Package 'pacbpred'

February 20, 2015

Title PAC-Bayesian Estimation and Prediction in Sparse Additive

Type Package

Models.

Version 0.92.2	
Date 2013-02-05	
Author Benjamin Guedj	
Maintainer Benjamin Guedj dj enjamin.guedj@upmc.fr>	
Description This package is intended to perform estimation and prediction in high-dimensional additive models, using a sparse PAC-Bayesian point of view and a MCMC algorithm. The method is fully described in Guedj and Alquier (2013), 'PAC-Bayesian Estimation and Prediction in Sparse Additive Models', Electronic Journal of Statistics, 7, 264291.	
License GPL (>= 2)	
<pre>URL http://www.lsta.upmc.fr/doct/guedj/index.html</pre>	
Repository CRAN	
Date/Publication 2013-02-05 13:41:35	
NeedsCompilation no	
R topics documented:	
pacbpred-package	2 3
Index	6

2 pacbpred-package

pacbpred-package

PAC-Bayesian Estimation and Prediction in Sparse Additive Models

Description

This package is intended to perform estimation and prediction in high-dimensional additive models, using a PAC-Bayesian point of view and a MCMC algorithm.

Details

Package: pacbpred Type: Package Version: 0.92.2 Date: 2013-02-05 License: GPL (>= 2)

Author(s)

Benjamin Guedj

Maintainer: Benjamin Guedj <benjamin.guedj@upmc.fr>

References

```
http://www.lsta.upmc.fr/doct/guedj/index.html
```

Guedj and Alquier (2013), 'PAC-Bayesian Estimation and Prediction in Sparse Additive Models'. Electronic Journal of Statistics, 7, 264—291. DOI:10.1214/13-EJS771. Available on http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.ejs/1359041592.

See Also

pacbpred

Examples

pacbpred 3

```
Xtrain <- X[1:ntrain,]
Xtest <- X[(ntrain+1):ndata,]
Ytrain <- Y[1:ntrain]
Ytest <- Y[(ntrain+1):ndata]

niter <- 100
cst <- Inf
alpha <- .1
sigma2 <- .1
delta <- ntrain/2

res <- pacbpred(niter = niter, Xtrain = Xtrain, Xtest = Xtest, Y = Ytrain, cst = cst,
sigma2 = sigma2, delta = delta, alpha = alpha)
print(cbind(res$predict,Ytest))</pre>
```

pacbpred

pacbpred

Description

This package is intended to perform estimation and prediction in high-dimensional additive models, using a PAC-Bayesian point of view and a MCMC algorithm. The method is fully described in Guedj and Alquier (2013), 'PAC-Bayesian Estimation and Prediction in Sparse Additive Models', see http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.ejs/1359041592.

Usage

```
pacbpred(niter, burnin = floor(niter * 2/3), Xtrain, Xtest, Y, K = 8,
cst,
sigma2, alpha = 0.1, delta)
```

Arguments

niter	Mandatory. The number of MCMC iterations.
burnin	Optional. How many iterations should be discarded in the beginning of the chain?
Xtrain	Mandatory. The design matrix of the training sample.
Xtest	Optional. The design matrix of the test sample.
Υ	Mandatory. The vector of responses corresponding to Xtrain. Y is assumed to have the same number of rows as Xtrain.
K	Optional. The maximal order of the development on the trigonometric basis.

4 pacbpred

cst	Optional. A numerical constant bounding from above the sup norm of true regression function.
sigma2	Optional. The variance of the proposal density along the algorithm.
alpha	Optional. The penalization term over the complexity of a model.
delta	Optional. The inverse temperature parameter.

Details

See Guedj and Alquier (2013), 'PAC-Bayesian Estimation and Prediction in Sparse Additive Models' on http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.ejs/1359041592.

Value

A list composed of the following items.

predict If Xtest is provided, the predicted values of the corresponding responses.

estimates The vector of estimates over the trigonometric basis.

ratio.mcmc A vector of the MCMC ratio for each iteration.

accept A logical vector whose length is the number of iterations. For each iteration, has

the proposed move been accepted?

models.mcmc The current models all along the MCMC chain.

Note

This is still an early stage development. Use at your own risk!

Author(s)

Benjamin Guedj

References

```
http://www.lsta.upmc.fr/doct/guedj/index.html
```

Guedj and Alquier (2013), 'PAC-Bayesian Estimation and Prediction in Sparse Additive Models'. Electronic Journal of Statistics, 7, 264–291. DOI:10.1214/13-EJS771. Available on http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.ejs/1359041592.

See Also

pacbpred-package

pacbpred 5

Examples

```
ndata <- 100
ntrain <- 80
ntest <- ndata - ntrain
p <- 10
Y <- numeric(ndata)</pre>
X <- matrix(nr = ndata, nc = p, data = 2*runif(n = ndata*p) - 1)</pre>
for(i in 1:ndata)
    Y[i] \leftarrow X[i,1]^3+\sin(pi*X[i,2])
  }
Xtrain <- X[1:ntrain,]</pre>
Xtest <- X[(ntrain+1):ndata,]</pre>
Ytrain <- Y[1:ntrain]</pre>
Ytest <- Y[(ntrain+1):ndata]</pre>
niter <- 100
cst <- Inf
alpha <- .1
sigma2 <- .1
delta <- ntrain/2
res <- pacbpred(niter = niter, Xtrain = Xtrain, Xtest = Xtest, Y =</pre>
Ytrain, cst = cst,
sigma2 = sigma2, delta = delta, alpha = alpha)
print(cbind(res$predict,Ytest))
```

Index

```
*Topic nonlinear
pacbpred, 3
*Topic pac-bayesian
pacbpred, 3
*Topic package
pacbpred-package, 2
*Topic prediction
pacbpred, 3
pacbpred, 3
pacbpred-package, 2
```