•Etude des sols

- Chapitre I
- •Propriétés physiques des sols Compactage des Sols
- Chapitre I
 - Contraintes dans les sols
- Chapitre III
 - •Hydrauliques des sols
- Chapitre IV
 - Tassement et Consolidation

•Chapitre II

Contraintes dans les sols

- •Objectifs de ce chapitre
- Concept de contrainte effective
 - Sols saturés
 - Sols partiellement saturés
- Effet de la fluctuation de la nappe phréatique
- Contrainte neutre
- Capillarité

> Sol totalement saturé

Drainé —— variation de volume

Non drainé —— pas variation de volume

(eau est incompressible)

➤ Sol partiellement saturé

Drainé et non drainé — variation de volume

- compression de l'air ds les vides
- réarrangement des particules

Contrainte verticale totale

- ➤ la contrainte totale est supportée par: la squelette solide + eau dans les vides
- > la contrainte supportée par la squelette solide
 - Résistance + les caractéristiques de compressibilité du sol
- > la contrainte totale est mesurable

Pression interstitielle

> Les vides dans le sol sont interconnectés , Simulation = complexe collection de tubes irréguliers

> mesurer u : piézomètres, transducteur

Postulat de Terzaghi

Toute variation de contrainte due à la compression, distorsion, cisaillement correspond à une variation de contrainte effective

$$\sigma' = \sigma - u$$

 $\sigma' = contrainte effective$

Contrainte effective

Simulation: Piston

Sol totalement saturé

- ➤ Robinet fermé. La pression est supporté par l'eau des pores et non les grains
- > la pression développée dans l'eau est dite pression interstitielle ou pression neutre, u

u = P/A

Simulation: Piston

Le robinet ouvert = drainage du sol

$$\sigma_t = \sigma' + u$$

Drainage total du sol

$$\sigma_t$$
 = σ' , u = 0

Contrainte effective dans les sols partiellement saturés

> eau dans les vides est discontinue

> l'air occupe un volume important dans les vides

La contrainte totale au niveau d'un point = (contrainte effective + pression de l'air + pression de l'eau ds les vides)

Particules solides

Contrainte effective dans les sols partiellement saturés

Bishop (1960)

$$\sigma = \sigma' + u_a - \Psi (u_a - u_w)$$

Ψ est la surface occupée par l'eau dans une section unité du sol

Pour les Sol sec $\Psi = 0$ ($S_r = 0$)

Pour les Sol saturés $\Psi = 1$ ($S_r = 100\%$)

 $0 < S_r < 1$ Ψ est déduite à partir d'abaque

Bishop (1960) à déterminé la variation de Ψ en fonction de Sr pour différent sols, en se basant sur des essais triaxiaux sur des échantillons non saturés

Fluctuation de la nappe phréatique et contrainte effective

1 - 1 = Niveau initial de l'eau (avant pluie)

$$\sigma_v = \gamma_{sat} h$$
 $u_{w=} \gamma_w h$
 $\sigma'_v = \gamma' h$

2 = Niveau de la nappe (cas de pluie)

$$\sigma_{v} = \gamma_{sat} h + \gamma_{w} h_{1}$$

$$u_{w} = \gamma_{w} (h + h_{1})$$

$$\sigma'_{v} = \gamma' h$$

Conclure

➤ le niveau de la nappe d'eau est au dessus du nv TN si le niveau d'eau augmente alors σ et u augmentent alors que la contrainte effective demeure inchangeable

Fluctuation de la nappe phréatique et contrainte effective

1 - 1 = Niveau initial de l'eau (pluie)

$$\sigma_v = \gamma_{sat} h$$
 $u_{w=} \gamma_w h$
 $\sigma'_v = \gamma' h$

2 = Niveau de la nappe (après pluie)

$$\sigma_{v} = \gamma_{sat} (h - h_{1}) + \gamma_{d} h_{1}$$

$$u_{w} = \gamma_{w} (h - h_{1})$$

$$\sigma'_{v} = \gamma' h + h_{1} (\gamma_{d} \gamma')$$

$$\sigma'_{v} > \gamma' h$$

--- Conclure

Une baisse soudaine du niveau de la nappe aboutit à une augmentation de la contrainte effective pourra aboutir à un entassement des grains et donc tassement de la structure

Fluctuation de la nappe phréatique et contrainte effective

L'effet de la fluctuation de la nappe phréatique sur la distribution de la contrainte effective en profondeur est :

- > cas1 : Si le niveau de la nappe d'eau est au dessus du nv TN alors la fluctuation de la nappe n'affecte pas la contrainte effective dans le sol
- cas2 : Si la nappe d'eau est au dessous du niveau TN
 alors une élévation de la nappe aboutit à une haisse
- alors une élévation de la nappe aboutit à une baisse de la contrainte effective
- alors qu'une baisse du niveau de la nappe aboutit à une augmentation de la contrainte effective

Type de sol	D ₁₀ (mm)	Remontée capillaire (cm)
Gros gravier	0,82	6
Gravier fin	0,3	20
Gravier silteux	0,06	68
Sable moyen	0,02	120
Silt	0,006	180
Argile	< 2 μm	mètres

