Numerrical Analysis

欧阳尚可 3190102458 2021 年 10 月 11 日

1 Assignments

Problem 1

如果在循环中的每次迭代中区间的长度都有变化,则每次迭代之后区间的长度变为原来的一半,那么第 n 次迭代之后区间的长度为 $width_n=2^{1-n}$ 。

由于函数在区间的端点处的符号不同,则在区间内必须存在一个根,这个根到区间中点的最大距离显然为区间长度的一半,即 $max_n = 2^{-n}$ 。

Problem 2

由上题的结论和本题题意我们可以得到 $\frac{(b_0-a_0)*2^{-n-1}}{a_0} \le \epsilon$ 。整理化简得 $n \ge \frac{\log(b_0-a_0)-\log(\epsilon)-\log(a_0)}{\log 2}-1$ 。

Problem 3

迭代次数 n	x_n	$p(x_n)$	$p^{'}(x_n)$
0	-1	-3	16
1	-0.8125	-0.46582	11.1719
2	-0.770804	-0.0201379	10.2129
3	-0.768832	$-4.37084*10^{-5}$	10.1686
4	-0.768828	$-2.07412*10^{10}$	10.1685

Problem 4

由泰勒展开得 $f(\alpha)=f(x_n)+(\alpha-x_n)f^{'}(\epsilon)$,整理得 $-\frac{f(x_n)}{f^{'}(x_0)}=(\alpha-x_n)\frac{f^{'}(\epsilon)}{f^{'}(x_0)}$ 。令 $e_n=x_n-\alpha$,在迭代关系的两端同时减去 α 得 $e_{n+1}=e_n+\frac{f^{'}(\epsilon)}{f^{'}(x_0)}e_n$ 。得 $s=1; C=\frac{f^{'}(x_0)+f^{'}(\epsilon)}{f^{'}(x_0)}$,在这里 ϵ 在 α 和 x_n 之间。

Problem 5

简单来看,函数 $f(x) = tan^{-1}x$ 有一个不动点,所以迭代是收敛的。具体来看,若 x_n 收敛到 α ,则对于 α 有 $\alpha = tan^{-1}\alpha$,对 f(x) 在 α 进行泰勒

展开得 $tan^{-1}\alpha = \alpha = tan^{-1}(x_n) + \frac{\alpha - x_n}{1 + \epsilon^2}$ 。若 $x_n = \alpha$,显然收敛。若 $x_n < \alpha$,则 $x_{n+1} = tan^{-1}(x_n) < \alpha$,其收敛性易得。另一种情况同理可得。

Problem 6

 $p + \frac{1}{p} > p$,所以 $\frac{1}{p} = x_1 > x_2 > x_3 > ... > 0$,有单调有界定理得知该数列肯定收敛,其极限肯定存在。对于上述 x_n 有迭代: $x_{n+1} = \frac{1}{p+x_n}$ 。有不动点法,有若极限为 α ,有 $\alpha = \frac{1}{\alpha+p} = \frac{1}{x_n+p} - \frac{\alpha-x_n}{(x_n+p)^2}$,同第五题的思路进行展开。由前一个等式可得 $\alpha = \frac{-p+\sqrt{p^2+4}}{2}$,另一个负数值含去。

Problem 7

若 $a_0<0$,上述不等式不成立。可以改写成(在不考虑 r==0 时,事实上在 r==0 时讨论相对误差完全没有意义) $n\geq \frac{log(b_0-a_0)-log(\epsilon)-log(u)}{log2}-1$,其中 u 为机器精度。在这种情况下,用相对误差来对误差进行测量显然是不合适的。

Problem 8

我们先看第二点的证明。

对 $f(x_n)$ 和 $f^{'}(x_n)$ 进行泰勒展开得: $f(x_n) = f(r) + f^{'}(r)(x_n - r) + \dots + \frac{(x_n - r)^k}{k!} f^k(\epsilon) = \frac{(x_n - r)^k}{k!} f^k(\epsilon)$; $f^{'}(x_n) = f^{'}(r) + \dots + \frac{(x_n - r)^{k-1}}{(k-1)!} f^k(\delta)$, 在这里 ϵ , δ 在 x_n 和 r 之间。带入迭代中并且在两边同时减去 \aleph 得: $x_{n+1} - r = x_n - r - \frac{f^k(\epsilon)}{f^k(\delta)}(x_n - r) = \frac{f^k(\delta) - f^k(\epsilon)}{f^k(\epsilon)}(x_n - r) = \frac{f^{k+1}(\aleph)}{f^k(\epsilon)}(x_n - r)^2$, 仿照 1.15 的证明,可以找到一个邻域使得分母不为零,并且可以找到一个常数 $M = \frac{max|f^{k+1}(x)|}{min|f^k(x)|}$ 来约束 $\frac{x_{n+1} - r}{(x_n - r)^2}$ 。

从第二点的证明中我们可以得出 $x_{n+1}-r=x_n-r-\frac{f^k(\epsilon)}{kf^k(\delta)}(x_n-r)=(1-\frac{f^k(\epsilon)}{kf^k}(\delta))(x_n-r)$ 该数列 x_n 收敛性由平方收敛变成线性收敛。

2 C++ programing

\mathbf{A}

详情参见代码。代码开源网址

В

有些题目,比如在第一和第二题的端点处无法取值,本题适当将区间缩 小一个 δ 。

第一题, 结果为 x = 0.860334。

第二题, 结果为 x = 0.641186。

第三题, 结果为 x = 1.82938。

第四题,结果为 x=0.117882; 这个零点并不是函数的零点,而是分母的零点。

\mathbf{C}

在 4.5 附近, x = 4.49341; 在 7.7 附近, x = 7.72525。

D

第一题,结果为 x=3.13427; 当初始点选为 5π 和 $\frac{11*\pi}{2}$ 时,结果为 x=15.708。

第二题, 结果为 x=1.30633; 当初始点选为 3.1 和 4.6 时, 结果为 x=-3.09641。

第三题,结果为 x=-0.109313; 当初始点选为 11 和 12 时,结果为 x=11.7373。

${f E}$

三种方法的结果都是 0.166166。

\mathbf{F}

第一题,结果为 ⋈ = 32.9722。

第二题,结果为 ⋈ = 32.1686。

第三题,当初始点改为 147 和 150 时,结果为 $\alpha_2 = 146.831$;当初始点改为 168 和 170 时,结果为 $\alpha_3 = 168.5$ 。原因如下,将题目中给的方程整理可得 $lsin(\alpha)sin(\alpha+\beta_1) - (h+0.5D)sin(\alpha+\beta_1) + \frac{0.5D}{cos(\beta_1)sin(\alpha+\beta_1)} = 0$,所以有 $sin(\alpha+\beta_1) = 0 \rightarrow \alpha_3$ 或者 $sin(\alpha) = \frac{(h+0.5D)cos(\beta_1)-0.5D}{lcos(\beta_1)} \rightarrow \alpha and \alpha_2$ 。