Greedy Algorithms

Heejin Park

Hanyang University

Contents

- Introduction
- An activity selection problem
- Elements of the greedy strategy
- Huffman codes

Introduction

- A *greedy algorithm* always makes the choice that looks best at the moment.
- It makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution.
- It makes the choice *before* the subproblems are solved.

- To select a maximum-size subset of mutually compatible activities.
- For example
 - Given *n* classes and 1 lecture room,
 - to select the maximum number of classes

- A set of *activities*: $S = \{a_1, a_2, ..., a_n\}$
- Each activity a_i has its start time s_i and finish time f_i .

$$\bullet \quad 0 \le s_i < f_i < \infty$$

- Activity a_i takes place during $[s_i, f_i]$
- Activities a_i and a_j are *compatible* if the intervals $[s_i, f_i]$ and $[s_i, f_i]$ do not overlap.

• $\{a_3, a_9, a_{11}\}$: mutually compatible activities, not a largest set

• $\{a_1, a_4, a_8, a_{11}\}$: A largest set of mutually compatible activities

• $\{a_2, a_4, a_9, a_{11}\}$: Another largest subset

Optimal substructure

• Assume that activities are sorted in increasing order of finish time.

$$f_0 \le f_1 \le f_2 \le \dots \le f_n < f_{n+1}$$

i	1	2	3	4	5	6	7	8	9	10	11
S_i	1	3	0	5	3	5	6	8	8	2	12
f_{i}	4 4	5	6	7	8	9	10	11	12	13	14

Greedy algorithm

• Select the earliest finishing activity one by one.

Running Time:
$$\Theta(n)$$

1.74:1 18324 124 124

how activity et latest activity 42

Contents

- Introduction
- An activity selection problem
- Elements of the greedy strategy
- Huffman codes

Greedy-choice property

- Make the choice *before* the subproblems are solved.
- Only one subproblem is generated.

Dynamic programming

- Make a choice *after* the subproblems are solved.
- Several subproblems may be generated.

Greedy vs. Dynamic programming

- 0-1 knapsack
 - A thief robbing a store finds *n* items.
 - The *i*th item is worth v_i dollars and weighs w_i pounds.
 - He can carry at most W pounds in his knapsack.
 - The n, v_i , w_i , and W are integers.
 - Which items should he take?

Fractional knapsack

• In this case, the thief can take fractions of items.

Itemol 나에질 수 있다.

Fractional knapsack

- The greedy strategy works.
- Compute the value per pound v_i/w_i for each item.
- Take as much as possible of the item with the greatest value per pound.

$$\frac{V_1}{W_1} \stackrel{?}{=} \frac{V_2}{W_2} \stackrel{>}{=} \frac{V_3}{W_3}$$

o 0-1 knapsack

Self-study

Exercise 16.2-1

• Exercise 16.2-2

Exercise 16.2-5

• Exercise 16.2-7

Contents

- Introduction
- An activity selection problem
- Elements of the greedy strategy
- Huffman codes

Huffman Codes

• A widely used technique for compressing data.

- Consider representing 100,000 characters from {a, b, c, d, e, f}.
 - 3-bit *fixed-length code* is used in general.
 - It takes 300,000 bits in total

	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101

• We can reduce the space if *variable-length code* is used.

	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

- Shorter **codewords** for frequent characters.
- 224,000 bits in total
 - $(45 \cdot 1 + 13 \cdot 3 + 12 \cdot 3 + 16 \cdot 3 + 9 \cdot 4 + 5 \cdot 4) \cdot 1000$ bits

hadix There

Huffman codes

Encoding and decoding of variable-length code

Encoding abc: 0.101.100: abc - 0101 100

Decoding 001011101 = aate!

• 0.0.101.1101: aabe

4	
Prefix	 新X
	deading &CL

	a	b	С	d	е	f
Variable-length codeword	0	101	100	111	1101	1100

• Decoding 001 when a: 0 b: 01 c: 1

• 001: aac or ab → 둘다 가능

• The codeword 0 for a is a prefix of the codeword 01 for b.

Prefix codes

No codeword is a prefix of some other codeword.

	a	b	С	d	е	f
Variable-length codeword	0	101	100	111	1101	1100

Match → 1 hinner
Unmatch → loser → 101-1

Prefix codes

• 3-bit fixed-length code is also a prefix code.

- The left tree is a full binary tree while the right one is not. of the
 - Every node is either leaf or has two children
 - A full binary tree for alphabet C has C leaves and C-1 internal nodes.

• The cost of tree T

- f(c): frequency of a character c
- $d_T(c)$: length of the codeword for c

$$B(T) = \sum_{c \in C} f(c)d_T(c)$$

• An optimal code is represented by a full binary tree.

• Huffman invented a greedy algorithm that constructs an optimal prefix code called an *Huffman code*.

	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5

f: 5 e: 9 c: 12 b: 13 d: 16 a: 45

f: 5

e: 9

c: 12

b: 13

d: 16

a: 45

Min Heap

(f, 5)

f: 5

e: 9

c: 12

b: 13

d: 16

a: 45

Min Heap

 $(\mathbf{f}, \mathbf{5})$

Min Heap

Min Heap

 $(\mathbf{f},\mathbf{5})$ $(\mathbf{e},\mathbf{9})$

Min Heap

(f,5) (e,9)

Min Heap

j, 55

- Running time: $O(n \lg n)$
 - Build min heap: O(n)
 - Merge: *n*-1 times
 - Each merge requires two minimum selection: $O(\lg n)$

Correctness

- Lemma 16.2
 - Let C be an alphabet in which each character $c \in C$ has frequency f[c].
 - Let x and y be two characters in C having the lowest frequencies.
 - Then there exists an optimal prefix code for C in which the codewords for x and y have the same length and differ only in the last bit.

• Proof

• Idea: take an arbitrary optimal prefix code tree *T* and modify it and to make a tree representing another optimal prefix code such that the characters *x* and *y* appear as sibling leaves of maximum depth in the new tree.

• The cost of tree T

- f(c): frequency of a character c
- $d_T(c)$: length of the codeword for c

• Lemma 16.3

- Let x and y be two characters in a given alphabet C with minimum frequency.
- Let C' be the alphabet C with characters x, y removed and character z added, so that $C' = C \{x, y\} \cup \{z\}$; define f for C' as for C, except that f[z] = f[x] + f[y]. Zet (nation holes x, $y \in \mathbb{Z}$)
- Let T' be any tree representing an optimal prefix code for the alphabet C'.
- Then the optimal prefix code tree *T* for *C* can be obtained from *T'* by replacing the leaf node for *z* with an internal node having *x* and *y* as children.

• Proof

- Show B(T) = B(T') + f[x] + f[y]
 - For each $c \in C$ $\{x, y\}$, we have $d_T(c) = d_{T'}(c)$, and hence $f[c]d_T(c) = f[c]d_T(c)$.
 - Since $d_T(x) = d_T(y) = d'(z) + 1$, we have $f[x]d_T(x) + f[y]d_T(y) = (f[x] + f[y])(d_{T'}(z) + 1)$ $= f[z]d_{T'}(z) + (f[x] + f[y])$
 - From which we conclude that B(T) = B(T') + f[x] + f[y]or, equivalently B(T') = B(T) - f[x] - f[y].

o Proof

- Suppose T does not represent an optimal prefix code for C.
- There exists T'' such that $B(T'') \le B(T)$.
- By Lemma 16.2, there exists T'' having x and y as siblings.
- Let T''' be the tree T'' with the common parent of x and y replaced by a leaf z with frequency f[z] = f[x] + f[y].

• Then,
$$B(T'') = B(T'') - f[x] - f[y]$$

 $< B(T) - f[x] - f[y]$
 $= B(T')$

→ Contradiction

• T must represent an optimal prefix code for the alphabet C.

B(T) = B(T') - d_ (Z) f(z) + d_ (X) f(x) + d_ (Y) f(x)

Huffman codes

y

=> B(T)=B(T')+f(x)+f(Y)

T' optimal > T is optimal

SETT) T is not optimal

B(T") > B(T") > 12 = 14+ B(T") + P(T") + + (x) + + (n)

B(T') > B(T'') → B(T')는 opermal operior operior of 나는 The 3th)

→35. T"

:- T'optemal -> T is optemal

x

T" h Homes

Self-study

- Exercise 16.3-3 (16.3-2 in the 2nd ed.)
 - Fibonacci number definition is in p. 59 (p. 56 in the 2nd ed.)
- Exercise 16.3-7 (16.3-6 in the 2nd ed.)