Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>М3216</u>	К работе допущен
Студент Квачук Сергей Алексеевич	Работа выполнена
Преподаватель <u>Тимофеева Эльвира</u> Олеговна	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 1.01

Исследование распределения случайной величины

1. Цель работы.

Исследование распределения случайной величины на примере многократных измерений определённого интервала времени.

- 2. Задачи, решаемые при выполнении работы.
 - 1. Провести многократные измерения определенного интервала времени.
 - 2. Построить гистограмму распределения результатов измерения.
 - 3. Вычислить среднее значение и дисперсию полученной выборки.
 - 4. Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией.
- 3. Объект исследования.

Случайная величина, полученная в результате измерения 5 секундного промежутка времени.

4. Метод экспериментального исследования.

Проведение многократного измерения заданного интервала времени, анализ полученных измерений и определение закономерности в распределении случайных величин.

5. Рабочие формулы и исходные данные.

Рабочие формулы:

• Функция Гаусса:

$$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right)$$

• Формула выборочного среднего:

$$\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + \dots + t_N) = \frac{1}{N} \sum_{i=1}^{N} t_i$$

• Формула выборочного среднеквадратичного отклонения:

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

• Формула максимального значения плотности гистограммы $\rho max(t)$:

$$\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}}$$

• Соотношением для вероятности попадания результата измерения в интервал [t_1 , t_2]:

$$P(t_1 < t < t_2) = \int_{t_1}^{t_2} \rho(t)dt \approx \frac{N_{12}}{N}$$

• Среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

• Доверительный интервал для промежутка:

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}$$

Исходные данные:

- Количество измерений N = 100
- Коэффициент доверительной вероятности $\propto = 0.95$
- Табличный коэффициент распределения Стьюдента Р = 1.9842169515086827

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Электронные часы	электронный	0c-60c	0.01c
2	Секундомер	цифровой	0c-6c	0.005c

- 7. Схема установки (перечень схем, которые составляют Приложение 1). Экспериментальная установка отсутствует.
- 8. Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*).

Таблица 1: Результаты прямых измерений

Nº	t_i , c	$ t_i - \langle t \rangle_N$, c	$(t_i - \langle t \rangle_N)^2, c^2$
1	4.85	-0.173	0.029929
2	4.98	-0.043	0.001849
3	5.09	0.067	0.004489
4	4.99	-0.033	0.001089
5	4.96	-0.063	0.003969
6	5.13	0.107	0.011449
7	5.17	0.147	0.021609
8	4.99	-0.033	0.001089
9	4.96	-0.063	0.003969
10	4.86	-0.163	0.026569
11	5.01	-0.013	0.000169
12	5.00	-0.023	0.000529

13	5.08	0.057	0.003249
14	5.27	0.247	0.061009
15	4.97	-0.053	0.002809
16	4.80	-0.223	0.049729
17	5.29	0.267	0.071289
18	4.82	-0.203	0.041209
19	5.13	0.107	0.011449
20	5.05	0.027	0.000729
21	5.04	0.017	0.000289
22	4.95	-0.073	0.005329
23	5.09	0.067	0.004489
24	5.11	0.087	0.007569
25	4.79	-0.233	0.054289
26	4.92	-0.103	0.010609
27	4.93	-0.093	0.008649
28	5.08	0.057	0.003249
29	5.35	0.327	0.106929
30	4.69	-0.333	0.110889
31	4.83	-0.193	0.037249
32	5.14	0.117	0.013689
33	5.29	0.267	0.071289
34	4.81	-0.213	0.045369
35	5.06	0.037	0.001369
36	5.13	0.107	0.011449
37	5.00	-0.023	0.000529
38	5.02	-0.003	0.000009
39	5.02	-0.003	0.000009
40	4.99	-0.033	0.001089
41	5.18	0.157	0.024649
42	5.00	-0.023	0.000529
43	5.02	-0.003	0.000009
44	5.15	0.127	0.016129
45	5.05	0.027	0.000729
46	5.09	0.067	0.004489
47	4.87	-0.153	0.023409
48	5.15	0.127	0.016129
49	5.05	0.027	0.000729
50	4.99	-0.033	0.001089
51	5.16	0.137	0.018769

52	4.91	-0.113	0.012769
53	5.18	0.157	0.024649
54	4.91	-0.113	0.012769
55	5.06	0.037	0.001369
56	5.13	0.107	0.011449
57	5.29	0.267	0.071289
58	5.06	0.037	0.001369
59	4.80	-0.223	0.049729
60	5.25	0.227	0.051529
61	4.93	-0.093	0.008649
62	5.08	0.057	0.003249
63	5.05	0.027	0.000729
64	5.02	-0.003	0.000009
65	5.10	0.077	0.005929
66	4.96	-0.063	0.003969
67	4.99	-0.033	0.001089
68	4.92	-0.103	0.010609
69	5.20	0.177	0.031329
70	4.92	-0.103	0.010609
71	5.16	0.137	0.018769
72	5.24	0.217	0.047089
73	4.82	-0.203	0.041209
74	4.73	-0.293	0.085849
75	4.96	-0.063	0.003969
76	4.77	-0.253	0.064009
77	4.75	-0.273	0.074529
78	4.88	-0.143	0.020449
79	5.19	0.167	0.027889
80	5.02	-0.003	0.000009
81	5.05	0.027	0.000729
82	5.03	0.007	0.000049
83	5.06	0.037	0.001369
84	5.03	0.007	0.000049
85	5.01	-0.013	0.000169
86	5.09	0.067	0.004489
87	5.03	0.007	0.000049
88	4.85	-0.173	0.029929
89	5.28	0.257	0.066049
90	4.82	-0.203	0.041209

91	4.97	-0.053	0.002809
92	4.87	-0.153	0.023409
93	4.98	-0.043	0.001849
94	5.20	0.177	0.031329
95	5.09	0.067	0.004489
96	5.22	0.197	0.038809
97	4.98	-0.043	0.001849
98	5.05	0.027	0.000729
99	5.14	0.117	0.013689
100	4.92	-0.103	0.010609
	$\langle t \rangle_N = 5.023, c$	$\sum_{i=1}^{N} (t_i - t_N) = -1.501e - 13, c$	$\sigma_N = 0.139251, c$ $\rho_{max} = 2.864909982, c^{-1}$

Примеры расчетов:

$$\sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2 = 1.9197, c^2$$

$$\sigma_N = \sqrt{\frac{1}{99}} \cdot 1.9197 = 0.139251, c$$

$$p_{max} = \frac{1}{0.139251 * \sqrt{2\pi}} = 2.864909982, c^{-1}$$

9. Расчет результатов косвенных измерений (*таблицы, примеры расчетов*). **Таблица 2: Данные для построения гистограммы**

Границы интервалов, c	ΔN	$\frac{\Delta N}{N\Delta t}$, c^{-1}	t, c	$ ho$, c^{-1}
4.69	3	0.5	4.72	0.1563923
4.75				
4.75	5	0.83333	4.78	0.3782826
4.81				
4.81	9	1.5	4.84	0.7768237
4.87				
4.87	9	1.5	4.9	1.3543586
4.93				
4.93	15	15 2.5 4.	4.96	2.0047032
4.99				
4.99	20	3.33333	5.02	2.5192522
5.05				
5.05	14	2.33333	5.08	2.6878090
5.11				
5.11	11 1.833	1.83333	5.14	2.4346151
5.17				
5.17	6	6 1.0	5.2	1.8722653
5.23				
5.23	7	7 1.16667	5.26	1.2223896
5.29				

5.29	1	0.16667	5.32	0.6775745
5.35	I	0.10007	5.32	

Таблица 3: Стандартные доверительные интервалы

	Интервал, с		ΔN	ΔN	P
	ОТ	до		\overline{N}	
$\langle t \rangle_N \pm \sigma_N$	4.8838	5.1622	67	0.67	0.683
$\langle t \rangle_N \pm 2\sigma_N$	4.7446	5.3014	95	0.95	0.954
$\langle t \rangle_N \pm 3\sigma_N$	4.6054	5.4406	100	1.00	0.997

Примеры расчетов:

- Расчет интервала времени: $\Delta t = \frac{4.69-5.35}{11} = 0.06$
- $\frac{\Delta N}{N\Delta t}$ для интервала: $\frac{3}{100\cdot0.06}=0.5$ Расчет значения функции Гаусса для интервала:

$$\rho(t) = \frac{1}{0.148294*\sqrt{2\pi}} \cdot \exp\left(-\frac{(4.72-5.0737)^2}{2\cdot0.148294^2}\right) = 0.1563923$$

- 10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Среднеквадратичное отклонение среднего значения:
$$\sigma_{100}=\sqrt{\frac{1}{100(100-1)}\Sigma_{i=1}^{100}(t_i-5023)^2}=\ 0.013925124$$

Доверительный интервал:

$$\Delta t = 1.9842169515086827 \cdot 0.013925124 = 0.027630467092660396$$

11. Графики (перечень графиков, которые составляют Приложение 2).

12. Окончательные результаты.

Полученное математическое ожидание на основе измерений: $(5,023 \pm 0.02763046709)$ с

13. Выводы и анализ результатов работы.

В рамках лабораторной работы был изучен и применен закон нормального распределения. Были проведены многократные измерения определенного интервала времени, что позволяет оценить качество полученных данных и характер их распределения. Были вычислены значения:

- Максимальное плотности распределения
- Среднеарифметическое всех результатов измерений
- Среднеквадратичное отклонение среднего значения
- Доверительный интервал.

На основе полученных измерений и вычислений данных были построены и сравнены

гистограмма и гр поведения.	рафик функции Гаусса	ı. В результате сравн	чения было выявле	но сходство
14. Дополнитель	ьные задания.			

15. Выполнение дополнительных заданий.

 Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).

Примечание:

- 1. Пункты 1-6,8-13 Протокола-отчета обязательны для заполнения.
- 2. Необходимые исправления выполняют непосредственно в протоколе-отчете.
- 3. При ручном построении графиков рекомендуется использовать миллиметровую бумагу.
- 4. Приложения 1 и 2 вкладывают в бланк протокола-отчета.