Classical Mechanics (McGill University)

kekeandzeyu

January 9, 2025

1 Lecture 1: Introduction, Degrees of Freedom & Lagrangian Dynamics

1.1 Introduction

Our goal is to study the dynamics in classical systems ("dynamical systems"). For example, consider a particle moving in 3D, a dynamical system with a dynamical variable \mathbf{r} .

$$\mathbf{r} = (x_1, x_2, x_3) = \text{position}$$

 $\dot{\mathbf{r}} = \mathbf{v}$
 $\ddot{\mathbf{r}} = \mathbf{a}$

Definition 1.1 (Dynamical Variables). A set of continuous parameters which uniquely specify the state of the system.

For example, consider the motion of a system, which is uniquely specified by $\mathbf{r}(t)$: M particles with 3M variables $\mathbf{r}_{\alpha}(t)$, $\alpha = 1, 2, ..., M$.

However, we will be interested in systems where these positions are constrained, i.e., \mathbf{r}_{α} obey some relations.

Figure 1: Rigid Body

1.2 Degrees of Freedom

Definition 1.2 (Degrees of Freedom). Number of variables required to uniquely specify the system.

For example, if we have a 3D object which consists of M moving parts, then we have:

degrees of freedom =
$$3M - N$$

where N is the number of constraints in this system. Let's take a look at the Figure 1. For a,

degrees of freedom =
$$3 \times 2 - 1 = 5$$
 DOF

For b (all angles are fixed),

degrees of freedom = $3 \times 4 - 3$ lengths - 3 angles = 3 COM + 3 orientations = 6 DOF For c (the angle is not fixed),

degrees of freedom =
$$3 \times 3 - 2$$
 lengths = 7 DOF

What needs to be noticed is that dynamic variables don't have to be the usual Cartesian coordinates.

$$\mathbf{r} = (x, y, z) = (r, \theta, \phi)...$$

Figure 2: Pendulum Example

Consider the pendulum example in Figure 2. There is only 1 DOF, so you can choose x, y, or θ to depict the motion of the pendulum.

Let's introduce the concept of Generic Degrees of Freedom $q_i, i = 1, 2, ..., N$, where N is the number of degrees of freedom. In this way, for a constrained system, the position of any part of the system will be a function of q_i .

$$\mathbf{r}_{\alpha} = \mathbf{r}_{\alpha}(q_i, t), \ \alpha = \# \text{ parts}$$

Here we allow any part of the system to have explicit dependence on time. If we can write $\mathbf{r}_{\alpha}(q_i,t)$ for a system, then the system (or sometimes we say the constraints of the system) is **holonomic**. Otherwise, the system is **nonholonomic**. For these systems, if the relations are time independent, then the system is **scleronomic**. Otherwise, the system is **rheonomic**.

Figure 3: Rigid Body

Nonholonomic systems are common in the real world. Consider the example in Figure 3, where DOF changes from 2 to 3 if the box flies free.

1.3 Lagrangian Mechanics

Consider a dynamical system q_i , i = 1, 2, ..., # DOF. For a typical mechanical system, the positions of the various parts can be written as $\mathbf{r}_{\alpha} = \mathbf{r}_{\alpha}(q_i, t)$, and the basic problem for this system is to determine the $q_i(t)$. $q_i(t)$ satisfy a system of N differential equations known as **Equations of Motions**.

In the past, we typically used the old way of Newton's Law, which requires constraint forces:

- 1. Determine the force F_{α} on a part of the system r_{α}
- 2. Use the 2nd order ordinary differential equations (ODEs) for r_{α} :

$$\mathbf{F}_{\alpha} = m\ddot{\mathbf{r}}_{\alpha}$$

3. Rewrite \mathbf{r}_{α} in terms of q_i , and we can get 2^{nd} order ODEs for \mathbf{r}_{α} , which is easier to said than done!

Now we need to come up with a way to eliminate the need to use constraint forces: **Lagrangian Mechanics**!

If we change \mathbf{r}_{α} to $\mathbf{r}_{\alpha} + \delta \mathbf{r}_{\alpha}$, then the work done is:

$$\delta W = \sum_{\alpha} \mathbf{F}_{\alpha} \delta \mathbf{r}_{\alpha}$$

This raises a question: how much work is done if we change q_i to $q_i + \delta q_i$? Since $\mathbf{r}_{\alpha} = \mathbf{r}_{\alpha}(q_i, t)$, we can get (here we only consider one degree of freedom):

$$\mathbf{r}_{\alpha} = \sum_{i} \frac{\partial \mathbf{r}_{\alpha}}{\partial q_{i}} \delta q_{i}$$

$$\delta W = \sum_{\alpha} \mathbf{F}_{\alpha} \left(\sum_{i} \frac{\partial \mathbf{r}_{\alpha}}{\partial q_{i}} \delta q_{i} \right)$$
$$= \sum_{i} \left(\sum_{\alpha} \frac{F_{\alpha} \partial \mathbf{r}_{\alpha}}{\partial q_{i}} \right) \delta q_{i}$$
$$\sum_{\alpha} \mathbf{F}_{\alpha} \frac{\partial \mathbf{r}_{\alpha}}{\partial q_{i}} = F_{i}$$

Here we call F_i a **generalized force** associated with the variable q_i , and F_i is the force in the "allowed directions".

Now let's discuss the kinetic energy of a constrained system:

$$T = \frac{1}{2} \sum_{\alpha} m_{\alpha} \dot{\mathbf{r}}_{\alpha} \cdot \dot{\mathbf{r}}_{\alpha}$$
$$= T(q_i, \dot{q}_i, t)$$

$$\mathbf{r}_{\alpha} = \mathbf{r}_{\alpha}(q_i, t)$$

$$\dot{\mathbf{r}}_{\alpha} = \sum_{i} \frac{\partial \mathbf{r}_{\alpha}}{q_i} \dot{q}_i + \frac{\partial \mathbf{r}_{\alpha}}{t}$$

Since:

$$\frac{\partial \dot{\mathbf{r}}_{\alpha}}{\dot{q}_{i}} = \frac{\partial \mathbf{r}_{\alpha}}{q_{i}}$$

We can get:

$$\begin{split} \frac{\partial T}{\partial q_i} &= \sum_{\alpha} m_{\alpha} \dot{\mathbf{r}}_{\alpha} \frac{\partial \dot{\mathbf{r}}_{\alpha}}{\partial q_i} \\ \frac{\partial T}{\partial \dot{q}_i} &= \sum_{\alpha} m_{\alpha} \dot{\mathbf{r}}_{\alpha} \frac{\partial \dot{\mathbf{r}}_{\alpha}}{\partial \dot{q}_i} = \sum_{\alpha} m_{\alpha} \dot{\mathbf{r}}_{\alpha} \frac{\partial \mathbf{r}_{\alpha}}{\partial q_i} \end{split}$$

Therefore,

$$\begin{split} \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_i} \right) &= \sum_{\alpha} m_{\alpha} \left(\ddot{\mathbf{r}}_{\alpha} \frac{\partial \mathbf{r}_{\alpha}}{\partial q_i} + \dot{\mathbf{r}}_{\alpha} \frac{\partial \dot{\mathbf{r}}_{\alpha}}{\partial q_i} \right) \\ &= \sum_{\alpha} \mathbf{F}_{\alpha} \frac{\partial \mathbf{r}_{\alpha}}{\partial q_i} + \frac{\partial T}{\partial q_i} \\ &= \mathbf{F}_i + \frac{\partial T}{\partial q_i} \end{split}$$

So we can get:

$$F_i = \frac{d}{dt}(\frac{\partial T}{\partial \dot{q}_i}) - \frac{\partial T}{\partial q_i}$$

If we know $T(q_i, \dot{q}_i, t)$, we can write down the generalized force without computing a constraint! We can get a generalization of $\mathbf{F} = m\mathbf{a}$ to a generic degree of freedom!