Greedy Florist

A group of k friends want to buy n flowers where each flower i has some base cost, c_i . The florist wants to maximize his number of new customers, so he increases the price of flowers purchased by repeat customers; more precisely, if a customer has already purchased x flowers, the price, p, for flower i is $p_i = (x+1) \times c_i$.

Given n, k, and the base cost for each flower, find and print the minimum cost for the group to purchase n flowers.

Note: Flowers can be purchased in any order.

Input Format

The first line contains two space-separated integers describing the respective values of n and k. The second line contains n space-separated positive integers describing the respective values of $c_0, c_1, \ldots, c_{n-1}$.

Constraints

- 1 < n, k < 100
- $1 < c_i < 10^6$
- $answer < 2^{31}$
- $0 \le i < n$

Output Format

Print the minimum cost to buy n flowers.

Sample Input 0

3 3 2 5 6

Sample Output 0

13

Explanation 0

There are n=3 flowers with costs c=[2,5,6] and k=3 people in the group. If each person buys one flower, the total cost of prices paid is 2+5+6=13 dollars. Thus, we print 13 as our answer.

Sample Input 1

3 2 2 5 6

Sample Output 1

15

Explanation 1

There are n=3 flowers with costs c=[2,5,6] and k=2 people in the group. We can minimize the total

purchase cost like so:

- 1. The first person purchases 2 flowers in order of decreasing price; this means they buy the more expensive flower ($c_1=5$) first at price $p_1=(0+1)\times 5=5$ dollars and the less expensive flower ($c_0=2$) second at price $p_0=(1+1)\times 2=4$ dollars.
- 2. The second person buys the most expensive flower at price $\,p_2=(0+1) imes 6=6\,$ dollars.

We then print the sum of these purchases, which is $\mathbf{5}+\mathbf{4}+\mathbf{6}=\mathbf{15}$, as our answer.