Scratch paper

Anonymous Università di Torino April 2019

Abstract Poche idee, ben confuse.

1 Introduction

2 Abstract samples

Let M be a structure of signature L. The fractional multiset expansion of M is a many-sorted expansion that has a sort for M, which we call the home-sort, a sort for \mathbb{R} , and a sample-sort for the set of functions $s:M\to\mathbb{R}$ that are almot always 0. We write $\overline{M}=\langle M,\mathbb{R},M^{\rm s}\rangle$ for the expansion above.

Below x, y, z are always tuples of variables of home-sort, x^s, y^s, z^s are tuples of sample-sort of the same the length of x, y, respectively z.

The language of \overline{M} is denoted by \overline{L} . It will be defined in the next section as it is not relevat for at present.

2.1 Definition Let U be a monster model of cardinality $\kappa > |L|$ and let $\overline{U} = \langle U, \mathbb{R}, U^s \rangle$ be the corresponding expansion. We denote by \overline{U}^* a saturated elementary extension of \overline{U} of cardinality κ . As all saturated models of cardinality κ are isomorphic, we can assume that $\overline{U}^* = \langle U, \mathbb{R}^*, U^{s*} \rangle$, where \mathbb{R}^* and U^{s*} are suitable saturated extensions of \mathbb{R} , respectively U^s . Elements U^s are called finite samples, elements in U^{s*} are called internal samples.

Finally, a global sample is a type $p(x^s) \in S(U, \overline{M})$, where M is a model which will be clear from the context.

2.2 Notation For any global type $p(x^s) \in S(\mathfrak{U}, \overline{M})$, formula $\psi(x^s; z) \in \overline{L}(\overline{M})$, and $b \in \mathfrak{U}^{|z|}$ we write $\psi(p; b)$ for $\psi(x^s; b) \in p$. We also write

$$\psi(p;\mathcal{U}) = \left\{b \in \mathcal{U}^{|z|} : \psi(p;b)\right\}$$

(the same notation applies with x for x^s). This notation intentionally confuses p with any of its realizations in some elementary extension of \bar{u} . Sets of this form are called externally definable.

2.3 Definition A global sample $p(x^s)$ is smooth if it is realized in $\overline{\mathbb{U}}^*$.

The following notions are standard

- **2.4 Definition** Let M be given. A global sample $p(x^s)$ is
 - 1. invariant if for any $\varphi(x^s; z) \in \overline{L}(\overline{M})$ the set $\varphi(p; \mathcal{U})$ is invariant over \overline{M} ;
 - 2. finitely satisfiable if for every formula in $p(x^s)$ is satisfied in \overline{M} ;
 - 3. definable if, for every $\psi(x^s; z) \in \overline{L}(\overline{M})$, the set $\psi(p; \mathcal{U})$ is definable over \overline{M} .
- **2.5 Fact** Let M be given. Let $p(x^s)$ be a global sample. Then, if p is finitely satisfiable, it is is invariant.
- **2.6 Fact** Let M be given. Let $p(x^s)$ be a smooth sample. Then, if p is invariant, it is also finitely satisfiable and definable.

Proof Let s be an internal sample that realizes $p(x^s)$. Let $\varphi(x^s;b) \in p$ for some $\varphi(x^s;z) \in \bar{L}(\overline{M})$ and $b \in \mathcal{U}^{|z|}$. Let b' be such that $s \downarrow_{\overline{M}} b' \equiv_{\overline{M}} b$. By invariance, $\varphi(s;b')$. Therefore there is an $r \in M^s$ such that $\varphi(r;b')$. As $b' \equiv_{\overline{M}} b$, we obtain $\varphi(r;b)$. This proves finite satisfiability.

Now, let $\psi(x^s; z) \in \overline{L}(\overline{M})$. As $\psi(p; \mathcal{U}) = \psi(s; \mathcal{U})$ is definable in $\overline{\mathcal{U}}^*$. By invariance it is definable in \overline{M} .

- **2.7 Lemma** Let M be given. For every global sample $p(x^s)$ the following are equivalent
 - 1. p is smooth and invariant;
 - 2. p is definable and for every $\varphi(x^s; z) \in L$ there are some finitely many $r_i \in \overline{M}$, say $0 \le i < n$, such that for every $b \in \mathcal{U}^{|z|}$ we have $\varphi(p; b) \leftrightarrow \varphi(r_i; b)$ for some i;
 - *3. p is definable and finitely satisfiable.*

Proof $1\Rightarrow 2$ definability has been proved above. Let s be an internal sample that realizes $p(x^s)$. Let $\varphi(x^s;z)\in \bar{L}(\overline{M})$. The type

$$q(z) \ = \ \left\{ \varphi(s\,;z) \not\leftrightarrow \varphi(r\,;z) \,:\, r \in \overline{M} \right\}$$

is inconsistent by Fact 2.6. Hence compatness yields the required $r_i \in \overline{M}$.

2⇒3 Is clear.

 $3\Rightarrow 1$ Invariance has been proved above. For any $\varphi(x^s;z)\in \bar{L}(\overline{M})$ and $r\in M^s$ there is a formula $\vartheta(z)\in L(M)$ defining the set $\{b\in \mathfrak{U}^{|z|}: \varphi(p;b)\leftrightarrow \varphi(r;b)\}$. Let $q(x^s)$ be the type containing all the formulas

$$\forall z \Big[\vartheta(z) \land \varphi(r;z) \rightarrow \varphi(x^{s};z) \Big].$$

as $\varphi(x^s; z)$ and r range as above. This type is consistent and is equivalent to $p(x^s)$. As $q(x^s)$ is a type over \overline{M} , it is realized in $\overline{\mathcal{U}}^*$.

3 Less abstract samples

, the language of ordered rings (on \mathbb{R}), the language of real vector spaces (on M^s). Moreover, for every $\varphi(x;z) \in L$ there is a symbol for a function

$$\overline{\varphi}(x^{s};z) : S^{|x|} \times M^{|z|} \longrightarrow \mathbb{R}.$$

Below, ε always ranges over the positive standard reals. If a and b are (hyper)reals, we write $a \approx_{\varepsilon} b$ for $|a - b| < \varepsilon$. We write $a \approx b$ if $a \approx_{\varepsilon} b$ holds for every ε .

In this section we assume that for every $\varphi(x)$, $\psi(x) \in L(\mathcal{U})$ if $\varphi(x) \to \psi(x)$ then $\bar{\varphi}(x^s) \leq \bar{\psi}(x^s)$.

3.1 Fact Let M be given. Let $p(x^s)$ be global sample. Suppose for every $\varphi(x) \in L(\mathcal{U})$ and ε there are $\vartheta_1(x), \vartheta_2(x) \in L(M)$ such that $\vartheta_1(x) \to \varphi(x) \to \vartheta_2(x)$ and $\bar{\vartheta}_2(p) \approx_{\varepsilon} \bar{\vartheta}_1(p)$. Then p is finitely satisfiable.

Proof Let $\varphi_i(x)$, for $0 \le i < n$, be given. We claim that there is an $r \in \overline{M}$ such that $\overline{\varphi}_i(p) \approx_{3\varepsilon} \overline{\varphi}_i(r)$ for every i.

Let $\vartheta_{i,1}(x)$ and $\vartheta_{i,2}(x)$ be as in the fact. As $\vartheta_{i,1}(p) \leq \varphi_i(p) \leq \vartheta_{i,2}(p)$, then $\vartheta_{i,1}(p) \approx_{\varepsilon} \varphi_i(p)$. By elementarity there is an $r \in \overline{M}$ such that $\vartheta_{i,1}(r) \approx_{\varepsilon} \vartheta_{i,1}(p)$ and $\vartheta_{i,2}(r) \approx_{\varepsilon} \vartheta_{i,2}(p)$. Then the claim follows immediately.

- **3.2 Lemma** The following are equivalent for every global sample $p(x^s)$
 - 1. p is smooth and invariant;
 - 2. for every finite $B \subseteq \mathcal{U}^{|z|}$ and every ε , there is an $r \in \overline{M}$ such that $\overline{\varphi}(p;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$ for all $b \in B$;
 - 2. for every $\varphi_i(x;z) \in L$, every $b_i \in \mathbb{U}^{|z|}$, and every ε , there is an $r \in \overline{M}$ such that $\overline{\varphi}_i(p;b_i) \approx_{\varepsilon} \overline{\varphi}_i(r;b_i)$, for every $0 \leq i < n$;
 - 2. for every $\psi_0(x), \ldots, \psi_{n-1}(x) \in L(\mathfrak{U})$ and every ε , there is an $r \in \overline{M}$ such that $\overline{\psi}_i(p) \approx_{\varepsilon} \overline{\psi}_i(r)$, for every i < n;
 - 4. there are finitely many formulas $\vartheta_i(x) \in L(M)$ such that for every $b \in \mathbb{U}^{|z|}$ we have that $\vartheta_i(x) \to \varphi(x;b) \to \vartheta_i(x)$ and $\bar{\vartheta}_i(p) \bar{\vartheta}_i(p) < \varepsilon$ for some i,j.

Proof Let *s* be an internal sample that realizes $p(x^s)$.

1 \Rightarrow 2. Let B and ε be given. Let $\bar{b} = \langle b_i : i < n \rangle$ be an enumeration of B. Let $\mu_i \in \mathbb{R}$ be such that $\bar{\varphi}(p;b_i) \approx \mu_i$ for every i < n. Let \bar{b}' be such that $s \downarrow_{\overline{M}} \bar{b}' \equiv_{\overline{M}} \bar{b}$. By invariance, $\bar{\varphi}(s;b_i') \approx \mu_i$. Therefore there is an $r \in \overline{M}$ such that $\bar{\varphi}(r;b_i') \approx_{\varepsilon} \mu_i$ for every i < n. As $\bar{b}' \equiv_{\overline{M}} \bar{b}$, we obtain $\bar{\varphi}(r;b_i) \approx_{\varepsilon} \mu_i$.

1 \Rightarrow 2. Let $\psi_i(x) = \varphi_i(x;b_i)$ for some $\varphi_i(x;z) \in L$ and $b_i \in \mathcal{U}^{|z|}$. Let $\bar{b} = \langle b_i : i < n \rangle$. Let $\mu_i \in \mathbb{R}$ be such that $\bar{\varphi}_i(p;b_i) \approx \mu_i$. Let \bar{b}' be such that $s \downarrow_{\overline{M}} \bar{b}' \equiv_{\overline{M}} \bar{b}$. By invariance, $\bar{\varphi}_i(s;b_i') \approx \mu_i$. Therefore there is an $r \in \overline{M}$ such that $\bar{\varphi}_i(r;b_i') \approx_{\varepsilon} \mu_i$ for every i < n. As $\bar{b}' \equiv_{\overline{M}} \bar{b}$, we obtain $\bar{\varphi}_i(r;b_i) \approx_{\varepsilon} \mu_i$.

1 \Rightarrow 3. By smoothness we it suffices to prove 3 with *s* for *p*. The type

$$p(z) = \left\{ \bar{\varphi}(s;z) \not\approx_{\varepsilon} \bar{\varphi}(r;z) : r \in \overline{M} \right\}$$

is inconsistent by 2. Hence compatness yields the required $r_1, \ldots, r_n \in \overline{M}$.

 $3\Rightarrow 2$. Clear.

2 \Rightarrow 1 Assume 2. We prove that p is invariant. Pick some $b \equiv_{\overline{M}} b'$ and some ε . Let $r,r' \in \overline{M}$ be such that $\overline{\varphi}(p;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$ and $\overline{\varphi}(p;b') \not\approx_{\varepsilon} \overline{\varphi}(r';b')$. As $\overline{\varphi}(r;b) \approx \overline{\varphi}(r';b')$ follows from $b \equiv_{\overline{M}} b'$, we obtain $\overline{\varphi}(p;b) \approx_{\varepsilon} \overline{\varphi}(p;b')$.

We prove that p is smooth.

$$p(x^{\mathbf{s}}) = \left\{ \bar{\varphi}(x^{\mathbf{s}}; b) \approx_{\varepsilon} \mu_b : b \in \mathcal{U}^{|z|} \right\}$$

3.3 Definition Let $\varphi(x;z) \in L$ and M be given. A global sample $p(x^s)$ is

- 1. invariant if $\bar{\varphi}(p;b) \approx \bar{\varphi}(p;b')$ for every $b \equiv_{\overline{M}} b'$;
- 2. (pointwise) approximable if, for every $b \in \mathbb{U}^{|z|}$ and every ε , there is an $r \in \overline{M}$ such that $\overline{\varphi}(p;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$;
- 3. definable if, for every ε , the set $\{b \in \mathcal{U}^{|z|} : \overline{\varphi}(p;b) < \varepsilon\}$ is definable over \overline{M} .

The following is a useful characterization of smooth samples.

4 Old stuff/garbage

We write $\operatorname{supp}(p)$ for the support of p, that is, the set of those a in \mathcal{U} such that $p \vdash (a \in x^s) > \varepsilon$ for some standard positive ε . If s is a smooth sample $\operatorname{supp}(s)$ is defined to be $\operatorname{supp}(p)$ for $p(x^s) = \operatorname{tp}(s/\overline{\mathcal{U}})$.

Let s be an external sample. For every formula $\varphi(x;z) \in L$ and every $b \in \mathcal{U}^{|z|}$ we define

$$\operatorname{Av}_{x/s}\varphi(x;b) = \frac{\left|\left\{a \in s : \varphi(a;b)\right\}\right|}{|s|},$$

When possible we abbreviate $\operatorname{Av}_{x/s}\varphi(x;b)$ with $\bar{\varphi}(s;b)$.

We write $\operatorname{ft}(a)$, for the standard part of the hyperrational number a. That is, the unique real number μ such that $\mu \approx a$.

The standard part of Av_s induces a finite probability measure on the algebra of definable subsets of $\mathcal{U}^{|x|}$. This measure has an unique extension to a Lebesgue probability measure on a σ -algebra. This is known as the Loeb measure.

All definitions and facts in this section are relative to some given formula $\varphi(x;z) \in L$ and some model M.

4.1 Definition Let $\varphi(x;z) \in L$ and M be given. We say that a sample s is smooth if, for every

 $s' \equiv_M s$ and every $b \in \mathcal{U}^{|z|}$, we have $\bar{\varphi}(s';b) \approx \bar{\varphi}(s;b)$. **4.2 Definition** Let $\varphi(x;z) \in L$ and M be given. An external sample s is invariant if, for every $b, b' \in \mathcal{U}^{|z|}$ such that $b \equiv_M b'$, we have $\bar{\varphi}(s;b) \approx \bar{\varphi}(s;b')$; definable if, for every ε , the set $\{b \in \mathcal{U}^{|z|} : \overline{\varphi}(s;b) < \varepsilon\}$ is definable over M; 2. finitely satisfiable if, for all $b \in \mathcal{U}^{|z|}$ there is an $r \in \overline{M}$ such that $\overline{\varphi}(s;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$; generically stable if all of the above hold. Smooth roughly means internal and invariant. **4.3 Fact** Let $\varphi(x;z) \in L$ and M be given. The following are equivalent for every external sample s 1. s is smooth; there is an invariant internal sample $s' \equiv_M s$. **Proof** 1 \Rightarrow 2. Let *s* be smooth and let $s' \equiv_M s$ be any internal sample. If $b, b' \in \mathcal{U}^{|z|}$ and $b \equiv_M b'$, then b' = fb for some $f \in \operatorname{Aut}(\overline{\mathbb{U}}^*/M)$. Then $\overline{\varphi}(s'; fb) \approx \overline{\varphi}(f^{-1}s'; b)$. Moreover, by smothness $\bar{\varphi}(f^{-1}s';b) \approx \bar{\varphi}(s';b)$. The infariace in s' follows. 2⇒1. It suffices to prove that if *s* is internal and invariant then it is smooth. Suppose for a contradiction that there is an $s' \equiv_M s$ such that $\bar{\varphi}(s';b) \not\approx_{\varepsilon} \bar{\varphi}(s;b)$. Pick a internal sample $s'' \equiv_{M,s} s'$. Then $\bar{\varphi}(s'';b) \not\approx_{\varepsilon} \bar{\varphi}(s;b)$. As $s'' \equiv_{M} s$ are both in $\bar{\mathcal{U}}^{*}$, then s'' = fs for some $f \in \operatorname{Aut}(\overline{\mathbb{U}}^*/M)$. Hence we obtan $\overline{\varphi}(s; f^{-1}b) \not\approx_{\varepsilon} \overline{\varphi}(s; b)$ which contradics the invariance of s. **4.4 Definition** Let $\varphi(x;z) \in L$ and M be given. Let $\mathbb{B} \subseteq \mathbb{U}^{|z|}$ be arbitrary. We say that s is (uniformly) approximable on $\mathbb B$ if for every ε there is a finite sample $r \in \overline{M}$ such that $\overline{\varphi}(s,b) \approx_{\varepsilon} \overline{\varphi}(r,b)$ for every $b \in \mathcal{B}$. (The sample r depends on ε , not on b.) **4.5 Lemma** Let $\varphi(x;z) \in L$ and M be given. Let s be approximable on B and such that $\bar{\varphi}(s;b) > \varepsilon$ for every $b \in \mathcal{B}$. Then there is a finite cover of \mathcal{B} , say $\mathcal{B}_1, \ldots, \mathcal{B}_n$, such that all the types $p_i(x) = \{\varphi(x;b) : b \in \mathcal{B}_i\}$ are consistent. **Proof** Let $r \in \overline{M}$ be as in Definition 4.4. As r is finite, we may assume that $\operatorname{supp}(r) = \{a_1, \dots, a_n\}.$ Let $\mathcal{B}_i = \{b \in \mathcal{B} : \varphi(a_i; b)\}.$ As $\bar{\varphi}(r; b) > 0$ for all $b \in \mathcal{B}$, these \mathcal{B}_i are the required cover of \mathcal{B} . **4.6 Corollary** Let $\varphi(x;z) \in L$ and M be given. If s be approximable on $\langle b_i : i < \omega \rangle$, where $\langle b_i : i < \omega \rangle$ is a sequence of indiscernibles such that $\bar{\varphi}(s;b_i) > \varepsilon$ for every $i < \omega$, then the type $\{\varphi(x;b_i): i < \omega\}$ is consistent. **4.7 Corollary** Let $\varphi(x;z) \in L$ and M be given. Let s be approximable on \mathbb{C} . Then for every ε

there is a pair of distict $c, c' \in \mathbb{C}$ such that $\operatorname{Av}_{x/s}[\varphi(x;c) \leftrightarrow \varphi(x;c')] < \varepsilon$

Proof Suppose for a contradiction that $\operatorname{Av}_{x/s}[\varphi(x;c) \nleftrightarrow \varphi(x;c')] \geq \varepsilon$ for all distict $c,c' \in \mathbb{C}$. Apply Lemma 4.5 to the folmula $\psi(x;z,z') = [\varphi(x;z) \nleftrightarrow \varphi(x;z')]$ and the set $\mathbb{B} = \{\langle c,c' \rangle \in \mathbb{C}^2 : c \neq c' \}$. The sets \mathbb{B}_i obtained from Lemma 4.5 induce a finite coloring of the complete graph on \mathbb{C} . By the Ramsey theorem there is an infinite monochromatic set $A \subseteq \mathbb{C}$. Hence $\{\varphi(x;a) \nleftrightarrow \varphi(x;a') : a,a' \in A, a \neq a' \}$ is consistent. As |A| > 2, this is impossible.

5 The nip formulas

5.1	Theorem	Let $\varphi(x;z)$	$\in L a$	nd M	be given	and	assume th	$at \varphi(x)$;z) is n	ip. Ther	1 every
	sample is approximable on M over M.										

Proof Questo è Vapnik-Chervonenkis.

For smooth samples the Vapnik-Chervonenkis Theorem can be strengthened as follows. (The difference is that below b ranges over $\mathcal{U}^{|z|}$.)

- **5.2 Corollary** Let $\varphi(x;z) \in L$ be nip. Every smooth sample s is approximable on $\mathbb U$ over M. **Proof** By Theorem 5.1, there is an $r \in \overline{M}$ such that $\overline{\varphi}(s;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$ for all $b \in M^{|z|}$. Suppose for a contradiction that $\overline{\varphi}(s;b') \not\approx_{\varepsilon} \overline{\varphi}(r;b')$ for some $b' \in \mathbb U^{|z|}$. Pick a $s' \subseteq \mathbb U^{|x|}$ such that $b' \downarrow_M s' \equiv_M s$. By the smoothness of s, we obtain $\overline{\varphi}(s';b') \not\approx_{\varepsilon} \overline{\varphi}(r;b')$. As $b' \downarrow_M s'$, the same formula holds for some $b \in M^{|z|}$. Once again by smoothness, $\overline{\varphi}(s;b) \not\approx_{\varepsilon} \overline{\varphi}(r;b)$. A contradiction.
- **5.3 Definition ??** We say that $\varphi(x;z) \in L$ is distal if there is a formula $\psi(x;z_1,...z_n) \in L$ such that for every finite set $B \subseteq \mathcal{U}$ and every $a \in \mathcal{U}^{|x|}$ there are $b_1,...,b_n \in B$ such that $\psi(a;b_1,...,b_n)$ and $\psi(x;b_1,...,b_n)$ decides all formulas $\varphi(x;b)$ for $b \in B$.
- **5.4 Definition ??*** We say that $\varphi(x;z) \in L$ is distal if there is a formula $\psi(x_1,\ldots,x_n;z) \in L$ such that for every finite set $A \subseteq \mathcal{U}^{|x|}$ and every $b \in \mathcal{U}^{|z|}$ there are $a_1,\ldots,a_n \in B$ such that $\psi(a_1,\ldots,a_n,z)$ and $\psi(a_1,\ldots,a_n,z)$ decides all formulas $\varphi(a;z)$ for $a \in A$.

For every finite sample $r \in \overline{M}$ and every $\mu \in \mathbb{R}$ there is a formula $\psi(z) \in L(\operatorname{supp} r)$ such that $\overline{\varphi}(r;z) = \mu \leftrightarrow \psi(z)$. The formula $\psi(z)$ depends on r.

When $\varphi(x;z)$ is distal

If $\varphi(x;z)$ is distal then there is a formula ψ such that for every $r \in M^f$ there is $r_0 \in M$

- 5.5 Theorem (false) The following are equivalent
 - 1. $\varphi(x;z) \in L$ is distal;
 - 2. for every sample $s \in \mathcal{U}_*^{f_*}$, if s is generically stable then s is smooth.

There is a formula $\psi(x_1,\ldots,x_n\,;z)$ such that for every $r\in\overline{M}$ there are a_1,\ldots,a_n such that $\varphi(r\,;b)=\mu\;\psi(x_1,\ldots,x_n\,;z)$