Le banc balafre ★

Pas de corrigé pour cet exercice.

Question 1 En utilisant les informations de la plaque signalétique, montrer que le moteur possède p = 1 paire de pôles.

Question 2 À partir de la plaque signalétique, en détaillant les calculs, déterminer le glissement en fonctionnement nominal g_N ainsi que le couple utile nominal C_{uN} .

Question 3 Exprimer la puissance électromécanique P_{EM} fournie au rotor en fonction de U_S (valeur efficace de la tension $\underline{U_S}$), de la résistance R, du glissement g de l'inductance L_c et de la pulsation d'alimentation ω du moteur.

Question 4 Exprimer la puissance électromécanique P_{EM} en fonction du couple électromagnétique C_{EM} et de la vitesse de rotation Ω de l'arbre moteur.

Question 5 Exprimer la vitesse de rotation Ω de l'arbre en fonction du glissement g et de la vitesse de synchronisme Ω_S . En déduire l'expression du couple électromagnétique C_{EM} en fonction de U_S^2 , ω , g, R, L_c , et p (le nombre de paires de pôles par phase).

Question 6 En précisant bien vos hypothèses, justifier que l'expression du couple utile

disponible sur l'arbre moteur est
$$C_u = \frac{3pU_S^2}{\omega} \cdot \frac{\frac{R}{g}}{\left(\frac{R}{g}\right)^2 + (L_c\omega)^2}$$
.

Question 7 À l'aide des points A, B, C et D, identifier sur cette courbe le point de fonctionnement nominal, le démarrage du moteur, le point de synchronisme, la zone de fonctionnement instable du moteur.

Question 8 En déduire l'expression de L_c en fonction de p, U_S , C_M et ω et faire l'application numérique.

Question 9 Que peut-on dire de R/g par rapport à $L_c\omega$ au voisinage du point de fonctionnement nominal? En déduire l'expression de R en fonction du couple nominal C_N , du glissement nominal g_N , de p, U_S et de ω .

Question 10 Déterminer quelle fréquence doit être imposée par le variateur pour maintenir une vitesse de 6000 tr min⁻¹ en présence d'un couple résistant correspondant au couple $C_{\rm res} = 300$ Nm défini par l'exigence 1.01 du cahier des charges.

