Terceiro Relatório de Lab de Eletrônica 1

Henrique da Silva henrique.pedro@ufpe.br

2 de setembro de 2023

Sumário

Conclusões

1	Intr	ntrodução				
2	Aná	ilise pr	reliminar			
	2.1	O circ	uito			
	2.2	Anális	e simbólica			
		2.2.1	Restrições			
		2.2.2	Estado 1: Amp Op ligado e diodo polarizado diretamente			
		2.2.3	Estado 2: Amp Op desligado e diodo polarizado inversamente			
		2.2.4	Estado 3: Amp Op ligado e diodo polarizado inversamente			
		2.2.5	Estado 4: Amp Op desligado e diodo polarizado diretamente			
		2.2.6	Parametros A e B			
		2.2.7	Resistencias			
	2.3	Projet	ando o circuito			
		2.3.1	Exemplo 1			
		2.3.2	Exemplo 2			
3	Med	dições	em laboratório			
	3.1	Exemp	olo 1			
	3.1	Exemp 3.1.1	olo 1			
	3.1	_				
	3.1	3.1.1	Componentes			
	3.1	3.1.1 3.1.2	Componentes			
	3.1	3.1.1 3.1.2 3.1.3 3.1.4	Componentes			
		3.1.1 3.1.2 3.1.3 3.1.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
		3.1.1 3.1.2 3.1.3 3.1.4 Exemp	$V_o(t)$			
		3.1.1 3.1.2 3.1.3 3.1.4 Exemp 3.2.1	$V_o(t)$			
		3.1.1 3.1.2 3.1.3 3.1.4 Exemp 3.2.1 3.2.2	$V_o(t)$			
4	3.2	3.1.1 3.1.2 3.1.3 3.1.4 Exemp 3.2.1 3.2.2 3.2.3 3.2.4	$V_o(t)$			
4	3.2	3.1.1 3.1.2 3.1.3 3.1.4 Exemp 3.2.1 3.2.2 3.2.3 3.2.4	$V_o(t)$			
4	3.2	3.1.1 3.1.2 3.1.3 3.1.4 Exemp 3.2.1 3.2.2 3.2.3 3.2.4 Silise do Exemp	$\begin{array}{c} \text{Componentes} \\ V_o(t) \\ V_c(t) \\ V_{R5}(t) \\ \text{olo 2} \\ \text{Componentes} \\ V_o(t) \\ V_c(t) \\ \end{array}$			

1 Introdução

Neste relatório, é explorado o comportamento não linear de um oscilador astável construído com um amplificador operacional. Utilizam-se componentes passivos para criar uma oscilação contínua de carga e descarga, resultando em uma forma de onda de saída característica. A não linearidade desse processo é evidenciada pela oscilação da tensão de saída a partir de uma tensão de entrada constante, ilustrando a interação complexa entre componentes e a amplificação do amplificador operacional.

Todos arquivos utilizados para criar este relatório, e o relatório em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/6thsemester/Eletronica1/

O código utilizado para a análise numérica também se encontra no anexo ao final do relatório.

2 Análise preliminar

Na análise teórica, é considerado o comportamento do circuito em quatro estados distintos, nos quais são examinadas diferentes combinações de amplificador operacional ligado/desligado e diodo ligado/desligado. É determinado que, dentre esses quatro estados, apenas dois são possíveis. Com base nessas conclusões, as equações diferenciais resultantes são resolvidas para se compreender o comportamento da saída do circuito. Essa abordagem possibilita uma análise das interações entre os elementos do circuito.

2.1 O circuito

Figura 1: Oscilador astável com LED.

2.2 Análise simbólica

A análise é conduzida, examinando-se combinacao de estados do diodo e do amp op separadamente. O processo tem início com o diodo polarizado diretamente, seguido pelo diodo polarizado reversamente.

2.2.1 Restrições

A análise é conduzida ao examinar a combinação de estados do diodo e do amp op separadamente. O processo tem início com o diodo polarizado diretamente, seguido pelo diodo polarizado reversamente.

$$V_{m1} < V_{D0} < V_{m2} \tag{1}$$

Também, quando o LED está polarizado diretamente, tem-se que:

$$I_L > 0$$

$$V_d = V_{D0}$$
(2)

Quando o LED está polarizado inversamente:

$$I_L = 0$$

$$V_d < V_{D0}$$

$$\tag{3}$$

2.2.2 Estado 1: Amp Op ligado e diodo polarizado diretamente

Figura 2: Amp op ligado, diodo polarizado diretamente.

Neste estado, ambos LED e amp op estão ligados e tem-se a seguinte análise:

$$\frac{V_{m2} - V_{D0}}{R_5} = I_L
V_{m2} > V_{D0}
I_L > 0$$
(4)

Como pode-se observar, a análise não contradiz as restrições, logo este estado é possível. Entao o analisaremos e resolveremos as equações diferenciais que vem dele.

$$\frac{-V_o + V_+}{R_3} + \frac{V_+}{R_2} + \frac{-VCC + V_+}{R_1} = 0$$

$$C \frac{d}{dt} V_c + V_c - V_{m2} = 0$$

$$V_o = V_{m2}$$
(5)

Resolvemos a primeira expressão acima isolando V_+ e a segunda expressão por Laplace isolando o V_c " e obtemos:

$$V_{+} = V_{2} = \frac{R_{1}R_{2}V_{m2} + R_{2}R_{3}VCC}{R_{1}R_{2} + R_{1}R_{3} + R_{2}R_{3}}$$

$$V_{c} = u(t)\left(V_{m2} + (V_{C0} - V_{m2})e^{\frac{-t}{R_{4}C}}\right)$$
(6)

Como visto, o V_c se comporta como um circuito RC em resposta forçada. Logo, a nossa constante de tempo é:

$$\tau = RC = R_4C \tag{7}$$

2.2.3 Estado 2: Amp Op desligado e diodo polarizado inversamente

Figura 3: Amp op desligado, diodo polarizado inversamente.

Neste estado, ambos LED e amp op estão desligados e tem-se a seguinte análise:

$$\frac{V_{m1} - V_{D0}}{R_5} = I_L$$

$$I_L = 0$$

$$V_{m1} = V_{D0}$$

$$V_{m1} < V_{D0}$$

$$V_D < V_{D0}$$
(8)

Como pode-se observar, a análise não contradiz as restrições, logo este estado é possível.

Então, o analisaremos e resolveremos as equações diferenciais que vêm dele.

$$\frac{V_{+} - V_{o}}{R_{3}} + \frac{V_{+} - VCC}{R_{1}} + \frac{V_{+}}{R_{2}} = 0$$

$$C \frac{d}{dt} V_{c} + V_{c} - V_{m1} = 0$$

$$V_{o} = V_{m1}$$
(9)

Resolvemos a primeira expressão acima isolando V_+ e a segunda expressão, por Laplace, isolando o V_c , e obtemos:

$$V_{+} = V_{1} = \frac{R_{1}R_{2}V_{m1} + R_{2}R_{3}VCC}{R_{1}R_{2} + R_{1}R_{3} + R_{2}R_{3}}$$

$$V_{c} = u(t)\left(V_{m1} + (V_{C0} - V_{m1})e^{\frac{-t}{R_{4}C}}\right)$$
(10)

Como visto, o V_c comporta-se como um circuito RC em resposta forçada, logo a nossa constante de tempo é:

$$\tau = RC = R_4C \tag{11}$$

2.2.4 Estado 3: Amp Op ligado e diodo polarizado inversamente

Figura 4: Amp op ligado, diodo polarizado inversamente.

Neste estado, o LED está desligado e o amp op está ligado, e tem-se a seguinte análise:

$$\frac{V_{m2} - V_D}{R_5} = I_L$$

$$I_L = 0$$

$$V_{m2} = V_D$$

$$V_{m2} > V_{D0}$$

$$V_D > V_{D0}$$
(12)

Como pode-se observar, a análise contradiz a restrição 1, logo este estado é impossível.

2.2.5 Estado 4: Amp Op desligado e diodo polarizado diretamente

Figura 5: Amp op ligado, diodo polarizado inversamente.

Neste estado, o LED está ligado e o amp op está desligado, e tem-se a seguinte análise:

$$\frac{V_{m1} - V_D}{R_5} = I_L
V_{m1} < V_{D0}
I_L < 0$$
(13)

Como pode-se observar, a análise contradiz a restrição 2, logo este estado é impossível.

2.2.6 Parametros A e B

Utilizaremos as equações (6) e (10) onde encontramos V_1 e V_2 , e faremos as substituições de $A=e^{\frac{-kT}{\tau}}$ e $B=e^{\frac{-(1-k)T}{\tau}}$.

Fazendo estas substituicoes obtemos:

$$A = \frac{V_2 - V_{m2}}{V_1 - V_{m2}}$$

$$B = \frac{V_1 - V_{m1}}{V_2 - V_{m1}}$$
(14)

Para obter o T e o k fazemos:

$$AB = e^{-\frac{T}{\tau}} => T = -\tau \ln(AB)$$

$$\frac{A}{B} = e^{\frac{-kT}{\tau} + T - \frac{-kT}{\tau}} => k = e^{\frac{-2kT}{\tau} + T}$$
(15)

Com isto podemos resolver numericamente para T e k e obtemos:

$$T = -\log\left(\frac{(V1 - Vm1) (V2 - Vm2)}{(V2 - Vm1) (V1 - Vm2)}\right)\tau$$

$$k = \frac{\log\left(\frac{V2 - Vm2}{V1 - Vm2}\right) - \log(b)}{2\log\left(\frac{(V1 - Vm1) (V2 - Vm2)}{(V2 - Vm1) (V1 - Vm2)}\right)} + \frac{1}{2}$$
(16)

Para obter V_1 e V_2 podemos dar solve nas equações (14):

$$V_{1} = \frac{V_{m2}AB - V_{m2}B + V_{m1}B - V_{m1}}{AB - 1}$$

$$V_{2} = \frac{A (V_{m1}B + V_{m2} - V_{m1}) - V_{m2}}{AB - 1}$$
(17)

2.2.7 Resistencias

Utilizando as equações (6) e (10), podemos resolver R_1 e R_2 .

$$R1 = -\left(\frac{R3 \text{ Vcc } v2 - R3 \text{ Vcc } v1}{\text{Vm1 } v2 - \text{Vm2 } v1}\right)$$

$$R2 = \frac{R3 \text{ Vcc } v2 - R3 \text{ Vcc } v1}{(\text{Vm1 - Vcc}) \text{ v2} + (\text{Vcc - Vm2}) \text{ v1} + \text{Vcc Vm2 - Vcc Vm1}}$$
(18)

Utilizando (7) obtemos R_3 :

$$R_4 = \frac{\tau}{C} \tag{19}$$

Utilizando (4) obtemos R_5 :

$$R5 = \frac{\text{Vo - Vd0}}{i_{L}} \tag{20}$$

2.3 Projetando o circuito

Com a análise teórica feita, analisaremos dois exemplos. Em ambos os exemplos, teremos os seguintes parâmetros:

$$V_{CC} = 11V$$

$$V_{D0} = 2V$$

$$V_{m1} = 0.3V$$

$$V_{m2} = 9.2V$$

$$I_{L} = 12mA$$

$$(21)$$

2.3.1 Exemplo 1

Utilizando os dados acima para o exemplo 1 obtemos:

$$A = 0.7788$$
 $B = 0.7788$
 $V_1 = 4.1966V$
 $V_2 = 5.3034V$
 $R_1 = 15.45k\Omega$
 $R_2 = 11.47k\Omega$
 $R_3 = 47k\Omega$
 $R_4 = 100k\Omega$
 $R_5 = 600\Omega$
 $C = 10\mu F$

$$(22)$$

2.3.2 Exemplo 2

Utilizando os dados acima para o exemplo 2 obtemos:

$$A = 0.2636$$

 $B = 0.1353$
 $V_1 = 1.22V$
 $V_2 = 7.01V$
 $R_1 = 124.9k\Omega$
 $R_2 = 47k\Omega$
 $R_3 = 17.6k\Omega$
 $R_4 = 20k\Omega$
 $R_5 = 600\Omega$
 $C = 100nF$

3 Medições em laboratório

Figura 6: Imagem do circuito montado em laboratório.

Nesta seção, são apresentados os detalhes e resultados das medições realizadas no experimento, com o objetivo de obter dados quantitativos para análise e validação dos resultados teóricos previamente obtidos.

3.1 Exemplo 1

3.1.1 Componentes

$$R_{1} = 14890\Omega$$
 $R_{2} = 11758\Omega$
 $R_{3} = 46890\Omega$
 $R_{4} = 100380\Omega$
 $R_{5} = 551.1\Omega$
 $C = 10.4nF$

$$(24)$$

Figura 7: Medição de $V_o(t)$ vista no osciloscópio para três períodos.

Da imagem obtemos os seguintes dados:

$$V_{m1} = 460mV$$

 $V_{m2} = 9.22V$
 $T = 510.62ms$
 $kT = 255.31ms$ (25)

3.1.3 $V_c(t)$

Figura 8: Medição de $V_c(t)$ vista no osciloscópio para três períodos.

Da imagem obtemos os seguintes dados:

$$V_{m1} = 4.31V$$

$$V_{m2} = 5.404V$$

$$T = 510.21ms$$

$$kT = 256.13ms$$
(26)

3.1.4 $V_{R5}(t)$

Figura 9: Medição de $V_{R5}(t)$ vista no osciloscópio para três períodos.

Da imagem obtemos os seguintes dados:

$$V_{m1} = -180mV$$

$$V_{m2} = 7.14V$$

$$T = 510.61ms$$

$$kT = 255.3ms$$
(27)

3.2 Exemplo 2

3.2.1 Componentes

$$R_1 = 118950\Omega$$

 $R_2 = 46890\Omega$
 $R_3 = 17752\Omega$
 $R_4 = 21914\Omega$
 $R_5 = 551.1\Omega$
 $C = 101.16nF$ (28)

Figura 10: Medição de $V_o(t)$ vista no osciloscópio para três períodos.

Da imagem obtemos os seguintes dados:

$$V_{m1} = 470mV$$

 $V_{m2} = 9.23V$
 $T = 7.4435ms$
 $kT = 2.9ms$ (29)

3.2.3 $V_c(t)$

Figura 11: Medição de $V_c(t)$ vista no osciloscópio para três períodos.

Da imagem obtemos os seguintes dados:

$$V_{m1} = 1.35V$$

 $V_{m2} = 7.14V$
 $T = 7.4365ms$
 $kT = 2.91ms$ (30)

O valor do kT foi obtido a partir de uma imagem que não se encontra aqui no relatório, ela está na pasta "images" que foi enviada junto com o relatório.

3.2.4 $V_{R5}(t)$

Figura 12: Medição de $V_{R5}(t)$ vista no osciloscópio para três períodos.

Da imagem obtemos os seguintes dados:

$$V_{m1} = -180mV$$

$$V_{m2} = 7.22V$$

$$T = 7.4422ms$$

$$kT = 2.9018ms$$
(31)

4 Análise dos resultados

Os principais resultados obtidos a partir das medições e simulações realizadas no experimento foram analisados, incluindo comparações com os resultados numéricos e as conclusões relevantes.

4.1 Exemplo 1

No Exemplo 1, obtemos o V_{D0} medindo as tensões sobre R_5 e V_o no caso em que o LED está ligado, ou seja:

$$V_{D0} = V_{om2} - V_{R5m2} = 9.22V - 7.14V = 2.08V$$
(32)

Utilizando os valores de V_{m1} , V_{m2} e o novo V_{D0} , procedemos ao recálculo dos seguintes parâmetros:

- T = 515.8ms
- k = 0.501
- $V_1 = 4.313V$
- $V_2 = 5.39V$
- $I_L = 12.95mA$

Com esses dados em mãos, é possível realizar uma comparação com os valores obtidos experimentalmente:

Medidas	Experimental	Numerico
T	510.62ms	515.8ms
k	0.5	0.501
V_1	4.31V	4.313V
V_2	5.4V	5.39V
I_L	12.95mA	12.95mA

Ao analisar os resultados, é notável que os valores obtidos após o recálculo se aproximam consideravelmente dos valores obtidos por meio de experimentação prática. Essa proximidade indica que a montagem do circuito foi executada de forma consistente e precisa, demonstrando a integridade das medições realizadas.

4.2 Exemplo 2

No Exemplo 1, obtemos o V_{D0} medindo as tensões sobre R_5 e V_o no caso em que o LED está ligado, ou seja:

$$V_{D0} = V_{om2} - V_{R5m2} = 9.23V - 7.22V = 2.01V \tag{33}$$

Utilizando os valores de $V_{m1},\,V_{m2}$ e o novo $V_{D0},\,$ procedemos ao recálculo dos seguintes parâmetros:

- T = 6.6ms
- k = 0.398
- $V_1 = 1.38V$
- $V_2 = 7.12V$
- $I_L = 13.1 mA$

Com esses dados em mãos, é possível realizar uma comparação com os valores obtidos experimentalmente:

Medidas	Experimental	Numerico
T	7.4422ms	6.6ms
k	0.39	0.398
V_1	1.35V	1.38
V_2	7.14V	7.12
I_L	13.1mA	13.1mA

Ao analisar os resultados, é notável que os valores obtidos após o recálculo se aproximam consideravelmente dos valores obtidos por meio de experimentação prática. Essa proximidade indica que a montagem do circuito foi executada de forma consistente e precisa, demonstrando a integridade das medições realizadas.

5 Conclusões

Conclui-se que o experimento foi realizado com sucesso, pois os resultados obtidos experimentalmente foram compatíveis com os resultados obtidos numericamente. Além disso, foi possível observar o funcionamento do circuito e a influência dos componentes na forma de onda de saída.

No decorrer deste experimento, a principal dificuldade manifestou-se na análise teórica, particularmente na resolução de equações diferenciais. Ademais, a montagem do circuito também foi ligeiramente dificultada pela falta de familiaridade com a identificação de componentes problemáticos, o que acabou limitando o tempo de montagem efetiva.