The Use of Spreadsheets in Packaging Thermal Calculations

Tutorial
Semitherm-XIV
San Diego

March 10, 1998

Bruce M. Guenin, Ph.D.

Amkor Electronics

Chandler, Arizona

bguen@amkor.com

Outline

Overview

Analytical formulas for 1-D and 2-D heat flow

- Conduction
- Conduction + constant heat transfer coefficient

Package environment

- Representation of test board
- Calculation of heat transfer coefficient

Thermal resistance network

Numerical solution: non-linear boundary conditions

Spreadsheet structure

Case studies

Summary and Conclusions

Examples of Plastic Packages

MQFP

SuperBGA®

Layered structures

- High conductivity metals
- Low conductivity dielectrics
- Lateral dimensions much greater than thickness

Heat Flow in Plastic Packages

Heat Flow Patterns

- In-plane flow in metals
- Thru-plane flow in dielectrics

Approach to Analytical Modeling

In plastic packages, complicated heat flow patterns can be reduced to a series of heat flow building blocks that can be arranged in a thermal circuit diagram

Definition of Thermal Resistance

$$\Theta = \frac{T_A - T_B}{P_{AB}}$$

 T_A , T_B = Temperatures of isothermal surfaces

P_{AB} = Total thermal energy flowing between these surfaces per unit time

1-Dimensional Heat Flow

Examples:

Die **Die Attach**

Bond Wire

Via

Block

$$A = L \times W$$

Cylinder

$$A = p r^2$$

Hollow Cylinder

$$A = p \times (r_{Outer}^2 - r_{Inner}^2)$$

A = Cross-Sectional Area

 κ = Thermal Conductivity

Copyright 1998, Amkor Electronics, Inc.

1-Dimensional Heat Flow with Spreading Resistance Correction

Where:
$$\Theta_{SPR} = \frac{\sqrt{A_{SPR}} - \sqrt{A_{SOURCE}}}{k_{SPR}\sqrt{p} A_{SPR}A_{SOURCE}} \times \frac{\text{lk}_{SPR}A_{SOURCE}\Theta_o + \tanh(\text{l}_{SPR})}{1 + \text{lk}_{SPR}A_{SPR}\Theta_o \tanh(\text{l}_{SPR})}$$

 Θ_0 = Boundary or Conduction Thermal Resistance, and

[Ref: Seri Lee, "Calculation Spreading Resistance in Heat Sinks," Electronics Cooling Magazine, Vol. 4, No. 1 (Jan., 1998), pp. 30 - 33]

$$I = \frac{p^{3/2}}{\sqrt{A_{SOURCE}}} + \frac{1}{\sqrt{A_{SPR}}}$$

B. Guenin, Semitherm XIV, 1998 Page 8

2-Dimensional Heat Flow

$$\Theta = \frac{1}{2pk t} \ln \left(\frac{r_{OUT}}{r_{IN}} \right)$$

FEA Solution: Pad-to-Lead Thermal Resistance

(a) Dependence on w/p

(b) Dependence on s/p

L/F thickness=0.15 mm, d=0.2 mm, p = 0.25, k(m/c)=0.6 w/m-K, k(L/F)=390 w/m-K

[Reference B. S. Lall, B. M. Guenin, R. C. Marrs, and R. J. Molnar, "Parametric FEA Thermal Model for QFP Packages," *Proceedings, SEMI-THERM XII Conference*, March, 1996, pp. 105-110.]

Copyright 1998, Amkor Electronics, Inc.

B. Guenin, Semitherm XIV, 1998
Page 10

Heat Transfer From Constant Temperature Surface

$$\Theta = \frac{1}{hA}$$

h = Heat Transfer Coefficient A = Surface Area

Heat Transfer to Ambient from Composite: Derating h

Temperature of metal may vary locally

We re Packaging the Future

$$h_{EFF} = \frac{hK_{DIELECTRIC}}{k_{DIELECTRIC} + ht_{DIELECTRIC}}$$

Copyright 1998, Amkor Electronics, Inc.

1-D Distributed Conduction/ Convection/Radiation (Finite Fin)

$$\Theta = \frac{a}{hW} \times \frac{e^{aL} + e^{-aL}}{e^{aL} - e^{-aL}}$$

We re Packaging the Future

 $a = (2h/kt)^{1/2}$ [For h on both sides of fin]

2-D Distributed Conduction/ Convection/Radiation (Circular Fin)

$$\Theta = \frac{1}{2p \, ak \, ta} \left(\frac{K_1(a \, b)I_0(a \, a) + I_1(a \, b)K_0(a \, a)}{I_1(a \, a)K_1(a \, b) - I_1(a \, b)K_1(a \, a)} \right)$$

Where $\alpha = (2 \text{ h/kt})^{1/2}$ [For h on both sides of fin]

 I_0 I_1 ($K_{0,}$ K_1): modified Bessel functions of the 1st (2nd) kind, order 0 and 1

Reference: B. M. Guenin, R. C. Marrs, and R. J. Molnar, "Analysis of a Thermally Enhanced Ball Grid Array Package," *IEEE Trans. Comp., Packaging, Manuf. Technol.* - Part A, Vol. 18, No. 4, December 1995, pp. 749-757.

2-D Heat Flow: Transform Rectangular to Circular Geometry

Transform rectangle into circle

- Equal area and thickness
- 1-D, 2-D, and Circular Fin problems [Ref.]

Reference: B. Lall, A. Ortega, and H. Kabir, "Thermal Design Rules for Electronic Components on Conducting Boards in Passively Cooled Enclosures," *Proceedings, Fourth InterSociety Conference on Thermal Phenomena in Electronic Systems*, May, 1994, pp. 50-61.]

Heat Transfer Coefficient

$$h_{T} = (h_{NC}^{3}(W,T) + h_{FC}^{3}(W,V_{AIR}))^{1/3} + h_{RAD}(T)$$

h_T = Total Heat Transfer Coefficient

- Predicts heat loss to ambient in industry-standard windtunnel environment
- Deals with natural, mixed, and forced convection regimes
- Includes effect of radiation

References:

1) H. Shaukatullah, M.A. Gaynes, and L.H. White, "A Non-dimensional Correlation for the External Thermal Characteristics of Surface Mount Metal Quad Flat Packs," *Proceedings of the 4th Intersociety Conference on Thermal Phenomena in Electronic Systems*, 1994, pp. 237-244.

2) B. M. Guenin, A. Chowdhury, R. Groover, and E. J. Derian, "Analysis of Thermally-Enhanced SOIC Packages," *Proceedings, SEMI-THERM XII Conference*, March, 1996, pp. 1-13.

Heat Transfer Coefficient (Cont.)

$$h_{NC} = 8.66 \left(\frac{\Delta T_{Surface Air}(^{\circ}C)}{D_{CHAR}(mm)} \right)^{0.25} W / m^{2} \circ C$$

$$h_{FC} = 119.9 \left(\frac{V_{AIR}(m/s)}{D_{CHAR}(mm)} \right)^{0.5} W/m^2 \circ C$$

$$h_{RAD} = 5.67 \times 10^{-8} \, \mathrm{e} \left(\frac{T_{Surface}^{}(K^4) - T_{Air}^{}(K^4)}{T_{Surface}(K) - T_{Air}(K)} \right) \quad \begin{array}{l} n_{\mathrm{NC}} \text{ assumes nonzontal orientation} \\ D_{\mathrm{CHAR}} = \mathrm{Characteristic} \\ \mathrm{Dimension} \end{array}$$

Assumes simple, standard package, board configuration

- Single package mounted centrally on test board
- h_{NC} and h_{FC} are area averages

h_{NC} assumes horizontal board

Dimension

 Set equal to package width in direction of air flow

References:

h_{EC}:G.N. Ellison, Thermal Computations for Electronic Equipment, Krieger Publishing, Malabar, Florida, 1989.

h_{NC:} B. S. Lall, B. M. Guenin, R. C. Marrs, and R. J. Molnar, "Parametric FEA Thermal Model for QFP Packages," *Proceedings, SEMI-THERM XII Conference*, March, 1996, pp. 105-110.

Examples of JEDEC-Standard Thermal Test Boards

Both boards shown are nested designs, to accommodate a variety of package sizes

We re Packaging the Future

Representation of Test Board:

Leadframe Package

Region I represented as a Control Volume

- •No internal thermal gradients
- •Transmits heat to convective surface under footprint and to Region II

Region II represented as

We re Packaging the Future

- •A circular fin (for boards containing internal planes
- •4 parallel finite fins (for single-layer test boards)

Reference: B. M. Guenin and D. Mahulikar, "Methodology for the Thermal Characterization of the MQUAD® Microelectronic Package," *Proceedings, SEMI-THERM IX Conference*, February, 1993, pp. 176-185.

Copyright 1998, Amkor Electronics, Inc.

B. Guenin, Semitherm XIV, 1998 Page 19

Representation of Test Board:

- •Region I bounded by edge of thermal footprint of package
- Region II bounded by edge of package
- •When thermal footprint < package width, in in-plane spreading resistance is placed in series with heat flow from Region I to II.
- •Functional form of spreading resistance depends on board construction:
 - •2-D circular heat flow (for boards containing internal planes)
 - •4 parallel 1-D heat flow paths (for single-layer test boards)

Calculating Thermal Conductivity of Test Board

 $\mathbf{f_i}$ is the fractional coverage of copper in layer \mathbf{i} κ_i and $\mathbf{t_i}$ - thermal conductivity and thickness For application boards, only include planes in calculation [Ref.]

Reference: K. Azar and J.E. Graebner, "Experimental Determination of the Thermal Conductivity of Printed Wiring Boards," *Proceedings, SEMI-THERM XII Conference*, March, 1996, pp. 169-182.

Definition of a Spreadsheet

Mathematical, financial, engineering software

- Table structure
- Cells can contain

Text

Numbers

Formulas

Formulas

Result is output in cell in which formula is located Inputs come from other cells through linking

C	A	В	C	D	E	F	G	Н
1	1-Dimensional Hea	at Flow Calcu	ılation					
2	COMPONENT	MAT'L	WIDTH	LENGTH	THICKNESS	TH.COND/	Theta \	
3			(mm)	(mm)	(mm)	(w/mm-°C)	(°C/W)	
4	Die	Si	12	12	0.61	0.092	0.91	
5						_		
6								
7								

+E4/(F4*C4*D4)

Capabilities of Spreadsheets

Advanced mathematical and engineering functions

Macro (programming) languages

Graphing capabilities

Data table formatting

Special Functions in Spreadsheets

Partial Listing (Lotus 5.0 and Excel 97)

- Bessel Functions, Std. And Modified 1st and 2nd Kind
- Beta and Incomplete Beta Function
- Error and Complementary Error Functions
- Gamma and Incomplete Gamma Function
- Exponential Function
- Natural Logarithm
- Common Logarithm (Base 10)
- Trig and Inverse Functions
- Hyperbolic Trig and Inverse Functions
- Complex Variable Analysis
- Statistical Functions

Additional Functions (Excel 97)

Fast Fourier Transform

Motivation for Analytical Resistor Models

Promotes a high level of insight into how thermal performance of a package is related to its design

 Each package component individually represented in thermal circuit diagram

Can produce accurate, rapid solutions.

Readily incorporates non-linear boundary conditions.

Solution Accuracy

Model Curves

- •15 points each
- •10 sec/point
- •Calculation completed in 5 min on 120 MHz Pentium

Accurate solution in natural, mixed, and forced convection regimes

amkor

Solution Productivity

34 SBGA package designs analyzed in under 2 hours

- Natural convection
- $\Delta T_{JA} = 60$ °C
- Multilayer test board

Thermal Circuit Diagram for MQFP Package

amkor

Thermal Resistor Network for SBGA Package

Submodel to Calculate Thermal Resistance of Laminate

Solution of Thermal Resistance Network

Use successive approximations technique to solve for

- Temperatures on all surfaces with temperaturedependent heat transfer coefficients
- Simplify resistance networks by eliminating current loops: solution of equivalent resistors
- Size of thermal footprint of package (PBGA package)

Elimination of Current Loops

To simplify circuit into simple series and parallel resistor networks

Iterate f until ΔT across R_1 and R_2 is the same as across R

We re Packaging the Future

Structure of Spreadsheet

IPP

hø

LEVOCOUNT BULL PITCH

BOLL HOTEIX

MUHROWS **10186** LVR BOSED

amkor

list, materials, and dimensions -- given range name:\$tbl_inputs

Package component

Therm. cond. values from @vlookup link to separate file

Outputs: Θ_{JA} , Θ_{JC} , board conductivity, heat transfer coefficient

Package parameters

	INTUIS				_			currurs	$-$ / $^{\prime}$		
BOARE PROPERTE	MEDITOREMONS		RACHAGERARAMETERS		BONE PROPERTY						
TARC	V.E.TII	POV.TEX IWI	UDBH UBBH	MMD.T	1 CH1	THETA LC	1,000	TILCOLE.	TIIK.	NCORN Harrist	N, TOTAL I-mer244
IVE_SCI_IS_SE_IJIS	2 2	5.75	6	8	163	65	(6) (2)	10.7	16	13	113
LVR_35_1_16_36_1_16 LVR_35_1_16_36_106	- %	5.5 5.75	i	ŝ	163	6.5	65.2	18.7	15	13	10.2
LVR_35_1_16_36_1_166 LVR_35_1_16_36_1_166	*	635	6	8	16.4	65	199	16.7	15	13	10.1
	+				_						

Application-specific inputs: board type, power, air velocity,... We re Packaging the Futu

Example of Thermal Resistance Calculation: Circular Fin

G	A	В	С	D	E	F	G
1			INPUTS			LOCAL	
3		Components	INPUIS			OUTPUTS	
		COMPONENT	Typo	THICKNESS	TH.COND.	OUIFUIS	
5		COMPONENT	Туре		(w/mm-°C)		Value of Width obtained by
6		Board	LYR_1S_1_20_2P_1_100		2.50E-02		linking to table on input page
7		20413	PETA_10_1_20_271_100	1.01	2.002 02		
8		COMPONENT	WIDTH			R,equiv	thru special function:
9			(mm)			(mm)	
10		Package Body	28			15.80	@XINDEX(\$TBL INPUTS,
11							C12,\$B10)
12		COMPONENT	WIDTH			R,equiv	C12,3D10)
13			(mm)			(mm)	
14		Board	50			28.21	
15							
16		Environmental					
17		h					
18		(/V//mm^2-K)					
19		2.00E-05					
20							
21			LC	DCAL OUTPUT	S		
22		Parameter				Value	+@BESSELK(F23*F14,1
23		alpha		<u></u>		0.032	
24		K,1(alpha b)*l,0(alp				1.22	
25		l,1(alpha a)*K,1(alp	qha b) - I,1(alpha	b)*K,1(alpha a)	-0.63	
26		1/(2 pi a t k alpha)				8.04	(*CM) @BESSELI(F23*F14,1)*
27			GL	OBAL OUTPU	IS		@BESSELK(F23*F10,0)
28		Theta,board-to-air				15.58	(°CM) (CDESSELK(F25 F10,0)

Spreadsheet Solution of Resistance Network

= Series Resistor Solution

We re Packaging the Future

= Parallel Resistor Solution

Example of Macros to Solve Non- Linear Resistor Network

MACRO: /ITER_LOOP {FOR \$J\$6,1,50,1,/LOOP}	START STOP STEP 1 50 1/LOOP	COUNTER 9
MACRO: /LOOP {IF MAX_ERROR<0.1}{RETURN} {FOR \$J\$11,1,5,1,/ITER_T_DIE} {FOR \$J\$12,1,5,1,/ITER_T_BOARD} {FOR \$J\$13,1,5,1,/ITER_FRAC_DIE} {FOR \$J\$14,1,5,1,/ITER_FRAC_BD}	START STOP STEP 1 5 1 /ITER_T_DIE 1 5 1 /ITER_T_BOARD 1 5 1 /ITER_FRAC_DIE 1 5 1 /ITER_FRAC_BD	COUNTER 1 1 1 1
MACRO: /ITER_T_DIE {LET \$T_BKPL_TRIAL,63.1744} {CALC} {IF 0.0459<0.100}{FORBREAK} {RETURN}	\$T_BKPL_'\$DEL_T_B	
MACRO: /ITER_T_BOARD {LET \$T_BOARD_TRIAL,56.7619} {CALC} {IF 0.0336<0.100}{FORBREAK} {RETURN}	\$T_BOARD\$DEL_T_B 25 \$DEL_T_B 0.1	
MACRO: /ITER_FRAC_DIE {LET FRAC_DIE,0.8162} {CALC} {IF 0.2463<0.100}{FORBREAK} {RETURN}	FRAC_DIE \$DEL_T_J 5000 \$DEL_T_J 0.1	
MACRO: /ITER_FRAC_BD {LET FRAC_DIE_HT_BD,0.8573} {CALC} {IF 0.1156<0.100 }{FORBREAK}	FRAC_DIE_\$DEL_T_B 2500 \$DEL_T_B 0.1	

Example of Solved Resistor Network: SBGA® Package

THERMAL RESISTANCE NETWORK FOR 432 LEAD SBGA PACKAGE

Another Example -- PBGA Package

Reference: B. M. Guenin, B. S. Lall, R. J. Molnar, and R. C. Marrs, "A Study of the Thermal Performance of BGA Packages," *Proceedings, International Flip Chip, Ball Grid Array, TAB, and Advanced Packaging Symposium*, February, 1995, pp 37-46.

PBGA Temperature Distribution

Size of Package Thermal
Footprint Determined by
Competition Between Heat
Spreading and Heat
Extraction

Thermal Resistance Network for PBGA Package

Effect of Laminate Metal Content

Model Assumptions:

313 Lead, 35 mm PBGA Pkg.

Full Matrix Array

Natural Convection: 4 watt

Forced Convection: 2.5 m/s

6-Layer Board, 80 mm width

PBGA Model -- Comparison with Experiment

Effect of Laminate Metal Content

Model Assumptions:

313 Lead, 35 mm PBGA Pkg.

Full Matrix Array

Natural Convection: 4 watt

Forced Convection: 2.5 m/s

6-Layer Board, 80 mm width

Spreading Factor =
$$\frac{W_{FOOTPRINT} - W_{DIE}}{W_{PKG} - W_{DIE}}$$

Tradeoffs in Modeling Approaches

Analytical conduction models can adequately predict package thermal performance in simple configurations.

When a package design follows a fixed format, analytical models can be very efficient, justifying the time to develop.

When there are frequent variations in package design, the use of a finite element analysis code is more practical than an analytical approach.

For complicated configurations, dominated by convective heat transfer, a computational fluid dynamics code is most efficient.

Summary

Conduction in leadframe and BGA plastic packages can be described in terms of simple thermal resistive elements, calculated analytically

Convective and radiative heat transfer in a standard thermal test environment can be accounted for using simple analytical expressions

Resistor networks lend themselves to efficient solution of non-linear problems and to rationalizing the thermal performance of a package

Spreadsheets are efficient tools for solving analytical thermal resistance networks