第六章 数理统计基础

- 1. 填空题
- (1) 设总体 X 的概率密度函数为

$$f(x) = \begin{cases} |x|, & -1 < x < 1 \\ 0, & 其他 \end{cases}$$

 $X_1, X_2, \cdots, X_{100}$ 为来自总体 X 的样本, \overline{X} 为样本均值,则 $E(\overline{X}) = \underline{0}$.

- (2) 设总体 $X\sim N(1,9)$, $X_1,X_2,...,X_9$ 为来自总体 X 的样本, \overline{X} 为样本 均值,则 $D(\overline{X}) =$.
- (3) 设总体 X 服从参数为(3) 泊松分布, (X_1, X_2, \dots, X_n) 总体 (3) 的一

个样本, \overline{X} 、 S^2 分别为样本均值与样本方差,则对任意 $0 \le \alpha \le 1$, $E[\alpha \overline{X} + (1-\alpha)S^2] =$ \mathcal{L}_{4} 设总体 $X \sim N(\mu, \sigma^{2})$, $X_{1}, X_{2}, X_{3}, X_{4}$ 是来自 X 的样本, X 是样本均值,

 S^2 是样本方差,则:

$$X \sim$$
______; $\frac{4(\overline{X} - \mu)^2}{\sigma^2} \sim$ _____.

 $Cov(2X_1, X_3) =$ ______; $E(S^2) =$ _____.

 $\rho_{X_2X_4} =$ ______; $E[(X_1 - X_2)^2] =$ _____.

(5) 设随机变量 $X \sim Y$ 相互独立, 且 $X \sim \chi^2(n_1)$, $Y \sim \chi^2(n_2)$ 则随机变量 $\frac{X_{n_1}}{Y_{n_2}}$ ______.

设随机变量 X、Y 相互独立,且 $X \sim N(0,5)$, $Y \sim \chi^2(5)$,则随机变

量
$$Z = \frac{X}{\sqrt{Y}}$$
 服从自由度为 5 的 $\frac{1}{\sqrt{5}}$ 分布. $\frac{1}{\sqrt{5}}$ 分布. $\frac{1}{\sqrt{5}}$

(7) 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 其样本, S^2 为样本方差,且

$$\frac{cS^2}{\sigma^2} \sim \chi^2(n-1)$$
,则常数 $c = _____$

设总体 $X\sim N(0,0.25)$, $X_1,X_2,...,X_7$ 为来自该总体的一个样本,要

使
$$a\sum_{i=1}^{7}X_{i}^{2}\sim\chi^{2}(7)$$
,则应取常数 $a=$ + : 此时 $P(\sum_{i=1}^{7}X_{i}^{2}>4)=$ 0.025 . (9) 设 $X_{1},X_{2},...,X_{6}$ 为总体 $X\sim N(0,1)$ 的一个样本, 16

$$Y = (X_1 + X_2 + X_3)^2 + (X_4 + X_5 + X_6)^2$$

 $Y = (X_1 + X_2 + X_3)^2 + (X_4 + X_5 + X_6)^2,$ 要使 ϕ 服从 $\chi^2(2)$,则常数 $c = \frac{1}{3}$

(10) 设随机变量
$$X \sim t(n)(n>1), Y = \frac{1}{X^2}, 则 Y \sim$$
 五 F(n₂1)

(1) 若总体 $X \sim B(1,p), X_1, X_2, ..., X_6$ 为来自该总体的一个样本,则

$$E(\overline{X}) = P : D(\overline{X}) = P(I-P)/L$$

$$E(S^2) = P(|-p)$$
: $P\{\max(X_1, X_2, \dots, X_6) < 1\} = (-p)^{\frac{1}{p}}$

(12) 查分布表得

$$u_{0.025} =$$
______, $t_{0.975}(8) =$ _____.
 $\chi^2_{0.05}(9) =$ _____, $F_{0.975}(9.3) =$ _____.

2/ 选择题.

(1) 设总体 $X\sim N(\mu,\sigma^2)$,其中 μ 飞知, σ^2 未知, $X_1,X_2,...,X_n$ 为其 样本, $n \ge 2$,则下列说法中正确的是(\bigcirc).

(A)
$$\frac{\sigma^2}{n} \sum_{i=1}^n (X_i - \mu)^2$$
 是统计量

(B)
$$\frac{\sigma^2}{n} \sum_{i=1}^n X_i^2$$
 是统计量

(C)
$$\frac{\sigma^2}{n-1} \sum_{i=1}^{n} (X_i - \mu)^2$$
 是统计量

(D)
$$\frac{\mu}{n} \sum_{i=1}^{n} X_i^2$$
 是统计量

(2) 设 $X_1, X_2, ..., X_n$ $(n \ge 2)$ 为来自正态总体 N(0,1)的简单随机样本, \overline{X} 为样本均值, S^2 为样本方差,则有())

(A)
$$n\overline{X} \sim N(0,1)$$

(B)
$$nS^2 \sim \chi^2(n)$$

(C)
$$\frac{(n-1)\overline{X}}{S} \sim t(n-1)$$

(C)
$$\frac{(n-1)\overline{X}}{S} \sim t(n-1)$$
 (D) $\frac{(n-1)X_1^2}{\sum_{i=2}^n X_i^2} \sim F(1, n-1)$

(3) 设 X_1, X_2, \dots, X_6 是来自正态总体 N(0,1)的样本,则统计量

$$\frac{X_1^2 + X_2^2 + X_3^2}{X_4^2 + X_5^2 + X_6^2}$$
服从(\mathcal{D}).

- (A) 正态分布
- (B) χ²分布
- (C) t 分布
- (D) F 分布
- 3. 没总体 X~N(12,4),样本X₁,X₂,...,X₅来自该总体,求: 样本均值与总体均值之差的绝对值大于 1 的概率;
- (2) $P\{\min(X_1, X_2, \dots, X_5) < 10\}.$

= 1- P (-15x-1251) FN(X)=1-[1-4(10-12)]5 .P (min (X1, X2 -- X5) < 10] = P(N<|0] = 2-24(1.12)= 0.2628 = 1-11-0110-12,75

4. 设总体 X~N(5,4), 从中抽取容量为 20 的样本X₁,X₂,…,X₂₀, 求 $P(33.04 \le \sum_{i=1}^{20} (X_i - 5)^2 \le 125.64)$.

$$P(33.04 \le \sum_{i=1}^{20} (x_i - 5)^2 \le 125.44)$$

$$= P(8.26 \le \sum_{i=1}^{20} (x_i - 5)^2 \le 31.41)$$

$$= 0.95 - 0.01 = 0.94$$

、5. 在总体 $X \sim N(\mu, \sigma^2)$ 中随机抽取一容量为16的样本,若 μ 和 σ^2 均未知, S^2 为样本方差, 求 $P(S^2/\sigma^2 \leq 2.04)$.

$$P[S^{2}/6^{2} \le 2.04] = P[\frac{15S^{2}}{6^{2}} \le 15 \times 2.04]$$

$$= 1 - P[\frac{15S^{2}}{6^{2}} \ge 736.6]$$

$$= 1 - 0.01 = 0.99$$

 $\frac{1}{2} \frac{1}{2} - M(0, 1)$ (D) $\frac{1}{2} \frac{1}{2} (X_1 - 1)^2 - \chi^2(n)$