域与 Galois 理论笔记

魔法少女 Alkali

最后编译: 2023 年 5 月 28 日

0 前言

这份笔记是笔者学习 Fields 奖得主 Richard Borcherds 所讲授的网课 Galois Theory (链接: YouTube 或 bilibili) 时记录的笔记. 原始的笔记是英文的, 但笔者思考之后决定还是使用中文整理出最终的笔记.

这份笔记不是网课的逐字稿, Borcherds 教授所讲的内容中有些部分没有被记录下来 (例如正十七边形的具体构造), 也有一些教授略过的部分被详细地补充 (例如任意集合的分裂域的同构延拓定理). 更多地, 这份笔记被整理成了笔者心目中适合自己和他人阅读的模样. 因此, 这份笔记便不可避免地带有了笔者的个人色彩, 从而许多地方的讲法与证明并不一定是最好的. 更为致命的是, 本份笔记是作者为备考中科院 2023 年"代数与数论"暑期学校而突击整理的笔记 (虽然应该没有办法在考前整理出来), 因此错误应当俯拾即是, 所以还盼望读者指正.

联系我可以通过我的邮箱.

本笔记用到的参考文献

[1] Emil Artin. *Galois theory*. second. Edited and with a supplemental chapter by Arthur N. Milgram. Dover Publications, Inc., Mineola, NY, 1998, pp. iv+82. ISBN: 0-486-62342-4.

- [2] Serge Lang. Algebra. third. Vol. 211. Graduate Texts in Mathematics. Springer-Verlag, New York, 2002, pp. xvi+914. ISBN: 0-387-95385-X. DOI: 10.1007/978-1-4613-0041-0.
- [3] Serge Lvovski. *Principles of complex analysis*. Vol. 6. Moscow Lectures. Translated from the 2017 Russian original by Natalia Tsilevich. Springer, Cham, 2020, pp. xiii+257. ISBN: 978-3-030-59364-3; 978-3-030-59365-0. DOI: 10.1007/978-3-030-59365-0.
- [4] Patrick Morandi. Field and Galois theory. Vol. 167. Graduate Texts in Mathematics. Springer-Verlag, New York, 1996, pp. xvi+281. ISBN: 0-387-94753-1. DOI: 10.1007/978-1-4612-4040-2.
- [5] 章璞. 伽罗瓦理论——天才的激情. 高等教育出版社, 2013.

1 域扩张

我们先给出域扩张的定义.

定义 1.1. 设 K,L 是域, 且满足 $K \subset L$, 那么称 L 是 K 的一个**扩域**, 记作 L/K.

例 1.2. 我们最熟悉的扩域的例子是 $\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.

定义 1.3. 设有域扩张 L/K.

- 1. 定义扩张的**度数**为 $[L:K] = \dim_K L$, 当 $[L:K] < \infty$ 时, 称 L/K 为**有 限扩张**;
- 2. 设 $\alpha \in L$, 如果 α 是某个多项式 $p(x) \in K[x]$ 的根, 那么称 α 在 K 上是 **代数**的, 否则称为是**超越**的;
- 3. 设 α 是 K 上的代数元, 设 $p(x) \in K[x]$ 是 α 的极小多项式, 即以 α 为根的次数最低的多项式, 那么定义 α 的度数 $\deg \alpha = \deg p(x)$.

例 1.4. 我们给出一些域扩张的例子.

- 1. 对 $\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$, 有 $[\mathbb{C} : \mathbb{R}] = 2$, $[\mathbb{R} : \mathbb{Q}] = \infty$. (具体而言, $[\mathbb{R} : \mathbb{Q}] = 2^{\aleph_0}$)
- 2. 取 $K = \mathbb{Q}$, 那么 $\alpha = \sqrt[5]{2}$ 是代数的, $\pi, e \in \mathbb{R}$ 是超越的.

- 3. 对 $\mathbb{Q} \subset \mathbb{Q}(x)$, 即 \mathbb{Q} 上的有理函数域作为 \mathbb{Q} 的扩域, x 在 \mathbb{Q} 上是超越的.
- 4. $\alpha = \cos(2\pi/7)$ 是代数的. 注意到对 $\zeta = e^{2\pi/7}$, 有 $\alpha = (\zeta + \zeta^{-1})/2$. 而

$$1 + \zeta + \dots + \zeta^6 = 0 \implies \zeta^{-3} + \zeta^{-2} + \dots + 1 + \dots + \zeta^3 = 0$$
$$\implies (2\alpha)^3 + (2\alpha)^2 - 2(2\alpha) - 1 = 0$$
$$\iff 8\alpha^3 + 4\alpha - 4\alpha - 1 = 0$$

所以 α 是 \mathbb{Q} 上的代数元.

记号 1.5. 对 L/K 及集合 $S \subset L$, 我们记 K(S) 为包含 S 中所有元素的最小的扩域, 并称为**由** S **生成的扩域**. 特别地, 当 $S = \{\alpha_1, \dots, \alpha_n\}$ 时, 我们记 $K(S) = K(\alpha_1, \dots, \alpha_n)$.

考虑由单个代数元 α 生成的扩域, 我们有如下的引理

引理 1.6. 设 L/K, $\alpha \in L$ 是 K 上的代数元, 有极小多项式 $m(x) \in K[x]$, 那 么 $K(\alpha) \simeq K[x]/\langle m(x) \rangle$, 其中 $\langle m(x) \rangle$ 是 p(x) 生成的理想.

证明. 定义同态

$$\varphi: K[x] \to K(\alpha)$$

$$p(x) \mapsto p(\alpha)$$

考虑核 $\ker \varphi$, 显然 $\ker \varphi \neq K[x]$, 且极小多项式 $m(x) \in \ker \varphi$. 由于 K[x] 是主理想整环, $\ker \varphi$ 单生成, 且生成元整除 m(x). 但容易证明 m(x) 是不可约多项式, 结合 $\ker \varphi \neq K[x]$ 可知生成元与 m(x) 相伴, 从而 $\ker \varphi = \langle m(x) \rangle$. 由第一同构定理即知

$$K(\alpha) \simeq \frac{K[x]}{\langle m(x) \rangle}$$

关于有限扩张与代数扩张,有如下的结论

定理 1.7. 设有域扩张 M/K, $\alpha \in M$ 是 K 上的代数元当且仅当 α 包含在 K 的一个有限扩张中.

证明. 一方面,假设 α 是代数元,那么 $\alpha \in K(\alpha)$. 设 $\deg \alpha = n$,那么 $1,\alpha,\cdots,\alpha^{n-1}$ 是 $K(\alpha)$ 的一组基, $K(\alpha)/K$ 是有限扩张. 另一方面,假设 α 包含在 K 的有限扩张中,不妨设 $[M:K]=n<\infty$. 那么 $1,\alpha,\cdots,\alpha^{n-1},\alpha^n$ 一定线性相关,从而 α 是一个多项式的根,是一个代数元.

定理 1.8 (望远镜公式). 设 $K \subset L \subset M$ 均为有限扩张, 那么有 [M:K] = [M:L][L:K]

证明. 设 x_1, \dots, x_m 是 L/K 的一组基, y_1, \dots, y_n 是 M/L 的一组基. 我们 考虑 $\{x_iy_i\}_{(i,j)\in[m]\times[n]}^1$. 首先对 $a_{ij}\in K$ 及指标 $(i,j)\in R\times S\subset [m]\times[n]$ 有

$$\sum_{(i,j)\in R\times S} a_{ij}(x_i y_j) = 0$$

$$\implies \sum_{j\in S} a_{ij} y_j = 0, \ \forall i \in R$$

$$\implies a_{ij} = 0, \ \forall (i,j) \in R \times S$$

所以 $x_i y_j$ 线性无关. 其次, 显然 M 中的每个元素可以表示为 $x_i y_j$ 的 K-线性组合, 所以 $\{x_i y_j\}_{(i,j)\subset [m]\times [n]}$ 是 M/L 的一组基. 从而命题得证.

通过望远镜公式, 我们可以证明

定理 1.9. 设 α, β 是 K 上的代数元, 那么 $\alpha \pm \beta, \alpha\beta, \alpha/\beta(\beta \neq 0)$ 均为 K 上的代数元.

证明. 考虑扩张链 $K \subset K(\alpha) \subset K(\alpha,\beta)$, 两个扩张均为代数扩张, 所以都是有限扩张. 由定理 1.8, $K(\alpha,\beta)/K$ 是代数扩张. 而 $\alpha \pm \beta, \alpha\beta, \alpha/\beta$ 均包含在 $K(\alpha,\beta)$ 中, 所以都是代数元.

定理 1.10. 设 α 是一个由 K 上代数元系数构成的多项式的根, 那么 α 是代数的.

证明.设

$$\alpha^n + a_{n-1}\alpha^{n-1} + \dots + a_0 = 0$$

 $[[]m] = \{1, \dots, m\}$, 组合数学中的常用记号.

且 a_{n-1}, \dots, a_0 均为 K 上代数元. 考虑域扩张链

$$K \subset K(a_0)$$

$$\subset K(a_0, a_1)$$

$$\cdots$$

$$\subset K(a_0, \cdots, a_{n-1})$$

$$\subset K(a_0, \cdots, a_{n-1}, \alpha)$$

前 n 步扩张每一步都是添加一个代数元 a_i ,所以都是有限的,因此 K 上的扩域 $K(a_0, \cdots, a_{n-1})$ 是有限的。而由假设, α 在 $K(a_0, \cdots, a_{n-1})$ 上代数,所以最后一步扩张也是有限的。因此扩张 $K(a_0, \cdots, a_{n-1}, \alpha)/K$ 是有限的,从而 α 是 K 上代数元.

而关于超越元, 我们已知 e,π 在 $\mathbb Q$ 上是超越的, 但是有如下的公开问题 问题. $e+\pi$, $e\pi$ 在有理数域上超越吗?

不过我们可以有这样的结论

命题 1.11. $e + \pi$, $e\pi$ 至多有一个是代数的.

证明. 否则 $e + \pi$, $e\pi$ 都是代数的, 由定理 1.10 可知方程

$$x^{2} - (e + \pi)x + e\pi = 0 \tag{1}$$

的根是代数的. 但方程 (1) 的根是 e 和 π , 这与我们已知的 e 与 π 的超越性矛盾.

2 分裂域

给定一个域 K 及 K 上的多项式 $p(x) \in K[x]$,我们希望找到一个扩域 L/K 使得 p(x) 在 L 上 "有所有的根". 给 "有根"这一点以严格的定义,我们 便得到了**分裂域**的概念:

定义 2.1. 设 K 是域, $p(x) \in K[x]$, 如果扩域 L/K 使得 p(x) 在 L 上可以分解为一次因式的乘积 (简称为**分裂**)

$$p(x) = (x - \alpha_1) \cdots (x - \alpha_n)$$

且 $L = K(\alpha_1, \dots, \alpha_n)$, 那么称 $L \in p(x)$ 在 K 上的**分裂域**.

在证明分裂域的存在性与唯一性之前, 我们先给出一些分裂域的例子.

例 2.2. 给定底域 K, 讨论多项式 $p(x) \in K[x]$.

- 1. $p(x) = x a_0, a_0 \in K$, 那么分裂域就是 K.
- 2. $p(x) = x^2 a_1 x + a_0$, $a_1, a_0 \in K$, 且 p(x) 不可约. 那么 $L = K[x]/\langle p(x) \rangle$ 包含了 p(x) 的一个根 α , 而事实上, L 也包含了另一个根 $a_1 \alpha$. 所以 $L \in p(x)$ 的一个分裂域.
- 3. 取 $K = \mathbb{Q}$ 及 $p(x) = x^3 2$. $L = \mathbb{Q}(\sqrt[3]{2}) = \mathbb{Q}[x]/\langle x^3 2 \rangle$ 包含了 $\sqrt[3]{2}$, 但 不包含 $x^3 2$ 的复根, 此时 $x^3 2 = (x \sqrt[3]{2})(x^2 + \sqrt[3]{2}x + \sqrt[3]{4})$. 于是取 $M = L[y]/\langle y^2 + \sqrt[3]{2}y + \sqrt[3]{4}$, 则 M 是一个分裂域, 并且有 [M:k] = 6.
- 4. $p(x) = 8x^3 + 4x^2 4x 1$.

我们现在证明分裂域的存在性.

证明. 给定域 K 及 $p=p_1p_2\cdots p_m\in K[x]$, 其中 p_i $(i=1,\cdots,m)$ 均不可约. 我们对 $\deg p$ 用归纳法. 当 $\deg p=1$ 时, K 本身就是 p(x) 的分裂域. 假设对 $\deg p=n-1$ 成立. 对 $\deg p=n$, 考虑域 $K_1=K[x]/\langle p_1(x)\rangle$, 那么 p 在 K_1 上至少有一个根 α , p 在 K_1 上可以分解为

$$p(x) = (x - \alpha)p_a(x)$$

对 $p_a(x)$ 用归纳假设, 存在扩域 L/K_1 使得 $p_a(x)$ 分裂为一次因式的乘积, 从 而在扩域 L/K 上 p(x) 分裂为一次因式的乘积. 由归纳原理得证.

我们着手证明分裂域的同构唯一性. 我们把这个命题加强为分裂域作为域扩张是同构唯一的, 即对域 K 及分裂域 L,L', 有如下的图表交换

定理 2.3 (分裂域的同构唯一性). 设 K 是域, $p(x) \in K[x]$, 域 K' 与 K 同构, 且 p(x) 在同构映射下的像为 p'(x). 设 L, L' 分别是 p(x), p'(x) 的分裂域, 那么存在同构 $L \to L'$ 使得以下图表交换

$$\begin{array}{ccc} L & \stackrel{\sim}{\longrightarrow} & L' \\ \uparrow & & \uparrow \\ K & \stackrel{\sim}{\longrightarrow} & K' \end{array}$$

证明. 设 $i: K \xrightarrow{\sim} K'$ 是同构, 我们也用 i 表示延拓到 $K[x] \to K'[x]$ 的同构. 依然对 p(x) 的次数用归纳法. $\deg p = 1$ 时, K = L, K' = L', 命题显然成立. 假设命题对 $\deg p = n - 1$ 成立, 那么对 p 的某个不可约因子 p_1 , 有

$$K(\alpha) = \frac{K[x]}{\langle p(x) \rangle} \simeq \frac{K'[x]}{\langle i(p(x)) \rangle} = K(\alpha')$$

从而可以得到交换图

$$K(\alpha) \xrightarrow{\sim} K'(\alpha)$$

$$\uparrow \qquad \uparrow$$

$$K \xrightarrow{\sim} K'$$

而在 $K(\alpha)$, $K'(\alpha')$ 上 p(x), p'(x) 分别分解为一次因式与一个 n-1 次多项式的乘积, 从而按归纳假设, 可以得到两个 n-1 次多项式的分裂域的同构

$$\begin{array}{ccc}
L & \xrightarrow{\sim} & L' \\
\uparrow & & \uparrow \\
K(\alpha) & \xrightarrow{\sim} & K'(\alpha')
\end{array}$$

从而有大图表

$$L \xrightarrow{\sim} L'$$

$$\uparrow \qquad \uparrow$$

$$K(\alpha) \xrightarrow{\sim} K'(\alpha')$$

$$\uparrow \qquad \uparrow$$

$$K \xrightarrow{\sim} K'$$

交换,即得到所欲证命题.

评注 2.4. 需要注意到, 两个分裂域之间的同构不一定是唯一的. 例如分别使用 i,j 表示虚数单位, x^2+1 在 \mathbb{R} 上的两个分裂域

其中 $h: \mathbb{R}(i) \to \mathbb{R}(j)$ 可以取为 $i \mapsto j$ 与 $i \mapsto -j$, 得到两个同构.

3 代数闭包

定义 3.1. 设 K 是一个域, 如果扩域 \overline{K}/K 满足

- (1) K[x] 中的任意多项式在 \overline{K} 中均分裂;
- (2) \overline{K} 由 K[x] 中多项式的根生成,

那么称 \overline{K} 是 K 的**代数闭包**.

我们给出代数闭包的构造.

定理 3.2. 任意域 K 均存在代数闭包.

证明. 使用良序定理 ([2, 附录 2, 定理 4.1]) 在 K[x] 上赋予良序 (K[x], \prec). 对任意一条链 $c: p_1 \prec p_2 \prec \cdots$, 我们取 $K_0 = K$, K_1 为 k_1 力 k_2 力 k_3 之 在 k_4 上的分裂域, k_5 为 k_5 力 k_6 之 有 k_6 之 k_6

$$F_c: K_0 \subset K_1 \subset K_2 \subset \cdots$$

考虑 $K^c = \bigcup_{i \in \mathbb{N}} K_i$, 那么 K^c 是 F_c 的上界, 并且 K^c 恰好包含了 c 中所有多项式的根. 取 X 是每一条链 F_c 与 K^c 的集合, 那么由 Zorn 引理 ([2, 附录 2 第 2 节]), X 中存在极大元 \overline{K} . 一方面, 任意 $p(x) \in K[x]$ 都在 \overline{K} 中分裂, 否则具有 p(x) 的一个根 α 使得 $\overline{K} \subsetneq \overline{K}(\alpha)$, 与 \overline{K} 的极大性矛盾. 另一方面, X 中没有添加 K[x] 中多项式的根以外的元素, 所以 \overline{K} 恰好由 K[x] 中多项式的根生成. 因此 \overline{K} 就是 K 的代数闭包.

关于代数闭包,有一个密切相关的概念是代数闭域:

定义 3.3. 域 L 被称为是代数闭域, 如果 L[x] 中的任意多项式都在 L 中有根.

命题 3.4. 域 K 的代数闭包 \overline{K} 是代数闭域.