impost nitk MEX. down (Woodnet) NIEL. download (Puncti) text = "This is Andrew's fext, isn't Pt?" 1) - How many . to kens: tokenizer = M+K. tokenize. Who tespacetokenizer () tokens = tokenizex. tokenize (text) print (len (tobens)) print (tokens) 2) How many tokens; transancherd tokenious? tokenfrer = nitk. fokenire. Weiteracontokonizar () tokens: tokeniar. tokenizer ('text) print (lon (tokens)) print (bolans) 3) How many tokens there are & you we Woodfurd. Tokenizex? tokanizer = MIK, tokanize, Wordfundt Tokarizer() forens = foren (zer-forentze (text) evint (cen (tokens)) tight (tokens)

Natural Language Processing Lab Lab1. Understanding Large Text Files

EXERCISE-1

-

9

-

-

Consider the following text.

```
import nltk
nltk.download('wordnet')
text = "This is Andrew's text, isn't it?"
```

 $1. \ \ \text{How many tokens are there if you use WhitespaceTokenizer?}. \ \ \text{Print tokens.}$

```
tokenizer = nltk.tokenize.WhitespaceTokenizer()
tokens = tokenizer.tokenize(text)
print(len(tokens))
print(tokens)
```

2. How many tokens are there if you use TreebankWordTokenizer?. Print tokens.

```
tokenizer = nltk.tokenize.TreebankWordTokenizer()
```

3. How many tokens there are if you use WordPunctTokenizer?. Print tokens.

tokenizer = nltk.tokenize.WordPunctTokenizer()

EXERCISE-2

- 1. Open the file: O. Henry's The Gift of the Magi (gift-of-magi.txt).
- 2. Write a Python script to print out the following:
 - 1. How many word tokens there are
 - 2. How many word types there are, (word types are a unique set of words)
 - 3. Top 20 most frequent words and their counts
 - 4. Words that are at least 10 characters long and their counts
 - 5. 10+ characters-long words that occur at least twice, sorted from most frequent to least


```
dram nitt Propost
  data = Freg Dist (tokens)
  dala.
  data. most_common (20)
A) from NIX Emport.
   text = [w forw in tokens is len(w)>10]
    Print (text)
    freq = trappist(text)
     freq
     boext = [w for w in tokens is len(w) >10]
        3 = Frag Dist (text)
    der i, i is freq. Ptem():
         3/ lan (P)) 10 and 3>21
           print(2,3)
  ExexCise - 3
       Fist Comprevension
  step-1
       frame: 11. Idata austen-emma. txt"
                                                        C
         d = 6pen ("austen-emma-txt", encoding: 14-8)
        etxt= firead()
        f. Close()
      etxt[-200;]
```

EXERCISE -3: List Comprehension

STEP-1

Download the document Austen's *Emma* ("austen-emma.txt"). Read it in and apply the usual text processing steps, building three objects: etoks (a list of word tokens, all in lowercase), etypes (an alphabetically sorted word type list), and efreq (word frequency distribution).

```
>>> fname = "./data/austen-emma.txt"
>>> f = open(fname, 'r')
>>> etxt = f.read()
>>> f.close()
>>> etxt[-200:]
'e deficiencies, the wishes,\nthe hopes, the confidence, the predictions of the
small band\nof true friends who witnessed the ceremony, were fully answered\nin
the perfect happiness of the union.\n\nFINIS\n'
>>> etoks = nltk.word_tokenize(etxt.lower())
>>> etoks[-20:]
['of', 'true', 'friends', 'who', 'witnessed', 'the', 'ceremony', ',', 'were',
'fully', 'answered', 'in', 'the', 'perfect', 'happiness', 'of', 'the', 'union',
'.', 'finis']
>>> len(etoks)
191781
>>> etypes = sorted(set(etoks))
>>> etypes[-10:]
['younger', 'youngest', 'your', 'yours', 'yourself', 'yourself.', 'youth', 'youthful',
'zeal', 'zigzags']
>>> len(etypes)
7944
>>> efreq = nltk.FreqDist(etoks)
>>> efreq['beautiful']
24
```

STEP 2: list-comprehend Emma

Now, explore the three objects wlist, efreq, and etypes to answer the following questions. Do NOT use the for loop! Every solution must involve use of LIST COMPREHENSION.

Question 1: Words with prefix and suffix

What are the words that start with 'un' and end in 'able'?

Question 2: Length

-

How many Emma word types are 15 characters or longer? Exclude hyphenated words.

tokenizer = nth. tokenize. Whitesparetokenizer() tokens = , Lokenfoor Lokenfoe (txt) totens [-20] etacs = nitc. word_tokenite(etxt.lower()) etoks[-20:] len (etaks) etypes: sorted (set(ebbs)) etypes [-10:] lan (etypes) educy = nitk. Freq DBf(etoks) etra ! beautifu! Step-2: Question 1: Words with prefix and suffix: [word for food in tokens . it word . etaxts with ["un") \$ word, end suith ("able") Question 2 = tergth How many. Emma word types are 15 characters of longer. to Kentrer := ntk. fokenitee. libral Runt tokenizer() for stokenizer to kenize letat) [Word for word in take if lan (word) 215 ?

Question 3: Average word length

What's the average length of all Emma word types?

Question 4: Word frequency

How many Emma word types have a frequency count of 200 or more? How many word types appear only once?

Question 5: Emma words not in wlist

Of the Emma word types, how many of them are not found in our list of ENABLE English words, i.e., wlist?

STEP 3: bigrams in Emma

Let's now try out bigrams. Build two objects: e2grams (a list of word bigrams; make sure to cast it as a list) and e2gramfd (a frequency distribution of bigrams) as shown below, and then answer the following questions.

>>> e2grams = list(nltk.bigrams(etoks))

>>> e2gramfd = nltk.FreqDist(e2grams)

>>>

Question 6: Bigrams

What are the last 10 bigrams?

Question 7: Bigram top frequency

What are the top 20 most frequent bigrams?

Question 8: Bigram frequency count

How many times does the bigram 'so happy' appear?

Question 9: Word following 'so'

What are the words that follow 'so'? What are their frequency counts? (For loop will be easier; see if you can utilize list comprehension for this.)

Question 10: Trigrams

What are the last 10 trigrams? (You can use nltk.util.ngrams() method)

Question 11: Trigram top frequency

What are the top 10 most frequent trigrams?

Question 12: Trigram frequency count

How many times does the trigram 'so happy to' appear?

What's the average length of all Emma Word types?

average = Sum (len (word) for word in toke) / len (toke)

DEPT OF DATA SCIENCE BISHOP HEBER COLLEGE LITRICHY

lg = [J for i' in toke! Po len(2) 315! 19. append (?) print (la) Greeny 4: Word frequency How many Emma Word types have a fragmency bount. . from Nith . Import. falemn = Freq Dest (toke) for is. in fdiemm. (tem(): Exist (6,3) How many lord types appears only once? for P, g. in foremm. Plans(), proint (P, 9). What are the last 10 bigrams. ez granis = 12st (netk. bigranus (toke)) eagrams |d = Mtk. Freq Dest (02 growns) ezgramfd. 0 last-ten: Freq Dest (dect (eggram folamost comment) [-10:] last-ten

NOTES Question 7: Blysam top frequency. to Kenizer= nltk. to konize. White space tokenieur () toker = fokenizer. fokenize (etxt) ezgrams: l'est (nith. bigrams (fokens)) exgrampd = nith. Frag Dist (exgrams) ezgranfol. most-comma (20) Question 8 - Bigram frequency count. How many firmer does the Digrame ! so happy appear? for i, g in ezgeramd. items(): for (= = [(so / happy)): beint ())) Question 9: Word following 1 so from collections-impost-counter. Import re Words = re-findall (r'sot / W+, open l'ausen-enma. Ext), read()) ab = counter, (zip (words)) point (ab) Question 10. e. agrans = list (nltk. bylgsams (tokens)) esgranded = NHK. Freq Dist (e3grams) DEPLOE DATASCIENCE BISHOP HEBER COLLEGE | MRICHY

(S)

(CO.

63

30

200

-

-840

3

-3

3

3