Instructions

- Answer only 3 problems below. Remember the things that we discussed in our lecture classes.
- Submit hardcopy, containing all your answers, on or before Thursday, September 3, 2009, 5:30 pm, C-114.
- Anyone who will submit after the deadline will get deductions.
- Trying to answer all of these will give a 'feel of your second long exam'.
 Do your best. God bless. ☺
- 1. A certain programmer, named Mr. Guy Nerdilukin has designed a programming language called Driew Yllaer (or DY). When he designed DY, here were some tokens he invented:

TOKEN	SAMPLE LEXEME	DESCRIPTION		
PRETTY_IDENT	12, a, b, hisgrade	A sequence of alphanumeric		
		characters.		
LITERAL	&1, &1000, &26	An ampersand sign followed		
		by any combination of		
		numeric constants.		
ASSIGN OP	#, =	Either the sharp sign or		
_		equal sign.		

Mr. Guy's design was indeed weird, but you, as a caring individual decided to eventually adopt his conventions. Now your tasks are:

- a.) Site a valid statement which uses the three tokens.
- b.) Design transition diagrams for those tokens.
- 2. Given this grammar rule: **<factor>** ::= id | {(**<expr>**)}
 Use recursive-descent parsing algorithm to implement the above rule. Show the <u>complete code</u>. Also, provide facility for error-checking.
- 3. What will be different in the implementations of the following two declarations:

```
DECLARE PAY FIXED DECIMAL (7,2)
DECLARE PAY FIXED DECIMAL (7,4)
```

4. Given the following rough Pascal-like code:

```
type mini = (1, 3, 5, 7);
var name: array[1..161] of integer;
function will i pass(n: integer, m: mini) : boolean {
     if name[n] > m then
           will i pass = true;
     else
           will i pass = false;
}
```

- a) List <u>all binding occurrences</u> (considerations), and indicate the time they were performed.
- b) Show the set of values of those in **bold** using formal set notations.
- 5. Given ACTION and GOTO tables, use the LR parsing algo to parse the input 1 * 0 * 1 * 0 * 1. Show the complete parsing table.

state	action						goto
	*	+	0	1	\$	E	В
0			s1	s2		3	4
1	r4	r4	r4	r4	r4		
2	r5	r5	r5	r5	r5		
3	s5	s6			acc		
4	r3	r3	r3	r3	r3		
5			s1	s2			7
6			s1	s 2			8
7	r1	r1	r1	r1	r1		
8	r2	r2	r2	r2	r2		

(2)
$$E \rightarrow E + B$$

(3) $E \rightarrow B$

$$(3) E \rightarrow E$$

$$(4) B \rightarrow 0$$

(5)
$$B \rightarrow 1$$