

Polygenic Risk Scores based on Statistical Learning

Florian PRIVÉ

thesis supervised by Michael BLUM (Univ. Grenoble Alpes) and co-supervised by Hugues ASCHARD (Institut Pasteur)

Introduction & Motivation

Data, application and research interest

Disease architecture

Source: 10.1126/science.338.6110.1016

Polygenic Risk Scores (PRS)

A simple model: $y_i = \sum_j \beta_j x_{i,j} + \epsilon$ y_i : phenotypes, $x_{i,j}$: genotypes, β_j : effect sizes, ϵ : environmental effect.

Identify high-risk individuals

Source: 10.1093/hmg/ddz187

Interest in Polygenic Risk Scores (PRS)

However, current predictions fall short from clinical utility.

We need larger sample sizes and more optimal predictions.

Data: very large genotype matrices

Matrices of genetic variants (DNA mutations)

counting the number of alternative alleles (0, 1, or 2)

for each individual (row) and each genome position (column)

Data I analyzed:

- celiac disease: 15K x 280K (~30GB)
- UK Biobank: 500K x 800K (~3TB)

But I still want to use **Q**...

How to analyze large genomic data?

Privé, F., Aschard, H., Ziyatdinov, A., & Blum, M. G.B. (2018). *Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr.* Bioinformatics, 34(16), 2781-2787.

Our two R packages: bigstatsr and bigsnpr

Smooth and fast data analysis with big matrices stored on disk

- {bigstatsr} for many types of matrix, to be used by any field of research
- {bigsnpr} for functions that are specific to the analysis of genetic data

How to predict disease status based on genotypes?

Prediction using individual-level data

Privé, F., Aschard, H., & Blum, M. G.B. (2019).

Efficient implementation of penalized regression for genetic risk prediction. Genetics, 212(1), 65-74.

Standard PRS - part 1: estimating effects

Genome-wide association studies (GWAS)

In a GWAS, each genetic variant is tested **independently**, resulting in one **effect size** $\hat{\beta}$ and one **p-value** p for each variant.

Easy combining: $PRS_i = \sum_j \hat{\beta}_j \cdot G_{i,j}$

Standard PRS - part 2: restricting predictors

Clumping + Thresholding ("C+T" or just "PRS")

$$PRS_i = \sum_{\substack{j \in S_{ ext{clumping}} \ p_j < p_T}} \hat{eta}_j \cdot G_{i,j}$$

14/39

A more optimal approach to computing PRS?

In C+T, weights are learned independently and we use heuristics for correlation and regularization.

Statistical learning

- joint models of all variants at once
- use regularization to account for correlated and null effects
- already proved useful in the litterature (Abraham et al. 2013; Okser et al. 2014; Spiliopoulou et al. 2015)

Our contribution

- a memory- and computation-efficient implementation of penalized regressions to be used for biobank-scale data
- an automatic choice of the regularization hyper-parameter
- a comprehensive comparison for different disease architectures

Penalized Logistic Regression (PLR)

$$rgmin_{eta_0,\ eta}(\lambda,lpha) \left\{ \underbrace{-\sum_{i=1}^n \left(y_i \log(p_i) + (1-y_i) \log(1-p_i)
ight)}_{ ext{Loss function}} + \underbrace{\lambda\left((1-lpha)rac{1}{2}\|eta\|_2^2 + lpha\|eta\|_1
ight)}_{ ext{Penalization}}
ight\}$$

- $ullet p_i = 1/\left(1+\expigl(-(eta_0+x_i^Teta)igr)
 ight)$
- x is denoting the **genotypes** and covariates (e.g. principal components),
- y is the disease status we want to predict,
- λ is a regularization parameter that needs to be determined and
- α determines relative parts of the regularization $0 \le \alpha \le 1$.

Choice of the hyper-parameter λ

Comprehensive simulations: varying many parameters

Simulation models (real genotypes & simulated phenotypes)

Numero of	Dataset	Size of	Causal SNPs	Distribution	Heritability	Simulation	Methods
scenario	Dutuset	training set	(number and location)	of effects	Tierraemity	model	1.100110015
1	All 22 chromosomes	6000	30 in HLA	Gaussian	0.5	ADD	C+T
			30 in all				PLR
			300 in all	Laplace	0.8	COMP	PLR3
			3000 in all				(T-Trees)
2	Chromosome 6 only	-	-	-	-	ADD	C+T
							PLR
3	All 22 chromosomes	1000	300 in all	-	-	-	
		2000					
		3000					-
		4000					
		5000					

Methods compared

- C+T-max: best prediction for all thresholds, considered as an upper-bound
- PLR: penalized logistic regression with automatic selection of hyperparameters
- (T-trees and PLR3)

Prediction in different simulation scenarios

 ${
m AUC} \ ({
m Area} \ {
m Under} \ {
m the} \ {
m ROC} \ {
m Curve}) = Prob(PRS_{
m case} > PRS_{
m control})$

Prediction with PLR is improving faster

Real data

Celiac disease

- intolerance to gluten
- only treatment: gluten-free diet
- heritability: 57-87% (Nisticò et al. 2006)
- prevalence: 1-6%

Case-control study for the celiac disease (WTCCC, Dubois et al. 2010)

- ~15,000 individuals
- ~280,000 variants
- ~30% cases

Results: real Celiac phenotypes

Method	AUC	pAUC	Execution time (s)
C+T-max	0.825 (0.0007)	0.029 (0.0002)	130 (0.14)
PLR	0.887 (0.0006)	0.041 (0.0002)	190 (1.2)

PLR for predicting height

- 350K individuals x 656K variants in less than one day
- Within each sex category, 65.5% of correlation between predicted and true height (56% with C+T-max)

Summary of our penalized regression as compared to the C+T method

- A more **optimal** approach for predicting complex diseases, providing more predictive models as long as one of
 - there are moderate effects,
 - there is some correlation between causal variants
 - sample size if large enough
- models are linear and sparse
- very **fast** and scalable to very large datasets such as the UK Biobank
- automatic choice for the two hyper-parameters of PLR
- can be extended to capture also recessive and dominant effects
- can be extended to integrate external summary statistics information

However, need to have access to large individual-level data.

Prediction using summary statistics

Privé, F., Vilhjálmsson, B. J., Aschard, H., & Blum, M. G. (2019). *Making the most of Clumping and Thresholding for polygenic scores.* bioRxiv, 653204.

[in revision in the American Journal of Human Genetics]

Using summary statistics from large GWAS

Predictive methods based on summary statistics

When you have only summary statistics (and a small individual-level dataset), you can use:

- C+T
- LDpred (Vilhjálmsson, Bjarni J., et al. "Modeling linkage disequilibrium increases accuracy of polygenic risk scores." The American Journal of Human Genetics 97.4 (2015): 576-592).
- lassosum (Mak, Timothy Shin Heng, et al. "Polygenic scores via penalized regression on summary statistics." Genetic epidemiology 41.6 (2017): 469-480.)
- Other methods in development, such as NPS, PRS-CS and SBayesR.

The idea of LDpred, lassosum and the other methods is to use a reference panel to **account for correlation** between variants, instead of clumping (removing) variants.

Making the most of C+T

Hyper-parameters in C+T

- ullet threshold of imputation quality score ($INFO_T\sim 0.3$)
- ullet threshold on squared correlation of clumping ($r_c^2 \sim 0.2$) and window size for LD computation ($w_c \sim 500 kb$)
- p-value threshold (p_T between 1 and 10^{-8} and choose the best one)

```
\Longrightarrow stdCT (standard C+T)
```

Our contribution

- an efficient implementation to compute many C+T scores for different hyper-parameters (**5600 sets of hyper-parameters** × 22 chromosomes) ⇒ *maxCT* (maximized C+T)
- going further by **stacking** (*Breiman*, *Leo*. "Stacked regressions." Machine learning 24.1 (1996): 49-64.) with a linear combination of all C+T models (instead of just choosing the best model)

```
\Longrightarrow SCT (Stacked C+T)
```

Grid of hyper-parameters and Stacking

We compute C+T scores *for each chromosome separately* and for several parameters:

- Threshold on imputation INFO score INFO $_T$ within {0.3, 0.6, 0.9, 0.95}.
- Squared correlation **threshold of clumping** r_c^2 within **{0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 0.95}**.
- Base **size of clumping window** within {50, 100, 200, 500}. The window size w_c is then computed as the base size divided by r_c^2 . For example, for $r_c^2 = 0.2$, we test values of w_c within {250, 500, 1000, 2500} (in kb).
- A sequence of **50 thresholds on p-values** between the least and the most significant p-values, equally spaced on a log-log scale.

Then, we **stack these 123,200 C+T scores** by using them as variables in the efficient penalized regressions we implemented previously.

Data (simulations)

Real genotypes

UK Biobank data for 1M variants and:

- 315,609 individuals for computing summary statistics (GWAS),
- a set of 10,000 individuals for training hyper-parameters and lastly
- a test set of 10,000 individuals for evaluating models.

Simulate new phenotypes

- 100, 10K, or 1M random causal variants with Gaussian effects
- Three additional scenarios with more complex architectures:
 - "2chr": 100 variants of chromosome 1 and all variants of chromosome
 2 are causal
 - "err": (not presented)
 - "HLA": 7105 causal variants are chosen in one long-range LD region

Results (simulations)

31/39

Data (real phenotypes)

- Include 8 common disorders
- Real genotypes + phenotypes (UK Biobank) for training/validation/test
- External published summary statistics (that did not use UK Biobank)

Trait	UKBB size	GWAS size	GWAS #variants
Breast cancer (BRCA)	11,578 / 158,391	137,045 / 119,078	11,792,542
Rheumatoid arthritis (RA)	5615 / 226,327	29,880 / 73,758	9,739,303
Type 1 diabetes (T1D)	771 / 314,547	5913 / 8828	8,996,866
Type 2 diabetes (T2D)	14,176 / 314,547	26,676 / 132,532	12,056,346
Prostate cancer (PRCA)	6643 / 141,321	79,148 / 61,106	20,370,946
Depression (MDD)	22,287 / 255,317	59,851 / 113,154	13,554,550
Coronary artery disease (CAD)	12,263 / 225,927	60,801 / 123,504	9,455,778
Asthma	43,787 / 261,985	19,954 / 107,715	2,001,280

Results (small training set)

500 cases and 2000 controls in training

Results (large training set)

Between 120K and 350K individuals in training

Summary

- We improved C+T by tuning more hyper-parameters
- maxCT is on par with lassosum, while being more robust (no model)
- stacking makes C+T more flexible and potentially much more predictive
- predictive power of SCT is increasing with sample size
- can extend SCT to account for other parameters (e.g. MAF)
- can extend SCT to use multiple summary statistics

Conclusion

My thesis work

1. Developping two **Q** packages for the analysis of large-scale genomic data.

```
(https://doi.org/10.1093/bioinformatics/bty185)
```

Package bigstatsr can be used for any data encoded as matrices.

2. Including an implementation (in bigstatsr) of penalized regression for very large individual-level datasets + assess the potential gain in prediction over the simple standard model (C+T).

```
(https://doi.org/10.1534/genetics.119.302019)
```

3. Extending the set of parameters tested in C+T (implemented in bigsnpr) to achieve higher predictive performance with C+T. Extension via stacking. Comparison with standard C+T, lassosum (and LDpred).

```
(https://doi.org/10.1101/653204)
```

Directions of future work

- Revisions for C+T/SCT paper
 - add LDpred to the comparisons
 - investigate MAF parameter
- Coding in bigsnpr
 - clumping and PCA directly on PLINK files with missing values
 - improving autoSVD algorithm, including automatic detection of outlier samples on top of long-range LD regions
- multi-phenotype prediction with SCT (e.g. for schizophrenia, bipolar disorder and depression)
- testing of different scaling functions in penalized regressions
- inclusion of summary statistics information in penalized regressions
- coding of penalized Cox regression
- comparison of PRS methods (via data challenge?)

I thank you for your attention

Presentation available at

https://privefl.github.io/thesis-docs/defense.html

Slides created via R package xaringan.