计算机组成

从门电路到运算

高小鹏

北京航空航天大学计算机学院

电路类型

- □ 同步数字电路包含2种类型
 - ◆ 组合逻辑(CL, Combinational Logic)
 - 输出只是输入的函数,与历史状态无关
 - 例如: 加法器
 - ◆ 时序逻辑(SL, Sequential Logic)
 - 电路能存储信息
 - 例如:存储器、寄存器

synchronous/同步 memory/存储器 register/寄存器

更复杂的真值表

□ 3输入:表决器

□ 2位加法器

a	b	С	у
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

从真值表到布尔表达式

- □ 根据变量取值确定表达式中的变量表示
 - ◆ 变量值为1: 变量名
 - ◆ 变量值为0: 变量名的NOT
- □ 方法1: 积项求和(SoP, Sum of Products)
 - ◆ 输出值为1的行产生积项: 然后把所有项OR起来
 - $c = \bar{a}b + a\bar{b}$
- □ 方法2: 和项求积(PoS, Product of Sums)
 - ◆ 输出值为0的行产生和项;然后把所有项AND起来
 - $c = (\bar{a} + \bar{b}) \cdot (a + b)$

北京航空航天大学计算机学院

布尔代数的基本定律

□ 这些基本定律常用于布尔表达式的化简

$$x \cdot \bar{x} = 0$$
 $x + \bar{x} = 1$ 互补性
 $x \cdot 0 = 0$ $x + 1 = 1$ 0-1律
 $x \cdot 1 = x$ $x + 0 = x$ 重言律
 $x \cdot x = x$ $x + x = x$ 幂等律
 $x \cdot y = y \cdot x$ $x + y = y + x$ 交换律
 $(xy)z = x(yz)$ $(x + y) + z = x + (y + z)$ 结合律
 $x(y + z) = xy + xz$ $x + yz = (x + y)(x + z)$ 分配律
 $xy + x = x$ $(x + y)x = x$ 吸收律
 $\bar{x}y + x = x + y$ $(\bar{x} + y)x = xy$ 吸收律 v.2
 $\bar{x} \cdot y = \bar{x} + \bar{y}$ $\bar{x} + y = \bar{x} \cdot \bar{y}$ 德·摩根律

北京航空航天大学计算机学员 School of Computer Science and Engineering, Beihang Universit

布尔表达式化简示例 y = ab + a + c = a(b+1) + c = a(1) + c = a + c = a + c = a + c

电路化简示例2/4

- □ 按从输入到输出的方向,逐层建立表达式
- $D = \overline{AB} \cdot (A + \overline{B}C)$

11

电路化简示例3/4

D = (AB)'(A + B'C)

= A'A + A'B'C + B'A + B'B'C 分配律

= 0 + A'B'C + B'A + B'B'C 互补律

= A'B'C + B'A + B'C 幂等律

= (A' + 1)B'C + AB' 分配律

= B'C + AB' 1律

= B'(A + C) 分配律

2

电路化简示例4/4

- D = (AB)'(A + B'C)
 - Q: 多少个门?
- D = B'C + AB' = B'(A + C)

4

3

□ 画出电路

13

卡诺图

- □ 卡诺图(Karnaugh Maps)是另一种简化布尔表达式的方法
 - 适用于求解输入总数比较少的表达式,例如输入为5个以内
 - ◆ 更多信息请参考: http://en.wikipedia.org/wiki/Karnaugh_map
- □ 卡诺图背后的思路
 - ◆ 使用SoP把相邻项化简掉1个输入
 - 相邻项: 只有1个输入信号不同
 - 例如: ab + a'b = b, a'bc + a'bc' = a'b

北京航空航天大学计算机学院 School of Computer Science and Engineering, Beihang University

卡诺图的基本构图方式

- □ 把输入信号尽可能分成均匀的2组(一组n个信号,一组m个信号)
 - 例如: 4输入分成2-2, 5输入分成2-3
- □ 构造一个2ⁿx2^m的矩阵
 - ◆ n个信号有2ⁿ个取值组合; m个信号有2^m个取值组合
- □ 组合值排布的规则: 相邻的2个组合只有1个信号的值有变化

卡诺图化简示例: 3输入表决器1/2

- □ 第1步: 把真值表填入卡诺图
 - 真值表的行:对应卡诺图的单元格
 - ◆ 填表时要仔细,否则在从011到100这样的地方就容易犯错误

_	а	b	С	у
	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	1
	1	1	1	1

ab c \	00	01	11	10
0	0	0	1	0
1	0	1	1	1

卡诺图化简示例: 3输入表决器2/2

- □ 相邻的邻居如果均为1,则可以化简:将变化的信号化简
 - 例如: 110和111, 其对应的表达式为abc'+abc, 可以优化为ab

- □ 约束: 邻居的个数必须是2的整数幂
 - 例如: 右半部分4个单元格,由于100不是1,因此就不满足约束
- □ 组越大,则最终表达式约简单
 - ◆ 例如: 如果最下边4个都是1, 则化简为c

17

卡诺图使用的一般性规则

- □ 组内有效单元的个数必须是2的整数幂
- □ 应该选择尽可能大的组
- □ 注意4角的单元
- □ 避免出现单个单元

ab cd \	00	01	11	10
00	1	0	0	1
01	0	1	1	0
11	0	Ы	1	
10	1	0	0	1
	/			1

- 1) 不合法
- 2) bd: 有效
- 3) b'd': 角
- 4) 1011有多种选择

答案1: y = bd + b'd' + acd

答案2: y = bd + b'd' + ab'c

北京航空航天大学计算机学院

提纲

- 门电路
- ■运算
 - □ <mark>加法</mark>、减法、乘法、除法

北京航空航天大学计算机学院

1位加法器

□ 利用真值表构造1位加法器的表达式

$$S_0 = \overline{a_0}b_0 + a_0\overline{b_0}$$

$$C_1 = a_0b_0$$

20

北京航空航天大学计算机学院 School of Computer Science and Engineering, Beihang University

1位加法器

a_i	b_i	c_i	s_i	c_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$\begin{split} S_i &= \overline{A}_i \overline{B}_i C_i + \overline{A}_i B_i \overline{C}_i + A_i \overline{B}_i \overline{C}_i + A_i B_i C_i \\ C_{i+1} &= A_i B_i + A_i C_i + B_i C_i \end{split}$$

北京航空航天大学计算机学院 School of Computer Science and Engineering, Beihang University

1位加法器

a_i	b_i	c_i	$ $ s $_i$	c_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$\begin{split} S_i &= \overline{A}_i \overline{B}_i C_i + \overline{A}_i B_i \overline{C}_i + A_i \overline{B}_i \overline{C}_i + A_i B_i C_i \\ C_{i+1} &= A_i B_i + A_i C_i + B_i C_i \end{split}$$

本节结束!

24