a. Proste układy

Zadanie 2.

Układ zgodny z wymaganiami zadania :

• Aby w układzie płynął prąd 1A należy zastosować opornik 120hm

• Aby w układzie płynął prąd 1mA należy zastosować opornik 12kOhm

• Aby w układzie płynął prąd 1uA należy zastosować opornik 12Mohm

- Pomiary zostały przedstawione na rysunkach powyżej
- Aby wykorzystać miernik uniwersalny bez przecinania ścieżki nie możemy użyć wbudowanego amperomierza ponieważ łączy się go szeregowo,

Możemy dokonać pomiaru napięcia funkcją voltomierza. Znając napięcie układu i wartość rezystancji (zakładamy że rezystor został osobno sprawdzony i spełnia swoje normy) możemy zastosować prawo ohma dzięki któremu jesteśmy w stanie wyliczyć prąd:

I=U/R

Podstawiając znane/zmierzone wartości mamy:

I= 12V / 120000hm = 1mA

Co jest zgodne z naszym wcześniejszym pomiarem bezpośrednim.

Dla pozostałych prądów obliczenia wyglądają tak: I= 12V/12 000 0000hm = 1uA oraz I= 12V/12Ohm =1A

Tak połączone rezystory tworzą klasyczny dzielnik napięcia a przez to ze mają równe wartości napięcie dzieli się równo to jest Ur1 =Ur2=12/2=6V

Odpowiedzi:

Prąd płynący między A i B wynosi 6mA

Prąd płynący między B i C wynosi 6mA

Różnica potencjałów A i B to 6V

Różnica potencjałów B i C to 6V

Sprawdzenie w programie multisim:

b. Oscyloskop

Zadanie 1.

Zadanie 2.

Dla generowanego przebiegu sinusoidalnego o częstotliwości 200Hz i napięciu międzyszczytowym 10V z oscyloskopu odczytuje:

Napięcie między szczytowe ~10V

Częstotliwość: czas trwania T2-T1 = 4.886ms co można przeliczyć na

f=1/T=1/4.886=204.6Hz Czas trwania okresu T 4.886

Dla przebiegu trójkątnego z generatorem o tych samych parametrach:

Napięcie międzyszczytowe 10V

Czas trwania okresu 5ms

Częstotliwość f = 1/0,005 = 200Hz

Dla napięcia prostokątnego: Napięcie międzyszczytowe 10V Czas okresu trwania 4,924ms Częstotliwość f=1/0,004924 = 203,08Hz

Odpowiedz:

Wszystkie odczyty oscyloskopu pokrywają się z parametrami generatora, trzeba uwzględnić niewielka kilkuprocentową pomyłkę odczytu np. przez nie dokładne ustawienie kursora przez operatora.

c. Filtr dolnoprzepustowy

Zadanie 1.

10Hz przy C1=1uF

50Hz przy C1=1uF

80Hz przy C1=1uF

• 100Hz przy C1=1uF

150Hz przy C1=1uF

• 200Hz przy C1=1uF

Wniosek: Filtr dolnoprzepustowy według obliczeń powinien mieć częstotliwość graniczną przy około 80 Hz $f_{\rm f}=\frac{1}{2\pi RC}$) i zgadza się to z obserwacjami symulacji w programie.

Charakterystyka tego filtra wygląda tak:

Pomiary po zmianie parametru C1:

• 10Hz przy C1=10uF

50Hz przy C1=10uF

80Hz przy C1=10uF

• 100Hz przy C1=10uF

• 150Hz przy C1=10uF

• 200Hz przy C1=10uF

Wniosek: Wielkość C1 wpływa na częstotliwość progową działania filtra dolnoprzepustowego, przy podniesieniu wartości c1 do 10uF amplituda spadła o połowę już przy częstotliwości 50Hz, wartość progowa dla takiego filtru spada do 7,96 Hz

d. Ploter Body'ego (charakterograf)

• 10Hz

• 50Hz

• 80Hz

• 100Hz

• 150Hz

• 200Hz

Błąd procentowy = (80,6 - 79,6)/79,6*100 = 1,25%

Wniosek: Wykres Body'ego różni się od wyliczonej częstotliwości progowej filtra dolnoprzepustowego o wartość kilkuprocentową - wynikać to może z niedokładnego odczytu wykresu przez operatora oraz nie doskonałej symulacji.