Visualization of star wars dataset using ggplot2

Lars Relund Nielsen

2020-11-10

What's in the Star Wars data?

- How many rows and columns does this dataset have?
- What does each row represent?
- What does each column represent?

```
library(tidyverse)
# ?starwars
glimpse(starwars)
```

```
## Rows: 87
## Columns: 14
                <chr> "Luke Skywalker", "C-3PO", "R2-D2", "Darth Vader", "Leia Organa", "Owen Lars...
## $ name
                <int> 172, 167, 96, 202, 150, 178, 165, 97, 183, 182, 188, 180, 228, 180, 173, 175...
## $ height
## $ mass
                <dbl> 77.0, 75.0, 32.0, 136.0, 49.0, 120.0, 75.0, 32.0, 84.0, 77.0, 84.0, NA, 112....
## $ hair color <chr> "blond", NA, NA, "none", "brown", "brown, grey", "brown", NA, "black", "aubu...
## $ skin_color <chr> "fair", "gold", "white, blue", "white", "light", "light", "light", "white, r...
## $ eye_color <chr> "blue", "yellow", "red", "yellow", "brown", "blue", "blue", "red", "brown", ...
## $ birth_year <dbl> 19.0, 112.0, 33.0, 41.9, 19.0, 52.0, 47.0, NA, 24.0, 57.0, 41.9, 64.0, 200.0...
## $ sex
                <chr> "male", "none", "none", "male", "female", "male", "female", "none", "male", ...
                <chr> "masculine", "masculine", "masculine", "feminine", "masculine",...
## $ gender
## $ homeworld <chr> "Tatooine", "Tatooine", "Tatooine", "Tatooine", "Alderaan", "Tatooine", "Tatooi...
## $ species
                <chr> "Human", "Droid", "Droid", "Human", "Human", "Human", "Human", "Droid", "Hum...
## $ films
                t> [<"The Empire Strikes Back", "Revenge of the Sith", "Return of the Jedi", "...</pre>
                <| style="text-align: center;"> ("Snowspeeder", "Imperial Speeder Bike">, <>, <>, <>, ("Imperial Speeder Bi...")
## $ vehicles
## $ starships <list> [<"X-wing", "Imperial shuttle">, <>, <>, "TIE Advanced x1", <>, <>, <>, ...
```

A row for each person in the movies. For instance the row for Luke Skywalker is:

Scatterplot of mass vs. height

```
ggplot(data = starwars, mapping = aes(x = height, y = mass)) +
  geom_point()
```

Warning: Removed 28 rows containing missing values (geom_point).

Note a warning is issued. Not all characters have height and mass information (hence 28 of them not plotted). You may exclude warnings in chunk output by using option warning = FALSE. However, but often it's important to note it.

Adding labels

The labs function can be used to add different labels to the plot.

Mass vs. height of Starwars characters

The fat guy

- How would you describe this relationship?
- What other variables would help us understand data points that don't follow the overall trend?
- Who is the not so tall but really chubby character?

Aesthetics

Visual characteristics of plotting can be **mapped to a specific variable** using aesthetics. For instance, the visual characteristics of plotting points are:

- color
- size

- shape
- alpha (transparency)

Let us have a look at mass vs. height using gender as color aesthetic:

In general not many girls in star wars. Let us add birth year as size aesthetic:

Jabba is very old. What about species? We use species as color aesthetic:

Let's now increase the size of all points **not** based on the values of a variable in the data:

```
ggplot(data = starwars, mapping = aes(x = height, y = mass, color = gender)) +
geom_point(size = 2)
```


A plot of mass given height with hair color as color aesthetic and using fixed shape = 0:

```
# Your turn: finish the code
ggplot(data = starwars, mapping = aes(x = height, y = mass, color = hair_color)) +
   geom_point(shape = 0)
```

Summary

- Continuous variables are measured on a continuous scale.
- Discrete variables are measured (or often counted) on a discrete scale.
- Use aesthetics for mapping features of a plot to a variable.
- Define fixed features in the geom outside the aes function.

aesthetics	discrete	continuous
color	rainbow of colors	gradient
size	discrete steps	linear mapping between radius and value
shape	different shape for each	shouldn't (and doesn't) work

Faceting

- Smaller plots that display different subsets of the data.
- Useful for exploring conditional relationships and large data.

Mass vs. height of Starwars characters Faceted by gender

- Describe what each plot displays.
- Think about how the code relates to the output.

```
ggplot(data = starwars, mapping = aes(x = height, y = mass)) +
geom_point() +
facet_grid(rows = vars(gender))
```



```
ggplot(data = starwars, mapping = aes(x = height, y = mass)) +
  geom_point() +
  facet_wrap(vars(eye_color))
```


Let us facet species:

```
# Your turn - Finish the code
ggplot(data = starwars, mapping = aes(x = height, y = mass)) +
  geom_point() +
  facet_wrap(vars(species))
```

Warning: Removed 28 rows containing missing values (geom_point).

Summary

- facet_grid():
 - 2d grid
 - rows ~ cols
 - use . for no split
- facet_wrap(): 1d ribbon wrapped into 2d

Identifying variables and plot type

- Univariate data analysis distribution of single variable
- Bivariate data analysis relationship between two variables
- Multivariate data analysis relationship between many variables at once, usually focusing on the relationship between two while conditioning for others

There are different variable types:

- Numerical variables can be classified as continuous or discrete based on whether or not the variable can take on an infinite number of values or only non-negative whole numbers, respectively.
- If the variable is **categorical**, we can determine if it is **ordinal** based on whether or not the levels have a natural ordering.

Visualizing numerical data

Describing shapes of numerical distributions

- shape:
 - skewness: right-skewed, left-skewed, symmetric (skew is to the side of the longer tail)
 - modality: unimodal, bimodal, multimodal, uniform
- center: mean (mean), median (median), mode (not always useful)
- spread: range (range), standard deviation (sd), inter-quartile range (IQR)
- unusal observations

Histograms

```
ggplot(data = starwars, mapping = aes(x = height)) +
geom_histogram(binwidth = 10)
```

Warning: Removed 6 rows containing non-finite values (stat_bin).

Density plots

```
ggplot(data = starwars, mapping = aes(x = height)) +
  geom_density()
```

Warning: Removed 6 rows containing non-finite values (stat_density).

Visualizing categorical data

Bar plots

```
ggplot(data = starwars, mapping = aes(x = gender)) +
  geom_bar()
```


Segmented bar plots, counts

```
ggplot(data = starwars, mapping = aes(x = gender, fill = hair_color)) +
  geom_bar()
```


Let us recode hair color into a smaller set:

The segmented bar plot now becomes

Try to run the following:

Which bar plot is a more useful representation for visualizing the relationship between gender and hair color?

Visualizing relationships between numerical and categorical data

Side-by-side box plots

```
ggplot(data = starwars, mapping = aes(y = height, x = gender)) +
  geom_boxplot()
```


Scatter plot...

This is not a great representation of these data.

```
ggplot(data = starwars, mapping = aes(y = height, x = gender)) +
geom_point()
```


Violin plots

```
ggplot(data = starwars, mapping = aes(y = height, x = gender)) +
  geom_violin()
```


Jitter plot

```
ggplot(data = starwars, mapping = aes(y = height, x = gender)) +
geom_jitter()
```


What does geom_gitter do?

Scatterplot as columns

What is the average height for each species?

```
dat <- starwars %>%
  group_by(species) %>%
  summarise(avg = mean(height, na.rm = T))
```

Let us visualize it

```
dat %>% ggplot(aes(x = species, y = avg)) +
  geom_col()
```


Let us sort the columns, add labels and rotate the x-axis labels:

Average height of each species

Visualizing relationships between numerical and numerical data

Scatterplot

```
starwars_without_jabba <- starwars %>% filter(mass < 500)

ggplot(starwars_without_jabba, aes(x = height, y = mass)) +
   geom_point()</pre>
```


Let us try to add some lines

```
ggplot(starwars_without_jabba, aes(x = height, y = mass)) +
  geom_point() +
  geom_smooth() +
  geom_smooth(method = "lm", color = "red")
```

