Ensemble Methods for NBA Salary Prediction

UW SPA DRP Spring 2022

Pranav Natarajan

PROBLEM STATEMENT

Predicting the Salary of an NBA player given their intrinsic information and in game statistics through the season.

DATA QUERYING & PROGRAMMING

- R v(4.1.2)
- nbastatR (maintained by Abe Resler)
- BasketballReference

R PACKAGES USED

- tidyr v(1.2.0) & dplyr v(1.0.8)
- caret v(6.0-92)
- ranger v(0.13.1)
- Boruta v(7.0.0)
- xgboost v(1.6.0.1)
- glmnet v(4.1-4)

DATA PREPROCESSING

- Rookies from 1985-86 to 2020-21
- Salary normalised by yearly salary cap
- Pertinent Features:-
 - Usage %
 - Player Efficiency Rating
 - VORP
 - Win Shares
- 80-20 stratified train-test split
- 5 fold CV for hyperparameter tuning

- Age
- Position
- Team(s)
- Count of Games

WHAT IS AN ENSEMBLE MODEL?

- A Model that "aggregates" estimates from a (large) number of other models (weak learners) to provide a final estimate for the supervised learning problem.
- Training sets are bagged or pasted

BORUTA ALGORITHM

Central Idea:Feature is useful *iff* it performs better than the best randomised feature

BASELINE MODEL

- Elastic Net
- Optimal Hyperparameters
 - $\alpha = 0.1$
 - $-\lambda = 0.0003342206$

RESULTS

MODEL	OUT OF SAMPLE RMSE	ERROR VALUATION IN 2021 SALARY (\$)
Random Forest	0.05375	6,041,710
XGBoost-Linear	0.05485	6,165,897
Stochastic XGBoost - Tree	0.05486	6,167,435
XGBoost - Tree	0.05491	6,172,589
Elastic Net	0.05945	6,683,473

RANDOM FOREST

RANDOM FOREST FEATURE SELECTION

RANDOM FOREST HYPERPARAMETER TUNING

GRADIENT BOOSTING & XGBOOST

13

STOCHASTIC GRADIENT DESCENT

- Random Subsampling (without replacement) of Training set
- Evades plateaus and local minima in cost function
- Faster execution with minimal tradeoff

XGBOOST FEATURE SELECTION

STOCHASTIC XGBOOST TREE HYPERPARAMETER TUNING

CONCLUSIONS & SCOPE FOR FURTHER RESEARCH

- Ensemble methods better for the supervised learning problem
- Best Model:- Random Forest
- Further hyperparameter tuning

- 2021 Salary Cap = \$ 109,140,000

MODEL	OUT OF SAMPLE RMSE	ERROR VALUATION IN 2021 SALARY (\$)
Random Forest	0.05375	6,041,710
XGBoost-Linear	0.05485	6,165,897
Stochastic XGBoost - Tree	0.05486	6,167,435
XGBoost - Tree	0.05491	6,172,589
Elastic Net	0.05945	6,683,473

Thank You

Adams, L. (2021, August 4). *Rookie scale salaries for 2021 NBA first-round picks*. Retrieved June 8, 2022, from https://www.hoopsrumors.com/2021/08/rookie-scale-salaries-for-2021-nba-first-round-picks.html

Boehmke, B. (n.d.). *Gradient Boosting Machines*. Gradient Boosting Machines · UC Business Analytics R Programming Guide. Retrieved June 8, 2022, from http://uc-r.github.io/gbm_regression#idea

Chen, T., & Guestrin, C. (2016, June 10). *XGBoost: A scalable tree boosting system*. arXiv.org. Retrieved June 8, 2022, from https://arxiv.org/abs/1603.02754

Friedman, J., Hastie, T., & Tibshirani, R. (2010). *Regularization Paths for Generalized Linear Models via Coordinate Descent.* . *URL* . Retrieved from https://www.jstatsoft.org/v33/i01/

Kuhn, M. (2022). *caret: Classification and Regression Training. R package version 6.0-92.* Retrieved from https://CRAN.R-project.org/package=caret

Kursa, M. B., & Rudnicki, W. R. (2010). *Feature Selection with the Boruta Package*. Retrieved from http://www.jstatsoft.org/v36/i11/

Nishida, K. (2019, September 27). *Finding variable importance with Random Forest & Boruta*. Medium. Retrieved June 8, 2022, from https://blog.exploratory.io/finding-variable-importance-with-random-forest-boruta-28badd116197

Parr, T., & Howard, J. (n.d.). *The intuition behind gradient boosting*. Gradient Boosting: Distance to Target. Retrieved June 8, 2022, from https://explained.ai/gradient-boosting/L2-loss.html#sec:2.3

Resler, A. (2022, May 6). *Abresler/NBASTATR: R's interface to NBA data version 0.1.151 from github*. Retrieved June 8, 2022, from https://rdrr.io/github/abresler/nbastatR/

Sports Reference LLC. (n.d.). Basketball-Reference.com - Basketball Statistics and History. Retrieved June 8, 2022, from https://www.basketball-reference.com/

Steinberg, L. (2018, June 28). *The NBA draft process for dummies*. Retrieved June 8, 2022, from https://www.forbes.com/sites/leighsteinberg/2018/06/21/behind-the-scenes-the-nba-draft-process-fordummies/?sh=38a3134f6095

Wickham, H., & Girlish, M. (2022). *tidyr: Tidy Messy Data. R package version 1.2.0.* . Retrieved from https://CRAN.R-project.org/package=tidyr

Wickham, H., François, R., Henry, L., & Muller, K. (2022). *dplyr: A Grammar of Data Manipulation. R package version 1.0.8.* . Retrieved from https://CRAN.R-project.org/package=dplyr

Wood, R. (2011, June 15). *The History of the 3-pointer*. The history of the 3-pointer. Retrieved June 8, 2022, from https://www.usab.com/youth/news/2011/06/the-history-of-the-3-pointer.aspx

Wright, M. N., & Ziegler, A. (2017). ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. *Journal of Statistical Software 77(1), 1-17*. https://doi.org/10.18637/jss.v077.i01

Mazzanti, S. (2021, February 12). *Boruta explained the way I wish someone explained it to me*. Medium. Retrieved June 8, 2022, from https://towardsdatascience.com/boruta-explained-the-way-i-wish-someone-explained-it-to-me-4489d70e154a

