Introduction

A figure is made of several matplotlib.axes objects, also called 'ax'. These can be placed in the figure in a special order. In this part, two approaches of axes layout are presented:

- 1. Simple approach: create a grid of axes objects, where all have the same dimensions
- 2. Advanced approach: define custom dimensions for each axe

Simple approach

Using an iterable

Using plt.subplots, axes are available in a 2D numpy array.

Let's:

- create 3 axes along columns and 2 along rows, i.e. an array of shape (2, 3)
- use of the axes to plot something.

```
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(8, 4))
ax = axes[0, 2]  # access the first row and third column
ax.plot([1,2,3], [3,2,9])
```

Out[1]: [<matplotlib.lines.Line2D at 0x75edd13273e0>]

Using a dictionary

plt.subplot_mosaic is similar to plt.subplots yet it returns a dictionary whose keys are the names used in the passed iterable.

Advanced approach

In the previous example, all axes had equal sizes. Let's create some axes with different sizes.

Using an iterable

There are 3 steps:

- 1. create the figure
- 2. add to the figure a GridSpec instance using add_gridspec
- 3. add axes one after another, specifying the rows and columns of the grid that axes must occupy.

This is done using the add_subplot function, which returns an **axe** object.

Using a dictionary

In a dictionary approach (subplot_mosaic), one must set the same name in different places to have an axe span several rows/columns.

Notes

The figure have some similar properties to those of the axes. For instance, let's define a title at the figure level using suptitle:

```
In [5]: fig.suptitle('Important title')
ax = axes['ax6']
ax.set_title("Title for 'ax6'")
fig
```

Out[5]:

8 6 4 2 1.0 1.5 2.0 2.5 3.0

Important title

