Let $f(t) = Fe j(\omega t + b_F) = Fe j(\omega t)$ (i.e., $\widetilde{f} = Fe j(\Phi_F)$) and $g(t) = Ge j(\omega t + \Phi_G) = Ge j(\omega t)$ (i.e., $\widetilde{f} = Ge j(\Phi_F)$).

Show that (Reb Reg) = & Re(Fa*) = & Re(Fa).

Note that Re $\beta = F \cos(\omega t + \beta_F)$ Re $g = G \cos(\omega t + \beta_G)$.

Because $\langle \cos(2\omega t \cdots) \rangle = \frac{1}{2} FG \langle \cos(2\omega t + \phi_F + \phi_A) + \cos(\phi_F - \phi_A) \rangle$ (2) $= \frac{1}{2} FG \langle \cos(2\omega t \cdots) \rangle = \frac{1}{2} FG \langle \cos(\phi_F - \phi_A) + \cos(\phi_F - \phi_A) \rangle$ $= \frac{1}{2} Re \left[FG e^{\frac{1}{2}(\phi_F - \phi_A)} \right]$ $= \frac{1}{2} Re \left(FG^* \right) = \frac{1}{2} Re \left(F^* \right).$

Step @: Use cos(A+B) = cosAcosB - smASmB. !'e; cosABosB = cos(A+B)+ smAsmB. where A = W++ \$p_= and B = W++\$p_.

Sup B: Use sin A sin B = { [cos(A-B) - cos(A+B)]}
As the undulined term above.

This comes from COS A+B = COS A COS B ZIM A FUB

COS A - B = COS A COS B + TUNA SUB

- COS (A - B) + COS (A+B) = - 2 YIMA FUB:

or \$\frac{1}{2}[\cos (A - B)] - \cos (A+B) = \sim SIMA SIMB