Отчёт по лабораторной работе №7

дисциплина: Математическое моделирование

Зорин Илья Михайлович

Содержание

<u> </u>	1
Задание	
Зыполнение лабораторной работы	
Зыводы	3

Цель работы

Построить график распространения рекламы.

Задание

Вариант 47

Задача: постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{\partial n}{\partial t} = (0.91 + 0.00005 * n(t))(N - n(t))$$

2. $\frac{\partial n}{\partial t} = (0.00001 + 0.81 * n(t))(N - n(t))$
3. $\frac{\partial n}{\partial t} = (0.18 * t + 0.31 * t * n(t))(N - n(t))$

При этом объем аудитории N = 1940, в начальный момент о товаре знает 26 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Выполнение лабораторной работы

1. Теоритические сведения

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о

которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио. телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих. Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{\partial n}{\partial t}$ скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $a_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $a_1(t) > 0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $a_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением: $\frac{\partial n}{\partial t} = (0.91 + 0.00005 * n(t))(N - n(t))$

2. Построение графиков

2.1 Написал программу на Modelica:

```
model lab07
  parameter Real a=0.91;
  parameter Real b=0.00005;
  parameter Real N=1940;
  parameter Real n0=26;
  Real n(start=n0);
equation
  der(n)=(a+b*n)*(N-n);
end lab07;
```

Получил следующий график (см. рис. @fig:002).

Рис. 1. График для 1 слусая

2.2 Написал программу на Modelica:

```
model lab0702
  parameter Real a=0.000001;
  parameter Real b=0.81;
  parameter Real N=1940;
  parameter Real n0=26;
  Real n(start=n0);
equation
  der(n)=(a+b*n)*(N-n);
end lab0702;
```

Получил следующий график (см. рис. @fig:003).

Рис. 2. График для 2 случая

Выводы

Построить график распространения рекламы.