(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-138374

(43)公開日 平成5年(1993)6月1日

(51) Int.Cl.⁵

識別記号 庁内整理番号

FΙ

技術表示箇所

B 2 3 K 26/00

N 7920-4E

審査請求 未請求 請求項の数1(全 9 頁)

(21)出願番号 特願平3-298700

(22)出願日

平成3年(1991)11月14日

(71)出願人 000006208

三菱重工業株式会社

東京都千代田区丸の内二丁目5番1号

(72)発明者 森田 成人

愛知県名古屋市港区大江町10番地 三菱重 工業株式会社名古屋航空宇宙システム製作 所内

(72)発明者 佐伯 達夫

愛知県名古屋市港区大江町10番地 三菱重 工業株式会社名古屋航空宇宙システム製作 所内

(74)代理人 弁理士 光石 俊郎 (外1名)

最終頁に続く

(54) 【発明の名称】 レーザー加工機の出力制御装置

(57)【要約】

【目的】 レーザービームの移動速度が変化しても、ワークに対するレーザービームの単位時間当りの照射エネルギー密度を常に均一にする。

【構成】 機械本体1はNC装置2により動作制御される。レーザ発振器4は、機械本体1に備えられており、ワークに向けてレーザービームを照射する。シーケンサ3は、機械本体1の実速度、つまりレーザービームの実移動速度を示す実速度データをNC装置2から取り込み、この実速度データから、単位時間当りの照射エネルギー密度を常に均一にするレーザ強度データを出力する。レーザ発振器4は、レーザ強度データに応じた強度のレーザービームを出力する。

10

1

【特許請求の範囲】

【請求項1】 機械本体と、

機械本体の動作を指令制御するNC装置と、

前記機械本体に備えられてワークに向けてレーザービー ムを照射するとともに、入力されるレーザー強度データ に応じてレーザービームの強度を調整する出力調整部を 有するレーザ発振器と、

前記NC装置から機械本体の実速度を示す実速度データ を入力し、この実速度データを基に、ワークに対するレ ーザービームの単位時間当りの照射エネルギー密度を常 に均一にするレーザー強度データを演算して、レーザー 強度データを前記レーザ発振器の出力調整部に送るシー ケンサーと、

を備えたことを特徴とするレーザ加工機の出力制御装

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はレーザ加工機の出力制御 装置に関し、加工ラインに沿いレーザービームが移動す る速度に応じて、レーザー出力を自動制御するようにし 20 たものである。

[0002]

【従来の技術】NCレーザ加工機では、機械本体にレー ザー発振器を備え、NC装置により機械本体の動作制御 をしている。つまりレーザー発振器から出力されたレー ザービームが加工ラインに沿い照射されるように、機械 本体の動作をNC装置により制御している。このような レーザー加工においては、レーザー強度を、ワークの加 エラインに沿うレーザービームの送り速度に適した値に 一強度は、オペレータにより手動設定したり、NCプロ グラムデータにより設定していた。

[0003]

【発明が解決しようとする課題】前述したように、レー ザー加工においては、レーザー強度を、ワークに対する レーザービームの送り速度に最も適するよう制御する事 が必要である。従来でもNCレーザー加工機では、レー ザー強度をあらかじめ手動で設定するか又はNCプログ ラムに強度データとして設定されていた。しかし現実の NC加工では図8に示すように速度変化時や、図9に示 40 すようにコーナー部の加減速時では、その区間でレーザ 一強度が最適とはならず、加工状態が不均一となる原因 となっていた。

【0004】即ち図8に示す速度変化時では、NCテー プにより送り速度指令を速度1から速度2へ変更する と、レーザー強度もNCテープ指令によりステップ状に 変化してしまう。一方、実際の送り速度(ACTUA L) は速度1から速度2に徐々に変化するため、これに 合わせてレーザー強度も徐々に変化していば理想である ため実際の送り速度が速度1から速度2へ加速していく 区間においては、レーザー照射量が過大になってしま う。なお、同様な事情により、速度2から速度1へ減速 するときには、レーザー照射量が不足してしまう。

【0005】図9(a)(b)は、コーナ部 $\alpha \sim \beta$ (図 9 (a)) を直線補間で動くときの状態(図9 (b)) を示したものである。コーナ部 $\alpha \sim \beta$ においては、NC 装置の自動加減速機能により実際の送り速度は減速され るため、これに合わせてレーザー強度も減少すれば理想 であるが、実際にはレーザー強度指令は一定でレーザー 強度も一定である。したがって、コーナ部 $\alpha \sim \beta$ におい てレーザー過大照射が起きる。

【0006】結局従来技術では、図8及び図9に示すよ うに、実際の送り速度に対応してレーザー強度を変更す ることができないため、被加工物へのレーザービームの 過大照射や過少照射が起こる。よって、金属板に塗膜さ れたコーティング膜のスクライブ作業等、単位時間当り 均等加熱を要求される分野では、NCレーザー加工機は 非実用的であった。

[0007]

【課題を解決するための手段】本発明は、図1に示すよ うに機械本体1、NC装置2、シーケンサー3、レーザ 一発振器4により構成され、NC装置2とシーケンサー 3の接続及びシーケンサー3とレーザー発振器4との接 続は、データ伝送がリアルタイムで行なえるような方式 とした(アナログ信号又はパラレルデジタル信号)。又 レーザー発振器4も、入力されたレーザー強度データに 対応してリアルタイムで出力調整が行なえる物とした。 シーケンサー3には本システムを制御するプログラムが するよう制御することが必要である。従来では、レーザ 30 内蔵され、NC装置2から機械本体1の実速度をリアル タイムで入力するとともに、最適なレーザー強度データ に変換して即座にレーザー発振器4へ送信する機能を附 与した。

[0008]

【作用】本発明の作用を、図2に示すシーケンサープロ グラムのフローチャートを基に説明する。シーケンサー 3はまずステップ1でNC装置2から機械本体1の実速 度を入力し、ステップ2で実速度を最適レーザー強度に 変換する。ここで使われる変換式はレーザー、ワーク、 機械等の特性を充分考慮した上で、ワークに対するレー ザーの単位時間当りのエネルギー密度が常に一定になる ように決める。ステップ3でレーザー強度データがレー ザー発振器4へ送られ、出力されるレーザーの強度が制 御される。以上の処理を機械本体1の加減速に要する時 間より短い時間で繰り返し実行することにより、機械本 体1の実速度に対応した最適なレーザー強度の制御が可 能となった。

[0009]

【実施例】図3に実施例としてレーザースクライブマシ が、レーザー強度はステップ状に変化してしまう。この 50 ンの外観を示す。本機械はアルミ製ワーク12の表面上 3

に塗布されたコート材を、5軸ヘッド11でレーザービ ームによりスクライブするものである。レーザー発振器 15及びレーザー電源ユニット14は長尺ガントリー1 6のスライド部に搭載されている。レーザー強度を制御 するシーケンサーはNC装置13に内蔵されており、B MI機能(Basic Machine Interf ace:NC装置の内部情報〔位置、速度〕等を高速で 読み出すシーケンサーの機能)により、NC機械の実速 度を入力することが可能となっている。NC装置13と レーザー電源ユニット14は2芯ケーブルで接続され、 0~10 Vのアナログ信号にてレーザー強度指令が伝達 される。

【0010】図4にレーザー強度自動制御ブロック図を 示す。NC装置13はNC制御部13aとシーケンサ1 3 b とで構成され、機械本体 1 7 は各軸サーボユニット 18及び各軸サーボモータ19により駆動される。機械*

強度指令電圧信号値=Fa×8191/10000・・・・・(1)

但し

Fa:NC制御部から入力した実速度

力することにより、0~10 (V) のアナログ電圧をレ ーザー電源ユニット14ヘレーザー強度指令として送る ことになる.

【0014】かくて、強度指令電圧信号値が0~819 1 に対し、N C 制御部 1 3 a は 0 ~ 1 0 〔 V 〕 を出力 し、これに対し、レーザー出力は0~100 (W) をそ れぞれ直線的変化で出力する。又、100〔W〕時の実 速度は10000 [mm/min] とする。

【0015】ここでレーザー強度指令が図4で示される ように、シーケンサー13bからNC制御部13aを介 30 してレーザー電源ユニット14へ主軸指令電圧として送 られるのは、NC制御部13 aが本来有する主軸制御の ためのアナログ電圧出力機能を用いるためである。

【0016】図5に示されるフローチャートにおいて、 一連の処理を実行するのに要する時間(スキャンタイ ム) は8 [msec] であり、本レーザースクライブマ シンの加減速時定数は0.5[sec]であるので、停 止状態から最大速度までに達する間に0.5/0.00 8=62.5回レーザー強度を調節できることになる。

【0017】上述したように機械本体17の動きに応じ 40 1 機械本体 てレーザー出力が制御されるので、ワークに対するレー ザービームの単位時間当りの照射エネルギー密度を常に 均一にして、最適なレーザー照射ができる。例えば図6 に示すように、送り速度指令が速度1から速度2に変わ り、実際の送り速度が徐々に増加していったときには、 レーザー強度も追従して徐々に増加していく。また図7 に示すように、コーナー部においては実際の送り速度が 一旦減少してから再びもとの速度に戻るときには、レー ザー強度も追従して一旦減少してからもとの強度に戻 る。

*本体17の動きは、NC制御部13aを介してシーケン サ13 bに実速度として入力される。シーケンサ13 b

はこのデータから最適なレーザー強度を演算し指令電圧 信号としてNC制御部13aへ出力し、ここからさらに レーザー電源ユニット14へ出力され、CO2レーザー 発振器 15 が最終的に制御されることになる。

【0011】図5に指令電圧信号値演算フローチャート を示す。ステップ11でNC実速度がNC制御部13a からシーケンサー13bへ入力され、次にステップ12 10 でその時点でレーザー放射のON/OFF判定を行ない OFFの場合は以下の処理を無視する。ステップ13に おいて実速度データから強度指令データへの変換が次式 (1) のように 0. 8191倍することによって行なわ れる。

[0012]

【数 1 】

[0018]

【発明の効果】本発明によれば、2次元ないし3次元の 【0013】上記演算結果をステップ14でアナログ出 20 複雑な加工ラインを持ったワークに対するレーザー加工 でレーザービームの送り速度が変化しても、直線部や曲 線部を含め全てのラインで、最適なレーザー強度での加 工が可能となった。

【図面の簡単な説明】

【図1】本発明の基本構成を示すブロック図。

【図2】本発明の基本動作を示すブロック図。

【図3】本発明の実施例であるレーザースクライブマシ ンを示す斜視図。

【図4】実施例の制御系を示すブロック図。

【図5】実施例の動作を示すフローチャート。

【図6】速度変化時における実施例の制御状態を示す特 性図。

【図7】コーナー部における実施例の制御状態を示す特 性図。

【図8】速度変化時における従来技術の制御状態を示す 特性図。

【図9】速度変化時における従来技術の制御状態を示す 特性図。

【符号の説明】

2 NC装置

3 シーケンサー

4 レーザー発振器

11 5軸ヘッド

12 ワーク

13 NC装置

13a NC制御部

13b シーケンサー

14 レーザー電源ユニット

50 15 レーザー発振器

-433-

(4) 特開平5-138374

5 10 を使む ギョー...

16長尺ガントリー18各種サーボユニット17機械本体19各種サーボモータ

【図1】

【図2】

【図7】

【図4】

【図5】

【図6】

[図8]

【図9】

フロントページの続き

(72)発明者 鍋田 浩雄

愛知県名古屋市港区大江町10番地 三菱重 工業株式会社名古屋航空宇宙システム製作 所内

(72)発明者 太田 敏朗

愛知県名古屋市港区大江町10番地 三菱重 工業株式会社名古屋航空宇宙システム製作 所内

(72)発明者 中 俊英

愛知県名古屋市港区大江町10番地 三菱重 工業株式会社名古屋航空宇宙システム製作 所内