LABORATORY EXERCISE 5 VLSI

EXERCISE 1:

For α)

	<u> </u>
G	$\frac{4}{3} * 1 = \frac{4}{3}$
Н	$\frac{12}{4} = 3$
В	1
F	$\frac{4}{3} * 1 * 3 = 4$
f	$\sqrt[2]{4} = 2$
Р	2 + 1 = 3
D	$2\sqrt[2]{4} + 3 = 4 + 3 = 7$
Х	$\frac{12*1}{2} = 6C$

Για το β)

G	5 - 3
Н	$\frac{12}{3} = 4$
В	1
F	$\frac{5}{3} * 1 * 4$
f	$\sqrt[2]{\frac{20}{3}} = 2.58$
Р	2 * 1 = 2
D	$2*\sqrt[2]{\frac{20}{3}} + 2 = 7.16$
У	$\frac{\sqrt{3}}{12 * \frac{5}{3}} = 7.7C$

From the theoretical calculations we observe that the first circuit is faster.

MICROWIND:

Layouts:

EXERCISE 2:

(i)

(a) 1 NAND of 6 inputs and 1 NOT:

G	$\frac{8}{3} * 1 = \frac{8}{3}$
Н	Н
В	1 + 1 = 1
F	$\frac{8}{3}*H$
Р	6 + 1 = 7

(b) 2 NAND of 3 inputs and 1 NOR of 2 inputs:

G	$\frac{5}{3} * \frac{5}{3} = \frac{25}{9}$
Н	Н
В	2 * 1 = 2
F	$\frac{50}{9} * H$
Р	3 + 2 = 5

(c) 3 NAND of 2 inputs and 1 NOR of 3 inputs:

G	$\frac{4}{3} * \frac{7}{3} = \frac{28}{9}$
Н	Н
В	3 * 1 = 3
F	$\frac{84}{9} * H$
Р	2 + 3 = 5

(d) 2 NAND of 3 inputs and 2 NOT and 1 NAND of 2 inputs and 1 NOT:

G	$\frac{5}{3} * 1 * \frac{4}{3} * 1 = \frac{20}{9}$
Н	Н
В	2 * 2 * 1 * 1 = 4
F	$\frac{80}{9} * H$
Р	3+1+2+1=7

(ii)

For H=5:

(a)

F	$\frac{40}{3}$
f	3.65
Dmin	2 * 3.65 + 7 = 14.3

(b)

F	250
	9
f	5.3
Dmin	2 * 5.3 + 5 = 15.6

(c)

F	$\frac{420}{9}$
f	6.8
Dmin	2*6.8+5=18.6

(d)

F	400
	9
f	2.6
Dmin	4 * 2.6 + 7 = 17.4

So, the fastest design is (a).

For H=18:

(a)

F	48
f	6.9
Dmin	2*6.9+7=20.8

(b)

F	100
f	10
Dmin	2*10+5=25

(c)

F	168
f	13
Dmin	2*13+5=31

(d)

F	160
f	3.5
Dmin	4*3.5+7=21

So, the fastest design is (a), with very little difference from (d).

(iii) We use cmos65n technology

(b)

EXERCISE 3:

G	1
Н	256
В	1
F	256
f	4
Р	4
D	20

From the above it follows that:

$$K4 = \frac{256}{4} = 64$$

$$K3 = \frac{64}{4} = 16$$

$$K2 = \frac{16}{4} = 4$$

$$K1 = \frac{4}{4} = 1$$

G	1
Н	256
В	1
F	256
f	16
Р	2
D	34

From the above it follows that:

$$K2 = \frac{256}{16} = 16$$

$$K1 = \frac{16}{16} = 1$$