I. Étude graphique

On considère une fonction f définie sur un ensemble \mathscr{D}_f ainsi qu'un intervalle I inclus dans \mathscr{D}_f .

Dire que la fonction f est croissante sur I signifie que lorsque la valeur de la variable augmente sur I alors l'image augmente également. Graphiquement, la courbe représentative de f « monte ».

<u>Définition 1</u>

Une fonction f est dite croissante sur un intervalle I lorsque, pour tous les réels x_1 et x_2 :

$$x_1 < x_2 \Rightarrow f(x_1) \leqslant f(x_2)$$
.

Autrement dit, deux nombres et leur image sont classés dans le même ordre.

Exemple • Fonction croissante sur l'intervalle [-1,5;4].

Tableau de signes

<u>| Remarque</u>

Section 425 Lorsque $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$, on dit que la fonction est **strictement** croissante.

Dire que la fonction f est décroissante sur I signifie que lorsque la valeur de la variable augmente sur I alors l'image diminue. Graphiquement, la courbe représentative de f « descend ».

n Définition 2

Une fonction f est dite décroissante sur un intervalle I lorsque, pour tous les réels x_1 et x_2 :

$$x_1 < x_2 \Rightarrow f(x_1) \geqslant f(x_2).$$

Autrement dit, deux nombres et leur image sont classés dans un ordre contraire.

<u> Remarque</u>

\Sigma Lorsque $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$, on dit que la fonction est **strictement** décroissante.

Exemple • Fonction décroissante sur l'intervalle [-2;4].

<u> Remarque</u>

Sur tout son ensemble de définition, les variations d'une fonction f peuvent changer.

Exemple • Fonction définie sur l'intervalle [-4;3].

Exemple • On donne les variations et le signe d'une fonction f définie sur l'intervalle [-3;4]. Dessiner une représentation graphique qui pourrait correspondre à ce tableau :

χ	-3	-2,5	-1	-0,25	1	4
Variations de $f(x)$	2		-2		→ ³ <	1
Signes de $f(x)$	+	O	_	0	+	

II. Extremum

Graphiquement, les extrema sont les points les plus hauts d'une courbe ou les plus bas. Ce sont ceux dont l'**ordonnée** est donc la plus grande ou la plus petite. On s'intéresse dans ce cas aux images par la fonction représentée.

Définition 3

On dit que f admet un maximum en a sur \mathcal{D}_f lorsque, pour tout réel $x \in \mathcal{D}_f$, $f(x) \leqslant f(a)$. On dit que f admet un minimum en b sur \mathcal{D}_f lorsque, pour tout réel $x \in \mathcal{D}_f$, $f(x) \geqslant f(a)$.

Exemple • Sur la figure ci-dessous, on a $\min_{\mathscr{D}_f} f = 0$ et $\max_{\mathscr{D}_f} f \approx 4, 8$. Autrement dit, pour tout $x \in \mathscr{D}_f$, $f(x) \geqslant 0$ et $f(x) \leqslant 4, 8$.

On remarque que le minimum est atteint deux fois : pour x = 0 et pour x = 2.

III. Résolution graphique d'une inéquation

On appelle \mathscr{C}_f et \mathscr{C}_g les représentations graphiques des fonctions f et g.

A. Inéquation du type f(x) < k

Propriété 1

Soit $k \in \mathbb{R}$. Les solutions de l'inéquation f(x) < k sont les abscisses des points de la courbe \mathscr{C}_f situés au-dessous de la droite d'équation y = k.

Exemple • Soit $\mathcal{D}_f = [-3; 3]$. Donner l'ensemble des solutions des équations f(x) < 4 puis $f(x) \ge 4$.

B. Inéquation du type f(x) < g(x)

Propriété 2

Les solutions de l'inéquation f(x) < g(x) sont les **abscisses** des points de la courbe \mathscr{C}_f situés au-dessous de la courbe \mathscr{C}_q .

• Variations de fonctions •

Exemple • On considère deux fonctions f et g définies sur [-3;3] dont voici les représentations graphiques :

 $\mathsf{lci}, \ \mathsf{f}(x) \leqslant \mathsf{g}(x) \Leftrightarrow x \in [-2\,;2] \ \mathsf{et} \ \mathsf{f}(x) > \mathsf{g}(x) \Leftrightarrow x \in [-3\,;-2[\,\cup\,]2\,;3].$