

- 11 (a) selecting a page having "free" status
12 and changing the status of said page
13 to "cacheable"; and
14 (b) dynamically allocating a block of
15 said page to be accessed by said
16 processor;

17

18 if a further block of memory is required
19 for storage of data local to a specific processor then:

- 20 (a) if a page having "cacheable" status
21 has an unallocated block, dynamically
22 allocating said block of said page to
23 be accessed by said processor; and
24 (b) if no block of a page having
25 "cacheable" status is available then
26 selecting a page having "free"
27 status, changing the status of said
28 page to "cacheable" and dynamically
29 allocating a block of said page to be
30 accessed by said processor;

31

32 if a block of memory is required for
33 storage of data to be accessed by more than one processor
34 then:

- 35 (a) selecting a page having "free" status
36 and changing the status of said page
37 to "non-cacheable"; and
38 (b) dynamically allocating a block of
39 said page to be accessed by any
40 processor;

41

42 if a further block of memory is required
43 for storage of data to be accessed by more than one
44 processor then:

- 45 (a) if a page having "non-cacheable"
46 status has an unallocated block,
47 dynamically allocating said block of

48 said page to be accessed by any
49 processor; and
50 (b) if no block of a page having "non-
51 cacheable" status is available then
52 selecting a page having "free"
53 status, changing the status of said
54 page to "non-cacheable" and
55 dynamically allocating a block of
56 said page to be accessed by any
57 processor;

58 retaining a page record as to the status of
59 each page; and

60 retaining an allocation record as to which
61 blocks of a page have been allocated.

1 9 8
1 10. (New) A method according to claim ~~9~~
2 wherein if an allocated block is no longer required, the
3 allocation record is amended to discard the allocation of
4 the block.

1 10 8
1 11. (New) A method according to claim ~~9~~
2 wherein if no blocks on a page of memory having
3 "cacheable" or "non-cacheable" status are allocated, the
4 status of said page is changed to "free".

1 11 9
1 12. (New) A method according to claim ~~10~~
2 wherein if no blocks on a page of memory having
3 "cacheable" or "non-cacheable" status are allocated, the
4 status of said page is changed to "free".

1 12 8
1 13. (New) A method according to claim ~~9~~
2 wherein the step of discarding the allocation of a block
3 allocated from a page having "cacheable" status comprises
4 the step of discarding the data of the block.

1 14. (New) A microprocessor system comprising:

2 at least two processors, each processor having
3 a cache memory; and

4 a system memory which is divided into pages,
5 each of which initially has a "free" status and is
6 subdivided into unallocated blocks;

7 wherein the system is responsive to a first
8 request for allocation of memory space of cacheable or
9 non-cacheable type, by:

10 dynamically allocating a block of memory
11 from a page of "free" status, the system thereafter
12 changing the status of said page from "free" to
13 "cacheable" or "non-cacheable" as the case may be; and
14 is responsive to a further request for
15 allocation of memory space of cacheable or non-cacheable
16 type, by:

17 dynamically allocating a block of memory
18 from a page of appropriate status; or

19 if such a block is unavailable,
20 dynamically allocating a block from a page having "free"
21 status, the system thereafter changing the status of said
22 page from "free" to "cacheable" or "non-cacheable" as the
23 case may be.

1 ~~2~~ 15. (New) A system according to claim 14
2 wherein the system is responsive to a request that an
3 allocated block of memory is to be discarded.

1 ~~3~~ 16. (New) A system according to claim 14, the
2 system further being responsive to a request to discard a
3 block in that if said block is the only allocated block
4 on the relevant page of memory then the system changes
5 the status of said page to "free".

1 ~~4~~ 17. (New) A system according to claim 14
2 wherein the cache memory of each processor is divided
3 into lines.

1 5 18. (New) A system according to claim 14
 2 wherein the size of the blocks of the system memory is a
 3 whole multiple of the size of the lines.

1 6 19. (New) A system according to claim 15
 2 wherein the cache memory of each processor is divided
 3 into lines.

1 7 20. (New) a system according to claim 19
 2 ~~wherein~~ ~~wherein~~ the size of the blocks of the system memory is a
 3 whole multiple of the size of the lines.

2
 6
 VEE
 5/22/00

REMARKS

A Request For One-Month Extension plus the fee
 is enclosed.

In the office action, the Examiner has objected
 that the priority claim in the declaration is incorrect.
 We enclose with this response a new declaration with the
 correct priority date inserted.

Claims 1-8 have been canceled. New claims 9
 and 14 correspond substantially to original claims 1 and
 3 respectively.

The Examiner objected to original claim 3 as
 failing to comply with 35 U.S.C. § 112. It is submitted
 that this objection is now moot in view of the
 cancellation of original claim 3 and the insertion of new
 claim 14.

The Examiner also objected to original claims 1
 and 8 under 35 U.S.C. § 103(a) as being unpatentable over
 U.S. Patent No. 4,885,680 (Anthony) in view of U.S.
 Patent No. 5,897,660 (Reinders), U.S. Patent No.
 5,321,834 (Weiser) and U.S. Patent No. 5,075,848 (Lai).

New claim 14 explicitly recites that the system
 comprises a system memory which is "divided into pages,
 each of which initially has a "free" status and is
 subdivided unto unallocated blocks."