ADC / DAC

ECET 209 – Introduction to Microcontrollers

Overview

Review Analog and Digital Converters

Preview Lab #9

• Do a Group Activity

- Most values are analog in nature
 - Temperature
 - Speed
 - Position
 - Etc

• Digital systems are used to process information

• Digital systems are used to process info

 Somehow need to convert an analog value into a digital value

Perform digital operations on the data

 Somehow need to convert the digital results back into an analog quantity

- Digital systems are used to process info
- A couple Major Examples

- CD's
- MP3's
- DVD's

ADC & DAC

- ADC Analog to Digital Converter
- DAC Digital to Analog Converter

• ADC and DAC operations are required at the input and output from a digital processing system that deals with analog quantities.

Digital Displays

Digital displays are easier to read (by consumers)

• Accuracy of digital displays depends on the accuracy of the A/D conversion

Analog/Digital Characteristics

- Performance Criteria
 - Resolution
 - Sampling Rate
 - Speed
 - Linearity

Analog Interface Module

Lab Hardware board for Analog applications

- 8-bit Digital to Analog converter (AD558)
- 10-bit Analog to Digital converter (AD573)
- -0 to 10 volts
- Pot to adjust the input analog voltage
- Analog meter to display the analog input or output
- Selector switches for input and the meter

- Takes 8-bit value and converts it to an analog voltage
- A digital value of 0x00 yields 0 volts out
- A digital value of 0xFF yields 10 volts out

- Takes 8-bit value and converts it to an analog voltage
- A digital value of 0x00 yields 0 volts out
- A digital value of 0xFF yields 10 volts out

resolution = Vout_max / $2^8 - 1$

- Takes 8-bit value and converts it to an analog voltage
- A digital value of 0x00 yields 0 volts out
- A digital value of 0xFF yields 10 volts out

```
resolution = Vout_max / 2^8 - 1
resolution = 10 volts / 255
```

- Takes 8-bit value and converts it to an analog voltage
- A digital value of 0x00 yields 0 volts out
- A digital value of 0xFF yields 10 volts out

```
resolution = Vout_max / 2^{8} - 1
0.0392157 = 10 volts / 255
```

- Takes 8-bit value and converts it to an analog voltage
- A digital value of 0x00 yields 0 volts out
- A digital value of 0xFF yields 10 volts out

```
resolution = Vout_max / 2^{8} - 1
```

0.0392157 = 10 volts / 255

Vout = resolution * digital input

- Takes an analog voltage and converts it to a digital value
- The AD573 is a 10-bit converter

- An analog value of 0 volts will produce a digital output of 0x000
- An analog value of 10 volts will produce a digital output of 0x3FF

• Resolution of the ADC is:

```
resolution = Vin_max / 2^{10} - 1
resolution = 10 / 1023
0.009775 = 10 / 1023
or approximately
10mV per bit when using 10-bits of accuracy
```

• Resolution is a function of the number of data bits in the result

• What if we only wanted 8-bits of data?

• Resolution of the ADC is:

```
resolution = Vin_max / 2^8 - 1
resolution = 10 / 255
0.03921 = 10 / 255
or approximately
40mV per bit when using 8-bits of accuracy
```

8-bits vs. 10-bits

- The number of data bits is determined by the resolution requirements of the application
- The resolution has a direct impact on the accuracy of the system

10mV or 40mV

8-bits vs. 10-bits

• A system with 10-bits of data vs. a system with only 8-bits of data is 4 times more resolution.

• Remember, 2^power

• In this case, the power is 2 and therefore the difference is a factor of 4.

Using the ADC

- *Most* ADC's require some type of "kick" to start the next conversion
- A *flag* will indicate the state or status of the current conversion
- The new data can be read only when the conversion has been completed

Convert				
Data Ready .				
Data Bus	Valid Data	XX	XX	Valid Data

Solution Steps to use the ADC

- 1. Set the convert line high
- 2. Wait for Data Ready to go high
- 3. Clear the convert line
- 4. Wait for the Ready Line to go low
- 5. Read the result of the conversion

Analog and Digital Converters

Digital to Analog Converter

Digital to Analog Converter

Reading the ADC

*Assuming ADC is connected to PORTA

analog = PINA;

Reading the ADC

*Assuming upper 8-bits of the ADC is connected to PORTA & the lower 2-Bits are connected to PORTB bits 0 & 1

analog = $(analog \ll 2) \mid (PINB \& 0x03);$

Reading the ADC

*Assuming upper 8-bits of the ADC is connected to PORTA & the lower 2-Bits are connected to PORTB bits 0 & 1

analog = (analog << 2) | (PINB & 0x03);

Analog and Digital Converters

Analog and Digital Converter Input and Output Requirements

Analog and Digital Converter Input and Output Requirements

Analog and Digital Converter Input and Output Requirements

How can we reduce the number of I/O port pins required?

More on Monday

Lab 9

• Create a Digital Voltmeter!!

- That's pretty straight forward
- Any questions?????

Digital Voltmeter

Digital Voltmeter

Voltmeter

- Break the project into pieces
 - Read the ADC and print to the terminal
 - Scale the data and print to the terminal
 - Separate the voltage into the BCD components
 - Display the BCD components on the 7-Segs

Solution Steps to use the ADC

- 1. Set the convert line high
- 2. Wait for Data Ready to go high
- 3. Clear the convert line
- 4. Wait for the Ready Line to go low
- 5. Read the result of the conversion

Group Activity

Given this ADC I/O Diagram:

And These Solution Steps

- 1. Set the convert line high
- 2. Wait for Data Ready to go high
- 3. Clear the convert line
- 4. Wait for the Ready Line to go low
- 5. Read the result of the conversion

Provide the Following:

Initialization Code for the I/O Ports

• Draw the software flowchart

• Write the C code to read the ADC

More on Monday