•

3.2.2 Expectation

If you have a collection of numbers a_1, a_2, \ldots, a_N , their average is a single number that describes the whole collection. Now, consider a random variable X. We would like to define its average, or as it is called in probability, its **expected value** or **mean**. The expected value is defined as the weighted average of the values in the range.

Expected value (= mean=average):

Definition 3.11

Let X be a discrete random variable with range $R_X = \{x_1, x_2, x_3, \dots\}$ (finite or countably infinite). The *expected* value of X, denoted by EX is defined as

$$EX = \sum_{x_k \in R_X} x_k \mathrm{P}(X = x_k) = \sum_{x_k \in R_X} x_k P_X(x_k).$$

To understand the concept behind EX, consider a discrete random variable with range $R_X = \{x_1, x_2, x_3, \dots\}$. This random variable is a result of random experiment. Suppose that we repeat this experiment a very large number of times N, and that the trials are independent. Let N_1 be the number of times we observe x_1 , N_2 be the number of times we observe x_2 , ..., N_k be the number of times we observe x_k , and so on. Since $P(X = x_k) = P_X(x_k)$, we expect that

$$egin{aligned} P_X(x_1) &pprox rac{N_1}{N}, \ P_X(x_2) &pprox rac{N_2}{N}, \ & \cdot & \cdot & \cdot \ P_X(x_k) &pprox rac{N_k}{N}, \ & \cdot & \cdot & \cdot \end{aligned}$$

In other words, we have $N_k \approx NP_X(x_k)$. Now, if we take the average of the observed values of X, we obtain

$$\begin{array}{ll} \text{Average} \; = \frac{N_1 x_1 + N_2 x_2 + N_3 x_3 + \dots}{N} \\ \approx \frac{x_1 N P_X(x_1) + x_2 N P_X(x_2) + x_3 N P_X(x_3) + \dots}{N} \end{array}$$

$$= x_1 P_X(x_1) + x_2 P_X(x_2) + x_3 P_X(x_3) + \dots$$

= EX .

Thus, the intuition behind EX is that if you repeat the random experiment independently N times and take the average of the observed data, the average gets closer and closer to EX as N gets larger and larger. We sometimes denote EX by μ_X .

Different notations for expected value of X: $EX = E[X] = E(X) = \mu_X$.

Let's compute the expected values of some well-known distributions.

Example 3.11

Let $X \sim Bernoulli(p)$. Find EX.

Solution

For the Bernoulli distribution, the range of X is $R_X=\{0,1\}$, and $P_X(1)=p$ and $P_X(0)=1-p$. Thus,

$$EX = 0 \cdot P_X(0) + 1 \cdot P_X(1)$$

= $0 \cdot (1 - p) + 1 \cdot p$
= p .

For a Bernoulli random variable, finding the expectation EX was easy. However, for some random variables, to find the expectation sum, you might need a little algebra. Let's look at another example.

Example 3.12

Let $X \sim Geometric(p)$. Find EX.

Solution

For the geometric distribution, the range is $R_X = \{1, 2, 3, \dots\}$ and the PMF is given by

$$P_X(k) = q^{k-1}p,$$
 for $k = 1, 2, ...$

where, 0 and <math>q = p - 1. Thus, we can write

$$\begin{split} EX &= \sum_{x_k \in R_X} x_k P_X(x_k) \\ &= \sum_{k=1}^{\infty} k q^{k-1} p \\ &= p \sum_{k=1}^{\infty} k q^{k-1}. \end{split}$$

Now, we already know the geometric sum formula

$$\sum_{k=0}^{\infty} x^k = rac{1}{1-x}, \qquad ext{for } |x| < 1.$$

But we need to find a sum $\sum_{k=1}^{\infty} kq^{k-1}$. Luckily, we can convert the geometric sum to the form we want by taking derivative with respect to x, i.e.,

$$rac{d}{dx}\sum_{k=0}^{\infty}x^k=rac{d}{dx}rac{1}{1-x}, \qquad ext{for } |x|<1.$$

Thus, we have

$$\sum_{k=0}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2}, \qquad ext{for } |x| < 1.$$

To finish finding the expectation, we can write

$$EX = p \sum_{k=1}^{\infty} kq^{k-1}$$

$$= p \frac{1}{(1-q)^2}$$

$$= p \frac{1}{p^2}$$

$$= \frac{1}{p}.$$

So, for $X \sim Geometric(p)$, $EX = \frac{1}{p}$. Note that this makes sense intuitively. The random experiment behind the geometric distribution was that we tossed a coin until we observed the first heads, where P(H) = p. Here, we found out that on average you need to toss the coin $\frac{1}{p}$ times in this experiment. In particular, if p is small (heads are unlikely), then $\frac{1}{p}$ is large, so you need to toss the coin a large number of times before you observe a heads. Conversely, for large p a few coin tosses usually suffices.

Example 3.13

Let $X \sim Poisson(\lambda)$. Find EX.

Solution

Before doing the math, we suggest that you try to guess what the expected value would be. It might be a good idea to think about the examples where the Poisson distribution is used. For the Poisson distribution, the range is $R_X = \{0, 1, 2, \cdots\}$ and the PMF is given by

$$P_X(k) = rac{e^{-\lambda}\lambda^k}{k!}, \qquad ext{for } k = 0, 1, 2, \dots$$

Thus, we can write

$$\begin{split} EX &= \sum_{x_k \in R_X} x_k P_X(x_k) \\ &= \sum_{k=0}^{\infty} k \frac{e^{-\lambda} \lambda^k}{k!} \\ &= e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^k}{(k-1)!} \\ &= e^{-\lambda} \sum_{j=0}^{\infty} \frac{\lambda^{(j+1)}}{j!} \quad \text{(by letting } j = k-1\text{)}} \\ &= \lambda e^{-\lambda} \sum_{j=0}^{\infty} \frac{\lambda^j}{j!} \\ &= \lambda e^{-\lambda} e^{\lambda} \qquad \qquad \text{(Taylor series for } e^{\lambda}\text{)} \\ &= \lambda. \end{split}$$

So the expected value is λ . Remember, when we first talked about the Poisson distribution, we introduced its parameter λ as the average number of events. So it is not surprising that the expected value is $EX = \lambda$.

Before looking at more examples, we would like to talk about an important property of expectation, which is *linearity*. Note that if X is a random variable, any function of X is also a random variable, so we can talk about its expected value. For example, if Y = aX + b, we can talk about EY = E[aX + b]. Or if you define $Y = X_1 + X_2 + \cdots + X_n$, where X_i 's are random variables, we can talk about $EY = E[X_1 + X_2 + \cdots + X_n]$. The following theorem states that expectation is linear, which makes it easier to calculate the expected value of linear functions of random variables.

Expectation is linear:

Theorem 3.2

We have

- E[aX + b] = aEX + b, for all $a, b \in \mathbb{R}$;
- $E[X_1+X_2+\cdots+X_n]=EX_1+EX_2+\cdots+EX_n$, for any set of random variables X_1,X_2,\cdots,X_n .

We will prove this theorem later on in Chapter 5, but here we would like to emphasize its importance with an example.

Example 3.14

Let $X \sim Binomial(n, p)$. Find EX.

Solution

We provide two ways to solve this problem. One way is as before: we do the math and calculate $EX = \sum_{x_k \in R_X} x_k P_X(x_k)$ which will be a little tedious. A much faster way would be to use linearity of expectation. In particular, remember that if X_1, X_2, \ldots, X_n are independent Bernoulli(p) random variables, then the random variable X defined by $X = X_1 + X_2 + \ldots + X_n$ has a Binomial(n,p) distribution. Thus, we can write

$$EX = E[X_1 + X_2 + \dots + X_n]$$

= $EX_1 + EX_2 + \dots + EX_n$ by linearity of expectation
= $p + p + \dots + p$
= np .

We will provide the direct calculation of $EX = \sum_{x_k \in R_X} x_k P_X(x_k)$ in the Solved Problems section and as you will see it needs a lot more algebra than above. The bottom line is that linearity of expectation can sometimes make our calculations much easier. Let's look at another example.

Let $X \sim Pascal(m,p)$. Find EX. (Hint: Try to write $X = X_1 + X_2 + \cdots + X_m$, such that you already know EX_i .)

Solution

We claim that if the X_i 's are independent and $X_i \sim Geometric(p)$, for $i=1,\,2,\,\cdots,\,m$, then the random variable X defined by $X=X_1+X_2+\cdots+X_m$ has Pascal(m,p). To see this, you can look at <u>Problem 5 in Section 3.1.6</u> and the discussion there. Now, since we already know $EX_i=\frac{1}{p}$, we conclude

$$\begin{split} EX &= E[X_1 + X_2 + \dots + X_m] \\ &= EX_1 + EX_2 + \dots + EX_m \\ &= \frac{1}{p} + \frac{1}{p} + \dots + \frac{1}{p} \\ &= \frac{m}{p}. \end{split}$$
 by linearity of expectation

Again, you can try to find EX directly and as you will see, you need much more algebra compared to using the linearity of expectation.