PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-092447

(43)Date of publication of application: 10.04.1998

(51)Int.CI.

H01M 8/02

(21)Application number: 09-199909 (71)Applicant: MITSUBISHI ELECTRIC

CORP

(22)Date of filing: 25.07.1997 (72)Inventor: OKADA TATSUNORI

(54) LAYER-BUILT FUEL CELL

(57)Abstract:

PROBLEM TO BE SOLVED: To lower layer height, make the whole body compact, and simplify assembling process by applying protrusive drawing to a separator toward an oxidizing agent gas passage side, and filling a reforming catalyst in a recessed portion on the fuel gas passage side of the separator formed by the protrusive drawing.

SOLUTION: By applying protrusive drawing to one sheet of flat plate, a cathode protrusion portion 17a is formed toward an oxidizing agent gas passage A side and an anode protrusion portion 17b is formed toward a fuel gas passage B side on a separator 17 intervening between layered respective unit cell. The cathode protrusion portion 17a touches the cathode

collector of the unit cells layered on the upper portion of the separator 17, and the anode protrusion portion 17b touches the anode collector of the unit cells layered on the lower portion of the separator 17 so as to mechanically and electrically connect the upper and lower unit cells. An inside reforming catalyst is filled into the back side recessed portion of the cathode protrusion portion 17a. Thereby, layer height can be lowered, the whole body can be made compact, and assembling process can be simplified.

LEGAL STATUS

[Date of request for examination]

25.07.1997

[Date of sending the examiner's decision 08.06.1999

of rejection]

[Kind of final disposal of application

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平10-92447

(43)公開日 平成10年(1998) 4月10日

(51) Int.Cl.*

H 0 1 M 8/02

識別記号

FI

H 0 1 M 8/02

B

N

請求項の数1 OL (全 4 頁) 客查請求 有

(21)出廣番号

特顯平9-199909

特顧昭63-239749の分割

(22)出顧日

(62) 分割の表示

昭和63年(1988) 9月27日

(71)出職人 000006013

三菱電機株式会社

東京都千代田区丸の内二丁目2番3号

(72) 発明者 岡田 遠典

尼崎市塚口本町8丁目1番1号 三菱電機

株式会社中央研究所内

(74)代理人 弁理士 曾我 道服 (外6名)

(54) 【発明の名称】 積層形燃料電池

(57)【要約】

【課題】 本発明は、積層高さを低くするとともに、組 立工程を簡単にし、また圧力損失を少なくしつつ、直接 形内部改質方式を採用できるようにすることを目的とす るものである。

【解決手段】 一枚板からなるセパレータ17に凸形紋 り加工を施して酸化剤ガス流路18を形成し、またセパ レータ17の燃料ガス流路19側に形成された凹部に改 質触媒を充填した。

16:单仓地

17:セパレータ

17a:カソード用凸都 17b: 71-ド用凸野

18: 酸化剂 扩入竞路

19: 燃料がス定路

【特許請求の範囲】

【請求項1】 複数の単電池が一枚板からなるセパレー タを介して積層されており、上記セパドータの一方の面 に酸化剤ガス流路が、他方の面に燃料ガス流路がそれぞ れ形成されている積層形燃料電池において、上記セパレ ータには上記酸化剤ガス流路側へ向けて凸形絞り加工が 施されており、かつ上記凸形絞り加工により形成された 上記セパレータの上記燃料ガス流路側の凹部には、原燃 料ガスを燃料ガスに改質するための改質触媒が充填され ていることを特徴とする積層形燃料電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】との発明は、複数の単電池を セパレータを介して積層した積層形燃料電池に関し、特 にセパレータの改良に関するものである。

[0002]

【従来の技術】図4は例えば特開昭63-136471 号公報等に示されたものと同種の従来の積層形燃料電池 のセパレータの一例を示す斜視図であり、図において、 1は平板状のセパレータ板、2はセパレータ板1の上面 20 に設けられた第1の波形板、3は第1の波形板2によっ て形成された燃料ガス流路、4はセパレータ板1の下面 に設けられた第2の波形板、5は第2の波形板4によっ て形成され燃料ガス流路3に対して直角方向へ向いた酸 化剤ガス流路である。

【0003】また、積層形燃料電池は、複数の単電池 (図示せず) が上記のようなセパレータを介して積層さ れてなっており、各単電池は、電解質マトリックス(図 示せず)を燃料電極(図示せず)と酸化剤電極(図示せ ず)とで挟んでなっている。とのため、第1の波形板2 30 の上には燃料電極が、第2の波形板4の下には酸化剤電 極がそれぞれ来るようになっている。

【0004】上記のように構成された従来の積層形燃料 電池においては、燃料ガスが燃料ガス流路3を燃料電極 に接しながら流れ、酸化剤ガスが酸化剤ガス流路5を酸 化剤電極に接しながら流れる。とれによって、各単電池 で電池反応が起とり、発電が行われる。

[0005]

【発明が解決しようとする課題】上記のように構成され た従来の積層形燃料電池においては、セパレータとして 40 セパレータ板1と第1及び第2の波形板2、4とを用い ていたので、これら第1及び第2の波形板2, 4をセパ レータ板1に取り付ける部分が必要であり、このためそ れぞれの板厚分だけ必要以上に高くなってしまい、これ を多数積層するため、全体の積層高さが高くなってしま い、コンパクト性に欠けるという問題点があった。ま た、セパレータ板1と第1及び第2の波形板2, 4との 間の電気的な接触抵抗を低減させるために、この部分を 溶接により接合する必要があり、組立工程が複雑にな り、手間がかかるという問題点もあった。

【0006】との発明は、上記のような問題点を解決す ることを課題としてなされたものであり、積層高さを低 くでき、これにより全体をコンパクトにでき、また組立 工程が簡単で手間がかからない積層形燃料電池を得ると とを目的とする。

[0007]

【課題を解決するための手段】請求項1の発明に係る積 層形燃料電池は、セパレータに酸化剤ガス流路側へ向け て凸形絞り加工が施されており、かつ凸形絞り加工によ 10 り形成されたセパレータの燃料ガス流路側の凹部に、原 燃料ガスを燃料ガスに改質するための改質触媒が充填さ れているものである。

[0008]

【発明の実施の形態】以下、この発明の実施の形態を図 について説明する。

実施の形態1. 図1はとの発明の実施の形態1による積 層形燃料電池を示す酸化剤ガス入口側から見た要部断面 図、図2は図1のセパレータを示す斜視図である。

【0009】図において、11は電解質マトリックス、 12は電解質マトリックス11の下面に設けられたカソ ード電極、13は電解質マトリックス11の上面に設け られたアノード電極、14はカソード電極12の下面に 設けられた金属板からなるカソード集電板であり、この カソード集電板 1 4 には多数の孔が形成されている。 1 5はアノード電極13の上面に設けられた金属板からな るアノード集電板であり、とのアノード集電板15には 多数の孔が形成されている。16は電解質マトリックス 11,カソード電極12,アノード電極13,カソード 集電板14及びアノード集電板15からなる単電池であ り、このような積層形燃料電池では複数個の単電池16 が積層されている。

【0010】17は積層された各単電池16の間に介在 するセパレータであり、このセパレータ17には、カソ ード集電板14に接するカソード用凸部17aと、アノ ード集電板15に接するアノード用凸部17bとが、そ れぞれ平板にプレス加工、即ち凸形絞り加工をすること により形成されている。17cはセパレータ17の互い に向かい合う縁部に折り曲げ加工して断面コ字状に形成 されたガスシール部である。

【0011】18はカソード集電板14とセパレータ1 7との間に酸化剤ガスが図の矢印Aの方向へ流れるよう に形成された酸化剤ガス流路、19はアノード集電板1 5とセパレータ17との間に燃料ガスが図の矢印Bの方 向へ流れるように形成された燃料ガス流路であり、これ らの酸化剤ガス流路18と燃料ガス流路19とはセパレ ータ18を挟んで互いに直交する方向へ向いている。ま た、カソード用凸部17a及びアノード用凸部17b は、それぞれ燃料ガス又は酸化剤ガスの流れ方向へ長い 直方体状に交互に形成されている。20はガスシール部

50 17cの角部の内側に設けられたスペーサである。

【0012】また、この積層形燃料電池は、図1のよう にセパレータ17を介して、単電池16を所定の数だけ 積層し、所定の面圧で上下から加圧して構成される。

【0013】上記のように構成された積層形燃料電池に おいては、酸化剤ガス流路18に酸化剤ガスを、燃料ガ ス流路19に燃料ガスを、それぞれ側面から流すことに より、発電が行われる。

【0014】また、セパレータ17は、平板をプレス加 工して形成されるので、電気的な接触抵抗の問題もな く、製作が簡単である。

【0015】さらに、従来必要だった波形板とセパレー タ板との接合部がないので、セパレータ17の厚さを必 要最小限にすることができ、全体の積層高さを従来より 低くできる。

【0016】さらにまた、カソード用凸部17a相互の 間隔及びアノード用凸部17c相互の間隔は、従来の波 形板の波のピッチよりも広くなるが、金属板からなるカ ソード集電板14及びアノード集電板15を介している ので、各集電板14, 15と各電極12, 13との間の 面圧は均一になる。また、従来の波形板に比べ、セパレ 20 ータ17と各電極12,13との接触面積は小さくなる が、電気的な問題はなく、従来同様の電池特性を得ると とができる。

【0017】なお、上記の例で示したものは、天然ガス などを予め改質して、水素、炭酸ガスなどに変換したも のを燃料ガスとして供給する外部改質方式の積層形燃料 電池であるが、例えばカソード用凸部 17 a の裏側の凹 部に内部改質触媒を充填するととにより、直接形内部改 質形方式の積層形燃料電池にもとの発明が適用できる。 この場合、触媒が流路を妨げないため、ガスの流れに対 30 【符号の説明】 する圧力損失を少なくすることができる。

【0018】実施の形態2.また、上記実施の形態1で はガスシール部17cを折り曲げ加工して形成したが、* *ガスシール部17cを図3のような形状とすれば、プレ ス加工をすることもでき、ガスシール部17cをカソー ド用凸部 1 7 a のプレスと同時に形成できるため製作工 程が簡略化できる。

【0019】さらに、上記の例では直方体状に突出した カソード用凸部 17 a 及びアノード用凸部 17 b を示し たが、酸化剤ガス流路及び燃料ガス流路を形成できれば 凸部は他の形状であってもよい。

[0020]

10 【発明の効果】以上説明したように、請求項1の発明の 積層形燃料電池は、一枚板からなるセパレータに凸形紋 り加工を施して酸化剤ガス流路を形成したので、セパレ ータの製作を簡単にすることができるとともに、部品点 数を削減することができ、これによりコストを低減する ことができ、またセパレータの厚さを必要最小限にする ことができ、これにより全体の積層高さを低くすること ができ、しかもセパレータの燃料ガス流路側に形成され た凹部に改質触媒を充填するようにしたので、燃料ガス の流れを妨げることなく、即ち圧力損失を少なくしつ。 つ、直接形内部改質方式を採用できるなどの効果を奏す る。

【図面の簡単な説明】

との発明の実施の形態 1 による積層形燃料電 池を示す酸化剤ガス入口側から見た要部断面図である。

図1のセパレータを示す斜視図である。 【図2】

この発明の実施の形態2によるセパレータを 【図3】 示す斜視図である。

【図4】 従来の積層形燃料電池のセパレータの一例を 示す斜視図である。

16 単電池、17 セパレータ、17a カソード用 凸部、17b アノード用凸部、18 酸化剤ガス流 路、19 燃料ガス流路。

【図4】

16': 単會地

17 : tn. 1-9 17a:カソード用凸都 176:71-17市凸野 18: 酸化計かス定路

19: 燃料が2次路

【図3】

