1. What would the neural network below predict for the following test data? That is, what is net for each test input? (3 points)

$$t_1 = (1, 1, 1)$$

$$t_2 = (-5, -2, 1)$$

$$t_3 = (3, 1, 4)$$

$$h_1 = \lambda_1 + \lambda_2 - \lambda_3$$

$$h_2 = 2x_1 - x_2 + 3x_3$$

2. Give an equation for the output of the network above, net, in terms of the inputs x_1, x_2, x_3 . Do not use dot product notation. (2 points)

3. Let's say I have a two layer neural network, with w_{ij} being the weight between the j^{th} input and the i^{th} hidden unit, and v_i being the weight between the i^{th} hidden unit and the final output unit. Each hidden unit applies the same non-linear function to its input: $h_i = f(w_i \bullet x)$. The loss function we are trying to minimize is $L = e^{-ynet}$ where net is the output of the network: $net = v \bullet h$. What are $\nabla_w L$ and $\nabla_v L$? Show your work. (5 points)

For the following problems, use the network given below.

n1=s:gn(<w1.x>) h2=sign(<w2,x>) net=<v.n>

<a,b> is a dot product b

1. What would the neural network below predict for the following test data? That is, what is net for each test input? (2 points)

 $t_1 = (1, 1, 1)$ $t_2 = (-5, -2, 1)$

Same as other side

2. Give an equation for the output of the network above, net, in terms of the inputs x_1, x_2, x_3 . Do not use dot product notation. (2 points)

Same as other side

3. We are trying to train the network above. Ignore the weights on the figure. We start with all $w_{ij} = 0$ and $v_i = 0$. Remember the w are the weights for the first layer and the v are the weights for the second layer. Assume the loss function is $L = \frac{1}{2}(y - net)^2$.

(a) How do h_1 and h_2 behave in this setting? Why? (2 points)

hi & ha will do the same thing. Their inputs have Same values & back prop same gradient

(b) What is the value of *net* for the first input sample? (1 points) if sign(o) = -1 $Net = N_1 + N_2 = 0$ Sign(o) = 0 Sign(o) = 0 Sign(o) = 0 Sign(o) = 0 Sign(o) = 0net = Ni+ Ma =

(c) Give the equation for the weight update for v. (3 points) $k \in V$, $k_1 + V_2 k_3 = V \cdot k$

TrL = (y-net).h

V=V-n(y-net)h gradient descent.