Numerične metode 2

Zapiski s predavanj prof. Marjetke Knez

Domen Vogrin

Kazalo

1	Teo	Геогіja aproksimacije		
1.1 Aproksimacija funkcij			1	
		1.1.1	Splošen optimalni aproksimacijski problem	3
	1.2	Aprok	simacija po metodi najmanjših kvadratov (MNK)	4
		1.2.1	Normalni oziroma Gramov sistem enačb	6
		1.2.2	Povezava s predoločenimi sistemi enačb	10
	1.3	Enako	omerna aproksimacija zveznih funkcij s polinomi	12
2 Int				
2	Inte	erpolac	zija	14
2	Inte	-	cija omska interpolacija	14
2		-	·	
2		Polino	omska interpolacija	14
2		Polino 2.1.1	omska interpolacija	14 15 19
2		Polino 2.1.1	omska interpolacija	14 15 19 22
2		Polino 2.1.1	omska interpolacija	14 15 19 22 24

1 Teorija aproksimacije

1.1 Aproksimacija funkcij

Denimo, da imamo podano funkcijo f. Radi bi jo aproksimirali s kakšno 'preprostejšo' funkcijo \tilde{f} , ki bi bila lažje izračunljiva, bi se jo dalo enostavno odvajati, integrirati . . .

Primer.

$$\sin(x) \sim x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

Ključna vprašanja, ki se nam postavijo, so:

- V kakšni množici/podprostoru naj iščemo aproksimant \tilde{f} ?
- V čem naj si bo \tilde{f} podobna/sorodna z f?
- Ali \tilde{f} obstaja (v množici, kjer jo iščemo)?
- če obstaja, ali je določen enolično?
- Kako konstruirati aproksimant \tilde{f} ?
- Kako dobro nadomestilo za f je izračunan \tilde{f} ?

V splošnem aproksimacijski problem formaliramo takole:

z X označimo vektorski prostor, katerega elemente želimo aproksimirati, $S\subseteq X$ naj označuje podprostor/podmnožico v X, v katerem iščemo aproksimante. Aproksimacijska shema je operator

$$A: X \to S$$

ki vsakemu elementu $f \in X$ priredi aproksimacijski element (aproksimant)

$$\tilde{f}=\mathcal{A}f\in S$$

Primer. Vektorski prostori:

- $X = \mathcal{C}([a,b]), X = \mathcal{C}^k([a,b])$
- $X = \ell_{\rho}^{2}([a,b]) = \{f : [a,b] \to \mathbb{R} \int_{a}^{b} f^{2}(x)\rho(x)dx < \infty\},$ pri čemer je ρ pozitivna utež: $\rho(x) > 0$ za vsak $x \in [a,b]$
- $X = \mathbb{R}^n$

Primer. Podprostori, v katerih iščemo aproksimante:

• $S = \mathbb{P}_n = Lin\{1, x, x^2, \dots, x^n\}$ polinomi stopnje $\leq n$:

$$S = \{ \sum_{i=0}^{n} a_i x^i; a_i \in \mathbb{R} \}$$

• triginimetrični polinomi

$$S = Lin\{1, \sin x, \cos x, \sin 2x, \cos 2x, \dots, \sin nx, \cos nx\}$$

• podprostori racionalnih funkcij, odsekoma polinomskih funkcij

Da bomo lahko definirali aproksimacijski problem in tudi ocenili napako aproksimacije, potrebujemo **normo**. Najbolj znane norme na prostoru funkcij so naslednje:

• neskončna norma ($||f||_{\infty}$)

$$f \in \mathcal{C}([a,b]), ||f||_{\infty,[a,b]} = \max_{x \in [a,b]} |f(x)|$$

Za izračun numeričnega približka za neskončno normo na intervalu [a, b] izberemo dovolj gosto zaporedje točk:

$$a \le x_0 < x_1 < \dots < x_n \le b, \mathbf{x} = (x_i)_{i=0}^N$$

in izračunamo

$$||f||_{\infty,\mathbf{x}} = \max_{i=0,\dots,N} |f(x_i)|$$

• druga norma ($\|\cdot\|_2$) - norma, porojena iz skalarnega produkta. Naj bo vektorski prostor X opremljen s skalarnim produktom $\langle \cdot, \cdot \rangle$. Potem je

$$||f||_2 = \sqrt{\langle f, f \rangle}, f \in X$$

Primeri skalarnih produktov:

·
$$\langle f, g \rangle = \int_a^b f(x)g(x)\rho(x)dx, f, g \in \ell_\rho^2([a, b])$$

$$\cdot \|f\|_2 = \sqrt{\int_a^b f^2(x)\rho(x)dx}$$

Za $f(x) \equiv 1$ to imenujemo standardni skalarni produkt

• diskretni semi-skalarni produkt

$$\mathbf{x} = (x_i)_{i=0}^N, \ a \le x_0 < x_1 < \dots < x_n \le b$$

$$\langle f, g \rangle = \sum_{i=0}^{N} f(x_i)g(x_i)\rho(x_i)$$

Če ga še delimo z dolžino intervala, dobimo približek za prejšnjega.

$$||f||_{2,\mathbf{x}} = \sqrt{\sum_{i=0}^{N} f^2(x_i)\rho(x_i)}$$

Za določanje aproksimanta \tilde{f} ločimo dva primera:

- 1. Optimalni aproksimacijski problemi
- 2. interpolacija

1.1.1 Splošen optimalni aproksimacijski problem

Naj boXvektorski prostor z normo $\|\cdot\|,\,S\subseteq X.$ Za $f\in X$ iščemo $\tilde{f}\in S,$ da velja

$$||f - \tilde{f}|| = \inf_{s \in S} ||f - s|| = dist(f, S)$$

Torej, izmed možnih približkov izberemo najboljšega.

Pri tem predmetu si bomo ogledali:

- aproksimacijo po metodi najmanjših kvadratov
 (za normo izberemo drugo normo normo iz skalarnega produkta)
- 2. enakomerna polinomska aproksimacija $(X = C([a, b]), S = \mathbb{P}_n, \| \cdot \|_{\infty})$

Polinomi so zelo uporabni pri aproksimaciji funkcij, saj so gosti v prostoru zveznih funkcij.

Izrek 1.1. (Weierstrassov izrek) Naj bo $f \in \mathcal{C}([a,b])$. Potem za vsak $\varepsilon > 0$ obstaja polinom p, da je $||f - p||_{\infty,[a,b]} < \varepsilon$. Drugače povedano:

$$dist(f, \mathbb{P}_n) \stackrel{n \to \infty}{\longrightarrow} 0$$

Dokaz. (konstruktivni - ideja) Naj bo [a,b]=[0,1]. Za $f\in \mathcal{C}([0,1])$ definiramo t.i. **Bernsteinov polinom**:

$$\mathcal{B}_n f(x) = \sum_{i=0}^n f(\frac{i}{n}) B_i^n(x)$$

kjer je $B_i^n(x)$ Bernsteinov bazni polinom:

$$B_i^n(x) = \binom{n}{i} x^i (1-x)^{n-i}, i = 0, 1, \dots, n$$

Da se pokazati, da gre $||f - \mathcal{B}_n f||_{\infty,[a,b]} \to 0$, ko gre $n \to \infty$.

Bernsteinov aproksimacijski polinom nam poda en možen način aproksimacije funkcije f (na [0,1]).

Bernsteinov aproksimacijski operator:

$$\mathcal{B}_n : \mathcal{C}([a,b]) \to \mathbb{P}_n$$

$$f \mapsto \mathcal{B}_n f$$

$$\mathcal{B}_n f(x) = \sum_{i=0}^n f(a + \frac{i}{n}(b-a)) B_i^n(\frac{x-a}{b-a})$$

Po Weierstrassovem izreku imamo zagotovljeno konvergenco v neskončni normi, žal pa je konvergenca zelo počasna.

1.2 Aproksimacija po metodi najmanjših kvadratov (MNK)

Sodi pod optimalne aproksimacijske probleme.

Naj bo X normiran vektorski prostor nad \mathbb{R} s skalarnim produktom $\langle \cdot, \cdot \rangle$ in naj bo $\|\cdot\|_2 = \sqrt{\langle \cdot, \cdot \rangle}$. $S \subseteq X$ naj bo končno dimenzionalen podprostor v X, $S = Lin\{\varphi_1, \varphi_2, \ldots, \varphi_n\}$, dimS = n. Za izbran $f \in X$ iščemo $f^* \in S$, da bo veljalo

$$||f - f^*||_2 = \min_{s \in S} ||f - s||_2$$

 f^* naj bo element najbližje aproksimacije (ENA) po MNK za $f \in X$.

Izrek 1.2. Naj bo $S \subseteq X$ končno dimenzionalen podprostor. Element $f^* \in S$ je element najbližje aproksimacije po MNK za $f \in X$ natanko takrat, ko je

$$f - f^* \perp S$$

oziroma

$$\langle f - f^*, S \rangle = 0$$

Dokaz.

(\iff) Predpostavimo, da je $f - f^* \perp S$. Dokazati moramo, da je

$$||f - f^*||_2 = \min_{s \in S} ||f - s||_2$$

Izberimo poljuben $s \in S$.

$$||f - s||_{2}^{2} = ||f - f^{*} + f^{*} - s||_{2}^{2}$$

$$= \langle (f - f^{*}) + (f^{*} - s), (f - f^{*}) + (f^{*} - s) \rangle$$

$$= ||f - f^{*}||_{2}^{2} + 2 \cdot \langle f^{*} - s, f - f^{*} \rangle + ||f^{*} - s||_{2}^{2}$$

$$\geq ||f - f^{*}||_{2}^{2}$$
(1)

Neenakost 1 velja, saj zato, ker velja tako $f^* \in S$ kot $s \in S$ velja tudi $(f^* - s) \in S$, torej veljata tudi enakost $\langle f^* - s, f - f^* \rangle = 0$ in neenakost $||f^* - s||_2 \ge 0$.

 (\Longrightarrow) Predpostavimo, da je f^* ENA po MNK. Dokazati želimo

$$f - f^* \perp S$$

 $\forall s \in S \text{ in } \forall \lambda > 0 \text{ velja}$

$$||f - f^*||_2^2 \le ||f - (f^* - \lambda s)||_2^2$$

$$= \langle f - f^* + \lambda s, f - f^* + \lambda s \rangle$$

$$= ||f - f^*||_2^2 + 2 \cdot \langle f - f^*, \lambda s \rangle + \lambda^2 ||s||_2^2$$

$$0 \le 2\langle f - f^*, \lambda s \rangle + \lambda^2 ||s||_2^2$$

$$0 \le \lambda(2\langle f - f^*, s \rangle + \lambda ||s||_2^2)$$
(2)

$$0 \le \langle f - f^*, s \rangle + \lambda ||s||_2^2 \tag{3}$$

pri čemer iz 2 na 3 pridemo preko začetnega izbora za $\lambda>0$. Ker lahko λ vzamemo tako majhno, da velikost člena $2\langle f-f^*,s\rangle$ prevlada nad $\lambda\|s\|_2^2$, vidimo, da mora biti $0\leq \langle f-f^*,s\rangle$. Če sedaj v S izberemo element -s, potem po istem sklepu velja, da mora biti $0\leq \langle f-f^*,-s\rangle$ oziroma $\langle f-f^*,s\rangle\leq 0$. Sledi, da mora biti

$$\langle f - f^*, s \rangle = 0$$

Iz izreka sledi konstrukcija.

Izberemo $f \in X$. Naj bodo $\varphi_1, \varphi_2, \dots, \varphi_n$ baza za $S \subseteq X$:

$$S = Lin\{\varphi_1, \varphi_2, \dots, \varphi_n\}$$

Iščemo $f^* \in S$ ENA po MNK.

$$f^* = \sum_{j=1}^n \alpha_j \varphi_j$$

kjer so $(\alpha_j)_{j=1}^n$ neznani koeficienti. Iz izreka sledi, da mora biti $f - f^* \perp S$. To bo res, ko bo

$$f - f^* \perp \varphi_i, i \in [n]$$

$$0 = \langle f - f^*, \varphi_i \rangle$$

$$= \langle f - \sum_{j=1}^n \alpha_j \varphi_j, \varphi_j \rangle$$

$$= \langle f, \varphi_i \rangle - \sum_{j=1}^n \alpha_j \langle \varphi_j, \varphi_i \rangle$$

Za vsak i tako dobimo enačbo

$$\sum_{i=1}^{n} \alpha_j \langle \varphi_j, \varphi_i \rangle = \langle f, \varphi_i \rangle$$

iz česar skupaj dobimo sistem linearnih enačb. Če zgornje zapišemo po vektorjih, dobimo

$$\begin{bmatrix} \langle \varphi_1, \varphi_i \rangle & \langle \varphi_2, \varphi_i \rangle & \cdots & \langle \varphi_n, \varphi_i \rangle \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \langle f, \varphi_i \rangle, \ i \in [n]$$

V matrični obliki:

$$\begin{bmatrix} \langle \varphi_1, \varphi_1 \rangle & \langle \varphi_2, \varphi_1 \rangle & \cdots & \langle \varphi_n, \varphi_1 \rangle \\ \langle \varphi_1, \varphi_2 \rangle & \langle \varphi_2, \varphi_2 \rangle & \cdots & \langle \varphi_n, \varphi_2 \rangle \\ \vdots & \vdots & & \vdots \\ \langle \varphi_1, \varphi_n \rangle & \langle \varphi_2, \varphi_n \rangle & \cdots & \langle \varphi_n, \varphi_n \rangle \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} \langle f, \varphi_1 \rangle \\ \langle f, \varphi_2 \rangle \\ \vdots \\ \langle f, \varphi_n \rangle \end{bmatrix}$$

1.2.1 Normalni oziroma Gramov sistem enačb

Gramova matrika G

$$G = (\langle \varphi_j, \varphi_i \rangle)_{i,j=1}^n$$

je **simetrična** matrika. Gramova matrika je tudi pozitivno definitna. To dokažemo tako, da izberemo $x \in \mathbb{R}^n, x \neq 0$.

$$x^{T}Gx = \begin{bmatrix} x_{1} & x_{2} & \cdots & x_{n} \end{bmatrix} \begin{bmatrix} \sum_{j=1}^{n} x_{j} \langle \varphi_{j}, \varphi_{1} \rangle \\ \vdots \\ \sum_{j=1}^{n} x_{j} \langle \varphi_{j}, \varphi_{n} \rangle \end{bmatrix}$$

$$= \sum_{i=1}^{n} x_{i} \sum_{j=1}^{n} x_{j} \langle \varphi_{j}, \varphi_{1} \rangle$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \langle x_{j} \varphi_{j}, x_{i} \varphi_{1} \rangle$$

$$= \langle \sum_{j=1}^{n} x_{j} \varphi_{j}, \sum_{i=1}^{n} x_{i} \varphi_{1} \rangle$$

$$= \| \sum_{i=1}^{n} x_{i} \varphi_{i} \|_{2}^{2}$$

$$> 0$$

$$(4)$$

Neenačaj 4 je strog, saj velja

$$\sum_{i=1}^{n} x_i \varphi_i \neq 0$$

To je res zato, ker je $x_i > 0$ in ker je

$$\varphi_i \in Lin\{\varphi_1, \varphi_2, \dots, \varphi_n\}$$

kar je baza za S. Dobljeni sistem enačb lahko rešimo z razcepom Choleskega.

Primer. Naj bo f(x) = sin(x), $\langle f, g \rangle = \int_0^{\pi} f(x)g(x)dx$. Aproksimiraj f po MNK v podprostoru \mathbb{P}_1 .

Rešitev: Definirajmo X in S

$$X = \mathcal{C}([0, \pi])(X = \ell^2([0, \pi]))$$

$$S = \mathbb{P}_1 = Lin\{1, x\}, \varphi_1(x) = 1, \varphi_2(x) = x$$

Zdaj definiramo f^*

$$f^*(x) = \alpha_1 \varphi_1(x) + \alpha_2 \varphi_2(x)$$

Imamo Gramovo matriko G

$$\begin{bmatrix} \langle \varphi_1, \varphi_1 \rangle & \langle \varphi_2, \varphi_1 \rangle \\ \langle \varphi_1, \varphi_2 \rangle & \langle \varphi_2, \varphi_2 \rangle \end{bmatrix} = \begin{bmatrix} \pi & \frac{\pi^2}{2} \\ \frac{\pi^2}{2} & \frac{\pi^3}{3} \end{bmatrix}$$

desna stran
$$= \begin{bmatrix} \langle f, \varphi_1 \rangle \\ \langle f, \varphi_2 \rangle \end{bmatrix} = \begin{bmatrix} 2 \\ \pi \end{bmatrix}$$

Zgornji izračuni prihajajo iz postopkov

$$\langle \varphi_1, \varphi_1 \rangle = \int_0^{\pi} dx = \pi$$
$$\langle \varphi_1, \varphi_2 \rangle = \int_0^{\pi} x dx = \frac{\pi^2}{2}$$
$$\langle \varphi_2, \varphi_2 \rangle = \int_0^{\pi} x^2 dx = \frac{\pi^3}{3}$$

in

$$\langle f, \varphi_1 \rangle = \int_0^{\pi} \sin x dx = -\cos x \Big|_0^{\pi} = 2$$

$$\langle f, \varphi_2 \rangle = \int_0^{\pi} x \cdot \sin x dx = \dots = \pi$$

Dobimo:

$$\begin{bmatrix} \pi & \frac{\pi^2}{2} \\ \frac{\pi^2}{2} & \frac{\pi^3}{3} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 2 \\ \pi \end{bmatrix}$$

Ko poračunamo sistem enačb, dobimo

$$\alpha = \begin{bmatrix} \frac{2}{\pi} \\ 0 \end{bmatrix}$$

Geometrijska interpretacija rešitve:

$$\min_{p \in \mathbb{P}_1} ||f - p||_2 = \min_{p \in \mathbb{P}_1} \sqrt{\int_0^{\pi} (sinx - p(x)^2) dx}$$

Slika 1: Z MNK želimo minimizirati ploščino sivega območja.

Primer. Točke (1,2),(2,3),(3,5),(4,8) aproksimiraj po MNK s premico.

Rešitev: $S = \mathbb{P}_1 = Lin\{1, x\}$

$$\langle f, g \rangle = \sum_{i=1}^{4} f(x_i), g(x_i), x = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

f, ki jo aproksimiramo, je znana le v točkah ${\bf x}$.

Izračunamo:

$$\langle 1, 1 \rangle = \sum_{i=1}^{4} 1 \cdot 1 = 4$$

$$\langle 1, x \rangle = \sum_{i=1}^{4} 1 \cdot x_i = 10$$

$$\langle x, x \rangle = \sum_{i=1}^{4} x_i^2 = 30$$

$$\langle f, 1 \rangle = \sum_{i=1}^{4} y_i \cdot 1 = 18$$

$$\langle f, x \rangle = \sum_{i=1}^{4} y_i x_i = 55$$

Dobimo sistem

$$\begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 18 \\ 55 \end{bmatrix}$$

iz katerega dobimo rezultat

$$\alpha = \begin{bmatrix} -\frac{1}{2} \\ 2 \end{bmatrix}$$

Geometrijska interpretacija rešitve:

$$\min_{p \in \mathbb{P}_1} ||f - p||_2 = \sqrt{\sum_{i=1}^4 (y_i - p(x_i))^2}$$

Slika 2: Z MNK želimo najti temnosivo premico, ki minimizira svetlosive razdalje.

1.2.2 Povezava s predoločenimi sistemi enačb

$$Ax = b, A \in \mathbb{R}^{m \times n}, A = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}, b \in R^m$$

$$\min_{x \in \mathbb{R}^n} ||Ax - b||_2 = \min_{z \in ImA} ||b - z||$$

Aproksimiramo vektor $b \in \mathbb{R}^m(X = \mathbb{R}^m)$

$$S = Lin\{a_1, a_2, \dots, a_n\} = ImA$$
$$b^* = \sum_{j=1}^n x_j a_j = Ax$$
$$\langle x, y \rangle = \sum_{i=1}^m x_i y_i = x^T y$$

 $\langle x, y \rangle = \sum_{i=1}^{m} x_i y_i$:

$$G = (\langle a_i, a_i \rangle)_{i,i=1}^n = A^T A \tag{5}$$

desna stran =
$$(\langle a_i, b \rangle)_{i=1}^n = A^T b$$
 (6)

Primer. $X = \mathcal{C}([0,1])$

$$S = P_{n-1} = Lin\{1, x, x^2, \dots, x^{n-1}\}$$

$$\langle f, g \rangle = \int_0^1 f(x)g(x)dx$$

$$\langle \varphi_i, \varphi_j \rangle = \int_0^1 x^{i-1}x^{j-1}dx = \int_0^1 x^{i+j-2}dx = \frac{1}{i+j-1}$$

$$G = (\frac{1}{i+j-1})_{i,j=1}^n$$

kjer je G Hilbertova matrika. Te so zelo občutljive.

Gramova matrika je lahko zelo občutljiva. Reševanju sistema linearnih enačb se izognemo, če v podprostoru S izberemo **ortonormirano bazo**:

$$\{\varphi_1, \varphi_2, \dots, \varphi_n\}$$

je ortonormirana baza, če

$$\varphi_1 \perp \varphi_j \ \forall i \neq j \ \text{in} \ \|\varphi_i\|_2 = 1$$

V tem primeru je G=I in $\alpha_i=\langle f,\varphi_i\rangle,\,f^*=\sum_{i=1}^n\langle f,\varphi_i\rangle\varphi_i.$ Ortonormirano bazo izračunamo z modificiranim Gram-Scmidtovim algoritmom.

Algorithm 1 Modificiran Gram-Schmidtov algoritem

Input baza $\{\psi_1, \psi_2, \dots, \psi_n\}$

- 1: **for** i = 1 : n **do**
- $\varphi_i = \psi_i$
- 3: end for
- 4: **for** i = 1 : n **do**
- $\begin{array}{l} \varphi_i = \frac{\varphi_i}{\|\varphi_i\|_2} \\ \textbf{for } j = i+1: n \textbf{ do} \end{array}$ 6:
- $\varphi_j = \varphi_j \langle \varphi_j, \varphi_i \rangle \varphi_i$
- end for
- 9: end for

Output ortonormirana baza $\{\varphi_1, \varphi_2, \dots, \varphi_n\}$

$$X \in \mathcal{C}([a,b])$$

Slika 3: Druga norma, porojena iz zveznega (levo) in diskretnega (desno) skalarnega produkta

1.3 Enakomerna aproksimacija zveznih funkcij s polinomi

$$X = \mathcal{C}([a,b]), S = \mathbb{P}_n, \|\cdot\|_{\infty}$$

Problem: Za dano funkcijo $f \in \mathcal{C}([a,b])$ iščemo polinom $p^* \in \mathbb{P}_n$, za katerega velja

$$||f - p^*||_{\infty,[a,b]} = \min_{p \in \mathbb{P}_n} ||f - p||_{\infty,[a,b]} = \min_{p \in Pp_n} \max_{x \in [a,b]} |f(x) - p(x)|$$

 p^* imenujemo polinom najboljše enakomerne aproksimacije (PNEA). Problem je nelinearen.

(vstavi skico)

Nasledni izrek nam poda **zadostni pogoj**, da je nek polinom PNEA za neko funkcijo.

Izrek 1.3. Naj bo $f \in \mathcal{C}([a,b])$. Če je polinom $p \in \mathbb{P}_n$ tak, da residual

$$r = f - p \tag{7}$$

alternirajoče doseže svojo normo $||p||_{\infty,[a,b]}$ v vsaj n+2 različnih točkah $(x_i)_{i=0}^{n+1}$

$$a < x_0 < x_1 < \dots < x_{n+1} < b$$

Potem je p polinom najboljše enakomerne aproksimacije za f na [a, b].

Opomba. Kaj pomeni "alternirajoče doseže svojo normo"?

$$||r||_{\infty,[a,b]} = |r(x_i)| \, \forall i \in [n]$$

in

$$r(x_i)r(x_{i+1}) < 0 \forall i$$

(vstavi graf)

Dokaz. Dokaz s protislovjem.

Recimo, da p ne bi bil PNEA za f. Tedaj bi obstajal nek drug polinom $q \in \mathbb{P}_n$, da bi veljalo

$$|f(x_i) - q(x_i)| \le \max_{x \in [a,b]} |f(x) - q(x)|$$

$$= ||f - q||_{\infty,[a,b]}$$

$$< ||f - p||_{\infty,[a,b]}$$

$$= |f(x_i) - p(x_i)| \ \forall i = 0, 1, 2, \dots, n+1$$

Torej za $\forall i$ velja:

$$|f(x_i) - q(x_i)| < |f(x_i) - p(x_i)|$$

To razvijemo v neenakosti

$$-sign(f(x_i) - p(x_i))(f(x_i) - p(x_i)) < f(x_i) - q(x_i)$$

in

$$f(x_i) - q(x_i) < sign(f(x_i) - p(x_i))(f(x_i) - p(x_i))$$

Če v neenakostih x_i spremenimo v x_{i+1} ter upoštevamo enakost

$$sign(f(x_{i+1}) - p(x_{i+1})) = -sign(f(x_i) - p(x_i))$$

dobimo neenakosti

$$sign(f(x_i) - p(x_i))(f(x_{i+1}) - p(x_{i+1})) < f(x_{i+1}) - q(x_{i+1})$$

in

$$f(x_{i+1}) - q(x_{i+1}) < -sign(f(x_i) - p(x_i))(f(x_{i+1}) - p(x_{i+1}))$$

Brez škode za splošnost (BŠS) lahko rečemo, da je $sign(f(x_i) - p(x_i)) = 1$. Potem je $f(x_i) - q(x_i) < f(x_i) - p(x_i)$, $p(x_i) - q(x_i) < 0$ in $f(x_{i+1}) - p(x_{i+1}) < f(x_{i+1}) - q(x_{i+1})$, torej $p(x_{i+1}) - q(x_{i+1}) > 0$.

Vidimo, da ima razlika p-q ničlo na intervalu (x_i, x_{i+1}) za $i \in [n]$. Razlika p-q je polinom stopnje n, ki ima n+1 ničel. Torej mora biti $p \equiv q$.

Izkaže se, da je pogoj tudi potreben (torej da velja ekvivalenca), a je dokaz težek, zato ga bomo izpustili.

Iskanje/računanje PNEA se prevede na iskanje ustrezne množice točk $\{x_i, a \le x_0 < x_1 < \cdots < x_{n+1} \le b\}$.

Definicija 1.4. Naj bo $E = \{x_i, a \le x_0 < x_1 < \dots < x_{n+1} \le b\}$. Definirajmo **minimaks** za f na E konstruirati

$$M_n(f, E) = \min_{p \in \mathbb{P}_n} \max_{x_i \in E} |f(x_i) - p(x_i)|$$

Polinom, pri katerem je ta minimum dosežen, imenujemo **polinom najboljše enakomerne aproksimacije za** f **na množici** E. Izračunamo ga tako, da rešimo naslednji sistem linearnih enačb: (brez izpeljave)

$$f(x_i) - p(x_i) = (-1)^i m, i \in [n+1]$$

Imamo torej n+2 enačb in n+2 neznank (n+1 v polinomu p in eno v m):

$$p(x) = \sum_{j=0}^{n} a_j x^j$$

ter koeficient m, za katerega velja

$$|m| = M_n(f, E)$$

(vstavi slikco)

2 Interpolacija

Problem: Podane imamo vrednosti izbrane funkcije f v n+1 paroma različnih točkah x_0, x_1, \ldots, x_n na realni osi. Te točke bomo imenovali **interpolacijske točke**. Iščemo neko preprostejšo funkcijo g, ki zadošča pohojem

$$g(x_i) = f(x_i) \forall i \in [n]$$

g imenujemo **interpolacijska funkcija**. Za interpolacijske funkcije običajno izberemo polinome, odsekoma polinomske funkcije . . .

Interpolacija se uporablja za

- aproksimacijo dane funkcije
- kadar funkcijo f poznamo le v točkah x_0, x_1, \ldots, x_n , radi pa bi izračunali vrednost te funkcije tudi za x, ki ni ena izmed interpolacijskih točk.
- za izpeljavo formul za numerično integriranje, odvajanje, reševanje navadnih diferencialnih enačb (NDE) . . .

2.1 Polinomska interpolacija

Za $f \in \mathcal{C}([a,b])$ in interpolacijske točke $a \leq x_0 < x_1 < \cdots < x_m \leq b$ iščemo **polinom** p_i , ki zadošča enačbam

$$p(x_i) = f(x_i), i = a, \dots, n$$

Enačb je n+1. Da dobimo enako število enačb, moramo izbrati $p \in \mathbb{P}_n$.

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Enačbe (za i = 0, 1, ..., n)

$$a_0 + a_1 x_i + a_2 x_i^2 + \dots + a_n x_i^n$$

lahko zapišemo matrično

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix}$$

Matriko, ki jo uporabimo, imenujemo vandermondova matrika.

$$\det V(x_0, x_1, \dots, x_n) = \prod_{0 \le i < j \le n} (x_j - x_i)$$

Ker je Vandermondova matrika obrnljiva, sledi, da imamo enolično rešitev. Torej obstaja **enoličen** polinom stopnje n, ki interpolira n+1 paroma različnih točk. Tak interpolacijski problem imenujemo **korenten** interpolacijski problem. Vandermondova matrika je primer **zelo občutljive** matrike. Poleg tega nimamo rešitve v **zaključeni obliki**. Spoznali bomo dva druga zapisa interpolacijskega polinoma:

- Lagrangeva oblika zapisa
- Newtonova oblika zapisa

2.1.1 Lagrangeva oblika zapisa interpolacijskega polinoma

Definiramo naslednje polinome:

$$\ell_{0,n}(x) = \frac{(x-x_1)(x-x_2)\dots(x-x_n)}{(x_0-x_1)(x_0-x_2)\dots(x_0-x_n)}$$

$$\ell_{1,n}(x) = \frac{(x-x_1)(x-x_2)\dots(x-x_n)}{(x_1-x_0)(x_1-x_2)\dots(x_1-x_n)}$$

$$\vdots$$

$$\ell_{n,n}(x) = \frac{(x-x_1)(x-x_2)\dots(x-x_n)}{(x_n-x_0)(x_n-x_1)\dots(x_n-x_{n-1})}$$

oziroma

$$\ell_{i,n}(x) = \prod_{j=0, j \neq i}^{n} \frac{(x - x_j)}{(x_i - x_j)}$$

za i = 0, 1, ..., n. To imenujemo **Lagrangevi bazni polinomi**.

Velja:

$$\ell_{i,n}(x) = \delta_{i,j} = \begin{cases} 1 & ; i = j \\ 0 & ; i \neq j \end{cases}$$

Vsi ti polinomi so stopnje točno n.

Izrek 2.1. Polinomi $\ell_{i,n}$ za $i = 0, 1, \ldots, n$ so baza za \mathbb{P}_n .

Dokaz. Dokazati moramo le, da so linearno neodvisni. Preveriti moramo, da je $\alpha_0\ell_{i,n}+\alpha_1\ell_{i,n}+\cdots+\alpha_n\ell_{i,n}=0<=>\alpha_0=\alpha_1=\cdots=\alpha_n=0.$

 (\Longrightarrow)

$$\sum_{j=0}^{n} \alpha_{j} \ell_{j,n}(x) = 0 \ \forall x$$

Vstavimo $x = x_i$ in dobimo

$$0 = \sum_{j=0}^{n} \alpha_j \ell_{j,n}(x_i) = \sum_{j=0}^{n} \alpha_j \delta_{i,j} = \alpha_i$$

(⇐=) Očitno.

Iz dokaza izreka sledi, da lahko vsak polinom $p \in \mathbb{P}_n$ zapišemo kot linearno kombinacijo

$$p(x) = \sum_{j=0}^{n} c_j \ell_{j,n}(x)$$

 $za c_j \in \mathbb{R}$.

Kako izbrati koeficiente, da bo polinom interpolacijski oziroma da bo zadoščal pogojem

$$p(x_i) = \sum_{j=0}^{n} c_j \ell_{j,n}(x_i) = f(x_i)$$

za i = 1, ..., n. Za vsak i je tudi vsota enaka c_i .

Dobili smo

$$p(x) = \sum_{j=0}^{n} f(x_j)\ell_{j,n}(x)$$

kar je Lagrangeva oblika zapisa interpolacijskega polinoma.

Primer. Naj bo $f(x) = e^x$. Pošiči interpolacijski polinom za f na točkah $x_0 = 0, x_1 = 1, x_2 = 3, x_3 = 4$. Za n = 3 izračunamo

$$\ell_{0,3}(x) = \frac{(x-1)(x-3)(x-4)}{((0-1)(0-3)(0-4))}$$

$$= -\frac{1}{12}(x-1)(x-3)(x-4)$$

$$\ell_{1,3}(x) = \frac{x(x-3)(x-4)}{(1(1-3)(1-4))}$$

$$= \frac{1}{6}x(x-3)(x-4)$$

$$\ell_{2,3}(x) = \frac{x(x-1)(x-4)}{(3(3-1)(3-4))}$$

$$= -\frac{1}{6}x(x-1)(x-4)$$

$$\ell_{3,3}(x) = \frac{x(x-1)(x-3)}{(4(4-1)(4-3))}$$

$$= \frac{1}{12}x(x-1)(x-3)$$

in dobimo rešitev

$$p(x) = e^{0}\ell_{0,3}(x) + e^{1}\ell_{1,3}(x) + e^{3}\ell_{2,3}(x) + e^{4}\ell_{3,3}(x)$$

Časovna zahtevnost za evaluacijo $\ell_{i,n}(x)$ v x_i je $\mathcal{O}(n^2)$. Ker v praksi izpustimo skupen polinom, je končna časovna zahtevnost $\mathcal{O}(n)$, tako kot Hornerjev algoritem.

Lema 2.2. Če je $f \in \mathbb{P}_n$, potem je $\sum_{i=0}^n f(x_i)\ell_{i,n}(x) = f(x)$.

Dokaz. Sledi iz enoličnosti interpolacijskega polinoma.

Posledica 2.3.

$$\sum_{i=0}^{n} \ell_{i,n}(x) = 1 \tag{8}$$

Lagrangevi bazni polinomi tvorijo **razčlenitev** oziroma **razčlenitev enote**, ki pozitivno vpliva na stabilnost baze.

Izrek 2.4 (O napaki interpolacije.). Naj bodo $a \le x_0 < x_1 \cdots < x_n \le b$, $f \in \mathcal{C}^{n+1}([a,b])$ in naj bo p interpolacijski polinom za f na teh točkah. Potem za vsak $x \in [a,b]$ obstaja $\xi_x \in (a,b)$, da velja

$$f(x) - p(x) = \omega(x) \frac{f^{(n+1)}(\xi_x)}{(n+1)!}$$

kjer velja

$$\omega(x) = (x - x_0)(x - x_1) \dots (x - x_n)$$

Dokaz. Če je $x=x_i$, potem $f(x_i)-p(x_i)=0$ in $\omega(x_i)=0$ ter enakost velja za vsak $\xi_x\in(a,b)$. Naj bo sedaj $x\neq x_i,\,i=0,1,\ldots,n$ in naj bo ta x fiksen. Definirajmo $F(u)=f(u)-p(u)-c\omega(u)$ za neko konstanto c, pri čemer za F velja $F\in \mathbb{C}^{n+1}([a,b]),\,F(x_i)=f(x_i)-p(x_i)-c\omega(x_i)=0$ za $i=0,1,\ldots,n$. Konstanto c izberemo tako, da bo tudi F(x)=0. Torej ima F na [a,b] n+2 različnih ničel. Potem ima F' na (a,b) n+1 različnih ničel. Potem ima F'' na (a,b) n različnih ničel ... Potem ima $F^{(n+1)}$ na (a,b) vsaj eno ničlo. Označimo to ničlo z ξ_x . Torej je

$$0 = F^{(n+1)}(\xi_x)$$

= $f^{(n+1)}(\xi_x) - p^{(n+1)}(\xi_x) - c\omega^{(n+1)}(\xi_x)$

Uporabimo razmislek od zgoraj in dobimo

$$0 = f^{(n+1)}(\xi_x) - c(n+1)!$$

Ko to preuredimo, dobimo

$$c = \frac{1}{(n+1)!} f^{(n+1)}(\xi_x)$$

Za poljuben $c \in [a, b]$ po izreku velja

$$|f(x) - p(x)| = |\omega| \frac{1}{(n+1)!} |f^{(n+1)}(\xi_x)| \le ||\omega||_{\infty, [a,b]} \frac{1}{(n+1)!} ||f^{(n+1)}||_{\infty, [a,b]}$$

Iz tega sledi

$$||f - p||_{\infty,[a,b]} \le \frac{1}{(n+1)!} ||\omega||_{\infty,[a,b]} ||f^{(n+1)}||_{\infty,[a,b]}$$

Ta ocena je uporabna v teoriji, ne pa tudi v praksi.

Lagrangeva oblika je zaradi enostavnosti zelo uporabna pri izpeljavi formul za numerično integracijo, odvajanje ..., ima pa tudi nekaj pomankljivosti pri praktični uporabi:

- numerično računanje vrednosti polinoma v Lagrangevi obliki ...
- Numerične težave, če so interpolacijske točke preblizu skupaj
- Konstrukcija ni rekurzivna. Dodajanje novih točk je zahtevno.

2.1.2 Newtonova oblika zapisa interpolacijskega polinoma

Za bazo, v kateri bomo predstavili interpolacijski polinom, izberemo **prestavljene potence**.

$$\{1, x - x_0, (x - x_0)(x - x_1), \dots, (x - x_0)(x - x_1) \dots (x - x_n)\}\$$

Očitno je to baza: vidimo, da se stopnje povečujejo in je posledično kolokacijska matrika spodnje trikotna. V nadaljevanju bomo naredili rekurzivno konstrukcijo.

Vsak $p \in \mathbb{P}_n$ lahko zapišemo kot

$$\sum_{i=0}^{n} \left(c_i \prod_{j=0}^{i-1} (x - x_j) \right)$$

Iščemo koeficiente $(c_i)_{i=0}^n$, da bo p interpolacijski. Ta p bomo konstruirali **rekurzivno**. Naj bo p_{k-1} interpolacijski polinom za f na točkah $x_0, x_1, \ldots, x_{k-1}$. Kako poiskati p_k , ki bo interpolacijski za f na točkah x_0, x_1, \ldots, x_k , kjer bo $p_{k-1} \in \mathbb{P}_{k-1}$ in $p_k \in \mathbb{P}_k$?

$$p_k(x) = p_{k-1}(x) + c(x - x_0)(x - x_1) \cdots (x - x_{k-1})$$

Vstavimo $x = x_i, j \in \{0, 1, ..., k - 1\}$

$$p_k(x_i) = p_{k-1}(x_i) + c \cdot 0 = f(x_i)$$

Ostane le pogoj za $x = x_k$

$$p_k(x_k) = f(x_k)$$

kjer lahko zapišemo

$$p_k(x_k) = p_{k-1}(x_x) + c \prod_{j=0}^{k-1} (x_k - x_j)$$

S tem je določen c, ki je kar **vodilni koeficient** od p_k . Označimo ga z $[x_0, x_1, \ldots, x_k]f$ in ga imenujemo **deljena diferenca**.

Definicija 2.5. **Deljena diferenca** $[x_0, x_1, \dots, x_k]f$ je vodilni koeficient interpolacijskega polinoma stopnje k (koeficient pri x^k) za funkcijo f na točkah x_0, x_1, \dots, x_k .

Sledi, da lahko $p_k(x)$ zapišemo kot

$$p_k(x) = p_{k-1}(x) + [x_0, x_1, \dots, x_k] f \cdot (x - x_0)(x - x_1) \dots (x - x_{k-1})$$

(vstavi graf) V grafu: $p_0 \in \mathbb{P}_p$, $p_0(x) = x_0 \cdot 1$. Po definiciji je $[x_0]f = f(x_0)$. Iz te rekurzivne konstrukcije dobimo

$$p_{n}(x) = p_{n-1}(x) + [x_{0}, x_{1}, \dots, x_{n}] f(x - x_{0})(x - x_{1}) \dots (x - x_{n-1})$$

$$= \dots$$

$$= p_{o}(x) + [x_{0}, x_{1}] f(x - x_{0}) + [x_{0}, x_{1}, x_{2}] f(x - x_{0})(x - x_{1}) + \dots + [x_{0}, x_{1}, \dots, x_{n}] f(x - x_{0})(x - x_{1}) \dots (x - x_{n-1})$$

$$p_{n}(x) = \sum_{i=0}^{n} [x_{0}, x_{1}, \dots, x_{i}] f(x - x_{0})(x - x_{1}) \dots (x - x_{i-1})$$

Temu rečemo Newtonova oblika zapisa interpolacijskega polinoma.

Kako izračunati deljene diference?

- $[x_0]f = f(x_0)$
- $[x_0, x_1]f = ?$

(vstavi graf)

$$p_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$
$$= [x_0]f \cdot 1 + [x_0, x_1]f(x - x_0)$$

V zgornji enačbi je $\frac{f(x_1)-f(x_0)}{x_1-x_0}$ vodilni koeficient, 1 in $(x-x_0)$ pa sta baza. Iz tega sledi

$$[x_0, x_1]f = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{[x_1]f - [x_0]f}{x_1 - x_0}$$

Izrek 2.6 (Rekurzivna formula za deljene diference). Naj bodo x_0, x_1, \ldots, x_k paroma različne točke. Tedaj velja

$$[x_0, x_1, \dots, x_k]f = \frac{[x_1, x_2, \dots x_k]f - [x_0, x_1, \dots x_{k-1}]f}{x_k - x_0}$$

Opomba. Pazi na koeficiente! V števcu gredo pri prvem od x_1 do x_k , pri drugem pa od x_0 do x_{k-1} . Tista, ki smo ju izpustili, potem odštejemo v imenovalcu, torej $x_k - x_0$.

Dokaz. Naj bo q_0 interpolacijski za f na točkah $x_0, x_1, \ldots, x_{k-1}$ in q_1 interpolacijski za f na točkah x_1, x_2, \ldots, x_k . Velja, da sta $q_0, q_1 \in \mathbb{P}_{k-1}$. Kako priti do polinoma p, ki bo interpolacijski na x_0, x_1, \ldots, x_k ? Ta p bo tak, da bo veljalo $p \in \mathbb{P}_k$.

Sestavimo model za p

$$p(x) = \ell_0(x)q_0(x) + \ell_1(x)q_1(x), \ell_0, \ell_1 \in \mathbb{P}_1, \ell_0, \ell_1 = ?$$
$$x = x_j, j \in \{x_1, x_2, \dots, x_{k-1}\}$$

Dobimo tri pogoje:

$$(\star\star) x = x_i$$

$$p(x_j) = \ell_0(x_j)q_0(x_j) + \ell_1(x_j)q_1(x_j) = (\ell_0(x_j) + \ell_1(x_j))f(x_j) \stackrel{?}{=} f(x_j)$$

$$(\star) \ x = x_0$$
$$p(x_0) = \ell_0(x_0) f(x_0) + \ell_1(x_0) g(x_0) \stackrel{?}{=} f(x_0)$$

(*)
$$x = x_k$$

$$p(x_k) = \ell_0(x_k)q(x_k) + \ell_1(x_k)f(x_k) \stackrel{?}{=} f(x_k)$$

Če izberemo

$$\ell_0(x) = \frac{x - x_k}{x_0 - x_k}$$

in

$$\ell_1(x) = \frac{x - x_0}{x_k - x_0}$$

zadostimo pogojema (*). Ker pa je $\ell_0(x) + \ell_1(x) = 1$ za $\forall x$, pa velja tudi (**).

Torej

$$p(x) = \frac{x - x_k}{x_0 - x_k} q_0(x) + \frac{x - x_0}{x_k - x_0} q_1(x)$$

Opomba. V nadaljevanju se bo namesto vodilni koeficient pisalo v.k.

Primerjamo vodilne koeficiente na levi in desni strani in dobimo:

$$v.k.(p) = [x_0, x_1, \dots, x_k]f$$

Na desni strani:

$$\frac{1}{x_0 - x_k} \cdot v.k.(q_0) + \frac{1}{x_k - x_0} \cdot v.k.(q_1) = \frac{[x_1, x_2, ..., x_k]f - [x_0, x_1, ..., x_{k-1}]f}{x_k - x_0}$$

2.1.2.1 Trikotna shema

$$[x_0, x_1, x_2]f = \frac{[x_1, x_2]f - [x_0, x_1]f}{x_2 - x_0}$$

Deljive diference, ki jih potrebujemo v zapisu interpolacijskega polinoma, računamo v **trikotni shemi** (primer za n=3): (vstavi shemo)

Primer. Poišči polinom p, za katerega velja p(0) = 1, p(1) = 3, p(3) = 5 in p(4) = 2.

$$p \in \mathbb{P}_3, x_0 = 1, x_1 = 3, x_2 = 5, x_3 = 4$$
 baza:

$$\{1, x, x(x-1), x(x-1)(x-3)\}$$

(tabela)

$$p(x) = 1 \cdot 1 + 2 \cdot x - \frac{1}{3} \cdot x(x-1) - \frac{1}{4} \cdot x(x-1)(x-3)$$

Za splošen n: (shema)

Kako izračunati vrednost polinoma v Newtonovi bazi pri izbranem x?

Označimo
$$d_i = [x_0, x_1, \dots, x_i] f, i = 0, 1, \dots, n \ n = 4$$

$$p(x) = d_0 \cdot 1 + d_1(x - x_0) + d_2(x - x_0)(x - x_1) + d_3(x - x_0)(x - x_1)(x - x_2) + d_4(x - x_0)(x - x_1)(x - x_2)(x - x_3)$$

= $d_0 + (x - x_0)(d_1 - (x - x_1)(d_2 - (x - x_2)(d_3 - (x - x_3)d_4)))$

zapišemo

$$v_4 = d_4$$

$$v_3 = d_3 + (x - x_3)v_4$$

$$v_2 = d_2 + (x - x_2)v_3$$

$$v_1 = d_1 + (x - x_1)v_2$$

$$v_0 = d_0 + (x - x_0)v_1$$

Algorithm 2 Posplošen Hornerjev algoritem

Input
$$\underline{d}(=[d_0,d_1,\ldots,d_n]), \underline{x}(=[x_0,x_1,\ldots,x_n]), x$$
 $v_n = d_n$
for $i = n-1:-1:0$ do
 $v_i = d_i + (x-x_i)v_{i+1}$
end for
 $v_0 = p(x)$
Output v_0

(tabelca za hronerja)

Poglejmo si za n = 1 (slikca)

$$p(x) = f(x_0) \cdot 1 + [x_0, x_1] f(x - x_0)$$

$$= f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0) - (x_1 \to x_0)$$

$$\longrightarrow f(x_0) + \left(\lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0}\right) (x - x_0) p(x) = f(x_0) - f'(x_0)(x - x_0)$$

Iz tega dobimo sistem enačb:

$$p(x_0) = f(x_0)$$
$$p'(x_0) = f'(x_0)$$

Definicija 2.7. Pravimo, da se polinom p s funkcijo f ujema v točki x_i (k+1)-kratno, če se ujema v vrednosti in prvih k odvodih. Enačbe, ki določajo te pogoje:

$$p(x_i) = f(x_i)$$

$$p'(x_i) = f'(x_i)$$

$$p''(x_i) = f''(x_i)$$

$$\vdots$$

$$p^{(k)}(x_i) = f^{(k)}(x_i)$$

Tak polinom je Taylorjev polinom:

$$p(x) = f(x_i) + f'(x_i)(x - x_i) + \frac{f''(x_i)}{2!}(x - x_i)^2 + \dots + \frac{f^{(k)}(x_i)}{k!}(x - x_i)^k$$

Če bomo v točki x_i zahtevali (k+1)-kratno ujemanje, potem bomo to točko podali (k+1)-kratno:

$$x_{i-1} < x_i = x_{i+1} = x_{i+2} = \dots x_{i+k} < x_{i+k+1}$$

2.1.2.2 Posplošitev deljene diference

Poglejmo si, kako posplošimo deljenje diference.

$$[x_i, x_i, \dots, x_i]f = \frac{f^{(k)}(x_i)}{k!}$$

Opomba. V zgornji enačbi imamo (k+1) x_i -jev

2.1.2.3 Posplošitev rekurzivne formule

Opomba. Vrstni red točk v deljeni diferenci **ni** pomemben.

Naj velja $x_i \leq x_{i+1} \leq x_{i+2} \leq \cdots \leq x_{i+k}$. Potem je

$$[x_i, x_{i+1}, \dots, x_{i+k}]f = \begin{cases} \frac{f^{(k)}(x_i)}{k!} & x_i = x_{i+1} = \dots = x_{i+k} \\ \frac{[x_{i+1}, \dots, x_{i+k}]f - [x_i, \dots, x_{i+k-1}]f}{x_{i+k} - x_i} & \text{sicer} \end{cases}$$

Primer. Poišči polinom p, za katerega velja p(0)=1, p'(0)=2, p''(0)=3, p(1)=-1, p'(1)=3, p(2)=4

Določimo točke x_0, x_1, \ldots, x_5 :

$$x_0 = 0, x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1, x_5 = 2$$

Potem sestavimo bazo:

$$\{1, c, x^2, x^3, x^3(x-1), x^3(x-1)^2\}$$

Z uporabo trikotne sheme izračunamo koeficiente za polinom: (trikotna shema) Iz trikotne sheme preberemo koeficiente in sestavimo interpolacijski polinom:

$$p(x) = 1 \cdot 1 + 2 \cdot x + \frac{3}{2}x^2 - \frac{11}{2}x^3 + \frac{29}{2}x^3(x-1) - \frac{79}{8}x^3(x-1)^2$$

Brez izpeljave povejmo še sledeče trditve:

Trditev 2.8. Za $f \in \mathcal{C}^k([a,b]), a \leq x_0 \leq x_1 \leq x_n \leq b$, velja

$$[x_i, x_{i+1}, \dots, x_{i+k}]f = \frac{f^{(k)}(\xi)}{k!}, \xi \in [x_i, x_{i+k}]$$

Trditev 2.9. Za $f \in \mathbb{C}^{n+1}([a,b]), a \leq x_0 \leq x_1 \leq \cdots \leq x_n \leq b$ in interpolacijski polinom p za f na teh točkah velja

$$f(x) - p(x) = \omega(x)[x_0, x_1, \dots, x_n, x]f = \omega(x)\frac{f^{(n+1)(\xi_x)}}{(n+1)!}, \xi_x in(a, b), x \in [a, b]$$

$$\omega(x) = \prod_{i=0}^{n} (x - x_i)$$

Kako izbrati interpolacijske točke na [a, b]? Obstaja več možnosti:

1. Ekvidistantne točke:

$$x_i = a + i \cdot h$$

kjer je $h = \frac{b-a}{n}$ in velja za $i = 0, 1, \dots, n$. (slikca)

2. Čebiševe točke Izbira, pri kateri je neskončna norma polinoma ω najmanjša možna.

$$\min_{a \le x_0 < x_1 < \dots < x_n \le b} \|\omega\|_{\infty, [a,b]} = \min_{a \le x_0 < x_1 < \dots < x_n \le b} \max_{x \in [a,b]} |\omega(x)|$$

Rešitev so

$$x_i = \frac{a+b}{2} + \frac{b-1}{2}\cos(\frac{2i+1}{2n+2}\pi)$$

$$za i = 0, 1, ..., n$$

Recimo, da izberemo $f \in \mathcal{C}([a,b])$, izberemo zaporedje interpolacijskih točk $(\{x_0,x_1,\ldots,x_n\})_n$ in povečujemo stopnjo n. Dobimo zaporedje interpolacijskih polinomov $(p_n)_n$. Zanima nas, kaj se dogaja z napako

$$||f - p||_{\infty, [a, b]} \xrightarrow{n \to \infty} ?? \tag{9}$$

Žal ne velja nujno, da bi šla ta napaka proti 0.

Protiprimer: (Rungejev primer)

Za funkcijo $f(x) = \frac{1}{1-x^2}$ na interalu [-5,5] interpoliramo z ekvidistantnimi točkami. Z večanjem n-ja gre napaka proti ∞ .

2.1.2.4 Odsekoma polinomske funkcije (zlepki)

IDEJA: Interval [a,b] razdelimo na m delov s stičnimi točkami

$$a = x_0 < x_q < \dots < x_m = b$$

(slikca)

$$s: [a, b] \to \mathbb{R}$$

$$s \Big|_{[x_i, x_{i+1}]} \in \mathbb{P}_n$$

V stičnih točkah predpišemo red gladkosti.

Primer. Odsekoma linearne interpolacijske tunkcije (slikca) - funkcija, označene točke, vmes povezane s premicami

Primer. Odsekoma kubičen interpolacijski zlepek. Polinom na $[x_i, x_{i+1})$ določimo tako, da zadostimo pogojem

$$p_{i}(x_{i}) = f(x_{i})$$

$$p'_{i}(x_{i}) = f'(x_{i})$$

$$p_{i}(x_{[i+1]}) = f(x_{i+1})$$

$$p'_{i}(x_{[i+1]}) = f'(x_{i+1}), p_{i} \in \mathbb{P}_{3}$$