Un Diagramme de Puissance Contrôlé par des Forces pour Rendre Interactives les Cartes Proportionnelles de Voronoi

A Force Directed Power Diagram Approach for Interactive Voronoi Treemaps

Ala Abuthawabeh et Michaël Aupetit

Short paper Eurovis 2020

Motivation

Voronoi treemaps

- Carte proportionnelle de Voronoi (treemap)
 - Visualiser une **hiérarchie**
 - Variables catégorielles
 - Rempli l'espace / dense
 - Ressemble a une carte

[Ala Abuthawabeh, Michaël Aupetit. Toward Interactive Labeling with Voronoi Treemaps . IEEE VIS 2019.]

[NOCAJ A., BRANDES U.: Computing voronoi treemaps: Faster, simpler, and resolution-independent. Computer Graphics Forum 31, 3pt1 (2012), 855–864.]

[https://bl.ocks.org/Kcnarf/ 15d54f4ccae6a3710cd3029546664eec]

[Michael Balzer and Oliver Deussen. 2005. Voronoi Treemaps. In Proceedings of the Proceedings of the 2005 IEEE Symposium on Information Visualization (INFOVIS '05)]

Motivation

Voronoi treemaps

- Carte proportionnelle de Voronoi (treemap)
 - Visualiser une hiérarchie
 - Variables catégorielles
 - Rempli l'espace / dense
 - Ressemble a une carte
- Organisation spatiale doit être réajustée
 - Journaliste de données pour raconter une histoire
 - Chercheur pour classer les données

[Ala Abuthawabeh, Michaël Aupetit. Toward Interactive Labeling with Voronoi Treemaps . IEEE VIS 2019.]

[NOCAJ A., BRANDES U.: Computing voronoi treemaps: Faster, simpler, and resolution-independent. Computer Graphics Forum

31, 3pt1 (2012), 855–864.]

[https://bl.ocks.org/Kcnarf/ 15d54f4ccae6a3710cd3029546664eec]

[Michael Balzer and Oliver Deussen. 2005. Voronoi Treemaps. In Proceedings of the Proceedings of the 2005 IEEE Symposium on Information Visualization (INFOVIS '05)]

Motivation

Voronoi treemaps

- Carte proportionnelle de Voronoi (treemap)
 - Visualiser une hiérarchie
 - Variables catégorielles
 - Rempli l'espace / dense
 - Ressemble a une carte

[NOCAJ A., BRANDES U.: Computing voronoi treemaps: Faster, simpler, and resolution-independent. Computer Graphics Forum

[Ala Abuthawabeh, Michaël Aupetit.

Toward Interactive Labeling with

Voronoi Treemaps . IEEE VIS 2019.]

31, 3pt1 (2012), 855-864.]

- Organisation spatiale doit être réajustée
 - Journaliste de données pour raconter une histoire

Chercheur pour classer les données

- Contributions
 - Carte de Voronoi interactive
 - Déplacement des cellules par glisser-déposer
 - Utilisation de forces

[https://bl.ocks.org/Kcnarf/ 15d54f4ccae6a3710cd3029546664eec]

[Michael Balzer and Oliver Deussen. 2005. Voronoi Treemaps. In Proceedings of the Proceedings of the 2005 IEEE Symposium on Information Visualization (INFOVIS '05)]

- Carte Proportionnelle
 - Hiérarchie dont les nœuds sont représentés par des cellules imbriquées
 - Valeurs des nœuds représentées par l'aire des cellules
- On considère un seul niveau de hiérarchie

- Carte Proportionnelle
 - ▶ Hiérarchie dont les nœuds sont représentés par des cellules imbriquées
 - Valeurs des nœuds représentées par l'aire des cellules
- On considère un seul niveau de hiérarchie
- Les diagrammes de Puissance génèrent des cellules polygonales (cellules de Voronoi pondérées)

Ces cellules sont les duales d'autant de cercles de puissance

Lieu des points P tels que la distance PTi au cercle dual Ci est minimale / PTk

T B d-r P

 $PA \cdot PB = PT^2 = d^2 - r^2$ [Wikipedia]

[NOCAJ A., BRANDES U.: Computing voronoi treemaps: Faster, simpler, and resolution-independent. Computer Graphics Forum 31 (2012), 855–864.]

- Carte Proportionnelle
 - Hiérarchie dont les nœuds sont représentés par des cellules imbriquées
 - Valeurs des nœuds représentées par l'aire des cellules
- On considère un seul niveau de hiérarchie
- Les diagrammes de Puissance génèrent des cellules polygonales (cellules de Voronoi pondérées)

- Ces cellules sont les duales d'autant de cercles de puissance
- Les arêtes des polygones sont définies par l'intersection de deux cercles de puissance

[NOCAJ A., BRANDES U.: Computing voronoi treemaps: Faster, simpler, and resolution-independent. Computer Graphics Forum 31 (2012), 855–864.]

- Carte Proportionnelle
 - Hiérarchie dont les nœuds sont représentés par des cellules imbriquées
 - Valeurs des nœuds représentées par l'aire des cellules
- On considère un seul niveau de hiérarchie
- Les diagrammes de Puissance génèrent des cellules polygonales (cellules de Voronoi pondérées)

- Ces cellules sont les duales d'autant de cercles de puissance
- Les arêtes des polygones sont définies par l'intersection de deux cercles de puissance
- Le rayon des cercles et leur position contrôlent la forme des cellules
- L'aire des cercles est corrélée à l'aire des cellules de Voronoi pondérées

Comment déplacer les cellules de Voronoi?

Idée: Modifier la méthode de Nocaj et Brandes qui optimise les positions et les rayons des cercles de puissance pour minimiser l'écart entre les aires des cellules et les aires cibles.

Comment déplacer les cellules de Voronoi?

- Idée: Modifier la méthode de Nocaj et Brandes qui optimise les positions et les rayons des cercles de puissance pour minimiser l'écart entre les aires des cellules et les aires cibles.
- La cellule saisie suit la souris, et on optimise les autres paramètres...

Echec: la cellule déplacée reste fixe semblant glisser sous la souris puis saute soudainement dans une position inattendue, perturbant les cellules voisines.

[NOCAJ A., BRANDES U.: Computing voronoi treemaps: Faster, simpler, and resolution-independent. Computer Graphics Forum (2012), 855–864.]

Proposition

Déplacer les cellules de Voronoi en appliquant des forces sur leurs cercles duaux.

Objectifs de conception

Précision: Préserver les aires des cellules

Stabilité: Préserver la représentation mentale

Prévisibilité: Assurer une interaction souple et prévisible

Centrage

Description

Recentre tous les objets au centre de la fenêtre

Bénéfice

Positionnement global

Attraction gravitationnelle

Description

Simule une force gravitationnelle (attraction) ou de charge électrostatique (répulsion) entre toutes les paires d'objets

Bénéfice

Maintien d'un conglomérat dense pour obtenir de bonnes positions et aires des cellules

Anti-collision

Description

Force répulsive et rayon solide pour éviter les chevauchements

Bénéfice

Eviter que des cellules disparaissent Obtenir une aire correcte Obtenir une interaction prévisible

Rappel

Description:

Simule des forces de traction ou de répulsion de chaque objet a un point spécifique

Bénéfice

Maintenir la représentation mentale

Modes Statique et Déplacement

Statique: pour initialiser les positions et les aires

Obtenir une bonne position initiale en grossissant les cercles duaux (alpha)

Modes Statique et Déplacement

Statique: pour initialiser les positions et les aires

Obtenir une bonne position initiale en grossissant les cercles duaux (alpha)

Déplacement: pour préserver la représentation mentale et interaction prévisible et souple

Expérience: Mode Statique

- Agrandir les cercles duaux pour trouver une bonne position
- alpha contrôle le rayon des cercles duaux
- L'aire des cercles est proportionnelle au poids cible

rayon =
$$\sqrt{\frac{\textit{alpha} \times \textit{aire cellule parent} \times \textit{poids cible}}{\pi}}$$

Trouver le **alpha optimal** qui **minimise** la différence entre l'aire des cellules de puissance et celle des poids cibles

Expérience: Mode Statique

▶ Résultat : une précision faible (~10% au lieu de ~1%)

10 parent cells

Expérience: Mode Statique

Résultat : une précision faible (~10% au lieu de ~1%)

- Aire des cellules n'est pas assez précise dans le mode statique
- Mieux vaut utiliser la technique de Nocaj et Brandes

Compromis entre précision des aires et préservation de la représentation mentale

$$rayon = \sqrt{\frac{beta \times alphaOpt}{\pi} \times aire\ cellule\ parent \times poids\ cible}{\pi}$$

beta low = 0.1 beta medium = 0.5 beta high = 1 Stabilité ++
Stabilité & Précision

Précision ++

Le compromis entre stabilité/précision est contrôlable

low beta = 0.1 Stabilité ++

Le compromis entre stabilité/précision est contrôlable

Précision ++

Le compromis entre stabilité/précision est contrôlable

medium *beta*=0.5 Stabilité & Précision

Rappel: l'approche de Brandes et Nocaj n'est ni souple ni prévisible

Démonstration

Conclusion

- Mode Statique
 - Aires de l'approche basée force pas assez précises
 - Mieux vaut utiliser la technique de Nocaj et Brandes

Conclusion

- Mode Statique
 - Aires de l'approche basée force pas assez précises
 - Mieux vaut utiliser la technique de Nocaj et Brandes
- Mode Déplacement
 - L'approche basée force permet un contrôle du compromis entre
 - Préservation de la représentation mentale (low beta)
 Précision des aires (high beta)

Conclusion

- Mode Statique
 - Aires de l'approche basée force pas assez précises
 - Mieux vaut utiliser la technique de Nocaj et Brandes
- Mode Déplacement
 - L'approche basée force permet un contrôle du compromis entre
 - Préservation de la représentation mentale (low beta)
 Précision des aires (high beta)
 - L'approche basée force avec medium beta
 - Précision semble suffisante durant un mouvement
 - Préservation mentale semble suffisante
 - Interaction souple et prévisible

Perspectives

- Utiliser la technique de Nocaj et Brandes pour améliorer la précision des aires dans le mode Statique et à la fin du mode Déplacement
- **Etudes quantitative** pour déterminer les meilleurs paramétrages et les bénéfices du point de vue de l'utilisateur

Merci pour votre attention!

A Force-Directed Power Diagram Approach for Interactive Voronoi Treemaps

Ala Abuthawabeh and Michaël Aupetit

aabuthawabeh@hbku.edu.qa alaabuthawabeh@gmail.com maupetit@hbku.edu.qa

Short paper Eurovis 2020

https://doi.org/10.2312/evs.20201057

Experiment Static Mode

▶ A low area accuracy in Static mode

10 parent cells

