Chapter 12: Mass-Storage Systems

Overview of Mass Storage Structure

- Magnetic disks provide bulk of secondary storage of modern computers
 - Drives rotate at 60 to 250 times per second
 - Transfer rate is rate at which data flow between drive and computer
 - Positioning time (random-access time) is time to move disk arm to desired cylinder (seek time) and time for desired sector to rotate under the disk head (rotational latency)
 - Head crash results from disk head making contact with the disk surface
 - That's bad
- Disks can be removable
- Drive attached to computer via I/O bus
 - Busses vary, including EIDE, ATA, SATA, USB, Fibre Channel, SCSI, SAS, Firewire
 - Host controller in computer uses bus to talk to disk controller built into drive or storage array

Moving-head Disk Mechanism

Magnetic Disks

- Platters range from .85" to 14" (historically)
 - Commonly 3.5", 2.5", and 1.8"
- Range from 30GB to 3TB per drive
- Performance
 - Transfer Rate theoretical 6 Gb/sec
 - Effective Transfer Rate real 1Gb/sec
 - Seek time from 3ms to 12ms 9ms commor for desktop drives
 - Average seek time measured or calculated based on 1/3 of tracks
 - Latency based on spindle speed
 - 1/RPM * 60
 - Average latency = ½ latency

Spindle [rpm]	Average latency [ms]
4200	7.14
5400	5.56
7200	4.17
10000	3
15000	2

(From Wikipedia)

Magnetic Disk Performance

- Average access time = average seek time + average latency
 - For fastest disk 3ms + 2ms = 5ms
 - For slow disk 9ms + 5.56ms = 14.56ms
- Average I/O time = average access time + (amount to transfer / transfer rate) +
 controller overhead
- For example to transfer a 4KB block on a 7200 RPM disk with a 5ms average seek time, 1Gb/sec transfer rate with a .1ms controller overhead =
 - o 5ms + 4.17ms + 4KB / 1Gb/sec + 0.1ms =
 - 9.27ms + 4 / 131072 sec =
 - o 9.27ms + .12ms = 9.39ms

Disk Drive

1956 IBM RAMDAC computer included the IBM Model 350 disk storage system

5M (7 bit) characters 50 x 24" platters Access time = < 1 second

Magnetic Tape

- Was early secondary-storage medium
 - Evolved from open spools to cartridges
- Relatively permanent and holds large quantities of data
- Access time slow
- Random access ~1000 times slower than disk
- Mainly used for backup, storage of infrequently-used data, transfer medium between systems
- Once data under head, transfer rates comparable to disk
 - 140MB/sec and greater
- 200GB to 1.5TB typical storage

Disk Structure

- Disk drives are addressed as large 1-dimensional arrays of logical blocks, where the logical block is the smallest unit of transfer
- The 1-dimensional array of logical blocks is mapped into the sectors of the disk sequentially
 - Sector 0 is the first sector of the first track on the outermost cylinder
 - Mapping proceeds in order through that track, then the rest of the tracks in that cylinder, and then through the rest of the cylinders from outermost to innermost

Disk Scheduling

The operating system is responsible for using hardware efficiently —
for the disk drives, this means having a fast access time and disk
bandwidth

Minimize seek time

 Disk bandwidth is the total number of bytes transferred, divided by the total time between the first request for service and the completion of the last transfer

Disk Scheduling (Cont.)

- OS maintains queue of requests, per disk or device
- We illustrate scheduling algorithms with a request queue (0-199)

98, 183, 37, 122, 14, 124, 65, 67

Head pointer 53

FCFS

Illustration shows total head movement of 640 cylinders

SSTF

 Shortest Seek Time First selects the request with the minimum seek time from the current head position

 SSTF scheduling is a form of SJF scheduling; may cause starvation of some requests

Illustration shows total head movement of 236 cylinders

SCAN

 The disk arm starts at one end of the disk, and moves toward the other end, servicing requests until it gets to the other end of the disk, where the head movement is reversed and servicing continues.

SCAN algorithm Sometimes called the elevator algorithm

Illustration shows total head movement of 208 cylinders

 But note that if requests are uniformly dense, largest density at other end of disk and those wait the longest

C-SCAN

Provides a more uniform wait time than SCAN

- The head moves from one end of the disk to the other, servicing requests as it goes
 - When it reaches the other end, however, it immediately returns to the beginning of the disk, without servicing any requests on the return trip
- Treats the cylinders as a circular list that wraps around from the last cylinder to the first one

Total number of cylinders?

C-LOOK

LOOK a version of SCAN, C-LOOK a version of C-SCAN

 Arm only goes as far as the last request in each direction, then reverses direction immediately, without first going all the way to the end of the disk

Total number of cylinders?

C-LOOK (Cont.)

Selecting a Disk-Scheduling Algorithm

- SSTF is common and has a natural appeal
- SCAN and C-SCAN perform better for systems that place a heavy load on the disk
 - Less starvation
- Performance depends on the number and location of requests
- The disk-scheduling algorithm should be written as a separate module of the operating system, allowing it to be replaced with a different algorithm if necessary
- Either SSTF or LOOK is a reasonable choice for the default algorithm
- What about rotational latency?
 - Difficult for OS to calculate
- How does disk-based queuing effect OS queue ordering efforts?

Disk Management

- Low-level formatting, or physical formatting Dividing a disk into sectors that the
 disk controller can read and write
 - Each sector can hold header information, plus data, plus error correction code
 (ECC)
 - Usually 512 bytes of data but can be selectable
- To use a disk to hold files, the operating system still needs to record its own data structures on the disk
 - Partition the disk into one or more groups of cylinders, each treated as a logical disk
 - Logical formatting or "making a file system"
 - To increase efficiency most file systems group blocks into clusters
 - Disk I/O done in blocks
 - File I/O done in clusters
- Boot block initializes system
 - The bootstrap is stored in ROM
 - Bootstrap loader program stored in boot blocks of boot partition

Booting from a Disk in Windows 2000

RAID Structure

- RAID multiple disk drives provides reliability via redundancy
- Increases the mean time to failure
- Frequently combined with NVRAM (non volatile RAM) to improve write performance
- RAID is arranged into six different levels

RAID (Cont.)

- Several improvements in disk-use techniques involve the use of multiple disks working cooperatively
 - Disk striping uses a group of disks as one storage unit RAID schemes improve performance and improve the reliability of the storage system by storing redundant data
 - Mirroring or shadowing (RAID 1) keeps duplicate of each disk
 - Striped mirrors (RAID 1+0) or mirrored stripes (RAID 0+1) provides high performance and high reliability
 - Block interleaved parity (RAID 4, 5, 6) uses much less redundancy
- RAID within a storage array can still fail if the array fails, so automatic
 replication of the data between arrays is common
- Frequently, a small number of hot-spare disks are left unallocated,
 automatically replacing a failed disk and having data rebuilt onto them

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

(g) RAID 6: P + Q redundancy.

End of Chapter 12

