Simon King, FSU Jena Fakultät für Mathematik und Informatik Daniel Max

Numerische Mathematik

Sommersemester 2022

Übungsblatt 8

Hausaufgaben (paarweise Abgabe bis 07.06.2022 1000 Uhr)

Hausaufgabe 8.1: 2-Norm

- a) (2 P.) Für $A \in \mathbb{R}^{m \times n}$ sei $\|A\|_F := \sqrt{\operatorname{Spur}(A^{\top}A)}$. Zeigen Sie, dass $\|A\|_F^2$ gleich der Summe der Eigenwerte von $\dot{A}^{\top}A$ ist und folgern Sie $\|A\|_2 \leq \|A\|_F$ für alle $A \in \mathbb{R}^{m \times n}$.
- b) (2 P.) Sei $A \in GL_n(\mathbb{R})$ und sei A = QR eine QR-Zerlegung, mit $Q \in O_n$ und einer oberen Dreiecksmatrix $R \in GL_n(\mathbb{R})$. Zeigen Sie: Bezüglich der $2-Norm \operatorname{cond}(A) = \operatorname{cond}(R).$

Hausaufgabe 8.2: Splitting-Verfahren (4 P.) Sei $A := \begin{pmatrix} 1 & 2 & -2 \\ \frac{1}{2} & \frac{1}{2} & 1 \end{pmatrix} \in M_3(\mathbb{R})$ und $b := \begin{pmatrix} 1 \\ \frac{1}{1} \end{pmatrix} \in \mathbb{R}^3$. Untersuchen Sie jweils, ob das Jacobi-Verfahren bzw. das Gauß-Seidel-Verfahren zur numerischen Lösung des linearen Gleichungssystems $Ax \stackrel{!}{=} b$ mit Startwert $x_0 := \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ konvergiert und bestimmen Sie ggf. den Grenzwert.

Hausaufgabe 8.3: Vorbereitung zukünftiger Themen Für $n \in \mathbb{N}$ sei $T_n \colon [-1,1] \to \mathbb{R}$ definiert durch $T_n(x) := \cos(n \arccos(x))$.

a) (3 P.) Zeigen Sie, dass für $n \in \mathbb{N}^*$ die folgnde Rekursionsformel gilt:

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$

Hinweis: Additions theoreme.

b) (1 P.) Folgern Sie, dass T_n ein Polynom mit $\deg(T_n) = n$ ist.

Bitte wenden

Programmieraufgabe 8.4: CG-Verfahren

Für $n \in \mathbb{N}$ sei $M \in M_n(\mathbb{R})$ gegeben durch $\forall i, j \in \{1, ..., n\}$: $M_{i,j} := \frac{1}{i+j-1}$ und $c \in \mathbb{R}^n$ gegeben durch $\forall i \in \{1, ..., n\}$: $c_i := \sum_{j=1}^n \frac{1}{i+j-1}$.

(4 P.) Implementieren Sie das Verfahren der konjugierten Gradienten in double precision. Dabei soll (mit den Notationen aus dem Skript) x_k (für $k \in \mathbb{N}$) zurück gegeben werden, wenn $r_k^{\top} r_k < 5 \times 10^{-15}$, und es soll der Startwert $x_0 := \vec{0} \in \mathbb{R}^n$ verwendet werden.

Berechnen Sie mit Ihrer Implementierung eine Approximation der Lösung der Gleichung $Mx \stackrel{!}{=} c$, mit M, c wie oben und n := 20.

Anmerkung: Wie auf dem vorigen Übungsblatt gesehen ist M sehr schlecht konditioniert.

Erreichbare Punktzahl: 16