Luong Attention

2022-05-07

- 1. Attention 架构
- 2. Attention计算流程
- 3. 参考资料

1. Attention 架构

Luong Attention分为Local和Global两种,本文主要分析Global Attention。下图为Global Attention的架构图:

符号解释:

1. \bar{h}_s : encoder_output 2. h_t : decoder_output 3. $a_t(s)$: attn_weights 4. c_t : Context vector

5. $ilde{h}_s$: 可视为new decoder hidden state

以中英文翻译场景为例,根据该架构图,分为如下计算步骤:

1. attn_weights计算

通过encoder_output和decoder_output计算得到attn_weights,即 a_t

2. Context vector计算

通过encoder_output和 a_t 计算得到加权encoder_output,即 c_t

3. New decoder hidden state计算

将 c_t 和decoder_output进行 cat 合并,经过 tanh 和 linear 变换处理得到新的 $\mathrm{decoder}$ _output,即 $ilde{h}_s$

4. 预测

根据 \tilde{h}_s 进行预测,得到最终预测结果。

2. Attention计算流程

Global Attention计算流程如下图所示:

计算步骤如下:

- 1. Encoder
 - 。 step1:对原始输入,通过RNN(如LSTM)处理,得到encoder_output:

 \bar{h}_s : [batch_size, input_len, enc_hidden_size]

。 step2:为了能够使得encoder_output和decoder_output做bmm运算,需要进行linear处理

 \bar{h}_s : [batch_size, input_len, dec_hidden_size]

step3: transpose(1,2)

 \bar{h}_s : [batch_size, dec_hidden_size, input_len]

2. Decoder

- o RNN
 - step4: 对Decoder端的输入,通过RNN(如LSTM)处理,得到decoder_output: h_t : [batch_size, output_len, dec_hidden_size]
- Attention
 - step5: 基于 h_t 和 \bar{h}_s , 进行打分计算: score $(h_t, \bar{h}_s) = \text{bmm}(h_t, \bar{h}_s)$: [batch_size, output_len, input_len]
 - step6: 对打分结果通过softmax计算,得到attn_weights $a_t(s) = \mathrm{align}(\mathbf{h}_t, \bar{\mathbf{h}}_s) = \mathrm{softmax}\left(\mathrm{score}(\mathbf{h}_t, \bar{\mathbf{h}}_s)\right) : [\mathrm{batch_size}, \mathrm{output_len}, \mathrm{input_len}]$
 - step7: 基于 $a_t(s)$, 对encoder_output求加权平均 $c_t = a_t \bar{h}_s$: [batch_size, output_len, enc_hidden_size]
- o New Hidden
 - step8: 将加权encoder_output通过cat操作"融入"到原始的decoder_output $[c_t; h_t]$: [batch_size, output_len, enc_hidden_size + dec_hidden_size] 为了方面后续的linear变换,需要对其shape进行调整,结果如下: $[c_t; h_t]$: [batch_size × output_len, enc_hidden_size + dec_hidden_size]

 - step10: tanh变换 $tanh(linear([c_t; h_t])): [batch_size \times output_len, dec_hidden_size]$
 - step11: 维度展开,将二维展开到三维 $\tilde{h}_s \colon \text{[batch_size, output_len, dec_hidden_size]}$
- o Predict
 - step12: 对 \tilde{h}_s 进行linear变换 linear (\tilde{h}_s) : [batch_size, output_len, vocab_size]
 - step13: 通过softmax运算,得到最终预测概率结果 $softmax(linear(\tilde{h}_s)) \colon \ [batch_size, output_len, vocab_size]$

3. 参考资料

1. <u>第七课 Seq2Seq与Attention (julyedu.com)</u>