给定一个只由圆括号和方括号(即字符集为()[])的字符串,你现在可以任意地把若干个左括号变成右括号、把若干个右括号变成左括号,但保持括号的种类(圆或方)不变。求是否唯一存在一个变括号的方案,使得括号序列合法。

合法的括号序列由如下过程递归定义:

- Ø 是合法的。
- *S* 是合法的,则(*S*)和[*S*]是合法的。
- S, T 是合法的,则 ST 是合法的。

多组测试,字符串长度之和不超过 10^6 。对于每组测试保证至少存在一种变括号的方案使得括号序列合法。

T2

给出一个大小为 $n \times n$ 的方阵 A,问是否存在一个正整数 k 使得 A^k 的所有元素都是正数。

 $2 \le n \le 2000, 0 \le A_{i,j} \le 50, \sum_{i=1}^{n} A_{i,i} > 0$

T3

给定一个 n 个点的以 1 为根的树,两个玩家轮流操作,每次选择一个非 1 的点,把该点整个子树删去,不能操作者负。求双方按最优策略操作,先手是否必胜。

 $1 \le n \le 2 \times 10^5$.

T4

给定 n 个 01 串 $s_{1,\ldots,n}$, 求是否存在一对下标序列 $p_{1,\ldots,x},q_{1,\ldots,y}$, 使得 $x\neq y \vee \exists i,s.t.$ $p_i\neq q_i$, 且 $s_{p_1}s_{p_2}\ldots s_{p_x}=s_{q_1}s_{q_2}\ldots s_{q_y}$ 。如果存在,报告满足条件的 $\sum |s_{p_i}|$ 的最小值,否则报告 0。

 $1 \le n \le 1000, 1 \le |s_i| \le 16$.

T5

给定长度为 n 的正整数数组 h_i 以及 a,b。两个玩家轮流操作,你是先手。在你的回合,你可以选择任意一个 $h_i>0$,并使 $h_i:=h_i-a$,或者什么都不做,假如此时你的操作使得某个 $h_i\le 0$,则你的积分加一。在对手的回合,他一定会找到最小的 i 使得 $h_i>0$,并使 $h_i:=h_i-b$ 。当不存在 $h_i>0$,游戏结束。你的目标是使你的积分尽可能大,求最大积分。

 $1 \le n \le 3 \times 10^5, 1 \le a, b, h_i \le 10^9$.

T6

对于所有点数为 n 的树,如果其满足对于所有 $i \in [2,n]$,与 i 相连的 j 中恰有一个点 j 满足 j < i ,那么我们称其为好树。

 $\forall 1 < i < n$,求出来有多少好树满足重心为 i。

重心定义满足为删去该点后形成的所有连通块大小均小于 $\frac{n-1}{2}$ 的点。

数据范围 $3 < n < 2 \times 10^5$ 且 n 为奇数。

有 N+M 个问题,其中有 N 个问题的答案是 YES ,M 个问题的答案是 NO 。当你回答一个问题之后,会知道这个问题的答案,求最优策略下期望对多少。

答案对 998244353 取模。

 $1 \leq n, m \leq 5 imes 10^5$.

T8

给定一个 $n\times m$ 的网格图以及正整数 k,即 (x,y),(x',y') 之间有边当且仅当 |x-x'|+|y-y'|=1,每条边有正边权。你可以进行任意次如下操作:选择一条边,该边权加一。记 $d=\min_{1\leq p,q\leq n}\{\mathrm{dis}((p,1),(q,m))\}$,其中 dis 为网格图上两点最短路,求最小操作次数使得 d 至少增加 k。

 $2 \le n, m \le 500, 1 \le n \times m \le 500, 1 \le k \le 100$, 边权范围 $[1, 10^9]$ 。