Limites

Max Jauregui

22 de novembro de 2022

Conteúdo

1	Limite de uma sequência	1
2	Operações com limites	3
3	Limites de funções	6
4	Limites no infinito e limites infinitos	9
5	Limites laterais	12

1 Limite de uma sequência

Um conjunto X é chamado de um **espaço métrico** se existe uma função $d: X \times X \to \mathbb{R}$, chamada de **distância**, que tem as seguintes propriedades:

- 1. d(x,y) = 0 se, e somente se, x = y;
- 2. d(x,y) = d(y,x) para quaisquer $x, y \in X$;
- 3. $d(x,z) \leq d(x,y) + d(y,z)$ para quaisquer $x,y,z \in X$.

Usando essas três propriedades temos que, para quaisquer $x, y \in X$,

$$0 = d(x, x) \le d(x, y) + d(y, x) = 2d(x, y).$$

Portanto, $d(x,y) \geqslant 0$ para quaisquer $x,y \in X$.

Exemplo 1. O conjunto \mathbb{R} dos números reais é um espaço métrico, no qual a distância é definida por d(x,y) = |x-y| para quaisquer $x,y \in \mathbb{R}$.

De aqui em diante vamos considerar que \mathbb{Z}^+ é o conjunto dos números inteiros positivos e que X é um espaço métrico com distância d, a menos que se especifique outra coisa. Em uma primeira leitura, é conveniente interpretar o espaço métrico X como o conjunto \mathbb{R} ou um subconjunto dele.

Uma sequência de pontos de X é uma função $x : \mathbb{Z}^+ \to X$. Para cada $n \in \mathbb{Z}^+$, x(n) é chamado de **termo** n-ésimo da sequência e é escrito comumente como x_n . Além disso, a própria sequência x é denotada usualmente por $(x_n)_{n \ge 1}$.

Exemplo 2. Se $x_n = 3n^2 - 2$ para cada $n \in \mathbb{Z}^+$, os primeiros 5 termos da sequência $(x_n)_{n \ge 1}$ são 1, 10, 25, 46 e 73. A sequência $(x_n)_{n \ge 1}$ também pode ser escrita explicitamente como $(3n^2 - 2)_{n \ge 1}$.

Diz-se que uma sequência e pontos $(x_n)_{n\geqslant 1}$ é **limitada** se existem $p\in X$ e M>0 tais que $d(x_n,p)< M$ para todo $n\in \mathbb{Z}^+$.

Exemplo 3. A sequência $(\frac{1}{n})_{n\geqslant 1}$ é limitada pois $d(\frac{1}{n},0)=|\frac{1}{n}|<5$ para todo $n\in\mathbb{Z}^+$. Por outro lado, a sequência $(n)_{n\geqslant 1}$ não é limitada, pois para qualquer M>0 existe $n\in\mathbb{Z}^+$ tal que n>M e, por conseguinte, d(n,0)>M.

Diz-se que um ponto $a \in X$ é o **limite** de uma sequência se pontos $(x_n)_{n \geqslant 1}$ se, para todo $\epsilon > 0$, pode-se encontrar N > 0 tal que n > N implica que $d(x_n, a) < \epsilon$. Nesse caso, escreve-se

$$\lim_{n \to \infty} x_n = a$$

ou, de forma simplificada, $x_n \to a$ (essa expressão se lê " x_n tende para a").

Se uma sequência $(x_n)_{n\geqslant 1}$ possui um limite, diz-se que ela é **convergente**; caso contrário, diz-se que ela é **divergente**.

Exemplo 4. Vamos mostrar que

$$\lim_{n \to \infty} \frac{1}{n} = 0.$$

Dado qualquer $\epsilon > 0$, sabemos que existe $N \in \mathbb{Z}^+$ tal que $\frac{1}{\epsilon} < N$. Logo, para todo n > N, temos que $\frac{1}{\epsilon} < n$ e, por conseguinte, $\frac{1}{n} < \epsilon$. Portanto, n > N implica que $d(\frac{1}{n}, 0) < \epsilon$, ou seja, $\frac{1}{n} \to 0$.

Seja $(x_n)_{n\geqslant 1}$ uma sequência de pontos. Se para cada $k\in\mathbb{Z}^+$, define-se $n_k\in\mathbb{Z}^+$ de tal forma que $n_k< n_{k+1}$ para todo $k\in\mathbb{Z}^+$, então a sequência $(x_{n_k})_{k\geqslant 1}$ é chamada de uma **subsequência** de $(x_n)_{n\geqslant 1}$.

Teorema 5. Seja $(x_n)_{n\geqslant 1}$ uma sequência de pontos. Se $x_n \to a$, toda subsequência de $(x_n)_{n\geqslant 1}$ possui o limite a.

Demonstração. Se $x_n \to a$, dado qualquer $\epsilon > 0$, existe N > 0 tal que n > N implica que $d(x_n, a) < \epsilon$. Se $(x_{n_k})_{k \ge 1}$ é uma subsequência de $(x_n)_{n \ge 1}$, então existe $K \in \mathbb{Z}^+$ tal que $n_K > N$. Logo, k > K implica que $n_k > N$ e, por conseguinte, $d(x_{n_k}, a) < \epsilon$. Portanto, $\lim_{k \to \infty} x_{n_k} = a$.

Exemplo 6. Exemplos de subsequências de $(\frac{1}{n})_{n\geqslant 1}$ são os seguintes:

- 1. $(\frac{1}{2n})_{n \ge 1}$
- $2. \ \left(\frac{1}{2n+1}\right)_{n\geqslant 1}$
- 3. $(\frac{1}{n^2})_{n \ge 1}$

Pelo teorema anterior, todas essas subsequências possuem o limite 0.

Teorema 7. Toda sequência convergente é limitada.

Demonstração. Seja $(x_n)_{n\geqslant 1}$ uma sequência de pontos que possui o limite a. Logo, existe N>0, que podemos considerar inteiro, tal que n>N implica que $d(x_n,a)<1$. Definindo

$$M = \max\{1, 1 + d(x_1, a), 1 + d(x_2, a), \dots, 1 + d(x_N, a)\},\$$

temos que $d(x_n, a) < M$ para todo $n \in \mathbb{Z}^+$.

Exemplo 8. A sequência $(2n-1)_{n\geqslant 1}$ é divergente, pois não é limitada. Por outro lado, se $x_n=(-1)^n$ para todo $n\in\mathbb{Z}^+$, a sequência $(x_n)_{n\geqslant 1}$ é limitada; porém, ela é divergente, pois as subsequências $(x_{2n})_{n\geqslant 1}$ e $(x_{2n+1})_{n\geqslant 1}$ possuem respectivamente os limites 1 e -1.

2 Operações com limites

Teorema 9. Seja $(x_n)_{n\geqslant 1}$ uma sequência de números reais. Se $x_n \to a$ e a < c, então existe N > 0 tal que $x_n < c$ para todo n > N.

Demonstração. Se $x_n \to a$ e a < c, então existe N > 0 tal que n > N implica que $d(x_n, a) < c - a$. Logo, $a - (c - a) < x_n < a + (c - a)$ para todo n > N. Portanto, em particular, $x_n < c$ para todo n > N.

Corolário 10. Seja $(x_n)_{n\geqslant 1}$ uma sequência de números reais. Se $x_n \to a$ e a > c, então existe N > 0 tal que $x_n > c$ para todo n > N.

Corolário 11. Sejam $(x_n)_{n\geqslant 1}$ e $(y_n)_{n\geqslant 1}$ sequências de números reais. Se $x_n \to a$, $y_n \to b$ e a < b, então existe N > 0 tal que $x_n < y_n$ para todo n > N.

Corolário 12. Sejam $(x_n)_{n\geqslant 1}$ e $(y_n)_{n\geqslant 1}$ sequências de números reais. Se $x_n \to a, y_n \to b$ e $x_n \leqslant y_n$ para todo n > N, então $a \leqslant b$.

Teorema 13 (Teorema do sanduíche). Sejam $(x_n)_{n\geqslant 1}$, $(y_n)_{n\geqslant 1}$ e $(z_n)_{n\geqslant 1}$ sequências de números reais. Se $x_n\to a$, $z_n\to a$ e $x_n\leqslant y_n\leqslant z_n$ para todo n>N, então $y_n\to a$.

Demonstração. Se $x_n \to a$ e $z_n \to a$, então existe $N_1 > 0$ tal que $n > N_1$ implica que $d(x_n, a) < \epsilon$ e $d(z_n, a) < \epsilon$. Logo, em particular, temos que $a - \epsilon < x_n$ e $z_n < a + \epsilon$ para todo $n > N_1$. Se $x_n \le y_n \le z_n$ para todo n > N, então pondo $N_2 = \max\{N, N_1\}$, temos que

$$a - \epsilon < x_n \le y_n \le z_n < a + \epsilon$$

para todo $n > N_2$. Portanto, $n > N_2$ implica que $d(y_n, a) < \epsilon$, ou seja, $y_n \to a$.

Exemplo 14. Sabemos que $-1 \le \cos n \le 1$ para todo $n \in \mathbb{Z}^+$. Logo,

$$-\frac{1}{n} \leqslant \frac{\cos n}{n} \leqslant \frac{1}{n}$$

para todo $n \in \mathbb{Z}^+$. Como $\frac{1}{n} \to 0$, segue do teorema do sanduíche que

$$\lim_{n \to \infty} \frac{\cos n}{n} = 0.$$

Lema 15. Para quaisquer $x, y \in \mathbb{R}$, tem-se que $||x| - |y|| \le |x - y|$.

Demonstração. Dados $x, y \in \mathbb{R}$ quaisquer, temos que

$$|x| = |y + (x - y)| \le |y| + |x - y|$$
.

Logo, $|x| - |y| \le |x - y|$. Por outro lado, temos que

$$|y| = |x + (y - x)| \le |x| + |y - x|$$

e, por conseguinte, $|y| - |x| \le |x - y|$. Como $||x| - |y|| = \max\{|x| - |y|, |y| - |x|\}$, temos que $||x| - |y|| \le |x - y|$.

Lema 16. Seja $(x_n)_{n\geqslant 1}$ uma sequência de números reais. Se $x_n\to 0$ e $(y_n)_{n\geqslant 1}$ é uma sequência limitada de números reais, então $x_ny_n\to 0$.

Demonstração. Se $(y_n)_{n\geqslant 1}$ é uma sequência limitada, existe M>0 tal que $|y_n|< M$ para todo $n\in \mathbb{Z}^+$. Se $x_n\to 0$, então, dado qualquer $\epsilon>0$, existe N>0 tal que n>N implica que $|x_n|<\frac{\epsilon}{M}$. Logo, para qualquer n>N, temos que

$$|x_n||y_n| \leqslant \frac{\epsilon}{M}|y_n| < \frac{\epsilon}{M}M = \epsilon$$
.

Portanto, n > N implica que $d(x_n y_n, 0) < \epsilon$, ou seja, $x_n y_n \to 0$.

Teorema 17 (Operações com limites). Sejam $(x_n)_{n\geqslant 1}$ e $(y_n)_{n\geqslant 1}$ sequências de números reais. Se $x_n \to a$ e $y_n \to b$, tem-se o seguinte:

- 1. $|x_n| \rightarrow |a|$;
- 2. $(x_n + y_n) \rightarrow (a+b)$;
- 3. $x_n y_n \to ab$;
- 4. $\frac{x_n}{y_n} \to \frac{a}{b}$, desde que se tenha $b \neq 0$.

Demonstração.

- 1. Se $x_n \to a$, dado qualquer $\epsilon > 0$, existe N > 0 tal que n > N implica que $|x_n a| < \epsilon$. Logo, para qualquer n > N, temos que $||x_n| |a|| \le |x_n a| < \epsilon$ em virtude do lema 15. Portanto, $|x_n| \to |a|$.
- 2. Se $x_n \to a$ e $y_n \to b$, dado qualquer $\epsilon > 0$, existe N > 0 tal que n > N implica que $|x_n a| < \frac{\epsilon}{2}$ e $|y_n a| < \frac{\epsilon}{2}$. Logo, para qualquer n > N, tem-se que

$$|(x_n+y_n)-(a+b)| = |(x_n-a)+(y_n-b)| \le |x_n-a|+|y_n-b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Portanto, $(x_n + y_n) \rightarrow (a + b)$.

3. Primeiramente notamos que

$$x_n y_n - ab = x_n y_n - x_n b + x_n b - ab = x_n (y_n - b) + (x_n - a)b$$
.

Usando isso, vamos provar que, se $x_n \to a$ e $y_n \to b$, então $(x_n y_n - ab) \to 0$ e, por conseguinte, $x_n y_n \to ab$. Para isso, notamos que $(y_n - b) \to 0$, $(x_n - a) \to 0$ e, como $x_n \to a$, $(x_n)_{n \geqslant 1}$ é uma sequência limitada. Logo, pelo lema 16, temos que $x_n(y_n - b) \to 0$ e $(x_n - a)b \to 0$. Portanto, pelo item 2, segue que $[x_n(y_n - b) + (x_n - a)b] \to 0$, ou seja, $(x_n y_n - ab) \to 0$.

4. Primeiramente notamos que

$$\frac{1}{y_n} - \frac{1}{b} = \frac{b - y_n}{y_n b} \,.$$

Usando isso, vamos provar que, se $y_n \to b$ e $b \neq 0$, então $(\frac{1}{y_n} - \frac{1}{b}) \to 0$ e, por conseguinte, $\frac{1}{y_n} \to \frac{1}{b}$. Se $y_n \to b$, então, pelo item 1, $|y_n| \to |b|$. Se $b \neq 0$, então $|b| > \frac{|b|}{2}$. Logo, pelo corolário 10, existe N > 0 tal que

n>N implica que $|y_n|>\frac{|b|}{2}$ e, por conseguinte, $|\frac{1}{y_nb}|<\frac{2}{|b|^2}$. Segue daqui que a sequência $(\frac{1}{y_nb})_{n\geqslant 1}$ é limitada. Logo, pelo lema 16, temos que

$$\frac{b-y_n}{y_n b} \to 0 \,,$$

pois $(b-y_n) \to 0$. Portanto, $(\frac{1}{y_n} - \frac{1}{b}) \to 0$, ou seja, $\frac{1}{y_n} \to \frac{1}{b}$.

Exemplo 18. Para cada $n \in \mathbb{Z}^+$ seja

$$x_n = \frac{2n^2 - 5}{4n^2 + 3n - 6} \,.$$

Vamos mostrar que a sequência $(x_n)_{n\geqslant 1}$ é convergente. Para isso, escrevemos

$$\frac{2n^2 - 5}{4n^2 + 3n - 6} = \frac{n^2(2 - \frac{5}{n^2})}{n^2(4 + \frac{3}{n} - 6)} = \frac{2 - \frac{5}{n^2}}{4 + \frac{3}{n} - \frac{6}{n^2}}.$$

Como $\frac{1}{n} \to 0$, segue que $\frac{5}{n^2} \to 0$, $\frac{3}{n} \to 0$ e $\frac{6}{n^2} \to 0$. Logo, $(2 - \frac{5}{n^2}) \to 2$ e $(4 + \frac{3}{n} - \frac{6}{n^2}) \to 4$. Portanto, $x_n \to \frac{2}{4} = \frac{1}{2}$.

3 Limites de funções

Seja X um espaço métrico. Diz-se que um ponto $a \in X$ é um **ponto de acumulação** de um conjunto $A \subset X$ se existe uma sequência $(x_n)_{n\geqslant 1}$ de pontos de A, todos diferentes de a, que tem a como limite.

Exemplo 19. Seja $A = \{x \in \mathbb{R} : x = n \text{ ou } x = \frac{1}{n}, n \in \mathbb{Z}^+\}$. O ponto $0 \in \mathbb{R}$ é um ponto de acumulação de A, pois para cada $n \in \mathbb{Z}^+$ tem-se que $\frac{1}{n} \in A$ e $\frac{1}{n} \to 0$.

Sejam X e Y espaços métricos, $A \subset X$, $f: A \to Y$ uma função e $a \in X$ um ponto de acumulação de A. Diz-se que um ponto $L \in Y$ é o **limite** de f(x) quando x tende para a se, para qualquer sequência $(x_n)_{n\geqslant 1}$ de pontos de $A-\{a\}$ tal que $x_n\to a$, tem-se que $f(x_n)\to L$. Nesse caso, escreve-se

$$\lim_{x \to a} f(x) = L.$$

Exemplo 20. Vamos mostrar que

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4.$$

Seja $(x_n)_{n\geqslant 1}$ uma sequência qualquer de pontos de $\mathbb{R}-\{2\}$ tal que $x_n\to 2$. Pondo $f(x)=\frac{x^2-4}{x-2}$, temos que

$$f(x_n) = \frac{x_n^2 - 4}{x_n - 2} = \frac{(x_n - 2)(x_n + 2)}{x_n - 2} = x_n + 2.$$

Logo, como $x_n \to 2$, $f(x_n) \to 4$. Portanto, $\lim_{x \to 2} f(x) = 4$.

Exemplo 21. Vamos mostrar que o limite

$$\lim_{x \to 0} \frac{|x|}{x}$$

não existe. Para isso, definamos $x_n = \frac{1}{n}$ e $y_n = -\frac{1}{n}$ para cada $n \in \mathbb{Z}^+$. Temos que $x_n, y_n \in \mathbb{R} - \{0\}$ para todo $n \in \mathbb{Z}^+$, $x_n \to 0$ e $y_n \to 0$. No entanto, se $f(x) = \frac{|x|}{x}$, temos que

$$f(x_n) = \frac{|\frac{1}{n}|}{\frac{1}{n}} = \frac{n}{n} = 1$$

е

$$f(y_n) = \frac{\left|\frac{1}{n}\right|}{\frac{1}{n}} = \frac{-n}{n} = -1.$$

Logo, $f(x_n) \to 1$ e $f(y_n) \to -1$. Portanto, não existe $\lim_{x \to 0} f(x)$.

Exemplo 22 (Limite de uma constante). Sejam X um espaço métrico, $a \in X$ um ponto de acumulação de X e $f: X \to \mathbb{R}$ a função definida por f(x) = c. Vamos provar que

$$\lim_{n \to \infty} c = c.$$

Seja $(x_n)_{n\geqslant 1}$ uma sequência qualquer de pontos de $X-\{a\}$ tal que $x_n\to a$. Logo, $f(x_n)=c$ e, por conseguinte, $f(x_n)\to c$. Portanto, $\lim_{x\to a}f(x)=c$.

Exemplo 23 (Limite de x). Sejam $a \in \mathbb{R}$ e $f : \mathbb{R} \to \mathbb{R}$ a função definida por f(x) = x. Vamos provar que

$$\lim_{x \to a} x = a.$$

Seja $(x_n)_{n\geqslant 1}$ uma sequência qualquer de números reais diferentes de a tal que $x_n \to a$. Logo, $f(x_n) = x_n$ e, por conseguinte, $f(x_n) \to a$. Portanto, $\lim_{x\to a} f(x) = a$.

O seguinte teorema é uma consequência direta do teorema 17:

Teorema 24 (Operações com limites). Sejam X um espaço métrico, $A \subset X$, $f, g: A \to \mathbb{R}$ funções reais $e \ a \in X$ um ponto de acumulação de A. Se $\lim_{x\to a} f(x) = L \ e \ \lim_{x\to a} g(x) = M$, tem-se o seguinte:

- 1. $\lim_{x \to a} |f(x)| = |L|;$
- 2. $\lim_{x \to a} [f(x) + g(x)] = L + M;$
- 3. $\lim_{x \to a} f(x)g(x) = LM;$
- 4. $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{L}{M}$, desde que se tenha $M \neq 0$.

Exemplo 25. Dado $a \in \mathbb{R}$, sabemos que $\lim_{x \to a} x = a$. Logo,

$$\lim_{x \to a} x^2 = \lim_{x \to a} x \cdot x = a \cdot a = a^2$$

$$\lim_{x \to a} x^3 = \lim_{x \to a} x^2 \cdot x = a^2 \cdot a = a^3.$$

Continuando dessa forma podemos concluir que, para qualquer $n \in \mathbb{Z}^+$, vamos ter $\lim_{x\to a} x^n = a^n$. Além disso, se $c_n \in \mathbb{R}$ é uma constante, então $\lim_{x\to a} c_n x^n = c_n a^n$. Levando em conta isso, podemos concluir que, se $p: \mathbb{R} \to \mathbb{R}$ é uma função polinomial, então

$$\lim_{x \to a} p(x) = p(a) .$$

Finalmente, se $q:\mathbb{R}\to\mathbb{R}$ é uma outra função polinomial tal que $q(a)\neq 0$, então

$$\lim_{x \to a} \frac{p(x)}{q(x)} = \frac{p(a)}{q(a)}.$$

Exemplo 26. Vamos avaliar o limite

$$E = \lim_{x \to 1} \frac{x^3 - 3x^2 + 2}{2x^2 + x - 3} \,.$$

Notamos que $\lim_{x\to 1}(2x^2+x-3)=0$. Logo, E não será o quociente do limite do numerador e o limite do denominador. Por outro lado, notamos que $\lim_{x\to 1}(x^3-3x^2+2)=0$. Devido a isso, diz-se que E tem a **forma indeterminada** 0/0. Isso indica que as funções polinomiais $p(x)=x^3-3x^2+2$ e $q(x)=2x^2+x-3$

têm x=1 como uma raiz comum e, por conseguinte, são divisíveis por (x-1). Usando o método de Ruffini, temos que

е

Logo, $p(x) = (x-1)(x^2-2x-2)$ e q(x) = (x-1)(2x+3). Usando isso, temos que

$$\frac{p(x)}{q(x)} = \frac{x^2 - 2x - 2}{2x + 3}$$

para todo $x \neq 1$. Como $\lim_{x \to 1} (2x + 3) \neq 0$, segue que

$$E = \lim_{x \to 1} \frac{p(x)}{q(x)} = \lim_{x \to 1} \frac{x^2 - 2x - 2}{2x + 3} = -\frac{3}{5}.$$

4 Limites no infinito e limites infinitos

Seja $(x_n)_{n\geqslant 1}$ uma sequência de números reais. Escreve-se

$$\lim_{n \to \infty} x_n = \infty \quad \text{ou} \quad x_n \to \infty$$

se para todo A > 0 existe N > 0 tal que n > N implica que $x_n > A$. Além disso, escreve-se $\lim_{n \to \infty} x_n = -\infty$ ou $x_n \to -\infty$ se $-x_n \to \infty$. Deve-se ressaltar que se $x_n \to \pm \infty$, a sequência $(x_n)_{n \geqslant 1}$ é divergente, pois não é limitada.

Exemplo 27. Se $x_n = n$ para todo $n \in \mathbb{Z}^+$, temos que $x_n \to \infty$. No entanto, se $x_n = (-1)^n n$ para todo $n \in \mathbb{Z}^+$, a sequência $(x_n)_{n \geqslant 1}$ é divergente, mas não temos $x_n \to \infty$ nem $x_n \to -\infty$.

Teorema 28. Sejam $(x_n)_{n\geqslant 1}$ e $(y_n)_{n\geqslant 1}$ sequências de números reais. Tem-se o seguinte:

- 1. se $x_n \to \infty$ e existe $c \in \mathbb{R}$ tal que $y_n > c$ para todo $n \in \mathbb{Z}^+$, então $(x_n + y_n) \to \infty$;
- 2. se $x_n \to \infty$ e $y_n > c > 0$ para todo $n \in \mathbb{Z}^+$, então $x_n y_n \to \infty$;
- 3. se $x_n \to \infty$ e $y_n < c < 0$ para todo $n \in \mathbb{Z}^+$, então $x_n y_n \to -\infty$;

4. se
$$x_n \to \infty$$
, então $\frac{1}{x_n} \to 0$.

Valem resultados análogos no caso em que $x_n \to -\infty$.

Demonstração.

- 1. Se $x_n \to \infty$, então para qualquer A > 0 existe N > 0 tal que n > N implica que $x_n > A c$. Logo, se $y_n > c$ para todo $n \in \mathbb{Z}^+$, temos que $x_n + y_n > A$ para todo n > N. Portanto, $(x_n + y_n) \to \infty$.
- 2. Se $x_n \to \infty$, então para qualquer A>0 existe N>0 tal que n>N implica que $x_n>A/c$. Logo, se $y_n>c>0$, então $x_ny_n>A$ para todo n>N. Portanto, $x_ny_n\to\infty$.
- 4. Se $x_n \to \infty$, então para qualquer $\epsilon > 0$ existe N > 0 tal que n > N implica que $x_n > \frac{1}{\epsilon}$. Logo, $0 < \frac{1}{x_n} < \epsilon$ para todo n > N. Portanto, n > N implica que $d(\frac{1}{x_n}, 0) < \epsilon$, ou seja, $\frac{1}{x_n} \to 0$.

Corolário 29. Sejam $(x_n)_{n\geqslant 1}$ e $(y_n)_{n\geqslant 1}$ sequências de números reais. Tem-se o sequinte:

1. se
$$x_n \to \infty$$
 e $y_n \to \infty$ ou $y_n \to a$, então $(x_n + y_n) \to \infty$;

2. se
$$x_n \to \infty$$
 e $y_n \to \infty$ ou $y_n \to a > 0$, então $x_n y_n \to \infty$;

3. se
$$x_n \to \infty$$
 e $y_n \to -\infty$ ou $y_n \to a < 0$, então $x_n y_n \to -\infty$.

Valem resultados análogos no caso em que $x_n \to -\infty$.

Exemplo 30. Para cada $n \in \mathbb{Z}^+$, seja $x_n = 2n^2 - 3n - 5$. Vamos mostrar que $x_n \to \infty$. Para isso escrevemos

$$x_n = n^2 \left(2 - \frac{3}{n} - \frac{5}{n^2} \right) \, .$$

Temos que

$$\lim_{n\to\infty} n^2 = \lim_{n\to\infty} n \cdot n = \infty \,,$$

pois $n \to \infty$. Por outro lado, temos que $\left(2 - \frac{3}{n} - \frac{5}{n^2}\right) \to 2$. Portanto, $x_n \to \infty$.

Sejam Y um espaço métrico e $f: \mathbb{R} \to Y$ uma função. Diz-se que um ponto $L \in Y$ é o limite de f(x) quando x tende para infinito se, para toda sequência $(x_n)_{n\geqslant 1}$ de números reais tal que $x_n\to\infty$, tem-se que $f(x_n)\to L$. Nesse caso, escreve-se

$$\lim_{x \to \infty} f(x) = L.$$

O caso $\lim_{x\to -\infty} f(x) = L$ pode ser definido de forma análoga. Além disso, podemos nos convencer facilmente que o teorema 24 vale da mesma forma para limites no infinito.

Exemplo 31. Temos que

$$\lim_{x \to \infty} \frac{1}{x} = 0,$$

pois para qualquer sequência $(x_n)_{n\geqslant 1}$ de números reais tais que $x_n\to\infty$, temos que $\frac{1}{x_n}\to 0$.

Exemplo 32. Vamos avaliar o limite

$$E = \lim_{x \to \infty} \frac{3x^2 - 2x + 7}{4x^4 - 5x^2 - 4}.$$

Para isso notamos que, para qualquer $x \neq 0$,

$$\frac{3x^2 - 2x + 7}{4x^4 - 5x^2 - 4} = \frac{x^2(3 - \frac{2}{x} + \frac{7}{x^2})}{x^4(4 - \frac{5}{x^2} - \frac{4}{x^4})} = \frac{1}{x^2} \cdot \frac{3 - \frac{2}{x} + \frac{7}{x^2}}{4 - \frac{5}{x^2} - \frac{4}{x^4}}.$$

Como

$$\lim_{x \to \infty} \frac{1}{x^2} = 0 \quad e \quad \lim_{x \to \infty} \frac{3 - \frac{2}{x} + \frac{7}{x^2}}{4 - \frac{5}{x^2} - \frac{4}{x^4}} = \frac{3}{4},$$

segue que

$$E = \lim_{x \to \infty} \frac{1}{x^2} \cdot \frac{3 - \frac{2}{x} + \frac{7}{x^2}}{4 - \frac{5}{x^2} - \frac{4}{x^4}} = 0.$$

Sejam X um espaço métrico, $A \subset X$, $f: A \to \mathbb{R}$ uma função e $a \in X$ um ponto de acumulação de A. Diz-se que f(x) tende para infinito quando x tende para a se, para qualquer sequência $(x_n)_{n\geqslant 1}$ de pontos de $A-\{a\}$ tal que $x_n \to a$, tem-se que $f(x_n) \to \infty$. Nesse caso, escreve-se

$$\lim_{x \to a} f(x) = \infty.$$

O caso $\lim_{x\to a} f(x) = -\infty$, pode ser definido de forma análoga. Além disso, se $X = \mathbb{R}$, podem-se definir também os casos

$$\lim_{x \to \infty} f(x) = \pm \infty \quad \text{e} \quad \lim_{x \to -\infty} f(x) = \pm \infty.$$

O seguinte teorema é uma consequência direta do teorema 28 e do corolário 29:

Teorema 33. Sejam $A \subset \mathbb{R}$, $f, g : A \to \mathbb{R}$ funções reais $e \ a \in \mathbb{R}$ um ponto de acumulação de A ou $a = \pm \infty$. Tem-se que

1.
$$\operatorname{se} \lim_{x \to a} f(x) = \infty \ \operatorname{e} \lim_{x \to a} g(x) = \infty \ \operatorname{ou} \lim_{x \to a} g(x) = L, \ \operatorname{ent\~ao}$$

$$\lim_{x \to a} [f(x) + g(x)] = \infty;$$

2.
$$se \lim_{x \to a} f(x) = \infty$$
 $e \lim_{x \to a} g(x) = \infty$ $ou \lim_{x \to a} g(x) = L > 0$, $ent\tilde{a}o$
$$\lim_{x \to a} f(x)g(x) = \infty$$
;

3.
$$se \lim_{x \to a} f(x) = \infty$$
 $e \lim_{x \to a} g(x) = -\infty$ ou $\lim_{x \to a} g(x) = L < 0$, $ent\~ao$
$$\lim_{x \to a} f(x)g(x) = -\infty$$
;

4.
$$\operatorname{se} \lim_{x \to a} f(x) = \infty$$
, $\operatorname{ent} \tilde{a} \operatorname{o} \lim_{x \to a} \frac{1}{f(x)} = 0$.

Valem resultados análogos no caso em que $\lim_{x\to a} f(x) = -\infty$.

Exemplo 34. Vamos mostrar que

$$\lim_{x \to \infty} \frac{x^3 + 2}{-2x^2 - 3x + 2} = -\infty.$$

Primeiramente notamos que, para qualquer $x \neq 0$,

$$\frac{x^3 + 2}{-2x^2 - 3x + 2} = \frac{x^3 \left(1 + \frac{2}{x^3}\right)}{x^2 \left(-2 - \frac{3}{x} + \frac{2}{x^2}\right)} = x \cdot \frac{1 + \frac{2}{x^3}}{-2 - \frac{3}{x} + \frac{2}{x^2}}.$$

Como

$$\lim_{x \to \infty} x = \infty \quad e \quad \lim_{x \to \infty} \frac{1 + \frac{2}{x^3}}{-2 - \frac{3}{x} + \frac{2}{x^2}} = -\frac{1}{2},$$

temos que

$$\lim_{x \to \infty} \frac{x^3 + 2}{-2x^2 - 3x + 2} = \lim_{x \to \infty} x \cdot \frac{1 + \frac{2}{x^3}}{-2 - \frac{3}{x} + \frac{2}{x^2}} = -\infty.$$

5 Limites laterais

Sejam $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ uma função e $a \in \mathbb{R}$ um ponto de acumulação de A. Diz-se que $L \in \mathbb{R} \cup \{\pm \infty\}$ é o limite de f(x) quando x tende para a **pela direita** se, para qualquer sequência $(x_n)_{n\geqslant 1}$ de números reais maiores do que a tal que $x_n \to a$, tem-se que $f(x_n) \to L$. Nesse caso escreve-se

$$\lim_{x \to a^+} f(x) = L.$$

Por outro lado, diz-se que $M \in \mathbb{R} \cup \{\pm \infty\}$ é o limite de f(x) quando x tende para a **pela esquerda** se, para qualquer sequência $(x_n)_{n\geqslant 1}$ de números reais

menores do que a tal que $x_n \to a$, tem-se que $f(x_n) \to M$. Nesse caso escreve-se

$$\lim_{x \to a^{-}} f(x) = M.$$

Podemos nos convencer facilmente que os teoremas 24 e 33 valem da mesma forma para limites laterais.

Exemplo 35. Seja a função

$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{se } x > 1\\ x^2 - 2 & \text{se } x < 1 \end{cases}$$

Vamos avaliar os limites laterais $\lim_{x\to 1^+} f(x)$ e $\lim_{x\to 1^-} f(x)$. Temos que

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1^+} (x + 1) = 2.$$

Por outro lado,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x^{2} - 2) = -1.$$

Teorema 36. Seja $(x_n)_{n\geqslant 1}$ uma sequência de números reais tal que $x_n\to 0$. Logo,

- 1. se $x_n > 0$ para todo $n \in \mathbb{Z}^+$, então $\frac{1}{x_n} \to \infty$;
- 2. se $x_n < 0$ para todo $n \in \mathbb{Z}^+$, então $\frac{1}{x_n} \to -\infty$.

Demonstração. Vamos provar só o item 1. Como $x_n \to 0$, dado qualquer A > 0, existe N > 0 tal que n > N implica que $|x_n| < \frac{1}{A}$, ou seja, $\frac{1}{|x_n|} > A$. Se $x_n > 0$ para todo $n \in \mathbb{Z}^+$, temos que $\frac{1}{x_n} > A$ para todo n > N. Portanto, $\frac{1}{x_n} \to \infty$.

Corolário 37. Sejam $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ uma função e $a \in \mathbb{R}$ um ponto de acumulação de A.

- 1. $Se \lim_{x \to a^{+}} f(x) = 0 \ e \ f(x) > 0 \ para \ todo \ x > a, \ então \lim_{x \to a^{+}} \frac{1}{f(x)} = \infty.$
- 2. $Se \lim_{x \to a^{+}} f(x) = 0 \ e \ f(x) < 0 \ para \ todo \ x > a, \ então \lim_{x \to a^{+}} \frac{1}{f(x)} = -\infty.$

Resultados análogos valem no caso em que $\lim_{x\to a^-} f(x) = 0$.

Exemplo 38. Vamos mostrar que

$$\lim_{x \to 2^+} \frac{3}{4 - x^2} = -\infty.$$

Para isso, primeiramente notamos que

$$\frac{3}{4-x^2} = \frac{3}{(2-x)(2+x)} = \frac{1}{2-x} \cdot \frac{3}{2+x} \,.$$

Logo, como

$$\lim_{x \to 2^+} \frac{1}{2-x} = -\infty \quad \text{e} \quad \lim_{x \to 2^+} \frac{3}{2+x} = \frac{3}{4} \,,$$

temos que

$$\lim_{x\to 2^+}\frac{1}{2-x}\cdot\frac{3}{2+x}=-\infty\,.$$

Teorema 39. Sejam $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$, $a \in \mathbb{R}$ um ponto de acumulação e $L, M \in \mathbb{R} \cup \{\pm \infty\}$. Tem-se o seguinte:

1.
$$se \lim_{x \to a^{+}} f(x) = L \ e \lim_{x \to a^{-}} f(x) = L, \ ent \tilde{a}o \lim_{x \to a} f(x) = L;$$

2.
$$\operatorname{se} \lim_{x \to a^+} f(x) = L$$
, $\lim_{x \to a^-} f(x) = M$ $\operatorname{e} L \neq M$, $\operatorname{ent} \tilde{ao} \lim_{x \to a} f(x)$ $n\tilde{ao}$ existe.

Demonstração.

- 1. Suponhamos que $\lim_{x\to a^+} f(x) = L$ e $\lim_{x\to a^-} f(x) = L$. Se não temos $\lim_{x\to a} f(x) = L$, então existe uma sequência $(x_n)_{n\geqslant 1}$ de pontos de $A-\{a\}$ tal que $x_n\to a$, mas $f(x_n) \leftrightarrow L$. Logo, podemos definir uma subsequência $(x_{n_k})_{k\geqslant 1}$ considerando somente os termos maiores do que a da sequência $(x_n)_{n\geqslant 1}$ e uma outra subsequência $(x_m)_{k\geqslant 1}$ considerando somente os termos menores do que a da sequência $(x_n)_{n\geqslant 1}$. Como $x_n\to a$, tem-se que $x_{n_k}\to a$ e $x_{m_k}\to a$. No entanto, não podemos ter $f(x_{n_k})\to L$ e $f(x_{m_k})\to L$, pois isso implicaria que $f(x_n)\to L$. Logo, $f(x_{n_k})\to L$ ou $f(x_{m_k})\to L$, contradizendo a hipótese de que $\lim_{x\to a^+} f(x) = L$ e $\lim_{x\to a^-} f(x) = L$. Portanto, devemos ter $\lim_{x\to a} f(x) = L$.
- 2. Suponhamos que $\lim_{x\to a^+} f(x) = L$ e $\lim_{x\to a^-} f(x) = M$ e $L \neq M$. Se $\lim_{x\to a} f(x) = K$, com $K \in \mathbb{R} \cup \{\pm \infty\}$, então para toda sequência $(x_n)_{n\geqslant 1}$ de pontos de $A \{a\}$ tal que $x_n \to a$, tem-se que $f(x_n) \to K$. Em particular isso deve ser verdade se $x_n > a$ para todo $n \in \mathbb{Z}^+$ ou se $x_n < a$ para todo $n \in \mathbb{Z}^+$. Porém, isso é impossível, pois pelo menos uma das seguintes afirmações é verdadeira: $K \neq L$ ou $K \neq M$. Portanto, $\lim_{x\to a} f(x)$ não deve existir.