

Automatic Generation Control (AGC)

March 2023, Milan

Tommaso Della Porta 10623678 Lorenzo Ghisalberti 10621790 Alessandro Longhi 10610410

System model

$$\begin{cases} \dot{x} = Ax + B_1 u_1 + B_2 u_2 \\ y_i = C_i x, & i = 1, 2 \end{cases}$$

With $x = [\Delta x_1^T, \Delta v_1, \Delta p_e, \Delta v_2, \Delta x_2]^T$

- Δx_i is the deviation of the internal states of area *i* with respect to their nominal value,
- Δv_i are variables introduced to achieve integral action,
- Δp_e is the variation of the total power exchange between the areas with respect to its nominal value.

Eigenvalues and Spectral abscissa

Continuous-time	Discrete-time
0.0000 + 0.0000i	1.0000 + 0.0000i
0.0000 + 0.0000i	1.0000 + 0.0000i
-0.0506 + 2.0380i	0.9744 + 0.2014i
-0.0506 - 2.0380i	0.9744 - 0.2014i
-4.3931 + 0.0000i	0.6445 + 0.0000i
-4.5326 + 0.0000i	0.6356 + 0.0000i
-5.0006 + 0.0000i	0.6065 + 0.0000i
-5.0010 + 0.0000i	0.6065 + 0.0000i
-1.9971 + 0.0000i	0.8190 + 0.0000i
-1.9933 + 0.0000i	0.8193 + 0.0000i
-0.0790 + 0.3331i	0.9916 + 0.0330i
-0.0790 - 0.3331i	0.9916 - 0.0330i
-0.3787 + 0.0000i	0.9628 + 0.0000i
-0.2182 + 0.0000i	0.9784 + 0.0000i
-0.1514 + 0.0000i	0.9850 + 0.0000i
-0.0721 + 0.0000i	0.9928 + 0.0000i
-0.0501 + 0.0000i	0.9950 + 0.0000i
-1.3885 + 0.0000i	0.8704 + 0.0000i
-1.3891 + 0.0000i	0.8703 + 0.0000i

The system is not open-loop asymptotically stable

 $Sampling\ time = 0.1s$

Structure constraints

Given the following information structure constraints:

Centralized structure:
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
;

Decentralized structure:
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
;

Distrubuted 1 structure:
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
;

Distributed 2 structure:
$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
;

No Fixed Modes have been found for both continuous and discrete time and in different control structures

Discrete time

CONTINUOS TIME

Continuous time – Spectral abscissa limitation

Continuous time – Angular region

Continuous time – Control effort limitation

Control effort comparison

Continuous time – Best mix of constraint

Continuous time – System model with noise

$$\begin{cases} \dot{x} = Ax + B_1 u_1 + B_2 u_2 + B_w w \\ z = H_w x + D_w u \end{cases}$$

Noise

 $w \sim U(0,1);$

Noise matrix

Bw = eye(19);

Output weight

Q = eye(19);

Q(10,10) = 100;

Weight matrices

Hw = [Q; zeros(2,19)];

Dw = [zeros(19,2);eye(2,2)];

Continuous time with noise – H2 control

Continuous time with noise – H∞ control

Discrete time

DISCRETE TIME

Discrete time – Spectral abscissa limitation

Discrete time – Circle region

Discrete time – Control effort limitation

Control effort comparison

15

10

20

25

35

30

40

45

50

-10

Discrete time – Best mix of constraint

Discrete time – System model with noise

$$\begin{cases} x_{k+1} = Fx_k + Gu_k + G_w w_k \\ z_k = H_w x_k + D_w u_k \end{cases}$$

System discretization

sys2=ss(Atot,eye(19), eye(19),0);
sys2d=c2d(sys2,Ts);
[Nw,Gw,Tw]=ssdata(sys2d);

Output weight

Q = eye(19);Q(10,10) = 100;

Weight matrices

Hw = [Q; zeros(2,19)];

Dw = [zeros(19,2);eye(2,2)];

Discrete time with noise – H2 control

Discrete time with noise – H∞ control

