Равномерная сходимость семейства функций

Пусть $X \neq \emptyset$ (непустое множество), Y - метрическое пространство, y_0 - предельная точка Y и обозначим через $Y' = Y \setminus \{y_0\}$. Пусть $f \colon X \times Y' \to \mathbb{R}(\mathbb{C})$. Это функция двух переменных f(x,y), но мы будем смотреть на это как на параметрическое семейство функций (y как параметр): $x \mapsto f(x,y) \Rightarrow$ изучаем функции на X, запараметризованные параметром $y \in Y'$.

Примеры:
$$f(x,y) = \sin(xy), f(x,y) = e^{x+y}, f(x,y) = x^y$$

Нас будет интересовать, что происходит с семейством функций, когда $y \to y_0$, к какой функции это семейство будет приближаться. Раньше, в качестве параметра были числа из \mathbb{N} и получалась последовательность функций, сейчас же будет произвольное метрическое пространство. Ранее было так:

$$f_n(x) = f(x, n), Y' = \mathbb{N}$$

Можем ли мы придумать такое пространство Y, чтобы сходимость на нем была тем же самым, что и сходимость при $n \to \infty$? Можно доопределить Y до $Y = \mathbb{N} \cup \{+\infty\}$, где $y_0 = +\infty$ и взять метрику:

$$\rho(n,m) = |\arctan(n) - \arctan(m)|, \arctan(\infty) = \frac{\pi}{2} \Rightarrow n \to \infty \Leftrightarrow \rho(n,\infty) \to 0$$

Ровно также, как это было для последовательностей, здесь будет два вида сходимости.

Опр: 1. Функция f(x,y) сходится поточечно на X к $\varphi(x)$ при $y \to y_0$, если:

$$\forall x \in X, \lim_{y \to y_0} f(x, y) = \varphi(x)$$

или в терминах предела по Коши:

$$\forall \varepsilon > 0, \exists \delta > 0 : \forall y \in Y', 0 < \rho(y, y_0) < \delta \Rightarrow |f(x, y) - \varphi(x)| < \varepsilon$$

или в терминах предела по Гейне:

$$\forall y_n \to y_0, \ y_n \neq y_0, \ f(x, y_n) \xrightarrow[n \to \infty]{} \varphi(x)$$

Опр: 2. Функция f(x,y) <u>сходится равномерно</u> на X к $\varphi(x)$ при $y \to y_0$, если:

$$\lim_{y \to y_0} h(y) = \lim_{y \to y_0} \sup_{x \in X} |f(x, y) - \varphi(x)| = 0$$

или в терминах предела по Коши:

$$\forall \varepsilon > 0, \exists \delta > 0 \colon \forall x \in X, \forall y \in Y', 0 < \rho(y, y_0) < \delta \Rightarrow |f(x, y) - \varphi(x)| < \varepsilon$$

Обозначается следующим образом:

$$f(x,y) \underset{y \to y_0}{\overset{X}{\Longrightarrow}} \varphi(x)$$

Видно, что это переход от предела последовательности к пределу функции, только теперь рассматривается функция от y и у неё берется предел при $y \to y_0$.

Теорема 1. $f(x,y) \stackrel{X}{\underset{y \to y_0}{\Longrightarrow}} \varphi(x) \Leftrightarrow \forall y_n \to y_0, \ y_n \neq y_0, \ f(x,y_n) \stackrel{X}{\underset{n \to \infty}{\Longrightarrow}} \varphi(x).$

 \square Это определение $\lim_{y \to y_0} h(y) = 0$ по Гейне. То есть, предел по Коши \Leftrightarrow предел по Гейне для h(y).

Теорема 2. (о перестановке пределов) Пусть X - метрическое пространство и x_0 - его предельная точка, y_0 - предельная точка Y. Обозначим: $X' = X \setminus \{x_0\}, Y' = Y \setminus \{y_0\}$. Если выполнены условия:

$$\forall y \in Y', \exists \lim_{x \to x_0} f(x, y) = b(y) \land f(x, y) \stackrel{X'}{\underset{y \to y_0}{\Longrightarrow}} \varphi(x)$$

то $\exists \lim_{y \to y_0} b(y)$ и $\exists \lim_{x \to x_0} \varphi(x)$ и эти пределы равны. Или по-другому:

$$\lim_{y \to y_0} \lim_{x \to x_0} f(x, y) = \lim_{x \to x_0} \lim_{y \to y_0} f(x, y)$$

 \square Пусть $y_n \to y_0, y_n \neq y_0$, тогда $f(x,y_n) \stackrel{X}{\underset{n\to\infty}{\Longrightarrow}} \varphi(x)$, при этом $\forall n, \exists \lim_{x\to x_0} f(x,y_n) = b(y_n)$. По теореме для последовательностей (см. лекцию 12):

$$\exists \lim_{n \to \infty} b(y_n), \ \exists \lim_{x \to x_0} \varphi(x) \land \lim_{n \to \infty} b(y_n) = \lim_{x \to x_0} \varphi(x)$$

По определению предела функции по Гейне $\exists \lim_{y \to y_0} b(y)$, который равен $\lim_{x \to x_0} \varphi(x)$.

Следствие 1. Пусть X, Y - метрические пространства, $x_0 \in X$, y_0 - предельная точка Y. Функция $f(x,y) \underset{y \to y_0}{\Longrightarrow} \varphi(x)$. Если $\forall y \neq y_0, f(x,y)$ непрерывна в точке x_0 , то $\varphi(x)$ непрерывна в точке x_0 .

□ Доказательство идентично тому, что было в лекции 12.

Следствие 2. Возьмем пространство $X \times Y$ и введем метрику $\rho((x,y),(u,v)) = \rho_x(x,u) + \rho_y(y,v)$. В условиях теоремы, при $(x,y) \in X' \times Y' \subset X \times Y$, будет существовать двойной предел:

$$\exists \lim_{(x,y)\to(x_0,y_0)} f(x,y) = \lim_{y\to y_0} \lim_{x\to x_0} f(x,y) = \lim_{x\to x_0} \lim_{y\to y_0} f(x,y) = A$$

 \square Поскольку у $\varphi(x)$ есть равномерная сходимость, то:

$$|f(x,y) - A| \le |f(x,y) - \varphi(x)| + |\varphi(x) - A|$$

Пусть $\varepsilon > 0$, найдем такое $\delta_1 > 0$, что как только $0 < \rho_y(y, y_0) < \delta_1$, то $\forall x \in X', |f(x, y) - \varphi(x)| < \varepsilon$. Выберем δ_2 так, что когда $0 < \rho_x(x, x_0) < \delta_2$, то $|\varphi(x) - A| < \varepsilon$, тогда:

$$\forall \varepsilon > 0, \ \exists \ \delta = \min\{\delta_1, \delta_2\} \colon 0 < \rho((x, y), (x_0, y_0)) < \delta \Rightarrow |f(x, y) - A| < 2\varepsilon$$

Rm: 1. Арифметика пределов переносится аналогично через определение предела по Гейне. Смотри лекцию 10.

Теорема 3. Пусть $X = (\alpha, \beta)$, Y - метрическое пространство, y_0 - предельная точка в $Y, Y' = Y \setminus \{y_0\}$. Пусть задана функция $f(x, y) \colon X \times Y' \to \mathbb{R}$. Если $\forall y \in Y', x \mapsto f(x, y)$ - дифференцируема на (α, β) , производная по аргументу x:

$$\frac{\partial f}{\partial x}(x,y) = f'_x(x,y) \underset{y \to y_0}{\overset{X}{\Longrightarrow}} g(x)$$

и $\exists x_0 \in (\alpha, \beta) \colon \exists \lim_{y \to y_0} f(x_0, y)$, то тогда:

$$f(x,y) \stackrel{X}{\underset{y \to y_0}{\Longrightarrow}} \varphi(x)$$

где $\varphi(x)$ - дифференцируема на X и $\varphi'(x) = g(x)$.

- \square Пусть $y_n \to y_0, y_n \neq y_0$, тогда:
 - $(1) \exists \lim_{n \to \infty} f(x_0, y_n);$
 - (2) $f'_x(x, y_n) \underset{n \to \infty}{\overset{X}{\Longrightarrow}} g(x);$

Следовательно, по теореме для последовательностей мы знаем: $f(x,y_n) \stackrel{X}{\underset{n\to\infty}{\Longrightarrow}} \varphi(x)$, где $\varphi(x)$ будет дифференцируема и $\varphi'(x) = g(x)$. Осталось показать, что сходимость не будет зависеть от выбора последовательности, сходящейся к y_0 .

Знаем, что $\varphi(x_0) = \lim_{y \to y_0} f(x_0, y)$, поскольку переход к последовательности вычисляет тот же самый предел \Rightarrow это фиксированное значение. Более того, поскольку $\varphi'(x) = g(x)$, то двух таких функций быть не может:

$$(\varphi_1 - \varphi_2)' = 0 \land \varphi_1(x_0) - \varphi_2(x_0) = 0 \Rightarrow \varphi_1 - \varphi_2 \equiv 0$$

 \mathbf{Rm} : 2. Заметим, что ограниченность X в данной теореме - важна, поскольку используется в теореме о дифференцируемости в последовательностях.

Теорема 4. Пусть $X = [\alpha, \beta], Y$ - метрическое пространство, y_0 - предельная точка $Y, Y' = Y \setminus \{y_0\}$. Если $\forall y \in Y'$ функция f(x, y) интегрируема по Риману на отрезке $[\alpha, \beta]$ относительно x и верно:

$$f(x,y) \underset{y \to y_0}{\overset{X}{\Longrightarrow}} \varphi(x)$$

Тогда функция $\varphi(x)$ интегрируема по Риману и выполняется следующее равенство:

$$\int_{\alpha}^{\beta} \varphi(x)dx = \lim_{y \to y_0} \int_{\alpha}^{\beta} f(x, y)dx$$

 \square Пусть $y_n \to y_0, y_n \neq y_0$, тогда $f(x,y_n) \underset{n \to \infty}{\overset{X}{\Longrightarrow}} \varphi(x)$ и применяем теорему для последовательностей:

$$\int_{\alpha}^{\beta} \varphi(x)dx = \lim_{n \to \infty} \int_{\alpha}^{\beta} f(x, y_n)dx$$

Если это выполнено для любой укзанной последовательности $\{y_n\}$, то значит для этого предела выполнено определение Гейне.

Теорема 5. (**Арцела**): Пусть $X = [\alpha, \beta], Y$ - метрическое пространство, y_0 - предельная точка $Y, Y' = Y \setminus \{y_0\}$. Пусть выполняются следующие условия:

- (1) $\forall y \in Y'$ функция f(x,y) интегрируема по Риману на отрезке $[\alpha,\beta]$ относительно x;
- (2) функция $\varphi(x)$ интегрируема на $[\alpha, \beta]$;
- (3) $\forall x \in X, f(x,y) \xrightarrow{y \to y_0} \varphi(x);$
- (4) $\exists C > 0 \colon |f(x,y)| \le C, \forall x \in X, \forall y \in Y';$

Тогда выполняется следующее равенство:

$$\int_{\alpha}^{\beta} \varphi(x)dx = \lim_{y \to y_0} \int_{\alpha}^{\beta} f(x, y)dx$$

 \square Пусть $y_n \to y_0, y_n \neq y_0,$ по теореме Арцела для последовательностей мы получим:

$$\int_{\alpha}^{\beta} \varphi(x)dx = \lim_{n \to \infty} \int_{\alpha}^{\beta} f(x, y_n)dx$$

Поскольку мы имеем здесь предел по Гейне, то получаем требуемое.

Теорема 6. (**Критерий Коши**): Функция f(x,y) сходится равномерно на X при $y \to y_0$ тогда и только тогда, когда выполняется условие Коши:

$$\forall \varepsilon > 0, \ \exists \ \delta > 0 \colon \forall y_1, y_2 \in Y', \ 0 < \rho(y_1, y_0) < \delta \land 0 < \rho(y_2, y_0) < \delta \Rightarrow \sup_{x \in X} |f(x, y_1) - f(x, y_2)| < \varepsilon$$

 (\Rightarrow) Пусть предел $\lim_{y\to y_0}\sup_{x\in X}|f(x,y)-\varphi(x)|=0$ существует. Тогда по определению:

$$\forall \varepsilon > 0, \ \exists \ \delta > 0 \colon \forall x \in X, \ \forall y \in Y', \ 0 < \rho(y, y_0) < \delta \Rightarrow |f(x, y) - \varphi(x)| < \varepsilon$$

Возьмем $\frac{\varepsilon}{2}>0$ и найдем $\delta>0$ такое, что: $0<\rho(y_1,y_0)<\delta\wedge 0<\rho(y_2,y_0)<\delta,$ тогда:

$$\forall x \in X, |f(x, y_1) - \varphi(x)| < \frac{\varepsilon}{2} \land |f(x, y_2) - \varphi(x)| < \frac{\varepsilon}{2} \Rightarrow \forall x \in X, |f(x, y_1) - f(x, y_2)| =$$
$$= |f(x, y_1) - \varphi(x) + \varphi(x) - f(x, y_2)| \le |f(x, y_1) - \varphi(x)| + |f(x, y_2) - \varphi(x)| < \varepsilon$$

 (\Leftarrow) Пусть $y_n \to y_0, y_n \neq y_0$, тогда

$$\exists N \colon \forall n, m > N, \ 0 < \rho(y_n, y_0) < \delta \land 0 < \rho(y_m, y_0) < \delta$$

значит применимо неравенство из условия Коши:

$$\sup_{x \in X} |f(x, y_n) - f(x, y_m)| < \varepsilon$$

Последовательность $f(x, y_n)$ удовлетворяет условию Коши (см. лекцию $10) \Rightarrow f(x, y_n) \stackrel{X}{\underset{n \to \infty}{\Longrightarrow}} \varphi(x)$. Докажем единственность. Пусть $\exists z_n \to y_0, z_n \neq y_0$, перемешаем последовательности и рассмотрим новую:

$$u_n: y_1, z_1, y_2, z_2, \dots, y_n, z_n, \dots \Rightarrow u_n \to y_0, u_n \neq y_0 \Rightarrow \exists f(x, z_n) \stackrel{X}{\underset{n \to \infty}{\Longrightarrow}} \varphi(x)$$

Поскольку предел существует, то существуют пределы подпоследовательности и они равны пределу последовательности.

Пример равномерной сходимости семейства функций

Рассмотрим пример, когда появляется естественным образом равномерная сходимость семейства функций. Возьмем функцию $f(x,y) \in C([a,b] \times [c,d])$.

Утв. 1.
$$\forall y_0 \in [c,d], f(x,y) \stackrel{[a,b]}{\underset{y \to y_0}{\Longrightarrow}} f(x,y_0).$$

 \square Поскольку f(x,y) - непрерывна на компакте, то по теореме Кантора f(x,y) - равномерно непрерывна на нём, тогда:

$$\forall \varepsilon > 0, \ \exists \ \delta > 0 \colon \forall (x,y), (x_0,y_0), \ \sqrt{|x-x_0|^2 + |y-y_0|^2} < \delta \Rightarrow |f(x,y) - f(x_0,y_0)| < \varepsilon$$

Таким образом, если $x = x_0$, то достаточно, чтобы $|y - y_0| < \delta$, тогда:

$$x = x_0 \Rightarrow \sqrt{|x - x_0|^2 + |y - y_0|^2} = |y - y_0| < \delta \Rightarrow$$

$$\Rightarrow \forall x \in [a, b], |f(x, y) - f(x, y_0)| < \varepsilon \Rightarrow \sup_{x \in [a, b]} |f(x, y) - f(x, y_0)| < \varepsilon$$

Утв. 2. Пусть f(x,y) - непрерывна по x и по y в отдельности на $[a,b] \times [c,d]$ и $\forall y_0, f(x,y) \stackrel{[a,b]}{\underset{y \to y_0}{\Longrightarrow}} f(x,y_0),$ тогда $f \in C([a,b] \times [c,d])$ - функция f непрерывна по совокупности переменных на этом прямоугольнике.

 \square Пусть $(x_2,y_2) \to (x_1,y_1)$ - фиксированная точка, тогда распишем следующую разность:

$$|f(x_1, y_1) - f(x_2, y_2)| \le |f(x_1, y_1) - f(x_2, y_1)| + |f(x_2, y_1) - f(x_2, y_2)|$$

Зафиксируем $\varepsilon > 0$, пусть $y_0 = y_1$, тогда $\exists \, \delta > 0 \colon |y_2 - y_1| < \delta \Rightarrow$ мы получим:

$$\forall x \in [a, b], |f(x, y_1) - f(x, y_2)| < \varepsilon \Rightarrow \forall x_2 \in [a, b], |f(x_2, y_1) - f(x_2, y_2)| < \varepsilon$$

Из непрерывности по x, как только $|x_2-x_1|<\delta$, то при фиксированном $y=y_1$, мы сразу получим:

$$|f(x_2, y_1) - f(x_1, y_1)| < \varepsilon$$

Следовательно:

$$\forall \varepsilon > 0, \ \exists \ \delta > 0 \colon \sqrt{|x_2 - x_1|^2 + |y_2 - y_1|^2} < \delta \Rightarrow |x_2 - x_1| < \delta \land |y_2 - y_1| < \delta \Rightarrow$$
$$\Rightarrow |f(x_1, y_1) - f(x_2, y_2)| \le |f(x_1, y_1) - f(x_2, y_1)| + \sup_{x_2 \in [a, b]} |f(x_2, y_1) - f(x_2, y_2)| < \varepsilon + \varepsilon = 2\varepsilon$$

Заметим, что сначала искали δ для переменной по которой есть равномерная сходимость.