$$\frac{\text{Следствие}.\ S_D = \frac{1}{2}\oint_K x dy - y dx}{\frac{\partial P}{\partial y} = \frac{\partial}{\partial y}\left(-\frac{y}{2}\right) = -\frac{1}{2}, \frac{\partial Q}{\partial x} = \frac{\partial}{\partial x}\left(\frac{x}{2}\right) = \frac{1}{2}}$$
 Формула Грина:
$$\iint_D \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) dx dy = \iint_D \left(\frac{1}{2} - \left(\frac{1}{2}\right)\right) dx dy = \iint_D dx dy = S_D \stackrel{\Phi. \, \Gammap.}{=} \oint_{K^+} \left(-\frac{y}{2}\right) dx + \frac{x}{2} dy$$
 \int НЗП - Интеграл, не зависящий от пути интегрирования.

Def. $P,Q:D\subset\mathbb{R}^2\to\mathbb{R},$ непрерывно дифференцируемы по 2-м переменным

$$\widetilde{AB} \subset D \quad \forall M, N \in D$$

Параметризация
$$\stackrel{\smile}{AB}$$
 : $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$ - φ, ψ - непр. дифф (кусочно)

$$I = \int_{AB} P dx + Q dy \text{ называется интегралом НЗП, если } \forall M, N \in D \qquad \int_{AMB} P dx + Q dy = \int_{ANB} P dx + Q dy$$

$$Nota.$$
 Обозначают $\int_A^B Pdx + Qdy$ или $\int_{(x_2,y_2)}^{(x_1,y_1)} Pdx + Qdy$

Th. Об интеграле НЗП

В условиях def

I.
$$\int_{AB} Pdx + Qdy$$
 - инт. НЗП

II.
$$\oint_{K} Pdx + Qdy = 0 \quad \forall K \subset D$$

III.
$$\frac{\partial \hat{P}}{\partial y} = \frac{\partial Q}{\partial x} \ \forall M(x, y) \in D$$

IV.
$$\exists \Phi(x,y) \mid d\Phi = P(x,y)dx + Q(x,y)dy$$
 в обл. D

IV.
$$\exists \Phi(x,y) \mid d\Phi = P(x,y)dx + Q(x,y)dy$$
 в обл. D Причем $\Phi(x,y) = \int_{(x_0,y_0)}^{(x_1,y_1)} Pdx + Qdy$, где $(x_0,y_0), (x_1,y_1) \in D$

Тогда $I \Longleftrightarrow II \Longleftrightarrow III \Longleftrightarrow I$

$$\Box I \Longleftrightarrow II$$

Поскольку
$$\int + \int = 0$$
, то $\int - \int = 0$

$$\Longrightarrow \oint_{K} = 0 \Longrightarrow \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \ \forall M(x, y) \in D$$

От противного
$$\exists M_0(x_0, y_0) \in D \mid \frac{\partial P}{\partial y} \Big|_{M_0} \neq \frac{\partial Q}{\partial x} \Big|_{M_0} \Longleftrightarrow \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) \Big|_{M_0} \neq 0$$

Для определенности
$$= \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right)\Big|_{M_0} > 0$$

Тогда $\exists \delta > 0 \mid \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right)\Big|_{M_0} > \delta > 0$

Выберем малую окрестность в точке M_0 ($U(M_0)$) и обозначим ее контур Γ

Так как P и Q непр. дифф., $\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right)\Big|_{M_0} > 0$ в $U(M_0)$

Формула Γ рипа: $\iint_{U(M_0)} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right)\Big|_{M_0} > 0$ в $U(M_0)$

Ос другой стороны $\iint_{U(M_0)} \left(\frac{\partial Q}{\partial y} - \frac{\partial P}{\partial y}\right) dx dy = \iint_{\Gamma_P} P dx + Q dy = 0$

Таким образом, возникаем противоречие $\rightleftharpoons \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \lor M \in D$

Тогда $\forall D' \subset D$ $\iint_{D'} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = 0 = \oint_{\Gamma_P} P dx + Q dy \lor \Gamma_{D'} \subset D$
 $\rightleftharpoons \frac{\partial P}{\partial x} = \frac{\partial P}{\partial y} \Longrightarrow \exists \Phi(x,y)$

Так как доказано $I \Longrightarrow III$, то докажем $I \Longrightarrow IV$

$$\int_{AM} P dx + Q dy = \int_{A(x_0,y_0)} P dx + Q dy - H \exists \Pi \lor A, M \in D$$

Обозн. $\int_{A(x_0,y_0)} P dx + Q dy - \Phi(x,y)$

Докажем, что $d\Phi = P dx + Q dy$

Так как $d\Phi(x,y) = \frac{\partial \Phi}{\partial x} dx - \frac{\partial \Phi}{\partial y} dy$, то нужно доказать $\frac{\partial \Phi}{\partial x} = P(x,y), \frac{\partial \Phi}{\partial y} = Q(x,y)$
 $\frac{\partial \Phi}{\partial x} = \lim_{\Lambda x \to 0} \frac{\Lambda_{A} \Phi}{\Delta x} = \lim_{\Lambda x \to 0} \frac{\Lambda_{A} \Phi}{\Delta x} = \lim_{\Lambda x \to 0} \frac{\Lambda_{A} \Phi}{\Delta x} = \lim_{\Lambda x \to 0} \frac{\int_{A} \frac{(x+\Lambda x,y)}{\Delta x} - \Phi(x,y)}{\Delta x} = \lim_{\Lambda x \to 0} \frac{\int_{A} \frac{(x+\Lambda x,y)}{\Delta x} - \Phi(x,y)}{\Delta x} = \lim_{\Lambda x \to 0} \frac{\int_{A} \frac{(x+\Lambda x,y)}{\Delta x} - \Phi(x,y)}{\Delta x} = \lim_{\Lambda x \to 0} \frac{\int_{A} \frac{(x+\Lambda x,y)}{\Delta x} - \Phi(x,y)}{\Delta x} = \lim_{\Lambda x \to 0} \frac{\int_{A} \frac{(x+\Lambda x,y)}{\Delta x} - \Phi(x,y)}{\Delta x} = \lim_{\Lambda x \to 0} \frac{\int_{A} \frac{(x+\Lambda x,y)}{\Delta x} - \Phi(x,y)}{\Delta x} = \lim_{\Lambda x \to 0} \frac{\int_{A} \frac{(x+\Lambda x,y)}{\Delta x} - \Phi(x,y)}{\Delta x} = \lim_{\Lambda x \to 0} \frac{\int_{A} \frac{(x+\Lambda x,y)}{\Delta x} - \Phi(x,y)}{\Delta x} = \lim_{\Lambda x \to 0} \frac{\int_{A} \frac{(x+\Lambda x,y)}{\Delta x} - \Phi(x,y)}{\Delta x} = \lim_{\Lambda x \to 0} \frac{\int_{A} \frac{(x+\Lambda x,y)}{\Delta x} - \Phi(x,y)}{\Delta x} = \lim_{\Lambda x \to 0} \frac{\int_{A} \frac{(x+\Lambda x,y)}{\Delta x} - \Phi(x,y)}{\Delta x} = \lim_{\Lambda x \to 0} \frac{\int_{A} \frac{(x+\Lambda x,y)}{\Delta x} - \Phi(x,y)}{\Delta x} = \lim_{\Lambda x \to 0} \frac{\int_{A} \frac{(x+\Lambda x,y)}{\Delta x} - \Phi(x,y)}{\Delta x} = \lim_{\Lambda x \to 0} \frac{\int_{A} \frac{(x+\Lambda x,y)}{\Delta x} - \Phi(x,y)}{\Delta x} = \lim_{\Lambda x \to 0} \frac{\int_{A} \frac{(x+\Lambda x,y)}{\Delta x} - \Phi(x,y)}{\Delta x} = \lim_{\Lambda x \to 0} \frac{\int_{A} \frac{(x+\Lambda x,y)}{\Delta x} - \Phi(x,y)}{\Delta x} = \lim_{\Lambda x \to 0} \frac{\int_{A} \frac{(x+\Lambda x,y)}{\Delta x} - \Phi(x,y)}{\Delta$

 $Nota. \ \Phi$ - первообразная для Pdx + Qdy:

Th. Ньютона-Лейбница

Тогда $\frac{\partial Q}{\partial x} = \frac{\partial^2 \Phi}{\partial x \partial y} = \frac{\partial^2 \Phi}{\partial y \partial x} = \frac{\partial P}{\partial y}$

Выполнены условия th об интеграле НЗП

Тогда
$$\int_A^B P dx + Q dy = \Phi(B) - \Phi(A)$$

$$\int_A^B P dx + Q dy \stackrel{\exists \Phi \mid d\Phi = P dx + Q dy}{=} \int_A^B d\Phi(x, y) \stackrel{\text{параметр.} AB}{=} \int_\alpha^\beta d\Phi(t) = \Phi(t) \Big|_\alpha^\beta = \Phi(\beta) - \Phi(\alpha) = \Phi(B) - \Phi(A)$$

Применение

$$Ex. \int_{AB} \left(4 - \frac{y^2}{x^2} \right) dx + \frac{2y}{x} dy$$
 Проверим НЗП: $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$: $\frac{\partial P}{\partial y} = -\frac{2y}{x^2}$, $\frac{\partial Q}{\partial x} - \frac{2y}{x^2} \Longleftrightarrow \text{Í} \cite{C}\cite{C}$

Найдем первообразную $\Phi(x,y)$ на все случаи жизни:

$$\Phi(x,y) = \int_{M_0(x_0,y_0)}^{M(x,y)} Pdx + Qdy$$
 Выберем путь (самый удобный)

$$\Phi(x,y) = \int_{M_0}^{N} + \int_{N}^{M}$$

$$\int_{M_0}^{N} y=0, x_0=1, dy=0 \int_{(1,0)}^{(x,0)} 4dx = 4x \Big|_{(1,0)}^{(x,0)} = 4x-4$$

$$\int_{N}^{M} dx=0 \int_{(x,0)}^{(x,y)} \frac{2y}{x} dy = \frac{y^2}{x} \Big|_{(x,0)}^{(x,y)} = \frac{y^2}{x}$$

$$\Phi(x,y) = 4x-4+\frac{y^2}{x}+C=4x+\frac{y^2}{x}+C$$
Проверим: $\frac{\partial \Phi}{\partial x} = 4-\frac{y^2}{x^2} = P, \ \frac{\partial \Phi}{\partial y} = \frac{2y}{x} = Q$
Теперь можем искать $\int_{AB} \forall A, B \in D$ по N-L
$$\Box A(1,1), B(2,2)$$

$$\int_{AB} Pdx + Qdy = \Phi \Big|_{A}^{B} = \frac{y^{2}}{x} + 4x \Big|_{(1,1)}^{(2,2)} = \frac{4}{2} + 8 - 1 - 4 = 5$$

Nota. Функция Ф ищется в тех случаях, когда $\int_{A}^{B} P dx + Q dy = \int_{A}^{B} (P,Q)(dx,dy) = A$ - работа силы, которая не зависит от пути

(Ex. работа силы тяжести не зависит от пути, а силы трения - зависит)

$$Ex.\ \exists\overrightarrow{F}=(P,Q)=(0,-mg)$$

$$\Phi(x,y)=\int_{O}^{M}0dx-mgdy=-\int_{0}^{y}mgdy=-mgy$$
- потенциал гравитационного поля (или силы тяжести)