微分方程数值解计算实习课后作业 2

陈文宇

2023年3月11日

目录

1	问题重述	2
2	实验思路	2
3	实验结果	2
4	实验结果分析	4

1 问题重述

测试不同基函数对求解的影响: 例 1.4.1

$$\begin{cases} \mu'' + \mu = -x & 0 < x < 1 \\ \mu(0) = \mu(1) = 0 \end{cases}$$

取基函数为

$$\phi_i(x) = \sin(i\pi x) \ \phi_i(x) = (1-x)x^i, i = 1, 2, \dots, N.$$

- 对比两组基函数对应的系数矩阵的条件数随着 N 增加产生的变化
- 画图对比两组基函数对应的数值解和精确解

$$\mu_*(x) = \frac{\sin x}{\sin 1} - x$$

之间的 $L^2\{[0,1]\}$ 误差:

$$err = (\int_0^1 (\mu_*(x) - \mu_n(x))^2)^{\frac{1}{2}}$$

随着 N 增加产生的变化

2 实验思路

使用 Ritz-Galerkin 方法,只需求解线性方程组 Ax = b,对于条件数可以使用 matlab 命令 cond(A, 2), err 的求解可以使用复化 Simpson 方法来求解,进而使用 plot 函数绘制图像即可。

具体的操作:

- 将 A(i,j) 公式写成函数 Aijeqution.m 计算系数矩阵, 使用命令 cond(A,2) 计算条件数
- 将 b(i) 公式写成函数 bieqution.m 计算右端向量,使用 $x = A \setminus b'$ 求解线性方程,即可获取微分方程数值解
- 使用复化 Simpson 方法来求解误差 err, 并绘图, 这些操作保存在 main.m 中

3 实验结果

下列表格是对基函数个数 N 与系数矩阵条件数 condA

N	1	2	3	4	5	6	7	8	9	10
conA	1	4.34	9.9	17.69	27.71	39.95	54.41	71.1	90.02	111.16
N	11	12	13	14	15	16	17	18	19	20
conA	134.53	160.12	187.94	217.99	250.25	284.75	321.47	360.42	401.59	444.99

表 1: 三角多项式基底下的条件数变化

N	1	2	3	4	5	6	7	8	9	10
conA	1	10.17	161.10	3106.29	6.69E+04	1.55E+06	3.80E + 07	9.66E + 08	2.53E+10	6.8E+11

表 2: 代数多项式基底下的条件数变化

下列图像是基函数个数 N 与误差 err 的图像:

图 1: 三角多项式作为基函数

图 2: 代数多项式作为基函数

4 实验结果分析

随着基函数个数的增加,两类基底下系数矩阵的条件数都在逐渐增大。

对于三角多项式基底,我绘制了 N 与 $\sqrt{\|A\|}$ 的图像,可以看出 $\|A\| = O(N^2)$ 。这是简单的,因为对角矩阵的条件数是最大奇异值和最小奇异值的比值,即

$$condA = \frac{(N\pi)^2 - 1}{\pi^2 - 1}$$

图 3: 三角多项式基底下,N 与 $\sqrt{\|A\|}$ 的图像关系图

对于代数多项式基底,我绘制了 N 与 $\log \|A\|$ 的图像,可以看出 $\|A\| = O(e^N)$,并且当 N > 12,系数矩阵的条件数过大,matlab 报告"警告: 矩阵接近奇异值,或者缩放错误。结果可能不准确".

图 4: 代数多项式基底下,N 与 $\exp \|A\|_2$ 的图像关系图

随着基函数个数的增加,两类基底下误差都在逐渐减小。