Cough & Sneeze Detection Using Yolov3

Introduction:

Activity recognition aims to recognize the actions and goals of one or more persons from a series of observations on the persons' actions and the environmental conditions using artificial intelligence. Here we have used Activity Detection for Cough and Sneeze detection.

Use Cases:

- Health Sector.
- In Shopping Areas for prevention during pandemic.
- Hospitals.
- Can be used in Schools or any other area.

Dataset Collection:

For dataset we've used videos from bijsc dataset of Activity Detection (BII Sneeze-Cough Human Action Video Dataset). Because we focus only on two actions so we only extract the cough and sneeze videos from dataset and extract frames out of them.

Dataset: https://web.bii.a-star.edu.sg/~chengli/FluRecognition.htm

Code:

```
#For sneeze and cough both

import os

import cv2

pathOut = r"/Users/Aveen Faheem/Desktop/sneezeimg/"

count = 0

counter = 1

listing = os.listdir(r'/Users/Aveen Faheem/Desktop/sneeze')

for vid in listing:

vid = r"/Users/Aveen Faheem/Desktop/sneeze/"+vid

cap = cv2.VideoCapture(vid)
```

```
count = 0
counter += 1
success = True
while success:
success,image = cap.read()
print('Read\ a\ new\ frame:',success)
if\ count%30 == 0:
cv2.imwrite(pathOut + 'video%d'%counter + 'sneeze%d.jpg'%count\ ,image)
count+=1
```

For Re-naming the files

```
import os
os.getcwd()
collection = "/Users/Aveen Faheem/Desktop/sneezeimg"
for i, filename in enumerate(os.listdir(collection)):
    os.rename("/Users/Aveen Faheem/Desktop/sneezeimg/" + filename, "/Users/Aveen Faheem/Desktop/sneezeimg/" + "sneeze" + str(i) + ".jpg")
```

Annotations:

For annotations of these images I've used LabelImg. You can use it by following these steps.

- 1. Pip install labelImg
- 2. Go to command prompt and write labeling
- 3. It will pop-up and you can annotate your images.
- 4. Map the desired area, label it and save in .txt format.
- 5. Make sure you are keeping the classes values right.

Methodology:

Custom Activity Detection on yolov3 of Cough and Sneeze:

For training yolov3 model on collab, I've followed these steps.

Download Darknet
 https://github.com/pjreddie/darknet

Download darknet and make changes in Make file GPU = 1 CUDNN=1

Replace new make file with old one in colab.

2. Download Pre-trained weights for yolov3

https://pjreddie.com/media/files/darknet53.conv.74

Keep these weights in darknet folder on colab.

3. Changes in cfg file

OPENCV=1

In directory **darknet\cfg**, creating a copy of "yolov3.cfg" in the same folder and rename it.

Make these changes according to your number of classes.

```
# Line 8 & 9:
width = 416, height = 416
# Line 20
max_batches = 6000
# Line 22
steps = 5400
#Line 603, 689, 776:
filters = 18
#Line 610, 696, 783:
classes = 1

Formula for filters = (filters = (classes + 5)*3)
filters=(2+5)*3 = 21 classes = 2.
```

After making changes add this cfg file in cfg folder.

4. Detector.c file

From directory darknet\examples folder, open file "detector.c". At line 138, modify this line as below:

```
if(i\%1000==0 || (i < 1000 \&\& i\%100 == 0))
```

5. Split Train and Test data

Code:

```
import glob, os
## Current directory
current dir = '/content/drive/My Drive/backup/'# Path to the current directory
#print(current dir)
# Percentage of images to be used for the test set
percentage test = 10;
# Create and/or truncate train.txt and test.txt
file train = open('train.txt', 'w')
file test = open('test.txt', 'w')
# Populate train.txt and test.txt
counter = 1
index test = round(100 / percentage test)
for pathAndFilename in glob.iglob(os.path.join(current_dir, "*.jpg")):
  title, ext = os.path.splitext(os.path.basename(pathAndFilename))
  if counter == index test:
     counter = 1
     file test.write(current dir + title + '.jpg' + "\n")
  else:
     file train.write(current dir + title + '.jpg' + "\n")
     counter = counter + 1
```

After dividing train and test data, change their paths according to colab path to access data from drive. Keep all these files along with data on drive as well.

6. Data and names file

Change names file according to given annotations 0 or 1 to which activity.

0 cough

1 sneeze so make names file as

Cough

Sneeze

For data file add these things

classes= 1 #number of objects, in our case is 1

train = data/train.txt

test = data/test.txt

names = *data/yolo.names*

backup = backup

7. Setting Colab

- After downloading darknet to colab.
- Replace makefile
- Add cfg file in cfg folder
- Add(train.txt, test.txt, names file, data file) in data folder
- Change detector.c in examples folder
- Add darknet53.conv74 to darknet folder.

For more guidance follow these links

https://medium.com/@quangnhatnguyenle/how-to-train-yolov3-on-google-colab-to-detect-custom-objects-e-g-gun-detection-d3a1ee43eda1

https://colab.research.google.com/drive/13-9pAz9nxUYm-0LINV9tVtS57g8mHAOb#scrollTo=fBQgzSpY7 Vkh

https://github.com/pjreddie/darknet/issues/174

Training:

Testing:

Results:

On 3000 weights results are right and they are detecting the right part of images. In videos; on dataset videos it is giving right results but to new videos it is that much accurate still testing more to see results.