Section2 Basic Topology

FINITE, COUNTABLE, AND UNCOUNTABLE SETS

2.1 Definition

Consider two sets ,A and B and a mapping from A to B ,which we may call it 'f'.The 'f' should be some manner,or be said to be a *function*(mapping).

The elements f(x) for all x in A, are called **values**.

The set of all values is called the *range* of f.

2.2 Definition

Clearly, f(A) is the range of f and $f(A) \subseteq B$.

We say that f maps A **onto** B when f(A) = B.

For each $y \in B$,when $f^{-1}(y)$ covers all the elements of A,f is said to be **1-1(one to one)** mapping of A into B.

We may illustrate the definition with these graphs below:

onto(but not 1-1)

not 1-1

1-1(but not onto)

1-1 and onto

2.3 Definition

Any relation with these properties is called an equivalence relation:

 $reflexive: A \sim A.$

 $symmestric: If A \sim B, then B \sim A.$

 $transitive: If \ A \sim B \ and \ B \sim C, then \ A \sim C.$

If there exists a 1-1 mapping of A onto B,we say that A and B are equivalent,that is, $A\sim B$.

2.4 Remark

if
$$J_m \sim J_n, m=n.$$

if
$$m=n, J_m \sim J_n$$
 .

where J_n is the set whose elements are the integers 1,2, . . . ,n;

2.5 Definition

For any set A, we may say:

- a. A is **finite** if $A\sim J_n$ for some n.(empty set \varnothing is considered to be finite)
- b. A is **infinite** if A is not finite.
- c. A is **countable** if $A\sim J$.
- d. A is **uncountable** if A is neither **finite** or **countable**.
- e. A is at most countable(至多可数) if A is finite or countable.

2.6 Remark

a. $N\sim Z$

For $:0,1,2,3,\ldots
ightarrow 0,-1,1,-2,\ldots$

We may even find out an explicit formula.

b. $\forall a, b \in R, (a, b) \sim (0, 1)$:

Graphic explanations:

 $\forall x$ in (a,b),denoted by N on the axis AB,has some linear pattern corresponding to M in axis 01.

 $\mathsf{c.}(0,1) \sim R$

We may even find the explicit function of it:

$$f(x) := \begin{cases} \frac{x - \frac{1}{2}}{x^2}, & 0 < x \le \frac{1}{2} \\ \frac{x - \frac{1}{2}}{x^2}, & \frac{1}{2} < x < 1 \\ \frac{1 - x^2}{x^2}, & \frac{1}{2} < x < 1 \end{cases}$$

d. $\forall a,b \in R, (a,b) \sim R$:

An equivalence relation is transitive, so it is clear.

In fact, we could replace the definition of infinite set 2.5.b by the statement below:

A is infinite if A is equivalent to one of its proper subsets.

2.7 Definition

We may sort of order or label the elements in a countable set A in the way of 'sequence in A':

$$A = \{x_n\}, n \in J.$$

The elements in the set arranged in this way need not to be distinct.(For example,we may assume: $f(x):=x^2, x_1=(-1)^2=1, x_2=(+1)^2=1, x_1=x_2$, which is valid)

2.8 Theorem

Every infinite subset of a countable set A is countable.

No uncountable set can be a subset of a countable set.

Proof:

The key operation is to find out the 'net mapping' of J_n , the subset of J:

In this way we found a mapping function from J_n to A such that n_k is the smallest integer greater than n_{k-1} and $x_{n_k} \in E$, where $f(k) = x_{n_k}$.

####

2.9 Theorem

Let $\{E_n\}, n=1,2,3,\ldots$, be a sequence of countable sets, and put

$$S = \bigcup_{n=1}^{\infty} E_n$$

Then S is countable.

2.10 Remark

Let A=(0,1) and $E_{lpha}=(0,lpha),$ then

 $(1) \cup_{\alpha \in A} E_{\alpha} = (0,1)$

 $(2)\cap_{\alpha\in A}E_{\alpha}=\varnothing.$

(2) is clear, for:

$$\forall y>x>0,y
otin E_x$$
.

Hence $\forall y > 0, y \notin \bigcup_{x \in A} E_x$.

To prove (1),we let $M=\cup_{\alpha\in A}E_{\alpha}. \forall x\in M, x\in (0,1), M\subseteq (0,1).$

Suppose $\forall \beta \in (0,1), \forall \alpha \in (0,1), \beta \notin E_{\alpha}$, then $\beta >= 1$. However $\beta < 1$.

Hence, $\forall \beta \in (0,1), \exists \alpha \in (0,1), s.t. \beta \in E_{\alpha}$, whereas $(0,1) \subseteq M$.

Since $(0,1)\subseteq M, M\subseteq (0,1), M=\cup_{\alpha\in A}E_{\alpha}=(0,1).$

2.11 Facts

A、B are two sets.

(1)If A has a 1-1 mapping f into B, $\exists \ g: B o A, s. \ t. \ (gof) = idA.$

(2)If f maps A onto B, $\exists \ g: B o A, s. \ t. \ (fog) = idB.$

2.12 Theorem

Let $\{E_n\}, n=1,2,3,\ldots$,be a sequence of countable sets,and put $S=\cup_{n=1}^\infty E_n$. Then S is countable.

Proof:

Rearrange the order of the terms of the sets T in a sequence $\{x_{nk}\}$:

$$x_{11}
ightarrow x_{21}
ightarrow x_{12}
ightarrow x_{31}
ightarrow x_{22}
ightarrow x_{13}
ightarrow \ldots$$

It is valid, because for each element on the specific diagonal

,the sum of the indexes ranges from (2) to n+k with step 1.

However, some entries may appear more than once, so what we can assure is that it goes that

$$S \sim T \subseteq N$$

Hence S and T are **at most countable**. Since S is infinite, S is countable.

Corollary

Suppose A is at most countable, and, for every $\alpha \in A, B_{\alpha}$ is at most countable. Put

$$T = \bigcup_{\alpha \in A} B_{\alpha}$$

Then T is at most countable.

For T is the subset of the at most countable set $\, S = \cup_{n=1}^\infty E_n. \,$

2.13 Theorem

Let A be a countable set,and let B_n be the set of all n-tuples $(\alpha_1,\ldots,\alpha_n)$,where $\alpha_k\in A(k=1,\ldots,n)$,and the elements α_1,\ldots,α_n need not to be distinct. Then B_n is countable.

Proof:

 $B_n = \underbrace{A imes \ldots imes A}_n$. By induction and Theorem 2.12,we know that A imes A is countable,thus

 $A \times A \times A$ is countable,..., B_n is countable.

Corollary

The set of all **rational numbers** is countable.

That is because $\mathbb{Q} \subset \mathbb{N} \times \mathbb{N}$, $\mathbb{N} \times \mathbb{N}$ is countable and \mathbb{Q} is at most countable but infinite, and thus countable.

2.14 Theorem

Let A be the set of all sequences whose elements are the digits 0 and 1. This set A is uncountable.

Outline of the proof:

To prove something wrong is usually hard, so we may try to prove it by contradictions.

We may assign E as a sequence of countless sequences:

$$E = \{s_1, s_2, s_3, \dots\}$$

,where $s_k, k = 1, 2, \ldots$ is a sequence.

If a set is countable, it can be rearranged to a sequence like that:

$$E = \{\{a_{11}, \dots\}, \\ \{a_{21}, a_{22}, \dots\}, \\ \{a_{31}, a_{32}, a_{33}, \dots\}, \dots\}$$

Let's DIY a sequence to create the contradiction in the way below:

Consider a sequence $\{b_k\}$ like that:

$$b_k = \left\{ egin{array}{l} 1, a_{kk} = 0 \ 0, a_{kk} = 1 \end{array}
ight.$$

The sequence $b_k \neq E_n, \forall n \in N$. However $b_k \in E$.

Thus A is uncountable.

Corollary

The set of all real numbers is uncountable.

METRIC SPACES

2.15 Definition

A set X is said to be a metric space if two points a and b in X associate a real number function d(p,q) such that

$$egin{aligned} Non-negativity: & d(p,q)>0 \ if \ p
eq q, d(p,p)=0; \\ Symmetry: & d(p,q)=d(q,p); \\ Triangle \ Inequality: & d(p,q) \leq d(p,r)+d(r,q), for \ any \ r \in X. \end{aligned}$$

Any function with these three properties is called a distance function, or a metric.

2.16 Definition

The **unit ball** is a set defined by

$$\{\mathbf{x} \in R^n | d(\mathbf{x},0) \leq 1\}$$

2.17 Definition

Let X be a metric space, all points and sets mentioned below are elements and subsets of X.

- 1. A **neighborhood** of p is a set $N_r(p)$ consisting of all q such that d(p,q) < r, for some r > 0. The number r is called the radius of $N_r(p)$. (random r)
- 2. A point p is a *limit point* of the set E if *every* neighborhood of p contains a point $q \neq p$ such that $q \in E$.(no one but myself). $i.e. \forall r > 0, N_r(p) \cap E \neq \emptyset$
- 3. If $p \in E$ and p is not a limit point of E, then p is called an **isolated point** of E.
- 4. A point is an *interior point* of E if there is a neighborhood N of p such that $N \subset E$. $i.e. \exists r > 0, N_r(p) \subseteq E$.
- 5. E is closed if **every limit point** of E is a point of E.
- 6. E is open if every point of E is a **interior point**. $\forall p \in E, \exists r > 0, s. t. N_r(p) \subseteq E$.
- 7. The **complement** of E,denoted by E^c , is the set of all points $p \in X$ such that $p \notin E$.
- 8. E is *perfect* if E is closed and if every point of E is a limit point of E.
- 9. E is **bounded** if there is a real number M and a point $q \in X$ such that d(p,q) < M for all $p \in E$.
- 10. E is *dense* in X if every point of X is a limit point of E,or a point of E(or both).

Notice that an interior point is not necessarily a limit point.

2.18 Facts

Let X be a metric space, all points and sets mentioned below are elements and subsets of X.

- 1. If E is open, E^c is closed;
- 2. If E is closed, E^c is open.

Proof:

1. We need to show that if p is a limit point of E^c then $p \in E^c$.

Let p be a limit point, $i.e. \, \forall r > 0, N_r(p) \cap E^c \neq \varnothing.$

$$\therefore \forall p \in E, \forall r > 0, N_r(p) \text{ dosen't } \subseteq E.$$

Therefore p is not an interior point of E. However, every point in E is an interior point. $i.e.\ p \not\in E, p \in E^c.$

2.The statement is equivalent to "If E is not open,then E^c is not closed",which is trivial.

Since E is not open,that is $\exists p \in E, \forall r > 0, s.t. N_r(p) \cap E^C \neq \varnothing$.

Therefore E^c is not closed.

2.19 Facts

Let A_n, B_n be a open set and a closed set which are both subsets of a metric space X. (n=1,2,3...)

- 1. $\bigcup_{i=1}^n A_i$ is open. $\bigcup_{i=1}^n B_i$ is closed. $\bigcap_{i=1}^n A_i$ is open, $\bigcap_{i=1}^n B_i$ is closed.
- 2. $\bigcup_{i=1}^{\infty} A_n$ is open. $\bigcup_{i=1}^{\infty} B_n$ is closed.
- 3. $\bigcap_{i=1}^{\infty} A_n$ may NOT be open. $\bigcup_{i=1}^{\infty} B_n$ may NOT be closed.

2.20 Theorem

If p is a limit point of a set E, then every neighbourhood of p contains **infinitely** many points of E.

Corollary

A finite point set has no limit points.

Hence, a finite set is closed.

2.22 Theorem

Let $\{E_n\}$ be a (finite or infinite)collection of sets E_α . Then $(\cup_\alpha E_\alpha)^c = \cap_\alpha (E_\alpha^c)$

2.23 Definition

If X is a metric space,if $E \subset X$,and if E' denotes the set of all limit points of E,then the *closure* of E is the set $\overline{E} = E \cup E'$.

2.24 Theorem

If X is a metric space and $E \subset X$,then

- (a) \overline{E} is closed,
- (b) $\overline{E}=E$ if and only if E is closed,
- (c) $\overline{E} \subset F$ for every closed set $F \subset X$ such that $E \subset F$.

2.25 Definition

If E is a metric space and E is a closed set, E is perfect if and only if E'=E.

2.26 Theorem

Let E be a nonempty set of real numbers which is bounded above. Let y=supE. Then $y\in\overline{E}$.

Proof

Assume $y \notin E$. For each h>0 there exists a point $x \in E$, such that y-h < x < y, otherwise y-h would be the upper bound of E. Thus y is a limit point and $y \in \overline{E}$.

(We omit some new definitions)

Compact Sets

2.31 Definition

By an open cover of a set E in a metric space X we mean a collection $\{G_\alpha\}$ of open subsets of x such that $E \subset \bigcup_\alpha G_\alpha$.

2.32 Definition

A subset K of a metric space X is said to be *compact* if every open cover of K contains a *finite* subcover.

More explicitly,the requirement is that if $\{G_{\alpha}\}$ is an open cover of K,then there are finitely many indices $\alpha_1,\alpha_2,\ldots,\alpha_n$ such that $K\subset G_{\alpha_1}\cup\ldots\cup G_{\alpha_n}$.

2.33 Theorem

Suppose $K \subset Y \subset X$. Then K is compact relative to X if and only if K is compact to Y.

Proof

The "if and only if" condition is equivalent to "sufficient and necessary".

(1)Suppose K is compact relative to X, We have

$$K \subset G_{\alpha_1} \cup G_{\alpha_2} \cup \ldots \cup G_{\alpha_n} \tag{1}$$

Let

$$V_{\alpha} = Y \cup G_{\alpha}$$

Then we have

$$K \subset V_{\alpha_1} \cup V_{\alpha_2} \cup \ldots \cup V_{\alpha_n} \tag{2}$$

Thus we prove that K is compact relative to Y.

(2)Suppose K is compact relative to Y.Similarly Let $\{G_n\}$ be some finite collection of open subsets of X which covers K,and put $V_\alpha = Y \cap G_\alpha$.Then we get (2),which implies (1),and therefore K is compact relative to X.

2.34 Theorem

Compact subsets of metric spaces are closed.

Proof

这一证明表现出了紧性将局部推广至全局的作用。

我们等价于证明,"度量空间的紧子集K之补集 K^c 为开集".

我们考虑紧集合中的任意一点a和其补集的任意一点b.现在为了方便我们不妨固定点b,考虑有限个子覆盖 (subcover){ A_n }及点b的有限个邻域(B_n },使得

$$K \subset \bigcup_{i=1}^{n} A_n$$
$$V = \bigcap_{i=1}^{n} B_n$$

其中,这两个邻域的"中心点"距离记为 $d(a_n,b)$.并令所有对应的领域 A_n 与 B_n 满足半径 $r_n<rac{d(a_n,b)}{2}$.

这样就有 $V \cap K = \emptyset$.(局部不相交推广至全局不相交).因此对于补集中的任意一点b,总能以此法构造领域,使得 $N_r(b) \cap K = \emptyset$, $N_r(b) \subset K^c$.

因此等价命题得证,原命题得证.

2.35 Theorem

Closed subsets of compact sets are compact.

Proof

Let K be a compact subset of a metric space X and let $F \subseteq K$ be closed(relative to X).

Let $\{G_n\}$ be an open cover of F, then $\{G_\alpha \cap F^c\}$ is an open cover of K.(Since F^c is open)

Corollary

If F is closed and K is compact,then $F \cap K$ is compact.

The intersection of finite compact sets is compact.

2.36 Definition

Let $\{S_n\}$ be a collection of subsets of a metric space X. We say $\{S_n\}$ satisfies **finite intersection condition** if the intersection of every finite subcollection of $\{K_\alpha\}$ is nonempty.

2.37 Theorem

If $\{K_{\alpha}\}$ is a collection of **compact** subsets of a metric space X such that the intersection of every finite subcollection of $\{K_{\alpha}\}$ is nonempty,then $\cap K_{\alpha}$ is nonempty.

Proof

The statement is equivalent to "If $\cap K_{\alpha}=\varnothing$,then $\cap_{i=1}^n K_i=\varnothing$ ".

We may fix a member K_1 such that $K_1 \cap (\cap_{i=2}^{\infty} K_i) = \emptyset, K_1 \subset (\cap_{i=2}^{\infty} K_i)^c, K_1 \subset (\cup_{i=2}^{\infty} K_i^c).$

Since K_1 is compact, $K_1 \subset (\cup_{i=2}^n K_i^c)$, $\cap_{i=1}^n K_i = \varnothing$.

Corollary

If $\{K_n\}$ is a sequence of nonempty compact sets such that $K_n \supset K_{n+1}$.(n=1,2,3,...),then $\bigcap_1^\infty K_n$ is not empty.

2.38 Theorem

If E is a infinite subset of a compact set K, then E has a limit point in K.

Proof

The key idea is,let I be the k-cell, $\exists x^* \in I$, s.t. if $y \in K_n$, and $K_{n+1} \subset K_n$, $K_1 \subset I$, then $|y-x^*|$ must be covered by some neighborhood. Namely, $\forall r > 0$, $\exists n \in N, y \in K_n$, s.t. $|y-x^*| < r$. That is to say, there is always some finite subcollection of $\{G_n\}$ capable of covering I_n . Suppose $E' \cap E = \varnothing$. That is to say, $\forall p \in E, \forall \epsilon \in R, N_\epsilon p \setminus \{p\} = \varnothing$. Then there is no finite subcollection of $\{V_q\}$ can cover E. Since $E \subset K$, therefore K is not compact. This contradicts the compactness of K.

我们应当指出,定理2.38可以用于证明闭区间套定理。

更严格的证明如下:

We prove it by contradiction.

Suppose no point of K is a limit point of a compact set K, then for each $q \in K$, $\exists r > 0, s.t. N_r(p) \cap E = \varnothing, \{p\}.i.e.$ each point in K would have a neighborhood $N_r(p)$ containing at most one point of E.

Therefore, E cannot be covered by infinite open sets, and the same is true for K, since $E \subset K$, which contradicts the compactness of K.

2.39 Theorem

If $\{I_n\}$ is a sequence of intervals in R^1 , such that $I_n \supset I_{n+1}$ (n=1,2,3,...), then $\cap_1^{\infty} I_n$ is not empty.

Proof

令 $I_n=[a_n,b_n]$,由于实数集的稠密性,总能找到一个 $\{a_n\}$ 的上确界 α 使得 $\alpha\in I_n,(n=1,2,3,\dots)$.故原命题得证.

It is known that R has the least-upper-bound property, and thus has the greatest-lower-bound property. Let $\{a_n\}$ be set of all the lower bounds of each interval I_n , and $\{b_n\}$ be the set of all the upper bounds of each interval I_n .

It is apparent that:

$$\exists x \in R, s.t. x = sub\{a_n\}. \ orall n \in N^*, a_n < x \le b_1 \le b_2 \le \ldots \le b_n$$

Therefore we find that $\forall n \in N^*, x \in I_n, x \in \cap_1^{\infty} I_n$.

2.40 Theorem

Let k be a positive integer. If $\{I_n\}$ is a sequence of k-cells such that $I_n \supset I_n + 1$ (n=1,2,3,...),then $\bigcap_{1}^{\infty} I_n$ is not empty.

Proof

我们对k维的每一维空间都作类似2.39定理的操作即可得证。

2.41 Theorem

Every k-cells is compact.

Proof

Let I be a k-cell, consisting of all points $x = (x_1, x_2, \dots x_n)$ such that $a_j < x_j < b_j (1 \le j \le k)$. Put

$$\delta = \sqrt{\sum_1^k (b_j - a_j)^2}$$

Then $|x-y| \leq \delta$, if $x \in I, y \in I$.

To get a contradiction,we suppose that there exists a open cover $\{G_n\}$ of I which contains no finite subcover of I.

Put $c_j=rac{a_j+b_j}{2}.$ The intervals will be separated into 2^k k-cells of Q_i whose union is I.

According the hypothesis, there must be at least one subset cannot be covered by $\{G_n\}$, call it I_1 .

Corollary:

Let $k \in N^*$, If $\{I_n\}$ is a sequence of k-cells such that $I_{n+1} \subset I_n$ (n=1,2,3,...), then $\cap_1^\infty I_n$ is not empty.

Proof:

For each dimension,apply Theorem 2.39.We then obtain $x^*=(x_1^*,x_2^*,\ldots,x_k^*)$. $x^*\in I_n, n=1,2,3...$,which makes the corollary follow.

2.42 Theorem(3 个等价命题)

需要指出的是,该定理中(a)与(b)的等价性被称作Heine-Borel theorem (海涅-博雷尔定理):

If a set E in \mathbb{R}^k has one of the following three properties, then it has the other two:

- (a) E is closed and bounded.
- (b) E is compact.
- (c) Every infinite subset of E has a limit point in E.

Proof:

(a) -> (b):

 $E \subset I$ for some k-cell I.Since a closed subset of a compact set is compact(Theorem 2.35) and each k-cell is compact(Theorem 2.40,E is compact.

(b) -> (c):

If E is a infinite subset of a compact set K, then E has a limit point in K. (Theorem 2.38)

That implies (b) to (c).

Suppose E is not bounded,then some subset of E(call it S) contains points x_n with $|x_n|>n, n\in N^*$.

Thus S clearly has no limit point, contradicting with (c).

Suppose ${\cal E}$ is not closed,consider a limit point of ${\cal E}$ but not in ${\cal E}$.Let

$$S = \{x_n | x_n \in E, |x_n - x_0| < \frac{1}{n}\}.$$

Thus S is infinite, and S has no limit point but x_0 in \mathbb{R}^k .

Let's prove it:

Fix
$$y\in R^k, y
eq x_0$$
,then $|x_n-y|\ge |x_0-y|+|x_n-x_0|$ $\ge |x_0-y|-rac{1}{n}$ $\ge rac{1}{2}|x_0-y|$

Therefore x_0 is the only limit point of S.

Thus S has no limit point in E, contradicting with (c).

Hence it must be closed if (c) holds.

2.43 Weierstrass Theorem(魏尔斯特拉斯定理)

Every bounded infinite subset of \mathbb{R}^k has a limit point in \mathbb{R}^k .

Proof:

Let the set be S. Since it is bounded, there is some k-cell I_k s.t. $S \subset I_k.I_k$ is compact, thus S has a limit point in I_k . Namely the theorem holds.

Perfect Sets and Connected Sets

2.44 Definition

A set E is **perfect** if and only if E' = E.

2.45 Theorem

Let P be a nonempty perfect set in \mathbb{R}^k . Then P is uncountable.

Proof

Suppose P is countable, consider a sequence of neighborhood $\{V_n\}$ of these points x_1, x_2, x_3, \ldots

Since $P'=P, V_n\cap P\neq\varnothing$. We may construct a sequence of $\{V_n\}$ following three properties below:

1.
$$\overline{V}_{n+1} \subset V_n$$

$$2 x_n \notin \overline{V}_{n+1}$$

3.
$$V_{n+1} \cap P \neq \emptyset$$

Put $K_n = \overline{V_n} \cap P.$ Since \overline{V}_n is closed and bounded,it is compact.

By (2),no points in P lies in $\cap_1^\infty K_n.K_n\subset P$, $\cap_1^\infty K_n=\varnothing.$

But each K_n is nonempty,by (3).

It contradicts the theorem "If $\{K_n\}$ is a sequence of nonempty compact sets such that $K_n \supset K_{n+1}$.(n=1,2,3,...),then $\cap_1^\infty K_n$ is not empty."

2.46 Cantor Set

Note:

It is a perfect set in \mathbb{R}^1 which contains no segment.

2.47 Definition

Two subsets A and B of a metric space X are said to be separated if both $A\cap \overline{B}$ and $\overline{A}\cap B$ are empty, i.e.,if no point of A lies in \overline{B} and no points of B lies in \overline{A} .

A set $E \subset X$ is said to be connected if E is not a union of two nonempty separated sets.

If a set is NOT connected, it is a union of two nonempty separated sets.

Separated sets are disjoint, but disjoint sets need not to be separated.