

Prof: K.SADIK

Correction TD N° 4 Statistiques

Exercice 1

- 1. caractère : Mode de logement ; sa nature est qualitative ;
- 2. Le tableau donnant les effectifs n_i , fréquences relatives f_i et fréquences relatives cumulées F_i .

Mode de logement x_i	$fr\'equence f_i\%$	f_i	F_i	$n_i = f_i * N$
Cité U	5.30%	0.053	0.053	0.053*189=10.017
HLM	16.40%	0.164	0.217	0,164*189=30.996=31
$R\'esidence$	38.62%	0.3862	0.6032	72.9918=73
Maison	28.04 %	0.2804	0.8836	52.9956=52
Autre	11.64%	0.1164	1	21.9996 = 22
Total	100%	1		N=189

3. Le diagramme en secteurs ou diagramme circulaire.

$$\alpha_i = f_i * 360$$

Pour Cité U; $\alpha_1 = f1 *360 = 0.053*360 = 19.08 degré$

Pour HLM; $\alpha_2 = f2*360 = 0.164*360 = \frac{59.04}{\text{degré}}$

Pour Résidence ; $\alpha_3 = f3*360 = 0.3862*360 = 139.032 \ degré$ Pour Maison ; $\alpha_4 = f4*360 = 0.2804*360 = 100.94 \ degré$ Pour Autre ; $\alpha_5 = f5*360 = 0.1164*360 = 41.904 \ degré$

Diagramme circulaire qui représente le mode de logement

Diagramme en tuyaux d'orgues qui représente le mode de logement

Exercice 2

1. La population est composée de 25 ménages

Nombres des pièces x_i	Effectifs n_i
1	5
2	9
3	4
4	4
5	3
Total	25

- 2. La variable est Nombre de pièces; sa nature est quantitative discrète.
- 3. Diagramme en bâtons;

4. Distribution des effectifs cumulés;

Nombres des pièces x_i	Effectifs n_i	N_i Effectifs cumulés
1	5	5
2	9	14
3	4	18
4	4	22
5	3	25
Total	25	-

<u>Diagramme des effectifs cumulés</u> : Cas d'un caractère discrèt \Rightarrow Représentation sous forme de diagramme en escaliers.

5. On remarque graphiquement à partir le diagramme en bâton que le bâton qui correspond à la modalité 2 est le plus élèvé.

$$\Rightarrow M_o = 2$$

Interprètation : Ce qui signifie que la majorité des ménages ont le nombre de pièces de 2.

6. <u>Le mode</u>: L'effectif maximal est 9, donc la modalité qui correspond à cet effectif est $x_2 = 2$.

$$\Rightarrow M_o = 2$$

Interprètation : Ce qui signifie que la majorité des ménages ont le nombre de pièces de 2.

7. <u>La médiane</u>: Le rang $\frac{N}{2} = \frac{25}{2} = 12,5$, On 14>12,5, donc la médiane est la modalité qui correspond à l'effectif cumulé $N_2 = 14$ est $x_2 = 2$.

$$\Rightarrow M_e = 2$$

Interprètation : Ce qui signifie que 50% (la moitié de la population) des ménages ont le nombre de pièces inférieure à 2 tandis que l'autre moitié qui reste ont le nombre de pièces supérieure à 2.

* Quartiles Q_1 : Le rang $\frac{N}{2}=\frac{25}{4}=6.25$, On 14>6.25, donc Q_1 est la modalité qui correspond à l'effectif cumulé $N_2=14$ est $x_2=2$.

$$\Rightarrow Q_1 = 2$$

Interprètation : Ce qui signifie que 25% des ménages ont le nombre de pièces inférieure à 2 tandis que 75% qui reste ont le nombre de pièces supérieure à 2.

* Quartiles Q_3 : Le rang $\frac{3N}{4} = \frac{3*25}{4} = 18.75$, On 22>18.75, donc Q_3 est la modalité qui correspond à l'effectif cumulé $N_4 = 25$ est $x_4 = 4$.

$$\Rightarrow Q_3 = 4$$

Interprètation : Ce qui signifie que 75% des ménages ont le nombre de pièces inférieure à 4 tandis que 25% qui reste ont le nombre de pièces supérieure à 4.

8. La moyenne:

Nombre de pièces x_i	Effectifs n_i	$n_i x_i$	f_i	$f_i x_i$	x^2	$n_i * x^2$
1	5	5	0,2	0,2	1	5
2	9	18	0,36	0,72	4	36
3	4	12	0,16	0,48	9	36
4	4	16	0,16	0,64	16	64
5	3	15	0,12	0,6	25	75
Total	25	66	1	2,64		216

$$\Rightarrow \bar{x} = \frac{1}{N} \sum_{i=1}^{k} n_i x_i = \frac{66}{25} = \frac{2,64}{25}$$
$$\Rightarrow \bar{x} = \sum_{i=1}^{k} f_i x_i = 2,64$$

Interprètation : Ce qui signifie que le nombre de pièces moyen est de 2,64. La variance :

$$\Rightarrow var(x) = \frac{1}{N} \sum_{i=1}^{5} n_i(x_i)^2 - (\bar{x})^2 = \frac{216}{25} - (2.64)^2 = 1.6704$$

*Ecart type:

$$\Rightarrow \sigma(x) = \sqrt{var(x)} = \sqrt{1.6704} = 1.2992$$

Interprètation: Ce qui signifie que le nombre de pièces observés s'éloigne en moyenne de 2,64 du nombre de pièces moyen de (1.2992).

*Coefficient de variation

$$\Rightarrow CV(x) = \frac{\sigma(x)}{\bar{x}} \times 100 = \frac{1.2992}{2.64} \times 100 = 48,95\%$$

 $\textbf{Interprètation}: CV = 48.95 \leq 50\% \Rightarrow \textit{Dispersion faible}.$

Exercice 3

1. Histogramme:

Tableau des données,

Temps vécu x_i	Effectifs n_i	a_i	N_i	c_i	$n_i c_i$	$n_i c_i^2$
[0-1[35	1	35	0,5	17,5	8,75
[1-2[36	1	71	1,5	54	81
[2-3[32	1	103	2,5	80	200
[3-4[25	1	128	3,5	87,5	306,25
[4-5[20	1	148	4,5	90	405
[5-6[18	1	166	5,5	99	544,5
[6-7[16	1	182	6,5	104	676
[7-8[7	1	189	7,5	52,5	393,75
Total	189		-		584,5	2615,25

2. *Le mode: D'après les données du taleau et l'histogramme, L'effectif maximal est 36, donc [1-2] est la classe modale qui correspond à l'effectif maximal. (cas caractère quantitative continue avec les amplitudes égales)

$$\Rightarrow M_o = born \ inf + a_i \frac{n_i - n_{i-1}}{(n_i - n_{i-1}) + (n_i - n_{i+1})} = 1 + 1 \frac{36 - 35}{(36 - 35) + (36 - 32)} = 1, 2$$

Interprètation : Ce qui signifie qu'une majorité (une bonne partie) des individus ont vécu pour une periode 1,2.

* <u>La médiane</u> : Le rang $\frac{N}{2}=\frac{189}{2}=94.5$, On 103>94,5, donc [2-3] est la classe médiane qui

correspond à l'effectif cumulé N_3 . $\Rightarrow M_e = borninf + a_i \times \frac{\frac{N}{2} - N_{i-1}}{n_i} = 2 + 1 \frac{94,5-71}{32} = 2,73 \text{ Interprètation} : Ce qui signifie que 50% (la moitié de la population) des individus ont le temps vécu inférieur à 2,73 tandis que l'autre$ moitié qui reste ont le temps vécu à supérieur 2,73.

* Quartile Q_1 : Le rang $\frac{N}{4} = \frac{189}{4} = 47,25$, On 71>47,5, donc [1-2] est la classe médiane qui correspond à l'effectif cumulé N_2 .

$$\Rightarrow Q_1 = borninf + a_i \times \frac{\frac{N}{4} - N_{i-1}}{n_i} = 1 + 1 \frac{47, 5 - 35}{36} = 1,34$$

 $\Rightarrow Q_1 = borninf + a_i \times \frac{\frac{N}{4} - N_{i-1}}{n_i} = 1 + 1\frac{47,5 - 35}{36} = 1,34$ Interprètation : Ce qui signifie que 25% des individus ont le temps vécu inférieur à 1,34 tandis que 75% qui reste ont le temps vécu à supérieur 1,34.

*La moyenne :

$$\Rightarrow \bar{x} = \frac{1}{N} \sum_{i=1}^{8} n_i c_i = \frac{584.5}{189} = 3.09$$

Interprètation: Ce qui signifie que le temps moyen vécu de la population est de 3,09.

3. *La variance :

$$\Rightarrow var(x) = \frac{1}{N} \sum_{i=1}^{8} n_i(c_i)^2 - (\bar{x})^2 = \frac{2615,25}{189} - (3,09)^2 = 4,29$$

 $*Ecart\ type:$

$$\Rightarrow \sigma(x) = \sqrt{var(x)} = \sqrt{4,29} = 2,07$$

Interprètation: Ce qui signifie que le temps vécu observés s'éloigne en moyenne de 2,07 de temps vécu moyen (3,09).

*Coefficient de variation

$$\Rightarrow CV(x) = \frac{\sigma(x)}{\bar{x}} \times 100 = \frac{2,07}{3,09} \times 100 = 66,99\%$$

Interprètation : $CV = 50\% < 66.99 \le 80\% \Rightarrow Dispersion moyenne.$

Exercice 4

- 1. La variable est quantité achetèe des portables; sa nature est quantitative continu.
- 2. Pour calculer la moyenne, on a

x_i	n_i	c_i	$n_i c_i$
[0-5[75	2,5	187,5
[5-10[59	7,5	442,5
[10-20[42	15	630
[20-50[38	35	1330
[50-100[29	75	2175
[100-b[7	$\frac{100+b}{2}$	$7*(\frac{100+b}{2})$
Total	250		$4765+7*(\frac{100+b}{2})$

Si la quantité moyenne achetée des portables est 22,7; on a

$$\Rightarrow \bar{x} = \frac{1}{N} \sum_{i=1}^{6} n_i c_i = \frac{4765 + 7 * (\frac{100 + b}{2})}{250} = 22,7$$

$$\Rightarrow b = \frac{((22,7 \times 250) - 4765) \times 2}{7} - 100$$

$$\Rightarrow b = 160$$

3. Histogramme:

4. <u>Le mode</u>: On a les amplitudes a_i inégale. On a besion de calculer les densité $d_i = \frac{n_i}{a_i}$

x_i	n_i	c_i	$n_i c_i$	a_i	d_i
[0-5[75	2,5	187,5	5	15
[5-10[59	7,5	442,5	5	11,8
[10-20[42	15	630	10	4,2
[20-50[38	35	1330	30	1,26
[50-100[29	75	2175	50	0,58
[100-160[7	130	910	60	0,11
Total	250				

La densité maximale est 15, donc [0-5] est la classe modale qui correspond à la densité maximale.

$$\Rightarrow M_o = born \ inf + a_i \frac{d_i - d_{i-1}}{(d_i - d_{i-1}) + (d_i - d_{i+1})} = 0 + 5 \frac{15 - 0}{(15 - 0) + (15 - 11, 8)} = 4,12$$

Interprètation : Ce qui signifie qu'une majorité (une bonne partie) des consommateurs ont acheté 4,12 portables.

5. La médiane et les quartiles :

x_i	n_i	N_i
[0-5[75	γ_5
[5-10[59	134
[10-20[42	176
[20-50[38	214
[50-100[29	243
[100-b[7	250
Total	250	

Premier quartile Q_1 : Le rang $\frac{N}{4}=\frac{250}{4}=62.5$, On 75>62,5, donc [0-5] est la classe qui

$$\Rightarrow Q_1 = borninf + a_i \times \frac{\frac{N}{4} - N_{i-1}}{n_i} = 0 + 5 \times \frac{62,5-0}{75} = 4,16 \Rightarrow Q_1 = 4,16$$
;

correspond à l'effectif cumulé N_1 . $\Rightarrow Q_1 = borninf + a_i \times \frac{\frac{N}{4} - N_{i-1}}{n_i} = 0 + 5 \times \frac{62,5-0}{75} = 4,16 \Rightarrow Q_1 = 4,16;$ Interprètation: Environ 25% des consommateurs ont achetés environ 4,16 portables au moins. Interpretation: Environ 25% also consommateurs on achees environ 4,10 portables at motion.

Médiane Q_2 : Le rang $\frac{N}{2} = \frac{250}{2} = 125$, On 134 > 125, donc [5-10] est la classe médiane qui correspond à l'effectif cumulé N_2 . $\Rightarrow M_e = borninf + a_i \times \frac{\frac{N}{2} - N_{i-1}}{n_i} = 5 + 5 \times \frac{125 - 75}{59} = 9,23 \Rightarrow Q_2 = 9,23;$ Interprètation: Environ 50% des consommateurs ont achetés environ 9,23 portables au moins $\frac{N_i}{N_i} = \frac{N_i}{N_i} = \frac{N_i}{N$

$$\Rightarrow M_e = borninf + a_i \times \frac{\frac{N}{2} - N_{i-1}}{n_i} = 5 + 5 \times \frac{125 - 75}{59} = 9,23 \Rightarrow Q_2 = 9,23$$

Troisième quartile Q_3 : Le rang $\frac{3\times N}{4} = \frac{3\times 250}{4} = 187,5$, On 214 > 187,5, donc [20-50[est la classe qui correspond à l'effectif cumulé N_4 . $\Rightarrow Q_3 = borninf + a_i \times \frac{\frac{3N}{4} - N_{i-1}}{n_i} = 20 + 30 \times \frac{187,5 - 176}{38} = 29,07 \Rightarrow Q_3 = 29,07;$ Interprètation: Environ 75% des consommateurs ont achetés environ 29,07 portables au moins.

$$\Rightarrow Q_3 = borninf + a_i \times \frac{\frac{24}{4} - N_{i-1}}{n_{i-1}} = 20 + 30 \times \frac{187, 5 - 176}{38} = 29,07 \Rightarrow Q_3 = 29,07;$$