Autor: Kajetan Ramsza

Prowadzacy: Kajetan Ramsza

Dwustosunek perspektywiczny

Płaszczyzna rzutowa

Płaszczyzna rzutowa jest zwykłą płaszczyzną rozszerzoną o punkty w nieskończoności

Stwierdzenie 1. Punkty w nieskończoności na płaszczyźnie rzutowej są współliniowe

Stwierdzenie 2. Każda prosta ma dokładnie jeden punkt w nieskończoności oznaczamy go P_{∞}

Stwierdzenie 3. Proste równoległe przecinają się w punkcie w nieskończoności wspólnym dla obu prostych

Zawsze działając w geometrii rzutowej (w szczególności w całym poniższym skrypcie) będziemy operować na płaszczyźnie rzutowej

Dwustosunek

Definicja. Dwustosunek współliniowych punktów A, B, C, D (mogą być punktami w nieskończoności) definiujemy jako

$$(A, B; C, D) = \frac{AC}{AD} \div \frac{BC}{BD}$$

Uwaga. Odcinki w powyższej definicji są skierowane tzn. jeśli punkt B leży na prawo od punktu A to AB = |AB| w przeciwnym wypadku AB = -|AB| (nie ma znaczenie które prawo wybierzemy, istotne jest tylko żeby za każdym razem to samo)

Dwustosunek prostych

$$(a, b; c, d) = (A_1, B_1; C_1, D_1) = (A_2, B_2; C_2, D_2) = \pm \frac{\sin (c, a)}{\sin (d, a)} \div \frac{\sin (c, b)}{\sin (d, b)}$$

Poręba Wielka 25.09.2024

Autor: Kajetan Ramsza Prowadzący: Kajetan Ramsza

Przykłady

1. Udowodnij, że

$$(A, B; X, Y) = (B, A; X, Y)^{-1} = (A, B; Y, X)^{-1} = (X, Y; A, B)$$

- 2. Dane są współliniowe parami różne punkty A,B,C oraz rzeczywista liczba k. Udowodnij, że istnieje dokładnie jeden taki punkt D na tej samej prostej (możliwe że w nieskończoności), że (A,B;C,D)=k
- 3. Dane są współliniowe punkty A, B, C oraz P_{∞} leżący na ich wspólnej prostej. Ile wynosi $(A, B; C, P_{\infty})$?

Czwórka harmoniczna

Definicja Jest to taka czwórka współliniowych punktów, że

$$(A, B; C, D) = -1$$

Twierdzenie 1. Niech M to środek odcinka AB, wtedy $(A, B; M, P_{\infty}) = -1$

Własności

Okrąg Apoloniusza

Niech XY to średnica okręgu Apoloniusza o(A, B, k), wtedy (A, B; X, Y) = -1

Inwersja

Dane są współliniowe punkty A, B, P. Niech P^* to obraz punktu P w inwersji względem okręgu o średnicy AB. Wtedy $(A, B; P, P^*) = -1$

Ceviany

Dany jest trójkąt ABC, oraz ceviany AD, BE oraz CF przecinające się w jednym punkcie. Niech $X = \overline{BC} \cap \overline{EF}$, wtedy (B, C; D, X) = -1

Prowadzacy: Kajetan Ramsza

Autor: Kajetan Ramsza

Rzut przez punkt

Jak zauważyliśmy w sekcji o dwustosunku prostych, dwustosunek punktów leżacych na pęku prostej jest stały, zatem również, jeżeli jedna czwórka punktów na pęku będzie czwórką harmoniczną to wszystkie będą takową

Czworokąt zupełny

Niech ABCD to czworokąt wypukły oraz $L = \overline{AD} \cap \overline{BC}$, $K = \overline{AC} \cap \overline{BD}$ i $M = \overline{LK} \cap \overline{AB}$, $N = \overline{KL} \cap \overline{CD}$. Wtedy (L, K; M, N) = -1

Zadania

- 1. Dany jest trójkąt ABC, I środek okręgu wpisanego, I_A środek okręgu dopisanego do boku BC oraz D spodek dwusiecznej z wierzchołka A. Udowodnij, że punkty A, D, I, I_A tworzą czwórkę harmoniczną.
- 2. Dany jest trójkąt ABC, ortocentrum trójkąta H oraz spodki odpowiednich wysokości D, E, F. Dane są takie P i Q należące do odcinka EF, że $AP \perp EF$ oraz $HQ \perp EF$. Niech R to przecięcie prostej HQ z prostą PD. Udowodnij, że QH = HR.
- 3. Dany jest trójkąt ABC. Niech D będzie spodkiem wysokości z wierzchołka A, P jest dowolnym punktem na odcinku AD. Proste BP oraz CP przecinają AC oraz AB odpowiednio w punktach E i F. Udowodnij, że $\not \prec EDP = \not \prec FDP$.

Rzut perspektywiczny

Rzut perspektywiczny $f_{O,\pi'}:\pi\to\pi'$, jest to taka funkcja, że

$$f_{O,\pi'}(X) = \overline{OX} \cap \pi'$$

Poręba Wielka 25.09.2024

Autor: Kajetan Ramsza Prowadzący: Kajetan Ramsza

Własności

Co zachowuje?

- proste
- dwustosunek współliniowych punktów
- krzywe stożkowe
- przecięcia

Unikalne przekształcenia

- Dowolne punkty A, B, C, D (żadne trzy niewspółliniowe) na dowolne punkty A', B', C', D' (żadne trzy niewspółliniowe)
- \bullet Zachowanie okręgu oraz dowolny punktPwewnątrz okręgu na dowolny punktQwewnątrz okręgu
- Zachowanie okręgu oraz dowolna prosta poza okręgiem na prostą w nieskończoności

Zadania

- 1. Dany jest czworokąt ABCD, niech $P = \overline{AB} \cap \overline{CD}$, $Q = \overline{AD} \cap \overline{BC}$ oraz $R = \overline{AC} \cap \overline{BD}$. Niech punkty X_1, X_2, Y_1, Y_2 to odpowiednio $\overline{PR} \cap \overline{AD}, \overline{PR} \cap \overline{BC}, \overline{QR} \cap \overline{AB}, \overline{QR} \cap \overline{CD}$. Udowodnij, że proste X_1Y_1, X_2Y_2 i PQ są współpękowe
- 2. Twierdzenie o motylku Niech AB, CD oraz PQ to cięciwy okręgu przechodzące przez punkt M. Niech $X = \overline{PQ} \cap \overline{AD}$ oraz $Y = \overline{PQ} \cap \overline{BC}$. Jeśli PM = QM to MX = MY.
- 3. **Twierdzenie Desargeusa** Dane są dwa trójkąty \overline{ABC} oraz $\overline{A'B'C'}$ takie, że proste $\overline{AA'}$, $\overline{BB'}$ i $\overline{CC'}$ są współpękowe. Wówczas punkty $\overline{AB} \cap \overline{A'B'}$, $\overline{BC} \cap \overline{B'C'}$, $\overline{CA} \cap \overline{C'A'}$ są współliniowe.
- 4. **Twierdzenie o nożycach** Dane są punkty P oraz Q. Przez punkt P prowadzimy proste a, b i c, a przez punkt Q proste k oraz l. Prosta a przecina prostą k w punkcie A_k analogicznie definiujemy punkty A_l, B_k, B_l, C_k, C_l . Wówczas punkty Q, $\overline{A_kB_l} \cap \overline{A_lB_k}$ i $\overline{B_kC_l} \cap \overline{B_lC_k}$ są współliniowe.
- 5. **Twierdzenie Pappusa** Trójka punktów A_1 , B_1 , C_1 leży na prostej k, a trójka punktów A_2 , B_2 , C_2 leży na prostej $l \neq k$. Oznaczmy $X = \overline{B_1C_2} \cap \overline{B_2C_1}$, $Y = \overline{A_1C_2} \cap \overline{A_2C_1}$ i $Z = \overline{A_1B_2} \cap \overline{A_2B_1}$. Wykazać, że punkty X, Y, Z są współliniowe.

