WS 2022/23, Obermayer/Kashef/Strömsdörfer

Radial basis function networks

Exercise T7.1: Multi-class classification: simple methods (tutorial)

- (a) Describe how a k nearest neighbor classifier predicts the class of previously unseen inputs?
- (b) A "Parzen window" classifier extends the *electoral committee* approach of kNN. How are the different votes *weighted*?

Exercise T7.2: Radial basis function networks

(tutorial)

- (a) Describe and discuss the *general architecture* of an RBF-network.
- (b) Describe and discuss the *two-step learning procedure* for RBF-networks with K basis functions.
- (c) In which cases of *regression* or *classification* do RBF networks outperform *MLPs* significantly? What are the advantages of RBF networks? In which situations are they preferable to MLP?

Exercise H7.1: Training data

(homework, 1 point)

Create a sample of p=120 training patterns $\{\underline{\mathbf{x}}^{(\alpha)},y_T^{(\alpha)}\}$, $\alpha=1,\ldots,p$. The input values $\underline{\mathbf{x}}^{(\alpha)}\in\mathbb{R}^2$ should be drawn from a mixture of Gaussians with centers in an XOR-configuration according to the following scheme:

• Generate 60 samples from each of the following conditional distributions:

$$\begin{split} & p(\underline{\mathbf{x}}|y=0) & := \tfrac{1}{2} \big[\, \mathcal{N}(\underline{\mathbf{x}}|\underline{\boldsymbol{\mu}}_1, \underline{\mathbf{I}} \, \sigma^2) + \mathcal{N}(\underline{\mathbf{x}}|\underline{\boldsymbol{\mu}}_2, \underline{\mathbf{I}} \, \sigma^2) \, \big] \, , \\ & p(\underline{\mathbf{x}}|y=1) & := \tfrac{1}{2} \big[\, \mathcal{N}(\underline{\mathbf{x}}|\underline{\boldsymbol{\mu}}_3, \underline{\mathbf{I}} \, \sigma^2) + \mathcal{N}(\underline{\mathbf{x}}|\underline{\boldsymbol{\mu}}_4, \underline{\mathbf{I}} \, \sigma^2) \, \big] \, , \end{split}$$

with
$$\underline{\boldsymbol{\mu}}_1=(0,1)^\top,\underline{\boldsymbol{\mu}}_2=(1,0)^\top,\underline{\boldsymbol{\mu}}_3=(0,0)^\top,\underline{\boldsymbol{\mu}}_4=(1,1)^\top$$

and a variance of $\sigma^2 = 0.1$.

To sample from one of the two mixture variables you can

- (i) draw with probability 1/2 whether you will draw the next point from the density in the left summand or from the density in the right summand, then
- (ii) sample from that normal distribution yielding a single point $\underline{\mathbf{x}}^{(\alpha)}$.

Note that $\mathcal{N}(\underline{\mathbf{x}}|\underline{\boldsymbol{\mu}},\underline{\mathbf{I}}\,\sigma^2)$ is the probability density of a multivariate normal distribution of a vector $\underline{\mathbf{x}}$, where $\underline{\boldsymbol{\mu}}$ is the mean vector and σ^2 the variance. The variance is the same for all components.

• The corresponding target values $y_T^{(\alpha)} \in \{0,1\}$ describe the assignment to the two classes and indicate from which distribution [$p(\underline{\mathbf{x}}|y=0)$ vs. $p(\underline{\mathbf{x}}|y=1)$] the data point was drawn.

(a) (1 point) Plot the resulting 120 input samples $\underline{\mathbf{x}}^{(\alpha)}$ in a scatter plot, in which the markers and/or colors represent the corresponding samples' labels $y_T^{(\alpha)}$.

Exercise H7.2: k nearest neighbors (kNN) (homework, 2 points)

Build a kNN classifier that classifies new data ($query\ points$) by voting of the k nearest neighbors from the training set. The $electoral\ committee$ is selected from the training patterns according to their Euclidean distance to the query point. The predicted class is determined by the target value of the majority of those k nearest patterns.

(a) (2 points) Plot the training patterns and the decision boundary (e.g. using a contour plot or a high-resolution image of)¹ in input space for k = 1, 3, 5. What do you observe?

Exercise H7.3: "Parzen window" classifier (homework, 3 points)

This classifier implements a *weighted voting scheme*. All training points (not only the k nearest ones) cast a vote for the query point but their vote is weighted by a *Parzen window* (or *kernel function*) depending on the distance between the training samples $\underline{\mathbf{x}}^{(\alpha)}$ and the query point $\underline{\mathbf{x}}$. The Gaussian window function based on Euclidean norm $\|\cdot\|$ is:

$$\kappa(\underline{\mathbf{x}},\underline{\mathbf{x}}^{(\alpha)}) = \exp\left(-\frac{1}{2\sigma_{\kappa}^{2}} \|\underline{\mathbf{x}} - \underline{\mathbf{x}}^{(\alpha)}\|^{2}\right).$$

- (a) (2 points) Plot the training patterns and the decision boundary (e.g. using a contour plot or a high-resolution image of equidistant query points) in input space for Gaussian window functions parameterized with the variances $\sigma_{\kappa}^2 = 0.5, 0.1$ and 0.01.
- (b) (1 point) Add 60 new data points from a third class centered on $\underline{\tilde{\mu}} = (0.5, 0.5)^{\top}$ with variance $\tilde{\sigma}^2 = 0.05$. Rerun the kNN and Parzen-window classification. Plot the classification boundaries as above and compare them with your previous results.

Exercise H7.4: RBF networks

(homework, 4 points)

Similar to the Parzen window, RBF networks classify data according to a weighted vote, but the voting committee now consists of $K \ll p$ "representatives" instead of all p data points. These representatives do not have to be previously seen data points and can be "prototypes" $\underline{\mathbf{t}}_i \in \mathbb{R}^2$ derived from the training data via K-means clustering.

Construct an RBF network for binary classification – using the initial two-class data set from H7.1 and discarding the data points you added in H7.3b – as follows:

- Determine the K representatives $\underline{\mathbf{t}}_i$ via K-means clustering (you can implement the batchalgorithm described in the lecture or use an off-the-shelf implementation).
- For a given weight vector $\underline{\mathbf{w}} \in \mathbb{R}^{K+1}$, the predicted classification for a query point $\underline{\mathbf{x}}$ is:

$$y(\mathbf{x}; \mathbf{w}) = \text{step}(\mathbf{w}^{\top} \phi(\mathbf{x})),$$

¹Python users can generate a grid of equidistant query points that cover the ranf of the input variables using numpy's meshgrid function, then color each grid point by how the classifier's prediction.

where
$$\underline{\phi}(\underline{\mathbf{x}}) := \begin{pmatrix} 1 \\ \phi_1(\underline{\mathbf{x}}) \\ \dots \\ \phi_K(\underline{\mathbf{x}}) \end{pmatrix}$$
 is a $(K+1)$ -dimensional vector containing the bias and the

basis function values $\phi_i(\underline{\mathbf{x}}) = \kappa(\underline{\mathbf{x}}, \underline{\mathbf{t}}_i)$ with κ from the previous exercise (Gaussian radial basis functions). Here we use the following step function

$$step(h) = \begin{cases} 1 & \text{for } h \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$$

to convert the network output $\underline{\mathbf{w}}^{\top} \phi(\underline{\mathbf{x}})$ (regressed to labels 0 or 1) to a class prediction.

• Determine the weight vector as: $\underline{\mathbf{w}} = \left(\underline{\Phi}\,\underline{\Phi}^{\top}\right)^{-1}\underline{\Phi}\,\underline{\mathbf{y}}_{\mathrm{True}}^{\top}$ where $\underline{\mathbf{y}}_{\mathrm{True}} := (y_T^{(1)}, \dots, y_T^{(p)}) \in \mathbb{R}^{1,p}$ is the vector of target values and

$$\underline{\Phi} := \left(\underline{\phi}(\underline{\mathbf{x}}^{(1)}), \dots, \underline{\phi}(\underline{\mathbf{x}}^{(p)})\right) \in \mathbb{R}^{K+1,p}$$

- (a) (2 points) Plot the decision boundaries together with the training patterns and locations of the representatives for $K \in \{2,3,4\}$. Do this for two different (reasonable²) kernel widths σ_{κ} of the radial basis functions ϕ_i , yielding a total of six plots.
- (b) (2 points) We would like to visualize how the non-linearly separable data appears in the transformed feature space, which the classifier operates on:

Construct a new RBF-network with 2 RBFs and fix the centers to $\underline{\mathbf{t}}_1 = (0,0)^{\top}$ and $\underline{\mathbf{t}}_2 = (1,1)^{\top}$ (i.e., skip K-means clustering).

For $\sigma_{\kappa} = 0.45$, produce a scatter plot of the data in the space of RBF-activations, i.e. for each data point $\underline{\mathbf{x}}^{(\alpha)}$, plot $\phi_1(\underline{\mathbf{x}}^{(\alpha)})$ vs. $\phi_2(\underline{\mathbf{x}}^{(\alpha)})$, indicate their class-assignment y_T by coloring the points accordingly.

Plot also the predicted labels after training in a similar second plot.

Feel free to reduce the data-variance σ (e.g. to 0.2) to make the cluster-structure more prominent.

Total 10 points.

²You have information to make an educated guess for the value of the kernel width. The second value should be chosen to reveal a qualitative effect of a lower or larger width on the predcitions.