DEVOIR SURVEILLÉ 3

Calculatrice interdite Mercredi 22 novembre 2023

EXERCICE 1 (5 POINTS)

Pour chaque question, placer sur le cercle les points associés aux réels données.

1.
$$\frac{\pi}{6}$$
; $\frac{\pi}{3}$; $\frac{\pi}{2}$; π

2.
$$\frac{2\pi}{3}$$
; $\frac{3\pi}{4}$; $\frac{3\pi}{2}$

3.
$$-\frac{\pi}{3}$$
; $-\frac{\pi}{2}$; $-\frac{2\pi}{3}$

CORRECTION

Exercice de cours.

EXERCICE 2 (6 POINTS)

Résoudre dans $[0;2\pi[$ les équations suivantes.

1.
$$\cos(x) = -\frac{\sqrt{2}}{2}$$

2.
$$\sin(x) = 0$$

3.
$$2\cos(x) = 1$$

4.
$$-8\sin(x) = 4\sqrt{3}$$

CORRECTION
1.
$$\cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$
 donc $\cos(\pi - \frac{\pi}{4}) = -\frac{\sqrt{2}}{2}$ et $\cos(\pi + \frac{\pi}{4}) = -\frac{\sqrt{2}}{2}$.

Les solutions de $\cos(x) = -\frac{\sqrt{2}}{2}$ dans $[0; 2\pi[$ sont $\frac{3\pi}{4}$ et $\frac{5\pi}{4}$.

2. Sur $[0; 2\pi[, \sin(x) = 0 \Leftrightarrow x = 0 \text{ ou } x = \pi]$.

3.
$$2\cos(x) = 1 \Leftrightarrow \cos(x) = \frac{1}{2}$$

Or sur $[0; 2\pi[, \cos(x) = \frac{1}{2} \Leftrightarrow x = \frac{\pi}{3} \text{ ou } x = \frac{5\pi}{3}]$.

4.
$$-8\sin(x) = 4\sqrt{3} \Leftrightarrow \sin(x) = -\frac{\sqrt{3}}{2}$$

On sait que
$$\sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}$$
 donc $\sin(\frac{5\pi}{3}) = \sin(-\frac{\pi}{3}) = -\frac{\sqrt{3}}{2}$.

Aussi, par symétrie,
$$\sin(\frac{4\pi}{3}) = \sin(\frac{5\pi}{3}) = -\frac{\sqrt{3}}{2}$$
.

Les solutions dans
$$[0; 2\pi[$$
 de $-8\sin(x) = 4\sqrt{3}$ sont $\frac{4\pi}{3}$ et $\frac{5\pi}{3}$.

EXERCICE 3 (4 POINTS)

Donner, pour chacune des courbes suivantes, l'amplitude A, la pulsation ω et la période T.

CORRECTION

Pour
$$f: A=1$$
 et $\omega=4$ donc $T=\frac{2\pi}{\omega}=\frac{2\pi}{4}=\frac{\pi}{2}$.
Pour $g: A=2$ et $\omega=2$ donc $T=\frac{2\pi}{\omega}=\frac{2\pi}{2}=\pi$.

EXERCICE 4 (5 POINTS)

Les affirmation suivantes sont-elles vraies ou fausses? Justifier.

- **1.** Si $x \le y$ alors $\sin(x) \le \sin(y)$.
- **2.** Si cos(x) = cos(y) alors x = y.
- **3.** Si $x \le 0$ alors $\sin(x) \le 0$.

4. Pour tout réel *x*, on a :

$$(\sin(x) + \cos(x))^2 + (\sin(x) - \cos(x))^2 = 2.$$

5. Pour tout réel *x*, on a :

$$\cos(x) = \sqrt{1 - \sin(x)^2}.$$

CORRECTION

- **1.** FAUX. Prenons $x = \frac{\pi}{2}$ et $y = \pi$. Nous avons $x \le y$ mais $\sin(x) > \sin(y)$.
- **2.** FAUX. Prenons $x = \frac{\pi}{2}$ et $y = -\frac{\pi}{2}$. Nous avons $\cos(x) = \cos(y) = 0$ mais $x \neq y$.
- **3.** FAUX. Si $x = -\frac{3\pi}{2}$ alors $\sin(x) = 1 > 0$.
- **4.** VRAI. On sait que, par définition, pour tout réel x, $\cos(x)^2 + \sin(x)^2 = 1$. Donc, en utilisant les identités remarquables :

$$(\sin(x) + \cos(x))^{2} + (\sin(x) - \cos(x))^{2} = \sin(x)^{2} + 2\sin(x)\cos(x) + \cos(x)^{2} + \sin(x)^{2} - 2\sin(x)\cos(x) + \cos(x)^{2}$$
$$= 2\sin(x)^{2} + 2\cos(x)^{2}$$
$$= 2$$

5. FAUX. Si $x = \pi$ alors $\cos(x) = -1$ et $\sqrt{1 - \sin(x)^2} = \sqrt{1} = 1$.