Cálculo em Várias Variáveis Teorema de Green.

ICT-Unifesp

2 Exercícios

Mais detalhes na Seção 16.4 do livro do Stewart.

Nesta aula estudaremos o Teorema de Green, que estabelece uma relação entre a integral de linha de um campo vetorial sobre uma curva fechada simples C e a integral dupla de um campo escalar na região D delimitada por C.

Definição

Dizemos que a curva fechada C tem orientação positiva quando ela é percorrida no sentido anti-horário. Neste caso, a região D delimitada por C fica à **esquerda** quando percorremos a curva.

(b) Orientação negativa

Dizemos que $D \subset \mathbb{R}^2$ é uma região simples se D pode ser descrita tanto como uma região do Tipo I quanto como uma região do Tipo II.

Tipo I:
$$D = \{(x, y) | a \le x \le b, g_1(x) \le y \le g_2(x)\},$$

Tipo II:
$$D = \{(x, y) \mid c \le y \le d, h_1(y) \le x \le h_2(y)\}.$$

Denotamos por -C a curva que é constituída pelos mesmos pontos da curva C, mas que tem orientação oposta à da curva C.

Pode-se mostrar que

$$\int_{-C} \vec{F} \cdot d\vec{r} = -\int_{C} \vec{F} \cdot d\vec{r}.$$

Teorema (de Green)

Seja C uma curva plana fechada simples, suave por partes, orientada positivamente e seja D a união de C com a região delimitada por C. Se P e Q têm derivadas parciais de primeira ordem contínuas numa região aberta que contém D, então

$$\oint_C P dx + Q dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA.$$

Exemplo

Vamos calcular $\oint_C y^2 dx + 2x^2 dy$, em que C é o triângulo de vértices (0,0), (1, 2) e (0, 2), percorrido no sentido **anti-horário**.

Note que D, a região englobada por C, é simples e que C tem orientação positiva.

Tomemos $P(x,y) = y^2$ e $Q(x,y) = 2x^2$. Então, pelo Teorema de Green, temos:

$$\oint_C y^2 dx + 2x^2 dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA$$

$$= \int_0^1 \int_{2x}^2 (4x - 2y) dy dx$$

$$= \int_0^1 \left[4xy - y^2\right]_{2x}^2 dx$$

$$= \int_0^1 (8x - 4 - 4x^2) dx = -\frac{4}{3}.$$

Exemplo

Seja $\vec{F}:\mathbb{R}^2 o \mathbb{R}^2$ o campo vetorial

$$\vec{F}(x, y) = (4x^2 + 9y)\vec{i} + (9xy + \sqrt{y^2 + 1})\vec{j}.$$

Calcule $\oint_C \vec{F} \cdot d\vec{r}$, em que C é a circunferência $x^2 + (y-1)^2 = 1$, percorrida no sentido **horário**.

Note que $D = \{(x,y)| x^2 + (y-1)^2 \le 1\}$, a região englobada por C, é simples e que C deve ter orientação negativa.

Temos $P(x,y) = 4x^2 + 9y$ e $Q(x,y) = 9xy + \sqrt{y^2 + 1}$. Então, pelo Teorema de Green,

$$\oint_C \vec{F} \cdot d\vec{r} = -\oint_{-C} (4x^2 + 9y) \, dx + (9xy + \sqrt{y^2 + 1}) \, dy$$

$$= -\iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA$$

$$= -\iint_D (9y - 9) \, dA = -9 \iint_D (y - 1) \, dA$$

$$= -9 \int_0^{\pi} \int_0^{2 \sin \theta} (r \sin \theta - 1) r \, dr d\theta = \dots = 0.$$

Podemos usar o Teorema de Green para calcular a área de uma região D.

Como a área de uma região é dada pela integral dupla

$$A = \iint_D 1 \ dA,$$

devemos escolher P(x, y) e Q(x, y) tais que

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 1.$$

Existem várias possibilidades:

$$P(x, y) = 0,$$
 $Q(x, y) = x,$
 $P(x, y) = -y,$ $Q(x, y) = 0,$
 $P(x, y) = -\frac{1}{2}y,$ $Q(x, y) = \frac{1}{2}x.$

Assim, o Teorema de Green nos dá as seguintes fórmulas para o cálculo da **área de** D:

$$A = \oint_C x \ dy = -\oint_C y \ dx = \frac{1}{2} \oint_C x \ dy - y \ dx.$$

Exemplo

Encontre a área delimitada pela elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Exemplo

Encontre a área delimitada pela elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

As equações paramétricas da elipse são: $x = a \cos t$ e $y = b \sin t$, sendo $0 \le t \le 2\pi$. Então:

$$A = \frac{1}{2} \int_C x dy - y dx$$

$$= \frac{1}{2} \int_0^{2\pi} (a\cos t)(b\cos t) dt - (b\sin t)(-a\sin t) dt$$

$$= \frac{ab}{2} \int_0^{2\pi} dt = ab\pi.$$

O Teorema de Green pode ser estendido para o caso em que a região D é expressa como a união de um número finito de regiões simples.

Basta observar que as integrais de linha sobre as curvas C_3 e $-C_3$ se cancelam e que a região D sempre fica à esquerda quando percorremos a sua fronteira.

Exemplo

Calcule $\oint_C y^2 dx + 3xy dy$, em que C é a fronteira da região semianular D contida no semiplano superior entre os círculos $x^2 + y^2 = 1$ e $x^2 + y^2 = 4$.

Note que a região D, delimitada por C, não é simples. No entanto, o eixo y a divide em duas regiões simples.

Note que a região D, delimitada por C, não é simples. No entanto, o eixo y a divide em duas regiões simples. Região D em coordenadas polares:

$$D = \{ (r, \theta) \, | \, 1 \le r \le 2, \, 0 \le \theta \le \pi \}$$

Note que a região D, delimitada por C, não é simples. No entanto, o eixo y a divide em duas regiões simples.

Região D em coordenadas polares:

$$D = \{(r, \theta) | 1 \le r \le 2, 0 \le \theta \le \pi\}$$

Portanto, pelo Teorema de Green, temos

$$\oint_C y^2 dx + 3xy dy = \iint_D \left(\frac{\partial}{\partial x} (3xy) - \frac{\partial}{\partial y} (y^2) \right) dA$$

$$= \iint_D y dA = \int_0^{\pi} \int_1^2 (r \sin \theta) r dr d\theta$$

$$= \dots = \frac{14}{3}.$$

O Teorema de Green também pode ser utilizado para regiões com furos, ou seja, regiões que não são simplesmente conexas.

Decompor a região D em duas regiões $D^{'}$ e $D^{''}$ e aplicar o Teorema de Green separadamente a cada uma delas, somando os resultados em seguida.

Teorema (de Green para múltiplas regiões simplesmente conexas)

Sejam C_1, C_2, \ldots, C_n , curvas planas fechadas simples, suaves por partes, positivamente orientadas, tais que

- não se intersectam duas a duas,
- C_2, \ldots, C_n estão contidas na região delimitada por C_1 ,
- C_i está na região exterior a C_j , $\forall i \neq j$, com i, j > 1.

Seja D a união das curvas com a região delimitada por C_1 , exterior às demais curvas. Se P e Q são campos escalares com derivadas parciais de primeira ordem contínuas em um aberto contendo D, então

$$\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \oint_{C_{1}} Pdx + Qdy - \sum_{k=2}^{n} \oint_{C_{k}} Pdx + Qdy.$$

Agora, considere o seguinte

Exemplo

Seja $\vec{F}:\mathbb{R}^2ackslash\{(0,0)\} o\mathbb{R}^2$ o campo vetorial

$$\vec{F}(x, y) = \frac{-y}{x^2 + y^2} \vec{i} + \frac{x}{x^2 + y^2} \vec{j}.$$

Mostre que $\oint_C \vec{F} \cdot d\vec{r} = 2\pi$ para todo caminho C fechado simples que circunde a origem.

Como C é um caminho fechado arbitrário contendo a origem, não é possível calcular a integral de linha diretamente.

Vamos considerar um círculo com orientação positiva C' com centro na origem e raio a, escolhendo a suficientemente pequeno de modo que C' esteja contido em C.

Seja D a região delimitada por C e exterior a C'. Pelo Teorema de Green para múltiplas regiões simplesmente conexas, temos

$$\int_{C} P dx + Q dy - \int_{C'} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA,$$
mas

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = \frac{y^2 - x^2}{(x^2 + y^2)^2} - \frac{y^2 - x^2}{(x^2 + y^2)^2} = 0.$$

Logo,

$$\int_{C} P dx + Q dy = \int_{C'} P dx + Q dy \Leftrightarrow \int_{C} \vec{F} \cdot d\vec{r} = \int_{C'} \vec{F} \cdot d\vec{r}.$$

Agora podemos calcular facilmente a integral do campo sobre o círculo, usando a parametrização $\vec{r}(t) = (a\cos t)\vec{i} + (a\sin t)\vec{j}$, $0 < t < 2\pi$:

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C'} \vec{F} \cdot d\vec{r} = \int_{0}^{2\pi} \vec{F}(\vec{r}(t)) \cdot \vec{r'}(t) dt$$

$$= \int_{0}^{2\pi} \frac{(-a \sin t)(-a \sin t) + (a \cos t)(a \cos t)}{a^{2} \cos^{2} t + a^{2} \sin^{2} t} dt$$

$$= \int_{0}^{2\pi} dt = 2\pi.$$

O exercício anterior inclui um resultado mais geral

Teorema (Invariância da integral sob deformidade do caminho)

Sejam P e Q campos escalares com derivadas parciais de primeira ordem contínuas em uma aberto $A \subset \mathbb{R}^2$ e assuma que

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}, \forall (x, y) \in A.$$

Sejam C_1 e C_2 duas curvas planas, fechadas, simples, positivamente orientadas em A, satisfazendo

- C₂ está contida na região delimitada por C₁,
- os pontos na região delimitada por C_1 e exteriores de C_2 , pertencem a A.

Então,

$$\oint_{C_1} Pdx + Qdy = \oint_{C_2} Pdx + Qdy.$$

O campo

$$\vec{F}(x, y) = \frac{-y}{x^2 + y^2} \vec{i} + \frac{x}{x^2 + y^2} \vec{j}.$$

satisfaz $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$, $\forall (x,y) \in A = \mathbb{R}^2 \setminus \{(0,0)\}$, mas \vec{F} não é conservativo em A (note que A não é simplesmente conexo!).

Por outro lado, se D é uma região delimitada por uma curva fechada simples que não envolve a origem, então F é conservativo em D e

$$f(x,y) = \arccos\left(\frac{x}{\sqrt{x^2 + y^2}}\right)$$

é uma função potencial para F.

Por outro lado, se D é uma região delimitada por uma curva fechada simples que não envolve a origem, então F é conservativo em D e

$$f(x,y) = \arccos\left(\frac{x}{\sqrt{x^2 + y^2}}\right)$$

é uma função potencial para F.

Quanto vale $\oint_C \vec{F} \cdot d\vec{r}$ nesse caso?

Exercícios

Seção 16.4 do Stewart: 1–18, 21, 22, 23.