Lecture 1 - 7/1/25

Missed:(

Lecture 2 - 9/1/25

Missed:(

Lecture 3 - 14/1/25

Character theory

Consider dim $\operatorname{Hom}_G(\rho_i, \rho_j) = 1$ if i = j and 0 if $i \neq j$ (meaning if $\rho_i \ncong \rho_j$)

Recall: Given a representation $\rho: G \to \mathrm{GL}_n(k)$, the character of ρ , χ_{ρ} , is given by $\chi_{\rho}: G \to k, g \mapsto \mathrm{tr}(\rho(g))$

For today, G will be finite, $k = \overline{k}$ will be algebraically closed, of characteristic 0. Basic properties of characters:

- **1.** Suppose $\rho: G \to \operatorname{GL}_n(k)$ is a representation: then $\chi_{\rho}(e) = n = \dim \rho$.
- **2.** $\chi_{\rho}(g) = \chi_{\rho}(hgh^{-1})$ for all $g, h \in G$, i.e. χ_{ρ} is constant on each conjugacy class of G.

Definition 0.1. A function $f: G \to k$ which is constant on conjugacy classes is called a <u>class function</u>.

The ρ_i (isomorphism classes of reps) will form an ONB for the space of class functions.

Given
$$\rho_1: G \to \mathrm{GL}_n(k), \rho_2: G \to \mathrm{GL}_m(k), \chi_{\rho_1 \oplus \rho_2} = \chi_{\rho_1} + \chi_{\rho_2}$$

$$\chi_{\rho_1\otimes\rho_2}=\chi_{\rho_1}\chi_{\rho_2}$$

To see this, let A, B be diagonalizable (which we have WLOG because the image of any finite group are all diagonalizable over an algebraically closed k of char 0, which follows from Jordan Normal form)

Then
$$tr(A \otimes B) = tr(A) tr(B)$$
.

I can't see the board he's writing on very well, and also I am not sure how $A \otimes B$ was defined.

Claim. $\chi_{\rho}: G \to k$ always factors through $\mathbb{Q}(\mu_{\infty})$, the subfield of k containing $\mathbb{Q}(k)$ has char 0) generated by all roots of unity $(k = \overline{k})$

Proof. Because G is finite, ρ_G has finite order, hence its eigenvalues are roots of unity, so the trace is the sum of roots of unity.

Definition 0.2. $\bar{\cdot}: \mathbb{Q}(\mu_{\infty}) \to \mathbb{Q}(\mu_{\infty})$ is the unique field homomorphism with the property that $\bar{\zeta} = \zeta^{-1}$ for all roots of unity $\zeta \in \mathbb{Q}(\mu_{\infty})$.

$$5 \ \chi_{\rho^v} = \overline{\chi_{\rho}}$$

Recall ρ^v is defined via the formula $g \cdot f = f(g^{-1} \cdot -)$ where f is a functional. We have

$$\chi_{\rho^{v}}(g) = \operatorname{tr}(p(g^{-1}))$$

$$= \sum_{\zeta \text{ is an eigenvalue of } \rho(G)} \zeta^{-1}$$

$$= \sum_{\zeta} \overline{\zeta} = \overline{\chi_{\rho}(g)}$$

This also follows from the Hom-tensor adjunction because $\operatorname{Hom}_k(\rho_1, \rho_2) = \rho_1^v \otimes \rho_2$.

Definition 0.3. Let $\chi, \psi : G \to \mathbb{Q}(\mu_{\infty})$ be class functions. We define their inner product by

$$\langle \chi, \psi \rangle = \frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\psi(g)}$$

This indeed is a positive definite non degenerate.

Let $\rho_1: G \to \operatorname{GL}_n(k), \rho_2: G \to \operatorname{GL}_m(k)$. What is $\langle \chi_{\rho_1}, \chi_{\rho_2} \rangle$?

Theorem 0.1.

$$\langle \chi_{\rho_1}, \chi_{\rho_2} \rangle = \dim_k \operatorname{Hom}_G(\rho_1, \rho_2) = \dim_k \operatorname{Hom}(\rho_1, \rho_2)^G$$

Corollary 0.2. Suppose ρ_1, ρ_2 are irreducible. Then $\langle \chi_{\rho_1}, \chi_{\rho_2} \rangle$ is 0 if ρ_1, ρ_2 are not isomorphic, and 1 if they are. So the ρ_i form an orthonormal basis for the space of class functions.

Proof. Let $R_G \in k[G]$ be the element given by

$$R_G = \frac{1}{|G|} \sum_{g \in G} eg$$

We want to show

1. for $v \in V^G$, $R_G \cdot v = v$.

2. For arbitrary $v \in V, R_G \cdot v \in V^G$

To check:

1. We have

$$R_G \cdot v = \frac{1}{|G|} \sum_{g \in G} e_g \cdot v$$
$$= \frac{1}{|G|} \sum_{g \in G} v$$
$$= v$$

2. Fix $g \in G$. Then

$$g \cdot R_G \cdot v = g \cdot \left(\frac{1}{|G|} \sum_{h \in G} hv\right)$$
$$= \frac{1}{|G|} \sum_{h \in G} gh \cdot v$$
$$= \frac{1}{|G|} \sum_{h \in G} h \cdot v$$
$$= R_G \cdot v$$

Corollary 0.3. Let V be a G-representation. Then $\dim_k V^G = \operatorname{tr}(R_G|V)$

Proof.

Claim. $tr(projection) = dim_k Im$

Proof. Claim \Longrightarrow Cor follows from $\operatorname{tr}(R_G) = \dim \operatorname{Im}(R_G|V) = \dim_k V^G$

We can finally prove the theorem:

Proof.

$$\dim_k \operatorname{Hom}_G(\rho_1, \rho_2) = \dim_k \operatorname{Hom}_k(\rho_1, \rho_2)^G$$

$$= \operatorname{tr}(R_G | \operatorname{Hom}_k(\rho_1, \rho_2))$$

$$= \operatorname{tr}(\frac{1}{|G|} \sum e_g | \operatorname{Hom}_k(\rho_1, \rho_2))$$

$$= \frac{1}{|G|} \operatorname{tr}(g | \operatorname{hom}_k(\rho_1, \rho_2))$$

$$= \frac{1}{|G|} \sum_{g \in G} \chi_{\operatorname{hom}_k(\rho_1, \rho_2)}(g)$$

$$= \frac{1}{|G|} \sum_{g \in G} \overline{\chi_{\rho_1}} \chi_{\rho_2}$$

$$= \langle \chi_{\rho_1}, \chi_{\rho_2} \rangle$$

$$= \overline{\langle \chi_{\rho_2}, \chi_{\rho_1} \rangle}$$

$$= \overline{\langle \chi_{\rho_2}, \chi_{\rho_1} \rangle}$$