$\underline{\mathsf{Thm}}$ if V is fin dim and T : V to W is linear, then dim V = dim ker(T) + dim im(T)

Pf Outline

pick basis $\{w_1, ..., w_r\}$ for im(T) pick u_1, ..., u_r s.t. $T(v_i) = w_i$ for all i let U = span(u_1, ..., u_r) pick basis v_1, ..., v_k for ker(T)

I) show that ker(T) + U = VII) show that ker(T) + U is a direct sum

then dim V = dim ker(T) + dim U = dim ker(T) + dim im(T) \square Pf of I) pick v in V

know $T(v) = sum_i b_iw_i$ for some b_i so $T(v) = sum_i b_iT(u_i) = T(sum_i b_iu_i)$ so $T(v - sum_i b_iu_i) = \mathbf{0}_{\mathbf{W}}$ so $v - sum_i b_iu_i$ in ker(T)so v in ker(T) + U

Pf of II) recall: W + U is a direct sum iff W cap $U = \{0\}$ so want ker(T) cap $U = \{0_V\}$

pick v in ker(T) cap U since v in U, have v = sum_i a_iu_i for some a_i since v in ker(T), have sum_i a_iw_i = T(v) = **0_W** but {w_i}_i lin. indep. so a_i = 0 for all i

assuming V,	W are	both	finite-dimensional:
-------------	-------	------	---------------------

<u>Cor</u> if T: V to W is linear and dim V > dim W, then T is not injective

 $\frac{Pf}{SO} \qquad \dim \operatorname{im}(T) \leq \dim W < \dim V,$ $SO \qquad \dim \ker(T) = \dim V - \dim \operatorname{im}(T) > 0$

<u>Cor</u> if T: V to W is linear and dim V < dim W, then T is not surjective

<u>Pf</u> exercise

<u>Cor</u> if T : V to W is linear and bijective, then dim V = dim W [converse is false!] (Axler §3D)

<u>Thm</u> TFAE for a linear map T : V to W:

- 1) T is bijective
- 2) T takes any basis for V onto a basis for W
- 3) T takes some basis for V onto one for W
- 4) there is a linear map S : V to W s.t.S(T(v)) = v and T(S(w)) = w

<u>Df</u> in the situation above, we say that T is a linear isomorphism from V onto W

Pf of Thm not hard to show that2) implies 3) implies 4) implies 1)remains to show 1) implies 2)

```
so suppose {e i} i is a basis for V
claim that {T(e_i)}_i spans W:
    for all w in W, have w = T(v) for some v in V
         by surjectivity of T
    v = sum ia ie i for some a i
     so w = sum_i a_iT(e_i)
claim that {T(e_i)}_i is lin. indep.
    suppose sum_i b_i T(e_i) = 0_W
    then T(sum_i b_ie_i) = 0_W
     so sum_i b_ie_i in ker(T)
     so sum_i b_ie_i = 0_V
         by injectivity of T
     so b i = 0 for all i
```

by lin. independence of {e_i}_i \(\sigma\)

(Axler §3C) recap:

Slogan #1 if we know a basis for V
then a linear map V to W is det by
where it sends the basis
and any choices will do

in particular, a linear map Fⁿ to W is det by where it sends (1, 0, 0, ...), (0, 1, 0, ...), ...

Slogan #2 a linear isomorphism is a linear map taking bases to bases

in particular, a linear iso F^n to W is det by an ordered basis for W [images of (1, 0, 0, ...), (0, 1, 0, ...), ...]

```
[in this sense, linear maps out of F^n are easy]
[what else can we do with linear maps?]
a composition of linear maps is linear: given linear
```

 $\mathsf{A}:\mathsf{V}$ to $\mathsf{W},$

B: W to U,

$$B(A(v + v')) = B(A(v) + A(v')) = B(A(v)) + B(A(v')),$$

$$B(A(c \cdot v)) = B(c \cdot A(v)) = c \cdot B(A(v))$$

so B o A: V to U is also linear

suppose
$$V = F^n$$
 with std basis $(v_1, ..., v_n)$, $W = F^m$ with std basis $(w_1, ..., w_m)$, $U = F^l$ with std basis $(u_1, ..., u_l)$ $A(v_i) = sum_j a_{j,i}w_j$, $B(w_j) = sum_k b_{k,j}u_k$

```
B(A(v_i)) = B(sum_j a_{j,i}w_j)
= sum_j a_{j,i}B(w_j)
= sum_j a_{j,i} sum_k b_{k,j} u_k
= sum_{k,j} a_{j,i}b_{k,j} u_k
= sum_k c_{k,i} u_k
= sum_j a_{j,i}b_{k,j}
where c_{k,i} = sum_j a_{j,i}b_{k,j}
```

matrix multiplication = shorthand for these calc's

Df matrix of A wrt the ordered bases
$$(v_i)_{i=1}^n, (w_j)_{j=1}^m$$
:

henceforth write F^n, F^m, etc in column notation:		matrix x matrix rule for B ○ A:						
			c1	b11		b1m	a11	a1n
	v = sum	_i c_iv_i:	c2	b21		b2m	a21	a2n
						• • •	• • •	•••
			cn	bl1		blm	am1	amn
matrix × vector rule for Av:								
a11	a1n	c1	•••		=	sun	n_j a_{j,i}b	_{kj}
a21	a2n	c2 =	aj1 c1 + + ajn cn					
• • • •			•••					•••
am1	amn	cn						
				SO	vec	tors	become	columns,
			a1i		line	ar maps		matrices,
e.g.,		Av_i:	a2i (ith matrix col)		0	·		matrix multiplication
			•••					
			ami	if A iso, then dim V = dim W: so matrix is square				