Student Information

Full Name: Mohammad Mahdi Khosravi

Id Number: 2489235

$\mathbf{Q}\mathbf{1}$

(i) By the Well Ordering Property every nonempty subset of the set of positive integers has a least value.

(ii) $(k \in \mathbb{Z}^+ \land n \in \mathbb{Z}^+) \to n^k \in \mathbb{Z}^+$

Proof: We assume that there is an integer smaller than 1 in the set of positive integers. We choose $n \in \mathbb{Z}^+$ such that n < 1. If we multiply both sides by n we get this inequality $n^2 < n$. However since $n^2 \in \mathbb{Z}^+$ by (ii) then this is a contradiction since we assumed n is the smallest integer but now n^2 is smaller than n. So our assumption is false.

Therefore by (i) and the proof by contradiction, 1 is the smallest integer in the set of positive integers.

$\mathbf{Q2}$

(1) First we prove that S(m,1) by using induction.

Base case: $x_1 = 1$ which we find that there is $f(1,1) = \frac{1!}{1!0!} = 1$ solutions which is correct because there can be only one solution thus the base case holds.

Inductive case: Assume that S(m,1) is true. That is for $x_1 + x_2 + ... + x_m = 1$ the number of solutions is equal to $f(m,1) = \frac{m!}{1!(m-1)!} = m$.

We have to show that S(m+1,1) holds.

(i) We know for $x_1 + x_2 + ... + x_m = 1$ there is one solution and (ii) for one variable $x_{m+1} = 1$ there is one solution (base case).

Thus, if we add x_{m+1} to $x_1 + x_2 + ... + x_m$ we get $x_1 + x_2 + ... + x_m + x_{m+1}$ which means there is m+1 solutions by (i) and (ii). Since $f(m+1,1) = \frac{m+1!}{1!(m)!} = m+1$ then it is equal to the conclusion in (iii). So we have proven the inductive case.

 \therefore S(m,1) is proven by induction.

(2) We must show S(1,n) is true by using induction.

Base case: S(1,1) denotes that the number of solutions for $x_1 = 1$ is equal to $f(1,1) = \frac{1!}{1!0!} = 1$ which is again correct because there can be only one solution thus the base case holds.

Inductive case: Assume S(1,n) is true. We must show S(1,n+1) is true.

S(1,n) means that there are $\binom{n}{n}=1$ solutions.

Since for S(1, n+1) there are $\binom{n+1}{n+1} = 1$ solutions as well, then S(1, n) is proved by induction.

(3) Proof for S(m, n):

Basis step: S(1, n+1) and S(m+1, 1) holds from (1) and (2).

Inductive Hypothesis: Assume S(m, n+1) and S(m+1, n) are true. We know for S(m, n+1) the combination formula is $\binom{n+m}{n+1}$ and for S(m+1,n) it is $\binom{n+m}{n}$. From Pascals Identity (Chapter 6.4) we know

S(m+1, n+1) holds.

 \therefore S(m,n) is proved by induction.

Q3

a. We can draw 21 squares in the given grid. Each square can be split into 4 different triangles in different orientations. So we have $4 \times 21 = 84$ triangles. We also can draw 7 triangles in the empty remaining spaces.

So we can have 84 + 7 = 91 triangles drawn on the grid.

b. By the product rule the total number of functions $=4^6$

To find the number of onto functions we subtract the number of functions that are not onto.

We start from leaving one element out from the co-domain and find the number of functions with 3 elements in co-domain. When we do this then we need to add back the case where 2 elements of the co-domain is left out because of the Inclusion-Exclusion Principle (Chapter 6.1). When we that add back then the number of not-onto functions that have 3 elements left out of the co-domain is again added so we subtract that case again as well. So we have:

$$4^6 - \binom{4}{1} \times 3^6 + \binom{4}{2} \times 2^6 - \binom{4}{3} \times 1^6 + \binom{4}{4} \times 0^6 = 1560$$
 1560 onto functions.

$\mathbf{Q4}$

a. Let a_n be the recurrence relation. We know if we have a string of length n then we have 2 cases:

(i) A string of length n-1 which is valid (meaning it contains 2 consecutive elements). Then we have 3 choices to add to the string to make it length n. Therefore we have $3.a_{n-1}$.

(ii) A string of length n-1 which is not valid. The number of such strings are $3^{n-1}-a_{n-1}$.

If we add both cases using the sum rule:

$$a_n = 3.a_{n-1} + (3^{n-1} - a_{n-1}) = 2.a_{n-1} + 3^{n-1}$$

b. Initial conditions are:

$$a_1 = 0$$

$$a_2 = 3$$

c.
$$a_n - 2.a_{n-1} = 3^{n-1}$$

Characteristic equation: $r-2=0 \rightarrow r=2$

Homogeneous solution: $a_n^H = A.2^n$

Particular solution: $a_n^P = B.3^n$

Plugging particular solution into the equation:

$$3B.3^{n-1} - 2.B.3^{n-1} = 3^{n-1}$$

$$\Rightarrow B.3^{n-1} = 3^{n-1} \Rightarrow B = 1$$
 Using initial condition to find A:

$$a_n = A \cdot 2^n + 3^n$$
 and $a_1 = 0 \Rightarrow 2A + 3 = 0 \Rightarrow A = -\frac{3}{2}$

$$a_n = -\frac{3}{2}.2^n + 3^n$$