Commutatore e gruppo derivato

di Gabriel Antonio Videtta

Nota. Nel corso del documento con G si indicherà un qualsiasi gruppo.

Siano g e h due elementi di G. Si definisce allora il loro **commutatore** come l'elemento $[g,h] = ghg^{-1}h^{-1}$. Tale elemento formalizza il concetto di "misura di commutatività", ossia identifica formalmente quanto g e h commutano. Infatti vale che:

$$[g,h] = e \iff gh = hg.$$

Si definisce allora il **gruppo derivato** di G, indicato con G', come il sottogruppo di G generato dai commutatori:

$$G' = \langle [g, h] \mid g, h \in G \rangle.$$

Si osserva che $[g,h][h,g] = ghg^{-1}h^{-1}hgh^{-1}g^{-1} = e$, e quindi che $[g,h]^{-1} = [h,g]$. In particolare valgono alcune proprietà particolari per G', riassunte dalla:

Proposizione. Sia N un sottogruppo normale di G e sia H un gruppo abeliano. Allora:

- (i) G' è un gruppo caratteristico,
- (ii) G/G' è un gruppo abeliano, ed è indicato come G_{ab} , l'abelianizzato di G,
- (iii) Se G/N è abeliano, $G' \leq N^1$,
- (iv) Se H è abeliano, ogni omomorfismo $\varphi \in \text{Hom}(G, H)$ è tale per cui $G' \leq \text{Ker } \varphi$, e quindi Hom(G, H) può identificarsi con $\text{Hom}(G/G', H) = \text{Hom}(G_{ab}, H)$.

Dimostrazione. Si dimostrano le tesi punto per punto.

(i) Se si pone $S = \{[x,y] \mid x,y \in G\}$ (ossia S è l'insieme dei generatori di G' dacché $S^{-1} = S$), è sufficiente mostrare che per $\varphi \in \operatorname{Aut}(G)$ vale che $\varphi(S) = S$. Allora $\varphi([x,y]) = \varphi(x)\varphi(y)\varphi(x)^{-1}\varphi(y)^{-1} = [\varphi(x),\varphi(y)] \in S$, mostrando dunque che G' è caratteristico.

¹In un certo senso, questo punto dimostra che la scelta di definire G_{ab} è tutt'altro che data al caso. G_{ab} è infatti il "più stretto parente" abeliano di G. Si osservi anche che G abeliano $\Longrightarrow G' = \{e\}$ $\Longrightarrow G_{ab} \cong G$.

- (ii) G/G' è un gruppo perché G', in quanto caratteristico, è normale. Siano $x, y \in X$, allora xyG' = yxG' perché $xy(yx)^{-1} = xyx^{-1}y^{-1} = [x,y] \in G'$ per definizione, e quindi G_{ab} è abeliano.
- (iii) Se G/N è abeliano, $xyN=yxN \implies xy(yx)^{-1} \in N \implies [x,y] \in N$. Poiché allora $S\subseteq N$, vale che $G'=\langle S\rangle \leq N$.
- (iv) È sufficiente mostrare che $S \subseteq \operatorname{Ker} \varphi$. Si verifica dunque che:

$$\varphi([x,y]) = \varphi(x)\varphi(y)\varphi(x)^{-1}\varphi(y)^{-1} = e \implies [x,y] \in \operatorname{Ker} \varphi.$$

Poiché allora $G' \subseteq \operatorname{Ker} \varphi$, per il Primo teorema di isomorfismo, ogni omomorfismo $\varphi \in \operatorname{Hom}(G,H)$ ammette un unico omomorfismo $\varphi' \in \operatorname{Hom}(G/G',H) = \operatorname{Hom}(G_{ab},H)$ tale per cui il seguente diagramma commuti:

Pertanto $\text{Hom}(G, H) \leftrightarrow \text{Hom}(G_{ab}, H)$.