Project: No-show appointments data analysis

Table of Contents

- Introduction
- Data Wrangling
- Exploratory Data Analysis
- Conclusions

1. Introduction

This No-show appointments dataset collects information from 100k medical appointments in Brazil and is focused on the question of whether or not patients show up for their appointment. A number of characteristics about the patient are included in each row. including: • 'ScheduledDay' tells us on what day the patient set up their appointment. • 'Neighborhood' indicates the location of the hospital. • 'Scholarship' indicates whether or not the patient is enrolled in Brasilian welfare program Bolsa

• 'Scholarship' indicates whether or not the patient is enrolled in Brasilian welfare program Bolsa Família. (NB: the encoding of the last column: it says 'No' if the patient showed up to their appointment, and 'Yes' if they did not show up.) The questions I would like to answer with these data are: -What proportion of patients show up for their appointment? -What are the factors that are strongly correlated with patients' liklihood of whowing up at hospital? -Can we predict if a patient will show up for their scheduled appointment based on these factors?

```
In [182]: # import statements
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   import statsmodels.api as sm
   % matplotlib inline
```

2. Data Wrangling

2.1. Load data

```
In [161]: df=pd.read_csv('noshowappointments-kagglev2-may-2016.csv')
```

2.2. Read data

In [162]: df

Out[162]:

	PatientId	AppointmentID	Gender	ScheduledDay	AppointmentDay	Age	Neighbourhood
0	2.987250e+13	5642903	F	2016-04- 29T18:38:08Z	2016-04- 29T00:00:00Z	62	JARDIM DA PENHA
1	5.589980e+14	5642503	M	2016-04- 29T16:08:27Z	2016-04- 29T00:00:00Z	56	JARDIM DA PENHA
2	4.262960e+12	5642549	F	2016-04- 29T16:19:04Z	2016-04- 29T00:00:00Z	62	MATA DA PRAIA
3	8.679510e+11	5642828	F	2016-04- 29T17:29:31Z	2016-04- 29T00:00:00Z	8	PONTAL DE CAMBURI
4	8.841190e+12	5642494	F	2016-04- 29T16:07:23Z	2016-04- 29T00:00:00Z	56	JARDIM DA PENHA
5	9.598510e+13	5626772	F	2016-04- 27T08:36:51Z	2016-04- 29T00:00:00Z	76	REPÚBLICA
6	7.336880e+14	5630279	F	2016-04- 27T15:05:12Z	2016-04- 29T00:00:00Z	23	GOIABEIRAS
7	3.449830e+12	5630575	F	2016-04- 27T15:39:58Z	2016-04- 29T00:00:00Z	39	GOIABEIRAS
8	5.639470e+13	5638447	F	2016-04- 29T08:02:16Z	2016-04- 29T00:00:00Z	21	ANDORINHAS
9	7.812460e+13	5629123	F	2016-04- 27T12:48:25Z	2016-04- 29T00:00:00Z	19	CONQUISTA
10	7.345360e+14	5630213	F	2016-04- 27T14:58:11Z	2016-04- 29T00:00:00Z	30	NOVA PALESTINA
11	7.542950e+12	5620163	M	2016-04- 26T08:44:12Z	2016-04- 29T00:00:00Z	29	NOVA PALESTINA
12	5.666550e+14	5634718	F	2016-04- 28T11:33:51Z	2016-04- 29T00:00:00Z	22	NOVA PALESTINA
13	9.113950e+14	5636249	M	2016-04- 28T14:52:07Z	2016-04- 29T00:00:00Z	28	NOVA PALESTINA
14	9.988470e+13	5633951	F	2016-04- 28T10:06:24Z	2016-04- 29T00:00:00Z	54	NOVA PALESTINA
15	9.994839e+10	5620206	F	2016-04- 26T08:47:27Z	2016-04- 29T00:00:00Z	15	NOVA PALESTINA
16	8.457440e+13	5633121	M	2016-04- 28T08:51:47Z	2016-04- 29T00:00:00Z	50	NOVA PALESTINA
17	1.479500e+13	5633460	F	2016-04- 28T09:28:57Z	2016-04- 29T00:00:00Z	40	CONQUISTA
18	1.713540e+13	5621836	F	2016-04- 26T10:54:18Z	2016-04- 29T00:00:00Z	30	NOVA PALESTINA
19	7.223290e+12	5640433	F	2016-04- 29T10:43:14Z	2016-04- 29T00:00:00Z	46	DA PENHA

NOVA PALESTINA	30	2016-04- 29T00:00:00Z	2016-04- 27T07:51:14Z	F	5626083	6.222570e+14	20
CONQUISTA	4	2016-04- 29T00:00:00Z	2016-04- 27T10:50:45Z	F	5628338	1.215480e+13	21
CONQUISTA	13	2016-04- 29T00:00:00Z	2016-04- 25T13:29:16Z	М	5616091	8.632300e+14	22
CONQUISTA	46	2016-04- 29T00:00:00Z	2016-04- 28T10:27:05Z	F	5634142	2.137540e+14	23
TABUAZEIRO	65	2016-04- 29T00:00:00Z	2016-04- 29T14:19:19Z	F	5641780	8.734860e+12	24
CONQUISTA	46	2016-04- 29T00:00:00Z	2016-04- 26T15:04:17Z	М	5624020	5.819370e+12	25
BENTO FERREIRA	45	2016-04- 29T00:00:00Z	2016-04- 29T14:19:42Z	F	5641781	2.578785e+10	26
CONQUISTA	4	2016-04- 29T00:00:00Z	2016-04- 27T10:51:45Z	F	5628345	1.215480e+13	27
SÃO PEDRO	51	2016-04- 29T00:00:00Z	2016-04- 29T15:48:02Z	М	5642400	5.926170e+12	28
SANTA MARTHA	32	2016-04- 29T00:00:00Z	2016-04- 29T15:16:29Z	F	5642186	1.225780e+12	29
MARIA ORTIZ	76	2016-06- 01T00:00:00Z	2016-06- 01T09:46:33Z	М	5757745	7.935890e+14	110497
MARIA ORTIZ	59	2016-06- 08T00:00:00Z	2016-06- 08T10:21:14Z	F	5787655	9.433650e+13	110498
MARIA ORTIZ	66	2016-06- 01T00:00:00Z	2016-06- 01T09:42:56Z	F	5757697	8.219690e+14	110499
MARIA ORTIZ	59	2016-06- 08T00:00:00Z	2016-06- 08T09:35:13Z	F	5787233	4.434380e+14	110500
MARIA ORTIZ	44	2016-06- 01T00:00:00Z	2016-06- 01T10:19:12Z	М	5758133	4.544250e+11	110501
GOIABEIRAS	22	2016-06- 08T00:00:00Z	2016-06- 08T10:50:42Z	F	5787937	7.316230e+14	110502
SOLON BORGES	64	2016-06- 01T00:00:00Z	2016-06- 01T13:00:36Z	F	5759473	2.362180e+13	110503
MARIA ORTIZ	4	2016-06- 08T00:00:00Z	2016-06- 08T11:06:21Z	F	5788052	9.947980e+12	110504
MARIA ORTIZ	55	2016-06- 01T00:00:00Z	2016-06- 01T10:45:50Z	F	5758455	5.667340e+13	110505
MARIA ORTIZ	5	2016-06- 01T00:00:00Z	2016-06- 01T11:09:20Z	М	5758779	8.973880e+11	110506
MARIA ORTIZ	0	2016-06- 08T00:00:00Z	2016-06- 08T09:04:18Z	F	5786918	4.769460e+14	110507
		2016-06-	2016-06-				

110508	9.433650e+13	5757656	F	01T09:41:00Z	01T00:00:00Z	59	MARIA ORTIZ
110509	4.952970e+14	5786750	М	2016-06- 08T08:50:51Z	2016-06- 08T00:00:00Z	33	MARIA ORTIZ
110510	2.362180e+13	5757587	F	2016-06- 01T09:35:48Z	2016-06- 01T00:00:00Z	64	SOLON BORGES
110511	8.236000e+11	5786742	F	2016-06- 08T08:50:20Z	2016-06- 08T00:00:00Z	14	MARIA ORTIZ
110512	9.876250e+13	5786368	F	2016-06- 08T08:20:01Z	2016-06- 08T00:00:00Z	41	MARIA ORTIZ
110513	8.674780e+13	5785964	М	2016-06- 08T07:52:55Z	2016-06- 08T00:00:00Z	2	ANTÔNIO HONÓRIO
110514	2.695690e+12	5786567	F	2016-06- 08T08:35:31Z	2016-06- 08T00:00:00Z	58	MARIA ORTIZ
110515	6.456340e+14	5778621	М	2016-06- 06T15:58:05Z	2016-06- 08T00:00:00Z	33	MARIA ORTIZ
110516	6.923770e+13	5780205	F	2016-06- 07T07:45:16Z	2016-06- 08T00:00:00Z	37	MARIA ORTIZ
110517	5.574940e+12	5780122	F	2016-06- 07T07:38:34Z	2016-06- 07T00:00:00Z	19	MARIA ORTIZ
110518	7.263310e+13	5630375	F	2016-04- 27T15:15:06Z	2016-06- 07T00:00:00Z	50	MARIA ORTIZ
110519	6.542390e+13	5630447	F	2016-04- 27T15:23:14Z	2016-06- 07T00:00:00Z	22	MARIA ORTIZ
110520	9.969980e+14	5650534	F	2016-05- 03T07:51:47Z	2016-06- 07T00:00:00Z	42	MARIA ORTIZ
110521	3.635530e+13	5651072	F	2016-05- 03T08:23:40Z	2016-06- 07T00:00:00Z	53	MARIA ORTIZ
110522	2.572130e+12	5651768	F	2016-05- 03T09:15:35Z	2016-06- 07T00:00:00Z	56	MARIA ORTIZ
110523	3.596270e+12	5650093	F	2016-05- 03T07:27:33Z	2016-06- 07T00:00:00Z	51	MARIA ORTIZ
110524	1.557660e+13	5630692	F	2016-04- 27T16:03:52Z	2016-06- 07T00:00:00Z	21	MARIA ORTIZ
110525	9.213490e+13	5630323	F	2016-04- 27T15:09:23Z	2016-06- 07T00:00:00Z	38	MARIA ORTIZ
110526	3.775120e+14	5629448	F	2016-04- 27T13:30:56Z	2016-06- 07T00:00:00Z	54	MARIA ORTIZ

110527 rows x 14 columns

In [163]: df.head(10)

Out[163]:

PatientId AppointmentID Gender ScheduledDay AppointmentDay Age Neighbourhood Scho

0	2.987250e+13	5642903	F	2016-04- 29T18:38:08Z	2016-04- 29T00:00:00Z	62	JARDIM DA PENHA
1	5.589980e+14	5642503	М	2016-04- 29T16:08:27Z	2016-04- 29T00:00:00Z	56	JARDIM DA PENHA
2	4.262960e+12	5642549	F	2016-04- 29T16:19:04Z	2016-04- 29T00:00:00Z	62	MATA DA PRAIA
3	8.679510e+11	5642828	F	2016-04- 29T17:29:31Z	2016-04- 29T00:00:00Z	8	PONTAL DE CAMBURI
4	8.841190e+12	5642494	F	2016-04- 29T16:07:23Z	2016-04- 29T00:00:00Z	56	JARDIM DA PENHA
5	9.598510e+13	5626772	F	2016-04- 27T08:36:51Z	2016-04- 29T00:00:00Z	76	REPÚBLICA
6	7.336880e+14	5630279	F	2016-04- 27T15:05:12Z	2016-04- 29T00:00:00Z	23	GOIABEIRAS
7	3.449830e+12	5630575	F	2016-04- 27T15:39:58Z	2016-04- 29T00:00:00Z	39	GOIABEIRAS
8	5.639470e+13	5638447	F	2016-04- 29T08:02:16Z	2016-04- 29T00:00:00Z	21	ANDORINHAS
9	7.812460e+13	5629123	F	2016-04- 27T12:48:25Z	2016-04- 29T00:00:00Z	19	CONQUISTA

>Look the number of rows/records and columns/fields

In [164]: df.shape
Out[164]: (110527, 14)

>Describe each field with summary statistics

In [165]: df.describe()
Out[165]:

	PatientId	AppointmentID	Age	Scholarship	Hipertension	Diabetes	
count	1.105270e+05	1.105270e+05	110527.000000	110527.000000	110527.000000	110527.000000	11
mean	1.474963e+14	5.675305e+06	37.088874	0.098266	0.197246	0.071865	
std	2.560949e+14	7.129575e+04	23.110205	0.297675	0.397921	0.258265	
min	3.920000e+04	5.030230e+06	-1.000000	0.000000	0.000000	0.000000	
25%	4.172615e+12	5.640286e+06	18.000000	0.000000	0.000000	0.000000	
50%	3.173180e+13	5.680573e+06	37.000000	0.000000	0.000000	0.000000	
75%	9.439170e+13	5.725524e+06	55.000000	0.000000	0.000000	0.000000	
max	9.999820e+14	5.790484e+06	115.000000	1.000000	1.000000	1.000000	

>Explore the data for missing values for each field

As every field has all 110527 records, the data do not have missing values

```
In [166]: df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 110527 entries, 0 to 110526
          Data columns (total 14 columns):
          PatientId
                      110527 non-null float64
          AppointmentID
                          110527 non-null int64
          Gender
                           110527 non-null object
         ScheduledDay 110527 non-null object
AppointmentDay 110527 non-null object
         Age
                           110527 non-null int64
         Neighbourhood
                          110527 non-null object
          Scholarship
                          110527 non-null int64
         Hipertension 110527 non-null int64
                           110527 non-null int64
         Diabetes
         Alcoholism
                          110527 non-null int64
                          110527 non-null int64
         Handcap
                          110527 non-null int64
          SMS_received
         No-show
                          110527 non-null object
          dtypes: float64(1), int64(8), object(5)
          memory usage: 11.8+ MB
```

>Explore the data types for each column/field. This help to decide the appropriatnes of variables for the analysis.

```
In [167]: df.dtypes
Out[167]: PatientId
                          float64
         AppointmentID
                           int64
         Gender
                           object
         ScheduledDay
                          object
         AppointmentDay
                          object
         Age
                            int64
         Neighbourhood
                          object
         Scholarship
                            int64
         Hipertension
                           int64
         Diabetes
                           int64
         Alcoholism
                            int64
         Handcap
                            int64
         SMS received
                           int64
         No-show
                           object
         dtype: object
```

2.3. Prepare data for analysis

To answer the quesions, what factors affect patients attendance at the appointment, and develop aprediction model, I need to transform string variables in to numeric type. The outcome variable "No_show" is a binary categorical variable. So, we can use a binary logistic regression to find out the significant predictors. The regression analysis is done in two steps the first one is a multivariable logistic regression with association coeficients where the adjuted immpact of each variable is assessed. The second analysis is fiting a prediction model using classification matchine learing approach.

In the dataset the outcome variable is given as No_show and those with response "No" are patients attended their appointment. I rename the column name to "Show_up" and replaced the values of "No" by Yes and visversa.

```
In [172]: #rename column No_show to Show_up
    df.rename(columns={'No-show':'Show_up'}, inplace=True)
    df.head(11)
```

Out[172]:

	PatientId	AppointmentID	Gender	ScheduledDay	AppointmentDay	Age	Neighbourhood	Sch
0	2.987250e+13	5642903	F	2016-04- 29T18:38:08Z	2016-04- 29T00:00:00Z	62	JARDIM DA PENHA	
1	5.589980e+14	5642503	M	2016-04- 29T16:08:27Z	2016-04- 29T00:00:00Z	56	JARDIM DA PENHA	
2	4.262960e+12	5642549	F	2016-04- 29T16:19:04Z	2016-04- 29T00:00:00Z	62	MATA DA PRAIA	
3	8.679510e+11	5642828	F	2016-04- 29T17:29:31Z	2016-04- 29T00:00:00Z	8	PONTAL DE CAMBURI	
4	8.841190e+12	5642494	F	2016-04- 29T16:07:23Z	2016-04- 29T00:00:00Z	56	JARDIM DA PENHA	
5	9.598510e+13	5626772	F	2016-04- 27T08:36:51Z	2016-04- 29T00:00:00Z	76	REPÚBLICA	
6	7.336880e+14	5630279	F	2016-04- 27T15:05:12Z	2016-04- 29T00:00:00Z	23	GOIABEIRAS	
7	3.449830e+12	5630575	F	2016-04- 27T15:39:58Z	2016-04- 29T00:00:00Z	39	GOIABEIRAS	
8	5.639470e+13	5638447	F	2016-04- 29T08:02:16Z	2016-04- 29T00:00:00Z	21	ANDORINHAS	
9	7.812460e+13	5629123	F	2016-04- 27T12:48:25Z	2016-04- 29T00:00:00Z	19	CONQUISTA	
10	7.345360e+14	5630213	F	2016-04- 27T14:58:11Z	2016-04- 29T00:00:00Z	30	NOVA PALESTINA	

```
In [173]: df["Show_up"].replace({'No':'yes','Yes':'no'}, inplace=True)
```

df.head(11)

Out[173]:

	PatientId	AppointmentID	Gender	ScheduledDay	AppointmentDay	Age	Neighbourhood	Sch
0	2.987250e+13	5642903	F	2016-04- 29T18:38:08Z	2016-04- 29T00:00:00Z	62	JARDIM DA PENHA	
1	5.589980e+14	5642503	M	2016-04- 29T16:08:27Z	2016-04- 29T00:00:00Z	56	JARDIM DA PENHA	
2	4.262960e+12	5642549	F	2016-04- 29T16:19:04Z	2016-04- 29T00:00:00Z	62	MATA DA PRAIA	
3	8.679510e+11	5642828	F	2016-04- 29T17:29:31Z	2016-04- 29T00:00:00Z	8	PONTAL DE CAMBURI	
4	8.841190e+12	5642494	F	2016-04- 29T16:07:23Z	2016-04- 29T00:00:00Z	56	JARDIM DA PENHA	
5	9.598510e+13	5626772	F	2016-04- 27T08:36:51Z	2016-04- 29T00:00:00Z	76	REPÚBLICA	
6	7.336880e+14	5630279	F	2016-04- 27T15:05:12Z	2016-04- 29T00:00:00Z	23	GOIABEIRAS	
7	3.449830e+12	5630575	F	2016-04- 27T15:39:58Z	2016-04- 29T00:00:00Z	39	GOIABEIRAS	
8	5.639470e+13	5638447	F	2016-04- 29T08:02:16Z	2016-04- 29T00:00:00Z	21	ANDORINHAS	
9	7.812460e+13	5629123	F	2016-04- 27T12:48:25Z	2016-04- 29T00:00:00Z	19	CONQUISTA	
10	7.345360e+14	5630213	F	2016-04- 27T14:58:11Z	2016-04- 29T00:00:00Z	30	NOVA PALESTINA	

Convert/ encode string variables to numeric

```
In [175]: from sklearn.preprocessing import LabelEncoder
```

Gender

```
In [176]: df['Gender'].value_counts()
Out[176]: F 71840
    M 38687
    Name: Gender, dtype: int64

In [177]: lb_Gender = LabelEncoder()
    df["Gender_code"] = lb_Gender.fit_transform(df["Gender"])
    df[["Gender", "Gender_code"]].head(11)
Out[177]:
    Gender Gender_code
```

0	F	0
1	М	1
2	F	0
3	F	0
4	F	0
5	F	0
6	F	0
7	F	0
8	F	0
9	F	0
10	F	0

Show_up

```
In [179]: lb_Show_up = LabelEncoder()
   df["show_up_code"] = lb_Show_up.fit_transform(df["Show_up"])
   df[["Show_up", "show_up_code"]].head(11)
```

Out[179]:

	Show_up	show_up_code
0	yes	1
1	yes	1
2	yes	1
3	yes	1
4	yes	1
5	yes	1
6	no	0
7	no	0
8	yes	1
9	yes	1
10	yes	1

Neighbourhood

	Neighbourhood	Neighbourhood_code
0	JARDIM DA PENHA	39
1	JARDIM DA PENHA	39
2	MATA DA PRAIA	45
3	PONTAL DE CAMBURI	54
4	JARDIM DA PENHA	39
5	REPÚBLICA	58
6	GOIABEIRAS	25
7	GOIABEIRAS	25
8	ANDORINHAS	1
9	CONQUISTA	12
10	NOVA PALESTINA	50
11	NOVA PALESTINA	50
12	NOVA PALESTINA	50
13	NOVA PALESTINA	50
14	NOVA PALESTINA	50
15	NOVA PALESTINA	50
16	NOVA PALESTINA	50
17	CONQUISTA	12
18	NOVA PALESTINA	50
19	DA PENHA	15
20	NOVA PALESTINA	50
21	CONQUISTA	12
22	CONQUISTA	12
23	CONQUISTA	12
24	TABUAZEIRO	78
25	CONQUISTA	12
26	BENTO FERREIRA	6
27	CONQUISTA	12
28	SÃO PEDRO	77
29	SANTA MARTHA	66
110497	MARIA ORTIZ	43
110498	MARIA ORTIZ	43
110499	MARIA ORTIZ	43

110500	MARIA ORTIZ	43
110501	MARIA ORTIZ	43
110502	GOIABEIRAS	25
110503	SOLON BORGES	73
110504	MARIA ORTIZ	43
110505	MARIA ORTIZ	43
110506	MARIA ORTIZ	43
110507	MARIA ORTIZ	43
110508	MARIA ORTIZ	43
110509	MARIA ORTIZ	43
110510	SOLON BORGES	73
110511	MARIA ORTIZ	43
110512	MARIA ORTIZ	43
110513	ANTÔNIO HONÓRIO	2
110514	MARIA ORTIZ	43
110515	MARIA ORTIZ	43
110516	MARIA ORTIZ	43
110517	MARIA ORTIZ	43
110518	MARIA ORTIZ	43
110519	MARIA ORTIZ	43
110520	MARIA ORTIZ	43
110521	MARIA ORTIZ	43
110522	MARIA ORTIZ	43
110523	MARIA ORTIZ	43
110524	MARIA ORTIZ	43
110525	MARIA ORTIZ	43
110526	MARIA ORTIZ	43

110527 rows x 2 columns

Check data types

In [181]: df.dtypes

Out[181]: PatientId float64
 AppointmentID int64
 Gender object
 ScheduledDay object

object
int64
object
int64
object
int64
int64
int64

Exploratory Data Analysis

Research Question 1: What proportion show up?

Pie chart of patients' show up

Finding: From the total 110,527 patients 88,208 show up for their appointment. Thus, the proportion of patients those show up to the hospitab on their appointment was 79.8%.FiG 1

Research Question 2.

What factors are important for us to know in order to predict if a patient will show up for their scheduled appointment?

Logistic regression

Assign the independent variables (X) and the dependent variable (y)

Fit the data and get a summary output with coefficients

```
In [136]: logit_model=sm.Logit(y,X)
    result=logit_model.fit()
    print(result.summary2())

    params = result.params
    conf = result.conf_int()
    conf['OR'] = params
    conf.columns = ['2.5%', '97.5%', 'OR']
    print(np.exp(conf))
```

Optimization terminated successfully.

Current function value: 0.509487

Iterations 6

Results: Logit

Model:	Logit		Pseudo R-squared:		ed: -0.0	-0.013		
Dependent Variable:	show_up_code		AIC:		1126	112642.2333		
Date:	2020-01-31 04:21		BIC:		1127	112728.7504		
No. Observations:	110527		Log-Likelihood:		-563	-56312.		
Df Model:	8		LL-Null:		-556	-55603.		
Df Residuals:	110518		LLR p-value:		1.00	1.0000		
Converged:	1.0000		Scale:		1.00	1.0000		
No. Iterations:	6.0000							
	Coef. S	td.Err.	Z	P> z	[0.025	0.975]		
Gender_code	0.3708	0.0151	24.5529	0.0000	0.3412	0.4004		
Age	0.0202	0.0003	61.8919	0.0000	0.0196	0.0208		

```
        Neighbourhood_code
        0.0143
        0.0003
        55.1926
        0.0000
        0.0138
        0.0148

        Scholarship
        0.1186
        0.0241
        4.9185
        0.0000
        0.0713
        0.1658

        Hipertension
        -0.0970
        0.0248
        -3.9102
        0.0001
        -0.1456
        -0.0484

        Diabetes
        -0.1510
        0.0346
        -4.3698
        0.0000
        -0.2187
        -0.0833

        Alcoholism
        -0.2345
        0.0453
        -5.1763
        0.0000
        -0.3234
        -0.1457

        Handcap
        -0.0328
        0.0491
        -0.6671
        0.5047
        -0.1291
        0.0635

        SMS_received
        -0.4292
        0.0150
        -28.6123
        0.0000
        -0.4586
        -0.3998
```

	2.5%	97.5%	OR
Gender_code	1.406642	1.492429	1.448901
Age	1.019744	1.021048	1.020396
Neighbourhood_code	1.013851	1.014879	1.014365
Scholarship	1.073919	1.180341	1.125873
Hipertension	0.864545	0.952794	0.907598
Diabetes	0.803546	0.920102	0.859851
Alcoholism	0.723716	0.864384	0.790929
Handcap	0.878887	1.065594	0.967749
SMS_received	0.632165	0.670452	0.651027

Interpretation of logit model output: The liklihood of patients showing up at the hospital at the time of their appointment higher if they are male, older age, have scholarship. And having hipertention, diabetes, alcholism and reciving SMS were found to be decreasing the probability of showing up. Although these the associations of these factors with the liklihood od showing up were statitically significant, there were no strong associations as indicated by the odds ratios (OR)

Research Question 3. Can we Predict patients show up?

Above we have seen the associations between independent variables and the outcome variable with the logit model. Now let us evaluate the pridiction capacity of our model with help of matchine learning.

> Set the train and test split

```
In [ ]: from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LogisticRegression
    from sklearn import metrics
```

> Set 75% of the data train and the test will be on 25% of the data

```
In [185]: X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_s
tate=0)
```

>import class

```
In [126]: from sklearn.linear_model import LogisticRegression #intiate model
```

```
logreg = LogisticRegression()
```

>fit the model with data

>Prediction

```
In [137]: y_pred=logreg.predict(X_test)
    y_pred
Out[137]: array([1, 1, 1, ..., 1, 1])
```

>Model Evaluation using Confusion Matrix

>Visualizing Confusion Matrix using Heatmap

```
In [132]: class_names=[0,1] # name of classes
    fig, ax = plt.subplots()
    tick_marks = np.arange(len(class_names))
    plt.xticks(tick_marks, class_names)
    plt.yticks(tick_marks, class_names)
# create heatmap
sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="YlGnBu",fmt='g')
ax.xaxis.set_label_position("top")
plt.tight_layout()
plt.title('Confusion matrix', y=1.1)
plt.ylabel('Actual label')
plt.xlabel('Predicted label')
Out[132]: Text(0.5,257.44,'Predicted label')
```

Confusion matrix

Interpretation: The model is good at prediction if the patient show up.

>Confusion Matrix Evaluation Metrics

```
In [133]: print("Accuracy:", metrics.accuracy_score(y_test, y_pred))
    print("Precision:", metrics.precision_score(y_test, y_pred))
    print("Recall:", metrics.recall_score(y_test, y_pred))
```

Accuracy: 0.801679212507 Precision: 0.801679212507

Recall: 1.0

Interpretation classification rate of 80%, considered as good accuracy. Recall: If there are patients who showed up in the test set and the model can identify it 100% of the time.

```
In [131]: #roc curve
    y_pred_proba = logreg.predict_proba(X_test)[::,1]
    fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_proba)
    auc = metrics.roc_auc_score(y_test, y_pred_proba)
    plt.plot(fpr,tpr,label="data 1, auc="+str(auc))
    plt.legend(loc=4)
    plt.show()
```


Interpretation the AUC score for the case is 0.59. AUC score 1 represents perfect classifier, and 0.5 represents a worthless classifier. Thus, our model is not a good classifier.

Conclusions

In conclussion the proportion of patients showed up at the hospital based on their schedule was 79.8%. Although several factors have shown a statistically significant association, all of the associations were weak associations. Thus, from these dataset, we can not predict patients attendance by factors.