MM 719, Álgebra Linear Exame de Qualificação ao Mestrado

Fevereiro de 2024

- 1. (3 pts) Seja \mathbb{K} um corpo, e V um \mathbb{K} -espaço vetorial de dimensão finita. Dado $T:V\to V$ um operador linear, mostre que são equivalentes as seguintes afirmações:
 - i) V é T-cíclico.
 - ii) Todos os subespaços T-primários de V são T-cíclicos.
- 2. (3 pts) Seja $T: \mathbb{R}^5 \to \mathbb{R}^5$ um operador linear cuja matriz com respeito à base canônica $\alpha = \{e_1, e_2, e_3, e_4, e_5\}$ é

$$[T]_{\alpha} = \begin{pmatrix} 4 & -4 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -4 & 6 & 6 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 3 & -3 & 5 \end{pmatrix}$$

- a) Encontre a forma canônica de Jordan de T e uma base de Jordan correspondente.
- b) Encontre uma decomposição cíclica de \mathbb{R}^5 com respeito a T.
- c) Encontre a forma canônica racional de T.
- 3. (3 pts) Seja V um \mathbb{K} -espaço vetorial de dimensão finita. Dada $\phi \in B(V)$, diz-se que V é anisotrópico com respeito a ϕ se 0 for o único vetor isotrópico, isto é, se $\phi(v,v)=0$ implica que v=0. Suponha que ϕ é simétrica, e que $\mathbb{K} \subset \mathbb{R}$ contém uma raiz quadrada de todos os seus elementos positivos. Mostre que V é anisotrópico com respeito a ϕ se, e somente se $\phi > 0$ ou $\phi < 0$.
- 4. (3.0) Classifique cada afirmação como verdadeira (V) ou falsa (F), demonstrando as verdadeiras e dando um contra-exemplo para as falsas. Classificação sem justificativa não será considerada.
 - (a) (0.75) O subconjunto de $\mathrm{Alt}^{\ell}_{\mathbb{K}}(V,W) \subset \mathrm{Hom}^{\ell}_{\mathbb{K}}(V,W)$ de transformações ℓ -lineares alternadas de V para W é um subespaço vetorial de $\mathrm{Hom}^{\ell}_{\mathbb{K}}(V,W)$.
 - (b) (0.75) Sejam V_1, V_2, \ldots, V_k e W espaços vetoriais sobre um corpo \mathbb{K} . Dada φ função ℓ -linear de $V_1 \times \cdots \times V_k$ para W, seja $\tilde{\varphi}$ a única transformação linear de $V_1 \otimes \cdots \otimes V_k$ para W que satisfaz $\tilde{\varphi}(v_1 \otimes \cdots \otimes v_k) = \varphi(v_1, \ldots, v_k)$ para $v_1 \in V_1$, $v_2 \in V_2, \ldots, v_k \in V_k$ quaisquer. Então, $\tilde{\varphi}$ é sobrejetora se, e somente se, $\operatorname{Im}(\varphi)$ gera W.
 - (c) (0.75) O posto do tensor $e_1 \otimes e_1 \otimes e_2 + e_1 \otimes e_2 \otimes e_1 \in \mathbb{R}^2 \otimes \mathbb{R}^2 \otimes \mathbb{R}^2$ é igual a 2.
 - (d) (0.75) Sejam V um espaço vetorial sobre um corpo \mathbb{K} , W um subespaço de V, e ϕ uma forma bilinear alternada ou simétrica em V. Se ϕ é degenerada, a restrição de ϕ a $W^{\perp} := \{u \in V : \phi(w, u) = 0 \text{ para todo } w \in W\}$ é degenerada.

IMECC/Unicamp Exame de Qualificação ao Mestrado

MM720 - Análise no \mathbb{R}^n 19 de fevereiro de 2024

RA:	Nome:
1011.	11011101

Instruções:

- Esta prova tem 3h de duração.
- Cada questão vale 2 pontos. Escolha no máximo 5 questões para fazer.
- Enuncie completamente todos os teoremas que você utilizar.

Q1. Considere o sistema de equações

$$\begin{cases} xye^{u} + \sin(v - u) = 0, \\ (x+1)(y+2)(u+3)(v+4) - 24 = 0. \end{cases}$$

- (a) Mostre que (x, y, u, v) = (0, 0, 0, 0) resolve o sistema.
- (b) Mostre que para (x, y) perto de (0, 0), podemos escrever (u, v) como função de (x, y) numa pequena vizinhança da origem do sistema xy, usando uma função $\phi(x, y) = (u, v)$.
- (c) Calcule a derivada parcial $\phi_x(0,0)$.
- **Q2.** Seja $f: \mathbb{R}^3 \to \mathbb{R}$ definida por $f(x, y, z) = z^2 + (\sqrt{x^2 + y^2} 2)^2$.
 - (a) Mostre que $S = f^{-1}(\{1\})$ é uma superfície de classe C^{∞} .
 - (b) Obtenha uma parametrização para S.
- **Q3.** (a) O que é o posto de uma aplicação diferenciável $f:U\subset\mathbb{R}^m\to\mathbb{R}^n$? Ainda neste contexto, o que é uma imersão? E uma submersão?
 - (b) Se $f: U \subset \mathbb{R}^m \to \mathbb{R}$ é C^1 , mostre que existe um subconjunto aberto e denso $A \subset U$ tal que f tem posto constante em cada componente conexa de A.
 - (c) Dê um exemplo de uma aplicação $g:U\subset\mathbb{R}^2\to\mathbb{R}^2$ que não tem posto constante.
- **Q4.** Demonstre o Teorema de Schwarz: se $f:U\subset\mathbb{R}^n\to\mathbb{R}$ é duas vezes diferenciável em $c\in U$, então as derivadas parciais

$$\frac{\partial^2 f(c)}{\partial x_i \partial x_j} = \frac{\partial^2 f(c)}{\partial x_j \partial x_i},$$

para quaisquer $1 \le i, j \le n$. Dê um exemplo de que a igualdade anterior pode não ser verdadeira se f não for duas vezes diferenciável no ponto. Se quiser, você pode tomar n=2 (tanto na demonstração quanto no contra-exemplo).

- **Q5.** Seja $\omega = y \, dx + z \, dy$ uma 1-forma em \mathbb{R}^3 . Considere a restrição de ω para a esfera S^2 , com a parametrização usual f.
 - (a) Calcule o pullback $f^*d\omega$.
 - (b) Calcule $\int_{S^2} d\omega$ diretamente, sem usar o Teorema de Stokes.
- **Q6.** Seja X uma variedade compacta, conexa, orientável e sem bordo. Suponha que ω é uma n-forma não-degenerada em X. Mostre que ω não é exata. (Dica: faça o cálculo de $\int_X \omega$ pela definição e também usando o Teorema de Stokes).