MODULAR SYMBOLS AND P-ADIC L- FUNCTIONS

Lochre 1 for sage-days 22 miseri

Fixed for all the lethres we have a elliptic correction E/Q: $y^2 + a_1 \times y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$ with $a_1 \in \mathbb{Z}$.

N will denote the conductor of E. If p # 2,3 then

p | N => mult. ned.

p² | N => addive red.

pt N => good red.

For each prime p, we define $q_p = \begin{cases} p+1 - \#\widetilde{E}(\mathbb{F}_p) & \text{if } p \text{ good} \\ +1 & \text{optit mult} \\ -1 & \text{non-optit mult} \\ 0 & \text{additive}. \end{cases}$

We also set ptN $a_{pmi} = a_{p} \cdot a_{pn} - p \cdot a_{pmi}$ for all $n \ge 1$ and $a_{n-m} = a_{n} \cdot a_{m}$ if (n,m) = 1.

Writer in one formula we can say that $a_{pn} = a_p \cdot a_n - p \cdot a_{np} \quad \forall n \; \forall p \not = 1$ if we agree that $a_n = 0$ whenever $p \nmid n$.

The complex L-function is then defined as
$$L(E,s) = \sum_{n \ge 1} \frac{a_n}{n^s} \quad \text{for } Re(s) > \frac{3}{2}.$$

The modular form associated to (the & isogeny class of) E is

$$f(r) = \sum_{n \ge 1} a_n q^n$$
 where $q = e^{2\pi i r}$

for TE &= { 2 EC | Im(2) > 0} We will also use the differential form

$$\omega_f = f \cdot \frac{dq}{q} = 2\pi i f d\tau$$

MODULAR SYMBOLS

We define
$$\lambda(r) = -\int_{0}^{\infty} 2\pi i f dz$$

for re O

Proposition 1:
$$L(E,s) = \frac{(2\pi)^s}{\Gamma(s)} \int f(it) t^s \frac{dt}{t}$$

Proof:
$$rhs = \frac{(2\pi)^s}{\Gamma(s)} \int_{0}^{\infty} \sum_{n \ge 1} a_n e^{-2\pi n \cdot k} t^{s-1} dt$$

$$= \sum_{n \ge 1} a_n \frac{(2\pi)^s}{\Gamma(s)} \int_0^\infty e^{-2\pi nt} t^{s-1} dt = L(E_s)$$

$$\frac{1}{\Gamma(s)} \frac{R_0(s)}{2}$$

Cor 2:
$$\lambda(o) = L(E, 1)$$
 $\lambda(o) = 2\pi \cdot \mathcal{M} \int_{0}^{\infty} f(it) d(jt) = L(E, 1) \cdot \mathcal{E}$

Of course we have

 $\lambda(r) = -\int_{0}^{\infty} \int_{0}^{\infty} \frac{dq}{q} = \left[\sum_{n \geq 1}^{\infty} a_{n} q^{n}\right]_{0}^{\infty}$
 $= \sum_{n \geq 1}^{\infty} \int_{0}^{\infty} \frac{dq}{q} = \left[\sum_{n \geq 1}^{\infty} a_{n} q^{n}\right]_{0}^{\infty}$
 $= \sum_{n \geq 1}^{\infty} \int_{0}^{\infty} \frac{dq}{q} = \left[\sum_{n \geq 1}^{\infty} a_{n} q^{n}\right]_{0}^{\infty}$

Proposition 3:

 $a_{p} \cdot \lambda(r) = \lambda(r)$

Proposition 3:

 $a_{p} \cdot \lambda(r) = \lambda(pr) + \sum_{j \geq 0}^{j \geq 1} \lambda\left(\frac{r+d}{p}\right)$
 $a_{p} \cdot \lambda(r) = \lambda(pr) + \sum_{j \geq 0}^{\infty} \lambda\left(\frac{r+d}{p}\right)$
 $= \sum_{n \geq 1}^{\infty} \frac{a_{n}p}{n} e^{2\pi i n r} + \sum_{n \geq 1}^{\infty} \frac{a_{n}p}{n p} e^{2\pi i n r} = \sum_{n \geq 1}^{\infty} \frac{1}{n} \left[pa_{n/p} + a_{n/p}\right] e^{2\pi i n r} = \sum_{n \geq 1}^{\infty} \frac{1}{n} \left[pa_{n/p} + a_{n/p}\right] e^{2\pi i n r} = o_{p} \cdot \lambda(r)$
 $a_{p} \cdot a_{n}$

I am hiding flecke operators here!

C

MODULE PARAMETRISATION

Let we be the invariant differential on E.

MODULARITY THEOREM 4

- · & we is invariant under PO(N)
- There is a morphism of urnes

$$\varphi: \chi_0(N) \longrightarrow E$$
defined over Q

There is a constant CE E Z of $\omega_{\xi} = C_{E} \cdot \varphi^{*}(\omega_{E})$

Too had.

Choose a basis {xt, x-} of H, (E(C), Z)=

E(C) = C/1 for alatia NE

 $\Omega^{\pm} = \int \omega_E \quad \text{so} \quad \Omega^{\dagger} \in \mathbb{R}_{>0}$ and ateiRyo

There are two cases $C_1' = \mathbb{Z} \cdot \mathbb{R}^{+} + \mathbb{Z} \cdot \mathbb{Q}^{-}$ $A_2 = \mathbb{Z} \cdot \mathbb{R}^{+} + \mathbb{Z} \cdot \mathbb{Q}^{-}$ $A_3 = \mathbb{Z} \cdot \mathbb{R}^{+} + \mathbb{Z} \cdot \mathbb{Q}^{-}$ $A_4 = \mathbb{Z} \cdot \mathbb{R}^{+} + \mathbb{Z} \cdot \mathbb{Q}^{-}$ $A_5 = \mathbb{Z} \cdot \mathbb{R}^{+} + \mathbb{Z} \cdot \mathbb{Q}^{-}$

Lemma 5: If METO(N) and TEX then Jufe of VE

Pf: The path from z to Mz maps to a closed path on $X_0(N)(C) = f_0(N)$ So $\int_E w_f = f_0(N) = f_0(N) = f_0(N)$ Some closed path on $f_0(C)$

Lemma 6: If $r = \frac{\alpha}{m}$ is a reduced fraction with (m, N) = 1, then $\lambda(r) - \lambda(0) \in \mathbb{Z}$ $\mathbb{Z}_{E} \subset \mathbb{Z}_{E}$

Pf: (m, aN)=1 gives $x, y \in \mathbb{Z}$ of $m \cdot x - aN \cdot y = 1$ Set $M = \begin{pmatrix} x & a \\ Ny & m \end{pmatrix} \in T_0(N)$ and Mo = rSo $\lambda(r) - \lambda(o) = \int w_f$

Theorem 7: Let $l \nmid N$ and set $N_{\ell} = \# \stackrel{\sim}{=} (\mathbb{T}_{\ell})$. Then $\lambda \binom{\alpha}{m} \in \frac{\mathbb{C}^{\ell}}{N_{\ell}} (\mathbb{Z} \Omega^{+} + \mathbb{Z} \Omega^{-})$ (m,N)=1

Pf: From lemma 6, it outlies to show that Ne. X(0) & Z Dt+Z!

$$N_{2} \cdot \lambda(0) = \alpha_{2} \lambda(0) - \{2+1\} \lambda(0) = \sum_{j=0}^{2} (\lambda(\frac{2}{2}) - \lambda(0))$$

Cor 8: There is an integer $t \in \mathbb{Z}$ such that $\lambda(\frac{\alpha}{m}) \in \frac{4}{t} \cdot (\mathbb{Z}\Omega^{+} + \mathbb{Z}\Omega^{-})$

In particular $\lambda(0) \in \frac{1}{t}$).

In fact one can take t= CE HE(Q)ton

For
$$r = \frac{\alpha}{m}$$
 with $(m, N) = 1$, we define $\lambda(r) = [r]^{\dagger} \Omega^{\dagger} + [r]^{\dagger} \Omega^{\dagger}$ and $[r]^{\dagger} \in \frac{1}{4} \mathbb{Z} \subset \Omega$.

Lemma 9:
$$\begin{bmatrix} r \end{bmatrix}^{\pm} = \frac{\lambda(r) \pm \lambda(-r)}{2 \Omega^{\pm}}$$
 [In particular $\begin{bmatrix} 0 \end{bmatrix}^{\dagger} = \frac{\lambda(0)}{\Omega^{\dagger}} = \frac{L(E,1)}{\Omega^{\dagger}} \in \mathbb{Q}$ and $\begin{bmatrix} 0 \end{bmatrix}^{\dagger} = 0$.

CONGRUENCES

From now on p is a prime pt N.

Choose a solution $\alpha \in \mathbb{Z}_p$ of $X^2 - a_p X + p = 0$ So $\beta = \frac{p}{\alpha} = a_p - \alpha$ is the other solution.

Define
$$\mu_n^{\pm}(r) = \frac{1}{\alpha^{n+1}} \cdot \left[\frac{r}{p^{n+1}}\right]^{\pm} - \frac{1}{\alpha^{n+2}} \left[\frac{r}{p^n}\right]^{\pm} \in \mathbb{Q}_p$$
for $n \ge 0$ and $r = \frac{\alpha}{m}$ with $(m, pN) = 1$.

Lemma 10: $\sum_{j=0}^{p-1} \mu_n^{\pm} (r+jp^n) = \mu_{n-1}^{\pm} (r) \quad \forall n \geq 1$

Pf. Uns =
$$\frac{1}{x^{min}} \left[\frac{1}{x^{min}} \left[\frac{1}{x^{min}} \right]^{\frac{1}{2}} - \frac{1}{x^{min}} \left[\frac{1}{x^{min}} \left[\frac{1}{x^{min}} \right]^{\frac{1}{2}} \right] \right]$$

$$= \frac{1}{x^{min}} \left[\frac{a_p \cdot \left[\frac{1}{x^{min}} \right]^{\frac{1}{2}}}{a_p \cdot \left[\frac{1}{x^{min}} \right]^{\frac{1}{2}}} - \frac{1}{x^{min}} \left[\frac{1}{x^{min}} \left[\frac{1}{x^{min}} \right]^{\frac{1}{2}} \right] \right]$$

$$= -\frac{1}{x^{min}} \left[\frac{a_p \cdot \left[\frac{1}{x^{min}} \right]^{\frac{1}{2}}}{a_p \cdot \left[\frac{1}{x^{min}} \right]^{\frac{1}{2}}} - \frac{1}{x^{min}} \left[\frac{1}{x^{min}} \left[\frac{1}{x^{min}} \right]^{\frac{1}{2}} \right] \right]$$

$$= -\frac{1}{x^{min}} \left[\frac{a_p \cdot \left[\frac{1}{x^{min}} \right]^{\frac{1}{2}}}{a_p \cdot \left[\frac{1}{x^{min}} \right]^{\frac{1}{2}}} - \frac{1}{x^{min}} \left[\frac{1}{x^{min}} \left[\frac{1}{x^{min}} \right]^{\frac{1}{2}} \right] \right]$$

F

Lemma II:
$$\int_{j=1}^{p-1} \mu_{\sigma}^{+}(z) = (1-\frac{1}{\alpha})^{2} \cdot [0]^{\frac{1}{\alpha}}$$

If the =
$$\int_{j=0}^{p-1} \left[\frac{p}{p}\right]^{\frac{1}{\alpha}} - \frac{1}{\alpha} \cdot [0]^{\frac{1}{\alpha}} - \frac{1}{\alpha} \cdot [0]^{\frac{1}{\alpha}}$$

=
$$\left(\alpha_{p} \cdot [0]^{\frac{1}{\alpha}} - [0]^{\frac{1}{\alpha}}\right) - \frac{1}{\alpha} (\alpha_{p} - d) \cdot [0]^{\frac{1}{\alpha}} - \frac{1}{\alpha} \cdot [0]^{\frac{1}{\alpha}}$$

=
$$\left(1 - \frac{2}{\alpha} + \frac{1}{\alpha}\right) \cdot [0]^{\frac{1}{\alpha}}$$

=
$$\left(1 - \frac{2}{\alpha} + \frac{1}{\alpha}\right) \cdot [0]^{\frac{1}{\alpha}}$$

The p A DIC L-FUNCTION

Suppose now that p is ordinary, two, is, plaps. There are discovered as a unique of \mathbb{Z}

Let $K_{n} = \mathbb{Q}\left(\mu_{pm}\right)$ for $n \geq 0$.

[admin of $X^{-\alpha}$ and X

TWISTS

Let $\chi: \mathbb{Z} \longrightarrow \mathbb{C}$ be a Dirichlet character modulo m. = conductor (x).

We define the twisted L-series by

$$L(E_1 \times s) = \sum_{n \ge 1} \frac{\chi(n)a_n}{n^s} \qquad \text{Re}(s) > \frac{3}{2}.$$

and the twisted modular form by

$$f_{\chi}(\tau) = \sum_{n \geq 1} \chi(n) a_n \cdot q^n$$

Lemma 13

$$G(x) \cdot f_{\overline{x}}(z) = \sum_{\substack{\alpha \text{ mod } m}} \chi(\alpha) \cdot f(z + \frac{\alpha}{m})$$

B

Pf:
$$G(\chi)$$
 $f_{\chi}(e) = \sum_{n \geq 1} \chi(b) e^{2\pi i b/m} \sum_{n \geq 1} \alpha_n \chi(a) e^{2\pi i n e}$

$$= \sum_{n \geq 1} \sum_{n \geq 1} \chi(a_n) e^{2\pi i n e/m} \cdot \alpha_n \chi(a) \cdot e^{2\pi i n e}$$

$$(n,m) = 1$$
anodin

=
$$\sum_{\alpha} \chi(\alpha) \sum_{n \geq 1} \alpha_n e^{2\pi i n \left(z + \frac{\alpha}{n}\right)}$$

Recall $|G(x)| = \sqrt{m}$ and $G(\overline{x}) = \chi(-1) \cdot \overline{G(x)}$.

Theorem 14 Suppose
$$(m, N) = 1$$
.

$$G(\chi) \cdot L(E, \overline{\chi}, 1) = \sum_{\alpha \text{ mod } m} \chi(\alpha) \left[\frac{\alpha}{\alpha}\right] \chi^{(-1)}$$
led ongs to $G(\chi)$

$$f(\alpha) \cdot L(E, \overline{\chi}, 1) = -\frac{1}{2} \sum_{\alpha \text{ mod } m} \chi(\alpha) \cdot f(\tau, \overline{\chi}) d\tau$$

$$= \sum_{\alpha \text{ mod } m} \chi(\alpha) \cdot \chi(\alpha) \cdot f(\tau, \overline{\chi}) d\tau$$

$$= \sum_{\alpha \text{ mod } m} \chi(\alpha) \cdot \chi(\alpha) \cdot f(\tau, \overline{\chi}) d\tau$$

$$= \sum_{\alpha \text{ mod } m} \chi(\alpha) \cdot \chi(\alpha) \cdot f(\tau, \overline{\chi}) d\tau$$

$$= \sum_{\alpha \text{ mod } m} \chi(\alpha) \cdot \chi(\alpha) \cdot f(\tau, \overline{\chi}) d\tau$$

$$= \sum_{\alpha \text{ mod } m} \chi(\alpha) \cdot \chi(\alpha) \cdot f(\tau, \overline{\chi}) d\tau$$

$$= \sum_{\alpha \text{ mod } m} \chi(\alpha) \cdot \chi(\alpha) \cdot f(\tau, \overline{\chi}) d\tau$$

$$= \sum_{\alpha \text{ mod } m} \chi(\alpha) \cdot \chi(\alpha) \cdot f(\tau, \overline{\chi}) d\tau$$

$$= \sum_{\alpha \text{ mod } m} \chi(\alpha) \cdot \chi(\alpha) \cdot f(\tau, \overline{\chi}) d\tau$$

$$= \sum_{\alpha \text{ mod } m} \chi(\alpha) \cdot \chi(\alpha) \cdot \chi(\alpha) \cdot f(\tau, \overline{\chi}) d\tau$$

$$= \sum_{\alpha \text{ mod } m} \chi(\alpha) \cdot \chi(\alpha) \cdot \chi(\alpha) \cdot f(\tau, \overline{\chi}) d\tau$$

$$= \sum_{\alpha \text{ mod } m} \chi(\alpha) \cdot \chi(\alpha) \cdot \chi(\alpha) \cdot f(\tau, \overline{\chi}) d\tau$$

$$= \sum_{\alpha \text{ mod } m} \chi(\alpha) \cdot \chi(\alpha) \cdot \chi(\alpha) \cdot \chi(\alpha) \cdot f(\tau, \overline{\chi}) d\tau$$

$$= \sum_{\alpha \text{ mod } m} \chi(\alpha) \cdot \chi(\alpha)$$

I

The A abelian extension K/Q has a conductor m, in $K\subset Q(S_m)$ with m minimal.

Gal $(Q(S_m)/Q) \longrightarrow Gal(K/Q) = G$ $(Z_mZ)^{\times} \tilde{a}$ $(Z_mZ)^{\times} \tilde{a}$ $(Z_mZ)^{\times} \tilde{a}$ $(Z_mZ)^{\times} \longrightarrow Q^{\times}$ $(Z_mZ)^{\times} \longrightarrow Q^{\times}$ $\chi \in \hat{a}$ $\chi \in \hat{a}$

STICKELBERGER ELEMENTS

Suppose that K is totally real (just to avoid
$$\chi(-1) = +1$$
 $\chi \in \hat{G}$

$$Q = \sum_{\alpha \text{ mod } p_{\alpha}} \begin{bmatrix} \alpha \end{bmatrix}^{+} \cdot \sigma_{\alpha} \in \mathbb{Q}[G]$$

Any
$$\chi \in \hat{G}$$
 we get $\chi: \Omega[G] \longrightarrow \overline{Q}$
 $\Sigma a_g \cdot g \longmapsto \Sigma a_g \cdot \chi(g)$

then
$$\chi(\Theta) = \sum_{\text{a mod m}} \begin{bmatrix} \alpha \\ 1 \end{bmatrix}^{\dagger} \chi(\alpha) = \frac{G(\chi) \cdot L(E, \chi, 1)}{\Omega^{\dagger}}$$

But O does not he have well under maps a->G'. Instead In do.

INTER POLATION

Theorem 15 For any $\chi: G_n = G_n(K_n/\Omega) \longrightarrow \overline{\Omega}^{\times}$ not factoring through G_{n-1} , the induced map $\chi: \Lambda \longrightarrow \overline{\Omega}_p$ sends $L_p(E)$ to $G(\chi)$ $L(E,\overline{\chi},1)$ if n > 0 and $G(\chi) = (1 - 1)^2 + L(E,1)$

and $1(L_p(E)) = (1 - \frac{1}{\alpha})^2 \cdot \frac{L(E, 1)}{\Omega^+}$ Gordlan 16: (Romeworn) $L_n \neq 0$ (LIE, \bar{x} , 1) $\neq 0$ for $z_{me} \neq 0$)

Pf. By lama 11

Alipie) =
$$1(\lambda_0) = \sum_{a \text{ and } p} (\mu_0^+(a) + \mu_0^-(a)) = [-\frac{1}{2}](a)$$

else

 $\chi(L_p(e)) = \chi(\lambda_0) = \sum_{a \text{ and } p} (\mu_0^+(a) + \mu_0^-(a)) \cdot \chi(a)$
 $= \frac{1}{2} \sum_{a} (\mu_0^+(a) \chi(a) - \mu_0^-(-a) \chi(-a))$
 $+ (\mu_0^-(a) \chi(a) + \mu_0^-(a) \chi(-a))$
 $+ (\mu_0^-(a) \chi(a) + \mu_0^-(a) \chi(a))$
 $+ (\mu_0^-(a) \chi(a) + \mu_0^-(a) \chi(a)$
 $+ (\mu_0^-(a) \chi(a) + \mu_0^-(a) \chi$

P-ADIC BSD

Klongerbone U 2200

Write I = Gal (U Kn/a) and Kyc: 1 = Zp st 3 Xeye(6) = 6(3) $\forall 6 \in \Gamma$ and $5 \in Mp^{\infty}$. $75 \text{ Min} = (\text{Xeye})^{5}$ for $5 \in \mathbb{C}p$

Define $L_p(E, s) = \chi_{sc}^s (L_p(E)) \in \mathcal{Q}_p$ for $s \in \mathbb{C}_p$.

So $\mathcal{L}_{p}(E, I) = \mathbb{1}\left(\mathcal{L}_{p}(E)\right) = \left(1 - \frac{1}{\alpha}\right)^{2} \frac{L(E, I)}{\Omega^{+}}$

 $L_p(E, I) = 0$ $\leftarrow D$ L(E, I) = 0 as $x \neq I$.

Conjecture A: ords=, $d_p(E,s) = ords=, L(E,s)$

Conjecture B: The leading term at s=1 of 2,18,5 $\left(1-\frac{1}{\alpha}\right)^{2}$. $\frac{1}{\left(\frac{1}{\alpha}\right)^{2}}$. $\frac{1}{\left(\frac{1}{\alpha}\right)^{2}}$. $\frac{1}{\left(\frac{1}{\alpha}\right)^{2}}$.

where Regp(E/a) is the p-adic regulator @ Qp Conjecture C: Regp(E/a) ‡0.