Data Structures and Algorithms

Prepared by: Mohamed Ayman

Algorithm Engineer at Valeo
Deep Learning Researcher and Teaching Assistant
at The American University in Cairo (AUC)

spring 2020

sw.eng.MohamedAyman@gmail.com

<u>linkedin.com/in/cs-MohamedAyman</u>

github.com/cs-MohamedAyman

codeforces.com/profile/Mohamed_Ayman

Mohamed Ayman

Experience

- Deep Learning Researcher
- Algorithm Software Engineer

• The American University in Cairo (AUC)

[2019-Present]

- Research Assistant
- Teaching Assistant

- Coach at ACPC Africa and Arab Collegiate Programming Contest
- Mentor at ACPC Africa and Arab Collegiate Programming Contest

Education

MSc in Deep Learning, Cairo University [2018-2021]

BSc in Computer Science, Cairo University

[2013-2017]

Data Structures and Algorithms Training

Lecture Agenda

We will discuss in this lecture the following topics

- 1- Data Structures and Algorithms Features
- 2- Data Structures and Algorithms Content
- 3- Practice on Online Judges
- 4- Programming Competitions
- 5- Tutorials and References
- 6- Online Courses

4

Lecture Agenda

Section 1: Data Structures and Algorithms Features

Section 2: Data Structures and Algorithms Content

Section 3: Practice on Online Judges

Section 4: Programming Competitions

Section 5: Tutorials and References

Section 6: Online Courses

- Data structure is a way to store and organize data in order to support efficient insertions, queries, searches, updates, and deletions. Although a data structure in itself does not solve the given programming problem, the algorithm operating on it does, using the most efficient data structure for the given problem may be a difference between passing or exceeding the problem's time limit. There are many ways to organize the same data and sometimes one way is better than the other on different context.
- Algorithms is the current term of choice for a problem-solving procedure, algorithm, is commonly used nowadays for the set of rules a machine (and especially a computer) follows to achieve a particular goal. It does not always apply to computer-mediated activity, however. Algorithm is often paired with words specifying the activity for which a set of rules have been designed.
- Characteristics of Data Structures and Algorithms:
- 1 Correctness: Data structures and Algorithms implementation should implement its interface correctly.
- 2 Time Complexity: Running time or the execution time of operations must be as small as possible.
- 3 Space Complexity: Memory usage of a data structure operation should be as little as possible.

- Why we need data structures and algorithms? there are several advantages of using them, few of them are as follows:
- 1. Data Organization: We need a proper way of organizing the data so that it can accessed efficiently when we need that particular data. DS provides different ways of data organization so we have options to store the data in different data structures based on the requirement.
- 2. Efficiency: The main reason we organize the data is to improve the efficiency. We can store the data in arrays then why do we need linked lists and other data structures? because when we need to perform several operation such as add, delete update and search on arrays, it takes more time in arrays than some of the other data structures. So the fact that we are interested in other data structures is because of the efficiency.
- Time Complexity: It is a way to represent the amount of time required by the program to run till its completion. It's generally a good practice to try to keep the time required minimum, so that our algorithm completes it's execution in the minimum time possible. We will study about Time Complexity in details in later sections.
- > Space Complexity: Its the amount of memory space required by the algorithm, during the course of its execution. Space complexity must be taken seriously for multi-user systems and in situations where limited memory is available.

Lecture Agenda

✓ Section 1: Data Structures and Algorithms Features

Section 2: Data Structures and Algorithms Content

Section 3: Practice on Online Judges

Section 4: Programming Competitions

Section 5: Tutorials and References

Section 6: Online Courses

Data Structures Content

Part 1: Linear Data Structures

Lecture 8: Binary Tree

Lecture 1: Complexity Analysis & Recursion

Lecture 9: Binary Search Tree

Lecture 2: Array

Lecture 10: Self Balancing BST (AVL Tree)

Part 7: Non-Linear Data Structures

Lecture 3: Linked List

Lecture 11: Self Balancing BST (Red Black Tree)

Lecture 4: Stack

Lecture 12: Binary Heap Tree

Lecture 5: Queue

Lecture 13: Hash Table

Lecture 6: Deque

Lecture 14: Built-in Non Linear Data Structures

Lecture 7: Built-in Linear Data Structures

Data Structures Content

Lecture 15: Disjoint Set

Lecture 22: AA Tree

Lecture 16: Skip List Lecture 23: K-Dimensional Tree

Lecture 17: Trie Lecture 24: B/B+ Tree

Lecture 18: Segment Tree Lecture 25: Sparse Table

Lecture 19: Binary Indexed Tree (Fenwick Tree) Lecture 26: Suffix Array

Lecture 20: Treap (Randomized Binary Search Tree) Lecture 27: Suffix Tree

Lecture 21: Splay Tree Lecture 28: Advanced Trees

Part 4: Advanced Data Structures

Hands-on Projects & Assignments & Practices

Data Structures Projects (4 Projects)

Project 1: Mathematical Equations Calculator (linear data structures application)

Project 2: Mobile Contacts Indexing (linear & non-linear data structures application)

Project 3: Big Families (non-linear data structures application)

Project 4: University Friends (non-linear data structures application)

Data Structures Assignments (10 Assignment)

After each lecture we have an assignment (Implementing & Testing the Data Structures on each Lecture)

Data Structures Practices (30+ Practice Problems) on each Lecture.

Part 1: Basic Algorithms

Lecture 1: Analysis of Algorithms

- Analysis Methods in Time & Space Complexity
- Master theorem Substitution method
- Recursion tree method

Lecture 2, 3: Sorting Algorithms

- Selection Sort

- Insertion Sort

- Bubble Sort

- Shell Sort

- Merge Sort

- Quick Sort

- Heap Sort

- Count Sort

- Bitonic Sort

- Radix Sort

- Bucket Sort

- Pigeonhole Sort

- Tim Sort

- Cartesian Tree Sort

Lecture 4, 5: Searching Algorithms

- Linear Search

- Binary Search

- Ternary Search

- Jump Search
- Exponential Search
- Sublist Search
- Fibonacci Search
- Interpolation Search

Lecture 6: Divide and Conquer Algorithms

- Binary Search

- Merge & Quick Sort

- Fast Power

- Closest Pair of Points
- Count Inversions
- Multiply Two Polynomials
- Strassen's Matrix Multiplication
- Karatsuba Algorithm for Fast Multiplication

Part 2: Graph Algorithms

Lecture 7, 8, 9, 10: Graph Algorithms

- Graph Traversal
- Matching

- Topological Sort

- Cycles

- Connectivity

- Backtracking
- Lowest Common Ancestor Maximum Flow
- Single source shortest paths
- All pairs shortest paths
- Floyd Warshall

- Dijkstra

- Bellman Ford

- Spanning trees

- Kirchhoff Theorem
- Minimum Spanning Tree
- Prim & Kruskal

Lecture 11, 12: Greedy Algorithms

- Standard Greedy Algorithms
- Greedy Algorithms in Graph
- Greedy Algorithms in Arrays
- Greedy Algorithms in Operating Systems

Part 3: Mathematical Algorithms

Lecture 13, 14: Mathematical Algorithms

- Greatest Common Divisor (GCD)
- Latest Common Multiple (LCM)
- Prime Factorization and Divisors
- Chinese Remainder Theorem
- Sieve Algorithm Modular Arithmetic
- Euler Totient Function Number Theory
- nCr Computations Series

Lecture 15, 16: Geometric Algorithms

- Lines Polygon Circle Quickhull
- Triangle Rectangle Square Convex Hull
- Quadrilateral 3D Objects Plane Sweep
- Voronoi diagrams Delaunay triangulations

Lecture 17, 18, 19, 20: Computer Graphics Algorithms

- Line Generation Algorithm
- Circle Generation Algorithm
- Polygon Filling Algorithm
- Viewing & Clipping Algorithm
- 2D Transformation
- 3D Transformation
- Projection from 3D to 2D
- Computer Graphics Curves
- Computer Graphics Surfaces
- Visible Surface Detection
- Computer Graphics Fractals

Part 4: Dynamic Programming

Lecture 21: Bitwise Algorithms

- Bit Manipulation
- Bitmasks Algorithm
- Bit Stuffing in Computer Networks
- Error Detection in Computer Networks

Lecture 22, 23, 24: Dynamic Programming

- Overlapping Sub-problems Property
- Optimal Sub-structure Property
- Tabulation vs Memoization
- Bitmasking & Dynamic Programming

Lecture 25, 26: Randomized Algorithms

- Randomized Quick Sort
- Monte Carlo Algorithms
- Las Vegas Algorithms
- Atlantic City Algorithms
- Computational Complexity

Part 5: String Algorithms

Lecture 27: String Algorithms

- Anagram Palindrome Binary String
- Subsequence Pattern Searching

Lecture 30, 31, 32: Pattern Searching Algorithms

- Naïve Pattern Searching KMP Algorithm
- Rabin-Karp Algorithm Finite Automata
- Boyer Moore Algorithm Z Algorithm
- Aho-Corasick Algorithm Kasai's Algorithm
- Anagram Substring Search
- Pattern Searching using a Trie of all Suffixes

Lecture 28, 29: String Compression Algorithms

- Lempel-Ziv Compression (LZ77 & LZ78)
- Lempel-Ziv-Markov Chain Algorithm (LZMA)
- Lempel-Ziv-Oberhumer (LZO)
- Lempel-Ziv-Storer-Szymanski (LZSS)
- Lempel-Ziv-Welch (LZW)
- Lempel-Ziv Finite State Entropy (LZFSE)
- Standard Huffman Coding Algorithm
- Modified Huffman Coding Algorithm
- Adaptive Huffman Coding Algorithm
- Arithmetic Coding (Float & Binary)

Hands-on Projects & Assignments & Practices

Algorithms Projects (6 Projects)

Project 1: Dictionary Sorting Simulator

Project 2: Dictionary Searching Simulator

Project 3: Advanced Mathematical Calculator

Project 4: Advanced Geometric Simulator

Project 5: Advanced Computer Graphics Generator

Project 6: Advanced Computer Graphics Simulator

(sorting application)

(searching application)

(mathematical application)

(geometric application)

(computer graphics application)

(computer graphics application)

Algorithms Assignments (8 Assignment)

• After each lecture we have an assignment (Implementing & Testing the Algorithms on each Lecture)

Algorithms Practices (30+ Practice Problems) on each Lecture.

Lecture Agenda

- ✓ Section 1: Data Structures and Algorithms Features
- ✓ Section 2: Data Structures and Algorithms Content

Section 3: Practice on Online Judges

Section 4: Programming Competitions

Section 5: Tutorials and References

Section 6: Online Courses

Practice on Online Judges

codeforces.com

hackerearth.com

hackerrank.com

atcoder.jp

onlinejudge.org

Codeforces Online Judge

Codeforces is a website that hosts competitive programming contests. It is maintained by a group of competitive programmers from ITMO University led by Mikhail Mirzayanov.

Codeforces Online Judge

CONTESTS GYM PROBLEMSET

Mohamed Ayman | Logout

MAIN ACMS	GGURU PROBLEMS SUBMIT STATUS STANDINGS CUSTO	OM TEST			
Problem	s 🏣				
#	Nan	ne		∮ ♦	* •
<u>1294F</u>	Three Paths on a Tree	dfs and similar, dp, trees	4 🛊	2100	x1488
1294E	Obtain a Permutation	greedy, implementation, math	4 🛊	2000	*1886
1294D	MEX maximizing	data structures, math	4 😭	1600	*4272
1294C	Product of Three Numbers	greedy, math, number theory	4 😭	1300	×8603
1294B	Collecting Packages	implementation, sortings	A 😭	1200	*9042
1294A	Collecting Coins	math	4 😭	900	x1276
<u>1293B</u>	JOE is on TV!	combinatorics, greedy, math	4 🛊	1000	x9324
1293A	ConneR and the A.R.C. Markland-N	binary search, brute force, implementation	4 🛊	1100	×8075
1292F	Nora's Toy Boxes	bitmasks, combinatorics, dp	4 🛊	3400	<u> </u>

API HELP CALENDAR

→ Pay attention Before contest Educational Codeforces Round 81 (Rated for Div. 2) 3 days					
→ Filter Pro	oblems				
Difficulty:					
	Add tag				
	Apply				
→ Settings					

Show tags for unsolved problems

Register in New Contest

Register The Contest from Register now >> link

Current or upcoming contests					•
Name	Writers	Start	Length		
Microsoft Q# Coding Contest - Winter 2019 Enter »	Nickolas	Mar/01/2019 19:00 ^{μτσ+2}	3:00:00	Current standings Running 47:16:49	Register >
Codeforces Round #543 (Div. 1, based on Technocup 2019 Final Round)		Mar/03/2019 17:35 ^{utc+2}	02:00	Before start 21:51:49	Register » & x93 Until closing 21:46:49 *has extra registration
Codeforces Round #543 (Div. 2, based on Technocup 2019 Final Round)		Mar/03/2019 17:35 ^{utc+2}	02:00	Before start 21:51:49	Register >

Register in Previous Contest

CODEFORCES AtCoder

You Can Compete in Previous Contests

Contest history

contest history					
Past contests 🗮					
Name	Writers	Start	Length		
Codeforces Round #542 [Alex Lopashev Thanks-Round] (Div. 1) Enter » Virtual participation »	top34051 zoomswk	Feb/24/2019 17:35 ^{utc+2}	02:00	<u>Final standings</u>	<u>♣ ×793</u>
Codeforces Round #542 [Alex Lopashev Thanks-Round] (Div. 2) <u>Enter »</u> <u>Virtual participation »</u>	MikeMirzayanov top34051 zoomswk	Feb/24/2019 17:35 ^{UTC+2}	02:00	Final standings	<u> </u>
Codeforces Round #541 (Div. 2) Enter » Virtual participation »	MikeMirzayanov Sehnsucht Sender VgLa SsH0ldEr593V VFeafanov _kun_ ch_egor grphil voidmax	Feb/23/2019 12:20 ^{uTC+2}	02:00	<u>Final standings</u>	<u> </u>

AtCoder - Online Judge

AtCoder - Online Judge

AtCoder - Online Judge

Contest Rules

This contest is full-feedback (solutions are judged during the contest).

When you solve a problem, you get a score assigned to it. Competitors are ranked first by total scores, then by penalties. The penalties are computed as (the time you spend to get your current score) + (5 minutes) * (the number of incorrect attempts).

Useful Links

- · AtCoder top page
- · How to participate
- · Practice contest

HackerRank - Online Judge

Virtual Event | 11/08 | Learn how to master the art and science of skill assessments | Live streamed from San Francisco

HackerRank

Products Customers Resources Research Blog About Us

Login Sign Up

Join over 5 million developers.

Practice coding, prepare for interviews, and get hired.

Easy, Max Score: 10, Success Rate: 99.26%,

PRACTICE COMPETE JOBS LEADERBOARD	Q Search Log In Sign Up
Practice > Functional Programming Functional Programming	
Solve Me First FP Easy, Max Score: 3, Success Rate: 98.79%,	Solve Challenge Solve Unsolved
Hello World Easy, Max Score: 5, Success Rate: 95.91%,	Solve Challenge
Hello World N Times Easy, Max Score: 5, Success Rate: 96.48%,	Solve Challenge SUBDOMAINS Introduction
List Replication Easy, Max Score: 10, Success Rate: 97.88%,	Solve Challenge Recursion Functional Structures Memoization and DP
Filter Array	Persistent Structures Ad Hoc Solve Challenge

Parsers

Interpreter and Compilers

H PRACTICE COMPETE JOBS LEADERBOARD	Q Search Log In Sign Up
Practice > Mathematics Mathematics	
Find the Point Easy, Max Score: 5, Success Rate: 90.97%,	Solve Challenge Solved Unsolved
Maximum Draws Easy, Max Score: 5, Success Rate: 96.46%,	Solve Challenge DIFFICULTY □ Easy □ Medium
Handshake Easy, Max Score: 10, Success Rate: 94.09%,	Solve Challenge SUBDOMAINS Fundamentals
Minimum Height Triangle Easy, Max Score: 10, Success Rate: 92.15%,	Solve Challenge Number Theory Combinatorics Algebra
Army Game Easy, Max Score: 10, Success Rate: 85.78%,	Geometry Probability Linear Algebra Foundations

Practice > Data Structures Data Structures	
Arrays - DS Easy, Max Score: 10, Success Rate: 93.96%,	STATUS Solve Challenge Unsolved
2D Array - DS Easy, Max Score: 15, Success Rate: 90.70%,	Solve Challenge DIFFICULTY Easy Medium Hard
Dynamic Array Easy, Max Score: 15, Success Rate: 83.13%,	Solve Challenge SUBDOMAINS Arrays
Left Rotation Easy, Max Score: 20, Success Rate: 87.15%,	Solve Challenge
Sparse Arrays Medium, Max Score: 25, Success Rate: 96.68%,	Solve Challenge Solve Challenge Heap Disjoint Set
Array Manipulation Hard, Max Score: 60, Success Rate: 51.22%,	☐ Multiple Choice ☐ Trie ☐ Advanced

Practice > Algorithms Algorithms	
Solve Me First Easy, Max Score: 1, Success Rate: 98.14%,	Solve Challenge Solved Unsolved
Simple Array Sum Easy, Max Score: 10, Success Rate: 94.53%,	Solve Challenge DIFFICULTY Easy Medium Hard
Compare the Triplets Easy, Max Score: 10, Success Rate: 94.01%,	Solve Challenge SUBDOMAINS Warmup
A Very Big Sum Easy, Max Score: 10, Success Rate: 98.61%,	Solve Challenge Implementation Strings Sorting
Diagonal Difference Easy, Max Score: 10, Success Rate: 95.86%,	Solve Challenge Search Graph Theory Greedy Dynamic Programming
Plus Minus Easy, Max Score: 10, Success Rate: 98.12%,	Constructive Algorithms Bit Manipulation Recursion
Staircase	Game Theory NP Complete Solve Challenge Debugging

Lecture Agenda

- ✓ Section 1: Data Structures and Algorithms Features
- ✓ Section 2: Data Structures and Algorithms Content
- ✓ Section 3: Practice on Online Judges

Section 4: Programming Competitions

Section 5: Tutorials and References

Section 6: Online Courses

Programming Competitions

Google Competitions

code jam

hash code

kick start

Google Competitions - Code Jam

Google Competitions - Code Jam

• Code Jam - Qualification Round March

Code Jam - Round 1A April

• Code Jam - Round 1B April

Code Jam - Round 1C
 May

Code Jam - Round 2
 May

Code Jam - Round 3
 June

Code Jam - World Finals August

Google Competitions - Kick Start

Google Competitions - Kick Start

Kick Start - Round A

March

Kick Start - Round B

April

Kick Start - Round C

May

Kick Start - Round D

July

Kick Start - Round E

August

Kick Start - Round F

September

Kick Start - Round G

October

Kick Start - Round H

November

Google Competitions - Hash Code

Google Competitions - Hash Code

Hash Code - Hub registration opens November

Hash Code - Individual registration opens
 January

Hash Code - Registration closes
 February

• Hash Code - Online qualification round February

Hash Code - Results announced
 March

Hash Code - Final round April

Facebook Hacker Cup Competition

Facebook Hacker Cup - Qualification round

June

Facebook Hacker Cup - Round 1

June

Facebook Hacker Cup - Round 2

July

Facebook Hacker Cup - Round 3

August

Facebook Hacker Cup - Onsite Final

September

ICPC - International College Programming Contest

Qualification Round in Universities September

• ECPC Egyptian College Programming Contest October

ACPC Arab College Programming Contest
 January

ICPC International College Programming Contest
 May

Lecture Agenda

- ✓ Section 1: Data Structures and Algorithms Features
- ✓ Section 2: Data Structures and Algorithms Content
- ✓ Section 3: Practice on Online Judges
- ✓ Section 4: Programming Competitions

Section 5: Tutorials and References

Section 6: Online Courses

Introduction to Algorithms Thomas H. Cormen

[005 145]

[585 - 750]

[770 - 1130]

CODEFORCES	AtCoder
A	h

•	Foundations	[005 - 145]
•	Sorting and Order Statistics	[145 - 220]
•	Data Structures	[230 - 350]
•	Advanced Design and Analysis Techniques	[355 - 460]
•	Advanced Data Structures	[480 - 575]

Equadations

Graph Algorithms

Selected Topics

Introduction to Algorithms Thomas H. Cormen

Data Structures and Algorithms Annotated Reference

•	Introduction	[01 - 10]
•	Linked Lists	[10 - 20]
•	Binary Search Tree	[20 - 30]
•	Неар	[30 - 40]
•	Sets	[40 - 50]
•	Queues	[50 - 55]
•	AVL Tree	[55 - 60]
•	Sorting	[60 - 70]
•	Numeric	[70 - 75]
•	Searching	[75 - 80]
•	Strings	[80 - 85]

Data Structures and Algorithms Annotated Reference

Competitive Programming 3 Steven Halim

•	Introduction	[001 - 030]
	III CI OGGCCIOII	[001 030]

Data Structures and Libraries [030 - 070]

• Problem Solving Paradigms [070 - 120]

• Graph [120 - 190]

Mathematics [190 - 230]

• String Processing [230 - 270]

(Computational) Geometry [270 - 300]

More Advanced Topics [300 - 330]

Rare Topics [330 - 390]

Competitive Programming 3 Steven Halim

Fundamental of Algorithmics Gilles Brassard

CODEFORCES	AtCoder
0	<u>h</u>

•	Preliminaries	[001 - 035]
•	Analyzing the Efficiency of Algorithms	[035 - 080]
•	Greedy Algorithms	[080 - 105]
•	Divide and Conquer	[105 - 140]
•	Dynamic Programming	[140 - 170]
•	Exploring Graphs	[170 - 205]
•	Preconditioning and Pre-computation	[205 - 225]
•	Probabilistic Algorithms	[225 - 275]
•	Transformations of the Domain	[275 - 290]
•	Introduction to Complexity	[290 - 335]

Fundamental of Algorithmics Gilles Brassard and Paul Bartley

Analysis of Algorithms An Active Learning Approach

•	Analysis Basics	[001 - 040]	A malma
•	Searching and Selection Algorithms	[040 - 055]	Analysi An Active
•	Sorting Algorithms	[060 - 100]	
•	Numeric Algorithms	[105 - 120]	
•	Matching Algorithms	[120 - 140]	
•	Graph Algorithms	[145 - 175]	$\it Jeff.$
•	Parallel Algorithms	[175 - 210]	
•	Nondeterministic Algorithms	[210 - 230]	
•	Other Algorithmic Techniques	[230 - 260]	JONES AND

Analysis of Algorithms:
An Active Learning Approach

Jeffrey J. McConnell

JONES AND BARTLETT PUBLISHERS

Analysis of Algorithms An Active Learning Approach

Competitive Programmer's Handbook

Time complexity Sorting

Complete search Greedy algorithms

Dynamic programming Amortized analysis

Range queries Bit manipulation

• Graph algorithms [105 - 195]

Graph traversal Shortest paths Tree algorithms

Spanning trees Directed graphs Strong connectivity

Tree queries Paths and circuits Flows and cuts

• Advanced topics [195 - 275]

Number theory Combinatorics Matrices

Game theory String algorithms Square root algorithms

Segment trees revisited Geometry Sweep line algorithms

Competitive Programmer's Handbook

Antti Laaksonen Draft July 3, 2018

Competitive Programmer's Handbook

GeeksforGeeks Articles

OG GeeksforGeeks

A computer science portal for geeks

geeksforgeeks.org

Lecture Agenda

- ✓ Section 1: Data Structures and Algorithms Features
- ✓ Section 2: Data Structures and Algorithms Content
- ✓ Section 3: Practice on Online Judges
- ✓ Section 4: Programming Competitions
- ✓ Section 5: Tutorials and References

Section 6: Online Courses

Accelerated Computer Science Fundamentals Specialization (3 Courses) by University of Illinois at Urbana-Champaign coursera.org/specializations/cs-fundamentals

Course: Object-Oriented Data Structures in C++

Week 1: Orientation; Writing a C++ Program

Week 2: Understanding the C++ Memory Model

Week 3: Developing C++ Classes

Week 4: Engineering C++ Software Solutions

Week 1: Orientation: Linear Structures

Week 2: Introduction to Tree Structures

Week 3: Advanced Tree Structures

Week 4: Heap Structures

Course: Unordered Data Structures

Week 1: Orientation; Hashing

Week 2: Disjoint Sets

Week 3: Graph Data Structures

Week 4: Graph Algorithms

Algorithms Specialization (4 Courses) by Stanford University coursera.org/specializations/algorithms

Course: Divide and Conquer, Sorting and Searching, and Randomized Algorithms

Week 1: Introduction, big-oh notation and asymptotic analysis

Week 2: Divide and conquer basics, the master method for analyzing divide and conquer algorithms

Week 3: The QuickSort algorithm and its analysis, probability review

Week 4: Linear-time selection, graphs, cuts, and the contraction algorithm

Week 2: Dijkstra's shortest-path algorithm

Week 3: Heaps, balanced binary search trees

Week 4: Hashing, bloom filters

Algorithms Specialization (4 Courses) by Stanford University coursera.org/specializations/algorithms

Course: Greedy Algorithms, Minimum Spanning Trees, and Dynamic Programming

Week 2: Kruskal's MST algorithm and applications to clustering, advanced union-find

Week 3: Huffman codes, introduction to dynamic programming

Week 4: Advanced dynamic programming: the knapsack problem, sequence alignment, and optimal binary search trees

Course: Simulation, Algorithm Analysis, and Pointers

Week 1: The Bellman-Ford algorithm, all-pairs shortest paths

Week 2: NP-complete problems and exact algorithms for them

Week 3: Approximation algorithms for NP-complete problems

Week 4: Local search algorithms for NP-complete problems, the wider world of algorithms

Data Structures and Algorithms Specialization (6 Courses) by University of California San Diego & National Research University Higher School of Economics coursera.org/specializations/data-structures-algorithms

Course: Algorithmic Toolbox

Week 1: Programming Challenges

Week 2: Algorithmic Warm-up

Week 3: Greedy Algorithms

Week 4: Divide-and-Conquer

Week 5: Dynamic Programming 1

Week 6: Dynamic Programming 2

Course: Data Structures

Week 1: Basic Data Structures

Week 2: Dynamic Arrays and Amortized Analysis

Week 3: Priority Queues and Disjoint Sets

Week 4: Hash Tables

Week 5: Binary Search Trees

Week 6: Binary Search Trees 2

Data Structures and Algorithms Specialization (6 Courses) by University of California San Diego & National Research University Higher School of Economics coursera.org/specializations/data-structures-algorithms

Course: Algorithms on Graphs

Week 1: Decomposition of Graphs 1

Week 2: Decomposition of Graphs 2

Week 3: Paths in Graphs 1

Week 4: Paths in Graphs 2

Week 5: Minimum Spanning Trees

Week 6: Advanced Shortest Paths Project

Course: Algorithms on Strings

Week 1: Suffix Trees

Week 2: Burrows-Wheeler Transform and Suffix Arrays

Week 3: Knuth-Morris-Pratt Algorithm

Week 4: Constructing Suffix Arrays and Suffix Trees

Data Structures and Algorithms Specialization (6 Courses) by University of California San Diego & National Research University Higher School of Economics coursera.org/specializations/data-structures-algorithms

Course: Advanced Algorithms and Complexity

Week 1: Flows in Networks

Week 2: Linear Programming

Week 3: NP-complete Problems

Week 4: Coping with NP-completeness

Week 5: Streaming Algorithms

Course: Genome Assembly Programming Challenge

Week 1: The 2011 European E. coli Outbreak

Week 2: Assembling Genomes Using de Bruijn Graphs

Week 3: Genome Assembly Faces Real Sequencing Data

Algorithms, Part I by Princeton University coursera.org/learn/algorithms-part1

Course: Algorithms, Part I

Week 1: Course Introduction Union-Find Analysis of Algorithms

Week 2: Stacks and Queues **Elementary Sorts**

Week 3: Merge sort **Ouick sort**

Week 4: Priority Queues Elementary Symbol Tables

Week 5: Balanced Search Trees Geometric Applications of BSTs

Week 6: Hash Tables Symbol Table Applications

Course: Algorithms, Part II

Week 1: Introduction **Undirected Graphs** Directed Graphs

Week 2: Minimum Spanning Trees Shortest Paths

Week 3: Maximum Flow and Minimum Cut. Radix Sorts

Week 4: Tries Substring Search

Week 5: Regular Expressions Data Compression

Week 6: Reductions Linear Programming (optional) Intractability

Geometric Algorithms by EIT Digital coursera.org/learn/geometric-algorithms

Course: Geometric Algorithms

Week 1: Plane Sweep Algorithms

Week 2: Voronoi diagrams and Delaunay triangulations

Week 3: Orthogonal range searching

Approximation Algorithms by EIT Digital coursera.org/learn/approximation-algorithms

Course: Approximation Algorithms

Week 1: Point inclusion in a polygon

Week 2: Convex hulls

Week 3: Intersections

Week 4: Polygon triangulation

Week 5: Orthogonal range search

Analysis of Algorithms by Princeton University coursera.org/learn/analysis-of-algorithms

Course: Analysis of Algorithms

Week 1: Analysis of Algorithms

Week 2: Recurrences

Week 3: Generating Functions

Week 4: Asymptotics

Week 5: Analytic Combinatorics

Week 6: Trees

Week 7: Permutations

Week 8: Strings and Tries

Week 9: Words and Mappings

Course: Computational Geometry

Week 1: Point inclusion in a polygon

Week 2: Convex hulls

Week 3: Intersections

Week 4: Polygon triangulation

Week 5: Orthogonal range search

Data Structures and Algorithms Playlists

•	Playlist: Arrays	Data Structures & Algorithms
<u>youtu</u>	ibe.com/playlist?lis	t=PLqM7alHXFySEQDk2MDfbwEdjd2svVJH9p

- Playlist: Linked List | Data Structures & Algorithms youtube.com/playlist?list=PLqM7alHXFySH41ZxzrPNj2pAYPOI8ITe7
- Playlist: Stack | Data Structures & Algorithms youtube.com/playlist?list=PLqM7alHXFySF7Lap-wi5qlaD80EBx9RMV
- Playlist: Queue | Data Structures & Algorithms youtube.com/playlist?list=PLqM7alHXFySG6wgjVeEat_ouTli0lBQ6D
- Playlist: Graph | Data Structures & Algorithms youtube.com/playlist?list=PLqM7alHXFySEaZgcg7uRYJFBnYMLti-nh
- Playlist: Trees | Data Structures & Algorithms youtube.com/playlist?list=PLqM7alHXFySHCXD7r1J0ky9Zg_GBB1dbk
- Playlist: Matrix | Data Structures & Algorithms youtube.com/playlist?list=PLqM7alHXFySGNyLyr8A2CBEBIbUIEC38f
- Playlist: Hashing | Data Structures & Algorithms youtube.com/playlist?list=PLqM7alHXFySGwXaessYMemAnlTqlZdZVE

[100 videos] [5 min] Channel: GeeksforGeeks

[60 videos] [5 min] Channel: GeeksforGeeks

[20 videos] [5 min] Channel: GeeksforGeeks

[10 videos] [5 min] Channel: GeeksforGeeks

[30 videos] [5 min] Channel: GeeksforGeeks

[200 videos] [5 min] Channel: GeeksforGeeks

[10 videos] [10 min] Channel: GeeksforGeeks

[10 videos] [5 min] Channel: GeeksforGeeks

Data Structures and Algorithms Playlists

Playlist: Data Structures	[90 videos] [10 min]	Channel: RobEdwardsSDSU
youtube.com/playlist?list=PLpPXw4zFa0uKKhaSz87lowJnOTzh9tiBk		
• Playlist: Data Structure(ETCS - 209) - IP University Syllabus	[60 videos] [10 min]	Channel: Easy Engineering Classes
youtube.com/playlist?list=PLV8vIYTldSna11Vc54-abg33JtVZiiMfg		
Playlist: Data Structures and Algorithms	[70 videos] [10 min]	Channel: Gate Instructors
youtube.com/playlist?list=PLXVjII7-2kRkrlwIVmSTF236m3z9sRCr8		
Playlist: Data Structures	[40 videos] [15 min]	Channel: mycodeschool
<pre>youtube.com/playlist?list=PL2_aWCzGMAwI3W_lcBbtYTwiQSsOTa6P</pre>		
 Playlist: Algorithms and Data structures 	[15 videos] [30 min]	Channel: Gate Lectures
<pre>youtube.com/playlist?list=PLEbnTDJUr_leHYw_sfB0J6gk5pie0yP-0</pre>		
 Playlist: Design and Analysis of Algorithms 	[55 videos] [15 min]	Channel: Computer Science and Engineering
<pre>youtube.com/playlist?list=PLJ5C_6qdAvBE5VcLlv1xlFMRpGu3BQneh</pre>		
 Playlist: Design and Analysis of Algorithms, Spring 2015 	[35 videos] [80 min]	Channel: MIT OpenCourseWare
youtube.com/playlist?list=PLUI4u3cNGP6317WaSNfmCvGym2ucw3oGp		
 Playlist: Introduction to Algorithms, Fall 2011 	[45 videos] [50 min]	Channel: MIT OpenCourseWare
youtube.com/playlist?list=PLUI4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb		

Lecture Agenda

- ✓ Section 1: Data Structures and Algorithms Features
- ✓ Section 2: Data Structures and Algorithms Content
- ✓ Section 3: Practice on Online Judges
- ✓ Section 4: Programming Competitions
- ✓ Section 5: Tutorials and References
- ✓ Section 6: Online Courses

