

دعص في النعلم الالب

Linear Regression - Logistic Regression Regularization - Neural Networks Unsupervised Learning - Dimensionality Reduction

رضـــوان

سكيـنة

احـــمد

فهرس الحصة 1

1. مقدمة

- a. شناهو التعلم الآلى؟
- b. شناهيا أنواع التعلم الآلي؟ Supervised and Unsupervised

2. مراجعة ديال الجبر الخطي

- a. المصفوفات و المتجهات
- b. جمع و جداء المصفوفات و المتجهات
 - Inverse and transpose .c
 - 3. أمثلة باستعمال Python و Colab

علاش هاد الذكاء الاصطناعي ولينا كانسمعو بيه بزاف؟

الشركات الكبرى كاتستثمر بزاف فالدومين

البحث العلمي وصل لنتائج مبهرة

شوية ديال التاريخ و دروس للعبرة

ملي هادشي قديم، علاش تال دابا عاد ولا موضوع الساعة؟

البيانات ولاو عا مشتتين بلا قياس

شناهو التعلم الآلي؟

الكلمات اللى عاتسمعو بزاف

الذكاء الاصطناعي هو العلم ديال كيفاش الماكينات يوليو يديرو شي حاجة بطريقة "ذكية" بحال بنادم

التعلم الآلي هو تعطي البيانات للآلة و توريها هدف توصل ليه، و هي ضبر راسها باش توصل ليه

التعلم العميق هو تقنية جديدة و قوية جداً فالتعلم الآلي، و هيا دابا الطوب حالياً

شناهو التعلم الألي؟

أهمية الرياضيات

هاديك "ضبر راسها" هي فين كاينة القوة ديال الرياضيات و هادشي فيه المزاوجة ديال: الجبر و التحليل و علم الإحصاء

عادي نمشيو معاكم بالمهل فهاذ الدرس

شناهيا أنواع التعلم الألى؟

الكلمات اللي عاتسمعو بزاف

الفكرة العامة

- هنا كانعطيو للخوارزمية البيانات
 و أيضا الإجابة اللي كانتسناو
 منها، باش تتعلم من هاذ الأمثلة
 - من بعد كانعطيوها بيانات اللي عدرها شافتهم و كانشوفو واش تقدر تجاوب مزيان

مثال: التصنيف Classification

(x_i) البيانات Data

تیکیتات) Labels

مثال: التصنيف Classification

مثال: التصنيف Classification

0.91=(براد)P

0.06=(كسكاس)P (طاجين)P(طاجين)

الخوارزمية كاتعطي التوقع ديالها للصنف من تصويرة اللي عصرها شافتها فالتدريب

Unsupervised Learning

مثال: التجميع Clustering

الهدف هنا هو ان الخوارزمية تلقى اوتوماتيكيا واحد العدد ديال المجموعات "المخبية" فالبيانات

Unsupervised Learning

الفكرة العامة

- هنا كاتحاول تخرج المعلومات من البيانات بلا ماتكون عندك تيكيتات ولا أجوبة مسبقة
 - عموما كايكون أصعب من
 Supervised Learning

فهرس

1. مقدمة

- a. شناهو التعلم الآلى؟
- b. شناهيا أنواع التعلم الآلي؟ Supervised and Unsupervised

2. مراجعة ديال الجبر الخطي

- a. المصفوفات و المتجهات
- b. جمع و جداء المصفوفات و المتجهات
 - Inverse and transpose .c
 - 3. أمثلة باستعمال Python و Colab

a. المصفوفات و المتجهات

المصفوفات و المتجهات

$$A = \begin{bmatrix} 4 & 1 \\ 6 & 3 \\ 2 & 4 \end{bmatrix}$$
 \longrightarrow 3 lignes $V = \begin{bmatrix} 4 \\ -1 \\ 0 \\ 9 \end{bmatrix}$
 \longrightarrow 4 lignes $(3;2)$ (4;1)

Matrice - متجهة Vecteur - متجهة

b. جمع و جداء المصفوفات و المتجهات

الجمع

$$A + B = \begin{bmatrix} 4 & 8 \\ 3 & 7 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} 4+1 & 8+0 \\ 3+5 & 7+2 \end{bmatrix}$$

$$=\left[egin{array}{cc} 5 & 8 \ 8 & 9 \end{array}
ight]$$

الطرح

$$C - D = \begin{bmatrix} 2 & 8 \\ 0 & 9 \end{bmatrix} - \begin{bmatrix} 5 & 6 \\ 11 & 3 \end{bmatrix} = \begin{bmatrix} 2 - 5 & 8 - 6 \\ 0 - 11 & 9 - 3 \end{bmatrix}$$

$$=\left[egin{array}{ccc} -3 & 2 \ -11 & 6 \end{array}
ight]$$

b. جمع و جداء المصفوفات و المتجهات

```
الجمع
Entrée [8]: | import numpy as np
               A = np.array([[4, 8], [3, 7]])
                B = np.array([[1, 0], [5, 2]])
                A+B
       Out[8]: array([[5, 8],
                      [8, 9]])
            الطرح
Entrée [9]: M = C = np.array([[2, 8], [0, 9]])
               D = np.array([[5, 6], [11, 3]])
               C-D
       Out[9]: array([[ -3, 2],
                      [-11, 6]])
```

b. جمع و جداء المصفوفات و المتجهات

ضرب مصفوفة في عدد

$$egin{array}{cccc} 2 imes egin{bmatrix} 5 & 2 \ 3 & 1 \end{bmatrix} = egin{bmatrix} 2 imes 5 & 2 imes 2 \ 2 imes 3 & 2 imes 1 \end{bmatrix} = egin{bmatrix} 10 & 4 \ 6 & 2 \end{bmatrix}$$

قسمة مصفوفة على عدد

$$\begin{bmatrix} 5 & 2 \\ 3 & 1 \end{bmatrix} / 2 = \begin{bmatrix} 5/2 & 2/2 \\ 3/2 & 1/2 \end{bmatrix} = \begin{bmatrix} 2.5 & 1 \\ 1.5 & 0.5 \end{bmatrix}$$

b. جمع و جداء المصفوفات و المتجهات

```
الضرب في عدد (الضرب في عدد (الضرب في عدد (الفرد (ا
```

Out[11]: array([[2.5, 1.],

[1.5, 0.5]

b. جمع و جداء المصفوفات و المتجهات

ضرب مصفوفة في متجهة

$$N \times M = \begin{bmatrix} 4 & 1 \\ 6 & 3 \\ 2 & 4 \end{bmatrix} \times \begin{bmatrix} 2 \\ 5 \end{bmatrix}$$

$$= \begin{bmatrix} 4 \times 2 + 1 \times 5 \\ 6 \times 2 + 3 \times 5 \\ 2 \times 2 + 4 \times 5 \end{bmatrix}$$

$$= \begin{bmatrix} 13 \\ 27 \\ 24 \end{bmatrix}$$

b. جمع و جداء المصفوفات و المتجهات

الضرب في متجهة

```
Entrée [16]: N = np.array([[4, 1], [6, 3],[2, 4]])

M = np.array([2, 5])

np.dot(N, M)
```

Out[16]: array([13, 27, 24])

b. جمع و جداء المصفوفات و المتجهات

ضرب مصفوفتين

$$N \times M = \begin{bmatrix} 4 & 1 \\ 6 & 3 \\ 2 & 4 \end{bmatrix} \times \begin{bmatrix} 2 & 5 & 0 & -5 \\ 3 & 5 & -2 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 4*2+1*3 & 4*5+1*5 & 4*0+1*-2 & 4*-5+1*4 \\ 6*2+3*3 & 6*5+3*5 & 6*0+3*-2 & 6*-5+3*4 \\ 2*2+4*3 & 2*5+4*5 & 2*0+4*-2 & 2*-5+4*4 \end{bmatrix}$$

$$= \begin{bmatrix} 11 & 25 & -2 & -16 \\ 21 & 45 & -6 & -18 \\ 16 & 30 & -8 & 6 \end{bmatrix}$$

b. جمع و جداء المصفوفات و المتجهات

ضرب مصفوفتين

The dimension of the product N*M is (3, 4)

```
]: \mathbb{N} = \text{np.array}([[4, 1], [6, 3], [2, 4]])
       M = np.array([[2, 5, 0, -5], [3, 5, -2, 4]])
       R = np.dot(N, M)
t[42]: array([[ 11, 25, -2, -16],
              [ 21, 45, -6, -18],
              [ 16, 30, -8, 6]])
    print("The dimension of the matrix N is {}".format(N.shape))
       print("The dimension of the matrix N is {}".format(M.shape))
       print("The dimension of the product N*M is {}".format(R.shape))
       The dimension of the matrix N is (3, 2)
       The dimension of the matrix N is (2, 4)
```


Inverse and transpose .c

Transpose

2 colonnes

$$A = \begin{bmatrix} 4 & 1 \\ 6 & 3 \\ 2 & 4 \end{bmatrix} \xleftarrow{t} 3 \text{ lignes } ^t A = \begin{bmatrix} 4 & 6 & 2 \\ 1 & 3 & 4 \end{bmatrix} \xleftarrow{t} 2 \text{ lignes}$$

Inverse

$$\mathbf{A} = \begin{bmatrix} 4 & 7 \\ 2 & 6 \end{bmatrix} \qquad \mathbf{A}^{-1} = \begin{bmatrix} 0.6 & -0.7 \\ -0.2 & 0.4 \end{bmatrix}$$
$$\mathbf{A}^{*} \mathbf{A}^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Inverse and transpose .c

Transpose

Inverse and transpose .c

Inverse

```
# Case 1
    from numpy.linalg import inv
    N = np.array([[4, 7], [2, 6]])
    I = inv(N)
    R = np.dot(N,I)
    np.allclose(R, np.eye(2))
[2]: True
  np.eye(2)
6]: array([[1., 0.],
          [0., 1.]])
  H # Conditions
    print("The dimension of the matrix N is {}".format(N.shape))
    print("The determinent of the matrix N is {}".format(np.linalg.det(N)))
    The dimension of the matrix N is (2, 2)
```


Inverse and transpose .c

```
H # Case 2
  from numpy.linalg import inv
  M = np.array([[4, 7, 0], [2, 6, -4]])
  I = inv(M)
  ---> 4 I = inv(M)
  < array function internals> in inv(*args, **kwargs)
  ~\anaconda3\lib\site-packages\numpy\linalg\linalg.py in inv(a)
              a, wrap = makearray(a)
      540
      541
             assert stacked 2d(a)
  --> 542
              assert stacked square(a)
              t, result t = commonType(a)
      543
      544
  ~\anaconda3\lib\site-packages\numpy\linalg\linalg.py in assert stacked square(*arrays)
      211
                  m, n = a.shape[-2:]
      212
                  if m != n:
  --> 213
                      raise LinAlgError('Last 2 dimensions of the array must be square')
      214
      215 def assert finite(*arrays):
  LinAlgError: Last 2 dimensions of the array must be square
```



```
# Conditions
print("The dimension of the matrix M is {}".format(M.shape))

The dimension of the matrix M is (2, 3)
```


Inverse and transpose .c

```
# Case 3
  from numpy.linalg import inv,det
  A = np.array([[2, 1, 0], [-1, 2, 3], [0, 5, 6]])
  I = inv(A)
  ----> 4 I = inv(A)
  < array function internals> in inv(*args, **kwargs)
  ~\anaconda3\lib\site-packages\numpy\linalg\linalg.py in inv(a)
              signature = 'D->D' if isComplexType(t) else 'd->d'
      545
              extobj = get linalg error extobj( raise linalgerror singular)
  --> 547
              ainv = umath linalg.inv(a, signature=signature, extobj=extobj)
              return wrap(ainv.astype(result t, copy=False))
      548
      549
  ~\anaconda3\lib\site-packages\numpy\linalg\linalg.py in raise linalgerror singular(err, flag)
       96 def raise linalgerror singular(err, flag):
              raise LinAlgError("Singular matrix")
  ---> 97
       99 def raise linalgerror nonposdef(err, flag):
  LinAlgError: Singular matrix
H # Conditions
  print("The dimension of the matrix A is {}".format(A.shape))
  print("The determinent of the matrix A is {}".format(np.linalg.det(A)))
  The dimension of the matrix A is (3, 3)
```


The determinent of the matrix A is 0.0

أشنو علاقة المصفوفات بالتعلم الآلي ؟

أشنو علاقة المصفوفات بالتعلم الآلي ؟

-123.2803, 44.57808

أمثلة باستعمال Python

ندوزو لشوية دلكود

شكرا على المتابعة

