EECS 370 - Lecture 5 ARM to Assembly

byte be like

Announcements

- HW 2
 - Posted on website, due Sunday night
- P1
 - 3 parts, first part due Wednesday
 - See walkthrough on website!
- Get exam conflicts and SSD accommodations sent to us by Friday
 - Forms listed on the website

Resources

- Many resources on 370 website
 - https://eecs370.github.io/#resources
 - ARMv8 references
- Async discussion recordings

Arithmetic Operations	A CONTRACTOR OF THE CONTRACTOR					70: GREEN CAR	STATE OF STREET		
add & set flags add immediate ADD Xd, Xn, Yn, Xn	Arithmetic Operations	Assembly code		de	Semantics	i	Comments		
add set flags add immediate ADN Xd, Xn, Van Xn, Vanum12 X5 = X2 + 819 0 2 12 bit unsigned ≤4095 add immediate ADN Xd, Xn, Fuirm12 X5 = X2 + 819 0 2 12 bit unsigned ≤4095 add immediate ADNS Xd, Xn, Fuirm12 X5 = X2 + 819 0 2 12 bit unsigned ≤4095 add immediate SUBS Xd, Xn, Xm X5 = X2 - X7 resister-to-resister subtract subtract Xs set flags SUBS Xd, Xn, Xm X5 = X2 - X7 resister-to-resister subtract immediate & set flags SUBS Xd, Xn, Xm X5 = X2 - X7 resister-to-resister subtract immediate & set flags SUBS Xd, Xn, Xm X5 = X2 - X7 resister-to-resister subtract immediate & set flags SUBS Xd, Xn, Xm X5 = X2 - X7 resister-to-resister subtract immediate & set flags SUBS Xd, Xn, Xm X5 = X2 - X7 resister-to-resister subtract immediate & set flags SUBS Xd, Xn, Xm X5 = X2 - X7 resister-to-resister subtract immediate & set flags SUBS Xd, Xn, Xm X5 = X2 - X7 resister-to-resister subtract immediate & set flags SUBS Xd, Xn, Xm X5 = X2 - X7 resister-to-resister subtract immediate & set flags SUBS Xd, Xn, Xm X5 = X2 - X7 resister-to-resister subtract immediate & set flags SUBS Xd, Xn, Xm X5 = X2 - X7 resister-to-resister SUBM Xt, (Xn, 8/simm0f) X2 = M(Xn, 8/8) subtract immediate & set flags double word load into Xt from Xn + 8/simm0f such subtract immediate Nd to flow Xn + 8/simm0f such subtract immediate Nd to flow Xn + 8/simm0f such subtract immediate Nd to flow Xn + 8/simm0f such subtract immediate Nd to flow Xn + 8/simm0f such subtract immediate Nd to flow Xn + 8/simm0f such subtract immediate Sub Xn from Xn + 8/simm0f such subtract immediate Sub Xn from Xn + 8/simm0f such subtract immediate Sub Xn from Xn + 8/simm0f such subtract immediate Sub Xn from Xn + 8/simm0f such subtract immediate Sub Xn from Xn + 8/simm0f such subtract immediate Sub Xn from Xn + 8/simm0f such subtract immediate Sub Xn from Xn + 8/simm0f such subtract immediate Sub Xn from Xn + 8/simm0f such subtract immediate Sub Xn from Xn + 8/simm0f such subtract immediate Sub Xn from Xn + 8/simm0f such subtract immediate Sub Xn from Xn + 8/simm0f such subtract im	h	ADD	Yd	Yn	Ym	Y5 - Y2 + Y7	,	ranjetar to ranjetar	
Add immediate ADDI Xd, Xn, Fuirm12 XS = X2 + #19 0 st 12 bit unsigned ≤ 4095									
Add March ADDIS Xd, Xn, Fuirmul X5 x2 x1 x5 x2 x7 x1 x5 x2 x7 x5 x2 x7 x5 x5 x5 x5 x5 x5 x5									
Subtract (see Flags SUB Xd, Xn, Xm X5 = X2 - X7 flags NZVC									
Subtract immediate SuBl Xd,	subtract	SUB	Xd,	Xn.	Xm	X5 = X2 - X7		register-to-register	
Data Transfer Operations	subtract & set flags	SUBS	Xd,	Xn,	Xm	X5 = X2 - X7		flags NZVC	
Data Transfer Operations	subtract immediate	SUBI	Xd,	Xn,	#uimm12	X5 = X2 - #20		0 ≤ 12 bit unsigned ≤ 4095	
LDUR Xt.	subtract immediate & set flags	SUBIS	Xd,	Xn,	Xm	X5 = X2 - #20		flags NZVC	
LDUR Xt.	Data Transfer Operations	Ac	combly co	nde		Computies	Com	nmants	
Louis grand word Louis Xi, Xi, #simmo X2 = M(N6, #18) word load to lower 32b. Xi from Xn + #simmo; sign extend upper 32b load byte Louis Xi, Xi, #simmo X2 = M(N6, #18) byte load to least 8b Xi from Xn + #simmo; sign extend upper 48b load byte Louis Xi, Xi, #simmo X2 = M(N6, #18) byte load to least 8b Xi from Xn + #simmo zero extend upper 48b load byte Xi, Xi, #simmo M(XS, #12) = X4 double word store from Xi to Xn + #simmo zero extend upper 56b store recisier Xii, Xii, #simmo M(XS, #12) = X4 word store from Ivi to Xn + #simmo zero extend upper 32b load to least 8b Xi from Xn + #simmo zero extend upper 56b xii									
Lour									
Loud bye LDURB Xt, Xn, #simm9 X2 = MIX6, #18 byte load to least 8b Xf from Xn + #simm9 zero extend upper 56b store recisier STUR Xt, Xn, #simm9 MIX5, #12 = X4 double word store from Nt to Xn + #simm9 zero extend upper 56b store had a find of the start o									
store recisiver store word \$TURW Xt. Xn. #simm9 M XS. #12 = X4 word store from Xt to Xn. # #simm9 store buf word \$TURW Xt. Xn. #simm9 M XS. #12 = X4 word store from lower 32b of Xt to Xn. # #simm9 store buf with Xt. Xn. #simm9 M XS. #12 = X4 word from lower 16b of Xt to Xn. # #simm9 store byte offset ### MOVZ Xd. #uimm16, LSL N									
Struck word Struck Stru									
store half word store byte STURB Xt,									
### STURB XL									
## ## ## ## ## ## ## ## ## ## ## ## ##									
first (N = 0)/second (N = 16)/third (N = 32)/fourth (N = 48)									
first (N = 0)/second (N = 16)/third (N = 32)/fourth (N = 48)									
Third (N = 32)/fourth (N = 48) 16b slot of Xd, without changing the other values (X's)	move wide with zero	MOVZ	Xd,	#uimm16,	LSL N	X9 = 00N00	first (N	N = 0/second (N = 16)/third (N = 32)/fourth (N = 48)	
Logical Operations Assembly code Semantics Using C operations of & ^ < < > >	move wide with keep	MOVK	Xd,	#uimm16,	LSL N	X9 = xxNxx			
and mmediate AND Xd, Xn, Xm X5 = X2 & X7 bit-wise AND with 0 ≤ 12 bit unsigned ≤ 4095 inclusive or immediate ORRI Xd, Xn, Xm X5 = X2 & #19 bit-wise AND with 0 ≤ 12 bit unsigned ≤ 4095 inclusive or immediate ORRI Xd, Xn, #minm12 X5 = X2 #11 bit-wise OR with 0 ≤ 12 bit unsigned ≤ 4095 exclusive or immediate ORRI Xd, Xn, #minm12 X5 = X2 #11 bit-wise OR with 0 ≤ 12 bit unsigned ≤ 4095 exclusive or immediate EOR Xd, Xn, #minm12 X5 = X2 #11 bit-wise OR with 0 ≤ 12 bit unsigned ≤ 4095 exclusive or immediate EOR Xd, Xn, #minm12 X5 = X2 *77 bit-wise EOR with 0 ≤ 12 bit unsigned ≤ 4095 logical shift left by a constant ≤ 63 with right by	register aliases		X28 = SF	P; X29 = FP; X3	0 = LR; X31 = .	XZR			
and mmediate AND Xd, Xn, Xm X5 = X2 & X7 bit-wise AND with 0 ≤ 12 bit unsigned ≤ 4095 inclusive or immediate ORRI Xd, Xn, Xm X5 = X2 & #19 bit-wise AND with 0 ≤ 12 bit unsigned ≤ 4095 inclusive or immediate ORRI Xd, Xn, #minm12 X5 = X2 #11 bit-wise OR with 0 ≤ 12 bit unsigned ≤ 4095 exclusive or immediate ORRI Xd, Xn, #minm12 X5 = X2 #11 bit-wise OR with 0 ≤ 12 bit unsigned ≤ 4095 exclusive or immediate EOR Xd, Xn, #minm12 X5 = X2 #11 bit-wise OR with 0 ≤ 12 bit unsigned ≤ 4095 exclusive or immediate EOR Xd, Xn, #minm12 X5 = X2 *77 bit-wise EOR with 0 ≤ 12 bit unsigned ≤ 4095 logical shift left by a constant ≤ 63 with right by	Logical Operations	Accomb	ly code			Semantic	ce	Using Congrations of & ^ < < >>	
and immediate $ANDI Xd$, Xn , #uimm12 $XS = X2 \& \#19$ bit-wise AND with $0 \le 12$ bit unsigned ≤ 4095 inclusive or $ORR Xd$, Xn , Xm $XS = X2 \mid X7$ bit-wise OR inclusive or immediate $ORRI Xd$, Xn , Xm $XS = X2 \mid \#11$ bit-wise OR with $0 \le 12$ bit unsigned ≤ 4095 exclusive or immediate $ORRI Xd$,				37	**				
inclusive or ORR Xd , Xn , Xn Xn Xn Xn Xn Xn Xn Xn									
inclusive or immediate ORRI Xd. Xn. #uimm12 X5 = X2 #11 bit wise OR with $0 \le 12$ bit unsigned ≤ 4095 exclusive or EOR Xd. Xn. Xn X5 = X2 $^{\circ}$ X7 bit-wise EOR with $0 \le 12$ bit unsigned ≤ 4095 logical shift left LSL Xd. Xn. #uimm12 X5 = X2 $^{\circ}$ X7 bit-wise EOR with $0 \le 12$ bit unsigned ≤ 4095 logical shift right LSR Xd. Xn. #uimm6 X1 = X2 $^{\circ}$ $< #10$ shift left by a constant ≤ 63 logical shift right $< EOR$ Xd. Xn. #uimm6 X1 = X2 $^{\circ}$ $< #10$ shift left by a constant ≤ 63 logical shift right by a co									
exclusive or EOR Xd , Xn , Xn $XS = X2^*X7$ bit-wise EOR Xd , Xn , Xn Xn , Xn $XS = X2^*857$ bit-wise EOR with $0 \le 12$ bit unsigned ≤ 4095 logical shift left S									
exclusive or immediate EOR Xd, Xn, #uinm12 X5 = $X2^{\circ}$ #57 bit-wise EOR with 0 ≤ 12 bit unsigned ≤ 4095 logical shift left LSL Xd, Xn, #uinm6 X1 = $X2 < < \#10$ shift left by a constant ≤ 63 logical shift right by a constant ≤ 63 shift left by									
logical shift right LSR Xd, Xn, #uimm6 X5 = X3 >> #20 shift right by a constant \le 63 Unconditional branches Assembly code Semantics Also known as Jumps									
LSR Xd, Xn, #uimm6 X5 = X3 >> #20 shift right by a constant \leq 63									
branch B #simm26 goto PC + #1200 PC relative branch PC + 26b offset; -2°25 ≤ #simm26 branch to register BR Xt target in Xt Xt contains a full 64b address branch with link BL #simm26 X30 = PC + 4; PC + #11000 PC relative branch to PC + 26b offset; branch with link BL #simm26 X30 = PC + 4; PC + #11000 PC relative branch to PC + 26b offset; branch with link BL #simm26 X30 = PC + 4; PC + #11000 PC relative branch to PC + 26b offset;	logical shift right	LSR	Xd,	Xn.	#uimm6	X5 = X3 > 3	> #20		
branch B #simm26 goto PC + #1200 PC relative branch PC + 26b offset; -2°25 ≤ #simm26 branch to register BR Xt tarset in Xt Xt contains a full 64b address branch with link BL #simm26 X30 = PC + 4; PC + #11000 PC relative branch to PC + 26b offset; branch with link BL #simm26 X30 = PC + 4; PC + #11000 PC relative branch to PC + 26b offset; branch with link BL #simm26 X30 = PC + 4; PC + #11000 PC relative branch to PC + 26b offset;	Unacaditional branches	Accom	blu anda		Comon	tina	Also Iron	our as Iumas	
branch to register BR Xt tarset in Xt Xt contains a full 64b address branch with link BL #simm26 X30 = PC + 4; PC + #11000 PC relative branch to PC + 26b offset; 6 million instructions; 6						PC relative branch I		oranch PC + 26b offset; -2^25 ≤ #simm26	
branch with link BL #simm26 X30 = PC + 4; PC + #11000 PC relative branch to PC + 26b offset; 16 million instructions;	boomb as assistant	nn	V.	to annual for	. V.				
16 million instructions;						111000			
	Oranga with mix	DL.	#SHIIII20	7.50		11000	16 million instructions;		

Instruction Set Architecture (ISA) Design Lectures

- Lecture 2: ISA storage types, binary and addressing modes
- Lecture 3: LC2K
- Lecture 4: ARM
- Lecture 5 : Converting C to assembly basic blocks
- Lecture 6 : Converting C to assembly functions
- Lecture 7: Translation software; libraries, memory layout

Load Instruction Sizes

How much data is retrieved from memory at the given address?

Desired amount of data to transfer?	Operation	Unused bits in register?	Example
64-bits (double word or whole register)	LDUR (Load unscaled to register)	N/A	0xFEDC_BA98_7654_3210
16-bits (half-word) into lower bits of reg	LDURH	Set to zero	0x0000_0000_0000_ <mark>3210</mark>
8-bits (byte) into lower bits of reg	LDURB	Set to zero	0x0000_0000_0000_00 <mark>10</mark>
32-bits (word) into lower bits of reg	LDURSW (load signed word)	Sign extend (0 or 1 based on most significant bit of transferred word)	0x0000_0000_ 7 654_3210 or 0xFFFF_FFFF_ F 654_3210 (depends on bit 31)

Load Instruction in Action

```
struct {
 int arr[25];
 unsigned char c;
                                         LDURB X3, [X4, #100]
} my struct;
int func() {
 my struct.c++;
 // load value from mem into reg
 // then increment it
                                                                                 10
                                                                                      2600
  X3
                 10
                              Calculate address:
                               2500 + 100 = 2600
  X4
              2500
```


Load Instruction in Action – other example

```
int my big number = -534159618; // 0xE0295EFE in 2's complement
int inc number() {
  my big number++;
                                              LDURSW X3, [X4, #0]
  // load value from mem into reg
  // then increment it
};
                          Sign extend (0xE0295EFE) to
                          64 bits \rightarrow 0x FFFFFFFE0295EFE
                                                                       FE
                                                                             2604
 X3
                                                                       5E
                                                                             2605
       FFFF...5EFE
                         Calculate address:
                          2604 + 0 = 2604
                                                                       29
                                                                             2606
 X4
           2604
                                                                       E0
                                                                             2607
          Need to sign extend,
       otherwise final register value
```


will be positive!!!

But wait...

int my_big_number = -534159618; // 0xE0295EFE in 2's complement

• If I want to store this number in memory... should it be stored like this?

• ... or like this?

Big Endian vs. Little Endian

Poll: Which do you prefer?

- a) Big Endian
- b) Little Endian

- Endian-ness: ordering of bytes within a word
 - Little Bigger address holds more significant bits
 - Big Opposite, smaller address hold more significant bits
 - The Internet is big endian, x86 is little endian, LEG and ARMv8 can switch
 - But in general assume little endian. (Figures from Wikipedia)

Store Instructions

• Store instructions are simpler—there is no sign/zero extension to consider (do you see why?)

Desired amount of data to transfer?	Operation	Example
64-bits (double word or whole register)	STUR (Store unscaled register)	0xFEDC_BA98_7654_3210
16-bits (half-word) from lower bits of reg	STURH	0x0000_0000_0000_ <mark>3210</mark>
8-bits (byte) from lower bits of reg	STURB	0x0000_0000_0000_00 <mark>10</mark>
32-bits (word) from lower bits of reg	STURW	0xFFFF_FFFF_ F 654_3210

What is the final state of memory once you execute the following

instruction sequence? (assume X5 has the value of 0)

X3

X4

LDUR	X4, [X5, #100]
LDURB	X3, [X5, #102]
STUR	X3, [X5, #100]
STURB	X4, [X5, #102]

register file

OxFF

<u>Poll:</u> Fina	I contents	of regi	sters?
-------------------	------------	---------	--------

0x11..FF: 0xE5..02

0x00..FF: 0x02..E5

0x11..FF: 0x02..E5

0x00..FF: 0xE5..02

Memory (each location is 1 byte)

little endian

What is the final state of memory once you execute the following

instruction sequence? (assume X5 has the value of 0)

LDUR	X4, [X5, #100]
LDURB	X3, [X5, #102]
STUR	X3, [X5, #100]
STURB	X4, [X5, #102]

	register file
X3	
X4	0xE5FF06C205FF0302

little e	o ndiar I
0x02	100
0x03	101
0xFF	102
0x05	103
0xC2	104
0x06	105
0xFF	106
0xE5	107

What is the final state of memory once you execute the following

instruction sequence? (assume X5 has the value of 0)

X4, [X5, #100]
X3, [X5, #102]
X3, [X5, #100]
X4, [X5, #102]

	register file
Х3	0x00000000000FF
X4	0xE5FF06C205FF0302

110 11111111111111111111111111111111111			
little endiar			
0x02	100		
0x03	101		
OxFF	102		
0x05	103		
0xC2	104		
0x06	105		
OxFF	106		
0xE5	107		

What is the final state of memory once you execute the following

instruction sequence? (assume X5 has the value of 0)

LDUR	X4, [X5, #100]
LDURB	X3, [X5, #102]
STUR	X3, [X5, #100]
STURB	X4, [X5, #102]

	register file
Х3	0x000000000000FF
X4	0xE5FF06C205FF0302

little e	ndian
OxFF	100
0x00	101
0x00	102
0x00	103
0x00	104
0x00	105
0x00	106
0x00	107

What is the final state of memory once you execute the following

instruction sequence? (assume X5 has the value of 0)

LDUR	X4, [X5, #100]
LDURB	X3, [X5, #102]
STUR	X3, [X5, #100]
STURB	X4, [X5, #102]

register file

Х3	0x0000000000000FF
----	-------------------

X4 0xE5FF06C205FF0302

little endian		
OxFF	100	
0x00	101	
0x02	102	
0x00	103	
0x00	104	
0x00	105	
0x00	106	
0x00	107	

What is the final state of memory once you execute the following instruction sequence? (assume X5 has the value of 0)

LDUR	X4, [X5, #100]
LDURB	X3, [X5, #102]
STURB	X3, [X5, #103]
LDURSW	X4, [X5, #100]

We shown the registers as blank. What do they actually contain before we run the snippet of code?

1	little englan		
	0x02	100	
	0x03	101	
	OxFF	102	
	0x05	103	
	0xC2	104	
	0x06	105	
	OxFF	106	
	0xE5	107	

What is the final state of memory once you execute the following instruction sequence? (assume X5 has the value of 0)

Memory

LDUR	X4, [X5, #100]
LDURB	X3, [X5, #102]
STURB	X3, [X5, #103]
LDURSW	X4, [X5, #100]

	register file
Х3	
X4	0xE5FF06C205FF0302
'	

(each location is 1 byte)

little endian		
0x02	100	
0x03	101	
OxFF	102	
0x05	103	
0xC2	104	
0x06	105	
OxFF	106	
0xE5	107	

What is the final state of memory once you execute the following instruction sequence? (assume X5 has the value of 0)

LDUR	X4, [X5, #100]
LDURB	X3, [X5, #102]
STURB	X3, [X5, #103]
LDURSW	X4, [X5, #100]

register file
0x00000000000FF
0xE5FF06C205FF0302

little endian				
0x02	100			
0x03	101			
0xFF	102			
0x05	103			
0xC2	104			
0x06	105			
0xFF	106			
0xE5	107			

What is the final state of memory once you execute the following instruction sequence? (assume X5 has the value of 0)

LDUR X4, [X5, #100]
LDURB X3, [X5, #102]
STURB X3, [X5, #103]
LDURSW X4, [X5, #100]

	register file
Х3	0x000000000000FF
X4	0xE5FF06C205FF0302

little endian				
0x02	100			
0x03	101			
OxFF	102			
OxFF	103			
0xC2	104			
0x06	105			
OxFF	106			
0xE5	107			

What is the final state of memory once you execute the following instruction sequence? (assume X5 has the value of 0)

LDUR	X4, [X5, #100]
LDURB	X3, [X5, #102]
STURB	X3, [X5, #103]
LDURSW	X4, [X5, #100]

	register file
Х3	0x000000000000FF
X4	0xFFFFFFFFFF0302

little endian				
0x02	100			
0x03	101			
0xFF	102			
OxFF	103			
0xC2	104			
0x06	105			
0xFF	106			
0xE5	107			

Converting C to assembly – example 2

- Write ARM assembly code for the following C expression:
 - (assume an int is 4 bytes and that struct elements are stored contiguously)

```
struct { int a; unsigned char b, c; } y;
y.a = y.b + y.c;
```

Assume that a pointer to y is in X1.

Converting C to assembly – example 2

- Write ARM assembly code for the following C expression:
 - (assume an int is 4 bytes and that struct elements are stored contiguously)

```
struct { int a; unsigned char b, c; } y;
y.a = y.b + y.c;
```

Assume that a pointer to y is in X1.

```
LDURB X2, [X1, #4] // load y.b

LDURB X3, [X1, #5] // load y.c

ADD X4, X2, X3 // calculate y.b+y.c

STURW X4, [X1, #0] // store y.a
```


Calculating Load/Store Addresses for Variables

Datatype	size (bytes)
short	2
char	1
int	4
double	8

```
short a[100];
char b;
int c;
double d;
short e;
struct {
  char f;
  int g[1];
 char h;
 i;
```

• *Problem*: Assume data memory starts at address 100, calculate the total amount of memory needed

```
a = 2 bytes * 100 = 200
b = 1 byte
c = 4 bytes
d = 8 bytes
e = 2 bytes
i = 1 + 4 + 1 = 6 bytes
total = 221, right or wrong?
```

Memory layout of variables

- Compilers don't like variables placed in memory arbitrarily
- As we'll see later in the course, memory is divided into fixed sized chunks
 - When we load from a particular chunk, we really read the whole chunk
 - Usually an integer number of words (32 bits)
- If we read a single char (1 byte), it doesn't matter where it's placed

0x1000	0x1001	0x1002	0x1003
'a'	'b'	'c'	'd'

Idurb [x0, 0x1002]

• Reads [0x1000-0x1003], then throws away all but 0x1002, fine

Memory layout of variables

• BUT, if we read a 32-bit integer word, and that word starts at 0x1002:

0x1000	0x1001	0x1002	0x1003	
0xFF	0xFF	0x12	0x34	
0x1004	0x1005	0x1006	0x1007	
0x56	0x78	0xFF	OxFF	

- First we need to read [0x1000-0x1003], throw away 0x1000 and 0x1001, then read [0x1004-0x1007]
- Need to read from memory twice! Slow! Complicated! Bad!

Solution: Memory Alignment

Poll: Where can chars start?

- Most modern ISAs require that data be aligned
 - An N-byte variable must start at an address A, such that (A%N) == 0
- For example, starting address of an int must be divisible by 4

• Starting address of a **short** must be divisible by 2

Golden Rule of Alignment

```
char c;
short s;
int i;
```

- Every (primitive) object starts at an address divisible by its size
- "Padding" is placed in between objects if needed

0x1000	0x1001	0x1002	0x1003	0x1004	0x1005	0x1006	0x1007
[c]	[padding]	[s]			[]	i]	

- But what about non-primitive data types?
 - Arrays? Treat as independent objects
 - Structs? Trickier...

Problem with Structs

- If we align each element of a struct according to the Golden Rule, we can still run into issues
 - E.g.: An array of structs

nar	C ;			
cha int s[2	r c	;		

1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	100A	100B	100C	100D	100E	100F
С	s[0].c	[pad]	[pad]		s[0].i		s[1].c	[pad]	[pad]	[pad]		s[1].i		

- Why is this bad?
- It makes "for" loops very difficult to write!
 - Offsets need to be different on each iteration

Structure Alignment

- Solution: in addition to laying out each field according to Golden Rule...
 - Identify largest (primitive) field
 - Starting address of overall struct is aligned based on the largest field
 - Padded in the back so total size is a multiple of the largest primitive

```
char c;
struct {
   char c;
   int i;
} s[2];
```

1	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	100A	100B	100C	100D	100E	100F
	С	[pad]	[pad]	[pad]	s[0].c	[pad]	[pad]	[pad]		s[0].i		s[1.c]	[pad]	[pad]	[pad]

Structure Example

```
struct {
  char w;
  int x[3]
  char y;
  short z;
}
```

<u>Poll:</u> What boundary should this struct be aligned to?

- a) 1 byte
- b) 4 bytes
- c) 12 bytes
- d) 2 bytes
- e) 19 bytes

- Assume struct starts at location 1000,
 - char w \rightarrow 1000
 - $x[0] \rightarrow 1004-1007$, $x[1] \rightarrow 1008 1011$, $x[2] \rightarrow 1012 1015$
 - char y \rightarrow 1016
 - short z \rightarrow 1018 1019

Total size = 20 bytes!

Calculating Load/Store Addresses for Variables

```
Datatype size (bytes)

short 2

char 1

int 4

double 8
```

```
short a[100];
char b;
int c;
double d;
short e;
struct {
  char f;
  int g[1];
  char h;
 i;
```

• *Problem*: Assume data memory starts at address 100, calculate the total amount of memory needed

```
a = 200 bytes (100-299)

b = 1 byte (300-300)

c = 4 bytes (304-307)

d = 8 bytes (312-319)

e = 2 bytes (320-321)

struct: largest field is 4 bytes, start at 324

f = 1 byte (324-324)

g = 4 bytes (328-331)

h = 1 byte (332-332)

i = 12 bytes (324-335)
```

236 bytes total!! (compared to 221, originally)

Class Problem

• How much memory is required for the following data, assuming that the data starts at address 200 and is a 32 bit address space?

```
int a;
struct {double b, char c, int d} e;
char* f;
short g[20];
```

Poll: How much memory?

- a) x < 40 bytes
- b) 40 < x < 50 bytes
- c) 50 < x < 60 bytes
- d) 60 < x bytes

Data Layout – Why?

- Does gcc (or another compiler) reorder variables in memory to avoid padding?
- No, C99 forbids this
 - Memory is laid out in order of declaration for structs
- The programmer (i.e., you) are expected to manage data layout of variables for your program and structs.
- Two optimal strategies:
 - Order fields in struct by datatype size, smallest first
 - Or by largest first

ARM/LEGv8 Sequencing Instructions

- Sequencing instructions change the flow of instructions that are executed
 - This is achieved by modifying the program counter (PC)
- Unconditional branches are the most straightforward they ALWAYS change the PC and thus "jump" to another instruction out of the usual sequence
- Conditional branches

```
If (condition test) goto target address
```

condition_test examines the four flags from the processor status word (SPSR)
target address is a 19 bit signed word displacement on current PC

LEGv8 Conditional Instructions

- Two varieties of conditional branches
 - 1. One type compares a register to see if it is equal to zero.
 - 2. Another type checks the condition codes set in the status register.

Conditional branch	compare and branch on equal 0	CBZ X1, 25	if (X1 == 0) go to PC + 100	Equal 0 test; PC-relative branch	
	compare and branch on not equal 0	CBNZ X1, 25	if (X1 != 0) go to PC + 100	Not equal 0 test; PC-relative branch	
	branch conditionally	B.cond 25	if (condition true) go to PC + 100	Test condition codes; if true, branch	

- Let's look at the first type: CBZ and CBNZ
 - CBZ: Conditional Branch if Zero
 - CBNZ: Conditional Branch if Not Zero

LEGv8 Conditional Instructions

- CBZ/CBNZ: test a register against zero and branch to a PC relative address
 - The relative address is a 19 bit signed integer—the number of instructions.
 Recall instructions are 32 bits of 4 bytes

	compare and branch on equal 0	CBZ X1, 25	if (X1 == 0) go to PC + 100	Equal 0 test; PC-relative branch	
Conditional branch	compare and branch on not equal 0	CBNZ X1, 25	if (X1 != 0) go to PC + 100	Not equal 0 test; PC-relative branch	
	branch conditionally	B.cond Z5	IT (condition true) go to PC + 100	Test condition codes; if true, branch	

- Example: CBNZ X3, Again
 - If X3 doesn't equal 0, then branch to label "Again"
 - "Again" is an offset from the PC of the current instruction (CBNZ)
 - Why does "25" in the above table result in PC + 100?

LEGv8 Conditional Instructions

• Example: What would the offset or displacement be if there were two instructions between ADDI and CBNZ?

```
Again: ADDI X3, X3, #-1
```

CBNZ X3, Again

```
Poll: What's the offset?
```

- a) -16
- b) -12
- c) -4
- d) -3
- e) 0

Next Time

- More C-to-Assembly
 - Function calls
- Lingering questions / feedback? I'll include an anonymous form at the end of every lecture: https://bit.ly/3oXr4Ah

