Low-rank Matrix Factorization under General Mixture Noise Distributions

Xiangyong Cao, Yang Chen, Qian Zhao, Deyu Meng, Yao Wang, Dong Wang, Zongben Xu Xi'an Jiaotong Univerisity

Speaker: Zhuwen Li

Introduction

$$\min_{\mathbf{U},\mathbf{V}} ||\mathbf{W} \odot (\mathbf{Y} - \mathbf{U}\mathbf{V}^T)||_{\ell}$$

- $\ell = 1$, Laplacian Noise
- $\ell = 2$, Gaussian Noise

Mixture of Gaussian

• D. Meng and F. D. L. Torre. Robust matrix factorization with unknown noise. In ICCV. 2013.

Error 1

$$y_{ij} = \mathbf{u}_i \mathbf{v}_j^T + e_{ij}$$

$$\mathbb{P}(e_{ij}) = \sum_{k=1}^{K} \pi_k f_{p_k}(e_{ij}; 0, \eta_k)$$

$$\mathbb{P}(e_{ij}) = \sum_{k=1}^{K} \pi_k f_{p_k}(e_{ij}; 0, \eta_k)$$

$$f_p(e;0,\eta) = \frac{p\eta^{\frac{1}{p}}}{2\Gamma(\frac{1}{p})} \exp\{-\eta|e|^p\}$$

$$\eta = 1/(p\sigma^p)$$

Indicator variable

$$\mathbf{z}_{ij} = [z_{ij1}, z_{ij2}, \dots, z_{ijK}]^T$$

where $z_{ijk} \in \{0, 1\}$ and $\sum_{k=1}^{K} z_{ijk} = 1$.

• \mathbf{z}_{ij} obey a multinomial distribution

$$\mathbf{z}_{ij} \sim \mathcal{M}(oldsymbol{\pi})$$
 where $oldsymbol{\pi} = [\pi_1, \pi_2, \dots, \pi_K]^T$

$$\mathbb{P}(e_{ij}|\mathbf{z}_{ij}) = \prod_{k=1}^{K} f_{p_k}(e_{ij}; 0, \eta_k)^{z_{ijk}},$$

$$\mathbb{P}(\mathbf{z}_{ij}; \boldsymbol{\pi}) = \prod_{k=1}^{K} \pi_k^{z_{ijk}}.$$

The likelihood function

$$\mathbb{P}(\mathbf{E}, \mathbf{Z}; \boldsymbol{\Theta}) = \prod_{i,j \in \Omega} \prod_{k=1}^{K} [\pi_k f_{p_k}(e_{ij}; 0, \eta_k)]^{z_{ijk}}$$

$$\mathbf{E} = (e_{ij})_{m \times n}$$

$$\mathbf{Z} = (\mathbf{z}_{ij})_{m \times n}$$

$$\Theta = \{ \boldsymbol{\pi}, \boldsymbol{\eta}, \mathbf{U}, \mathbf{V} \}$$

The log-likelihood function

$$l^{C}(\mathbf{\Theta}) = \log \mathbb{P}(\mathbf{E}, \mathbf{Z}; \mathbf{\Theta})$$

$$= \sum_{i,j \in \Omega} \sum_{k=1}^{K} z_{ijk} [\log \pi_k + \log f_{p_k}(e_{ij}; 0, \eta_k)]$$

Model selection (K)

$$\max_{\mathbf{\Theta}} \left\{ l_P^C(\mathbf{\Theta}) = l^C(\mathbf{\Theta}) - P(\boldsymbol{\pi}; \lambda) \right\}$$

$$P(\boldsymbol{\pi}; \lambda) = n\lambda \sum_{k=1}^{K} D_k \log \frac{\epsilon + \pi_k}{\epsilon}$$

• E-Step (conditional expectation of z_{ijk})

$$\gamma_{ijk}^{(t+1)} = \frac{\pi_k^{(t)} f_{p_k} (y_{ij} - \mathbf{u}_i^{(t)} (\mathbf{v}_j^{(t)})^T) | 0, \eta_k^{(t)})}{\sum_{l=1}^K \pi_l^{(t)} f_{p_l} (y_{ij} - \mathbf{u}_i^{(t)} (\mathbf{v}_j^{(t)})^T) | 0, \eta_l^{(t)})}$$

M-Step

$$Q(\mathbf{\Theta}, \mathbf{\Theta}^{(t)}) = \sum_{i,j \in \Omega} \sum_{k=1}^{K} \gamma_{ijk}^{(t+1)} [\log f_{p_k}(e_{ij}; 0, \eta_k) + \log \pi_k]$$
$$- n\lambda \sum_{k=1}^{K} D_k \log \frac{\epsilon + \pi_k}{\epsilon}.$$

$$Q(\boldsymbol{\Theta}, \boldsymbol{\Theta}^{(t)}) = \sum_{i,j \in \Omega} \sum_{k=1}^{K} \gamma_{ijk}^{(t+1)} [\log f_{p_k}(e_{ij}; 0, \eta_k) + \log \pi_k] - n\lambda \sum_{k=1}^{K} D_k \log \frac{\epsilon + \pi_k}{\epsilon}.$$

• Update π

$$L(\boldsymbol{\pi}) = \sum_{i,j \in \Omega} \sum_{k=1}^{K} \gamma_{ijk}^{(t+1)} \log \pi_k - n\lambda \sum_{k=1}^{K} D_k \log \frac{\epsilon + \pi_k}{\epsilon} + \tau (\sum_{k} \pi_k - 1).$$

 \triangleright Take the derivative w.r.t π and set to zero

$$\pi_k^{(t+1)} = \max \left\{ 0, \frac{1}{1 - \lambda \hat{D}} \left[\frac{\sum_{i,j \in \Omega} \gamma_{ijk}^{(t+1)}}{|\Omega|} - \lambda D_k \right] \right\}$$

$$Q(\mathbf{\Theta}, \mathbf{\Theta}^{(t)}) = \sum_{i,j \in \Omega} \sum_{k=1}^{K} \gamma_{ijk}^{(t+1)} [\log f_{p_k}(e_{ij}; 0, \eta_k) + \log \pi_k]$$
$$- n\lambda \sum_{k=1}^{K} D_k \log \frac{\epsilon + \pi_k}{\epsilon}.$$

- Update $oldsymbol{\eta}$
 - \triangleright Take the derivative w.r.t. η_k and set to zero

$$\eta_k^{(t+1)} = \frac{N_k}{p_k \sum_{i,j \in \Omega} \gamma_{ijk}^{(t+1)} |y_{ij} - \mathbf{u}_i^{(t)} (\mathbf{v}_j^{(t)})^T |^{p_k}}$$

$$Q(\boldsymbol{\Theta}, \boldsymbol{\Theta}^{(t)}) = \sum_{i,j \in \Omega} \sum_{k=1}^{K} \gamma_{ijk}^{(t+1)} [\log f_{p_k}(e_{ij}; 0, \eta_k) + \log \pi_k] - n\lambda \sum_{k=1}^{K} D_k \log \frac{\epsilon + \pi_k}{\epsilon}.$$

ullet Update ${f U},{f V}$

$$\sum_{i,j\in\Omega} \sum_{k=1}^{K} \gamma_{ijk}^{(t+1)} \log f_k(y_{ij} - \mathbf{u}_i^{(t)} (\mathbf{v}_j^{(t)})^T; \eta_k^{(t+1)})$$

$$\min_{\mathbf{U}, \mathbf{V}} \sum_{k=1}^{K} ||\mathbf{W}_{(k)} \odot (\mathbf{Y} - \mathbf{U}\mathbf{V}^T)||_{p_k}^{p_k}$$

$$w_{(k)ij} = \begin{cases} (\eta_k^{(t+1)} \gamma_{ijk}^{(t+1)})^{\frac{1}{p_k}}, & i, j \in \Omega \\ 0, & i, j \notin \Omega \end{cases}$$

$$Q(\boldsymbol{\Theta}, \boldsymbol{\Theta}^{(t)}) = \sum_{i,j \in \Omega} \sum_{k=1}^{K} \gamma_{ijk}^{(t+1)} [\log f_{p_k}(e_{ij}; 0, \eta_k) + \log \pi_k] - n\lambda \sum_{k=1}^{K} D_k \log \frac{\epsilon + \pi_k}{\epsilon}.$$

ullet Update U,V

$$\min_{\mathbf{U}, \mathbf{V}} \sum_{k=1}^{K} ||\mathbf{W}_{(k)} \odot (\mathbf{Y} - \mathbf{L})||_{p_k}^{p_k}$$

$$s.t \quad \mathbf{L} = \mathbf{U}\mathbf{V}^T.$$

$$L(\mathbf{U}, \mathbf{V}, \mathbf{L}, \mathbf{Y}, \rho) = \sum_{k=1}^{K} ||\mathbf{W}_{(k)} \odot (\mathbf{Y} - \mathbf{L})||_{p_k}^{p_k} + \langle \mathbf{\Lambda}, \mathbf{L} - \mathbf{U}\mathbf{V}^T \rangle + \frac{\rho}{2} ||\mathbf{L} - \mathbf{U}\mathbf{V}^T||_F^2$$

Selection of λ

$$\max_{\mathbf{\Theta}} \left\{ l_P^C(\mathbf{\Theta}) = l^C(\mathbf{\Theta}) - P(\boldsymbol{\pi}; \lambda) \right\}$$

$$P(\boldsymbol{\pi}; \lambda) = n\lambda \sum_{k=1}^{K} D_k \log \frac{\epsilon + \pi_k}{\epsilon}$$

$$BIC(\lambda) = \sum_{i,j \in \Omega} \log \{ \sum_{k=1}^{\hat{K}} \hat{\pi}_k f_k(e_{ij}; \hat{\eta}_k) \} - \frac{1}{2} (\sum_{k=1}^{\hat{K}} D_k) \log |\Omega|$$

Experiments

Synthetic data

$$\mathbf{Y}_{gt} = \mathbf{U}_{gt} \mathbf{V}_{gt}^T$$

where $\mathbf{U}_{qt} \in \mathcal{R}^{40 \times 4}$ and $\mathbf{V}_{qt} \in \mathcal{R}^{20 \times 4}$

- Settings 20% missing entries
 - \triangleright 80% Gaussian noise $\mathcal{N}(0, 0.04)$
 - \geq 10% Sparse noise Uniformly distributed in [-20,20]
 - > 80% EP noise $-EP(0, 0.2^p p), p = 0.2$
 - ➤ Mixture noise
 - \square 20% Gaussian noise $\mathcal{N}(0, 0.04)$
 - \square 40% Gaussian noise $\mathcal{N}(0, 0.01)$
 - \square 20% Sparse noise Uniformly distributed in [-5,5]

Synthetic Data

		PMoEP	PMoG	MoG [19]	CWM [20]	DW [24]	RegL1ALM [37]
	Sparse Noise						
$C1 = \mathbf{W} \odot (\mathbf{Y}_{no} - \tilde{\mathbf{U}}\tilde{\mathbf{V}}^T) _1$	C1	8.32e+2	7.98e+2	8.03e+2	7.97e+2	1.05e+3	8.63e+2
	C2	1.07e + 4	1.06e + 4	1.08e + 4	9.97e + 3	4.79e+3	5.96e + 3
	C3	3.23e+1	2.13e-12	1.57e + 1	4.10e+2	5.62e + 14	1.19e+6
	C4	6.73e + 1	2.42e-5	3.45e + 1	9.69e + 1	1.30e + 7	4.26e + 3
$C2 = \mathbf{W} \odot (\mathbf{Y}_{no} - \tilde{\mathbf{U}}\tilde{\mathbf{V}}^T) _2$	C5	1.40e-1	3.85e-8	3.30e-2	3.93e-1	1.47e + 1	1.49e + 1
	C6	6.16e-2	2.33e-8	1.96e-6	1.13e-1	1.44e + 1	1.45e + 1
·	Gaussian Noise						
$C3 = \mathbf{Y}_{gt} - \tilde{\mathbf{U}}\tilde{\mathbf{V}}^T _1$	C1	8.08e+1	7.83e+1	8.20e+1	7.71e+1	8.16e+1	7.35e+1
	C2	1.65e+1	2.41e+1	1.67e + 1	2.17e+1	1.67e + 1	2.14e+1
	C3	1.31e+1	2.48e + 1	1.33e + 1	2.24e+1	1.32e + 1	2.03e+1
$C4 = \mathbf{Y}_{gt} - \tilde{\mathbf{U}}\tilde{\mathbf{V}}^T _2$	C4	7.89e + 1	1.06e + 2	7.90e + 1	9.95e + 1	7.86e+1	9.74e + 1
	C5	8.54e-2	1.17e-1	9.24e-2	1.22e-1	8.67e-2	1.10e-1
	C6	5.82e-2	8.43e-2	6.30e-2	9.96e-2	5.77e-2	7.06e-2
	EP Noise						
$C5 = subspace(\mathbf{U}_{gt}, \tilde{\mathbf{U}})$	C1	3.64e + 2	3.19e+2	3.18e+2	3.30e+2	4.33e+2	3.53e+2
	C2	1.29e + 3	1.25e + 3	1.02e + 3	1.35e + 3	6.49e+2	8.75e + 2
	C3	1.58e+2	3.28e + 3	6.98e + 4	1.99e + 2	1.04e + 7	6.66e + 4
$C6 = subspace(\mathbf{V}_{gt}, \tilde{\mathbf{V}})$	C4	2.40e+2	2.65e + 2	3.52e + 2	2.47e + 2	2.57e + 3	8.22e+2
	C5	3.02e-1	4.21e-1	4.19e-1	3.62e-1	1.08e + 1	1.14e + 1
	C6	2.02e-1	2.87e-1	3.28e-1	2.53e-1	9.05e-1	1.01e+1
	Mixture Noise						
·	C1	4.40e+2	4.38e+2	4.27e+2	4.31e+2	5.18e+2	4.26e+2
	C2	1.27e + 3	1.33e + 3	1.28e + 3	1.10e + 3	8.26e+2	1.12e+3
	C3	1.42e+2	1.90e + 2	1.88e + 2	3.77e+2	2.16e + 8	1.45e+4
	C4	1.68e+2	1.91e + 2	1.84e + 2	3.15e+2	7.08e + 3	5.08e + 2
	C5	3.47e-1	3.90e-1	3.93e-1	5.41e-1	8.44e-1	7.96e-1
	C6	1.79e-1	1.78e-1	1.62e-1	3.91e-1	7.46e-1	6.17e-1

2.34

0.28

0.46

Time(s)

0.352

0.11

0.062

(a) Original HSI

(b) SVD

(c) RegL1ALM

(d) CWM

(e) MoG

(f) PMoG

(g) PMoEP

