EMoth marra	Exam in Mathematics	Prepared by: Ezzeddine Hnaini
ExaMath groups	Section: G.S.	Edited by: H. Ahmad
Number of supertions.	Sample 01 - 2022	Name:
Number of questions: 5	Duration: 180 min	N^{o} :

- This exam includes five problems. It is inscribed on four pages, numbered from 1 to 4.
- The use of a non-programmable calculator is allowed.

I - (1.5 points)

In the table below, only one among the proposed answers to each question is correct. Choose, with justification, the correct answer.

\mathbf{N}^o	${f Question}$	Proposed answers		
	Question	A	В	C
1.	Let z be a complex number such that: $z = 1 - e^{-i\frac{\pi}{3}}$. Then $\overline{z} =$	$e^{-i\frac{\pi}{3}}$	$e^{i\frac{\pi}{3}}$	$1 - \frac{\sqrt{3}}{2} + \frac{1}{2}i$
2.	For every real number x in the interval $]-1$; $0[$, we have: $e^{ \ln(x+1) }=$	-x-1	x+1	$\frac{1}{x+1}$
3.	$\lim_{x \to 0} x \ln \left(1 + \frac{1}{x} \right) =$	0	e	+∞

II - (3.5 points)

The plane is referred to an orthonormal system $(O; \vec{u}; \vec{v})$.

Consider the points A, B and C of respective affixes $z_A = i$, $z_B = 2$ and $z_C = -1 - i$.

M and M' are two points of the plane with respective affixes z and z' such that $z' = \frac{iz - 4 + 2i}{z - 2}$ with $z \neq 2$.

- 1) Determine the trigonometric form of $\frac{z_A z_B}{z_A z_C}$. Deduce the nature of triangle ABC.
- 2) In the case where z' = -3i, find the exponential form of z.
- 3) a) Verify that $z' i = \frac{-4 + 4i}{z 2}$.
 - b) Show that $AM' \times BM = 4\sqrt{2}$ and $(\vec{u}; \overrightarrow{AM'}) + (\vec{u}; \overrightarrow{BM}) = \frac{3\pi}{4} + 2k\pi$ where $k \in \mathbb{Z}$.
 - c) Determine the set of points M' when M moves on the circle of center B and radius 4.
 - d) Determine the set of points M such that $\arg(z'-i) = \frac{\pi}{4}(2\pi)$.

III - (3.5 points)

Given a well balanced coin and two urns U and V such that:

- The urn U contains 4 red balls, 3 green balls and one yellow ball.
- The urn V contains 1 red ball, 3 green balls and 4 yellow balls.
- 1) In this part, the coin is tossed three times in a row.

Consider the following events:

A: « The three tosses show head »;

B: « At least one toss is tail ».

Verify that $p(A) = \frac{1}{8}$ and find p(B).

2) In this part, a game is played as follows:

The coin is tossed three times in a row:

- If the three tosses show head, then three balls are chosen randomly and simultaneously from the urn U.
- Otherwise, three balls are drawn randomly and successively with replacement from the urn V.

Consider the event D: « The three drawn balls are of three different colors ».

- a) Show that $p(D/A) = \frac{3}{14}$ and calculate $p(D \cap A)$.
- b) Calculate $p(D \cap B)$, then deduce that $p(D) = \frac{537}{3584}$.
- c) Knowing that the three drawn balls are of three different colors, calculate the probability that exactly two tosses are tail.
- d) Calculate the probability that the three drawn balls have the same color.

IV - (7 points)

Part A:

Consider the function g defined over \mathbb{R} by $g(x) = xe^{x+1} + 2$.

- 1) Find g'(x) and set up the table of variations of g. (It is not required to determine the limits of g at $+\infty$ and $-\infty$).
- 2) Deduce that g(x) > 0 for every $x \in \mathbb{R}$.

Part B:

Consider the function f defined over \mathbb{R} by $f(x) = (x-1)e^{x+1} + 2x$.

Let (C) be its representative curve in an orthonormal system $(O; \vec{i}; \vec{j})$.

- 1) a) Determine $\lim_{x\to+\infty} f(x)$ and $\lim_{x\to+\infty} \frac{f(x)}{x}$. Interpret your answer.
 - b) Determine $\lim_{x\to-\infty} f(x)$ and show that the straight line (d) of equation y=2x is an asymptote to (C).
 - c) Study the relative positions of (C) and (d).
- 2) a) Show that for every $x \in \mathbb{R}$, f'(x) = g(x) and set up the table of variations of f.

- b) Show that the equation f(x) = 0 admits over \mathbb{R} a unique solution α and verify that $\alpha \in [0.7; 0.8[$.
- c) Show that the curve (C) admits an inflection point I whose coordinates are to be determined.
- 3) Draw (d) and (C).

Part C:

Consider the function h defined as $h(x) = \ln [f(x) - 2x]$.

- 1) Determine the domain of definition of h.
- 2) Determine the limits of h at the open boundaries of its domain of definition.
- 3) Let (H) be the representative curve of h in the same system. Show that (H) has at $+\infty$ an asymptotic direction parallel to straight line (L) of equation y = x.

V - (4.5 points)

In the figure below:

- OAB is a triangle such that $(\overrightarrow{OA}; \overrightarrow{OB}) = \frac{\pi}{2}(2\pi), OA = 8 \text{ and } OB = 4.$
- J and K are respectively the midpoints of segments [OA] and [OB].
- I is the symmetric of J with respect to O.
- A' is the symmetric of O with respect to B.
- H and G are respectively the orthogonal projections of O on (AB) and (IA').

- 1) Let r be the rotation of center O and angle $\frac{\pi}{2}$.
 - a) Determine r(A) and r(B).
 - b) Prove that r(H) = G.
- 2) Let S be the direct plane similared such that S(O) = A and S(B) = O.
 - a) Determine the ratio of S and verify that $\frac{\pi}{2}$ is a mesure of its angle.

- b) Justify that S(K) = J.
- c) Determine the images of the lines (HO) and (AB) by S. Deduce that H is the center of S.
- d) Justify that (HK) and (HJ) are perpendicular.
- 3) The perpendicular to (OA) at point A intersects (KH) at C.
 - a) Determine the images of (OA) and (HJ) by S.
 - b) Deduce S(J).
 - c) Prove that HC = OA = AC.
- 4) Let L be the symmetric of O with respect to I. Let $h = S \circ r^{-1}$.
 - a) Determine h(I).
 - b) Show that h is a dilation, determine its ratio, and show that L is its center.
- 5) The plane is referred to the orthonormal system $(O; \overrightarrow{OJ}; \overrightarrow{OB})$.
 - a) Determine the complex form of S. Deduce the affix of point H.
 - b) Determine the complex form of r and the affix of point G.
 - c) Prove that G is the midpoint of [LH].

QI	Answers	Note
1.	$\overline{z} = \overline{1 - e^{i\frac{\pi}{3}}} = 1 - \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = \frac{1}{2} - i\frac{\sqrt{3}}{2} = e^{-i\frac{\pi}{3}};$ The correct answer is then C.	1/2
2.	$x \in]-1;0[$ so: $0 < x+1 < 1;$ $\ln(x+1) < 0$ and $ \ln(x+1) = -\ln(x+1);$ Then $e^{ \ln(x+1) } = e^{-\ln(x+1)} = \frac{1}{x+1};$ The correct answer is then C.	1/2
3.	Let: $X = \frac{1}{x}$ then: $\lim_{x \to 0^+} x \ln\left(1 + \frac{1}{x}\right) = \lim_{X \to +\infty} \frac{\ln\left(1 + X\right)}{X} = 0$; OR $\lim_{x \to 0^+} x \ln\left(1 + \frac{1}{x}\right) = \lim_{x \to 0^+} \frac{\ln\left(1 + \frac{1}{x}\right)}{\frac{1}{x}} = \lim_{x \to 0^+} \frac{\frac{-\frac{1}{x^2}}{1 + \frac{1}{x}}}{-\frac{1}{x^2}} = \lim_{x \to 0^+} \frac{1}{1 + \frac{1}{x}} = 0$; The correct answer is then A.	1/2

QII	Answers	Note
1.	$\frac{z_A - z_B}{z_A - z_C} = i = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} ;$ $\bullet \left \frac{z_A - z_B}{z_A - z_C} \right = 1 \text{ then } BA = CA ;$ $\bullet \arg\left(\frac{z_A - z_B}{z_A - z_C}\right) = \frac{\pi}{2}(2\pi) \text{ then } \left(\overrightarrow{CA}; \overrightarrow{BA}\right) = \frac{\pi}{2}(2\pi) ;$ Then the triangle ABC is right isosceles at A .	3/4
2.	$z' = -3i$; $\frac{iz - 4 = 2i}{z - 2} = -3i$ so $z = 1 - i$ so $z = \sqrt{2}e^{-i\frac{pi}{4}}$.	1/2
3.a.	$z' - i = \frac{iz - 4 + 2i}{z - 2} - i = \frac{-4 + 4i}{z - 2}.$	1/2
3.b.	$z' = -3i \; ; \; \frac{iz - 4 = 2i}{z - 2} = -3i \text{ so } z = 1 - i \text{ so } z = \sqrt{2}e^{-i\frac{pi}{4}}.$ $z' - i = \frac{iz - 4 + 2i}{z - 2} - i = \frac{-4 + 4i}{z - 2}.$ $z' - i = \frac{-4 + 4i}{z - 2} \text{ gives } z_{\overrightarrow{AM'}} = \frac{-4 + 4i}{z_{\overrightarrow{BM}}};$ $\bullet z_{\overrightarrow{AM'}} = \left \frac{-4 + 4i}{z_{\overrightarrow{BM}}}\right ; AM' = \frac{4\sqrt{2}}{BM} \; ; AM' \times BM = 4\sqrt{2} \; ;$ $\bullet \text{ arg } (z_{\overrightarrow{AM'}}) = \text{ arg } (-4 + 4i) - \text{ arg } (z_{\overrightarrow{BM}}) \; ; \; \left(\overrightarrow{u} \; ; \; \overrightarrow{AM'}\right) = \frac{3\pi}{4} - \left(\overrightarrow{u} \; ; \; \overrightarrow{BM}\right); \left(\overrightarrow{u} \; ; \; \overrightarrow{AM'}\right) + \left(\overrightarrow{u} \; ; \; \overrightarrow{BM}\right) = \frac{3\pi}{4} + 2k\pi \text{ with } k \in \mathbb{Z}.$	3/4
3.c.	M moves on the circle of center B and radius 4 so $BM = 4$. Then $AM' = \sqrt{2}$; The set of points M' is the circle of center A and radius $\sqrt{2}$.	1/2
3.d.	$\arg(z'-i) = \frac{\pi}{4}(2\pi)$ so $(\overrightarrow{u}; \overrightarrow{AM'}) = \frac{\pi}{4}(2\pi); (\overrightarrow{u}; \overrightarrow{BM}) = \frac{\pi}{2}(2\pi)$. Then the set of points M is the semi-line $]Bt)$ passing through B and orthogonal to \overrightarrow{u} located above the x-axis.	1/2

QIII	Answers	Note
1.	$p(A) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8};$ $p(B) = 1 - p \text{ (no head)} = 1 - p \text{ (3 tails)} = 1 - p \text{ (A)} = \frac{7}{8}.$	1/2
2.a	$p(D/A) = \frac{C_4^1 \times C_3^1 \times C_1^1}{C_8^3} = \frac{3}{14};$	3/4
2.b	$p(D \cap A) = p(D/A) \times p(A) = \frac{3}{14} \times \frac{1}{8} = \frac{3}{112};$ $p(D/B) = \frac{1}{8} \times \frac{3}{8} \times \frac{4}{8} \times 3! = \frac{9}{64};$ $p(D \cap B) = p(D/B) \times p(B) = \frac{9}{64} \times \frac{7}{8} = \frac{63}{512};$ $p(D) = p(D \cap A) + p(D \cap B) = \frac{3}{112} + \frac{63}{512} = \frac{537}{3584}.$	3/4
	Consider the event E : « Obtain exactly two tails among the three throws of the coin ». $p(E) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{3!}{2! \times 1!} = \frac{3}{8};$ $p(E/D) = \frac{p(E \cap D)}{p(D)} = \frac{p(D/E) \times p(E)}{p(D)} = \frac{\frac{9}{64} \times \frac{3}{8}}{\frac{537}{3584}} = \frac{63}{179}.$	3/4
2.d.	Consider the event F : « the three drawn balls have the same color »; $p(F) = p(F \cap A) + p(F \cap B) = p(F/A) \times p(A) + p(F/B) \times p(B)$; $p(F) = \left(\frac{C_4^3 + C_3^3}{C_8^3}\right) \times \frac{1}{8} + \left(\frac{1^3}{8^3} + \frac{3^3}{8^3} + \frac{4^3}{8^3}\right) \times \frac{7}{8} = \frac{1207}{7186}$	3/4

QIV	Answers		
A.1.	$g'(x)=(x+1)e^{x+1}$ has the same sign as $x+1$ over $\mathbb R$; $x -\infty -1 +\infty$ $g'(x) -0 +$ $g(x)$	1/2	
A.2.	For every $x \in \mathbb{R}$ we have: $g(x) \ge 1$ then for every $x \in \mathbb{R}$ we have: $g(x) > 0$.	1/2	
B.1.a.	$\lim_{x \to +\infty} f(x) = +\infty \times (+\infty) + \infty = +\infty;$ $\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left[\left(1 - \frac{1}{x} \right) e^{x+1} + 2 \right] = (1-0)(+\infty) + 2 = +\infty;$ The (C) curve admits an asymptotic direction parallel to the y-axis at $+\infty$.	3/4	
B.1.b.	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (xe^x \times e - e^x \times e + 2x) = 0 - \infty = -\infty;$ $\lim_{x \to -\infty} [f(x) - 2x] = \lim_{x \to -\infty} (xe^x \times e - e^x \times e) = 0; \text{ the line } (d) \text{ of equation}$ $y = 2x \text{ is an oblique asymptote to } (C) \text{ at } -\infty.$	1/2	

QIV	Answers	Note
B.1.c.	$f(x) - 2x = (x - 1) e^{x+1} \text{ has the same sign as } x + 1 \text{ since } e^{x+1} > 0 \text{ for every } x \in \mathbb{R};$ • $f(x) - 2x = 0$ if $x = 1$; (C) cuts (d) at the point of coordinate (1; 2); • $f(x) - 2x > 0$ if $x > 1$; (C) is above (d) if $x \in]1$; +∞[; • $f(x) - 2x < 0$ if $x < 1$; (C) is below (d) if $x \in]-\infty$; 1[;	1/2
B.2.a.	$f'(x) = xe^{x+1} + 2 = g(x) \text{ and } g(x) > 0 \text{ for every } x \in \mathbb{R} \text{ (part A.2.)};$ Table of variations of f : $x - \infty + \infty$ $f'(x) + \cdots$ $f(x) - \infty$	3/4
B.2.b.	f is continuous over \mathbb{R} , strictly increasing and changes the sign, so the equation $f(x) = 0$ admits a unique solution α over \mathbb{R} . In addition: $f(0.7) \approx -0.24 < 0$ and $f(0.8) \approx 0.39 > 0$, then $\alpha \in]0.7$; 0.8	1/2
B.2.c.	$f''(x) = (x+1)e^{(x+1)}$ has the same sign as $x+1$ over \mathbb{R} ; $f''(x)$ is equal to zero if $x = -1$ and changes the sign so the curve (C) admits an inflection point I of coordinates $(-1; f(-1))$, so $I(-1; -4)$.	1/2
B.3.	y (C) (d) x	1

QIV	Answers	Note
C.1.	$h(x) = \ln \left[(x-1) e^{x+1} \right] = \ln(x-1) + x + 1;$ The domain of definition h is]1; +\infty[.	1/4
C.2.	• $\lim_{x \to 1^+} h(x) = -\infty;$ • $\lim_{x \to +\infty} h(x) = +\infty.$	1/2
C.3.		3/4

$\overline{\mathbf{QV}}$	Answers	Note
1.a.	$r(A) = A' \text{ since } OA = OA' = 8 \text{ and } \left(\overrightarrow{OA}; \overrightarrow{AA'}\right) = \frac{\pi}{2}(2\pi);$ $r(B) = I \text{ since } OB = OI = 4 \text{ and } \left(\overrightarrow{OB}; \overrightarrow{OI}\right) = \frac{\pi}{2}(2\pi).$	1/2
1.b.	H is the orthogonal projection of O over (AB) , then $r(H)$ is the orthogonal projection of $r(O)$ over $r((AB))$ since the rotation preserves the oriented angles; But $r(O) = O$ and $r((AB)) = (A'I)$, so $r(H)$ is the orthogonal projection of O over $(A'I)$ which is G ; Finally $r(H) = B$.	1/4
2.a.	Let k be the ratio of S and α a measure of its angle; $S(O) = A$ and $S(B) = O$ then $k = \frac{AO}{OB} = 2$ and $\alpha = \left(\overrightarrow{OB}; \overrightarrow{AO}\right) = \frac{\pi}{2}(2\pi)$.	1/2
2.b.	K is the midpoint of $[OB]$ then $S(K)$ is the midpoint of $S([OB])$ because similar serves the midpoints; so $S(K)$ is the midpoint of $[AO]$ which is J ; finally $S(K) = J$.	1/4
2.c.	$S(O) = A$ and the angle of S is $\alpha = \frac{\pi}{2}$, then $S((OH))$ is the line passing through A and perpendicular to (OH) which is (AB) ; so $S((OH)) = (AB)$. $S((AB))$ is the line passing through O and perpendicular to (AB) which is (OH) ; so $S((AB)) = (OH)$. $H \in (OH)$ then $S(H) \in S((OH))$ then $S(H) \in (AB)$; $H \in (AB)$ then $S(H) \in S(((AB)))$ then $S(H) \in (OH)$; So $S(H)$ is the intersection of (AB) and (OH) which is H so $S(H) = H$ and H is the center of S .	1/2
2.d.	$S(K) = J$ and the center of S is H and its angle is $\alpha = \frac{\pi}{2}$ so $(\overrightarrow{HK}; \overrightarrow{HJ}) = \frac{\pi}{2}(2\pi)$, so (HK) and (HJ) are perpendicular.	1/4
3.a.	S((OA)) = (AC); S((HJ)) = (HC).	1/4
3.b.	J is the intersection of (OA) and (HJ) then $S(J)$ is the intersection of (AC) and (HC) , then $S(J) = C$.	1/4

\mathbf{QV}	Answers	Note
3.c.	$S(J) = C$ then $HC = 2HJ$ and $HJ = \frac{1}{2}OA$ then $HC = OA$; $S(O) = A$ and $S(J) = C$ then $AC = 2OJ = OA$; So $HC = OA = AC$.	1/4
4.a.	$h(I) = S[r^{-1}(I)] = S(B) = O.$	1/4
4.b.	$h = S\left(H; 2; \frac{\pi}{2}\right) \circ S\left(O; 1; -\frac{\pi}{2}\right) = S\left(?; 2; 0\right)$, so h is a dilation of ratio 2; h is a dilation of ratio 2 and $h(I) = O$; In addition we have: $\overrightarrow{LO} = 2\overrightarrow{LI}$, so L is the center of h .	1/2
5.a.	The complex form of S is: $z' = az + b$ with $a = 2e^{i\frac{\pi}{2}} = 2i$; and as $S(O) = A$ then $z_A = 2iz_O + b$ so $b = 2$; so $S : z' = 2iz + 2$; The affix of H is $z_H = \frac{b}{1-a} = \frac{2}{1-2i} = \frac{2}{5} + \frac{4}{5}i$.	1/4
5.b.	The complex form of r is: $z' = e^{i\frac{\pi}{2}}z = iz$; $r(H) = G$ then $z_G = iz_H = \frac{z_G}{i} = -\frac{4}{5} + \frac{2}{5}i$.	1/4
5.c.	$\frac{z_L + z_H}{2} = \frac{-4}{5} + \frac{2}{5}i = z_G, \text{ then } G \text{ is the midpoint of } [LH].$	1/4