COSI 137 Information Extraction - Final Project

Event Relation Extraction in Syntax Constructions using Tree Kernel

Chuan Wang¹

¹Department of Computer Science Brandeis University

May 7, 2013

- Introduction
 - Event Relation Extraction
 - Verb-clause Syntactic Construction
- Tree Kernel method
 - Subtrees(STs) and Subset trees (SSTs)
 - Tree Kernel Functions
- 3 Experiments
 - Data Preparation
 - Experiment Set and Results

- Introduction
 - Event Relation Extraction
 - Verb-clause Syntactic Construction
- 2 Tree Kernel method
 - Subtrees(STs) and Subset trees (SSTs)
 - Tree Kernel Functions
- 3 Experiments
 - Data Preparation
 - Experiment Set and Results

Event Relation Extraction

- Event relation extraction is to find the temporal relation between events in natural language processing.
- TimeML, which contains parts of the temporal structure of the 186 document Timebank corpus, aims to provide researchers the structured data to train models for extracting events and temporal structure.

Event Relation Extraction

TimeML Example

Example

```
Pacific First Financial Corp. < EVENT eid = "e1" class =
"REPORTING" > said < /EVENT > shareholders < EVENT eid =
"e2" class = "OCCURRENCE" > approved < /EVENT > its <
EVENT eid = "e8" class = "OCCURRENCE" > acquisition <
/EVENT > by Royal Trustco Ltd. of Toronto.
< TLINK lid = "l1" relType = "BEFORE" eventInstanceID =
"ei80" relatedToTime = "t10" signalID = "s12" / >
< SLINK lid = "I7" relType = "EVIDENTIAL" eventInstanceID =
"ei73" subordinatedEventInstance = "ei74" / >
```

Compared to event detection, event relation i.e. temporal ordering could be more challenging because of the data sparsity and annotation inconsistency

- Introduction
 - Event Relation Extraction
 - Verb-clause Syntactic Construction
- 2 Tree Kernel method
 - Subtrees(STs) and Subset trees (SSTs)
 - Tree Kernel Functions
- Experiments
 - Data Preparation
 - Experiment Set and Results

Verb-clause Syntactic Construction

• In the verb-clause construction, the first event is a verb and the second event is the head of a clausal argument to that verb. While this syntactic pattern is fairly specific, it occurs quite frequently in the TimeBank, almost 50% of adjacent pairs of verbal events participate in exactly a verb-clause construction.

Verb-clause Syntactic Construction

 In the verb-clause construction, the first event is a verb and the second event is the head of a clausal argument to that verb. While this syntactic pattern is fairly specific, it occurs quite frequently in the TimeBank, almost 50% of adjacent pairs of verbal events participate in exactly a verb-clause construction.

- Introduction
 - Event Relation Extraction
 - Verb-clause Syntactic Construction
- Tree Kernel method
 - Subtrees(STs) and Subset trees (SSTs)
 - Tree Kernel Functions
- Experiments
 - Data Preparation
 - Experiment Set and Results

Subtrees(STs) and Subset trees (SSTs)

Both the subtrees (STs) and subset trees (SSTs) can be regarded as two different ways of representing the features extracted from syntax tree.

4□ > 4□ > 4□ > 4□ > 4□ > 900

- Introduction
 - Event Relation Extraction
 - Verb-clause Syntactic Construction
- Tree Kernel method
 - Subtrees(STs) and Subset trees (SSTs)
 - Tree Kernel Functions
- 3 Experiments
 - Data Preparation
 - Experiment Set and Results

Tree Kernel Functions

the defination of tree kernel is given as,

$$K(T_1, T_2) = \sum_{n_1 \in N_{T_1}} \sum_{n_2 \in N_{T_2}} \phi(n_1, n_2)$$
 (1)

Tree Kernel Functions

the defination of tree kernel is given as,

$$K(T_1, T_2) = \sum_{n_1 \in N_{T_1}} \sum_{n_2 \in N_{T_2}} \phi(n_1, n_2)$$
 (1)

where $\phi(n_1, n_2)$ can be computed in polynomial time using recursive definition

- Introduction
 - Event Relation Extraction
 - Verb-clause Syntactic Construction
- 2 Tree Kernel method
 - Subtrees(STs) and Subset trees (SSTs)
 - Tree Kernel Functions
- 3 Experiments
 - Data Preparation
 - Experiment Set and Results

Data Preparation

- The 132 newswire documents in Wall Street Journal section of TimeBank has been selected and also the associated gold-standard syntactic trees from the TreeBank
- I only select the event pairs in the verb-clause construction

Class	Train	Test
AFTER/BEFORE	99	46
SIMUL	65	50
MODAL	225	91
EVIDENTIAL	300	141
Total	689	424

Merge the IS_INCLUDED, INCLUDES, DURING, SIMULTANEOUS label because of sparsity and they are diffcult to classify (even for human).

- Introduction
 - Event Relation Extraction
 - Verb-clause Syntactic Construction
- 2 Tree Kernel method
 - Subtrees(STs) and Subset trees (SSTs)
 - Tree Kernel Functions
- 3 Experiments
 - Data Preparation
 - Experiment Set and Results

Experiment Set

- Using SVM-light tree kernel
- Since SVM-light is binary classfier, use one-vs-all method to handle the multi-class
- 3 Experiments:
 - Tree Kernel only (using the minimum subtree which dominates the two events)
 - Tree Kernel + manual features extracted from TimeML corpus like tense, aspect, stem and POS, etc.
 - Manual features with SVM polynomial kernel

Results

Class	Precision	Recall	F1
AFTER/BEFORE	0.2745	0.3043	0.288
SIMUL	0.3888	0.28	0.33
MODAL	0.7954	0.7692	0.78
EVIDENTIAL	0.8039	0.8723	0.84

Table: Tree Kernel only classfication results

Class	Precision	Recall	F1
AFTER/BEFORE	0.4464	0.5435	0.49
SIMUL	0.5	0.24	0.32
MODAL	0.9277	0.8462	0.885
EVIDENTIAL	0.83	0.97	0.894

Table: Tree Kernel + manual features classfication results

Results

Class	Precision	Recall	F1
AFTER/BEFORE	0.4375	0.6086	0.509
SIMUL	0.411	0.14	0.2089
MODAL	0.939	0.8461	0.89
EVIDENTIAL	0.83	0.97	0.8954

Table: Manual features only classfication results

Summary

- As shown in many others' work, tree kernel only are not comparable to traditional manual selected features.
- However, tree kernel can give more useful information which can improve the performance of traditional manual feature engineering.