

CIVE 2081 - Spring 2023

Chemistry of Life

Class Goals

- Understand how the **atoms** are organize
- Understand the basics of chemical bond theory
- Explore the main classes of biological molecules

Atomic Structure

Atomic Isotopes

Isotopes changes the number of NEUTRON.

Isotope ¹⁴C is used to obtain the date of ancient or historical artifacts

Atomic Orbitals

Orbitals have different energy levels, which are associated to a number, called **quantic number n**

Multieletronic Atoms

Atomic Orbitals

Orbitals have different energy levels, which are associated to a number, called **quantic number n**

Multieletronic Atoms

Atomic Orbitals

The letter indicates the type of orbital, and most important, how many electrons it can contain

Multieletronic Atoms

$$s = 2$$
 electrons

p = 6 electrons

 $\mathbf{d} = 10$ electrons

Therefore:

 1^{st} level (n = 1) can have 2 electrons 2^{nd} level (n = 2) can have 8 electr. 3^{rd} level (n = 3) can have 18 electr.

. . . .

Atomic Orbitals Levels

Each level can have sub-levels

The outmost atomic orbital level is the one that will affect the capacity of the atoms to create bonds

VALENCE SHELL

The valence shell can be easily found in the periodic table

The valence shell can be easily found in the periodic table

Concepts of chemical bonds

The electronic structure of the elemento determines the bond type: only the elétrons in the valence shell are involved.

Where the element is in the *Periodic Table*

Concepts of chemical bonds

Ionic

Metal + Non-metal

Electron transfer

Covalent

Non-Metal + Non-Metal

Electron sharing

Ionic bond

Metal, column 1A, 2A and 3A \rightarrow lose electrons = CATION (+)

Non-metal, column 5A, 6A and 7A \rightarrow gain electrons = ANION (-)

Noble gas

Ionic bond

Ordered solids = ionic compounds or SALTS or Crystals

Ionic bond

Ionic solids typically have high melting temperature, but they are fragile

Covalent bond

Electrons are shared

However, this is NOT na equal sharing

Atoms that are more electronegative (like O, F and Cl) keep the electron more close

They have a partial negative charge
The others, a partial positive charge

	1 H 2.2		Lov	Electronegativity v High				2 He -
	3	4	5	6	7	8	9	10
A	Li	Be	В	C	N	0	F	Ne
	1.0	1.6	2.0	2.6	3.0	3.4	4.0	
	11	12	13	14	15	16	17	18
I	Na	Mg	Al	Si	P	S	Cl	Ar
	0.9	1.3	1.6	1.9	2.2	2.6	₋ 3.2	
	19	20	Flanting and the state of					
	K	Ca	Electronegativity					
	0.8	1.0						

Water Molecule Structure

Oxigen is more electronegative than hydrogen and attracts more the shared electrons to itself. This uneven distribution creates partial charges

The molecule is **POLAR**

model

Hydrogen Bond

Atoms are further apart than in a covalente bond, so hydrogen bond is weaker.

However, the hydrogen bond allows all the special properties of water.

- 1. Cohesive force
- 2. Adhesive force
- 3. High boiling point
- 4. Lower solid density
- 5. Solvation power

- 1. Cohesive force
- 2. Adhesive force

Outside molecules stick together, give highersurface resistance

Surface Tension

3. Lower solid density

Water molecules in ICE have 4 hyrogen bonds, organized in a tetrahydral formation

Ice expands → less dense than liquid water

5. Solvation power:

A lot of water molecules can overcame the ionic bond and dissolve salts

Polar or Apolar?

Polar molecules interact between themselves and with water. They are called **HYDROPHILIC**.

Apolar molecules tend to separate from water (like oil): they are called **HYDROPHOBIC**.

Polar or Apolar?

Phospholipids in water

Phospholipids tends to aggregate in order to "escape" from water → membranes and mycelles are formed

Concentration of H⁺ ions in water

To avois scientific notation, due to small number, the pH Scale is actually a logaritmic scale

p: means: "minus logarithm of..."

Ex.:

$$[H^+] = 1.0 \times 10^{-5}$$

 $pH = -log [H^+] = -log [10^{-5}] = +5$

pH is negative logarithm of H⁺ concentration

Acidic solution:

An acid molecule generate H⁺ ions, like HCl

$$HCI \rightarrow H^+ + CI^-$$

Basic solution:

A basic molecule generate OH⁻ ions, like NaOH

$$NaOH \rightarrow Na^+ + OH^-$$

Neutral solution: pH = 7

Pure water is neutral

$$[H^{+}] = [OH^{-}]$$

Neutral solution:

$$pH = 7$$

Pure water is neutral

$$[H^{+}] = [OH^{-}]$$

OBSERVATIONS

$$\checkmark$$
[H+] x [OH-] is always equal to 10⁻¹⁴