

*USER'S
GUIDE
HOSE*

GLOBAL ACCEPTANCE - THE QUALITY WAY

Corporate Office & Works (J-7, Hingna, MIDC)

K-36 MIDC Plant, Nagpur

Bazargaon Plant

Contents

Profile	01
Certifications	02
Work environment	03
End fitting selection criteria	03
Hose selection criteria	04
Inspection	05
Protecting the hose	06
Installation	07-15
Types of failure	16
Trouble shooting	17-18
Product range	19-21
Bend radius	22
Hose conversion factor	23
Formulae & factors	24-25
Notes	

Profile

PIX TRANSMISSIONS LIMITED, is engaged in the manufacturing of wide range of world class quality V-Belts and Hoses to suit various power drive needs.

Its comprehensive manufacturing setup at Nagpur and Bazargao conform to the stringent ISO 9001:2000 & TS:16949 standards and is designed to include all sophisticated manufacturing and testing facilities under one roof.

The wide range of Hoses manufactured by PIX have found their acceptance in various industries eg. Mining, Earthmoving, Moulding, Logging, Agriculture, Drilling, Petroleum, Waste/Refuse, Crane, Railroad, Manufacturing, Construction, Pulp and Plywood Mills.

Infrastructure Advantage

- State-of-art Braiding Machines
- Highly advanced & sophisticated Impulse Testing Machine
- Testing facilities for Proof Pressure, Burst Pressure, Changing Length, Flame Resistance
- State-of-art Ozone Chamber

Hose Assemblies and End Fittings

PIX has got a full fledged manufacturing facility for producing wide range of high quality End Fittings and Hose Assemblies.

The facility includes -

- CNC machinery for manufacturing of End Fittings
- Crimping machine, Cutting machine, Skiving machine
- Proof Pressure Testing Machine for assemblies
- Hose assembly cleaning facility
- Metal Crack Detection Machine for incoming raw material

Certifications

IBExU Institut für Sicherheitstechnik GmbH

Directive 94/9/EC

Test Report No. : IB-03-4-934

Ex II 2GD c IIB X

US Department of Labor

Mines Safety & Health Administration (MSHA)

Marking No. : MSHA IC-226

Work environment

The most effective and the best way to maintain the safer work environment can be achieved by knowing your equipment properly. The chart below list down the factors one need to look in the equipment.

End Fitting Selection Criteria

Hose selection criteria

Hose selection criteria

The following factors are to be considered to ensure that the best hose is selected for the desired application.

Inspection

Inspection Procedure

To achieve the best from your equipment it is imperative that a maintenance schedule be set up and ascertain that the periodic inspections are carried out to prevent the substantial losses which may incur at later stages.

Normally it is considered a safer practice to inspect the equipment every three months. However the frequency of inspection will be by large governed by the following factors.

- Criticality of the equipment
- Pressure range
- Temperature range
- Hazard value of working media
- Type of usage

Procedure

1. Turn the power off
2. Place the components in neutral position
3. Remove inspection panels and examine hose and fittings for damages and leaks
4. Repair or replace as needed
5. Inspect the associated hydraulic components
6. Re-install the inspection panels
7. Turn the power on
8. Look out for the proper working of equipment

Protecting the hose

Protecting the Hose

It is imperative that for an efficient running of the system the hoses have to be duly protected from surrounding factors which can cause potential damage to the hose leading to the failure of the equipment. The following simple techniques can help in protecting the hose.

Bundling

Only similar construction hoses need to be bundled together. Never bundle high and low pressure hoses together.

Mechanical movement of the hose should be considered when bundling the hoses together.

Hoses in same bundle should bend in the same plane only.

Sleeving

Sleeving is generally done to protect the hose from abrasion for use in bundling and to prevent the operator from injury in case of hose failure.

Spring Guards

Spring guards are generally used to protect the hose from abrasion and to provide stability when bundled together.

Installation

Bend Restrictors

Bend restrictors are generally PVC pipes and are installed near the coupling ends to reduce the bending stresses in the hose.

Hose Installation Procedure

1. Clean the surrounding area where the connections are to be made so that no dirt or grime enters the open ends of hose and of the equipment.
2. Install adaptors into ports, if they are used.
3. Lay the hose assembly into routing position to verify the length and correct routing.
4. Screw one end of the hose fitting onto the port. If the hose assembly uses an angled fitting then the angled end must be fitted first to ascertain proper orientation.
5. Screw the other end of the hose fitting without twisting the hose.
6. Properly torque both ends.
7. Run the hydraulic system to circulate oil under low pressure and reinspect for leaks.

Installation

Installation

Proper hose installation is essential for satisfactory performance. If hose length is excessive then the appearance of the installation will be unsatisfactory and unnecessary cost of equipment will be involved. If the hose assemblies are too short to permit adequate flexing and changes in length due to expansion or contraction then hose service life will be reduced.

The following diagrams show proper hose installations which provide maximum performance and cost savings. Consider these examples in determining length of a specific assembly.

Proper Installation Procedure

When the hose installation is straight, allow enough slack in hose line to provide for length changes which will occur when pressure is applied.

Installation

Prevent twisting and distortion by bending hose in same plane as the motion of the boss to which hose is connected.

Route hose directly by using 45° or 90° adaptors and fittings. Avoid excessive hose length to improve appearance.

Installation

When radius is below the required minimum, use an angle adaptor to avoid sharp bends.

Use proper angle adaptors to avoid sharp twists or bend in the hose.

Installation

Avoid twisting of hose lines or bends in two planes by clamping hose at the change of plane.

Adequate hose length is necessary to distribute movement on flexing applications and to avoid abrasion.

Installation

To allow for length changes when hose is pressurised do not clamp high at bends so that curves will absorb changes. Do not clamp high and low pressure lines together.

High ambient temperatures shorten hose life. Make sure that the hose is kept away from hot parts. If it is not possible insulate the hose.

Installation

When installing hose, make sure it is not twisted. Pressure applied to a twisted hose can result in hose failure or loosening of connections.

Reduce number of pipes or thread joints by using proper hydraulic adaptors instead of pipe fittings.

Installation

Elbows and adaptors should be used to relieve strain on the assembly and to provide neater installations, to facilitate inspection and maintenance at an ease.

Run hose in the installation so that it avoids rubbing and abrasion. Often clamps are required to support long hose runs or to keep hose away from moving parts. Use clamps of the correct size. Too large clamp allows hose to move inside the clamp and causes abrasion.

Installation

To avoid hose collapse and flow restriction, keep the hose bend radius as large as possible. Refer the hose specification tables for minimum bend radius.

Types of failure

Cover cracking due to Ozone

Hose Fraying

Bulging near End Fitting

Cover wear-off due to abrasion

Troubleshooting

Types of failure	Causes
Hose tube is hard and cracked	High temperature causing the rubber to over cure Reaction of Oxygen with aerated oil Cavitation occurring inside the tube
Hoses cracked internally and externally even though it is flexible at room temperature	Operating temperature below -40°c
Bursting of the hose and random breaking of braiding wires along the length	High frequency pressure impulse conditions
Bursting of hose at more than one place	Pressure has exceeded the minimum burst pressure
Hose has burst, examination reveals that the wire has rusted and the cover has been cut	Cover basically protects the hose, elements that damage the cover may be abrasion, cutting, acid salt water, heat or extreme cold
Hose has burst on the outside bend and appears to be elliptical in the bent section	Violation of the minimum bend radius
Hose appears to be flattened out. Has burst in this area and appears to be twisted	Improper installation of the hose causing the twisting of hose primarily and causing the burst at such bends.

Troubleshooting

Types of failure	Causes
Bursting of hose at about 6 to 8 inches away from End Fitting	Improper crimping of the End Fittings allowing the moisture to be trapped between inner and outer liner, causing corrosion of the braiding wires
Blisters on the cover of hose	Pin holes in the hose tube, allowing the high pressure oil to seep in between the gaps
Fitting blew off at the end of the hose	Improper crimping or wrong End Fitting, improper stack allowance while installing
Swelling and deterioration of the hose	Incompatibility of the hose with the working substance
Bursting of the hose with cover being badly deteriorated and cracking of rubber	Old Hose
Hose is badly flattened out in the burst area	Sharp bend
Hose is not burst but leaking profusely	Erosion has taken place
Elongation of the hose	Insufficient support to the hose

Product range

High Pressure Hydraulic Hose

Specification Followed	Type of Hose	Nominal Hose I.D.
DIN-20022/ EN 853/ SAE J-517	1ST/R1A 2ST/R2A 1SN/R1AT 2SN/R2AT	1/4", 5/16", 3/8", 1/2", 5/8", 3/4", 1", 1-1/4", 1-1/2" & 2" 1/4", 5/16", 3/8", 1/2", 5/8", 3/4", 1", 1-1/4", 1-1/2" & 2" 1/4", 5/16", 3/8", 1/2", 5/8", 3/4", 1", 1-1/4", 1-1/2" & 2" 1/4", 5/16", 3/8", 1/2", 5/8", 3/4", 1", 1-1/4", 1-1/2" & 2"
BRITISH COAL BOARD SPEC. (BCS-174)	Two wire braid hose	1/4", 3/8", 1/2", 3/4", 1", 1-1/4", 1-1/2 & 2"

High Pressure Compact Hose

Specification Followed	Type of Hose	Nominal Hose I.D.
EN-857	1SC	1/4", 5/16", 3/8", 1/2", 5/8", 3/4" & 1"
	2SC	1/4", 5/16", 3/8", 1/2", 5/8", 3/4" & 1"

Hot Water Standard/Compact Hose

Type of Hose	Nominal Hose I.D.
Single/Double Wire braided Hot Water	1/4", 5/16", 3/8" & 1/2"

Available in Black & Blue colour

Krishi/Agriculture Hose

Type of Hose Followed	Nominal Hose I.D.
Single Wire braided	1/2"

Product range

Rock Drill Hose

Specification Followed	Type of Hose	Nominal Hose I.D.
IS:446-1987 Type-3	Wire braided	1/2", 5/8", 3/4", 1", 1-1/4", 1-1/2" & 2"

LPG Hose

Specification Followed	Type of Hose	Nominal Hose I.D.
IS:9573:1998 Type-4	Wire braided	5/16"*, 3/8" & 1/2"

Note : 5/16" hose in Orange colour, Others available in Black colour.

Gasoline Hose

Type of Hose	Nominal Hose I.D.
Wire braided	5/8", 3/4" & 1"

CNG Hose (Wire braided)

Specification Followed	Type of Hose	Nominal Hose I.D.
SAE-J30 R6	Wire braided	5/16"

Product range

Steam Hose

Specification Followed	Type of Hose	Nominal Hose I.D.
BS-5342:1985/	1A	1/2", 5/8", 3/4", 1", 1 1/4", 1 1/2" & 2"
IS 10655, Type-2 & Type-3	2A	1/2", 5/8", 3/4", 1", 1 1/4", 1 1/2" & 2"
BS-5342:1985	1B	1/2", 5/8", 3/4", 1", 1 1/4", 1 1/2" & 2"
	2B	1/2", 5/8", 3/4", 1", 1 1/4", 1 1/2" & 2"

X'el XP High Pressure Hose (Exceeds EN 853 2SN)

Type of Hose	Nominal Hose I.D.
Double wire braided	3/8"*, 1/2"*, 5/8"*, 3/4" & 1"

* means sizes on request

X'el XT High Temperature Hose (-40°c to +150°c)

Type of Hose	Nominal Hose I.D.
One or Two wire braided	1/4", 5/16", 3/8", 1/2", 5/8", 3/4", 1", 1-1/4", 1-1/2" & 2"

Bend radius

MINIMUM BEND RADIUS IN INCHES

Size	Specifications											
	Nominal Bore in Inches	SAE 100 R1A	SAE 100 R2A	SAE 100 R1AT	SAE 100 R2AT	DIN 1ST	DIN 2ST	DIN 1SN	DIN 2SN	BCS N2	EN 857 1SC	EN 857 2SC
1/4	4.0	4.0	4.0	4.0	3.9	3.9	3.9	3.9	3.9	3.9	3.0	3.0
5/16	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	3.4	3.4
3/8	5.0	5.0	5.0	5.0	5.1	5.1	5.1	5.1	5.1	5.1	3.6	3.6
1/2	7.0	7.0	7.0	7.0	7.1	7.1	7.1	7.1	7.1	7.1	5.1	5.1
5/8	8.0	8.0	8.0	8.0	7.9	7.9	7.9	7.9	7.9	7.9	--	6.7
3/4	9.5	9.5	9.5	9.5	9.4	9.4	9.4	9.4	9.4	9.4	7.1	7.2
1	12.0	12.0	12.0	12.0	11.8	11.8	11.8	11.8	11.8	11.8	9.0	9.8
1-1/4	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	--	--
1-1/2	20.0	20.0	20.0	20.0	19.7	19.7	19.7	19.7	19.7	19.7	--	--
2	25.0	25.0	25.0	25.0	24.8	24.8	24.8	24.8	24.8	24.8	23.6	--

Hose conversion factor

HOSE CONVERSION FACTOR

Dash	DN	Nominal Bore	
		Inch	mm
-04	06	1/4	6.40
-05	08	5/16	7.90
-06	10	3/8	9.50
-08	12	1/2	12.7
-10	16	5/8	15.9
-12	20	3/4	19.0
-16	25	1	25.4
-20	32	1-1/4	31.8
-24	40	1-1/2	38.1
-32	50	2	50.8

Formulae & factors

Formulae & Conversion Factors for Fluid Power Use

Quantity U.S. Unit	Customary	SI Unit	Conversion From U.S. to SI units	Conversion From SI to U.S. units
Area	Square inch (in ²)	Square Metre (m ²)	(in ²)x6.451x $10^4 = (m^2)$	(m ²)x1550.003 $= (in^2)$
Force	Pound (lb _F)	Newton (N)	(lb _F)x4.4482 $= (N)$	(N)x2.2481x $10^{-1} = (lb_F)$
Frequency	Cycles/Second (cps)	Hertz (Hz)	1(cps) = 1(Hz)	1(Hz) = (cps)
Length	Inch (in)	Metre (m)	(in)x2.540x $10^{-2} = (m)$	(m)x39.370 $= (in)$
Mass	Pound (lb m)	Kilogram (Kg)	(lb m)x4.5359x $10^{-2} = (Kg)$	(Kg)x2.2046 $= (lb m)$
Power	Electric Horsepower (HP)	Watt (W)	(HP)x7.460x $10^2 = (W)$	(W)x1.3405x $10^{-3} = (HP)$
Pressure	Pounds/sq in (psi)	Newton/sq mtr (N/m ²)	(psi)x6.8948x $10^3 = (N/m^2)$	(N/m ²)x1.4504x $10^{-4} = (\text{psi})$
	(psi)	Pascal (Pa)	(psi)x6.8948x $10^3 = (Pa)$	(pa)x1.4504x $10^{-4} = (\text{psi})$
	(psi)	BAR (Bar)	(psi)x6.8948x $10^{-2} = (\text{Bar})$	(Bar)x1.4504x $10^1 = (\text{psi})$
	(Bar)	(N/m ²)	(Bar)x100,000 $= (N/m^2)$	(N/m ²)x1.00x $10^{-5} = (\text{Bar})$
	Degrees Fahrenheit (°F)	Degrees Celsius (°C)	(°F-32)/1.8 $= (°C)$	(°C)x1.8+32 $= (°F)$
Torque	Pound-inch (lb _F -in)	Newton-Metre (N-m)	(lb _F -in)x1.1298 $x10^{-1} = (N\cdot m)$	(N-m)x8.8507 $= (lb_F \cdot \text{in})$
Volume	US Gallon (Gal)	Cubic Metre (M ³)	(Gal)x3.7854x $10^{-3} = (m^3)$	(m ³)x2.6417x $10^2 = (\text{Gal})$
		Litre (l)	(Gal)x3.7854 $= (l)$	(l)x2.6417x $10^{-1} = (\text{Gal})$
Work	Foot-Pound (Ft-lb _F)	Joule (J)	(ft-lb _F)x1.3558 $= (J)$	(J)x7.3756x $10^{-1} = (ft\cdot lb_F)$

Formulae & factors

Velocity of flow through pipes

$$V = \frac{GPM \times 0.3208}{A}$$

V = Velocity in feet per second

A = Inside opening area in (in^2)

Entrained air :

At room temperature standard hydraulic oil contains 8-9% air by volume

Heat generation :

BTU/hr = 1.5 x GPM x PSI

PSI = Pressure loss which does not produce work

Head pressure :

Oil creates a pressure due to its weight at 0.4 PSI per foot of depth

Pressure drop through pipes :

$$P = \frac{VxF}{18300D}$$

P = Pressure drop per foot

V = Viscosity in SSU

D = Inner diameter (in)

F = Flow in GPM

Notes

CORPORATE OFFICE & WORKS

PIX TRANSMISSIONS LIMITED

J-7, M.I.D.C. Hinna Road

Nagpur - 440 016. Maharashtra. India

Ph.: + 91 7104 237729, 236501-4

Fax : + 91 7014 236505/6

E-mail : info@pixtrans.com

Web Site : www.pixtrans.com

PIX EUROPE LIMITED

11 Foxtail Road, Ransomes Europark

Ipswich, IP3 9RT Suffolk, England

Ph.: + 44 1473 719677

Fax : + 44 1473 719688

E-mail : info@pixeuro.com

Web Site : www.pixeuro.com

PIX SOUTH AMERICA LIMITED

Rua Emilio Goeldi

639 - Agua Branca,

05065 - 110, Sao Paulo - SP

Brasil

Ph.: + 55 11 3611 - 9000

Fax : + 55 11 3611 - 3661

E-mail : info@pixsam.com

Web Site : www.pixsam.com

PIX GERMANY GmbH

Nikolaus - Otto-Str. 2

Borchen 33178

Germany

Ph.: + 49 5251 878 6003

Fax : + 49 5251 878 6009

E-mail : pix.germany@freenet.de

Web Site : www.pixeuro.com

