Sydney Technical High School

Mathematics

H.S.C. ASSESSMENT TASK 3

JUNE 2012

General Instructions

- Working Time 70 minutes.
- Approved calculators may be used.
- A table of Standard Integrals is provided at the back of this paper.
- All <u>necessary working</u> should be shown for every question.
- Begin each question on a <u>new side of</u> the answer booklet.
- Marks shown are a guide and may need to be adjusted.
- Full marks may <u>not</u> be awarded for <u>careless</u> work or <u>illegible</u> writing.
- For Questions1-5, write the letter for the correct answer on the first page of your answer booklet. Be very clear.

NAME	***************************************	
TEACHER _		

Question 1

The sine curve with period 4π units and amplitude 2 units has equation:

A.
$$y = 2 \sin \frac{x}{2}$$

A.
$$y = 2 \sin \frac{x}{2}$$
 B. $y = 2 \sin \frac{x}{4}$ C. $y = 4 \sin 2x$ D. $y = 4 \sin \frac{x}{2}$ E. $y = 2 \sin 4x$

$$C. y = 4 \sin 2x$$

D.
$$y = 4 \sin \frac{x}{2}$$

$$E. y = 2\sin 4x$$

Question 2

The <u>derivative</u> of sin^2x is:

A.
$$cos^2x$$

B.
$$2\sin x$$

C.
$$2\cos x$$

D.
$$2\cos x \sin x$$

B.
$$2\sin x$$
 C. $2\cos x$ D. $2\cos x\sin x$ E. none of these.

Question 3

The <u>primitive</u> of cos^2x is:

A.
$$sin^2x$$

B.
$$\frac{\cos^3 x}{3}$$

C.
$$\frac{\sin^3 x}{3}$$

D.
$$\frac{\cos^3 x}{3\sin x}$$

A.
$$sin^2x$$
 B. $\frac{cos^3x}{3}$ C. $\frac{sin^3x}{3}$ D. $\frac{cos^3x}{3\sin x}$ E. none of these.

Question 4

The <u>shaded area</u> can be found using:

A. $\int_0^2 \sqrt{x} \ dx$ B. $\int_0^2 y \ dy$ C. $\int_0^2 y^2 \ dy$

A.
$$\int_0^2 \sqrt{x} dx$$

$$B. \int_0^2 y \, dy$$

$$C. \int_0^2 y^2 \, dy$$

D.
$$\int_0^4 y^2 dy$$
 E. $\int_0^4 \sqrt{x} dx$

$$E. \int_0^4 \sqrt{x} \ dx$$

Question 5

Which of the following is <u>NOT</u> a possible function for the curve shown:

A.
$$y = -\sin x$$

A.
$$y = -\sin x$$
 B. $y = \sin(x + \pi)$

C.
$$y = \sin(x - \pi)$$

C.
$$y = \sin(x - \pi)$$
 D. $y = \cos(x - \frac{\pi}{2})$

$$F. y = \cos(x + \frac{\pi}{2})$$

Question 6 (12 marks) Start on a new page.

Marks

a) Convert $\frac{\pi}{10}$ radians to degrees.

1

b) Give the exact value of cosec $\frac{\pi}{4}$

1

c) Solve $tan^2x - tan x = 0$ for $0 \le x \le 2\pi$

- 3
- d) Find the gradient of the tangent to the curve $y = 3 \sin 2x$ at the point where $x = \frac{\pi}{12}$
- 2

e) Evaluate $\int_{\frac{\pi}{8}}^{\frac{\pi}{6}} \sec^2 2x \, dx$. Leave your answer in exact form.

- 2
- f) Find the total area between the curve $y = \sin x$ and the x axis for $\frac{-3\pi}{2} \le x \le \frac{3\pi}{2}$
- 2

g) Evaluate $\int_{\frac{-\pi}{3}}^{\frac{\pi}{3}} \tan x \ dx$

1

Question 7 (14 marks) Start on a new page.

a) i) Find $\frac{d}{dx}(tan^2x)$

1

ii) Hence find $\int \tan x \, sec^2 x \, dx$

1

b) Find $\frac{d}{dx}(\cos^3 5x)$

2

c) The graph of $y = 4 - x^2$ is shown:

- i) Use the Trapezoidal Rule and 5 function values to approximate the shaded area above.
- ii) Find the exact value of the shaded area.

- 2
- iii) The shaded area is rotated about the y-axis. Find the generated volume in exact form.
- 3
- d) Find an angle, x radians, such that the gradient on the curve $y = \tan x$ has value 2.
- 2

Question 8 (12 marks) Start on a new page.

a) Write an integral expression that represents the total shaded area of each situation below:

DO NOT EVALUATE THE INTEGRALS.

b) The cross-sectional area of a rock wall is shown. Horizontal lengths and their corresponding vertical heights are indicated, in metres.

- Find the approximate area above using Simpson's Rule and 5 function values.
- 2
- c) i) Sketch the curve $y=2\cos 4x$ for $0\leq x\leq \frac{\pi}{4}$. Use a ruler and clearly label x,y intercepts. 2
 - ii) Evaluate $\int_0^{\frac{\pi}{8}} 2\cos 4x \ dx$

2

iii) On the same axes as i), draw the line y = 2x

1

1

- iv) Use your graphs above to estimate the solution to $x \cos 4x = 0$, in terms of π .

Question 9 (13 marks) Start on a new page.

a) The area between the graphs of $y = (x - 2)^2$ and y = 1 is shown.

- i) Find x values for A and B.
- ii) Find the shaded area.
- b) The area between the semi-circle $y=\sqrt{r^2-x^2}$ and the x-axis is shown.

- i) Evaluate $\int_{-r}^{r} \sqrt{r^2 x^2} \ dx$
- ii) The shaded area is rotated about the x-axis. Use calculus to find the exact volume thus generated.
- c) i) Show that $\frac{d}{dx}(\sin^3 x) = 3\cos x 3\cos^3 x$
 - ii) Hence find $\int \cos^3 x \, dx$

2

2

3

1

2

END OF TEST

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

(T) a) i) 2 tam x sec x ii) & tam x +c (C) 18° 1. 31 (D) (I) A @D (I) F (I) C e) [tan 2x] 16 = tan 1/3 - tan 1/4 f, d) y'= 3cos2xx2 b-) 3 (cos 5x) x - 51/2 5x x5 = -(5 cos 5x 5/2 5x $\int_{0}^{\infty} \int_{0}^{\infty} (x-\lambda)^{\alpha} dx$ c) i) Area = 2x | (-0 (4+3) +2-1 (3+0)) ii) Area = 2x (4-x2)dx 1 6 cas 2x = [45-42] "= - 17 (16-8) -0 = 10a2 = 2 × ½(10) 1, (w)4 1 1 1,4 At x= 7/2, MT = 6005 76 ·· x =0, T, 2T, 7, 5% e) tan x (tan x-1) =0 fan x = 0 or 1 Area = 3 x So sin x de = 6 x 43 = = 6 2 - 1) = -3 [cos 22] $\frac{1}{2}\left[4x-\frac{3}{3}\right]_{0}^{2}$ = 2 (8-23)-1 = 10% " = 2×53

d) $\frac{d}{dx} (tan n) = 2$ $\frac{1}{2} \frac{1}{2} \frac$

 $=2-\left[\frac{x-2}{3}\right]_{1}^{3}$

= 2×1 - (&-2) da

= 2-(1/3 -- 1/3)

12 22

1 2 - 12 is

(1) thea= rectoragle - area

1, x= 1013

(x-1)(x-3)=0

S'olutions.

(9) a) i) (x-2) = 1

x2-4x+3=0

iii) on graph

ia approx.

|| x

solving 2 = 2 cos 4 n

(b) i) $A = \lambda circle$ $= \pi \frac{1}{4}$ ii) Vol = $2\pi \int_{0}^{\pi} (\sqrt{r^{2} - x^{2}})^{2} dx$ $= 2\pi \int_{0}^{\pi} (\sqrt{r^{2} - x^{2}})^{2} dx$ $= 2\pi \int_{0}^{\pi} (\sqrt{r^{2} - x^{2}})^{2}$ $= 2\pi \int_{0}^{\pi} \left[(r^{3} - \frac{x^{3}}{2}) - (6 - 6) \right]$ $= 2\pi \pi \left[(r^{3} - \frac{x^{3}}{2}) - (6 - 6) \right]$ $= 2\pi \pi \left[(r^{3} - \frac{x^{3}}{2}) - (6 - 6) \right]$ $= 2\pi \pi \left[(r^{3} - \frac{x^{3}}{2}) - (6 - 6) \right]$

() i) of $[(\sin \pi)^3] = 3(\sin \pi)^2 \times \cos \pi$ = $3\sin^2 \pi \cos \pi$ = $3(1-\cos^2 \pi)\cos \pi$ = $3\cos \pi - 3\cos^3 \pi \cos^3 \pi$

ii) $3\cos^3 x = 3\cos x - \frac{4}{3\pi}(\sin^3 x)$ $\therefore \cos^3 x = \cos x - \frac{4}{3} \frac{4}{3\pi}(\sin^3 x)$ $\therefore \int \cos^3 x \, dx = \int \cos x \, dx - \frac{4}{3} \int \frac{4}{3\pi}(\sin^3 x) dx$ $= \sin x - \frac{4}{3} \sin^3 x + c$