Luke Palmer 2006-04-30 MATH 4730: Set Theory

9.12

cf 0 = 0, and $0 = \sup \emptyset$; cf $(\kappa + 1) = 1$, and $\kappa + 1 = \sup {\kappa}$, which is clearly of minimal cardinality.

Suppose λ is a limit ordinal. Let S be a set of ordinals smaller than λ of cardinality strictly smaller than cf λ . Then there exists a $\beta < \lambda$ which is strictly greater than every element of S. But then ssup S is at most $\beta < \lambda$. Therefore a set with strict supremum λ must have cardinality at least cf λ . A set with size exactly cf λ exists by the definition of cofinality. \square

9.17

Suppose that there exists an $f:\bigcup_{i\in I}A_i\xrightarrow{\operatorname{onto}}\bigotimes_{i\in I}B_i$. Let's view the elements of rng f as functions $I\mapsto B_i$. Create by the axiom of choice a function h where $h(i)\in B_i\setminus f[A_i]$ (which is always nonempty because $\bar{A}_i<\bar{B}_i$). There is no element of $\bigcup_{i\in I}A_i$ which maps to h, so f must not have been onto. \square

9.19

Since κ is a regular cardinal, $\cup S < \kappa$ because $\overline{S} < \kappa$. Since κ is a cardinal and thus a limit ordinal, $V_{\kappa} = \bigcup_{\theta \in \kappa} V_{\theta}$. Therefore there exists a $\theta < \kappa$ where $S \in V_{\theta}$, so $S \in V_{\kappa}$.

Plus

- (i) A series of informal proofs, because most of the results are fairly obvious.
 - $5 \ncong [1, 5) \cong 4$.
 - omega is indecomposable, because any smaller number is finite, and there are \aleph_0 -many numbers between any finite number and ω .

- $\omega + \omega \not\cong [\omega, \omega + \omega) \cong \omega$.
- ω^2 is indecomposable, for any smaller number is of the form $\omega \cdot m + n$ for finite numbers m and n. Attempting to decompose, we find $\omega \cdot m + n + \omega^2 = \omega \cdot m + \omega^2 = \omega^2$.
- ω_1 is indecomposable, because for any smaller number κ , $[0, \kappa) = \kappa$ has cardinality at most \aleph_0 , so $[\kappa, \omega_1)$ must have cardinality \aleph_1 , and the order type of this range is certainly no larger than ω_1 .
- $\omega_1 + \omega^2$ is nonindecomposable, because it is not isomorphic to $[\omega_1, \omega_1 + \omega^2) \cong \omega^2$.
- (ii) Consider the ordinal $\omega_1 \cdot \omega$. This is indecomposable for a similar reason that ω^2 is above, and has all the other desired properties.