

Past Papers Nat 5 Chemistry

2022 Marking Scheme

Grade	Mark R	equired	% condidates cabinaine anada
Awarded	(/100)	%	% candidates achieving grade
Α	70+	70%	42.5%
В	58+	58%	20.6%
С	46+	46%	16.7%
D	34+	34%	11.9%
No award	<34	<34%	8.3%

Section:	Multiple Choice	Extended Answer	Assignment
Average Mark:	17.2	45.8 _{/75}	No Assignment in 2022

20)22	Nat	ional 5 Chemistry Marking Scheme
M <i>C</i> Qu	Answer	% Pupils Correct	Reasoning
1	С		 ☒A Hydrogen H has an atomic number of 1. Hydrogen is a non-metal. ☒B Arsenic As has an atomic number of 33. Arsenic is a non-metal. ☒C Rhodium Rh has an atomic number of 45. Rhodium is a metal. ☒D Radon Rn has an atomic number of 86. Radon is a non-metal.
2	В		 ☑A Protons are positive and neutrons are neutral ∴ overall this would be positive. ☑B Atoms are neutron because no. of protons equals no of electrons ☑C number of protons plus neutrons is greater than number of electrons ☑D number of electrons plus protons is greater than number of neutrons
3	Α		☑A weak forces of attraction are found between molecules not inside molecules ☑B strong forces of attraction are found inside molecules not between molecules ☑C weak forces of attraction are found between molecules not inside molecules ☑D strong forces of attraction are found inside molecules not between molecules
4	С		 ☒A Adding more solvent would dilute the solution and decrease the concentration ☒B Adding more solute would increase the concentration of the solute dissolved ☒C Adding solute increases concentration. Adding solvent decreases concentration ☒D Adding more solvent would dilute the solution and decrease the concentration
5	В		 ☑A The shape is similar to the shape of CH4 and is called tetrahedral ☑B The shape is similar to the shape of H2O and is called angular ☑C The shape is similar to the shape of HCl and is called linear ☑D The shape is similar to the shape of NH3 and is called trigonal pyramidal
6	A		☑A Electronegativity of O=3.4 & Electronegativity of H=2.2 ∴ Electronegativity Difference = 1.2 ☑B Electronegativity of N=3.0 & Electronegativity of H=2.2 ∴ Electronegativity Difference = 0.8 ☑C Electronegativity of C=2.6 & Electronegativity of H=2.2 ∴ Electronegativity Difference = 0.4 ☑D Electronegativity of C=2.6 & Electronegativity of O=3.4 ∴ Electronegativity Difference = 0.8
7	A		☑A Copper forms at negative electrode and chlorine gas forms at positive electrode ☑B Copper forms at negative electrode as positive Cu²+ ions move to negative electrode ☑C Chlorine gas forms at positive electrode as negative Cl⁻ ions move to positive electrode ☑D Chlorine gas forms at positive electrode as negative Cl⁻ ions move to positive electrode
8	D		 ☒A Calcium oxide cannot be formed by the neutralisation of an acid ☒B Hydrogen nitrate cannot be formed by the neutralisation of an acid ☒C Sodium hydroxide cannot be formed by the neutralisation of an acid. ☒D Potassium ethanoate is a salt formed by the neutralisation of ethanoic acid by a base like sodium hydroxide
9	D		☑A pH=3 is acidic and ammonia dissolves in water to form an alkali with pH>7 ☑B pH=5 is acidic and ammonia dissolves in water to form an alkali with pH>7 ☑C pH=7 is acidic and ammonia dissolves in water to form an alkali with pH>7 ☑D pH=9 is alkaline and ammonia dissolves in water to form an alkali with pH>7
10	С		 ☑A Methane CH4 burns to form CO2 and H2O. The CO2 would turn limewater milky. ☑B Carbon Monoxide CO burns to form CO2. The CO2 would turn limewater milky. ☑C Hydrogen H2 burn to form H2O only. H2O would condense as a colourless liquid. ☑D Ethane C2H6 burns to form CO2 and H2O. The CO2 would turn limewater milky.
11	C		 ☑A C₄H₁₀ molecule is butane and has a boiling point of -1°C ☑B C₄H₈ molecule is but-1-ene and has a boiling point of -6°C ☑C C₃H₇COOH molecule is butanoic acid and has a boiling point of 164°C ☑D C₄H₉OH molecule is butan-2-ol and has a boiling point of 100°C
12	D		■ A molecule has no C=C double bond and would not decolourise bromine solution ■ B molecule has no C=C double bond and would not decolourise bromine solution ■ C molecule has no COOH Carboxyl group and would not produce an acidic pH

		☑D Carboxyl -	☑D Carboxyl -COOH group has acid pH & C=C double bond decolourises bromine solution										
		Structure		О Н -С—С—Н	H O H H	-Н н	н о IСС-	H H H 					
12	ח	- On doran	H	1 H			H						
13	В	Formula	С	H ₆ O	C_4H_8O		C ₅ H ₁₀ O						
		Relationsh	•	then 2n=6	If n=4 then 2n	=8		then 2n=10					
		General Forn		H _{2n} O	C _n H _{2n} O		C,	₁ H _{2n} O					
			Cycloalkanes have a general formula of C _n H _{2n} .										
14	В	no of Carbo		<i>C</i> ₃	C ₄			<i>C</i> ₅					
1 1	D	Formula (C₃H ₆	C ₄ H ₈			C ₅ H ₁₀					
		gfm		12)+(6×1) = 42	(4×12)+(8×1)			?)+(10×1) = 70					
			•		n positive ions ar								
15	A	1		_	s formed by the			ne inner shells					
	/ \		•	•	sitive ions and n n a shared pair o	_		nd two nuclai					
					n a snarea pair c equired 600°C) elect	rons a	na iwo naciei					
					ty below 3g cm ⁻³	3							
16	В	1			equired density		:m ⁻³						
					required density								
		☑ A aluminiun	n is extracted	from ore by	electrolysis and	Al ₂ O ₃ i	s insolu	ıble in water					
17	Λ				forms an alkali								
1/		1		•	g copper ore wit								
					ead ore with car			onoxide					
					s not the electrol								
18	N				s not the electrol ⁱ Las aluminium is hi			l in FCS					
10	U		 ☑C electrons travel from aluminium to nickel as aluminium is higher than nickel in ECS ☑D electrons travel from aluminium to nickel through the connecting wires as aluminium is 										
		higher tha	higher than nickel in ECS										
		Electrochemical	Magnesium	Zinc (D)	Iron (A)	Tin	(C)	Lead (B)					
		Series											
19	В		smalle										
		Voltage											
					largest Voltage								
		1 Br _{2(l)}	I	+ 2e ⁻	—► 2Br ⁻ (aq)								
		0	50_3^{2-} (aq) +	H ₂ O(l)	→	50 ₄ ² -(aq) + 2	H ⁺ (aq) + 2e ⁻					
20		Add 1+2 Br ₂₍₁₎	+ 50 ₃ ² -(aq) +	H ₂ O(1) + 2e ⁻	—► 2Br ⁻ (aq) +	50 ₄ ² -(aq) + 2	H ⁺ (aq) + 2e ⁻					
20			+ SO ₃ ² -(aq) +	1000	—► 2Br ⁻ (aq) +	€O 2-		H ⁺ (aq) + 28					
			+ 5O ₃ ²⁻ (aq) +		—▶ 2Br ⁻ (aq) +	_		H ⁺ (aq)					
		M	onomer	Repeating L		Polyme							
		H	CH ₃	CH₃ H I I	CH₃ H I I	CH₃ F	I CH₃	Ħ					
		C:	=-c	—ç—ç—	- — ç — ç —	- ċċ	ç-	-ċ					
21	A						4	H					
	/ \	Н	c=0	ċ=o	ċ—o	¢=0)	=0					
			ò	0	0	0	Ò						
			CH ₃	CH ₃	CH ₃	 CH₃	 CH₃						
		▼ A inon is ±b	-		ocess not the Os								
22	В	_	•		ald process which			ric acid HNO.					
66	D	· ·	•		cess not the Os [.]	•							
	l	1 1 2											

		☑D ammonia NH3 is the product of the Haber Process not the Ostwald Process
23	С	 ☑ A All ²²²Rn atom have same half-life due to having the same proton: neutron ratio ☑ B All ²²²Rn atom have same half-life due to having the same proton: neutron ratio ☑ C ²²²Rn has p:n ratio of 136:86 and the half-life is the same for all atoms of ²²²Rn ☑ D The intensity of the radiation would change by having different size plants but the time taken for the radiation to halve (half-life) would remain the same.
24	D	 ☑ A alpha particles are stopped by paper ∴ would not be able to escape through skin ☑ B long half-life would result in radiation escaping for potentially years to come. ☑ C alpha particles are stopped by paper ∴ would not be able to escape through skin ☑ D an isotope with beta particles released which are able to escape the skin and a short half-life is the best combination for this treatment.
25	С	 ☑A Beaker is an inaccurate method to measure volume. ☑B Measuring cylinder is not as accurate as a 25cm³ pipette for measuring volume ☑C Most accurate method for measuring 25cm³ is to use a 25cm³ pipette. ☑D Conical flask is an inaccurate method of measuring volume as it has no markings

©JABchem2022

202	2 Nat	tional	5	Che	zm	istr	'y /	Mark	king	Schem	e		
Long Qu	Ans	wer		Reasoning									
1 a(i)	Ве	ta.	Sto	Radiation Mass Charge Stopped by Deflection Use		Mass Charge Stopped by Deflection Towo		Alpha 4 2 Paper ards neg		Alum Towards	inium positive thickness	Gamma No mass No charge Thick lead No defection Radiotherapy cancer	
1 a(ii)	Xei	non		$^{131}_{53} extbf{I} ightarrow ^0_{-1} extbf{e}$ +				¹³¹ Xe					
1 b(i)	15 c	lays		Fraction Number of half-lives 1 0 $\frac{1}{2}$ 1 1 half-life = $\frac{1}{4}$ $\frac{1}{8}$ 3 half-lives = $\frac{1}{4}$				•					
1b(ii)	Caesiu	m-137	remain	n in the envir	onments	for over 2	00 years	. The other rad	dioisotopes ha	nd some caesium-137 wo ve a half-life of in the o 2-3 months.			
2a	Graph s	howing:	The axes of the graph have suitable labels and units. All data points plotted box tolerance) with a drawn or plots joined accessed if linear sc					1 mark ted accurate th either a l ined. This mo	ely (within a half ine of best fit ark can only be				
2b	5.3	33		ı	Rate =	ΔQuant ΔTim	rity =	48 - 33	2 = 5.33	3 cm³ min ⁻¹			
2c	Mas flask + c		the f	flask. Mas	s can t	hen be u	sed to		e rate of r	gen gas escapes fro eaction by using ch			
2d	4	8	volun The	ne of hydr	ogen g tempe	gas will b rature w	e produ ill incre	iced.		ater means the san			
3a	ammor carbon		Prob	olem Solv	ing: go	athering	inforr	nation fro	m a passa	ge			
3b	1.6	25			32.5	% of 5k	ig =	32.5 100 × 5	kg = 1	.625kg			
3c	hydrogen	hydroxide	-	Solution T Acidic Solo Neutral So Alkaline So	ution lution	Concen	tration o	De of H ⁺ ions of H ⁺ ions of H ⁺ ions	= Conc	entration of OH ⁻ ions entration of OH ⁻ ions entration of OH ⁻ ions	S		
3d	Not to flamn		Prob	olem Solv	ing: go	athering	inforr	nation fro	m a passa	ge			
3e(i)	Contai elements e healthy plo	ssential to	heal cont	thy plant ains two	grow from	th. Diam nitroger	ımoniui 1, phos	m hydroge	n phospho d potassiu	lements essentia ate (NH4)2HPO4 am. A single nutri anents.			

©JABchem2022

3e(ii)	21.2	gfm (NH ₄) ₂ HPO ₄ : $(2\times14) + (8\times1) + (1\times1) + (1\times31) + (4\times16) = 132g$ (1 mark) % N = $\frac{(2\times14)}{132} \times 100 = 21.2\%$ (1 mark)
4a(i)	addition	HBr molecule adds across the C=C double bond by addition reaction. Molecules which add across a C=C double bond to form one product F2 Cl2 Br2 I2 H2 H2O HF HCI HBr HI
4a(ii)	H × Br	
4a(iii)	HCl or hydrogen chloride	H H
4b(i)	H H-C-Br H	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
4b(ii)	Vinegar	Pure ethanoic acid (old name acetic acid) is diluted in water to make vinegar.
5	Open Question:	3 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. 2 mark answer Demonstrates a limited understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood. Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that the chemistry within the problem is understood.
6a	2-methylbutane	2-methylbutane Methyl-CH ₃ Longest carbon chain has four carbons (no C=C double bonds)
6b(i)	Fuel	A fuel is a substance which burns to release heat energy
6b(ii)	C ₅ H ₁₂ + 8O ₂ ↓ 5CO ₂ + 6H ₂ O	$C_5H_{12} + 8O_2 \longrightarrow 5CO_2 + 6H_2O$
6b(iii)	10.032	heat energy = specific heat capacity \times mass \times change in Temperature E_h = C \times M \times ΔT E_h = 4.18 kJ kg ⁻¹ °C ⁻¹ \times 0.2kg \times 12°C E_h = 10.032 kJ

Ta(i) A3.9	:		ı							-
Problem Solving: Drawing conclusion from table of information increase in boiling point increase in boiling boiling increase in boiling increase in boiling increase in boiling increase in boiling boiling increase in boiling increa	6b(iv)	copper 200cm³ beaker water draught shield Isopentane spirit								
Balance or Weighing Bottle			gfm NaCl :	= (1x	23)+(1×35.5	5) = 23+35.5	= 58.5g			
Balance or Weighing Bottle	70(i)	43.9	n o. of mol	= v ol	ume x c onc	entration = ().5 litres X	1.5 m	ol (-1 = 0.7	'5mol
Balance or Weighing Bottle Tb(i) 106.7 Average Volume = \frac{105 + 107 + 108}{3} = \frac{320}{3} = 106.7°C	/ 4(1)		mass = no	of m	ol x afm =	0.75mol x 58	5a mol-1 =	43 9a		
Weighing Bottle Tb(i) 106.7 Average Volume = \frac{105 + 107 + 108}{3} = \frac{320}{3} = 106.7°C		Ralance or	110.		X 3 /111	5.7 Gillor 7. GG.	O g 11101	10.29		
Tb(ii) 106.7 Average Volume = \frac{105 + 107 + 108}{3} = \frac{320}{3} = 106.7°C \[\begin{array}{c c c c c c c c c c c c c c c c c c c	7a(ii)									
Table showing: Concentration (mol l'1) Boiling Point (°C)	71					105 + 107	+ 108	37	20	
Table showing: 0.5	/ b (i)	106.7	Ave	rage	e Volume =	3		= -	 = 10	J6.7°C
To Table showing: 1.0 104.0 1.5 106.7					Concentra	tion (mol l ⁻¹)	Boilin	g Poin	† (°C)	
To Line Graph Increase in concentration, increase in boiling point Sulphuric acid Sulphuric acid Sulphuric acid A metal Abydroxide Sulphuric acid A metal Abydroxide Sulphuric acid Sulphuric acid A metal Abydroxide Sulphuric acid Sulphuric acid Sulphuric acid A metal Abydroxide Sulphuric acid Sulphuric acid Sulphuric acid A metal Carbonate Sulphuric acid Sulphuric a	7h(ii)	Table showing:								
To Line Graph Increase in concentration, increase in boiling point Ba Sulphuric acid Sulphuric acid Sulphuric acid Sulphuric acid Sulphuric acid Acid Sulphuric acid Sulphuric acid Sulphuric acid Acid Sulphuric acid Sodium Soluble Soluble Soluble Soluble Soluble Soluble Soluble	7 D (11)			-			_			
Toda	7	1				<u>.</u>		100.7		
Salt	/ C									
Sulphuric acid Sodium Carbonate Sulphuric acid Sodium Sulphuric acid Sodium Carbonate Sulphuric acid Sodium Sodium Sulphuric acid Sodium Sulphuric acid Sodium Sulphuric acid Sodium Sulphuric acid Sodium Sodium Sulphuric acid Sodium Sulphuric acid Sodium Sulphuric acid Sodium	7d		Problem S	olvin	g: Drawing	conclusion fr	om table	of in	formatio	on
Sulphuric acid sulphuric acid sulphuric acid sulphuric acid acid metal hydroxide sulphuric acid sulphuric acid hydroxide sulphuric acid sulphuric acid metal carbonate sulphate sodium sodium sodium sodium sodium sodium sodium sodium sulphate sodium carbonate sulphate sodium carbonate sodium sulphate sodium sulphate sodium sulphate sodium sulphate barium hydroxide sodium sodium sodium sodium sulphate sodiuble soluble		mer case in Bennig point			metal		1.			
Sulphuric acid sulphuric acid acid + metal hydroxide sulphuric acid + barium barium sulphate + water acid + metal carbonate sulphuric acid + sodium sulphate + water + carbon dioxide sulphuric acid + sodium sulphate + water + carbon dioxide sulphuric acid + sodium sulphate + water + dioxide sulphuric acid + metal - salt + hydrogen sulphuric acid + metal - salt + hydrogen sulphuric acid + magnesium - magnesium + hydrogen sulphuric acid + magnesium - magnesium sulphate + hydrogen sulphuric acid + magnesium - magnesium sulphate + hydrogen sulphuric acid + in the fizzing will stop. More carbonate is added and stirred until the fizzing stops again. This is repeated until adding carbonate does not start to fizz showing that there is no acid remaining. 8d barium sulphate Salt copper sulphate barium sulphate sodium sulphate magnesium sulphate soluble solu			acid	+		→	salt	+	water	
Sulphuric acid Sulphuric acid			sulphuric ac	id +		→		+	water	
8b Hydrogen Acid	8a	sulphuric acid					·			
Bb Hydrogen Acid			acid	+		le →	salt	+	water	
Bb Hydrogen Acid			sulphuric ac	id +		. →		+	water	
Hydrogen Hydrogen Acid + carbonate					•	.	suipnaie			canbon
Hydrogen acid + metal - salt + hydrogen sulphuric acid + magnesium - sulphate + hydrogen sulphuric acid + magnesium - sulphate + hydrogen sulphate + hydrogen Sodium carbonate will react with sulphuric acid to form sodium sulphate, water and carbon dioxide. When the carbonate runs out, the fizzing will stop. More carbonate is added and stirred until the fizzing stops again. This is repeated until adding carbonate does not start to fizz showing that there is no acid remaining. 8d barium sulphate Salt copper sulphate barium sulphate sodium sulphate magnesium sulphate Solubile soluble solubl			acid	+		e →	salt	+	water	+
Bb Hydrogen acid + metal			sulphuric ac	id +		→		+	water	+
Sulphuric acid + magnesium	8b	Hydrogen			carbonate	2	sulphate			dioxide
BC Don't start to fizz when more carbonate is added and stirred until the fizzing stops again. This is repeated until adding carbonate does not start to fizz showing that there is no acid remaining. Bd Barium sulphate Sodium carbonate will react with sulphuric acid to form sodium sulphate, water and carbon dioxide. When the carbonate runs out, the fizzing will stop. More carbonate is added and stirred until the fizzing stops again. This is repeated until adding carbonate does not start to fizz showing that there is no acid remaining. Salt copper sulphate barium sulphate sodium sulphate magnesium sulphate soluble Solublity soluble insoluble soluble Reaction of acids to A neutralisation reaction is the reaction of an acid with a base to form			acid	+	metal	-	salt	+ h	nydroger	1
Don't start to fizz when more carbonate is added when the carbonate runs out, the fizzing will stop. More carbonate is added and stirred until the fizzing stops again. This is repeated until adding carbonate does not start to fizz showing that there is no acid remaining. 8d barium sulphate Solubility Soluble Reaction of acids to A neutralisation reaction is the reaction of an acid with a base to form			sulphuric ac	id +	magnesiur	n —	_	+	hydrogen	
when more carbonate is added and stirred until the fizzing stops again. This is repeated until adding carbonate is added and stirred until the fizzing stops again. This is repeated until adding carbonate does not start to fizz showing that there is no acid remaining. Salt		Don't start to fizz	·							iter and carbon
is added to fizz showing that there is no acid remaining. 8d barium sulphate Solubile insoluble soluble soluble Reaction of acids to A neutralisation reaction is the reaction of an acid with a base to form	80		dioxide. Whe	n the	carbonate run	ns out, the fizzi	ng will stop	o. More	carbonate	e is added and
barium sulphate Salt copper sulphate barium sulphate sodium sulphate magnesium sulphate							eated until	adding	carbonate	aoes not start
Reaction of acids to A neutralisation reaction is the reaction of an acid with a base to form	8d	barium sulphate	Salt		per sulphate	barium sulpha	te sod		nate mo	
$m{\mathcal{R}}m{\mathcal{O}}$	_	•		satio			on of an		ith a ba	
	8e	form water								-5 . • • . 111

9a	Answer including one from:	Same	Atomic nur Number of			Different Mass number Number of neutro							
			h a full out		are v	•							
9b	Full outer shell	Element Electron Arrangement	Helium 2	Neon 2,8		Argon 2,8,8	2,8,1		Xenon 8,18,18,8	Radon 2,8,18,32,18,8			
9c(i)	Equation showing:		XeF ₂	+	F	- 2 –	-	>	KeF6				
9c(ii)	covalent molecular	structure. attraction structure.	Xenon hexafluoride is covalent as it contains only non-metals atoms in its structure. The melting point of 49°C indicates that weak intermolecular attractions are found between molecules giving a covalent molecular structure. The melting point is too low for a covalent network structure.										
9c(iii)A	35		Catalysts speed up reactions without being used up in that reaction. The came mass of catalyst at the start remains at the end.										
9c(iii)B	£277.60		alyst must	be obto	ined	from fou	ır 10g	tubs.	4 = £27	7.60			
10a	Answer containing:	Family of a	compounds			ar/same o eral forn		al prop	erties				
10b(i)	Hydroxyl group			-O-	H	O - C carl	— (DH oup					
10b(ii)	Secondary	H—C—	H CH ₃ H C C C C I I I OH H H	—н	The c	eircled carb 2 carb 1 hydr 1 oxyg	ons ogen	vn has att	tached to	it:			
		Structure			Name			Number of hydrogens attached to carbon with functional group		1 1 9 0 6 0 1 11			
		H-C-C- H H	Ч Ч Ч -С—С—С— Н Н Н	ОН	p	oentan-1-ol		2		primary			
		н-с-с	1 1 1 1			thylbutan-	1-ol		2	primary			
10b(iii)	One structure from:		: -нн н :	ОН	3-methylbutan-1-ol		1-ol	2		primary			
		НН-С-НН Н—С—С—С—ОН Н _{Н-С} -н Н		OH 2	2,2-dimethylbutan-1-ol		n-1-ol	2		primary			
		н-с-	H OH _H -C-HH	—н	2-me	thylbutan-	2-ol		0	tertiary			
11a(i)	Relights a glowing splint	Gas Gas Test	Oxy relights a g	ygen lowing spli	nt	Hydro burns wit			Carbon Di ns lime wa				

11a(ii)	K⁺ClO₃⁻	K is in group 1 and forms K^+ ions. Negative ion must balance the charge of the positive ion \therefore ClO_3^-										
11b(i)	Releases energy to surroundings	Type Exoth	of Reaction hermic	Definition ction which releases energy to surroundings ction which takes in energy from the surroundings								
11b(ii)	Potassium				ne Colour Green Lilac ange-red Vellow			Element Copper Strontium Lithium	I C	on F	ilame Colour Blue-green Red Red	
11c	2.4	$\begin{aligned} & \textbf{gfm } C_6 \textbf{H}_{12} O_6 = (6 \times 12) + (12 \times 1) + (6 \times 16) = 72 + 12 + 96 = 180g \\ & \textbf{no. of mol} = \frac{\textbf{mass}}{\textbf{gfm}} = \frac{2.25}{180} = 0.0125 \textbf{mol} \\ & \textbf{C}_6 \textbf{H}_{12} \textbf{O}_6 + 6 \textbf{O}_2 \longrightarrow 6 \textbf{CO}_2 + 6 \textbf{H}_2 \textbf{O} \\ & \textbf{1mol} & \textbf{6mol} \\ & \textbf{0.0125mol} & \textbf{0.075mol} \\ & \textbf{gfm } O_2 = 2 \times 16 = 32g \\ & \textbf{mass} = \textbf{no. of mol} \times \textbf{gfm} = 0.075 \times 32 = 2.4g \end{aligned}$										
12a(i)	decreases		lement it Radius (p		Na 160	Mg 140	Al 124	Si 114	P 109	5 104	<i>C</i> I 100	
12a(ii)	increases		Group 1 E Covalent Ro			H 32	Li 130	Na 160	K 200	Rb 215		
12a(iii)	201	Covaler Di	o 2 Element nt Radius (p fference rediction		Be 99		Mg 140	34	Ca 174	27	Sr - - -	
12b	234		Radius of I between n		•					234pm	,	
12c(i)	2,8	sodium a	tom Na = 2	,8,1		∴ sod	ium ion	Na⁺ = 7	2,8			
12c(ii)	Na ⁺ has less occupied electron shells				Particle n Arrang pied elec		Na a 2,8 Is 3	3,1	Na ⁺ ion 2,8 2			
13	Open Question:	Demonstration understand involved. A the chemist logically constatement involved and these to re	2 mark answer Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.				Demonstr understar involved some stat relevant t that at le chemistry	1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.				