Model-based Safe Deep Reinforcement Learning via a Constrained Proximal Policy Optimisation Algorithm

Ashish Kumar Jayant, Shalabh Bhatnagar

Dept. of Computer Science Automation

Indian Institute of Science, Bangalore

Safety in Reinforcement Learning (RL)

- RL agents do lot of unsafe exploration during initial iterations.
- Limits the potential application of RL in financial and robotics sequential decision making problems.
- Safety in RL is formally studied under Constrained Markov Decision Processes (CMDP) Framework

Constrained Markov Decision Processes (CMDP)

- (S, A, R, C_i, μ, P) tuple where -
 - \bullet S denotes state space
 - A denotes action space
 - $\mu: S \to [0,1]$ denotes initial state distribution
 - $R: S \times A \times S \rightarrow \mathbb{R}$ denotes single-stage reward function
 - $C_i: S \times A \times S \to \mathbb{R}^+$ denotes single-stage i-th non-negative cost function
 - We use policy optimisation route, where policy parameterized by heta denoted by $\pi_{ heta}$

Constrained RL Problem Formulation

 $\max_{\pi_{\theta}} J^R(\pi_{\theta}) \text{ such that } J^{C_i}(\pi_{\theta}) \leq d_i \text{ where,}$

$$J^{R}(\pi_{\theta}) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}, s_{t+1}) \mid s_{0} \sim \mu, a_{t} \sim \pi_{\theta}, \forall t\right]$$

$$J^{C_i}(\pi_{\theta}) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t C_i(s_t, a_t, s_{t+1}) \mid s_0 \sim \mu, a_t \sim \pi_{\theta}, \forall t\right]$$

- d_i is prescribed cost-threshold for I-th constraint function
- Lagrangian relaxation methods are one of the well-known and easy-to-implement methods to solve these. e.g PPO-Lagrangian[1]

Model-based RL

Idea: Combine Lagrangian relaxation + Modelbased RL

Tackling challenges of model-based RL

Tackling challenges of model-based RL

Underestimation of cost returns

Stricter cost threshold

 $\max_{\pi_{\theta} \in \prod_{\theta}} J^R(\pi_{\theta}) \text{ such that } J^C(\pi_{\theta}) \leq d' \text{ where, (Assuming 1 constraint)}$

$$J^{R}(\pi_{\theta}) = \mathbb{E}\left[\sum_{t=0}^{H} \gamma^{t} R(s_{t}, a_{t}, s_{t+1}) \mid s_{0} \sim \mu, \ s_{t+1} \sim P_{\alpha}, a_{t} \sim \pi_{\theta} \forall t\right]$$

$$J^{C}(\pi_{\theta}) = \mathbb{E}\left[\sum_{t=0}^{H} \gamma^{t} C(s_{t}, a_{t}, s_{t+1}) \mid s_{0} \sim \mu, s_{t+1} \sim P_{\alpha}, \ a_{t} \sim \pi_{\theta}, \forall t\right]$$

- is d' modified prescribed cost-threshold for I-th constraint function
- We change $d' = d * \beta$ where $\beta \in [0,1)$
- We tune β empirically.

Effect of β

Figure 1: Effect of beta parameter (β) on expected cost returns (left) and expected reward returns (right) in PointGoal environment. (Here $\beta=0.1$ corrresponds to $\frac{H}{T}$)

As we increase β , cost threshold becomes more lenient, reward returns increase but cost return also increase!

Bringing pieces together

Ensemble of randomly initialised uncertainty-aware neural nets

Results on Safety Gym: PointGoal

Figure 2: Reward Performance (Left) and Cost Performance (Right) in PointGoal Environment, where y-axis denotes Average Episode Reward Returns (left) / Cost Returns (right) and x-axis denotes total environment interacts

*Our approach: MBPPO-Lagrangian

Results on Safety Gym: CarGoal

Figure 3: Reward Performance (Left) and Cost Performance (Right) in CarGoal Environment, where y-axis denotes Average Episode Reward Returns (left) / Cost Returns (right) and x-axis denotes total environment interacts

*Our approach : MBPPO-Lagrangian

Results on Safety Gym

Figure 4: Normalized Reward Returns at Convergence (left) with median, inter-quartile mean (IQM), mean estimates and Normalized Cumulative Violations (right) with median, inter-quartile mean (IQM), mean estimates. Top rows (in green) represent PPO-Lagrangian, middle rows (in orange) represent safe-LOOP and bottom rows (in blue) represent our approach.

Thank you!