S9/L3

Traccia:

Durante la lezione teorica, abbiamo visto la Threat Intelligence e gli indicatori di compromissione. Abbiamo visto che gli IOC sono evidenze o eventi di un attacco in corso, oppure già avvenuto. Per l'esercizio pratico di oggi, trovate in allegato una cattura di rete effettuata con Wireshark. Analizzare la cattura e rispondere ai seguenti quesiti:

	- :		B 11 11		
No.	Time	Source	Destination		
	13 36.774218116	192.168.200.100	192.168.200.150	TCP	74 56120 → 111 [SYN] Seq=0 Win=64240 Len=0 MS
	14 36.774257841	192.168.200.100	192.168.200.150	TCP	74 33878 → 443 [SYN] Seq=0 Win=64240 Len=0 MS
	15 36.774366305	192.168.200.100	192.168.200.150	TCP	74 58636 → 554 [SYN] Seq=0 Win=64240 Len=0 MS
	16 36.774405627	192.168.200.100	192.168.200.150	TCP	74 52358 → 135 [SYN] Seq=0 Win=64240 Len=0 MS
	17 36.774535534	192.168.200.100	192.168.200.150	TCP	74 46138 → 993 [SYN] Seq=0 Win=64240 Len=0 MS
	18 36.774614776	192.168.200.100	192.168.200.150	TCP	74 41182 → 21 [SYN] Seg=0 Win=64240 Len=0 MSS
	19 36.774685505	192.168.200.150	192.168.200.100	TCP	74 23 → 41304 [SYN, ACK] Seg=0 Ack=1 Win=5792
	20 36.774685652	192.168.200.150	192.168.200.100	TCP	74 111 → 56120 [SYN, ACK] Seq=0 Ack=1 Win=579
	21 36.774685696	192.168.200.150	192.168.200.100	TCP	60 443 → 33878 [RST, ACK] Seq=1 Ack=1 Win=0 L
	22 36.774685737	192.168.200.150	192.168.200.100	TCP	60 554 → 58636 [RST, ACK] Seg=1 Ack=1 Win=0 L
	23 36.774685776	192.168.200.150	192.168.200.100	TCP	60 135 → 52358 [RST, ACK] Seg=1 Ack=1 Win=0 L
	24 36.774700464	192.168.200.100	192.168.200.150	TCP	66 41304 → 23 [ACK] Seg=1 Ack=1 Win=64256 Len
	25 36.774711072	192.168.200.100	192.168.200.150	TCP	66 56120 → 111 [ACK] Seq=1 Ack=1 Win=64256 Le
	26 36.775141104	192.168.200.150	192.168.200.100	TCP	60 993 → 46138 [RST, ACK] Seg=1 Ack=1 Win=0 L
	27 36.775141273	192.168.200.150	192.168.200.100	TCP	74 21 → 41182 [SYN, ACK] Seq=0 Ack=1 Win=5792
	28 36.775174048	192.168.200.100	192.168.200.150	TCP	66 41182 → 21 [ACK] Seg=1 Ack=1 Win=64256 Len
	29 36.775337800	192.168.200.100	192.168.200.150	TCP	74 59174 → 113 [SYN] Seg=0 Win=64240 Len=0 MS
	30 36.775386694	192.168.200.100	192,168,200,150	TCP	74 55656 → 22 [SYN] Seg=0 Win=64240 Len=0 MSS
	31 36.775524204	192.168.200.100	192.168.200.150	TCP	74 53062 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS
	32 36.775589806	192.168.200.150	192.168.200.100	TCP	60 113 → 59174 [RST, ACK] Seg=1 Ack=1 Win=0 L
	33 36.775619454	192.168.200.100	192.168.200.150	TCP	66 41304 → 23 [RST, ACK] Seg=1 Ack=1 Win=6425
	34 36.775652497	192.168.200.100	192.168.200.150	TCP	66 56120 → 111 [RST, ACK] Seg=1 Ack=1 Win=642
	35 36.775796938	192.168.200.150	192.168.200.100	TCP	74 22 → 55656 [SYN. ACK] Sea=0 Ack=1 Win=5792

No.	Time	Source	Destination	Protocol	Length Info
	37 36.775803786	192.168.200.100	192.168.200.150	TCP	66 55656 → 22 [ACK] Seg=1 Ack=1 Win=64256 Ler
	38 36.775813232	192.168.200.100	192.168.200.150	TCP	66 53062 → 80 [ACK] Seq=1 Ack=1 Win=64256 Ler
L	39 36.775861964	192.168.200.100	192.168.200.150	TCP	66 41182 → 21 [RST, ACK] Seq=1 Ack=1 Win=6425
	40 36.775975876	192.168.200.100	192.168.200.150	TCP	66 55656 → 22 [RST, ACK] Seq=1 Ack=1 Win=6425
	41 36.776005853	192.168.200.100	192.168.200.150	TCP	66 53062 → 80 [RST, ACK] Seq=1 Ack=1 Win=6425
	42 36.776179338	192.168.200.100	192.168.200.150	TCP	74 50684 → 199 [SYN] Seq=0 Win=64240 Len=0 MS
	43 36.776233880	192.168.200.100	192.168.200.150	TCP	74 54220 → 995 [SYN] Seq=0 Win=64240 Len=0 MS
	44 36.776330610	192.168.200.100	192.168.200.150	TCP	74 34648 → 587 [SYN] Seq=0 Win=64240 Len=0 MS
	45 36.776385694	192.168.200.100	192.168.200.150	TCP	74 33042 → 445 [SYN] Seq=0 Win=64240 Len=0 MS
	46 36.776402500	192.168.200.100	192.168.200.150	TCP	74 49814 → 256 [SYN] Seq=0 Win=64240 Len=0 MS
	47 36.776451284	192.168.200.150	192.168.200.100	TCP	60 199 → 50684 [RST, ACK] Seq=1 Ack=1 Win=0 L
	48 36.776451357	192.168.200.150	192.168.200.100	TCP	60 995 → 54220 [RST, ACK] Seq=1 Ack=1 Win=0 L
	49 36.776478201	192.168.200.100	192.168.200.150	TCP	74 46990 → 139 [SYN] Seq=0 Win=64240 Len=0 MS
	50 36.776496366	192.168.200.100	192.168.200.150	TCP	74 33206 → 143 [SYN] Seq=0 Win=64240 Len=0 MS
	51 36.776512221	192.168.200.100	192.168.200.150	TCP	74 60632 → 25 [SYN] Seq=0 Win=64240 Len=0 MS\$
	52 36.776568606	192.168.200.100	192.168.200.150	TCP	74 49654 → 110 [SYN] Seq=0 Win=64240 Len=0 MS
	53 36.776671271	192.168.200.100	192.168.200.150	TCP	74 37282 → 53 [SYN] Seq=0 Win=64240 Len=0 MS\$
	54 36.776720715	192.168.200.100	192.168.200.150	TCP	74 54898 → 500 [SYN] Seq=0 Win=64240 Len=0 MS
	55 36.776813123	192.168.200.150	192.168.200.100	TCP	60 587 → 34648 [RST, ACK] Seq=1 Ack=1 Win=0 L
	56 36.776843423	192.168.200.100	192.168.200.150	TCP	74 51534 → 487 [SYN] Seq=0 Win=64240 Len=0 MS
	57 36.776904828	192.168.200.150	192.168.200.100	TCP	74 445 → 33042 [SYN, ACK] Seq=0 Ack=1 Win=579
	58 36.776904922	192.168.200.150	192.168.200.100	TCP	60 256 → 49814 [RST, ACK] Seq=1 Ack=1 Win=0 L

No.	Time	Source	Destination	Protocol	Length Info
	73 36.777337934	192.168.200.100	192.168.200.150	TCP	74 49780 → 78 [SYN] Seq=0 Win=64240 Len=0 MSS
	74 36.777430632	192.168.200.150	192.168.200.100	TCP	60 707 → 56990 [RST, ACK] Seq=1 Ack=1 Win=0 L
	75 36.777430741	192.168.200.150	192.168.200.100	TCP	60 436 → 35638 [RST, ACK] Seq=1 Ack=1 Win=0 L
	76 36.777473018	192.168.200.100	192.168.200.150	TCP	74 36138 → 580 [SYN] Seq=0 Win=64240 Len=0 MS
	77 36.777522494	192.168.200.100	192.168.200.150	TCP	74 52428 → 962 [SYN] Seq=0 Win=64240 Len=0 MS
	78 36.777623082	192.168.200.150	192.168.200.100	TCP	60 98 → 34120 [RST, ACK] Seq=1 Ack=1 Win=0 Le
	79 36.777623149	192.168.200.150	192.168.200.100	TCP	60 78 → 49780 [RST, ACK] Seq=1 Ack=1 Win=0 Le
	80 36.777645027	192.168.200.100	192.168.200.150	TCP	74 41874 → 764 [SYN] Seq=0 Win=64240 Len=0 MS
	81 36.777680898	192.168.200.100	192.168.200.150	TCP	74 51506 → 435 [SYN] Seq=0 Win=64240 Len=0 MS
	82 36.777758636	192.168.200.150	192.168.200.100	TCP	60 580 → 36138 [RST, ACK] Seq=1 Ack=1 Win=0 L
	83 36.777758696	192.168.200.150	192.168.200.100	TCP	60 962 → 52428 [RST, ACK] Seq=1 Ack=1 Win=0 L
	84 36.777871245	192.168.200.150	192.168.200.100	TCP	60 764 → 41874 [RST, ACK] Seq=1 Ack=1 Win=0 L
	85 36.777871293	192.168.200.150	192.168.200.100	TCP	60 435 → 51506 [RST, ACK] Seq=1 Ack=1 Win=0 L
	86 36.777893298	192.168.200.100	192.168.200.150	TCP	66 33042 → 445 [RST, ACK] Seq=1 Ack=1 Win=642
	87 36.777912717	192.168.200.100	192.168.200.150	TCP	66 46990 → 139 [RST, ACK] Seq=1 Ack=1 Win=642
	88 36.777986759	192.168.200.100	192.168.200.150	TCP	66 60632 → 25 [RST, ACK] Seq=1 Ack=1 Win=6425
	89 36.778031265	192.168.200.100	192.168.200.150	TCP	66 37282 → 53 [RST, ACK] Seq=1 Ack=1 Win=6425
	90 36.778179978	192.168.200.100	192.168.200.150	TCP	74 51450 → 148 [SYN] Seq=0 Win=64240 Len=0 MS
	91 36.778200161	192.168.200.100	192.168.200.150	TCP	74 48448 → 806 [SYN] Seq=0 Win=64240 Len=0 MS
	92 36.778307830	192.168.200.100	192.168.200.150	TCP	74 54566 → 221 [SYN] Seq=0 Win=64240 Len=0 MS
	93 36.778385846	192.168.200.150	192.168.200.100	TCP	60 148 → 51450 [RST, ACK] Seq=1 Ack=1 Win=0 L
	94 36.778385948	192.168.200.150	192.168.200.100	TCP	60 806 → 48448 [RST, ACK] Seq=1 Ack=1 Win=0 L
	95 36.778449494	192.168.200.150	192.168.200.100	TCP	60 221 → 54566 [RST, ACK] Seq=1 Ack=1 Win=0 L

1. Identificare eventuali IOC, ovvero evidenze di attacchi in corso

Da wireshark notiamo subito la presenza di un elevato numero di richieste TCP ripetute. Una richiesta TCP è costituita da un'intestazione TCP e dai dati da trasmettere. L'intestazione contiene informazioni necessarie per la gestione della connessione tra mittente e destinatario, come i numeri di sequenza e di riconoscimento, le informazioni di controllo (ad esempio, flag per indicare il tipo di segmento TCP) e altre informazioni per la gestione della connessione. Tuttavia, un elevato numero di richieste TCP, se non correlate a comportamenti normali del sistema, potrebbero indicare un potenziale attacco in corso che richiede un'indagine e una mitigazione immediata.

2. <u>In base agli IOC trovati, fate delle ipotesi sui potenziali vettori di attacco</u> utilizzati

Un attaccante potrebbe eseguire una scansione delle porte TCP su un sistema per individuare servizi in ascolto e quindi vulnerabilità. Questo comporta l'invio di molte richieste TCP ripetute a porte diverse per vedere quali rispondono. In questo caso vediamo una probabile scansione sul target vittima 192.168.200.150 (destination) da parte dell'host 192.168.200.100 (source). Come possiamo vedere dalle immagini, per alcune porte vediamo il flag SYN/ACK ciò significa che vi è una risposta positiva del target e che la porta è aperta e dunque vulnerabile; per cui l'host destinatario ha risposto positivamente alla richiesta di connessione inviata dall'host mittente. Per altre porte invece, notiamo il flag RST/ACK, utilizzato per indicare la chiusura improvvisa e anomala di una connessione TCP e quindi la chiusura della porta. Il flag reset (RST) viene utilizzato per indicare la richiesta di "reimpostazione" o "reset" di una connessione TCP, può essere inviato da uno dei due lati della connessione per interrompere immediatamente la comunicazione senza completare il processo di chiusura normale.

3. Azioni per ridurre l'impatto dell'attacco

Per ridurre gli impatti di un attacco che comporta un elevato numero di richieste TCP, possiamo configurare un firewall per filtrare e bloccare il traffico TCP proveniente dall'attaccante in questo caso dall'indirizzo IP 192.168.200.100. Così facendo blocchiamo l'accesso a tutte le porte e dunque l'attaccante non potrà avere informazioni circa i servizi in ascolto.

Altrimenti potremmo impostare dei limiti sul numero di connessioni TCP che un singolo indirizzo IP può stabilire in un determinato periodo di tempo e ciò può aiutare a mitigare gli effetti di un attacco che satura il server con un'elevata quantità di richieste TCP; oppure implementare delle tecniche per limitare la velocità a cui vengono accettate le richieste TCP. Questo può aiutare a ridurre la probabilità di sovraccarico delle risorse del server. Ma ovviamente una delle prime tecniche da utilizzare è mantenere sempre aggiornati tutti i software e i sistemi operativi per ridurre la probabilità che gli attaccanti possano sfruttare vulnerabilità note per condurre attacchi di tipo TCP.