Задача А. Веревочки

 Имя входного файла:
 ropes.in

 Имя выходного файла:
 ropes.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

С утра шел дождь, и ничего не предвещало беды. Но к обеду выглянуло солнце, и в лагерь заглянула СЭС. Пройдя по всем домикам и корпусам, СЭС вынесла следующий вердикт: бельевые веревки в жилых домиках не удовлетворяют нормам СЭС. Как выяснилось, в каждом домике должно быть ровно по одной бельевой веревке, и все веревки должны иметь одинаковую длину. В лагере имеется N бельевых веревок и K домиков. Чтобы лагерь не закрыли, требуется так нарезать данные веревки, чтобы среди получившихся веревочек было K одинаковой длины. Размер штрафа обратно пропорционален длине бельевых веревок, которые будут развешены в домиках. Поэтому начальство лагеря стремиться максимизировать длину этих веревочек.

Формат входных данных

В первой строке заданы два числа — N ($1 \le N \le 10001$) и K ($1 \le K \le 10001$). Далее в каждой из последующих N строк записано по одному числу — длине очередной бельевой веревки. Длина веревки задана в сантиметрах. Все длины лежат в интервале от 1 сантиметра до 100 километров включительно.

Формат выходных данных

В выходной файл следует вывести одно целое число — максимальную длину веревочек, удовлетворяющую условию, в сантиметрах. В случае, если лагерь закроют, выведите 0.

Примеры

ropes.in	ropes.out
4 11	200
802	
743	
457	
539	

Задача В. Корень кубического уравнения

Имя входного файла: cubroot.in
Имя выходного файла: cubroot.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Дано кубическое уравнение $ax^3+bx^2+cx+d=0$ ($a\neq 0$). Известно, что у этого уравнения есть ровно один корень. Требуется его найти.

Формат входных данных

Во входном файле через пробел записаны четыре целых числа: $-1000 \leqslant a,b,c,d \leqslant 1000$.

Формат выходных данных

Выведите единственный корень уравнения с точностью не менее 4 знаков после десятичной точки.

Примеры

cubroot.in	cubroot.out
1 -3 3 -1	1.0000003749
-1 -6 -12 -7	-1.000000111

Задача С. Дремучий лес

 Имя входного файла:
 forest.in

 Имя выходного файла:
 forest.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Чтобы помешать появлению СЭС в лагере, администрация ЛКШ перекопала единственную дорогу, соединяющую "Берендеевы поляны" с Судиславлем, теперь проехать по ней невозможно. Однако, трудности не остановили инспекцию, хотя для СЭС остается только одна возможность — дойти до лагеря пешком. Как известно, Судиславль находится в поле, а "Берендеевы поляны" — в лесу.

- \bullet Судиславль находится в точке с координатами (0,1).
- "Берендеевы поляны" находятся в точке с координатами (1,0).
- Граница между лесом и полем горизонтальная прямая y=a, где a некоторое число $(0\leqslant a\leqslant 1).$
- \bullet Скорость передвижения СЭС по полю составляет V_p , скорость передвижения по лесу V_f . Вдоль границы можно двигаться как по лесу, так и по полю.

Администрация ЛКШ хочет узнать, сколько времени у нее осталось для подготовки к визиту СЭС. Она попросила вас выяснить, в какой точке инспекция СЭС должна войти в лес, чтобы дойти до "Берендеевых полян" как можно быстрее.

Формат входных данных

В первой строке входного файла содержатся два положительных целых числа — V_p и V_f ($1\leqslant V_p,V_f\leqslant 10^5$). Во второй строке содержится единственное вещественное число — координата по оси Oy границы между лесом и полем a ($0\leqslant a\leqslant 1$)

Формат выходных данных

В единственной строке выходного файла выведите вещественное число с точностью не менее 8 знаков после запятой — координата по оси Ox точки, в которой инспекция СЭС должна войти в лес.

Примеры

forest.in	forest.out
5 3 0.4	0.783310604
5 5 0.5	0.50000000

Задача D. Для любителей статистики

 Имя входного файла:
 queries.in

 Имя выходного файла:
 queries.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Вы никогда не задумывались над тем, сколько человек за год перевозят трамваи города с десятимиллионным населением, в котором каждый третий житель пользуется трамваем по два раза в день?

Предположим, что на планете Земля n городов, в которых есть трамваи. Любители статистики подсчитали для каждого из этих городов, сколько человек перевезено трамваями этого города за последний год. Из этих данных была составлена таблица, в которой города были отсортированы по алфавиту. Позже выяснилось, что для статистики названия городов несущественны, и тогда их просто заменили числами от 1 до n. Поисковая система, работающая с этими данными, должна уметь быстро отвечать на вопрос, есть ли среди городов с номерами от l до r такой, что за год трамваи этого города перевезли ровно x человек. Вам предстоит реализовать этот модуль системы.

Формат входных данных

В первой строке дано целое число $n,\,0 < n < 70\,000$. В следующей строке приведены статистические данные в виде списка целых чисел через пробел, i-е число в этом списке — количество человек, перевезенных за год трамваями i-го города. Все числа в списке положительны и не превосходят 10^9-1 . В третьей строке дано количество запросов $q,\,0 < q < 70\,000$. В следующих q строках перечислены запросы. Каждый запрос — это тройка целых чисел $l,\,r$ и $x,\,$ записанных через пробел $(1\leqslant l\leqslant r\leqslant n,\,0 < x < 10^9)$.

Формат выходных данных

Выведите строку длины q, в которой i-й символ равен 1, если ответ на i-й запрос утвердителен, и 0 в противном случае.

Примеры

queries.out
10101

Задача Е. Поезда

 Имя входного файла:
 trains.in

 Имя выходного файла:
 trains.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

В связи с участившимся числом аварий на железнодорожной ветке Кострома—Судиславль, руководство железной дороги решило изменить график движения поездов. Тщательный анализ состояния железнодорожного полотна показал, что оптимальным является следующий график движения поездов с учетом остановок на станциях: сначала поезд идет на протяжении T_1 минут со скоростью V_1 метров в минуту, затем T_2 минут со скоростью V_2 метров в минуту, ..., наконец, T_N минут со скоростью V_N метров в минуту. В течение некоторых интервалов поезд может стоять (скорость равна 0).

По действующей инструкции обеспечения безопасности движения поездов расстояние между локомотивами двух следующих друг за другом поездов должно быть не менее L метров. Определите минимально допустимый интервал в минутах между отправлениями поездов, позволяющий им двигаться по этому графику без опасного сближения.

Формат входных данных

В первых двух строках входного файла содержится два натуральных числа, задающие минимально допустимое расстояние L и количество участков пути N (100 $\leq L \leq$ 10 000, $1 \leq N \leq$ 1000). Далее следует N пар целых чисел T_i и V_i , задающих график движения поездов (1 $\leq T_i \leq$ 1000, 0 $\leq V_i \leq$ 1000).

Формат выходных данных

В выходной файл необходимо вывести искомый интервал между отправлениями поездов в минутах, не менее чем с тремя верными знаками после десятичной точки.

Примеры

<u> </u>	
trains.in	trains.out
1000	27.4999765679
4	
10 0	
30 80	
15 0	
20 100	