$\mathbf{r}(t) = \cos(\omega t) \mathbf{i} + \sin(\omega t) \mathbf{j} + t \mathbf{k}$$

where ω is a positive constant and t is time.

- i) Find the acceleration of the particle and show that it has constant magnitude.
- ii) Describe the path of the particle.
- iii) Evaluate $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ where \mathcal{C} is the portion of the path of the particle between t = 0 and $t = 2\pi/\omega$ and

$$\mathbf{F} = yz\,\mathbf{i} + xz\,\mathbf{j} + xy\,\mathbf{k}\,.$$

[Hint: Show that $\mathbf{F} = \nabla(xyz)$.]

2014, S1 2. Given the vector field $\mathbf{G} = yz^2\mathbf{i} + xz^2\mathbf{j} + 2xyz\mathbf{k}$ calculate:

- i) $\operatorname{div} \mathbf{G}$.
- ii) $\operatorname{curl} \mathbf{G}$.

3. Let $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$ be a path in space embedded within the surface $\phi(x, y, z) = 1$. Assuming that all relevant derivatives exist use the chain rule to show that grad ϕ is perpendicular to the velocity vector $\mathbf{v}(t)$ for all t.

2014, S2 4. Given the vector field $\mathbf{F} = \sin x \, \mathbf{i} + \cos x \, \mathbf{j} + xyz \, \mathbf{k}$ calculate:

- i) div \mathbf{F} .
- ii) curl F.

2015, S1 5. Given the vector field $\mathbf{F} = xz \, \mathbf{i} + y^2 \, \mathbf{j} + yz \, \mathbf{k}$ calculate:

- i) div $\mathbf{F} = \nabla \cdot \mathbf{F}$,
- ii) curl $\mathbf{F} = \nabla \times \mathbf{F}$ and
- iii) div (curl \mathbf{F}) = $\nabla \cdot (\nabla \times \mathbf{F})$.

2016, S2 6. i) Suppose that

$$\mathbf{r}_1(t) = x_1(t)\mathbf{i} + y_1(t)\mathbf{j} + z_1(t)\mathbf{k}$$

and

$$\mathbf{r}_2(t) = x_2(t)\mathbf{i} + y_2(t)\mathbf{j} + z_2(t)\mathbf{k}$$

are two curves in \mathbb{R}^3 . Prove that

$$[\mathbf{r}_1(t) \cdot \mathbf{r}_2(t)]' = \mathbf{r}_1'(t) \cdot \mathbf{r}_2(t) + \mathbf{r}_1(t) \cdot \mathbf{r}_2'(t).$$

ii) Suppose that a particle P moves along a curve C in \mathbb{R}^3 in such a manner that its velocity vector is always perpendicular to its position vector. Using part i) prove that the path C lies on the surface of a sphere whose centre is the origin.

2016, S2

7. Consider the vector field $\mathbf{F} = (27y - y^3)\mathbf{i} + (x^3)\mathbf{j} + (x - xz)\mathbf{k}$.

- i) Calculate curl **F**.
- ii) Sketch the curve $\mathcal C$ in $\mathbb R^3$ for which curl $\mathbf F{=}\mathbf 0$.

2017, S2

8. A vector field is given by

$$\mathbf{F}(x, y, z) = \sin x \sin y \ \mathbf{k}.$$

- i) Calculate $\nabla \times \mathbf{F}$.
- ii) Calculate $\nabla \times (\nabla \times \mathbf{F})$.
- iii) Hence, or otherwise, evaluate $\nabla \times (\nabla \times (\nabla \times (\nabla \times \mathbf{F})))$.

2014, S1

9. By evaluating an appropriate line integral calculate the work done on a particle traveling in \mathbb{R}^3 through the vector field $\mathbf{F} = -y\mathbf{i} + xyz\mathbf{j} + x^2\mathbf{k}$ along the straight line from (1, 2, 3) to (2, 2, 5).

2014, S2

10. Let C denote the path taken by a particle travelling in a straight line from point P(-2,3,0) to point Q(-2,0,3).

- i) Write down a vector function $\mathbf{r}(t)$ that describes the path \mathcal{C} and give the value of t at the start and the end of the path.
- ii) If $\mathbf{F} = y^2 \mathbf{i} + xyz \mathbf{j} z^2 \mathbf{k}$ evaluate the line integral $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$.

2015, S1

- 11. Let C denote the path taken by a particle travelling anticlockwise around the unit circle, starting and ending at the point (1,0) [i.e., the particle travels completely around the circle].
 - i) Write down a vector function $\mathbf{r}(t)$ that describes the path \mathcal{C} and give the value of t at the start and the end of the path.
 - ii) If $\mathbf{F} = -3y \, \mathbf{i} + 3x \, \mathbf{j}$ evaluate the line integral $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$.

2015, S2

12. Given a vector field

$$\mathbf{F} = 8e^{-x}\mathbf{i} + \cosh z\,\mathbf{j} - y^2\mathbf{k}$$

- i) Compute $\nabla \cdot \mathbf{F}$ (i.e., div \mathbf{F}) and $\nabla \times \mathbf{F}$ (i.e., curl \mathbf{F}).
- ii) Calculate the line integral $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ where \mathcal{C} is the straight line path from A(0,1,0) to $B(\ln(2),1,2)$.

2017, S1

13. A charged particle moves in an electric field given by

$$\mathbf{F}(x, y, z) = 3y\mathbf{i} - 3x\mathbf{j}.$$

Let C denote the path taken by the particle travelling anticlockwise around the unit circle, starting at (1,0) and ending at (0,1).

- i) Write down a vector function $\mathbf{r}(\theta)$ that describes the path \mathcal{C} and give the values of θ at the start and the end of the path.
- ii) Calculate the work done on the particle as it moves along the path \mathcal{C} by evaluating the line integral $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$.

2018, S1

14. Consider the scalar field

$$\phi(x, y, z) = xe^{z-1} + \cos y$$

and let $\mathbf{F} = \nabla \phi$.

- i) Calculate F.
- ii) What is $\nabla \times \mathbf{F}$?
- iii) Hence, or otherwise, calculate the line integral $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ along the straight line path \mathcal{C} from (1,0,1) to $(5,\pi,1)$.

2018, S2

15. Consider the vector field

$$\mathbf{F} = yz^2\mathbf{i} + xz^2\mathbf{j} + (2xyz + 3)\mathbf{k}.$$

- i) Calculate div **F**.
- ii) Show that **F** is conservative by evaluating curl **F**.
- iii) The path \mathcal{C} in \mathbb{R}^3 starts at the point (3,4,7) and subsequently travels anticlockwise four complete revolutions around the circle $x^2 + y^2 = 25$ within the plane z = 7, returning to the starting point (3,4,7). Using part ii) or otherwise, evaluate the work integral $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$.