Versuchsbericht zu

A2 - Franck-Hertz-Versuch

Gruppe 14Mo

Alexander Neuwirth (E-Mail: a_neuw01@wwu.de) Leonhard Segger (E-Mail: l_segg03@uni-muenster.de)

> durchgeführt am 30.04.2018 betreut von Fabian Schöttke

Inhaltsverzeichnis

1	Kurzfassung Methoden				
2					
3	Ergebnisse und Diskussion 3.1 Beobachtung				
	3.3	 3.2.4 Bestimmen von Anregungsenergie, Wellenlänge und Frequenz der Strahlung 3.2.5 Berechnen der mittleren freien Weglänge der Elektronen Diskussion 	7 7 8		
4	Schlussfolgerung				

1 Kurzfassung

2 Methoden

Untersucht wurde eine Franck-Hertz-Röhre mit Quecksilberfüllung und eine mit Neonfüllung. Diese wurden, wie in Abb. 1 dargestellt, verschaltet. Die Quecksilberröhre befand sich in einem Ofen, der sie auf bis zu $300\,^{\circ}$ C aufheizen kann. Der Anodenstrom ist sehr klein, weshalb er vom Betriebsgerät in eine Spannung U_A umgewandelt wurde, die zum Anodenstrom proportional ist.

Zunächst wurde die I_A/U_B -Charakteristik der Röhre mit Quecksilberfüllung bei Zimmertemperatur aufgenommen. Dazu wurde die Beschleunigungsspannung U_B langsam erhöht und diese sowie die Spannung U_A gemessen.

Im Anschluss wurde der Ofen auf ca. 180 °C erhitzt. Dann wurde das Betriebsgerät so eingestellt, dass es eine Dreieckspannung mit einer Frequenz von 60 Hz als Beschleunigungsspannung ausgibt. Der resultierende Anodenstrom wurde zunächst mit einem Oszilloskop betrachtet und Bremsspannung U_B und Heizstrom I_H so eingestellt, dass sich mindestens drei Minima der Franck-Hertz-Kurve ablesen ließen. Dann wurde mithilfe manueller Reglung der Beschleunigungsspannung die I_A/U_B -Charakteristik wie zuvor aufgenommen und die Temperatur im Ofen gemessen.

Analog wurde die Neon-Röhre bei Raumtemperatur untersucht, wobei hier zusätzlich ein Steuergitter (mit Spannung U_S) verwendet wurde, um störende Einflüsse durch Abstoßung der Elektronen untereinander zu verringern.

Abbildung 1: Schaltungen der Franck-Hertz-Röhren mit Quecksilber (links) und Neon (rechts).[4]

3 Ergebnisse und Diskussion

3.1 Beobachtung

Die vom Operationsverstärker ausgehende niedrigste Gegenspannung beträgt 1,25 V. Zunächst wurde die Franck-Hertz-Röhre mit Quecksilber bei Raumtemperatur ($(19,0\pm1,5)$ °C)

untersucht. In Abb. 2 ist der gemessene I_A/U_B -Verlauf dargestellt.

Darauf wurde der Ofen der Quecksilberröhre eingeschaltet und mit einer Sägezahnspannung betrieben. Während des Heizvorgangs war am Oszilloskop die Bildung von Maxima und Minima, die der charakteristischen Franck-Hertz-Kurve ähnelten, sichtbar. Ein Erhöhen der Gegenspannung hatte ein geringere Messspannung, bzw. Stromstärke, zur Folge. Die durch manuelle Aufnahme einzelner Messpunkte bestimmte Quecksilbercharakteristik bei einer Temperatur von 165 °C bis 180 °C ist in Abb. 3 abgebildet. Erwärmt man die Röhre weiter über eine Temperatur von 190 °C sieht man am Oszilloskop, dass die Maxima abfallen und verschwimmen. Zu keinem Zeitpukt sahen wir emittiertes Licht in der Quecksilberröhre.

Die Neonröhre wurde ebenfalls bei Raumtemperatur betrieben und es entstand ein orange-rötlicher Lichtstreifen, der sich durch Variation der Beschleunigungsspannung verschieben ließ. Dem Steigern der Spannung folgte eine Annäherung des Lichts and die Kathode. Bei einer groß genug gewählten Spannung sahen wir nahe der Anode einen neuen zweiten Lichtstreifen. Um die Neon-Charakteristik aufnehmen zu können mussten Heiz- und Beschleungungsspannung mit Hilfe des Oszilloskop angepasst werden. Die gemessene Charakteristik ist in Abb. 4 enthalten. Beim Messen dieser Frank-Hertz-Kurve waren kein Licht mehr in der Neonröhre sichtbar.

Auffähllig ist, dass beide Charakteristiken bei einer Beschleunigungsspannung von ca. $0\,\mathrm{V}$ eine Stromstärke deutlich größer Null aufweisen. Die Auftretenden Maxima und Minima haben mit steigender Beschleungigungsspannung höhere Stromstärken. Im späteren Verlauf des Experments stellte sich heraus, dass die Beschleunigungsspannung am Frank-Hertz-Generator ungleich der direkt an Anode und Kathode gemessenen Spannung ist. In Abb. 2 wurde U_B noch am Generator gemessen. Bei geringster Beschleunigungsspannung wurde eine Beschleungungsspannung von ca. 23 V angezeigt. Wenn man diese Spannung jedoch an Anode und Kathode misst ergibt sich ca. $U_B = 0\,\mathrm{V}$.

Abbildung 2: Aufgenommene Quecksilber-Charakteristik bei $T=(19,0\pm1,5)$ °C. Die Stromstärke wurde mit einem Operationsverstärker in eine messbare Spannung umgewandelt.

3.2 Datenanalyse

3.2.1 Unsicherheiten

Die Unsicherheit des Voltmeters beträgt $\pm (U \cdot 0, 5\% + 200 \,\mathrm{mV})$ für die Beschleunigungsspannung und $\pm (U \cdot 0, 5\% + 20 \,\mathrm{mV})$ für die gemessene Spannung (0,5% vom angezeigten Wert).[6] Die Unsicherheit des Operationsverstärker wird als vernachlässigbar gering angenommen.

Die Unsicherheit des Thermometers vom Typ K ist 1,5 °C in dem gemessenen Temperaturinterval.[1] Zusätzlich ist die Temperatur nicht überall im Heizkasten gleich und schwankte beim Aufnehmen der Quecksilber-Charakteristik von 165 bis 180 °C, desshalb wählen wir für diese Messung die Unsicherheit von 7 °C.

Beim Bestimmen der Beschleunigungsspannung an Extremstellen setzt sich die Unsicherheit aus dem Verlauf der Kurve und dem Abstand zum nächsten Messpunkt zusammen.

3.2.2 Quecksilber-Charakteristik

In Abb. 3 ist die I_A/U_B -Charakteristik des Quecksilbers bei $T=(175\pm7)$ °C dargestellt. Daraus lassen sich folgende Abstände ablesen:

• Maxima:

$$\Delta U_1 = (27.1 \pm 0.3) \text{ V} - (21.0 \pm 0.1) \text{ V} = (6.1 \pm 0.3) \text{ V}$$

• Minima

$$\Delta U_2 = (29.4 \pm 0.2) \text{ V} - (24.1 \pm 0.2) \text{ V} = (5.3 \pm 0.3) \text{ V}$$

 $\Delta U_3 = (24.1 \pm 0.2) \text{ V} - (18.0 \pm 0.5) \text{ V} = (6.1 \pm 0.5) \text{ V}$

Im Mittel ergibt sich ein $\Delta U_{\rm Hg}$ von $(5.8 \pm 0.2) \, {\rm V}$.

Abbildung 3: Aufgenommene Quecksilber-Charakteristik bei $T=(175\pm7)\,^{\circ}\text{C}$. Die Stromstärke wurde mit einem Operationsverstärker in eine messbare Spannung umgewandelt.

3.2.3 Neon-Charakteristik

In Abb. 4 ist die I_A/U_B -Charakteristik des Neons bei $T=(19,0\pm1,5)\,^{\circ}$ C dargestellt. Daraus lassen sich folgende Abstände ablesen:

• Maxima:

$$\Delta U_1 = (38.8 \pm 0.2) \text{ V} - (20.8 \pm 0.4) \text{ V} = (18.0 \pm 0.4) \text{ V}$$

 $\Delta U_2 = (57.2 \pm 0.2) \text{ V} - (38.8 \pm 0.2) \text{ V} = (18.4 \pm 0.3) \text{ V}$

• Minima

$$\Delta U_3 = (44.9 \pm 0.5) \text{ V} - (27.5 \pm 0.3) \text{ V} = (17.4 \pm 0.6) \text{ V}$$

 $\Delta U_4 = (62.9 \pm 0.5) \text{ V} - (45.5 \pm 0.4) \text{ V} = (18.0 \pm 0.7) \text{ V}$

Im Mittel ergibt sich ein $\Delta U_{\rm Ne}$ von (17.9 ± 0.3) V.

Abbildung 4: Aufgenommene Neon-Charakteristik bei $T=(19,0\pm1,5)\,^{\circ}\text{C}$. Die Stromstärke wurde mit einem Operationsverstärker in eine messbare Spannung umgewandelt.

3.2.4 Bestimmen von Anregungsenergie, Wellenlänge und Frequenz der Strahlung

Aus den Spannungen lässt sich die kinetische Energie eines Elektrons bestimmen, die nowendig ist um den Resonanzzustand des Atoms anzuregen. Sie beträgt $\Delta E = \Delta U e$. Die Frequenz folgt aus $\nu = \Delta E/h$ und die Wellenlänge aus $\lambda = c/\nu$.[5] Die jeweiligen Werte sind in Tabelle 1 aufgelistet.

Tabelle 1: Aus den Charakteristiken von Quecksilber und Neon berechnete kinetische Energie, sowie Frequenz und Wellenlänge des emittierten Lichts.

	ΔU	ΔE	ν	λ
Quecksilber	$(5.8 \pm 0.2) \mathrm{V}$	$(5.8 \pm 0.2) \text{eV}$	$(1402 \pm 48) \text{THz}$	$(214.0 \pm 6.3) \mathrm{nm}$
Neon	$(17.9 \pm 0.3) \mathrm{V}$	$(17.9 \pm 0.3) \text{eV}$	$(4328 \pm 73) \text{THz}$	$(69.3 \pm 1.2) \mathrm{nm}$

3.2.5 Berechnen der mittleren freien Weglänge der Elektronen

In der Einführung wurde folgende Formel aufgeführt zum Bestimmen der freien Weglänge λ der Elektronen:

$$\lambda = \frac{k_B T}{\sigma p} \quad \text{mit} \quad \sigma = \pi r_{\text{Hg}}^2 \tag{1}$$

Der Druck p wird durch die Clausius-Clapeyron-Gleichung in integrierter Form bestimmt:

$$\ln\left(\frac{p_2}{p_1}\right) = \frac{\Delta H_{\text{m,v}}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right) \tag{2}$$

Dabei beträgt die allgemeine Gaskonstante $R=8,3145\,\mathrm{J/mol/K}$, Verdampfungsenthalpie von Quecksilber $\Delta H_{\mathrm{m,v}}=59,3\,\mathrm{kJ/mol}$, Radius eines Quecksilberatoms $r_{\mathrm{Hg}}=150\,\mathrm{pm}$ und der Referenzpunkt ist $T_1=293,15\,\mathrm{K}$ mit $p_1=0,242\,\mathrm{Pa.}[3][2][5]$

Durch Umformen von Gleichung (2) ergibt sich p_{kalt} und p_{warm} . Daraus widerum folgt mit Gleichung (1) λ_{kalt} und λ_{warm} . Die so bestimmten Werte sind in Tabelle 2 enthalten.

Tabelle 2: Mittlere frei Weglänge von Elektronen in Quecksilberdampf bei Raumtemperatur(kalt) und Heiztemperatur(warm).

	T	p	λ
kalt	$(292,15 \pm 1,50) \mathrm{K}$	$(0,223 \pm 0,028) \mathrm{Pa}$	$(0.256 \pm 0.032) \mathrm{m}$
warm	$(453,15 \pm 7,00) \mathrm{K}$	$(1,3 \pm 0,2) \text{kPa}$	$(0.068 \pm 0.010) \mathrm{mm}$

3.3 Diskussion

4 Schlussfolgerung

Literatur

- [1] R. Hörnemann GmbH. DIN-Toleranzen für Thermopaare und Termoleitungen. URL: http://www.hoernemann-rh.de/technik_details.asp?technikid=3 (besucht am 05.05.2018).
- [2] Charles F. Hill. "Measurement of Mercury Vapor Pressure by Means of the Knudsen Pressure Gauge". In: *Phys. Rev.* 20 (3 Sep. 1922), S. 259–266. DOI: 10.1103/PhysRev.20.259. URL: https://link.aps.org/doi/10.1103/PhysRev.20.259.
- [3] mai2014@andyhoppe.com. Quecksilber: Stoffeigenschaften. URL: http://www.periodensystem.info/elemente/quecksilber (besucht am 05.05.2018).
- [4] WWU Münster. Franck-Hertz-Versuch Einführung. URL: https://sso.uni-muenster.de/LearnWeb/learnweb2/pluginfile.php/1334783/mod_resource/content/1/Franck-Hertz-Versuch_Einf.pdf (besucht am 04.05.2018).
- [5] NIST. NIST Reference on Constants, Units and Uncertainty. URL: https://physics.nist.gov/cuu/index.html (besucht am 05.05.2018).
- [6] FH-Pforzheim. Infoblatt Digitalmultimeter. URL: http://eitidaten.fh-pforzheim. de/daten/labore/ellt/unterlagen_webseite/von_becker/Infoblatt_DigMM. pdf (besucht am 05.05.2018).