One-pot synthesis of 3-hydroxy-2-oxindole-pyridine hybrids via Hantzsch ester formation, oxidative aromatization and sp³ C-H functionalization using FeWO₄ nanoparticles as recyclable heterogeneous catalyst

Kota Sathish, Banoth Paplal, Sakkani Nagaraju, and Dhurke Kashinath* Department of Chemistry, National Institute of Technology, Warangal 506 004, India

Synthesis of poly-substituted 3-hydroxy-2-oxindole-pyridine hybrids is reported via sp^3 C-H bond functionalization as key steps using FeWO₄ nanoparticles as reusable heterogeneous catalyst. Formation of Hantzsch ester (DHP) followed by aromatization, and sp^3 C-H bond functionalization was achieved using FeWO₄ nanoparticles (20 mol%) at 80 °C. Temperature dependent reactivity was observed for mono aldol (at 80 °C) products. The catalyst was regenerated and reused up to 6 cycles without losing catalytic activity. The FeWO₄ nanoparticles were also used for oxidative aromatization of different DHP derivatives and for the sp^3 C-H functionalization of 2-methyl pyridine.