Brefs rappels de logique du premier ordre

Marie-Laure Mugnier

1 Syntaxe

Un vocabulaire logique, noté $\mathcal{V}=(\mathcal{P},\mathcal{C})$, est constitué d'un ensemble \mathcal{P} de prédicats ou relations (chaque prédicat a une *arité*, ou nombre d'arguments, supérieure ou égale à 0) et d'un ensemble \mathcal{C} de constantes. \mathcal{P} est fini, mais \mathcal{C} peut être infini (par exemple il peut inclure l'ensemble des entiers).

Outre les prédicats et les constantes, il existe aussi des *symboles fonctionnels*, qui permettent de "calculer" des individus, mais on ne les considérera pas ici (notez quand même que les constantes peuvent être vues comme des symboles de fonctions 0-aires).

Un *terme* (sur un vocabulaire V) est une variable ("une entité inconnue") ou une constante ("une entité précise") $c \in C$.

Un *atome* (sur \mathcal{V}) est de la forme $p(e_1 \dots e_k)$ où p est un prédicat d'arité k de \mathcal{P} et les e_i sont des termes (sur \mathcal{V}). Un atome est la plus petite formule bien formée que l'on puisse construire.

Une *formule* sur V est définie inductivement de la façon suivante :

- (base) un atome (sur V) est une formule (sur V)
- (règle de construction) Si A et B sont des formules (sur V) et si x est une variable, alors les expressions suivantes sont des formules (sur V):

$$\neg A$$
 $(A \land B), (A \lor B), (A \to B), (A \leftrightarrow B)$ $\forall x \ A, \exists x \ A.$

Remarque 1 (portée des quantificateurs) : un quantificateur porte sur la sousformule qui le suit ($\forall xA$ porte sur A). Considérons la formule $f_1 = \forall x \ (p(x) \rightarrow r(x,a))$, où a est par exemple une constante. Cette formule se construit à partir des atomes p(x) et r(x,a) qui sont des formules de base, puis en les connectant par \rightarrow , ce qui donne la formule $A = (p(x) \rightarrow r(x,a))$, et en ajoutant enfin le quantificateur \forall sur $x: f_1 = \forall x \ A$. Ici, la portée de \forall est A. La formule $f_2 =$ $((\forall x \ p(x)) \rightarrow r(x,a))$, qui diffère de f_1 par le parenthésage, se construit à partir des atomes p(x) et r(x,a) en construisant d'abord la formule $(\forall x\ p(x))$ puis en ajoutant le connecteur \to entre $(\forall x\ (p(x))$ et r(x,a). Dans ce cas, le quantificateur ne porte que sur la sous-formule p(x). Par la suite, on s'autorisera à enlever des parenthèses si ceci ne génère pas d'ambiguité. Par exemple, on peut enlever les parenthèses englobantes de $f_2: f_2 = (\forall x\ p(x)) \to r(x,a)$. On peut aussi enlever des parenthèses en utilisant l'associativité des connecteurs \land et \lor : par exemple, on simplifiera $(A(x) \land (B(x) \land C(x)))$ en $(A(x) \land B(x) \land C(x))$.

Remarque 2 (différence avec la notation dite "pointée"): la notation pointée, utilisée surtout dans le domaine de la preuve de programme, construit les formules différemment en ce qui concerne le parenthésage. Exemple: $\forall x.\ p(x) \to r(x,a)$. Avec cette notation, un quantificateur porte sur toute la formule qui le suit, sauf s'il est englobé par des parenthèses. Ceci permet d'économiser des parenthèses. Ainsi, $\forall x.\ p(x) \to r(x,a)$ correspond à la formule f_1 . Pour avoir l'équivalent de la formule f_2 on écrirait $(\forall x.\ p(x)) \to r(x,a)$.

Remarque 3: il suffit d'avoir l'un des deux quantificateurs \forall ou \exists , la négation \neg , et l'un des connecteurs \land , \lor ou \rightarrow pour obtenir l'équivalent de toutes les formules. Par exemple $\exists x \ A$ se réécrit de façon équivalente en $\neg \forall x \neg A$.

Une variable est *libre* si elle a au moins une occurrence qui n'est pas dans la portée d'un quantificateur et elle est *liée* si elle a au moins une occurrence dans la portée d'un quantificateur. Ainsi, une variable peut être à la fois libre et liée. Une formule est *fermée* si elle n'a pas de variable libre. Par exemple, $f_2 = (\forall x \ p(x)) \rightarrow r(x,a)$ n'est pas fermée car x est libre (x est aussi liée). Si a est une constante, la formule f_1 est fermée. Notez qu'on évitera d'écrire des formules avec des variables à la fois libres et liées car ceci est source de confusion. Pour f_2 , on préférera écrire $(\forall y \ p(y)) \rightarrow r(x,a)$. On évitera également qu'une variable soit dans la portée de 2 quantificateurs la concernant (ex : $\exists x \ \exists y \ (r(x,y) \land \exists x r(y,x))$).

2 Sémantique

Une **interprétation** (d'un vocabulaire \mathcal{V}) encode un "monde possible", qui donne une signification aux symboles de \mathcal{V} . Une formule construite sur \mathcal{V} pourra être vraie ou fausse dans ce monde. Plus précisément, une *interprétation* I d'un vocabulaire $\mathcal{V}=(\mathcal{P},\mathcal{C})$ est composée d'un ensemble *non vide* D, appelé le domaine de I (ensemble des entités, ou objets) et d'une définition de la signification des symboles de \mathcal{V} :

- I associe à chaque constante c de C un élément de $D: I(c) \in D$
- I associe à chaque prédicat p de $\mathcal P$ d'arité k un ensemble de k-tuples sur $D:I(p)\in D^k$

Autre notation courante Une interprétation se note souvent $I = (\Delta, .^I)$, où Δ est le domaine et $.^I$ est la fonction d'interprétation des symboles de \mathcal{V} . Dans ce cas, pour un symbole s, I(s) se note s^I .

En représentation des connaissances, on fait souvent l'hypothèse que deux constantes différentes représentent des individus différents ("hypothèse du nom unique" : "unique name assumption"). On a donc :

(UNA) pour toutes constantes distinctes
$$c_1$$
 et c_2 de C , $I(c_1) \neq I(c_2)$

De plus, il est souvent commode de considérer que toutes les constantes d'un vocabulaire s'interprètent de la même façon dans toutes les interprétations de ce vocabulaire : autrement dit, tout domaine inclut un ensemble en bijection avec $\mathcal C$. Pour simplifier encore les choses, on va commettre un petit abus de notation et supposer que $\mathcal C$ est carrément inclus dans chaque domaine. A partir de maintenant on suppose donc que : toute constante s'interprète par elle-même, autrement dit I(c)=c.

Une interprétation permet de donner une valeur de vérité à une formule *fermée*. Si la formule n'est pas fermée, il faut ajouter à l'interprétation une assignation de chaque variable libre à un élément du domaine.

On ne redonne pas ici la définition formelle de la valeur de vérité d'une formule dans une interprétation (accompagnée d'une assignation de ses variables libres à des éléments du domaine, si la formule n'est pas fermée). Intuitivement, une formule fermée $\forall xA$ est vraie pour une interprétation I si pour tout $d \in D$, la formule (non fermée) A est vraie pour I lorsque x est assigné à d; de la même façon, une formule $\exists xA$ est vraie pour I s'il existe $d \in D$ telle que la formule A est vraie pour I lorsque x est assigné à d. Les connecteurs $(\neg, \land, \lor, \ldots)$ s'interprètent comme en logique des propositions. Un atome $p(e_1 \ldots e_k)$ est vrai pour I et une assignation de chaque terme e_i à un élément d_i de D si $(d_1 \ldots d_k) \in I(p)$.

Lorsqu'une formule (fermée) f est vraie dans une interprétation I, on dit que I est un **modèle** de f. On dit qu'une formule f est **conséquence** (ou conséquence sémantique) d'une formule g et on note $g \models f$ si tout modèle de g est un modèle de f ("à chaque fois que g est vraie, f l'est aussi"). Lorsque $f \models g$ et $g \models f$, les formules f et g sont dites équivalentes, ce que l'on note $f \equiv g$.

Remarque : parfois, on dira aussi que f se $d\acute{e}duit$ de g (la déduction est une notion syntaxique, basée sur un "système de preuve" : $g \vdash f$ si on peut dériver f à partir de g en utilisant des règles syntaxiques ; en logique du premier ordre, il existe plusieurs systèmes déductifs qui correspondent *exactement* à la conséquence sémantique — on dit qu'ils sont adéquats et complets par rapport à la conséquence sémantique : $g \vdash f$ si et seulement si $g \models f$).

Une formule est *satisfiable* si elle a au moins un modèle, *insatisfiable* si elle n'a pas de modèle, et *valide* si elle n'a que des modèles (toute interprétation du vocabulaire est un modèle de la formule).

Il est immédiat de vérifier que :

A est insatisfiable ssi $\neg A$ est valide

 $A \models B$ ssi la formule $(A \rightarrow B)$ est valide

ssi la formule $A \wedge \neg B$ est insatisfiable

 $A \equiv B$ ssi la formule $(A \leftrightarrow B)$ est valide.

3 Le fragment $FOL(\land, \exists)$

Un fragment logique s'obtient en restreignant la syntaxe des formules admises. Notre fragment de base sera le fragment existentiel, positif, conjonctif, sans symbole fonctionnel, noté $FOL(\land, \exists)$, où FOL est l'abréviation de First Order Logic. Il permettra de représenter des faits et des requêtes conjonctives, et de raisonner sur ces objets.

Une formule f du fragment $\mathrm{FOL}(\wedge,\exists)$ sur un vocabulaire $\mathcal V$ est une formule de la forme

$$\exists x_1 \ldots \exists x_n (A_1 \wedge \ldots \wedge A_p)$$

où les A_i sont des atomes sur \mathcal{V} et les x_i des variables apparaissant dans les A_i .

Pour les formules fermées de $FOL(\land, \exists)$, on peut sans ambiguïté adopter une *notation ensembliste* : $\{A_1 \ldots, A_p\}$. Petit bémol, les formules $\exists x(p(x) \land p(x))$ et $\exists xp(x)$ se codent toutes les deux par le même ensemble $\{p(x)\}$, mais ce n'est pas grave car ces deux formules sont trivialement équivalentes.

Remarquons qu'une formule (fermée) f de FOL (\land, \exists) est vraie pour une interprétation I si et seulement si il existe une application v des termes de f dans D telle que :

- Pour toute constante c, v(c) = I(c) (c'est-à-dire v(c) = c, si on interprète les constantes par elles-mêmes);
- Pour tout atome $p(e_1 \dots e_k)$ de $f, (v(e_1) \dots v(e_k)) \in I(p)$.

Par la suite, on appellera une telle application v une "bonne affectation" de f dans I (avec l'idée intuitive que cette affectation prouve que f est vraie pour I).

La notion fondamentale pour raisonner dans le fragment $FOL(\land, \exists)$ est l'homomorphisme. Un **homomorphisme** h d'un ensemble d'atomes f dans un ensemble d'atomes g est une application des variables de f dans les termes de g telle

que $h(f) \subseteq g$. Lorsque c'est commode, on peut aussi considérer que le domaine de l'homomorphisme est l'ensemble des termes de f (et pas seulement des variables de f), auquel cas pour toute constante c de f, on a h(c) = c.

Dans le fragment $FOL(\land, \exists)$, il n'est pas nécessaire d'argumenter sur tous les modèles de g pour prouver que $g \models f$. On montrera en effet que, pour f et g fermées, on a $g \models f$ ssi il existe un homomorphisme de f dans g.