Lecture 7 : object detection and YOLO v3

By: Khalil idrissi

dog

dog

dog

classification

dog

Classification + localization

dog

classification

dog

Classification + localization

dog

classification

dog

Classification + localization

dog

Dog, human

classification

dog

Classification + localization

dog

Object detection

Dog, human

classification

dog

Classification + localization

dog

Object detection

Dog, human

classification

dog

Classification + localization

dog

Object detection

Dog, human

Cat, sky, grass, trees

classification

dog

Classification + localization

dog

Object detection

Dog, human

Semantic segmentation

Cat, sky, grass, trees

dog

Classification + localization

dog

Object detection

Dog, human

Semantic segmentation

Cat, sky, grass, trees

dog

Classification + localization

dog

Object detection

Dog, human

Semantic segmentation

Cat, sky, grass, trees

dog

Classification + localization

dog

Object detection

Dog, human

Semantic segmentation

Cat, sky, grass, trees

dog

Classification + localization

dog Single object

Object detection

Dog, human

Semantic segmentation

Cat, sky, grass, trees

Classification + localization

dog dog
Single object

Object detection

Dog, human

Semantic segmentation

Cat, sky, grass, trees

dog

dog Single object

Object detection

Dog, human

Semantic segmentation

Cat, sky, grass, trees

multiple objects

Object detection

Dog, human

YOLO v3 network Architecture

 \longrightarrow

$$y = \begin{pmatrix} c_1 \\ t_x \\ t_y \\ t_h \\ t_w \\ p_1 \\ p_2 \end{pmatrix}$$

 \bigvee

$$y = \begin{pmatrix} t_1 \\ t_x \\ t_y \\ t_h \\ t_w \\ p_1 \\ p_2 \end{pmatrix}$$

Confidence score that an object is in the box

$$y = \begin{pmatrix} t_1 \\ t_x \\ t_y \\ t_h \\ t_w \\ p_1 \\ p_2 \end{pmatrix}$$

 \bigvee

$$y = \begin{pmatrix} c_1 \\ t_x \\ t_y \\ t_h \\ t_w \\ p_1 \\ p_2 \end{pmatrix}$$

The coordinates of the center of the box, width, height

$$y = \begin{pmatrix} t_1 \\ t_x \\ t_y \\ t_h \\ t_w \\ p_1 \\ p_2 \end{pmatrix}$$

W

$$y = \begin{pmatrix} c_1 \\ t_x \\ t_y \\ t_h \\ t_w \\ p_1 \\ p_2 \end{pmatrix}$$

Probability that this box contains an object 1,2

$$y = \begin{pmatrix} t_1 \\ t_x \\ t_y \\ t_h \\ t_w \\ p_1 \\ p_2 \end{pmatrix}$$

 \longrightarrow

$$b_{x} = \sigma(t_{x}) + c_{x}$$

$$b_{y} = \sigma(t_{y}) + c_{y}$$

$$b_{w} = p_{w}e^{t_{w}}$$

$$b_{h} = p_{h}e^{t_{h}}$$

 t_x , t_y , t_h , t_w are the outputs from the last layer

$$b_{x} = \sigma(t_{x}) + c_{x}$$

$$b_{y} = \sigma(t_{y}) + c_{y}$$

$$b_{w} = p_{w}e^{t_{w}}$$

$$b_{h} = p_{h}e^{t_{h}}$$

 b_x , b_y , b_h , b_w are the coordinates for the refined bounding box

$$b_{x} = \sigma(t_{x}) + c_{x}$$

$$b_{y} = \sigma(t_{y}) + c_{y}$$

$$b_{w} = p_{w}e^{t_{w}}$$

$$b_{h} = p_{h}e^{t_{h}}$$

 p_w , p_h are the original size if the anchor box

$$b_{x} = \sigma(t_{x}) + c_{x}$$

$$b_{y} = \sigma(t_{y}) + c_{y}$$

$$b_{w} = p_{w}e^{t_{w}}$$

$$b_{h} = p_{h}e^{t_{h}}$$

 c_x, c_y are coordinates of the current grid cell

 \mathcal{N}

$$b_{x} = \sigma(t_{x}) + c_{x}$$

$$b_{y} = \sigma(t_{y}) + c_{y}$$

$$b_{w} = p_{w}e^{t_{w}}$$

$$b_{h} = p_{h}e^{t_{h}}$$

NMS: non max suppression

NMS: non max suppression

The core idea is to reframe the object detection as as single regression problem