update on rnn memorization

Monday, November 20, 2023

RNNs are capable of memorizing strings — if you repeatedly train the model on a string, it'll eventually overfit and only output that string. The mechanism for systematic memorization of strings is not well understood. This line of work seeks to understand that phenomenon.

We can use a simplified neural network architecture to study this. As it turns out, memorization can be done without any nonlinearity. Choose an alphabet Σ and let $n = |\Sigma|$. We fix matrices W_h, W_x, W_y and a bias vector b_y and define the following update rule:

$$h_i = W_h h_{i-1} + W_x x_i$$

$$y_i = W_y h_i + b_y$$

$$x_{i+1}[j] = \begin{cases} 1 & \text{if } j = \operatorname{argmax}_k y_i[k] \\ 0 & \text{otherwise} \end{cases}$$

Here, the input and output x_i and y_i are vectors of length n and the hidden state h_i is a vector of length d (not necessarily equal to n). The input x_i is a one-hot vector, and the output y_i is a vector of logits. This definition differs from the standard RNN in a few ways: we eliminate the nonlinearity on h_i and y_i , we don't add a bias vector to h_i , and we don't apply softmax to y_i . Small modifications of our approach allow it to work for the standard RNN model, but we don't need all that complexity.

Typically, the hidden state starts at the origin, $h_0 = 0$, and the RNN reads a **START**> token which moves the hidden state to the initial nonzero position. By generality, we leave **START**> out of the alphabet Σ and assume that we can choose the initial hidden state h_0 . We will return to the question of how to terminate the string with an **SEND**> token later.

$$(0^a 1^b)^+$$

Suppose the alphabet only has two characters, $\Sigma = \{0, 1\}$. We represent 0 as the first column of the identity, (1, 0), and 1 as the next, (0, 1). We can memorize the string $(0^a 1^b)^+$ with d = 2.

This solution completely ignores the input x_i , taking $W_x = 0$. Let W_h be the counterclockwise rotation by $\theta = \frac{2\pi}{a+b}$. Then, taking h_0 on the unit circle, it will walk around the circle a+b times before returning, tracing out a polygon, as seen in Figure 1.

Then, we can pick any hyperplane and origin point on the hyperplane and compute W_y and b_y so that hidden states to the right of the hyperplane get mapped to 0 and hidden states to the left get mapped to 1. This is possible because the hidden states are bounded, so we can shift them into the upper-right quadrant and then rotate the picture so the hyperplane is the line y = x.

This shows how an RNN can memorize $(0^a 1^b)^+$ with d = 2.

Figure 1: The hidden state h_i traces out an octagon when a + b = 8.

$$(\sigma_1^{a_1}\sigma_2^{a_2}\cdots\sigma_k^{a_k})^+$$

The expression $(\sigma_1^{a_1}\sigma_2^{a_2}\cdots\sigma_k^{a_k})^+$ represents any periodic string. If we have an <END> token we can choose $\sigma_k = \langle \text{END} \rangle$ and $a_k = 1$ to make the string finite. We will now present a solution for this problem with $d = \sum_{j=1}^k a_j$. By abuse of notation, we'll let σ_j be the jth column of the $n \times n$ identity matrix, so σ_j is a one-hot vector (rather than a symbol corresponding to that vector). Once again, we ignore the input x_i and take $W_x = 0$.

Consider the representation of the symmetric group $S_d \to GL_d$ acting on the hidden space \mathbb{R}^d as

$$\sigma \cdot \begin{pmatrix} v_1 \\ \vdots \\ v_d \end{pmatrix} = \begin{pmatrix} v_{\sigma(1)} \\ \vdots \\ v_{\sigma(d)} \end{pmatrix}.$$

Then take c to be the cyclic permutation $(1\ 2\ \cdots\ d)$ and let W_h be the representation of c.

Let h_1 be the first column of the $d \times d$ identity matrix. Then h_2 is the second column of the identity matrix, and so on. The hidden states repeat after d steps with $h_{d+1} = h_1$. This means we can take

In words, this is the $n \times d$ matrix which has a_j copies of σ_j in the jth block. Since h_l is a one-hot vector, $W_y h_l$ is the lth column of W_y , and we've designed this matrix so $W_y h_l$ is the desired vector σ_j .

This shows how an RNN can memorize any string with period d using a hidden state of dimension d.

Figure 2: Choosing W_y and b_y corresponding to the black line above will output $(0^51^3)^+$.

Remark. We chose $c = (1 \ 2 \ \cdots \ d)$, but there are many valid choices for c. In fact, for any $1 \le j < d$, where j is coprime with d, we can choose W_h to be the representation of c^j . There are $\varphi(n)$ such elements where φ is Euler's totient function. In particular $\varphi(n) \ge \sqrt{n/2}$. The existence of other valid weights W_h might suggest some "inefficiency" in the size of d, which we'll explore next.

How small can we make d?

In the previous section, we used a hidden state of dimension $d = \sum_{j=1}^{k} a_j$. We've seen that, under some circumstances, we can do better. In the first section we were able to represent $(\sigma_1^{a_1}\sigma_2^{a_2})^+$ with d=2, regardless of a_1 and a_2 . Under some assumptions, we can show that d=2 is optimal.

Assume that, as is the case with the two solutions we constructed, $W_x = 0$. Let $p = \sum_{j=1}^k a_j$ be the period of the string and assume that $W_h^p = \mathbb{I}$, as is the case with our constructions. We have a complete solution where the hidden dimension d = p—we'll focus on trying to make d < p.

To build the theory about W_h , we'll use the following definitions and facts.

Definition (Minimal polynomial). The minimal polynomial of a $d \times d$ matrix A is the monic polynomial $m_A(x)$ of least degree such that $m_A(A) = 0$.

Definition (Characteristic polynomial). The characteristic polynomial of a $d \times d$ matrix A is $\chi_A(x) = \det(xI - A)$. The degree of χ_A is d.

Definition (Order). The order of a $d \times d$ matrix A is $\operatorname{ord}(A) = \min\{p : A^p = \mathbb{I}\}.$

Lemma. If p(x) is a polynomial with p(A) = 0, then the minimal polynomial of A divides p, denoted $m_A \mid p$.

Proof. Since $\deg m_A \leq \deg p$, we can use the division algorithm to write $p(x) = q(x)m_A(x) + r(x)$ where $\deg r < \deg m_A$. Then $0 = p(A) = q(A)m_A(A) + r(A) = r(A)$, so the matrix A annihilates r. By the minimality of $\deg(m_A)$ we conclude that r(x) = 0, so $p(x) = q(x)m_A(x)$ or, in short, $m_A \mid p$.

Now, since $W_h^p = \mathbb{I}$, the matrix W_h annihilates the polynomial $q(x) = x^p - 1$. By the Lemma, the minimal polynomial of W_h divides q(x). Next, we can factor q to see what our options are for the minimal polynomial.

The polynomial q splits over \mathbb{C} , where we can write

$$q(x) = \prod_{j=1}^{p} \left(x - e^{2\pi i \frac{j}{p}} \right).$$

Indeed, the 1×1 matrix $W_h = e^{2\pi i/p}$ satisfies $W_h^p = \mathbb{I}$. For a moment, let's look at how it factors over \mathbb{Q} :

$$q(x) = \prod_{j \mid p} \Phi_j(x),$$

where Φ_j is the jth cyclotomic polynomial, i.e.,

$$\Phi_j(x) = \prod_{\substack{1 \le k \le j \\ \gcd(k,j)=1}} \left(x - e^{2\pi i \frac{k}{j}} \right).$$

The cyclotomic polynomials are irreducible over \mathbb{Q} , and have coefficients in $\{-1,0,1\}$.

This is a powerful decomposition. It allows us, for example, to prove that there are no 3×3 rational matrices with order 8. To see this, suppose that A is a 3×3 matrix with $A^8 = \mathbb{I}$. Then, the minimal polynomial m_A divides $x^8 - 1$, which splits over \mathbb{Q} as $x^8 - 1 = (x^4 + 1)(x^2 + 1)(x + 1)(x - 1)$. Since the characteristic polynomial χ_A has degree 3, the degree deg $m_A \leq 3$. This means that we need to build m_A from the factors of $x^8 - 1$ with degree at most 3, so $m_A \mid (x^2 + 1)(x + 1)(x - 1) = x^4 - 1$. Therefore, A annihilates the polynomial $x^4 - 1$ so $A^4 = \mathbb{I}$ and $\operatorname{ord}(A) \leq 4$.

If we were restricted to rational matrices, we could use this theory to find which hidden dimensions permit memorization of strings with period p. Over \mathbb{R} , we can combine

$$\left(x - e^{2\pi i \frac{j}{p}}\right) \left(x - e^{2\pi i \frac{p-j}{p}}\right) = x^2 - 2\cos\left(2\pi \frac{j}{p}\right)x + 1,$$

and by repeatedly applying this identity we can write q(x) as a product of quadratic polynomials. This shows that, in general, the best hidden dimension we can hope for is d=2 where the rotation matrices have order p.