In this tests are considered 6 types of combinations:

• c1

• *c*2

• *c*3

• c4

• *c*5

• c6

$\epsilon = h/2$ – uniform mesh

Table 1: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c1; uniform mesh).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	6.48E+02	×	4.26E-03	_	3.38E-02		6.63E-02	
\mathbb{P}_1	40	2.59E+03	×	1.06E-03	2.01	1.70E-02	1.00	3.36E-02	0.98
	80	1.04E+04	×	2.65E-04	2.00	8.49E-03	1.00	1.69E-02	0.99
	20	8.75E+02	×	1.15E-04		1.12E-03		2.13E-03	
\mathbb{P}_2	40	3.40E+03	×	1.44E-05	3.00	2.81E-04	2.00	5.40E-04	1.98
	80	1.34E+04	×	1.80E-06	3.00	7.03E-05	2.00	1.36E-04	1.99
	20	1.13E+03	×	4.73E-06	_	3.86E-05	_	7.34E-05	_
\mathbb{P}_3	40	4.29E+03	×	2.95E-07	4.00	4.82E-06	3.00	9.40E-06	2.96
	80	1.67E+04	×	1.84E-08	4.00	6.02E-07	3.00	1.19E-06	2.98
	20	1.50E+03	×	1.91E-07		6.55E-07		1.26E-06	
\mathbb{P}_4	40	5.40E+03	×	5.98E-09	5.00	4.12E-08	3.99	8.14E-08	3.95
	80	2.03E+04	×	1.87E-10	5.00	2.57E-09	4.00	5.15E-09	3.98
	20	2.47E+03	×	7.90E-09	_	2.97E-08		6.22E-08	
\mathbb{P}_5	40	7.96E+03	×	1.24E-10	6.00	1.10E-09	4.75	2.25E-09	4.79
	80	2.72E+04	×	1.96E-12	5.98	3.50E-11	4.98	7.05E-11	5.00

Table 2: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c2; uniform mesh).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E ₁	O ₁	E_{∞}	O_{∞}
	20	3.67E+02	×	7.51E-03	_	3.96E-02	_	8.19E-02	_
\mathbb{P}_1	40	1.47E+03	×	1.90E-03	1.98	2.03E-02	0.96	4.21E-02	0.96
	80	5.91E+03	×	4.78E-04	1.99	1.03E-02	0.98	2.13E-02	0.98
	20	5.58E+02	×	4.62E-04	_	1.19E-03	_	2.15E-03	_
\mathbb{P}_2	40	2.17E+03	×	6.00E-05	2.95	2.90E-04	2.04	5.21E-04	2.04
	80	8.56E+03	×	7.64E-06	2.97	7.14E-05	2.02	1.28E-04	2.02
	20	6.38E+02	×	2.12E-05	_	1.23E-04	_	2.34E-04	_
\mathbb{P}_3	40	2.47E+03	×	1.35E-06	3.98	1.58E-05	2.96	3.08E-05	2.93
	80	9.73E+03	×	8.49E-08	3.99	2.00E-06	2.98	3.95E-06	2.96
	20	8.35E+02	×	1.24E-06		4.86E-06		9.50E-06	_
\mathbb{P}_4	40	3.17E+03	×	4.02E-08	4.94	3.29E-07	3.88	6.63E-07	3.84
	80	1.24E+04	×	1.28E-09	4.97	2.13E-08	3.95	4.36E-08	3.93
	20	8.96E+02	×	6.31E-08	_	4.14E-07	_	7.98E-07	_
\mathbb{P}_5	40	3.39E+03	×	9.97E-10	5.98	1.39E-08	4.90	2.73E-08	4.87
	80	1.32E+04	×	1.57E-11	5.99	4.47E-10	4.95	8.93E-10	4.94

Table 3: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c3; uniform mesh).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	6.87E+02	×	9.15E-04		7.72E-04	_	1.70E-03	_
\mathbb{P}_1	40	2.67E+03	×	2.19E-04	2.07	1.94E-04	1.99	4.35E-04	1.97
	80	1.05E+04	×	5.34E-05	2.03	4.87E-05	2.00	1.10E-04	1.99
	20	9.08E+02	×	7.24E-05		3.45E-04		7.34E-04	_
\mathbb{P}_2	40	3.47E+03	×	9.36E-06	2.95	9.55E-05	1.85	2.04E-04	1.85
	80	1.35E+04	×	1.19E-06	2.98	2.50E-05	1.93	5.35E-05	1.93
	20	1.24E+03	×	4.31E-06	_	3.26E-05		6.54E-05	
\mathbb{P}_3	40	4.55E+03	×	2.75E-07	3.97	4.43E-06	2.88	8.87E-06	2.88
	80	1.73E+04	×	1.74E-08	3.98	5.77E-07	2.94	1.15E-06	2.94
	20	1.89E+03	×	1.96E-07	_	2.60E-06	_	5.08E-06	_
\mathbb{P}_4	40	6.31E+03	×	6.30E-09	4.96	1.73E-07	3.91	3.41E-07	3.90
	80	2.23E+04	×	2.00E-10	4.98	1.11E-08	3.95	2.21E-08	3.95
	20	3.62E+03	×	8.64E-09		1.83E-07		3.62E-07	
\mathbb{P}_5	40	1.10E+04	×	1.38E-10	5.96	6.22E-09	4.88	1.24E-08	4.87
	80	3.48E+04	×	2.24E-12	5.95	2.01E-10	4.95	4.01E-10	4.95

Table 4: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c4; uniform mesh).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	3.85E+02	×	4.22E-03		1.13E-02		2.65E-02	_
\mathbb{P}_1	40	1.51E+03	×	1.06E-03	1.99	5.87E-03	0.95	1.35E-02	0.97
	80	5.99E+03	×	2.67E-04	1.99	2.99E-03	0.97	6.81E-03	0.99
	20	5.65E+02	×	3.22E-04	_	6.26E-04		1.43E-03	
\mathbb{P}_2	40	2.18E+03	×	4.17E-05	2.95	1.85E-04	1.76	4.21E-04	1.77
	80	8.59E+03	×	5.30E-06	2.97	4.98E-05	1.89	1.13E-04	1.89
	20	6.57E+02	×	1.46E-05	_	2.58E-05		5.68E-05	_
\mathbb{P}_3	40	2.51E+03	×	9.34E-07	3.97	3.97E-06	2.70	8.31E-06	2.77
	80	9.81E+03	×	5.92E-08	3.98	5.47E-07	2.86	1.12E-06	2.89
	20	8.72E+02	×	1.13E-06	_	2.45E-06		4.75E-06	_
\mathbb{P}_4	40	3.25E+03	×	3.74E-08	4.92	1.69E-07	3.85	3.22E-07	3.88
	80	1.25E+04	×	1.20E-09	4.95	1.13E-08	3.91	2.11E-08	3.93
	20	9.96E+02	×	5.49E-08	_	2.15E-07	_	4.28E-07	_
\mathbb{P}_5	40	3.61E+03	×	8.77E-10	5.97	7.78E-09	4.79	1.54E-08	4.80
	80	1.36E+04	×	1.39E-11	5.98	2.62E-10	4.89	5.18E-10	4.89

Table 5: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c5; uniform mesh).

	Ι	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	5.29E+02	×	3.50E-03	_	1.87E-02	_	4.08E-02	_
\mathbb{P}_1	40	2.02E+03	×	9.04E-04	1.95	1.01E-02	0.89	2.17E-02	0.91
	80	7.90E+03	×	2.30E-04	1.97	5.22E-03	0.95	1.12E-02	0.96
	20	1.13E+03	×	2.90E-04		3.49E-03	_	6.63E-03	_
\mathbb{P}_2	40	3.83E+03	×	3.83E-05	2.92	9.14E-04	1.93	1.76E-03	1.92
	80	1.38E+04	×	4.92E-06	2.96	2.34E-04	1.96	4.52E-04	1.96
	20	1.94E+03	×	1.24E-05		1.84E-04	_	3.51E-04	_
\mathbb{P}_3	40	6.17E+03	×	7.91E-07	3.97	2.47E - 05	2.89	4.83E-05	2.86
	80	2.08E+04	×	5.01E-08	3.98	3.21E-06	2.95	6.34E-06	2.93
	20	3.64E+03	×	1.05E-06	_	9.23E-06	_	1.80E-05	_
\mathbb{P}_4	40	1.08E+04	×	3.47E - 08	4.92	6.54E-07	3.82	1.30E-06	3.79
	80	3.36E+04	×	1.12E-09	4.96	4.34E-08	3.91	8.75E-08	3.90
	20	6.96E+03	×	4.66E-08	_	5.64E-08	_	1.06E-07	_
\mathbb{P}_5	40	2.02E+04	×	7.50E-10	5.96	2.30E-09	4.61	4.58E-09	4.53
	80	5.96E+04	×	1.20E-11	5.97	9.46E-11	4.61	1.92E-10	4.57

Table 6: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c6; uniform mesh).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	3.88E+02	×	4.08E-03		1.23E-02	_	2.83E-02	_
\mathbb{P}_1	40	1.52E+03	×	1.05E-03	1.96	6.81E-03	0.85	1.54E-02	0.88
	80	6.00E+03	×	2.65E-04	1.98	3.59E-03	0.92	7.99E-03	0.94
	20	5.85E+02	×	3.13E-04		4.38E-04	_	1.08E-03	_
\mathbb{P}_2	40	2.23E+03	×	4.11E-05	2.93	1.15E-04	1.93	2.85E-04	1.92
	80	8.67E+03	×	5.27E-06	2.96	2.92E-05	1.97	7.29E-05	1.97
	20	6.74E+02	×	1.50E-05	_	3.88E-05		8.21E-05	_
\mathbb{P}_3	40	2.55E+03	×	9.47E - 07	3.98	5.26E-06	2.88	1.09E-05	2.92
	80	9.89E+03	×	5.96E-08	3.99	6.84E-07	2.94	1.39E-06	2.96
	20	9.88E+02	×	1.16E-06	_	2.65E-06		5.15E-06	_
\mathbb{P}_4	40	3.51E+03	×	3.78E-08	4.93	1.62E-07	4.03	3.08E-07	4.06
	80	1.31E+04	×	1.21E-09	4.96	1.01E-08	4.00	1.88E-08	4.03
	20	1.07E+03	×	5.60E-08	_	2.83E-07	_	5.61E-07	_
\mathbb{P}_5	40	3.77E+03	×	8.87E-10	5.98	9.72E-09	4.86	1.92E-08	4.87
	80	1.40E+04	×	1.40E-11	5.99	3.23E-10	4.91	6.39E-10	4.91

$\epsilon = h^2$ – uniform mesh

Table 7: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c1; uniform mesh).

	Ι	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	6.48E+02	×	1.16E-03	_	2.86E-03	_	5.87E-03	_
\mathbb{P}_1	40	2.59E+03	×	2.49E-04	2.22	7.15E-04	2.00	1.49E-03	1.98
	80	1.04E+04	×	5.72E-05	2.12	1.79E-04	2.00	3.74E-04	1.99
	20	8.29E+02	×	6.57E-05	_	5.36E-05	_	1.62E-04	
\mathbb{P}_2	40	3.30E+03	×	8.94E-06	2.88	2.54E-05	1.08	6.51E-05	1.32
	80	1.32E+04	×	1.16E-06	2.94	7.85E-06	1.69	1.93E-05	1.75
	20	1.02E+03	×	4.10E-06	_	2.34E-06	_	3.90E-06	_
\mathbb{P}_3	40	4.08E+03	×	2.68E-07	3.93	1.43E-07	4.04	2.41E-07	4.02
	80	1.63E+04	×	1.72E-08	3.97	8.81E-09	4.02	1.51E-08	4.00
	20	1.19E+03	×	1.89E-07	_	2.26E-08		4.74E-08	_
\mathbb{P}_4	40	4.74E+03	×	6.18E-09	4.94	1.80E-09	3.65	4.92E-09	3.27
	80	1.90E+04	×	1.98E-10	4.97	1.47E-10	3.62	3.82E-10	3.69
	20	1.37E+03	×	8.38E-09	_	2.61E-09	_	8.76E-09	_
\mathbb{P}_5	40	5.43E+03	×	1.36E-10	5.94	4.68E-11	5.80	1.55E-10	5.82
	80	2.17E+04	×	2.21E-12	5.95	1.02E-12	5.52	2.95E-12	5.72

Table 8: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c2; uniform mesh).

	Ι	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	3.67E+02	×	4.41E-03		8.78E-03	_	2.14E-02	
\mathbb{P}_1	40	1.47E+03	×	1.09E-03	2.02	4.10E-03	1.10	9.98E-03	1.10
	80	5.91E+03	×	2.70E-04	2.01	1.99E-03	1.05	4.80E-03	1.06
	20	5.31E+02	×	3.28E-04	_	3.98E-04		1.01E-03	_
\mathbb{P}_2	40	2.11E+03	×	4.21E-05	2.96	1.26E-04	1.66	3.07E-04	1.71
	80	8.44E+03	×	5.33E-06	2.98	3.48E-05	1.85	8.40E-05	1.87
	20	6.01E+02	×	1.40E-05	_	1.01E-05		1.80E-05	_
\mathbb{P}_3	40	2.40E+03	×	9.15E-07	3.94	6.54E-07	3.95	1.20E-06	3.90
	80	9.57E+03	×	5.85E-08	3.97	4.17E-08	3.97	7.78E-08	3.95
	20	7.54E+02	×	1.11E-06	_	9.46E-07		2.17E-06	_
\mathbb{P}_4	40	3.00E+03	×	3.71E-08	4.91	6.95E-08	3.77	1.61E-07	3.75
	80	1.20E+04	×	1.20E-09	4.95	4.62E-09	3.91	1.09E-08	3.89
	20	8.01E+02	×	5.29E-08	_	3.87E-08	_	7.74E-08	_
\mathbb{P}_5	40	3.19E+03	×	8.60E-10	5.94	9.67E-10	5.32	2.11E-09	5.20
	80	1.28E+04	×	1.38E-11	5.96	2.61E-11	5.21	5.94E-11	5.15

Table 9: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c3; uniform mesh).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	6.51E+02	×	8.66E-04	_	4.78E-04		5.89E-04	_
\mathbb{P}_1	40	2.60E+03	×	2.13E-04	2.02	1.31E-04	1.87	1.71E-04	1.79
	80	1.04E+04	×	5.28E-05	2.02	3.41E-05	1.94	4.55E-05	1.91
	20	8.29E+02	×	7.50E-05		1.59E-04		3.71E-04	_
\mathbb{P}_2	40	3.30E+03	×	9.54E-06	2.98	3.88E-05	2.03	9.17E-05	2.02
	80	1.32E+04	×	1.20E-06	2.99	9.54E-06	2.02	2.27E-05	2.02
	20	1.03E+03	×	4.40E-06	_	1.89E-06		5.52E-06	
\mathbb{P}_3	40	4.08E+03	×	2.78E-07	3.98	1.24E-07	3.93	3.68E-07	3.91
	80	1.63E+04	×	1.75E-08	3.99	7.95E-09	3.97	2.37E-08	3.96
	20	1.19E+03	×	2.00E-07	_	1.65E-07	_	3.38E-07	_
\mathbb{P}_4	40	4.74E+03	×	6.36E-09	4.97	3.71E-09	5.48	7.45E-09	5.51
	80	1.90E+04	×	2.01E-10	4.99	3.61E-11	6.68	6.50E-11	6.84
	20	1.37E+03	×	8.76E-09	_	9.15E-09	_	2.21E-08	_
\mathbb{P}_5	40	5.43E+03	×	1.40E-10	5.97	1.51E-10	5.92	3.69E-10	5.91
	80	2.17E+04	×	2.24E-12	5.96	2.69E-12	5.82	6.33E-12	5.86

Table 10: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c4; uniform mesh).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	3.69E+02	×	4.08E-03		6.08E-03	_	1.59E-02	_
\mathbb{P}_1	40	1.48E+03	×	1.05E-03	1.96	3.39E-03	0.84	8.55E-03	0.89
	80	5.92E+03	×	2.65E-04	1.98	1.80E-03	0.91	4.44E-03	0.95
	20	5.31E+02	×	3.14E-04		5.42E-04		1.28E-03	_
\mathbb{P}_2	40	2.11E+03	×	4.11E-05	2.93	1.45E-04	1.90	3.44E-04	1.89
	80	8.44E+03	×	5.27E-06	2.96	3.73E-05	1.96	8.87E-05	1.95
	20	6.01E+02	×	1.50E-05	_	1.60E-06		8.67E-06	_
\mathbb{P}_3	40	2.40E+03	×	9.46E-07	3.98	1.02E-07	3.97	6.22E-07	3.80
	80	9.57E+03	×	5.96E-08	3.99	6.55E-09	3.97	4.15E-08	3.91
	20	7.54E+02	×	1.15E-06	_	5.32E-07		1.34E-06	_
\mathbb{P}_4	40	3.00E+03	×	3.78E-08	4.93	5.42E-08	3.30	1.32E-07	3.34
	80	1.20E+04	×	1.21E-09	4.96	4.12E-09	3.72	9.89E-09	3.74
	20	8.02E+02	×	5.60E-08	_	3.59E-09		9.43E-09	
\mathbb{P}_5	40	3.19E+03	×	8.87E-10	5.98	3.18E-10	3.50	8.82E-10	3.42
	80	1.28E+04	×	1.40E-11	5.99	1.55E-11	4.36	3.89E-11	4.50

Table 11: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c5; uniform mesh).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	4.79E+02	×	3.49E-03		6.89E-03		1.74E-02	_
\mathbb{P}_1	40	1.92E+03	×	9.04E-04	1.95	3.63E-03	0.92	8.98E-03	0.95
	80	7.69E+03	×	2.30E-04	1.97	1.87E-03	0.96	4.55E-03	0.98
	20	7.61E+02	×	2.90E-04		2.70E-04		7.56E-04	
\mathbb{P}_2	40	3.02E+03	×	3.83E-05	2.92	1.08E-04	1.32	2.73E-04	1.47
	80	1.21E+04	×	4.92E-06	2.96	3.26E-05	1.73	7.95E-05	1.78
	20	1.01E+03	×	1.24E-05	_	1.19E-05		2.07E-05	
\mathbb{P}_3	40	4.02E+03	×	7.91E-07	3.97	7.87E-07	3.92	1.41E-06	3.87
	80	1.61E+04	×	5.01E-08	3.98	5.06E-08	3.96	9.23E-08	3.94
	20	1.24E+03	×	1.05E-06	_	1.11E-06	_	2.48E-06	_
\mathbb{P}_4	40	4.89E+03	×	3.47E - 08	4.92	7.58E-08	3.87	1.74E-07	3.84
	80	1.95E+04	×	1.12E-09	4.96	4.84E-09	3.97	1.13E-08	3.94
	20	1.48E+03	×	4.66E-08	_	1.37E-08	_	3.13E-08	_
\mathbb{P}_5	40	5.80E+03	×	7.50E-10	5.96	5.56E-10	4.62	1.30E-09	4.59
	80	2.31E+04	×	1.19E-11	5.97	1.97E-11	4.82	4.63E-11	4.81

Table 12: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c6; uniform mesh).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	3.69E+02	×	4.07E-03		6.14E-03	_	1.60E-02	_
\mathbb{P}_1	40	1.48E+03	×	1.05E-03	1.96	3.43E-03	0.84	8.62E-03	0.89
	80	5.92E+03	×	2.65E-04	1.98	1.81E-03	0.92	4.46E-03	0.95
	20	5.31E+02	×	3.13E-04	_	5.31E-04	_	1.26E-03	
\mathbb{P}_2	40	2.11E+03	×	4.11E-05	2.93	1.43E-04	1.90	3.40E-04	1.89
	80	8.44E+03	×	5.27E-06	2.96	3.69E-05	1.95	8.81E-05	1.95
	20	6.01E+02	×	1.50E-05	_	2.24E-06	_	1.03E-05	_
\mathbb{P}_3	40	2.40E+03	×	9.47E - 07	3.99	1.36E-07	4.04	7.05E-07	3.88
	80	9.57E+03	×	5.96E-08	3.99	8.40E-09	4.02	4.59E-08	3.94
	20	7.55E+02	×	1.16E-06		5.15E-07		1.30E-06	
\mathbb{P}_4	40	3.00E+03	×	3.78E-08	4.93	5.41E-08	3.25	1.32E-07	3.30
	80	1.20E+04	×	1.21E-09	4.96	4.12E-09	3.71	9.90E-09	3.73
	20	8.02E+02	×	5.61E-08		4.65E-09	_	1.66E-08	
\mathbb{P}_5	40	3.19E+03	×	8.87E - 10	5.98	2.70E-10	4.10	7.88E-10	4.40
	80	1.28E+04	×	1.40E-11	5.99	1.48E-11	4.19	3.76E-11	4.39

$\epsilon = h/2$ – non-uniform mesh

Table 13: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c1; non-uniform mesh).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	6.54E+02	×	1.45E-02	_	3.38E-02	_	6.58E-02	
\mathbb{P}_1	40	2.63E+03	×	4.38E-03	1.73	1.70E-02	1.00	3.36E-02	0.97
	80	1.06E+04	×	2.59E-03	0.76	8.48E-03	1.00	1.69E-02	0.99
	20	8.21E+02	×	3.43E-04	_	1.08E-03		2.02E-03	
\mathbb{P}_2	40	3.52E+03	×	5.54E-05	2.63	3.00E-04	1.84	5.78E-04	1.81
	80	1.38E+04	×	1.62E-05	1.77	6.48E-05	2.21	1.25E-04	2.21
	20	1.06E+03	×	9.52E-06	_	3.72E-05		6.98E-05	_
\mathbb{P}_3	40	4.42E+03	×	7.57E-07	3.65	5.64E-06	2.72	1.10E-05	2.66
	80	1.72E+04	×	9.53E-08	2.99	5.27E-07	3.42	1.04E-06	3.41
	20	1.48E+03	×	2.99E-07		4.66E-07	_	9.22E-07	_
\mathbb{P}_4	40	5.44E+03	×	1.18E-08	4.67	6.08E-08	2.94	1.20E-07	2.94
	80	2.09E+04	×	6.51E-10	4.17	2.06E-09	4.88	4.14E-09	4.86
	20	2.67E+03	×	1.05E-08		5.27E-08		1.08E-07	_
\mathbb{P}_5	40	7.85E+03	×	2.00E-10	5.71	1.06E-09	5.64	2.15E-09	5.65
	80	2.84E+04	×	4.39E-12	5.51	3.45E-11	4.94	6.96E-11	4.95

Table 14: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c2; non-uniform mesh).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	O _{c,1}	E ₁	O ₁	E_{∞}	O _∞
	20	3.74E+02	×	1.62E-02	_	3.95E-02	_	8.10E-02	_
\mathbb{P}_1	40	1.53E+03	×	5.44E-03	1.58	2.03E-02	0.96	4.22E-02	0.94
	80	6.29E+03	×	2.89E-03	0.91	1.03E-02	0.98	2.13E-02	0.98
	20	5.35E+02	×	5.14E-04		1.28E-03	_	2.30E-03	_
\mathbb{P}_2	40	2.22E+03	×	1.05E-04	2.29	3.01E-04	2.09	5.47E-04	2.07
	80	8.83E+03	×	2.17E-05	2.28	7.08E-05	2.09	1.27E-04	2.11
	20	6.06E+02	×	3.28E-05	_	1.28E-04		2.41E-04	—
\mathbb{P}_3	40	2.50E+03	×	2.45E-06	3.74	1.64E-05	2.96	3.21E-05	2.91
	80	9.98E+03	×	2.80E-07	3.13	1.89E-06	3.12	3.72E-06	3.11
	20	8.03E+02	×	1.24E-06	_	4.15E-06		8.07E-06	—
\mathbb{P}_4	40	3.20E+03	×	4.43E-08	4.81	3.39E-07	3.61	6.83E-07	3.56
	80	1.25E+04	×	1.76E-09	4.65	2.01E-08	4.07	4.12E-08	4.05
	20	8.72E+02	×	8.14E-08	_	3.69E-07		7.03E-07	_
\mathbb{P}_5	40	3.43E+03	×	1.30E-09	5.97	1.54E-08	4.59	3.04E-08	4.53
	80	1.32E+04	×	3.03E-11	5.42	4.25E-10	5.18	8.47E-10	5.16

Table 15: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c3; non-uniform mesh).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	6.92E+02	×	1.18E-02	_	1.95E-03	_	3.67E-03	_
\mathbb{P}_1	40	2.71E+03	×	3.57E-03	1.73	1.22E-03	0.68	2.51E-03	0.55
	80	1.08E+04	×	2.43E-03	0.56	5.20E-04	1.23	1.01E-03	1.31
	20	8.46E+02	×	3.21E-04		5.86E-04		1.21E-03	
\mathbb{P}_2	40	3.59E+03	×	4.81E-05	2.74	5.67E - 05	3.37	1.27E-04	3.25
	80	1.39E+04	×	1.59E-05	1.60	3.78E-05	0.58	7.91E-05	0.69
	20	1.20E+03	×	9.44E-06		3.96E-05		7.96E-05	_
\mathbb{P}_3	40	4.65E+03	×	7.08E-07	3.74	3.90E-06	3.35	7.81E-06	3.35
	80	1.78E+04	×	9.60E-08	2.88	6.13E-07	2.67	1.23E-06	2.67
	20	1.97E+03	×	3.13E-07		2.99E-06	_	5.82E-06	_
\mathbb{P}_4	40	6.28E+03	×	1.18E-08	4.73	1.56E-07	4.26	3.08E-07	4.24
	80	2.33E+04	×	6.69E-10	4.14	1.18E-08	3.72	2.34E-08	3.72
	20	4.80E+03	×	1.12E-08		2.30E-07	_	4.53E-07	
\mathbb{P}_5	40	1.11E+04	×	2.12E-10	5.72	6.61E-09	5.12	1.31E-08	5.11
	80	3.50E+04	×	4.70E-12	5.50	1.86E-10	5.15	3.71E-10	5.14

Table 16: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c4; non-uniform mesh).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	3.92E+02	×	1.25E-02		1.15E-02	_	2.64E-02	_
\mathbb{P}_1	40	1.57E+03	×	4.63E-03	1.43	5.75E-03	1.00	1.33E-02	0.99
	80	6.36E+03	×	2.67E-03	0.79	3.27E-03	0.81	7.35E-03	0.86
	20	5.38E+02	×	3.51E-04		6.64E-04	_	1.49E-03	
\mathbb{P}_2	40	2.23E+03	×	8.66E - 05	2.02	2.13E-04	1.64	4.75E-04	1.64
	80	8.87E+03	×	1.93E-05	2.17	3.81E-05	2.48	9.01E-05	2.40
	20	6.21E+02	×	2.78E-05	_	2.98E-05	_	6.53E-05	_
\mathbb{P}_3	40	2.55E+03	×	1.97E-06	3.82	3.00E-06	3.31	6.34E-06	3.36
	80	1.01E+04	×	2.60E-07	2.92	7.98E-07	1.91	1.62E-06	1.96
	20	8.50E+02	×	1.29E-06		3.44E-06	_	6.68E-06	_
\mathbb{P}_4	40	3.28E+03	×	3.88E-08	5.05	1.50E-07	4.52	2.83E-07	4.56
	80	1.27E+04	×	1.77E-09	4.45	1.39E-08	3.43	2.65E-08	3.41
	20	1.01E+03	×	7.82E-08		3.02E-07	_	6.02E-07	_
\mathbb{P}_5	40	3.66E+03	×	1.12E-09	6.13	6.65E-09	5.51	1.31E-08	5.52
	80	1.38E+04	×	2.93E-11	5.26	2.95E-10	4.50	5.83E-10	4.49

Table 17: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c5; non-uniform mesh).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	4.98E+02	×	1.18E-02	_	3.70E-03	_	1.02E-02	_
\mathbb{P}_1	40	2.06E+03	×	4.46E-03	1.40	1.67E-02	\uparrow	3.49E-02	\uparrow
	80	8.13E+03	×	2.64E-03	0.76	1.10E-03	3.92	3.01E-03	3.54
	20	1.06E+03	×	3.16E-04		1.98E-03		3.66E-03	_
\mathbb{P}_2	40	3.86E+03	×	8.40E-05	1.91	1.03E-03	0.94	1.99E-03	0.88
	80	1.38E+04	×	1.89E-05	2.15	1.40E-04	2.89	2.64E-04	2.92
	20	1.91E+03	×	2.52E-05		1.31E-04		2.47E-04	_
\mathbb{P}_3	40	6.11E+03	×	1.83E-06	3.79	2.75E-05	2.26	5.39E-05	2.20
	80	2.15E+04	×	2.52E-07	2.86	2.74E-06	3.33	5.40E-06	3.32
	20	3.78E+03	×	1.20E-06	_	5.10E-06	_	9.92E-06	_
\mathbb{P}_4	40	1.13E+04	×	3.63E-08	5.04	7.50E-07	2.76	1.50E-06	2.73
	80	3.41E+04	×	1.69E-09	4.42	3.59E-08	4.39	7.25E-08	4.37
	20	8.69E+03	×	6.82E-08	_	1.52E-07	_	3.14E-07	_
\mathbb{P}_5	40	2.41E+04	×	9.96E-10	6.10	6.41E-09	4.57	1.27E-08	4.63
	80	5.38E+04	×	2.73E-11	5.19	9.81E-11	6.03	1.98E-10	6.00

Table 18: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c6; non-uniform mesh).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	3.94E+02	×	1.23E-02		1.03E-02	_	2.39E-02	_
\mathbb{P}_1	40	1.57E+03	×	4.61E-03	1.42	6.40E-03	0.68	1.46E-02	0.71
	80	6.38E+03	×	2.67E-03	0.79	4.55E-03	0.49	9.90E-03	0.56
	20	5.55E+02	×	3.43E-04		5.82E-04		1.33E-03	_
\mathbb{P}_2	40	2.28E+03	×	8.60E-05	2.00	1.08E-04	2.43	2.72E-04	2.29
	80	8.98E+03	×	1.92E-05	2.16	9.61E-06	3.49	3.33E-05	3.03
	20	6.44E+02	×	2.82E-05	_	5.77E-05		1.20E-04	
\mathbb{P}_3	40	2.58E+03	×	1.98E-06	3.83	4.42E-06	3.71	9.14E-06	3.71
	80	1.01E+04	×	2.60E-07	2.93	8.22E-07	2.43	1.67E-06	2.45
	20	9.90E+02	×	1.32E-06		4.54E-06		8.82E-06	
\mathbb{P}_4	40	3.53E+03	×	3.93E-08	5.07	1.18E-07	5.27	2.19E-07	5.33
	80	1.33E+04	×	1.78E-09	4.46	1.47E-08	3.00	2.80E-08	2.97
	20	1.08E+03	×	7.95E-08	_	3.99E-07		7.90E-07	
\mathbb{P}_5	40	3.85E+03	×	1.13E-09	6.14	8.15E-09	5.62	1.61E-08	5.62
	80	1.41E+04	×	2.93E-11	5.27	3.51E-10	4.54	6.96E-10	4.53

$\epsilon = h^2$ – non-uniform mesh

Table 19: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c1; non-uniform mesh).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	6.54E+02	×	1.16E-02	_	2.84E-03	_	5.81E-03	_
\mathbb{P}_1	40	2.63E+03	×	3.60E-03	1.68	7.12E-04	2.00	1.51E-03	1.95
	80	1.06E+04	×	2.42E-03	0.57	1.77E-04	2.00	3.90E-04	1.95
	20	7.83E+02	×	3.13E-04		6.61E-05	_	1.94E-04	
\mathbb{P}_2	40	3.42E+03	×	4.77E - 05	2.71	2.51E-05	1.40	6.47E - 05	1.59
	80	1.36E+04	×	1.58E-05	1.59	8.37E-06	1.58	2.06E-05	1.65
	20	9.73E+02	×	9.19E-06	_	2.36E-06	_	3.83E-06	_
\mathbb{P}_3	40	4.20E+03	×	7.01E-07	3.71	1.71E-07	3.78	3.11E-07	3.62
	80	1.68E+04	×	9.58E-08	2.87	7.22E-09	4.57	1.29E-08	4.59
	20	1.14E+03	×	3.05E-07		3.34E-08		8.37E-08	_
\mathbb{P}_4	40	4.83E+03	×	1.17E-08	4.71	2.58E-09	3.69	6.62E-09	3.66
	80	1.94E+04	×	6.67E-10	4.13	1.48E-10	4.12	3.86E-10	4.10
	20	1.33E+03	×	1.09E-08		3.78E-09		1.25E-08	
\mathbb{P}_5	40	5.47E+03	×	2.10E-10	5.69	4.83E-11	6.29	1.54E-10	6.34
	80	2.22E+04	×	4.69E-12	5.49	7.65E-13	5.98	2.53E-12	5.93

Table 20: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c2; non-uniform mesh).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	3.74E+02	×	1.27E-02		8.71E-03		2.08E-02	
\mathbb{P}_1	40	1.53E+03	×	4.65E-03	1.45	4.12E-03	1.08	1.01E-02	1.05
	80	6.29E+03	×	2.68E-03	0.80	2.00E-03	1.04	4.82E-03	1.06
	20	5.09E+02	×	3.58E-04	_	3.76E-04		9.44E-04	_
\mathbb{P}_2	40	2.17E+03	×	8.70E-05	2.04	1.28E-04	1.56	3.10E-04	1.61
	80	8.70E+03	×	1.93E-05	2.17	3.52E-05	1.86	8.42E-05	1.88
	20	5.74E+02	×	2.71E-05	_	1.07E-05		1.92E-05	_
\mathbb{P}_3	40	2.43E+03	×	1.95E-06	3.80	6.72E - 07	4.00	1.25E-06	3.94
	80	9.80E+03	×	2.59E-07	2.91	4.08E-08	4.04	7.41E-08	4.08
	20	7.31E+02	×	1.27E-06	_	8.44E-07		1.99E-06	_
\mathbb{P}_4	40	3.03E+03	×	3.86E-08	5.04	6.94E-08	3.60	1.61E-07	3.62
	80	1.21E+04	×	1.77E-09	4.45	4.53E-09	3.94	1.07E-08	3.92
	20	7.76E+02	×	7.59E-08	_	3.71E-08	_	7.41E-08	_
\mathbb{P}_5	40	3.22E+03	×	1.10E-09	6.11	1.02E-09	5.19	2.21E-09	5.07
	80	1.28E+04	×	2.91E-11	5.24	2.55E-11	5.32	5.77E - 11	5.26

Table 21: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c3; non-uniform mesh).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	6.57E+02	×	1.19E-02	_	7.68E-04	_	1.38E-03	_
\mathbb{P}_1	40	2.63E+03	×	3.56E-03	1.75	8.35E-05	3.20	1.61E-04	3.10
	80	1.06E+04	×	2.43E-03	0.55	4.98E-05	0.75	1.00E-04	0.68
	20	7.83E+02	×	3.24E-04		1.87E-04	_	4.32E-04	_
\mathbb{P}_2	40	3.42E+03	×	4.83E-05	2.74	3.79E-05	2.30	9.02E-05	2.26
	80	1.36E+04	×	1.59E-05	1.61	1.02E-05	1.90	2.41E-05	1.90
	20	9.73E+02	×	9.55E-06	_	2.31E-06		6.95E-06	
\mathbb{P}_3	40	4.20E+03	×	7.11E-07	3.75	1.09E-07	4.41	3.11E-07	4.48
	80	1.68E+04	×	9.61E-08	2.89	8.78E-09	3.63	2.64E-08	3.56
	20	1.14E+03	×	3.17E-07		2.10E-07	_	4.28E-07	_
\mathbb{P}_4	40	4.83E+03	×	1.19E-08	4.74	2.87E-09	6.19	5.83E-09	6.20
	80	1.94E+04	×	6.70E-10	4.14	3.38E-11	6.41	7.08E-11	6.36
	20	1.33E+03	×	1.13E-08		1.15E-08		2.81E-08	_
\mathbb{P}_5	40	5.47E+03	×	2.14E-10	5.73	1.65E-10	6.12	3.89E-10	6.18
	80	2.22E+04	×	4.71E-12	5.50	2.35E-12	6.13	5.75E-12	6.08

Table 22: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c4; non-uniform mesh).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	3.76E+02	×	1.24E-02		6.04E-03	_	1.53E-02	_
\mathbb{P}_1	40	1.53E+03	×	4.61E-03	1.42	3.40E-03	0.83	8.62E-03	0.83
	80	6.29E+03	×	2.67E-03	0.79	1.82E-03	0.90	4.47E-03	0.95
	20	5.09E+02	×	3.43E-04		5.31E-04		1.24E-03	
\mathbb{P}_2	40	2.17E+03	×	8.61E-05	1.99	1.48E-04	1.84	3.50E-04	1.82
	80	8.70E+03	×	1.92E-05	2.16	3.73E-05	1.99	8.84E-05	1.98
	20	5.74E+02	×	2.82E-05	_	1.68E-06		9.49E-06	_
\mathbb{P}_3	40	2.43E+03	×	1.98E-06	3.83	7.91E-08	4.41	4.94E-07	4.27
	80	9.80E+03	×	2.60E-07	2.93	1.01E-08	2.97	5.38E-08	3.20
	20	7.32E+02	×	1.32E-06	_	4.44E-07		1.13E-06	_
\mathbb{P}_4	40	3.03E+03	×	3.93E-08	5.07	5.44E-08	3.03	1.32E-07	3.10
	80	1.21E+04	×	1.78E-09	4.46	4.00E-09	3.77	9.62E-09	3.78
	20	7.77E+02	×	7.94E-08		5.57E-09		2.34E-08	_
\mathbb{P}_5	40	3.22E+03	×	1.13E-09	6.14	3.50E-10	3.99	9.59E-10	4.61
	80	1.28E+04	×	2.93E-11	5.27	1.49E-11	4.56	3.71E-11	4.69

Table 23: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c5; non-uniform mesh).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	4.54E+02	×	1.18E-02		5.68E-03		1.44E-02	
\mathbb{P}_1	40	1.97E+03	×	4.46E-03	1.40	3.91E-03	0.54	9.58E-03	0.59
	80	7.89E+03	×	2.64E-03	0.76	1.80E-03	1.12	4.41E-03	1.12
	20	7.38E+02	×	3.16E-04	_	3.55E-04		9.01E-04	_
\mathbb{P}_2	40	3.02E+03	×	8.39E-05	1.91	1.06E-04	1.75	2.68E-04	1.75
	80	1.23E+04	×	1.89E-05	2.15	3.44E-05	1.62	8.27E-05	1.69
	20	9.77E+02	×	2.52E-05	_	9.03E-06		1.55E-05	_
\mathbb{P}_3	40	4.08E+03	×	1.83E-06	3.79	8.59E-07	3.39	1.57E-06	3.31
	80	1.64E+04	×	2.52E-07	2.86	4.44E-08	4.28	7.90E-08	4.31
	20	1.20E+03	×	1.20E-06	_	8.19E-07	_	1.94E-06	_
${\rm I}\!{\rm P}_4$	40	4.94E+03	×	3.63E-08	5.05	7.86E-08	3.38	1.79E-07	3.44
	80	1.99E+04	×	1.69E-09	4.42	4.66E-09	4.08	1.09E-08	4.04
	20	1.44E+03	×	6.82E-08	_	5.18E-09	_	1.33E-08	_
\mathbb{P}_5	40	5.82E+03	×	9.96E-10	6.10	6.63E-10	2.97	1.51E-09	3.14
	80	2.37E+04	×	2.73E-11	5.19	1.87E-11	5.15	4.40E-11	5.10

Table 24: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c6; non-uniform mesh).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	3.75E+02	×	1.23E-02		5.92E-03	_	1.51E-02	_
\mathbb{P}_1	40	1.53E+03	×	4.61E-03	1.42	3.42E-03	0.79	8.65E-03	0.80
	80	6.29E+03	×	2.67E-03	0.79	1.85E-03	0.89	4.53E-03	0.94
	20	5.09E+02	×	3.44E-04		5.27E-04	_	1.23E-03	_
\mathbb{P}_2	40	2.17E+03	×	8.60E - 05	2.00	1.45E-04	1.86	3.43E-04	1.84
	80	8.70E+03	×	1.92E-05	2.16	3.68E-05	1.98	8.74E-05	1.97
	20	5.75E+02	×	2.83E-05	_	3.23E-06		1.32E-05	_
\mathbb{P}_3	40	2.43E+03	×	1.98E-06	3.83	1.11E-07	4.86	5.86E-07	4.50
	80	9.80E+03	×	2.60E-07	2.93	9.91E-09	3.49	5.35E-08	3.45
	20	7.33E+02	×	1.32E-06	_	3.93E-07		1.00E-06	_
\mathbb{P}_4	40	3.04E+03	×	3.93E-08	5.07	5.50E-08	2.84	1.34E-07	2.91
	80	1.21E+04	×	1.78E-09	4.46	3.98E-09	3.79	9.57E-09	3.80
	20	7.76E+02	×	7.95E-08	_	1.06E-08	_	3.38E-08	_
\mathbb{P}_5	40	3.22E+03	×	1.13E-09	6.14	3.13E-10	5.08	8.87E-10	5.25
	80	1.28E+04	×	2.93E-11	5.27	1.41E-11	4.47	3.57E-11	4.64