Lecture 19: Mapping Reducibility and Time Complexity

CSC 320: Foundations of Computer Science

Quinton Yong

quintonyong@uvic.ca

Computable Functions

Definition: A function $f: \Sigma^* \to \Sigma^*$ is a **computable function** if a TM M exists such that on input w, M halts with just f(w) on its tape

i.e. A **function is computable** if we can use a TM (decider) to compute it

Mapping Reducibility

Definition: Language A is mapping reducible to language B, denoted $A \leq_m B$, if there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for every $w \in \Sigma^*$,

 $w \in A$ if and only if $f(w) \in B$

f is called a mapping reduction from A to B

i.e. There's a way to convert inputs of A to equivalent inputs of B $(w \in A \Leftrightarrow f(w) \in B)$

Reductions vs Mapping Reductions

Reductions $A \leq B$ (also known as Turing reductions):

- Show how to create a TM which recognizes (or decides) \boldsymbol{A} if we had a TM which recognizes (or decides) \boldsymbol{B}
- We can show reductions such as $A_{TM} \leq Halt_{TM}$ and $A_{TM} \leq E_{TM}$
- In this course, we will use these reductions to prove that languages are undecidable

Reductions vs Mapping Reductions

Mapping Reductions $A \leq_m B$:

- Show how to convert inputs for A into inputs for B such that for each input w, $w \in A$ if and only if $f(w) \in B$
- We can show mapping reductions such as $A_{TM} \leq_m Halt_{TM}$
- There does not exist a mapping reduction $A_{TM} \leq_m E_{TM}$
- We can use mapping reductions for decidability, but we will use them primarily for **time complexity** in this course

Mapping Reductions for Decidability

Let \boldsymbol{A} and \boldsymbol{B} be languages over $\boldsymbol{\Sigma}$.

Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

Proof: Given mapping reduction f from A to B and decider M for B, build a decider N for A as follows:

N = "On input w:

- Compute f(w)
- Run M on input f(w)
- Output whatever M outputs"

A_{TM} is mapping reducible to $Halt_{TM}$

$$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w\}$$
 $Halt_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w\}$

- $A_{TM} \leq_m Halt_{TM}$ if
 - there is a **computable function** f which takes $\langle M, w \rangle$ and outputs $f(\langle M, w \rangle)$
 - $\langle M, w \rangle \in A_{TM}$ if and only if $f(\langle M, w \rangle) \in Halt_{TM}$

• To show $A_{TM} \leq_m Halt_{TM}$, we design a TM F that computes f

A_{TM} is mapping reducible to $Halt_{TM}$

F ="On input $\langle M, w \rangle$

• Construct description of TM M' as follows:

 $\mathbf{M}' =$ "On input \mathbf{x} , where \mathbf{x} is any string

- Run M on x
- If M accepts, then accept
- If M rejects, then enter a loop"
- Output $\langle M', w \rangle$ "

A_{TM} is mapping reducible to $Halt_{TM}$

- TM F computes f
- Is f a correct mapping reduction from A_{TM} to $Halt_{TM}$?
 - $\langle M, w \rangle \in A_{TM}$ iff $\langle M', w \rangle \in Halt_{TM}$

- $\langle M, w \rangle \in A_{TM}$ $(M \text{ accepts } w) \Rightarrow \langle M', w \rangle \in Halt_{TM}$ (M' halts and accepts w)
- $\langle M, w \rangle \notin A_{TM}$ $(M \text{ rejects or loops } w) \Rightarrow \langle M', w \rangle \notin Halt_{TM}$ (M' loops on w)
- Therefore, f is a mapping reduction from A_{TM} to $Halt_{TM}$

$Halt_{TM}$ is Undecidable

 We can use mapping reductions to show that languages are undecidable by using the previous theorem

Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

- We have shown $A_{TM} \leq_m Halt_{TM}$
- If $Halt_{TM}$ was decidable, then A_{TM} would be decidable by the theorem
- Therefore, $Halt_{TM}$ is undecidable since A_{TM} is undecidable

Time Complexity

• From now on, we will be only considering decidable problems

 Since problems are decidable, we will be analyzing running time / time complexity of Turing machines

Running Time / Time Complexity

Definition: Let M be a deterministic single-tape decider. The running time / time complexity of M is the function $f: \mathbb{N} \to \mathbb{N}$ where f(n) is the maximum number of steps that M uses on any input of length n

- If f(n) is the running time of M, then we say:
 - M runs in time f(n)
 - M is an f(n)-time Turing machine

Time Complexity Class

Let $t: \mathbb{N} \to \mathbb{R}$ be a function

The time complexity class TIME(t(n)) is the collection of all languages decidable by an O(t(n))-time Turing machine

Example: $L = \{\langle G \rangle \mid G \text{ is a simple undirected connected graph}\}$

- We can use a traversal algorithm to decide if a graph connected
- For graph with n vertices and $m \leq n^2$ edges, a TM can decide if it is connected or not in $O(n^2)$ time
- $L \in TIME(n^2)$

Multitape TM to Single-tape TM

Multitape TM Time Complexity

Recall, for every **deterministic single-tape TM**, there exists an equivalent **multitape TM** (and vice versa)

Theorem: Let t(n) be a function, $t(n) \ge n$. Every t(n)-time multitape TM has an equivalent $O(t^2(n))$ -time single-tape TM

Proof: Recall conversion from multitape TM with k tapes to single-tape TM

- The contents of the multitape TM is at most t(n)
- In the worst case, the equivalent single-tape TM requires $k \cdot t(n)$ time to simulate a step of the multitape TM
- Multitape TM takes t(n) steps
- Therefore, this takes $O(t^2(n))$ time

NTM to TM

Recall that for every **deterministic single-tape TM**, there exists an equivalent **nondeterministic single-tape TM** (and vice versa)

- Let N be a non-deterministic single tape decider
- The running time / time complexity of N is the function f(n) which is the maximum number of steps that N uses on **any one branch** of its computation on any input of length n

- The running time of **deterministic deciders** is the model for running time when running algorithms on classical computers
- The running time of **nondeterministic deciders** is not intended to correspond to a real-world computing device (purely theoretical)

Theorem: Let t(n) be a function, $t(n) \ge n$. Every t(n)-time nondeterministic single-tape TM has an equivalent $2^{O(t(n))}$ -time deterministic single-tape TM

Proof: Recall conversion from nondeterministic single-tape TM to a 3-tape

deterministic TM

- Let b be the maximum number of children of any node (possible choices in NTM)
- Total number of leaves $\leq b^{t(n)}$
- Number of nodes in tree $\leq 2 \cdot \# \text{ leaf nodes} = 2 \cdot b^{t(n)}$
- So, there are $O(b^{t(n)})$ nodes to be simulated

Proof continued...

- It takes O(t(n)) time to traverse from root to a node
- Total time to simulate all nodes = $m{O}ig(m{t}(m{n})\cdotm{b^{t(n)}}ig)$

$$\bullet \quad O\left(t(n)\cdot b^{t(n)}\right) = O\left(t(n)\cdot 2^{\log_2\left(b^{t(n)}\right)}\right) = O\left(t(n)\cdot 2^{\log_2\left(b\right)\cdot t(n)}\right) = O\left(t(n)\cdot 2^{O\left(t(n)\right)}\right)$$

•
$$O\left(t(n)\cdot 2^{O\left(t(n)\right)}\right) = O\left(2^{\log_2\left(t(n)\right)}\cdot 2^{O\left(t(n)\right)}\right) = O\left(2^{O\left(t(n)\right)}\right)$$

- It takes $oldsymbol{o}\left(\mathbf{2}^{oldsymbol{o}(t(n))}
 ight)$ to simulate an NTM on a multitape TM
- Therefore, it takes $O\left(2^{O(t(n))}\right)^2 = O\left(2^{O(2\cdot t(n))}\right) = O\left(2^{O(t(n))}\right)$ on a single tape TM

Complexity Class *P*

$$P = \bigcup_{k} TIME(n^k)$$

P is the class of languages that are **decidable in polynomial time** on a (deterministic single-tape) Turing machine

- If a problem A is in P, then A can be solved in polynomial time (there exists an n^c -time algorithm to solve A, for some constant c)
- P is often considered to be the class of problems that are solvable in practice on a classical computer

Problems in *P*

CONNECTED GRAPH

- Input: A simple undirected graph G = (V, E) where |V| = n
- Question: Is G connected
- $L_{\text{CONNECTED GRAPH}} = \{\langle G \rangle \mid G \text{ is a simple undirected connected graph}\}$
- $L_{\text{CONNECTED GRAPH}}$ is in P since a $O(n^2)$ -time decider can decide (solve) it

PATH

- Input: A directed graph G = (V, E) and vertices $s, t \in V$ (|V| = n)
- Question: Does there exist a directed path from s to t in G
- $L_{PATH} = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$
- Is L_{PATH} in P?

$PATH \in P$

Suppose we use a brute force algorithm:

- Examine all **potential** paths (all sequences of nodes in V of length at most n):
 - One potential path of length 2

• n-2 potential paths of length 3 s

• $\binom{n-2}{2}$ paths of length 4

- $\binom{n-2}{n-3}$ paths of length n
- This algorithm is not polynomial time

If this was the only algorithm for PATH, L_{PATH} would not be in P

$PATH \in P$

However, we have a faster algorithm for PATH:

- Use BFS traversal:
 - Mark all nodes that are reachable from s by directed paths of length 1, 2, 3, ... n

• This is algorithm is **polynomial time**

$PATH \in P$

• Polynomial time decider for L_{PATH} (a bit slower than BFS traversal)

 $M = \text{"On input } \langle G, s, t \rangle$, where G is a directed graph with nodes S and C

- Mark node s
- Repeat until no new nodes are marked:
 - Scan edges of \boldsymbol{G}
 - If edge (u,v) is found where u is marked and v is unmarked, then mark v
- If t is marked, accept
- Otherwise, reject
- Since L_{PATH} can be decided in polynomial time (on deterministic single tape TM), $L_{PATH} \in P$

Complexity Class NP

Next lecture...