Server-side Rendering: SNU Project

Multiple Users Multiple Images

1

Server-Side Rendering Architecture

- Improve the rendering/transfer speed
 - Modified to transmit downsampling rendering image while mouse moving
 - Modified to send the rendering image compressed using IJG LibJpeg

Progress (2021-05-13)

- Implemented Function Lists
 - - Support multiple users
 - Websockets
 - VS 2017
 - - Axial / Coronal / Sagittal
 - Pan / Zoom
 - Window
 - Reset

 - Oblique
 - Slab MPR: thickness
 - Inverse
 - QoS Control
 - - DVR (Pan / Zoom / Reset / Rotate)
 - Crop

 - Orientation Preset (A/P/L/R/H/F)

Demo

H/W Spec. of Test Server in SNU

CPU: i9-7940X 3.10GHz

- RAM: 128GB

GPU: NVIDIA TITAN XP 12GB (\$2,500~\$3,000)

OS: Win Server 2019?

HDD/SSD?

Server-side Rendering Engine Performance

- Expected to support 15~20 concurrent users
 - Require at least 2~3 times the amount of memory of CT volume data
 - Full Volume + Half Volume + Segmentation Mask + Etc...
 - ex) CT 512x512 300slice images : 150MB x 3 = 450MB
 - Consider the server farm design later
- → Accurate Performance Spec. will be confirmed through experiments

(비기능) 성능목표

- 1) 영상 로딩 후 첫 렌더링 영상 출력 시간 : 5sec 이내 → 영상 로딩 속도 향상은 인피니트와 협력해서 개선
- 2) VR, MIP rotation : 10fps 이상
- 3) MPR translating/rotating/windowing : 20fps 이상

❖ 실험환경

- ❖ 512x512 CT 영상 500장 기준 (200장, 500장, 1,000장 비교 테스트)
- ❖ Rendered image size : 1024x1024 (mouse 조작 시에는 256x256)
- ❖ Jpeg lossless 전송 (Raw 전송도 비교 테스트)
- ❖ 100Mbps (10Mbps, 1Gbps 네트워크 환경 비교 테스트)
- ❖ Concurrent users : 5 (최대 20 users)
- ❖ On-premise Server (Cloud 환경 구축 비교 테스트)
- ❖ Server Farm 구성은 추후 고려