Homework 2

Neural Networks - Feedforward Pass

²Xiaoyu Xiang(xiang43@purdue.edu)

³Platform and Packages

- Python 3.6, PyTorch 0.4.1
- Numpy

²Code Implementation

oneural_network.py

In this script, we define a class NeuralNetwork, to use this class:

from neural_network import NeuralNetwork

It takes 1 input, that defines the size of input for each layer.

NeuralNetwork.getlayer(layer_index: int) can assign the weights for each layer. If not assigned, each layer will take random numbers(mean = 0, std = 1/sqrt(layer size)) as weights.

NeuralNetwork.forward(input: DoubleTensor) can do the forward pass. For each layer, the output y has the following relationship with the input x:

$$y = Wx + b$$

Where the b is the bias node.

^ologic_gates.py

This script defines 4 classes: AND, OR, NOT, XOR.

All the classes take bool input and give bool outputs.

For AND, OR, NOT, they are generated by 1-layer neural network. By transferring the input bool to int, we can apply the linear formula to calculate the output. Where the weights for each logic gates are assigned as below:

Gate	b	w1	w2
AND	-10	7	7
OR	-1	7	7
NOT	5	-7	\

For xor, we cannot express it with one layer neural network that satisfies all the equations. So we generate a 2-layer network with the following parameters:

Layer	b	w1	w2
0	[-5, -5]	[6, -6]	[-6, -6]

Layer	b	w1	w2
1	-5	7	7

³Test Result

Run 'python test.py'

For each logic gate, the test results are listed in the tables below.

ONA

Input 1	Input2	Output
True	True	True
True	False	False
False	True	False
False	False	False

OR

Input 1	Input2	Output
True	True	True
True	False	True
False	True	True
False	False	False

⁵NOT

Input	Output	
True	False	
False	True	

³XOR

Input 1	Input2	Output
True	True	False
True	False	True
False	True	True
False	False	False