

Plano da Aula

Introdução

Geometria de placas

- Dorsal, fossa e zona transformante
- Polos de Euler
- Campo de velocidade

Exemplos e exercícios:

- Exemplos
- Exercícios

Introdução

Litosfera e astenosfera

A litosfera

Camada externa da Terra que fica rígida durante intervalos de tempo geológicos:

- Define a "espessura" da placa tectônica
- Resiste deformação em escalas de tempo de 10⁹ anos.
- A listosfera oceânica tem uns 100 km de espessura e participa do ciclo da tectônica de placas.
- A listosfera continental tem uns 200 km de espessura e não participa do ciclo.

A astenosfera

É a camada logo abaixo da litosfera que, devido às maiores temperaturas, é formada por rochas que podem fluir:

- O limite superior coincide com a base da litosfera.
- O limite inferior coincide com a transformação de fase da olivina a 660 km.
- A parte superior da astenosfera forma uma camada de baixa velocidade sísmica, talvez contendo fusão parcial.

Tectônica de Placas

A superfície da Terra é divida em placas tectônicas com movimento relativo.

As bordas das placas

As bordas podem ser convergentes, divergentes ou transformantes.

A deriva continental

De acordo com Wegener, os continentes são navios que navegam pelo manto:

Robustez finita do manto

Isso considerava-se impossível porque acreditava-se que o manto tinha uma "rigidez finita".

O manto deforma e flui quando o esforço aplicado fica acima de um valor crítico

Ese valor crítico era superior às forças postuladas por Wegener.

Deslocamento polar

Outra questão era se o eixo de rotação da Terra pode se deslocar.

A "deriva" das placas

De acordo com a tectônica de placas os continentes são passageiros:

A "tectônica" das placas

A dinâmica das placas tectônicas é fundamentada na existência de um contraste reológico entre a litosfera e a astenosfera.

Geometria de Placas

Vamos começar assumindo que a Terra é uma superfície plana.

Dorsais, fossas e ...

Dorsais - São as bordas onde as placas se afastam.

- Em inglês: "ridge" ou "rise"
- É uma estrutura simétrica

Fossas - São as bordas onde uma placa subduze por baixo da outra.

- Em inglês: "trench"
- É uma estrutura asimétrica

... falhas transformantes

São as bordas onde as placas tem movimento paralelo.

- Em inglês: "transform fault"
- Como as falhas transcorrentes, podem ser dextrais ou sinistrais.

São comuns e algumas tem existido un longo tempo.

- As falhas transformates guiam a placa
- O movimento da placa estabelece o "strike" da falha transformante.

Falhas transformantes e zonas de fratura

Polos de Euler

Qual a geometria de uma placa onde a borda toda é uma falha transformante?

Polos de Euler

O polo de Euler "E" é estacionário para todo sistema de referência.

Polos de Euler

Os polos de Euler podem ser usados em outras geometrias planas, mas eles são essenciais em geometria esférica.

Determinação de polos de Euler

A zonas de fratura são mais lineares do que as falhas transformantes

- 1. Identificar as zonas de fratura.
- 2. Ajustar um segmento linear.
- 3. Construir a perpendicular, dividindo o segmento em duas metades.
- 4. Determinar o ponto de cruzamento.

Taxa de expansão

O assoalho oceânico tem faixas de polaridade magnética alternada.

Velocidade relativa

As isocronas de 30 my estão separadas por uma distância de 3000 km. Assim:

 $_{A}V_{B} = 100 \text{ km/my} = 100 \text{ mm/yr}$

Regras para mostrar isocronas

Para mostrar isocronas em reconstruções paleogeográficas:

- Sempre usar a idade atual da isocrona
- Usar t₀ para a idade da dorsal
- Usar "t" para a idade da reconstrução

Assim, no exemplo anterior (b), é mostrada a reconstrução para t=20 Ma se a dorsal tivesse sido criada em $t_0=30$ Ma.

Expansão em ângulo

 $_{A}V_{B} = V/\cos \delta$ = 113 mm/yr

 $_{\rm C}V_{\rm D}=80~{\rm mm/yr}$

Campos de velocidade

A velocidade de uma placa não é uniforme se há rotação da mesma:

$$_{A}V_{B} = r x_{A}\omega_{B}$$

A velocidade é relativa

As observações geológicas dão apenas a velocidade relativa:

$$_{A}\omega_{B} = - _{B}\omega_{A}$$

Um exemplo

Reconstruir a história tectônica a partir das zonas de fratura (F.Z.) e isocronas mostradas abaixo.

Box 1-8. History of a Plate Named B.

A former plate B is born and begins to move toward the east. Luckily, a double row of submarine volcanoes labeled a-h are strategically placed to help us follow the action. Because of the polarity of the trench to the east, we know that plate B is doomed to die.

In 10 my the ridge has migrated 500 km eastward from plate A and plate A has grown the same amount. Plate B has moved 1000 km east of plate A. To the east, 1000 km of plate B has been subducted into the trench. To the west, plate B has grown by 500 km, like plate A, so the net length of plate B has decreased by 500 km.

53 Ma Most of the original lithosphere of plate B (t > 70 Ma) has now gone down the trench, and some of the new (t < 70 Ma) lithosphere is starting down in the northeast.

Box 1-8. (continued)

Because the ridge is offset by a transform, when the ridge meets the trench, plate B is split into two separate plates (B and C). Plate C goes under at 26 Ma and subduction stops along the southern part of the trench. The last piece of plate B goes under at 19 Ma. At this time plate B has been destroyed, all subduction stops, and plate A is declared the winner.

Conclusão

Da mesma forma que a geometria Euclidiana é a expressão das leis da Física, a geometria das placas é a expressão dos processos tectônicos.