Homework 1 Id = 22MD0123Nursultan Zhantileuov MSc in Data Science, 1 course

Nursultan Zhantileuov

MSc in DS, 1 course

Homework 1

```
In [152]:
                      1 import numpy as np
                          import math import pandas as pd
                      4 import matplotlib pyplot as plt
5 import seaborn as sns
                      import numpy.random as rd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler, MinMaxScaler
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, recall_score, precision_sc
```

Taks: 1

- 1. Predict house price of King county in the USA by modifying the linear regression sample code provided in Practice 2 at the class. Dataset and code will be available in the class file directory (15 points).
- A. Linear Regression: Code in Practice 2
- B. Dataset: Dataset in class file directory
- C. The price should be predicted with features of bedrooms, yr_built, and grade.
- D. Performance metric should include training loss.
- E. You should predict the price with the following data (3 bedrooms, Year 1980, grade 8).

Data pre-processing

```
In [3]:
                    data = pd.read_csv("kc_house_data.csv")
                2 data.head()
Out[3]:
                                                   price bedrooms bathrooms sqft_living sqft_lot floors waterfront view ... grade sqft_above sqft_basement yr_built
              0 7129300520 10/13/2014 221900.0
                                                                     3
                                                                                 1.00
                                                                                               1180
                                                                                                         5650
                                                                                                                   1.0
                                                                                                                                         0.0 ... 7
                                                                                                                                                                                         0.0
                                                                                                                                                                                                  1955
               1 6414100192 12/9/2014 538000.0
                                                                                  2.25
                                                                                               2570
                                                                                                                                  0.0
                                                                                                                                          0.0 ...
                                                                                                                                                                                       400.0
                                                                                                                                                                                                  1951
               2 5631500400 2/25/2015 180000.0
                                                                     2
                                                                                 1.00
                                                                                               770
                                                                                                        10000
                                                                                                                    1.0
                                                                                                                                  0.0 0.0 ... 6
                                                                                                                                                                   770
                                                                                                                                                                                         0.0
                                                                                                                                                                                                 1933
               3 2487200875 12/9/2014 604000.0
                                                                                                         5000
                                                                                                                                  0.0
                                                                                                                                         0.0 ...
                                                                                                                                                                                      910.0
                                                                                                                                                                                                 1965
               4 1954400510 2/18/2015 510000.0 3 2.00
                                                                                              1680
                                                                                                        8080 1.0
                                                                                                                                 0.0 0.0 ...
                                                                                                                                                                                         0.0
                                                                                                                                                                                                 1987
              5 rows x 21 columns
In [4]:
               1 data = data[["price","bedrooms", "yr_built", "grade"]]
2 pd_data = data.copy()
                    def missing_value(data=None, columns=None): # check for missing value in the data
  if data is not None and columns is None:
    total = data.isnull().sum().sort_values(ascending=False)
    percent = (data.isnull().sum()/data.isnull().count()*100).sort_values(ascending = False)
    return pd.concat([total, percent], axis=1, keys=["total", "percentage"])
In [5]:
                                  if columns is not None and type(columns) is list:
    total = data[columns].isnull().sum().sort_values(ascending=False)
    percent = (data[columns].isnull().sum()/data[columns].isnull().count()*100).sort_values(ascending =
    return pd.concat([total, percent], axis=1, keys=["total", "percentage"])
```

Out [5]:

10

	total	percentage
grade	0	0.0
yr_built	0	0.0
bedrooms	0	0.0
price	0	0.0

12 missing_value(data=pd_data)

normalization od data

learning_rate = 0.5
peochs = 1000

In [12]:

```
In [9]: 1 columns_norm = pd_data.iloc[:,1:]
                  min_max_scaler = MinMaxScaler()
                  features = min_max_scaler.fit_transform(columns_norm)
              6 X = features[:,:3]
7 Y = data["price"]
In [10]: 1 # Linear Regression Model 2 class LinearRegression:
                       def __init__(self, x, w, y, eta):
    self.eta = eta
    self.inputs = x
              5
6
7
8
9
                             self.weights = w
                            self.target = y
self.output = np.zeros(self.target.shape) # array of lenght target = len(target)
             10
11
12
                       def forward_proc(self):
                               forward processing of inputs and weights
             13
14
15
                             self.output = np.dot(self.weights, self.inputs.T)
                       def backprop(self):
             16
17
18
                            # backward processing of appling the chain rule to find derivative of the mean square error function wi dw = (self.output - self.target) * self.inputs
                            # update the weights with the derivative of the loss function self.weights -\!\!= self.eta * dw
             19
20
21
22
23
24
25
26
                       def predict(self, x):
    # predict the output for a given input x
    return (np.dot(self.weights, x.T))
                       def calculate_error(self):
             27
                             # calculate error
             28
29
                            error = self.target - self.output
return abs(error)
In [11]:
              1 features = X.shape[1] # features = 3
               2 weights = np.random.randint(1, features)
```

```
In [11]: 1 features = X.shape[1] # features = 3
weights = np.random.randint(1, features)
                 learning_rate = 0.5
pepochs = 1000
In [12]:
In [13]:
                 1 for epoch in range(epochs):
                            rd.shuffle(X) # shuffle the input data
                            for index in range(len(X)):
                                  model = LinearRegression(X[index], weights, Y[index], learning_rate)
model.forward_proc() # forward_processing
model.backprop() # backward_processing
weights = model.weights
                10
               10 weights = model.cal
11 print(f"Loss: {1
15 final_weights = weights
17 final_loss = loss
                           if (epoch % 100) == 0:
    loss = model.calculate_error()
    print(f"Loss: {loss}")
                print(f"final weights{final_weights}")
print(f"final loss {loss}")
               Loss: 45682.763152875006
Loss: 168979.16092872736
Loss: 21536.190777594806
Loss: 290306.55808476266
Loss: 230485.14018047054
               In [14]: 1 check_data = np.array([2, 1980, 7]).reshape(1, -1)
2 check_data = min_max_scaler.transform(check_data) # normalization of data
In [15]: 1 predict_price = model.predict(check_data)
2 print(predict_price[0])
               370107.2615440219
```

Task: 2

Predicting the survival of Titanic passengers by modifying the logistic regression sample code provided in Practice 2 at the class. You are going to use the famous Titanic dataset. Both the sample code and dataset are available in the class file directory. This is a binary classification problem: Based on passengers' stats, predict whether a passenger will survive from the aground Titan or not. The dataset should be split into training data and test data with 80:20 ratio (15 points)

A. Logistic Regression: Code in Practice 2

B. Dataset: Dataset in class file directory

C. The classification, i.e., survival, is based on sex, age and economic status (Pclass) of the dataset. You should extend the code provided in Practice 2 for classification using these features.

D. Performance metrics should include the confusion matrix, accuracy score, classification report. You can measure the performance in both training and test data, but submit the performance metrics in test data only.

```
LogisticRegression
```

dtype: int64

```
In [49]:
                                           def sigmoid(x):
                                                          return 1.0/(1+ np.exp(-x))
                                           def sigmoid_derivative(x):
                                                          return x * (1.0 - x)
                                          # Logistic Regression Model class LogisticRegression:
                                                         def __init__(self, x, w, y,lr):
    self.lr = lr
    self.inputs = x
                                 10
                                 11
12
                                 13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
                                                                       self.weights = w
                                                                     self.target = y
self.output = np.zeros(self.target.shape)
                                                          def forward proc(self):
                                                                   # forward processing of inputs and weights using sigmoid activation function
self.output = sigmoid(np.dot(self.weights, self.inputs.T))
                                                         def backprop(self):
                                                                      the backward processing of appling the chain rule to find derivative of the cross-entropy losss w.r.t wein dw = (self.output - self.target) * self.inputs * same formular for both linear and logistic regression of the cross-entropy loss of the cross-e
                                                                      # update the weights with the derivative of the loss function self.weights \texttt{-=} self.lr * \texttt{dw}
                                                        def predict(self, x):
    # predict the output for a given input x
    return (sigmoid(np.dot(self.weights, x.T)))
                                                          def calculate_error(self):
                                                                      # calculate error
error = -self.target * math.log(self.output) - (1-self.target) * math.log(1-self.output)
return abs(error)
                                 35
In [21]: 1 data = pd.read_csv("titanic_data.csv")
In [22]: 1 missing_value(data)
Out [22]:
                                                                  total percentage
                                                 Cabin
                                                                                  77.104377
                                                                                    19.865320
                                                    Age
                                                                                     0.224467
                                       Embarked
                                                    Fare
                                                                         0
                                                                                      0.000000
                                               Ticket
                                                                         0
                                                                                      0.000000
                                                 Parch
                                                 SibSp
                                                                         0
                                                                                      0.000000
                                                                                      0.000000
                                                     Sex
                                                 Name
                                                                         0
                                                                                      0.000000
                                                                        0
                                                                                     0.000000
                                          Survived
                                 Passengerld
                                                                                    0.000000
                                 data.dropna(inplace=True)
data.isna().sum()
In [23]:
Out[23]: PassengerId
                                Survived
                               Pclass
                                                                                  0
0
                               Name
                               Sex
                                Age
                                SibSp
                                Parch
                                Ticket
                              Fare
Cabin
                                Embarked
```

....... In [22]: 1 data = data.replace({"female":0, "male":1}) 1 Y = data["Survived"] 2 X = data[["Sex", "Age", "Pclass"]] In [25]: In [26]: scaler = StandardScaler() X = scaler.fit_transform(X)
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size=0.2)
The dataset should be split into trainging data and test data with ratio 80:20 In [27]: features = X.shape[1] # 3 weights = rd.rand(1, features)3 weights Out[27]: array([[0.40478943, 0.14651633, 0.82967595]]) In [52]: 1 for epoch in range(epochs): rd.shuffle(X_train) # shuffle the input data for index in range(len(X_train)): 6 7 8 $\label{eq:model} $$ model = LogisticRegression(X_train[index], weights, Y_train.values[index], learning_rate) $$ model.forward_proc() $$ $forward_processing $$ model.backprop() $$ $$ $$ backward_processing $$$ 9 10 11 weights = model.weights 12 **if** (epoch % 1000) == 0: loss = model.calculate_error()
print(f"Loss: {loss}") 14 15 final_weights = weights
final_loss = loss 19 print("Adjusted Weights:", model.weights) Loss: 1.0019837259716513 Loss: 0.7830684735196147 Loss: 0.581785843568715 Loss: 1.2202496158864855 Loss: 0.8225134850138898 Loss: 2.943991954761857 Loss: 1.2329783884790229 Loss: 0.45342586557409575 Loss: 1.417907911284315 Loss: 1.220115405846634 Adjusted Weights: [[0.33103937 -0.47862727 0.23124782]] In [65]: 1 predicted = model.predict(X_test)[0] In [75]: predict_out = [] for prediction in predicted:
if prediction >= 0.5: predict_out.append(1) 5 6 else: predict_out.append(0) 1 results = confusion_matrix(Y_test, predict_out)
2 print("Confusion_matrix :") In [78]: print(results) print("Classification Report")
print(classification_report(Y_test, predict_out)) 6 print(accuracy_score(Y_test, predict_out)) Confusion_matrix : [[7 3] [13 14]] Classification Report

```
recall f1-score support
              precision
           0
                   0.35
                                        0.47
                                                     27
                              0.52
                   0.82
                                        0.64
                                                     37
   accuracy
                                        0.57
                                        0.55
   macro avg
weighted avg
                   0.70
                              0.57
                                        0.59
                                                     37
0.5675675675675675
```

Task: 3

In this problem, you will implement multiclass-classification using Scikit library. The dataset is Iris dataset. Here, the dataset should be split into training data and test data with 70:30 ratio. You will implement multi-class classification using logistic regression, Naïve Bayes classifier, and Gaussian RBF of SVM. You will compare the performances of these classifiers in terms of accuracy and confusion matrix, recall, precision and F1-score (30 points).

- A. Dataset: Iris dataset of Practice 1
- B. Logistic Regression (LogistRegression_P3.py)
- C. SVM with one-vs-all approach (SVM_P3.py)
- D. Naïve Bayes (NB_P3.py)
- E. Performance metrics: accuracy, confusion matrix, recall, precision and F1-score
- F. Comparative performance evaluation of logistic regression, SVM and NB for multi- class classification

```
In [81]: 1 from sklearn import datasets
2 from sklearn.naive_bayes import GaussianNB

In [89]: 1 iris = datasets.load_iris()

In [95]: 1 scaler = StandardScaler()
2 X = scaler.fit_transform(iris["data"])
3 y = iris["target"]

In [97]: 1 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
```

Caussian Model

```
1 GaussianModel = GaussianNB() #training a Naive Bayes classifier
In [43]:
                   GaussianModel.fit(X_train, y_train)
Out[43]: GaussianNB()
In [59]:
               1 gaussian_predict = GaussianModel.predict(X_test)
                  #Creating a canfusion matrix
                  conf_matrix = confusion_matrix(y_test, gaussian_predict)
               gaussian_recall = recall_score(y_test, gaussian_predict, average="weighted")
print(f"Weighted Gausian Recall Score: {gaussian_recall:.2f}")
              gaussian_precision = precision_score(y_test, gaussian_predict, average="weighted")
print(f"Weighted Gausian precision Score: {gaussian_precision:.2f}")
              gaussian_f1_score = f1_score(y_test, gaussian_predict, average="weighted")
print(f"Weighted Gausian F1-Score: {gaussian_f1_score:.2f}")
              gaussian_accuracy = GaussianModel.score(X_test, y_test)
print(f"Weighted Gaussian Accuracy: {gaussian_accuracy:.2f}")
print(conf_matrix)
             Weighted Gausian Recall Score: 0.93
             Weighted Gausian precision Score: 0.94
Weighted Gausian F1-Score: 0.93
             Weighted Gaussian Accuracy: 0.93
             [[14 0 0]
[ 0 16 2]
[ 0 1 12]]
```

SVC model

Logistic Regression

```
In [48]: 1 from sklearn.linear_model import LogisticRegression
In [49]:
               2 logistic_reg = LogisticRegression(C=1e5,)
3 logistic_reg.fit(X_train, y_train)
Out[49]: LogisticRegression(C=100000.0)
In [50]: 1 log_predict = logistic_reg.predict(X_test)
In [63]:
                  #Creating a canfusion matrix
               2 log_canf_matrix = confusion_matrix(y_test, log_predict)
              log_recall = recall_score(y_test, log_predict, average="weighted")
print(f"Weighted Logistic Recall Score: {log_recall}")
              7 rog_precision = precision_score(y_test, log_predict, average="weighted")
8 print(f"Weighted Logistic precision Score: {rog_precision}")
             log_f1_score = f1_score(y_test, log_predict, average="weighted")
print(f"Weighted Logistic F1-Score: {log_f1_score}")
             log_accuracy = logistic_reg.score(X_test, y_test)
print(f"Weighted Logistic Accuracy: {log_accuracy}")
             16 print(log_canf_matrix)
             Weighted Logistic Recall Score: 1.0
             Weighted Logistic precision Score: 1.0
Weighted Logistic F1-Score: 1.0
             Weighted Logistic Accuracy: 1.0
             [[14 0 0]
[ 0 18 0]
[ 0 0 13]]
```

Model Comparisions

```
In [64]:
                 sns.set(style="whitegrid", context="talk")
fig, axs = plt.subplots(2,2, figsize=(15,10))
fig.delaxes(axs[1,1])
In [66]:
                 index = 0
                 index = 0
for key in conteiner:
   plt.subplot(2,2, index+1)
   plt.tight_layout()
   plt.bar(x_value, conteiner[key])
   plt.title(f" Model Comparisions of {key}")
   index = index + 1
             6
            10
                                                                                                           Model Comparisions of SVC
                                Model Comparisions of Gaussian
                                                                                     1.0
             0.8
                                                                                     8.0
             0.6
                                                                                     0.6
             0.4
                                                                                     0.4
             0.2
                                                                                     0.2
             0.0
                                                                                     0.0
                                                     Precision
                                                                    F1-Score
                                                                                                                                             F1-Score
                      Accuracy
                                       Recall
                                                                                                               Recall
                                                                                                                             Precision
                                                                                              Accuracy
                           Model Comparisions of Logistic Regression
             1.0
             8.0
             0.6
             0.4
             0.2
             0.0
                      Accuracy
                                       Recall
                                                     Precision
                                                                    F1-Score
```

Problem Set 1(Each problem is 1 point)

You could write your answer by hand on white paper, take it with smartphone camera, and submit it. In this case, please make sure that your answer should be clearly shown.

Nursultan 2hantileuw.

Warter of DS.

2)
$$f(x) = 5x^2 + 5$$
 $f'(x) = 10x$

2) $f(x) = 3 \cdot e^{2x}$
 $f'(x) = (3)! \cdot e^{2x} + 3(e^{2x})! = 0 + 3e^{2x} \cdot (2x)! = 6e^{2x}$
 $f'(x) = (3e^{2x})! = (1 + e^{2x})^{-2} \cdot (1 + e^{2x})! = -(1 + e^{2x})^{-2} \cdot (2x)! = 6e^{2x}$

5) $g'(x) = ((1 + e^{2x})^{-2})! = -(1 + e^{2x})^{-2} \cdot (1 + e^{2x})! = -(1 + e^{2x})^{-2} \cdot (e^{2x})! = e^{-2x}$
 $f''(x) = (1 + e^{2x})^{2x} = e^{-2x} \cdot (1 + e^{2x})! = e^{-2x}$

$$= (1 - \frac{1}{(1 + e^{2x})}) + \frac{1}{(1 + e^{2x})} = (1 - 3(x)) + 3(x) \cdot e^{-2x}$$

$$= (1 - \frac{1}{(1 + e^{2x})}) + \frac{1}{(1 + e^{2x})} = (1 - 3(x)) + 3(x) \cdot e^{-2x}$$

$$= (1 - \frac{1}{(1 + e^{2x})}) + \frac{1}{(1 + e^{2x})} = (1 - 3(x)) + 3(x) \cdot e^{-2x}$$

$$= (1 - \frac{1}{(1 + e^{2x})}) + \frac{1}{(1 + e^{2x})} = (1 - 3(x)) + 3(x) \cdot e^{-2x}$$

$$= (1 - \frac{1}{(1 + e^{2x})}) + \frac{1}{(1 + e^{2x})} = (1 - 3(x)) + 3(x) \cdot e^{-2x}$$

$$= (1 - \frac{1}{(1 + e^{2x})}) + \frac{1}{(1 + e^{2x})} = (1 - 3(x)) + 3(x) \cdot e^{-2x}$$

$$= (1 - \frac{1}{(1 + e^{2x})}) + \frac{1}{(1 + e^{2x})} = (1 - 3(x)) + 3(x) \cdot e^{-2x}$$

$$= (1 - \frac{1}{(1 + e^{2x})}) + \frac{1}{(1 + e^{2x})} = (1 - 3(x)) + 3(x) \cdot e^{-2x}$$

$$= (1 - \frac{1}{(1 + e^{2x})}) + \frac{1}{(1 + e^{2x})} = (1 - 3(x)) + 3(x) \cdot e^{-2x}$$

$$= (1 - \frac{1}{(1 + e^{2x})}) + \frac{1}{(1 + e^{2x})} = (1 - 3(x)) + 3(x) \cdot e^{-2x}$$

$$= (1 - \frac{1}{(1 + e^{2x})}) + \frac{1}{(1 + e^{2x})} = (1 - 3(x)) + 3(x) \cdot e^{-2x}$$

$$= (1 - \frac{1}{(1 + e^{2x})}) + \frac{1}{(1 + e^{2x})} = (1 - 3(x)) + 3(x) \cdot e^{-2x}$$

$$= (1 - \frac{1}{(1 + e^{2x})}) + \frac{1}{(1 + e^{2x})} = (1 - 3(x)) + 3(x) \cdot e^{-2x}$$

$$= (1 - \frac{1}{(1 + e^{2x})}) + \frac{1}{(1 + e^{2x})} = (1 - 3(x)) + 3(x) \cdot e^{-2x}$$

$$= (1 - \frac{1}{(1 + e^{2x})}) + \frac{1}{(1 + e^{2x})} = (1 - 3(x)) + 3(x) \cdot e^{-2x}$$

$$= (1 - \frac{1}{(1 + e^{2x})}) + \frac{1}{(1 + e^{2x})} = (1 - 3(x)) + 3(x) \cdot e^{-2x}$$

$$= (1 - \frac{1}{(1 + e^{2x})}) + \frac{1}{(1 + e^{2x})} = (1 - 3(x)) + 3(x) \cdot e^{-2x}$$

$$= (1 - \frac{1}{(1 + e^{2x})}) + \frac{1}{(1 + e^{2x})} = (1 - 3(x)) + 3(x) \cdot e^{-2x}$$

$$= (1 - \frac{1}{(1 + e^{2x})}) + \frac{1}{(1 + e^{2x})} =$$

7)
$$y = -c \ln 0 + (1-e) \cdot \ln(1-o)$$
 $0 \ge \delta(x)$

$$\frac{dy}{dx} = \frac{d(-c \ln 0 + (1-e) \ln(1-o))}{dx} = -\frac{L}{0} o' + \frac{(1-c)}{(1-o)} (1-o)' = -\frac{L}{\delta(x)} \delta'(x) + \frac{1-L}{1-\delta(x)} (1-\delta(x))' = -\frac{L}{\delta(x)} \delta(x) + \frac{1-L}{1-\delta(x)} (1-\delta(x))' = -\frac{L}{\delta(x)} \delta(x) + \frac{1-L}{1-\delta(x)} (-\delta(x))'.$$

8)
$$(1.3)$$
 $\binom{35}{62} = (13+36\cdot 1.5+3.2)^2 (2111)$

9)
$$\binom{21}{52} + \binom{35}{62} = \binom{2.3+61}{5.5+2.6} + \frac{2.5+1.2}{5.5+2.2} = \binom{12}{27} + \binom{12}{29}$$

10)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 56 \\ 789 \end{pmatrix}$$
 $A^{T} = \begin{pmatrix} 147 \\ 258 \\ 369 \end{pmatrix}$

11)
$$\Pi = \lambda HH, HT, TT, TH$$
) $P(HT) = \frac{1}{4} = 423 = 4370$
12) $\chi |\frac{1}{2}|^2 = \frac{1}{2} + \lambda |\frac$

13)
$$42(2)$$
 $3^{2}(4)$

[4) $11112 \sqrt{11^{2} + 11^{2}} = \sqrt{11^{2} + (2)^{2}} = \sqrt{5}$

$$|u| ||\widehat{u}||^2 \sqrt{|u|^2 + |u|^2} = \sqrt{(u)^2 + (2)^2} = \sqrt{5}$$

Problem Set 2: For the predicted value of binary classifier, y_prediction, and actual value y_actual, calculate performance metrics shown below (9 points)

y-actual)	y-prediction	output with threshold o.l	annual of the
D	0.5	0	
1:	0.9	1	
D.	0,8	D	
0.	0.2	0	
1	0.3	1	60.23
0.	0.6.	D	
1	0.4.	Predieted	
Accuracy=	$=\frac{3}{7}=0.43$	1 2 1 1 2 1	
Revall Z	1 20.33	1/2/1	100000
Precision	£ 1/3 = 0.33		
Fi-Score;	$2 \cdot \frac{1}{3} \cdot \frac{1}{3}$	2. 15 = 1 = 0.33.	
	1+1	X = = = 0.33.	
	3 3	3	
			A BOOK IN
>prent Lerry	12 x = 0.5		17.76.577.66
100000			
			A CONTRACTOR OF THE PARTY OF TH
Constant of the			ACCURATE S
11/2000			Sales of the last of
6000			
Maria Committee			/
			THE PERSON NAMED IN
			And the Part of th