

Page 1 of 49

TEST REPORT

Product

Tracker

Trade mark

Model/Type reference

MPIP-620

Serial Number

N/A

FCC ID

2AEPZ-MPIP-620

Report Number

EED32H000248-1

Date of Issue:

: May 07, 2015

Test Standards

47 CFR Part 2(2014)

47 CFR Part 22 subpart H(2014) 47 CFR Part 24 subpart E(2014)

Test result

PASS

Prepared for:

China Aerospace Telecommunications (ShenZhen) Limited 9th Floor, East Wing, Building A2, Longma Tech Industry City, Shixin Community, Shiyan Street, Baoan, Shenzhen, China

Prepared by:

Centre Testing International (Shenzhen) Corporation Hongwei Industrial Zone, 70 Area, Bao'an District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested by:

Approved by:

Reviewed by: Sheek / 40

Date:

May 07, 2015

Lab manager

Check No.: 1727856131

Page 2 of 49

2 Version

Version No.	Date	Description	
00	2015-03-01	Original	(
20%	-0-		

Page 3 of 49

3 Test Summary

3 lest Sullilla		A 76 1	
Test Item	Test Requirement	Test method	Result
	GPRS 850		
Conducted output power	Part 2.1046(a)/Part 22.913(a)	ITA-603-C-2004 & KDB 971168 D01v02r02	PASS
Effective Radiated Power of Transmitter(ERP)	Part 2.1046(a)/Part 22.913(a)	ITA-603-C-2004 & KDB 971168 D01v02r02	PASS
99%&26dB Occupied Bandwidth	Part 2.1049(h)	Part 22.917(b) & KDB 971168 D01v02r02	PASS
Band Edge at antenna terminals	Part 2.1051/Part 22.917(a)	Part 22.917(b) & KDB 971168 D01v02r02	PASS
Spurious emissions at antenna terminals	Part 2.1051/ Part 2.1057/ Part 22.917(a)(b)	ITA-603-C-2004 & KDB 971168 D01v02r02	PASS
Field strength of spurious radiation	Part 2.1053/ Part 2.1057/ Part 22.917(a)(b)	ITA-603-C-2004 & KDB 971168 D01v02r02	PASS
Frequency stability	Part 2.1055/ Part 22.355	ITA-603-C-2004 & KDB 971168 D01v02r02	PASS
(25)	GPRS 1900	(25) (25)	
Conducted output power	Part 2.1046(a) /Part 24.232(c)	ITA-603-C-2004& KDB 971168 D01v02r02	PASS
Effective Radiated Power of Transmitter(EIRP)	Part 2.1046(a) / Part 24.232(c)	ITA-603-C-2004 & KDB 971168 D01v02r02	PASS
peak-to-average ratio	Part 24.232(d)	KDB 971168 D01v02r02	PASS
99% &26dB Occupied Bandwidth	Part 2.1049(h)	Part 24.238(b) & KDB 971168 D01v02r02	PASS
Band Edge at antenna terminals	Part 2,1051/ Part 24.238(a)	Part 24.238(b) & KDB 971168 D01v02r02	PASS
Spurious emissions at antenna terminals	Part 2.1051/ Part 2.1057/ Part 24.238(a)(b)	ITA-603-C-2004 & KDB 971168 D01v02r02	PASS
Field strength of spurious radiation	Part 2.1053 /Part 2.1057 / Part 24.238(a)(b)	ITA-603-C-2004 & KDB 971168 D01v02r02	PASS
Frequency stability Part 2.1055/Part 24.235		ITA-603-C-2004 & KDB 971168 D01v02r02	PASS
	1		

Remark:

Tx: In this whole report Tx (or tx) means transmitter.

Rx: In this whole report Rx (or rx) means receiver.

LCH: In this whole report LCH means low channel.

MCH: In this whole report LCH means middle channel.

HCH: In this whole report LCH means high channel.

VL: In this whole report Volt means low voltage. (DC 9V)

VN: In this whole report Volt means normal voltage. (DC 12V)

VH:In this whole report Volt means high voltage. (DC 36V)

TN: In this whole report Temp means normal temperature. (25°C)

Humid: In this whole report Humid means humidity.

N/A: In this whole report not application.

Page 4 of 49

4 Content

			1
2	VEI	RSION	2
3	TES	ST SUMMARY	3
4	CO	NTENT	4
-			
5	IES	ST REQUIREMENT	
	5.1	TEST SETUP	
		1 For Conducted test setup	
		2 For Radiated Emissions test setup	
	5.2 5.3	TEST ENVIRONMENT	
		TEST CONDITION	
6	GE	NERAL INFORMATION	
	6.1	CLIENT INFORMATION	7
	6.2	GENERAL DESCRIPTION OF EUT	
	6.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	7
	6.4	DESCRIPTION OF SUPPORT UNITS	7
	6.5	TEST LOCATION	
	6.6	TEST FACILITY	
	6.7	DEVIATION FROM STANDARDS	
	6.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	6.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
7	EQ	UIPMENT LIST	10
8	RA	DIO TECHNICAL REQUIREMENTS SPECIFICATION	11
	App	pendix A) RF Power Output	12
	App	pendix B) Peak-to-Average Ratio	14
		pendix C) BandWidth	
	App	pendix D) Band Edges Compliance	19
		pendix E) Spurious Emission at Antenna Terminal	
		pendix F) Frequency Stability	
		pendix G) Effective Radiated Power of Transmitter (ERP/EIRP)	
		pendix H) Field strength of spurious radiation	
		OGRAPHS OF TEST SETUPOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	
	PHOT	OGRAFIIS OF EUT CONSTRUCTIONAL DETAILS	43

Report No.: EED32H000248-1 Page 5 of 49

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. 30MHz to 1GHz

Figure 2. above 1GHz

Figure 1. 30MHz to 1GHz

Figure 2. above 1GHz

5.2 Test Environment

Operating Environment:			
Temperature:	25.0 °C		
Humidity:	53 % RH	215	45
Atmospheric Pressure:	995mbar		

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
	TX/RX	Low(L)	Middle(M)	High(H)	
	Tx	Channel 128	Channel 190	Channel 251	
GPRS850	(824 MHz ~849 MHz)	824.2MHz	836.6 MHz	848.8 MHz	
	Rx (869 MHz ~894 MHz)	Channel 128	Channel 190	Channel 251	
		869.2 MHz	881.6 MHz	893.8 MHz	
	Tx	Channel 512	Channel 661	Channel 810	
GPRS1900 -	(1850 MHz ~1910 MHz)	1850.2MHz	1880.0 MHz	1909.8 MHz	
	RS 1900 Rx	Channel 512	Channel 661	Channel 810	
	(1930 MHz ~1990 MHz)	1930.2 MHz	1960.0 MHz	1989.8 MHz	

Test mode:

Pre-scan under all rate at lowest middle and highest channel, find the transmitter power as below:

Conducted transmitter power measurement result.

band	455	GPRS850	S	25	GPRS1900	/12
Channel	128	190	251	512	661	810
Frequency(MHz)	824.2MHz	836.6MHz	848.8MHz	1850.2MHz	1880MHz	1909.8MHz
GPRS Class 8	33.03dBm	32.95dBm	32.75dBm	27.52dBm	27.78dBm	27.99dBm
GPRS Class 10	32.53dBm	32.43dBm	32.51dBm	27.41dBm	27.57dBm	27.67dBm
GPRS Class 11	32.23dBm	32.21dBm	31.83dBm	27.39dBm	27.54dBm	27.56dBm
GPRS Class 12	32.03dBm	32.11dBm	31.93dBm	27.33dBm	27.50dBm	27.34dBm

Pre-scan all mode and data rates and positions, find worse case mode are chosen to the report , the warse case mode as below:

band	Radiated	Conducted
GPRS850	GPRS 8 Link	GPRS 8 Link
GPRS1900	GPRS 8 Link	GPRS 8 Link

Page 7 of 49

6 General Information

6.1 Client Information

Applicant:	China Aerospace Telecommunications (ShenZhen) Limited
Address of Applicant:	9th Floor, East Wing, Building A2, Longma Tech Industry City, Shixin Community, Shiyan Street, Baoan, Shenzhen, China
Manufacturer:	China Aerospace Telecommunications (ShenZhen) Limited
Address of Manufacturer:	9th Floor, East Wing, Building A2, Longma Tech Industry City, Shixin Community, Shiyan Street, Baoan, Shenzhen, China

6.2 General Description of EUT

Product Name:	Tracker		
Model No.(EUT):	MPIP-620		
Trade Mark:	C ASTEL		~ ~
EUT Supports Radios application	GPRS900,GPRS1800)	
Power Supply:	Input: 9-36V === 250mA, Class III, IPX0		
Sample Received Date:	Mar. 13, 2015	7-2	
Sample tested Date:	Mar. 13, 2015 to May 06, 2015		

6.3 Product Specification subjective to this standard

Frequency Band:	GPRS850: Tx:824.20 -848.80MHz; Rx: 869.20 – 893.80MHz GPRS1900: Tx:1850.20 – 1909.80MHz; Rx:1930.20 – 1989.80MHz
Modulation Type:	GMSK
SIM	IEMI: 358888021162413
Power class	3
Sample Type:	fixed production
Antenna Type and Gain:	Type: temporary antenna Gain:0dBi
Test Voltage:	DC 12V

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International (Shenzhen) Corporation Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

Report No.: EED32H000248-1 Page 8 of 49

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International (Shenzhen) Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 3061.01

Centre Testing International (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 756231

Centre Testing International (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 756231.

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International (Shenzhen) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International (Shenzhen) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Centre Testing International (Shenzhen) Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

Page 9 of 49

None.

6.9 Other Information Requested by the Customer

None.

Report No. : EED32H000248-1 Page 10 of 49

7 Equipment List

RF Test Equipments				
Equipment	Manufacturer	Model	Serial No.	Due Date
Spectrum Analyzer	Agilent	E4440A	MY46185649	08/03/2015
Signal Generator	Agilent	E4438C	MY45095744	08/03/2015
Communication test set	Agilent	E5515C	GB47050533	08/03/2015
Signal Generator	Keysight	E8257D	N/A	08/03/2015
Communication test set	Agilent	E5515C	GB47050533	08/03/2015
Temperature & Humidity Chamber	ESPEC	EL-04KA	N/A	08/03/2015
High-pass filter(3-18GHz)	Sinoscite	FL3CX03WG18NM 12-0398-002	N/A	08/03/2015
High-pass filter(5-18GHz)	MICRO-TRONICS	SPA-F-63029-4	N/A	08/03/2015
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09CL1 2-0395-001	N/A	08/03/2015
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08CL1 2-0393-001	N/A	08/03/2015
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04CL1 2-0396-002	N/A	08/03/2015
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03CL1 2-0394-001	N/A	08/03/2015
DC Power	Keysight	E3642A	N/A	08/03/2015
Communication Automatic control	JS Tonscend	JS0806-1	N/A	08/03/2015
LTE Automatic test software	JS Tonscend	JSTS1120-1	N/A	08/03/2015
WCDMA Automatic test software	JS Tonscend	JSTS1120-3	N/A	08/03/2015
GSM Automatic test software	JS Tonscend	JSTS1120-3	N/A	08/03/2015
3M Chamber & Accessory Equipment	TDK	SAC-3	(6	06/01/2016
Receiver	R&S	ESCI	100435	07/08/2015
Spectrum Analyzer	R&S	FSP40	100416	07/06/2015
Signal Generator	R&S	SMB 100A	3008A02145	01/15/2016
Vector Signal Generator	R&S	SMBV 100A	3636A01004	01/15/2016
Signal Analyzer	R&S	FSV	100263	01/15/2016
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	618	06/17/2015
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	617	07/13/2015
Multi device Controller	maturo	NCD/070/1071111 2		N/A
Horn Antenna	ETS-LINGREN	3117	00057407	07/07/2015
Horn Antenna	ETS-LINGREN	3117	00057362	07/07/2015
Microwave Preamplifier	Agilent	8449B	3008A02425	03/19/2016

Page 11 of 49

8 Radio Technical Requirements Specification

Reference documents for testing:

Neiterice documents for testing.						
No.	Identity	Document Title				
1	PART 22 (2014)	PART 22 – PUBLIC MOBILE SERVICES Subpart H – Cellular Radiotelephone Service				
2	PART 24 (2014)	PART 24 – PERSONAL COMMUNICATIONS SERVICES				
		Subpart E – Broadband PCS				
3	PART 2 (2014)	Frequency allocations and radio treaty matters; general rules and regulations				
4	TIA-603-C-2004	Land Mobile FM or PM - Communications Equipment -Measurement and Performance Standards				
5	KDB971168 D01	KDB971168 D01 Power Meas License Digital Systems v02r02				

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note	
Part 2.1046(a)/Part 22.913(a)/ part 24.232(c)	ITA-603-C& KDB 971168 D01v02r02	Conducted output power	PASS	Appendix A)	
Part 24.232(d)	KDB 971168 D01v02r02	peak-to-average ratio	PASS	Appendix B)	
Part 2.1049(h)	Part 22.917(b)/ Part 24.238(b) & KDB 971168 D01v02r02	99% &26dB Occupied Bandwidth	PASS	Appendix C)	
Part 2.1051/Part 22.917(a)/ Part 24.238(a)	Part 22.917(b)/ Part 24.238(b) & KDB 971168 D01v02r02	Band Edge at antenna terminals	PASS	Appendix D)	
Part 2.1051/ Part 2.1057/ Part 22.917(a)(b)/ Part 24.238(a)(b)	ITA-603-C & KDB 971168 D01v02r02	Spurious emissions at antenna terminals	PASS	Appendix E)	
Part 2.1055/ Part 22.355/ Part 24.235	ITA-603-C & KDB 971168 D01v02r02	Frequency stability	PASS	Appendix F)	
Part 2.1053/ Part 2.1057/ Part 22.917(a)(b)/ Part 24.238(a)(b)	ITA-603-C & KDB 971168 D01v02r02	Field strength of spurious radiation	PASS	Appendix G)	
Part 2.1046(a)/Part 22.913(a)/ Part 24.232(c)	ITA-603-C & KDB 971168 D01v02r02	Effective Radiated Power of Transmitter(ERP)	PASS	Appendix H)	

Test Mode	Test Modes description
GPRS/TM2	GPRS,GMSK modulation

Page 12 of 49

Appendix A) RF Power Output

GPRS Class 8:

Test Band	Test Mode	Test Channel	Measured (dBm)	Limit (dBm)	Verdict
	(0,0)	LCH	33.03	38.45	PASS
GPRS850	GPRS/TM2	MCH	32.95	38.45	PASS
(3)		HCH	32.75	38.45	PASS

Test Band	Test Mode	Test Channel	Measured (dBm)	Limit (dBm)	Verdict
		LCH	27.52	33.01	PASS
GPRS1900	GPRS/TM2	MCH	27.78	33.01	PASS
		НСН	27.99	33.01	PASS

GPRS Class 10:

Test Band	Test Mode	Test Channel	Measured (dBm)	Limit (dBm)	Verdict
		LCH	32.53	38.45	PASS
GPRS850	GPRS/TM2	MCH	32.43	38.45	PASS
		НСН	32.51	38.45	PASS

Test Band	Test Mode	Test Channel	Measured (dBm)	Limit (dBm)	Verdict
		LCH	27.41	33.01	PASS
GPRS1900	GPRS/TM2	MCH	27.57	33.01	PASS
		НСН	27.67	33.01	PASS

Page 13 of 49

Test Band	Test Mode	Test Channel	Measured (dBm)	Limit (dBm)	Verdict
	GPRS/TM2	LCH	32.23	38.45	PASS
GPRS850		MCH	32.21	38.45	PASS
		НСН	31.83	38.45	PASS

Test Band	Test Mode	Test Channel	Measured (dBm)	Limit (dBm)	Verdict
(31)		LCH	27.39	33.01	PASS
GPRS1900	GPRS/TM2	MCH	27.54	33.01	PASS
		НСН	27.56	33.01	PASS

GPRS Class 12:

Test Band	Test Mode	Test Channel	Measured (dBm)	Limit (dBm)	Verdict
~	GPRS/TM2	LCH	32.03	38.45	PASS
GPRS850		MCH	32.11	38.45	PASS
		НСН	31.93	38.45	PASS

Test Band	Test Mode	Test Channel	Measured (dBm)	Limit (dBm)	Verdict
	0	LCH	27.33	33.01	PASS
GPRS1900	GPRS/TM2	MCH	27.50	33.01	PASS
(20)		HCH	27.34	33.01	PASS

Page 14 of 49

Appendix B) Peak-to-Average Ratio

Test Band	Test Mode	Test Channel	Measured (dBm)	Limit (dBm)	Verdict
9	(3)	LCH	7.80	13	PASS
GPRS1900	GPRS/TM2	MCH	7.73	13	PASS
		HCH	11.42	13	PASS

Page 15 of 49

Appendix C) BandWidth

Test Band	Test Mode	Test Channel	99% Bandwidth (kHz)	26dB Bandwidth (kHz)	Verdict
	(30)	LCH	248.14	318.90	PASS
GPRS850	GPRS/TM2	MCH	242.83	316.63	PASS
		НСН	241.58	318.61	PASS

Test Band	Test Mode	Test Channel	99% Bandwidth (kHz)	26dB Bandwidth (kHz)	Verdict
	GPRS/TM2	LCH	251.46	313.82	PASS
GPRS1900		MCH	260.93	320.40	PASS
		HCH	223.41	303.56	PASS

Page 16 of 49

Test Band=GPRS850 Test Mode=GPRS/TM2

Test Channel=LCH

Report No.: EED32H000248-1 Page 17 of 49

Test Channel=HCH

Test Band=GPRS1900
Test Mode=GPRS/TM2
Test Channel=LCH

Page 18 of 49

Test Channel=MCH

Page 19 of 49

Report No.: EED32H000248-1

Appendix D) Band Edges Compliance

Test Band=GPRS850
Test Mode=GPRS/TM2

Test Channel=LCH

Page 20 of 49

Test Band=GPRS1900 Test Mode=GPRS/TM2 Test Channel=LCH

Page 21 of 49

Report No.: EED32H000248-1

Appendix E) Spurious Emission at Antenna Terminal

Test Band=GPRS850

Test Mode=GPRS/TM2

Page 22 of 49

Page 23 of 49

Page 24 of 49

Page 25 of 49

Report No.: EED32H000248-1

Page 26 of 49

Page 27 of 49

Report No.: EED32H000248-1

Test Band=GPRS1900 Test Mode=GPRS/TM2

Page 28 of 49

Page 29 of 49

Page 30 of 49

Report No.: EED32H000248-1

Page 31 of 49

Page 32 of 49

Page 33 of 49

Report No.: EED32H000248-1

Page 34 of 49

Page 35 of 49

Page 36 of 49

Appendix F) Frequency Stability

Frequency Error vs. Voltage:

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
GPRS850	TM2	LCH	TN	VL	16.33	0.02	±2.5	PASS
			TN	VN	7.12	0.01	±2.5	PASS
			TN	VH	5.47	0.01	±2.5	PASS
		MCH	TN	VL	16.43	0.02	±2.5	PASS
			TN	VN	14.03	0.02	±2.5	PASS
			TN	VH	5.70	0.01	±2.5	PASS
		нсн	TN	VL	22.32	0.03	±2.5	PASS
			TN	VN	12.73	0.01	±2.5	PASS
			TN	VH	15.78	0.02	±2.5	PASS

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
GPRS1900	TM2	LCH	TN	VL	11.17	0.01	±2.5	PASS
			TN	VN	22.75	0.01	±2.5	PASS
			TN	VH	8.52	0.00	±2.5	PASS
		MCH	TN	VL	13.92	0.01	±2.5	PASS
			TN	VN	13.24	0.01	±2.5	PASS
			TN	VH	2.76	0.00	±2.5	PASS
		НСН	TN	VL	17.07	0.01	±2.5	PASS
			TN	VN	8.33	0.00	±2.5	PASS
			TN	VH	1.55	0.00	±2.5	PASS

Page 37 of 49

Frequency Error vs. Temper

Frequency	/ Error	vs. Tempo	erature:		182		182	
Test Band	Test Mode	Test Channel	Test Volt.	Test Temp. (°C)	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
			VN	-30	6.77	0.01	±2.5	PASS
- 1	1	10%	VN	-20	4.72	0.01	±2.5	PASS
/	((3°)	VN	-10	11.15	0.01	±2.5	PASS
			VN	0	11.39	0.01	±2.5	PASS
GPRS850	TM2	LCH	VN	10	13.71	0.02	±2.5	PASS
			VN	20	9.63	0.01	±2.5	PASS
			VN	30	10.63	0.01	±2.5	PASS
(3)	10		VN	40	10.52	0.01	±2.5	PASS
10.)		VN	50	16.72	0.02	±2.5	PASS
			VN	-30	12.80	0.02	±2.5	PASS
			VN	-20	15.53	0.02	±2.5	PASS
			VN	-10	16.05	0.02	±2.5	PASS
			VN	0	13.58	0.02	±2.5	PASS
GPRS850	TM2	MCH	VN	10	18.89	0.02	±2.5	PASS
)	1	0 /	VN	20	11.79	0.01	±2.5	PASS
			VN	30	19.03	0.02	±2.5	PASS
			VN	40	18.71	0.02	±2.5	PASS
			VN	50	17.39	0.02	±2.5	PASS
17	\		VN	-30	10.99	0.01	±2.5	PASS
(5)	P)		VN	-20	-6.09	-0.01	±2.5	PASS
100			VN	-10	21.09	0.02	±2.5	PASS
			VN	0	14.97	0.02	±2.5	PASS
GPRS850	TM2	HCH	VN	10	21.25	0.03	±2.5	PASS
			VN	20	18.37	0.02	±2.5	PASS
V-	7	18.	VN	30	15.00	0.02	±2.5	PASS
			VN	40	15.95	0.02	±2.5	PASS
	- 1	9/	VN	50	25.25	0.03	±2.5	PASS

Page 38 of 49

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp. (°C)	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
		0.70	VN	-30	-8.90	0.00	±2.5	PASS
			VN	-20	17.07	0.01	±2.5	PASS
•)	10	(%)	VN	-10	-6.78	0.00	±2.5	PASS
			VN	0	8.47	0.00	±2.5	PASS
GPRS1900	TM2	LCH	VN	10	20.85	0.01	±2.5	PASS
			VN	20	62.66	0.03	±2.5	PASS
			VN	30	37.14	0.02	±2.5	PASS
	V	/	VN	40	27.94	0.02	±2.5	PASS
(0)		\	VN	50	33.01	0.02	±2.5	PASS
			VN	-30	33.87	0.02	±2.5	PASS
			VN	-20	0.81	0.00	±2.5	PASS
			VN	-10	-21.24	-0.01	±2.5	PASS
		-	VN	0	-4.78	0.00	±2.5	PASS
GPRS1900	TM2	MCH	VN	10	17.02	0.01	±2.5	PASS
·)	18	57	VN	20	19.93	0.01	±2.5	PASS
			VN	30	18.92	0.01	±2.5	PASS
			VN	40	18.32	0.01	±2.5	PASS
			VN	50	15.90	0.01	±2.5	PASS
730			VN	-30	1.63	0.00	±2.5	PASS
(200		(VN	-20	15.84	0.01	±2.5	PASS
(6)		- 1	VN	-10	-0.32	0.00	±2.5	PASS
			VN	0	19.68	0.01	±2.5	PASS
GPRS1900	TM2	HCH	VN	10	11.31	0.01	±2.5	PASS
			VN	20	-6.14	0.00	±2.5	PASS
	/	18.	VN	30	8.18	0.00	±2.5	PASS
(*)	(20	(%)	VN	40	11.77	0.01	±2.5	PASS
1	10		VN	50	11.13	0.01	±2.5	PASS

Report No. : EED32H000248-1 Page 39 of 49

Appendix G) Effective Radiated Power of Transmitter (ERP/EIRP)

Receiver Setup:	Freque	ency	Detector	RBW	VBW	Remark			
	30MHz-	1GHz	peak	100 kHz	300kHz	Peak			
0	Above	1GHz	Peak	1MHz	3MHz	Peak			
Measurement Procedure:	Anechoic (length. mo of the trans 2) The EUT w interference antenna to 3) The disturb raising and the turntab	vas powered Chamber. The dulation mosmitter under vas set 3 mede-receiving wer. Dance of the dilowering from the control of the dilowering from the chamber of the control	ode and the mean of test. eters(above 180 antenna, which transmitter was om 1m to 4m the fundamental el	ne transmitter asuring received BHz the distantian was mounted as maximized one receive anterestical services.	was extender er shall be tunce is 1 meter on the top or the test recent and by its contract of the test recent of the test	d to its maximum aned to the frequency and a variable-height ceiver display by rotating through 360°			
	 4) Steps 1) to and horizo 5) The transmathe antenn 6) A signal at radiating compolarized, at the test field streng 	o 3) were per ntal polariza nitter was th a was appro the disturba able. With b the receive receiver. Th oth level in s	rformed with the ation. en removed and eximately at the ance was fed to oth the substitue antenna was rate level of the sitep 3) is obtained	d replaced wit same location the substitution and the reised and lowe gnal generatoed for this set	h another and n as the cente on antenna by eceive antenr red to obtain r was adjuste of conditions				
	 7) The output power into the substitution antenna was then measured. 8) Steps 6) and 7)were repeated with both antennas polarized. 9) Calculate power in dBm by the following formula: ERP(dBm) = Pg(dBm) – cable loss (dB) + antenna gain (dBd) EIRP(dBm) = Pg(dBm) – cable loss (dB) + antenna gain (dBi) EIRP=ERP+2.15dB where: Pg is the generator output power into the substitution antenna. 								
	 10) Test the EUT in the lowest channel, the middle channel the Highest channel 11) The radiation measurements are performed in X, Y, Z axis positioning for EUT operation mode, And found the X axis positioning which it is worse case. 12) Repeat above procedures until all frequencies measured was complete. 								
Limit:	(25)		(25)	(12				
_	Mode	GPRS 850 /HSUPA I	D/WCDMA/HSD Band V	_	PA GPRS 1900/WCDMA/HSDPA /HSUPA Band V				
	Frequency 824 – 849MHz 1850 – 1910MHz								
		Limit 38.45dBm (7W) 33.01dBm (2W)							

Page 40 of 49

Measurement Data

		(0)	GPRS	8			
Channel/fc (MHz)	Height (cm)	Azimuth (deg)	ERP (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
128/824.2	150	98	33.98	38.45	-4.47	Pass	н
120/024.2	150	128	33.45	38.45	-5.00	Pass	V
100/926 6	150	100	33.77	38.45	-4.68	Pass	Н
190/836.6	150	276	33.56	38.45	-4.89	Pass	V
051/040.0	150	165	33.39	38.45	-5.06	Pass	Н
251/848.8	150	198	33.28	38.45	-5.17	Pass	V

			GPRS	1900 Clas	s 8		
Channel/fc (MHz)	Height (cm)	Azimuth (deg)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
/	150	100	28.87	33.01	-4.14	Pass	н
512/1850.2	150	126	28.56	33.01	-4.45	Pass	V
-	150	268	28.67	33.01	-4.34	Pass	Н
661/1880.0	150	300	28.49	33.01	-4.52	Pass	V
0	150	125	28.98	33.01	-4.03	Pass	Н
810/1909.8	150	100	28.78	33.01	-4.23	Pass	V

Report No.: EED32H000248-1 Page 41 of 49

Appendix H) Field strength of spurious radiation

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-30MHz	Peak	10kHz	30kHz	Peak
	30MHz-1GHz	Peak	100 kHz	300kHz	Peak
	Above 1GHz	Peak	1MHz	3MHz	Peak
Measurement Procedure:	 Scan up to 10th harmo The technique used to antenna substitution in actual ERP/EIRP emis Test procedure as below: The EUT was powered Anechoic Chamber. The length is modulation may frequency of the trans The EUT was set 3 may interference-receiving antenna tower. The disturbance of the raising and lowering from 360° the turntable. Aft is measurement was may and horizontal polarization. The transmitter was the the antenna was approximated approximately approximately	onic, find the many of find the Spurious nethod. Substitutes is an antenna of the content of the antenna of the content of the antenna, which is an antenna, which is an antenna, which is an antenna with the atom. The fundament of the content of the substitution of t	aximum radia ous Emission ution method he EUT. d on a 1.5m he transmitted assuring receist. GHz the distance maximized he receive an antal emission e EUT and the substitution and the aised and low of the signal is obtained antenna was the antenna was t	hight table are was extensiver shall be ance is 1 med on the too ance is 1 med on the too and an was maximate receive an are too as the control of the too and an are too as the control of the too and are too as the control of the too and are too as the control of the too and	at a 3 meter fully nded to its maximum e tuned to the eter) away from the op of a variable-height receiver display by by rotating through mized, a field streng antenna in both vertical tenter of the transma by means of a notennas horizontally tain a maximum was adjusted until the of conditions. It of conditions is conditioning for EUT worse case.
Limit:	Attenuated at least 43+10				

Measurement Data

6	GP	RS 850 (CI	ass 8) 128 channe	el/824.2 MH	lz(lower chan	nel)	2
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1648.4	162	165	-36.77	-13	-23.77	Pass	Н (А
2472.6	158	173	-38.01	-13	-25.01	Pass	Н
3296.8	155	160	-38.72	-13	-25.72	Pass	Н
1648.4	165	179	-36.82	-13	-23.82	Pass	V
2472.6	150	199	-37.93	-13	-24.93	Pass	V
3296.8	164	187	-38.69	-13	-25.69	Pass	V

	GPRS 850 (Class 8) 190 channel/836.6MHz (middle channel)										
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.				
1673.2	153	188	-36.43	-13	-23.43	Pass	Н				
2509.8	157	201	-38.42	-13	-25.42	Pass	Н				
3346.4	162	179	-38.90	-13	-25.90	Pass	Н				
1673.2	155	191	-36.55	-13	-23.55	Pass	V				
2509.8	160	193	-38.66	-13	-25.66	Pass	V				
3346.4	153	162	-39.12	-13	-26.12	Pass	V				

	GPF	RS 850 (Cla	ass 8) 251 channel	/848.8MHz	z(highest char	nnel)	6
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1697.6	154	205	-37.33	-13	-24.33	Pass	Н
2546.4	157	189	-38.48	-13	-25.48	Pass	Н
3395.2	162	193	-39.89	-13	-26.89	Pass	Н
1697.6	160	177	-37.92	-13	-24.92	Pass	V
2546.4	164	178	-39.01	-13	-26.01	Pass	V
3395.2	172	194	-39.97	-13	-26.97	Pass	V

6	GPI	RS 1900 (C	lass 8) 512 channe	el/1850.2MI	Hz(lower char	nnel)	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
3701.4	156	232	-35.59	-13	-22.59	Pass	н (ж
5550.6	160	248	-36.11	-13	-23.11	Pass	Н
7400.8	159	229	-37.89	-13	-24.89	Pass	Н
3701.4	162	249	-36.02	-13	-23.02	Pass	V
5550.6	151	236	-37.37	-13	-24.37	Pass	V
7400.8	154	242	-37.97	-13	-24.97	Pass	V

	GPRS 1900(Class 8) 661 channel/1880.0MHz(middle channel)										
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.				
3760	151	227	-35.92	-13	-22.92	Pass	Н				
5640	157	232	-36.11	-13	-23.11	Pass	Н				
7520	160	219	-37.41	-13	-24.41	Pass	Н				
3760	154	238	-36.46	-13	-23.46	Pass	V				
5640	162	229	-37.09	-13	-24.09	Pass	V				
7520	152	230	-37.98	-13	-24.98	Pass	V				

	GPR	S 1900(Cla	ss 8) 810 channel	/1909.8MH	lz(highest cha	annel)	10
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
3819.6	164	198	-36.78	-13	-23.78	Pass	Н
5729.4	150	224	-36.92	-13	-23.92	Pass	Н
7639.2	158	239	-37.77	-13	-24.77	Pass	Н
3819.6	160	220	-37.34	-13	-24.34	Pass	V
5729.4	156	218	-38.03	-13	-25.03	Pass	V
7639.2	162	225	-38.49	-13	-25.49	Pass	V

Note:

²⁾ All class have been tested, Only worst case is reported.

¹⁾ Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

1140. . LLD0211000210 1

PHOTOGRAPHS OF TEST SETUP

Radiated spurious emission Test Setup-1 (Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Page 45 of 49

PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS

View of external EUT-1

View of external EUT-2

View of internal EUT-1

View of internal EUT-2

View of internal EUT-4

View of internal EUT-6

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

