TESTING FOR PRIMALITY

<i>Definition</i> :	
Property:	
any positive odd integer $n \ge 3$ can be expressed as $n - 1 = 2^k q$ with $k > 0$, q odd.	

Proof:

if $n \ge 3$ and n is odd, obviously n-1 is even we will start deviding by 2 untill we have it odd again some k time wich gives $n-1=2^kq$ with k>0, q odd.

Property:

if p is prime and a is a positive integer less then p, $a^2 \mod p = 1$ if and only if a mod p = 1 or $a \mod p = -1 = p - 1$.

Proof:

for p is prime and a is a positive integer less then p, if $a^2 \mod p = 1$ then $a^2 \equiv 1 \mod p$ which implies $(a^2 - 1) \equiv 0 \mod p$ that means $p | (a + 1) \times (a - 1)$ because $1 \le a \le p - 1$ and p is prime, the only two value we can achiver with a + 1 and a - 1 that can be devid p and doesn't contradict the condition above, its 0 or p so if p | (a + 1) then p = (a + 1), hence a = p - 1 or p | (a - 1) then 0 = (a - 1), hence a = 1, which gives $a \mod p = 1$ or $a \mod p = -1 = p - 1$, now if $a \mod p = 1$ or $a \mod p = -1 = p - 1$, then $(a \mod p)^2 = 1$ by the modulo arithmetic's $(a \mod p)^2 \equiv 1 \mod p$ implyes $a^2 \mod p = 1 \mod p = 1$.

Property:

let p be a prime number with p > 2. Miller–Rabin Algorithm $p - 1 = 2^k q$ with k > 0 and q odd, and let a be in the range 1 < a < p - 1 one of the following statement is true 1. $a^q \equiv 1 \pmod{p}$

2. There is some number j in the range $1 \le j \le k$ such that $a^{2^{j-1}q} \mod p = -1 \pmod p = p-1$

Proof:

let p be a prime number with p > 2. Miller–Rabin Algorithm $p-1=2^kq$ with k > 0 and q odd, and let a be in the range 1 < a < p-1, by Fermat' theorem $a^{p-1} \equiv 1 \pmod{p}$, that means $a^{2^kq} \equiv 1 \mod p$, we take $x_k = a^{2^kq}$, we notice $x_0 = a^q$ and $x_{k+1} = (x_k)^2$, if $x_0 \equiv 1 \mod p$, then all the others will verify it, if $x_0 \not\equiv 1 \mod p$ let $1 \le j \le k$ be the minimal index that verify $x_j \mod p = 1$, that means $x_{j-1} \mod p \not\equiv 1$ but we have $x_j = (x_{j-1})^2$ so by the first property $x_{j-1} \mod p = 1$ or $x_{j-1} \mod p = -1$ the first is imposible because $x_{j-1} \mod p \not\equiv 1$, hence $x_{j-1} \mod p = -1 \mod p = -1$.