2 Методи розв'язання нелінійних рівнянь

Постановка задачі. Нехай маємо рівняння f(x) = 0, \bar{x} – його розв'язок, тобто $f(\bar{x}) = 0$.

Задача розв'язання цього рівняння розпадається на етапи:

- 1. Існування та кількість коренів.
- 2. Відділення коренів, тобто розбиття числової вісі на інтервали, де знаходиться один корінь.
- 3. Обчислення кореня із заданою точністю ε .

Для розв'язання перших двох задач використовуються методи математичного аналізу та алгебри, а також графічний метод. Далі розглядаються методи розв'язання третього епату.

2.1 Метод ділення навпіл

Припустимо, що на [a, b] знаходиться лише один корінь рівняння

$$f(x) = 0 (1)$$

для $f(x) \in C([a,b])$ який необхідно визначити. Нехай f(a)f(b) < 0. Припустимо, що f(a) > 0, f(b) < 0. Покладемо $x_1 = \frac{a+b}{2}$ і обчислимо $f(x_1)$. Якщо $f(x_1) < 0$, то шуканий корінь \bar{x} знаходиться на інтервалі (a,x_1) . Якщо ж $f(x_1) > 0$, то $\bar{x} \in (x_1,b)$. З двох інтервалів (a,x_1) і (x_1,b) вибираємо той, на границях якого f(x) має різні знаки, знаходимо точку x_2 – середину вибраного інтервалі, обчислюємо $f(x_2)$, і повторюємо вказаний процес.

В результаті отримуємо послідовність інтервалів, що містять шуканий корінь \bar{x} , причому довжина кожного натсупного інтервалу вдвічі менше.

Цей процес продовжується доки довжина $b_n - a_n$ отриманого інтервалу (a_n, b_n) не стане меншою за 2ε . Тоді x_{n+1} , як середина інтервалу (a_n, b_n) , пов'язана з \bar{x} нерівністю

$$|x_{n+1} - \bar{x}| < \varepsilon. \tag{2}$$

За теоремою Больцано-Коші, ця умова буде виконуватися для деякого n. Справді, оскільки

$$|b_{k+1} - a_{k+1}| = \frac{1}{2}|b_k - a_k|,$$

TO

$$|x_{n+1} - \bar{x}| \le \frac{1}{2^{n+1}}(b - a). \tag{3}$$

Звідси ж отримуємо нерівність для обчислення кількості ітерацій n для виконання умови (2):

$$n = n(\varepsilon) \ge \left[\log\left(\frac{b-a}{\varepsilon}\right)\right] + 1.$$

Степінь збіжності лінійна, тобто геометричної прогресії зі знаменником q = 1/2.

Переваги методу: простота, надійність. Недоліки методу: низька швидкість збіжності, метод не узагальнюється на системи.

2.2 Метод простої ітерації

Спочатку рівняння

$$f(x) = 0 (4)$$

замінюється еквівалентним

$$x = \varphi(x). \tag{5}$$

Ітераційний процес має вигляд

$$x_{n+1} = \varphi(x_n), \quad n = 0, 1, \dots \tag{6}$$

Початкове наближення x_0 задається.

Для збіжності велике значення має вибір функції $\varphi(x)$. Перший спосіб заміни рівняння полягає у відділенні змінної з якогось члена рівняння. Більш продуктивним є перехід від рівняння (4) до (5) з функцією $\varphi(x) = x + \tau(x) f(x)$, де $\tau(x)$ – знакостала функція на тому відрізку, де шукаємо корінь.

Кажуть, що ітераційний метод збігається, якщо $\lim_{k\to\infty} x_k = \bar{x}$.

Далі $U_r = \{x : |x-a| \le r\}$ відрізок довжини 2r з серединою в точці a. З'ясуємо умови, при яких збігається метод простої ітерації.

Теорема 2.2.1. Якщо $\max_{x \in [a,b]=U_r} |\varphi'(x)| \le q < 1$, то метод простої ітерації збігається і має місце оцінка

$$|x_n - \bar{x}| \le \frac{q^n}{1 - q} |x_0 - x_1| \le \frac{q^n}{1 - q} (b - a) \tag{7}$$

Доведення 1. Нехай $x_{k+1}, x_k \in U_r$. Тоді

$$|x_{k} - x_{k-1}| = |\varphi(x_{k}) - \varphi(x_{k-1})| = |\varphi'(\xi_{k})(x_{k} - x_{k-1})| \le$$

$$\xi_{k} = x_{k} + \theta_{k}((x_{k+1}) - x_{k}), \quad 0 < \theta_{k} < 1$$

$$\le |\varphi'(\xi_{k})| \cdot |x_{k} - x_{k-1}| \le q|x_{k} - x_{k-1}| = \dots = q^{k}|x_{1} - x_{0}|$$

$$|x_{k+p} - x_{k}| = |x_{k+p} - x_{k+p-1}| + \dots + |x_{k+1} - x_{k}| \le |x_{k+p} - x_{k+p-1}| + \dots + |x_{k+1} - x_{k}| \le$$

$$\le (q^{k+p-1} + q^{k+p-2} + \dots + q^{k})|x_{1} - x_{0}| = \frac{q^{k} - q^{k+p-1}}{1 - q}|x_{1} - x_{0}| \xrightarrow[k \to \infty]{} 0$$

Бачимо, що $\{x_k\}$ – фундаментальна послідовність, а тому збіжна. При $p \to \infty$ в (1) отримуємо (7).

Визначимо кількість ітерацій для досягнення точності ε . З оцінки в теоремі 2.2.1 отримуємо

$$|x_n - \bar{x}| \le \frac{q^n}{1 - q}(b - a) < \varepsilon \Rightarrow n(\varepsilon) = n \ge \left\lceil \frac{\ln\left(\frac{\varepsilon(1 - q)}{b - a}\right)}{\ln q} \right\rceil + 1.$$

Практично ітераційний процес зупиняємо при $|x_n - x_{n-1}| < \varepsilon$, але ця умова не гарантує $|x_n - \bar{x}| < \varepsilon$.

Зауваження 1. Умова збіжності методу може бути замінена на умову Ліпщиця

$$|\varphi(x) - \varphi(y)| \le q|x - y|, \quad 0 < q < .1$$

Переваги методу: простота, при q < 1/2 метод збігається швидше ніж метод ділення навпіл, метод узагальнюєтсья на системи. Недоліки методу: при q > 1/2 збігається повільніше ніж метод ділення навпіл, виникають труднощі при звдеені f(x) = 0 до $\varphi(x) = x$.

2.3 Метод релаксації

Якщо в методі простої ітерації для рівняння $x = x + \tau f(x) \equiv \varphi(x)$ вибрати $\tau(x) = \tau = \mathrm{const}$, то ітераційний процес набуває вигляду

$$x_{n+1} = x_n + \tau f(x_n), \quad n = 0, 1, \dots$$
 (8)

де x_0 задано.

Метод можна записати у вигляді $\frac{x_{n+1}-x_n}{\tau}=f(x_n)$. Оскільки $phi'(x)=1+\tau f'(x)$, то метод збігається при умові

$$|\varphi'(x)| = |1 + \tau f'(x)| \le q < 1.$$

Нехай f'(x) < 0, тоді (7) запишеться у вигляді $-q \le 1 + \tau f'(x) \le q < 1$. Звідси

$$\tau |f'(X_k)| \le 1 + q < 2 \quad \Rightarrow \quad 0 < \tau < \frac{2}{|f'(x)|}.$$

Поставимо задачу знаходження au для якого $q=q(au) o \min$. Для того щоб вибрати оптимальний параметр au, розглянемо рівняння для похибки $z_k=x_k \bar{x}$.

Підставивши $x_k = \bar{x} + z_k$ в (8), отримаємо

$$z_{k+1} = z_k + \tau f(\bar{x} + z_k).$$

В припущенні $f(x) \in C^{(1)}([a,b])$ з теореми про середнє маємо

$$f(\bar{x} + z_k) = f(\bar{x}) + z_k f'(\bar{x} + \theta z_k) = z_k f'(\bar{x} + \theta z_k) = z_k f'(\xi_k)$$

$$z_{k+1} = z_k + \tau f'(\xi_k) \cdot z_k$$

$$|z_{k+1}| \le |1 + \tau f'(\xi_k)| \cdot |z_k| \le \max_{U} |1 + \tau f'(\xi_k)| \cdot |z_k|$$

$$|z_{k+1}| \le \max\{|1 - \tau M_1|, |1 - \tau m_1|\} \cdot |z_k|$$

$$m_1 = \min_{[a,b]} |f'(x)|, \quad M_1 = \max_{[a,b]} |f'(x)|$$

Таким чином, задача вибору оптимального параметра зводиться до знаходження au для якого функція

$$q(\tau) = \max\{|1 - \tau M_1|m|1 - \tau m_1|\}$$

набуває мінімального значення.

Точка мінімуму визначається умовою $|1 - \tau M_1| = |1 - \tau m_1|$. Тому

$$1 - \tau_0 m_1 = \tau_0 M_1 - 1 \Rightarrow \tau_0 = \frac{2}{M_1 + m_1} < \frac{2}{|f'(x)|}$$

При цьому значенні au маємо

$$q(\tau_0) = \rho_0 = \frac{M_1 - m_1}{M_1 + m_1}.$$

Тоді для похибки виконується оцінка

$$|x_n - \bar{x}| \le \frac{(\rho_0)^n}{1 - \rho_0} (b - a) < \varepsilon$$

Кількість ітерацій

$$n = n(\varepsilon) \ge \left[\frac{(1 - \rho_0) \ln \varepsilon}{(b - a) \ln \rho_0} \right] + 1$$

Задача 1. Дати інтерпретацію методу простої ітерації для випадків:

$$0 < \varphi'(x) < 1; \quad -1 < \varphi'(x) < 0; \quad \varphi'(x) < -1; \quad \varphi'(x) > 1.$$

Задача 2. Знайти оптимальне $\tau = \tau_0$ для методу релаксації при f'(x) > 0.

2.4 Метод Ньютона (дотичних)

Припустимо, що рівняння f(x) = 0 має простий дійсний корінь \bar{x} , тобто $f(\bar{x}) = 0$, $f'(\bar{x}) \neq 0$. Нехай виконуються умови $f(x) \in C^{(1)}([a,b])$, $f(a) \cdot f(b) < 0$, тоді

$$0 = f(\bar{x}) = f(x_k + \bar{x} - x_k) = f(x_k) + f'(\xi_k)(\bar{x} - x_k),$$

де $\xi_k = x_k + \theta_k(\bar{x} - x_k)$, $0 < \theta_k < 1$, $\xi_k \approx x_k$. Тому наступне наближення виберемо з рівняння

$$f(x_k) + f'(x_k)(x_{k+1} - x_k) = 0.$$

Звідси маємо ітераційний процес

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(X_k)}, \quad k = 0, 1, 2, \dots, \quad x_0$$
задане.

Метод Ньютона ща називають методом лінеаризації або методом дотичних.

Задача 3. Дати геометричну ынтерпретацыю методу Ньютона.

Метод Ньютона можна інтерпретувати як метод простої ітерації з

$$\varphi(x) = x - \frac{f(x)}{f'(x)}$$
, тобто $\tau(x) = -\frac{1}{f'(x)}$.

Тому $\varphi'(x) = 1 - \frac{f'(x)f'(x) - f(x)f''(x)}{(f'(x))^2} = \frac{f(x)f''(x)}{(f'(x))^2}$. Якщо \bar{x} корынь f, то $\varphi'(x) = 0$, тому знайдеться окыл кореня у якому

$$|\varphi'(x)| = \left| \frac{f(x)f''(x)}{(f'(x))^2} \right| < 1.$$

Це означає, що збіжність методу Ньютона залежить від вибору x_0 .

Недоліком методу Ньютона є необхідність обчислювати на кожній ітерації не тільки значення функції, а й похідної.