Berkeley Optimizer: Learning a Query Optimizer with Deep RL

Gautam Mittal (gbm@berkeley.edu), Zongheng Yang (zongheng@cs.berkeley.edu)

Query -> Execution Plan

Query execution plan space is exponentially large and often relies on human-engineered cost models to generate the best plan.

Expert Bootstrapping

Deep reinforcement learning agent learns an initial policy π_0 from a human-engineered (expert) model.

Why is this necessary?

Executing poorly planned queries can take hours to complete.

Value Iteration

Use π_0 to learn an optimal policy through retraining agent based on generated plans + latency.

System Architecture

Encoding Plans as Sequences

[1] Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000–6010.
[2] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin. Convolutional neural networks over tree structures for programming language processing. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI'16), 2016.

Query Encoding

Flexibility of system allows for novel improvements to featurization and cost model.

Evaluation

All experiments use the JOB (113 queries) benchmark.

Episode