DOI: 10.1007/s11401-005-0447-7

© The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2006

Associative Cones and Integrable Systems

Chuu-Lian TERNG*,*** Shengli KONG* Erxiao WANG**

(Dedicated to the memory of Shiing-Shen Chern)

Abstract We identify \mathbb{R}^7 as the pure imaginary part of octonions. Then the multiplication in octonions gives a natural almost complex structure for the unit sphere S^6 . It is known that a cone over a surface M in S^6 is an associative submanifold of \mathbb{R}^7 if and only if M is almost complex in S^6 . In this paper, we show that the Gauss-Codazzi equation for almost complex curves in S^6 are the equation for primitive maps associated to the 6-symmetric space G_2/T^2 , and use this to explain some of the known results. Moreover, the equation for S^1 -symmetric almost complex curves in S^6 is the periodic Toda lattice, and a discussion of periodic solutions is given.

Keywords Octonions, Associative cone, Almost complex curve, Primitive map **2000 MR Subject Classification** 53, 22E

1 Introduction

We identify \mathbb{R}^7 as the pure imaginary part of the octonions \mathbb{O} . It is known that the group of automorphism of \mathbb{O} is the compact simple Lie group G_2 , and the constant 3-form on \mathbb{R}^7 ,

$$\phi(u_1, u_2, u_3) = (u_1 \cdot u_2, u_3),$$

is invariant under G_2 . A 3-dimensional submanifold M in \mathbb{R}^7 is associative if $\mathbb{R}1 + TM_x$ is an associative subalgebra of \mathbb{O} for all $x \in M$, i.e., it is isomorphic to the quaternions. It is easy to see that a 3-dimensional submanifold of \mathbb{R}^7 is associative if and only if it is calibrated by the 3-form ϕ .

The multiplication of octonions defines an almost complex structure on the unit sphere S^6 by $J_x(v) = x \cdot v$. An immersion f from a Riemann surface Σ to S^6 is called *almost complex* if the differential of f is complex linear, i.e.,

$$df_x(iv) = J_x(df_x(v)) = x \cdot df_x(v).$$

It is known that a surface Σ is an almost complex curve in S^6 if and only if the cone over Σ is an associative submanifold of \mathbb{R}^7 (see [11]).

Manuscript received October 19, 2005.

^{*}Department of Mathematics, University of California at Irvine, Irvine, CA 92697-3875, USA. E-mail: cterng@math.uci.edu skong@math.uci.edu

^{**}Department of Mathematics, University of Texas at Austin, Austin, TX 78712-0257, USA. E-mail: ewang@math.utexas.edu

^{***}Partially supported by NSF grant DMS-0529756.

An immersion f from a Riemann surface to S^n is called *totally isotropic* if

$$\left(\left(\nabla_{\frac{\partial}{\partial z}}\right)^i f_*\left(\frac{\partial}{\partial z}\right), \left(\nabla_{\frac{\partial}{\partial z}}\right)^j f_*\left(\frac{\partial}{\partial z}\right)\right) = 0 \quad \text{for all} \ i, j \geq 0,$$

where $(X,Y) = \sum_{i=1}^{n+1} X_i Y_i$ is the complex bilinear form on \mathbb{C}^{n+1} . A surface in S^n is said to be full if it does not contain in any hypersphere. Bolton, Vrancken and Woodward [4] used harmonic sequences to prove that if $f: \Sigma \to S^6$ is an immersed almost complex curve, then f must be one of the following:

- (i) full in S^6 and totally isotropic,
- (ii) full in S^6 and not totally isotropic,
- (iii) full in some totally geodesic S^5 in S^6 ,
- (iv) a totally geodesic S^2 .

Bryant [5] used twistor theory to construct type (i) almost complex curves of any genus in S^6 . Cones over a type (iii) almost complex curves in S^6 are special Lagrangian submanifolds, which have been studied by several authors (see [8, 12, 13, 16, 15]). To state known results for type (ii) almost complex curves, we need to recall Burstall and Pedit's definition of primitive maps (see [6]). Let σ be an order 6 inner automorphism of G_2 such that the fixed point set of σ is a maximal torus T^2 , i.e., G_2/T^2 is a 6-symmetric space. Let \mathfrak{h}_j denote the eigenspace of the complexified $d\sigma_e$ on $\mathfrak{g}_2^{\mathbb{C}} = \mathfrak{g}_2 \otimes \mathbb{C}$. A map $f: \mathbb{C} \to G_2/T^2$ is primitive if there is a lift $F: \mathbb{C} \to G_2$ such that $F^{-1}F_z \in \mathfrak{h}_0 + \mathfrak{h}_{-1}$. We will call any smooth map $F: \mathbb{C} \to G_2$ satisfying the condition that $F^{-1}F_z \in \mathfrak{h}_0 + \mathfrak{h}_{-1}$ a σ -primitive G_2 -frame. Bolton, Pedit and Woodward [3] proved that if $f: \Sigma \to S^6$ is a type (ii) almost complex curve, then there exists a σ -primitive G_2 -frame ψ . Conversely, they show that if ψ is a σ -primitive G_2 -frame, then the first column of ψ gives an almost complex curve. The equation for σ -primitive G_2 -frame is an elliptic integrable system, so techniques from integrable systems can be used to study almost complex surfaces in S^6 .

In this paper, we prove that if Σ is an immersed almost complex surface in S^6 such that the second fundamental form II is not zero at p_0 , then there exist an open neighbor \mathcal{O} of p_0 and a σ -primitive G_2 -frame $\psi: \mathcal{O} \to G_2$ such that the first column is the immersion. In other words, the Gauss-Codazzi equation for the associative cones in \mathbb{R}^7 is the equation for σ -primitive G_2 -frames. Then we use this elementary submanifold geometry set up to derive some of the known properties of almost complex curves in S^6 . We also formulate the equation for S^1 -symmetric almost complex curves in S^6 as a Toda type equation and use the AKS (Adler-Kostant-Symes) theory (see [1, 6, 2]) to construct S^1 -symmetric almost complex curves.

This paper is organized as follows. We review basic properties of G_2 (see [14]) in Section 2, prove the existence of a σ -primitive G_2 -frame on an almost complex surface with non-vanishing second fundamental form in Section 3. The equation for σ -primitive G_2 -frame is a system of first order PDEs for 5 complex functions. We explain in Section 4 the necessary and sufficient conditions on these 5 functions corresponding to the four types of almost complex curves. In Section 5, we explain how periodic Toda lattice arises from S^1 -symmetric almost complex curves in S^6 , and finally in Section 6, we use the AKS theory to construct all S^1 -symmetric almost complex curves.

2 The Octonions and Lie Group G_2

Let $\mathbb{H} = \mathbb{R}\{\mathbf{1}, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$ be the quaternions, where \mathbf{i} , \mathbf{j} and \mathbf{k} satisfy the condition $\mathbf{i} \cdot \mathbf{j} = \mathbf{k}$, $\mathbf{j} \cdot \mathbf{k} = \mathbf{i}$, $\mathbf{k} \cdot \mathbf{i} = \mathbf{j}$, $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = -1$. The conjugate of $a = a_0 + a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ is $\bar{a} = a_0 - a_1 \mathbf{i} - a_2 \mathbf{j} - a_3 \mathbf{k}$. The quaternions \mathbb{H} equipped with the standard norm of \mathbb{R}^4 is an associative normed algebra, i.e., $\| a \cdot b \| = \| a \| \cdot \| b \|$. The octonions are defined to be $\mathbb{O} = \mathbb{H} \oplus \mathbb{H} \mathbf{e}$ with the multiplication

$$(a+b\mathbf{e})\cdot(c+d\mathbf{e}) = (a\cdot c - \bar{d}\cdot b) + (d\cdot a + b\cdot \bar{c})\mathbf{e}.$$

The octonions \mathbb{O} equipped with the standard norm of \mathbb{R}^8 is a non-associative normed algebra. Let $\{e_1, \dots, e_7\}$ be the standard basis of \mathbb{R}^7 . We identify \mathbb{R}^7 with Im \mathbb{O} as follows:

$$e_1 \rightarrow \mathbf{i}, \ e_2 \rightarrow \mathbf{j}, \ e_3 \rightarrow \mathbf{k}, \ e_4 \rightarrow \mathbf{e}, \ e_5 \rightarrow \mathbf{ie}, \ e_6 \rightarrow \mathbf{je}, \ e_7 \rightarrow \mathbf{ke}.$$

The multiplication table of octonions is

	e_1	e_2	e_3	e_4	e_5	e_6	e_7
e_1	-1	e_3	$-e_2$	e_5	$-e_4$	$-e_7$	e_6
e_2	$-e_3$	-1	e_1	e_6	e_7	$-e_4$	$-e_5$
e_3	e_2	$-e_1$	-1	e_7	$-e_6$	e_5	$-e_4$
e_4	$-e_5$	$-e_6$	$-e_7$	-1	e_1	e_2	e_3
e_5	e_4	$-e_7$	e_6	$-e_1$	-1	$-e_3$	e_2
e_6	e_7	e_4	$-e_5$	$-e_2$	e_3	-1	$-e_1$
e_7	$-e_6$	e_5	e_4	$-e_3$	$-e_2$	e_1	-1

The Lie group G_2 is defined by

$$G_2 = \operatorname{Aut}(\mathbb{O}) = \{ g \in \operatorname{GL}(\mathbb{O}) \mid g(x \cdot y) = g(x) \cdot g(y) \}.$$

We list below some basic properties of the Lie group G_2 we need in this paper:

- (1) Let f_1, f_2 be two orthonormal column vectors in \mathbb{R}^7 . If $f_3 = f_1 \cdot f_2$, then f_3 is a unit vector and perpendicular to f_1, f_2 . Let f_4 be a unit column vector which is perpendicular to f_1, f_2, f_3 and denote $f_5 = f_1 \cdot f_4$, $f_6 = f_2 \cdot f_4$, $f_7 = f_3 \cdot f_4$. Then $(f_1, \dots, f_7) \in G_2$ Such $\{f_1, \dots, f_7\}$ is called a G_2 -frame.
 - (2) Any element of G_2 can be realized by a G_2 -frame.
- (3) G_2 is a compact, simply-connected, simple Lie group, $G_2 \subseteq SO(Im\mathbb{O})$, and $dim(G_2) = 14$.
 - (4) Let x^1, \dots, x^7 be coordinates of \mathbb{R}^7 . The 3-form $\phi(x, y, z) = (x, y \cdot z)$ can be written as

$$\phi = dx^{123} + dx^{145} - dx^{167} + dx^{246} - dx^{275} + dx^{347} - dx^{356}.$$

where $dx^{jkl} = dx^j \wedge dx^k \wedge dx^l$. Then

$$G_2 = \{ g \in GL(7, \mathbb{R}) \mid g^* \phi = \phi \}.$$

(5) The Lie algebra \mathfrak{g}_2 of G_2 are the space of matrices

$$\begin{pmatrix} 0 & -x_2 & -x_3 & -x_4 & -x_5 & -x_6 & -x_7 \\ x_2 & 0 & -y_3 & -y_4 & -y_5 & -y_6 & -y_7 \\ x_3 & y_3 & 0 & -x_6 + y_5 & -x_7 - y_4 & x_4 - y_7 & x_5 + y_6 \\ x_4 & y_4 & x_6 - y_5 & 0 & -z_5 & -z_6 & -z_7 \\ x_5 & y_5 & x_7 + y_4 & z_5 & 0 & -x_2 - z_7 & -x_3 + z_6 \\ x_6 & y_6 & -x_4 + y_7 & z_6 & x_2 + z_7 & 0 & -y_3 - z_5 \\ x_7 & y_7 & -x_5 - y_6 & z_7 & x_3 - z_6 & y_3 + z_5 & 0 \end{pmatrix}, (2.1)$$

where $x_2, \dots, x_7, y_3, \dots, y_7, z_5, z_6, z_7$ are real numbers. To see this fact, we let $\{e_1, \dots, e_7\}$ be the standard bases in \mathbb{R}^7 . We have $e_3 = e_1 \cdot e_2$, $e_5 = e_1 \cdot e_4$, $e_6 = e_2 \cdot e_4$, $e_7 = (e_1 \cdot e_2) \cdot e_4$. If $A \in \mathfrak{g}_2$, then

$$A(e_j \cdot e_k) = A(e_j) \cdot e_k + e_j \cdot A(e_k).$$

So A is determined by $A(e_1)$, $A(e_2)$ and $A(e_4)$. Let $A(e_1) = x_2e_2 + \cdots + x_7e_7$. Since $A \in \mathfrak{g}_2 \subset \mathfrak{so}(7)$, we can write $A(e_2) = -x_2e_1 + y_3e_3 + \cdots + y_7e_7$. Then

$$A(e_3) = A(e_1) \cdot e_2 + e_1 \cdot A(e_2)$$

= $-x_3 e_1 - y_3 e_2 + (x_6 - y_5) e_4 + (x_7 + y_4) e_5 + (y_7 - x_4) e_6 - (x_5 + x_6) e_7.$

Since $A \in \mathfrak{g}_2 \subset \mathfrak{so}(7)$, we can write

$$A(e_4) = -x_4e_1 - y_4e_2 + (y_5 - x_6)e_3 + z_5e_5 + z_6e_6 + z_7e_7.$$

Similarly $A(e_5), \dots, A(e_7)$ are determined. Thus A is a matrix of type (2.1). Conversely, any matrix of type (2.1) is an element of \mathfrak{g}_2 .

3 σ -Primitive G_2 -Frame

Let X_2 denote the matrix defined by (2.1) with $x_2 = 1$, and all other variables being zero. The matrices $X_3, \dots, X_7, Y_3, \dots, Y_7, Z_5, Z_6, Z_7$ are defined similarly.

Let $h = \exp(\frac{\pi}{3}(Y_3 + 2Z_5))$, and $\sigma: G_2 \to G_2$ be the order 6 inner automorphism defined by $\sigma(g) = h^{-1}gh$. The eigenspace \mathfrak{h}_j with eigenvalue $\exp(\frac{j\pi i}{3})$ for the complexified $d\sigma_e$ on $\mathfrak{g}_2^{\mathbb{C}} = \mathfrak{g}_2 \otimes \mathbb{C}$ is

$$\begin{split} &\mathfrak{h}_0 = \{Y_3, Z_5\}, \\ &\mathfrak{h}_1 = \Big\{X_2 + i\,X_3 + \frac{i}{2}(Z_6 + i\,Z_7), \; Y_4 + i\,Y_5, \; Z_6 - i\,Z_7\Big\}, \\ &\mathfrak{h}_2 = \Big\{X_4 + i\,X_5 - \frac{i}{2}(Y_6 + i\,Y_7), \; Y_6 - i\,Y_7\Big\}, \\ &\mathfrak{h}_3 = \Big\{X_6 - i\,X_7 + \frac{i}{2}(Y_4 - i\,Y_5), \; X_6 + i\,X_7 - \frac{i}{2}(Y_4 + i\,Y_5)\Big\}, \\ &\mathfrak{h}_4 = \Big\{X_4 - i\,X_5 + \frac{i}{2}(Y_6 - i\,Y_7), \; Y_6 + i\,Y_7\Big\}, \\ &\mathfrak{h}_5 = \Big\{X_2 - i\,X_3 - \frac{i}{2}(Z_6 - i\,Z_7), \; Y_4 - i\,Y_5, \; Z_6 + i\,Z_7\Big\}. \end{split}$$

Here $\{v_1, \dots, v_m\}$ means the linear span of v_1, \dots, v_m . Notice $\bar{\mathfrak{h}}_j = \mathfrak{h}_{-j}$ (we use the convention that $\mathfrak{h}_i = \mathfrak{h}_j$ if $i \equiv j \pmod{6}$).

A smooth map $\psi: \mathbb{C} \to G_2$ is σ -primitive if there exists $(u_0, u_{-1}): \mathbb{C} \to \mathfrak{h}_0 \oplus \mathfrak{h}_{-1}$ such that

$$\psi^{-1}d\psi = (u_0 + u_{-1})dz + (\bar{u}_0 + \bar{u}_{-1})d\bar{z}.$$

The flatness of $\psi^{-1}d\psi$ implies that $(u_0, u_{-1}): \mathbb{C} \to \mathfrak{h}_0 \oplus \mathfrak{h}_{-1}$ must satisfy

$$\begin{cases} (u_0)_{\bar{z}} - (\bar{u}_0)_z = [u_0, \bar{u}_0] + [u_{-1}, \bar{u}_{-1}], \\ (u_{-1})_{\bar{z}} = [u_{-1}, \bar{u}_0]. \end{cases}$$
(3.1)

This system has a Lax pair

$$\theta_{\lambda} = (u_0 + \lambda^{-1} u_{-1}) dz + (\bar{u}_0 + \lambda \bar{u}_{-1}) d\bar{z}, \tag{3.2}$$

i.e., (u_0, u_{-1}) is a solution of (3.2) if and only if θ_{λ} is flat for all $\lambda \in \mathbb{C} \setminus \{0\}$. Note that

(1) The Lax pair satisfies the following reality conditions:

$$\overline{(\theta_{1/\bar{\lambda}})} = \theta_{\lambda}, \quad \sigma(\theta_{\lambda}) = \theta_{e^{\frac{\pi i}{3}}\lambda}.$$
 (3.3)

(2) $\xi(\lambda) = \sum_{j} \xi_{j} \lambda^{j}$ satisfies the above reality condition if and only if $\xi_{j} \in \mathfrak{h}_{j}$ and $\xi_{-j} = \bar{\xi}_{j}$ for all j.

The following is well known.

Proposition 3.1 Let $(u_0, u_{-1}) : \mathbb{C} \to \mathfrak{h}_0 \oplus \mathfrak{h}_{-1}$ be smooth maps. The following statements are equivalent:

- (1) (u_0, u_{-1}) satisfies (3.1).
- (2) $\theta_{\lambda} = (u_0 + \lambda^{-1}u_{-1})dz + (\bar{u}_0 + \lambda\bar{u}_1)d\bar{z}$ is flat for all $\lambda \in \mathbb{C}\setminus\{0\}$, i.e., $d\theta_{\lambda} = -\theta_{\lambda} \wedge \theta_{\lambda}$.
- (3) $\theta_1 = (u_0 + u_{-1})dz + (\bar{u}_0 + \bar{u}_1)d\bar{z}$ is flat.
- (4) There exists $\psi: \mathbb{C} \to G_2$ such that $\psi^{-1}\psi_z = u_0 + u_{-1}$, i.e., ψ is a σ -primitive G_2 -frame.

Proof The only nontrivial part is $(3) \Leftrightarrow (1)$. To see this, we decompose

$$d\theta + \theta \wedge \theta = (-(u_0)_{\bar{z}} + (\bar{u}_0)_z + [u_{-1}, \bar{u}_{-1}])dz \wedge d\bar{z}$$
$$+ (-(u_{-1})_{\bar{z}} + [u_{-1}, \bar{u}_0])dz \wedge d\bar{z} + ((\bar{u}_{-1})_z + [u_0, \bar{u}_{-1}])dz \wedge d\bar{z}$$

according to $\mathfrak{h}_0 \oplus \mathfrak{h}_1 \oplus \mathfrak{h}_{-1}$. Thus (u_0, u_{-1}) satisfies (3.1) if and only if $d\theta + \theta \wedge \theta = 0$.

Suppose (u_0, u_{-1}) is a solution of (3.1). Since θ_{λ} is flat at $\lambda = 1$, there exists $\psi : \mathbb{C} \to G_2$ such that

$$\psi^{-1}\psi_z = u_0 + u_{-1} = \begin{pmatrix} 0 & -c & ic \\ c & 0 & -a & -d & id \\ -ic & a & 0 & -id & -d \\ & d & id & 0 & -b & -e + \frac{i}{2}c & -ie + \frac{1}{2}c \\ & -id & d & b & 0 & -ie - \frac{1}{2}c & e + \frac{i}{2}c \\ & & e - \frac{i}{2}c & ie + \frac{1}{2}c & 0 & -a - b \\ & & ie - \frac{1}{2}c & -e - \frac{i}{2}c & a + b & 0 \end{pmatrix}. (3.4)$$

System (3.1) written in terms of a, \dots, e is

$$\begin{cases}
 a_{\bar{z}} - (\bar{a})_z = i(2|c|^2 - 4|d|^2), \\
 b_{\bar{z}} - (\bar{b})_z = i(-|c|^2 + 4|d|^2 - 4|e|^2), \\
 c_{\bar{z}} = -i\,\bar{a}c, \\
 d_{\bar{z}} = i(\bar{a} - \bar{b})d, \\
 e_{\bar{z}} = i(\bar{a} + 2\bar{b})e.
\end{cases}$$
(3.5)

Let f_1, \dots, f_7 denote the columns of ψ . Then (3.4) written in columns gives

$$\begin{cases}
(f_1)_z = cf_2 - icf_3, \\
(f_2)_z = -cf_1 + af_3 + df_4 - idf_5, \\
(f_3)_z = icf_1 - af_2 + idf_4 + df_5, \\
(f_4)_z = -df_2 - idf_3 + bf_5 + \left(e - \frac{ic}{2}\right)f_6 + \left(ie - \frac{c}{2}\right)f_7, \\
(f_5)_z = idf_2 - df_3 - bf_4 + \left(ie + \frac{c}{2}\right)f_6 - \left(e + \frac{ic}{2}\right)f_7, \\
(f_6)_z = \left(-e + \frac{i}{2}c\right)f_4 - \left(ie + \frac{c}{2}\right)f_5 + (a+b)f_7, \\
(f_7)_z = \left(-ie + \frac{c}{2}\right)f_4 + \left(e + \frac{ic}{2}\right)f_5 - (a+b)f_6.
\end{cases} (3.6)$$

4 Associative Cones and Almost Complex Curves

The following well-known proposition relates almost complex curves to associative cones.

Proposition 4.1 (See [11]) Let Σ be a 2-dimensional surface in S^6 , and $C(\Sigma) = \{tx \mid t > 0, x \in M\}$ the cone of Σ in \mathbb{R}^7 . Then $C(\Sigma)$ is an associative submanifold in \mathbb{R}^7 if and only if Σ is an almost complex curve in S^6 .

Proof Let $\{e_1, e_2\}$ be an orthonormal basis of $T_x\Sigma$. Then $\{x, e_1, e_2\}$ is an orthonormal basis of $T_xC(\Sigma)$. The proposition follows from the fact that $\mathbb{R}\{\mathbf{1}, x, e_1, e_2\}$ is an associative subalgebra if and only if $x \cdot e_1 = e_2$.

So the study of associative cones in \mathbb{R}^7 reduces to the study of almost complex curves in S^6 . Since associative cones are calibrated by the 3-form ϕ , they are minimal. But a cone $C(\Sigma)$ in \mathbb{R}^7 is minimal if and only if Σ is minimal in S^6 , so almost complex curves in S^6 are minimal.

Theorem 4.2 (See [3]) If
$$\psi = (f_1, \dots, f_7) : \mathbb{C} \to G_2$$
 satisfies
$$\psi^{-1}\psi_z \in \mathfrak{h}_0 \oplus \mathfrak{h}_{-1}, \tag{4.1}$$

then $f_1: \mathbb{C} \to S^6$ is almost complex. Conversely, if $f: \mathbb{C} \to S^6$ is a type (ii) almost complex curve, i.e., f is full and not totally isotropic, then there exists a σ -primitive map $\psi: \mathbb{C} \to G_2$ such that the first column of ψ is f.

The first part of the above theorem is easy to see: Write $\psi = (f_1, \dots, f_7)$, and

$$\psi^{-1}\psi_z = u_0 + u_{-1}.$$

Then $u_0 + u_{-1}$ is given by (3.4), so

$$(f_1)_z = cf_2 - i \, cf_3.$$

By the definition of almost complex structure J on S^6 , we have

$$J(f_1)_z = f_1 \cdot (f_1)_z = cf_3 + i \, cf_2 = i(f_1)_z.$$

So f_1 is almost complex.

Next we prove that a σ -primitive G_2 -frame exists on any almost complex curve in S^6 with non-vanishing second fundamental forms.

Theorem 4.3 Suppose $f_1: \Sigma \to S^6$ is an almost complex curve such that the second fundamental form II is non-zero at some $p_0 \in \Sigma$. Then there exists a neighborhood \mathcal{O} of p_0 and a σ -primitive G_2 -frame $\psi = \{f_1, \dots, f_7\}$ on \mathcal{O} such that f_2 and f_3 are tangent to the immersion, $\psi^{-1}\psi_z$ is given by (3.4) in terms of 5 functions a, \dots, e , and (3.5) is the Gauss-Codazzi equation for f_1 . Moreover, the first and second fundamental forms of f_1 are

$$\begin{split} & \mathrm{I} = 2|c|^2|dz|^2, \\ & \mathrm{II}\Big(\frac{\partial}{\partial z}, \frac{\partial}{\partial z}\Big) = 2cd\left(f_4 - i\,f_5\right), \end{split}$$

and the normal connection is given by the lower 4×4 matrices (3.4).

Proof Locally we can choose orthonormal tangent frame $\{f_2, f_3\}$ such that $f_3 = f_1 \cdot f_2$. Let f_4 be an arbitrary unit vector such that $f_4 \perp \operatorname{span}_{\mathbb{R}} \{f_1, f_2, f_3\}$. Then we have a G_2 -frame $\psi = \{f_1, \dots, f_7\}$ where $f_5 = f_1 \cdot f_4$, $f_6 = f_2 \cdot f_4$, $f_7 = f_3 \cdot f_4$. Therefore we obtain a \mathfrak{g}_2 -valued flat connection 1-form $\omega = (\omega_{ij}) = \psi^{-1} d\psi$.

Write

$$df_1 = f_2 \otimes \theta_2 + f_3 \otimes \theta_3$$

where θ_i is the dual 1-form of f_i for j=2,3. Therefore

$$\omega_{21} = \theta_2, \quad \omega_{31} = \theta_3, \quad \omega_{\alpha 1} = 0, \quad 4 \le \alpha \le 7.$$

Since ω is \mathfrak{g}_2 -valued, we have

$$\omega_{43} = -\omega_{52}, \quad \omega_{53} = \omega_{42}, \quad \omega_{63} = \omega_{72}, \quad \omega_{73} = -\omega_{62}.$$

Let

$$\omega_{52} = a_2\theta_2 + a_3\theta_3, \quad \omega_{62} = b_2\theta_2 + b_3\theta_3.$$

It follows from the flatness of (ω_{ij}) that

$$d\omega_{\alpha 1} + \sum_{j=1}^{7} \omega_{\alpha j} \wedge \omega_{j 1} = 0, \quad \alpha = 4, 5,$$

so we have

$$(a_2\theta_2 + a_3\theta_3) \wedge \theta_2 + \omega_{42} \wedge \theta_3 = 0, \quad \omega_{42} \wedge \theta_2 - (a_2\theta_2 + a_3\theta_3) \wedge \theta_3 = 0.$$

160

Thus

$$\omega_{53} = \omega_{42} = a_3 \theta_2 - a_2 \theta_3.$$

Similarly,

$$\omega_{63} = \omega_{72} = b_3 \theta_2 - b_2 \theta_3.$$

Then the second fundamental form of immersion is given by

$$II = \sum_{\alpha=4}^{7} f_{\alpha} \otimes (\omega_{\alpha 2} \otimes \theta_{2} + \omega_{\alpha 3} \otimes \theta_{3})$$
$$= v_{1} \otimes (\theta_{2} \otimes \theta_{2} - \theta_{3} \otimes \theta_{3}) - v_{2} \otimes (\theta_{2} \otimes \theta_{3} + \theta_{3} \otimes \theta_{2}),$$

where $v_1 = a_3 f_4 + a_2 f_5 + b_3 f_7 + b_2 f_6$ and $v_2 = a_2 f_4 - a_3 f_5 + b_2 f_7 - b_3 f_6$. Note that

$$(v_1, v_1) = (v_2, v_2), \quad (v_1, v_2) = 0.$$

Since II $(p_0) \neq 0$, there exists a neighborhood U of p such that v_1 and v_2 are nonzero. Let $\tilde{f}_j = f_j, \ j = 1, 2, 3$,

$$\tilde{f}_4 = \frac{v_1}{\|v_1\|}$$

and

$$\tilde{f}_5 = \tilde{f}_1 \cdot \tilde{f}_4, \quad \tilde{f}_6 = \tilde{f}_2 \cdot \tilde{f}_4, \quad \tilde{f}_7 = \tilde{f}_3 \cdot \tilde{f}_4.$$

Then $\widetilde{\psi} = \{\widetilde{f}_1, \dots, \widetilde{f}_7\}$ is a G_2 -frame, and a computation using the octonion multiplication implies that $\widetilde{f}_5 = \frac{v_2}{\|v_2\|}$. Let $\widetilde{\omega} = (\widetilde{\omega}_{ij}) = \widetilde{\psi}^{-1} d\widetilde{\psi}$. Since $(II, \widetilde{f}_6) = (II, \widetilde{f}_7) = 0$, we have

$$\widetilde{\omega}_{62} = \widetilde{\omega}_{63} = \widetilde{\omega}_{72} = \widetilde{\omega}_{73} \equiv 0.$$

So $\widetilde{\omega}$ lies in $\mathfrak{h}_0 + \mathfrak{h}_1 + \mathfrak{h}_{-1}$, where \mathfrak{h}_j is the eigenspace of $d\sigma$ on $\mathfrak{g}_2 \otimes \mathbb{C}$ with eigenvalue $e^{\frac{2\pi ji}{6}}$. Or equivalently, $\psi^{-1}\psi_z$ is of the form (3.4), i.e., ψ is a σ -primitive G_2 -frame. In particular, this shows that the Gauss-Codazzi equation for almost complex curves is (3.5). It follows from (3.6) and a computation that the two fundamental forms for f_1 are given as in the Theorem.

As a consequence of the Fundamental Theorem of submanifolds in space forms and the above theorem, we get

Corollary 4.4 Every simply connected immersed almost complex curve in (S^6, J) with non-vanishing second fundamental form has a σ -primitive G_2 -frame such that the first column is the immersion. Conversely, the first column of a σ -primitive G_2 -frame is an almost complex surface in S^6 .

Next, we use Theorem 4.3 to give conditions on a, \dots, e to determine the four types of almost complex curves mentioned in the introduction.

Corollary 4.5 Let (a, \dots, e) be a solution of (3.5), ψ a solution of (3.4), and f_1 the first column of ψ . Then f_1 is almost complex in S^6 and is

- (i) full in S^6 and totally isotropic if and only if $e \equiv 0$ and $d \neq 0$,
- (ii) full in S^6 and not totally isotropic if and only if $de \neq 0$,
- (iii) full in S^5 if and only if $de \neq 0$ and $a + b \equiv 0$,

(iv) totally geodesic two sphere if and only if $d \equiv 0$, i.e., $\Pi \equiv 0$. Moreover, the cone over the curve of type (iii) is a special Lagrangian cone in \mathbb{R}^6 with the appropriate complex structure.

Proof The first fundamental form is positive definite, so $c \neq 0$. A surface is full then II can not be zero, so $d \neq 0$. Let ψ satisfy $\psi^{-1}d\psi = (u_0 + u_{-1})dz + (\bar{u}_0 + \bar{u}_{-1})d\bar{z}$, and f_1 denote the first column of ψ , where $u_0 + u_{-1} \in \mathfrak{h}_0 + \mathfrak{h}_{-1}$ is given by (3.4). Then f_1 is almost complex. Use (3.6) and a direct computation to see that

$$\left(\left(\nabla_{\frac{\partial}{\partial z}} \right)^2 f_* \left(\frac{\partial}{\partial z} \right), \ \left(\nabla_{\frac{\partial}{\partial z}} \right)^2 f_* \left(\frac{\partial}{\partial z} \right) \right) = -32 i \, c^3 d^2 e,$$

where $(Y, Z) = \sum_{j} y_{j} z_{j}$ is the complex bilinear form on \mathbb{C}^{7} . If f is totally isotropic, then e = 0 since

$$\left(\left(\nabla_{\frac{\partial}{\partial z}} \right)^i f_* \left(\frac{\partial}{\partial z} \right), \ \left(\nabla_{\frac{\partial}{\partial z}} \right)^j f_* \left(\frac{\partial}{\partial z} \right) \right) = 0$$

for all other $0 \le i, j \le 2$.

Next we prove that if an almost complex curve is of type (iii), then $a + b \equiv 0$. Since there is a constant unit normal vector field on the curve, there exist real functions λ_i ($4 \le i \le 7$) on the curve such that this normal vector is $\sum_{i=4}^{7} \lambda_i f_i$. Then

$$\left(\sum_{i=4}^{7} \lambda_i f_i\right)_z = \sum_{i=4}^{7} (\lambda_i)_z f_i + \sum_{i=4}^{7} \lambda_i (f_i)_z$$

$$= \sum_{i=4}^{7} (\lambda_i)_z f_i + \lambda_4 \left[-df_2 - i df_3 + bf_5 + \left(e - \frac{i c}{2}\right) f_6 + \left(i e - \frac{c}{2}\right) f_7 \right] + \dots = 0.$$

So the coefficient of f_i must be zero for $2 \le i \le 7$. Since $d \ne 0$, it implies that $\lambda_4 = 0$ and $\lambda_5 = 0$. The coefficients for f_6 and f_7 are $(\lambda_6)_z - (a+b)$ and $(\lambda_7)_z + (a+b)$ respectively. Therefore $(\lambda_6 + \lambda_7)_z = 0$, i.e., $\lambda_6 + \lambda_7$ is anti-holomorphic. Since $\lambda_6 + \lambda_7$ is also real, it must be a constant. Finally both λ_6 and λ_7 have to be constant because their square sum is 1. Thus $a + b = (\lambda_6)_z = 0$.

Conversely, if $a + b \equiv 0$, then the system (3.5) implies that

$$c_{\bar{z}} = -i\,\bar{a}c, \quad e_{\bar{z}} = -i\,\bar{a}e$$

and $i(|c|^2 - 4|e|^2) = (a+b)_{\bar{z}} - (\bar{a}+\bar{b})_z = 0$. Let $\alpha = \frac{c}{2e}$. Then $\alpha_{\bar{z}} = 0$ and $|\alpha| = 1$. So $\alpha \in S^1$ is a constant and $\beta = \frac{-1+i\alpha}{-i+\alpha}$ is a real constant. It follows from (3.6) that $(f_6 - \beta f_7)_{\bar{z}} = 0$. Thus $n = \frac{1}{\sqrt{1+\beta^2}}(f_6 - \beta f_7)$ is a unit constant normal vector. So the image of the immersion lies in the hyperplane V which is orthogonal to n. Note that $J(x) = n \cdot x$ defines a complex structure on the hyperplane V and

$$J(f_1) = \frac{1}{\sqrt{1+\beta^2}}(\beta f_6 + f_7), \quad J(f_2) = \frac{1}{\sqrt{1+\beta^2}}(f_4 + \beta f_5), \quad J(f_3) = \frac{1}{\sqrt{1+\beta^2}}(-\beta f_4 - f_5).$$

Thus

$$J(\operatorname{span}_{\mathbb{R}}\{f_1, f_2, f_3\}) = \operatorname{span}_{\mathbb{R}}\{f_4, f_5, \beta f_6 + f_7\},$$

so the cone over the image of f_1 is Lagrangian in (\mathbb{R}^6, J) . We know it is minimal, so by Proposition 2.17 of [11] that it is θ -special Lagrangian for some θ .

Next we use Theorem 4.3 to give a proof of one of Bryant's results on almost complex curves in S^6 . First recall that the 5-dimensional complex quadric Q_5 is defined by

$$Q_5 = \{ [z_1 : \dots : z_7] \in \mathbb{C}P^6 \mid z_1^2 + \dots + z_7^2 = 0 \}.$$

Theorem 4.6 (See [5]) If $f: \Sigma \to S^6$ is a totally isotropic almost complex curve that is not totally geodesic, then it can be lifted to a horizontal holomorphic map to Q_5 .

Proof Let $\psi = (f_1, \dots, f_7) : \Sigma \to G_2$ denote the σ -primitive G_2 -frame obtained in Theorem 4.3. So $\psi^{-1}\psi_z$ is of the form (3.4). Let $\Phi : \Sigma \to Q_5$ be the map defined by

$$\Phi = [f_6 + if_7].$$

Clearly Φ is well-defined and is independent of the choice of the frame. By (3.6), we have

$$(f_6 + i f_7)_{\bar{z}} = -2\bar{e}(f_4 - i f_5) - i(\bar{a} + \bar{b})(f_6 + i f_7).$$

But we have shown in Corollary 4.5 that if f is totally isotropic then e=0, so Φ is holomorphic.

5 S^1 -Symmetric Solutions and Periodic Toda Lattice

By the maximal torus theorem, given $A \in \mathcal{G}_2$, there exists $k \in \mathcal{G}_2$ and real numbers λ_1, λ_2 such that $A = k^{-1}(\lambda_1 Y_3 + \lambda_2 Z_5)k$. Note

$$\lambda_1 Y_3 + \lambda_2 Z_5 = \begin{pmatrix} 0 & & & & & \\ & & -\lambda_1 & & & \\ & & \lambda_1 & & & \\ & & & & -\lambda_2 & & \\ & & & & \lambda_2 & & \\ & & & & & \lambda_3 \\ & & & & -\lambda_3 & \end{pmatrix},$$

where $\lambda_3 = -(\lambda_1 + \lambda_2)$. We say $A = k^{-1}(\lambda_1 Y_3 + \lambda_2 Z_5)k$ is rational if λ_1, λ_2 are linearly dependent over the rationals. It is easy to see that A is rational if and only if $\{\exp(sA) \mid s \in \mathbb{R}\}$ is periodic.

To construct an S^1 -symmetric almost complex curve in S^6 , we need to construct $\psi = e^{As}g(t)$ with rational A and $g(t) \in G_2$ such that

$$\psi^{-1}\psi_z = u_0 + u_{-1} \in \mathfrak{h}_0 + \mathfrak{h}_1$$

where z = s + it and $u_0 + u_{-1}$ is given by (3.4) and a, b, c, d, e are complex valued functions of t only. A simple computation gives

$$\psi^{-1}d\psi = (q^{-1}Aq)ds + (q^{-1}q_t)dt.$$

The flatness of $\psi^{-1}d\psi$ implies that

$$(g^{-1}Ag)_t = [g^{-1}Ag, g^{-1}g_t]. (5.1)$$

Write $a = a_1 + i a_2$, $b = b_1 + i b_2, \dots, e = e_1 + i e_2$ in real and imaginary part, and $c = r_1 e^{i \beta_1}$, $d = r_2 e^{i \beta_2}$, $e = r_3 e^{i \beta_3}$ in polar coordinates. Since $\psi^{-1} \psi_s = g^{-1} A g = \psi^{-1} \psi_z + \psi^{-1} \psi_{\bar{z}}$, $\psi^{-1} \psi_t = g^{-1} g_t = i(\psi^{-1} \psi_z - \psi^{-1} \psi_{\bar{z}})$, and $\psi^{-1} \psi_z$ is given by (3.4), we have

$$g^{-1}Ag = \begin{pmatrix} 0 & -2c_1 & -2c_2 \\ 2c_1 & 0 & -2a_1 & -2d_1 & -2d_2 \\ 2c_2 & 2a_1 & 0 & 2d_2 & -2d_1 \\ & 2d_1 & -2d_2 & 0 & -2b_1 & -2e_1 - c_2 & 2e_2 + c_1 \\ & 2d_2 & 2d_1 & 2b_1 & 0 & 2e_2 - c_1 & 2e_1 - c_2 \\ & & & 2e_1 + c_2 & -2e_2 + c_1 & 0 & -2a_1 - 2b_1 \\ & & & & -2e_2 - c_1 & -2e_1 + c_2 & 2a_1 + 2b_1 & 0 \end{pmatrix},$$

System (5.1) written in a, b, r_i, β_i gives the following two separable systems

$$\begin{cases} \dot{a}_1 = 2r_1^2 - 4r_2^2, \\ \dot{b}_1 = -r_1^2 + 4r_2^2 - 4r_3^2, \\ \dot{r}_1 = -2a_1r_1, \\ \dot{r}_2 = 2(a_1 - b_1)r_2, \\ \dot{r}_3 = 2(a_1 + 2b_1)r_3, \end{cases} \begin{cases} \dot{\beta}_1 = 2a_2, \\ \dot{\beta}_2 = -2a_2 + 2b_2, \\ \dot{\beta}_3 = -2a_2 - 4b_2. \end{cases}$$

So we may assume that $a_2 = b_2 = \beta_1 = \beta_2 = \beta_3 = 0$, i.e.,

$$a_2 = b_2 = c_2 = d_2 = e_2 = 0.$$

Substitute these conditions to the matrix formulas for $a^{-1}Aa$ and $a^{-1}a_t$ to get

$$P := g^{-1}Ag = \begin{pmatrix} 0 & -2c_1 \\ 2c_1 & 0 & -2a_1 & -2d_1 \\ & 2a_1 & 0 & & -2d_1 \\ & 2d_1 & & 0 & -2b_1 & -2e_1 & c_1 \\ & & 2d_1 & 2b_1 & 0 & -c_1 & 2e_1 \\ & & & 2e_1 & c_1 & 0 & -2a_1 - 2b_1 \\ & & & -c_1 & -2e_1 & 2a_1 + 2b_1 & 0 \end{pmatrix},$$

$$Q := g^{-1}g_t = \begin{pmatrix} 0 & & -2c_1 & & & & \\ & 0 & & & -2d_1 & & & \\ & & & -2d_1 & 0 & & -c_1 & 2e_1 \\ & & & & & -2d_1 & 0 & & \\ & & & & & & -2e_1 & c_1 & 0 \end{pmatrix}.$$

Since $\psi^{-1}\psi_z = u_0 + u_{-1} \in \mathfrak{h}_0 + \mathfrak{h}_{-1}$, $P = u_0 + \bar{u}_0 + u_{-1} + \bar{u}_{-1}$ and $Q = -i(u_0 - \bar{u}_0 + u_{-1} - \bar{u}_{-1})$. By assumption that a, b, \dots, e are real, so $u_0 = \bar{u}_0$, and

$$P = 2u_0 + u_{-1} + \bar{u}_{-1}, \quad Q = i(u_{-1} - \bar{u}_{-1}), \tag{5.2}$$

where

$$\begin{cases} u_0 = a_1 Y_3 + b_1 Z_5 \in \mathfrak{h}_0 \cap \mathfrak{g}_2, \\ u_{-1} = c_1 \left(X_2 - \frac{Z_7}{2} \right) + i \left(X_3 + \frac{Z_6}{2} \right) + d_1 (Y_4 + i Y_5) + e_1 (Z_6 - i Z_7) \in \mathfrak{h}_{-1}. \end{cases}$$

Thus we have

Proposition 5.1 Suppose $(u_0, u_{-1}) : \mathbb{R} \to (\mathfrak{h}_0 \cap \mathfrak{g}_2) \times \mathfrak{h}_{-1}$ satisfies

$$(2u_0 + u_{-1} + \bar{u}_{-1})_t = [2u_0 + u_{-1} + \bar{u}_{-1}, i(u_{-1} - \bar{u}_{-1})], \tag{5.3}$$

and there exist a constant $A \in (\mathfrak{h}_0 \cap \mathfrak{g}_2) + \mathfrak{h}_{-1}$ and $g : \mathbb{R} \to G_2$ such that

$$\begin{cases}
g^{-1}Ag = 2u_0 + u_{-1} + \bar{u}_{-1}, \\
g^{-1}g_t = u_{-1} - \bar{u}_{-1}.
\end{cases}$$
(5.4)

Then $f(s,t) = e^{As}g(t)$ is an almost complex curve in S^6 . Moreover, f is S^1 -symmetric if and only if A is rational, and is doubly periodic if and only if A is rational and g is periodic.

Define v_1, v_2, v_3 by

$$\begin{cases} e^{2v_1} = c_1^2, \\ e^{2(v_2 - v_1)} = d_1^2, \\ e^{2(v_3 - v_2)} = e_1^2. \end{cases}$$

Then a_1, b_1, v_1, v_2, v_3 satisfy

$$\begin{cases}
\dot{a}_{1} = 2e^{2v_{1}} - 4e^{2(v_{2} - v_{1})}, \\
\dot{b}_{1} = -e^{2v_{1}} + 4e^{2(v_{2} - v_{1})} - 4e^{2(v_{3} - v_{2})}, \\
\dot{v}_{1} = -2a_{1}, \\
\dot{v}_{2} = -2b_{1}, \\
\dot{v}_{3} = 2(a_{1} + b_{1}).
\end{cases} (5.5)$$

Clearly, $(v_1 + v_2 + v_3)_t = 0$. Moreover, v_1, v_2, v_3 satisfy

$$\begin{cases} \ddot{v}_1 = -4e^{2v_1} + 8e^{2(v_2 - v_1)}, \\ \ddot{v}_2 = 2e^{2v_1} - 8e^{2(v_2 - v_1)} + 8e^{2(v_3 - v_2)}, \\ \ddot{v}_3 = 2e^{2v_1} - 8e^{2(v_3 - v_2)}. \end{cases}$$

These are equivalent to the periodic Toda lattice equations of G_2 -type.

If $a_1 + b_1 = 0$, i.e., the type (iii) case, then $\dot{a}_1 + \dot{b}_1 = e^{2v_1} - 4e^{2(v_3 - v - 2)} = 0$, $\dot{v}_1 + \dot{v}_2 = \dot{v}_3 = 0$, so there is a positive constant C_1 such that

$$e^{2(v_1+v_2)} = 4e^{2v_3} = C_1.$$

Then v_1 satisfies

$$\ddot{v}_1 + 4e^{2v_1} - 8C_1e^{-4v_1} = 0.$$

Multiply \dot{v}_1 to both sides and integrating once to get

$$(\dot{v}_1)^2 + 4e^{2v_1} + 4C_1e^{-4v_1} = 4C_2$$

where C_2 is a positive constant. Let $y = e^{2v_1} = r_1^2$. Then the above equation becomes

$$(\dot{y})^2 = -16y^3 + 16C_2y^2 - 16C_1.$$

One can verify easily that $4C_2^3 \ge 27C_1$. Therefore this equation has three real constant solutions $\Gamma_1, \Gamma_2, \Gamma_3$. Let us label these solutions so that

$$\Gamma_1 < 0 < \Gamma_2 < \Gamma_3$$
.

Then we can rewrite the previous equation as

$$(\dot{y})^2 = -16(y - \Gamma_1)(y - \Gamma_2)(y - \Gamma_3).$$

Haskins [12] showed that this equation has the following solution

$$y = \Gamma_3 - (\Gamma_3 - \Gamma_2) \operatorname{sn}^2(B_1 t + B_2, B_3),$$

where B_2 is a constant determined by the initial condition of y,

$$B_1^2 = 4(\Gamma_3 - \Gamma_1), \quad B_3^2 = \frac{\Gamma_3 - \Gamma_2}{\Gamma_3 - \Gamma_1},$$

and sn is the Jacobi elliptic sn-noidal function. Recall that $\operatorname{sn}(t,k)$ is defined to be the unique solution of the equation

$$\dot{z}^2 = (1 - z^2)(1 - k^2 z^2)$$

with $z(0) = 0, \dot{z}(0) = 1$, where $0 \le k \le 1$. It is straightforward to see from this definition that $\operatorname{sn}(t,0) = \sin t$ and $\operatorname{sn}(t,1) = \tanh t$. The period of $\operatorname{sn}(t,k)$ is given by

$$\int_0^{2\pi} \frac{dx}{\sqrt{1 - k^2 \sin^2 x}} \, .$$

Thus y is a periodic function, so are a_1, b_1, v_1, v_2 . They all have same period denoted by T.

In fact, Haskins proved in [12] that not only (5.3) has a periodic solution but he also proved that the solution g of (5.4) is also periodic for some rational A. So he proved the existence of infinitely many S^1 -symmetric type (iii) almost complex curves (hence infinitely many special Lagrangian cones in \mathbb{C}^3).

6 S^1 -Symmetric Solutions and Loop Group Factorization

The first equation of (5.4) implies that the solution $2u_0(t) + u_{-1}(t) + \bar{u}_{-1}(t)$ must lie in the same conjugate class for all t, and there is g solving (5.4). Although these conditions seem to be extra conditions for solutions of (5.3), we will see below that (5.3) has a Lax pair and is a Toda type equation, and hence the AKS theory implies that if (u_0, u_{-1}) is a solution of (5.3) then there exists g satisfying (5.4) automatically.

Set $P = 2u_0 + u_{-1} + \bar{u}_{-1}$ and $Q = i(u_{-1} - \bar{u}_{-1})$ as in (5.2). Then (5.4) is $P_t = [P, Q]$, or equivalently, $iP_t = [iP, Q]$, i.e.,

$$(v_0 + v_{-1} - \bar{v}_{-1})_t = [v_0 + v_{-1} - \bar{v}_{-1}, v_{-1} + \bar{v}_{-1}], \tag{6.1}$$

where $v_0 \in \mathfrak{h}_0 \cap i\mathfrak{g}_2$ and $v_{-1} \in \mathfrak{h}_{-1}$.

Equation (6.1) has a Lax pair

A simple calculation shows that (v_0, v_1) satisfies (6.1) if and only if

$$(v_0 + v_{-1}\lambda^{-1} - \bar{v}_{-1}\lambda)_t = [v_0 + v_{-1}\lambda^{-1} - \bar{v}_{-1}\lambda, \ v_{-1}\lambda^{-1} + \bar{v}_{-1}\lambda]$$
(6.2)

holds for all $\lambda \in \mathbb{C} \setminus \{0\}$. Here $v_0 \in \mathfrak{h}_0$ is pure imaginary and $v_{-1} \in \mathfrak{h}_{-1}$.

Results from the Adler-Kostant-Symes (AKS) Theory (cf. [1, 6, 2])

Let G be a group, G_+, G_- be subgroups of G such that the multiplication map $G_+ \times G_- \to G$ defined by $(g_+, g_-) \to g_+ g_-$ is a bijection. So $\mathcal{G} = \mathcal{G}_+ + \mathcal{G}_-$ as direct sum of vector subspaces. Suppose that \mathcal{G} admits a non-degenerate, ad-invariant bilinear form (,). Let

$$\mathcal{G}_{+}^{\perp} = \{ y \in \mathcal{G} \mid (y, x) = 0, \ \forall x \in \mathcal{G}_{+} \},$$
 (6.3)

and π_+ denote the projection of \mathcal{G} onto \mathcal{G}_+ with respect to the decomposition $\mathcal{G} = \mathcal{G}_+ + \mathcal{G}_-$. Suppose that $M \subset \mathcal{G}_+^{\perp}$ is invariant under the flow

$$\frac{dx}{dt} = [x(t), \pi_+(x(t))].$$

Given $x_0 \in M$, consider the following ODE:

$$\begin{cases} \frac{dx}{dt} = [x(t), \pi_{+}(x(t))], \\ x(0) = x_{0}. \end{cases}$$
(6.4)

The AKS theory gives a method to solve the initial value problem (6.4) via factorizations as follows:

- (i) Find the one-parameter subgroup f(t) for x_0 , i.e., solve $f^{-1}f_t = x_0$ with f(0) = e.
- (ii) Factor $f(t) = f_{+}(t)f_{-}(t)$ with $f_{\pm}(t) \in G_{\pm}$.
- (iii) Set $x(t) = f_+(t)^{-1}x_0f_+(t)$. Then x(t) is the solution for the initial value problem (6.4). Moreover, $f_+^{-1}(f_+)_t = \pi_+(x(t))$.

If $G = SL(n, \mathbb{R})$, $G_+ = SO(n)$, $G_- =$ the subgroup of upper triangular matrices, and M is the space of all tri-diagonal matrices in $sl(n, \mathbb{R})$, then ODE (6.4) is the standard Toda lattice. So we call a system obtained from a factorization a *Toda type equation*.

Equation (6.1) is of Toda type

Let $L(G_2^{\mathbb{C}})$ denote the group of smooth loops from S^1 to $G_2^{\mathbb{C}}$ satisfying the reality condition $\overline{g(\bar{\lambda}^{-1})} = g(\lambda)$, $L_+(G_2^{\mathbb{C}})$ the subgroup of $g \in L(G_2^{\mathbb{C}})$ with $g(\lambda) \in G_2$ for all $\lambda \in S^1$, and $L_-(G_2^{\mathbb{C}})$ denote the subgroups of $f \in L(G_2^{\mathbb{C}})$ that can be extended to a holomorphic maps inside S^1 such that f(0) = e the identity of G. Pressely and Segal proved in [17] an analogue of the Iwasawa decomposition of simple Lie groups for loop groups:

Theorem 6.1 (Iwasawa Loop Group Factorization Theorem (see [17, 10])) The multiplication map $L_{+}(G_{2}^{\mathbb{C}}) \times L_{-}(G_{2}^{\mathbb{C}}) \to L(G_{2}^{\mathbb{C}})$ is a diffeomorphism. In particular, given $g \in L(G_{2}^{\mathbb{C}})$, we can factor $g = g_{+}g_{-}$ uniquely with $g_{\pm} \in L_{\pm}(G_{2}^{\mathbb{C}})$.

Note that

$$\hat{\sigma}(g)(\lambda) = \sigma(g(e^{-\frac{\pi i}{3}}\lambda))$$

defines an automorphism of $L(G_2^{\mathbb{C}})$. Let $L^{\sigma}(G_2^{\mathbb{C}})$ and $L_{\pm}^{\sigma}(G_2^{\mathbb{C}})$ denote the subgroups fixed by $\hat{\sigma}$ of $L(G_2^{\mathbb{C}})$ and $L_{\pm}(G_2^{\mathbb{C}})$ respectively. Then we have

Corollary 6.2 If $g \in L^{\sigma}(G_2^{\mathbb{C}})$ and $g = g_+g_-$ with $g_{\pm} \in L_{\pm}(G_2^{\mathbb{C}})$, then $g_{\pm} \in L_{\pm}^{\sigma}(G_2^{\mathbb{C}})$.

Let B denote the Borel subgroup of $G_2^{\mathbb{C}}$ such that the Iwasawa decomposition is $G_2^{\mathbb{C}} = G_2 B$, and $\mathfrak{g}_2^{\mathbb{C}} = \mathfrak{g}_2 + \mathfrak{b}$ at the Lie algebra level. It is easier to write down the factorization at the Lie algebra level:

$$\mathcal{L}^{\sigma}(\mathfrak{g}_{2}^{\mathbb{C}}) = \mathcal{L}_{+}^{\sigma}(\mathfrak{g}_{2}^{\mathbb{C}}) + \mathcal{L}_{-}^{\sigma}(\mathfrak{g}_{2}^{\mathbb{C}}), \tag{6.5}$$

where

$$\mathcal{L}^{\sigma}(\mathfrak{g}_{2}^{\mathbb{C}}) = \left\{ \xi = \sum_{j \in \mathbb{Z}} \xi_{j} \lambda^{j} \, \middle| \, \xi_{j} \in \mathfrak{g}_{2}^{\mathbb{C}}, \xi_{j} \in \mathfrak{h}_{j} \right\},$$

$$\mathcal{L}^{\sigma}_{+}(\mathfrak{g}_{2}^{\mathbb{C}}) = \left\{ \xi = \sum_{j \in \mathbb{Z}} \xi_{j} \lambda^{j} \in \mathcal{L}^{\sigma}(\mathfrak{g}_{2}^{\mathbb{C}}) \, \middle| \, \xi_{-j} = \bar{\xi}_{j} \right\},$$

$$\mathcal{L}^{\sigma}_{-}(\mathfrak{g}_{2}^{\mathbb{C}}) = \left\{ \xi = \sum_{j \geq 0} \xi_{j} \lambda^{j} \in \mathcal{L}^{\sigma}(\mathfrak{g}_{2}^{\mathbb{C}}) \, \middle| \, \xi_{0} \in \mathfrak{b} \right\}.$$

Let $\pi_{\mathfrak{g}_2}$ and $\pi_{\mathfrak{b}}$ denote the projections of $\mathfrak{g}_2^{\mathbb{C}}$ onto \mathfrak{g}_2 and \mathfrak{b} respectively, and π_{\pm} the projections of $\mathcal{L}^{\sigma}(\mathfrak{g}_2^{\mathbb{C}})$ onto $\mathcal{L}^{\sigma}_{\pm}(\mathfrak{g}_2^{\mathbb{C}})$ with respect to the decomposition (6.5). Then for $\xi = \sum_j \xi_j \lambda^j$,

$$\pi_{+}(\xi) = \pi_{\mathfrak{g}_{2}}(\xi_{0}) + \sum_{j>0} \xi_{-j} \lambda^{-j} + \bar{\xi}_{-j} \lambda^{j},$$

$$\pi_{-}(\xi) = \pi_{\mathfrak{b}}(\xi_{0}) + \sum_{j>0} (\xi_{j} - \bar{\xi}_{-j}) \lambda^{j}.$$

Let (,) be the Killing form on $\mathcal{G}_2^{\mathbb{C}}$. Then

$$\langle \xi, \eta \rangle = \sum_{i+j=0} (\xi_i, \eta_j)$$

is an ad-invariant bilinear form on $\mathcal{L}(\mathcal{G})$. So

$$\mathcal{L}_{+}(\mathcal{G})^{\perp} = \Big\{ \xi = \sum_{j} \xi_{j} \lambda^{j} \ \Big| \ \xi_{-j} = -\bar{\xi}_{j} \Big\}.$$

Let $M = \{ \xi = \xi_0 + \xi_{-1}\lambda^{-1} - \bar{\xi}_{-1}\lambda \mid \xi_0 \in \mathfrak{h}_0 \cap (i\,\mathcal{G}_2), \xi_{-1} \in \mathfrak{h}_{-1} \}$. Note that

$$\pi_{+}(\xi_{0} + \xi_{-1}\lambda^{-1} - \bar{\xi}_{-1}\lambda) = \xi_{-1}\lambda + \bar{\xi}_{-1}\lambda.$$

It is easy to check that $[\xi, \pi_+(\xi)] \in M$ if $\xi \in M$, so M is invariant under the flow $\xi_t = [\xi, \pi_+(\xi)]$. So we can use the Iwasawa loop group factorization to construct solution of (6.2) as described in the AKS theory and get

Theorem 6.3 Let $A = 2h_0 + h_{-1} + \bar{h}_{-1}$ be a constant with $h_0 \in \mathfrak{h}_0 \cap \mathfrak{g}_2$ and $h_{-1} \in \mathfrak{h}_{-1}$. Then the solution of (5.3) with initial value A can be obtained as follows:

(1) Set $\xi_0(\lambda) = 2i h_0 + i h_{-1} \lambda^{-1} + i \bar{h}_{-1} \lambda$, and construct $g(t, \lambda)$ such that

$$\begin{cases} g^{-1}g_t = \xi_0(\lambda), \\ g(0,\lambda) = I, \end{cases}$$

i.e., $g(t,\cdot)$ is the one-parameter subgroup of ξ_0 in $L^{\sigma}(G_2^{\mathbb{C}})$.

- (2) Factor $g(t,\lambda) = g_+(t,\lambda)g_-(t,\lambda)$ such that $g_\pm(t,\cdot) \in L^\sigma_+(G_2^\mathbb{C})$.
- (3) Set $\xi(t,\lambda) = g_{+}(t,\lambda)^{-1}\xi_{0}(\lambda)g_{+}(t,\lambda)$. Then

$$\xi(t,\lambda) = v_0(t) + v_{-1}(t)\lambda^{-1} + \bar{v}_{-1}(t)\lambda$$

for some $v_0(t) \in \mathfrak{h}_0 \cap (i \mathfrak{g}_2)$ and $v_{-1}(t) \in \mathfrak{h}_{-1}$.

(4) Set $u_0 = -iv_0$, $u_{-1} = -iv_{-1}$, and $k(t) = g_+(t,1)$. Then $k(t) \in G_2$ and u_0, u_{-1}, k satisfy (5.3) and (5.4).

Moreover, $f(s,t) = e^{As}k_1(t)$ is almost complex in S^6 , where $k_1(t)$ is the first colume of k(t).

References

- Adler, M. and van Moerbeke, P., Completely integrable systems, Euclidean Lie algebras and curves, Adv. Math., 38, 1980, 267–317.
- [2] Adler, M., van Moerbeke, P. and Vanhaecke, P., Algebraic Integrability, Painlevé Geometry, and Lie Algebras, EMG, 47, Springer, 2004.
- [3] Bolton, J., Pedit, F. and Woodward, L. M., Minimal surfaces and the affine field model, *J. Reine Angew. Math.*, **459**, 1995, 119–150.
- [4] Bolton, J., Vrancken, L. and Woodward, L. M., On almost complex curves in the nearly Kähler 6-sphere, Quart. J. Math., Oxford Ser. (2), 45, 1994, 407–427.
- [5] Bryant, R., Submanifolds and special structures on the octonions, J. Differential Geom., 17, 1982, 185–232.
- [6] Burstall, F. E. and Pedit, F., Harmonic maps via Adler-Kostant-Symes Theory, Harmonic Maps and Integrable Systems, Vieweg, 1994, 221–272.
- [7] Calabi, E., Construction and properties of some 6-dimensional almost complex manifolds, Trans. Amer. Math. Soc., 87, 1958, 407–438.
- [8] Carberry, E. and McIntosh, I., Minimal Lagrangian 2-tori in CP² come in real families of every dimension, J. London Math. Soc., 69, 2004, 531–544.
- [9] Ejiri, N., A generalization of minimal cones, Trans. Amer. Math. Soc., 276, 1983, 347–360.
- [10] Guest, M., Harmonic Maps, Loop Groups, and Integrable Systems, Cambridge University Press, 1997.
- [11] Harvey, R. and Lawson, H. B., Calibrated geometries, Acta Math., 148, 1982, 47–157.
- [12] Haskins, M., Special Lagrangian cones, Amer. J. Math., 126, 2004, 845-871.
- [13] Hashimoto, H., Taniguchi, T. and Udagawa, S., Constructions of almost complex 2-tori of type III in the nearly Kähler 6 sphere, Differential Geom. Appl., 21, 2004, 127–145.
- [14] Kollross, A., Notes on G_2 .
- [15] Ma, H. and Ma, Y., Totally real minimal tori in $\mathbb{C}P^2$, Math. Z., 249, 2005, 241–267.
- [16] McIntosh, I., Special Lagrangian cones in C³ and primitive harmonic maps, J. London Math. Soc., 67, 2003, 769–789.
- [17] Pressley, A. and Segal, G. B., Loop Groups, Oxford Science Publ., Clarendon Press, Oxford, 1986.
- [18] Terng, C. L., Geometries and symmetries of soliton equations and integrable elliptic systems, Surveys on Geometry and Integrable Systems, Advanced Studies in Pure Mathematics, Mathematical Society of Japan, to appear. math.DG/0212372.