Everything

DISCLAIMER

Questo è un file che contiene una lista di tutti i teoremi, osservazioni, definizioni, esempi, lemmi, corollari, formule e proposizioni **senza alcuna dimostrazione**, di conseguenza molte informazioni risulteranno essere senza alcun contesto se già non si conosce la materia. Detto questo, buona lettura.

Gruppi e Anelli

Definizione 1

- Semigruppo
 - \bullet S insieme
 - $m: S \times S \rightarrow S$
 - (S,m) semigruppo $\iff \forall x,y,z \in S \quad m(x,m(y,z)) = m(m(x,y),z)$
- Monoide
 - S insieme
 - $m: S \times S \rightarrow S$
 - (S,m) monoide \iff (S,m) semigruppo e $\forall x \in S \ \exists e \in S \mid m(x,e) = m(e,x) = x$
- Gruppo
 - S insieme
 - $m: S \times S \rightarrow S$
 - (S,m) gruppo \iff (S,m) monoide e $\forall x \in S \ \exists x^{-1} \in S \mid m(x,x^{-1}) = m(x^{-1},x) = e$
- Gruppo abeliano
 - \bullet S insieme
 - $\bullet \quad m:S\times S\to S$
 - (S,m) gruppo abeliano $\iff (S,m)$ gruppo e $\forall x,y \in S \quad m(x,y) = m(y,x)$

Teorema 1

- Hp
 - G monoide
 - $-\exists e \in G$ elemento neutro
- Th
 - $-\ e$ è unico in G

- Hp
 - -(G,m) gruppo

-x ∈ G-∃x⁻¹ ∈ G inverso di x rispetto ad m

• Th

 $-x^{-1}$ è unico in G per x rispetto a m

Teorema 3

• Hp

$$-X, Y \text{ insiemi,}$$

$$-Y^X = \{f \mid f : X \to Y\}$$

• Th

$$-(X^X, \circ)$$
 è monoide

Teorema 4

• Hp

-X,Y insiemi finiti

• Th

$$- |Y^X| = |Y|^{|X|}$$

Definizione 2

- Anello
 - A insieme
 - $+: A \times A \rightarrow A$
 - $\bullet \ \ *: A \times A \to A$
 - (A,+,*) anello \iff (A,+) gruppo abeliano, (A,*) monoide e $\forall a,b,c \in A$ a*(b+c)=a*b+a*c
 - $a*b=b*a \quad \forall a,b\in A \implies (A,*,+)$ è un anello commutativo
- Campo
 - (A, +, *) anello
 - (A, +, *) è un campo $\iff \forall x \in A \quad \exists x^{-1}$ rispetto a *
- Semianello commutativo
 - \bullet A insieme
 - $+: A \times A \rightarrow A$
 - $\bullet \quad *: A \times A \to A$
 - (A, +, *) semianello commutativo \iff (A, +) monide commutativo, (A, *) monide commutativo e $\forall a, b, c \in A$ a * (b + c) = a * b + a * c
- Sottoanello
 - $(A, +, \cdot)$ anello
 - $(B,+,\cdot)\subset (A,+,\cdot)$ sottoanello $\iff (B,+)\subset (A,+)$ sottogruppo e $B\cdot B\subset B$

- Invertibili
 - $(A, +, \cdot)$ anello commutativo

- $a \in A$ invertibile $\iff \exists a^{-1} \in A \mid a \cdot a^{-1} = e$, dove e è l'elemento neutro dell'anello rispetto a ·
- $A^* := \{a \in A \mid a \text{ invertibile}\}$ è l'insieme degli invertibili di A

- Hp
 - $-(A,+,\cdot)$ anello commutativo
- Th
 - $-(A^*,\cdot)$ è un gruppo

Teorema 6

- Hp
 - $-(A,+,\cdot)$ anello commutativo
- Th
 - $-(A^*,\cdot)\subset (A,\cdot)$ è un sottogruppo

Definizione 4

- Divisori dello 0
 - $(A, +, \cdot)$ anello commutativo
 - $a \in A$ divisore dello $0 \iff \exists b \in A \{0\} \mid a \cdot b = 0$
- Dominio di integrità
 - $(A, +, \cdot)$ anello commutativo
 - A dominio di integrità $\iff \nexists x \neq 0 : x \mid 0$
 - alternativamente, A è dominio di integrità \iff in A vale la legge di annullamento del prodotto

Teorema 7

- Hp
 - $-(A,+,\cdot)$ anello commutativo
- Th
 - $-x\mid 0\iff x\notin A^*$

Teorema 8

- Hp
 - A campo
- Th
 - A dominio di integrità

- Elementi irriducibili
 - ullet A anello commutativo
 - $a \in A \{0\} \mid a \in A^*$

- a irriducibile $\iff \exists b, c \in A \mid a = bc \implies b \in A^* \lor c \in A^*$
- Elementi primi
 - \bullet A anello commutativo
 - $a \in A \{0\} \mid a \in A^*$
 - $a \text{ primo} \iff \exists b, c \in A : a \mid bc \implies a \mid b \lor a \mid c$

- Hp
 - A dominio di integrità
- Th
 - -a primo $\implies a$ irriducibile

Sottogruppi

Definizione 6

- Sottogruppo
 - (G,*) gruppo
 - $(H,*) \subset (G,*)$ sottogruppo $\iff \exists e \in H \mid e \text{ è l'elemento neutro}, H*H \subset H$ $e \exists x^{-1} \in H \quad \forall x \in H$

Definizione 7

- Sottogruppo normale
 - (G,*) gruppo
 - $(H,*) \subset (G,*)$ sottogruppo
 - $x \in G$
 - $xH := \{xh \mid h \in H\}$
 - $Hx := \{ hx \mid h \in H \}$
 - H sottogruppo normale $\iff \forall x \in G \quad xH = Hx$

- Hp
 - -G gruppo
 - 1) H è sottogruppo normale

 - 2) $\forall g \in G, h \in H$ $g \cdot h \cdot g^{-1} \in H$ 3) $\forall g \in G, h \in H$ $\exists k \in H \mid g \cdot h = k \cdot g$
- Th
 - le proposizioni sono equivalenti

Ordine

Definizione 8

- Ordine di un elemento in un gruppo
 - \bullet G gruppo
 - $g \in G$
 - $H(g) := \{g^n \mid n \in \mathbb{Z}\}$ è detto sottogruppo ciclico
 - -prende il nome di $sottogruppo\ ciclico$ poiché, a seconda del gruppo, le potenze di g possono essere infinite o finite, ma quest'ultimo caso si verifica esclusivamente quando le potenze ciclano su loro stesse
 - o(g) := |H(g)| è detto **ordine di** $g \in G$
 - tale valore può dunque essere infinito o finito, e in quest'ultimo caso l'ordine costituisce il valore più piccolo, non nullo, per cui $g^{o(g)} = e$, poiché per valori maggiori le potenze ricicleranno infinitamente

Teorema 11

Hp

 (G, +) gruppo
 g ∈ G

 Th

 (H(g), +) ⊂ (G, +) sottogruppo

Teorema 12

Hp

 (G,·) gruppo
 g ∈ G

 Th

 (H(g),·) ⊂ (G,·) è sottogruppo

Teorema 13

Hp

 G gruppo
 g ∈ G
 I(g) := {n ∈ Z | gⁿ = e}

 Th

 I(g) è un ideale

Teorema 14

Hp

 G gruppo
 g ∈ G
 ∃!d ≥ 0 | I(g) = I(d)

 Th

 d = 0 ⇒ o(g) := |H(g)| = |Z|, dunque infinito
 d > 0 ⇒ d = o(g)

• **Hp** $- (G, \cdot) \text{ gruppo finito}$ $- g \in G \mid d := o(g) \text{ finito}$ • **Th** $- g^{|G|} = e$

Teorema 16

Hp

 G gruppo finito
 g ∈ G

 Th

 o(g) = o(g⁻¹)

Teorema 17

• **Hp** -G gruppo finito $-k \in \mathbb{Z}$ • **Th** $-\forall g \in G \quad o(g^k) \mid o(g)$

Teorema 18

• **Hp** -G gruppo finito $-g,h \in G \mid gh = hg$ -d := MCD(o(g),o(h)) -m := mcm(o(g),o(h))• **Th** $-\frac{m}{d} \mid o(gh) \wedge o(gh) \mid m$

- **Hp** G gruppo finito

 $g, h \in G \mid gh = hg$ d := MCD(o(g), o(h)) = 1- m := mcm(o(g), o(h))
- Th o(gh) = o(hg) = m

Ideali

Definizione 9

- Ideali
 - $(A, +, \cdot)$ anello
 - $I \subset A$ ideale $\iff (I,+) \subset (A,+)$ è un sottogruppo e $A \cdot I \subset I$ e $I \cdot A \subset I$

Teorema 20

- Hp $(A, +, \cdot) \text{ anello }$ $a \in \mathbb{Z}$ $I(a) := \{ax \mid x \in A\}$
- . Th
 - -I(a) è un ideale, e prende il nome di ideale di A generato da $a \in A$

Teorema 21

- Hp
 - A dominio di integrità
 - $-a, b \in A$
- Th

$$-I(a) = I(b) \iff \exists c \in A^* \mid a = bc$$

Teorema 22

• Hp

$$-a,b \in \mathbb{Z} - \{0\}$$

• Th

$$-I(a) = I(b) \iff a = \pm b$$

Teorema 23

- Hp
 - $-(A,+,\cdot)$ anello
 - $-a_1,\ldots,a_n\in\mathbb{Z}$

$$-I(a_1,\ldots,a_n) := \{a_1b_1 + \ldots + a_nb_n \mid b_1,\ldots,b_n \in A\}$$

- Th
 - $-I(a_1,\ldots,a_n)$ è un ideale, e prende il nome di *ideale di A generato dagli* $a_1,\ldots,a_n\in A$

- Congruenza modulo di un ideale
 - $(A, +, \cdot)$ anello
 - $I \subset A$ ideale
 - per definizione, I ideale \Longrightarrow $(I,+)\subset (A,+)$ sottogruppo, dunque ha senso definire A/I, e infatti I induce una relazione di equivalenza su A detta **congruenza modulo** I, dove $\forall a,b\in A$ $a\equiv b\pmod{I}$ \Longleftrightarrow $b-a\in I$

• $b-a \in I \iff (-a)+b \in I$, di conseguenza questa congruenza coincide con la classe laterale sinistra di (A, +)

Teorema 24

• Hp $-(A,+,\cdot) \text{ anello}$ $-I\subset A \text{ ideale}$ $-+:A/I\times A/I\to A/I$ $-\cdot:A/I\times A/I\to A/I$ • Th $-(A/I,+,\cdot) \text{ è un anello}$

Teorema 25

- Hp $-I\subset \mathbb{Z} \text{ ideale}$
- 7 Th $-\exists !\ d\in\mathbb{N}\ |\ I=I(d), \text{ o equivalentemente, in }\mathbb{Z} \text{ ogni ideale è principale}$

Teorema 26

Hp

 a₁,..., a_n ∈ Z
 ∃!d ∈ N | I(a₁,..., a_n) = I(d)

 Th

 d = MCD(a₁,..., a_n)

Definizione 11

- Massimo Comun Divisore
 - $a_1,\ldots,a_n\in\mathbb{Z}$
 - $\exists!d\in\mathbb{N}\mid I\left(a_1,\ldots,a_n\right)=I(d)$, ed è detto massimo comun divisore degli a_1,\ldots,a_n
 - per dimostrazione precedente $I(a_1, \ldots, a_n)$ è un ideale, e per dimostrazione precedente ogni ideale in \mathbb{Z} è principale, dunque per un certo d coincide con I(d), e in particolare d è proprio il massimo comun divisore degli a_1, \ldots, a_n per dimostrazione precedente

Teorema 27

- Hp $-a_1, \dots, a_n \in \mathbb{Z}$ $-d := \mathrm{MCD}(a_1, \dots, a_n)$ Th
- $\exists x_1, \dots, x_n \in \mathbb{Z} \mid a_1x_1 + \dots + a_nx_n = d$, che prende il nome di *identità di Bézout*

Teorema 28

• !!! MANCA DIMOSTRAZIONE SISTEMA DI IDENTITÀ DI BÉZOUT

Operazioni sugli ideali

Definizione 12

- + tra ideali
 - $(A, +, \cdot)$ anello commutativo
 - $I, J \subset A$ ideali
 - $I + J = \{i + j \mid \forall i \in I, j \in J\}$

Teorema 29

- Hp
 - $-(A, +, \cdot)$ anello commutativo
 - $-I, J \subset A$ ideali
- Th
 - $-\ I+J$ è un ideale

Definizione 13

- \cap tra ideali
 - $(A, +, \cdot)$ anello commutativo
 - $I, J \subset A$ ideali
 - $I \cap J = \{x \in I \land x \in J\}$

Teorema 30

- Hp
 - $-(A,+,\cdot)$ anello commutativo
 - $I,J\subset A$ ideali
- Th
 - $I\cap J$ è un ideale

Definizione 14

- Minimo Comune Multiplo
 - $a_1,\ldots,a_n\in\mathbb{Z}$
 - $\exists! m \in \mathbb{N} \mid I(m) = I(a_1) \cap \ldots \cap I(a_n) = \bigcap_{i=1}^n I(a_i)$, ed è detto minimo comune multiplo degli a_1, \ldots, a_n

- \bullet · tra ideali
 - $(A, +, \cdot)$ anello commutativo
 - $I, J \subset A$ ideali

•
$$I \cdot J = \{i_1 j_1 + \ldots + i_k j_k \mid k \ge 1, \forall i_1, \ldots, i_k \in I, j_1, \ldots, j_k \in J\}$$

- Hp
 - $(A, +, \cdot)$ anello commutativo
 - $I, J \subset A$ ideali
- Th
 - $-\ I\cdot J$ è un ideale

Teorema 32

- Hp
 - $-a, b \in \mathbb{Z}$ -d := MCD(a, b)
- . Th
 - -I(a) + I(b) = I(d)

Teorema 33

- Hp
 - $-a,b\in\mathbb{Z}$
- Th
 - $I(a) \cdot I(b) = I(a \cdot b)$

Relazioni

- Relazioni
 - S insieme
 - ogni elemento $R \subseteq S \times S$ è una **relazione** su S
- Relazione riflessiva
 - S insieme
 - R relazione in $S \times S$
 - R riflessiva $\iff \forall x \in R \quad (x, x) \in R$
- Relazione simmetrica
 - S insieme
 - R relazione in $S \times S$
 - R simmetrica $\iff \forall x, y \in R \quad (x, y) \in R \implies (y, x) \in R$
- Relazione transitiva
 - \bullet S insieme
 - R relazione in $S \times S$
 - R transitiva $\iff \forall x,y,z \in R \quad (x,y) \in R \land (y,z) \in R \implies (x,z) \in R$

• Relazione antisimmetrica

- S insieme
- R relazione in $S \times S$
- R transitiva $\iff \forall x, y \in R \quad (x, y) \in R \land (y, x) \in R \implies x = y$

• Relazione totale

- S insieme
- R relazione in $S \times S$
- R totale $\iff \forall x, y \in R \quad (x, y) \in R \lor (y, x) \in R$

• Relazione di equivalenza

- S insieme
- R relazione in $S \times S$
- R è una relazione di equivalenza \iff R riflessiva, simmetrica e transitiva

• Ordine parziale

- S insieme
- R relazione in $S \times S$
- R ordine parziale $\iff R$ riflessiva, transitiva e antisimmetrica

• Ordine totale

- \bullet S insieme
- R relazione in $S \times S$
- R ordine totale \iff R ordine parziale in cui vale la totalità

Teorema 34

- Hp
 - $-m,n\in\mathbb{N}$
 - $-m \mid n \iff \exists p \in \mathbb{N} \mid mp = n$
- Th
 - | è ordine parziale

Teorema 35

- Hp
 - $-a,b \in \mathbb{Z}$
 - $-a \equiv b \pmod{n} \iff m \mid b a \text{ è detta congruenza modulo } n$
- Th
 - $-\,\equiv$ è una relazione di equivalenza

- Hp
 - $\begin{array}{l} -x,y\in\mathbb{Z}\mid x\equiv y\ (\mathrm{mod}\ n)\\ -d\in\mathbb{Z}:d\mid n \end{array}$
- Th
 - $-x \equiv y \pmod{d}$

$$-n \in \mathbb{N}$$

$$-[a], [b] \in \mathbb{Z}_n$$

$$-d := MCD(a, n)$$

$$-d \nmid b \implies \nexists [x] \in \mathbb{Z}_n \mid ax \equiv b \pmod{n}$$

$$-d \mid b \implies \forall [x] \in \mathbb{Z}_n \mid ax \equiv b \pmod{n} \quad x \text{ è anche tale che } \frac{a}{d}x \equiv \frac{b}{d} \pmod{\frac{n}{d}}$$

Teorema 38

$$-G$$
 gruppo

$$-g,h\in G$$

$$g, h \in G$$

 $-g \sim h \iff \exists a \in G \mid h = a \cdot g \cdot a^{-1} \text{ è detta } relazione \ di \ coniugio$

$$-\,\sim$$
è una relazione di equivalenza

Partizioni

Definizione 17

- Partizione
 - \bullet X insieme
 - \bullet I insieme di indici

•
$$\forall i \in I \quad X_i \subset X$$

•
$$\forall i \in I \quad X_i \subset X$$

• $X = \coprod_{i \in I} X_i$

Teorema 39

$$- \ \forall x, y \in G \quad x \nsim y \iff [x] \cap [y] = \varnothing \lor x \sim y \iff [x] = [y]$$

$$-G$$
 gruppo

$$-\sim$$
è una relazione di equivalenza in G

– ~ induce una partizione di
$$G$$
, dunque $G = \coprod_{[x] \in X/\sim} [x]$

Classi laterali

Teorema 41

- Hp - G gruppo $-H \subset G$ sottogruppo $-\ x,y\in G$
- Th $-x \sim_S y \iff x^{-1}y \in H$ è una relazione di equivalenza

Definizione 18

- Classi laterali
 - (G, \cdot) gruppo
 - $(H, \cdot) \subset (G, \cdot)$ sottogruppo
 - $\forall x,y \in G$ $x \sim_S y \iff x^{-1}y \in H$ è una relazione di equivalenza $\forall x,y \in G$ $x \sim_D y \iff xy^{-1} \in H$ è una relazione di equivalenza

 - x ∈ G
 - $[x] = \{y \in G \mid y \sim_S x\}$ è detta classe laterale sinistra
 - $[x] = \{y \in G \mid y \sim_D x\}$ è detta classe laterale destra
 - $G/H := \{[x] \mid x \in G\}$ è l'insieme delle classi laterali sinistre o destre

Teorema 42

• Hp $-(\mathbb{Z},+)$ anello $-n \in \mathbb{N}_{\geq 2}$ $-\ I(n) := \{nk \mid k \in \mathbb{Z}\}\$ $-a,b \in \mathbb{Z}$ • Th $-a \sim_S b \iff a \equiv b \pmod{n}$

Teorema 43

• Hp - G gruppo $-H\subset G$ sottogruppo $-H = [1] \in G/H$

Teorema 44

• Hp -G gruppo $-\ H\subset G$ sottogruppo $-x \in G$ $- [x] = \{ y \in G \mid y \sim_S x \}$ • Th $-xH := \{xh \mid h \in H\} = [x]$

• Hp $-G \text{ gruppo} \\ -H \subset G \text{ sottogruppo} \\ -x \in G \\ • Th \\ -|xH|=|H|$

Teorema 46

• **Hp** -G gruppo $-H \subset G \text{ sottogruppo}$ $-+: G/H \times G/H \to G/H$ • **Th** -(G/H,+) è gruppo abeliano

Insieme quoziente

Definizione 19

- Insieme quoziente
 - G gruppo
 - \sim relazione di equivalenza in G
 - $\forall x \in G \quad [x] := \{y \in G \mid x \sim y\}$
 - $G/\sim:=\{[x]\mid x\in G\}$ è l'insieme quoziente, ovvero l'insieme delle classi di equivalenza determinate da \sim

Definizione 20

- Insieme quoziente \mathbb{Z}_n
 - $(\mathbb{Z}, +, \cdot)$ anello, in particolare $(\mathbb{Z}, +)$ gruppo
 - $n \in \mathbb{Z}$
 - \mathbb{Z}/\equiv è l'insieme delle classi di equivalenza definite dalla relazione di equivalenza =
 - $m \equiv r \pmod{n} \iff r \equiv m \pmod{n} \implies n \mid m-r \implies \exists q : nq = m-r \implies m = nq + r \quad 0 \le r < n$
 - $0 \le r < n \implies$ è possibile definire $\mathbb{Z}_n := \{[0], [1], \dots, [n-1]\}$, che coincide con \mathbb{Z}/\equiv

Teorema 47

• Hp $\begin{array}{ccc} & & & & \\ & -n \in \mathbb{Z} \\ & -I(n) := \{nk \mid k \in \mathbb{Z}\} \end{array}$ • Th

$$- (\mathbb{Z}_n, +)$$
è un gruppo

- Hp
 - $-\ p\in \mathbb{P}$ $-a, b \in \mathbb{Z}$ $-p \mid ab$
- Th
 - $p \mid a \lor p \mid b$

Teorema 49

- Hp
 - $-n \in \mathbb{Z}$
- Th
 - \mathbb{Z}_n dominio di integrità $\iff n \in \mathbb{P}$

Teorema 50

- Hp
 - $-n \in \mathbb{Z}$
- Th
 - $\forall [a] \in \mathbb{Z}_n \quad MCD(a, n) = 1 \iff [a] \in \mathbb{Z}_n^*$

Teorema 51

- Hp
 - $-p \in \mathbb{P}$
- Th
 - \mathbb{Z}_p campo

Teorema 52

- Hp
 - $p \in \mathbb{P}$
- Th
 - $-(\mathbb{Z}_p^*,\cdot)$ è ciclico

Funzione totiente di Eulero

- Funzione totiente di Eulero
 - $n \in \mathbb{N}$
 - $\varphi(n) := |\mathbb{Z}_n^*|$

• Hp $-n, m \in \mathbb{N} \mid \mathrm{MCD}(a, n) = 1$ • Th $-[a] \in \mathbb{Z}_{mn}^* \iff [a] \in \mathbb{Z}_m^* \wedge [a] \in \mathbb{Z}_n^*$

Teorema 54

• Hp $-m,n \in \mathbb{N} \mid \mathrm{MCD}(m,n) = 1$ • Th $-\varphi(m \cdot n) = \varphi(m) \cdot \varphi(n)$

Teorema 55

• Hp $\begin{array}{ccc} & & & & \\ & -p \in \mathbb{P} \\ & -k \in \mathbb{N} \mid k \geq 1 \end{array}$ • Th $-\varphi(p^k) = p^{k-1}(p-1)$

Teorema 56

• Hp $-k \in \mathbb{N} \mid k \ge 1$ $-p_1, \dots, p_k \in \mathbb{P}$ $-i_1, \dots, i_k \ge 1$ $-n \in \mathbb{N} \mid n = p_1^{i_1} \cdot \dots \cdot p_k^{i_k}$ • Th $-\varphi(n) = n \cdot \prod_{p \mid n} \left(1 - \frac{1}{p}\right)$

Permutazioni

Definizione 22

- Permutazioni
 - X insieme
 - $S_X := \{f \mid f: X \to X \text{ biiettiva } \}$ è l'insieme delle permutazioni di X
 - $X = \{1, ..., n\} \implies S_n$ è detto gruppo simmetrico di n

Teorema 57

• Hp $-S_X:=\{f\mid f:X\to Y\text{ bilettiva }\}$ • Th $-(S_X,\circ) \ \text{\`e} \ \text{un gruppo, non abeliano se} \ |X|\ge 3$

Definizione 23

- Ciclo di una permutazione
 - $n \in \mathbb{N}$
 - $\sigma \in S_n$

•
$$\exists 1 \leq i_1, \dots, i_d \leq n \in \mathbb{N} \mid \begin{cases} \sigma(i_1) = i_2 \\ \sigma(i_2) = i_3 \end{cases} \implies i_1, \dots, i_n \text{ costituiscono un}$$
• $\sigma(i_{d-1}) = i_d$
• $\sigma(i_d) = i_1$

ciclo di σ

Teorema 58

- Hp
 - $-n \in \mathbb{N}$
 - $-\sigma \in S_n$
 - $-1 \le i < n \in \mathbb{N}$
 - $I(\sigma, i) := \{ n \in \mathbb{Z} \mid \sigma^n(i) = i \}$
- Th
 - $-(I(\sigma,i),+)\subset (\mathbb{Z},+)$ è un ideale

Teorema 59

- Hp
 - !!! RISCRIVI TUTTO
 - $I(\sigma,i)$ è **ideale principale** in $\mathbb Z$ generato da I(d), dove d è la lunghezza del ciclo di i, quindi $I(\sigma,i)=I(d)$
 - $-I(\sigma,i) = I(d) \implies d \in I(\sigma,i)$

Teorema 60

- **Hp**
 - $-n \in \mathbb{N}$
 - $-\sigma \in S_n \mid \sigma = \gamma_1 \dots \gamma_k$ sia la sua decomposizione in cicli
 - $d_j :=$ lunghezza di $\gamma_j \quad \forall j \in [1,k]$
 - $-\ \dot{m} := \operatorname{mcm}(d_1, \dots, d_k)$
 - $I(\sigma) := \{ n \in \mathbb{Z} \mid \sigma^n = \mathrm{id} \}$
- Th
 - $-o(\sigma)=m$

Trasposizioni

- Trasposizione
 - $n \in \mathbb{N}$

- $\begin{array}{ll} \bullet & i,j \in \mathbb{N} \mid 1 \leq i < j \leq n \\ \bullet & k \in [1,n] \end{array}$
- $\tau_{i,j} \in S_n \mid \tau_{i,j} = \begin{cases} j & k = i \\ i & k = j \\ k & k \neq i, j \end{cases}$ è detta **trasposizione**, ovvero una permutazione che inverte esclusivamente due elementi tra loro $-\tau_{i,j}^2 = \mathrm{id} \iff \tau_{i,j} = \tau_{i,j}^{-1}$

- Trasposizione adiacente
 - $n \in \mathbb{N}$

 - $i, j \in \mathbb{N} \mid 1 \le i < j \le n \land j = i+1$ $\tau_{i,j} = \tau_{i,i+1}$ è detta **trasposizione adiacente**, poiché inverte esclusivamente due elementi, adiacenti, tra loro

- Hp
 - $-n \in \mathbb{N}$
 - $-\sigma \in S_n$
- Th
 - $-\exists 1 \leq i_1, \ldots, i_k < n \mid \sigma = \tau_{i_1, i_1 + 1} \ldots \tau_{i_k, i_k + 1}$, quindi ogni permutazione può essere riscritta come composizione di trasposizioni adiacenti

Segno

Definizione 25

- Segno di una permutazione
 - $n \in \mathbb{N}$
 - $\sigma \in S_n$
 - $Inv(\sigma) := \{(i,j) \mid 1 \le i < j < n : \sigma(i) > \sigma(j)\}$ è l'insieme delle inversioni di
 - $\operatorname{sgn}(\sigma) := (-1)^{|\operatorname{Inv}(\sigma)|} = \begin{cases} +1 & |\operatorname{Inv}(\sigma)| \equiv 0 \pmod{2} \\ -1 & |\operatorname{Inv}(\sigma)| \equiv 1 \pmod{2} \end{cases} \implies \sigma \text{ pari } \Longleftrightarrow$ $-\operatorname{sgn}(\operatorname{id}) = (-1)^0 = 1$, in quando la funzione identità non ha inversioni

Teorema 62

- Hp
 - $-n \in \mathbb{N}$
 - $A_n := \{ \sigma \in S_n \mid \sigma \text{ pari} \}$
- Th
 - $-A_n \subset S_n$ è un sottogruppo normale, detto gruppo alterno di ordine n

Teorema 63

• Hp

$$-n \in \mathbb{N}$$
 $-\sigma \in S_n \mid \sigma = \tau_1 \dots \tau_k \text{ dove } \forall j \in [1, k] \quad \tau_j = \tau_{j,j+1}, \text{ dunque tutte le trasposizioni sono adiacenti}$

• Th
$$- sgn(\sigma) = (-1)^k$$

• Hp
$$-n \in \mathbb{N}$$

$$-\sigma, \sigma' \in S_n | \left\{ \begin{array}{l} \sigma = \tau_1 \dots \tau_k \\ \sigma' = \tau'_1 \dots \tau'_h \end{array} \right., \text{ dove ogni trasposizione è adiacente}$$
• Th
$$-\operatorname{sgn} \left(\sigma\sigma'\right) = \operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\sigma')$$

Teorema 65

• Hp
$$\begin{array}{ccc} & & & & \\ & -n \in \mathbb{N} \\ & -\sigma \in S_n \end{array}$$
 • Th
$$& & -\operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma) \end{array}$$

Teorema 66

• Hp
$$-n \in \mathbb{N}$$

$$-\sigma, \sigma' \in S_n$$

$$-\sigma \sim \sigma' \iff \exists \alpha \in S_n \mid \sigma' = \alpha \sigma \alpha^{-1}$$
• Th
$$-\operatorname{sgn}(\sigma') = \operatorname{sgn}(\sigma)$$

Teorema 67

• Hp
$$\begin{array}{l} -n \in \mathbb{N} \\ -\sigma, \sigma' \in S_n \mid \sigma := \gamma_1 \dots \gamma_k, \sigma' := \gamma_1' \dots \gamma_h' \\ -\sigma \sim \sigma' \iff \exists \alpha \in S_n \mid \sigma' = \alpha \sigma \alpha^{-1}, \text{ che costituisce dunque la relazione di coniugio} \end{array}$$
• Th
$$\begin{array}{l} k = h \\ d = d_1' \\ \vdots \\ d_k = d_h' = d_k' \end{array}$$
, dove d_j è la lunghezza del ciclo γ_j e d_j' è la lunghezza del ciclo γ_j'

• Hp
$$\begin{array}{ccc} & & & \\ & - & n \in \mathbb{N} \\ & - & \sigma \in S_n \mid \sigma := \gamma_1 \dots \gamma_k \end{array}$$

• Th

$$-\operatorname{sgn}(\sigma) = (-1)^{n-k}$$

Morfismi

Definizione 26

- Morfismo di gruppi
 - $(G,\cdot),(H,\cdot)$ gruppi
 - $f:G\to H$
 - f morfismo di gruppi $\iff \forall x,y \in G \quad f(x\cdot y) = f(x)\cdot f(y)$
- Morfismo di anelli
 - $(A, +, \cdot), (B, +, \cdot)$ anelli
 - $f: A \rightarrow B$
 - f morfismo di anelli $\iff \forall x,y \in A$ $f(x+y) = f(x) + f(y) \land f(x \cdot y) = f(x) \cdot f(y)$
 - la stessa definizione si applica per morfismo di campi

Teorema 69

- Hp
 - $-\ (G,\cdot), (H,\cdot)$ gruppi
 - $-\ 1_G$ neutro per G
 - -1_H neutro per H
 - $-\ f:G\to H$ morfismo
- Th

$$- f(1_G) = 1_H$$

Teorema 70

- Hp
 - $-(G,\cdot),(H,\cdot)$ gruppi
 - $-\ 1_G$ neutro per G
 - $-\ 1_H$ neutro per H
 - $f:G\to H$ morfismo
- Th

$$- f(g^{-1}) = f(g)^{-1}$$

Isomorfismi

- Isomorfismo
 - f isomorfismo $\iff f$ morfismo e f bi
iettiva

- Th $f^{-1}: H \to G \text{ isomorfismo}$

Teorema 72

- Hp $-\cong$ è la relazione di isomorfismo
- Th
 ≃ è una relazione di equivalenza

Teorema 73

- **Hp** $\begin{array}{l} -z\in\mathbb{C}\mid z^n=1 \text{ sono le radici } n\text{-esime di 1} \\ -\zeta:=e^{i\frac{2\pi}{n}} \\ -H:=\{\zeta^0,\zeta^1,\zeta^k,\ldots,\zeta^{n-1}\} \text{ è l'insieme delle radici } n\text{-esime di 1} \\ \bullet \text{ Th} \end{array}$ **Th**
- $(H,\cdot)\subset (\mathbb{C}-\{0\},\cdot)$ è un sottogruppo

Teorema 74

• Hp $-f:\mathbb{Z}_n\to H:[k]\to \zeta^k$ • Th $-f \text{ isomorfismo di gruppi } (\mathbb{Z}_n,+) \text{ e } (H,\cdot)$

Teorema 75

Hp

 (G,·) gruppo
 g ∈ G
 f : Z → G : n → gⁿ

 Th

 f morfismo di gruppi (Z, +) e (G,·)

Teorema 76

• Hp $-f:\mathbb{Z}\to\mathbb{Z}_n:k\to [k]$ • Th $-f \text{ morfismo di anelli }(\mathbb{Z},+,\cdot) \text{ e }(\mathbb{Z}_n,+,\cdot)$

Teorema 77

• Hp

```
-n, m \in \mathbb{Z} : n \mid m
-f : \mathbb{Z}_m \to \mathbb{Z}_n : x \pmod{m} \to x \pmod{n}
• Th
-f \text{ morfismo di anelli } (\mathbb{Z}_m, +, \cdot) \text{ e } (\mathbb{Z}_n, +, \cdot)
```

Kernel e immagine

Definizione 28

- Kernel e immagine di gruppi
 - G, H gruppi
 - $f: G \to H$ morfismo
 - $\ker(f) := \{g \in G \mid f(g) = 1_H\}$ è detto kernel/nucleo di f
 - $\operatorname{im}(f) := \{h \in H \mid \exists g \in G : f(g) = h\}$ è detta immagine di f
- Kernel e immagine di anelli
 - A, B gruppi
 - $f: A \to B$ morfismo
 - $\ker(f) := \{a \in A \mid f(a) = 0_B\}$ è detto **kernel/nucleo di** f
 - $\operatorname{im}(f) := \{b \in B \mid \exists a \in A : f(a) = b\}$ è detto **immagine di** f

Teorema 79

• Hp $-G, H \text{ gruppi} \\ -f: G \to H \text{ morfismo}$ • Th $-\ker(f) \subset G \text{ è sottogruppo}$

• **Hp** -G, H gruppi $-f: G \to H \text{ morfismo}$ • **Th** $-f \text{ iniettiva} \iff \ker(f) = \{1_G\}$

Teorema 82

• Hp $-A, B \text{ anelli} \\ -f: A \to B \text{ morfismo di anelli} \\ • Th \\ - \ker(f) \text{ ideale}$

Teorema 83

• Hp $-A, B \text{ anelli} \\ -f: A \to B \text{ morfismo di anelli}$ • Th $-\operatorname{im}(f) \subset B \text{ sottoanello}$

Teorema 84

Hp

 f: Z → C - {0}: k → ζ^k
 f morfismo di gruppi (Z, +) e (C - {0},·)
 I(n) ideale generato da n

 Th

 ker(f) = I(n)

Teorema 85

• Hp $-G, H \text{ gruppi} \\ -f: G \to H \text{ morfismo}$ • Th $-\ker(f) \subset G \text{ sottogruppo normale}$

Gruppi diedrali

- Gruppo diedrale
 - $n \in \mathbb{N}_{\geq 2}$
 - D_n è l'insieme delle simmetrie dell'n-gono regolare

- l'insieme delle rotazioni che lasciano l'n-gono invariato, e delle riflessioni rispetto agli assi di simmetria
- ρ := rotazione di ^{360r}/_n gradi di un n-gono regolare
 σ_i := riflessione rispetto all'i-esimo asse di simmetria dell'n-gono regolare

- Hp

 - $-D_n$ insieme delle simmetrie dell'n-gono regolare
- Th
 - $-|D_n| = 2n$

Teorema 87

- Hp
 - $-n \in \mathbb{N}_{\geq 2}$
 - D_n insieme delle simmetrie dell'n-gono regolare
 - $-\cdot$ è l'operazione di composizione delle simmetrie
- - $-(D_n,\cdot)$ è un gruppo

Teorema 88

- Hp
 - $-D_2$ gruppo diedrale
- - $-(D_2,\cdot)$ è l'unico gruppo diedrale abeliano

Teorema 89

- - $-D_n$ gruppo diedrale
- Th
 - $-D_n \hookrightarrow S_n$
 - $\ \exists X \subset S_n$ sottogruppo di $S_n \mid D_n \cong X$ $* D_3 \cong S_3$
- Definizione 30
 - Gruppo di Klein

 - $K_4 := \{1, a, b, c\}$ $a^2 = b^2 = c^2 = 1$
 - ab = c = ba
 - ac = b = ca
 - cb = a = bc

Teorema 90

• Hp

 $-K_4$ è il gruppo di Klein

$$-K_4 \cong D_2$$

Polinomi

Definizione 31

- Polinomi

 - $a(x) := \sum_{k=0}^{n} a_k x^k = a_0 x^0 + \ldots + a_n x^n$ è un **polinomio**
 - $\mathbb{K}[x]:=\{a_0x^0+\ldots+a_nx^n\mid a_0,\ldots,a_n\in\mathbb{K}\}$ è l'insieme dei polinomi a coefficienti in $\mathbb K$
 - $p(x) = a_0 x^0 + \ldots + a_n x^n \in \mathbb{K}[x]$ è detto **polinomio monico** $\iff a_n = 1$

Teorema 91

- Hp
 - $-(\mathbb{K},+,\cdot)$ anello
- Th
 - $(\mathbb{K}[x], +, \cdot)$ è un anello

Definizione 32

- Grado del polinomio
 - K campo

 - $a(x) = a_0 x^0 + \ldots + a_n x^n \in \mathbb{K}[x]$ $\deg(a(x)) := \begin{cases} n & a(x) \neq 0 \\ -\infty & a(x) = 0 \end{cases}$

Teorema 92

- Hp
 - \mathbb{K} campo
 - $-a(x), b(x) \in \mathbb{K}[x]$
- Th
 - $\deg(a(x) \cdot b(x)) = \deg(a(x)) + \deg(b(x))$

- Hp
 - $-\mathbb{K}$ campo
 - $-a(x) \in \mathbb{K}[x] \mid \deg(a(x)) \ge 1$
- - $\not \exists a^{-1}(x) \in \mathbb{K}[x]$

- Hp
 - − K campo
- Th
 - $\mathbb{K}[x]^* = \mathbb{K}^* \subset \mathbb{K}[x]$

Teorema 95

- Hp
 - \mathbb{K} campo
- Th
 - $\mathbb{K}[x]$ è un dominio di integrità

Definizione 33

- Radici di un polinomio
 - \mathbb{K} campo
 - $p(x) \in \mathbb{K}[x]$
 - $\{c \in \mathbb{K} \mid p(c) = 0\}$ è l'insieme delle radici di p(x)

Teorema 96

- Hp
 - − K campo
 - $-p(x) \in \mathbb{K}[x]$ $-c \in \mathbb{K}$
- Th
 - $-p(c) = 0 \iff x c \mid p(x)$

Teorema 97

- Hp
 - \mathbb{K} campo
 - $-p(x) \in \mathbb{K}[x]$
 - $-n := \deg(p(x))$
- - $|\{c \in \mathbb{K} \mid p(c) = 0\}| \le n$

Teorema 98

- Hp
 - \mathbbm{K} campo
 - $-I \subset \mathbb{K}[x]$ ideale
- Th
 - $-\ I$ è un ideale principale

Teorema 99

• Hp

```
- \mathbb{K} campo

- I(a_1(x)), \dots, I(a_n(x)) \subset \mathbb{K}[x] ideali

- \exists d(x) \in \mathbb{K}[x] \mid I(a_1(x), \dots, a_n(x)) = I(d(x))

• Th

- d(x) = \text{MCD}(a_1(x), \dots, a_n(x))
```

• Hp

- \mathbb{K} campo

- $I(a_1(x)), \dots, I(a_n(x)) \subset \mathbb{K}[x]$ ideali

- $\exists m(x) \in \mathbb{K}[x] \mid I(a_1(x)) \cap \dots \cap I(a_1(x)) = I(m(x))$ • Th

- $m(x) = \text{mcm}(a_1(x), \dots, a_n(x))$

Teorema 101

• Hp
$$- \mathbb{K} \text{ campo} \\
- a_1(x), \dots, a_n(x) \in \mathbb{K}[x] \\
- c \in \mathbb{K} \\
- d(x) := \text{MCD}(a_1(x), \dots, a_n(x))$$
• Th
$$- a_1(c) = \dots = a_n(c) = 0 \iff d(c) = 0$$

Teorema 102

• Hp $- \mathbb{K} \text{ campo} \\ - p(x) \in \mathbb{K}[x]$ • Th $- p(x) \in \mathbb{K}[x] \text{ irriducibile } \iff p(x) \text{ primo}$

Teorema 103

• Hp $- \mathbb{K} \text{ campo} \\ - p(x) \in \mathbb{K}[x] - \{0\}$ • Th $- \exists ! q_1(x), \dots, q_k(x) \in \mathbb{K}[x] \text{ irriducibili e monici, } c \in \mathbb{K} - \{0\} \mid p(x) = c \cdot q_1(x) \cdot \dots \cdot q_k(x)$ - in particolare, i polinomi sono unici a meno di un riordinamento

Teorema 104

• Hp $- \mathbb{K} \text{ campo} \\ - p(x) \in \mathbb{K}[x]$ • Th $- p(x) \text{ irriducibile } \iff \deg(p(x)) = 1$

- Hp $-p(x)\in\mathbb{R}[x]$ Th $-p(x) \text{ irriducibile } \iff \deg(p(x))=1 \text{ oppure } \deg(p(x))=2\land\Delta<0$
- Teorema 106
 - **Hp** $a_0, \dots, a_n \in \mathbb{Z} \mid a_0, a_n \neq 0$ $p(x) \in \mathbb{Z}[x] \mid p(x) = a_0 + \dots + a_n x^n$ $a, b \in \mathbb{Z} \mid \text{MCD}(a, b) = 1$ $p(\frac{a}{b}) = 0$ **Th** $a \mid a_0 \land b \mid a_n$

Teorema 107

• !!! MANCA UN TEOREMA ENORME

Spazi Vettoriali

Definizione 34

- Spazio vettoriale
 - K campo
 - $x \in \mathbb{K}$ è detto scalare
 - V è spazio vettoriale su $\mathbb{K} \iff (V,+)$ gruppo abeliano, è ben definita un'operazione di $\cdot: K \times V \to V$ che ammetta elemento neutro, inoltre $\forall s,t \in \mathbb{K}, v \in V \quad s \cdot (t \cdot v) = (s \cdot t) \cdot v, (s+t) \cdot v = s \cdot v + t \cdot v$ e infine $\forall s \in \mathbb{K}, v, w \in V \quad s \cdot (v+w) = s \cdot v + s \cdot w$
 - $x \in V$ è detto **vettore**
- Spazio di Hilbert
 - \mathbb{K} campo
 - V spazio vettoriale su \mathbb{K}
 - V spazio di Hilbert \iff in V è ben definito il prodotto scalare

- Hp
 - $\begin{array}{l}
 -n \in \mathbb{N} \\
 -\mathbb{K} \text{ campo}
 \end{array}$
- Th
 - \mathbb{K}^n spazio vettoriale su \mathbb{K}

Definizione 35

- Sottospazio vettoriale
 - \mathbb{K} campo
 - V spazio vettoriale su \mathbb{K}
 - W è sottospazio vettoriale di $V\iff (W,+)\subset (V,+)$ sottogruppo, e $\forall w\in W, \lambda\in \mathbb{K} \quad \lambda\cdot w\in W$

Definizione 36

- Span di vettori
 - $n \in \mathbb{N}$
 - K campo
 - V spazio vettoriale su \mathbb{K}
 - $v_1, \ldots, v_n \in V$
 - span $(v_1, \ldots, v_n) := \{\lambda_1 v_1 + \ldots + \lambda_n v_n \mid \lambda_1, \ldots, \lambda_n \in \mathbb{K}\}$, ovvero l'insieme delle combinazioni lineari degli v_1, \ldots, v_n

Teorema 109

- Hp
 - $-n \in \mathbb{N}$
 - \mathbbm{K} campo
 - Vspazio vettoriale su $\mathbb K$
 - $-v_1,\ldots,v_n\in V$
- Th
 - $-\operatorname{span}(v_1,\ldots,v_n)$ è un sottospazio vettoriale di V

- Vettori generatori
 - $n \in \mathbb{N}$
 - \mathbb{K} campo
 - V spazio vettoriale su \mathbb{K}
 - $v_1, \ldots, v_n \in V$
 - v_1, \ldots, v_n sono **generatori di** $V \iff \operatorname{span}(v_1, \ldots, v_n) = V$
 - equivalentemente, ogni altro vettore in V è una combinazione lineare degli v_1,\dots,v_n
- Indipendenza lineare
 - $n \in \mathbb{N}$
 - K campo
 - V spazio vettoriale su \mathbb{K}
 - $v_1, \ldots, v_n \in V$
 - v_1, \ldots, v_n sono linearmente indipendenti se e solo se $\lambda_1 v_1 + \ldots + \lambda_n v_n = 0_V \iff \lambda_1 = \ldots = \lambda_n = 0_K$
 - equivalentemente, nessuno degli v_1,\dots,v_n è combinazione lineare degli altri
- Base di uno spazio vettoriale

- $n \in \mathbb{N}$
- K campo
- V spazio vettoriale su \mathbb{K}
- $v_1, \ldots, v_n \in V$
- v_1, \ldots, v_n sono una base di $V \iff v_1, \ldots, v_n$ sono generatori di V e linearmente indipendenti
- n è detta cardinalità della base di V

- Hp
 - $-n \in \mathbb{N}$
 - $\mathbb{K} \text{ campo}$
 - $-e_1 := (1, 0, \dots, 0), \dots, e_n := (0, \dots, 0, 1) \in \mathbb{K}^n$
- Th
 - $-e_1,\ldots,e_n$ sono una base di \mathbb{K}^n , ed è detta base canonica

Teorema 111

- Hp
 - $-n \in \mathbb{N}$
 - \mathbb{K} campo
 - -V spazio vettoriale su \mathbb{K}
 - $-v_1,\ldots,v_n\in V$
- Th
 - $-v_1,\ldots,v_n$ linearmente indipendenti $\iff v_1,\ldots,v_{n-1}$ linearmente indipendenti $\land v_n \notin \operatorname{span}(v_1,\ldots,v_{n-1})$

Teorema 112

- **Hp**
 - $-m, k \in \mathbb{N}$
 - − K campo
 - Vspazio vettoriale su $\mathbb K$
 - $-w_1,\ldots,w_m\in V$
 - $-\ v_1,\ldots,v_k\in \operatorname{span}(w_1,\ldots,w_m)\mid v_1,\ldots,v_k$ linearmente indipendenti
- Th
 - $-k \leq m$

- Hp
 - $-n, m \in \mathbb{N}$
 - K campo
 - Vspazio vettoriale su $\mathbb K$
 - $-\ w_1, \dots, w_m \in V \mid w_1, \dots, w_m$ base di V
 - $-\ v_1, \ldots, v_n \in V \mid v_1, \ldots, v_n$ base di V
- Th
 - $-\ n=m,$ il che implica che la cardinalità delle basi di uno spazio vettoriale è unica

Definizione 38

- Base ortogonale di uno spazio di Hilbert
 - $n \in \mathbb{N}$
 - K campo
 - V spazio di Hilbert su \mathbb{K}
 - v_1, \ldots, v_n base di V
 - v_1, \ldots, v_n base ortogonale di $V \iff \forall i, j \in [1, n], i \neq j \quad v_i \cdot v_j = 0$
- Base ortonormale di uno spazio di Hilbert
 - $n \in \mathbb{N}$
 - K campo
 - V spazio di Hilbert su \mathbb{K}
 - v_1, \ldots, v_n base ortogonale di V
 - v_1, \ldots, v_n base ortonormale di $V \iff \forall i, j \in [1, n]$ $v_i \cdot v_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$
 - in particolare, è possibile ottenere v_1, \ldots, v_n a partire da e_1, \ldots, e_n tramite rotazioni e riflessioni

Teorema 114

- Hp
 - $-n \in \mathbb{N}$
 - \mathbbm{K} campo
 - $-v \in \mathbb{K}^n$
 - $-v_1,\ldots,v_k$ base ortonormale di \mathbb{K}^n
- Th

$$-v = (v \cdot v_1)v_1 + \ldots + (v \cdot v_n)v_n$$

Teorema 115

- Hp
 - $-n \in \mathbb{N}$
 - − K campo
 - $-A \in O(n)$
- Th
 - $-A_1, \ldots, A_n \in A^1, \ldots, A^n$ basi ortonormali di \mathbb{K}^n

Definizione 39

- Dimensione di uno spazio vettoriale
 - K campo
 - V spazio vettoriale su \mathbb{K}
 - $\dim(V)$ è detta **dimensione di** V, ed è la cardinalità delle basi di V

- Hp
 - $-n \in \mathbb{N}$

```
- \mathbb{K} campo
```

- Vspazio vettoriale su $\mathbb K$

$$-v_1,\ldots,v_n\in V$$

• Th

$$-v_1, \ldots, v_n$$
 base di $V \iff \forall v \in V \quad \exists! \lambda_1, \ldots, \lambda_n \in \mathbb{K} \mid v = \lambda_1 v_1 + \ldots + \lambda_n v_n$

Teorema 117

• Hp

− K campo

- Wspazio vettoriale su $\mathbb K$

 $-n := \dim(W)$

 $-k \in \mathbb{N} \mid k < n$

 $-\ w_1, \dots, w_k \in W$ linearmente indipendenti

• Th

$$- \exists w_{k+1}, \dots, w_n \in W \mid w_1, \dots, w_n$$
è una base di W

Teorema 118

• Hp

− K campo

- Wspazio vettoriale su $\mathbb K$

 $-n := \dim(W)$

 $-m \in \mathbb{N} \mid m \geq n$

 $-w_1,\ldots,w_m\in W\mid w_1,\ldots,w_m$ generatori di W

• Th

$$-\exists 1 \leq i_1, \ldots, i_n \leq m \mid w_{i_1}, \ldots, w_{i_n}$$
è una base di W

Teorema 119

• Hp

 $- \mathbb{K} \text{ campo}$

- Wspazio vettoriale su $\mathbb K$

 $-n := \dim(W)$

 $-w_1,\ldots,w_n\in W$

• Th

 $-w_1,\ldots,w_n$ linearmente indipendenti $\iff w_1,\ldots,w_n$ generatori di W

Teorema 120

- Hp
 - − K campo
 - Wspazio vettoriale su $\mathbb K$
 - $U,V\subset W$ sottospazi vettoriali

• Th

$$-\dim(U+V) = \dim(U) + \dim(V) - \dim(U \cap V)$$

Teorema 121

• Hp

- \mathbb{K} campo
- Vspazio vettoriale su $\mathbb K$
- $-W \subset V$ sottospazio vettoriale
- Th
 - -V/W sottospazio vettoriale

- Hp
 - − K campo
 - Vspazio vettoriale su $\mathbb K$
 - $-W \subset V$ sottospazio vettoriale
- Th

$$-\dim(V/W) = \dim(V) - \dim(W)$$

Teorema 123

- Hp
 - $\mathbb{K} \text{ campo}$
 - $-k \in \mathbb{N}$
 - $-\ V_1, \ldots, V_k$ spazi vettoriali su $\mathbb K$
- Th

$$-\dim(V_1 \times \ldots \times V_k) = \dim(V_1) \cdot \ldots \cdot \dim(V_k)$$

Applicazioni lineari

Definizione 40

- Applicazioni lineari
 - K campo
 - V e W spazi vettoriali su \mathbb{K}
 - $f: V \to W$ morfismo di spazi vettoriali $\iff \forall x, y \in V \quad f(x+y) = f(x) + f(y)$ e $\forall v \in V, \lambda \in \mathbb{K} \quad f(\lambda v) = \lambda f(v)$
 - un morfismo su spazi vettoriali è detto anche applicazione lineare o trasformazione lineare

Teorema 124

- Hp
 - − K campo
 - Vspazio vettoriale su $\mathbb K$
 - $-n := \dim(V)$
- Th
 - $-V \cong \mathbb{K}^n$

Teorema 125

• !!! QUI C'È UN BUCO DI COSE CHE NON HO CAPITO

• Hp

 $- \mathbb{K} \text{ campo}$

-V,W spazi vettoriali su \mathbb{K}

• Th

 $-V \cong W \iff \dim(V) = \dim(W)$

Definizione 41

- Kernel e immagine
 - \mathbb{K} campo
 - V, W spazi vettoriali su \mathbb{K}
 - $f: V \to W$ trasformazione lineare
 - $\ker(f) = \{ v \in V \mid f(v) = 0_W \}$
 - $\operatorname{im}(f) = \{ w \in W \mid \exists v \in V : w = f(v) \}$

Teorema 127

• Hp

- \mathbb{K} campo

- V,Wspazi vettoriali su $\mathbb K$

 $- f: V \to W$ trasformazione lineare

• Th

 $-\ker(f) \subset V$ sottospazio

Teorema 128

• Hp

 $-\mathbb{K}$ campo

-V,W spazi vettoriali su \mathbb{K}

 $-\ f:V\to W$ trasformazione lineare

• Th

 $-\operatorname{im}(f) \subset W$ sottospazio

Definizione 42

- Rango di un'applicazione lineare
 - K campo
 - V e W spazi vettoriali su \mathbb{K}
 - $f:V \to W$ applicazione lineare
 - $\operatorname{rk}(f) := \dim(\operatorname{im}(f))$ è detto rango di f

Sottospazi affini

Teorema 129

• !!! TODO

 $- \mathbb{K} \text{ campo}$

 $-m, n \in \mathbb{N} - \{0\}$

 $-A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$

 $-b \in \mathrm{Mat}_{m \times 1}(\mathbb{K})$

 $-X := \{ x \in \operatorname{Mat}_{n \times 1}(\mathbb{K}) \mid A \cdot x = b \}$

 $-X \neq \emptyset$

• Th

-X sottospazio affine di \mathbb{K}^n , con dimensione pari a $n-\mathrm{rk}(A)$

Matrici

Definizione 43

• Matrici

- K campo
- $m, n \in \mathbb{N} \{0\}$
- $\operatorname{Mat}_{m \times n}(\mathbb{K})$ è l'insieme delle matrici aventi m righe e n colonne a coeffi-

• Vettori riga e vettori colonna

- K campo
- $m, n \in \mathbb{N} \{0\}$
- $\forall A \in \mathrm{Mat}_{1 \times n}(\mathbb{K})$ $A = (x_1, \dots, x_n)$ è detto **vettore riga**

•
$$\forall A \in \mathrm{Mat}_{m \times 1}(\mathbb{K})$$
 $A = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$ è detto **vettore colonna**

• $\forall A \in \operatorname{Mat}_{1 \times n}(\mathbb{K})$ $A = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$ è detto **vettore riga**• $\forall A \in \operatorname{Mat}_{m \times 1}(\mathbb{K})$ $A = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$ è detto **vettore colonna**• $\forall A \in \operatorname{Mat}_{m \times n}(\mathbb{K})$ $\exists A^1, \dots, A^n \in \mathbb{K}^m$ vettori colonna e $A_1, \dots, A_m \in \mathbb{K}^n$ vettori riga $|A = (A^1, \dots, A^n) = \begin{pmatrix} A_1 \\ \vdots \\ A_m \end{pmatrix}$

Definizione 44

• Somma tra matrici

- K campo
- $m, n \in \mathbb{N} \{0\}$
- $\forall i \in [1, m], j \in [1, n]$ $a_{i,j}, b_{i,j} \in \mathbb{K}$

•
$$A, B \in \operatorname{Mat}_{m \times n}(\mathbb{K}) \mid A = \begin{pmatrix} \ddots & & \\ & a_{i,j} & \\ & & \ddots \end{pmatrix} \wedge B = \begin{pmatrix} \ddots & & \\ & b_{i,j} & \\ & & \ddots \end{pmatrix}$$

•
$$A+B=\left(egin{array}{ccc} \cdot \ . & & \\ & a_{i,j}+b_{i,j} & \\ & & \ddots \end{array}
ight)$$
è la somma tra A e B

- Hp
 - − K campo
 - $-m, n \in \mathbb{N} \{0\}$
- Th
 - $\operatorname{Mat}_{m \times n}(\mathbb{K})$ è uno spazio vettoriale

Definizione 45

- Prodotto tra matrici
 - K campo
 - $l, m, n \in \mathbb{N} \{0\}$

•
$$A \in \operatorname{Mat}_{l \times m}(\mathbb{K}) \mid A = \begin{pmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{l,1} & \cdots & a_{l,m} \end{pmatrix}$$

•
$$l, m, n \in \mathbb{N} - \{0\}$$

• $A \in \operatorname{Mat}_{l \times m}(\mathbb{K}) \mid A = \begin{pmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{l,1} & \cdots & a_{l,m} \end{pmatrix}$
• $B \in \operatorname{Mat}_{m \times n}(\mathbb{K}) \mid B = \begin{pmatrix} b_{1,1} & \cdots & b_{1,n} \\ \vdots & \ddots & \vdots \\ b_{m,1} & \cdots & b_{m,n} \end{pmatrix}$
• $C \in \operatorname{Mat}_{l \times n}(\mathbb{K}) \mid C = AB$ è il **prodotto**

•
$$C \in \operatorname{Mat}_{l \times n}(\mathbb{K}) \mid C = AB$$
 è il **prodotto tra** A **e** B , ed è definito come
$$\begin{pmatrix} a_{1,1}b_{1,1} + \ldots + a_{1,m}b_{m,1} & \cdots & a_{1,1}b_{1,n} + \ldots + a_{1,m}b_{m,n} \\ \vdots & \ddots & \vdots \\ a_{l,1}b_{1,1} + \ldots + a_{l,m}b_{m,1} & \cdots & a_{l,1}b_{1,n} + \ldots + a_{l,m}b_{m,n} \end{pmatrix}$$

Teorema 132

- Hp
 - K campo
 - $-\lambda \in \mathbb{K}$
 - $-l, m, n, k \in \mathbb{N} \{0\}$
 - $-A \in \mathrm{Mat}_{l \times m}(\mathbb{K})$
 - $-B \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
- Th
 - !!! TODO
 - $\forall C \in \operatorname{Mat}_{n \times k}(\mathbb{K}) \quad (AB)C = A(BC)$
 - $\forall C \in \operatorname{Mat}_{m \times n}(\mathbb{K}) \quad A(B+C) = AB + AC$
 - $\forall C \in \operatorname{Mat}_{n \times k}(\mathbb{K}) \quad (A+B)C = AC + BC$
 - $-\lambda(AB) = (\lambda A)B = A(\lambda B)$

Teorema 133

• Hp − K campo

$$\lambda \in \mathbb{K}$$
 $-n \in \mathbb{N} - \{0\}$
• Th
 $-(\mathrm{Mat}_{n \times n}(\mathbb{K}), +, \cdot)$ è un anello

Interpretazione geometrica dei vettori

Definizione 46

- Prodotto scalare
 - K campo
 - $n \in \mathbb{N} \{0\}$

•
$$u, v \in \mathbb{K}^n \mid u = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, v = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

• $u \cdot v := \sum_{i=1}^n x_i \cdot y_i$ è il prodotto scalare tra u e v

Teorema 134

• Hp
$$-n \in \mathbb{N} - \{0\}$$

$$-u, v \in \mathbb{K}^n$$

• Th

$$-u \cdot v = v \cdot u$$

$$-\forall w \in \mathbb{K}^n \quad u \cdot (v + w) = u \cdot v + u \cdot w$$

$$-u \cdot (\lambda v) = \lambda (u \cdot v)$$

Definizione 47

- Norma di un vettore
 - K campo
 - $n \in \mathbb{N} \{0\}$

•
$$u \in \mathbb{K}^n \mid u = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

• $||u|| := \sqrt{x_1^2 + \ldots + x_n^2}$ è detta norma di u

- graficamente, corrisponde alla lunghezza del vettore u nel piano cartesiano

$$-n \in \mathbb{N} - \{0\}$$

$$-u \in \mathbb{K}^n \mid u = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$-||u|| = \sqrt{u \cdot u}$$

Matrici particolari

Definizione 48

- Vettore trasposto
 - \mathbb{K} campo
 - $n \in \mathbb{N}$

•
$$n \in \mathbb{N}$$

• $v \in \operatorname{Mat}_{n \times 1}(\mathbb{K}) \mid \exists x_1, \dots, x_n \in \mathbb{K} : v = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

- $v^T = (x_1, \dots, x_n)$ è il vettore trasposto di v
 - vicendevolmente, se v è un vettore riga, il suo trasposto sarà il corrispondente vettore colonna
- Matrice trasposta
 - $m, n \in \mathbb{N} \{0\}$
 - K campo
 - $A \in \operatorname{Mat}_{m \times n}(\mathbb{K}) \mid A = (A^1, \dots, A^n)$

•
$$A^T = \begin{pmatrix} A^{1T} \\ \vdots \\ A^{nT} \end{pmatrix}$$
 è la matrice trasposta di A

- $-\,$ vale il ragionamento analogo considerando le righe di A al posto delle colonne
- Matrice simmetrica
 - $n \in \mathbb{N} \{0\}$
 - K campo
 - $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$
 - Aè detta simmetrica $\iff A^T = A$

Teorema 136

• Hp

$$-m, n \in \mathbb{N} - \{0\}$$

- − K campo
- $-A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
- $-B \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
- Th

$$- (A \cdot B)^T = B^T \cdot A^T$$

Definizione 49

- Matrice identità
 - K campo
 - $n \in \mathbb{N} \{0\}$

•
$$n \in \mathbb{N} - \{0\}$$
• $I_n = \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix} = \begin{pmatrix} e_1^T, \dots, e_n^T \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ \vdots & \ddots & & & \vdots \\ 0 & \cdots & 1 & \cdots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}$ è detta matrice identità

identità

- Matrice invertibile
 - K campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$
 - A invertibile $\iff \exists A^{-1} \in \operatorname{Mat}_{n \times n}(\mathbb{K}) \mid A \cdot A^{-1} = A^{-1} \cdot A = I_n$
- Gruppo Generale Lineare
 - K campo
 - $n \in \mathbb{N} \{0\}$
 - $GL(n, \mathbb{K}) := \{A \in Mat_{n \times n}(\mathbb{K}) \mid A \text{ invertibile}\}\ e \text{ detto } \mathbf{gruppo} \text{ } \mathbf{generale} \text{ } \mathbf{lineare}$ invertibile

Teorema 137

- Hp
 - \mathbb{K} campo
- $-n \in \mathbb{N} \{0\}$
- Th
 - $(\operatorname{GL}(n, \mathbb{K}), \cdot)$ è un gruppo

Teorema 138

- - − K campo
 - $-n \in \mathbb{N} \{0\}$
 - $f: GL(n, \mathbb{K}) \to \mathbb{K}^*$
- Th
 - -f morfismo di gruppi

- Matrice ortogonale
 - K campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{GL}(n, \mathbb{K})$
 - A è detta ortogonale $\iff A \cdot A^T = A^T \cdot A = I_n$

– in particolare $A^{-1} = A^T$

- Gruppo ortogonale
 - K campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in GL(n, \mathbb{K})$
 - $O(n) := \{A \in GL(n, \mathbb{K}) \mid A \text{ ortogonale} \}$ è detto **gruppo ortogonale**

Definizione 51

- Gruppo Speciale Lineare
 - K campo
 - $n \in \mathbb{N} \{0\}$
 - $SL(n, \mathbb{K}) := \{A \in Mat_{n \times n}(\mathbb{K}) \mid det(A) = 1\}$ è detto gruppo generale lineare invertibile

Definizione 52

- Matrici simili
 - \mathbb{K} campo
 - $n \in \mathbb{N} \{0\}$
 - $A, B \in \mathrm{Mat}_{n \times n}(\mathbb{K})$
 - A simile a $B \iff \exists C \in \mathrm{GL}(n, \mathbb{K}) \mid A = C^{-1}BC$

Definizione 53

- Traccia
 - K campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$
 - $\operatorname{tr}(A) := a_{1,1} + \ldots + a_{n,n}$ è detta **traccia di** A

Teorema 139

- Hp
 - \mathbb{K} campo
 - $-n \in \mathbb{N} \{0\}$
 - $-A, B \in \operatorname{Mat}_{n \times n}(\mathbb{K}) \mid A \text{ simile a } B$
- Th
 - $-\operatorname{tr}(A) = \operatorname{tr}(B)$

- Matrice triangolare superiore
 - \mathbb{K} campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$
 - A è detta triangolare superiore $\iff \forall i,j \in [1,n], i>j$ $a_{i,j}=0$

- Matrice triangolare inferiore
 - K campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$
 - A è detta triangolare inferiore $\iff \forall i, j \in [1, n], i < j \quad a_{i,j} = 0$
- Matrice triangolare
 - \mathbb{K} campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{n \times n}(\mathbb{K})$
 - A è detta **triangolare** \iff A triangolare superiore o triangolare inferiore
- Matrice triangolarizzabile
 - K campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{n \times n}(\mathbb{K})$
 - A è detta **triangolarizzabile** $\iff \exists B \in \mathrm{Mat}_{n \times n}(\mathbb{K}) \mid B$ triangolare $\land B$ simile ad A
- Matrice diagonale
 - \mathbb{K} campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$
 - Aè detta diagonale $\iff \forall i,j \in [1,n], i \neq j \quad a_{i,j} = 0$
 - -in particolare, A è diagonale $\iff A$ triangolare superiore ed inferiore
- Matrice diagonalizzabile
 - \mathbb{K} campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{n \times n}(\mathbb{K})$
 - A è detta diagonalizzabile $\iff \exists B \in \operatorname{Mat}_{n \times n}(\mathbb{K}) \mid B$ diagonale $\land B$ simile ad A

- Hp
 - − K campo
 - $-n \in \mathbb{N} \{0\}$
 - $-A \in \mathrm{Mat}_{n \times n}(\mathbb{K}) \mid A$ diagonalizzabile
- Th
 - A triangolarizzabile

- Sottomatrice di una matrice
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$

- A_i^j è una sottomatrice di $A \iff A_i^j$ si ottiene rimuovendo A_i e A^j da A
- Minore di una matrice
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - M è un minore di $A \iff M$ è una sottomatrice quadrata di A
- Orlato di un minore
 - K campo
 - $m, n, r \in \mathbb{N} \{0\} \mid r < m \land r < n$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $M \in \operatorname{Mat}_{r \times r}(\mathbb{K})$ è un minore di A
 - $M' \in \mathrm{Mat}_{(r+1) \times (r+1)}(\mathbb{K})$ è un **orlato di** $M \iff M'$ è un minore di A e M si ottiene rimuovendo una riga e una colonna da M'

- Hp
 - − K campo
 - $-m, n, r \in \mathbb{N} \{0\} \mid r < m \land r < n$
 - $-A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $-M \in \mathrm{Mat}_{r \times r}(\mathbb{K})$ è un minore di A
- - -M ha $(m-r)\cdot(n-r)$ orlati in A

Definizione 56

- Matrice completa
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $b \in \mathrm{Mat}_{m \times 1}(\mathbb{K})$

$$\bullet \ A_b := \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m,1} & \cdots & a_{m,n} & b_m \end{pmatrix}$$

- Matrice di un'applicazione lineare
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - V, W spazi vettoriali su \mathbb{K}
 - $\mathcal{B} = \{v_1, \dots, v_n\}$ base di V
 - $C = \{w_1, \dots, w_m\}$ base di W
 - $f: V \to W$ isomorfismo

 - $\varphi_{\mathcal{B}}: \mathbb{K}^N \to V$ isomorfismo $\varphi_{\mathcal{C}}: \mathbb{K}^M \to W$ isomorfismo

• $A \in \operatorname{Mat}_{m \times n}(\mathbb{K}) \mid f = \varphi_{\mathcal{C}} \cdot L_A \cdot \varphi_{\mathcal{B}}^{-1}$ è detta **matrice di** f— è possibile dimostrare che $\forall f$ applicazione lineare $\exists ! A \in \operatorname{Mat}_{m \times n}(\mathbb{K})$

Rango

Definizione 58

- Sottospazio ortogonale
 - K campo
 - $n \in \mathbb{N} \{0\}$
 - $V \subset \mathbb{K}^n$ sottospazio vettoriale
 - V[⊥] := {w ∈ Kⁿ | ∀v ∈ V | w · v = 0_{Kⁿ}} è detto sottospazio ortogonale di Kⁿ
 la definizione ha significato poiché il prodotto scalare tra due vettori è nullo esattamente quando i due vettori sono perpendicolari tra loro, per osservazione precedente

Teorema 142

- Hp
 - $\mathbb{K} \text{ campo}$
 - $-n \in \mathbb{N} \{0\}$
 - $-V\subset\mathbb{K}^n$ sottospazio vettoriale
- Th
 - $-\ V^{\perp}$ è sottospazio vettoriale di \mathbb{K}^n

Teorema 143

- Hp
 - − K campo
 - $-n \in \mathbb{N} \{0\}$
 - $V\subset \mathbb{K}^n$ sottospazio vettoriale
- Th

$$-\dim(V^{\perp}) = \dim(\mathbb{K}^n) - \dim(V)$$

Definizione 59

- Moltiplicazione sinistra
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $L_A: \mathbb{K}^n \to \mathbb{K}^m: x \to A \cdot x$ è detta moltiplicazione sinistra di A

- Hp
 - \mathbb{K} campo
 - $-m, n \in \mathbb{N} \{0\}$

```
-A \in \mathrm{Mat}_{m \times n}(\mathbb{K})
```

• Th

 $-L_A$ è una trasformazione lineare

Teorema 145

• Hp

$$-\mathbb{K}$$
 campo

$$-\ m,n\in\mathbb{N}-\{0\}$$

 $-A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$

• Th

$$-\ker(L_A) = \operatorname{span}(A_1, \dots, A_m)^{\perp}$$

$$-\operatorname{im}(L_A) = \operatorname{span}(A^1, \dots, A^n)$$

Definizione 60

- Rango di una matrice
 - \mathbb{K} campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $\operatorname{rk}(A) := \operatorname{rk}(L_A)$ è il **rango di** A

Teorema 146

• Hp

$$-\mathbb{K}$$
 campo

$$-m, n \in \mathbb{N} - \{0\}$$

$$-A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$$

• Th

$$-\operatorname{rk}(A) = \dim(\operatorname{span}(A^1, \dots, A^n)) = \dim(\operatorname{span}(A_1, \dots, A_n))$$

Operazioni su righe e colonne

- Scambio di righe di una matrice
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $\forall A_1, \ldots, A_m$ righe di A, scambiare A_i e A_j lascia invariato $\ker(L_A)$
- Moltiplicazione di una riga per una costante
 - \mathbb{K} campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $\lambda \in \mathbb{K}^*$
 - $\forall A_1, \ldots, A_m$ righe di A, moltiplicare A_i per λ lascia invariato $\ker(L_A)$

- Somma di una riga con un multiplo di un'altra
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $\lambda \in \mathbb{K}^*$
 - $\forall A_1, \ldots, A_m$ righe di A, sommare ad A_i un certo $\lambda \cdot A_i$ lascia invariato $\ker(L_A)$
- Scambio di colonne di una matrice
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $\forall A^1, \ldots, A^m$ colonne di A, scambiare A^i e A^j lascia invariato im (L_A)
- Moltiplicazione di una colonna per una costante
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - λ ∈ K^{*}
 - $\forall A^1, \ldots, A^m$ colonne di A, moltiplicare A^i per λ lascia invariato im (L_A)
- Somma di una colonna con un multiplo di un'altra
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $\lambda \in \mathbb{K}^*$
 - $\forall A^1, \dots, A^m$ righe di A, sommare ad A^i un certo $\lambda \cdot A^j$ lascia invariato im (L_A)

- Hp
 - $\mathbb{K} \text{ campo}$
 - $-m, n \in \mathbb{N} \{0\}$
 - $-A, B \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $-A \equiv B \iff$ è possibile ricavare B da A eseguendo operazioni tra righe definite precedentemente
- Th
 - $-\equiv$ una relazione di equivalenza

- Hp
 - \mathbbm{K} campo
 - $-m,n\in\mathbb{N}-\{0\}$
 - $-A, B \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $-\ A \equiv B \iff$ è possibile ricavare B da A eseguendo operazioni $tra\ righe$ definite precedentemente
- Th
 - $-A \equiv B \implies \ker(L_A) = \ker(L_B) \wedge \operatorname{rk}(A) = \operatorname{rk}(B)$

- Hp

 - $-m, n \in \mathbb{N} \{0\}$
 - $-A, B \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $A \equiv B \iff$ è possibile ricavare B da A eseguendo operazioni tra colonne definite precedentemente
- Th
 - \equiv una relazione di equivalenza

Teorema 150

- Hp
 - − K campo
 - $-m, n \in \mathbb{N} \{0\}$
 - $-A, B \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $A \equiv B \iff$ è possibile ricavare B da A eseguendo operazioni tra colonne definite precedentemente
- Th

$$-A \equiv B \implies \operatorname{im}(L_A) = \operatorname{im}(L_B) \wedge \operatorname{rk}(A) = \operatorname{rk}(B)$$

Determinante

- Applicazione multilineare
 - K campo
 - $k \in \mathbb{N}$
 - V_1, \ldots, V_k, W spazi vettoriali
 - $f: V_1 \times \ldots \times V_k \to W: (v_1, \ldots, v_k) \to w$
 - f multilineare $\iff \forall i \in [1, k], \ \forall v_1 \in V_1, \dots, v_i', v_i'' \in V_i, \dots, v_k \in V_k, \ \forall \lambda, \mu \in \mathbb{K}$ $\mathbb{K} \quad f(v_1, \dots, \lambda v_i' + \mu v_i'', \dots, v_k) = \lambda f(v_1, \dots, v_i', \dots, v_k) + \mu f(v_1, \dots, v_i'', \dots, v_k)$
- Determinante
 - K campo
 - $n \in \mathbb{N} \{0\}$
 - $\det: \operatorname{Mat}_{n \times n}(\mathbb{K}) \to \mathbb{K}$
 - 1. $\forall A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ det multilineare su $A_1, \ldots A_n$ e A^1, \ldots, A^n
 - 2. $\forall A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ $A_1, \dots A_n \in A^1, \dots, A^n$ basi di $\mathbb{K}^n \iff \det(A) \neq 0$
 - $3. \det(I_n) = 1$
 - 4. per $\mathbb{K} \mid 1 \neq -1$ scambiando due righe o due colonne $\det(A)$ cambia segno
 - det è il **determinante** \iff det verifica 1, 2 e 3, oppure 1, 3 e 4

 poiché è possibile dimostrare che la funzione che verifica tali condizioni esiste ed è unica, allora il det è totalmente determinato da tali caratteristiche

Teorema 151

```
• Hp
```

$$\begin{array}{l} - \ \mathbb{K} \ \mathrm{campo} \mid 1 \neq -1 \\ - \ n \in \mathbb{N} - \{0\} \\ - \ f : \mathrm{Mat}_{n \times n}(\mathbb{K}) \to \mathbb{K} \\ 4. \ !!! \ \mathbf{SCRIVI} \end{array}$$

• Th

- !!! DETERMINANTE ALTERNANTE

Definizione 63

- Matrice singolare
 - \mathbb{K} campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$
 - $A \in \text{detta singolare} \iff \det(A) = 0$

Teorema 152

- Hp
 - \mathbb{K} campo
 - $-n \in \mathbb{N} \{0\}$
 - $-A \in \mathrm{Mat}_{n \times n}(\mathbb{K})$
 - $1. \ A \ {\rm invertibile}$
 - $2. \operatorname{rk}(A) = n$
 - 3. A_1, \ldots, A_n base di \mathbb{K}^n
 - 4. A^1, \dots, A^n base di \mathbb{K}^n
 - 5. $\det(A) \neq 0$
 - 6. $A \equiv I_n$ tramite la relazione di equivalenza delle operazioni sulle righe
 - 7. $A \equiv I_n$ tramite la relazione di equivalenza delle operazioni sulle colonne
- Th
 - le proposizioni sono equivalenti

- Hp
 - $-\mathbb{K}$ campo
 - $-n \in \mathbb{N} \{0\}$
 - $-\ A\in \mathrm{Mat}_{n\times n}(\mathbb{K})\ |\ \exists i\in [1,n]: A_i=0_{\mathbb{K}^n} \vee \exists j\in [1,n]: A^j=0_{\mathbb{K}^n},$ ovvero in A è presente o una riga, o una colonna nulla
- Th
 - $-\det(A) = 0$

• Hp

$$- \mathbb{K} \text{ campo}$$

$$- n \in \mathbb{N} - \{0\}$$

$$- A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$$
• Th

$$- \det(A) = \det(A^T)$$

Teorema 155

Teorema 156

• Hp
$$- \mathbb{K} \text{ campo}$$

$$- n \in \mathbb{N} - \{0\}$$

$$- A \in \text{Mat}_{n \times n}(\mathbb{K})$$
• Th
$$- \det(A) = \sum_{\sigma \in S_n} \text{sgn}(\sigma) \cdot \prod_{i=1}^n a_{i,\sigma_i}$$

Teorema 157

• Hp
$$- \mathbb{K} \text{ campo}$$

$$- A \in \text{Mat}_{2 \times 2}(\mathbb{K})$$

$$- A = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix}$$
• Th
$$- \det(A) = a_{1,1}a_{2,2} - a_{1,2}a_{2,1}$$

• Hp
$$- \mathbb{K} \text{ campo} \\ - A \in \text{Mat}_{3\times3}(\mathbb{K}) \\ - A = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix}$$
• Th
$$- \det(A) = a_{1,1}a_{2,2}a_{3,3} + a_{1,3}a_{2,1}a_{3,2} + a_{1,2}a_{2,3}a_{3,1} - a_{1,3}a_{2,2}a_{3,1} - a_{1,1}a_{2,3}a_{3,2} - a_{1,2}a_{2,1}a_{3,3}$$

• **Hp**

$$- \mathbb{K} \text{ campo}$$

$$- n \in \mathbb{N} - \{0\}$$

$$- A \in \text{Mat}_{n \times n}(\mathbb{K}) \mid A \text{ triangolare}$$
• **Th**

$$- \det(A) = a_{1,1} \cdot \ldots \cdot a_{n,n}$$

Teorema 160

• **Hp**

$$- \mathbb{K} \text{ campo}$$

$$- n \in \mathbb{N} - \{0\}$$

$$- \lambda \in \mathbb{K}$$

$$- A \in \text{Mat}_{n \times n}(\mathbb{K})$$

$$- A' = \begin{pmatrix} A_1 \\ \vdots \\ \lambda A_i \\ \vdots \\ A_n \end{pmatrix}$$
• **Th**

$$- \det(A') = \lambda \cdot \det(A)$$

Teorema 161

• Hp
$$- \mathbb{K} \text{ campo}$$

$$- n \in \mathbb{N} - \{0\}$$

$$- A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$$
• Th
$$- \forall 1 \leq i, j \leq n \quad \det(A) = \sum_{k=1}^{n} (-1)^{i+k} \cdot a_{i,k} \cdot \det(A_i^k) = \sum_{h=1}^{n} (-1)^{h+j} \cdot a_{h,j} \cdot \det(A_h^j)$$

Definizione 64

- Aggiunta di una matrice
 - \mathbb{K} campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$
 - A^* è detta aggiunta di $A \iff \forall i, j \in [1, n]$ $a_{i,j}^* = (-1)^{i+j} \cdot \det(A_i^j)$

• Hp

$$- \mathbb{K} \text{ campo} \\
- n \in \mathbb{N} - \{0\} \\
- A \in \text{Mat}_{n \times n}(\mathbb{K}) \mid \det(A) \neq 0$$

• Th
$$- A^{-1} = \frac{(A^*)^T}{\det(A)}$$

• Hp
$$- \mathbb{K} \text{ campo}$$

$$- A \in \text{Mat}_{2 \times 2}(\mathbb{K}) \mid \det(A) \neq 0$$

$$- A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
• Th
$$- A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Polinomio caratteristico

Definizione 65

- K campo
- $n \in \mathbb{N} \{0\}$
- $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$
- $p_A(x) := \det(x \cdot I_n A)$ è detto polinomio caratteristico di A

Teorema 164

Teorema 165

- Autovalore
 - \mathbb{K} campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$

- $\lambda \in \mathbb{K} \mid p_A(\lambda) = 0$ è detto autovalore di A
- Spettro
 - \mathbb{K} campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$
 - $\operatorname{sp}(A) := \{ \lambda \in \mathbb{K} \mid p_A(\lambda) = 0 \}$ è detto **spettro di** A

Hp

 K campo
 n ∈ N − {0}
 A, B ∈ Mat_{n×n}(K) | A simile a B

 Th

 sp(A) = sp(B)

Teorema 167

- Hp
 - \mathbbm{K} campo
 - $-n \in \mathbb{N} \{0\}$
 - $-A \in \mathrm{Mat}_{n \times n}(\mathbb{K})$
 - $-\lambda \in \mathbb{K}$
- Th
 - $-\lambda$ autovalore $\iff \exists v \in \mathbb{K}^n \{0\} \mid A \cdot v = \lambda \cdot v$

Definizione 67

- Autovettore relativo ad un autovalore
 - K campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$
 - $\lambda \in \operatorname{sp}(A)$
 - $v \in \mathbb{K}^n \{0\}$ è detto autovettore di A relativo a $\lambda \iff (A \lambda \cdot I_n) \cdot v = 0$

- Hp
 - $\mathbb{K} \text{ campo}$
 - $-n \in \mathbb{N} \{0\}$
 - $-A \in \mathrm{Mat}_{n \times n}(\mathbb{K})$
 - $-\lambda_1,\ldots,\lambda_k\in\operatorname{sp}(A)$
 - $-v_1,\ldots,v_k$ autovettori di A relativi rispettivamente a $\lambda_1,\ldots,\lambda_k$
- Th
 - $-v_1,\ldots,v_k$ linearmente indipendenti

Definizione 68

- Autospazio relativo ad un autovalore
 - \mathbb{K} campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{n \times n}(\mathbb{K})$
 - $\lambda \in \operatorname{sp}(A)$
 - $E_{\lambda}(A) := \{v \in \mathbb{K}^n \mid (A \lambda \cdot I_n) \cdot v = 0\}$ è detto autospazio di A relativo a λ in particolare $0_{\mathbb{K}^n} \in E_{\lambda}(A)$

Teorema 169

- Hp
 - \mathbb{K} campo
 - $-n \in \mathbb{N} \{0\}$
 - $-A \in \mathrm{Mat}_{n \times n}(\mathbb{K})$
 - $-\lambda \in \operatorname{sp}(A)$
- Th
 - $E_{\lambda}(A) \subset \mathbb{K}$ sottospazio vettoriale

Definizione 69

- Molteplicità algebrica di un autovalore
 - K campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{n \times n}(\mathbb{K})$
 - $\lambda \in \operatorname{sp}(A)$
 - $\mu(\lambda) := \max(\{\varepsilon \in \mathbb{N} : (x \lambda)^{\varepsilon} \mid p_A(x)\})$ è detta molteplicità algebrica di λ

Teorema 170

- Hp
 - − K campo
 - $-n \in \mathbb{N} \{0\}$
 - $-A, B \in \mathrm{Mat}_{n \times n}(\mathbb{K}) \mid A \text{ simile a } B$
 - $-\lambda \in \operatorname{sp}(A) = \operatorname{sp}(B)$
- Th
 - $\mu_A(\lambda) = \mu_B(\lambda)$

- Molteplicità geometrica di un autovalore
 - K campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$
 - $\lambda \in \operatorname{sp}(A)$
 - $\nu(\lambda) := \dim(\mathcal{E}_{\lambda}(A))$ è detta molteplicità geometrica di λ

• Hp $- \mathbb{K} \text{ campo}$ $- n \in \mathbb{N} - \{0\}$ $- A, B \in \text{Mat}_{n \times n}(\mathbb{K}) \mid A \text{ simile a } B$ $- \lambda \in \text{sp}(A) = \text{sp}(B)$ • Th $- \nu_A(\lambda) = \nu_B(\lambda)$

Teorema 172

• **Hp** $- \mathbb{K} \text{ campo}$ $- n \in \mathbb{N} - \{0\}$ $- A \in \text{Mat}_{n \times n}(\mathbb{K})$ $- \lambda \in \text{sp}(A)$ • **Th** $- \nu(\lambda) = n - \text{rk}(A - \lambda \cdot I_n)$

Teorema 173

• Hp $- \mathbb{K} \text{ campo}$ $- n \in \mathbb{N} - \{0\}$ $- A \in \text{Mat}_{n \times n}(\mathbb{K})$ $- \lambda \in \text{sp}(A)$ • Th $- \nu(\lambda) \leq \mu(\lambda)$

Teorema 174

- Hp

 \mathbb{K} campo

 $n \in \mathbb{N} \{0\}$ $A \in \mathbb{N} \{0\}$ $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ 1. A triangolarizzabile

 2. $\sum_{\lambda \in \operatorname{sp}(A)} \mu(\lambda) = n$ 3. $p_A(x) = \prod_{\lambda \in \operatorname{sp}(A)} (x \lambda)^{\mu(\lambda)}$, ovvero $p_A(x)$ è completamente fattorizzabile

 Th
- le proposizioni sono equivalenti

Teorema 175

Hp

 n ∈ N − {0}
 A ∈ Mat_{n×n}(ℂ)

 Th

-Aè triangolarizzabile

Teorema 176

- Hp $- n \in \mathbb{N} - \{0\}$ $-A \in \mathrm{Mat}_{n \times n}(\mathbb{R})$
- Th
 - -A triangolarizzabile $\iff \forall \lambda \in \operatorname{sp}(A) \quad \lambda \in \mathbb{R}$

Teorema 177

- Hp
 - − K campo
 - $-n \in \mathbb{N} \{0\}$
 - $-A \in \mathrm{Mat}_{n \times n}(\mathbb{K})$
 - $1. \ A \ {\rm diagonalizzabile}$

$$2. \sum_{\lambda \in \operatorname{sp}(A)} \nu(\lambda) = n$$

- 3. $\exists B^{1}, \dots, B^{n}$ autovettori di $A \mid B^{1}, \dots, B^{n}$ base di \mathbb{K}^{n}
- Th
 - le proposizioni sono equivalenti

Teorema 178

- Hp
 - − K campo
 - $-n \in \mathbb{N} \{0\}$
 - $-A \in \mathrm{Mat}_{n \times n}(\mathbb{K})$
 - $-B^1,\ldots,B^n$ autovettori di $A\mid B=(B^1,\ldots,B^n)\in \mathrm{GL}(n,\mathbb{K})\wedge B^1,\ldots,B^n$ base di \mathbb{K}^n
- - A diagonalizzabile

Numeri complessi

Definizione 71

- Insieme dei complessi
 - $\mathbb{C}:=\left\{a+ib\mid a,b\in\mathbb{R},\ i:i^2=-1\right\}$ è l'insieme dei complessi $\forall z\in\mathbb{C}\quad\left\{\begin{array}{l}a:=\operatorname{Re}(z)\\b:=\operatorname{Im}(z)\end{array}\right.$

- Hp
 - $-a,b,c,d \in \mathbb{R}$
 - $-z \in \mathbb{C} \mid z = a + ib$

$$-w \in \mathbb{C} \mid w=c+id$$
• Th
$$-z+w=(a+b)+i(c+d)$$

$$-z\cdot w=(ac-bd)+i(ad+bc)$$

Definizione 72

- Coniugato
 - $a, b \in \mathbb{R}$
 - $z \in \mathbb{C} \mid z = a + ib$
 - $\bar{z} := a ib$ è il **coniugato** di z

Teorema 180

- Hp $\begin{array}{ccc} -a,b,c,d,\in\mathbb{R} \\ -z\in\mathbb{C}\mid z=a+ib \\ -w\in\mathbb{C}\mid w=c+id \end{array}$
- Th $\overline{z} + \overline{w} = \overline{z + w}$ $\overline{z} \cdot \overline{w} = \overline{z \cdot w}$

Teorema 181

• Hp $-0 \le \theta < 2\pi$ • Th

$$-e^{i\theta} = \cos\theta + i\sin\theta$$

Definizione 73

- Raggio
 - $a, b \in \mathbb{R}$
 - $z \in \mathbb{C} \mid z = a + ib$
 - $|z| := \sqrt{a^2 + b^2}$ è il **raggio** di z
 - corrisponde alla distanza di z dall'origine nel piano di Gauss

Definizione 74

- Forma polare
 - $a, b \in \mathbb{C}$
 - $z \in \mathbb{C} \{0\}$
 - $z = |z| \cdot e^{i \hat{\theta}}$ è detta forma polare di z

- Soluzione principale
 - $a, b \in \mathbb{R}$

- $\bullet \ \ z \in \mathbb{C} \mid z = a + ib$
- $z \in \mathbb{C} \mid z a \mid to$ $\arg(z) \subset \mathbb{R}$ è l'insieme delle soluzioni del sistema $\begin{cases} \cos \theta = \frac{a}{|z|} \\ \sin \theta = \frac{b}{|z|} \end{cases}$
- per definizione, $\arg(z) \implies \exists !\theta \mid 0 \le \theta \le 2\pi$ tale che θ sia soluzione del sistema, e questo prende il nome di Arg(z), detta soluzione principale

- $-\mathbf{C}$ $(\mathbb{C},+,\cdot)$ è un gruppo
- $(\mathbb{C}, +, \cdot)$ è un campo

Teorema 183

• Hp $-z,w\in\mathbb{C}$ $-|z \cdot w| = |z| \cdot |w|$ $\arg(z \cdot w) = \arg(z) + \arg(w)$ $-|\overline{w}| = |w| \operatorname{arg}(\overline{w}) = -\operatorname{arg}(w)$ $-|w^{-1}| = |w|^{-1} \operatorname{arg}(w^{-1}) = -\operatorname{arg}(w)$ $-|z| = |z| \operatorname{arg}(w^{-1}) = -\operatorname{arg}(w)$ $-|z| = |z| \operatorname{arg}(z) - \operatorname{arg}(w)$

Teorema 184

• Hp • Hp $-z \in \mathbb{C}$ • Th $-z^n = |z|^n e^{i\theta n} \quad \arg(z^n) = n \arg(z)$

Coefficienti binomiali

Definizione 76

- Coefficiente binomiale
 - 0! := 1

 - $n, k \in \mathbb{N}$ $\binom{n}{k} := \begin{cases} \frac{n!}{n!(n-k)!} & k \leq n \\ 0 & k > n \end{cases}$

- - $-n, k \in \mathbb{N}$
- Th

$$-\binom{n}{k} = \binom{n}{n-k}$$

• Hp
$$-n, k \in \mathbb{N}$$
• Th
$$-\binom{n}{k+1} = \binom{n-1}{k+1} \binom{n-1}{k}$$

Teorema 187

• Hp
$$-p \in \mathbb{P} \\ -k \in \mathbb{N} \mid 0 < k < p$$
• Th
$$-p \mid \binom{p}{k}$$

Teorema 188

• Hp
$$-n \in \mathbb{Z}$$

$$-p \in \mathbb{P} : p \mid n$$

$$-[a] \in \mathbb{Z}_p$$
• Th
$$-n \cdot [a] = [0] \text{ in } \mathbb{Z}_p$$

Teorema 189

• Hp
$$-n \in \mathbb{Z}$$

$$-p \in \mathbb{P} : p \mid n$$

$$-[a] \in \mathbb{Z}_p$$

$$-k \in \mathbb{N} \mid 0 < k < p$$
• Th
$$-\binom{p}{k} \cdot [a] = [0] \text{ in } \mathbb{Z}_p$$

Teorema 190

• Hp
$$-p \in \mathbb{P}$$
 $-[a], [b] \in \mathbb{Z}_p$
• Th $-([a] + [b])^p = [a]^p + [b]^p \text{ in } \mathbb{Z}_p$

Teorema 191

• Hp

$$-p \in \mathbb{P}$$

$$-[a_1], \dots, [a_n] \in \mathbb{Z}_p$$
• Th
$$-([a_1] + \dots + [a_n])^p = [a_1]^p + \dots + [a_n]^p \text{ in } \mathbb{Z}_p$$

Induzione

Definizione 77

- Induzione
 - successione di proposizioni infinita P_1, P_2, P_3, \dots

• successione of proposizioni infinita
$$P_1, P_2$$

• $\begin{cases} P_1 \text{ vera} \\ P_1, P_2, P_3, \dots, P_n \implies P_{n+1} \quad \forall n \geq 1 \end{cases}$
• allora $P_n \text{ vera } \forall n$

Teorema 192

• Hp
$$-\begin{cases} F_0=0\\ F_1=1\\ F_n=F_{n-1}+F_{n-2} & \forall n\geq 2 \end{cases}$$
è detta $sequenza~di~Fibonacci$
$$-~x^2-x-1=0~\text{ha come soluzioni} \begin{cases} \phi:=\frac{1+\sqrt{5}}{2}\\ \psi:=\frac{1-\sqrt{5}}{2} \end{cases}$$
• Th

• Th
$$- \forall n \in \mathbb{N} \quad F_n = \frac{\varphi^n - \psi^n}{\varphi - \psi} = \frac{\varphi^n - \psi^n}{\sqrt{5}}$$

Teorema fondamentale dell'algebra

• Hp
$$- \mathbb{K} \text{ campo}$$
 $- p(x) \in \mathbb{K}[x] \mid p(x) = a_0 x^0 + \ldots + a_n x^n$ • Th $- \exists z \in \mathbb{C} \mid p(z) = 0$

Teorema della divisione euclidea con il resto

• Hp
$$-m\in\mathbb{Z}\\ -n\in\mathbb{Z}-\{0\}$$
• Th
$$-\exists!\ q,r\in\mathbb{Z}\mid m=nq+r\quad 0\leq r< n$$

- Hp $\mathbb{K} \text{ campo} \\ a(x), b(x) \in \mathbb{K}[x] \mid b(x) \neq 0$ Th
 - $-\exists!q(x),r(x)\in\mathbb{K}[x]\mid a(x)=b(x)\cdot q(x)+r(x)\quad\deg(r(x))<\deg(b(x)),$ che è detto teorema della divisione con il resto tra polinomi

Teorema di Lagrange

- Hp $-G \text{ gruppo finito} \\ -H \subset G \text{ sottogruppo finito}$
- Th $|G| = |H| \cdot |G/H|$

Teorema fondamentale dell'aritmetica

• Hp $-a,b\in\mathbb{N}$ • Th $-\operatorname{mcm}(a,b)\cdot\operatorname{MCD}(a,b)=a\cdot b$

Teorema cinese dei resti

Teorema 194

• Hp $- a_1, \dots, a_n \ge 2 \in \mathbb{Z} \mid \text{MCD}(a_i, a_j) = 1 \quad \forall i, j \in [1, n] : i \ne j$ $- m := \text{mcm}(a_1, \dots, a_n)$ • Th $- m = a_1 \cdot \dots \cdot a_n$

Teorema 195

• Hp $-n \in \mathbb{N}$ $-a_1, \ldots, a_n \in \mathbb{Z}_{n \geq 2}$ $-m := \operatorname{mcm}(a_1, \ldots, a_n)$ • Th $-\exists \phi \mid \phi : \mathbb{Z}_m \to \mathbb{Z}_{a_1} \times \ldots \times \mathbb{Z}_{a_n} : x \; (\operatorname{mod} \; m) \to (x \; (\operatorname{mod} \; a_1), \ldots, x \; (\operatorname{mod} \; a_n))$ $-\phi \; \grave{\mathrm{e}} \; \operatorname{una} \; \operatorname{funzione} \; \operatorname{ben} \; \operatorname{definita}, \; \operatorname{ed} \; \grave{\mathrm{e}} \; \operatorname{iniettiva}$

• Hp
$$-n \in \mathbb{N}$$

$$-a_1, \dots, a_n \in \mathbb{Z}_{\geq 2} \mid \forall i, j \in [1, n] \quad i \neq j \Longrightarrow \mathrm{MCD}(a_i, a_j) = 1$$

$$-b_1, \dots, b_n \in \mathbb{Z} \mid 0 \leq b_1 < a_1, \dots, 0 \leq b_n < a_n$$

$$-m := \mathrm{mcm}(a_1, \dots, a_n)$$
• Th
$$-\exists !x \; (\bmod \; m) \mid \begin{cases} x \equiv b_1 \; (\bmod \; a_1) \\ \vdots \\ x \equiv b_n \; (\bmod \; a_n) \end{cases}$$

Teorema 197

• Hp
$$-k \in \mathbb{N} \\ -n_1, \dots, n_k \in \mathbb{N} - \{0\} \mid \forall i, j \in [1, k] \quad i \neq j \implies \mathrm{MCD}(n_i, n_j) = 1 \\ -N := \mathrm{mcm}(n_1, \dots, n_k) \\ -[a] \in \mathbb{Z}_N^* \\ -o := o([a]) \text{ in } \mathbb{Z}_N^* \\ -\forall h \in [1, k] \quad o_h := o([a]) \text{ in } \mathbb{Z}_{n_h}^*$$
• Th
$$-o = \mathrm{mcm}(o_1, \dots, o_k)$$

Teorema del binomio di Newton

• Hp
$$-A \text{ anello commutativo} \\ -a,b \in A \\ -n \in \mathbb{N}$$
• Th
$$-(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Teorema 198

• !!! NON HO CAPITO UN CAZZO

Piccolo teorema di Fermat

• Hp
$$-p \in \mathbb{P} \\ -[a] \in \mathbb{Z}_p - \{0\}$$
• Th
$$-[a]^{-1} = [a]^{p-2}$$

Teorema 200

• Hp
$$-p \in \mathbb{P}$$
• Th
$$-\prod_{0 < a < p} (x-a) \equiv x^{p-1} - 1 \pmod{p}$$

Teorema 201

• !!! NON HO CAPITO UN CAZZO

Teorema di Eulero

Teorema fondamentale di isomorfismo

• Hp $-A,B \text{ anelli}\\-f:A\to B \text{ morfismo di anelli}$ • Th $-A/\text{ker}(f)\cong \text{im}(f), \text{ ovvero } \exists \varphi \mid \varphi:A/\text{ker}(f)\to \text{im}(f):[a]\to f(a) \text{ isomorfismo di}$

Teorema 202

• Hp -G, H gruppi $-f: G \to H \text{ morfismo di gruppi}$ • Th $-G/\text{ker}(f) \cong \text{im}(f), \text{ o alternativamente } \exists \varphi \mid \varphi : G/\text{ker}(f) \to \text{im}(f) : [g] \to f(g)$ isomorfismo di gruppi

 $-\mathbb{K}$ campo

-V,W spazi vettoriali su \mathbb{K}

 $-f: V \to W$ trasformazione lineare

 $-V/\ker(f)\cong \operatorname{im}(f)$, o alternativamente $\exists \varphi\mid \varphi:V/\ker(f)\to\operatorname{im}(f):[v]\to f(v)$

Teorema di Cauchy

- G gruppo finito

$$-p \in \mathbb{F}$$

$$-p|G$$

$$- \exists g \in G \mid o(g) = p$$

Teorema 204

$$-G$$
 gruppo $|G| = 4$

$$-G \cong \mathbb{Z}_4$$
 oppure $G \cong K_4$

Teorema di Carnot

$$-n \in \mathbb{N} - \{0\}$$

$$\begin{aligned} \mathbf{Hp} \\ &- n \in \mathbb{N} - \{0\} \\ &- u, v \in \mathbb{K}^n \mid u = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, v = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \\ &- \theta \text{ l'angolo compreso tra } u \in v \end{aligned}$$

$$-||v-u||^2 = ||u||^2 + ||v||^2 - 2\cos(\theta) \cdot ||u|| \cdot ||v||$$

• Hp
$$-n \in \mathbb{N} - \{0\}$$

$$-u, v \in \mathbb{K}^n \mid u = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, v = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

- θ l'angolo compreso tra ue v

• Th
$$-\cos(\theta) = \frac{u \cdot v}{||u|| \cdot ||v||}$$

Teorema del rango

• **Hp**

$$- \mathbb{K} \text{ campo}$$

$$- V, W \text{ spazi vettoriali su } \mathbb{K}$$

$$- f: V \to W \text{ trasformazione lineare}$$
• **Th**

$$- \text{rk}(f) = \dim(V) - \dim(\ker(f))$$

Teorema di Rouché-Capelli

Teorema di Cramer

• Hp

Teorema di Kronecker

```
• Hp

- \mathbb{K} campo

- n, r, r' \in \mathbb{N} - \{0\} \mid r < r' < n

- A \in \operatorname{Mat}_{n \times n}(\mathbb{K})

- M_1 \in \operatorname{Mat}_{r \times r}(\mathbb{K}) \mid M_1 minore di A \wedge \det(A) \neq 0

• Th

- \operatorname{rk}(A) = r \iff \forall M_1' \text{ orlato di } M_1 \quad \det(M_1') = 0 \iff \forall M_2 \in \operatorname{Mat}_{r' \times r'}(\mathbb{K}) \mid M_2 minore di A \operatorname{det}(M_2) = 0
```

Teorema di Binet

```
    Hp

            K campo
            n ∈ N − {0}
            A, B ∈ Mat<sub>n×n</sub>(K)

    Th

            det(A ⋅ B) = det(A) ⋅ det(B)
```

Teorema 206

```
• Hp
- \mathbb{K} \text{ campo}
- n \in \mathbb{N} - \{0\}
- A \in \text{Mat}_{n \times n}(\mathbb{K})
• Th
- \det(A)^{-1} = \det(A^{-1})
```

Teorema spettrale

- le proposizioni sono equivalenti

```
• Hp
 \begin{array}{l} -n \in \mathbb{N} - \{0\} \\ -A \in \operatorname{Mat}_{n \times n}(\mathbb{R}) \mid A \text{ simmetrica} \\ 1. \ \forall \lambda \in \operatorname{sp}(A) \quad \lambda \in \mathbb{R} \\ 2. \ A \text{ diagonalizzabile} \\ 3. \ \exists B^1, \ldots, B^n \text{ autovettori di } A \mid B^1, \ldots, B^n \text{ base ortonormale di } \mathbb{R}^n \\ 4. \ \exists B \in O(n) \mid B^{-1}AB \text{ diagonale} \\ \bullet \ \mathbf{Th} \end{array}
```