ED 212 874

CE 031 417

AUTHOR

Legacy, Jim; And Others

TITLE

Nursery Propagation. Competency Based Teaching

Materials in Horticulture.

INSTITUTION

Illinois State Board of Education, Springfield. Dept.

of Adult, Vocational and Technical Education .; Southern Illinois Univ., Carbondale, Dept. of Agricultural Education and Mechanization.

PUB DATE

[80]

NOTE AVAILÄBLE FROM 78b.; For related documents see CE 031 413-421. Agricultural Education & Mechanization Dept.,

Southern Illinois University, Carbondale, IL 62901

(54.00).

EDRS PRICE DESCRIPTORS MF01/PC04 Plus Postage. *Agricultural Education; Check Lists Competency Based Education; Horticulture; Job Skills; *Landscaping; Learning Activities; *Nurseries (Horticulture); *Nursery Workers (Horticulture); Ornamental Horticulture; *Ornamental Horticulture Occupations; *Plant Propagation; Secondary Education; Tests; Units of Study; Visual Aids

ABSTRACT

This competency-based curriculum unit on nursery propagation is one of five developed for classroom use in teaching the landscape/nursery area of horticulture. The four sections are each divided into teaching content (in a question-and-answer format) and student skills that outline steps and factors for consideration. Topics covered include planting the seed, transplanting the seed, propagation by cuttings, and grafting. A list of references precedes a section containing visual aids, student skill checklist, and student activities, such as field trips, handouts, discussion activities, worksheets, crossword puzzles, hands-on experiences, tests, and quizzes. Answer keys are provided. (YLB)

Reproductions supplied by EDRS are the best that can be made from the original document.

Listed below are competency based curriculum units developed for classroom use in teaching horticulture. All units are indexed and include teaching contents references, student activities, a skill check list, and visual aids.

LANDSCAPE/NURSERY

Tree Identification

Developing a Landscape Plan

Implementing the Landscape Plan

Maintaining the Landscape

Nursery Propagation

TURF AND LAWN SERVICES Identification of Turf Grasses Soils and Fertilizers

Planting Turf Grasses
Insects and Diseases

, FRUIT PRODUCTION

(In progress)

GREENHOUSE PRODUCTION & MANAGEMENT

Controlling the Greenhouse Environment

Greenhouse Soils,

Foliage Plants

Propagation

Sales

Cut Flower Production

Bedding Plants

VEGETABLE PRODUCTION

Identification of Cool Season Vegetables

Identification of Warm Season Vegetables

. Vegetable Production

Insects, Diseases, and Weeds

ACKNOWLEDGEMENT

This material was prepared by: Jim Legacy, Fred Reneau, Thomas Stitt, Terry Savko, Amy Swigart, Kathy Cummings, Carole Paesch, Sharon Flanagan, and 42 Illinois teachers of horticulture, in cooperation with the Illinois State Board of Education, Department of Adult, Vocational and Technical Education, and the Pepartment of Agricultural Education and Mechanization, Southern Illinois University.

NURSERY PROPAGATION

CONTENTS

PLANTING THE SEED	1
Clean the container, chemical pollutants, seed treatments, germination media, container types, fill the containers and sow seed, factors affecting germination, label seed flats	
TRANSPLANTING THE SEED	9
Stages at which to transplant, seedling parts, media types and uses, containers, methods used, watering requirements, soil treatments, light and humidity levels, nutritive requirements, drainage, hardening off, physiological conditions of plants	
PROPAGATION BY CUTTINGS	18
Growth regulators, hormones, soil medias, taking cuttings, the stick method, leaf slips, the slip method, planting depths, leaf cuttings, herbaceous cuttings, hardwood cuttings (deciduous and narrow-leaved evergreen), softwood cuttings, semi-hardwood cuttings	
GRAFTING	27
Advantages, types of root and stem stock, functions of xylem, phloem and cambium, collecting budwood, wrapping, transpiration, plant and maintain the graft	,
REFERENCES	37
COMMENT ACTIVITIES	38

oom ng aids.

ENT

Nursery Propagation

PLANTING THE 'SEED

Teaching content: 19 questions; 12 student skills

- Question 1 How do chemical pollutants hinder seed germination?
 - Molecules compete for enzyme bonding surfaces
 - Pollutant molecules clog cell membranes reducing diffusion
 - Pollutant molecules interfere with mitotic cell division
- Question 2 What are the common chemical pollutants from unclean containers?
 - Fungus from previous plantings
 - Soap restdue
- How can chemical pollution from unclean containers be avoided? Question .3
 - Clean containers thoroughly using brush and soap solution
 - Rinse containers several times with clean water

Student Skill 1

Steps

- 1. Gather and prepare materials -
- 2. Wash containers
- 3. Rinse
- 4. Drain-dry

CLEAN CONTAINERS

- 1. Bucket or sink, soap solution, water, brush "
- 2. Use brush vigorously
- 3. Use clean water to thoroughly remove any soap residue
- 4. Towels may add residues not wanted on containers
- What are the three types of seed treatments used to control Question 4 diseases?
 - Disinfestation
 - Disinfection
 - Seed protection

What is the major use of each type of seed treatment. Question 5

- Disinfestants eliminate organisms present on the surface of the seed'
- Disinfectants eliminate organisms within the seed itself
- Protectants are materials that are applied to the seed which protect it from fungicides
- Question 6 What materials are used to control diseases for each type of treatment?
 - Disinfestation materials include calcium hypochlorite, Merthiolate, bromide water, and mercuric chloride and calcium hypochiorite
 - Disinfection materials include hot water, formaldehyde and aerated steam, LF-10,
 - Protectant materials include certain zinc and copper fungicides, copper oxide (red_or,yellow)./ Other fungicides in use include chloronil, thiram, ferbam, benomyl, captan, and zinc trichlorophenate.
- What are the types of seed treatment used to stimulate seed Question 1 germination?
 - Mechanical scarification
 - Soaking seeds in water
 - Acid scarification
 - Moist-chilling (stratification)
 - Combinations of two or more pregermination-treatments -
 - Timing the planting
 - Dry storage

- 4 Chemical stimulants (gibberellins)
- Cytokinins > - Ethylene
- Potassium nitrate
- Thiourea
- /- Sodium hypochlorite, - Exposure to light
- Question 8 What are the requirements a seed germination should meet?
 - Favorable pH level
 - Adequate supply of nutrients--limited amounts
 - Firm soil '
 - Perous
 - Uniform in texture
 - Sterile
 - Free of weeds, insects, and disease organisms
- Question 9 . What types of germination media are available?
 - · Soil
 - Sand
 - Peat moss
 - Sphagnum moss
 - Perlite

- Jiffy Mix

Vermiculite

- Pro-Mix
- Mixtures

What are the specific uses of each as a medium? Question 10

- Soil--can be mixed with other materials as growth medium; not used by itself; must be sterilized before use

- Sand--is most useful as a propagation medium for cuttings.

- Peat, moss--used for growing and propagating plants; used as a covering for germinating seeds, as an integral part of seed and potting composts, as a propagation medium; can be

- Sphagnum moss-may be used as a germinating medium or as a

Perlite-as a rooting medium for cuttings; particle size growing medium for plants

Vermiculite--used as seeding medium; horticultural grade

Jiffy mix--used as germinating and growing medium

Pro-mix--several types available; sterilized material for germination and growth of seedlings

Mixtures -- light mixtures of the nature of loam or sandy loam are preferred for germinating seeds and as a growing medium for potted plants. Synthetic mixtures containing one part soil, one part sand and one part peat, by volume, are used. Mixtures of peat and sand are widely employed for propagation by means of cuttings.

. What kind of containers are available for planting? Question 11

- Flats
- Trays .
- Peat pots
- Pans
- Market packs
- Other

How much potting material should be used? Question-12

- After packing, at least 10 times the thickness of the seed
- Depends on height of the potting container
- Packed to within 1/2 to 1/4" from top rim

How firm should potting material be packed? Question 13

- Firm enough that material does not shrink downward after watering
- How full should containers be filled? Question 14
 - About 1/2 to 1/4" from top rim

Why is the level of the fill important? Question 15

- 1/4" at top allows for water to settle without washing away any media and possible seeds
- More than 1/2" from top rim may cause a shadow (less light) on seedling when it surfaces!

Student Skill 2

FILL CONTAINERS

Steps

- 1: Gather materials
- 2. Fill containers
- 3. Pack potting material in containers to within 1/2. to 1/4" from top rim
- 4: Water from bottom in tray of shallow water '
- 5. Let stand 2-6 hours

Factors for Consideration

- 1. Clean containers, potting media 🤭
- 3. Firm to touch, but not as hard as you can. Potting material should not shrink-down when water is added
- 4. Until moist on top 5. Allows excess water to drain
- 6. Can be watered after sowing seed

.When should seed be sown? Luestion 16

- Use booklets, catalogs, circulars for information, past year's records; Calendar, dates for each seed type, hardiness of plant
- Figure backwards starting with date of sale, then back to planting date using: days from planting to transplanting; days from transplanting time to date for planting in ground or sale to customer. For outdoor plants: know tolerance to weather of plants. Average frost free date for area.

How are seeds designed for survival? Question 17

- Seed coat reduces chance o' dehydrating contents
- Small hole (near hilum) lows for oxygen to enter
- Food supply inside for growing embryo.
- Seed-leaves (cotyledons) inside for immediate photosynthesis when seedling surfaces.

What are factors affecting germination? Duestion 18

- Water
- Water availability - Oxygen-exchange of gases between embryo and atmosphere
- Temperatures between 36°F and 92°F

How are water and oxygen used for germination?

- Water softens seed coat for expanding due to growth
- Water is required for diffusion of chemical molecules
- across a living membrane Oxygen is required for conversion of stored food to energy used in mitotic cell division .

Student. Skill 3

SOW SEEDS

1. Make drills (or rows) in flats 2. Spacing of seeds--different

seeds for different uses: a. Close together-almost

touching

Steps

b. Farther apart c. For transplanting later

d. For planting directly into soil (peat pot)

e. For specimen planting f. In rows rather than small clumps

q. Outdoors in final loca-

Factors for Consideration

a. Size of seed varies b. Seed size affects spacing

c. Sow closely together if trans-, planting to be done later.

d. Certain seeds do not transplant well--plant these in individual

pots, or peat pots e. Plant seeds in rows for better air circulation to reduce

diseas', mold, mildew. f. Clumps of seeds do poorly due

to competition for nutrients, light, moisture, air--roots

will be short and crowded,

stems spindly, leaves small -g. Some seeds grow adequately

when planted outside h. Space correctly when planted

1. The greater spread of top growth requires increased

spacing j. Spacing of seeds affected by germination percentage -- age of

seed and conditions of storage. Low germination--sow thicker

k. Check germination rate.

3. Disperse seeds between . fingers, or use a batterypowered vibrating tool.

Depth to plant:

seed

a. 2-3 times diameter of 4a. Light-sensitive seeds for germinating -- must be on top of 11. Follow seed company directions

ŧ

Student Skill 4

COVER SEEDS

Steps

Factors for Consideration

- 1. In the drill, cover to twice the diameter of seed
- 2. Use shredded sphagnum moss. 2. Must be sterile Moss is high acid pH and helps prevent "damping off"
- 3. May use fin perlite; fine sand, or reg lar media
- 4. Very fine seeus--do not cover
- 4. With dark-germinating seeds

follow package directions.

Student Skill 5

WATER THE SEED FLAT

Steps

Factors for Consideration

- 1. Use tub of H₂O for inserting flats at shallow depth for subirrigation
- .2. May be top-watered
- 2. Capillary action brings water from bottom to top--the smaller the tube (or soil mix), the higher it goes. Top watering may bury seeds too deeply or disturb seeds. Extremely dry and/or fine media must be premixed with water by hand as it won't soak up H₂O

Student Skill 0

LABELING SEED FLATS

Steps/

- 1. Use plastic plant label or pieces of plastic . cartons
- 2. Write using pencil or permanent felt marker
- 3. Write information on label 3. Identify seed, variety, date
- 4. Insert label edgewise along 4. Won't get broken off, lost, side of media in flat pushed over, if covered

ADJUST CONDITIONS FOR GERMINATION

Steps

Factors for Consideration

tion--no additional watering

needed. Newspaper works, but

can't see seedlings thru it.

- Bottom heat for flat of 18°-21°C (65-70°F)
- 2. Flats or pots covered with 2. Retains moisture for germinaglass or plastic plate, or sheet of plastic film, tucked in and/or around
- 3. Distance 15-20 cm (6-8 in.) 3. Full sun or fluorescent lights (one cool-white bulb and one regular white bulb) should be used for food production after seed has germinated.

CHECK SEEDLING GROWTH

Steps

- 1. Remove cover when seedlings reach desired height
- 2. Water as needed--uniformly, room-temperature water,
- 3. Fertilize with water-soluble nutrients regularly 4. Provide proper drainage of
- flat 5: Lower temperature as plant
- adapts to conditions 6. Place in full sunlight
- 7. Reduce water before transplanting
- 6. Desire sturdy stem, large leaves, short internodes 7. Induces better root growth.
- Easier to transplant as media crumbles off somewhat. More root hairs and primary roots stay on seedling.

ADAPT LIGHT-SENSITIVE GERMINATING SEEDS

as needed

Steps

Factors for Consideration

- 1. Omit covering with ger- 1. Light stimulus is needed to minating media
- container ·
- germinate seeds 2. Follow directions on seed 2. After germinated, add a small amount of media to cover roots

Student. Skill 10,

-LOCATE OPEN SEED BED AREA OUTSIDE FOR TREES AND SHRUBS*

Steps

Factors for Consideration

- 1. Use semi-shade 2. Use a canopy of burlap
 - or muslin on a wooden frame.
- Plant in fall outside.
- 1. 3-4 hours sun per day 2. Helps in light and wind screening
- 3. Alternate freezing and thawing helps break dormancy
- *This method not frequently used; more often seeds are placed in coolers to break dormancy.

Student Skill 11

PLANT SEEDS OUTSIDE IN PROTECTED AREA

Steps

Factors for Consideration

- 1. In cold frame
- 2. Mulch with hay or straw in

Student Skill 12.

· PLANT IN OPEN GARDEN OR FIELD

spring

Factors for Consideration

🐃]. Soil warms faster in early

- 1. Remove mulch early
- 2. Add organic matter and <ide-dress fertilizer
- 3. Spacing determined by needs of mature plant.
- 4. Sow seeds 5. Water seeds
- Mulch soil over ceeds. Thin seedlings later
- 7. Refer to Tree and Shrub books for planting.

TRANSPLANTING THE SEED

Teaching content: 32 questions; 8 student skills

At what stage should a seedling be transplanted? Question 1

- When it has three true leaves (seed leaves that develop into food-producing structures).

What competitive factors increase the need for transplanting Ouestion 2. seedlings?

- Nutrients of the soil--minerals, water
- Space above ground--to spread leaves
- Carbon dioxide-- for photosynthesis
- Sunlight -- for photosynthesis

What parts of the seedling are fragile? Question 3

- Stem
- Roots
- Root hairs
- Leaves

Why are seedlings so fragile? Question 4

> - New (cellular) growth does not include hardened resins for support

What is the purpose of root hairs? Question 5

> - Increase surface area, thereby increasing rate of absorbing materials (mineral ions) from the soil.

How are root hairs designed to accomplish their purpose? Question 6

Very thin, very numerous

Student Skill 1

REMOVE SEEDLINGS FROM SOIL MEDIA

Steps

- 1. Moisten seedling bed
- 2. Remove (dig up) seedling with fingers or small . shovel without pulling

- 1. Reduces chance of breaking root hairs
- 2. Special care should be taken to not injure (by stretching) root hairs. Dirt ball removed loose from surrounding soil . I with seedling should be about same size (diameter) as that of leafy top.

Question 7 What determines the pot type to use when transplanting?

- Small single pot or peat pots for single speciman use and sale

- Market pack of six for small volume sales

- Market pack of 12 for larger group sale and supply
- Consecutive transplanting to next size larger pot for certain species
- Transplanting shock to the specific plant--keep to a minimum

Question 8

What type soil media should be used?

- Adequate soil nutrients
- Well aerated
- Absorbs moisture, holds moisture
- Sterile, weed free, and insect free
- Future use affects soil media for weight of soil *Hanging pots should be lighter weight mix
- Determine by plant needs for moisture, drainage, aeration, etc.

Question 9

.What type pots should be used for growing plants?

<u>Alternatives</u>

Factors for Consideration

- 1. Clay pots
 - econom
- 2. Plastic pots
- 3. Fiber pots

- Porous, loses moisture readily, heavy, easily broken. Round shape is not economical of space. After continued use toxic salt accumulations build up. Can be steam cleaned and reused. Very popular.
- Can be round or square, reusable, light-weight, use little storage space since they "nest", and are nonporous. Pathogenic organisms can be eliminated by hot water dip (158°F, 70°C) for 3 minutes without damage to plastic. Cannot be steam sterilized.
- Can be small pots, 2-4" in size, round or square pressed into shape from peat plus wood fiber, with fertilizer added. Are dry and keep indefinitely. Are biodegradable and are set in soil with plant inside. Will fall apart when moved. Unless they are kept moist, roots will fail to penetrate walls of pot and will grow into an undesirable spiral pattern.

Question 10

What are the various types of germinating, propagating and growing media available?

- Peat 🗸
- Sphagnum moss
- Sand
- Vermiculite
- Volcanic rock (perlite)
- Mixtures

Question 11 What are the specific uses of each as a medium?

Peat. Peat is used for growing and propagating plants. Peat moss is used as a covering for germinating seeds, as an integral part of seed and potting composts, and as a propagation medium, used alone or with sand.

- Sphagnum moss. May be used as a germinating medium or as a

growing medium for plants.

- Sand. Most useful as a propagation medium for cuttings.

- Vermiculite. As a seeding medium; the horticultural grade is used

Volcanic Rock (Perlite). As a rooting medium for cuttings,
 perlite ranging in particle size from 2-8 mm is ideal

- Mixtures. Light mixtures of the nature of loam or sandy loam are preferred for germinating seeds and as a growing medium for potted plants. Synthetic mixtures containing one part soil, one part sand and one part peat, by volume, are used. Mixtures of peat and sand are most widely employed for propagation by means of cuttings.
- Question 12 Why do you grasp the seedling by the leaves, not the stem?
 - Leaves are only a part of the plant
 - Stem may be pinched too tightly and choke off plant; it dies-
 - A stem will not regrow again easily, but a leaf will
- Question 13 What damage could be caused by too loose a repack?
 - Seedlings need support against falling over; leaves touching soil will decay (rot)
- Question 14 What damage could be caused by too hard a repack?
 - Fragile root hairs could be broken and therefore reduce absorption power of seedling
- Question 15 What part of the seedling is (totally) responsible for the absorption of water?
 - Root hairs
- Question 16. Why is water absolutely necessary for plant growth?
 - Dry materials cannot be absorbed through a living cell membrane
 - Water dissolves the minerals in soil and brings them to the root hairs
- Question 17 What damage can occur with too much water pressure when watering newly planted (transplanted) seedling?
 - Bending seedling and sticking leaves to media; leaves will rot when stuck to soil
 - Root hairs may be torn (due to stretching)

PRE-WATER MEDIA FOR TRANSPLANTING

Steps

Factors for Consideration

- 1. Mix Pro-mix with water
- la. 12-20 times its weight of water 1b. Work water in with hands or use
- 2. Fill trays with water about 1" or 1/2 as deep as height of containers
- small tumbler (or cement mixer) 2a. Watering from bottom helps to settle soil
- 3. Place containers in water in tray
- 4. Allow containers to stand until top of potting material looks wet
- tray and allow to drip (pots)
- 5. Remove excess water from 5. Then plant soon to prevent evaporation

Student Skill 3

TRANSPLANT SEEDLINGS

Steps

Factors for Consideration

- 1. Prick out seedling
- la. Use plant label or fork
- 2. Pick up seedling
- 1b. Take out only a very few so roots won't dry before planting
- Grasp leaf with fingers, NOT the
- 3. Make hole in media for . seedling
- 3a. Use pointed dibble--either a single, or a many-dibble set up for the whole flat

- 4. Insert plant
- 3b. Deeper hole than roots 3c. Wider hole so roots will be

spread out

- 5. Firm soil around seed1 ing
- 4a. Extend roots
- 4b. Plant about same depth as before 5a. Use fingers and knuckles of both hands
- 6. Water soil gently
- 5b. Plant should remain erect
- 6a. Soil leyel in pot one inch below surface edge of pot
- 6b. No water if media was pre-watered
- 6c. All the way thru media, if not prewatered.
- 7. Insert label (plant)
- .7. 'Indicate variety, name, and date.
- 8. Put contairér into
- 8. Same variety of plants together

Question 18 What are possibilities for watering the media?

- Some fine, dry media (like Pro-Mix) must be mixed with 12-20 times its weight with water before putting into pot (as per directions on package)
- Soil sub-irrigated before planting seed
- Soil top-watered before planting seed - Soil sub-irrigated after planting seed
- Soil top-watered after planting seed

Question 19 What are problems in sub-irrigating pots?

- Takes a little longer as water moves up thru media by capillary
- Reduces leeching of potting material and its nutrients

Question 20 What are advantages in sub-irrigating pots?

- Does not disturb seeds or seedling
- Does not bury seeds or wash seeds out of media

Question 21 What are problems, in top-watering of pots?

- Media will settle more unless firmed down
- Wash away potting media Yovering seeds, and around plant
- Wash away potting media surrounding seed, and around plant
- · Wash away seed or plant

Student Skill 4

MOISTEN TRANSPLANTS

Steps

Factors for Consideration

- 1. Moisten surrounding soil until repacked media remains moist, but water is not. standing.
- 1. Fine spray reduces chances of washout of repack

Question 22 What soil treatment is done to prevent "damping off", a fungus disease?

- Cor ar soil with sterile media -- sand, perlite, vermiculite
- Use milled sphagnum moss (or ground) which is low pH (acid). This helps prevent damping off.
- Spray seedlings with a chemical solution, such as "Captan".

Question 23 What light intensity should the seedlings receive?

- Medium Tight intensity for one or two days--to adjust roots to new pot of soil
- Increase to bright(er) light after 2 or 3 days
- Gradually move into sunlight, if possible
- Stronger light of 1500 to 2000 ft.c (foot-dandles) and up, will produce healthier plants with larger leaves, shorter internodes, and better growth with earlier blooms, etc.

Question 24 What humidity levels should be maintained?

- High humidity for several days
- Greenhouse effect for plants--cover with a plastic (baggie, if singles), or film or tent to keep humidity 60 to 70%
- After transplanting shock is over, you can remove the hoods or tents

Question 25 What water requirements should be carried out?

- Water regularly and as needed
- Brighter light or sunshine produces more growth, photosynthesis, and evaporation giving a greater need for water--twice daily on some days
- Warmer days produces more growth requiring more water

Question 26 What are the nutritive requirements for the seedling?

- Some mixes already have a complete fertilizer added--good for a couple of weeks.
- A dilute solution of a complete fertilizer may be added daily with each watering

Question 27 When should you transplant seedling the next time?

- Depends on plant--some are to be kept pot-bound, some varieties need space. (Read the growing conditions for that plant)
- When roots begin showing thru the peat pot, repot
- When roots begin showing thru drain holes, repot
- When top growth gets adequate or large, repot

Question 28 What do you transplant the young plant into?

- Use the next size larger pot. If 2 1/4, go to 3". If 3" go to 4"
- Some plants which transplant poorly should be put into the second size larger pot:
- If in a peat pot, put into permanent location, and tear off top edge of peat pot, or burn peat pot completely to prevent "wicking" of moisture by capillary action upwards, producing faster drying of soil, pot and plant.

TRANSPLANT A SECOND TIME

Steps -

- 1. Select pot
- 2. Cover drain hole
- 3. Add small amount of media to bottom of pot /
- 4. Soil around plant in pot should be somewhat dry before transplanting/
- 5. Spread fingers of left hand around plant stem and over top of soil
- 6. Invert pot over left hand, and gently tap pot edge on edge of table
- 7. Remove pot from root ball as it loosens
- 8. If roots are pot bound, gently loosen them from soil at edges or unwind them
- 9. Place root ball into new pot10. Fill in edges around root
- ball with soil
- 11. Water completely
- 12. Replace plant label

Factors for Consideration

- la. Next size larger
- More permanent style pot
 Use sphagnum moss, pottery pieces, pebbles, piece of nylon stocking, or paper
- towel piece
 3a. Old plant ball should be about the same height in soil in
- new pot

 3b. Estimate depth with plant in older, smaller pot
- 4a. Do not water plant the morning of transplanting
- 4b. Knocks out of pot easier
 4c. Soil will not "puddle" so
 easily
- 5a. To hold plant stem in with roots
 5b. To catch dirt ball with roots
- 6a. Tap once or twice on table
- 6b. Certain pot--you may need to nit bottom of inverted pot with palm of right hand
- 7a. Plant, soil, and roots should all come out together in a ball
- 7b. Keep roots all in tact 8a. Try to save all roots
- 8b. Roots will grow out into new soil better if loosened
- 9a. Center the plant
- 9b. Plant erect
- 10a. Firm down with fingers
- 10b. Firm media all around the pot 10c. Leave one sinch top space to water
- 11a. Either from top or bottom
- 11b. Add water until water runs out bottom

Question 29 Why is drainage needed in a flower pot?

- To reduce mold in roots due to lack of aeration
- To keep water (in soil and pot) "sweet and clean."
- To eliminate offensive odor

Question 30 What do you use to cover drainage hole?

- Piece of broken pot
- Sphaghum moss
- Pebbles
- Piece of nylon stocking--will not rot
- Paper towel, cloth--for temporary use

Question 31 What do you do if there is no drainage hole?

- Make a hole--use drill, chisel, hot wire, hot poker
- Put a 1" layer of charcoal (washed) in bottom of pot. Then add layer of coarse sand; then layer soil media. Charcoal helps keep water "sweet"
- Put a rigid glass tube into pot before filling with soil (all way to bottom). With a "dip stick", put it in tube to bottom, pull out and check level of water in bottom where roots are. Replace measuring stick in tube in pot.

Question 32 Why should a plant be "hardened off"? "

- To acclimate the plant to outside conditions
- Sunshine is stronger outside than inside greenhouse by about 10-15% or inside your home by 25-75%
- Transpiration and evaporation is much greater to plant due to more wind or air movement outside
- A greater fluctuation of temperatures outside
- More wind to possibly blow over the plants
- Plants are not as sturdy inside

Student Skill 6

"HARDEN OFF" THE PLANT

Steps'

- 1. Allow plant to adapt to outside environment
- 2. Reduce watering frequency
- 3. Place outside in protected
- 4. Increase time span and temperature conditions outside
- 5. Use a cold frame
- 6: Cover if extreme cold for next few days

- 1. Slowly over several days to week's time.
- 2a. Produces stronger roots
- 2b. Induces plant stress
- 2c. Readies plant for adverse growing conditions
- 3. Begin with a few hours/day; use morning hours
- 4a. Gradually increase time and sun brightness outside
- 4b. Increase temperature extremes
- 5. Remove cover and/or check temperature hourly
- 6. Use milk cartons, hood, other covers when out in open row

SELECT AND MAINTAIN HEALTHY STOCK PLANTS

Steps

Factors for Consideration

- ,1. Observe stock plants for habit of growth, flower characteristics, amount of flower production and disease symptoms
- 2. Select uniform, true to type, pathogen-free stock plants that can be maintained under proper nutritive conditions

Student Skill 8

DETÉRMINE PHYSIOLOGICAL CONDITION OF PLANTS

Steps

- 1. Select those shoots with greenis# stems
- 2. Determine carbohydrate content by examining stem firmness
- 3. Make iodine test to determine a desirably high starch content. Place freshly cut ends of a bundle of cuttings into a 0.2% solution of potassium iodide

- Greenish stems are more likely to contain ample carbohydrates, and have a high nitrogen content. They will produce fewer roots but stronger shoots
- 2. Stems that are soft and flexible and who witable
- 3. Cuttings having highest starch/ content will stain darkest color

PROPAGATION BY CUTTINGS

Teaching content: 21 questions: 10 student skills

Questional What is the function of growth regulators?

- To increase the percentages of cuttings which form roots
- To hasten root initiation
- To increase the number and quality of roots produced per cutting
- To increase uniformity of rooting
- Question 2 Which hormones are used for general purposes of rooting?
 - Naphthaleneacetic acid (NAA)
 - Indolebutyricacid (IBA)
- Question 3 What are the disadvantages of using root-promoting substances?
 - Application of synthetic auxins to stem cuttings at high concentrations can inhibit bud development. It may reach to the point at which no shoot growth will take place although root formation has been adequate
 - Applications of rooting substances to root cuttings may inhibit the development of shoots from root pieces
- Question 4 What are alternative mediums for cutting propagation?

Alternatives

1. Soil

- Ordinarily used for planting deciduous hardwood cuttings and root cuttings.
 A well-aerated sandy loam is preferable to heavy clay soil.
- Cuttings of certain easily rooted plants such as chrysanthemums and geraniums, are sometimes started directly in small containers or plant bands, using a mixture of 2 parts coarse sand to 1 part soil.
- Soil should be heat-treated or fumigated before using.
- Is widely used as a rooting medium for cuttings. It is inexpensive and readily available.
- Sand is not as retentive of moisture as most other rooting media, necessitating more frequent watering.
- Should be fine enough to retain some moisture around cuttings yet coarse enough to allow water to drain freely through it.

- Used alone, very fine particle sand or very coarse sand does not give good results with cuttings of most woody ornaments.
- Best to use sand only once for rooting cuttings unless it can be sterilized.
- For evergreens, such as yews, junipers, and aborvitaes, sand is probably the most satisfactory rooting medium to use.
- With some species, cuttings rooted in sand produce a long, unbranched, brittle root system in contrast to more desirable fibrous and branched systems developed in other media.
- Peat moss is often added to sand in varying proportions, mainly to increase water-holding capacity of mixture. Sand and peat moss combination makes a good rooting mixture for cuttings of many species. Mixtures used vary from 2 parts sand and 1 of peat moss to 1 part sand and 3 of peat moss.

 Including peat moss in a rooting medium considerably increases the mixture's water-holding capacity and the danger of overwatering

- High proportions of peat moss in mixture if kept wet, as in a mist bed, will sometimes cause deterioration of roots soon.

 after they are formed.
- Sometimes used as a rooting medium when mixed with an equal part of sand.
- Often used as rooting medium. Cuttings of some plants root better in larger particle sizes, whereas others do better in smaller sizes.

 Mixture of equal parts of vermiculite and perlite (or a medium-grade sand) usually give better results than either material used alone.

indicerial used alone.

- Used as a rooting medium for leafy cuttings, especially under mist, owing to its good drainage properties. May be used alone but is best used in combination, in varying proportions with peat moss or vermiculite.

3. Peat moss

- 4. Shredded sphagnum moss
- 5. Yermiculite

6. Perlite

7. Water

- Water can be used to root cuttings of easily propagated species. advantage is lack of aeration. Artificially aerating water with aid of oxygen can produce excellent rooting of cuttings of some species. In aerated water, best roots are produced near basal end of cuttings, whereas in nonaerated water, best foots are produced near surface of water where exygen content is higher.
- 8. Moisturé-saturated air
- Can be used as a rooting medium by placing cuttings in closed frames in which relative humidity is maintained by mist nozzles close to 100%. This method has resulted in satisfactory root formation with some plants and is especially successful with root cuttings.
- Does not lend itself to large-scale use.

Where should cutting be severed from mother plant? Duestion 5

- Best about 3-6" from terminal tip(s)
- Trim off all but top 3 leaves to decrease rate of transpiration (water loss)
- What damage could occur from a ragged cut? Question 6
 - Decaying cellular debris on edges would prevent healthy cell growth close to the nutrients
- What are some examples of plants that can be propagated easily Question 7 using the "stick" method?
 - Roses
 - Geraniums
 - Garden Chrysanthemums
 - House plants in general (e.g., African violets)
- How deep should the cut stem (removed shorter part) be "stuck" Ouestion 8 into the soil?
 - About 1/3 of its length (1-2").
- How is the cut stem "stuck" into the soil without causing damage to the cells at the cut edge? Question 9
 - Poke a hole into soil with a pencil or finger=-slide stem into hole and gently repack

Question 10 How firm should the media (soil) be repacked around the "stuck" stem?

- Firm to the touch, but not as hard as you can push

- Enough to support cutting from falling over, but not to crush underground portion of stem

Student Skill 1.

PLANT CUTTINGS (STICKING)

Steps

Factors for Consideration

l. Make a hole in stickingbed 1-2" (as needed) with pencil or finger

2. Slide prepared stem into hole

3. Repack media around "stuck" stem

3. Firm to touch, but not as hard as you can

Question 11 Why are leaf slips generally grown inside vs. outside in the yard?

<u>Alternatives</u>

Factors for Consideration

1. Inside

2. Outside

- Environmental conditions are controlled (i.e., water, temperature, air circulation, humidity)

- Leaf slips do not take up much room and can be grouped together

in a tray

- Slips subject to harsh environmental conditions (beating action of rain and sun)
- Slips easily destroyed by being stepped on, etc.

Question 12 Where is best probable place to cut leaf for maximum root development?

- About 1/5 to 1/4 distance from peticle attachment to leaf

Question 13 What damage could occur from a ragged cut on the leaf?

- Cellular growth requires healthy cells..close to nutrients-- without decaying cellular debris on edges.

- Question 14 What are some examples of plants that can be propagated easily using the "slip" method?
 - Begonias
 - Mother-of-thousands
 - Royal velvet
 - La Jolla plant

CUT FROM MOTHER PLANT

Steps

Factors for Consideration

- 1. Obtain a sharp knife
- 2. Cut off bottom (where petiole attaches to leaf) 1/5 or 1/4 of leaf
- 1. Unlike cutting of stems, a scissors can be used since leaves are thin. However, scissors must be sharp.
- In general, area cut probably will be widest part of leaf on plants being used.

Question 15 How deep should this cut leaf (top part) be "slipped" into growth media?

~ 1/4-1/2"

Question 16 Which part of cut leaf is "slipped" into the growth media?,

- Cut edge goes in media (leaf standing vertical)

Question 17 When should the growth media be watered--before or after planting?

- Loosened growth media is DRY; moisten only after planted.
- If outside yard is media, wet thoroughly BEFORE planting.

Question 18 How firm should growth media be repacked around "s1:pped" leaf?

- Firm to touch, but not as hard as you can push

- Enough to support leaf vertically, but not to crush underground portion of leaf's cut edge

· PLANT SLIPS (CUTTINGS)

Steps

Factors for Consideration

- 1. Slide cut edge of leaf 1/4-1/2" into growth media
- 4- 1. Leaf to stand vertically
- -2. Repack media around planted edge of leaf
- 2. Firm to touch, but not as hard as you can

Question 19 Why is water absolutely necessary for plant growth?

- Dry materials cannot be absorbed through a living cell membrane
- Moist soil (growth media) is "softer" for new root growth to push through

Question 20 How much water should be added?

- Enough that growth media looks moist (and remains moist) but water should not be standing on surface

Student Skill 4

MAKE LEAF CUTTING

Steps

Factors for Consideration

- 1. Propagate begonia by stamping out leaf disks (2cm diameter) with cork borer
- 1. This method may be useful in propagating other species with large flat leaves
- 2. Obtain 40 to 50 disks from a single leaf
- 3. Treat disks with indolebutyric acid and kinetin to stimulate root and shoot development
- Place disks on moistened filter paper in covered petri dishes during regeneration period

Student Skill 5

MOISTEN PLANTING

Steps

Factors for Consideration

١.

1. Moisten soil (growth media) surrounding "slipped" leaf until growth media appears moist looking

1. Use a fine spray if possible to reduce chances of washout or repack or knocking leaf over

ERIC

Full Text Provided by ERIC

MAKE HERBACEOUS CUTTINGS

Steps

Factors for Consideration

- Make cuttings 3-5" long with 1. Cuttings that exude a sticky leaves retained at terminal end or without leaves
- 2. Use root-promoting substances to gain uniformity in rooting and development of heavier root systems
- 3. Supply high humidity and bottom heat
- 4. Root in a medium of peat, sand, vermiculite or a 1:1:1 mixture
- sap such as geranium, pine. or cactus should be allowed to dry for a few hours

Student Skill 7

MAKE HARDWOOD CUTTINGS (DECIDUOUS SPECIES)

Steps

- 1. Take cuttings from stems of moderate vigor and with a diameter range from 1/4-2" and a length from 6-8". Take from dormant leafless one-year old shoots
- 2. Include at least two nodes in cutting; make basal cut just below a node and top cut 1/2-1" above a node
- 3. Make a "mallet" cutting by including a short section of stem of older wood -
- 4. Make a "heel" cutting by including a very small piece of older wood
- 5. Make a "straight" cutting by not including any of older wood
- 6. Distinguish between top and base of cuttings by making one of cuts with a slant rather than cutting at right angles
- 7. Dip basal ends of cuttings in a solution of indolebutyric acid or another root-promoting substance
- 8. Use a dibble to insert cuttings and to firm soil
- 9. Plant cuttings 3-4" apart and deeply enough so just one bud shows above ground
- Plant in a loose sandy loam
- Some plants must be calloused before planting.

MAKE HARDWOOD CUTTINGS (NARROW-LEAVED EVERGREEN SPECIES)

Steps

Factors for Consideration

- young seedling stock. Select 1-year shoots
- 1. Take 4-8" long cuttings from 1. Take cuttings between late fall and late winter. Handle with rapidity.
- 2. Cut mature terminal shoots of previous season's growth
- 3. Treat with indolebutyric acid or another root-promoting substance
- 4. Root cuttings, in a greenhouse under high light intensity and high humidity
- 5. Supply a bottom heat temperature of 75°-80°F (24°-26.5°C)
- 6. Dip cuttings into fungicide solution
- 7. Place cuttings in a flat filled with sand or use a 1:1 mixture of perlite and peat moss
- 8. Restick slow to root cuttings in rooting compound

Student Skili 9

MAKE SOFTWOOD (GREENWOOD) CUTTINGS

- 1. Take cuttings from soft, succulent new spring growth
- 2. Take cuttings in early part of day and keep cool and moist
- 3. Select stems that have some degree of flexibility but are mature enough to break when sharply bent
- 4. Select stems from lateral or side branches with average growth
- 5. Make cuttings 3-5" long with 2 or more nodes. Make basal cut just below a node
- 6. Remove leaves on lower portion of cutting and retain those on upper part
- 7. Ramove all flowers or buds
- 8. Dip in a root-promoting preparation
- 9. Plant in a media of 1:2:1 made from sand, loam soil and peat
- 10. Place in high humidity
- 11. Supply bottom heat of 65°-70°F

MAKE SEMI-HARDWOOD CUTTINGS

(Usually made from woody, broad-leaved evergreen species, but leafy summer cuttings taken from partially matured wood of deciduous plants could be considered as semi-hardwood)

Steps

- Take cuttings during summer from new shoots just after a flush of growth has taken place and wood is partially matured
- 2. Make cuttings 3-6" long with leaves retained at upper end
- 3. Use shoot terminals or basal parts of stem
- 4. Make basal cut just below a node
- 5. Take cuttings in cool early morning when stems are turgid and
 keep wrapped in a clean moist burlap bag or put in a large polyethylene bag
- 6. Dip into a liquid rooting thormone" (auxin) preparation for 5 seconds
- 7. Place in a rooting media of 1:1 mixture of perlite and peat moss or perlite and vermiculite
- 8. Cut rows in rooting media with a heavy knife against a board
- 9. Supply bottom heat of 75°-80°F
- Place leafy cutting under intermittent mist sprays.

GRAFTING.

Teaching content: 29 questions; 15 student skills

- Question 1 What is the advantage of grafting one plant type to another?
 - Start a desired plant on one with established root system
 - Desired plant may have root system typically susceptible to disease
- Question 2 Why use dicot plants rather than monocot plants for root stock?
 - Functional xylem and phloem near outer edge on dicot plants; scattered at random throughout monocot stems
 - Most monocot plants are annuals (die after one year)
- Question 3 What are the qualities of healthy root stock at time of budding?
 - Seedling root stock must be in an active growth, indicated by soft, rapidly growing branch tips
- Question 4. What is a final test to determine if seedling is receptive to bud?
 - Bark should slip loose easily when cut and wood underneath appear moist and smooth, with no tearing or stringing of tissue

Student Skill 1

SELECT ROOT STOCKS FOR BUDGING

Steps

- 1. Select root stock plant that has desired characteristics of vigor, growth habit, and disease resistance.
- 2. Select root stock plant that has had I year's growth in nursery row before budding is to be done

Factors for Consideration

- 1. Root stock plant must be easily propagated
- 2a This root stock plant may be a rooted cutting, rooted layer, or more commonly, a seedling
- 2b Seedlings of slow-growing species may require two seasons growth to produce a root stock plant large enough to be budded

Bestion 5

Why use dicot plants rather than monocot plants for stem stock?

- Functional xylem and phloem near outer edge on dicot plants; scattered at random throughout monocot stems
- Most monocot plants are annuals (die after one year)

- Question 6 Why is it best to choose root and stem stock that are same diameter at location to be grafted?
 - Functional xylem and phloem are near outer edge on dicot plants; they must match-up if materials are to flow through them

Question 7 Can two different diameters be grafted together?

- Yes, but be sure one eige of each, is lined up together to increase the possible number of xylem and phloem tubes lining up for continuation of flow
- Chances of successful grafting (plant survival) decreases with decreased number of xylem and phloem lined up
- Question 8 What is the primary function of each: xylem, phloem, and cambium?
 - Xylem basically carries water and dissolved minerals upward from root hairs to leaves for photosynthesis
 - Phloem basically carries food (glucose) produced via photosynthesis in leaves downward to stem (trunk) and roots for energy or storage (starch)
 - Cambium basically is only tissue capable of making new cells (xylem and phloem) via mitosis, therefore necessary for diameter growth of plant
 - Question 9 What type of root stock is compatible with which types of budwood or scion?

Alternatives

1. Grafting between species within a genus

- In some cases grafting can be done successfully with plants of different species and genus.
- Grafting between most species is done within a common genus. Citrus is successful and widely used.
- Cultivars of the almond, the apricot, European plum, and Japanese plum-different species-are grafted commercially to the peach, a completely different species, as a root stock. On the other hand, almond and apricot, both in same genus, cannot be intergrafted successfully
- Compatibility between species may depend upon particular clone or seedling being used, either for root stock or scion
- In some cases a given interspecies graft is successful, but reciprocal combination is not

- Grafting between genera within a family
- When plants to be grafted to-1 gether are in different genera but in same family, chance of union being successful is remote
- There are few cases of success: Trifoliage orange is used commercially as dwarfing stock for various species in genus, Citrus. The quince has been used as a dwarfing root stock for certain pears.
- 3. Grafting between families
- Successful grafting between plants of different botanical families is usually considered impossible but there are a few reported instances in which it has been done with short-lived herbaceous plants

When is dormant budwood collected?

The budwood may be collected in the late fall after the trees have lost their leaves.

Student Skill 2

COLLECT DORMANT BUDWOOD

Steps

Factors for Consideration

- 1. Collect relatively straight medium-vigor budwood of current season's growth
- 2. Place cut ends of canes in
- a small amount of moist sphagnum moss
- 3. Place entire bundle in a poly-3. ethylene bag or wrap it in polyethylene-kraft paper
- 4. Store package at temperature 4a Degree of dormancy or rest of 75°-80°F for 3-8 days
- 1. Select from healthy, true-to name stock plants.
 - moist sphagnum moss and sealed in a polyethylene bag. governs length of time required.

This can also be placed in a

- for seasoning. 4b During this period, cambium: layer will become active, and bark can be readily separated from woody central cylinder.
- 4c Careful attention must be given to condition of plant material since it is being seasoned under relatively high humidity and temperature. Buds may begin to grow if held too long. These buds

may be lost before they are used

COLLECT BUDWOOD FOR SUMMER BUDDING

Steps

Factors for Consideration

- 1. Collect budwood of darrent season's growth: new shoots which have developed since growth started in spring.
- Keep root stock actively and continuously growing.
- 3. Defoliate budsticks immediately after collection in field.
- 4. Place budsticks in moist medium such as sphagnum moss or moist newspaper, over-wrapped with a waterproof paper such as polyethylene kraft paper, or place in a polyethylene bag, and hold in a refrigerated storage until used.

Student Skill 4

SELECT STEM STOCK (FOR GRAFTING)

Steps

1. Choose desired stem type plant which most closely resembles the same diameter of the root stock to be used.

Factors for Consideration

 Exactness at this point is not absolute since both stem and root will be trimmed before grafted

Question. 11 "Where should the stem and root stock be cut for joining?

- Roots are actually <u>not</u> cut; stock is cut on stem just above roots
- Stem stock is cut to same diameter as cut root stock
- Cut both stem and root stock stem on a diagonal; BE SURE angle of cuts is same

- What detriment could result from ragged cuts? Ouestion 12
 - Ragged cuts result in cellular debris and unhealthy cells at edges; cellular growth (and healing) requires healthy cells in close contact to nutrients or other living cells that can, pass nutrients to it
 - Cellular debris at cut edges can allow leakage of nutrients being passed from one section to the other
 - Cellular debris at cut edges can allow air leaks and therefore drying of cellular tissue--remember, dry material can NOT be absorbed through cell membranes

TRIM GRAFTED_AREAS

Steps

are same

Factors for Consideration

- 1. Obtain a sharp knife through stem and root stock stem so angles and diameters
- 1. Do not use a scissors 2. Make angular cut completely 2: Diameter sameness not absolutely necessary, but. certainly desired
- Is total line-up of the xylem, phloem, and cambium absolutely Question 13 necessary?
 - No, but the better they line up, the better the chances of having a successful graft and plant survival

Student Skill 6

HOLD ROOT STOCK TO STEM STOCK

Steps

- 1. Be sure both cut edges are " 1. Hold cut edges of root stock and stem stock together lined up without air spaces with your fingers
- Question 14 What is the purpose of the wrap material?
 - To secure stem stock to root stock
 - To prevent entrance of disease causing organisms (pathogens)
 - -- To decrease chances of drying out at cut edges

Question 15 What characteristics should the wrap material have?

- Water resistent: remember, DRY materials cannot go across
 living cell membranes
- Flexible: material should be able to be stretched by plant to compensate for additional diameter due to growth

Question 16

Why should care be taken not to damage cut edges?

- Growth and successful living (cellular) require healthy cells
- Damaged cells (debris) at cut edges can block passage of nutrients and spread decay (from bacteria on stock)
- All edges have been exposed to the environment
- Cut edges have been artificially secured together

Student Skill 1

WRAP-ROOT STOCK TO STEM STOCK

<u>Steps</u>

1. While holding lined up stock, 1. Firmness of wrap to stock is wrap two together with wrap necessary to secure one to material (rubberband) other so neither can move,

Factors for Consideration

1. Firmness of wrap to stock inecessary to secure one to other so neither can move, BUT be careful not to wrap so tightly that stem and root cells are crushed

Question 17 What is transpiration?

- Water that is absorbed by the root hairs, travels through the stem to the leaves for photosynthesis, but is not used in photosynthesis, is evaporated from surfaces of leaves (i.e., morning dew).

Question 18 Is transpiration of value to the plant?

- Yes, transpiration helps pull absorbed water through plant

Question 19 Why should top third of grafted branch be cut off?

- To reduce water loss due to transpiration, especially if root stock used is not established and needs to be planted.

Student Skill 8

TRIM TOP THIRD

Steps

Factors for Consideration.

- 1. Obtain sharp pruning tool-looks like a pair of pliers
- 2. Cut off top third of stem stock (branch) in an arc
- Do NOT use scissors or knife
 You may find this action emotionally hard to do after such care and work, but doing

it will greatly enhance the chances of the plant's survival

Question 20 How are rocks detrimental to root growth?

- Waste of time and energy for plant to grow among (detour) rocks and debris in soil
- Shifting of rocks (i.e., weathering) can cut and/or injure tender roots

Student Skill 9

CLEAR NEW PLANTING BED, OF DEBRIS

<u>Steps</u>

Factors for Consideration

1. Rake and pick out debris

- 1. Debris is rocks and any manmade materials
- 2. Debris within 6" from surface should also be removed
- Question 21 If root stock selected is to be planted, how big a hole should be dug?
 - Rocts of root stock should be able to be spread out; not crushed together
 - Hole should/be deep enough that grafted area is BELOW surface of ground when grafted root stock is placed in hole

Student Skill 10.

DIG HOLE (IF ROOT STOCK IS TO BE PLANTED)

Steps.

Factors for Consideration

- 1. Obtain shovel
- 2. Dig hole

2. Pile dirt close to top edge so handy for repacking after planting.

Question 22 Why are some air spaces in soil important?

- Air spaces due to loosening media before planting allows complete penetration of water into the media.

Dry mineral's cannot be absorbed, into a cell (plant) unless. material is in solution

Student Skill 11

٠.۵

LOOSEN MEDIA IN HOLE

Factors for Consideration

1. Using shovel, rake, or scarlet claw. loosen dirt on all surfaces of the hole 1. Loosen surfaces by digging

Question 23 What is purpose of wetting the pre-planted soil?

- Allows for complete moistening of soil - Watering after planting to thoroughly moisten soil enchances leeching of valuable minerals from repacked soil

Student Skill 12

FILL HOLE 2/3 WITH WATER

Steps.

Factors for Consideration

1. Obtain water source: bucket or attached garden hose

2. Gently fill hole 2/3 full with water

2. If water drains out (percolates) fast, refill until water remains in hole

How firm should removed ground (dirt) be repacked around planted; Question 24 .grafted plant?

> - The dirt should be replaced in hole (containing roots of plant, stem to and including wrapped area, and water)

- The water in the hole will allow the dirt to mesh together easily (removing air bubbles) without crushing root hairs

- Firm to touch, but not as hard as you can push -- plant should be secure standing

Juestion 25 Why is it advisable to secure planting via staking?

- Mud surrounding root stock tends to allow movement of new planting
- Established root systems secure plant against wind
- Staking secures plant until root system can establish itself in hole and secure plant

Skill 13

PLANT GRAFT

Factors for Consideration

- 1. Lower (gently) grafted root , 1. Hold plant at this desired stock into water in hole level while repacking soil until wrapped area is 1-2" . back into hole below surface of hole
- 2. Replace soil into hole (without splashing) evenly around
- 3. Pack soil into hole, firm to 3. Be sure wrapped area is touch, but not as hard as you covered (buried) can push
- Question 26 How can too much water pressure in post-planting watering cause damage?
 - Soil surrounding plant can be washed out of hole and therefore expose wrapped area
- Question 27 What is mineral leeching?
 - Since water is pulled downward by gravity, any minerals of soil that water dissolved will also be washed downward--possibly away from root hairs

Student Skill 14

MOISTEN TRANSPLANT

Factors for Consideration

- 1. Obtain watering source: sprinkling can or hose
- plant and surrounding repacked soil
- 2. Gently water planted grafted 2. Use a fine spray if possible to reduce chances of washout of repacked soil, therefore. exposing wrapped area

- Question 28 How long should grafted plant remain wrapped?
 - At least three months
- Question 29 How can leaving the wrap on indefinitely harm the plant?
 - Until the "breaking point" of the wrap material is reached, the wrap material tends to be a detriment to the growing stem's diameter by not allowing it to expand
 - The flexibility (ability to stretch) of the material decreases the more the material is stretched

Student Skill 15.

REMOVE WRAPPING

Steps

- 1. After at least 3 months, gently remove soil surrounding wrapped area with your fingers
- 2. Gently (slowly) cut away wrapping material
- 3. Rapack removed dirt
- 4. Staking should probably remain functioning at least until next year

Factors for Consideration

- Do not use any tool as it probably will "skin" the newly healed area
- 2. Wrapping material (e.g., rubberband) need not be removed as long as it is cut loose and is no longer a binding force

REFERENCES

- Denison, Ervin L. <u>Principles of Horticulture</u>. New York: McMillan Publishing Co., Inc., 1958.
- Furuta, Tokuji. Environmental Plant Production and Marketing (2nd printing). Arcadia, CA: Cox Publishing Company, 1976.
- Halfacre, R. Gordon, and John A. Barden. Horticulture. New York: McGraw-Hill, Inc., 1979.
- Hartmann, H. T., and D. Kester. Plant Propagation--Principles and Practices (3rd Ed.). Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.
- Wells, James'S: Plant Progation Practices (13th Ed.). New York: Macmillan Publishing Company, Inc., 1975.
- Wyman, Donald. <u>Wyman's Gardening Encyclopedia</u> (4th Ed.). New York: Macmillan Publishing Company, Inc., 1975.

STUDENT ACTIVITIES

NURSURY PROPAGATION "

ERIC

SEED DEVELOPMENT

7

ROOT CUTTINGS

GOOD

- 1. DIAMETER 3/8"
 2. SEVERAL SMALL ROOTS

- 1. DIAMETER TOO SMALL 2. TOO FEW SMALL ROOTS

Simple Hardwood Stem Cutting

able 2. Formulas for the Five Basic U.C. Soil Mixes

=	Ingrediè percent			Ingredients to be added per cubic yard					
Soil mix	Fine ^{1 *}	Peat moss	Potassium ²	Potassium sulfate	Single super- phosphate	Dolomitic lime	Calcium carbonate lime	Gypsum	
A	100%	0%	8 oz.	4 oz.	2½ lbs.	11/2 lbs.	*****	21/2 lbs.	
В	. 75%	25%	6 oz.	4 oz.	21/2 lbs.	41/2 lbs.	1% lbs.	11/4 lbs.	
	50%	50%	4 oz.	4oz;	21/2 lbs	71/2 lbs.	2½ ibs.		
C	25%	75%	4 oz.	.4 oz.	2 lbs.	5 lbs.	4 lbs.	*****	
D E	25%	100%	60z. 🥕		1 lbs.	2½ lbs.	5 lbs.	****	

Adapted from The U.C. System for Poducing Healthy Container-Grown Plants by K. F. Baker [ed.] 1957. California Agricultural Experiment Station, Manual 23.

Table 3. Cornell Peat-lite Mixes

Peat- lite mix	Sphagnum peat	Vermiculite	Perlite	Ground limestone	Super- phosphate 0-20-0	Potassium Nitrate	Fritted trace elements	Wetting agent
A	11 by.	11 bu.	••••	5-10 lbs.4	1-2 lbs.	1 lb. ¹	2 oz:	3 oz.
В	11 bu.	essu•	11 bu.	5-10 lbs. ⁴	2 lbs.	1.5 lbs.	2 oz.	3 _. oz.
Foliage P Mix ²	lant 11 bu.	5½ bu.	. 5½ bu.	8 lbs.` *	. 2 lbs.	` 1 lb.	2 oz.	3 oz.
Epiphytic	c 7 1/3⋅bu.	•	7 1/3 bu.	7 lbs.	4 lbs.	, 1 lb.	2 oz	3 oz

Adapted from Cornell Peat-Lite Mixes for Conmercial Plant Growing by J. W. Boodley and R. Sheldrake, 1972. New York College of Agriculture, Cornell University, Information Bulletin 43.

D. J. Tyznik, Soils for Plant Growth, VAS 5024, Vocational Agriculture Service, University of Illinois.

¹ Fine sand is defined in the above publication.

² Potessium nitrate may be replaced with potassium sulfate if no initial nitrogen is desired. For example in Mix A, 12 ounces of potassium sulfate could be used in lieu of the suggested 8 ounces of potassium nitrate and 4 ounces of potassium sulfate.

^{*} Douglas, red, or white fir bark, ground and screened to 1/8 - 1/4 inch, is used instead of vermiculite.

¹ Calcium nitrate may be used instead of potassium nitrate.

² To this mix also add .75 ounces of iron sulfate and 2.5 pounds of 10-10-10 fertilizer.

³ To this mix, also add .5 ounces of iron sulfate and 2.5 pounds of 10-10-10 fertilizer.

⁴ Less limestone is added for seedlings and bedding plants; more for general use.

OVERHEAD IRRIGATION EQUIPMENT

MIST NÖZZLE

SUPERIOR NOZZLE

MIST PROPOGATION NOZZLE

FOG-MIST NOZZLE

SS SHORT THROW

SS 50° GREENHOUSE NOZZLE

SS 70° GREENHOUSE

HUMIDIFICATION NOZZLE

SS 80° GREENHOUSE

NOZZLE

CATFISH NOZZLE

Magnesium

Potassium

- A. Parasitic and virus diseases disseminated by bacteria, fungi or virus entities (excluded from present discussion).
- A. Non parasitic troubles; never infectious; caused by element deficiencies.
 - 1. Older or lower leaves of plant mostly affected; effects localized or generalized.
 - a. Effects mostly generalized over whole plant; more or less drying or firing of lower leaves; plant light or dark green.
 - Plant light green; lower leaves yellow, drying to light brown color; stalks short and slender if element is deficient in later stages of growth Nitrogen-
 - b. Effects mostly localized; mottling or chlorosis with or without spots of dead tissue on lower leaves; little or no drying up of lower leaves.
 - 1) Lower leaves mottled or chlorotic, with or without dead spots; leaf margins sometimes tucked or cupped upward or downward.

 - b) Mottled or chlorotic leaves with large or small spots of dead tissue.
 - i) Spots of dead tissue small, usually at tips and between veins, more marked at margins of leaves; stalks slender
 - ii) Spots generalized; rapidly enlarging, generally involving areas between veins and eventually involving secondary and even primary veins; leaves thick; stalks with shortened internodes.
 - 2. Newer or bud leaves affected; symptoms localized.
 - a. Terminal bud dies, following appearance of distortions at tips or bases of young leaves.

ERIC

	1) Young leaves of terminal bud becoming light green at bases, with final break down here; in later growth, leaves become twisted; stalk finally dies back at terminal bud	Boron .
b.	Terminal bud commonly remains alive; wilting or chlorosis of younger or bud leaves with or without spots of dead tissue; veins light or dark green.	•
	1) Young leaves permanently wilted (wither-tip effect) without spotting or marked chlorosis; twig or stalk just below tip and see thead often unable to stand erect in later stages when shortage is acute	Copper
	 Young leaves not wilted; chlorosis present with or without spots of dead tissue scattered over the leaf. 	;
	a) Spots of dead tissue scattered over the leaf; smallest veins tend to remain green, producing a checkered or reticulated effect	Manganes
	b) Dead spots not commonly present; chlorosis may or may not involve veins, making them light or dark green in color.	
	i) Young leaves with veins and tissue between veins light green in color	Sulphur
	typically grooms stalks showt and alandam	P

J. E. McMurtrey, Jr., <u>Diagnostic Techniques for Soils and Crops</u>. The American Potash Institute, 1948.

W. R. Nelson, Landscaping Your Hore (Rev. ed.), Urbana, IL: Cooperative Extension Service, Circular 1111, 1975.

NURSERY PROPAGATION

Evaluation Check-Off Form for Sowing Seeds (Maximum score = 100 points)

	Are the holes in the flat covered with moist sphagnum moss?
2.	Is the flat filled with a 1:1:1 mixture of loamy soil, sand and peat or vermiculite or a commercial medium such as Jiffy Mix?
3.	Has the medium been tamped to provide a uniformly firm seed bed to a level of about 1/2 below the top of the flat?
4.	Are the rows straight?
<u>.</u> 5.	Have the directions on the seed packet been followed to determine the distance apart and the depth the seeds should be sown?
6.	Have the seeds been covered with shredded sphagnum moss, fine perlite or fine sand?
7.	Was the flat properly watered?
8.	Is the seed flat covered with a pane of glass or polyethylene?
°9.	Is the seed flat placed in a semi-shaded area of the greenhouse?
10.	Is the seed flat placed on a propagating mat or heat coil or hot water pipes for a bottom heat of 65° to 70°F?
· · · · · · · · · · · · · · · · · · ·	

NURSERY PROPAGATION

Evaluation Check-Off Form for Grafting

1.	Are both root stock and stem stock dicots?
<u>,, 2.</u>	Are the stem on the root stock and stem to be grafted the same diameter (thickness)?
3.	Are the stem on the root stock and the stem to be grafted both cut at the same angle?
4.	Is the wrapping material wound so both stem and root stock are held together firmly, but not stretched out totally?
5:	Are both ends tied securely after winding in the prescribed method?
6.	Was the hole filled with water before the grafted roots were planted?
7.	Is the entire wrapped area planted below the ground line?
8.	Is the grafted plant(s) staked for additional support?
9.	Has the top third of the above ground line plant been trimmed off?
10.	Was the ground around the planted grafted plant watered in the prescribed method after planting?

WORK SHEET

You are given a sample each of peat, sphagnum moss, sand, vermiculite and perlite. Determine which medium would be best used for germinating, propagating and growing.

1. Determine the medium best used for germinating seeds.

Answer: Sphagnum moss or a 1:1:1 mixture of loamy soil, sand or peat, and vermiculite.

2. Determine the medium best used for propagating most cuttings?

Answer: Peat, sand, vermiculite, perlite or a mixture of peat and sand.

You are given young, healthy stock plants to make root cuttings.

Determine the correct polarity when cutting.

Answer: Cut the proximal end with a straight cut and the distal end with a slanting cut.

4. Ensure uniformity in rooting and the development of heavier root systems

Answer: Use root-promoting substances such as the hormone indolebutyric acid.

You have collected dormant bud wood for summer budding.

5. Determine how you would keep it suitable for later use.

Answer: Place the budsticks in a moist medium such as sphagnum moss or moist newspaper overwrapped with a water-proof paper such as a polyethylene bag or graft paper or place in a polyethylene bag and hold fri refrigerated storage until used the following season.

You are given several root stock plants to determine the best selection of material for budding.

6. Determine if the seedling is receptive to the bud.

Answer: The bark should slip loose easily when cut and the wood underneath should appear moist and smooth, with no tearing or stringing of tissue.

7. Differentiate between flower buds and the leaf buds.

Answer: Flower buds are plump and the leaf buds are slender and pointed at the tips.

Work sheet (cont.)

You are given various types of seeds.

8. How do you decide which seeds should be covered with a medium?

Answer: This is determined by the size of the seed. Small seeds such as petunia and begonia are not covered when planted.

You are given such seeds as pansy, portulaca, verbena and dusty miller.

.9. What special treatment do they all require to ensure germination?

Answer: They must all be given a 3-day darkness period.

You are given a herbaceous-stock plant to choose stem cutting material.

10. Determine those with a high carbohydrate content.

Answer: Those with a high carbohydrate content will be firm and break easily when bent.

ERIC

*Full Text Provided by ERIC

33

CROSSWORD PUZZLE

Across:

- 2. A plant that requires a 3-day period of darkness for germination
- 5. The shoot on a plant containing an unexpanded leaf, branch or flower
- 6. A growth regulating chemical
- 8. A green pigment necessary for plant growth
- 9. A section of stem or root used for propagation of plants
- 11. A condition that all seeds need to germinate
- 12. The movement of water upward through narrow spaces in the soil
- 14. Young plants which have been germinated several days
- 15. The scratching of a hard seed coat to hasten germination
- 17. In a resting, or nongrowing state
- 19. A light mineral with a neutral pH used to increase the moisture holding of planting media
- 23. A substance which destroys or prevents the growth of fungi
- 24. Any bud found growing at the tip of a stem
- 25. A white granular material used to help loosen or open up spaces in rooting media
- 27. Another word for understock
- 28. The current season's growth of a plant

Down:

- 1. Thin, green, actively growing tissue logated between the bark and the wood of a plant
- 3. Material used to start and grow seeds and plants
- 4. The surroundings
- 5. Small shoot of the current season's growth used to cut buds for budding
- 7. To move plants from one growing location to another
- 10. Uniting two different plants so they grow as one
- 13. The ability to unite with, and live together
- 16. A box with a slotted bottom used to start seedlings
- 18. Soil of equal amounts of sand, silt, clay, and humus
- 20. The part of a graft that already contains the roots upon which the new plant will depend
- 22. The amount of moisture in the atmosphere
- 26. A reproductive structure housing the embryo

NURSERY PROPAGATION Crossword Clues

Down

Good plant for slip method Joining stem to root stock Eliminate around roots. Exclamation Don't do to roothairs 3-1 Unfertile soil. 4-A . When to water slip (leaf) Don't plant seeds too ... 4-D 5.G Process of making glucose Leaves will when touching soil 6-X Necessary for photosynthesis 7-A 7-G Leaching: Watering from ... Part to be removed from stick 7-P To carefully place in hole 8-M Should you use a dull knife? 9-B 9-X Good idea to pre- ... seed 10-D Water ... can cause damage When repacking, gently ... 10-P To be removed before planting 10-R 12-P Use only with leaf, not stems Diffusion requires ... media 13-A 13-J Plant graft ... ground line 13-W' Remember, plants require ... 15-C Plant ... per hole 15-G Remove top ... rof transplant :5-11 Water the 13-5 Cut stems with a sharp ... Not doing it right is ... 17-H Always make clean ... 13-0 Loosen media at least ... inches 17-0 Cells without water 19-1 Cuts for grafting are ... Don't graft ... cot plants : 1 - y. How to make clean cuts 22-4 Water tubes in plants Repack ... the plant Water going down through soil : 8-A Competitors for nutrients :6-H Make big clumps of soil ... 19. Y To be grafted together Sprinkle gently, don't ... Cheapest way to grow plants fill hole ... with water first ::- Povement of water molecules across a membrane

Across

•	
A-11	Cells for growth
B-1	Movement of molecules
B-19	Seed-leaf
C-12	Plant type for grafting
D-4	Locsen media about inches
D-19	Cover stuck or slip with
D-24	One type of planting media
E-10	Underground plant part
E-17	No diffusion if cells
F-1	Liquid nutrients of plants
G-5 .	Containers
G-10	Contains plant embryo
G-17	Dome stays on for
G-25	Diffusion requires media.
H-1 H-75	Three times seed size 🖍 - Slip to include leaf
J-10	Good- graft wrapping material
K-1	Best to water from
K-24	
L-18	
M-10	Glucose tube from leaf to root
N-5	Good performance is work
N-22	Water with a fine from top
0-8	Knowing how makes the easy
P-17	Be sure your knife is
P-23	Be sure to container well
Q-1	Sigh of understanding
Q-5	Good work is pleasing to the
0-12	Make all cuts :
R-21	Repack evenly the plant
Ş-4	Repack should be
S-10	Propagation done right is
S-15 T-1	Doing it right is a
T-20	Pulling will roothairs Be gentle when soil is to be
U-10	Most vital for mineral absorption
V-1	Green plants make all
V-20	Be sure it doesn't cramp roots
W-1	Plant seeds times seed size
W-7	Use water pressure with hose
W-12	Be sure to grafted plant
X-21	Use to remove to transplant
Y-1	Propagation using only leaf
Y-9	If you don't know,
Z-5	Propagation using end of stem
Z-12	
Z-20	Don't expose plants to by

not wrapping cut areas

NURSERY PROPAGATION Crossword

NURSERY PROPAGATION

Answers

	DOWN ,		•	•		ACROS:	\$
1-K	Begonia		. '	. •		A-11	Cambium
1-5	Graft		Ā			'B-1	Diffusion
2-A	Airspace		,	•		B-19	Cotyledon
\2-V	Oh '		•			C-12	Dicot
`3-J	Stretch	,		•	•	D-4	Eight
3-T	Poor	•	-		•	D-19	Dome
4-A	After	•				D-24	Dirt
4~D	Deep			•		E-10.	Root
5-G	Photosynt	nests		-		E-17	Dry .
. 6-X	Rot	•				F-1	Sap
7-A	Light		• •	•		G-5	Pots
7-G	Top				. •	G-10	Seed
7-P	Terminal					G-17 G-25	Months Wet
.8-M°	Set	. •			٠.	H-1	Depth
9-B	No	•	•		•	H-15#	Hub
9-W	Soak				•	J-10	Rubberbands ·
10-D	Pressure			•	-	K-1	Bottom ·
10-P 10-R	Push Debris	•		<u> </u>		K-24	Land
10-R	Scissors	•		• •		L-18	Water ·
13-A	Moist		•		•	M-10	Phloem
13-J	Below		•			N-5	Nice.
13-W	Time		•			N-22	Spray
15-C	One	• .		• ′	,	Q-8	Task
15-G	Third		_	,		P-17	Sharp
15-M	Media	÷				P-23	Rinse
16-S	Knife.				•	Q-1,	Ah
17-E	Dumb					0-5	Eye
17-M	Cuts	_				Q-12	Clean
18-U	Six	, `	•		r '	R-21	Around
19-D.	Dying	879				S-4	Firm .
19-J	Diagonal			•	٠.	S-10	Easy
20-A	Mono			•		S-15	Skill
21-7	0ff	•				T-1.	Rip
22-A	Xylem					T-20	Repack
22-G	Supports					U-10	Roothairs
23-N -		}	•		•	V-] V-20	Food Hole
24-A	Weeds	`	•		•	·W-1	Three
24-H	Smaller	•	• • "		•	W-7	Less
25-V	Stems			•		W-12	Stake ·
26-A 26-P	Pour Seéd			-L		X-21	Fingers
27-D	Seeu Two-third). C	ι.		•	Ŷ-1	Slip -
27-T	Osmosis.		}	• .		Ÿ-9	Ask · .
•	9411W3 13	, y		_		Z-5'-	Stuck ·
		•	de	*	•	Z-12	Leaves
			,			Z-20.	Disèases
		•					•

QUIZ

Plant Propagation by Cuttings

Matching		•
<u>E</u> 1.	This cutting is made just below the petiole, under the bud and continued upward above bud on opposite side.	A. Woody cutting B. Leaf cutting
•	aphara above bud on opposite side.	•
<u>A</u> 2.	This cutting uses one-year-old wood	C. Root cutting
•	pieces 5" to 7" in length and 3/16" to 3/8" in diameter.	D. Herbaceous cutt
<u>B</u> 3.	This cutting is directly through the leaf and is successful with fewer plants such as jade, begonia, and african violet.	E. Leaf bud cuttin
<u>D</u> 4.	This cutting is made from plants with thick, succulent leaves and stems such as geraniums and coleus.	• .
<u>c</u> 5.	This is made from roots 1/4" to 3/8" in diameter and 3" to 6" in length. Phlox and raspberry are most successful with this method.	•
True or I	<u>False</u>	•
<u>F</u> 6.	Plants with thick, herbaceous leaves and stems are propagate by stem cuttings.	e poor plants to
<u> </u>	Terminal buds on woody plants make better rooting cuts from one-year-old wood.	structures than
F 8.	Leaf bud cuttings are planted more than 3" deep a watering.	and need little
Fill in	the blank	,
` .9•	Too much moisture and lack of proper aeration will cuttings to <u>damp off</u>	1 cause herbaceous
10.	In woody cuttings, tree cuttings are less success shrub cuttings.	ful than

NURSERY PROPAGATION QUIZ

Pla	nt seed .
1.	How deep should seeds be planted? 3x seed size
2.	What is the most important step when cleaning containers? rinsing
3.	For potted plants, it is probably best to water from which direction? bottom
4.	Watering potted plants by allowing them to absorb water from the bottom of the containers, reduces <u>leeching</u> of minerals.
5.	Absorption of minerals from the soil can <u>not</u> occur unless they are in <u>liquid</u> state.
6.	Diffusion of chemicals can <u>not</u> occur across the cell membrane unless they are in <u>liquid</u> state.
7/8.	Planted seeds need <u>water</u> and <u>oxygen</u> to germinate.
9.	Planted seeds do <u>not</u> need <u>light</u> until the plant surfaces.
10.	Energy for growth by the embryo in the seed is stored in the cotyledon(s)
	When thinning seedlings, care should be taken not to damage the roothairs
	by cutting or stretching.
2. ,	Roothairs are essential to the plant's life because they increase the <u>absorption</u> rate of minerals.
3.	Dirt (should/should not) be removed from the roots when transplanting to a new area.
4.	About what percentage of a plant is seen above ground?50%
5.	How deep should the dirt-ball be set in the new hole? just below the surface
6.	How firm should the media be repacked into the hole around the root-dirt- ball? <u>firm to touch, not as hard as you can</u>
7.	Should young seedling be staked after transplanting? nostem is too fragile
8.	If a garden hose is used to water the transplanted plant, use <u>fine spray</u> to reduce damage by too much water pressure.
/10.	Too much water pressure when watering can cause <u>washout</u> of media and therefore reduce <u>support</u> to the plant.

NURSERY PROPAGATION-QUIZ

Stick Method

- 1. The "stick" method gets its name from <u>sticking</u> the stem into the planting media.
- Best results of root growth occur when the <u>terminal</u> end of the stem is used, but stuck upright.
- 3. A sharp knife should be used to make a clean cut of the stem to be stuck.
- 4. A ragged cut decreases the chances of root growth because of the presence of damaged cells ___.
- 5. Most of the leaves are removed to decrease water loss by the process of transpiration
- 6. A hole (should/should not) be made before sticking.
- 7. How deep should the stem be stuck into the media? about 2"
- How much water should be gently put around the stuck plant? <u>media remains</u> moist, but water not standing
- 9. To decrease effects of weathering (i.e., water loss, wind, temperature fluctuations) newly stuck plants should be covered with a transparent dome for at least 3 months
- 10. Care should be taken so the <u>leaves</u> do not touch the dome.

Slip Method

- 1. The "slip" method gets its name from being able to <u>slip</u> the cut edge of the leaf into the growth media.
- Because of the thinness of a leaf, a sharp <u>scissors</u> can be used to make the cut.
- A ragged cut decreases the chances of root growth because of the presence of damaged cells
 - Several "slips" can be made from a single leaf if each slip includes part of the leaf's main vein .
- 5. What is the advantage of making a groove in the media before the slip is inserted? <u>decreases cell damage of cut edge</u>

NURSERY PROPAGATION-QUIZ

Slip Method (cont.)

6	What is th	le advantage of moistening the media before "Silpping	III LIIC
γ.	leaf edge?	decreases friction and therefore cell damage	

- 7. How deep should the cut edge of the leaf be slipped into the media?

 _about 1/4 to 1/2"
- 8. How much water should gently be put around the slipped leaf? media remains moist, but water not standing
- 9. To decrease water loss by transpiration and evaporation, newly slipped leaves should be covered with a transparent dome for at least 3 months
- 10. Care should be taken so the <u>leaf</u> does not touch the dome.

Grafting

- When choosing plant stock to be grafted, it is best when the <u>diameter</u>
 of the stem and root stock are the same.
- 2/3. When the two areas to be grafted are not the same thickness, the <u>xylem</u> and phloem tubes will probably not all line up.
 - 4. To increase support of the stem stock onto the root stock both should be cut <u>diagonally</u>.
 - 5. The cuts on both the stem and root stock should be at the same <u>angle</u>
 - 6. The cuts of both the stem and root stock should be made with a sharp knife to increase the chances of a clean cut.
 - 7. Wrapping material should be waterproof and <u>flexible</u>.
 - 8. The hole should be filled with water before planting in order to decrease . the chances of blockage by <u>airspaces</u>.
 - 9. The grafted plant should be planted with the wrapped area <u>just below</u> the surface of the soil (ground line).
 - 10. The planted grafted plant should be supported by staking for at least 1 year

NURSERY PROPAGATION

<u>Test</u>

•	, "	•	, ·
True and Fa	lse · · · · · · · · · · · · · · · · · · ·		. •
<u> </u>	All seeds should be covere	d at the time of sowing.	•
<u> </u>	All seeds require moisture	to germinate.	•
<u>T</u> 3.	Vermiculite makes a good g	erminating medium.	,
<u> </u>	Large seeds should never be	e covered at the time of	planting.
<u>T</u> 5.	Some seeds such as verbena three-day period of darkne	, dusty miller and pansy	require a
<u>T</u> 6.	Some seeds require a period	i of cooling to ensure g	ermination.
<u>T</u> 7.	A polyethylene covering sho seed flat to prevent air fi	ould be wrapped tightly rom entering.	around the
<u>F</u> 8.	All seed flats must be fill planting.	led and set in a tub of	water before
<u>T</u> 9.	Seed flats may be allowed t	co completely dry out.	
<u>F_</u> 10.	Tamping the soil means to f	ertilize it thoroughly.	
Multiple Cho	ice .		
<u> </u>	A good growing medium in wh	ich to plant seeds must	•
	a. drain well b. hold moisture	c. be steriled. all of these	٠.
<u>d</u> 2.	The best temperature for ge	rminating most seeds is	•
**	a. 50° to 60°F b. 75° to 80°F	c. 80° to 90°F d. 65° to 70°F	
, <u>a·</u> 3.	Pansy and portulaca seeds r germination will take place	equire three days of dar . This may be accomplis	kness befor hed by

covering the flat with newspaper burying the flat or pot in the ground planting the seeds at an unusually great depth

NURSERY PROPAGATION Test; p. 2.

	· · · · · · · · · · · · · · · · · · ·
<u>B</u> '4.	The growth of seedlings is slowed down by withholding water and lowering the ground temperature. This process, called hardening off, is done to
	 a. keep the seedlings from growing too quickly b. prepare the seedlings for transplanting shock c. hold the seedlings until they can be sold d. none of the above
<u> </u>	Seedlings are held by the first true leaves instead of the stem when transplanting because
· · ·	 a. there are no cotyledons to grasp b. the stems are too slippery and seedlings are dropped and lost c. the stem may be bruised in handling and cause death of the plant
	d. this bruises the leaves, which causes better growth
<u>D</u> .6.	Type of hardwood cutting is
	a. the mallet c. straight cut b. the heel d. all of these
	Chemicals used to eliminate organisms present on the surface of the seed
	a. mechanical scarification c. disinfestantsb. disinfectantsc. neither of these
<u>A</u> 8.	Scratching to alter the seed covering to make permeable to water and gases is called
	a. mechanical scarification c. disinfectantsb. hardening off . d. disinfestants
<u>A</u> 9.	To aid in the rooting process, the cutting is treated with a
	a. hormone c. hardener b. fertilizer d. all of these

a. plant rust diseasesb. fungus diseasesc. plant mildewd. all of these

NURSERY PROPAGATION Test, p. 3

Matching .

- 1. A good growing media in which to plant seeds must be
- G 2. The best temperature for germinating most seeds
- H 3. A type of seed that requires darkness for germination to occur
- D 4. Makes a good mixture for a well-drained aerated seeding media
- M 5. When the growth of seedlings is slowed down by withholding water and lowering the ground temperature
- 'I 6. Used to handle seedlings when transplanting
- A 7. Seeds that are not covered by the germinating media when planted
- B 8. The label in a flat of seeds should include the name of plant, variety, and the _____
- C 9. The holes in a flat should be covered with
- E 10. Sown seeds should be covered with sphagnum moss, fine perlite, or

- A. Bagonia, petunia
- B. Date
- C. Sphagnum moss
- D. 1:1:1 mixture of loamy soil, sand a peat
- E. Fine sand
- F. Clay
- G. 65° to 70°F
- H. Verbena
- I. True leaves
- J. 75° to 80°F
- K. Daisy
- L. Sterile
- M. Hardening off

QUIZ

Maintaining the Landscape

True-False ·
T 1. A hose connector with threads on the inside is termed "female."
T 2. Washers should be replaced seasonally or when necessary.
F 3. Water breakers are used to cut up hoses.
F 4. In general 1-2" of water should be applied as needed or at least every month.
F\ 5. Water should always be applied by root injection.
F 6. Soft mulches are permanent and durable.
7. Mulches provide a ground pattern for planted beds.
F 8. Mulching helps keep root warm during the winter
F 9. Stones are used as a mulch that can decompose and condition soil.
F 10. The thicker the mulch, the better.
Fill-in-the-Blank
1. Bentgrass responds best to <u>low</u> mowing heights.
2. During periods of stress cut grasses are <u>higher</u> than usual.
3. Flail mowers work well on <u>rough</u> terrain.
4. Mowing on steep slopes should be done <u>perpendicular</u> to the fall line.
5. Reel mowers are used on smooth, even grades.
6. Excurrent branching is typical of <u>conifers</u> .
7. Guy wires can be tightened by previously inserted <u>turnbuckles</u> .
8. The single upright trunk of a conifer is called a <u>leader</u> .
9. Rubbing branches can be corrected by <u>removal</u> of the least desirabl branches.
10. Branches close together can be helped to develop by use of wooden separators.

GENERAL DISCUSSION ACTIVITY

Maintaining the Landscape

Mr. Smith calls about some tree problems. He needs help. A red-winged blackbird sat on the top of his "pine" tree (he can't really identify it--but it's an evergreen) and broke off the tip. What would you advise?

Find a strong lateral branch near the break and splint it into a vertical position to form a new leader.

A grove of small trees has not been cared for for many years. Outline what should be done regarding overgrowth and density

Selective pruning; removal of dead and diseased trees; limb removal to allow for growth of remaining trees.

A park district employee completed his daily job. The superviser came round and noticed several things that troubled him and several things that he was pleased with. List them in columns: (GOOD) for favorable items, (BAD) for unfavorable items.

**

On the basis of his evaluation, would you praise or reprimand the employee? What could you say to help improve his/her performance? What good things could you emphasize?

Reprimand. Review work procedure. Advise reading, questioning, learning. Would emphasize the good job of wound trimming.

Evaluation: ,

- 1. Each spruce had 2 or 3 leaders.
- · 2. Branches were removed and 2" of stub remained on the trunk.
 - 3. Watersprouts and suckers were allowed to grow.
- 4. Rubbing branches were evident.
- 5. Guy wires were slack..
- 6. Mulch was applied a depth of 8".
- 7. Mower damage was trimmed into a football shaped cut.
- 8. Bluegrass was sown in the shady grove.
- 9. Uneven turf was cut by rotary mowers.
- 10. An uncovered hose end was used to water in new plants.
- 11. All shrubs were sheared evenly.

Quiz-cont. / .
Maintaining the Landscape

Match (best answer)

Types of lawns

- a. golf-green
- b. home lawn. 2
 - c. road embankment 4
 - d. airport 2
 - e. rocky terrain 1
 - f. uneven terrain 1
 - g. tennis lawn 3 **

Mowers .

- 1. flail
- 2. rotary
- 3. reel
- 4. sidebar