Calcul Numeric – Tema #7

Ex. 1 Fie
$$f: [-1,1] \Rightarrow \mathbb{R}, f(x) = e^{2x}, n = 2$$

a) Să se calculeze funcțiile de bază

$$L_{2,1}(x), L_{2,2}(x), L_{2,3}(x);$$

- b) Să se scrie polinomul Lagrange $P_2(x)$ conform formulei date de metoda Lagrange;
- c) Să se evalueze eroarea $|P_2(0.5) f(0.5)|$

Ex. 2 Fie
$$f: [-1,1] \Rightarrow \mathbb{R}, f(x) = e^{2x}, n = 3$$

- a) Să se construiască tabelul diferențelor divizate conform metodei Newton cu diferențe divizate;
- b) Să se scrie polinomul Lagrange $P_3(x)$ conform metodei Newton cu diferențe divizate.

Ex. 3 1) Să se construiască în Matlab următoarele proceduri:

- a) $y = \mathbf{MetNaiva}(f, a, b, n, x)$
- b) $y = \mathbf{MetLagrange}(f, a, b, n, x)$
- c) $y = \mathbf{MetNDD}(f, a, b, n, x)$

conform metodelor prezentate la curs;

- 2) Să se construiască în Matlab graficele funcției f(x) pe intervalul [a, b], punctele de interpolare $(x_i, y_i), i = \overline{1, n+1}$ și polinomul $P_n(x)$ obținut prin una din cele trei metode pentru următoarele date: $f(x) = e^{2x}, n = 6, a = -1, b = 1$. Pentru construcția graficelor, folosiți o discretizare mai fină, de exemplu cu 10(n+1) noduri. Pentru comparare să se construiască în aceeași figură;
- 3) Reprezentați eroarea $err(x) = |P_n(x) f(x)|$.