

HOIEHHIOI 1

질의 최적화

학습목표

- 데이터베이스 관리 시스템에서 질의 처리 단계를 설명할 수 있다.
- 질의 최적화의 원리 및 방법을 설명할 수 있다.

🕦 학습내용

- ᢒ 질의 처리
- 질의 최적화기

🔍 질의 처리

₩ 질의어 처리과정

01 처리과정

🔍 질의 처리

☑ 질의어 처리과정

01 처리과정

🖭 질의 처리

₩ 질의어 처리과정

01 처리과정

🖭 질의 처리

፟ 질의어 처리과정

02 내부표현과 형식론

내부표현·**>**

사용자의 질의문을 컴퓨터가 처리하기 적절한 형태로 표현되어야 함

형식론 🕩

- 질의문 문법으로 표현할 수 있는 모든 것이 내부 표현으로 표현 가능해야 함
- 최적화 단계에 영향을 미치지 않는 중립적인 표현 방법이어야 함 → 관계 대수(Relational Algebra)

03 질의문 트리

- ▮ 구문분석기의 결과로 생성되는 자료 구조
- ▮ 관계대수식을 트리 형태로 사용

🤒 질의 처리

🚾 질의어 처리과정

04 질의문 트리의 실행

▋ 필요한 피연산자가 모두 사용 가능한 서브 트리에 대하여 먼저 비단말 노드 연산자를 실행

그 결과 릴레이션을 실행된 서브 트리로 대체

루트 노드의 실행 → 질의문의 실행 결과

🚇 질의 처리

- 🚾 질의어 처리과정
 - 05 질의문 트리의 예
 - 예 | 학번이 100번인 학생의 지도 교수명을 검색하시오.
 - 관계대수식

🔍 질의 처리

🚾 단순 질의문의 변환

01 단일 테이블 검색에 대한 질의문 변환 방법

SELECT절

프로젝션 연산자(□)

SELECT절

▶ 학생 테이블에서 학번이 100번인 학생의 이름을 구하시오.

FROM절

대상 테이블

SQL문

- SELECT **SNAME**
- ▶ FROM절 **STUDENT**
- WHERE SNUM = 100

WHERE절

셀렉션 연산자(σ)

관계대수식

 Π_{SNAME} $(\sigma_{\text{SNAME}} =$ 100(STUDENT))

🔍 질의 처리

- 🚾 조인 질의문의 변환
 - 01 FROM절에 대상 테이블이 2개 이상 존재하는 경우
 - ▮ 기본적으로는 단순 질의문 변환과 동일
 - 차이점은 FROM절에 나타나는 2개 이상의 테이블을 카티션 프로덕트로 연결

SELECT절

프로젝션 연산자(□)

FROM절

대상 테이블들의 카티션 프로덕트(X)

WHERE절

셀렉션 연산자(σ)

- 02 조인 질의문 변환의 예
 - 질의문
 - 학번이 100번인 학생의 지도교수 명을 검색하시오.
 - SQL문

SELECT PNAME FROM절 STUDENT, PROFESSOR WHERE STUDENT. SNAM = 100 AND STUDENT. PNUM = PROFESSOR.PNUM

🤍 질의 처리

🚾 조인 질의문의 변환

- 02 조인 질의문 변환의 예
 - ▮관계대수식

 $\Pi_{\text{PNAME}}(\sigma_{\text{STUDENT.SNAM}=100})$ (STUDENTXPROFESSOR))

▶ 셀렉트 연산자에 AND(△)연산자가 있으면 2개의 셀렉트 연산자로 분리할 수 있음

 $\Pi_{\text{PNAME}}(\sigma_{\text{STUDENT.SNAM}=100}(\sigma_{\text{STUDENT.PNUM}=\text{PROFESSOR.}})$ PNUM (STUDENTXPROFESSOR)))

- ▶ 셀렉트 연산자의 조건이 두 개의 테이블간의 조건을 기술하는 것이면 이는 조인 조건임
- 조인조건을 포함하는 셀렉트 연산자와 카티션 프로덕트는 조인 연산자 하나로 표현할 수 있음

 $\Pi_{\text{PNAME}}(\sigma_{\text{STUDENT.SNAM}=100}(\text{STUDENT}))$ STUDENT.PNUM=PROFESSOR.PNUM(PROFESSOR)))

🤐 질의 최적화기

- 🚾 질의 최적화의 개념
 - 01 개념
 - 질의어의 효율적인 실행 전략 계획
 - ▶ 질의문을 실행할 수 있는 후보 질의문 계획을 평가하고 그 중에서 최소 비용의 계획을 결정하는 것
 - * 최적화란? : 더 효율적인 실행 방안을 생성하는 것 → 어떤 것을 더 효율적인 것이라고 하는가?
 - 질의문 하나에는 보통 여러 개의 후보 질의문 계획이 존재 02
 - 제한된 수의 질의문 계획을 생성
 - ▶ 탐색 공간의 축소
 - 가장 비용이 적게 드는 계획을 선택

02 성능

DISK I/O의 횟수	일반적인 기준으로 • 메모리: ns 단위 최소 1000배 느림 • DISK: ms 단위 최소 1000배 느림 → CPU를 더 쓰더라도 DISK I/O를 줄이는 것이 DB 분야에서는 중요한 이슈임
중간 결과의 크기	 분산 DB와 같이 여러 개의 DB들로 구성되어 있는 상황 중간 결과의 크기가 크면 네트워크의 사용량이 많아지고 그만큼 느려 짐
처리시간	• 결과물 모두를 사용자에게 알려주는데 걸리는 시간
응답시간	 사용자에게 결과물(일부분이라도)을 보여주는데 걸리는 시간

대화형 시스템의 경우 사용자에게 빨리 결과를 보여주는 것이 중요함

🥥 질의 최적화기

- - 🚾 질의 최적화의 개념
 - 03 최적화 단계
 - 질의문의 내부적 표현을 생성
 - 동등한 내부적 표현들을 생성
 - 03 후보 프로시저를 선정
 - 04 질의문 계획의 평가 및 결정
 - 04 최적화의 예

》**예**|셀렉션 연산은 가능한 빨리하자.

》에 | 프로젝션 연산은 가능한 빨리하자.

 $\sigma_{Sc}(RMS) \rightarrow RM(\sigma_{Sc}(S))$

05 최적화의 구분

최적화

경험론적 최적화

비용 기반 최적화

🔍 질의 최적화기

- 질의 최적화의 개념
 - 06 비용 기반 최적화의 예

SELECT SNAME FROM S, E WHERE S.SNO=E.SNO AND E.CNO='C413'

▮ 통계 정보

|S|=100, |E|=10000, |E.CNO='C413'|=50

- ▶ E.SNO는 S.SNO의 외래키이고, Null값일 수 없음
 - → 실행전략
 - A: $\Pi_{\text{SNAME}}(\sigma_{\text{E.CNO}} = \text{'c413'}(\text{EM}_{\text{S.SNO}=\text{E.SNO}}\text{S}))$
 - B: $\Pi_{\text{sNAME}}((\sigma_{\text{E.CNO}} = \text{'c413'(E)})M_{\text{S.SNO}=\text{E.SNO}}S)$

🔍 질의 최적화기

🚾 질의 최적화의 개념

06 비용 기반 최적화의 예

▋통계 정보

|S|=100, |E|=10000, |E.CNO='C413'|=50

비용 A

- $\Pi_{\text{SNAME}}(\sigma_{\text{E.CNO}} = \text{'c413'}(\text{EX}_{\text{S.SNO}=\text{E.SNO}}\text{S}))$
- R1=($EX_{S,SNO=E,SNO}$ S): 100*10000+10000
- $R2 = \sigma_{ECNO} = c413'(R1)$: 10000+50
- $R3=\Pi_{SNAMF}(R2):50$
- 총: 1020100번 I/0

비용 B

- $\Pi_{\text{SNAME}}(\sigma_{\text{E.CNO}} = \text{'c413'}(\text{EX}_{\text{S.SNO}=\text{E.SNO}}\text{S}))$
- R1= $\sigma_{E,CNO}$ ='c413'(E): 10000+50
- $R2=R1M_{SSNO=FSNO}S: 50*100+50$
- $R3 = \Pi_{SNAME}(R2)$: 50
- 총: 15150번 I/0

🔍 질의 최적화기

••• 변환규칙

- 01 변환규칙
 - ▍질의 내부 표현을 동등하면서도 효율적인 형태로 변환
 - ▍문법 또는 의미를 가지고 생성
 - R1 논리곱으로 연결된 선택 조건
 - ▶ 일련의 개별적인 선택 조건

$$\sigma_{c1 \text{ AND } c2 \text{ AND}} \cdots_{cn}(R) \equiv \sigma_{c1}(\sigma_{c2}(\cdots(\sigma_{cn}(R))...))$$

R2 교환적인 선택 연산

$$\sigma_{c1}(\sigma_{c2}(R)) \equiv \sigma_{c2}(\sigma_{c1}(R))$$

- 연속적인 프로젝트 연산(□)
 - ▶ 마지막 것만 실행

$$\Pi_1(\Pi_2(\cdots(\Pi_n(\mathsf{R}))\cdots))\equiv\Pi_1(\mathsf{R})$$

셀렉트의 조건 c가 프로젝트 애트리뷰트만 포함하고 있다면 **R4** 교환적임

$$\sigma_{c}(\Pi(R)) \equiv (\Pi(\sigma_{c}(R)))$$

🤐 질의 최적화기

••• 변환규칙

셀렉트의 조건이 두 개의 릴레이션이 연결되어 있다면 조인조건

$$\sigma_c(R \times S) \equiv R \bowtie_c S$$

 $s_{c1}(R \bowtie_{c2} S) \equiv R \bowtie_{c1 \land c2} S$

R6

셀렉트의 조건이 조인 또는 카티션 프로덕트에 관련된 릴레이션 하나와만 관련이 되어있을 때

$$\sigma_{c}(RMS) \equiv \sigma_{c}(R)MS$$

 $\sigma_{c}(R\times S) \equiv \sigma_{c}(R)\times S$

R7

c1은 릴레이션 R과 관련되어 있고, c2는 릴레이션 S와 관련이 되어 있을 때 c=(c1 AND c2)

$$\sigma_{c}(R \bowtie S) \equiv (\sigma_{c1}(R)) \bowtie (\sigma_{c2}(S))$$

 $\sigma_{c}(R \times S) \equiv (\sigma_{c1}(R)) \times (\sigma_{c2}(S))$

🤐 질의 최적화기

••• 변환규칙

R8 ×, U, ∩, ⋈는 교환적임

 $R \times S \equiv S \times R$

RUS=SUR

R∩S≡S∩R

R ⋈S≡S⋈ R

R9

L1은 릴레이션 R에 관련되어있고, L2는 릴레이션 S에 관련되어 있을 때 L=(L1, L2)

> $\Pi_{L}(RMS) \equiv (\Pi_{L1}(R))M(\Pi_{L2}(S))$ $\Pi_{L}(R\times S)\equiv(\Pi_{L1}(R))\times(\Pi_{L2}(S))$

🔍 질의 최적화기

••• 변환규칙

01 변환규칙

R10

집합연산과 관련된 셀렉트의 변환

$$\sigma_{c}(R \cup S) = \sigma_{c}(R) \cup \sigma_{c}(S)$$

$$\sigma_{c}(R \cap S) = \sigma_{c}(R) \cap \sigma_{c}(S)$$

$$\sigma_{c}(R - S) \equiv \sigma_{c}(R) - \sigma_{c}(S)$$

R11

합집합과 관련된 프로젝트의 변환

$$\Pi(R \cup S) \equiv (\Pi(R)) \cup (\Pi(S))$$

🥝 질의 최적화기

- ··· 의미론적 최적화
 - 01 의미론적 최적화
 - ▮ 질의문의 의미와 데이터의 범위, 제약조건 등을 이용하여 최적화 진행
 - ▮ 비용기반 최적화보다 더 효율적임
 - ▮ 실제 발생될 확률은 매우 적음

질의

5학년 이상 학생들의 이름을 찾아보시오.

도메인 무결성 제약조건

학년은 1~4까지의 값만 가짐

결과

결과가 없음을 쉽게 알 수 있음

🤒 질의 최적화기

<u></u> 의미론적 최적화

질의

$\Pi_{CNO}(S_{NSNO=E,SNO}E)$

- 제약조건 SNO
 - ▶ S의 기본 인덱스
 - ▶ E의 외래키
 - NULL이 아님CNO(E)

 $\Pi_{\mathsf{CNO}}(\mathsf{E})$

1 질의 처리

- ✓ 질의어를 내부적 표현으로 변환하고 이를 수행시켜 질의 결과를 얻는 일련의 절차
- ✓ SCANNER → PASER → 질의 최적화기 → 질의어 코드 생성기 → 런타임 데이터베이스 처리기
- ✓ 내부적 표현으로 관계대수식을 트리 형태로 표현

2 질의 최적화기

✓ 질의문을 실행할 수 있는 후보 질의문 계획을 평가하고 그 중에서 최상의 비용 계획을 결정하는 것