10

Въпрос 10

Ред на Лоран. Теорема за резидуумите.

Нека разглеждаме следния степенен ред

$$\begin{split} \sum_{n=-\infty}^{+\infty} a_n.(z-z_0)^n &= \underbrace{\sum_{n=-\infty}^{-1} a_n.(z-z_0)^n}_{\text{главна}} + \underbrace{\sum_{n=0}^{+\infty} a_n.(z-z_0)^n}_{\text{правилна}} = \\ &= \frac{a_{-1}}{(z-z_0)} + \frac{a_{-2}}{(z-z_0)^2} + ... + \frac{a_{-n}}{(z-z_0)^n} + ... + a_0 + a_1.(z-z_0) + a_n.(z-z_0)^n + ... \end{split}$$

Дефиниция 1.

Такива редове се наричат редове на Лоран.

Кога този ред е сходящ?

$$f(z) = g(z) + h(z)$$

g(z) - главна част

h(z) - правилна част

Реда на Лоран е сходящ когато и двете части са сходящи и реда е равен на сумата на тези две части.

1).Разглеждаме правилната част

$$h(z) = \sum_{n=0}^{+\infty} a_n \cdot (z - z_0)^n$$

За този ред $\exists R$ (радиус на сходимост) $R = \frac{1}{\lim \sqrt[n]{a_n}}$, такъв че при

$$\left|z-z_{0}\right| < R$$
 редът е сходящ. $\left|z-z_{0}\right| > R$ редът е разходящ.

2).Разглеждаме главната част

$$g(z) = \frac{a_{-1}}{(z - z_0)} + \frac{a_{-2}}{(z - z_0)^2} + \dots + \frac{a_{-n}}{(z - z_0)^n} + \dots$$

Полагаме $\frac{1}{(z-z_0)} = \xi$

$$g(z) = G(\xi) = a_{-1}.\xi + a_{-2}.\xi^2 + ... + a_{-n}.\xi^n + ...$$

Това е степенен ред по стойностите на ξ и е сходящ при $|\xi| < \frac{1}{l}$

Полагаме $a_{-n} = c_n$.

$$l = \lim \sqrt[n]{c_n} = \lim \sqrt[n]{a_{-n}}$$

$$\frac{1}{(z-z_0)} < \frac{1}{l} \Longleftrightarrow \left|z-z_0\right| > l = r \ \text{,т.е редът е сходящ при } \left|z-z_0\right| < r \ .$$

Сега да разгледаме три случая за r и R.

1. R>r

Редът на Лоран е сходящ в $r < \left| z - z_0 \right| < R$.

Тази област се нарича пръстен или венец. Бележим го с
 $\,K(z_0,r,R)\,.\,$

2. $R = \infty$

Редът на Лоран е сходящ във външноста на кръга с център т. \boldsymbol{z}_0 и радиус г.

3. R<r

Редът на Лоран е разходящ.

Лема(за единственост на развитието на Лоран)

Нека f(z) е холоморфна/аналитична във венеца $K(z_0,r,R)$.Нека

$$f(z) = \sum_{n=-\infty}^{+\infty} a_n \cdot (z-z_0)^n$$
 и $f(z) = \sum_{n=-\infty}^{+\infty} b_n \cdot (z-z_0)^n$. Тогава $a_n = b_n$, т.е.

развитието в ред на Лоран е единствено.

Д-во:

Избираме произволна окръжност вътре във венеца γ_{ρ} , $r < \rho < R$.

Имаме

$$f(z) = \sum_{n=0}^{+\infty} a_n . (z - z_0)^n$$
 (1)

Умножаваме (1) по $(z-z_0)^{-m-1}$. После интегрираме по γ_ρ и умножаваме $\frac{1}{2\pi i}$. m — фиксирано цяло число.

$$\frac{1}{2\pi i} \int_{\gamma_0} \frac{f(\xi)d\xi}{(\xi - z_0)^{m+1}} = \sum_{n=-\infty}^{+\infty} \frac{a_n}{2\pi i} \int_{\gamma_0} (\xi - z_0)^{n-m-1} d\xi$$

$$\int_{\gamma_{\rho}} (z - z_0)^{n - m - 1} d\xi = \begin{cases} 0, n \neq m \\ 2\pi i, n = m \end{cases}$$

$$\Rightarrow a_n = \int_{\gamma_\rho} \frac{f(\xi)d\xi}{(\xi - z_0)^{n+1}}$$

⇒ коефициентите се определят еднозначно.

Теорема(на Лоран)

Всяка функция f ,
която е холоморфна във венец с център т. z_0 ,
притежава лораново развитие

$$f(z) = \sum_{n=-\infty}^{+\infty} a_n . (z-z_0)^n$$
 в този венец.
При това коефициентите a_n се

определят еднозначно от формулите

$$a_n = \int_{\gamma_\rho} \frac{f(\xi)d\xi}{(\xi - z_0)^{n+1}}$$
, $n = 0, \pm 1, \pm 2, ...$

където γ_{ρ} е окръжност с център z_0 : $r<\rho< R$ и $\left|\xi-z_0\right|<\rho$.(γ_{ρ} е окръжност която се съдържа във венеца $K(z_0,r,R)$).

Д-во:

Имаме че f е холоморфна във венеца $K(z_0,r,R)$.

Избираме числата $r_{\rm l}$, $R_{\rm l}$ подчинени единствено на условието

$$r < r_1 < (z - z_0) < R_1 < R$$

Получаваме

Избираме т. z в новия венец $K_1(z_0,r_1,R_1)$. Тъй като f е холоморфна в K_1 и по контурните му окръжности , то можем да изразим стойността на f в т. z , като използваме формула на Коши за многосвързана област.

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_{E}} \frac{f(\xi)d\xi}{(\xi - z)} - \frac{1}{2\pi i} \int_{\gamma_{E}} \frac{f(\xi)d\xi}{(\xi - z)} = I_{1} + I_{2}$$

Сега ще развием в редове по степени на $(\xi-z)$ подинтегралните функции на I_1 и I_2 .

$$I_1: \frac{1}{(1-\frac{z-z_0}{\xi-z_0})} \quad \text{е геометрична прогресия и } \left|\frac{z-z_0}{\xi-z_0}\right| = \frac{\left|z-z_0\right|}{R_1} = q < 1.$$

$$\frac{1}{(\xi-z)} = \frac{1}{(\xi-z_0+z_0-z)} = \frac{1}{((\xi-z_0)-(z-z_0))} =$$

$$= \frac{1}{(\xi-z_0).(1-\frac{z-z_0}{\xi-z_0})} = \frac{1}{(\xi-z_0)}.(1+\frac{z-z_0}{\xi-z_0}+(\frac{z-z_0}{\xi-z_0})^2+\ldots) =$$

$$= \frac{1}{\xi-z_0} + \frac{z-z_0}{(\xi-z_0)^2} + \frac{(z-z_0)^2}{(\xi-z_0)^3} + \ldots + \frac{(z-z_0)^n}{(\xi-z_0)^{n+1}} + \ldots =$$

$$= \sum_{n=0}^{\infty} \frac{1}{\xi-z_0}.(\frac{z-z_0}{\xi-z_0})^n$$

Нека $M = \max\{|f(\xi)| : \xi \in \gamma_{R_1}\}$

Значи реда $\sum_{n=0}^{\infty} \frac{f(\xi)}{\xi - z_0} \cdot (\frac{z - z_0}{\xi - z_0})^n$ е равномерно сходящ върху γ_{R_1} и може да се интегрира почленно.

$$I_{1} = \underbrace{\frac{1}{2\pi i} \int\limits_{\gamma_{R_{1}}} \frac{f(\xi)d\xi}{(\xi - z_{0})}}_{a_{0}} + (z - z_{0}) \cdot \underbrace{\frac{1}{2\pi i} \int\limits_{\gamma_{R_{1}}} \frac{f(\xi)d\xi}{(\xi - z_{0})^{2}}}_{a_{1}} + \dots + (z - z_{0})^{n} \cdot \underbrace{\frac{1}{2\pi i} \int\limits_{\gamma_{R_{1}}} \frac{f(\xi)d\xi}{(\xi - z_{0})^{n+1}}}_{a_{n}} + \dots$$

Сега ще направим същото за $\ I_2$.

$$\begin{split} &\left|\frac{\xi-z_0}{z-z_0}\right| = \frac{r_1}{\left|z-z_0\right|} = q_1 < 1 \\ &I_2 : -\frac{1}{(\xi-z)} = \frac{1}{(z-z_0) - (\xi-z_0)} = \frac{1}{(z-z_0).(1 - \frac{\xi-z_0}{z-z_0})} = \\ &= \frac{1}{(z-z_0)} + \frac{\xi-z_0}{(z-z_0)^2} + \frac{(\xi-z_0)^2}{(z-z_0)^3} + \dots + \frac{(\xi-z_0)^n}{(z-z_0)^{n+1}} + \dots = \sum_{n=0}^{\infty} \frac{1}{z-z_0} \cdot (\frac{\xi-z_0}{z-z_0})^n \end{split}$$

По същите съображения както горе можем да интегрираме почленно.

$$I_{2} = \frac{1}{z - z_{0}} \cdot \underbrace{\frac{1}{2\pi i} \int_{\gamma_{1}} f(\xi) d\xi}_{q_{-1}} + \frac{1}{(z - z_{0})^{2}} \cdot \underbrace{\frac{1}{2\pi i} \int_{\gamma_{1}} (\xi - z_{0}) \cdot f(\xi) d\xi}_{q_{-2}} + \dots$$

$$..+\frac{1}{(z-z_0)^{n+1}}\cdot \underbrace{\frac{1}{2\pi i}\int_{\gamma_\eta} (\xi-z_0)^n.f(\xi)d\xi}_{q_{-n}} + ...$$

След всички направени сметки получаваме следното нещо:

$$f(z) = a_0 + a_1 \cdot (z - z_0) + \dots + a_n \cdot (z - z_0)^n + \dots + \frac{a_{-1}}{(z - z_0)} + \frac{a_{-2}}{(z - z_0)^2} + \dots + \frac{a_{-n}}{(z - z_0)^n} + \dots$$
(3)

Понеже т. z беше избрана произволно във венеца $K_1(z_0,r_1,R_1)$, то развитието (3) се отнася за всяка точка от този венец. Освен това коефициентите a_n и a_{-n} не зависят от т. z , то развитието (3) е лораново развитие на f във венеца $K_1(z_0,r_1,R_1)$.

Като вземем впредвид , че числата r_1 R_1 са подчинени единствено на условието $r < r_1 < (z-z_0) < R_1 < R$, то f може да се представи като ред на Лоран във всеки венец съдържащ се във венеца $K(z_0,r,R)$.Лемата, която ни гарантира единствеността на лорановото развитие, пък ни дава основание да твърдим че развитието на (3) не зависи от венеца $K_1(z_0,r_1,R_1)$. \Longrightarrow теоремата е доказана с еднозначно определани коефициенти.

Изолирани особени точки на холоморфни функции. Класификация.

Дефиниция 2.

Точката z_0 се нарича изолирана особена точка(изолирана особеност) на f ,ако f е холоморфна в известна околност на z_0 с изключение само на т. z_0 . Това означава, че съществува околност $K(z_0,0,R)=\{0< z-z_0< R\}$, в която f е холоморфна.

Дефиниция 3.

Нека т. z_0 е изолирана особеност на f и нека a_n , $n=0,\pm 1,\pm 2,\ldots$ са коефициентите на лорановото развитие на f около т. z_0 . Тогава

- 1. т. z_0 се нарича отстранима особеност на f , ако $a_n=0$ за $\forall n<0$,т.е ако лорановия ред не съдържа членове с отрицателни степени на $z-z_0$.
- 2. т. z_0 се нарича полюс на f , ако лорановия ред на f съдържа само краен брой членове с отрицателни степени на $z-z_0$. Ако $a_n=0$ за $\forall n \leq -m-1$, но $a_n \neq 0$ за m>0 , т. z_0 се нарича m -кратен полюс на f (m кратност на полюса).

47

3. т. z_0 се нарича съществена осбеност на f , ако $a_n \neq 0$ за безброй много отрицателни стойности на n , т.е. ако лорановото развитие на f съдържа безброй много членове с отрицателни степени на $z-z_0$.

Изследване на поведението на функциите около изолираните им особености.

I. $T. Z_0$ е отстранима особеност на f

Теорема на Риман(за отсранимите особености)

НДУ т. z_0 да е отсранима особеност е f(z) да бъде ограничена в околност на т. z_0 (т.е. $f(z) \leq M, \big|z-z_0\big| < \rho$)

Д-во:

1). Нека т. z_0 е такава, че в околност на т. z_0 ф-цията f се разлага в ред на Лоран без отрицателни степени.

От дефинция 3
$$\Rightarrow \exists K(z_0,0,R): f(z) = \sum_{n=0}^{+\infty} a_n.(z-z_0)^n$$

Имаме, че
$$\lim_{z \to z_0} f(z) = a_0$$
.

Правим полагане $f(z_0) = a_0$

По този начин "додефинираме" функцията f и тя вече става холоморфна в целия кръг $|z-z_0| < R \implies$ тя е хепрекъсната \Longrightarrow тя е ограничена.

2). Нека имаме, че f е ограничена в околност на т. z_0 $f(z) \leq M$

Имаме
$$f(z) = \sum_{n=1}^{\infty} \frac{a_{-n}}{(z-z_0)^n} + \sum_{n=0}^{\infty} a_n \cdot (z-z_0)^n$$

Искаме да докажем, че ако функцията е ограничена, то всичките отрицателни коефициети са 0, т.е. че

$$f(z) = \sum_{n=0}^{\infty} a_n \cdot (z - z_0)^n$$

Нека γ_{ρ} е окръжност, която съдържа т. ξ

За коефициетите имаме формулата

$$a_n = \frac{1}{2\pi i} \int_{\gamma_o} \frac{f(\xi)d\xi}{(\xi - z_0)^{n+1}}$$
, $n = 0, \pm 1, \pm 2, ...$

$$|a_n| \le \int_{\gamma_\rho} \frac{|f(\xi)||d\xi|}{|\xi - z_0|^{n+1}} = \frac{1}{2\pi} \cdot \frac{M}{\rho^{n+1}} \cdot \int_{\gamma_\rho} |d\xi| = \frac{1}{2\pi} \cdot \frac{M}{\rho^{n+1}} \cdot 2\pi \cdot \rho = \frac{M}{\rho^n}$$

$$\Rightarrow |a_n| \le \frac{M}{\rho^n}$$
, $n = 0, \pm 1, \pm 2, ...$

 $3a \ n < 0$ се получава

$$\left|a_{-1}\right| \leq \frac{M}{\rho^{-1}} = M.\rho$$

$$|a_{-2}| \le \frac{M}{\rho^{-2}} = M.\rho^2$$

$$\left|a_{-n}\right| \leq \frac{M}{\rho^{-n}} = M \cdot \rho^{n}$$

Понеже a_n не зависи от ρ то можем да направим $\rho \to 0$ \Rightarrow при n < 0 $\left| a_n \right| = 0$. Готово.

II.

 $\mathrm{T.}\,z_0$ е m -кратен полюс на f .

Теорема(връзка между полюс и нула)

Ако f(z) има в т. z_0 полюс от кратност m , то функцията $\varphi(z) = \frac{1}{f(z)}$

има в т. \boldsymbol{z}_0 нула от кратност \boldsymbol{m} .

Вярно е и обратното: ако е дадена $\varphi(z)$, която има нула от кратност m,

то
$$f(z) = \frac{1}{\varphi(z)}$$
 има полюс с кратност m в т. z_0 .

Д-во:

1.Първо ще докажем втората част на теоремата.

 $\varphi(z)$ има m -кратна нула , $\varphi(z)$ е холоморфна в околност на т. z_0

$$\Rightarrow \varphi'(z_0) = \varphi''(z_0) = \dots = \varphi^{(m)}(z_0) = 0 \qquad \varphi^{(m+1)}(z_0) \neq 0$$
Ho $c_0 = c_1 = c_2 = \dots = c_{m-1} = 0 \qquad c_m \neq 0$

$$\Rightarrow \varphi(z) = c_m \cdot (z - z_0)^m + c_{m+1} \cdot (z - z_0)^{m+1} + \dots = (z - z_0)^m \cdot (c_m + c_{m+1} \cdot (z - z_0) + \dots) = (z - z_0)^m \cdot \psi(z)$$

 $\psi(z)$ е холоморфна в околност на т. z_0 и $\psi(z_0)=c_m \neq 0$.

$$\Rightarrow$$
т. z_0 е m -кратен полюс на $\frac{1}{\varphi(z)}$.

2. f(z) има полюс с кратност m.

$$f(z) = \frac{a_{-m}}{(z-z_0)^m} + \frac{a_{-m+1}}{(z-z_0)^{m-1}} + \ldots + a_0 + a_1.(z-z_0) + \ldots + a_n.(z-z_0)^n + \ldots$$
 като $a_{-m} \neq 0$

$$f(z) = \frac{1}{(z - z_0)^m} \cdot (a_{-m} + a_{-m+1} \cdot (z - z_0) + \dots + a_0 \cdot (z - z_0)^m + \dots) = \frac{\psi(z)}{(z - z_0)^m}$$
 (4)

 $\psi(z)$ е холоморфна в околност на т. z_0 и $\psi(z_0)=a_{-m}\neq 0$.

 $\Rightarrow \frac{1}{f(z)}$ е холоморфна в околност на т. $z_{\scriptscriptstyle 0}$ и при това

$$\lim_{z \to z_0} \frac{1}{f(z)} = \lim_{z \to z_0} \frac{(z - z_0)^m}{\psi(z)} = 0$$

 \Rightarrow т. $z = z_0$ е отстранима особеност на $\frac{1}{f(z)}$.

 \Rightarrow Ако "додефинираме" функцията $\frac{1}{f(z)}$, като положим $\frac{1}{f(z_0)} = 0$ и като

имаме предвид представянето (4) ,то можем да заключим че т. z_0 е m -кратна

нула на
$$\frac{1}{f(z)}$$
.

Теорема за полюс

НДУ т. z_0 да е полюс е $f(z) \to \infty$ при $z \to z_0$.

Д-во:Нека $f(z) \rightarrow \infty$.

Нека f(z) е холоморфна в околност на т. z_0 .

$$\Rightarrow \frac{1}{f(z)}$$
 също е холоморфна в околност на т. z_0

 \Rightarrow Освен това $\lim_{z \to z_0} \frac{1}{f(z)} = 0$. Но това означава ,че z_0 е отстранима особеност.

Като "додефинираме" функцията $\frac{1}{f(z)}$: $\frac{1}{f(z_0)}$ = $0 \Rightarrow$ т. z_0 е нула на

"додефинираната" функция \Longrightarrow от предната теорема т. z_0 е полюс на f(z) .

\mathbf{III} . т. z_0 е съществена осбеност на f

Теорема(Казорати-Вайерщрас-Сохоцки)

Нека т. z_0 е съществена осбеност на f . Тогава, каквото и да е комплексно число α , функцията f приема стойности, произволно близки до α във всяка околност на т. z_0 .По-точно ако $\alpha\in \mathbb{Q}$, $\delta>0$, $\varepsilon<0$ са произволно избрани, то \exists т. $z_\delta\in K(z_0,0,\delta)=\{z:0<|z-z_0|<\delta\}$, за която $|f(z_\delta)-\alpha|<\varepsilon$.

Д-во:

Да допуснем, че теоремата не е вярна.

Тогава съществуват такива $\alpha_0 \in \mathbb{C}$, $\delta_0 > 0$, $\varepsilon_0 < 0$, че за всяко z подчинено на условието $0 < \left|z - z_0\right| < \delta$ е изпълнено $\left|f(z) - \alpha_0\right| \ge \varepsilon_0$.

Нека положим

(5)
$$F(z) = \frac{1}{f(z) - \alpha_0}$$
 при $0 < |z - z_0| < \delta_0$

Понеже f е холоморфна в $0<|z-z_0|<\delta_0$, то F също е холоморфна в тази област.

Освен това имаме

$$|F(z)| = \left| \frac{1}{f(z) - \alpha_0} \right| = \frac{1}{|f(z) - \alpha_0|} \le \frac{1}{\varepsilon_0}$$

- $\Longrightarrow F\,$ е ограничена в околност на т. z_0
- \implies от теорема на Риман т. $z_0^{}\,$ е отсранима особеност на F .
- $\Rightarrow F$ има граница в т. z_0 $\lim_{z \to z_0} F(z) = c, c \neq \infty$

Имаме две възможности за $(c = 0 \text{ и } c \neq 0)$.

1.Нека $c \neq 0$

Ot (5)
$$\Rightarrow f(z) - \alpha_0 = \frac{1}{F(z)} \Rightarrow f(z) = \frac{1}{F(z)} + \alpha_0$$

$$\Rightarrow \lim_{z \to z_0} f(z) = \lim_{z \to z_0} \frac{1}{F(z)} + \alpha_0$$

$$\Rightarrow f(z)$$
 е ограничена в т. z_0

От теорема на Риман \Longrightarrow т. z_0 е отсранима особеност на f .

2.Нека
$$c = 0$$

$$\Rightarrow \lim_{z \to z_0} f(z) = \infty$$

От теоремата за полюса $\ {
m T.}\ Z_0$ е полюс на $\ f$.

С това допускането, че теоремата не е вярна ни доведе до извода, че т. z_0 е или отсранима особеност или полюс. Това обаче води до противоречие с условието на теоремата, че т. z_0 е съществена особеност на f .

Теоремата е вярна и доказана.

Теорема за резидуумите

Дефиниция 4.

Нека т. a е изолирана особеност на f . Коефициентът в лорановото развитие на f в околност на т. a се нарича резидуум на f в т. a .Бележим го с Res(f;a).

Теорема за резидуумите

Нека G е едносвързана област.

Нека f е холоморфна в G (заедно с границата C) с изключение на краен брой особени точки $a_1,a_2,...,a_k\in G$.Тогава интеграл по затворената крива (която не минава през нито една от особените точки) е

$$\int_{C} f(z)dz = 2\pi i \cdot \sum_{s=1}^{k} Res(f; a_{s})$$

Д-во:Първо ще изведем една помощна формула.

Нека т. a е особена точка. Тогава ще можем да развием f в лоранов ред

$$f(z) = \sum_{n=1}^{\infty} \frac{c_{-n}}{(z-a)^n} + \sum_{n=0}^{\infty} c_n \cdot (z-a)^n$$

Като умножим равенството по $\frac{1}{2\pi i}$ и го интегрираме(интегрирането ще

извършим по крива γ_{ρ} : $\left|z-a\right|<\rho$) ще получим

$$\frac{1}{2\pi i} \int_{\gamma_{\rho}} f(z) dz = \sum_{n=1}^{\infty} c_{-n} \cdot \frac{1}{2\pi i} \cdot \int_{\gamma_{\rho}} \frac{dz}{(z-a)^n} + \sum_{n=0}^{\infty} c_n \cdot \frac{1}{2\pi i} \cdot \int_{\gamma_{\rho}} (z-a)^n = \sum_{n=0}^{\infty} c_n \cdot \frac{1}{2\pi i} \cdot \int_{\gamma_{\rho}} (z-a)^n dz$$

Но ние имаме, че

$$\frac{1}{2\pi i} \cdot \int_{\gamma_{\rho}} (z - a)^{n} = \begin{cases} 0, m \neq -1 \\ 1, m = 1 \end{cases}$$

$$= c_{-1} = Res(f; a) \qquad \Rightarrow \int_{\gamma_{\rho}} f(z) dz = 2\pi i \cdot Res(f; a) \qquad (7)$$

Сега използваики (7) ще докажем теоремата.

Правим окръжности γ_i с центрове точките a_i , i=1,...k ,като никоя две от тези окръжности не се пресичат.

В новата област $D = G \setminus \{a_1, a_2, ..., a_k\}$, функцията f е холоморфна, защото в D няма особени точки.

$$\Gamma = C \cup \gamma_1^- \cup \gamma_2^- \cup ... \cup \gamma_k^-$$

От теоремата на Коши

$$\Rightarrow \int_{\Gamma} f(z)dz = 0$$

От формула на Коши за многосвързана област

$$\Rightarrow \int_{C} f(z)dz + \int_{\gamma_{1}^{-}} f(z)dz + \dots + \int_{\gamma_{k}^{-}} f(z)dz = 0$$

$$\int_{C} f(z)dz = \int_{\gamma_{1}^{+}} f(z)dz + \dots + \int_{\gamma_{k}^{+}} f(z)dz$$

Като използваме формулата (5) за всеки $\int\limits_{\gamma_i} f(z)dz$, i=1,...k

$$\int_{C} f(z)dz = 2\pi i Res(f; a_1) + ... + 2\pi i Res(f; a_k) =$$

$$= 2\pi i . (Res(f; a_1) + ... + Res(f; a_k))$$

$$\int_{C} f(z)dz = 2\pi i . \sum_{s=1}^{k} Res(f; a_s)$$

Готово.