LONG RANGE SEISMIC MEASUREMENTS

CHASE IV

(SANTIAGO IGLESIAS)

16 SEPTEMBER 1965

Prepared for

AIR FORCE TECHNICAL APPLICATIONS CENTER

Washington, D. C.

18 FEBRUARY 1966

By
UED EARTH SCIENCES DIVISION
TELEDYNE, INC.

Under
Project VELA UNIFORM

Sponsored By

ADVANCED RESEARCH PROJECTS AGENCY

Nuclear Test Detection Office

ARPA Order No. 624

Code 1

CLEARINGHOUSE
FOR FEDERAL SCIENTIFIC AND
TECHNICAL INFORMATION
Pardcopy | Microfishe |
\$2.00 \$ 0.50 | 28 pp 00

BEST AVAILABLE COPY

LONG RANGE SEISMIC MEASUREMENTS CHASE IV

16 September 1965

SEISMIC DATA LABORATORY REPORT NO. 137

AFTAL Project No.: VELA T/2057

Project Title: Seismic Data Laboratory

ARPA Order No.: 624

ARPA Program Code No.: 5810

Name of Contractor: UED EARTH SCIENCES DIVISION

TELEDYNE, INC.

Contract No.: AF 33(657)-12447

Date of Contract: 17 August 1963

Amount of Contract: \$ 5,382,624

Contract Expiration Date: 17 February 1966

Project Manager: Robert Van Nostrand

(703) 836-7644

P. O. Box 334, Alexandria, Virginia

AVAILABILITY

Distribution of this document is unlimited

This recearch was supported by the Advanced Research Projects Agency, Nuclear Test Detection Office, and was monitored by the Air Force Technical Applications Center under Contract AF 33(657)-12447.

Neither the Advanced Research Projects Agency nor the Air Force Technical Applications Center will be responsible for information contained herein which may have been supplied by other organizations or contractors, and this document is subject to later revision as may be necessary.

TABLE OF CONTENTS

	Page	No.
Event Description	1	
lacroduction	2	
Instrumentation and Procedure	3	
Data and Results	5	
Tables		
1 Station Status Report - CHASE IV		
2 Principal Phases - CHASE IV		
Figures		
1 Recording Stations and Signals Received		
2 Unified Magnitudes		
3 Travel-Time Residuals, $T - \Delta/8.1$; $T - JB$		
4 Maximum Amplitudes of Pn and P		
5 Maximum Amplitudes of Pg		
6 Maximum Amplitudes of Lg		
List of Appendices		
I(A) Recording Site Information		
I(B) Unified Magnitudes from Pn or P Waves		
II(A) Seismic Analysis Diagram		
TT(R) Instrument Response Curves - LRSM		

BLANK PAGÉ

CHAJE IV

EVENT DESCRIPTION

DATE: 16 September 1965

TIME OF ORIGIN: 19:51:10.2Z

YIELD: 300 Tons TNT Equivalent

MAGNITUDE: 4.73 ± 0.39

LOCATION:

SITE: Off the Coast of Maryland

in the Atlantic Ocean

Geographic Coordinates:

Lat: 37°11'34" N

Long: 74°26'34" W

ENVIRONMENT:

Geologic Medium: Salt Water

Depth of Water: ≈ 5100 ft.

Depth of Shot: ≈ 900 ft.

COMPUTED EPICENTER:

Geographic Coordinates:

Lat: 37°17'17" N

Long: 74°38'53" W

Time of Origin: 19:51:13.3Z

Depth: 14 km

Epicenter Shift: 41 km, N 75° W

Code Station	Final								
		SPZ	SPR	SPT	UPS	LPR	LPT	Tape	Timing
PH-W	Franklin, Nest Virginia	•	•	•	×	¥	×		P
Dri-WY	Delhi, New York	•	•	+	-	•	-	•	ı.
CPSO	Cumberland Plateau Observatory, Tennessee	•	. •	+ ,	-	-	-	•	•
MI-HE	Houlton, Meine	+	+	•	-	-	••	•	P
8V 2Q8	Scheffervilla, Quebec, Canada	I	ı	I	ı	I	I		
GV-TX	Grapevine, Texas	•	+	•	•	M	*		P
RK-OW	Red Lake, Ontario, Canada	•	+	•	•	-	-	•	>
AP-OK	i.pache, Oklahoma	•	¥	*	Ħ		N		P
WESO	Wichita Mountain Guservatory, Oklahoma	•	•	•	-	-	•	•	P
-MY-NA	Ryanam, Hontana		COR	RECT	PILE	Ber	RECE	IVED	
IC-101	Las Crices, New Mexico				N 0 N	Z P G			
UBBO	Uinta Basin Observatory, Utah	•	•	•	-	-	-	•	P
ML2AS	Waslini, Aricona	-	•	-	•	-	-	•	7
MO-AZ	Winslow, Arisona	L	L	L	-	•	-	•	•
HR-AS	Heber, Arisona	L	+	, L	-	**	-	•	P
GE-AE	Globe, Arizona	L	•	L	-	-	-	•	•
SM-MA	Sweetgrass, Montana				HOV	ING			
TPEO	Tonto Forest Observatory, Arizona	•	•	•	-	-	-	•	P
LG-AZ	Long Valley, Arizona	•	•	•	-	-	-	•	•
JR-AZ	Jerome, Arizona	•	•	•	-	-	-	•	•
CM-AS	Sunflower, Laisona	L	•	L	-	- .	-	•	P
101-177	Kanab, Utah	**	-	•	•	•	-	•	P
ML2ID	Hailey, Idahe				SETT	t # G U	P		
SG-AS	Saligman, Arisona	+	•	•	•	-	I	•	•
30180	Blue Mour'ain Observatory, Oregon	•	•	•	-	-	-	•	•
W-W	Mina, Nevada	+	+	•	-	-	•	•	P
FL-BC	Port Halson, British Columbia				8 R T T 1	# G U	>		
ML-YK	Watson Lake, Yukon				SETT	H G U	•		
NP-NT	Mould Bay, Northwest Tarritories, Canada	•	•	•	-	-	•	•	•
Lim	Lillehammer, Oslo, Morway	-	-	-	-	-	•	•	,
AD-IS	Adak Island, Alaska	-	-	-	-	-	•	•	•

I Inoperative

⁺ Signal

L Signal Obscured by Local Event

lo Instrument

⁻ No Signal * Magnetic Tape Available

P Primary Timing

Recording Stations and Signals Received

Introduction

A long range seismic measurements (LRSM) program was established under VELA-UNIFORM to record and analyze short-period and long-period data from a planned series of U.S. underground nuclear tests. These, and other data, will be used by VELA-UNIFORM participants for studying and developing methods for distinguishing between explosive and earthquake sources.

CHASE IV was an explosion of surplus ammurition of approximately 300 tons of TNT equivalent, which was authorized and conducted by the Office of Naval Research (ONR). The explosives were loaded into an expendable Liberty ship (Santiago Iglesias). The ship was sunk and the explosives detonated at a prearranged depth.

The purpose of this report is to provide an analysis of data resulting from the CHASE IV event from the LRSM film seismograms from operating mobile field teams; Wichita Mountain Observatory, Oklahoma (WMSO), Uinta Basin Observatory, Utah (UBSC), Blue Mountain Observatory, Oregon (BMSO), Cumberland Plateau Observatory, Tennessee (CPSO), and Tonto Forest Observatory, Arizona (TFSO); and from several experimental or temporary stations operated in connection with

other research programs.

Instrumentation and Procedure

Instrumentation at each of the mobile stations consists of three-component short-period Benioff and threecomponent Sprengnether long-period seismographs. Data are recorded on 35 millimeter film and on one-inch 14-channel magnetic tape. All of these stations are equipped to record WWV continuously in order to provide accurate time control. Calibration is accomplished once each day and just prior to each shot at operating settings. Specific details of the instrumentation and operating procedures for these stations are given in Field Manual, Long Range Seismic Measurement Program, Technical Report No. 63-17, which can be obtained from the Geotech Division of Teledyne Industries, Inc., Dallas, Texas. All the observatories have both long-period and short-period, three-component instrumentation, in addition to their other specialized facilities.

Station site information is presented in Appendix I(A). This includes the station name and code; the geographic co-ordinates, distances and azimuths involved; the station elevations; and the type of instruments in use at each location.

A status report for CHASE IV is included in Table 1, placed opposite the operations map, Figure 1. This report gives the names of 31 stations and indicates which instruments were operational and which recorded signals.

An explanation of the procedure for amplitude measurements used in this report is illustrated in Appendix II.

The unified magnitude (m) computations for distances less than 16° are based on AFTAC/VSC extensions of Gutenberg's Tables*. For this purpose, points from 10° to 16° were read from a curve in the Gutenberg-Richter paper and an inverse cube relationship was used to extrapolate from two to ten degrees. A table of the distance factors (B) is provided in Appendix I(B).

A standard hypocenter location program for a digital computer has been used to determine the location using data from all stations analyzed. Best-fit values of latitude, longitude, depth of focus, and time of origin are determined statistically by a least squares technique. This utilizes a Jeffreys-Bullen travel-time curve as modified by Herrin in 1961 on the basis of Pacific surface-focus recordings. Pre-

^{.- 4 -}

^{*}Gutenberg, B. and Richter, C. F., Magnitude and Energy of Earthquakes, Ann. Geofis., 9 (1956), pp. 1-15.

cision of the computation is limited primarily by the accuracy of arrival times, the validity of the standard travel-time curve, and by local velocity deviations. Since the method is based on P wave arrivals, this particular program does not make use of later phases such as pP and S in the determination of depth or location. Results are shown on the Event Description page.

Data and Results

Table 2 summarizes the measurements made of the principal phases from the CHASE IV event. Included are the Pn and P arrival times, the maximum amplitudes (A/T) of Pn or P and Pg motion as seen on the short-period vertical instruments, and the maximum amplitudes (A/T) of the Lg phase as measured on the short-period horizontal tangential component. No eteen stations recorded usable short-period signals. Two other stations probably recorded CHASE IV, but an overriding local event obscured the signals. Long-period signals from this event were not recorded.

In addition, Table 2 and Figure 2 show the unified magnitudes (m) where measurable. The average magnitude for CHASE IV is 4.73 ± 0.39 .

The travel-time residuals from the Pn and P phase are within the usual limits (see Figure 3). The amplitudes of Pn and P, Pg and Lg are shown in Figures 4, 5 and 6. Lines proportional to the inverse cube of the distance visually fitted through the observed points are shown on these graphs.

Attached to the report are illustrative seismograms showing the signals recorded at a number of locations. The most distant station analyzed that recorded CHASE IV was NP-NT at a distance of 4890 kilometers.

Cuda	Bletion	Statenes (No.)	tast.	Hegni- Siretion (h) Film si0	Phase	(min)	erved ol Time (me)	Period V (sec)	Heniman Amplitude A/T	Hagais tuda (B)
79:30	Prerklin, West 'irginis	491	671 671	32.8 32.8	in.	1	82.7 10.4	0.0	44.9 115.0	6.84
			10°E 10°F	33.8 52.8	2	*	23.1	0.B B.9	671.8 1261.0	
D41-87Y	Delhi, See York	362	576 579 579 572 577	23.2 22.2 23.2 23.2 22.2 75.6°	80 (30) Lg	01 81 01 01	{18.8} 25.8 29.0 34.0	8.9 0.6 0.6 2.9 1.0	32.2 77.0 105.0 423.0 231.0	4.92
CPSO	Cumberland Plateau Chesryatery, Tennessee	1013	\$72-9 \$73-8L \$75-8L \$75-8L \$75-6L \$75-6L	340.0 25.0 22.0 22.0 25.0 23.0	# · · · · · · · · · · · · · · · · · · ·	02 02 02 02 03 03	12.4 22.0 34.3 38.8 50.1 55.4	0.7 0.7 0.7 0.7 0.9 0.8	8.9 162.0 144.0 86.2 87.3 90.1	2.16
CO-AL	Moulton. Neins	1151	571 571 571 575 575 575 675 676	120.0 110.0 120.0 120.0 120.0 120.0 120.0	(14) (14) (14)	83 03 03 03 03	(27.2) 29.9 40.6 90.5 52.2 29.7 16.7	0.4 0.8 8.7 0.8 0.8 0.4 0.7	11.4 14.2 21.4 37.2 27.0 (28.2) 27.2 287.0	2.34
6V-7X	Orașevine, Texas	2107	19-9 19-9 19-9	25.73 23.73 32.4		8	(32.0) 15.0	(1.0) 0.8 (0.9)	(136.6) 114.0 (48.1)	(2.15)
Ret-cus	hed Lake. Ontarie, Caneda	2151	875 876 876 876 876 278	193.0 145.0 195.0 195.0 165.8 274.0	(PeP)	84 84 85 85 84 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 8	(26.0) 30.9 30.1 47.1 01.5	1.2 1.0 0.8 0.6 1.0	30.7 24.4 26.9 17.5 30.9 136.0	6.30
AP-OR	Apacho, Oklahuma	2173	898	488.0	:	04 06	(30.9) 62.5	(0.9) 9.9	(11.2) 21.5	(6.75)
vetilo	Bichite Howete,n Observatory, Chiahama	2190	878-4 079-5 879-5 879-5 879-4 879-4 878-4 878-6 878-6 878-6 878-6	210.8 210.9 210.9 210.9 210.0 210.0 210.0 210.0 210.0 210.0	p (pp) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	04 94 94 94 99 99 49 99 69 69 69	30.9 36.8 42.2 48.7 52.4 04.2 18.6 30.9 87.1 48.0 99.3	1.0 1.0 1.2 0.9 1.0 1.2 1.2 1.2 1.0 0.9	21.6 40.9 46.9 26.0 26.4 39.5 30.2 16.1 11.9 11.1	4.23
ease.	Gisto Basin Observatory, Utah	3034	3P8-10 4PE-10 4PE-10 EPS-10 EPS-10 EPS-10 EPS-10 EPS-10 EPS-10	570.0 570.0 570.0 970.0 970.0 270.9 279.0 570.0 570.0	~ <u>P</u> - S	02 06 04 04 07 07 08 09	66.4 06.7 21.9 52.6 09.2 57.9 19.9 06.0 40.0	1.1 0.9 (1.1) (1.6) 1.1 1.0 1.1 1.1	19.7 9.2 (29.91 (26.65 .1.9 0.2 12.1 11.0 7.4	6.84
W0-AS	dission Arisona	3251	100	•	,	• •		7274		
RB-AE	Meher, Arlsona	3270	sPQ	350.0	4		"	1.2	24.4	
612-A2	9lobe, Arleens	3277	g/a	'3°	1 41	c		LBCB		
1790	Tonte Parest Cheervatory, Arlmon	5324	878-1 878-1 878-1 878-1 878-2 878-1 873-1 873-1	870.0 970 0 970.0 870.0 870.0 870.0 870.0	No.	06 06 07 07 06 69 09	11.7 91.9 18.5 39.0 04.1 16.6 37.1 03.4	0.9 (0.7) 1.1 1.6 1.0 1.0 1.5 1.2	9.2 {6.2} 5.1 5.1 2.7 5.4 6.9 2.5	4.33
LG-AS	tong Valley, Arlessa	3367	PP\$ 8:18	239.0 250.9) Le	••	(12.9)	1.9	(19.2) 17.4	(6.45)
J3-A2	Jerume, Arliona	3376	spi spa	247,¢ 424,9) Le	щ	(25.4)	0.6 1.5	9.0 42.4	4.50
89-AZ	Bustlemer, Arisema	3377	SPR	*9*	Le			1.2 1.3	,	
BO-AZ	Beligman, Artzena	3442	SPE SPE SPE APE SPE SPE SPE	725.9 *68.9 *705.9 *705.0 *705.0 *705.0 *12.4	ter a	54 54 55 55 55 55 55 55 55 55 55 55 55 5	22.9 25.0 34.2 61.0 (32.0) 10.2 28.0	0.B 1.0 1.1 1.0 1.1 (0.B) 1.5	2.00 9.2 10.0 2.5 6.2 (5.0) 7.5 22.0	4.29
ta nso	Bine Hountain (Beefastory, Green	14 21	679-3 579-3 579-5 579-5 679-5 679-5 879-3 678-3	750.0 750.0 750.0 750.0 750.0 750.0 750.0 750.0	* • • • • • • • • • • • • • • • • • • •	06 06 06 36 37 67 67	36.7 42.1 67.9 56.8 86.3 12.9 36.2 22.5	1.0 0.0 1.0 1.9 8.4 1.1 0.9 9.8 1.6	4.2 2.9 6.0 5.7 2.9 3.2 5.8 2.0	4.35
	Sino, Somoda	3019	872 872 872 872 872 872 873 873 874 875 877	612.9 609.9 612.9 612.0 612.0 612.0 612.0 514.0	> • • • • • • • • • • • • • • • • • • •	06 96 64 07 07 07 07 08 29	90,1 23,0 59,4 60,8 12,1 24,4 36,2 62,6 24,9	1,2 1.3 1.3 1.2 1.2 1.3 1.1 1.6 1.0	86.1 83.1 19.7 9.8 12.8 14.9 2.7 7.1 4.1	*.12
82-67	Hogid Rey, Emrthoset Vergiteries Canada	4890	875 577 873	190.6 180.4 183.9	÷	8888	10.0 19.0 34.4 14.0	1.2 1.2 1.4	67.7 30.9 17.9	6.19

A/* nu/see
() Bookstyl Valence or Phases
* Honorcommate Bode from Playurs
g Phases Reported but not identified
--- Clipped on Pile one Cope

DISTANCE(km)

Figure 6

	A	'detance	Ger (raphic	Geographic	Elev.	Compute	Azimuth	Installed Asimuth		Large or	LP
Coda	Station	(km)	Ltude	Longitude	(km)	Epi.	Sta. Epi.	Radial Tang.		Small SP	Inst.
FN-WV	Pranklin, West Virginia	471	38°32'58" N	79 ⁰ 30'47" ¥	0.91	290°	107°	99°	189 ⁰	•	-
DH-NY	Dalhi, Naw York	562	42 ⁰ 14'39" N	74 ⁰ 53'18" W	0.65	356°	176°	95°	185°		x
CP80-28	Cumbarland Plateau Observatory, Tennassas	1013	35 ⁰ 35'41" N	85 ⁰ 34'13" W	0.57	263 ⁰	770	90°	o°	л	x
HN-ME	Houlton, Maine	1131	46 ⁰ 09'43" N	67 ⁰ 59'09" W	0.21	26 ⁰	211°	93°	183°	8	×
SV 3QB	Scheffervilla, Quabec, Canada	2045	54 ⁰ 48'39" N	66 ⁰ 45'00" W	0.59	14°	200°	1 39°	229 ⁰	ŝ	x
GV-TX	Grapevina, Taxas	2107	32 ⁰ 53'09" N	96 ⁰ 59'54" W	0.15	264°	71°	111°	201°		LPZ
RK-OM	Red Laka, Ontario, Canada	2151	50 ⁰ 50'20" N	93 ⁰ 40'20" W	0.37	321°	127 ⁰	58°	148°	s	x
AP-OK	Apacha, Oklahoma	2173	34 ⁰ 49'59" N	98 ⁰ 26'09" W	0.43	270 ⁰	76 ⁷	-	-	8	-
MM 50-26	Wichita Mountain Observatory, Oklahoma	2190	34 ⁰ 43'05" N	98 ⁰ 35'21" W	0.51	270°	76°	90°	00	<i>3</i> 74	x
HY-MA	Hysham, Montana	2862	45 ⁰ 58'21" H	107 ⁰ 04'45" W	0.98	300°	96°	41°	131°	-	-
10-101	Las Cruces, New Mexico	2976	32 ⁰ 24'08" N	106 ⁰ 35'58" W	1.59	259 ⁰	71°	124°	2140	L	x
UBS0-210	Uinta Basin Obsarvatory, Utah	3054	40 ⁰ 19'18" N	109 ⁰ 34'07" W	1.60	287 ⁰	85°	90°	0°	<i>3</i> М	×
NL2AZ	Mazlini, Arizona	3138	35 ⁰ 48'25" N	109 ⁰ 37'43" W	1.92	278°	772	131°	221°	L	x
WO-AZ	Winslow, Arizona	3251	34 ⁰ 52'53" N	110 ⁰ 37'15" W	1.59	276°	75°	131°	2210	L	x
HR-AZ	Heber, Arizona	3270	34 ⁰ 40·11" N	120 ⁰ 45'59" W	1.88	276 ⁰	74°	131°	2215	L	x
GE-AZ	Globe, Arizona	3277	33 ⁰ 46'32" H	110 ⁰ 31'41" W	1.48	274°	73°	131°	221°	L	x
SW-HA	Sweetgrasa, Montana	3283	48°58'08" N	111 ⁰ 57'46" W	1.11	305°	99°	120 ⁰	210°	8	x
TF80-21	Tonto Forest Observatory, Arisona	3326	34 ⁰ 17'12" #	111 ₀ 16,03. A	1.49	276°	74°	90°	0°	ж	x
LG-AE	Long Valley, Arisona	3347	34 ⁰ 24 '28" H	111 ⁰ 32'45" W	1.77	276°	74°	131°	221°	8	x
JR-AZ	Jarome, Arizona	3 374	34 ⁰ 49132" N	111 ⁰ 59'25" W	1.31	277°	74°	131°	221°	L	x
8M-A2	Sunflower, Arizona	3377	33 ⁰ 51'49" K	111°41'34" W	0.38	275°	73°	131°	221°	L	x
KN-UT	Knab, Utah	3389	37 ⁰ 01'22" N	112 ⁰ 49'39" W	1.74	282°	78°	95°	185°	L	x
HL2ID	Hailey, Idaho	3435	43 ⁰ 33'40" N	114 ⁰ 25'08" W	1.83	295°	68°	124°	214°	L	x
SG-AZ	Seligman, Arizona	3462	35 ⁰ 38'27" N	113 ⁰ 15'39" W	1.68	279 ⁰	76°	131°	221°	L	x
MS0-23	Blue Mountain Obsarvatory, Oregon	3661	44 ⁰ 50'56" N	117 ⁰ 18'20" W	1.19	297 ⁰	88°	00	90°	<i>э</i> м	x
MH-MV	Mina, Fevada	3815	38°26'10" N	116°08'53" U	1.52	286 ⁰	76°	308°	37°	L	x
FL-BC	Port Malnon, British Columbia, Canada	4207	58 ⁰ 51'38" N	122 ⁰ 50'11" W	0.66	321°	103°	103°	193°	L	x
WL-Y	Watson Laka, Yukon	4564	60°07'00" N	128 ⁰ 45'52" W	0.72	322°	9ç°	97 ⁰	187°	L	x
np-nt	Mould Bay, Horthwest Territorias, Canada	4890	76 ⁰ 15'08" N	119 ⁰ 22'18" W	0.06	346°	126°	356°	86°	JM B	x
LHN	Lillahammer. Norway	6240	61 ⁰ 02'57" N	10 ⁰ 52'48" E	0.51	36°	287°	138°	2280	L	y.
AD-IS	Adah Island, Alaska	7611	51°52'30' H	176 ⁰ 40'45" W	0.06	319°	570	o°	90°	L	x
						L	<u> </u>				

Unified Magnitude: $m = log_{10} (A/T)$, + B

where

A = zero to peak ground motion in millimicrons = (mm) (1000)

K

T = signal period in seconds

B = distance factor (see Table below)

mm = record amplitude in millimeters zero to

K = magnification in thousands at signal
 frequency

Table of Distance Factors (B) for Zero Depth

Dist		Dist:		Dist		Dist	
(deg)	В	(deg)	В	(deg)	В	(deg)	В
0 2	_	27 ⁰	3.5	54 ⁰	3.8	°03	3.7
	-	28	3.6			81	3.8
1 2	2.2	29	3.6	55	3.8	82	3.9
3	2.7	3 -		56	3.8	83	4.0
4	3.1	30	3.6	57	3.8	84	4.0
		31	3.7	58	3.8		
5	3.4	32	3.7	59	3.8	85	4.0
6	3.6	33	3.7	60	3.8	8 6	3.9
7	3.8	34	3.7	61	3.9	87	4.0
8	4.0	35	3.7	6 2		88	4.1
9	4.2				4.0	89	4.0
1.0	4 2	36	3.6	63	3.9		
10	4.3	37	3.5	64	4.0	90	4.0
11	4.2	38	3.5	65	4.0	91	4.1
12	4.1	39	3.4	66	4.0	92	4.1
13	4.0	40	3.4	67	4.0	93	4.2
14	3.6	41	3.5	68	4.0	94	4.1
15	3.3	42	3.5	69	4.0	95	4.2
16	2.9	43	3.5	09	4.0	96	
17		44		70	3.9		4.3
	2.9	44	3.5	71	3.9	97	4.4
18	2.9	45	3.7	72	3.9	98	4.5
19	3.0	46	3.8	73	3.9	99	4.5
20	3.0	 7	3.9	74	3.8	100	4.4
21	3.1	48	3.9			101	4.3
22	3.2	49	3.8	75	3.8	102	4.4
23	3.3			76	3.9	1.03	4.5
24	3.3	50	3.7	77	3.9	104	
47	J • J	51	3.7	78	3.9	104	4.6
25	3.5	52	3.7	79	3.8	105	4.7
26	3.4	53	3.7				

Detail Showing Allowance
For Line Width

Pick time of Pn at beginning of "a" half cycle.

Pick amplitude of Pn as maximum "d/2" within 2 or 3 cycles of "c".

Pick amplitudes of Pg and Lg at maximum of corresponding motion.

Seismic Analysis Diagram
APPENDIX II(A)

INSTRUMENT RESPONSE CURVES - LRSM

Security Classification			
DOCUMENT CO (Security cleasification of title, body of abetract and indexi-	NTROL DATA - R&C		the evereti report to classified)
1. ORIGINATING ACTIVITY (Cor. wrete author)			T SECURITY CLASSIFICATION
UED EARTH SCIENCES DIVISION			assified
TELEDYNE, INC.		25 GROUP	
ALEXANDRIA, VIRGINIA 22314		20 GROUP	
3. REPORT TITLE			
Long Ranye Seismic Measurements	- CHASE IV		
4. DESCRIPTIVE NOTES (Type at report and inclusive dates)			
Scientific Report			
S. AUTHOR(S) (Leet name, first name, initial)			
Clark, Don M.			
6. REPORT DATE	79. TOTAL NO. OF PA	LOES	76. NO. OF REFS
18 February 1966	21		1
SA. CONTRACT OR GRANT NO.	94. CRIGINATON'S RE	PORT NUM	9ER(3)
AF 33(657)-12447			3.05
& PROJECT NO.	SDL K	eport	No. 137
VELA T/2037			
ARPA Order No. 624	Shie report	10(8) (Any	other numbers that may be seelighed
ARPA Program Code No. 5810	<u> </u>		
16. AVAILABILITY/LIMITATION NOTICES			
Distribution of this documen	nt is unlimite	eđ	
	-		
11. SUPPLEMENTARY NOTES	12. SPONSORING MILIT		
			H PROJECTS AGENCY
			ECTION OFFICE
	WASHINGTON,	D. C	•

13. ABSTRACT

An analysis of an underwater HE shot as a continuing study to provide information to aid in distinguishing between earthquakes and explosions. A table of travel times and amplitudes of identified as well as unidentified phases is included.

14.	MAN MORAL	LII	LINK A		K B	LIN	K C
	KEY WORDS	ROLE	WT	ROLE	WT	MOLE	WT
Seismic Ma	gnitude						
Seismic T	avel-Time						
Seismic Ar	nplitude	i i					
VELA-UNIF	DRM						
Chemical I	Explosion - CHASE IV						

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantse, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, whow rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 76. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, &c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9s. ORIGINATOR'S REPORT NUMBER(5): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(\$): If the report has been sasigned any other report numbers (either by the originator or by the aponeor), also enter this number(s).
- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other then those

imposed by security classification, using standard statements such as:

- (1) "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. 8. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military sgencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicete this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes:
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the shetract of classified reports be unclassified. Each peregraph of the shetract shall end with an indication of the military security classification of the information in the peregraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the shatrect. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phreaes that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optionsi.

Mina, Nevada

6 September 1965

 $\Delta = 3815 \text{ km}$

·SPZ-HI

169.0 K

RK-ON

Red Lake, Ontario

16 September 1965

Δ=2151 km

---19:54:30.0 Z

Δ=562 km

CHASE IV

HN-ME

Houlton, Maine

16 September 1965

 Δ = 290 km

in which which is a second with the second win the second with the second with the second with the second with

