法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

- □ 课程详情请咨询
 - 微信公众号:小象学院
 - 新浪微博:小象AI学院

目录

集成模型简介

决策树简介:以CART为例

AdaBoost算法

案例:基于CART的AdaBoost算法

□ 个体分类器

又称为基分类器,由现有的算法从数据集中产生,例如:

- 决策树(C4.5, CART)
- 逻辑回归
- SVM
- □ 个体分类器的异同

同质:全部的个体分类器属于同一类别(可以有不同参数)

异质:包含两种或更多的个体分类器

- □ 为什么要构建集成模型
- 和单一分类器比,集成模型具有如下优点:
- 泛化能力强
- 预测性能准确跟结构复杂的分类器相当
- 稳定性高
- 对数据的容忍度更高

□ 关于集成模型的准确性的简单推导

考虑二分类问题 $y \in \{-1,1\}$ 和真实函数f,,假设基分类器 h_i 的错误率为 ϵ ,若采用简单投票法则结合T个基分类器,且超过一半的基分类器正确就认为集成分类器正确:

$$H(x) = sign(\sum h_i(x))$$

在各个基分类器错误率独立的假设下,集成分类器的错误率 为:

$$P(H(x) \neq f(x))$$

$$= \sum_{k=0}^{T/2} {T \choose k} (1 - \epsilon)^k \epsilon^{T-k} \le \exp(-\frac{T(1 - 2\epsilon)^2}{2})$$

□ 关于集成模型的准确性的简单推导(续)

可以看出,当T增大时,集成的错误率将指数下降,最终趋向于0。

注意:

- 基分类器的"错误率独立"的假设往往不成立。
- 目标:产生好而不同的个体分类器

□ 两种常用的集成: Boosting和Bagging

□ 两种常用的集成: Boosting和Bagging

目录

集成模型简介

决策树简介:以CART为例

AdaBoost算法

案例:基于CART的AdaBoost算法

□ CART: 分类与回归树

采用一种二分递归分割的技术,将当前的样本集分为两个子样本集,使得生成的子节点都有两个分支。因此,CART算法生成的决策树是结构简洁的二叉树。

<u>分类:</u>

叶节点上出现频率最高的类别

回归:

叶节点上目标变量的均值

□ Gini指数

在分类问题上,Gini指数是反应样本纯度的指标。Gini越小,纯度越高。

$$Gini(D) = 1 - \sum p_k^2$$

D:数据集

 p_k :第k类样本的占比, $\sum p_k = 1$

□ Gini指数(续)

属性a在数据集D中的基尼指数:

$$Gini(D, a) = \sum \frac{|D_v|}{|D|} Gini(D_v)$$

 D_v 是属性a的第v个值对应的全部样本, $\{D_v\}$ 的一个划分。

□ Gini指数的作用

遍历所有可能的属性并计算出Gini指数,选择最小Gini指数对应的属性进行划分

□ 连续属性

由于CART是二叉树,对于连续属性X需要进行切分。 步骤:

- 1. 确定划分的阈值m,将数据集D划分为 $\{x<=m\}$ 和 $\{x>m\}$,计算出当前的Gini(D,x|m)
- 2. 所有的Gini(D,x|m)中,最小的Gini(D,x|m)就是x在D上的Gini,此时的m就是最优切分

□ 离散属性

当离散属性取值个数较少时

枚举出所有可能的组合,对每种组合计算Gini。最小的Gini对应的切分方案视为最优切分方案。

例如:婚姻={已婚,未婚,其他},枚举方案有:

- ✓ {已婚}, {未婚, 其他}
- ✓ {未婚}, {已婚,未婚}
- ✓ {其他}, {已婚,未婚}

□ 离散属性(续)

当离散属性取值较多时, 枚举法将变的很困难。

解决方法:

对离散属性进行数值编码,例如用目标变量的浓度进行编码,将离散属性变为连续属性,再进行分割

注:

次序变量(如年级,学历等)的分割,要保证次序不变。

□ 建立CART的步骤

输入: 训练数据集D, 停止计算的条件:

输出:CART决策树。

根据训练数据集,从根结点开始,递归地对每个结点进行以下操作,构建二叉决策树;

- 1.设结点的训练数据集为D, 计算现有特征对该数据集的Gini系数。
- 2.在所有可能的特征A以及它们所有可能的切分点a中,选择Gini系数最小的特征及其对应的切分点作为最优特征与最优切分点。依最优特征与最优切分点,从现结点生成两个子结点,将训练数据集依特征分配到两个子结点中去。
- 3.对两个子结点递归地调用步骤1~2,直至满足停止条件。
- 4.生成CART决策树。

□ 建立CART的步骤(续)

终止条件:

- 当前没有特征可以选择
- 所有样本的类别一致
- 所有样本在所有属性上的取值一致
- 其他预设条件,如深度、叶节点个数、Gini值得等关键思想:
- ✓ 分而治之
- ✓ 递归

目录

集成模型简介

决策树简介:以CART为例

AdaBoost算法

案例:基于CART的AdaBoost算法

□ AdaBoost基本原理

一种基于Boosting思想的迭代算法,通过改变数据分布来实现基分类器的迭代(分类性能越来越强)。

它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后加权融合起来,作为最后的决策分类器。

权值调整思想:

上一次分类正确的样本,降低权值;上一次分类错误的样本,提高权值。

□ 错误率及权重调整

错误率:

权重:

AdaBoost模型有2种权重:

- 第t步迭代中的分类器的权重α^t
- \triangleright 第t步迭代中每个样本的权重 D_i^t

□ 错误率及权重调整(续)

分类器的权重 α^t 的计算公式:

$$\alpha = \frac{1}{2} \ln(\frac{1 - \epsilon}{\epsilon})$$

样本的权重 D_i^t 的计算公式:

对于分类正确的样本,

$$D_i^{t+1} = \frac{D_i^t e^{-\alpha}}{sum(D)}$$

对于分类错误的样本,

$$D_i^{t+1} = \frac{D_i^t e^{\alpha}}{sum(D)}$$

□ 错误率及权重调整(续)

其中sum(D)是归一化因子,使得 $\sum D_i^{t+1} = 1$ 思考:

当错误率 $\epsilon>0.5$ 时,会有什么样的影响,此时应该怎么操作

□ 基分类器的集成

在T次迭代中,训练出T个分类器 $\{G_t\}$ 及T个权重 $\{\alpha_t\}$,t=1,2,...,T,最终的分类器为:

$$f(x) = \sum_{t=1}^{T} \alpha_t G_t(x)$$

目录

集成模型简介

决策树简介:以CART为例

AdaBoost算法

案例:基于CART的AdaBoost算法

案例

□ 基于CART的AdaBoost模型在违约预测中的应用

CART中样本的权重调整

由于CART使用Gini作为属性选择的指标,且样本权重无法反映在Gini中,故无法直接将样本的权值带入CART的构建中去。

解决方法:

找出所有样本的权重 $\{w_i\}$ 的最小值 w_{min} ,对于样本i,重复 $\frac{w_i}{w_{min}}$ 次放入样本中。

思考:

采用错误率作为属性选择的指标,就可以直接将样本的权值带入基分类器的构建中去

案例

□ 基于CART的AdaBoost模型在违约预测中的应用(续) 4521条记录,

14个属性:年龄、婚姻、职业、历史违约记录等

1个目标变量:在贷后中是否违约

Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0
age 3	job	marital	education	default	spending	housing	cash_loan	contact_number_type	maturity	app_channel	max_late_charge	cash_withdraw_freq	poutcome	у
	3 services	married	secondary	no	4789	yes	yes	cellular	220	1	339	4	success	no
3	5 manageme	single	tertiary	no	1350	yes	no	cellular	185	1	330	1	success	no
3	5 manageme	single	tertiary	no	747	no	no	cellular	141	2	176	3	success	no
3 3 6	3 services	married	primary	no	200	yes	yes	cellular	313	1	147	2	success	no
	1 blue-collar	married	secondary	no	360	yes	yes	cellular	89	1	241	1	success	no
	7 admin.	single	tertiary	no	2317	yes	no	cellular	114	1	152	2	success	no
	7 retired	married	unknown	no	696	no	no	telephone	119	1	105	2	success	no
	3 manageme	married	secondary	no	3935	yes	no	cellular	35	1	342	2	success	yes
3	8 manageme	single	tertiary	no	11971	yes	no	unknown	244	2	101	3	success	no
5	1 blue-collar	divorced	secondary	no	203	yes	no	cellular	134	1	170	5	success	no
4	0 unemploye	married	secondary	no	219	yes	no	cellular	204	2	196	1	success	no
5	2 services	married	secondary	no	657	no	no	telephone	33	2	460	2	success	yes
3 3 3 5	0 admin.	single	tertiary	no	261	no	no	cellular	233	1	137	20	success	no
	8 manageme	single	tertiary	no	493	yes	no	cellular	188	1	367	7	success	no
	2 manageme	single	tertiary	no	574	yes	no	cellular	259	2	145	3	success	no
	3 blue-collar	single	secondary	no	200	no	no	cellular	76	2	207	1	success	no
	1 manageme	single	tertiary	yes	200	yes	no	cellular	281	2	266	6	success	no
	2 blue-collar	single	secondary	no	228	no	no	telephone	176	1	288	3	success	no
	8 admin.	married	unknown	no	200	yes	no	cellular	85	1	168	2	success	no
2	9 admin.	single	secondary	no	428	yes	yes	cellular	54	1	345	2	success	no
5	5 technician	married	secondary	no	273	yes	no	cellular	84	3	183	3	success	no
2	8 manageme	single	tertiary	no	200	no	no	cellular	311	2	146	2	success	yes
3	7 admin.	married	secondary	no	200	yes	no	cellular	147	2	347	1	success	no
3	7 admin.	married	tertiary	no	200	yes	no	cellular	65	2	119	1	success	no
	6 technician	married	secondary	no	200	VAS	no	cellular	152	2	347	1	SHUCCESS	no

案例

□ 基于CART的AdaBoost模型在违约预测中的应用(续)

尝试构建深度为9的单一CART模型,和迭代10次、深度为3的AdaBoost模型,试验结果如下:

CART: 错误率60%

AdaBoost:错误率40%

疑问

□问题答疑: http://www.xxwenda.com/

■可邀请老师或者其他人回答问题

联系我们

小象学院: 互联网新技术在线教育领航者

- 微信公众号: 小象学院

- 新浪微博: 小象AI学院

