# TECHNICAL REPORT

# ISO/TR 27921

First edition 2020-05

Carbon dioxide capture, transportation, and geological storage — Cross Cutting Issues — CO<sub>2</sub> stream composition

Captage, transport et stockage géologique du dioxyde de carbone — Questions transversales— Composition du flux de CO<sub>2</sub>



# ISO/TR 27921:2020(E)



# **COPYRIGHT PROTECTED DOCUMENT**

© ISO 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

| Cont   | tents   | F P                                                                                             | age      |
|--------|---------|-------------------------------------------------------------------------------------------------|----------|
| Forew  | ord     |                                                                                                 | <b>v</b> |
| Introd | luction |                                                                                                 | vi       |
| 1      | Scope   |                                                                                                 | 1        |
| 2      | -       | ative references                                                                                |          |
|        |         |                                                                                                 |          |
| 3      |         | s and definitions                                                                               |          |
| 4      | -       | ols and abbreviated terms                                                                       |          |
| 5      |         | iew of chemical composition of CO <sub>2</sub> streams                                          |          |
|        | 5.1     | Overview                                                                                        |          |
|        |         | 5.1.2 Measurements and estimates                                                                |          |
|        |         | 5.1.3 Data sources                                                                              |          |
|        | 5.2     | Ranges of impurity concentrations for coal fired power plants                                   |          |
|        |         | 5.2.1 Gaseous components                                                                        | 5        |
|        |         | 5.2.2 Trace elements                                                                            |          |
|        |         | 5.2.3 Particulate matter                                                                        |          |
|        | 5.3     | Ranges of impurity concentrations from industrial emitters                                      |          |
|        |         | 5.3.1 Cement industry                                                                           |          |
|        |         | 5.3.2 Iron and Steel industry                                                                   |          |
|        | 5.4     | 5.3.3 H <sub>2</sub> production                                                                 |          |
|        | 5.4     | Discussion and interpretation 5.4.1 Variability among processes and industries                  |          |
|        |         | 5.4.2 Compositional stability and potential chemical reactions within CO <sub>2</sub> streams   |          |
| 6      | Immoo   | cts of impurities                                                                               |          |
| 6      | 6.1     | Physical impacts                                                                                |          |
|        | 0.1     | 6.1.1 Overview                                                                                  |          |
|        |         | 6.1.2 Effect on transportation (pipeline and ship transportation)                               |          |
|        |         | 6.1.3 Effect on geological storage                                                              |          |
|        | 6.2     | Chemical impacts                                                                                |          |
|        |         | 6.2.1 Corrosion of metallic materials                                                           |          |
|        |         | 6.2.2 Impacts on geological storage system                                                      |          |
|        | 6.3     | Impacts on microbial communities in the storage complex                                         | 23       |
|        | 6.4     | Toxic and ecotoxic effects of impurities in case of leakage                                     | 24       |
|        |         | 6.4.1 General statement                                                                         | 24       |
|        |         | 6.4.2 Acute toxic effects                                                                       |          |
|        |         | 6.4.3 Chronic effects                                                                           | 25       |
| 7      | Param   | neters to monitor and measurement methods                                                       | .26      |
|        | 7.1     | Monitoring and thresholds                                                                       | 26       |
|        | 7.2     | Relevant parameters to monitor and measurement methods                                          | 26       |
|        |         | 7.2.1 Sampling of the CO <sub>2</sub> stream                                                    | 27       |
|        |         | 7.2.2 Determining the physical properties and phase                                             | 27       |
|        |         | 7.2.3 Flow measurement                                                                          | 27       |
|        |         | 7.2.4 Impurity concentration measurements                                                       | 28       |
| 8      | Relati  | onship of CO <sub>2</sub> stream emissions and quantification                                   | .28      |
| 9      |         | ration issues                                                                                   |          |
|        | 9.1     | Constraints on CO <sub>2</sub> stream composition                                               |          |
|        | 9.2     | Optimisation of $\overrightarrow{CO_2}$ stream composition based on techno-economic assessments |          |
|        | 9.3     | Mixing CO <sub>2</sub> streams before injection: Challenges in larger CCS infrastructures       |          |
| 10     | Conclu  | usions                                                                                          | .31      |
| Annex  | A (info | ormative) <b>Dense phase CO<sub>2</sub> corrosion</b>                                           | .33      |

# ISO/TR 27921:2020(E)

| Annex B (informative) Composition of CO <sub>2</sub> streams (Source ISO 27913:2016) | 36 |
|--------------------------------------------------------------------------------------|----|
| Bibliography                                                                         | 39 |

# Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see <a href="www.iso.org/directives">www.iso.org/directives</a>).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see <a href="https://www.iso.org/patents">www.iso.org/patents</a>).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see <a href="https://www.iso.org/iso/foreword.html">www.iso.org/iso/foreword.html</a>.

This document was prepared by Technical Committee ISO/TC 265, *Carbon dioxide capture, transportation, and geological storage.* 

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <a href="https://www.iso.org/members.html">www.iso.org/members.html</a>.

# Introduction

ISO Technical Committee (TC) 265 is developing standards and technical reports related to carbon dioxide ( $CO_2$ ) capture, transportation and geological storage (CCS). This technology is a technically viable solution to reduce  $CO_2$  emissions of large stationary point sources and therefore to limit future global temperature increases. A special report by the International Panel on Climate Change (IPCC, 2005) extensively described the fundamental technical, scientific, environmental, economic and societal dimensions of CCS and its potential role in the portfolio of climate change mitigation measures.

Depending among other things on the feedstock and the  $\mathrm{CO}_2$  generating and capture processes,  $\mathrm{CO}_2$  streams captured from industrial sources or power generation contain various impurities (that is, stream components other than  $\mathrm{CO}_2$ ). The impurities differ in their concentrations but also in their physical and chemical properties. Therefore, the composition of the originally captured  $\mathrm{CO}_2$  stream is a key starting point in ensuring the safety and reliability of the transport and geological storage of  $\mathrm{CO}_2$ . Compositional information may assist operators in evaluating the need for treating a  $\mathrm{CO}_2$  stream, based on the intended transportation options (including mixing with other  $\mathrm{CO}_2$  streams), usage options (EOR or other), or dedicated storage in geologic formations.

Understanding  $\mathrm{CO}_2$  stream composition is also important for the commerciality of CCS activities because additional purification of the  $\mathrm{CO}_2$  stream increases  $\mathrm{CO}_2$  capture costs. In addition,  $\mathrm{CO}_2$  stream composition is an important input factor in quantifying the amount of  $\mathrm{CO}_2$  stored, for the purpose of greenhouse gas emissions reporting and crediting. Because capture and purification processes are continuously evolving, it is relevant to expose the range of impurities in  $\mathrm{CO}_2$  streams and their concentrations, including recent publications.

This document provides up-to-date consideration of  $CO_2$  stream quality issues for operators, regulators and stakeholders based on research results and the experience of various pilot and industrial scale CCS projects. The first part of this report summarises existing information related to  $CO_2$  stream composition that generally results from particular capture processes. Then this report describes possible impacts and effects of the various impurities that may occur in the  $CO_2$  stream on various downstream elements of a CCS chain, including operational aspects, potential implications for health, safety and environmental issues, and quantification of greenhouse gas emissions.

# Carbon dioxide capture, transportation, and geological storage — Cross Cutting Issues — CO<sub>2</sub> stream composition

# 1 Scope

The primary aim of this document is to describe the main compositional characteristics of the  ${\rm CO}_2$  stream downstream of the capture unit, taking into account common purification options. Accordingly, this document will characterize the different types of impurities and present examples of concentrations determined in recent capture pilot projects as well as through literature review. It identifies ranges of concentrations, giving priority to in situ measurements when available.

The second aim of this document is to identify potential impacts of impurities on all components of the CCS chain, from surface installations (including transport) to the storage complex. For example, impurities can have a significant effect on the phase behaviour of  $\mathrm{CO}_2$  streams in relation to their concentration. Chemical effects also include the corrosion of metals. The composition of the  $\mathrm{CO}_2$  stream can also influence the injectivity and the storage capacity, due to physical effects (such as density or viscosity changes) and geochemical reactions in the reservoir. In case of a leakage, toxic and ecotoxic effects of impurities contained in the leaking  $\mathrm{CO}_2$  stream could also impact the environment surrounding the storage complex.

In order to ensure energy efficiency, proper operation of the whole CCS chain and not to affect its surrounding environment, operators usually limit the concentrations of some impurities, which can, inturn, influence the design of the capture equipment and purification steps. Such limits are case specific and cannot be described in this report; however, some examples of  $\mathrm{CO}_2$  stream specifications discussed in the literature are presented in  $\underline{\mathrm{Annex}\ A}$ .

The required purity of the  $\mathrm{CO}_2$  stream delivered from the capture plant will to a large degree depend on the impurity levels that can be accepted and managed by the transport, injection and storage operations. The capture plant operators will therefore most probably need to purify the  $\mathrm{CO}_2$  stream to comply with the required transport, injection, storage specifications or with legal requirements.

Monitoring of the  $\mathrm{CO}_2$  stream composition plays an important role in the management of the entire CCS process. Methods of measuring the composition of the  $\mathrm{CO}_2$  stream and in particular the concentrations of impurities are described and other parameters relevant for monitoring at the various steps of the CCS chain are described.

The interplay between the set  $\mathrm{CO}_2$  stream specifications and the efficiency of the entire CCS process is also explained. Finally, the mixing of  $\mathrm{CO}_2$  streams coming from different sources before transport or storage is addressed, and the main benefits, risks and operational constraints are presented.

# 2 Normative references

There are no normative references in this document.

# 3 Terms and definitions

#### 3.1

#### CO2 stream

stream consisting overwhelmingly of carbon dioxide

Note 1 to entry: The  $\mathrm{CO}_2$  stream typically includes impurities and may include substances added to the stream to improve performance of CCS and/or to enable  $\mathrm{CO}_2$  detection.

[SOURCE: ISO 27917:2017, 3.2.10]

# ISO/TR 27921:2020(E)

#### 3.2

# CO<sub>2</sub> stream composition

concentration (generally expressed in fraction by volume) of each component of the CO2 stream (3.1)

Note 1 to entry: The  $\rm CO_2$  stream composition is usually subject to regulatory discretion and approval. The  $\rm CO_2$  stream composition can also be reported as a mass concentration (e.g.  $\rm mg/m^3$ ).

#### 3.3

## CO<sub>2</sub> purity

percentage by volume of  $CO_2$  as a component of the CO2 stream (3.1)

#### 3 4

#### impurities

non- $\mathrm{CO}_2$  substances present in the *CO2 stream* (3.1) as captured or derived from source materials or the capture process, or present as a result of mixing for transportation, or added, released, or formed in conjunction with sub-surface storage and/or leakage of  $\mathrm{CO}_2$ 

Note 1 to entry: As a subset of impurities, contaminants are non-CO<sub>2</sub> substances whose presence in the CO<sub>2</sub> stream is generally unwanted.

Note 2 to entry: As a subset of impurities, additives are substances added to the stream for the purposes of managing its physical or chemical behaviour (e.g., hydrate and corrosion inhibitors), for or from interaction with equipment (e.g., lubricants), or to track its distribution in the subsurface after injection (geochemical tracers).

[SOURCE: ISO 27917:2017, 3.2.18]

#### 3.5

#### non-condensable substances

chemical substances that are partially in the vapour state at pipeline operating conditions.

Note 1 to entry: O<sub>2</sub>, N<sub>2</sub>, Ar, H<sub>2</sub> and CH<sub>4</sub> belong to this category

[SOURCE: ISO 27913:2016, 3.18]

# 4 Symbols and abbreviated terms

In this report volume fractions are expressed as % (10<sup>-2</sup>) or ppm (10<sup>-6</sup>), in order to be in line with the original publications and the usual technical exchanges within the CCS community.

| Ar              | Argon                              |
|-----------------|------------------------------------|
| As              | Arsenic                            |
| BOS             | Basic Oxygen Steelmaking           |
| °C              | Degree Celsius                     |
| CCS             | Carbon Dioxide Capture and Storage |
| Cd              | Cadmium                            |
| CH <sub>4</sub> | Methane                            |
| CO              | Carbon monoxide                    |
| $CO_2$          | Carbon dioxide                     |
| COS             | Carbonyl sulfide                   |
| EOR             | Enhanced Oil Recovery              |

EPA Environmental Protection Agency

etc. Et Cetera (Latin: And So Forth)

EU European Union

GD Guidance Document

GHG Greenhouse Gas(es)

H<sub>2</sub> Hydrogen

Hg Mercury

H<sub>2</sub>O Water

H<sub>2</sub>S Hydrogen sulfide

H<sub>2</sub>SO<sub>4</sub> Sulfuric acid

i.e. Id est (Latin: that is)

IEA International Energy Agency

IEAGHG International Energy Agency Greenhouse Gases R&D programme

IGCC Integrated gasification combined cycle

IPCC Intergovernmental Panel on Climate Change

K Potassium

MDEA Methyldiethanolamine

MEA Monoethanolamine

Mn Manganese

mg Milligram

MPa Mega Pascal

N<sub>2</sub> Nitrogen

NETL National Energy Technology Laboratory

NH<sub>3</sub> Ammonia

Ni Nickel

Nm<sup>3</sup> Normal cubic meter-being a cubic meter at 101,325 kPa absolute and 273 K

NO Nitrogen monoxide

NO<sub>2</sub> Nitrogen dioxide

NO<sub>x</sub> Nitrogen oxides

O<sub>2</sub> Oxygen

OPS Office of Pipeline Safety

# ISO/TR 27921:2020(E)

Pb Lead

PM Particulate Matter

ppm (= ppmv) Parts per million (= Parts per million by volume) =  $10^{-6}$ 

Psia Pounds per square inch absolute

Se Selenium

SO<sub>2</sub> Sulfur dioxide

SO<sub>x</sub> Sulfur oxides

SOP Standard operating procedures

SRB Sulphate Reducing Bacteria

TMEs Trace Metal Elements

TOEs Trace Organic Elements

# 5 Overview of chemical composition of CO<sub>2</sub> streams

#### 5.1 Overview

In this clause available data on impurities present in  $\mathrm{CO}_2$  streams and the concentration ranges are described for different  $\mathrm{CO}_2$  sources and capture technologies. In situ measurements are emphasized.

#### **5.1.1** Types of impurities

A number of gases could be present as impurities in the flue gas or process gas (before capture), and therefore are potentially present at the exit of the capture process. Their concentrations vary greatly from one capture technology (or process) to another, due to the various reaction pathways and to the various design options for capture and purification.

Some gases (also called "non-condensable substances") such as Ar,  $O_2$ , and  $N_2$  can reach several percent of the  $CO_2$  stream at the immediate exit from the capture process, before purification and compression (IEAGHG, 2011)<sup>[40]</sup>. The content of  $H_2O$  (condensable) can also reach several percent there. Other gases ( $NO_x$ ,  $SO_x$ ,  $H_2S$ , CO, and others), although present at lower concentrations, could still influence  $CO_2$  stream behaviour.

Impurities other than gases have been reported in low concentration, (IEA-GHG, 2011)<sup>[40]</sup>, and in the case of a post-combustion capture process, solvents used in the process (e.g. amines or  $NH_3$ ) and their degradation products could be present in the captured  $CO_2$  stream. Further impurities could include particulate matter, trace metal elements (TMEs) and trace organic elements (TOEs), depending on the fuel or feedstock used. Intrinsic toxicity levels of TMEs and TOEs is often high, but concentration levels are usually very low.

When comparing data from different sites, an important difference between an industrial site and a capture pilot plant is that the latter might not include a drying-compression phase before transport. Therefore, differences in impurity concentrations could occur. When  $\mathrm{CO}_2$  is compressed, gases tend to dissolve in condensed water at each compression stage and are therefore removed from the  $\mathrm{CO}_2$  stream before transport. See also standard ISO 27913:2016[48] on pipeline transportation systems.

#### **5.1.2** Measurements and estimates

It is necessary to distinguish i) data that are estimates resulting from modelling from ii) measurements on the captured  $CO_2$  stream. Published data, both measured and modelled, typically emphasize

concentrations of main impurities. Here, we focus on measurements and quote modelling estimates only where measurements are not available. However, modelling studies are also of value, because process models enable, among other things, the representation of various combinations of impurity concentrations. Other models allow predicting possible effects in other parts of the CCS chain, as will be illustrated in <u>Clause 6</u>, e.g. for fluid density or chemical reactions.

#### 5.1.3 Data sources

 ${\rm CO_2}$  stream composition data was compiled from existing literature by the expert group appointed by ISO/TC 265 from "WG5-Cross-cutting issues", based on existing review reports (e.g., from international organisations or research consortia) and on results from pilot, demonstration, or commercial projects in Europe, North America, Australia, and Japan.

Note Examples of regulatory requirements, in relation with these projects, are given in Annex B.

The bulk of this document's data compilation was drawn from several review publications and reports:

- a) Anheden, et al.  $(2004)^{[7]}$ : summarises impurities by capture process (before condensation or purification steps),
- b) IEAGHG (2004, 2011)[39][40] review reports,
- c) Farret, et al.,  $2012^{\left[32\right]}$ : review report of the French ClubCO<sub>2</sub>,
- d) Porter, et al., 2015[81]: complete review of concentrations of impurities in power plants and in the industry.

The present document draws heavily upon the above publications because they contain a significant amount of data and because they generally identify the origins of these data. Of course, other publications are also considered, as well as other ISO works, such as Table A.1 from ISO/TC 265 standard 27913:2016<sup>[48]</sup> on pipeline transportation systems (see <u>Annex B</u>). References to publications lacking data source are avoided. For pre-combustion IGCC processes and for trace metals, many data encountered are unsourced.

Capture and purification processes are evolving and generally purity levels have increased. Several regulatory regimes require the  $\rm CO_2$  stream to consist "overwhelmingly" of  $\rm CO_2$ . This is often approximated as a purity of at least 95 % (cf. ISO 27913:2016 on pipeline transportation systems).

Data on  $\mathrm{CO}_2$  stream composition are not readily at hand. The literature is not rich and is especially sparse on results from recent plants or pilot plants. Therefore, Technical Committee ISO/TC 265 addressed a data call to its member countries and to operators. Some technology suppliers could not answer the questionnaire for proprietary reasons. Original data from five capture pilots and demonstrators on power plants and one on a hydrogen production plant were collected, most of them are compared below to existing literature.

#### 5.2 Ranges of impurity concentrations for coal fired power plants

# 5.2.1 Gaseous components

The composition of the  $CO_2$  stream and thus the concentrations of the impurities varies from one capture technology to another. The flue gas from oxy-combustion is enriched in  $CO_2$ ,  $SO_x$  and other minor components as a result of elimination of nitrogen from the air, and such products are then removed or captured downstream in the  $CO_2$  purification unit. Oxy-combustion contributes to significant amounts of nitrogen, argon, and oxygen as well as oxidizing forms of sulfur and nitrogen (i.e.  $NO_x$ ,  $SO_x$ ) in the  $CO_2$  stream. Post-combustion capture technologies usually produce  $CO_2$  streams of high purity also containing oxidizing impurities such as  $O_2$ ,  $SO_x$ , and  $NO_x$ . In contrast, pre-combustion capture results in impurities with reducing properties such as  $H_2$ ,  $H_2S$ , or CO. However, even within a single capture technology the variability of impurity concentrations is high (up to two or three orders of magnitude; Figure 1), depending on the process itself and on the final purification steps (e.g., desulfurization equipment). Porter, et al. (2015)<sup>[81]</sup> present a summary of ranges for impurities from

commonly considered  $\mathrm{CO}_2$  capture technologies for coal fired power plants. This publication references most of the previous publications, including individual results from specific plants. In <u>Table 1</u> below, only data referring to the final  $\mathrm{CO}_2$  stream (after pre-compression and purification in the case of oxycombustion) are reported, for common capture technologies.

Note Here, post-combustion capture technologies refer essentially to chemical absorption technologies based on amine solvent. Other post-combustion technologies exist such as membrane-based  ${\rm CO_2}$  separation process. The description of capture technologies is out of scope of this document. For more detailed information see ISO/TR 27912 (2015) Carbon dioxide capture systems, technologies, equipment and processes for power and industry<sup>[52]</sup>.

Table 1 — Ranges from common  $CO_2$  capture technologies for coal fired power plants (data from Porter, et al.  $2015^{[81]}$ )

| Impurities             | Oxy-          | combustion     | with purific     | cation        | Precombustion      |                   | Postcombustion               |            |
|------------------------|---------------|----------------|------------------|---------------|--------------------|-------------------|------------------------------|------------|
| (ppm, unless specified | Double        | flashing       | Distil           | lation        |                    |                   |                              |            |
| differently)           | Min           | max            | min              | max           | min                | max               | Min                          | max        |
| Ar % vol               | 0,4           | 0,61           | Trace            | 0,1           | 0,000 1            | 0,15              | 0,001 1                      | 0,021      |
| As                     |               |                |                  |               | 0,006 65           | 0,006 65          | 0,08                         | 0,08       |
| Benzene                |               |                |                  |               | 0,014              | 0,014             | 0,019                        | 0,019      |
| CH <sub>3</sub> OH     |               |                |                  |               | 20                 | 200               |                              |            |
| CH <sub>4</sub>        |               |                |                  |               | 0                  | 112               |                              |            |
| Cl                     |               |                |                  |               | 17,5               | 17,5              | 0,56                         | 0,56       |
| СО                     |               |                | 10               | 50            | 0                  | 2 000             | 1,2                          | 10         |
| H <sub>2</sub>         |               |                |                  |               | 20                 | 30 000            |                              |            |
| H <sub>2</sub> O       | 0             | 0              | 0                | 100           | 0,1                | 600               | 100                          | 640        |
| H <sub>2</sub> S/COS   |               |                |                  |               | 0,2                | 34 000            |                              |            |
| Hg                     |               |                |                  |               | 0,000 584          | 0,000 584         | 0,024 9                      | 0,024 9    |
| N <sub>2</sub> % vol   | 1,6           | 2,03           | 0,01             | 0,2           | 0,019 5            | 1                 | 0,045                        | 0,29       |
| Naphthalene            |               |                |                  |               | 0,0008             | 0,0008            | 0,001 2                      | 0,001 2    |
| NH <sub>3</sub>        |               |                |                  |               | 38                 | 38                |                              |            |
| Ni                     |               |                |                  |               | 0,009              | 0,009             | 0,002                        | 0,002      |
| NO                     |               |                |                  |               | 400                | 400               |                              |            |
| NOx                    | 0             | 150            | 5                | 100           | 400                | 400               | 20<br>(1,5 NO <sub>2</sub> ) | 38,8       |
| 0 <sub>2</sub> % vol   | 1,05          | 1,2            | 0,001            | 0,4           | 0                  | 0                 | 0,003 5                      | 0,015      |
| Pb                     |               |                |                  |               | 0,004 5            | 0,0045            | 0,001                        | 0,001      |
| Se                     |               |                |                  |               | 0,013 5            | 0,013 5           | 0,31                         | 0,31       |
| SO <sub>2</sub>        | 0             | 4 500          | 0,1              | 50            | 25                 | 25                | 1                            | 67,1       |
| NOTE "0" values ar     | e reported as | such in Porter | , et al. (2015); | empty box inc | licates no availal | ole data as state | d in Porter, et a            | l. (2015). |

For oxy-combustion, Porter, et al.  $(2015)^{[81]}$  integrated many references from previous industrial and research projects, including measurements from the industrial capture pilot at Schwarze Pumpe (Anheden, et al.,  $2011^{[7]}$ ; White, et al.,  $2013^{[111]}$ ). For oxy-combustion, Porter, et al. [81] also considered raw/dehumidified  $CO_2$  (those data are not reported in Figure 1). For oxy-combustion a pre-compression stage (15 bar to 30 bar) is usually performed before or during purification.

Further, Porter, et al.<sup>[81]</sup> compiled detailed data on  $\mathrm{CO}_2$  stream composition at different steps of the capture process for the oxy-combustion pilot plant at Schwarze Pumpe: Before purification,  $\mathrm{CO}_2$  purity is 87 % and  $\mathrm{O}_2$  content is 4 %, whereas after purification by rectification  $\mathrm{CO}_2$  purity is 99,9 % and  $\mathrm{O}_2$  content is <0,001 %;.  $\mathrm{SO}_x$  concentrations decreased from <30 ppm before purification to <1 ppm after. Similarly,  $\mathrm{NO}_x$  concentration is <350 ppm before purification and <10 ppm after purification.

Figure 1 shows the ranges of impurity concentrations for oxy-combustion that are given in <u>Table 3</u> of Porter, et al. (2015)<sup>[81]</sup> after purification by double-flashing or distillation phase separation. They are compared to recent values collected by ISO/TC 265 in 2017 on the Callide demonstrator plant.

Note Also considering Spero, C. Callide Oxyfuel Project — Final Results. Global CCS Institute, April 2018. <a href="http://decarboni.se/sites/default/files/publications/202090/cop-finalresults-publicreport-march2018.pdf">http://decarboni.se/sites/default/files/publications/202090/cop-finalresults-publicreport-march2018.pdf</a>



#### **Keys**

- Y impurity content, ppm
- range (Porter 2015)
  New data ISO/TC 265, 2017
- Callide (Spero, 2018)

Figure 1 — Streams from oxy-combustion technology from Porter, et al., 2015[81] (bars) and recent values collected within ISO/TC 265 (symbols)

NOTE As concerns the Callide demonstrator plant, data for CO,  $NO_2$  and  $SO_2$  represent maximum values since measurements are below the detection limits for that specific project<sup>[15]</sup>.

For post-combustion capture, Figure 2 below compares the concentration ranges according to Table 6 in Porter, et al. (2015)[81] to values recently collected within ISO/TC 265.



#### **Keys**

- Y impurity content, ppm
  - range (Porter 2015)
    New data ISO/TC 265, 2017
  - SECARB
  - Germany
  - CSIRO Loy Yang
  - × CSIRO Tarong

Figure 2 — Impurity concentrations for  $\rm CO_2$  streams from post-combustion capture from Porter, et al.,  $\rm 2015^{[81]}$  (bars) and recent values collected within ISO/TC 265 (symbols)

NOTE Arrows on the Figure 2 represent measurements that are below the detection limits for that specific project.

These data show high variability of impurity concentrations, depending on the capture technology as well as site-specific process configurations. This variability is further discussed in <u>5.4.1</u>.

#### **5.2.2** Trace elements

Metallic elements in the  $CO_2$  stream originate in the feedstock or fuel (e.g., coal). Their concentration is very low, hence they also called trace metallic elements or TMEs. IEAGHG (2011)<sup>[40]</sup> states that mercury (Hg) can be expected to be present with pre- and post-combustion processes. Apps (2007) <sup>[9]</sup> states that only Hg and Se are expected in high concentrations in gas phase, according to modelling results. Main values for metal concentrations are presented in Table 2 below.

For mercury, only estimated values were found in the literature (IEAGHG,  $2004^{[39]}$ ; EC,  $2011^{[27]}$ ; Apps,  $2007^{[9]}$ ; Shah, et al.,  $2010^{[99]}$ ). The values are very low (sometimes below the detection limits) and show high variability (see examples in Figure 3 below). Given the toxicity of mercury, it is suggested that operators consider these reported concentrations with care and confirm by insitu measurements. Mercury removal from the  $CO_2$  stream is likely during the downstream compression/drying stages, but uncertainties remain as it might be present both in the gas phase (because it is highly volatile) and in the particulate phase, adsorbed on aerosols (EC,  $2011^{[27]}$ ).



Figure 3 — Hg concentrations (ppm) in the  $CO_2$  streams captured from coal power plants by different capture technologies estimated values, from Farret, et al. (2012)[33]

In contrast to metals, organics generally present no direct relationship between the elemental composition of the starting material and the subsequent concentration of organics in the  ${\rm CO_2}$  stream. The concentration of organics is usually very low and depends strongly on reaction conditions during industrial processes ( ${\rm CO_2}$  generation and capture) including gaseous species, temperature, pressure, and residence time. Examples for benzene and naphthalene concentrations are given in Table 2 below.

Table 2 —  $C0_2$  impurities (trace elements) from pulverized coal with post-combustion (from Porter, et al.,  $2015^{[81]}$ )

|                       | MEA postcombustion plant Source EC 2011 <sup>[27]</sup> (estimated data) | Average values of relevant sources, including Anheden, et al., 2004 <sup>[7]</sup> , Apps, 2007 <sup>[9]</sup> , Oosterkamp & Ramsen, 2008 <sup>[8]</sup> , Farret, et al. 2012 <sup>[33]</sup> |
|-----------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO <sub>2</sub> % v/v | 99,7                                                                     | _                                                                                                                                                                                               |
| Hg ppm                | 0,000 69                                                                 | 0,002 8                                                                                                                                                                                         |
| As ppm                | 0,005 5                                                                  | 0,002 2                                                                                                                                                                                         |
| Se ppm                | 0,017                                                                    | 0,012 2                                                                                                                                                                                         |
| Mn ppm                |                                                                          | 0,03                                                                                                                                                                                            |
| Ni ppm                |                                                                          | 0,002                                                                                                                                                                                           |
| Pb ppm                |                                                                          | 0,001 1                                                                                                                                                                                         |
| Benzene ppm           |                                                                          | 0,019                                                                                                                                                                                           |
| Naphthalene ppm       |                                                                          | 0,001 2                                                                                                                                                                                         |

#### 5.2.3 Particulate matter

Particulate matter in solid or liquid form is a matter of concern in common industrial applications not specific to CCS, e.g. turbo machinery or jet engines. Particles in gas streams could considerably increase wear, e.g. in pipes or turbo machinery used for compression of gas streams for or during transport (booster stations), especially if high pressures and high fluid velocities are achieved. Particulate matter in the form of dust/particles or droplets can be present in captured  $\rm CO_2$  streams. For example, particulate matter might result from combustion processes or capture processes that are based on chemical looping. Post combustion capture applying amine solutions could introduce droplets into gas streams. Further downstream, corrosion products could potentially be transported within the  $\rm CO_2$  stream.

Note Chemical looping consists of using a metal oxide as a bed material providing the oxygen for combustion.

## 5.3 Ranges of impurity concentrations from industrial emitters

Various industrial facilities emit considerable amounts of CO<sub>2</sub>. In principle two different cases can be distinguished:

- 1) Energy-intensive industries, i.e. facilities requiring heat and/or other forms of energy for processing of their materials, such as pulp and paper mills, or recycling glass fabrication. For these facilities, application of post combustion or oxy-combustion capture technologies is comparable to their application to power plants and the final CO<sub>2</sub> stream composition depends on the fuel, the capture and cleaning processes.
- 2) Industry with process-related emissions, i.e. facilities processing raw materials, that emit  ${\rm CO_2}$  streams of variable compositions, e.g.,  ${\rm H_2}$  production, cement and lime kilns, integrated iron and steel works, and bio-gas works.

For both cases, various options for  $\mathrm{CO}_2$  capture exist that can be retrofitted or integrated into production processes. Some raw materials contain carbon and other elements that are released during the processing leading to a further diversification of the resulting  $\mathrm{CO}_2$  streams. The application of CCS in industry sectors could represent half of the emissions reductions achieved through CCS by 2050 as mentioned in IEA (2013)<sup>[38]</sup> and GCCSI (2016)<sup>[36]</sup>.

As compared to power plants described in 4.2, fewer data are available on  $\mathrm{CO}_2$  stream compositions from industrial facilities. One reason is that only very recently have the first pilot plants been set up for capturing  $\mathrm{CO}_2$  from industrial facilities that do not remove  $\mathrm{CO}_2$  from the product stream as part of their overall production process.

#### 5.3.1 Cement industry

The cement industry is globally one of the major  $CO_2$  emitting industries. Cement production takes place on all inhabited continents in large scale plants. Cement production consists of two major steps:

- 1) calcination, traditionally in shaft furnaces, nowadays mostly in multi-stage cyclone preheaters followed by pre-calciners (e.g., CEMCAP, 2017<sup>[18]</sup>);
- 2) clinker burning, mostly in long rotary kilns (ZEP, 2015[114]).

The calcination process yields about 60 % of the plant's total  $CO_2$  emissions, and energy production accounts for the remainder. The clinker burning process is typically fuelled by coal and/or refuse-derived products (animal meal, sewage sludge, etc.).

 ${\rm CO_2}$  capture strategies on a cement plant include capturing the nearly pure  ${\rm CO_2}$  stream from the calcination process, using oxy-combustion in the rotary kiln, and applying post-combustion capture processes to the mixed gas streams from the calcination process and rotary kiln. Another envisaged option is calcium looping, in which the plant's first semi-product, the burnt lime, is used as an absorbent.

 ${\rm CO_2}$  concentration in cement plant flue gas is about 15 %–30 % (e.g., CEMCAP, 2017<sup>[18]</sup>), which is higher than in flue gases from fossil fuel power plants. The  ${\rm CO_2}$  stream composition after capture depends on where and how the  ${\rm CO_2}$  is captured as well as on the type of fuel burnt and its composition.

The cement industry is presently testing  $CO_2$  capture in pilot plants in several countries including Norway, Belgium, the U.S., and China (e.g. LEILAC,  $2016^{[60]}$ , Jordal, et al.,  $2017^{[56]}$ ). So far, measured composition data on  $CO_2$  streams captured from these pilot plants have not been published. For reference, estimated/modelled values for  $CO_2$  stream composition from post-combustion capture (amine scrubbing) at a cement plant are given in Table 3.

Table 3 — Modelled stream composition — Cement plant (EC, 2011<sup>[27]</sup>, quoted by Porter, et al., 2015<sup>[81]</sup>)

| Substance     | N <sub>2</sub> | H <sub>2</sub> O | 02 | Ar | СО  | $NO_2$ | SO <sub>2</sub> | Se     | As      | Hg      |
|---------------|----------------|------------------|----|----|-----|--------|-----------------|--------|---------|---------|
| Content (ppm) | 893            | 640              | 35 | 11 | 1,2 | 0,86   | <0,1            | 0,0088 | 0,002 9 | 0,000 7 |

# 5.3.2 Iron and Steel industry

Pre- and post-combustion options exist for capturing  $\mathrm{CO}_2$  from the Blast Furnace Gas (BFG) from the iron and steel industry. There are a couple of methods as pre-combustion processing of BFG. One is chemical absorption process or physical adsorption process without extra compression. Another is pre-combustion processing of the BFG involving filtration, compression, saturation, shifting, cooling, and  $\mathrm{CO}_2$  separation. The resultant  $\mathrm{CO}_2$  stream will be similar in composition to that obtained from pre-combustion capture in coal-fired power plants (Integrated coal Gasification Combined Cycle-IGCC), e.g. the Nuon Power Station at Buggenum (Netherlands; e.g. EPRI,  $2007^{[30]}$ ).

In post-combustion capture from BFG the fuel is burned in a steam-raising boiler and the  $\rm CO_2$  is captured by amine or ammonia scrubbing or a similar process. For post-combustion capture processes, experience at power plants equipped with similar post-combustion capture facilities can provide information on resultant  $\rm CO_2$  stream composition.

While blast furnaces produce iron, steelmaking requires decreasing the carbon content of pig iron. The process most often used is called Basic Oxygen Steelmaking (BOS) and it liberates a CO and  $\rm CO_2$ -rich gas called BOS gas. Flue gas of BOS gas combustion is also a candidate for  $\rm CO_2$  capture. A new project, 3D, funded by H2020, started in May 2019 in Dunkirk in France to demonstrate the capture technology developed by IFPEn and called DMX. The main purpose is to capture  $\rm CO_2$  from Blast furnace flue gas.

# 5.3.3 H<sub>2</sub> production

The  $\rm CO_2$  stream captured at  $\rm H_2$  production plants based on steam methane reforming is usually of high purity (typically >99 vol %  $\rm CO_2$ ). The process of steam methane reforming is similar to the processes in pre-combustion plants; however usually the feedstock for  $\rm H_2$  production is natural gas instead of coal. The natural gas is typically pre-processed to remove the majority of  $\rm H_2S$ ,  $\rm N_2$ , and  $\rm CO_2$  to comply with gas transportation standards and contracts. Some traces of  $\rm H_2$ ,  $\rm CO$ , and  $\rm CH_4$  can remain after cryogenic physical separation process for  $\rm H_2$  production (as in the Cryocap project in Le Havre, France). For absorption-based process, traces of methanol and amines can be also present in the captured  $\rm CO_2$  stream depending on the solvents used. As an example, Table 4 shows estimated values for the  $\rm CO_2$  stream composition of the CCS demonstration project in Tomakomai, Japan. The  $\rm CO_2$  source is pressure swing adsorption (PSA) off-gas from an  $\rm H_2$  production unit of a petroleum refining plant, and  $\rm CO_2$  capture is performed by amine scrubbing.

Table 4 — Production plant, estimated value (Tomakomai, Japan)

| Substance       | H <sub>2</sub> | CH <sub>4</sub> | CO   | N <sub>2</sub> | 02  | CO <sub>2</sub> |
|-----------------|----------------|-----------------|------|----------------|-----|-----------------|
| Content (% v/v) | 0,22           | 0,06            | 0,02 | Nil            | Nil | 99,7            |

# 5.4 Discussion and interpretation

# 5.4.1 Variability among processes and industries

The reported impurity concentrations are highly variable because the impurities in the  ${\rm CO_2}$  stream are affected by many factors including the fuel and raw materials, the mode of operation of the emitter, the capture technology applied, and the purification steps.

The types of processes for  $\mathrm{CO}_2$  generation and  $\mathrm{CO}_2$  capture influence the impurity concentrations in the captured  $\mathrm{CO}_2$  stream, as shown above for power plants. In addition, final purification is used to manage stream composition, through desulfurization, ash/particle removal, reduction of  $\mathrm{NO}_x$  applied to the flue

gas, stripping and/or dehydration. During compression the stream composition is sometimes further modified. However, post-capture purification steps have additional cost and demand energy; therefore, an operator might be able to optimise operations of the  $\mathrm{CO}_2$  stream purification in order to produce a stream of acceptable quality at reasonable cost. Operators also could consider site-specific studies for the design and economics of the CCS chain, together with risk and impact studies, in order to adapt and optimise the  $\mathrm{CO}_2$  stream composition (see also 8.1).

Overall, the concentrations of impurities in the captured  $\mathrm{CO}_2$  stream depend strongly on the intent of the operator and the concomitant design of the capture process and operational mode. The operator's intent is project-specific and related to the designated downstream part of the CCS chain, with i) technical requirements for  $\mathrm{CO}_2$  transportation and storage to be met and ii) legal constraints, that are often aiming at ensuring safety and avoiding environmental impacts.

To reduce capture cost, ideas have been developed in the first decade of this millennium to inject and store  $SO_x$  and  $NO_x$  together with  $CO_2$ . Later, in pilot projects, it has been considered necessary to remove  $SO_x$ ,  $NO_x$ , and other impurities for technical reasons. Also, the efficiency of capture processes and purification strategies has generally improved with time. For these reasons, newer processes (or capture pilot plants) usually produce  $CO_2$  streams with higher purity. This is illustrated in Farret, et al.  $(2012)^{32}$  where results published before and after 2007 are distinguished — especially as concerns  $SO_x$ ,  $NO_x$ ,  $NH_3$ ,  $H_2S$ . The present document reflects this tendency as many concentrations obtained in 2017 within ISO/TC 265 are lower than the ranges published earlier.

#### 5.4.2 Compositional stability and potential chemical reactions within CO<sub>2</sub> streams

The initial composition of the  $\mathrm{CO}_2$  stream after  $\mathrm{CO}_2$  capture might change further downstream due to:

- i) compression and conditioning i.e. by changing pressure and temperature conditions and thereby modifying solubility limits of the impurities in the CO<sub>2</sub> streams;
- ii) further purification i.e. by an intended removal of one or more impurities;
- iii) reactions of impurities with each other;
- iv) reactions of impurities with the surroundings, e.g. pipeline walls or underground water.

These processes might also result in the formation of new phases, e.g. by condensation of acids or formation of elemental sulfur, depending on the impurities initially present. Phase equilibria between the  $CO_2$  stream and the newly formed phases could be shifted if these newly formed phases further react with their "containment and/or surroundings" as in the corrosion of components and pipes (see 5.2.1). For example,  $SO_2$  has the potential to deposit elemental sulfur in the presence of  $NO_x$  (Dugstad, et al.,  $2014^{[1]}$ ). In the presence of  $H_2O$ ,  $SO_x$ ,  $NO_x$ , and  $O_2$ , sulfuric and/or nitric acid could form and condense. The extent of acid formation and condensation as well as the exact composition of the condensates strongly depends on the  $CO_2$  stream composition and temperature (Soheil, et al.,  $2014^{[95]}$ ).

If  $CO_2$  streams of different composition are mixed, e.g. in a pipeline network, additional reactions could occur if the  $CO_2$  streams contain impurities of more diverse chemical reactivities (see 8.1).

Predictive modelling would be desirable to predict (geo-)technically relevant reactions, so that  $\mathrm{CO}_2$  stream composition could be adapted if necessary. However, corresponding predictive modelling is currently hampered by a lack of data on reaction kinetics valid for the pressure and temperature conditions encountered during transport, injection, and storage. Laboratory experiments and in-situ injection experiments can help to characterize the effects of various impurities in  $\mathrm{CO}_2$  streams on the operation and long-term safety of CCS projects.

# 6 Impacts of impurities

The individual impurities can have (very) different physical and chemical properties. Accordingly, the presence of impurities in the  $CO_2$  stream can have a range of physical, chemical, microbiological, and toxic effects, as reviewed in the following section. These effects depend on the range of impurities

present and on the impurity concentrations. As different impurities might interact, properties and impacts of individual impurities are considered not only individually but also collectively.

# 6.1 Physical impacts

#### 6.1.1 Overview

Impurities can affect the thermodynamic and transport properties (collectively denoted thermophysical properties) of the  $CO_2$  stream. By reducing the overall efficiency of the CCS technology, or by increasing the cost of the project, the physical effects of impurities can have major consequences along the CCS chain, so it is useful to assess and forecast these effects. Some of the most affected properties are listed here, together with examples relevant for practical application (Munkejord, et al.,  $2016^{[21]}$ ):

- Phase behaviour. The gas-liquid equilibrium determines e.g. the highest pressure at which a twophase state can be found, and liquid-liquid equilibrium is relevant for the system CO<sub>2</sub>-water, since the appearance of a water-rich phase severely affects corrosion;
- Density is an important parameter in the dimensioning of pipelines, vessels, compressors, and pumps. It is also needed for fiscal metering, if the meters provide volume flows. In the storage reservoir an increase in the density of the injectate allows a given formation to contain a greater mass of the injectate than would otherwise be the case;
- *Speed of sound* determines the flow rate in choked flow. It is an important parameter in the dimensioning of pipelines against running ductile fracture;
- Viscosity is needed in calculating pressure drop in pipes, in designing processing equipment, and in subsurface reservoir flow modelling;
- Thermal conductivity and heat capacity are needed for heat-transfer calculations and heat-exchanger design.

The above properties depend to a greater or lesser extent on  $\rm CO_2$  stream composition. Implications for transportation and storage are described in <u>6.1.2</u> and <u>6.1.3</u>, respectively.

A potential impact relates to particulate matter if present as outlined in  $\underline{5.2.3}$  such as compressor fouling that might occur with particulate sizes <1  $\mu$ m. Greater particle size is only tolerable in a compressor if these particles are hard and relatively dry, so that they will not agglomerate on the compressor rotor surfaces.

Various filters are used to remove particles. Particle sizes and the target particle concentrations determine filter efficiency: the smaller the particles and the lower the target concentrations, the higher the pressure drop, filter size, energy demand, and cost of particle filters. In challenging cases, progressively fine filters are usually combined in series. Porous filter materials become particle-loaded with time, requiring replacement or reactivation. Porous rocks in the subsurface also function as filters. Fluid velocities decrease radially around injection wells as particles settle out of the  $\mathrm{CO}_2$  stream when they slow down. Some particles such as alkaline earth oxides stick on wet grain surfaces of aquifers. They can coagulate/agglomerate as a result of reactions with brine and water to hydroxides or bicarbonates. These deposits can reduce the reservoir's permeability and injectivity. Therefore, particles are usually removed from  $\mathrm{CO}_2$  streams at surface installation. Filter maintenance is easier than subsurface reservoir remediation. The effect of particulate matter is not described further in this report, but  $\underline{6.2.1.2}$  and  $\underline{6.2.2.1}$  discuss the impact of corrosion upon injection wells, which can result in the injection of particulates into the reservoir

# 6.1.2 Effect on transportation (pipeline and ship transportation)

The impurities present in  $CO_2$  streams are important for the design of  $CO_2$  pipeline and ship transportation, as they affect, e.g. operating pressure, temperature, fluid density, safety considerations, fracture control, and cloud dispersion in the event of a release (IEAGHG,  $2016^{[42]}$ ). ISO  $27913^{[48]}$  addresses, amongst other matters, the effect of impurities on transportation by pipeline of  $CO_2$  streams.

In the following text and in <u>Table 5</u>, we summarize issues concerning density, viscosity, phase behaviour, and phase equilibria."

Species/ Characteristics of Effect on **Potential** Reference substances the species CO<sub>2</sub> stream effect/impact Globally decrease For an equal volume Munkejord, et al., 2016<sup>[71]</sup> the density of the flow, the quantity of Impurities in CO<sub>2</sub> stream CO<sub>2</sub> transported will be general lower, hence decreasing the efficiency of the transportation chain Munkejord, et al., 2016<sup>[8071]</sup>, Higher maximum Larger propensity to IEAGHG, 2011[40], two-phase ductile fracture Cosham, et al., 2014[21], pressure Major leak with a Nordhagen, et al. 2017<sup>[76]</sup> widely open fracture  $O_2$ ,  $N_2$ , Ar, Non-condensable Increase in highest IEAGHG, 2011<sup>[4640]</sup>, Reduce density. H<sub>2</sub>... increase volume, pressure of two-phase Mohitpour, et al., 2012[69], change shape of gas-liquid state Porter, et al., 2015[81], phase envelope Munkejord, et al., 2016[71], IEAGHG, 2016[42] Deposition of Interruption to flow Dugstad, et al.2014<sup>[2]</sup> H<sub>2</sub>S and NOx elemental sulfur IEAGHG, 2016[42] Hydration Hydrates Interruption to flow  $H_2O$ formation

Table 5 — Summary of physical impacts on transportation

#### 6.1.2.1 Density and viscosity

The presence of impurities can influence the density and viscosity of the  $\rm CO_2$  stream. For pipeline transport, a high density is advantageous, since in this case mass flow rates can be higher, and pipe diameters smaller. In turn, the presence of non-condensable impurities such as Ar, N<sub>2</sub>, or O<sub>2</sub> in high concentrations (e.g. from oxy-combustion) could lead to an increase in pipeline diameters for dense phase  $\rm CO_2$  transport, which would raise the capital cost (IEAGHG,  $\rm 2016^{[42]}$ ). For H<sub>2</sub>, the effect of its low molecular weight is also significant in reducing stream density and/or requiring larger pipeline diameters (IEAGHG,  $\rm 2011^{[40]}$ ). A lower viscosity, as e.g. induced by Ar and/or N<sub>2</sub>, will facilitate pipeline transport (IEAGHG,  $\rm 2011^{[40]}$ , Porter, et al.,  $\rm 2015^{[81]}$ ), because the pressure drop along the pipeline decreases and less compression energy is needed. However, for fully turbulent flow, the sensitivity of pressure drop to viscosity is low.

#### 6.1.2.2 Phase behaviour and phase equilibria

Impurities also affect  $CO_2$  phase behaviour (Span, et al.,  $2013^{[\underline{90}]}$ , Løvseth, et al.,  $2016^{[\underline{100}]}$ ). As discussed in the review by Munkejord, et al.,  $(2016)^{[\underline{71}]}$  data are currently lacking for several relevant binary systems.

The coexistence of two fluid phases (liquid and gas) in pumps and compressors can cause hydrodynamic effects resulting in malfunction or damage of such equipment. The operation of pipes in a two-phase state requires special care. For pure  $\mathrm{CO}_2$ , two phases can coexist in thermodynamic equilibrium along the phase boundary line in the pressure-temperature space, between the triple and the critical point. Additional components (such as impurities in the  $\mathrm{CO}_2$  stream) add an additional degree of freedom to the thermodynamic system and the phase boundary line widens up into a two-phase space. Thus, most impurities will increase the highest temperature and the highest pressure below which a two-phase gas-liquid state can exist. Therefore, a higher operating pressure is necessary to maintain the flow in

a single dense phase, as compared to pure  $CO_2$ , and more compression energy is also needed (Ceroni,  $2014^{[19]}$ ).

Note For short transport distances, two-phase conditions can also be avoided by keeping the temperature of the  $CO_2$  stream sufficiently high, and pipes thermally insulated.

A higher maximum two-phase pressure, caused by  $H_2$  for instance (IEAGHG,  $2016^{[42]}$ ), increases the risk of a ductile fracture of a pipeline. This kind of fracture can open widely causing a major leak. Use of higher-strength (e.g. thicker) pipeline can reduce this risk (Cosham, et al.,  $2014^{[21]}$ , Nordhagen, et al.,  $2017^{[76]}$ ).

The presence of water as a separate phase can lead to hydrate formation depending on pressure and temperature, which can cause blockages leading to dramatic flow interruptions. The inclusion of chemical inhibitors such as glycol can decrease or prevent formation of a separate water phase. (IEAGHG,  $2016^{\left[\frac{42}{2}\right]}$ ). However, the presence of glycol sometimes increases corrosion. The present report does not address the possible influence of impurities on hydrate formation.

 $H_2S$  and  $SO_2$  cause negligible reduction of the solubility of water in the  $CO_2$  stream.

Ship transport of  $CO_2$  is considered to be economically viable for relatively long transport distances or small volumes (e.g. Barrio, et al.,  $2005^{[16]}$ ; Munkejord, et al.,  $2016^{[71]}$ ). In addition, the flexibility of ships could have an advantage in early CCS deployment. Ship transport is currently considered at low (6 bar-8 bar), medium (15 bar) and high pressure (45 bar-60 bar) (Norwegian Ministry of Petroleum and Energy,  $2016^{[77]}$ ). From a pure ship transport point of view, low pressure (with a corresponding low temperature) is considered optimal due to the high liquid density and low gas density (Aspelund, et al.,  $2006^{[10]}$ ). Very few studies have included the impact of  $CO_2$  stream composition on ship transport. Engel and Kather ( $2018^{[29]}$  considered the liquefaction of a pipeline  $CO_2$  stream. They found that an increased impurity concentration lead to an increased energy demand of the liquefaction process, and to a shift from electrical to thermal energy demand for the injection. Further open technical questions related to ship transport include(a) optimal integration of the liquefaction process with the capture process, (b) the possible formation of solid  $CO_2$  at low pressures, and (c) the implications on loading/unloading and other operational procedures.

#### 6.1.3 Effect on geological storage

#### 6.1.3.1 Density and buoyancy

IEAGHG (2011)<sup>[40]</sup> have conducted a study on the effect of impurities on  $CO_2$  stream density and storage capacity. One important finding is the existence of a minimum or a maximum storage capacity depending on the  $CO_2$  stream composition. As already explained, the presence of non-condensable impurities results in a density lower than that of pure  $CO_2$ , leading to decreased  $CO_2$  storage capacity and increased buoyancy in saline aquifers (Wang,  $2015^{[109]}$ ). The non-condensable impurities generally reduce the density of the  $CO_2$  phase under storage conditions (Yan, et al.,  $2009^{[113]}$ ). An example is shown in Figure 4.

In contrast, inclusion of the condensable  $SO_2$  in  $CO_2$  streams results in a higher density than pure  $CO_2$ . However, the high solubility of  $SO_2$  in water may generate integrity concerns in the near wellbore region (i.e. corrosion of cement and/or casing, see also 6.2).



#### Keys

- X density [kg/m<sup>3</sup>]
- Y depth [m]
- 1 subsurface
- 2 compared to pure CO<sub>2</sub>

NOTE 1 The molar fractions of  $CO_2$ ,  $O_2$ , Ar, and  $O_2$  in (1) are 0,972 3; 0,015 9; 0,007 4 and 0,000 8, respectively.

Figure 4 — Calculated density of an assumed  ${\rm CO_2}$  stream from oxy-combustion as a function of depth for typical hydrostatic pressure and temperature gradients in the subsurface (1) compared to pure  ${\rm CO_2}$  (2)[Modified from May, et al. (2009)<sup>[67]</sup>]

The non-condensable impurities such as Ar,  $N_2$ ,  $O_2$ , and  $H_2$  generally reduce the density of  $CO_2$  under storage conditions (Yan, et al.,  $2009^{[113]}$ ), in special cases up to 50 % (between 800 m and 900 m depth), for low purification levels. This results in a reduction of the storage capacity, that can be greater than the molar volume fraction of the impurities. Effects of impurities in the  $CO_2$  plume can be visualised by using "normalised storage capacities", i.e. expressing storage capacities as a ratio between storage capacities of a pure and a mixed  $CO_2$  stream.

Lighter elements contained in the  $CO_2$  stream will increase its buoyancy (i.e. the density difference between the  $CO_2$  plume and the formation water) in comparison to a pure  $CO_2$  plume. Inferences about impacts of impurities on buoyancy and storage capacity in aquifers result from numerical simulations that calculate the effects of the  $CO_2$  phase density on the horizontal and vertical migration of a  $CO_2$  plume.

In depleted natural gas reservoirs, mixing of the injected  $\mathrm{CO}_2$  stream with residual gas will produce a  $\mathrm{CO}_2$ -natural gas mixture with lower density and  $\mathrm{CO}_2$  concentration than pure  $\mathrm{CO}_2$ , reducing  $\mathrm{CO}_2$  storage capacity (Schöneich, et al.,  $2007^{[96]}$ ). The degree of mixing depends on the migration and expansion of the injected  $\mathrm{CO}_2$  stream in heterogeneous reservoirs (Rebscher and Oldenburg, 2004)[84].

Overall, the discussion above about the behaviour of a  $\rm CO_2$  plume is mainly valid for a homogeneous porous medium (see Table 6 for the summary of physical impacts). The subsurface is not homogeneous and discontinuities strongly affect the migration of fluids (as was shown with  $\rm CO_2$  injection in the Utsira formation at Sleipner by Chadwick, et al., 2008)[20]. While the density and buoyancy could be affected in a range of up to 50 % (IEAGHG, 2011)[40], permeability in reservoir rocks usually varies over orders of magnitudes and thus, heterogeneities are likely of much greater importance in controlling the fluid migration and trapping than the effects of impurities on fluid properties.

| Impurity                                             | Characteristics of the impurities                                       | Effect on CO <sub>2</sub> stream | Potential effect/<br>impact                                                              | Recommended<br>measure/<br>comment                                                                   | Reference                                                   |
|------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| O <sub>2</sub> , N <sub>2</sub> , Ar, H <sub>2</sub> | Non-condensable<br>light*                                               | Lower<br>density                 | Decrease CO <sub>2</sub><br>storage capacity,<br>increase buoyancy in<br>saline aquifers |                                                                                                      | Wang, 2015 <sup>[109]</sup><br>IEAGHG, 2016 <sup>[42]</sup> |
| SO <sub>2</sub> , SO <sub>3</sub> , NO <sub>x</sub>  | Condensable,<br>heavy*                                                  | Increase<br>density              | Increase CO <sub>2</sub> storage capacity                                                | Usual range of this impurity is too low to affect                                                    | Talman 2015 <sup>[101]</sup>                                |
| Residual gas<br>in depleted<br>gas reservoir         | CH <sub>4</sub> , H <sub>2</sub> S, N <sub>2</sub> ,<br>CO <sub>2</sub> | Decrease<br>density              | Change storage<br>capacity                                                               | Significantly change CO <sub>2</sub> stream composition due to high partial pressure of residual gas | Schöneich, et al.,<br>2007 <sup>[96]</sup>                  |

Table 6 — Summary of physical impacts on geological storage (part 1, density and buoyancy)

## 6.1.3.2 Interfacial tension and viscosity

Non-condensable impurities such as  $N_2$ ,  $O_2$ , Ar, and  $CH_4$  will increase the plume/brine interfacial tension (IFT). Higher IFT increases the capillary pressure and improves the trapping of  $CO_2$  bubbles by imbibing formation water.

In the presence of  $SO_2$  the interfacial tension decreases linearly with increasing  $SO_2$  concentration (Saraji, et al.,  $2014^{[95]}$ ). Similar effects on the interfacial tension of  $CO_2$ /brine in the presence of another acid gas, i.e.  $H_2S$ , are reported (Shah, et al.,  $2008^{[99]}$ ).

Literature is very scarce on the impacts of impurities on viscosity. IEAGHG (2011) [40] note that the viscosity of dense-phase  $CO_2$  can be lowered at pore scale by some impurities such as  $N_2$ ,  $O_2$ , and Ar, affecting the migration of the  $CO_2$  stream in the reservoir. Depending on the reservoir structure (spill point, layering, heterogeneities, etc.), changes of viscosity can lead to an increase or decrease of storage capacity.

| Table 7 — Summary of physical | impacts on undergro | ınd storage | (part 2, inte | rfacial tension |
|-------------------------------|---------------------|-------------|---------------|-----------------|
|                               | and viscosity)      |             |               |                 |

| Impurities                                            | Effect on CO <sub>2</sub> stream             | Potential<br>effect/impact                                      | Reference                            |
|-------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|--------------------------------------|
| со п с                                                | Decrease interfacial                         | Affect storage capacity                                         | Saraji, et al., 2014 <sup>[95]</sup> |
| $SO_{2}$ , $H_2S$                                     | tension                                      | Affect storage capacity                                         | Shah, et al., 2008 <sup>[99]</sup>   |
| N <sub>2</sub> , O <sub>2</sub> , Ar, CH <sub>4</sub> | Increase the plume interfacial tension (IFT) | Increase capillary<br>pressure and improve<br>residual trapping |                                      |
| N <sub>2</sub> , O <sub>2</sub> , Ar                  | Decrease viscosity                           | Affect migration of CO <sub>2</sub> plume                       | IEAGHG 2011 <sup>[40]</sup>          |

#### 6.1.3.3 Phase equilibria, impurity dissolution and migration

The impact of impurities in  $\mathrm{CO}_2$  streams on phase equilibria has been described in <u>6.1.2.2</u> and the resulting effects will impact storage also, e.g. impurities raise the possibility of hydrate formation in the case of storage in depleted natural gas reservoirs. Formation of two  $\mathrm{CO}_2$ -rich phases of different density could occur at storage conditions close to the critical point of  $\mathrm{CO}_2$ . The relative permeability of these two phases will be lower compared to a homogenous fluid  $\mathrm{CO}_2$  phase and it could reduce their mobility. Higher injection pressures may be needed for avoiding two-phase flow within a  $\mathrm{CO}_2$  plume in the storage reservoir than anticipated for pure  $\mathrm{CO}_2$ .

# ISO/TR 27921:2020(E)

Following  $CO_2$  injection, impurities are initially present in the reservoir as part of the  $CO_2$  stream and will migrate with the  $CO_2$  stream. While migrating, impurities partially dissolve in the formation water. The extent of impurity dissolution at a given location in the reservoir will depend on each impurity's overall solubility, dissolution kinetics, its diffusion behaviour in the  $CO_2$  plume and the formation water and its reactivity after dissolution (e.g. Amshoff, et al.  $2018^{[4]}$  &  $2019^{[5]}$ ). These parameters are different for each impurity. Further, each impurity's solubility and dissolution kinetics depend, e.g., on prevailing pressure and temperature conditions and on formation water composition. In general, the solubility of  $SO_2$  in saline water is much higher than that of  $NO_x$  and  $O_2$ . In consequence, in the reservoir  $NO_2$  (and  $O_2$ ) maybe transported to greater distance from the injection well than  $SO_2$ . (IEAGHG,  $2011^{[40]}$ ). Thus, a detailed knowledge which impurity is present in which concentration at a given location in the storage reservoir after a certain injection period allows for a better prediction of geochemical reactions and related geotechnical consequences (see also <u>6.2.2</u>). It is currently unknown whether the presence of impurities affects solubility trapping of the  $CO_2$  plume phase, due to a lack of experimental data.

# 6.2 Chemical impacts

Depending on the chemical properties of each of the impurities, their presence modifies the chemical properties and in particular the reactivity of the  $\mathrm{CO}_2$  stream. Further, cross-chemical reactions between different impurities could also occur within the  $\mathrm{CO}_2$  stream leading to the formation of new impurities (such as acids) and the reduction of concentrations of other impurities. In the following, chemical impacts of impurities on the corrosion of metallic materials are described (both in surface transport equipment and in injection wells). Further subclauses deal with chemical impacts on geological storage, including interactions with the storage system, the overburden and well cements.

#### 6.2.1 Corrosion of metallic materials

#### **6.2.1.1** Surface transport equipment

Pipelines carrying dense phase pure, dry  $\mathrm{CO}_2$  are not affected by corrosion. However, impurities in the  $\mathrm{CO}_2$  stream might affect the corrosivity.

 $\rm H_2O$  dissolved in the  $\rm CO_2$  stream is not corrosive, but free water can result in the formation of carbonic acid ( $\rm H_2CO_3$ ), which is highly corrosive (Andersson, 2008<sup>[3]</sup>; see Figure 5). Carbon steel can suffer general or pitting corrosion, at a rate of more than 1.0mm/year in wet pure  $\rm CO_2$  (Mohitpour, et al., 2012<sup>[69]</sup>). The solubility of water in a pure dense phase  $\rm CO_2$  stream is a function of pressure and temperature as the solubility decreases with decreasing temperature and pressure (De Visser, et al., 2008<sup>[22]</sup>). Experimental studies with dense-phase mixtures of  $\rm CO_2$  and water show that the corrosion rate increases with increasing temperature. Although a protective FeCO<sub>3</sub> corrosion product film can form when the concentration of dissolved corrosion products becomes high, the film can fail and permit high localised corrosion rates (Dugstad, 2010<sup>[2]</sup>).



#### **Keys**

- 1 mass transport
- 2 aqueous phase
- 3 gas
- 4 hydration
- 5 dissociation
- 6 electrochemical reactions
- 7 iron carbonate precipitation

Figure 5 — Carbon steel pipeline corrosion mechanisms (Andersson, 2008)[3]

Other components such as  $SO_x$  and  $NO_x$  can also dissolve in free water to form corrosive and acid by-products. Also, when impurities like  $H_2O$ ,  $SO_x$ ,  $NO_x$ ,  $O_2$ , CO, and  $H_2S$  are present together in the  $CO_2$  stream, there are a number of possible cross-chemical reactions that have the potential to form sulfuric/sulfurous acid, nitric acid, and/or elemental sulfur, which form separate phases and thereby provoke corrosion. These aqueous (acidic) phases can form at water contents of less than 100 ppm (see Annex A). The presence of amines, MeOH, EtOH, glycols, and other water-soluble components will promote the formation of an aqueous phase and reduce the concentration of water in the  $CO_2$  at which a separate aqueous phase is formed.

Due to these interactions between various impurities and potential chemical cross-reactions, the maximum acceptable concentration of any impurity depends on the concentration of the other impurities and will be project specific (see <u>Annex A</u>). <u>Table 8</u> summarizes the effects of impurities on corrosion in case of transportation by pipeline.

Table 8 — Summary of chemical impacts — Corrosion of transport pipeline

| Impurities                                                                      | Characteristics of the impurity | Effects on CO <sub>2</sub> stream                                         | Potential<br>effects/impact                                                        | Recommended<br>measure/<br>comment                                    | Reference                                                              |
|---------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|
| SO <sub>x</sub> , NO <sub>x</sub> , O <sub>2</sub> ,<br>CO and H <sub>2</sub> S | Possibly react cross-chemically | Form sulfuric/<br>sulfurous acid,<br>nitric acid or ele-<br>mental sulfur | Acid condensa-<br>tion triggering<br>corrosion                                     | Negligible when water content (or content of other impurities) is low | IEAGHG, 2011 <sup>[40]</sup>                                           |
| H <sub>2</sub> O                                                                | Solubilization                  | Form H <sub>2</sub> CO <sub>3</sub>                                       | Corrosion and formation of protective corrosion product films (FeCO <sub>3</sub> ) | Corrosion negli-<br>gible when water<br>content is low                | Dugstad, 2010 <sup>[2]</sup> , De Visser, et al., 2008 <sup>[22]</sup> |

**Table 8** (continued)

| Impurities                                              | Characteristics of the impurity | Effects on CO <sub>2</sub> stream                                   | Potential effects/impact | Recommended<br>measure/<br>comment | Reference |
|---------------------------------------------------------|---------------------------------|---------------------------------------------------------------------|--------------------------|------------------------------------|-----------|
| Amines, CH <sub>4</sub> ,<br>Ethane, gly-<br>cols, etc. | Water soluble                   | Form an aqueous phase and reduce the H <sub>2</sub> O concentration | Corrosion                | Depend on impurity concentrations  |           |

#### 6.2.1.2 Impact on injection wells

In the reservoir, water will dissolve in the  $CO_2$  phase while  $CO_2$  (and impurities) will partially dissolve into the formation water. Likewise, the impurities present in the  $CO_2$  stream will also dissolve in the formation water.

In particular, corrosion of well equipment (casing, tubing, etc.) could occur if formation water backflow occurs when injection stops. For example, ship transport to the injection site could yield intermittent injection. Also,  $CO_2$  injection wells connected to a large transport network will probably need to cope with a range of  $CO_2$  arrival rates within the limits of the capture plant(s) and surface equipment, therefore causing changes in flow rate or even temporary shut off.

When injection stops, temperature increases at the bottom of the  $\mathrm{CO}_2$  column. When the water dissolves in the  $\mathrm{CO}_2$  phase and the water-enriched  $\mathrm{CO}_2$  phase moves upwards (by convection and diffusion), water can condense further up in the  $\mathrm{CO}_2$  column where the temperature is lower, so that an aqueous phase is likely to appear. Where the tubing material is exposed to such environments, pitting corrosion and cracking are likely to occur. The corrosivity of the brine and of the condensed aqueous phase depends on the amount and type of impurities and reaction products that partition to the water phases. Some impurities ( $\mathrm{SO}_x$ ,  $\mathrm{NO}_x$ ) and reaction products ( $\mathrm{H}_2\mathrm{SO}_4$ ,  $\mathrm{HNO}_3$ ) strongly prefer the water phase while impurities like  $\mathrm{O}_2$  and  $\mathrm{H}_2\mathrm{S}$  are expected to be present in significant amounts in both phases.

#### 6.2.2 Impacts on geological storage system

#### 6.2.2.1 Impacts on reservoir and caprocks

Geochemical reactions of  $\mathrm{CO}_2$  streams with formation fluids and rocks can result in the alteration of the rock matrix by changing the abundance, type, shape, and texture of the rock-forming minerals. New minerals can form in the pore space or replace primary minerals. These reactions might be of geomechanical relevance, provided the amounts of reactants and products are sufficient. Injectivity, storage capacity, mechanical strength, and storage safety could be affected by geochemical reactions in a positive or negative way. Whether a reaction is beneficial, insignificant, or problematic for storage depends on its reaction rate and position within a storage complex: Reactions resulting in a gain of porosity could enhance permeability and injectivity of the reservoir if they occur close to wells, while such reactions could be problematic for the integrity of a caprock. On the contrary, reactions increasing the volume fraction of solid phases in the rock can reduce permeability which could be beneficial for storage safety if caprocks are affected. Moreover, such reactions might be considered positive for reservoir rocks if they are slow enough not to markedly reduce injectivity during the operation phase of a storage site but reduce plume mobility in the long term. Particulate matter in the injected  $\mathrm{CO}_2$  stream can also create deposits and cause pore plugging and injectivity reduction. For example, particles can coagulate by reactions with brine and water to hydroxides or bicarbonates.

Which geochemical reactions occur in a storage complex depends, among other things, on the site-specific compositions of rocks and formation water. Porous, low saline sandstone aquifers composed overwhelmingly of stable minerals, mainly quartz, are less prone to geomechanically relevant alteration than aquifers containing brines of high salinity or aquifers composed of sandstones where quartz grains are held together e.g. by clay minerals or carbonates. Arkoses or greywackes that contain feldspar or rock fragments (besides quartz grains) may be suitable reservoir rocks, however these grains are also susceptible to geochemical alteration. Reservoirs made up of carbonates or basic volcanic rocks, such as basalt, are sensitive to fast dissolution or alteration reactions, which places greater importance on the

presence of high-quality caprock. On the other hand, these rocks facilitate the conversion of free  $\mathrm{CO}_2$  to dissolved inorganic carbon species and solid carbonates, which will reduce the risk of leakage and the volume of the  $\mathrm{CO}_2$  plume. Apart from common shale and clay rich caprocks, or less abundant ignimbrites, that contain complex framework and sheet silicates of rather slow reactivity, anhydrite, rock salt, and gypsum are important caprocks that are composed of chloride, sulfate, and carbonate minerals that dissolve (and precipitate) relatively fast. These minerals are also common cement minerals within clastic sedimentary rocks. Especially, rock salt, though an excellent low permeable rock, may become a safety hazard if it is exposed to large volumes of undersaturated formation water.

 $CO_2$  injection will provoke acidification of the formation water after its dissolution in water. Impurities add complexity to the range of possible reactions. For example, the presence of acidic gases such as  $SO_x$  (and  $NO_x$ ) will further acidify the formation water particularly in the two-phase zone (formation water/ $CO_2$  plume) due to their preferential dissolution in the formation water (e.g., Talman (2015)<sup>[101]</sup>) and the formation of (strong) acids reactions (e.g.  $SO_2 \rightarrow H_2SO_3$ ,  $H_2SO_4$ ).

The extent of acid formation depends on factors such as pressure, temperature, and the availability of oxidants, such as  $O_2$ , to oxidize  $SO_2$  into  $H_2SO_4$ .  $NO_x$  are known to catalyse the reaction. Consequently, by lowering the pH value of the formation water,  $SO_2$  and other acidic impurities will enhance dissolution of minerals there. Following any movement of the formation water, dissolved species will migrate. When the dissolved species reach the saturation limit, minerals could begin to precipitate. However, precipitation of minerals can be very slow and kinetically hindered. Thus, not all minerals expected from thermodynamics will be formed in alteration reactions. Further, dissociation of strong acids generates anions that may combine with cations dissolved in the formation water to precipitate minerals such as baryte or anhydrite. Thus,  $SO_2$  and other acid-forming impurities  $(NO_x, SO_x)$  could have effects on the rock porosity, integrity, and injectivity as has been shown by laboratory experiments (e.g., Pearce, et al., 2015a,  $b^{[79]}$ ; Mandalaparty, et al.,  $2010^{[65]}$ ; Dawson, et al.,  $2015^{[25]}$ ) and by modelling work (e.g., Azaroual, et al.,  $2008^{[12]}$ ) for different types of reservoir rocks. Results from experimental and modelling studies have to be considered with care when employing impurity concentrations that are much higher than those currently considered in  $CO_2$  streams (see Clause 6).

Apart from the acidification of formation waters by  $\rm CO_2$ ,  $\rm SO_x$  and  $\rm NO_x$ , redox reactions could occur when  $\rm CO_2$  streams contain redox-active impurities. Fe is a ubiquitous element, dissolved as  $\rm Fe(II)$ -species in reduced formation waters or present in  $\rm Fe(II)$ -containing minerals such as siderite ( $\rm FeCO_3$ ). Introduction of oxidants such as  $\rm O_2$  leads to the formation of  $\rm Fe(III)$ -phases, that can replace primary iron phases, or precipitate in the pore space. Reactions of iron minerals have been investigated for  $\rm CO_2$  streams containing  $\rm SO_2$  or  $\rm O_2$  e.g. by Garcia, et al.,  $\rm 2012^{[35]}$  (for  $\rm FeOOH + \rm SO_2$ ), Pearce, et al.,  $\rm 2015^{[79]}$  (for  $\rm FeCO_3 + \rm SO_2$ ) and Waldmann, et al.,  $\rm 2014^{[108]}$  (for  $\rm FeCO_3 + \rm O_2$ ). In addition, in depleted hydrocarbon reservoirs, the oxidation of light organic components may result in the formation of heavy residues that may accumulate and reduce permeability ("tar mats"). The presence of inert or non-condensable impurities in the injected  $\rm CO_2$  stream, such as Ar,  $\rm N_2$ , and  $\rm CH_4$ , will have no or negligible geochemical effects in the subsurface.

<u>Table 10</u> summarizes the chemical effects of impurities on a geological storage system.

#### 6.2.2.2 Impacts on well cements

The well cements surrounding the borehole, immediately adjacent to the injection interval, may be altered by the impurities contained in the  $\rm CO_2$  stream. The project Puits  $\rm CO_2$  (2006–2010) focused on studying the impact of acid gases on wellbore cements by laboratory experiments: The kinetics of degradation was highly dependent on the medium — 6 mm/6 months in a mixture with reducing impurities ( $\rm CO_2$ -H<sub>2</sub>S 97 %-3 %), and 6 mm/7 weeks for a  $\rm CO_2$  mixture with oxidizing impurities ( $\rm CO_2$ -NO<sub>2</sub>-SO<sub>2</sub>-O<sub>2</sub> 92,1 %-0,9 %-5 %-2 %). These conclusions differ from those obtained for pure  $\rm CO_2$  (Kutchko, et al., 2011<sup>[59]</sup>, Farret, et al., 2012<sup>[32]</sup>).

More details can be found in Carroll, et al.  $(2016)^{[17]}$ , who published a review of the various geochemical and geomechanical effects affecting wellbore integrity for CCS projects including the consequences of impurities in the  $CO_2$  stream.

#### 6.2.2.3 Mobilization of secondary elements

Secondary elements are not impurities of the initial  $\mathrm{CO}_2$  stream. They are substances that are originally present in the subsurface (reservoir, formation fluids, overburden, groundwater, soil) and can be mobilized by geochemical reactions — and then become part of the  $\mathrm{CO}_2$ -rich phase or the aqueous phase. Among them are trace elements, such as Trace Organic Elements (TOE) and Trace Metal Elements (TME). Mobilisation of secondary elements does not create a specific risk as such. However, in case of a leakage of  $\mathrm{CO}_2$  or brine, overlying aquifers might be contaminated. If the storage occurs in deep saline aquifer formations containing dissolved natural gases or depleted gas reservoirs, natural gases will also mix with the  $\mathrm{CO}_2$  stream. In this case, natural gas components become part of the  $\mathrm{CO}_2$  stream that could further migrate and leak.

Some TOE and TME could also be present as impurities in the initial  $CO_2$  stream (Table 9). However their concentration in the initial  $CO_2$  stream is likely to be by far lower than the concentration of TOE and TME taken up from the subsurface as secondary elements as pointed out e.g. by Apps, et al. (2007) [9], Farret, et al. (2012)[32], Lions, et al., (2015)[61].

The reactions involved in the mobilization of TME and TOE and their partitioning processes are not known in detail, and both are therefore difficult to quantify. Regarding the TOE, supercritical  $\rm CO_2$  is a solvent and will dissolve organic matter. Regarding TME, formation water and groundwater acidification and modification of redox conditions due to  $\rm CO_2$  injection could influence the scavenging-release process of TME by iron oxides (Zuddas,  $\rm 2009^{[116]}$ ). In consequence, TME could be present in the formation water or groundwater, where they can be stabilized by formation chemical processes and will follow the water flow. A comparison of TME concentration in  $\rm CO_2$  streams and in formation waters is presented in Table 9.

Table 9 — Comparison of TME concentrations in  $CO_2$  streams and formation water [Ceroni & Farret,  $2016^{\left[33\right]}$ ]

|       | CO <sub>2</sub> stream                    | Formation water before CO <sub>2</sub> injection        | Formation water after CO <sub>2</sub> injection         |  |
|-------|-------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|
| Mn    | $1.2 \times 10^{-2} \mathrm{mg/l}$        | 3 mg/l (Kharaka, et al., 2009 <sup>[58]</sup> )         | 18 mg/l                                                 |  |
| IVIII | 1,2 ^ 10 - mg/1                           | 3 mg/1 (Kharaka, et al., 2009                           | (Kharaka, et al., 2009 <sup>[58]</sup> )                |  |
| Dh    | <b>Pb</b> $2 \times 10^{-2} \text{ mg/l}$ | $2 \times 10^{-5}$ mg/l (Zuddas, 2009[116])             | $2 \times 10^{-2} \text{ mg/l (Zuddas, } 2009^{[116]})$ |  |
| PU    |                                           | <2 × 10 <sup>-5</sup> mg/l (Apps, 2007 <sup>[9]</sup> ) | 10 <sup>-4</sup> mg/l (Apps, 2007 <sup>[9]</sup> )      |  |

As concerns organic elements, in the Frio in situ injection experiment (Kharaka, et al.,  $2009^{[58]}$ ) the values of organic carbon dissolved in the formation waters increased 20 days after the  $\rm CO_2$  injection by more than 2 orders of magnitude. The organic anion and BTEX concentrations of the water remained below 1 mg/l, nevertheless the authors concluded that the increase in organic matter (volatile and semi-volatile compounds) is a result of the  $\rm CO_2$  injection. At the Ketzin experimental site in Germany, acetate concentration in the wellbore fluids had increased nearly 20-fold 1 month after injection (Vieth, et al.,  $\rm 2009^{[107]}$ ). In addition, laboratory leaching experiments show that the mobilization of organic matter (including BTEX) and other species by supercritical  $\rm CO_2$  is possible not only in oil reservoirs but also in aquifers containing no oil.

Table 10 — Summary of chemical impacts (storage)

| Species/<br>substances | Characteristics of the species       | Potential<br>effect/impact | Recommended<br>measure/<br>comment         | Reference                      |
|------------------------|--------------------------------------|----------------------------|--------------------------------------------|--------------------------------|
|                        |                                      |                            | Generally low concentration of these impu- | Pearce 2015 <sup>[79]</sup> ,  |
| SO <sub>x</sub> , NOx  | Increase acidity of formation water; |                            |                                            | Talman 2015 <sup>[101]</sup> , |
| JO <sub>X</sub> , NOX  | provide anions                       |                            |                                            | Azaroual 2008[ <u>12</u> ],    |
|                        |                                      |                            | -                                          | IEAGHG 2011 <sup>[40]</sup>    |

| <b>Table 10</b> (continued) |
|-----------------------------|
|-----------------------------|

| Species/<br>substances                     | Characteristics of the species | Potential<br>effect/impact                                                                                                 | Recommended<br>measure/<br>comment | Reference                                                                                                                                              |
|--------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 02                                         | Oxidising gas                  | Promotes formation of<br>strong acids from SOx<br>and NOx;<br>Oxidation of e.g. Fe(II)<br>minerals                         |                                    | Pearce 2015 <sup>[79]</sup> , Waldmann, et al. 2014 <sup>[108]</sup>                                                                                   |
| 02                                         | Oxidasing gas                  | Oxidation of residual oil. Formation of heavy residues (tar mat) in depleted reservoir. Decrease porosity and permeability |                                    | Pearce 2015 <sup>[79]</sup> ,                                                                                                                          |
| Mobilized TMEs and TOMs by CO <sub>2</sub> | Potentially toxic impurity     | Pollution of shallow<br>water and subsurface<br>water in case of leakage                                                   | Ground water<br>treatment          | Apps 2007 <sup>[9]</sup> ,<br>Farret, et al., 2012 <sup>[32]</sup> ,<br>Lions, et al., 2015 <sup>[61]</sup> ,<br>Kharaka, et al., 2009 <sup>[58]</sup> |

# 6.3 Impacts on microbial communities in the storage complex

Overall, relatively few works deal with the impact of impure  ${\rm CO_2}$  on the deep subsurface microbial communities and biogeochemical processes.

Different studies show that the injection of high amounts of pure  $\rm CO_2$  in deep reservoirs impact firstly microbial communities by decreasing its activity (Morozova, et al.,  $\rm 2010^{[70]}$ ; Wragg, et al.,  $\rm 2013^{[112]}$ , Santillan, et al.,  $\rm 2013^{[94]}$ ). Then after this period of activity decrease microbes seem to acclimate to the conditions and activity increases.

Trias, et al.  $(2017)^{[104]}$  showed in the framework of CARBFIX project that deep ecosystems can respond quickly to injections of  $CO_2$ -charged groundwater in a basaltic storage site. The  $CO_2$  "feed" (75 %  $CO_2$ -24,2 %  $H_2S$ -0,8 %  $H_2$ ) was obtained from the purification of the geothermal gas harnessed by a nearby geothermal power plant. Injection of  $CO_2$ -charged groundwater resulted in a marked decrease (by a factor of  $\sim 2,5$ -4) in microbial richness. Ions released by basalt dissolution sustained the growth of autotrophic and heterotrophic species whose activities may have implications on mineral storage.

 ${\rm CO_2}$  can also play the role of an energy source that can be utilized by a range of different methanogenic organisms in strongly reducing environments. This process involves redox reactions which can be impacted by the presence of impurities (such as  ${\rm H_2S}$ ,  ${\rm SO_x}$  and  ${\rm NO_x}$ ). However, the increase in  ${\rm CO_2}$  pressure more than doubled the rate of methanogenesis in comparison to low  ${\rm CO_2}$  pressure conditions. West, et al. (2011)[110] examined the redox reactions involving both  ${\rm CO_2/CH_4}$  and  ${\rm SO_2/SO_4}$  redox couples. The authors show that  ${\rm SO_2}$  oxidation can be coupled to  ${\rm CO_2}$  reduction to provide sufficient energy for microbial use (particularly  $\sim$ pH 3). In contrast, neither  ${\rm H_2S}$  nor  ${\rm NO_2}$  half reactions produce sufficient energy for microbial use when coupled to  ${\rm CO_2}$  reduction.

Most operators in the US who inject  $\mathrm{CO}_2$  for EOR applications specify an  $\mathrm{O}_2$  limit of 10 ppm. The reason for this low level of  $\mathrm{O}_2$  is that the presence of even small levels of oxygen can lead to the growth of facultative aerobic species in an oil well, where the biomass they generate can be used as both a habitat and a nutrient source by sulfate-reducing bacteria (SRB). SRB obtain energy by oxidising  $\mathrm{H}_2$  or low molecular weight organic compounds, while reducing sulfate to  $\mathrm{H}_2\mathrm{S}$ . The promotion and growth of SRB can lead to the following main issues:

- a) Well performance can be degraded through pore plugging in the formation close to the well bore as e.g.  $\rm H_2S$  can react with dissolved iron in formation waters to form iron sulphide, which can lead to a significant reduction in injectivity or productivity.
- b) When producing fluids from storage formations these can contain higher levels of H<sub>2</sub>S, increasing their corrosivity and toxicity.

Different types of SRB grow at different temperature ranges with an upper limit of about 65 °C. Holding the reservoir temperature above this limit for deep  $\rm CO_2$  storage sites (e.g. cap rock at 2 500 m) could prevent this effect. However, the injection of  $\rm CO_2$  could provide some cooling to allow SRB growth at depth with potential implications on injectivity or corrosion.

An example of the impact of SRBs is the decrease of injectivity of the well Ktzi 201 on Ketzin site in Germany during the injection tests, studied by Zettlitzer, et al.  $(2010)^{[115]}$ . Here, the reservoir is located at 600 m–700 m below the surface and at a temperature of 37 °C–45 °C, therefore in the growth window of mesophilic SRB. They concluded that the black solid produced during the nitrogen lift was mainly composed of iron sulphide and that it was caused by bacterial activity (seven species of SRB have been detected in fluid samples). Organic compounds within the drilling mud and other drilling fluids were likely to be the energy source for strong proliferation of bacteria. Although in this example the organic matter that functioned as an energy sources for the microbes originated not from the  $\rm CO_2$  stream itself, this observation illustrates the potential role of organic impurities in CCS operations.

<u>Table 11</u> summarizes the microbiological effects.

| Species/<br>substances | Characteristics of the species | Effect<br>on CO <sub>2</sub><br>stream | CCS sys-<br>tem/<br>operation | Potential effect/impact                                                                                                                                                      | Recommended<br>measure/<br>comment | Reference |
|------------------------|--------------------------------|----------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------|
| 02                     |                                | _                                      | Storage/<br>Injection         | O <sub>2</sub> may stimulate growth of fermenters and in turn of SRB Degrade well performance by pore plugging bacteria colony, close to the well bore. Increase corrosivity |                                    |           |

Table 11 — Summary of Microbiological effects

# 6.4 Toxic and ecotoxic effects of impurities in case of leakage

#### 6.4.1 General statement

The cumulative effects of substances (CO<sub>2</sub>, various impurities) are not considered in this clause.

## 6.4.2 Acute toxic effects

In case of an uncontrolled release (e.g., leak on a pipe), a  $\rm CO_2$  cloud is formed that can potentially endanger human and animal health. Possible impacts on human and animal health are toxic effects (poisoning) and the lethal effects (death). Depending on concentrations, the impurities could be more toxic than the  $\rm CO_2$  itself in this cloud. When a  $\rm CO_2$  stream escapes to the atmosphere, there will be changes in pressure, volume, temperature, and phase of each of its components and dilution with air. It is very unlikely that the composition of the " $\rm CO_2$  cloud" will be the same as the composition of the " $\rm CO_2$  stream". If an impurity with a toxicity threshold T for lethal effects (in ambient air) is considered, while for  $\rm CO_2$  the threshold for lethal effects is 10 % (see Table 12), the toxic effects of the  $\rm CO_2$  itself is likely to be predominant in the cloud, as compared to this impurity, as long as the concentration of the impurity within the  $\rm CO_2$  cloud is lower than  $\rm 10 * T$  (= T/10 %) Therefore, if the concentration of the impurity within the  $\rm CO_2$  stream is greater than  $\rm 10 * T$  it can be useful to conduct a specific study on the acute toxicity of impurities in case of accidental release of  $\rm CO_2$ . This limit of  $\rm 10 * T$  is only indicative, as it relies on the simple assumption that the substance behaves in the cloud like  $\rm CO_2$  (despite changes in temperature, pressure, or phase).

Table 12 — One-hour exposure concentration thresholds according to French regulation

| Substance         | CO <sub>2</sub> | СО    | HNO <sub>3</sub> | H <sub>2</sub> S | NH <sub>3</sub> | NO <sub>2</sub> | SO <sub>2</sub> |
|-------------------|-----------------|-------|------------------|------------------|-----------------|-----------------|-----------------|
| mg/m <sup>3</sup> | 196 000         | 3 680 | 2 186            | 521              | 2 380           | 132             | 1 885           |
| ppm               | 100 000         | 2 951 | 779              | 344              | 3 143           | 64              | 661             |

NOTE 1 Lower exposure durations would give higher thresholds.

NOTE 2 Different values exist in other countries, although generally similar.

The main impurities of concern in this context are  $H_2S$  and  $NO_2$ , because these two impurities have low toxicity thresholds.  $H_2S$  is commonly present after pre-combustion capture processes. The toxicity threshold for  $NO_2$  is about 5 times lower than that of  $H_2S$  (in ppm). Therefore, if  $NO_2$  constitutes a large part of the  $NO_x$  species, its concentration can be close to 10 \* T and a site-specific study should be considered.

Although the intrinsic toxicity of  $SO_2$  is lower than  $NO_2$  (toxicity threshold of  $SO_2$  is about one order of magnitude higher in comparison to that of  $NO_2$ ),  $SO_2$  might also deserve a site-specific study, if  $SO_x$  concentration in the  $CO_2$  stream is higher than  $NO_x$  concentrations.

Within the  $CO_2QUEST$  project, a study of the possible risks from all impurities in the CCS chain was carried out. It used a multicriteria methodology that accounted for the very different natures of the effects assessed. Results confirm that  $NO_2$  and  $H_2S$  are the most influential impurities for acute toxicity (Mahgerefteh, et al.,  $2016^{[64]}$ ).

For post-combustion  $CO_2$  capture, one of the main problems associated with the process is the degradation of the amine solvents involving the formation of degradation products potentially detrimental for human and the environment. These degradation products are formed in the liquid phase of the solvent but can also be emitted with the gaseous effluents increasing the need of monitoring strategies. One of the objectives of project ANR DALMATIEN[24] and Vial 's team was to develop new analytical methods to identify these degradation products of MEA or other amine solvents (Rey, et al., 2013[89]). A toxic/ecotoxic study was also conducted on the degradation products from MEA. A recent published review proposes a critical analysis of the literature concerning the analytical strategies developed in the field of post-combustion capture to identify and quantify the main classes of degradation products formed, mainly amines, amides, aldehydes, nitrosamines and organic acids (Cuccia, et al., 2018[63]). Regarding the liquid phase, the principal analytical methods involved are liquid chromatography (LC) and gas chromatography (GC) for the analysis of amines and ionic chromatography (IC) for the analysis of organic and inorganic acids. Concerning aldehydes, the most described method is derivation of the compounds with 2,4-dinitrophenylhydrazine prior to LC analysis. In order to monitor the gaseous effluents, four methods have been described: FTIR, implementation of impingers, online MS analysis and sampling on solid sorbents.

#### 6.4.3 Chronic effects

A leakage event from the storage unit can be a leakage of the  $\mathrm{CO}_2$  stream itself, as a dense or gaseous buoyant phase, able to move upwards (e.g. along a fault or a well). Formation water may also leak. However, formation water with dissolved  $\mathrm{CO}_2$  and impurities in it may move upward toward lower-pressured formations and the surface or may move downward or laterally due to its higher density after  $\mathrm{CO}_2$  dissolution.

Chronic effects of impurities could arise from long-term leakage of a  $\rm CO_2$  stream and/or formation waters beyond the boundaries of the storage system leading e.g. to an aquifer pollution. The leakage impact could extend to surface waters, in case of connections with the initially polluted aquifer.

Two main subjects of protection can be considered:

— Human health — through the pollution of drinking water. Drinking water concentration thresholds exist, e.g. given by EU Directive 98/83/CE.

 Environment — through the pollution of underground and surface waters. Relevant concentration thresholds exist, e.g. in Annex I of EU Directive 2008/105/EC.

The concentration of a given impurity in the aquifer is not the same as the concentration in the  $\rm CO_2$  plume, as it depends on numerous factors including the size of the leakage and the movement and geometry of the aquifer. Several phenomena can affect its final concentration such as advection, dilution, geochemical reactions, and sorption onto rocks. These phenomena may be considered by modelling of transport and chemistry.

The  $\rm CO_2QUEST$  project concluded that generally chronic toxicity appeared not to be a major issue for risk management of the CCS chain as compared to chemical effects, (Mahgerefteh, et al.,  $2016^{[64]}$ ). However, this is a generic result that cannot be applied specifically to all CCS projects as such. Sitespecific risk studies are carried out by operators based on detailed in situ data and detailed modelling.

#### 7 Parameters to monitor and measurement methods

#### 7.1 Monitoring and thresholds

Monitoring of the composition and mass flow rate of the  $\mathrm{CO}_2$  stream is a component of risk management that will assist in limiting impacts and minimizing risks identified in the previous clauses. Monitoring is conducted for the capture process and an overall monitoring strategy of the  $\mathrm{CO}_2$  stream and is implemented along the CCS chain downstream of the capture plant. The effectiveness of monitoring is improved through the definition of alert thresholds. Alert thresholds might be based either on regulatory limits, or on site-specific thresholds (operational or contractual) determined by a comprehensive risk assessment process.

A number of  $CO_2$  specifications and recommendations for maximum acceptable impurity concentrations in the transport and storage systems have been published (see <u>Table 1</u> in <u>Annex A</u>). These specifications depend strongly on the context of each specific CCS project: country, operator, type of project, transport mode, etc. The ISO 27913:2016<sup>[48]</sup> for  $CO_2$  pipeline transportation systems states that "Since the maximum concentration of a single impurity will depend on the concentration of the other impurities, it is not possible due to lack of data and current understanding to state a fixed maximum concentration of a single impurity when other impurities are, or may be, present". The present report does not provide recommendations for impurity contents.

The most referenced  $\rm CO_2$  quality recommendation has been suggested in the DYNAMIS project (De Visser, et al.,  $2008^{[22]}$ ) considering  $\rm CO_2$  streams captured by pre-combustion capture. The National Energy Technology Laboratory (NETL) issued in  $2012^{[73]}$  quality guidelines for impurity limits to be used for CCUS conceptual studies using carbon steel pipelines with the caveat that the numbers "should not be used for actual projects, which are likely to have requirements that differ". The recommendations were based on a review of 55  $\rm CO_2$  specifications found in the literature. The most recent recommendation from "The CarbonNet project" (2016)<sup>[103]</sup> is also included in Annex A.

Some international agreements, areas, and countries establish regulatory limits for  $\mathrm{CO}_2$  stream composition. For example, the London Protocol demands that  $\mathrm{CO}_2$  stream must consist "overwhelmingly of  $\mathrm{CO}_2$ " for sub-seabed geological formation storage, which may contain incidental associated substances derived from the source material and the capture and sequestration processes. Additionally, the Protocol prohibits mixing any waste or matters into  $\mathrm{CO}_2$  stream for the purpose of disposal. In Japan, rules from the Ministry of Environment defined requirements for sub-seabed  $\mathrm{CO}_2$  storage projects, including an ordinance governing the purity of the injected  $\mathrm{CO}_2$ . When  $\mathrm{CO}_2$  is captured with amine-based technology,  $\mathrm{CO}_2$  purity is required to be no less than 99 % in volume percentage. When the  $\mathrm{CO}_2$  is produced out of  $\mathrm{H}_2$  production process for an oil refinery, the  $\mathrm{CO}_2$  purity is required to be no less than 98 % in volume percentage (Japan Ministry of Environment, 2011[55]).

# 7.2 Relevant parameters to monitor and measurement methods

The composition of the  $CO_2$  stream varies in time at the capture plant outlet depending on the capture technology employed. Online continuous or semi-continuous  $CO_2$  stream quality monitoring at the plant

outlet will identify variation. However, some demonstration projects have over several years yielded remarkably stable CO<sub>2</sub> product streams. Beside the impurity content, supplementary parameters useful for identifying/measuring the CO<sub>2</sub> stream composition include fluid state, temperature and pressure, mass flow rates, and localization of sampling points. Some measurement challenges in CCS operations arise from the physical properties of the CO<sub>2</sub> itself. The involvement of different processes in CCS operations and the presence of impurities in the  $\tilde{\text{CO}}_2$  stream. Knowing what could be present will assist in identifying standard operating procedures for flow measurement, for sampling techniques and for analytic processes, given the different impurities that are likely to be present in the CO<sub>2</sub> stream. Selecting sampling points is important for monitoring CO<sub>2</sub> stream composition. If the pipeline is operated in dense-phase conditions, rapid depressurization would produce gaseous and solid CO<sub>2</sub>. In this transition a partition of the impurities between the gas and the solid phases could appear and if only the gas phase is analysed this could lead to false composition results. Standard operating procedures (SOPs) will serve to ensure reliable and comparable results as SOPs provide the necessary information on measurement methods in terms of characteristics, level of validation, uncertainty, and existing alternatives. Effective application of SOPs requires that the operator performing the measurements be sufficiently knowledgeable.

# 7.2.1 Sampling of the CO<sub>2</sub> stream

One of the main challenges lies in ensuring that pressure and temperature conditions that apply to samples from the  ${\rm CO_2}$  stream are representative of the entire stream.

Physical samples of the  $CO_2$  stream are usually taken in polytetrafluoroethylene (PTFE)-lined stainless-steel pressure vessels (generally referred to as sulfinert vessels). It is important to address the standardization of  $CO_2$  stream sampling and analysis procedures.

#### 7.2.2 Determining the physical properties and phase

Compared to other substances that are transported by pipeline (e.g. oil, natural gas and water) the critical point of pure  $\mathrm{CO}_2$  lies close to ambient temperature. This means that even small changes in pressure and temperature could lead to rapid and substantial changes in the  $\mathrm{CO}_2$  stream physical properties (e.g. density, compressibility). Further, when operating on or close to a phase boundary line, phase change and multiphase flow conditions can arise. Phase changes and multiphase flow occurring at measurement points will have a detrimental effect on measurement accuracy, e.g., where flowmeters are designed to operate in one specific phase only.

Operators usually choose validated equations of state describing thermodynamic properties including phase equilibria to apply to the many different  $CO_2$  mixtures that are likely to arise in CCS schemes (see 6.1.2). Physical property modelling software packages are used to predict properties of various  $CO_2$  mixtures. However, such models require site-specific testing and calibration as even small errors could lead to serious problems during processing and transport of  $CO_2$ . Currently, the best property models are empirical in nature, and hence cannot be more accurate than the experimental data to which they are fitted. In order to model mixtures, complete binary mixture data sets are desired, with ranges in temperature, pressure, and composition beyond what are expected for the given application. The data situation was reviewed by Munkejord, et al. (2016)<sup>[72]</sup>.

#### 7.2.3 Flow measurement

Without knowing the phase envelope and thermophysical properties of the  $\rm CO_2$  stream accurately, it is difficult to perform accurate flow measurement. It is necessary to design the flow metering system for the actual physical phase it will be operating in. Accurate density measurements are necessary to allow reporting in mass  $\rm CO_2$  units, if the meter used measures volumetric flowrate. Flow measurement, in conjunction with the  $\rm CO_2$  concentration derived from sampling of the  $\rm CO_2$  stream, is necessary to calculate the transfer of  $\rm CO_2$  on a mass basis, across the CCS chain. For example, in Europe, the draft CCS Monitoring and Reporting guidelines under the EU ETS require that flow measurement be carried out within measurement uncertainty levels of 1,5 %. In order to achieve such levels, it is essential to install the correct type of flow meter at locations along the network where the flow conditions are stable and

in the single phase under which the flow meter is designed to operate. For example, gas meters are appropriate at certain locations and liquid meters at other locations along the network.

Flow measurement systems are normally calibrated, maintained, and checked at regular intervals. Flow meters are calibrated using traceable flow facilities in  $\rm CO_2$  under the conditions and ranges under which they will be operated. Any secondary instruments used to convert volume flow into mass flow, such as pressure, temperature, and density instruments, could also be calibrated and traceable to national standards and located as close as possible to the flow meter. Standard methods to determine the mass flow rate of the  $\rm CO_2$  stream, ISO 10780, ISO 5167-1, ISO 9951, ASME PTC 19.5 (Flow Measurement), ASME MFC-6-2013, are mentioned in ISO 27919-1:2018(E)[50], Table C.2.

# 7.2.4 Impurity concentration measurements

Accounting of impurity concentrations in the CO<sub>2</sub> stream has two main applications:

- i) To manage the purity levels in the CCS chain and their possible impacts;
- ii) To determine the amount of CO<sub>2</sub> that is transported and stored. CO<sub>2</sub> is not the only component of the CO<sub>2</sub> stream (although it is the major one), which is important for fiscal monitoring. This issue is addressed in Clause 8.

No standard measurement method exists for the determination of impurity concentrations in  ${\rm CO_2}$  as a matrix except for food grade standards: The International Society of Beverage Technologists (ISBT) Carbon Dioxide Guidelines provide a basis to identify the best available measurement methods to be applied in this context.

Moreover, the ISO 12039 method defines the performance characteristics and the calibration of automated measuring systems for the determination of CO,  $\rm CO_2$  and  $\rm O_2$  from stationary-source emissions. Standard methods for the analyses of natural gas exist, including several methods using gas chromatography, the ISO 6974 method previously mentioned, but also the ASTM D1945 method, and the ISO 19739:2004 which describes the analysis of sulfur compounds. The ISO 10715:1997 standard provides a guideline for sampling natural gas and the ISO 10723:2012 standard specifies a method of determining whether an analytical system for natural gas analysis is fit for purpose. Those methods, although they are well described and recognized, might not be directly applicable to matrices where  $\rm CO_2$  is the major component. According to ISO 27919-1:2018(E), Annex C, Table C2, two methods can be used to evaluate the purity of the  $\rm CO_2$  stream, i.e. the ISO 6974 method which describes the measurement of impurities in natural gas using gas chromatography and the US EPA method 3A which deals with  $\rm CO_2$  and  $\rm O_2$  measurements from stationary sources. Standard operating procedures for the characterization of impurities present in flue gas emitted by amine based solvent capture pilot processes have been published during the FP7-OCTAVIUS project (Fraboulet, et al., 2014)[34].

Note Method 3a — Determination of oxygen and carbon dioxide concentrations in emissions from stationary sources (instrumental analyzer procedure).

# 8 Relationship of ${\rm CO_2}$ stream emissions and quantification

In case of emissions from anywhere in the CCS chain into the atmosphere, e.g. from a leakage or vent, GHGs present as impurities in the  $\rm CO_2$  stream could increase the greenhouse effect as compared to pure  $\rm CO_2$ . The two main possible impurities that are relevant GHGs are  $\rm CH_4$  and  $\rm N_2O$ , although other GHGs could be present in some cases. The Global Warming Potential (integrated over 100 years) for  $\rm CH_4$  is 28, for  $\rm N_2O$  it is 298, while that of  $\rm CO_2$  is 1.

NOTE The influence of impurities, including GHGs in the CCS chain, on quantification and reporting is not addressed in the standard, ISO  $27920^{1}$ , dedicated to quantification and verification of  $CO_2$  only.

If CH<sub>4</sub> is present in CO<sub>2</sub> streams, its concentration is typically below 100 ppm (see <u>Clause 5</u>).

<sup>1)</sup> Under preparation. Stage at the time of publication: ISO/DIS 27920.

However, in the particular case of EOR,  $CH_4$  is normally present in the recycle gas stream. Measurement and quantification of  $CH_4$  in this context might be required by regulators.

In a  $CO_2$  stream from post-combustion capture,  $NO_x$  concentration is approximately 10 ppm-30 ppm (see <u>Clause 5</u>), also  $N_2O$  can be present at concentrations of about 0,1 ppm to 1 ppm. With a precombustion capture process (especially with a fluidized bed), nitrogen oxides are present at higher concentrations (about 300 ppm) and  $N_2O$  can form an appreciable part of these (De Soete, 2017)[88]. If 10 ppm of  $N_2O$  were present in the  $CO_2$  stream, the stream's global warming potential would increase by only 0,3 % as compared to pure  $CO_2$  (because 10 ppm × 298  $\approx$  3 × 10<sup>-3</sup>). Therefore, in non-EOR cases the impact of impurities as additional GHG emissions is probably minor as compared to the potential emissions of  $CO_2$  itself. Additionally, this issue is also addressed in ISO 14064 (all parts)[45][46][47], especially if a Life Cycle Analysis is performed for the whole life cycle of a CCS project.

# 9 Integration issues

# 9.1 Constraints on CO<sub>2</sub> stream composition

It is technologically possible to treat  ${\rm CO_2}$  to near 100 % purity in the gas conditioning process. However, in most cases it is preferable to have less rigid specifications to reduce both operational and capital costs. The question is which part of the CCS chain that actually dictates the  ${\rm CO_2}$  composition.

As illustrated in Figure 6, the required purity of the  $\mathrm{CO}_2$  stream delivered from the capture plant will to a large degree be dictated by the transport, injection and storage operators, or legal requirements. The capture plant operators will therefore most probably not be the ones to set the specifications, but may need to purify the  $\mathrm{CO}_2$  stream to comply with the required transport, injection, storage or utilization specifications. Impurity restrictions (bottlenecks) will be project specific and an optimization process is obviously needed where the cost of purification is balanced against the cost of for instance using more corrosion resistant materials, the cost and consequences of reduced injectivity due to possible unwanted reactions in the reservoir, purification closer to the storage or utilization sites, and the cost of down-time and repair.

# What is driving the CO<sub>2</sub> composition?



Figure 6 — Constraints on CO<sub>2</sub> Stream Composition

The impurity levels that can be accepted and managed by the transport, injection and storage operators will determine the composition to be delivered from the capture operator

# 9.2 Optimisation of CO<sub>2</sub> stream composition based on techno-economic assessments

Physical and chemical impacts of various impurities and combinations of impurities on the individual steps of the CCS chain have been outlined in the previous sections. If impacts of impurities in individual components of the CCS chain are known,  $\rm CO_2$  stream composition could be adjusted to avoid undesirable impacts. Optimisation of  $\rm CO_2$  stream composition along the CCS chain could ensure safety of transport, injection and storage while reducing energy consumption and costs of the CCS chain operation. This optimisation could be realized by way of various options for the technical design of the CCS chain, e.g. implementation of an additional purification step or selection of a more corrosion resistant pipe material.

To assess various transport network design options, techno-economic assessments have proven to be a valuable tool. Few studies exist that assess impacts of impurities along whole CCS chains in full complexity aiming to optimize  $\rm CO_2$  stream composition with the whole-chain perspective. All such studies point to the fact that such an optimisation can only be project-specific (e.g., Brunsvold, et al.,  $2016^{[14]}$ , Porter, et al.,  $2015^{[81]}$ , Rütters, et al.,  $2016^{[92]}$ ). Thus, no general recommendation on optimal  $\rm CO_2$  stream composition can be given — as stated in Clause 7. Rather, it is generally recommended to analyse cost efficiency of upstream impurity removal versus dealing with impurity impacts further downstream. Techno-economic assessments of several model CCS chains have revealed the superior cost efficiency of upstream impurity removal (Brunsvold, et al.,  $2016^{[14]}$ ).

In addition to techno-economic considerations, ISO/TR 27918 "Life-cycle risk assessment [53] will outline steps for taking into account the various risks as impacted by the  $\rm CO_2$  stream composition and/or the presence of specific impurities for a specific CCS project.

# 9.3 Mixing ${\rm CO_2}$ streams before injection: Challenges in larger CCS infrastructures

Implementation of larger CCS infrastructures could be one option to reduce costs of transport and storage. Larger CCS infrastructures could include the feed-in of  $\rm CO_2$  streams from different sources in a common transport network (collection network with trunk line or ship transport in or without combination with pipeline transport) and/or injection of  $\rm CO_2$  at several storage sites (via an injection and storage hub or along the route). Large-scale infrastructure scenarios have been developed, e.g. in Europe for the North Sea area. Pipeline networks that are now in operation combine high-purity  $\rm CO_2$  streams from few emitters or natural  $\rm CO_2$  sources and involve trunk lines for  $\rm CO_2$  transport of short to moderate length (some examples can be found in NETL,  $\rm 2012^{[73]}$ ). Additional transport and storage networks are in various planning and development stages (e.g., Alberta Carbon Trunk Line Project, Canada; Norwegian Demo Project, Norway; CarbonNet Project, Australia; Porthos project, Netherlands).

Combining  $\mathrm{CO}_2$  streams from different sources for or during transport could bring specific benefits (e.g., dilution of a contaminant), but could also result in additional challenges in comparison to simple CCS chains. Further options for optimizing  $\mathrm{CO}_2$  stream composition could include arranging  $\mathrm{CO}_2$  stream contributions from different emitters in such a way that a highly impure  $\mathrm{CO}_2$  stream is combined with high purity  $\mathrm{CO}_2$  streams (i.e. diluted). However, such a feed-in scheme could generate an "out of specification"  $\mathrm{CO}_2$  slug if the flow of the purer  $\mathrm{CO}_2$  stream is interrupted. Of course, the high impurity  $\mathrm{CO}_2$  stream could be shut off, but this would potentially represent both technical and financial risks.

In general, if there are fluctuations in the flow rates of individual  $\mathrm{CO}_2$  streams, there will be a temporal variability of mass flow rates and composition in larger pipeline networks (e.g. Rütters, et al.,  $2017^{[92]}$ ). For example, power plant operation will be adjusted to meet the part of the fluctuating electricity demand not covered by renewable energy sources. Other emitters might be shut down for maintenance or in case of failure. The variability both in mass flow rates and  $\mathrm{CO}_2$  stream composition is usually accounted for when designing and operating larger CCS infrastructures. This will involve aspects related to the mass flow rates such as pipeline capacity, and acceptable variability of flow rates for transport and injection. Further, there might be a need for temporary storage as well as injection and storage management potentially involving several injection wells and multiple storage sites.

A changing  $\mathrm{CO}_2$  stream composition e.g. in the trunk line with time will lead to temporal variations of thermophysical properties of the  $\mathrm{CO}_2$  stream with implications along the entire CCS chain (see <u>Clause 6</u>). In addition, the changing chemical properties of the  $\mathrm{CO}_2$  stream will impact reactive processes along the CCS chain (such as steel corrosion, geochemical reactions, etc.). In particular, the redox properties of  $\mathrm{CO}_2$  streams differ significantly depending on the capture technology. Therefore, if  $\mathrm{CO}_2$  streams with contrasting redox properties are fed-in in a variable manner, redox conditions in the resulting combined  $\mathrm{CO}_2$  stream will vary accordingly.

Furthermore, when different  $\mathrm{CO}_2$  streams are combined, from various emitters that differ in their composition, the spectrum of different impurities will potentially be larger than in single source-single sink CCS systems. Additional or different chemical reactions could occur within the combined  $\mathrm{CO}_2$  stream depending on the composition and flow rates of the combined  $\mathrm{CO}_2$  streams. Accordingly, some national/international regulations might impose some constraints, and a risk analysis can help to check that there are no incompatibilities among the different impurities. For instance,  $\mathrm{SO}_2$  and  $\mathrm{H}_2\mathrm{S}$  could react to form solid sulfur, or unsaturated hydrocarbons could react with  $\mathrm{NO}_2$  to form unstable products (see Clause 6). Specific assessments help to identify these risks in the context of modifications of mass flow rate and/or  $\mathrm{CO}_2$  stream composition, such as could occur during the intended or unintended (re-)start or shut-down of  $\mathrm{CO}_2$  emitters and  $\mathrm{CO}_2$  stream flows.

In comparison to simple CCS chains, larger CCS infrastructures offer a greater flexibility for coping with disturbances in the CCS chain (e.g. in  $\mathrm{CO}_2$  feed-in, in technical installations or in the storage) as alternative supply or transport options, and interim storage and injection sites might be available. However, setting up a large-scale infrastructure carries specific risks some of which are particularly impacted by the  $\mathrm{CO}_2$  stream composition. A  $\mathrm{CO}_2$  transport and storage infrastructure will be designed to accommodate  $\mathrm{CO}_2$  streams with an expected mass flow and compositions within a specified range. The future availability of  $\mathrm{CO}_2$  streams, both in terms of mass flow and composition, will be influenced by technological and economic developments.

#### 10 Conclusions

Across  $\mathrm{CO}_2$  streams captured from power plants and industrial processes there is large variation of impurities and concentrations because the impurities depend on the fuel type or raw materials, the  $\mathrm{CO}_2$ -generating process, the  $\mathrm{CO}_2$  capture process, and the final purification and compression steps. Ranges for concentrations of major impurities can be cited, even though data for usually minor impurities (such as  $\mathrm{SO}_x$ ,  $\mathrm{NO}_x$ ,  $\mathrm{CO}$ ,  $\mathrm{H}_2\mathrm{S}$ ) and for metallic and organic trace elements are scarce and are often based on model estimates, instead of in situ measurements.

An extensive list of physical and chemical effects of these impurities has been established. These impurities can affect both surface equipment and surface and underground operations. Furthermore, some impurities can have (eco)toxic effects.

Accurate monitoring of  $CO_2$  stream composition is important and helps to: i) ensure proper operation of CCS activities; ii) reduce risks of negative impacts; iii) ensure correct quantification of the GHG stored (or emitted); and iv) contribute to knowledge sharing among CCS stakeholders and the public.

The capture process, final purification and compression steps help to manage  $\mathrm{CO}_2$  stream composition. The impurity concentrations of streams depend on the aims and priorities of the operator for each specific CCS project and are influenced by legal regulations and technical requirements.

The present state of the art of identifying impurity concentrations and potential impacts confirms that management of  $\mathrm{CO}_2$  stream composition is a cross–cutting issue for integrated CCS projects. Mixing  $\mathrm{CO}_2$  streams from different origins can result in additional challenges from the technical, economic, or regulatory points of view, especially for large-scale projects.

 ${
m CO}_2$  stream composition in CCS activities will influence the design and operation of the capture process and the final purification steps. However, it is difficult to identify thresholds for individual impurities, for two main reasons:

- First, site-specific risk studies are usually carried out by operators, taking into account data on the project and its specific environment;
- Second, interactions of impurities with each other and their surroundings might result in impacts different from those of a single impurity in a CO<sub>2</sub> stream.

Therefore, concentration thresholds are case-specific and subject to optimization for the entire CCS process with respect to safety and environmental protection, costs, and energy demand.

# Annex A

(informative)

# Dense phase CO<sub>2</sub> corrosion

### A.1 Previous experience

 ${\rm CO_2}$  is predominately transported as dense phase and sufficiently dehydrated to avoid hydrate formation. Some features of  ${\rm CO_2}$  make it more challenging to transport in pipelines than natural gas, i.e. a greater susceptibility to long-running ductile fracture propagation (Cosham, et al.,  $2014^{[21]}$ , a greater likelihood for lower temperatures and reduced toughness due to the Joule-Thomson cooling effect (–20 °C for line venting and down to –80 °C for leakage), and a high potential corrosion rate if an aqueous phase is present.

 ${\rm CO_2}$  has been transported and used in food industry and enhanced oil recovery (EOR) for decades, mainly in USA<sup>[43]</sup>. No serious corrosion problems have been reported in the part of the system that has been exposed to reasonably dry and pure  ${\rm CO_2}$ . According to OPS (Office of Pipeline Safety) statistics, there were only 12 leak cases from  ${\rm CO_2}$  pipelines reported from 1986 through 2006 — none resulting in injuries to people<sup>[80]</sup>.

The good experience with  $\mathrm{CO}_2$  transport in USA is often referenced to argue that  $\mathrm{CO}_2$  pipeline transport will not be a big challenge for Carbon Capture and Storage (CCS). The justification for this view can be questioned as  $\mathrm{CO}_2$  captured from fossil-fuelled power plants and other industrial sources might give dense phase  $\mathrm{CO}_2$  containing impurities that have not been transported before. It is also regarded more challenging to operate  $\mathrm{CO}_2$  network with many point sources and to transport  $\mathrm{CO}_2$  to offshore storage sites.

### A.2 CO<sub>2</sub> recommendations and specifications — A literature overview

A number of  $CO_2$  specifications and recommendations for maximum acceptable impurity concentrations in the transport and storage systems have been published. The most cited  $CO_2$  quality recommendation has been suggested in the DYNAMIS project<sup>[22]</sup> The National Energy Technology Laboratory (NETL) issued in  $2012^{[73]}$  and  $2013^{[75]}$  Quality Guidelines giving recommendations for the impurity limits to be used for conceptual design s of studies of CCUS systems using carbon steel pipeline with the caveat: "This guideline is intended only for conceptual studies under a generic scenario and should not be used for actual projects, which are likely to have requirements that differ from the generic scenario assumed herein."<sup>[73][75]</sup> The recommendations were based on a review of 55  $CO_2$  specifications found in the literature<sup>[73][31]</sup>. The CarbonNet Project published in 2016 a preliminary  $CO_2$  specification for its hub-based carbon capture and storage network<sup>[103]</sup>. Other frequently cited  $CO_2$  specifications have been presented by IPCC<sup>[44]</sup> and Kinder Morgan<sup>[57]</sup>.

An excerpt of the DYNAMIS, NETL and CarbonNet specifications and  $\mathrm{CO}_2$  specifications reported for existing pipelines are shown in <u>Table 1</u>. The table includes potentially the most aggressive impurities ( $\mathrm{H}_2\mathrm{O}$ ,  $\mathrm{H}_2\mathrm{S}$ ,  $\mathrm{O}_2$ , NOx, SOx, CO) from a corrosion point of view. It is clear that the recommendations vary a lot and they are quite different from the composition reported for actually transported  $\mathrm{CO}_2$ .

The justification for many of the proposed recommendations can be questioned as the reported [68]  $\rm CO_2$  compositions presently transported in pipelines does not include flue gas impurities like for instance  $\rm SO_2$  and  $\rm NO_2$ , and as concluded in a recent review [81] hardly any lab data can be found in the literature supporting the  $\rm CO_2$  specifications.

Table A.1 — Impurity concentrations reported in existing pipelines [68][8],  $CO_2$  specifications recommended by Dynamis [22], NETL[73][75], the Australian CarbonNet project [103] and the  $CO_2$  specification tested in the IFE experiment [1] described in section A.4

|                        | Impurity levels in existing pipelines <sup>[73]</sup> [75] |                              |                    | Published CO <sub>2</sub> recommendations <sup>[22]</sup> [73][75][31][103] |             |                                                |                                      | Testing                         |                         |
|------------------------|------------------------------------------------------------|------------------------------|--------------------|-----------------------------------------------------------------------------|-------------|------------------------------------------------|--------------------------------------|---------------------------------|-------------------------|
|                        | Canyon<br>Reef<br>Carriers                                 | Central<br>Basin<br>Pipeline | Cortez<br>Pipeline | Weyburn                                                                     | DYNAMIS[22] | NETL[73][75]                                   | Literature<br>review <sup>[81]</sup> | CarbonNet <sup>[31]</sup> [103] | IFE exp. <sup>[1]</sup> |
| H <sub>2</sub> O, ppmv | 122                                                        | 630                          | 630                | 20                                                                          | 500         | 730 <sup>[73</sup> ]/<br>500 <sup>[75</sup> ]  | 20-650                               | 100                             | 122                     |
| H <sub>2</sub> S, ppmv | <260                                                       | <26                          | 20                 | 9 000                                                                       | 200         | 100                                            | 20-13 000                            | 100                             | 130                     |
| CO, ppmv               | _                                                          | _                            | _                  | 1 000                                                                       | 2000        | 35                                             | 10-5 000                             | 900                             |                         |
| <sub>02,</sub> ppmv    | _                                                          | <14                          | _                  | <70                                                                         | <40 000     | 40 000 <sup>[74]</sup> /<br>10 <sup>[75]</sup> | 100-40 000                           | 20 000                          | 275                     |
| NOx, ppmv              | _                                                          | _                            | _                  |                                                                             | 100         | 100                                            | 20-2 500                             | 250                             | 96                      |
| SOx, ppmv              | _                                                          | _                            | _                  |                                                                             | 100         | 100                                            | 10-50 000                            | 200                             | 69                      |

### A.3 Corrosion in pure CO<sub>2</sub> and water

When the acceptable water content in  $CO_2$  streams is discussed it is usually argued that no water containing phase will precipitate and cause corrosion/hydrate as long as the concentration is well below the solubility in pure  $CO_2$ . The water solubility in the pure system is >1 000 ppmv in the temperature range relevant for pipeline transport (4 °C–50 °C) and both laboratory experiments and field experience confirm very low corrosion rates for the pipelines where the water content have been specified in the range 20 ppmv to 650 ppmv.

Water precipitates when the water solubility limit is exceeded and experimental studies with dense phase  $\mathrm{CO}_2$  and a free water phase show that the corrosion rate increases with increasing temperature, that protective  $\mathrm{FeCO}_3$  corrosion product films form when the concentration of dissolved corrosion products becomes high and that the corrosion film can fail and give high localised corrosion rates. The observations seem to follow very much the trends seen at lower  $\mathrm{CO}_2$  partial pressure in oil and gas production. The main difference is the much higher  $\mathrm{CO}_2$  pressure giving typically a one-unit lower pH, a much higher solubility of corrosion products and more  $\mathrm{H}^+$  ions and  $\mathrm{H}_2\mathrm{CO}_3$  that can corrode the steel. The result can be extreme corrosion rates exceeding 30 mm/y when the steel is exposed to large amounts of condensed water<sup>[2]</sup>. If only minor amounts of water precipitate, the water will be quickly supersaturated with dissolved corrosion products and a much lower corrosion rate can be expected. This mechanism is similar to Top of the Line Corrosion (TLC) in gas condensate pipelines and the corrosion rate will be limited by the availability of fresh water.

#### A.4 Impurities and formation of corrosive phases

When impurities like water, SOx, NOx,  $O_2$ , CO and  $H_2S$  are present there are a number of possible cross-chemical reactions that have the potential to form sulfuric/sulfurous acid, nitric acid and elemental sulfur. The  $CO_2$  composition given in the last column in Table A.1 was tested in a rocking autoclave system at IFE (Institute for Energy Technology)<sup>[1]</sup>. The experiment demonstrated that  $H_2SO_4$ ,  $HNO_3$  and elemental sulfur formed (see Figure A.1) at impurity concentrations below the impurity limits given in the recommendations in Table A.1.



Figure A.1 —  $\rm H_2SO_4$ ,  $\rm HNO_3$  and elemental sulfur formed in corrosion experiment performed at 45 °C, 100 bar and  $\rm CO_2$  composition as given in last column in <u>Table A.1</u>

### A.5 Defining safe operation window for CO<sub>2</sub> transport

If the carbon steel surface is wetted by a water containing phase the question is not whether corrosion takes place, but at what rate. Avoiding the formation of corrosive phases and solids in the pipeline is essential for the safe operation of a  $\rm CO_2$  pipeline network. Precipitation of water in systems with non-reactive impurities can be predicted, but due to lack of data there are presently no publically available models that can predict precipitation of aqueous phases when reactive impurities (combinations of NOx, SOx, H<sub>2</sub>S, O<sub>2</sub>, H<sub>2</sub>O, CO) are present.

The lack of data was recognized in the first ISO standard for  $\mathrm{CO}_2$  transport that was issued in  $2016^{[48]}$ . In the standard it is stated that "Since the maximum concentration of a single impurity will depend on the concentration of the other impurities, it is not possible due to lack of data and current understanding to state a fixed maximum concentration of a single impurity when other impurities are, or may be, present". The standard therefore recommends consulting the most up to date research during pipeline design

### A.6 Which part of the CCS chain constrains the CO<sub>2</sub> stream composition?

It is technologically possible to treat  $\mathrm{CO}_2$  to near  $100\,\%$  purity in the gas conditioning process. However, in most cases it is preferable to have less rigid specifications to reduce both operational and capital costs. The point at issue for the operators is which part of the CCUS chain that dictates the  $\mathrm{CO}_2$  composition.

The required purity of the  $\mathrm{CO}_2$  stream delivered from the capture plant will to a large degree depend on the impurity levels that can be accepted and managed by the transport, injection and storage operators. The capture plant operators will therefore most probably not be the ones to set the specification but may need to purify the  $\mathrm{CO}_2$  stream to comply with the required transport, injection, storage or utilization specifications. Impurity restrictions (bottlenecks) will be project specific and an optimization process is obviously needed where the cost of purification is balanced against the cost of for instance using more corrosion resistant materials, the cost and consequences of reduced injectivity due to possible unwanted reactions in the reservoir, purification closer to the storage or utilization sites, and the cost of down-time and repair.

### **Annex B**

(informative)

## Composition of CO<sub>2</sub> streams (Source ISO 27913:2016)

This section is strictly quoted from ISO 27913:2016

This annex provides essential information on the composition of  $CO_2$  streams which is relevant for the definition of the operational envelope during the design phase. The exact composition of the  $CO_2$  stream will depend on the  $CO_2$  source and the installed capture technology.

Impurities in a CO<sub>2</sub> stream can include the following:

oxygen (O<sub>2</sub>);
water (H<sub>2</sub>O);
nitrogen (N<sub>2</sub>);
hydrogen (H<sub>2</sub>);
sulfur oxides (SO<sub>x</sub>);
nitrogen oxides (NO<sub>x</sub>);
hydrogen sulfide (H<sub>2</sub>S);
hydrogen cyanide (HCN);
carbonyl sulfide (COS);
ammonia (NH<sub>3</sub>);
amines;
aldehydes;
particulate matter (PM).

In addition, further impurities can occur. Example  $\mathrm{CO}_2$  stream compositions, particularly from the power plant sector, can be found in literature<sup>[13]</sup>, but the data are extremely limited as the technology is still in development.

Impurities have impacts on the thermodynamic properties of a  ${\rm CO_2}$  stream which cannot be predicted out of the properties of pure  ${\rm CO_2}$ . Furthermore, impurities can effect corrosion or generate chemical reactions. Also, properties of a  ${\rm CO_2}$  stream, like viscosity, can change.

Research to identify those impurities that can have a critical impact on the thermodynamic, chemical and other properties of the  $CO_2$  is still taking place. Indicative levels discussed in literature are presented in summary in Table B.1.

| Table B.1 — Indicative levels of main CO <sub>2</sub> impurities and factors driving these levels |
|---------------------------------------------------------------------------------------------------|
| (ISO 27913:2016, Table 1.1)                                                                       |

| Species          | Indicative levels (volumetric composition in ppmv, unless stated as mol%) |                                                |                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| CO <sub>2</sub>  | >95 mol% <sup>a</sup>                                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| H <sub>2</sub> O | Corrosion, 20 to 630b, Hyd                                                | lrate, <200 <sup>c,d</sup>                     | Avoiding the formation of corrosive phases and                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| $H_2$            | <0,75 mol% <sup>e,f</sup>                                                 | <4 % total for all                             | solids in the pipeline is essential for safe operation of the $\mathrm{CO}_2$ pipeline system. There are a number of possible cross-chemical reactions that have the potential to form sulfuric/sulfurous acid, nitric acid and                                                                                                                                       |  |  |  |  |  |
| $N_2$            | <2 mol% <sup>f,g</sup>                                                    | non-condensa-<br>ble gasses, but               |                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Ar               | f                                                                         | individual contri-                             |                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| CH <sub>4</sub>  | f,g                                                                       | butions may also                               | elemental sulfur when water and $SO_2$ , $NO$ , $NO_2$ , $O_2$ and $H_2S$ are present <sup>[28]</sup> , also $N_2O$ , $N_2O_4^{[49]}$ . Presently there is no publically available model that can predict which of the reactions are thermodynamically and kinetically possible and favourable when the impusion of $S_1$ and $S_2$ are the same statement of $S_2$ . |  |  |  |  |  |
| CO               | <0,2 mol% <sup>j,k</sup>                                                  | be significant                                 |                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| 02               | <sup>f,h</sup> NB. Downstream<br>limitations                              |                                                |                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| H <sub>2</sub> S | <200g,i,k                                                                 | Individual val-                                | rities are mixed. Since the maximum concentration of a single impurity will depend on the concentration of the other impurities, it is not possible due to lack                                                                                                                                                                                                       |  |  |  |  |  |
| SO <sub>2</sub>  | Health and Safety <100 <sup>k,l</sup>                                     | ues, each below<br>STEL <sup>m</sup> , but see |                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| NO <sub>2</sub>  | Corrosion <50 <sup>n</sup>                                                | Footnote n.                                    | of data and current understanding to state a fixed maximum concentration of a single impurity when other impurities are, or may be, present.                                                                                                                                                                                                                          |  |  |  |  |  |

- $^{\rm a}$   $\,$  Industry accepted interpretation of "overwhelmingly CO $_{\!2}$ " required by the London Convention and Protocol which came into force in February 2007.
- The Cortez and Central Basin pipelines in the USA have 630 ppmv  $H_2O$ , but it is noted that they also have <26 ppmv of  $H_2S$ , <14 ppmv of  $O_2$  and no  $SO_x$  or  $NO_x$  (see References [115] and [89].
- $^{\rm c}$  A figure of 250 ppm is recommended in Reference [115] which states "In case of a system shut-in or start-up, the risk of hydrates is low if the water content of the  ${\rm CO_2}$  stream is below 250 ppm. In situations of rapid depressurization, even a low water content level might not be sufficient to avoid hydrates." An additional margin has been applied to recognize this. The maximum acceptable concentration will depend on the pressure/temperature operation window. It is recognized that a number of pipelines have been operated for a long time with a target water concentration of 630 ppmv without reported hydrate incidences. See also Footnote b.
- d For measures to avoid hydrate formation, see ISO 27913:2016, C.2.
- See ISO 27913:2016, C.2 for criteria addressing hydrogen content.
- The presence of "non-condensables", particularly,  $H_2$ ,  $H_2$ S and  $N_2$ , but also  $O_2$ , Ar,  $CH_4$  and CO affects the decompression behaviour of the  $CO_2$  stream<sup>[11]</sup>, and could affect shear fracture<sup>[22]</sup>.
- The presence of "non-condensables"  $\mathrm{CH_{4}}$ ,  $\mathrm{N_2}$  and  $\mathrm{H_2S}$  can affect the solubility of water in the  $\mathrm{CO_2}$  stream.
- $^{\rm h}$  O<sub>2</sub> content to be such that it does not promote acids formation, solids formation and corrosion that adversely affect the operational integrity of the pipeline over the design lifetime, noting that a much lower level of O<sub>2</sub> can be required to avoid unwanted downstream impacts.
- <sup>i</sup> The Weyburn pipeline has 9 000 ppmv of  $H_2S^{[107]}$ , noting that the  $CO_2$  is dry (<20 ppm)<sup>[89]</sup>, and that the oilfield into which the  $CO_2$  is being injected is already sour.
- The level of impurity required to cause  $\mathrm{CO}_2$ -CO cracking under pipeline operating conditions is not yet known. However, it has been confirmed that in order for cracking to occur, water must be present and that the presence of  $\mathrm{O}_2$  enhances the susceptibility to cracking.
- Health and safety impacts of individual impurities within the  $CO_2$  stream are only relevant if their concentration is such that the combined toxic harmful effect of the impurities is greater than the  $CO_2$  itself. For examples, see References [115] and [116].
- The presence of  $H_2S$  in the  $CO_2$  stream can promote corrosion at lower water levels than in pure  $CO_2^{[79]}$ .
- m STEL: Short-term Exposure Limit, the acceptable average exposure over a short period of time, usually 15 minutes as long as the Time Weighted Average is not exceeded.
- <sup>n</sup> There is experimental evidence that even at levels of <50 ppmv of  $NO_x$  and  $SO_x$  nitric and sulfuric acid can be formed [25].
- Output Description of the properties of the properties.

**Table B.1** (continued)

| Species          | Indicative levels (volumetric composition in ppmv, unless stated as mol%) |                                                                                                                                            |  |  |  |
|------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| CO <sub>2</sub>  | >95 mol% <sup>a</sup>                                                     |                                                                                                                                            |  |  |  |
| Amine            |                                                                           | The presence of amines, MeOH, EtOH, glycols and other water soluble                                                                        |  |  |  |
| Methanol         |                                                                           | components (e.g. HCl, NaOH, other salts) will facilitate the formati                                                                       |  |  |  |
| Ethanol          |                                                                           | an aqueous phase (free water) and reduce the concentration of water in the $CO_2$ at which a separate aqueous phase is formed. The maximum |  |  |  |
| Glycol           |                                                                           | concentrations that are acceptable will depend on the concentration of the other impurities.                                               |  |  |  |
| C <sub>2</sub> + | <2,5 mol%°                                                                |                                                                                                                                            |  |  |  |

- <sup>a</sup> Industry accepted interpretation of "overwhelmingly CO<sub>2</sub>" required by the London Convention and Protocol which came into force in February 2007.
- The Cortez and Central Basin pipelines in the USA have 630 ppmv  $H_2O$ , but it is noted that they also have <26 ppmv of  $H_2S$ , <14 ppmv of  $O_2$  and no  $SO_x$  or  $NO_x$  (see References [115] and [89].
- A figure of 250 ppm is recommended in Reference [115] which states "In case of a system shut-in or start-up, the risk of hydrates is low if the water content of the  $\rm CO_2$  stream is below 250 ppm. In situations of rapid depressurization, even a low water content level might not be sufficient to avoid hydrates." An additional margin has been applied to recognize this. The maximum acceptable concentration will depend on the pressure/temperature operation window. It is recognized that a number of pipelines have been operated for a long time with a target water concentration of 630 ppmv without reported hydrate incidences. See also Footnote b.
- d For measures to avoid hydrate formation, see ISO 27913:2016, C.2.
- e See ISO 27913:2016, C.2 for criteria addressing hydrogen content.
- The presence of "non-condensables", particularly,  $H_2$ ,  $H_2$ S and  $N_2$ , but also  $O_2$ , Ar,  $CH_4$  and CO affects the decompression behaviour of the  $CO_2$  stream[11], and could affect shear fracture[22].
- The presence of "non-condensables"  $CH_4$ ,  $N_2$  and  $H_2S$  can affect the solubility of water in the  $CO_2$  stream.
- $^{\rm h}$  O<sub>2</sub> content to be such that it does not promote acids formation, solids formation and corrosion that adversely affect the operational integrity of the pipeline over the design lifetime, noting that a much lower level of O<sub>2</sub> can be required to avoid unwanted downstream impacts.
- <sup>i</sup> The Weyburn pipeline has 9 000 ppmv of  $H_2S^{[107]}$ , noting that the  $CO_2$  is dry (<20 ppm)<sup>[89]</sup>, and that the oilfield into which the  $CO_2$  is being injected is already sour.
- The level of impurity required to cause  $\mathrm{CO}_2$ -CO cracking under pipeline operating conditions is not yet known. However, it has been confirmed that in order for cracking to occur, water must be present and that the presence of  $\mathrm{O}_2$  enhances the susceptibility to cracking.
- <sup>k</sup> Health and safety impacts of individual impurities within the  $CO_2$  stream are only relevant if their concentration is such that the combined toxic harmful effect of the impurities is greater than the  $CO_2$  itself. For examples, see References [115] and [116].
- The presence of  $H_2S$  in the  $CO_2$  stream can promote corrosion at lower water levels than in pure  $CO_2^{[79]}$ .
- $^{\rm m}$  STEL: Short-term Exposure Limit, the acceptable average exposure over a short period of time, usually 15 minutes as long as the Time Weighted Average is not exceeded.
- There is experimental evidence that even at levels of <50 ppmv of NO<sub>v</sub> and SO<sub>v</sub> nitric and sulfuric acid can be formed [75].
- <sup>0</sup> Hydrocarbon content could be limited to have a dew point such that condensation does not occur within the operational envelope (combined pressure and temperature) of the pipeline.

In ANSI/NACE MR0175/ISO 15156-1<sup>2)</sup>, the onset of Sulfur-Induced Stress Corrosion Cracking (SICC) is related to the presence of water,  $H_2S$  and the pH of the fluid being transported. If the pipeline dehydration of  $CO_2$  stream is such that corrosion is not anticipated or no free water is formed, (thus no pH is measurable), it would then not be necessary to assess the pipeline for SICC. If the water content is such that it is likely that a water phase will be present, ISO 15156 addresses how to conduct an assessment to select an appropriate grade of steel.

38

<sup>2)</sup> NACE MR0175/ISO 15156-1:2001, Petroleum and natural gas industries— Materials for use in  $H_2$ S-containing environments in oil and gas production— Part 1: General principles for select ion of cracking-resistant materials.

# **Bibliography**

- [1] Dugstad A., Halseid M., Morland B., "Testing of  ${\rm CO_2}$  specifications with respect to corrosion and bulk phase reactions", GHGT 12, 2014
- [2] Dugstad A., Morland B., Clausen S., "Corrosion of transport pipelines for  ${\rm CO_2}$  Effect of water ingress", GHGT 10, 2010
- [3] KLAS Andersson, FREDRIK Normann, FILIP Johnsson, Bo Leckner, NO Emission during Oxy-Fuel Combustion of Lignite. *Ind. Eng. Chem. Res.* 2008, **47**, 6, 1835-1845
- [4] Amshoff P., Weger T., Ostertag-Henning C.(2018): , Dissolution kinetics of  $CO_2$  and  $CO_2$ -SO2 mixtures in water and brine at geological storage conditions of 16 MPa and 333 K. International Journal of Greenhouse Gas Control, **79**: 173-180
- [5] Amshoff P., Fuhrmann L., Ostertag-Henning C., (2019): Mass transfer of  $CO_2$  and SO2 from  $CO_2$ -SO2 mixtures into brine at 16 MPa and 333 K and sulfur speciation in the aqueous phase. Proceedings 14th International Conference on Greenhouse Gas Control Technologies (eJournal), 9 pp
- [6] Anheden M, Andersson A, Bernstone C, Eriksson S, Yan J, Liljemark S, Wall C, (2004):  $CO_2$  quality requirement for a system with  $CO_2$  capture, transport and storage. Proceedings of the 7th International Conference on Greenhouse GasControl Technologies, Vancouver, Canada, pp. 2559-2564
- [7] ANHEDEN M., BURCHHARDT U., ECKE H., FABER R., JIDINGER O., GIERING R., KASS H., LYSK S., RAMSTRÖM E., YAN J.2011., Overview of operational experience and resultsfrom test activities in Vattenfall's 30 MWth oxyfuel pilot plant in SchwarzePumpe. *Energy Proc.* 4, 941–950
- [8] A. Oosterkamp J. Ramsen, "State-of-the-Art Overview of CO<sub>2</sub> Pipeline Transport with relevance to offshore pipelines" Open Polytec report: POL-O-2007-138-A
- [9] Apps John A., Xu Tianfu, Pruess Karsten, Yamamoto Hajime, Chemical geology, 2007, 242, 3–4, 319-346; https://doi.org/10.1016/j.chemgeo.2007.03.022
- [10] ASPELUND A, MØLNVIK MJ, de KOEIJER G, Ship transport of CO<sub>2</sub>: Technical solutions and analysis of costs, energy utilization, exergy efficiency and CO<sub>2</sub> emissions. *Chem Eng Res Des* 2006; **84**(9):847–855. <a href="http://dx.doi.org/10.1205/cherd.5147">http://dx.doi.org/10.1205/cherd.5147</a>
- [11] Aursand E., Dørum C., Hammer M., Morin A., Munkejord S.T., Nordhagen H.O., 2014: CO<sub>2</sub> pipeline integrity: Comparison of a coupled fluid-structure model and uncoupled two-curve methods. *Energy Procedia*. 2014, **51** pp. 382–391. DOI:10.1016/j.egypro.2014.07.045
- [12] Azaroual M., André L., Jacquemet N., Bernstone C., von Dalwigk I., (2008) Results on modelling related to the fate of impurities in the geological storage.  $\rm CO_2$  Quality Workshop, Stockholm, October 22nd, 2008
- [13] Brown J., Graver B., Gulbrandsen E., Dugstad A., Morland B., 2014: Update of DNV Recommended Practice RP-J202 with focus on CO<sub>2</sub> corrosion with impurities. Energy Procedia, Vol. 63, pp 2432-2441, GHGT-12, <a href="https://www.sciencedirect.com/science/article/pii/S1876610214020803">www.sciencedirect.com/science/article/pii/S1876610214020803</a>
- [14] BRUNSVOLD et al. 2016, , Key findings and recommendations from IMPACTS project, *International Journal of Greenhouse Gas Control* **54**, pp 588-598
- [15] CALLIDE OXYFUEL PROJECT, Spero (2014, 2018) <a href="http://decarboni.se/sites/default/files/publications/157873/callide-oxyfuel-project-lessons-learned.pdf">http://decarboni.se/sites/default/files/publications/157873/callide-oxyfuel-project-lessons-learned.pdf</a> http://decarboni.se/sites/default/files/publications/202090/cop-finalresults-publicreport-march2018.pdf

- [16] Barrio Maria, Aspelund A., Weydahl T.E., Sandvik T.R., Wongraven L., Krogstad H., Henningsen R., Molnvik M.I., , Eide S., (2005). Ship-based transport of  ${\rm CO_2}$ . Greenhouse Gas Control Technologies. 1655-1660. 10.1016/B978-008044704-9/50193-2
- [17] CARROLL S., CAREY J. W., DZOMBAK D., HUERTA N. J., LI L., RICHARD T., UM W., WALSH S., ZHANG L.(2016)., Role of chemistry, mechanics, and transport on well integrity in CO<sub>2</sub> storage environments. *International Journal of Greenhouse Gas Control*, **49**, 149-160
- [18] CEMCAP, (2017): CEMCAP framework for comparative techno-economic analysis of CO<sub>2</sub> capture from cement plants (Deliverable D3.2)
- [19] Ceroni A., Farret R., (2014), Risk profiles of main impurities in the  $\rm CO_2$  stream, Deliverable 5.1,  $\rm CO_2$ Quest project
- [20] Chadwick A., Arts R., Eiken O., Thibeau S., Nooner S.", Ten years' experience of monitoring  $CO_2$  injection in the Utsira Sand at Sleipner, offshore Norway," *First Break*, vol. **26**, no. 1, pp. 91-96, 2008
- [21] COSHAM A., JONES D.G., ARMSTRONG K., ALLASON D., BARNETT J., Analysis of two dense phase carbon dioxide full-scale fracture propagation tests. In: 10th International Pipeline Conference, IPC2014, vol. 3. Calgary, Canada, 2014; <a href="http://dx.doi.org/10.1115/IPC2014-33080">http://dx.doi.org/10.1115/IPC2014-33080</a>
- [22] de Visser E., Hendriks C., Barrio M., Mølnvik M.J., de Koeijer G., Liljemark S., Le Gallo Y., 2008: DYNAMIS CO<sub>2</sub> quality recommendations. *Int. J. Greenh. Gas Control.* 2008 October, **2** (4) pp. 478-484
- [23] MAYUMI D., DOLFING J. et al., Carbon dioxide concentration dictates alternative methanogenic pathways in oil reservoirs. *Nature Communication*, **4**, 2013
- [24] DALMATIEN project-website: <a href="https://admin-prisme-internet.ifpen.fr/Projet/jcms/xnt\_198877/fr/publications">https://admin-prisme-internet.ifpen.fr/Projet/jcms/xnt\_198877/fr/publications</a>
- [25] DAWSON G.K.W., PEARCE J.K., BIDDLE D., GOLDING S.D.(2015), Experimental mineral dissolution in Berea Sandstone reacted with  $CO_2$  or  $SO2-CO_2$  in NaCl brine under  $CO_2$  sequestration conditions. Chemical Geology **399**, 87–97
- [26] IEAGHG reports and notes (e.g., 2004, 2011, 2014, 2016), GCCSI, CSLF, WRI reports
- [27] EC Guidance Document (2011), European Commission Implementation of Directive 2009/31/ EC on the Geological Storage of Carbon Dioxide, Guidance Document 2, Characterisation of the Storage Complex, CO<sub>2</sub> stream composition, monitoring and corrective measures. ISBN-13 978-92-79-19834-2, DOI: 10.2834/98293
- [28] EDWARDS K.L., 2008: Statement to the Senate Committee on Energy and Natural Resources oversight hearing on construction and operation of carbon dioxide pipelines. United States Department of Transportation Pipeline and Hazardous Materials Safety Administration, 31 January 2008
- [29] ENGEL F., KATHER A., Improvements on the liquefaction of a pipeline CO<sub>2</sub> stream for ship transport. *International Journal of Greenhouse Gas Control*, vol. **72**, pp. 214–221, 2018. https://doi.org/10.1016/j.ijggc.2018.03.010
- [30] EPRI 2007, Integrated Gasification Combined Cycle (IGCC) Design Considerations for High Availability, Volume 1: Lessons from Existing Operations. *EPRI, Palo Alto, CA*: **2007** 1012226
- [31] de Visser Erika, Hendriks Chris, Barrio Maria, Mølnvik Mona J., de Koeijer Gelein, Liljemark Stefan, Le Gallo Yann, Dynamis CO<sub>2</sub> quality recommendations, 2008
- [32] Farret R., André L., Brosse E., Broutin P., Chopin F., Gombert P., Jallais S., Saysset S., (2012) Substances Annexes au  $\rm CO_2$  pour un Stockage Souterrain (SACSS) Rapport du Groupe de Travail du Club  $\rm CO_2$ , réf. INERIS-DRS-12-127545-07346A

- [33] FARRET R., GOMBERT P., CERONI A., (2016), Methodology to assess the impacts of CO<sub>2</sub> impurities and recommendation for mitigation measures, Deliverable 5.3, CO<sub>2</sub>Quest project.
- [34] Fraboulet I., Lestremau F., Poulleau J., Biaudet H., Chahen L., Round Robin Tests on Nitrosamines Analysis in the Effluents of a CO2 Capture Pilot Plan. *Energy Procedia*, 2014, **63**, 848-862
- [35] GARCIA et al., 2012. (2012; FeOOH + SO2) [Sequestration of non-pure carbon dioxide streams in iron oxyhydroxide-containing saline repositories. International Journal of Greenhouse Gas Control 7:89-97]
- [36] GCCSI, 2016 [Special Report: Introduction to industrial capture and storage lists operating  ${\rm CO_2}$  capture projects.]
- [37] SICK H., MANDERSON D., CarbonNet Knowledge Product: Development of a  $\rm CO_2$  specification for a CCS hub network", Report no. Project no: 2269886A-PWR-REP-001 Rev04, The Carbon Net Project Southbank VIC, Australia
- [38] IEA 2013, *Global Action to Advance Carbon Capture and Storage.* Accelerating the Transition to Clean Energy Technologies. A Focus on Industrial Applications
- [39] IEAGHG, Impact of Impurities on CO<sub>2</sub> Capture, Transport and Storage", PH4/32, August, 2004
- [40] IEAGHG, (a), "Effects of Impurities on Geological Storage of CO<sub>2</sub>", 2011/04, June, 2011
- [41] IEAGHG, (b), "Impact of  $CO_2$  Impurity on  $CO_2$  compression, liquefaction and transportation", 2016/01, April, 2016
- [42] IEAGHG, Operational Flexibility of CO<sub>2</sub> Transport and Storage", 2016/04, March, 2016
- [43] Interstate Oil and Gas Compact Commission and Southern States Energy Board Pipeline Transport Task Force, 2010: A policy, legal, and regulatory evaluation of the feasibility of a national pipeline infrastructure for the transport and storage of carbon dioxide. Southern States Energy Board, 2010, <a href="https://www.sseb.org/">www.sseb.org/</a>
- [44] IPCC 2005: *IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change*, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442 pp
- [45] ISO 14064-1, Greenhouse gases Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals
- [46] ISO 14064-2, Greenhouse gases Part 2: Specification with guidance at the project level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancements
- [47] ISO 14064-3, Greenhouse gases Part 3: Specification with guidance for the verification and validation of greenhouse gas statements
- [48] ISO 27913:2016, Carbon dioxide capture, transportation and geological storage Pipeline transportation systems
- [49] ISO 27917:2017, Carbon dioxide capture, transportation and geological storage Vocabulary Cross cutting terms
- [50] ISO 27919-1:2018, Carbon dioxide capture Part 1: Performance evaluation methods for post-combustion CO2 capture integrated with a power plant
- [51] ISO 27914, Carbon Dioxide Capture, Transportation and Geological Storage Geological Storage. ISO/TC 265 N100
- [52] ISO/TR 27912, Carbon dioxide capture systems, technologies, equipment and processes for power and industry. ISO/TC 265 N090

- [53] ISO/TR 27918, Lifecycle risk management for integrated CCS projects
- [54] Apps J. A., Zheng L., Spycher N., Birkholzer J. T., Kharaba Y., Thordsen J., Kakouros E., Trautz R., Transient changes in shallow groundwater chemistry during the MSU ZERT  ${\rm CO_2}$  injection experiment, 2011
- [55] Japan Ministry of Environment 2011, Regulatory Framework for Carbon Dioxide Sub-seabed Storage Safety and Potential Environmental Impact, Office of Marine Environment, et al., Editors
- [56] JORDAL Kristin, VOLDSUND Mari, STØRSET Sigmund, FLEIGER Kristina, RUPPERT Johannes, SPÖRL Reinhold, HORNBERGER Matthias, CINTI Giovanni(2017), CEMCAP Making CO<sub>2</sub> Capture Retrofittable to Cement Plants. *Energy Procedia* **114**, 6175-6180
- [57] HAVENS K., Kinder Morgan presentation at the "Indian Center for Coal Technology Research
- [58] KHARAKA Y. K., THORDSEN J.J., HOVORKA S.D., NANCE H.S., COLE D.,R., PHELPS T.J., KNAUSS K.G.(2009)., "Potential environmental issues of CO<sub>2</sub>-storage in deep saline aquifers: geochemical results from the Frio-I brine pilot test, Texas", USA. *App. Geochemistry* **24** (6), 1106-1112
- [59] KUTCHKO Barbara G. et al., H2S-CO<sub>2</sub> reaction with hydrated Class H well cement: Acid-gas injection and CO<sub>2</sub> Co-sequestration." *International Journal of Greenhouse Gas Control* **5**.4 (2011): 880-888
- [60] Leilac, 2016: <a href="https://www.project-leilac.eu">www.project-leilac.eu</a>, year chosen according to project start
- [61] Lions J. et al. , Impacts potentiels du stockage géologique du  ${\rm CO_2}$  sur la qualité des eaux souterraines. Final report of the CIPRES project
- [62] LITTLE M.G., JACKSON R.B.(2010), Potential impacts of leakage from deep CO<sub>2</sub> geosequestration on overlying freshwater aquifers. *Environ. Sci. Technol.* **44**, 9225-9232
- [63] Cuccia Lorena, Dugay José, Bontemps Domitille, Louis-Louisy Myriam, Vial Jérôme, Analytical methods for the monitoring of post-combustion CO<sub>2</sub> capture process using amine solvents: A review, *International Journal of Greenhouse Gas Control*, 2018, **72**, 138-151
- [64] Mahgerefteh H. et al., Techno-economic and safety assessment of impact of CO<sub>2</sub> impurities on its transport and storage, CO<sub>2</sub>QUEST final report, <a href="https://cordis.europa.eu/result/rcn/193560\_en.html">https://cordis.europa.eu/result/rcn/193560\_en.html</a> (see also R.Farret, deliverable D5.3, Methodology to assess the impacts of CO<sub>2</sub> impurities and recommendation for mitigation measures)
- [65] Mandalaparty P., Deo M., Moore J., McPherson B. (2010). Carbon Dioxide Sequestration: Effect of the Presence of Sulfur Dioxide on the Mineralogical Reactions and on the Injectivity of CO2+SO2 Mixtures. Reporting period: July 1, 2006 to May 31, 2009. DOE Award Number: DE-FC26-06NT42808 (Tasks 13 and 14). University of Utah
- [66] Marsili D.L., Stevick G.R. 1990: Reducing the risk of ductile fracture on the Canyon Reef Carriers  $CO_2$  pipeline. SPE20646, 65th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, New Orleans, USA, 1990
- [67] MAY F, KNOPF S, MÜLLER C, HOTH P, 2009): CO2 storage options in Germany. in M. Grobe, J. C. Pashin, and R. L. Dodge, eds., Carbon dioxide sequestration in geological media-State of the science: AAPG Studies in Geology 59, p. 35-45
- [68] HALSEID M., DUGSTAD A., MORLAND B., "Corrosion and bulk phase reactions in CO<sub>2</sub> transport pipelines with impurities: review of recent published studies", GHGT 12, 2014
- [69] MOHITPOUR P. Seevam, K. K. Botros, B. Rothwell, C. Ennis, "Pipeline Transportation of Carbon Dioxide Containing Impurities", 2012
- [70] Morozova D, Wandrey M, Alwai M, Zimmer M, Vieth A, Zettlitzer M, Wuerdemann H(2010), Monitoring of the microbial community composition in saline aquifers during  ${\rm CO}_2$  storage by fluorescence in situ hybridisation. *International Journal of Greenhouse Gas Control*, doi:10.1016/j.ijggc.2009.11.014

- [71] Munkejord S.T., Bernstone C., Clausen S., de Koeijer G., Mølnvik M.J., 2013: Combining thermodynamic and fluid flow modelling for  $CO_2$  flow assurance. GHGT-11. Energy Procedia. 2013, 37 pp. 2904–2913
- [72] Munkejord S. T., Hammer M., Løvseth S. W., CO<sub>2</sub> transport: Data and models A review. *Applied Energy*, vol. **169**, pp. 499-523, May 2016. <a href="http://dx.doi.org/10.1016/j.apenergy.2016.01.100">http://dx.doi.org/10.1016/j.apenergy.2016.01.100</a>
- [73] National Energy Technology Laboratory (NETL), CO<sub>2</sub> Impurity Design Parameters, Quality Guidelines for Energy Systems Studies", January 2012
- [74] NETL, Quality Guidelines for Energy System Studies, " $\rm CO_2$  impurity design Parameters", DOE/NETL-341/011212, 2012
- [75] NETL, Quality Guidelines for Energy System Studies, "CO<sub>2</sub> impurity design Parameters", DOE/NETL-341/011212, 2013
- [76] Nordhagen H. O., Munkejord S. T., Hammer M., Gruben G., Fourmeau M., Dumoulin S., A fracture-propagation-control model for pipelines transporting CO<sub>2</sub>-rich mixtures including a new method for material-model calibration. *Engineering Structures*, vol. **143**, pp. 245-260, July 2017. <a href="http://dx.doi.org/10.1016/j.engstruct.2017.04.015">http://dx.doi.org/10.1016/j.engstruct.2017.04.015</a>
- [77] NORWEGIAN MINISTRY OF PETROLEUM AND ENERGY, Feasibility study for full-scale CCS in Norway, 2016, http://www.gassnova.no/en/Documents/Feasibilitystudy\_fullscale\_CCS\_Norway\_2016.pdf
- [78] Pearce J.K., Kirste D.M., Dawson G.K.W., Farquhar S.M., Biddle D., Golding S.D., Rudolph V.(2015b), SO2 impurity impacts on experimental and simulated  $CO_2$ -water-reservoir rock reactions at carbon storage conditions. *Chemical Geology*, **399**, 65–86
- [79] PEARCE J.K. et al., (2015; FeC03 + S02) [S02– $\rm CO_2$  and pure  $\rm CO_2$  reactivity of ferroan carbonates at carbon storage conditions. Chemical Geology 411:112-124]
- [80] PHMSA, U.S. Department of Transportation Pipeline and Hazardous Material Safety Administration, [viewed 29.08.2014], <a href="http://www.phmsa.dot.gov/pipeline/library/data-stats">http://www.phmsa.dot.gov/pipeline/library/data-stats</a>
- [81] PORTER R. T., FAIRWEATHER M., POURKASHANIAN M., WOOLLEY R. M.(2015). The range and level of impurities in  $CO_2$  streams from different carbon capture sources. *International Journal of Greenhouse Gas Control*, **36**, 161-174
- [82] PARFOMAK P.W., FOLGER P., Carbon Dioxide (CO<sub>2</sub>) Pipelines for Carbon Sequestration: Emerging Policy Issues", 2008, <a href="http://research.policyarchive.org/18606.pdf">http://research.policyarchive.org/18606.pdf</a>
- [83] QUATTROCCHI F., Bencini R. et al. , (2004). The IEA Weyburn  ${\rm CO_2}$  monitoring and storage project. Final report of the European research team
- [84] Rebscher and Oldenburg, (2004). Sequestration of Carbon Dioxide with Enhanced Gas Recovery Case Study Altmark, North German Basin. Report LBNL-59033
- [85] Farret R., Hulot C., Synthèse sur les substances accompagnant le  $\rm CO_2$  dans un stockage géologique en aquifère,  $\rm 05/2012$
- [86] PORTER R. T. J., , et al.,  $CO_2$  product gas composition and range of impurities from different  $CO_2$  sources,  $CO_2$ Quest project, 2013
- [87] Regulatory thresholds, including AMSE b31.4 and Part 195 of the Department of Transportation ("PHMSA") regulations (USA)
- [88] G. De Soete (1993): Nitrous Oxide from Combustion and Industry: Chemistry, Emissions and Control. –Rev. Inst. Fr. Pét., 48: 413-451
- [89] Rey A., Gouedard C., Ledirac N., Cohen M., Dugay J., Vial J., Pichon V., Bertomeu L., Picq D., Bontemps D., Chopin F., Carrette P-L., Amine Degradation in  $CO_2$  Capture-New

- degradation products of MEA. Pyrazine and alkyl pyrazines: analysis, mechanism of formation and toxicity. *International Journal of Greenhouse Gas Control* 2013, **19**, 576-583
- [90] SPAN Roland, GERNERT Johannes, JÄGER Andreas(2013): , Accurate thermodynamic-property models for CO<sub>2</sub>-rich mixtures. *Energy Procedia* **37** (2013) 2914–2922
- [91] RÜTTERS H. et al. , 2017: CLUSTER Zwischensynthese. Report, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, 141 S
- [92] RÜTTERS H. et al. (2016): , Towards an optimization of the CO<sub>2</sub> stream composition A whole-chain approach, *International Journal of Greenhouse Gas Control* **54**:682-701]
- [93] Benson S. M., Cole D. R., "CO<sub>2</sub> Sequestration in Deep Sedimentary Formations", 2008
- [94] SANTILLAN E.U., KIRK M.F., ALTMAN S.J., BENNETT P.C.(2013), Mineral Influence on Microbial Survival During Carbon Sequestration, *Geomicrobiology Journal*, **30**:7, 578-592, DOI: 10.1080/01490451.2013.767396
- [95] SARAJI Soheil, PIRI Mohammad, GOUAL Lamia, The effects of SO2 contamination, brine salinity, pressure, and temperature on dynamic contact angles and interfacial tension of supercritical CO<sub>2</sub>/brine/quartz systems." *International Journal of Greenhouse Gas Control* **28** (2014): 147-155
- [96] SCHÖNEICH et al., 2007 [Influence of Impurities in CO<sub>2</sub>-rich Gas Mixtures on the Storage Capacity of Mature Natural Gas Fields. Simulations for oxyfuel-combustion without flue gas cleaning.]
- [97] Seevam P., Hopkins P., 2008: Transporting the next generation of  $CO_2$  for carbon, capture and storage: The impact of impurities on supercritical  $CO_2$  pipelines. IPC2008-64063
- [98] Shah M., 2010, Near Zero Emissions Oxy-combustion Flue Gas Purification, 2010 NETL CO<sub>2</sub>Capture Technology Meeting, Pittsburgh, PA, September 13–17
- [99] Shah Virenkumar et al., Water/acid gas interfacial tensions and their impact on acid gas geological storage." *International Journal of Greenhouse Gas Control* **2**.4 (2008): 594–604
- [100] Løvseth Sigurd Weidemann, Stang H. G. Jacob, Austegard Anders, Westman Snorre Foss, Span Roland, Wegge Robin2016): , Measurements of  ${\rm CO_2}$ -rich mixture properties: status and CCS needs. *Energy Procedia* **86** (2016) 469–478
- [101] Stephen Talman, Subsurface geochemical fate and effects of impurities contained in a CO2 stream injected into a deep saline aquifer: What is known. *International Journal of Greenhouse Gas Control*, **40**, 2015, 267-291; https://doi.org/10.1016/j.ijggc.2015.04.019
- [102] HARKIN T., FILBY I., SICK H., MANDERSON D., ASHTON R., Development of a CO<sub>2</sub> specification for a CCS hub network, *Energy Procedia*, **114**, (2017) pp. 6708-6720
- [103] The Carbon Net Project, "Development of a CO<sub>2</sub> specification for a CCS hub network" Project no: 2269886A-PWR-REP-001 Rev04
- [104] Trias Rosalia, Ménez Bénédicte, (2017)-2017/10/20- High reactivity of deep biota under anthropogenic  $\rm CO_2$  injection into basalt, Nature Communications, 1063 8-1- https://doi.org/10.1038/s41467-017-01288-8
- [105] UILHOORN F.E.2013: , Evaluating the risk of hydrate formation in  ${\rm CO_2}$  pipelines under transient operation. March 2013, *International Journal of Greenhouse Gas Control*, Vol. **14**, May 2013, pp. 177–182
- [106] VATTENFALL Europe Carbon Storage GmbH & Co, KG, 2011: CO<sub>2</sub> TRANSPORT PIPELINE FEED Study. JOB NO.: P10111, Rev.1
- [107] VIETH A., SCHERF A.-K., MOROZOVA D., WANDREY M., MANGELSDORF K., WÜRDEMANN H., Geophysical Research Abstracts, 11, EGU2009-6855-2, 2009EGU General Assembly 2009

- [108] Waldmann S. et al., (2014) Geochemische Reaktionen vonCO<sub>2</sub>-Gasgemischen mit Speichergesteinen und Deckschichten Final Report of Project COORAL. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, 292 p., available at <a href="https://www.bgr.bund.de/COORAL">www.bgr.bund.de/COORAL</a>
- [109] Wang A., (2015) Effects of Impurities on  $\mathrm{CO}_2$  Geological Storage. Thesis Faculty of Graduate and Postdoctoral Studies in partial fulfilment of the requirements for the degree of Master of Applied Science
- [110] West J.M., McKinley I.G, Palumbo-Roe B., Rochelle C.A.(2011), Potential impact of CO<sub>2</sub> storage on subsurface microbial ecosystems and implications for groundwater quality. *Energy Procedia* 4, 3163–3170
- [111] WHITE V., WRIGHT A., TAPPE S., YAN J.2013b., The air products Vattenfall oxyfuelCO<sub>2</sub>compression and purification pilot plant at Schwarze Pumpe. *Energy Proc.* **37**, 1490–1499
- [112] Wragg J., West J.M., Bateman K.(2013), Potential impact of  ${\rm CO_2}$  on subsurface microbial ecosystems and implications for the performance of storage reservoirs. *Energy Procedia* 37, 800-805
- [113] YAN J., ANHEDEN M., BERNSTONE C., (2009). Impacts of non-condensable components on CO<sub>2</sub> compression/purification, pipeline transport and geological storage. Proceedings of the 1st IEA Oxyfuel Combustion Conference. Cottbus, September 8-11, 2009
- [114] ZEP2015, , CCS for industry, Lowest-cost route for decarbonising *Europe*
- [115] ZETTLITZER M., MOELLER F., MOROZOVA D., LOKAY P., WÜRDEMANN H.the  ${\rm CO_2}$  SINK Group (2010) , Re-establishment of the proper injectivity of the  ${\rm CO_2}$ -injection well Ktzi 201 in Ketzin, Germany. *International Journal of Greenhouse Gas Control* 4, 952–959
- [116] ZUDDAS P. 2009, Evaluation des conséquences pour l'environnement du stockage géologique du  $CO_2$ : état de l'art, Rapport UCBL, septembre 2009, 25 p
- [117] ISO 6974-5, Natural gas Determination of composition and associated uncertainty by gas chromatography
- [118] ISO 19739:2004, Natural gas Determination of sulfur compounds gas chromatography
- [119] ISO 27920, Carbon dioxide capture, transportation and geological storage (CCS) Quantification and Verification
- [120] ISO 10715:1997, Natural gas Sampling guidelines
- [121] ISO 10723:2012, Natural gas Performance evaluation for analytical systems
- [122] ASTM D1945, Standard Test Method for Analysis of Natural Gas by Gas Chromatography
- [123] International Society of Beverage Technologists (ISBT) Carbon Dioxide Guidelines MBAA TQ vol. 39, no. 1, 2002, pp. 32-35
- [124] NACE MR0175/ISO 15156-1:2001, Petroleum and natural gas industries— Materials for use in H2S-containing environments in oil and gas production— Part 1: General principles for select ion of cracking-resistant materials

