Assessment 1: Online quiz: Sample

Assessment instructions

Type

Online quiz

Weight

5%

Expected time

30 minutes

What you need

You need a reliable internet connection.

Instructions

This is a sample - Actual Quiz will be given in Week 3.

Ensure that you submit it to get graded.

Marking and feedback

This online quiz constitutes 5% of your final grade for the course. Feedback and results will be provided to you one day after the deadline for the quiz.

Note this is a sample only, the actual quiz will be held on Week 3 Tuesday 6 pm.

Open Book Quiz

问题1

Consider the figure below.

Sometimes we'll use simpler vector notation:

$$o(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Which one of the following options best describes the figure above?

- Logistic regression model
- Perceptron
- Step function
- Linear regression model
- None of the above

问题2

Consider the code below.

```
def step_gradient(b_current, m_current, points, learningRate):
    b_gradient = 0
    m_gradient = 0
```

```
N = float(len(points))
for i in range(0, len(points)):
    x = points[i, 0]
    y = points[i, 1]
    b_gradient += -(2/N) * (y - ((m_current * x) + b_current))
    m_gradient += -(2/N) * x * (y - ((m_current * x) + b_current))
new_b = b_current - (learningRate * b_gradient)
new_m = m_current - (learningRate * m_gradient)
return [new_b, new_m]
```

What is there a major difference between the calculation for b and m gradients?

```
b_gradient += -(2/N) * (y - ((m_current * x) + b_current))

m_gradient += -(2/N) * x * (y - ((m_current * x) + b_current))
```

Due to the difference in the activation functions.
Due to the difference in the way gradients are derived and computed for the coefficients, bias (b) and weight term (m)
Due to the difference in the convergence proof
None of the above

问题3

Your friend wants to measure the strength of the correlation between two variables while doing a project that is using a large and complex linear model. Which of the following would you recommend as the best measure for correlation?

R Score
R Squared Score
RMSE

All of the above

You are given a project that involves a team in multiple loans where all contribute to the code repository of the project that needs a sophisticated version control system. Which one of the following would be best for your project?
Dropbox
Moodle
Github
None of the above
问题5
What evaluation metric below would be best suited to evaluate a model that is used to predict if someone has COVID-19?
AUC ad ROC curve
Confusion Matrix
F1 Score
All of the above
问题6
Your model got an R-Squared Score of 95 % on the training dataset and 60 % on the test dataset. Taking into account knowledge from Week 1 and 2, what does this indicate?
The model is good enough to be presented to your colleagues.
There is an indication of overfitting and you need to consider validation set or a better way to stop training so that model does not over-train.

问题4

The model and training algorithm needs to change since the test performance is not good.
All of the above
None of the above
问题7
Which of the following statements makes the most sense about n-fold cross-validation for models considered in Week 1 and 2?
n-fold cross-validation measures uncertainty in data but does not measure uncertainty in model parameters if single experiments are done for each fold.
n-fold cross-validation automatically measures uncertainty in data and model parameters.
n-fold cross-validation is an industry-standard and must be done for all machine learning and data mining projects, regardless of model and size of data.
All of the above
问题8
Consider the scenario: A machine learning model M learns from data D for a task T. The training o learning algorithm L improves the performance or error measure E.
How would you ensure that E takes into account the variance-bias problem?
Use a validation set and determine early stopping based on trial experiments.
Ensure that you implement regularisation in the model.
Both of the above (A and B)
None of above

Use sophisticated measure of E such an F1 score and R Squared
问题9
Consider the scenario: A machine learning model M learns from data D for a task T. The training or learning algorithm L improves the performance or error measure E. What type of learning algorithm makes predictions when you have a set of input data and you know the possible responses?
Active learning
Supervised learning
Unsupervised learning
Linear regression model
None of the above
问题10
Pick the statement that makes the most sense.
Any machine learning algorithm can be used to adjust parameters for any type of model.
L1 is always better than L2 regularisation because of convergence properties.
Overfitting is when a predictive model is accurate but takes too long to run
Overfitting is when you perform hyperparameter tuning and performance degrades
There is no major difference between data science and machine learning.
Social media employs machine learning algorithms that are vetted by government and ethical standard committees.

