#### Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

### САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Систем Управления и Информатики Группа Р3340 Кафедра

# Лабораторная работа №8 "Экспериментальное построение областей устойчивости линейной системы на плоскости двух параметров" Вариант - 2

| Выполнила            | Недоноскова | Ю.И.             | (подпись) |  |  |
|----------------------|-------------|------------------|-----------|--|--|
|                      |             | (фамилия, и.о.)  |           |  |  |
| Проверил             |             | (фамилия, и.о.)  | (подпись) |  |  |
|                      |             |                  |           |  |  |
|                      |             |                  |           |  |  |
| "" 20_               | Γ.          | Санкт-Петербург, | 20г.      |  |  |
| Работа выполнена с с | оценкой     |                  |           |  |  |
| Дата защиты ""       | 20          | r.               |           |  |  |

**Цель работы:** Ознакомление с экспериментальными методами построения областей устойчивости линейных динамических систем и изучение влияния на устойчивость системы её параметров.

Вариант задания. Задана линейная система третьего порядка, структурная схема которой представлена на рисунке 1. Система имеет три параметра — постоянные времени  $T_1, T_2$  и коэффициент передачи K. При исследовании системы постоянную времени  $T_1$  будем считать фиксированной и равной 0,75, а область устойчивости будем определять на плоскости двух параметров K и  $T_2$ . Причем диапазон изменения постоянной времени  $T_2$  — от 0,1 до 5 с. Тип устойчивости системы будет определять по виду переходного процесса при нулевом входном воздействии g(t)=0 и ненулевом начальном значении выходной переменной y(0)=1.



Рисунок 1 – Структурная схема моделируемой линейной системы третьего порядка

# 1 Построение экспериментальной границы устойчивости на плоскости двух параметров K и $T_2$ .

На рисунке 2 представлена схема моделирования для системы с заданными параметрами.



Рисунок 2 – Структурная схема моделируемой системы

Будем менять значение  $T_2$  и подбирать коэффициент передачи K таким образом, чтобы система находилась на границе устойчивости. Данные, необходимые для построения экспериментальной границы устойчивости приведены в таблице 1, графическое изображение границы устойчивости — на рисунке 3.

Таблица 1 – Данные, необходимые для построения экспериментальной границы устойчивости системы.

| $T_2$ | 0,1   | 0,2  | 0,3  | 0,4  | 0,5  | 0,9  | 1,5 | 2,1  | 2,7 | 3,3  | 4,1  | 5    |
|-------|-------|------|------|------|------|------|-----|------|-----|------|------|------|
| K     | 11,33 | 6,33 | 4,67 | 3,83 | 3,33 | 2,45 | 2   | 1,81 | 1,7 | 1,64 | 1,58 | 1,53 |



Рисунок 3 — Экспериментальная граница устойчивости на плоскости двух параметров  $K, T_2$ 

Графики переходных процессов для устойчивой системы, неустойчивой и системы, находящейся на границе устойчивости представлены соответственно на 4, 5 и 6 рисунках.



Рисунок 4 — График переходного процесса устойчивой системы



Рисунок 5 — График переходного процесса неустойчивой системы



Рисунок 6 — Система, находящаяся на границе устойчивости

## 2 Теоретический расчет границы устойчивости с использованием критерия Гурвица

Передаточная функция замкнутой системы выглядит следующим образом:

$$W(s) = \frac{\Phi(s)}{1 + \Phi(s)},\tag{1}$$

где  $\Phi(s)$  - передаточная функция разомкнутой системы.

$$\Phi(s) = K \cdot \frac{1}{T_1 s + 1} \cdot \frac{1}{T_2 s + 1} \cdot \frac{1}{s} = \frac{K}{T_1 T_2 s^3 + (T_1 + T_2) s^2 + s},\tag{2}$$

Тогда

$$W(s) = \frac{K}{T_1 T_2 s^3 + (T_1 + T_2) s^2 + s + K}. (3)$$

На основании характеристического уравнения, построенного по передаточной функции замкнутой системы, составим матрицу Гурвица для определения границы устойчивости:

$$\begin{vmatrix} T_1 + T_2 & K & 0 \\ T_1 T_2 & 1 & 0 \\ 0 & T_1 + T_2 & K \end{vmatrix}$$

По критерию Гурвица для устойчивости системы необходимо, чтобы главные миноры матрицы были положительны.

$$\begin{cases}
T_1 + T_2 > 0 \\
T_1 + T_2 - KT_1T_2 > 0 \\
K(T_1 + T_2) - K^2T_1T_2 > 0
\end{cases}$$
(4)

Если минор n-1 порядка равен 0, то система будет находится на колебательной границе устойчивости. По условию  $T_1$  и  $T_2$  больше 0, тогда для определения границы устойчивости воспользуемся выражением:

$$K = \frac{T_1 + T_2}{T_1 T_2} = \frac{1}{T_1} + \frac{1}{T_2} \tag{5}$$

Используя выражение (5), найдём K. Полученные значения запишем в таблицу 2.

Таблица 2 – Данные, необходимые для построения теоретической границы устойчивости системы.

| $T_2$ | 0,1   | 0,2  | 0,3  | 0,4  | 0,5  | 0,9  | 1,5 | 2,1  | 2,7 | 3,3  | 4,1  | 5    |
|-------|-------|------|------|------|------|------|-----|------|-----|------|------|------|
| K     | 11,33 | 6,33 | 4,67 | 3,83 | 3,33 | 2,44 | 2   | 1,81 | 1,7 | 1,64 | 1,58 | 1,53 |

По данным из таблицы 2 построим графическое изображение теоретической границы устойчивости (рисунок 7):



Рисунок 7 — Теоретическая граница устойчивости на плоскости двух параметров  $K, T_2$ 

## Вывод

В ходе лабораторной работы были экспериментальными и теоретическими методами построены области устойчивости заданной линейной системы путём изменения параметров  $T_2$  и K, при неизменном параметре  $T_1$ . На основе критерия Гурвица аналитическим методом были получены значения для построения построения графика границы устойчивости на плоскости двух параметров  $T_2$  и K. Графическое изображение границы устойчивости построенной экспериментальным методом и теоретическим совпадают.