

Index

- ♦ Glider #1 (with Airfoils)
- ♦ L/D Calculations
- ♦ Wind Tunnel Testing
- ♦ Drawbacks of Glider #1
- ♦ Glider #2 (simple design)
- ♦ Drag-Polar

Glider #1

- We used airfoils (SD7003) to design our wings to generate more lift
- ♦ We used a trapezoidal fuselage so that we can connect the wings at some dihedral angle (15°) for roll stability
- We placed coins on the nose to shift the CG forward and hence keep the glider in rotational equilibrium
- ♦ We placed the horizontal stabilizers at a height on vertical stabilizer so that they receive streamline air and not the turbulent wake of the wings, and hence improve its performance

C_l/C_d Ratio

 C_1/C_d Ratio = 4.06

- ♦ Throw height: 2m
- ♦ Horizontal Range: 8.12m

(29 Nikhil feet (10 size UK) = 29x28 cm = 8.12 m)

- ♦ Time taken: 1s
- ♦ Total distance travelled = 8.36m
- \Rightarrow Speed = 8.36 m/s
- \diamond Cot \emptyset = 8.12/2 = 4.06
- **♦** Ø= 13.84°
- $C_1/C_d = 4.06$

Wind Tunnel Testing

Angle of Attack - Lift

♦ -5° 15g

♦ 0°
45g

♦ 5° 65g

♦ 10° 76g

♦ 15° 74g

Drawbacks

- ♦ Using airfoils, although increased the lift, but it made the plane very sensitive
- Even small imbalances brought large deviations and eventually lead to crash landings
- Hence, we dropped the idea of using airfoils and switched to a simple design

Glider #2

- ♦ Least Effort & Most Efficient
- Wings made of single piece of Depron with sanding on the edges to get airfoil-like shape
- A Horizontal stabilizers on same level as wings & have small rectangular cuts so as to adjust elevator angles to find optimal glide angle
- Coins placed on nose as usual
- ♦ Weighs about 28g

CI / Cd 3.5 3 2.5 2 1.5 1 0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Drag Polar

Lift Coefficient	Drag Coefficient	CI / Cd
1.13	0.2209	5.115436849
1.38	0.3011	4.583194952
1.85	0.472	3.919491525
2.37	0.6968	3.401262916
2.87	0.9308	3.083369145