Classification

CS145 Fall 2014

Classification based on Association

- Classification rule mining versus
 Association rule mining
 - ▶ Aim
 - ▶ A small set of rules as classifier
 - ▶ All rules according to minsup and minconf
 - Syntax
 - $\rightarrow X \rightarrow y$
 - $\rightarrow X \rightarrow Y$

Why & How to Integrate

- Both classification rule mining and association rule mining are indispensable to practical applications.
- The integration is done by focusing on a special subset of association rules whose right-hand-side are restricted to the classification class attribute.
 - ► CARs: class association rules

CBA: Three Steps

- Discretize continuous attributes, if any
- Generate all class association rules (CARs)
- Build a classifier based on the generated CARs.

Our Objectives

- ► To generate the complete set of CARs that satisfy the user-specified minimum support (minsup) and minimum confidence (minconf) constraints.
- ▶ To build a classifier from the CARs.

Three Contributions

- ▶ It proposes a new way to build accurate classifiers.
- It makes association rule mining techniques applicable to classification tasks.
- It helps to solve a number of important problems with the existing classification systems, including:
 - understandability problem
 - discovery of interesting or useful rules
 - ▶ Disk v.s. Memory

Rule Generator: Basic Concepts

Ruleitem

```
<condset, y> :condset is a set of items, y is a class label
Each ruleitem represents a rule: condset->y
```

- condsupCount
 - ▶ The number of cases in D that contain condset
- rulesupCount
 - ► The number of cases in D that contain the condset and are labeled with class y
- ► Support=(rulesupCount/|D|)*100%
- Confidence=(rulesupCount/condsupCount)*100%

RG: Basic Concepts (Cont.)

- Frequent ruleitems
 - A ruleitem is <u>frequent</u> if its support is above *minsup*
- Accurate rule
 - A rule is <u>accurate</u> if its confidence is above *minconf*
- Possible rule
 - For all ruleitems that have the same condset, the ruleitem with the highest confidence is the <u>possible</u> <u>rule</u> of this set of ruleitems.
- The set of class association rules (CARs) consists of all the **possible** rules (PRs) that are both **frequent** and **accurate**.

RG: An Example

- A ruleitem: $\{(A,1),(B,1)\}$, $\{(class,1)\}$
 - assume that
 - ▶ the support count of the condset (*condsupCount*) is 3,
 - ▶ the support of this ruleitem (*rulesupCount*) is 2, and
 - |D|=10
 - then $(A,1),(B,1) \rightarrow (class,1)$
 - \blacktriangleright supt=20% (rulesupCount/|D|)*100%
 - ► confd=66.7% (rulesupCount/condsupCount)*100%

RG: The Algorithm

```
1 F_1 = \{ \text{large 1-ruleitems} \};
2 CAR_1 = genRules(F_1);
3 prCAR_1 = pruneRules (CAR_1); //count the item and class occurrences to
                                   determine the frequent 1-ruleitems and prune it
4 for (k = 2; F_{k-1} \neq \emptyset; k++) do
        C_k = \text{candidateGen}(F_{k-1}); //generate the candidate ruleitems C_k
                                      using the frequent ruleitems F_{k-1}
     for each data case d \in D do //scan the database
        C_d = ruleSubset (C_k, d); //find all the ruleitems in C_k whose condsets
                                   are supported by d
8
       for each candidate c \in C_d do
9
         c.condsupCount++;
         if d.class = c.class then
10
          c.rulesupCount++; //update various support counts of the candidates in C<sub>k</sub>
11
        end
12
      end
```

RG: The Algorithm(cont.)

Class Builder M1: Basic Concepts

- ▶ Given two rules r_i and r_j , define: $r_i > r_j$ if
 - ▶ The confidence of r_i is greater than that of r_j , or
 - ► Their confidences are the same, but the support of r_i is greater than that of r_j , or
 - ▶ Both the confidences and supports are the same, but r_i is generated earlier than r_i .
- Our classifier is of the following format:
 - ► $\langle r_1, r_2, ..., r_n, default_class \rangle$, ► where $r_i \in R$, $r_a \succ r_b$ if $b \gt a$

M1: Three Steps

The basic idea is to choose a set of high precedence rules in R to cover D.

- Sort the set of generated rules R
- ▶ Select rules for the classifier from R following the sorted sequence and put in C.
 - ► Each selected rule has to correctly classify at least one additional case.
 - Also select default class and compute errors.
- ▶ Discard those rules in C that don't improve the accuracy of the classifier.
 - Locate the rule with the lowest error rate and discard the rest rules in the sequence.

A	В	C	D	E	Class
0	0	1	1	0	Y
0	0	0	1	1	N
0	1	1	1	0	Y
1	1	1	1	0	Y
0	1	0	0	1	N

RuleItemsets	Support
BY	40%
CY	60%
DY	60%
EN	40%
BCY	40%
BDY	40%
CDY	60%
BCDY	40%

 $Min_support = 40\%$ $Min_conf = 50\%$

Rules	Confidence	Support
$B \rightarrow Y$	66.7%	40%
$C \rightarrow Y$	100%	60%
$D \rightarrow Y$	75%	60%
$E \rightarrow N$	100%	40%
$BC \rightarrow Y$	100%	40%
$BD \rightarrow Y$	100%	40%
$CD \rightarrow Y$	100%	60%
$BCD \rightarrow Y$	100%	40%

Rules	Confidence	Support
$C \rightarrow Y$	100%	60%
$CD \rightarrow Y$	100%	60%
$E \rightarrow N$	100%	40%
$BC \rightarrow Y$	100%	40%
$BD \rightarrow Y$	100%	40%
$BCD \rightarrow Y$	100%	40%
$D \rightarrow Y$	75%	60%
$B \rightarrow Y$	66.7%	40%

A	В	C	D	E	Class
0	0	1	1	0	Y
0	0	0	1	1	N
0	1	1	1	0	Y
1	1	1	1	0	Y
0	1	0	0	1	N

Rules	Confidence	Support
$C \rightarrow Y$	100%	60%
$CD \rightarrow Y$	100%	60%
$E \rightarrow N$	100%	40%
$BC \rightarrow Y$	100%	40%
$BD \rightarrow Y$	100%	40%
BCD→Y	100%	40%
$D \rightarrow Y$	75%	60%
$B \rightarrow Y$	66.7%	40%

A	В	C	D	E	Class
0	0	1	1	0	Y
0	0	0	1	1	N
0	1	1	1	0	Y
1	1	1	1	0	Y
0	1	0	0	1	N

Rules	Confidence	Support
C→Y	100%	60%
$CD \rightarrow Y$	100%	60%
$E \rightarrow N$	100%	40%
$BC \rightarrow Y$	100%	40%
$BD \rightarrow Y$	100%	40%
$BCD \rightarrow Y$	100%	40%
$D \rightarrow Y$	75%	60%
$\mathbf{B} \rightarrow \mathbf{Y}$	66.7%	40%

Default classification accuracy 60%

A	В	C	D	E	Class
0	0	1	1	0	Y
0	0	0	1	1	N
0	1	1	1	0	Y
1	1	1	1	0	Y
0	1	0	0	1	N

Rules	Confidence	Support
$C \rightarrow Y$	100%	60% ✓
$CD \rightarrow Y$	100%	60%
$E \rightarrow N$	100%	40%
$BC \rightarrow Y$	100%	40%
$BD \rightarrow Y$	100%	40%
$BCD \rightarrow Y$	100%	40%
$D \rightarrow Y$	75%	60%
$B \rightarrow Y$	66.7%	40%

A	В	C	D	E	Class
0	0	1	1	0	Y
0	0	0	1	1	N
0	1	1	1	0	Y
1	1	1	1	0	Y
0	1	0	0	1	N

Rules	Confidence	Support
$C \rightarrow Y$	100%	60% ✓
$CD \rightarrow Y$	100%	60%
E→N	100%	40%
$BC \rightarrow Y$	100%	40%
$BD \rightarrow Y$	100%	40%
$BCD \rightarrow Y$	100%	40%
$D \rightarrow Y$	75%	60%
$B \rightarrow Y$	66.7%	40%

A	В	C	D	E	Class
0	0	1	1	0	Y
0	0	0	1	1	N
0	1	1	1	0	Y
1	1	1	1	0	Y
0	1	0	0	1	N

Rules	Confidence	Support
$C \rightarrow Y$	100%	60% ✓
$CD \rightarrow Y$	100%	60% 🗶
$E \rightarrow N$	100%	40% ✓
$BC \rightarrow Y$	100%	40%
$BD \rightarrow Y$	100%	40%
BCD→Y	100%	40%
$D \rightarrow Y$	75%	60%
$B \rightarrow Y$	66.7%	40%

A	В	C	D	E	Class
0	0	1	1	0	Y
0	0	0	1	1	N
0	1	1	1	0	Y
1	1	1	1	0	Y
0	1	0	0	1	N

Rules	Confidence	Support
$C \rightarrow Y$	100%	60% ✓
$CD \rightarrow Y$	100%	60% 🗶
$E \rightarrow N$	100%	40% ✓
$BC \rightarrow Y$	100%	40% 🗶
$BD \rightarrow Y$	100%	40% ×
BCD→Y	100%	40% 🗶
$D \rightarrow Y$	75%	60% 🗶
$B \rightarrow Y$	66.7%	40% 🗶

M1: Algorithm

- 1 R = sort(R); //Step1:sort R according to the relation ">"
- ▶ 2 **for** each rule $r \in R$ in sequence **do**
- $ightharpoonup 3 temp = \emptyset;$
- 4 for each case $d \in D$ do //go through D to find those cases covered by each rule r
- \mathbf{if} d satisfies the conditions of r then
- store d.id in *temp* and mark r if it correctly classifies d;
- \rightarrow 7 **if** *r* is marked **then**
- \triangleright 8 insert r at the end of C; //r will be a potential rule because it can correctly classify at least one case d
- 9 delete all the cases with the ids in *temp* from D;
- ▶ 10 selecting a default class for the current C; //the majority class in the remaining data
- ▶ 11 compute the total number of errors of C;
- ▶ 12 **end**
- ▶ 13 end // Step 2
- ▶ 14 Find the first rule p in C with the lowest total number of errors and drop all the rules after p in C;
- ▶ 15 Add the default class associated with p to end of C, and return C (our classifier). //Step 3

M1: Two conditions it satisfies

- ► Each training case is covered by the rule with the highest precedence among the rules that can cover the case.
- ► Every rule in C correctly classifies at least one remaining training case when it is chosen.

M1: Conclusion

- ► The algorithm is simple, but inefficient especially when the database is not resident in the main memory. It needs too many passes over the database.
- ► The improved algorithm M2 takes slightly more than one pass.