Tunability: Importance of Hyperparameters of Machine Learning Algorithms

Philipp Probst

PROBST@IBE.MED.UNI-MUENCHEN.DE

Institute for Medical Information Processing, Biometry and Epidemiology, LMU Munich Marchioninistr. 15, 81377 München, Germany

Anne-Laure Boulesteix

BOULESTEIX@IBE.MED.UNI-MUENCHEN.DE

Institute for Medical Information Processing, Biometry and Epidemiology, LMU Munich Marchioninistr. 15, 81377 München, Germany

Bernd Bischl

BERND.BISCHL@STAT.UNI-MUENCHEN.DE

Department of Statistics, LMU Munich Ludwigstraße 33, 80539 München, Germany

Algorithms & Hyperparameters

Algorithm	Hyperparameter	Lower	Upper	Distribution
logistic regression	C	10^{-3}	10^{3}	log-uniform
	l1_ratio	0	1	uniform
random forest	n_estimators	10	1000	uniform
	\max_{depth}	1	100	uniform
	$\min_{\text{samples}_{\text{split}}}$	2	10	uniform
	criterion	gini	entropy	_
	$\min_{\text{samples_leaf}}$	1	10	uniform
	\max_{samples}	0.1	1.0	uniform
XGBoost	n_estimators	10	1000	uniform
	\max_{depth}	1	15	uniform
	$\min_{child_{weight}}$	1	10	uniform
	subsample	0.1	1.0	uniform
	$colsample_bytree$	0.1	1.0	${f uniform}$
	learning_rate	10^{-3}	1	log-uniform
	reg_alpha	10^{-4}	10^{4}	log-uniform
	reg_lambda	10^{-4}	10^4	log-uniform

Tunability wrt. package defaults

(a) random search

(b) bayesian optimization

${ m Algorithm}$	Random search tunability	Bayesian search tunability
logistic regression	0.0048 ± 0.0074	0.0051 ± 0.0073
random forest	0.0497 ± 0.0884	0.0514 ± 0.0913

 0.0609 ± 0.0838

XGBoost

 0.0638 ± 0.0878

Tunability wrt. optimal defaults

(a) random search

(b) bayesian optimization

${f Algorithm}$	Random search tunability	Bayesian search tunability
logistic regression	0.0018 ± 0.0024	0.0021 ± 0.0025

 0.1374 ± 0.1077

logistic regression	0.0018 ± 0.0024	0.0021 ± 0.0025
random forest	0.0113 ± 0.0109	0.0129 ± 0.0131

 0.1346 ± 0.1064

XGBoost

Optimization dynamics

(a) logistic regression

(b) random forest

(c) XGBoost