Algorithm 2021 Spring HW4 Solution

(15pts)1. Use Dijkstra's algorithm to find the shortest paths from vertex s to other vertices. (You need to show your process.)

Ans:

Q: s, a, b, c, d, e, f S:

Q: a, b, c, d, e, f S: s

(10pts)2. Given the DFS code below, please fill in the blanks.

DFS(G):

- 1. for each vertex $u \in G.V$
- 2. u.color = WHITE
- 3. $u.\pi = NIL$
- 4. time = 0
- 5. for each vertex $u \in G.V$
- 6. if u.color == WHITE
- 7. DFS-VISIT(G, u)

DFS-VISIT (G, u):

- 1. time = time + 1
- 2. u.d = time
- 3. u.color = GRAY
- 4. for each vertex $v \in G.Adi[u]$
- 5. if (1)
- 6. print "(u, v) is a tree edge."
- 7. $v.\pi = u$
- 8. DFS-VISIT (G, v)
- 9. else if (2)
- 10. print "(u, v) is a back edge."
- 11. else if (3)
- 12. print "(u, v) is a forward edge."
- 13. else
- 14. print "(u, v) is a cross edge."
- 15. u.color = BLACK
- 16. time = time + 1
- 17. u.f = time

Ans:

- (1) v.color == WHITE
- (2) v.color == GRAY
- (3) v.d > u.d

- (25pts)3. Given a set of requests $\{1,2,...,n\}$, i^{th} request corresponds an interval with start time s(i) and finish time f(i) ie. Interval i: [s(i), f(i)).
- (a) Please give a greedy algorithm to partition these requests into a minimum number of compatible subsets, each corresponds to one resource. (hint: A subset of intervals is compatible if no two intervals overlap)
- (b) Please prove that your greedy algorithm is correct and optimal.

Ans:

(a)

Sort the requests by their start times, breaking ties arbitrarily.

Let $I_1, I_2, ..., I_n$ denote the requests in this order.

For
$$j = 1, 2, 3 ..., n$$

For each request I_i that precedes I_j in sorted order and overlaps it Exclude the label of I_i from consideration for I_j

End

If there is any label from $\{1,2,...,d\}$ that has not been excluded then Assign a non-excluded label to I_i

Else

Leave I_i unlabeled

Endif

Endfor

(b)

we define the depth of a set of intervals to be the maximum number that pass over any single point on the time-line.

Theorem 1

In any instance of Interval Partitioning, the number of resources needed is at least the depth of the set of intervals.

Proof:

Suppose a set of intervals has depth d, and let $I_1, ..., I_d$ all pass over a common point on the time-line. Then each of these intervals must be scheduled on a different resource, so the whole instance needs at least d resources.

Claim 1

If we use the greedy algorithm above, every interval will be assigned a label, and no two overlapping intervals will receive the same label.

Proof:

First let's argue that no interval ends up unlabeled. Consider one of the intervals I_i , and suppose there are t intervals earlier in the sorted order that

overlap it. These t intervals, together with I_j , form a set of t+1 intervals that all pass over a common point on the time-line (namely, the start time of I_j), and so $t+1 \le d$. Thus $t \le d-1$. It follows that at least one of the d labels is not excluded by this set of t intervals, and so there is a label that can be assigned to I_j .

Next we claim that no two overlapping intervals are assigned the same label. Indeed, consider any two intervals I and I' that overlap, and suppose I precedes I' in the sorted order. Then when I' is considered by the algorithm, I is in the set of intervals whose labels are excluded from consideration; consequently, the algorithm will not assign to I' the label that it used for I.

Essentially, if you have d labels at your disposal, then as you sweep through the intervals from left to right, assigning an available label to each interval you encounter, you can never reach a point where all the labels are currently in use. Since our algorithm is using d labels, we can use Theorem 1 to conclude that it is, in fact, always using the minimum possible number of labels. We sum this up as follows.

The greedy algorithm above schedules every interval on a resource, using a number of resources equal to the depth of the set of intervals. This is the optimal number of resources needed.

Ans:

solution		0	1	2	3
	0	0	5	8	6
	1	6	0	3	4
	2	3	8	0	1
	3	2	7	10	0

(15pts)5. There are five cities in a network. The cost of building a road directly between i and j is the entry $a_{i,j}$ in the matrix below. An infinite entry indicates that there is a mountain in the way and the road cannot be built. Determine the least cost of making all the cities reachable from each other.

	0	1	2	3	4
0	0	5	6	11	15
1	5	0	X	2	13
2	6	X	0	7	1
3	11	2	7	0	8
4	15	13	1	8	0

Ans:

1+2+5+6 = 14

(15pts)6. Find a feasible solution or determine that no feasible solution exists for the following system of difference constraints:

$$x_1 - x_3 \le 1$$

$$x_2 - x_3 \le -4$$

$$x_4 - x_5 \le 2$$

$$x_3 - x_4 \le 7$$

$$x_5 - x_1 \le 5$$

$$x_4-x_2 \leq 10$$

$$x_1 - x_2 \le 2$$

$$x_5 - x_3 \le -1$$

Ans:

Add the new source v0, then perform Bellman-Ford's.

x = (-2, -4, 0, 0, -1) is a feasible solution, so is x+d for any constant d.

(10pts)7. Reweight the edges using the method used in Johnson's algorithm.

Ans:

Add the new source v0, then perform Bellman-Ford's.

For each edge (u, v) do

$$w'(u, v) = w(u, v) + h(u) - h(v)$$

$$w'(v1, v2) = w(v1, v2) + h(v1) - h(v2) = 7-6+0=1$$

 $w'(v1, v3) = w(v1, v3) + h(v1) - h(v3) = 2-6+4=0$
 $w'(v2, v3) = w(v2, v3) + h(v2) - h(v3) = -3+0+4=1$
 $w'(v3, v5) = w(v3, v5) + h(v3) - h(v5) = 1-4+3=0$
 $w'(v4, v1) = w(v4, v1) + h(v4) - h(v1) = -6+0+6=0$

w'(v4, v3) = w(v4, v3) + h(v4) - h(v3) = 8 + 0 + 4 = 12 w'(v4, v5) = w(v4, v5) + h(v4) - h(v5) = -3 + 0 + 3 = 0 w'(v5, v1) = w(v5, v1) + h(v5) - h(v1) = 5 - 3 + 6 = 8w'(v5, v2) = w(v5, v2) + h(v5) - h(v2) = 9 - 3 + 0 = 6

