

ORGANIZACIÓN DE COMPUTADORAS

Departamento de Ciencias e Ingeniería de la Computación Universidad Nacional del Sur

Segundo Cuatrimestre de 2017

Segundo Examen Parci	mbre: LU: Hojas entregadas:								
Lic. en Ciencias de la Computación – Ing. en Computación – Ing. en Sistemas de Información									
Apellido y Nombre:	LU:	Hojas entregadas:							
(en ese orden)		(sin enunciado)							
Profesor:									
NOTA: Resolver los ejercicios en hojas separadas. Poner n	nombre. LU v núm	ero en cada hoja.							

Ejercicio 1. Implementar la siguiente expresión aritmética $B = (A \times (D+C)) + (A \times (D+C)^2)$, siendo A, B, C y D etiquetas que denotan direcciones de memoria, y asumiendo que se cuenta con las instrucciones add y mpy, para las siguientes arquitecturas:

- a) Una arquitectura de **0-direcciones** (tipo pila), contando con la instrucción dup (duplica el tope de la pila). Determinar la profundidad de la pila alcanzada.
- b) Una arquitectura estilo **RISC**, registro a registro, sin restricción en la cantidad de registros, y con instrucciones lda, ld y st. Indicar la cantidad de accesos a memoria realizados.
- c) Una arquitectura de **1**-dirección + registro (tipo Intel), sin restricción en la cantidad de registros y con la instrucción mov. Indicar la cantidad de accesos a memoria requeridos.

Ejercicio 2. En el marco de la norma IEEE 754, considerando la representación en punto flotante de media precisión: mantisa fraccionaria en signo magnitud con hidden bit, exponente en exceso y base 2 y la siguiente distribución de bits:

Dados los números $X=(1\ 00010110\ 0011111001)$ e $Y=(0\ 00000111\ 1000111100)$ realizar el producto $X\times Y$ aplicando redondeo por proximidad hacia los pares y hacia $+\infty$, explicando cada uno de los pasos involucrados e indicando claramente qué se hace con los bits \mathbf{G} , \mathbf{R} y \mathbf{S} del resultado y con \mathbf{R} y \mathbf{S} al redondear. El resultado debe ser expresando según la representación enunciada. Finalmente, convierta el número hallado a decimal e indique el error existente entre este valor y el obtenido al operar la multiplicación directamente sobre X e Y en decimal.

(Pista:
$$X = -1 \times 2^{-105} \times 1,2431640625$$
 e $Y = 1 \times 2^{-113} \times 0,55859375$).

Ejercicio 3. Considerando la representación en punto flotante propuesta para el ejercicio anterior, y los números $X = (0\ 00001101\ 0010110101)$ e $Y = (1\ 00001110\ 1101000110)$, realizar la suma X + Y aplicando redondeo por proximidad unbiased (hacia los pares), explicando cada uno de los pasos involucrados e indicando claramente qué se hace con los bits \mathbf{G} , \mathbf{R} y \mathbf{S} del resultado y con \mathbf{R} y \mathbf{S} al redondear. El resultado debe ser expresando según la representación enunciada. Finalmente, convierta el número hallado a decimal e indique el error existente entre este valor y el obtenido al operar la suma directamente sobre X e Y en decimal.

(Pista:
$$X = 1 \times 2^{-114} \times 1,1767578125$$
 e $Y = -1 \times 2^{-113} \times 1,818359375$).

Ejercicio 4. Determinar cuál es el contenido final de cada uno de los registros y posiciones de memoria involucrados en la siguiente secuencia de instrucciones. Indicar en cada caso, el número de instrucción que origina cada cambio. Asumir que el primer operando es el destino y el segundo la fuente de información para la operación.

(1) mov $R1, \#0200$	Interpretació	ón
(2) mov (R1), #0100	#xxxx	Inmediato
(3) mov 0100(R1), R1	R	Registro
(4) mov R2, #0500	(R)	Registro indirecto
(5) mov @0100(R1), #0500	XXXX	Absoluto
(6) mov (0200), 0300	xxxx(R)	Indexado
(7) mov R3, 0200	(xxxx)	Memoria indirecto
(8) mov R3, @0100(R3)	@xxxx(R)	Pre-indexado indirecto

Ejercicio 5. Considerando el siguiente programa para la arquitectura OCUNS, en la que toda lectura/escritura sobre la dirección FF es redireccionada a la E/S estándar:

LDA RO, FFh				
·	OP.	Descr.	FORM.	Pseudocódigo
LOAD R1, O(RO)	0	add	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} + \texttt{R[t]}$
LOAD R2, O(RO)	1	sub	\mathbf{I}	$\texttt{R[d]} \leftarrow \texttt{R[s]} - \texttt{R[t]}$
XOR R3, R3	2	and	\mathbf{I}	$\texttt{R[d]} \leftarrow \texttt{R[s]} \& \texttt{R[t]}$
LDA R4, 1b13	3	xor	\mathbf{I}	$\texttt{R[d]} \leftarrow \texttt{R[s]} \texttt{R[t]}$
JZ R1, 1b13	4	lsh	\mathbf{I}	$\texttt{R[d]} \leftarrow \texttt{R[s]} \mathrel{<<} \texttt{R[t]}$
JZ R2, 1b13	5	rsh	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} >> \texttt{R[t]}$
SUB R5, R1, R2	6	load	\mathbf{I}	$R[d] \leftarrow mem[offset + R[s]]$
JG R5, 1b12	7	store	${f I}$	$\texttt{mem[offset} + \texttt{R[d]]} \leftarrow \texttt{R[s]}$
lbl1: ADD R3, R3, R2	8	lda	\mathbf{II}	$R[d] \leftarrow addr$
DEC R1	9	jz	\mathbf{II}	if $(R[d] == 0)$ PC \leftarrow PC + addr
JG R1, 1bl1	\mathbf{A}	jg	\mathbf{II}	if $(R[d] > 0)$ PC \leftarrow PC + addr
JMP R4	В	call	\mathbf{II}	$R[d] \leftarrow PC; PC \leftarrow addr$
1b12: ADD R3, R3, R1	$\overline{\mathbf{C}}$	jmp	III	$PC \leftarrow R[d]$
DEC R2	D	inc	III	$R[d] \leftarrow R[d] + 1$
JG R2, 1b12		dec	III	$R[d] \leftarrow R[d] - 1$
lbl3: STORE R3, O(RO)	$\mid \mathbf{F} \mid$	hlt	III	exit
HLT		1116	111	CATO

FORMATO	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I	0	×	×	×		dest.	d			src	. s		sr	c. t	/ o	ff.
II	1	0	×	×		dest.	d		address addr							
III	1	1	×	×		dest.	d						-			

- a) Ensamblar el programa a partir de la dirección 00h.
- b) Si se reubicara el código máquina obtenido en el inciso (a) a partir de la dirección 20h, ¿qué referencias a memoria requieren ser ajustadas? Justificar adecuadamente.
- c) Suponiendo que los valores ingresados por teclado son 04h y 02h, realice una traza mostrando la evolución del contenido de cada registro, para luego, describir el propósito del programa en su conjunto.
- d) ¿Qué sucede con el resultado retornado si los valores ingresados fueran 02h y 04h? ¿Cuál es la diferencia? ¿Existe alguna restricción para los datos de entrada en cuanto al correcto funcionamiento del programa?