CP Techniques

redleaf23477

Outline

- Bitwise Operation
- Modular Operation
- Prefix Sum
- Simple Sweeping Line
- Two Pointer
- Simple Greedy

Bitwise Operation

- bitwise and &
 - o 7 & 2
- bitwise or |
 - o 7 | 2
- bitwise xor ^
 - o 7 ^ 2
- bitwise not ~
 - · ~7
- shift left <<
 - o 7 << 2
- shift right >>
 - o **7** >> **2**

$$7 = (000111)_2$$

$$2 = (000010)_2$$

Sets

使用整數 binary representation 表示 subset

第 i 個 bit = 1 ⇐⇒ S[i] 包含在子集裡面

$$S = \{0, 1, 2, 3, 4, 5\}$$

$$A = \{0, 2, 4, 5\} \subseteq S$$

$$a = (110101)_2 = 53$$

S	5	4	3	2	1	0
а	1	1	0	1	0	1
	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	20

Set Operations with Bitwise Operations

```
// membership query
bool in_set(int i, int s) { return (s >> i) & 1; }
// insert
int ins(int i, int s) { s ^= (1 << i); }
// remove
int rm(int i, int s) { s ^= (1 << i); }
// intersection
int inter (int s1 , int s2) { return s1 & s2; }
// union
int uni(int s1 , int s2) { return s1 | s2; }
// complement
int comp(int s) { return ~s; }
```

std::bitset

https://en.cppreference.com/w/cpp/utility/bitset

You have n coins with certain values. Your task is to find all money sums you can create using these coins.

Input

The first input line has an integer n: the number of coins.

The next line has n integers x_1, x_2, \ldots, x_n : the values of the coins.

Output

First print an integer k: the number of distinct money sums. After this, print all possible sums in increasing order.

Constraints

- $1 \le n \le 100$
- $1 \le x_i \le 1000$

Example

Input:

4 2 5 2

Output:

1 5

2 4 5 6 7 8 9 11 13

- 狀態數 O(NK), K = c[1] + c[2] + ... + c[n]
- 狀態轉移 O(1)
- ⇒ 時間複雜度 O(NK)

```
dp[n][k] = true ← → 考慮前 n 個硬幣, 面額 k 可以被創造出來
dp[0][0] = true
                             base case
dp[n][k] = dp[n-1][k] \text{ or } dp[n-1][k-c[n]]
           面額 k 本來就可被 面額 k - c[n] 可被前 n-1 個硬幣湊出
           前 n-1 個硬幣湊出
                          再補一個 n 號硬幣湊出面額 k
                    sum = 14
                                        sum = 0
e.g. c[n] = 3
          dp[n-1] = 000101010100001
          dp[n] = 000101010100001
                       101010100001000
                   or
                                sum = 0 + c[n] = 3
```

```
dp[n][k] = true ← ⇒ 考慮前 n 個硬幣, 面額 k 可以被創造出來
      = bitset<100>(1) base case (i.e. dp[0][0] = true)
dp[0]
       = dp[n-1] or (dp[n-1] << c[n])
dp[n]
            面額 k 本來就可被
                        面額 k - c[n] 可被前 n-1 個硬幣湊出
            前 n-1 個硬幣湊出
                           再補一個 n 號硬幣湊出面額 k
                     sum = 14
                                         sum = 0
e.g. c[n] = 3
                        000101010100001
          dp[n-1] =
          dp[n] =
                        000101010100001
                                                 left shift c[n] 個 bit
                        101010100001000
                    or
                                 sum = 0 + c[n] = 3
```

- 狀態數 O(NK), K = c[1] + c[2] + ... + c[n]
- 狀態轉移 O(1)
 - 由於 bitset 優化, 多個狀態可以一起轉移
- ⇒ 時間複雜度 O(NK)

Modular Operation

Output

Print the number of different ways to distribute the prizes modulo $10^9 + 7$.

Output

Print the number of different directed paths of length K in G, modulo 10^9+7 .

Output

Print one integer — the number of different strings which can be obtation. Since the answer can be large, output it modulo 998244353.

Modular Operation

- $a = q \cdot d + r$
- $a \equiv r \mod d$
 - q: quotient (商)
 - d: divisor (除數)
 - r: remainder (餘數)

同餘性質:

- 若 a ≡ b (mod m), b ≡ c (mod m)
 則 a ≡ c (mod m)
- 2. 若 a ≡ b (mod m), c ≡ d (mod m) 則 a + c ≡ b + d (mod m),
- 3. 若 a ≡ b (mod m), c ≡ d (mod m) 則 ac ≡ bd (mod m)

Modular Operation in C++

```
// suppose 0 <= lhs, rhs < mod
int mod_add(int lhs, int rhs, int mod) {
  return (lhs + rhs) % mod;
int mod_sub(int lhs, int rhs, int mod) {
  return ((lhs - rhs) % mod + mod) % mod;
   be careful overflow
int mod_mul(int lhs, int rhs, int mod) {
  return lhs * rhs % mod;
```

Modular Operation in C++

Mod 運算 (%) 常數很大, 有時會使用 if-else 以減少 mod 運算 (以下寫法只適用加減法, 務必特別注意 lhs, rhs 的值域)

```
// suppose 0 <= lhs, rhs < mod
int mod_add(int lhs, int rhs, int mod) {
   lhs += rhs;
   return (lhs >= mod? lhs - mod : lhs);
}
int mod_sub(int lhs, int rhs, int mod) {
   lhs -= rhs;
   return (lhs < 0? lhs + mod : lhs);
}</pre>
```

Prefix Sum (前綴和)

idx	0	1	2	3	4	5
Α		4	8	7	6	3
s0	0					
s1		4				
s2			12			
s3				19		
s4					25	
s5						28

Prefix Sum (前綴和)

給定一個序列 $A = (a_1, a_2, ..., a_n)$

有 m 筆詢問, 詢問包含 L, R, 請輸出 sum(A[L, R]) = a_L + a_{L+1} + ... + a_R

• $1 \le n, m \le 10^6$

TLE Solution:

- 對每一筆詢問:for (int i = L; i <= R; i++) sum += A[i];
- O(nm) 複雜度炸裂

Prefix Sum (前綴和)

高中數學:

- $S_1 = a_1$
- $S_i = S_{i-1} + a_i$
- $a_L + ... + a_R = S_R S_{L-1}$

套用到程式:

- O(n) 存 Prefix Sum
- O(1) 算 sum(A[L, R])
- 時間複雜度:O(n + m)

```
vector<int> S(n+1, 0);
for (int i = 1; i <= n; i++) {
   S[i] = S[i-1] + A[i];
}
int sum = S[R] - S[L-1];</pre>
```

Given an array of n integers, your task is to count the number of subarrays having sum x.

- $1 \le n \le 2 \cdot 10^5$
- $-10^9 \le x, a_i \le 10^9$

TLE Solution:

- 枚舉所有區間,計算區間和
- O(n³) 或 O(n²), 總之都 TLE

回憶一下區間和:

觀察所有結尾在 R 的區間:

他們的區間和恰為 $(S_R - S_0)$, $(S_R - S_1)$, $(S_R - S_2)$, ..., $(S_R - S_{R-1})$

1 L R

A[1, R]

A[2, R]

A[3, R]

...

A[R, R]

觀察所有結尾在 R 的區間:

他們的區間和恰為 $(S_R - S_0)$, $(S_R - S_2)$, $(S_R - S_3)$, ..., $(S_R - S_{R-1})$

找有多少結尾在 R 的區間, 滿足區間和 = x

- ⇒ 有多少前綴和 S_i 滿足 $S_i = S_R x$
- ⇒ 用 std::map 維護!

變數說明:

- n, x 同題目敘述
- arr 存輸入序列
- mp[s] = #前綴和為 s 的區間
- pre 存當前的前綴和

時間複雜度: O(n lg n)

- 迴圈跑 O(n) 次
- 每次計算花 O(lg n)

```
LL ans = 0, pre = 0;
map<LL, int> mp; mp[0] = 1;
for (auto a : arr) {
  pre += a;
  if (mp.count(pre - a) != 0) {
    ans += mp[pre - x];
  }
  mp[pre] += 1;
}
cout << ans << endl;</pre>
```

Atcoder DP Educational Contest, M - Candies

Problem Statement

There are N children, numbered $1, 2, \ldots, N$.

They have decided to share K candies among themselves. Here, for each i ($1 \le i \le N$), Child i must receive between 0 and a_i candies (inclusive). Also, no candies should be left over.

Find the number of ways for them to share candies, modulo 10^9+7 . Here, two ways are said to be different when there exists a child who receives a different number of candies.

Constraints

- All values in input are integers.
- $1 \le N \le 100$
- $0 \le K \le 10^5$
- $0 \le a_i \le K$

Atcoder DP Educational Contest, M - Candies

 dp[n][k] = 考慮將 k 個糖果分給前 n 個人的方法數

 dp[0][0] = 1 base case

 dp[n][k] = dp[n-1][k-0] + dp[n-1][k-1] + ... + dp[n-1][k-a[n]]

 分 0 個給 n 號人
 分 1 個給 n 號人
 分 a[n] 個給 n 號人

- 狀態數 O(NK)
- 狀態轉移 O(K)
- ⇒ 時間複雜度 O(NK²)
- 怎麼優化?

Constraints

- All values in input are integers.
- $1 \le N \le 100$
- $0 \le K \le 10^5$
- $0 \le a_i \le K$

Atcoder DP Educational Contest, M - Candies

Notes: MOD Operations

AC, 122 ms ⇒

```
// suppose 0 <= lhs, rhs < mod
int mod_add(int lhs, int rhs, int mod) {
  return (lhs + rhs) % mod;
}
int mod_sub(int lhs, int rhs, int mod) {
  return ((lhs - rhs) % mod + mod) % mod;
}</pre>
```

```
AC, 91 ms \Rightarrow
```

```
// suppose 0 <= lhs, rhs < mod
int mod_add(int lhs, int rhs, int mod) {
   lhs += rhs;
   return (lhs >= mod? lhs - mod : lhs);
}
int mod_sub(int lhs, int rhs, int mod) {
   lhs -= rhs;
   return (lhs < 0? lhs + mod : lhs);
}</pre>
```

Sweeping Line

2D 平面上, 一條直線沿著某方向掃過平面上所有點或線段

You are given the arrival a and leaving b times of n customers in a restaurant.

What was the maximum number of customers in the restaurant at any time?

- $1 \le n \le 2 \cdot 10^5$
- $1 \le a < b \le 10^9$

person	arrival time	leaving time
John	10	15
Maria	6	12
Peter	14	16
Lisa	5	13


```
vector<int> timeline(N, 0);
for (int i = 0; i < n; i++) {
   timeline[a[i]]++;
   timeline[b[i]+1]--;
}

int ans = 0, pre = 0;
for (int i = 0; i < N; i++) {
   pre += timeline[i];
   ans = max(ans, timeline[i]);
}</pre>
```

person	arrival time	leaving time
John	10	15
Maria	6	12
Peter	14	16
Lisa	5	13

Т	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
					+1	+1				+1			-1	+0		-1	-1
Σ	0	0	0	0	1	2	2	2	2	3	3	3	2	2	2	1	0

person	arrival time	leaving time
John	10	15
Maria	6	12
Peter	14	16
Lisa	5	13

Т	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
					+1	+1				+1			-1	+0		-1	-1
Σ	0	0	0	0	1	2	2	2	2	3	3	3	2	2	2	1	0

```
vector<int> timeline(N, 0);
for (int i = 0; i < n; i++) {
   timeline[a[i]]++;
   timeline[b[i]+1]--;
}

int ans = 0, pre = 0;
for (int i = 0; i < N; i++) {
   pre += timeline[i];
   ans = max(ans, timeline[i]);
}</pre>
```

timeline 的 N 要開多大?

- $1 \le n \le 2 \cdot 10^5$
- $1 \le a < b \le 10^9$

Relabel 離散化

給定一個數列:

- 數值大小不重要
- 元素之間大小關係重要
- 將序列中的數值改為在序列中的名次
- 縮小值域
 - $n \le 10^6$, $a_i \le 10^9 \rightarrow a_i' \le n$

$$A = (4, 8, 7, 6, 6, 6, 3) \rightarrow A' = (1, 4, 3, 2, 2, 2, 0)$$

Relabel with STL

```
void relabel(vector<int> &arr) {
  set<int> s(arr.begin(), arr.end());
  map<int,int> mp;
  int idx = 0;
  for (auto x : s) mp[x] = idx++;
  for (auto &x : arr) x = mp[x];
}
```

Relabel with Binary Search

```
void relabel(vector<int> &arr) {
  vector<int> tmp(arr);
  sort(tmp.begin(), tmp.end());
  auto it = unique(tmp.begin(), tmp.end());
  tmp.erase(it, tmp.end());
  for (auto &x : arr) {
    x = lower_bound(tmp.begin(), tmp.end(), x) - tmp.begin();
  }
}
```

解題架構:

- 1. 對 arrival time 和 leave time 離散化 ... O(n lg n)
- 2. 套用 Sweeping line ... O(n)

時間複雜度: O(n lg n + n) = O(n lg n)

Two Pointer (爬行法)

用兩個 pointer 走過整個陣列, 過程中兩個 pointer 只能 ++

Given an array of n positive integers, your task is to count the number of subarrays having sum x.

- $1 \le n \le 2 \cdot 10^5$
- $1 \le x, a_i \le 10^9$

暴力枚舉所有區間 O(n²) ... TLE

觀察一下:

e.g. x = 7, arr = (2, 4, 1, 2, 7, 8)

暴力枚舉所有區間 O(n²) ... TLE

觀察一下:

e.g. x = 7, arr = (2, 4, 1, 2, 7, 8)

暴力枚舉所有區間 O(n²) ... TLE

觀察一下:

e.g. x = 7, arr = (2, 4, 1, 2, 7, 8)

暴力枚舉所有區間 O(n²) ... TLE

觀察一下:

e.g. x = 7, arr = (2, 4, 1, 2, 7, 8)

動左指標 L 和右指標 R 的規則:

- 維護 [L, R] 區間和
- 區間和太小:R++
- 區間和太大:L++

時間複雜度:均攤 O(n)

- L只會從1加到 n
- R 只會從 1 加到 n
- 整個過程只會動約 2n 次
- [L, R] 區間和可 O(1) 維護

```
LL ans = 0, sum = arr[0];
for (int L = 0, R = 0; L < n; L++) {
  while (R+1 < n && sum < s) {
    sum += arr[R+1];
    R++;
  }
  if (sum == s) ans += 1;
  sum -= arr[L];
}
cout << ans << "\n";</pre>
```

CSES 1141 - Playlist

Given n songs where the id of the songs are $k_1, k_2, ..., k_n$

What is the longest sequence of successive songs where each song is unique?

- 如何套用 Two Pointer ?
- [L, R] 夾的區間需要維護什麼性質?
- 動 L, R 的規則?

CSES 1640 / 1641 / 1642 - Sum of 2 / 3 / 4 Values

Try to use two pointers to AC them

有 n 桶冰淇淋, 第 i 種口味有 w_i 公克, 滿足度 v_i 每公克 已知甜筒最多能裝 m 公克, 最多能裝的滿足度為多少? (每種口味可以裝任意重量的冰淇淋, w_i, v_i, m 都是整數)

⇒ Ans: 從**最好吃**的開始裝, 裝完換次好吃的 ...

有 n 條薯條, 第 i 條重量 w_i 公克, 滿足度 v_i

已知紙盒最多能裝 m 公克, 最多能裝多少滿意度的薯條?

(每次要裝完整的薯條, w_i, v_i, m 都是整數)

⇒ Ans: 每次挑**最大 (v_i / w_i) 值**的開始裝 ... ???

最佳化問題中,每一步有多個選擇,貪心演算法會挑**當前看起來最好**的選擇 (做完一次貪心選擇後,得到一個一模一樣但是比較小的子問題)

冰淇淋1 w = 10 v = 100 冰淇淋2 w=5 v=10 冰淇淋1 w = 100 v = 1

Greedy:

每次拿一克最好吃的冰淇淋

冰淇淋1 w=9 v=100 冰淇淋2 w=5 v=10 冰淇淋1 w = 100 v = 1

甜筒 m = 20 甜筒 m = 19

最佳化問題中,每一步有多個選擇, 貪心演算法會挑**當前看起來最好**的選擇

(做完一次貪心選擇後,得到一個一模一樣但是比較小的子問題)

Greedy 會不會得到最佳解? 如何證明?

- 為什麼貪心選擇最好? ... (反證法)
 - Suppose not: 我不挑最好吃的冰淇淋 ... Contradiction
 - ⇒ 我一定可以挑最好吃的冰淇淋
- 一直做貪心選擇可以得到最佳解? ... (數學歸納法)
 - Base case: 當我的甜筒大小只有 m = 1 時, 我挑最好吃的可以得到最佳解
 - Inductive case: 當我的甜筒大小有 m = k (k > 1) 時, 假設 Greedy 可以得到 m < k 時的最佳解
 - … ⇒ Greedy 也可以得到 m = k 時的最佳解

In a movie festival n movies will be shown. You know the starting and ending time of each movie. What is the maximum number of movies you can watch entirely?

- 每次挑最短的?
- 每次挑最早開始的?
- 每次挑最早結束的?

Greedy Algorithm:

- 1. 按照結束時間排序
- 先挑最早結束的電影
 再挑剩下不重疊的電影中最早結束的

為什麼正確?

⇒ 去看 CLRS Ch 16.1

令當前電影集合 S, 其中最早結束的電影為 a_m

證明:

- 1. a_m 必定包含在某個最佳解當中
- 2. sol(S) = 1 + sol(S {a_m} {重疊 a_m 的電影})

令當前電影集合 S, 其中最早結束的電影為 a_m

證明:1. a_m 必定包含在某個最佳解當中

● 反證法:假設所有最佳解皆不包含 a_m

令當前電影集合 S, 其中最早結束的電影為 a_m

- 反證法:假設所有最佳解皆不包含 a_m
- 考慮任一最佳解所包含的電影為 A, 其中最早結束的電影為 a_i

令當前電影集合 S, 其中最早結束的電影為 a_m

- 反證法:假設所有最佳解皆不包含 a_m
- 考慮任一最佳解所包含的電影為 A, 其中最早結束的電影為 a_i
- 令 A' = A {a_i} ∪ {a_m}, A' 中的電影互不重疊, A' 是一個包含 a_m 的合法解

令當前電影集合 S, 其中最早結束的電影為 a_m

- 反證法:假設所有最佳解皆不包含 a_m
- 考慮任一最佳解所包含的電影為 A, 其中最早結束的電影為 a_i
- 令 A' = A {a_i} ∪ {a_m}, A' 中的電影互不重疊, A' 是一個包含 a_m 的合法解
- |A'| = |A| 1 + 1 = |A| (矛盾)

令當前電影集合 S, 其中最早結束的電影為 a_m

- 反證法:假設所有最佳解皆不包含 a_m
- 考慮任一最佳解所包含的電影為 A, 其中最早結束的電影為 a_i
- 令 A' = A {a_i} ∪ {a_m}, A' 中的電影互不重疊, A' 是一個包含 a_m 的合法解
- |A'| = |A| 1 + 1 = |A| (矛盾)
- 得證:存在最佳解包含 a_m

令當前電影集合 S, 其中最早結束的電影為 a_m

證明:2. sol(S) = 1 + sol(S - {a_m} - {重疊 a_m 的電影})

Greedy Algorithm:

- 1. 按照結束時間排序
- 先挑最早結束的電影
 再挑剩下不重疊的電影中最早結束的

證明:

- 1. a_m 必定包含在某個最佳解當中
- 2. sol(S) = 1 + sol(S {a_m} {重疊 a_m 的電影})

UVa 10954 - Add all

給定 n 個數字, 每次將兩個數字 a, b 合併為 (a+b), 並須付出成本 (a+b) 求合併 n 個數字所需最低成本

- Greedy: 每次挑最小的兩個數字合併
- 證明: 令當前數字集合 S
 - 存在最佳解在其中一步合併 S 中最小的兩個數字
 - \circ sol(S) = (a+b) + sol(S {a, b} + {a+b})

同場加映: Greedy?

有 n 顆蘋果, 第 i 顆重量 w_i 公克, 滿足度 v_i 你想從中挑恰好 k 棵蘋果 (你一定要挑整顆, 不能切, 不能榨汁) 使得最後 CP 值 (= 滿足度加總/重量加總) 最大

⇒ Ans: ???

