

A Simple Approach

Quang-Vinh Dinh PhD in Computer Science

Objectives

Linear Regression

Computational Graph

Batch Training

- 1) Pick all the N samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = wx^{(i)} + b \qquad \text{for } 0 \le i < N$$

3) Compute loss

$$L^{(i)} = (\hat{y}^{(i)} - y^{(i)})^2 \text{ for } 0 \le i < N$$

4) Compute derivatives

$$\frac{\partial L^{(i)}}{\partial w} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$

$$\frac{\partial L^{(i)}}{\partial b} = 2(\hat{y}^{(i)} - y^{(i)})$$
for $0 \le i < N$

5) Update

$$w = w - \eta \frac{\sum_{i} \frac{\partial L}{\partial w}^{(i)}}{N} \qquad b = b - \eta \frac{\sum_{i} \frac{\partial L}{\partial b}^{(i)}}{N}$$

Outline

SECTION 1 Linear Regression SECTION 2 **Mini-batch Training** SECTION 3 **Batch Training** SECTION 4 **Loss Functions**

Introduction

Feature	Label
area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

House price data

reatur		Label
Radio	Newspaper	≑ Sales
37.8	69.2	22.1
39.3	45.1	10.4
45.9	69.3	12
41.3	58.5	16.5
10.8	58.4	17.9
	37.8 39.3 45.9 41.3	37.8 69.2 39.3 45.1 45.9 69.3 41.3 58.5

Advertising data

Label

Label

if area=6.0,	price=?
--------------	---------

if TV=55.0, Radio=34.0, and Newspaper=62.0, price=?

Features

Footures

crim \$	zn ÷	indus \$	chas \$	nox ÷	rm 💠	age \$	dis \$	rad \$	tax \$	ptratio \$	black \$	Istat ≎	medv \$
0.00632	18	2.31	0	0.538	6.575	65.2	4.09	1	296	15.3	396.9	4.98	24
0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.9	9.14	21.6
0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.9	5.33	36.2
0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.6	12.43	22.9

Boston House Price Data

House Price Prediction

Feature	Label
area	price
6.7	8.1
4.6	5.6
3.5	4.3
5.5	6.7

House price data

]	Feature	Label	
	area	price	
	6.7	9.1	
	4.6	5.9	
	3.5	4.6	
	5.5	6.7	

House price data

 $error_i = distance(\hat{y}_i, y_i)$

Find w and b whose model has the smallest error, where
$$error = \frac{1}{N} \sum_{i} error_{i}$$

How?

Area-based house price prediction

$$\hat{y}_i = wx_i + b$$

$$L(\hat{y}_i, y_i) = (\hat{y}_i - y_i)^2$$

area	price	predicted	error
6.7	9.1	-2.238	128.55
4.6	5.9	-1.524	55.11
3.5	4.6	-1.15	33.06
5.5	6.7	-1.83	72.76

$$w = -0.34$$

$$b = 0.04$$

Area-based house price prediction

$$\hat{y}_i = wx_i + b$$

$$L(\hat{y}_i, y_i) = (\hat{y}_i - y_i)^2$$

area	price	predicted	error
6.7	9.1	8.099	1.002
4.6	5.9	5.642	0.066
3.5	4.6	4.355	0.06
5.5	6.7	6.695	0.00002

$$\mathbf{w} = 1.17$$

$$b = 0.26$$

Area-based house price prediction

$$\hat{y}_i = wx_i + b$$

$$L(\hat{y}_i, y_i) = (\hat{y}_i - y_i)^2$$

How to change w and b so that $L(\hat{y}_i, y_i)$ reduces

Understanding the loss function

6

Different b values with a fixed w value

0

-2

How to change w and b so that $L(\hat{y}_i, y_i)$ reduces

Different w values with a fixed b value

Linear equation

$$\hat{y} = wx + b$$

where \hat{y} is a predicted value, w and b are parameters and x is an input feature

Error (loss) computation

Idea: compare predicted values \hat{y} and label values y Squared loss

$$L(\hat{y}, y) = (\hat{y} - y)^2$$

Linear equation

$$\hat{y} = wx + b$$

where \hat{y} is a predicted value, w and b are parameters and x is an input feature

Error (loss) computation

Idea: compare predicted values \hat{y} and label values y Squared loss

$$L(\hat{y}, y) = (\hat{y} - y)^2$$

Find better w and b

Use gradient descent to minimize the loss function

Compute derivate for each parameter

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w} = 2x(\hat{y} - y)$$

$$\frac{\partial L}{\partial b} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b} = 2(\hat{y} - y)$$

Update parameters

$$w = w - \eta \frac{\partial L}{\partial w} \qquad b = b - \eta \frac{\partial L}{\partial b}$$

 η is learning rate

Simple example

Cheat sheet

Compute the output \hat{y} Compute the loss $\hat{y} = wx + b$ $L = (\hat{y} - y)^2$

Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) \qquad w = w - \eta \frac{\partial L}{\partial w}$$

$$\frac{\partial L}{\partial b} = 2(\hat{y} - y) \qquad b = b - \eta \frac{\partial L}{\partial b}$$

Update parameters

Given sample data

Feature	Label
area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

Simple example

Model prediction before and after the first update

Before updating

After updating

Summary (simple version)

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

$$\hat{y} = wx + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w}$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

$$\eta \text{ is learning rate}$$

***** Implementation

Cheat sheet

Compute the output \hat{y} Compute the loss

$$\hat{y} = wx + b$$

$$L = (\hat{y} - y)^2$$

Compute derivative

Update parameters

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y)$$

$$w = w - \eta \frac{\partial L}{\partial w}$$

$$\frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

```
# forward
 2 - def predict(x, w, b):
        return x*w + b
   # compute gradient
 6 - def gradient(y_hat, y, x):
        dw = 2*x*(y_hat-y)
        db = 2*(y_hat-y)
        return (dw, db)
11
    # update weights
13 - def update_weight(w, b, lr, dw, db):
        w_new = w - lr*dw
14
        b_new = b - lr*db
16
        return (w_new, b_new)
```

Computational Graph (A different viewpoint)

***** House price prediction

***** One-sample training

$$price = w * area + b$$

 $t = w * area$

***** House price prediction

***** One-sample training

w and b are usually set by random values

For example, $N(0, \sigma)$ where σ is small

***** House price prediction

***** One-sample training

Feature	Label
area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

***** House price prediction

❖ One-sample training

Update w and b

Computational graph

***** House price prediction

***** One-sample training

***** House price prediction

***** One-sample training

Feature	Label
area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

***** House price prediction

❖ One-sample training

]	Feature	Label
-	area	price
	6.7	9.1
	4.6	5.9
	3.5	4.6
	5.5	6.7

Updated a and b values help to reduce the L value

***** One-sample training

Feature	Label	
area	price	
6.7	9.1	
4.6	5.9	
3.5	4.6	
5.5	6.7	
	1	
illillill	Lacate	

column column
index=0 index=1

```
1 # data preparation
 2 import numpy as np
   import matplotlib.pyplot as plt
 4
   def get_column(data, index):
        result = [row[index] for row in data]
 6
        return result
 8
   data = np.genfromtxt('data.csv',
                          delimiter=',').tolist()
10
11
12 x_data = get_column(data, 0)
13 y_data = get_column(data, 1)
14 N = len(x data)
15
16 print(f'areas: {x_data}')
   print(f'prices: {y_data}')
18 print(f'data_size: {N}')
areas: [6.7, 4.6, 3.5, 5.5]
prices: [9.1, 5.9, 4.6, 6.7]
data_size: 4
```


***** House price prediction

***** One-sample training

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

$$\hat{y} = wx + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w} \qquad b = b - \eta \frac{\partial L}{\partial b}$$

```
# forward
 2 - def predict(x, w, b):
        return x*w + b
    # compute gradient
 6 - def gradient(y_hat, y, x):
       dw = 2*x*(y_hat-y)
    db = 2*(y_hat-y)
       return (dw, db)
10
11
    # update weights
   def update_weight(w, b, lr, dw, db):
14
       w new = w - 1r*dw
        b_new = b - lr*db
15
16
        return (w_new, b_new)
17
```

```
❖ One-sample training
                                 Initialize w and b
                                 Compute output \hat{y}
      Training
                                    Compute loss
        data
               Pick sample
                  (x, y)
                                  Compute derivate
                                  for each parameter
                                  Update parameter
         x=area and y=price
```

```
# init weights
    b = 0.04
    w = -0.34
    lr = 0.01
    # how long
    epoch_max = 10
 9 - for epoch in range(epoch_max):
        for i in range(data_size):
10 -
            # get a sample
11
            # ...
12
13
            # predict y_hat
14
15
            # ...
16
            # compute loss
17
18
            # ...
19
            # compute gradient
21
            # ...
22
            # update weights
23
24
25
```



```
# init weights
    b = 0.04
    w = -0.34
    lr = 0.01
    # how long
    epoch_max = 10
    data_size = 4
10 - for epoch in range(epoch_max):
        for i in range(data_size):
11 -
            # get a sample
12
            x = areas[i]
            y = prices[i]
15
            # predict y_hat
16
            y_hat = predict(x, w, b)
17
18
            # compute loss
19
20
            loss = (y_hat-y)*(y_hat-y)
21
22
            # compute gradient
            (dw, db) = gradient(y_hat, y, x)
23
24
            # update weights
            (w, b) = update_weight(w, b, lr, dw, db)
26
```

- ***** House price prediction
 - ***** One-sample training

80 60 40 20 0 10 15 20 25 30 35 5 0 iteration 0.8 0.7 0.6 0.5 055 0.4 0.3 0.2 0.1 0.0 15 25 35 5 10 20 30 iteration

Quiz 1: Construct for the following data

Features		Label
Radio	Newspaper	\$ Sales
37.8	69.2	22.1
39.3	45.1	10.4
45.9	69.3	12
41.3	58.5	16.5
10.8	58.4	17.9

Outline

SECTION 1

Linear Regression

SECTION 2

Mini-batch Training

SECTION 3

Batch Training

SECTION 4

Loss Functions

- 1) Pick m samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = wx^{(i)} + b \qquad \text{for } 0 \le i < m$$

3) Compute loss

$$L^{(i)} = (\hat{y}^{(i)} - y^{(i)})^2 \text{ for } 0 \le i < m$$

4) Compute derivatives

$$\frac{\partial L^{(i)}}{\partial w} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$

$$\frac{\partial L^{(i)}}{\partial b} = 2(\hat{y}^{(i)} - y^{(i)})$$
for $0 \le i < m$

5) Update

$$w = w - \eta \frac{\sum_{i} \frac{\partial L}{\partial w}^{(i)}}{m} \qquad b = b - \eta \frac{\sum_{i} \frac{\partial L}{\partial b}^{(i)}}{m}$$

Compute derivate for w and b

mini-batch m = 2

Compute derivate for w and b

mini-batch m = 2

Compute derivate for w and b

Compute derivate for w and b

Compute derivate for w and b

***** House price prediction

❖ m-sample training (1<m<N)

- 1) Pick m samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = wx^{(i)} + b \qquad \text{for } 0 \le i < m$$

3) Compute loss

$$L = \frac{1}{m} \sum_{i} (\hat{y}^{(i)} - y^{(i)})^2$$

4) Compute derivatives

$$\frac{\partial L^{(i)}}{\partial w} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$

$$\frac{\partial L^{(i)}}{\partial b} = 2(\hat{y}^{(i)} - y^{(i)})$$
for $0 \le i < m$
5) Update

5) Update

$$w = w - \eta \frac{\sum_{i} \frac{\partial L^{(i)}}{\partial w}}{m} \qquad b = b - \eta \frac{\sum_{i} \frac{\partial L^{(i)}}{\partial b}}{m}$$

***** House price prediction

* m-sample training (1<m<N)

- ***** House price prediction
 - **❖** m-sample training (1<m<N)

Feature	Label
area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

m = 2

$$\frac{sum(L_b')}{m} = -18.762$$

$$\frac{\partial L}{\partial b} = \begin{bmatrix} -22.676\\ -14.848 \end{bmatrix}$$

b = 0.04

$$t = wx \hat{y} = t + b L = (\hat{y} - y)^2$$

- ***** House price prediction
 - **❖** m-sample training (1<m<N)

Feature	Label
area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

m = 2

Update w and b

$$w = w - \eta * \frac{\partial L}{\partial w}$$

$$b = b - \eta * \frac{\partial L}{\partial b}$$

Learning rate $\eta = 0.01$

$$y = \begin{bmatrix} 9.1 \\ 5.9 \end{bmatrix}$$

$$w = -0.34 - (0.01 * (-110.115)) = 0.761$$

$$b = 0.04 - (0.01 * (-18.762)) = 0.227$$

eplace
$$\rightarrow$$
 b = 0.04

$$\frac{\partial L}{\partial b} = -18.762$$

$$t = wx$$
 $\hat{y} = t + b$ $L = (\hat{y} - y)^2$

***** House price prediction

* m-sample training (1<m<N)

Outline

SECTION 1

Linear Regression

SECTION 2

Mini-batch Training

SECTION 3

Batch Training

SECTION 4

Loss Functions

- 1) Pick all the N samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = wx^{(i)} + b \qquad \text{for } 0 \le i < N$$

3) Compute loss

$$L^{(i)} = (\hat{y}^{(i)} - y^{(i)})^2 \text{ for } 0 \le i < N$$

4) Compute derivatives

$$\frac{\partial L^{(i)}}{\partial w} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$

$$\frac{\partial L^{(i)}}{\partial b} = 2(\hat{y}^{(i)} - y^{(i)})$$
for $0 \le i < N$

5) Update

$$w = w - \eta \frac{\sum_{i} \frac{\partial L}{\partial w}^{(i)}}{N} \qquad b = b - \eta \frac{\sum_{i} \frac{\partial L}{\partial b}^{(i)}}{N}$$

***** House price prediction

N-sample training

- 1) Pick all the N samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$ $\hat{y}^{(i)} = wx^{(i)} + b$ for $0 \le i < N$
- 3) Compute loss

$$L = \frac{1}{N} \sum_{i} (\hat{y}^{(i)} - y^{(i)})^2$$

4) Compute derivatives

$$\frac{\partial L^{(i)}}{\partial w} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$

$$\frac{\partial L^{(i)}}{\partial b} = 2(\hat{y}^{(i)} - y^{(i)})$$
for $0 \le i < N$

5) Update

$$w = w - \eta \frac{\sum_{i} \frac{\partial L^{(i)}}{\partial w}}{N} \qquad b = b - \eta \frac{\sum_{i} \frac{\partial L^{(i)}}{\partial b}}{N}$$

***** House price prediction

N-sample training

***** House price prediction

N-sample training

$$\frac{sum(\frac{\partial L}{\partial w})}{4} = -88.5775$$

$$\frac{sum(\frac{\partial L}{\partial b})}{4} = -16.521$$

***** House price prediction

N-sample training

Update w and b

$$w = w - \eta * \frac{\partial L}{\partial w}$$

$$b = b - \eta * \frac{\partial L}{\partial b}$$

Learning rate $\eta = 0.01$

$$w = -0.34 - (0.01 * (-88.5775)) = 0.54$$

$$b = 0.04 - (0.01 * (-16.521)) = 0.205$$

***** House price prediction

***** N-sample training

Losses for 30 iterations

Model updating for different iterations

Extension

	Featur	es	Label
TV	≑ Radio	Newspaper	Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	12
151.5	41.3	58.5	16.5
180.8	10.8	58.4	17.9

Advertising data

Model:
$$\hat{y} = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

Sale = $w_1 * TV + w_2 * Radio + w_3 * Newspaper + b$

Linear Regression

❖ General formula

Feature	Label
area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

House price data

Model:
$$\hat{y} = w_1 x_1 + b$$

price = $a * area + b$

	Featur	es	Label
TV	≑ Radio	Newspaper	Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	12
151.5	41.3	58.5	16.5
180.8	10.8	58.4	17.9

Advertising data

Model:
$$\hat{y} = w_1x_1 + w_2x_2 + w_3x_3 + b$$

Sale = $w_1 * TV + w_2 * Radio + w_3 * Newspaper + b$

1) Pick a sample (x_1, x_2, x_3, y) from training data

2) Compute the output \hat{y}

$$\hat{y} = w_1 * TV + w_2 * R + w_3 * N + b$$

$$\hat{y} = w_1 * x_1 + w_2 * x_2 + w_3 * x_3 + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w_1} = 2x_1(\hat{y} - y) \qquad \frac{\partial L}{\partial w_3} = 2x_3(\hat{y} - y)$$

$$\frac{\partial L}{\partial w_2} = 2x_2(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

5) Update parameters

$$w_1 = w_1 - \eta \frac{\partial L}{\partial w_1} \qquad w_3 = w_3 - \eta \frac{\partial L}{\partial w_3}$$

$$w_2 = w_2 - \eta \frac{\partial L}{\partial w_2} \qquad b = b - \eta \frac{\partial L}{\partial b}$$

Linear Regression

Feature	es	Label
Radio	Newspaper	♦ Sales
37.8	69.2	22.1
39.3	45.1	10.4
45.9	69.3	12
41.3	58.5	16.5
10.8	58.4	17.9
	♦ Radio 37.8 39.3 45.9 41.3	37.8 69.2 39.3 45.1 45.9 69.3 41.3 58.5

Advertising data

Model

Sale =
$$w_1 * TV + w_2 * Radio + w_3 * Newspaper + b$$

 $\hat{y} = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$

1) Pick a sample (x_1, x_2, x_3, y) from training data

2) Compute the output \hat{y}

$$\hat{y} = w_1 * TV + w_2 * R + w_3 * N + b$$

$$\hat{y} = w_1 * x_1 + w_2 * x_2 + w_3 * x_3 + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w_1} = 2x_1(\hat{y} - y) \qquad \frac{\partial L}{\partial w_3} = 2x_3(\hat{y} - y)$$

$$\frac{\partial L}{\partial w_2} = 2x_2(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

5) Update parameters

$$w_1 = w_1 - \eta \frac{\partial L}{\partial w_1} \qquad w_3 = w_3 - \eta \frac{\partial L}{\partial w_3}$$

$$w_2 = w_2 - \eta \frac{\partial L}{\partial w_2} \qquad b = b - \eta \frac{\partial L}{\partial b}$$

```
1 # compute output and loss
 2 def predict(x1, x2, x3, w1, w2, w3, b):
       return w1*x1 + w2*x2 + w3*x3 + b
 3
 4 def compute_loss(y_hat, y):
       return (y_hat - y)**2
 6
 7 # compute gradient
 8 def compute gradient wi(xi, y, y hat):
       dl_dwi = 2*xi*(y_hat-y)
       return dl_dwi
10
   def compute_gradient_b(y, y_hat):
       dl_db = 2*(y_hat-y)
      return dl_db
13
14
15 # update weights
   def update_weight_wi(wi, dl_dwi, lr):
       wi = wi - lr*dl dwi
       return wi
18
19 def update_weight_b(b, dl_db, lr):
       b = b - lr*dl db
20
       return b
21
```

	I cavar		Laber
TV	≑ Radio	Newspaper	Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	12
151.5	41.3	58.5	16.5
180.8	10.8	58.4	17.9

Label

Features

```
def initialize_params():
        w1 = random.gauss(mu=0.0, sigma=0.01)
 2
 3
        w2 = random.gauss(mu=0.0, sigma=0.01)
        w3 = random.gauss(mu=0.0, sigma=0.01)
 4
        b = 0
 5
 6
        return w1, w2, w3, b
 7
 8
   # initialize model's parameters
10 w1, w2, w3, b = initialize_params()
11 print(w1, w2, w3, b)
0.01609506469549467 0.00607778501208891 0.0023344573891806507 0
```

```
1 import numpy as np
   import random
 3
   def get_column(data, index):
        result = [row[index] for row in data]
 5
 6
        return result
    data = np.genfromtxt('advertising.csv',
                         delimiter=',',
 9
                         skip header=1).tolist()
10
11
   # get tv (index=0)
   tv_data = get_column(data, 0)
14
   # get radio (index=1)
   radio_data = get_column(data, 1)
17
   # get newspaper (index=2)
    newspaper data = get column(data, 2)
20
   # get sales (index=0)
22 sales_data = get_column(data, 3)
```

Outline

SECTION 1

Linear Regression

SECTION 2

Mini-batch Training

SECTION 3

Batch Training

SECTION 4

Loss Functions (Optional)

Discussion 1: Is it OK to use the following loss function?

$$L = \frac{1}{2}(\hat{y} - y)^2$$

Discussion 2: if so, construct formulas

Discussion 3: What about the following loss function?

$$L = \frac{1}{2}(y - \hat{y})^2$$

Discussion 4: Construct the connection between the two following losses?

$$L_1 = \frac{1}{2}(\hat{y} - y)^2$$
 $L_2 = (\hat{y} - y)^2$

$$\hat{y} = wx + b$$

Discussion 5: Can we remove b?

$$\hat{y} = wx + b$$

Discussion 5: Can we remove b?

