CH 02: Basic Structures

Sets, Functions, Sequences, Sums, and Matrices

Content

CH 02

Sets

Set Operations

Functions

Sequences and Summations

Cardinality of Sets

Matrices

- **<u>DEFINITION 1:</u>** A set is an <u>unordered</u> collection of <u>distinct</u> objects, called elements or members of the set.
 - \circ We write $\alpha \in A$ to denote that a is an element of the set A.
 - \circ The notation $a \notin A$ denotes that a is not an element of the set A.
- Roster method: the notation {a, b, c, d} represents the set with the four elements a, b, c, and d.
- Example: The set of vowels {a, e, i, o, u}
- Example: The set of odd positive integers less than 10: {1, 3, 5, 7, 9}

• Intervals: Sets of all the real numbers between two numbers a and b, with or without a and b.

$$\circ [a,b] = \{x \mid a \le x \le b\}$$

 $\circ [a,b) = \{x \mid a \le x < b\}$
 $\circ (a,b) = \{x \mid a < x \le b\}$

 $\circ (a,b) = \{x \mid a < x < b\}$

- Important set names:
 - $\circ N = \{0, 1, 2, 3, \dots\}$, the set of all natural numbers

 - $\circ Z^+ = \{1, 2, 3, ...\}$, the set of all positive integers
 - $Q = \{p \mid q \mid p \in Z, q \in Z, and q \neq 0\}$, the set of all rational numbers
 - \circ R, the set of all real numbers
 - $\circ R^+$, the set of all positive real numbers
 - \circ *C*, the set of all complex numbers.

- **<u>DEFINITION 2:</u>** Two sets are <u>equal</u> if and only if they have the same elements.
- Therefore, if A and B are sets, then A and B are equal if and only if $\forall x (x \in A \leftrightarrow x \in B)$.
- We write A = B if A and B are equal sets.

- The special set that has no elements is called the <u>empty set</u>, or null set, and is denoted by \emptyset .
 - The empty set can also be denoted by{}
- A set with one element is called a singleton set.
 - $\circ \emptyset$ is not the same as $\{\emptyset\}$
 - $\circ \{\emptyset\}$ is a singleton set of an empty set (example, a folder with an empty folder)
 - Ø is an empty set (example, an empty folder)

Venn Diagram

• **DEFINITION 3**:

The set A is a <u>subset</u> of B, and B is a superset of A, if and only if every element of A is also an element of B.

- We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.
- To stress that B is a superset of A, we use the equivalent notation $B \supseteq A$.
 - \circ So, A \subseteq B and B \supseteq A are equivalent statements.

- **THEOREM 1:** For every set S,
 - $\circ \emptyset \subseteq S$
 - \circ S \subseteq S.
- To show that two sets A and B are equal, show that $A \subseteq B$ and $B \subseteq A$.

- Sets may have other sets as members.
 - \circ For instance, $A = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

• **DEFINITION 4:** The <u>cardinality</u> of a set S, |S|, is the number of distinct elements in S.

• Example: Let A be the set of odd positive integers less than 10. Then |A| = 5.

• **DEFINITION 6**:

Given a set S, the <u>power</u> set of S is the set of all subsets of the set S. The power set of S is denoted by P(S).

- Example: What is the power set of the set $\{0, 1, 2\}$?
- Solution: $P(S) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}.$

• DEFINITION 7:

The <u>ordered tuple</u> $(a_1, a_2, ..., a_n)$ is the ordered collection that has a_1 as its first element, a_2 as its second element,..., and a_n as its nth element.

• **DEFINITION 8**:

Let A and B be sets. The <u>cartesian product</u> of A and B, denoted by $A \times B$, is the set of all ordered pairs (a,b), where $a \in A$ and $b \in B$. Hence, $A \times B = \{(a,b) \mid a \in A \land b \in B\}$.

- Example: What is the Cartesian product of $A = \{1, 2\}$ and $B = \{a, b, c\}$?
- Solution: $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}.$

• DEFINITION 9:

The Cartesian product of the sets $A_1, A_2, ..., A_n$ is the set of ordered n-tuples $(a_1, a_2, ..., a_n)$, where a_i belongs to A_i for i = 1, 2, ..., n.

- \circ In other words, $A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_i \in A_i \text{ for } i = 1, 2, \dots, n\}.$
- Example: What is the Cartesian product A × B × C, where $A = \{0, 1\}$, $B = \{1, 2\}$, and $C = \{0, 1, 2\}$?
- Solution: $A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)\}.$

- 9. For each of the following sets, determine whether 2 is an element of that set.
- a) $\{x \in R \mid x \text{ is an integer greater than } 1\}$
- c) $\{2, \{2\}\}$
- d) {{2}, {{2}}}

9. For each of the following sets, determine whether 2 is an element of that set.

```
a) \{x \in R \mid x \text{ is an integer greater than 1}\} Yes
```

- c) {2, {2}} Yes
- d) {{2}, {{2}}} No

13. Determine whether each of these statements is true or false.

a)
$$x \in \{x\}$$

e)
$$\emptyset \subseteq \{x\}$$

c)
$$\{x\} \in \{x\}$$

13. Determine whether each of these statements is true or false.

a) $x \in \{x\}$

e) $\emptyset \subseteq \{x\}$

c) $\{x\} \in \{x\}$

True

True

False

21 - 22. What is the cardinality of each of these sets?

c)
$$\{\emptyset, \{\emptyset\}\}$$

d)
$$\{a, \{a\}, \{a, \{a\}\}\}$$

21 - 22. What is the cardinality of each of these sets?

a) $\{a\}$

b) {Ø}

c) {Ø, {Ø}}

d) $\{a, \{a\}, \{a, \{a\}\}\}$

1

1

2

3

23. Find the power set of each of these sets, where α and b are distinct elements.

a)
$$\{a\}$$

b)
$$\{a, b\}$$

c)
$$\{\emptyset, \{\emptyset\}\}$$

23. Find the power set of each of these sets, where α and b are distinct elements.

a)
$$\{a\}$$

 $\{\emptyset, \{a\}\}$

b)
$$\{a, b\}$$

$$\{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$

c)
$$\{\emptyset, \{\emptyset\}\}$$

$$\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$$

29. Let A = $\{a, b, c, d\}$ and $B = \{y, z\}$. Find

b) $B \times A$.

29. Let A = $\{a, b, c, d\}$ and $B = \{y, z\}$. Find

```
b) B \times A.
```

```
{
(y,a), (y,b), (y,c), (y,d), (z,a), (z,b), (z,c), (z,d)
```

34. Let
$$A = \{a, b, c\}$$
, $B = \{x, y\}$, and $C = \{0, 1\}$. Find
a) $A \times B \times C$. b) $C \times B \times A$. c) $C \times A \times B$. d) $B \times B \times B$.

```
34. Let A = \{a, b, c\}, B = \{x, y\}, and C = \{0, 1\}. Find
a) A \times B \times C. b) C \times B \times A. c) C \times A \times B. d) B \times B \times B.
```

```
a) {(a,x,0), (a,x,1), (a,y,0), (a,y,1), (b,x,0), (b,x,1), (b,y,0), (b,y,1), (c,x,0), (c,x,1), (c,y,0), (c,y,1)}
b) {(0,x,a), (0,x,b), (0,x,c), (0,y,a), (0,y,b), (0,y,c), (1,x,a), (1,x,b), (1,x,c), (1,y,a), (1,y,b), (1,y,c)}
c) {(0,a,x), (0,a,y), (0,b,x), (0,b,y), (0,c,x), (0,c,y), (1,a,x), (1,a,y), (1,b,x), (1,b,y), (1,c,x), (1,c,y)}
d) {(x,x,x), (x,x,y), (x,y,x), (x,y,y), (y,x,x), (y,x,y), (y,y,x), (y,y,y))}
```

35. Find A^2 if

a) $A = \{0, 1, 3\}.$

```
35. Find A^2 if a) A = \{0, 1, 3\}.
```

```
{
(1,0),(1,1),(1,3),(0,0),(0,1),(0,3),
(3,0),(3,1),(3,3)
}
```

TASKS

Section 1

9 (e, b, f)

13 (a, e, c)

21 (a, d)

22 (b, c)

29 (a)

35 (b)

Content

CH 02

Sets

Set Operations

Functions

Sequences and Summations

Cardinality of Sets

Matrices

• Union:

Let A and B be sets. The union of the sets A and B, denoted by A U B, is the set that contains those elements that are either in A or in B, or in both.

 \circ A U B = {x | x \in A V x \in B}.

• Intersection:

Let A and B be sets. The intersection of the sets A and B, denoted by $A \cap B$, is the set containing those elements in both A and B.

 $\circ A \cap B = \{x \mid x \in A \land x \in B\}.$

- Difference:
 - Let A and B be sets. The difference of A and B, denoted by A B, is the set containing those elements that are in A but not in B.
 - The difference of A and B is also called the complement of B with respect to A..
 - $\circ A B = \{x \mid x \in A \land x \notin B\}.$

- Complement:
 - Let U be the universal set. The complement of the set A, denoted by \overline{A} , is the complement of A with respect to U.
 - Therefore, the complement of the set A is U A.
 - $\circ \bar{A} = \{x \in U \mid x \notin A\}.$

• **DEFINITION 3**:

Two sets are called disjoint if their intersection is the empty set.

• Example: Let A = {1, 3, 5, 7, 9} and B = {2, 4, 6, 8, 10}. Because A ∩ B = Ø, A and B are disjoint.

To find the cardinality of a union of two finite sets A and B.

$$|A \cup B| = |A| + |B| - |A \cap B|$$

• Set Identities:

Identity	Name
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws

$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$\overline{\overline{A \cap B}} = \overline{\overline{A}} \cup \overline{\overline{B}}$ $\overline{A \cup B} = \overline{\overline{A}} \cap \overline{\overline{B}}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

• Use a membership table to show that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

TABL	TABLE 2 A Membership Table for the Distributive Property.						
A	В	C	$B \cup C$	$A\cap (B\cup C)$	$A \cap B$	$A \cap C$	$(A\cap B)\cup (A\cap C)$
1	1	1	1	1	1	1	1
1	1	0	1	1	1	0	1
1	0	1	1	1	0	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

• Generalized Union:

$$A_1 \cup A_2 \cup \cdots \cup A_n = U_{i=1}^n A_i$$

Generalized Intersection:

$$A_1 \cap A_2 \cap \cdots \cap A_n = \bigcap_{i=1}^n A_i$$

```
3. Let A = \{1, 2, 3, 4, 5\} and B = \{0, 3, 6\}. Find
a) A \cup B. b) A \cap B. c) A - B. d) B - A.
```

```
3. Let A = \{1, 2, 3, 4, 5\} and B = \{0, 3, 6\}. Find
```

- a) $A \cup B$. b) $A \cap B$. c) A B.

d) B – A.

- a) {0,1,2,3,4,5,6}
- b) {3}
- c) $\{1, 2, 4, 5\}$
- d) {0, 6}

- 19. Show that if A, B, and C are sets, then $\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$
- a) by showing each side is a subset of the other side.
- b) using a membership table.

- 19. Show that if A, B, and C are sets, then $\overline{A} \cap \overline{B} \cap \overline{C} = \overline{A} \cup \overline{B} \cup \overline{C}$ a) by showing each side is a subset of the other side.
- b) using a membership table.

```
a) x \in \overline{A \cap B \cap C} \equiv x \notin A \cap B \cap C \equiv x \notin A \wedge x \notin B \wedge x \notin C \equiv x \in \overline{A} \lor x \in \overline{B} \lor x \in \overline{C} \equiv x \in \overline{A} \cup \overline{B} \cup \overline{C}
```

- 19. Show that if A, B, and C are sets, then $\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$
- a) by showing each side is a subset of the other side.
- b) using a membership table.

A	В	C	$A \cap B \cap C$	$\overline{A \cap B \cap C}$	\overline{A}	\overline{B}	\bar{c}	$\overline{A} \cup \overline{B} \cup \overline{C}$
1	1	1	1	0	0	0	0	0
1	1	0	0	1	0	0	1	1
1	0	1	0	1	0	1	0	1
1	0	0	0	1	0	1	1	1
0	1	1	0	1	1	0	0	1
0	1	0	0	1	1	0	1	1
0	0	1	0	1	1	1	0	1
0	0	0	0	1	1	1	1	1

```
53. Let A_i = \{1, 2, 3, ..., i\} for i = 1, 2, 3, ... Find a) \bigcup_{i=1}^{n} A_i
```

```
53. Let A_i = \{1, 2, 3, ..., i\} for i = 1, 2, 3, ... Find a) \bigcup_{i=1}^{n} A_i
```

a) $\{1, 2, 3, \dots, n\}$

54. Let
$$A_i = \{..., -2, -1, 0, 1, ..., i\}$$
. Find b) $\bigcap_{i=1}^n A_i$

54. Let
$$A_i = \{..., -2, -1, 0, 1, ..., i\}$$
. Find b) $\bigcap_{i=1}^n A_i$

We note that these sets are increasing, that is, $A1 \subseteq A2 \subseteq A3$. The intersection is just the one with the smallest subscript.

$$A_1 = \{..., -2, -1, 0, 1\}$$

TASKS

Section 2

4

53 (b)

54 (a)