Homework 6

Exercise 6.1.

(i) Let V be a vector space over \mathbb{R} with an inner product $\langle _, _ \rangle \colon V \times V \longrightarrow \mathbb{R}$. Extend this inner product to the exterior algebra $\wedge^{\bullet}V$ by setting

$$\langle v_1 \wedge \cdots \wedge v_s, w_1 \wedge \cdots \wedge w_t \rangle := \begin{cases} 0 & s \neq t \\ \det(\langle v_i, w_j \rangle) & s = t. \end{cases}$$

Check that this gives a well-defined symmetric bilinear map. Moreover show that if e_1, \ldots, e_n is an orthonormal basis for V, then $\{e_{i_1} \wedge \cdots \wedge e_{i_k} : k \leq n, i_1 < \cdots < i_k\}$ is an orthonormal basis for $\bigwedge^{\bullet} V$.

(ii) Let V be a vector space of dimension n. Recall that in class we defined an *orientation of* V to be a choice of connected component of the topological space $\bigwedge^n V \setminus \{0\}$. If V is an oriented vector space which has an inner product $\langle _, _ \rangle$, then there is a linear transformation, called the *Hodge star operator*,

$$\star \colon \bigwedge^{\bullet} V \longrightarrow \bigwedge^{\bullet} V.$$

To define it, note first that there is a unique non-zero vector $\omega \in \bigwedge^{\text{top}} V$ with $\|\omega\| = \sqrt{\langle \omega, \omega \rangle} = 1$ lying in the component determined by the orientation σ . Call this element ω the *volume form of* V induced by the orientation and inner product.

Now, the element ω induces linear maps $\operatorname{vol}_{\omega} \colon \bigwedge^n V \longrightarrow \mathbb{R}$ and $\operatorname{vol}_{\omega} \colon \bigwedge^{\bullet} V \longrightarrow \mathbb{R}$ sending ω to 1 and all other degree k wedges to zero. Hence, we get a map

$$\bigwedge^{\bullet} V \longrightarrow (\bigwedge^{\bullet} V)^*$$

sending α to the functional $\operatorname{vol}_{\omega}(\alpha \wedge _)$. Finally, using $\langle _, _ \rangle$ one identifies $(\wedge^{\bullet}V)^* \cong \wedge^{\bullet}V$. Define \star to be the isomorphism induced by the composition

$$\star : \bigwedge^{\bullet} V \longrightarrow (\bigwedge^{\bullet} V)^* \longrightarrow \bigwedge^{\bullet} V.$$

Observe that \star restricts to maps $\bigwedge^k V \longrightarrow \bigwedge^{n-k} V$ for each k, where $n = \dim(V)$. Prove that, on $\bigwedge^p V$, $\star \star = (-1)^{p(n-p)}$.

(iii) Prove that for arbitrary $v, w \in \bigwedge^p V$, their inner product is given by

$$\langle v, w \rangle = \star (w \wedge \star v) = \star (v \wedge \star w) = \langle \star v, \star w \rangle.$$

(iv) Let $V = \mathbb{R}^3$ equipped with its standard Euclidean inner product. Let $\{e_1, e_2, e_3\}$ denote the standard basis. Pick an the orientation on V determined by the volume element $e_1 \wedge e_2 \wedge e_3$. This determines a Hodge star map \star as above. Compare the map

$$\mathbb{R}^3 \times \mathbb{R}^3 \xrightarrow{\wedge} \bigwedge^2 \mathbb{R} \xrightarrow{\star} \mathbb{R}^3$$

to the cross product of vectors in the usual sense.

(i) The map $\varphi \colon V^{\times k} \times V^{\times k} \longrightarrow \mathbb{R}^{k \times k}$ with $\varphi((v_i), (w_j)) = (\langle v_i, w_j \rangle)_{ij}$ is multilinear and evidently satisfies $\varphi((w_j), (v_i)) = \varphi((v_i), (w_j))^T$. The composition $\psi = \det \circ \varphi$ therefore is symmetric under interchanging (v_i) and (w_j) and for fixed (w_j) or fixed (v_i) respectively it is an alternating map because det is. It follows that φ descends to the symmetric bilinear form $\bigwedge^{\bullet} V \times \bigwedge^{\bullet} V \longrightarrow \mathbb{R}$ described in the question. Consider the scalar product

$$\langle e_{i_1} \wedge \cdots \wedge e_{i_k}, e_{j_1} \wedge \cdots \wedge e_{j_k} \rangle = \det(\langle e_{i_s}, e_{j_t} \rangle)_{st} = \det(\delta_{i_s, j_t})_{st}.$$

The Leibniz formula for the determinant implies that this is equal to

$$\sum_{\sigma \in S_k} \operatorname{sign}(\sigma) \delta_{i_1, j_{\sigma(1)}} \cdots \delta_{i_k, j_{\sigma(k)}} = \delta_{i_1, j_1} \cdots \delta_{i_k, j_k}$$

because $i_1 < \cdots < i_k$ and $j_1 < \cdots < j_k$. That is, $\{e_{i_1} \wedge \cdots \wedge e_{i_k} : k \le n, i_1 < \cdots < i_k\}$ is an orthonormal basis for $\bigwedge^{\bullet} V$. The existence of this orthonormal basis immediately implies that $\langle _, _ \rangle$ is non-degenerate.

(ii) The set $\{e_{i_1} \wedge \cdots \wedge e_{i_p} : i_1 < \cdots < i_p\}$ is a basis of $\bigwedge^p V$. Let $i_{p+1} < \cdots < i_n$ be such that $\{i_1, \ldots, i_n\} = \{1, \ldots, n\}$. Then $\operatorname{vol}_{\omega}(e_{i_1} \wedge \cdots \wedge e_{i_p} \wedge e_{i_{p+1}} \wedge \ldots e_{i_n}) = \pm 1$. We conclude that

$$\star(e_{i_1}\wedge\cdots\wedge e_{i_p})=\pm e_{i_{p+1}}\wedge\cdots\wedge e_{i_n}.$$

That is, up to a sign, \star sends an orthonormal basis to an orthonormal basis. Therefore \star is an isometry. Let $\alpha, \beta \in \bigwedge^p V$. Then

$$\langle \alpha, \beta \rangle = \langle \star \beta, \star \alpha \rangle = \operatorname{vol}_{\omega}(\beta \wedge \star \alpha) = (-1)^{p(n-p)} \operatorname{vol}_{\omega}(\star \alpha \wedge \beta) = (-1)^{p(n-p)} \langle \star \star \alpha, \beta \rangle.$$

Since $\langle _, _ \rangle$ is non-degenerate, it follows that $\star\star = (-1)^{p(n-p)}$ on $\wedge^p V$.

(iii) Using $\star \omega = 1$ and $\star 1 = \omega$ we compute

$$\langle v, w \rangle \stackrel{\text{(ii)}}{=} \langle \star v, \star w \rangle = \star (\langle \star v, \star w \rangle \omega) = \star (v \wedge \star w)$$
$$= \star (\langle \star w, \star v \rangle \omega) = \star (w \wedge \star v).$$

(iv) Using our arguments from (ii) we have

$$\star(e_1 \land e_2) = e_3 = e_1 \times e_2$$

 $\star(e_2 \land e_3) = e_1 = e_2 \times e_3$
 $\star(e_1 \land e_3) = -e_2 = e_1 \times e_3.$

EXERCISE 6.2. Let V be a finite-dimensional vector space, and let $\xi \in V$. Prove that

$$\wedge^{p} V \xrightarrow{\xi \wedge_{-}} \wedge^{p+1} V \xrightarrow{\xi \wedge_{-}} \wedge^{p+2} V$$

is an exact sequence.

Solution. First, for any $\alpha \in \bigwedge^p V$ we have $\xi \wedge \xi \wedge \alpha = 0$ because $\xi \wedge \xi = -\xi \wedge \xi$. It follows that the given sequence is at least a complex. Now let $\beta \in \bigwedge^{p+1} V$ be such that $\xi \wedge \beta = 0 \in \bigwedge^{p+2} V$. Let $\xi_1 = \xi$ and extend ξ_1 to a basis $\{\xi_1, \ldots, \xi_n\}$ of V. Write

$$\omega = \sum_{1 \le i_1 < \dots < i_p \le n} c_I \cdot \xi_{i_1} \wedge \dots \wedge \xi_{i_p}$$

where *I* denotes the multiindex (i_1, \ldots, i_p) as usual. Then

$$0 = \xi \wedge \omega = \sum_{2 \le i_1 < \dots < i_p \le n} c_I \cdot \xi \wedge \xi_{i_1} \wedge \dots \wedge \xi_{i_p}$$

because $\xi = \xi_1$ and therefore $\xi \wedge \xi_1 = 0$. Since the $\xi \wedge \xi_{i_1} \wedge \cdots \wedge \xi_{i_p}$ appearing on the right hand side are linearly independent we must have $c_I = 0$ whenever $i_1 \geq 2$. Consequently,

$$\omega = \sum_{\substack{1 \leq i_1 < \dots < i_p \leq n \\ i_1 = 1}} c_I \xi \wedge \xi_{i_2} \wedge \dots \wedge \xi_{i_p} = \xi \wedge \sum_{\substack{1 \leq i_1 < \dots < i_p \leq n \\ i_1 = 1}} c_i \xi_{i_2} \wedge \dots \wedge \xi_{i_p} \in \operatorname{im}(\xi \wedge \underline{\hspace{1cm}}).$$

Exercise 6.3. Use the Mayer–Vietoris sequence to prove that

$$H_{\mathrm{dR}}^{k}(S^{2}) = \begin{cases} \mathbb{R} & k = 0, 2\\ 0 & \text{otherwise.} \end{cases}$$

Inductively, prove from there that

$$H_{\mathrm{dR}}^k(S^n) = \begin{cases} \mathbb{R} & k = 0, n \\ 0 & \text{otherwise.} \end{cases}$$

Solution. Let $N \in S^n$ and $S \in S^n$ be the north and south pole respectively. Set $U_1 = S^n \setminus \{N\}$ and $U_2 = S^n \setminus \{S\}$. Then $U_1 \cup U_2 = S^n$ and $U_1 \cap U_2 \simeq S^{n-1}$. The Mayer-Vietoris sequence starts

$$0 \longrightarrow H^0_{\mathrm{dR}}(S^n) \longrightarrow H^0_{\mathrm{dR}}(U_1) \oplus H^0_{\mathrm{dR}}(U_2) \longrightarrow H^0_{\mathrm{dR}}(S^{n-1}) \longrightarrow H^1_{\mathrm{dR}}(S^n)$$

and a general term looks like

$$\ldots \longrightarrow H^{k-1}_{\mathrm{dR}}(S^{n-1}) \longrightarrow H^k_{\mathrm{dR}}(S^n) \longrightarrow H^k_{\mathrm{dR}}(U_1) \oplus H^k_{\mathrm{dR}}(U_2) \longrightarrow H^k_{\mathrm{dR}}(S^{n-1}) \longrightarrow H^{k+1}_{\mathrm{dR}}(S^n) \longrightarrow \ldots$$

Now, $U_i \simeq *$ and therefore $H^0_{dR}(U_i) = \mathbb{R}$ and $H^k_{dR}(U_i) = 0$ for $k \geq 1$. It follows that $H^k_{dR}(S^n) \cong H^{k-1}_{dR}(S^{n-1})$ for $k \geq 2$. Furthermore, S^n is connected, so $H^0_{dR}(S^n) = \mathbb{R}$. Looking at the start of the Mayer–Vietoris sequence, we see that the kernel of $H^0_{dR}(U_1) \oplus H^0_{dR}(U_2) \longrightarrow H^0_{dR}(S^{n-1})$ has dimension 1. Therefore, its image must have dimension 1 as well which implies that the boundary map $H^0_{dR}(S^{n-1}) \longrightarrow H^1_{dR}(S^n)$ is the zero map. Since it is also surjective because $H^1_{dR}(U_i) = 0$ we conclude that $H^1_{dR}(S^n) = 0$.

Inductively combining this with our knowledge of $H_{dR}^{\bullet}(S^1)$ we get precisely

$$H_{\mathrm{dR}}^k(S^n) = \begin{cases} \mathbb{R} & k = 0, n \\ 0 & \text{otherwise.} \end{cases}$$

EXERCISE 6.4. Suppose that $M = M_1 \sqcup M_2$. Prove that then $H_{dR}^k(M) = H_{dR}^k(M_1) \oplus H_{dR}^k(M_2)$. Solution. Using $H_{dR}^k(M_1 \cap M_2) = 0$ for all k, the Mayer–Vietoris sequence for $M = M_1 \cup M_2$ starts with

$$0 \longrightarrow H^0_{\mathrm{dR}}(M) \longrightarrow H^0_{\mathrm{dR}}(M_1) \oplus H^0_{\mathrm{dR}}(M_2) \longrightarrow H^0_{\mathrm{dR}}(M_1 \cap M_2) = 0$$

and a general term looks like

$$0=H^{k-1}_{\mathrm{dR}}(M_1\cap M_2)\longrightarrow H^k_{\mathrm{dR}}(M)\longrightarrow H^k_{\mathrm{dR}}(M_1)\oplus H^k_{\mathrm{dR}}(M_2)\longrightarrow H^k_{\mathrm{dR}}(M_1\cap M_2)=0.$$

The claim follows.

EXERCISE 6.5. Complete the proof that a short exact sequence of cochain maps

$$0 \longrightarrow B^{\bullet} \xrightarrow{f^{\bullet}} C^{\bullet} \xrightarrow{g^{\bullet}} D^{\bullet} \longrightarrow 0$$

gives rise to a long exact sequence on cohomology. Solution. The exact sequence gives rise to a commutative diagram

$$B^{n}/\mathrm{im}(d_{B}^{n-1}) \xrightarrow{f^{n}} C^{n}/\mathrm{im}(d_{C}^{n+1}) \xrightarrow{g^{n}} D^{n}/\mathrm{im}(d_{D}^{n+1}) \xrightarrow{0} 0$$

$$\downarrow d_{B}^{n} \qquad \qquad \downarrow d_{C}^{n} \qquad \qquad \downarrow d_{D}^{n}$$

$$0 \longrightarrow \ker(d_{B}^{n+1}) \xrightarrow{f^{n+1}} \ker(d_{C}^{n+1}) \xrightarrow{a^{n+1}} \ker(d_{D}^{n+1})$$

$$0 \longrightarrow \ker(d_B^{n+1}) \xrightarrow{f^{n+1}} \ker(d_C^{n+1}) \xrightarrow{q^{n+1}} \ker(d_D^{n+1})$$

with exact rows. Note that the kernels of the vertical maps are the degree n cohomologies of B^{\bullet} , C^{\bullet} and D^{\bullet} and the cokernels are the degree n+1 cohomologies respectively. Any diagram of this shape immediately induces exact sequences

$$H^n(B) \longrightarrow H^n(C) \longrightarrow H^n(D)$$

and

$$H^{n+1}(B) \longrightarrow H^{n+1}(C) \longrightarrow H^{n+1}(D).$$

What is left to check is that there is a connecting homomorphism $\delta \colon H^n(D) \longrightarrow H^{n+1}(B)$ with corresponding exactness at $H^n(D)$ and $H^{n+1}(B)$.

To construct δ , let $[\alpha] \in H^n(D)$. Since $C^n/\text{im}(d_C^{n-1}) \longrightarrow D^n/\text{im}(d_D^{n-1})$ is surjective, there is some $\beta \in C^n$ such that $[\beta] \longmapsto [\alpha]$ along g. Then, $g^{n+1}(d\beta) = dg^n(\beta) = d\alpha = 0$ and so there is some $\gamma \in \ker(d_B^{n+1})$ such that $\gamma \longmapsto d\beta$ along f. We want to define $\delta([\alpha]) = [\gamma]$. But for this to make sense, we should first check that $[\gamma]$ does not depend on all the choices made so far. So, let $\alpha' = \alpha + d\xi$ be such that $[\alpha'] = [\alpha]$. Choose some $\beta' \in C^n$ such that $[\beta'] \longmapsto [\alpha']$ and $\gamma' \in \ker(d_B^{n+1})$ such that $\gamma' \longmapsto d\beta'$. Then $g([\beta'] - [\beta]) = [\alpha' - \alpha] = [d\xi] = 0$ and therefore there is some $\zeta \in B^n$ such that $f([\zeta]) = [\beta' - \beta]$. We find that $f(\gamma' - \gamma) = d\beta' - d\beta = df([\zeta]) = f(d\zeta)$. But f is injective, so $\gamma' - \gamma = d\zeta$ and therefore $[\gamma'] = [\gamma] \in H^{n+1}(B)$. We conclude that the definition $\delta([\alpha]) = [\gamma]$ makes sense and gives a connecting homomorphism $H^n(D) \longrightarrow H^{n+1}(B)$.

To check exactness at $H^n(D)$ first take some $[\beta] \in H^n(C)$. Then to calculate $\delta(g([\beta]))$ we just need to observe that $0 \longmapsto 0 = d\beta$. So $\delta(g([\beta])) = 0$. Conversely, let $[\alpha] \in H^n(D)$ with $\delta([\alpha]) = 0$. Choose some $\beta \in C^n$ such that $g([\beta]) = [\alpha]$. Because $[\alpha] \in \ker \delta$ we must have $d\beta = f(d\zeta)$ for some $\zeta \in B^n$. Observe that this means $d(\beta - f(\zeta)) = 0$ and $g([\beta - f(\zeta)]) = g([\beta]) = [\alpha]$. Hence, $[\beta - f(\zeta)]$ is a preimage of $[\alpha]$ in $H^n(C)$ and we conclude the exactness at $H^n(D)$.

Now, to check exactness at $H^{n+1}(C)$ first take some $[\alpha] \in H^n(D)$. Pick $\beta \in C^n$ with $g([\beta]) = [\alpha]$ and $\gamma \in B^{n+1}$ with $f(\gamma) = d\beta$. Then $f(\delta([\alpha])) = f([\gamma]) = [d\beta] = 0$. Conversely, let $[\gamma] \in H^{n+1}(B)$ with $f([\gamma]) = 0 \in H^{n+1}(C)$, say $f(\gamma) = d\beta$ for some $\beta \in C^n$. But then we have $\delta(g([\beta])) = [\gamma]$ by the definition of δ . So we also have exactness at $H^{n+1}(C)$.

Exercise 6.6.

- (i) Let V be a finite-dimensional vector space admitting a direct sum decomposition $V \cong U \oplus W$. Prove that there is a canonical map $\operatorname{or}(V) \times \operatorname{or}(W) \longrightarrow \operatorname{or}(U)$. In other words, an orientation of V along with an orientation on W determines an orientation of the complementary subspace U.
- (ii) Now let $X^d \subset \mathbb{R}^{d+1}$ be a d-dimensional submanifold of Euclidean space. Define the *normal bundle* of X to be the line bundle whose fiber at $p \in X$ is the orthogonal complement of T_pX in $T_p\mathbb{R}^{d+1} \cong \mathbb{R}^{d+1}$. That is, $NX = \{(p,v): p \in X, v \in (T_pX)^{\perp}\}$ where we are using the standard Euclidean inner product on \mathbb{R}^{d+1} to take the orthogonal complement.
 - Show that NX is in fact a line bundle over X. Then show that X is orientable if and only if NX has a nowhere vanishing section, also called a nowhere vanishing *normal field*.

Solution.

- (i) Assume given an orientation of V and an orientation of W. Let $\{w_1, \ldots, w_k\}$ be an oriented basis of W. Given a basis $\{u_1, \ldots, u_\ell\}$ of U, say that it is positively oriented if and only if the basis $\{w_1, \ldots, w_k, u_1, \ldots, u_\ell\}$ of V is positively oriented. This gives a map $\operatorname{or}(V) \times \operatorname{or}(W) \longrightarrow \operatorname{or}(U)$.
- (ii) To see that NX is a line bundle over X let $p \in X$ and choose a submanifold chart for X around p. That is, let $U \subset \mathbb{R}^{d+1}$ be open, $p \in U$ and assume there is a diffeomorphism $\varphi \colon U \longrightarrow \mathbb{R}^{d+1}$ such that $\varphi(p) = 0$ and $\varphi(X \cap U) \subset \mathbb{R}^d \times \{0\}$. The map $\psi \colon NX|_{U \cap X} \longrightarrow \varphi(X \cap U) \times (\{0\} \times \mathbb{R})$ with $\psi(x,v) = (\varphi(x), \pi_n(\mathrm{d}\varphi_X(v)))$ will be a vector bundle chart for NX over U where $\pi_n(x_1,\ldots,x_n) = x_n$ is the projection.
 - Suppose NX has a nowhere vanishing section v. Let $\Omega = dx^1 \wedge \cdots \wedge dx^{d+1}$ be the standard volume of \mathbb{R}^{d+1} and define $\omega = v \perp \Omega|_X$. Then ω vanishes on vectors in NX and therefore defines a d-form on X.

Because v was nowhere vanishing and Ω is a volume form on \mathbb{R}^{d+1} the contraction $v \sqcup \Omega|_X$ is nowhere vanishing on TX and therefore a volume form on X. In particular, it defines an orientation of X. Conversely, suppose X admits a volume form $\omega \in \Omega^d(X)$. Define a 1-form $\psi \colon TY|_X \longrightarrow X \times \mathbb{R}$ by $\psi(v)\omega = v \sqcup \Omega$ on sections. Because Ω and ω are nowhere vanishing this is a well defined map and descends to a bundle isomorphism

$$NX \cong TY|_X/TX \xrightarrow{\sim} X \times \mathbb{R}.$$

The preimage of the constant section 1 will be a nowhere vanishing normal field on *X*.

Let $\rho: \mathbb{R}^{n+1} \longrightarrow \mathbb{R}^{n+1}$ be the inversion map $x \longmapsto -x$. Then, pulling back along ρ , we find $\rho^*(v) = v$ and $\rho^*(dx_1 \wedge \cdots \wedge dx_{n+1}) = (-1)^{n+1} dx_1 \wedge \cdots \wedge dx_{n+1}$. Therefore, ρ^* preserves $dvol_{S^n}$ if and only if n is odd. Consequently, if n is odd, the volume form $dvol_{S^n}$ descends to a volume form on $\mathbb{RP}^n = S^n/\{\pm 1\}$. That is, for odd n we have found an orientation on \mathbb{RP}^n .

Now, for even n, assume there were a volume form on \mathbb{RP}^n . Pulling back along the covering $S^n \longrightarrow \mathbb{RP}^n$, we can equivalently consider it to be a ρ^* -invariant volume form ω on S^n . But then there is a strictly positive function $f: S^n \longrightarrow \mathbb{R}$ such that $\omega = f \operatorname{dvol}_{S^n}$. We compute $\omega = \rho^*\omega = (f \circ \rho) \cdot \rho^* \operatorname{dvol}_{S^n} = -(f \circ \rho) \operatorname{dvol}_{S^n}$ since n is even. But then $f = -(f \circ \rho)$ which is impossible for f > 0. We conclude that \mathbb{RP}^n cannot be orientable for n even.