

DHARMSINH DESAI UNIVERSITY, NADIAD FACULTY OF TECHNOLOGY THIRD SESSIONAL

SUBJECT: PHYSICS (BSC 202)

Date

Examination : B.Tech. Semester- II (CE/IT/EC) : 30/05/2023

Seat No. : 31

Time

: 10:30AM to 11:45AM

Day :Tuesday Max. Marks : 36

INSTRUCTIONS:

- Figures to the right indicate maximum marks for that question
- 2
- Figures to the right indicate maximum marks for that question. The symbols used carry their usual meanings.

 Assume suitable data, if required & mention them clearly.($K = 1.380649 \times 10^{-23}$ joule per keivin, Temp. T = 300 K, h= 6.626 x 10^{-34} J Hz⁻¹, q = 1.602176634 × 10^{-19} coulomb, εo =8.854 × 10^{-14} F/cm)

 Draw neat sketches wherever necessary. 3.

Q.1 CO3 CO3 CO2	U U N	(a) (b) (c)	For an Oscillator from where does the starting voltage come from?	[12] [1] [1] [2]
CO3	N	(d)	MOSFET shown in Fig1 has following characteristics: $V_{GS(on)}=4.5V$, $I_{D(on)}=75\text{mA}$ and $R_{DS(on)}=6\Omega$. Is MOSFET biased in the obmic region when	
CO5	A	(e)	V _{in} =V _{GS} =+4.5V? Show your calculation. What is the output voltage? Estimate the critical angle when the core refractive index is 1.48 and the relative refractive index is 2%.	[2]
CO5	E	(f)	Why the refractive index of core and cladding are different? Which one has greater refractive index? Justify.	[2]
CO5	U	(g)	What are the causes of absorption in optical fiber cable?	[2]
Q.2 CO3	E	Atte (a)	empt Any TWO from the following questions. An nFET has the following characteristics: $W = 10\mu m$, $L = 0.35\mu m$, $\varepsilon_{ox} = 3.9\varepsilon_{o}$, $t_{ox} = 15nm$, $\mu_{n} = 478cm^{2}/(V.\sec)$, $V_{Tn} = 0.7V$. Determine the oxide capacitance, process transconductance and the device transconductance.	[12] [6]
CO3	U	(b)	2) $V_{GSn} = 2 V$, $V_{DSn} = 2 V$ Draw the schematic diagram of 1-Transistor Dynamic RAM. Explain Write and Hold operations in detail with necessary diagrams and equations. Also, discuss the charge leakage and its impact on voltage across storage consists.	[6]
CO3	U	(c)	in a Bicalificent with necessary graph.	[6]
Q.3 CO2	C	Atter (a)	mpt the following questions. The DC load line and Q-point of a voltage divider biased (VDB) circuit is shown in Fig2. Consider R_1 =10 k Ω and R_2 =2.2 k Ω for this VDB circuit. Design this VDB circuit by determining 1) V_{CC} 2) V_{BB} 3) V_E 4) R_E and 5) R_C . Draw the schematic of this designed circuit. Consider silicon NPN BJT with second approximation.	[12] [6]

- CO6 A (b) A carrier wave of frequency 10 MHz and peak value 10V is amplitude modulated by a 5-kHz sine wave of amplitude 6V. Determine (i) modulation index (ii) sideband frequencies and (iii) amplitude of sideband components.

 CO6 E (c) "Carrier signal with amplitude 4V is modulated with modulating signal with Amplitude 5V, at the receiver side an envelope detector can detect modulating signal without distortion." State true/false. Justify your answer

 OR

 Attempt the following questions.

 CO2 C (a) Design a common emitter voltage divided by CARREL [12]
- CO2 C

 (a) Design a common emitter voltage divider bias(VDB) circuit with following parameters: V_{CC}=24V, I_C=5mA, V_E=0.1V_{CC}, V_C=0.5V_{CC}, β_{dc}=135. Draw the schematic of this designed circuit. Consider silicon NPN BJT with second

 (CO6 A (b) An FM ways is in the second of the second o
- CO6 A (b) An FM wave is given by s(t)=10 cos(8π×10⁶ t+3sin(4π×10³t)). Consider the frequency sensitivity of 1kHz/volt. Calculate the frequency deviation, modulation index, carrier frequency (in Hertz), bandwidth and amplitude of modulating signal.
- CO6 E (c) A carrier wave of 2 MHz is amplitude modulated by a modulating wave of [2] 2KHz. Which frequencies will be present in an AM wave?

Blooms Taxonomy levels: R-Remembering, U- Understanding, A-Applying, N-Analyzing, E- Evaluating, C-Creating