Studying the Origins of Stars and their Planetary Systems with ALMA & VLA

14th Synthesis Imaging Workshop

Laura Pérez Jansky Fellow, National Radio Astronomy Observatory

Collaborators:

Claire Chandler (NRAO), John Carpenter (Caltech), Andrea Isella (Caltech), Anneila Sargent (Caltech), Disks@EVLA Collaboration

From ISM Dust to Planetary Systems

14 orders of magnitude growth!

Adapted from Chiang & Youdin (2009)

Dust Growth: Modulated by the Gas

Dust transport impacts its growth

A problem: The radial drift of solids

c/o T. Birnstiel

Trying to Model Dust Growth and Evolution

Without drift & fragmentation, growth proceeds to large bodies easily

Birnstiel et al. (2010, 2012)

Trying to Model Dust Growth and Evolution

Radial drift limits population to < cm-size in a short timescale

Birnstiel et al. (2010, 2012)

r[AU]

From ISM Dust to Planetary Systems

14 orders of magnitude growth!

Adapted from Chiang & Youdin (2009)

Exploring this problem with ALMA & VLA

PI: Claire Chandler (NRAO)

S. Andrews (CfA)

N. Calvet (Michigan)

J. Carpenter (Caltech)

S. Corder (ALMA)

A. Deller (ASTRON)

C. Dullemond (MPIA)

J. Greaves (St. Andrews)

T. Henning (MPIA)

A Isella (Caltech/Rice)

W. Kwon (SRON)

J. Lazio (JPL)

H. Linz (MPIA)

J. Menu (MPIA)

L. Mundy (Maryland)

L. Pérez (NRAO)

L. Ricci (Caltech)

A. Sargent (Caltech)

S. Storm (Maryland)

L.Testi (ESO)

D. Wilner (CfA)

ALMA Cycle 0 observations

Observing Protoplanetary Disks at Radio-wavelengths

Different wavelengths probe different regions

Full extent of disk is better probed at millimeter/centimeter wavelengths

Different wavelengths probe different regions

Direct observations of solids require mm/cm observations

Emissivity spectral index β : a proxy for grain size

When dust population reaches large a_{max} , dust emission spectrum becomes shallow

Testi et al. (2014)

What do observations tell us about grain growth in protoplanetary disks?

Multi-wavelength observations constrain β_{disks} < 1

These observations imply growth from ISM sizes (μ m) to pebble sizes (cm)

OVRO/CARMA

(1997,2000)Ricci et al. (2011a, 2012)

JCMT/SMA/CSO

Mannings & Sargent Beckwith & Sargent (1990, 1991) Mannings & Emerson (1994) Andrews & Williams (2005, 2007) Lommen et al. (2007) Ricci et al. (2011b)

VLA

Wilner et al. (2000) Calvet et al. (2002) Testi et al. (2001,2003) Natta et al. (2004) Wilner et al. (2005) Rodmann et al. (2006) Ricci et al. (2011b)

PdBI/IRAM

Beckwith & Sargent (1990)Dutrey et al. (1996) Natta et al. (2004) Schaefer et al. (2009) Ricci et al. (2010)

ATCA

Lommen et al. (2007, 2009)Ricci et al. (2010) Ricci et al. (2011a)

... due to lack of angular resolution, these are *global* results.

Expectation of radial variations of dust size

Whose observational signature is a gradient in β with orbital radius

Numerical Simulations

Birnstiel et al. (2010)

Observational Signature

Measuring dust size vs. orbital radius

Observations with good resolution required to constrain β (R)

Isella et al. (2010) see also: Guilloteau et al. (2011), Banzatti et al. (2011)

$$\Delta \beta = \frac{1}{\log_{10}(\nu_1/\nu_2) \ln 10} \left[\frac{1}{(SNR_{\nu_1})^2} + \frac{1}{(SNR_{\nu_2})^2} \right]^{0.5}$$

Disk@EVLA: Measuring dust size vs. orbital radius

Going to longer wavelengths is important to constrain β (R)

PI: Claire Chandler(NRAO)

- Determine prevalence of grain growth to cm-sized particles
 - o 66 stars (ages ~ I-10 Myr old)
 - o Bright and in nearby star forming regions (d ~140 pc)
 - o Photometry (between 7mm 6cm) \rightarrow global β

- Determine the location of large grains in disks
 - o Sub-sample imaged with ~0.04" resolution
 - o At 7mm/Icm, and at 6cm

Disk@EVLA: Measuring dust size vs. orbital radius

7 mm/1cm observations with the VLA

Laura Pérez (NRAO) - 14th Synthesis Imaging Workshop - May 19, 2014

Grain Growth in the AS 209 disk

Wavelength-dependent disk structure in AS 209

Grain Growth in the AS 209 Disk

Physical disk model constrains $\kappa_{\nu}(R) \leftarrow \beta(R)$

Grain Growth in the AS 209 Protoplanetary Disk

Dust grains in the inner disk are different from those in the outer disk

Constraint on Grain Size vs. Orbital Radius

Maximum grain size consistent with a population limited by Radial Drift

Grain Growth Measured in Many Disks

Dust grains in the inner disk are different from those in the outer disk

Menu et al. +LP (2014)

Similar grain size constraints for different disks

Maximum grain size consistent with a population limited by Radial Drift

Pérez et al., in prep

From ISM Dust to Planetary Systems

14 orders of magnitude growth!

Adapted from Chiang & Youdin (2009)

How to overcome the radial drift barrier?

How to overcome the radial drift barrier?

Dust drifts toward pressure maxima > further growth may be possible there

Enhancements in gas density take many forms

Dust drifts toward pressure maxima > further growth may be possible there

Locally

e.g. overdensities from turbulence

Pinilla et al. (2012b)

Globally

e.g. overdensities from sharp boundary that generates instability \rightarrow vortices

Armitage (2013)

Azimuthal density gradients also trap dust!

Dust drifts toward pressure maxima > further growth may be possible there

Birnstiel et al. (2013)

ALMA reveals asymmetrical structure for mm-dust

Only possible now thanks to increased sensitivity and phase stability

Fukagawa et al. (2013)

Van der Marel et al. (2013)

Pérez et al. (2014)

ALMA Survey of disks with cavities

(otherwise known as Transitional Disks)

ALMA Cycle 0 observations – 0.45 mm (PI: L. Pérez)

Velocity field → geometry

Constraining observed Asymmetries

A ring alone is not a good enough fit

Motivated by steady- state vortex solution from Lyra & Lin (2013)

Pérez et al. (2014)

Laura Pérez (NRAO) - 14th Synthesis Imaging Workshop - May 19, 2014

Constraining observed Asymmetries

A ring alone is not a good enough fit

Pérez et al. (2014)

Laura Pérez (NRAO) - 14th Synthesis Imaging Workshop - May 19, 2014

Dust trapping vs. turbulence: who will win?

TW Hya upper limit v_{turb} < 10% sound speed Hughes et al. 2011 (see also: Piétu et al. 2007, Isella et al. 2007)

Pérez et al. (2014)
To drive these azimuthally-wide vortices:

 $v_{turb} \sim 20\%$ sound speed in SAO 206462 and SR 21

Studies to come in the near future...

Studying grain growth with ALMA + VLA

VLA 2013b + ALMA Cycle 0 sample Pl: L. Pérez

ALMA Cycle 2 observations of VLA sample PI: **L. Pérez**

Studying gas depletion...

Studying turbulence...

The Future: Studying Planets as they Form

Summary

- Compelling evidence that grain growth takes place in disks
 - o Radial drift of solids hinders further dust growth
 - O A way to overcome this problem: dust trapping of large particles
 - Dust traps may occur radially in "rings", azimuthally in "vortices"
- These predictions are currently being tested with ALMA & VLA!

Laura Pérez (NRAO) - 14th Synthesis Imaging Workshop - May 19, 2014