```
from google.colab import drive
drive.mount('/content/drive',force_remount=True)
## Create a folder for the this HW and change to that dir
%cd drive/MyDrive/cse519_educational_ranking/Datasets
    Mounted at /content/drive
     /content/drive/MyDrive/cse519_educational_ranking/Datasets
!pip install -q kaggle
!pip install -q pandas
!pip install -q scikit-learn
!pip install -q numpy
!pip install -q Matplotlib
!pip install -q seaborn
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
csv = pd.read_csv("openalex-ipeds-herd-ncses-rankings.csv")
print(csv)
          Unnamed: 0
                      Unnamed: 0.1 Unnamed: 0.1.1
                                                     unitid \
    0
                   0
                                                     100663
                                 0
                                                  0
                                                     100706
    1
                   1
                                 1
                                                  1
    2
                   2
                                 2
                                                  2
                                                     100751
     3
                   3
                                 3
                                                     100858
                                                 4 102049
                   4
    4
                                 4
     537
                 537
                                537
                                                537
                                                     262129
                 538
                                                    445188
     538
                               538
                                                538
     539
                 539
                                                539 482149
                               539
     540
                 540
                               540
                                                540 486840
     541
                 541
                               541
                                                541 487524
                             institution name
                                                year
    0
          University of Alabama at Birmingham
          University of Alabama in Huntsville
    1
                                                2021
    2
                    The University of Alabama
                                                2021
                            Auburn University
                           Samford University
                                                2021
                       New College of Florida
     537
                                                2021
     538
              University of California-Merced
     539
                           Augusta University
                                                2021
     540
                    Kennesaw State University
                                                2021
    541
                            Husson University
          DRVC2021_RV.Doctor's degree - research/scholarship \
    0
                                                       149.0
                                                        40.0
    1
    2
                                                       203.0
    3
                                                       251.0
    4
                                                        46.0
                                                         . . .
     537
                                                         0.0
     538
                                                        56.0
     539
                                                        33.0
     540
                                                        38.0
    541
                                                         0.0
          DRVEF122021_RV.Graduate 12-month unduplicated headcount \
    0
                                                     10648.0
    1
                                                      2432.0
    2
                                                      7381.0
    3
                                                      7118.0
    4
                                                      2476.0
     537
                                                        30.0
     538
                                                       791.0
     539
                                                      3627.0
     540
                                                      4816.0
     541
                                                       935.0
```

DRVF2021.Research expenses as a percent of total core expenses (GASB) \

0 23.0 1 39.0 2 12.0 3 23.0 4 NaN

Preprocessing

```
# Check which columns have null values more than 350 times
columns_with_more_than_350_nulls = csv.columns[csv.isnull().sum() > 300]
# Print the columns with more than 350 nulls
print(columns_with_more_than_350_nulls)
     Index(['DRVF2021.Research expenses as a percent of total core expenses (GASB)',
             'DRVF2021 Research expenses as a percent of total core expenses (for-profit institutions)'
             'DRVF2021.Salaries and wages for research as a percent of total expenses for research (GASB)',
             'DRVF2021.Salaries and wages for research as a percent of total expenses for research (FASB)',
            'DRVF2021.Salaries and wages for research as a percent of total expenses for research (for-profit institutions)',
'University Name', 'IPEDS ID', 'State', 'rankings_2023',
'rankings_2022', 'rankings_2021', 'rankings_2020'],
           dtype='object')
columns_to_drop = ["Unnamed: 0", "Unnamed: 0.1", "Unnamed: 0.1.1", "institution name", "year",
                     'DRVF2021.Research expenses as a percent of total core expenses (GASB)',
                     'DRVF2021.Research expenses as a percent of total core expenses (FASB)',
                    'DRVF2021.Research expenses as a percent of total core expenses (for-profit institutions)',
                    'DRVF2021.Salaries and wages for research as a percent of total expenses for research (GASB)',
                    'DRVF2021. Salaries and wages for research as a percent of total expenses for research (FASB)',
                    'DRVF2021.Salaries and wages for research as a percent of total expenses for research (for-profit institution
                     'Name', 'Institution Name', 'UnitID_y', 'UNITID', 'UnitID_x']
dropped_csv = csv.drop(columns_to_drop, axis=1)
# dropped_csv_without_nulls = dropped_csv.drop(columns_with_nulls, axis = 1)
# print(dropped_csv_without_nulls.columns)
dropped_csv.index = dropped_csv["unitid"]
dropped_csv.head()
```

nal, olic FTE	DRVHR2021.Research FTE	EFIA2021_RV.12- month instructional activity credit hours: graduates	EFIA2021_RV.Estimated full-time equivalent (FTE) graduate enrollment, 2020-21	full-time equival (FTE) gradı
'49.0	0.0	171896.0	7162.0	71
117.0	0.0	29123.0	1213.0	12
'85.0	72.0	108368.0	4515.0	45
307.0	63.0	95648.0	3985.0	39
113.0	0.0	24134.0	1006.0	10

not considering

```
columns_to_consider_2021 = ['unitid', 'DRVC2021_RV.Doctor\'s degree - research/scholarship',
        'DRVEF122021_RV.Graduate 12-month unduplicated headcount',
        'DRVHR2021.Instructional, research and public service FTE',
        'DRVHR2021.Research FTE',
        'EFIA2021_RV.12-month instructional activity credit hours: graduates',
        'EFIA2021_RV.Estimated full-time equivalent (FTE) graduate enrollment, 2020-21',
        'EFIA2021_RV.Reported full-time equivalent (FTE) graduate enrollment, 2020-21',
        'display_name', 'id', 'works_count', 'cited_by_count', 'h_index',
'i10_index', 'city', '2yr_mean_citedness',
'repositories_count', 'associated_institutions_count', 'works_count_2021', 'cited_by_count_2021',
         'R&D Expenditures by Detailed Funding Source',
        'R&D Expenditures by Broad Field and Fed and Nonfed Sources',
        'R&D Expenditures Passed Through to Subrecipients',
        'R&D Expenditures Received as a Subrecipient from Other Sources', '2021_Doctorate Recipients', 'rankings_2022']
print(dropped_csv_2021_data.columns)
     Index(['unitid', 'DRVC2021_RV.Doctor's degree - research/scholarship',
              'DRVEF122021_RV.Graduate 12-month unduplicated headcount',
              'DRVHR2021.Instructional, research and public service FTE',
              'DRVHR2021.Research FTE',
              'EFIA2021_RV.12-month instructional activity credit hours: graduates',
              'EFIA2021_RV.Estimated full-time equivalent (FTE) graduate enrollment, 2020-21',
              'EFIA2021_RV.Reported full-time equivalent (FTE) graduate enrollment, 2020-21',
              'display_name', 'id', 'works_count', 'cited_by_count', 'h_index', 'i10_index', 'city', '2yr_mean_citedness', 'repositories_count',
              'associated_institutions_count', 'works_count_2021',
              'cited_by_count_2021', 'R&D Expenditures by Detailed Funding Source',
              'R&D Expenditures by Broad Field and Fed and Nonfed Sources',
              'R&D Expenditures Passed Through to Subrecipients'
              'R&D Expenditures Received as a Subrecipient from Other Sources',
              '2021_Doctorate Recipients', 'rankings_2021'],
            dtype='object')
dropped_csv_2021_data = dropped_csv[columns_to_consider_2021]
print(dropped_csv_2021_data.columns)
     Index(['unitid', 'DRVC2021_RV.Doctor's degree - research/scholarship',
              'DRVEF122021 RV.Graduate 12-month unduplicated headcount',
              'DRVHR2021.Instructional, research and public service FTE',
              'DRVHR2021.Research FTE',
              'EFIA2021_RV.12-month instructional activity credit hours: graduates',
              'EFIA2021_RV.Estimated full-time equivalent (FTE) graduate enrollment, 2020-21', 'EFIA2021_RV.Reported full-time equivalent (FTE) graduate enrollment, 2020-21',
             'display_name', 'id', 'works_count', 'cited_by_count', 'h_index', 'i10_index', 'city', '2yr_mean_citedness', 'repositories_count', 'associated_institutions_count', 'works_count_2021', 'cited_by_count_2021', 'R&D Expenditures by Detailed Funding Source',
              'R&D Expenditures by Broad Field and Fed and Nonfed Sources',
              'R&D Expenditures Passed Through to Subrecipients'
              'R&D Expenditures Received as a Subrecipient from Other Sources',
              '2021_Doctorate Recipients', 'rankings_2022'],
            dtype="object")
dropped_csv_2021_data.replace(',','', regex=True, inplace=True)
dropped_csv_2021_data.replace('-','0', regex=True, inplace=True)
columns_to_convert = ['R&D Expenditures by Detailed Funding Source',
        'R&D Expenditures by Broad Field and Fed and Nonfed Sources',
        'R&D Expenditures Passed Through to Subrecipients',
        'R&D Expenditures Received as a Subrecipient from Other Sources',
        '2021_Doctorate Recipients']
for col in columns_to_convert:
  dropped_csv_2021_data[col].fillna(0)
  dropped_csv_2021_data[col] = dropped_csv_2021_data[col].astype(str).astype(float)
dropped_csv_2021_data.dtypes
     <ipvthon-input-10-bb76fb62b414>:1: SettingWithCopvWarning:
     A value is trying to be set on a copy of a slice from a DataFrame
     See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view
     dropped_csv_2021_data.replace(',','', regex=True, inplace=True)
<ipython_input-10-bb76fb62b414>:2: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame
     See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view
        dropped_csv_2021_data.replace('-','0', regex=True, inplace=True)
```

```
<ipython-input-10-bb76fb62b414>:10: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view
      dropped_csv_2021_data[col] = dropped_csv_2021_data[col].astype(str).astype(float)
     unitid
                                                                                           int64
    DRVC2021_RV.Doctor's degree - research/scholarship
                                                                                         float64
     DRVEF122021_RV.Graduate 12-month unduplicated headcount
                                                                                         float64
    DRVHR2021.Instructional, research and public service FTE
                                                                                         float64
     DRVHR2021.Research FTE
                                                                                         float64
     EFIA2021_RV.12-month instructional activity credit hours: graduates
                                                                                         float64
     EFIA2021_RV.Estimated full-time equivalent (FTE) graduate enrollment, 2020-21
                                                                                         float64
     EFIA2021_RV.Reported full-time equivalent (FTE) graduate enrollment, 2020-21
                                                                                         float64
     display_name
                                                                                          object
                                                                                          obiect
     works_count
                                                                                           int64
     cited_by_count
                                                                                           int64
     h_index
                                                                                           int64
     i10_index
                                                                                           int64
                                                                                          object
     2yr_mean_citedness
                                                                                         float64
     repositories_count
                                                                                           int64
     associated_institutions_count
                                                                                           int64
     works_count_2021
                                                                                           int64
     cited by count 2021
                                                                                           int64
     R&D Expenditures by Detailed Funding Source
                                                                                         float64
     R&D Expenditures by Broad Field and Fed and Nonfed Sources
                                                                                         float64
     R&D Expenditures Passed Through to Subrecipients
                                                                                         float64
    R&D Expenditures Received as a Subrecipient from Other Sources
                                                                                         float64
     2021_Doctorate Recipients
                                                                                         float64
     rankings_2022
                                                                                         float64
     dtype: object
columns_with_nulls = dropped_csv_2021_data.columns[dropped_csv_2021_data.isnull().sum() > 0]
for col in columns_with_nulls:
    print(f"Column {col} has {dropped_csv_2021_data[col].isnull().sum()} null values")
     Column DRVC2021_RV.Doctor's degree - research/scholarship has 1 null values
     Column DRVEF122021_RV.Graduate 12-month unduplicated headcount has 1 null values
     Column DRVHR2021.Instructional, research and public service FTE has 2 null values
     Column DRVHR2021.Research FTE has 2 null values
     Column EFIA2021_RV.12-month instructional activity credit hours: graduates has 72 null values
     Column EFIA2021_RV.Estimated full-time equivalent (FTE) graduate enrollment, 2020-21 has 72 null values
    Column EFIA2021_RV.Reported full-time equivalent (FTE) graduate enrollment, 2020-21 has 72 null values Column R&D Expenditures by Detailed Funding Source has 109 null values
     Column R&D Expenditures by Broad Field and Fed and Nonfed Sources has 109 null values
     Column R&D Expenditures Passed Through to Subrecipients has 109 null values
     Column R&D Expenditures Received as a Subrecipient from Other Sources has 109 null values
     Column 2021_Doctorate Recipients has 216 null values
     Column rankings_2022 has 384 null values
# dropped_csv_2021_data = dropped_csv_2021_data.drop('region', axis =1)
# print(dropped_csv_2021_data)
```

Doctorate Data Analysis

```
# df for all Doctorate Recipients
doctorates_df = dropped_csv.filter(regex="Doctorate Recipients")
doctorates_df.replace(',','', regex=True, inplace=True)
doctorates_df.replace('-','0', regex=True, inplace=True)
for col in doctorates_df.columns:
    doctorates_df[col] = doctorates_df[col].astype(str).astype(float)

# Make some interesting plot
print(doctorates_df.dtypes)
doctorates_df["Total Doctorates in 10 years"] = doctorates_df.sum(axis = 1)
doctorates_df["display_name"] = dropped_csv["display_name"]
# sns.lineplot(doctorates_df,x="display_name", y="Total Doctorates in 10 years")
doctorates_df = doctorates_df.sort_values("Total Doctorates in 10 years", ascending=False)
doctorates_df.head()
```

dropped_csv.to_csv('dropped_columns-openalex-ipeds-herd-ncses.csv')

```
float64
2022 Doctorate Recipients
                             float64
2021_Doctorate Recipients
2020_Doctorate Recipients
                              float64
2019 Doctorate Recipients
                             float64
2018_Doctorate Recipients
                             float64
2017_Doctorate Recipients
                             float64
2016_Doctorate Recipients
                              float64
2015_Doctorate Recipients
                             float64
2014_Doctorate Recipients
                             float64
2013_Doctorate Recipients
                              float64
2012_Doctorate Recipients
                             float64
dtype: object
```

<ipython-input-11-247a7b1b3032>:3: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab doctorates_df.replace(',','', regex=True, inplace=True)
<ipython-input-11-247a7b1b3032>:4: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab doctorates_df.replace('-','0', regex=True, inplace=True)
<ipython-input-11-247a7b1b3032>:6: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab doctorates_df[col] = doctorates_df[col].astype(str).astype(float) <ipython-input-11-247a7b1b3032>:9: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab doctorates_df["Total Doctorates in 10 years"] = doctorates_df.sum(axis = 1) <ipython-input-11-247a7b1b3032>:10: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab doctorates_df["display_name"] = dropped_csv["display_name"]

2022_Doctorate 2021_Doctorate 2020_Doctorate 2019_Doctorate 2018_Doct

	Recipients	Recipients	Recipients	Recipients	Recip
unitid					
110635	830.0	787.0	796.0	864.0	
170976	861.0	793.0	846.0	801.0	
228778	741.0	667.0	744.0	801.0	

sns.scatterplot(doctorates_df,x="Total Doctorates in 10 years", y="2021_Doctorate Recipients")

<Axes: xlabel='Total Doctorates in 10 years', ylabel='2021_Doctorate Recipients'>

sns.heatmap(doctorates_df.corr());

sns.lineplot(doctorates_df[:50],x="display_name", y="Total Doctorates in 10 years")

<Axes: xlabel='display_name', ylabel='Total Doctorates in 10 years'>

HERD Data corr plots

<ipython-input-12-dffade2a47bb>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view dropped_csv_2021_data["Total R&D Expenditure"] = dropped_csv_2021_data[['R&D Expenditures by Detailed Funding Source',

dropped_csv_2021_data.head()

	unitid	degree – research/scholarship	12-month unduplicated headcount	research and servi
unitid				
100663	100663	149.0	10648.0	
100706	100706	40.0	2432.0	
100751	100751	203.0	7381.0	
100858	100858	251.0	7118.0	
102049	102049	46.0	2476.0	
5 rows × 2	?6 columns	3		

DRVC2021_RV.Doctor's DRVEF122021_RV.Graduate DRVHR2021.Instruct

sns.scatterplot(dropped_csv_2021_data, x="h_index", y="Total R&D Expenditure")

<Axes: xlabel='h_index', ylabel='Total R&D Expenditure'>

sns.scatterplot(dropped_csv_2021_data, x="works_count", y="Total R&D Expenditure")

<Axes: xlabel='works_count', ylabel='Total R&D Expenditure'>

sns.heatmap(dropped_csv_2021_data.corr());

cited by count, 20 R&D Expenditures by Detailed Funding Son R&D Expenditures by Broad Field and Fed and Norfed Sou Man Deponditures Passed Thought to subreciple R&D Expenditures Received as a Subreciplent from Other Sou

0.6 h index
ilo_index
ilo_index
2yr_mean_citedhessrepositories_count
associated_institutions_count
works_count_2021.
R&D Expenditures by Detailed Funding Source
R&D Expenditures by Broad Field and Fed and Nonfed SourcesR&D Expenditures Passed Through to Subrecipients
R&D Expenditures Recipient from Other Sources
2021_Doctorate Recipients
Total R&D Expenditure 0.2 0.0

DRVEF122011 RVGraduate 12-month unduplicated headcount DRVHR2021 RVGraduate 12-month unduplicated headcount DRVHR2021_RVGraduate 12-month unduplicated headcount DRVHR2021_RVG-TTE_DRVHR2021_RVG 2yr_mean_citedr

```
# Analyze highly correlated pairs
threshold = 0.8 # Adjust threshold based on your requirements
correlation_matrix = dropped_csv_2021_data.corr()
# Iterate through the correlation matrix to identify highly correlated pairs
highly_correlated_pairs = []
for i in range(len(correlation_matrix.columns)):
    for j in range(i):
        if abs(correlation\_matrix.iloc[i, j]) > threshold and <math>abs(correlation\_matrix.iloc[i, j]) < 0.9:
            pair = (correlation_matrix.columns[i], correlation_matrix.columns[j], correlation_matrix.iloc[i, j])
            highly_correlated_pairs.append(pair)
# Print highly correlated pairs and their correlation values
print("Highly Correlated Pairs (|Correlation| > {}):".format(threshold))
for pair in highly_correlated_pairs:
    print(f"{pair[0]} - {pair[1]}: {pair[2]}")
```

```
MOLK2_COMUL_TAST - 9220CT4CGN_TH2CTTCNCTOH2_COMUL: A:010205AA3201/4830
cited_by_count_2021 - associated_institutions_count: 0.8094217244075678
R&D Expenditures by Detailed Funding Source - DRVC2021_RV.Doctor's degree - research/scholarship: 0.8064717296066156
R&D Expenditures by Detailed Funding Source - DRVHR2021.Instructional, research and public service FTE: 0.8736161187697662
R&D Expenditures by Detailed Funding Source - works_count: 0.8613953206947029 R&D Expenditures by Detailed Funding Source - cited_by_count: 0.8365241172227887
R&D Expenditures by Detailed Funding Source - h_index: 0.8335334021017189
R&D Expenditures by Detailed Funding Source - i10_index: 0.8763169234629731
R&D Expenditures by Detailed Funding Source - works_count_2021: 0.8723591395837766
R&D Expenditures by Detailed Funding Source - cited_by_count_2021: 0.8342865667145392
R&D Expenditures by Broad Field and Fed and Nonfed Sources - DRVC2021_RV.Doctor's degree - research/scholarship: 0.806471729
R&D Expenditures by Broad Field and Fed and Nonfed Sources - DRVHR2021.Instructional, research and public service FTE: 0.873
R&D Expenditures by Broad Field and Fed and Nonfed Sources - works_count: 0.8613953206947029
R&D Expenditures by Broad Field and Fed and Nonfed Sources - cited_by_count: 0.8365241172227887
R&D Expenditures by Broad Field and Fed and Nonfed Sources - h_index: 0.8335334021017189
R&D Expenditures by Broad Field and Fed and Nonfed Sources - i10 index: 0.8763169234629731
R&D Expenditures by Broad Field and Fed and Nonfed Sources - works_count_2021: 0.8723591395837766
R&D Expenditures by Broad Field and Fed and Nonfed Sources - cited_by_count_2021: 0.8342865667145392
R&D Expenditures Passed Through to Subrecipients - DRVHR2021.Instructional, research and public service FTE: 0.8307522421251
R&D Expenditures Passed Through to Subrecipients - works_count: 0.8101558044427266
R&D Expenditures Passed Through to Subrecipients - cited_by_count: 0.8051548429526747
R&D Expenditures Passed Through to Subrecipients - h_index: 0.8055198647720153
R&D Expenditures Passed Through to Subrecipients - i10_index: 0.8376982085197997
R&D Expenditures Passed Through to Subrecipients - works_count_2021: 0.8499838283108945
R&D Expenditures Passed Through to Subrecipients - cited_by_count_2021: 0.8116944950143651
R&D Expenditures Received as a Subrecipient from Other Sources - DRVC2021_RV.Doctor's degree - research/scholarship: 0.80298
R&D Expenditures Received as a Subrecipient from Other Sources – DRVHR2021.Instructional, research and public service FTE: 0 R&D Expenditures Received as a Subrecipient from Other Sources – works_count: 0.8385233958793247
R&D Expenditures Received as a Subrecipient from Other Sources - cited_by_count: 0.8093025645749998
R&D Expenditures Received as a Subrecipient from Other Sources - h_index: 0.8266273067788346
R&D Expenditures Received as a Subrecipient from Other Sources - i10_index: 0.8457637125302349
R&D Expenditures Received as a Subrecipient from Other Sources - works_count_2021: 0.8441351951910394
R&D Expenditures Received as a Subrecipient from Other Sources - cited_by_count_2021: 0.8114760440954311
R&D Expenditures Received as a Subrecipient from Other Sources - R&D Expenditures by Detailed Funding Source: 0.899691169795
R&D Expenditures Received as a Subrecipient from Other Sources - R&D Expenditures by Broad Field and Fed and Nonfed Sources: R&D Expenditures Received as a Subrecipient from Other Sources - R&D Expenditures Passed Through to Subrecipients: 0.8712816
2021_Doctorate Recipients - DRVHR2021.Instructional, research and public service FTE: 0.8295903942041477
2021_Doctorate Recipients - works_count: 0.8441172186243491
2021_Doctorate Recipients - h_index: 0.8239001173782178
2021_Doctorate Recipients - i10_index: 0.8466677820650299
2021_Doctorate Recipients - works_count_2021: 0.8322709008713144
2021_Doctorate Recipients - R&D Expenditures by Detailed Funding Source: 0.8188503475500136
2021_Doctorate Recipients - R&D Expenditures by Broad Field and Fed and Nonfed Sources: 0.8188503475500136
2021_Doctorate Recipients - R&D Expenditures Received as a Subrecipient from Other Sources: 0.8241179176301574
Total R&D Expenditure - DRVHR2021.Instructional, research and public service FTE: 0.8206811285520271
Total R&D Expenditure - works_count: 0.8378634980151626
Total R&D Expenditure - cited_by_count: 0.8269895190333056
Total R&D Expenditure - h_index: 0.8067704606821144
Total R&D Expenditure - i10_index: 0.8553694396412499
Total R&D Expenditure - works_count_2021: 0.8518337020507601
Total R&D Expenditure - cited_by_count_2021: 0.8240381084363002
<ipython-input-119-0b0035ca0c31>:3: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a f
  correlation_matrix = dropped_csv_2021_data.corr()
```

Skiena

```
240444, 240453, 240727, 243744, 243780, 262129, 445188, 482149, 486840, 487524], dtype='int64', name='unitid', length=542)
```

```
# Combine the dfs
combined_df = dropped_csv_2021_data.join(skiena_csv)

combined_df.head()
```

	unitid		DRVEF122021_RV.Graduate 12-month unduplicated headcount			
uniti	i					
100663	100663	149.0	10648.0			
100706	100706	40.0	2432.0			
100751	100751	203.0	7381.0			
100858	100858	251.0	7118.0			
102049	102049	46.0	2476.0			
5 rows × 75 columns						

Plots

```
!pip install plotly-express
```

```
Collecting plotly—express
Downloading plotly_express—0.4.1—py2.py3—none—any.whl (2.9 kB)
Requirement already satisfied: pandas>=0.20.0 in /usr/local/lib/python3.10/dist—packages (from plotly—express) (1.5.3)
Requirement already satisfied: plotly>=4.1.0 in /usr/local/lib/python3.10/dist—packages (from plotly—express) (5.15.0)
Requirement already satisfied: statsmodels>=0.9.0 in /usr/local/lib/python3.10/dist—packages (from plotly—express) (0.14.0)
Requirement already satisfied: scipy>=0.18 in /usr/local/lib/python3.10/dist—packages (from plotly—express) (1.11.3)
Requirement already satisfied: patsy>=0.5 in /usr/local/lib/python3.10/dist—packages (from plotly—express) (0.5.3)
Requirement already satisfied: numpy>=1.11 in /usr/local/lib/python3.10/dist—packages (from plotly—express) (0.5.3)
Requirement already satisfied: python—dateutil>=2.8.1 in /usr/local/lib/python3.10/dist—packages (from pandas>=0.20.0—>plotl
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist—packages (from pandas>=0.20.0—>plotly—express)
Requirement already satisfied: six in /usr/local/lib/python3.10/dist—packages (from plotly>=4.1.0—>plotly—express (1.16.0)
Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist—packages (from plotly>=4.1.0—>plotly—express Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist—packages (from plotly>=4.1.0—>plotly—express (23 Installing collected packages: plotly—express 0.4.1
```

```
<ipython-input-147-d44d8e7d408f>:1: FutureWarning:
```

The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to F

Number of Doctorate Recipents state-wise grouped by university's State

<ipython-input-170-72f895b7fa76>:1: FutureWarning:

The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a fu

Number of Doctorate Recipents state-wise grouped by university's State

Sam

df = dropped_csv_2021_data

df.to_csv('dump_for_dumb.csv')

print(df)

40/024 IVdIV V: 000000

```
normalized_total_rd_expenditure
unitid
100663
                                 0.216399
100706
                                0.052982
100751
                                0.043222
100858
                                0.087217
102049
                                 0.000000
                                0.000291
262129
445188
                                 0.014343
482149
                                 0.036819
486840
                                0.005771
487524
                                 0.000000
```

[542 rows x 30 columns]

```
import matplotlib.pyplot as plt
df = dropped_csv_2021_data
# Get the max and min values of each column
max_h_index = df["h_index"].max()
min_h_index = df["h_index"].min()
max_i10_index = df["i10_index"].max()
min_i10_index = df["i10_index"].min()
max_works_count_2021 = df["works_count_2021"].max()
min_works_count_2021 = df["works_count_2021"].min()
max_cited_by_count_2021 = df["cited_by_count_2021"].max()
min_cited_by_count_2021 = df["cited_by_count_2021"].min()
max_total_rd_expenditure = df["Total R&D Expenditure"].max()
min_total_rd_expenditure = df["Total R&D Expenditure"].min()
# Set the range of the x and y coordinates accordingly
plt.xlim(min_total_rd_expenditure - 500, max_total_rd_expenditure + 500)
# Create multiple scatterplots on the same figure
fig, axs = plt.subplots(2, 2, figsize=(10, 10))
# Scatterplot of h_index vs. Total R&D Expenditure
axs[0, 0].scatter(df["Total R&D Expenditure"], df["h_index"])
axs[0, 0].set_title("h_index vs. Total R&D Expenditure")
# Scatterplot of i10_index vs. Total R&D Expenditure
axs[0, 1].scatter(df["Total R&D Expenditure"], df["i10_index"])
axs[0, 1].set_title("i10_index vs. Total R&D Expenditure")
# Scatterplot of works_count_2021 vs. Total R&D Expenditure
axs[1, 0].scatter(df["Total R&D Expenditure"], df["works_count_2021"])
axs[1, 0].set_title("works_count_2021 vs. Total R&D Expenditure")
# Scatterplot of cited_by_count_2021 vs. Total R&D Expenditure
axs[1, 1].scatter(df["Total R&D Expenditure"], df["cited_by_count_2021"])
axs[1, 1].set_title("cited_by_count_2021 vs. Total R&D Expenditure")
# Adjust layout and show the plot
plt.tight_layout()
plt.show()
```



```
import seaborn as sns
# Create a scatter plot using seaborn
sns.scatterplot(x="associated_institutions_count", y="cited_by_count", data=df)
plt.xlabel("associated_institutions_count")
plt.ylabel("cited_by_count")
plt.title("Scatter Plot of associated_institutions_count vs. cited_by_count")
# Set the y-axis to logarithmic scale
plt.yscale('log')
plt.show()
```



```
# Create a scatter plot using seaborn
sns.scatterplot(x="works_count", y="cited_by_count", data=df)
plt.xlabel("works_count")
plt.ylabel("cited_by_count")
plt.title("Scatter Plot of works_count vs. cited_by_count")

# Set the y-axis to logarithmic scale
plt.yscale('log')
plt.xscale('log')
plt.show()
```



```
# Create the scatter plot
fig, ax = plt.subplots(figsize=(6, 6))
scatterplot = sns.scatterplot(x="Total R&D Expenditure", y="h_index", size="2021_Doctorate Recipients", hue="2021_Doctorate Reci
ax.grid(False)
plt.xlabel("Total R&D Expenditure")
plt.ylabel("h_index")
plt.title("h_index vs. Total R&D Expenditure")
plt.yscale('log')
plt.yscale('log')
plt.xscale('log')
plt.legend(title="2021 Doctorate Recipients", fontsize='small', prop={'size': 8})

# plt.tight_layout()
plt.show()
```


print(df.columns)

```
import seaborn as sns
import matplotlib.pyplot as plt
# Set the style for Seaborn
sns.set(style="whitegrid")
# Create multiple scatterplots on the same figure
fig, axs = plt.subplots(1, 1, figsize=(10, 10))
# Scatterplot of h_index vs. Total R&D Expenditure
sns.scatterplot(x="Total R&D Expenditure", y="h_index", data=df, ax=axs[0, 0])
axs[0, 0].set_title("h_index vs. Total R&D Expenditure")
axs[0, 0].set_xscale("log")
axs[0, 0].set_yscale("log")
# Scatterplot of i10_index vs. Total R&D Expenditure
sns.scatterplot(x="Total R&D Expenditure", y="i10_index", data=df, ax=axs[0, 1])
axs[0, 1].set_title("i10_index vs. Total R&D Expenditure")
axs[0, 1].set_xscale("log")
axs[0, 1].set_yscale("log")
# Scatterplot of works_count_2021 vs. Total R&D Expenditure
sns.scatterplot(x="Total R\&D Expenditure", y="works\_count\_2021", data=df, ax=axs[1, 0])\\
axs[1, 0].set_title("works_count_2021 vs. Total R&D Expenditure")
axs[1, 0].set_xscale("log")
axs[1, 0].set_yscale("log")
# Scatterplot of cited_by_count_2021 vs. Total R&D Expenditure
sns.scatterplot(x="Total R&D Expenditure", y="cited_by_count_2021", data=df, ax=axs[1, 1])
axs[1, 1].set_title("cited_by_count_2021 vs. Total R&D Expenditure")
axs[1, 1].set_xscale("log")
axs[1, 1].set_yscale("log")
# Adjust layout and show the plot
plt.tight_layout()
plt.show()
```


print(dropped_csv_2021_data.columns)

```
Index(['unitid', 'DRVC2021_RV.Doctor's degree - research/scholarship',
    'DRVEF122021_RV.Graduate 12-month unduplicated headcount',
    'DRVHR2021.Instructional, research and public service FTE',
    'DRVHR2021.Research FTE',
    'EFIA2021_RV.12-month instructional activity credit hours: graduates',
    'EFIA2021_RV.Estimated full-time equivalent (FTE) graduate enrollment, 2020-21',
    'EFIA2021_RV.Reported full-time equivalent (FTE) graduate enrollment, 2020-21',
    'display_name', 'id', 'works_count', 'cited_by_count', 'h_index',
    'i10_index', 'city', '2yr_mean_citedness', 'repositories_count',
    'associated_institutions_count', 'works_count_2021',
    'cited_by_count_2021', 'R&D Expenditures by Detailed Funding Source',
    'R&D Expenditures by Broad Field and Fed and Nonfed Sources',
    'R&D Expenditures Passed Through to Subrecipients',
    'R&D Expenditures Received as a Subrecipient from Other Sources',
    '2021_Doctorate Recipients', 'rankings_2022', 'rankings_bucket',
    'Total R&D Expenditure'],
    dtype='object')
```

```
# Create a bar chart of works_count vs rankings_2022
df = dropped_csv_2021_data
# Set the style for Seaborn
sns.set(style="whitegrid")
# Create buckets for rankings_2022
df['rankings_bucket'] = pd.cut(df['rankings_2022'], bins=range(1, 150, 10), right=False)
# Calculate average works_count and Total R&D Expenditure in each bucket
average_data = df.groupby('rankings_bucket').agg({
    'works_count': 'mean',
    'Total R&D Expenditure': 'mean'
}).reset_index()
# Create a bar chart with grouped rankings and hue based on Total R&D Expenditure
plt.figure(figsize=(12, 8))
sns.barplot(x="rankings_bucket", y="works_count", hue="Total R&D Expenditure", data=average_data, ci=None, palette="coolwarm")
# Set labels and title
plt.xlabel("Rankings 2022 (Bucketed)")
plt.ylabel("Average Works Count")
plt.title("Average Works Count vs Bucketed Rankings 2022 with Average Total R&D Expenditure Hue")
# Rotate x-axis labels for better readability
plt.xticks(rotation=45, ha="right")
# Add legend
plt.legend(title="Average Total R&D Expenditure")
# Show the plot
plt.show()
```

```
<ipython-input-141-2febab6a0e7f>:8: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
# Create buckets for rankings_2022
df['rankings_bucket'] = pd.cut(df['rankings_2022'], bins=range(1, 151, 10), right=False)
# Normalize works_count and Total R&D Expenditure
df['normalized_works_count'] = df['works_count'] / df['works_count'].max()
df['normalized_total_rd_expenditure'] = df['Total R&D Expenditure'] / df['Total R&D Expenditure'].max()
# Calculate average normalized works_count and normalized Total R&D Expenditure in each bucket
average_data = df.groupby('rankings_bucket').agg({
    'normalized_works_count': 'mean'
    'normalized_total_rd_expenditure':
}).reset_index()
# Create a grouped bar chart with separate bars for normalized works_count and normalized total_rd_expenditure
plt.figure(figsize=(12, 8))
bar_width = 0.35
index = range(len(average_data['rankings_bucket']))
plt.bar(index, average_data['normalized_works_count'], bar_width, label='Normalized Works Count', color="#A00A7F")
plt.bar([i + bar_width for i in index], average_data['normalized_total_rd_expenditure'], bar_width, label='Normalized Total R&D
# Set labels and title
plt.xlabel("Rankings 2022 (Bucketed)")
plt.ylabel("Normalized Values")
plt.title("Normalized Works Count and Normalized Total R&D Expenditure vs Bucketed Rankings 2022")
# Rotate x-axis labels for better readability
plt.xticks([i + bar_width / 2 for i in index], average_data['rankings_bucket'], rotation=45, ha="right")
# Add legend
plt.legend()
# Show the plot
plt.show()
```

<ipython-input-42-4b04840b788c>:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab df['rankings_bucket'] = pd.cut(df['rankings_2022'], bins=range(1, 151, 10), ri <ipython-input-42-4b04840b788c>:5: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab df['normalized_works_count'] = df['works_count'] / df['works_count'].max() <ipython-input-42-4b04840b788c>:6: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab df['normalized_total_rd_expenditure'] = df['Total R&D Expenditure'] / df['T

