Math 395

Homework 8

Due: 4/30/2024

Name: Avinash Iyer

Collaborators: Nate Hall

Problem 1

Let K/F be a Galois extension with Gal(K/F) abelian of order 10. We will compute the intermediate fields between F and K, and their dimensions over F.

Since Gal(K/F) is abelian and of order 10, it must be the case that $Gal(K/F) \cong \mathbb{Z}/10\mathbb{Z}$.

The subgroups of Gal(K/F) are isomorphic to the subgroups of $\mathbb{Z}/10\mathbb{Z}$; since $10 = 2 \cdot 5$, it must be the case that $\langle 2 \rangle$, with order 5 and $\langle 5 \rangle$, with order 2, are the two proper subgroups of $\mathbb{Z}/10\mathbb{Z}$ (by Lagrange's Theorem). We will let $H_1 \leq Gal(K/F)$ be isomorphic to $\langle 2 \rangle$, and $H_2 \leq Gal(K/F)$ be isomorphic to $\langle 5 \rangle$.

Let $A = K^{H_1}$. Then, since $[\mathbb{Z}/10\mathbb{Z} : \langle 2 \rangle] = 2$, it is the case that [A : F] = 2. Similarly, for $B = K^{H_2}$, it is the case that $[\mathbb{Z}/10\mathbb{Z} : \langle 5 \rangle] = 5$, so [B : F] = 5.

Problem 3

We will find $Gal(x^4 - 5x^2 + 6)$ over \mathbb{Q} .

To start, factoring $x^4 - 5x^2 + 6$, we find it is equal to $(x^2 - 3)(x^2 - 2) = (x - \sqrt{3})(x + \sqrt{3})(x - \sqrt{2})(x + \sqrt{2})$ in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Since $x^4 - 5x^2 + 6$ is separable in $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathrm{Spl}(x^4 - 5x^2 + 6)$, it must be the case that $\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q}$ is a Galois extension.

We know that the basis for $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$, meaning that for $\sigma \in \operatorname{Gal}(K/F)$, we have $\sigma(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}) + a + b\sigma(\sqrt{2}) + c\sigma(\sqrt{3}) + d\sigma(\sqrt{2})\sigma(\sqrt{6})$. Thus, the possible elements of $\operatorname{Gal}(K/F)$ are

$$\sigma_0 := \mathrm{id}$$

$$\sigma_1 := \begin{cases} \sqrt{2} \mapsto -\sqrt{2} \\ \sqrt{3} \mapsto \sqrt{3} \end{cases}$$

$$\sigma_2 := \begin{cases} \sqrt{2} \mapsto \sqrt{2} \\ \sqrt{3} \mapsto -\sqrt{3} \end{cases}$$

$$\sigma_3 := \begin{cases} \sqrt{2} \mapsto -\sqrt{2} \\ \sqrt{3} \mapsto -\sqrt{3} \end{cases}$$

Notice that $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_0$, meaning we have $Gal(K/F) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Problem 4

(a) To find the splitting field of $f(x) = x^4 - 2$ over \mathbb{Q} , we find its roots, which are $\pm \sqrt[4]{2}$, $\pm i\sqrt[4]{2}$. Thus, $K = \operatorname{Spl}_{\mathbb{Q}}(f(x)) = \mathbb{Q}(i, \sqrt[4]{2})$.

1

(b) To find $[K : \mathbb{Q}]$, we see

$$[\mathbb{Q}(i, \sqrt[4]{2}) : \mathbb{Q}] = [\mathbb{Q}(i, \sqrt[4]{2}) : \mathbb{Q}(\sqrt[4]{2})][\mathbb{Q}(\sqrt[4]{2}) : \mathbb{Q}]$$
$$= 8.$$

(c) To see that such a σ exists, we will verify that it maps a basis for $\mathbb{Q}(i, \sqrt[4]{2})$ to a basis for $\mathbb{Q}(i, \sqrt[4]{2})$, and keeps \mathbb{Q} fixed.

$$\sigma: \begin{cases} 1 \mapsto 1 \\ \sqrt[4]{2} \mapsto i\sqrt[4]{2} \\ \sqrt[4]{4} \mapsto -\sqrt[4]{4} \\ \sqrt[4]{8} \mapsto -i\sqrt[4]{8} \\ i \mapsto i \\ i\sqrt[4]{2} \mapsto -\sqrt[4]{2} \\ i\sqrt[4]{4} \mapsto -i\sqrt[4]{4} \\ i\sqrt[4]{8} \mapsto \sqrt[4]{8} \end{cases}$$

Therefore, $\sigma \in \text{Gal}(K/\mathbb{Q})$. We see that $\sigma^2(\sqrt[4]{2}) = -\sqrt[4]{2}$, $\sigma^3(\sqrt[4]{2}) = -i\sqrt[4]{2}$, meaning $\sigma^4 = \text{id}$.

(d) Letting τ be the restriction of complex conjugation to K, we will show that $\tau \in Gal(K/\mathbb{Q})$ and $Gal(K/\mathbb{Q}) = \{id, \sigma, \sigma^2, \sigma^3, \tau, \sigma\tau, \sigma^2\tau, \sigma^3\tau\}$.

To start, we will verify that τ maps a basis for $\mathbb{Q}(i, \sqrt[4]{2})$ to a basis for $\mathbb{Q}(i, \sqrt[4]{2})$, keeping \mathbb{Q} fixed.

$$\tau: \begin{cases} 1 \mapsto 1 \\ \sqrt[4]{2} \mapsto \sqrt[4]{2} \\ \sqrt[4]{4} \mapsto \sqrt[4]{4} \\ \sqrt[4]{8} \mapsto \sqrt[4]{8} \\ i \mapsto -i \\ i\sqrt[4]{2} \mapsto -i\sqrt[4]{2} \\ i\sqrt[4]{4} \mapsto -i\sqrt[4]{4} \\ i\sqrt[4]{8} \mapsto -i\sqrt[4]{8} \end{cases}$$

We see that $\tau^2 = \mathrm{id}$, and $\tau \neq \sigma$. Defining $\sigma \tau \cdot x = \sigma(\tau(x))$, we see the elements of $\mathrm{Gal}(K/\mathbb{Q})$ are

$$e = id$$

$$\sigma = \begin{cases} \sqrt[4]{2} \mapsto i\sqrt[4]{2} \\ i \mapsto i \end{cases}$$

$$\sigma^{2} = \begin{cases} \sqrt[4]{2} \mapsto -\sqrt[4]{2} \\ i \mapsto i \end{cases}$$

$$\sigma^{3} = \begin{cases} \sqrt[4]{2} \mapsto -i\sqrt[4]{2} \\ i \mapsto i \end{cases}$$

$$\sigma^{4} = \begin{cases} \sqrt[4]{2} \mapsto \sqrt[4]{2} \\ i \mapsto i \end{cases}$$

$$= id$$

$$\tau = \begin{cases} \sqrt[4]{2} \mapsto \sqrt[4]{2} \\ i \mapsto i \end{cases}$$

$$= id$$

$$\sigma\tau = \begin{cases} \sqrt[4]{2} \mapsto \sqrt[4]{2} \mapsto i\sqrt[4]{2} \\ i \mapsto i \end{cases}$$

$$= id$$

$$\sigma\tau = \begin{cases} \sqrt[4]{2} \mapsto \sqrt[4]{2} \mapsto i\sqrt[4]{2} \\ i \mapsto i \mapsto -i \end{cases}$$

$$\sigma^{2}\tau = \begin{cases} \sqrt[4]{2} \mapsto \sqrt[4]{2} \mapsto i\sqrt[4]{2} \Rightarrow -i\sqrt[4]{2} \\ i \mapsto -i \mapsto -i \end{cases}$$

$$\sigma^{3}\tau = \begin{cases} \sqrt[4]{2} \mapsto \sqrt[4]{2} \mapsto i\sqrt[4]{2} \Rightarrow -i\sqrt[4]{2} \\ i \mapsto i \mapsto -i \end{cases}$$

$$= \sigma^{3}\tau$$

$$\tau\sigma^{2} = \begin{cases} \sqrt[4]{2} \mapsto i\sqrt[4]{2} \mapsto -i\sqrt[4]{2} \\ i \mapsto i \mapsto -i \end{cases}$$

$$= \sigma^{3}\tau$$

$$\tau\sigma^{3} = \begin{cases} \sqrt[4]{2} \mapsto i\sqrt[4]{2} \mapsto -i\sqrt[4]{2} \\ i \mapsto i \mapsto -i \end{cases}$$

$$= \sigma^{2}\tau$$

$$\tau\sigma^{3} = \begin{cases} \sqrt[4]{2} \mapsto i\sqrt[4]{2} \mapsto -i\sqrt[4]{2} \\ i \mapsto i \mapsto -i \end{cases}$$

$$= \sigma^{2}\tau$$

$$\tau\sigma^{3} = \begin{cases} \sqrt[4]{2} \mapsto i\sqrt[4]{2} \mapsto -i\sqrt[4]{2} \\ i \mapsto i \mapsto -i \end{cases}$$

$$= \sigma^{3}\tau$$

$$\tau\sigma^{3} = \begin{cases} \sqrt[4]{2} \mapsto i\sqrt[4]{2} \mapsto -i\sqrt[4]{2} \\ i \mapsto i \mapsto -i \end{cases}$$

$$= \sigma^{3}\tau$$

$$\tau\sigma^{3} = \begin{cases} \sqrt[4]{2} \mapsto i\sqrt[4]{2} \mapsto -i\sqrt[4]{2} \\ i \mapsto i \mapsto -i \end{cases}$$

$$= \sigma^{3}\tau$$

$$\tau\sigma^{3} = \begin{cases} \sqrt[4]{2} \mapsto i\sqrt[4]{2} \mapsto -i\sqrt[4]{2} \\ i \mapsto i \mapsto -i \end{cases}$$

$$= \sigma^{3}\tau$$

$$\tau\sigma^{3} = \begin{cases} \sqrt[4]{2} \mapsto i\sqrt[4]{2} \mapsto -i\sqrt[4]{2} \\ i \mapsto i \mapsto -i \end{cases}$$

$$= \sigma^{3}\tau$$

$$\tau\sigma^{3} = \begin{cases} \sqrt[4]{2} \mapsto i\sqrt[4]{2} \mapsto -i\sqrt[4]{2} \\ i \mapsto i \mapsto -i \end{cases}$$

$$= \sigma^{3}\tau$$

$$\tau\sigma^{3} = \begin{cases} \sqrt[4]{2} \mapsto i\sqrt[4]{2} \mapsto -i\sqrt[4]{2} \\ i \mapsto i \mapsto -i \end{cases}$$

$$= \sigma^{3}\tau$$

$$\tau\sigma^{3} = \begin{cases} \sqrt[4]{2} \mapsto i\sqrt[4]{2} \mapsto -i\sqrt[4]{2} \\ i \mapsto i \mapsto -i \end{cases}$$

$$= \sigma^{3}\tau$$

$$\tau\sigma^{3} = \begin{cases} \sqrt[4]{2} \mapsto i\sqrt[4]{2} \mapsto -i\sqrt[4]{2} \\ i \mapsto i \mapsto -i \end{cases}$$

$$= \sigma^{3}\tau$$

$$\tau\sigma^{3} = \begin{cases} \sqrt[4]{2} \mapsto i\sqrt[4]{2} \mapsto -i\sqrt[4]{2} \\ i \mapsto i \mapsto -i \end{cases}$$

$$= \sigma^{3}\tau$$

$$\tau\sigma^{3} = \begin{cases} \sqrt[4]{2} \mapsto i\sqrt[4]{2} \mapsto -i\sqrt[4]{2} \\ i \mapsto i \mapsto -i \end{cases}$$

$$= \sigma^{3}\tau$$

$$\tau\sigma^{3} = \begin{cases} \sqrt[4]{2} \mapsto i\sqrt[4]{2} \mapsto -i\sqrt[4]{2} \\ i \mapsto -i\sqrt[4]{2} \Rightarrow -i\sqrt[4]{2} \mapsto -i\sqrt[4]{2} \Rightarrow -i\sqrt[4]{2} \Rightarrow$$

Since $|Gal(K/\mathbb{Q})| = [K : \mathbb{Q}] = 8$, it must be the case that $\{e, \sigma, \sigma^2, \sigma^3, \tau, \sigma\tau, \sigma^2\tau, \sigma^3\tau\}$ are the elements of $Gal(K/\mathbb{Q})$. This is isomorphic to the dihedral group of order 8, D_4 .

(e) We can determine the fixed field of $\langle \sigma^2 \tau \rangle$ as follows. We find that for $x = \sum_{j=1}^8 a_j e_j$, where e_j denotes the *j*th basis vector of $\mathbb{Q}(i, \sqrt[4]{2})$, we have

$$\sigma^{2}\tau(x) = a_{1} - a_{2}\sqrt[4]{2} + a_{3}\sqrt[4]{4} - a_{4}\sqrt[4]{8} - a_{5}i + a_{6}i\sqrt[4]{2} - a_{7}i\sqrt[4]{4} + a_{8}i\sqrt[4]{8}$$
$$id(x) = a_{1} + a_{2}\sqrt[4]{2} + a_{3}\sqrt[4]{4} + a_{4}\sqrt[4]{8} + a_{5}i + a_{6}i\sqrt[4]{2} + a_{7}i\sqrt[4]{4} + a_{8}i\sqrt[4]{8}.$$

Therefore, $a_2 = -a_2$, $a_4 = -a_4$, $a_5 = -a_5$, and $a_7 = -a_7$, meaning the coefficients are identically 0, or

$$x = a_1 + a_3 \sqrt[4]{4} + a_6 i \sqrt[4]{2} + a_8 i \sqrt[4]{8}$$

$$= a_1 + a_6 i \sqrt[4]{2} - a_3 \left(i \sqrt[4]{2} \right)^2 - a_8 \left(i \sqrt[4]{2} \right)^3$$

$$= a_1 + a_6 i \sqrt[4]{2} + b_3 \left(i \sqrt[4]{2} \right)^2 + b_8 \left(i \sqrt[4]{2} \right)^3.$$

Therefore, $\mathbb{Q}\left(i,\sqrt[4]{2}\right)^{\langle\sigma^2\tau\rangle}=\mathbb{Q}(i\sqrt[4]{2})$. (Answer found with assistance from Adamson (1964), "Introduction to Field Theory.")

(f) Letting $E = \mathbb{Q}(\sqrt{2}, i)$, we have

$$[K : E] = [\mathbb{Q}(\sqrt[4]{2}, i) : \mathbb{Q}(\sqrt{2}, i)]$$
$$= 2.$$

Additionally, since $\mathbb{Q}(\sqrt{2},i) = \operatorname{Spl}_{\mathbb{Q}}(x^2+2)$, it is also Galois over \mathbb{Q} , meaning $\operatorname{Gal}(K/E) \leq \operatorname{Gal}(K/\mathbb{Q})$ with $|\operatorname{Gal}(K/E)| = 2$. Thus, $\operatorname{Gal}(K/E) = \langle \sigma^2 \rangle$.

(g) To find the fixed fields for $\sigma\tau$ and $\sigma^3\tau$, we use the procedure that we used for $\sigma^2\tau$ to find $\mathbb{Q}(\sqrt[4]{2},i)^{\langle\sigma\tau\rangle}=\mathbb{Q}\left(\sqrt[4]{2}(1+i)\right)$ and $\mathbb{Q}(\sqrt[4]{2},i)^{\langle\sigma^3\tau\rangle}=\mathbb{Q}\left(\sqrt[4]{2}(1-i)\right)$. Thus, the lattice of subfields and subgroups is as follows.

Problem 6

We will prove that $\mathbb{Q}(\sqrt[3]{2})$ is not a subfield of $\mathbb{Q}(\zeta_n)$ for any $n \geq 1$.

We know that $Gal(\mathbb{Q}(\zeta_n)) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$, which is an Abelian group. Therefore, any subgroup of $Gal(\mathbb{Q}(\zeta_n))$ is normal, so any subfield $\mathbb{Q} \subseteq E \subseteq \mathbb{Q}(\zeta_n)$ is Galois over \mathbb{Q} . However, since $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not a Galois extension, it cannot be the case that $\mathbb{Q}(\sqrt[3]{2})$ is a subfield of $\mathbb{Q}(\zeta_n)$. (Answer found using hint from Stack Overflow.)