Introduction to survival analysis

Jorge N. Tendeiro

Department of Psychometrics and Statistics Faculty of Behavioral and Social Sciences University of Groningen

j.n.tendeiro@rug.nl

O jorgetendeiro/Seminar-2020-Survival-Analysis

Plan for today

Gentle introduction to survival analysis.

Source:

Harrell, F. E., Jr. (2015). Regression Modeling strategies, 2nd edition.

Springer

Chapters:

17, 18, and 20.

Survival analysis (SA)

Data:

For which the *time until the event* is of interest.

▶ This goes beyond *logistic regression*, which focuses on the *occurrence* of the event.

Outcome variable:

- ightharpoonup T = Time until the event.
- ▶ Often referred to as *failure time*, *survival time*, or *event time*.

Examples

Survival time: Time until...

▶ death, desease, relapse.

Failure time: Time until...

▶ product malfunction.

Event time: Time until...

▶ graduation, marriage, divorce.

Advantages of SA over typical regression models

► SA allows modeling units that did not fail up to data collection (*censored on the right* data).

- ► Regression could be considered to model the expected survival time. *But*:
 - ✓ Survival time is often not normally distributed.
 - \checkmark P(survival > t) is often more interesting than $\mathbb{E}(\text{survival time})$.

Censoring

Some subjects:

- ▶ Did not experiment the event up to the end of data collection;
- ▶ Withdrew from study;
- ▶ Were lost to follow-up.

These data are right-censored.

Define random variables for the *i*th subject:

- $ightharpoonup T_i = \text{time to event}$
- $ightharpoonup C_i = censoring time$
- ▶ e_i = event indicator = $\begin{cases} 1 & \text{if event is observed } (T_i \leq C_i) \\ 0 & \text{if event is not observed } (T_i > C_i) \end{cases}$
- $ightharpoonup Y_i = \min(T_i, C_i) = \text{what occurred first (failure or censoring)}$

Variables $\{Y_i, e_i\}$ include all the necessary information.

Typical data set

T_i	C_i	Y_i	e_i
5	10	5	1
4	12	4	1
13+	13	13	0
5	10	5	1
15+	15	15	0

Observe the flexibility of SA data:

- ► Subjects may join the study at different moments.
- ► Censoring times may differ among subjects.

 $\{Y_i, e_i\}$ does include all the necessary information.

But, *assumption*: Censoring is non-informative, i.e., it is independent of the risk of the event.

Three main functions

Recall that the outcome variable is T = time until event.

► Survival function:

$$S(t) = P(T > t) = 1 - F(t),$$

where $F = P(T \le t)$ is distribution function of T.

► Cumulative hazard function:

$$\Lambda(t) = -\log(S(t))$$

► Hazard function:

$$\lambda(t) = \Lambda'(t)$$

Survival function

$$S(t) = P(T > t) = 1 - F(t)$$

Example:

If event = death, then S(t) = prob. that death occurs after time t.

Properties:

- ► $S(0) = 1, S(\infty) = 0.$
- ightharpoonup Non-increasing function of t.

Cumulative hazard function

$$\Lambda(t) = -\log(S(t))$$

Idea:

Accumulated risk up until time t.

Properties:

- ▶ $\Lambda(0) = 0$.
- ► Non-decreasing function of *t*.

Hazard function

$$\lambda(t) = \Lambda'(t)$$

Idea:

Instantaneous event rate at time t.

Relation between the three functions

All functions are related:

Any two functions can be derived from the third function.

▶ The three functions are equivalent ways of describing the same random variable (T = time until event).

More generally, all the following functions give mathematically equivalent specifications of the distribution of *T*:

- ightharpoonup F(t): Distribution function
- \blacktriangleright f(t): Density function
- \triangleright S(t): Survival function
- \blacktriangleright $\lambda(t)$: Hazard function
- \blacktriangleright $\Lambda(t)$: Cumulative hazard function.

Examples

Next are two primary examples of parametric survival distributions:

- ▶ the exponential distribution;
- ▶ the Weibull distribution.

These models (still) include no covariates, thus:

► Each subject in the sample is assumed to have the same distribution of *T*.

No formulas.

Instead: Let's plot.

Exponential survival distribution

Weibull survival distribution (I)

Weibull survival distribution (II)

Quantiles

Q: What is the time by which (100q)% of the population will fail?

A: Value t_q such that $F(t_q) = q$, or, equiv., $S(t_q) = 1 - q$.

In particular, median survival time = $t_{.50}$.

Expected failure time

(Note: *T* is skewed, so the mean is not the best summary. Better use median.)

Q: What is the expected failure time?

A: It is the area under the survival function.

Various estimation approaches

There are several options available to estimate the survival function (and friends).

Here we will briefly go through only a few:

- ▶ Not parametric and homogeneous (i.e., without predictors):
 - √ Kaplan-Meier estimator
 - ✓ Altschuler-Nelson estimator
- ► Parametric:
 - ✓ Homogeneous (i.e., no predictors): Exponential, Weibull, normal, logistic, log-normal, log-logistic,...
 - √ Proportional hazards models
- ► Semi-parametric:
 - √ Cox proportional hazards regression model

After a brief intro to each, I will use them all on an empirical dataset.

Kaplan-Meier estimator

- ► Also known as the *product-limit* estimator.
- ▶ Non parametric, and super simple to do even manually.
- ► Key ingredient: *Conditional probabilites*.

Assume t = 0, 1, 2, ...

We have that S(0) = P(T > 0) = 1. For $t \ge 1$ we then have that

$$P(T > t | T > t - 1) = \frac{P(T > t, T > t - 1)}{P(T > t - 1)} = \frac{P(T > t)}{P(T > t - 1)}$$

and so

$$P(T > t) = P(T > t - 1) \times P(T > t | T > t - 1),$$

or in terms of the survival function,

$$S(t) = S(t-1) \times P(T > t | T > t-1)$$

$$S(t) = S(t-1) \times (1 - P(T \le t | T > t-1))$$

Kaplan-Meier estimator – Example

Data: Seven subjects; failure times T = 1, 3, 3, 3+, 6+, 9, 10+.

Day	No. subjects	Deaths	Censored	$S(t) = S(t-1) \times$
	at risk			$\times (1 - P(T \le t T > t - 1))$
1	7	1	0	$1 \times (1 - 1/7) = 6/7$
3	7 - (1+0) = 6	2	1	$6/7 \times (1 - 2/6) = 4/7$
6	6 - (2 + 1) = 3	0	1	$4/7 \times (1 - \frac{0}{3}) = 4/7$
9	3-(0+1)=2	1	0	$4/7 \times (1 - 1/2) = 2/7$
10	2 - (1+0) = 1	0	1	$2/7 \times (1 - 0/1) = 2/7$

Hence:

$$S(t) = \begin{cases} 1, & 0 \le t < 1 \\ 6/7 = .86, & 1 \le t < 3 \\ 4/7 = .57, & 3 \le t < 9 \\ 2/7 = .29, & 9 \le t < 10 \\ \text{undefined}^*, & t \ge 10 \end{cases}$$

^{*}Not everyone failed by t = 10, so we cannot tell what happened after that.

Kaplan-Meier estimator – Example

Altschuler-Nelson estimator

- ▶ Non parametric, also simple.
- ▶ Similar to Kaplan-Meier, but based on $\Lambda(t)$.

Recall that $\Lambda(t)$ = accumulated risk up until time t.

Hence it makes sense to estimate $\Lambda(t)$ by

$$\widehat{\Lambda}(t) = \sum_{i:t_i \le t} \frac{\text{\# failures at } t_i}{\text{\# subjects at risk at } t_i}.$$

Then,

$$\widehat{S}(t) = \exp(-\widehat{\Lambda}(t)).$$

Interesting property: $\sum_{i} \widehat{\Lambda}(Y_i) = \text{total number of events.}$

Altschuler-Nelson estimator – Example

Data: Seven subjects; failure times T = 1,3,3,3+,6+,9,10+.

Day	No. subjects	Deaths	Censored	$\Lambda(t)$
	at risk			
1	7	1	0	1/7
3	7 - (1+0) = 6	2	1	$1/7 + \frac{2}{6} = 10/21$
6	6 - (2 + 1) = 3	0	1	$10/21 + \frac{0}{3} = 10/21$
9	3 - (0+1) = 2	1	0	$10/21 + \frac{1}{2} = 41/42$
10	2 - (1+0) = 1	0	1	$41/42 + \frac{0}{1} = 41/42$
		$\sum_i = 4$		$\sum_i = 4$

Hence:

$$S(t) = \exp(-\Lambda(t)) = \left\{ \begin{array}{ll} \exp(0) = 1, & 0 \leq t < 1 \\ \exp(-1/7) = .87, & 1 \leq t < 3 \\ \exp(-10/21) = .62, & 3 \leq t < 9 \\ \exp(-41/42) = .38, & 9 \leq t < 10 \\ & \text{undefined}, & t \geq 10 \end{array} \right.$$

Altschuler-Nelson estimator – Example

Homogeneous parametric models

Q: How about *continuous*, parametric, counterparts to KM and AN? Still incorporating no predictors?

A: There are really *a lot* of possibilities.

Most common examples:

- ► Exponential
- ▶ Weibull
- ► Normal
- ► Logistic
- ► Log-normal
- ► Log-logistic
- **>** ...

My advice:

Just fit several of these and compare.

There is no 'best' model, it depends on the data.

Homogeneous parametric models

Data: T = 1, 3, 3, 3+, 6+, 9, 10+.

Assessing model fit

I like Harrell's take on this:

► To assess model fit, use graphical methods (and no tests; yeah, that's right!).

We show an example:

Assess the fit of the exponential model.

Two plotting options, akin to QQ-plots:

- ▶ Plot $S_{\text{Exp}}^{-1}(S_{\text{KM}}(T))$ versus T;
- ▶ Plot $S_{\text{Exp}}(T)$ versus $S_{\text{KM}}(T)$.

Assessing model fit

Data: T = 1, 3, 3, 3+, 6+, 9, 10+.

First model until now that allows incorporating predictor variables $X = \{X_1, X_2, ..., X_k\}.$

 \triangleright X_i can be continuous, dichotomous, polytomous, etc.

The proportional hazards (PH) model generalizes the hazard function $\lambda(t)$:

relative hazard function
$$\lambda(t|X) = \lambda(t) \overbrace{\exp(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_x X_k)}^{\text{relative hazard function}} = \lambda(t) \exp(X\beta)$$

- \blacktriangleright $\lambda(t|X) = \text{hazard function for } T \text{ given the predictors } X.$
- \blacktriangleright $\lambda(t) =$ 'underlying' hazard function (for a subject with $X\beta = 0$).
- \triangleright exp($X\beta$) describes the *relative* effects of the predictors.

Note: The intercept β_0 may be omitted (kind of 'absorbed' into $\lambda(t)$).

$$\lambda(t|X) = \lambda(t) \exp(X\beta)$$

Here are the 'friends':

$$\Lambda(t|X) = \Lambda(t) \exp(X\beta)$$
$$S(t|X) = S(t)^{\exp(X\beta)}$$

- ▶ $\Lambda(t)$ = 'underlying' cumulative hazard function (for a subject with $X\beta = 0$).
- ► S(t) = 'underlying' survival function (for a subject with $X\beta = 0$).

It is easiest to consider the log-model versions:

$$\begin{split} \log \lambda(t|X) &= \log \lambda(t) + X\beta \\ \log \Lambda(t|X) &= \log \Lambda(t) + X\beta \\ \log S(t|X) &= \underbrace{\log S(t)}_{\text{time}} \times \underbrace{\exp(X\beta)}_{\text{predictors}} \end{split}$$

▶ Observe that we separated the time and the predictors components.

Important consequence due to the separability of *t* and *X*:

- \blacktriangleright The effect of X is assumed to be the same at all values of t.
- ▶ I.e.: We assume no $t \times X$ interaction effect.

How to interpret regression coefficient β_j (j = 1, ..., k)?

$$\log \lambda(t|X) = \log \lambda(t) + (\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_x X_k)$$
$$\log \Lambda(t|X) = \underbrace{\log \Lambda(t)}_{\text{time}} + \underbrace{(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_x X_k)}_{\text{predictors}}$$

- ► Additive interpretation:
 - ✓ $\log \lambda(t|X)$ increases by β_j units when X_j increases by 1 unit at any time point t, holding all the other predictors constant:

$$\log \lambda(t|\ldots,X_j+1,\ldots) = \log \lambda(t|\ldots,X_j,\ldots) + \beta_j.$$

✓ Same for $\log \lambda(t|X)$.

How to interpret regression coefficient β_j (j = 1, ..., k)?

$$\begin{split} &\lambda(t|X) = \lambda(t) & \times \exp(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_x X_k) \\ &\Lambda(t|X) = \Lambda(t) & \times \exp(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_x X_k) \\ &\log S(t|X) = \underbrace{\log S(t)}_{\text{time}} & \times \underbrace{\exp(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_x X_k)}_{\text{predictors}} \end{split}$$

- ► Multiplicative interpretation:
 - \checkmark $\lambda(t|X)$ is multiplied by $\exp(\beta_j)$ units when X_j increases by 1 unit at any time point t, holding all the other predictors constant:

$$\frac{\lambda(t|\ldots,X_j+1,\ldots)}{\lambda(t|\ldots,X_j,\ldots)}=\exp(\beta_j).$$

- ✓ Same for $\lambda(t|X)$.
- ✓ Same for $\log S(t|X)$.

Example: Exponential PH survival model

$$X\beta = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_x X_k.$$

$$\lambda(t|X) = \exp(X\beta)$$

$$\Lambda(t|X) = t \exp(X\beta)$$

$$S(t|X) = \exp(-t)^{\exp(X\beta)}$$

Example: Weibull PH survival model

$$X\beta = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_x X_k.$$

$$\lambda(t|X) = \gamma t^{\gamma - 1} \exp(X\beta)$$

$$\Lambda(t|X) = t^{\gamma} \exp(X\beta)$$

$$S(t|X) = \exp(-t^{\gamma})^{\exp(X\beta)}$$

Accelerated failure time models

The predictors in the PH models shown so far have an effect through multiplication on the hazard function:

$$\lambda(t|X) = \lambda(t) \exp(X\beta).$$

We can instead make the predictors have a multiplicative effect on the failure time. Or, equiv., have an additive effect on the log failure time.

- ▶ These are accelerated failure time models.
- ▶ The failure time accelerates as *X* increases.

General form:

$$S(t|X) = \psi\left(\frac{\log(t) - X\beta}{\sigma}\right)$$

- \blacktriangleright ψ : e.g., normal, logistic, extreme value distribution.
- \triangleright σ : scale parameter.

I won't pursue this type of models today, so just FYI.

Cox proportional hazards model

Seemingly the most popular survival model used.

The Cox PH model:

$$\lambda(t|X) = \lambda(t) \exp(X\beta)$$

- ► Looks the same as the general PH model!
- ▶ But, it is semiparametric:
 - ✓ It makes a parametric assumption in $X\beta = \beta_1 X_1 + \cdots + \beta_x X_k$. (NB: No intercept is typical for the Cox PH model.)
 - ✓ But, it assumes no parametric model for the hazard function $\lambda(t)$. Actually, it won't even be estimated!

Rationale:

- ▶ The true hazard function $\lambda(t)$ may be too complex.
- ▶ The effect of the predictors is more relevant than the shape of $\lambda(t)$.

The Cox PH model allows bypassing $\lambda(t)$.

Cox proportional hazards model

But how does this *magic* work?

▶ Use the rank ordering of *T*.

Advantages:

- ▶ Better protection against outliers.
- ► The Cox PH model is more efficient than parametric PH models when parametric assumptions are strongly violated.
- ➤ Surprisingly, the Cox PH model is as efficient as parametric PH models even when parametric assumptions hold.

Final worked out example

I will use the *lung* dataset from the *survival* package in R.

- ► The data concern survival in patients with advanced lung cancer.
- ▶ These data have been analyzed *ad nauseam*, e.g.:
 - ✓ Tutorial 1
 - ✓ Tutorial 2
 - ✓ Tutorial 3
 - √ Using Bayesian statistics and Stan!

I will just run some basics.

Want something else to play afterwards?

- ► Check other datasets in the *survival* R package, it has plenty (e.g., *ovarian*, *veteran*).
- ▶ Bayesian analysis on mastectomy data (HSAUR R package)
- ► Recidivism data (carData R package)

Lung data

Time and censoring

$Y_i = time$	e_i =status	
306	2	
455	2	
1010	1	
210	2	
883	2	
1022	1	
:	:	
	•	

▶ *time*: Survival time in days

► status: Censoring (1=censored, 2=dead)

Predictors

age	sex	ph.ecog	ph.karno	wt.loss
74	1	1	90	NA
68	1	0	90	15
56	1	0	90	15
57	1	1	90	11
60	1	0	100	0
74	1	1	50	0
:	:	:	:	÷

- ► *age*: Age in years
- ▶ *sex*: Male=1, Female=2
- ▶ ph.ecog: ECOG performance score (0=good, ..., 5=dead)
- ▶ *ph.karno*: 0-100 performance score (physician)
- ▶ *wt.loss*: Weight loss in last 6 months

Lung data

- \blacktriangleright { Y_i , e_i } completey define the DV T (time until event).
- ightharpoonup T can be computed through the Surv() function.

Time and censoring

e_i = $status$
2
2
1
2
2
1
:

```
Surv(lung$time, lung$status) %>% head
## [1] 306 455 1010+ 210 883 1022+
```

In R

There are loads of packages and options to go about:

- ► rms
- ► survival
- **▶** survminer

I'll use functions from various packages depending on functionality and eye-candyness.

Lung data: Kaplan-Meier

Lung data: Kaplan-Meier

What is P(t > 365 days)?

Lung data: Kaplan-Meier

What is the average (median) survival time?

