

Agenda

- · Converting LPs
- · Steel company operations
- · The moment problem
- Chebyshev center

Logistics

- · HW4 out, due Friday Feb 25 at 9pm
- · Midtern 1 Thurs March 3 in class
- · Spring break the following week
- · A bit of a break until HWS due
 - Friday March 25

Converting LPs

we'd like to convert $\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{1}$ $\mathbf{b} \in \mathbb{R}^{m}$ $\mathbf{x} \in \mathbb{R}^{n}$ into 2 forms

form (1)

form (2)

min $C^T \times$ s.t. $A \times Sb$ $C \times = d$ min $C^T \times$ $X \times St. A \times Sb$ $X \ge 0$

Steel Company Operations

· Steel company can produce bands and coils

. Goal is to maximize revenue

from orders

	Production rate (tans/hr)	revenue (\$/ton)	upper bounds (tons)	
Bunds	200	25	6 000	
Coils	140	30	4000	

. There are 40 hours of production time this week

· Decide how many tons of bands and coils should be produced to maximize revenue

The moment problem

- · Suppose that Z is a random variable taking values in the set {0,1,..., K} with probabilities Po,..., Pk
- · We are given $\mathbb{E}[Z] = \sum_{i=0}^{k} P_i i$

$$\mathbb{E}[Z^2] = \underset{i=0}{\overset{K}{\sum}} P_i i^2$$

- · We would like to obtain upper and lower bounds on the 4th moment: $\mathbb{E}[2^4] = \sum_{i=0}^{k} i^4 p_i$
- · Show how LPs can be used to approach this problem

Chebysher Center

· Consider a set P described by linear inequality constraints $P = \{ x \in \mathbb{R}^n \mid a_i^T x \leq b_i \mid i=1,...,m \}$

- · Goal: find a ball with the largest possible radius which is entirely contained within the set P
- · Provide an LP formulation of this problem