Transfer learning

Transfer Learning

The idea

- Training a deep neural network typically requires thousands if not millions of training examples.
- Each example is passed through the network, an output is obtained, and, if the prediction is wrong, the weights are adjusted.

- Training a deep neural network typically requires thousands if not millions of training examples.
- Each example is passed through the network, an output is obtained, and, if the prediction is wrong, the weights are adjusted.
- Imagine learning to drive a car this way...

Learning like a Deep Neural Network

- Training a deep neural network typically requires thousands if not millions of training examples.
- Each example is passed through the network, an output is obtained, and, if the prediction is wrong, the weights are adjusted.
- Imagine learning to drive a car this way...

We naturally reuse what we previously learnt to be able to solve a new task.

Why do we need transfer learning?

Image classification

• 1998 LeNet-5

Gradient-based learning applied to document recognition. Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner

Image classification

2012 AlexNet

ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever and Geoffrey Hinton

1998 LeNet-5

1814844484

2012 AlexNet

I A CHARLES IN CONTRACTOR IN C

2014 VGG19

.....

2014 GoogLeNet

2015 Inception-V3

2015 ResNet-56

ImageNet classification results

From image-net.org

At what price?

- Data available
 - 1000 images per class
- Computational cost
 - Specific hardware
 - Energy cost
- Human effort
 - Highly skilled professionals
 - Architecture design
 - Hyper-parameter fine tuning

At what price?

- Data available
 - 1,000 images per class
- Computational cost
 - Specific hardware
 - Energy cost
- Human effort
 - Highly skilled professionals
 - Architecture design
 - Hyper-parameter fine tuning

We can't do that for every single problem!!

At what price?

- Data available
 - 1,000 images per class
- Computational cost
 - Specific hardware
 - Energy cost
- Human effort
 - Highly skilled professionals
 - Architecture design
 - Hyper-parameter fine tuning

We can't do that for every single problem!!

→ Transfer Learning to the rescue

What is transfer learning?

Train set

MODEL

PREDICT

MODEL

PREDICT

MODEL

Train set

What is

learning GREEN GROUND about?

Train se

What is

learning GREEN GROUND about? BACKGROUND

Train se

TIGREEN GROUND A

DOG

TGREEN GROUND BACKGROUND

Train se

Test set

DOG

Solution?

Train set

Solution? Randomize

Train set

Solution? Randomize

Test set

Train set

Solution? Randomize

Train set

MODEL

PREDICT

MODEL

Train set

Test set

THEY WILL NEVER BE EXACTLY EQUAL

What is learning about?

Train set

GENERALIZATION

What is learning about?

Train a Machine Learning Model on a train set with the hope that what has been learnt will be useful to solve the same task on a different test set.

Train set

GENERALIZATION

What is learning about?

Train a Machine Learning Model on a train set with the hope that what has been learnt will be useful to solve the same task on a different test set.

EXACTLY EQUAL

Train set

GENERALIZATION

Train and test sets must have similar conditional probability distributions

Train set

Train set

Train a Machine Learning Model on a train set with the hope that what has been learnt will be useful to solve a different task on a different test set.

Train set

GENERALIZATION

Train a Machine Learning Model on a train set with the hope that what has been learnt will be useful to solve a different task on a different test set.

Train set

Barcelona
Supercomputing
Center
Centro Nacional de Supercomputación

GENERALIZATION

Train and test sets are drawn from a not so similar underlying probability distribution.

Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer learning." *IEEE Transactions on knowledge and data engineering* 22.10 (2010): 1345-1359.

Domain:

Task:

Domain: $\mathcal{D} = \{\mathcal{X}, P(X)\}$

• A feature space X

"The Elgar Concert Hall at the University of Birmingham for our third conference" → Bag of words

→ Content vector

• A marginal probability distribution P(X), where $X = \{x_1, ..., x_n\} \in \mathcal{X}$

Task:

Domain: $\mathcal{D} = \{\mathcal{X}, P(X)\}$

• A feature space X

"The Elgar Concert Hall at the University of Birmingham for our third conference"

- → Bag of words
- → Content vector
- A marginal probability distribution P(X), where $X = \{x_1, ..., x_n\} \in \mathcal{X}$

Task: $T = \{y, f(\cdot)\}$

A label space y

CAT, DOG ≠ LION, WOLF

• An objective predictive function $f(\cdot) \Leftrightarrow P(y|x)$

Source Target

Domain: $\mathcal{D} = \{\mathcal{X}, P(X)\}$

Task: $\mathcal{T} = \{ \mathcal{Y}, f(\cdot) \}$

Domain: $\mathcal{D} = \{\mathcal{X}, P(X)\}$

- A feature space X
 - The Same (different)
- A marginal probability distribution P(X)
 - Different
 - Similar

Task: $T = \{y, f(\cdot)\}$

Source

Target

Domain: $\mathcal{D} = \{\mathcal{X}, P(X)\}$

- A feature space X
 - The Same (different)
- A marginal probability distribution P(X)
 - Different
 - Similar

Task: $T = \{ y, f(\cdot) \}$

- A label space 4
 - Different
 - The same
- An objective predictive function
 - Different (but similar?)

Source

Target

- {CAT, DOG} {FELINE, CANINE}
 - $f_{\mathcal{S}}(\cdot)$

{LION, WOLF} {FELINE, CANINE}

 $f_T(\cdot)$

Train set

Target domain

Target domain

Source

Target

– The Same (different)

- A marginal probability distribution P(X)
 - Different
 - Similar

Task: $\mathcal{T} = \{ \mathcal{Y}, f(\cdot) \}$

- A label space 4
 - Different
 - The same

{CAT, DOG} {FELINE, CANINE}

{LION, WOLF} {FELINE, CANINE}

- An objective predictive function
 - Different(but similar?)

 $f_{\mathcal{S}}(\cdot)$

Target

– The Same (different)

Source

- A marginal probability distribution P(X)
 - Different
 - Similar

Task: $\mathcal{T} = \{ \mathcal{Y}, f(\cdot) \}$

- A label space y
 - Different
 - The same

{CAT, DOG} {FELINE, CANINE}

{LION, WOLF} {FELINE, CANINE}

- An objective predictive function
 - Different(but similar?)

 $f_T(\cdot)$

Source $f_s(\cdot)$

Target $f_T(\cdot)$

$$\widehat{f}_S(\cdot) = \left(\frac{1}{12} \right) = \frac{1}{12} \left(\frac{1}{12} \right) \left(\frac{1}{12}$$

$$\widehat{f}_T(\cdot) = \left(\frac{1}{11} \right) \left(\frac{1}{12} \right) \left(\frac{1}$$

- Are they similar?
- Can we just use $\hat{f}_S(\cdot)$ to approximate $f_T(\cdot)$?
- Can we reuse part of it?

Representation learning

Deep Neural Networks are representation learning techniques

- Support Vector Machine (SVM) is just a classifier (a very good one).
- SVM find the best boundary separating the data instances into different classes in a given feature space.

Deep Neural Networks are representation learning techniques

- Support Vector Machine (SVM) is just a classifier (a very good one).
- SVM find the best boundary separating the data instances into different classes in a given feature space.

Deep Neural Networks are representation learning techniques

 SVMs using the kernel trick can overcome the linear limitation through an implicit mapping to a higher dimensional feature space

Deep Neural Networks are representation learning techniques

Deep Neural Networks are representation learning techniques

Deep Neural Networks are representation learning techniques

Reusing DNNs knowledge

REUSE DNNs

Pre-trained CNN, frozen weights

Simple solutions

 DNN last layer features + SVM (Feature extraction)

Simple solutions

- DNN last layer features + SVM (Feature extraction)
 - Similar task and domain

Fine tuning

Fine tuning

What if the tasks are quite different?

Features learned for the **Source**Task

Features learned for the **Source**Task

Can we make them better?

→ Alternate source/target sampling

Simple solutions

- DNN last layer features + SVM (Feature extraction)
 - Similar task and domain
- Add one or several NN layers +
 Fine-tuning pre-trained layers

Simple solutions

- DNN last layer features + SVM (Feature extraction)
 - Similar task and domain
- Add one or several NN layers +
 Fine-tuning pre-trained layers
 - Enough data

Beyond the last layer

features

Visualizations from: Yosinski, Jason, et al. "Understanding neural networks through deep visualization." *arXiv preprint arXiv:1506.06579* (2015).

features

Fine tuning inside DNN?

Fine tuning inside DNN?

Fine tuning inside DNN?

Feature extraction inside DNN? VGG16 dim: 12,416 Conv3_3 FC7 Input Task Domain Feature extraction Intermediate representations Target Task size=1000

Labels

Feature behavior in Transfer Learning

Standardization: features in same range

Each feature independently

Standardization: features in same range

Each feature independently

Standardization: features in same range

Each feature independently

Standardization: features in same range

Each feature independently

Standardization: features in context

Standardization: features in context

Stardardization: features in context

High activation features for a specific class

Low activation features for a specific class

conv3_4 n202

fc7 n1779

Greenhouse

Cloister

fc7 n1946

Gadwall

Brown Pelican

White Pelican

Heermann Gull

CUB-200 - birds

MIT-67 - indoors

Stardardization: features in context

High activation features for a specific class

conv3_4 n202

fc7 n1779

Greenhouse

Cloister

MIT-67 - indoors

Low activation features for a specific class

fc7 n1449

10 globe thistle

14 spear thistle

Flowers-102

High computational cost!

- Which is the real problem?
 - Too many features?
 - Too few images?

- Which is the real problem?
 - Too many features?
 - Too few images? A requirement

- Which is the real problem?
 - Too many features?
 - Too much information!
 - Too few images?

Finding appropriate D_{KS} thresholds

7000

Probabilistically

Target labels

Randomized target labels

Feature is more likely to behave randomly

2000

1000

Feature is more likely to have meaning for \rightarrow f = 1 some class

Feature-class pairs above D_{KS}

- We have the thresholds, but...
 - They are expensive to compute
 - They are class dependent. Supervised.
- We would like to have a threshold on feature value, not on D_{KS} (feature-class).
- We would like the threshold to be unsupervised.

Probabilistically

- Find distributions of **feature values** conditioned to D_{KS} thresholds.
- Find the thresholds that best separate them.

Probabilistically

- Find distributions of feature values conditioned to D_{KS} thresholds.
- Find the thresholds that best separate them.
- Solution:

Dataset	ft^+	ft^-
mit67	0.14	-0.23
cub200	0.20	-0.24
flowers102	0.15	-0.24

Negative feature threshold = -0.25 **Positive** feature threshold = 0.15

Probabilistically

- Find distributions of feature values conditioned to D_{KS} thresholds.
- Find the thresholds that best separate them.
- Solution:

Dataset	ft^+	ft^-
mit67	0.14	-0.23
cub200	0.20	-0.24
flowers102	0.15	-0.24

Negative feature threshold = -0.25
Positive feature threshold = 0.15
Good for all datasets!

Negative feature threshold = -0.25 Positive feature threshold = 0.15

Full-Network Embedding Recipe

- 1. Spatial Average Pooling
- 2. Standardisation
- 3. Discretization

Full Network embedding

FNE - Small datasets

Dataset	#Images	#Classes	#Images (train)	#Images (test)	#Images per class	#Images per class (train)	#Images per class (test)
mit67	6,700	67	5,360	1,340	100	77 - 83	17 - 23
cub200	11,788	200	5,994	5,794	41 - 60	29 - 30	12 - 30
flowers102	8,189	102	2,040	6,149	40 - 258	20	20 - 238
cats-dogs	7,349	37	3,680	3,669	184 - 200	93 - 100	88 - 100
sdogs	20,580	120	12,000	8,580	150 - 200	100	50 - 100
caltech101	9,146	101	3,060	2,995	31 - 800	30	1 - 50
food101	25,250	101	20,200	5,050	250	200	50
textures	5,640	47	3,760	1,880	120	80	40
wood	438	7	350	88	14 - 179	10 - 142	3 - 37

FNE - Small datasets

Dataset	#Images	#Classes	#Images (train)	#Images (test)	#Images per class	#Images per class (train)	#Images per class (test)
mit67	6,700	67	5,360	1,340	100	77 - 83	17 - 23
cub200	11,788	200	5,994	5,794	41 - 60	29 - 30	12 - 30
flowers102	8,189	102	2,040	6,149	40 - 258	20	20 - 238
cats-dogs	7,349	37	3,680	3,669	184 - 200	93 - 100	88 - 100
sdogs	20,580	120	12,000	8,580	150 - 200	100	50 - 100
caltech101	9,146	101	3,060	2,995	31 - 800	30	1 - 50
food101	25,250	101	20,200	5,050	250	200	50
textures	5,640	47	3,760	1,880	120	80	40
wood	438	7	350	88	14 - 179	10 - 142	3 - 37

10 - 200 images/class

Dataset	mito	l cub2	00 Powe	ers102	gogs dogs	caltech	101 food10	l textu	res wood
Baseline fc6	80.0	65.8	89.5	89.3	78.0	91.4±0.6	61.4±0.2	69.6	70.8±6.6
Baseline fc7	81.7	63.2	87.0	89.6	79.3	$89.7{\scriptstyle\pm0.3}$	$59.1{\pm0.6}$	69.0	$68.9 \pm \! 6.8$
Full-network	83.6	65.5	93.3	89.2	78.8	91.4 ± 0.6	$67.0{\scriptstyle\pm0.7}$	73.0	$74.1{\scriptstyle\pm6.9}$
SotA	86.9 [<u>5</u>]	92.3 [10]	97.0 [<u>5</u>]	91.6 [6]	90.3 [<u>5</u>]	93.4 [31]	77.4 [<mark>4</mark>]	75.5 [17]	-
ED FT	√ ✓	1	1	×	1	×	×	X X	-

Network pre-tra	ained o	n Pla c	:es2 fc	or mit67	⁷ and or	n Imag	Best (ase	Scena
Dataset	mit67	cub21	O BOW	ers 102	dogs dogs	caltechi	101 food10	l textur	res Wood
Baseline fc6	80.0	65.8	89.5	89.3	78.0	91.4±0.6	61.4±0.2	69.6	70.8 ± 6.6
Baseline fc7	81.7	63.2	87.0	89.6	79.3	$89.7{\scriptstyle\pm0.3}$	$59.1{\pm0.6}$	69.0	$68.9 \pm \! 6.8$
Full-network	83.6	65.5	93.3	89.2	78.8	$91.4{\pm}0.6$	$67.0{\scriptstyle\pm0.7}$	73.0	$74.1{\pm}6.9$
SotA	86.9 [<mark>5</mark>]	92.3 [10]	97.0 [<u>5</u>]	91.6 [<mark>6</mark>]	90.3 [<u>5</u>]	93.4 [31]	77.4 [<mark>4</mark>]	75.5 [17]	-
ED	✓	✓	✓	X	✓	X	Х	X	-
FT	✓	✓	✓	✓	✓	✓	✓	X	-

Dataset	mito	cub2	00 flows	ers102	² dogs	caltech	101 food10	i textu	res wood	
Baseline fc6	80.0	65.8	89.5	89.3	78.0	91.4±0.6	61.4±0.2	69.6	70.8±6.6	+2.9
Baseline fc7	81.7	63.2	87.0	89.6	79.3	89.7 ± 0.3	$59.1{\pm0.6}$	69.0	68.9 ± 6.8	+4.2
Full-network	83.6	65.5	93.3	89.2	78.8	91.4 ± 0.6	67.0 ± 0.7	73.0	74.1 ± 6.9	
SotA	86.9 [5]	92.3 [10]	97.0 [5]	91.6 [6]	90.3 [<u>5</u>]	93.4 [31]	77.4 [4]	75.5 [17]	-	_
ED FT	√ ✓	√ ✓	√ ✓	×	√ ✓	× ✓	× ✓	×	- -	

Dataset	mito	cub2	00 Rove	ers102	sdogs dogs	caltech	101 food10	iextu	res wood	
Baseline fc6	80.0	65.8	89.5	89.3	78.0	91.4±0.6	61.4 ± 0.2	69.6	70.8 ± 6.6	+2.9
Baseline fc7	81.7	63.2	87.0	89.6	79.3	89.7 ± 0.3	$59.1{\pm0.6}$	69.0	68.9 ± 6.8	+4.2
Full-network	83.6	-0.3	93.3	-0.4	-0.5	91.4 ± 0.6	67.0 ± 0.7	73.0	$74.1{\pm}6.9$	
SotA	86.9 [5]	92.3 [10]	97.0 [<u>5</u>]	91.6 [6]	90.3 [5]	93.4 [31]	77.4 [4]	75.5 [17]	-	_
ED FT	1	1	1	X ✓	1	×	×	×	- -	

Dataset	mito	cub2	00 Rowe	ers102	dogs sdogs	caltech	101 food10	iextu	res wood	
Baseline fc6	80.0	65.8	89.5	89.3	78.0	91.4±0.6	61.4 ± 0.2	69.6	70.8 ± 6.6	+2.9
Baseline fc7	81.7	63.2	87.0	89.6	79.3	89.7 ± 0.3	$59.1{\pm0.6}$	69.0	68.9 ± 6.8	+4.2
Full-network	83.6	-0.3	93.3	-0.4	-0.5	91.4 ± 0.6	67.0 ± 0.7	73.0	$74.1{\pm}6.9$	
SotA	86.9 [5]	92.3 [10]	97.0 [<u>5</u>]	91.6 [6]	90.3 [<u>5</u>]	93.4 [31]	77.4 [<u>4]</u>	75.5 [17]	-	_
ED	✓	1	1	Х	✓	Х	X	Х	-	-
FT	✓	✓	✓	✓	✓	✓	✓	X	-	_

Network pre-trained on ImageNet for mit67 and on Places2 for the rest.

	67	3	70 Me	15102	40gs	ch101	res wood
Dataset	mile	cno	HOW	cats	calle	texte	Moo
Baseline fc7	72.2	23.6	73.3	38.7	72.0	55.8	65.3
Full-network	75.5	35.5	88.7	56.2	80.0	65.1	74.0

Most frequent real-world scenario!

Network pre-trained on ImageNet for mit67 and on Places2 for the rest.

	67	30	00	rs102	gogs	ch101	res wood
Dataset	mile	cut	HON	cats	calle	texte	MOG
Baseline fc7	72.2	23.6	73.3	38.7	72.0	55.8	65.3
Full-network	75.5	35.5	88.7	56.2	80.0	65.1	74.0

Network pre-trained on **ImageNet** for mit67 and on **Places2** for the rest.

	6	1 2	00	ers102	dogs	ch101	res wood
Dataset	mik	cub.	HON	cats	calle	texte	MOG
Baseline fc7	72.2	23.6	73.3	38.7	72.0	55.8	65.3
Full-network	75.5	35.5	88.7	56.2	80.0	65.1	74.0
	+3.3	+11.9	+15.4	+17.5	+8.0	+9.3	+10.6

Simple solutions

- DNN last layer features + SVM (Feature extraction)
 - Similar task and domain
- Add one or several NN layers +
 Fine-tuning pre-trained layers
 - Enough data
- Full Network Embedding
 - Robust to different task and domain
 - Works with little data

Vacional de Supercomputación

thanks.

armand.vilalta@bsc.es