TD 4 : Sommes et produits

Sommes et produits classiques :

Exemples de sommes et de produits

Exercice 1. (*)

Calculer les sommes suivantes pour $n \in \mathbb{N}$.

1.
$$\sum_{k=0}^{n} k(3k+1)$$

$$3. \qquad \sum_{k=0}^{n} (-1)^k k$$

$$2. \qquad \sum_{k=0}^{n} \frac{2^{k-1}}{3^{k+1}}$$

4.
$$\sum_{k=0}^{n} k(k+1)(k-1)$$

Exercice 2. (*)

Simplifier les produits suivants :

1.
$$\prod_{k=1}^{n} \sqrt{k(k+1)}$$

$$2. \prod_{k=1}^{n} (-5)^{k^2 - k}$$

Exercice 3. (*)

Montrer en raisonnant par récurrence que pour tout $n \in \mathbb{N}^*$

$$\sum_{k=1}^{2n} \frac{(-1)^{k-1}}{k} = \sum_{k=1}^{n} \frac{1}{n+k}$$

Exercice 4. (*)

Calculer $\sum_{k=2}^{n-1} \frac{3^k}{2^{2k-1}}$ pour tout $n \in \mathbb{N}, n \ge 3$

En déduire:

$$\lim_{n \to +\infty} \sum_{k=2}^{n-1} \frac{3^k}{2^{2k-1}}$$

Exercice 5. (*)

Soient $n \ge 1$ un entier et $a \in \mathbb{C}$. Calculer la somme et le produit des racines n-ièmes de a.

Exercice 6. (*)

Soit z un nombre complexe de module ρ , d'argument θ . Calculer

$$(z+\bar{z})(z^2+\bar{z}^2)\cdots(z^n+\bar{z}^n)$$

en fonction de ρ et de θ .

Exercice 7. (**)

Calculer le produit $\prod_{k=1}^{n} \frac{2k-1}{2k}$.

Exercice 8. (**)

- 1. Calculer les nombres suivants :
 - $1, 1111... = \lim_{n \to +\infty} 1, \underbrace{111...1}_{n}$
 - $0,9999... = \lim_{n \to +\infty} 0, \underbrace{999...9}_{}$
- 2. Calculer $\underbrace{1-1+1-...+(-1)^{n-1}}_{n}$, $n \in \mathbb{N}^*$.
- 3. Soient $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$. Calculer $\sum_{k=0}^{n} \cos(k\theta)$ et $\sum_{k=0}^{n} \sin(k\theta)$.

4. Pour $x \in [0,1]$ et $n \in \mathbb{N}^*$, on pose

$$S_n = \sum_{k=1}^n (-1)^{k-1} \frac{x^k}{k}$$

Déterminer $\lim_{n\to+\infty} S_n$.

- 5. On pose $u_0 = 1$ et, pour $n \in \mathbb{N}$, $u_{n+1} = 2u_n 3$.
 - (a) Calculer la suite $(u_n 3)_{n \in \mathbb{N}}$.
 - (b) Calculer $\sum_{k=0}^{n} u_k$.

Exercice 9. (**)

Soient $n \in \mathbb{N}^*$ et $x \in]0, \frac{\pi}{2}[$. Calculer la somme $\sum_{k=0}^{n-1} \cos^k(x) \cos(kx).$

Exercice 10. (*)

Soit $n \in \mathbb{N}^*$, calculer $\sum_{k=0}^n \sin^3(kx)$.

Exercice 11. (**)

Soit $n \in \mathbb{N}^*$, calculer $S_n = \sum_{k=n}^{3n} \min(k, 2n)$.

Exercice 12. (**)

Soit $(a, b) \in \mathbb{R}^2$ avec $b \neq 0$. Calculer

$$C = \sum_{k=0}^{n} \cosh(a+kb)$$
 et $S = \sum_{k=0}^{n} \sinh(a+kb)$

Exercice 13. (***)

En utilisant la formule de la progression géométrique et la dérivation, calculer, pour x réel et n dans \mathbb{N}^* :

$$\sum_{k=0}^{n} kx^{k}$$

Pour |x| < 1, déterminer la limite de la somme précédente lorsque n tend vers $+\infty$.

Coefficients binomiaux, binôme de Newton

Exercice 14. (*)

- 1. Rappeler la formule du binôme de Newton et calculer $\sum_{k=0}^{n} {n \choose k}$
- 2. Soit $n \ge 1$ un entier. Exprimer les sommes suivantes $S_1 = \binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots$ et $S_2 = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots$ à l'aide du symbole \sum et de la fonction partie entière.

Vérifier que $S_1 = S_2 = 2^{n-1}$.

Exercice 15. (**)

Pour n dans \mathbb{N} , x dans \mathbb{R} , donner une expression simple de : $\sum_{k=0}^{n} \binom{n}{k} \frac{x^{k+1}}{k+1}$.

Exercice 16. (***)

Calculer $\sum_{k=0}^{n} k^2 \binom{n}{k}$.

Exercice 17. (**)

Donner des expressions simples de :

$$\sum_{k=0}^{n} {n \choose k} (-1)^k \cos(kx), \quad \sum_{k=0}^{n} {n \choose k} (-1)^k \sin(kx).$$

Exercice 18. (***)

Calculer les sommes

$$\sum_{\substack{k=0\\k\equiv 0[3]}}^{n} \binom{n}{k}, \quad \sum_{k=0}^{n} \binom{n}{2k} (-1)^k, \quad \sum_{k=0}^{n} \binom{2n+1}{2k+1} t^{2k+1}.$$

Exercice 19. (**)

Montrer que $\binom{n}{0}^2 + \binom{n}{1}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n}$ (utiliser le polynôme $(1+x)^{2n}$).

Exercice 20. (**)

Calculer les sommes $\sum_{\substack{k=0\\k\equiv0[4]}}^{n} \binom{n}{k}$

Sommes et produits télescopiques

Exercice 21. (*)

Calculer $\sum_{k=1}^{n} k \cdot k!$.

Exercice 22. (**)

- 1. (*) Calculer $\prod_{k=1}^{n} (1 + \frac{1}{k}), n \in \mathbb{N}^*$.
- 2. (***) Calculer $\prod_{k=1}^n \cos \frac{a}{2^k}$, $a \in]0, \pi[, n \in \mathbb{N}^*]$.

Exercice 23. (**)

Montrer que $\binom{p}{p} + \binom{p+1}{p} \dots + \binom{n}{p} = \binom{n+1}{p+1}$ où $0 \le p \le n$. Donner un interprétation dans le triangle de PASCAL?

Exercice 24. (**)

1. Déterminer une suite (u_k) telle que, pour tout $k \ge 0$, on ait

$$u_{k+1} - u_k = (k+2)2^k.$$

2. En déduire $\sum_{k=0}^{n} (k+2)2^k$.

Exercice 25. (*)

1. Si n est dans \mathbb{N}^* , simplifier :

$$\sum_{k=1}^{n} \ln \left(1 + \frac{1}{k} \right).$$

Quelle est la limite de cette expression lorsque n tend vers $+\infty$?

2. Si n est un entier $n \ge 2$, simplifier :

$$\sum_{k=2}^{n} \ln \left(1 - \frac{1}{k^2} \right).$$

Quelle est la limite de cette expression lorsque n tend vers $+\infty$?

Exercice 26. (*)

Déterminer trois réels a, b, c tels que :

$$\forall x \in \mathbb{R} \setminus \{0, -1, -2\}, \ \frac{1}{x(x+1)(x+2)} = \frac{a}{x} + \frac{b}{x+1} + \frac{c}{x+2}$$

Donner pour n dans \mathbb{N}^* , une expression simple de

$$U_n = \sum_{k=1}^n \frac{1}{k(k+1)(k+2)}.$$

Donner la limite de $(U_n)_{n\geq 1}$ lorsque n tend vers $+\infty$?

Exercice 27. (*)

1. Pour $x \in \mathbb{R}$ étudier la quantité $x^3 - (x-1)^3$ et retrouver l'expression simple de

$$\sum_{k=1}^{n} k^2.$$

2. Adapter cette méthode pour calculer :

$$\sum_{k=1}^{n} k^3.$$

Exercice 28. (*)

Calculer les sommes suivantes

1.
$$\sum_{k=0}^{n} \frac{k}{(k+1)!}$$

$$2. \sum_{k=1}^{n} \frac{1}{\sqrt{k+1} + \sqrt{k}}$$

Exercice 29. (*)

1. Montrer pour $k \ge 2$ que : $\frac{1}{k^2} \le \frac{1}{k-1} - \frac{1}{k}$

2. En déduire que la suite $\left(\sum_{k=1}^{n} \frac{1}{k^2}\right)_{n\geq 1}$ converge.

Exercice 30. (**)

Soit x un nombre réel non multiple entier de π . En remarquant que :

$$\forall y \in \mathbb{R}, \sin(2y) = 2\sin(y)\cos(y)$$

simplifier, pour n dans \mathbb{N}^* , le produit :

$$P_n(x) = \prod_{k=1}^n \cos\left(\frac{x}{2^k}\right).$$

En utilisant, après l'avoir justifiée, la relation

$$\frac{\sin u}{u} \xrightarrow[u \to 0]{}$$

donner la limite de $P_n(x)$ lorsque n tend vers $+\infty$.

Exercice 31. (**)

Pour n dans \mathbb{N}^* , soit :

$$u_n = \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}}$$
 (*n* radicaux)

- 1. Montrer: $\forall n \in \mathbb{N}^*, u_n = 2\cos\left(\frac{\pi}{2^{n+1}}\right)$
- 2. Pour n dans \mathbb{N}^* , on pose :

$$v_n = \prod_{k=1}^n u_k.$$

Montrer que:

$$\frac{v_n}{2^n} \xrightarrow[n \to +\infty]{} \frac{2}{\pi}$$

Cette formule a été découverte par Viète (1593), elle donne une expression de π comme « produit infini ».

Exercice 32. (***)

Soient $(a_n)_{n\in\mathbb{N}}$ et $(B_n)_{n\in\mathbb{N}}$ deux suites de nombres complexes. On définit deux suites $(A_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ en posant :

$$A_n = \sum_{k=0}^n a_k, \qquad b_n = B_{n+1} - B_n.$$

- 1. Démontrer que $\sum_{k=0}^n a_k B_k = A_n B_n \sum_{k=0}^{n-1} A_k b_k.$
- 2. En déduire la valeur de $\sum_{k=0}^{n} 2^k k$.

Sommes et produits doubles :

Exercice 33. (*)

Calculer les sommes doubles suivantes :

- 1. $\sum_{1 \leq i,j \leq n} ij$.
- 2. $\sum_{1 \le i \le j \le n} \frac{i}{j}$.

Exercice 34. (*)

Pour $n \in \mathbb{N}$, on note

$$a_n = \sum_{k=1}^n k$$
, $b_n = \sum_{k=1}^n k^2$ et $c_n = \sum_{k=1}^n k^3$.

Pour cet exercice,

on admettra que $a_n = \frac{n(n+1)}{2}$, que

$$b_n = \frac{n(n+1)(2n+1)}{6}$$
 et que $c_n = a_n^2$.

- 1. Calculer $\sum_{1 \le i \le j \le n} ij$.
- 2. Calculer $\sum_{i=1}^{n} \sum_{j=1}^{n} \min(i, j).$

Exercice 35. (**)

Calculer de deux manières différentes la somme

$$\sum_{i=1}^{n} \sum_{j=1}^{i} 2^{i}$$

En déduire la valeur de $\sum_{i=1}^n i2^i$

Exercice 36. (**)

Calculer

$$\sum_{1 \le i, j \le n} \max(i, j)$$

Exercice 37. (**)

Calculer

$$\sum_{k=0}^{n} \sum_{l=0}^{n} 2^{2k-l}$$

Exercice 38. (**)

Montrer, pour tout entier $n \ge 2$,

$$\sum_{k=1}^{n-1} H_k = nH_n - n$$

Exercice 39. (***)

Soit $x \in \mathbb{R}$ tel que $x \neq 0[2\pi]$ et $n \in \mathbb{N}^*$

- 1. Calculer et simplifier $D_n(x) = \sum_{k=-n}^n e^{ikx}$
- 2. Calculer et simplifier $F_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} D_k(x)$

Exercice 40. (***)

- 1. Soit $I_n = \int_0^1 (1 x^2)^n dx$. Trouver une relation de récurrence liant I_n et I_{n+1} et en déduire I_n en fonction de n (faire une intégration par parties dans $I_n I_{n+1}$).
- 2. Démontrer l'identité valable pour $n \ge 1: 1 \frac{\binom{n}{1}}{3} + \frac{\binom{n}{2}}{5} + \dots + (-1)^n \frac{\binom{n}{n}}{2n+1} = \frac{2.4.\dots(2n)}{1.3.\dots(2n+1)}$

Exercice 41. (****)

Soit $n \in \mathbb{N}^*$, $\omega = e^{\frac{2i\pi}{n}}$, on pose $Z = \sum_{k=0}^{n} \omega^{k^2}$.

Calculer $|Z|^2$