Reinforcement Learning Introduction to Artificial Intelligence

Yang Gao, Francesca Toni

Russel & Norving, Al: a modern approach, Section 21 Sutton & Barto, Reinforcement Learning: An introduction

Big Picture of Reinforcement Learning

A Brief History of RL Properties of RL

Mathematical Model and An Algorithm of RL

Motivating Example
Mathematical Model of RL
Q-Learning Algorithm

Summary

Tutorial: The Wumpus World

LA Brief History of RL

A short history of Reinforcement Learning:

- Proposed by the behavioural psychologists
- Used to train animals (including human beings)
- An area of Machine Learning

RL in a nutshell

In each state:

- if an agent does something "good", it gets rewards;
- if an agent does something "wrong", it gets punishments;
- rewards and punishments are received right after the effect of the performed action is observed;
- goal: choose the best action at each state to maximise the long-term rewards.

Properties of RL

Components of Reinforcement Learning

- ▶ **State**: All information needed for choosing actions
- ▶ **Action**: Available actions in each state
- ▶ **Dynamic of the Environment**: How the environment is changed by the actions
- Rewards: Criteria used to evaluate the the goodness of performing an action in a state (typically a real number)

A motivating example: Maze

- ► A 2 × 3 grid world
- A pit, an exit and some walls are known in this grid world, but their locations are unknown
- Arrive at the exit: win; fall in the pit: die; hit a wall, hurt
- Goal: Get out of this maze (i.e. safely arrive at the exit) as quickly as possible

RL components in this problem

- State: The agent's current location
- Action: LEFT, RIGHT, UP, DOWN
- Environment Dynamics:
 - ▶ If in the intended direction there exists a wall, no-op
 - otherwise, move one square in the intended direction
- Rewards:
 - normal move: -1
 - ▶ hit a wall: -10
 - ▶ die: -100
 - ▶ exit: +100
- Our Goal: find the best route to exit

[└] Motivating Example

Markov Decision Process (MDP)

Components of RL (t:current time slot, t + 1: next time slot):

- States: describe the environment;
- Actions: available actions for execution;
- ▶ **Transition Probability**: $Pr\{s_{t+1}|s_t, a_t\}$ (denoted $\mathcal{P}_{s_t s_{t+1}}^{a_t}$);
- ▶ **Rewards**: $E\{r_{t+1}|s_t, a_t, s_{t+1}\}$ (denoted $\mathcal{R}_{s_t s_{t+1}}^{a_t}$);
- ► $MDP = \langle S, A, T, R \rangle$.

Why MDP?

RL problems satisfy the Markov property: history independence.

How to find the best action

The goal of RL:

- ▶ Formally: in a state $s_0 \in S$, determine the best policy π so as to maximise the long-term reward
- ▶ A policy $\pi: S \to A$, is a function from state to action. $\pi(s) = a$ means choose action a at state s
- ▶ The long-time reward of performing a_0 at s_0 :

$$Q^{\pi}(s_0, a_0) = E_{\pi}\{\sum_{k=0}^{\infty} \gamma^k r_{k+1} | s_0, a_0\}$$

where E_{π} denotes the expected value given that the agent follows policy π , and $\gamma \in [0,1]$ is the *discount factor* indicating how 'short-sighted' the agent is: the smaller γ , the more short-sighted the agent.

Mathematical Model of RL

An example policy and its Q-value

- A policy: always go right
- Formally: $\pi(s) = RIGHT$ for all $s \in S$

$$Q^{\pi}([0,2], RIGHT)$$
= -10 - 10 × \gamma - 10 × \gamma^2 \cdots
= -10 + \gamma(-10 - 10\gamma - 10\gamma^2 - \cdots)
= -10 + \gamma Q^{\pi}([0,2], RIGHT)
= -10/(1 - \gamma)

Mathematical Model of RL

Q-value in recursive form (Bellman Equation)

$$\begin{split} Q^{\pi}(s_0, a_0) &= E_{\pi}\{\sum_{k=0}^{\infty} \gamma^k r_{k+1} | s_0, a_0\} \\ &= E_{\pi}\{r_1 + \gamma \sum_{k=0}^{\infty} \gamma^k r_{k+2} | s_0, a_0\} \\ &= \sum_{s_1 \in S} \mathcal{P}_{s_0 s_1}^{a_0} (\mathcal{R}_{s_0 s_1}^{a_0} + \gamma \sum_{a_1 \in A} \pi(s_1, a_1) \cdot E_{\pi}\{\sum_{k=0}^{\infty} \gamma^k r_{1+k+1} | s_1, a_1\}) \\ &= \sum_{s_1 \in S} \mathcal{P}_{s_0 s_1}^{a_0} (\mathcal{R}_{s_0 s_1}^{a_0} + \gamma \sum_{a_1 \in A} \pi(s_1, a_1) \cdot Q^{\pi}(s_1, a_1)) \end{split}$$

Find the best policy

- ▶ Optimal policy: $\pi^* = \arg\max_{\pi} Q^{\pi}(s, a)$ for all $s \in S$, $a \in A$
- Optimal policies share the same Q-values:

$$\begin{split} Q^*(s_0, a_0) &= \max_{\pi} Q^{\pi}(s_0, a_0) \\ &= \sum_{s_1 \in S} \mathcal{P}^{a_0}_{s_0 s_1}(\mathcal{R}^{a_0}_{s_0 s_1} + \gamma \max_{a_1 \in A} Q^*(s_1, a_1)) \end{split}$$

Q-Learning Algorithm

```
1 Initialise Q(s,a) for all states s and all actions a arbitrarily
2 Repeat (for each episode):
3 Initialise s
4 Repeat (for each step in an episode):
5 Choose a = \arg\max_{a \in A} Q(s,a) with probability 1 - \epsilon
6 Perform action a, observe reward r and next state s'
7 Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') - Q(s,a)]
8 s \leftarrow s'
9 until s is terminal
```

└Q-Learning Algorithm

- $\alpha = 0.5, \ \gamma = 0.9$
- All Q-values are initialised as 0

- $\alpha = 0.5, \ \gamma = 0.9$
- ► All Q-values are initialised as 0
- ► Choose *UP*, and receive -100

- $\alpha = 0.5, \ \gamma = 0.9$
- All Q-values are initialised as 0
- Choose UP, and receive -100
- update Q-value:

$$Q([0, 2], UP)$$

= $(1 - 0.5) \times 0+$
 $0.5 \times (-100 + 0.9 \times 0)$
= -50

Q-Learning Algorithm

- $\alpha = 0.5, \ \gamma = 0.9$
- ► Choose *LEFT*, and receive -1

- $\alpha = 0.5, \ \gamma = 0.9$
- ► Choose *LEFT*, and receive -1
- update Q-value:

$$Q([0,2], LEFT)$$
= $(1 - 0.5) \times 0+$
 $0.5 \times (-1 + 0.9 \times 0)$
= -0.5

- $\alpha = 0.5, \ \gamma = 0.9$
- ► Choose *UP*, and receive -10

- $\alpha = 0.5, \ \gamma = 0.9$
- ► Choose *UP*, and receive -10
- ▶ update Q-value:

$$Q([0, 1], UP)$$
= $(1 - 0.5) \times 0+$
 $0.5 \times (-10 + 0.9 \times 0)$
= -5

Q-Learning Algorithm

- $\alpha = 0.5$, $\gamma = 0.9$
- ► Choose *LEFT*, and receive -1

- $\alpha = 0.5, \ \gamma = 0.9$
- ► Choose *LEFT*, and receive -1
- update Q-value:

$$Q([0,1], LEFT)$$
= $(1 - 0.5) \times 0+$
 $0.5 \times (-1 + 0.9 \times 0)$
= -0.5

Q-Learning Algorithm

- $\alpha = 0.5, \ \gamma = 0.9$
- ▶ Choose *UP*, and receive -1

- $\alpha = 0.5, \ \gamma = 0.9$
- ▶ Choose *UP*, and receive -1
- ▶ update Q-value:

$$Q([0,0], UP)$$
= $(1 - 0.5) \times 0+$
 $0.5 \times (-1 + 0.9 \times 0)$
= -0.5

Q-Learning Algorithm

- $\alpha = 0.5, \ \gamma = 0.9$
- ► Choose *RIGHT*, and receive 100

- $\alpha = 0.5, \ \gamma = 0.9$
- ► Choose *RIGHT*, and receive 100
- update Q-value:

$$Q([0, 1], RIGHT)$$
= $(1 - 0.5) \times 0+$
 $0.5 \times (100 + 0.9 \times 0)$
= 50

- $\alpha = 0.5, \ \gamma = 0.9$
- ► The next time agent visits [0,0] and performs *UP*:

$$Q([0,0], UP)$$
= $(1-0.5) \times (-0.5) +$
 $0.5 \times (-1+0.9 \times 50)$
= 21.75

- $\alpha = 0.5, \ \gamma = 0.9$
- ► The next time agent visits [0,0] and performs *UP*:

$$Q([0,0], UP)$$
= $(1-0.5) \times (-0.5) +$
 $0.5 \times (-1+0.9 \times 50)$
= 21.75

Q-Learning Algorithm

Property of Q-Learning

- Quick learning speed: Q-Learning is able to find a quite good policy after a small number of iterations.
- ► Model-free: no need to keep record of the learning trajectory (no need to explicitly compute the Transition Probability).
- ▶ Guarantee to converge: after visiting each state-action pairs for an infinite number of times, for any $s \in S$, $a \in A$, Q(s, a) is guaranteed to converge to $Q^*(s, a)$.

The learning parameters in Q-Learing

- α:
 - ▶ Learning step
 - ▶ balance between existing experiences (weight: 1α) and new observations (weight: α)
- $ightharpoonup \gamma$:
 - Future discount
 - ▶ balance between current reward (weight: 1) and next N step's reward (weight: γ^N)
- ▶ indicating how 'bold' the agent is
- ▶ balance between *exploitation* (take greedy action, 1ϵ chance) and *exploration* (take random action, ϵ chance)

Summary

- Basic idea of Reinforcement Learning (RL):
 - did something "good" reward
 - did something "bad" punish
- ► Formal model of RL Markov Decision Process (MDP):
 - ► MDP =< State, Action, TransProb, Reward >
 - \triangleright Q(s, a): to valuate the value of performing action a in state s
 - Optimal policy:
 - $\qquad \qquad \pi^* = \arg\max_{\pi} Q^{\pi}$
 - $Q^{\pi^*} = Q^*$
 - Q-Learning algorithm

What makes RL different?

In which problems we should use RL instead of other ML techniques?

- Sequential decision making: time and order really matters
- I know what I want, but don't know how to get it: no supervisor, only rewards (goals)
- The agent can interact with the environment: trial and error is affordable
- Feedback is delayed: only after observing actions' consequences

Tutorial: The Wumpus World

A Wumpus World example:

- ► A 5 × 5 grid world
- ► The world has: an exit, some golds, some Wumpus and some pits. The agent only knows the golds' locations
- ► The agent can shoot a Wumpus next to it; by killing a Wumpus, the agent gets reward
- When next to a Wumpus: smells stench; next to a pit: feels breeze; on a gold: sees glitter
- Step into a square with a Wumpus or a pit: die; hit wall: no-op
- ► Task: collects all gold and arrives the exit safely

Tutorial: The Wumpus World

Actions:

LEFT, RIGHT, UP, DOWN,
SHOOT_LEFT, SHOOT_RIGHT, SHOOT_UP,
SHOOT_DOWN,
PICK UP

- Rewards:
 - ▶ Normal move: -1
 - ▶ Die: -1000
 - ► Get a gold or kill a Wumpus: +100
 - ▶ Missed shoot or missed pick: -50
 - ▶ Successfully exit the world: +500

RL for Wumpus World: Understand The Learning Parameters

- Default parameters:
 - $\alpha = 0.1$
 - $\gamma = 0.9$
 - $\epsilon = 0.05$
- ► Run the following experiments to see how each parameter affects the learning performance (100 episodes for each)
 - ▶ Keeping the default value for γ and ϵ , compare the performances when $\alpha = 0, 0.1, 0.5, 1.0$
 - ▶ Keeping the default value for α and ϵ , compare the performances when $\gamma = 0, 0.1, 0.5, 1.0$
 - ▶ Keeping the default value for α and γ , compare the performances when $\epsilon=0,0.1,0.5,1.0$

Domain Knowledge for The Wumpus World

- ▶ In certain situations, the goodness of some actions can be deduced by the goodness (Q-value) of other actions
- Suppose an agent steps into a square where:
 - ► In previous episodes, UP, LEFT, DOWN have been performed in this square, and they are all OK; and
 - the agent can smell stench in this square.
- ▶ In this situation, we can easily see that there must exist a Wumpus in the square on the right.
- However, classical RL algorithms cannot deduce this: it still needs to perform RIGHT to realise that there is a Wumpus in the right square

Add Arguments to RL

- We describe the domain knowledge by Arguments: logic sentences describing which actions are recommended and/or discouraged.
- ▶ The argument for the example domain knowledge above:

```
IF
left OK
up OK
down OK
stench TRUE
THEN
+ SHOOT_RIGHT
- RIGHT
DONE
```