Aperçu sur les modèles de trafic

Plan

- Modèle de trafic
- * Les coûts
- * L'évaluation de quoi
- ***** Etapes

- * 1 : Etape de génération : flux émis par zones d'émission
- * 2 : Etape de distribution : répartition des flux entre les origines O et les destinations D (OD)
- 3 : Choix modal : pour chaque OD, répartition des flux par modes
- * 4 : Choix d'itinéraires : Pour chaque OD et mode, répartition par itinéraire

1 : L 'étape de génération

- * Pour relier les flux émis à la population de la zone, à sa population et à sa richesse
- $O_i = k P_i r_i^a$
- * O_i: émission de flux de la zone i, par unité de temps et par habitant
- * r_i: revenu moyen par habitant en zone i
- * P_i: population de la zone i
- * Eventuellement un facteur spécifique IDF
- * k, a : paramètres à caler

2 : L'étape de distribution

- * Pour relier les caractéristiques des zones aux flux par zone origine à zone destination
- $T_{ij}=k*O_i*D_j*f(C_{ij})$
- * T_{ij} est le flux de i vers j
- * O_i est 1 'émission de la zone i
- * D_i est 1 'attraction de la zone j
- * C_{ij}: coût généralisé de déplacement de i à j
- * f : une fonction décroissante (impédance)

Le coût généralisé d'un déplacement

- * Deux freins à la demande de déplacement de i à j : le prix p_{ij} et le temps passé t_{ij}
- * Si une heure de temps passé supplémentaire a le même effet que z euros de prix supplémentaire sur la limitation de la demande, on appelle z la valeur du temps
- * Le coût généralisé de base est alors :
- $*C_{ij} = p_{ij} + ValTemps * t_{ij}$

La valeur du temps

- * C'est un taux marginal de substitution entre argent et temps
- Elle dépend principalement du motif du déplacement
- * LOISIR: faible environ 15 E/h
- * PRO: élevée environ 40 E/h
- * Et, de manière moins prononcée de la distance du trajet (+ faible (-20%) à courte distance)

- * La fréquence (ou intervalle)
- * La minute repère au départ
- * L'heure ronde
- * La pénalisation des correspondances
- * La pénalisation des retards

- Souvent un terme de type CG=ln(a+b*fréquence)
- Beaucoup d'effet pour 1 fréquence en plus s'il y en a peu à la base
- * Pas beaucoup s'il y en a déjà beaucoup

La minute repère au départ

- * Facilite la mémorisation
- * 5 (non fréquent) à 7 mn (fréquent) en motif PRO
- ★ 3 (non fréquent) à 7 mn (fréquent) en motif LOISIRS
- * (passenger demand forecast handbook)
- ★ Trajets > 30 km
- ***** Court = 1 train par heure
- * Fréquent = 2 trains par heure et +

Minute à l'arrivée

* Probablement peu importante en elle-même, mais une dispersion de celle-ci rend les correspondances de mauvaise qualité

Heure ronde

* Environ équivalent à 2 minutes

- ** Le temps passé en correspondance est souvent pénible (bagages, peur de rater la correspondance, effort, ...)
- * Pénalité
- * Variable selon les modèles
- * Fois 2 ou 3 souvent voire pire

La fiabilité

- * Les retards sont à pénaliser
- * Environ un facteur 3

Modèle gravitaire

- *: $T_{ij} = k * O_i * D_j * f(C_{ij})$
- ***** Tous modes
- * Fonction gravitaire : $f(C_{ij}) = 1/C_{ij}^b$
- * b est un paramètre à caler
- * b un peu en dessous de 2
- * Comme Newton et la pomme...

3 : Partage modal

- ** Pour simuler la part des flux sur une OD qui emprunte chaque mode de transport
- * Logit
- * Prix temps

Logit

- * Part modale du mode 1 =
- **≈** Exp (- mu*CG1)
- * Divisé par
- ** Somme de Exp (-mu*CG1)+ exp (-mu*CG2)+ exp(-mu*CG3)...
- **✷** Somme des parts modales = 100%

Part du mode 1 selon la valeur de μ et la différence de coût généralisé

Un exemple : modèle prix temps TGV/air

- * C_f et C_a : coûts généralisés fer et air de l'individu i
- * hi est la valeur du temps de l'individu i
- * i choisit le fer si sa valeur du temps hi est inférieure à la valeur pivot haf
- $*h^{i} < h_{af} = (p_{a} p_{f}) / (t_{f} t_{a})$
- * % fer= Prob(h<h_{af})

Le modèle prix temps de partage modal air fer

4 : Le choix d'itinéraires

- * Pour affecter les usagers sur des itinéraires
- En interurbain, on utilise souvent la loi d'Abraham
- $*T_1/T_2 = (CG_1/CG_2)^{-A}$
- * T_i: trafic de 1 'itinéraire i
- * CG_i: coût généralisé de l'itinéraire i
- * A : coefficient à caler
- * Ou du LOGIT

- * Le temps de trajet et donc le coût généralisé dépendent de la charge du réseau
- * Les réseaux sont fortement maillés, donc les possibilités d'itinéraires sont nombreuses
- On a donc recours à une formulation d'équilibre, dite premier principe de Wardrop

- *A 1 'équilibre, pour toute O/D, les coûts généralisés sur chaque itinéraire UTILISE, sont inférieurs ou égaux à ceux des itinéraires NON UTILISES
- *Si, pour une O/D, plusieurs itinéraires sont utilisés, leurs coûts généralisés sont égaux

- * Type de coûts:
- * Possession du matériel roulant
- ***** Conduite
- * Accompagnement
- * Energie
- * Maintenance du matériel roulant
- ***** Commercialisation
- * Divers (nettoyage, escale, structure...)
- * Et le péage

- * Dépendant du temps :
- * Possession du matériel roulant, conduite, accompagnement
- * Dépendant de la distance :
- * Maintenance du matériel, énergie
- * Dépendant du nombre de voyageurs :
- ***** Commercialisation
- * Dépendant de RFF:
- * Péage

- ** Le transporteur est doublement gagnant avec la vitesse
- * Plus de trafic voyageurs, payant plus cher
- Moins de coûts d'exploitation (car moins de temps)
- ** Malheureusement, il faut s'arrêter de temps en temps en gare...

Evaluer un horaire

- * Evaluation différentielle
- * Variante A par rapport à la variante B
- * Evaluation socio-économique (collectivité)
- **Ou Financière (acteurs : RFF, transporteurs, voyageurs, chargeurs,...)
- ** Périmètre : Grandes Lignes, Chemin de fer, Chemin de fer + autocars...

Acteurs

- * Voyageur, chargeurs
- ***** Transporteurs
- * Externalités
- # Gestionnaire infra (péage, maintenance)