Heart Stroke Prediction

```
In [ ]:
         Importing Libraries
In [1]:
         import pandas as pd
         import numpy as np
         import seaborn as sns
         import matplotlib.pyplot as plt
         from sklearn.model selection import train test split
In [ ]:
         Importing Data Set
In [2]:
         data = pd.read_csv('Heart Stroke Merged Data.csv')
         data.head()
In [3]:
               ID Gender Age Hypertension Heart_Disease Ever_Married
Out[3]:
                                                                         Work_Type Residence_Type A
         0 10001
                    Male
                           3.0
                                          0
                                                       0
                                                                  No
                                                                            children
                                                                                             Rural
         1 10002
                          58.0
                                                       0
                                                                                            Urban
                    Male
                                                                  Yes
                                                                             Private
                           8.0
                                          0
                                                       0
                                                                                            Urban
         2 10003
                  Female
                                                                  No
                                                                             Private
                                          0
         3 10004
                  Female
                          70.0
                                                       0
                                                                  Yes
                                                                             Private
                                                                                             Rural
                    Male 14.0
                                          0
                                                       0
                                                                  No Never_worked
         4 10005
                                                                                             Rural
In [ ]:
```

In [4]:

data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 48510 entries, 0 to 48509
Data columns (total 12 columns):
    Column
                       Non-Null Count
                                       Dtype
                       -----
0
    ID
                       48510 non-null
                                       int64
1
    Gender
                       48510 non-null
                                       object
2
    Age
                       48510 non-null float64
 3
    Hypertension
                       48510 non-null
                                       int64
4
                       48510 non-null int64
    Heart_Disease
5
    Ever Married
                       48510 non-null object
 6
    Work_Type
                       48510 non-null object
7
                       48510 non-null object
    Residence_Type
    Avg_Glucose_Level
                       48510 non-null float64
9
                       46847 non-null
                                       float64
10
                       33674 non-null
    Smoking_Status
                                       object
```

48510 non-null int64

dtypes: float64(3), int64(4), object(5)

memory usage: 4.4+ MB

11 Stroke

In []:

Out[5]

Statistical Description

In [5]: data.describe()

:		ID	Age	Hypertension	Heart_Disease	Avg_Glucose_Level	ВМІ	
	count	48510.000000	48510.000000	48510.000000	48510.000000	48510.000000	46847.000000	48!
	mean	34255.500000	42.324152	0.093981	0.048196	104.658132	28.635238	
	std	14003.775116	22.531358	0.291805	0.214183	43.348186	7.779286	
	min	10001.000000	0.080000	0.000000	0.000000	55.000000	10.100000	
	25%	22128.250000	24.000000	0.000000	0.000000	77.520000	23.300000	
	50%	34255.500000	44.000000	0.000000	0.000000	91.600000	27.800000	
	75%	46382.750000	60.000000	0.000000	0.000000	112.227500	32.900000	
	max	58510.000000	82.000000	1.000000	1.000000	291.050000	97.600000	

In []:

Checking the Null Values

In [6]: data.isnull().sum()

```
0
         ID
Out[6]:
         Gender
                                   0
         Age
                                   0
         Hypertension
                                   0
         Heart Disease
                                   0
                                   0
         Ever Married
         Work_Type
                                   0
         Residence_Type
                                   0
         Avg_Glucose_Level
         BMI
                                1663
         Smoking_Status
                               14836
         Stroke
         dtype: int64
```

Droping the Unnecessary Column

1 Male 58.0 1 0 Private Urban Yes **2** Female 8.0 0 0 No Private Urban 0 Female 70.0 0 Yes Private Rural 0 0 No Never_worked Rural Male 14.0

In []:

In []:

Filling the Null Values

```
In [9]: data['BMI'].fillna(data['BMI'].median(), inplace = True)
In [10]: data['Smoking_Status'].fillna(data['Smoking_Status'].mode()[0], inplace = True)
In [11]: data.isna().sum()
```

```
Gender
Out[11]:
                                0
         Age
                                0
         Hypertension
         Heart_Disease
                                0
         Ever Married
                                0
         Work_Type
                                0
         Residence_Type
         Avg_Glucose_Level
                                0
         BMI
         Smoking_Status
                                0
                                0
         Stroke
         dtype: int64
```

data['Age'] = data['Age'].astype(int) In [12]:

In [13]: data.head()

Out[13]:		Gender	Age	Hypertension	Heart_Disease	Ever_Married	Work_Type	Residence_Type	Avg_Gluc
	0	Male	3	0	0	No	children	Rural	
	1	Male	58	1	0	Yes	Private	Urban	
	2	Female	8	0	0	No	Private	Urban	
	3	Female	70	0	0	Yes	Private	Rural	
	4	Male	14	0	0	No	Never_worked	Rural	

In []:

Exporting the data

```
data.to_csv("E:\FireBlaze/Cleaned_data.csv")
In [14]:
In [ ]:
```

giving the numerical labels to the Categorical column

```
In [15]:
         from sklearn.preprocessing import LabelEncoder
In [16]:
         LE=LabelEncoder()
         data.head(11)
In [17]:
```

Out[17]:		Gender	Age	Hypertension	Heart_Disease	Ever_Married	Work_Type	Residence_Type	Avg_Glu	
	0	Male	3	0	0	No	children	Rural		
	1	Male	58	1	0	Yes	Private	Urban		
	2	Female	8	0	0	No	Private	Urban		
	3	Female	70	0	0	Yes	Private	Rural		
	4	Male	14	0	0	No	Never_worked	Rural		
	5	Female	47	0	0	Yes	Private	Urban		
	6	Female	52	0	0	Yes	Private	Urban		
	7	Female	75	0	1	Yes	Self- employed	Rural		
	8	Female	32	0	0	Yes	Private	Rural		
	9	Female	74	1	0	Yes	Self- employed	Urban		
	10	Female	79	0	0	Yes	Govt_job	Urban		
4						_				
In [20]: In [22]:	#1 - Yes #0 - No									
In [24]: In [26]:	#0 - Rural #1 - Urban									
In [29]:	dat	a.info()							

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 48510 entries, 0 to 48509
        Data columns (total 11 columns):
             Column
                                Non-Null Count
                                               Dtype
             -----
                                -----
         0
             Gender
                                48510 non-null
                                               int32
         1
             Age
                                48510 non-null int32
         2
             Hypertension
                                48510 non-null int64
         3
             Heart_Disease
                                48510 non-null
                                               int64
         4
             Ever_Married
                                48510 non-null int32
         5
             Work_Type
                                48510 non-null int32
         6
             Residence_Type
                                48510 non-null int32
         7
                                48510 non-null float64
             Avg_Glucose_Level
             BMI
                                48510 non-null float64
         9
             Smoking_Status
                                48510 non-null int32
         10 Stroke
                                48510 non-null int64
        dtypes: float64(2), int32(6), int64(3)
        memory usage: 3.0 MB
In [ ]:
```

Checking for skewness

```
data.skew()
In [30]:
         Gender
                                0.374473
Out[30]:
         Age
                               -0.109716
         Hypertension
                               2.782930
         Heart Disease
                               4.219033
         Ever Married
                               -0.606255
         Work_Type
                               -0.297333
         Residence_Type
                               -0.007999
         Avg_Glucose_Level
                               1.664340
         BMI
                                0.942395
         Smoking_Status
                               -0.003237
         Stroke
                                6.635531
         dtype: float64
         for i in data:
In [31]:
              sns.kdeplot(data=data,x=i)
              plt.show()
```


In []:

Separating Input Feature & Target Variable

Dividing the data into training & testing data

```
In [34]: x_train,x_test,y_train,y_test = train_test_split(X,y,test_size = 0.25, random_state =
In []:
```

Importing the model

```
In [35]: from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, confusion_matrix

In [36]: LR=LogisticRegression()

In []:
```

Training the Model

Testing the Model

```
In [38]: y_pred= LR.predict(x_test)
In []:
```

Checking the Accuracy of the model

```
In [39]: accuracy_score(y_test,y_pred)
Out[39]: 0.9790567282321899
In []:
```

Importing the Confusion Matrix to check in how many the model get confused

In []: