Posterior Sampling with Proximal MCMC

Louis Christie lqc26@cam.ac.uk

March 2, 2021

1 Introduction

In many image settings we are interested in the inverse problem of finding $x \in \mathbb{X}$ when we see $y \sim N(Ax, V)$ for example. One way to do this is to find a posterior distribution

$$\pi_{X|Y}(x \mid y) \propto \pi_{Y|X}(y \mid x) \times \pi_X(x) = N(y \mid Ax, V) \times \pi_X(x) \tag{1.1}$$

This requires us to specify a prior $\pi_X(x)$, which is often done by training a neural network or other model on a set of accurate images.

Once we've specified the prior and likelihood, we can estimate x from the posterior. One way is to find the Maximum A Posteriori (MAP) estimate $\hat{x}^{MAP} = \arg\max_{u \in \mathbb{X}} \pi_{X|Y}(u \mid y)$. Another is to find the posterior expectation $\hat{x} = \mathbb{E}(X \mid y)$. Since it may not be possible to analytically find this expectation, we turn to Monte-Carlo integration:

$$\mathbb{E}(X \mid Y) \approx \frac{1}{m} \sum_{i=1}^{m} X_i \quad \text{where } X_i \stackrel{iid}{\sim} \pi_{X|Y}$$
 (1.2)

To do this we need to sample from the posterior, which we do by designing a Markov Chain with the target posterior as its stationary distribution. In our case we can use the MYULA chain

Proposition 1.1. If $-\log \pi_{X|Y} = f + g$ where f is convex, proper, lower semicontinuous and has L_f Lipschitz gradient and g is convex, proper and lower semicontinuous, then the chain with transitions:

$$X_{n+1} = X_n - \delta \nabla f(X_n) - \frac{\delta}{\lambda} (X_n - Prox_g^{\lambda}(X_n)) + \sqrt{2\delta} Z_{n+1}$$
 (MYULA)

(where $Z_i \stackrel{iid}{\sim} N(0,\mathbf{1})$ and $\delta < 2\lambda (L_f \lambda + 1)^{-1}$) converges exponentially fast to $\pi_{X|Y}$ as $n \to \infty$.

From equation 1.1 we see that:

$$-\log \pi_{X|Y} = -\log C - \log \pi_{Y|X} - \log \pi_X \tag{1.3}$$

So we can set $f = -\log C - \log \pi_{Y|X}$ and $g = -\log \pi_X$ to use MYULA. This requires computing $\operatorname{Prox}_g^{\lambda}(X_n) = \arg \min_{u \in \mathbb{X}} (g(u) + (2\lambda)^{-1} ||x - u||_{\mathbb{X}}^2)$ at each step. This is a strongly convex function so does have a unique minimiser, but we would like to compute it without a descent style algorithm. The question becomes can we learn a prior π_X such that this proximal operator can be computed analytically?

Since g is sub-differentiable, we can define see that the proximal operator can be rewritten as an inverse image:

$$\operatorname{Prox}_{q}^{\lambda}(x) = (I_{\mathbb{X}} + \lambda \partial g)^{-1}(\{x\})$$
(1.4)

This can be seen as if $u \in (I_{\mathbb{X}} + \lambda \partial g)(x)$ then $0 \in \lambda \partial g(u) + u - x$ so u is a minimiser of $g(u) + \|x - u\|_{\mathbb{X}}^2/(2\lambda)$. Since this is strongly convex, the inverse image is a singleton.

cite Subhadip have shown that they can learn an **input convex neural network** (ICNN) by using nodes of the form:

$$z_{i+1} = \phi_i(B_i(z_i) + W_i(x_i) + b_i)$$

If the weights B_i are all non-negative and the ϕ_i are each convex and monotone then the learned network is also convex. If we use a smooth activation function ϕ_i , this is also guaranteed to be smooth. This means that we can analytically compute $U = I_{\mathbb{X}} + \lambda \nabla g$, and so computing $\operatorname{prox}_g^{\lambda}$ can be done at the cost of inverting U.

2 Gaussian Example

Suppose that A is the identity operator, so $y \mid x \sim N(x, \Sigma_{\epsilon})$. If we take a Gaussian prior on X, so $\pi_X(x) = N(x \mid 0, \Sigma_X)$, then we have a known posterior:

$$\pi_{X|Y}(x \mid y) \propto N(x \mid y, \Sigma_{\epsilon}) \times N(x \mid 0, \Sigma_X)$$
(2.1)

$$\propto N(x \mid S(\Sigma_{\epsilon}^{-1}y), S)$$
 (2.2)

where $S^{-1} = \Sigma_{\epsilon}^{-1} + \Sigma_X^{-1}$.

Example 2.1. In Willem's example, we have y = (1,1), $\Sigma_{\epsilon} = \frac{1}{2}I_2$, and $\Sigma_X = I_2$. Thus we have the posterior

$$\pi_{X|Y}(x \mid (1,1)^T) = N\left(x \mid \begin{pmatrix} \frac{3}{2} \\ \frac{3}{2} \end{pmatrix}, \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{3} \end{pmatrix}\right)$$
 (2.3)

Sampling 4000 steps of MYULA with 1000 to burn in gives a sample with KDE

Figure 1: Posterior Sample KDE from MYULA. Sample mean at $(0.682, 0.681)^T$ with marginal variances of 0.42 and 0.38

3 Wavelet Priors