Cody Reading

Z codyreading@gmail.com | **⊕** codyreading.github.io | **♀** github.com/codyreading | **I** linkedin.com/in/codyreading

EXPERIENCE

Computer Vision Researcher - 3D Generation

Sept. 2023 – April 2024

Simon Fraser University | Python, PyTorch

Burnaby, BC

- Developed a 3D generative method that efficiently optimizes 3D Gaussians following sketch and text descriptions for high-quality geometric and appearance control
- Created a depth extraction method from Stable Diffusion by learning latent space update directions
- Built an image composition method guided by Stable Diffusion to correct foreground/background inconsistencies

Machine Learning Research Associate

Jan. 2022 – Aug. 2023

Monsters Aliens Robots Zombies | Python, PyTorch

Toronto, ON

- \bullet Developed a facial de-aging tool Vanity AI designed for VFX applications, reducing manual artist time by 80%
- Built an image editing application with Streamlit involving both AI (with StyleGAN) and classical operations
- Implemented mask tracking for facial regions using a combination of StyleGAN and mesh-based visual alignment
- Worked tightly with VFX artists to receive and integrate daily feedback based on quality and usability

Computer Vision Researcher - 3D Perception

Sept. 2019 – Dec. 2021

University of Toronto | Python, PyTorch

Toronto, ON

- Developed a monocular 3D object detection method achieving 1st place on the KITTI and Waymo benchmarks
- Developed a 3D multi-object tracking method achieving 2nd place on the nuScenes 3D MOT benchmark
- Engineered infrastructure using SLURM, Bash, Python, and W&B to support large-scale experimentation
- Built an experiment tracking and advanced visualization framework using Weights & Biases and Matplotlib to track model configuration, metrics for independent object classes, and feature visualizations
- Implemented unit tests using the Unittest framework to verify functionality and prevent regressions

Software Engineer - Autonomous Driving

Jan. 2018 - Aug. 2018

 $NVIDIA \ Corporation \mid C++$

Holmdel, NJ

- Developed a vehicle trajectory generation library within the NVIDIA DriveWorks SDK from multi-sensor data
- Implemented configurable trajectory sampling and continuous pose estimation using interpolation
- Added 3D pose and coordinate transformation functionality using the Eigen C++ library
- Verified functionality of the trajectory generation library using the Google Test framework
- Integrated trajectory generation library into DriveWorks simulation software

Semantic Segmentation Research Co-op

May 2017 - Aug. 2017

University of Waterloo | Python, C++, Caffe

Waterloo, ON

- Trained the SegNet and FCN segmentation methods on the Cityscapes, Playing-for-data, and Synthia datasets.
- Created a custom data layer for SegNet and FCN to allow multi-dataset training with customizable proportions
- Automated and simplified the segmentation training procedures by adding multi-stage training.
- Developed ROS nodelets in C++ with OpenCV to perform segmentation inference and stereo processing.

EDUCATION

University of Toronto

Toronto, ON

Master's of Applied Science, Aerospace Engineering

Sept. 2019 - Dec. 2021

University of Waterloo

Waterloo, ON

Bachelor of Applied Science, Honours Mechatronics Engineering

Sept. 2013 - April 2019

TECHNICAL SKILLS

Languages: Python, Bash, C/C++, MATLAB

Developer Tools: Git, GitHub, GitLab, VS Code, Docker, Apptainer

Libraries: PyTorch, NumPy, Kornia, Open3D, Diffusers, Nerfstudio, Threestudio, Weights & Biases, Streamlit Concepts: Computer Vision, Generative Models, Diffusion Models, 3DGS, Object Detection and Tracking

Publications

Bayes' Rays: Uncertainty Quantification for Neural Radiance Fields L. Goli, C. Reading, S. Sellán, A. Jacobson, A. Tagliasacchi	CVPR 2024 Highlight
BANF: Band-limited Neural Fields for Levels of Detail Reconstruction A. Shabanov, S. Govindarajan, C. Reading, L. Goli, D. Rebain, K. M. Yi, A. Tagliasacchi	CVPR 2024
InterTrack: Interaction Transformer for 3D Multi-Object Tracking J. Willes, C. Reading, S. Waslander	CRV 2023 Oral Presentation
Categorical Depth Distribution Network for Monocular 3D Object Detection C. Reading, A. Harakeh, J. Chae, S. Waslander	CVPR 2021 Oral Presentation
Unlimited Road-scene Synthetic Annotation (URSA) Dataset M. Angus, M. ElBalkini, S. Khan, A. Harakeh, O. Andrienko, C. Reading, S. Waslander, K. Czarnecki	