Decision Error

Grinnell College

April 1, 2024

Review

Review

Decision Making

For now, let's not worry about *p*-values (*we will revist), instead, let's go back to binary thinking since, in actuality, we must ultimately decide between one of two decisions:

- 1. There is sufficient evidence to reject H_0
- 2. There is *not* sufficient evidence to reject H_0

Decision Making

Just as our confidence intervals were correct or incorrect, so to may be our decision regarding H_0 . In this case, however, there are two distinct ways in which our decision can be incorrect:

- 1. H_0 is TRUE (i.e., there is no effect), yet we reject anyway
- 2. H₀ is FALSE (i.e., there is an effect), yet we fail to reject it

Decision Making

These two types of errors are known as Type I and Type II errors, respectively:

- 1. H_0 is TRUE (i.e., there is no effect), yet we reject anyway
 - ► Type I error
 - ► False positive
 - ► Evidence leads to wrong conclusion
- 2. H_0 is FALSE (i.e., there is an effect), yet we fail to reject it
 - ► Type II error
 - False negative
 - ▶ Not enough evidence to conclude

Type I Errors

A Type I error describes a situation in which we incorrectly identify a null effect:

- Conclude that an intervention works when it does not
- ► Conclude that there is a relationship between two variables when there are not

A Type I error will occur, for example, when our constructed confidence does not contain μ_0 when in actuality it should

Type I Errors

Type I Error Rate

We can control the rate at which we commit Type I errors with adjusting the *level of significance*, denoted α .

This is also called the *Type I error rate*

The Type I error rate has a <code>one-to-one</code> correspondence with our confidence intervals – a 95% confidence interval will permit a Type I error 5% of the time, corresponding to $\alpha=0.05$

Type II Errors

A Type II error describes a situation in which the null hypothesis is false, yet based on the evidence gathered we fail to reject it:

- An intervention has a clinical effect, but it is not detected
- An email is considered spam, but the filter does not detect it

Typically, a Type II error is the result of one or more factors:

- ► Too few observations in our sample
- The population has large variability
- The effect size is small

Line - Null - Observed

Type II Error Rate

The Type II error rate is typically denoted β

More frequently, we consider the rate at which Type II errors do not occur $(1-\beta)$, a term we refer to as *power*

A study that is unable to detect a true effect is said to be underpowered

Drawing Conclusions

As we never truly know whether H_0 is correct or not, we must simultaneously be prepared to combat both types of error

	True State of Nature	
Test Result	H ₀ True	H₀ False
Fail to reject H_0	Correct	Incorrect
	$(1-\alpha)$	Type II Error (β)
Reject H ₀	Incorrect	Correct
	Type I Error (α)	$(1-\beta)$

- ▶ Type I error = $P(\text{Reject } H_0 | H_0 \text{ true}) = \text{false alarm}$
- ▶ Type II error = $P(\text{Fail to reject } H_0|H_A \text{ true}) = \text{missed opportunity}$

Grinnell College STA 209 April 1, 2024 12 / 13

Review

Based on the evidence observed, we will ultimately make one of two decisions:

- 1. Reject H_0
- 2. Fail to reject H_0

Depending on the true state of H_0 , we can be incorrect in two ways:

- 1. Type I Error (α): H_0 is true, yet we reject anyway
- 2. Type II Error (β): H_0 is false, yet we fail to reject it

We will discuss more how these errors are related on Wednesday

Grinnell College STA 209 April 1, 2024 13 / 13