Introdução à Teoria dos Grafos (MAC0320 e MAC5770)

Lista 9 - Exercícios E34 a E38

Conexidade, Teorema de Menger

Data para entrega dos exercícios: 15/junho/2020 (2a. feira)

- **E34.** Mostre que para todo par (k, ℓ) tais que $1 \le k \le \ell$, existe um grafo G tal que $\kappa(G) = k$ e $\kappa'(G) = \ell$.
- **E35.** Seja G um grafo k-conexo e seja G' o grafo obtido de G acrescentando-se um novo vértice e arestas ligando esse vértice a todos os vértices de G. Prove que G' é (k+1)-conexo.
- E36. Prove que se G é um grafo bipartido k-regular conexo, então G é 2-conexo. [Sugestão: Suponha que G tenha um vértice-de-corte x. Então $G = G_1 \cup G_2$, e $V(G_1) \cap V(G_2) = \{x\}$. Analise a quantidade de arestas em G_1 (lembrando que G é k-regular) e deduza por essa análise alguma informação sobre k relativamente a $g_{G_1}(x)$, de modo a obter uma contradição.]
- **E37.** Se G é um grafo k-conexo, e $k \ge 2$, então qualquer conjunto de k vértices de G pertence a um mesmo circuito de G. (Tal circuito pode conter outros vértices adicionais além dos k vértices fixados.)
- **E38.** Seja G = (V, A) um grafo 2-conexo de ordem n, e sejam v_1 , v_2 vértices de G. Sejam n_1 e n_2 inteiros positivos tais que $n_1 + n_2 = n$. Mostre que existe uma partição de V em $V_1 \cup V_2$ com $|V_1| = n_1$ e $|V_2| = n_2$, tal que $G[V_i]$ é conexo, e $v_i \in V_i$ para i = 1, 2.

EXTRA - vale Bônus

[B8.] Seja G = (V, A) um grafo, $d \ge 2$ um inteiro, e s, t dois vértices de G que estão à distância d. Suponha que, para todo $S \subset V \setminus \{s,t\}$ tal que |S| < k, existe em G - S um caminho entre s e t, de comprimento d. Mostre que em G existem k caminhos entre s e t, todos de comprimento d, que são dois a dois internamente disjuntos.

[Sugestão: pensar na construção de um grafo que resulta da orientação de algumas arestas de G, e usar o Teorema de Menger para grafos orientados.] [Pode também fazer outra prova sem usar essa sugestão.]

RECOMENDAÇÕES

Seguir todas as recomendações que têm sido feitas nas listas anteriores. Resolver individualmente e sem consultas a outras fontes!