

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

#6

SEQUENCE LISTING

<110> Mitchell, ~~TRADE~~ G.
Garcia-Blanco, Mariano A.
Puttaraju, Madaiah
Mansfield, Gary S.

<120> METHODS AND COMPOSITIONS FOR USE IN
SPLICEOSOME MEDIATED RNA TRANS-SPLICING IN PLANTS

<130> A31304-B-A-C 072874.0138

<140> 09/756,097
<141> 2001-01-08

<150> 09/158,863
<151> 1998-09-23

<150> 09/133,717
<151> 1998-08-13

<150> 09/087,233
<151> 1998-05-28

<150> 08/766,354
<151> 1996-12-13

<150> 60/008,317
<151> 1995-12-15

<160> 105

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 132
<212> DNA
<213> Homo sapien

<400> 1
caggggacgc accaaggatg gagatgttcc agggcgctga tcatgttggattcttc
60
aaatcttttg tcatggaaaa ctttcttcg taccacggga ctaaacctgg ttatgttagat
120
tccattcaaa aa

132

<210> 2
<211> 29
<212> DNA
<213> Corynebacterium diphtheriae

<400> 2
ggcgctgcag ggcgctgatg atgttgttg
29

<210> 3
<211> 36
<212> DNA
<213> Corynebacterium diphtheriae

<400> 3
ggcgaaggctt ggatccgaca cgatttcctg cacagg
36

<210> 4
<211> 68
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 4
aattctctag atgcttcacc cgggcctgac tcgagttacta actggtaacct cttctttttt
60
ttccttgca
68

<210> 5
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 5
ggaaaaaaaaaa gaagaggtac cagtttagtac tcgagtcagg cccgggtgaa gcatctagag
60

<210> 6

<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 6
tcgagcaacg ttataataat gttc
24

<210> 7
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 7
tcgagaacat tattataacg ttgc
24

<210> 8
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 8
aattctctag atcaggcccg ggtgaagcac tcgag
35

<210> 9
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 9
tgttcaccc gggctgatc tagag
25

<210> 10

.

<211> 18
<212> DNA
<213> Homo sapien

<400> 10
tgcttcaccc gggcctga
18

<210> 11
<211> 16
<212> DNA
<213> Homo sapien

<400> 11
ctcttctttt ttttcc
16

<210> 12
<211> 18
<212> DNA
<213> Homo sapien

<400> 12
caacgttata ataatgtt
18

<210> 13
<211> 16
<212> DNA
<213> Homo sapien

<400> 13
ctgtgattaa tagcgg
16

<210> 14
<211> 16
<212> DNA
<213> Homo sapien

<400> 14
cctggacgcg gaagtt
16

<210> 15
<211> 51
<212> DNA
<213> Homo sapien

<400> 15
ctgggacaag gacactgctt cacccggta gtagaccaca gccctgaagc c
51

<210> 16
<211> 17
<212> DNA
<213> Homo sapien

<400> 16
cttctgtttt ttttctc
17

<210> 17
<211> 16
<212> DNA
<213> Homo sapien

<400> 17
cttctgtatt attctc
16

<210> 18
<211> 16
<212> DNA
<213> Homo sapien

<400> 18
gttctgtcct tgtctc
16

<210> 19
<211> 29
<212> DNA
<213> Corynebacterium diphtheriae

<400> 19
ggcgctgcag ggcgctgatg atgttgtg
29

<210> 20
<211> 36
<212> DNA
<213> Corynebacterium diphtheriae

<400> 20
ggcgaagctt ggatccgaca cgatttcctg cacagg

<210> 21
<211> 21
<212> DNA
<213> Corynebacterium diphtheriae

<400> 21
catcgtcata atttccttgt g
21

<210> 22
<211> 20
<212> DNA
<213> Corynebacterium diphtheriae

<400> 22
atggaatcta cataaccagg
20

<210> 23
<211> 20
<212> DNA
<213> Corynebacterium diphtheriae

<400> 23
gaaggctgag cactacacgc
20

<210> 24
<211> 20
<212> DNA
<213> Homo sapien

<400> 24
cggcaccgtg gccgaagtgg
20

<210> 25
<211> 30
<212> DNA
<213> Homo sapien

<400> 25
accggaattc atgaagccag gtacaccagg
30

<210> 26

<211> 20
<212> DNA
<213> Homo sapien

<400> 26
gggcaaggtg aacgtggatg
20

<210> 27
<211> 19
<212> DNA
<213> Homo sapien

<400> 27
atcaggagtg gacagatcc
19

<210> 28
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer complimentary to the
Escherichia coli lacZ gene

<400> 28
gcatgaattc ggtaccatgg gggggttctc atcatcatc
39

<210> 29
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer complimentary to the
Escherichia coli lacZ gene

<400> 29
ctgaggatcc tcttacctgt aaacgccat actgac
36

<210> 30
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer complimentary to the
Escherichia coli lacZ gene

<400> 30
gcatggtaac cctgcagggc ggcttcgtct gggactgg
38

<210> 31
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer complimentary to the
Escherichia coli lacZ gene

<400> 31
ctgaaagctt gttaacttat tattttgac accagacc
38

<210> 32
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer complimentary to the
Escherichia coli lacZ gene

<400> 32
gcatggtaac cctgcagggc ggcttcgtct aataatggga ctgggtg
47

<210> 33
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer complimentary to the beta
HCG6 gene (accession #X00266)

<400> 33
gcatggatcc tccggagggc ccctgggcac cttccac
37

<210> 34

<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer complimentary to the beta HCG6 gene (accession #X00266)

<400> 34
ctgactgcag ggttaaccgga caaggacact gcttcacc
38

<210> 35
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer complimentary to the beta HCG6 gene (accession #X00266)

<400> 35
gcatggtaac cctgcagggg ctgctgctgt tgctg
35

<210> 36
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer complimentary to the beta HCG6 gene (accession #X00266)

<400> 36
ctgaaagctt gttaaccagc tcaccatggt gggcag
37

<210> 37
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer complimentary to the Escherichia coli lacZ gene

<400> 37

ggcttcgct acctggagag ac
22

<210> 38
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer complimentary to the
Escherichia coli lacZ gene

<400> 38
gctggatgcg gcgtgcggtc g
21

<210> 39
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer complimentary to the
Escherichia coli lacZ gene

<400> 39
cggcaccgtg gccgaagtgg
20

<210> 40
<211> 45
<212> DNA
<213> Homo sapien

<400> 40
acctgggcccc acccattatt aggtcattat ccgcggaaaca ttata
45

<210> 41
<211> 35
<212> DNA
<213> Homo sapiens

<400> 41
acctctgcag gtgaccctgc agaaaaaaa agaag
35

<210> 42

<211> 30
<212> DNA
<213> Homo sapiens

<400> 42
acctctgcag acttcacttc taatgatgat
30

<210> 43
<211> 51
<212> DNA
<213> Homo sapien

<400> 43
acctgcggcc gcctaattgtat gatgatgatg atgctttct agttggcatg c
51

<210> 44
<211> 32
<212> DNA
<213> Homo sapien

<400> 44
gacctctcga gggatttggg gaattatgg ag
32

<210> 45
<211> 35
<212> DNA
<213> Homo sapien

<400> 45
ctgacacctcg gccgctacag tttttttttt ggtgc
35

<210> 46
<211> 35
<212> DNA
<213> Homo sapien

<400> 46
ctgacacctcg gccgccccaaat tatctttttt atgtg
35

<210> 47
<211> 32
<212> DNA
<213> Homo sapien

<400> 47
gacctcttaa gtagactaac cgattgaata tg
32

<210> 48
<211> 21
<212> DNA
<213> Homo sapien

<400> 48
ctaatgatga ttagatgtat g
21

<210> 49
<211> 21
<212> DNA
<213> Homo sapien

<400> 49
cgccctaatga ttagatgtat g
21

<210> 50
<211> 21
<212> DNA
<213> Homo sapien

<400> 50
cttcttggtt ctcctgtcct g
21

<210> 51
<211> 32
<212> DNA
<213> Homo sapien

<400> 51
gacctctcgaa gggattttggg gaatttatttg ag
32

<210> 52
<211> 21
<212> DNA
<213> Homo sapien

<400> 52
aactagaagg cacagtcgag g

21

<210> 53

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> trans-spliced product containing Human chorionic
gonadotropin gene 6 sequences and Corynebacterium
diphtheriae diphtheria toxin A sequence

<400> 53

gagatgttcc agggcgtgat gatg

24

<210> 54

<211> 127

<212> RNA

<213> Artificial Sequence

<220>

<223> PTM intramolecular base paired stem

<221> misc_feature

<222> (57) ... (70)

<223> Loop comprising a combination of 14 nucleotides
according to specification

<400> 54

gcuagccugg gacaaggaca cugcuucacc cgguuaguag accacagccc ugagccnnnn
60
nnnnnnnnnnn aucguuaacu aauaaacuac uaacugggug aacuucuguu uuuuucucga

120

gcugcag

127

<210> 55

<211> 127

<212> RNA

<213> Artificial Sequence

<220>

<223> PTM intramolecular base paired stem

<221> misc_feature

<222> (57) ... (70)

<223> Loop comprising a combination of 14 nucleotides

according to specification

<400> 55
gcuagccugg gacaaggaca cugcuucacc cgguuaguag accacagccc ugagccnnnn
60
nnnnnnnnnn aucguuaacu aauaaacuac uaacugggug aacuucugua uuauucucga
120
gcugcag
127

<210> 56
<211> 127
<212> RNA
<213> Artificial Sequence

<220>
<223> PTM intramolecular base paired stem

<221> misc_feature
<222> (57) ... (70)
<223> Loop comprising a combination of 14 nucleotides
according to specification

<400> 56
gcuagccugg gacaaggaca cugcuucacc cgguuaguag accacagccc ugagccnnnn
60
nnnnnnnnnn aucguuaacu aauaaacuac uaacugggug aaguucuguc cuugucucga
120
gcugcag
127

~<210> 57
<211> 132
<212> DNA
<213> Artificial Sequence

<220>
<223> trans-spliced product containing Human chorionic
gonadotropin gene 6 sequences and Corynebacterium
diphtheriae diphtheria toxin A sequences

<400> 57
caggggacgc accaaggatg gagatgttcc agggcgctga tcatgttggattcttctt
60
aaatcttttg tcatggaaaa ctttcttcg taccacggga ctaaacctgg ttatgttagat
120
tccattcaaa aa
132

<210> 58
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence derived from Escherichia coli
lacZ gene

<400> 58
gaattcggta ccatgggg
18

<210> 59
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence derived from Escherichia coli
lacZ gene

<400> 59
cgtttacagg taagaggatc ctccggaggg ccc
33

<210> 60
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence derived from Escherichia coli
lacZ gene

<400> 60
tggtgtcaaa aataataagt taacaagctt
30

<210> 61
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> trans-spliced product containing Escherichia coli
lacZ gene sequences and Human chorionic

gonadotropin gene 6 exon 2 sequences

<400> 61

cagcagcccc tgtaaacggg gatac
25

<210> 62

<211> 286

<212> DNA

<213> Artificial Sequence

<220>

<223> trans-spliced product containing Escherichia coli
lacZ gene sequences

<400> 62

ggcttcgct acctggagag acgcgcggc tgatccttg cgaatacgcc cacgcgttgg
60

gtaacagtct tggcggttgc gctaaatact ggcaggcggt tcgtcagtat ccccgtttac
120

agggcggctt cgtctaataa tggactggg tggatcagtc gctgattaaa tatgatgaaa
180

acgggcaacc cgtggtcggc ttacggcggt gatttggcg atacgccgaa cgatcgccag
240

ttctgtatga acggtctggt ctggccgac cgcacgcccgc atccag

286

<210> 63

<211> 196

<212> DNA

<213> Artificial Sequence

<220>

<223> trans-spliced product containing Escherichia coli
lacZ gene sequences

<400> 63

ggcttcgct acctggagag acgcgcggc tgatccttg cgaatacgcc cacgcgttgg
60

gtaacagtct tggcggttgc gctaaatact ggcaggcggt tcgtcagtat ccccgtttac
120

aggggctgct gctgttgctg ctgctgagca tggcgccgac atgggcattcc aaggagccac
180

ttcggccacg gtggcg

196

<210> 64

<211> 420

<212> DNA
<213> Artificial Sequence

<220>
<223> trans-spliced product comprising cystic fibrosis transmembrane regulator-derived sequences and His tag sequence

<400> 64
gctagcggtt aaacgggcgg acccatcatt attaggtcat tatccgcgga acattattat
60
aacgttgctc gagtactaac tggaacctct tcttttttt cctgcagact tcacttctaa
120
tcatgattat gggagaactg gagccttcag agggtaaaat taagcacagt ggaagaattt
180
cattctgttc tcagtttcc tggattatgc ctggcaccat taaagaaaaat atcatcttg
240
gcggccgcca ctgtgctgga tatctgcaga attccaccac actggactag tggatccgag
300
ctcggtagcca aggttaagtt taaaccgctg atcagcctcg actgtgcctt ctagttgcca
360
gccatctgtt gtttgccccct ccccccgtgcc ttccttgacc ctggaaggtag ccactcccac
420

<210> 65
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Splice junction sequence

<400> 65
atgttccagg gcgtgatgat
20

<210> 66
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> C terminal residues from glutathione -S- transferase

<400> 66
Asp Tyr Lys Asp Asp Asp Lys

<210> 67
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial sequence comprising sequences derived from Escherichia coli lacZ gene

<400> 67
ggagttgatc ccgtc
15

<210> 68
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial sequence comprising sequences derived from Escherichia coli lacZ gene

<400> 68
gcagtgtcct tgtgcggta ccctgcaggc cggcttc
37

<210> 69
<211> 120
<212> DNA
<213> Artificial Sequence

<220>
<223> Binding domain of PTM

<400> 69
gattcacttg ctccaattat catcctaaggc agaagtgtat attcttattt gtaaagattc
60
tattaactca tttgattcaa aatatttaaa atacttcctg tttcatactc tgctatgcac
120

<210> 70
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Spacer sequence of PTM

<400> 70
aacattatta taacgttgct cgaa
24

<210> 71
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Branch point, pyrimidine tract and acceptor splice site of PTM

<400> 71
tactaactgg taccttttct ttttttttg atatcctgca gggcggc
47

<210> 72
<211> 70
<212> DNA
<213> Artificial Sequence

<220>
<223> Donor site and spacer sequence of PTM

<400> 72
tgaacggtaa gtgttatcac cgatatgtgt ctaacctgat tcgggccttc gatacgctaa
60
gatccaccgg
70

<210> 73
<211> 260
<212> DNA
<213> Artificial Sequence

<220>
<223> Binding domain of spacer sequence

<400> 73
tcaaaaaagtt ttcacataat ttcttacctc ttcttgaatt catgcttga tgacgcttct
60
gtatctatat tcatttttttgg aaacaccaat gatTTTCTT taatggtgcc tggcataatc
120

ctggaaaact gataacacaa tgaaattctt ccactgtgct taaaaaaaaacc ctcttgaatt
180
ctccatttct cccataatca tcattacaac tgaactctgg aaataaaaacc catcattatt
240
aactcattat caaatcacgc
260

<210> 74
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 74
cgctggaaaa acgagcttgt tg
22

<210> 75
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 75
actcagtgtg attccacacctt ctc
23

<210> 76
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 76
gacctctgca gacttcactt ctaatgatga ttatgg
36

<210> 77
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 77
ctaggatccc gtttttgt tcttcactat taa
33

<210> 78
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 78
ctagggttac cgaagtaaaa ccatacttat tag
33

<210> 79
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 79
gcattgggttac cctgcagggg ctgctgctgt tgctg
35

<210> 80
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 80
ctgaaagctt gttaaccagc tcaccatggt ggggcag
37

<210> 81
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Binding domain of PTM molecule

<400> 81
accatcatt attaggtcat tat
23

<210> 82
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 82
gatcaaatct gtcgatcctt cc
22

<210> 83
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 83
ctgatccacc cagtcccatt a
21

<210> 84
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 84
gactgatcca cccagtccta ga
22

<210> 85
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> Random sequence inserted to replace 3' splice site

<221> misc_feature
<222> (7)...(30)
<223> spacer sequence, see SEQ ID NO 70

<400> 85
ccgcggnnnn nnnnnnnnnn nnnnnnnnnn gggttccggc accggcggt tc
52

<210> 86
<211> 71
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 86
tttatcccc gtttacaggg cggcttcgtc tggactggg tggatcagtc gctgattaaa
60
tatgatgaaa a
71

<210> 87
<211> 66
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 87
tttggcgata cgccgaacga tcgccagttc tgtatgaacg gtctggtctt tgccgaccgc
60
acgccg
66

<210> 88
<211> 192
<212> DNA
<213> Artificial Sequence

<220>
<223> PTM sequences

<400> 88

acgagcttgc tcatgtatcat catggcgag tttagaacaa gtgaaggcaa gatcaaacat
60
tccggccgca tcagcttttgcagccaattc agttggatca tgcccggtac catcaaggag
120
aacataatct tcggcgtagttacgacgat taccgctatc gctcggtgat taaggcctgt
180
cagttggagg ag
192

<210> 89
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 89
gagcaggcaa gacgagcttg ctcat
25

<210> 90
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 90
gagaacataa tcttcggcgt cagttacg
28

<210> 91
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 91
gtcagttgga ggaggacatc tccaaagtgg
30

<210> 92
<211> 192
<212> DNA

<213> Artificial Sequence

<400> 92
acgagcttgc tcatgatgat catggcgag ttagaaccaa gtgaaggcaa gatcaaacat
60
tccggccgca tcagctttg cagccaattc agttggatca tgcccggtac catcaaggag
120
aacataatct tcggcgtcag ttacgacgag taccgctatc gctcggtgat taaggcctgt
180
cagttggagg ag
192

<210> 93

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> PTM sequences

<400> 93

aaatatcatt ggtgtttctt atgatga

27

<210> 94

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 94

ccaactagaa gaggacatct ccaagttgc

30

<210> 95

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 95

atgatcatgg gcgagttaga accaagttag

30

<210> 96
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 96
aaaatatcat ctttgggttt tcctatg
27

<210> 97
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 97
ccaaactagaa gaggacatct ccaagtt
27

<210> 98
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> 5' splice site

<400> 98
cgtttacagg taagtggatc c
21

<210> 99
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> 3' splice site

<400> 99
ctgcagggcg gcttcgtcta ataatgg
27

<210> 100
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Sequence from trans-splicing domain

<400> 100
tactaactgg taccttttct ttttttttg atatcctgca gggcggc
47

<210> 101
<211> 1584
<212> DNA
<213> Artificial Sequence

<220>
<223> CFTR PTM

<400> 101
atgcagaggc cgccctgtgg aaaggccagc gttgtctcca aactttttt cagctggacc
60
agaccaattt tgaggaaagg atacagacag cgccctggaat tgtcagacat ataccaaata
120
ccttctgttg attctgctga caatctatct gaaaaattgg aaagagaatg ggatagagag
180
ctggcttcaa agaaaaatcc taaactcatt aatgcccttc ggcgatgttt tttctggaga
240
tttatgttct atgaaatctt tttatattta gggaaagtca ccaaagcagt acagcctctc
300
ttactggaa gaatcatagc ttcctatgac ccggataaca aggaggaacg ctctatcgcg
360
atttatctag gcataggctt atgccttctc tttattgtga ggacactgct cctacaccca
420
gccatTTTg gccttcatca cattggaatg cagatgagaa tagctatgtt tagttgatt
480
tataagaaga cttaaaagct gtcaagccgt gttctagata aaataagtat tggacaactt
540
gttagtctcc ttccaacaa cctgaacaaa tttgatgaag gacttgcatt ggcacatttc
600
gtgtggatcg ctcccttgca agtggcactc ctcatggggc taatctggga gttgttacag
660
gcgtctgcct tctgtggact tggtttctg atagtccttg ccctttca ggctggcta
720
gggagaatga tcatgttggaa cagatcag agatcgttggaa agatcgttggaa aagacttgg
780
attaccttag aaatgttggaa gaacatccaa tctgttggaa catactgctg ggaagaagca

840 atggaaaaaaa tgattgaaaa cttaagacaa acagaactga aactgactcg gaaggcagcc
900 tatgtgagat acttcaatag ctcagccttc ttcttctcg gttctttgt ggtgtttta
960 tctgtgcttc cctatgcact aatcaaagga atcatcctcc ggaaaatatt caccaccatc
1020 tcattctgca ttgttctgcg catggcggtc actcggcaat ttccctggc tgtacaaaca
1080 tggtatgact ctcttgagc aataaacaaa atacaggatt tcttacaaaa gcaagaatat
1140 aagacattgg aatataactt aacgactaca gaagtagtga tggagaatgt aacagccttc
1200 tgggaggagg gattgggga attattttag aaagcaaaac aaaacaataa caatagaaaa
1260 acttctaattg gtgatgacag cctcttcttc agtaattct cacttcttgg tactcctgtc
1320 ctgaaagata ttaatttcaa gatagaaaga ggacagttgt tggcggttgc tggatccact
1380 ggagcaggca agacgagctt gctcatgatg atcatggcg agttagaacc aagtgaaggc
1440 aagatcaaac attccggcccg catcagcttt tgcagccaat tcagttggat catgcccggt
1500 accatcaagg agaacataat cttcggcgta agttacgacg agtaccgcta tcgctcggtg
1560 attaaggcct gtcagttgga ggag
1584

<210> 102
<211> 323
<212> DNA
<213> Artificial Sequence

<220>
<223> trans-splicing domain of CFTR PTM

<400> 102
gtaagatatc accgatatgt gtctaacctg attcgggcct-tcgatacgct aagatccacc
60
ggtcaaaaag tttcacata atttcttacc tcttcttcaa ttcatgcttt gatgacgctt
120
ctgtatctat attcatcatt gaaacacca atgatatttt ctttaatggc gcctggcata
180
atccctggaaa actgataaca caatgaaatt cttccactgt gcttaatttt accctctgaa
240
ttctccattt ctcccataat catcattaca actgaactct ggaaataaaa cccatcatta
300
ttaactcatt atcaaatcac gct

323

<210> 103

<211> 165

<212> DNA

<213> Artificial Sequence

<220>

<223> PTM binding domain

<400> 103

gctagcaata atgacgaagg cgcccccac gctcaggatt cactgcctc caattatcat

60

cctaaggaga agtgttatatt ctatattgtt aagattctat taactcattt gattcaaaat

120

attnaaaata cttcctgttt cacctactct gctatgcacc cgcg

165

<210> 104

<211> 225

<212> DNA

<213> Artificial Sequence

<220>

<223> trans-splicing domain of CFTR PTM

<400> 104

aataatgacg aagccggccc tcacgctcag gattcacttg ccctccaatt atcatcctaa

60

gcagaagtgt atattcttat ttgttaagat tctattaact catttggattc aaaatattta

120

aaataacttcc tgttcacct actctgctat gcacccgcgg aacattatta taacgttgct

180

cgaataactaa ctggcaccc ttctttttt tttgatatcc tgcag

225

<210> 105

<211> 3069

<212> DNA

<213> Artificial Sequence

<220>

<223> CFTR PTM sequence

<400> 105

acttcacttc taatgatgat tatggagaa ctggagcctt cagaggtaa aattaagcac

60

agtggaaagaa tttcattctg ttctcagttt tcctggatta tgcctggcac cattaaagaa

120
aatatcatct ttgggtttc ctatgatgaa tatagataca gaagcgtcat caaagcatgc
180
caactagaag aggacatctc caagtttgcg gagaaagaca atatagttct tggagaagg
240
ggaatcacac tgagtggagg tcaacgagca agaatttctt tagcaagagc agtatacaaa
300
gatgctgatt tgtatTTTt agactctcct tttggatacc tagatgtttt aacagaaaaa
360
gaaatatttg aaagctgtgt ctgttaactg atggctaaca aaacttaggat tttggtcact
420
tctaaaatgg aacatttaaa gaaagctgac aaaatattaa ttttgcata aggtgcgc
480
tatTTTtag ggacattttc agaactccaa aatctacagc cagactttag ctcaaaactc
540
atgggatgtg attcttcga ccaatttagt gcagaaagaa gaaattcaat cctaactgag
600
actttacacc gtttctcatt agaaggagat gtcctgtct cttggacaga aacaaaaaaaa
660
caatctttt aacagactgg agagttggg gaaaaaaagga agaattctat tctcaatcca
720
atcaactcta tacgaaaatt ttccattgtg caaaagactc ctttacaaat gaatggcatc
780
gaagaggatt ctgatgagcc tttagagaga aggctgtcct tagtaccaga ttctgagcag
840
ggagaggcga tactgcctcg catcagcgtg atcagcactg gccccacgct tcaggcacga
900
aggaggcagt ctgcctgaa cctgatgaca cactcagtta accaaggta gaacattcac
960
cgaaagacaa cagcatccac acgaaaagtg tcactggccc ctcaggcaaa cttgactgaa
1020
ctggatataat attcaagaag gttatctcaa gaaactggct tggaaataag tgaagaaatt
1080
aacgaagaag acttaaagga gtgtttttt gatgatatgg agagcataacc agcagtgact
1140
acatggaaca cataccttcg atatattact gtccacaaga gcttaatttt tgtgctaatt
1200
tggtgcttag taatTTTct ggcagaggtg gctgcttctt tggttgtgct gtggctcctt
1260
gaaaacactc ctcttcaaga caaaggaaat agtactcata gtagaaataa cagctatgca
1320
gtgattatca ccagcaccag ttctgtattat gtgtttaca tttacgtggg agtagccgac
1380
actttgcttg ctatgggatt ctctcagaggt ctaccactgg tgcatactct aatcacagt
1440
tcgaaaattt tacaccacaa aatgttacat tctgttcttc aagcacctat gtcaaccctc
1500
aacacgttga aagcaggtgg gattcttaat agattctcca aagatatacg aattttggat

1560
gaccttctgc ctcttaccat atttgacttc atccagttgt tattaattgt gattggagct
1620
atagcagttg tcgcagttt acaaccctac atcttggtg caacagtgcc agtgatagtg
1680
gctttatta tgttgagagc atatttcctc caaacctcac agcaactcaa acaactggaa
1740
tctgaaggca ggagtccaat tttcactcat cttgttacaa gcttaaaagg actatggaca
1800
cttcgtgcct tcggacggca gccttacttt gaaactctgt tccacaaagc tctgaattta
1860
catactgccca actggttctt gtacctgtca acactgcgcgt ggttccaaat gagaatagaa
1920
atgatttttg tcattttctt cattgctgtt accttcattt ccatttaac aacaggagaa
1980
ggagaaggaa gagttggtat tattcctgact ttagccatga atatcatgag tacattgcag
2040
tgggctgtaa actccagcat agatgtggat agcttgcgtc gatctgtgag ccgagtcctt
2100
aagttcatttgc acatgccaac agaaggtaaa cctaccaagt caaccaaacc atacaagaat
2160
ggccaactct cgaaagttat gattattgag aattcacacg tgaagaaaga tgacatctgg
2220
ccctcagggg gccaaatgac tgtcaaagat ctcacagcaa aatacacaga aggtggaaat
2280
gccatattag agaacatttc cttctcaata agtcctggcc agagggtggg cctcttgggaa
2340
agaactggat cagggaaagag tactttgtta tcagctttt tgagactact gaacactgaa
2400
ggagaaatcc agatcgatgg tgtgtcttgg gattcaataa ctttgcacaaca gtggaggaaa
2460
gcctttggag tgataccaca gaaagtattt atttttctg gaacatttag aaaaaacttg
2520
gatccctatg aacagtggag tgatcaagaa atatggaaag ttgcagatga ggttggcgc
2580
agatctgtga tagaacagtt tcctggaaag cttgactttg tccttgtgaa tggggctgt
2640
gtcctaagcc atggccacaa gcagttgatg tgcttggcta gatctgttct cagtaaggcg
2700
aagatcttgc tgcttgcgtca acccagtgtc catttggatc cagtaacata ccaaataatt
2760
agaagaactc taaaacaagc atttgctgtat tgcacagtaa ttctctgtga acacaggata
2820
gaagcaatgc tggaaatgcca acaatttttg gtcataagaag agaacaaggat gggcagttac
2880
gattccatcc agaaactgct gaacgagagg agcctttcc ggcaagccat cagcccctcc
2940
gacagggtga agcttttcc ccaccggaac tcaagcaagt gcaagtctaa gccccagatt

3000
gctgctctga aagaggagac agaagaagag gtgcaagata caaggcttca tcatcatcat
3060
catcattag
3069