

Recharge scenarios to identify controls of catchments' sensitivity to drought

Michael Stölzle

Kerstin Stahl, Andreas Morhard, Markus Weiler

Chair of Hydrology, University of Freiburg Germany

6th Leonardo Conference 2014: HYPER Droughts

Catchments' sensitivity to drought

Research question

How rapid and intense do catchments react to modified recharge patterns and on what time scales do they recover from different drought events?

Hypothesis

The timescale on which recharge (deficit) propagates through groundwater into streamflow (drought) is determined by geology (catchment storage).

Drought controls

What are controls of drought propagation?	Water input	Water availability		
Control in catchment hydrology	Climate, e.g. recharge variability	Storage, e.g. represented by geology		
Occurence due to	Rainfall deficit or snowfall, extrem ET	Small or empty storages		
Drought characteristics	Frequency Duration	Deficit Persistence		
	Climate control +	Catchment control		
	Short- and long-term sensitvity to drought			

2

Setup, study catchments and data

Recharge from SVAT model

evapotranspiration

unsaturated zone

capillary

Time series of groundwater recharge GR(t) from SVAT model

Model features

- 1. Soil water balance model to simulate vertical water fluxes of the soilvegetation-atmosphere continuum (SVAT)
- 2. Model incorporates all
- dominant control of recharge propagation into baseflow
- relevant near-subsurface processes
- 3. Geology is the remaining

radiation module

snow

module

interception

module

transpiration

groundwater

recharge thise

Baseflow from groundwater models

Model features

- 1. Properties of different geology are best represented by different groundwater model structures
- 2. The overall best model structure is the FLEX model
- 3. Storage depletion is 3x-increased above threshold h.max (allowing for short- and long-term recession behavior)

Scenarios I: Historical recharge

Scenarios I: Results

Scenarios II: Return period 50 years

Assessment of sensitivity to drought?

Response (in baseflow hydrograph)

Standardized deficits D_s

"How many days with mean flow are required to reduce deficit(s) to zero?"

$$D_s = \frac{Deficit \ d_i}{Flow \ \overline{q}} \left[\frac{mm}{mm/d} \right]$$

Sceanarios with different durations

Short- and long-term sensitivity

Karstic/Fractured aquifers	Complex/Porous aquifers
Scenario deficit is larger than response deficit	Scenario deficit is equal to response deficit
Event-specific sensitivity (e.g. 1976 ≠ 2003)	Linear relationship between scenarios and response (same duration)
Short-term drought sensitivity	Long-term drought sensitivity → drought persistence

13

Take home messages

- 1. Short- and long-term sensitivity to drought can be explained by geology
- 2. A linear relationship between scenarios and response indicated more catchment-controlled drought propagation
- 3. Climate and catchments controls (together with water age) are valuable precursors for drought early warning systems

Thank you for your attention!

Synthesis: Controls under same climate

Aquifer type	Relationship: scenario duration & response duration	Sensitvity to short-term recharge defict	Post-drought recovery from long-term recharge deficits	Standarized Deficits Recharge/ Baseflow [days]	Water age during drought [days]	Specific drought controls
Karstic	Event-specific	very high	short	100/5	< 50	
Fractured	Event-specific + antecedent winter	high	moderate	100/20	> 150	
Complex	mostly linear	small	long	110/70	> 300	
Porous	mostly linear	small	long	110/100	> 200	

14