Калибровка инерциального измерительного блока

$npo\phi$. O.B. Болотин, c.н.c. B.C. Вязьмин 26 марта 2020 г.

Содержание

Введение			3
1	Ka J 1.1 1.2 1.3	ибровочные модели ИИБ Калибровочная модель АКС	6 7 7 8
2	Kaj	ибровка с привязкой к корпусу ИИБ	8
	2.1	Приборная система координат Mz	9
	2.2	Калибровка акселерометров	10
		2.2.1 Калибровочные соотношения	10
		2.2.2 Аналитическое решение	10
	2.3	Калибровка ДУС.	11
3	Me'	год калибровки, не привязанный к форме корпуса ИИБ	12
	3.1	Калибровочная модель акселерометров без привязки к корпусу	12
	3.2	Калибровка акселерометров	13
	3.3	Численные методы.	13
	3.4	Сведение калибровки АКСов к определению параметров эллипсоида	14
	3.5	О наблюдаемости задачи калибровки	15
	3.6	Калибровка ДУС	15
4	Прі	имер калибровки ИИБ	16
5	Koı	нтрольные вопросы	18
П	рило	жение. Вариация Аллана как средство анализа погрешностей	19
	5.1	Задача описания шумов.	19
		5.1.1 Дисперсии шумов	20
		5.1.2 Сглаживание шумов	20
		5.1.3 Прореживание шумов	21
		5.1.4 Дифференцирование шумов	21
	5.2	Вариация Аллана	22
		5.2.1 Связь вариании Аллана со спектральной плотностью мошности.	22

F 2 Depressing A grows and commence FIIC	0.0
5.3 Вариация Аллана для сигналов БИС	. ZU

Введение

В современном мире невозможно без навигации, то есть определения координат и скоростей движущегося объекта. Одними из важнейших систем навигации являются инерциальные навигационные системы (ИНС). Преимуществом ИНС является то, что они не требуют внешней информации, и могут работать под водой, в туннелях и среди высоких зданий, где, например, спутниковая навигация невозможна ввиду отсутствия сигнала. Широкое распространение в последние годы получили миниатюрные ИНС, работающие на микроэлектромеханических сенсорах (МЭМС). Они используются, в частности, в системах управления автомобилей, в робототехнике, для персональной навигации, в смартфонах. Строго говоря, в настоящее время эти приборы — не вполне ИНС, поскольку из-за низкой точности способны автономно прогнозировать движение лишь на очень короткие отрезки времени, а на более длительных отрезках требуют дополнительной, неинерциальной, информации.

Определение 1 Инерциальный измерительный блок (ИИБ) — прибор, позволяющий определять удельную силу реакции f, действующую на его чувствительную массу со стороны корпуса ИИБ, и угловую скорость ИИБ относительно инерциального пространства. Для измерения силы реакции используются ньютонометры (иногда называемые акселерометрами (АКС)), для определения угловой скорости — датчики угловой скорости (ДУС).

Определение 2 Инерциальная навигационная система — ИИБ, дополненный необходимым программным обеспечением, решающим задачу инерциальной навигации. В узком смысле задачей инерциальной навигации является интегрирование уравнений движения чувствительной массы M, а именно уравнений Ньютона, под действием силы тяжести g и измеряемой силы реакции f со стороны корпуса ИИБ. В широком смысле κ этой задаче относятся анализ уравнений ошибок и коррекция по внешней информации.

Определение 3 Приборный трехгранник Mz — ортогональная система координат, связанная с корпусом ИИБ, в проекции на оси которой измеряются удельная сила реакции f_z и угловая скорость ω_z корпуса ИИБ. Опорный трехгранник Ox — ортогональная система координат, в проекции на оси которой записываются и интегрируются уравнения Ньютона движения чувствительной массы ИИБ.

Считая опорную систему координат инерциальной, имеем (g — вектор удельной силы тяжести)

$$\ddot{x} = f_x + g_x. \tag{0.1}$$

Поскольку g и f заданы в разных системах координат, для их согласования знать матрицу B_{xz} перехода от Mz к Ox: $f_x = B_{xz}f_z$. Эта матрица (точнее, обратная к ней $B_{zx} = B_{xz}^T$) может быть определена из уравнений Пуассона [1]

$$\dot{B}_{zx} = -\omega_z \times B_{zx}. ag{0.2}$$

Уравнения (0.1), (0.2) обычно называют уравнениями идеальной работы, или опорными уравнениями [1]. Если точно знать начальные условия, они позволяют идеально точно определить координаты объекта в любой момент времени.

Проблема в том, что измерения отличаются от истинных значений на погрешности $\delta f_z, \delta \omega_z$:

$$f_z' = f_z + \delta f_z, \qquad \omega_z' = \omega_z + \delta \omega_z.$$

Используя вместо истинных измеренные показания ИИБ, получим т. н. расчетные, или модельные уравнения, описывающие движение расчетной точки M' с координатами x':

$$\ddot{x}' = f_x' + g_x', \tag{0.3}$$

$$\dot{B}'_{zx} = -\omega'_z \times B'_{zx}. \tag{0.4}$$

Здесь g'_x — значения силы тяжести, вычисленные в расчетной точке M'. Полученные (сильно упрощенные!) уравнения являются основой инерциальной навигации и их исследование составляет предмет теории инерциальной навигации [1]. В данном тексте эта теория не рассматривается.

Цель данного пособия — пояснить, как по «сырым» показаниям датчиков вычислить значения f'_x, g'_x .

Опишем кратко устройство и принцип действия датчиков ИИБ на аналоговых МЭМС.

Микроэлектромеханический АКС вырезается на кремниевой пластине и представляет из себя пробное тело в упругом подвесе, снабженное специальными щетками — конденсаторами, на вход которых подается периодическое напряжение (рис. 1). Когда тело смещается под действием переносного ускорения, меняется емкость конденсаторов, и на выходе конденсаторов появляется периодическое напряжение, амплитуда которого пропорциональна смещению x. Пусть исходная емкость конденсаторов c_1, c_2 одинакова и равна c_0 , а расстояние между обкладками равно x_0 . При смещении пробной массы на x емкости принимают значения

$$c_1 = \frac{c_0}{1 + \frac{x}{x_0}}, \quad c_2 = \frac{c_0}{1 - \frac{x}{x_0}}.$$

Если на вход схемы подано гармоническое напряжение с амплитудой V_{in} , в предположении $|x|/x_0 \ll 1$ на выходе будет гармоническое напряжение с амплитудой

$$V_{out} = V_{in}c_0 \left(\frac{1}{c_1 + c_0} - \frac{1}{c_2 + c_0}\right) \approx \frac{1}{2}V_{in}\frac{x}{x_0}.$$

Амплитуда напряжения оцифровывается с некоторой частотой записи (обычно сотни герц) и служит «сырым» измерением АКС a.

Микроэлектромеханический ДУС (Рис. 2) устроен сходным образом, с той разницей, что пробное тело совершает вынужденные колебания перпендикулярно оси (осям) чувствительности прибора. Когда корпус ДУС приобретает угловую скорость, сила Кориолиса смещает пробное тело в направлении, ортогональном оси чувствительности и оси вынужденных колебаний. Это смещение, как и в случае АКС, преобразуется в напряжение.

Акселерометр и ДУС бывают с одним, двумя (иногда тремя) выходами и измеряют проекции искомой величины на разные оси. На практике обычно требуются три компоненты удельной силы реакции и три компоненты угловой скорости. Соответственно,

Рис. 1: Схема акселерометра.

Рис. 2: Схема ДУС.

ИИБ включает нужное число датчиков. Для простоты соответствующий набор датчиков будет рассматриваться как один векторный датчик удельной силы и один векторный датчик угловой скорости.

Ha puc. 3 показан ИИБ 6DOF компании Sparkfun, на которой установлен 3D-акселерометр, два 2D-ДУС и приемопередатчик Bluetooth.

Из сказанного ясно, что как акселерометр, так и ДУС, фактически измеряет емкость конденсаторов. Чтобы эти измерения можно было использовать в навигации, датчики необходимо калибровать.

Определение 4 Калибровка ИИБ состоит в определении формул пересчета сырых показаний акселерометров и ДУС в проекции вектора удельной силы реакции и абсолютной угловой скорости прибора на оси т. н. приборного трехгранника, связанного с носителем. Приборный трехгранник выбирается в процессе калибровки.

Калибровка датчиков проводится (условно) в три этапа.

- Выбираются, исходя из физических соображений, калибровочные модели, включающие заранее неизвестные калибровочные параметры.
- ИИБ придаются разные перемещения и вращения. При этом сырые показания датчиков записываются в соответствующие файлы.
- Записанные показания сравниваются с внешней информацией о характере движения, и калибровочные параметры подбираются так, чтобы были выполнены калибровочные соотношения.

Внешней информацией о движении бывает, например, следующая.

- Углы поворота корпуса ИИБ.
- Неподвижность прибора в течение какого-то отрезка времени.

Рис. 3: ИИБ 6DOF.

- Абсолютная величина силы тяжести.
- Абсолютная величина угловой скорости вращения Земли.

Исторически первыми ИНС были высокоточные системы, для калибровки которых использовались прецизионные поворотные стенды, и внешней информацией были углы поворота корпуса ИИБ относительно географии с точностью в доли угловых минут.

Идея, что калибровку ИИБ можно проводить фактически без всякого оборудования, была высказана разными авторами довольно давно [2], [3]. Предлагается, например, использовать независимость абсолютной величины силы тяжести от ориентации ИИБ [3]. Эту идею иногда называют методом инвариантных соотношений. Широкое развитие подход приобрел в 2000-х годах, начиная, наверное, с [4]. Причина в том, что для дешевых ИИБ потребовались дешевые методы калибровки.

Методы, рассмотренные в задаче практикума, позволяет калибровать ИИБ без использования специального оборудования. Не используется также информация об угловой скорости Земли — поскольку ДУС очень грубый, он не чувствует эту угловую скорость. Таким образом, систему координат Ox, связанную с Землей, можно считать инерциальной.

Замечание 1 Здесь не затрагивается предложенный Н.А. Парусниковым и нашедший широкое применение в России метод калибровки БИНС на низкоточном поворотном стенде [6]. Понимание этого метода требует знания основ теории инерциальной навигации.

1 Калибровочные модели ИИБ

Калибровочная модель — уравнения, связывающие сырые и выходные показания датчиков. Входящие в эти уравнения параметры, называемые калибровочными параметрами, подлежат определению.

1.1 Калибровочная модель АКС.

В рамках линейной модели вектор сырых показаний акселерометра $a' = [a'_1 \ a'_2 \ a'_3]^T$ связан с проекциями $f_z = [f_1 \ f_2 \ f_3]^T$ удельной силы реакции f на оси приборной системы координат Mz, неподвижной в корпусе носителя, формулой

$$f_z = S_f a' + b_f + \delta f, \tag{1.5}$$

где:

$$S_{f} = \begin{bmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{bmatrix}, \qquad b_{f} = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix}, \qquad \delta f = \begin{bmatrix} \delta_{1} \\ \delta_{2} \\ \delta_{3} \end{bmatrix}. \tag{1.6}$$

Здесь:

- s_{11}, s_{22}, s_{33} масштабные коэффициенты,
- $s_{12},\,s_{13},\,s_{21},\,s_{23},\,s_{31},\,s_{32}$ параметры перекосов осей чувствительности АКС,
- b_1, b_2, b_3 аддитивные погрешности, называемые смещениями,
- $\delta_1, \delta_2, \delta_3$ случайные составляющие погрешностей измерений.

Система координат Mz может быть выбрана разными способами. Если есть другая система My, также неподвижная относительно корпуса ИИБ, связанная с Mz ортогональным преобразованием — поворотом $f_y = U_{yz}f_z$, то калибровочное соотношение (1.5) может быть переписано в виде

$$f_y = S_f' a' + b_f' + \delta f', \tag{1.7}$$

где введены обозначения

$$S'_f = U_{yz}S_f, \qquad b'_f = U_{yz}b_f, \qquad \delta f' = U_{yz}\delta f.$$

Иногда удобно разрешить (1.5) относительно a'

$$a' = S_a f_z + b_a + \delta a, \tag{1.8}$$

где введены обозначения

$$S_a = S_f^{-1}, \quad b_a = -S_f^{-1}b_f, \quad \delta a = -S_f^{-1}\delta f.$$

Определение 5 Назовем (1.5) прямой, а (1.8) — обратной формой калибровочной модели акселерометров.

1.2 Калибровочная модель ДУС.

Как и акселерометры, ДУС имеют масштабные коэффициенты, углы перекосов осей чувствительности, смещения «нуля» и случайные погрешности. Сырые показания ДУС $w' = [w'_1, w'_2, w'_3]^T$ связаны с проекциями ω_z угловой скорости корпуса на оси системы координат Mz формулой

$$\omega_z = S_\omega w' + b_\omega + \delta\omega,\tag{1.9}$$

где

$$S_{\omega} = \begin{bmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{bmatrix}, \quad b_{\omega} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}, \quad \delta\omega = \begin{bmatrix} \delta_1 \\ \delta_2 \\ \delta_3 \end{bmatrix}. \tag{1.10}$$

Здесь:

- s_{11}, s_{22}, s_{33} масштабные коэффициенты ДУС,
- $s_{12}, s_{13}, s_{21}, s_{23}, s_{31}, s_{32}$ параметры перекосов осей чувствительности ДУС,
- ullet $b_1,\,b_2,\,b_3$ аддитивные погрешности, называемые смещениями,
- $\delta_1, \delta_2, \delta_3$ случайные составляющие погрешностей измерений ДУС.

Иногда удобно разрешить (1.8) относительно w'

$$w' = S_w \omega_z + b_w + \delta w. \tag{1.11}$$

Определение 6 Назовем (1.9) прямой, а (1.11) — обратной формой калибровочной модели ДУСов.

1.3 Задача калибровки.

Для введенных моделей задача калибровки состоит в следующем.

- 1. Провести калибровочный эксперимент, записав a'(t), w'(t) в соответствующие файлы.
- 2. Ввести приборную систему координат Mz.
- 3. По показаниям акселерометров a'(t) определить оценки \widetilde{S}_f , \widetilde{b}_f так, чтобы откалиброванные показания акселерометров по возможности удовлетворяли (1.5).
- 4. По показаниям ДУС w'(t) определить матрицу \widetilde{S}_{ω} и вектор \widetilde{b}_{ω} так, чтобы откалиброванные показания ДУСов по возможности удовлетворяли (1.9).

Подчеркнем, что приборная система координат Mz — общая для акселерометров и ДУС. Заметим также, что если направления осей чувствительности датчиков совпадают с осями Mz, то соответствующая калибровочная матрица (S_f или S_ω) диагональна. Это объясняет использование термина «параметры перекосов» для внедиагональных элементов калибровочных матриц. Если параметры перекосов равны нулю, то диагональные элементы — в точности масштабные коэффициенты. В общем случае описанная связь чуть сложнее.

2 Калибровка с привязкой к корпусу ИИБ

В данном разделе описывается простая методика калибровки, применимая к ИИБ, заключенному в кубический корпус (Рис. 4). Для произвольного корпуса ИИБ такая методика не работает.

2.1 Приборная система координат Mz.

Предполагается, что на корпусе ИИБ можно зафиксировать три ортогональные грани, которым присвоим номера i=1,2,3. Противоположным граням (возможно, виртуальным), присвоим номера i=-1,-2,-3. Систему координат Mz выберем такую, что оси $z_i,\ i=1,2,3$, направлены по внешним нормалям к соответствующим граням (при этом позаботимся, чтобы система Mz была правая). Направления осей выберем в соответствии с документацией к датчикам.

На рис. 5 схематически показана система отсчета, связанная с кубическим корпусом ИИБ, и направления осей чувствительности акселерометра.

Рис. 4: Кубический корпус ИИБ.

Рис. 5: Система отсчета, связанная с корпусом, и оси чувствительности акселерометра.

После того как выбрана приборная система координат, необходимо определить матрицы S_f, S_ω и векторы b_f, b_ω .

2.2 Калибровка акселерометров

2.2.1 Калибровочные соотношения.

Калибровка акселерометров основывается на знании ускорения свободного падения g в месте ее проведения. Кроме того, предположим, что эксперимент проводится на плоском горизонтальном столе. Свяжем со столом систему Ox, ось x_3 которой направлена вертикально вверх, а оси x_1 , x_2 лежат в плоскости стола. Имеем ускорение свободного падения в этой системе

$$g_x = \begin{bmatrix} 0 \\ 0 \\ -|g| \end{bmatrix}.$$

В экспериментах куб корпуса ИИБ последовательно устанавливается на стол в K=6 различных положений (на каждую из граней). Присвоим этим положениям номера $i=\pm 1,\pm 2,\pm 3$. В интервалы времени $t_i \leq t \leq t_i + \Delta t_i$ куб неподвижен. Учитывая способ введения приборной системы координат, имеем на этих интервалах значения ускорения свободного падения в приборной системе координат

$$g_z[i] = |g|e_i, \quad i = 1, 2, 3; \qquad g_z[i] = -|g|e_i, \quad i = -1, -2, -3.$$

Здесь e_i – столбец, у которого i-й элемент (i=1,2,3) равен 1, остальные нули. Поскольку ИИБ неподвижен на указанных интервалах, удельная сила реакции $f_z(t)$ в проекциях на оси Mz постоянна и равна $f_z[i] = -g_z[i]$.

Таким образом, на каждом из интервалов выполнены калибровочные соотношения

$$a'(t) = S_a f_z[i] + b_a + \delta a(t), \qquad t_i \le t \le t_i + \Delta t_i. \tag{2.12}$$

Чтобы уменьшить влияние шума датчиков, удобно осреднить показания АКС на участке $t_i \leq t \leq t_i + \Delta t_i$, вводя среднее значение показаний на интервале

$$a'[i] = \frac{1}{\Delta t_i} \int_{t_i}^{t_i + \Delta t_i} a'(t) dt, \qquad \delta a[i] = \frac{1}{\Delta t_i} \int_{t_i}^{t_i + \Delta t_i} \delta a(t) dt.$$
 (2.13)

Время осреднения можно выбрать, используя вариацию Аллана. Получим калибровочное уравнение

$$a'[i] = S_a f_z[i] + b_a + \delta a[i], \qquad i = \pm 1, \pm 2, \pm 3.$$
 (2.14)

Получено 18 линейных уравнений относительно 12 неизвестных — элементов S_a, b_a . Для нахождения S_a, b_a можно воспользоваться методом наименьших квадратов (МНК), численно решив соответствующую систему нормальных уравнений. Можно, используя специфику метода калибровки, получить приближенное аналитическое решение.

2.2.2 Аналитическое решение.

Здесь удобно использовать калибровочную формулу (2.14). Сначала найдем S_a . Вычитая уравнения (2.14) с номерами i из уравнений с номерами -i и учитывая, что $f_z[i] = -g_z[i]$ и $g_z[-i] = -g_z[i]$, получим

$$a'[-i] - a'[i] = 2S_a g_z[i] + \delta a[-i] - \delta a[i].$$

Пренебрегая δa , найдем

$$S_a g_z[i] = \frac{1}{2} (a'[-i] - a'[i]).$$

Поскольку левая часть равенства – i-й столбец S_a , умноженный на |g|, получим отсюда

$$\widetilde{S}_a = \frac{1}{2|q|} \begin{bmatrix} a'[-1] - a'[1] & a'[-2] - a'[2] & a'[-3] - a'[3] \end{bmatrix}.$$

Теперь найдем оценку b_a . Складывая соответствующие уравнения (2.14), получим

$$a'[i] + a'[-i] = 2b_a + \delta a[i] + \delta a[-i].$$

Пренебрегая δa , отсюда сразу находим оценку b_a :

$$\widetilde{b}_a = \frac{1}{2} (a'[i] + a'[-i]).$$

Таким образом, мы получили оценки S_a, b_a , из которых легко определяются S_f, b_f .

Задача 1 Считая, что элементы $\delta f[i]$ не коррелированы и имеют одинаковые дисперсии σ_f^2 , причем $\sigma_f \ll |g|$, найти дисперсию ошибок полученных оценок.

Задача 2 Считая, что элементы $\delta f[i]$ не коррелированы и имеют одинаковые дисперсии σ_f^2 , найти оценку МНК и дисперсию ошибки оценки МНК. Сравнить с приближенными формулами.

2.3 Калибровка ДУС.

Калибровка ДУС осуществляется с помощью поворотов на столе у стены на легко реализуемые без дополнительной оснастки углы φ_i , кратные $\pi/2$. Поскольку стол горизонтален, оси вращения направлены по географической вертикали x_3 . Поскольку повороты проводятся на плоских гранях корпуса ИНС, ортогональных приборным осям, в корпусе оси вращения направлены по приборным осям. Таким образом, проводится K поворотов на известные векторы конечного поворота $\varphi_z[i] = \varphi_i e_i, \ i = \pm 1, \pm 2, \pm 3$ в течении интервалов времени $t_i \leq t \leq t_i + \Delta t_i$. Вычислим интегралы от сырых показаний ДУС на этих интервалах

$$\varphi'[i] = \int_{t_i}^{t_i + \Delta t_i} w'(t) dt, \qquad \delta \varphi[i] = \int_{t_i}^{t_i + \Delta t_i} \delta w(t) dt.$$
 (2.15)

Аналогично случаю АКСов, имеют место калибровочные соотношения соотношения

$$\varphi'[i] = S_w \varphi_z[i] + b_w \Delta t_i + \delta \varphi[i], \qquad i = \pm 1, \pm 2, \pm 3. \tag{2.16}$$

Оценки S_w, b_w , и далее S_ω, b_ω могут быть получены отсюда, как и выше.

Для ДУС расчеты можно еще упростить, введя дополнительный поворот (точнее, стояние на месте!) $\varphi_z[0]=0$ с номером i=0 на нулевой угол. Тогда сразу получим

 $\tilde{b}_w = \varphi'[0]/\Delta t_0$. Далее, вычтем \tilde{b}_w из сырых показаний ДУС, обозначив разности $\Delta w'(t)$. Используя в (2.15), вместо w'(t) разность $\Delta w'(t)$, получим вместо (2.16)

$$\Delta \varphi'[i] = S_w \varphi_z[i] + \delta \varphi[i], \qquad \Delta \varphi'[i] = \int_{t_i}^{t_i + \Delta t_i} \Delta w'(t) \, dt. \tag{2.17}$$

Задача 3 Считая, что элементы $\delta\omega[i]$ некоррелированы и имеют одинаковые дисперсии σ_ω^2 , причем $\Delta t_i^{1/2}\sigma_\omega\ll|\varphi[i]|$, найти дисперсию ошибок полученных оценок.

Задача 4 Считая, что элементы $\delta\omega[i]$ некоррелированы и имеют одинаковые дисперсии σ_{ω}^2 , найти оценку МНК и дисперсию ошибки оценки МНК. Сравнить с приближенными формулами.

3 Метод калибровки, не привязанный к форме корпуса ИИБ

Основы метода восходят к [2], [3] [4]. Наиболее близкое нашему изложение — в [5].

3.1 Калибровочная модель акселерометров без привязки к корпусу.

Не требуя привязки к корпусу, количество искомых параметров можно сократить на три, используя тот факт, что направления осей системы координат Mz могут быть выбраны произвольным образом с точностью до ортогонального поворота. Введем приборную систему координат Mz следующим образом, ось z_1 системы координат Mz будет совпадать с осью чувствительности a_1 первого АКСа. Ось z_2 принадлежит плоскости (a_1, a_2) , а ось z_3 ортогональна осям z_1, z_2 (так, чтобы система Mz была правая). Тогда можно записать матрицу S_f в нижнетреугольном виде

$$S_f = \begin{bmatrix} s_{11} & 0 & 0 \\ s_{21} & s_{22} & 0 \\ s_{31} & s_{32} & s_{33} \end{bmatrix}, \tag{3.18}$$

где s_{11}, s_{22}, s_{33} — параметры масштабов, s_{21}, s_{31}, s_{32} — параметры перекосов.

Математическим обоснованием данного выбора является т. н. LU-разложение матриц на произведение нижнетреугольной и ортогональной [9].

Другой, не менее удобный, способ выбора приборной системы координат такой, что- бы матрица S_f была симметричной:

$$S_f = \begin{bmatrix} s_{11} & s_{21} & s_{31} \\ s_{21} & s_{22} & s_{32} \\ s_{31} & s_{32} & s_{33} \end{bmatrix} . \tag{3.19}$$

Математическим обоснованием данного выбора является т. н. полярное разложение разложение матриц на произведение симметричной и ортогональной [10]. Заметим между прочим, что этот последний подход является в определённом смысле оптимальным.

3.2 Калибровка акселерометров.

Опишем метод калибровки АКСов.

Будем считать, что точно известно ускорение свободного падения g. Соответственно, на стоянке (под стоянкой понимается отрезок времени, в течение которого ИИБ неподвижен в географической системе координат) всегда выполнено соотношение

$$g^2 - ||f_z||^2 = 0, (3.20)$$

где f_z — удельная сила реакции, действующая на чувствительную массу ИИБ со стороны его корпуса.

Рассматриваемый метод калибровки основан на (3.20). В процессе калибровки ИИБ устанавливается в различные положения i=1,...,N, длительностей $t_i \leq t \leq t_i + \Delta t_i$, в течение которых он неподвижен. Чтобы минимизировать влияние случайных погрешностей, измерения АКСов осредняются:

$$a'[i] = \frac{1}{\Delta t_i} \int_{t_i}^{t_i + \Delta t_i} a'(t) dt.$$
 (3.21)

Если калибровка проведена точно, то

$$g^2 - ||S_f a'[i] + b_f||^2 \approx 0, \qquad i = 1, ..., N$$
 (3.22)

Параметры S_f и b_f подбираются так, чтобы минимизировать

$$J = \sum_{s=1}^{N} (g^2 - \|S_f a'[i] + b_f\|^2)^2 \longrightarrow \min_{S_f, b_f}.$$
 (3.23)

Минимизируя J, находим параметры калибровки S_f и b_f .

Утверждение 1 Функционал J имеет неединственный локальный минимум. B частности, минимум достигается при $S_f=0, b_f=g_x.$

3.3 Численные методы.

J в (3.23) минимизируется численно, используя стандартные программы. Для применения численных методов оптимизации требуется начальное приближение. Его можно создать, проведя, пусть грубо, калибровку по методу 1. А именно, пусть введена приборная система координат, натянутая на ребра куба, и получено калибровочное соотношение по методу 1 вида (1.8), (1.11). Приведем матрицу \widetilde{S}_f к нижнетреугольному виду посредством разложения $\widetilde{S}_f = QL$, где Q — ортогональная, а L — нижнетреугольная матрица. Получим

$$Q^T f_z' = La' + Q^T \widetilde{b}_f.$$

Введем новую приборную систему координат Mz^o , отличающуюся от Mz поворотом на матрицу Q: $f_z^o = Q^T f_z$, и обозначим $S_f^o = L$, $b_f^o = Q^T b_f$. Получим калибровочное соотношение с нижнетреугольной матрицей:

$$f_z^o = S_f^o a + b_f^o.$$

Матрицы S_f^0, b_f^o дают начальное приближение для (3.23).

3.4 Сведение калибровки АКСов к определению параметров эллипсоида.

Описанный в данном разделе метод сейчас весьма популярен, поскольку не требует начального приближения. Запишем (3.20) в виде

$$(S_f a' + b_f)^T (S_f a' + b_f) \approx g^2,$$

или

$$a'^T S_f^T S_f a' + b_f^T b_f + 2b_f^T S_f a' \approx g^2,$$

или, введя обозначения $M = S_f^T S_f$, $c = b_f^T b_f$, $m = S_f^T b_f$, как

$$a'^T M a' + 2m^T a' \approx g^2 - c, \tag{3.24}$$

Отсюда следует, что значения a'[i] лежат на эллипсоиде. Разобьем решение на два шага.

- 1. Определение параметров эллипсоида.
- 2. Определение калибровочных параметров
- 1) Чтобы найти эллипсоид, перепишем (3.24) в виде

$$a'^T \tilde{M} a' + 2\tilde{m}^T a' \approx 1, \qquad \tilde{M} = \frac{1}{q^2 - c} M, \qquad \tilde{m} = \frac{1}{q^2 - c} m,$$
 (3.25)

обозначим $a_1'[i] = x, a_2'[i] = y, a_3'[i] = z,$ и введем матрицу

$$H[i] = \begin{bmatrix} x^2 & y^2 & z^2 & 2xy & 2xz & 2yz & x & y & z \end{bmatrix}$$

Параметры \tilde{M}, \tilde{m} в (3.25) находятся из системы N уравнений относительно 9 неизвестных

$$H[i] \begin{bmatrix} \tilde{M}_{11} & \tilde{M}_{22} & \tilde{M}_{33} & \tilde{M}_{12} & \tilde{M}_{13} & \tilde{M}_{23} & \tilde{m}_{1} & \tilde{m}_{2} & \tilde{m}_{3} \end{bmatrix}^T \approx 1.$$

Задача 5 Параметры M,m,c в (3.24) определяются по \tilde{M},\tilde{m} как

$$c = \frac{g^2 \tilde{m}^T \tilde{M} \tilde{m}}{1 + \tilde{m}^T \tilde{M}^{-1} \tilde{m}}, \quad M = \frac{g^2}{1 + \tilde{m}^T \tilde{M}^{-1} \tilde{m}} \tilde{M}, \quad m = \frac{g^2}{1 + \tilde{m}^T \tilde{M}^{-1} \tilde{m}} \tilde{m}$$

2) Матрица S_f находится факторизацией $M = S_f S_f^T$. Затем определяется $b_f = S_f^{-T} m$. Заметим, что если использовать стандартную факторизацию Холецкого, S_f — нижнетреугольная матрица.

Задача 6 Решить задачу калибровки АКСов по данным эксперимента через построение эллипсоида.

3.5 О наблюдаемости задачи калибровки.

Под наблюдаемостью понимается возможность разрешить калибровочные соотношения для определения калибровочных параметров. При применении метода численной минимизации (3.23) наблюдаемость эквивалентна наличию строгого минимума функционала в районе истинного решения.

Утверждение 2 Для наблюдаемости при калибровке по методу 2 достаточно поставить куб на шесть граней и 12 ребер в положения равновесия [3], [4], [9].

Задача 7 Почему калибровочного эксперимента метода 1 недостаточно?

3.6 Калибровка ДУС.

При калибровке ДУС предполагается, что АКСы откалиброваны и система Mz введена. Сначала постоянные смещения ДУС вычитаются из измерений (причем эти смещения берутся из данных, непосредственно предшествцющих измерению), так что можно считать, что $b_{\omega}=0$. Корпус ИНС переводится из одного неподвижного положения в другое поворотом на, вообще говоря, неизвестные углы. В каждом из неподвижных положений $t_i < t < t_i + \Delta t_i$ определено, за счет калибровки АКС, среднее значение $f_z[i] = -g_z[i]$ удельной силы реакции в приборной системе координат.

Введем матрицу $B(t) = B_{zx}(t)B_{xz}^T(t_i + \Delta t_i)$. Тогда матрица B[i+1,i] относительной ориентации корпуса в моменты $t_i + \Delta t_i$ и t_{i+1} определяется из решения уравнения Пуассона

$$\dot{B}(t) = -\omega_z(t) \times B(t), \qquad B(t_i + \Delta t_i) = I, \qquad t_i + \Delta t_i < t < t_{i+1},$$

как $B[i+1,i]=B(t_{i+1})$. Имея точные измерения $f_z[i]$, можно написать соотношения предсказания удельной силы реакции на следующей остановке

$$f_z^p[i+1] = B[i+1,i]f_z[i], \qquad f_z^p[i+1] - f_z[i+1] = 0.$$

Оценка матрицы относительной ориентации B'[i+1,i] по измерениям ДУС определяется из решения модельного уравнения Пуассона

$$\dot{B}'(t) = -\omega_z'(t) \times B'(t), \qquad B'(t_i + \Delta t_i) = I, \qquad t_i + \Delta t_i < t < t_{i+1}.$$

как $B'[i+1,i] = B'(t_{i+1})$. Предсказанное значение силы тяжести определяется по измерениям АКСов на предыдущем участке стояния приближенной формулой:

$$\widetilde{f}_z^p[i+1] = B'[i+1,i]f_z'[i], \qquad \widetilde{f}_z^p[i+1] - f_z[i+1] \approx 0.$$

Ошибки предсказания вызваны ошибками калибровки АКСов, погрешностями ДУС и АКСов. Для оценки калибровочных параметров ДУС минимизируется сумма невязок

$$\sum_{i=1}^{N} \|\widetilde{f}_{z}^{p}[i+1] - f_{z}'[i+1]\|^{2} \longrightarrow \min_{S_{\omega}}.$$

Минимизация осуществляется по множеству калибровочных матриц S_{ω} .

Задача 8 * Показать, что для калибровки ДУС по методу 2 достаточно трех вращений вокруг горизонтальных осей, неколлинеарных в корпусе прибора.

4 Пример калибровки ИИБ

В данном разделе рассмотрена калибровка AKCов по методу 2 — без привязки к корпусу. Для калибровки ИИБ устанавливалась в 18 различных положений, в каждом из которых на протяжении некоторого времени он был неподвижен. Показания AKCов представлены на Puc.~6.

Рис. 6: Показания акселерометров (реальный эксперимент.)

Для калибровки ДУС на столе проводилась серия поворотов на трех непараллельных гранях на углы 8π и -8π (Puc. 7).

В результате были получены параметры калибровки:

$$S_f = \begin{bmatrix} -0.0393 & 0.0000 & 0.0000 \\ 0.0001 & 0.0390 & 0.0000 \\ 0.0001 & 0.0002 & 0.0385 \end{bmatrix}, \qquad b_f = \begin{bmatrix} 19.5696 \\ -22.4746 \\ -20.3088 \end{bmatrix},$$

$$S_\omega = \begin{bmatrix} -0.0290 & 0.0002 & 0.0002 \\ 0.0021 & 0.0251 & -0.0022 \\ 0.0004 & -0.0005 & 0.0285 \end{bmatrix}, \qquad b_\omega = \begin{bmatrix} -457.6807 \\ -400.5889 \\ -447.4656 \end{bmatrix}.$$

Рис. 7: Показания ДУС (реальный эксперимент.)

Замечание 2 Из вида калибровочных матриц следует, что оси чувствительности акселерометров и ДУС не образуют правых трехгранников — определители матриц отрицательны. Поскольку направления осей Mz были выбраны по документации, отсюда следует, что либо в конструкции, либо в документации есть ошибки.

5 Контрольные вопросы

- 1. Вычислить вариацию Аллана АКСов и ДУСов по имеющимся данным. Определить оптимальное время осреднения данных для калибровки
- 2. Каково минимальное число ориентаций в эксперименте для калибровки АКСов с привязкой к корпусу на горизонтальном столе?
- 3. Каково минимальное число ориентаций в эксперименте для калибровки АКСов с привязкой к осям АКС без использования горизонтпального стола?

- 1. Предложить и реализовать алгоритм автоматического определения участков стояний $t_i < t < t_i + \Delta t_i$ и участков движения $t_i + \Delta t_i < t < t_{i+1}$. Проверить на имитации и на реальных данных.
- 2. Калибровка акселерометров с привязкой к корпусу. Считая корпус ИНС кубом, и ориентировав оси приборной системы вдоль его граней, откалибровать акселерометры путем установки корпуса на грани.
- 3. Калибровка ДУС с привязкой к корпусу. Считая корпус ИНС кубом, и ориентировав оси приборной системы вдоль его граней, откалибровать ДУС методом плоских вращений на заданные углы.
- 4. Калибровка акселерометров без привязки к корпусу. Откалибровать акселерометры методом произвольных наклонов. Определить параметры, решая нелинейную задачу оптимизации.
- 5. Калибровка акселерометров без привязки к корпусу. Откалибровать акселерометры методом произвольных наклонов. Определить параметры, найдя эллипсоид сырых измерений.
- 6. *Калибровка ДУС без привязки к корпусу. Откалибровать ДУС, считая акселерометры откалиброванными, и используя уравнения Пуассона совместно с численной оптимизацией.
- 7. *Верификация результатов. Предложить и реализовать методику проверки точности калибровки.

^{*}Задачи со звездочками необязательны.

Приложение. Вариация Аллана как средство анализа погрешностей

5.1 Задача описания шумов.

Погрешности инерциальных датчиков, таких как акселерометры (АКС) и датчики угловой скорости (ДУС):

- не всегда можно считать стационарными случайными процессами;
- часто содержат нестационарные случайные составляющие;
- для таких шумов спектральные методы напрямую не применимы.

Традиционно в качестве характеристики стационарных погрешностей используют спектральную плотность мощности.

Задача (Аллан, 1966): Построить характеристику нестационарных (и стационарных) шумов.

Рассмотрим какой-то скалярный инерциальный датчик с интервалом дискретизации Δt и обозначим его записи x'(i). Пусть данные x(i) содержат погрешность $x'(i) = x(i) + \delta x(i)$.

Представим шум в виде суммы трех слагаемых:

- высокочастотный шум типа шума квантования,
- обычный широкополосный шум,
- медленный случайный дрейф.

Формальная модель слагаемых:

- обычный шум белый шум,
- дрейф интеграл от белого шума броуновское движение,
- шум квантования первая разность от белого шума.

Модель погрешностей — сумма компонент разной природы:

$$\delta x(i) =$$
 белый шум + броуновское движение +
 + производная белого шума =
 = $\delta_0(i) + \delta_1(i) + \delta_2(i)$.

5.1.1 Дисперсии шумов.

• Белый шум имеет нулевое среднее и некоррелирован во времени:

$$\delta_0(i) = q_0(i), \qquad E[q_0(i)q_0(j)] = \delta_{ij}\sigma_0^2,$$

где δ_{ij} — символ Кронекера.

• Броуновское движение есть марковский процесс:

$$\delta_1(i+1) = \delta_1(i) + q_1(i), \qquad E[q_1(i)q_1(j)] = \delta_{ij}\sigma_1^2,$$

где $q_1(i)$ — генерирующий белый шум с дисперсией σ_1^2 .

• Шум квантования — производная белого шума — определяется формулой

$$\delta_2(i) = q_2(i) - q_2(i-1), \qquad E[q_2(i)q_2(j)] = \delta_{ij}\sigma_2^2,$$

где $q_2(i)$ — генерирующий белый шум с дисперсией σ_2^2 .

Белый шум имеет постоянную дисперсию σ_0^2 , процесс броуновского движения имеет линейный рост дисперсии как $\sigma_1^2 i$, шум квантования имеет постоянную дисперсию $2\sigma_2^2$ и корреляционную функцию

$$E[q_2(k+i)q_2(k)] = \begin{cases} 2\sigma_2^2, & i = 0, \\ -\sigma_2^2, & i = 1, \\ 0, & |i| > 1. \end{cases}$$

5.1.2 Сглаживание шумов.

Амплитуда высокочастотного шума для реальных датчиков весьма велика, и использовать «сырые» данные в ИНС нельзя. Для уменьшения влияния шума применяют сглаживающие фильтры.

Самый простой сглаживающий фильтр — среднее арифметическое — прямоугольное окно. Применим к данным такой фильтр и обозначим результаты фильтрации чертой сверху:

$$\bar{x}'(i) = \frac{1}{M} \sum_{m=i-M+1}^{i} x'(m).$$

Рассмотрим воздействие сглаживания на компоненты шума:

$$\bar{\delta}_0(i) = \frac{1}{M} \sum_{m=i-M+1}^{i} \delta_0(m),$$

$$\bar{\delta}_1(i) = \frac{1}{M} \sum_{m=i-M+1}^{i} \delta_1(m),$$

$$\bar{\delta}_2(i) = \frac{1}{M} \sum_{m=i-M+1}^{i} \delta_2(m).$$

5.1.3 Прореживание шумов.

После фильтрации

- белый шум $\bar{\delta}_0(i)$ перестанет быть белым;
- броуновское движение $\bar{\delta}_1(i)$ перестанет быть броуновским;
- ullet шум квантования $ar{\delta}_1(i)$ перестанет быть шумом квантования.

Введем прореженный в M раз сигнал $\bar{x}(Mk)$. Тогда

- прореженный фильтрованный белый шум $\bar{\delta}_0(Mk) = \bar{q}_0(k)$ белый, с дисперсией $\bar{\sigma}_0^2 = \sigma_0^2/M$.
- Прореженное фильтрованное броуновское движение броуновское с формирующим фильтром вида $\bar{\delta}_1(M(k+1)) = \bar{\delta}_1(M(k)) + \bar{q}_1(k)$, где $\bar{q}_1(k)$ белый шум с дисперсией

$$\bar{\sigma}_1^2 = \sigma_1^2 \frac{(M+1)(2M+1)}{6M}.$$

• Прореженная фильтрованная производная белого шума — производная белого шума вида $\bar{\delta}_2(Mk) = \bar{q}_2(k) - \bar{q}_2(k-1)$, где $\bar{q}_2(k)$ — белый шум с дисперсией

$$\bar{\sigma}_2^2 = \frac{\sigma_2^2}{M^2}.$$

5.1.4 Дифференцирование шумов.

Чтобы избавиться от линейного роста дисперсии броуновского движения, удобно ввести разность отсчетов прореженного сигнала

$$y(k) = \frac{1}{\sqrt{2}}(\bar{x}'(Mk) - \bar{x}'(M(k-1)).$$

Рассмотрим аналогичные формулы для компонент шума

$$\xi_0(k) = \frac{1}{\sqrt{2}} (\bar{\delta}_0(Mk) - \bar{\delta}_0(M(k-1)),$$

$$\xi_1(k) = \frac{1}{\sqrt{2}} (\bar{\delta}_1(Mk) - \bar{\delta}_1(M(k-1)),$$

$$\xi_2(k) = \frac{1}{\sqrt{2}} (\bar{\delta}_2(Mk) - \bar{\delta}_2(M(k-1)).$$

Из вышесказанного можно сделать следующий вывод.

Утверждение 3 Шумы $\xi_0(k), \xi_1(k), \xi_2(k)$ — стационарные случайные процессы с нулевым средним и дисперсиями, соответственно:

$$\frac{\sigma_0^2}{M}$$
, $\sigma_1^2 \frac{(M+1)(2M+1)}{12M}$, $\frac{2\sigma_2^2}{M^2}$.

Дисперсия ξ_2 с ростом M убывает как $1/M^2$, дисперсия ξ_0 убывает как 1/M, дисперсия ξ_1 растет как M.

5.2 Вариация Аллана.

Пусть x(k) — произвольный сигнал. Построим для него сигнал y(k), как указано выше, проведя сглаживание, прореживание и дифференцирование.

Определение 7 Выборочная дисперсия y(k) называется вариацией Аллана $\sigma_A^2[\tau]$ для сигнала x(k), где $\tau = M\Delta t - длительность интервала фильтрации.$

Пусть имеется запись x'(i) длины N, полученная при измерении на неподвижном основании. Для заданного M разделим ее на K интервалов (MK < N). Тогда

$$\sigma_A^2(\tau) = \sigma_A^2(M\Delta t) = \frac{1}{K-1} \sum_{k=1}^K y^2(k).$$

Из вышесказанного можно сделать следующий вывод.

Утверждение 4 Если шум представим в виде суммы производной белого шума, белого шума и броуновского движения, то его вариация Аллана убывает как $1/\tau^2$ при самых малых τ , убывает как $1/\tau$ при малых τ и растет как τ при больших τ .

Следствие 1 Оптимальное с точки зрения минимизации шума время осреднения — то, для которого вариация Аллана минимальна.

5.2.1 Связь вариации Аллана со спектральной плотностью мощности.

Допустим, что некоторый сигнал в дискретном времени $x(k), k \in \mathbb{Z}$, — реализация стационарного случайного процесса. Для стационарного случайного процесса определена безразмерная спектральная плотность мощности $S_x'(\omega')$ и размерная спектральная плотность мощности $S_x(\omega) = \Delta t S_x'(\omega \Delta t)$.

Посчитаем вариацию Аллана для такого процесса. Вычисление можно разбить на четыре шага, первые два из которых представимы в виде применения линейного фильтра.

• Низкочастотная фильтрация фильтром с частотной характеристикой

$$H_1(i\omega') = \frac{1}{M^2} \frac{\sin^2(\omega' M/2)}{\sin^2 \omega'/2}.$$

 \bullet Взятие конечной разности $(x(k+M)-x(k))/\sqrt{2}$ с частотной характеристикой

$$H_2(i\omega') = (e^{i\omega'M} - 1)/\sqrt{2}.$$

• Прореживание в M раз, приводящее к наложению интервалов спектральной плотности мощности

$$\left[\frac{-\pi + 2\pi m}{M}, \frac{\pi + 2\pi m}{M}\right], \qquad m = 0, \pm 1, \pm 2, \dots$$

• Вычисление выборочной дисперсии.

Заметим, что прореживание не меняет дисперсию. Поэтому

$$\sigma_A^2(M\Delta t) \approx \int_{-\pi}^{\pi} |H_1(i\omega)|^2 |H_2(i\omega)|^2 S_x(\omega) d\omega.$$

Вычислив частотные характеристики H_1, H_2 , получим следующее.

В безразмерных переменных:

Теорема 1 Вариация Аллана $\sigma_A(M\Delta t)$ определена через безразмерную спектральную плотность мощности формулой

$$\sigma_A^2(M\Delta t) \approx \frac{1}{M^2} \int_{-\pi}^{\pi} \frac{\sin^4(\omega' M/2)}{\sin^2(\omega'/2)} S_x'(\omega') d\omega'.$$

В размерных переменных:

Следствие 2 Вариация Аллана $\sigma_A(\tau)$ определена через размерную спектральную плотность мощности формулой

$$\sigma_A^2(\tau) \approx \frac{\Delta t^2}{\tau^2} \int_{-\pi/\Delta t}^{\pi/\Delta t} \frac{\sin^4(\omega \tau/2)}{\sin^2(\omega \Delta t/2)} S_x(\omega) d\omega.$$

Замечание 3 Равенства приближенные, так как вариация Aллана — выборочная cтатистика.

5.3 Вариация Аллана для сигналов БИС.

Сырые данные АКС и ДУС поступают в виде последовательности записей

$$a_1, a_2, a_3, w_1, w_2, w_3$$
.

Интервал Δt между записями близок к постоянному и составляет от тысячных до сотых секунды (в нашем эксперименте 0,02 сек). Пусть i — номер записи. Цель последующих рассмотрений — оценить время осреднения в каждом положении ИИБ, дающее наилучшую точность калибровки.

Задача 9 Посчитать на компьютере вариацию Аллана сигналов АКСов и ДУСов. Найти для них оптимальное время осреднения.

На Рис. 8, 9, 10 приведены соответственно графики вариаций Аллана имитированных данных, ДУС и АКС для ИИБ 6DOF. Видно, что составляющая дрейфа АКС мала, а ДУС — велика. Это типичное поведение подобных датчиков.

Заметим, что оптимальное время осреднения обычно слишком велико для навигации. Однако его удобно использовать при калибровке для повышения ее точности.

Рис. 8: Вариация Аллана для белого шума+броуновского движения + шума квантования.

Рис. 9: Вариация Аллана для ДУС.

Рис. 10: Вариация Аллана для АКС.

Список литературы

- [1] Голован А.А., Парусников Н.А. Математические основы навигационных систем. М., Изд-во ЦПИ при механико-математическом факультете МГУ, 2010. Часть 1 и 2.
- [2] Браславский Д.А., Поликовский Е.Ф., Якубович А.М. Способ калибровки трехосного блока акселерометра, заявка на авторское свидетельство № 2422425/23 с приоритетом от 24 ноября 1976.
- [3] Бобрик Г.И., Матасов А.И. Оптимальное гарантирущее оценивание параметров блока ньютонометров. Известия РАН. Механика твердого тела. 1993, № 5, С. 8-14.
- [4] Shin, E.-H. and El-Sheimy, N. (2002). A new calibration method for strapdown inertial navigation systems. Zeitschrift four Vermessungswesen, 127(1), pp. 1–10.
- [5] Tedaldi D., Pretto A., Menegatti E. A robust and easy to implement method for IMU calibration without external equipment. Robotics and Automation (ICRA), 2014 IEEE International Conference on. Hong Kong, 2014. pp. 3042–3049.
- [6] Вавилова Н.Б., Парусников Н.А., Сазонов И.Ю. Калибровка бескарданных инерциальных навигационных систем при помощи грубых одностепенных стендов. Современные проблемы математики и механики. Том І. Прикладные исследования, М.: Изд-во Моск. ун-та, 2009, с. 212–223.
- [7] Сайт производителя БИС 6DOF www.sparkfun.com
- [8] W. T. Fong, S. K. Ong, A. Y. C. Nee. Methods for in-field user calibration of inertial measurement unit whithout external equipment. Mechanical Engineering Department, Faculty of Engineering, National University of Singapore, 2008.
- [9] Болотин Ю., Матасов А., Деревянкин А. Итерационная схема калибровки блока акселерометров при помощи гарантирующего подхода // Известия Российской академии наук. Механика твердого тела. 2008. № 3. С. 48–61.
- [10] Болотин Ю.В., Голиков В.П., Ларионов С.В., Требухов А.В. Алгоритмы калибровки платформенной инерциальной навигационной системы. Гироскопия и навигация, \mathbb{N}^2 3, 2008.