Применение локальных модификаций метода анализа сингулярного спектра

Шаповал Егор Анатольевич, группа 17.Б04-мм

Санкт-Петербургский государственный университет Кафедра статистического моделирования Научный руководитель: к.ф.-м.н., доцент Голяндина Н.Э. Рецензент: программист Шлемов А.Ю

9 июня 2021 г.

Постановка задачи

Дано: временной ряд $\mathsf{X}_N=(x_1,\dots,x_N)$, $X_N=\mathsf{S}_N+\mathsf{R}_N$, где S_N — детеминированный сигнал, R_N — случайный шум, $\mathbb{E} r_n=0$.

Задача анализа временных рядов: построить прогноз сигнала S_N .

Рассматриваемая стандартная модель: сигнал управляется линейной рекуррентной формулой (ЛРФ), $s_n = \sum\limits_{k=1}^m a_k s_{n-k}.$

Прогноз: по ЛРФ, оцененной с помощью метода анализа сингулярного спектра (SSA).

Проблема: сигнал приближённо управляется ЛРФ только локально, на отрезках длины Z < N.

Предлагаемое решение: двухуровневый прогноз сигнала.

- Прогноз локальных ЛРФ, приближенно управляющих рядом в окрестности прогнозируемых точек
- f O Прогноз ряда ${\sf S}_N$ с помощью спрогнозированных ЛРf O.

Глава 1: Линейные рекуррентные формулы

Определение

Временной ряд $S_{\infty}=(s_1,s_2,\ldots)$ управляется линейной рекуррентной формулой (ЛРФ) размерности m если существует последовательность $\{a_k\}_{k=1}^m$ такая, что $a_m\neq 0$ и

$$s_{i+m} = \sum_{k=1}^{m} a_k s_{i+m-k} \quad \forall i = 1, 2, \dots$$
 (1)

Определение

ЛРФ наименьшей размерности m такой, что S_∞ управляется ЛРФ порядка m называется минимальной ЛРФ.

Определение

ЛРФ размерности m с наименьшей нормой коэффициентов среди всех ЛРФ порядка m, управляющих S_∞ , называется миннорм ЛРФ.

Глава 1: Характеристический полином

Определение

Пусть S_{∞} управляется ЛРФ с коэффициентами $\{a_k\}_{k=1}^m$. Многочлен $P_m(\mu)=\mu^m-\sum\limits_{k=1}^m a_k\mu^{m-k}$ называется характеристическим полиномом ЛРФ.

Определение

Корни характеристического полинома минимальной ЛРФ называются *сигнальными (главными) корнями*.

Teopeмa (Hall MJ, Combinatorial theory, 1998)

Пусть μ_1,\dots,μ_p — корни характеристического полинома, кратностей $k_1,\dots,k_p,\sum\limits_{j=1}^p k_j=d$. Ряд S_∞ удовлетворяет ЛРФ (1) тогда и только

тогда, когда $s_n=\sum\limits_{j=1}^p\mu_j^n\sum\limits_{l=0}^{k_j-1}c_{jl}n^l$, где $c_{jl}\in\mathbb{C}$ зависят от s_1,\ldots,s_d .

Глава 1: Оценивание подпространства сигнала с помощью алгоритма SSA

Анализ сингулярного спектра (singular spectrum analysis, SSA) [Golyandina, Nekrutkin, Zhigljavsky, 2001].

- **1 Входные параметры** Ряд $X_N = (x_1, \dots, x_N)$, длина окна $L \in 2: (N-1)$, размерность подпространства $r < \min(L, K)$, гле K = N - L + 1
- Построение траекторной матрицы

$$\mathbf{X} = \begin{pmatrix} x_1 & x_2 & x_3 & \dots & x_K \\ x_2 & x_3 & x_4 & \dots & x_{K+1} \\ \vdots & \vdots & \ddots & \vdots \\ x_L & x_{L+1} & x_{L+2} & \dots & x_N \end{pmatrix}.$$

Построение оценки базиса подпространства сигнала $\{U_i\}_{i=1}^r$ — о.н.с. из собственных векторов матрицы $\mathbf{X}\mathbf{X}^{\mathrm{T}}$. взятых в порядке невозрастания собственных чисел.

Ранг ряда — ранг его траекторной матрицы.

Глава 1: Нахождение ЛРФ и главных корней

Нахождение оценки миннорм ЛРФ

Пусть $\operatorname{rank} \mathsf{S}_N = r$ и U_1, \dots, U_r — базис подпространства сигнала, оцененный с помощью SSA. Для $U = (u_1, \dots, u_L)^\mathrm{T} \in \mathbb{R}^L$ обозначим $\underline{U} := (u_1, \dots, u_{L-1})^\mathrm{T}$. Пусть π_i — последняя координата $U_i, \ i \in 1:r$. Предположим, что $\nu^2 := \sum\limits_{i=1}^r \pi_i^2 < 1$. Тогда коэффициенты прогнозирующей ЛРФ определяются как

$$\mathcal{R} := \frac{1}{1 - \nu^2} \sum_{i=1}^r \pi_i \underline{U_i} =: (a_{L-1}, \dots, a_1).$$
 (2)

Нахождение оценок главных корней х.п. ЛРФ

 $\mathbf{U}:=[U_1:\ldots:U_r]$, рассмотрим $\overline{\mathbf{U}}$, $\underline{\mathbf{U}}$ — матрицы с удалённой первой и последней строкой соответственно. *ESPRIT-оценка главных корней* $\{\mu_j\}_{j=1}^r$ — собственные числа матрицы $\mathbf{D}=(\underline{\mathbf{U}}^\mathrm{T}\underline{\mathbf{U}})^{-1}\underline{\mathbf{U}}^\mathrm{T}\overline{\mathbf{U}}$.

Общий вид ряда
$$s_n=\sum\limits_{j=1}^r c_j\mu_j^n \Leftrightarrow$$
 корни х.п. $\mu_j=\rho_j e^{\mathrm{i}\cdot 2\pi\omega_j}\Leftrightarrow$ \Leftrightarrow ЛРФ

Глава 1: Синусоидальные сигналы и мгновенная частота

Рассмотрим ряд S_N с общим членом $s_n = A\cos(2\pi\omega(n) + \varphi)$.

Определение

Пусть $\omega(t)$ — непрерывно-дифференцируемая функция. Тогда мгновенной частотой в точке n называют $\omega'(n)$.

Смысл мгновенной частоты: в окрестности точки n_0 ряд S_N хорошо приближается рядом $s_n^{\mathrm{approx}} = A\cos(2\pi\omega_0 n + \varphi)$, где $\omega_0 = \omega'(n_0)$.

Свойства ряда с постоянной мгновенной частотой

$$s_n = A\cos(2\pi\omega n + \varphi) = \frac{Ae^{-\mathrm{i}\varphi}}{2} \cdot e^{-\mathrm{i}\cdot 2\pi\omega n} + \frac{Ae^{\mathrm{i}\varphi}}{2} \cdot e^{\mathrm{i}\cdot 2\pi\omega n} = c_1\mu_1^n + c_2\mu_2^n.$$

При $0<\omega<0.5$ ряд имеет ранг 2, ему соответствуют корни $\mu_1=e^{-\mathrm{i}\cdot 2\pi\omega}$, $\mu_2=e^{\mathrm{i}\cdot 2\pi\omega}$, он управляется ЛРФ $s_n=2s_{n-1}\cos2\pi\omega-s_{n-2},\ n\geqslant 3.$

Глава 2: Модель. Структура локальных отрезков

Модель сигнала: $s_n = \sum\limits_{j=1}^p \rho_j^n(n) \cos(2\pi\omega_j(n) + \varphi_j)$. Предполагаем, что

- На отрезках ряда Z_i длины Z каждое слагаемое хорошо приближается рядом $s_n^{\mathrm{approx}} = \rho_j^n(n_0)\cos(2\pi\omega_{j,0}\cdot n + \varphi)$, где $\omega_{j,0} = \omega_j'(n_0)$ и n_0 середина отрезка $\mathsf{Z}_i, \ j \in 1:p$.
- ② Ряды $ho_j(n)$ и $\omega_j'(n)$ ведут себя регулярным образом по n, в том числе, есть методы, которые могут строить их прогноз.

Структура локальных отрезков:

Для построения прогноза s_{N+1} нужно найти мгновенную частоту в точке N+1.

Оценки корней, частот, модулей, коэффициентов ЛРФ будем нумеровать в соответствии с серединой локального отрезка.

Глава 2: Алгоритм двухуровнего прогноза (LocLRR SSA Forecast)

Входные параметры

- $\bullet \ \mathsf{X}_N = (x_1, \dots, x_N)$ временной ряд
- \bullet Z длина локального отрезка
- L- фиксированная длина окна
- r ранг локальной аппроксимации
- *m* длина прогнозирующей ЛРФ
- M длина прогноза
- FOR MODs алгоритм прогноза модулей корней
- FOR ARGs алгоритм прогноза мгновенных частот

Глава 2: Алгоритм двухуровнего прогноза (LocLRR SSA Forecast), часть 1

 $\mathsf{Z}_i=(x_i,\dots,x_{i+Z-1}),\,i\in 1:W,$ где W=N-Z+1. Для каждого $j\in 1:r$

 $\{\widetilde{\mathcal{R}}_{N+i}\}_{i=1}^M$ — последовательность прогнозирующих минимальных ЛРФ. Если m>r, удлиним каждую $\widetilde{\mathcal{R}}_{N+i},\,i\in 1:M$, до миннорм ЛРФ $\widetilde{\mathcal{R}}_{N+i}^{(m)}$ размерности m [Usevich, 2010].

Результат: последовательность прогнозирующих миннорм ЛРФ $\{\widetilde{\mathcal{R}}_{N+i}^{(m)}\}_{i=1}^{M}$.

Глава 2: Алгоритм двухуровнего прогноза (LocLRR SSA Forecast), часть 2

По $\{\widetilde{\mathcal{R}}_{N+i}^{(m)}\}_{i=1}^M$, $\widetilde{\mathcal{R}}_{N+i}^{(m)} = \left(a_m^{(N+i)}, \dots, a_1^{(N+i)}\right)$, $i \in 1:M$, построим прогноз сигнала S_N . Построим Y_{N+M} , у которого

$$y_n = \begin{cases} x_n, & n \in 1 : N, \\ \sum_{k=1}^m \widetilde{a}_k^{(n)} y_{n-k}, & n \in (N+1) : (N+M). \end{cases}$$

Результат: $\widetilde{\mathsf{S}}_{N+1,N+M} = (y_{N+1},\ldots,y_{N+M})$ — прогноз S_N .

Глава 3: Численные эксперименты

Было проведено сравнение способов построения прогноза:

- LocLRR SSA Forecast
- ullet Прогноз по константе c прогноз $\widetilde{\mathsf{S}}_{N+1,N+M} = (c,c,\ldots,c)$
- Прогноз по последнему локальному промежутку прогноз, построенный с помощью ЛРФ, посчитанной по корням последнего локального промежутка $\mathsf{Z}_{N-Z+1} = (x_{N-Z+1}, \dots, x_N).$

Определение

Пусть $\mathsf{S}_{N+1,N+M}=(s_{N+1},\dots,s_{N+M})$ — сигнал, $\widetilde{\mathsf{S}}_{N+1,N+M}=(\widetilde{s}_{N+1},\dots,\widetilde{s}_{N+M})$ — построенный прогноз. Среднеквадратичная ошибка есть

$$MSE(\widetilde{S}_{N+1,N+M}, S_{N+1,N+M}) = \frac{1}{M} \sum_{i=1}^{M} (s_{N+i} - \widetilde{s}_{N+i})^{2}.$$
 (3)

Точность прогноза будем измерять как $RMSE = \sqrt{MSE}$.

Глава 3: Примеры, общее описание рядов

Модель сигнала: $s_n = \sum\limits_{j=1}^p A\cos(2\pi\omega_j(n)+\varphi_j)$, где диапазоны мгновенных частот слагаемых попарно не пересекаются и лежат в интервале (0,0.5).

Примеры частотных модуляций:

Линейная модуляция $\omega(n)=(an)^2$, $a\neq 0$. Мгновенная частота $\omega'(n)=2a^2n$. Прогноз ω' строится по линейной регрессии.

Синусоидальная модуляция $\omega(n)=\omega_{\mathrm{ext}}\,(n+b\sin2\pi\omega_{\mathrm{int}}n),\,b>0,$ частота $\omega_{\mathrm{int}}\in(0,0.5)$, ω_{int} гораздо меньше $\omega_{\mathrm{ext}}.$ Мгновенная частота $\omega'(n)=\omega_{\mathrm{ext}}(1+2\pi\omega_{\mathrm{int}}b\cos2\pi\omega_{\mathrm{int}}n).$ Прогноз ω' строится методом SSA с длиной окна L, равной половине длины ряда и параметром r=3.

Сумма слагаемых с разными модуляциями Прогноз каждой частоты строится в зависимости от вида модуляции.

Прогноз модуля корня во всех случаях строится как среднее арифметическое предыдущих значений.

Глава 3: Сумма косинусов с линейной и синусоидальной частотой

Прогноз сигнала, $\sigma = 0$, Z = 61, L = 30, r = 4

Рис.: По последнему локальному отрезку, m=4, $\mathrm{RMSE}=0.88$

Рис.: C помощью LocLRR SSA Forecast, m=4, $\mathrm{RMSE}=0.2$

Глава 3: Оценки и прогноз частот $\omega^{(i)}$ и модулей $|\mu^{(i)}|$, $\sigma=0$

Рис.: Косинус с линейной частотой

Рис.: Косинус с синусоидальной частотой

Глава 3: Оценки и прогноз частот $\omega^{(i)}$ и модулей $|\mu^{(i)}|$, $\sigma=0$

Рис.: Косинус с линейной частотой

Рис.: Косинус с синусоидальной частотой

Глава 3: Прогноз сигнала, $\sigma = 0.25$

Рис.: По последнему локальному отрезку, $m=10, \, {\rm RMSE} = 0.957$

Рис.: С помощью LocLRR SSA Forecast, $m=12,~\mathrm{RMSE}=0.278$

Оптимальная длина ЛРФ, $\sigma=0.25$

Рис.: RMSE в зависимости от длины ЛРФ, $\sigma = 0.25, \, n = 100$

Минимальная ${
m RMSE}=0.295$ достигается при прогнозе с помощью LocLRR SSA Forecast по ЛРФ размерности m=12.

Глава 3: Четыре примера

Модель:
$$s_n = \sum_{j=1}^p \cos\left(2\pi\omega_j(n) + \varphi_j\right)$$

Рассмотренные примеры:

- ullet Косинус с линейной частотой, $s_n = \cos\left(2\pi\left(\frac{n}{100}\right)^2\right)$ (обозначим $\cos(n^2)$)
- Косинус с синусоидальной частотой, $s_n = \cos\left(\frac{2\pi}{20}\left(n+5\sin\frac{2\pi n}{100}\right)\right)$ (обозначим $\cos\sin(n)$)
- Сумма косинусов с линейной и синусоидальной частотой, $s_n = \cos\left(2\pi\left(\frac{n}{100}\right)^2\right) + \cos\left(\frac{2\pi}{10}\left(n + \sin\frac{2\pi n}{100}\right)\right)$ (обозначим $\cos(\mathbf{n}^2) + \cos\sin(\mathbf{n})$)
- Сумма двух косинусов с синусоидальной частотой, $s_n = \cos\left(\frac{2\pi}{20}\left(n+\sin\frac{2\pi n}{100}\right)\right) + \cos\left(\frac{2\pi}{10}\left(n+2\sin\frac{2\pi n}{140}\right)\right) \ (\text{обозначим } \cos\sin(\mathbf{n}) + \cos\sin(\mathbf{n})\right)$

Длина ряда N=300, длина прогноза M=30.

Глава 3: Сравнение прогнозов по точности

Таблица: RMSE прогноза на примерах

S_N	σ	c = 0	last		alg	
			RMSE	m	RMSE	m
$\cos(n^2)$	0	0.689	0.717	2	0.014	3
	0.25	0.733	0.754	5	0.135	11
$\cos\sin(n)$	0	0.698	0.309	2	0.097	2
	0.25	0.741	0.438	6	0.232	7
$\cos(n^2) + \cos\sin(n)$	0	1.089	0.88	6	0.2	4
	0.25	1.117	0.958	10	0.295	12
$\cos\sin(n) + \cos\sin(n)$	0	0.908	0.587	4	0.191	5
	0.25	0.942	0.656	28	0.291	15

Заключение

Что сделано:

- Разработан алгоритм двухуровневого прогноза (LocLRR SSA Forecast)
- Разработана методика применения алгоритма LocLRR SSA Forecast к сумме частотно-модулированных косинусов с линейной и синусоидальной модуляцией
- Проведено численное исследование метода на примерах. Прогноз с помощью LocLRR SSA Forecast даёт хорошую точность. Таким образом показана перспективность построения прогноза с помощью LocLRR SSA Forecast.

Что планируется сделать:

- Провести сравнение с другими методами построения прогноза
- Расширить класс рядов, к которым применим алгоритм двухуровнего прогноза
- Выработать рекомендации по выбору параметров LocLRR SSA Forecast, реализуемые на реальных данных