Statistical Methods in AI (CS7.403)

Lecture-9: Clustering (Gaussian Mixture Models, Hierarchical Clustering)

Ravi Kiran (ravi.kiran@iiit.ac.in)

https://ravika.github.io

Center for Visual Information Technology (CVIT)

IIIT Hyderabad

I saw an AI engineer today

No cursor. No claude 3.5 sonnet. No aider.

He just sat there.

Coding without running an LLM every other minute.

Like a psychopath.

1:31 AM · Sep 2, 2024 · 608K Views

Recap: k-means

- 1. Initialize cluster centroids $\mu_1, \mu_2, \dots, \mu_k \in \mathbb{R}^n$ randomly.
- 2. Repeat until convergence: {

For every i, set

$$c^{(i)} := \arg\min_{i} ||x^{(i)} - \mu_j||^2.$$

For each j, set

$$\mu_j := \frac{\sum_{i=1}^m 1\{c^{(i)} = j\} x^{(i)}}{\sum_{i=1}^m 1\{c^{(i)} = j\}}.$$

}

Mixture Models

Most common mixture model: Gaussian mixture model (GMM)

A GMM represents a distribution as

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$

with π_k the mixing coefficients, where:

$$\sum_{k=1}^K \pi_k = 1$$
 and $\pi_k \geq 0$ $orall k$

http://scikit-learn.sourceforge.net/0.5/auto_examples/gmm/plot_gmm_pdf.html

- Can think of the data $\{x_1, x_n, \dots, x_N\}$ using a "generative story"
 - For each example x_n , first choose its cluster assignment $z_n \in \{1, 2, ..., K\}$ as

$$z_n \sim \text{Multinoulli}(\pi_1, \pi_2, \dots, \pi_K)$$
 aka "categorical"

Now generate x from the Gaussian with id z_n

$$x_n|z_n \sim \mathcal{N}(\boldsymbol{\mu}_{z_n}, \boldsymbol{\Sigma}_{z_n})$$

- Can think of the data $\{x_1, x_n, \dots, x_N\}$ using a "generative story"
 - For each example x_n , first choose its cluster assignment $z_n \in \{1, 2, ..., K\}$ as

$$z_n \sim \mathsf{Multinoulli}(\pi_1, \pi_2, \dots, \pi_K)$$

Now generate x from the Gaussian with id z_n

$$\begin{array}{c} x_n|z_n\sim\mathcal{N}(\mu_{z_n},\boldsymbol{\Sigma}_{z_n}) \\ \hline\\ N(x|\mu_1,\boldsymbol{\Sigma}_1) \\ N(x|\mu_2,\boldsymbol{\Sigma}_2) \\ \hline\\ N \end{array} \begin{array}{c} N(x|\mu_1,\boldsymbol{\Sigma}_1) \\ N(x|\mu_2,\boldsymbol{\Sigma}_2) \\ N(x|\mu_1,\boldsymbol{\Sigma}_1) \\ N(x|\mu_1,\boldsymbol{\Sigma}_1) \\ N(x|\mu_2,\boldsymbol{\Sigma}_2) \\ N(x|\mu_1,\boldsymbol{\Sigma}_1) \\ N(x|\mu_2,\boldsymbol{\Sigma}_2) \\ N(x|\mu_1,\boldsymbol{\Sigma}_1) \\ N(x|\mu_1,\boldsymbol{\Sigma}_1) \\ N(x|\mu_2,\boldsymbol{\Sigma}_2) \\ N(x|\mu_1,\boldsymbol{\Sigma}_1) \\ N(x$$

• Note: $p(z_{nk} = 1) = \pi_k$ is the prior probability of x_n going to cluster k and

$$p(z_n) = \prod_{k=1}^K \pi_k^{z_{nk}}$$

Notice the "mixed" colored points in the overlapping regions

GMM – two scenarios

X and Z are both abserved and Θ is known (Idealized scenario)

· Joint distribution of data and cluster assignments

$$p(x,z) = p(z)p(x|z)$$

Marginal distribution of data

$$p(x) = \sum_{k=1}^{K} p(z_k = 1)p(x|z_k = 1) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k)$$

Only X is observed (Realistic scenario)

Parameter Estimation in GMMs

Most common mixture model: Gaussian mixture model (GMM)

A GMM represents a distribution as

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$

with π_k the mixing coefficients, where:

$$\sum_{k=1}^K \pi_k = 1$$
 and $\pi_k \geq 0$ $orall k$

Maximum likelihood maximizes

$$\ln p(\mathbf{X}|\pi,\mu,\Sigma) = \sum_{n=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}^{(n)}|\mu_k,\Sigma_k) \right)$$

w.r.t
$$\Theta = \{\pi_k, \mu_k, \Sigma_k\}$$

GMM – two scenarios

X and Z are both abserved and Θ is known (Idealized scenario)

Only X is observed (Realistic scenario)

Parameter Estimation in GMMs using EM

Parameter Estimation in GMMs using EM

Strategy: Adjust the model parameters to maximize the observed 'data' probability

- Optimization uses the Expectation Maximization algorithm, which alternates between two steps:
 - E-step: Compute the posterior probability over z given our current model - i.e. how much do we think each Gaussian generates each datapoint.

- Optimization uses the Expectation Maximization algorithm, which alternates between two steps:
 - E-step: Compute the posterior probability over z given our current model - i.e. how much do we think each Gaussian generates each datapoint.
 - M-step: Assuming that the data really was generated this way, change the parameters of each Gaussian to maximize the probability that it would generate the data it is currently responsible for.

EM visualized

EM visualized

• Initialize the means μ_k , covariances Σ_k and mixing coefficients π_k

- Initialize the means μ_k , covariances Σ_k and mixing coefficients π_k
- Iterate until convergence:
 - ► E-step: Evaluate the responsibilities given current parameters

$$\gamma_k^{(n)} = p(z^{(n)}|\mathbf{x}) = rac{\pi_k \mathcal{N}(\mathbf{x}^{(n)}|\mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}^{(n)}|\mu_j, \Sigma_j)}$$

- Initialize the means μ_k , covariances Σ_k and mixing coefficients π_k
- Iterate until convergence:
 - ► E-step: Evaluate the responsibilities given current parameters

$$\gamma_k^{(n)} = p(z^{(n)}|\mathbf{x}) = \frac{\pi_k \mathcal{N}(\mathbf{x}^{(n)}|\mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}^{(n)}|\mu_j, \Sigma_j)}$$

M-step: Re-estimate the parameters given current responsibilities

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_k^{(n)} \mathbf{x}^{(n)}$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_k^{(n)} (\mathbf{x}^{(n)} - \mu_k) (\mathbf{x}^{(n)} - \mu_k)^T$$

$$\pi_k = \frac{N_k}{N} \quad \text{with} \quad N_k = \sum_{n=1}^N \gamma_k^{(n)}$$

- Initialize the means μ_k , covariances Σ_k and mixing coefficients π_k
- Iterate until convergence:
 - ► E-step: Evaluate the responsibilities given current parameters

$$\gamma_k^{(n)} = p(z^{(n)}|\mathbf{x}) = \frac{\pi_k \mathcal{N}(\mathbf{x}^{(n)}|\mu_k, \Sigma_k)}{\sum_{i=1}^K \pi_j \mathcal{N}(\mathbf{x}^{(n)}|\mu_j, \Sigma_j)}$$

M-step: Re-estimate the parameters given current responsibilities

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_k^{(n)} \mathbf{x}^{(n)}$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_k^{(n)} (\mathbf{x}^{(n)} - \mu_k) (\mathbf{x}^{(n)} - \mu_k)^T$$

$$\pi_k = \frac{N_k}{N} \quad \text{with} \quad N_k = \sum_{n=1}^N \gamma_k^{(n)}$$

Evaluate log likelihood and check for convergence

$$\ln p(\mathbf{X}|\pi,\mu,\Sigma) = \sum_{n=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}^{(n)}|\mu_k,\Sigma_k) \right)$$

GMM - Advantages

- Flexibility in modelling the data
 - k-Means assumes that clusters are spherical
- Uncertainty Estimation of data assignments
 - Soft assignments

GMM - Advantages

Density Estimation

- Useful for identifying outliers, anomalies (low p(x))
- Useful as a generative model

Less sensitive to initializa

- Soft assignments
 - In E-step
 - In M-step

Choosing k properly is crucial

How to choose k?

- Simple: Pick a 'k' which generates maximum likelihood for a 'hold out' set
- Log-likelihood:

$$\ell(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln p(\mathbf{x}^{(n)}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$= \sum_{n=1}^{N} \ln \sum_{z^{(n)}=1}^{K} p(\mathbf{x}^{(n)}|z^{(n)}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z^{(n)}|\boldsymbol{\pi})$$

Alternative criteria exist → Cross-validation, Information-Theoretic (AIC, BIC)

Comparing GMM and k-means

- The K-Means Algorithm:
 - 1. Assignment step: Assign each data point to the closest cluster
 - 2. Refitting step: Move each cluster center to the center of gravity of the data assigned to it
- The EM Algorithm:
 - 1. E-step: Compute the posterior probability over *z* given our current model
 - 2. M-step: Maximize the probability that it would generate the data it is currently responsible for.

Comparing GMM and k-means

- The K-Means Algorithm:
 - 1. Assignment step: Assign each data point to the closest cluster
 - 2. Refitting step: Move each cluster center to the center of gravity of the data assigned to it
- The EM Algorithm:
 - 1. E-step: Compute the posterior probability over z given our current model
 - 2. M-step: Maximize the probability that it would generate the data it is currently responsible for.
 - E-step in GMM a soft version of K-means. $r_{ik} \in [0, 1]$ instead of $\{0, 1\}$.
 - M-step in GMM estimates the probabilities and the covariance matrix of each cluster in addition to the means.
 - All π_k are equal. $\Sigma_k = \delta^2 I$. As $\delta^2 \to 0$, $r_{ik} \to \{0, 1\}$, and the two methods coincide.

K-means v/s GMM

GMM: A failure case

GMM: Problematic scenarios

- Higher dimensions
 - Numerical instability
- Insufficient data (N vs #params)
- Restricting Σ

Resources

- Textbook
 - PRML (Bishop) Chapter 9: 9.1,9.2,9.3.2
 - Pattern Classification (Duda, Hart, Stork)
 - 10.4.3,10.6.1,10.7.1,10.7.2,10.8,10.10
- Videos
 - https://www.youtube.com/watch?v=REypj2sy 5U&list=PLBv09BD7ez 4e9LtmK626Evn1ion6ynrt
 - https://www.youtube.com/watch?v=rVfZHWTwXSA
- Blog posts/Lecture Notes
 - https://www.cse.iitk.ac.in/users/piyush/courses/pml_winter16/slides_lec7.pdf
 - https://see.stanford.edu/materials/aimlcs229/cs229-notes8.pdf
 - https://www.cs.toronto.edu/~jlucas/teaching/csc411/lectures/lec15_16_handout.pdf
 - https://mbernste.github.io/posts/gmm_em/
 - https://www.ritchievink.com/blog/2019/05/24/algorithm-breakdown-expectation-maximization/

Hierarchical Clustering

Adapted from Slides by Prabhakar Raghavan, Christopher Manning, Ray Mooney and Soumen Chakrabarti

Hierarchical Clustering

• Build a tree-based hierarchical taxonomy (*dendrogram*) from a set of samples.

 One approach: recursive application of a partitional clustering algorithm.

Bottom-up (Agglomerative) Clustering

Dendrogram: A cluster visualization

Hierarchical Clustering algorithms

Agglomerative (bottom-up):

- Start with each sample being a single cluster.
- Eventually all samples belong to the same cluster.

Divisive (top-down):

- Start with all samples belonging to same cluster.
- Eventually each node forms a cluster on its own.
- Does not require the number of clusters k in advance
- Needs a termination condition

Dendrogram: Example

• As clusters *agglomerate*, samples likely to fall into a hierarchy of "topics" or concepts.

- Single link: $D(c_1, c_2) = \min_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$
 - distance between closest elements in clusters
 - produces long chains a→b→c→...→z

- Single link: $D(c_1,c_2) = \min_{x_1 \in c_1, x_2 \in c_2} D(x_1,x_2)$
 - distance between closest elements in clusters
 - produces long chains a→b→c→...→z
- Complete link: $D(c_1, c_2) = \max_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$
 - distance between farthest elements in clusters
 - forces "spherical" clusters with consistent "diameter"

complete linkage, 4 clusters

- Single link: $D(c_1, c_2) = \min_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$
 - distance between closest elements in clusters
 - produces long chains a→b→c→...→z
- Complete link: $D(c_1, c_2) = \max_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$
 - distance between farthest elements in clusters
 - forces "spherical" clusters with consistent "diameter"
- Average link: $D(c_1,c_2) = \frac{1}{|c_1|} \frac{1}{|c_2|} \sum_{x_1 \in c_1} \sum_{x_2 \in c_2} D(x_1,x_2)$
 - average of all pairwise distances

- Single link: $D(c_1, c_2) = \min_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$
 - distance between closest elements in clusters
 - produces long chains a→b→c→...→z
- Complete link: $D(c_1, c_2) = \max_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$
 - distance between farthest elements in clusters
 - forces "spherical" clusters with consistent "diameter"
- Average link: $D(c_1,c_2) = \frac{1}{|c_1|} \frac{1}{|c_2|} \sum_{x_1 \in c_1} \sum_{x_2 \in c_2} D(x_1,x_2)$
 - average of all pairwise distances
 - less affected by outliers
- Centroids: $D(c_1, c_2) = D\left(\left(\frac{1}{|c_1|} \sum_{x \in c_1} \vec{x}\right), \left(\frac{1}{|c_2|} \sum_{x \in c_2} \vec{x}\right)\right)$
 - distance between centroids (means) of two clusters

- Single link: $D(c_1, c_2) = \min_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$
 - distance between closest elements in clusters
 - produces long chains a→b→c→...→z
- Complete link: $D(c_1, c_2) = \max_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$
 - distance between farthest elements in clusters
 - forces "spherical" clusters with consistent "diameter"
- Average link: $D(c_1,c_2) = \frac{1}{|c_1|} \frac{1}{|c_2|} \sum_{x_1 \in c_1} \sum_{x_2 \in c_2} D(x_1,x_2)$
 - average of all pairwise distances
 - less affected by outliers
- Centroids: $D(c_1, c_2) = D\left(\left(\frac{1}{|c_1|} \sum_{x \in c_1} \vec{x}\right), \left(\frac{1}{|c_2|} \sum_{x \in c_2} \vec{x}\right)\right)$
 - distance between centroids (means) of two clusters
- Ward's method: $TD_{c_1 \cup c_2} = \sum_{x \in c_1 \cup c_2} D(x, \mu_{c_1 \cup c_2})^2$
 - consider joining two clusters, how does it change the total distance (TD) from centroids?

Major issue - labeling

- After clustering algorithm finds clusters how can they be useful to the end user?
- Need pithy label for each cluster
 - In search results, say "Animal" or "Car" in the Jaguar example.
 - In topic trees, need navigational cues.
 - Often done by hand, a posteriori.

What is a Good Clustering?

- Internal criterion: A good clustering will produce high quality clusters in which:
 - the <u>intra-class</u> (that is, intra-cluster) similarity is high
 - the <u>inter-class</u> similarity is low
 - The measured quality of a clustering depends on both the feature representation and the similarity measure used

External criteria for clustering quality

- Assesses a clustering with respect to ground truth
- Assume samples with C gold standard classes, while our clustering algorithms produce K clusters, ω_1 , ω_2 , ..., ω_K with n_i members.

Purity example

Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6

Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6

Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5

External Evaluation of Cluster Quality

• Simple measure: purity, the ratio between the dominant class in the cluster π_i and the size of cluster ω_i

$$Purity(\omega_i) = \frac{1}{n_i} \max_{j} (n_{ij}) \quad j \in C$$

 Others are entropy of classes in clusters (or mutual information between classes and clusters)

Evaluation of clustering

- Perhaps the most substantive issue in ML:
 - how do you measure goodness?
- Most measures focus on computational efficiency
 - Time and space
- For application of clustering to search:
 - Measure retrieval effectiveness

Comparison of clustering methods

References

- Pattern Classification (Duda, Hart, Stork)
 - 10.9 (Hierarchical Clustering)