Requirements Analysis and Specification Document (RASD)

Mohammad Amin Abbaszadeh Sajjad

Contents

1	Intr	roduction 3		
	1.1	Purpose	3	
		1.1.1 Goals	4	
	1.2	Scope	5	
		1.2.1 World Phenomena	5	
		1.2.2 Shared Phenomena	5	
	1.3	Definitions, Acronyms, Abbreviations	6	
		1.3.1 Definitions	6	
		1.3.2 Abbreviations	6	
	1.4	Revision History	6	
	1.5	Reference Documents	6	
	1.6	Document Structure	9	
	0		_	
2	Ove	erall description	9	
	2.1	Product perspective	9	
		2.1.1 Scenarios	9	
		2.1.2 Class diagram	9	
		2.1.3 State charts	9	
	2.2	Product functions	9	
		2.2.1 X	9	
	2.3	User characteristic	9	
	2.4	Assumptions, dependencies and constraints	9	
		2.4.1 Domain assumptions	9	
3	Spe	ecific Requirements	9	
•	-	External Interface Requirements	9	
	3.1			
		3.1.1 User Interface	9	
		3.1.2 User Interface	9	
		3.1.3 Communication Interfaces	g	

	3.2	Functi	ional Requirements	9
		3.2.1	Mapping on Goals	9
		3.2.2	Use Cases	9
		3.2.3	Use Case Diagram	9
		3.2.4	Mapping on Requirements	9
	3.3	Perfor	mance Requirements	9
	3.4	Design	n Constraints	9
		3.4.1	Standards Compliance	9
		3.4.2	Hardware Limitations	9
	3.5	Softwa	are System Attributes	9
		3.5.1	Reliability	9
		3.5.2	Availability	9
		3.5.3	Security	9
		3.5.4	Maintainability	9
		3.5.5	Portability	9
4	For	mal A	nalysis	9
	4.1	Alloy	Code	9
		4.1.1	$X \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	9
	4.2	XX .		9
5	Effo	ort Spe	ent	9
6	Ref	erence	${f s}$	9

1 Introduction

1.1 Purpose

Nowadays, with a great pace in the usage of fossil fuels by the transportation system, significant negative environmental consequences are rising. A well-know solution to overcome this problem is Electric mobility (e-Mobility). Exploiting e-Mobility leads to several challenges that can be handled through softwares. When using and electric automobile, it is substantial to have a feasible plan for charging the car in way that pose the least limitation on users consumption. Whit the help of a software system called e-Mobility Service Providers (eMSPs) drivers can proceed with managing their car charging. The eMSPs cooperate with Charging Point Operators (CPOs) through the so-called Charge Point Management System (CPMS). The CPMS provide electricity to the connected vehicle by obtaining it from an external Distribution System Operators (DSOs). The whole process of transfering electricity from the source where it is produced to the battery inside an automobile is handled and managed by CPMS and eMSPs. The whole process of requirement engineering of these systems are elaborated in this document.

1.1.1 Goals

Goals	Description
G1	User should access to all near charging
	stations as well as the cost and special offers
	of the stations
G2	User should be able to reserve a charge in a
	selected station in a an possible time frame
G3	User should be able to start the charging
	process at a specific station
G4	User should be notified via an application
	when the charging is finished
G5	User should be able to pay for the charging
	service online through the application
G6	CPOs should be able to spot the location of
	charging stations and know about their
	number of charging sockets available, their
	type such as slow/fast/rapid, their cost, and,
	if all sockets of a certain type are occupied,
	the estimated amount of time until the first
	socket of that type is freed
G7	CPOs should be able to start charging a
	vehicle according to the amount of power
	supplied by the socket, and monitor the
	charging process to infer when the battery is
	full
G8	CPOs should be able to know the "internal"
	status of a charging station
G9	CPOs should be able to retrieve information
	about the current price of energy from DSOs
G10	CPOs should be able to decide from which
	DSO to acquire energy
G11	CPOs should be able to dynamically decide
	where to get energy for charging (station
	battery, DSO, or a mix thereof according to
	availability and cost)

1.2 Scope

Such a system could be developed in a remarkably smart way such that recommend the user a charging plan by accessing to the user calendar, battery status, navigation system, and etc. However, in this document the scope of the project that is elaborated based on the goals mentioned above as well as the fact that an eMSP can interact with multiple CPMSs, each one owned by a different CPO. The interaction approach between eMSP and CPMSs (synchronous, asynchronous, a mixture between the two).

1.2.1 World Phenomena

World Phenomena	Description
WP1	Driver needs to refill the battery of the car
	whenever it is required
WP2	A driver can spot a charging station nearby
	(less than 100km) according to the
	distribution of charging stations
	geographically
WP3	The price of electricity fluctuate frequently
WP4	Electricity is generated in some factories and
	distributes by DSOs

1.2.2 Shared Phenomena

• controlled by the world and observed by the machine

Shared Phenomena	Description
SP1	A user sign up in application of log in if
	already existed
SP2	A user can book a charging
SP3	A user can start the process of charging at a
	certain station
SP4	A user pays the amount of charging by the
	application
SP5	A CPO manage energy through application
	manually

ullet controlled by the machine and observed by the world

Shared Phenomena	Description
SP	The system shows to the user the nearby
	stations plus the cost and special offers of the
	station
SP	The system notifies the user when the
	charging process is finished

${\bf 1.3}\quad {\bf Definitions, A cronyms, Abbreviations}$

1.3.1 Definitions

CPO	CPO are companies that manage the
	charging stations.
CPMS	CPMS is an IT infrastructure (A software
	system) that enables the CPOs to manage
	the charging stations either manually or
	automatically by the CPMS itself
eMSP	eMSP is a sotware system that enables
	drivers to manage charging their vehicles
Driver	Driver is a user of the system who interacts
	with the eMSP system to manage charging a
	vehicle

1.3.2 Abbreviations

Goals	Description
RASD	Requirements Analysis and Specification
	Document
CPO	Charging Point Operator
CPMS	Charge Point Management System
eMSP	e-Mobility Service Provider
DSO	Distribution System Operator
WPx	World phenomena number x
SPx	Shared phenomena number x

1.4 Revision History

1.5 Reference Documents

 $\bullet \ \mathrm{DREAM_RASD.pdf}$

• Document of The Project

1.6 Document Structure

2 Overall description

- 2.1 Product perspective
- 2.1.1 Scenarios
- 2.1.2 Class diagram
- 2.1.3 State charts
- 2.2 Product functions
- 2.2.1 X
- 2.3 User characteristic
- 2.4 Assumptions, dependencies and constraints
- 2.4.1 Domain assumptions

3 Specific Requirements

- 3.1 External Interface Requirements
- 3.1.1 User Interface
- 3.1.2 User Interface
- 3.1.3 Communication Interfaces
- 3.2 Functional Requirements
- 3.2.1 Mapping on Goals
- 3.2.2 Use Cases
- 3.2.3 Use Case Diagram
- 3.2.4 Mapping on Requirements
- 3.3 Performance Requirements
- 3.4 Design Constraints
- 3.4.1 Standards Compliance
- 3.4.2 Hardware Limitations
- 3.5 Software System Attributes
- 3.5.1 Reliability
- 3.5.2 Availability