(H08-190099)

[Title of the Invention] METHOD OF MANUFACTURING LIQUID CRYSTAL DESPLAY DEVICE AND APPARATUS FOR MANUFACTURING LIQUID CRYSTAL DISPLAY DEVICE

[Abstract]

[Object] To provide a method of manufacturing a liquid crystal display device using a droplet injection method in which liquid crystal is dropped on one transparent panel in a decompressed atmosphere, the other transparent panel is overlapped thereon, and then the dropped liquid crystal is sealed, so as to suppress decrease in voltage holding rate with a rough positioning accuracy and a uniform gap between the panels.

[Construction] The method comprises the steps of: forming an adhesive member 2 in a ring shape outside a display area on a first transparent panel 1; selectively irradiating ultraviolet rays onto the inner circumferential surface of the ring-shaped adhesive member 2 and curing the irradiated area; dropping liquid crystal 3 on the first transparent panel 1 surrounded with the adhesive member 2; overlapping the first transparent panel 1 and a second transparent panel 4 in a decompressed atmosphere and sealing a space surrounded with the adhesive member 2 between the first transparent panel 1 and the second transparent panel 4 with

the adhesive member 2; and irradiating the ultraviolet rays onto the entire adhesive member 2 and curing the adhesive member.

[Claims]

[Claim 1] A method of manufacturing a liquid crystal display device, the method comprising the steps of:

forming an adhesive member in a ring shape outside a display area on a first transparent panel;

selectively irradiating ultraviolet rays onto the inner circumferential surface of the ring-shaped adhesive member and curing the irradiated area;

dropping liquid crystal on the first transparent panel surrounded with the adhesive member;

overlapping the first transparent panel and a second transparent panel with spacers therebetween in a decompressed atmosphere and sealing a space surrounded with the adhesive member between the first transparent panel and the second transparent panel with the adhesive member; and

positioning the first transparent panel and the second transparent panel, irradiating the ultraviolet rays onto the entire adhesive member, and curing the adhesive member.

[Claim 2] A method of manufacturing a liquid crystal display device, the method comprising the steps of:

forming a first adhesive member in a ring shape outside

a display area on a first transparent panel;

forming a second adhesive member in a ring shape outside the display area on a second transparent panel to correspond to the area where the first adhesive member;

irradiating ultraviolet rays onto the first adhesive member and the second adhesive member and curing the surface layers thereof;

dropping liquid crystal on the first transparent panel surrounded with the first adhesive member;

overlapping the first transparent panel and the second transparent panel in a decompressed atmosphere and sealing a space surrounded with the first adhesive member and the second adhesive member between the first transparent panel and the second transparent panel with the adhesive members; and

positioning the first transparent panel and the second transparent panel, irradiating the ultraviolet rays onto the first and second adhesive members, and curing the adhesive member, thereby fixing the first transparent panel and the second transparent panel.

[Claim 3] A method of manufacturing a liquid crystal display device, the method comprising the steps of:

forming an adhesive member in a ring shape outside a display area on a first transparent panel;

a dropping liquid crystal on the first transparent

panel surrounded with the adhesive member;

overlapping the first transparent panel and a second transparent panel with spacers therebetween in a decompressed atmosphere and sealing a space surrounded with the adhesive member between the first transparent panel and the second transparent panel with the adhesive member; and

irradiating the ultraviolet rays onto the entire adhesive member and curing the adhesive member after positioning the first transparent panel and the second transparent panel and before the adhesive member comes in contact with the liquid crystal.

[Claim 4] The method of manufacturing a liquid crystal display device according to any one of Claims 1 to 3, wherein color filters or liquid crystal driving matrixes are formed in the display area on the first transparent panel and liquid crystal driving matrixes or color filters are formed in the display area on the second transparent panel.

[Claim 5] The method of manufacturing a liquid crystal display device according to Claim 3 or 4, wherein a convex portion for reducing the diffusion speed of the liquid crystal is formed outside the display area on the first or second transparent panel and inside the area where the adhesive member is formed.

[Claim 6] The method of manufacturing a liquid crystal display device according to Claim 5, wherein The convex

portion for reducing the diffusion speed of the liquid crystal is made of the same material as the color filters formed in the display area of the first or second transparent panel.

[Claim 7] The method of manufacturing a liquid crystal display device according to any one of Claims 1 to 6, wherein a film for capturing moving ions is formed on the first or second transparent panel inside and adjacent to the area where the adhesive member is formed.

[Claim 8] The method of manufacturing a liquid crystal display device according to any one of Claims 1 to 7, wherein the first transparent panel and the second transparent panel are overlapped with each other by inserting a spacer plate inserted between the first transparent panel and the second transparent panel such that a part of the first transparent panel and a part of the second transparent panel are in contact with each other and then removing the spacer plate and the gap therebetween is sealed.

[Claim 9] The method of manufacturing a liquid crystal display device according to any one of Claims 1 to 7, wherein the first transparent panel has a plurality of holes or cut-out portions outside the ring-shaped adhesive member and the second transparent panel is overlapped with the first transparent panel by inserting support members into

the holes or cut-out portions of the first transparent panel, laying the second transparent panel on the support members, and then descending the support members.

[Claim 10] The method of manufacturing a liquid crystal display device according to any one of Claims 1 to 9, wherein preliminary color filters are formed around the display area on the first or second transparent panel in accordance with the arrangement order of the color filters in the display area.

[Claim 11] An apparatus for manufacturing a liquid crystal display device, the apparatus comprising:

a process chamber in which a first transparent panel and a second transparent panel are overlapped with each other; and

a gas introduction port which is disposed to face the first or second transparent panel laid in the process chamber and which sprays gas to the first or second transparent panel to press the panel.

[Claim 12] The apparatus for manufacturing a liquid crystal display device according to Claim 11, wherein the gas introduction port is a leak port for restoring the inner pressure of the process chamber to the atmospheric pressure.

[Detailed Description of the Invention]

[Industrial Applicability]

The present invention relates to a method of manufacturing a liquid crystal display device and an apparatus for manufacturing a liquid crystal display device, and more particularly to improvement of a so-called dropping injection method in which liquid crystal is dropped on a transparent panel in a decompressed atmosphere, another transparent panel is overlapped thereon, and then the liquid crystal is sealed.

[0002]

[Description of the Related Art]

A vacuum sealing method requires much time for sealing liquid crystal in a liquid crystal display panel, but the development of a dropping injection method makes it possible to greatly reduce the time for sealing liquid crystal, which has been paid attention to. A conventional dropping injection method is now described with reference to the drawings. Fig. 22(a) is a cross-sectional view taken along Line G-G of Fig. 22(b).

[0003]

First, in step Pl of the flowchart shown in Fig. 19, members required for forming a liquid crystal display panel are formed on a transparent panel made of glass or the like. That is, two transparent panels are prepared for a liquid crystal display panel, thin film transistors (TFT), drain

bus lines, gate bus lines, pixel electrodes, and the like are formed on transparent panel and an alignment film is formed thereon, thereby forming a TFT panel. Color filters of R (red), G (green), and B (blue) are formed on the other transparent panel, a counter electrode made of a transparent ITO (Indium Tin Oxide) film is formed thereon, and an alignment film is formed thereon, thereby forming a color filter panel (hereinafter, referred to as "CF panel").

[0004]

Next, in step P2, the alignment films formed on the TFT panel and the CF panel are subjected to a rubbing process.

Next, in step P3, spacers are scattered on the TFT panel.

This is to secure a gap for filling liquid crystal between the TFT panel and the CF panel. On the other hand, in step P4, ultraviolet-curing sealing member is formed on the surface of the CF panel to surround a rectangular area for enclosing the liquid crystal.

[0005]

Next, in step P5, the liquid crystal is dropped in the area surrounded with the sealing member on the CF panel. In step P6, the TFT panel and the CF panel are introduced into a bonding apparatus shown in Fig. 20 and the apparatus is exhausted in vacuum. In step P7, the rough positioning of the TFT panel and the CF panel is performed. This step is a process of positioning and overlapping the TFT panel and the

CF panel in a decompressed atmosphere to some extent and weakly pressing them. The liquid crystal is sealed with the sealing member 32 in the space between the TFT panel and the CF panel.

[0006]

In this step, the CF panel 31 on which the sealing member 32 is formed and the liquid crystal 33 is dropped is mounted on a stage ST in the apparatus shown in Fig. 20. On the other hand, the TFT panel 34 is introduced into the apparatus shown in Fig. 20 and is supported by support members SU as shown in Fig. 21(a). The exhaust valve 42 of Fig. 20 is opened and the apparatus is exhausted into vacuum through an exhaust port 41, whereby a process chamber 40 of the apparatus is decompressed. Next, as shown in Fig. 21(a), the TFT panel 34 is disposed to be opposed to the CF panel 33 and then is dropped onto the CF panel 31 as shown in Fig. 21(b). Thereafter, the TFT panel 34 is pressed from the upside with a pressing member 43 shown in Fig. 20.

[0007]

Next, in step P8, the transparent panels roughly positioned are taken out and are precisely positioned such that the display area of the TFT panel 34 and the display area of the CF panel 33 correspond to each other. This step allows the dropped liquid crystal 33 to uniformly diffuse on the entire surface surrounded with the sealing member 32 as

shown in Figs. 22(a) and 22(b). Thereafter, in step P9, ultraviolet rays are irradiated to the sealing member 32 to completely cur it and the TFT panel 34 and the CF panel 31 are fixed, thereby forming the liquid crystal display panel in which the liquid crystal is sealed.

[8000]

[Problems to be Solved by the Invention]

However, the conventional manufacturing method has the following problems. First, in the roughly positioning step denoted by step P7 of Fig. 19 as shown in Figs. 21(a) and 21(b), the TFT panel 34 is dropped onto the CF panel 31. As a result, the TFT panel 34 and the CF panel 31 are easily deviated from each other.

[0009]

Second, in the roughly positioning step, the TFT panel 34 is pressed from the upside with the pressing member 43 shown in Fig. 20. However, at this time, since it is difficult to uniformly apply pressure to the entire surface of the wide TFT panel 34 due to the planarity of the pressing surface of the pressing member 43, the liquid crystal 33 is not uniformly diffused, or the gap between the TFT panel 34 and the CF panel 31 is not uniform, or a part of the sealing member is not sufficiently pressed to cause leakage.

[0010]

Third, when the liquid crystal and the non-cured sealing member come in contact with each other and the ultraviolet rays are irradiated to the contact area, the liquid crystal and the sealing member react with each other to cause contamination, thereby deteriorating a voltage holding rate of the liquid crystal display panel. The voltage holding rate is a value indicating to what extent the accumulated charges between both electrodes with the liquid crystal therebetween are not leaked and maintains the initial voltage from the first voltage application to the next voltage application when the voltage is intermittently applied to the liquid crystal panel, the value being expressed by B/A×100 shown in Figs. 25(a) and 25(b). "A" in the above-mentioned expression denotes an area of the hatched portion of Fig. 25(a) (time integral of a voltage held between the electrodes when no leakage occurs) and "B" is an area of the hatched portion of Fig. 25(b) (time integral of a voltage actually held between the electrodes).

[0011]

Figs. 23 and 24 are graphs illustrating relations between the voltage holding rate and the irradiation time of UV when the UV is irradiated to the sealing member after the liquid crystal and the non-cured sealing member come in contact with each other. As shown in Fig. 23, the voltage holding rate is deteriorated with the lapse of the

irradiation time of UV at any regions at the central region (25 mm from the sealing end) and in the vicinity of the sealing end (10 mm from the sealing end). Specifically, the deterioration of the voltage holding rate is remarkable in the vicinity of the sealing end, where the deterioration ranges 2 to 4%.

[0012]

Fig. 24 is a graph illustrating variation in voltage holding rate when the liquid crystal display panel is kept at a temperature of 80°C for 1,000 hours after the liquid crystal display panel is formed by sealing the liquid crystal using the same manufacturing method. The measurement position is the central portion (25 mm from the sealing end). As shown in Fig. 24, the deterioration in voltage holding rate is more remarkable.

[0013]

As shown in Figs. 23 and 24, in the conventional dropping injection method in which the sealing member is cured by irradiating the ultraviolet rays after the liquid crystal comes in contact with the sealing member, the voltage holding rate of the liquid crystal display panel is deteriorated. When the voltage holding rate is deteriorated, a sufficient driving voltage is not applied to the liquid crystal display panel. As a result, when the liquid crystal display panel is used as a display panel, the contrast of

the display panel is decreased.

[0014]

The present invention is contrived to solve the abovementioned problems. It is an object of the present
invention to provide a method of manufacturing a liquid
crystal display device and an apparatus for manufacturing a
liquid crystal display device, which can suppress decrease
in voltage holding rate with a rough positioning accuracy
and a uniform gap between panels.

[0015]

[Means for Solving the Problems]

The above-mentioned object can be accomplished by the following aspects of the present invention. According to Aspect 1 of the present invention, there is provided a method of manufacturing a liquid crystal display device, the method comprising the steps of: forming an adhesive member in a ring shape outside a display area on a first transparent panel; selectively irradiating ultraviolet rays onto the inner circumferential surface of the ring-shaped adhesive member and curing the irradiated area; dropping liquid crystal on the first transparent panel surrounded with the adhesive member; overlapping the first transparent panel and a second transparent panel with spacers therebetween in a decompressed atmosphere and sealing a space surrounded with the adhesive member between the first

transparent panel and the second transparent panel with the adhesive member; and positioning the first transparent panel and the second transparent panel, irradiating the ultraviolet rays onto the entire adhesive member, and curing the adhesive member. According to Aspect 2 of the present invention, there is provided a method of manufacturing a liquid crystal display device, the method comprising the steps of: forming a first adhesive member in a ring shape outside a display area on a first transparent panel; forming a second adhesive member in a ring shape outside the display area on a second transparent panel to correspond to the area where the first adhesive member; irradiating ultraviolet rays onto the first adhesive member and the second adhesive member and curing the surface layers thereof; dropping liquid crystal on the first transparent panel surrounded with the first adhesive member; overlapping the first transparent panel and the second transparent panel in a decompressed atmosphere and sealing a space surrounded with the first adhesive member and the second adhesive member between the first transparent panel and the second transparent panel with the adhesive members; and positioning the first transparent panel and the second transparent panel, irradiating the ultraviolet rays onto the first and second adhesive members, and curing the adhesive member, thereby fixing the first transparent panel and the second

transparent panel. According to Aspect 3, there is provided a method of manufacturing a liquid crystal display device, the method comprising the steps of: forming an adhesive member in a ring shape outside a display area on a first transparent panel; a dropping liquid crystal on the first transparent panel surrounded with the adhesive member; overlapping the first transparent panel and a second transparent panel with spacers therebetween in a decompressed atmosphere and sealing a space surrounded with the adhesive member between the first transparent panel and the second transparent panel with the adhesive member; and irradiating the ultraviolet rays onto the entire adhesive member and curing the adhesive member after positioning the first transparent panel and the second transparent panel and before the adhesive member comes in contact with the liquid crystal. According to Aspect 4 of the present invention, there is provided the method of manufacturing a liquid crystal display device according to any one of Aspects 1 to 3, wherein color filters or liquid crystal driving matrixes are formed in the display area on the first transparent panel and liquid crystal driving matrixes or color filters are formed in the display area on the second transparent panel. According to Aspect 5 of the present invention, there is provided the method of manufacturing a liquid crystal display device according to Aspect 3 or 4, wherein a convex portion for reducing the diffusion speed of the liquid crystal is formed outside the display area on the first or second transparent panel and inside the area where the adhesive member is formed. According to Aspect 6 of the present invention, there is provided the method of manufacturing a liquid crystal display device according to Aspect 5, wherein The convex portion for reducing the diffusion speed of the liquid crystal is made of the same material as the color filters formed in the display area of the first or second transparent panel. According to Aspect 7 of the present invention, there is provided the method of manufacturing a liquid crystal display device according to any one of Aspects 1 to 6, wherein a film for capturing moving ions is formed on the first or second transparent panel inside and adjacent to the area where the adhesive member is formed. According to Aspect 8 of the present invention, there is provided the method of manufacturing a liquid crystal display device according to any one of Aspects 1 to 7, wherein the first transparent panel and the second transparent panel are overlapped with each other by inserting a spacer plate inserted between the first transparent panel and the second transparent panel such that a part of the first transparent panel and a part of the second transparent panel are in contact with each other and then removing the spacer plate and the gap

therebetween is sealed. According to Aspect 9 of the present invention, there is provided the method of manufacturing a liquid crystal display device according to any one of Aspects 1 to 7, wherein the first transparent panel has a plurality of holes or cut-out portions outside the ring-shaped adhesive member and the second transparent panel is overlapped with the first transparent panel by inserting support members into the holes or cut-out portions of the first transparent panel, laying the second transparent panel on the support members, and then descending the support members. According to Aspect 10 of the present invention, there is provided the method of manufacturing a liquid crystal display device according to any one of Aspects 1 to 9, wherein preliminary color filters are formed around the display area on the first or second transparent panel in accordance with the arrangement order of the color filters in the display area. According to Aspect 11 of the present invention, there is provided an apparatus for manufacturing a liquid crystal display device, the apparatus comprising: a process chamber in which a first transparent panel and a second transparent panel are overlapped with each other; and a gas introduction port which is disposed to face the first or second transparent panel laid in the process chamber and which sprays gas to the first or second transparent panel to press the panel.

According to Aspect 12 of the present invention there is provided the apparatus for manufacturing a liquid crystal display device according to Aspect 11, wherein the gas introduction port is a leak port for restoring the inner pressure of the process chamber to the atmospheric pressure.

[0016]

[Operation]

In the method of manufacturing a liquid crystal display device according to the present invention, first, the ultraviolet rays are selectively irradiated to the inner circumferential surface of the ring-shaped adhesive member formed on the first transparent panel in advance, thereby curing the irradiated area. As a result, even when the liquid crystal comes in contact with the adhesive member, the inner circumferential surface is cured by means of the irradiation of UV. Accordingly, when the first and second transparent panels are overlapped with each other and the liquid crystal is sealed in the gap with the adhesive member, it is possible to prevent the contamination of liquid crystal due to the reaction between the adhesive member and the liquid crystal. As a result, it is possible to suppress the decrease in voltage holding rate of the liquid crystal display device, thereby suppressing the decrease in contrast. In addition, since only the inner circumferential surface of the adhesive member is cured, the fixation between the

panels is stronger than the entire curing.

[0017]

The first transparent panel and the second transparent panel are overlapped with each other by forming the ringshaped adhesive member on the first transparent panel and the second transparent panel, respectively, curing only the surface layers of the adhesive members, and then bringing the adhesive members into contact with each other. Since the adhesive members come in contact with each other, the cured surface layers are pressed and destroyed to reveal the non-cured portions. Therefore, the fixation between the first transparent panel and the second transparent panel becomes stronger by means of the irradiation of UV. Even when the cured surface layers are not destroyed, the fixation is stronger than that of the case where the transparent panel and the adhesive member are bonded to each other. In this way, even when the ultraviolet rays are irradiated onto the entire surfaces of the adhesive members and thus the surface layers are cured, the adhesion between the first and second transparent panels are not damaged.

[0018]

Second, after the first transparent panel and the second transparent panel are overlapped with the non-cured adhesive member and before the adhesive member and the liquid crystal come in contact with each other, the adhesive

member is cured by irradiating the ultraviolet rays onto the adhesive member. As a result, the first and second transparent panels can be surely bonded. In addition, the contamination of the liquid crystal caused by bringing the non-cured adhesive member into contact with the liquid crystal and irradiating the ultraviolet rays to the contact areas can be suppressed. Accordingly, it is possible to actively prevent the voltage holding rate of the liquid crystal display device from being decreased due to the contamination of the liquid crystal and thus to prevent the display contrast from being decreased.

[0019]

Third, the convex portions for delaying the diffusion speed of the liquid crystal are formed inside the adhesive member and outside the display area on the first or second transparent panel. Since the convex portions narrow the gap between the first and second transparent panel, the time for the liquid crystal to reach the adhesive member is increased. As a result, it is possible to easily irradiate the ultraviolet rays to the adhesive member to cur the adhesive member before the liquid crystal comes in contact with the adhesive member. Specifically, by making the convex portions out of the same material as the color filters formed in the display area of the first or second transparent panel, the convex portions can be formed at the

same time as forming the color filters in the display area, thereby simplifying the manufacturing process.

[0020]

Fourth, the film for capturing moving ions is formed on the first or second transparent panel inside and adjacent to the adhesive member. As a result, since the moving ions generated in the liquid crystal due to the reaction between the adhesive member and the liquid crystal is captured, it is possible to prevent the accumulated charges from being leaked by the moving ions. Accordingly, it is possible to more surely suppress the decrease in voltage holding rate of the liquid crystal display device.

[0021]

Fifth, when the first transparent panel and the second transparent panel are overlapped, the spacer plate is inserted between the first transparent panel and the second transparent panel such that a part of the first transparent panel and a part of the second transparent panel come in contact with each other and then the spacer plate is removed. Since the first transparent panel and the second transparent panel are overlapped more slowly than the conventional example where the panel is dropped, the rough positioning accuracy is improved. Since the impact is small, the destruction of the sealing member is not partially leaned. Accordingly, it is possible to improve the uniformity in gap

between the panels.

[0022]

Sixth, the first transparent panel has a plurality of holes or cut-out portions and the second transparent panel is overlapped with the first transparent panel by inserting the support members into the holes or cut-out portions, putting the second transparent panel on the support members, and dropping the support members. As a result, when the panels are positioned in advance and the speed for dropping the support members is delayed, the panels can be overlapped without positioning deviation, thereby improving the rough positioning accuracy. Since the positioning deviation at the time of bringing the panels into contact with the sealing member is small and the impact is small, the destruction of the sealing member is not deviated, thereby improving the uniformity in gap between the panels.

[0023]

Seventh, when the color filters are formed in the display area, the preliminary color filters are formed in the area around the display area of the liquid crystal display device in accordance with the arrangement order of the color filters. As a result, even when the first transparent panel is deviated from the display area of the second transparent panel at the time of overlapping the panels, the deviated end portion may be positioned at the

preliminary color filters. For this reason, the amount of adjustment for the positioning is small and thus it is easy to adjust the positioning. In addition, it is possible to avoid the damage on the adhesive member due to the great movement of the transparent panels for adjustment.

[0024]

Ninth, the apparatus for manufacturing a liquid crystal display device according to the present invention comprises the process chamber in which the first transparent panel is overlapped with the second transparent panel, the decompressing means for decompressing the process chamber, and the gas introduction port for spraying gas to the first transparent panel or the second transparent panel. The gas introduction port can be replaced with the leak port for restoring the decompressed pressure of the process chamber to the atmospheric pressure.

[0025]

Generally, since gas isotropically give pressure and is uniformly diffused onto the surfaces of the transparent panel, the pressure is uniform even when unevenness exists on the transparent panels. As a result, since the gap between the first and second transparent panel can be kept constant, a constant electric field is applied across the entire liquid crystal at the time of driving the liquid crystal display panel, thereby enhancing the uniformity in

display characteristic.

[0026]

[Embodiments]

Now, a method of and an apparatus for manufacturing a liquid crystal display device according to embodiments of the present invention will be described with reference the attached drawings.

(1) First Embodiment

Now, a method of manufacturing a liquid crystal display device according to a first embodiment of the present invention is described with reference to Figs. 1, 2(a), 2(b), 3(a), and 3(b). Fig. 2(b) is a cross-sectional view taken along Line A-A of Fig. 2(a).

[0027]

First, in step P1 of Fig. 1, elements required for manufacturing a liquid crystal display panel are formed on a transparent panel made of glass or the like. That is, for one liquid crystal display panel, two sheets of transparent panels made of glass of 10.4 inches are prepared and film formation/patterning for forming color filters of R (red), G (green), and B (blue) on a first transparent panel is repeated three times. Subsequently, a counter electrode made of a transparent ITO (Indium Tin Oxide) film is formed on the color filters and an alignment film is formed on the counter electrode, thereby forming a color filter panel

(hereinafter, referred to as "CF panel") 1.

[0028]

On the other hand, thin film transistors (TFT), drain bus lines, gate bus lines, and pixel electrodes are formed on a second transparent panel and an alignment film is formed thereon, thereby preparing a TFT panel 4. Next, in step P3, spacers SP are scattered on the surface of the TFT panel 4. The spacers SP serves to secure a space for enclosing liquid crystal between the CF panel 1 and the TFT panel 4. Plastic balls having a diameter of 5.0 µm and an adhesive property are used as the spacers SP. The adhesive property is given by performing a heating process after scattering the spacers. This is performed for the spacers SP not to move in the course of diffusing the liquid crystal and to facilitate the overlapping work.

[0029]

Next, in step P4, as shown in Fig. 2(a), the sealing member 2 made of a ultraviolet-curing adhesive (T-470 made by Nagasechiba) is formed in a ring shape on the surface of the CF panel 1 outwardly spaced by about 5 mm from a display area so as to surround a rectangular area for enclosing the liquid crystal. The sealing member 2 finally has a width of 2 mm by pressing the sealing member. Next, in step P5, as shown in Figs. 2(a) and (b), by selectively irradiating UV to the inner circumferential surface of the ring-shaped

sealing member 2 formed on the CF panel 1, the surface layer of the sealing member 2 in the irradiated area is semi-cured (hereinafter, this process is referred to as "pre-curing"). In this case, UV with a small intensity of about 500 mJ is irradiated such that only the surface layer of the sealing member in the irradiated area is cured.

[0030]

Next, in step P6, the liquid crystal is dropped onto the surface of the CF panel 1 in the area surrounded with the sealing member 2. Next, in step P7, the TFT panel 4 and the CF panel 1 are introduced into a bonding apparatus and the bonding apparatus is then decompressed into vacuum. Next, in step P8, the rough positioning is performed. That is, as shown in Fig. 3(a), the TFT panel 4 and the CF panel 1 are first opposed to each other in a decompressed atmosphere and as shown in Fig. 3(b), the CF panel 1 and the TFT panel 4 are overlapped with each other, thereby roughly positioning the panels. The degree of the rough positioning is about $\pm 50 \, \mu m$. By performing the rough positioning, the degree of adjustment at the time of the accurate positioning is reduced, damage on the sealing member 2 is prevented, and sealing property of the space for enclosing the liquid crystal between the CF panel 1 and the TFT panel 4 is secured.

[0031]

Subsequently, the panels are light pressed and the sealing member 2 is compressed, thereby enclosing the liquid crystal in the space between the panels. Next, in step P9, the panels subjected to the rough positioning is taken out in the atmosphere and then the accurate positioning is performed (hereinafter, this step is referred to as "accurate positioning"). Through this step, the dropped liquid crystal 3 is widely and uniformly diffused all over the area surrounded with the sealing member 2. Thereafter, in step P10, the sealing member 2 is completely cured by irradiating UV with great intensity of about 5000 mJ to the sealing member and the TFT panel 4 and the CF panel 1 are fixed, thereby completing the liquid crystal display panel. The optimum intensity of UV depends upon kinds of the adhesive.

[0032]

As described above, in the method of manufacturing a liquid crystal display device according to the first embodiment of the present invention, since the pre-curing is performed to the inner circumferential surface of the sealing member 2 in step P5 of Fig. 1 as shown in Fig. 2, the non-cured sealing member and the liquid crystal do not come in direct contact with each other even when the liquid crystal 3 reaches the non-cured sealing member 2 in step P10. The liquid crystal contamination which is a conventional

problem is generated because the non-cured sealing member and the liquid crystal come in direct contact with each other and UV is irradiated to the area. However, in the present embodiment, such contamination is not generated.

[0033]

This fact was confirmed from an experiment. The experiment result is now described with reference to Table 1. The voltage holding rate measured in the vicinity of the sealing member in the panel manufactured according to the present embodiment is greater than that of the case where the pre-curing is not performed. The measurement result is shown in Table 1.

[0034]

[Table 1]

Pre-curing	Voltage holding rate	Voltage holding rate
	(%)	(%) with the lapse of
		1000 hours at 80°C
Yes	98.0	97.0
No	96.0	94.0

[0035]

In Table 1, the used liquid crystal is ZLI-4792 (made by Mark) and the used alignment film is JALS-214 (made by JSR). According to the result shown in Table 1, the voltage holding rate of the panel not subjected to the pre-curing is 96.0% and the voltage holding rate of the panel subjected to

the pre-curing is 98.0%. The voltage holding rate with the lapse of 1000 hours at 80°C is 94.0% for the panel not subjected to the pre-curing and 97.0% for the panel subjected to the pre-curing. As described above, by performing the pre-curing, the decrease in voltage holding rate at the first time can be suppressed and the decrease in voltage holding rate after use for a long time can be also suppressed.

[0036]

As described above, in the method of manufacturing a liquid crystal display device according to the first embodiment of the present invention, since the decrease in voltage holding rate can be suppressed, it is possible to suppress the decrease in contrast of the liquid crystal display panel due to the decrease in voltage holding rate.

(2) Second Embodiment

Now, a method of manufacturing a liquid crystal display device according to a second embodiment of the present invention will be described with reference to Fig. 4. Steps P1 to P3 in Fig. 1 are similar to those of the first embodiment and thus descriptions thereof will be omitted.

[0037]

First, in step P4 of Fig. 1, the sealing member is formed on the surface of the TFT panel 4 as well as the CF panel 1. That is, shown in Fig. 4, a first sealing member

2B made of a ultraviolet-curing adhesive (T-470 made by Nagasechiba) is formed in a ring shape on the surface of the CF panel 1 so as to surround a rectangular area for enclosing the liquid crystal. A second sealing member having the same pattern as that of the first sealing member 2B is formed on the surface of the TFT substrate.

[0038]

Next, in the pre-curing step as step P5, the pre-curing is performed to the first sealing member 2B and the second sealing member 5. In the first embodiment, only the inner circumferential surface of the ring-shaped sealing material which is the area contacting the liquid crystal is selectively semi-cured. However, in the present embodiment, the entire surface of the sealing member is pre-cured, so that the surface layer 2C of the first sealing member 2 is semi-cured and the surface layer 5A of the second sealing member 5 is semi-cured similarly as shown in Fig. 4.

[0039]

Next, up to step P7, the same process as the first embodiment is carried out. In step P8, the TFT panel 4 and the CF panel 1 are overlapped and roughly positioned, the panels are lightly pressed, and the space between the TFT panel 4 and the CF panel 1 is sealed. At this time, as shown in Fig. 4, the formation area of the first sealing member 2B is matched with the formation area of the second

sealing member 5 through the rough positioning process.

Thereafter, through the same processes as the first embodiment, the liquid crystal display panel is completed. As described above, in the method of manufacturing a liquid crystal display device according to the second embodiment of the present invention, the first sealing member 2B is formed on the surface of the CF panel 1 and the second sealing member 5 is also formed on the surface of the TFT panel 4. Then, after pre-curing both panels, the first and second sealing members 2B and 5 are positioned and then the TFT panel 4 and the CF panel 1 are compressed.

[0041]

For this reason, similar to the first embodiment, since the first sealing member 2B and the second sealing member 5 are pre-cured in advance in step P5 and thus are semi-cured, the non-cured sealing member does not directly contact the liquid crystal, thereby preventing the contamination of the liquid crystal. As a result, it is possible to suppress the decrease in voltage holding rate of the liquid crystal display device due to the liquid crystal contamination and thus to suppress the decrease in contrast at the time of display.

[0042]

In the present embodiment, unlike the first embodiment,

since the first sealing member 2B and the second sealing member 5 are bonded at the time of overlapping, the adhesive property between both panels is more improved than the liquid crystal display panel in which the sealing member is formed only on the CF panel 1. Even when the entire areas of the first and second sealing member 2B and 5 are semicured through the irradiation of UV, the adhesive property therebetween is not decreased.

[0043]

Similar to the first embodiment, UV rays may be selectively irradiated to the inner circumferential surfaces of the first and second sealing members 2B and 5 and only the irradiated area may be semi-cured. By performing the UV pre-curing, it is possible to form the sealing member with high viscosity using a material (having good applicability) with low viscosity. In addition, it is possible to reduce the damage on the sealing member due to the atmospheric pressure when the panels are restored to the atmosphere.

[0044]

(3) Third Embodiment

Now, a method of manufacturing a liquid crystal display device according to a third embodiment of the present invention will be described with reference to Figs. 5(a) and 5(b). Fig. 5(a) is a cross-sectional view, Fig. 5(b) is a plan view, where Fig. 5(a) is a cross-sectional view taken

along Line B-B of the Fig. 5(b). The same elements as the first and second embodiments are not described for the purpose of avoiding repetition.

[0045]

First, in the process of forming elements required for forming the liquid crystal display panel on the transparent panel in step Pl of Fig. 1, the TFT panel 4 is formed using the same processes as the first embodiment but when patterning and forming the color filters in the display area of the CF panel 1, convex portions 6A and 6B made of the same material as the ring-shaped color filters are patterned and formed outside the display area and inside the formation area of the sealing member.

[0046]

At this time, the formation area of the convex portions 6A and 6B is protruded higher than the peripheral area thereof. When a transparent electrode 7 or an alignment film 8 made of an ITO film is formed thereon, the convex portions 9A and 9B are formed shown in Fig. 5(a), thereby narrowing the gap therebetween. Thereafter, the same processes as the first embodiment are carried out. However, the pre-curing of step P5 may be omitted.

[0047]

The contamination of liquid crystal is caused because the liquid crystal comes in direct contact with the non-

Even by using a dropping injection method, it takes several minutes (five minutes) for the liquid crystal to completely and uniformly diffuse into the TFT liquid crystal panel with 10 inches. As a result, By taking out the panel from the bonding chamber and irradiating UV to the sealing member as early as possible before the liquid crystal reaches the sealing member, it is possible to suppress the decrease in voltage holding rate due to the contamination of liquid crystal. However, in the present embodiment, by providing the convex portions 9A and 9B between the center portion of the transparent panel and the sealing member to narrow the gap and delaying the diffusion of the liquid crystal, it is possible to more surely prevent the non-cured sealing member from contacting the liquid crystal.

[0048]

The comparison result of an example where the UV is irradiated before the liquid crystal and the sealing member come in contact with each other and an example where the UV is irradiated after the liquid crystal and the sealing member contact each other by using a test panel of 14 inches is shown in Table 2.

[0049]

[Table 2]

	Voltage holding rate	Voltage holding rate
	(%)	(%) with the lapse of
		1000 hours at 80°C
UV irradiation before	98	98
liquid crystal contact	·	
sealing material	•	
UV irradiation after	96	94
liquid crystal contact		
sealing material		

[0050]

In Table 2, the used liquid crystal is ZLI-4792 (made by Mark) and the used alignment film is JALS-214 (made by JSR). According to the result shown in Table 2, the voltage holding rate is 98% for the panel subjected to the UV irradiation before the liquid crystal contacts the sealing member and the voltage holding rate is 96% for the panel subjected to the UV irradiation after the liquid crystal contacts the sealing member. The voltage holding rate with the lapse of 1000 hours at 80°C is 98% for the panel subjected to the UV irradiation before contact and 94.0% for the panel subjected to the UV irradiation after contact. Accordingly, by performing the UV irradiation before the liquid crystal contacts the sealing member, it can be seen that the decrease in voltage holding rate can be suppressed.

[0051]

The method of manufacturing a liquid crystal display device according to the third embodiment of the present invention uses this fact. That is, convex portions 6A and 6B made of the same material as the color filters are patterned and formed between the display area and the formation area of the sealing member on the CF panel 1. As the convex portions 6A and 6B, at least one layer of R, G, and B may be formed. Subsequently, the transparent electrode 7 and the alignment film 8 are sequentially formed on the convex portions 6A and 6B, thereby forming the convex portions 9A and 9B having a greater height.

[0052]

The gap between the CF panel 1 and the TFT panel 4 in the area where the convex portions 9A and 9B are formed is narrowed as shown in Fig. 5(a), thereby increasing the time taken for the liquid crystal 3 diffused by compression to reach the sealing member 2. Accordingly, before the liquid crystal 3 reaches the sealing member 2, UV can be irradiated to the sealing member with a time margin to cure the sealing member.

[0053]

As a result, the decrease in voltage holding rate of the liquid crystal display device can be suppressed, thereby suppressing the decrease in contrast at the time of display. In addition, the pattern of the convex portions made of the color filters may have a ring shape as shown in Figs. 5(a) and 5(b). However, the present invention is not limited to the ring-shaped pattern, but the convex portions 9C having island-shaped patterns, for example, as shown in Fig. 6 may be formed. This case exhibits the same effect as the case where the convex portions 9A and 9B shown in Figs. 5(a) and 5(b).

[0054]

(4) Fourth Embodiment

Now, a method of manufacturing a liquid crystal display device according to a fourth embodiment of the present invention will be described with reference to Figs. 7(a), 7(b), 8(a), and 8(b). Figs. 7(a), 7(b), and 8(a) are cross-sectional views and Fig. 8(b) is a plan view. Fig. 8(a) is a cross-sectional view taken along Line C-C of Fig. 8(b). The same elements as the first, or second, or third embodiment will be not described for the purpose of avoiding repetition.

[0055]

First, up to steps P1 to P7 of Fig. 1, the same processes as the first embodiment are carried out. In the rough positioning process of step P8, as shown in Fig. 7(a), a spacer plate 11 having a thickness of 2 mm is interposed between the CF panel 1 and the TFT panel 4 such that one side of the TFT panel 4 contacts one side of the CF panel 1

mounted on the stage ST. For example, as shown in Figs. 8(a) and 8(b), the spacer plate 11 is inserted into one place between the CF panel 1 and the TFT panel 4 overlapped with each other.

[0056]

Guide rods 10 are disposed at four corners of the respective panels 1 and 4 such that positional deviation does not occur. Next, when the spacer plate 11 is horizontally taken out, the TFT panel 4 is dropped onto and overlapped with the CF panel 1 with its own weight as shown in Fig. 7(b). At this time, since the four corners of the TFT panel 4 is provided with the guide rods 10, the TFT panel 4 is not pulled an deviated in position by the spacer plate 11. The subsequent process are equal to those of the first embodiment and thus descriptions thereof will be omitted.

[0057]

As described above, in the method of manufacturing a liquid crystal display device according to the fourth embodiment, by inserting the spacer plate 11 such that one side of the TFT panel 4 and one side of the CF panel 1 come in contact with each other and then taking out the spacer plate, the CF panel 1 and the TFT panel 1 are overlapped with each other. Conventionally, the liquid crystal is rapidly compressed by opposing the TFT panel to the CF panel

and then freely dropping the TFT panel, but in the present embodiment, at least one side of the TFT panel 4 and one side of the CF panel 1 come in contact with each other, so that the TFT panel is more slowly dropped. As a result, a great pressure is not applied to the sealing member 2 formed on the CF panel 1 and thus the destruction of the sealing member 2 is not deviated. Therefore, the gap between the CF panel 1 and the TFT panel 4 is uniform.

[0058]

In the present embodiment, the TFT panel 4 is overlapped with the CF panel 4 by inserting the spacer plate 11 into only one place between the CF panel 1 and the TFT panel 4 and then taking out the spacer plate. However, the present invention is not limited to this, but as shown in Figs. 8(c) and 8(d), the same effect is obtained in a case where two spacer plates 11A and 11B are inserted between the CF panel 1 and the TFT panel 4 to support two places. In addition, as shown in Figs. 9(a) and 9(b), the same effect is obtained in a case where three spacer plates 11A, 11B, and 11C are inserted between the panels to support three places. If at least one side of the CF panel 1 and one side of the TFT panel 4 contact each other, it is enough. Figs. 8(c) and 9(a) are cross-sectional views and Figs. 8(d) and 9(b) are plan views, where Fig. 8(c) is a cross-sectional view taken along Line D-D of Fig. 8(d) and Fig. 9(b) is a

cross-sectional view taken along Line E-E of Fig. 9(a).
[0059]

By applying the method according to the present embodiment to a plurality of liquid crystal display panels, it is possible to mount the TFT panels on the CF panels for a short time. Now, this will be described with reference to Figs. 10 and 11. That is, as shown in Fig. 10, the CF panels and the TFT panels are alternately stacked and the guide rods 10 are disposed around the stacked panels. Fig. 11 is a side view of this state. From the bottom, the TFT panel 4C, the CF panel 1C, the TFT panel 4B, the CF panel 1B, the TFT panel 4A, and the CF panel 1A are sequentially stacked the spacer plates 11C, 11B, and 11A are inserted therebetween, respectively.

[0060]

Only by horizontally taking out the respective spacer plates 11A, 11B, and 11C, a plurality of TFT panels corresponding to a plurality of liquid crystal display panels can be mounted on the corresponding CF panels with ease for a short time.

(5) Fifth Embodiment

Now, a method of manufacturing a liquid crystal display device according to a fifth embodiment of the present invention will be described with reference to Figs. 12(a) to 12(c). The same elements as those of the first to fourth

embodiments will not be described for the purpose of avoiding repetition.

[0061]

First, in the process of forming elements for forming a liquid crystal display panel on the transparent panel in step P1 of Fig. 1, the TFT panel 4 is formed through the same processes as the first embodiment, but a plurality of quide holes 1H are formed at the four corners of the CF panel 1 by using a super steel drill or a carbon dioxide laser. Next, in steps P2 to P7 of Fig. 1, the same processes as the first embodiment are carried out. Then, in the rough positioning process of step P8 of Fig. 1, as shown in Fig. 12(a), support rods 12A and 12B are inserted into the quide holes 1H formed at the four corners of the CF panel 1 on the stage ST and the TFT panel 4 is placed thereon. In this step, the TFT panel 4 and the CF panel 1 are apart from each other with a gap of about 2 mm. Only two support rods 12A and 12B are shown and two support rods are omitted in Fig. 12(a).

[0062]

Thereafter, as shown in Figs. 12(b) and 12(c), the support rods 12A and 12B are slowly lowered, thereby overlapping the TFT panel 4 with the CF panel 1. The processes after step P9 of Fig. 1 are equal to the first embodiment and descriptions thereof thus are omitted. As

described above, in the method of manufacturing a liquid crystal display device according to the fifth embodiment of the present invention, by forming the guide holes 1H at four corners of the CF panel 1, inserting the support rods 12A and 12B into the guide holes, placing the TFT panel 4 on the support rods 12A and 12B, and slowly lowering the support rods 12A and 12B to overlap the TFT panel 4 with the CF panel 1, the rough positioning process is carried out.

[0063]

For this reason, since the panels can be overlapped without positional deviation by performing the positioning process in advance and reducing the speed for lowering the support mechanism, the rough positioning accuracy is improved. In addition, since the deviation and the impact at the time of bringing the panel into contact with the sealing member 2 are small, the destruction of the sealing member 2 is not deviated, thereby improving the uniformity in gap between the panels. Similar to the present embodiment, in a method of overlapping the TFT panel 4 with the CF panel 1 by forming cut-out portions 1K at the four corners of the CF panel 1 as shown in Figs. 13(a) and 13(b) instead of the guide holes 1H, inserting the support rods 12A, 12B, 12C, and 12D into the cut-out portions 1K, placing the TFT panel 4 on the four support rods 12A, 12B, 12C, and 12D, and lowering the support rods 12A, 12B, 12C, and 12D,

the TFT panel 4 can be slowly lowered onto the CF panel 1 similarly to the method using the guide holes 1H according to the present embodiment. As a result, the same effect as the present embodiment can be obtained.

[0064]

Glass capsules which are used as a plastic filler for engineering may be inserted between the TFT panel and the CF panel and may be used as the spacer plate. Since the glass capsules are destroyed by means of the pressing force at the time of compressing the panels and are narrowed, there occurs no problem with the gap control. In addition, since the fractures of the glass capsules remaining on the panel are transparent, there occurs no problem with display.

[0065]

(6) Sixth Embodiment

Now, a method of manufacturing a liquid crystal display device according to a sixth embodiment of the present invention will be described with reference to the figures. The same elements as the first to fifth embodiments will not be described for the purpose of avoiding repetition. First, in steps P1 to P3 of Fig. 1, the same processes as the first embodiment are carried out. In the process of forming the sealing member in step P4, unlike the first to fifth embodiments, a film 13A (AP-400 made by Tohre) made of a silane coupling material is formed in a ring shape in the

area in which the sealing member is formed on the surface of the CF panel 1, as an example of a film for capturing moving ions.

[0066]

Similarly, a film 13B made of the same silane coupling material is formed in the area in which the sealing member should be compressed later on the surface of the TFT panel 4. The films 13A and 13B are formed using a printing method and a heating process is performed at a temperature 300°C for 30 minutes for curing. Next, the sealing member 2 made of a UV-curing adhesive (T0470 made by Nagasechiba) is formed in a ring shape on the film 13A made of the silane coupling material and formed on the CF panel 1.

[0067]

Thereafter, in steps P5 to P10 of Fig. 1, a liquid crystal display panel having a sectional shape shown in Fig. 14 is completed through the same processes as the first embodiment. In the rough positioning process of step P8, at least the film 13B made of the silane coupling material on the TFT panel 4 exists inside the sealing member 2. As described above, in the method of manufacturing a liquid crystal display device according to the sixth embodiment of the present invention, as shown in Fig. 14, the films 13A and 13B made of the silane coupling material as the film form capturing the moving ions are formed in the formation

area of the sealing member 2 inside the ring-shaped sealing member 2.

189001

As a result, since the moving ions existing in the vicinity of the sealing member 2 are captured by the films 13A and 13B made of the silane coupling material, the leakage of the accumulated charges due to the moving ions can be prevented. Accordingly, it is possible to suppress the decrease in voltage holding rate and thus to suppress the decrease in contrast of the liquid crystal display device at the time of display.

[0069]

The fact that the decrease in voltage holding rate can be suppressed by forming the film made of the silane coupling material in the vicinity of the formation area of the sealing member was confirmed from the experiment executed by the inventors. Now, the experimental result will be described. The comparison result of the voltage holding rate of the liquid crystal display panel in which the film made of the silane coupling material (AP-400 made by Tohre) formed in the vicinity of the formation area of the sealing member and the voltage holding rate of the conventional liquid crystal display panel not using the film is shown in Table 3.

[0070]

[Table 3]

	Voltage holding rate	Voltage holding rate
	(%)	(%) with the lapse of
		1000 hours at 80°C
AP-400 exist	. 97	97
AP-400 not exist	96	94

[0071]

In Table 3, the used liquid crystal is ZLI-4792 (made by Mark) and the used alignment film is JALS-214 (made by JSR). According to the result shown in Table 3, the voltage holding rate is 97% for the liquid crystal display panel in which the film made of the silane coupling material is formed in the vicinity of the formation area of the sealing member and 96% for the conventional liquid crystal display panel not having the film made of the silane coupling material. The voltage holding rate with the lapse of 1000 hours at 80°C is 97% for the liquid crystal display panel having the film made of the silane coupling material and 94.0% for the conventional liquid crystal display panel not having the film. Accordingly, in the liquid crystal display panel in which the film made of the silane coupling material is formed in the vicinity of the formation area of the sealing member, it can be seen that the decrease in voltage holding rate can be suppressed.

[0072]

In the present embodiment, the film made of the silane coupling material is used as an example of the film for capturing the moving ions. However, the present invention is not limited to the embodiment, but may be applied to any film capable of capturing the moving ions only if the film does not contaminate the liquid crystal.

(7) Seventh Embodiment

Now, an apparatus for manufacturing a liquid crystal display device according to a seventh embodiment of the present invention will be described with reference to the figures. The apparatus is a bonding apparatus used for the vacuum exhaust process of step P7 and the rough positioning process of step P8 in Fig. 1. The apparatus is used for the processes of receiving the CF panel and the TFT panel, decompressing the inside, overlapping the panels to perform the rough positioning, and enclosing the liquid crystal in the gap between the panels.

[0073]

The apparatus for manufacturing a liquid crystal display device according to the present embodiment comprises, as shown in Fig. 15, a process chamber 20, an exhaust valve 21, an exhaust port 22, a leak valve 23, a leak port 24, and a stand ST. The process chamber 20 is a chamber in which the CF panel 1 and the TFT panel 4 are bonded. The exhaust valve 21 constitutes a part of the decompressing means and

is provided between a vacuum pump not shown and the exhaust port 21. By opening the exhaust valve 21 and exhausting the process chamber through the exhaust port 22, the process chamber 20 is decompressed.

[0074]

The leak valve 23 is provided between the leak port 24 and a gas bombe not shown but receiving inert gas or the like. By opening the leak valve 23, the gas discharged from the gas bombe is introduced into the process chamber 20 through the leak port 24. The leak valve 23 and the leak port 24 constitute the leak means. The gas bombe receiving inert gas or the like may be not connected to the leak valve 23 and the leaking process may be performed using the atmosphere.

[0075]

A method of manufacturing a liquid crystal display device by using the above-mentioned apparatus will be described. Similar to the first embodiment, the processes of steps P1 to P6 shown in Fig. 1 are performed and in step P7 shown in Fig. 1, the TFT panel 4 and the CF panel 1 in which the liquid crystal 3 is dropped inside the ring-shaped sealing member 2 are introduced into the process chamber 20. The CF panel 1 is mounted on the stand ST.

[0076]

Next, by opening the exhaust valve 21, the process

chamber 20 is exhausted by means of a vacuum pump not shown. Here, by performing the exhaust process for five minutes, the degree of vacuum in the process chamber 20 reaches 5 mTorr. Thereafter, in the rough positioning process of step P8 shown in Fig. 1, the TFT panel 4 and the CF panel 1 are overlapped with the sealing member 2 and the rough positioning is performed in a decompressed state. Subsequently, the pressing process is performed.

[0077]

In the pressing process, the leak valve 23 is instantaneously opened and nitrogen gas, etc. is ejected to the TFT panel 4 from the leak port 24. By ejecting the nitrogen gas, the TFT panel 4 is pressed to the CF panel 1. Gas isotropically applies pressure to a target and is diffused all over the surface of the TFT panel 4. Therefore, when the gas is sprayed to the upper surface of the TFT panel 4, the pressure applied to the TFT panel 4 is almost uniform. Accordingly, since the TFT panel 4 is pressed with a homogeneous force, the gap between the panels 1 and 4 is uniform. As a result, when a driving voltage is applied to the liquid crystal display panel, the electric field applied to the liquid crystal between the panels is homogeneous, thereby improving the display characteristic.

[0078]

Similarly, a bonding apparatus shown in Fig. 16 can be

considered as the bonding apparatus for performing the pressing process using gas. This apparatus is different from the apparatus shown in Fig. 15, in that leak holes 24 are formed in the formation area of the sealing member 2 of the liquid crystal display panel. In order to press the TFT panel 4 overlapped on the CF panel 1 by using the bonding apparatus shown in Fig. 16, the leak valve 23 is opened and the gas supplied from a gas bombe not shown is sprayed from the leak holes 24, similar to the bonding apparatus shown in Fig. In the bonding apparatus, since the leak holes 24 are formed along the formation area of the sealing member 2, the gas is sprayed only in the formation area of the sealing member 2.

[0079]

At the time of pressing the TFT panel 4 and the CF panel 1, it is important to uniformly press the sealing member 2. According to the bonding apparatus, since the gas is sprayed along the sealing member to uniformly press the sealing member 2, it is possible to make the gap between the panels 1 and 4 uniform, similar to the apparatus shown in Fig. 15.

(8) Eighth Embodiment

Now, An apparatus for manufacturing a liquid crystal display device according to an eighth embodiment of the present invention will be described with reference to Fig.

17. The apparatus is a bonding apparatus used for the vacuum exhaust process of step P7 and the rough positioning process of step P8 in Fig. 1, similar to the apparatus for manufacturing a liquid crystal display device according to the seventh embodiment. Here, the CF panel and the TFT panel are introduced into the bonding apparatus, the bonding apparatus is exhausted, and the panels are roughly positioned.

[0800]

The apparatus for manufacturing a liquid crystal display device according to the present embodiment comprises a process chamber 20, an exhaust valve 21, an exhaust port 22, a first leak valve 23A, a second leak valve 23B, a first leak port 24A, a second leak port 24B, a pressing plate 25, and a stand ST. The process chamber 20 is a chamber for performing the bonding process. The exhaust valve 21 is provided between a vacuum valve not shown and the exhaust port 21. By opening the exhaust valve 21, the gas in the process chamber 20 is discharged through the exhaust port 22, thereby decompressing the process chamber.

[0081]

The first leak valve 23A is provided outside the leak port 24A. By opening the first leak valve 23A, gas supplied from the gas bombe not shown is sprayed to the upper surface of the pressing plate. The pressing plate 25 is supported

on the stand ST by a bellows VS expandable and is isolated from the inside of the process chamber 20. When the gas is sprayed, the bellows VS is expanded to press the upper surface of the TFT panel mounted on the stand ST.

[0082]

The second leak valve 23B is provided outside the leak port 24B. By opening the second leak valve 23B, the air outside the bonding apparatus is introduced into the process chamber 20. A method of manufacturing a liquid crystal display device using the apparatus for manufacturing a liquid crystal display device will be now described. Similar to the first embodiment, the processes of steps P1 to P6 in Fig. 1 are carried out. In step P7 of Fig. 1, the CF panel 1 and the TFT panel 4 on which the sealing member 2 is formed and the liquid crystal 3 is dropped are introduced into the process chamber 20. The CF panel 1 is mounted on the stand ST.

[800]

By disposing the TFT panel 4 above the CF panel to oppose the CF panel 1 and opening the exhaust valve 21, the process chamber 20 is exhausted into vacuum by a vacuum pump not shown. By performing the exhaust process for five minutes, the degree of vacuum reaches to 5 mTorr.

Thereafter, in the rough positioning process of step P8 shown in Fig. 1, the TFT panel 4 is disposed on the CF panel

1 in vacuum to closely oppose them to each other and then the opposed panels are pressed.

[0084]

In the pressing process, by instantaneously opening the first leak valve 23, nitrogen gas, etc. supplied from a gas pump not shown is sprayed to the TFT panel 4 from the leak port 24 with a uniform pressure and the TFT panel 4 is pressed by the pressing plate 25. Accordingly, the TFT panel 4 is pressed onto the CF panel 1. In the pressing process, the pressing plate 25 is pressed using the gas and the TFT panel 4 is pressed by the pressing plate 25. Generally, gas has an isotropic characteristic. Accordingly, by spraying the gas to the upper surface of the pressing plate 25, the gas is diffused all over the surface of the pressing plate 25 and the pressure of the gas is uniform. Accordingly, since the TFT panel 4 is pressed with the uniform pressure, it is possible to press the TFT panel 4 and the CF panel 1 with the uniform force, unlike the conventional case.

[0085]

As a result, since the liquid crystal can be uniformly diffused between the panels, the gap between the panels 1 and 4 can be kept uniform, thereby improving the display characteristic.

(9) Ninth Embodiment

Now, a method of manufacturing a liquid crystal display device according to a ninth embodiment of the present invention will be described with reference to Figs. 18(a) and 18(b). The same elements as the first to eighth embodiments will not be described for the purpose of avoiding repetition.

[0086]

First, in step Pl shown in Fig. 1, in forming elements required for forming a liquid crystal display panel on a transparent panel made of glass or the like, the process for the TFT panel 4 is similar to the first embodiment. However, in forming color filters on the CF panel 1, preliminary color filters are formed in accordance with the arrangement order of the color filters in the display area CR in a peripheral area of the display area CR at the same time as forming the color filters in the display area CR of the liquid crystal display device as shown in Fig. 18(b). The subsequent process are similar to the first embodiment and thus description thereof is omitted.

[0087]

In the method of manufacturing a liquid crystal display device according to the ninth embodiment of the present invention, as shown in Figs. 18(a) and 18(b), since the preliminary color filters are formed in accordance with the arrangement order of the color filters in the display area

CR in a peripheral area of the display area CR. Accordingly, even when positional deviation occurs in overlapping the TFT panel 4 with the CF panel 1, the end portions departing from the display area CR can be set to the positions of the preliminary color filters CM. As a result, the degree of adjustment for positioning is small and the adjustment is easily performed. In addition, it is possible to prevent damage on the adhesive due to the great movement of the panels for adjustment.

[8800]

[Advantages]

As described above, in the method of manufacturing a liquid crystal display device according to the present invention, the ultraviolet rays are selectively irradiated to the inner circumferential surface of the ring-shaped adhesive member formed on the first transparent panel in advance, thereby curing the irradiated area. As a result, it is possible to prevent the contamination of liquid crystal due to the reaction between the adhesive member and the liquid crystal sealed in the gap between the first and second transparent panels. Accordingly, it is possible to suppress the decrease in voltage holding rate of the liquid crystal display device, thereby suppressing the decrease in contrast. In addition, since only the inner circumferential surface of the adhesive member is cured, the fixation

between the panels is stronger than the case where the entire surface is cured.

[0089]

The first transparent panel and the second transparent panel are overlapped with each other by forming the ring-shaped adhesive member on the first transparent panel and the second transparent panel, respectively, curing only the surface layers of the adhesive members, and then bringing the adhesive members into contact with each other. since the adhesive members come in contact with each other, the fixation of the first transparent panel and the second transparent panel becomes stronger even when only the surface layers are cured.

[0090]

In addition, after the first transparent panel and the second transparent panel are overlapped with the non-cured adhesive member and before the adhesive member and the liquid crystal come in contact with each other, the adhesive member is cured by irradiating the ultraviolet rays onto the adhesive member. As a result, the first and second transparent panels can be surely fixed to each other. In addition, the conventional contamination of the liquid crystal caused by bringing the non-cured adhesive member into contact with the liquid crystal and irradiating the ultraviolet rays to the contact areas can be suppressed.

Accordingly, it is possible to actively prevent the voltage holding rate of the liquid crystal display device from being decreased due to the contamination of the liquid crystal and thus to prevent the display contrast from being decreased.

[0091]

Specifically, since the convex portions for delaying the diffusion speed of the liquid crystal are formed inside the adhesive member and outside the display area on the first or second transparent panel, it is possible to easily irradiate the ultraviolet rays to the adhesive member to cur the adhesive member with the margin of time before the liquid crystal comes in contact with the adhesive member. Furthermore, the film for capturing the moving ions is formed on the first or second transparent panel inside and adjacent to the adhesive member.

[0092]

As a result, since the moving ions generated in the liquid crystal due to the reaction between the adhesive member and the liquid crystal is captured, it is possible to prevent the accumulated charges from being leaked by the moving ions. Accordingly, it is possible to more surely suppress the decrease in voltage holding rate of the liquid crystal display device. In addition, when the first transparent panel and the second transparent panel are overlapped, the spacer plate is inserted between the first

transparent panel and the second transparent panel such that a part of the first transparent panel and a part of the second transparent panel come in contact with each other and then the spacer plate is removed.

[0093]

The first transparent panel has a plurality of holes or cut-out portions and the second transparent panel is overlapped with the first transparent panel by allowing the support members to pass through the holes or cut-out portions, laying the second transparent panel on the support members, and then descending the support members. As a result, the rough positioning accuracy is improved and the uniformity in gap between the panels is improved.

[0094]

Further, when the color filters are formed in the display area, the preliminary color filters are formed around the display area of the liquid crystal display device in accordance with the arrangement order of the color filters in the display area. As a result, the degree of adjustment for position is small and the adjustment is easy. In addition, it is possible to prevent damage of the adhesive member due to great movement of the transparent panels for adjustment.

[0095]

In the apparatus for manufacturing a liquid crystal

display device according to the present invention, there is provided the process chamber in which the first transparent panel and the second transparent panel are overlapped, the decompressing means for decompressing the process chamber, and the gas introduction port for ejecting gas to the surface of the first transparent panel or the second transparent panel. The gas introduction port may be replaced with the leak port for restoring the decompressed pressure of the process chamber to the atmospheric pressure.

[0096]

As a result, since the pressing force becomes uniform and thus the gap between the first and second transparent panels becomes uniform, a constant electric field is applied to the entire liquid crystal at the time of driving the liquid crystal display panel, thereby enhancing the uniformity in display characteristic.

[Brief Description of the Drawings]

[Fig. 1]

Fig. 1 is a flowchart illustrating a method of manufacturing a liquid crystal display device according to a first embodiment of the present invention.

[Fig. 2]

Fig. 2 is a schematic view (first view) illustrating the method of manufacturing a liquid crystal display device

according to the first embodiment of the present invention. [Fig. 3]

Fig. 3 is a schematic view (second view) illustrating the method of manufacturing a liquid crystal display device according to the first embodiment of the present invention.

[Fig. 4]

Fig. 4 is a schematic view illustrating a method of manufacturing a liquid crystal display device according to a second embodiment of the present invention.

[Fig. 5]

Fig. 5 is a schematic view (first view) illustrating a method of manufacturing a liquid crystal display device according to a third embodiment of the present invention.

[Fig. 6]

Fig. 6 is a schematic view (second view) illustrating the method of manufacturing a liquid crystal display device according to the third embodiment of the present invention.

[Fig. 7]

Fig. 7 is a cross-sectional view (first view) illustrating a method of manufacturing a liquid crystal display device according to a fourth embodiment of the present invention.

[Fig. 8]

Fig. 8 is a top view (first view) illustrating the method of manufacturing a liquid crystal display device

according to the fourth embodiment of the present invention. [Fig. 9]

Fig. 9 is a top view (second view) illustrating the method of manufacturing a liquid crystal display device according to the fourth embodiment of the present invention.

[Fig. 10]

Fig. 10 is a perspective view illustrating the method of manufacturing a liquid crystal display device according to the fourth embodiment of the present invention.

[Fig. 11]

Fig. 11 is a cross-sectional view (second view) illustrating the method of manufacturing a liquid crystal display device according to the fourth embodiment of the present invention.

[Fig. 12]

Fig. 12 is a cross-sectional view illustrating a method of manufacturing a liquid crystal display device according to a fifth embodiment of the present invention.

[Fig. 13]

Fig. 13 is a schematic view illustrating the method of manufacturing a liquid crystal display device according to the fifth embodiment of the present invention.

[Fig. 14]

Fig. 14 is a cross-sectional view illustrating a method of manufacturing a liquid crystal display device according

to a sixth embodiment of the present invention.

[Fig. 15]

Fig. 15 is a schematic view (first view) illustrating an apparatus for manufacturing a liquid crystal display device according to a seventh embodiment of the present invention.

[Fig. 16]

Fig. 16 is a schematic view (second view) illustrating the apparatus of manufacturing a liquid crystal display device according to the seventh embodiment of the present invention.

[Fig. 17]

Fig. 12 is a cross-sectional view illustrating a method of manufacturing a liquid crystal display device according to an eighth embodiment of the present invention.

[Fig. 18]

Fig. 12 is a schematic view illustrating a method of manufacturing a liquid crystal display device according to a ninth embodiment of the present invention.

[Fig. 19]

Fig. 19 is a flowchart illustrating a conventional method of manufacturing a liquid crystal display device.

[Fig. 20]

Fig. 20 is a cross-sectional view illustrating a conventional apparatus for manufacturing a liquid crystal

display device.

[Fig. 21]

Fig. 21 is a schematic view (first view) illustrating the conventional method of manufacturing a liquid crystal display device.

[Fig. 22]

Fig. 22 is a schematic view (second view) illustrating the conventional method of manufacturing a liquid crystal display device.

[Fig. 23]

Fig. 23 is a graph (first view) illustrating a problem of a conventional example.

[Fig. 24]

Fig. 24 is a graph (second view) illustrating a problem of a conventional example.

[Fig. 25]

Fig. 25 is a graph illustrating a voltage holding rate of a liquid crystal display panel.

[Reference Numerals]

1: CF PANEL (FIRST TRANSPARENT PANEL)

1A, 1B, 1C: CF PANEL

1H: GUIDE HOLE

1K: CUT-OUT PORTION

2: SEALING MEMBER (ADHESIVE MEMBER)

- 2A: INNER CIRCUMFERENTIAL SURFACE OF SEALING MEMBER
- 2B: FIRST SEALING MEMBER (FIRST ADHESIVE MEMBER)
- 2C: SEMI-CURED SEALING MEMBER
- 3: LIQUID CRYSTAL
- 4: TFT PANEL (SECOND TRANSPARENT PANEL)
- 4a, 4b, 4c: TFT PANEL
- 5: SECOND SEALING MEMBER (SECOND ADHESIVE MEMBER)
- 5a: SEMI-CURED SEALING MEMBER
- 6A, 6B, 9A, 9B, 9C: CONVEX PORTION
- 7: TRANSPARENT ELECTRODE
- 8: ALIGNMENT FILM
- 11, 11A, 11B, 11C: SPACER PLATE
- 12A, 12B, 12C, 12D: SUPPORT ROD
- 13A, 13B: FILM MADE OF SILANE COUPLING AGENT (FILM FOR CAPTURING MOVING IONS)
 - 20: PROCESS CHAMBER
 - 21: EXHAUST VALVE
 - 22: EXHAUST PORT
 - 23: LEAK VALVE
 - 23A: FIRST LEAK VALVE
 - 23B: SECOND LEAK VALVE
 - 24, 24A: LEAK PORT
 - 24B: SECOND LEAK PORT
 - 25: PRESSING PLATE
 - CR: DISPLAY AREA

CM: PRELIMINARY COLOR FILTER

ST: STAGE

SP: SPACER

VS: BELLOWS

(11)特許出願公開番号

特開平8-190099

(43)公開日 平成8年(1996)7月23日

(51) Int. Cl. 6

識別記号

505

FΙ

GO2F 1/1341

1/1339

審査請求 未請求 請求項の数12 OL (全19頁)

(21)出願番号

特願平7-2852

(71)出願人 000005223

富士通株式会社

(22)出願日

平成7年(1995)1月11日

神奈川県川崎市中原区上小田中4丁目1番

1号

(72)発明者 小池 善郎

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(72)発明者 露木 俊

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(74)代理人 弁理士 岡本 啓三

最終頁に続く

(54) 【発明の名称】液晶表示装置の製造方法及び液晶表示装置の製造装置

(57)【要約】

【目的】 減圧雰囲気中で一の透明基板上に液晶を滴下 した後、もう一方の透明基板を重ね合わせて液晶を封入 する滴下注入法を用いた液晶表示装置の製造方法に関 し、粗合わせである程度の位置合わせ精度と基板間の均 一な隙間を保持し、電圧保持率の低下を抑制する。

【構成】 第1の透明基板1上であって表示領域の外側 の領域に接着材2を環状に形成する工程と、環状の接着 材2の内周表面に紫外線を選択的に照射して、照射領域 を硬化させる工程と、接着材2で囲まれた領域の第1の 透明基板1上に液晶3を滴下する工程と、減圧雰囲気内 で第1の透明基板1と第2の透明基板4を重ね合わせ、 第1の透明基板1と第2の透明基板4の間の接着材2で 囲まれた隙間を接着材2により密封する工程と、接着材 2の全体に紫外線を照射して硬化させる工程とを有す る。

【特許請求の範囲】

【請求項1】 第1の透明基板上であって表示領域の外 側の領域に接着材を環状に形成する工程と、

1

環状の前記接着材の内周表面に紫外線を選択的に照射し て、照射領域を硬化させる工程と、

前記接着材で囲まれた領域の前記第1の透明基板上に液 晶を滴下する工程と、

減圧雰囲気内でスペーサを介して前記第1の透明基板と 第2の透明基板を重ね合わせ、前記第1の透明基板と前 記第2の透明基板の間の前記接着材で囲まれた隙間を前 記接着材により密封する工程と、

前記第1の透明基板と前記第2の透明基板の対応する位 置を合わせた後、前記接着材の全体に紫外線を照射して 硬化させる工程とを有することを特徴とする液晶表示装 置の製造方法。

【請求項2】 第1の透明基板上であって表示領域の外 側の領域に第1の接着材を環状に形成する工程と、

第1の接着材の形成領域に対応するように第2の透明基 板上であって表示領域の外側の領域に第2の接着材を環 状に形成する工程と、

前記第1の接着材と前記第2の接着材に紫外線を照射し て表層を硬化させる工程と、

前記第1の接着材で囲まれた領域の前記第1の透明基板 上に液晶を滴下する工程と、

滅圧雰囲気中で前記第1の透明基板と第2の透明基板を 重ね合わせ、前記第1の透明基板と前記第2の透明基板 の間の前記第1及び第2の接着材で囲まれた隙間を前記 第1及び第2の接着材により密封する工程と、

前記第1の透明基板と前記第2の透明基板の対応する位 置を合わせた後、前記第1及び前記第2の接着材に紫外 線を照射して硬化させ、前記第1の透明基板と前記第2 の透明基板を固着する工程とを有することを特徴とする 液晶表示装置の製造方法。

【請求項3】 第1の透明基板上であって表示領域の外 側の領域に接着材を環状に形成する工程と、

前記接着材で囲まれた領域の前記第1の透明基板上に液 晶を滴下する工程と、

減圧雰囲気でスペーサを介して前記第1の透明基板と第 2の透明基板を重ね合わせ、前記第1の透明基板と前記 第2の透明基板の間の前記接着材で囲まれた隙間を前記 接着材により密封する工程と、

前記第1の透明基板と前記第2の透明基板の対応する位 置を合わせた後、前記接着材と前記液晶とが接する前 に、前記接着材に紫外線を照射して硬化させる工程とを 有することを特徴とする液晶表示装置の製造方法。

【請求項4】 前記第1の透明基板の表示領域にはカラ ーフィルタ又は液晶駆動用マトリクスが形成されてお り、前記第2の透明基板の表示領域には液晶駆動用マト リクス又はカラーフィルタが形成されていることを特徴 とする請求項1万至3のいずれかに記載の液晶表示装置 50 後、もう一方の透明基板を重ね合わせて液晶を封入する

の製造方法。

【請求項5】 前記第1又は前記第2の透明基板の表示 領域の外側の領域であって、前記接着材の形成領域の内 側の領域に、前記液晶の広がり速度を遅らせる凸部が形 成されていることを特徴とする請求項3又は請求項4記 載の液晶表示装置の製造方法。

前記液晶の広がり速度を遅らせる前記凸 【請求項6】 部は、前記第1又は前記第2の透明基板の前記表示領域 に形成するカラーフィルタと同じ材料で形成されている 10 ことを特徴とする請求項5記載の液晶表示装置の製造方 法。

【請求項7】 前記接着材の形成領域の内側領域であっ て、前記接着材の形成領域に隣接する領域の前記第1又 は前記第2の透明基板上に、可動イオンを捕獲する膜を 形成することを特徴とする請求項1乃至請求項6のいず れかに記載の液晶表示装置の製造方法。

【請求項8】 前記第1の透明基板の一部と前記第2の 透明基板の一部とが接するように前記第1の透明基板と 前記第2の透明基板の間にスペーサ板を挟んだ後、前記 スペーサ板を除去して第1の透明基板と第2の透明基板 を重ね合わせ、前記隙間を密封することを特徴とする請 求項1乃至請求項7のいずれかに記載の液晶表示装置の 製造方法。

【請求項9】 前記第1の透明基板は前記接着材が囲む 環状領域の外側の領域に複数の穴又は切除部を有し、前 記第1の透明基板の前記穴又は前記切除部に支持具を通 し、該支持具の上に前記第2の透明基板を載せて、前記 支持具を降下させ、前記第2の透明基板を前記第1の透 明基板に重ね合わせることを特徴とする請求項1乃至請 求項7のいずれかに記載の液晶表示装置の製造方法。

【請求項10】 前記第1又は第2の透明基板の表示領 域に隣接する周辺領域に前記表示領域のカラーフィルタ の配列順序に従って予備のカラーフィルタが形成されて いることを特徴とする請求項1乃至請求項9のいずれか に記載の液晶表示装置の製造方法。

【請求項11】 第1の透明基板と第2の透明基板の重 ね合わせを行う処理室と、

前記処理室内に置かれた前記第1又は前記第2の透明基 板に面し、前記第1又は前記第2の透明基板にガスを吹 40 き付けてこれを加圧するガス導入口を有することを特徴 とする液晶表示装置の製造装置。

【請求項12】 前記ガス導入口は前記処理室の内部圧 力を大気圧に戻すためのリークロであることを特徴とす る請求項11記載の液晶表示装置の製造装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は液晶表示装置の製造方法 及び液晶表示装置の製造装置に関し、更に詳しくいえ ば、減圧雰囲気中で一の透明基板上に液晶を滴下した

適下注入法と呼ばれる方法の改善に関する。 【0002】

【従来の技術】真空封入法によれば液晶表示パネルに液晶を封入するのにかなりの時間を要していたが、滴下注入法の開発により液晶封入に要する時間を大幅に短縮することができ、注目される技術となっている。以下で従来例に係る滴下注入法について図面を参照しながら説明する。なお、図22(a)は同図(b)のG-G線断面図である。

【0003】まず、図19のフローチャートのステップP1で、ガラスなどからなる透明基板上に、液晶表示パネルを形成する上で必要な部材を形成する。すなわち、一つの液晶表示パネルについて2枚の透明基板を用意し、その一方の透明基板の表面にはTFT(Thin Film Transistor)、ドレインバスライン、ゲートバスラインや画素電極などを形成し、その上に配向膜を形成して、TFT基板を作成する。他方の透明基板には、表面にR(赤)、G(緑)、B(青)のカラーフィルタを形成し、その上に透明なITO(Indium Tin Oxide)膜からなる対向電極を形成する。更にその上に配向膜を形成することで、カラーフィルタ基板(以下CF基板と称する)を作成する。

【0004】次に、ステップP2で、TFT基板、CF基板の表面に形成された配向膜をラビング処理する。次いで、ステップP3で、TFT基板にスペーサを散布する。これはTFT基板とCF基板との間に液晶を満たす隙間を確保するためである。一方、ステップP4で、液晶を封入する矩形領域を囲むようにCF基板の表面に紫外線硬化型のシール材を形成する。

【0005】次に、ステップP5でCF基板表面のシール材で囲まれた領域内に液晶を滴下する。次に、ステップP6でTFT基板とCF基板との両方を図20に示すような貼り合わせ装置に導入して、装置内を真空排気する。次いで、ステップP7でTFT基板とCF基板の粗合せを行う。この工程は、減圧雰囲気中でTFT基板とCF基板とをある程度の位置合せをして重ね合わせ、弱く加圧する工程である。液晶はTFT基板とCF基板の間の隙間にシール材32により密封される。

【0006】この工程では、まず表面にシール材32が形成され、液晶33が滴下されたCF基板31が図20に示すような装置内のステージSTの上に載置される。一方、TFT基板34は図20に示す装置内に搬入され、図21(a)に示すように支持具SUによって支持される。次に図20の排気弁42が開き、排気口41から真空排気されることにより、装置内の処理室40が減圧状態になる。次いでTFT基板34が図21(a)に示すようにCF基板33に対向して配置されたのちに、同図(b)に示すようにCF基板31上に落下させる。その後、図20に示すような圧着具43でTFT基板34が上方から圧着される。

【0007】次いで、ステップP8で粗合せがなされた透明基板を大気中に取出し、TFT基板34とCF基板33の表示領域が対応するように精密な位置合せをする。この工程によって、滴下された液晶33は図22(a),(b)に示すようにシール材32で囲まれた領域のほぼ全面に温く行き渡ることになる。その後、ステップP9でシール材32に紫外線を照射してこれを完全に硬化させて、TFT基板34とCF基板31を固着することにより液晶が封入された液晶表示パネルが形成さ

[0008]

10 れる。

【発明が解決しようとする課題】しかしながら、上記従来の製造方法によると、以下に示すような問題が生じる。まず第1に、図19のステップP7に示す粗合せの工程で、図21(a),(b)に示すように、TFT基板34をCF基板31の上に落下させている。このため、TFT基板34とCF基板31の位置合わせがずれやすいという問題がある。

【0009】第2に、この粗合せ工程では、その後図20に示すような圧着部材43でTFT基板34を上から加圧するが、このときに、圧着部材43の加圧面の平坦性等により広いTFT基板34の全面に圧力を均一に加えることが難しいため、液晶33が均一に行き渡らなかったり、TFT基板34とCF基板31の隙間が均一にならなかったり、シールの一部が加圧不十分となってリークしたりするなどの問題が生じていた。

【0010】第3に、液晶と未硬化のシール材が接し、かつその領域に紫外線照射がなされてしまうと、これによって液晶とシール材が反応して汚染が生じ、当該液晶表示パネルの電圧保持率が低下する。なお、電圧保持率とは、液晶パネルに電圧を間歇的に印加したときに、電圧印加から次の電圧印加までの間に液晶を挟む両電極間で蓄積電荷がリークせずにどの程度まで初期の電圧を維持しているかを示す値であって、図25(a),(b)の

$B/A \times 100$ (%)

で示される値である。上式でAは図25(a)の斜線部の面積(リークがない場合の電極間に保持されている電圧の時間積分)であって、Bは図25(b)の斜線部の面積(実際に電極間に保持されている電圧の時間積分)である。

【0011】なお、図23,24は、液晶と未硬化のシール材が接してしまった後に、シール材に紫外線を照射して硬化させたときの電圧保持率と、紫外線の照射時間との関係を示すグラフである。図23に示すように、中央(シール端より25mm)、シール近傍(シール端より10mm)のいずれの領域でも、紫外線を照射した時間が増えるに従って、その電圧保持率に低下がみられる。特にシール近傍での低下は顕著で、2~4%程度の低下が50確認できる。

20

40

5

【0012】また、図24は同様の製造方法で液晶を封 入して液晶表示パネルを形成した後に、80℃の温度下 で当該液晶表示パネルを1000時間放置した場合の電 圧保持率の変動の様子を示したグラフである。測定箇所 は中央(シール端より25 mm)である。図24に示すよ うに、この場合の電圧保持率の低下は更に顕著であるこ とがわかる。

【0013】以上図23、図24に示すように、液晶が シール材に接した後に紫外線照射でシール材を硬化させ る従来の滴下注入法によると、当該液晶表示パネルの電 圧保持率が低下するが、この電圧保持率が低下すると、 十分な大きさの駆動電圧が液晶表示パネルに加わらず、 表示パネルとして用いたときに、当該パネルのコントラ ストが低下してしまうという問題が生じていた。

【0014】本発明はこのような問題に鑑みてなされた ものであって、粗合わせである程度の位置合わせ精度と 基板間の均一な隙間を保持し、電圧保持率の低下を抑制 することが可能な液晶表示装置の製造方法及び液晶表示 装置の製造装置を提供することを目的とする。

[0015]

【課題を解決するための手段】上記した課題は、第1 に、第1の透明基板上であって表示領域の外側の領域に 接着材を環状に形成する工程と、環状の前記接着材の内 周表面に紫外線を選択的に照射して、照射領域を硬化さ ・せる工程と、前記接着材で囲まれた領域の前記第1の透 明基板上に液晶を滴下する工程と、減圧雰囲気内でスペ ーサを介して前記第1の透明基板と第2の透明基板を重 ね合わせ、前記第1の透明基板と前記第2の透明基板の 間の前記接着材で囲まれた隙間を前記接着材により密封 する工程と、前記第1の透明基板と前記第2の透明基板 の対応する位置を合わせた後、前記接着材の全体に紫外 線を照射して硬化させる工程とを有することを特徴とす る液晶表示装置の製造方法によって達成され、第2に、 第1の透明基板上であって表示領域の外側の領域に第1 の接着材を環状に形成する工程と、第1の接着材の形成 領域に対応するように第2の透明基板上であって表示領 域の外側の領域に第2の接着材を環状に形成する工程 と、前記第1の接着材と前記第2の接着材に紫外線を照 射して表層を硬化させる工程と、前記第1の接着材で囲 まれた領域の前記第1の透明基板上に液晶を滴下する工 程と、減圧雰囲気中で前記第1の透明基板と第2の透明 基板を重ね合わせ、前記第1の透明基板と前記第2の透 明基板の間の前記第1及び第2の接着材で囲まれた隙間 を前記第1及び第2の接着材により密封する工程と、前 記第1の透明基板と前記第2の透明基板の対応する位置 を合わせた後、前記第1及び前記第2の接着材に紫外線 を照射して硬化させ、前記第1の透明基板と前記第2の 透明基板を固着する工程とを有することを特徴とする液 晶表示装置の製造方法によって達成され、第3に、第1 の透明基板上であって表示領域の外側の領域に接着材を

環状に形成する工程と、前記接着材で囲まれた領域の前 記第1の透明基板上に液晶を滴下する工程と、減圧雰囲 気中でスペーサを介して前記第1の透明基板と第2の透 明基板を重ね合わせ、前記第1の透明基板と前記第2の 透明基板の間の前記接着材で囲まれた隙間を前記接着材 により密封する工程と、前記第1の透明基板と前記第2 の透明基板の対応する位置を合わせた後、前記接着材と 前記液晶とが接する前に、前記接着材に紫外線を照射し て硬化させる工程とを有することを特徴とする液晶表示 装置の製造方法によって達成され、第4に、前記第1の 透明基板の表示領域にはカラーフィルタ又は液晶駆動用 マトリクスが形成されており、前記第2の透明基板の表 示領域には液晶駆動用マトリクス又はカラーフィルタが 形成されていることを特徴とする第1乃至第3の発明の いずれかに記載の液晶表示装置の製造方法によって達成 され、第5に、前記第1又は前記第2の透明基板の表示 領域の外側の領域であって、前記接着材の形成領域の内 側の領域に、前記液晶の広がり速度を遅らせる凸部が形 成されていることを特徴とする第3又は第4の発明に記 載の液晶表示装置の製造方法によって達成され、第6 に、前記液晶の広がり速度を遅らせる前記凸部は、前記 第1又は前記第2の透明基板の前記表示領域に形成する カラーフィルタと同じ材料で形成されていることを特徴 とする第5の発明に記載の液晶表示装置の製造方法によ って達成され、第7に、前記接着材の形成領域の内側領 域であって、前記接着材の形成領域に隣接する領域の前 記第1又は前記第2の透明基板上に、可動イオンを捕獲 する膜を形成することを特徴とする第1乃至第6の発明 のいずれかに記載の液晶表示装置の製造方法によって達 成され、第8に、前記第1の透明基板の一部と前記第2 の透明基板の一部とが接するように前記第1の透明基板 と前記第2の透明基板の間にスペーサ板を挟んだ後、前 記スペーサ板を除去して第1の透明基板と第2の透明基 板を重ね合わせ、前記隙間を密封することを特徴とする 第1乃至第7の発明のいずれかに記載の液晶表示装置の 製造方法によって達成され、第9に、前記第1の透明基 板は前記接着材が囲む環状領域の外側の領域に複数の穴 又は切除部を有し、前記第1の透明基板の前記穴又は前 記切除部に支持具を通し、該支持具の上に前記第2の透 明基板を載せて、前記支持具を降下させ、前記第2の透 明基板を前記第1の透明基板に重ね合わせることを特徴 とする第1乃至第7の発明のいずれかに記載の液晶表示 装置の製造方法によって達成され、第10に、前記第1 又は前記第2の透明基板の表示領域に隣接する周辺領域 に前記表示領域のカラーフィルタの配列順序に従って予 備のカラーフィルタが形成されていることを特徴とする 第1乃至第9の発明のいずれかに記載の液晶表示装置の 製造方法によって達成され、第11に、第1の透明基板 と第2の透明基板の重ね合わせを行う処理室と、前記処 50 理室内に置かれた前記第1又は前記第2の透明基板に面

し、前記第1又は前記第2の透明基板にガスを吹き付けてこれを加圧するガス導入口を有することを特徴とする液晶表示装置の製造装置によって達成され、第12に、前記ガス導入口は前記処理室の内部圧力を大気圧に戻すためのリーク口であることを特徴とする第10の発明に記載の液晶表示装置の製造装置によって達成される。

[0016]

【作 用】本発明に係る液晶表示装置の製造方法によれば、第1に、第1の透明基板に形成された環状の接着材の内周表面に予め紫外線を選択的に照射して、照射領域を硬化させている。このため、第1及び第2の透明基板を重ね合わせて接着材により隙間に液晶を密封するとき、液晶が接着材に接しても、内周表面は紫外線照射により硬化しているので、接着材と液晶との反応による液晶汚染を防止することができる。これにより、液晶表示装置の電圧保持率の低下を抑制し、コントラストの低下を抑制することが可能になる。また、接着材の内周表面だけの硬化なので、全面硬化の場合と比較して基板間の固着はより強固になる。

【0017】また、第1の透明基板と第2の透明基板にともに環状の接着材を形成し、接着材の表層のみを硬化した後、接着材同士を接触させて第1の透明基板と第2の透明基板を重ね合わせている。接着材同士が接触するため、表層のみが硬化していても、加圧するさいに潰れて未硬化の部分が現れて接触するようになる。従って、その後の紫外線照射により第1の透明基板と第2の透明基板同士の固着がより強固になる。また、たとえ潰れなくても接着材同士なので、透明基板と接着材の場合に比べて固着が強固になる。このように、接着材全面に紫外線が照射されて表層が硬化していても、第1及び第2の透明基板間の密着性が損なわれることはない。

【0018】第2に、未硬化の接着材を介して第1の透明基板と第2の透明基板を重ね合わせた後、接着材と液晶とが接する前に、接着材に紫外線を照射して硬化させている。このため、第1及び第2の透明基板の固着を確実にするとともに、従来、未硬化の接着材と液晶が接し、その領域に紫外線が照射されることによって生じていた液晶の汚染を抑制することができ、液晶汚染によって当該液晶表示装置の電圧保持率が低下して、その表示の際のコントラストが低下することを極力抑止することが可能になる。

【0019】第3に、第1又は第2の透明基板の表示領域の外側の領域であって、接着材の形成領域の内側の領域に、液晶の広がり速度を遅らせる凸部が形成されている。凸部により第1又は第2の透明基板間の隙間が狭くなるため、液晶が接着材に達するまでの時間が長くなるので、接着材と液晶とが接する前に、接着材に紫外線を照射して硬化させることを容易に行うことが可能になる。特に、凸部として第1又は第2の透明基板の表示領域に形成するカラーフィルタと同じ材料を用いることに

より、表示領域へのカラーフィルタの形成と同時に一度 に形成することができ、工程が簡略化される。

【0020】第4に、接着材の形成領域の内側領域であって、接着材の形成領域に隣接する領域の第1又は第2の透明基板上に、可動イオンを捕獲する膜を形成している。このため、接着材と液晶との反応等により液晶中に可動イオンが発生しても捕獲されるため、可動イオンを介した蓄積電荷のリークを抑制することができる。これにより、当該液晶表示装置の電圧保持率の低下をより確実に抑止することが可能になる。

【0021】第5に、第1の透明基板に第2の透明基板を重ね合わせる際に、第1の透明基板の一部と第2の透明基板の一部とが接するように第1の透明基板と第2の透明基板との間にスペーサ板を挟んだ後、これを除去している。基板を落下させていた従来に比して、第1の透明基板に第2の透明基板がゆっくりと重ね合わされるため、粗合わせの精度が向上する。また、衝撃が小さいためシール材の潰れが偏らず、基板間の隙間の間隔の均一性の向上を図ることが出来る。

【0022】第6に、第1の透明基板は複数の穴又は切除部を有し、これらの穴又は切除部に支持具を通し、該支持具の上に第2の透明基板を載せて、支持具を降下させ、第2の透明基板を第1の透明基板に重ね合わせている。このため、予め位置合わせをしておいて支持具を降下させる速度を遅くすれば、位置ずれせずにそのまま重ね合わせることが出来るので、粗合わせの精度が向上する。しかも、基板がシール材に接触する際の偏りも少なく、かつ衝撃が小さいためシール材の潰れが偏らず、基板間の隙間の間隔の均一性が向上する。

【0023】第7に、表示領域にカラーフィルタを形成するときに、液晶表示装置の表示領域に隣接する周辺領域にも表示領域のカラーフィルタの配列順序に従って予備のカラーフィルタを形成しているので、重ね合わせの際に第1の透明基板が第2の透明基板の表示領域からはずれても、はずれた端の部分を予備のカラーフィルタに合わせればよい。このため、位置合わせするための調整幅が少なく、調整が容易であるとともに、調整のための透明基板の大幅な移動による接着材へのダメージ付与を避けることができる。

40 【0024】第9に、本発明に係る液晶表示装置の製造 装置においては、第1の透明基板と第2の透明基板とを 収納して重ね合わせる処理室と、処理室内を減圧する減 圧手段と、第1の透明基板又は第2の透明基板の表面か らガスを吹き付けるガス導入口が設けられている。ガス 導入口として処理室内の減圧状態を大気圧に戻すための リークロで代用することもできる。

【0025】ガスは一般に等方的に圧力を及ぼし、かつ 透明基板の表面に遍く行き渡るため、透明基板に凹凸が あったとしても、加圧力は均一になる。これにより、第 50 1及び第2の透明基板の形成する隙間を均一な間隔とす q

ることができるので、液晶表示パネルを駆動する際、液 晶全体に一定の電界がかかることになり、表示特性の均 一性が増す。

[0026]

【実施例】以下で、本発明の実施例に係る液晶表示装置の製造方法及びその製造装置を図面を参照しながら説明する。

(1) 第1の実施例

以下で本発明の第1の実施例に係る液晶表示装置の製造 方法について図1のフローチャート及び図2(a).

(b), 図3(a), (b)を参照しながら説明する。図2(b)は同図(a)のA-A線断面図である。

【0027】まず、図1のステップP1で、ガラスなどからなる透明基板上に、液晶表示パネルを作成する上で必要な部材を形成する。すなわち、一つの液晶表示パネルについて、10.4インチ相当のガラス板からなる2枚の透明基板を用意し、第1の透明基板の表面に、R(赤)、G(緑)、B(青)のカラーフィルタを形成するため、成膜/パターニングを3回繰り返す。続いて、カラーフィルタ上に透明なITO(Indium Tin Oxide)膜からなる対向電極を形成した後、対向電極上に配向膜を形成して、カラーフィルタ基板(以下CF基板と称する)1を作成する。

【0028】他方、第2の透明基板の表面にTFT(Thin Film Transistor)、ドレインバスライン、ゲートバスライン及び画素電極などを形成し、その上に配向膜を形成してTFT基板4を作成する。次いで、ステップP3でTFT基板4を作成する。次いで、ステップP3でTFT基板4を作成する。スペーサSPは、重ね合わされたCF基板1とTFT基板4の間の液晶封入の隙間を確保するものである。スペーサSPとしては密着性を有する直径5.0μmのプラスチック球を用いる。密着性は、散布後加熱処理を行うことにより付与される。液晶が広がる間にスペーサSPが移動しないようにし、かつ重ね合わせの作業を容易に行うためである。

方を貼り合わせ装置に導入して、装置内を真空排気する。次いで、ステップP8で、粗合わせを行う。即ち、図3(a)に示すように、減圧雰囲気中でTFT基板4とCF基板1とをまず対向させた後、同図(b)に示すように、CF基板1とTFT基板4を重ね合わせ、大雑把に位置合せする。粗合わせの精度は、±50μm程度である。粗合わせすることにより、精密な位置合わせのとき調整幅を少なくしてシール材2へのダメージ付与を防止し、CF基板1とTFT基板4の間の液晶を封入する隙間の密封性を確保する。

10

【0031】続いて、基板を軽く加圧し、シール材2を 潰して基板間の隙間に液晶を密封する。次に、ステップ P9で、粗合わせがなされた基板を大気中に取出し、精 密な位置合せをする(以下でこの工程を精密合わせと称 する)。この工程を経て、滴下された液晶3はシール材 2で囲まれた領域のほぼ全部に遍く行き渡る。その後、 ステップP10で、5000mJ程度の高い強度の紫外 線をシール材2に照射してこれを完全に硬化させて、T FT基板4とCF基板1を固着することにより、液晶表 20 示パネルが作成される。なお、紫外線の最適強度は接着 剤により異なる。

【0032】以上説明したように、本発明の第1の実施例に係る液晶表示装置の製造方法によれば、図1のステップP5の工程で、図2に示すように、シール材2の内周表面にプリキュアを施しているので、ステップP10の工程で液晶3が完全硬化前のシール材2に達したとしても、未硬化のシール材と液晶とは直接接しない。従来問題となっていた液晶汚染は液晶と、未硬化のシール材とが直接接し、かつその領域に紫外線照射がなされることによって生じるが、上記ではそのような汚染は生じにくい。

【0033】この事実は、実験によっても確認されている。以下でその実験結果を表1を参照しながら説明する。実施例のように作製したパネルのシール近傍での電圧保持力を測定するとプリキュアを行わなかった場合に比較して極めて良好な結果となった。その測定結果を以下の表1に示す。

[0034]

【表 1 】

プリキュアの有無	奄圧保持建(%)	80でで1000時間 経過後の常任条件率 (%)
あり	96.0	97.0
8 L	96.0	94.0

持率が98.0%と高い。また80℃で1000時間経 過後の電圧保持率についてはプリキュアなしのパネルが 94.0%まで低下しているのに比して、プリキュアを 施したパネルは97%と高い。以上のように、プリキュ アを行うことにより、初期での電圧保持率の低下が抑制 されるとともに、長期間使用した後でも電圧保持率の低 下を抑制することができる。

【0036】以上示したように、本発明の実施例に係る 液晶表示装置の製造方法によれば、電圧保持率の低下を 抑制することができるので、電圧保持率の低下が原因と なる当該液晶表示パネルのコントラストの低下を抑制す ることが可能となる。

(2) 第2の実施例

以下で、本発明の第2の実施例に係る液晶表示装置の製 造方法について図4を参照しながら説明する。 なお、図 1のステップP1~P3については第1の実施例と同様 な工程なので、重複を避けるため説明を省略する。

【0037】まず、図1のステップP4で、CF基板1 のほか、TFT基板4の表面にもシール材を形成する。 すなわち、図4に示すようにCF基板1の表面に紫外線 硬化型の接着材(T-470、長瀬チバ製)からなる第 1のシール材2Bを液晶を封入する矩形領域を囲むよう に環状に形成し、かつ第1のシール材2Bの形成パター ンと同じパターンの第2のシール材5をTFT基板4の 表面に形成する。

【0038】次いで、ステップP5のプリキュア工程で は第1のシール材2と、第2のシール材5の両方にプリ キュアを施す。このとき、第1の実施例では液晶と接す る部分となる、環状のシール材の内周表面のみを選択的 に半硬化状態にしていたが、本実施例ではシール材の全 体をプリキュアして、図4に示すように第1のシール材 2の表層2Cを半硬化状態にし、第2のシール材5の表 層5Aも同様にして半硬化状態にする。

【0039】次に、ステップP7までは第1の実施例と 同様の工程を経て、ステップP8TFT基板4とCF基 板1を重ね合わせて粗合せした後、両者を軽く加圧し、 TFT基板4とCF基板1の間の隙間を密封する。この とき、粗合わせにより、図4に示すように、第1のシー ル材2の形成領域に第2のシール材5の形成領域とを一

【0040】その後、第1の実施例と同様の工程を経 て、液晶表示パネルが作成される。以上説明したよう に、本発明の第2の実施例に係る液晶表示装置の製造方 法によれば、CF基板1の表面に第1のシール材2を形 成するのみならず、TFT基板4の表面にも第2のシー ル材5を形成して両者をプリキュアし、のちに第1及び 第2のシール材2B及び5を位置合せしてTFT基板4 とCF基板1とを圧着している。

【0041】このため、第1の実施例と同様にして、第

P5でプリキュアが施されて半硬化状態になっているの で、未硬化のシール材と液晶が直接接触せず、液晶の汚 染を抑止することができる。これにより、液晶汚染によ る液晶表示装置の電圧保持率の低下を抑制し、表示の際 のコントラストの低下を抑制することが可能になる。

12

【0042】また、本実施例においては第1の実施例と 異なり、重ね合わせの際、第1のシール材2と第2のシ ール材5とが接着されるので、CF基板1にのみシール 材が形成されている液晶表示パネルに比して、両者の密 10 着性がさらに向上する。第1及び第2のシール材2及び 5の全部の領域に紫外線を照射して半硬化状態にして も、これらの間の密着性は損なわれることはない。

【0043】なお、第1の実施例と同様に、第1. 第2 のシール材2.5の内周面に選択的に紫外線を照射して 照射領域を半硬化状態にしてもよい。さらにUVプリキ ュアを行うことは、粘度の低い材料(塗布性は良好)を 用いて粘度の高いシールを形成することが可能であるこ とを意味し、パネルを大気に戻した際の大気圧によるシ ールダメージを低減する効果もある。

【0044】(3)第3の実施例

以下で、本発明の第3の実施例に係る液晶表示装置の製 造方法について図5(a).(b)を参照しながら説明 する。図5(a)は断面図、図5(b)は平面図で、図 5 (a) は同図 (b) のB-B線断面図である。なお、 第1, 第2の実施例と共通する事項については、重複を 避けるため説明を省略する。

【0045】まず、図1のステップP1で透明基板上に 液晶表示パネルを形成する上で必要な部材を形成する工 程で、TFT基板4は第1の実施例と同様の工程で形成 するが、CF基板1の表示領域にカラーフィルタをパタ ーニングして形成する際に、表示領域の外側領域であっ て、シール材を形成する領域の内側の領域に、環状のカ ラーフィルタと同じ材料の凸部 6 A, 6 Bをパターニン グして形成する。

【0046】このとき、凸部6A, 6Bが形成された領 域は、その周辺の領域よりも高く盛り上がり、この上に ITO膜からなる透明電極7や配向膜8が形成される と、図5(a)に示すような凸部9A,9Bが生じて隙 間が狭くなる。その後は第1の実施例と同様の工程を経 40 る。ただし、ステップ P 5のプリキュアについては省略 してもよい。

【0047】ところで、液晶汚染が生じる原因は液晶と 未硬化の接着材が直接接し、且つその領域に紫外線照射 処理がなされる為である。滴下注入法を用いても、10 インチクラスのTFT液晶パネルに完全に液晶が行き渡 るには数分(5分程度)の時間かかるため、張り合わせ 室より、パネルを取出し、液晶がシール材に達する前に 出来るだけ早くシール材に紫外線照射して硬化すれば、 液晶汚染による電圧保持率の低下を抑制することが可能 1のシール材2B, 第2のシール材5には予めステップ 50 になる。しかし、本実施例のように、透明基板の中央部

からシール材に至る間に凸部9A, 9Bを設けて隙間を 狭くして液晶の広がりを遅くすることにより、一層確実 に未硬化のシール材と液晶との接触を避けることが可能

13

【0048】以下の表2に、14インチの評価基板を用 いて、液晶とシール材とが接触する前に紫外線照射処理 を行ったものと、液晶と接触した後に紫外線照射処理を 行ったものとの比較を行った結果を示す。

[0049]

【表2】

	电压保持率 (%)	80でで1000時間 無過後の電圧保持率 (%)
技品と独独的に UV風射	98	98
液路と接触後に UV風射	96	94

【0050】なお、上記の表2において用いた液晶は21 I-4792 (メルク製) であって、配向膜は JALS-214 (JS R製)である。表2に示す結果によれば、液晶とシール 材とが接触する前に紫外線照射を行ったパネルについて は電圧保持率が98%であるのに対して、液晶とシール 材とが接触した後に紫外線照射を行ったパネルは電圧保 持率が96%と低く、また80℃で1000時間経過後 の電圧保持率については接触前に紫外線照射したパネル が98%という高い値を維持しているのに比して、接触 後に紫外線照射したパネルでは94%まで低下してい る。従って、シール材に液晶が接する前に紫外線照射を することにより、電圧保持率の低下を抑制できるという 事実が確認できた。

【0051】本発明の第3の実施例に係る液晶表示装置 の製造方法はこの事実を利用している。すなわち、CF 基板1上表示領域とシール材の形成領域の間にカラーフ ィルタと同じ材料からなる凸部6A.6Bをパターニン グにより形成する。なお、凸部 6 A. 6 B は R. G. B のうち少なくとも1層を形成すればよい。続いて、凸部 6A, 6B上に透明電極7及び配向膜8を順次形成して 更に高い凸部9A、9Bを形成している。

【0052】こうして凸部9A、9Bが形成された領域 でのCF基板1とTFT基板4の間のギャップは図5 (a) に示すように狭くなり、圧着によって拡散された 液晶3がシール材2に達するまでの時間を伸ばすことが できるので、液晶3がシール材2に達する前に、余裕を もってシール材に紫外線を照射し、硬化させることが可

【0053】これにより、当該液晶表示装置の電圧保持 率の低下を抑制し、表示の際のコントラストの低下を抑 止することが可能になる。なお、カラーフィルタによっ て形成される凸部のパターンは、図5(a), (b) に 示すように環状のパターンでもよいが、本発明はこれに 50 に図9(a), (b)に示すように3つのスペーサ板1

限らず、例えば図6に示すような、島状のパターンが点 在しているような凸部9 Cを形成してもよい。この場合 も図5(a), (b) に示すようなパターンの凸部9 A, 9Bを形成した場合と同様の効果を奏する。

【0054】(4)第4の実施例

(8)

以下で、本発明の第4の実施例に係る液晶表示装置の製 造方法について図7(a), (b), 図8(a),

(b) を参照しながら説明する。図7 (a), (b), 図8(a)は断面図であり、図8(b)は平面図であ 10 る。図8(a)は同図(b)のC-C線断面図である。 なお、第1, 第2又は第3の実施例と共通する事項につ いては、重複を避けるため説明を省略する。

【0055】まず、図1のステップP1~P7までは第 1の実施例と同様の工程を経る。ステップP8の粗合わ せの工程で、図7(a)に示すように、減圧雰囲気中 で、載置台ST上に載置されたCF基板1の一辺にTF T基板4の一辺が接するように両者の間に厚さ2mmの スペーサ板11を挟みこんで載置しておく。例えば、図 8 (a), (b) に示すように、重ね合わせた CF 基板 20 1とTFT基板4の間の一箇所にスペーサ板11を挟み

【0056】また、各基板1.4の四隅には位置ずれが 起きないようにガイド棒10を設けておく。次いで、ス ペーサ板11を横方向に引き抜くと、図7(b)に示す ようにTFT基板4が自重でCF基板1上に落ちて重な る。このとき、TFT基板4の四隅にはガイド棒10が 配置されているので、TFT基板4がスペーサ板11に 引きずられてずれることはほとんどない。その後の工程 は、第1の実施例と同様であるため、説明を省略する。 【0057】以上説明したように、本発明の第4の実施 例に係る液晶表示装置の製造方法によれば、 TFT基板 4の一辺とCF基板1の一辺とが接するようにこれらの 間にスペーサ板11を挟んでおき、これを引き抜いてC F基板1とTFT基板1を重ね合わせている。TFT基 板をCF基板に対向させたのちに自由落下させることに よって液晶が急激に圧着されていた従来に比して、本実 施例では少なくともTFT基板4の一辺とCF基板1の 一辺とが接しているので、比較的ゆっくりと落下する。 このため、CF基板1上に形成されたシール材2は従来 40 ほど大きな圧力を受けず、シール材2の潰れも偏らな い。従って、CF基板1とTFT基板4の間のギャップ

【0058】なお、本実施例ではスペーサ板11をCF 基板1とTFT基板4との間の一箇所にのみ挟んでこれ を引き抜くことでTFT基板4をCF基板1に重ね合わ せているが、本発明はこれに限らず、図8(c),

の間隔の不均一も生じない。

(d) に示すように、2つのスペーサ板11A、11B を対向して CF基板 1と TFT基板 4の間に挟みこんで 二点で支持したような場合でも同様の効果を奏し、さら

IA, IIB, IICを挟みこんで三点で支持しても同様の効果を奏する。少なくともCF基板1の一辺とTFT基板の一辺とが接していればよい。なお、図8

(c), 図9(a)は断面図、8(d), 図9(b)は 平面図であり、図8(c)は同図(d)のD-D線断面 図であり、図9(b)は同図(a)のE-E線断面図で ある。

【0059】また、本実施例に係る方法を用いると複数の液晶表示パネルについて、TFT基板をCF基板上に載置することが短時間でできるようになる。以下でこのことについて図10、11を参照しながら説明する。すなわち、図10に示すように、CF基板とTFT基板を交互に積み重ね、その周囲にガイド棒10を配置する。この状態を横からみた図が図11である。下から順にTFT基板4C、CF基板1C、TFT基板4B、CF基板1B、TFT基板4A、CF基板1Aが順次積層されており、それらの間にはそれぞれスペーサ板11C、11B、11Aが挟みこまれている。

【0060】各TFT基板をCF基板に載置するには、 各スペーサ板11A, 11B, 11Cを横方向に引き抜 20 くだけで、複数の液晶表示パネルに対応する複数のTF T基板を、それぞれに対応するCF基板上に、短時間で 容易に載置することが可能になる。

(5)第5の実施例

以下で本発明の第5の実施例に係る液晶表示装置の製造 方法について図12(a)~(c)を参照しながら説明 する。なお、第1~第4の実施例と共通する事項につい ては、重複を避けるため説明を省略する。

【0061】まず、図1のステップP1で透明基板上に液晶表示パネルを形成する上で必要な部材を形成する工程で、TFT基板4は第1の実施例と同様の工程で形成するが、CF基板1についてはその四隅に超鋼ドリルや、炭酸ガスレーザを用いて、直径1 mmの複数のガイド孔1Hを空けておく。次いで、図1のステップP2~P7までは第1の実施例と同様の工程を経た後に、図1のステップP8の粗合せの工程で、図12(a)に示すように、載置台ST上のCF基板1の四隅に形成されたガイド孔1Hに支持棒12A,12Bを通し、この上にTFT基板4を載置する。この段階ではTFT基板4とCF基板1とを2mm程度の間隔に離しておく。なお、図12(a)には支持棒12A,12Bを2本示し、2本を省略している。

【0062】その後、図12(b),(c)に示すように、支持棒12A,12Bを徐々に降下させてTFT基板4をCF基板1と重ね合わせる。その後の図1のステップP9以降の工程は第1の実施例と同様であるため、説明を省略する。以上説明したように、本発明の第5の実施例に係る液晶表示装置の製造方法によれば、CF基板1の四隅にガイド孔1Hを形成し、これに支持棒1Hを通して、支持棒1Hの上にTFT基板4を載置し、支

持棒1Hを徐々に降下させることでTFT基板4をCF 基板1と重ね合わせ、粗合わせを行っている。

【0063】このため、予め位置合わせをしておいて支 持具を降下させる速度を遅くすれば、位置ずれせずにそ のまま重ね合わせることが出来るので、粗合わせの精度 が向上する。しかも、基板がシール材2に接触する際の 偏りも少なく、かつ衝撃が小さいためシール材2の潰れ が偏らず、基板間の隙間の間隔の均一性が向上する。ま た、本実施例と同様に、CF基板1にガイド孔1Hの代 10 わりに、図13(a). (b) に示すようにCF基板1 の四隅に切除部1Kを形成して、その切除部1Kに支持 棒12A, 12B, 12C, 12Dを通してこれら四本 の支持棒12A、12B、12C、12D上にTFT基 板 4 を載置して、支持棒 1 2 A, 1 2 B, 1 2 C, 1 2 Dを降下させてTFT基板4をCF基板1と重ね合わせ るという方法を用いても、本実施例のガイドA.1 Hを用 いた方法と同様に、TFT基板4をCF基板1上にゆっ くりと降下させることができるので、本実施例と同様の 効果を奏する。

【0064】さらに、TFT基板とCF基板との間に、エンジニアリングプラスチック用充填材として用いられているガラスカプセルを挟んで、これをスペーサ板として用いる方法もある。このガラスカプセルは基板を圧着する際の加圧により破壊されて細かくなるため、ギャップ制御上何の問題も生じない。また、基板上に残存するガラスカプセルの破片は透明なので、表示上の問題も生じない。

【0065】(6)第6の実施例

以下で、本発明の第6の実施例に係る液晶表示装置の製造方法について図面を参照しながら説明する。なお、第1~第5の実施例と共通する事項については、重複を避けるため説明を省略する。まず、図1のステップP1~P3までは第1の実施例と同じ工程を経る。ステップP4のシールを形成する工程では第1~第5の実施例と異なり、まずCF基板1の表面のシール材を形成すべき領域に、可動イオンを捕獲する膜の一例であるシランカップリング材からなる膜13A(東レ: AP-400)を環状に形成する。

【0066】同様にして、TFT基板4の表面にも、の 40 ちにシール材が圧着されるべき領域に同じシランカップ リング材からなる膜13Bを形成する。なお、これらの 膜13A、13Bは印刷により形成し、硬化のため温度 300℃にて30分間熱処理を施す。次いで、CF基板 1上に形成されたシランカップリング材からなる膜13 A上に、紫外線硬化型の接着材(T-470、長瀬チバ 製)からなるシール材2を環状に形成する。

説明を省略する。以上説明したように、本発明の第5の 【0067】その後、図1のステップP5~P10まで 実施例に係る液晶表示装置の製造方法によれば、CF基 は第1の実施例と同様の工程を経て、図14に示すよう 板1の四隅にガイド孔1Hを形成し、これに支持棒1H な断面形状を有する液晶表示パネルが完成する。ステッ を通して、支持棒1Hの上にTFT基板4を載置し、支 50 プP8の粗合わせの工程では、少なくともTFT基板4

のシランカップリング材からなる膜13Bがシール材2の内側の領域に存在する。以上説明したように、本発明の第6の実施例に係る液晶表示装置の製造方法によれば、図14に示すように、環状のシール材2の内側の領域であってシール材2の形成領域に、可動イオンを捕獲する膜であるシランカップリング材からなる膜13A,13Bを形成している。

17

【0068】このため、シール材2の付近に存在する可動イオンがシランカップリング材からなる膜13A,13Bによって捕獲されるため、可動イオンを介した蓄積電荷のリークを抑制することができる。これにより、電圧保持率の低下を抑制することができ、表示の際の当該液晶表示装置のコントラストの低下を抑制することが可能になる。

【0069】シランカップリング材からなる膜をシール材の形成領域近傍に形成すると、電圧保持率の低下を抑制することができるという事実は、本願発明者による実験によって確認されている。以下でこの実験結果について説明する。下記の表3は、シランカップリング材(東レ製: AP-400)からなる膜をシール材の形成領域の隣接 20領域に形成した液晶表示パネルの電圧保持率と、これを用いていない従来の液晶表示パネルの電圧保持率とを比較した実験結果を示している。

[0070]

【表3】

	定压保给率 (%)	80でで1000時間 経過後の電圧保持率 (%)
AP-400 ab	97	97
AP-400 ≭L	96	94

【0071】なお、上記の表3において用いた液晶は7L I-4792(メルク製)であって、配向膜は JALS-214(JSR製)である。表3に示す結果によれば、シランカップリング材からなる膜をシール材の形成領域の隣接領域に形成した液晶表示パネルの電圧保持率が97%であるのに対して、シランカップリング材からなる膜を有しない従来の液晶表示パネルの電圧保持率は96%と低く、また80℃で1000時間経過後の電圧保持率についてはシランカップリング材からなる膜を有する液晶表示パネルが97%という高い値を維持しているのに対して、これを有しない従来の液晶表示パネルは94%まで低下している。従って、シール材の形成領域の隣接領域にシランカップリング材からなる膜を形成した液晶表示パネルについては、電圧保持率の低下が抑制されることが確認された。

【0072】なお、本実施例では可動イオンを捕獲する 膜の一例としてシランカップリング材からなる膜を用い ているが、これに限らず、可動イオンを捕獲する性質を 50

有する膜であって、液晶を汚染しないような膜であれ ば、本発明を適用することができる。

(7) 第7の実施例

以下で、本発明の第7の実施例に係る液晶表示装置の製造装置について図面を参照しながら説明する。この装置は、図1のステップP7の真空排気工程と、ステップP8の知合せ工程で用いる貼り合わせ装置である。CF基板とTFT基板を収納して、内部を減圧し、これらの基板を重ね合わせて粗合せし、更に基板間の隙間に液晶を10封入する工程に用いられる。

【0073】本実施例に係る液晶表示装置の製造装置は、図15に示すように、処理室20、排気弁21、排気口22、リーク弁23、リーク口24及び載置台STを有する。処理室20はその内部でCF基板1とTFT基板4との貼り合わせを行う室である。排気弁21は減圧手段の一部を構成し、不図示の真空ポンプと排気口21との間に設けられている。排気弁21を開き、排気口22を通じて処理室20内のガスを排気することにより、処理室20内を減圧状態にする。

1 【0074】また、リーク弁23はリークロ24と、不活性ガス等を収納した不図示のガスボンベとの間に設けられ、リーク弁23を開くことにより、不図示のガスボンベから噴出するガスをリークロ24を介して処理室20内に導入する。リーク弁23とリークロ24はリーク手段を構成する。なお、リーク弁23には不活性ガス等を収納したガスボンベを接続しなくてもよく、大気によるリークを行ってもよい。

【0075】上記の液晶表示装置の製造装置を用いる液晶表示装置の製造方法について以下で説明する。第1の 実施例と同様にして図1のステップP1~P6の工程を経た後に、図1のステップP7で、環状のシール材2の 内側領域に液晶3が滴下されているCF基板1と、TF T基板4とが図15に示す貼り合わせ装置の処理室20 の内部に搬入される。CF基板1は載置台STの上に載置される。

【0076】次いで、排気弁21が開き、その先に設けられた不図示の真空ポンプによって処理室20が排気される。ここでは5分間排気を行い、処理室20内の到達真空度を5mTorrとした。その後、図1のステップP8の粗合せ工程で、減圧状態下でシール材2を介してTFT基板4とCF基板1とを重ね合わせ、粗合わせを行う。続いて、加圧を行う。

【0077】この加圧工程では、瞬間的にリーク弁23を開いて、窒素ガス等をリーク口24からその下のTFT基板4の上に噴出する。窒素ガスが吹き付けられることでTFT基板4がCF基板1に加圧される。ガスは一般に対象物に対して等方的に圧力を及ぼし、TFT基板4の表面に遍く行き渡る。従って、これがTFT基板4の上面に吹き付けられると、TFT基板4の受ける圧力はほぼ均一になり、TFT基板4は均一な力で加圧され

るため、基板1,4間の隙間の間隔は均一になる。これにより、液晶表示パネルの電極に駆動電圧が印加された場合、基板間の液晶に印加される電界も均一になるので、表示特性が向上する。

【0078】また、同様にガスを用いた加圧をする貼り合わせ装置として、図16に示すような張合わせ装置も考えられる。この装置は、液晶表示パネルのシール材2の形成領域に沿ってリーク孔24が形成されていることが図15に示す装置と異なっている。図16に示す貼り合わせ装置を用いてCF基板1に重ね合わされたTFT基板4を加圧するには、図15に示す装置と同様にリーク弁23を開き、不図示のガスボンベから噴出されるガスをリーク孔24から吹き付けることで加圧する。この装置では、図16に示すように、リーク孔24がシール材2の形成領域に沿って形成されているので、噴出するガスはシール材2の形成領域にのみ吹き付けられることになる。

【0079】TFT基板4とCF基板1の加圧の際には、結局シール材2を均一に加圧することが重要である。この装置によれば、シール材2に沿ってガスを吹きつけ、シール材2を均一に加圧することができるので、図15に示す装置と同様に、基板1、4間のギャップの間隔を均一にすることができる。

(8) 第8の実施例

以下で本発明の第8の実施例に係る液晶表示装置の製造装置について図17を参照しながら説明する。この装置は、第7の実施例で説明した液晶表示装置の製造装置と同様に、図1のステップP7の真空排気工程と、ステップP8の組合せ工程で用いる貼り合わせ装置であり、CF基板とTFT基板を装置内に搬入した後に、装置内を排気し、これらの基板を粗合せする。

【0080】本実施例に係る液晶表示装置の製造装置は、図17に示すように、処理室20、排気弁21、排気口22、第1のリーク弁23A、第2のリーク弁23B、第1のリークロ24A、第2のリークロ24B、圧着板25及び載置台STを有する。処理室20はその内部で貼り合わせを行う室であって、排気弁21は、不図示の真空ポンプと排気口21との間に設けられ、排気弁21を開き、排気口22を通じて処理室20内のガスを排気して、減圧状態にする。

【0081】第1のリーク弁23Aはリーク口24Aの外部に設けられており、第1のリーク弁23Aを開くことにより、不図示のガスボンベからのガスを、圧着板25の上面に吹き付ける。圧着板25は、伸縮自在のベローズVSによって載置台STの上に支持され、かつ処理室20内と隔絶されており、ガスが吹き付けられると、ベローズVSが伸びて載置台STの上に搭載されたTFT基板の上面を圧着する。

【0082】第1のリーク弁23Bはリークロ24Bの 外部に設けられており、第1のリーク弁23Bを開くこ とにより、装置外部の空気が、処理室20内に導入される。上記の液晶表示装置の製造装置を用いる液晶表示装置の製造方法について以下で説明する。第1の実施例と同様にして図1のステップP1~P6の工程を経た後に、図1のステップP7で、シール材2が表面に形成されて液晶3が滴下されたCF基板1と、TFT基板4とが図15に示す貼り合わせ装置の処理室20の内部に搬入され、CF基板1は載置台STの上に載置される。

20

【0083】TFT基板4をCF基板1上に対向配置したのちに、排気弁21を開き、その先に設けられた不図示の真空ポンプによって処理室20が真空排気される。5分間排気を行って、到達真空度を5mTorrとした。その後、図1のステップP8の粗合せ工程で、真空状態下でTFT基板4をCF基板1上に載置して、対向密着状態とし、加圧を行う。

【0084】この加圧工程では、瞬間的に第1のリーク 弁23Aを開くとき、不図示のガスポンプから噴出され る窒素ガスが第1のリーク口24Aからその下の圧着板 25に均一な圧力で吹き付けられ、TFT基板4がこの 距着板25によって加圧されてTFT基板4がCF基板 1に圧着される。この加圧方法によると、ガスを用いて 圧着板25を加圧し、その圧着板25でTFT基板4を 圧着している。ガスは一般に等方性を有し、これが圧着 板25の上面に吹き付けられると、そのガスは圧着板2 5の全面に遍く行き渡り、かつその圧力はほぼ均一にな る。この均一な圧力でTFT基板4を加圧するので、従 来と異なり、TFT基板4とCF基板1とを均一な力で 加圧することが可能になる。

【0085】 これにより、これらの基板の間で液晶が均30 一に行き渡るようにすることができるので、基板1,4 間のギャップの間隔を均一にすることができ、表示特性を向上させることが可能になる。

(9)第9の実施例

以下で、本発明の第9の実施例に係る液晶表示装置の製造方法について図18(a),(b)を参照しながら説明する。なお、第1~第8の実施例と共通する事項については、重複を避けるため説明を省略する。

【0086】まず、図1のステップP1で、ガラスなどからなる透明基板上に、液晶表示パネルを形成する上で40必要な部材を形成する工程で、TFT基板4側の加工は第1の実施例と同様であるが、CF基板1にカラーフィルタを形成する工程で、図18(b)に示すように当該液晶表示装置の表示領域CRにカラーフィルタを形成するのと同時に表示領域CRに隣接する周辺領域にも、表示領域CRのカラーフィルタの配列順序に従って予備のカラーフィルタCMを形成しておく。その後の工程は第1の実施例と同様であるため説明を省略する。

【0087】本発明の第9の実施例に係る液晶表示装置の製造方法によれば、図18(a),(b)に示すよう に、表示領域CRに隣接する周辺領域にも表示領域CR

22 : t. thr / ±3% = n t. B

のカラーフィルタの配列順序に従って予備のカラーフィルタCMを形成しているので、TFT基板4とCF基板1とを重ね合わせたときに位置合わせのずれが生じても、表示領域CRからはみ出した端の部分をこの予備のカラーフィルタCMの位置に合わせればよい。このため、位置合わせのための調整幅が少なく、調整が容易であるとともに、調整のための基板の大幅な移動による接着材へのダメージ付与を避けることが出来る。

[0088]

【発明の効果】以上述べたように、本発明に係る液晶表示装置の製造方法によれば、第1の透明基板に形成された環状の接着材の内周表面に予め紫外線を選択的に照射して、照射領域を硬化させている。このため、第1及び第2の透明基板の間の隙間に密封された液晶と接着材との反応による液晶汚染を防止することができる。これにより、液晶表示装置の電圧保持率の低下を抑制し、コントラストの低下を抑制することが可能になる。また、接着材の内周表面だけの硬化なので、全面硬化の場合と比較して基板間の固着はより強固になる。

【0089】また、第1の透明基板と第2の透明基板に ともに環状の接着材を形成し、接着材の表層のみを硬化 した後、接着材同士を接触させて第1の透明基板と第2 の透明基板を重ね合わせている。接着材同士が接触する ため、表層のみが硬化していても、第1の透明基板と第 2の透明基板同士の固着がより強固になる。

【0090】更に、未硬化の接着材を介して第1の透明基板と第2の透明基板を重ね合わせた後、接着材と液晶とが接する前に、接着材に紫外線を照射して硬化させている。このため、第1及び第2の透明基板の固着を確実にするとともに、従来、未硬化の接着材と液晶が接し、その領域に紫外線が照射されることによって生じていた液晶の汚染を抑制することができ、液晶汚染によって当該液晶表示装置の電圧保持率が低下して、その表示の際のコントラストが低下することを極力抑止することが可能にたる

【0091】特に、第1又は第2の透明基板の表示領域の外側の領域であって、接着材の形成領域の内側の領域に、液晶の広がり速度を遅らせる凸部を形成することにより、接着材と液晶とが接する前に、一層時間の余裕をもって接着材に紫外線を照射して硬化させることが可能になる。また、接着材の形成領域の内側領域であって、接着材の形成領域に隣接する領域の第1又は第2の透明基板上に、可動イオンを捕獲する膜を形成している。

【0092】このため、接着材と液晶との反応等により液晶中に生じる可動イオンを介した蓄積電荷のリークを抑制することができる。これにより、当該液晶表示装置の電圧保持率の低下をより確実に抑止することが可能になる。更に、第1の透明基板に第2の透明基板を重ね合わせる際に、第1の透明基板の一部と第2の透明基板の一部とが接するように第1の透明基板と第2の透明基板

との間にスペーサ板を挟んだ後、これを除去している。 【0093】また、第1の透明基板は複数の穴又は切除 部を有し、これらの穴又は切除部に支持具を通し、該支 持具の上に第2の透明基板を載せて、支持具を降下さ せ、第2の透明基板を第1の透明基板に重ね合わせてい る。このため、従来に比して、粗合わせの精度が向上 し、基板間の隙間の間隔の均一性の向上を図ることが出 来る。

【0094】更に、表示領域にカラーフィルタを形成す 10 るときに、液晶表示装置の表示領域に隣接する周辺領域 にも表示領域のカラーフィルタの配列順序に従って予備 のカラーフィルタを形成している。このため、位置合わ せするための調整幅が少なく、調整が容易であるととも に、調整のための透明基板の大幅な移動による接着材へ のダメージ付与を避けることができる。

【0095】また、本発明に係る液晶表示装置の製造装置においては、第1の透明基板と第2の透明基板とを収納して重ね合わせる処理室と、処理室内を減圧する減圧手段と、第1の透明基板又は第2の透明基板の表面からがスを吹き付けるガス導入口が設けられている。ガス導入口として処理室内の減圧状態を大気圧に戻すためのリークロで代用することもできる。

【0096】このため、加圧力が均一になり、第1及び第2の透明基板の形成する隙間を均一な間隔とすることができるので、液晶表示パネルを駆動する際、液晶全体に一定の電界がかかり、表示特性の均一性が増す。

【図面の簡単な説明】

【図1】本発明の第1の実施例に係る液晶表示装置の製造方法を説明するフローチャートである。

0 【図2】本発明の第1の実施例に係る液晶表示装置の製造方法を説明する図(その1)である。

【図3】本発明の第1の実施例に係る液晶表示装置の製造方法を説明する図(その2)である。

【図4】本発明の第2の実施例に係る液晶表示装置の製造方法を説明する図である。

【図5】本発明の第3の実施例に係る液晶表示装置の製造方法を説明する図(その1)である。

【図6】本発明の第3の実施例に係る液晶表示装置の製造方法を説明する図(その2)である。

0 【図7】本発明の第4の実施例に係る液晶表示装置の製造方法を説明する断面図(その1)である。

【図8】本発明の第4の実施例に係る液晶表示装置の製造方法を説明する上面図(その1)である。

【図9】本発明の第4の実施例に係る液晶表示装置の製造方法を説明する上面図(その2)である。

【図10】本発明の第4の実施例に係る液晶表示装置の 製造方法を説明する斜視図である。

【図11】本発明の第4の実施例に係る液晶表示装置の 製造方法を説明する断面図(その2)である。

0 【図12】本発明の第5の実施例に係る液晶表示装置の

製造方法を説明する断面図である。

【図13】本発明の第5の実施例に係る液晶表示装置の 製造方法を説明する図である。

23

【図14】本発明の第6の実施例に係る液晶表示装置の 製造方法を説明する断面図である。

【図15】本発明の第7の実施例に係る液晶表示装置の 製造装置を説明する図(その1)である。

【図16】本発明の第7の実施例に係る液晶表示装置の 製造装置を説明する図(その2)である。

【図17】本発明の第8の実施例に係る液晶表示装置の 製造方法を説明する断面図である。

【図18】本発明の第9の実施例に係る液晶表示装置の 製造方法を説明する図である。

【図19】従来例に係る液晶表示装置の製造方法を説明 するフローチャートである。

【図20】従来例に係る液晶表示装置の製造装置を説明 する断面図である。

【図21】従来例に係る液晶表示装置の製造方法を説明 する図(その1)である。

【図22】従来例に係る液晶表示装置の製造方法を説明 する図(その2)である。

【図23】従来例の問題点を説明するグラフ(その1)である。

【図24】従来例の問題点を説明するグラフ(その2) である

【図25】液晶表示パネルの電圧保持率を説明する図である。

【符号の説明】

1 CF基板(第1の透明基板)、

1A, 1B, 1C CF基板、

1 H ガイド孔、

1 K 切除部、

- 2 シール材 (接着材)、
- 2 A シール材の内周面、
- 2B 第1のシール材 (第1の接着材)、
- 2C 半硬化状態のシール材、
- 3 液晶、
- 4 TFT基板 (第2の透明基板)、
- 4A, 4B, 4C TFT基板、
- 5 第2のシール材(第2の接着材)、
- 5 A 半硬化状態のシール材、
- 10 6 A, 6 B, 9 A, 9 B, 9 C 凸部、
 - 7 透明電極、
 - 8 配向膜、
 - 10 ガイド棒、
 - 11 11A, 11B, 11C スペーサ板、
 - 12A, 12B, 12C, 12D 支持棒、
 - 13A, 13B シランカップリング材からなる膜(可動イオンを捕獲する膜)、
 - 20 処理室、
 - 2.1 排気弁、
- 20 2.2 排気口、
 - 23 リーク弁、
 - 23A 第1のリーク弁、
 - 23B 第2のリーク弁、
 - 24,24A リークロ、
 - 24B 第2のリークロ、
 - 25 圧着板、
 - CR 表示領域、
 - CM 予備のカラーフィルタ、
 - ST 載置台、
- 30 SP スペーサ、
 - VS ベローズ。

【図6】

[図9]

【図12】

[図13]

【図19】

フロントページの続き

(72)発明者 大室 克文 神奈川県川崎市中原区上小田中1015番地 宮士通株式会社内

(72)発明者 鈴木 洋二 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内