→ 1. IMPORT THE LIBRARIES

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

df=pd.read_csv("Titanic-Dataset.csv")

df

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fa
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.25
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.28
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.92
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.10
4										•

df.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
C) 1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence	female	38.0	1	0	PC 17599	71.2833
4				· ·						•

df.tail()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	C
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.00	
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.00	
4)	•

df.shape

(891, 12)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

Duca	COTAINIS (COC	ar iz coramiis).							
#	Column	Non-Null Count	Dtype						
0	PassengerId	891 non-null	int64						
1	Survived	891 non-null	int64						
2	Pclass	891 non-null	int64						
3	Name	891 non-null	object						
4	Sex	891 non-null	object						
5	Age	714 non-null	float64						
6	SibSp	891 non-null	int64						
7	Parch	891 non-null	int64						
8	Ticket	891 non-null	object						
9	Fare	891 non-null	float64						
10	Cabin	204 non-null	object						
11	Embarked	889 non-null	object						
dtyp	<pre>dtypes: float64(2), int64(5), object(5)</pre>								
memo	memory usage: 83.7+ KB								

df.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

corr=df.corr()
corr

<ipython-input-13-7d5195e2bf4d>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future versior
corr=df.corr()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
Passengerld	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307
Pclass	-0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500
Age	0.036847	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067
SibSp	-0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000

plt.subplots(figsize=(15,10))
sns.heatmap(corr,annot=True)

0 549 342 1

Name: Survived, dtype: int64

df.Sex.value_counts()

male 577 female 314

Name: Sex, dtype: int64

df.Embarked.value_counts()

644 S С 168 Q 77

Name: Embarked, dtype: int64

→ 3. CHECK FOR NULL VALUES

df.isnull().any()

PassengerId False Survived False Pclass False Name False Sex False Age True SibSp False Parch False Ticket False Fare False Cabin True Embarked True dtype: bool

```
df.isnull().sum()
    PassengerId
                      0
    Survived
    Pclass
                      0
    Name
                      0
    Sex
                      0
    Age
                    177
    SibSp
                     0
    Parch
                      0
    Ticket
                      0
    Fare
    Cabin
                    687
    Embarked
                      2
    dtype: int64
```

mean_age = df['Age'].mean()

Fill null values in the 'Age' column with the mean age

```
df['Age'].fillna(mean_age, inplace=True)
Fill null values in the 'Embarked' column with the most common value
most_common_embarked = df['Embarked'].mode()[0]
df['Embarked'].fillna(most_common_embarked, inplace=True)
df.drop(['Cabin'],axis=1, inplace=True)
df.drop(['Ticket'],axis=1, inplace=True)
df.drop(['Name'],axis=1,inplace=True)
print(df.isnull().sum())
     PassengerId
     Survived
     Pclass
                    0
     Sex
                    0
     Age
                    0
     SibSp
                    0
     Parch
                    0
     Fare
                    0
     Embarked
                    0
     dtype: int64
```

→ 4. Data Visualization

```
# Visualize the distribution of the 'Survived' column (0 = Not Survived, 1 = Survived)
sns.countplot(data=df, x='Survived')
plt.title('Survival Count')
plt.xlabel('Survived')
plt.ylabel('Count')
plt.show()
```


#Visualize the distribution of the 'Age' column
sns.histplot(data=df, x='Age', bins=20, kde=True)
plt.title('Age Distribution')
plt.xlabel('Age')
plt.ylabel('Count')
plt.show()

#Visualize the distribution of the 'Fare' column and detect outliers we will handle outliers in the next step
sns.boxplot(data=df, x='Fare')
plt.title('Fare Distribution')
plt.xlabel('Fare')
plt.show()

#Pair plot for selected numerical columns
sns.pairplot(data=df[['Fare', 'SibSp', 'Parch']])

```
plt.title('Pair Plot')
plt.show()
```



```
corr_matrix = df.corr()
sns.heatmap(corr_matrix, annot=True,cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
```

<ipython-input-30-8dcbd071fff3>:1: FutureWarning: The default value of numeric_only in [
 corr matrix = df corr()

5. Detect and Handle Outliers

```
z_scores = np.abs(stats.zscore(df['Age']))
max_threshold=3
outliers = df['Age'][z_scores > max_threshold]
# Print and visualize the outliers
print("Outliers detected using Z-Score:")
print(outliers)
     Outliers detected using Z-Score:
     96
           71.0
     116
           70.5
     493
           71.0
     630
           80.0
     672
           70.0
     745
           70.0
     851
           74.0
     Name: Age, dtype: float64
                                z_scores = np.abs(stats.zscore(df['Fare']))
max_threshold=3
outliers = df['Fare'][z_scores > max_threshold]
# Print and visualize the outliers
print("Outliers detected using Z-Score:")
print(outliers)
     Outliers detected using Z-Score:
     27 263.0000
           263,0000
     88
     118
           247.5208
     258
           512.3292
     299
           247.5208
     311
           262,3750
     341
           263.0000
     377
           211.5000
     380
           227.5250
     438
           263.0000
     527
           221.7792
           227.5250
     557
     679
           512.3292
     689
           211.3375
     700
           227.5250
     716
           227,5250
     730
           211.3375
           512.3292
     742
           262.3750
     779
           211.3375
     Name: Fare, dtype: float64
column_name = 'Fare'
# Calculate the first quartile (Q1) and third quartile (Q3)
Q1 = df[column_name].quantile(0.25)
Q3 = df[column_name].quantile(0.75)
# Calculate the IQR
IQR = Q3 - Q1
# Define the lower and upper bounds for outliers
lower\_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
# Filter rows with values outside the IQR bounds
df_cleaned = df[(df[column_name] > lower_bound) & (df[column_name] <upper_bound)]</pre>
# Display the original and cleaned DataFrame sizes
print(f"Original DataFrame size: {df.shape}")
print(f"Cleaned DataFrame size: {df_cleaned.shape}")
df_cleaned
```

Original DataFrame size: (891, 9) Cleaned DataFrame size: (775, 9)

		-							
	PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	1	0	3	male	22.000000	1	0	7.2500	S
2	3	1	3	female	26.000000	0	0	7.9250	S
3	4	1	1	female	35.000000	1	0	53.1000	S
4	5	0	3	male	35.000000	0	0	8.0500	S
5	6	0	3	male	29.699118	0	0	8.4583	Q
886	887	0	2	male	27.000000	0	0	13.0000	S
887	888	1	1	female	19.000000	0	0	30.0000	S
888	889	0	3	female	29.699118	1	2	23.4500	S
889	890	1	1	male	26.000000	0	0	30.0000	С
890	891	0	3	male	32.000000	0	0	7.7500	Q

sns.boxplot(df_cleaned)

 $df = df_cleaned$

x=df.drop('Survived', axis=1) y=df['Survived']

x.head()

	PassengerId	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	1	3	male	22.000000	1	0	7.2500	S
2	3	3	female	26.000000	0	0	7.9250	S
3	4	1	female	35.000000	1	0	53.1000	S
4	5	3	male	35.000000	0	0	8.0500	S
5	6	3	male	29 699118	0	0	8 4583	O

y.head()

- 0 0
- 2 1
- 1
- 4 0

Name: Survived, dtype: int64

▼ 7. Perform Encoding

```
en = LabelEncoder()
x['Sex'] = en.fit_transform(x['Sex'])
x.head()
```

	PassengerId	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	1	3	1	22.000000	1	0	7.2500	S
2	3	3	0	26.000000	0	0	7.9250	S
3	4	1	0	35.000000	1	0	53.1000	S
4	5	3	1	35.000000	0	0	8.0500	S
5	6	3	1	29.699118	0	0	8.4583	Q

```
x = pd.get_dummies(x,columns=['Embarked'])
```

x.head()

	PassengerId	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked_C	Embarked_Q	Em
0	1	3	1	22.000000	1	0	7.2500	0	0	
2	3	3	0	26.000000	0	0	7.9250	0	0	
3	4	1	0	35.000000	1	0	53.1000	0	0	
4	5	3	1	35.000000	0	0	8.0500	0	0	
F	6	3	1	20 600119	Λ.	Λ	ያ ላድልኃ	Λ	1	•

▼ 8. Feature Scaling

```
scale = StandardScaler()
x[['Age', 'Fare']] = scale.fit_transform(x[['Age', 'Fare']])
x.head()
```

	PassengerId	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked_C	Embarked_Q	Ε
0	1	3	1	-0.556219	1	0	-0.779117	0	0	
2	3	3	0	-0.243027	0	0	-0.729373	0	0	
3	4	1	0	0.461654	1	0	2.599828	0	0	
4	5	3	1	0.461654	0	0	-0.720161	0	0	
F	e	3	1	U U466U6	0	0	0 600071	^	1	•

▼ 9. Splitting the data into Train and Test

```
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
```

(620, 10) (155, 10) (620,) (155,)