Attention is all you need

我的总结

本文提出一种不用CNN和RNN,只用attention的结构transformer。相比RNN,transformer可以并行,且可以考虑任意两个位置之间的信息。

比较类似seq2seq模型,适合机器翻译,但也可以做其他任务。

背景与贡献

RNN模型不能并行。

贡献

- 摒弃RNN和CNN结构,采用全attention结构,增加了并行度。
- 在各个任务达到SOTA。

思路与方法

模型结构

Encoder

N=6层的encoder,每个sublayer(图中feed forward/attention)的输出为 LayerNorm(x+Sublayer(x))。

encoder可以整句输入。

Decoder

比encoder多了第二层,接受encoder的输出,为target在source的维度做attention。decoder是一个一个word输入的,因为输入取决于上一次的预测结果。

Attention

Scaled Dot-Product Attention

对于每个word,输入 $x_i \in R^{d_m}$ 的input embedding。

 $q_i,k_i\in R^{d_k},v_i\in R^{d_v}$ 通过 x_i 乘以权重矩阵 $W^Q,W^k\in R^{d_m*d_k},W^v\in R^{d_m*d_v}$ 得到。

在attention中,对于第i个word,用 $q_i^T k_j$ 计算和其他word的score,再经过softmax计算权值。最后累加加权的 v_j 得到 $\sum_j \alpha_j v_j$ (j可以等于i)作为第i个word的attention输出。

n个word组成矩阵 $Q,K\in R^{n*d_k},V\in R^{n*d_v}$ 。下图中 $n=2,d_m=4,d_k=d_v=3$ 。

以矩阵形式计算n个word的attention,其中softmax是作用在每一行,softmax输出维度(2,)的矩阵,和V进行元素乘。得到的 $Z\in R^{n*d_v}$ 。

Multi-Head Attention

不同head的attention可以关注到不同信息,比如 $head_1$ 关注词性, $head_2$ 关注entity。因此采用h个attention,文中h=8。

具体来说,第i个head有自己的 W_i^Q,W_i^K,W_i^V ,不同head经过attention后的输出concat起来。

$$\begin{split} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_{\text{h}}) W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{split}$$

Where the projections are parameter matrices $W_i^Q \in \mathbb{R}^{d_{\text{model}} \times d_k}$, $W_i^K \in \mathbb{R}^{d_{\text{model}} \times d_k}$, $W_i^V \in \mathbb{R}^{d_{\text{model}} \times d_v}$ and $W^O \in \mathbb{R}^{hd_v \times d_{\text{model}}}$.

所以一个multi-head attention的输入和输出维度相同,都是 R^{n*d_m} 。

Applications of attention in the model

- 在"encoder-decoder attention"中(decoder的第二个attention),Q是上一层的decoder输出,K,V是encoder的输出。
- 在encoder的attention中,每个position可以和任意其他position计算attention。
- 在decoder的attention中,每个position只能考虑leftward的信息,需要mask。

Feed Forward

两层的MLP + 第一层ReLU。

Positional Encoding

由于没有RNN和CNN,仅有attention不能用到position的信息。打乱句子顺序会得到完全相同的结果,这是不合理的。

因此本文加入position embedding:

$$\begin{split} PE_{(pos,2i)} &= sin(pos/10000^{2i/d_{\rm model}}) \\ PE_{(pos,2i+1)} &= cos(pos/10000^{2i/d_{\rm model}}) \end{split}$$

实验

训练

在WMT上训练,通过BPE构造词典。

结果

- 机器翻译在WMT 2014上BLEU第一
- ablation study

Table 3: Variations on the Transformer architecture. Unlisted values are identical to those of the base model. All metrics are on the English-to-German translation development set, newstest2013. Listed perplexities are per-wordpiece, according to our byte-pair encoding, and should not be compared to per-word perplexities.

						· .			train	PPL	BLEU	params
	N	$d_{ m model}$	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}	steps	(dev)	(dev)	$\times 10^{6}$
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
(A)				1	512	512				5.29	24.9	
				4	128	128				5.00	25.5	
				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(B)					16					5.16	25.1	58
					32					5.01	25.4	60
(C)	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
(D)							0.0			5.77	24.6	
							0.2			4.95	25.5	
								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)	positional embedding instead of sinusoids									4.92	25.7	
big	6	1024	4096	16			0.3		300K	4.33	26.4	213

• English consistency parsing在WSJ(Wall Street Journal)上,在没有做task-specific tuning的情况下仍然达到接近SOTA水平。