What Is Claimed Is:

ı	1. A method for performing a minimum computation for an interval	
2	operation, comprising:	
3	receiving at least four floating-point numbers, including a first floating-	
4	point number, a second floating-point number, a third floating-point number and a	
5	fourth floating-point number; and	
6	computing a minimum of the at least four floating-point numbers;	
7	wherein if the at least four floating-point numbers include one or two	
8	default NaN (not-a-number) values and the remaining values are not default NaN	
9	values, the default NaN values are ignored in computing the minimum.	
1	2. The method of claim 1,	
2	wherein the minimum is a left endpoint of a resulting interval of the	
3	interval operation;	
4	wherein the first floating-point number is the result of an operation	
5	between the left endpoint of a first interval and the left endpoint of a second	
6	interval;	
7	wherein the second floating-point number is the result of the operation	
8	between the left endpoint of the first interval and the right endpoint of the second	
9	interval;	
10	wherein the third floating-point number is the result of the operation	
11	between the right endpoint of the first interval and the left endpoint of the second	
12	interval; and	
13	wherein the fourth floating-point number is the result of the operation	
14	between the right endpoint of the first interval and the right endpoint of the second	
15	interval.	

1	3. The method of claim 1, wherein computing the minimum involves
2	setting the minimum to a value representing the empty interval, if any of the at
3	least four floating-point numbers contain the value representing the empty
4	interval.

- 1 4. The method of claim 3, wherein the value representing the empty 2 interval is a non-default NaN value.
- 5. The method of claim 2, wherein computing the minimum involves setting the minimum to negative infinity if the first floating-point number is a default NaN value and the fourth floating-point number is the default NaN value.
- 1 6. The method of claim 2, wherein computing the minimum involves 2 setting the minimum to negative infinity if the second floating-point number is a 3 default NaN value and the third floating-point number is the default NaN value.
- 7. The method of claim 1, wherein if none of the at least four floating-point numbers is a default NaN value or a value representing the empty interval, computing the minimum involves selecting the minimum of the at least four floating-point numbers.
- 1 8. The method of claim 2, wherein the operation can include one of a multiplication operation and a division operation.
- 9. A method for performing a maximum computation for an interval operation, comprising:

3	receiving at least four floating-point numbers, including a first floating-		
4	point number, a second floating-point number, a third floating-point number and a		
5	fourth floating-point number; and		
6	computing a maximum of the at least four floating-point numbers;		
7	wherein if the at least four floating-point numbers include one or two		
8	default NaN (not-a-number) values and the remaining values are not default NaN		
9	values, the default NaN values are ignored in computing the maximum.		
1	10. The method of claim 9,		
2	wherein the maximum is a right endpoint of a resulting interval of the		
3	interval operation;		
4	wherein the first floating-point number is the result of an operation		
5	between the left endpoint of a first interval and the left endpoint of a second		
6	interval;		
7	wherein the second floating-point number is the result of the operation		
8	between the left endpoint of the first interval and the right endpoint of the second		
9	interval;		
10	wherein the third floating-point number is the result of the operation		
11	between the right endpoint of the first interval and the left endpoint of the second		
12	interval; and		
13	wherein the fourth floating-point number is the result of the operation		
14	between the right endpoint of the first interval and the right endpoint of the second		
15	interval.		
1	11. The method of claim 9, wherein computing the maximum involves		

setting the maximum to a value representing the empty interval, if any of the at

有

- least four floating-point numbers contain the value representing the emptyinterval.
- 1 12. The method of claim 11, wherein the value representing the empty 2 interval is a non-default NaN value.
- 1 13. The method of claim 10, wherein computing the maximum 2 involves setting the maximum to positive infinity if the first floating-point number 3 is a default NaN value and the fourth floating-point number is the default NaN 4 value.
- 1 14. The method of claim 10, wherein computing the maximum 2 involves setting the maximum to positive infinity if the second floating-point 3 number is a default NaN value and the third floating-point number is the default 4 NaN value.
- 1 15. The method of claim 9, wherein if none of the at least four 2 floating-point numbers is a default NaN value or a value representing the empty 3 interval, computing the maximum involves selecting the maximum of the at least 4 four floating-point numbers.
- 1 16. The method of claim 10, wherein the operation can include one of 2 a multiplication operation and a division operation.
- 1 17. A computer-readable storage medium storing instructions that 2 when executed by a computer cause the computer to perform a method for

3	performing a minimum computation for an interval operation, the method	
4	comprising:	
5	receiving at least four floating-point numbers, including a first floating-	
6	point number, a second floating-point number, a third floating-point number and	
7	fourth floating-point number; and	
8	computing a minimum of the at least four floating-point numbers;	
9	wherein if the at least four floating-point numbers include one or two	
10	default NaN (not-a-number) values and the remaining values are not default NaN	
11	values, the default NaN values are ignored in computing the minimum.	
1	18. The computer-readable storage medium of claim 17,	
2	wherein the minimum is a left endpoint of a resulting interval of the	
3	interval operation;	
4	wherein the first floating-point number is the result of an operation	
5	between the left endpoint of a first interval and the left endpoint of a second	
6	interval;	
7	wherein the second floating-point number is the result of the operation	
8	between the left endpoint of the first interval and the right endpoint of the second	
9	interval;	
10	wherein the third floating-point number is the result of the operation	
11	between the right endpoint of the first interval and the left endpoint of the second	
12	interval; and	
13	wherein the fourth floating-point number is the result of the operation	
14	between the right endpoint of the first interval and the right endpoint of the second	
15	interval.	

2

3

4

1

2

3

4

1

2

3

4

1	19. The computer-readable storage medium of claim 17, wherein
2	computing the minimum involves setting the minimum to a value representing the
3	empty interval, if any of the at least four floating-point numbers contain the value
4	representing the empty interval.

- 1 20. The computer-readable storage medium of claim 19, wherein the value representing the empty interval is a non-default NaN value.
 - 21. The computer-readable storage medium of claim 18, wherein computing the minimum involves setting the minimum to negative infinity if the first floating-point number is a default NaN value and the fourth floating-point number is the default NaN value.
 - 22. The computer-readable storage medium of claim 18, wherein computing the minimum involves setting the minimum to negative infinity if the second floating-point number is a default NaN value and the third floating-point number is the default NaN value.
 - 23. The computer-readable storage medium of claim 17, wherein if none of the at least four floating-point numbers is a default NaN value or a value representing the empty interval, computing the minimum involves selecting the minimum of the at least four floating-point numbers.
- 1 24. The computer-readable storage medium of claim 18, wherein the 2 operation can include one of a multiplication operation and a division operation.

1	25. A computer-readable storage medium storing instructions that		
2	when executed by a computer cause the computer to perform a method for		
3	performing a maximum computation for an interval operation, the method		
4	comprising:		
5	receiving at least four floating-point numbers, including a first floating-		
6	point number, a second floating-point number, a third floating-point number and		
7	fourth floating-point number; and		
8	computing a maximum of the at least four floating-point numbers;		
9	wherein if the at least four floating-point numbers include one or two		
10	default NaN (not-a-number) values and the remaining values are not default NaN		
11	values, the default NaN values are ignored in computing the maximum.		
1	26. The computer-readable storage medium of claim 25,		
2	wherein the maximum is a right endpoint of a resulting interval of the		
3	interval operation;		
4	wherein the first floating-point number is the result of an operation		
5	between the left endpoint of a first interval and the left endpoint of a second		
6	interval;		
7	wherein the second floating-point number is the result of the operation		
8	between the left endpoint of the first interval and the right endpoint of the second		
9	interval;		
10	wherein the third floating-point number is the result of the operation		
11	between the right endpoint of the first interval and the left endpoint of the second		
12	interval; and		
13	wherein the fourth floating-point number is the result of the operation		
14	between the right endpoint of the first interval and the right endpoint of the second		
15	interval.		

2

1

3

4

1	27.	The computer-readable storage medium of claim 25, wherein
2	computing the	e maximum involves setting the maximum to a value representing
3	the empty inte	erval, if any of the at least four floating-point numbers contain the
4	value represei	nting the empty interval.

- 28. The computer-readable storage medium of claim 27, wherein the value representing the empty interval is a non-default NaN value.
- 29. The computer-readable storage medium of claim 26, wherein 2 computing the maximum involves setting the maximum to positive infinity if the first floating-point number is a default NaN value and the fourth floating-point number is the default NaN value.
- 1 30. The computer-readable storage medium of claim 26, wherein 2 computing the maximum involves setting the maximum to positive infinity if the 3 second floating-point number is a default NaN value and the third floating-point 4 number is the default NaN value.
- 1 31. The computer-readable storage medium of claim 25, wherein if 2 none of the at least four floating-point numbers is a default NaN value or a value representing the empty interval, computing the maximum involves selecting the 3 maximum of the at least four floating-point numbers. 4
- 32. 1 The computer-readable storage medium of claim 26, wherein the operation can include one of a multiplication operation and a division operation. 2

1	33. An apparatus that performs a minimum computation for an interval		
2	operation, comprising:		
3	an input that is configured to receive at least four floating-point numbers,		
4	including a first floating-point number, a second floating-point number, a third		
5	floating-point number and a fourth floating-point number; and		
6	a computing mechanism that is configured to compute a minimum of the		
7	at least four floating-point numbers;		
8	wherein if the at least four floating-point numbers include one or two		
9	default NaN (not-a-number) values and the remaining values are not default NaN		
10	values, the default NaN values are ignored in computing the minimum.		
1	34. The apparatus of claim 33,		
2	wherein the minimum is a left endpoint of a resulting interval of the		
3	interval operation;		
4	wherein the first floating-point number is the result of an operation		
5	between the left endpoint of a first interval and the left endpoint of a second		
6	interval;		
7	wherein the second floating-point number is the result of the operation		
8	between the left endpoint of the first interval and the right endpoint of the second		
9	interval;		
10	wherein the third floating-point number is the result of the operation		
11	between the right endpoint of the first interval and the left endpoint of the second		
12	interval; and		
13	wherein the fourth floating-point number is the result of the operation		
14	between the right endpoint of the first interval and the right endpoint of the secon		
15	interval.		

1	35. The apparatus of claim 33, wherein the computing mechanism is
2	configured to set the minimum to a value representing the empty interval, if any of
3	the at least four floating-point numbers contain the value representing the empty
4	interval.

- 1 36. The apparatus of claim 25, wherein the value representing the 2 empty interval is a non-default NaN value.
- 1 37. The apparatus of claim 34, wherein the computing mechanism is 2 configured to set the minimum to negative infinity if the first floating-point 3 number is a default NaN value and the fourth floating-point number is the default 4 NaN value.
- 1 38. The apparatus of claim 34, wherein the computing mechanism is 2 configured to set the minimum to negative infinity if the second floating-point 3 number is a default NaN value and the third floating-point number is the default 4 NaN value.
- The apparatus of claim 33, wherein if none of the at least four floating-point numbers is a default NaN value or a value representing the empty interval, the computing mechanism is configured to select the minimum of the at least four floating-point numbers.
- 1 40. The apparatus of claim 34, wherein the operation can include one 2 of a multiplication operation and a division operation.

1	41. An apparatus that performs a maximum computation for an	
2	interval operation, comprising:	
3	an input that is configured to receive at least four floating-point numbers,	
4	including a first floating-point number, a second floating-point number, a third	
5	floating-point number and a fourth floating-point number; and	
6	a computing mechanism that is configured to compute a maximum of the	
7	at least four floating-point numbers;	
8	wherein if the at least four floating-point numbers include one or two	
9	default NaN (not-a-number) values and the remaining values are not default NaN	
10	values, the default NaN values are ignored in computing the maximum.	
1	42. The apparatus of claim 41,	
2	wherein the maximum is a right endpoint of a resulting interval of the	
3	interval operation;	
4	wherein the first floating-point number is the result of an operation	
5	between the left endpoint of a first interval and the left endpoint of a second	
6	interval;	
7	wherein the second floating-point number is the result of the operation	
8	between the left endpoint of the first interval and the right endpoint of the second	
9	interval;	
10	wherein the third floating-point number is the result of the operation	
11	between the right endpoint of the first interval and the left endpoint of the second	
12	interval; and	
13	wherein the fourth floating-point number is the result of the operation	
14	between the right endpoint of the first interval and the right endpoint of the second	
15	interval.	

4

1	43. The apparatus of claim 41, wherein the computing mechanism is
2	configured to set the maximum to a value representing the empty interval, if any
3	of the at least four floating-point numbers contain the value representing the
4	empty interval.

- 1 44. The apparatus of claim 43, wherein the value representing the 2 empty interval is a non-default NaN value.
- 1 45. The apparatus of claim 42, wherein the computing mechanism is 2 configured to set the maximum to positive infinity if the first floating-point 3 number is a default NaN value and the fourth floating-point number is the default 4 NaN value.
- The apparatus of claim 42, wherein the computing mechanism is 1 46. configured to set the maximum to positive infinity if the second floating-point 2 number is a default NaN value and the third floating-point number is the default NaN value.
- 1 47. The apparatus of claim 41, wherein if none of the at least four 2 floating-point numbers is a default NaN value or a value representing the empty 3 interval, the computing mechanism is configured to select the maximum of the at 4 least four floating-point numbers.
- 1 48. The apparatus of claim 42, wherein the operation can include one 2 of a multiplication operation and a division operation.