

Universidad Autonoma de Nuevo León

FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS

PROYECTO 1

Autores:

Jesús Eduardo Loera Casas 1898887

Cesar Efrén Valladares Rocha 1841555

Vrani Chavez Islas 1990044

14 de marzo de 2021

Índice

1.	Problema 1	1
2.	Problema 2	2
3.	Problema 3	3
4.	Problema 4	3

Resumen

En este documento nuestro equipo presenta el Proyecto 1 del curso de mecánica teórica, donde planteamos la solución a los cuatro problemas problemas propuestos en el mismo.

1. Problema 1

Encontrar la matriz de transformación que produce un giro de 120 grados a un sistema de coordenadas rectangular en torno a un eje fijo (expresar sobre que eje se hace el giro). Los ejes coordenados son perpendiculares entre sí.

Rotación de $\theta = 120^{\circ}$ alrededor del eje x_2 .

Utilizando cosenos directores para representar la matriz de transformación:

$$\lambda_{11} = \cos(x_1', x_1) = \cos(\theta)\lambda_{12} = \cos(x_1', x_2) = \cos\left(\frac{\pi}{2}\right) = 0\lambda_{13} = \cos(x_1', x_3) = \cos\left(\frac{\pi}{2} + \theta\right) = -\sin(\theta)\lambda_{22}$$

Entonces la matriz de transformación queda:

$$\lambda = \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{bmatrix} = \begin{bmatrix} \cos(120^{\circ}) & 0 & -\sin(120^{\circ}) \\ 0 & 1 & 0 \\ \sin(120^{\circ}) & 0 & \cos(120^{\circ}) \end{bmatrix}$$

$$\therefore \lambda = \begin{bmatrix} -\frac{1}{2} & 0 & -\frac{\sqrt{3}}{2} \\ 0 & 1 & 0 \\ \frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} \end{bmatrix}$$

2. Problema 2

a.
$$(AB)^T = B^T A^T$$

Consideremos dos matrices cuadradas nxn, A y B:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

Utilizemos la siguiente notación:

$$A = (a_{ij})_{nxn}$$

$$B = (b_{ij})_{nxn}$$

Primero realicemos la multiplicación de matrices (AB):

$$AB = (a_{ij})_{nxn} (b_{ij})_{nxn}$$
$$= (c_{ij})_{nxn}$$

La matriz resultante de dicho producto es la matriz $(c_{ij})_{nxn}$, donde el término c_{ij} viene dado por la siguiente expresión:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Ahora, vamos a buscar la transpuesta de la matriz AB:

Si
$$(AB)^T = \left(c_{ij}^T\right)_{nxn}$$

Por defición de matriz transpuesta, el término ij-ésimo c_{ij}^T , de la matriz $(AB)^T$ es aquel tal que:

$$c_{ij}^T = c_{ji}$$

Por lo tanto, tenemos que

$$c_{ij}^{T} = c_{ji}$$

$$= \sum_{k=1}^{n} a_{jk} b_{ki}$$

$$= \sum_{k=1}^{n} b_{ki} a_{jk}$$

Prestemos atención en los siguientes b_{ki} y a_{jk} .

El elemento b_{ki} , es el mismo que el elemento tal que $b_{ki} = b_{ik}^T$.

El elemento a_{jk} , es el mismo que el elemento tal que $a_{jk} = a_{kj}^T$.

Por tanto, podemos hacer la siguiente sustitución:

$$c_{ij}^T = \sum_{k=1}^n b_{ki} a_{jk}$$
$$= \sum_{k=1}^n b_{ik}^T a_{kj}^T$$

Por defición de multiplicacion de matrices el elemento $c_{ij}^T = \sum_{k=1}^n b_{ik}^T a_{kj}^T$ es el ij-ésimo de la multiplicación de matrices $(b_{ij})_{nxn}^T (a_{ij})_{nxn}^T$.

Anteriormente tambíen se mostró que c_{ij}^T es el ij-ésimo de la multiplicación de la matriz $(AB)^T$.

 $\therefore (AB)^T$ y $(b_{ij})_{nxn}^T (a_{ij})_{nxn}^T$ son matrices iguales término a término

$$\Rightarrow (AB)^T = (b_{ij})_{nrn}^T (a_{ij})_{nrn}^T$$

3. Problema 3

4. Problema 4

Un oscilador armónicose compone de una masa de 100 gramos sujeta a un muelle de constante recuperadora de 104 dinas/cm. Se desplaza la masa una distancia de 3 cm, soltándose desde el reposo. Calcule:

- a. Frecuencia propia ν_o
- b. Periodo τ_o
- c. Energía total
- d. Velocidad máxima

Por la segunda ley de Newton:

$$F = ma$$
$$-kx = m\ddot{x}$$
$$m\ddot{x} + kx = 0$$

Recordemos la frecuencia angular $\omega_o^2 = \frac{k}{m}$, sustituyendo:

a. Frecuencia propia ν_o

Recordemos la frecuencia angular $\omega_o^2 = \frac{k}{m}$

Despejemos la variable ω_o

$$\omega_o = \sqrt{\frac{k}{m}}$$

Recordando la igualdad $\omega_o=2\pi\nu_o,$ de donde despejamos la frecuencia propia ν_o

$$\nu_o = \frac{\omega_o}{2\pi}$$

Sustituyendo $\omega_o = \sqrt{\frac{k}{m}}$ en la ecuación anterior.

$$\nu_o = \frac{\left(\sqrt{\frac{k}{m}}\right)}{2\pi}$$

$$\nu_o = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

Sustituyendo en la ecuación anterior:

$$\nu_o = \frac{1}{2\pi} \sqrt{\frac{(10^4 dinas/cm)}{(100g)}}$$

$$\nu_o = 1.6 \frac{1}{s}$$

 \therefore La frecuencia propia es $\nu_o=1,6\frac{1}{s}$

b. Periodo τ_o

Anteriormente llegamos a la ecuación

$$\nu_o = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

Recordemos que $\nu_o = \frac{1}{\tau_o}$, vamos a realizar esta sustitución en la ecuación anterior:

$$\frac{1}{\tau_o} = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$
$$= \frac{\sqrt{k}}{2\pi\sqrt{m}}$$

Despejamos para el periodo τ_o :

$$\tau_o = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$
$$= \frac{2\pi\sqrt{m}}{\sqrt{k}}$$
$$= 2\pi\sqrt{\frac{m}{k}}$$

Sustituyendo en la ecuación anterior:

$$\tau_o = 2\pi \sqrt{\frac{(100g)}{(10^4 dinas/cm)}}$$

$$\nu_o = 0.62s$$

- \therefore El periodo es $\tau_o = 0.63 \text{ s}$
- c. Energía total

Como la energía total es la suma de la energía potencial y la energía cinética, primero buscaremos expresiones para la velocidad y la posición.

Recordemos la ecuación diferencial del sistema

$$m\ddot{x} + kx = 0$$

Observación: $m\ddot{x} + kx = 0$ es una ecuación diferencial lineal homogénea de orden dos con coeficientes constantes.

Y de la redacción del problema identificamos las siguientes condiciones iniciales:

$$x(0) = x_o = 3cm$$
$$\dot{x}(0) = 0$$

Observación: Tenemos condiciones iniciales en t=0 por tanto podemos usar la transformada de Laplace para resolver la ecuación diferencial.

$$\mathcal{L}\left\{m\ddot{x} + kx\right\} = \mathcal{L}\left\{0\right\}$$

Recordemos que $\mathcal{L}\left\{0\right\} = 0$

$$\mathcal{L}\left\{m\ddot{x}\right\} + \mathcal{L}\left\{kx\right\} = 0$$

$$m \mathcal{L} \{\ddot{x}\} + k \mathcal{L} \{x\} = 0$$

Sea $\mathcal{L}\{x(t)\}=X(s)$ y recordando que $x(0)=x_o=3cm$ y = $\dot{x}(0)=0$

■ En $m \mathcal{L}\{\ddot{x}\}$:

$$m \mathcal{L} \{\ddot{x}\} = m \left(s^2 X(s) - sx(0) - \dot{x}(0)\right)$$
$$= m \left(s^2 X(s) - sx_o - 0\right)$$
$$= ms^2 X(s) - msx_o$$

■ En $k \mathcal{L}\{x\}$:

$$k \mathcal{L}\{x\} = kX(s)$$

Sustituyemos las anteriores igualdades en la ecuación diferencial:

$$ms^2X(s) - msx_o + kX(s) = 0$$

Ahora despejamos para X(s):

$$ms^{2}X(s) - msx_{o} + kX(s) = 0$$
$$ms^{2}X(s) + kX(s) = mx_{o}s$$

$$X(s) \left(ms^2 + k\right) = mx_o s$$

$$X(s) = \frac{mx_o s}{ms^2 + k}$$

$$X(s) = \frac{mx_o s}{m\left(s^2 + \frac{k}{m}\right)}$$

$$X(s) = \frac{x_o s}{s^2 + \frac{k}{m}}$$

Ahora aplicamos la transformada inversa de Laplace en ambos lados de la ecuación:

$$\mathcal{L}^{-1}{X(s)} = \mathcal{L}^{-1}\left\{\frac{x_o s}{s^2 + \frac{k}{m}}\right\}$$
$$= x_o \mathcal{L}^1\left\{\frac{s}{s^2 + \frac{k}{m}}\right\}$$

Como $\mathcal{L}^{-1}\left\{\frac{s}{s^2+k^2}\right\} = Cos(kt)$

$$\Rightarrow \mathcal{L}\left\{\frac{s}{s^2 + \frac{k}{m}}\right\} = Cos\left(\sqrt{\frac{k}{m}}t\right)$$

Tambien sabemos que $\mathcal{L}^{-1}\left\{X(s)\right\} = x(t)$

Hacemos las sustituciones de las transformadas inversas de Laplace:

$$\therefore x(t) = x_o Cos \left(\sqrt{\frac{k}{m}} t \right)$$

Ahora para determinar $\dot{x}(t)$ derivamos a q(t):

$$x(t) = x_o Cos\left(\sqrt{\frac{k}{m}}t\right)$$

$$\therefore \dot{x}(t) = -\sqrt{\frac{k}{m}} x_o Sen\left(\sqrt{\frac{k}{m}} t\right)$$

Recordando que $T = \frac{1}{2}m\dot{x}^2$

$$T = \frac{1}{2}m\frac{k}{m}x_o^2 Sen^2\left(\sqrt{\frac{k}{m}}t\right)$$

Recordando que $V = \frac{1}{2}kx^2$

$$T = \frac{1}{2}kx_o Cos\left(\sqrt{\frac{k}{m}}t\right)$$

Y como la energía mecánica está dada por E = T + V

$$\begin{split} E &= T + V \\ &= \frac{1}{2} m \frac{k}{m} x_o^2 Sen^2 \left(\sqrt{\frac{k}{m}} t \right) + \frac{1}{2} k x_o^2 Cos^2 \left(\sqrt{\frac{k}{m}} t \right) \end{split}$$

En ese sistema solo actúan fuerzas conservativas, por tanto la energía se conserva. Evaluemos la energía en el tiempo t=0:

$$E(0) = \frac{1}{2}(100g)\frac{(10^4 dinas/cm)}{m}(3cm)^2 Sen^2 \left(\sqrt{\frac{(10^4 dinas/cm)}{(100g)}}(0s)\right)$$

$$+ \frac{1}{2}(10^4 dinas/cm)(3cm)^2 Cos^2 \left(\sqrt{\frac{(10^4 dinas/cm)}{(100g)}}(0s)\right)$$

$$= \frac{1}{2}(10^4 dinas/cm)(3cm)^2$$

$$= 45000 ergios$$

∴ La energía total del sistema es de 45000 ergios

d. Velocidad máxima

Retomemos la ecuación de la velocidad que encontramos:

$$\dot{x}(t) = -\sqrt{\frac{k}{m}} x_o Sen\left(\sqrt{\frac{k}{m}}t\right)$$

Expresemos el módulo de la velocidad:

$$\|\dot{x}(t)\| = \sqrt{\left(-\sqrt{\frac{k}{m}}x_oSen\left(\sqrt{\frac{k}{m}}t\right)\right)^2}$$
$$\|\dot{x}(t)\| = \sqrt{\frac{k}{m}}x_oSen\left(\sqrt{\frac{k}{m}}t\right)$$

Esta expresión alcanza su máximo cuando: $Sen\left(\sqrt{\frac{k}{m}}t\right)=1$

$$\|\dot{x}(t)\|_{max} = \sqrt{\frac{k}{m}} x_o$$

Sustituyendo en la ecuación anterior:

$$\|\dot{x}(t)\|_{max} = \sqrt{\frac{(10^4 dinas/cm)}{(100g)}}(3cm)$$
$$= 30\frac{cm}{s}$$

 \therefore La velocidad máxima es de 30 $\frac{cm}{s}$

Por lo tanto:

- a. La frecuencia propia es $\nu_o=1.6$ $\frac{1}{s}$
- b. El periodo es $\tau_o = 0.63$ s
- ${\bf c}.$ La energía total del sistema es de 45000 ergios
- d. La velocidad máxima es de 30 $\frac{cm}{s}$