

Detecting and correcting errors in time measurement of rotating shafts esp. for IC engine crankshaft

Publication number: DE19622042 Publication date: 1997-12-04

Inventor:

ANGERMAIER ANTON (DE); HENN MICHAEL DR (DE)

Applicant:

SIEMENS AG (DE)

Classification:

- international:

F02D41/14; F02D41/34; G01M15/11; G01P3/489; G01P21/02; F02D41/14; F02D41/34; G01M15/04; C04P3/42; C04P3/42

G01P3/42; G01P21/00; (IPC1-7): G01L23/00;

G01P3/481; F02D41/22

- european:

F02D41/14F2; F02D41/34B4; F02D41/34D; G01M15/11;

G01P3/489; G01P21/02

Application number: DE19961022042 19960531 Priority number(s): DE19961022042 19960531

Report a data error here

Abstract of **DE19622042**

The method involves detecting markers on the shaft or a connected transducer wheel. The segment time of a reference segment of a reference cylinder is measured and stored, then the segment times for the corresp. segments of all cylinders are measured and stored in succession. The segment time of the same reference cylinder is subsequently measured for two crankshaft rotations and then stored. A correction value is derived for all cylinders of the engine from the segment times and from a correction value related to the current engine revs. rate. Each correction value is averaged and stored. The actual measured segment times are corrected using the averaged correction value.

Data supplied from the esp@cenet database - Worldwide

USPS EXPRESS MAIL EV 636 852 165 US AUGUST 1 2006

(fi) Int. Cl.⁶:

(19) BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND MARKENAMT

Patentschrift

₍₁₀₎ DE 196 22 042 C 2

G 01 P 3/481 F 02 D 41/22

(7) Aktenzeichen:

196 22 042.4-52

② Anmeldetag:

31. 5.96

(3) Offenlegungstag:

4. 12. 97

45 Veröffentlichungstag

der Patenterteilung: 20. 5.99

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

Patentinhaber:

Siemens AG, 80333 München, DE

(72) Erfinder:

Angermaier, Anton, 84172 Buch, DE; Henn, Michael, Dr., 74842 Billigheim, DE

66 Für die Beurteilung der Patentfähigkeit in Betrach gezogene Druckschriften:

DE

44 06 606 A1 41 33 679 A1

EP

05 83 495 B1

Werfahren zum Erkennen und Korrigieren von Fehlern bei der Zeitmessung an sich drehenden Wellen

Verfahren zum Erkennen und Korrigieren von Fehlern bei der Bestimmung der Segmentzeit, die eine Kurbelwelle oder eine damit verbundene Welle in einer Brennkraftmaschine benötigt, um sich um eine definierte Winkelspanne zu drehen, wobei diese Welle oder ein damit verbundenes Geberrad Markierungen aufweist, die von einem zugeordneten Sensor abgetastet werden und dabei die Segmentzeit TG₀ eines Bezugssegments eines Bezugszylinders gemessen und gespeichert wird,

 nacheinander für alle Zylinder die Segmentzeiten TG_n der den einzelnen Zylindern zugehörigen Segmente ge-

messen und gespeichert werden,

 die Segmentzeit TG₀' des Segments desselben Bezugszylinders zwei Kurbelwellenumdrehungen später gemes-

sen und gespeichert wird,

nacheinander für alle Zylinder der Brennkraftmaschine aus diesen Segmentzeiten TG_n , TG_0 , TG_0 und aus einem die aktuelle Drehzahl N der Brennkraftmaschine berücksichtigenden Korrekturwert TT_n(N) jeweils ein Korrekturwert AZn berechnet wird, wobei

der Korrekturwert TT_n(N) in einem Kennfeld einer elektronischen Steuerungseinrichtung der Brennkraftmaschi-

ne abhängig von der Drehzahl N abgelegt ist,

- der jeweilige Korrekturwert AZn einer Mittelung unterzogen und anschließend als gemittelter Korrekturwert AZM_n gespeichert wird und

die tatsächlich gemessenen Segmentzeiten TG_n mit diesem gemittelten Korrekturwert AZMn korrigiert werden.

USPS EXPRESS MAIL EV 636 852 165 AUGUST 1 2nns

Beschreibung

Die Erfindung betrifft ein Verfahren zum Erkennen und Korrigieren von Fehlern bei der Zeitmessung an sich drehenden Wellen, insbesondere an Kurbelwellen oder damit verbundenen Wellen von Brennkraftmaschinen.

Zur Erfassung der Stellung einer sich drehenden Welle, beispielsweise der Kurbelwelle oder der Nockenwelle einer Brennkraftmaschine ist es bekannt, auf dieser Welle eine Geberscheibe oder ein Geberrad mit Markierungen, z. B. Zähnen vorzusehen, die mittels eines feststehenden Aufnehmers abgetastet werden. Dabei werden in dem Aufnehmer, beispielsweise einem induktiven Aufnehmer von den vorbeilaufenden Markierungen Spannungsimpulse induziert und in einer nachfolgenden Auswerteschaltung wird aus den zeitlichen Abständen dieser Spannungsimpulse die Drehzahl, die Drehzahlschwankungen während eines betrachteten Zeitintervalles oder die Winkelgeschwindigkeit der Welle ermittelt.

Die Winkelgeschwindigkeit der Kurbelwelle oder einer mit ihr verbundenen Welle einer Brennkraftmaschine kann beispielsweise zur Detektion von Verbrennungsaussetzern herangezogen werden. Verbrennungsaussetzer einzelner oder mehrerer Zylinder führen zu einer Verlangsamung der Winkelgeschwindigkeit der Kurbelwelle. Da der Meßeffekt, insbesondere bei höheren Drehzahlen sehr gering ist, muß die Winkelgeschwindigkeit sehr genau gemessen werden. Toleranzen und Exemplarstreuungen bei der Fertigung bzw. bei der Anbringung des Geberrades auf der Welle führen zu Ungenauigkeiten bei der Messung der Winkelgeschwindigkeit, die insbesondere bei der Weiterverarbeitung bezüglich Verbrennungsaussetzererkennung zu Fehldetektionen führen können.

Wiederholen sich die mechanischen Störungen und Ungenauigkeiten periodisch über eine Umdrehung der Welle mit einem festen Winkelbezug, so können sie in einer ersten Phase adaptiert und dann zur späteren Korrektur der Meßwerte herangezogen werden. Ist aber das Geberrad einmal auf der Kurbelwelle fixiert, ist eine direkte Bestimmung der Ungenauigkeiten nicht möglich, da die Kurbelwellengeschwindigkeit nicht konstant gehalten werden kann. Es treten nämlich immer aufgrund der angreifenden Drehmomente des Motors und der Last Fluktuationen der Winkelgeschwindigkeit auf.

In der DE 41 33 679 A1 ist ein Verfahren zur Adaption von mechanischen Toleranzen eines Geberrades beschrieben, mit dessen Hilfe die bei der Herstellung eines solchen Geberrades auftretenden Ungenauigkeiten der einzelnen Segmente auf elektronischem Weg korrigiert werden. Dazu werden im erkannten Schubbetrieb der Brennkraftmaschine, wenn also keine Drehzahlschwankungen auftreten, die Zeitdauer der Abstände zwischen zwei Segmentflanken gleicher Polarität gemessen und die so erhaltenen Werte abgespeichert. Diese Werte (Zeitintervalle) sind ein Maß für die unterschiedlichen Segmentlängen und werden bei den im Normalbetrieb der Brennkraftmaschine ablaufenden Berechnungen zur exakten Drehzahlermittlung berücksichtigt. Hierzu wird das zweite und die folgenden Zeitintervalle zum ersten Zeitintervall in Bezug gesetzt und die Abweichungen voneinander gefiltert und die gefilterten Meßwerte als Adaptionswerte verwendet.

Aus der EP 0 583 495 B1 ist ein Verfahren zur Erkennung und Korrektur von Fehlern bei der Zeitmessung an sich drehenden Wellen, insbesondere an Kurbelwellen oder damit verbundenen Wellen bekannt. Dabei werden Segmentzeiten gemessen, die die Welle benötigt, um sich eine definierte Winkelspanne, einem sogenannten Segment, zu drehen und anschließend diese Zeiten mit einer für ein Bezugssegment geltenden Zeit verglichen. In Abhängigkeit von der Zeitdifferenz wird ein Korrekturwert ermittelt, der entweder zylinderindividuell oder segmentindividuell eine Korrektur der gemessenen Segmentzeit ermöglicht. Um ungewollte Einflüsse bei der Fehlererkennung und Fehlerkorrektur, die durch Zündung und Verbrennungsaussetzer bedingt sind auszuschließen, werden die Messungen während des Betriebszustandes der Schubabschaltung durchgeführt.

Um bei diesem bekannten Verfahren eine hinreichend schnelle Adaption zu ermöglichen, wird die Adaption innerhalb eines begrenzten Drehzahlbereiches zugelassen. Innerhalb dieses Bereiches variieren aber die adaptierten Werte in Abhängigkeit von der Drehzahl, so daß die korrigierten Segmentzeiten nicht immer den geforderten Genauigkeitsanforderungen genügen.

Aus der DE 44 06 606 A1 ist eine Vorrichtung zur Adaption von Toleranzen bei der Messung winkelmäßiger Segmentlängen eines segmentierten Geberrades bekannt, wobei jedes Segment über mehrere Adaptionsfilter verfügt um verschiedene Adaptionswerte für verschiedene Drehzahlbereiche zu erfassen.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren anzugeben, das gegenüber dem bekannten Stand der Technik eine noch genauere Erkennung und Korrektur von Fehlern bei der Zeitmessung an sich drehenden Wellen erlaubt.

Verfahren zur Lösung dieser Aufgabe sind in den Ansprüchen 1 und 3 angegeben. Die Unteransprüche beschreiben bevorzugte Weiterbildungen dieser Verfahren.

Die individuellen Abweichungen vom idealen Geberzahnrad werden aus den Signalverläufen der Segmentzeiten bei abgeschalteter Einspritzung und geschlossener Drosselklappe ermittelt. Dabei werden bei der Adaption sowohl nichtperiodische Störungen, z. B. durch Beschleunigen oder Abbremsen, als auch periodische Störungen z. B. durch Torsionseinfluß berücksichtigt.

Bei dem ersten erfindungsgemäßen Verfahren werden für ein Bezugssegment im Abstand von zwei Kurbelwellenumdrehungen die Segmentzeiten gemessen. Damit ist es möglich, eine allgemeine Änderung der Drehzahltendenz, die sonst zu fehlerhaften Korrekturen führen würde, zu kompensieren. Die weiteren zwischen diesen beiden Messungen gemessenen Segmentzeiten werden mit diesem Bezugssegment Verglichen und in Abhängigkeit von der errechneten Zeitdifferenz wird ein Korrekturwert ermittelt, der zylinderindividuell eine Korrektur der gemessenen Segmentzeit ermöglicht.

Bei dem zweiten erfindungsgemäßen Verfahren werden für ein Bezugssegment im Abstand von einer Kurbelwellenumdrehung die Segmentzeiten gemessen. Damit ist es wiederum möglich, eine allgemeine Änderung der Drehzahltendenz, die sonst zu fehlerhaften Korrekturen führen würde, zu kompensieren. Die weiteren zwischen diesen beiden Messungen gemessenen Segmentzeiten 9 werden mit diesem Bezugssegment verglichen und in Abhängigkeit von der errechneten Zeitdifferenz wird ein Korrekturwert ermittelt, der segmentindividuell eine Korrektur der gemessenen Segmentzeit ermöglicht.

Wie schon eingangs beschrieben, können Zeitabweichungen bei aufeinanderfolgenden Messungen von Winkelsegmenten unterschiedliche Ursachen haben. Sie können herrühren von einer tatsächlichen Änderung der Winkelgeschwindigkeit der Kurbelwelle oder aber herrühren von fehlerhaften ungleichen Segmentgrößen zwischen den einzelnen Kurbelwellenmarkierungen.

Damit feststeht, daß die gemessenen Unterschiede tatsächlich aufgrund unterschiedlicher Segmentgrößen entstanden sind, müssen Einflüsse, die durch die Zündung und Verbrennung bedingt sind, ausgeschlossen werden. Die Fehlererkennung und Fehlerkorrektur gemäß den erfindungsgemäßen Verfahren wird daher vorzugsweise während des Schleppbetriebes der Brennkraftmaschine durchgeführt.

Die Verfahren werden im folgenden anhand der Zeichnungsfiguren näher erläutert. Es zeigen:

Fig. 1 in Prinzipdarstellung eine Anordnung zur Messung der Winkelgeschwindigkeit,

Fig. 2 eine schematische Darstellung des ersten erfindungsgemäßen Verfahrens zur Ermittlung von zylinderindividuellen Korrekturwerten,

Fig. 3 ein Diagramm, das die Verläufe der Segmentfehler der einzelnen Zylinder einer 6-Zylinder-Brennkraftmaschine zeigt und

Fig. 4 ein Diagramm, das den Zusammenhang zwischen dem Segmentfehler eines Segments in Abhängigkeit von der Drehzahl für zwei verschiedene Fahrzeuge zeigt.

10

20

25

30

40

45

60

65

In Fig. 1 ist mit dem Bezugszeichen 1 ein ferromagnetische Zähne aufweisendes Geberzahnrad mit Winkelinkrementen der Breite Δφ bezeichnet, das auf einer Kurbelwelle 2 montiert ist. Von einem Sensor 3 wird während der Drehbewegung der Kurbelwelle 2 ein Spannungssignal erzeugt, das mit dem Abstand der Zahnradstirnfläche schwankt. Das Geberzahnrad 1 bildet somit den Modulator zur Umformung der amplitudenanalogen Eingangsgröße Winkelgeschwindigkeit in ein frequenzanaloges Signal. Die Nulldurchgänge dieses Signals enthalten ebenfalls die Information über den momentanen Winkel. Durch die Abfolge der Zahnlücken und der ferromagnetischen Zähne des Geberzahnrads 1 ändert sich das Magnetfeld, das beispielsweise von einem Permanentmagneten im Sensor 3 erzeugt wird.

Ein Zahnrad mit Z Zähnen und einem Radius R wird üblicherweise durch sein Modul

$$m = \frac{2R}{Z}$$

gekennzeichnet. Für eine ausreichend starke Magnetfeldänderung zur Signalgewinnung sind bei den magnetischen Sensoren nur Module innerhalb gewisser Grenzen zulässig. Das bedeutet bei vorgegebenem Radius R eine Beschränkung der maximalen Anzahl Z der Zähne und damit der maximalen Winkelauflösung. Ein Winkelinkrement ist gleich

$$\Delta \varphi = \frac{2\pi}{Z}$$
.

Aus dem vom Sensor 3 gelieferten Signal erzeugt ein Diskriminator 4, der z. B. aus einem Schmitt-Trigger und einem Flankendetektor bestehen kann, ein Rechtecksignal, das durch den Abstand zwischen zwei Flanken T(n) (Periodendauer) gekennzeichnet ist. Die Quantisierung dieses Signals erfolgt mit Hilfe eines Zählers 5 und einer Referenzfrequenz 6. Der so erhaltene Zählerstand ist mit

$$ZS = \frac{\Delta \varphi}{T(n)}$$

ein Maß für die Winkelgeschwindigkeit @ Durch Aussparen von einem oder mehreren Zähnen auf dem Geberzahnrad 1 erhält man einen Bereich 7 für eine Winkelreferenz, mit deren Hilfe der Absolutwinkel bestimmt werden kann. Als Standard bei Impulsgebern auf der Kurbelwelle von Brennkraftmaschinen haben sich 60 Zähne minus einer Lücke von 2 Zähnen durchgesetzt.

Anhand der Fig. 2 wird der Verfahrensablauf zur Ermittlung von zylinderindividuellen Korrekturwerten erläutert. Nach dem Start des Verfahrens und damit zu Betriebsbeginn der Brennkraftmaschine sind als Korrekturwerte AZM₀...AZM_n diejenigen Werte gespeichert, die beim letzten Betrieb, also vor Abstellen der Brennkraftmaschine ermittelt wurden (Verfahrensschritt S1). Nach der Ermittlung von neuen Korrekturwerten werden diese alten Korrekturwerte überschrieben. Beim allerersten Betrieb der Brennkraftmaschine werden die Korrekturwerte mit Initialisierungswerten vorbesetzt, vorzugsweise werden die Werte gleich Null gesetzt.

Im Verfahrensschritt S2 wird die Segmentzeit TG des aktuellen Segments gemessen. Im Verfahrensschritt S3 wird geprüft, ob sich die Brennkraftmaschine in einem Betriebszustand befindet, der die Berechnung von neuen Korrekturwerten gestattet, also beispielsweise wird abgefragt, ob sich die Brennkraftmaschine im Schleppbetrieb befindet.

Liegt kein solcher Betriebszustand vor, so werden keine neuen Korrekturwerte berechnet, sondern die zuletzt ermittelten und gespeicherten Korrekturwerte dienen zur Korrektur der Segmentzeit. Es wird verzweigt zum Verfahrensschritt S4, bei dem die gemessene Segmentzeit TG_n mittels des zugehörigen Korrekturwerts AZM_n korrigiert wird nach der Gleichung:

$$TGK_n = TG_n \cdot (1 - AZM_n) \quad (1)$$

Die so korrigierte Segmentzeit TGK_n kann nun in beliebigen Verfahren verwendet werden, die als Eingangsgröße einen hochgenauen Wert für die Winkelgeschwindigkeit der Kurbelwelle und insbesondere Änderungen dieser Geschwindigkeit benötigen, z. B. Verfahren zur Verbrennungsaussetzererkennung (Verfahrensschritt S5).

Liegt jedoch ein Betriebszustand vor, der die Berechnung neuer Korrekturwerte gestattet, so wird vom Verfahrensschritt S3 zum Verfahrensschritt S6 verzweigt. Dort wird geprüft, ob die gemessene Segmentzeit die Zeit des Bezugssegments war. Als Bezugssegment kann ein beliebiges Segment gewählt werden, vorteilhafterweise das erste in der Zündreihenfolge der Zylinder. Dieses Segment wird als fehlerfrei definiert.

Wurde nicht die Segmentzeit des Bezugssegments gemessen, so wird zum Verfahrensschritt S2 zurückgesprungen und die nächste Segmentzeit TGn gemessen.

Lag jedoch das Bezugssegment vor, folgt der Verfahrensschritt S7, indem die gemessene Segmentzeit TG_n als Segmentzeit des Bezugssegments TG₀ gespeichert wird.

Es werden nun in den folgenden Verfahrensschritten S8 bis S9 nacheinander die Segmentzeiten der nachfolgenden Segmente gemessen, die den einzelnen Zylindern der Brennkraftmaschine logisch zugeordnet sind.

Im Verfahrensschritt S9 wird abgefragt, ob das Bezugssegment erneut vorliegt. Ist dies der Fall, so wird mit Verfahrensschritt S10 fortgefahren, andernfalls zu Verfahrensschritt S 8 verzweigt. Im Verfahrensschritt S10 wird wiederum die Segmentzeit des Bezugssegments TG₀' – jetzt aber zwei Kurbelwellenumdrehungen später – gemessen und gespeichert.

Es werden nun in den folgenden Verfahrensschritten nacheinander die Korrekturwerte für die einzelnen den Zylindern zugeordneten Segmente errechnet.

Im Verfahrensschritt S11 wird der Inhalt eines Zählers auf den Anfangswert n=0 gesetzt und im darauffolgenden Verfahrensschritt S12 wird nun der zylinderindividuelle Korrekturwert A Z_n berechnet nach der Gleichung:

15
$$AZ_n = (TG_n - TG_0)/TG_0 + n/z \cdot (TG_0 - TG_0)/TG_0 - TT_n(N)$$
 (2)

wobei mit z die Gesamtzahl der Zylinder und mit $TT_n(N)$ ein drehzahlabhängiger Korrekturwert bezeichnet ist. Dieser Wert ist als Kennlinie in einem Speicher der elektronischen Steuerungseinrichtung für die Brennkraftmaschine abgelegt. Diese Gleichung für den Korrekturwert AZ_n gilt für Viertaktmotoren.

Der Korrekturwert AZ_n wird anschließend im Verfahrensschritt S13 einer Mittelung unterzogen, beispielsweise einer gleitenden Mittelung nach der Gleichung:

$$AZM_n = AZM_{n-1} \cdot (1 - MITKO) + AZ_n \cdot MITKO$$
 (3)

20

wobei MITKO eine Mitkopplungskonstante darstellt, deren Wert zwischen 0 und 1 gewählt werden kann.

Die Mittelung ist empfehlenswert, da die systematischen Fehler der Segmente mit zufälligen Fehlern wie Schwankungen des dem Steuerungssystem zugrunde liegenden Systemtakts, Toleranzen bei der Schaltgenauigkeit der Sensoren und allgemeine Schwingungen oder Störungen vom Antriebsstrang her, überlagert sein können.

Der neu ermittelte Korrekturwert wird gespeichert, indem der alte Korrekturwert überschrieben wird (Verfahrensschritt S14). Anschließend wird der Inhalt des Zählers im Verfahrensschritt S15 um 1 erhöht.

Sind alle Korrekturwerte ermittelt, (Abfrage in Verfahrensschritt S16), wird zu Verfahrensschritt S2, andernfalls zu Verfahrensschritt S12 verzweigt.

Dieses erfindungsgemäße Verfahren erlaubt also die Ermittlung von zylinderindividuellen Korrekturwerten.

Eine Variante des in Fig. 2 dargestellten Verfahrens besteht darin, anstelle zylinderindividueller Korrekturwerte segmentindividuelle Korrekturwerte zu ermitteln.

Die hierzu nötigen Verfahrensschritte entsprechen den jeweiligen Verfahrensschritten in Fig. 2 mit folgenden Änderungen:

Im Verfahrensschritt S6 wird nun geprüft, ob die gemessene Segmentzeit die des Bezugssegments ist. Das Bezugssegment unterscheidet sich vom Bezugssegment aus dem ersten Verfahren dadurch, daß es sich nicht mehr einem bestimmten Zylinder zuordnen läßt, sondern es sich hier nur um ein bestimmtes markiertes Segment der Kurbelwelle handelt, das als fehlerfrei definiert wird. Im Verfahrensschritt S10 wird die Segmentzeit TGO' des Bezugssegmentes jetzt nicht zwei, sondern bereits eine Kurbelwellenumdrehung später gemessen. Im Verfahrensschritt S16 lautet nun die Abfragen n = z/2, d. h. bei dieser Variante wird als Obergrenze für die Segmentzahl die halbe Zylinderzahl verwendet. Diese Variante des Verfahrens eignet sich also nur für geradzahlige Zylinderzahlen.

Wie eingangs bereits erwähnt, variieren die adaptierten Korrekturwerte in Abhängigkeit der Drehzahl der Brennkraftmaschine. Deshalb wird bei dem aus der EP 0 583 495 B1 bekannten Verfahren die Adaption nur innerhalb eines begrenzten Drehzahlbereiches zugelassen.

Im Gegensatz hierzu wird bei den erfindungsgemäßen Verfahren ein breiterer Drehzahlbereich zugelassen, innerhalb dessen eine Adaption durchgeführt werden kann. Da innerhalb dieses Bereiches die berechneten Korrekturwerte AZM_n je nach gewähltem Arbeitspunkt variieren und damit der bestimmte Segmentfehler nicht konstant ist, sondern von den Adaptionsbedingungen abhängt, wird bei der Berechnung dieser Korrekturwerte in der Formel (2) ein Wert $TT_n(N)$ eingerechnet, der die Drehzahlabhängigkeit berücksichtigt.

In der Fig. 3 sind die verschiedenen Verläufe der Segmentfehler abhängig von der Drehzahl der Brennkraftmaschine in Form eines Diagrammes für die Zyllnder Zyll-Zyl6 einer 6-Zylinder-Brennkraftmaschine dargestellt. Der Adaptionsbereich erstreckt über eine Drehzahl von 1500-3500 1/min.

Es zeigt sich, daß die Form des Kurvenverlaufs eines Segmentfehlers bezogen auf das Bezugssegment für verschiedene Fahrzeuge aufgrund mechanischer Fehler desselben Typs annähernd gleich ist, sie sind lediglich in Y-Richtung zueinander verschoben. Als mechanischer Fehler wird nun der Fehler bei einer Referenzdrehzahl gewählt. Befindet sich das Fahrzeug während der Adaption in einem anderen Drehzahlbereich, wird der drehzahlabhängige Korrekturwert TT_n(N) in den Gleichungen (2) und (4) berücksichtigt. Er kann experimentiell ermittelt werden und ist in einem Kennfeld der Steuerungseinrichtung der Brennkraftmaschine in Form einer Kennlinie als Funktion der Drehzahl abgelegt.

In Fig. 4 ist der Segmentfehler AZM_n eines Segments für zwei verschiedene Fahrzeuge desselben Typs in Abhängigkeit der Drehzahl N dargestellt. Aus dem Verlauf der beiden Kurven sieht man, daß sie gegeneinander um einen im aufgetragenen Drehzahlbereich annähernd konstanten Wert in Ordinatenrichtung verschoben sind. Die Verschiebung ist mit einem Doppelpfeilsymbol gekennzeichnet. In Abszissenrichtung ist jeweils in strichlierter Linie der Segmentfehler des Bezugssegmentes eingezeichnet. Als Referenzdrehzahl ist der Wert 2500 1/min gewählt. Mit weiteren Pfeilsymbolen sind die Werte für die Korrekturwerte TT_n(N) bei den Drehzahlen 1500 1/min. 3000 1/min und 3500 1/min eingetragen.

Patentansprüche

- 1. Verfahren zum Erkennen und Korrigieren von Fehlern bei der Bestimmung der Segmentzeit, die eine Kurbelwelle oder eine damit verbundene Welle in einer Brennkraftmaschine benötigt, um sich um eine definierte Winkelspanne zu drehen, wobei diese Welle oder ein damit verbundenes Geberrad Markierungen aufweist, die von einem zugeordneten Sensor abgetastet werden und dabei
 - die Segmentzeit TG_0 eines Bezugssegments eines Bezugszylinders gemessen und gespeichert wird,
 - nacheinander für alle Zylinder die Segmentzeiten TGn der den einzelnen Zylindern zugehörigen Segmente gemessen und gespeichert werden,
 - die Segmentzeit TG0' des Segments desselben Bezugszylinders zwei Kurbelwellenumdrehungen später gemessen und gespeichert wird,
 - nacheinander für alle Zylinder der Brennkraftmaschine aus diesen Segmentzeiten TGn, TG0, TG0' und aus einem die aktuelle Drehzahl N der Brennkraftmaschine berücksichtigenden Korrekturwert $TT_n(N)$ jeweils ein Korrekturwert AZn berechnet wird, wobei
 - der Korrekturwert $\mathrm{TT}_n(N)$ in einem Kennfeld einer elektronischen Steuerungseinrichtung der Brennkraftmaschine abhängig von der Drehzahl N abgelegt ist,
 - der jeweilige Korrekturwert AZn einer Mittelung unterzogen und anschließend als gemittelter Korrekturwert AZM_n gespeichert wird und
 - die tatsächlich gemessenen Segmentzeiten TG_n mit diesem gemittelten Korrekturwert AZM $_n$ korrigiert wer-

20

25

30

45

50

65

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Korrekturwert AZ_n nach der Beziehung

$$AZ_n = (TG_n - TG_0)/TG_0 + n/z \cdot (TG_0 - TG_0')/TG_0 - TT_n(N)$$

berechnet wird, wobei mit z die Zahl der Zylinder bezeichnet ist.

- 3. Verfahren zum Erkennen und Korrigieren von Fehlern bei der Bestimmung der Segmentzeit, die eine Kurbelwelle oder eine damit verbundene Welle in einer Brennkraftmaschine benötigt, um sich um eine definierte Winkelspanne zu drehen, wobei diese Welle oder ein damit verbundenes Geberrad Markierungen aufweist, die von einem zugeordneten Sensor abgetastet werden und dabei
 - die Segmentzeit ${
 m TG_0}$ eines Bezugssegments eines Bezugszylinders gemessen und gespeichert wird,
 - nacheinander für alle Zylinder die Segmentzeiten TGn aller Segmente der Welle gemessen und gespeichert werden.
 - die Segmentzeit TG0' desselben Segments eine Kurbelwellenumdrehung später gemessen und gespeichert
 - nacheinander für alle Segmente aus diesen Segmentzeiten TG_n, TG₀, TG₀' und aus einem die aktuelle Drehzahl N der Brennkraftmaschine berücksichtigenden Korrekturwert $TT_n(N)$ jeweils ein Korrekturwert AZ_n berechnet wird, wobei
 - der Korrekturwert TT_n(N) in einem Kennfeld einer elektronischen Steuerungseinrichtung der Brennkraftmaschine abhängig von der Drehzahl N abgelegt ist,
 - der jeweilige Korrekturwert AZn einer Mittelung unterzogen und anschließend als gemittelter Korrekturwert AZM_n gespeichert wird und
- die tatsächlich gemessenen Segmentzeiten TG_n mit diesem Korrekturwert AZM_n korrigiert werden.
- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Korrekturwert AZ_n nach der Beziehung

$$AZ_n = (TG_n - TG_0)/TG_0 + 2n/z + (TG_0 - TG_0')/TG_0 - TT_n(N)$$

berechnet wird, wobei mit z die Zahl der Zylinder bezeichnet ist.

5. Verfahren nach Anspruch 1 oder 3, dadurch gekennzeichnet, daß die Korrektur der Segmentzeiten nach der Gleichung

$$TGK_n = TG_n \cdot (1 - AZM_n)$$

erfolgt.

- 6. Verfahren nach Anspruch 1 oder 3 dadurch gekennzeichnet, daß die Berechnung der Korrekturwerte AZn bei Schleppbetrieb der Brennkraftmaschine durchgeführt wird.
- 7. Verfahren nach einem der vorherigen Ansprüche dadurch gekennzeichnet, daß die Berechnung der Korrekturwerte AZn nur innerhalb vorgebbarer Drehzahlgrenzen durchgeführt wird.
- 8. Verfahren nach einem der vorherigen Ansprüche dadurch gekennzeichnet, daß die Berechnung der Korrekturwerte AZ_n nur durchgeführt wird, wenn Änderungen der Drehzahl der Brennkraftmaschine unterhalb eines vorgebbaren Grenzwertes liegen.
- 9. Verfahren nach einem der vorherigen Ansprüche dadurch gekennzeichnet, daß die Mittelung der Korrekturwerte AZn in Form einer gleitenden Mittelung erfolgt nach der Gleichung:

$$AZM_n = AZM_{n-1} \cdot (1 - MITKO) + AZ_n \cdot MITKO$$

wobei MITKO eine wählbare Mittelungskonstante darstellt mit einem Wertbereich zwischen Null und Eins. 10. Verfahren nach einem der vorherigen Ansprüche dadurch gekennzeichnet, daß beim allerersten Betriebsbeginn die Korrekturwerte AZn mit Initialisierungswerten vorbesetzt werden, vorzugsweise mit Null, und bei jedem weite-

ren Betriebsbeginn die Korrekturwerte AZ_n auf die zuletzt ermittelten und gespeicherten Werte des letzten Motorbetriebs gesetzt werden und die Korrektur der Segmentzeiten erst nach einer vorgebbaren Zahl von Schritten zur Berechnung der Korrekturwerte erfolgt.

Nummer: Int. Cl.⁶: Veröffentlichungstag:

DE 196 22 042 C2 G 01 P 3/48120. Mai 1999

Nummer: Int. Cl.⁶:

DE 196 22 042 C2 G 01 P 3/481 20. Mai 1999

S5

Segmentzeit TGn messen u. speichern

Nummer: Int. Cl.⁶: Veröffentlichungstag: DE 196 22 042 C2 G 01 P 3/481 20. Mai 1999

