

A234

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
1 April 2004 (01.04.2004)

PCT

(10) International Publication Number
WO 2004/026888 A2

- | | | |
|---|---|--|
| (51) International Patent Classification ⁷ : | C07H | (72) Inventors; and |
| (21) International Application Number: | PCT/US2003/029577 | (75) Inventors/Applicants (for US only): LIPPORD, Grayson, B. [US/US]; 38 Bates Road, Watertown, MA 02472 (US). MOOKHERJEE, Neeloffer [IN/CA]; Apt 408, 2233 Allison Road., Vancouver, BC V6T 1T7 (CA). BABIUK, Lorne [CA/CA]; 245 East Place, Saskatoon, Saskatchewan S7J 2Y1 (CA). BROWNLIE, Robert [CA/CA]; 123 O'Brien Crescent, Saskatoon, Saskatchewan S7K 5K3 (CA). GRIEBEL, Phillip [CA/CA]; Box 36, RR5, Saskatoon, Saskatchewan S7K 3J8 (CA). MUTWIRI, George [CA/CA]; 569 Nordstrum Road, Saskatoon, Saskatchewan S7K 7X6 (CA). HECKER, Rolf [DE/DE]; Benrodestr. 60, 40597 Düsseldorf (DE). |
| (22) International Filing Date: | 19 September 2003 (19.09.2003) | (74) Agent: STEELE, Alan, W. ; Wolf, Greenfield & Sacks, P.C., 600 Atlantic Avenue, Boston, MA 02210 (US). |
| (25) Filing Language: | English | (81) Designated States (national): AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, |
| (26) Publication Language: | English | |
| (30) Priority Data: | 60/412,479 19 September 2002 (19.09.2002) US | |
| (71) Applicants (for all designated States except US): | COLEY PHARMACEUTICAL GMBH [DE/DE]; Elisabeth-Selbert-Strasse 9, 40764 Langenfeld (DE). UNIVERSITY OF SASKATCHEWAN [CA/CA]; Kirk Hall, 117 Science Place, Saskatoon, Saskatchewan S7N 5C8 (CA). QIAGEN GMBH [DE/DE]; Max-Volmer-Strasse 4, 40724 Hilden (DE). | |

[Continued on next page]

(54) Title: TOLL-LIKE RECEPTOR 9 (TLR9) FROM VARIOUS MAMMALIAN SPECIES

(57) Abstract: Novel amino acid and nucleotide sequences for rat, pig (porcine), cow (bovine), horse (equine), and sheep (ovine) Toll-like receptor 9 (TLR9) are provided. Also provided are amino acid and nucleotide sequences for dog (canine), cat (feline), mouse (murine), and human TLR9. Comparison of these sequences, especially in combination with functional assessment for species-specific CpG motif preferences, permits identification of specific regions and amino acid residues of interest in TLR9 ligand interaction. Novel chimeric TLR9 receptor molecules, cells expressing these molecules, and methods for their use in screening assays for TLR9 ligands are also provided.

WO 2004/026888 A2

MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

- (84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,

TOLL-LIKE RECEPTOR 9 (TLR9) FROM VARIOUS MAMMALIAN SPECIES**Background of the Invention**

- Synthetic oligodeoxynucleotides (ODN) and DNA containing immunostimulatory CpG motifs (CpG DNA) function as potent adjuvants and activators of the innate immune system. Heeg K et al. (2000) *Int Arch Allergy Immunol* 121:87-97; Krieg AM (2001) *Vaccine* 19:618-22. A wide variety of CpG-containing sequences have been screened for biological activity and it is reported that optimal CpG DNA sequences can vary among species. Rankin R et al. (2001) *Antisense Nucleic Acid Drug Dev* 11:333-40.
- Toll-like receptor 9 (TLR9) has recently been identified as a receptor for CpG ODN. Hemmi H et al. (2000) *Nature* 408:740-5. The molecular mechanism by which TLR9 recognizes CpG DNA is not understood.

Summary of the Invention

- Toll-like receptor 9 (TLR9) is known to be involved in innate immunity and to signal in response to CpG DNA. To date, the amino acid sequences only of human and murine TLR9 have been reported, and, interestingly, these two species are known to prefer different CpG motifs. The structural basis for this species-specific CpG motif preference has not yet been fully elucidated. The instant invention provides, in part, novel amino acid and nucleotide sequences of rat, pig, cow, and horse TLR9. These novel TLR9 sequences are useful for elucidating certain key structural features of TLR9. Specifically, comparison of sequences of murine, human, and these novel TLR9 sequences permits identification of areas of highly conserved sequence, areas of group conservation, and areas of hypervariability. In addition, such comparisons permit an assessment of evolutionary relatedness among TLR9 molecules of the various species, as well as an assessment of inter-species homologies. Importantly, such comparisons permit a rational basis for identifying amino acids in TLR9 that may be involved in the CpG binding site, as well as amino acids involved in conferring species specificity for particular CpG motifs. Such information may be used to design and construct novel TLR9 molecules which incorporate specific point or regional mutations and which possess desired ligand binding characteristics. Such information may also be useful in designing and identifying novel ligands for TLR9 of a given species.

- 2 -

In one aspect, the invention provides isolated polypeptides having amino acid sequences for rat, pig (porcine), cow (bovine), horse (equine), and sheep (ovine) TLR9 polypeptides. These amino acid sequences correspond to SEQ ID NOs 1, 5, 9, 13, and 17, respectively. Each of these sequences is believed to include at least a majority of an extracellular domain, as well as a transmembrane region and at least part of a TLR/IL-1 receptor (TIR) domain. To the extent any such sequence may lack an amino-terminal and/or carboxy-terminal sequence, such sequence is ascertainable, without undue experimentation, using conventional molecular biology techniques and the sequence information provided herein.

10 In another aspect the invention provides isolated polypeptides having amino acid sequences for essentially the whole extracellular domain, optionally including a signal peptide, of each of rat, porcine, bovine, equine, and ovine TLR9. These amino acid sequences correspond to SEQ ID NOs 2, 6, 10, 14, and 18, respectively. Such extracellular domains are believed to include sequence specifically involved in binding to TLR9 ligand, 15 such as CpG DNA. In addition, such extracellular domains are believed to include sequence that confers species specificity for particular CpG motifs.

Isolated nucleic acid molecules encoding the polypeptides just described above are also provided according to further aspects of the invention. Such nucleic acid molecules include, but are not limited to, nucleic acid molecules having sequences provided by SEQ ID 20 NOs 3, 7, 11, 15, 19; and 4, 8, 12, 16, and 20, respectively. Isolated nucleic acid molecules encoding the TLR9 polypeptides of SEQ ID NOs 1, 5, 9, 13, 17; and 2, 6, 10, 14, and 18 also include nucleic acid molecules that differ in sequence from SEQ ID NOs 3, 7, 11, 15, 19; and 4, 8, 12, 16, and 20, respectively, due to degeneracy of the genetic code. Such nucleic acid molecules will hybridize, under stringent conditions, with suitably selected nucleic acid 25 molecules having sequences selected from SEQ ID NOs 3, 4, 7, 8, 11, 12, 15, 16, 19, and 20.

In another aspect the invention provides a vector which includes an isolated nucleic acid molecule of the invention. In one embodiment the vector is an expression vector and the isolated nucleic acid molecule of the invention is operably linked to a regulatory sequence in the vector. When present within a cell, an expression vector according to this aspect of the 30 invention causes the cell to express a polypeptide of the invention.

The invention according to another aspect provides a cell in which a vector of the invention is present. In one embodiment the cell containing the vector expresses a

- 3 -

polypeptide of the invention. In certain embodiments the cell also contains a reporter construct that transduces a TLR9-mediated signal in response to contact of the polypeptide of the invention or a TLR9 with a suitable TLR9 ligand. The cell containing the vector, and optionally containing the reporter construct, can be used in screening methods also provided by the invention.

In yet another aspect the invention provides an antibody or antibody fragment that binds specifically to an isolated polypeptide of the invention. In certain embodiments the antibody or antibody fragment binds uniquely to one of rat, porcine, bovine, equine, or ovine TLR9 polypeptide. More specifically, the antibody or antibody fragment binds uniquely to one of the isolated polypeptides of the invention. In one embodiment the antibody or antibody fragment that binds uniquely to one of rat, porcine, bovine, equine, or ovine TLR9 polypeptide also binds to either mouse or human TLR9. In another embodiment the antibody or antibody fragment that binds uniquely to one of rat, porcine, bovine, equine, or ovine TLR9 polypeptide does not also bind to either mouse or human TLR9. In some embodiments the antibody or antibody fragment binds selectively to a chimeric TLR9 polypeptide of the invention. In certain embodiments the antibody or antibody fragment of the invention is a monoclonal antibody or fragment of a monoclonal antibody.

In one aspect the invention provides a method for identifying key amino acids in a TLR9 of a first species which confer specificity for CpG DNA optimized for TLR9 of the first species. The method involves aligning protein sequences of TLR9 of a first species, TLR9 of a second species, and TLR9 of a third species, wherein the TLR9 of the third species preferentially generates a signal when contacted with a CpG DNA optimized for TLR9 of the first species rather than when contacted with a CpG DNA optimized for TLR9 of the second species; generating an initial set of candidate amino acids in the TLR9 of the first species by excluding each amino acid in the TLR9 of the first species which (a) is identical with the TLR9 of the second species or (b) differs from the TLR9 of the second species only by conservative amino acid substitution; generating a refined set of candidate amino acids by selecting each amino acid in the initial set of candidate amino acids in the TLR9 of the first species which (a) is identical with the TLR9 of the third species or (b) differs from the TLR9 of the third species only by conservative amino acid substitution; and identifying as key amino acids in the TLR9 of the first species each amino acid in the refined set of candidate amino acids.

- 4 -

In another aspect the invention provides a method for identifying key amino acids in human TLR9 which confer specificity for CpG DNA optimized for human TLR9. The method according to this aspect of the invention involves aligning protein sequences of human TLR9, murine TLR9, and TLR9 of a third species, wherein the TLR9 of the third
5 species preferentially generates a signal when contacted with a CpG DNA optimized for human TLR9 rather than when contacted with a CpG DNA optimized for murine TLR9; generating an initial set of candidate amino acids in human TLR9 by excluding each amino acid in human TLR9 which (a) is identical with murine TLR9 or (b) differs from murine TLR9 only by conservative amino acid substitution; generating a refined set of candidate
10 amino acids by selecting each amino acid in the initial set of candidate amino acids in human TLR9 which (a) is identical with the TLR9 of the third species or (b) differs from the TLR9 of the third species only by conservative amino acid substitution; and identifying as key amino acids in human TLR9 each amino acid in the refined set of candidate amino acids. In one embodiment the method according to this aspect of the invention is performed iteratively
15 with a plurality of TLR9s derived from different species other than human and mouse, wherein for each TLR9 the refined set of candidate amino acids is assigned a weight corresponding to a ratio equal to (responsiveness to human-preferred CpG DNA)/(responsiveness to murine-preferred CpG DNA).

In another aspect the invention also provides an isolated polypeptide having an amino
20 acid sequence identical to SEQ ID NO:30 (extracellular domain (ECD) of murine TLR9) except for substitution of at least one key amino acid identified according to the method above. The polypeptide according to this aspect of the invention is a chimeric TLR9 polypeptide. Preferably the polypeptide according to this aspect of the invention binds to CpG DNA optimized for human TLR9 better than does the isolated polypeptide having an
25 amino acid sequence identical to SEQ ID NO:30 (ECD of murine TLR9). In one embodiment the polypeptide includes only one substituted amino acid. The isolated polypeptide according to this aspect of the invention may further include sequence involved in TLR/IL-1R signal transduction, e.g., intracellular domain of TLR9 as provided in SEQ ID NOS 29 and 33. For example, in one embodiment a polypeptide according to this aspect of
30 the invention is an isolated polypeptide having an amino acid sequence identical to SEQ ID NO:29 (full length murine TLR9) except for substitution of at least one key amino acid identified according to the method above.

- 5 -

In another aspect the invention provides an isolated nucleic acid molecule including a nucleic acid sequence encoding a chimeric TLR9 polypeptide just described. In one embodiment the isolated nucleic acid molecule has a nucleic acid sequence encoding a chimeric TLR9 polypeptide just described.

5 In yet another aspect, the invention provides a screening method to identify a TLR9 ligand. The method involves contacting a polypeptide (including a chimeric TLR9 polypeptide) of the invention with a candidate TLR9 ligand; measuring a signal in response to the contacting; and identifying the candidate TLR9 ligand as a TLR9 ligand when the signal in response to the contacting is consistent with TLR9 signaling. In one embodiment 10 the candidate TLR9 ligand is an immunostimulatory nucleic acid. In one embodiment the candidate TLR9 ligand is a CpG DNA.

The invention also provides, in yet a further aspect, a screening method to identify species-specific CpG-motif preference of an isolated polypeptide of the invention. The method according to this aspect of the invention involves contacting an isolated polypeptide 15 of the invention with a CpG DNA including a hexamer sequence selected from the group consisting of GACGTT, AACGTT, CACGTT, TACGTT, GGCGTT, GCCGTT, GTCGTT, GATGTT, GAAGTT, GAGGTT, GACATT, GACCTT, GACTTT, GACGCT, GACGAT, GACGGT, GACGTC, GACGTA, and GACGTG; measuring a signal in response to the contacting; and identifying a species-specific CpG-motif preference when the signal in 20 response to the contacting is consistent with TLR9 signaling. In one embodiment the CpG DNA is an oligodeoxynucleotide having a sequence selected from the group consisting of

TCCATGACGTTTTGATGTT	(SEQ ID NO:39),
TCCATAACGTTTTGATGTT	(SEQ ID NO:40),
TCCATCACGTTTTGATGTT	(SEQ ID NO:41),
TCCATTACGTTTTGATGTT	(SEQ ID NO:42),
TCCATGGCGTTTGATGTT	(SEQ ID NO:43),
TCCATGCCGTTTGATGTT	(SEQ ID NO:44),
TCCATGTCGTTTGATGTT	(SEQ ID NO:45),
TCCATGATGTTTGATGTT	(SEQ ID NO:46),
TCCATGAAGTTTGATGTT	(SEQ ID NO:47),
TCCATGAGGTTTGATGTT	(SEQ ID NO:48),
TCCATGACATTTGATGTT	(SEQ ID NO:49),
TCCATGACCTTTGATGTT	(SEQ ID NO:50),
TCCATGACTTTGATGTT	(SEQ ID NO:51),
TCCATGACGTTTGATGTT	(SEQ ID NO:52),
TCCATGACGATTGATGTT	(SEQ ID NO:53),
TCCATGACGGTTGATGTT	(SEQ ID NO:54),

- 6 -

TCCATGACGTCTTGATGTT (SEQ ID NO:55),
TCCATGACGTATTGATGTT (SEQ ID NO:56), and
TCCATGACGTGTTGATGTT (SEQ ID NO:57).

In certain embodiments of the screening methods of the invention, the signal includes expression of a reporter gene responsive to TLR/IL-1R signal transduction pathway. In one embodiment the reporter gene is operatively linked to a promoter sensitive to NF- κ B. In one embodiment the signal in response to contacting is binding of the candidate TLR9 ligand or CpG DNA to the polypeptide of the invention.

In one embodiment the screening method is performed on a plurality of test compounds. In one embodiment the response mediated by the TLR9 signal transduction pathway is measured quantitatively and the response mediated by the TLR9 signal transduction pathway associated with each of the plurality of test compounds is compared with a response arising as a result of an interaction between the functional TLR9 and a reference immunostimulatory compound.

15

Brief Description of the Figures

Figure 1 depicts a Clustal W multiple sequence alignment of deduced amino acid sequences for cat (feline), dog (canine), cow (bovine), mouse (murine), sheep (ovine), pig (porcine), horse (equine), human, and rat TLR9 polypeptides. The deduced amino acid sequences for feline, canine, bovine, murine, ovine, porcine, equine, human, and rat TLR9 polypeptides shown in the figure correspond to SEQ ID NOS 25, 21, 9, 29, 17, 5, 13, 33, and 1, respectively. Lines labeled "multiple" refer to the multiple sequence alignment of all six sequences shown. Lines labeled "mo/hu" refer to a paired sequence alignment of mouse and human TLR9 sequences alone.

25 Figure 2 is a cladogram depicting an evolutionary relatedness tree for rat, murine, porcine, bovine, equine, and human TLR9 polypeptides in Figure 1.

Figure 3 is a graph depicting species specificity of TLR9 signaling with selected oligonucleotides having strong specificity for human (2006), mouse (5890), or neither (1982).

30

Detailed Description of the Invention

The present invention provides novel amino acid and nucleotide sequences for TLR9 derived from rat, pig, cow, horse, and sheep. These sequences can be used to identify key features of the primary sequences of these and related TLR molecules, including previously

- 7 -

- known primary sequences of human and mouse (murine) TLR9. Such key features include binding site information and species specificity toward particular CpG motifs. Native and novel chimeric TLR9 polypeptides designed with the aid of this information can be expressed in vitro or in vivo and used in screening assays to identify and to design novel TLR9 ligands.
- 5 Additionally, the native and novel chimeric TLR9 polypeptides designed with the aid of this information can be expressed in vitro or in vivo and used in screening assays to compare various TLR9 ligands, including CpG DNA.

In one aspect the invention provides isolated TLR9 polypeptides, and isolated nucleic acid molecules encoding them, from rat, pig, cow, horse, and sheep. The term "isolated" as 10 used herein with reference to a nucleic acid molecule or polypeptide means substantially free of or separated from components with which it is normally associated in nature, e.g., other nucleic acids, proteins, lipids, carbohydrates or *in vivo* systems to an extent practical and appropriate for its intended use. In particular, the nucleic acids or polypeptides are sufficiently pure and are sufficiently free from other biological constituents of host cells so as 15 to be useful in, for example, producing pharmaceutical preparations. Because an isolated nucleic acid or polypeptide of the invention may be admixed with a pharmaceutically acceptable carrier in a pharmaceutical preparation, the nucleic acid or polypeptide may represent only a small percentage by weight of such a preparation. The nucleic acid or polypeptide is nonetheless substantially pure in that it has been substantially separated from 20 the substances with which it may be associated in living systems.

An amino acid sequence of rat TLR9 is provided as SEQ ID NO:1. Based on comparison with known amino acid sequences of human and murine TLR9, it appears that SEQ ID NO:1 includes sequence for at least a majority of the extracellular domain, all of the transmembrane domain, and at least a portion of the intracellular domain of rat TLR9 (See 25 Figure 1). Amino acids numbered 1-821 of SEQ ID NO:1 are presumptively extracellular domain and correspond to SEQ ID NO:2. SEQ ID NO:3 is a nucleotide sequence of rat TLR9 cDNA having an open reading frame corresponding to nucleotides 1-3096. SEQ ID NO:4 is a nucleotide sequence of rat cDNA encoding amino acids 1-821 of SEQ ID NO:1.

An amino acid sequence of porcine TLR9 is provided as SEQ ID NO:5. Based on 30 comparison with known amino acid sequences of human and murine TLR9, it appears that SEQ ID NO:5 includes sequence for at least a majority of the extracellular domain, all of the transmembrane domain, and at least a portion of the intracellular domain of porcine TLR9

- 8 -

(See Figure 1). Amino acids numbered 1-819 of SEQ ID NO:5 are presumptively extracellular domain and correspond to SEQ ID NO:6. SEQ ID NO:7 is a nucleotide sequence of porcine TLR9 cDNA having an open reading frame corresponding to nucleotides 77-3166. SEQ ID NO:8 is a nucleotide sequence of porcine cDNA encoding amino acids 1-819 of SEQ ID NO:5.

An amino acid sequence of bovine TLR9 is provided as SEQ ID NO:9. Based on comparison with known amino acid sequences of human and murine TLR9, it appears that SEQ ID NO:9 includes sequence for at least a majority of the extracellular domain, all of the transmembrane domain, and at least a portion of the intracellular domain of bovine TLR9
10 (See Figure 1). Amino acids numbered 1-818 of SEQ ID NO:9 are presumptively extracellular domain and correspond to SEQ ID NO:10. SEQ ID NO:11 is a nucleotide sequence of bovine TLR9 cDNA having an open reading frame corresponding to nucleotides 84-3170. SEQ ID NO:12 is a nucleotide sequence of bovine cDNA encoding amino acids 1-818 of SEQ ID NO:9.

15 An amino acid sequence of equine TLR9 is provided as SEQ ID NO:13. Based on comparison with known amino acid sequences of human and murine TLR9, it appears that SEQ ID NO:13 includes sequence for at least a majority of the extracellular domain, all of the transmembrane domain, and at least a portion of the intracellular domain of equine TLR9
20 (See Figure 1). Amino acids numbered 1-820 of SEQ ID NO:13 are presumptively extracellular domain and correspond to SEQ ID NO:14. SEQ ID NO:15 is a nucleotide sequence of equine TLR9 cDNA having an open reading frame corresponding to nucleotides 115-3207. SEQ ID NO:16 is a nucleotide sequence of equine cDNA encoding amino acids 1-820 of SEQ ID NO:13.

An amino acid sequence of ovine TLR9 is provided as SEQ ID NO:17. Based on
25 comparison with known amino acid sequences of human and murine TLR9, it appears that SEQ ID NO:17 includes sequence for at least a majority of the extracellular domain, all of the transmembrane domain, and at least a portion of the intracellular domain of ovine TLR9 (See Figure 1). Amino acids numbered 1-818 of SEQ ID NO:17 are presumptively extracellular domain and correspond to SEQ ID NO:18. SEQ ID NO:19 is a nucleotide sequence of ovine
30 TLR9 cDNA having an open reading frame corresponding to nucleotides 92-3178. SEQ ID NO:20 is a nucleotide sequence of ovine cDNA encoding amino acids 1-818 of SEQ ID NO:17.

- 9 -

SEQ ID NO:1 (Rat TLR9)

MVLCRRTLHPLSLLVQAAVLAEALALGTLPAFLPCELKPHGLVDCNWLFLKSVPHFSAAEPRSNITSLSLIANRI
HHHLNLDVFVHLPNVRLQLNLKWNCPPGLSPLHFSCRMTIEPKTFLAMRMLEELNLSYNGITTVPRLPSSLTNLSL
5 SHTNILVLDASSLAGLHSRLVFMDGNCYKNPCNGAVNTPDAFLGLSNLTHLSKYNNLTEVPRQLPPSLEYL
LLSYNLIVKLGAEDLANLTSRMLDVGGNCRRCDHAPDLCTECRQKSSDLHPQTFFHLSHLEGVLVKDSSLHSLN
SKWFQGLANLSVLDLSENFLYESINKTSAFQNLTRLRKLDLSFNYYCKVFSFARLHLASSFKSLVSLQELNMNGIF
FRLLNKNTLRLWLAGPLKLHTLHLQMNFINQAQLSVFSTFRALRFVDLSSNNRISGPPTLSRVAPEKADEAKGVWP
10 PASLTPALPSTPVSKNFMRCKNLRFTMDLSRNNQVTIKPEMFVNLSHLQCLSLSHNCIAQAVNGSQFLPLTNLK
VLDLSYNKLDLYHSKSFSelpQLQALDLSYNSQPFSMQGIGHNFSFLANLSRLQNLSLAHNDIHSRVSSRLYSTS
VEYLDMSGNGVGRMWDEEDLYLYFFQDLRSLIHLDLSQNKLHILRPQNLNYLPKSLTKLSFRDNHLSFFNWSSLA
FLPNLRLDLDLAGNLLKALTNGTLPNGTLLQKLDLVSSNSIVFVVPAFFALVELKEVNLSHNILKTVDRSWFGPIV
MNLTVDVSSNPPLHCACGAPFVDLILLEQVTKVPGLANGVKCGSPRQLQGRSIFIQAQDLRLCLDDVLSRDCFGLSSL
15 AVAVGTVLPLLQHLCGWDVWYCFHLCALWPLTRGRRSAQALPYDAFVVFDKAQSAVADWVYNELRVRLEERRG
RRALRLCLEDRDWLPGOTLFEFLWASIYGSRKTFLVLAHTDKVSGLLRTSFLLAQQLLEDRKDVVVLVILRPDA
HRSRYVRLRQLRCOSVLFWPHQPGQGSFWAQLSTALTRDNHHFYNRNFCRGPTAE

SEQ ID NO:2 (Rat TLR9)

MVLCRRTLHPLSLLVQAAVLAELALGTLPAFLPCELKPHGLVDCNWLFLKSVPHFSAEPRSNITSLSLILIANRI
HHHLNLDVFVHLPNVRQLNLKWNCPPGSLPLHFSCRMTIEPKTFLAMRMLEELNLSYNGITTVPRLPSSLTNLSL
SHTNILVLDASSLAGLHSRVLFMGDNCYYKNPCNGAVNTPDAFLGLSNLTHLSSLKYNNLTEVPRQLPPSLEYL
LLSYNLIVKLGAEDLANLTSLRMLDVGGNCRRCDHAPDLCTECRQKSSDLHQPQFHHLSHLEGVLKDSSLHSLN
SKWFQGLANLSVLDLSENFLYESINKTSAFQNLTRLRKLDLSFNYCKVVSFARLHLASSFKSLVSLQELNMNGIF
FRLLNKNTLRLLAGLPLKHLTLHLQMNFINQAQLSVFSTFRALRFVDLSNNRISGPPTLSRVAPEKADEAKGVWP
PASLTPALPSTPVSKNFMRCKNLRFTMDLSRNQVTTIKPEMFVNLSHLQCLSLSHNCIAQAVNGSQFLPLTNLK
VLDLSYNKLDLYHSKSFSELPQLQALDLSYNSQPFSMQGIGHNFSFLANLSSLRQLNLSLAHNDIHSRVSSRLYSTS
VEYLDFTSGNGVGGRMWDEEDLYLYFFQDLRSLIHLQLDSQNKLHILRPQNLNYLPKSLTKLSFRDNHLSFFNWSSL
FLPNLRLDLDLAGNLLKALTNGTLPNGTLLQKLDVSSNSIVFVVPAFFALVELKEVNLSHNIILKTVDRSRWFGPIV
MNLTVDVSSNPLHCAGAPFV DLLLEVQTKVPGLANGVKCGSPROLOGRSIFAQDLRLCLDDVLSRDCF

SEQ ID NO:3 (Rat TR R9)

35 atggttctctgtcgaggaccctgcaccccttgcactccgttacaggccgcagtgcggctgaggctggcc
ctgggtacctgcctgccttcctaccctgtgaactgaagcctcatggcctggtagactgcacaactggcttcctgc
aagtctgtgcctcacttctgtccgcagaaccggccatccaaacatcaccagccttcattgatcgccaacccgcac
caccacactgcacaacccctgactttgtccacccgcacactgtgcacagctgaacctcaagtgcgaactgtccgc
cctggcctcagcccttgcacttctctgcgcacattgagccaaaaccttctggctatgcgcacatgc
gaagagctgaacctgagactataacggtatcaccaactgtgcggccgcctgcacagctccctgacaatctgac
agccacaccaacatcctgtactcgatgccagcagcctgcgtggcctgcacagctgcgagttcttcattggac
gggaactgctactacaagaacccctgcaacggggcggtgaacgtgaccccgacgccttcctggcttgac
40 ctcacccacttgtccctaagtataacaacccctcacagagggtgcggccaaactgcggccggcggactac
ctgctgtcctataacccctcatcgtaagctggggccgaagaccttagccaaacctgaccccttcgaatgttgc
gtgggtggaaattgcgtcgctgtatcacgcggccgcacctctgtacagaatgcggcagaagtcccttgc
caccctcagactttccatcacctgagccacctgtacggcctggctgaaggacagacttctccactcgctgac
tcaagtgggtccagggtctggcgaacctctcggtgctggacctaagcgagaacttctctacgagagcatca
45 aaaaccagcgcccttcagaacctgaccgtctgcgaagctgcacgtgccttcattactgcagaaggatcg
ttcggccgcctccacctggcaagttctcaagagcctgggtgcgtcaggagctgaacatgaacggcatctc
ttccgcattactcaacaagaacacgcctcaggtggctggctggctgcacccaaacctccacacgcgtcac
aatttcatcaaccaggcgccagctcagcgtcttagtacctccgagccctcgcttggacactgtccaataat
cgcatcagccccctccaaacgcgtccagactggccggaaaaaggcagacgcaggccggagaagggggttcatgg
50 cctgcaagtcaccccaagctctcccgagcactccgcctcaaaagaaacttcatggtcaggtgtacca
ttcaccatggacactgtctcggaacaaccagggtactatcaagccagagatgttcgtcaaccctccatctcc
tgtctgagccctgagccacaactgcacatgcgcaggctgtcaatggcttcagttctggccgtgaccaaccc
gtgctggacactgtcctataacaagctggacactgtaccattcgtacatgcgtacccacagttgcaggcc

- 10 -

ctggacacctgagctacaacacagccaggcattcagcatgcggatagggccacaacttcgtttctggccaatctg
tccagggtacagaaccttagcctggcacacaatgacattcacagccgcgtgtccctacgccttacagcacccca
gtggagtatctgacttcagcggaacgggtggggccgcattgtggacgaggaggacctttacacttatttctt
caagacacctgagaagccctgattcatctgacccgttcagaataagctgcacatctccggcccagaacacctca
5 tacctccccaaagagccctgacgaagctgagttccgtgacaatcacctctttcttaactggagcagtggcc
ttcctgccccatctgcgagacctggacctggcaggcaatctactaaaggccctgaccaacggcaccctgcctaat
ggcacgcctcccaagaaactggatgtcagtagaacaatgcgtttgtggccgccttgcctggcg
gttagagctaaaagaggtaacccctcagccataacatcctcaagactgtggatgccttgcgttggccatttgt
atgaacacctgacggttctagacgtgagcagcaaccctctgcattgtgcgcggcgcaccctttagacttactg
10 ctggaaagtgcagaccaaggtgcctggctggctaacgggtgtgaagtgtggcagtcggccgcgcactgcaggccgc
agcatcttgcgcagacacctgcggctgtgcctggatgcgtcttcggactgccttgccttgcactcctg
gctgtggccgtggcaggggtgtgccttactgcagcatctgcggctggacgtctgtactgttccatctg
tgccctggcatggctacccctgtgacccgtggccggcgcagcgcggccaaagctcccttatgatgccttcgtgg
ttcgataaggcgcagagcgcgggtgtgactgggtgtataacgagctcgcgtgcggctagaggagcggccgg
15 cggcggccctacgcttgcgtctggaggaccggagattggctgcctggccagacactctcgcagaacactctggcc
tccatctatggcagccgcagactctgtttgtgcctggccacacggacaaggctcgtggcccttcgcgcacc
ttcctgctggctcagcagcgcctgtggaggaccgcaggacgtgggtgttggatccctgcgcctgtatgcc
caccgcgtcccgctacgtgcactgcgcgcagcgccttcgcgcgcacaggatgtgccttgcgttggcccat
20 gggcaggccagttctggcccaactgcgtgagtagacgcctgacttagggacaaccaccacttctataaccggaaactc
tgccggggacctacagcagaatag

SEQ ID NO:4 (Rat TLR9)

25 atggttctctgtcgcaggaccctgcaccccttgtctctccgtataggccgcagtgtggctgaggctctggc
ctgggtacctctgcctgccttccatcccgtgaactgaagccatggcctggtagactgcaactggctcttc
aagtctgtgcctcaacttctctgcgcagaaccccgttccaacatcaccagccttcgtatgcgcacccgc
caccacctgcacaacccgtactttgtccacctgcacagctgaacctcaagtgaactgtccgc
cctggcctcagcccccttcacttctctgcgcacattgagccaaaaccttcgtatgcgcacccgc
gaagagctgaacctgagctataacggtatcaccactgtgcggccgcctgcacagcctgcac
agccacaccaacatcctgtactcgatgccagcagcctcgctggcctgcacagcctgcac
gggaactgctactacaagaaccccctgcaacggggcggtgaacgtgacccggacgccttc
ctcacccactgtccctaagtataacaacccatcgacagggtgccccccaactgc
ctgctgtccataacccatcgtaagctggggccgaagacctagccaacctgac
gtgggtgggaattgccgtcgctgtatcagccccgacctctgtacagaatgc
caccctcagactttccatcacctgagccaccttgaaaggcctggtgt
tccaagtgggtccagggtctggcgaacctctcggtgctggaccta
aaaaccagcgccttcaagaacctgacccgtctgcgaagctcgacc
ttcgccccgcctccacctggcaagttccctaagagcctgg
ttccgcttaactcaacaagaacacgc
aatttcatcaaccaggc
cgcatcagcgggc
cctgcaagtct
ttcaccatgg
tgtctg
gtgctgg
40 ctggac
tccagg
gttgg
50 55

- 11 -

SEQ ID NO:5 (Porcine TLR9)

MGPRCTLHPLSLLVQVTALAAAALAQGRIPAFLPCELQPHGLVNCNWFLKSVPHFSAAAPRANVTSLSSLNR
 HLHDSDFVHLSSLRTLNWKWCPPAGLSPMHPCHTIEPNTFLAVPTLEELNLSYNSITTVPALPDSLVSLS
 RTNIILVLDPTHLTGLHALRYLYMDGNCYKNPQCQGALEVPGALLGLGNLTHLSKYNNLTEVPRSLPPSLETLL
 5 LSYNHIVTLPEDLANLTALRVLDVGNCRRCDHARNPCRECPDKDHPKLHSDTFSHLSLEGVLKDSSLNLDT
 RWFRGLDRLQVLDLSENFLYDCITKTTAFOGLARLRSNLNFNYHKKVSPAHLHLAPSFGHLRSLKELEDMHGIFF
 RSLSETTLQPLVQLPMLQTTLRQMNFINQAQQLSIFGAFPGLLYVDLSDNRISGAARPVAITREVDRERVWLPSR
 NLAPRPLDTLRSDFMPNCNAFSFTLDSRNNLVTIQSEMFARLSRLECLRLSHNSISQAVNGSQFVPLTSRVL
 10 DLSHNKLDLYHGRSFTELPRLAEALDLSSYNSQPFMKGQVGHNLSFVAQLPALRYLSLAHNDIHSRVSQQLCASCLC
 ALDFSGNDLSRMWAEGDLYLRFQGLRSLVWLDLSQNHLHTLLPRALDNLPKSLKHLHLRDNNLAFFNWSSLTLL
 PKLETLDLAGNQLKALSNGSLPSGTQLRRLDLSGNISIGFVNPGFFALAKQLEELNSANALKTVEPSWFGSMVGN
 LKVLDVSANPLHCACGATFVGFLLEVQAAVPGLPSRVKCGSPGQLQGHSIFAQDRLRLCDETLSWNCFGISLLAM
 ALGLVVPMLHHLCGWDLWYCFHLCLAWLPHRGQRRA DALFYDAFVVFDKAQSAVADWVYNELRVQLEERRGRA
 LRLCLEERDWLPGKTLFENLWASVYSSRKTLFVLAHTDRVSGLLRASFLLAQQLLEDRKDVVVLVILRPDAYRS
 15 RYVRRLRQRLCRQSLLWPHQPRGQGSFWAQLGTALTRDNHHFYNRNFCRGPTTAE

SEQ ID NO:6 (Porcine TLR9)

MGPRCTLHPLSLLVQVTALAAAALAQGRIPAFLPCELQPHGLVNCNWFLKSVPHFSAAAPRANVTSLSSLNR
 HLHDSDFVHLSSLRTLNWKWCPPAGLSPMHPCHTIEPNTFLAVPTLEELNLSYNSITTVPALPDSLVSLS
 20 RTNIILVLDPTHLTGLHALRYLYMDGNCYKNPQCQGALEVPGALLGLGNLTHLSKYNNLTEVPRSLPPSLETLL
 LSYNHIVTLPEDLANLTALRVLDVGNCRRCDHARNPCRECPDKDHPKLHSDTFSHLSLEGVLKDSSLNLDT
 RWFRGLDRLQVLDLSENFLYDCITKTTAFOGLARLRSNLNFNYHKKVSPAHLHLAPSFGHLRSLKELEDMHGIFF
 RSLSETTLQPLVQLPMLQTTLRQMNFINQAQQLSIFGAFPGLLYVDLSDNRISGAARPVAITREVDRERVWLPSR
 NLAPRPLDTLRSDFMPNCNAFSFTLDSRNNLVTIQSEMFARLSRLECLRLSHNSISQAVNGSQFVPLTSRVL
 25 DLSHNKLDLYHGRSFTELPRLAEALDLSSYNSQPFMKGQVGHNLSFVAQLPALRYLSLAHNDIHSRVSQQLCASCLC
 ALDFSGNDLSRMWAEGDLYLRFQGLRSLVWLDLSQNHLHTLLPRALDNLPKSLKHLHLRDNNLAFFNWSSLTLL
 PKLETLDLAGNQLKALSNGSLPSGTQLRRLDLSGNISIGFVNPGFFALAKQLEELNSANALKTVEPSWFGSMVGN
 LKVLDVSANPLHCACGATFVGFLLEVQAAVPGLPSRVKCGSPGQLQGHSIFAQDRLRLCDETLSWNCFG

30 SEQ ID NO:7 (Porcine TLR9)

gagcacgaacatccctactgttagctgtggccggctgtccagccagacccttggagaagaccccactccctgt
 catggggcccccgctgcacctgcacccctttctctctgggtcagggtacagcgtggctggcgctctggccca
 gggcaggctgcctgccttcgtgagctccagccccacggcctggtaactgcactggctttctggccaa
 gtccgtccccacttctcggccggcagccccccggccaacgtcaccagcctctccatctccaacccgcata
 35 ccacccgtcagactccgactctgtccacccgtccacccgtcactcaacccgtcaacttcaacttcaactggaaactgcccgc
 tggccctcagcccatgcacttccctgcacatgaccatcgaggccaaacccatctggccgtgcccacccctgga
 ggagctgaacctgagctacaacacgcatacgcaccgtccctggccacttccctgtgtccctgtcgctgag
 cccgcaccaacatctggtgtagccccacccacccacttgcctacatgcccgtcgcttccatggatgg
 caactgtactacaagaacccctggccaggggggcgctggaggtggccgggtgcccctctggccctggcaact
 40 cacacatctctactcaactcaacttgcacgggtggccggccacttgcacccgtggccctggccatggaccctgt
 gttgtccataacaaccatattgtcacccgtggccctggccacttgcacccgtggccctggccatggaccctgt
 ggggggaaactgcggccgtgtgaccatggcccaatctgactgcctgcgcgtgttgcatt
 ctctgacacccatccagccacccatggccgtcgacttgcacccgtggccatggccatggaccctgt
 caggtggttccggggccctggacaggctcaactgtggacactgtggacttgcacccatggaccctgt
 45 gaccacggcccttcaggccgtggccacttgcacccgtggccacttgcacccgtggccatggaccctgt
 tgcccacctgcacccatggccacccatggccacttgcacccgtggccatggaccatgcacccatggaccctgt
 cccgtcgctcagttagaccacgcctcaacccatggccacttgcacccgtggccatggaccatgcacccatgg
 50 cttcattaaaccaggcccgactcagcatcttggggcccttccctggccatggacttgcacccatggaccatgcaccc
 catcagccggacttgcacccatggccacttgcacccatggccatggacttgcacccatggaccatgcacccatgg
 gaacctcgctccacgtccacttgcacccatggccacttgcacccatggccatggacttgcacccatggaccatgcaccc
 cttggacactgtctcggaacaacccatggccacttgcacccatggccatggacttgcacccatggaccatgcaccc
 ggcctgtggccacaacaggcatctccaggccgtcaatggctctcgttgcacccatggaccatgcacccatggaccatgcaccc
 ggacctgtcccacaacaacaggcatctccaggccgtcaatggctctcgttgcacccatggaccatgcacccatggaccatgcaccc
 cttcagctacaatagccagcccttaccatgcagggtgtggccacaacccatgcacccatggaccatgcacccatggaccatgcaccc

- 12 -

cctgcgctacctcagccggcgacaaatgacatccatagccgagtgtcccagcagctctgttagccctcaacttgt
cgccctggactttagcgcaacgatctgagccgatgtgggctgaggagaccttatctcccttccaagg
ctaagaagcttagtctggctggacctgtcccaagaaccacctgcacaccctctgccacgtgccctggacaacct
ccccaaaagcctgaagcatctgcataccgtgacaataacctggccttcaactggagcagcctgaccctct
5 gccaagctggaaaccctggacttggctggaaaccagctgaaggccctaagcaatggcagccatctggcac
ccagctcgaggctggacctcagtgcaacagcatcggttgcgaccctgggttcggccctggcaagca
gttagaagagctcaacctcagcgccaatgcccctaagacagtgagccctctgggttgcgatgtggggca
cctgaaaagtcttagacgtgagcgccaaaccctctgactgtgcctgtgggcaacccctgtggcttgcgatgg
ggtagcaggctggctggctggctgcccagccgctcaagtgtggcagtcggccaggccatagcat
10 cttgcgaagacactgcgcctctgctggatgagaccctctgtaactgtttggcatctcgctgtggccat
ggccctgggctgggttgccatgctgcaccacccctgcggctgggacctctggtaactgttccacctgtgcct
ggcctggctgccccaccggaggcagccggggcagacccctgttctatgatgccttcgtggcttgcgatgg
agctcagagtgctgtggccactgggttgcacaacgagactgcgggtgcagctggaggagcggccgtggccgcgc
actgcgcctgtgcctggaggagcggagactgggttacctggcaagacgccttcgagaacctgtggcctcagtc
15 cagcagccgaagaccctgtttgtctggccacacggacggcgtgcagccgccttcgtgtccagttcgtgc
ggccctggcagcgcctgtggaggacccgcaggacgcgttgcgttagtgcgttgcgtccatgcctaccgc
ccgcctacgtgcggctgcgcacccgcgccttcgtggccacaggatgtgccttcgtggcccccacccaggcc
cagcttctggcccagctggcacagccctgaccaggacaaccaccacttctataaccggaaacttgcgggg
20 cccacacgacagccgaatagcactgagtgacagccctggatggcccttcgtggcccttcgtggcc
tgccccaacctgtttgtcagccacaccactgtctgtccctgtttcccaaaaaaaaaccccaaaaaaaa
aacatgtgccaataatgttacccggagggccaagaaaaaaaaaaaaaaaaaaaaaa

SEQ ID NO:8 (Porcine TLR9)

- 13 -

SEQ ID NO:9 (Bovine TLR9)

MGPYCAPHPLSLLVQAAALAAAALAEGLPAFLPCELQPHGQVDCNWLFLKSVPHFSAGAPRANVTSLISNRH
 5 HLHDSDFVHLSNLRVLNWKWCNPPAGLSPMHFPCRMTIEPNFTFLAVPTLEELNSYNGITTVPALPSSLVSLSL
 HTSILVLGPTHFTGLHALRFLYMDGNYYMNCPRALEVAPGALLGLGNLTHLSLKYNNLTEVPRRLPPSLDTLL
 LSYNHIVTLAPEDLANLTALRVLDVGNCRRCDHARNPCRECPKNFPKLHPDTSFLSRLEGLVLKDSSLYKLEK
 DWFRGLGRLQVLDLSENFLYDYITKTTIFNDLTQLRRRNLSFNYHKKVSFAHLHASSFGSLVSLEKLDMHGIFT
 RSLTNITLQSLTRLPKLQSLHLQLNFINQAQLSIFGAFPSLLFVDLSDNRISGAATPAAALGEVDSRVEVWRLPR
 10 GLAPGPLDAVSSKDFMPSCNLFNFTLDSLRSNNLVTIQQEMFTRLSRLQCLRLSHNSISQAVNGSQFVPLTSLRVLD
 LSHNKLDLYHGRSFTELPQLEALDLSYNSQPFMGSQGVGHNLSSVAQPLPSLRYSLAHNGIHSRVSQKLSSASLRA
 LDFSGNSLSQMWAEGDLYLCFFKGRLNVLQQLDLSENHLHTLLPRHLDNLPKSLRQLRLRDNNLAFFNWSSLTVLP
 RLEALDLAGNQLKALSNGSLPPGIRLQKLDVSSNSIGFVIPGFVFRATRLIELNLSANALKTVDPWFGLSLAGTL
 KILDVSANPLHCACGAAFVDFLLERQEAVPGLSRRVTCGSPGQLQGRSIFTQDLRLCLDETSLSDCFGLSLLMVA
 15 LGLAVPMIHHLCGWDLWYCFHLCLAHLPRRRRQRGEDTLLYDAVVVFDKVQSAADVWVYNELRVQLEERRGRRAL
 RLCLEERDWLPGKTLFENLWASVYSSRKTMFVLDHTDRVSGLLRASFLLAQQLLEDRKDVVVLVILRPAAYRSR
 YVRLRQRLCRQSULLWPQPSGQGSFWANLGIALTRDNRFYNRNFCRGPTTAE

SEQ ID NO:10 (Bovine TLR9)

MGPYCAPHPLSLLVQAAALAAAALAEGLPAFLPCELQPHGQVDCNWLFLKSVPHFSAGAPRANVTSLISNRH
 20 HLHDSDFVHLSNLRVLNWKWCNPPAGLSPMHFPCRMTIEPNFTFLAVPTLEELNSYNGITTVPALPSSLVSLSL
 HTSILVLGPTHFTGLHALRFLYMDGNYYMNCPRALEVAPGALLGLGNLTHLSLKYNNLTEVPRRLPPSLDTLL
 LSYNHIVTLAPEDLANLTALRVLDVGNCRRCDHARNPCRECPKNFPKLHPDTSFLSRLEGLVLKDSSLYKLEK
 DWFRGLGRLQVLDLSENFLYDYITKTTIFNDLTQLRRRNLSFNYHKKVSFAHLHASSFGSLVSLEKLDMHGIFT
 RSLTNITLQSLTRLPKLQSLHLQLNFINQAQLSIFGAFPSLLFVDLSDNRISGAATPAAALGEVDSRVEVWRLPR
 25 GLAPGPLDAVSSKDFMPSCNLFNFTLDSLRSNNLVTIQQEMFTRLSRLQCLRLSHNSISQAVNGSQFVPLTSLRVLD
 LSHNKLDLYHGRSFTELPQLEALDLSYNSQPFMGSQGVGHNLSSVAQPLPSLRYSLAHNGIHSRVSQKLSSASLRA
 LDFSGNSLSQMWAEGDLYLCFFKGRLNVLQQLDLSENHLHTLLPRHLDNLPKSLRQLRLRDNNLAFFNWSSLTVLP
 RLEALDLAGNQLKALSNGSLPPGIRLQKLDVSSNSIGFVIPGFVFRATRLIELNLSANALKTVDPWFGLSLAGTL
 KILDVSANPLHCACGAAFVDFLLERQEAVPGLSRRVTCGSPGQLQGRSIFTQDLRLCLDETSLSDCFG

30

SEQ ID NO:11 (Bovine TLR9)

ggaaagtggcgccaaagcataccttcctgcagctgcctccaaacctgccccccagaccctctggagaagcccat
 tccctgtcatggggccctactgtgccccgcacccctttctcttgcggactggcggccactggcagccccc
 tggccgaggcaccctgcctgccttcctgcggactggcggccatgtcagccatggcggactggcactggctgt
 35 tcctgaagtctgtgcgcacttttcgggtggagccccccggccaatgtcaccaggccttcattatctcaacc
 gcatcaccacttgcatgactctgacttcgtccacctgtccaaacctgcgggtcctcaacctcaagtggactggc
 cggccggccgcctcagccccatgcacttccctgcgttatgaccatgcggccaaacaccttcctggctgtgcc
 ccctggaggagctgaacctgagctacaacggcatcacgaccgtgcctgcctgcggacttccctgtgtccctg
 40 cgctgagccacaccagcatctgtgcttaggccccaccacttcaccggcgcacgcctgcgcgttctgtaca
 tggacggcaactgtactacatgaacccctgcccggccctggaggtggccccaggcgccttcggccctgg
 gcaacctcacgcacccgtcgctcaagtacaacaacctcagccggacttgcggccctggcccccacggcctggaca
 ccctgtctgtcctacaaccatgtcaccctggcaccggactggccaaacctgactggccctgcgtgc
 ttgacgtgggtggactgcgcgcgtgcgaccatggccaaacctgtcagggactggccaaaggaaacttccca
 agctgcacctgacacccatgtcactgagccgcctgcgaggcctgggttgaaggacagttctctatacaac
 45 tagagaaaatgttccggccctggcaggcgtccaagtgcgtcgcacccgtgactgagaacttccttatgactaca
 tcaccaagaccaccatctcaacgcacccgtgcgcagactcaacccgtccttcattaccacaagaagg
 tgccttcgcctccatgtcactgacgtccatgtcgtcccttggagtcgtgtccctggagaagctggacatgcacgg
 tcttcctccgtccctccatccaacatcaacgtccatgtcgtccatgtcgtccctggccaaacctgacttcgt
 agctgaacttcatcaaccaggcccagctcagcatcttggggcctcccccagccgtcttcgtggacactgtcgg
 50 acaaccgcacatcagccggagccgcacgcacccggccctggggagggtggacagcagggtggaaagtctggcat
 tgcccaggggcctcgctccaggccccgtggacgcgcgtcagctcaaaggacttcatgcacccgtcaact
 tcacccgtggacactgtcagggaaacaacctgggtgacaatccagcaagagatgtttaaccgccttcggccctcc
 gcctgcgcctgagccacaacagcatctcgccaggcggtaatggctcccgatgtcgccgtgaccaggcctgcgag

- 14 -

tgctcgacctgtcccacaacaagctggacctgtaccatgggcgtcattcacggagctgcccagctggaggcac
 tggacctcagctacaacagccagcccttcagcatgcagggcgtggccacaacacctcagttcgtgcccagctgc
 cctccctgcgtcacctcagcattgcacaaatggcatccacagccgtgtcacagaagctcagcagcgcctcgt
 5 tgcgcgcctggacttcagcggcaactccctgagccagatgtggccgaggagaccttatctgttttca
 aaggcttgaggaacctggtcagctggacctgtccgagaaccatctgcacacccttcgtcctcgtcacctggaca
 acctgcccagagccctgcggcagctgcgttcgggacaataacacctggccttcactggagcagcctgaccg
 10 tcctgccccggcttggaaagccctggatctggcaggaaccagctgaaggccctgagcaacggcagcgtccgcctg
 gcatccggctccagaagctggacgtgagcagcaacagcatcggcttcgtatcccggttctcgccgcga
 ctcggctgtatagagcttaacctcagcggcaatgccctgaagacagtggatccctctgggttcggttccttagcag
 15 ggaccctgaaaatcctagacgtgagcggcaacccgttccactgcgcctgcggggcggcttggacttcctgc
 tggagagacaggaggccgtgcccggctgtccaggcgcgtcacatgtggcagtccggggcagctcaggccgcga
 gcatttcacacaggacctgcgccttcgtggatgagacccttcctggactgtttggccttcactgctaa
 tggtgtggcgtggccctggcagtgccttcgtcaccaccttcgtggctggaccttcgttactgtttccacctgt
 20 gtctggcccattgccccacggcggcggcagcggggcggaggacaccctgtctatgtatgcgcgtgttctcg
 acaaggtgcagagtgcgtgattgggttacaacagagctccgcgtcagctggaggagcgcggggcgc
 gggcgtccgccttcgtggcggaggcggcagactggccctggtaagacgccttcgcagaacactgtggcctcgg
 tctacagcagcccaagaccatgttcgtgctggaccacacggaccgggtcagcggccttcgcgcgcagcttcc
 tgctggcccagcagcgcctgttggaggaccgcagacgtcgttagtgcgtgtatcctgcgcggccgcctatc
 ggtcccgctacgtgcggcgtgcgccttcgtccggccagagcgttcctctggcccccaccagccagtgccc
 agggtagttctggccaacctggcatggccctgaccaggacaaccgtcacttctataaccggaaacttctgccc
 ggggccccacacagccgaatagcacagactgactgcccag

SEQ ID NO:12 (Bovine TLR9)

atggggccctactgtgcccccaaaaaaattcttccttggcaggcggccggactggcagccctggccgag
 25 ggcacccctgcctgccttcctggcgttgcggacttcgcggccatggtcagggtggactgcactggctttcctgaag
 tctgtggcgeacttttcggcgtggagccccccggccatgttcaccagcccttccttaatctccaaaccgcaccc
 cacttgcgtactctgacttcgtccacccgttcaacccgtccgtatgaccatcggccaaacacccttcctggcgtgtcc
 ggcctcagcccatgcactttccctggcgtatgaccatcggccaaacacccttcctggcgtgtccaccctggag
 gagctgaaccctgagctacaacggcatcaccggcgtgcctggccaggccatcccttcgtgtccctgtcgtgac
 30 cacaccaggcatctggtgcggccatccatccggcgtcaccgccttcgcgtttctgtacatggacggc
 aactgctactacatgaacccctgcccggggccctggaggtggcccccaggcccttcggcctggcaaccc
 acgcacccctgcgtcaagtacaacaacccatcgggggtgccccccggcgtccccccaggccctggacaccctgt
 ctgttctacaaccacattgttccatggcaccggaccctggccaaacctgactgcctgcgcgtgttgcgt
 ggtggaaactgcgcgcgtgcgaccatggcccaacccctgcggggacttggccaaagaacttcccaagctgac
 35 cctgacacccctcagtccacgtggccatccatccggcgtcaccgccttcgcgtttctctacaaactagagaaa
 gattgggtccggccctggcaggcgtccaaatgttcgtggactgttgcgttgcgttgcgttgcgttgcgttgc
 accaccatcttcaacgcacccgtggccatggcgtccatggccatccatggccatccatggccatccatggcc
 gcccacccctgcaccatgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc
 40 cgctccctaccaacatcaccgtccatccatggccatccatggccatccatggccatccatggccatccatggcc
 ttcatcaaccaggcccagctcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc
 atcagcggggccgcacgcacccgtggccatccatggccatccatggccatccatggccatccatggccatccatgg
 ggcctcgtccaggcccgtggccatccatggccatccatggccatccatggccatccatggccatccatggcc
 45 gacccgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc
 ctgagccacaacacgcacccatccatggccatccatggccatccatggccatccatggccatccatggccatcc
 ctgttccacaacaagctggacccatccatggccatccatggccatccatggccatccatggccatccatggcc
 agctacaacacgcacccatccatggccatccatggccatccatggccatccatggccatccatggccatccatgg
 50 ccgttccatccatggccatccatggccatccatggccatccatggccatccatggccatccatggccatccatgg
 cggctacccatccatggccatccatggccatccatggccatccatggccatccatggccatccatggccatccatgg
 ctggacttccatccatggccatccatggccatccatggccatccatggccatccatggccatccatggccatccatgg
 55 aggaacccatggccatccatggccatccatggccatccatggccatccatggccatccatggccatccatggccatcc
 aagggccctgcggcagctgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc
 cggctggaaaggccctggatctggcaggaaaccaggctgttgcgttgcgttgcgttgcgttgcgttgcgttgc
 ctccagaagctggacgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc
 atagagcttaacccatccatggccatccatggccatccatggccatccatggccatccatggccatccatggccatcc
 aaaatccatggccatccatggccatccatggccatccatggccatccatggccatccatggccatccatggccatcc
 caggaggccgtggccggctgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc
 acacaggccctgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc

- 15 -

SEQ ID NO:13 (Equine TLR9)

MGPCHGALQPLSLLVQAAMLAVALAQGTLPPFLPCELQPHGLVNCNWLFLKSVPHFSAAAPRDNVTSLSLLSNRI
 HHLHSDFAQLSNLQKLNWKWCNCPAGLSPMHFPCHMTIEPNTFLAVPTLEELNSYNGITTVPALPSSLVSLIL
 5 SRTNILQLDPTSLTGLHALRFLYMDGNYYYKNPCGRALEVAPGALLGLGNLTHSLKYNNLTTVPRSLPPSLEYL
 LLSYNHIVTLaPEDLANLTALRVLDVGNCRRCDHARNPCVECPHKFPQLHSDFSHLSRLEGVLVKDSSLYQLN
 PRWFRGLGNLTVDLSENFLYDCITKTAKFQGLAQLRLNLSFNYHKKVSFAHLLAPSFGSLLSLQELDMHGIF
 FRSLSQKTLQPLARLPMLQRLYLMQMFINQAQLGIKFDFPGLRYIDLSDNRISGAVEPVATTGEVDGGKKVWLTS
 RDLTPGPLDTPSSEDFMPSCKNLSFTLDSRNNLVTVQPEMFAQLSRQCLRLSHNSISQAVNGSQFVPLSLQV
 10 LDLSHINKLDLYHGRSFTELPRLEALDLSYNSQPFMSMRGVGHNLFSVAQLPTLRLYLSAHNGIHRSVSQQLCSTSL
 WALDFSGNSLSQMWAEGDLYLRFQGLRSLIRLRLDSQNRLHTLLPCTLGNIKPQLQLLRLRNYYLAFFNWSSLTL
 LPNLETLDLAGNQLKALSNGSLPSGTQLQRLDVSRNSIIFVVPGFFALATRLRELNLSANALRTEEPSWFGLAG
 SLEVLDVSANPLHCACGAAVFDFLQLQVQAAVPGLPSRVKCGSPGQLQGRSIFAQDLRLCLDKSLSWDCFGSLLV
 15 VALGLAMPMLHHLCGWDLWYCFHLGLAWLPRRGWQRGADALSYDAFVVFDKAQSAVADWVYNELRVRLEERRGR
 ALRLCLEERDWLPKGKTLFENLWASVYSSRKMLFVLAHTDQVSGLLRASFLLAQQLLEDRKDVVVLVILSPDARR
 SRYVRLRQRLCRQSVLFWPHQPSGQRSFWAQLGMALTRDNRHFYNQFCRGPTMAE

SEQ ID NO:14 (Equine TLR9)

MGPCHGALQPLSLLVQAAMLAVALAQGTLPPFLPCELQPHGLVNCNWLFLKSVPHFSAAAPRDNVTSLSLLSNRI
 HHLHSDFAQLSNLQKLNWKWCNCPAGLSPMHFPCHMTIEPNTFLAVPTLEELNSYNGITTVPALPSSLVSLIL
 20 SRTNILQLDPTSLTGLHALRFLYMDGNYYYKNPCGRALEVAPGALLGLGNLTHSLKYNNLTTVPRSLPPSLEYL
 LLSYNHIVTLaPEDLANLTALRVLDVGNCRRCDHARNPCVECPHKFPQLHSDFSHLSRLEGVLVKDSSLYQLN
 PRWFRGLGNLTVDLSENFLYDCITKTAKFQGLAQLRLNLSFNYHKKVSFAHLLAPSFGSLLSLQELDMHGIF
 FRSLSQKTLQPLARLPMLQRLYLMQMFINQAQLGIKFDFPGLRYIDLSDNRISGAVEPVATTGEVDGGKKVWLTS
 25 RDLTPGPLDTPSSEDFMPSCKNLSFTLDSRNNLVTVQPEMFAQLSRQCLRLSHNSISQAVNGSQFVPLSLQV
 LDLSHINKLDLYHGRSFTELPRLEALDLSYNSQPFMSMRGVGHNLFSVAQLPTLRLYLSAHNGIHRSVSQQLCSTSL
 WALDFSGNSLSQMWAEGDLYLRFQGLRSLIRLRLDSQNRLHTLLPCTLGNIKPQLQLLRLRNYYLAFFNWSSLTL
 LPNLETLDLAGNQLKALSNGSLPSGTQLQRLDVSRNSIIFVVPGFFALATRLRELNLSANALRTEEPSWFGLAG
 SLEVLDVSANPLHCACGAAVFDFLQLQVQAAVPGLPSRVKCGSPGQLQGRSIFAQDLRLCLDKSLSWDCFG

30

SEQ ID NO:15 (Equine TLR9)

ctctgttctctgagctgttgcgcgtgaaggactgcgcggcacaacatccctctgcagctgcgtgcggcactg
 tgccagctggaccctctggatcatctccactccctgtcatggcccttgcacatggccctgcagccccctgt
 35 ctctggtgcaaggcgccatgtggccgtggcttgcacccatcccttcctgcctccctgcggcacttc
 cagccccacggccatgtgaactgcacactggctttctgtggacttgcacccatcccttcctgcggcacttc
 gacaatgtcaccgccttcctgtctccaaacctccatccaccacccatccacactccactttgcacccatgt
 aacctgcagaaactcaacctaaatggaaactgcggccatccggccacttcacccatgcacttccctgcacat
 accatcgagcccaactttccatgtgttgcgttgcacccatgtggagactgaacactgtggactacaacgg
 40 gtgcctgcctgcggcacttcctgtgtccctgtatccatgtggacttgcacccatccatgtggactacaacgg
 ctcacggccctgcacccatgttgcgttgcacccatatacatggatggcaactgcactacaagaacccctgcgg
 ctggaggtggcccaggccgccttcctggccctggcaacctcaccacccatgtcactcaagtacaacacccat
 acgggtccccgcagccctgccttcctgtggacttgcacccatgtggacttgcacccatgtggactacaaccc
 45 gaggacctggccatctgtactgcgttgcgttgcacccatgtggacttgcacccatgtggactacaacccat
 aacccctgcgtggacttgcacccatataatccccatgtggacttgcacccatgtggactacaacccatgt
 ggcctgttgtgaaggatgttctcttaccatgtggacttgcacccatgtggacttgcacccatgtggactaca
 50 ctcgacactgtgacttgcacccatgtggacttgcacccatgtggacttgcacccatgtggactacaacccat
 agactcaacttgccttcaattaccataagaagggtgtccttcgttgcacccatgtggacttgcacccatgt
 ctgtctccctgcaggaaactggacatgtggacttgcacccatgtggacttgcacccatgtggactacaaccc
 gcccgcctgcctgcacccatgtggacttgcacccatgtggacttgcacccatgtggactacaacccatgt
 gacttccctgtgttgcgttgcacccatgtggacttgcacccatgtggacttgcacccatgtggactacaaccc
 ggggagggtggatgtggaaagaaggctggacttgcacccatgtggacttgcacccatgtggacttgcacccat
 tctgaggacttcatgccaagctgtcaagaacctcagttcacctggacactgtggacttgcacccatgtgg
 cagccagagatgttgcctgcctccagtcgcctgcgttgcacccatgtggacttgcacccatgtggactacaac
 cagcatctcgccaggcggt

- 16 -

25

SEQ ID NO:16 (Equine TLR9)

- 17 -

cagggtcaggctgccgtgcctggctgcccagccgcgtcaagtgtggcagtccgggcaagtcagggccgcagc
atcttcgcacaagacactgcgcctctgcctggacaagtcctctcctggactgttttgtt

SEQ ID NO:17 (Ovine TLR9)

5 MGPYCAHPPLSLLVQAAAALAAQGTLPAPFLPCELQPRGVNCNWLFLKSVPRFSAGAPRANVTSLSLISNRIH
HLHDSDFVHLSNLRVLNWKWCNPPAGLSPMHFPCRMTIEPNTFLAVPTLEELNSYNGITTVPALPSSLVSLSL
RTSILVLGPTHFTGLHALRFLYMDGNYYKNPCQQAVEVAPGALLGLGNLTHLSLKNNLTEVPTRLPPSLDTLL
LSYNHIITLAPEDLANLTALRVLDVGNCRRCDHARNPCRECPKFNFKLHPDTSFLSRLLEGLVLKDSSLYKLEK
DWFRGLGRLQVLDLSENFLYDYITKTTIFRNLTQLRRLNLSFNYHKKVSFAHLQLAPSFGGLVSLEKLDMHGIFT
10 RSLTNNTLRPLTQLPKLQSLSLQQLNFINQAELSIFGAFPSLLFVDLSDNRIISGAARPVAALGEVDSGVEVWRWPR
GLAPGPLAAVSAKDFMPSCNLNFTLDSLRSNNLVTIQQEMFTRLSRLQCLRLSHNSISQAVNGSQFVPLTRLRVLD
LSYNKLDLYHGRSFTELPQEALLDLSYNQPSMQGVGHNLFSVAQLPSLRLYLSLAHNGIHSRVSQKLSSASLRA
LDFSGNSLSQMWAEQDLYLCFFKGLRNLVQLDLSKNHLHTLLPRHLDNLPKSLRQLRQLRDNNLAFFNWSSLTVLP
QLEALDLAGNQLKALSNGSLPPGTRLQKLDVSSNSIGFVTPGFFVLANRLKELNLSANALKTVDPFWFGRLTETL
15 NILDVSANPLHACGAAFVDFLLEMQAAPGLSRRVTCGSPQQLQGRSIFAQDRLCLDETLSDLDCFGFSLLMVA
LGLAVPMLHHLCGWDLWYCFHLCLAHLPRRRQRGEDTLLYDAFVVFDKAQSAVADWVYNELRVQLEERRGRRAL
RLCLEERDWLPGKTLFENLWASVYSSRKTMFVLDHTDRVSGLLRASFLLAQQLLEDRKDVVVLVILRPAAYRSR
YVRLRQRLCRQSLLWPHQPSGQGSFWANLGMALTRDNRFYNRNFCRGPTTAE

20 SEQ ID NO:18 (Ovine TLR9)

MGPYCAHPPLSLLVQAAAALAAQGTLPAPFLPCELQPRGVNCNWLFLKSVPRFSAGAPRANVTSLSLISNRIH
HLHDSDFVHLSNLRVLNWKWCNPPAGLSPMHFPCRMTIEPNTFLAVPTLEELNSYNGITTVPALPSSLVSLSL
RTSILVLGPTHFTGLHALRFLYMDGNYYKNPCQQAVEVAPGALLGLGNLTHLSLKNNLTEVPTRLPPSLDTLL
LSYNHIITLAPEDLANLTALRVLDVGNCRRCDHARNPCRECPKFNFKLHPDTSFLSRLLEGLVLKDSSLYKLEK
25 DWFRGLGRLQVLDLSENFLYDYITKTTIFRNLTQLRRLNLSFNYHKKVSFAHLQLAPSFGGLVSLEKLDMHGIFT
RSLTNNTLRPLTQLPKLQSLSLQQLNFINQAELSIFGAFPSLLFVDLSDNRIISGAARPVAALGEVDSGVEVWRWPR
GLAPGPLAAVSAKDFMPSCNLNFTLDSLRSNNLVTIQQEMFTRLSRLQCLRLSHNSISQAVNGSQFVPLTRLRVLD
LSYNKLDLYHGRSFTELPQEALLDLSYNQPSMQGVGHNLFSVAQLPSLRLYLSLAHNGIHSRVSQKLSSASLRA
LDFSGNSLSQMWAEQDLYLCFFKGLRNLVQLDLSKNHLHTLLPRHLDNLPKSLRQLRQLRDNNLAFFNWSSLTVLP
30 QLEALDLAGNQLKALSNGSLPPGTRLQKLDVSSNSIGFVTPGFFVLANRLKELNLSANALKTVDPFWFGRLTETL
NILDVSANPLHACGAAFVDFLLEMQAAPGLSRRVTCGSPQQLQGRSIFAQDRLCLDETLSDLDCFG

SEQ ID NO:19 (Ovine TLR9)

35 gtcggcacgggaagtgagcgccaagcatccccctgcagctgccgcggcaacttgcggcccaagaccctctggaga
agccgcattccctgcacggccctactgtgccggcaccggccatggctccctgtgaggccggccatggccggccgtggc
agcagccctggcccgaggccacccctgcgtccctgtgaggccggccatggccggccatggccggccatggccggcc
ctggctgttccctgaagtctgtccggcggtttccggccggccatggccggccatggccggccatggccggccatgg
40 ctccaaaccgcattccaccactgtcagcactctgacttcgtccacccgtccaaacctgtccgggtcctcaacc
gaactggccggccggccctcagccccatgcactccccctgcggcatgaccatgcggccaaacacccttcctgc
tgtgcccaccctggaggagctgaacctgagctacaatggcatcaccggccatggccggccatggccggccatgg
atccctgtcgtgagccgcaccaggccatccctggcttaggcccaccacttcaccggccatggccggccatggcc
tctgtacatggacggcaactgtactataagaaccctgtccaggccgtggagggtggccggccatggccggcc
50 tggctggcaacctcagccacccgtcgtccatcaaccatcatcaccctggccaccggccatggccatctgact
cctggacaccctgtcgtccatcaaccatcatcaccctggccaccggccatggccatctgact
gcgtgtgtatgtggcgaaactggccggctgcaccacccgcaccggccatggccggccatggccatggcc
cttcccaagctgcaccctgacaccctcagccacccgtccggccatggccggccatggccatggcc
45 ctacaaactagagaaagactgggtccgcggccatggccggccatggccggccatggccatggccatggcc
tgactacatcaccagaccaccatttcagggacccgtccggccatggccggccatggccatggcc
caagaagggtgccttcgccccacccgtcaactggccacccttcggggccatggccatggcc
50 gcacggcatcttcgcctccctcaccacaccacccgtccggccatggccggccatggccatggcc
gagtctgcagctgaacttcatcaaccaggccggccatggccggccatggccatggcc
cctgtcgacaaccgcattcggccatggccggccatggccggccatggccatggcc
ctggccgtggcccaaggccctcgtccaggccggccatggccatggccatggcc

- 18 -

cctcaacttacaccttgacctgtcacggAACAAACCTGGTACGATCCAGCAGGAGATGTTACCCGCCTCTCCCC
cctccagtgcctgcgcctgagccacaacagcatctcgCAGGCGGTTAATGGCTCGCAGTCGTGCCGCTGACCCG
cctgcgagtgtcgacctgtcctacaacaAGCTGGACCTGTACCATGGCGCTCGTTACCGAGCTGCCGAGCT
ggaggcactggacacctagactacaacAGCCAGCCCTCAGCATGCAGGGCGTGGGCCACAACCTCAGCTCGTGGC
5 ccagctgccgtccccgtcgctacacctcagccttgcgcacaacAGGATCCACAGCCGCGTGTACAGAGCTCAGCAG
cgccctcgctgcgcgcctggacttcagcggcaactccctgagccAGATGTGGGCCAGGGAGACCTCTATCTG
cttcttcaaaggcttgaggaacctggtccagctggacctgtccaAGAACCCACCTGCACACCCCTCCTGCCCTGTC
cctggataacctgcccAGAGCCTGCAGCTGCCTCTCCGGACAATAACCTGGCCTTCTCAACTGGAGCAG
cctgactgttctgccccagctggaaAGCCCTGGATCTGGCGGAAACCAAGCTGAAGGCCCTGAGCAACCGGAAGCCT
10 gccacctggCACCCGGCTCCAGAAGCTGGACGTGAGCAGCAACAGCATCGGCTTGTGACCCCTGGCTTGTG
cttgcctaACCGGCTGAAAGAGCTTAACCTCAGGCCAACGCCCTGAAGACAGTGTGATCCCTCTGGTCTGGTCTGG
cttaacAGAGACCCCTGAATATCCTAGACGTGAGCAGGCCAACCCGCTCCACTGTGCCCTGGGGGGCCCTTGTGGA
cttcctgtggAGATGcaggcggccgtgcctggctgtccaggcgcgtcacgtgtggcAGTCGGGCCAGCTCCA
15 gggccgcAGCATCTCGCACAGGACCTGCCTCTGCCCTGGATGAGACCCCTCCTGGACTGCTTGGOTTCTC
gctgctaATGGTGGCGTGGCCTGGCGGTGCCATGCTGCACCAACCTGTGGCTGGACCTGTGGTACTGCTT
ccacccTGTGCTGGCCCATTGCCCCGACGGCGGCGCAGCGGGGCGAGGACACCCCTGCTACGATGCCCTGCT
ggTCTCGACAAGGGCGCAGAGTGCAGTGGCCGACTGGGTGACAACAGAGCTCCCGGTGAGCTGGAGGAGCGCG
20 cggcgcggggcgctccgcctgtgcctggaggAGCGAGACTGGCTCCCTGGCAAGACGCTCTCGAGAACCTGTG
ggcctcggtcacagcagccgtaaAGACCATGTCGTGTCGGACCACAGGACCCGGTCACTGGCCTCTGCAGCAG
cagcttcctgtggcccAGCAGCGCCTGGAGGAGCAGGATGTCGTGGTGTGGTACCTGCGCCCCCG
cgccTACCGGTCCCGCTACGTGCGGCTGCGCCAGCGCCTCTGCCAGAGCGTCTCTCTGGCCACCCAGCC
cagtggccAGGGTAGCTTCTGGGCCAACCTGGCATGCCCTGACCAGGGACAACCGCCACTCTATAACCGGAA
cttctgcggggccccacgacagecgaatagcacaGAGTGTACTGGCCAG

25 SEQ ID NO:20 (Ovine TLR9)

atggggccctactgtgccccgcacccccccttcttcctggcaggccggcgctggcagcagccctggccagg
ggcacccctgcctgccttcctggccctgtgagctccagccccgggtaaggtaactgcactgctgttccctgaag
tctgtgcggcgctttcggccggagccccccggccaatgtcaccagccttcctaattctccaaccgcacccac
cacttgacgactctgacttcgtccacctgtccaacctggggcttcaccaacctcaagtggactgcccgcggcc
ggccctcagccccatgcacttccctggcgcattgaccatcgagccaaaccttccctggctgtgcccaccctggag
gagctgaacctgagctacaatggcatcaccgaccgtgcctgcccagttctctgtatccctgtcgctgagc
ccgaccaggcatcctggcttaggccccaccacttcaccggcctgcacgcccctgcgcgtttctgtacatggacggc
aactgtctactataagaaccttgcacccggcaggccgtggagggtggccccaggcgccttcacccggctggcaaccc
acgcacccgtcgctcaagtacaacaacctcaccggagggtgcggccgcctgccccccagcctggacaccctgt
ctgtcctacaaccatcatcaccctggcaccaggaccctggcaatctgactgcctgcgtgtgtatgt
ggccggaaactgcggccgctgcgaccacgcccgcacccctgcagggagtgcaccaagaacttcccaagctgcac
cctgacaccctcagccacctgagccgcctcgaaggcctgggttgaaggacagtctctacaaactagagaaa
gactgggtccggccctggcaggctcaagtgcgcactgcacccatgtccttatgactacatcaccac
accaccatctcaggaacctgacccagctgcgcagactcaacctgtcctcaattaccacaagaagggtgccttc
gcccacctgcaactggcaccccttggggccctgggtgccttgcggagaagctggacatgcacggcatcttc
cgccctcaccacacccacgcctggccgcctgacccagctgcaccaagctccagagtcgtcagtcagtcgaac
ttcatcaaccaggccgagctcagcatcttggccctcccgagccctgcgttgcggacactgcggacaaccgc
atcagcggagctgcgagccgggtggccgcctcggggaggtggacagcgggggtggaaagtctggcgtggccagg
ggccctcgctccaggcccgcctggccgcgcctgacccgcacccatgcaccaagctgcacccatcaacttcaccc
gacctgtcaggaacaacctggtgcacgcacccgcacccatgcaccaagctgcacccatcaacttcaccc
ctgagccacaacagcatcgcaggcggttaatggctcgcaagttcgtgcgcgtgacccgcctgcagtgctcgac
ctgtcctacaacaagctggacccgttaccatggccgcctgcgttgcacggagctgcgcagctggaggactggaccc
actacaacagccacccgcctcagcatgcaggcgtggccacaacctcagttcgtggcccaactgcgtccctg
cgctacccgccttgcgcacaacggcatccacagccgcgtgtcacaaggactcagcagccctcgctgcgc
ctggacttcagccgaactccctgagccagatgtggccgagggagacccatctatctgttttcaaaggcttgc
agaacccctggccagctggacccgttcaagaaccacccgcaccccttcgcctgcgtcacctggataaccctggcc
aagagccctggccagctgcgtccgggacaataacctggccctttcaactggagcagccctgactgtttcgtcc
cagctggaaagccctggatctggcggaaaccagctgaaggccctgagcaacggcagccctggccaccctggaccc
ctccagaagctggacgtgagcagcaacagcatcggctttgtgaccctggctttgtccttgccttgcaccc
aaagagcttaacccgcacccgttcaagacagtgatcccttctggcgtcgcttaacagagaccc
aatatccctagacgtgagcgcacccgcctccactgtgcctgcggggcggcccttggacttctgtggagatg

- 19 -

caggccggccgtgcctggctgtccaggcgcgtaacgtgtggcagtccgggcccagtcacaggccgcatcttc
gcacaggacctgcgcctctgcctggatgagaccctctccttgactgctttggc

Complete nucleotide and amino acid sequences for canine and feline TLR9 are
5 publicly available. For example, an amino acid sequence for canine TLR9 is available as
GenBank accession number BAC65192 and its corresponding nucleotide sequence is
available as GenBank accession number AB104899. An amino acid sequence for feline
TLR9 is available as GenBank accession number AAN15751 and its corresponding
nucleotide sequence is available as GenBank accession number AY137581.

10 Complete nucleotide and amino acid sequences for canine and feline TLR9 were also
determined independently from those available from public databases.

An amino acid sequence of canine TLR9 is provided as SEQ ID NO:21. Based on
comparison with known amino acid sequences of human and murine TLR9, it appears that
SEQ ID NO:21 includes sequence for at least a majority of the extracellular domain, all of the
15 transmembrane domain, and at least a portion of the intracellular domain of canine TLR9
(See Figure 1). Amino acids numbered 1-822 of SEQ ID NO:21 are presumptively
extracellular domain and correspond to SEQ ID NO:22. SEQ ID NO:23 is a nucleotide
sequence of canine TLR9 cDNA having an open reading frame corresponding to nucleotides
91-3186. SEQ ID NO:24 is a nucleotide sequence of canine cDNA encoding amino acids 1-
20 822 of SEQ ID NO:21.

An amino acid sequence of feline TLR9 is provided as SEQ ID NO:25. Based on
comparison with known amino acid sequences of human and murine TLR9, it appears that
SEQ ID NO:25 includes sequence for at least a majority of the extracellular domain, all of the
transmembrane domain, and at least a portion of the intracellular domain of feline TLR9 (See
25 Figure 1). Amino acids numbered 1-820 of SEQ ID NO:25 are presumptively extracellular
domain and correspond to SEQ ID NO:26. SEQ ID NO:27 is a nucleotide sequence of feline
TLR9 cDNA having an open reading frame corresponding to nucleotides 87-3179. SEQ ID
NO:28 is a nucleotide sequence of feline cDNA encoding amino acids 1-820 of SEQ ID
NO:25.

30

SEQ ID NO:21 (Canine TLR9)

MGPCRGALHPLSLLVQAAALALALAQGTLPAFLPCELOPHGLVNCNWLFLKSVPRFSAAAPRGNVTSLSLYSNR
I HHLHDYDFVHFVHLRRLNWKWCPPASLSPMFPCCHMTIEPTFLAVPTLEDLNLSYNSITTPALPSSLVSLSL
SRTNILVLDPATLAGLYALRFLFLDGNCYYKNPCQQALQVAPGALLGLGNLTHLSLKYNNLTVVPRGLPPSLEYL

- 20 -

LLSYNHITLAPEDILANLTALRVLVDGGNCRRCDHARNPCRECPKGFPQLHPNTFGHLSHLEGLVLRDSSLYSLD
PRWFHGLGNLMVLDLSENFLYDCITKTAKFYGLARLRLNLSFNYHKKVSFAHLHASSFGSLLSLQELDIHGIF
FRSLSKTTLQSLAHLPMLQRLHLQLNFISSAQQLSIFGAFPGLRYVDSLSDNRISGAEEPAATGEVEADCGERVWP
QSRDLALGPLGTPGSEAFMPSCRTLNFTLDSRNNLVTVQPEMFVRLARLQCLGLSHNSISQAVNGSQFVPLSNL
RVLDLSHNKLDLYHGRSFTELPRLEALDLSYNSQPFMSMRGVGHNLFSVAQLPALRYSLAHNGIHSRVSQQLRSA
SLRALDFSGNTLSQMWAEGDLYLRFQGLRSVLQQLDSQNRLHTLLPRNLDNLPKSLRLLRLRDNYLAFFNWSSL
ALLPKLEALDLAGNQLKALSNGSLPNGTQLQRLLDLSGNSIGFVVPSFFALAVRLRELNLSANALKTVEPSWFGSL
AGALKVLDVTANPLHCACGATFVDFLLEVQAAVPGLPSRVKCGSPQQLQGRSIFIQAQDLRLCLDEALSWVCFSLSS
LAVALSLAVPMLHQLCGWDLWYCFHCLAWLPRRGRRRGVDALAYDAFVVFDAQSSVADWVYNELRVQLEERRG
RRALRLCIEERDWVPGKTLFENLWASVYSSRKTLFVLARTDRVSGLLRASFLLAQQRLLEDRKDVVVLVILCPDA
HRSRYVRLRQRLCRQSVLLWPHQPSGQRFSWAQLGTALTRDNRHFYQNQFCRGPTTA

SEQ ID NO:22 (Canine TLR9)

15 MGP CRG ALHPLS LLVQ AAL A L A Q G T L P A F L P C E L Q P H G L V N C N W L F L K S V P R F S A A A P R G N V T S L S L Y S N R I
HHLHDYDFVHFVHLRLNLKWNCPPASLSPMHFPCHMTIEPNTFLAVPTLEDNLNSYNSITTVPALPSSLVSLSL
SRTNILVLDPATLAGLYALRFLFLDGNCYYKNPCQQALQVAPGALLGLGNLTHLSLKYNNLTVVPRGLPPSLEYL
LLSYNHIITLAPEDLANLTALRVLDVGNCRRCDHARNPCRECPKGFPQLHPNTFGHLSHLEGVLVRDSSLYSLD
PRWFHGLGNLMVLDLSENFLYDCITKTKAFYGLARLRRRNLSFNYHKVSFAHLHASSFGSLLSLQELDIHGIF
FRSLSKTTLQSLAHLPMQLRLHLQLNFISQAQLSIFGAFPGLRYVDLSDNRISGAAEPAAATGEVEADCGERVWP
20 QSRDLALGPLGTGPGSEAFMPSCRTLNFTLDSLRSNNLVTVQPEMFVRLARLQCLGLSHNSISQAVNGSQFVPLSNL
RVLDLSHNKLDLYHGRSFTELPRLEALDLSSYNSQPFSMRGVGHNLFSVAQLPALRYSLAHNGIHSRVSQQLRSA
SLRALDFSGNTLSQMWAEGDLYLRFQGLRSLSVQLDLSQNRLHTLLPRNLDNLPKSRLLLRLRDNYLAFFNWSSL
ALLPKLEALDLAGNQLKALSNGSLPNGTQQLRDLSGNSIGFVVPSSFALAVRLRELNLSANALKTVEPSWFGSL
AGALKVLDVTANPLHCAGATFVDFLLEVQAAVPGLPSRVKCGSPGQLOGRSIFAQDLRLCLDEALSWVCFS

SEQ ID NO:23 (Canine TLR9)

30 aggaaggggctgtgagctccaagcatccttcctgcagctgctgccagccagctgcagccagaccctctggagaaggcccccgctccctgtcatgggcccctgcccgtggccctgcacccctgtctctccctggctgaggtccagccatggctggtaactgc
aactggctttcctaagtccgtgccccgttctggcagctgcaccccgccgttaacgtcacccgttccctgg
tactccaaccgcattccaccacccatgactatgactttgtccacttcgtccacctgcccgtctcaatctcaag
tggaaactgcccggccgcagccatgcacttccctgtcacatgaccattgagccaaacacccctgt
gctgtgcccacccttagaggacctgaatctgagctataacacatcacgactgtgcccggccctgcccagttcgctt
gtgtccctgtccctgagccgaccaacatcctggctggaccctgcacccctgcagggctttatgccttgc
35 ttctgttccctggatggcaactgctactacaagaaccctgcccagcaggccctgcaggtggcccccagggtggcc
ctggggcctgggcaacccatcacacaccgtcactcaagtacaacaaccctcaccgtggccgcgggcccctgggggg
agccctggagtagccctgtcttgcataaccacatcatcaccctggcacctgaggacctggccaaatctgactgg
ctgcgtgtccctcgatgtgggtgggaaactgtcggcgtgtgaccatgcccgtaaaccctgcagggagtgcccaagg
ggttccccccagctgcaccccaacacccatcggccacctgagccacctgcaaggccctggtgttggggacagctt
40 ctctacagccctggacccaggtggccatggccatggccatggccatggccatggccatggccatggccatggcc
tatgactgcatcacaaaaaccaaaaggcccttacggccatggccggctgcgcagactcaaccctgtccctcaattat
cataagaagggtgtcccttgcacccatgcatctggcatccttcctggagccactgtccctgcaggagctgg
atacatggcatcttcttcgcgtcgcgtcagcaagaccacgcgtccaggccgtcgctggccacccatgctccaggcg
45 ctgcatctgcagttgaactttatcagccaggccagctcagcatcttcggcccttcctggactgcggtaacgtg
gacttgcagacaaccgcacatcagttggagctgcagagccgcggctgcacaggggaggtagaggcagactgtgg
gagagagtctggccacagttcccgccatgtctggccacttgcaccccccggctcagaggcccttcatggcc
agctgcaggaccctcaacttcacccatggacccatgtctggccatggccacaacccatgttgc
50 cggctggccgcctccagtgccctggccatggccacaacgcacatctcgccaggccgtcaatggccgcagttcg
cctctgagcaacctgcgggtgtggacccatgcacccatggccgcgttgcacccatggcc
ctggccgcggctggaggccatggacccatgcacccatggccgcgttgcacccatggccacaatctc
agctttgtggcagactgcacccatggccgcgttgcacccatggccacaatggccgcgttgc
55 cagctccgcagccctgcgtccggccctggacttgcagtgccatggccacaacccatgtggccagatgtggccgaggagac
ctctatctccgccttcttcaaggccatggccatggccacaacccatgtggccgcgttgcacccatggcc
ctggccacgcacccatggacaacccatggccatggccacaacccatgtggccgcgttgcacccatggcc
aactggagcagccctggcccttgcacccatggccatggccgcgttgcacccatggcc

- 21 -

aatggcagctgccccacggcacccagctccagaggctggacacctcagcgcaacacgcacatcggttcgtggcccc
agctttttgccctggcgctgaggctcgagagctcaacctcagcgcaacgcctcaagacggctggagccctcc
tggttggccctgggggtccctgaaagtcttagacgtgaccgccaaccccttgcattgcgttgccggcga
acacctcgacttcttgctggagggtcaggctgcggtgcggctgcctagccgtgtcaagtgcggcagcccc
5 gggcagctccaggccgcagcatcttcgcacaggacctgcgcctctgcctggacgaagcgctctctgggtctg
ttcagccctctcgctgctggctgtggccctgaggctggctgtgcccattctgcaccagctctgtggctggaccc
tggtaactgctccaccctgtgcctggctggctgccccggcggggggcggcggcgggtgtggatgcctggccat
gacgccttcgtggcttcgacaaggcgagactcggtggcgactggtgtacaatgagctgcggtacagcta
gaggagcgcgtggccggcgtacgcctgtgtctggaggAACGTGACTGGTACCCGAAAACCTCTC
10 gagaacctctggccctcagttacacgcagcccaagacgcgttttgtctggcccgacggacagactcagccg
ctccctgcgtgccagcttcctgtctggcccaacacgcgcctgtggaggaccgcacggacgtcggtgtctggatc
ctgtggcccgacgcccaccgcctcccgctatgtcggtcgccctgcgcctctgcgcggcagactgtccctctgg
ccccaccagccagtgcccagcgcagcttcgtggcccgactggccctgacggccctgaccaggacaaccgcacattc
15 tacaaccagaacttctggccggggccacgcacgcctgtataggcagacagccagcaccctcgcccccatacacc
ctgcctgtctgtctggatggccgcacctgtgtctacaccgcgtctgtctccctacacccagccctggca
taaaqcqaccgcataataatqctqctqtaaqac

SEQ ID NO:24 (Canine TLR9)

SEQ ID NO:25 (Feline TLR9)

55 MGPCHGALHPLSLLVQAAALAVALAQGTLPAFLPCELQRHGLVNCDSLWFLKSVPHFSAAAPRGNVTSLSLYSNRI
HHLHDSDFVHLSSLRRLNLKWNCPPASLSPMHFPCHMTIEPHTFLAVPTLEELNLSYNSITTVPALPSSLVSLSL

- 22 -

SRTNIVLVDPANLAGHLHSLRFLFLDGNCYYKNPCPQALQVAPGALLGLGNLTHLSLKYNNLTAVPRGLPPSLEY
LLSYNHIITLAPEDLANLTALRVLVDGGNCRRCDHARNPCMECPKGFPHLHPDTFSHLNHLEGVLKDSSLYNLN
PRWFHALGNLMVLDLSENFYDCITKTTAFQGLAQLRRLNLSFNYHKKVSFAHLHLAPSFGSLLSLQQLDMHGIF
FRSLSETTLRSVLVHLPMLQSLSHQMNFIQQAQLSIFGAFPGLRYVDLSDNRISGAMELAAATGEVDGGERVRLPS
5 GDLALGPPGTPSSEGFMPCGKTLNFTLDLSRNNLVTIQPEMFARLSRLQCQLLSSRNSISQAVNGSQFMPPLTSQV
LDLSHNKLDLYHGRSFTELPRLEALDLSYNQSOPFSMQGVGHNLSSVVAQLPALRYLSLAHNDIHSRVSQQLCSASL
RALDFSGNALSRMWAEGDLYLHFFRGLRSLVRLDLSQNRLHITLLPRTLNDLPKSLRLLRLRDNYLAFFNWSSLVL
LPRLEALDLAGNQLKALSNGSLPNGTQLQRLDLSNSISFVASSFFALATRLRELNLSANALKTVEPSWFGSLAG
10 TLKVLDVTGNPLHCAGAAFVDFLLEVQAAVPGLPGHVKGSPGQLQGRSISFAQDRLCLDEALSWDCFGSLLLT
VALGLAVPMHLHLCGWDLWYCFHLCLAWLPRRGRRGADALPYDAFVVFDKAQSavadwvynelrvleerrgrr
ALRLCLEARDWLPGKTLFENLWASVYSRKMLFVLAHTDRVSGLLRASFLLAQQRLLEDRKDVVVLVILRPDAHR
SRYVRLRQLRCOSVLLWPHOPSGQRSFWAQLGTALTRDNQHFYNQNFCRGPTTAE

SEQ ID NO:26 (Feline TLR9)

15 MGPCHGALHPPLSLLVQAAALAVALAQGTLPAFLPCELQRHGLVNCDWLFLKSVPFSAAPRGNVTSLSLYNSRHHHLHDSDFVHLSLRLNLWNCPASLSPMHFPCHMTIEPHTFLAVPTLEELNLSYNSITTVPALPSSLVSLSLRTNTLVLDPANLAGLHSLRFLFDGNCYYKNPCPQALQVAPGALLGLGNLTHLSLKYNNLTAVPRGLPPSLEYLLLSYNNHIIITLAPEDLANLTALRVLDVGNCRRCDHARNPCECPKGFPHLPTDFSHLNHLEGIVLKDSSLYNLNPRWFHALGNLMVLDSLENFLYDCITKTTFQGLAQLRRNLNSFNYHKVSFAHLHAPSFGSLLSLQQQLDMHGIF
20 FRSLSETTILRSVLVHLPMLQSLHQLQMFNFINQAQLSIFGAFCGFLRYVDLSDNRISGAMELAAATGEVDGGERVRLPSGDLALGPGGTGSSEGFMPCGKTLNFTLDLSRNNLVTIQPEMFARLSRLQCQLLRSNSISQAVNGSQFMPQLTSQVLDLSSHNKLDLYHGRSFTELPRLEALDLSYNQSOPFSMQGVGHNLSSFVAQLPALRYLSLAHNDIHRSVSQQLCSASLRALDFSGNALSRMWAEGDLYLHFTRGLRSVLRLDLSQNRLHLLLPTLDNLPKSLRLLRLRDNYLAFFNWSSLVLLPRLAEALDLAGNQLKALSNGSLPNGTQLQRLDLSSNSISFVASSFFALATRLRELNLSANALKTVEPSWFGSLAG
25 TLKVLDVTGNPLHCACGAAFVDFLLEVOAAVPGLPGHVKCGSPGOLOGRSIFAODLRLCLDEALSWDCFG

SEQ ID NO:27 (Feline TLR9)

- 23 -

gcctggcctcccccaggctggaaaggccctggacactggcgaaaaccagctgaaggccctgagcaacggcagtc
tgcctaattggaaaccagctccagaggctggacactcagcagcaacagtatcagcttcgtggccctcagcttttg
ctctggccaccaggctcgagagctaacctcagtgccaaaccccctcaagacggtgtggagccctcctggttcggtt
ctctaggggccccctgaaagtccctagatgtgactggcaacccctgactgcgcctgtggggcccttcgtgg
5 acttcttgctggagggtcaggctgcaggctgcaggctgcaggccacgtcaagtgtggcagttcaggtaagtc
aggccgcagcatcttgcgcaggatctgcgccttcgcctggatgagcccttcctggactgtttggccct
cgctgtgaccgtggccctggccctggccgtgcccattgcgcaccacccctgtggactggacactctgttactgt
tccacctgtgcctggctggctgccccggcgaaaaacccggcgatgcctgcctacgatgccttg
10 tggcttcgcacaaggcacagagcgcggtgccactgggttacaacgcgtgcgggtacggtagaggagcc
gtggacgccgagcgcctcgctgtgcctggaggAACGTgactggctacccgttaaacgcctttgagaacctgt
ggccctcgtttacagcagcccaagatgctttgtgcggccacacagacagggtcagccgccttgcgc
ccagcttctgtggcccaagcagcgcctgcggaggaccgcaggacgttgcggatcctgcggcc
acgcccaccgcctccgcgtatgtgcgcgtgcgcaggccctgcggccaggacgcgtcccttcgtggcc
ccagtgcccaagcgcagcttcgtggcccaagctgggcacggccctgaccaggacaaccagcacttataaccaga
15 attctgcggggcccaacgcggcagactgaccgcggcagcacccttcacacccctgcctgtgccttg
ggatgcgggg

SEQ ID NO:28 (Feline TLR9)

Complete nucleotide and amino acid sequences for murine and human TLR9 are publicly available. For example, an amino acid sequence of murine TLR9 is available as

- 24 -

GenBank accession no. AAK29625, provided as SEQ ID NO:29. Amino acids numbered 1-821 of SEQ ID NO:29 presumptively include the entire extracellular domain and correspond to SEQ ID NO:30. SEQ ID NO:31 corresponds to GenBank accession number AF348140, which is a nucleotide sequence of murine TLR9 cDNA. SEQ ID NO:32 is a nucleotide sequence of murine cDNA encoding amino acids 1-821 of SEQ ID NO:29.

An amino acid sequence of human TLR9 is available as GenBank accession no. AAF78037, provided as SEQ ID NO:33. Amino acids numbered 1-820 of SEQ ID NO:33 presumptively include the entire extracellular domain and correspond to SEQ ID NO:34. SEQ ID NO:35 corresponds to GenBank accession number AF245704, which is a nucleotide sequence of human TLR9 cDNA. SEQ ID NO:36 is a nucleotide sequence of human cDNA encoding amino acids 1-820 of SEQ ID NO:33.

SEQ ID NO:29 (Murine TLR9)

```

15 MVLRRRTLHPLSLLVQAAVLAETLALGTLPAFLPCELKPHGLVDCNWLFLKSVPFRSAAASCNSNITRLSLISNRI
HHLHNDFVHLSNLRQLNLKWNCPPTGLSPLHFSCHTIEPRTFLAMRTLEELNLSYNGITTVPRLPSSLVNLSL
SHTNILVLDANSLAGLYSLRVLFMDGNCYYKNPCTGAVKVTGALLGLSNTLHSLKYNNTKVPQLPPSLEYL
LVSYNLLIVKLGPEDLANLTSRVLVDVGNCRRCDHAPNPCIECGQKSLHLPETFHLSHLEGVLKDSSLHTLN
SSWFQGLVNLSVLDLSENFLYESINHTNAFQNLTTRLKLNLFSFYRKVSFARLHASSFKNLVSLQELNMNGIF
FRSLNKYTLRWLADLPKLHTLHQMFINQAQLSIFGTFRALRFVDSLSDNRISGPSTLSEATPEEADDAEQEELL
20 SADPHPAPLSTPASKNFMDRCKNFKFTMDLSRNNLVTIKPEMFVNLSRLQCLSLSHNSIAQAVNGSQFLPLTNLQ
VLDLSHNKLDLYHWKSFSELPLQLQALDLSYNSQPFMSKGIGHNFSFVAHLSMLHSLSLAHNDIHTRVSSHLSNS
VRFLDFSGNGMGRMWDEGGYLHFFQGLSGLLKLDLSQNNLHILRPQNLDMNPKSLKLLSLRDNYLSFFNWTSL
FLPNLEVLDLAGNQLKALTNGTLPGNTLLQKLDVSSNSIVSVPAFFALAVELKEVNLSHNIKTVDRSWFGPIV
MNLTVDVRSNPLHCACGAAFVDLLLEVQTKVPGLANGVKCGSPGQLQGRSIFAQDLRLCLDEVLSWDCFGLSLL
25 AVAVGMVVPILHHLCGWDVWYCFHLCRAWPLLARSRRSAQALPYDAFVVFDAKAQSAVADWVYNELRVLEERRG
RRALRLCLEDRDWLPGQTLFENLWASITYGSRKTLFVLAHTDRVSGLLRTSFLLAQQRLLLEDRKDVVVLVILRPDA
HRSRYVRLRQRLCRQSVLFWPQQPNGQGGFWAQLSTALTRDNRHFYQNQFCRGPTAE

```

SEQ ID NO:30 (Murine TLR9)

```

30 MVLRRRTLHPLSLLVQAAVLAETLALGTLPAFLPCELKPHGLVDCNWLFLKSVPFRSAAASCNSNITRLSLISNRI
HHLHNDFVHLSNLRQLNLKWNCPPTGLSPLHFSCHTIEPRTFLAMRTLEELNLSYNGITTVPRLPSSLVNLSL
SHTNILVLDANSLAGLYSLRVLFMDGNCYYKNPCTGAVKVTGALLGLSNTLHSLKYNNTKVPQLPPSLEYL
LVSYNLLIVKLGPEDLANLTSRVLVDVGNCRRCDHAPNPCIECGQKSLHLPETFHLSHLEGVLKDSSLHTLN
SSWFQGLVNLSVLDLSENFLYESINHTNAFQNLTTRLKLNLFSFYRKVSFARLHASSFKNLVSLQELNMNGIF
FRSLNKYTLRWLADLPKLHTLHQMFINQAQLSIFGTFRALRFVDSLSDNRISGPSTLSEATPEEADDAEQEELL
35 SADPHPAPLSTPASKNFMDRCKNFKFTMDLSRNNLVTIKPEMFVNLSRLQCLSLSHNSIAQAVNGSQFLPLTNLQ
VLDLSHNKLDLYHWKSFSELPLQLQALDLSYNSQPFMSKGIGHNFSFVAHLSMLHSLSLAHNDIHTRVSSHLSNS
VRFLDFSGNGMGRMWDEGGYLHFFQGLSGLLKLDLSQNNLHILRPQNLDMNPKSLKLLSLRDNYLSFFNWTSL
FLPNLEVLDLAGNQLKALTNGTLPGNTLLQKLDVSSNSIVSVPAFFALAVELKEVNLSHNIKTVDRSWFGPIV
MNLTVDVRSNPLHCACGAAFVDLLLEVQTKVPGLANGVKCGSPGQLQGRSIFAQDLRLCLDEVLSWDCFG
40 MNLTVDVRSNPLHCACGAAFVDLLLEVQTKVPGLANGVKCGSPGQLQGRSIFAQDLRLCLDEVLSWDCFG

```

SEQ ID NO:31 (Murine TLR9)

```
tgtcagagggaggcctcgggagaatccctccatctcccaacatggttctccgtcgaggactctgcaccccttgtcc
ctcctggtagaggctgcagtgcgtgagactctggccctgggtaccctgcctgcctaccctgtgagctg
```

- 25 -

SEQ ID NO:31 (Murine TLR9)

45 atggttctccgtcgaggactctgcacccctgtccctcctggtagcaggtgcagtgcggctgagactctggc
ctgggtaccctgcctgccttccatcccgttgactgaagctcatggctggactgcaattggcttcc
aagtctgtacccgttctctgcggcagcatctgtccaaacatcccccttccttgatctccaaccgtatc
caccacactgcacaactccgacttcgtccacctgtccaaacctggggcagctgaaacctcaagtgaaactgtcc
actggccttagccccctgcaccttcttgccacatgaccattgagccagaaccttccggatgcgtacactg
50 gaggagctgaaacctgagctataatggtatcaccactgtgccccgactgcccagctccctggtgaaatctgaggctg
agccacaccaaactcctgttctagatgctaacagcctcgccggctatacagcctgcgcgttcttcatggac
gggaactgtactacaagaacccctgcacaggagcggtaaggtgaccaggcgccttcctggcctgagcaat
ctcaccctatctgtctctgaagtataacaacactcacaagggtccccgccaactgccccccagctggagttacctc
ctgggtctctataacacttattgtcaagctggggctgaagacactggccaatctgaccccttcctcgagttactgtat
55 gtgggtggattggcgtcgctgcgaccatgcccccaatccctgtatagaatgtggccaaagttccctccacactg
caccctgagacccatcacctgagccatctggagggcctggctgatgaggacagctctccatatactgaaac
tcttcctgggttccaaggctggtaacactctcggtctggacctaagcgagaactttctctatgaaagcatcaac
cacaccaatgccttcagaacactaaccgcctgcgcaagctcaacactgtcctcaattaccgcaagaaggatcc

- 26 -

tttgccgcctcacctggcaagttcctcaagaacactggtcactgcaggagctgaacatgaacggcatcttc
 ttccgctcgctcaacaagtacacgctcagatggctggccatctgccccaaactccacactctgcacatcttcaa
 aacttcatcaaccaggcacagctcagcatcttggtagccatgcggccatgcgttttgacttgcagacaat
 5 cgcatcagtgccatgcgtcagaagccacccctgaagaggcagatgtcagagcaggaggactgttg
 tctcgccatcctcaccctggccatgcgtcagaagccacccctgaagaggcagatgtcagatgcggccatcttca
 ttcaccatggaccctgtctcgaaacaacctggactatcaagccagagatgttgcataatcttcacgcctcc
 tgtcttagcctgagccacaactccattgcacaggctgtcaatgcgttcagttccatgcgtactaatctgc
 gtgctggacctgtccataacaaactggacttgttaccactggaaatcgatgcgttgcggccatcttgc
 10 ctggacctgagctacaacaggccagccatttagatgcacaggataggccacaatttgcgttgcggccatctg
 tccatgcctacacaggccatgcgttgcacacaatgcacattcataccgtgtgcctcacatctcaacagcaact
 gtgaggtttcttgcacttcagccgcaacggtatggccatgtggatgagggggccttctccatcttgc
 caaggccatgcgttgcggccatgcgttgcggccatcttgc
 aaccccccacagagcctgaagctgtcagccatgcgttgcggccatcttgc
 15 ttccatgcgttgcggccatcttgc
 ggcacccctccatgcgttgcggccatcttgc
 gtgagctgaaagaggctcaacccatgcgttgcggccatcttgc
 atgaacctgcacagtcttagacgtgagaagcaaccctctgcactgtgcctgtggccatcttgc
 ttggaggtgcagacccaagggtgcctggccatgtgtgaatgttgc
 20 agcatcttcgcacaggacgtgcgttgcggccatcttgc
 SEQ ID NO:33 (Human TLR9)

MGFCRSALHPLSLLVQAIMLAMTLALGTLPAFLPCELQPHGLVNCNWLFKSVPHFSMAAPRGNVTSLSLSSNRI
 HHLHDSDFAHPLSLRHNLKWNCPPVGLSPMHFPCHMTIEPSTFLAVPTLEELNLSYNNIMTVPALPKSLISLSS
 25 SHTNILMldsASLAGLHALRFLFMDGNCYYKNPCRQALEVAPGALLGLGNLTHLSLKYNMLTVVPRNLPSSLEYL
 LLSYNRIVKLAPEDLANLTALRVLDVGGNCRRCDHAPNPCMECPRFHPQLHPDTFSHLSRLEGVLKDSSLWLN
 ASWFRLGNLRVLDLSENFLYKCITKTKAFOGLTQLRKLNLSFNYQKRVSFahlSLAPSFGSLVALKEELDMHGIF
 FRSLDETTLRPLARLPMQLTQLRQLQMFNINQAQLGIIFRAFPGLRYVDLSDNRISGASELTATMGEADGGEKVWLQP
 GDLAPAPVDTPSSEDFRPNCLSTLNFTLDSRNNLVTVQPEMFAQLSHLQCLRLSHNCISQAVNGSQFLPLTGLQV
 LDLSRNKLDLYHEHSFTELPRLEALDLSYNSQPFGMQGVGHNFVFVAHLRTLRLHLSLAHNNIHSQVSQQLCSTSL
 30 RALDFSGNALGHMWAEGDLYLHFFQGLSGLIWLDLSQNRLHTLPLQTLRNLPKSLOVRLRDNYLAFFKWWSLHF
 LPKLEVLDLAGNRKALTNGSLPAGTRLRLDVSCNSISFVAPGFFSKAKELRELNLSANALKTVDHWSFGPLAS
 ALQILDVSANPLHCACGAAFMDFLLEVQAAVPGLPSRVKCGSPGQLQGLSIFAQDLRLCLDEALSWDCFALSLLA
 VALGLGPMLHHLCGWDLWYCFHLCALWPWRGRQSGRDEDALPYDAFVVFDKTQSAVADWVYNELRGQLEECRG
 RWALRLCLEERDWLPGKTLFENLWASVYGSRKTLFVLAHTDRVSGLLRASFLLAQQLLEDRKDVVVLVILSPDG
 35 RRSRYVRLRQRLCRQSVLLWPHQPSGQRSFWAQLGMALTRDNHHFYNRNFCQGPTAE

SEQ ID NO:34 (Human TLR9)

MGFCRSALHPLSLLVQAIMLAMTLALGTLPAFLPCELQPHGLVNCNWLFKSVPHFSMAAPRGNVTSLSLSSNRI
 HHLHDSDFAHPLSLRHNLKWNCPPVGLSPMHFPCHMTIEPSTFLAVPTLEELNLSYNNIMTVPALPKSLISLSS
 40 SHTNILMldsASLAGLHALRFLFMDGNCYYKNPCRQALEVAPGALLGLGNLTHLSLKYNMLTVVPRNLPSSLEYL
 LLSYNRIVKLAPEDLANLTALRVLDVGGNCRRCDHAPNPCMECPRFHPQLHPDTFSHLSRLEGVLKDSSLWLN
 ASWFRLGNLRVLDLSENFLYKCITKTKAFOGLTQLRKLNLSFNYQKRVSFahlSLAPSFGSLVALKEELDMHGIF
 FRSLDETTLRPLARLPMQLTQLRQLQMFNINQAQLGIIFRAFPGLRYVDLSDNRISGASELTATMGEADGGEKVWLQP
 GDLAPAPVDTPSSEDFRPNCLSTLNFTLDSRNNLVTVQPEMFAQLSHLQCLRLSHNCISQAVNGSQFLPLTGLQV
 45 LDLSRNKLDLYHEHSFTELPRLEALDLSYNSQPFGMQGVGHNFVFVAHLRTLRLHLSLAHNNIHSQVSQQLCSTSL
 RALDFSGNALGHMWAEGDLYLHFFQGLSGLIWLDLSQNRLHTLPLQTLRNLPKSLOVRLRDNYLAFFKWWSLHF
 LPKLEVLDLAGNRKALTNGSLPAGTRLRLDVSCNSISFVAPGFFSKAKELRELNLSANALKTVDHWSFGPLAS
 ALQILDVSANPLHCACGAAFMDFLLEVQAAVPGLPSRVKCGSPGQLQGLSIFAQDLRLCLDEALSWDCFA

50 SEQ ID NO:35 (Human TLR9)

aggctggtataaaaatcttacttcccttattctctgagccgtgtccccctgtgggaaggacctcgagtgtga
 agcatccttccctgttagctgtgtccagtcgtccatgcggccatgcgttgcggccatcatgtggccatgaccctggccatcttgc
 ttctggccgagccctgcacccgtgtctcttgcggccatcatgtggccatgaccctggccatcttgc

- 27 -

SEQ ID NO:36 (Human TLR9)

- 28 -

```

aaaaccaaggccttccagggcctaacacagctgcgcagcttaacctgtccttcattacaaaagagggtgtcc
tttgcacccactgtctctggcccttcctcgggagccctggcgcctgaaggagctggacatgcacggcatctc
ttccgctcactcgatgagaccacgcgtccggccactggcccctgcccatactccagactctgcgtctgcagatg
aacttcatcaaccaggcccagctcgccatctcaggcccttcctggcgcctgcgtacgtggacactgtcgagaca
5      cgcatcagcggagcttcggagactgacagccaccatggggaggcagatggagggagaaggctggctgcagc
ggggacccctgtccggccccactggacactccagctctgaagacttcagcccaactgcagcacctcaactc
accttgatctgtcaggaacaacctggtgcacgtcagccggagatgttgcctcactgcacctgcagtgc
ctgcgcctgagccacaactgcacatcgcaggcagtaatggctccagttctgcgcgtgaccggctgcagg
ctagacactgtccgcataaagctggaccttaccacgagcacttcacggagactaccgcactggaggccctg
10     gacctcagctacaacacagccagccctttggcatgcagggcgtggccacaacttcagctctggctcacctgc
accctgcgccacccgcctggccccaacaacatccacagccaaactgttgcctcagctctgcagtacgtgc
cgggccctggacttcagcggcaatgcactggccatatgtggccgagggagaccttatctgcacttccaa
gcctgagcggtttgcattctggacttgtcccaaccgcctgcacaccctctgcggccaaaccctgcgaac
ctccccaagagcctacaggctgcgtgcgtccgtacaattacotggctttaagtggtagggcactccactc
15     ctgcggccaaactggaaacttcctgcacctggcaggaaaccggctgaaggccctgaccaatggcagc
accggctccggaggctggatgtcagctgcacagcatcagcttcgtggccccggctctttccaaaggcca
gagctgcgagactcaaccttagcggcaacgcctcaagacagtggaccacttcgtttggccctggcag
gcctgc当地actagatgtaaacgcggccaccccttcactgcgcctgtggccggcttatggacttcctgc
gaggtgcaggctccgtgcccgtctggccagccggtaagtgtggcagtcggccagctccaggccctcagc
20     atcttgcacaggacctgcgcctctgcctggatgaggcccttcctggactttcgcc

```

In addition to the foregoing native rat, porcine, bovine, equine, and ovine TLR9 polypeptides and nucleic acid molecules encoding them, chimeric TLR9 polypeptides and nucleic acid molecules encoding them are provided by the invention. The chimeric polypeptides include at least one amino acid substitution based on a comparison of conserved and non-conserved amino acids among at least two of rat, murine, porcine, bovine, equine, ovine, canine, feline, and human TLR9. The information contained in a multiple sequence alignment of these various TLR9 polypeptide sequences, provided for example in Figure 1, can be used to identify and select individual amino acid positions and even individual amino acids to substitute in designing a chimeric TLR9. The substitution or substitutions can be effected using methods known to those of ordinary skill in molecular biology. Nucleic acids encoding the native or chimeric polypeptides of the invention can be inserted into an expression vector and used to express TLR9 polypeptide.

A conservative amino acid substitution shall refer to a substitution of a first amino acid for a second amino acid, wherein side chains of the first amino acid and the second amino acid share similar features in terms of hydrophobicity, size, aromaticity, or tendency to alter conformation. For example, conservative amino acid substitutions generally may be made between members within each of the following groups: hydrophobic (A, I, L, M, V), neutral (C, S, T), acidic (D, E), basic (H, K, N, Q, R), and aromatic (F, W, Y). A non-conservative amino acid substitution refers to any other amino acid substitution.

An expression vector for TLR9 will include at least a nucleotide sequence coding for a TLR9, or a fragment thereof coding for a functional TLR9 polypeptide, operably linked to a gene expression sequence which can direct the expression of the TLR9 nucleic acid within a eukaryotic or prokaryotic cell. A "gene expression sequence" is any regulatory nucleotide sequence, such as a promoter sequence or promoter-enhancer combination, which facilitates the efficient transcription and translation of the nucleic acid to which it is operably linked.

With respect to TLR9 nucleic acid, the "gene expression sequence" is any regulatory nucleotide sequence, such as a promoter sequence or promoter-enhancer combination, which facilitates the efficient transcription and translation of the TLR9 nucleic acid to which it is operably linked.

The gene expression sequence may, for example, be a mammalian or viral promoter, such as a constitutive or inducible promoter. Constitutive mammalian promoters include, but are not limited to, the promoters for the following genes: hypoxanthine phosphoribosyl transferase (HPRT), adenosine deaminase, pyruvate kinase, β -actin promoter, and other constitutive promoters. Exemplary viral promoters which function constitutively in eukaryotic cells include, for example, promoters from the simian virus (e.g., SV40), papillomavirus, adenovirus, human immunodeficiency virus (HIV), Rous sarcoma virus (RSV), cytomegalovirus (CMV), the long terminal repeats (LTR) of Moloney murine leukemia virus and other retroviruses, and the thymidine kinase (TK) promoter of herpes simplex virus. Other constitutive promoters are known to those of ordinary skill in the art.

The promoters useful as gene expression sequences of the invention also include inducible promoters. Inducible promoters are expressed in the presence of an inducing agent. For example, the metallothionein (MT) promoter is induced to promote transcription and translation in the presence of certain metal ions. Other inducible promoters are known to those of ordinary skill in the art.

In general, the gene expression sequence shall include, as necessary, 5' non-transcribing and 5' non-translating sequences involved with the initiation of transcription and translation, respectively, such as a TATA box, capping sequence, CAAT sequence, and the like. Especially, such 5' non-transcribing sequences will include a promoter region which includes a promoter sequence for transcriptional control of the operably joined nucleic acid coding sequence for a TLR9 polypeptide. The gene expression sequences optionally include enhancer sequences or upstream activator sequences as desired.

- 30 -

Generally a nucleic acid coding sequence and a gene expression sequence are said to be "operably linked" when they are covalently linked in such a way as to place the transcription and/or translation of the nucleic acid coding sequence under the influence or control of the gene expression sequence. Thus the TLR9 nucleic acid coding sequence and the gene expression sequence are said to be "operably linked" when they are covalently linked in such a way as to place the transcription and/or translation of the TLR9 nucleic acid coding sequence under the influence or control of the gene expression sequence. If it is desired that the TLR9 sequence be translated into a functional protein, two DNA sequences are said to be operably linked if induction of a promoter in the 5' gene expression sequence results in the transcription of the TLR9 sequence and if the nature of the linkage between the two DNA sequences does not (1) result in the introduction of a frame-shift mutation, (2) interfere with the ability of the promoter region to direct the transcription of the TLR9 sequence, or (3) interfere with the ability of the corresponding RNA transcript to be translated into a protein. Thus, a gene expression sequence would be operably linked to a TLR9 nucleic acid sequence if the gene expression sequence were capable of effecting transcription of that TLR9 nucleic acid sequence such that the resulting transcript might be translated into the desired TLR9 protein or polypeptide.

A "TLR9 ligand" as used herein refers to a molecule that specifically binds a TLR9 polypeptide. In one embodiment the TLR9 ligand specifically binds a TLR9 polypeptide corresponding to at least a ligand-binding portion of the extracellular domain of TLR9. In most instances a TLR9 ligand will also induce TLR9 signaling when contacted with TLR9 under suitable conditions. TLR9 signaling refers to TLR/IL-1R signal transduction mediated through the TLR9, as described in further detail elsewhere herein. As mentioned above, CpG nucleic acids have been reported to be TLR9 ligands, but TLR9 ligands may include other entities as well, including, for example, small molecules. As also previously mentioned, there appears to be a species-specific preference for at least certain TLR9s and certain CpG motifs. As used herein, a species-preferred CpG DNA refers to a particular CpG DNA that is optimized for signal induction by a TLR9 of a particular species. A CpG DNA that is optimized for signal induction by a TLR9 of a particular species refers to a CpG DNA having a sequence that preferentially binds to and/or induces signaling by TLR9 of that species. For example, a human-preferred CpG DNA shall refer to a CpG DNA that optimally stimulates human TLR9 to signal through its TIR domain. Likewise, a murine-preferred CpG DNA

- 31 -

shall refer to a CpG DNA that optimally stimulates murine TLR9 to signal through its TIR domain. Examples of human-preferred and murine-preferred CpG DNA are ODN 2006 (SEQ ID NO:58) and 1668 (SEQ ID NO:60), respectively.

The binding and species specificity of TLR9s are believed to be influenced by key 5 amino acids present in the extracellular domain of TLR9. Key amino acids in a TLR9 as used herein refer to those amino acids which contribute significantly to ligand binding and ligand specificity of a particular TLR9 polypeptide.

A "CpG nucleic acid" or a "CpG immunostimulatory nucleic acid" as used herein is a nucleic acid containing at least one unmethylated CpG dinucleotide (cytosine-guanine 10 dinucleotide sequence, i.e., "CpG DNA" or DNA containing a 5' cytosine followed by 3' guanine and linked by a phosphate bond) which activates a component of the immune system. The entire CpG nucleic acid can be unmethylated or portions may be unmethylated but at least the C of the 5' CG 3' must be unmethylated.

In one embodiment a CpG nucleic acid is represented by at least the formula:

15 $5'-N_1X_1CGX_2N_2-3'$

wherein X_1 and X_2 are nucleotides, N is any nucleotide, and N_1 and N_2 are nucleic acid sequences composed of from about 0-25 N's each. In some embodiments X_1 is adenine, guanine, or thymine and/or X_2 is cytosine, adenine, or thymine. In other embodiments X_1 is cytosine and/or X_2 is guanine.

20 Nucleic acids having modified backbones, such as phosphorothioate backbones, also fall within the class of immunostimulatory nucleic acids. U.S. Pat. Nos. 5,723,335 and 5,663,153 issued to Hutcherson, et al. and related PCT publication WO95/26204 describe 25 immune stimulation using phosphorothioate oligonucleotide analogues. These patents describe the ability of the phosphorothioate backbone to stimulate an immune response in a non-sequence specific manner.

An immunostimulatory nucleic acid molecule, including for example a CpG DNA, 30 may be double-stranded or single-stranded. Generally, double-stranded molecules may be more stable *in vivo*, while single-stranded molecules may have increased activity. The terms "nucleic acid" and "oligonucleotide" refer to multiple nucleotides (i.e., molecules comprising a sugar (e.g., ribose or deoxyribose) linked to a phosphate group and to an exchangeable organic base, which is either a substituted pyrimidine (e.g., cytosine (C), thymine (T) or uracil (U)) or a substituted purine (e.g., adenine (A) or guanine (G)) or a modified base. As

- 32 -

used herein, the terms "nucleic acid" and "oligonucleotide" refer to oligoribonucleotides as well as oligodeoxyribonucleotides. The terms shall also include polynucleosides (i.e., a polynucleotide minus the phosphate) and any other organic base-containing polymer. The terms "nucleic acid" and "oligonucleotide" also encompass nucleic acids or oligonucleotides with a covalently modified base and/or sugar. For example, they include nucleic acids having backbone sugars which are covalently attached to low molecular weight organic groups other than a hydroxyl group at the 2' position and other than a phosphate group at the 5' position. Thus modified nucleic acids may include a 2'-O-alkylated ribose group. In addition, modified nucleic acids may include sugars such as arabinose instead of ribose. Thus the nucleic acids may be heterogeneous in backbone composition thereby containing any possible combination of polymer units linked together such as peptide-nucleic acids (which have amino acid backbone with nucleic acid bases). In some embodiments the nucleic acids are homogeneous in backbone composition.

The substituted purines and pyrimidines of the immunostimulatory nucleic acids include standard purines and pyrimidines such as cytosine as well as base analogs such as C-5 propyne substituted bases. Wagner RW et al. (1996) *Nat Biotechnol* 14:840-4. Purines and pyrimidines include but are not limited to adenine, cytosine, guanine, thymine, 5-methylcytosine, 2-aminopurine, 2-amino-6-chloropurine, 2,6-diaminopurine, hypoxanthine, and other naturally and non-naturally occurring nucleobases, substituted and unsubstituted aromatic moieties.

The immunostimulatory nucleic acid is a linked polymer of bases or nucleotides. As used herein with respect to linked units of a nucleic acid, "linked" or "linkage" means two entities are bound to one another by any physicochemical means. Any linkage known to those of ordinary skill in the art, covalent or non-covalent, is embraced. Such linkages are well known to those of ordinary skill in the art. Natural linkages, which are those ordinarily found in nature connecting the individual units of a nucleic acid, are most common. The individual units of a nucleic acid may be linked, however, by synthetic or modified linkages.

Whenever a nucleic acid is represented by a sequence of letters it will be understood that the nucleotides are in 5' to 3' (or equivalent) order from left to right and that "A" denotes adenine, "C" denotes cytosine, "G" denotes guanine, "T" denotes thymidine, and "U" denotes uracil unless otherwise noted.

- 33 -

Immunostimulatory nucleic acid molecules useful according to the invention can be obtained from natural nucleic acid sources (e.g., genomic nuclear or mitochondrial DNA or cDNA), or are synthetic (e.g., produced by oligonucleotide synthesis). Nucleic acids isolated from existing nucleic acid sources are referred to herein as native, natural, or isolated nucleic acids. The nucleic acids useful according to the invention may be isolated from any source, including eukaryotic sources, prokaryotic sources, nuclear DNA, mitochondrial DNA, etc. Thus, the term nucleic acid encompasses both synthetic and isolated nucleic acids.

The immunostimulatory nucleic acids can be produced on a large scale in plasmids, (see *Molecular Cloning: A Laboratory Manual*, J. Sambrook, et al., eds., Second Edition, 10 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989) and separated into smaller pieces or administered whole. After being administered to a subject the plasmid can be degraded into oligonucleotides. One skilled in the art can purify viral, bacterial, eukaryotic, etc. nucleic acids using standard techniques, such as those employing restriction enzymes, exonucleases or endonucleases.

15 For use in the instant invention, the immunostimulatory nucleic acids can be synthesized *de novo* using any of a number of procedures well known in the art. For example, the β -cyanoethyl phosphoramidite method (Beaucage SL and Caruthers MH, *Tetrahedron Lett* 22:1859 (1981)); nucleoside H-phosphonate method (Garegg et al., *Tetrahedron Lett* 27:4051-4054 (1986); Froehler et al., *Nucl Acid Res* 14:5399-5407 (1986); 20 Garegg et al., *Tetrahedron Lett* 27:4055-4058 (1986); Gaffney et al., *Tetrahedron Lett* 29:2619-2622 (1988)). These chemistries can be performed by a variety of automated oligonucleotide synthesizers available in the market.

25 The immunostimulatory nucleic acid may be any size of at least 6 nucleotides but in some embodiments are in the range of between 6 and 100 or in some embodiments between 8 and 35 nucleotides in size. Immunostimulatory nucleic acids can be produced on a large scale in plasmids. These may be administered in plasmid form or alternatively they can be degraded into oligonucleotides before administration.

A "stabilized immunostimulatory nucleic acid" shall mean a nucleic acid molecule that is relatively resistant to *in vivo* degradation (e.g., via an exo- or endo-nuclease). 30 Stabilization can be a function of length or secondary structure. Nucleic acids that are tens to hundreds of kbs long are relatively resistant to *in vivo* degradation. For shorter nucleic acids, secondary structure can stabilize and increase their effect. For example, if the 3' end of an

- 34 -

oligonucleotide has self-complementarity to an upstream region, so that it can fold back and form a sort of stem loop structure, then the oligonucleotide becomes stabilized and therefore exhibits more activity.

Some stabilized immunostimulatory nucleic acids have a modified backbone. It has
5 been demonstrated that modification of the oligonucleotide backbone provides enhanced activity of the immunostimulatory nucleic acids when administered *in vivo*. Nucleic acids, including at least two phosphorothioate linkages at the 5' end of the oligonucleotide and multiple phosphorothioate linkages at the 3' end, preferably 5, may provide maximal activity and protect the oligonucleotide from degradation by intracellular exo- and endo-nucleases.
10 Other modified oligonucleotides include phosphodiester modified oligonucleotide, combinations of phosphodiester and phosphorothioate oligonucleotide, methylphosphonate, methylphosphorothioate, phosphorodithioate, and combinations thereof. Each of these combinations and their particular effects on immune cells is discussed in more detail in U.S. Pat. Nos. 6,194,388 and 6,207,646, the entire contents of which are incorporated herein by
15 reference. It is believed that these modified oligonucleotides may show more stimulatory activity due to enhanced nuclease resistance, increased cellular uptake, increased protein binding, and/or altered intracellular localization. Both phosphorothioate and phosphodiester nucleic acids are active in immune cells.

Other stabilized immunostimulatory nucleic acids include: nonionic DNA analogs,
20 such as alkyl- and aryl-phosphates (in which the charged phosphonate oxygen is replaced by an alkyl or aryl group), phosphodiester and alkylphosphotriesters, in which the charged oxygen moiety is alkylated. Oligonucleotides which contain diol, such as tetraethyleneglycol or hexaethyleneglycol, at either or both termini have also been shown to be substantially resistant to nuclease degradation.

25 Phosphorothioate nucleic acid molecules may be synthesized using automated techniques employing either phosphoramidate or H-phosphonate chemistries. Aryl- and alkyl-phosphonates can be made, e.g., as described in U.S. Pat. No. 4,469,863; and alkylphosphotriesters (in which the charged oxygen moiety is alkylated as described in U.S. Pat. No. 5,023,243 and European Patent No. 092,574) can be prepared by automated solid
30 phase synthesis using commercially available reagents. Methods for making other DNA backbone modifications and substitutions have been described. Uhlmann E and Peyman A (1990) *Chem Rev* 90:544; Goodchild J (1990) *Bioconjugate Chem* 1:165.

- 35 -

Other sources of immunostimulatory nucleic acids useful according to the invention include standard viral and bacterial vectors, many of which are commercially available. In its broadest sense, a "vector" is any nucleic acid material which is ordinarily used to deliver and facilitate the transfer of nucleic acids to cells. The vector as used herein may be an empty
5 vector or a vector carrying a gene which can be expressed. In the case when the vector is carrying a gene the vector generally transports the gene to the target cells with reduced degradation relative to the extent of degradation that would result in the absence of the vector. In this case the vector optionally includes gene expression sequences to enhance expression of the gene in target cells such as immune cells, but it is not required that the gene
10 be expressed in the cell.

Nucleic acid-binding fragments of TLRs are believed to include the extracytoplasmic (extracellular) domain or subportions thereof, such as those which include at least an MBD motif, a CXXC motif, or both an MBD motif and a CXXC motif.

Both mouse and human TLR9 have an N-terminal extension of approximately 180
15 amino acids compared to other TLRs. An insertion also occurs at amino acids 253-268, which is not found in TLRs 1-6 but is present in human TLR7 and human TLR8. This insert has two CXXC motifs which participate in forming a CXXC domain. The CXXC domain resembles a zinc finger motif and is found in DNA-binding proteins and in certain specific CpG binding proteins, e.g., methyl-CpG binding protein-1 (MBD-1). Fujita N et al. (2000)
20 *Mol Cell Biol* 20:5107-18. Both human and mouse TLR9 CXXC domains occur at aa 253-268:

CXXC motif:	GNCXXCXXXXXXCXXC	SEQ ID NO:62
Human TLR9:	GNCRRCDHAPNPCMEC	SEQ ID NO:63
25 Murine TLR9:	GNCRRCDHAPNPCMIC	SEQ ID NO:64

An additional motif believed to be involved in CpG binding is the MBD motif, also found in MBD-1, listed below as SEQ ID NO:53. Fujita, N et al.(2000) *Mol Cell Biol* 20:5107-18; Ohki I et al. (1999) *EMBO J* 18:6653-61. Amino acids 524-554 of hTLR9 and
30 aa 525-555 of mTLR9 correspond to the MBD motif of MBD-1 as shown:

MBD motif:

- 36 -

MBD-1	R-XXXXXXX-R-X-D-X-Y-XXXXXXXXXX-R-S-XXXXXX-Y	SEQ ID NO:65
hTLR9	Q-XXXXXXX-K-X-D-X-Y-XXXXXXXXXX-R-L-XXXXXX-Y	SEQ ID NO:66
mTLR9	Q-XXXXXXX-K-X-D-X-Y-XXXXXXXXXX-Q-L-XXXXXX-Y	SEQ ID NO:67
5	hTLR9 Q-VLDLSRN-K-L-D-L-Y-HEHSFTELP-R-L-EALDLS-Y	SEQ ID NO:68
	mTLR9 Q-VLDLSHN-K-L-D-L-Y-HWKSFSELP-Q-L-QALDLS-Y	SEQ ID NO:69

Although the signaling functions of MBD-1 and TLR9 are quite different, the core D-X-Y is conserved and is believed to be involved in CpG binding.

10 According to another aspect of the invention, a screening method is provided for identifying an immunostimulatory compound. The method according to this aspect of the invention involves contacting a functional TLR9 with a test compound; detecting presence or absence of a response mediated by a TLR9 signal transduction pathway in the presence of the test compound arising as a result of an interaction between the functional TLR9 and the test compound; and determining the test compound is an immunostimulatory compound when the presence of a response mediated by the TLR9 signal transduction pathway is detected.

15 An immunostimulatory compound is a natural or synthetic compound that is capable of inducing an immune response when contacted with an immune cell. A TLR9 ligand that is an immunostimulatory compound is a natural or synthetic compound that is capable of inducing an immune response when contacted with an immune cell that expresses TLR9. A 20 TLR9 ligand that is an immunostimulatory compound is also a natural or synthetic compound that is capable of inducing a TLR/IL-1R signal transduction pathway when contacted with a TLR9. Immunostimulatory compounds include but are not limited to immunostimulatory nucleic acids. The immunostimulatory compound can be, for example, a nucleic acid 25 molecule, polynucleotide or oligonucleotide, a polypeptide or oligopeptide, a lipid or lipopolysaccharide, a small molecule.

30 A basis for certain of the screening assays is the presence of a functional TLR9 in a cell. The functional TLR9 in some instances is naturally expressed by a cell. In other instances, expression of the functional TLR9 can involve introduction or reconstitution of a species-specific TLR9 into a cell or cell line that otherwise lacks the TLR9 or lacks responsiveness to immunostimulatory nucleic acid, resulting in a cell or cell line capable of activating the TLR/IL-1R signaling pathway in response to contact with an

- 37 -

immunostimulatory nucleic acid. In yet other instances, expression of the functional TLR9 can involve introduction of a chimeric or modified TLR9 into a cell or cell line that otherwise lacks the TLR9 or lacks responsiveness to immunostimulatory nucleic acid, resulting in a cell or cell line capable of activating the TLR/IL-1R signaling pathway in response to contact
5 with an immunostimulatory nucleic acid. Examples of cell lines lacking TLR9 or immunostimulatory nucleic acid responsiveness include, but are not limited to, 293 fibroblasts (ATCC CRL-1573), MonoMac-6, THP-1, U937, CHO, and any TLR9 knock-out. The introduction of the species-specific, chimeric or modified TLR9 into the cell or cell line is preferably accomplished by transient or stable transfection of the cell or cell line with a
10 TLR9-encoding nucleic acid sequence operatively linked to a gene expression sequence (as described above). Methods for transient and for stable transfection of a cell are well known in the art.

The screening assays can have any of a number of possible readout systems based upon either TLR/IL-1R signaling pathway or other assays useful for assessing response to
15 immunostimulatory nucleic acids. It has been reported that immune cell activation by CpG immunostimulatory sequences is dependent in some way on endosomal processing.

In certain embodiments, the readout for the screening assay is based on the use of native genes or, alternatively, cotransfected or otherwise co-introduced reporter gene constructs which are responsive to the TLR/IL-1R signal transduction pathway involving
20 MyD88, TRAF, p38, and/or ERK. Häcker H et al. (1999) *EMBO J* 18:6973-6982. These pathways activate kinases including κB kinase complex and c-Jun N-terminal kinases. Thus reporter genes and reporter gene constructs particularly useful for the assays can include a reporter gene operatively linked to a promoter sensitive to NF-κB. Examples of such promoters include, without limitation, those for NF-κB, IL-1 β , IL-6, IL-8, IL-12 p40, CD80,
25 CD86, and TNF- α . The reporter gene operatively linked to the TLR-sensitive promoter can include, without limitation, an enzyme (e.g., luciferase, alkaline phosphatase, β -galactosidase, chloramphenicol acetyltransferase (CAT), etc.), a bioluminescence marker (e.g., green-fluorescent protein (GFP, U.S. Pat. No. 5,491,084), blue fluorescent protein, etc.), a surface-expressed molecule (e.g., CD25), and a secreted molecule (e.g., IL-8, IL-12 p40, TNF- α). In
30 certain embodiments the reporter is selected from IL-8, TNF- α , NF-κB-luciferase (NF-κB-luc; Häcker H et al. (1999) *EMBO J* 18:6973-6982), IL-12 p40-luc (Murphy TL et al. (1995)

- 38 -

Mol Cell Biol 15:5258-5267), and TNF-luc (Häcker H et al. (1999) *EMBO J* 18:6973-6982).

At least one of these reporter constructs (NF- κ B-luc) is commercially available (Stratagene, La Jolla, CA). In assays relying on enzyme activity readout, substrate can be supplied as part of the assay, and detection can involve measurement of chemiluminescence, fluorescence,

5 color development, incorporation of radioactive label, drug resistance, or other marker of enzyme activity. For assays relying on surface expression of a molecule, detection can be accomplished using FACS analysis or functional assays. Secreted molecules can be assayed using enzyme-linked immunosorbent assay (ELISA) or bioassays. Many such readout systems are well known in the art and are commercially available.

10 According to one embodiment of this method, comparison can be made to a reference immunostimulatory nucleic acid. The reference immunostimulatory nucleic acid may be any suitably selected immunostimulatory nucleic acid, including a CpG nucleic acid. In certain embodiments the screening method is performed using a plurality of test nucleic acids. In certain embodiments comparison of test and reference responses is based on comparison of 15 quantitative measurements of responses in each instance.

In another aspect the invention provides a screening method for identifying species specificity of an immunostimulatory nucleic acid. The method involves contacting a TLR9 of a first species with a test immunostimulatory nucleic acid; contacting a TLR9 of a second species with the test immunostimulatory nucleic acid; measuring a response mediated by a 20 TLR signal transduction pathway associated with the contacting the TLR9 of the first species with the test immunostimulatory nucleic acid; measuring a response mediated by the TLR signal transduction pathway associated with the contacting the TLR9 of the second species with the test immunostimulatory nucleic acid; and comparing the two responses. The TLR9 may be expressed by a cell or it may be part of a cell-free system. The TLR9 may be part of 25 a complex, with either another TLR or with another protein, e.g., MyD88, IRAK, TRAF, I κ B, NF- κ B, or functional homologues and derivatives thereof. Thus for example a given ODN can be tested against a panel of human fibroblast 293 fibroblast cells transfected with TLR9 from various species and optionally cotransfected with a reporter construct sensitive to TLR/IL-1R activation pathways. Thus in another aspect, the invention provides a method for 30 screening species selectivity with respect to a given nucleic acid sequence.

Test compounds can include but are not limited to peptide nucleic acids (PNAs), antibodies, polypeptides, carbohydrates, lipids, hormones, and small molecules. Test

- 39 -

compounds can further include variants of a reference immunostimulatory nucleic acid incorporating any one or combination of the substitutions described above. Test compounds can be generated as members of a combinatorial library of compounds.

In preferred embodiments, the screening methods can be performed on a large scale
5 and with high throughput by incorporating, e.g., an array-based assay system and at least one automated or semi-automated step. For example, the assays can be set up using multiple-well plates in which cells are dispensed in individual wells and reagents are added in a systematic manner using a multiwell delivery device suited to the geometry of the multiwell plate.
Manual and robotic multiwell delivery devices suitable for use in a high throughput screening
10 assay are well known by those skilled in the art. Each well or array element can be mapped in a one-to-one manner to a particular test condition, such as the test compound. Readouts can also be performed in this multiwell array, preferably using a multiwell plate reader device or the like. Examples of such devices are well known in the art and are available through commercial sources. Sample and reagent handling can be automated to further enhance the
15 throughput capacity of the screening assay, such that dozens, hundreds, thousands, or even millions of parallel assays can be performed in a day or in a week. Fully robotic systems are known in the art for applications such as generation and analysis of combinatorial libraries of synthetic compounds. See, for example, U.S. Pat. Nos. 5,443,791 and 5,708,158.

20 The following examples are provided for illustrative purposes and are not meant to be limiting in any way.

Examples

25 Example 1. Cloning and Sequencing of Rat, Porcine, Bovine, Equine, Ovine, Canine, and Feline TLR9

Cells and Tissues. Lymphoid tissues, primarily spleen or blood mononuclear cells (PBMC) from five mammalian species were collected: mouse, pig, bovine, rat and horse. Spleen samples were collected in *RNAlater™* (Ambion®, Austin, TX, USA), stabilized at
30 4°C overnight and stored at -70°C. Blood samples were centrifuged at 500 x g for 25 min at room temperature and the buffy coat, containing enriched PBMC, was then removed and stored at -70°C. The mouse specimen was used as a comparative positive control.

- 40 -

First-strand cDNA synthesis. Total RNA from the spleen and PBMC samples was isolated using a monophasic solution of phenol and guanidine isothiocyanate: TRIzolTM reagent (GIBCO BRL[®], Burlington, ON, Canada) according to the manufacturer's instructions. First-strand cDNA was synthesized from the total RNA using 5 SUPERSCRIPTTM II reverse transcriptase (GIBCO BRL[®], Burlington, ON, Canada). Approximately 3 µg of total RNA was added to 50 pmoles of oligo(dT) primer [poly T₍₁₈₎]; the mixture was heated to 70°C for 10 min and subsequently chilled on ice. The following was added to the cooled reaction mixture: 1 µl of mixed dNTP stock containing 10 mM each dATP, dCTP, dGTP and dTTP (Amersham Pharmacia Biotech Inc., Baie de Urfe, Quebec) at 10 neutral pH, 1X first strand buffer (50 mM Tris-HCl pH 8.3/ 75 mM KCl/ 3 mM MgCl₂) and 2 µl of 0.1 M DTT. The mixture was subsequently heated to 42°C for 2 min, followed by addition of 200 units of SUPERSCRIPTTM II reverse transcriptase. The reaction was carried out at 42°C for 50 min, followed by 70°C for 15 min. The first-strand cDNA was used as the template for subsequent polymerase chain reaction (PCR) amplifications.

15 *PCR amplification.* TLR9 gene was PCR amplified from each of the above-mentioned species using primers designed from known mouse and human TLR9 sequence in Genbank: Accession AF314224 and AF259262, respectively. The primers were designed using the primer design software, Clone Manager 5 (Scientific and Educational Software, Durham, NC, USA). TLR9 gene-specific primers used were:

20 forward primer 5'-ACCTTGCCTGCCTTCCTACCCCTGTGA-3' (SEQ ID NO:37) and reverse primer 5'-GTCCCGTGTGGGCCAGCACAAA-3' (SEQ ID NO:38).

The 2.7 Kbp fragment was PCR amplified using Advantage[®] 2 DNA polymerase mix (BD Biosciences Clontech, Palo Alto, CA, USA) according to the manufacturer's instructions. PCR reaction volumes of 25 µl contained 15 pmoles of each primer, 0.2 mM of dNTP mix 25 and 1 µl of reverse transcription reaction. PCR amplification was conducted by initial denaturation at 94°C for 1 min followed by 30 cycles of 94°C denaturation (15 sec), 65°C annealing (45 sec) and 72°C extensions (2 min), with a final extension at 72°C for 5 min.

30 *Cloning and sequencing.* The PCR amplified fragment was treated with 500 units of T4 DNA polymerase (Amersham Pharmacia Biotech Inc., Baie de Urfe, Quebec) for 15 min at room temperature prior to cleaning the reaction with QIAquick PCR purification kit (QIAGEN Inc., Mississauga, ON, Canada). The fragment was then ligated to pZErOTM - 2

- 41 -

vector (Invitrogen™ Life Technologies, Burlington, ON, Canada), treated with *Eco RV* restriction enzyme, using T4 DNA Ligase (GIBCO BRL®, Burlington, ON, Canada). *E. coli* TOP 10 chemically competent cells (Invitrogen™ Life Technologies, Burlington, ON, Canada) were used to transform ligated products. Plasmids containing the 2.7 Kbp fragment 5 were sequenced using an automated DNA sequencer, CEQ™ 2000XL DNA analysis system (Beckman Coulter Inc., Fullerton, CA, USA).

Sequences of the 2.7 Kbp fragment were derived from three clones of each species selected from independent PCR reactions to account for errors that may have been incurred during the PCR amplifications and to confirm the sequence data.

10 Nucleotide sequences of the rat, porcine, bovine, equine, ovine, canine, and feline TLR9 were extended and completed using standard 5' and 3' RACE PCR and primers designed using the sequences obtained from the 2.7 Kbp fragments.

15 *Results.* Nucleotide sequences of rat, porcine, bovine, equine, canine, and feline TLR9 cDNA obtained by the methods above are provided as SEQ ID NOs 3, 7, 11, 15, 19, 23, and 27, respectively. Dduced amino acid sequences are provided as SEQ ID NOs 1, 5, 9, 13, 17, 21, and 25, respectively. Dduced amino acid sequences of full-length murine and human TLR9 are provided as SEQ ID NOs 29 and 33, respectively.

Example 2. Comparison of Aligned Sequences for TLR9 from Various Mammalian Species.

20 Multiple sequence alignment of deduced amino acid sequences for feline, canine, bovine, mouse, ovine, porcine, horse, human, and rat TLR9 polypeptides was performed using Clustal W 1.82 (see, for example, www.cmbi.kun.nl/bioinf/tools/clustalw.shtml). In addition, paired sequence alignment of deduced amino acid sequences for murine and human TLR9 polypeptides was performed using Clustal W 1.82. The results of the multiple 25 sequence alignment are presented in Figure 1. As will be appreciated from Figure 1, certain amino acids are highly conserved across all species examined. Similarly, certain amino acids differ only by conservative amino acid substitutions among the various species. In addition, it is evident that certain amino acids which are conserved between murine and human TLR9 are not conserved in other species. Furthermore, Figure 1 also indicates that certain amino 30 acids are highly divergent across various species. The information provided by the comparison of multiple species adds significantly to the information available by comparison between only murine and human TLR9 sequences.

- 42 -

The putative transmembrane regions of the TLR9 polypeptides are indicated in boxes in Figure 1. Sequence upstream of each transmembrane region is extracellular domain and is believed to include sequence primarily responsible for binding to TLR9 ligands, including CpG DNA. The extracellular domains of feline, canine, bovine, mouse, ovine, porcine, 5 horse, human, and rat TLR9 correspond to amino acids numbered 1-820, 1-822, 1-818, 1-821, 1-818, 1-819, 1-820, 1-820, and 1-821, respectively, as shown in Figure 1.

Figure 2 presents an evolutionary relatedness tree for six TLR9 polypeptides examined. The cladogram in Figure 2 was prepared using Clustal W (see above). As can be appreciated from this figure, murine and human TLR9 are nearly the most divergent TLR9s 10 in this group. Surprisingly, human and horse TLR9 appear relatively closely related.

Example 3. Reconstitution of TLR9 Signaling in 293 Fibroblasts.

Mouse TLR9 cDNA (SEQ ID NO:31) and human TLR9 cDNA (SEQ ID NO:35) in pT-Adv vector (from Clonetech) were individually cloned into the expression vector 15 pcDNA3.1(-) from Invitrogen using the EcoRI site. Utilizing a "gain of function" assay it was possible to reconstitute human TLR9 (hTLR9) and murine TLR9 (mTLR9) signaling in CpG-DNA non-responsive human 293 fibroblasts (ATCC, CRL-1573). The expression vectors mentioned above were transfected into 293 fibroblast cells using the calcium phosphate method.

Since NF- κ B activation is central to the IL-1/TLR signal transduction pathway 20 (Medzhhitov R et al. (1998) *Mol Cell* 2:253-258; Muzio M et al. (1998) *J Exp Med* 187:2097-101), cells were transfected with hTLR9 or co-transfected with hTLR9 and an NF- κ B-driven luciferase reporter construct. Human fibroblast 293 cells were transiently transfected with hTLR9 and a six-times NF- κ B-luciferase reporter plasmid (NF- κ B-luc) or with hTLR9 alone. 25 After stimulus with CpG-ODN (2006, 2 μ M, TCGTCGTTTGTCGTTTGTCGTT, SEQ ID NO:58), GpC-ODN (2006-GC, 2 μ M, TGCTGCTTTGTGCTTTGTGCTT, SEQ ID NO:59), LPS (100 ng/ml) or media, NF- κ B activation by luciferase readout (8h) or IL-8 production by ELISA (48h) were monitored. Results representative of three independent experiments showed that cells expressing hTLR9 responded to CpG-DNA but not to LPS.

Independently, human fibroblast 293 cells were transiently transfected with mTLR9 30 and the NF- κ B-luc construct or with mTLR9 alone. After stimulation with CpG-ODN (1668, 2 μ M; TCCATGACGTTCTGATGCT, SEQ ID NO:60), GpC-ODN (1668-GC, 2 μ M;

- 43 -

TCCATGAGCTTCCTGATGCT, SEQ ID NO:61), LPS (100 ng/ml) or media, NF- κ B activation by luciferase readout (8h) or IL-8 production by ELISA (48h) were monitored. Results showed that expression of TLR9 (human or mouse) in 293 cells results in a gain of function for CpG-DNA stimulation.

5 To generate stable clones expressing human TLR9, murine TLR9, or either TLR9 with the NF- κ B-luc reporter plasmid, 293 cells were transfected in 10 cm plates (2×10^6 cells/plate) with 16 μ g of DNA and selected with 0.7 mg/ml G418 (PAA Laboratories GmbH, Cölbe, Germany). Clones were tested for TLR9 expression by RT-PCR. The clones were also screened for IL-8 production or NF- κ B-luciferase activity after stimulation with
10 ODN. Four different types of clones were generated.

293-hTLR9-luc: expressing human TLR9 and 6-fold NF- κ B-luciferase reporter
293-mTLR9-luc: expressing murine TLR9 and 6-fold NF- κ B-luciferase reporter
293-hTLR9: expressing human TLR9
15 293-mTLR9: expressing murine TLR9

Results indicated that stable clones also responded to CpG-ODN.

Example 4. Similar ODN Sequence Specificity of TLR9 of Human and Equine TLR9.

20 3×10^6 293T cells were electroporated with 5 μ g NF- κ B-luc plasmid and 5 μ g of either horse TLR9-pcDNA3.1 plasmid or human TLR9-pcDNA3.1 plasmid at 200V, 975 μ F. After the electroporation the cells were plated in 96-well cell culture plates at 2.5×10^4 cells per well and grown overnight at 37°C. The cells were stimulated with the indicated concentration of ODN for 16h, after which the supernatant was removed and the cells lysed in lysis buffer and
25 frozen for at least 2 hours at -80°C. Luciferase activity was measured by adding Luciferase Assay substrate from Promega. Values are given as fold specific induction over non-stimulated control. Results are shown in Figure 3.

As shown in Figure 3, ODN 2006 (TCGTCGTTTGTCTGGTT; SEQ ID NO:58) has a strong specificity for human TLR9. ODN 1982 (TCCAGGACTTCTCAGGTT; SEQ ID NO:70) was the negative control ODN. ODN 5890 (TCCATGACGTTTGATGTT; SEQ ID NO:39) has a strong specificity for mouse

- 44 -

TLR9. This experiment demonstrates the similarity of horse TLR9 to human TLR9 in binding specificity, a result predicted by the evolutionary relatedness of horse TLR9 to human TLR9. Mouse TLR9 is more distant from horse TLR9 and human TLR9 in sequence homology, and ODN 5890 was not detected by either human or horse TLR9.

5

Example 5. Non-human, Non-murine Native Mammalian TLR9 Useful in Screening for Human-Preferred CpG DNA.

Native rat, porcine, bovine, equine, and ovine TLR9 polypeptides are screened for binding or TLR9 signaling activity when contacted with human-preferred CpG DNA (ODN 10 2006). Rat, porcine, bovine, equine, or ovine TLR9 polypeptides which exhibit significant TLR9 binding or TLR9 signaling activity in this assay are then used as the basis for screening for additional human-preferred CpG DNA. An expression vector containing a nucleic acid sequence encoding a selected native rat, porcine, bovine, equine, or ovine TLR9 polypeptide, and optionally a reporter construct, is introduced into cells which do not express TLR9. The 15 cells expressing the selected native rat, porcine, bovine, equine, or ovine TLR9 polypeptide are contacted with candidate human-preferred CpG DNA. Candidate human-preferred CpG DNA exhibiting significant TLR9 binding or TLR9 signaling activity are selected as human-preferred CpG DNA.

20 Example 6. Chimeric TLR9 Useful in Screening for Human-Preferred CpG DNA.

Chimeric TLR9 polypeptides are screened for binding or TLR9 signaling activity when contacted with human-preferred CpG DNA (ODN 2006). Chimeric TLR9 polypeptides which exhibit significant TLR9 binding or TLR9 signaling activity in this assay are then used as the basis for screening for additional human-preferred CpG DNA. An expression vector 25 containing a nucleic acid sequence encoding a selected chimeric TLR9 polypeptide, and optionally a reporter construct, is introduced into cells which do not express TLR9. The cells expressing the selected chimeric TLR9 polypeptide are contacted with candidate human-preferred CpG DNA. Candidate human-preferred CpG DNA exhibiting significant TLR9 binding or TLR9 signaling activity are selected as human-preferred CpG DNA.

30

Example 7. Chimeric TLR9 Responsive to Both Human-Preferred and Murine-Preferred CpG DNA.

- 45 -

Chimeric TLR9 polypeptides are screened for binding or TLR9 signaling activity when contacted with human-preferred CpG DNA (ODN 2006) and also screened for binding or TLR9 signaling activity when contacted with murine-preferred CpG DNA (ODN 1668). Chimeric TLR9 polypeptides which exhibit significant TLR9 binding or TLR9 signaling
5 activity in each of these assays are then used as the basis for screening for additional human-preferred CpG DNA and for screening for additional murine-preferred CpG DNA. An expression vector containing a nucleic acid sequence encoding a selected chimeric TLR9 polypeptide, and optionally a reporter construct, is introduced into cells which do not express TLR9. The cells expressing the selected chimeric TLR9 polypeptide are contacted with
10 candidate human-preferred CpG DNA or candidate murine-preferred CpG DNA. Candidate human-preferred CpG DNA exhibiting significant TLR9 binding or TLR9 signaling activity are selected as human-preferred CpG DNA. Candidate murine-preferred CpG DNA exhibiting significant TLR9 binding or TLR9 signaling activity are selected as murine-preferred CpG DNA.

15

Equivalents

The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by examples provided, since the examples are intended as a single illustration of one aspect of
20 the invention and other functionally equivalent embodiments are within the scope of the invention. Various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims. The advantages of the invention are not necessarily encompassed by each embodiment of the invention.

25

All references, patents and patent publications that are recited in this application are incorporated in their entirety herein by reference.

We claim:

- 46 -

Claims

1. An isolated polypeptide comprising an amino acid sequence selected from the group SEQ ID NO:1, SEQ ID NO:5, SEQ ID NO:9, SEQ ID NO:13, and SEQ ID NO:17.
5
2. An isolated polypeptide comprising an amino acid sequence selected from the group SEQ ID NO:2, SEQ ID NO:6, SEQ ID NO:10, SEQ ID NO:14, and SEQ ID NO:18.
3. An isolated nucleic acid molecule comprising a nucleic acid sequence encoding a
10 polypeptide comprising an amino acid sequence selected from the group SEQ ID NO:1, SEQ ID NO:5, SEQ ID NO:9, SEQ ID NO:13, and SEQ ID NO:17.
4. An isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group SEQ ID NO:2, SEQ
15 ID NO:6, SEQ ID NO:10, SEQ ID NO:14, and SEQ ID NO:18.
5. A vector comprising the nucleic acid of any of claims 3-4.
6. A cell comprising the vector of claim 5.
20
7. An antibody or fragment thereof that binds specifically to the polypeptide of any of claims 1-2.
8. A method for identifying key amino acids in a TLR9 of a first species which
25 confer specificity for CpG DNA optimized for TLR9 of the first species, comprising:
aligning protein sequences of TLR9 of a first species, TLR9 of a second species, and
TLR9 of a third species, wherein the TLR9 of the third species preferentially generates a
signal when contacted with a CpG DNA optimized for TLR9 of the first species rather than
when contacted with a CpG DNA optimized for TLR9 of the second species;
30 generating an initial set of candidate amino acids in the TLR9 of the first species by
excluding each amino acid in the TLR9 of the first species which (a) is identical with the

- 47 -

TLR9 of the second species or (b) differs from the TLR9 of the second species only by conservative amino acid substitution;

generating a refined set of candidate amino acids by selecting each amino acid in the initial set of candidate amino acids in the TLR9 of the first species which (a) is identical with the TLR9 of the third species or (b) differs from the TLR9 of the third species only by conservative amino acid substitution; and

identifying as key amino acids in the TLR9 of the first species each amino acid in the refined set of candidate amino acids.

10 9. A method for identifying key amino acids in human TLR9 which confer specificity for CpG DNA optimized for human TLR9, comprising:

aligning protein sequences of human TLR9, murine TLR9, and TLR9 of a third species, wherein the TLR9 of the third species preferentially generates a signal when contacted with a CpG DNA optimized for human TLR9 rather than when contacted with a 15 CpG DNA optimized for murine TLR9;

generating an initial set of candidate amino acids in human TLR9 by excluding each amino acid in human TLR9 which (a) is identical with murine TLR9 or (b) differs from murine TLR9 only by conservative amino acid substitution;

generating a refined set of candidate amino acids by selecting each amino acid in the 20 initial set of candidate amino acids in human TLR9 which (a) is identical with the TLR9 of the third species or (b) differs from the TLR9 of the third species only by conservative amino acid substitution; and

identifying as key amino acids in human TLR9 each amino acid in the refined set of candidate amino acids.

25

10. The method according to claim 9, performed iteratively with a plurality of TLR9s derived from different species other than human and mouse, wherein for each TLR9 the refined set of candidate amino acids is assigned a weight, said weight corresponding to a ratio equal to (responsiveness to human-preferred CpG DNA)/(responsiveness to murine-preferred 30 CpG DNA).

- 48 -

11. An isolated polypeptide comprising an amino acid sequence identical to SEQ ID NO:30 except for substitution of at least one key amino acid identified according to the method of any of claims 9 or 10.
- 5 12. An isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide according to claim 11.
13. A vector comprising the nucleic acid of claim 12.
- 10 14. A cell comprising the vector of claim 13.
- 15 15. An antibody that binds specifically to the polypeptide of claim 14.
16. A screening method to identify a TLR9 ligand, comprising:
15 contacting a polypeptide according to any of claims 1, 2, or 11 with a candidate TLR9 ligand;
measuring a signal in response to the contacting; and
identifying the candidate TLR9 ligand as a TLR9 ligand when the signal in response to the contacting is consistent with TLR9 signaling.
- 20 17. The method of claim 16, wherein the signal comprises expression of a reporter gene responsive to TLR/IL-1R signal transduction pathway.
- 25 18. The method of claim 17, wherein the reporter gene is operatively linked to a promoter sensitive to NF- κ B.
19. The method of claim 17, wherein the candidate TLR9 ligand is an immunostimulatory nucleic acid.
- 30 20. The method of claim 19, wherein the immunostimulatory nucleic acid is CpG DNA.

- 49 -

21. A screening method to identify species-specific CpG-motif preference of an isolated polypeptide of claim 2 or claim 11, comprising:
- contacting an isolated polypeptide of claim 2 or claim 11 with a CpG DNA comprising a hexamer sequence selected from the group consisting of GACGTT, AACGTT,
5 CACGTT, TACGTT, GGC GTT, GCC GTT, GTC GTT, GAT GTT, GAAG TT, GAG GTT, GAC ATT, GAC CTT, GACT TT, GAC GCT, GAC GAT, GAC GGT, GAC GTC, GAC GTA, and GAC GTG;
- measuring a signal in response to the contacting; and
- identifying a species-specific CpG-motif preference when the signal in response to the
10 contacting is consistent with TLR9 signaling.

22. The method of claim 21, wherein the signal comprises expression of a reporter gene responsive to TLR/IL-1R signal transduction pathway.

15 23. The method of claim 17, wherein the reporter gene is operatively linked to a promoter sensitive to NF- κ B.

24. The method of claim 21, wherein the CpG DNA is an oligodeoxynucleotide having a sequence selected from the group consisting of

20 TCCATGACGTTTGATGTT (SEQ ID NO:39),
TCCATAACGTTTGATGTT (SEQ ID NO:40),
TCCATCACGTTTGATGTT (SEQ ID NO:41),
TCCATTACGTTTGATGTT (SEQ ID NO:42),
TCCATGGCGTTTGATGTT (SEQ ID NO:43),
25 TCCATGCCGTTTGATGTT (SEQ ID NO:44),
TCCATGTCGTTTGATGTT (SEQ ID NO:45),
TCCATGATGTTTGATGTT (SEQ ID NO:46),
TCCATGAAGTTTGATGTT (SEQ ID NO:47),
TCCATGAGGTTTGATGTT (SEQ ID NO:48),
30 TCCATGACATTTGATGTT (SEQ ID NO:49),
TCCATGACCTTTGATGTT (SEQ ID NO:50),
TCCATGACTTTTGATGTT (SEQ ID NO:51),
TCCATGACGCTTGATGTT (SEQ ID NO:52),
TCCATGACGATTTGATGTT (SEQ ID NO:53),
35 TCCATGACGGTTTGATGTT (SEQ ID NO:54),
TCCATGACGTTTGATGTT (SEQ ID NO:55),
TCCATGACGTATTGATGTT (SEQ ID NO:56), and
TCCATGACGTGTTGATGTT (SEQ ID NO:57).

Figure 1
(1/3)

**Figure 1
(2/3)**

Figure 1
(3/3)

feline	SFFALATRLRELNLSANALKTVEPSWFGSLAGTLKVLVDVTGNPLHACGAAFVDFLLEVQ	778
canine	SFFALAVRLRELNLSANALKTVEPSWFGSLAGALKVLVDVTANPLHCACGATFVDFLLEVQ	780
bovine	GFFVRATRLIELNLSANALKTVDPFWFGSLAGTLKILDVSANPLHCACGAAFVDFLLERQ	776
mouse	GFFVRATRLIELNLSANALKTVDPFWFGSLAGTLKILDVSANPLHCACGAAFVDFLLERQ	776
ovine	GFFVLANRLKELNLSANALKTVDPFWFGSLAGTLNILDVSANPLHCACGAAFVDFLLEMQ	776
porcine	GFFALAKQLEELNLISANALKTVEPSWFGSMVGNLKVLVDVSANPLHCACGATFVGFLLEVQ	777
horse	GFFALATRLRELNLSANALRTEEPSWFGFLAGSLEVLDVSANPLHCACGAAFVDFLLQVQ	778
human	GFFSKAKELRELNLSANALKTVDHSGFGLASALQILDVSANPLHCACGAAFMDFLLEVQ	778
rat	AFFALAVELKEVNLSHNLKTVDRSWFGPIVMNLTVLDVSSNPLHCACGAPFVDFLLLEVQ	779
. * . * ; * : * : * : * : * : * : * : * : * : * : * : * : * : * : * :		
feline	AAVPGLPVGHKVCGSPGQLQGRSISFAQDRLCLDEALSWDCFG	838
canine	AAVPGLPSRVKCGSPGQLQGRSISFAQDRLCLDEALSWVCFS	840
bovine	EAVPGLSRRVTGCGSPGQLQGRSIFTQDRLCLDETLSLDCFG	836
mouse	EAVPGLSRRVTGCGSPGQLQGRSIFTQDRLCLDETLSLDCFG	836
ovine	AAVPGLSRRVTGCGSPGQLQGRSISFAQDRLCLDETLSLDCFG	836
porcine	AAVPGLPSRVKCGSPGQLQGRSISFAQDRLCLDETLSWCNGF	837
horse	AAVPGLPSRVKCGSPGQLQGRSISFAQDRLCLDKSLSWDCFG	838
human	AAVPGLPSRVKCGSPGQLQGRSISFAQDRLCLDEALSWDCF	838
rat	TKVPGLANGVKCGSPRQLQGRSISFAQDRLCLDDVLSRDCFG	839
*****. * . ***** * * : * : * : * : * : * : * : * : * : * : * : * :		
feline	CGWDLWYCFHLCLAWLPRRGRR--RGADALPYDAVVFDKAQS	896
canine	CGWDLWYCFHLCLAWLPRRGRR--RGVDALAYDAVVFDKAQS	898
bovine	CGWDLWYCFHLCLAWLPRRRQ--RGEDTLLYDAVVFDKVQS	894
mouse	CGWDLWYCFHLCLAWLPRRRQ--RGEDTLLYDAVVFDKVQS	894
ovine	CGWDLWYCFHLCLAWLPRRRQ--RGEDTLLYDAVVFDKAQS	894
porcine	CGWDLWYCFHLCLAWLPRRRQ--RGADALFYDAVVFDKAQS	895
horse	CGWDLWYCFHLGLAWLPRRGQO--RGADALSYDAVVFDKAQS	896
human	CGWDLWYCFHLCLAWLPWRGRQSGRDEDALPYDAVVFDKTQS	898
rat	CGWDVWYCFHLCLAWLPPLLTRGR-RSAQALPYDAVVFDKAQS	898
*****:***** * * * . : * * : * : * : * : * : * : * : * : * : * :		
feline	RGRRALRLCLEERDWLPGKTLFENLWASVYSSRKMLFVLAHT	956
canine	RGRRALRLCLEERDWLPGKTLFENLWASVYSSRKTLFVLART	958
bovine	RGRRALRLCLEERDWLPGKTLFENLWASVYSSRKTMFVL	954
mouse	RGRRALRLCLEERDWLPGKTLFENLWASVYSSRKTMFVL	954
ovine	RGRRALRLCLEERDWLPGKTLFENLWASVYSSRKTMFVL	954
porcine	RGRRALRLCLEERDWLPGKTLFENLWASVYSSRKTMFVL	955
horse	RGRRALRLCLEERDWLPGKTLFENLWASVYSSRKTMFVL	956
human	RGRRALRLCLEERDWLPGKTLFENLWASVYSSRKTMFVL	958
rat	RGRRALRLCLEERDWLPGKTLFENLWASVYSSRKTMFVL	958
*****:*****:*****:*****:*****:*****:*****:*****:		
feline	LEDRKDVVVLVILRPDAHRSRYVRLQRLCRQS	1016
canine	LEDRKDVVVLVILCPDAHRSRYVRLQRLCRQS	1018
bovine	LEDRKDVVVLVILRPAAYRSRYVRLQRLCRQS	1014
mouse	LEDRKDVVVLVILRPAAYRSRYVRLQRLCRQS	1014
ovine	LEDRKDVVVLVILRPAAYRSRYVRLQRLCRQS	1014
porcine	LEDRKDVVVLVILRPAAYRSRYVRLQRLCRQS	1015
horse	LEDRKDVVVLVILRPAAYRSRYVRLQRLCRQS	1016
human	LEDRKDVVVLVILSPDARRSRYVRLQRLCRQS	1018
rat	LEDRKDVVVLVILSPDARRSRYVRLQRLCRQS	1018
*****:*****:*****:*****:*****:*****:*****:*****:		
feline	HFYNQNFCRGPTTAE-----	1031
canine	HFYNQNFCRGPTTA-----	1032
bovine	HFYNRNFCRGPTTAE-----	1029
mouse	HFYNRNFCRGPTTAE-----	1032
ovine	HFYNRNFCRGPTTAE-----	1029
porcine	HFYNRNFCRGPTTAE-----	1030
horse	HFYNQNFCRGPTMAE-----	1031
human	HFYNRNFCRGPTTAE-----	1032
rat	HFYNRNFCRGPTTAE-----	1032
*****:*****:*****		

Figure 2**Figure 3**

SEQUENCE LISTING

<110> Coley Pharmaceutical GmbH
University of Saskatchewan
Qiagen GmbH

<120> TOLL-LIKE RECEPTOR 9 (TLR9) FROM VARIOUS MAMMALIAN SPECIES

<130> C1041.70040W000

<150> US 60/412,479
<151> 2002-09-19

<160> 70

<170> PatentIn version 3.1

<210> 1
<211> 1032
<212> PRT
<213> Rattus norvegicus

<400> 1

Met Val Leu Cys Arg Arg Thr Leu His Pro Leu Ser Leu Leu Val Gln
1 5 10 15

Ala Ala Val Leu Ala Glu Ala Leu Ala Leu Gly Thr Leu Pro Ala Phe
20 25 30

Leu Pro Cys Glu Leu Lys Pro His Gly Leu Val Asp Cys Asn Trp Leu
35 40 45

Phe Leu Lys Ser Val Pro His Phe Ser Ala Ala Glu Pro Arg Ser Asn
50 55 60

Ile Thr Ser Leu Ser Leu Ile Ala Asn Arg Ile His His Leu His Asn
65 70 75 80

Leu Asp Phe Val His Leu Pro Asn Val Arg Gln Leu Asn Leu Lys Trp
85 90 95

Asn Cys Pro Pro Pro Gly Leu Ser Pro Leu His Phe Ser Cys Arg Met
100 105 110

Thr Ile Glu Pro Lys Thr Phe Leu Ala Met Arg Met Leu Glu Glu Leu
115 120 125

Asn Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Arg Leu Pro Ser Ser
130 135 140

Leu Thr Asn Leu Ser Leu Ser His Thr Asn Ile Leu Val Leu Asp Ala
145 150 155 160

Ser Ser Leu Ala Gly Leu His Ser Leu Arg Val Leu Phe Met Asp Gly
165 170 175

Asn Cys Tyr Tyr Lys Asn Pro Cys Asn Gly Ala Val Asn Val Thr Pro
180 185 190

Asp Ala Phe Leu Gly Leu Ser Asn Leu Thr His Leu Ser Leu Lys Tyr
195 200 205

Asn Asn Leu Thr Glu Val Pro Arg Gln Leu Pro Pro Ser Leu Glu Tyr
210 215 220

Leu Leu Leu Ser Tyr Asn Leu Ile Val Lys Leu Gly Ala Glu Asp Leu
225 230 235 240

Ala Asn Leu Thr Ser Leu Arg Met Leu Asp Val Gly Gly Asn Cys Arg
245 250 255

Arg Cys Asp His Ala Pro Asp Leu Cys Thr Glu Cys Arg Gln Lys Ser
260 265 270

Leu Asp Leu His Pro Gln Thr Phe His His Leu Ser His Leu Glu Gly
275 280 285

Leu Val Leu Lys Asp Ser Ser Leu His Ser Leu Asn Ser Lys Trp Phe
290 295 300

Gln Gly Leu Ala Asn Leu Ser Val Leu Asp Leu Ser Glu Asn Phe Leu
305 310 315 320

Tyr Glu Ser Ile Asn Lys Thr Ser Ala Phe Gln Asn Leu Thr Arg Leu
325 330 335

Arg Lys Leu Asp Leu Ser Phe Asn Tyr Cys Lys Lys Val Ser Phe Ala
340 345 350

Arg Leu His Leu Ala Ser Ser Phe Lys Ser Leu Val Ser Leu Gln Glu
355 360 365

Leu Asn Met Asn Gly Ile Phe Phe Arg Leu Leu Asn Lys Asn Thr Leu
370 375 380

Arg Trp Leu Ala Gly Leu Pro Lys Leu His Thr Leu His Leu Gln Met
385 390 395 400

Asn Phe Ile Asn Gln Ala Gln Leu Ser Val Phe Ser Thr Phe Arg Ala
405 410 415

Leu Arg Phe Val Asp Leu Ser Asn Asn Arg Ile Ser Gly Pro Pro Thr
420 425 430

Leu Ser Arg Val Ala Pro Glu Lys Ala Asp Glu Ala Glu Lys Gly Val
435 440 445

Pro Trp Pro Ala Ser Leu Thr Pro Ala Leu Pro Ser Thr Pro Val Ser
450 455 460

Lys Asn Phe Met Val Arg Cys Lys Asn Leu Arg Phe Thr Met Asp Leu
465 470 475 480

Ser Arg Asn Asn Gln Val Thr Ile Lys Pro Glu Met Phe Val Asn Leu
485 490 495

Ser His Leu Gln Cys Leu Ser Leu Ser His Asn Cys Ile Ala Gln Ala
500 505 510

Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Asn Leu Lys Val Leu Asp
515 520 525

Leu Ser Tyr Asn Lys Leu Asp Leu Tyr His Ser Lys Ser Phe Ser Glu
530 535 540

Leu Pro Gln Leu Gln Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe
545 550 555 560

Ser Met Gln Gly Ile Gly His Asn Phe Ser Phe Leu Ala Asn Leu Ser
565 570 575

Arg Leu Gln Asn Leu Ser Leu Ala His Asn Asp Ile His Ser Arg Val
580 585 590

Ser Ser Arg Leu Tyr Ser Thr Ser Val Glu Tyr Leu Asp Phe Ser Gly
595 600 605

Asn Gly Val Gly Arg Met Trp Asp Glu Glu Asp Leu Tyr Leu Tyr Phe

610	615	620
Phe Gln Asp Leu Arg Ser Leu Ile His Leu Asp Leu Ser Gln Asn Lys		
625	630	635
Leu His Ile Leu Arg Pro Gln Asn Leu Asn Tyr Leu Pro Lys Ser Leu		
645	650	655
Thr Lys Leu Ser Phe Arg Asp Asn His Leu Ser Phe Phe Asn Trp Ser		
660	665	670
Ser Leu Ala Phe Leu Pro Asn Leu Arg Asp Leu Asp Leu Ala Gly Asn		
675	680	685
Leu Leu Lys Ala Leu Thr Asn Gly Thr Leu Pro Asn Gly Thr Leu Leu		
690	695	700
Gln Lys Leu Asp Val Ser Ser Asn Ser Ile Val Phe Val Val Pro Ala		
705	710	715
Phe Phe Ala Leu Ala Val Glu Leu Lys Glu Val Asn Leu Ser His Asn		
725	730	735
Ile Leu Lys Thr Val Asp Arg Ser Trp Phe Gly Pro Ile Val Met Asn		
740	745	750
Leu Thr Val Leu Asp Val Ser Ser Asn Pro Leu His Cys Ala Cys Gly		
755	760	765
Ala Pro Phe Val Asp Leu Leu Glu Val Gln Thr Lys Val Pro Gly		
770	775	780
Leu Ala Asn Gly Val Lys Cys Gly Ser Pro Arg Gln Leu Gln Gly Arg		
785	790	795
Ser Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Asp Val Leu Ser		
805	810	815
Arg Asp Cys Phe Gly Leu Ser Leu Leu Ala Val Ala Val Gly Thr Val		
820	825	830
Leu Pro Leu Leu Gln His Leu Cys Gly Trp Asp Val Trp Tyr Cys Phe		
835	840	845

His Leu Cys Leu Ala Trp Leu Pro Leu Leu Thr Arg Gly Arg Arg Ser
850 855 860

Ala Gln Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Ala Gln
865 870 875 880

Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Val Arg Leu Glu
885 890 895

Glu Arg Arg Gly Arg Arg Ala Leu Arg Leu Cys Leu Glu Asp Arg Asp
900 905 910

Trp Leu Pro Gly Gln Thr Leu Phe Glu Asn Leu Trp Ala Ser Ile Tyr
915 920 925

Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Lys Val Ser
930 935 940

Gly Leu Leu Arg Thr Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu
945 950 955 960

Asp Arg Lys Asp Val Val Val Leu Val Ile Leu Arg Pro Asp Ala His
965 970 975

Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val
980 985 990

Leu Phe Trp Pro His Gln Pro Asn Gly Gln Gly Ser Phe Trp Ala Gln
995 1000 1005

Leu Ser Thr Ala Leu Thr Arg Asp Asn His His Phe Tyr Asn Arg
1010 1015 1020

Asn Phe Cys Arg Gly Pro Thr Ala Glu
1025 1030

<210> 2
<211> 821
<212> PRT
<213> Rattus norvegicus

<400> 2

Met Val Leu Cys Arg Arg Thr Leu His Pro Leu Ser Leu Leu Val Gln
1 5 10 15

Ala Ala Val Leu Ala Glu Ala Leu Ala Leu Gly Thr Leu Pro Ala Phe
20 25 30

Leu Pro Cys Glu Leu Lys Pro His Gly Leu Val Asp Cys Asn Trp Leu
35 40 45

Phe Leu Lys Ser Val Pro His Phe Ser Ala Ala Glu Pro Arg Ser Asn
50 55 60

Ile Thr Ser Leu Ser Leu Ile Ala Asn Arg Ile His His Leu His Asn
65 70 75 80

Leu Asp Phe Val His Leu Pro Asn Val Arg Gln Leu Asn Leu Lys Trp
85 90 95

Asn Cys Pro Pro Pro Gly Leu Ser Pro Leu His Phe Ser Cys Arg Met
100 105 110

Thr Ile Glu Pro Lys Thr Phe Leu Ala Met Arg Met Leu Glu Glu Leu
115 120 125

Asn Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Arg Leu Pro Ser Ser
130 135 140

Leu Thr Asn Leu Ser Leu Ser His Thr Asn Ile Leu Val Leu Asp Ala
145 150 155 160

Ser Ser Leu Ala Gly Leu His Ser Leu Arg Val Leu Phe Met Asp Gly
165 170 175

Asn Cys Tyr Tyr Lys Asn Pro Cys Asn Gly Ala Val Asn Val Thr Pro
180 185 190

Asp Ala Phe Leu Gly Leu Ser Asn Leu Thr His Leu Ser Leu Lys Tyr
195 200 205

Asn Asn Leu Thr Glu Val Pro Arg Gln Leu Pro Pro Ser Leu Glu Tyr
210 215 220

Leu Leu Leu Ser Tyr Asn Leu Ile Val Lys Leu Gly Ala Glu Asp Leu
225 230 235 240

Ala Asn Leu Thr Ser Leu Arg Met Leu Asp Val Gly Gly Asn Cys Arg
245 250 255

Arg Cys Asp His Ala Pro Asp Leu Cys Thr Glu Cys Arg Gln Lys Ser
260 265 270

Leu Asp Leu His Pro Gln Thr Phe His His Leu Ser His Leu Glu Gly
275 280 285

Leu Val Leu Lys Asp Ser Ser Leu His Ser Leu Asn Ser Lys Trp Phe
290 295 300

Gln Gly Leu Ala Asn Leu Ser Val Leu Asp Leu Ser Glu Asn Phe Leu
305 310 315 320

Tyr Glu Ser Ile Asn Lys Thr Ser Ala Phe Gln Asn Leu Thr Arg Leu
325 330 335

Arg Lys Leu Asp Leu Ser Phe Asn Tyr Cys Lys Lys Val Ser Phe Ala
340 345 350

Arg Leu His Leu Ala Ser Ser Phe Lys Ser Leu Val Ser Leu Gln Glu
355 360 365

Leu Asn Met Asn Gly Ile Phe Phe Arg Leu Leu Asn Lys Asn Thr Leu
370 375 380

Arg Trp Leu Ala Gly Leu Pro Lys Leu His Thr Leu His Leu Gln Met
385 390 395 400

Asn Phe Ile Asn Gln Ala Gln Leu Ser Val Phe Ser Thr Phe Arg Ala
405 410 415

Leu Arg Phe Val Asp Leu Ser Asn Asn Arg Ile Ser Gly Pro Pro Thr
420 425 430

Leu Ser Arg Val Ala Pro Glu Lys Ala Asp Glu Ala Glu Lys Gly Val
435 440 445

Pro Trp Pro Ala Ser Leu Thr Pro Ala Leu Pro Ser Thr Pro Val Ser
450 455 460

Lys Asn Phe Met Val Arg Cys Lys Asn Leu Arg Phe Thr Met Asp Leu
465 470 475 480

Ser Arg Asn Asn Gln Val Thr Ile Lys Pro Glu Met Phe Val Asn Leu
485 490 495

Ser His Leu Gln Cys Leu Ser Leu Ser His Asn Cys Ile Ala Gln Ala
500 505 510

Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Asn Leu Lys Val Leu Asp
515 520 525

Leu Ser Tyr Asn Lys Leu Asp Leu Tyr His Ser Lys Ser Phe Ser Glu
530 535 540

Leu Pro Gln Leu Gln Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe
545 550 555 560

Ser Met Gln Gly Ile Gly His Asn Phe Ser Phe Leu Ala Asn Leu Ser
565 570 575

Arg Leu Gln Asn Leu Ser Leu Ala His Asn Asp Ile His Ser Arg Val
580 585 590

Ser Ser Arg Leu Tyr Ser Thr Ser Val Glu Tyr Leu Asp Phe Ser Gly
595 600 605

Asn Gly Val Gly Arg Met Trp Asp Glu Glu Asp Leu Tyr Leu Tyr Phe
610 615 620

Phe Gln Asp Leu Arg Ser Leu Ile His Leu Asp Leu Ser Gln Asn Lys
625 630 635 640

Leu His Ile Leu Arg Pro Gln Asn Leu Asn Tyr Leu Pro Lys Ser Leu
645 650 655

Thr Lys Leu Ser Phe Arg Asp Asn His Leu Ser Phe Phe Asn Trp Ser
660 665 670

Ser Leu Ala Phe Leu Pro Asn Leu Arg Asp Leu Asp Leu Ala Gly Asn
675 680 685

Leu Leu Lys Ala Leu Thr Asn Gly Thr Leu Pro Asn Gly Thr Leu Leu
690 695 700

Gln Lys Leu Asp Val Ser Ser Asn Ser Ile Val Phe Val Val Pro Ala
705 710 715 720

Phe Phe Ala Leu Ala Val Glu Leu Lys Glu Val Asn Leu Ser His Asn

725

730

735

Ile Leu Lys Thr Val Asp Arg Ser Trp Phe Gly Pro Ile Val Met Asn
 740 745 750

Leu Thr Val Leu Asp Val Ser Ser Asn Pro Leu His Cys Ala Cys Gly
 755 760 765

Ala Pro Phe Val Asp Leu Leu Glu Val Gln Thr Lys Val Pro Gly
 770 775 780

Leu Ala Asn Gly Val Lys Cys Gly Ser Pro Arg Gln Leu Gln Gly Arg
 785 790 795 800

Ser Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Asp Val Leu Ser
 805 810 815

Arg Asp Cys Phe Gly
 820

<210> 3
 <211> 3099
 <212> DNA
 <213> Rattus norvegicus

<400> 3	
atggttctct gtcgcaggac cctgcacccc ttgtctctcc tggcacaggg cgca	60
gtcgaggcgc tggccctggg taccctgcct gccttcctac cctgtgaact gaac	120
ggcctggtag actgcaactg gctcttcctg aagtctgtgc ctcacttctc tgcc	180
ccccgttcca acatcaccag ccttccttg atcgccaacc gcatccacca cctgc	240
ctcgactttg tccacctgcc caacgtgcga cagctgaacc tcaagtggaa ctgt	300
cctggcctca gcccattgca cttcttcctgc cgcatgacca ttgagccaa aac	360
gctatgcgc tgcgtggaaa gctgaacctg agtataacg gtatcaccac tgtgc	420
ctgcccagct ccctgacgaa tctgagccta agccacacca acatcctggt act	480
cgagcctcg ctggcctgca cagoctgcga gttctttca tggacggaaa ctgct	540
aagaaccctt gcaacggggc ggtgaacgtg accccggacg ctttcctggg ct	600
tcacccact tgcctttaa gtataacaac ctcacagagg tggccggcca act	660
gcctggagt accttcgtct gtcctataac ctcatgtca agctgggggc cga	720
ccaacctga cttccctcg aatgcttgat gtgggtggga attgccgtcg ctgt	780

gcccccgacc tctgtacaga atgccggcag aagtcccttg atctgcaccc tcagactttc	840
catcacctga gccaccttga aggccctggtg ctgaaggaca gttctctcca ctcgctgaac	900
tccaaagtggt tccagggtct ggcgaacctc tcgggtctgg acctaagcga gaactttctc	960
tacgagagca tcaacaaaac cagcgccctt cagaacctga cccgtctgcg caagctcgac	1020
ctgtccttca attactgcaa gaaggtatcg ttgcggcc tccacctggc aagttccttc	1080
aagagcctgg tgtcgctgca ggagctgaac atgaacggca tcttcttccg cttactcaac	1140
aagaaacacgc tcaggtggct ggctggctcg cccaagctcc acacgctgca cttcaaatg	1200
aatttcatca accaggcgca gtcagcgtc ttttagtacct tccgagccct tcgctttgtg	1260
gacctgtcca ataatcgcat cagcggccct ccaacgctgt ccagagtcgc cccgaaaaag	1320
gcagacgagg cgagagaaggg ggttccatgg cctgcaagtc tcaccccagc tctccgagc	1380
actcccgtct caaagaactt catggtcagg tgtaagaacc tcagattcac catggacctg	1440
tctcggaca accaggtgac tatcaagcca gagatgttcg tcaacctctc ccatctccag	1500
tgtctgagcc ttagccacaa ctgcatcgcg caggctgtca atggctctca gttcctgccc	1560
ctgaccaacc tgaaggtgct ggacctgtcc tataacaagc tggacctgta ccattcgaaa	1620
tcgttcagtg agctcccaca gttgcaggcc ctggacctga gctacaacag ccagccattc	1680
agcatgcagg ggataggcca caacttcagt tttctggcca atctgtccag gttacagaac	1740
cttagcctgg cacacaatga cattcacagc cgcgtgtcct cacgcctcta cagcacctca	1800
gtggagttatc tggacttcag cggcaacgggt gtggccgca tgtggacgaa ggaggacatt	1860
tacctctatt tcttccaaga cctgagaagc ctgattcatc tggacctgtc tcagaataag	1920
ctgcacatcc tccggcccca gaacctcaac tacctccca agagcctgac gaagctgagt	1980
ttccgtgaca atcacctctc tttcttaac tggagcagtc tggccttcct gcccaatctg	2040
cgagacctgg acctggcagg caatctacta aaggccctga ccaacggcac cctgcctaatt	2100
ggcacgctcc tccagaaaact ggatgtcagt agcaacagta tcgtcttgt ggtcccgagcc	2160
ttctttgttc tggcggtaga gctaaaagag gtcaacctca gccataacat cctcaagact	2220
gtggatcgct cctggtttgg gcccattgtg atgaacctga cggttctaga cgtgagcagc	2280
aacctctgc attgtgcctg cggtgcaccc ttttagtact tactgctgga agtgcagacc	2340
aaggtgcctg gcctggctaa cgggtgtaaag tgtggcagtc cccgcccagct gcagggccgc	2400
agcatcttg cgcaagacct gcggtgtgc ctggatgacg tcctttctcg ggactgcttt	2460
ggcctttcac tcctggctgt ggccgtgggc acgggtttgc ctttactgca gcatctctgc	2520
ggctggacg tctggactg tttccatctg tgccctggcat ggctacctt gctgaccctgt	2580

ggccggcgca gcgcccaga tctcccttat gatgccttcg tggtgttgcga taaggcgcag	2640
agcgcggttg ctgactgggt gtataacgag cttcgagtgc ggctagagga gcggcgcggt	2700
cgcggagccc tacgcttgc tctggaggac cgagattggc tgccctggcca gaactcttc	2760
gagaacctct gggcctccat ctatggcagc cgcaagactc tgtttgcgtt ggcacacacg	2820
gacaagggtca gtggcctcct ggcaccaggc ttccctgcgtt ctcagcagcg cctgcgtggag	2880
gaccgcaagg acgtgggtggt gttggtgatc ctgcgcctcg atgcccacccg ctccccgtac	2940
gtgcgactgc gccagcgcct ctgcgcctcg agtgtgtctt tctggcccca tcagcccaac	3000
ggcaggggca gcttctgggc ccagctgagt acagccctga ctagggacaa ccaccacttc	3060
tataaccgga acttctgccc gggacctaca gcagaatag	3099

<210> 4
<211> 2463
<212> DNA
<213> Rattus norvegicus

<400> 4	
atggttctct gtcgcaggac cctgcacccc ttgtctctcc tggtaacaggc cgcaagtgcgt	60
gctgaggctc tggccctggg taccctgcct gccttcctac cctgtgaact gaaggctcat	120
ggcctggtag actgcaactg gctcttcctg aagtctgtgc ctcacttctc tgccgcagaa	180
cccccgttcca acatcaccag cctttccttg atcgccaaacc gcatccacca cctgcacaac	240
ctcgactttg tccacctgcc caacgtgcga cagctgaacc tcaagtggaa ctgtccgccc	300
cctggcctca gccccttgca cttctctgc cgcatgacca ttgagcccaa aaccttcctg	360
gctatgcgcga tgctggaaga gctgaacctg agctataacg gtatcaccac tgtgccccgc	420
ctgcccagct ccctgacgaa tctgagccctt agccacacca acatcctgggt actogatgcc	480
agcagcctcg ctggcctgca cagcctgcga gttctttca tggacgggaa ctgtactac	540
aagaacccct gcaacggggc ggtgaacgtg accccggacg cttccctggg cttgagcaac	600
ctcacccact tgtcccttaa gtataacaac ctcacagagg tgccccgcca actgcccccc	660
agcctggagt acctcctgct gtcctataac ctcatcgta agctggggc cgaagaccta	720
gccaacctga cctcccttcg aatgctgtat gtgggtggga attgccgtcg ctgtgatcac	780
gccccggacc tctgtacaga atgcggcag aagtcccttg atctgcaccc tcagactttc	840
catcacctga gccaccttga aggccctggc ctgaaggaca gttctctcca ctgcgtgaac	900
tccaagtgggtccaggggtct ggcgaacctc tcgggtgcgtt acctaagcga gaactttctc	960
tacgagagca tcaacaaaac cagcgccctt cagaacctga cccgtctgcg caagctcgac	1020

ctgtccttca attactgcaa gaaggatatcg ttccggcc tccacctggc aagttccttc	1080
aagagcctgg tgtcgctgca ggagctgaac atgaacggca tcttcttccg cttactcaac	1140
aagaacacgc tcagggctggc ggctggctcg cccaagctcc acacgctgca ccttcaaatg	1200
aatttcatca accaggcgca gtcagcgtc ttttagtacct tccgagccct tcgctttgtg	1260
gacctgtcca ataatcgcat cagcggcct ccaacgctgt ccagagtcgc ccccggaaaag	1320
gcagacgagg cgagaaaggg ggttccatgg cctgcaagtc tcaccccagc tctccccagc	1380
actcccgctt caaagaactt catggtcagg tgtaagaacc tcagattcac catggaccctg	1440
tctcggaca accaggtgac tatcaagcca gagatgttcg tcaacctctc ccattctccag	1500
tgtctgagcc tgagccacaa ctgcacatcgcg caggctgtca atggctctca gttcctgccc	1560
ctgaccaacc tgaaggtgct ggacctgtcc tataacaagc tggacctgtta ccattcgaaa	1620
tcgttcagt agctccacaa gttgcaggcc ctggacactga gctacaacag ccagccattc	1680
agcatgcagg ggataggcca caacttcagt tttctggcca atctgtccag gttacagaac	1740
cttagcctgg cacacaatga cattcacacg cgcgtgtcct cacgcctcta cagcacctca	1800
gtggaggatc tggacttcag cggcaacgggt gtggggccgca tgtgggacga ggaggacctt	1860
tacctctatt tcttccaaga cctgagaagc ctgattcatc tggacctgtc tcagaataag	1920
ctgcacatcc tccggcccca gaacctcaac tacctccccca agagcctgac gaagctgagt	1980
ttccctgaca atcacctctc tttcttaac tggaggcagtc tggccttcct gccaaatctg	2040
cgagacctgg acctggcagg caatctacta aaggccctga ccaacggcac cctgcctaatt	2100
ggcacgtcc tccagaaact ggatgtcagt agoaacagta tcgtctttgt ggtcccagcc	2160
ttctttgctc tggcggtaga gctaaaagag gtcaacactca gccataacat cctcaagact	2220
gtggatcgct cctgggttgg gcccattgtg atgaacctga cggttctaga cgtgagcagc	2280
aaccctctgc attgtgcctg cggtgacacc tttgttagact tactgctggaa agtgcagacc	2340
aagggtgcctg gcctggctaa cggtgtgaag tgtggcagtc cccgccagct gcagggccgc	2400
agcatcttg cgcaagacct gcggctgtgc ctggatgacg tcctttctcg ggactgctt	2460
ggc	2463

<210> 5
 <211> 1030
 <212> PRT
 <213> Sus scrofa

<400> 5

Met Gly Pro Arg Cys Thr Leu His Pro Leu Ser Leu Leu Val Gln Val
 1 5 10 15

Thr Ala Leu Ala Ala Ala Leu Ala Gln Gly Arg Leu Pro Ala Phe Leu
 20 25 30

Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp Leu Phe
 35 40 45

Leu Lys Ser Val Pro His Phe Ser Ala Ala Ala Pro Arg Ala Asn Val
 50 55 60

Thr Ser Leu Ser Leu Leu Ser Asn Arg Ile His His Leu His Asp Ser
 65 70 75 80

Asp Phe Val His Leu Ser Ser Leu Arg Thr Leu Asn Leu Lys Trp Asn
 85 90 95

Cys Pro Pro Ala Gly Leu Ser Pro Met His Phe Pro Cys His Met Thr
 100 105 110

Ile Glu Pro Asn Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu Asn
 115 120 125

Leu Ser Tyr Asn Ser Ile Thr Thr Val Pro Ala Leu Pro Asp Ser Leu
 130 135 140

Val Ser Leu Ser Leu Ser Arg Thr Asn Ile Leu Val Leu Asp Pro Thr
 145 150 155 160

His Leu Thr Gly Leu His Ala Leu Arg Tyr Leu Tyr Met Asp Gly Asn
 165 170 175

Cys Tyr Tyr Lys Asn Pro Cys Gln Gly Ala Leu Glu Val Val Pro Gly
 180 185 190

Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr Asn
 195 200 205

Asn Leu Thr Glu Val Pro Arg Ser Leu Pro Pro Ser Leu Glu Thr Leu
 210 215 220

Leu Leu Ser Tyr Asn His Ile Val Thr Leu Thr Pro Glu Asp Leu Ala
 225 230 235 240

Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg Arg
245 250 255

Cys Asp His Ala Arg Asn Pro Cys Arg Glu Cys Pro Lys Asp His Pro
260 265 270

Lys Leu His Ser Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly Leu
275 280 285

Val Leu Lys Asp Ser Ser Leu Tyr Asn Leu Asp Thr Arg Trp Phe Arg
290 295 300

Gly Leu Asp Arg Leu Gln Val Leu Asp Leu Ser Glu Asn Phe Leu Tyr
305 310 315 320

Asp Cys Ile Thr Lys Thr Ala Phe Gln Gly Leu Ala Arg Leu Arg
325 330 335

Ser Leu Asn Leu Ser Phe Asn Tyr His Lys Lys Val Ser Phe Ala His
340 345 350

Leu His Leu Ala Pro Ser Phe Gly His Leu Arg Ser Leu Lys Glu Leu
355 360 365

Asp Met His Gly Ile Phe Phe Arg Ser Leu Ser Glu Thr Thr Leu Gln
370 375 380

Pro Leu Val Gln Leu Pro Met Leu Gln Thr Leu Arg Leu Gln Met Asn
385 390 395 400

Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Ala Phe Pro Gly Leu
405 410 415

Leu Tyr Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ala Arg Pro
420 425 430

Val Ala Ile Thr Arg Glu Val Asp Gly Arg Glu Arg Val Trp Leu Pro
435 440 445

Ser Arg Asn Leu Ala Pro Arg Pro Leu Asp Thr Leu Arg Ser Glu Asp
450 455 460

Phe Met Pro Asn Cys Lys Ala Phe Ser Phe Thr Leu Asp Leu Ser Arg
465 470 475 480

Asn Asn Leu Val Thr Ile Gln Ser Glu Met Phe Ala Arg Leu Ser Arg
485 490 495

Leu Glu Cys Leu Arg Leu Ser His Asn Ser Ile Ser Gln Ala Val Asn
500 505 510

Gly Ser Gln Phe Val Pro Leu Thr Ser Leu Arg Val Leu Asp Leu Ser
515 520 525

His Asn Lys Leu Asp Leu Tyr His Gly Arg Ser Phe Thr Glu Leu Pro
530 535 540

Arg Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Thr Met
545 550 555 560

Gln Gly Val Gly His Asn Leu Ser Phe Val Ala Gln Leu Pro Ala Leu
565 570 575

Arg Tyr Leu Ser Leu Ala His Asn Asp Ile His Ser Arg Val Ser Gln
580 585 590

Gln Leu Cys Ser Ala Ser Leu Cys Ala Leu Asp Phe Ser Gly Asn Asp
595 600 605

Leu Ser Arg Met Trp Ala Glu Gly Asp Leu Tyr Leu Arg Phe Phe Gln
610 615 620

Gly Leu Arg Ser Leu Val Trp Leu Asp Leu Ser Gln Asn His Leu His
625 630 635 640

Thr Leu Leu Pro Arg Ala Leu Asp Asn Leu Pro Lys Ser Leu Lys His
645 650 655

Leu His Leu Arg Asp Asn Asn Leu Ala Phe Phe Asn Trp Ser Ser Leu
660 665 670

Thr Leu Leu Pro Lys Leu Glu Thr Leu Asp Leu Ala Gly Asn Gln Leu
675 680 685

Lys Ala Leu Ser Asn Gly Ser Leu Pro Ser Gly Thr Gln Leu Arg Arg
690 695 700

Leu Asp Leu Ser Gly Asn Ser Ile Gly Phe Val Asn Pro Gly Phe Phe

705	710	715	720
Ala Leu Ala Lys Gln Leu Glu Glu Leu Asn Leu Ser Ala Asn Ala Leu			
	725	730	735
Lys Thr Val Glu Pro Ser Trp Phe Gly Ser Met Val Gly Asn Leu Lys			
	740	745	750
Val Leu Asp Val Ser Ala Asn Pro Leu His Cys Ala Cys Gly Ala Thr			
	755	760	765
Phe Val Gly Phe Leu Leu Glu Val Gln Ala Ala Val Pro Gly Leu Pro			
	770	775	780
Ser Arg Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly His Ser Ile			
	785	790	795
800			
Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Thr Leu Ser Trp Asn			
	805	810	815
Cys Phe Gly Ile Ser Leu Leu Ala Met Ala Leu Gly Leu Val Val Pro			
	820	825	830
Met Leu His His Leu Cys Gly Trp Asp Leu Trp Tyr Cys Phe His Leu			
	835	840	845
850			
Cys Leu Ala Trp Leu Pro His Arg Gly Gln Arg Arg Gly Ala Asp Ala			
	855	860	
Leu Phe Tyr Asp Ala Phe Val Val Phe Asp Lys Ala Gln Ser Ala Val			
	865	870	880
875			
Ala Asp Trp Val Tyr Asn Glu Leu Arg Val Gln Leu Glu Glu Arg Arg			
	885	890	895
Gly Arg Arg Ala Leu Arg Leu Cys Leu Glu Glu Arg Asp Trp Leu Pro			
	900	905	910
915			
Gly Lys Thr Leu Phe Glu Asn Leu Trp Ala Ser Val Tyr Ser Ser Arg			
	920	925	
Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser Gly Leu Leu			
	930	935	940

Arg Ala Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu Asp Arg Lys
945 950 955 960

Asp Val Val Val Leu Val Ile Leu Arg Pro Asp Ala Tyr Arg Ser Arg
965 970 975

Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val Leu Leu Trp
980 985 990

Pro His Gln Pro Arg Gly Gln Gly Ser Phe Trp Ala Gln Leu Gly Thr
995 1000 1005

Ala Leu Thr Arg Asp Asn His His Phe Tyr Asn Arg Asn Phe Cys
1010 1015 1020

Arg Gly Pro Thr Thr Ala Glu
1025 1030

<210> 6
<211> 819
<212> PRT
<213> Sus scrofa

<400> 6

Met Gly Pro Arg Cys Thr Leu His Pro Leu Ser Leu Leu Val Gln Val
1 5 10 15

Thr Ala Leu Ala Ala Leu Ala Gln Gly Arg Leu Pro Ala Phe Leu
20 25 30

Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp Leu Phe
35 40 45

Leu Lys Ser Val Pro His Phe Ser Ala Ala Ala Pro Arg Ala Asn Val
50 55 60

Thr Ser Leu Ser Leu Leu Ser Asn Arg Ile His His Leu His Asp Ser
65 70 75 80

Asp Phe Val His Leu Ser Ser Leu Arg Thr Leu Asn Leu Lys Trp Asn
85 90 95

Cys Pro Pro Ala Gly Leu Ser Pro Met His Phe Pro Cys His Met Thr
100 105 110

Ile Glu Pro Asn Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu Asn
115 120 125

Leu Ser Tyr Asn Ser Ile Thr Thr Val Pro Ala Leu Pro Asp Ser Leu
130 135 140

Val Ser Leu Ser Leu Ser Arg Thr Asn Ile Leu Val Leu Asp Pro Thr
145 150 155 160

His Leu Thr Gly Leu His Ala Leu Arg Tyr Leu Tyr Met Asp Gly Asn
165 170 175

Cys Tyr Tyr Lys Asn Pro Cys Gln Gly Ala Leu Glu Val Val Pro Gly
180 185 190

Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr Asn
195 200 205

Asn Leu Thr Glu Val Pro Arg Ser Leu Pro Pro Ser Leu Glu Thr Leu
210 215 220

Leu Leu Ser Tyr Asn His Ile Val Thr Leu Thr Pro Glu Asp Leu Ala
225 230 235 240

Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg Arg
245 250 255

Cys Asp His Ala Arg Asn Pro Cys Arg Glu Cys Pro Lys Asp His Pro
260 265 270

Lys Leu His Ser Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly Leu
275 280 285

Val Leu Lys Asp Ser Ser Leu Tyr Asn Leu Asp Thr Arg Trp Phe Arg
290 295 300

Gly Leu Asp Arg Leu Gln Val Leu Asp Leu Ser Glu Asn Phe Leu Tyr
305 310 315 320

Asp Cys Ile Thr Lys Thr Ala Phe Gln Gly Leu Ala Arg Leu Arg
325 330 335

Ser Leu Asn Leu Ser Phe Asn Tyr His Lys Lys Val Ser Phe Ala His
340 345 350

Leu His Leu Ala Pro Ser Phe Gly His Leu Arg Ser Leu Lys Glu Leu
355 360 365

Asp Met His Gly Ile Phe Phe Arg Ser Leu Ser Glu Thr Thr Leu Gln
370 375 380

Pro Leu Val Gln Leu Pro Met Leu Gln Thr Leu Arg Leu Gln Met Asn
385 390 395 400

Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Ala Phe Pro Gly Leu
405 410 415

Leu Tyr Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ala Arg Pro
420 425 430

Val Ala Ile Thr Arg Glu Val Asp Gly Arg Glu Arg Val Trp Leu Pro
435 440 445

Ser Arg Asn Leu Ala Pro Arg Pro Leu Asp Thr Leu Arg Ser Glu Asp
450 455 460

Phe Met Pro Asn Cys Lys Ala Phe Ser Phe Thr Leu Asp Leu Ser Arg
465 470 475 480

Asn Asn Leu Val Thr Ile Gln Ser Glu Met Phe Ala Arg Leu Ser Arg
485 490 495

Leu Glu Cys Leu Arg Leu Ser His Asn Ser Ile Ser Gln Ala Val Asn
500 505 510

Gly Ser Gln Phe Val Pro Leu Thr Ser Leu Arg Val Leu Asp Leu Ser
515 520 525

His Asn Lys Leu Asp Leu Tyr His Gly Arg Ser Phe Thr Glu Leu Pro
530 535 540

Arg Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Thr Met
545 550 555 560

Gln Gly Val Gly His Asn Leu Ser Phe Val Ala Gln Leu Pro Ala Leu
565 570 575

Arg Tyr Leu Ser Leu Ala His Asn Asp Ile His Ser Arg Val Ser Gln
580 585 590

Gln Leu Cys Ser Ala Ser Leu Cys Ala Leu Asp Phe Ser Gly Asn Asp
595 600 605

Leu Ser Arg Met Trp Ala Glu Gly Asp Leu Tyr Leu Arg Phe Phe Gln
610 615 620

Gly Leu Arg Ser Leu Val Trp Leu Asp Leu Ser Gln Asn His Leu His
625 630 635 640

Thr Leu Leu Pro Arg Ala Leu Asp Asn Leu Pro Lys Ser Leu Lys His
645 650 655

Leu His Leu Arg Asp Asn Asn Leu Ala Phe Phe Asn Trp Ser Ser Leu
660 665 670

Thr Leu Leu Pro Lys Leu Glu Thr Leu Asp Leu Ala Gly Asn Gln Leu
675 680 685

Lys Ala Leu Ser Asn Gly Ser Leu Pro Ser Gly Thr Gln Leu Arg Arg
690 695 700

Leu Asp Leu Ser Gly Asn Ser Ile Gly Phe Val Asn Pro Gly Phe Phe
705 710 715 720

Ala Leu Ala Lys Gln Leu Glu Leu Asn Leu Ser Ala Asn Ala Leu
725 730 735

Lys Thr Val Glu Pro Ser Trp Phe Gly Ser Met Val Gly Asn Leu Lys
740 745 750

Val Leu Asp Val Ser Ala Asn Pro Leu His Cys Ala Cys Gly Ala Thr
755 760 765

Phe Val Gly Phe Leu Leu Glu Val Gln Ala Ala Val Pro Gly Leu Pro
770 775 780

Ser Arg Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly His Ser Ile
785 790 795 800

Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Thr Leu Ser Trp Asn
805 810 815

Cys Phe Gly

<210> 7
 <211> 3352
 <212> DNA
 <213> Sus scrofa

<400> 7	
gagcacgaac atccttcaact gtagctgctg cccggctgc cagccagacc ctggagaa	60
gaccccaactc cctgtcatgg gcccccgctg caccctgcac cccctttctc tcctggtgca	120
ggtgacagcg ctggctgcgg ctctggcca gggcaggctg cctgccttc tgccctgtga	180
gctccagccc cacggcctgg tgaactgcaa ctggcttttc ctgaagtccg tgcccccatt	240
ctcggcggca gcgcgggg ccaacgtcac cagcctctcc ttactctcca accgcatcca	300
ccacctgcac gactccgact tcgtccacct gtccagccta cgaactctca acctaagtg	360
gaactgccc cccggctggcc tcagcccat gcacttcccc tgccacatga ccatcgagcc	420
caacaccttc ctggccgtgc ccaccctgga ggagctgaac ctgagctaca acagcatcac	480
gaccgtgcct gcctgccc actccctcggt ctcctgtcg ctgagccca ccaacatcc	540
ggtgctagac cccacccacc tcactggcct acatgcctg cgctacctgt acatggatgg	600
caactgctac tacaagaacc cctgccagg ggcgctggag gtggtgcgg gtgccttc	660
cggcctggc aacctcacac atctctcaact caagtacaac aatctcacgg aggtgcgg	720
cagcctgccc cccagcctgg agacccctgct gttgtcctac aaccacattt tcaccctgac	780
gcctgaggac ctggccaaatc tgactgcct gcgcgtgctt gatgtgggg ggaactgccc	840
ccgctgtgac catgcccgc aacctgcag ggagtgcaca aaggaccacc ccaagctgca	900
ctctgacacc ttccagccacc tgagccct cgaaggcctg gtgttcaaag acagttctct	960
ctacaacctg gacaccagg ggttccgagg cttggacagg ctccaagtgc tggacctgag	1020
tgagaacttc ctctacgact gcatcaccaa gaccacggcc ttccagggcc tggcccgact	1080
gcgcagccctc aacctgtcct tcaattacca caagaagggtg tcctttggcc acctgcaccc	1140
ggcacccctcc ttgggcacc tccggccct gaaggagctg gacatgcattt gcatcttctt	1200
ccgctcgctc agtgagacca cgctccaaacc tctggtccaa ctgcctatgc tccagaccct	1260
gcccctgcag atgaacttca ttaaccaggc ccagctcagc atctttgggg cttccctgg	1320
cctgctgtac gtggacctat cggacaaccg catcagcgga gctgcaaggc cagtggccat	1380
tactagggag gtggatggta gggagagggt ctggctgcct tccaggaacc tcgctccacg	1440
tccactggac actctccgct cagaggactt catgccaaac tgcaaggcct tcagttcac	1500

cttggacctg ttcggaaaca acctggtgac aatccagtcg gagatgtttg ctcgccttc	1560
acgcctcgag tgccctgcgcc tgagccacaa cagcatctcc caggcggtca atggctctca	1620
gtttgtgccc ctgaccagcc tgcgggtgct ggacctgtcc cacaacaagc tggacctgta	1680
tcacgggcgc tcgttcacgg agctgccgcg cctggaagca ctggacctca gctacaatag	1740
ccagccctt accatgcagg gtgtggcca caacctcagc ttctgtggcc agctgcccgc	1800
cctgcgcctac ctcagcctgg cgccacaatga catccatagc cgagtgtccc agcagctctg	1860
tagcgcctca ctgtgcgccc tggacttag cggaacgat ctgagccgga tgtggctga	1920
gggagacctc tatctccgct tcttccaagg cctaagaagc ctatgttgc tggacctgtc	1980
ccagaaccac ctgcacaccc tcctgccacg tgccctggac aacctccccaa aaagcctgaa	2040
gcatctgcat ctccgtgaca ataaccttgc cttttcaac tggagcagcc tgaccctcct	2100
gcccaagctg gaaaccctgg acttggctgg aaaccagctg aaggccctaa gcaatggcag	2160
cctgcacatct ggaccccago tgcggaggct ggacctcagt ggcaacagca tggctttgt	2220
gaaccctggc ttcttgccc tggccaagca gttagaagag ctcaacctca ggcgcctatgc	2280
cctcaagaca gtggagccct cctgggttgg ctgcgtggc ggcaacctga aagtccataga	2340
cgtgagcgc aaccctctgc actgtgcctg tggggcgacc ttctgtggct ttctgtggc	2400
ggtacaggct gccgtgcctg ggctgcccag ccgcgtcaag tgtggcagtc cggggcagct	2460
ccagggccat agcatcttg cgcaagacct gcgcctctgc ctggatgaga ccctctcg	2520
gaactgtttt ggcatctcgc tgctggccat ggccctggc ctgggttgtc ccatgtgc	2580
ccacctctgc ggctggacc tctggtactg cttccacctg tgcctggct ggctggccca	2640
ccgagggcag cggcggggcg cagacccct gtttatgat gccttcgtgg ttcttgacaa	2700
agctcagagt gctgtggccg actgggtgta caacgagctg cgggtgcagc tggaggagcg	2760
ccgtggcgc cgcgcactgc gcctgtgcct ggaggagcga gactggttac ctggcaagac	2820
gctcttcgag aacctgtggg ctcagtcata cagcagccgc aagaccctgt ttgtgtggc	2880
ccacacggac cgtgtcagcg gcctttgcg tgccagtttc ctgcgtggccc agcagcgcct	2940
gctggaggac cgcaaggacg ttgttagtgc ggtgatcctg cgcccccgtg cctaccgctc	3000
ccgctacgtg cggctgcgcc agcgcctctg ccgcagact gtcctccctt ggccccacca	3060
gccccgtggg cagggcagct tctggggcca gctggcaca gccctgacca gggacaacca	3120
ccacttctat aaccgaaact tctgggggg cccacgaca gccgaatagc actgagtgac	3180
agcccaatttgc ccccaaaaaaaa ctcggatttg ctcctctgccc tgggggtggcc caacctgctt	3240
tgctcagcca caccactgct ctgccttcgtt ttccccaccc caccggccatgt	3300 .

aacatgtgcc	caataaatgc	taccggaggg	ccaagaaaaa	aaaaaaaaaa	aa	3352
<210> 8						
<211> 2457						
<212> DNA						
<213> Sus scrofa						
<400> 8						
atggggccccc	gctgcaccct	gcacccctt	tctctcctgg	tgcagggtac	agcgctggct	60
gcggctctgg	cccagggcag	gtgcctgcc	ttcctgcctt	gtgagctcca	gccccacggc	120
ctggtaact	gcaactggct	tttcctgaag	tccgtgcccc	acttctcgcc	ggcagcgccc	180
cgggccaacg	tcaccagcct	tccttactc	tccaaccgca	tccaccacct	gcacgactcc	240
gacttcgtcc	acctgtccag	cctacgaact	ctcaacctca	agtggaaactg	cccgccggct	300
ggcctcagcc	ccatgcactt	cccctgccac	atgaccatcg	agcccaacac	tttcctggcc	360
gtgcccaccc	tggaggagct	gaacctgagc	tacaacagca	tcacgaccgt	gcctgccttg	420
cccgactccc	tctgtccct	gtcgctgagc	cgcaccaaca	tcctgggtct	agacccacc	480
cacctcaactg	gcctacatgc	cctgcgtac	ctgtacatgg	atggcaactg	ctactacaag	540
aacccctgcc	agggggcgct	ggaggtggtg	ccgggtgccc	tcctcggcct	ggcaacctc	600
acacatctct	cactcaagta	caacaatctc	acggaggtgc	cccgacccct	gccccccagc	660
ctggagaccc	tgctgttgtc	ctacaaccac	attgtcaccc	tgacgcctga	ggacctggcc	720
aatctgactg	ccctgcgcgt	gcttgatgtg	ggggggact	gccgcgcgtg	tgaccatgcc	780
cgcaacccct	gcagggagtg	cccaaaggac	caccccaagc	tgcactctga	cacccctcagc	840
cacctgagcc	gcctcgaagg	cctgggtttg	aaagacagtt	ctctctacaa	cctggacacc	900
aggtggttcc	gaggcctgga	caggctccaa	gtgctggacc	tgagtgagaa	tttcctctac	960
gactgcatca	ccaagaccac	ggccttccag	ggcctggccc	gactgcgcag	cctcaacctg	1020
tccttcaatt	accacaagaa	ggtgtcctt	gcccacctgc	acctggcacc	ctccttgggg	1080
cacctccgggt	ccctgaagga	gctggacatg	catggcatct	tcttccgctc	gtcaagttag	1140
accacgctcc	aacctctggt	ccaaactgcct	atgctccaga	ccctgcgcct	gcagatgaac	1200
ttcattaacc	aggcccagct	cagcatctt	ggggccttcc	ctggcctgct	gtacgtggac	1260
ctatcgacca	accgcacatcg	cggagctgca	aggccagtgg	ccattactag	ggaggtggat	1320
ggtagggaga	gggtctggct	gccttcagg	aacctcgctc	cacgtccact	ggacactctc	1380
cgctcagagg	acttcatgcc	aaactgcaag	gccttcagct	tcaccttgga	cctgtctcgg	1440
aacaacctgg	tgacaatcca	gtcgagatg	tttgctcgcc	tctcacgcct	cgagtgcctg	1500

cgcctgagcc acaacagcat	ctcccaggcg gtcaatggct	ctcagttgt gccgctgacc	1560
agcctgcggg tgctggacct	gtcccacaac aagctggacc	tgtatcacgg gcgctcggtc	1620
acggagctgc cgccgcctgga	agcaactggac ctcagctaca	atagccagcc ctttaccatg	1680
cagggtgtgg gccacaacct	cagttcgtg gcccagctgc	ccgcccgtcg ctacccatc	1740
ctggcgcaca atgacatcca	tagccgagtg tcccagcagc	tctgttagcgc ctcactgtgc	1800
gccctggact tttagccgaa	cgtatctgagc cggatgtggg	ctgagggaga cctctatctc	1860
cgcttottcc aaggcctaag	aaggcctaag aaggcctaag	tggctggacc tgtcccagaa ccacccgtc	1920
accctcctgc cacgtgcctt	ggacaacctc cccaaaagcc	tgaagcatct gcataccgt	1980
gacaataacc tggccttctt	caactggagc agctgaccc	tcctgccccaa gctggaaacc	2040
ctggacttgg ctggaaacca	gctgaaggcc ctaagcaatg	gcagcctgcc atctggcacc	2100
cagctgcggg ggctggaccc	cagtggcaac agcatcggt	ttgtgaaccc tggcttctt	2160
gccctggcca agcagttaga	agagctcaac ctcagcgc	atgcccctcaa gacagtggag	2220
ccctcctggg ttggctcgat	ggtggggcaac ctgaaagtcc	tagacgtgag cgccaaaccct	2280
ctgcactgtg cctgtggggc	gaccttcgtg ggcttcctgc	tggaggtaca ggctgcccgt	2340
cctgggctgc ccagccgcgt	caagtgtggc agtccgggc	agctccaggg ccatacgatc	2400
tttgcgcaag acctgcgcct	ctgcctggat gagaccctct	cgtgaaactg ttttggc	2457

<210> 9
<211> 1029
<212> PRT
<213> Bos taurus

<400> 9

Met Gly Pro Tyr Cys Ala Pro His Pro Leu Ser Leu Leu Val Gln Ala
1 5 10 15

Ala Ala Leu Ala Ala Ala Leu Ala Glu Gly Thr Leu Pro Ala Phe Leu
20 25 30

Pro Cys Glu Leu Gln Pro His Gly Gln Val Asp Cys Asn Trp Leu Phe
35 40 45

Leu Lys Ser Val Pro His Phe Ser Ala Gly Ala Pro Arg Ala Asn Val
50 55 60

Thr Ser Leu Ser Leu Ile Ser Asn Arg Ile His His Leu His Asp Ser
65 70 75 80

Asp Phe Val His Leu Ser Asn Leu Arg Val Leu Asn Leu Lys Trp Asn
85 90 95

Cys Pro Pro Ala Gly Leu Ser Pro Met His Phe Pro Cys Arg Met Thr
100 105 110

Ile Glu Pro Asn Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu Asn
115 120 125

Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Ala Leu Pro Ser Ser Leu
130 135 140

Val Ser Leu Ser Leu Ser His Thr Ser Ile Leu Val Leu Gly Pro Thr
145 150 155 160

His Phe Thr Gly Leu His Ala Leu Arg Phe Leu Tyr Met Asp Gly Asn
165 170 175

Cys Tyr Tyr Met Asn Pro Cys Pro Arg Ala Leu Glu Val Ala Pro Gly
180 185 190

Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr Asn
195 200 205

Asn Leu Thr Glu Val Pro Arg Arg Leu Pro Pro Ser Leu Asp Thr Leu
210 215 220

Leu Leu Ser Tyr Asn His Ile Val Thr Leu Ala Pro Glu Asp Leu Ala
225 230 235 240

Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg Arg
245 250 255

Cys Asp His Ala Arg Asn Pro Cys Arg Glu Cys Pro Lys Asn Phe Pro
260 265 270

Lys Leu His Pro Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly Leu
275 280 285

Val Leu Lys Asp Ser Ser Leu Tyr Lys Leu Glu Lys Asp Trp Phe Arg
290 295 300

Gly Leu Gly Arg Leu Gln Val Leu Asp Leu Ser Glu Asn Phe Leu Tyr

305	310	315	320
Asp Tyr Ile Thr Lys Thr Thr Ile Phe Asn Asp Leu Thr Gln Leu Arg			
325		330	335
Arg Leu Asn Leu Ser Phe Asn Tyr His Lys Lys Val Ser Phe Ala His			
340		345	350
Leu His Leu Ala Ser Ser Phe Gly Ser Leu Val Ser Leu Glu Lys Leu			
355	360	365	
Asp Met His Gly Ile Phe Phe Arg Ser Leu Thr Asn Ile Thr Leu Gln			
370	375	380	
Ser Leu Thr Arg Leu Pro Lys Leu Gln Ser Leu His Leu Gln Leu Asn			
385	390	395	400
Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Ala Phe Pro Ser Leu			
405		410	415
Leu Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ala Thr Pro			
420	425		430
Ala Ala Ala Leu Gly Glu Val Asp Ser Arg Val Glu Val Trp Arg Leu			
435	440	445	
Pro Arg Gly Leu Ala Pro Gly Pro Leu Asp Ala Val Ser Ser Lys Asp			
450	455	460	
Phe Met Pro Ser Cys Asn Leu Asn Phe Thr Leu Asp Leu Ser Arg Asn			
465	470	475	480
Asn Leu Val Thr Ile Gln Gln Glu Met Phe Thr Arg Leu Ser Arg Leu			
485	490	495	
Gln Cys Leu Arg Leu Ser His Asn Ser Ile Ser Gln Ala Val Asn Gly			
500	505	510	
Ser Gln Phe Val Pro Leu Thr Ser Leu Arg Val Leu Asp Leu Ser His			
515	520	525	
Asn Lys Leu Asp Leu Tyr His Gly Arg Ser Phe Thr Glu Leu Pro Gln			
530	535	540	

Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Ser Met Gln
545 550 555 560

Gly Val Gly His Asn Leu Ser Phe Val Ala Gln Leu Pro Ser Leu Arg
565 570 575

Tyr Leu Ser Leu Ala His Asn Gly Ile His Ser Arg Val Ser Gln Lys
580 585 590

Leu Ser Ser Ala Ser Leu Arg Ala Leu Asp Phe Ser Gly Asn Ser Leu
595 600 605

Ser Gln Met Trp Ala Glu Gly Asp Leu Tyr Leu Cys Phe Phe Lys Gly
610 615 620

Leu Arg Asn Leu Val Gln Leu Asp Leu Ser Glu Asn His Leu His Thr
625 630 635 640

Leu Leu Pro Arg His Leu Asp Asn Leu Pro Lys Ser Leu Arg Gln Leu
645 650 655

Arg Leu Arg Asp Asn Asn Leu Ala Phe Phe Asn Trp Ser Ser Leu Thr
660 665 670

Val Leu Pro Arg Leu Glu Ala Leu Asp Leu Ala Gly Asn Gln Leu Lys
675 680 685

Ala Leu Ser Asn Gly Ser Leu Pro Pro Gly Ile Arg Leu Gln Lys Leu
690 695 700

Asp Val Ser Ser Asn Ser Ile Gly Phe Val Ile Pro Gly Phe Phe Val
705 710 715 720

Arg Ala Thr Arg Leu Ile Glu Leu Asn Leu Ser Ala Asn Ala Leu Lys
725 730 735

Thr Val Asp Pro Ser Trp Phe Gly Ser Leu Ala Gly Thr Leu Lys Ile
740 745 750

Leu Asp Val Ser Ala Asn Pro Leu His Cys Ala Cys Gly Ala Ala Phe
755 760 765

Val Asp Phe Leu Leu Glu Arg Gln Glu Ala Val Pro Gly Leu Ser Arg
770 775 780

Arg Val Thr Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg Ser Ile Phe
785 790 795 800

Thr Gln Asp Leu Arg Leu Cys Leu Asp Glu Thr Leu Ser Leu Asp Cys
805 810 815

Phe Gly Leu Ser Leu Leu Met Val Ala Leu Gly Leu Ala Val Pro Met
820 825 830

Leu His His Leu Cys Gly Trp Asp Leu Trp Tyr Cys Phe His Leu Cys
835 840 845

Leu Ala His Leu Pro Arg Arg Arg Arg Gln Arg Gly Glu Asp Thr Leu
850 855 860

Leu Tyr Asp Ala Val Val Phe Asp Lys Val Gln Ser Ala Val Ala
865 870 875 880

Asp Trp Val Tyr Asn Glu Leu Arg Val Gln Leu Glu Glu Arg Arg Gly
885 890 895

Arg Arg Ala Leu Arg Leu Cys Leu Glu Glu Arg Asp Trp Leu Pro Gly
900 905 910

Lys Thr Leu Phe Glu Asn Leu Trp Ala Ser Val Tyr Ser Ser Arg Lys
915 920 925

Thr Met Phe Val Leu Asp His Thr Asp Arg Val Ser Gly Leu Leu Arg
930 935 940

Ala Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu Asp Arg Lys Asp
945 950 955 960

Val Val Val Leu Val Ile Leu Arg Pro Ala Ala Tyr Arg Ser Arg Tyr
965 970 975

Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val Leu Leu Trp Pro
980 985 990

His Gln Pro Ser Gly Gln Gly Ser Phe Trp Ala Asn Leu Gly Ile Ala
995 1000 1005

Leu Thr Arg Asp Asn Arg His Phe Tyr Asn Arg Asn Phe Cys Arg
1010 1015 1020

Gly Pro Thr Thr Ala Glu
1025

<210> 10
<211> 818
<212> PRT
<213> Bos taurus

<400> 10

Met Gly Pro Tyr Cys Ala Pro His Pro Leu Ser Leu Leu Val Gln Ala
1 5 10 15

Ala Ala Leu Ala Ala Ala Leu Ala Glu Gly Thr Leu Pro Ala Phe Leu
20 25 30

Pro Cys Glu Leu Gln Pro His Gly Gln Val Asp Cys Asn Trp Leu Phe
35 40 45

Leu Lys Ser Val Pro His Phe Ser Ala Gly Ala Pro Arg Ala Asn Val
50 55 60

Thr Ser Leu Ser Leu Ile Ser Asn Arg Ile His His Leu His Asp Ser
65 70 75 80

Asp Phe Val His Leu Ser Asn Leu Arg Val Leu Asn Leu Lys Trp Asn
85 90 95

Cys Pro Pro Ala Gly Leu Ser Pro Met His Phe Pro Cys Arg Met Thr
100 105 110

Ile Glu Pro Asn Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu Asn
115 120 125

Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Ala Leu Pro Ser Ser Leu
130 135 140

Val Ser Leu Ser Leu Ser His Thr Ser Ile Leu Val Leu Gly Pro Thr
145 150 155 160

His Phe Thr Gly Leu His Ala Leu Arg Phe Leu Tyr Met Asp Gly Asn
165 170 175

Cys Tyr Tyr Met Asn Pro Cys Pro Arg Ala Leu Glu Val Ala Pro Gly
180 185 190

Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr Asn
195 200 205

Asn Leu Thr Glu Val Pro Arg Arg Leu Pro Pro Ser Leu Asp Thr Leu
210 215 220

Leu Leu Ser Tyr Asn His Ile Val Thr Leu Ala Pro Glu Asp Leu Ala
225 230 235 240

Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg Arg
245 250 255

Cys Asp His Ala Arg Asn Pro Cys Arg Glu Cys Pro Lys Asn Phe Pro
260 265 270

Lys Leu His Pro Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly Leu
275 280 285

Val Leu Lys Asp Ser Ser Leu Tyr Lys Leu Glu Lys Asp Trp Phe Arg
290 295 300

Gly Leu Gly Arg Leu Gln Val Leu Asp Leu Ser Glu Asn Phe Leu Tyr
305 310 315 320

Asp Tyr Ile Thr Lys Thr Ile Phe Asn Asp Leu Thr Gln Leu Arg
325 330 335

Arg Leu Asn Leu Ser Phe Asn Tyr His Lys Lys Val Ser Phe Ala His
340 345 350

Leu His Leu Ala Ser Ser Phe Gly Ser Leu Val Ser Leu Glu Lys Leu
355 360 365

Asp Met His Gly Ile Phe Phe Arg Ser Leu Thr Asn Ile Thr Leu Gln
370 375 380

Ser Leu Thr Arg Leu Pro Lys Leu Gln Ser Leu His Leu Gln Leu Asn
385 390 395 400

Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Ala Phe Pro Ser Leu
405 410 415

Leu Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ala Thr Pro

420

425

430

Ala Ala Ala Leu Gly Glu Val Asp Ser Arg Val Glu Val Trp Arg Leu
435 440 445

Pro Arg Gly Leu Ala Pro Gly Pro Leu Asp Ala Val Ser Ser Lys Asp
450 455 460

Phe Met Pro Ser Cys Asn Leu Asn Phe Thr Leu Asp Leu Ser Arg Asn
465 470 475 480

Asn Leu Val Thr Ile Gln Gln Glu Met Phe Thr Arg Leu Ser Arg Leu
485 490 495

Gln Cys Leu Arg Leu Ser His Asn Ser Ile Ser Gln Ala Val Asn Gly
500 505 510

Ser Gln Phe Val Pro Leu Thr Ser Leu Arg Val Leu Asp Leu Ser His
515 520 525

Asn Lys Leu Asp Leu Tyr His Gly Arg Ser Phe Thr Glu Leu Pro Gln
530 535 540

Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Ser Met Gln
545 550 555 560

Gly Val Gly His Asn Leu Ser Phe Val Ala Gln Leu Pro Ser Leu Arg
565 570 575

Tyr Leu Ser Leu Ala His Asn Gly Ile His Ser Arg Val Ser Gln Lys
580 585 590

Leu Ser Ser Ala Ser Leu Arg Ala Leu Asp Phe Ser Gly Asn Ser Leu
595 600 605

Ser Gln Met Trp Ala Glu Gly Asp Leu Tyr Leu Cys Phe Phe Lys Gly
610 615 620

Leu Arg Asn Leu Val Gln Leu Asp Leu Ser Glu Asn His Leu His Thr
625 630 635 640

Leu Leu Pro Arg His Leu Asp Asn Leu Pro Lys Ser Leu Arg Gln Leu
645 650 655

Arg Leu Arg Asp Asn Asn Leu Ala Phe Phe Asn Trp Ser Ser Leu Thr
 660 665 670

Val Leu Pro Arg Leu Glu Ala Leu Asp Leu Ala Gly Asn Gln Leu Lys
 675 680 685

Ala Leu Ser Asn Gly Ser Leu Pro Pro Gly Ile Arg Leu Gln Lys Leu
 690 695 700

Asp Val Ser Ser Asn Ser Ile Gly Phe Val Ile Pro Gly Phe Phe Val
 705 710 715 720

Arg Ala Thr Arg Leu Ile Glu Leu Asn Leu Ser Ala Asn Ala Leu Lys
 725 730 735

Thr Val Asp Pro Ser Trp Phe Gly Ser Leu Ala Gly Thr Leu Lys Ile
 740 745 750

Leu Asp Val Ser Ala Asn Pro Leu His Cys Ala Cys Gly Ala Ala Phe
 755 760 765

Val Asp Phe Leu Leu Glu Arg Gln Glu Ala Val Pro Gly Leu Ser Arg
 770 775 780

Arg Val Thr Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg Ser Ile Phe
 785 790 795 800

Thr Gln Asp Leu Arg Leu Cys Leu Asp Glu Thr Leu Ser Leu Asp Cys
 805 810 815

Phe Gly

<210> 11
<211> 3191
<212> DNA
<213> Bos taurus

<400> 11		
gggaagtggg cgccaagcat cttccctgc agtcgttcc caacctgccc gccagaccct		60
ctggagaagc cgcattccct gtcatggcc cctactgtgc cccgcacccc ctttctctcc		120
tgggtcgaggc ggcggcactg gcagcggccc tggccgaggg caccctgttgc ctgttccgtc		180
cctgtgagct ccagccccat ggtcagggtgg actgcaactg gctgttccctg aagtctgtgc		240
cgcacttttc ggctggagcc ccccgggcca atgtcaccag cctctcotta atctccaacc		300

gcatccacca cttgcacatgac tctgacttcg tccacactgtc caacacctgcgg gtcctcaacc	360
tcaaggtaaa ctggcccgccg gcccggcctca gccccatgca cttccctgc cgtatgacca	420
tcgagcccaa caccccttcg gctgtgccc ccctggagga gctgaacctg agctacaacg	480
gcatcacgac cgtgcctgac ctgcccagtt ccctcgtgtc cctgtcgctg agccacacca	540
gcatccctggt gcttagggcccc accccactca ccggcctgca cggccctgcgc tttctgtaca	600
tggacggcaa ctgctactac atgaacccct gcccggggc cctggaggtg gccccaggcg	660
ccctccctcg cctggggcaac ctcacgcacc tgtcgctcaa gtacaacaac ctcacggagg	720
tgccccggcg cctgcccccc agcctggaca ccctgctgtc gtcctacaac cacattgtca	780
ccctggcacc cgaggacactg gccaacctga ctggccctgcg cgtgcttgcgt gtgggtggga	840
actgccggcg ctgcgaccat gcccgaacc cctgcaggga gtgcccggaa aacttccccca	900
agctgcaccc tgacacccctc agtcacactga gcccgcctga aggccctgggt ttgaaggaca	960
gttctctcta caaaacttagag aaagattggt tcogcggccct gggcaggctc caagtgcgtc	1020
acctgagtga gaacttcctc tatgactaca tcaccaagac caccatctc aacgacactga	1080
cccagctgcg cagactcaac ctgtccttca attaccacaa gaaggtgtcc ttcgcccacc	1140
tgcacccatgc gtccctccctt gggagcttgg tgcccttggaa gaagctggac atgcacggca	1200
tcttcttccg ctccctcacc aacatcacgc tccagtcgtc gaccggctg cccaaagctcc	1260
agagtcgtca tctgcagctg aacttcatca accaggccca gtcagcatc tttggggcct	1320
tccccggccct gctcttcgtg gacctgtcgg acaacccgt cat cagcggagcc gcgacgccc	1380
cggccggccct gggggaggtg gacagcaggg tgaaagtctg gcgattggcc agggggctcg	1440
ctccaggccccc gctggacgccc gtcagctcaa aggacttcat gccaagctgc aacctcaact	1500
tcaccccttggaa cctgtcacgg aacaacctgg tgacaatcca gcaagagatg tttacccgccc	1560
tctcccgccct ccagtgcctg cgcctgagcc acaacagcat ctcgcaggcg gttaatggct	1620
cccagttcgt gccgctgacc agcctgcgag tgctcgaccc gtcccacaac aagctggacc	1680
tgtaccatgg gcgcgtcattc acggagctgc cgcagctggaa ggcactggac ctcagctaca	1740
acagccagcc cttcagcatg cagggcgtgg gccacaacct cagcttcgtg gcccagctgc	1800
cctccctgcg ctacctcagc cttgcgcaca atggcatcca cagccgcgtg tcacagaagc	1860
tcagcagcgc ctcgttgcgc gcccctggact tcagcggcaa ctccctgagc cagatgtggg	1920
ccgaggggaga cctctatctc tgcttttca aaggcttgag gaacctggtc cagctggacc	1980
tgtccgagaa ccatctgcac accctcctgc ctcgtcaccc ggacaacctg cccaaagagcc	2040

tgccggcagct gcgtctccgg gacaataacc tggccttctt caactggagc agcctgaccg	2100
tcctgccccg gctggaagcc ctggatctgg cagggaaacca gctgaaggcc ctgagcaacg	2160
gcagccctgcc gcctggcatc cggctccaga agctggacgt gagcagcaac agcatcggt	2220
tcgtgatccc cggcttcttc gtccgcgcga ctccgctgat agagcttaac ctcagcgcca	2280
atgccctgaa gacagtggat ccctcctggt tcggttcctt agcagggacc ctgaaaatcc	2340
tagacgtgag cgccaaacccg ctccactgag cctgcggggc ggcctttgtg gacttcctgc	2400
tggagagaca ggaggccgtg cccgggtgt ccaggcgcgt cacatgtggc agtccgggccc	2460
agctccaggc cccgagcatc ttcacacagg acctgcgcct ctgcctggat gagaccctct	2520
ccttggactg ctttggcctc tcactgctaa tggtggcgct gggcctggca gtgcccattgc	2580
tgcaccaccc ctgtggctgg gacctctggt actgcttcca cctgtgtctg gcccatttgc	2640
cccgacggcg gccgcaggcgg ggcgaggaca ccctgctcta tgatgccgtc gtggcttctg	2700
acaagggtgca gagtgcagtg gctgattggg tgtacaacga gctccgcgtg cagctggagg	2760
agcgccgggg gcgcggggcg ctccgcctct gcctggagga gcgagactgg ctccctggta	2820
agacgctctt cgagaacctg tgggcctcgg tctacagcag ccgcaagacc atgttcgtgc	2880
tggaccacac ggaccggggtc agcggcctcc tgcgcgcag cttcctgctg gcccaggcagc	2940
gcctgttggaa ggaccgcag gacgtcgtag tgctgggtat cctgcgcctcc gcccctatc	3000
ggtcccgcta cgtgcggctg cgccagcgcc tctgcgcaca gagcgtcctc ctctggcccc	3060
accagcccaag tggccagggt agtttctggg ccaacctggg catagccctg accagggaca	3120
accgtcaatt ctataaccgg aacttctgcc ggggccccac gacagccgaa tagcacagag	3180
tgactgccccca g	3191

<210> 12
<211> 2454
<212> DNA
<213> Bos taurus

<400> 12 atggcccccactgtgccccgcacccctt tctctcctgg tgcaggcggc ggcactggca	60
gcggccctgg cccggggcac cctgcctgac ttactgcctt gtgagctcca gccccatgg	120
caggtggact gcaactggct gttcctgaag tctgtgcgc accttttggc tggagcccc	180
cgggccaatg tcaccaggct ctccttaatc tccaaaccgca tccaccactt gcatgactct	240
gacttcgtcc acctgtccaa cctgcgggtc ctcaacctca agtggaaactg cccgcggcc	300
ggcctcagcc ccatgcactt cccctgcccgt atgaccatcg agcccaaacac cttcctggct	360

gtgcccaccc tggaggagct gaacctgagc tacaacggca tcacgaccgt gcctgccctg	420
cccagttccc tcgtgtccct gtcgctgagc cacaccagca tcctggtgc aggccccacc	480
cacttcaccc gcctgcacgc cctgcgcctt ctgtacatgg acggcaactg ctactacatg	540
aacccctgcc cgccggccct ggaggtggcc ccaggcgccc tcctggcct gggcaacctc	600
acgcacctgt cgctcaagta caacaacctc acggaggtgc cccgcccct gccccccagc	660
ctggacaccc tgctgctgtc ctacaaccac attgtcaccc tggcacccga ggacctggcc	720
aacctgactg ccctgcgcgt gcttgacgtg ggtggaaact gccgcccgtg cgaccatgcc	780
cgcaacccct gcagggagtg cccaaagaac ttccccaaagc tgcaccctga caccttcagt	840
cacctgagcc gcctcgaagg cctgggtttg aaggacagtt ctctctacaa actagagaaa	900
gattggttcc gcggcctggg caggctccaa gtgctcgacc tgagtgagaa cttcctctat	960
gactacatca ccaagaccac catcttcaac gacctgaccc agctgcgcag actcaacctg	1020
tccttcaatt accacaagaa ggtgtcttc gcccacctgc acctagcgtc ctcccttggg	1080
agtctggtgt ccctggagaa gctggacatg cacggcatct tcttccgctc cctcaccaac	1140
atcacgctcc agtcgctgac ccggctgccc aagctccaga gtctgcatact gcagctgaac	1200
ttcatcaacc aggcccagct cagcatctt gggccttcc cgagcctgct cttcgtggac	1260
ctgtcggaca accgcatacg cggagccgcg acgccagcgg ccggccttggg ggaggtggac	1320
agcaggggtgg aagtctggcg attgcccagg ggcctcgctc caggcccgt ggacgcccgtc	1380
agctcaaagg acttcatgcc aagctgcaac ctcaacttca cttggacact gtcacggAAC	1440
aacctggta caatccagca agagatgttt acccgctct cccgcctcca gtgcctgcgc	1500
ctgagccaca acagcatctc gcagggcggtt aatggctccc agttcgtgcc gctgaccagc	1560
ctgcgagtgc tcgacctgtc ccacaacaag ctggacctgt accatggcg ctcattcacg	1620
gagctgccgc agctggaggc actggacctc agtacaaca gccagccctt cagcatgcag	1680
ggcgtggccc acaacctcag ctgcgtggcc cagctgcctt ccctgcgtca ctcagcctt	1740
gcmcacaatg gcatccacag ccgcgtgtca cagaagctca gcagcgcctc gttgcgcgc	1800
ctggacttca gcccacaactc cctgagccag atgtggcccg agggagacct ctatctgtc	1860
ttttcaaag gcttggagaa cctgggtccag ctggacctgt ccgagaacca tctgcacacc	1920
ctccctgcctc gtcacctgga caacctgccc aagagcctgc ggcagctgct tctccggac	1980
aataacctgg ctttcttcaa ctggagcagc ctgaccgtcc tgccccggct ggaagccctg	2040
gatctggcag gaaaccagct gaaggccctg agcaacggca gcctgccc tggcatccgg	2100
ctccagaagc tggacgtgag cagcaacagc atcggcttcg tgcacccgg cttcttcgtc	2160

cgcgcgactc ggctgataga gcttaacctc agcgccaatg ccctgaagac agtggatccc	2220
tcctggttcg gttccttagc agggaccctg aaaatcctag acgtgagcgc caacccgctc	2280
cactgcgcct gcggggcggc ctttgtggac ttccctgctgg agagacagga ggcctgtgcc	2340
gggctgtcca ggccgtcac atgtggcagt ccggccagc tccaggccg cagcatctc	2400
acacaggacc tgccctctg cctggatgag accctctcct tggactgctt tggc	2454

<210> 13
<211> 1031
<212> PRT
<213> Equus caballus

<400> 13

Met Gly Pro Cys His Gly Ala Leu Gln Pro Leu Ser Leu Leu Val Gln			
1	5	10	15
10	15		

Ala Ala Met Leu Ala Val Ala Leu Ala Gln Gly Thr Leu Pro Pro Phe			
20	25	30	
30			

Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp Leu			
35	40	45	
45			

Phe Leu Lys Ser Val Pro His Phe Ser Ala Ala Pro Arg Asp Asn			
50	55	60	
60			

Val Thr Ser Leu Ser Leu Leu Ser Asn Arg Ile His His Leu His Asp			
65	70	75	80
75	80		

Ser Asp Phe Ala Gln Leu Ser Asn Leu Gln Lys Leu Asn Leu Lys Trp			
85	90	95	
95			

Asn Cys Pro Pro Ala Gly Leu Ser Pro Met His Phe Pro Cys His Met			
100	105	110	
110			

Thr Ile Glu Pro Asn Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu			
115	120	125	
125			

Asn Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Ala Leu Pro Ser Ser			
130	135	140	
140			

Leu Val Ser Leu Ile Leu Ser Arg Thr Asn Ile Leu Gln Leu Asp Pro			
145	150	155	160
155	160		

Thr Ser Leu Thr Gly Leu His Ala Leu Arg Phe Leu Tyr Met Asp Gly
165 170 175

Asn Cys Tyr Tyr Lys Asn Pro Cys Gly Arg Ala Leu Glu Val Ala Pro
180 185 190

Gly Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr
195 200 205

Asn Asn Leu Thr Thr Val Pro Arg Ser Leu Pro Pro Ser Leu Glu Tyr
210 215 220

Leu Leu Leu Ser Tyr Asn His Ile Val Thr Leu Ala Pro Glu Asp Leu
225 230 235 240

Ala Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg
245 250 255

Arg Cys Asp His Ala Arg Asn Pro Cys Val Glu Cys Pro His Lys Phe
260 265 270

Pro Gln Leu His Ser Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly
275 280 285

Leu Val Leu Lys Asp Ser Ser Leu Tyr Gln Leu Asn Pro Arg Trp Phe
290 295 300

Arg Gly Leu Gly Asn Leu Thr Val Leu Asp Leu Ser Glu Asn Phe Leu
305 310 315 320

Tyr Asp Cys Ile Thr Lys Thr Lys Ala Phe Gln Gly Leu Ala Gln Leu
325 330 335

Arg Arg Leu Asn Leu Ser Phe Asn Tyr His Lys Lys Val Ser Phe Ala
340 345 350

His Leu Thr Leu Ala Pro Ser Phe Gly Ser Leu Leu Ser Leu Gln Glu
355 360 365

Leu Asp Met His Gly Ile Phe Phe Arg Ser Leu Ser Gln Lys Thr Leu
370 375 380

Gln Pro Leu Ala Arg Leu Pro Met Leu Gln Arg Leu Tyr Leu Gln Met
385 390 395 400

Asn Phe Ile Asn Gln Ala Gln Leu Gly Ile Phe Lys Asp Phe Pro Gly
405 410 415

Leu Arg Tyr Ile Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Val Glu
420 425 430

Pro Val Ala Thr Thr Gly Glu Val Asp Gly Gly Lys Lys Val Trp Leu
435 440 445

Thr Ser Arg Asp Leu Thr Pro Gly Pro Leu Asp Thr Pro Ser Ser Glu
450 455 460

Asp Phe Met Pro Ser Cys Lys Asn Leu Ser Phe Thr Leu Asp Leu Ser
465 470 475 480

Arg Asn Asn Leu Val Thr Val Gln Pro Glu Met Phe Ala Gln Leu Ser
485 490 495

Arg Leu Gln Cys Leu Arg Leu Ser His Asn Ser Ile Ser Gln Ala Val
500 505 510

Asn Gly Ser Gln Phe Val Pro Leu Thr Ser Leu Gln Val Leu Asp Leu
515 520 525

Ser His Asn Lys Leu Asp Leu Tyr His Gly Arg Ser Phe Thr Glu Leu
530 535 540

Pro Arg Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Ser
545 550 555 560

Met Arg Gly Val Gly His Asn Leu Ser Phe Val Ala Gln Leu Pro Thr
565 570 575

Leu Arg Tyr Leu Ser Leu Ala His Asn Gly Ile His Ser Arg Val Ser
580 585 590

Gln Gln Leu Cys Ser Thr Ser Leu Trp Ala Leu Asp Phe Ser Gly Asn
595 600 605

Ser Leu Ser Gln Met Trp Ala Glu Gly Asp Leu Tyr Leu Arg Phe Phe
610 615 620

Gln Gly Leu Arg Ser Leu Ile Arg Leu Asp Leu Ser Gln Asn Arg Leu
625 630 635 640

His Thr Leu Leu Pro Cys Thr Leu Gly Asn Leu Pro Lys Ser Leu Gln
645 650 655

Leu Leu Arg Leu Arg Asn Asn Tyr Leu Ala Phe Phe Asn Trp Ser Ser
660 665 670

Leu Thr Leu Leu Pro Asn Leu Glu Thr Leu Asp Leu Ala Gly Asn Gln
675 680 685

Leu Lys Ala Leu Ser Asn Gly Ser Leu Pro Ser Gly Thr Gln Leu Gln
690 695 700

Arg Leu Asp Val Ser Arg Asn Ser Ile Ile Phe Val Val Pro Gly Phe
705 710 715 720

Phe Ala Leu Ala Thr Arg Leu Arg Glu Leu Asn Leu Ser Ala Asn Ala
725 730 735

Leu Arg Thr Glu Glu Pro Ser Trp Phe Gly Phe Leu Ala Gly Ser Leu
740 745 750

Glu Val Leu Asp Val Ser Ala Asn Pro Leu His Cys Ala Cys Gly Ala
755 760 765

Ala Phe Val Asp Phe Leu Leu Gln Val Gln Ala Ala Val Pro Gly Leu
770 775 780

Pro Ser Arg Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg Ser
785 790 795 800

Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Lys Ser Leu Ser Trp
805 810 815

Asp Cys Phe Gly Leu Ser Leu Leu Val Val Ala Leu Gly Leu Ala Met
820 825 830

Pro Met Leu His His Leu Cys Gly Trp Asp Leu Trp Tyr Cys Phe His
835 840 845

Leu Gly Leu Ala Trp Leu Pro Arg Arg Gly Trp Gln Arg Gly Ala Asp
850 855 860

Ala Leu Ser Tyr Asp Ala Phe Val Val Phe Asp Lys Ala Gln Ser Ala

865

870

875

880

Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Val Arg Leu Glu Glu Arg
885 890 895

Arg Gly Arg Arg Ala Leu Arg Leu Cys Leu Glu Glu Arg Asp Trp Leu
900 905 910

Pro Gly Lys Thr Leu Phe Glu Asn Leu Trp Ala Ser Val Tyr Ser Ser
915 920 925

Arg Lys Met Leu Phe Val Leu Ala His Thr Asp Gln Val Ser Gly Leu
930 935 940

Leu Arg Ala Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu Asp Arg
945 950 955 960

Lys Asp Val Val Val Leu Val Ile Leu Ser Pro Asp Ala Arg Arg Ser
965 970 975

Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val Leu Phe
980 985 990

Trp Pro His Gln Pro Ser Gly Gln Arg Ser Phe Trp Ala Gln Leu Gly
995 1000 1005

Met Ala Leu Thr Arg Asp Asn Arg His Phe Tyr Asn Gln Asn Phe
1010 1015 1020

Cys Arg Gly Pro Thr Met Ala Glu
1025 1030

<210> 14
<211> 820
<212> PRT
<213> Equus caballus

<400> 14

Met Gly Pro Cys His Gly Ala Leu Gln Pro Leu Ser Leu Leu Val Gln
1 5 10 15

Ala Ala Met Leu Ala Val Ala Leu Ala Gln Gly Thr Leu Pro Pro Phe
20 25 30

Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp Leu

35

40

45

Phe Leu Lys Ser Val Pro His Phe Ser Ala Ala Ala Pro Arg Asp Asn
50 55 60

Val Thr Ser Leu Ser Leu Leu Ser Asn Arg Ile His His Leu His Asp
65 70 75 80

Ser Asp Phe Ala Gln Leu Ser Asn Leu Gln Lys Leu Asn Leu Lys Trp
85 90 95

Asn Cys Pro Pro Ala Gly Leu Ser Pro Met His Phe Pro Cys His Met
100 105 110

Thr Ile Glu Pro Asn Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu
115 120 125

Asn Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Ala Leu Pro Ser Ser
130 135 140

Leu Val Ser Leu Ile Leu Ser Arg Thr Asn Ile Leu Gln Leu Asp Pro
145 150 155 160

Thr Ser Leu Thr Gly Leu His Ala Leu Arg Phe Leu Tyr Met Asp Gly
165 170 175

Asn Cys Tyr Tyr Lys Asn Pro Cys Gly Arg Ala Leu Glu Val Ala Pro
180 185 190

Gly Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr
195 200 205

Asn Asn Leu Thr Thr Val Pro Arg Ser Leu Pro Pro Ser Leu Glu Tyr
210 215 220

Leu Leu Leu Ser Tyr Asn His Ile Val Thr Leu Ala Pro Glu Asp Leu
225 230 235 240

Ala Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg
245 250 255

Arg Cys Asp His Ala Arg Asn Pro Cys Val Glu Cys Pro His Lys Phe
260 265 270

Pro Gln Leu His Ser Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly
275 280 285

Leu Val Leu Lys Asp Ser Ser Leu Tyr Gln Leu Asn Pro Arg Trp Phe
290 295 300

Arg Gly Leu Gly Asn Leu Thr Val Leu Asp Leu Ser Glu Asn Phe Leu
305 310 315 320

Tyr Asp Cys Ile Thr Lys Thr Lys Ala Phe Gln Gly Leu Ala Gln Leu
325 330 335

Arg Arg Leu Asn Leu Ser Phe Asn Tyr His Lys Lys Val Ser Phe Ala
340 345 350

His Leu Thr Leu Ala Pro Ser Phe Gly Ser Leu Leu Ser Leu Gln Glu
355 360 365

Leu Asp Met His Gly Ile Phe Phe Arg Ser Leu Ser Gln Lys Thr Leu
370 375 380

Gln Pro Leu Ala Arg Leu Pro Met Leu Gln Arg Leu Tyr Leu Gln Met
385 390 395 400

Asn Phe Ile Asn Gln Ala Gln Leu Gly Ile Phe Lys Asp Phe Pro Gly
405 410 415

Leu Arg Tyr Ile Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Val Glu
420 425 430

Pro Val Ala Thr Thr Gly Glu Val Asp Gly Gly Lys Lys Val Trp Leu
435 440 445

Thr Ser Arg Asp Leu Thr Pro Gly Pro Leu Asp Thr Pro Ser Ser Glu
450 455 460

Asp Phe Met Pro Ser Cys Lys Asn Leu Ser Phe Thr Leu Asp Leu Ser
465 470 475 480

Arg Asn Asn Leu Val Thr Val Gln Pro Glu Met Phe Ala Gln Leu Ser
485 490 495

Arg Leu Gln Cys Leu Arg Leu Ser His Asn Ser Ile Ser Gln Ala Val
500 505 510

Asn Gly Ser Gln Phe Val Pro Leu Thr Ser Leu Gln Val Leu Asp Leu
515 520 525

Ser His Asn Lys Leu Asp Leu Tyr His Gly Arg Ser Phe Thr Glu Leu
530 535 540

Pro Arg Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Ser
545 550 555 560

Met Arg Gly Val Gly His Asn Leu Ser Phe Val Ala Gln Leu Pro Thr
565 570 575

Leu Arg Tyr Leu Ser Leu Ala His Asn Gly Ile His Ser Arg Val Ser
580 585 590

Gln Gln Leu Cys Ser Thr Ser Leu Trp Ala Leu Asp Phe Ser Gly Asn
595 600 605

Ser Leu Ser Gln Met Trp Ala Glu Gly Asp Leu Tyr Leu Arg Phe Phe
610 615 620

Gln Gly Leu Arg Ser Leu Ile Arg Leu Asp Leu Ser Gln Asn Arg Leu
625 630 635 640

His Thr Leu Leu Pro Cys Thr Leu Gly Asn Leu Pro Lys Ser Leu Gln
645 650 655

Leu Leu Arg Leu Arg Asn Asn Tyr Leu Ala Phe Phe Asn Trp Ser Ser
660 665 670

Leu Thr Leu Leu Pro Asn Leu Glu Thr Leu Asp Leu Ala Gly Asn Gln
675 680 685

Leu Lys Ala Leu Ser Asn Gly Ser Leu Pro Ser Gly Thr Gln Leu Gln
690 695 700

Arg Leu Asp Val Ser Arg Asn Ser Ile Ile Phe Val Val Pro Gly Phe
705 710 715 720

Phe Ala Leu Ala Thr Arg Leu Arg Glu Leu Asn Leu Ser Ala Asn Ala
725 730 735

Leu Arg Thr Glu Glu Pro Ser Trp Phe Gly Phe Leu Ala Gly Ser Leu
740 745 750

Glu Val Leu Asp Val Ser Ala Asn Pro Leu His Cys Ala Cys Gly Ala
 755 760 765

Ala Phe Val Asp Phe Leu Leu Gln Val Gln Ala Ala Val Pro Gly Leu
 770 775 780

Pro Ser Arg Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg Ser
 785 790 795 800

Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Lys Ser Leu Ser Trp
 805 810 815

Asp Cys Phe Gly
 820

<210> 15
 <211> 3391

<212> DNA

<213> Equus caballus

<400> 15	
ctctgttctc tgagctgttg ccgcgtgaag ggactgcatc cacaaggat cttccatcg	60
agctgctgcc cagtgtgccca gctggaccct ctggatcatc tccccatccc tgtcatggc	120
ccttgccatg gtgccctgca gccccatgtct ctccatggc aggcggccat gctggccgt	180
gctctggccc aaggcacccct gcctcccttc ctgcctgtg agctccatcc ccacggccgt	240
gtgaactgca actggctgtt cctgaagtcc gtgcctact tctcagcagc agcaccccg	300
gacaatgtca ccagccttcc ttgtcttcc aaccgcattcc accacccatca cgactccgac	360
tttgcacaaac tgcacccatgc accatcgatc ccaacacttt cttggctgt	420
ctcagcccca tgcacccatgc accatcgatc ccaacacttt cttggctgt	480
cccacccatgg aggagctgaa cctgagctac aacggcatca cgactgtgcc tgcctggccc	540
agctccctcg tgcacccatgc accaacatcc tgcacccatgc cccacccatgc	600
ctcactggcc tgcacccatgc accatcgatc ccaacacttt cttggctgt	660
ccctgcggcc gggccctggaa ggtggccccc ggcgcctcc ttggccctgg caacccatcc	720
cacctgtcac tcaagtacaa caacccatcc acggatggccc gcagccatgcc ccctggccat	780
gagtaactgc tggatgtccata caaccacatt gtcacccatgg cacctgatggca cctggccat	840
ctgactgccc tgcgtgtgtcgat cgatgtgggt ggaaactgccc ggcgcgtgtga ccatgcacgc	900
aacccctgccc tggatgtccata caaccacatt gtcacccatgg cacctgatggca cctggccac	960

ctaagccgc	tagaaggcct	cgtgttgaag	gatagttctc	tctaccagct	gaaccccaga	1020
tggttccgt	gcctggcaa	cctcacagt	ctcgacctga	gtgagaactt	cctctacgac	1080
tgcacatcca	aaaccaaggc	attccagggc	ctggcccagc	tgcgaagact	caacttgtcc	1140
ttcaattacc	ataagaaggt	gtccttcg	cacctgacgc	tggcaccctc	cttcgggagc	1200
ctgctctcc	tgcaggaact	ggacatgcat	ggcatcttct	tccgctact	cagccagaag	1260
acgctccagc	cactggcccg	cctgcccatt	ctccagcg	tgtatctgca	gatgaacttc	1320
atcaaccagg	cccagctcg	catcttaag	gacttccctg	gtctgcgta	catagacctg	1380
tcagacaacc	gcatcagtgg	agctgtggag	ccggtgccca	ccacagggga	ggtggatggt	1440
ggaaagaagg	tctggctgac	atccaggac	ctca	ccccactgga	caccccccagc	1500
tctgaggact	tcatgccaag	ctgcaagaac	ctcagcttca	ccttggac	gtcacggAAC	1560
aacctggtaa	cagtccagcc	agagatgtt	gcccagctt	cgcgccttca	gtgcgcgc	1620
ctgagccaca	acagcatctc	gcaggcgg	aatggctac	agttcg	actgaccagc	1680
ctgcagg	tggac	ccataacaaa	ctggac	accatggcg	ctcg	1740
gagctgccc	gactggaggc	cctggac	agctacaaca	gccagcc	cagoatgcgg	1800
ggtgtggcc	acaac	ctt	tgcc	ccctgcgta	cctcagcctg	1860
gcacacaatg	gcatccacag	ccgtgtgt	cagc	agc	gctgtggcc	1920
ctggacttca	gccc	caattc	cctgagcc	atgtgg	agggagac	1980
ttcttccaag	gcctgagaag	ccta	atccgg	ctagac	cccagaatcg	2040
ctcctgccc	cat	gac	cc	cc	tctcgtaac	2100
aattacctgg	cctt	tttca	ttgg	gagc	tgccaa	2160
gacctggctg	gaaacc	aggc	gtct	ggca	ggaaacc	2220
ctccagaggc	tggac	gtc	cag	atc	atcc	2280
ctggccacga	ggct	g	gaga	caac	ctc	2340
tcctgg	ttt	c	cc	tt	cc	2400
ca	c	c	tt	gg	cc	2460
gg	tc	tc	cc	gg	cc	2520
gcaca	gg	cc	cc	cc	cc	2580
tt	gg	cc	cc	gg	gg	2640
ctctgg	tt	gg	cc	cc	gg	2700

gcggatgcc	ttagctatga	tgccttgtg	gtctcgaca	aggcacagag	cgcagtggcc	2760
gactgggtgt	acaatgaact	gcgggtgcgg	ctagaggagc	gccgtggcg	ccggcgctc	2820
cgcctgtgtc	tggaggagcg	tgactggcta	cctggcaaga	cgctgttca	aaacctgtgg	2880
gcctcagtct	acagcagccg	caagatgctg	tttgtgctgg	cccacacgga	ccaggtcagt	2940
ggcctttgc	gtgccagctt	cctgctggcc	cagcagcgtc	tgctggagga	ccgcaaggac	3000
gttgtggtc	tggtaatcct	gagccctgac	gcccccggtt	cccgtaacgt	gcggctgcgc	3060
cagcgctct	gcccgcagag	tgtccttttc	tggccccacc	agcctagtgg	ccagcgcagc	3120
ttctgggccc	agctaggcat	ggccctgacc	agggacaacc	gccacttcta	taaccagaac	3180
ttctgcggg	gcccgcacgt	ggctgagtag	cacagagtga	cagcctggca	tgtacaaccc	3240
ccagccctga	ccttgccct	ctgcctatga	tgcccagtct	gcctcactct	gtgacgcccc	3300
tgctctgcct	cgcgcacccct	cacccctggc	atacagcagg	caactaataa	atgccactgg	3360
caggccaaac	agccaaaaaaaaa	aaaaaaaaaa	a			3391

<210> 16
<211> 2460
<212> DNA
<213> Equus caballus

<400> 16						
atgggcacctt	gcatggtgc	cctgcagccc	ctgtctctcc	tggtgcaggc	ggccatgctg	60
gccgtggctc	tggcccaagg	caccctgcct	cccttcctgc	cctgtgagct	ccagccccac	120
ggcctggta	actgcaactg	gctgttctg	aagtccgtgc	cccacttctc	agcagcagca	180
ccccggaca	atgtcaccag	ccttccttg	ctctccaacc	gcatccacca	cctccacgac	240
tccgactttg	cccaactgtc	caacctgcag	aaactcaacc	tcaaattggaa	ctgcccggca	300
gccggcctca	gccccatgca	cttccctgc	cacatgacca	tcgagccaa	cacttcctg	360
gctgtaccca	ccctggagga	gctgaacctg	agctacaacg	gcatcacgac	tgtgcctgcc	420
ctgcccagct	ccctcggtc	cctgatcctg	agccgcacca	acatcctgca	gctagacccc	480
accagcctca	cgggcctgca	tgccctgcgc	ttccatatac	tggatggcaa	ctgctactac	540
aagaacccct	gccccggggc	cctggaggtg	gccccaggcg	ccctccttgg	cctggcaac	600
ctcaccacc	tgtcactcaa	gtacaacaac	ctcacaacgg	tgccccgcag	cctggccccc	660
agcctggagt	acctgctgtt	gtcctacaac	cacattgtca	ccctggcacc	tgaggacctg	720
gccaatctga	ctgcccctgca	tgtgctcgat	gtgggtggaa	actgccggcg	ctgtgaccat	780
gcacgcaacc	cctgcgtgga	gtgcccacat	aaattccccc	agctgcactc	cgacaccc	840

agccaccaa gcccctaga aggcctcgta ttgaaggata gttctctcta ccagctgaac	900
cccagatgg tccgtggcct gggcaaccc acagtgcctg acctgagtga gaacttcctc	960
tacgactgca tcaccaaaac caaggcattc cagggcctgg cccagctgcg aagactcaac	1020
ttgtccttca attaccataa gaagggtgtcc ttcgcccacc tgacgctggc accctccttc	1080
gggagcctgc tctccctgca ggaactggac atgcatggca tcttcttccg ctcactcagc	1140
cagaagacgc tccagccact ggccccctg cccatgctcc agcgtctgta tctgcagatg	1200
aacttcatca accaggccca gtcggcatc ttcaaggact tccctggctc gcgctacata	1260
gacctgtcag acaaccgcat cagtggagct gtggagccgg tggccaccac aggggaggtg	1320
gatggtggga agaaggtctg gctgacatcc agggacctca ctccaggccc actggacacc	1380
cccagctctg aggacttcat gccaagctgc aagaacctca gcttcacatt ggacctgtca	1440
cggacaacc tgtaaacagt ccagccagag atgtttgccccc agctctcgcg cctccagtgc	1500
ctgcccctga gccacaacag catctcgag gcggtaatg gtcacagtt cgtgccactg	1560
accagcctgc aggtgctgga cctgtcccat aacaaactgg acctgtacca tggcgctcg	1620
tttacggagc tgccgcgact ggaggccctg gacctcagct acaacagcca gcccattcagc	1680
atgcggggtg tggccacaa cctcagcttt gtggcccagc tgcccacccct gcgctacctc	1740
agcctggcac acaatggcat ccacagccgt gtgtcccagc agctctcgag cacctcgctg	1800
tggccctgg acttcagcgg caattccctg agccagatgt gggctgaggg agacctctat	1860
ctccgcttct tccaaggcct gagaagccta atccggctag acctgtccca gaatcgctg	1920
cataccctcc tgccatgcac cttggcaac ctccccaaa gcttcagct gctgcgtctc	1980
cgtaaacatt acctggcatt cttcaattgg agcagccctga ccctcctgcc caacctggaa	2040
accctggacc tggctggaaa ccagctgaag gctctgagca atggcagcct gccttctggc	2100
acccagctcc agaggctgga cgtcagcagg aacagcatca tcttcgtggt ccctggcttc	2160
tttgctctgg ccacgaggct gcgagagctc aacctcagtg ccaacgcct caggacagag	2220
gagccctcct gttttgggtt cctagcaggc tcccttgaag tccttagatgt gagcgccaac	2280
cctctgcact ggcctgtgg ggcagccctt gtggacttcc tgctgcaggt tcaggctgcc	2340
gtgcctggtc tgcccagccg cgtcaagtgt ggcagtcgg gccagctcca gggccgcagc	2400
atcttcgcac aagacctgcg cctctgcctg gacaagtccc tctcctggaa ctgttttgt	2460

<210> 17
 <211> 1029
 <212> PRT
 <213> Ovis aries

<400> 17

Met Gly Pro Tyr Cys Ala Pro His Pro Leu Ser Leu Leu Val Gln Ala
1 5 10 15

Ala Ala Leu Ala Ala Leu Ala Gln Gly Thr Leu Pro Ala Phe Leu
20 25 30

Pro Cys Glu Leu Gln Pro Arg Gly Lys Val Asn Cys Asn Trp Leu Phe
35 40 45

Leu Lys Ser Val Pro Arg Phe Ser Ala Gly Ala Pro Arg Ala Asn Val
50 55 60

Thr Ser Leu Ser Leu Ile Ser Asn Arg Ile His His Leu His Asp Ser
65 70 75 80

Asp Phe Val His Leu Ser Asn Leu Arg Val Leu Asn Leu Lys Trp Asn
85 90 95

Cys Pro Pro Ala Gly Leu Ser Pro Met His Phe Pro Cys Arg Met Thr
100 105 110

Ile Glu Pro Asn Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu Asn
115 120 125

Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Ala Leu Pro Ser Ser Leu
130 135 140

Val Ser Leu Ser Leu Ser Arg Thr Ser Ile Leu Val Leu Gly Pro Thr
145 150 155 160

His Phe Thr Gly Leu His Ala Leu Arg Phe Leu Tyr Met Asp Gly Asn
165 170 175

Cys Tyr Tyr Lys Asn Pro Cys Gln Gln Ala Val Glu Val Ala Pro Gly
180 185 190

Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr Asn
195 200 205

Asn Leu Thr Glu Val Pro Arg Arg Leu Pro Pro Ser Leu Asp Thr Leu
210 215 220

Leu Leu Ser Tyr Asn His Ile Ile Thr Leu Ala Pro Glu Asp Leu Ala
225 230 235 240

Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg Arg
245 250 255

Cys Asp His Ala Arg Asn Pro Cys Arg Glu Cys Pro Lys Asn Phe Pro
260 265 270

Lys Leu His Pro Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly Leu
275 280 285

Val Leu Lys Asp Ser Ser Leu Tyr Lys Leu Glu Lys Asp Trp Phe Arg
290 295 300

Gly Leu Gly Arg Leu Gln Val Leu Asp Leu Ser Glu Asn Phe Leu Tyr
305 310 315 320

Asp Tyr Ile Thr Lys Thr Ile Phe Arg Asn Leu Thr Gln Leu Arg
325 330 335

Arg Leu Asn Leu Ser Phe Asn Tyr His Lys Lys Val Ser Phe Ala His
340 345 350

Leu Gln Leu Ala Pro Ser Phe Gly Gly Leu Val Ser Leu Glu Lys Leu
355 360 365

Asp Met His Gly Ile Phe Phe Arg Ser Leu Thr Asn Thr Thr Leu Arg
370 375 380

Pro Leu Thr Gln Leu Pro Lys Leu Gln Ser Leu Ser Leu Gln Leu Asn
385 390 395 400

Phe Ile Asn Gln Ala Glu Leu Ser Ile Phe Gly Ala Phe Pro Ser Leu
405 410 415

Leu Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ala Arg Pro
420 425 430

Val Ala Ala Leu Gly Glu Val Asp Ser Gly Val Glu Val Trp Arg Trp
435 440 445

Pro Arg Gly Leu Ala Pro Gly Pro Leu Ala Ala Val Ser Ala Lys Asp
450 455 460

Phe Met Pro Ser Cys Asn Leu Asn Phe Thr Leu Asp Leu Ser Arg Asn
465 470 475 480

Asn Leu Val Thr Ile Gln Gln Glu Met Phe Thr Arg Leu Ser Arg Leu
485 490 495

Gln Cys Leu Arg Leu Ser His Asn Ser Ile Ser Gln Ala Val Asn Gly
500 505 510

Ser Gln Phe Val Pro Leu Thr Arg Leu Arg Val Leu Asp Leu Ser Tyr
515 520 525

Asn Lys Leu Asp Leu Tyr His Gly Arg Ser Phe Thr Glu Leu Pro Gln
530 535 540

Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Ser Met Gln
545 550 555 560

Gly Val Gly His Asn Leu Ser Phe Val Ala Gln Leu Pro Ser Leu Arg
565 570 575

Tyr Leu Ser Leu Ala His Asn Gly Ile His Ser Arg Val Ser Gln Lys
580 585 590

Leu Ser Ser Ala Ser Leu Arg Ala Leu Asp Phe Ser Gly Asn Ser Leu
595 600 605

Ser Gln Met Trp Ala Glu Gly Asp Leu Tyr Leu Cys Phe Phe Lys Gly
610 615 620

Leu Arg Asn Leu Val Gln Leu Asp Leu Ser Lys Asn His Leu His Thr
625 630 635 640

Leu Leu Pro Arg His Leu Asp Asn Leu Pro Lys Ser Leu Arg Gln Leu
645 650 655

Arg Leu Arg Asp Asn Asn Leu Ala Phe Phe Asn Trp Ser Ser Leu Thr
660 665 670

Val Leu Pro Gln Leu Glu Ala Leu Asp Leu Ala Gly Asn Gln Leu Lys
675 680 685

Ala Leu Ser Asn Gly Ser Leu Pro Pro Gly Thr Arg Leu Gln Lys Leu
690 695 700

Asp Val Ser Ser Asn Ser Ile Gly Phe Val Thr Pro Gly Phe Phe Val
705 710 715 720

Leu Ala Asn Arg Leu Lys Glu Leu Asn Leu Ser Ala Asn Ala Leu Lys
725 730 735

Thr Val Asp Pro Phe Trp Phe Gly Arg Leu Thr Glu Thr Leu Asn Ile
740 745 750

Leu Asp Val Ser Ala Asn Pro Leu His Cys Ala Cys Gly Ala Ala Phe
755 760 765

Val Asp Phe Leu Leu Glu Met Gln Ala Ala Val Pro Gly Leu Ser Arg
770 775 780

Arg Val Thr Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg Ser Ile Phe
785 790 795 800

Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Thr Leu Ser Leu Asp Cys
805 810 815

Phe Gly Phe Ser Leu Leu Met Val Ala Leu Gly Leu Ala Val Pro Met
820 825 830

Leu His His Leu Cys Gly Trp Asp Leu Trp Tyr Cys Phe His Leu Cys
835 840 845

Leu Ala His Leu Pro Arg Arg Arg Arg Gln Arg Gly Glu Asp Thr Leu
850 855 860

Leu Tyr Asp Ala Phe Val Val Phe Asp Lys Ala Gln Ser Ala Val Ala
865 870 875 880

Asp Trp Val Tyr Asn Glu Leu Arg Val Gln Leu Glu Glu Arg Arg Gly
885 890 895

Arg Arg Ala Leu Arg Leu Cys Leu Glu Glu Arg Asp Trp Leu Pro Gly
900 905 910

Lys Thr Leu Phe Glu Asn Leu Trp Ala Ser Val Tyr Ser Ser Arg Lys
915 920 925

Thr Met Phe Val Leu Asp His Thr Asp Arg Val Ser Gly Leu Leu Arg

930	935	940
Ala Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu Asp Arg Lys Asp		
945	950	955
Val Val Val Leu Val Ile Leu Arg Pro Ala Ala Tyr Arg Ser Arg Tyr		
965	970	975
Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val Leu Leu Trp Pro		
980	985	990
His Gln Pro Ser Gly Gln Gly Ser Phe Trp Ala Asn Leu Gly Met Ala		
995	1000	1005
Leu Thr Arg Asp Asn Arg His Phe Tyr Asn Arg Asn Phe Cys Arg		
1010	1015	1020
Gly Pro Thr Thr Ala Glu		
1025		
<210> 18		
<211> 818		
<212> PRT		
<213> Ovis aries		
<400> 18		
Met Gly Pro Tyr Cys Ala Pro His Pro Leu Ser Leu Leu Val Gln Ala		
1	5	10
15		
Ala Ala Leu Ala Ala Ala Leu Ala Gln Gly Thr Leu Pro Ala Phe Leu		
20	25	30
Pro Cys Glu Leu Gln Pro Arg Gly Lys Val Asn Cys Asn Trp Leu Phe		
35	40	45
Leu Lys Ser Val Pro Arg Phe Ser Ala Gly Ala Pro Arg Ala Asn Val		
50	55	60
Thr Ser Leu Ser Leu Ile Ser Asn Arg Ile His His Leu His Asp Ser		
65	70	75
80		
Asp Phe Val His Leu Ser Asn Leu Arg Val Leu Asn Leu Lys Trp Asn		
85	90	95
Cys Pro Pro Ala Gly Leu Ser Pro Met His Phe Pro Cys Arg Met Thr		

	100	105	110
Ile Glu Pro Asn Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu Asn 115	120	125	
Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Ala Leu Pro Ser Ser Leu 130	135	140	
Val Ser Leu Ser Leu Ser Arg Thr Ser Ile Leu Val Leu Gly Pro Thr 145	150	155	160
His Phe Thr Gly Leu His Ala Leu Arg Phe Leu Tyr Met Asp Gly Asn 165	170	175	
Cys Tyr Tyr Lys Asn Pro Cys Gln Gln Ala Val Glu Val Ala Pro Gly 180	185	190	
Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr Asn 195	200	205	
Asn Leu Thr Glu Val Pro Arg Arg Leu Pro Pro Ser Leu Asp Thr Leu 210	215	220	
Leu Leu Ser Tyr Asn His Ile Ile Thr Leu Ala Pro Glu Asp Leu Ala 225	230	235	240
Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg Arg 245	250	255	
Cys Asp His Ala Arg Asn Pro Cys Arg Glu Cys Pro Lys Asn Phe Pro 260	265	270	
Lys Leu His Pro Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly Leu 275	280	285	
Val Leu Lys Asp Ser Ser Leu Tyr Lys Leu Glu Lys Asp Trp Phe Arg 290	295	300	
Gly Leu Gly Arg Leu Gln Val Leu Asp Leu Ser Glu Asn Phe Leu Tyr 305	310	315	320
Asp Tyr Ile Thr Lys Thr Thr Ile Phe Arg Asn Leu Thr Gln Leu Arg 325	330	335	

Arg Leu Asn Leu Ser Phe Asn Tyr His Lys Lys Val Ser Phe Ala His
 340 345 350

Leu Gln Leu Ala Pro Ser Phe Gly Gly Leu Val Ser Leu Glu Lys Leu
 355 360 365

Asp Met His Gly Ile Phe Phe Arg Ser Leu Thr Asn Thr Thr Leu Arg
 370 375 380

Pro Leu Thr Gln Leu Pro Lys Leu Gln Ser Leu Ser Leu Gln Leu Asn
 385 390 395 400

Phe Ile Asn Gln Ala Glu Leu Ser Ile Phe Gly Ala Phe Pro Ser Leu
 405 410 415

Leu Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ala Arg Pro
 420 425 430

Val Ala Ala Leu Gly Glu Val Asp Ser Gly Val Glu Val Trp Arg Trp
 435 440 445

Pro Arg Gly Leu Ala Pro Gly Pro Leu Ala Ala Val Ser Ala Lys Asp
 450 455 460

Phe Met Pro Ser Cys Asn Leu Asn Phe Thr Leu Asp Leu Ser Arg Asn
 465 470 475 480

Asn Leu Val Thr Ile Gln Gln Glu Met Phe Thr Arg Leu Ser Arg Leu
 485 490 495

Gln Cys Leu Arg Leu Ser His Asn Ser Ile Ser Gln Ala Val Asn Gly
 500 505 510

Ser Gln Phe Val Pro Leu Thr Arg Leu Arg Val Leu Asp Leu Ser Tyr
 515 520 525

Asn Lys Leu Asp Leu Tyr His Gly Arg Ser Phe Thr Glu Leu Pro Gln
 530 535 540

Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Ser Met Gln
 545 550 555 560

Gly Val Gly His Asn Leu Ser Phe Val Ala Gln Leu Pro Ser Leu Arg
 565 570 575

Tyr Leu Ser Leu Ala His Asn Gly Ile His Ser Arg Val Ser Gln Lys
580 585 590

Leu Ser Ser Ala Ser Leu Arg Ala Leu Asp Phe Ser Gly Asn Ser Leu
595 600 605

Ser Gln Met Trp Ala Glu Gly Asp Leu Tyr Leu Cys Phe Phe Lys Gly
610 615 620

Leu Arg Asn Leu Val Gln Leu Asp Leu Ser Lys Asn His Leu His Thr
625 630 635 640

Leu Leu Pro Arg His Leu Asp Asn Leu Pro Lys Ser Leu Arg Gln Leu
645 650 655

Arg Leu Arg Asp Asn Asn Leu Ala Phe Phe Asn Trp Ser Ser Leu Thr
660 665 670

Val Leu Pro Gln Leu Glu Ala Leu Asp Leu Ala Gly Asn Gln Leu Lys
675 680 685

Ala Leu Ser Asn Gly Ser Leu Pro Pro Gly Thr Arg Leu Gln Lys Leu
690 695 700

Asp Val Ser Ser Asn Ser Ile Gly Phe Val Thr Pro Gly Phe Phe Val
705 710 715 720

Leu Ala Asn Arg Leu Lys Glu Leu Asn Leu Ser Ala Asn Ala Leu Lys
725 730 735

Thr Val Asp Pro Phe Trp Phe Gly Arg Leu Thr Glu Thr Leu Asn Ile
740 745 750

Leu Asp Val Ser Ala Asn Pro Leu His Cys Ala Cys Gly Ala Ala Phe
755 760 765

Val Asp Phe Leu Leu Glu Met Gln Ala Ala Val Pro Gly Leu Ser Arg
770 775 780

Arg Val Thr Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg Ser Ile Phe
785 790 795 800

Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Thr Leu Ser Leu Asp Cys
805 810 815

Phe Gly

<210>	19					
<211>	3199					
<212>	DNA					
<213>	Ovis aries					
<400>	19					
gtcggcacgg	gaagtgagcg	ccaagcatcc	ttccctgcag	ctgccgccc	acttgcccgc	60
cagaccctct	ggagaagccg	cattccctgc	catggggccc	tactgtgccc	cgcacccccc	120
ttctctccctg	gtcaggcgg	cggcgctggc	agcagccctg	gcccaaggca	ccctgcctgc	180
cttcctgccc	tgtgagctcc	agccccgggg	taaggtgaac	tgcaactggc	tgttcctgaa	240
gtctgtgccg	cgttttcgg	ccggagccccc	ccgggccaat	gtcaccagcc	tctaccttaat	300
ctccaaccgc	atccaccact	tgcacgactc	tgacttcgtc	cacctgtcca	acctgcgggt	360
cctcaacctc	aagtggaaact	gcccgcggc	cggcctcagc	cccatgcact	tcccctgccc	420
catgaccatc	gagcccaaca	cottcctggc	tgtgcccacc	ctggaggagc	tgaacctgag	480
ctacaatggc	atcacgaccg	tgcctccct	gccagttct	ctcgatccc	tgtcgctgag	540
ccgcaccagc	atcctggtgc	taggccccac	ccacttcacc	ggcctgcacg	ccctgcgcctt	600
tctgtacatg	gacggcaact	gctactataa	gaacccctgc	cagcaggccg	tggaggtggc	660
cccaggcgcc	ctccttggcc	tggcaacct	cacgcacctg	tgcgtcaagt	acaacaacct	720
cacggaggtg	ccccggccgc	tgcctccctg	cctggacacc	ctgctgctgt	cctacaacca	780
catcatcacc	ctggcaccccg	aggacctggc	caatctgact	gccctgcgtg	tgcttgatgt	840
gggcgggaac	tgccgcccgt	gcgaccacgc	ccgcaacccc	tgcagggagt	gcccaaagaa	900
cttcccaag	ctgcaccctg	acaccttcag	ccacctgagc	cgcctcgaaag	gcctgggttt	960
gaaggacagt	tctctctaca	aactagagaa	agactggttc	cgcggctgg	gcaggctcca	1020
agtgctcgac	ctgagtgaga	acttcctcta	tgactacatc	accaagacca	ccatttcag	1080
gaacctgacc	cagctgcgca	gactcaacct	gtccttcaat	taccacaaga	aggtgtcctt	1140
cgcacccac	caactggcac	cctccttgg	gggcctggtg	tccctggaga	agctggacat	1200
gcacggcatc	ttcttcgct	ccctcaccaa	caccacgctc	cggccgctga	cccagctgcc	1260
caagctccag	agtctgagtc	tgcagctgaa	cttcatcaac	caggccgagc	tcagcatctt	1320
tggggccttc	ccgagcctgc	tcttcgtgga	cctgtcggac	aaccgcata	gcggagctgc	1380
gaggccggtg	gccgcctcg	gggaggtgga	cagcggggtg	gaagtctggc	ggtggcccg	1440

gggcctcgct ccaggcccgc tggccgcccgt cagcgcaaag gacttcatgc caagctgcaa	1500
cctcaacttc accttggacc tgtcacggaa caacctggtg acgatccagc aggagatgtt	1560
tacccgcctc tccgcctcc agtgcctgcg cctgagccac aacagcatct cgccaggcggt	1620
taatggctcg cagttcgtgc cgctgaccccg cctgcgagtg ctgcacctgt cctacaacaa	1680
gctggacctg taccatgggc gtcgttcac ggagctgccc cagctggagg cactggacct	1740
cagctacaac agccagccct tcagcatgca gggcgtggc cacaacctca gcttcgtggc	1800
ccagctgccc tccctgcgct acctcagcct tgccacaac ggcataccaca gccgcgtgtc	1860
acagaagctc agcagcgcct cgctgcgcgc cctggacttc agcggcaact ccctgagcca	1920
gatgtgggcc gagggagacc tctatctctg cttcttcaaa ggcttgagga acctgggtcca	1980
gctggacctg tccaagaacc acctgcacac cctcctgcct cgtcacctgg ataacctgcc	2040
caagagcctg cggcagctgc gtctccggga caataacctg gccttcttca actggagcag	2100
cctgactgtt ctgccccagc tggaagccct ggatctggcg ggaaaccagc tgaaggccct	2160
gagcaacggc agcctgccac ctggcaccccg gtcggagaag ctggacgtga gcagcaacag	2220
catcgcttt gtgacccttg gtttcttgc ctttgcacac cggctgaaag agcttaacct	2280
cagcgcacac gcccgtgaaga cagtggatcc cttctggttc ggtcgcttaa cagagaccct	2340
gaatatccta gacgtgagcg ccaaccgct ccactgtgcc tgcggggcgg ctttggatga	2400
tttcctgctg gagatgcagg cggccgtgcc tggctgtcc aggcgcgtca cgtgtggcag	2460
tccggccag ctccaggggcc gcagcatctt cgcacaggac ctgcgcctct gcctggatga	2520
gaccctctcc ttggactgct ttggcttctc gtcgttaatg gtggcgctgg gcctggcggt	2580
gcccatgctg caccacctct gtggctggga cctgtggtaac tgcttccacc tgtgtctggc	2640
ccatttggcc cgcacggcggc ggcaggggg cgaggacacc ctgctctacg atgccttcgt	2700
ggtcttcgac aaggcgcaga gtgcagtggc cgactgggtg tacaacgagc tccgcgtgca	2760
gctggaggag cgccgcgggc gccggcgct ccgcctctgc ctggaggagc gagactggct	2820
ccctggcaag acgctttcg agaacctgtg ggcctcggtc tacagcagcc gtaagaccat	2880
tttcgtgctg gaccacacgg accgggtcag tggcctcctg cgccgcgtct tcctgctggc	2940
ccagcagcgc ctgttggagg accgcaagga tgcgtggtg ctggatcc tgcggccgc	3000
cgcctaccgg tcccgctacg tgcggctgctc ccagcgcctc tgcggccaga gcgtccctct	3060
ctggcccccac cagcccagtg gccaggtag cttctggcc aacctggca tggccctgac	3120
cagggacaac cgccacttct ataaccggaa cttctgcggg ggccccacga cagccgaata	3180

gcacagagtg	actgccccag	3199				
<210>	20					
<211>	2454					
<212>	DNA					
<213>	Ovis aries					
<400>	20					
atggggccct	actgtgcccc	gcacccccc ttcttcctgg	tgcaggcggc	ggcgctggca	60	
gcagccctgg	cccagggcac	cctgcctgcc	ttcctgcctt	gtgagctcca	gccccggggt	120
aaggtaact	gcaactggct	gttcctgaag	tctgtgccgc	gttttcggc	cgagggcccc	180
cgggccaatg	tcaccagcct	ctccttaatc	tccaaaccgca	tccaccactt	gcacgactct	240
gacttcgtcc	acctgtccaa	cctgcgggtc	ctcaacctca	agtggaaactg	cccgccggcc	300
ggcctcagcc	ccatgcactt	ccccctggcc	atgaccatcg	agcccaacac	cttcctggct	360
gtgcccaccc	tggaggagct	gaacctgagc	tacaatggca	tcacgaccgt	gcctgccttg	420
cccagttctc	tcttatccct	gtcgctgagc	cgcaccagca	tcctgggtct	aggccccacc	480
cacttcaccc	gctgcacgc	cctgcgttt	ctgtacatgg	acggcaactg	ctaataaag	540
aacccctgcc	agcaggccgt	ggaggtggcc	ccaggcgccc	tccttggct	gggcaacctc	600
acgcacactgt	cgctcaagta	caacaacctc	acggaggtgc	cccggccct	gccccccagc	660
ctggacaccc	tgtgtgtgtc	ctacaaccac	atcatcaccc	tggcaccctga	ggacctggcc	720
aatctgactg	ccctgcgtgt	gttgtatgtg	ggcgaaaact	gccggcgctg	cgaccacgccc	780
cgcaacccct	gcagggagtg	cccaaagaac	ttccccaaagc	tgcaccctga	cacccatcagc	840
cacctgagcc	gcctcgaagg	cctgggtttg	aaggacagtt	ctctctacaa	actagagaaaa	900
gactggttcc	gccccctggg	caggctccaa	gtgctcgacc	tgagtgagaa	cttccttat	960
gactacatca	ccaagaccac	catcttcagg	aacctgaccc	agctgcgcag	actaaacctg	1020
tccttcaatt	accacaagaa	ggtgtccttc	gcccacctgc	aactggcacc	ctcccttggg	1080
ggcctgggtgt	ccctggagaa	gctggacatg	cacggcatct	tcttcgcctc	cctcaccaac	1140
accacgctcc	ggccgctgac	ccagctgccc	aagctccaga	gtctgagtt	gcagctgaac	1200
ttcatcaacc	aggccgagct	cagcatctt	ggggccttcc	cgagcctgct	cttcgtggac	1260
ctgtcggaca	accgcatcag	cggagctgct	aggccgggtgg	ccggccctcg	ggaggtggac	1320
agcgggggtgg	aagtctggcg	gtggcccaagg	ggcctcgctc	caggccccgt	ggccggccgtc	1380
agcgcaaagg	acttcatgcc	aagctgcaac	ctcaacttca	ccttggacct	gtcacggAAC	1440
aacctggta	cgatccagca	ggagatgttt	accggctct	cccgccctcca	gtgcctgcgc	1500

ctgagccaca acagcatctc gcaggcggtt aatggctgc agttcgtgcc gctgaccgc	1560
ctgcgagtgc tcgacctgtc ctacaacaag ctggacctgt accatggcg ctcgttcacg	1620
gagctgccgc agctggaggc actggacctc agctacaaca gccagccctt cagcatgcag	1680
ggcgtgggcc acaacctcag cttcgtggcc cagctgccgt ccctgcgcta cctcagccctt	1740
gcccacaacg gcatccacag ccgcgtgtca cagaagctca gcagcgcctc gctgcgcgccc	1800
ctggacttca gcggcaactc cctgagccag atgtggccg agggagacct ctatcttgc	1860
ttcttcaaag gcttgaggaa cctggtccag ctggacctgt ccaagaacca cctgcacacc	1920
c当地ctgcctc gtcacctgga taacctgccc aagagcctgc ggcagctgcg tctccggac	1980
aataacctgg ccttcttcaa ctggagcagc ctgactgttc tgccccagct ggaagccctg	2040
gatctggcgg gaaaccagct gaaggccctg agcaacggca gcctgccacc tggcacccgg	2100
ctccagaagc tggacgttag cagcaacagc atcggcttg tgaccctgg cttctttgtc	2160
cttgc当地acc ggctgaaaga gcttaacctc agcgc当地acg ccctgaagac agtggatccc	2220
ttctggttcg gtcgcttaac agagaccctg aatatcttag acgtgagcgc caacccgctc	2280
cactgtgcct gc当地ggcggc ctttgtggac ttccctgctgg agatgcagggc ggccgtgcct	2340
gggctgtcca ggc当地gtcac gtgtggcagt cc当地ggcagc tccaggccgg cagcatctc	2400
gcacaggacc tgccctctg cctggatgag accctctcct tggactgctt tggc	2454

<210> 21
<211> 1032
<212> PRT
<213> Canis familiaris

<400> 21

Met	Gly	Pro	Cys	Arg	Gly	Ala	Leu	His	Pro	Leu	Ser	Leu	Leu	Val	Gln
1						5				10				15	

Ala	Ala	Ala	Leu	Ala	Leu	Ala	Leu	Ala	Gln	Gly	Thr	Leu	Pro	Ala	Phe
						20				25			30		

Leu	Pro	Cys	Glu	Leu	Gln	Pro	His	Gly	Leu	Val	Asn	Cys	Asn	Trp	Leu
						35			40			45			

Phe	Leu	Lys	Ser	Val	Pro	Arg	Phe	Ser	Ala	Ala	Ala	Pro	Arg	Gly	Asn
						50			55			60			

Val	Thr	Ser	Leu	Ser	Leu	Tyr	Ser	Asn	Arg	Ile	His	His	Leu	His	Asp
65						70			75			80			

Tyr Asp Phe Val His Phe Val His Leu Arg Arg Leu Asn Leu Lys Trp
85 90 95

Asn Cys Pro Pro Ala Ser Leu Ser Pro Met His Phe Pro Cys His Met
100 105 110

Thr Ile Glu Pro Asn Thr Phe Leu Ala Val Pro Thr Leu Glu Asp Leu
115 120 125

Asn Leu Ser Tyr Asn Ser Ile Thr Thr Val Pro Ala Leu Pro Ser Ser
130 135 140

Leu Val Ser Leu Ser Leu Ser Arg Thr Asn Ile Leu Val Leu Asp Pro
145 150 155 160

Ala Thr Leu Ala Gly Leu Tyr Ala Leu Arg Phe Leu Phe Leu Asp Gly
165 170 175

Asn Cys Tyr Tyr Lys Asn Pro Cys Gln Gln Ala Leu Gln Val Ala Pro
180 185 190

Gly Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr
195 200 205

Asn Asn Leu Thr Val Val Pro Arg Gly Leu Pro Pro Ser Leu Glu Tyr
210 215 220

Leu Leu Leu Ser Tyr Asn His Ile Ile Thr Leu Ala Pro Glu Asp Leu
225 230 235 240

Ala Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg
245 250 255

Arg Cys Asp His Ala Arg Asn Pro Cys Arg Glu Cys Pro Lys Gly Phe
260 265 270

Pro Gln Leu His Pro Asn Thr Phe Gly His Leu Ser His Leu Glu Gly
275 280 285

Leu Val Leu Arg Asp Ser Ser Leu Tyr Ser Leu Asp Pro Arg Trp Phe
290 295 300

His Gly Leu Gly Asn Leu Met Val Leu Asp Leu Ser Glu Asn Phe Leu
305 310 315 320

Tyr Asp Cys Ile Thr Lys Thr Lys Ala Phe Tyr Gly Leu Ala Arg Leu
325 330 335

Arg Arg Leu Asn Leu Ser Phe Asn Tyr His Lys Lys Val Ser Phe Ala
340 345 350

His Leu His Leu Ala Ser Ser Phe Gly Ser Leu Leu Ser Leu Gln Glu
355 360 365

Leu Asp Ile His Gly Ile Phe Phe Arg Ser Leu Ser Lys Thr Thr Leu
370 375 380

Gln Ser Leu Ala His Leu Pro Met Leu Gln Arg Leu His Leu Gln Leu
385 390 395 400

Asn Phe Ile Ser Gln Ala Gln Leu Ser Ile Phe Gly Ala Phe Pro Gly
405 410 415

Leu Arg Tyr Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ala Glu
420 425 430

Pro Ala Ala Ala Thr Gly Glu Val Glu Ala Asp Cys Gly Glu Arg Val
435 440 445

Trp Pro Gln Ser Arg Asp Leu Ala Leu Gly Pro Leu Gly Thr Pro Gly
450 455 460

Ser Glu Ala Phe Met Pro Ser Cys Arg Thr Leu Asn Phe Thr Leu Asp
465 470 475 480

Leu Ser Arg Asn Asn Leu Val Thr Val Gln Pro Glu Met Phe Val Arg
485 490 495

Leu Ala Arg Leu Gln Cys Leu Gly Leu Ser His Asn Ser Ile Ser Gln
500 505 510

Ala Val Asn Gly Ser Gln Phe Val Pro Leu Ser Asn Leu Arg Val Leu
515 520 525

Asp Leu Ser His Asn Lys Leu Asp Leu Tyr His Gly Arg Ser Phe Thr
530 535 540

Glu Leu Pro Arg Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro

545	550	555	560
Phe Ser Met Arg Gly Val Gly His Asn Leu Ser Phe Val Ala Gln Leu			
565	570	575	
Pro Ala Leu Arg Tyr Leu Ser Leu Ala His Asn Gly Ile His Ser Arg			
580	585	590	
Val Ser Gln Gln Leu Arg Ser Ala Ser Leu Arg Ala Leu Asp Phe Ser			
595	600	605	
Gly Asn Thr Leu Ser Gln Met Trp Ala Glu Gly Asp Leu Tyr Leu Arg			
610	615	620	
Phe Phe Gln Gly Leu Arg Ser Leu Val Gln Leu Asp Leu Ser Gln Asn			
625	630	635	640
Arg Leu His Thr Leu Leu Pro Arg Asn Leu Asp Asn Leu Pro Lys Ser			
645	650	655	
Leu Arg Leu Leu Arg Leu Arg Asp Asn Tyr Leu Ala Phe Phe Asn Trp			
660	665	670	
Ser Ser Leu Ala Leu Leu Pro Lys Leu Glu Ala Leu Asp Leu Ala Gly			
675	680	685	
Asn Gln Leu Lys Ala Leu Ser Asn Gly Ser Leu Pro Asn Gly Thr Gln			
690	695	700	
Leu Gln Arg Leu Asp Leu Ser Gly Asn Ser Ile Gly Phe Val Val Pro			
705	710	715	720
Ser Phe Phe Ala Leu Ala Val Arg Leu Arg Glu Leu Asn Leu Ser Ala			
725	730	735	
Asn Ala Leu Lys Thr Val Glu Pro Ser Trp Phe Gly Ser Leu Ala Gly			
740	745	750	
Ala Leu Lys Val Leu Asp Val Thr Ala Asn Pro Leu His Cys Ala Cys			
755	760	765	
Gly Ala Thr Phe Val Asp Phe Leu Leu Glu Val Gln Ala Ala Val Pro			
770	775	780	

Gly Leu Pro Ser Arg Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly
785 790 795 800

Arg Ser Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Ala Leu
805 810 815

Ser Trp Val Cys Phe Ser Leu Ser Leu Ala Val Ala Leu Ser Leu
820 825 830

Ala Val Pro Met Leu His Gln Leu Cys Gly Trp Asp Leu Trp Tyr Cys
835 840 845

Phe His Leu Cys Leu Ala Trp Leu Pro Arg Arg Gly Arg Arg Arg Gly
850 855 860

Val Asp Ala Leu Ala Tyr Asp Ala Phe Val Val Phe Asp Lys Ala Gln
865 870 875 880

Ser Ser Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Val Gln Leu Glu
885 890 895

Glu Arg Arg Gly Arg Arg Ala Leu Arg Leu Cys Leu Glu Glu Arg Asp
900 905 910

Trp Val Pro Gly Lys Thr Leu Phe Glu Asn Leu Trp Ala Ser Val Tyr
915 920 925

Ser Ser Arg Lys Thr Leu Phe Val Leu Ala Arg Thr Asp Arg Val Ser
930 935 940

Gly Leu Leu Arg Ala Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu
945 950 955 960

Asp Arg Lys Asp Val Val Val Leu Val Ile Leu Cys Pro Asp Ala His
965 970 975

Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val
980 985 990

Leu Leu Trp Pro His Gln Pro Ser Gly Gln Arg Ser Phe Trp Ala Gln
995 1000 1005

Leu Gly Thr Ala Leu Thr Arg Asp Asn Arg His Phe Tyr Asn Gln
1010 1015 1020

Asn Phe Cys Arg Gly Pro Thr Thr Ala
1025 1030

<210> 22
<211> 822
<212> PRT
<213> Canis familiaris

<400> 22

Met Gly Pro Cys Arg Gly Ala Leu His Pro Leu Ser Leu Leu Val Gln
1 5 10 15

Ala Ala Ala Leu Ala Leu Ala Gln Gly Thr Leu Pro Ala Phe
20 25 30

Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp Leu
35 40 45

Phe Leu Lys Ser Val Pro Arg Phe Ser Ala Ala Pro Arg Gly Asn
50 55 60

Val Thr Ser Leu Ser Leu Tyr Ser Asn Arg Ile His His Leu His Asp
65 70 75 80

Tyr Asp Phe Val His Phe Val His Leu Arg Arg Leu Asn Leu Lys Trp
85 90 95

Asn Cys Pro Pro Ala Ser Leu Ser Pro Met His Phe Pro Cys His Met
100 105 110

Thr Ile Glu Pro Asn Thr Phe Leu Ala Val Pro Thr Leu Glu Asp Leu
115 120 125

Asn Leu Ser Tyr Asn Ser Ile Thr Thr Val Pro Ala Leu Pro Ser Ser
130 135 140

Leu Val Ser Leu Ser Leu Ser Arg Thr Asn Ile Leu Val Leu Asp Pro
145 150 155 160

Ala Thr Leu Ala Gly Leu Tyr Ala Leu Arg Phe Leu Phe Leu Asp Gly
165 170 175

Asn Cys Tyr Tyr Lys Asn Pro Cys Gln Gln Ala Leu Gln Val Ala Pro
180 185 190

Gly Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr
195 200 205

Asn Asn Leu Thr Val Val Pro Arg Gly Leu Pro Pro Ser Leu Glu Tyr
210 215 220

Leu Leu Leu Ser Tyr Asn His Ile Ile Thr Leu Ala Pro Glu Asp Leu
225 230 235 240

Ala Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg
245 250 255

Arg Cys Asp His Ala Arg Asn Pro Cys Arg Glu Cys Pro Lys Gly Phe
260 265 270

Pro Gln Leu His Pro Asn Thr Phe Gly His Leu Ser His Leu Glu Gly
275 280 285

Leu Val Leu Arg Asp Ser Ser Leu Tyr Ser Leu Asp Pro Arg Trp Phe
290 295 300

His Gly Leu Gly Asn Leu Met Val Leu Asp Leu Ser Glu Asn Phe Leu
305 310 315 320

Tyr Asp Cys Ile Thr Lys Thr Lys Ala Phe Tyr Gly Leu Ala Arg Leu
325 330 335

Arg Arg Leu Asn Leu Ser Phe Asn Tyr His Lys Lys Val Ser Phe Ala
340 345 350

His Leu His Leu Ala Ser Ser Phe Gly Ser Leu Leu Ser Leu Gln Glu
355 360 365

Leu Asp Ile His Gly Ile Phe Phe Arg Ser Leu Ser Lys Thr Thr Leu
370 375 380

Gln Ser Leu Ala His Leu Pro Met Leu Gln Arg Leu His Leu Gln Leu
385 390 395 400

Asn Phe Ile Ser Gln Ala Gln Leu Ser Ile Phe Gly Ala Phe Pro Gly
405 410 415

Leu Arg Tyr Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ala Glu
420 425 430

Pro Ala Ala Ala Thr Gly Glu Val Glu Ala Asp Cys Gly Glu Arg Val
435 440 445

Trp Pro Gln Ser Arg Asp Leu Ala Leu Gly Pro Leu Gly Thr Pro Gly
450 455 460

Ser Glu Ala Phe Met Pro Ser Cys Arg Thr Leu Asn Phe Thr Leu Asp
465 470 475 480

Leu Ser Arg Asn Asn Leu Val Thr Val Gln Pro Glu Met Phe Val Arg
485 490 495

Leu Ala Arg Leu Gln Cys Leu Gly Leu Ser His Asn Ser Ile Ser Gln
500 505 510

Ala Val Asn Gly Ser Gln Phe Val Pro Leu Ser Asn Leu Arg Val Leu
515 520 525

Asp Leu Ser His Asn Lys Leu Asp Leu Tyr His Gly Arg Ser Phe Thr
530 535 540

Glu Leu Pro Arg Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro
545 550 555 560

Phe Ser Met Arg Gly Val Gly His Asn Leu Ser Phe Val Ala Gln Leu
565 570 575

Pro Ala Leu Arg Tyr Leu Ser Leu Ala His Asn Gly Ile His Ser Arg
580 585 590

Val Ser Gln Gln Leu Arg Ser Ala Ser Leu Arg Ala Leu Asp Phe Ser
595 600 605

Gly Asn Thr Leu Ser Gln Met Trp Ala Glu Gly Asp Leu Tyr Leu Arg
610 615 620

Phe Phe Gln Gly Leu Arg Ser Leu Val Gln Leu Asp Leu Ser Gln Asn
625 630 635 640

Arg Leu His Thr Leu Leu Pro Arg Asn Leu Asp Asn Leu Pro Lys Ser
645 650 655

Leu Arg Leu Leu Arg Leu Arg Asp Asn Tyr Leu Ala Phe Phe Asn Trp

660

665

670

Ser Ser Leu Ala Leu Leu Pro Lys Leu Glu Ala Leu Asp Leu Ala Gly
675 680 685

Asn Gln Leu Lys Ala Leu Ser Asn Gly Ser Leu Pro Asn Gly Thr Gln
690 695 700

Leu Gln Arg Leu Asp Leu Ser Gly Asn Ser Ile Gly Phe Val Val Pro
705 710 715 720

Ser Phe Phe Ala Leu Ala Val Arg Leu Arg Glu Leu Asn Leu Ser Ala
725 730 735

Asn Ala Leu Lys Thr Val Glu Pro Ser Trp Phe Gly Ser Leu Ala Gly
740 745 750

Ala Leu Lys Val Leu Asp Val Thr Ala Asn Pro Leu His Cys Ala Cys
755 760 765

Gly Ala Thr Phe Val Asp Phe Leu Leu Glu Val Gln Ala Ala Val Pro
770 775 780

Gly Leu Pro Ser Arg Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly
785 790 795 800

Arg Ser Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Ala Leu
805 810 815

Ser Trp Val Cys Phe Ser
820

<210> 23
<211> 3334
<212> DNA
<213> *Canis familiaris*

```
<400> 23
aggaaaggggc tgtgagctcc aagcatcatt tcctgcagct gctgcccgac ctgccagcca 60
gaccctctgg agaagccccc gctccctgtc atggggccct gccgtggcgc cctgcacccc 120
ctgtctctcc tggtgtcagggc tgccgcgcta gccctggccc tggcccaggg caccctgcct 180
gccttcctgc cctgtgagct ccagccccat ggcctggtga actgcaactg gctgttcetc 240
aagtccgtgc cccgcttcgc ggcagctgca ccccgccgtta acgtcaccag cctttccttg 300
```

tactccaacc	gcatccacca	cctccatgac	tatgactttg	tccacttcgt	ccacacctgcgg	360
cgtctcaatc	tcaagtggaa	ctgcccggcc	gccagcctca	gccccatgca	ctttccctgt	420
cacatgacca	ttgagccaa	cacccctcg	gctgtgccc	ccctagagga	cctgaatctg	480
agctataaca	gcatcacgac	tgtgcccggcc	ctgcccagtt	cgcttgtgtc	cctgtccctg	540
agccgcacca	acatcctggt	gctggaccct	gccaccctgg	caggcctta	tgcctgcgc	600
ttcctgttcc	tggatggcaa	ctgctactac	aagaacccct	gccagcaggc	cctgcagggtg	660
gccccaggtg	ccctcctggg	cctggcaac	ctcacacacc	tgtcactcaa	gtacaacaac	720
ctcaccgtgg	tgcgcgggg	cctgcccccc	agcctggagt	acctgctt	gtcctacaac	780
cacatcatca	ccctggcacc	tgaggacctg	gccaatctga	ctgcccgtcg	tgtcctcgat	840
gtgggtggga	actgtcgccg	ctgtgaccat	gcccgtaacc	cctgcaggga	gtgccccaaag	900
ggcttccccc	agctgcaccc	caacaccc	ggccacctga	gccacctcg	aggcctggtg	960
ttgagggaca	gctctctcta	cagcctggac	cccaggtgg	tccatggct	gggcaacctc	1020
atggtgctgg	acctgagtga	gaacttcc	tatgactgca	tcaccaaaac	caaagcctc	1080
tacggcctgg	cccggtcg	cagactcaac	ctgtcctca	attatcataa	gaaggtgtcc	1140
tttgcacc	tgcacatggc	atcctcc	gggagcctac	tgtccctgca	ggagctggac	1200
atacatggca	tcttcttcg	ctcgctc	aagaccacgc	tccagtcgt	ggcccacctg	1260
cccatgtcc	agcgtctgca	tctgcagtt	aactttatca	gccaggccca	gtcagcatc	1320
ttcggcgct	tccctggact	gcggta	gacttgtcag	acaaccgc	cagtggagct	1380
gcagagcccg	cggctgccac	aggggaggta	gaggcagact	gtggggagag	agtctggcca	1440
cagtcgggg	accttgctct	gggcccactg	ggcacccccc	gctcagaggc	cttcatggcg	1500
agctgcagga	ccctcaactt	caccc	ctgtctcg	acaacctagt	gactgttcag	1560
ccggagatgt	ttgtccggct	ggcgcc	cagtgc	gcctgagcca	caacagcatc	1620
tcgcaggcg	tcaatggctc	gcagtt	cctctgagca	acctgcgg	gctggacctg	1680
tcccataaca	agctggac	gtaccacggg	cgctcg	cgagctg	gcggctggag	1740
gccttgacc	tca	agctacaa	cagccagccc	ttcagcatgc	ggggcgtggg	1800
agctttgtgg	cacagctg	cc	tgcc	gacaa	tggcatccac	1860
agccgcgtgt	ccc	agctg	ccg	gctcc	gggg	1920
accctgagcc	agatgtgg	ccgg	ggag	actc	gtgg	1980
agcctggttc	agctggac	gtccc	agaa	cgctgcata	ccctc	2040
gacaacctcc	ccaagagc	ctc	cggt	ccgt	acaattac	2100

aactggagca	gcctggccct	cctacccaag	ctggaagccc	tggacctggc	ggaaaccag	2160
ctgaaggccc	ttagcaatgg	cagcttgc	ccc aacggcaccc	agctccagag	gctggac	2220
agcgcaaca	gcatcggtt	cgtggcccc	agctttttg	ccctggccgt	gaggcttcga	2280
gagctcaacc	tcagcgccaa	cgccctcaag	acggtgagc	cctctggtt	tggttccctg	2340
gccccgtgccc	tgaaaagtcc	agacgtgacc	gccaacccct	tgcattgcgc	ttgcggcgca	2400
accttcgtgg	acttcttgct	ggaggtgcag	gctgcggtgc	ccggcctgcc	tagccgtgtc	2460
aagtgcggca	gcccgggcca	gctccagggc	cgcagcatct	tcgcacagga	cctgcgcctc	2520
tgcctggacg	aagcgcttc	ctgggtctgt	ttagcctct	cgctgctggc	tgtggccctg	2580
agcctggctg	tgcccatgct	gcaccagctc	tgtggctggg	acctctggta	ctgcttccac	2640
ctgtgcctgg	cctggctgcc	ccggcggggg	cgccggcggg	gtgtggatgc	cctggccctat	2700
gacgcottcg	tggtcttcga	caaggcgcag	agctcggtgg	cggaactgggt	gtacaatgag	2760
ctgcgggtac	agctagagga	gcccgtggg	cgccggcgc	tacgcctgtg	tctggaggaa	2820
cgtga	tacccggcaa	aaccctttc	gagaacctct	gggcctcagt	ttacagcagc	2880
cgcaagacgc	tgttgtgct	ggcccgacg	gacagactca	gcccctct	gcgtgccagc	2940
ttcctgctgg	cccaacagcg	cctgcgtggag	gaccgcaagg	acgtcggtgg	gctggtgatc	3000
ctgtgcctcc	acgcccac	ctcccgctat	gtgcggctgc	gccagcgct	ctgcggccag	3060
agtgtcctcc	tctggcccca	ccagcccagt	ggccagcgca	gcttctggc	ccagctggc	3120
acggccctga	ccagggacaa	ccgcccattc	tacaaccaga	acttctggc	ggggccccacg	3180
acagcctgat	aggcagacag	cccagcacct	tcgcggccct	acaccctgcc	tgttgtctg	3240
ggatgcccga	cctgcgtggct	ctacaccgcc	gctctgtctc	ccctacaccc	agccctggca	3300
taaaggcga	gctcaataaa	tgctgtgg	agac			3334

<210> 24
<211> 2466
<212> DNA
<213> Canis familiaris

<400> 24	atggggccct	gcccgtggcgc	cctgcacccccc	ctgtctctcc	tggtgcaggc	tgccgcgcta	60
	gcccctggccc	tggcccaggg	caccctgcct	gccttcctgc	cctgtgagct	ccagccccat	120
	ggccctgggtga	actgcaactg	gctgttcctc	aagtccgtgc	cccgcttctc	ggcagctgca	180
	ccccgcggta	acgtcaccag	cctttccttg	tactccaacc	gcatccacca	cctccatgac	240
	tatgactttg	tccacttcgt	ccacccctgcgg	cgtctcaatc	tcaagtggaa	ctgccccggcc	300

gccagcctca	gccccatgca	cttccctgt	cacatgacca	ttgagccaa	cacccctcg	360
gctgtgccc	ccctagagga	cctgaatctg	agctataaca	gcatcacgac	tgtccccgc	420
ctgcccagg	tt cgctgtgtc	cctgtccctg	agccgcacca	acatcctgg	gtggaccct	480
gccaccctgg	caggcctta	tgccctgcgc	ttccctgttc	tggatggcaa	ctgctactac	540
aagaacccct	gccagcaggc	cctgcaggtg	gccccaggtg	ccctccctggg	cctgggcaac	600
ctcacacacc	tgtcactcaa	gtacaacaac	ctcaccgtgg	tgccgcgggg	cctgcccccc	660
agcctggagt	acctgctt	gtcctacaac	cacatcatca	ccctggcacc	tgaggacctg	720
gccaatctga	ctgcccgtcg	tgtcctcgat	gtgggtggga	actgtcgccg	ctgtgaccat	780
gcccgttaacc	cctgcaggga	gtgccccaa	ggcttccccc	agctgcaccc	caacaccc	840
ggccacactga	gccacactga	aggcctgg	ttgagggaca	gctctctcta	cagcctggac	900
cccagggtgg	tccatggc	gggcaacctc	atggtgctgg	acctgagtga	gaacttcctg	960
tatgactgca	tcacaaaac	caaagcctc	tacggcctgg	cccggtcg	cagactcaac	1020
ctgtccttca	attatcataa	gaaggtgtcc	tttgc	ccacc	tgcatctggc	1080
gggagcctac	tgtccctgca	ggagctggac	atacatggca	tcttcttccg	ctcgctcagc	1140
aagaccacgc	tccagtcgt	ggcccacctg	cccatgtcc	agcgtctgca	tctgcagtt	1200
aactttatca	gccaggccc	gctcagcatc	ttcggcgc	tccctggact	gctgtacgt	1260
gacttgttag	acaaccgc	cagtggagct	gcagagcccg	cggctgcac	aggggaggt	1320
gaggcagact	gtggggagag	agtctggcca	cagtcccg	accttgctct	gggcccactg	1380
ggcacccccc	gctcagaggc	tttcatgccc	agctgcagga	ccctcaactt	caccc	1440
ctgtctcgga	acaacctagt	gactgtttag	ccggagatgt	ttgtccgg	ggcgccctc	1500
cagtgcctgg	gcctgagcca	caacagcatc	tcgcaggcgg	tcaatggctc	gcagttcg	1560
cctctgagca	acctgcggg	gctggac	tccataaca	agctggac	gtaccacgg	1620
cgctcggtca	cggagctg	gcccgtggag	gccttg	gacc	tcagctacaa	1680
ttcagcatgc	ggggcgtgg	ccacaatctc	agctt	ccat	gcac	1740
tacctcagcc	tggcgcacaa	tggcatccac	agccgcgtgt	cccagcag	ccgcagcg	1800
tcgctccgg	ccctggactt	cagtggcaat	accctgagcc	agatgtggc	cgagggagac	1860
ctctatctcc	gcttcttcca	aggcctgaga	agcctgg	agctggac	gtcccaga	1920
cgcctgcata	ccctcctg	acgcaacctg	gacaac	ccaagagc	gctgtcc	1980
cggctccgtg	acaattac	ggctt	tttc	aactgg	gca	2040

ctgaaagccc	tggacctggc	gggaaaccag	ctgaaggccc	tgagcaatgg	cagcttgc	ccc	2100
aacggcaccc	agctccagag	gctggacctc	agcggcaaca	gcatcggttt	cgtggcccc	ccc	2160
agctttttg	ccctggccgt	gaggctcga	gagctcaacc	tcagcgccaa	cgc	ccctcaag	2220
acggtggagc	cctcctggtt	tggttccctg	gccccgtgccc	tgaaaagtcc	ttt	agacgtgacc	2280
gccaaaccct	tgcattgcgc	ttgcggcgca	accttcgtgg	acttcttgct	ggagg	gtgcag	2340
gctgcggtgtc	coggcctgccc	tagccgtgtc	aagtgcggca	gccccggcca	gctccagg	ggc	2400
cgcagcatct	tgcacacagga	cctgcgcctc	tgccctggacg	aagcgctctc	ctgggtctgt	ttt	2460
ttcagc							2466

<210> 25

<211> 1031

<212> PRT

<213> Felis catus

<400> 25

Met	Gly	Pro	Cys	His	Gly	Ala	Leu	His	Pro	Leu	Ser	Leu	Leu	Val	Gln
1						5				10					15

Ala	Ala	Ala	Leu	Ala	Val	Ala	Leu	Ala	Gln	Gly	Thr	Leu	Pro	Ala	Phe
			20				25				30				

Leu	Pro	Cys	Glu	Leu	Gln	Arg	His	Gly	Leu	Val	Asn	Cys	Asp	Trp	Leu
			35			40					45				

Phe	Leu	Lys	Ser	Val	Pro	His	Phe	Ser	Ala	Ala	Ala	Pro	Arg	Gly	Asn
			50			55					60				

Val	Thr	Ser	Leu	Ser	Leu	Tyr	Ser	Asn	Arg	Ile	His	His	Leu	His	Asp
65					70				75				80		

Ser	Asp	Phe	Val	His	Leu	Ser	Ser	Leu	Arg	Arg	Leu	Asn	Leu	Lys	Trp
			85					90				95			

Asn	Cys	Pro	Pro	Ala	Ser	Leu	Ser	Pro	Met	His	Phe	Pro	Cys	His	Met
						100			105				110		

Thr	Ile	Glu	Pro	His	Thr	Phe	Leu	Ala	Val	Pro	Thr	Leu	Glu	Glu	Leu
					115			120			125				

Asn	Leu	Ser	Tyr	Asn	Ser	Ile	Thr	Thr	Val	Pro	Ala	Leu	Pro	Ser	Ser
						130		135			140				

Leu Val Ser Leu Ser Leu Ser Arg Thr Asn Ile Leu Val Leu Asp Pro
145 150 155 160

Ala Asn Leu Ala Gly Leu His Ser Leu Arg Phe Leu Phe Leu Asp Gly
165 170 175

Asn Cys Tyr Tyr Lys Asn Pro Cys Pro Gln Ala Leu Gln Val Ala Pro
180 185 190

Gly Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr
195 200 205

Asn Asn Leu Thr Ala Val Pro Arg Gly Leu Pro Pro Ser Leu Glu Tyr
210 215 220

Leu Leu Leu Ser Tyr Asn His Ile Ile Thr Leu Ala Pro Glu Asp Leu
225 230 235 240

Ala Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg
245 250 255

Arg Cys Asp His Ala Arg Asn Pro Cys Met Glu Cys Pro Lys Gly Phe
260 265 270

Pro His Leu His Pro Asp Thr Phe Ser His Leu Asn His Leu Glu Gly
275 280 285

Leu Val Leu Lys Asp Ser Ser Leu Tyr Asn Leu Asn Pro Arg Trp Phe
290 295 300

His Ala Leu Gly Asn Leu Met Val Leu Asp Leu Ser Glu Asn Phe Leu
305 310 315 320

Tyr Asp Cys Ile Thr Lys Thr Thr Ala Phe Gln Gly Leu Ala Gln Leu
325 330 335

Arg Arg Leu Asn Leu Ser Phe Asn Tyr His Lys Lys Val Ser Phe Ala
340 345 350

His Leu His Leu Ala Pro Ser Phe Gly Ser Leu Leu Ser Leu Gln Gln
355 360 365

Leu Asp Met His Gly Ile Phe Phe Arg Ser Leu Ser Glu Thr Thr Leu
370 375 380

Arg Ser Leu Val His Leu Pro Met Leu Gln Ser Leu His Leu Gln Met
385 390 395 400

Asn Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Ala Phe Pro Gly
405 410 415

Leu Arg Tyr Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Met Glu
420 425 430

Leu Ala Ala Ala Thr Gly Glu Val Asp Gly Gly Glu Arg Val Arg Leu
435 440 445

Pro Ser Gly Asp Leu Ala Leu Gly Pro Pro Gly Thr Pro Ser Ser Glu
450 455 460

Gly Phe Met Pro Gly Cys Lys Thr Leu Asn Phe Thr Leu Asp Leu Ser
465 470 475 480

Arg Asn Asn Leu Val Thr Ile Gln Pro Glu Met Phe Ala Arg Leu Ser
485 490 495

Arg Leu Gln Cys Leu Leu Leu Ser Arg Asn Ser Ile Ser Gln Ala Val
500 505 510

Asn Gly Ser Gln Phe Met Pro Leu Thr Ser Leu Gln Val Leu Asp Leu
515 520 525

Ser His Asn Lys Leu Asp Leu Tyr His Gly Arg Ser Phe Thr Glu Leu
530 535 540

Pro Arg Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Ser
545 550 555 560

Met Gln Gly Val Gly His Asn Leu Ser Phe Val Ala Gln Leu Pro Ala
565 570 575

Leu Arg Tyr Leu Ser Leu Ala His Asn Asp Ile His Ser Arg Val Ser
580 585 590

Gln Gln Leu Cys Ser Ala Ser Leu Arg Ala Leu Asp Phe Ser Gly Asn
595 600 605

Ala Leu Ser Arg Met Trp Ala Glu Gly Asp Leu Tyr Leu His Phe Phe

610 615 620

Arg Gly Leu Arg Ser Leu Val Arg Leu Asp Leu Ser Gln Asn Arg Leu
625 630 635 640

His Thr Leu Leu Pro Arg Thr Leu Asp Asn Leu Pro Lys Ser Leu Arg
645 650 655

Leu Leu Arg Leu Arg Asp Asn Tyr Leu Ala Phe Phe Asn Trp Ser Ser
660 665 670

Leu Val Leu Leu Pro Arg Leu Glu Ala Leu Asp Leu Ala Gly Asn Gln
675 680 685

Leu Lys Ala Leu Ser Asn Gly Ser Leu Pro Asn Gly Thr Gln Leu Gln
690 695 700

Arg Leu Asp Leu Ser Ser Asn Ser Ile Ser Phe Val Ala Ser Ser Phe
705 710 715 720

Phe Ala Leu Ala Thr Arg Leu Arg Glu Leu Asn Leu Ser Ala Asn Ala
725 730 735

Leu Lys Thr Val Glu Pro Ser Trp Phe Gly Ser Leu Ala Gly Thr Leu
740 745 750

Lys Val Leu Asp Val Thr Gly Asn Pro Leu His Cys Ala Cys Gly Ala
755 760 765

Ala Phe Val Asp Phe Leu Leu Glu Val Gln Ala Ala Val Pro Gly Leu
770 775 780

Pro Gly His Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg Ser
785 790 795 800

Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Ala Leu Ser Trp
805 810 815

Asp Cys Phe Gly Leu Ser Leu Leu Thr Val Ala Leu Gly Leu Ala Val
820 825 830

Pro Met Leu His His Leu Cys Gly Trp Asp Leu Trp Tyr Cys Phe His
835 840 845

Ala Ala Ala Leu Ala Val Ala Leu Ala Gln Gly Thr Leu Pro Ala Phe
20 25 30

Leu Pro Cys Glu Leu Gln Arg His Gly Leu Val Asn Cys Asp Trp Leu
35 40 45

Phe Leu Lys Ser Val Pro His Phe Ser Ala Ala Ala Pro Arg Gly Asn
50 55 60

Val Thr Ser Leu Ser Leu Tyr Ser Asn Arg Ile His His Leu His Asp
65 70 75 80

Ser Asp Phe Val His Leu Ser Ser Leu Arg Arg Leu Asn Leu Lys Trp
85 90 95

Asn Cys Pro Pro Ala Ser Leu Ser Pro Met His Phe Pro Cys His Met
100 105 110

Thr Ile Glu Pro His Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu
115 120 125

Asn Leu Ser Tyr Asn Ser Ile Thr Thr Val Pro Ala Leu Pro Ser Ser
130 135 140

Leu Val Ser Leu Ser Leu Ser Arg Thr Asn Ile Leu Val Leu Asp Pro
145 150 155 160

Ala Asn Leu Ala Gly Leu His Ser Leu Arg Phe Leu Phe Leu Asp Gly
165 170 175

Asn Cys Tyr Tyr Lys Asn Pro Cys Pro Gln Ala Leu Gln Val Ala Pro
180 185 190

Gly Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr
195 200 205

Asn Asn Leu Thr Ala Val Pro Arg Gly Leu Pro Pro Ser Leu Glu Tyr
210 215 220

Leu Leu Leu Ser Tyr Asn His Ile Ile Thr Leu Ala Pro Glu Asp Leu
225 230 235 240

Ala Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg
245 250 255

Arg Cys Asp His Ala Arg Asn Pro Cys Met Glu Cys Pro Lys Gly Phe
260 265 270

Pro His Leu His Pro Asp Thr Phe Ser His Leu Asn His Leu Glu Gly
275 280 285

Leu Val Leu Lys Asp Ser Ser Leu Tyr Asn Leu Asn Pro Arg Trp Phe
290 295 300

His Ala Leu Gly Asn Leu Met Val Leu Asp Leu Ser Glu Asn Phe Leu
305 310 315 320

Tyr Asp Cys Ile Thr Lys Thr Ala Phe Gln Gly Leu Ala Gln Leu
325 330 335

Arg Arg Leu Asn Leu Ser Phe Asn Tyr His Lys Lys Val Ser Phe Ala
340 345 350

His Leu His Leu Ala Pro Ser Phe Gly Ser Leu Leu Ser Leu Gln Gln
355 360 365

Leu Asp Met His Gly Ile Phe Phe Arg Ser Leu Ser Glu Thr Thr Leu
370 375 380

Arg Ser Leu Val His Leu Pro Met Leu Gln Ser Leu His Leu Gln Met
385 390 395 400

Asn Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Ala Phe Pro Gly
405 410 415

Leu Arg Tyr Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Met Glu
420 425 430

Leu Ala Ala Ala Thr Gly Glu Val Asp Gly Gly Glu Arg Val Arg Leu
435 440 445

Pro Ser Gly Asp Leu Ala Leu Gly Pro Pro Gly Thr Pro Ser Ser Glu
450 455 460

Gly Phe Met Pro Gly Cys Lys Thr Leu Asn Phe Thr Leu Asp Leu Ser
465 470 475 480

Arg Asn Asn Leu Val Thr Ile Gln Pro Glu Met Phe Ala Arg Leu Ser
485 490 495

Arg Leu Gln Cys Leu Leu Leu Ser Arg Asn Ser Ile Ser Gln Ala Val
500 505 510

Asn Gly Ser Gln Phe Met Pro Leu Thr Ser Leu Gln Val Leu Asp Leu
515 520 525

Ser His Asn Lys Leu Asp Leu Tyr His Gly Arg Ser Phe Thr Glu Leu
530 535 540

Pro Arg Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Ser
545 550 555 560

Met Gln Gly Val Gly His Asn Leu Ser Phe Val Ala Gln Leu Pro Ala
565 570 575

Leu Arg Tyr Leu Ser Leu Ala His Asn Asp Ile His Ser Arg Val Ser
580 585 590

Gln Gln Leu Cys Ser Ala Ser Leu Arg Ala Leu Asp Phe Ser Gly Asn
595 600 605

Ala Leu Ser Arg Met Trp Ala Glu Gly Asp Leu Tyr Leu His Phe Phe
610 615 620

Arg Gly Leu Arg Ser Leu Val Arg Leu Asp Leu Ser Gln Asn Arg Leu
625 630 635 640

His Thr Leu Leu Pro Arg Thr Leu Asp Asn Leu Pro Lys Ser Leu Arg
645 650 655

Leu Leu Arg Leu Arg Asp Asn Tyr Leu Ala Phe Phe Asn Trp Ser Ser
660 665 670

Leu Val Leu Leu Pro Arg Leu Glu Ala Leu Asp Leu Ala Gly Asn Gln
675 680 685

Leu Lys Ala Leu Ser Asn Gly Ser Leu Pro Asn Gly Thr Gln Leu Gln
690 695 700

Arg Leu Asp Leu Ser Ser Asn Ser Ile Ser Phe Val Ala Ser Ser Phe
705 710 715 720

Phe Ala Leu Ala Thr Arg Leu Arg Glu Leu Asn Leu Ser Ala Asn Ala

725

730

735

Leu Lys Thr Val Glu Pro Ser Trp Phe Gly Ser Leu Ala Gly Thr Leu
 740 745 750

Lys Val Leu Asp Val Thr Gly Asn Pro Leu His Cys Ala Cys Gly Ala
 755 760 765

Ala Phe Val Asp Phe Leu Leu Glu Val Gln Ala Ala Val Pro Gly Leu
 770 775 780

Pro Gly His Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg Ser
 785 790 795 800

Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Ala Leu Ser Trp
 805 810 815

Asp Cys Phe Gly
 820

<210> 27
<211> 3235
<212> DNA
<213> Felis catus

<400> 27	
agggtctgcg agtccaggo attttctct gccatcgctg cccagtctgc catccagacc	60
ctctggagaa gccccactc cctgtcatgg gcccctgcca tggcgccctg cacccttgt	120
ctctccttgt gcaggctgcc gcgctggccg tggccctggc ccagggcacc ctgcctgcct	180
ttctgccttg tgagctccag cgccacggcc tggtaattt cgactggctg ttctcaagt	240
ccgtgcccca cttctggcg gcagcccccc gtggtaacgt caccagcctt tccctgtact	300
ccaaccgcatt ccaccacctc caagactccg actttgtcca cctgtccagc ctgcggcgtc	360
tcaacctcaa atggaactgc ccacccgcca gcctcagccc catgcacttc ccctgtcaca	420
tgaccattga gccccacacc ttctggccg tgcccacccct ggaggagctg aacctgagct	480
acaacagcat cacgacagta cccgcctgc ccagttccct cgtgtccctg tccttgagcc	540
gtaccaacat cctggtgctg gaccctgcca acctcgagg gctgcactcc ctgcgtttc	600
tgttccttggaa tggcaactgc tactacaaga acccctgccc gcaggccctg caggtggccc	660
cgggcgcctt cttggccctg ggcaaccta cgcacctgtc actcaagtac aacaacctca	720
ctgcggtgcc ccgcggcctg ccccccagcc tggagtacct gctattgtcc tacaaccaca	780

tcatcaccct ggcacctgag gacctggcca acctgaccgc cctgcgtgtg ctgcgtgtgg	840
gtgggaactg ccgtcgctgt gaccacgccc gcaacccctg tatggagtgc cccaagggct	900
tcccgcacct gcaccctgac accttcagcc acctgaacca cctcgaaggc ctggtgttga	960
aggacagctc tctctacaac ctgaacccca gatggttcca tgccctggc aacctcatgg	1020
tgctggacct gagtgagaac ttccatatgt actgcacac caaaaccaca gccttccagg	1080
gcctggccca gctgcgcaga ctcaacttgt cttaatttccca ccacaagaag gtgtccttg	1140
cccacctgca tctggcgccc tccttcggga gcctgcttc cctgcagcag ctggacatgc	1200
atggcatctt cttccgctcg ctcagcgaga ccacgctccg gtcgctggc cacctggcca	1260
tgctccagag tctgcacctg cagatgaact tcatcaatca ggcccagctc agcatctcg	1320
gggccttccc tggcctgcga tacgtggacc tgtcagacaa ccgcataagt ggagccatgg	1380
agctggcggc tgccacgggg gaggtggatg gtggggagag agtccggctg ccatctgggg	1440
acctagctct gggcccaccc ggcaccccta gctccgaggg cttaatgccca ggctgcaaga	1500
ccctcaactt caccttggac ctgtcacgga acaacctagt gacaatccag ccagagatgt	1560
ttgccccgct ctcgcgcctc cagtgcctgc tcctgagccg caacagcatc tcgcaggcag	1620
tcaacggctc acaatttatg ccgctgacca gcctgcaggt gctggacctg tccataaca	1680
agctggacct gtaccatggg cgctcttca cggagctgcc gcggctggag gccctggacc	1740
tcaagctacaa cagccagccc ttcaagcatgc agggcgtggg tcacaacctc agctttgtgg	1800
cacagctgcc ggccctgcgc tatctcagcc tggcgcacaa cgacatccac agccgtgtgt	1860
cccagcagct ctgcagcgcc tcgctgcggg cttggactt cagcggcaat gccttgagcc	1920
ggatgtggc cgagggagac ctgtatctcc acttcttccg aggccctgagg agcctggtcc	1980
ggttggatct gtcccagaat cgcctgcata ccctttgcc acgcacccctg gacaacctcc	2040
ccaagagcct gggctgctg cgtctccgtg acaattatct ggctttcttc aactggagca	2100
gcctggcctt cttcccccagg ctggaagccc tggacctggc gggaaaccag ctgaaggccc	2160
tgagcaacgg cagcttgcct aatggaaccc agctccagag gctggacctc agcagcaaca	2220
gtatcagctt cgtggcctcc agcttttttg ctctggccac caggctgcga gagctcaacc	2280
tcagtgccaa cgccctcaag acgggtggagc cctctgggtt cgggtctcta gcgggcaccc	2340
tgaaaagtccct agatgtgact ggcaacccccc tgcaactgcgc ctgtggggcg gccttcgtgg	2400
acttcttgct ggaggtgcag gctgcagtgc cggcctgcc aggcacgc aagtgtggca	2460
gtccaggtca gctccagggc cgcagcatct ttgcgcagga tctgcgcctc tgccctggatg	2520
aggccctctc ctgggactgt tttggcctct cgtgcgtgac cgtggccctg ggccctggccg	2580

tgcccatgct gcaccaccc tcgtggctggg acctctggta ctgttccac ctgtgcctgg	2640
cctggctgcc ccggcgaaaa cggcgccggg gcgcggatgc cctgcctac gatgcctttg	2700
tggtcttcga caaggcacag agcgcggtgg ccgactgggt gtacaacgag ctgcgggtac	2760
ggctagagga gcgcgtgga cgccgagcgc tccgcctgtg cctggaggaa cgtgactggc	2820
tacccggtaa aacgctctt gagaacctgt gggcctcagt ttacagcagc cgcaagatgc	2880
tgttgtgct ggcccacaca gacagggtca gcggccttgc ggcgcgcagc tttctgctgg	2940
cccaagcagcg cctgctggag gaccgcaagg acgttgtggt gctggtgatc ctgcgcggcg	3000
acgccccaccg ctccccctat gtgcggctgc gccagcgcct ctgcccacag agcgtccctcc	3060
tctggcccca ccagcccagt ggccagcgca gcttctggc ccagctggc acggccctga	3120
ccagggacaa ccagcacttc tataaccaga acttctgcgg gggccccacg acggcagagt	3180
gaccgccccag caccccaago ctcctacacc ttgcctgtct gcctggatg ccggg	3235

<210> 28
<211> 2460
<212> DNA
<213> Felis catus

<400> 28	
atggggccctt gccatggcgc cctgcacccc ctgtatctcc tgggtgcaggg tgccgcgtg	60
gcccgtggccc tggcccaggg caccctgcct gcctttctgc cctgtgagct ccagcgccac	120
ggcctggta attgcgactg gctgttcctc aagtccgtgc cccacttctc ggcggcagcg	180
ccccgtggta acgtcaccag cctttccctg tactccaacc gcatccacca cctccacgac	240
tccgactttg tccacctgtc cagcctgcgg cgtctcaacc tcaaattggaa ctgcccaccc	300
gccagcctca gccccatgca cttccctgt cacatgacca ttgagcccca caccttcctg	360
gccgtgcccc ccctggagga gctgaacctg agtacaaca gcatcacgac agtacccgccc	420
ctgcccagtt ccctcgtgtc cctgtccttgc agocgtacca acatcctggt gctggaccct	480
gccaacctcg cagggctgca ctccctgcgc tttctgttcc tggatggcaa ctgtactac	540
aagaacccct gccccaggg cctgcaggtg gccccggggcg ccctccttgg cctgggcaac	600
cttacgcacc tgtcaactcaa gtacaacaac ctcactgcgg tgccccgcgg cctgcccccc	660
agcctggagt acctgctatt gtcctacaac cacatcatca ccctggcacc tgaggacctg	720
gccaacctga ccgcctgcgc tgtgctcgat gtgggtggga actgccgtcg ctgtgaccac	780
gcccccaacc cctgtatggaa gtgccccaaag ggcttccgc acctgcaccc tgacaccttc	840
agccacctga accacctcga aggccctggtg ttgaaggaca gctctctcta caacctgaac	900

cccatgggt tccatgccct	960
gggcaacctc atgggtctgg	
acctgagtga gaacttccta	
tatgactgca tcaccaaaac	1020
cacagccttc cagggcctgg	
cccagctcg cagactcaac	
ttgtcttca attaccacaa	1080
gaagggtgtcc tttgcccacc	
tgcatctggc gcctccttc	
gggagcctgc tctccctgca	1140
gcagctggac atgcatggca	
tcttcttccg ctgcgtcagc	
gagaccacgc tccggtcgt	1200
ggtccacctg cccatgctcc	
agagtctgca cctgcagatg	
aacttcatca atcaggccca	1260
gctcagcata ttcggggcct	
tccctggcct gcgatacgtg	
gacctgtcag acaaccgcata	1320
aagtggagcc atggagctgg	
cggtgcacac gggggaggtg	
gatggtgggg agagagtccg	1380
gctgcacatct ggggacctag	
ctctgggccc accgggcacc	
cctagctccg agggcttcat	1440
gccaggctgc aagaccctca	
acttcacatt ggacctgtca	
cggaacaacc tagtgacaat	1500
ccagccagag atgtttgccc	
ggctctcg cctccagtgc	
ctgctccctga gccgcaacag	1560
catctcgacag gcagtcaacg	
gctcacaatt tatgcccgt	
accagcctgc aggtgctgga	1620
cctgtccccat aacaagctgg	
acctgtacca tggcgctct	
ttcacggagc tgccgcggct	1680
ggaggccctg gacctcagct	
acaacagcca gcccttcagc	
atgcagggcg tgggtcacaa	1740
cctcagcttt gtggcacagc	
tgcggccctt gcgctatctc	
agcctggcgc acaacgacat	1800
ccacagccgt gtgtcccagc	
agctctgcag cgccctcgctg	
cgggccttgg acttcagcgg	1860
caatgcctt agccggatgt	
ggcccgaggg agacctgtat	
ctccacttct tccgaggcct	1920
gaggagctg gtccgggttgg	
atctgtccca gaatgcctg	
cataccctct tgccacgcac	1980
cctggacaac ctccccaaaga	
gcctgcggct gctgcgtctc	
cgtgacaatt atctggcttt	2040
cttcaactgg agcagccctgg	
tcctcctccc caggctggaa	
gccctggacc tggcgggaaa	2100
ccagctgaag gccctgagca	
acggcagatt gcctaattgga	
acccagctcc agaggctgga	2160
cctcagcagc aacagtatca	
gcttcgtggc ctccagcttt	
tttgccttgg ccaccaggct	2220
gcgagagctc aacctcagtg	
ccaacgcctt caagacggtg	
gagccctctt gtttcggttc	2280
tctagcgggc accctgaaag	
tccttagatgt gactggcaac	
cccctgcact ggcgcctgtgg	2340
ggcggcccttc gtggacttct	
tgctggaggt gcaggctgca	
gtgccccggcc tgccaggcca	2400
cgtcaagtgt ggcagtcag	
gtcagctcca gggccgcagc	
atcttgcgc aggatctgcg	2460
cctctgcctg gatgaggccc	
tctcctggaa ctgttttggc	

<210> 29
 <211> 1032
 <212> PRT
 <213> Mus musculus

<400> 29

Met Val Leu Arg Arg Arg Thr Leu His Pro Leu Ser Leu Leu Val Gln
1 5 10 15

Ala Ala Val Leu Ala Glu Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe
20 25 30

Leu Pro Cys Glu Leu Lys Pro His Gly Leu Val Asp Cys Asn Trp Leu
35 40 45

Phe Leu Lys Ser Val Pro Arg Phe Ser Ala Ala Ser Cys Ser Asn
50 55 60

Ile Thr Arg Leu Ser Leu Ile Ser Asn Arg Ile His His Leu His Asn
65 70 75 80

Ser Asp Phe Val His Leu Ser Asn Leu Arg Gln Leu Asn Leu Lys Trp
85 90 95

Asn Cys Pro Pro Thr Gly Leu Ser Pro Leu His Phe Ser Cys His Met
100 105 110

Thr Ile Glu Pro Arg Thr Phe Leu Ala Met Arg Thr Leu Glu Glu Leu
115 120 125

Asn Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Arg Leu Pro Ser Ser
130 135 140

Leu Val Asn Leu Ser Leu Ser His Thr Asn Ile Leu Val Leu Asp Ala
145 150 155 160

Asn Ser Leu Ala Gly Leu Tyr Ser Leu Arg Val Leu Phe Met Asp Gly
165 170 175

Asn Cys Tyr Tyr Lys Asn Pro Cys Thr Gly Ala Val Lys Val Thr Pro
180 185 190

Gly Ala Leu Leu Gly Leu Ser Asn Leu Thr His Leu Ser Leu Lys Tyr
195 200 205

Asn Asn Leu Thr Lys Val Pro Arg Gln Leu Pro Pro Ser Leu Glu Tyr
210 215 220

Leu Leu Val Ser Tyr Asn Leu Ile Val Lys Leu Gly Pro Glu Asp Leu

225	230	235	240
Ala Asn Leu Thr Ser Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg			
245		250	255
Arg Cys Asp His Ala Pro Asn Pro Cys Ile Glu Cys Gly Gln Lys Ser			
260		265	270
Leu His Leu His Pro Glu Thr Phe His His Leu Ser His Leu Glu Gly			
275		280	285
Leu Val Leu Lys Asp Ser Ser Leu His Thr Leu Asn Ser Ser Trp Phe			
290		295	300
Gln Gly Leu Val Asn Leu Ser Val Leu Asp Leu Ser Glu Asn Phe Leu			
305	310	315	320
Tyr Glu Ser Ile Asn His Thr Asn Ala Phe Gln Asn Leu Thr Arg Leu			
325		330	335
Arg Lys Leu Asn Leu Ser Phe Asn Tyr Arg Lys Lys Val Ser Phe Ala			
340		345	350
Arg Leu His Leu Ala Ser Ser Phe Lys Asn Leu Val Ser Leu Gln Glu			
355		360	365
Leu Asn Met Asn Gly Ile Phe Phe Arg Ser Leu Asn Lys Tyr Thr Leu			
370		375	380
Arg Trp Leu Ala Asp Leu Pro Lys Leu His Thr Leu His Leu Gln Met			
385		390	395
400		405	410
Asn Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Thr Phe Arg Ala			
415		420	425
Leu Arg Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Pro Ser Thr			
430		435	440
Leu Ser Glu Ala Thr Pro Glu Glu Ala Asp Asp Ala Glu Gln Glu Glu			
445		450	455
Leu Leu Ser Ala Asp Pro His Pro Ala Pro Leu Ser Thr Pro Ala Ser			
460		465	

Lys Asn Phe Met Asp Arg Cys Lys Asn Phe Lys Phe Thr Met Asp Leu
465 470 475 480

Ser Arg Asn Asn Leu Val Thr Ile Lys Pro Glu Met Phe Val Asn Leu
485 490 495

Ser Arg Leu Gln Cys Leu Ser Leu Ser His Asn Ser Ile Ala Gln Ala
500 505 510

Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Asn Leu Gln Val Leu Asp
515 520 525

Leu Ser His Asn Lys Leu Asp Leu Tyr His Trp Lys Ser Phe Ser Glu
530 535 540

Leu Pro Gln Leu Gln Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe
545 550 555 560

Ser Met Lys Gly Ile Gly His Asn Phe Ser Phe Val Ala His Leu Ser
565 570 575

Met Leu His Ser Leu Ser Leu Ala His Asn Asp Ile His Thr Arg Val
580 585 590

Ser Ser His Leu Asn Ser Asn Ser Val Arg Phe Leu Asp Phe Ser Gly
595 600 605

Asn Gly Met Gly Arg Met Trp Asp Glu Gly Gly Leu Tyr Leu His Phe
610 615 620

Phe Gln Gly Leu Ser Gly Leu Leu Lys Leu Asp Leu Ser Gln Asn Asn
625 630 635 640

Leu His Ile Leu Arg Pro Gln Asn Leu Asp Asn Leu Pro Lys Ser Leu
645 650 655

Lys Leu Leu Ser Leu Arg Asp Asn Tyr Leu Ser Phe Phe Asn Trp Thr
660 665 670

Ser Leu Ser Phe Leu Pro Asn Leu Glu Val Leu Asp Leu Ala Gly Asn
675 680 685

Gln Leu Lys Ala Leu Thr Asn Gly Thr Leu Pro Asn Gly Thr Leu Leu
690 695 700

Gln Lys Leu Asp Val Ser Ser Asn Ser Ile Val Ser Val Val Pro Ala
705 710 715 720

Phe Phe Ala Leu Ala Val Glu Leu Lys Glu Val Asn Leu Ser His Asn
725 730 735

Ile Leu Lys Thr Val Asp Arg Ser Trp Phe Gly Pro Ile Val Met Asn
740 745 750

Leu Thr Val Leu Asp Val Arg Ser Asn Pro Leu His Cys Ala Cys Gly
755 760 765

Ala Ala Phe Val Asp Leu Leu Leu Glu Val Gln Thr Lys Val Pro Gly
770 775 780

Leu Ala Asn Gly Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg
785 790 795 800

Ser Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Val Leu Ser
805 810 815

Trp Asp Cys Phe Gly Leu Ser Leu Leu Ala Val Ala Val Gly Met Val
820 825 830

Val Pro Ile Leu His His Leu Cys Gly Trp Asp Val Trp Tyr Cys Phe
835 840 845

His Leu Cys Leu Ala Trp Leu Pro Leu Leu Ala Arg Ser Arg Arg Ser
850 855 860

Ala Gln Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Ala Gln
865 870 875 880

Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Val Arg Leu Glu
885 890 895

Glu Arg Arg Gly Arg Arg Ala Leu Arg Leu Cys Leu Glu Asp Arg Asp
900 905 910

Trp Leu Pro Gly Gln Thr Leu Phe Glu Asn Leu Trp Ala Ser Ile Tyr
915 920 925

Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser
930 935 940

Gly Leu Leu Arg Thr Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu
 945 950 955 960

Asp Arg Lys Asp Val Val Val Leu Val Ile Leu Arg Pro Asp Ala His
 965 970 975

Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val
 980 985 990

Leu Phe Trp Pro Gln Gln Pro Asn Gly Gln Gly Gly Phe Trp Ala Gln
 995 1000 1005

Leu Ser Thr Ala Leu Thr Arg Asp Asn Arg His Phe Tyr Asn Gln
 1010 1015 1020

Asn Phe Cys Arg Gly Pro Thr Ala Glu
 1025 1030

<210> 30

<211> 821

<212> PRT

<213> Mus musculus

<400> 30

Met Val Leu Arg Arg Arg Thr Leu His Pro Leu Ser Leu Leu Val Gln
 1 5 10 15

Ala Ala Val Leu Ala Glu Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe
 20 25 30

Leu Pro Cys Glu Leu Lys Pro His Gly Leu Val Asp Cys Asn Trp Leu
 35 40 45

Phe Leu Lys Ser Val Pro Arg Phe Ser Ala Ala Ser Cys Ser Asn
 50 55 60

Ile Thr Arg Leu Ser Leu Ile Ser Asn Arg Ile His His Leu His Asn
 65 70 75 80

Ser Asp Phe Val His Leu Ser Asn Leu Arg Gln Leu Asn Leu Lys Trp
 85 90 95

Asn Cys Pro Pro Thr Gly Leu Ser Pro Leu His Phe Ser Cys His Met
 100 105 110

Thr Ile Glu Pro Arg Thr Phe Leu Ala Met Arg Thr Leu Glu Glu Leu
115 120 125

Asn Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Arg Leu Pro Ser Ser
130 135 140

Leu Val Asn Leu Ser Leu Ser His Thr Asn Ile Leu Val Leu Asp Ala
145 150 155 160

Asn Ser Leu Ala Gly Leu Tyr Ser Leu Arg Val Leu Phe Met Asp Gly
165 170 175

Asn Cys Tyr Tyr Lys Asn Pro Cys Thr Gly Ala Val Lys Val Thr Pro
180 185 190

Gly Ala Leu Leu Gly Leu Ser Asn Leu Thr His Leu Ser Leu Lys Tyr
195 200 205

Asn Asn Leu Thr Lys Val Pro Arg Gln Leu Pro Pro Ser Leu Glu Tyr
210 215 220

Leu Leu Val Ser Tyr Asn Leu Ile Val Lys Leu Gly Pro Glu Asp Leu
225 230 235 240

Ala Asn Leu Thr Ser Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg
245 250 255

Arg Cys Asp His Ala Pro Asn Pro Cys Ile Glu Cys Gly Gln Lys Ser
260 265 270

Leu His Leu His Pro Glu Thr Phe His His Leu Ser His Leu Glu Gly
275 280 285

Leu Val Leu Lys Asp Ser Ser Leu His Thr Leu Asn Ser Ser Trp Phe
290 295 300

Gln Gly Leu Val Asn Leu Ser Val Leu Asp Leu Ser Glu Asn Phe Leu
305 310 315 320

Tyr Glu Ser Ile Asn His Thr Asn Ala Phe Gln Asn Leu Thr Arg Leu
325 330 335

Arg Lys Leu Asn Leu Ser Phe Asn Tyr Arg Lys Lys Val Ser Phe Ala

340

345

350

Arg Leu His Leu Ala Ser Ser Phe Lys Asn Leu Val Ser Leu Gln Glu
355 360 365

Leu Asn Met Asn Gly Ile Phe Phe Arg Ser Leu Asn Lys Tyr Thr Leu
370 375 380

Arg Trp Leu Ala Asp Leu Pro Lys Leu His Thr Leu His Leu Gln Met
385 390 395 400

Asn Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Thr Phe Arg Ala
405 410 415

Leu Arg Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Pro Ser Thr
420 425 430

Leu Ser Glu Ala Thr Pro Glu Glu Ala Asp Asp Ala Glu Gln Glu Glu
435 440 445

Leu Leu Ser Ala Asp Pro His Pro Ala Pro Leu Ser Thr Pro Ala Ser
450 455 460

Lys Asn Phe Met Asp Arg Cys Lys Asn Phe Lys Phe Thr Met Asp Leu
465 470 475 480

Ser Arg Asn Asn Leu Val Thr Ile Lys Pro Glu Met Phe Val Asn Leu
485 490 495

Ser Arg Leu Gln Cys Leu Ser Leu Ser His Asn Ser Ile Ala Gln Ala
500 505 510

Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Asn Leu Gln Val Leu Asp
515 520 525

Leu Ser His Asn Lys Leu Asp Leu Tyr His Trp Lys Ser Phe Ser Glu
530 535 540

Leu Pro Gln Leu Gln Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe
545 550 555 560

Ser Met Lys Gly Ile Gly His Asn Phe Ser Phe Val Ala His Leu Ser
565 570 575

Met Leu His Ser Leu Ser Leu Ala His Asn Asp Ile His Thr Arg Val
580 585 590

Ser Ser His Leu Asn Ser Asn Ser Val Arg Phe Leu Asp Phe Ser Gly
595 600 605

Asn Gly Met Gly Arg Met Trp Asp Glu Gly Gly Leu Tyr Leu His Phe
610 615 620

Phe Gln Gly Leu Ser Gly Leu Leu Lys Leu Asp Leu Ser Gln Asn Asn
625 630 635 640

Leu His Ile Leu Arg Pro Gln Asn Leu Asp Asn Leu Pro Lys Ser Leu
645 650 655

Lys Leu Leu Ser Leu Arg Asp Asn Tyr Leu Ser Phe Phe Asn Trp Thr
660 665 670

Ser Leu Ser Phe Leu Pro Asn Leu Glu Val Leu Asp Leu Ala Gly Asn
675 680 685

Gln Leu Lys Ala Leu Thr Asn Gly Thr Leu Pro Asn Gly Thr Leu Leu
690 695 700

Gln Lys Leu Asp Val Ser Ser Asn Ser Ile Val Ser Val Val Pro Ala
705 710 715 720

Phe Phe Ala Leu Ala Val Glu Leu Lys Glu Val Asn Leu Ser His Asn
725 730 735

Ile Leu Lys Thr Val Asp Arg Ser Trp Phe Gly Pro Ile Val Met Asn
740 745 750

Leu Thr Val Leu Asp Val Arg Ser Asn Pro Leu His Cys Ala Cys Gly
755 760 765

Ala Ala Phe Val Asp Leu Leu Glu Val Gln Thr Lys Val Pro Gly
770 775 780

Leu Ala Asn Gly Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg
785 790 795 800

Ser Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Val Leu Ser
805 810 815

Trp Asp Cys Phe Gly
820

<210> 31
<211> 3200
<212> DNA
<213> Mus musculus

<400> 31	
tgtcagaggg agcctcgaaa gaatcccca tctcccaaca tggttctccg tcgaaggact	60
ctgcacccct tgcctccct ggtacaggct gcagtgcgg ctgagactct ggccctgggt	120
accctgcctg ctttcctacc ctgtgagctg aagcctcatg gcctgggtgg ctgcaattgg	180
ctgttccctga agtctgtacc ccgtttctct gggcagcat cctgctccaa catcacccgc	240
ctctccttga tctccaaaccg tatccaccac ctgcacaact ccgacttcgt ccacctgtcc	300
aacctgcggc agctgaacct caagtggAAC tggccaccca ctggccttag cccctgcac	360
ttctcttgcc acatgaccat tgagcccaga accttcctgg ctatgcgtac actggaggag	420
ctgaacctga gctataatgg tatcaccact gtgcggac tggccagtc cctggtaat	480
ctgagcctga gccacaccaa catcctgggtt cttagatgcta acagcctcgc cggctatac	540
agcctgcgcg ttctttcat ggacggaaac tgctactaca agaaccctg cacaggagcg	600
gtgaaggtga ccccaggcgc cttctgggc ctgagcaatc tcacccatct gtctctgaag	660
tataacaacc tcacaaagggt gccccccaa ctgccccca gcctggagta cttctggtg	720
tcctataacc tcattgtcaa gctggggctt gaagacctgg ccaatctgac ctcccttcga	780
gtacttgatg tgggtggaa ttggcgctgc tgccgaccatg ccccaatcc ctgtatagaa	840
tgtggccaaa agtccctcca cctgcacccct gagaccttcc atcacctgag ccacatggaa	900
ggccctggc tgaaggacag ctctctccat acactgaact cttctgggtt ccaaggctcg	960
gtcaacctct cggtgctgga cctaagcgag aactttctct atgaaagcat caaccacacc	1020
aatgccttc agaacctaacc cggcctgcgc aagtcacacc tggcccttcaa ttacccgaag	1080
aaggtatcct ttggccgcct ccacctggca agttccttca agaacctgggt gtcactgcag	1140
gagctgaaca tgaacggcat cttctccgc tgcgtcaaca agtacacgct cagatggctg	1200
gccgatctgc ccaaactcca cactctgcat cttcaaatga acttcatcaa ccaggcacag	1260
ctcagcatct ttggtacctt ccgagccctt cggtttgtgg acttgcaga caatgcata	1320
agtgggcctt caacgctgta agaagccacc cctgaagagg cagatgtgc agagcaggag	1380
gagctgttgt ctgcggatcc tcacccagct ccactgagca cccctgccttc taagaacttc	1440

atggacaggt gtaagaactt caagttcacc atggacctgt ctggaaacaa cctggtgact	1500
atcaagccag agatgttgtt caatctctca cgccctccagt gtcttagcct gagccacaac	1560
tccattgcac aggctgtcaa tggctctcag ttccctgccgc tgactaatct gcaggtgctg	1620
gacctgtccc ataacaaact ggacttgtac cactggaaat cgttcagtga gctaccacag	1680
ttgcaggccc tggacctgag ctacaacagc cagcccttta gcatgaaggg tataggccac	1740
aatttcagtt ttgtggccca tctgtccatg ctacacagcc ttagcctggc acacaatgac	1800
attcatacccc gtgtgtcctc acatctcaac agcaactcag tgaggtttct tgacttcagc	1860
ggcaacggta tggcccgcat gtgggatgag gggggccttt atctccattt cttccaaggc	1920
ctgagtggcc tgctgaagct ggacctgtct caaaataacc tgcatatcct ccggccccag	1980
aaccttgaca acctccccaa gagcctgaag ctgctgagcc tccgagacaa ctacctatct	2040
ttctttaact ggaccagtct gtccttcctg cccaacctgg aagtccataga cctggcaggc	2100
aaccagctaa aggccctgac caatggcacc ctgcctaattg gcaccctcct ccagaaactg	2160
gatgtcagca gcaacagtat cgtctctgtg gtcccagcct tcttcgtct ggccgtcgag	2220
ctgaaagagg tcaacacctgag ccacaacatt ctcaagacgg tggatcgctc ctggtttggg	2280
cccatgtga tgaacacctgac agttcttagac gtgagaagca accctctgca ctgtgcctgt	2340
ggggcagcct tcgttagactt actgttggag gtgcagacca aggtgcotgg cctggctaatt	2400
ggtgtgaagt gtggcagccc cggccagctg cagggccgta gcatcttcgc acaggacctg	2460
cggctgtgcc tggatgaggt cctctcttgg gactgttttg gccttcact cttggctgtg	2520
gccgtggca tggtggtgcc tatactgcac catctctgctg gctggacgt ctggtaactgt	2580
tttcatctgt gcctggcatg gctacctttg ctggcccgca gccgacgcag cgcccaagct	2640
ctccccatgt atgccttcgt ggtgttcgt aaggcacaga ggcgcgttgc ggactgggtg	2700
tataacgagc tgcgggtgcg gctggaggag cggcgccggc gccgagccct acgcttgcgt	2760
ctggaggacc gagattggct gcctggccag acgcttgcg agaacctctg ggcttccatc	2820
tatggagcc gcaagactct atttgtgcgt gcccacacgg accgcgtcag tggcctcctg	2880
cgcaccagct tcctgctggc tcagcagcgc ctgttggaaag accgcaagga cgtggtggtg	2940
ttgggtatcc tgcgtccggta tgcccaccgc tcccgctatg tgcgcactgcg ccagcgtctc	3000
tgccgcccaga gtgtgtctt ctggcccccag cagcccaacg ggcagggggg cttctggcc	3060
cagctgagta cagccctgac tagggacaac cgccacttct ataaccagaa cttctgcccgg	3120
ggacctacag cagaatagct cagagcaaca gctggaaaca gctgcatctt catgcctggt	3180
tccccgagttg ctctgcctgc	3200

<210> 32
 <211> 2463
 <212> DNA
 <213> Mus musculus

<400> 32						
atggttctcc	gtcgaaggac	tctgcacccc	ttgtccctcc	tggtacaggc	tgcagtgctg	60
gctgagactc	tggccctggg	taccctgcct	gccttcctac	cctgtgagct	gaaggcctcat	120
ggcctggtgg	actgcaattg	gctgttcctg	aagtctgtac	cccgtttctc	tgcggcagca	180
tcctgctcca	acatcacccg	cctctccttg	atctccaacc	gtatccacca	cctgcacaac	240
tccgacttcg	tccacactg	caacctgcgg	cagctgaacc	tcaagtggaa	ctgtccaccc	300
actggccta	gccccctgca	cttctttgc	cacatgacca	ttgagccag	aaccttcctg	360
gctatgcgt	cactggagga	gctgaacctg	agctataatg	gtatcaccac	tgtgccccga	420
ctgcccagct	ccctggtgaa	tctgaggctg	agccacacca	acatcctggt	tctagatgct	480
aacagcctcg	ccggcctata	cagcctgcgc	gttctttca	tggacggaa	ctgctactac	540
aagaacccct	gcacaggagc	ggtgaaggtg	accccaggcg	ccctctggg	cctgagcaat	600
ctcacccatc	tgtctctgaa	gtataacaac	ctcacaaagg	tgccccgcca	actgcccccc	660
agcctggagt	acctcctggt	gtcctataac	ctcattgtca	agctggggcc	tgaagacctg	720
gccaatctga	cctcccttcg	agtacttgat	gtgggtggga	attgccgtcg	ctgcgaccat	780
gcccccaatc	cctgtataga	atgtggccaa	aagtccctcc	acctgcaccc	tgagaccttc	840
catcacctga	gccatctgga	aggcctgg	ctgaaggaca	gctctctcca	tacactgaac	900
tcttccttgt	tccaaggct	ggtcaacctc	tcggtgctgg	acctaagcga	gaactttctc	960
tatgaaagca	tcaaccacac	caatgcctt	cagaaccaa	ccgcctgcg	caagctcaac	1020
ctgtccttca	attaccgcaa	gaaggtatcc	tttgcggcc	tccacctggc	aagttccttc	1080
aagaacctgg	tgtcaactgca	ggagctgaac	atgaacggca	tcttcttccg	ctcgctcaac	1140
aagtacacgc	tcagatggct	ggccgatctg	cccaaactcc	acactctgca	tctcaaattg	1200
aacttcatca	accaggcaca	gctcagcatc	tttggtacct	tccgagocct	tcgcttgc	1260
gacttgtcag	acaatcgcat	cagtggcct	tcaacgctgt	cagaagccac	ccctgaagag	1320
gcagatgatg	cagagcagga	ggagctgtt	tctgcggatc	ctcaccacagc	tccactgagc	1380
acccctgctt	ctaagaactt	catggacagg	tgtaagaact	tcaagttcac	catggacctg	1440
tctcggaca	acctggtgac	tatcaagcca	gagatgttt	tcaatctctc	acgcctccag	1500
tgtcttagcc	tgagccacaa	ctccattgca	caggctgtca	atggctctca	gttcctgccc	1560

ctgactaatac	tgcagggtgct	ggacctgtcc	cataacaaac	tggacttgtta	ccactggaaa	1620
tcgttcagtg	agctaccaca	gttgcaggcc	ctggacctga	gctacaacag	ccagcccttt	1680
agcatgaagg	gtataggcca	caatttcagt	tttgtggccc	atctgtccat	gctacacagc	1740
cttagcctgg	cacacaatga	cattcatacc	cgtgtgtcct	cacatctcaa	cagcaactca	1800
gtgaggtttc	ttgacttcag	cggcaacgg	atggggccga	tgtggatga	ggggggcctt	1860
tatctccatt	tcttccaagg	cctgagtg	ctgctgaagc	tggacctgtc	tcaaaataac	1920
ctgcataatcc	tccggccccca	gaaccttgac	aacctccccca	agagcctgaa	gctgctgagc	1980
ctccgagaca	actacctatac	tttctttaac	tggaccagtc	tgtccttcct	gcccaacctg	2040
gaagtcctag	acctggcagg	caaccagcta	aaggccctga	ccaatggcac	cctgccta	2100
ggcacccctcc	tccagaaact	ggatgtcagc	agcaacagta	tcgtctctgt	ggtcccagcc	2160
ttcttcgctc	tggcggtcga	gctgaaagag	gtcaacctca	gccacaacat	tctcaagacg	2220
gtggatcgct	cctgggttgg	gccattgtg	atgaacctga	cagttctaga	cgtgagaagc	2280
aaccctctgc	actgtgcctg	tggggcagcc	ttcgttagact	tactgttgg	ggtgcagacc	2340
aagggtgcctg	gcctggctaa	tggtgtgaag	tgtggcagcc	ccggccagct	gcagggccgt	2400
agcatttcg	cacaggacct	gcggctgtc	ctggatgagg	tcctctcttg	ggactgctt	2460
ggc						2463

<210> 33
<211> 1032
<212> PRT
<213> Homo sapiens

<400> 33

Met Gly Phe Cys Arg Ser Ala Leu His Pro Leu Ser Leu Leu Val Gln
1 5 10 15

Ala Ile Met Leu Ala Met Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe
20 25 30

Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp Leu
35 40 45

Phe Leu Lys Ser Val Pro His Phe Ser Met Ala Ala Pro Arg Gly Asn
50 55 60

Val Thr Ser Leu Ser Leu Ser Ser Asn Arg Ile His His Leu His Asp
65 70 75 80

Ser Asp Phe Ala His Leu Pro Ser Leu Arg His Leu Asn Leu Lys Trp
85 90 95

Asn Cys Pro Pro Val Gly Leu Ser Pro Met His Phe Pro Cys His Met
100 105 110

Thr Ile Glu Pro Ser Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu
115 120 125

Asn Leu Ser Tyr Asn Asn Ile Met Thr Val Pro Ala Leu Pro Lys Ser
130 135 140

Leu Ile Ser Leu Ser Leu Ser His Thr Asn Ile Leu Met Leu Asp Ser
145 150 155 160

Ala Ser Leu Ala Gly Leu His Ala Leu Arg Phe Leu Phe Met Asp Gly
165 170 175

Asn Cys Tyr Tyr Lys Asn Pro Cys Arg Gln Ala Leu Glu Val Ala Pro
180 185 190

Gly Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr
195 200 205

Asn Asn Leu Thr Val Val Pro Arg Asn Leu Pro Ser Ser Leu Glu Tyr
210 215 220

Leu Leu Leu Ser Tyr Asn Arg Ile Val Lys Leu Ala Pro Glu Asp Leu
225 230 235 240

Ala Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg
245 250 255

Arg Cys Asp His Ala Pro Asn Pro Cys Met Glu Cys Pro Arg His Phe
260 265 270

Pro Gln Leu His Pro Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly
275 280 285

Leu Val Leu Lys Asp Ser Ser Leu Ser Trp Leu Asn Ala Ser Trp Phe
290 295 300

Arg Gly Leu Gly Asn Leu Arg Val Leu Asp Leu Ser Glu Asn Phe Leu

305	310	315	320
Tyr Lys Cys Ile Thr Lys Thr Lys Ala Phe Gln Gly Leu Thr Gln Leu			
325		330	335
Arg Lys Leu Asn Leu Ser Phe Asn Tyr Gln Lys Arg Val Ser Phe Ala			
340		345	350
His Leu Ser Leu Ala Pro Ser Phe Gly Ser Leu Val Ala Leu Lys Glu			
355		360	365
Leu Asp Met His Gly Ile Phe Phe Arg Ser Leu Asp Glu Thr Thr Leu			
370		375	380
Arg Pro Leu Ala Arg Leu Pro Met Leu Gln Thr Leu Arg Leu Gln Met			
385		390	395
Asn Phe Ile Asn Gln Ala Gln Leu Gly Ile Phe Arg Ala Phe Pro Gly			
405		410	415
Leu Arg Tyr Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ser Glu			
420		425	430
Leu Thr Ala Thr Met Gly Glu Ala Asp Gly Gly Glu Lys Val Trp Leu			
435		440	445
Gln Pro Gly Asp Leu Ala Pro Ala Pro Val Asp Thr Pro Ser Ser Glu			
450		455	460
Asp Phe Arg Pro Asn Cys Ser Thr Leu Asn Phe Thr Leu Asp Leu Ser			
465		470	475
Arg Asn Asn Leu Val Thr Val Gln Pro Glu Met Phe Ala Gln Leu Ser			
485		490	495
His Leu Gln Cys Leu Arg Leu Ser His Asn Cys Ile Ser Gln Ala Val			
500		505	510
Asn Gly Ser Gln Phe Leu Pro Leu Thr Gly Leu Gln Val Leu Asp Leu			
515		520	525
Ser Arg Asn Lys Leu Asp Leu Tyr His Glu His Ser Phe Thr Glu Leu			
530		535	540

Pro Arg Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Gly
545 550 555 560

Met Gln Gly Val Gly His Asn Phe Ser Phe Val Ala His Leu Arg Thr
565 570 575

Leu Arg His Leu Ser Leu Ala His Asn Asn Ile His Ser Gln Val Ser
580 585 590

Gln Gln Leu Cys Ser Thr Ser Leu Arg Ala Leu Asp Phe Ser Gly Asn
595 600 605

Ala Leu Gly His Met Trp Ala Glu Gly Asp Leu Tyr Leu His Phe Phe
610 615 620

Gln Gly Leu Ser Gly Leu Ile Trp Leu Asp Leu Ser Gln Asn Arg Leu
625 630 635 640

His Thr Leu Leu Pro Gln Thr Leu Arg Asn Leu Pro Lys Ser Leu Gln
645 650 655

Val Leu Arg Leu Arg Asp Asn Tyr Leu Ala Phe Phe Lys Trp Trp Ser
660 665 670

Leu His Phe Leu Pro Lys Leu Glu Val Leu Asp Leu Ala Gly Asn Arg
675 680 685

Leu Lys Ala Leu Thr Asn Gly Ser Leu Pro Ala Gly Thr Arg Leu Arg
690 695 700

Arg Leu Asp Val Ser Cys Asn Ser Ile Ser Phe Val Ala Pro Gly Phe
705 710 715 720

Phe Ser Lys Ala Lys Glu Leu Arg Glu Leu Asn Leu Ser Ala Asn Ala
725 730 735

Leu Lys Thr Val Asp His Ser Trp Phe Gly Pro Leu Ala Ser Ala Leu
740 745 750

Gln Ile Leu Asp Val Ser Ala Asn Pro Leu His Cys Ala Cys Gly Ala
755 760 765

Ala Phe Met Asp Phe Leu Leu Glu Val Gln Ala Ala Val Pro Gly Leu
770 775 780

Pro Ser Arg Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Leu Ser
785 790 795 800

Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Ala Leu Ser Trp
805 810 815

Asp Cys Phe Ala Leu Ser Leu Leu Ala Val Ala Leu Gly Leu Gly Val
820 825 830

Pro Met Leu His His Leu Cys Gly Trp Asp Leu Trp Tyr Cys Phe His
835 840 845

Leu Cys Leu Ala Trp Leu Pro Trp Arg Gly Arg Gln Ser Gly Arg Asp
850 855 860

Glu Asp Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Thr Gln
865 870 875 880

Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Gly Gln Leu Glu
885 890 895

Glu Cys Arg Gly Arg Trp Ala Leu Arg Leu Cys Leu Glu Glu Arg Asp
900 905 910

Trp Leu Pro Gly Lys Thr Leu Phe Glu Asn Leu Trp Ala Ser Val Tyr
915 920 925

Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser
930 935 940

Gly Leu Leu Arg Ala Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu
945 950 955 960

Asp Arg Lys Asp Val Val Leu Val Ile Leu Ser Pro Asp Gly Arg
965 970 975

Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val
980 985 990

Leu Leu Trp Pro His Gln Pro Ser Gly Gln Arg Ser Phe Trp Ala Gln
995 1000 1005

Leu Gly Met Ala Leu Thr Arg Asp Asn His His Phe Tyr Asn Arg
1010 1015 1020

Asn Phe Cys Gln Gly Pro Thr Ala Glu
1025 1030

<210> 34
<211> 820
<212> PRT
<213> Homo sapiens

<400> 34

Met Gly Phe Cys Arg Ser Ala Leu His Pro Leu Ser Leu Leu Val Gln
1 5 10 15

Ala Ile Met Leu Ala Met Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe
20 25 30

Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp Leu
35 40 45

Phe Leu Lys Ser Val Pro His Phe Ser Met Ala Ala Pro Arg Gly Asn
50 55 60

Val Thr Ser Leu Ser Leu Ser Ser Asn Arg Ile His His Leu His Asp
65 70 75 80

Ser Asp Phe Ala His Leu Pro Ser Leu Arg His Leu Asn Leu Lys Trp
85 90 95

Asn Cys Pro Pro Val Gly Leu Ser Pro Met His Phe Pro Cys His Met
100 105 110

Thr Ile Glu Pro Ser Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu
115 120 125

Asn Leu Ser Tyr Asn Asn Ile Met Thr Val Pro Ala Leu Pro Lys Ser
130 135 140

Leu Ile Ser Leu Ser Leu Ser His Thr Asn Ile Leu Met Leu Asp Ser
145 150 155 160

Ala Ser Leu Ala Gly Leu His Ala Leu Arg Phe Leu Phe Met Asp Gly
165 170 175

Asn Cys Tyr Tyr Lys Asn Pro Cys Arg Gln Ala Leu Glu Val Ala Pro
180 185 190

Gly Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr
195 200 205

Asn Asn Leu Thr Val Val Pro Arg Asn Leu Pro Ser Ser Leu Glu Tyr
210 215 220

Leu Leu Leu Ser Tyr Asn Arg Ile Val Lys Leu Ala Pro Glu Asp Leu
225 230 235 240

Ala Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg
245 250 255

Arg Cys Asp His Ala Pro Asn Pro Cys Met Glu Cys Pro Arg His Phe
260 265 270

Pro Gln Leu His Pro Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly
275 280 285

Leu Val Leu Lys Asp Ser Ser Leu Ser Trp Leu Asn Ala Ser Trp Phe
290 295 300

Arg Gly Leu Gly Asn Leu Arg Val Leu Asp Leu Ser Glu Asn Phe Leu
305 310 315 320

Tyr Lys Cys Ile Thr Lys Thr Lys Ala Phe Gln Gly Leu Thr Gln Leu
325 330 335

Arg Lys Leu Asn Leu Ser Phe Asn Tyr Gln Lys Arg Val Ser Phe Ala
340 345 350

His Leu Ser Leu Ala Pro Ser Phe Gly Ser Leu Val Ala Leu Lys Glu
355 360 365

Leu Asp Met His Gly Ile Phe Phe Arg Ser Leu Asp Glu Thr Thr Leu
370 375 380

Arg Pro Leu Ala Arg Leu Pro Met Leu Gln Thr Leu Arg Leu Gln Met
385 390 395 400

Asn Phe Ile Asn Gln Ala Gln Leu Gly Ile Phe Arg Ala Phe Pro Gly
405 410 415

Leu Arg Tyr Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ser Glu

420 425 430

Leu Thr Ala Thr Met Gly Glu Ala Asp Gly Gly Glu Lys Val Trp Leu
435 440 445

Gln Pro Gly Asp Leu Ala Pro Ala Pro Val Asp Thr Pro Ser Ser Glu
450 455 460

Asp Phe Arg Pro Asn Cys Ser Thr Leu Asn Phe Thr Leu Asp Leu Ser
465 470 475 480

Arg Asn Asn Leu Val Thr Val Gln Pro Glu Met Phe Ala Gln Leu Ser
485 490 495

His Leu Gln Cys Leu Arg Leu Ser His Asn Cys Ile Ser Gln Ala Val
500 505 510

Asn Gly Ser Gln Phe Leu Pro Leu Thr Gly Leu Gln Val Leu Asp Leu
515 520 525

Ser Arg Asn Lys Leu Asp Leu Tyr His Glu His Ser Phe Thr Glu Leu
530 535 540

Pro Arg Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Gly
545 550 555 560

Met Gln Gly Val Gly His Asn Phe Ser Phe Val Ala His Leu Arg Thr
565 570 575

Leu Arg His Leu Ser Leu Ala His Asn Asn Ile His Ser Gln Val Ser
580 585 590

Gln Gln Leu Cys Ser Thr Ser Leu Arg Ala Leu Asp Phe Ser Gly Asn
595 600 605

Ala Leu Gly His Met Trp Ala Glu Gly Asp Leu Tyr Leu His Phe Phe
610 615 620

Gln Gly Leu Ser Gly Leu Ile Trp Leu Asp Leu Ser Gln Asn Arg Leu
625 630 635 640

His Thr Leu Leu Pro Gln Thr Leu Arg Asn Leu Pro Lys Ser Leu Gln
645 650 655

Val Leu Arg Leu Arg Asp Asn Tyr Leu Ala Phe Phe Lys Trp Trp Ser
 660 665 670

Leu His Phe Leu Pro Lys Leu Glu Val Leu Asp Leu Ala Gly Asn Arg
 675 680 685

Leu Lys Ala Leu Thr Asn Gly Ser Leu Pro Ala Gly Thr Arg Leu Arg
 690 695 700

Arg Leu Asp Val Ser Cys Asn Ser Ile Ser Phe Val Ala Pro Gly Phe
 705 710 715 720

Phe Ser Lys Ala Lys Glu Leu Arg Glu Leu Asn Leu Ser Ala Asn Ala
 725 730 735

Leu Lys Thr Val Asp His Ser Trp Phe Gly Pro Leu Ala Ser Ala Leu
 740 745 750

Gln Ile Leu Asp Val Ser Ala Asn Pro Leu His Cys Ala Cys Gly Ala
 755 760 765

Ala Phe Met Asp Phe Leu Leu Glu Val Gln Ala Ala Val Pro Gly Leu
 770 775 780

Pro Ser Arg Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Leu Ser
 785 790 795 800

Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Ala Leu Ser Trp
 805 810 815

Asp Cys Phe Ala
 820

<210> 35
<211> 3352
<212> DNA
<213> Homo sapiens

<400> 35			
aggctggtat aaaaatctta cttcctctat tctctgagcc gctgctgccc ctgtggaaag	60		
ggacctcgag tgtgaagcat cttccctgt agctgctgtc cagtctgccc gccagaccct	120		
ctggagaagc ccctgcccc cagcatgggt ttctgccgca gcgcctgtca cccgctgtct	180		
ctcctggtgc aggccatcat gctggccatg accctggccc tgggtacatt gcctgcattc	240		
ctaccctgtg agctccagcc ccacggcctg gtgaactgca actggctgtt cctgaagtct	300		

gtgccccact tctccatggc agcacccgt ggcaatgtca ccagctttc cttgtcctcc	360
aaccgcatcc accacctcca tgattctgac tttgccacc tgcccagct gcggcatctc	420
aacctcaagt ggaactgccc gccgggttggc ctcaagccca tgcacttccc ctgccacatg	480
accatcgagc ccagcacctt cttggctgtg cccaccctgg aagagctaaa cctgagctac	540
aacaacatca tgactgtgcc tgcgctgccc aaatccctca tatccctgtc cctcagccat	600
accaacatcc ttagtgcaga ctctgccagc ctgcggggcc tgcatgcctt gcgattccta	660
ttcatggacg gcaactgtta ttacaagaac ccctgcaggc aggcaactgga ggtggccccc	720
ggtgccctcc ttggcctggg caacctcacc cacctgtcac tcaagtacaa caacctca	780
gtggtgcccc gcaacctgcc ttccagcctg gagtatctgc tggatgtcata caaccgcac	840
gtcaaactgg cgccctgagga cctggccaat ctgaccgccc tgcgtgtgct cgatgtggc	900
ggaaattgcc gccgctgcga ccacgcctcc aaccctgca tggagtgcctt tcgtcacttc	960
ccccagctac atcccgatac ctgcagccac ctgagccgtc ttgaaggcctt ggtgttgaag	1020
gacagttctc tctcctggct gaatgcagt tggatgtggggaa cctcccgagtg	1080
ctggacactga gtgagaactt cctctacaaa tgcataacta aaaccaaggc ctgcaggc	1140
ctaacacagc tgcgcagact taacctgtcc ttcaattacc aaaagaggggt gtcctttgcc	1200
cacctgtctc tggcccttc ctgcggggc ctggatgcctt tgaaggagct ggacatgcac	1260
ggcatcttct tccgctact cgatgagacc acgctccggc cactggcccg cctgcccatt	1320
ctccagactc tgcgtctgca gatgaacttc atcaaccagg cccagctcgg catcttcagg	1380
gccttccctg gcctgcgcta cgtggacctg tcggacaacc gcatcagcgg agcttcggag	1440
ctgacagcca ccatggggga ggcagatgga ggggagaagg tctggctgca gcctggggac	1500
cttgctccgg ccccagtggc cactcccgac tctgaagact tcaggccaa ctgcagcacc	1560
ctcaacttca cttggatct gtcacgaaac aacctgggtga ccgtgcagcc ggagatgttt	1620
gcccagctct cgacactgca gtgcctgcgc ctgagccaca actgcatactc gcaggcagtc	1680
aatggctccc agttcctgcc gctgaccggc ctgcagggtc tagacctgtc ccgcaataag	1740
ctggacactt accacgagca ctcattcagc gagctaccgc gactggaggc cctggacactc	1800
agctacaaca gccagccctt tggcatgcag gggtggggcc acaacttcag cttcgtggct	1860
cacctgcgca ccctgcgcca cctcagccctg gcccacaaca acatccacag ccaagtgtcc	1920
cagcagctct gcagttacgtc gctgcggggcc ctggacttca gcggcaatgc actggggccat	1980
atgtggggccg agggagacct ctatctgcac ttcttccaag gcctgagcgg tttgatctgg	2040

ctggacttgt	cccagaaccg	cctgcacacc	ctcctgcccc	aaaccctgcg	caacctcccc	2100															
aagagcctac	aggtgctgcg	tctccgtgac	aattacctgg	ccttctttaa	gtggtggagc	2160															
ctccacttcc	tgc	ccaaact	ggaagtcc	c	gac	ctggcag	gaaaccggct	gaaggccctg	2220												
accaatggca	gc	ctgc	ctgc	tggc	acc	ccgg	tg	gatgtc	ag	ctgca	ac	agc	2280								
atcagcttcg	tgg	ccccc	gg	ctt	ttt	cc	aagg	ccaagg	ag	ctgc	gaga	g	ctca	ac	ctt	2340					
agcgccaa	cg	cc	ctca	aa	ag	ac	gtgg	acc	ac	tc	tt	gg	gg	ct	tg	cc	ctg	2400			
caaatactag	at	gt	taa	g	gc	gc	ca	acc	c	t	c	t	g	gg	cc	at	gg	ac	2460		
ttc	c	t	ct	gg	ag	gt	gc	agg	g	t	g	cc	gt	ccc	cc	tt	gg	c	2520		
ccgg	gg	cc	cc	cc	t	cc	t	cc	c	cc	at	tt	gg	at	gg	at	gg	at	g	2580	
gcc	cc	ct	cc	ct	cc	tt	cc	gg	ac	tt	cc	tc	tg	gg	tt	gg	tt	gg	tg	2640	
ccc	at	cc	at	cc	tc	tc	tg	gg	tc	tc	gg	ac	cc	tc	gg	cc	tc	gg	ac	2700	
tgg	ct	cc	ct	cc	cc	gg	gg	gg	ac	tt	gg	gg	gg	gg	gg	gg	gg	gg	gg	2760	
ttc	gt	gg	tct	tc	tc	tt	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	2820
ggg	cag	ct	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	2880
tgg	ct	cc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	2940
acg	ct	tt	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	3000
ctgg	ccc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	3060
cctg	ac	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	3120
ctcc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	tc	3180
ctg	acc	agg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	3240
tag	cc	cg	tg	tg	tg	tg	tg	tg	tg	tg	tg	tg	tg	tg	tg	tg	tg	tg	tg	tg	3300
tgg	tct	gacc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	3352

<210> 36
<211> 2460
<212> DNA
<213> Homo sapiens

<400> 36																					
atggg	ttt	tct	cc	60																	
atggg	ttt	tct	cc	120																	
ggc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	180
ccccc	gt	gg	gt	gg	gt	gg	gt	gg	gt	gg	gt	gg	gt	gg	gt	gg	gt	gg	gt	gg	240

tctgactttg cccacacctggc cagcctgcgg catctcaacc tcaagtggaa ctgccccccg	300
gttggcctca gccccatgca cttcccctgc cacatgacca tcgagcccg caccttcttg	360
gctgtgccc ccctggaga gctaaacactg agotacaaca acatcatgac tgtgcctgcg	420
ctgccccaaat ccctcatatac cctgtccctc agccatacca acatcctgat gctagactct	480
gccaggcctcg cccgcctgca tgccctgcgc ttccattca tggacggcaa ctgttattac	540
aagaacccct gcaggcaggg actggaggtg gccccgggtg ccctccttgg cctgggcaac	600
ctcaccacc acctcactcaa gtacaacaac ctcactgtgg tgccccgcaa cctgccttcc	660
agcctggagt atctgctgtt gtcctacaac cgcatcgta aactggcgcc tgaggacctg	720
gccaatctga ccgcctgca tgtgctcgat gtggcggaa attgccgcgg ctgcgaccac	780
gtccccacc cctgcattgga gtgcctcgta cacttcccc agctacatcc cgataccctc	840
agccaccta gccgtcttga aggccctggt ttgaaggaca gttctcttc ctggctgaat	900
gccagttggt tccgtggct gggaaacctc cgagtgctgg acctgagtga gaacttcctc	960
tacaaatgca tcactaaaac caaggcattc cagggcctaa cacagctgcg caagcttaac	1020
ctgtccttca attacaaaaa gaggggtgtcc tttgcccacc tgtctctggc cccttccttc	1080
gggagcctgg tcgcctgaa ggagctggac atgcacggca tcttcttccg ctcactcgat	1140
gagaccacgc tccggccact ggccgcctg cccatgctcc agactctgcg tctgcagatg	1200
aacttcatca accaggcccc gctcggcattc ttcaaggccct tccctggcct gcgtacgtg	1260
gacctgtcgg acaaccgcatt cagcggagct tcggagctga cagccaccat gggggaggca	1320
gatggagggg agaaggctcg gctgcagcct gggacccctg ctccggccccc agtggacact	1380
cccagctctg aagacttcag gccaaactgc agcaccctca acttcacccctt ggatctgtca	1440
cggaaacaacc tggtgcaccgt gcagccggag atgtttgccc agctctcgca cctgcagtgc	1500
ctgcgcctga gccacaactg catctcgacag gcagtcaatg gctccagtt cctgcgcctg	1560
accggcttcg aggtgctaga cctgtcccgca aataagctgg acctctacca cgagcactca	1620
ttcacggagc taccgcgact ggaggccctg gacctcagct acaacagcca gcccttggc	1680
atgcagggcg tggccacaa cttcagcttc gtggctcacc tgccgcacccct gcgcacccctc	1740
agcctggccc acaacaacat ccacagccaa gtgtcccgac agctctgcag tacgtcgctg	1800
cgggcctgg acttcagcggt caatgcactg gcccataatgt gggccggagg agaccccttat	1860
ctgcacttac tccaaggcct gagcggtttgc atctggctgg acttgcacca gaaccgcctg	1920
cacaccctcc tgccccaaac cctgcgcacac ctccccaaaga gcctacaggt gctgcgtctc	1980
cgtgacaatt acctggcattt ctttaagtgg tggagcctcc acttcctgccc caaactggaa	2040

gtcctcgacc tggcagaaaa ccggctgaag gccctgacca atggcagccct gcctgctggc 2100
 acccggtcc ggaggctgga tgtcagctgc aacagcatca gcttcgtggc ccccggttc 2160
 ttttccaagg ccaaggagct gcgagagctc aaccttagcg ccaaccccct caagacagt 2220
 gaccactcct ggtttgggcc cctggcgagt gccctgcaaa tactagatgt aagcgccaac 2280
 cctctgcact gcgcctgtgg ggcggcctt atggacttcc tgctggaggt gcaggctgcc 2340
 gtgccccgtc tgcccagccg ggtgaagtgt ggcagtccgg gccagctcca gggcctcagc 2400
 atcttgcac aggacctgcg cctctgcctg gatgaggccc tctcctgggaa ctgtttcgcc 2460

<210> 37
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 37
accttgcctg ctttcctacc ctgtga 26

<210> 38
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 38
gtccgtgtgg gccagcacaa a 21

<210> 39
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 39
tccatgacgt ttttgatgtt 20

<210> 40
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 40
tccataacgt ttttgatgtt 20

<210> 41
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 41
tccatcacgt ttttgatgtt 20

<210> 42
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 42
tccattacgt ttttgatgtt 20

<210> 43
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 43
tccatggcgt ttttgatgtt 20

<210> 44
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 44
tccatgccgt ttttgatgtt 20

<210> 45
<211> 20
<212> DNA
<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide

<400> 45

tccatgtcgt ttttgatgtt

20

<210> 46

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide

<400> 46

tccatgatgt ttttgatgtt

20

<210> 47

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide

<400> 47

tccatgaagt ttttgatgtt

20

<210> 48

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide

<400> 48

tccatgaggt ttttgatgtt

20

<210> 49

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide

<400> 49

tccatgacat ttttgatgtt

20

<210> 50

<211> 20

<212> DNA

<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 50
tccatgacctt ttttgatgtt

20

<210> 51
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 51
tccatgacttt ttttgatgtt

20

<210> 52
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 52
tccatgacgc ttttgatgtt

20

<210> 53
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 53
tccatgacga ttttgatgtt

20

<210> 54
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 54
tccatgacgg ttttgatgtt

20

<210> 55
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 55
tccatgacgt ctttgatgtt

20

<210> 56
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 56
tccatgacgt atttgatgtt

20

<210> 57
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 57
tccatgacgt gtttgatgtt

20

<210> 58
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 58
tcgtcgaaaa gtcgttttgtt cgtt

24

<210> 59
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 59
tgctcgaaaa gtgcgttttgtt gctt

24

<210> 60
<211> 20
<212> DNA

<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide

<400> 60
tccatgacgt tcctgatgct

20

<210> 61
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 61
tccatgagct tcctgatgct

20

<210> 62
<211> 16
<212> PRT
<213> Artificial sequence

<220>
<223> Consensus oligopeptide

<220>
<221> MISC_FEATURE
<222> (4)..(5)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (7)..(12)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (14)..(15)
<223> Any amino acid

<400> 62

Gly Asn Cys Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Cys
1 5 10 15

<210> 63
<211> 16
<212> PRT
<213> Homo sapiens

<400> 63

Gly Asn Cys Arg Arg Cys Asp His Ala Pro Asn Pro Cys Met Glu Cys
1 5 10 15

<210> 64
<211> 16
<212> PRT
<213> Mus musculus

<400> 64

Gly Asn Cys Arg Arg Cys Asp His Ala Pro Asn Pro Cys Met Ile Cys
1 5 10 15

<210> 65
<211> 31
<212> PRT
<213> Artificial sequence

<220>
<223> Consensus oligopeptide

<220>
<221> MISC_FEATURE
<222> (2)..(8)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (10)..(10)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (14)..(22)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (25)..(30)
<223> Any amino acid

<400> 65

Arg Xaa Xaa Xaa Xaa Xaa Xaa Arg Xaa Asp Xaa Tyr Xaa Xaa Xaa
1 5 10 15

Xaa Xaa Xaa Xaa Xaa Xaa Arg Ser Xaa Xaa Xaa Xaa Xaa Xaa Tyr
20 25 30

<210> 66
<211> 31
<212> PRT
<213> Homo sapiens

<220>
<221> MISC_FEATURE
<222> (2)..(8)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (10)..(10)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (14)..(22)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (25)..(30)
<223> Any amino acid

<400> 66

Gln Xaa Xaa Xaa Xaa Xaa Xaa Lys Xaa Asp Xaa Tyr Xaa Xaa Xaa
1 5 10 15

Xaa Xaa Xaa Xaa Xaa Xaa Arg Leu Xaa Xaa Xaa Xaa Xaa Tyr
20 25 30

<210> 67
<211> 31
<212> PRT
<213> Mus musculus

<220>
<221> MISC_FEATURE
<222> (2)..(8)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (10)..(10)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (14)..(22)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (25)..(30)
<223> Any amino acid

<400> 67

Gln Xaa Xaa Xaa Xaa Xaa Xaa Lys Xaa Asp Xaa Tyr Xaa Xaa Xaa
1 5 10 15

Xaa Xaa Xaa Xaa Xaa Xaa Gln Leu Xaa Xaa Xaa Xaa Xaa Xaa Tyr
20 25 30

<210> 68
<211> 31
<212> PRT
<213> Homo sapiens

<400> 68

Gln Val Leu Asp Leu Ser Arg Asn Lys Leu Asp Leu Tyr His Glu His
1 5 10 15

Ser Phe Thr Glu Leu Pro Arg Leu Glu Ala Leu Asp Leu Ser Tyr
20 25 30

<210> 69
<211> 31
<212> PRT
<213> Mus musculus

<400> 69

Gln Val Leu Asp Leu Ser His Asn Lys Leu Asp Leu Tyr His Trp Lys

1

5

10

15

Ser Phe Ser Glu Leu Pro Gln Leu Gln Ala Leu Asp Leu Ser Tyr
20 25 30

<210> 70
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 70
tccaggactt ctctcaggtt 20