Mākslīgā intelekta risinājumi ražošanas procesu uzlabošanai - datorredze

2024 Valdis Saulespurens

About Me

Valdis Saulespurens

30+ Years programming

Run retail and e-commerce store in 90s California

Lector RTU RBS

Researcher National Library of Latvia – OCR model improvement

valdis.saulespurens@rtu.lv

Datorredze – Computer Vision

- Definition: A field of artificial intelligence(AI) that enables computers to interpret, analyze, and make decisions based on visual data from the real world, such as images and videos.
- Involves techniques for processing, understanding, and extracting meaningful information from visual inputs to automate tasks that typically require human vision.

Computer Vision within AI field

- Artificial Intelligence (AI) Simulation of human intelligence in machines.
- Machine Learning (ML) Subfield of AI focused on algorithms that learn from data.
- **Deep Learning (DL)** Subfield of ML using neural networks with multiple layers.
- Robotics Design, construction, and operation of robots.
- **Machine Vision** Technology enabling machines to interpret and process visual information. Primarily used in industrial and manufacturing settings.

- Input
- Visual data such as images or videos.
- Acquired from real-world environments.
- Examples: photographs, live camera feeds, medical scans.
- Sensing Device
- · Hardware capturing visual data.
- Converts real-world scenes into digital images.
- Examples: cameras, sensors, scanners.
- Interpreting Device
- Software or algorithms processing visual data.
- Extracts meaningful information from images.
- Examples: feature extraction, object detection, image classification.
- Output
- Processed results or actionable insights.
- Can be in various forms such as visualizations, decisions, or commands.
- Examples: labeled images, detected objects, autonomous vehicle navigation.

How Does Computer Vision Work?

Computer Vision

Input

Sensing Device

Interpreting Device

Output

Human Vision

Siamese cat, French Bulldog

Eye

Brain

Early History of Computer Vision (1950s to 1970s)

- First Scanned Image(NIST 1957) Russell A. Kirsch, others
- 1957 D.H. Hubel and Wiesel how do cats see? Neural basis of vision, simple and complex cells. (Nobel 1981)
- 1966 Marvin Minsky (MIT) Summer of Computer Vision – Block World
- 1970s Early OCR (Optical Character Recognition) systems. – special fonts, still used in some fields such as bank checks
- David Marr's Theory of Edge Detection (1976) importance of edges

	WestLB
	Control Control Control
	•
Debien Sie gegen diesen Scheck	please the terminal
ZWEUNOVERZIG	eut 12:21 Schoole
long a duranter	THE PERSON NAMED IN COLUMN TWO
	ALCOHOL STREET
tot berg e berginer	4064417
A DE STORE	eta Osintyrog
Englishment III	Landesburg States Disselect /
	6.0
Disselderf, den 31 06 04	XXX / LUX
Construction Service	Visionia cary linear
www.power_beam.com/ of secon.	School Besterne
Office of particular for the Carting and Strategic of the Carting and Carting	also de trapholese (propriet estere tolore propriet personer
School Company	C Miles C Berringer C See

1980s to 2012

- **1980s** Feature-Based Models (edges,corners, textures)
- 1990s Early Experiments with Neural Networks and Deep Learning, backpropagation, 3D vision, advances in Face Recognition
- 2000s Boosting Algorithms, Large Scale Image Datasets
- 2012 ImageNet dataset (big labeled dataset), GPU acceleration, **AlexNet** top accuracy in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012, bringing Convolutional Neural Network (CNN) Architecture to forefront

2012-Onwards

- Deeper Networks VGG(2013) Oxford, GoogleNet/Inception(2014), ResNet(2015)-Microsoft
- YOLO (You Only Look Once) Series (2016 onwards)
- Transformers in Vision (2017 onwards) attention based models
- DALL-E and Generative Models (2021), Stable Diffussion, Midjourney, advances in GAN(Generative Adversarial Networks)
- Edge AI and On-Device Learning complex vision models on edge devices like smartphones and IoT devices.

Subfields of Computer Vision

- Image Classification
- Face Recognition
- Optical Character Recognition (OCR)
- Object Detection
- Image Segmentation
- Activity Recognition
- 3D Vision
- Scene Understanding

APPLICATIONS OF COMPUTER VISION

Image Segmentation

- Segmentation Object Detection
- Localization Important Points
- Define Your Goals
- Gather and Prepare Data
- Preprocess Your Images
- Select a Segmentation Method (U-Net, Mask R-CNN others)
- Build and Train Your Segmentation Model
- Evaluate the Model
- Refine, Deploy, Monitor and Improve

Image Classification

- Define the Problem what am I trying to classify
- Collect and Prepare Data
- Preprocess the Data
- Choose a Model Architecture
- Build and Train the Model
- Evaluate the Model on Test Set
- Fine-tune and Optimize
- Deploy the Model
- Monitor and Maintain

Src: https://www.mdpi.com/2076-3417/13/2/895

Optical Character Recognition

- Similar steps to General Classifier
- Well studied
- Rules based OCR overtaken by LTSM and other neural net architectures
- Business case for digitalization
- Open Source models such as Tesseract can achieve excellent results by performing supplemental training to existing models

Face Recognition

- Similar steps to General Classifier
- Well studied
- Privay and Ethics Concerns
- EU GDPR

Simultaneous Localization and Mapping(SLAM)

- Localization: Determining the precise position and orientation of the observer within the environment.
- Mapping: Creating a representation (map) of the environment based on sensor data.
- Computer Vision part of SLAM

Real-Time Video Processing in Computer Vision

- Real-time video processing involves analyzing and interpreting video data on-the-fly, enabling immediate decision-making and actions based on the visual input.
- Frame-by-Frame Analysis
- Temporal Information Utilization using multiple frames
- Applications in Security, Analytics, Autonomous Vehicles

Preprocessing Pipeline Clean and Normalized Data is of Essence!

- Normalize: color, size
- Localize & crop
- Convert to intensity, normalize
- For Video might need to think about framerate

Resources to play around:

- https://segment-anything.com/ State of Art segmentation model developed by Meta
- https://roboflow.com/ For developing your own models and supplemental training of existing ones
- https://chatgpt.com/ Now supports integration with DallE, also does object detection with OCR support
- https://gemini.google.com/ playing catchup
- https://www.heygen.com/ VIDEO PRODUCER AI expensive
- https://opencv.org/ Open Computer Vision library, integrates with various languages, tooling

Conclusion: CV goes along with other Al disciplines

