

Table of Contents

- Background of X Education Company
- Problem Statement & Objective of the Study
- Suggested Ideas for Lead Conversion
- Analysis Approach
- Data Cleaning
- EDA
- Data Preparation
- Model Building (RFE & Manual fine tuning)
- Model Evaluation
- Recommendations

Background of X Education Company

- An education company named X Education sells online courses to industry professionals.
- On any given day, many professionals who are interested in the courses land on their website and browse for courses.
- The company markets its courses on several websites and search engines like Google.
- Once these people land on the website, they might browse the courses or fill up a form for the course or watch some videos.
- When these people fill up a form providing their email address or phone number, they are classified to be a lead.
- Once these leads are acquired, employees from the sales team start making calls, writing emails, etc.
- Through this process, some of the leads get converted while most do not.
- The typical lead conversion rate at X education is around 30%.

Problem Statement & Objective of the Study

Problem Statement:

- X Education gets a lot of leads, its lead conversion rate is very poor at around 30%
- X Education wants to make lead conversion process more efficient by identifying the most potential leads, also known as Hot Leads
- Their sales team want to know these potential set of leads, which they will be focusing more on communicating rather than making calls to everyone.

Objective of the Study:

- To help X Education select the most promising leads, i.e., the leads that are most likely to convert into paying customers.
- The company requires us to build a model wherein we need to assign a lead score to each of the leads such that the customers with a higher lead score have a higher conversion chance and the customers with a lower lead score have a lower conversion chance.
- The CEO has given a ballpark of the target lead conversion rate to be around 80%.

Suggested Ideas for Lead Conversion

Leads Grouping

- Leads are grouped based on their propensity or likelihood to convert.
- This results in a focused group of hot leads.

Better Communication

 We could have a smaller pool of leads to communicate with, which would allow us to have a greater impact.

Boost Conversion

 We would have a greater conversion rate and be able to hit the 80% objective since we concentrated on hot leads that were more likely to convert.

Since we have a target of 80% conversion rate, we would want to obtain a high **sensitivity** in obtaining hot leads.

Analysis Approach

Data Cleaning:

Loading Data Set, understanding & cleaning data

EDA:

Check imbalance, Univariate & Bivariate analysis

Data Preparation

Dummy variables, test-train split, feature scaling

Model Building:

RFE for top 15 feature, Manual Feature Reduction & finalizing model

Model Evaluation:

Confusion matrix, Cutoff Selection, assigning Lead Score

Predictions on Test Data:

Compare train vs test metrics, Assign Lead Score and get top features

Recommendation:

Suggest top 3 features to focus for higher conversion & areas for improvement

Data Cleaning

- "Select" level represents null values for some categorical variables, as customers did not choose any option from the list.
- Columns with over 40% null values were dropped.
- Missing values in categorical columns were handled based on value counts and certain considerations.
- Drop columns that don't add any insight or value to the study objective (tags, country)
- Imputation was used for some categorical variables.
- Additional categories were created for some variables.
- Columns with no use for modeling (Prospect ID, Lead Number) or only one category of response were dropped.
- Numerical data was imputed with mode after checking distribution.

Data Cleaning

- Skewed category columns were checked and dropped to avoid bias in logistic regression models.
- Outliers in **TotalVisits** and **Page Views Per Visit** were treated and capped.
- Invalid values were fixed and data was standardized in some columns, such as lead source.
- Low frequency values were grouped together to "Others".
- Binary categorical variables were mapped.
- Other cleaning activities were performed to ensure data quality and accuracy.
 - Fixed Invalid values & Standardizing Data in columns by checking casing styles, etc. (lead source has Google, google)

EDA

Data is imbalanced while analyzing target variable.

Leads Converted

- Conversion rate is of 38.5%, meaning only 38.5% of the people have converted to leads.(Minority)
- While 61.5% of the people didn't convert to leads. (Majority)

EDA

Univariate Analysis – Categorical Variables

Lead Source: 58% Lead source is from Google
 & Direct Traffic combined.

• Last Activity: 68% of customers contribution in SMS Sent & Email Opened activities.

EDA

Univariate Analysis – Categorical Variables

• Lead Origin: "Landing Page Submission" identified 53% of customers, "API" identified 39%.

• **Current_occupation:** It has 90% of the customers as Unemployed.

Lead Origin Countplot vs Lead Conversion Rates

Lead Origin:

- Around 52% of all leads originated from "Landing Page Submission" with a lead conversion rate (LCR) of 36%.
- The "API" identified approximately 39% of customers with a **lead conversion rate (LCR) of 31%**.

Current_occupation:

- Around 90% of the customers are Unemployed, with lead conversion rate (LCR) of 34%.
- While Working Professional contribute only 7.6% of total customers with almost 92% Lead conversion rate (LCR).

Do Not Email:

• 92% of the people has opted that they don't want to be emailed about the course & 40% of them are converted to leads.

Lead Source Countplot vs Lead Conversion Rates

Lead Source:

- Google has LCR of 40% out of 31% customers,
- Direct Traffic contributes 32% LCR with 27% customers, which is lower than Google,
- Organic Search also gives 37.8% of LCR, but the contribution is by only 12.5% of customers,
- Reference has LCR of 91%, but there are only around 6% of customers through this Lead Source.

Last Activity Countplot vs Lead Conversion Rates

Last Activity:

- 'SMS Sent' has high lead conversion rate of 63% with 30% contribution from last activities,
- 'Email Opened' activity contributed 38% of last activities performed by the customers, with 37% lead conversion rate.

Specialization Countplot vs Lead Conversion Rates

• Marketing Management, HR Management, Finance Management shows good contribution in Leads conversion than other specialization.

 Past Leads who spends more time on the Website have a higher chance of getting successfully converted than those who spends less time as seen in the box-plot

Data Preparation before Model building

- Binary level categorical columns were already mapped to 1 / 0 in previous steps
- Created dummy features (one-hot encoded) for categorical variables Lead Origin, Lead Source,
 Last Activity, Specialization, Current_occupation
- Splitting Train & Test Sets
 - 70:30 % ratio was chosen for the split
- Feature scaling
 - Standardization method was used to scale the features
- Checking the correlations
 - Predictor variables which were highly correlated with each other were dropped (Lead Origin_Lead Import and Lead Origin_Lead Add Form).

Model Building

Feature Selection

- The data set has lots of dimension and large number of features.
- This will reduce model performance and might take high computation time.
- Hence it is important to perform **Recursive Feature Elimination** (RFE) and to select only the important columns.
- Then we can manually fine tune the model.
- RFE outcome
 - o Pre RFE 48 columns & Post RFE 20 columns

Model Building

- \bullet Manual Feature Reduction process was used to build models by dropping variables with p value greater than 0.05.
- Model 7 looks stable after seven iteration with:
 - o significant p-values within the threshold (p-values < 0.05) and
 - No sign of multicollinearity with VIFs less than 5
- Henc logm7 will be our final model, and we will use it for Model Evaluation which further will be used to make predictions.

Model Evaluation

Confusion Matrix & Evaluation Metrics with 0.35 as cutoff

Train Data Set

It was decided to go ahead with 0.35 as cutoff after checking evaluation metrics coming from both plots

Model: GLM Df Residuals: 6335 Model Family: Binomial Df Model: 15
Model Family: Binomial Df Model: 15
Link Function: Logit Scale: 1.0000
Method: IRLS Log-Likelihood: -2580.7
Date: Tue, 23 May 2023 Deviance: 5161.3
Time: 19:06:36 Pearson chi2: 6.36e+03
No. Iterations: 7 Pseudo R-squ. (CS): 0.4057
Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	-0.1406	0.127	-1.108	0.268	-0.389	0.108
Do Not Email	-1.6984	0.191	-8.887	0.000	-2.073	-1.324
Total Time Spent on Website	1.1171	0.040	27.686	0.000	1.038	1.196
Lead Origin_Landing Page Submission	-1.1961	0.128	-9.339	0.000	-1.447	-0.945
Lead Source_Olark Chat	1.1430	0.124	9.242	0.000	0.901	1.385
Lead Source_Reference	3.4019	0.243	14.026	0.000	2.927	3.877
Lead Source_Welingak Website	5.9684	0.732	8.158	0.000	4.535	7.402
Last Activity_Olark Chat Conversation	-1.0216	0.173	-5.914	0.000	-1.360	-0.683
Last Activity_Other_Activity	2.1646	0.461	4.691	0.000	1.260	3.069
Last Activity_SMS Sent	0.7940	0.157	5.047	0.000	0.486	1.102
Last Activity_Unreachable	0.7494	0.310	2.415	0.016	0.141	1.358
Last Activity_Unsubscribed	1.4180	0.480	2.952	0.003	0.476	2.360
Specialization_Others	-1.1989	0.126	-9.514	0.000	-1.446	-0.952
What is your current occupation_Working Professional	2.6042	0.195	13.337	0.000	2.221	2.987
Last Notable Activity_Modified	-0.6922	0.097	-7.138	0.000	-0.882	-0.502
Last Notable Activity_SMS Sent	0.6910	0.177	3.894	0.000	0.343	1.039

Model Evaluation

ROC Curve – Train Data Set

- Area under ROC curve is 0.88 out of 1 which indicates a good predictive model.
- The curve is as close to the top left corner of the plot, which represents a model that has a high true positive rate and a low false positive rate at all threshold values.

Model Evaluation

Confusion Matrix & Metrics

Train Data Set

[[3455 450] [693 1753]]

Accuracy: 0.8200283419933869

Sensitivity: 0.7166802943581357 Specificity: 0.8847631241997439

False Positivity Rate: 0.11523687580025609 Positive Predictive Value: 0.7957330912392192 Negative Predictive Value: 0.8329315332690453

Precision: 0.7347391786903441 Recall: 0.8119378577269011

Test Data Set

```
array([[1521, 213],
[ 294, 695]], dtype=int64)
```

After running the model on the test data, we obtained the following observations:

- . The accuracy of the model was 81%.
- . The sensitivity of the model was 70%.
- . The specificity of the model was 87%.

- Using a cut-off value of 0.35, the model achieved a sensitivity 71% in the train set and 70% in the test set
- Sensitivity in this case indicates how many leads the model identify correctly out of all potential leads which are converting
- The CEO of X Education had set a tar sensitivity of around 70%
- ullet The model also achiev **accuracy of 81\%**, which is in line with the study's objectives.

Recommendation based on Final Model

- As per the problem statement, increasing lead conversion is crucial for the growth and success of X Education. To achieve this, we have developed a regression model that can help us identify the most significant factors that impact lead conversion.
- We have determined the following features that have the highest positive coefficients, and these features should be given priority in our marketing and sales efforts to increase lead conversion.

Lead Source_Welingak Website	5.914695
Lead Source_Reference	3.392774
What is your current occupation_Working Professional	2.618774
Last Activity_Other_Activity	2.226927
Last Activity_Unsubscribed	1.380067
Last Activity_SMS Sent	1.328999
Lead Source_Olark Chat	1.141863
Total Time Spent on Website	1.118245
Last Activity_Unreachable	0.811978

• We have also identified features with negative coefficients that may indicate potential areas for improvement. These include:

·· · · · ·	
Last Activity_Olark Chat Conversation	-0.922916
Lead Origin_Landing Page Submission	-1.190922
Specialization_Others	-1.197650
Do Not Email	-1.676398

Recommendation based on Final Model

To increase our Lead Conversion Rates

- Focus on features with positive coefficients for targeted marketing strategies.
- Develop strategies to attract high-quality leads from top-performing lead sources.
- Optimize communication channels based on lead engagement impact.
- Engage working professionals with tailored messaging.
- More budget/spend can be done on Welingak Website in terms of advertising, etc.
- Incentives/discounts for providing reference that convert to lead, encourage providing more references.
- Working professionals to be aggressively targeted as they have high conversion rate and will have better financial situation to pay higher fees too.

To identify areas of improvement

- Analyze negative coefficients in specialization offerings.
- Review landing page submission process for areas of improvement.

