CoE202 Fundamentals of Artificial intelligence <Big Data Analysis and Machine Learning>

Convolutional Neural Network

Prof. Young-Gyu Yoon School of EE, KAIST

Contents

- Recap
 - Deep learning libraries
 - What we (human) do and what library does
 - Task formulation
 - NN design flow
- Biological vision
- Convolution operation
- ConvNet as a special case of NN
- Building blocks of ConvNet

Biological vision information processing

Biological Neural Network

Biological vision information processing

Biological vision information processing

Convolution?

- Mathematical operation on two functions (x, h) to produce a third function (y)
- Discrete-time convolution

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} x[m]h[n-m]$$

Continuous-time convolution

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$$

$$y[\mathbf{n}] = \sum_{k=-\infty}^{\infty} x[k]h[\mathbf{n} - k]$$

$$y[\mathbf{0}] = \sum_{k=-\infty}^{\infty} x[k]h[\mathbf{0} - k]$$

$$y[0] = \sum_{k=-\infty}^{\infty} x[k]h[0-k]$$

$$y[0] = \sum_{k=-\infty}^{\infty} x[k]h[0-k]$$

$$y[0] = \sum_{k=-\infty}^{\infty} \mathbf{x}[k] \mathbf{h}[0-k]$$

$$y[0] = \sum_{k=-\infty}^{\infty} \mathbf{x}[k] \mathbf{h}[0-k]$$

$$y[0] = \sum_{k=-\infty}^{\infty} x[k]h[0-k]$$

$$y[\mathbf{1}] = \sum_{k=-\infty}^{\infty} x[k]h[1-k]$$

$$y[2] = \sum_{k=-\infty}^{\infty} x[k]h[2-k]$$

$$y[3] = \sum_{k=-\infty}^{\infty} x[k]h[3-k]$$

Convolution (DT): example

Convolution (DT): example

- h[k] \rightarrow flip m(-k)
- h[-k] \rightarrow shift by $n \rightarrow h[n-k]$

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} x[m]h[n-m]$$

2-D convolution

• 2-D convolution

$$y[m, n] = x[m, n] * h[m, n] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} x[k, l] h[m - k, n - l]$$

30	3,	2_2	1	0
02	02	1_0	3	1
30	1,	2_2	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Convolution for image processing

Convolution is the heart of image processing

- This is just a layer of a neural network
 - Lots of weights
 - All weights are independent

- This is (still) just a layer of a neural network
 - Some weights are set to zero (smaller number of weights)

- This is (still) just a layer of a neural network
 - Some weights have shared value (only three weights)

$$w_{11} = w_{22} = w_{33} = w_{44} = w_{55} = w_{66}$$
 $w_{12} = w_{23} = w_{34} = w_{45} = w_{56}$ $w_{21} = w_{32} = w_{43} = w_{54} = w_{65}$

$$Y = h(WX + B)$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{bmatrix} = h(\begin{bmatrix} w_{11} & w_{21} & w_{31} & w_{41} & w_{51} & w_{61} \\ w_{12} & w_{22} & w_{32} & w_{42} & w_{52} & w_{62} \\ w_{13} & w_{23} & w_{33} & w_{43} & w_{53} & w_{63} \\ w_{14} & w_{24} & w_{34} & w_{44} & w_{54} & w_{64} \\ w_{15} & w_{25} & w_{35} & w_{45} & w_{55} & w_{65} \\ w_{16} & w_{26} & w_{36} & w_{46} & w_{56} & w_{66} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \end{bmatrix})$$

neural network

$$Y = h(WX + B)$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{bmatrix} = h(\begin{bmatrix} w_b & w_g & 0 & 0 & 0 & 0 \\ w_r & w_b & w_g & 0 & 0 & 0 \\ 0 & w_r & w_b & w_g & 0 & 0 \\ 0 & 0 & w_r & w_b & w_g & 0 \\ 0 & 0 & 0 & w_r & w_b & w_g \\ 0 & 0 & 0 & 0 & w_r & w_b \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \end{bmatrix}$$

convolutional neural network

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{bmatrix} = h \begin{pmatrix} \begin{bmatrix} w_b & w_g & 0 & 0 & 0 & 0 & 0 \\ w_r & w_b & w_g & 0 & 0 & 0 \\ 0 & w_r & w_b & w_g & 0 & 0 \\ 0 & 0 & w_r & w_b & w_g & 0 \\ 0 & 0 & 0 & w_r & w_b & w_g \\ 0 & 0 & 0 & 0 & w_r & w_b \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \end{bmatrix})$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{bmatrix} = h(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} * \begin{bmatrix} w_r \\ w_b \\ w_g \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \end{bmatrix})$$

$$y_n = h(x_n * w_n + b_n) = h(\sum x_m w_{n-m} + b_n)$$

- Matrix multiplication is replace by convolution
- Convolutional neural network (ConvNet or CNN) can be thought of as a special case of neural network
 - Lots of weights are zero (only "local" operations allowed)
 - Lots of weights are shared

Why ConvNet?

- Again, ConvNet is just a special case of neural network
- Local operation
 - Optimized for processing spatial information (i.e., image)
- Parameter sharing
 - Smaller number of weights (or higher capacity with same number of parameters)
- Local operation + parameter sharing
 - Optimized for processing translationally-invariant structures of the image
- In a nutshell, ConvNet is a specialized neural network structure suited for image processing

Local connection & parameter sharing?

Revisit: Neural Network Design

- We want to use different forms of parameterized function $f(x; \theta)$ depending on our target function g(x) (which we do not know)
- Some families of parameterized functions $f(x; \theta)$ can approximate g(x) with a smaller error with smaller number of parameters than others
- ...and this of course depends on g(x) (task-dependent)

- For most g(x) from image processing tasks, it is like the left plot $\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = h(\begin{bmatrix} w_b & w_g & 0 & 0 & 0 & 0 \\ w_r & w_b & w_g & 0 & 0 & 0 \\ 0 & 0 & w_r & w_b & w_g & 0 & 0 \\ 0 & 0 & 0 & w_r & w_b & w_g & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix}$
- We are essentially trying to approximate a function. If we can reduce the degree of freedom of our parameterized function by adding constraints without compromising its capability to approximate the "target function," then it would be desired!

Convolutional Neural Network with Channels

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{bmatrix} = h(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} * \overrightarrow{w} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \end{bmatrix})$$

$$\begin{bmatrix} y_{11} \\ y_{12} \\ y_{13} \\ y_{14} \\ y_{15} \\ y_{16} \end{bmatrix} = h(\begin{bmatrix} x_{11} \\ x_{12} \\ x_{13} \\ x_{14} \\ x_{15} \\ x_{16} \end{bmatrix} * \overrightarrow{w}_{11} + \begin{bmatrix} x_{21} \\ x_{22} \\ x_{23} \\ x_{24} \\ x_{25} \\ x_{26} \end{bmatrix} * \overrightarrow{w}_{12} + \cdots \begin{bmatrix} x_{41} \\ x_{42} \\ x_{43} \\ x_{44} \\ x_{45} \\ x_{46} \end{bmatrix}) \bullet \bullet \bullet \begin{bmatrix} y_{41} \\ y_{42} \\ y_{43} \\ y_{44} \\ y_{45} \\ y_{46} \end{bmatrix} * \overrightarrow{w}_{41} + \begin{bmatrix} x_{21} \\ x_{22} \\ x_{23} \\ x_{24} \\ x_{25} \\ x_{46} \end{bmatrix} * \overrightarrow{w}_{44} + \begin{bmatrix} b_{11} \\ b_{12} \\ b_{13} \\ b_{44} \\ b_{45} \\ b_{46} \end{bmatrix})$$

(single layer of) ConvNet as a special case of DNN

(single layer of) ConvNet with channels

Convolutional Neural Network with Channels

- Earlier, we said ConvNet can be thought of as a special case of DNN
- We can also interpret a ConvNet as a "generalized" form of DNN
- Single scalar value in a node → an array
- Single scalar weight for multiplication of an edge → an array for convolution

Convolutional Neural Network with Channels

ConvNet as a special form of DNN

ConvNet as a generalized form of DNN

784 x 1 32

Visualizing the signals "inside" the network

Visualizing the parameters "inside" the network

Weights of the first layer of a ConvNet (after training)

Buliding blocks: Convolution

Full convolution

Same convolution

Valid convolution

Input size ≤ output size

Input size = output size

Input size ≥ output size

Buliding blocks: Convolution

Different "amount" of zero-padding before the operation

Buliding blocks: Convolution

Convolution with stride-2

More variations

Transposed convolution (some people call it deconvolution or up-convolution)

Buliding blocks: Activation

ReLU is the most popular choice these days

Buliding blocks: pooling

- A Pooling layer allows us to efficiently (no parameter, simple computation) decrease the input size
- Max pooling is the most popular choice, but it depends on tasks and applications

Buliding blocks: pooling

2x2 max pooling with stride 2

3x3 max pooling with stride 1

Pooling window size does not have to be the same as stride (just like the convolution kernel size does not have to be the same as the stride)

Buliding blocks: fully-connected layer

Fully-connected layer is just a different name for these simple neural network layers (to distinguish from convolution layers)

Why pooling?

Why pooling?

Parameter-free

- Oftentimes, we want to decrease the size of the input
- Pooling is a deterministic without any trainable parameters → can effectively decrease the size without having to worry about overfitting

Increase of receptive field

- Imagine that we only have convolution layers with a fixed kernel size
- Then, the pixels within only certain (and short) distance can interact inside the network
 - This is not good for "high-level" feature extraction

ConvNet design: Ok, let's put together

For MNIST classification,
We need to design a convolutional neural network
that takes 28x28x1 array as the input
and generates 10x1 array as the output
(design constraint)

ConvNet design: Ok, let's put together

ConvNet design: PyTorch Implementation


```
class MNIST classifier(nn.Module):
    def init (self):
        super(CNN classifier, self). init ()
        self.conv1 = nn.Conv2d(1, 10, 5, 1)
        self.conv2 = nn.Conv2d(10, 20, 5, 1)
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
   def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max pool2d(x, 2, 2)
        x = x.view(-1, 4*4*20)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x
```

Summary

- Convolution operation
- ConvNet is very similar to biological neural network for vision processing
- ConvNet can be thought of as either a special case NN or a generalized NN
- Building blocks of ConvNet
 - Convolution (many types)
 - Activation
 - Pooling
 - Fully connected layer

References

- Website
 - CS231n course website: https://cs231n.github.io/