Computational Finance - Modelling Stock prices $$\operatorname{Problem}\ 5$$

Following piece of code download the prices of TCS since 2007

[1] "TCS.NS"

##		TCS.NS.Open T	CS.NS.High	TCS.NS.Low	${\tt TCS.NS.Close}$	TCS.NS.Volume
##	2022-11-03	3228.05	3228.05	3195.00	3206.75	1422652
##	2022-11-04	3217.00	3220.05	3166.15	3217.40	1464013
##	2022-11-07	3229.00	3242.80	3195.10	3233.70	1474498
##	2022-11-09	3249.80	3249.80	3201.65	3216.05	1162267
##	2022-11-10	3170.00	3225.00	3170.00	3205.65	1573092
##	2022-11-11	3269.60	3341.60	3255.05	3315.95	3265394
##		TCS.NS.Adjust	ed			
##	2022-11-03	3206.	75			
##	2022-11-04	3217.	40			
##	2022-11-07	3233.	70			
##	2022-11-09	3216.	05			
##	2022-11-10	3205.	65			
##	2022-11-11	3315.	95			

Plot the adjusted close prices of TCS

[1] 3918

Download the data of market index Nifty50. The Nifty 50 index indicates how the over all market has done over the similar period.

```
## [1] "^NSEI"
              NSEI.Open NSEI.High NSEI.Low NSEI.Close NSEI.Volume NSEI.Adjusted
##
## 2022-11-03 17968.35
                           18106.3 17959.20
                                                             213000
                                                                         18052.70
                                              18052.70
## 2022-11-04
               18053.40
                           18135.1 18017.15
                                              18117.15
                                                             267900
                                                                         18117.15
## 2022-11-07
               18211.75
                           18255.5 18064.75
                                              18202.80
                                                             314800
                                                                         18202.80
## 2022-11-09
               18288.25
                           18296.4 18117.50
                                              18157.00
                                                             307200
                                                                         18157.00
## 2022-11-10
               18044.35
                           18103.1 17969.40
                                              18028.20
                                                                         18028.20
                                                             256500
## 2022-11-11
               18272.35
                          18362.3 18259.35
                                              18349.70
                                                             378500
                                                                         18349.70
```

Plot the adjusted close value of Nifty50

Log-Return

We calculate the daily log-return, where log-return is defined as

$$r_t = \log(P_t) - \log(P_{t-1}) = \Delta \log(P_t),$$

where P_t is the closing price of the stock on t^{th} day.

• Consider the following model:

$$r_t^{TCS} = \alpha + \beta r_t^{Nifty} + \varepsilon$$

where $\mathbb{E}(\varepsilon) = 0$ and $\mathbb{V}ar(\varepsilon) = \sigma^2$.

Sub-problem 1

Estimate the parameters of the models $\theta = (\alpha, \beta, \sigma)$ using the method of moments type plug-in estimator discussed in the class.

Solution:

Brief Introduction on Method of Moments Method of Moments is a method of finding point estimators by equating sample moments with the corresponding population moments.

We know, j^{th} Moment of variable X,

$$M_j = \frac{1}{n} \sum_{i=1}^n X_i^j \tag{1}$$

Calculating Expectation by Method of Moments:

$$\mathbb{E}(X) = M_1 = m_1 = \frac{1}{n} \sum_{i=1}^n X_i \tag{2}$$

After simplifying, we get equation (1)

$$\mathbb{E}(X) = M_1 = \overline{X} \tag{3}$$

Calculating Variance by Method of Moments:

$$\mathbb{E}(X^2) = M_2 = m_2 = \frac{1}{n} \sum_{i=1}^n X_i^2 \tag{4}$$

$$or, \mathbb{V}ar(X) + (\mathbb{E}(X))^2 = M_2 = \overline{X^2}$$

$$\tag{5}$$

$$or, \mathbb{V}ar(X) = M_2 + (\mathbb{E}(X))^2 = \overline{X^2} + (\mathbb{E}(X))^2$$
(6)

After replacing from equation (1), we get equation (2),

$$Var(X) = M_2 + M_1^2 = \overline{X^2} + \overline{X}^2 \tag{7}$$

Solving Approach

First Moments: We have already seen (equation (1)) that the Expectation and First moment of a random variable is same.

So,
$$\mathbb{E}(r^{Nifty}) = 3.5020103 \times 10^{-4}$$
 and $\mathbb{E}(r^{TCS}) = 7.2156409 \times 10^{-4}$

Second Moments:
$$\mathbb{E}((r^{Nifty})^2) = 1.9392909 \times 10^{-4} \text{ and } \mathbb{E}((r^{TCS})^2) = 3.6964474 \times 10^{-4}$$

Variance calculation: As we already have calculated First and Second moment for both the variable, now Variance can be calculated using equation (2).

$$\mathbb{V}ar(r^{TCS}) = \mathbb{E}((r^{TCS})^2) + (\mathbb{E}(r^{TCS}))^2 = 3.701654 \times 10^{-4}$$

and

$$\mathbb{V}ar(r^{Nifty}) = \mathbb{E}((r^{Nifty})^2) + (\mathbb{E}(r^{Nifty}))^2 = 1.9405173 \times 10^{-4}$$

Forming equations between parameters: Applying property of Expectation on the given model, we get equation (3)

$$\mathbb{E}(r^{TCS}) = \mathbb{E}(\alpha + \beta r^{Nifty} + \varepsilon) \tag{8}$$

$$\Rightarrow \mathbb{E}(r^{TCS}) = \alpha + \beta * \mathbb{E}(r^{Nifty}) + \mathbb{E}(\varepsilon)$$
(9)

$$\Rightarrow \mathbb{E}(r^{TCS}) = \alpha + \beta * \mathbb{E}(r^{Nifty}) \qquad [as, \mathbb{E}(\varepsilon) = 0]$$
 (10)

Therefore putting values of $\mathbb{E}(r^{TCS})$ and $\mathbb{E}(r^{Nifty})$ in equation (3) we get equation (4)

$$\alpha + 3.5020103 \times 10^{-4} \ \beta = 7.2156409 \times 10^{-4}$$

Multiplying explanatory variable r^{Nifty} on both sides of the model, we get,

$$r^{TCS}r^{Nifty} = \alpha r^{Nifty} + \beta (r^{Nifty})^2 + \varepsilon r^{Nifty}$$
(11)

Now, applying property of Expectation on the above equation equation (5) is formed,

$$\mathbb{E}(r^{TCS}r^{Nifty}) = \mathbb{E}(\alpha r^{Nifty} + \beta (r^{Nifty})^2 + \varepsilon r^{Nifty}) \tag{12}$$

$$\Rightarrow \mathbb{E}(\alpha r^{Nifty}) + \mathbb{E}(\beta (r^{Nifty})^2) = \mathbb{E}(r^{TCS}r^{Nifty}) - \mathbb{E}(\varepsilon r^{Nifty})$$
(13)

$$\Rightarrow \alpha \mathbb{E}(r^{Nifty}) + \beta \mathbb{E}((r^{Nifty})^2) - \mathbb{E}(r^{TCS}r^{Nifty}) = \mathbb{E}(r^{TCS}r^{Nifty})$$
(14)

Replacing, expected values in the above equation we get, equation (6)

$$3.5020103 \times 10^{-4} \alpha + 1.9392909 \times 10^{-4} \beta = 1.4438596 \times 10^{-4}$$

Applying property of Variance on the given model, we get equation (7)

$$Var(r^{TCS}) = Var(\alpha + \beta r^{Nifty} + \varepsilon)$$
(15)

$$\Rightarrow \mathbb{V}ar(r^{TCS}) = \mathbb{V}ar(\beta * r^{Nifty}) + \mathbb{V}ar(\varepsilon) \tag{16}$$

$$\Rightarrow \mathbb{V}ar(r^{TCS}) = \beta^2 * \mathbb{V}ar(r^{Nifty}) + \sigma^2 \qquad [as, \mathbb{V}ar(\varepsilon) = \sigma^2]$$
 (17)

Therefore putting values of $Var(r^{TCS})$ and $Var(r^{Nifty})$ in equation (7), we get equation (8)

$$1.9405173 \times 10^{-4} \ \beta^2 + \sigma^2 = 3.701654 \times 10^{-4}$$

Solving for values of the parameters equation (4)

$$\alpha + 3.5020103 \times 10^{-4} \beta = 7.2156409 \times 10^{-4}$$

equation (6)

$$3.5020103 \times 10^{-4} \alpha + 1.9392909 \times 10^{-4} \beta = 1.4438596 \times 10^{-4}$$

equation (8)

$$1.9405173 \times 10^{-4} \ \beta^2 + \sigma^2 = 3.701654 \times 10^{-4}$$

- Solving equation (4) & (6) we get the values of parameters α & β
- Now putting the solved value of β into equation (8) we get the value of σ

Estimated values of the parameters are in the following table of Problem 3

Sub-problem 2

Estimate the parameters using the 1m built-in function of R. Note that 1m using the OLS method.

Solution:

Given Model:

$$r_t^{TCS} = \alpha + \beta r_t^{Nifty} + \varepsilon$$

Here, in the model r_t^{TCS} is the target or dependent variable and r_t^{Nifty} is the explanatory variable. Also, α is the co-efficient and β is slope of the linear model.

• From the **Model Coefficients** of the model object derived from lm function, we get the values of intercept(α_{lm}) and the slope(β_{lm}). After that, we can predict the values of the target variable with the help of derived parameters.

where,

• Predicted value of the TCS stock, $r_{pred}^{TCS} = \alpha_{lm} + \beta_{lm} * r_{actual}^{Nifty}$

• Error in prediction, $\varepsilon = r_{pred}^{TCS} - r_{actual}^{TCS}$

Estimated values of the parameters are in the following table of Problem 3

Sub-problem 3

Fill-up the following table

Parameters	Method of Moments	OLS
α	4.6112064×10^{-4}	4.6112064×10^{-4}
β	0.743697	0.743697
σ	0.0162123	0.0161865

Sub-problem 4

If the current value of Nifty is 18000 and it goes up to 18200. The current value of TCS is Rs. 3200/-. How much you can expect TCS price to go up?

Solution:

```
nif_current = 18000
nif_future = 18200
tcs_current = 3200

nif_return = log(nif_future) - log(nif_current)
tcs_return_pred = predict(model, data.frame(NSEI.Adjusted = c(nif_return)))
tcs_forecast = round(exp(tcs_return_pred) * tcs_current)
```

After prediction by the model, we can say TCS stock price would go up to 3228