

Letnie Warsztaty Fizyczne Wielcy fizycy XX wieku

Dzieło Profesora Stanisława Kielicha

Ryszard Tanaś

http://zon8.physd.amu.edu.pl/~tanas

18 lipca 2005

Plan

1	Wst	ęp historyczny	5
	1.1	Nieliniowy efekt dielektryczny	6
	1.2	Początki optyki nieliniowej w Poznaniu.	7
2	Biog	rafia Stanisława Kielicha	9
	2.1	Pamięć	9
	2.2	Kariera naukowa	10
	2.3	Kariera zawodowa	11
	2.4	Publikacje	12
	2.5	Nagrody i odznaczenia	13
	2.6	Sprawowane funkcje i godności	14

3 Pierwsze prace

17

	3.1	Makroskopowy opis dielektryka	19
	3.2	Mikroskopowy opis dielektryka	21
4	Opty	yka nieliniowa	26
	4.1	Polaryzacja o częstościach optycznych .	26
	4.2	Optyczna reorientacja cząsteczek	28
	4.3	Rozpraszanie światła	30
5	Optyka kwantowa		
	5.1	Statystyka fotonów	35
	5.2	Stany ścieśnione (ściśnięte) pola	36
6	Kilka	a zdjęć	38

1 Wstęp historyczny

Znów dokonuje się w fizyce przewrót: tym razem optyka odsłania nam nowe oblicze. A chociaż była już dawno piękna i niemal doskonała, ukazuje nam się teraz jeszcze piękniejsza i doskonalsza, a zarazem potężniejsza.

A. H. Piekara, Nowe oblicze optyki

1.1 Nieliniowy efekt dielektryczny

$$\Delta \varepsilon = \varepsilon(E) - \varepsilon = AE^2$$

W 1936 roku, pracując w Gimnazjum im. Sułkowskich w Rydzynie, Profesor Arkadiusz Piekara wraz z bratem Brunonem wykrył, że dla nitrobenzenu wartość $\Delta \varepsilon$ jest dodatnia. Efekt ten nazwano odwrotnym nieliniowym efektem dielektrycznym, ponieważ dawał znak przeciwny do przewidywań teorii Langevina-Debye'a.

Charakterystyczna jest tutaj nieliniowa zależność zmiany przenikalności dielektrycznej ośrodka od natężenia pola elektrycznego \boldsymbol{E} .

- W 1952 r. Profesor Arkadiusz Piekara obejmuje Katedrę Fizyki Doświadczalnej w Uniwersytecie Poznańskim i inicjuje w Poznaniu badania efektów nieliniowych w dielektrykach
- W 1956 roku pojawiła się praca Buckinghama wskazująca na możliwość reorientacji molekuł w polach optycznych
- Profesor Piekara rozszerza badania na pola optyczne. Teorią zajął się magister Stanisław Kielich, który w 1955 r. ukończył studia i został asystentem Profesora Piekary.

- W 1952 r. Profesor Arkadiusz Piekara obejmuje Katedrę Fizyki Doświadczalnej w Uniwersytecie Poznańskim i inicjuje w Poznaniu badania efektów nieliniowych w dielektrykach
- W 1956 roku pojawiła się praca Buckinghama wskazująca na możliwość reorientacji molekuł w polach optycznych
- Profesor Piekara rozszerza badania na pola optyczne. Teorią zajął się magister Stanisław Kielich, który w 1955 r. ukończył studia i został asystentem Profesora Piekary.

- W 1952 r. Profesor Arkadiusz Piekara obejmuje Katedrę Fizyki Doświadczalnej w Uniwersytecie Poznańskim i inicjuje w Poznaniu badania efektów nieliniowych w dielektrykach
- W 1956 roku pojawiła się praca Buckinghama wskazująca na możliwość reorientacji molekuł w polach optycznych
- Profesor Piekara rozszerza badania na pola optyczne. Teorią zajął się magister Stanisław Kielich, który w 1955 r. ukończył studia i został asystentem Profesora Piekary.

- W 1952 r. Profesor Arkadiusz Piekara obejmuje Katedrę Fizyki Doświadczalnej w Uniwersytecie Poznańskim i inicjuje w Poznaniu badania efektów nieliniowych w dielektrykach
- W 1956 roku pojawiła się praca Buckinghama wskazująca na możliwość reorientacji molekuł w polach optycznych
- Profesor Piekara rozszerza badania na pola optyczne. Teorią zajął się magister Stanisław Kielich, który w 1955 r. ukończył studia i został asystentem Profesora Piekary.

Profesor Stanisław Kielich (1925–1993)

2 Biografia Stanisława Kielicha

2.1 Pamięć

10 listopada 2001 roku Gimnazjum w Czempiniu, rodzinnej miejscowości Profesora, otrzymało imię Profesora Stanisława Kielicha

- Urodzony: 10 listopada 1925, Czempiń
- 1955, kończy studia, Wydz. Przyrodniczy, Uniwersytet Poznański
- 1962, doktorat
- 1964, habilitacja
- 1971, profesor nadzwyczajny
- 1976, profesor zwyczajny
- 1983, członek korespondent PAN

- Urodzony: 10 listopada 1925, Czempiń
- 1955, kończy studia, Wydz. Przyrodniczy, Uniwersytet Poznański
- 1962, doktorat
- 1964, habilitacja
- 1971, profesor nadzwyczajny
- 1976, profesor zwyczajny
- 1983, członek korespondent PAN

- Urodzony: 10 listopada 1925, Czempiń
- 1955, kończy studia, Wydz. Przyrodniczy, Uniwersytet Poznański
- 1962, doktorat
- 1964, habilitacja
- 1971, profesor nadzwyczajny
- 1976, profesor zwyczajny
- 1983, członek korespondent PAN

- Urodzony: 10 listopada 1925, Czempiń
- 1955, kończy studia, Wydz. Przyrodniczy, Uniwersytet Poznański
- 1962, doktorat
- 1964, habilitacja
- 1971, profesor nadzwyczajny
- 1976, profesor zwyczajny
- 1983, członek korespondent PAN

- Urodzony: 10 listopada 1925, Czempiń
- 1955, kończy studia, Wydz. Przyrodniczy, Uniwersytet Poznański
- 1962, doktorat
- 1964, habilitacja
- 1971, profesor nadzwyczajny
- 1976, profesor zwyczajny
- 1983, członek korespondent PAN

- Urodzony: 10 listopada 1925, Czempiń
- 1955, kończy studia, Wydz. Przyrodniczy, Uniwersytet Poznański
- 1962, doktorat
- 1964, habilitacja
- 1971, profesor nadzwyczajny
- 1976, profesor zwyczajny
- 1983, członek korespondent PAN

- Urodzony: 10 listopada 1925, Czempiń
- 1955, kończy studia, Wydz. Przyrodniczy, Uniwersytet Poznański
- 1962, doktorat
- 1964, habilitacja
- 1971, profesor nadzwyczajny
- 1976, profesor zwyczajny
- 1983, członek korespondent PAN

- Urodzony: 10 listopada 1925, Czempiń
- 1955, kończy studia, Wydz. Przyrodniczy, Uniwersytet Poznański
- 1962, doktorat
- 1964, habilitacja
- 1971, profesor nadzwyczajny
- 1976, profesor zwyczajny
- 1983, członek korespondent PAN

- 1966-1969, kierownik Katedry Fizyki
 Molekularnej
- 1969-1975, dyrektor Instytutu Fizyki UAM
- 1973-1993, kierownik Zakładu Optyki Nieliniowej
- 1970-1971, "professeur associée" Uniwersytet
 Bordeaux
- ponad 20 doktorów, 6 doktorów habilitowanych, 3 uczniów ma tytuł profesorski

- 1966-1969, kierownik Katedry Fizyki
 Molekularnej
- 1969-1975, dyrektor Instytutu Fizyki UAM
- 1973-1993, kierownik Zakładu Optyki Nieliniowej
- 1970-1971, "professeur associée" Uniwersytet
 Bordeaux
- ponad 20 doktorów, 6 doktorów habilitowanych, 3 uczniów ma tytuł profesorski

- 1966-1969, kierownik Katedry Fizyki
 Molekularnej
- 1969-1975, dyrektor Instytutu Fizyki UAM
- 1973-1993, kierownik Zakładu Optyki Nieliniowej
- 1970-1971, "professeur associée" Uniwersytet
 Bordeaux
- ponad 20 doktorów, 6 doktorów habilitowanych, 3 uczniów ma tytuł profesorski

- 1966-1969, kierownik Katedry Fizyki
 Molekularnej
- 1969-1975, dyrektor Instytutu Fizyki UAM
- 1973-1993, kierownik Zakładu Optyki Nieliniowej
- 1970-1971, "professeur associée" Uniwersytet Bordeaux
- ponad 20 doktorów, 6 doktorów habilitowanych, 3 uczniów ma tytuł profesorski

- 1966-1969, kierownik Katedry Fizyki
 Molekularnej
- 1969-1975, dyrektor Instytutu Fizyki UAM
- 1973-1993, kierownik Zakładu Optyki Nieliniowej
- 1970-1971, "professeur associée" Uniwersytet Bordeaux
- ponad 20 doktorów, 6 doktorów habilitowanych, 3 uczniów ma tytuł profesorski

- 1966-1969, kierownik Katedry Fizyki
 Molekularnej
- 1969-1975, dyrektor Instytutu Fizyki UAM
- 1973-1993, kierownik Zakładu Optyki Nieliniowej
- 1970-1971, "professeur associée" Uniwersytet
 Bordeaux
- ponad 20 doktorów, 6 doktorów habilitowanych, 3 uczniów ma tytuł profesorski

- Autor bądź współautor ponad 300 publikacji
- Autor książki Molekularna Optyka Nieliniowa (PWN, Warszawa, 1977); tłumaczenie rosyjskie (Nauka, Moskwa, 1981)
- redaktor (wspólnie z M. Evansem) Modern Nonlinear Optics (Wiley, New York, 1993), trzytomowe opracowanie na temat optyki nieliniowej
- większość publikacji dostępna pod adresem http:
 - //zon8.physd.amu.edu.pl/historia/kielich.html

- Autor bądź współautor ponad 300 publikacji
- Autor książki Molekularna Optyka Nieliniowa (PWN, Warszawa, 1977); tłumaczenie rosyjskie (Nauka, Moskwa, 1981)
- redaktor (wspólnie z M. Evansem) Modern Nonlinear Optics (Wiley, New York, 1993), trzytomowe opracowanie na temat optyki nieliniowej
- większość publikacji dostępna pod adresem http:
 - //zon8.physd.amu.edu.pl/historia/kielich.html

- Autor bądź współautor ponad 300 publikacji
- Autor książki Molekularna Optyka Nieliniowa (PWN, Warszawa, 1977); tłumaczenie rosyjskie (Nauka, Moskwa, 1981)
- redaktor (wspólnie z M. Evansem) Modern Nonlinear Optics (Wiley, New York, 1993), trzytomowe opracowanie na temat optyki nieliniowej
- większość publikacji dostępna pod adresem http:
 - //zon8.physd.amu.edu.pl/historia/kielich.html

- Autor bądź współautor ponad 300 publikacji
- Autor książki Molekularna Optyka Nieliniowa (PWN, Warszawa, 1977); tłumaczenie rosyjskie (Nauka, Moskwa, 1981)
- redaktor (wspólnie z M. Evansem) Modern Nonlinear Optics (Wiley, New York, 1993), trzytomowe opracowanie na temat optyki nieliniowej
- większość publikacji dostępna pod adresem http:
 - //zon8.physd.amu.edu.pl/historia/kielich.html

- Autor bądź współautor ponad 300 publikacji
- Autor książki Molekularna Optyka Nieliniowa (PWN, Warszawa, 1977); tłumaczenie rosyjskie (Nauka, Moskwa, 1981)
- redaktor (wspólnie z M. Evansem) Modern Nonlinear Optics (Wiley, New York, 1993), trzytomowe opracowanie na temat optyki nieliniowej
- większość publikacji dostępna pod adresem http:
 - //zon8.physd.amu.edu.pl/historia/kielich.html

- Nagrody Ministra wielokrotnie
- Nagroda Miasta Poznania (1969)
- Medal Edukacji Narodowej
- Medal UAM
- Złoty Krzyż Zasługi
- Krzyż Kawalerski Orderu Odrodzenia Polski (1976)
- Krzyż Oficerski Orderu Odrodzenia Polski (1983)
- Medal im. Mariana Smoluchowskiego (1993)

- Nagrody Ministra wielokrotnie
- Nagroda Miasta Poznania (1969)
- Medal Edukacji Narodowej
- Medal UAM
- Złoty Krzyż Zasługi
- Krzyż Kawalerski Orderu Odrodzenia Polski (1976)
- Krzyż Oficerski Orderu Odrodzenia Polski (1983)
- Medal im. Mariana Smoluchowskiego (1993)

- Nagrody Ministra wielokrotnie
- Nagroda Miasta Poznania (1969)
- Medal Edukacji Narodowej
- Medal UAM
- Złoty Krzyż Zasługi
- Krzyż Kawalerski Orderu Odrodzenia Polski (1976)
- Krzyż Oficerski Orderu Odrodzenia Polski (1983)
- Medal im. Mariana Smoluchowskiego (1993)

- Nagrody Ministra wielokrotnie
- Nagroda Miasta Poznania (1969)
- Medal Edukacji Narodowej
- Medal UAM
- Złoty Krzyż Zasługi
- Krzyż Kawalerski Orderu Odrodzenia Polski (1976)
- Krzyż Oficerski Orderu Odrodzenia Polski (1983)
- Medal im. Mariana Smoluchowskiego (1993)

- Nagrody Ministra wielokrotnie
- Nagroda Miasta Poznania (1969)
- Medal Edukacji Narodowej
- Medal UAM
- Złoty Krzyż Zasługi
- Krzyż Kawalerski Orderu Odrodzenia Polski (1976)
- Krzyż Oficerski Orderu Odrodzenia Polski (1983)
- Medal im. Mariana Smoluchowskiego (1993)

- Nagrody Ministra wielokrotnie
- Nagroda Miasta Poznania (1969)
- Medal Edukacji Narodowej
- Medal UAM
- Złoty Krzyż Zasługi
- Krzyż Kawalerski Orderu Odrodzenia Polski (1976)
- Krzyż Oficerski Orderu Odrodzenia Polski (1983)
- Medal im. Mariana Smoluchowskiego (1993)

- Nagrody Ministra wielokrotnie
- Nagroda Miasta Poznania (1969)
- Medal Edukacji Narodowej
- Medal UAM
- Złoty Krzyż Zasługi
- Krzyż Kawalerski Orderu Odrodzenia Polski (1976)
- Krzyż Oficerski Orderu Odrodzenia Polski (1983)
- Medal im. Mariana Smoluchowskiego (1993)

- Nagrody Ministra wielokrotnie
- Nagroda Miasta Poznania (1969)
- Medal Edukacji Narodowej
- Medal UAM
- Złoty Krzyż Zasługi
- Krzyż Kawalerski Orderu Odrodzenia Polski (1976)
- Krzyż Oficerski Orderu Odrodzenia Polski (1983)
- Medal im. Mariana Smoluchowskiego (1993)

- Nagrody Ministra wielokrotnie
- Nagroda Miasta Poznania (1969)
- Medal Edukacji Narodowej
- Medal UAM
- Złoty Krzyż Zasługi
- Krzyż Kawalerski Orderu Odrodzenia Polski (1976)
- Krzyż Oficerski Orderu Odrodzenia Polski (1983)
- Medal im. Mariana Smoluchowskiego (1993)

- Członek korespondent PAN
- Przewodniczący Komitetu Organizacyjnego Konferencji EKON
- Członek Komitetu Fizyki PAN od maja 1972 roku do 1980, członek Sekcji Optyki oraz Komisji Wydawniczej do 1973 roku,
- Członek Rady Głównej Nauki, Szkolnictwa
 Wyższego i Techniki I kadencji,
- Członek Rady Naukowej Instytutu Fizyki PAN od 1972 roku do 1975 oraz od 1981 do 1993,
- Członek Komitetu Spektroskopii PAN,

- Członek korespondent PAN
- Przewodniczący Komitetu Organizacyjnego Konferencji EKON
- Członek Komitetu Fizyki PAN od maja 1972 roku do 1980, członek Sekcji Optyki oraz Komisji Wydawniczej do 1973 roku,
- Członek Rady Głównej Nauki, Szkolnictwa
 Wyższego i Techniki I kadencji,
- Członek Rady Naukowej Instytutu Fizyki PAN od 1972 roku do 1975 oraz od 1981 do 1993,
- Członek Komitetu Spektroskopii PAN,

- Członek korespondent PAN
- Przewodniczący Komitetu Organizacyjnego Konferencji EKON
- Członek Komitetu Fizyki PAN od maja 1972 roku do 1980, członek Sekcji Optyki oraz Komisji Wydawniczej do 1973 roku,
- Członek Rady Głównej Nauki, Szkolnictwa
 Wyższego i Techniki I kadencji,
- Członek Rady Naukowej Instytutu Fizyki PAN od 1972 roku do 1975 oraz od 1981 do 1993,
- Członek Komitetu Spektroskopii PAN,

- Członek korespondent PAN
- Przewodniczący Komitetu Organizacyjnego Konferencji EKON
- Członek Komitetu Fizyki PAN od maja 1972 roku do 1980, członek Sekcji Optyki oraz Komisji Wydawniczej do 1973 roku,
- Członek Rady Głównej Nauki, Szkolnictwa
 Wyższego i Techniki I kadencji,
- Członek Rady Naukowej Instytutu Fizyki PAN od 1972 roku do 1975 oraz od 1981 do 1993,
- Członek Komitetu Spektroskopii PAN,

- Członek korespondent PAN
- Przewodniczący Komitetu Organizacyjnego Konferencji EKON
- Członek Komitetu Fizyki PAN od maja 1972 roku do 1980, członek Sekcji Optyki oraz Komisji Wydawniczej do 1973 roku,
- Członek Rady Głównej Nauki, Szkolnictwa Wyższego i Techniki I kadencji,
- Członek Rady Naukowej Instytutu Fizyki PAN od 1972 roku do 1975 oraz od 1981 do 1993,
- Członek Komitetu Spektroskopii PAN,

- Członek korespondent PAN
- Przewodniczący Komitetu Organizacyjnego Konferencji EKON
- Członek Komitetu Fizyki PAN od maja 1972 roku do 1980, członek Sekcji Optyki oraz Komisji Wydawniczej do 1973 roku,
- Członek Rady Głównej Nauki, Szkolnictwa
 Wyższego i Techniki I kadencji,
- Członek Rady Naukowej Instytutu Fizyki PAN od 1972 roku do 1975 oraz od 1981 do 1993,
- Członek Komitetu Spektroskopii PAN,

- Członek korespondent PAN
- Przewodniczący Komitetu Organizacyjnego Konferencji EKON
- Członek Komitetu Fizyki PAN od maja 1972 roku do 1980, członek Sekcji Optyki oraz Komisji Wydawniczej do 1973 roku,
- Członek Rady Głównej Nauki, Szkolnictwa
 Wyższego i Techniki I kadencji,
- Członek Rady Naukowej Instytutu Fizyki PAN od 1972 roku do 1975 oraz od 1981 do 1993,
- Członek Komitetu Spektroskopii PAN,

- Członek Międzyresortowej Komisji Ocen Badań Podstawowych w dziedzinie nauk ścisłych (1977),
- Członek Rady Naukowej Instytutu Biochemii
 Akademii Rolniczej w Poznaniu od 1972 do 1975
 roku,
- V-ce Przewodniczący Rady Naukowej Instytutu
 Fizyki Molekularnej PAN w latach 1975-1981,
- Członek Zespołu d/s Międzynarodowej Unii Fizyki
 Czystej i Stosowanej Komitetu Fizyki PAN (1972-?),
- Członek Centralnej Komisji Kwalifikacyjnej (1976-?),

- Członek Międzyresortowej Komisji Ocen Badań Podstawowych w dziedzinie nauk ścisłych (1977),
- Członek Rady Naukowej Instytutu Biochemii
 Akademii Rolniczej w Poznaniu od 1972 do 1975
 roku,
- V-ce Przewodniczący Rady Naukowej Instytutu
 Fizyki Molekularnej PAN w latach 1975-1981,
- Członek Zespołu d/s Międzynarodowej Unii Fizyki
 Czystej i Stosowanej Komitetu Fizyki PAN (1972-?),
- Członek Centralnej Komisji Kwalifikacyjnej (1976-?),

- Członek Międzyresortowej Komisji Ocen Badań Podstawowych w dziedzinie nauk ścisłych (1977),
- Członek Rady Naukowej Instytutu Biochemii
 Akademii Rolniczej w Poznaniu od 1972 do 1975
 roku,
- V-ce Przewodniczący Rady Naukowej Instytutu
 Fizyki Molekularnej PAN w latach 1975-1981,
- Członek Zespołu d/s Międzynarodowej Unii Fizyki
 Czystej i Stosowanej Komitetu Fizyki PAN (1972-?),
- Członek Centralnej Komisji Kwalifikacyjnej (1976-?),

- Członek Międzyresortowej Komisji Ocen Badań Podstawowych w dziedzinie nauk ścisłych (1977),
- Członek Rady Naukowej Instytutu Biochemii
 Akademii Rolniczej w Poznaniu od 1972 do 1975
 roku,
- V-ce Przewodniczący Rady Naukowej Instytutu
 Fizyki Molekularnej PAN w latach 1975-1981,
- Członek Zespołu d/s Międzynarodowej Unii Fizyki Czystej i Stosowanej Komitetu Fizyki PAN (1972-?),
- Członek Centralnej Komisji Kwalifikacyjnej (1976-?),

- Członek Międzyresortowej Komisji Ocen Badań Podstawowych w dziedzinie nauk ścisłych (1977),
- Członek Rady Naukowej Instytutu Biochemii
 Akademii Rolniczej w Poznaniu od 1972 do 1975
 roku,
- V-ce Przewodniczący Rady Naukowej Instytutu
 Fizyki Molekularnej PAN w latach 1975-1981,
- Członek Zespołu d/s Międzynarodowej Unii Fizyki
 Czystej i Stosowanej Komitetu Fizyki PAN (1972-?),
- Członek Centralnej Komisji Kwalifikacyjnej (1976-?),

- Członek Komitetu Redakcyjnego Fizyki
 Dielektryków wydawanej przez PTPN od 1962 roku,
- Członek Redakcji Journal of Raman Spectroscopy wydawanego od 1973 roku w Holandii,
- Członek Redakcji Le Journal de Physique w latach 1980-1983,
- Członek Redakcji Optica Acta w latach 1982-1985,
- Członek Redakcji Quantum Optics (1993)
- Członek Polskiego Towarzystwa Fizycznego

- Członek Komitetu Redakcyjnego Fizyki
 Dielektryków wydawanej przez PTPN od 1962 roku,
- Członek Redakcji Journal of Raman Spectroscopy wydawanego od 1973 roku w Holandii,
- Członek Redakcji Le Journal de Physique w latach 1980-1983,
- Członek Redakcji Optica Acta w latach 1982-1985,
- Członek Redakcji Quantum Optics (1993)
- Członek Polskiego Towarzystwa Fizycznego

- Członek Komitetu Redakcyjnego Fizyki
 Dielektryków wydawanej przez PTPN od 1962 roku,
- Członek Redakcji Journal of Raman Spectroscopy wydawanego od 1973 roku w Holandii,
- Członek Redakcji Le Journal de Physique w latach 1980-1983,
- Członek Redakcji Optica Acta w latach 1982-1985,
- Członek Redakcji Quantum Optics (1993)
- Członek Polskiego Towarzystwa Fizycznego

- Członek Komitetu Redakcyjnego Fizyki
 Dielektryków wydawanej przez PTPN od 1962 roku,
- Członek Redakcji Journal of Raman Spectroscopy wydawanego od 1973 roku w Holandii,
- Członek Redakcji Le Journal de Physique w latach 1980-1983,
- Członek Redakcji Optica Acta w latach 1982-1985,
- Członek Redakcji Quantum Optics (1993)
- Członek Polskiego Towarzystwa Fizycznego

- Członek Komitetu Redakcyjnego Fizyki
 Dielektryków wydawanej przez PTPN od 1962 roku,
- Członek Redakcji Journal of Raman Spectroscopy wydawanego od 1973 roku w Holandii,
- Członek Redakcji Le Journal de Physique w latach 1980-1983,
- Członek Redakcji Optica Acta w latach 1982-1985,
- Członek Redakcji Quantum Optics (1993)
- Członek Polskiego Towarzystwa Fizycznego

- Członek Komitetu Redakcyjnego Fizyki
 Dielektryków wydawanej przez PTPN od 1962 roku,
- Członek Redakcji Journal of Raman Spectroscopy wydawanego od 1973 roku w Holandii,
- Członek Redakcji Le Journal de Physique w latach 1980-1983,
- Członek Redakcji Optica Acta w latach 1982-1985,
- Członek Redakcji Quantum Optics (1993)
- Członek Polskiego Towarzystwa Fizycznego

3 Pierwsze prace — nieliniowy efekt dielektryczny albo nasycenie dielektryczne

$$\Delta \varepsilon = \varepsilon(E) - \varepsilon = AE^2$$

Zmiana przenikalności dielektrycznej wywołana silnym (stałym lub wolnozmiennym) polem elektrycznym.

3.1 Makroskopowy opis dielektryka

$$D = \varepsilon \varepsilon_0 E$$

$$D = \varepsilon_0 E + P$$

$$P = \varepsilon_0 \chi E$$

3.1 Makroskopowy opis dielektryka

$$D = \varepsilon \varepsilon_0 E$$

$$D = \varepsilon_0 E + P$$

$$P = \varepsilon_0 \chi E$$

$$\varepsilon = 1 + \chi$$

$$\chi = \varepsilon - 1$$

Dielektryk nieliniowy (izotropowy)

$$P = \varepsilon_0 \chi^{(1)} E + \varepsilon_0 \chi^{(3)} E^3 + \dots$$
$$\varepsilon(E) = 1 + \chi^{(1)} + 3\chi^{(3)} E^2$$

Dielektryk nieliniowy (izotropowy)

$$P = \varepsilon_0 \chi^{(1)} E + \varepsilon_0 \chi^{(3)} E^3 + \dots$$
$$\varepsilon(E) = 1 + \chi^{(1)} + 3\chi^{(3)} E^2$$

$$\Delta \varepsilon = \varepsilon(E) - \varepsilon = AE^2$$

3.2 Mikroskopowy opis dielektryka

Skąd się bierze polaryzacja?

3.2 Mikroskopowy opis dielektryka

Skąd się bierze polaryzacja?

Dipol indukowany

Istnieją cząsteczki posiadające trwały dipol elektryczny

Istnieją cząsteczki posiadające trwały dipol elektryczny

Orientacja dipola

Czy z pomiarów wielkości makroskopowych możemy wyciągnąć wnioski dotyczące wielkości mikroskopowych?

Czy z pomiarów wielkości makroskopowych możemy wyciągnąć wnioski dotyczące wielkości mikroskopowych?

W jaki sposób policzyć wielkości makroskopowe znając własności poszczególnych cząsteczek?

Czy z pomiarów wielkości makroskopowych możemy wyciągnąć wnioski dotyczące wielkości mikroskopowych?

W jaki sposób policzyć wielkości makroskopowe znając własności poszczególnych cząsteczek?

 $P \equiv$ moment dipolowy na jednostkę objętości

$$m{P} = \langle \sum_{i=1}^N m{p}_i
angle = \sum_{i=1}^N \langle m{p}_i
angle$$

$$oldsymbol{P} = \langle \sum_{i=1}^N oldsymbol{p}_i
angle = \sum_{i=1}^N \langle oldsymbol{p}_i
angle$$

$$\langle \boldsymbol{p}_i \rangle = \alpha \boldsymbol{F}$$

$$m{P} = \langle \sum_{i=1}^N m{p}_i
angle = \sum_{i=1}^N \langle m{p}_i
angle$$

$$\langle \boldsymbol{p}_i \rangle = \alpha \boldsymbol{F}$$

$$\alpha = \alpha_e + \alpha_a + \frac{\mu^2}{3kT}$$

W rzeczywistości sytuacja jest znacznie bardziej skomplikowana!

```
http:
//zon8.physd.amu.edu.pl/historia/kielich-publ/001.pdf
http:
//zon8.physd.amu.edu.pl/historia/kielich-publ/003.pdf
http:
//zon8.physd.amu.edu.pl/historia/kielich-publ/009.pdf
```

4 Optyka nieliniowa

4.1 Polaryzacja o częstościach optycznych

$$P = \varepsilon_0 \chi^{(1)} E + \varepsilon_0 \chi^{(2)} E^2 + \varepsilon_0 \chi^{(3)} E^3 + \dots$$

4 Optyka nieliniowa

4.1 Polaryzacja o częstościach optycznych

$$P = \varepsilon_0 \chi^{(1)} E + \varepsilon_0 \chi^{(2)} E^2 + \varepsilon_0 \chi^{(3)} E^3 + \dots$$

$$E = E_0 \cos \omega t$$

$$E^{2} = E_{0}^{2} \cos^{2} \omega t = \frac{1}{2} E_{0}^{2} (\cos 2\omega t + 1)$$

4 Optyka nieliniowa

4.1 Polaryzacja o częstościach optycznych

$$P = \varepsilon_0 \chi^{(1)} E + \varepsilon_0 \chi^{(2)} E^2 + \varepsilon_0 \chi^{(3)} E^3 + \dots$$

$$E = E_0 \cos \omega t$$

$$E^{2} = E_{0}^{2} \cos^{2} \omega t = \frac{1}{2} E_{0}^{2} (\cos 2\omega t + 1)$$

$$P(2\omega) = \frac{1}{2}\varepsilon_0 \chi^{(2)} E_0^2 \cos 2\omega t$$

Generacja drugiej harmonicznej

W 1960 roku Maiman uruchomił pierwszy laser. Pojawiło się źródło światła o dostatecznie dużym natężeniu aby zaobserwować nieliniowe procesy optyczne.

Zaczął się burzliwy rozwój optyki nieliniowej.

W 1960 roku Maiman uruchomił pierwszy laser. Pojawiło się źródło światła o dostatecznie dużym natężeniu aby zaobserwować nieliniowe procesy optyczne.

Zaczął się burzliwy rozwój optyki nieliniowej.

Profesor Stanislaw Kielich należał do pionierów molekularnej optyki nieliniowej!

4.2 Optyczna reorientacja cząsteczek

4.2 Optyczna reorientacja cząsteczek

$$n^{2}(E) - n^{2} = AE^{2}$$
$$\Delta n = n(E) - n$$

$$n^{2}(E) - n^{2} = AE^{2}$$
$$\Delta n = n(E) - n$$

Jeszcze zanim pojawił się pierwszy laser Profesor Kielich pisał prace o nieliniowych efektach optycznych

```
http:
//zon8.physd.amu.edu.pl/historia/kielich-publ/006.pdf
http:
//zon8.physd.amu.edu.pl/historia/kielich-publ/007.pdf
http:
//zon8.physd.amu.edu.pl/historia/kielich-publ/008.pdf
```

4.3 Rozpraszanie światła

$$I_n^R = \frac{I_0}{R^2} \left\{ (\boldsymbol{e} \cdot \boldsymbol{n})^2 S_{iz} (\boldsymbol{k}_0 - \boldsymbol{k}) + [3 + (\boldsymbol{e} \cdot \boldsymbol{n})^2] S_{aniz} (\boldsymbol{k}_0 - \boldsymbol{k}) \right\}$$

$$I_{\parallel}^{R} = 3 \frac{I_0}{R^2} S_{aniz}(\boldsymbol{k}_0 - \boldsymbol{k})$$

$$I_{\perp}^{R} = rac{I_{0}}{R^{2}} \left\{ S_{iz}(\mathbf{k}_{0} - \mathbf{k}) + 4 S_{aniz}(\mathbf{k}_{0} - \mathbf{k}) \right\}$$

Pionierskie prace nad wielofotonowym rozpraszaniem światła.

```
http:
//zon8.physd.amu.edu.pl/historia/kielich-publ/040.pdf
http:
//zon8.physd.amu.edu.pl/historia/kielich-publ/043.pdf
http:
//zon8.physd.amu.edu.pl/historia/kielich-publ/111.pdf
```

Pionierskie prace nad wielofotonowym rozpraszaniem światła.

```
http:
//zon8.physd.amu.edu.pl/historia/kielich-publ/040.pdf
http:
//zon8.physd.amu.edu.pl/historia/kielich-publ/043.pdf
http:
//zon8.physd.amu.edu.pl/historia/kielich-publ/111.pdf
```

Odkrycie kooperatywnego rozpraszania światła.

```
http:
```

//zon8.physd.amu.edu.pl/historia/kielich-publ/124.pdf

Lata 60-te to burzliwy rozwój optyki nieliniowej. Badania coraz to nowych efektów nieliniowych dawało cenne informacje o strukturze materii. Klasyczna optyka nieliniowa była nakierowana na badanie własności materiałów nieliniowych z myślą o ich wykorzystaniu w nowych urządzeniach.

Lata 60-te to burzliwy rozwój optyki nieliniowej. Badania coraz to nowych efektów nieliniowych dawało cenne informacje o strukturze materii. Klasyczna optyka nieliniowa była nakierowana na badanie własności materiałów nieliniowych z myślą o ich wykorzystaniu w nowych urządzeniach.

Dorobek Profesora Kielicha w tej dziedzinie jest ogromny!

http://zon8.physd.amu.edu.pl/historia/kielich.html

5 Optyka kwantowa

5.1 Statystyka fotonów

Korelator fotonów

Korelacja i antykorelacja fotonów

5.2 Stany ścieśnione (ściśnięte) pola

Wytwarzanie stanów ścieśnionych

W latach 70-tych zainteresowanie badaczy coraz bardziej skupiało się na badaniu własności pola wytwarzanego w nieliniowych procesach optycznych.

W latach 70-tych zainteresowanie badaczy coraz bardziej skupiało się na badaniu własności pola wytwarzanego w nieliniowych procesach optycznych.

Także w Poznaniu

```
http:
//zon8.physd.amu.edu.pl/historia/kielich-publ/271.pdf
http:
//zon8.physd.amu.edu.pl/historia/kielich-publ/274.pdf
http:
//zon8.physd.amu.edu.pl/historia/kielich-publ/340.pdf
```

6 Kilka zdjęć

Katedra Fizyki Molekularnej

Zakład Optyki Nieliniowej

Mgr Flatau i Prof. Kielich

Prof. Piekara w Poznaniu — Doktorat Honoris Causa

Bal absolutoryjny

Prof. Kielich we Francji (1)

Prof. Kielich we Francji (2)

Dziękuję!