Методы оптимизации Лекция 8: Метод сопряжённых градиентов, метод тяжёлого шарика и ускоренный градиентный метод Нестерова

Александр Катруца

Факультет инноваций и высоких технологий Физтех-школа прикладной математики и информатики

24 октября 2018 г.

На прошлой лекции

- Введение в численные методы оптимизации
- Скорости сходимости методов
- Градиентный спуск
- Понятие о нижних оценках сходимости

Что нам известно?

Что нам известно?

Нижние оценки сходимости линейных методов первого порядка:

для выпуклых функций с Липшицевым градиентом

$$f(x_{k+1}) - f^* \ge \frac{3L||x_0 - x^*||_2^2}{32(k+1)^2}$$

для сильно выпуклых функций с Липшицевым градиентом

$$f(x_{k+1}) - f^* \ge \frac{\mu}{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^{2k} \|x_0 - x^*\|_2^2$$

Что нам известно?

Нижние оценки сходимости линейных методов первого порядка:

для выпуклых функций с Липшицевым градиентом

$$f(x_{k+1}) - f^* \ge \frac{3L||x_0 - x^*||_2^2}{32(k+1)^2}$$

для сильно выпуклых функций с Липшицевым градиентом

$$f(x_{k+1}) - f^* \ge \frac{\mu}{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^{2k} \|x_0 - x^*\|_2^2$$

Сходимость градиентного спуска:

для выпуклых функций с Липшицевым градиентом

$$f(x_{k+1}) - f^* \le \frac{2L\|x - x_0\|_2^2}{k+4}$$

для сильно выпуклых функций с Липшицевым градиентом

$$f(x_k) - f^* \le \frac{L}{2} \left(\frac{\kappa - 1}{\kappa + 1} \right)^{2k} ||x_0 - x^*||_2^2$$

Рассмотрим задачу

$$\min_{x \in \mathbb{R}^n} f(x),$$

где
$$f(x) = \frac{1}{2} x^{\top} A x - b^{\top} x$$
 и $A \in \mathbb{S}^n_{++}$

Рассмотрим задачу

$$\min_{x \in \mathbb{R}^n} f(x),$$

где
$$f(x) = \frac{1}{2} x^{\top} A x - b^{\top} x$$
 и $A \in \mathbb{S}^n_{++}$

▶ Из необходимого условия экстремума имеем

$$Ax^* = b$$

Рассмотрим задачу

$$\min_{x \in \mathbb{R}^n} f(x),$$

где
$$f(x) = \frac{1}{2} x^{\top} A x - b^{\top} x$$
 и $A \in \mathbb{S}^n_{++}$

▶ Из необходимого условия экстремума имеем

$$Ax^* = b$$

lacktriangle Также обозначим $f'(x_k) = Ax_k - b = r_k$

Рассмотрим задачу

$$\min_{x \in \mathbb{R}^n} f(x),$$

где
$$f(x) = \frac{1}{2} x^{\top} A x - b^{\top} x$$
 и $A \in \mathbb{S}^n_{++}$

▶ Из необходимого условия экстремума имеем

$$Ax^* = b$$

- ▶ Также обозначим $f'(x_k) = Ax_k b = r_k$
- Задача оптимизации сведена к задаче решения системы линейных уравнений

► M. Hestenes и E. Stiefel предложили метод сопряжённых градиентов в 1952 году как *прямой* метод

- ▶ М. Hestenes и E. Stiefel предложили метод сопряжённых градиентов в 1952 году как прямой метод
- Долгое время считалось, что метод представляет только теоретический интерес поскольку

- ▶ М. Hestenes и E. Stiefel предложили метод сопряжённых градиентов в 1952 году как прямой метод
- Долгое время считалось, что метод представляет только теоретический интерес поскольку
 - не работает на логарифмической линейке

- ▶ М. Hestenes и E. Stiefel предложили метод сопряжённых градиентов в 1952 году как прямой метод
- Долгое время считалось, что метод представляет только теоретический интерес поскольку
 - не работает на логарифмической линейке
 - имеет небольшое преимущество перед исключением Гаусса при вычислениях на калькуляторе

- ► M. Hestenes и E. Stiefel предложили метод сопряжённых градиентов в 1952 году как прямой метод
- Долгое время считалось, что метод представляет только теоретический интерес поскольку
 - не работает на логарифмической линейке
 - имеет небольшое преимущество перед исключением Гаусса при вычислениях на калькуляторе
- Метод сопряжённых градиентов необходимо рассматривать как итерационный метод, то есть останавливаться до точной сходимости!

- ▶ М. Hestenes и E. Stiefel предложили метод сопряжённых градиентов в 1952 году как прямой метод
- Долгое время считалось, что метод представляет только теоретический интерес поскольку
 - не работает на логарифмической линейке
 - имеет небольшое преимущество перед исключением Гаусса при вычислениях на калькуляторе
- Метод сопряжённых градиентов необходимо рассматривать как итерационный метод, то есть останавливаться до точной сходимости!
- Подробнее здесь

Мотивация

 ► Сходимость градиентного спуска сильно зависит от числа обусловленности

Мотивация

- Сходимость градиентного спуска сильно зависит от числа обусловленности
- Как сделать метод, который для любого числа обусловленности сходился бы как максимум за n итераций?

Мотивация

- Сходимость градиентного спуска сильно зависит от числа обусловленности
- Как сделать метод, который для любого числа обусловленности сходился бы как максимум за n итераций?

Рисунок взят отсюда

Определение

Множество ненулевых векторов $\{p_0,\dots,p_l\}$ называется сопряжёнными относительно матрицы $A\in\mathbb{S}^n_{++}$, если

$$p_i^{\top} A p_j = 0, \qquad i \neq j$$

Определение

Множество ненулевых векторов $\{p_0,\dots,p_l\}$ называется сопряжёнными относительно матрицы $A\in\mathbb{S}^n_{++}$, если

$$p_i^{\top} A p_j = 0, \qquad i \neq j$$

Свойства

Определение

Множество ненулевых векторов $\{p_0,\dots,p_l\}$ называется сопряжёнными относительно матрицы $A\in\mathbb{S}^n_{++}$, если

$$p_i^{\top} A p_j = 0, \qquad i \neq j$$

Свойства

линейно независимы

Определение

Множество ненулевых векторов $\{p_0,\dots,p_l\}$ называется сопряжёнными относительно матрицы $A\in\mathbb{S}^n_{++}$, если

$$p_i^{\top} A p_j = 0, \qquad i \neq j$$

Свойства

- линейно независимы
- сопряжённые направления + шаг по правилу наискорейшего спуска = метод, сходящийся за n итераций

Определение

Множество ненулевых векторов $\{p_0,\ldots,p_l\}$ называется сопряжёнными относительно матрицы $A\in\mathbb{S}^n_{++}$, если

$$p_i^{\top} A p_j = 0, \qquad i \neq j$$

Свойства

- линейно независимы
- сопряжённые направления + шаг по правилу наискорейшего спуска = метод, сходящийся за n итераций
- $x_{k+1} = x_k + \alpha_k p_k \to r_{k+1} = r_k + \alpha_k A p_k$

Определение

Множество ненулевых векторов $\{p_0,\dots,p_l\}$ называется сопряжёнными относительно матрицы $A\in\mathbb{S}^n_{++}$, если

$$p_i^{\top} A p_j = 0, \qquad i \neq j$$

Свойства

- линейно независимы
- сопряжённые направления + шаг по правилу наискорейшего спуска = метод, сходящийся за n итераций
- $x_{k+1} = x_k + \alpha_k p_k \to r_{k+1} = r_k + \alpha_k A p_k$

Q: как получить сопряжённые направления из любого набора линейно независимых векторов?

Теорема

Пусть x_k генерируются методом сопряжённых направлений. Тогда

- 1. $\langle r_k, p_i \rangle = 0, i = 1, \dots, k-1$
- 2. $x_k = \operatorname*{arg\,min}_{x \in P} f(x)$, где $P = x_0 + \mathtt{span}(p_0, \ldots, p_{k-1})$

Теорема

Пусть x_k генерируются методом сопряжённых направлений. Тогда

- 1. $\langle r_k, p_i \rangle = 0, i = 1, \dots, k-1$
- 2. $x_k = \operatorname*{arg\,min}_{x \in P} f(x)$, где $P = x_0 + \mathtt{span}(p_0, \ldots, p_{k-1})$

1.
$$\phi(\gamma) = f(x_0 + \gamma_0 p_0 + \ldots + \gamma_{k-1} p_{k-1})$$

Теорема

Пусть x_k генерируются методом сопряжённых направлений. Тогда

- 1. $\langle r_k, p_i \rangle = 0, i = 1, \dots, k-1$
- 2. $x_k = \operatorname*{arg\,min}_{x \in P} f(x)$, где $P = x_0 + \mathtt{span}(p_0, \ldots, p_{k-1})$

- 1. $\phi(\gamma) = f(x_0 + \gamma_0 p_0 + \ldots + \gamma_{k-1} p_{k-1})$
- 2. $\phi(\gamma)$ строго выпукла o существует γ^*

Теорема

Пусть x_k генерируются методом сопряжённых направлений. Тогда

- 1. $\langle r_k, p_i \rangle = 0, i = 1, \dots, k-1$
- 2. $x_k = \operatorname*{arg\,min}_{x \in P} f(x)$, где $P = x_0 + \mathtt{span}(p_0, \ldots, p_{k-1})$

- 1. $\phi(\gamma) = f(x_0 + \gamma_0 p_0 + \ldots + \gamma_{k-1} p_{k-1})$
- 2. $\phi(\gamma)$ строго выпукла o существует γ^*
- 3. По критерию первого порядка

$$\phi'(\gamma^*) = \langle f'(x_0 + \gamma_0^* p_0 + \ldots + \gamma_{k-1}^* p_{k-1}), p_i \rangle = 0, \ i = 0, \ldots, k-1$$

Теорема

Пусть x_k генерируются методом сопряжённых направлений. Тогда

- 1. $\langle r_k, p_i \rangle = 0, i = 1, \dots, k-1$
- 2. $x_k = \operatorname*{arg\,min}_{x \in P} f(x)$, где $P = x_0 + \mathtt{span}(p_0, \dots, p_{k-1})$

Доказательство

- 1. $\phi(\gamma) = f(x_0 + \gamma_0 p_0 + \ldots + \gamma_{k-1} p_{k-1})$
- 2. $\phi(\gamma)$ строго выпукла o существует γ^*
- 3. По критерию первого порядка

$$\phi'(\gamma^*) = \langle f'(x_0 + \gamma_0^* p_0 + \ldots + \gamma_{k-1}^* p_{k-1}), p_i \rangle = 0, \ i = 0, \ldots, k-1$$

4. Из определения r_k следует, что $\langle r_k, p_i \rangle = 0, \; i=0,\dots,k-1$

Теорема

Пусть x_k генерируются методом сопряжённых направлений. Тогда

- 1. $\langle r_k, p_i \rangle = 0, i = 1, \dots, k-1$
- 2. $x_k = \operatorname*{arg\,min}_{x \in P} f(x)$, где $P = x_0 + \mathtt{span}(p_0, \ldots, p_{k-1})$

- 1. $\phi(\gamma) = f(x_0 + \gamma_0 p_0 + \ldots + \gamma_{k-1} p_{k-1})$
- 2. $\phi(\gamma)$ строго выпукла o существует γ^*
- 3. По критерию первого порядка

$$\phi'(\gamma^*) = \langle f'(x_0 + \gamma_0^* p_0 + \ldots + \gamma_{k-1}^* p_{k-1}), p_i \rangle = 0, \ i = 0, \ldots, k-1$$

- 4. Из определения r_k следует, что $\langle r_k, p_i \rangle = 0, \ i=0,\dots,k-1$
- 5. Таким образом, $(1) \Leftrightarrow (2)$

6. Докажем (1) по индукции:

- 6. Докажем (1) по индукции:
 - ▶ база: $\langle r_1, p_0 \rangle = 0$ по построению

6. Докажем (1) по индукции:

- ▶ база: $\langle r_1, p_0 \rangle = 0$ по построению
- ▶ гипотеза: $\langle r_{k-1}, p_i \rangle = 0, i = 1, ..., k-2$

- 6. Докажем (1) по индукции:
 - ▶ база: $\langle r_1, p_0 \rangle = 0$ по построению
 - ▶ гипотеза: $\langle r_{k-1}, p_i \rangle = 0, i = 1, ..., k-2$
- 7. $r_k = r_{k-1} + \alpha_{k-1} A p_{k-1}$

- **6**. Докажем (1) по индукции:
 - база: $\langle r_1, p_0 \rangle = 0$ по построению
 - ▶ гипотеза: $\langle r_{k-1}, p_i \rangle = 0, i = 1, ..., k-2$
- 7. $r_k = r_{k-1} + \alpha_{k-1} A p_{k-1}$
- 8. $\langle p_{k-1},r_k \rangle=\langle p_{k-1},r_{k-1} \rangle+\alpha_{k-1}\langle p_{k-1},Ap_{k-1} \rangle=0$ по построению α_{k-1}

- **6**. Докажем (1) по индукции:
 - база: $\langle r_1, p_0 \rangle = 0$ по построению
 - ▶ гипотеза: $\langle r_{k-1}, p_i \rangle = 0, i = 1, \dots, k-2$
- 7. $r_k = r_{k-1} + \alpha_{k-1} A p_{k-1}$
- 8. $\langle p_{k-1},r_k \rangle=\langle p_{k-1},r_{k-1} \rangle+\alpha_{k-1}\langle p_{k-1},Ap_{k-1} \rangle=0$ по построению α_{k-1}
- 9. $\langle p_i, r_k \rangle = \langle p_i, r_{k-1} \rangle + \alpha_{k-1} \langle p_i, Ap_{k-1} \rangle, \ i = 1, \dots, k-2$

- **6**. Докажем (1) по индукции:
 - база: $\langle r_1, p_0 \rangle = 0$ по построению
 - ▶ гипотеза: $\langle r_{k-1}, p_i \rangle = 0, i = 1, \dots, k-2$
- 7. $r_k = r_{k-1} + \alpha_{k-1} A p_{k-1}$
- 8. $\langle p_{k-1},r_k \rangle=\langle p_{k-1},r_{k-1} \rangle+\alpha_{k-1}\langle p_{k-1},Ap_{k-1} \rangle=0$ по построению α_{k-1}
- 9. $\langle p_i, r_k \rangle = \langle p_i, r_{k-1} \rangle + \alpha_{k-1} \langle p_i, Ap_{k-1} \rangle, \ i = 1, \dots, k-2$
- 10. $\langle p_i, r_k \rangle = 0$ по гипотезе

- **6**. Докажем (1) по индукции:
 - база: $\langle r_1, p_0 \rangle = 0$ по построению
 - ▶ гипотеза: $\langle r_{k-1}, p_i \rangle = 0, i = 1, \dots, k-2$
- 7. $r_k = r_{k-1} + \alpha_{k-1} A p_{k-1}$
- 8. $\langle p_{k-1},r_k \rangle=\langle p_{k-1},r_{k-1} \rangle+\alpha_{k-1}\langle p_{k-1},Ap_{k-1} \rangle=0$ по построению α_{k-1}
- 9. $\langle p_i, r_k \rangle = \langle p_i, r_{k-1} \rangle + \alpha_{k-1} \langle p_i, Ap_{k-1} \rangle, \ i = 1, \dots, k-2$
- 10. $\langle p_i, r_k \rangle = 0$ по гипотезе
- 11. $\langle p_i, Ap_{k-1} \rangle = 0$ по свойству сопряжённости $\{p_i\}$

Сопряжённые градиенты

▶
$$p_0 = -r_0$$
 — антиградиент

Сопряжённые градиенты

- ▶ $p_0 = -r_0$ антиградиент
- ▶ $p_{k+1} = -r_{k+1} + \beta_{k+1} p_k$, где β_{k+1} гарантирует сопряжённость p_k и p_{k+1} :

$$p_k^{\top} A p_{k+1} = p_k^{\top} A (-r_{k+1} + \beta_{k+1} p_k) = 0$$
$$\beta_{k+1} = \frac{p_k^{\top} A r_{k+1}}{p_k^{\top} A p_k}$$

Псевдокод: медленная версия

```
def ConjugateGradientQuadratic(x0, A, b, eps):
    r = A.dot(x0) - b
    p = -r
    while np.linalg.norm(r) > eps:
        alpha = -r.dot(p) / p.dot(A.dot(p))
        x = x + alpha * p
        r = A.dot(x) - b
        beta = r.dot(A.dot(p)) / p.dot(A.dot(p))
        p = -r + beta * p
    return x
```

Ускорение медленной версии

Вычисление α_k:

$$\alpha_k = -\frac{r_k^{\top} p_k}{p_k^{\top} A p_k} = -\frac{r_k^{\top} (-r_k + \beta_k p_{k-1})}{p_k^{\top} A p_k} = \frac{\|r_k\|_2^2}{p_k^{\top} A p_k}$$

Ускорение медленной версии

▶ Вычисление α_k :

$$\alpha_k = -\frac{r_k^\top p_k}{p_k^\top A p_k} = -\frac{r_k^\top (-r_k + \beta_k p_{k-1})}{p_k^\top A p_k} = \frac{\|r_k\|_2^2}{p_k^\top A p_k}$$

▶ Вычисление β_k:

$$\beta_{k+1} = \frac{r_{k+1}^{\top} A p_k}{p_k^{\top} A p_k} = \frac{r_{k+1}^{\top} (r_{k+1} - r_k)}{(-r_k + \beta_k p_{k-1})^{\top} (r_{k+1} - r_k)} = \frac{\|r_{k+1}\|_2^2}{\|r_k\|_2^2}$$

Псевдокод: быстрая версия

```
def ConjugateGradientQuadratic(x0, A, b, eps):
    r = A.dot(x0) - b
    p = -r
    while np.linalg.norm(r) > eps:
        alpha = r.dot(r) / p.dot(A.dot(p))
        x = x + alpha * p
        r_next = r + alpha * A.dot(p)
        beta = r_next.dot(r_next) / r.dot(r)
        p = -r_next + beta * p
        r = r_next
    return x
```

Почему сопряжённые градиенты сопряжены?

Теорема

Пусть после k итераций $x_k \neq x^*$. Тогда

1.
$$\langle r_k, r_i \rangle = 0, i = 1, \dots k - 1$$

2.
$$span(r_0, ..., r_k) = span(r_0, Ar_0, ..., A^k r_0)$$

3.
$$\operatorname{span}(p_0, \dots, p_k) = \operatorname{span}(r_0, Ar_0, \dots, A^k r_0)$$

4.
$$p_k^{\top} A p_i = 0$$
, $i = 1, \dots, k-1$

Определение

Пространство $\mathcal{K}_k(A) = \mathrm{span}(b,Ab,\dots,A^{k-1}b)$ называется пространством Крылова.

Определение

Пространство $\mathcal{K}_k(A) = \mathrm{span}(b,Ab,\dots,A^{k-1}b)$ называется пространством Крылова.

Основное свойство

$$A^{-1}b \in \mathcal{K}_n(A)$$

Определение

Пространство $\mathcal{K}_k(A)=\mathrm{span}(b,Ab,\dots,A^{k-1}b)$ называется пространством Крылова.

Основное свойство

$$A^{-1}b \in \mathcal{K}_n(A)$$

Определение

Пространство $\mathcal{K}_k(A) = \mathrm{span}(b,Ab,\dots,A^{k-1}b)$ называется пространством Крылова.

Основное свойство

$$A^{-1}b \in \mathcal{K}_n(A)$$

Доказательство

ightharpoonup Теорема Гамильтона-Кэли: p(A)=0, где $p(\lambda)=\det(A-\lambda I)$

Определение

Пространство $\mathcal{K}_k(A) = \mathrm{span}(b,Ab,\dots,A^{k-1}b)$ называется пространством Крылова.

Основное свойство

$$A^{-1}b \in \mathcal{K}_n(A)$$

- lacktriangle Теорема Гамильтона-Кэли: p(A)=0, где $p(\lambda)=\det(A-\lambda I)$
- $p(A)b = A^nb + a_1A^{n-1}b + \dots + a_{n-1}Ab + a_nb = 0$

Определение

Пространство $\mathcal{K}_k(A) = \mathrm{span}(b,Ab,\dots,A^{k-1}b)$ называется пространством Крылова.

Основное свойство

$$A^{-1}b \in \mathcal{K}_n(A)$$

- lacktriangle Теорема Гамильтона-Кэли: p(A)=0, где $p(\lambda)=\det(A-\lambda I)$
- $p(A)b = A^nb + a_1A^{n-1}b + \dots + a_{n-1}Ab + a_nb = 0$
- $A^{-1}p(A)b = A^{n-1}b + a_1A^{n-2}b + \dots + a_{n-1}b + a_nA^{-1}b = 0$

Определение

Пространство $\mathcal{K}_k(A) = \mathrm{span}(b,Ab,\dots,A^{k-1}b)$ называется пространством Крылова.

Основное свойство

$$A^{-1}b \in \mathcal{K}_n(A)$$

- lacktriangle Теорема Гамильтона-Кэли: p(A)=0, где $p(\lambda)=\det(A-\lambda I)$
- $p(A)b = A^nb + a_1A^{n-1}b + \dots + a_{n-1}Ab + a_nb = 0$
- $A^{-1}p(A)b = A^{n-1}b + a_1A^{n-2}b + \dots + a_{n-1}b + a_nA^{-1}b = 0$
- $A^{-1}b = -\frac{1}{a_n}(A^{n-1}b + a_1A^{n-2}b + \dots + a_{n-1}b)$

Интерпретация

▶ Поиск лучшего приближения на k-ом Крыловском пространстве

$$x_k = \operatorname*{arg\,min}_{x \in \mathcal{K}_k} f(x)$$

Интерпретация

ightharpoonup Поиск лучшего приближения на k-ом Крыловском пространстве

$$x_k = \operatorname*{arg\,min}_{x \in \mathcal{K}_k} f(x)$$

▶ Направления $\{p_i\} \neq \{b, Ab, \dots, A^{k-1}b\}$. Почему?

Интерпретация

ightharpoonup Поиск лучшего приближения на k-ом Крыловском пространстве

$$x_k = \operatorname*{arg\,min}_{x \in \mathcal{K}_k} f(x)$$

▶ Направления $\{p_i\} \neq \{b, Ab, \dots, A^{k-1}b\}$. Почему?

Краткое описание метода сопряжённых градиентов Поиск решения в ортонормированном Крыловском базисе

Полезные соотношения

▶ Решение: $x^* = A^{-1}b$

Полезные соотношения

- ▶ Решение: $x^* = A^{-1}b$
- Минимум функции:

$$f^* = \frac{1}{2}b^{\top}A^{-\top}AA^{-1}b - b^{\top}A^{-1}b = -\frac{1}{2}b^{\top}A^{-1}b = -\frac{1}{2}\|x^*\|_A^2$$

Полезные соотношения

- ▶ Решение: $x^* = A^{-1}b$
- Минимум функции:

$$f^* = \frac{1}{2} b^\top A^{-\top} A A^{-1} b - b^\top A^{-1} b = -\frac{1}{2} b^\top A^{-1} b = -\frac{1}{2} \|x^*\|_A^2$$

Оценка сходимости по функции:

$$f(x) - f^* = \frac{1}{2}x^{\top}Ax - b^{\top}x + \frac{1}{2}\|x^*\|_A^2$$
$$= \frac{1}{2}\|x\|_A^2 - x^{\top}Ax^* + \frac{1}{2}\|x^*\|_A^2$$
$$= \frac{1}{2}\|x - x^*\|_A^2$$

 $ightharpoonup x_k$ лежит в \mathcal{K}_k

 $ightharpoonup x_k$ лежит в \mathcal{K}_k

$$lacktriangledown x_k = \sum\limits_{i=1}^k c_i A^{i-1} b = p(A) b$$
, где $p(x)$ некоторый полином степени не выше $k-1$

- $ightharpoonup x_k$ лежит в \mathcal{K}_k
- $lacktriangledown x_k = \sum\limits_{i=1}^k c_i A^{i-1} b = p(A) b$, где p(x) некоторый полином степени не выше k-1
- $ightharpoonup x_k$ минимизирует f на \mathcal{K}_k , отсюда

$$2(f_k - f^*) = \inf_{x \in \mathcal{K}_k} \|x - x^*\|_A^2 = \inf_{\deg(p) < k} \|(p(A) - A^{-1})b\|_A^2$$

- $ightharpoonup x_k$ лежит в \mathcal{K}_k
- $lacktriangledown x_k = \sum\limits_{i=1}^k c_i A^{i-1} b = p(A) b$, где p(x) некоторый полином степени не выше k-1
- $ightharpoonup x_k$ минимизирует f на \mathcal{K}_k , отсюда

$$2(f_k - f^*) = \inf_{x \in \mathcal{K}_k} \|x - x^*\|_A^2 = \inf_{\deg(p) < k} \|(p(A) - A^{-1})b\|_A^2$$

lacktriangle Спектральное разложение $A=U\Lambda U^*$ даёт

$$2(f_k - f^*) = \inf_{\deg(p) < k} \| (p(\Lambda) - \Lambda^{-1}) d \|_{\Lambda}^2$$

$$= \inf_{\deg(p) < k} \sum_{i=1}^n \frac{d_i^2 (\lambda_i p(\lambda_i) - 1)^2}{\lambda_i}$$

$$= \inf_{\deg(q) \le k, q(0) = 1} \sum_{i=1}^n \frac{d_i^2 q(\lambda_i)^2}{\lambda_i}$$

$$f_k - f^* \le \left(\sum_{i=1}^n \frac{d_i^2}{2\lambda_i}\right) \inf_{\deg(q) \le k, q(0) = 1} \left(\max_{i=1,\dots,n} q(\lambda_i)^2\right)$$
$$= \frac{1}{2} \|x^*\|_{A}^2 \inf_{\deg(q) \le k, q(0) = 1} \left(\max_{i=1,\dots,n} q(\lambda_i)^2\right)$$

lacktriangle Пусть A имеет m различных собственных значений, тогда для

$$r(y) = \frac{(-1)^m}{\lambda_1 \cdot \ldots \cdot \lambda_m} (y - \lambda_i) \cdot \ldots \cdot (y - \lambda_m)$$

выполнено $\deg(r)=m$ и r(0)=1

$$f_k - f^* \le \left(\sum_{i=1}^n \frac{d_i^2}{2\lambda_i}\right) \inf_{\deg(q) \le k, q(0) = 1} \left(\max_{i=1,\dots,n} q(\lambda_i)^2\right)$$
$$= \frac{1}{2} \|x^*\|_{A}^2 \inf_{\deg(q) \le k, q(0) = 1} \left(\max_{i=1,\dots,n} q(\lambda_i)^2\right)$$

ightharpoonup Пусть A имеет m различных собственных значений, тогда для

$$r(y) = \frac{(-1)^m}{\lambda_1 \cdot \ldots \cdot \lambda_m} (y - \lambda_i) \cdot \ldots \cdot (y - \lambda_m)$$

выполнено deg(r) = m и r(0) = 1

ightharpoonup Значение для оптимального полинома степени не выше k оценим сверху значением для полинома r степени m

$$0 \le f_k - f^* \le \frac{1}{2} \|x^*\|_A^2 \max_{i=1,\dots,m} r(\lambda_i) = 0$$

$$f_k - f^* \le \left(\sum_{i=1}^n \frac{d_i^2}{2\lambda_i}\right) \inf_{\deg(q) \le k, q(0) = 1} \left(\max_{i=1,\dots,n} q(\lambda_i)^2\right)$$
$$= \frac{1}{2} \|x^*\|_A^2 \inf_{\deg(q) \le k, q(0) = 1} \left(\max_{i=1,\dots,n} q(\lambda_i)^2\right)$$

ightharpoonup Пусть A имеет m различных собственных значений, тогда для

$$r(y) = \frac{(-1)^m}{\lambda_1 \cdot \ldots \cdot \lambda_m} (y - \lambda_i) \cdot \ldots \cdot (y - \lambda_m)$$

выполнено $\deg(r) = m$ и r(0) = 1

ightharpoonup Значение для оптимального полинома степени не выше k оценим сверху значением для полинома r степени m

$$0 \le f_k - f^* \le \frac{1}{2} \|x^*\|_{A}^2 \max_{i=1,\dots,m} r(\lambda_i) = 0$$

lacktriangle Метод сопряжённых градиентов сошёлся за m итераций

Пример задачи

- n = 100
- ightharpoonup Спектр $A: \{1, 10, 100, 1000\}$
- $\kappa = 1000$

Иллюстрация сходимости

 10^{-8}

20

40 60 Iteration number, k

CG

GD

100

80

Другие оценки

lacktriangle Если q(x) – Чебышёвский полином на $[\lambda_{\min},\lambda_{\max}]$, то

$$f_k - f^* \le C \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} - 1}\right)^k$$

lacktriangle Если q(x) имеет корни $\lambda_1,\dots,\lambda_{k-1}$ и $(\lambda_1+\lambda_n)/2$, то

$$f_k - f^* \le C \left(\frac{\lambda_k - \lambda_n}{\lambda_k + \lambda_n}\right)^2$$

1. Шаг α_k подбирается адаптивно

- 1. Шаг α_k подбирается адаптивно
- 2. Коэффициент β_k ищется с помощью градиентов $f'(x_{k-1}), f'(x_{k-2})$

- 1. Шаг α_k подбирается адаптивно
- 2. Коэффициент β_k ищется с помощью градиентов $f'(x_{k-1}), f'(x_{k-2})$

Примеры

- 1. Шаг α_k подбирается адаптивно
- 2. Коэффициент β_k ищется с помощью градиентов $f'(x_{k-1}), f'(x_{k-2})$

Примеры

► Метод Флетчера-Ривса (Fletcher-Reeves)

$$\beta_k = \frac{\|f'(x_{k-1})\|_2^2}{\|f'(x_{k-2})\|_2^2}$$

Обобщение на неквадратичную целевую функцию

- 1. Шаг α_k подбирается адаптивно
- 2. Коэффициент β_k ищется с помощью градиентов $f'(x_{k-1}), f'(x_{k-2})$

Примеры

▶ Метод Флетчера-Ривса (Fletcher-Reeves)

$$\beta_k = \frac{\|f'(x_{k-1})\|_2^2}{\|f'(x_{k-2})\|_2^2}$$

▶ Метод Полака-Рибьера (Polak-Ribière)

$$\beta_k = \frac{\langle f'(x_{k-1}), f'(x_{k-1}) - f'(x_{k-2}) \rangle}{\|f'(x_{k-2})\|_2^2}$$

Обобщение на неквадратичную целевую функцию

- 1. Шаг α_k подбирается адаптивно
- 2. Коэффициент β_k ищется с помощью градиентов $f'(x_{k-1}), f'(x_{k-2})$

Примеры

▶ Метод Флетчера-Ривса (Fletcher-Reeves)

$$\beta_k = \frac{\|f'(x_{k-1})\|_2^2}{\|f'(x_{k-2})\|_2^2}$$

▶ Метод Полака-Рибьера (Polak-Ribière)

$$\beta_k = \frac{\langle f'(x_{k-1}), f'(x_{k-1}) - f'(x_{k-2}) \rangle}{\|f'(x_{k-2})\|_2^2}$$

▶ Метод Хестенса-Штифеля (Hestenes-Stiefel)

$$\beta_k = \frac{\langle f'(x_{k-1}), f'(x_{k-1}) - f'(x_{k-2}) \rangle}{\langle p_{k-1}, f'(x_{k-1}) - f'(x_{k-2}) \rangle}$$

ightharpoonup С ростом числа итераций направления p_k могут становится всё более коллинеарными

- ightharpoonup С ростом числа итераций направления p_k могут становится всё более коллинеарными
- ▶ Помогают рестарты при выполнении некоторых условий

- ightharpoonup С ростом числа итераций направления p_k могут становится всё более коллинеарными
- ▶ Помогают рестарты при выполнении некоторых условий
- ▶ При выборе α_k по правилу наискорейшего спуска, p_k направление убывание

- ightharpoonup С ростом числа итераций направления p_k могут становится всё более коллинеарными
- ▶ Помогают рестарты при выполнении некоторых условий
- ▶ При выборе α_k по правилу наискорейшего спуска, p_k направление убывание
- ightharpoonup НЕ при любом способе адаптивного поиска $lpha_k$ направление $lpha_k p_k$ будет направлением убывания

- ightharpoonup С ростом числа итераций направления p_k могут становится всё более коллинеарными
- Помогают рестарты при выполнении некоторых условий
- ▶ При выборе α_k по правилу наискорейшего спуска, p_k направление убывание
- ▶ НЕ при любом способе адаптивного поиска α_k направление $\alpha_k p_k$ будет направлением убывания
- Интерпретация через квазиньютоновский метод с ограниченной памятью – через две недели

Метод тяжёлого шарика (Б. Т. Поляк, 1964)

Рисунок взят отсюда

- Двухшаговый немонотонный метод
- Дискретизация следующего дифференциального уравнения

$$\ddot{x} + b\dot{x} + af'(x) = 0$$

Метод сопряжённых градиентов — частный случай

Перепишем метод как

$$\begin{bmatrix} x_{k+1} \\ x_k \end{bmatrix} = \begin{bmatrix} (1+\beta_k)I & -\beta_k I \\ I & 0 \end{bmatrix} \begin{bmatrix} x_k \\ x_{k-1} \end{bmatrix} + \begin{bmatrix} -\alpha_k f'(x_k) \\ 0 \end{bmatrix}$$

Перепишем метод как

$$\begin{bmatrix} x_{k+1} \\ x_k \end{bmatrix} = \begin{bmatrix} (1+\beta_k)I & -\beta_k I \\ I & 0 \end{bmatrix} \begin{bmatrix} x_k \\ x_{k-1} \end{bmatrix} + \begin{bmatrix} -\alpha_k f'(x_k) \\ 0 \end{bmatrix}$$

Используем теорему из анализа

$$\begin{bmatrix} x_{k+1} - x^* \\ x_k - x^* \end{bmatrix} = \underbrace{\begin{bmatrix} (1 + \beta_k)I - \alpha_k \int_0^1 f''(x(\tau))d\tau & -\beta_k I \\ I & 0 \end{bmatrix}}_{=A_t} \begin{bmatrix} x_k - x^* \\ x_{k-1} - x^* \end{bmatrix}$$

где
$$x(\tau) = x_k + \tau(x^* - x_k)$$

Перепишем метод как

$$\begin{bmatrix} x_{k+1} \\ x_k \end{bmatrix} = \begin{bmatrix} (1+\beta_k)I & -\beta_k I \\ I & 0 \end{bmatrix} \begin{bmatrix} x_k \\ x_{k-1} \end{bmatrix} + \begin{bmatrix} -\alpha_k f'(x_k) \\ 0 \end{bmatrix}$$

Используем теорему из анализа

$$\begin{bmatrix} x_{k+1} - x^* \\ x_k - x^* \end{bmatrix} = \underbrace{\begin{bmatrix} (1+\beta_k)I - \alpha_k \int_0^1 f''(x(\tau))d\tau & -\beta_k I \\ I & 0 \end{bmatrix}}_{=A_t} \begin{bmatrix} x_k - x^* \\ x_{k-1} - x^* \end{bmatrix}$$

где
$$x(\tau) = x_k + \tau(x^* - x_k)$$

lacktriangle Сходимость зависит от спектрального радиуса матрицы итераций A_t

▶ Перепишем метод как

$$\begin{bmatrix} x_{k+1} \\ x_k \end{bmatrix} = \begin{bmatrix} (1+\beta_k)I & -\beta_k I \\ I & 0 \end{bmatrix} \begin{bmatrix} x_k \\ x_{k-1} \end{bmatrix} + \begin{bmatrix} -\alpha_k f'(x_k) \\ 0 \end{bmatrix}$$

Используем теорему из анализа

$$\begin{bmatrix} x_{k+1} - x^* \\ x_k - x^* \end{bmatrix} = \underbrace{\begin{bmatrix} (1+\beta_k)I - \alpha_k \int_0^1 f''(x(\tau))d\tau & -\beta_k I \\ I & 0 \end{bmatrix}}_{=A_t} \begin{bmatrix} x_k - x^* \\ x_{k-1} - x^* \end{bmatrix}$$

где
$$x(\tau) = x_k + \tau(x^* - x_k)$$

- \blacktriangleright Сходимость зависит от спектрального радиуса матрицы итераций A_t
- ▶ Выберем α_k и β_k так, чтобы минимизировать спектральный радиус

Выбор параметров

Теорема

Пусть f выпуклая с Липшицевым градиентом и сильно выпуклая функция. Тогда $\alpha_k = \frac{4}{(\sqrt{L}+\sqrt{\mu})^2}$ и

$$eta_k = \max(|1 - \sqrt{lpha_k L}|, |1 - \sqrt{lpha_k \mu}|)^2$$
 дают

$$\left\| \begin{bmatrix} x_{k+1} - x^* \\ x_k - x^* \end{bmatrix} \right\|_2 \le \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^k \left\| \begin{bmatrix} x_1 - x^* \\ x_0 - x^* \end{bmatrix} \right\|_2$$

- ightharpoonup Параметры зависят от L и μ
- Быстрее чем градиентный спуск
- ▶ Аналог СG для сильно выпуклой квадратичной функции

Иллюстрация

- n = 100
- Случайная квадратичная задача

Один из вариантов

$$y_0 = x_0$$

$$x_{k+1} = y_k - \alpha_k f'(y_k)$$

$$y_{k+1} = x_{k+1} + \frac{k}{k+3} (x_{k+1} - x_k)$$

Один из вариантов

$$y_0 = x_0$$

$$x_{k+1} = y_k - \alpha_k f'(y_k)$$

$$y_{k+1} = x_{k+1} + \frac{k}{k+3} (x_{k+1} - x_k)$$

▶ Сравнение с методом тяжёлого шарика

Один из вариантов

$$y_0 = x_0$$

$$x_{k+1} = y_k - \alpha_k f'(y_k)$$

$$y_{k+1} = x_{k+1} + \frac{k}{k+3} (x_{k+1} - x_k)$$

- Сравнение с методом тяжёлого шарика
- Немонотонный

Один из вариантов

$$y_0 = x_0$$

$$x_{k+1} = y_k - \alpha_k f'(y_k)$$

$$y_{k+1} = x_{k+1} + \frac{k}{k+3} (x_{k+1} - x_k)$$

- Сравнение с методом тяжёлого шарика
- Немонотонный
- ▶ Интерпретация как дискретизация некоторого ОДУ

Визуализация итераций

Сходимость

Теорема

Пусть f выпукла с Липшицевым градиентом, а шаг $lpha_k=rac{1}{L}.$ Тогда ускоренный градиентый метод сходится как

$$f(x_k) - f^* \le \frac{2L||x_0 - x^*||_2^2}{(k+1)^2} = \mathcal{O}(1/k^2)$$

Сходимость

Теорема

Пусть f выпукла с Липшицевым градиентом, а шаг $lpha_k=rac{1}{L}.$ Тогда ускоренный градиентый метод сходится как

$$f(x_k) - f^* \le \frac{2L||x_0 - x^*||_2^2}{(k+1)^2} = \mathcal{O}(1/k^2)$$

Теорема

Ускоренный метод Нестерова для сильно выпуклой функции при шаге $\alpha_k=\frac{1}{L}$ сходится как

$$f(x_k) - f^* \le L ||x_k - x_0||_2^2 \left(1 - \frac{1}{\sqrt{\kappa}}\right)^k$$

Пример сходимости

▶ Сходимость градиентного спуска может быть улучшена

- ▶ Сходимость градиентного спуска может быть улучшена
- Метод сопряжённых градиентов надо использовать для квадратичных сильно выпуклых функций

- ▶ Сходимость градиентного спуска может быть улучшена
- Метод сопряжённых градиентов надо использовать для квадратичных сильно выпуклых функций
- Ускоренный метод Нестерова оптимален для выпуклых с Липшицевым градиентом и сильно выпуклых функций

- ▶ Сходимость градиентного спуска может быть улучшена
- Метод сопряжённых градиентов надо использовать для квадратичных сильно выпуклых функций
- Ускоренный метод Нестерова оптимален для выпуклых с
 Липшицевым градиентом и сильно выпуклых функций

Вопросы

- Сходимость градиентного спуска может быть улучшена
- Метод сопряжённых градиентов надо использовать для квадратичных сильно выпуклых функций
- Ускоренный метод Нестерова оптимален для выпуклых с Липшицевым градиентом и сильно выпуклых функций

Вопросы

Что делать, когда нельзя точно посчитать градиент?

- Сходимость градиентного спуска может быть улучшена
- Метод сопряжённых градиентов надо использовать для квадратичных сильно выпуклых функций
- Ускоренный метод Нестерова оптимален для выпуклых с
 Липшицевым градиентом и сильно выпуклых функций

Вопросы

- Что делать, когда нельзя точно посчитать градиент?
- Все методы зависят от неизвестных констант, как подбирать шаги адаптивно?

- Сходимость градиентного спуска может быть улучшена
- Метод сопряжённых градиентов надо использовать для квадратичных сильно выпуклых функций
- Ускоренный метод Нестерова оптимален для выпуклых с
 Липшицевым градиентом и сильно выпуклых функций

Вопросы

- Что делать, когда нельзя точно посчитать градиент?
- Все методы зависят от неизвестных констант, как подбирать шаги адаптивно?
- ▶ Что произойдёт со скоростями сходимости?

Резюме

▶ Метод сопряжённых градиентов

Резюме

- ▶ Метод сопряжённых градиентов
- Метод тяжёлого шарика

Резюме

- Метод сопряжённых градиентов
- Метод тяжёлого шарика
- Ускоренный градиентный метод Нестерова