Show that
$$\frac{n^2}{\lg n} = o(n^2)$$

Definition of $o(n)$:

 $f(n) = o(g(n))$ if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

Proof:

 $\int_{g_n} \frac{n^2}{\lg n} = o(n^2) \Rightarrow \lim_{n \to \infty} \frac{\frac{n^2}{\lg n}}{n^2} = 0$
 $\lim_{n \to \infty} \frac{\frac{n^2}{\lg n}}{n^2} = 0 \Rightarrow \lim_{n \to \infty} \frac{n^2}{\lg n} \cdot \frac{1}{n^2} \Rightarrow \lim_{n \to \infty} \frac{1}{\lg n} = 0$

With the limit $\lim_{n \to \infty} \frac{1}{\lg n} = 0$ as n approaches infinity the answer becomes 0 and thus:

 $\frac{n^2}{\lg n} = o(n^2)$

Show that $n^2 \neq o(n^2)$

Following the same definition

$$f(n) = G(g(n)) \text{ if } \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$
If $n^2 = O(n^2)$ then $\lim_{n \to \infty} \frac{n^2}{n^2} = 0$, however $\lim_{n \to \infty} \frac{n^2}{n^2} = 1$
Therefor $n^2 = O(n^2)$ connect be frue and thus $n^2 \neq O(n^2)$

If
$$n^2 = o(n^2)$$
 then $\lim_{n\to\infty} \frac{n}{n^2} = 0$, however $\lim_{n\to\infty} \frac{n}{n^2}$.
Therefor $n^2 = o(n^2)$ connot be force and thus $n^2 \approx o(n^2)$