Consider an equation in the form

$$F(x, y) = 0 (2.3.1)$$

where *F* is a function of two variables. The set of all ordered pairs (x, y) satisfying (2.3.1) is called the *graph* of (2.3.1). That is, the graph is the following subset of \mathbb{R}^2 :

$$\{(x,y) \in \mathbb{R}^2 : F(x,y) = 0\}.$$

Since ordered pairs can be considered as points in the coordinate plane, the graph can be considered as a subset of the plane.

Example Consider the following equation

$$2x + 3y - 4 = 0$$
.

- (1) Since 2(2) + 3(0) 4 = 0, the point (ordered pair) P(2, 0) belongs to the graph of the equation.
- (2) Since 2(-1) + 3(2) 4 = 0, point Q(-1, 2) belongs to the graph of the equation.
- (3) Since $2(1) + 3(2) 4 = 4 \neq 0$, the point R(1, 2) does not belong to the graph.

Remark The graph of the equation is the line passing through *P* and *Q*.

Definition An *x-intercept* (respectively a *y-intercept*) of the graph of an equation F(x, y) = 0 is a point where the graph intersects the *x*-axis (respectively the *y*-axis).

Example The graph of the equation

$$2x + 3y - 4 = 0 ag{2.3.2}$$

is a line. Its x-intercept is (2,0) and its y-intercept is $(0,\frac{4}{3})$. These are obtained by putting y=0 and x=0 respectively into (2.3.2).

Example The graph of the equation

$$x^2 + y^2 = 1$$

is a circle centered at the origin (0,0) with radius 1.

The graph has two *x*-intercepts, namely (1, 0) and (-1, 0) and two *y*-intercepts, namely, (0, 1) and (0, -1).

Figure 2.5

Example Find the x-intercept(s) and y-intercept(s) of the graph of

$$y = x^2 - 5x + 6 (2.3.3)$$

Solution To find the x-intercepts, we put y = 0 in (2.3.3). Solving

$$0 = x^2 - 5x + 6$$

$$0 = (x-2)(x-3)$$