

院(系)	 	班级		学号		
题号	 		<u> </u>	<u> </u>	, ,	姓名
得分					1 0	总分
	 ······································					

得分		-、选:	₹题(计36	分,4	事小题	3分)							
-	(注: 请将您的答案写在下表相应题号的空格内)													
-														
题号	1	2	3	4	5	6	7	R	0	T			·	
答·索	C	В		 		ļ	ļ .		-	10	H	12 -		
			В	A	B.	l. C	C	С	A.	D	. ,		1	
		-					-		-		. A.	D .	1	

1. 面积为 S 和2S的两圆线圈1、2如图放置,通有相同的电流; 线圈1的电流所产生的通过线圈2的磁通用 On表示,线圈2的电 流所产生的通过线圈1的磁通用 ϕ_1 表示,则 ϕ_2 和 ϕ_1 的大小关

- (A) $\Phi_{21} = 2\Phi_{12}$. (B) $\Phi_{21} > \Phi_{12}$.
- 2. 一质点作简谐振动,已知振动周期为T. 则其振动动能变化的周期是
- (B) T/2.

- 3. 电磁波的电场强度 E、磁场强度 IT和传播速度 ū的关系是:
- (A) 三者互相垂直,而Ē和Ĥ位相相差π/2.
- (B) 三者互相垂直,而且 $\bar{E} imes \bar{H}$ 与 \bar{u} 同方向。
- (C) 三者中 \bar{E} 和 \bar{H} 是同方向的,但都与 \bar{u} 垂直.
- (D) 三者中 E 和 开 可以是任意方向的。但都必须与证垂直
- 4. 在简谐被传播过程中,沿传播方向相距为 2/2 (2为被长)的两点的 (A) 大小相同,而方向相反——(B) 大小和方向均相同。

- (D) 大小不同,而方向相反。

气中,要使反射光得到干涉加强,则薄膜最小的厚度为 (A) 2/4. (B) 2/(4n). (C) 2/2. (D) 21 (2n).

6. 如图所示,平板玻璃和凸透镜构成牛顿环装置,全部浸入"= 、1.60 的液体中,凸透镜可沿 00′ 移动,用波长2=500 sm(1nm=10⁻⁹m)的单色光垂直入射. 从上向下观察, 看到中心是一 个暗斑,此时凸透镜项点距平板玻璃的距离是少是 (A) 156.3 nm

n⊨1.58

7. 波长为2的单色平行光垂直入射到一狭缝上,若第一级暗纹的 位置对应的衍射角为&土π/6,则缝宽的大小为 $(A) \lambda/2$. (B) 1.

8. 使一光强为 4 的平面偏振光先后通过两个偏振片 P₁ 和 P₂. P₁和 P₂的偏振化方向与 原入射光光矢量振动方向的夹角分别是α和90°,则通过这两个偏振片后的光强/是 (A) $\frac{1}{2}I_{0.02}s^{2}\alpha$. (C) $\frac{1}{4}I_0\sin^2(2\alpha)$. (D) $I_0\cos^4\alpha$. (B) 0.

9. 己知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是 U。 (使电 子从金属逸出需作功 eU_0 ,则此单色光的被长 λ 必须满足。

- 10. 康普顿效应的主要特点是
- (A) 散射光波长均比入射光波长短,且随散射角增大而减小,但与散射体的性质无关。
- (B) 散射光的波长均与入射光的波长相同,与散射角、散射体性质无关。
- (C) 散射光中既有与入射光波长相同的, 也有比入射光波长长的和比入射光波长短的
- (D) 散射光中有些被长比入射光的波长长,且随散射角增大而增大,有些散射光波长与 入射光波长相同,这都与散射体的性质无关。
- 11. 已知粒子在一维矩形无限深势阱中运动,其被函数为

$$\psi(x) = \frac{1}{\sqrt{a}} \cdot \cos \frac{3\pi x}{2a}, \quad (-a \leqslant x \leqslant a)$$

那么粒子在x=d6处出现的概率密度为

(A) 1/(2a) (B) *ya* (c) $1/\sqrt{2a}$

12. 不确定关系式 Ax Ap, 2 h l 2 表示在 x 方向上

- (A) 粒子位置不能准确确定.

(B) 粒子动量不能准确确 (C) 粒子位置和动量都不能准确确定。 (D)-粒子位置和动量不能同时准确确定。

(大学物理) 试卷 B 答案 第 2 页 共 5 页

四、(10分)载有电流的长直导线附近,放一与长直导线共面的半圆环导 体ACB,且端点AB的连续与长夏导线垂直,半圆环的半径为R,环心O。与 导线相距2R. 设半圆环以速度 v平行导线平移, 求半圆环上 AB 两端的电

压 V_AーV_B. (真空磁导率以 µ₀ 表示)

解:作辅助导线AO_iB,构成闭合回路ACEA,则

$$\mathcal{E}_{ACBA} = \mathcal{E}_{ACB} + \mathcal{E}_{DO,A} = 0$$

$$\mathcal{E}_{ACB} = -\mathcal{E}_{BO,A} = \mathcal{E}_{AO,B} \qquad 2 \text{ fill}$$

$$\mathcal{E}_{AO,B} = \int_{(A)}^{(B)} (\bar{v} \times \bar{B}) \cdot d\bar{l} = -\int_{R}^{1R} vB \cdot dx \qquad 2 \text{ fill}$$

$$B = \frac{\mu_B I}{2\pi x} \qquad 2 \text{ fill}$$

将上式代入积分得:
$$\mathcal{E}_{AO,B} = -\frac{\mu_0 I v}{2\pi} \ln 3$$
 1分

$$\therefore V_{A} - V_{B} = -\mathcal{E}_{ACB} = \frac{\mu_{c} lv}{2\pi} \ln 3$$
 3 Å

每 分 五、(10分)一列平面简谐波在媒质中以液速u=5 m/s沿x输汇向传播,原点 O处质元的振动曲线如图所示。(1) 求O处质元的振动方程:(2) 求解该液的 波函数: (3) 求解x = 25 m处质元的振动方程. 解: 由旋转矢量图可知

$$\varphi_o = \frac{\pi}{2} : \omega = \frac{2\pi}{T} = \frac{\pi}{2}$$
 35

$$y = 2 \times 10^{-1} \cos(\frac{1}{2}\pi t - \frac{\pi}{2})$$
 (m)

$$y = 2 \times 10^{-2} \cos\left[\frac{1}{2}\pi(t - \frac{x}{5}) - \frac{\pi}{2}\right] \text{ (m)}$$
 4 \(\frac{3}{5}\)

(若该步答案错。但写出 $y = A\cos\left(\frac{1}{2}\pi(t-\frac{x}{u}) + \varphi_0\right)$

类似的标准形式可得 1 分)

x=25m.处质元振动方程。

$$y = 2 \times 10^{-2} \cos(\frac{1}{2}\pi t - 3\pi)$$
 (ш) 2分

(或:
$$y = 2 \times 10^{-2} \cos(\frac{1}{2}\pi t \pm \pi)$$
 (m))

*注:若标出单位或写明(SI),则不另外得分;若未标出单位,则扣 1 分。

	二、填空题(2	0分)		
子	養子!:1	2 3	4.	5.
, , , , , , , , , , , , , , , , , , ,	符分			-

- 1. (3) 一列火车以 20 m/s 的速度行驶,若机车汽笛的频率为 600 Hz,一静止观测者在机车正前和机车正后所听到的笛声频率分别为 $\nu_1, \nu_2, \, \text{则}\, \nu_1 > (1 \, \text{分}) \, \nu_2$ (选填">"、"="、"<")。 $|\nu_1 \nu_2| = \underline{70.8} \, (2 \, \text{分}) \, \text{(Hz)} \, (设空气中声速为 340 m/s).$
- 3. (5) 一平面简谐被的表达式为 $y = 0.025\cos(125t 0.37x)$ (SI), 其角频率 $\omega = 125$ (2分) (rad/s), 波速u = 338 (2分) (m/s), 波长 $\lambda = 17.0$ (1分) (m).

得分

三、(6分)两个物体作同方向、同频率、同振幅的简谐振动。在振动过程中,每当第一个物体经过位移为A/2的位置向平衡位置运动时,第二个物体也经过此位置,但向远离平衡位置的方向运动。试画出旋转矢量图,并求它们的相位差。

解:由旋转矢量图可知 4分 (Ā,、Ā,各2分: 若必禄顺时针该步不得分)

$$\Delta \phi = \frac{1}{3}\pi$$
 25

 $(或 \Delta \phi = \frac{4}{3}\pi$, 或以上答案 $\pm 2k\pi$)

《大学物理》试卷日答案 第 3 页 共 5 页

六、(8分)折射率为1.60的两块标准平面玻璃板之间形成一个劈形膜(劈 尖角 8 很小). 用波长 1=600 nm (1 nm = 10 m)的单色光垂直入射,产生等 厚干涉条纹。 假如在劈形膜内充满n=1.40的液体时的粗邻明纹间距比劈形 膜内是空气时的间距缩水Al=0.5 mm. 求(1)两种情况下相邻两明纹厚度 差之比: (2)劈尖角 θ .

解: 厚度差之比:
$$\Delta e_1:\Delta e_2=\frac{\lambda}{1}:\frac{\lambda}{2n}=n:1=1.4:1$$

(或:
$$\Delta e_1 : \Delta e_2 = \frac{\lambda}{2n} : \frac{\lambda}{2} = 1 : n = 1 : 1.4$$
) 3分(其中公式 2分)

空气劈形膜时,间距
$$l_1 = \frac{\lambda}{2n\sin\theta} \approx \frac{\lambda}{2\theta} \left(\frac{\text{col} \, l_1}{\sin\theta} \approx \frac{\Delta e_1}{\theta} \right)$$
 液体劈形膜时,间距 $l_2 = \frac{\lambda}{2\sin\theta} \approx \frac{\lambda}{2n\theta} \left(\frac{\text{col} \, l_1}{\sin\theta} \approx \frac{\Delta e_2}{\sin\theta} \approx \frac{\Delta e_2}{\theta} \right)$

$$\Delta l = l_1 - l_2 = \lambda (1 - \frac{1}{n}) / (2\theta)$$

$$\theta = \lambda (1 - \frac{1}{n}) / (2\Delta l) = 1.7 \times 10^{-4} \text{ (rad)}$$
15

七、(10分)一束平行光垂直入射到某个光栅上,该光束有两种被长的 光。 λ_1 =440 nm. λ_2 =660 nm (1 nm = 10^{-9} m). 实验发现,两种波长的明纹 主极大(不计中央明纹)第二次重合于衍射角 $\varphi=60°$ 的方向上、求此光褪的

解:由光滞衍射主极大公式 dsinφ=kl

及 $\sin \phi_1 = \sin \phi_1$ 得。

$$\frac{k_1}{k_2} = \frac{\lambda_2}{\lambda_1} = \frac{3}{2}$$

两谱线第二次重合即是

$$\frac{k_1}{k_2} = \frac{6}{4} \cdot k_2 = 4 \cdot k_3 = 6$$

(或: $(k_2 \pm 2)\lambda_1 = k_1\lambda_2$. 解得 $k_2 = 4$. $k_3 = 6$)

曲光穩公式剪知
$$d \sin 60^\circ = 6\lambda_1 = 4\lambda_2$$

$$d = \frac{6\lambda_1}{\sin 60^\circ} = 3.05 \times 10^{-3} \text{ mm}$$

《大学物理》试卷 B·答案 第 5 页 共 5 页

院(系.	玏	E级_		_ 学号			生名			
題号	+	=	=	£43	Æ	六	ŧ	ハ	总分	
得分			-							
		-			·	اـــــا			<u>ئــــــــــــــــــــــــــــــــــــ</u>	

	,	4 2 200	/ -3- VCV	9 93 7	77 81	33 /1	J.						
序	Ī.							·				· · · · · · · · · · · · · · · · · · ·	ŧ
导	l.	- 2	3	4	5	6	7.	8	9	10	No.	小计	
否													
案					·	·							
		L	Ł									1	

I. 一质点沿 x 轴作简谐振动,振动方程为 $x = 4 \times 10^{-2} \cos(2\pi t + \frac{1}{2}\pi)$ (SI).

从 t=0 时刻起,到质点位置在 x=-2 cm 处,且向 x 轴正方向运动的最短时间间隔为

(A)
$$\frac{1}{8}$$
s

(B)
$$\frac{1}{6}$$
s

(C)
$$\frac{1}{4}$$
s. (D) $\frac{1}{3}$ s

(D)
$$\frac{1}{3}$$
 s

(E)
$$\frac{1}{2}$$
 s

2、一个弹簧振子和一个单摆(只考虑小幅度摆动)。在地面上的固有振动周期分别 T_1 和 T_2 . 将它们拿到月球上去。相应的周期分别为 T_1' 和 T_2' . 则

- (A) $T_1' > T_1 \coprod T_2' > T_2$. (B) $T_1' < T_1 \coprod T_2' < T_2$.
- (C) $T_1' = T_1 \coprod T_2' = T_2$.
 - (D) $T_1' = T_1 \coprod T_2' > T_2$.

- (A) 在波传播的过程中,某质元的动能和势能相互转化,总能量保持不变:
- (B) 在波传播的过程中,某质元任一时刻的动能与势能相等,且随时间作周期性的 变化:
 - (C) 在族传播的过程中,某质元任一时刻的动能与势能相等,且不随时间发生变化:
- (D) 在波传播的过程中, 某质元任一时刻的动能与势能有可能相等,有可能不等,视 时刻而定。
- 4、如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉, 若薄膜的厚度为 e,并且 $n_1 < n_2 > n_3$, λ_1 为入射光在折射率为 n_1 的媒质中的波长。 则两束反射光在相遇点的位相差为

大学物理朋末考试试卷 第1页

租干的。

- (B) 两个原子自发辐射的同频率的光是不相干的, 原子受激辐射的光与入射光是 相干的。
- (C)两个原子自发辐射的同频率的光是不相干的,原子受激辐射的光与入射光是 不相干的。
- (D)两个原子自发辐射的同频率的光是相干的. 原子受激辐射的光与入射光是相 Ŧ'n.

二、填充题(每格2分, 共计22分) 1、图示一平面简谐波在1=23时刻的波形图。波 的振幅为 0.2m, 周期为 4s, 则图中质点 P 的振 物体同时参与同一直线上的两个简谐振动: $x_1 = 0.03\cos(4\pi t + \pi/3)$ (SI) $\frac{1}{2}$ $x_2 = 0.05\cos(4\pi t - 2\pi/3)$ (SI)

- 3、如果入射波的表达式是 $y_1 = A\cos 2\pi(\frac{\epsilon}{T} + \frac{\epsilon}{T})$,在x = 0 处发生反射后形成驻波 反射点为波腹. 设反射后波的强度不变, 则反射波的表达式
- 4、一静止的报警器, 其频率为 1000 Hz, 有一汽车以 79.2 km 的时速驶向报警器时 坐在汽车里的人听到报警声的频率是 10.14.11 47(设空气中声速为 340 m/s).
- 5、若一双缝装置的两个缝分别被折射率为 n 和 n 的两块厚度均为 e 的透明介质所 遮盖,此时由双缝分别到屏上原中央极大所在处的两束光的光程差△= 705-6.1C 两束相下光的相位差59=
- 束自然光自空气入射到折射率为1.40 的液体表面上,若反射光是线偏振光。

外部是距地球约16次年,宁市飞船若以 向(字盲飞船上钟指示的时间)低达牛郎星。

8、已知家度为a为一维无限深势髁中粒子的波函数为Y=Asin(rota),则规一化常数 粒子出现的概率最大的位置是x=

大学物理期末考试试卷 第3页

得分

三、(本题 10 分) 一简谐波,振动周期 T=0.5s, 波长 λ =10 m, 振幅 A=0.1m. 当 t=0 时,波源振动的位移恰好为正方向的最大值。若坐标源点和波源重合,且波沿 Ox 轴正方向传播,求: Ψ =0

(1) 此波的表达式:

(2) 4=T/4 时刻, x1= 2/4 处质点的位移;

(3) 4=T/2 时刻, x1= 1/4 处质点的振动速度.

部: 1 这 y= Acos(wit-w)+p3)

 $u = \frac{\eta}{T} = 4\pi \text{ rad/s}$ $u = \frac{\eta}{T} = 20 \text{ m/s}$ $y_0 = 0$

故于olog和吐克)

》 Ant= 4 . 6= 1/4 0得

4 0-1 63 4 To (= - = 0-1 (m)

沙 城市学处质点的振动的物

 $\sqrt{=-0.4 \text{ Tu sin } (4 \text{ Ti} \frac{\text{Tu}}{2})}$

the Jag Va= - ortimis

- (1) 透光缝口的单缝衍射中央明条纹宽度为多少?
- (2) 在该宽度内, 有几个光栅衍射主极大?

解·) d= 云云 cn 全 a-sin 0= ↑

中央明教報 D= f-20 = 21-f= b cm

中方 = 毫不够成整的,被对数年级级系统

2) 当 d-sin 0= 1-1 册为现象

2) 当 d-sin 0= 1-1 册为现象

2) 当 d-sin 0= 1-1 册为现象

2) 1

大部門 k=2.5

放在收辖内、随到 0, 1), 起 共 5个领别主张大

得 分

五、(本题 10 分)如图在长度为 L=4cm 的两块玻璃平板之间夹一细金属丝,形成空气劈尖,在波长为 $\lambda=600.0$ nm 的单色光垂直照射下形成干涉条纹。
(1) 如果观察到相邻两明条纹间隔为 $\Delta l=0.1$ nm,求金属丝直径D?

- (2) 如将金属丝通电,使之受热膨胀,则在上方 A 处可观察到干涉条纹向什么方向 移动?条纹闸距如何变化?
- (3) 若在 A 处观察到干涉条纹移动6条,则金属丝直径的热膨胀量为多大?

少 若一 DT Q●T 町 2D+2= k7)
DT N KT Q 可则 U N A +涉额的有端的 动,请你问题会箱短

37 | 技部を開発 2d + 2= 81 | 2d +

得分

六、(本題8分) @ 1=20

α 粒子在底感应强度为 B=0.025T 的均匀磁场中沿半径为 R=0.83cm 的圆形轨道上运动

- (1) 试计算其德布罗意波长(α 粒子的质量 $m_{\alpha}=6.64\times10^{-27}$ kg);
- (2)若使质量 m=0.1g 的小球以与 α 粒子相同的速率运动,则其波长为多少?

箱: >

$$V = \frac{80R}{\eta} = 10^4 \text{M}$$
 «C
数可忽略 棚 记 效应

2)

得分

七、《本题7分》

在惯性系S中,有两个静止质量都是 m_0 的粒子A、B,分别以速度 $\overline{v}_A=v\overline{i}$, $\overline{v}_B=-v\overline{i}$ 运动,相撞后粘在一起成为一复合粒子,求复合粒

子的静止质量。

额

由龍市巨定官5和

truc' + truc' = 15 mc

大学物理期末考试试卷 第6页 战,M= 加 (下伤)2

$$= i y_{p} = 0.2 \cos(\frac{1}{2}\pi t - \frac{1}{2}\pi)$$

2.
$$\chi = 0.02\omega s (4\pi t - \frac{2}{3}\pi)$$

3.
$$y_z = A \cos 2\pi \left(\frac{t}{T} - \frac{\pi}{\lambda}\right)$$
; A

三 (1)
$$y = 0.1 \omega_5 (4 \pi t - \frac{1}{10} \pi x) = 0.1954 \pi (t - \frac{1}{20} x) (31)$$
 纷

(2)
$$t_1 = \frac{1}{4} = \frac{1}{8}$$
 8, $\chi_1 = \frac{10}{4}$ m 处版些的往榜

$$y_1 = 0.1054\pi(\frac{1}{4} - \frac{2}{80}) = 0.1054\pi(\frac{1}{8} - \frac{1}{8}) = 0.1m 38$$

$$V_2 = -0.4\pi \Sigma (\pi - \pm \pi) = -1.26 \text{ m/s}$$

四、(本題 10 分)

.解: (1)
$$a \sin \varphi = k\lambda$$
 (g $\varphi = x/f$

当x < f时, $\mathbf{tg} \varphi \approx \sin \varphi \approx \varphi_s a x \cdot f = k\lambda$ 。 取 k = 1 有

$$x = f \lambda / a = 0.03 \text{ m}$$

(2) d=0.01/200=5×10⁻⁵ m

d sin
$$\phi = k'\lambda$$

五、(本题 10 分)

解: (1)
$$\frac{D}{I} = \frac{\lambda}{2}/\Delta I$$
 $D = 0.12 \,\mathrm{mm}$; 3分

(3)
$$\Delta D = \Delta k \cdot \frac{\lambda}{2} = 1.8 \times 10^{-6} mm$$

六、(本题8分)

解:(1)由带电粒子在均匀壁场中作圆运动运动的知识知.R=mr/(qB). 于是有

$$p_{\alpha} - m_{\alpha} v_{\alpha} = qBR = 2eBR$$

$$\lambda_{\alpha} = h_{\alpha} p_{\alpha} = h_{\alpha} (2eBR) = 9.98 \times 10^{-12} \text{m}$$

$$= 9.98 \times 10^{-3} \text{nm} \qquad 4.7$$

(2) 设小球与α粒子速率相属

 $v=v_{\alpha}=2eBR/m_{\alpha}$

 $\lambda = h p = h (mv) = h [m(2eBR m_a)]$

=
$$[h/(2eBR)](m_{u}/m)=(m_{u}/m)\lambda_{u}=6.62\times10^{-34}$$
m

4 51

七、(本题7分)

解: 设碰撞后的合成粒子质量为M; 速度为v

动量守恒:
$$mv - mv = MV = 0$$

说明合成粒子静止

(3分)

能量寸恒:
$$mc^2 + mc^2 = M_0c^2$$

$$M_0 = 2m = \frac{2m_0}{\sqrt{1 - v^2 / c^2}}$$

(2 %)

《大学物理下》

			•
※ イエト	TH 201	SAC ETT	Lie to
院(系)	对工公	77	44.24
170 173 7/		3 -3	J**.1 1-8

-11 October No.	題号	,	 	四	_ 1	六	4	总分
STATE AND DESCRIPTION OF THE PERSON STATEMENT	得分	-				-		

一、选择题(每题3分。共计36分)

Olympia de la Colonia de la Co	序号	1	2	3	4	5	6	7	8	9.	10	11	12	小計
	答案	B	B	B	乃	A		B	0	A	1 / 1	A)	A	

- 1、一质点在 x 轴上作简谐振动,振辐 A=4 cm,周期 T=2-s,其平衡位置取作坐标原点。若 t=0 时刻质点第一次通过 x=-2 cm 处,且向 x 轴负方向运动,则质点第二次通过 x=-2 cm 处的时刻为
 - (A) 1s.
- (B) 2/3 s
- (C) 4/3 s.
- (D) 2s.
- 2、图中所画的是两个简谐振动的振动曲线。若这两个简
- 谐振动可叠加,则合成的余弦振动的初相为
 - (A) $1.5\pi_{-1}$
- (B) π
- (C) 0.5x.
- (D) 0.

- 3、关于驻波的特性,以下说法错误的是
 - (A) 驻波是一种特殊的振动。波节处的势能与波腹处的动能相互转化:
 - (B) 两波节之间的距离等于产生驻波的相干波的波长;
 - (C) 一波节两边的质点的振动步调(或位相)相反;
 - (D) 相邻两波节之间的质点的振动步调(或位相)相同.
- 4、真空中,平面电磁波的电场强度 E、磁场强度 H 和传播速度 u 的关系是
 - (A) 三者相互垂直。而电场强度 E 和磁场强度 H 位相相差 x/2:
 - (B) 三者相互垂直, 而 E、H、u 构成右手螺旋;
 - (C) 电场强度 E 和磁场强度 H 方向相同; 且与 u 的方向垂直;
- (D) 电场强度 E 和磁场强度 H 方向不确定: 但与 u 的方向垂直:

大学物理期末考试试卷 第1页

- 5、在真空中波长为 λ 的单色光。在折射率为n的透明介质中从A沿某路径传播到B,若A、B 两点位相差为 π ,则此路径 AB 的光程为
 - (A)0.5 A
- (B) 0.5 nA
- (C) 3 λ
- (D) $0.5 \lambda / n$

- 6、空气劈尖干涉实验中,
- (A) 干涉条纹是垂直于棱边的直条纹, 劈尖夹角变小时, 条纹变稀, 从中心向两边扩展:
- (B) 干涉条纹是垂直干棱边的直条纹, 劈尖夹角变小时, 条纹变密, 从两边向中心靠拢:
- (C) 干涉条纹是平行于棱边的直条纹, 劈尖夹角变小时, 条纹变疏, 条纹背向 棱边扩展:
- (D) 干涉条纹是平行干棱边的直条纹, 劈尖夹角变小时, 条纹变密, 条纹向棱边靠拢。
- 7、一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角 io,则在 界面 2 的反射光
- (A) 是自然光:
- (B) 是线偏振光且光矢量的振动方向垂直于入射面;
- (C) 是线偏振光且光矢量的振动方向平行于入射面;
- (D) 是部分偏振光。
- 8、 所谓"黑体"是指这样的一种物体,即:
 - (A) 不能反射任何可见光的物体:
 - (B) 不能反射任何电磁辐射的物体:
 - (C) 颜色是纯黑的物体:
 - (D) 能够全部吸收外来的任何电磁辐射的物体。
- 9、光电效应和康普顿效应都包含有电子与光子的相互作用过程,对此过程,在以下几种理解中,正确的是:
 - (A) 光电效应是电子吸收光子的过程,而康普顿效应则是光子和电子的弹性碰 撞过程:
 - (B) 两种效应都相当于电子与光子的弹性碰撞过程:
 - (C) 两种效应都属于电子吸收光子的过程;
 - (D) 两种效应都是电子与光子的碰撞,都服从动量守恒定律和能量守恒定律。 大学物理期末考试试卷 第2页

15) TE THAT IL IN THE ME
10、在某地发生两件事,静止位于该地的甲溅得时间间隔为 6s,若相对甲以 4c/5(c
(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)
(A) 10s. (B) 8s. (C) 6s. (D) 3.6s. (E) 4.8s.
11、如本的代小问质量的粒子,其德布罗意波长相同,刚汶西动物之份
(B) 能量相同。
(C) 速度相同. (D) 动能相同.
12、设粒子运动的波函数图线分别如图(A)、 (A) —
(B)、(C)、(D)所示,那么其中确定粒子动量的
~精确度最高的波函数是哪个图?
(D) — V V → z
每分 二、填充题 (每格 2 分, 共计 22 分)
、4、B是简谐波波线上距离小于波长的两点。已知, B点振动的相位比
A 点落后 $\frac{1}{3}\pi$, 波长为 $l=3$ m, 则 A , B 两点相距 $L=$ 2 m.
3
2、一物体作简谐振动。振动方程为 $x = A\cos(\omega t + \frac{1}{2}\pi)$. 则该物体在 $t = 0$ 时刻
的动能与 = 7/8(7 为与为用物)对于
的动能与 t= T/8 (T 为振动周期) 时刻的动能之比为
3、一静止的报警器, 其频率为 1000 Hz, 有一汽车以 79.2 km 的时速背离报警器时, 坐在汽车里的 A 听到报教 古代 第二十一 0.2.5.7
坐在汽车里的人听到报警声的频率是 <u>935.3</u> (设空气中声速为340 m/s)。
4、如图所示,两个直径有微小差别的彼此平行的滚柱之间的距
离为 L,夹在两块平晶的中间,形成空气劈尖,当单色光垂直
入射时,产生等厚干涉条纹.如果两滚柱之间的距离 L 变大,
则在上范围内干涉条纹的数目
或变小),间距支太 (填写: 不变, 变大或变小)
5、华顿环族等也系统上现在,
5、牛顿环装置中透镜与平板玻璃之间充以某种液体时,观察到第10级暗环的直径
由 1.42cm 变成 1.27cm,由此得该液体的折射率 n = /、24 /
· CARA 10 的日本光化次垂直通过三块偏振片 PL。P2 和 P3、P1 与 P2 的信告化
方向成 45°角。P2 与P3 的偏振化方向成 45°角。则透过三块偏振片的光强 [为
大学物理期末考试试卷 第3页
3.

7、有一速度为业的宇宙飞船沿 x 轴的正方向飞行,飞船头尾各有一个脉冲光源在工
作,处于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为;
处于船头的观察者剥得船尾光源发出的光贮冲化;传播速度大小为。
8、狭义相对论中,一质点的质量 m 与速度 v 的关系式为
其动能的表达式为 $E_{F} = Mc^2 - m_o c^2$ (已知静止质量为 m_o)

得 分

三、(本題 10 分)

图示为一平面简谐波在 1 = 0 时刻的波形图,求

- (1) 该波的波动表达式;
- (2) P 处质点的振动方程。

$$\varphi = -\frac{\pi}{2}$$

$$\mathcal{D} = \frac{0.08}{0.4} = 0.$$

$$y = 0.04 \text{ Cos} \left(\frac{2\pi}{5} \pi \left(\frac{K}{0.08} \right) - \frac{\pi}{5} \right)$$

 $X_{p=0.00}$

$$\int_{\rho} = 0.04 \, \cos \left(\frac{2}{5} \pi \, C t - \frac{0.2}{0.08} \right) - \frac{11}{2} \int_{0.08}^{\infty} = 0.04 \, \cos \left(\frac{2}{5} \pi + \frac{11}{2} \right)$$

得 分

四、(本题 8 分) 双缝干涉实验装置,双缝与屏之间的距离 D=120cm,两缝之间的距离 d=0.50mm, 用波长 a=5000 Å 的单色光垂直照射双缝.

- (1) 求原点 O(零级明条纹所在处)上方的第五级明条纹的坐标;
- (2) 如果用厚度 $e=1.0\times10^{-2}$ mm, 折射率 n=1.58 的透明薄膜覆盖在图中的 s_1 缝后面、求上述第五级明条纹的坐标 x 。

$$d\sin = k\lambda \cdot k = \frac{p_3\lambda}{d} = \frac{1.2 \times J \times J \times n^{-7}}{0.3 \times n^{-3}} = 6 \times 10^{-3} \text{ m}$$

$$7 = \frac{1}{2} \times \frac{1}{2} \times 10^{2} \text{ m}$$

$$7 = \frac{1}{2} \times 10^{2} \text{ m}$$

$$7 = \frac{1}{2} \times 10^{2} \text{ m}$$

$$7 = \frac{1}{2} \times 10^{2} \times 10^{2}$$

得分

五、(本题 10分) 波长2=6000A 的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为 30°。且第三级是缺级、

- (1) 光栅常数(a+b)等于多少?
- (2) 透光缝可能的最小宽度 a等于多少?
- (3) 在选定了上述(a+b)和 a之后,求在衍射角 $-\pi/2 < \phi < \pi/2$ 范围内可能观察到的全部主极大的级次。

$$d\sin\theta = k\lambda$$

$$dx = 2x bx 10^{-7}$$

$$d = 2 \cdot 4x 10^{-6} m$$

$$d = 3$$

$$\alpha = \frac{d}{3} = 8x 10^{-7} m$$

$$d\sin\theta = k\cos\lambda$$

$$d\sin\theta = k\cos\lambda$$

$$d\cos\theta = k\cos\lambda$$

看到: o z 1 ±2. ±4

六、(本题 8 分) 实验发现基态氢原子可吸收能量为 12.75eV 的光子

- (1) 试问氢原子吸收该光子后将被激发到哪个能级?
- (2) 受激发的氢原子向低能级跃迁时,可能发出哪几条谱线?请定性

地画出能级图,并将这些跃迁画在能级图上。

图,并将这些跃迁画在能级图上.

$$E_n = \frac{E_1}{n}$$
 和 $E_2 = \frac{E_2}{16} = 2.85 \text{ eV}$. $E_3 = \frac{E_3}{3} = 0.35 \text{ eV}$. $E_4 = \frac{E_4}{16} = 2.85 \text{ eV}$. $E_5 = \frac{E_5}{3} = 0.35 \text{ eV}$. $E_6 = \frac{E_4}{16} = 2.85 \text{ eV}$. $E_7 = \frac{E_7}{16} = 2.85 \text{ eV}$. $E_8 = \frac{E_7}{16} = 2.85 \text{ eV}$. $E_8 = \frac{E_7}{16} = 2.85 \text{ eV}$. $E_9 = 2.85 \text{ eV}$. $E_9 = \frac{E_7}{16} = 2.85 \text{$

七、(本题 6 分) 一粒子被限制在相距为 / 的两个不可穿透的壁之间

图 24.2 所示。描写粒子状态的波函数为 $\psi = cx (l-x)$, 其中 c 为特定常量,求在 0~ l3

$$\int_{0}^{2} \frac{d^{2}x^{2}}{(2^{2}-32)(x^{2}+c^{2}x^{2})} dX = 1$$

$$\int_{0}^{2} \frac{d^{2}x^{2}}{(2^{2}-2c^{2}x^{2}+c^{2}x^{2})} dX = 1$$

$$\frac{d^{2}x^{2}}{3} - 2c^{2}x^{2} + c^{2}x^{2} + c^{2}x^{2} = 1$$

$$\frac{d^{2}x^{2}}{3} - \frac{d^{2}x^{2}}{2} + \frac{d^{2}x^{2}}{3} + \frac{d^{2}x^{2}}{3} = 1$$

$$\frac{d^{2}x^{2}}{3} - \frac{d^{2}x^{2}}{2} + \frac{d^{2}x^{2}}{3} + \frac{d^{2}x^{2}}{3} + \frac{d^{2}x^{2}}{3} + \frac{d^{2}x^{2}}{3} = 1$$

$$\frac{d^{2}x^{2}}{3} - \frac{d^{2}x^{2}}{3} + \frac$$

《大学物理下》

本试卷共7页: 考试时间 110 分钟

題号	 _	=	四	五	÷	も	, A.	总分
得分								
ł.								

一、选择题(每题3分,共计36分)

序号:	1	2 -	3	4	5	6	7	8	9	10	
答案	1	-			·	-					

- 1. 一弹簧振子作简谐振动,总能量为 E₁,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍。则它的总能量 E₂变为
 - (A) $E_1/4$.
- (B) $E_1/2$.
- (C) $2E_1$.
- (D) $4E_1$
- 2. 一平面简谐液在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中
 - (A) 它的势能转换成动能.
 - (B) 它的动能转换成势能.
 - (C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加.
 - (D) 它把自己的能量传给相邻的一段媒质质元, 其能量逐渐减小.
- 3. 下图为一向右传播的简谐波在 1 时刻的波形图, BC 为波密介质的反射面, 波由 P 点反射, 则反射波在 1 时刻的波形图为

《大学物理下》试卷A 第 1 页 共 7 页

5. 在迈克尔逊干涉仪的一支光路中,放入一片折射率为 n的透明介质薄膜后,测出两束光的光程差的改变量为一个波长 l. 则薄膜的厚度是

- (A) $\lambda/2$ (B) $\lambda/(2n)$ (C) λ/n (D) $\lambda/2(n-1)$
- 6. 如图所示,折射率为 n₂、厚度为 e 的透明介质薄膜的上方和下方的透明介质的折射率分别为 n₁ 和 n₃,已知 n₁ < n₂ < n₅. 岩用 被长为 的单色平行光垂直入射到该薄膜上,则从薄膜上、下两 表面反射的光束①与②的光程差是

- (A) $2n_2e$
- (B) $2n_1e \lambda/2$
- (C) $2n_2e-\lambda$
- (D) $2n_2e \lambda/2n_1$

7. 一束光是自然光和线偏振光的混合光,让它驱直通过一偏振片。若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的 5 倍,那么入射光束中自然光与线偏振光的光强比值为

- (A)1/2
- (RM / s
- (C)1/3
- (D)2 / 2

8. 一束自然光自空气射向一块平板玻璃(如图). 设入射角等于布偶斯特角 io, 则在界面 2 的反射光

- (A) 是自然光
- (B) 是线偏振光且光矢量的振动方向垂直于入射面.
- (C) 是线偏振光且光矢量的振动方向平行于入射面
- (D) 是部分偏振光

9. 在某地发生两件事,静止位于该地的甲测得时间间隔为 4s ,若相对于甲作匀速直线运动的乙测得时间间隔为 5s ,则乙相对于甲的运动速度是(c 表示真空中光速)

- (A) (4/5) c.
- (B) (3/5) c.
- (C) (2/5) c.
- (D) (1/5) c.

10. 对黑体加热后,测得总的镉出度(即单位面积辐射功率)增人为原来的16倍,则黑体的温度与原温度的比值以及最大单色辐出度所对应的波长与原波长的比值分别为

- (A) 4, 2.
- (B) 2, 1/2.
- (C) 4, 1/2.
- (D) 2 3

《大学物理下》试卷 A 第 2 页 共 7 页

H . 用频率为 ν_1 的单色光照射某种金属时,测得饱和电流为 I_1 ,以频率为 ν_2 的单
色光照射该金属时,测得饱和电流为 I_2 ,若 $I_1>I_2$,则
(A) $v_1 > v_2$. (B) $v_1 < v_2$.
(C) $\nu_1 = \nu_2$. (D) $\nu_1 = \nu_2$ 的关系还不能确定. 12. 关于不确定关系 $\Delta x \cdot \Delta p_2 \geq \hbar$,有以下几种理解.
(1) 粒子的动量不可能确定
(2) 粒子的坐标不可能确定.
(3) 粒子的动量和坐标不可能同时准确地确定.
(4) 不确定关系不仅适用于电子和光子,也适用于其它粒子。 其中正确的是:
(A) (1), (2). (B) (2), (4). (C) (3), (4). (D) (1), (4).
每分二、填充题 (每空 2分, 共计 24分)
1. 两个同方向的简谐振动曲线如图所示。合振 41000000000000000000000000000000000000
动的振幅为,合振动的振动方程
为
2. 如图所示,在双缝干涉实验中 $SS_1 = SS_2$,用波长为 λ 的光照射双
缝 S_1 和 S_2 ,通过空气后在屏幕 E 上形成干涉条纹。已知 P 点处为第 1 S_1 1 S_2 1 S_3
三级明条纹,则5,和5,到 P点的光程差为。若将整 S
个装置放于某种透明液体中。P 点为第四级明条纹,则该液体的折射 53
率 n=
3. 平行单色光垂直入射于单缝上,观察夫琅禾费衍射. 若屏上 P 点处为第二级暗纹,
则毕驻处被面相应地可划分为个半波带。 岩将单缝宽度缩小一半, P 点外
符是第
4. 康普顿散射中,当散射光子与入射光子方向成夹角 ø =
1 700%年小将取多: 白# =
3. 电子的静止质量为m。,若以速度v=0.6c 运动。则实的动物。
它的德布罗波长为
《木色物和丁香》

《大学物理下》试卷 A 第 3 页 共 7 页

6. 在一维无限深势阱中处于基态的粒子的振辐波函数 $\varphi(x) = \sqrt{\frac{2}{a}} \sin \frac{\pi x}{a}$. 能量

得 分

三、(10分)

已知一平面简谐波的表达式为 $y = A\cos\pi(4t - 2x)$ (SI).

- (1) 求该波的波长A、频率v、周期T和波速u的值:
- (2) 写出 t=4.2 s 时刻各波峰位置的坐标表达式,并求出此时离坐标原点最近的那个波峰的位置;
 - (3) 求 t=4.2 s 时离坐标原点最近的那个波峰通过坐标原点的时刻 t.

得 分

四、(6分)

用液长 $\lambda = 500 \text{ nm}$ 的平行光垂直照射折射率 n = 1.33 的劈形膜,观察反射光的等厚干涉条纹。从劈形膜的棱算起,第 5 条明纹中心对应的膜厚度是多少?

得 分

五、(10分)

一束平行光垂直入射到某个光橱上,该光束有两种波长的光, λ_1 =440 nm, λ_2 =660 nm (1 nm = 10^{-9} m). 实验发现,两种波长的谱线(不计中央明纹)

第二次重合于衍射角 q=60°的方向上。求此光棚的光棚常数 d.

得分

六、(6分)

在惯性 K 系,有两事件发生于同一地点,且第二事件比第一事件晚发生 8s ,而在另一惯性系 K' 中,观测到第二事件比第一事件晚 10s ,求:

- (1) K' 相对于 K 运动的速度:
- (2) K'中測得两事件发生地点之间的距离。

得分

七、(8分)

量子力学得出:若氢原子处于主量子数 n = 4 的状态,则其轨道角动量(动量矩)可能取的值?对应于 1=3 的状态,氢原子的角动量在外磁场方向的投

影可能取的值? (用 à 表示)

得 分

八、附加题(10分)(强化班学生必做,其它班级学生选做) 已知一自由电子的被函数为 $\Psi(x) = A\cos(5.00 \times 10^{10} x)$, 式中x的单位是 m。(普朗克常量h=6.63×10⁻³⁴ J·s, 电子质量为9.11×10⁻³¹ kg·求:

- 自由电子的德布罗意波长: (1)
- (2) 自由电子的动量:
- (3)自由电子的动能。

E(x) = Gal = M $\rho(\overline{x}) = \frac{DX}{n} = -$ E(5) = D(N) = 62 い、「所布 b(x)=P p(x)=P(rp) =成分布 Parx)=(*p*(~p)*** E(x)=np. pix)=hpcrp 海沟师 Pin-kj=Xkex 歌《抗似 ExI=>, DIXI=> 柏斯 hoj=) to act cb IN- and DALLE 指翻译 MF/XeXX XV。 WW.631 EN= 4. AN= 6 Tatus ~Ara)

P/K-EN/<E/ >1-80 En = Co struck DX) = E(X) - (EX)) ex(X,I) = E(X,I) - E(X) E(X) tor(ay At) = al lorix, T) (01/14/12)=(01/1/2)+104/1/2/ b M2 = (= x(x, 1)) *44 x8 x 表展大小松月1m $\Phi L(x_1, \dots, x_n, o) = f(x_n, o) - f(x_n, o)$ Ly (17,- 15,0)= em > 8 日本大概估计值下 无稀 E(d) = E(xk) = (x* Ario) Ax =0. 有四十三日十二日

《大学物理下》试卷 A 第 7 页 共 7 页

《大学物理下》:

答案

一、选择题(每题3分,共计33分)

	序号	.I	2	3	4	5	6	7	Я	0	10	11	12	1
The second second	答案		С	В	В							. D	 -	
•		h										-		į

二、填充题(每空2分,共计24分)

1.
$$A_2 - A_1$$
 $(A_2 - A_1)\cos(\frac{2\pi}{T} - \frac{\pi}{2})$

2. 3λ, 1.33

3. 4. 第一 暗纹

4. # ; 0

5.
$$0.25m_0c^2$$
, $\frac{4}{3}\frac{h}{m_0c}$

$$6. \quad \sqrt{\frac{2}{a}} \sin \frac{dx}{a} e^{\frac{\int x^2 h^2}{a} \frac{1}{2aa^2}},$$

三、(10分)

解:这是一个向 x 轴负方向传播的波

(1)
$$\lambda = 2\pi/k = 1 \text{ m}$$

 $\nu = \omega / 2\pi = 2 \text{ Hz}$

-T=1/v=0.5 s

 $u = v\lambda = 2 \text{ m/s}$

u = vA = 2 m/s

1分

1分.

14

(2) 波峰的位置,即y=A的位置。

$$\cos \pi (4t-2x)=1$$

《大学物理下》试卷 A 第 1 页 共 3 页

六、(6分)

解: (1)
$$\Delta t = 8s$$
, $\Delta t' = 10s$, $\Delta t' = \frac{\Delta t}{\sqrt{1 - v^2/c^2}}$, $\sqrt{1 - v^2/c^2} = \frac{4}{5}$

$$\therefore v = 0.6c = 1.8 \times 10^8 \text{ m/s}$$

3分

(2)
$$\Delta x' = \frac{\Delta x - \nu \Delta t}{\sqrt{1 - \nu^2 / c^2}} = \frac{-1.8 \times 10^8 \times 8}{4/5} = -1.8 \times 10^9 \text{ m}$$

3分

七、(8分)

 $M: n=4, \qquad l=0,1,2,3$

$$L = \sqrt{l(l+1)}h$$

则轨道角动量分别为。 $\sqrt{12}\hbar$, $\sqrt{6}\hbar$, $\sqrt{2}\hbar$, $\hat{0}$;

4 分

$$L_z = m_i \hbar$$

 $L_z = m_l \hbar \qquad m_l = 0, \pm 1, \pm 2, \dots \pm l$

角动量在外磁场方向的投影可能取的值: ±3克, ±2克, ±九, 0

4分

八、附加题(10分)

解:〈1〉因为被长具有空间周期性,则有

$$A\cos[5.00\times10^{10}(x+\lambda)] = A\cos[5.00\times10^{10}(x+2\pi)]$$

$$5.00 \times 10^{10} \lambda = 2\pi$$

$$\lambda = 0.126nm$$

(2)
$$p = \frac{h}{\lambda} = 5.26 \times 10^{-24} \, kg \cdot m \cdot s^{-1}$$

(3)
$$E_{\rm g} = E - m_0 c^2 = \sqrt{p^2 c^2 + m_0^2 c^2} - m_0 c^2$$

$$=1.52 \times 10^{-17} J = 94.8 eV$$

(大学物理下) 试卷 A 第 3 页 共 3 页

$$x = k - 2t.$$

当 /=4.2s 时,

$$x = (-k + 0.4)$$
 m.

3分

所谓离坐标原点最近,在上式中取k=0, 可得 x=0.4

1分

(3),
$$\Delta t = |\Delta x|/u = |\Delta x|/(\nu\lambda) = 0.2 s$$

$$t = 4.5$$

2分)

四、(6分)

$$2ne + \frac{1}{2}\lambda = k\lambda \quad (k=1, 2, \cdots)$$

$$2ne + \frac{1}{2}\lambda = k\lambda \quad (k=1, 2, \dots)$$

$$e = \frac{\left(5 - \frac{1}{2}\right)\lambda}{2n} = 8.46 \times 10^{-4} \text{ mm}$$

五、(10分)

解: 由完栅衔别主极人公式得

$$d\sin\varphi_1 = k_1\lambda_1$$
$$d\sin\varphi_2 = k_2\lambda_2$$

$$\frac{\sin \varphi_1}{\sin \varphi_2} = \frac{k_1 \lambda_1}{k_2 \lambda_2} = \frac{k_1 \times 440}{k_2 \times 660} = \frac{2k_1}{3k_2}$$

当两谱线重合时有

$$\frac{k_1}{k_2} = \frac{3}{2} = \frac{6}{4} = \frac{9}{6} \quad \dots$$

$$\frac{k_1}{k_2} = \frac{6}{4}, \qquad k_1 = 6, \quad k$$

由光棚公式可知 d sin60°=64

$$d = \frac{6\lambda_1}{\sin 60^\circ} = 3.05 \times 10^{-3} \, \text{mm}$$

3分

(大学物理下) 试卷A 第2页共3页

作

院(系)				班级 学号				姓名			
	- · 		r						2 1	}	
	題号			=	E3	<u> </u>	六	セ	总分	an process	
	得分	No. of the last of		,	-	·			The state of the s	or entire the live of the	

选择题(计36分,每小题3分)

(注: 请将您的答案写在下表相应题号的空格内)

1											,	,	,	
	题号	1	2	. 3	1	5	6	7	8	_	10		12	
	答案	В	В	1 .	С		. В	D	A	D	A	D	· C	-

: 一个质点作简谐振动,振幅为 A.在起始时刻质点的位移为 A / 2,且向 x 轴的正 方向运动,代表此简谐振动的旋转矢量图为

2 右图中所画的是两个简谐振动的振动曲线, 若这两个简 谐振动可叠加。则合成的余弦振动的初相为

(A)
$$\frac{3}{2}\pi$$

(B)
$$\pi$$
. (C) $\frac{1}{2}\pi$.

- 1 一弹簧振子作简谐振动, 当其偏离平衡位置的位移的大 小为振幅的 1/4 时, 其动能为振动总能量的

- (A) 9/16. (B) 11/16. (C) 13/16. (D) 15/16.
- 4. 见右图, 平行单色光垂直照射到薄膜上, 经上下两表面反 射的两束光发生干涉,若薄膜的厚度为 e,并且 $n_1 < n_2 > n_3$ 。 1. 为入射光在折射率为 ni 的媒质中的波长. 则两束反射光在 相遇点的相位差为

《大学物理》试卷 A 答案 第 1 页 共 5 页

•	and the second s	
	2nn2e / (n1 13).	(B) $\{4\pi n_1 e/(n_2 \lambda_1)\} + \pi$.
		(D) $4nn_2e/(n_i \lambda_i)$.
5.	两块平玻璃构成空气劈形膜,左边	为棱边,用单色平行光垂直入射。若上面的平玻
	曼慢地向上平移,则干涉条纹	
(A)	向棱边方向平移,条纹间隔变小。	(B) 向棱边方向平移。条纹间隔变大。
(C)	向棱边方向平移。条纹间隔不变.	(D) 向远离棱边的方向平移,条纹同隔不变。

- 6. 在夫瑕禾费单键衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮 纹的中心位置不变外, 各级衍射条纹
- (A) 对应的衍射角变小.
- (B) 对应的衍射角夸大。
- (C) 对应的衍射角也不变。
- (D) 光强也不变:
- 7. X.射线射到晶体上,对于间距为 d 的平行点阵平面,产生衍射主极大的最大波长为
- (A) d/4.
- (B) d/2.
- (C) d.
- (D) 2d.
- 8. 如果两个偏振片堆叠在一起。且偏振化方向之间夹角为60°。光强为局的自然光垂直 入时在偏振片上,则出射光强为
- (A) 1, 18.
- (C) 3 lo / 8.
- (D) 3 1/4.
- 9. 用频率为 n的单色光照射某一种金属时、测得光电子的最大动能为 Ea: 用频率为 is 的单色光照射另一种金属时,测得光电子的最大动能为 E_n 如果 $E_n > E_n$ 那么
- (A) n>n.
- (B) 45 ss.
- (C) n=n.
- (D) n可能大于也可能小子 n.

- 10. 如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的
- (A) 动量相同。
- (B) 能量相同. (C) 速度相同.
- 11. 将波函数在空间各点的振幅同时增大D倍,则粒子在空间的分布概率将
- (A) 增大D²倍.
- (B) 增大20倍.
- (C) 增大D倍.
- 12 激光全息照相技术主要是利用激光的哪一种优良特件?

- (B) 方向性好. (C) 相干性好. (D) 抗电磁干扰能力强

NATIONAL MARK	_	得	分	
Г	_			
į	٠		- "	
2007			•	

題号	9	2	3	4	5.
得分				1	

1. (4') 一根长为人 横截面积为 S 的长直密绕螺线管通以电流 A. 内部充满均匀、各 何同性磁导率为4的磁介质,管上单位长度绕有4面导线。则管内部的过能密度为

2. (5') 右图为1时刻的驻波波形曲线。若此时曲线中 D点质元向上运动。试分别指出图中 A, B, C 处各质 元在该时刻的运动方向:

A向下 (2'): B 向下 (2'): C 向上 (1')

- 3.(3')一简谐平面电磁波在真空中沿x轴传播,已知电场强度 \tilde{E} 在y方向上振动, 振幅为 E_0 . 则磁场强度在 z (2')方向上振动,且振幅 $H_0=\sqrt{{\varepsilon_0}/{\mu_0}}~E_0$ (1')
- 4.(3')汽车两盏前灯相距 l, 与观察者相距 $S=10~{\rm km}$. 夜间人眼瞳孔直径 $d=5.0~{\rm mm}$. 人 眼敏感波长为 $\lambda = 550 \, \mathrm{nm} \, (1 \, \mathrm{nm} = 10^{-9} \, \mathrm{m})$,若只考虑人眼的圆孔衍射,则人眼可分辨 出汽车两前灯的最小间距 /= 1.34 (3') (m)
- 5. (3') 光子波长为 λ , 则其能量= $\frac{hc}{\lambda}$ (1'); 动量的大小= $\frac{h}{\lambda}$ (1') 质量= $\frac{h}{\lambda c}$ (1').

三、(10分)两条平行长直导线和一边长为 a 的正方形导线框共面,且导 线框的一个边与长直导线平行,其到两长直导线的距离分别为 a、2a. 己知 两导线中电流都为 $I=I_0\sin\omega r$,其中 I_0 和 ω 为常数,t为时间、求导线框中 的感应电动势 Si; 若某时刻 dJldt > 0、则此时 Si在回路中绕向如何?

解: 两个载同向电流的长直导线在如图坐标 x 处所产

生的磁场为

$$B = \frac{\mu_0}{2\pi} \left(\frac{1}{x} + \frac{1}{x - a} \right)$$

选顺时针方向为线框回路正方向,则

$$\phi_{m} = \int B dS = \frac{\mu_{0} I a}{2\pi} \left(\int_{2a}^{3a} \frac{dx}{x} + \int_{2a}^{3a} \frac{dx}{x - a} \right)$$
$$= \frac{\mu_{0} I a}{2\pi} \ln 3$$

$$=\frac{-1}{2\pi}\ln 3$$

$$\therefore \quad \mathcal{E}_{i} = \frac{\mathrm{d} \phi_{m}}{\mathrm{d} t} = \frac{\mu_{0} a \ln 3}{2\pi} \frac{\mathrm{d}I}{\mathrm{d}t}$$
$$= \frac{\mu_{0} I_{0} a \omega \ln 3}{2\pi} \cos \omega t$$

$$\frac{dI}{dt} > 0$$
 ,则 $\ell_{i} < 0$, 感应电动势在回路中的绕向为"逆时针"方向。

四、(6分)有一轻弹簧,当下端挂一个质量 m=10.克的物体而平衡时,伸长量为9.8 cm.用这个弹簧和该物体组成一弹簧振子.取平衡位置为原点,向上为x轴的正方向.将 m从平衡位置向下拉2 cm 后,给予向上的初速度

 $z_0 = 20\sqrt{3}$ cm/s 并开始计时,试求该系统的振动周期和振动方程的数值表达式(重力加速度 g 取 980 cm/s²).

解:弹簧倨强系数 $k = mg/\Delta l = 1000 \text{ (dn/cm)}$

$$\omega = \sqrt{k/m} = 10 \text{ (s')}$$

$$T = \frac{2\pi}{\omega} = \frac{\pi}{5} \approx 0.63 \text{ (s)} \qquad (2 \text{ 5})$$

$$A = \sqrt{x_0^2 + (v_0/\omega)^2}$$

$$= \sqrt{(-2)^2 + (20\sqrt{3}/10)^2} = 4 \text{ (cm)} \qquad (2 \text{ 5})$$

由旋转矢量图可知: 初相位 $\varphi_0 = -\frac{2\pi}{3}$ (1分)

則,振动方程为:
$$x = 4\cos(10t - \frac{2\pi}{3})$$
 (cm) (1分)

待 分

五、(10分) 图示一平面简谐波在 1=0 时刻的波形图, 求

- (1) 该波的波函数:
- (2) P处质元的振动方程.

解: 由图可知, 2=0.4m, 则

$$\omega = \frac{2\pi}{T} = \frac{2\pi}{\lambda/u} = \frac{\pi}{4} \tag{3 \text{ ft}}$$

原点 0 处质元此时在平衡位置向一y 方向运动。由旋转矢置图可知。原点 0 处质元的初相位:

$$\varphi_o = \frac{\pi}{2}$$

波函数为:

$$y = A\cos[\omega(t-\frac{x}{u}) + \varphi_0]$$

$$= {}^{\prime}0.06\cos\left[\frac{\pi}{4}\left(t - \frac{x}{0.05}\right) + \frac{\pi}{2}\right] \quad (m) \quad (3 \text{ 5})$$

将 x=0.2m 代入上式,得 P 点振动方程:

$$y = 0.06\cos(\frac{\pi}{4}t + \frac{3\pi}{2})$$
 (m)

或
$$y = 0.06\cos(\frac{\pi}{4}t - \frac{\pi}{2})$$
 (m) (2分)

y(m) $0.06 \qquad u = 0.05 \text{m/s}$ $p \qquad x(m)$ $0.2 \qquad 0.4$ ω $A \qquad 0 \qquad 2 \qquad x$

《大学物理》试卷 A 答案 第 4 页 共 5 页

自觉避守考试规则,诚信考试、绝不作

六、(10 分)双缝干涉实验装置如图所示,双缝与屏之间的距离 D=120 cm, 两缝之间的距离 d=0.10 mm, 用被长1=500 nm (1 nm=10 m) 的单色光垂直照射双缝. (1) 求原点 O (零级明条纹所在处)上方的第五 级明条纹的坐标 x. (2) 如果用厚度 $l=1.0 \times 10^{-2}$ mm. 折射率 n=1.50 的透明薄膜 复盖在图中的 Si 缝后面,求上述第五级明条纹的坐标 x ′. \widetilde{H} : (1) $\widetilde{c} = r_2 - r_1 \approx dx/D \approx k\lambda$

(1)
$$\sigma = r_2 - r_1 \approx dx/D \approx k\lambda$$

 $-x \approx Dk\lambda/d = (1200 \times 5 \times 500 \times 10^{-6}/0.1) \text{mm} = 30 \text{ mm}$ (4 \Re)

(2) 从几何关系,近似有 $r_2-r_1 \approx dx'/D$ 育透明薄膜时,两相干光线的光程差

$$\delta = r_2 - (r_1 - l + nl) = r_2 - r_1 - (n-1)l$$

$$= dx' / D - (n-1)l \qquad (2.54)$$

对零级明条纹上方的第5级明纹有

$$\delta = 5\lambda \tag{2.5}$$

零级上方的第五级明条纹坐标

$$x' = D[(n-1)l + 5\lambda]/d$$
=1200[(1.50-1)×0.01+5×5×10⁻⁴]/0.10 mm=90 mm (2.5)

七、(10分)用钠光(A=589.3 nm)垂直照射到某光栅上,测得第三级明 纹主极大的衍射角为 60° (1) 若换用另一光源测得其第二级明纹主极 大的衍射角为 30°, 求后一光源发光的波长。(2) 若以白光(400 nm~760

nm) 照射在该光栅上,求其第二级光谱的张角。(1 nm= 10 ° m)

解: (1)
$$d \sin \varphi = k\lambda$$
 (2分)

 $d=3\lambda/\sin\varphi$, $\varphi=60$ °

 $d=2\lambda/\sin \varphi'$

 $3\lambda / \sin \varphi = 2\lambda / \sin \varphi'$

(2) $d = 3\lambda l \sin \varphi = 2041.4 \text{ nm}$

$$\varphi_2' = \arcsin(2 \times 400 / 2041.4)$$
 (2-490nm) (2.51)

$$\varphi_2^{\alpha} = \arcsin(\iota \times 760 / 2041.4) \quad (\lambda = 750 \text{nm}) \quad (2.2)$$

白光第二级光谱的张角

$$\Delta \varphi = \varphi_1'' - \varphi_2' = 25^\circ \tag{1.4}$$

《大学物理》试卷 A 答案 第 5 页 共 5 页

Alekta, En

《大学物理下》:

院(系)			Ŋ	班级_		·····	学号_		******	姓	各		
题号						四. 五			六	Ł	ž	分	
得分				obia per di insulari e e a anton di bassi		The state of the s			and passing company and down				
得分 一、 选择题 (每题 3 分, 共计 36 分) (答案填入下表相应题号的空格内)												~ .	
题号	toridi	2	3	4	5	6	7	8	9	10	77 T	12	-
答案	B	В	B	18	D	В	B=	c	B	C	B-	B	·
										物体的等的瞬			1
度为 (A) √		€₽) oa	1√2		(C)	wA1	2		(a)	ωA	-	fmv=finA
 (A) √2ωA (B) ωA/√2 (C) ωA/2 (D) ωA (E) ωA/2 (E) ωA/2 (II) ωA (II) ωA													
3、如 为 10c	m * s ⁻¹	, tH	刻. 在	E S _i 和	S ₂ 处/	质点的	振动方	程分别	削为		S1 _		
y =3c S _i P = 程中的	πcm,	S	$_{2}P=2$	2π cm	。若不					SZ.			

- (B) 7cm (C) 3cm (D) 4cm 4、真空中,平面电磁波的电场强度 E、磁场强度 H 和传播速度 u 的关系是
- (A) 三者相互垂直。而电场强度 E 和磁场强度 H 位相相差 n /2;
- (B) 三者相互垂直,而 E、H、u 构成右手螺旋;

(A) 1cm

- (C) 电场强度 E 和磁场强度 H 方向相同; 且与 u 的方向垂直;
- (D) 电场强度 E 和磁场强度 H 方向不确定; 但与 u 的方向垂直:

5、如图所示,两个直径有微小差别的彼此平行的滚柱之间的距离为 L, 夹在两块平晶的中间, 形成空气劈尖, 当单色光垂直入射时, 产生等厚干涉条纹. 如果两滚柱之间的距离 L 变大, 则在 L 范围 人 人 人 人 内干涉条纹的

- (B) 数目减少,面间距变大。
- (C) 数目增加, 面间距变小.
- (3) 数目不变,面间距变大.

7、下列各图表示自然光或线偏振光入射于两介质分界面,10表示布儒斯特角。正确

的图示应为:

8、一匀质矩形薄板,在它静止时测得其长为a,宽为b,质量为 m_0 。由此可算出其面积密度为 m_0/ab . 假定该薄板沿长度方向以接近光速的速度v作匀速直线运动,此时再测算该矩形薄板的面积密度则为

$$(A) \quad \frac{m_0 \sqrt{1 - (v/c)^2}}{ab}$$

(B)
$$\frac{m_0}{ab\sqrt{1-(v/c)^2}}$$

(C)
$$\frac{m_0}{ab[1-(v/c)^2]}$$

(D)
$$\frac{m_0}{ab[1-(v/c)^2]^{3/2}}$$

9、光子能量为 0.5 MeV 的 X 射线,入射到某种物质上而发生康普顿散射. 若反冲电子的能量为 0.1 MeV,则散射光波长的改变量与入射光波长的比值为

- (A) 0.20.
- (B) 0.25.
- (C) 0.30.
- (D) 0.35_

10、由氢原子理论知。当大量氢原子处于 n=3 的激发态时,原子跃迁将发出。

- (A) 一种波长的光。
- (B) 两种波长的光.
- (C) 三种波长的光.
- (D) 连续光谱。

11、周频率为 ν_1 和 ν_2 的两种单色光,先后照射同一种金属均能产生光电效应,已知该金属的红限频率为 ν_0 ,测得两次照射时的遏止电压 $|u_{u1}|=2|u_{u1}|$,则这两种单色光的频率有如下关系:

 $(A) \ \nu_2 = \nu_1 + \nu_0$; $(B) \ \nu_2 = 2\nu_1 - \nu_0$; $(C) \ \nu_2 = \nu_1 - 2\nu_0$; $(D) \ \nu_2 = \nu_1 - \nu_0$ 。 12、 按照原子的量子理论,原子可以通过自发辐射和受激辐射的方式发光,它们所产生的光的特点是:

- (A) 两个原子自发辐射的同频率的光是相干的,原子受激辐射的光与入射光是不相干的。
 - (B) 两个原子自发辐射的同频率的光是不相干的,原子受激辐射的光与入射光是相干的。
 - (C)两个原子自发辐射的同频率的光是不相干的,原子受激辐射的光与入射光是不相干的。
 - (D)两个原子自发辐射的同频率的光是相干的。原子受激辐射的光与入射光是相干。

得分

二、填充题(每空格 2 分,共计 20 分)
1、右图,表示简谐振动的位移 x-1 图,则图的谐振动表述式为 $\mathcal{N}=A$ \mathcal{C} \mathcal{O} $\begin{pmatrix} \frac{1}{6} & \frac{1}{4} & -\frac{1}{3} \end{pmatrix}$

2、一平面简谐机械波在媒质中传播时,若一媒质质元

在 t 时刻的被的能量是 8J,则在(++1)(7为波的周期)时刻该媒质质元的振动动能

是 45

3、一质点同时参与了三个简谐振动,它们的振动方程分别为 $x_1 = A\cos(\omega t + \pi/2)$, $x_2 = A\cos(\omega t + 7\pi/6)$, $x_3 = A\cos(\omega t - \pi/6)$,其合振动方程为_______

 $=1.32 \frac{\lambda}{D}.-5m$

4、月球距地面大约 3.8×10^5 km,假设月光波长可按 $\lambda=500$ nm 计算,则在地球上用直径D=500 cm 的天文望远镜恰好能分辨月球表面相距为 μ 0.36 m 的两点。

3 mi ci 6

5、一束光强为 Li的自然光,相继通过三个偏振片 R、R、R,已知 R和 R的偏振化方向相互垂直,R和 R的偏振化方向的夹角是 30°,则出射光的光强为____。

《大学物理下》期末试卷B 第3页共6页

 $l=l\cdot \overline{l-l}=\frac{1}{2}$ 。 7、一字宙飞船相对于地球以 0.8c (c 表示真空中光速)的速度飞行。现在一光脉冲 从船尾传到船头,已知飞船上的观察者测得飞船长为 90 点 则地球 光脉冲从船尾发出和到达船头两个事件的空间间隔为

- 8、一个光子的波长为300.0 nm, 如果测定此波长的精确度 光子位置的不确定量为
- 9、硅晶体的禁带宽度为 1.2eV, 适当掺入磷后, 施主能级和硅导带底的能级差为 0.045eV, 此掺杂半导体能吸收的光子的最大波长为。4E=4-5
- 10、己知粒子在一维矩形无限深势阱中运动,其波函数为:

$$\psi(x) = \frac{1}{\sqrt{a}} \cdot \cos \frac{3\pi x}{2a}, \quad (-a \le x \le a)$$

那么粒子在x=5a/6 处出现的概率密度为_____/

三、(12 分) 一平面谐波沿 x 方向传播, BC 为波密媒质的反射面, 波传 播到P点被反射, $OP = \frac{3}{4}\lambda$ 。t = 0 时O处质点由平衡点向正方向运动。

设4、0为已知。求:

- (1)以 0 为原点写出入射波的波动方程。
- (2) 反射波的波动方程:

(3) 合成被的被动方程:

(4) 若
$$DP = \frac{1}{6}\lambda$$
 ,则 D 点的合振动方程。 $\Rightarrow \circ D = \frac{1}{6}\lambda - \frac{1}{6}\lambda$ $\Rightarrow \circ D = \frac{1}{6}\lambda$ $\Rightarrow \circ D =$

立 3/P&. Z A Co (wt+用)) (のは + な) + 正) /· な = A co (の(+な)+正) (のは + な) + 正)

混乱的好产品。当时 74·3

《大学物理下》期末试卷 B 第 4 页 共 6 页

得 分

四、(12 分) 用波长为 500 cm (1 nm=10 n)的单色光垂直照射到由两块 折射率为 1.60 的光学平玻璃构成的空气劈形膜上。在观察反射光的干涉 现象中,距劈形膜棱边 L=1.56 cm 的 A处是从棱边算起的第四条暗条纹

(1) 求此空气劈形膜的劈尖角 chilly.

- (2) 改用 600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹? 从棱边到 A 处的范围内有几条暗纹?
- (3) 假如在劈尖内充满折射率为 1.50 的液体时,用 600 nm 的单色光垂直照 射到此劈尖上时,相邻明纹间距比劈尖内是空气时的间距改变了多少?

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

五、(8分) 波长 600nm 的单色光垂直入射在一光栅上, 第二级明条纹的衍 射角为 30°,第三级缺级,(1)光栅常数 d 有多大?(2)光栅上可能的 最小宽度 a 有多大?(3)按照上述选定的 d, a 值, 光屏上可能观察到的

冬约勒日最名为多少?

$$d = 2 \times 600 \times 10^{-9}$$

$$d = 2 \times 600 \times 10^{-9}$$

$$d = 2 \times 600 \times 10^{-9}$$

$$d = 3$$

$$0 = \frac{d}{3} = 860^{-7} \text{ m}$$

$$d = 8 \text{ ho}$$

$$2 \times 10^{-6} \text{ k} = k_{\text{max}} \text{ k} 600 \times 10^{-9}$$

$$k_{\text{max}} = 4$$
(大学物理下》期末试卷8 第 5 页 共 6 页

六、(6分)初速度为零的电子经U电压流产与垂直平行入射到缝宽为a的单缝上,在距离狭缝为L处放置一荧光屏。(1)若不考忘铝对论效应,求加速后的电子的动量、波长;(2)计算屏上新射图样中央最大的宽度。

$$\frac{x}{L} = y \alpha \qquad x = L y \alpha = L \frac{\lambda}{\alpha}$$
$$= 2x = \frac{2L\lambda}{\alpha}$$

得分

七、 $(6\,\%)$ 在惯性参考系 S 中,有两个静止质量都是 m_0 的粒子 A 和 B,分别以 v=0.6c 的速度沿同一直线相向运动,相碰后合在一起成为一个粒子,则合成粒子静止质量 M_0 的值是多少?(真空中光速用 c 表示)

$$m = \frac{m_0}{\sqrt{1-\frac{v^2}{c^2}}} = \frac{f}{q}m_0.$$

大学物理下》

空颚 (每题 3 分, 共计 36 分)

题号	· · · ·	2	3	4	5	6	7	8	9	19	1,1	12	
答案		Α	A	В	D	В	B	С.	В	C ·	В	В	

运 三 题 (每空格 2 分,共计 20 分)

1.
$$x = \cos(\frac{5}{6}\pi - \frac{\pi}{3})$$
: (x写成y或没写 X=0, 把1分)

10.
$$\frac{1}{2a}$$
.

$$t = x = 0, y = 0, v > 0, \varphi = \frac{\pi}{2}$$

$$77 y_i = A \cos \left[\omega t - \frac{2\pi}{\lambda} x - \frac{\pi}{2} \right]$$

(2) 设反射波方程为
$$y_2 = A\cos\left[\omega t + \frac{2\pi}{\lambda}x + \varphi'\right]$$
. 当 $x = OP = \frac{3}{4}\lambda$ 反射的存在

半液损失[
$$\alpha t + \frac{2\pi}{\lambda}x + \varphi$$
] $- [\alpha t - \frac{2\pi}{\lambda}x - \frac{\pi}{2}] = -\pi$.

$$\therefore \varphi' = 4\pi - \frac{\pi}{2}, \qquad \text{含弃} - 4\pi, \quad \text{即} \varphi' \, \text{取} - \frac{\pi}{2}$$
 (2分)

$$y_2 = A\cos\left[\omega t + \frac{2\pi}{\lambda}x - \frac{\pi}{2}\right] \tag{2.4}$$

(5)
$$y = y_1 + y_2 = 2A \cos \frac{2\pi x}{\lambda} \cos \left(\omega t - \frac{\pi}{2}\right)$$
 (2.37)

(4)
$$\exists x = OP - DP = \frac{7}{12} \lambda \, \text{rd}, \ y = -\sqrt{3} A \sin \omega x$$
 (3 \(\frac{1}{2}\))

四。(12分)

解: (1) 暗纹:
$$\delta = 2d_{\kappa} + \frac{\lambda}{2} = (2k+1)\frac{\lambda}{2}$$
 $k=3$ (2分)

$$\theta = \frac{d_k}{L} = \frac{1.5\lambda}{L} = \frac{1.5 \times 500 \times 10^{-9}}{1.56 \times 10^{-2}} = 4.8 \times 10^{-5} \, \text{rad} \qquad (2 \, \text{s}).$$

(2)
$$\lambda'=600$$
nm 时, $\delta''=2d_k+\frac{\lambda'}{2}=3\lambda+\frac{\lambda'}{2}=3\lambda'=k'\lambda'$ 满足亮纹条件,则 A 处看到的是亮纹。

因 k'=3. 则从核边到 A处的范围内有 3 条暗纹

(*と)*が):

(3) 劈尖內充满折射率为 1.50 的液体时粗邻明纹何距为 $l'=\frac{\lambda'}{2n\theta}$

劈尖内是空气时相邻明纹间距为
$$l=\frac{\lambda'}{2\theta}$$

同距改变
$$\Delta l = l - l' = \frac{\lambda'}{2\theta} - \frac{\lambda'}{2n\theta} = 2.08mm$$
 (4分)

解: (1)
$$d\sin\theta = k\lambda$$
, $k=2$, $\theta=30^{\circ}$, $d=\frac{2\lambda}{\sin 30^{\circ}} = 4\lambda = 2400 \text{ nm}$ (2分)

(2)
$$\begin{cases} d\sin\theta = k\lambda & k = \frac{d}{a}, k = 3, a = \frac{d}{3}k' = 800k' \text{ nm} \end{cases}$$

$$k'=1$$
. $a=800 \text{ am}$; (3 $\%$)

(3)
$$-\frac{\pi}{2} < \theta < \frac{\pi}{2}$$
 $k_{z} = \frac{d}{\lambda} = \frac{2400}{600} = 4$ $k = 3$ 缺级 . 所以能看到 $0, \pm 1, \pm 2$ 级。

六、(6分)

解: (1)
$$eU = \frac{P^2}{2m_e}$$
 . 得 $P = \sqrt{2m_e eU}$ (1分)

$$\lambda = \frac{h}{P} = \frac{h}{\sqrt{2m_e eU}} \tag{2.5}$$

(2)
$$a \sin \theta = \lambda$$
 (1.2)

$$\sin\theta \approx tg\theta = \frac{d/2}{L}$$

$$d = \frac{2L\lambda}{\alpha} = \frac{-2Lh}{a\sqrt{2m_e eU}}$$
 (2.47)

七、(6分)

解: 设碰撞后的合成粒子质量为 M. 速度为 V 动量守恒: mv-mv=MV=0

动量守恒:
$$mv - mv = MV = 0$$
 说明合成粒子静止 (2分)

能量守恒:
$$mc^2 + mc^3 = M_0 c^2$$
 (2.4)

解得
$$M_0 = 2m = \frac{2m_0}{\sqrt{1-v^2/c^2}} = 2.5m_0$$
 (2分)

en de la companya del companya de la companya de la companya del companya de la companya del la companya de la

《大学物理下》

学院	 班级_		学	号		姓名			
-							·		
题号	 	==	四	五	六	t	总分		
得分					şi kalanada dilik				

SERVICE CONTRACTOR CONTRACTOR	得分	papartere dispriss jumidi@ineity.v	一、选择题(每题 3 分,共计 36) (答案填入下列相应题号的空格内)											
	题号	1 -	2	.3	4 .	5	6	7	B	9	10	11	12	
	答案	B	2	B	B	B	D	B	B	B		D	C	
	ţ	1	I		\$			27, 1			•	•		

1、物体作简运动,运动方程为 $x = A\cos(\omega t + \frac{1}{4}\pi)$ 。在t = T/4(T) 周期) 时刻,物体加 a=-6"A 6-3 2" 速度为

(A)
$$-\frac{1}{2}\sqrt{2}A\omega^2$$
 (B) $\frac{1}{2}\sqrt{2}A\omega^2$ (C) $-\frac{1}{2}\sqrt{3}A\omega^2$ (D) $\frac{1}{2}\sqrt{3}A\omega^2$

(B)
$$\frac{1}{2}\sqrt{2}A\omega^2$$

(c)
$$-\frac{1}{2}\sqrt{3}A\omega^2$$

(D)
$$\frac{1}{2}\sqrt{3}A\omega^2$$

2、一弹簧振子作简谐运动,总能量为 $E_{
m l}$,如果简谐运动的振幅增加为原来的两倍,重物的 质量增为原来的四倍,则它的总能量E,变为

(B)
$$E_1/2$$

(C)
$$2E_{\rm I}$$

$$(\emptyset)$$
 $4E_i$

一列机械模放在 t 时刻的波形曲线如图所示,则该时刻能量为最大值的媒质质元的位置

透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环 干涉条纹

- (A) 向右平移
- (B) 向中心收缩
- (C) 向外扩张
- (D) 静止不动
- (E) 向左³

二、填充题 (每空格 2 分, 共计 20 分)

1、图中用旋转矢量法表示了一个简谐运动,旋转矢量的长 度为0.04m。旋转角速度 $\omega = 4\pi$ rad/s,此简谐运动以余弦 函数表示的运动方程为x= 0.0 ¥(の(47) - 平)

2、一物体同时参与同一直线上的两个简谐运动:

$$x_i = 0.05\cos(4\pi t + \frac{1}{3}\pi)$$
 (SI)

$$x_2 = 0.03\cos(4\pi t - \frac{2}{3}\pi)$$
 (SI)

合成振动的振幅为 X20.02 (m(4T+fit)

3、已知平面简谐波的表达式为 $y = A\cos(Bt - Cx)$ 式中 A 、 B 、 C 为正值常量,此波的波长

$$\frac{z}{z} = \lambda \frac{3}{3\pi}$$

是 · 放速是 · 。在波传播方向上相距为 d 的两点的振动相位差是 cd

4、当一束自然光以布儒斯特角入射到两种媒质的分界面上时,就偏振状态来说反射光为

经验 光、其振动方向 一 于入射面。

5、玻尔氮原子理论中,电子轨道角动量最小值为 : 而量子力学理论中,电子 **港** 3 理论的结果是正确的。

轨道角动量最小值为 。 ,实验证明

三、(本题 10分)一列平面简谐波在娱后中以 波速u=5m/s沿x轴正向传播、原点O处质元 的振动曲线如图所示, 求:(1) 该波的波函数: (2) t=ls 时, x=25m 处质元的振动速度。

$$y = 0.02 \text{ (a) } (\frac{9}{2}t - \frac{9}{2})$$

$$y = 0.02 \text{ (a) } (\frac{9}{2}(t - \frac{9}{2}) - \frac{9}{2})$$

四、(本题 10 分)在双缝干涉实验中,单色光源 S_0

到两缝 S_1 和 S_2 距离分别为 l_1 和 l_2 ,并且 l_1 - l_2 = 3λ , λ 为入射光的波长,双缝之间的距离为d,双缝到屏幕的距离为D(D>>d)如图、求:

(1) 零级明纹到屏幕中央 O 点的距离,(2) 招邻明条纹间的距离。 了。- 八=3人 l, + Yi = l2+ YZ l, -l2= Y= Yi

$$\frac{1}{2} \int_{-\infty}^{\infty} dx = \frac{1}{2} \int_{-\infty}^{\infty} dx = \frac{1}$$

$$\frac{dx = p\lambda}{dx = p\lambda}$$

$$\frac{dx = p\lambda}{dx}$$

自觉遵守考试规则,诚信考试,绝不作数。 克 多 內 不 男 答 是

自觉遵守考试规则 威害考试,绝不作弊 裝 订 线 内 不 婯 答 题

五、(本題 10 分)

- (1) 在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长, $\chi_{\rm c}=400{\rm nm}$, $\chi_{\rm c}=600{\rm nm}$ ($\chi_{\rm c}=400{\rm nm}$)。已知单缝宽度 $\chi_{\rm c}=1.0\times10^{-2}{\rm cm}$,透镜焦距 f=50cm,求两种光第一级衍射明纹中心之间的距离。
- (2) 若用光棚常数 d= 1.0×10^3 cm 的光欄替換单缝,其他条件和上问相同,求两种光第一级主明纹中心之间的距离。

$$b = (phr)^{\frac{1}{2}}$$

$$d = (phr)^{\frac{1}{2}}$$

$$\lambda_1 = \frac{3f\lambda_1}{2b}$$

$$\lambda_2 = \frac{3f\lambda_2}{2b}$$

$$\lambda_3 = \frac{3f\lambda_3}{2b}$$

$$\lambda_4 = \frac{3f\lambda_4}{2b}$$

$$\lambda_5 = \frac{3f\lambda_5}{2b}$$

deino=kl

$$dx = kl$$

 $x = \frac{fkl}{d}$
 $x_1 = \frac{fl}{d}$
 $x_2 = \frac{fl}{d}$
 $x_3 = \frac{fl}{d}$

六(本题8分)

质量为 m_a 的电子被电势差 $U_{12}=100$ kV的电场加速,如果考虑相对论效

应, 试计算其德布罗意波的波长。(电子静止质量 m, =9.11×10⁻¹¹ kg, 普朗克

常量h=6.63×10-4J·s,基本电荷e=1.60×10-19C)

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\frac{m \cdot e^{2}}{\sqrt{1-e^{2}}} = m \cdot e^{2} = 00$$

$$\lambda = \frac{h}{P} = \frac{h}{mv}$$

$$= \frac{h \sqrt{1-c^2}}{m \cdot \sqrt{1-c^2}}$$

$$= \frac{0.836 \cdot h}{m \cdot \sqrt{1-c^2}}$$

七(本题6分)

己知粒子在一维无限深势阱中运动,其波函数为

$$\psi(x) = \sqrt{2/a}\sin(\pi x/a) \quad (0 \le x \le a)$$

求: (1) 粒子在何处出现的概率最大:

(2) 在(0, a/2)区间找到粒子的概率

$$|Y(x)|^{2} = \frac{1}{\alpha} \operatorname{ch}(\tilde{x}) \qquad \text{fr } \frac{1}{2} \operatorname{ch}(\tilde{x})$$

$$|Y(x)|^{2} = \frac{1}{\alpha} \operatorname{ch}(\tilde{x}) \qquad \text{fr } \frac{1}{2} \operatorname{ch}(\tilde{x})$$

$$|Y(x)|^{2} = \frac{1}{\alpha} \operatorname{ch}(\tilde{x}) \qquad \text{fr } \frac{1}{2} \operatorname{ch}(\tilde{x})$$

$$|Y(x)|^{2} = \frac{1}{\alpha} \operatorname{ch}(\tilde{x}) \qquad \text{fr } \frac{1}{2} \operatorname{ch}(\tilde{x})$$

$$= \frac{1}{\alpha} \operatorname{ch}(\tilde{x}) \qquad \text{fr } \frac{1}{2} \operatorname{ch}(\tilde{x})$$

得分

《大学物理下》

一、选择题(每题3分,共36分)

4.B 5.B 6.D 7.B 11.D 12.C 二、填空题(每空2分,共20分)

1. $0.040.04\cos(4\pi t - \frac{\pi}{2})(SI)$; 2. 0.02; 3. $\frac{2\pi}{c} \frac{B}{c} cd$

4. (完全) 偏振光 (或线偏振光), 垂直; 5. $\frac{h}{2\pi}$, 0, 量子力学

以下计算题仅给出评分框架,其中所含考点得分可自行酌信细分。

三、(本题 10分)

(1) O 处振动方程
$$y = 2 \times 10^{-2} \cos(\frac{\pi}{2}t - \frac{\pi}{2})$$
(SI)

液函数
$$y = 2 \times 10^{-2} \cos\left[\frac{\pi}{2}(t - \frac{x}{5}) - \frac{\pi}{2}\right]$$
(SI)

2分

(2)
$$x = 25$$
m 处质元振动方程 $y = 2 \times 10^{-2} \cos(\frac{\pi}{2}t - 3\pi)$ (SI)

2分

$$t = 1s \text{ Bf}$$
 $v = \frac{dy}{dt} = 3.14 \times 10^{-2} \text{ m/s}$

2 分

四、(本题 10 分)(1) 如图,设 p_0 为零级明纹中心

,有
$$r_2 - r_1 \approx d \overline{p_0 O}/D$$

$$\Delta = (l_2 + r_2) - (l_1 + r_1) = 0$$
 $r_2 - r_1 = 3\lambda$

$$\overline{p_0 O} = D(r_2 - r_1)/d = 3D\lambda/d$$

3分

(2) 在屏上距 O 点为 x 处, 光程差

$$\Delta \approx (dx/D) - 3\lambda$$

2分

明纹条件
$$\Delta = \pm k\lambda$$

$$k=1,2,\cdots \Delta x=x_{k+1}-x_k=D\lambda/d$$

五、(本题 10分)

(1) 明纹:
$$b\sin\theta = \frac{1}{2}(2k+1)\lambda = \frac{3}{2}\lambda$$
 (k=1)

$$x = f \tan \theta \approx f \sin \theta = \frac{3}{2} \frac{f\lambda}{b}$$

$$\Delta x = x_2 - x_1 = \frac{3}{2} f \Delta \lambda / b = 0.15 \text{cm}$$

(2) 主明纹:
$$d\sin\theta = \lambda(k=1)$$

2分

$$x = f \tan \theta \approx f \sin \theta$$

 $\Delta x = x_2 - x_1 = \int \Delta \lambda / d = 1.0cm$

2分

《大学物理下》期末试卷 A 答案第 1 页 共 2 页

六、(本题8分)

《大学物理下》

学院_		****	班级.	, T	<u> </u>	}	考			姓名		
題号	and the same		11-			四	1 1		大	一七		总分
得分	oranie and a subjective a	-		and the state of t			The second secon	Daywell of the second		and the second s		
·- ·- ·					13.5.1							
得分			选择题	(每题 填入下		共计30			· · · · · · · · · · · · · · · · · · ·			
			: 《合來	與八 f:	794 ELD	超节的	全格內)			10 M	
题号	1	. 2		75	5	6	7	8	9	10	11.	.12
答案	-								- A - COUNTY - AND - COUNTY - AND - COUNTY - AND - COUNTY - AND - COUNTY -			

(A) 2.62s.

(B) 2.40s.

(C)2.20s.

(D)-2.00s.

- (À) 7/12.
- (B) T/8

(C) T./6:

- (D) 7/4
- 3. 在波长为 2 的驻波中,两个相邻波腹之间的距离为
- (A) 214.

- (B) 1/2.
- (C) 32/4.
- (D) A.

4. 一辆机车以30m/s 的速度驶近一位静止的观察者,如果机车的汽笛的频率为550Hz,此观察者听到的声音频率是(空气中声速为330m/s)

- (A) 605Hz.
- (B) 6 00Hz.
- (C) 504Hz

OTO SOUTH

	÷
5. 在真空中波长为 2. 的单色光,在折射率为 n 的透明介质中从 A 沿某路径传播到 B ,若 A 、	
B 两点相位差为 3π ,则此路径 AB 的光程为	
$(B) 1.5 \lambda / n.$	
(C) $L5n\lambda$. (D) 3λ .	
6 . 在双缝干涉实验中,两缝间距离为 d ,双缝与屏幕之间的距离为 $D(D\gg d)$. 波长为 λ 的平	_
行单色光垂直照射到双缝上,屏幕上干涉条纹中相邻暗纹之间的距离是	
(A) 2 A D I d (B) A d I D	
(C) dD/λ . (D) $\lambda D/d$.	
7. 一束波长为孔的平行单色光垂直入射到一单缝	٠.
AB上,装置如图,在屏幕 D上形成衍射图样,如果 P是	
中央亮纹一侧第一个暗纹所在的位置,则BC的长度	•
	. :
(A) $\lambda/2$. (B) λ . (C) $3\lambda/2$. (D) 2λ	
8. 如果两个偏振片堆叠在一起,且偏振化方向之间夹角为 60° ,光强为 I_0 的自然光垂直入射	
在偏振片上,则出射光强为	
(A) $I_0/8$. (B) $I_0/4$.	
(C) $3I_0/8$. (D) $3I_0/4$.	
9. 质子在加速器中被加速,当其动能为静止能量的 4 倍时,其质量为静止质量的 (A) 4 倍. (S) 5 倍. (C) 6 倍 (D) 8 倍 10. 它知一单色光照射在钠表面上;测得光电子的最大动能是 1.2eV,而钠的红限波长是 540nm,那么入射光的波长是	
(A) 535nm. (B) 500nm	
(C) 435nm (D) 355nm (D) 355nm (L) 按照玻尔理论,电子绕核作圆周运动时,电子角动量 L 的可能值为	÷ .
(A) 任意值. (B) nh, n=1,2,3,···	
(C) $2\pi nh$, $n = 1, 2, 3, \cdots$ (D) $nh/(2\pi)$, $n = 1, 2, 3, \cdots$	
12 如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的	.:
(A)	•
(C) 速度相同. (D) 动能相同.	
《太学物理下》期末试卷8 第2页 共6页	• •

ng ngungan talah sa manalah jaga pangangan pangangan. Sa pangangan pangan

二、填空题(每至2分,共20分)

- 1. 一弹簧振子系统具有 1.01 的振动能量, 0.10m 的振幅和 1.0m/s 的最大速率, 则弹簧 的劲度系数为
 - 2. 一个质点同时参与两个在同一直线上的简谐振动,其表达式分别为

$$x_1 = 4 \times 10^{-2} \cos(2t + \frac{1}{6}\pi), \quad x_2 = 3 \times 10^{-2} \cos(2t - \frac{5}{6}\pi)$$
 (S1)

则其合成振动的振幅为

3. 设平面简谐波沿 x 轴传播时在 x = 0 处发生反射, 入射波的波函数为

$$y_t = A\cos[2\pi(\nu t + x/\lambda) + \pi/2]$$

已知反射点为一自由端,则反射波的波函数为_____。

- 4. 用液长为 λ 的单色光垂直照射折射率为n的劈形膜形成等厚干涉条纹,若测得相邻明条纹的间距为l. 则劈尖角 θ =______。

得分 三、(本题 10 分)图元

三、(本题 10 分)图示为一平面简谐波在t=0时刻的波形图,求

- (1) 该波的波函数;
- (2) P处质点的运动方程,

得分

四、(本题 10 分)如图所示,牛顿环装置的平 凸透镜与平板玻璃有一小缝隙 e₀,现用波长为 礼的单色光垂直照射,已知平凸透镜的曲率半

入的单色光垂直照射,已知平凸透镜的曲率半 径为 R ,求反射光形成的牛顿环的各暗环半径 得分

、五、(本题 10 分) 用钠光 (1 = 589.3mm) 垂直照射到某光栅上,测得第三级 光谱的衍射角为 60°。

- (1) 若换用另一光源测得其第二级光谱的衍射角为30°,求后一光源发光的波长。
- (2) 若以白光 (400nm-760nm) 照射在该光棚上,求其第二级光谱的张 角.(lnm=10⁻⁹ m).

六、(本题 8 分) 设康普顿效应中入射 X 射线 (伦琴射线) 的波长 $\lambda = 0.07$ nm. 散射的 X 射线与入射的 X 射线垂直,求

(1) 散射 X 射线的波长 A'; (2) 反冲电子的动能 E_{c} .

(曾朗克常量 $h=6.63\times10^{-34}$ J·s,电子静止质量 $m_e=9.11\times10^{-31}$ kg)

得分

七、(本题 6分)一艘宇宙飞船的船身固有长度为 $L_0 = 90$ m,相对于地面以

- v=0.8c (c为真空中光速)的匀速度在地面观测站的上空飞过.
 - (1) 观测站测得飞船的船身通过观测站的时间间隔是多少?
 - (2) 字航员测得船身通过观测站的时间间隔是多少?

《大学物理下》

- 一、选择。 原题 3 分,共 36 分)
 - 1B 3B 4A 5A 6D 7B 8A 9B 10D 11D 12A
- 三、填空。 等空 2 分, 共 20 分)
 - 1. 2. TE, 1.6Hz; 2. 0.0 Im, $\pi/6$; 3. $y_2 = A\cos[2\pi(vt \frac{x}{t}) + \pi/2]$
 - 4. $\frac{1}{2}$ 5. 30°, i.73($\sqrt{3}$); 6. 0,1,2,3; 0,±1,±2,±3
- 以下: 题仅给出评分框架,其中所含考点得分可自行酌情细分三、(本版 分)

(1)
$$=\frac{\lambda}{u}=5$$
s 2 \Re ; $\varphi=\frac{\pi}{2}$

波函差 =
$$0.04\cos\left[2\pi\left(\frac{t}{5} - \frac{x}{0.4}\right) - \frac{\pi}{2}\right]$$
 (SI)

(2) 生類元
$$y_g = 0.04\cos(0.4\pi t - \frac{3}{2}\pi)$$
 (SI) 2分

- 四(本題)
 - 设某 三径为 r ,由图可知,根据几何关系,近似有

(在为: 放, 且 k>2e, /1)

五、(本题: 亍)

(1)
$$= 3\lambda_1 : d\sin 60^\circ = 3\lambda_1$$

$$#\lambda_2: d\sin 30^\circ = 2\lambda_2$$

節射 =
$$\arcsin \frac{2\lambda}{d}$$
 1分: 张角 $\Delta \theta = \theta_1 - \theta_1 = 25^\circ$

(1)
$$\Delta \lambda = \lambda' - \lambda = \frac{h}{m_c c} (1 - \cos \theta)$$

$$\theta = \pi/2$$

$$\theta = \frac{\pi}{2}$$

$$\lambda' = \lambda + \frac{h}{m_e c} = 0.0724 \, \text{nm}$$

(2) 能量守恒
$$m_{\nu}c^{2} + h\nu = h\nu' + mc^{2}$$

$$E_{K} = h\nu - h\nu' = hc(\lambda' - \lambda)/(\lambda'\lambda) = 9.42 \times 10^{-17} \text{ J}$$

七、(本题.6分)...

(1) 观测站测得飞船船身的长

$$L = L_0 \sqrt{1 - (v/c)^2} = 54 \,\mathrm{m}$$

则
$$\Delta t_{\rm L} = L/\nu = 2.25 \times 10^{-7} {\rm s}$$

(2) 宇航员测得飞船船身的长度为几。

例
$$\Delta t_2 = L_0/\nu = 3.75 \times 10^{-7} \text{ s}$$