In [1]: #This is Linear regression predictive analysis to check whether after a session of shopping guidance, #whether customers order through their mobile app or prefer a website

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

In [2]: %matplotlib inline

In [3]: customers=pd.read_csv('Ecommerce Customers')

In [4]: customers.head()

Out[4]:

	Email	Address	Avatar	Avg. Session Length	Time on App	Time on Website	Length of Membership	Yearly Amount Spent
0	mstephenson@fernandez.com	835 Frank Tunnel\nWrightmouth, MI 82180-9605	Violet	34.497268	12.655651	39.577668	4.082621	587.951054
1	hduke@hotmail.com	4547 Archer Common\nDiazchester, CA 06566-8576	DarkGreen	31.926272	11.109461	37.268959	2.664034	392.204933
2	pallen@yahoo.com	24645 Valerie Unions Suite 582\nCobbborough, D	Bisque	33.000915	11.330278	37.110597	4.104543	487.547505
3	riverarebecca@gmail.com	1414 David Throughway∖nPort Jason, OH 22070-1220	SaddleBrown	34.305557	13.717514	36.721283	3.120179	581.852344
4	mstephens@davidson- herman.com	14023 Rodriguez Passage\nPort Jacobville, PR 3	MediumAquaMarine	33.330673	12.795189	37.536653	4.446308	599.406092

In [5]: customers.describe()

Out[5]:

	Avg. Session Length	Time on App	Time on Website	Length of Membership	Yearly Amount Spent
count	500.000000	500.000000	500.000000	500.000000	500.000000
mean	33.053194	12.052488	37.060445	3.533462	499.314038
std	0.992563	0.994216	1.010489	0.999278	79.314782
min	29.532429	8.508152	33.913847	0.269901	256.670582
25%	32.341822	11.388153	36.349257	2.930450	445.038277
50%	33.082008	11.983231	37.069367	3.533975	498.887875
75%	33.711985	12.753850	37.716432	4.126502	549.313828
max	36.139662	15.126994	40.005182	6.922689	765.518462

In [6]: customers.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 8 columns):

Non-Null Count Dtype Column 0 Email 500 non-null object 1 Address 500 non-null object 2 Avatar 500 non-null object 3 Avg. Session Length 500 non-null float64 500 non-null Time on App float64 float64 Time on Website 500 non-null Length of Membership 500 non-null float64 Yearly Amount Spent 500 non-null float64

dtypes: float64(5), object(3)
memory usage: 31.4+ KB

Out[8]: <seaborn.axisgrid.JointGrid at 0x1a404efa248>

In [9]: | sns.jointplot(data=customers,x='Time on App',y='Yearly Amount Spent')

Out[9]: <seaborn.axisgrid.JointGrid at 0x1a404ec7208>

Out[10]: <seaborn.axisgrid.JointGrid at 0x1a406865f48>

In [11]: sns.pairplot(customers)

Out[11]: <seaborn.axisgrid.PairGrid at 0x1a4071c91c8>


```
In [12]: #Based off this plot Length of Membership looks to be the most correlated feature with Yearly Amount Spent
          #lets look at a linear plot
          sns.lmplot(x='Length of Membership',y='Yearly Amount Spent',data=customers)
Out[12]: <seaborn.axisgrid.FacetGrid at 0x1a4092b0d08>
             700
             600
          Yearly Amount Spent
             500
             400
             300
                             Length of Membership
In [13]: | #Now that we've explored the data a bit, let's go ahead and split the data into training and testing sets.
          customers.columns
Out[13]: Index(['Email', 'Address', 'Avatar', 'Avg. Session Length', 'Time on App',
                 'Time on Website', 'Length of Membership', 'Yearly Amount Spent'],
                dtype='object')
In [16]: y=customers['Yearly Amount Spent']
          X=customers[[ 'Avg. Session Length', 'Time on App',
                 'Time on Website', 'Length of Membership']]
In [17]: | from sklearn.model_selection import train_test_split
In [18]: | X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=101)
In [19]: | from sklearn.linear_model import LinearRegression
In [20]:
          #Now its time to train our model on our training data!
          lm=LinearRegression()
In [21]: | lm.fit(X_train,y_train)
Out[21]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
In [22]: | lm.coef_
Out[22]: array([25.98154972, 38.59015875, 0.19040528, 61.27909654])
In [24]: | #Now that we have fit our model, let's evaluate its performance by predicting off the test values!
          predictions=lm.predict(X_test)
          plt.scatter(y_test,predictions)
          plt.xlabel('Y-Test (True Values)')
          plt.ylabel('Predicted Values')
Out[26]: Text(0, 0.5, 'Predicted Values')
             700
          Predicted Values
             600
             500
             400
             300
```

600

500 6 Y-Test (True Values)

300

400

700

In [27]: $\#EVALUATING\ Let's$ evaluate our model performance by calculating the residual sum of squares and the explained variance score (R^2) .

from sklearn import metrics

In [30]: print('Mean Absolute Error',metrics.mean_absolute_error(y_test,predictions))
 print('Mean Squared Error',metrics.mean_squared_error(y_test,predictions))
 print('Root Mean Squared Error',np.sqrt(metrics.mean_squared_error(y_test,predictions)))

Mean Absolute Error 7.228148653430838 Mean Squared Error 79.81305165097461 Root Mean Squared Error 8.933815066978642

In [31]: metrics.explained_variance_score(y_test,predictions) #How much variance our model explains gives about 98% pretty goo
d right

Out[31]: 0.9890771231889606

In [32]: # Have gotten a very good model with a good fit. Let's quickly explore the residuals to make sure everything was okay with our data sns.distplot((y_test-predictions),bins=60)

Out[32]: <matplotlib.axes._subplots.AxesSubplot at 0x1a40a324548>

In [33]: #looks pretty normal

umn 2

In [39]: #CONCLUSION:We still want to figure out the answer to the original question, do we focus our efforst on mobile app or website development? Or maybe that doesn't even really matter, and Membership Time is what is really important.

#Let's see if we can interpret the coefficients at all to get an idea.

cf=pd.DataFrame(lm.coef_,X.columns,columns=['Coefficients'])

cf

#this shows us that what happens on 1 unit increase of the first columns element giving an increment of dollars on col

Out[39]:

	Coefficients
Avg. Session Length	25.981550
Time on App	38.590159
Time on Website	0.190405
Length of Membership	61.279097

In []: # The company should focus more on their mobile app or on their website?
#Can think about it both ways, focus on website more as it needs a lot of betterment,
#or focus on the app more as people find it more suitable to shop through their phones,
#hence a number of factors within the company will be taken into account for that.