Global existence for nonlinear heat equation and harmonic maps between Riemannian manifolds

Tien NGUYEN MANH

May 30, 2018

Contents

1 Estimate of higher derivatives.

 $\mathbf{2}$

2 Global existence for nonlinear heat equation.

Let M be a compact Riemannian manifold. We want to solve the following nonlinear heat equation where $F: M \longrightarrow M' \subset B \subset V = \mathbb{R}^N$:

$$\frac{dF_t}{dt} = -\Delta F_t + \Gamma(F_t)(\nabla F_t)^2$$

We have proved that the solution exists in short-time and is smooth whenever it exists. We will now establish long-time existence using continuity method, that is we will show that if the solution exists on $[\alpha, \omega_n]$ where ω_n is an increasing sequence to ω , then the solution exists on $[\alpha, \omega]$. We then apply short-time existence to gain a small open interval where solution still exists. We then conclude that the solution exists globally on $[\alpha, +\infty)$ since this interval is connected.

The crucial step to prove that the solution can be extended on $[\alpha, \omega]$ is to uniformly bound all of its derivatives in time of evolution $[\alpha, \omega)$. These estimates will also be useful to justify that the solution F_t converges in $C^{\infty}(M)$ to a smooth function F_{∞} which will eventually be a harmonic map from M to M'.

Recall that we proved in Corollary ?? the boundedness of $||F_t||_{W^{2,2}(M)}$ by a constant C depending only on curvatures of M, M' and the initial total energies. Since $\frac{dF_t}{dt}$ relates to spatial derivatives of F by the nonlinear heat equation, it is easy to see that $||F_t||_{W^{2,2}(M\times[\tau,\tau+\delta])}$ is bounded by a constant independent of τ . Again, we will denote $W^{k,p}(M\times[\beta,\gamma])$ by $W^{k,p}([\beta,\gamma])$.

Theorem 1 ($W^{2,2}$ -boundedness). There exist a constant C depending only on δ , the curvatures and initial total energies such that

$$||F||_{W^{2,2}(\tau,\tau+\delta)} \le C \quad \text{for all } \alpha \le \tau < \omega - \delta.$$

Proof. Since

$$||F||_{W^{2,2}([\tau,\tau+\delta])}^2 \leq \int_{\tau}^{\tau+\delta} ||F_t||_{W^{2,2}(M)}^2 dt + 2\int_{\tau}^{\tau+\delta} ||\Delta F_t||_{L^2}^2 dt + 2\int_{\tau}^{\tau+\delta} ||\Gamma(F_t)(\nabla F_t)^2||_{L^2}^2 dt$$

The first term and the second term are bounded by $C^2\delta$, the third one, since $\Gamma(F_t)$ is bounded by $C^2\delta$ where C is a constant only depending on the metrics and initial total energies.

The estimates of higher derivatives of F will be established in the following order: first in $W^{2,p}$ for all p norm then in $W^{k,p}$ for all k,p, then in C^{∞}

1 Estimate of higher derivatives.

Lemma 2 ($W^{2,p}$ -boundedness). For all $p \in (1, +\infty)$, there exists a constant C > 0 depending only on δ , p, the metrics and initial energies such that for all $\alpha + \delta \leq \tau \leq \omega - \delta$:

$$||F||_{W^{2,p}([\tau,\tau+\delta])} \le C$$

Proof. Applying Gårding Inequality to the parabolic equation $AF = \Gamma(F)(\nabla F)^2$ where $A := \frac{\partial}{\partial t} + \Delta$ is the heat operator, one has

$$||F||_{W^{2,p}([\tau,\tau+\delta])} \le C \left(||\Gamma(F)(\nabla F)|^2||_{L^p([\tau-\frac{\delta}{3},\tau+\delta])} + ||F||_{W^{2,2}([\tau-\frac{\delta}{3},\tau+\delta])} \right)$$

The second term of RHS is already bounded by applying Theorem 1 to $\frac{\delta}{3}$. For the first term:

$$\left\| \Gamma(F) (\nabla F)^2 \right\|_{L^p([\tau - \frac{\delta}{3}, \tau + \delta])} \leq C(M') \||\nabla F|^2\|_{L^p([\tau - \frac{\delta}{3}, \tau + \delta])} = C(M') \|e(F)\|_{L^p([\tau - \frac{\delta}{3}, \tau + \delta])}.$$

Recall that, by Theorem ??, the potential density satisfies $\frac{de}{dt} + \Delta e - Ce \leq 0$ for certain constant C depending only on the metric of M, by Maximum principle (Theorem ??), one has $e \leq \psi_{\tau}$ where ψ_{τ} is the solution

of
$$\begin{cases} \frac{d}{dt}\psi_{\tau} + \Delta\psi_{\tau} - C\psi_{\tau} = 0\\ \psi_{\tau}\big|_{\tau - \frac{\delta}{2}} = e\big|_{\tau - \frac{\delta}{2}} \end{cases}$$
 We apply Gårding Inequality again for ψ_{τ} and obtain

$$||e(F)||_{L^{p}([\tau-\frac{\delta}{2},\tau+\delta])} \le ||\psi_{\tau}||_{L^{p}([\tau-\frac{\delta}{2},\tau+\delta])} \le C||\psi_{\tau}||_{L^{1}([\tau-\frac{\delta}{2},\tau+\delta])}. \tag{1}$$

Now apply L^1 -Comparison Theorem ?? to ψ_{τ} , one has

$$\|\psi_{\tau}\|_{L^{1}([\tau-\frac{\delta}{2},\tau+\delta])} \leq \frac{3\delta}{2} \|\psi_{\tau}|_{\tau-\frac{\delta}{2}} \|_{L^{1}(M)} = \frac{3\delta}{2} \|e|_{\tau-\frac{\delta}{2}} \|_{L^{1}(M)} \leq C \qquad (2)$$

where the constant is the initial potential energy.

The lemma follows from
$$(1)$$
 and (2) .

We can now estimate higher order derivatives.

Theorem 3 ($W^{k,p}$ -boundedness). For all $p \in (1, +\infty)$ and $k < +\infty$, there exists C depending only on k, p, the metrics and initial energies such that

$$||F||_{W^{k,p}([\tau,\tau+\delta])} \le C$$

for all $\alpha + \delta \le \tau \le \omega - \delta$.

Proof. Applying Gårding Inequality to the equation $\frac{dF}{dt} + \Delta F_t = \Gamma(F)(\nabla F)^2$ then Regularity Theorem ?? for polynomial differential operator, one has for $\epsilon \ll \delta$:

$$||F||_{W^{k,p}([\tau,\tau+\delta])} \le C_{\epsilon} \left(||F||_{W^{2,p}([\tau-\delta,\tau+\delta])} + ||\Gamma(F)(\nabla F)^{2}||_{W^{k-2,p}([\tau-\epsilon,\tau+\delta])} \right)$$

$$\le C_{\epsilon} \left(1 + C \left(1 + ||F||_{W^{s,q}([\tau-\epsilon,\tau+\delta])} \right)^{q/p} \right)$$

as long as k-1 < s and $\frac{1}{p} > \frac{k}{s} \cdot \frac{1}{q}$. Therefore if $||F||_{W^{s,q}([\tau,\tau+\delta])} \le C(\delta,s,q)$ for all $\beta \le \tau \le \omega - \delta$ and $q \in (1,+\infty)$, we just proved that

$$||F||_{W^{k,p}([\tau,\tau+\delta])} \le C(\epsilon,k,p)$$

for all
$$\begin{cases} \beta + \epsilon \leq \tau \leq \omega - \delta \\ k < s + 1, p \in (1, +\infty) \end{cases}$$
 since $||F||_{W^{s,q}([\tau - \epsilon, \tau + \delta])} \leq 2C(\delta, s, q)$.

One can then conclude by induction on k, with step $\frac{1}{2}$, starting with k=2 and $\epsilon=\frac{\delta}{2}$ and each time dividing ϵ by 2.

2 Global existence for nonlinear heat equation.

Theorem 4 (Global existence). The solution of nonlinear heat equation

$$\frac{dF}{dt} = -\Delta F + \Gamma(F)(\nabla F)^2 \tag{3}$$

with smooth initial condition exists globally for all time $t > \alpha$.

Proof. Let F_n be a sequence of solution of (3) on $[\alpha, \omega_n]$ with ω_n increasing to ω then they coincide by uniqueness of solution the equation. As discussed in the beginning of this part, it is sufficient to prove that the solution extends to $[\alpha, \omega]$. Let F be the solution on $[\alpha, \omega)$ such that $F|_{[\alpha, \omega_n]} = F_n$, then by Theorem 3, for all $\tau \in [\alpha, \omega - \delta)$:

$$||D_t^u D_x^v F||_{L^{\infty}(M \times [\tau, \tau + \delta])} \le C_{\text{Sobolev}} ||D_t^u D_x^v F||_{W^{k, p}(M \times [\tau, \tau + \delta])} \le C_{\text{Sobolev}} \cdot C(k, p, \delta)$$

where, if we choose k sufficiently large, C_{Sobolev} is the constant off Sobolev imbedding $W^{k,p}(M\times [0,\delta])\hookrightarrow C(M\times [0,\delta])$ and $C(k,p,\delta)$ is the constant provided by Theorem 3.

So all partial derivatives of F is uniformly bounded on $[\alpha + \delta, \omega)$. This proves that F extends to a solution on $[\alpha, \omega]$. In fact $F|_{\tau} := F|_{M \times \{\tau\}}$ converges in $C^{\infty}(M)$ as $\tau \to \omega$, since $\|D^{\alpha}F|_{\tau} - D^{\alpha}F|_{\tau'}\|_{L^{\infty}} \le \max_{\|\beta\| = \|\alpha\| + 1} \|D^{\beta}F\|_{L^{\infty}}|_{\tau} - \tau'|$.

We have just proved the first part of the following theorem. The second part is a reformulation of Theorem ?? of Eells and Sampson.

- **Theorem 5.** 1. Let M, M' be compact Riemannian manifolds with $\operatorname{Riem}(M') \leq 0$. Then for every smooth map $f_0: M \longrightarrow M' \subset B \subset \mathbb{R}^N$, the nonlinear heat equation $\begin{cases} \frac{df_t}{dt} = \tau(f_t), & \text{for all } t \geq 0 \\ f|_{t=0} = f_0, \end{cases}$ smooth solution f_t . Moreover, all derivatives $D^{\alpha}f_t$ remains uniformly bounded as $t \to +\infty$.
 - 2. For a suitable sequence t_n increasing to $+\infty$ the sequence f_{t_n} converges in $C^{\infty}(M)$ to a function f_{∞} with $\tau(f_{\infty}) = 0$. Therefore any map $f_0: M \longrightarrow M'$ is homotopic to a harmonic map.

Proof. For any sequence t_n , one can extract from $\{f_{t_n}\}$, since their derivatives are uniformly bounded, a convergent subsequence $\{f_{t_{n_i}}\}$ in $C^k(M, \mathbb{R}^N)$. By a diagonalisation argument, one can extract from any sequence $\{f_{t_n}\}$ a subsequence converging in $C^{\infty}(M, \mathbb{R}^N)$ to f_{∞} . Abusively denote this subsequence by $\{f_{t_n}\}$, by Theorem ??

$$\lim_{n \to \infty} K(f_{t_n}) = \lim_{n \to \infty} \int_M |\tau(f_{t_n})|^2 = 0$$

Therefore $\tau(f_{t_n}) \to 0$ in $L^2(M)^{\oplus N}$. But also $\tau(f_{t_n}) \to \tau(f_{\infty})$ in $C^{\infty}(M, \mathbb{R}^N)$, one has $\tau(f_{\infty}) = 0$. The homotopic conclusion follows by rescaling the deformation time between f_{t_n} and $f_{t_{n+1}}$ to $\frac{1}{2^n}$.