Name	:								A /
Roll No.:							(Annual of	Execution and Explicate	
Invigil	lator	's Sig	gnature :	:					
		C	S/B.Te	ch (E	CE-N	EW)/S	EM-8/	EC-80	4E/2010
					20 1	10			
	N	ИIC	ROWA	VE (CIRC	UITS	& SY	STEM	IS
Time 1	Time Allotted: 3 Hours						Full Marks : 70		
		The	e figures	in the	e marg	in indic	ate full	marks.	
Can	dida	tes a	re requi	red to	give th	neir ans	swers ir	ı their o	wn words
	as far as practicable.								
					GROU	P – A			
			(Multi				uestio	ns)	
1. (Thoo	oo tl							allowing.
1. (J1100	ise u	ie correc	ci ane	шашу	cs 101 a	my ten		ollowing : 10 × 1 = 10
								-	10 × 1 = 10
i)	ABC	D paran	neter (of the o	circuit			
			—z	-					
				-					
		is							
		a)	1 0	b)	1 z	c)	1 0	d)	z 1
			1 0		0 1		1 1		0 1.
i	ii) Microwave components are generally characterized by							erized by	
		a)	S parar	neter		b)	Z pai	rameter	
		c)	ABCD p	oaram	eter	d)	h pai	rameter	·.
8327									[Turn over

CS/B.Tech (ECE-NEW)/SEM-8/EC-804E/2010

iii)	Pow	ver of 1 W is						
	a)	30 dBm	b)	60 dBm				
	c)	0 dBm	d)	1 dBm.				
iv)	The	ne transmission line is used as						
	a)	Antenna	b)	Stub				
	c)	Oscillator	d)	Filter.				
v)	If V	YSWR = 1, then reflection coefficient is						
	a)	0	b)	1				
	c)	- 1	d)	α.				
vi)	For increasing channel capacity always use							
	a)	MIMO MATRIX A						
	b)	Beamforming						
	c)	MIMO MATRIX B						
	d)	All of these.						
vii)	The dominant mode in a waveguide is characterized by							
	a)	longest cut-off wavelength						
	b)	shortest cut-off wavele	ength					
	c)	infinite attenuation						
	d)	zero attenuation.						
327		2						

CS/B.Tech (ECE-NEW)/SEM-8/EC-804E/2010 viii) When the polarization of the receiving antenna is

- unknown, to ensure that it receives at least half the power (except in particular situation), the transmitted wave should be
- a) horizontally polarization
- b) vertically polarization
- c) circularly polarization
- d) elliptically polarization.

8327

ix) Match **List 1** with **List 2** and select the correct answer from the codes given below :

	List	1			List 2		
a)	Turnst	ile		1.	RADAR		
b)	Yagi			2.	TV transmission		
c)	Dish			3.	MW broadcasting		
d)	Vertica	ıl mast		4.	TV reception.		
Codes:							
	а	b	c	đ			
a)	4	2	3	1			
b)	2	4	3	1			
c)	2	4	1	3			
d)	4	2	1	3.			
			3		[Turn over		

CS/B.Tech (ECE-NEW)/SEM-8/EC-804E/2010

- a) feed pattern
- b) antenna aperture
- c) surface losses
- d) low side lobe level.
- xi) The antenna most comonly used for TV broadcasting in the UHF band is
 - a) Turnstile antenna
 - b) Dipole antenna
 - c) Yagi antenna
 - d) Rhombic antenna.
- xii) Fields are said to be circularly polarized if their magnitudes are
 - a) equal and they are in phase
 - b) equal and they differ in phase by $\pm 90^{\circ}$
 - c) unequal and they differ in phase by $\pm 90^{\circ}$
 - d) not equal but they are in phase.

8327 4

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

- 2. Design a single section quarter wave matching transformer to match a 10 Ω load to a 50 Ω line at 3 GHz. Determine percentage bandwidth for which SWR ≤ 1.5 .
- 3. Calculate the position and length of a short circuited stub designed to match a 200 Ω load to a transmission line whose Ch. Impedance is 300 Ω and operating frequency is 1 GHz.
- 4. Write down the steps for fiter design by insertion loss method.
- 5. a) What do you mean by periodic structures?
 - b) Write down the expression for block impedance. 2 + 3
- 6. a) What do you mean by Chebyshev polynomial?
 - d) Describe the design method of Chebyshev transformer.1 + 4

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Write down the steps for binomial transformer design.
 - b) Design a three-section binomial transformer to match a 50 Ω load to a 100 Ω line and calculate the BW for reflection coefficient 0.05.

CS/B.Tech (ECE-NEW)/SEM-8/EC-804E/2010

- b) A lossless T junction power divider has a source impedance of 50 Ω . Find the output Ch. impedance so that the input power is divided in 2:1 ratio.
- c) Using Even and Odd mode analysis find out
 S parameter of Wilkinson power divider. 6 + 5 + 4
- 9. a) Define Smart antenna system.
 - b) What is the relation between gain and efficiency of an antenna.
 - c) Write down Friis transmission formula and prove it.

7 + 3 + 5

- 10. a) Write down properties of S parameter.
 - b) Establish the relation between *ABCD* parameter and S parameter.
 - c) Consider two networks with individual S matrix S^A and S^B . Show that overall S_{21} of the cascade is $S_{21}^A S_{21}^B / (1 S_{22}^A S_{11}^B)$. 3 + 6 + 6

8327 6

11. Write short notes on any *three* of the following:

- a) MIMO ANTENNA
- b) Unknown impedance measurement
- c) Kurodas identities
- d) RFMEMS
- e) Microwave oven
- f) Applications of RFMEMS.