

The Symbol 1

- * To describe the introduction and elimination rules for negation, we need to introduce a special symbol.
- * This symbol is ⊥ and is called falsum. Intuitively, it's a special symbol for a contradiction, for something that's always false.
- Initially it may seem strange to have one symbol which stands for all contradictions.

- * However, recall when we studied validity that we said that contradictions imply anything. Hence, any two contradictions are equivalent.
- * So if we wanted our deductive system to match up with our judgements of validity, perhaps it's plausible that we have one symbol \(\perp \) which stands for all contradictions.

Elimination Rule for ¬

- So here's the elimination rule for ¬, first in prose:
 - * If you have φ on line ℓ_1 and you have $\neg \varphi$ on line ℓ_2 , then you may write \bot on any subsequent line $\ell > \ell_1$, ℓ_2 .
- * Here's the picture:
 - * $\ell_1.\varphi$
 - ℓ₂. ¬φ
 - * ℓ. ⊥

 $(E\neg, \ell_1, \ell_2).$

- * In this rule, it doesn't matter whether the line with φ comes before or after the line with $\neg \varphi$.
- * Example:

* 1.
$$p \rightarrow \neg q$$
 (assumption)

* 4.
$$\neg q$$
 (E \rightarrow 1, 3)

* 5.
$$\perp$$
 (I ¬ 2, 4)

Introduction Rule for ¬

- Here's introduction rule for ¬,
 first stated in prose:
 - * Suppose that consecutive lines ℓ_1 - ℓ_n constitute a proof with premise φ and conclusion \bot . Then one may introduce $\neg \varphi$ at any subsequent line $\ell > \ell_n$, so long as one brackets off lines lines ℓ_1 - ℓ_n and never appeals to them again.
- Here's the picture version of the rule:
- ***** 1.

$$-$$
 * ℓ_1 . φ (assumption)

* ℓn. ⊥

$$(I\neg, \ell_1 - \ell_n)$$

Repeat Rule

- This doesn't come up so often, but you will see it occasionally.
- * In prose, the rule says:
 - * If you have φ on line ℓ_1 , then you can write φ again on any subsequent line $\ell > \ell_1$.
- * In applying this, stay out of closed brackets. That is, don't use this rule to repeat things in closed brackets outside of them.

- * In a picture, the rule is simple:
 - * l1. φ
 - * ℓ . φ (repeat ℓ).
- * Initially it's unclear why one would ever need/want to use this rule.
- * This rule is mostly useful as an aid or helper to applying the introduction rule for →.

EFSQ Rule

- * The acronym EFSQ stands for the latin phrase "ex falso sequitur quodlibet" which translates as "from a contradiction, anything follows".
- In prose, this rule says:
 - * If you have falsum \bot on any line ℓ_1 , then you can write **any** formula ψ on any subsequent line $\ell > \ell_1$.

- * In a picture, this rule looks like:
 - * ℓ1. ⊥
 - * ℓ . ψ (EFSQ ℓ_1).
- In applying this rule, keep in mind that instances of ⊥ that appear in closed off brackets above line ℓ are off limits: don't appeal later on to anything in an already closed off brackets.