Próbny Egzamin Maturalny z Matematyki

ZESTAW PRZYGOTOWANY PRZEZ SERWIS

WWW.ZADANIA.INFO

POZIOM PODSTAWOWY

27 KWIETNIA 2019

CZAS PRACY: 170 MINUT

Zadania zamknięte

ZADANIE 1 (1 PKT)

Liczba $(-\log_7 0,01)$ jest mniejsza od liczby $(-\log_7 0,0001)$ o

A) 100%

B) 25%

C) 50%

D) 10%

Rozwiazanie

Ponieważ

$$-\log_7 0,01 = -\log_7 10^{-2} = 2\log_7 10$$
$$-\log_7 0,0001 = -\log_7 10^{-4} = 4\log_7 10,$$

to pierwsza liczba jest mniejsza od drugiej o 2 log₇ 10, czyli o 50% drugiej liczby.

Odpowiedź: **C**

ZADANIE 2 (1 PKT)

Wartość wyrażenia $\frac{x^4-81}{(x^2+9)(x-3)}$ dla $x=\sqrt{3}-3$ jest równa

A)
$$\sqrt{3}$$

B)
$$-\sqrt{3}$$

D)
$$-3$$

Rozwiązanie

Liczymy

$$\frac{x^4 - 81}{(x^2 + 9)(x - 3)} = \frac{(x^2 - 9)(x^2 + 9)}{(x^2 + 9)(x - 3)} = \frac{x^2 - 9}{x - 3} =$$
$$= \frac{(x - 3)(x + 3)}{x - 3} = x + 3 = \sqrt{3} - 3 + 3 = \sqrt{3}.$$

Odpowiedź: **A**

ZADANIE 3 (1 PKT)

Dane są liczby $x = 5.7 \cdot 10^{-6}$ oraz $y = 1.9 \cdot 10^3$. Wtedy iloraz $\frac{x}{y}$ jest równy

A)
$$3 \cdot 10^{-3}$$

B)
$$10,83 \cdot 10^{-3}$$

C)
$$3 \cdot 10^{-9}$$

D)
$$10,83 \cdot 10^{-9}$$

ROZWIĄZANIE

Liczymy

$$\frac{x}{y} = \frac{5.7 \cdot 10^{-6}}{1.9 \cdot 10^{3}} = \frac{3 \cdot 1.9 \cdot 10^{-6}}{1.9 \cdot 10^{3}} = 3 \cdot 10^{-6-3} = 3 \cdot 10^{-9}.$$

Odpowiedź: C

Podobają Ci się nasze rozwiązania? Pokaż je koleżankom i kolegom ze szkoły!

0

ZADANIE 4 (1 PKT)

Czas trwania zabiegu rehabilitacyjnego wydłużono o 35% do 108 minut. Ile początkowo miał trwać ten zabieg?

A) 80 minut

B) 90 minut

C) 60 minut

D) 70 minut

Rozwiązanie

Jeżeli x jest początkowym czasem trwania zabiegu, to

$$1,35x = 108 \quad \Rightarrow \quad x = \frac{108}{1,35} = 80.$$

Odpowiedź: A

ZADANIE 5 (1 PKT)

Zbiorem rozwiązań nierówności 3(x+3)(2-x)>0 jest zbiór zaznaczony na osi liczbowej:

Rozwiązanie

Daną nierówność możemy zapisać w postaci

$$3(x+3)(2-x) > 0$$
 /: (-3)
 $(x+3)(x-2) < 0$
 $(x-(-3))(x-2) < 0$

Rozwiązaniem tej nierówności jest przedział (-3,2).

Odpowiedź: **C**

ZADANIE 6 (1 PKT)

Równanie $x + \frac{1}{9x+6} = 0$

- A) ma dokładnie dwa rozwiązania rzeczywiste.
- B) ma dokładnie trzy rozwiązania rzeczywiste.
- C) ma dokładnie jedno rozwiązanie rzeczywiste.
- D) nie ma rozwiązań.

ROZWIAZANIE

Ze względu na mianownik musi być $x \neq -\frac{2}{3}$.

$$x + \frac{1}{9x+6} = 0 \quad / \cdot (9x+6)$$
$$x(9x+6) + 1 = 0$$
$$9x^2 + 6x + 1 = 0$$
$$(3x+1)^2 = 0$$
$$3x+1 = 0 \quad \Rightarrow \quad x = -\frac{1}{3}.$$

Równanie ma więc jedno rozwiązanie.

Odpowiedź: **C**

ZADANIE 7 (1 PKT)

Jeśli wykres funkcji kwadratowej
$$f(x)=x^2+3x+2a$$
 jest styczny do prostej $y=-4$, to A) $a=\frac{7}{4}$ B) $a=-\frac{9}{8}$ C) $a=\frac{9}{4}$ D) $a=-\frac{7}{8}$

ROZWIĄZANIE

Sposób I

Zapiszmy wzór funkcji f w postaci kanonicznej

$$f(x) = x^2 + 3x + 2a = \left(x + \frac{3}{2}\right)^2 + \left(2a - \frac{9}{4}\right).$$

Wykresem tej funkcji jest więc parabola o ramionach skierowanych w górę i wierzchołku w punkcie $\left(-\frac{3}{2}, 2a - \frac{9}{4}\right)$. Jeżeli wykres tej funkcji jest styczny do prostej y = -4, to wierzchołek paraboli musi leżeć na tej prostej, tzn.

$$2a - \frac{9}{4} = -4 \quad \iff \quad 2a = -\frac{7}{4} \quad \iff \quad a = -\frac{7}{8}.$$

Sposób II

Wykres funkcji f jest styczny do prostej y = -4 wtedy i tylko wtedy, gdy równanie

$$f(x) = -4$$

$$x^{2} + 3x + 2a = -4$$

$$x^{2} + 3x + 2a + 4 = 0$$

ma dokładnie jedno rozwiązanie. Aby tak było musi być spełniony warunek

$$0 = \Delta = 9 - 4(2a + 4) = -7 - 8a / : 8$$
$$a = -\frac{7}{8}.$$

Sposób III

Wykresem funkcji $f(x) = x^2 + 3x + 2a$ jest parabola o ramionach skierowanych w górę i pierwszej współrzędnej wierzchołka równej

$$x_w=-\frac{3}{2}.$$

Jeżeli wykres tej funkcji ma jeden punkt wspólny z prostą y=-4, to wierzchołek paraboli musi leżeć na tej prostej, tzn.

$$-4 = f\left(-\frac{3}{2}\right) = \frac{9}{4} - \frac{9}{2} + 2a$$
$$2a = -4 + \frac{9}{4} = -\frac{7}{4} \iff a = -\frac{7}{8}.$$

Odpowiedź: D

ZADANIE 8 (1 PKT)

Wykres funkcji liniowej
$$y = -3(2 - x)$$
 przecina prostą $2x + 6 = 0$ w punkcie A) $(-3,9)$ B) $(-6,-24)$ C) $(-3,-15)$ D) $(2,0)$

ROZWIĄZANIE

Podana prosta to pionowa prosta x=-3. Aby wyznaczyć drugą współrzędną punktu wspólnego tej prostej z danym wykresem funkcji liniowej y=-3(2-x) podstawiamy x=-3 w tym wzorze.

$$y = -3 \cdot 5 = -15.$$

Zatem interesujący nas punkt ma współrzędne (-3, -15).

Odpowiedź: C

ZADANIE 9 (1 PKT)

Dane są funkcje $f(x)=\frac{5^x}{(\sqrt{5})^x}$ oraz $g(x)=\frac{(\sqrt{5}-1)^x}{2^x}$, określone dla wszystkich liczb rzeczywistych x. Punkt wspólny wykresów funkcji f i g

A) nie istnieje

B) ma współrzędne (0,1)

C) ma współrzędne (1,0)

D) ma współrzędne $(\sqrt{5},5)$

Rozwiązanie

Zauważmy, że

$$f(x) = \frac{5^x}{(\sqrt{5})^x} = \left(\frac{5}{\sqrt{5}}\right)^x = (\sqrt{5})^x$$

$$g(x) = \frac{(\sqrt{5} - 1)^x}{2^x} = \left(\frac{\sqrt{5} - 1}{2}\right)^x$$

Ponadto $\sqrt{5} > 1$ i $\frac{\sqrt{5}-1}{2} < \frac{3-1}{2} = 1$, więc funkcja y = f(x) jest rosnącą funkcją wykładniczą, a y = g(x) jest malejącą funkcją wykładniczą.

Nawet ze szkicowego rysunku powinno być widać, że wykresy te mają jeden punkt wspólny: (0, 1).

Odpowiedź: B

ZADANIE 10 (1 PKT)

Zbiorem wartości funkcji $y = \left(x - \sqrt{2}\right)^2 - 7$ określonej w przedziale $\left\langle -\sqrt[3]{19}, \sqrt[3]{19} \right\rangle$ jest A) $\left\langle -7, (\sqrt[3]{19} + \sqrt{2})^2 - 7 \right\rangle$ B) $\left\langle -7, (\sqrt[3]{19} - \sqrt{2})^2 - 7 \right\rangle$ C) $\left\langle (\sqrt[3]{19} - \sqrt{2})^2 - 7, (\sqrt[3]{19} + \sqrt{2})^2 - 7 \right\rangle$ D) $\left\langle -7, (\sqrt[3]{19} + \sqrt{2})^2 \right\rangle$

A)
$$\langle -7, (\sqrt[3]{19} + \sqrt{2})^2 - 7 \rangle$$

B)
$$\langle -7, (\sqrt[3]{19} - \sqrt{2})^2 - 7 \rangle$$

C)
$$\langle (\sqrt[3]{19} - \sqrt{2})^2 - 7, (\sqrt[3]{19} + \sqrt{2})^2 - 7 \rangle$$

D)
$$\langle -7, (\sqrt[3]{19} + \sqrt{2})^2 \rangle$$

ROZWIĄZANIE

Sposób I

Zauważmy, że pierwsza współrzędna wierzchołka danej paraboli

$$x_w = \sqrt{2} \approx 1.41$$

znajduje się w podanym przedziale, więc na pewno najmniejszą wartością jest -7.

Ponadto, oś symetrii paraboli znajduje się po prawej stronie środka danego przedziału, więc większą wartość przyjmuje ta parabola w lewym końcu przedziału, niż w prawym. Zatem największa wartość to

$$f\left(-\sqrt[3]{19}\right) = (-\sqrt[3]{19} - \sqrt{2})^2 - 7 = (\sqrt[3]{19} + \sqrt{2})^2 - 7.$$

Sposób II

Sprawdzamy podane odpowiedzi. Jak w poprzednim sposobie zauważamy, że najmniejsza wartość to −7. Ponadto

$$8 < 19 < 27 \quad \Rightarrow \quad 2 < \sqrt[3]{19} < 3.$$

Stad

$$\left(\sqrt[3]{19} + \sqrt{2}\right)^2 - 7 > (2+1)^2 - 7 > 0$$
$$\left(\sqrt[3]{19} - \sqrt{2}\right)^2 - 7 < (3-1)^2 - 7 < 0.$$

Zatem największą wartością musi być pierwsza z tych liczb.

Odpowiedź: A

ZADANIE 11 (1 PKT)

Funkcja kwadratowa jest określona wzorem f(x) = -3(2-5x)(5x+7). Liczby x_1, x_2 są różnymi miejscami zerowymi funkcji f. Zatem

A)
$$x_1 + x_2 = -6$$

B)
$$x_1 + x_2 = 10$$

C)
$$x_1 + x_2 = \frac{9}{5}$$

C)
$$x_1 + x_2 = \frac{9}{5}$$
 D) $x_1 + x_2 = -1$

Rozwiązanie

Miejscami zerowymi danej funkcji

$$f(x) = -3(2-5x)(5x+7) = -3 \cdot 5 \cdot (-5)\left(x - \frac{2}{5}\right)\left(x + \frac{7}{5}\right)$$

są liczby $x_1 = \frac{2}{5}$ i $x_2 = -\frac{7}{5}$. Zatem

$$x_1 + x_2 = \frac{2}{5} - \frac{7}{5} = -1.$$

Odpowiedź: **D**

ZADANIE 12 (1 PKT)

W ciągu arytmetycznym (a_n) , określonym dla $n \ge 1$, spełniony jest warunek $a_{11} + a_{15} = 13$. Wtedy

A)
$$a_{13} = 13$$

B)
$$a_{13} = 26$$

C)
$$a_{13} = 6,5$$

D)
$$a_{13} = 12,5$$

Rozwiązanie

Sposób I

Jeżeli oznaczymy przez r różnicę ciągu a_n , to

$$a_{11} = a_{12} - r = a_{13} - 2r$$

 $a_{15} = a_{14} + r = a_{13} + 2r$.

Zatem

$$13 = a_{11} + a_{15} = a_{13} - 2r + a_{13} + 2r = 2a_{13} \quad \Rightarrow \quad a_{13} = 6, 5.$$

Sposób II

Ze wzoru $a_n = a_1 + (n-1)r$ na n-ty wyraz ciągu arytmetycznego mamy

$$13 = a_{11} + a_{15} = (a_1 + 10r) + (a_1 + 14r) = 2a_1 + 24r$$
 / : 2 6,5 = $a_1 + 12r$.

Zatem $a_{13} = a_1 + 12r = 6, 5$.

Odpowiedź: C

ZADANIE 13 (1 PKT)

W rosnącym ciągu geometrycznym (a_n) , określonym dla $n \ge 1$, spełniony jest warunek $27a_6^3 = 8a_3a_2a_7$. Iloraz tego ciągu jest równy

A)
$$\frac{\sqrt{2}}{3}$$

B)
$$\sqrt{\frac{2}{3}}$$

C)
$$\frac{3}{2}$$

D)
$$\sqrt[6]{3}$$

Rozwiązanie

Ponieważ $a_6 = a_1 q^5$, $a_3 = a_1 q^2$, $a_2 = a_1 q$, $a_7 = a_1 q^6$ mamy równanie

Odpowiedź: **B**

ZADANIE 14 (1 PKT)

Układ równań $\begin{cases} \sqrt{6}x - 2y = 2\sqrt{3} \\ \sqrt{6}y - 3x = -3\sqrt{2} \end{cases}$

A) nie ma rozwiązań.

B) ma dokładnie jedno rozwiązanie.

C)ma nieskończenie wiele rozwiązań.

D) ma dokładnie dwa rozwiązania.

ROZWIĄZANIE

Chcemy mieć ten sam współczynnik przy x w obu równaniach, więc mnożymy pierwsze przez $\sqrt{6}$, a drugie przez -2. Otrzymujemy wtedy układ równań

$$\begin{cases} 6x - 2\sqrt{6}y = 6\sqrt{2} \\ -2\sqrt{6}y + 6x = 6\sqrt{2}. \end{cases}$$

Równania układu są takie same, więc układ ma nieskończenie wiele rozwiązań.

Odpowiedź: C

ZADANIE 15 (1 PKT)

Kat α jest ostry i $\sin \alpha = \frac{3}{5}$. Wtedy A) $\frac{\cos \alpha}{\operatorname{tg} \alpha} = \frac{9}{15}$ B) $\frac{\cos \alpha}{\operatorname{tg} \alpha} = \frac{4}{5}$

A)
$$\frac{\cos\alpha}{\lg\alpha} = \frac{9}{15}$$

B)
$$\frac{\cos \alpha}{\lg \alpha} = \frac{4}{5}$$

C)
$$\frac{\cos \alpha}{\lg \alpha} = \frac{8}{15}$$

C)
$$\frac{\cos \alpha}{\operatorname{tg} \alpha} = \frac{8}{15}$$
 D) $\frac{\cos \alpha}{\operatorname{tg} \alpha} = \frac{16}{15}$

Rozwiązanie

Na mocy jedynki trygonometrycznej

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

mamy

$$\frac{\cos \alpha}{\operatorname{tg} \alpha} = \frac{\cos \alpha}{\frac{\sin \alpha}{\cos \alpha}} = \frac{\cos^2 \alpha}{\sin \alpha} = \frac{1 - \sin^2 \alpha}{\sin \alpha} = \frac{1 - \frac{9}{25}}{\frac{3}{5}} = \frac{\frac{16}{25}}{\frac{3}{5}} = \frac{16}{15}.$$

Zauważmy, że w rozwiązaniu nie miało znaczenia to, że kąta α jest ostry.

Odpowiedź: D

ZADANIE 16 (1 PKT)

Punkty *A*, *B* i *C* leżą na okręgu o środku *S* (zobacz rysunek).

Miary α i β zaznaczonych kątów *ACB* i *ASB* spełniają warunek $\beta - \alpha = 45^{\circ}$. Wynika stąd,

A)
$$\alpha = 315^{\circ}$$

B)
$$\alpha = 225^{\circ}$$

C)
$$\alpha = 150^{\circ}$$

D)
$$\alpha = 105^{\circ}$$

Rozwiązanie

Sposób I

Korzystamy z faktu, że kąt środkowy jest dwa razy większy od kąta wpisanego opartego na tym samym łuku (na danym obrazku jest to łuk *AMB*).

Zatem

$$\begin{cases} \beta + 2\alpha = 360^{\circ} \\ \beta - \alpha = 45^{\circ} \end{cases}$$

Odejmujemy od pierwszego równania drugie i mamy

$$3\alpha = 315^{\circ} \implies \alpha = 105^{\circ}.$$

Sposób II

Jeżeli nie chcemy posługiwać się kątami wklęsłymi to dorysujmy punkt D na na okręgu. Wtedy

$$\angle ADB = \frac{1}{2} \angle ASB = \frac{\beta}{2}.$$

Zatem

$$\begin{cases} \alpha + \frac{\beta}{2} = 180^{\circ} \\ \beta - \alpha = 45^{\circ} \end{cases}$$

Dodajemy równania stronami i mamy

$$\frac{3}{2}\beta = 225^{\circ} \quad \Rightarrow \quad \beta = \frac{2}{3} \cdot 225^{\circ} = 150^{\circ}.$$

Stąd $\alpha = \beta - 45^{\circ} = 105^{\circ}$.

Odpowiedź: **D**

ZADANIE 17 (1 PKT)

Podstawa trójkąta równoramiennego ABC ma długość 19. Na ramionach BC i AC wybrano punkty D i E odpowiednio tak, że $|CD| = |CE| = 5\frac{5}{6}$ oraz |DB| = 10.

Odległość między prostymi AB i DE jest równa

A) 5

в)́ 8

C) 10

D) 12

Rozwiązanie

Trójkąty EDC i ABC są podobne i znamy ich skalę podobieństwa

$$\frac{CD}{CB} = \frac{\frac{35}{6}}{10 + \frac{35}{6}} = \frac{\frac{35}{6}}{\frac{95}{6}} = \frac{35}{95} = \frac{7}{19}.$$

W takim razie

$$ED = \frac{7}{19} \cdot AB = \frac{7}{19} \cdot 19 = 7.$$

Dorysujmy wysokości trapezu ABDE.

Korzystamy teraz z twierdzenia Pitagorasa w trójkącie AGE.

$$EG = \sqrt{10^2 - 6^2} = \sqrt{100 - 36} = \sqrt{64} = 8.$$

Odpowiedź: **B**

ZADANIE 18 (1 PKT)

Okrąg o środku $S_1=(2,1)$ i promieniu r oraz okrąg o środku $S_2=(5,5)$ i promieniu 6 są styczne wewnętrznie. Wtedy

A) r = 4

B) r = 3

C) r = 2

D) r = 1

Rozwiązanie

Szkicujemy opisaną sytuację.

Ponieważ odległość między środkami okręgów stycznych jest równa różnicy promieni tych okręgów, to mamy

$$6 - r = S_1 S_2 = \sqrt{(5-2)^2 + (5-1)^2} = \sqrt{9+16} = 5 \quad \Rightarrow \quad r = 1.$$

Odpowiedź: **D**

ZADANIE 19 (1 PKT)

Pole trójkąta o bokach długości 8 oraz 15 i kącie między nimi o mierze 135° jest równe A) $30\sqrt{3}$ B) $60\sqrt{2}$ C) $30\sqrt{2}$ D) $60\sqrt{3}$

Rozwiązanie

Rozpoczynamy od rysunku.

Na mocy wzoru $\sin(180^{\circ} - \alpha) = \sin \alpha$ mamy

$$\sin 135^{\circ} = \sin(180^{\circ} - 45^{\circ}) = \sin 45^{\circ} = \frac{\sqrt{2}}{2}.$$

Ze wzoru na pole z sinusem mamy

$$P = \frac{1}{2} \cdot 8 \cdot 15 \cdot \sin 135^{\circ} = 4 \cdot 15 \cdot \frac{\sqrt{2}}{2} = 30\sqrt{2}.$$

Odpowiedź: C

ZADANIE 20 (1 PKT)

Podstawą ostrosłupa jest równoramienny trójkąt prostokątny KLM o przeciwprostokątnej długości $4\sqrt{2}$. Wysokością tego ostrosłupa jest krawędź MS o długości 4 (zobacz rysunek).

Kąt α , jaki tworzą krawędzie KS i LS, spełnia warunek

A)
$$\alpha = 45^{\circ}$$

B)
$$\alpha = 60^{\circ}$$

C)
$$\alpha > 60^{\circ}$$

D)
$$45^{\circ} < \alpha < 60^{\circ}$$

Rozwiązanie

Zauważmy, że każdy z trójkątów KMS i LMS jest połówką kwadratu o boku długości KM=SM=4. Zatem

$$SK = SL = KL = 4\sqrt{2}.$$

To oznacza, że trójkąt *KLS* jest równoboczny i $\alpha = 60^{\circ}$.

Odpowiedź: **B**

ZADANIE 21 (1 PKT)

Stożek o średnicy podstawy d i kula o promieniu d mają równe objętości. Tangens kąta między tworzącą i płaszczyzną podstawy tego stożka jest równy

A) 32

B) $\frac{1}{8}$

C) $5\sqrt{41}$

D) 4

Rozwiązanie

Jeżeli oznaczymy przez $r=\frac{d}{2}$ promień podstawy stożka, a przez h jego wysokość, to z podanej informacji o objętościach mamy

$$\frac{1}{3}\pi r^2 \cdot h = \frac{4}{3}\pi \cdot (2r)^3 = \frac{32}{3}\pi r^3 / \frac{3}{\pi r^2}$$

$$h = 32r.$$

Szkicujemy teraz stożek.

Interesujący nas tangens jest równy

$$\operatorname{tg} \alpha = \frac{h}{r} = \frac{32r}{r} = 32.$$

Odpowiedź: A

ZADANIE 22 (1 PKT)

Punkt A=(13,-21) i środek S odcinka AB są położone symetrycznie względem początku układu współrzędnych. Zatem punkt B ma współrzędne

A)
$$(-13, 2\bar{1})$$

B)
$$(52, -84)$$

$$\overline{C}$$
) $(-39,63)$

D)
$$(26, -42)$$

Rozwiązanie

Naszkicujmy opisaną sytuację.

Wiemy, że punkt O = (0,0), jest środkiem odcinka AS, więc

$$S = -A = (-13, 21).$$

Ponadto S jest środkiem odcinka AB, więc

$$S = \frac{A+B}{2}$$
 \Rightarrow $B = 2S - A = (-26,42) - (13,-21) = (-39,63).$

Odpowiedź: C

ZADANIE 23 (1 PKT)

Punkty A=(-4,-1) i C=(2,-3) są wierzchołkami rombu ABCD. Wierzchołki B i D tego rombu są zawarte w prostej o równaniu y=mx+1. Zatem

A)
$$m = 3$$

B)
$$m = \frac{1}{3}$$

C)
$$m = -3$$

D)
$$m = -\frac{1}{3}$$

Rozwiązanie

Ponieważ przekątne rombu są prostopadłe i dzielą się na połowy, prosta y=mx+1 jest symetralną odcinka AC.

Sposób I

Współczynnik kierunkowy prostej AC to

$$a = \frac{y_C - y_A}{x_C - x_A} = \frac{-3 + 1}{2 + 4} = -\frac{2}{6} = -\frac{1}{3}.$$

Symetralna odcinka jest do niego prostopadła, więc musi mieć współczynnik kierunkowy równy

$$m = -\frac{1}{a} = \frac{-1}{-\frac{1}{3}} = 3.$$

Sposób II

Wyznaczmy równanie prostej AC – szukamy równania w postaci y = ax + b.

$$\begin{cases} -1 = -4a + b \\ -3 = 2a + b \end{cases}$$

Odejmujemy od drugiego równania pierwsze i mamy

$$6a = -2 \quad \Rightarrow \quad a = -\frac{1}{3}.$$

To oznacza, że prosta prostopadła do AC musi mieć współczynnik kierunkowy równy 3.

Odpowiedź: A

ZADANIE 24 (1 PKT)

Ile jest wszystkich liczb naturalnych czterocyfrowych mniejszych od 2019 i podzielnych przez 4?

A) 256

B) 257

C) 255

D) 128

Rozwiązanie

Sposób I

Liczby czterocyfrowe mniejsze od 2019 podzielne przez 4 to

$$1000 = 4 \cdot 250$$
, $1004 = 4 \cdot 251$, $1008 = 4 \cdot 252$, ..., $2016 = 4 \cdot 504$.

Jest ich wiec 504 - 249 = 255.

Sposób II

Czterocyfrowe liczby podzielne przez 4 tworzą ciąg arytmetyczny (a_n) o różnicy r=4, w którym $a_1=1000$ i $a_n=2016$. Mamy zatem

$$2016 = a_n = a_1 + (n-1)r$$

$$2016 = 1000 + (n-1) \cdot 4$$

$$1016 = (n-1) \cdot 4 / : 4$$

$$254 = (n-1) \Rightarrow n = 255.$$

Odpowiedź: C

ZADANIE 25 (1 PKT)

W tabeli przedstawiono procentowy podział uczestników obozu ze względu na wiek.

Wiek uczestnika	Liczba uczestników
10 lat	20%
12 lat	40%
14 lat	25%
16 lat	15%

Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Mediana wieku uczestników obozu jest równa

- A) 12 lat
- B) 11 lat
- C) 10 lat
- D) 13 lat

Rozwiązanie

Sposób I

Wiemy, że osób w wieku 10 lat jest mniej niż 20%, więc mediana musi być większa. Z drugiej strony, osób w wieku 10 i 12 lat jest 20% + 40% = 60%. W takim razie mediana musi być równa 12.

Sposób II

Jeżeli przyjmiemy, że w obozie uczestniczyło 100 osób, to 10, 12, 14 i 16 lat miało odpowiednio 20, 40, 25 i 15 osób. W takim razie 49 i 50 dana to 12 i mediana jest równa

$$\frac{12+12}{2}=12.$$

Odpowiedź: **A**

Zadania otwarte

ZADANIE 26 (2 PKT)

Rozwiąż nierówność $2 - x + 3x(2 - x) \ge 0$.

Rozwiązanie

Sposób I

Przekształcamy daną nierówność

$$2 - x + 3x(2 - x) \ge 0$$

$$(2 - x)(1 + 3x) \ge 0 \quad / \cdot (-1)$$

$$3(x - 2)\left(x + \frac{1}{3}\right) \le 0$$

$$x \in \left\langle -\frac{1}{3}, 2\right\rangle.$$

Sposób II

Przekształcamy daną nierówność

$$2 - x + 3x(2 - x) \ge 0$$

$$2 - x + 6x - 3x^{2} \ge 0$$

$$0 \ge 3x^{2} - 5x - 2$$

$$\Delta = 25 + 24 = 49$$

$$x_{1} = \frac{5 - 7}{6} = -\frac{1}{3}, \quad x_{2} = \frac{5 + 7}{6} = 2$$

$$x \in \left\langle -\frac{1}{3}, 2 \right\rangle.$$

Odpowiedź:
$$x \in \left\langle -\frac{1}{3}, 2 \right\rangle$$

ZADANIE 27 (2 PKT)

Rozwiąż równanie $(216 + 125x^3)(169x^2 - 256) = 0$.

ROZWIĄZANIE

Wyrażenie w pierwszym nawiasie zeruje się gdy

$$x^3 = -\frac{216}{125} = -\left(\frac{6}{5}\right)^3 \iff x = -\frac{6}{5}$$

a wyrażenie w drugim nawiasie gdy

$$x^2 = \frac{256}{169} = \left(\frac{16}{13}\right)^2 \iff x = \pm \frac{16}{13}.$$

Odpowiedź:
$$x \in \left\{ -\frac{16}{13}, -\frac{6}{5}, \frac{16}{13} \right\}$$

ZADANIE 28 (2 PKT)

Dwa kwadraty *ABCD* i *AEFG* o boku długości 2 nałożono na siebie tak jak na rysunku poniżej. Oblicz pole pięciokąta *ABCPE*.

Rozwiązanie

Sposób I

Interesujący nas pięciokąt składa się z dwóch równoramiennych trójkątów prostokątnych: ABC i CEP.

Ponadto, $EC = AC - AE = 2\sqrt{2} - 2$. W takim razie

$$P_{ABCPE} = P_{ABC} + P_{CEP} = \frac{1}{2} \cdot 2^2 + \frac{1}{2} \cdot (2\sqrt{2} - 2)^2 = 2 + 2(\sqrt{2} - 1)^2 =$$

$$= 2 + 4 - 4\sqrt{2} + 2 = 8 - 4\sqrt{2}.$$

Sposób II

Tym razem obliczmy najpierw pole czworokąta AEPD.

$$P_{AEPD} = P_{AEF} - P_{DPF} = \frac{1}{2} \cdot 2^2 - \frac{1}{2} (2\sqrt{2} - 2)^2 = 2 - 2(\sqrt{2} - 1)^2 =$$
$$= 2 - 4 + 4\sqrt{2} - 2 = -4 + 4\sqrt{2}.$$

Stad

$$P_{ABCPE} = P_{ABCD} - P_{AEPD} = 4 - (-4 + 4\sqrt{2}) = 8 - 4\sqrt{2}.$$

Odpowiedź: $8 - 4\sqrt{2}$

ZADANIE 29 (2 PKT)

Punkty K i M oraz L i N dzielą odpowiednio boki AC i BC trójkąta ABC w stosunku 1:1:2 (zobacz rysunek). Odcinki KN i LM przecinają się w punkcie S.

Uzasadnij, że pola trójkątów KMS i LNS są równe.

Rozwiązanie

Dorysujmy odcinki KL i MN.

Trójkąty *CMN*, *CKL* i *CAB* mają wspólny kąt przy wierzchołku *C* oraz proporcjonalne boki wychodzące z tego wierzchołka. Zatem każde dwa z nich są do siebie podobne. W

szczególności $MN \parallel KL \parallel AB$, czyli czworokąt KLNM jest trapezem (mogliśmy też to uzasadnić korzystając z twierdzenia Talesa). To z kolei oznacza, że trójkąty KNL i KML mają wspólną podstawę KL oraz równe wysokości opuszczone na tę podstawę. Zatem

$$\begin{aligned} P_{KNL} &= P_{KML} \\ P_{KSL} + P_{LNS} &= P_{KSL} + P_{KMS} \quad / - P_{KSL} \\ P_{LNS} &= P_{KMS}. \end{aligned}$$

ZADANIE 30 (2 PKT)

Udowodnij, że dla dowolnych liczb dodatnich a, b prawdziwa jest nierówność

$$\frac{4}{\frac{3}{b} + \frac{2}{a}} \leqslant \frac{3a + 2b}{6}$$

ROZWIĄZANIE

Przekształcamy nierówność korzystając z podanego założenia o dodatniości liczb a i b.

$$\frac{3a+2b}{6} \geqslant \frac{4}{\frac{3}{b}+\frac{2}{a}} = \frac{4}{\frac{3a+2b}{ab}} = \frac{4ab}{3a+2b} / \cdot 6(3a+2b)$$

$$(3a+2b)^2 \geqslant 24ab$$

$$9a^2 + 12ab + 4b^2 \geqslant 24ab$$

$$9a^2 - 12ab + 4b^2 \geqslant 0$$

$$(3a-2b)^2 \geqslant 0.$$

Otrzymana nierówność jest oczywiście prawdziwa, a przekształcaliśmy przy pomocy równoważności, więc wyjściowa nierówność też musi być spełniona.

ZADANIE 31 (2 PKT)

Rzucamy pięć razy symetryczną monetą. Po przeprowadzonym doświadczeniu zapisujemy liczbę uzyskanych orłów (od 0 do 5) i liczbę uzyskanych reszek (również od 0 do 5). Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że w tych pięciu rzutach liczba uzyskanych orłów będzie mniejsza niż liczba uzyskanych reszek.

Rozwiązanie

Sposób I

W każdym rzucie mamy dwa możliwe wyniki, więc jest

$$|\Omega| = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 32$$

wszystkich możliwych zdarzeń. Wypisujemy teraz zdarzenia sprzyjające

$$(R, R, R, R, R)$$

 $(R, R, R, R, R, O), (R, R, R, O, R), (R, R, O, R, R), (R, O, R, R, R), (O, R, R, R, R), (R, R, R, O, O), (R, R, O, R, O), (R, O, R, R, O), (O, R, R, R, O)$
 $(R, R, O, O, R), (R, O, R, O, R), (O, R, R, O, R), (R, O, O, R, R), (O, R, R, R, R)$
 $(R, O, O, R, R), (O, R, O, R, R)$
 (R, O, O, R, R, R)

Jest więc 16 zdarzeń sprzyjających i interesujące nas prawdopodobieństwo jest więc równe

$$\frac{16}{32} = \frac{1}{2}$$
.

Sposób II

Ponieważ orły i reszki pełnią takie same role w przeprowadzanym doświadczeniu, jest tyle samo darzeń, w których orłów jest więcej niż reszek, jak zdarzeń w których reszek jest więcej niż orłów. Z drugiej strony, liczba rzutów jest nieparzysta, więc zawsze zachodzi jedna z dwóch wymienionych sytuacji. To oznacza, że prawdopodobieństwo interesującego nas zdarzenia musi być równe $\frac{1}{2}$.

Odpowiedź: $\frac{1}{2}$

ZADANIE 32 (4 PKT)

Siódmy wyraz ciągu geometrycznego (a_n) , określonego dla $n \ge 1$, jest równy 6, a suma jego sześciu początkowych wyrazów jest równa 756. Iloraz q tego ciągu spełnia warunek: $a_2 = 380q + 2$. Oblicz pierwszy wyraz oraz iloraz tego ciągu.

Rozwiązanie

Wiemy, że

$$6 = a_7 = a_1 q^6$$

oraz

$$756 = S_6 = a_1 \cdot \frac{1 - q^6}{1 - q} = \frac{a_1 - a_1 q^6}{1 - q} = \frac{a_1 - 6}{1 - q} / (1 - q)$$

$$756(1 - q) = a_1 - 6 \implies a_1 = 756(1 - q) + 6 = -756q + 762.$$

Wiemy ponadto, że

$$a_2 = 380q + 2$$
$$a_1q = 380q + 2$$

Podstawiamy teraz w tej równości $a_1 = -756q + 762$.

$$(-756q + 762)q = 380q + 2$$
 /: 2
 $-378q^2 + 381q = 190q + 1$
 $0 = 378q^2 - 191q + 1$.

Rozwiązujemy teraz otrzymane równanie kwadratowe.

$$\Delta = 191^{2} - 378 \cdot 4 = 36481 - 1512 = 34969 = 187^{2}$$

$$q = \frac{191 - 187}{756} = \frac{4}{756} = \frac{1}{189} \quad \text{lub} \quad q = \frac{191 + 187}{756} = \frac{378}{756} = \frac{1}{2}.$$

Mamy wtedy odpowiednio

$$a_1 = -756q + 762 = 758$$
 lub $a_1 = -756q + 762 = 384$.

Zauważmy jeszcze, że w pierwszym przypadku

$$a_7 = a_1 q^6 = 758 \cdot \left(\frac{1}{189}\right)^6 < 1$$

W takim razie pozostaje druga możliwość: $a_1 = 384$ i $q = \frac{1}{2}$. Łatwo sprawdzić, że przy tych danych spełnione są wszystkie warunki podane w treści zadania.

Odpowiedź:
$$a_1 = 384$$
, $q = \frac{1}{2}$

ZADANIE 33 (4 PKT)

W układzie współrzędnych punkty A = (3, -2) i B = (9, -4) są wierzchołkami trójkąta ABC. Wierzchołek C leży na prostej o równaniu y = -2x - 4. Oblicz współrzędne punktu C, dla którego kąt ABC jest prosty.

ROZWIAZANIE

Szkicujemy opisaną sytuację.

Napiszmy najpierw równanie prostej AB. Szukamy równania w postaci y = ax + b i podstawiamy współrzędne punktów A i B.

$$\begin{cases} -2 = 3a + b \\ -4 = 9a + b \end{cases}$$

Odejmujemy od drugiego równania pierwsze i mamy

$$-2 = 6a \implies a = -\frac{2}{6} = -\frac{1}{3}.$$

Stąd b = -2 - 3a = -2 + 1 = -1 i prosta *AB* ma równanie $y = -\frac{1}{3}x - 1$.

Łatwo teraz napisać równanie przyprostokątnej BC – jest to prosta prostopadła do AB, więc ma równanie postaci y = 3x + b. Ponadto przechodzi ona przez punkt B, więc

$$-4 = 27 + b \implies b = -31.$$

W takim razie prosta BC ma równanie y = 3x - 31. Pozostało wyznaczyć punkt wspólny C tej prostej z daną prostą y = -2x - 4.

$$\begin{cases} y = 3x - 31 \\ y = -2x - 4 \end{cases}$$

Odejmujemy od pierwszego równania drugie i mamy

$$0 = 5x - 27 \quad \Rightarrow \quad x = \frac{27}{5} = 5,4.$$

Stad

$$y = -2x - 4 = -\frac{54}{5} - 4 = -\frac{74}{5} = -14.8$$

i
$$C = \left(\frac{27}{5}, -\frac{74}{5}\right) = (5, 4; -14, 8).$$

Odpowiedź:
$$C = \left(\frac{27}{5}, -\frac{74}{5}\right) = (5, 4; -14, 8)$$

ZADANIE 34 (5 PKT)

Dany jest ostrosłup prawidłowy czworokątny o wysokości H=16. Suma długości wszystkich jego krawędzi jest równa $128\sqrt{2}$. Oblicz cosinus kąta nachylenia ściany bocznej do płaszczyzny podstawy tego ostrosłupa.

Rozwiązanie

Rozpoczynamy od rysunku.

Materiał pobrany z serwisu www.zadania.info

Oznaczmy przez *a* długość krawędzi podstawy ostrosłupa i przez *x* długość jego krawędzi bocznej. Mamy zatem

$$128\sqrt{2} = 4a + 4x \quad \Rightarrow \quad x = 32\sqrt{2} - a.$$

Korzystając ze wzoru na długość przekątnej kwadratu mamy

$$EC = \frac{a\sqrt{2}}{2}.$$

Piszemy teraz twierdzenie Pitagorasa w trójkącie prostokątnym SCE.

$$SE^2 + EC^2 = SC^2$$

 $256 + \frac{a^2}{2} = x^2 = 2048 - 64\sqrt{2}a + a^2$
 $0 = \frac{a^2}{2} - 64\sqrt{2}a + 1792$
 $\Delta = 8192 - 3584 = 4608 = 2 \cdot 48^2$
 $a = 64\sqrt{2} - 48\sqrt{2} = 16\sqrt{2}$ lub $a = 64\sqrt{2} + 48\sqrt{2} = 112\sqrt{2}$.

Druga odpowiedź prowadzi jednak do sprzeczności, bo wtedy $x=32\sqrt{2}-a<0$. Mamy zatem $a=x=16\sqrt{2}$.

Liczymy teraz wysokość ściany bocznej

$$h^{2} = x^{2} - \left(\frac{a}{2}\right)^{2} = a^{2} - \frac{1}{4}a^{2} = \frac{3}{4}a^{2}$$
$$h = \frac{\sqrt{3}}{2}a.$$

Stąd

$$\cos \alpha = \frac{\frac{a}{2}}{h} = \frac{\frac{a}{2}}{\frac{\sqrt{3}}{2}a} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}.$$

Odpowiedź: $\frac{\sqrt{3}}{3}$