Prova 3

Delineamento e Análise de Experimentos

2022-09-21

Questão 1

A produtividade de um processo químico está sendo estudada. Os fatores que se tem interesse em controloar são temperatura e pressão. Para cada dia é possível realizar apenas 9 observações. Os dados foram observados em 2 dias diferentes e os dias devem ser considerados como blocos. A tabela abaixo apresenta os resultados observados:

Temperature	Day 1 Pressure			Day 2 Pressure			
	250	260	270	250	260	270	
Low	86.3	84.0	85.8	86.1	85.2	87.3	
Medium	88.5	87.3	89.0	89.4	89.9	90.3	
High	89.1	90.2	91.3	91.7	93.2	93.7	

Figure 1: Tabela 1

```
y <- c(86.3,88.5,89.1,84.0,87.3,90.2,85.8,89.0,91.3,
86.1,89.4,91.7,85.2,89.9,93.2,87.3,90.3,93.7)
```

- Apresente um modelo de efeitos para representar os dados do experimento e as estimativas dos parâmetros do modelo.
- Apresente a tabela da análise de variância e interprete os resultados, indicando as hipóteses testadas.
- Considerando que o parâmetro referente a temperatura seja τ , calcule a probabilidade do erro do tipo 2 no caso em que $(\tau_1 = 0, \tau_2 = 1, \tau_3 = -1)$

Questão 2

Exemplo: Suponha o caso de um experimento com três rações (A, B, e C), em seis blocos casualizados, cada parcela constituída por dois animais. Em uma determinada fase do ensaio, os bovinos, dentro de cada parcela, passaram a receber, por sorteio, um dos tipos de suplementos minerais (M ou P). Os ganhos de pesos individuais, ao final do experimento, são apresentados na Tabela 4.

Tabela 4:	Ganhos de	pesos, em	quilos.	ao final	do experimento.

	Tipos de Ração						
Blocos	A		В		С		Totais
	M	Р	M	Р	M	Р	
I	107	89	116	101	90	96	599
II	117	101	136	110	112	89	665
III	122	98	130	104	99	92	645
IV	111	101	122	91	105	78	608
V	90	95	117	100	110	90	602
VI	116	90	114	94	114	93	621
Totais	663	574	735	600	630	538	3.740

Figure 2: Tabela 2

```
y <- c(107,89,116,101,90,96,

117,101,136,110,112,89,

122,98,139,104,99,92,

111,101,122,91,105,78,

90,95,117,100,110,90,

116,90,114,94,114,93)
```

- Faça a análise do experimento, apresentando o modelo, as hipóteses, a tabela da análise de variância e as conclusões.
- Para o modelo apresentado descreva o que representa cada componente.
- Suponha que o especialista definiu que o suplemento do Tipo M deve ser utilizado. Desenvolva testes de tukey para comparar os diferentes tipos de ração quando usados com o suplemento M. Apresente as hipóteses, p-valores e conclusões.
- Com base no item anterior qual ração deve ser recomendada para maximizar o ganho de peso com o uso do suplemento do Tipo M?