Dimensionality Reduction

Peng Lingwei

August 21, 2019

Contents

23	Dimensionality Reduction														2			
	23.1	PRIN	CIPAL	COM	PONI	ENT	AN	IAL	YSI	S (PC.	A)						2
		23.1.1	A Mo	re Effi	cient	Solu	tion	for	$th\epsilon$	e Ca	ase	$d \geqslant$	> n	n .				
	23.2	RAND	OM P	ROJE	CTIC	NS												9
	23.3	COM	PRESS	ED SI	ENSIN	$^{ m NG}$												4
	23.4	PAC (DR. CO	MPRI	ESSEI	D SE	ENS	ING										7

23 Dimensionality Reduction

In this chapter, we discuss linear transformation.

23.1 PRINCIPAL COMPONENT ANALYSIS (PCA)

Definition 1. (PCA target). For a data $S = (x_1, ..., x_m) \in \mathbb{R}^d$, finding a compression matrix W and a recovering matrix U, satisfy

Lemma 1.

$$\arg \min_{W \in \mathbb{R}^{n,d}, U \in \mathbb{R}^{d,n}} \sum_{i=1}^{m} \|x_i - UWx_i\|_2^2 = \arg \min_{V \in \mathbb{R}^{d,n}: V^T V = I^n} \sum_{i=1}^{m} \|x_i - V^T V x_i\|_2^2$$

$$= \arg \max_{V \in \mathbb{R}^{d,n}: V^T V = I^n} trace \left(V^T \sum_{i=1}^{m} x_i x_i^T V \right)$$

And if V's column is the matrix $\sum_{i=1}^{m} x_i x_i^T$'s n leading eigenvectors, we reach the maximum.

Proof. Let $V \in \mathbb{R}^{d,n}$ be a matrix whose columns form an orthonormal basis of this subspace, then $\{UWx : x \in S\} \subset \{Vy : y \in \mathbb{R}^n\}$, then

$$\forall V \in \left\{ V^T V = I^n, \mathbb{R}^{d,n} \right\}, \quad \arg\min_{y_i} \|x_i - V y_i\|^2 = V^T x_i$$

$$\min_{W \in \mathbb{R}^{n,d}, U \in \mathbb{R}^{d,n}} \sum_{i=1}^{m} \|x_i - UWx_i\|_2^2 \ge \min_{V: V^T V = I^n} \min_{y_1, \dots, y_m} \sum_{i=1}^{m} \|x_i - Vy_i\|^2$$

$$= \min_{V: V^T V = I^n} \sum_{i=1}^{m} \|x_i - VV^T x_i\| = \min_{V: V^T V = I^n} \sum_{i=1}^{m} \|x\|^2 - 2x^T VV^T x + x^T VV^T VV^T x$$

$$= \min_{V: V^T V = I^n} \sum_{i=1}^{m} \|x\|^2 - x^T VV^T x = \min_{V: V^T V = I^n} \sum_{i=1}^{m} \|x\|^2 - trace(V^T x x^T V)$$

$$= \max_{V \in \mathbb{R}^{d,n}: V^T V = I^n} trace\left(V^T \sum_{i=1}^{m} x_i x_i^T V\right)$$

Let $A = \sum_{i=1}^{m} x_i x_i^T$. The matrix A is symmetric and therefore it can be written using spectral decomposition as $A = UDU^T$, where D is diagonal and $U^TU = UU^T - I^d$

$$\max_{V \in \mathbb{R}^{d,n}: V^T V = I^n} trace\left(V^T \sum_{i=1}^m x_i x_i^T V\right) = \max_{V \in \mathbb{R}^{d,n}: V^T V = I^n} trace\left(V^T U D U^T V\right)$$

$$= \max_{W \in \mathbb{R}^{d,n}: W^T W = I^n} trace\left(W^T D W\right) = \sum_{i=1}^d D_{i,i} \sum_{j=1}^n W_{i,j}^2$$

First we have $\sum_{i=1}^{d} \sum_{j=1}^{n} W_{i,j}^2 = n$.

Second, We expand W to be $\tilde{W},$ whose first n columns are the columns of W, and $\tilde{W}^T\tilde{W}=I^d.$ Then $\sum_{j=1}^d \tilde{W}_{i,j}^2=1\Rightarrow \sum_{j=1}^n W_{i,j}^2\leq 1.$ (($\tilde{W}\tilde{W}^T-I^d$) $\tilde{W}=0\Rightarrow \tilde{W}\tilde{W}^T=I^d$). Then, if $D_{1,1}\geq D_{2,2}\geq\ldots\geq D_{d,d},$

$$\max_{W \in \mathbb{R}^{d,n}: W^T W = I^n} \sum_{i=1}^d D_{i,i} \sum_{i=1}^n W_{i,j}^2 \le \max_{\beta \in [0,1]^d: \|\beta\|_1 \le n} \sum_{i=1}^d D_{i,i} \beta_i = \sum_{i=1}^n D_{i,i}$$

It's easy to varify that if V's column is U's first n columns, then

$$\max_{V \in \mathbb{R}^{d,n}: V^T V = I^n} trace\left(V^T U D U^T V\right) = \sum_{i=1}^n D_{i,i}$$

Because $\sum_{i=1}^{m} ||x_i||^2 = trace(A) = \sum_{i=1}^{d} D_{i,i}$, so we obtain that

$$\min_{V:V^TV = I^n} \sum_{i=1}^m \|x\|^2 - trace(V^Txx^TV) = \sum_{i=n+1}^d D_{i,i}$$

A More Efficient Solution for the Case $d \gg m$

In previous section, constructing the matrix A need $O(md^2)$ and calculating eigenvalues of A need $O(d^3)$. If $d \gg m$, we can calculate the PCA solution

Instead of analysing $A = X^T X$, we consider $B = X X^T$. The B's eigenvector u satisfies $Bu = \lambda u \Rightarrow X^T X X^T u = \lambda X^T u \Rightarrow \frac{X^T u}{\|X^T u\|}$ is an eigenvector of A with eigenvalue of λ . Then the complexity is $O(m^3) + O(m^2d)$.

RANDOM PROJECTIONS

For a random matrix W, we want $\frac{\|Wx_1 - Wx_2\|}{\|x_1 - x_2\|} \approx 1$.

Lemma 2. Fix some $x \in \mathbb{R}^d$. Let $W \in \mathbb{R}^{n,d}$ be a random matrix such that each $W_{i,j}$ is an independent normal random variable. Then for every $\epsilon \in (0,3)$ we

$$\mathbb{P}\left[\left| \frac{\|(1/\sqrt{n})Wx\|^2}{\|x\|^2} - 1 \right| > \epsilon \right] \le 2e^{-\epsilon^2 n/6}$$

Proof. Wlog we can assume that $||x||^2 = 1$. Then we need to proof

$$\mathbb{P}\left[(1-\epsilon)n \le \|Wx\|^2 \le (1+\epsilon)n\right] \ge 1 - 2e^{-\epsilon^2 n/6}$$

Let w_i be the ith row of W. The random variable $\langle w_i, x \rangle$ is a combination of d independent normal random variables, which is still normal random variable. Then $\|Wx\|^2 = \sum_{i=1}^n \left(\langle w_i, x \rangle\right)^2 \sim \chi_n^2$ So we can use the measure concentration property of χ^2 random variables.

Lemma 3. Let $Z \sim \chi_k^2$. Then

$$\forall \epsilon > 0, \quad \mathbb{P}\left[Z \le (1 - \epsilon)k\right] \le e^{-\epsilon^2 k/6}$$

$$\forall \epsilon \in (0,3), \quad \mathbb{P}\left[Z \ge (1+\epsilon)k\right] \le e^{-\epsilon^2 k/6}$$

Proof. For normally distributed random variable, $\mathbb{E}[X] = 0, \mathbb{E}[X^2] = 1, \mathbb{E}[X^4] = 3$. Since $\forall a \geq 0, e^{-a} \leq 1 - a + \frac{a^2}{2}$, then

$$\mathbb{E}\left[e^{-\lambda X^2}\right] \leq 1 - \lambda \mathbb{E}\left[X^2\right] + \frac{\lambda^2}{2}\mathbb{E}\left[X^4\right] = 1 - \lambda + \frac{3}{2}\lambda^2 \leq e^{-\lambda + \frac{3}{2}\lambda^2}$$

$$\begin{split} \mathbb{P}\left[-Z \geq -(1-\epsilon)k\right] = & \mathbb{P}\left[e^{-\lambda Z} \geq e^{-(1-\epsilon)k\lambda}\right] \leq e^{(1-\epsilon)k\lambda} \mathbb{E}\left[e^{-\lambda Z}\right] \\ = & e^{(1-\epsilon)k\lambda} \prod_{i=1}^k \left(\mathbb{E}\left[e^{-\lambda X_i^2}\right]\right) \\ \leq & e^{(1-\epsilon)k\lambda} e^{-\lambda k + \frac{3}{2}\lambda^2 k} = e^{-\epsilon k\lambda + \frac{3}{2}k\lambda^2} (=e^{-\epsilon^2 k/6} \ if \ \lambda = \epsilon/3) \end{split}$$

Here is a closed form expression for χ_k^2 distributed random variable:

$$\forall \lambda < \frac{1}{2}, \mathbb{E}\left[e^{\lambda Z^2}\right] = (1 - 2\lambda)^{-k/2}$$

$$\begin{split} & \mathbb{P}\left[Z \geq (1+\epsilon)k\right] = \mathbb{P}\left[e^{\lambda Z} \geq e^{(1+\epsilon)k\lambda}\right] \leq e^{-(1+\epsilon)k\lambda}\mathbb{E}\left[e^{\lambda Z}\right] \\ = & e^{-(1+\epsilon)k\lambda}(1-2\lambda)^{-k/2} \leq e^{-(1+\epsilon)k\lambda}e^{k\lambda} = e^{-\epsilon k\lambda}(=e^{-\epsilon^2k/6}, \ if \ \lambda = \epsilon/6) \end{split}$$

Lemma 4. (Johnson-Lindenstrauss Lemma). Let $x \in S$, then

$$\mathbb{P}\left[\sup_{x\in S}\left|\frac{\|(1/\sqrt{n})Wx\|^2}{\|x\|^2}-1\right|>\epsilon\right]\leq 2\left|S\right|e^{-\epsilon^2n/6}\leq\delta\Rightarrow\epsilon\geq\sqrt{\frac{6\ln(2|S|/\delta)}{n}}\in(0,3)$$

The preceding lemma does not depend on the original dimension of x.

23.3 COMPRESSED SENSING

- 1. Prior assumption: the original vector is sparse in some basis;
- 2. Denote: $\|\vec{x}\|_0 = |\{i : x_i \neq 0\}|;$
- 3. If $||x||_0 \le s$, we can represent it using s (index, value) pairs;
- 4. Further assume: $\vec{x} = U\vec{\alpha}$, where $\|\vec{\alpha}\|_0 \le s$, and U is a fixed orthonormal matrix;
- 5. Compressed sensing: get \vec{x} , compress \vec{x} into $\vec{\alpha} = U^T x$ and represent $\vec{\alpha}$ by its s (index, value) pairs.

The key result:

- 1. It is possible to reconstruct any sparse signal fully if it wars compressed by $x \mapsto Wx$, where W is a matrix which satisfies a condition called the Restricted Isoperimentric Property.
- 2. The reconstruction can be calculated in polynomial timee by solving a linear program.

3. A random $n \times d$ matrix is likely to satisfy the RIP condition provided that n is greater than an order of $s \log(d)$

Definition 2. (Restricted Isoperimentric Property). A matrix $W \in \mathbb{R}^{n,d}$ is $(\epsilon, s) - RIP$ if $x \neq 0$ s.t. $||x||_0 \leq s$

$$\forall \vec{x} \in \{ \|\vec{x}\|_0 \le s \land \vec{x} \in \mathbb{R}^d \}, \quad \left| \frac{\|W\vec{x}\|_2^2}{\|\vec{x}\|_2^2} - 1 \right| \le \epsilon.$$

Theorem 1. Let $\epsilon < 1$ and W be a $(\epsilon, 2s)$ -RIP matrix. Let $\vec{x} \in \{ \|\vec{x}\|_0 \le s \land \vec{x} \in \mathbb{R}^d \}$ and $\vec{y} = W\vec{x}$. Then,

$$\vec{x} = \vec{z} \in \arg\max_{\vec{z}: W \vec{z} = \vec{y}} \|\vec{z}\|_0$$

Proof. If $\vec{x} \neq \vec{z}$, we can get $\|\vec{z}\|_0 \leq \|\vec{x}\|_0 \leq s$, so $\|\vec{x} - \vec{z}\| \leq 2s \cdot \left| \frac{\|W(\vec{x} - \vec{z})\|_2^2}{\|\vec{x} - \vec{z}\|_2^2} - 1 \right| \leq \epsilon$ which leads to a contradiction.

Theorem 2. Further assume that $\epsilon < \frac{1}{1+\sqrt{2}}$, then

$$\vec{x} = \arg\min_{\vec{v}: W\vec{v} = \vec{y}} \|\vec{v}\|_0 = \arg\min_{\vec{v}: W\vec{v} = \vec{y}} \|\vec{v}\|_1.$$

A stronger theorem follows

Theorem 3. Let $\epsilon < \frac{1}{1+\sqrt{2}}$ and let $W \in \mathbb{R}^{n,d}$ be a $(\epsilon, 2s) - RIP$ matrix. Let $\vec{x} \in \mathbb{R}^d$ and denote

$$\vec{x}_s \in \arg\min_{\vec{v}: \|\vec{v}\|_0 \le s} \|\vec{x} - \vec{v}\|_1.$$

note that \vec{x}_s is the vector which equals \vec{x} on the s leargest elements of \vec{x} and equals 0 elsewhere. Let $\vec{y} = W\vec{x}$ be the compression of \vec{x} and let

$$\vec{x}^* \in \arg\min_{\vec{v}: W\vec{v} = \vec{y}} \|\vec{v}\|_1$$

Then,

$$\|\vec{x}^* - \vec{x}\|_2 \le 2\frac{1+\rho}{1-\rho}s^{-1/2}\|\vec{x} - \vec{x}_s\|_1$$

where $\rho = \sqrt{2}\epsilon/(1-\epsilon)$.

Proof. Let $\vec{h} = \vec{x}^* - \vec{x}$. Given a vector \vec{v} and a set of indices I we denote by \vec{v}_I the vector whose ith element is v_i if $i \in I$ and 0 otherwise.

Then we partition the set of indices $[d] = \{1, \ldots, d\}$ into disjoint sets of size $s, [d] = T_0 \cup T_1 \cup T_2 \dots T_{d/s-1}$. We assume d/s is an integer, then $|T_i| = s$.

 T_0 has the s indices corresponding to the s largest elements in absolute values of \vec{x} . Let $T_0^c = [d] \backslash T_0$. Next, T_1 will be the s indices corresponding to the s largest elements in absolute value of $h_{T_0^c}$. Let $T_{0,1} = T_0 \cup T_1$ and $T_{0,1}^c = [d] \backslash T_{0,1}$. Next, T_2 will correspond to the s largest elements in absolute value of $h_{T_{0,1}^c}$. And soon on.

Lemma 5. If W is an $(\epsilon, 2s)$ – RIP matrix. Then, for any two disjoint sets I,J, both of size at most s, and for any vector \vec{u} we have that $\langle Wu_I, Wu_J \rangle \leq \epsilon \|u_I\|_2 \|u_J\|$

Proof.

$$\begin{split} \left| \frac{\|W(\vec{u}_I + \vec{u}_J)\|_2^2}{\|\vec{u}_I + \vec{u}_J\|_2^2} - 1 \right| &\leq \epsilon \\ \left\langle W \vec{u}_I, W \vec{u}_J \right\rangle = & \frac{1}{4} \left(\|W \vec{u}_I + W \vec{u}_J\|_2^2 - \|W \vec{u}_I - W \vec{u}_J\|_2^2 \right) \\ &\leq & \frac{1}{4} \left((1 + \epsilon) \|\vec{u}_I + \vec{u}_J\|_2^2 + (\epsilon - 1) \|\vec{u}_I - \vec{u}_J\|_2^2 \right) \\ &= & \frac{\epsilon}{2} \left(\|\vec{u}_I\|_2^2 + \|\vec{u}_J\|_2^2 \right) \end{split}$$

W.l.o.g we assume $\|\vec{u}_I\| = k\|\vec{u}_J\|$, then

$$\langle W\vec{u_I}, kW\vec{u_J} \rangle \leq \frac{\epsilon}{2} (\|\vec{u}_I\|_2^2 + k^2 \|\vec{u}_J\|_2^2) = k\epsilon \|\vec{u}_I\| \|\vec{u}_J\|$$
$$\langle W\vec{u}_I, W\vec{u}_J \rangle \leq \epsilon \|\vec{u}_I\| \|\vec{u}_J\|$$

Clearly, $||h||_2 = ||h_{T_{0,1}} + h_{T_{0,1}^c}||_2 \le ||h_{T_{0,1}}||_2 + ||h_{T_{0,1}^c}||_2$. If we have following two claims:

1.
$$||h_{T_0^c}||_1 \le ||h_{T_0}||_2 + 2s^{-1/2}||\vec{x} - \vec{x}_s||_1$$
;

2.
$$||h_{T_{0,1}}||_2 \leq \frac{2\rho}{1-\rho} s^{-1/2} ||\vec{x} - \vec{x}_s||_1$$
.

Then we can proof the theorem

$$||h||_{2} \leq ||h_{T_{0,1}}||_{2} + ||h_{T_{0,1}^{c}}||_{2} \leq 2||h_{T_{0,1}}||_{2} + 2s^{-1/2}||\vec{x} - \vec{x}_{s}||_{1}$$

$$\leq 2\left(\frac{2\rho}{1-\rho} + 1\right)s^{-1/2}||\vec{x} - \vec{x}_{s}||_{1} = 2\frac{1+\rho}{1-\rho}s^{-1/2}||\vec{x} - \vec{x}_{s}||_{1}$$

Now we prove claims1: $\forall i \in T_j, i' \in T_{j-1}$, we have $|h_i| \leq |h_i'|$. Therfore,

$$||h_{T_j}||_{\infty} \le ||h_{T_{j-1}}||_1/s$$

$$\Rightarrow ||h_{T_j}||_2 \le s^{1/2} ||h_{T_j}||_{\infty} \le s^{-1/2} ||h_{T_{j-1}}||_1$$

$$\Rightarrow ||h_{T_{0,1}}|| \le \sum_{j \ge 2} ||h_{T_j}||_2 \le s^{-1/2} ||h_{T_0^c}||_1$$

$$\begin{aligned} \|\vec{x}\|_{1} &\geq \|\vec{x} + \vec{h}\|_{1} = \sum_{i \in T_{0}} |x_{i} + h_{i}| + \sum_{i \in T_{0}^{c}} |x_{i} + h_{i}| \geq \|x_{T_{0}}\|_{1} - \|h_{T_{0}}\|_{1} + \|h_{T_{0}^{c}}\|_{1} - \|x_{T_{0}^{c}}\|_{1} \\ \|h_{T_{0}^{c}}\|_{1} &\leq \|\vec{x}\|_{1} - \|x_{T_{0}}\|_{1} + \|x_{T_{0}^{c}}\|_{1} + \|h_{T_{0}}\|_{1} = 2\|x_{T_{0}^{c}}\|_{1} + \|h_{T_{0}}\|_{1} \\ \|h_{T_{0}^{c}}\|_{1} &\leq s^{-1/2} \left(2\|x_{T_{0}^{c}}\|_{1} + \|h_{T_{0}}\|\right) \leq \|h_{T_{0}}\|_{2} + 2s^{-1/2} \|x - x_{s}\| \end{aligned}$$

Then we prove claim 2: For RIP condition,

$$(1 - \epsilon) \|h_{T_{0,1}}\|_{2}^{2} \leq \|Wh_{T_{0,1}}\|_{2}^{2} = \|Wh - \sum_{j \geq 2} Wh_{T_{j}}\|_{2}^{2} = \|\sum_{j \geq 2} Wh_{T_{j}}\|_{2}^{2}$$

$$= \sum_{j \geq 2} \langle Wh_{T_{0}} + Wh_{T_{1}}, Wh_{T_{j}} \rangle \leq \epsilon (\|h_{T_{0}}\|_{2} + \|h_{T_{1}}\|_{2}) \sum_{j \geq 2} \|h_{T_{j}}\|_{2}$$

$$\leq \sqrt{2} \epsilon \|h_{T_{0,1}}\|_{2} \|h_{T_{0,1}^{c}}\|_{2} \leq \sqrt{2} \epsilon \|h_{T_{0,1}}\|_{2} s^{-1/2} \|h_{T_{0}^{c}}\|_{1}$$

$$||h_{T_{0,1}}||_{2} \leq \frac{\sqrt{2}\epsilon}{1-\epsilon} s^{-1/2} ||h_{T_{0}^{c}}||_{1} \leq \frac{\sqrt{2}\epsilon}{1-\epsilon} s^{-1/2} \left(||h_{T_{0}}||_{1} + 2||x_{T_{0}^{c}}||_{1} \right)$$

$$\leq \frac{\sqrt{2}\epsilon}{1-\epsilon} \left(||h_{T_{0,1}}||_{1} + 2s^{-1/2} ||x_{T_{0}^{c}}||_{1} \right) \leq \frac{2\rho}{1-\rho} s^{-1/2} ||x_{T_{0}^{c}}||_{1}, \quad \rho = \frac{\sqrt{2}\epsilon}{1-\epsilon}, \epsilon \leq \frac{1}{\sqrt{2}+1}$$

Theorem 4. Let U be an arbitrary fixed $d \times d$ orthonormal matrix, let ϵ, δ be scalars in (0,1), let s be an integer in [d], and let n be an integer that satisfies

$$n \geq 100 \frac{s \log(40d/(\delta\epsilon))}{\epsilon^2}$$

Let $W \in \mathbb{R}^{n,d}$ be a matrix s.t. each element of W is distributed normally with zero mena and variance of 1/n. Then, with probability of at least $1-\delta$ over the choice of W, the matrix WU is $(\epsilon, s) - RIP$

23.4 PAC OR COMPRESSED SENSING

- 1. PCA assumes that the set of examples is contained in an n dimensional subspace of \mathbb{R}^d ;
- 2. Compressed sensing assumes the set of examples is sparse (in some basis).