Dr.-Ing. Ali Bereyhi

Friedrich-Alexander University ali.bereyhi@fau.de

Summer 2022

When and where?

- Time: Tuesdays 14:15 15:45 and Wednesdays 16:15 17:45 None of the sessions lies on a holiday!
- Place: Lecture Room 05.025, 5th Floor, Cauerstraße 7

How do we proceed?

- Handouts are uploaded prior to each session on StudOn
- We have the sessions *in person*
- Further materials are provided through StudOn

What are the materials for this course?

- You receive handouts for each part of the course
- There are some tutorial assignments and homework
 - You are free to submit these assignments
 - At the end of the semester, you can choose whether

your submissions impact your grade or not

■ The final exam will be Oral

What are the textbooks?

- A Mathematical Introduction to Compressive Sensing S. Foucart and H. Rauhut. Book. 2013.
- Statistical Mechanics of Regularized Least Squares A. Bereyhi, *PhD Dissertation*, 2020.

How to have access to lecture notes?

- You could write your own lecture notes
- We could also appoint a writer for each session, if you wish

Any questions? Simply contact me!

- Ali Bereyhi
 - Room 04.021, Cauerstraße 7, 91058, Erlangen
 - ali.bereyhi@fau.de

An Overall Look

What We Learn in This Course

What is our final goal?

Learn sparse recovery and be able to use it

But, what is sparse recovery?

We learn it in *Part Zero* of the lecture

Part Zero: Introduction to Compressive Sensing

- The Problem of Sparse Recovery
- Sample Applications of Sparse Recovery

Now that we know the problem, how do we do sparse recovery?

We learn it in *Part One* of the lecture

Part One: Compressive Sensing from the Classical Viewpoint

- Our First Try for Noise-free Sparse Recovery
 - Recovering Sparse Signals from Noisy Measurements
 - Good Sensing Matrices for Compressive Sensing
 - Performance Guarantees for Sparse Recovery Algorithms

But, is sparse recovery all about classical sensing systems?

No! We see this in *Part Two* of the lecture

Part Two: Compressive Sensing from a Bayesian Viewpoint

- Formulating Sparse Recovery as a Bayesian Inference
- Minimum Mean Squared Error Bound for Sparse Recovery
- Regularized Least-squares as a Bayesian Recovery Algorithm
- Introduction to Approximate Message Passing

Recovering Sparse Signals

An Illustrative Example

Administrative Stuff

Consider the following system of linear equations:

$$x_1 + x_2 + x_3 = 3$$

 $x_1 - x_2 + 3 x_3 = 1$
 $x_3 + x_4 = 1$

Answer the following items:

(a) How many solutions does this system of equations have?

An Illustrative Example: Answer to Part (a)

For a system of linear equations with

- N unknowns, and
- M linearly independent equations

we have the following cases:

- Overdetermined: When N < M</p>
 - We have no solution
- \blacksquare Determined: When N = M
 - We have a single solution
- Underdetermined: When N > M
 - We have multiple solutions

An Illustrative Example: Answer to Part (a)

In this example, we have

- \blacksquare N = 4 unknowns: x_1 , x_2 , x_3 and x_4
- M=3 linearly independent equations: For any α , β or γ

$$x_1 + x_2 + x_3 = 3$$
 $[1, 1, 1, 0] \neq \alpha [1, -1, 3, 0]$
 $x_1 - x_2 + 3 x_3 = 1$ $[1, 1, 1, 0] \neq \beta [0, 0, 1, 1]$
 $x_3 + x_4 = 1$ $[1, -1, 3, 0] \neq \gamma [0, 0, 1, 1]$

Thus, we conclude that

Underdetermined: Since N = 4 > M = 3

■ We have multiple solutions

An Illustrative Example

Consider the following system of linear equations:

$$x_1 + x_2 + x_3 = 3$$

 $x_1 - x_2 + 3 x_3 = 1$
 $x_3 + x_4 = 1$

Answer the following items:

(b) Calculate the solutions of this system of equations.

An Illustrative Example: Answer to Part (b)

Let $x_3 = u$ for a real scalar u

From the third equation, we have

$$u + x_4 = 1 \rightsquigarrow x_4 = 1 - u$$

■ From the second equation, we have

$$x_1 - x_2 + 3u = 1 \rightsquigarrow x_1 = 1 + x_2 - 3u$$

Replacing x₁ in the first equation results in

$$1 + x_2 - 3u + x_2 + u = 3 \Rightarrow x_2 = 1 + u$$

 $\Rightarrow x_1 = 2 - 2u$

An Illustrative Example: Answer to Part (b)

Thus, for any real scalar u, the vector

$$\mathbf{x}(\mathbf{u}) = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2 - 2\mathbf{u} \\ 1 + \mathbf{u} \\ \mathbf{u} \\ 1 - \mathbf{u} \end{bmatrix}$$

is a solution to the system of equations

An Illustrative Example

Consider the following system of linear equations:

$$x_1 + x_2 + x_3 = 3$$

 $x_1 - x_2 + 3 x_3 = 1$
 $x_3 + x_4 = 1$

Answer the following items:

(c) A side constraint tells us

At most two of the unknowns are non-zero

What are the solutions which satisfy this constraint?

An Illustrative Example: Answer to Part (c)

Recovering Sparse Signals

What are the solutions which have zero entry?

■ For u = 1, u = -1 and u = 0, we have

$$\boldsymbol{x}(\boldsymbol{u}=1) = \begin{bmatrix} 0 \\ 2 \\ 1 \\ 0 \end{bmatrix} \quad \boldsymbol{x}(\boldsymbol{u}=-1) = \begin{bmatrix} 4 \\ 0 \\ -1 \\ 2 \end{bmatrix} \quad \boldsymbol{x}(\boldsymbol{u}=0) = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

■ For any other real u, we x(u) has no zero entry

An Illustrative Example: Answer to Part (c)

Thus, we conclude that there is only one solution which

has at most two non-zero entries

This solution is

$$x(u=1) = \begin{bmatrix} 0 \\ 2 \\ 1 \\ 0 \end{bmatrix}$$

An Illustrative Example

Moral of Story ...

- An underdetermined set of equations has multiple solutions
- A side constraint can lead to a unique solution

Recovering Sparse Signals

Section 1: The Problem of Sparse Recovery

Sparse Recovery

Sparse Recovery

In the problem sparse recovery, we intend to find a sparse solution of an underdetermined system of equations

Immediately, the following questions come to your mind:

- What does sparse mean?
- Why are we talking about sparse recovery?
- Why haven't we yet talked about compressive sensing?

No worries! These questions get clear shortly

Administrative Stuff

Sparse Recovery: Basic Definitions

The system of linear equations is further represented as

$$\mathbf{A}\mathbf{x}=\mathbf{y}$$

where \mathbf{A} , \mathbf{x} and \mathbf{y} are

- x is an N-dimensional vector of unknowns
- \blacksquare A is an $M \times N$ matrix
- y is an M-dimensional vector

Administrative Stuff

Sparse Recovery: Basic Definitions

The system of linear equations is further represented as

$$\mathbf{A}\mathbf{x}=\mathbf{y}$$

Back to our first example

$$x_1 + x_2 + x_3 = 3$$

 $x_1 - x_2 + 3 x_3 = 1$
 $x_3 + x_4 = 1$

Administrative Stuff

Sparse Recovery: Basic Definitions

The system of linear equations is further represented as

$$\mathbf{A}\mathbf{x}=\mathbf{y}$$

Back to our first example

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 3 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{vmatrix} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$$

Administrative Stuff

Sparse Recovery: Basic Definitions

The system of linear equations is further represented as

$$\mathbf{A}\mathbf{x}=\mathbf{y}$$

Remember that for underdetermined systems

A is a fat matrix

I.e., it has more columns than rows

Administrative Stuff

Sparse Recovery: Basic Definitions

What is the support of a vector?

■ The indices of non-zero entries of the vector, e.g.,

$$\mathbf{x} = \begin{bmatrix} 5 \\ 0 \\ 4 \\ 0 \end{bmatrix} \rightsquigarrow \mathsf{Supp}(\mathbf{x}) = \{1, 3\}$$

What is an s-sparse vector?

A vector whose support has s elements, e.g.,

x is 2-sparse

Sparse Recovery: Basic Definitions

The sparsity of a vector is given by the ℓ_0 -norm of the vector

For the vector \mathbf{x} with N entries, the ℓ_0 -norm is defined as

$$\|\mathbf{x}\|_0 = \sum_{n=1}^N \mathbf{1} \{x_n \neq 0\}$$

where $\mathbf{1}\left\{\cdot\right\}$ is the indicator function

$$\mathbf{1}\{X\} = \begin{cases} 1 & \text{if argument } X \text{ holds} \\ 0 & \text{if argument } X \text{ does not hold} \end{cases}$$

Sparse Recovery: Basic Definitions

The sparsity of a vector is given by the ℓ_0 -norm of the vector

Get back to the example

$$\mathbf{x} = \begin{bmatrix} 5 \\ 0 \\ 4 \\ 0 \end{bmatrix}$$

The ℓ_0 -norm is

$$\|\mathbf{x}\|_{0} = \mathbf{1} \{x_{1} \neq 0\} + \mathbf{1} \{x_{2} \neq 0\} + \mathbf{1} \{x_{3} \neq 0\} + \mathbf{1} \{x_{4} \neq 0\}$$

$$= \mathbf{1} \{5 \neq 0\} + \mathbf{1} \{0 \neq 0\} + \mathbf{1} \{4 \neq 0\} + \mathbf{1} \{0 \neq 0\}$$

$$= 1 + 0 + 1 + 0 = 2 = sparsity of \mathbf{x}$$

Sparse Recovery: Basic Definitions

How could we formulate sparse recovery mathematically?

Recovering Sparse Signals

Sparse Recovery

For given **A** and \mathbf{y} , we intend to find vector \mathbf{x} , such that

$$\mathbf{A}\mathbf{x}=\mathbf{y}$$

subject to
$$\|\mathbf{x}\|_0 \leq s$$

for some sparsity s

Shouldn't I write "subject to $\|\mathbf{x}\|_0 = s$ "?

You get an assignment which makes it clear!

Sparse Recovery

A typical audience would have this conversation with me now:

- + Nice! It is good to know what does sparse recovery mean! But it is purely mathematical!
- Somehow yes!
- + What is the connection to the so-called compressive sensing?
- Well, it is literally what we do in compressive sensing
- + OK! Then, what does it have to do with someone who works on communications and signal processing?!
- In many applications, we deal with the same thing!

This gets clear in the next section

Starting with Compressive Sensing

Compressive Sensing: Signal Sampling

How do we deal with such a continuous-time signal?

- We first sample it with large enough sampling rate
- We recover it from discrete-time samples

Compressive Sensing: Signal Sampling

Shannon Sampling Theorem

Let the Fourier transform of x(t) be non-zero only within [-B, B]. Then, the signal is perfectly recovered from samples

$$y_m = x \left(t_m = m T_s \right)$$

when $T_s < 1/2B$

How do we do the recovery?

$$x(t) = \sum_{m=-\infty}^{\infty} y_m \operatorname{sinc}\left(\frac{\pi}{T_s}t - m\pi\right)$$

Shannon Sampling Theorem

Let the Fourier transform of x(t) be non-zero only within [-B, B]. Then, the signal is perfectly recovered from samples

$$y_m = x \left(t_m = m T_s \right)$$

when $T_s < 1/2B$

- In this theorem, what is the signal dimension? ∞
- What about the number of samples? ∞

Compressive Sensing: Signal Sampling

How can we go for finite dimension?

Consider the following signal

$$x(t) = \sum_{n=1}^{N} x_n \exp\left\{2\pi j f_n t\right\}$$

From Fourier analysis, we know that

It covers almost all signals we deal with

- It consists of N harmonics
- Most practical signals consists of finite harmonics

What happens if we employ Shannon sampling theorem?

- The signal is band-limited: Only non-zero between f_1 and f_N
- We can sample it with sampling rate faster than $2(f_N f_1)$

What happens then?

- Due to periodicity of the signal, many samples repeat
- Keeping the samples in one period, you end up with N samples

There is however an alternative way!

Consider the following signal

$$x(t) = \sum_{n=1}^{N} x_n \exp \left\{ 2\pi j f_n t \right\}$$

Let us sample x(t) at a particular time t_m

$$y_{m} = x(t_{m}) = \sum_{n=1}^{N} x_{n} e^{2\pi j f_{n} t_{m}} = \underbrace{\left[e^{2\pi j f_{1} t_{m}}, \dots, e^{2\pi j f_{N} t_{m}}\right]}_{\boldsymbol{a}^{T}(t_{m})} \underbrace{\begin{bmatrix}x_{1}\\ \vdots\\ x_{N}\end{bmatrix}}_{\boldsymbol{x}_{N}}$$

Consider the following signal

$$x(t) = \sum_{n=1}^{N} x_n \exp\left\{2\pi j f_n t\right\}$$

Now what happens if we collect M time samples?

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_M \end{bmatrix} = \begin{bmatrix} x(t_1) \\ \vdots \\ x(t_M) \end{bmatrix} = \begin{bmatrix} \mathbf{a}^\mathsf{T}(t_1) \\ \vdots \\ \mathbf{a}^\mathsf{T}(t_M) \end{bmatrix} \mathbf{x} = \mathbf{A} \mathbf{x}$$

Consider the following signal

$$x(t) = \sum_{n=1}^{N} x_n \exp\left\{2\pi j f_n t\right\}$$

Now what happens if we collect M time samples?

- Well, we know this guy y = Ax: Linear system of equations!
- Without side constraints, we need exactly N = M samples!

How exactly this way meet the sampling theorem?

You will find out in assignments

In compressive sensing, we deal with signals like

Recovering Sparse Signals

$$x(t) = \sum_{n=1}^{N} x_n \exp\left\{2\pi j f_n t\right\}$$

whose x is sparse

We can hence take less samples than M = N, or in other words compressively sense the signal x(t),

and still recover x(t) perfectly from the samples

Sparsity and Compressibility

Starting with Compressive Sensing

Section 1: Sparsity and Compressibility

Compressive Sensing: Signal Sparsity

An audience might ask now the following question:

Question

Why should x be sparse at all?

In a nutshell, the answer to this question follows two points:

- Most signals are sparse in transformed bases
- Many signals might not be sparse but they are compressible

We go through these items now!

Compressive Sensing: Signal Sparsity

Most signals are sparse in transformed bases

Many signals are generated from a dictionary

$$\mathcal{D} = \{\phi_1, \dots, \phi_K\}$$

 ϕ_1, \ldots, ϕ_K are called atoms and are N-dimensional vectors

Compressive Sensing: Signal Sparsity

Most signals are sparse in transformed bases

Using the dictionary, x is given as

$$\mathbf{x} = \sum_{k=1}^{K} c_k \phi_k = [\phi_1, \dots, \phi_K] \begin{vmatrix} c_1 \\ \vdots \\ c_K \end{vmatrix} = \mathbf{\Phi} \mathbf{c}$$

From our discussions on a linear system of equations, we know

The maximum number of atoms is N

However, in most applications $K \ll N$

Compressive Sensing: Signal Sparsity

Most signals are sparse in transformed bases

It is true that x is usually not sparse, but

It is usually presented with only few atoms: c is sparse

How shall we use this?

Using the dictionary, we write the signal samples as

$$y = A x = \underbrace{A \Phi}_{\hat{A}} c = \hat{A}c$$

and we know that $\|\mathbf{c}\|_0 \leq s$ for some $s \ll K$

Compressive Sensing: Signal Sparsity

Most signals are sparse in transformed bases

We use sparse recovery and recover c by solving

$$\hat{\mathbf{A}}\mathbf{c} = \mathbf{y}$$
 subject to $\|\mathbf{c}\|_0 \le s$

We then find x by transforming the bases

$$\mathbf{x} = \mathbf{\Phi}_{\mathbf{C}}$$

Compressive Sensing: Signal Sparsity

Many signals might not be sparse but compressible

In many applications, x is so-called compressible

Many entries of x are close to zero

As the result, we could say that

The signal is well-approximated by a sparse signal

Compressive Sensing: Signal Sparsity

Compressibility

 $\mathbf{x} \in \mathbb{R}^N$ is compressible, if there exists an s-sparse signal $\mathbf{z} \in \mathbb{R}^N$ with $s \ll N$, such that the error of approximating x by z is small

For instance, we want to approximate x with a 1-sparse signal

$$\mathbf{z} = \begin{bmatrix} 0.01 \\ 0.23 \\ 18 \\ 0.06 \end{bmatrix} \qquad \mathbf{z}_1 = \begin{bmatrix} \alpha \\ 0 \\ 0 \\ 0 \end{bmatrix} \mathbf{z}_2 = \begin{bmatrix} 0 \\ \alpha \\ 0 \\ 0 \end{bmatrix} \mathbf{z}_3 = \begin{bmatrix} 0 \\ 0 \\ \alpha \\ 0 \end{bmatrix} \mathbf{z}_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \alpha \end{bmatrix}$$

We choose z_3 and set $\alpha = 18$

R is the real axis

Compressive Sensing: Signal Sparsity

But how much we lose when we use the concept of compressibility?

■ To answer, we need to go through some definitions

Starting with Compressive Sensing

Section 2: Some Basic Definitions

Compressive Sensing: Some Definitions

ℓ_p -Norm

Consider vector **x** with N entries. Its ℓ_p -norm is defined as

$$\|\boldsymbol{x}\|_{p} = \left(\sum_{n=1}^{N} |x_{n}|^{p}\right)^{1/p}$$

Well-known case is the ℓ_2 -norm also being called Euclidean norm

$$\|\boldsymbol{x}\|_2 = \sqrt{\sum_{n=1}^{N} |x_n|^2}$$

Compressive Sensing: Some Definitions

Few notes on ℓ_p -norm:

- For $p \ge 1$, the function $f(\mathbf{x}) = \|\mathbf{x}\|_p$ is convex
 - Local minimum of $\|\mathbf{x}\|_p$ in a convex set is a global minimum
- For p < 1, the function $f(x) = ||x||_p$ is non-convex

Minimizing $\|\mathbf{x}\|_p$ in this case is a hard task

Why do we care about convexity

You will see it very clearly in next sections

Compressive Sensing: Some Definitions

Note that ℓ_p -norm does not change monotonically in terms of p

Compressive Sensing: Some Definitions

Attention

A person with background on functional analysis might say

 ℓ_p -norm with p < 1 is actually not a mathematical norm!

Right! But we don't want confusion! So, we still call it ℓ_p -norm

Administrative Stuff

Compressive Sensing: Some Definitions

Unit ℓ_p -Ball

In \mathbb{R}^N , the unit ℓ_p -ball is the set of all $\mathbf{z} \in \mathbb{R}^N$ such that

$$\|\mathbf{z}\|_p \leq 1$$

Let's try an example together:

Let N=2. The unit ℓ_p -ball contains all $\mathbf{z}=[z_1,z_2]^T$

$$(|z_1|^p + |z_2|^p)^{1/p} \le 1 \leadsto |z_1|^p + |z_2|^p \le 1$$

Compressive Sensing: Some Definitions

We have

$$\boxed{|z_1|^p + |z_2|^p \le 1}$$

Let's try

$$p = 2$$

$$p = 4/3$$

$$p = 1$$

$$p = 2/3$$

$$p = 1/2$$

$$p = 2/5$$

$$p \rightarrow 0$$

Compressive Sensing: Some Definitions

We are now ready to answer the question: We first define

ℓ_p -Error of Best s-Sparse Approximation

The ℓ_p -error of the best s-sparse approximation of vector \mathbf{x} is

$$\sigma_s(\mathbf{x})_p = \min_{\mathbf{z}} ||\mathbf{x} - \mathbf{z}||_p$$

subject to $||\mathbf{z}||_0 \le s$

This metric calculates the error we get when ...

We approximate a compressible signal with its sparse representation

Administrative Stuff

Compressive Sensing: Some Definitions

It is easy to bound $\sigma_s(\mathbf{x})_n$:

Remember this example: Approximate \mathbf{x} with a 1-sparse signal

$$\mathbf{z} = \begin{bmatrix} 0.01 \\ 0.23 \\ 18 \\ 0.06 \end{bmatrix} \qquad \mathbf{z}_1 = \begin{bmatrix} \alpha \\ 0 \\ 0 \\ 0 \end{bmatrix} \mathbf{z}_2 = \begin{bmatrix} 0 \\ \alpha \\ 0 \\ 0 \end{bmatrix} \mathbf{z}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \mathbf{z}_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \alpha \end{bmatrix}$$

We choose z_3 and set $\alpha = 18$

Compressive Sensing: Some Definitions

We can always find best s-sparse approximation, in the same way

Sort the entries of x as

$$|x_{i_1}| \geq |x_{i_2}| \geq \ldots \geq |x_{i_N}|$$

$$\mathbf{x} = \begin{bmatrix} 0.01 \\ 0.23 \\ 18 \\ 0.06 \end{bmatrix} \qquad i_1 = 3, i_2 = 2, i_3 = 4, i_4 = 1$$

$$i_1 = 3, i_2 = 2, i_3 = 4, i_4 = 1$$

Compressive Sensing: Some Definitions

We can always find best s-sparse approximation, in the same way

■ Set z* to be s-sparse with support

$$\mathsf{Supp}\left(\mathbf{z}^{\star}\right) = \{i_1, \ldots, i_s\}$$

whose non-zero entries are

$$z_{i_1}^{\star}=x_{i_1},\ldots,z_{i_s}^{\star}=x_{i_s}$$

Administrative Stuff

Compressive Sensing: Some Definitions

 \mathbf{z}^{\star} is the best s-sparse approximation of vector \mathbf{x}

Therefore, the ℓ_p -error is given by

 ℓ_p -Error of Best s-Sparse Approximation

The ℓ_p -error of the best s-sparse approximation of vector \mathbf{x} is

$$\sigma_s(\mathbf{x})_p = \min_{\mathbf{z}} \|\mathbf{x} - \mathbf{z}\|_p = \|\mathbf{x} - \mathbf{z}^*\|_p$$
subject to $\|\mathbf{z}\|_0 \le s$

Administrative Stuff

Compressive Sensing: Some Definitions

 $\sigma_s(\mathbf{x})_p^p$ in this case is

$$\sigma_{s}(\mathbf{x})_{p}^{p} = \|\mathbf{x} - \mathbf{z}^{\star}\|_{p}^{p} = \sum_{n=1}^{N} |x_{i_{n}} - \mathbf{z}_{i_{n}}^{\star}|^{p}$$

$$= \sum_{n=1}^{s} |x_{i_{n}} - \mathbf{z}_{i_{n}}^{\star}|^{p} + \sum_{n=s+1}^{N} |x_{i_{n}} - \mathbf{z}_{i_{n}}^{\star}|^{p}$$

$$= \sum_{n=1}^{s} |x_{i_{n}} - x_{i_{n}}|^{p} + \sum_{n=s+1}^{N} |x_{i_{n}} - \mathbf{0}|^{p}$$

$$= \sum_{n=s+1}^{N} |x_{i_{n}}|^{p}$$

Compressive Sensing: Some Definitions

Assume q < p, now we write

$$\sigma_s(\mathbf{x})_p^p = \sum_{n=s+1}^N |x_{i_n}|^p = \sum_{n=s+1}^N |x_{i_n}|^{p-q} |x_{i_n}|^q$$

Since $|x_{i_s}| \ge |x_{i_n}|$ for n = s + 1, ..., N, we have

$$\sigma_s(\mathbf{x})_p^p \leq \sum_{n=s+1}^N |\mathbf{x}_{i_s}|^{p-q} |\mathbf{x}_{i_n}|^q$$
$$= |\mathbf{x}_{i_s}|^{p-q} \sum_{n=s+1}^N |\mathbf{x}_{i_n}|^q$$

Compressive Sensing: Some Definitions

We can further rewrite the inequality as

$$\sigma_{s}(\mathbf{x})_{p}^{p} \leq |\mathbf{x}_{i_{s}}|^{p-q} \sum_{n=s+1}^{N} |\mathbf{x}_{i_{n}}|^{q}$$
$$= (|\mathbf{x}_{i_{s}}|^{q})^{\frac{p-q}{q}} \sum_{n=s+1}^{N} |\mathbf{x}_{i_{n}}|^{q}$$

Since $|\mathbf{x}_{i_n}| \leq |\mathbf{x}_{i_n}|$ for n = 1, ..., s, we can always write

$$|\mathbf{x}_{i_{s}}|^{q} = \frac{1}{s} \sum_{n=1}^{s} |\mathbf{x}_{i_{s}}|^{q} \le \frac{1}{s} \sum_{n=1}^{s} |\mathbf{x}_{i_{n}}|^{q}$$

Compressive Sensing: Some Definitions

Therefore, we have

$$\sigma_{s}(\mathbf{x})_{p}^{p} \leq (|\mathbf{x}_{i_{s}}|^{q})^{\frac{p-q}{q}} \sum_{n=s+1}^{N} |\mathbf{x}_{i_{n}}|^{q}$$

$$\leq \left(\frac{1}{s} \sum_{n=1}^{s} |\mathbf{x}_{i_{n}}|^{q}\right)^{\frac{p-q}{q}} \sum_{n=s+1}^{N} |\mathbf{x}_{i_{n}}|^{q}$$

$$\leq \left(\frac{1}{s} ||\mathbf{x}||_{q}^{q}\right)^{\frac{p-q}{q}} ||\mathbf{x}||_{q}^{q}$$

$$= s^{\frac{q-p}{q}} ||\mathbf{x}||_{q}^{p}$$

Compressive Sensing: Some Definitions

We concluded that

$$\sigma_{s}(\mathbf{x})_{p}^{p} \leq s^{\frac{q-p}{q}} \|\mathbf{x}\|_{q}^{p}$$

Or equivalently

$$\sigma_s(\mathbf{x})_p \leq s^{\frac{1}{p} - \frac{1}{q}} \|\mathbf{x}\|_q$$

Administrative Stuff

Compressive Sensing: Some Definitions

What does this result say?

Let p = 2 and q = 1; then, this bound says

$$\sigma_{s}(\mathbf{x})_{2} \leq \frac{\|\mathbf{x}\|_{1}}{\sqrt{s}}$$

If the signal has a bounded ℓ_1 -norm

As s grows large, the ℓ_2 -error drops

There exists an s < N at which the error becomes negligible

Administrative Stuff

Compressive Sensing: Some Definitions

Moral of Story

- Most signals represented with finite numbers of entries
- These entries are presented by a vector which is Either sparse or compressible
- We could recover the signal perfectly from few samples

Final Points

You now probably come up with various questions

- How much we could reduce the number of samples?
- How could we recover the signal efficiently from the samples?
- How should we perform the sampling?
- Can we guarantee the perfect recovery of a signal?

No worries! These are what we learn in the first part

Which Parts of Textbooks?

We are now over with the introductory part!

I would suggest to go over the text book

- A Mathematical Introduction to Compressive Sensing
- S. Foucart and H. Rauhut, Book, 2013

and study the following parts:

- Chapter 1: Sections 1.1 and 1.2, Pages 1–23
- Chapter 2: Section 2.1, Pages 41–47