.

.

Artificial Intelligence (AI) for Engineering

COS40007

Dr. Abdur Forkan

Senior Research Fellow, Al and Machine Learning

Digital Innovation Lab

Seminar 2: 7th August 2024

Overview

- ☐Steps of Machine Learning
- □ Data collection
- □ Data cleaning and Feature Engineering
- Model Training
- ☐ Testing and Evaluation
- Model improvement i

.

Required Reading

- Chapter 1 and Chapter 4 of "Machine Learning with Pytorch and Scikit-Learn"
- A Reference Guide to Feature Engineering Methods

.

.

At the end of this you should be able to

- Understand the steps you need to complete to develop machine learning models
- Understand how to perform data pre-processing
- Understand model training and development process . . .

Steps of Machine Learning

How to use Machine Learning in applications?

Workflow for predictive modelling

Data collection

- Raw data
- Database tables
- Data file dumps from machine, processes
- Continuous time series data from sensors
- Images
- Videos
- Text

Raw data rarely comes in the form and shape that is necessary for the optimal performance of a learning algorithm. Thus, the preprocessing of the data is one of the most crucial steps in any machine learning application

Data preparation

- It is essential to have quality data that you can use to train your models
- If the data has small discrepancies or missing information, then it can have a great impact on your model's accuracy.
- Data preparation takes 80% of the total data engineering effort
- Real-world data may be noisy or impure. data preparation produces a narrower dataset than the source, which can boost data collection performance dramatically.

prediction of whether or not an object is a mine or a rock given the strength of sonar returns at different angles.

```
1 0.0200,0.0371,0.0428,0.0207,0.0954,0.0986,0.1539,0.1601,0.3109,0.2111,0.1609,0.1582,0.2238,0.0645,0.0660,0.227
2 3,0.3100,0.2999,0.5078,0.4797,0.5783,0.5071,0.4328,0.5550,0.6711,0.6415,0.7104,0.8080,0.6791,0.3857,0.1307,0.2
3 604,0.5121,0.7547,0.8537,0.8507,0.6692,0.6097,0.4943,0.2744,0.0510,0.2834,0.2825,0.4256,0.2641,0.1386,0.1051,0
4 .1343,0.0383,0.0324,0.0232,0.0027,0.0065,0.0159,0.0072,0.0167,0.0180,0.0084,0.0090,0.0032,R
   0.0453,0.0523,0.0843,0.0689,0.1183,0.2583,0.2156,0.3481,0.3337,0.2872,0.4918,0.6552,0.6919,0.7797,0.7464,0.944
   4,1.0000,0.8874,0.8024,0.7818,0.5212,0.4052,0.3957,0.3914,0.3250,0.3200,0.3271,0.2767,0.4423,0.2028,0.3788,0.2
   947,0.1984,0.2341,0.1306,0.4182,0.3835,0.1057,0.1840,0.1970,0.1674,0.0583,0.1401,0.1628,0.0621,0.0203,0.0530,0
   .0742,0.0409,0.0061,0.0125,0.0084,0.0089,0.0048,0.0094,0.0191,0.0140,0.0049,0.0052,0.0044,R
   0.0262,0.0582,0.1099,0.1083,0.0974,0.2280,0.2431,0.3771,0.5598,0.6194,0.6333,0.7060,0.5544,0.5320,0.6479,0.693
   1,0.6759,0.7551,0.8929,0.8619,0.7974,0.6737,0.4293,0.3648,0.5331,0.2413,0.5070,0.8533,0.6036,0.8514,0.8512,0.5
   045,0.1862,0.2709,0.4232,0.3043,0.6116,0.6756,0.5375,0.4719,0.4647,0.2587,0.2129,0.2222,0.2111,0.0176,0.1348,0
   .0744,0.0130,0.0106,0.0033,0.0232,0.0166,0.0095,0.0180,0.0244,0.0316,0.0164,0.0095,0.0078,M
   0.0100,0.0171,0.0623,0.0205,0.0205,0.0368,0.1098,0.1276,0.0598,0.1264,0.0881,0.1992,0.0184,0.2261,0.1729,0.213
   1,0.0693,0.2281,0.4060,0.3973,0.2741,0.3690,0.5556,0.4846,0.3140,0.5334,0.5256,0.2520,0.2090,0.3559,0.6260,0.7
   340,0.6120,0.3497,0.3953,0.3012,0.5408,0.8814,0.9857,0.9167,0.6121,0.5006,0.3210,0.3202,0.4295,0.3654,0.2655,0
   .1576,0.0681,0.0294,0.0241,0.0121,0.0036,0.0150,0.0085,0.0073,0.0050,0.0044,0.0040,0.0117,F
   0.0762,0.0666,0.0481,0.0394,0.0590,0.0649,0.1209,0.2467,0.3564,0.4459,0.4152,0.3952,0.4256,0.4135,0.4528,0.532
   6,0.7306,0.6193,0.2032,0.4636,0.4148,0.4292,0.5730,0.5399,0.3161,0.2285,0.6995,1.0000,0.7262,0.4724,0.5103,0.5
   459,0.2881,0.0981,0.1951,0.4181,0.4604,0.3217,0.2828,0.2430,0.1979,0.2444,0.1847,0.0841,0.0692,0.0528,0.0357,0
   .0085, 0.0230, 0.0046, 0.0156, 0.0031, 0.0054, 0.0105, 0.0110, 0.0015, 0.0072, 0.0048, 0.0107, 0.0094, Respectively. The state of the
```


Time-series data for x,y,z acceleration from accelerometer sensor

timestamp	X	у	<i>'</i>	Z
	1502851906	0.371338	0.575684	0.69751
	1502851906	0.21875	0.470215	0.672607
	1502851906	0.161377	0.360107	0.707764
	1502851906	0.164307	0.302734	0.666504
	1502851906	0.243652	0.258545	0.632813

1502851906	0.21875	0.470215	0.672607
1502851906	0.161377	0.360107	0.707764
1502851906	0.164307	0.302734	0.666504
1502851906	0.243652	0.258545	0.632813
1502851906	0.326172	0.226074	0.577637
1502851906	0.358643	0.196045	0.577393
1502851906	0.428223	0.176025	0.656738
1502851906	0.460205	0.172363	0.603516
1502851906	0.47876	0.134521	0.559326
1502851906	0.411865	0.112793	0.531738
1502851906	0.384033	0.085938	0.487061
1502851906	0.404053	0.042236	0.435059
1502851906	0.428955	-0.01685	0.387207
1502851906	0.175293	-0.08179	0.121094
1502851906	-0.12915	-0.03638	-0.00732
1502851906	-0.39819	-0.02417	-0.04663

Sample											•
	Measured temp	eratu									
Server time Laptop time Refrac date Refrac time	e solids re	Cei	rtainty Part	Scale							
27/08/2019 3:46 27/08/2019 3:46 27/08/2011 00:53:30	65.5	20	26 brd	bx	no			•	•	•	•
27/08/2019 4:11 27/08/2019 4:11 27/08/2011 01:18:10	65	20	25 brd	bx	no						
27/08/2019 4:40 27/08/2019 4:40 27/08/2011 01:46:55	66.2	20	25 brd	bx	no			•	•	•	•
27/08/2019 5:00 27/08/2019 5:00 27/08/2011 02:07:46	69	20	28 brd	bx	no						
27/08/2019 5:01 27/08/2019 5:01 27/08/2011 02:08:47	68.6	20	27 brd	bx	no			•	•	•	•
27/08/2019 5:04 27/08/2019 5:04 27/08/2011 02:11:37	68.1	20	25 brd	bx	no						
27/08/2019 5:21 27/08/2019 5:21 27/08/2011 02:27:58	67.4	20	22 brd	bx	no			•	•	•	
27/08/2019 5:47 27/08/2019 5:47 27/08/2011 02:54:07	67.2	20	21 brd	bx	no						
27/08/2019 5:51 27/08/2019 5:51 27/08/2011 02:58:20	41.3	20	28 vegmite	bx	no						
27/08/2019 6:08 27/08/2019 6:08 27/08/2011 03:15:44	62.6	20	21 vegmite	bx	no						
27/08/2019 6:12 27/08/2019 6:12 27/08/2011 03:19:41	62.3	20	21 vegmite	bx	no						
27/08/2019 8:06 27/08/2019 8:06 27/08/2011 05:13:21	0	20	101 vegmite	bx	no						
27/08/2019 8:45 27/08/2019 8:45 27/08/2011 05:51:53	66.3	20	22 vegmite	bx	no						
27/08/2019 8:49 27/08/2019 8:49 27/08/2011 05:56:39	65.1	20	21 vegmite	bx	no						
27/08/2019 9:42 27/08/2019 9:42 27/08/2011 06:49:34	63.9	20	23 vegmite	bx	no						

1	Α	R	C	ט	E				•	•		•	•
	ProductId	ProductCode	ProductName	ProductType	BatchSize	Note							
	1	1	Assembly Stock	Manufactured	1000								
	2	Water	Water	Raw Material						_			_
rrent	3	PC0041	Pearl Caustic	Raw Material					Ū	•	•		•
0	4	PN0045	Sodim Tripol	Raw Material									
0	5	PD0011	Fluorsceine	Raw Material									
0	6	PD0032	Tartrazine Yel	Raw Material					•	•	•	•	•
0	7	LC0040	Product description	Raw Material		l	ogld	WorkOrde	LogDateTime	SensorId	LogDesc	ription	LogData
0	8	LN0114	Product description	Raw Material			19582	WO451	09:33.8	2	Current \	/alue	0
0	9	LF0019	Lemon Fragrance	Raw Material			19583	WO451	09:33.9	1	Weight V	alue (1
0	10	PC0042	Sodium Meta	Raw Material			19584	WO451	09:39.6	1	Weight V	alue (0.5
0	11	PC0002	Product description	Raw Material			19585	WO451	09:40.9	1	Weight V	alue	0
0	12	LN0010	Butyl Glycoether	Raw Material			19586	WO451	09:41.3	1	Weight V	'alue	0.5
0	13	LN0070	SLES 70%	Raw Material			19587	WO451	09:42.0	1	Weight V	alue	0
0	14	LF0019	Lemon Fragrance	Raw Material			19588	WO451	09:42.4	1	Weight V	alue	0.5
0	15	LN0120	Surfactant	Raw Material			19589	WO451	09:43.6	1	Weight V	alue	8.5
0	16	LC0057	Triethanolamine	Raw Material			19590	WO451	09:44.0	1	Weight V	alue	25
0	17	LC0021	Labs Acid	Raw Material			19591	WO451	09:44.4	1	Weight V	alue	24
0	18	LD0163	Product description	Raw Material			19592	WO451	09:44.8	1	Weight V	alue	23.5
0	19	LC0013	Acticide	Raw Material			19593	WO451	09:45.2	1	Weight V	alue	0.5
0	20	LF0099	Toasted Coconut	Raw Material			19594	WO451	09:46.8	1	Weight V	alue	0
0	21	LN0005	CDE 80	Raw Material			19595	WO451	09:47.2		Weight V		5.5
0	22	2	T2000	Manufactured	1000			WO451	09:47.6		Weight V		26.5
0	23	3	Bulldog Blue	Manufactured	1000			WO451	09:48.0		Weight V		28
0	24	Mixing	Manual Action	Recipe Action				WO451	09:48.4		Weight V		27

								TTOURGUE	- roddeteed	ic i roddouranic	rroddetrype	Datonoize	11010			
								1	ιŢ	1 Assembly Stock	Manufactured	1000				
								2	Water	Water	Raw Material					
Runld	RunDateTime Work	Orderld ProductId RunType QtyPlan	ned Qt	tyActual QtyUofm User	ld Notes	IsCompleted I	Current		PC0041	Pearl Caustic	Raw Material				•	•
	425 32:42.2 WO45		725.4	726 KG	1	1	0		PN0045	Sodim Tripol	Raw Material					
	426 36:04.2 WO45		6.25	7.5 KG	1	1	0		PD0011	Fluorsceine	Raw Material					
	427 50:39.4 WO45		81.25	81.5 KG	1	1	0		PD0032	Tartrazine Yel	Raw Material					•
	428 01:43.9 WO45		600	600 KG	1	1	0	_					1 1 - 1	WI-O	dall a «DataTiana locara and	d I a d Danasia di an
	429 04:53.1 WO45		18	18 KG	1	1	0	_	LC0040	Product description	Raw Material		LogId		de LogDateTime Sensorlo	
	430 08:54.7 WO45		600	240 KG	1	1	0		B LN0114	Product description	Raw Material		19582	WO451	09:33.8	2 Current Value
	431 14:30.8 WO45		100	101.5 KG	1	1	0	9	LF0019	Lemon Fragrance	Raw Material		19583	WO451	09:33.9	1 Weight Value
	432 25:35.1 WO45 433 31:25.6 WO45		600	600 KG 2.5 KG	1	1	0	10	PC0042	Sodium Meta	Raw Material		19584	WO451	09:39.6	1 Weight Value
	434 31:41.6 WO45		600	2.5 KG 16 KG	1	1	0	11	PC0002	Product description	Raw Material		19585	WO451	09:40.9	1 Weight Value
	435 31:45.1 WO45		600	8 KG	1	1	0	12	LN0010	Butyl Glycoether	Raw Material		19586	WO451		1 Weight Value
	436 39:50.7 WO45		0.12	2.5 KG	1	1	0		LN0070	SLES 70%	Raw Material			7 WO451		1 Weight Value
	437 39:57.6 WO45		600	7 KG	1	1	0		LF0019		Raw Material					
5	438 40:01.5 WO45		1	0 KG	1	1	0	_		Lemon Fragrance				WO451		1 Weight Value
5	439 40:05.7 WO45	51 24	600	5 KG	1	1	0	_	LN0120	Surfactant	Raw Material		19589	WO451	09:43.6	1 Weight Value
7	440 43:30.5 WO45	51 21	40	40.5 KG	1	1	0	16	LC0057	Triethanolamine	Raw Material		19590	WO451	09:44.0	1 Weight Value
3	441 46:46.9 WO45	51 24	600	195 KG	1	1	0	17	LC0021	Labs Acid	Raw Material		19591	WO451	09:44.4	1 Weight Value
)	442 49:21.0 WO45		80.6	84 KG	1	1	0	18	LD0163	Product description	Raw Material		19592	WO451	09:44.8	1 Weight Value
	443 WO46		805.5	KG	1	0	0	19	LC0013	Acticide	Raw Material		19593	3 WO451		1 Weight Value
	444 WO46		600	KG	1	0	0	- 20	LF0099	Toasted Coconut	Raw Material			WO451		-
	445 WO46		11	KG	1 Increase stirrer	0	0		LN0005	CDE 80	Raw Material					1 Weight Value
	446 WO46		600	KG	1	0	0	_				1000		WO451		1 Weight Value
	447 WO46		25	KG	1	0	0	22		2 T2000	Manufactured	1000	19596	WO451	09:47.6	1 Weight Value
	448 WO46		600	KG	1	0	0	23		3 Bulldog Blue	Manufactured	1000	19597	7 WO451	09:48.0	1 Weight Value
	449 WO46 450 WO46	-	23.2	KG	1 Reduce stirrer	0	0	24	Mixing	Manual Action	Recipe Action		19598	WO451	09:48.4	1 Weight Value
	450 WO46 451 WO46		600 90	KG KG	1	0	0	25	5	4 Wash & Shine	Manufactured	1000		WO451		1 Weight Value
,	451 0040)1	90	NO	1	U	U	26	PD0067	CARMOISINE	Raw Material		13033		00.7012	2 Troight value
								27	N0088	Silicone Emul	Raw Material					


```
. . . . . . . . .
```

Data Pre-processing

Data cleaning

- Remove constant feature does not have impact in the outcome
- Remove irrelevant feature id values
- Remove duplicate features (across columns) and samples (across rows) – because this cause data imbalance and over-fitting during training
- Identify and remove outliers as they fall well outside decision boundary and can skew your data
- Identify and remove highly correlated features Some features may be highly correlated and therefore redundant to a certain degree (because they same information about the target variable)

Data Imputation

- Detect missing features / incorrect or missing values
- Detecting missing features can be done by plotting the histogram of each feature
- unusual outlier spikes indicate the use of special values,
- a spike in the middle of the distribution is a sign that mean/median imputation has already been performed.
- To fix missing features
- Sometime use mean / median / mode of the entire feature for imputation
- For time-series data, impute using value repetition, or interpolation is good

Data Imputation

- Categorical Imputation: Missing categorical variables are generally replaced by the most commonly occurring value in other records
- Numerical Imputation: Missing numerical values are generally replaced by the mean of the corresponding value in other records

Discretization

- Discretization involves taking a set of data values and grouping sets of them together logically into bins
- Binning can apply to numerical values as well as to categorical data values.
- Grouping of equal intervals (e.g., from seconds to minute)
- Grouping based on equal frequencies
- Grouping based on sorting

Feature encoding

- Ordinal features (such as age) may have integer values, but they differ from numeric features
- Tree-based models can use label-encoding (i.e. fixed strings or integers denoting class membership) and don't need further preprocessing.
- Non-tree methods require that categorical features be one-hot encoded (each category is converted to variable with value 0/1)

Normalisation

- Scaling or normalisation is good for achieving low training loss in particular for non-tree based methods
- Numerical features can often benefit from transformations. Log transformation, np.log(1 + x), is a very strong transformation that is particularly helpful when a feature observes a power-law relationship

Dimensionality Reduction

- dimensionality reduction techniques are useful for compressing the features onto a lower-dimensional subspace.
- Reducing the dimensionality of our feature space has the advantage that less storage space is required, and the learning algorithm can run much faster
- improve the predictive performance of a model if the dataset contains a large number of irrelevant features (or noise)

Data Shuffling

- During preprocessing it's important to shuffle your dataset prior to splitting it into train/validation/test subsets.
- utilize the stratify on feature of sklearn.model_selection.train_test_split() to ensure there is consistent distribution of your minority targets across all your subsets.
- Help our machine learning algorithm not only performs well on the training dataset but also generalizes well to new data

Feature Generation

- Mapping existing features into a new space, Example: Date-> day of the week
- Combining multiple features into a composite. Example: sum of 2 columns
- aggregating data to find patterns: Example: mean values of each minute in per second time-series data
- Merging auxiliary data

Train Model

- It is essential to compare at least a handful of different learning algorithms.
 in order to train and select the best performing model
- Different techniques summarized as "cross-validation" can be used for validation during the training process
- In cross-validation, dataset is further divided into training and validation subsets in order to estimate the generalization performance of the model.

Train Model: Parameter Tuning

- We cannot expect that the default parameters of the different learning algorithms provided by software libraries are optimal for our specific problem task
- Frequent use of hyperparameter optimization techniques that help us to fine-tune the performance of our model
- We can think of those hyperparameters as parameters that are not learned from the data but represent the knobs of a model that we can turn to improve its performance

Train Model: Parameter Tuning

- We cannot expect that the default parameters of the different learning algorithms provided by software libraries are optimal for our specific problem task
- Frequent use of hyperparameter optimization techniques that help us to fine-tune the performance of our model
- We can think of those hyperparameters as parameters that are not learned from the data but represent the knobs of a model that we can turn to improve its performance

Evaluating models

- After we have selected a model that has been fitted on the training dataset, we can use the test dataset to estimate how well it performs on this unseen data
- If we are satisfied with its performance, we can now use this model to predict new, future data.
- Data must be in pre-processed format for test dataset also.
- One commonly used metric for evaluation is accuracy, which is defined as the proportion of correctly classified instances

Learn, Practice and Enjoy the Aljourney

