Тема 4.3. Метод Фюрера

С. Б. Гашков, И. С. Сергеев

Метод Фюрера, предложенный в 2007 г., позволяет достичь наилучшей известной сегодня оценки сложности умножения n-разрядных чисел $nc^{\log^* n} \log n$, где $\log^* n$ — сверхлогарифм, очень медленно растущая функция, определяемая из соотношения:

$$\lfloor \underbrace{\log \ldots \log}_{\log^* n} n \rfloor = 1.$$

1 Выбор подходящего кольца

Рассмотрим кольцо $\mathbb{C}[x]/(x^{2^p}+1)$. В нем элемент x является примитивным корнем степени 2^{p+1} из единицы (что проверяется прямо по определению: многочлены $x^{2^p}-1$ и $x^{2^p}+1$ взаимно просты). Обозначим $\zeta=e^{\mathrm{i}\pi/2^p}$. Заметим, что

$$x^{2^p} + 1 = \prod_{k=0}^{2^p - 1} (x - \zeta^{2k+1}).$$

Для $q\in\mathbb{N}$ положим $\xi=e^{\mathbf{i}\pi/(2^{p+q})}$. Определим многочлен $\rho_q(x)$ степени меньше 2^p следующим образом:

$$\rho_q(\zeta^{2k+1}) = \xi^{2k+1}, \quad k = 0, \dots, 2^p - 1.$$

Лемма 1. Многочлен $\rho_q(x)$ является примитивным корнем степени 2^{p+q+1} в $\mathbb{C}[x]/(x^{2^p}+1)$.

Доказательство. По построению, $\rho_q^{2^q}(x)=x$ в кольце $\mathbb{C}[x]/(x^{2^p}+1)$. Действительно, при любом k

$$\rho_q^{2^q}(x) \bmod (x-\zeta^{2k+1}) = \rho_q^{2^q}(\zeta^{2k+1}) = \xi^{(2k+1)2^q} = \zeta^{2k+1}.$$

Следовательно, $\rho_q^{2^q}(x) \equiv x \mod (x^{2^p}+1)$. Значит, $\rho_q(x)$ является корнем степени 2^{p+q+1} из единицы. Примитивность следует из сравнения

$$\rho_q^{2^{p+q}}(x) - 1 \equiv x^{2^p} - 1 \equiv -2 \mod(x^{2^p} + 1).$$

Лемма 2. Модули коэффициентов многочлена $\rho_q^m(x) \mod (x^{2^p}+1)$ не превосходят 1.

Доказательство. Пусть $(\rho_q^m(x) \bmod (x^{2^p}+1)) = \sum_{k=0}^{2^p-1} r_k x^k$. Подставляя в равенство ζx вместо x, получим $(\rho_q^m(\zeta x) \bmod (x^{2^p}-1)) = \sum_{k=0}^{2^p-1} r_k \zeta^k x^k$. По определению многочлена $\rho_q(x)$:

Тогда, применяя формулу для обратного ДПФ, искомые коэффициенты r_k могут быть вычислены как

$$r_k = \zeta^{-k} 2^{-p} \sum_{l=0}^{2^p - 1} \xi^{m(2l+1)} \zeta^{-2kl}.$$

Очевидно, выражение в правой части по модулю не превосходит 1.

$\mathbf{2}$ – Д $\mathbf{\Pi}\mathbf{\Phi}$ в кольце $\mathbb{C}[x]/(x^{2^p}+1)$

Пусть $\omega = \rho_{(s-1)(p+1)}(x)$ — примитивный корень степени $2^{s(p+1)}$ в кольце $\mathbb{C}[x]/(x^{2^p}+1)$. ДПФ порядка $N=2^{s(p+1)}$, построенное методом Кули-Тьюки с разложением порядка на множители $2^{(s-1)(p+1)}2^{p+1}$, имеет следующую структуру:

- $-2^{(s-1)(p+1)}$ параллельно выполняемых преобразований ДП $\Phi_{2^{p+1},\,x};$
- -N параллельных умножений результатов предыдущего шага на степени примитивного корня ω ;
- -2^{p+1} применяемых к векторам, вычисленным на предыдущем шаге, и параллельно выполняемых ДПФ порядка $2^{(s-1)(p+1)}$.

Расщепляя внешние ДПФ аналогичным образом, получаем окончательно, что при вычислении ДПФ порядка N чередуются s блоков, в которых параллельно выполняются $N/2^{p+1}$ ДПФ порядка 2^{p+1} с примитивным корнем x, и s-1 блоков, в которых выполняются покомпонентные умножения текущего вектора на степени ω .

При этом реализация ДПФ порядка 2^{p+1} состоит в выполнении операций сложения-вычитания и умножения на степени x в кольце — последние сводятся к циклическому сдвигу комплексных коэффициентов, если элементы кольца $\mathbb{C}[x]/(x^{2^p}+1)$ записываются многочленами по модулю $x^{2^{p+1}}-1$.

Более точно (опять пользуемся методом Кули—Тьюки), ДПФ порядка 2^{p+1} состоит из p+1 слоев, в которых параллельно выполняются ДПФ порядка 2, а между слоями выполняются покомпонентные умножения на степени x. ДПФ порядка 2 — это просто сложение и вычитание: ДП $\Phi_{2,x^{2p}}(\gamma_0,\gamma_1)=(\gamma_0+\gamma_1,\,\gamma_0-\gamma_1)$.

Пусть действительные и мнимые части комплексных коэффициентов кодируются E двоичными разрядами до и после запятой (плюс один разряд под знак числа), а операции с ними производятся с погрешностью (абсолютной величиной ошибки) 2^{1-E} и с отбрасыванием разрядов старше E-го. Тогда сложность каждой из операций сложения-вычитания, умножения на степень x в кольце $\mathbb{C}[x]/(x^{2^p}+1)$ составляет $O(2^pE)$.

Тогда сложность умножения многочленов из кольца $(\mathbb{C}[x]/(x^{2^p}+1))[y]$ по модулю y^N-1 можно оценить как

$$3s(N/2^{p+1})(p+1)2^{p+1}O(2^pE) + (3s-2)NL^* \le O(2^pEN\log N) + 3sNL^*, (1)$$

где через L^* обозначена сложность умножения в кольце $\mathbb{C}[x]/(x^{2^p}+1)$ с погрешностью 2^{1-E} (под погрешностью понимается максимальная ошибка в каждом коэффициенте многочлена).

Подчеркнем, что все вычисления являются приближенными, в частности, константы ω^m даны с точностью E знаков после запятой. В силу накопления погрешности (абсолютной величины ошибки) по ходу вычислений точность, с которой вычисляются коэффициенты произведения, вообще говоря, существенно меньше, чем точность исходных коэффициентов. Оценим сопутствующее алгоритму умножения изменение погрешности, считая, что не происходит переполнения в старших разрядах.

3 Точность вычислений

Далее с каждым многочленом a, возникающим в процессе вычислений, мы будем ассоциировать величину e_a , которая является верхней оценкой абсолютной величины погрешности вычисления a. Эту оценку будем называть просто погрешностью.

Погрешность $e_{a\pm b}$ результата $a\pm b$ выполнения любой из операций сложения или вычитания комплексных чисел a и b, данных с погрешностями e_a и e_b можно положить равной $e_a + e_b$, считая, что используются точные алгоритмы сложения и вычитания (2E-разрядных чисел).

Рассмотрим операцию умножения элементов $u, v \in \mathbb{C}[x]/(x^{2^p}+1)$ (каждый из соответствующих многочленов имеет степень не выше $2^{p+1}-1$). Пусть абсолютные величины коэффициентов этих многочленов ограничены числами U и V соответственно, а погрешности — соответственно e_u и e_v . Будем полагать, что погрешность алгоритма умножения в кольце $\mathbb{C}[x]/(x^{2^p}+1)$ не превосходит 2^{1-E} .

Поскольку каждый из коэффициентов произведения uv является суммой 2^{p+1} попарных произведений коэффициентов многочленов-сомножителей, то его погрешность можно оценить как

$$e_{uv} = 2^{p+1}(e_v U + e_u V + e_v e_u + 2^{1-E}).$$

Если $U=V=\Omega(2^{-E})$ и $1\geq e_v=e_u=\Omega(2^{-E}),$ то положим $e_{uv}=c_12^{p+1}Ue_u$ при некотором $c_1\geq 1.$

Особо рассмотрим случай, когда многочлен v совпадает с ω^m . Согласно лемме $2, V \leq 1$. Т.к. v — постоянный многочлен, то положим $e_v = 2^{-E}$. При выполнении условий $e_u = \Omega(2^{-E})$ и $e_u/U \geq 2^{-E}$ можно положить $e_{uv} = c_2 2^p e_u$ при некотором $c_2 \geq 1$.

В обоих случаях для каждого отдельного коэффициента a произведения uv положим $e_a=e_{uv}$.

Обе указанные оценки для погрешности зависят от величины коэффициентов многочленов-сомножителей. Рассмотрим, как изменяется величина комплексных коэффициентов при вычислении ДПФ.

Пусть комплексные коэффициенты компонент γ_j исходного вектора не превосходят A по абсолютной величине. Из предыдущего раздела следует, что под действием ДПФ порядка 2^{p+1} максимум абсолютной величины коэффициентов увеличивается не более, чем в 2^{p+1} раз. Согласно лемме 2, при умножении на ω^m этот максимум увеличивается не более, чем в 2^p раз. Таким образом, для максимума абсолютной величины коэффициентов компонент γ_j^* вектора значений ДПФ справедлива оценка $2^{s(p+1)}2^{(s-1)p}A < N^2A$.

Оценим величину накопленной погрешности. Пусть она не превосходит e_{γ} для коэффициентов компонент γ_{j} . Тогда коэффициент увеличения погрешности при выполнении внутреннего ДПФ порядка 2^{p+1} можно

оценить как 2^{p+1} , а коэффициент увеличения при умножении на ω^m — как $c_2 2^p$, если выполняется условие $e_u/U \geq 2^{-E}$. Таким образом, для максимума e_γ^* погрешности коэффициентов компонент γ_j^* получаем оценку $e_\gamma^* \leq N(c_2 2^p)^s < c_2^s N^2$.

Условие $e_u/U \ge 2^{-E}$ в алгоритме выполняется при всех умножениях на степени ω , если изначально выполнено $e_\gamma/A \ge 2^{-E}$, т.к. в случае каждой элементарной операции (сложение, вычитание, умножение на ω^m) отношение e_u/U не убывает.

4 Умножение в $\mathbb{C}[x]/(x^{2^p}+1)$

Осталось указать как умножаются многочлены из $\mathbb{C}[x]/(x^{2^p}+1)$ с погрешностью 2^{1-E} . Поле \mathbb{C} изоморфно фактор-кольцу $\mathbb{R}[\mathbf{i}]/(\mathbf{i}^2+1)$ (элементы которого представляются вещественными многочленами степени 1). Многочлены из $\mathbb{C}[x]/(x^{2^p}+1)\cong \mathbb{R}[\mathbf{i},x]/(\mathbf{i}^2+1,\,x^{2^p}+1)$ могут быть перемножены как обычные многочлены переменных \mathbf{i} и x с последующим приведением по модулям.

Умножим коэффициенты перемножаемых многочленов на 2^E (коэффициенты, таким образом, становятся целыми числами). Запишем эти многочлены как

$$a(\mathbf{i}, x) = \sum_{j=0}^{1} \sum_{l=0}^{2^{p+1}-1} a_{j,l} \mathbf{i}^{j} x^{l}, \qquad b(\mathbf{i}, x) = \sum_{j=0}^{1} \sum_{l=0}^{2^{p+1}-1} b_{j,l} \mathbf{i}^{j} x^{l}.$$

Коэффициенты произведения исходных многочленов получаются делением коэффициентов произведения ab на 2^{2E} . Обозначим

$$h(\mathbf{i}, x) = \sum_{j=0}^{1} \sum_{l=0}^{2^{p+1}-1} 2^{2E} \mathbf{i}^{j} x^{l}, \quad a'(\mathbf{i}, x) = a(\mathbf{i}, x) + h(\mathbf{i}, x), \\ b'(\mathbf{i}, x) = b(\mathbf{i}, x) + h(\mathbf{i}, x).$$

Заметим, что коэффициенты многочленов a',b',h положительны. При этом $ab=a'b'-a'h-b'h-h^2$. Тем самым задача сведена к умножению многочленов с неотрицательными целочисленными (2E+1)—разрядными коэффициентами.

Такое умножение сводится к умножению $2^{p+1}3(4E+p+4)$ —разрядных чисел при подстановке $2^{4E+p+4} \to \mathbf{i}$ и $2^{3(4E+p+4)} \to x$. Окончательно имеем, что сложность умножения в $\mathbb{C}[x]/(x^{2^p}+1)$ по порядку не превосходит

сложности умножения $O(2^p(E+p))$ —разрядных чисел (в этой же оценке учитывается сложность $O(2^pE)$ дополнительных сложений и вычитаний при вычислении a', b', восстановлении ab и приведении по модулям $\mathbf{i}^2+1,\ x^{2^p}+1)$. Алгоритм умножения с погрешностью 2^{1-E} получается отбрасыванием разрядов коэффициентов результата младше E—го после запятой.

5 Оценка сложности

В методе Фюрера используется выбор параметров $E = \Theta(\log N)$ и $p = \log_2 \log_2 N + O(1)$. Перемножаемые числа представляются многочленами над $\mathbb{C}[x]/(x^{2^p}+1)$ степени меньше N/2 следующим образом: они разбиваются на блоки длины E/3, которые интерпретируются как целые числа, каждые 2^{p-1} подряд расположенных блоков интерпретируются как коэффициенты многочлена из кольца $\mathbb{C}[x]/(x^{2^p}+1)$.

Получившиеся многочлены (переменной y) перемножаются при помощи ДПФ порядка N, описанного выше. Число из многочлена восстанавливается за $O(2^pEN)$ операций при подстановке $x=2^{E/3}, y=2^{2^{p-1}E/3}$ и приведении подобных.

Параметр E выбирается, исходя из следующих рассуждений. В обозначениях из предыдущего пункта при старте алгоритма $A \leq 2^{E/3}$, поэтому положим $e_{\gamma} = A2^{-E}$. Коэффициенты компонент вектора значений ДПФ имеют абсолютные величины не более N^2A и погрешности не более $c_2^sN^2e_{\gamma}$.

Коэффициенты произведения двух элементов из $\mathbb{C}[x]/(x^{2^p}+1)$, абсолютные величины коэффициентов которых не превосходят U, ограничены величиной $2^{p+1}U^2$. Погрешность после их перемножения возрастает не более, чем в $c_12^{p+1}U$ раз (см. предыдущий пункт). Поэтому для максимума абсолютных величин коэффициентов W и их погрешностей e_W после выполнения покомпонентных умножений векторов значений ДПФ имеем оценки

$$\begin{split} W &\leq 2^{p+1} U^2 \leq 2^{p+1} N^4 A^2, \\ e_W &= c_1 c_2^s 2^{p+1} N^2 U e_\gamma \leq c_1 c_2^s 2^{p+1} N^4 A e_\gamma. \end{split}$$

Заметим, что $e_W/W \ge c_1 c_2^s N^2 e_\gamma/U \ge c_1 c_2^s e_\gamma/A \ge 2^{-E}$.

Обратное ДПФ (с точки зрения оценок точности и сложности) отличается от прямого делением на N, которое выражается в сдвиге позиции запятой в представлении коэффициентов и ведет к уменьшению

оценок для абсолютных значений и погрешностей в N раз. Окончательно абсолютные величины и погрешности компонент вектора значений заключительного ДПФ оцениваются как $2^{p+1}N^5A^2$ и $c_1c_2^{2s}2^{p+1}N^5A^22^{-E}$ соответственно.

Требуется, чтобы первая оценка была меньше 2^{E-1} , а последняя оценка была меньше 1/4 (первое условие следует из второго). Тогда, если в заключение алгоритма выполнить приведение всех коэффициентов при степенях y по модулю $x^{2^p}+1$ (это сводится к параллельным вычитаниям комплексных чисел), то итоговая погрешность будет меньше 1/2, а абсолютные значения комплексных коэффициентов — меньше 2^E .

Приходим к условию $2^{E/3} \ge c_1 c_2^{2s} 2^{p+1} N^5 = o(N^6)$, выполнения которого можно добиться, полагая $E = c_3 \log_2 N$ при достаточно большой константе c_3 .

Теорема 1. Умножение n-разрядных целых чисел реализуется схемой сложности $L(n) = nc^{\log^* n} \log n$, где $\log^* n$ определяется из соотношения

$$1 \le \underbrace{\log_2 \dots \log_2}_{\log^* n} n < 2.$$

Доказательство. Воспользуемся оценкой (1), в которой L^* , согласно предыдущему пункту, можно оценить сверху как $L(O(2^p(E+p)))$:

$$L(n) \le O(2^p E N \log N) + 3sNL(O(2^p (E+p))),$$

а $n \leq 2^{p-2}NE/3$. Учитывая, что $N \asymp n/\log^2 n, \ E \asymp \log n, \ 2^p \asymp \log n, \ s \asymp \log n/\log\log n,$ получаем соотношение

$$L(n) \le \alpha \left(n \log_2 n + \frac{n}{\log_2 n \log_2 \log_2 n} L\left(\lfloor \log_2^2 n \rfloor \right) \right).$$

Пусть $L(n) \leq nc_0^{\log^*(\sqrt{n}/4)}\log_2 n$ при $2 \leq n < 256$. Положим $c = \max\{1, c_0, 3\alpha\}$ и проверим по индукции, что $L(n) \leq nc^{\log^*(\sqrt{n}/4)}\log_2 n$. Заметим, что при $n \geq 256$ справедливо $n > \log_2^2 n$ и $\log_2(\sqrt{n}/4) = \frac{1}{2}\log_2 n - 2 \geq \frac{1}{4}\log_2 n$, откуда следует, что $\log^*(\sqrt{\log_2^2 n}/4) \leq \log^*(\sqrt{n}/4) - 1$.

Применяя индуктивное предположение для $n \ge 256$ получаем

$$L(n) \leq \alpha \left(n \log_2 n + 2n \log_2 n c^{\log^*(\sqrt{n}/4) - 1} \right) = n \log_2 n \left(2\alpha c^{\log^*(\sqrt{n}/4) - 1} + \alpha \right),$$

откуда следует доказываемое соотношение. Теорема доказана.