PHYS 360A/B

Experiment 20: Nuclear Magnetic Resonance

Mikhail Roslikov

Kamalesh Paluru

October 16, 2023

Contents

1	Introduction	4
2	Theoretical Background	5
3	Experimental Design and Procedure	6
	3.1 Finding Resonance	
	3.1.1 Voltage at $t = 0s$	6
	3.1.2 Free Induction Decay	8
4	Analysis	9
5	Conclusion	10

Abstract

1 Introduction

Hello World!

2 Theoretical Background

3 Experimental Design and Procedure

3.1 Finding Resonance

Figure 1: Free Induction Decay NMR signals for 90° , 180° , and 270° pulses

3.1.1 Voltage at t = 0s

90° Pulse

• A 90° pulse is a pulse that is applied long enough to tip the magnetization vector by 90° from its initial direction (at a small angle with the positive z-axis) in the rotating frame:

- Now, nearly half the spins are in the "up" state and the other half are in the "down" state.
- Since \vec{M} is in the x-y plane, the z component of the magnetization vector vanishes:

$$M_z = 0$$

- This is a higher energy state than the equilibrium state with the magnetization vector, \vec{M} , pointing along the positive z-axis.
- The receiver gain was adjusted so that the precessing \vec{M} induced¹ a current in the coil as shown in the 90° trace of Figure 1.

180° Pulse

• If we apply the pulse for twice as long (increase the pulse width to twice that of the 90° pulse), we rotate the magnetization vector by 180° :

- Most of the spin are now in the "down" state.
- However, this magnetization vector doesn't induce current in the coils since the component in the x-y plane is nearly 0.

270° Pulse

• This time, the pulse is applied long enough to rotate \vec{M} by an additional 180° from the 90° case:

• That is, \vec{M} returns to the x-y plane but is anti-parallel to \vec{M} in the 90° pulse case:

$$\vec{M}_{180^\circ} = -\vec{M}_{90^\circ}$$

• It hence precesses in the opposite sense of rotation as the 90° case².

¹According to Faraday's law.

²And vice versa.

- According to Faraday's law, the direction of the current $\vec{M}_{180^{\circ}}$ induces in the coil is opposite to that of $\vec{M}_{90^{\circ}}$.
- This is why we see a current that is $-I_{90^{\circ}}$ induced in the 270° case in Figure 1.

3.1.2 Free Induction Decay

- For all three pulses, we see that the signal vanishes over time.
- Recall that for the 90° and 270° pulses, the magnetization vector is in the x-y plane.
- Because of small variations in the magnetic field that the magnetic moments, $\vec{\mu}$, for each particle experience, the magnetic moments being to randomly dephase.
- They spread out in the x-y plane causing the magnetization vector and hence the induced current to vanish as a whole.

4 Analysis

5 Conclusion