REAL ANALYSIS: DEFINITIONS AND THEOREMS

JINCHENG WANG

jc-wang@sjtu.edu.cn

- 1 Measure Theory
- 2 Lebesgue Integral
- 3 Differentiation and Integral
- 4 Hilbert Space: An Introduction
- 4.1 L^2 space

Proposition 4.1.1 The Space $L^2(\mathbb{R}^d)$ has the following properties:

- (i) $L^2(\mathbb{R}^d)$ is a vector space.
- (ii) $f(x)\overline{g(x)}$ is integrable whenever $f,g\in L^2(\mathbb{R}^d)$, and the Cauchy-Schwarz inequality holds: $|(f,g)|\leq ||f||\,||g||.$
- (iii) If $g \in L^2(\mathbb{R}^d)$ is fixed, the map $f \mapsto (f,g)$ is linear in f, and also $(f,g) = \overline{(g,f)}$.
- (iv) The triangle inequality holds: $||f + g|| \le ||f|| + ||g||$

Theorem 4.1.2 The space $L^2(\mathbb{R}^d)$ is complete in its metric.

Theorem 4.1.3 The space $L^2(\mathbb{R}^d)$ is **separable**, int the sense that there exists a countable collection $\{f_k\}$ of elements in $L^2(\mathbb{R}^d)$ such that their linear combinations are dense in $L^2(\mathbb{R}^d)$

4.2 Hilbert space

Definition 4.2.1 A set \mathcal{H} is a **Hilbert Space** if it satisfies the following:

- (i) \mathcal{H} is a vector space over \mathbb{C} (or \mathbb{R}).
- (ii) \mathcal{H} is equipped with an inner product (\cdot, \cdot) , so that

- 1. $f \mapsto (f,g)$ is linear on $\mathcal H$ for every fixed $g \in \mathcal H$
- **2.** $(f,g) = \overline{(g,f)}$
- **3.** $(f, f) \geq 0$ for all $f \in \mathcal{H}$

We let $||f|| = (f, f)^{1/2}$.

- (iii) ||f|| = 0 if and only if f = 0.
- (iv) The Cauchy-Schwarz and triangle inequalities hold

$$|(f,g)| \le ||f|| \, ||g|| \quad and \quad ||f+g|| \le ||f|| + ||g||$$

- (v) \mathcal{H} is complete in the metric d(f,g) = ||f g||.
- (vi) \mathcal{H} is separable.

Definition 4.2.2 (Orthogonality) Two element f and g in a Hilbert space \mathcal{H} with inner product (\cdot,\cdot) are **orthogonal** or **perpendicular** if (f,g)=0, and we write $f\perp g$.

Proposition 4.2.3 If $f \perp g$, then $||f + g||^2 = ||f||^2 + ||g||^2$.

Proposition 4.2.4 If $\{e_k\}_{k=1}^{\infty}$ is orthonormal, and $f = \sum a_k e_k \in \mathcal{H}$ where the sum is finite, then

$$||f||^2 = \sum |a_k|^2.$$

Theorem 4.2.5 The following properties of an orthonormal set $\{e_k\}_{k=1}^{\infty}$ are equivalent.

- (i) Finite linear combinations of elements in $\{e_k\}$ are dense in \mathcal{H} .
- (ii) If $f \in \mathcal{H}$ and $(f, e_j) = 0$ for all j, then f = 0.
- (iii) If $f \in \mathcal{H}$, and $S_N(f) = \sum_{k=1}^N a_k e_k$, where $a_k = (f, e_k)$, then $S_N(f) \to f$ as $N \to \infty$ in the norm.
- (iv) If $a_k=(f,e_k)$, then $||f||^2=\sum_{k=1}^\infty |a_k|^2$

Theorem 4.2.6 Any Hilbert space has an orthonormal basis.

Definition 4.2.7 Give two Hilbert spaces \mathcal{H} and \mathcal{H}' with respective inner products $(\cdot, \cdot)_{\mathcal{H}}$ and $(\cdot, \cdot)_{\mathcal{H}'}$. A mapping $U : \mathcal{H} \to \mathcal{H}'$ between these space is called **unitary** if:

- (i) U is linear, that is, $U(\alpha f + \beta g) = \alpha U(f) + \beta U(g)$.
- (ii) U is a bijection.
- (iii) $||Uf||_{\mathcal{H}'} = ||f||_{\mathcal{H}}$ for all $f \in \mathcal{H}$

Corollary 4.2.8 Any two infinte-dimesional Hilbert spaces are unitarily equivalent.

Corollary 4.2.9 Any two finite-dimensional Hilbert spaces are unitarily equivalent if and only if they have the same dimension.

Definition 4.2.10 Pre-Hilbert space is a space \mathcal{H}_0 that satisfies all the defining properties of a Hilbert space except (v).

Proposition 4.2.11 Suppose we are given a pre-Hilbert space \mathcal{H}_0 with inner product $(\cdot, \cdot)_0$. Then we can find a Hilbert space \mathcal{H} with inner product (\cdot, \cdot) such that

- (i) $\mathcal{H}_0 \subset \mathcal{H}$.
- (ii) $(f,g)_0 = (f,g)$ whenever $f,g \in \mathcal{H}_0$.
- (iii) \mathcal{H}_0 is dense in \mathcal{H} .

4.3 Fourier series and Fatou's theorem

Theorem 4.3.1 Suppose f is integrable on $[-\pi, \pi]$.

- (i) If $a_n = 0$ for all n, then f(x) = 0 for a.e. x.
- (ii) $\sum_{n=-\infty}^{\infty} a_n r^{|n|} e^{inx}$ tends to f(x) for a.e. x, as $r \to 1, r < 1$.

In the theorem above, a_n is the n-th Fourier coefficient of f

$$a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx$$

Theorem 4.3.2 Suppose $f \in L^2([-\pi, \pi])$. Then:

(1) We have Parseval's relation

References