

COLLEGE OF ENGINEERING AND MINES DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

COURSE CODE	EE F102 F01 (CRN: 32862)			
COURSE NAME	INTRODUCTION TO ELECTRICAL AND COMPUTER ENGINEERING			
SEMESTER	SPRING			
YEAR	2023			
TYPE AND NUMBER OF SUBMISSION	HOMEWORK 4			
METHOD OF SUBMISSION	ONLINE VIA CANVAS			
DATE OF ASSIGNMENT	WEDNESDAY 01 MAR 2023			
DUE DATE OF SUBMISSION FRIDAY 10 M	DUE TIME OF SUBMISSION 23:59			

MAKE	THIS	FORM	A	"COVER	PAGE"	FOR	YOUR
HOMEW	ORK	SUBMI	SS	SION.			

STUDENT NAME

FOR THE TA USE ONLY			
REMARKS:			

FOR THE TA USE ONLY				
PROBLEM NUMBER	MAXIMUM POINTS POSSIBLE	POINTS EARNED		
PROBLEM 1	50			
PROBLEM 2	100			
TOTAL	150			

Problem HW-4-1 ********

Points Distribution *********

A flux (ϕ) passes through a piece of a ferromagnetic material with its dimensions and specifications as shown in the figure. The flux creates a flux density (B) of 1.2 T inside the material. The permeability (μ) is 1.526×10^{-3} H/m.

(a) Determine the value of flux (ϕ), in Wb.

(20)

(b) Determine the magnetic field intensity (H), in A/m.

- (20)
- (c) If the cross-sectional area perpendicular to the flux direction is reduced by 30%. Determine the new magnetic flux density (B), in Tesla.

(10)

*** *** ***

Points Distribution *********

Problem HW-4-2

For the magnetic circuit with the core B-H curve shown, the magnetic flux density at the left bar of the circuit (B_{left}) is 0.9 T.

- (a) Determine the magnetic flux, φ, in Wb. (10)
- (b) Determine the magnetic drop at the left bar, $H_{left}l_{left}$, in A.turn. (10)
- (c) Determine the magnetic drop at the right bar, H_{right}l_{right}, in A.turn. (10)
- (d) Determine the magnetic drop at the upper bar, $H_{upper}l_{upper}$, in A.turn. (10)

(e)	Determine the magnetic drop at the lower bar, H _{lower} l _{lower} , in A.turn.	(10)
(f)	Determine the input current, I, in A.	(10)
(g)	Determine the reluctance of the left bar, R_{left} , in A.turn/Wb.	(10)
(h)	Determine the reluctance of the right bar, $R_{\rm right}$, in A.turn/Wb.	(10)
(i)	Determine the reluctance of the upper bar, $R_{\rm upper}$, in A.turn/Wb.	(10)
(j)	Determine the reluctance of the lower bar, R_{lower} , in A.turn/Wb.	(10)

*** *** ***