ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р 56360— 2015

Глобальная навигационная спутниковая система

АППАРАТУРА СПУТНИКОВОЙ НАВИГАЦИИ ДЛЯ ОСНАЩЕНИЯ КОЛЕСНЫХ ТРАНСПОРТНЫХ СРЕДСТВ КАТЕГОРИИ М, ИСПОЛЬЗУЕМЫХ ДЛЯ КОММЕРЧЕСКИХ ПЕРЕВОЗОК ПАССАЖИРОВ

Общие технические требования

Издание официальное

Предисловие

- 1 РАЗРАБОТАН Обществом с ограниченной ответственностью «НИИ Прикладной Телематики» (ООО «НИИ ПТ»)
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 363 «Радионавигация»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 19 марта 2015 г. № 140-ст
 - 4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0—2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Содержание

1	Область применения	1
2	Нормативные ссылки	1
3	Термины и определения	2
4	Обозначения и сокращения	4
5	Общие положения	4
6	Состав аппаратуры спутниковой навигации	5
7	Общие требования к аппаратуре спутниковой навигации	6
8	Требования к функциональным модулям и компонентам аппаратуры спутниковой навигации	7
9	Требования к интерфейсам передачи данных	. 10
	Э Требования к электропитанию	
11	Требования электробезопасности	. 11
	2 Требования к электромагнитной совместимости	
13	З Требования по стойкости к внешним воздействиям	.12
	\$ Конструктивные требования	
	5 Требования к надежности	
	3 Требования к установке аппаратуры спутниковой навигации	
	7 Требования по эргономике и технической эстетике	
	З Требования по безопасности и экологической чистоте	
	Э Требования к маркировке	
20	Требования к упаковке, транспортированию и хранению	.14
	риложение А (обязательное) Спецификация протокола транспортного уровня	
	риложение Б (обязательное). Спецификация протокола передачи мониторинговой информации…	.28
П	риложение В (обязательное) Спецификация протокола уровня поддержки услуг и спецификация сервисов предоставления услуг	.43
Бі	иблиография	.68

Введение

Настоящий стандарт входит в комплекс стандартов «Глобальная навигационная спутниковая система. Аппаратура спутниковой навигации для оснащения колесных транспортных средств».

Установленные в стандарте общие технические требования к аппаратуре спутниковой навигации для оснащения транспортных средств категории М, используемых для коммерческих перевозок пассажиров, необходимы для обеспечения унификации и совместимости аппаратных и программных средств, функционирующих в рамках автоматизированных систем управления (диспетчеризации), мониторинга и контроля в сфере наземного автомобильного транспорта, создаваемых на основе применения глобальных навигационных спутниковых систем.

Настоящий стандарт может быть использован для обеспечения соблюдения требований технического регламента Таможенного союза «О безопасности колесных транспортных средств» в части оснащения аппаратурой спутниковой навигации транспортных средств категории М, используемых для коммерческих перевозок пассажиров.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Глобальная навигационная спутниковая система

АППАРАТУРА СПУТНИКОВОЙ НАВИГАЦИИ ДЛЯ ОСНАЩЕНИЯ КОЛЕСНЫХ ТРАНСПОРТНЫХ СРЕДСТВ КАТЕГОРИИ М, ИСПОЛЬЗУЕМЫХ ДЛЯ КОММЕРЧЕСКИХ ПЕРЕВОЗОК ПАССАЖИРОВ

Общие технические требования

Global navigation satellite system. Satellite navigation equipment to equip wheeled vehicles of category M used for commercial transportations of passengers. General technical requirements

Дата введения — 2015—07—01

1 Область применения

Настоящий стандарт распространяется на аппаратуру спутниковой навигации, предназначенную для оснащения колесных транспортных средств категории M, используемых для коммерческих перевозок пассажиров, и устанавливает общие технические требования к указанной аппаратуре.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 12.1.044—89 (ИСО 4589—84) Система стандартов безопасности труда. Пожаровзрывоопасность веществ и материалов. Наименование показателей и методы их определения

ГОСТ 9181—74 Приборы электроизмерительные. Упаковка, маркировка, транспортирование и хранение

ГОСТ 14192-96 Маркировка грузов

ГОСТ 14254—96 Степени защиты, обеспечиваемые оболочками (код IP)

ГОСТ 16019—2001 Аппаратура сухопутной подвижной радиосвязи. Требования по стойкости к воздействию механических и климатических факторов и методы испытаний

ГОСТ 23544—84 Жгуты проводов для автотракторного электрооборудования. Общие технические условия

ГОСТ 28147—89 Система обработки информации. Защита криптографическая. Алгоритм криптографического преобразования

ГОСТ 28751—90 Электрооборудование автомобилей. Электромагнитная совместимость. Кондуктивные помехи по цепям питания. Требования и методы испытаний

ГОСТ 29157—91 Совместимость технических средств электромагнитная. Электрооборудование автомобилей. Помехи в контрольных и сигнальных бортовых цепях. Требования и методы испытаний

ГОСТ 30378—95 Совместимость технических средств электромагнитная. Электрооборудование автомобилей. Помехи от электростатических разрядов. Требования и методы испытаний

ГОСТ Р 34.10—2012 Информационная технология. Криптографическая защита информации. Процессы формирования и проверки электромагнитной цифровой подписи

ГОСТ Р 34.11—2012 Информационная технология. Криптографическая защита информации. Функция хэширования

ГОСТ Р 50905—96 Автотранспортные средства. Электронное оснащение. Общие технические требования

ГОСТ Р 51321.1—2007(МЭК 60439-1:2004) Устройства комплектные низковольтные распределения и управления. Часть 1. Устройства, испытанные полностью или частично. Общие технические требования и методы испытаний

ГОСТ Р 54024—2010 Глобальная навигационная спутниковая система. Системы диспетчерского управления городским наземным пассажирским транспортом. Назначение, состав и характеристики бортового навигационно-связного оборудования

ГОСТ Р 55533—2013 Глобальная навигационная спутниковая система. Система экстренного реагирования при авариях. Методы испытаний модулей беспроводной связи автомобильной системы вызова экстренных оперативных служб

ГОСТ Р 56363—2015 Глобальная навигационная спутниковая система. Аппаратура спутниковой навигации для оснащения колесных транспортных средств. Методы испытаний на соответствие требованиям к электробезопасности, климатическим и механическим воздействиям

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если изменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется принять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 аппаратура спутниковой навигации; АСН: Аппаратно-программное устройство, устанавливаемое на объект навигации для определения его текущего местоположения, направления и скорости движения, поправки показаний часов по сигналам не менее двух действующих глобальных навигационных спутниковых систем, обмена данными с дополнительным объектовым оборудованием, а также для обмена информацией по сетям подвижной радиотелефонной связи.

3.2

глобальная навигационная спутниковая система; ГНСС: Навигационная спутниковая система, предназначенная для определения пространственных координат, составляющих вектора скорости движения, поправки показаний часов и скорости изменения поправки показаний часов потребителя ГНСС в любой точке на поверхности Земли, акватории Мирового океана, воздушного и околоземного космического пространства.

[ГОСТ Р 52928—2010, статья 1]

3.3

коммерческие перевозки: Перевозки пассажиров или грузов колесными транспортными средствами, связанные с осуществлением предпринимательской деятельности, в соответствии с законодательством государств — членов Таможенного союза.

[Технический регламент ТР ТС 018/2011 [1]]

3.4

координатно-временная информация: Информация о пространственно-временном состоянии одного объекта навигации или группы объектов навигации.

[ГОСТ Р 55524—2013, статья 3]

3.5

мониторинговая информация навигационно-информационной системы: Координатно-временная и телеметрическая информация, передаваемая от объектов навигации в навигационно-информационные центры.

Примечание — Разновидностью мониторинговой информации навигационно-информационной системы является мониторинговая информация в системах диспетчерского управления по ГОСТ Р 54024.

[ГОСТ Р 55524—2013, статья 7]

3.6

навигационно-информационная система; НИС: Автоматизированная система, основанная на реализации метода спутниковой радионавигации и предназначенная для проведения навигационных определений, передачи от объектов навигации мониторинговой информации и формирования на ее основе системной навигационной информации, предоставляемой потребителям в требуемом виде и с требуемой оперативностью.

[ГОСТ Р 55524—2013, статья 12]

3.7

навигационная информация: Сведения, прямо или косвенно используемые для определения пространственных координат, составляющих вектора скорости движения и поправки показаний часов потребителя.

[ГОСТ Р 52928—2010, статья А.4]

3.8 навигационный модуль ГНСС: Комплекс программно-аппаратных средств аппаратуры спутниковой навигации, предназначенный для определения текущих координат, параметров движения (направления и скорости) транспортного средства, а также времени по сигналам ГЛОНАСС, GPS и других глобальных навигационных спутниковых систем.

3.9

навигационный сигнал ГНСС: Радиосигнал, излучаемый навигационным космическим аппаратом ГНСС, несущий информацию о показаниях его часов, навигационное сообщение и предназначенный для потребителей ГНСС.

[ГОСТ Р 52928—2010, статья 6]

- 3.10 пространственно-временное состояние транспортного средства: Состояние транспортного средства, характеризующееся вектором состояния упорядоченной совокупностью пространственных координат, временных поправок шкалы времени объекта навигации относительно системной шкалы и составляющих вектора скорости транспортного средства.
- 3.11 **телеметрическая информация:** Совокупность данных о состоянии контролируемого объекта и обстановки в нем и/или вокруг него, передаваемых с контролируемого транспортного средства в НИС.

Примечание — Состав данных определяется в зависимости от категории транспортного средства и функций, выполняемых аппаратурой в рамках НИС.

- 3.12 **холодный старт АСН:** Выполнение первого навигационного определения при отсутствии исходных данных.
- 3.13 **горячий старт АСН:** Выполнение первого навигационного определения при наличии исходных данных и эфемеридной информации.
- 3.14 **перезахват:** Повторный захват сопровождаемого объекта при срыве сопровождения на время не более 60 с.
- 3.15 голосовая гарнитура: Устройство, предназначенное для осуществления двусторонней голосовой связи между водителем и диспетчером по сетям подвижной радиотелефонной связи посредством использования GSM/UMTS-модема, входящего в состав АСН.

4 Обозначения и сокращения

В настоящем стандарте применены следующие обозначения и сокращения:

ГЛОНАСС — глобальная навигационная спутниковая система Российской Федерации;

ПЗ-90 — государственная геоцентрическая система координат «Параметры земли 1990 года»:

программное обеспечение;

СКЗИ — средства криптографической защиты информации;

СТ — стандартная точность; ТС — транспортное средство; С/А — открытый код доступа;

CAN — Controller Area Network (сеть контроллеров, организованная в систему на основе по-

следовательной шины; в соответствии с [2]);

FIFO — First in — First out (порядок получения и выдачи данных по принципу «первым при-

шел — первым обслуживается»: блок данных, полученный первым, первым обрабаты-

вается/обслуживается/передается дальше на обработку);

GPRS — General Packet Radio Service (пакетная радиосвязь общего пользования);

GPS — Global Positioning System (глобальная навигационная спутниковая система Соединен-

ных Штатов Америки);

GSM — Global System for Mobile communications (глобальный цифровой стандарт для мобиль-

ной сотовой связи);

NMEA0183 — текстовый протокол обмена данными с навигационным оборудованием;

OSI — Open Systems Interconnection (базовая эталонная модель взаимодействия открытых

систем);

— код авторизации использования SIM-карты;

RS-232 — стандарт, описывающий интерфейс для последовательной передачи данных, поддер-

живающий асинхронную связь;

RS-485 — стандарт передачи данных по двухпроводному полудуплексному многоточечному по-

следовательному симметричному каналу связи;

SIM — Subscriber Identity Module (персональная универсальная многопрофильная идентифи-

кационная карта абонента, SIM-карта);

SMS — Short Messaging Service (служба коротких сообщений) — технология, позволяющая

осуществлять прием и передачу коротких текстовых сообщений по сетям подвижной

радиотелефонной связи;

TCP/IP — набор сетевых протоколов передачи данных, используемых в сетях, включая сеть Ин-

тернет;

UMTS — Universal Mobile Telecommunications System (универсальная система подвижной связи);

USB — Universal Serial Bus (универсальная последовательная проводная шина);

USIM — Universal Subscriber Identity Module — расширенный стандарт SIM-карты, принятый в

рамках UMTS;

WGS-84 — всемирная геодезическая система координат 1984 г.

5 Общие положения

- 5.1 Требования к АСН применяют в зависимости от категории ТС, для оснащения которых она предназначена, а также от функций, выполняемых АСН в рамках НИС.
 - 5.2 В соответствии с [1] установлены следующие категории ТС:
- а) Категория **М** TC, имеющие не менее четырех колес и используемые для перевозки пассажиров, включая:
 - 1) автомобили легковые, в том числе:
- категория M1 TC, используемые для перевозки пассажиров и имеющие помимо места водителя не более восьми мест для сидения,
 - 2) автобусы, троллейбусы, специализированные пассажирские ТС и их шасси, в том числе:
- категория M2 TC, используемые для перевозки пассажиров, имеющие кроме места водителя более восьми мест для сидения, максимальная масса которых не превышает 5 т:

- категория M3 TC, используемые для перевозки пассажиров, имеющие кроме места водителя более восьми мест для сидения, максимальная масса которых превышает 5 т.
- 5.3 АСН, предназначенную для оснащения колесных ТС категории М, используемых для коммерческих перевозок пассажиров, классифицируют следующим образом:
 - АСН, предназначенная для оснащения колесных ТС категории М1:
 - АСН, предназначенная для оснащения колесных ТС категорий М2 и М3.
- 5.4 АСН, предназначенная для оснащения колесных ТС категории М, используемых для коммерческих перевозок пассажиров, подлежит обязательному подтверждению соответствия в форме обязательной сертификации в порядке, предусмотренном [1], раздел V.

П р и м е ч а н и е — При применении АСН в сфере государственного регулирования обеспечения единства измерений она подлежит процедуре утверждения типа средств измерения в соответствии с [3].

- 5.5 Состав АСН указан в разделе 6.
- 5.6 В целях повышения уровня безопасности и эффективности перевозок к АСН может быть подключено дополнительное бортовое оборудование.
- 5.7 Состав и требуемые характеристики дополнительного бортового оборудования, подключаемого к АСН, устанавливаются заказчиком или изготовителем в зависимости от назначения ТС и НИС, в рамках которых планируется использовать АСН.
- 5.8 Общие требования к АСН, обеспечивающие применение дополнительного бортового оборудования, указаны в разделе 7.

6 Состав аппаратуры спутниковой навигации

- 6.1 АСН должна включать следующие основные функциональные модули и компоненты:
- а) навигационный модуль (включая приемник сигналов и антенну ГНСС);
- б) коммуникационный модуль, включающий:
- модем GSM/UMTS со слотом для установки в него персональной универсальной многопрофильной идентификационной картой абонента.

Примечание — Число слотов для установки SIM(USIM)-карт может быть более одного,

- персональную универсальную многопрофильную идентификационную карту абонента для работы в сетях подвижной радиотелефонной связи стандартов GSM 900/1800 и UMTS 900/2000 [SIM(USIM)-карта].

Примечание — SIM(USIM)-карта может не входить в комплект поставки АСН,

- antenny GSM/UMTS:
- в) модуль СКЗИ программно-аппаратное шифровальное (криптографическое) средство, реализующее алгоритмы криптографического преобразования информации.

П р и м е ч а н и е — Необходимость включения модуля СКЗИ в состав АСН определяет заказчик или изготовитель в зависимости от назначения ТС и НИС, в рамках которых планируется использовать АСН;

- г) модуль интерфейса пользователя, включающий:
- устройство отображения информации (дисплей) для водителя,
- кнопку подачи «Сигнала бедствия» и (или) кнопку вызова диспетчера.
- индикатор(ы) состояния АСН,
- органы управления АСН;
- д) модуль интерфейсов подключения оборудования;
- е) внутреннюю энергонезависимую память;
- ж) резервный источник питания (аккумуляторная батарея);
- и) акселерометр.

П р и м е ч а н и е — Вид конструктивного исполнения устройства отображения информации (дисплей) для водителя, кнопки подачи «Сигнала бедствия» и (или) кнопки вызова диспетчера, резервного источника питания и акселерометра (встроенный или внешний) определяет изготовитель АСН. В случае внешнего конструктивного исполнения этих устройств АСН должна в обязательном порядке обеспечивать их подключение.

6.2 Требования к функциональным модулям и компонентам АСН указаны в разделе 8.

7 Общие требования к аппаратуре спутниковой навигации

- 7.1 АСН должна определять пространственно-временное состояние ТС по сигналам не менее двух действующих глобальных навигационных спутниковых систем (ГЛОНАСС, GPS).
- 7.2 АСН должна обеспечивать возможность передачи и приема информации по сетям подвижной радиотелефонной связи стандартов GSM и UMTS посредством пакетной передачи данных или коротких текстовых сообщений.
 - 7.3 АСН должна обеспечивать передачу следующей мониторинговой информации:
 - 1) идентификационного номера АСН;
 - 2) параметров пространственно-временного состояния ТС:
 - географической широты местоположения ТС,
 - географической долготы местоположения ТС,
 - высоты местоположения ТС,
 - скорости движения ТС,
 - путевого угла ТС,
 - времени и даты фиксации пространственно-временного состояния ТС;
 - 3) признака нажатия кнопки подачи «Сигнала бедствия» и (или) кнопки вызова диспетчера.
- 7.4 В случае подключения дополнительного бортового оборудования АСН должна обеспечивать включение в состав мониторинговой информации и передачу соответствующих данных от этого оборудования.

П р и м е ч а н и е — Перечень информации от дополнительного бортового оборудования, включаемой в состав мониторинговой информации, в зависимости от функций, выполняемых АСН в рамках НИС, определяет заказчик или изготовитель АСН.

- 7.5 АСН должна обеспечивать возможность изменения периодичности передачи мониторинговой информации от 1 с до 24 ч.
- 7.6 При отсутствии возможности передачи информации по сетям подвижной радиотелефонной связи АСН должна обеспечивать автоматическое сохранение мониторинговой информации во внутренней энергонезависимой памяти АСН. Выгрузка сохраненной информации должна осуществляться автоматически сразу при возобновлении возможности передачи информации по сетям подвижной радиотелефонной связи.
- 7.7 По запросу АСН должна обеспечивать возможность осуществления голосовой связи по сетям подвижной радиотелефонной связи стандарта GSM/UMTS.

Примечание — Для осуществления двусторонней голосов<mark>ой связи между водителем и диспетчером используется подключаемая к АСН</mark> голосовая гарнитура.

- 7.8 В АСН должна быть обеспечена возможность обновления информации, хранящейся на персональной универсальной многопрофильной идентификационной карте абонента, по сетям подвижной радиотелефонной связи стандартов GSM/UMTS.
 - 7.9 АСН должна обеспечивать возможность настройки и смены версий ПО путем:
 - 1) непосредственного подключения к ней (с использованием специального ПО);
 - 2) удаленного подключения по беспроводным сетям.

7.10 Требования к аппаратуре спутниковой навигации, устанавливаемой на транспортные средства категории M1

- 7.10.1 АСН, устанавливаемая на ТС категории М1, кроме выполнения требований, указанных в 7.1—7.9, должна обеспечивать возможность подключения с целью управления, обработки и передачи (при необходимости) в диспетчерский центр информации дополнительного бортового оборудования:
 - таксометра;
 - видеорегистратора(ов);
 - голосовой гарнитуры;
 - устройства для принятия заказов от диспетчера;
- кнопки подачи «Сигнала бедствия» (в случае ее конструктивного исполнения в виде отдельного устройства);
- устройства отображения информации (дисплей) для водителя (в случае его конструктивного исполнения в виде отдельного устройства):
 - акселерометра (в случае его конструктивного исполнения в виде отдельного устройства).

Примечания

- 1 Под управлением понимается изменение параметров настройки (режима работы и т. п.) по беспроводным каналам связи.
- 2 Под обработкой информации следует понимать общий первичный анализ, фильтрацию и систематизацию информации (показаний датчиков, фото-, видео-, аудиофайлов, текстовых сообщений и пр.) с целью управления данной информацией.
- 7.10.2 Требования к интерфейсам для обмена данными с подключаемым дополнительным бортовым оборудованием указаны в разделе 9.

7.11 Требования к аппаратуре спутниковой навигации, устанавливаемой на транспортные средства категорий M2 и M3

- 7.11.1 АСН, устанавливаемая на ТС категорий М2 и М3, кроме выполнения требований, указанных в 7.1—7.9, должна обеспечивать возможность подключения с целью управления, обработки и передачи (при необходимости) информации дополнительного бортового оборудования:
 - видеорегистратора(ов), обеспечивающего(их) также возможность аудиозаписи;
 - датчика(ов) задымления и быстрого повышения температуры;
 - голосовой гарнитуры;
 - датчика(ов) уровня топлива, используемого для измерения уровня топлива в топливном баке ТС;
 - датчика подсчета входящих и выходящих пассажиров;
- голосового автоинформатора, используемого для воспроизведения аудиоинформации в целях информирования пассажиров, находящихся в салоне TC;
- переднего, заднего и бокового маршрутоуказателей, используемых для вывода визуальной информации о маршруте движения в целях информирования потенциальных пассажиров, находящихся снаружи TC;
- внутрисалонного информационного табло, используемого для вывода визуальной информации в целях информирования пассажиров, находящихся в салоне TC;
 - модема передачи данных по беспроводным локальным сетям, указанным в [4];
 - модема передачи данных по беспроводным сетям, отличным от GSM/UMTS;
- кнопки подачи «Сигнала бедствия» (в случае ее конструктивного исполнения в виде отдельного устройства);
- устройства отображения информации (дисплей) для водителя (в случае его конструктивного исполнения в виде отдельного устройства);
 - акселерометра (в случае его конструктивного исполнения в виде отдельного устройства).
- 7.11.2 Требования к интерфейсам для обмена данными с подключаемым дополнительным бортовым оборудованием указаны в разделе 9.
- 7.11.3 В АСН должна быть обеспечена возможность определения автоматического срабатывания датчика задымления и быстрого повышения температуры на борту ТС.
- 7.11.4 АСН должна обеспечивать немедленное формирование и передачу экстренного сигнала при нажатии кнопки подачи «Сигнала бедствия» и/или срабатывания датчика задымления и быстрого повышения температуры.

8 Требования к функциональным модулям и компонентам аппаратуры спутниковой навигации

8.1 Навигационный модуль

- 8.1.1 АСН должна определять текущее местоположение (широта, долгота, высота), направление и скорость движения ТС, привязанных к шкале времени UTC(SU) по сигналам ГНСС ГЛОНАСС стандартной точности в диапазоне частот L1.
- 8.1.2 В составе протоколов обмена данными навигационного приемника должен присутствовать протокол NMEA 0183 [5].
- 8.1.3 АСН должна обеспечивать определение навигационных параметров в системах координат ПЗ-90 и WGS-84 с возможностью преобразования полученных значений из одной системы координат в другую.
- 8.1.4 Доверительные границы допускаемой инструментальной погрешности (по уровню вероятности Р = 0.95) определения координат в плане при работе по сигналам ГЛОНАСС (*L*1, код СТ), GPS

- код (L1, код C/A) при скорости движения до 70 м/с и геометрическом факторе (GDOP) не более 4, не должны превышать по модулю 15 м.
 - 8.1.5 Частота выдачи навигационных данных должна быть не менее 1 Гц.
- 8.1.6 Навигационный модуль должен обеспечивать выполнение первого навигационного определения с заданной точностью в течение:
 - для холодного старта не более 60 с;
 - для горячего старта не более 5 с;
 - для перезахвата не более 3 с.
 - 8.1.7 Чувствительность входящего в состав АСН навигационного модуля должна быть не менее:
 - при поиске (обнаружении) сигналов ГНСС минус 163 дБВт;
 - при слежении за сигналами ГНСС и выдаче навигационного решения минус 188 дБВт.
- 8.1.8 Навигационный модуль должен обеспечивать слежение за сигналами ГЛОНАСС и GPS при воздействии импульсных помех, формируемых в полосе частот принимаемых сигналов ГНСС ГЛОНАСС и GPS, с параметрами, указанными в таблице 1, при уровне мощности полезного сигнала минус 161 дБВт (ГЛОНАСС) и минус 158 дБВт (GPS) соответственно.

Таблица 1 — Параметры импульсных помех

Наименование параметра	Значение
Пороговое значение помехи (пиковая мощность импульса), дБВт	Минус 10 дБВт
Длительность импульса, мс	≤1
Скважность	≥10

- 8.1.9 Навигационный модуль должен обеспечивать работу в режиме «только ГЛОНАСС» (в том числе принудительное переключение в этот режим) и соответствовать требованиям, указанным в 8.1.1—8.1.8.
- 8.1.10 В отношении безопасности применения антенна ГНСС (внешняя) должна соответствовать требованиям, указанным в [1] (пункт 113 приложения 10).
 - 8.1.11 Требования к установке внешней антенны ГНСС на ТС указаны в разделе 16.
- 8.1.12 Испытания АСН на соответствие требованиям, указанным в 8.1.10, проводят в соответствии с [6].

8.2 Коммуникационный модуль

8.2.1 Модем GSM/UMTS

- 8.2.1.1 Модем должен работать в диапазонах GSM 900 и GSM 1800, а также UMTS 900 и UMTS 2000, с поддержкой пакетной передачи данных и обеспечивать процедуру передачи управления при переходе из одного диапазона в другой.
 - 8.2.1.2 Модем GSM/UMTS должен удовлетворять требованиям, установленным в [7], [8], [9].
- 8.2.1.3 Испытания АСН на соответствие требованиям, указанным в 8.2.1.2, проводят в соответствии с ГОСТ Р 55533, раздел 6.

8.2.2 Персональная универсальная многопрофильная идентификационная карта абонента

- 8.2.2.1 SIM-карта абонента должна обеспечивать регистрацию АСН в сетях подвижной связи стандартов GSM/UMTS.
 - 8.2.2.2 SIM-карта абонента не должна запрашивать PIN-код при включении АСН.
- 8.2.2.3 На SIM-карте должен отсутствовать счетчик числа аутентификации в сети подвижной связи стандартов GSM/UMTS.

8.2.3 Антенна для коммуникационного модуля GSM/UMTS

8.2.3.1 АСН должна оснащаться внешней или внутренней антенной для коммуникационного модуля GSM/UMTS, обеспечивающей необходимое качество подвижной радиотелефонной связи стандартов GSM/UMTS в рабочем положении TC.

Примечание — Вид конструктивного исполнения антенны коммуникационного модуля GSM/UMTS (встроенный или внешний) определяет изготовитель АСН.

8.2.3.2 В отношении безопасности применения антенна для коммуникационного модуля GSM/ UMTS (внешняя) должна соответствовать требованиям, указанным в [1] (пункт 113 приложения 10).

8.2.3.3 Испытания АСН на соответствие требованиям, установленным в 8.2.3.2, проводят согласно [10].

8.3 Модуль средства криптографической защиты информации

8.3.1 Модуль СКЗИ должен обеспечивать реализацию криптографических алгоритмов, необходимых для вычисления квалифицированной электронной подписи, проведения процедур аутентификации и обеспечения защиты информации, обрабатываемой и хранимой в АСН и подлежащей защите в соответствии с [11].

П р и м е ч а н и е — К использованию в составе АСН рекомендованы модули СКЗИ, разработку и производство которых производят в соответствии с [12].

- 8.3.2 Реализованные в модуле СКЗИ криптографические алгоритмы должны соответствовать требованиям ГОСТ 28147, ГОСТ Р 34.10, ГОСТ Р 34.11.
- 8.3.3 Аутентификация образца АСН должна обеспечиваться на основании уникального криптографического ключа (ключевого документа), соответствующего заданному образцу АСН.

Модуль СКЗИ должен обеспечивать хранение криптографических ключей (ключевых документов) и выполнять криптографические преобразования в защищенной от вскрытия среде с изоляцией криптографического ключа.

8.4 Модуль интерфейса пользователя

- 8.4.1 Модуль интерфейса пользователя предназначен для обеспечения взаимодействия между АСН и водителем ТС и включает следующие элементы:
 - устройство отображения информации (дисплей) для водителя;
 - кнопка подачи «Сигнала бедствия»;
 - индикатор(ы) состояния АСН;
 - органы управления АСН.
- 8.4.2 Дисплей для водителя может быть встроенным в АСН или подключаться к аппаратуре как отдельное устройство.

П р и м е ч а н и е $\,$ Вид конструктивного исполнения дисплея (встроенный или внешний) определяет изготовитель АСН.

- 8.4.3 Кнопка подачи «Сигнала бедствия» предназначена для подачи экстренного сигнала по сетям подвижной радиотелефонной связи в диспетчерский центр.
- 8.4.4 Кнопка подачи «Сигнала бедствия» может быть встроенной в корпус АСН (модуль интерфейса пользователя) или размещаться отдельно и находится в зоне досягаемости с рабочего места водителя без изменения положения тела.

П р и м е ч а н и е — Вид конструктивного исполнения кнопки подачи «Сигнала бедствия» (встроенная или внешняя) определяет изготовитель АСН.

8.4.5 Кнопка подачи «Сигнала бедствия» должна быть защищена от непреднамеренного нажатия.

П р и м е ч а н и е — Конкретный способ защиты кнопки подачи «Сигнала бедствия» от непреднамеренного нажатия определяет изготовитель АСН.

- 8.4.6 Индикаторы состояния должны отображать следующие функциональные состояния АСН:
- подключение бортового питания;
- работа модуля ГНСС;
- нахождение АСН в сети подвижной радиотелефонной связи:
- прием (передача) данных по сети подвижной радиотелефонной связи (спутниковой связи при оборудовании ТС средствами спутниковой связи);
 - факт нажатия кнопки подачи «Сигнала бедствия».

8.5 Модуль интерфейсов подключения оборудования

8.5.1 Модуль интерфейсов подключения оборудования предназначен для обеспечения подключения компонентов АСН (в случае их внешнего конструктивного исполнения) и дополнительного бортового оборудования.

8.5.2 Требования к интерфейсам для обмена данными с подключаемым дополнительным бортовым оборудованием указаны в разделе 9.

8.6 Внутренняя энергонезависимая память

- 8.6.1 АСН должна иметь внутреннюю энергонезависимую память для хранения сообщений, которые не удалось передать по сетям подвижной радиотелефонной связи стандартов GSM 900/1800 и UMTS 900/2000 (например, ввиду отсутствия покрытия сети).
- 8.6.2 Объем внутренней энергонезависимой памяти должен обеспечивать возможность хранения не менее 150000 последовательно зарегистрированных наборов данных, включающих мониторинговую информацию.

Запись информации в энергонезависимую память АСН, выгрузка сохраненной информации из нее и передача по сетям подвижной радиотелефонной связи стандартов GSM/UMTS должны быть про-изведены в порядке FIFO.

- 8.6.3 В АСН должна быть реализована возможность считывания и очистки содержимого внутренней энергонезависимой памяти. Интерфейс обмена данными для считывания и очистки содержимого внутренней энергонезависимой памяти АСН определяет изготовитель аппаратуры.
- 8.6.4 Изготовитель АСН должен обеспечить необходимую степень защиты реализованного в АСН механизма для считывания и очистки содержимого энергонезависимой памяти АСН от несанкционированного использования.

8.7 Резервный источник питания

- 8.7.1 Резервный источник питания (аккумуляторная батарея) при отсутствии питания от бортовой электрической сети должен обеспечивать возможность непрерывной автономной работы АСН в течение не менее 4 ч в режиме передачи данных по каналу GSM/UMTS с периодичностью один раз в минуту и 15 мин работы в режиме голосовой связи (в случае использования в АСН встроенного дисплея время автономной работы должно составлять не менее 1 ч).
- 8.7.2 Должна быть обеспечена возможность контроля уровня заряда резервного источника питания (аккумуляторной батареи).
- 8.7.3 Срок службы аккумуляторной батареи должен быть определен производителем АСН и составлять не менее одного года.

8.8 Акселерометр

- 8.8.1 Акселерометр должен обеспечивать определение значений ускорения по направлениям трех осей ТС (продольной, поперечной, вертикальной) в задаваемые периоды времени.
 - 8.8.2 Ускорение ТС должно определяться с погрешностью не более 10 % в диапазонах:
 - от минус 24 g до плюс 24 g по направлению продольной оси:
 - от минус 8 а до плюс 8 а по направлению поперечной и вертикальной осей.

8.9 Соединительные кабели

- 8.9.1 Жгуты проводов для присоединения АСН со стороны ТС, коммутации компонентов АСН к основному блоку аппаратуры, подключения к исполнительным устройствам и датчикам должны быть оснащены электрическими соединителями, имеющими защиту от самопроизвольного разъединения.
 - 8.9.2 Технические требования к жгутам проводов по ГОСТ 23544.
- 8.9.3 Контакты в электрических соединителях кабелей и жгутов со стороны TC, используемых для присоединения ACH к TC в процессе сочленения и в сочлененном состоянии, должны быть защищены от взаимного замыкания.

9 Требования к интерфейсам передачи данных

- 9.1 Для обмена данными с подключаемым оборудованием в АСН должны быть реализованы следующие интерфейсы: RS-232, RS-485, CAN и USB.
 - 9.2 АСН должна иметь не менее двух дискретных и двух аналоговых входов.
- 9.3 Обмен данными АСН с НИС (аппаратно-программными комплексами) осуществляется с использованием протокола, общие требования к которому приведены в приложении А.
 - 9.4 Спецификация протокола передачи мониторинговой информации приведена в приложении Б.

9.5 Спецификация протокола уровня поддержки услуг и спецификация сервисов предоставления услуг приведена в приложении В.

10 Требования к электропитанию

- 10.1 АСН должна подключаться к бортовой системе питания ТС с номинальным напряжением 12 или 24 В.
 - 10.2 АСН должна:
- сохранять работоспособность при изменении рабочего напряжения питаний (среднего значения) от минус 15 % до плюс 15 % от номинального значения;
 - иметь защиту от обратной полярности напряжения;
 - обеспечивать защиту по току (предохранитель);
 - автоматически включаться при подаче бортового питания;
- корректно выключаться через 1 мин с момента отключения бортового питания, если в ее настройках не предусмотрена дальнейшая работа от аккумуляторной батареи.
 - В АСН должна быть предусмотрена диагностика заряда аккумуляторной батареи.

11 Требования электробезопасности

- 11.1 Сопротивление изоляции между электрическими цепями, указанными в технических условиях на АСН, должно быть не менее:
 - 20 МОм для нормальных условий применения;
 - 10 МОм при температуре 25 °C и относительной влажности воздуха до 80 %.
- 11.2 Электропроводка для подключения АСН к бортовой сети ТС и резервному источнику питания (аккумуляторной батарее) должна быть надежно закреплена и проложена таким образом, чтобы провода были хорошо защищены от механических и термических воздействий.
- 11.3 Питающие провода АСН должны быть защищены плавким предохранителем или автоматическим выключателем, находящимся настолько близко к источнику энергии, насколько это практически возможно. Диаметр проводов должен быть достаточно большим во избежание их перегрева. Провода должны быть хорошо изолированы. Если используют однополюсный переключатель, то он должен находиться на питающем проводе, а не на заземляющем.

12 Требования к электромагнитной совместимости

- 12.1 АСН при применении по назначению не должна создавать недопустимых электромагнитных помех (излучаемых и наведенных) другим техническим средствам (устройствам), установленным на ТС. АСН должна обладать достаточной устойчивостью к электромагнитным помехам (излучаемым и наведенным), обеспечивающей функционирование АСН в заданной электромагнитной обстановке.
- 12.2 В отношении помехоэмиссии (создаваемых АСН помех) установлены требования к следующим видам помех (излучаемых и наведенных АСН):
 - электромагнитные помехи, создаваемые АСН в диапазоне частот от 30 до 1000 МГц;
 - кондуктивные помехи по цепям питания.
 - 12.3 АСН должна быть устойчивой к воздействию следующих видов электромагнитных помех:
 - кондуктивные помехи по цепям питания;
 - кондуктивные помехи от емкостных и индуктивных соединений в сигнальных бортовых цепях;
 - помехи, обусловленные электромагнитным излучением в полосе частот от 20 до 2000 МГц;
 - электростатический разряд.
- 12.4 Требования к допустимым уровням электромагнитных помех, указанных в 12.2, создаваемых АСН, а также методы испытаний АСН на соответствие этим требованиям установлены в [6].
- 12.5 Требования по устойчивости АСН к электромагнитным помехам, указанным в перечислениях а) и в) 12.3, а также методы испытаний АСН на соответствие этим требованиям установлены в [6].
- 12.6 АСН должна соответствовать требованиям ГОСТ 29157 по устойчивости к помехам от емкостных и индуктивных соединений в сигнальных бортовых цепях. Параметры испытательных импульсов и требования к функциональному состоянию приведены в таблице 2.

T - C 0		–	
парпина 2-	— Параметры испытательных имп	упьсов и трерования к	стручки и онапъному состоянию
	epae. pserisiraresisirisis iliiri	JAIDOOD II I POOODAIIIAI II	apyringinerius ibrienily eeer esiiriile

Испытательный импульс	Число применяемых импульсов/ продолжительность испытаний	Степень жесткости воз- действия	Требуемое функциональное состояние по ГОСТ 28751
1	5000 имп.	IV	A
2	5000 имп.	IV	A
3a, 3b	14	IV	С

- 12.7 Испытания АСН на соответствие требованиям, установленным в 12.6, проводят по ГОСТ 29157, раздел 2.
- 12.8 АСН по устойчивости к электростатическому разряду на элементы корпусов компонентов АСН, органы управления и электрические соединители должна удовлетворять требованиям ГОСТ 30378. Параметры испытательных импульсов и требования к функциональному состоянию приведены в таблице 3.

Таблица 3 — Параметры испытательных импульсов и требования к функциональному состоянию

Вид разряда	Напряжение разряда, кВ	Число разрядов	Требуемое функциональное состояние по ГОСТ 28751
Контактный	±8	3	С
Воздушный	±15	3	С

12.9 Испытания АСН на соответствие требованиям, установленным в 12.6, проводят по ГОСТ 30378, раздел 5.

13 Требования по стойкости к внешним воздействиям

13.1 Требования по стойкости к климатическим воздействиям

- 13.1.1 По условиям эксплуатации АСН относится к группе В4 по 4.1 ГОСТ 16019 при степени жесткости 1.
- 13.1.2 Степень защиты основного блока АСН от проникновения пыли и влаги должна быть не ниже IP 51 по ГОСТ 14254.

Степень защиты от проникновения пыли и влаги компонентов АСН, указанных в 6.1 и исполненных в виде внешних устройств, подключаемых к основному блоку аппаратуры и располагаемых в кабине ТС, должна быть не ниже IP 40 по ГОСТ 14254.

Степень защиты компонентов АСН от проникновения пыли и влаги, исполненных в виде внешних устройств, подключаемых к основному блоку аппаратуры и располагаемых вне кабины (салона) ТС, должна быть не ниже IP 64 по ГОСТ 14254.

13.1.3 Испытания АСН на соответствие требованиям по стойкости аппаратуры к климатическим воздействиям проводят в соответствии с ГОСТ Р 56363.

13.2 Требования по стойкости к механическим воздействиям

- 13.2.1 ACH в эксплуатационных условиях должна обеспечивать стойкость к механическим воздействиям, характеристики которых установлены для группы В4 по ГОСТ 16019.
- 13.2.2 Испытания АСН на соответствие требованиям к механическим воздействиям проводят в соответствии с ГОСТ Р 56363.

14 Конструктивные требования

- 14.1 Конструкция АСН должна обеспечивать установку аппаратуры в ТС без разбора корпусов основного оборудования АСН и иметь элементы крепления для возможности монтажа в ТС.
- 14.2 В конструкции АСН должна быть предусмотрена возможность опломбирования аппаратной части аппаратуры.

15 Требования к надежности

- 15.1 АСН должна соответствовать требованиям надежности, установленным в ГОСТ Р 50905.
- 15.2 АСН должна обеспечивать возможность круглосуточного режима работы.
- 15.3 Время наработки на отказ АСН должно быть не менее 10000 ч; гарантийный срок эксплуатации АСН не менее трех лет; срок службы АСН не менее семи лет (кроме аккумуляторной батареи).

16 Требования к установке аппаратуры спутниковой навигации

- 16.1 АСН должны устанавливать в кабине водителя в зоне досягаемости с рабочего места водителя без изменения положения тела.
- 16.2 АСН, установленная на ТС, не должна ухудшать обзор водителю и препятствовать выполнению водителем действий по управлению ТС.
- 16.3 Если АСН укомплектована внешней антенной ГНСС и/или внешней антенной GSM/UMTS, то необходимые кабели от места установки антенн до места их подключения к АСН должны быть проложены таким образом, чтобы они были надежно закреплены и хорошо защищены от механических и термических воздействий.
- 16.4 Внешние антенны не должны экранироваться металлическими или металлосодержащими конструкциями или материалами, ослабляющими чувствительность приема внешних антенн.
- 16.5 Для защиты от климатических и механических воздействий антенны могут размещать под обтекателем (кожухом или фонарем) из радиопрозрачного материала.
- 16.6 Конструкция и размещение компонентов АСН и других устройств, подключаемых к АСН, не должны нарушать требований к травмобезопасности внутреннего оборудования ТС в соответствии с [1].

17 Требования по эргономике и технической эстетике

- 17.1 Для АСН, устанавливаемой на ТС на предприятии изготовителе ТС, требования по эргономике и технической эстетике определены изготовителем ТС.
- 17.2 При монтаже АСН вне предприятия изготовителя ТС требования по эргономике и технической эстетике определяет изготовитель АСН.

18 Требования по безопасности и экологической чистоте

- 18.1 АСН должна соответствовать требованиям безопасности, установленным в ГОСТ Р 51321.1, подраздел 7.4.
 - 18.2 АСН не должна:
 - содержать элементы и материалы, опасные для обслуживающего персонала;
 - в процессе работы производить эмиссию опасного электромагнитного излучения.
- 18.3 При изготовлении АСН не допускается применение легковоспламеняющихся материалов, выделяющих вредные вещества при горении. Применяемые при изготовлении АСН материалы должны соответствовать требованиям противопожарной безопасности по ГОСТ 12.1.044.
- 18.4 При повреждении или разрушении корпуса аккумуляторной батареи, а также коротком замыкании контактов аккумуляторной батареи или неисправности в цепи заряда аккумуляторной батареи, используемой в качестве резервного источника питания, она не должна выделять тепловую энергию, достаточную для возгорания окружающих веществ и предметов, а также дым, пары и аэрозоли, содержащие вещества, вредные для здоровья человека.

19 Требования к маркировке

- 19.1 Маркировка АСН в соответствии с ГОСТ 14192 должна быть четко видимой и соответствовать требованиям конструкторской документации АСН в части состава, места и способа нанесения.
 - 19.2 Маркировка АСН должна содержать:
 - товарный знак или название предприятия-изготовителя;
 - название изделия;

- обозначение;
- заводской номер предприятия-изготовителя;
- год изготовления;
- клеймо приемки для типа оборудования;
- маркировку соединителей;
- знак обращения на рынке;
- наименование страны изготовителя АСН.

Маркировка должна быть нанесена в доступном для осмотра без разборки с применением инструмента месте.

20 Требования к упаковке, транспортированию и хранению

20.1 Упаковка, транспортирование и хранение изделий должны соответствовать ГОСТ 9181.

Приложение А (обязательное)

Спецификация протокола транспортного уровня

А.1 Введение

А.1.1 Обмен данными между АСН, системами и аппаратно-программными комплексами осуществляется при помощи сетей подвижной радиотелефонной связи стандартов GSM.

А.1.2 Сетевая модель OSI имеет следующие уровни: физический, канальный, сетевой, транспортный, сеансовый, представления данных и приложений. Для передачи данных между АСН, системами и аппаратно-программными комплексами используют следующие протоколы: транспортный уровень — протокол TCP, сетевой уровень — протокол IP. Соответствие уровней сетевой модели OSI, стека протоколов TCP/IP и протоколов системы представлено в таблице А.1.

Таблица А.1 — Соответствие уровней сетевой модели OSI, стека протоколов TCP/IP и протоколов системы

	Модель OSI	Стек п	ротоколов TCP/IP		
Номер уровня	і пазвание уровня		Название уровня	Протоколы ТСР/ІР	Протоколы системы
7	7 Приложений		Приложений	FTP, HTTP, POP3,	Уровень поддержки
6	6 Представления данных			IMAP, telnet, SMTP, DNS, TFTP	услуг
5	Сеансовый				Транспортный уровень
4	Транспортный	3	Транспортный	TCP, UDP	TCP
3	Сетевой	2	Межсетевой	IP	IP
2	Канальный	1	Доступ к сети		
1	Физический				

А.1.3 Общая длина пакета протокола транспортного уровня не превышает значения 65535 байт.

А.2 Протокол транспортного уровня

А.2.1 Обеспечение маршрутизации

В качестве адресов маршрутизации используют идентификаторы аппаратно-программных комплексов, которые уникальны в рамках одной сети.

А.2.2 Механизм проверки целостности данных

Для части пакета транспортного уровня использован алгоритм вычисления циклического избыточного кода CRC-8

Для части пакета уровня поддержки услуг использован алгоритм вычисления циклического избыточного кода CRC-16.

А.2.3 Обеспечение надежности доставки

Отправляющая сторона после передачи пакета ожидает на него подтверждение в виде пакета определенного типа, содержащего идентификатор ранее переданного пакета и код результата его обработки на принимающей стороне. Ожидание составляет определенный промежуток времени, зависящий от типа используемого протокола транспортного уровня (значение данного параметра TL_RESPONSE_TO указано в таблице А.13).

После получения подтверждения отправляющая сторона производит анализ кода результата. Коды результатов обработки регламентированы протоколом и представлены в таблице А.14. Пакет считается недоставленным в том случае, если подтверждение не приходит по истечении времени TL_RESPONSE_TO. Недоставленные пакеты отправляют повторно (число попыток отправки регламентировано протоколом. В таблице А.13 указано значение данного параметра — TL_RESEND_ATTEMPTS). По достижении предельного числа попыток отправки канал передачи данных признают ненадежным и уничтожают установленную сессию (разрыв соединения в случае использования протокола TCP/IP в качестве транспортного протокола) и выполняют попытку создания новой сессии (соединения) через время, определяемое параметром TL_RECONNECT_TO (см. таблицу А.13).

А.3 Построение систем и аппаратно-программных комплексов на основе протокола транспортного уровня

А.3.1 Все сервисы в рамках одного аппаратно-программного комплекса соединяются с диспетчером (часть аппаратно-программного комплекса, выполняющая функции координации межсистемного взаимодействия и маршрутизации) и не имеют непосредственных связей между собой.

- А.З.2 АСН также осуществляет взаимодействие с сервисами аппаратно-программного комплекса через компонент «диспетчер». При этом он идентифицируется по специальным пакетам, содержащим уникальный номер АСН UNIT_ID, назначаемый ему при регистрации в сети, а также другие учетные данные и информацию о состоянии модулей и блоков АСН.
- А.З.З Протоколом транспортного уровня (далее протокол) зарезервирован диапазон номеров типов сервисов до 63. Пользовательские сервисы имеют типы с номерами, начиная с 64.

А.4 Описание типов данных

А.4.1 Протоколом определены и использованы несколько различных типов данных полей и параметров, указанных в таблице А.2.

Таблица А.2 — Типы данных протокола

Тип данных	Размер, байт	Диапазон значений	Описание
BOOLEAN	1	TRUE = 1, FALSE = 0	Логический тип, принимающий только два значения TRUE или FALSE
BYTE	1	0 255	Целое число без знака
USHORT	2	0 65535	Целое число без знака
UINT	4	0 4294967295	Целое число без знака
ULONG	8	018446744073709551615	Целое число без знака
SHORT	2	-32768 + 32767	Целое число со знаком
INT	4	-2147483648 +2147483647	Целое число со знаком
FLOAT	4	+/- 1.2 E 38 3.4 E + 38	Дробное число со знаком
DOUBLE	8	+/-2.2 E — 308 1.7 E + 308	Дробное число со знаком
STRING	Переменный. Размер определен внешними параметрами или применением специального символа-терминатора (код 0х00)		Содержит последовательность печатных символов в кодировке по умолчанию СР-1251
BINARY	Переменный. Размер определен внешними параметрами		Содержит последовательность данных типа ВҮТЕ
ARRAY OF TYPE	Переменный. Размер определен внешними параметрами		Содержит последовательность одного из вышеуказанных типов (ТҮРЕ), кроме BINARY. Экземпляры типов идут последовательно один за другим

A.4.2 Многобайтовые типы данных USHORT, UINT, ULONG, FLOAT и DOUBLE используют порядок следования байт little — endian (младший байт вперед). Байты, составляющие последовательность в типах STRING и BINARY, интерпретируются как есть, т. е. обрабатываются в порядке их поступления.

- А.4.3 Определены следующие типы полей и параметров:
- M (Mandatory) обязательный параметр;
- O (Optional) необязательный параметр.

А.5 Структуры данных

А.5.1 Состав пакета протокола представлен на рисунке А.1.

Заголовок протокола	Данные уровня	Контрольная сумма данных
транспортного уровня	поддержки услуг	уровня поддержки услуг

- А.5.2 Пакет данных протокола состоит из заголовка, поля данных уровня поддержки услуг, а также поля контрольной суммы данных уровня поддержки услуг.
- А.5.3 Общая длина пакета протокола не превышает значения 65535 байт, что соответствует максимальному значению параметра Window Size (максимальный размер целого пакета, принимаемый на стороне приемника) заголовка протокола TCP. В таблице А.3 указан состав пакета протокола.

Таблица А.3 — Состав пакета протокола транспортного уровня

Бит 7	Бит 7 Бит 6 Бит 5 Бит 4 Бит 3 Бит 2 Бит 1 Бит 0								Тип данных	Размер, байт
	_	М	BYTE	1						
		М	BYTE	1						
		_		_						
PRF (Prefix)	RTE	EI	NΑ	СМР	Р	R	М	BYTE	1
								_	_	_
			HL (Heade	er Length)				М	BYTE	1
		F	HE (Heade	Encoding)			М	BYTE	1
		FC	L (Frame I	Data Lengt	h)			М	USHORT	2
		F	PID (Packe	t Identifier)	1		_	М	USHORT	2
			PT (Pack	et Type)			_	М	BYTE	1
		•	PRA (Peei	Address)			_	0	USHORT	2
		R	CA (Recipie	ent Addres	s)		_	0	USHORT	2
			TTL (Time	To Live)				0	BYTE	1
	_	НС	S (Header	Check Su	m)			М	BYTE	1
		SFR	D (Service	s Frame D	ata)			0	BINARY	0 65517
		SFRCS (Se	ervices Fra	me Data C	heck Sum)			0	USHORT	0,2

- A.5.4 Заголовок протокола состоит из следующих полей: PRV, PRF, PR, CMP, ENA, RTE, HL, HE, FDL, PID, PT, PRA, RCA, TTL, HCS. Протокол уровня поддержки услуг представлен полем SFRD, контрольная сумма поля уровня поддержки услуг в поле SFRCS.
- A.5.5 Параметр PRV содержит значение 0x01. Значение данного параметра инкрементируется каждый раз при внесении изменений в структуру заголовка.
 - А.5.6 Параметр SKID определяет идентификатор ключа, используемого при шифровании.
 - А.5.7 Параметр PRF определяет префикс заголовка протокола и содержит значение 00.
- А.5.8 Поле RTE (Route) определяет необходимость дальнейшей маршрутизации данного пакета на удаленный аппаратно-программный комплекс, а также наличие опциональных параметров PRA, RCA, TTL, необходимых для маршрутизации данного пакета. Если поле имеет значение 1, то необходима маршрутизация, и поля PRA, RCA, TTL присутствуют в пакете. Данное поле устанавливает диспетчер того аппаратно-программного комплекса, на котором сгенерирован пакет, или ACH, сгенерировавшая пакет для отправки на аппаратно-программный комплекс, в случае установки в нем параметра «HOME_DISPATCHER_ID», определяющего адрес аппаратно-программного комплекса, на котором данная ACH зарегистрирована.
- A.5.9 Поле ENA (Encryption Algorithm) определяет код алгоритма, используемый для шифрования данных из поля SFRD. Если поле имеет значение 00, то данные в поле SFRD не шифруют.
- A.5.10 Поле CMP (Compressed) определяет, используется ли сжатие данных из поля SFRD. Если поле имеет значение 1, то данные в поле SFRD считаются сжатыми.
- A.5.11 Поле PR (Priority) определяет приоритет маршрутизации данного пакета и может принимать следуюшие значения:
 - 00 наивысший;
 - 01 высокий;

- 10 средний;
- 11 низкий.

При получении пакета диспетчер производит маршрутизацию пакета с более высоким приоритетом быстрее, чем пакетов с низким приоритетом.

- А.5.12 Поле HL длина заголовка протокола в байтах с учетом байта контрольной суммы (поля HCS).
- А.5.13 Поле НЕ определяет применяемый метод кодирования следующей за данным параметром части заголовка протокола.
- A.5.14 Поле FDL определяет размер в байтах поля данных SFRD, содержащего информацию протокола уровня поддержки услуг.

А.5.15 Поле PID содержит номер пакета транспортного уровня, увеличивающийся на 1 при отправке каждого нового пакета на стороне отправителя. Значения в данном поле изменяются по правилам циклического счетчика в диапазоне от 0 до 65535, т. е. при достижении значения 65535 следующее значение 0.

А.5.16 Поле РТ — тип пакета транспортного уровня. Поле РТ может принимать следующие значения:

- 0 EGTS_PT_RESPONSE (подтверждение на пакет транспортного уровня);
- 1 EGTS_PT_APPDATA (пакет, содержащий данные протокола уровня поддержки услуг);
- 2 EGTS_PT_SIGNED_APPDATA (пакет, содержащий данные протокола уровня поддержки услуг с цифровой подписью).

A.5.17 Поле PRA— адрес аппаратно-программного комплекса, на котором данный пакет сгенерирован. Данный адрес является уникальным в рамках сети и используется для создания пакета-подтверждения на принимающей стороне.

А.5.18 Поле RCA — адрес аппаратно-программного комплекса, для которого данный пакет предназначен. По данному адресу производят идентификацию принадлежности пакета определенного аппаратно-программного комплекса и его маршрутизацию при использовании промежуточных аппаратно-программных комплексов.

А.5.19 Поле TTL — время жизни пакета при его маршрутизации между аппаратно-программными комплексами. Использование данного параметра предотвращает зацикливание пакета при ретрансляции в системах со сложной топологией адресных пунктов. Первоначально TTL устанавливается аппаратно-программным комплексом, сгенерировавшим данный пакет. Значение TTL устанавливается равным максимально допустимому числу аппаратно-программных комплексов между отправляющим и принимающим аппаратно-программным комплексом. Значение TTL уменьшается на единицу при трансляции пакета через каждый аппаратно-программный комплекс, при этом пересчитывается контрольная сумма заголовка протокола. При достижении данным параметром значения 0 и при обнаружении необходимости дальнейшей маршрутизации пакета происходят уничтожение пакета и выдача подтверждения с соответствующим кодом PC TTLEXPIRED, указанным в таблице А.14.

А.5.20 Поле HCS — контрольная сумма заголовка протокола (начиная с поля PRV до поля HCS, не включая поле HCS). Для подсчета значения поля HCS ко всем байтам указанной последовательности применяется алгоритм CRC-8.

A.5.21 Поле SFRD — структура данных, зависящая от типа пакета и содержащая информацию протокола уровня поддержки услуг.

A.5.22 Поле SFRCS — контрольная сумма поля протокола уровня поддержки услуг. Для подсчета контрольной суммы по данным из поля SFRD используется алгоритм CRC-16. Данное поле присутствует только в том случае, если есть поле SFRD.

А.5.23 Блок-схема алгоритма обработки пакета данных протокола при приеме представлена на рисунке А.2 (см вкладку).

А.6 Структуры данных

A.6.1 Структура данных пакета EGTS_PT_APPDATA

В таблице A.4 представлен формат поля SFRD для пакета типа EGTS_PT_APPDATA.

Таблица А.4 — Формат поля SFRD для пакета типа EGTS_PT_APPDATA

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
		SDF	0	BINARY	9 65517					
			SD	R 2			_	0	BINARY	9 65517
			• •							
			SD	Rn				0	BINARY	9 65517

Структуры SDR 1, SDR 2, SDR n содержат информацию протокола уровня поддержки услуг.

A.6.2 Структура данных пакета EGTS PT RESPONSE

Содержит информацию о результате обработки данных протокола, полученного ранее. В таблице A.5 представлен формат поля SFRD для пакета типа EGTS_PT_RESPONSE.

Таблица A.5 — Формат поля SFRD для пакета типа EGTS_PT_RESPONSE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
		RPI	М	USHORT	2					
		Р	М	BYTE	1					
		SDR	1 (Service	e Data Re	cord)			0	BINARY	9 65517
			SD	R 2	_			0	BINARY	9 65517
			SD	Rn				0	BINARY	9 65517

А.б.2.1 Параметр RPID — идентификатор пакета транспортного уровня, подтверждение на который сформировано.

A.6.2.3 Структуры SDR 1, SDR 2, SDR n содержат информацию уровня поддержки услуг

A.6.3 Структура данных пакета EGTS_PT_SIGNED_APPDATA

В таблице A.6 представлен формат поля SFRD для пакета типа EGTS_PT_SIGNED_APPDATA.

Таблица A.6 — Формат поля SFRD для пакета типа EGTS_PT_SIGNED_APPDATA

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
		SI	М	SHORT	2					
		9	SIGD (Sign	a ture Data	a)			0	BINARY	0 512
		SDR	1 (Service	Data Re	cord)			0	BINARY	9 65515
			SD	R 2				0	BINARY	9 65515
							_			
			SD	Rn				0	BINARY	9 65515

А.6.3.1 Параметр SIGL определяет длину данных цифровой подписи из поля SIGD.

А.6.2.2 Параметр PR — код результата обработки части пакета, относящейся к транспортному уровню. Список возможных кодов результата обработки представлен в таблице А.14.

А.6.3.2 Параметр SIGD содержит непосредственно данные цифровой подписи.

А.6.3.3 Структуры SDR 1, SDR 2, SDR n содержат информацию уровня поддержки услуг.

A.6.4 На каждый пакет типа EGTS_PT_APPDATA или EGTS_PT_SIGNED_APPDATA, поступающий от ACH на аппаратно-программный комплекс или от аппаратно-программного комплекса на ACH, отправляется пакет типа EGTS_PT_RESPONSE, содержащий в поле PID номер пакета из пакета EGTS_PT_APPDATA или EGTS_PT_SIGNED_APPDATA. На рисунке A.3 представлена последовательность обмена пакетами при взаимодействии ACH и аппаратно-программного комплекса.

Рисунок А.3 — Взаимодействие АСН и аппаратно-программного комплекса на уровне пакетов транспортного уровня

А.7 Структура данных при использовании SMS-сервиса в качестве резервного канала передачи

А.7.1 При использовании SMS-сообщения для передачи пакетов данных протокола задействован режим PDU. Режим PDU позволяет передавать не только текстовую, но и бинарную информацию через SMS-сервис оператора подвижной радиотелефонной связи.

А.7.2 Для передачи использована структура SMS-SUBMIT с 8-битной кодировкой. В таблице А.7 представлен формат SMS-сообщения для отправки в режиме PDU.

Таблица А.7 — Формат SMS с использованием режима PDU (SMS-SUBMIT)

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Размер, байт
		SMSC	AL (SMSC	Address Le	ength)			М	1
	-	SMS	C AT (SMS	C Address T	ype)			0	0,1
Бит 7	Бит 7 Бит 6 Бит 5 Бит 4 Бит 3 Бит 2 Бит 1 Бит 0								Размер, байт
	-	0	0,6						
TP RP	TP UDHI	MTI	Тип	Размер, байт					
		М	1						
		М	1						
		TP DA	T (Destinat	ion Address	Type)			М	1
		TP	DA (Destin	ation Addre	ss)			М	6
		TF	P PID (Proto	col Identifie	r)			М	1
		TP	OCS (Data C	Coding Sche	ema)			М	1
		0	0, 1, 7						
		М	1						
			TP UD (U	ser Data)	_			0	0 140

А.7.3 SMSC AL — длина полезных данных адреса SMSC в октетах плюс 1 октет поля SMSC AT.

A.7.4 SMSC AT — тип формата адреса SMSC. Возможные значения параметров SMSC AT представлены в таблице А.7. Поле опциональное, его наличие зависит от значения параметра SMSC AL (если значение SMSC AL > 0, то данное поле присутствует).

A.7.5 SMSC A — адрес SMSC. Каждая десятичная цифра номера представлена в виде 4 бит (младшие 4 бита — цифра более старшего разряда, старшие 4 бита — цифра меньшего разряда). При этом если число цифр в номере нечетное, то в битах с 4 по 7 последнего байта номера устанавливается значение 0хF (1111b). Данный параметр опциональный, и его наличие зависит от значения параметра SMSC AL. В случае отсутствия параметра SMSC A использован SMSC из SIM (USIM) карты.

A.7.6 TP MTI (Message Type Indicator) — тип сообщения (содержит бинарное значение 01).

A.7.7 TP RD (Reject Duplicates) определяет, необходимо ли SMSC принимать данное сообщение на обработку, если существует предыдущее необработанное отправленное с данного номера сообщение, которое имеет такое же значение поля TP MR и такой же номер получателя в поле TP DA.

A.7.8 TP VPF (Validity Period Format) — формат параметра TP VP.

A.7.9 TP SRR (Status Report Request) определяет необходимость отправки подтверждения со стороны SMSC на данное сообщение (если данный бит имеет значение 1, то требуется подтверждение).

A.7.10 TP UDHI (User Data Header Indicator) определяет, передается ли заголовок пользовательских данных TP UD HEADER (если поле имеет значение 1, то заголовок присутствует).

A.7.11 TP RP (Reply Path) определяет, присутствует ли поле RP в сообщении.

А.7.12 ТР MR — идентификатор сообщения (увеличивается на 1 при каждой отправке нового сообщения). А.7.13 ТР DA L — длина полезных данных адреса получателя (определяется как число символов в номере получателя). Например. если адрес получателя «79991234567». то TP DA L = 0Bh (11).

А.7.14 ТР DA Т — тип формата адреса получателя. Возможные значения параметров ТР DA Т и SMSC AT представлены в таблице А.8.

Таблица A.8 — Формат полей ТР DA Ти SMSC AT (тип адреса)

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Размер, байт
1		TON			N	PI		1

А.7.15 TP DA — адрес получателя. Кодировка номера произведена по тем же правилам, что и в параметре SMSC A.

А.7.16 ТР PID — идентификатор протокола (содержит значение 00).

А 7.17 TP DCS — тип кодировки данных (содержит значение 0x04, определяющий 8-битную кодировку сообщения, отсутствие компрессии).

А.7.18 TP VP — время актуальности данного сообщения. В таблице А.9 представлен формат данного параметра.

Таблица А.9 — Формат поля TP_VP в зависимости от значения поля TP_VPF

Значени	ие битов	Описание
0	0	Поле TP VP не передается
1	0	Поле TP VP имеет формат «относительное время» и размер 1 байт
0	1	Поле TP VP имеет формат «расширенное время» и размер 7 байт
1	1	Поле TP VP имеет формат «абсолютное время» и размер 7 байт

A.7.19 TP UDL — длина данных сообщения из поля TP DL, в байтах для используемой 8-битной кодировки. А.7.20 TP UD — непосредственно передаваемые пользовательские данные. В таблице А.10 представлен формат данного поля.

Таблица A.10 — Формат поля ТР UD

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Размер, байт	
		LUDH	(Length of U	Jser Data H	eader)	•		0	1	
		0	1							
		LIE «A» (L	ength of Info	ormation-Ele	ement «A»)			0	1	
	IED «A» (Information-Element-Data of «A»)									
	-	0	1							

Окончание таблицы А.10

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Размер, байт
		LIE «B» (L	ength of Info	ormation-Ele	ment «B»)			0	1
		0	1 n						
	IEI «N» (Information-Element-Identifier «N»)								
		LIE «N» (L	ength of Info	ormation-Ele	ment «N»)			0	1
	IED «N» (Information-Element-Data of «N»)								
	UD (User Data)								

A.7.21 TON (Type Of Number) — тип номера. ТОN может принимать следующие значения:

- 000 неизвестный;
- 001 международный формат;
- 010 национальный формат;
- 011 специальный номер, определяемый сетью;
- 100 номер абонента;
- 101 буквенно-цифровой (коды с 7-битной кодировкой по умолчанию);
- 110 укороченный; 111 зарезервировано.

A.7.22 NPI (Numeric Plan Identification) — тип плана нумерации (применимо для значений поля TON = 000, 001. 010). NPI может принимать следующие значения:

- 0000 неизвестный;
- 0001 план нумерации ISDN телефонии;
- 0011 план нумерации при передаче данных;
- 0100 телеграф;
- 1000 национальный;
- 1001 частный:
- 1111 зарезервировано.

А.7.23 LUDH — длина заголовка пользовательских данных в байтах без учета размера данного поля.

A.7.24 IEI «А», IEI «В», IEI «N» — идентификатор информационного элемента «А», «В» и «N» соответственно, который определяет тип информационного элемента и может принимать следующие значения (в шестнадцатеричной системе):

- 00 часть конкатенируемого SMS-сообщения;
- 01 индикатор специального SMS-сообщения;
- 02 зарезервировано;
- 03 не используется;
- 04 7F зарезервировано; 80 9F для специального использования SME;
- A0 BF зарезервировано;
- C0 DF для специального использования SC;
- E0 FF зарезервировано.

A.7.25 LIE «A», LIE «В», LIE «N» — параметры, определяющие размер данных информационных элементов «А», «В» и «N» соответственно, в байтах без учета размера данного поля.

A.7.26 IED «A», IED «В», IED «N» — данные информационных элементов «А», «В» и «N2» соответственно.

A.7.27 UD — данные пользователя. Размер данного поля определяется наличием заголовка пользовательских данных PT UD HEADER, состоящего из полей LUDH, IEI, LIE, IED. Если заголовок не передается, то размер равен значению из поля TP UDL, указанного в таблице А.7. Если заголовок передается, то размер поля вычисляется как разность (TP UDL-LUDH-1).

А.7.28 В том случае, если идентификатор информационного элемента IEI заголовка пользовательских данных TP_UD_HEADER имеет значение 00, структура поля IED будет иметь вид, представленный в таблице А.11.

Таблица А.11 — Формат поля данных информационного элемента, характеризующего часть конкатенируемого SMS-сообщения

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Размер, байт
	CSMR		М	1					
		М	1						
	SNC	М	1						

- A.7.29 CSMRN номер конкатенируемого SMS-сообщения. Имеет одинаковое значение для всех частей длинного SMS-сообщения.
- A.7.30 MNSM общее число сообщений, из которых состоит длинное SMS-сообщение. Содержит значения в диапазоне от 1 до 255.
- A.7.31 SNCSM номер передаваемой части длинного SMS-сообщения. Инкрементируется при отправке каждой новой части длинного сообщения. Содержит значение в диапазоне от 1 до 255. Если значение данного поля превышает значение из поля MNSM или равно нулю, то принимающая сторона игнорирует весь информационный элемент.
- А.7.32 При приеме SMS-сообщения использован формат SMS-DELIVER с 8-битной кодировкой. В таблице А.12 представлен формат SMS-сообщения в режиме PDU при получении.

Таблица А.12 — Формат принимаемого SMS-сообщения в режиме PDU (SMS-DELIVER)

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Размер, байт
		SMSC_/	AL (SMSC A	Address Len	gth)			М	1
		SMSC_	_AT (SMSC	Address Ty _l	pe)			0	0,1
	SMSC_A (SMSC Address)								0,6
TP_RP	TP_RP TP_UDHI TP_SRI — TP_MMS TP_MTI								1
TP_OA_L (Originating Address Length)									1
	TP_OA_T (Originating Address Type)								1
		TP_C	OA (Originat	ing Address)			М	0—10
		TP_	PID (Protoc	ol Identifier)				М	1
		TP_DC	CS (Data Co	ding Schem	na)			М	1
	TP_SCTS (SMSC Time Stamp)								7
	TP_UDL (User Data Length)								1
		•	TP_UD (Us	er Data)				0	0140

- A.7.33 SMSC_AL длина полезных данных адреса SMSC в октетах плюс 1 октет поля SMSC_AT.
- A.7.34 SMSC_AT тип формата адреса SMSC. Возможные значения параметров SMSC_AT представлены в таблице A.7. Поле опциональное, и его наличие зависит от значения параметра SMSC_AL (если значение SMSC_AL > 0, то данное поле присутствует).
- A.7.35 SMSC_A адрес SMSC. Каждая десятичная цифра номера представлена в виде 4 бит (младшие 4 бита цифра старшего разряда, старшие 4 бита цифра младшего разряда), при этом если число цифр в номере нечетное, то в битах с 4 по 7 последнего байта номера устанавливается значение 0xF(1111b).
 - A.7.36 TP_MTI (Message Type Indicator) тип сообщения (содержит бинарное значение 00).
- A.7.37 TP_MMS (More Messages to Send) определяет наличие сообщений на стороне SMSC, ожидающих доставки данному получателю. Параметр может иметь следующие значения:
 - 0 есть еще SMS-сообщения для доставки;
 - 1 сообщений для доставки нет.
- A.7.38 TP_SRI (Status ReportIndication) показывает наличие запроса со стороны, отправившей данное сообщение, об уведомлении о доставке. Может принимать следующие значения:
 - 0 уведомление не будет передаваться отправителю;
 - 1 уведомление будет отправлено.
- A.7.39 TP_UDHI (User Data Header Indicator) определяет, передается ли заголовок пользовательских данных TP_UD_HEADER (если поле имеет значение 1, то заголовок присутствует).
 - А.7.40 TP_RP (Reply Path) определяет присутствие поля RP в сообщении.
 - А.7.41 ТР_ОА_L длина полезных данных адреса отправителя.
- A.7.42 TP_OA_T тип формата адреса отправителя. Возможные значения параметров TP_OA_T и SMSC_AT представлены в таблицах A.7, A.12.
- А.7.43 ТР_ОА адрес отправителя. Кодировка номера производится по тем же правилам, что и в параметре SMSC_A.
 - А.7.44 TP_PID идентификатор протокола.
- A.7.45 TP_DCS тип кодировки данных (содержит значение 0x04, определяющее 8-битную кодировку сообщения, отсутствие компрессии).

A.7.46 TP_SCTS — время, когда данное сообщение было передано в транспортный уровень SMSC. Формат данного параметра определен значением из таблицы A.12.

A.7.47 TP_UDL — длина данных сообщения из поля TP_DL, в байтах для используемой 8-битной кодировки. A.7.48 TP_UD — непосредственно передаваемые пользовательские данные. Формат данного поля в зависимости от значения поля TP_UDHI представлен в таблице A.7.

А.8 Формат передаваемой информации

A.8.1 При использовании SMS-сервиса для обмена данными между ACH и аппаратно-программным комплексом пакеты, упакованные по правилам протокола и протокола уровня поддержки услуг, помещаются в поле TP UD (см. таблицу A.10), при этом полный размер пакета протокола не превышает 140 байт.

A.8.2 Для отправки SMS-сообщения, содержащего «цифровую подпись», используется пакет типа EGTS PT SIGNED APPDATA.

А.8.3 В том случае, если размер пакета данных протокола превышает 140 байт, используется механизм конкатенации SMS-сообщений. Суть данного механизма состоит в том, что передаваемые пользовательские данные разбивают на части и отправляют отдельными SMS-сообщениями. Каждое сообщение содержит специальную структуру, определяющую общее число частей передаваемых данных и порядок их сборки на принимающей стороне. В качестве такой структуры использовано поле TP_UD_HEADER, которое содержит информационный элемент, характеризующий часть конкатенируемого SMS-сообщения.

Максимально возможный размер пакета при использовании 8-битной кодировки составляет 34170 байт.

A.9 Временные и количественные параметры протокола транспортного уровня при использовании пакетной передачи данных

А.9.1 Таблица А.13 содержит описание временных и количественных параметров протокола.

Таблица А.13 — Временные и количественные параметры протокола транспортного уровня

Наименование	Т ип данных	Диапазон значений	Значение по умолчанию	Описание
TL RESPONSE TO	BYTE	0 255	5	Время ожидания подтверждения пакета на транспортном уровне, отсчитываемое с момента его отправки стороной, сгенерировавшей пакет, с
TL RESEND ATTEMPTS	BYTE	0 255	3	Число повторных попыток отправки непод- твержденного пакета стороной, сгенериро- вавшей пакет. Отсчитывается после истече- ния времени параметра TL_RESPONSE_TO при отсутствии пакета подтверждения
TL RECONNECT TO	BYTE	0 255	30	Время, по истечении которого осуществляется повторная попытка установления канала связи после его разрыва, с

Таблица А.14 — Коды результатов обработки

Значение	Обозначение	Описание
0	EGTS_PC_OK	Успешно обработано
1	EGTS_PC_IN_PROGRESS	В процессе обработки
128	EGTS_PC_UNS_PROTOCOL	Неподдерживаемый протокол
129	EGTS_PC_DECRYPT_ERROR	Ошибка декодирования
130	EGTS_PC_PROC_DENIED	Обработка запрещена
131	EGTS_PC_INC_HEADERFORM	Неверный формат заголовка
132	EGTS_PC_INC_DATAFORM	Неверный формат данных
133	EGTS_PC_UNS_TYPE	Неподдерживаемый тип
134	EGTS_PC_NOTEN_PARAMS	Неверное число параметров
135	EGTS_PC_DBL_PROC	Попытка повторной обработки

Окончание таблицы А.14

Значение	Обозначение	Описание
136	EGTS_PC_PROC_SRC_DENIED	Обработка данных от источника запрещена
137	EGTS_PC_HEADERCRC_ERROR	Ошибка контрольной суммы заголовка
138	EGTS_PC_DATACRC_ERROR	Ошибка контрольной суммы данных
139	EGTS_PC_INVDATALEN	Некорректная длина данных
140	EGTS_PC_ROUTE_NFOUND	Маршрут не найден
141	EGTS_PC_ROUTE_CLOSED	Маршрут закрыт
142	EGTS_PC_ROUTE_DENIED	Маршрутизация запрещена
143	EGTS_PC_INVADDR	Неверный адрес
144	EGTS_PC_TTLEXPIRED	Превышено количество ретрансляции данных
145	EGTS_PC_NO_ACK	Нет подтверждения
146	EGTS_PC_OBJ_NFOUND	Объект не найден
147	EGTS_PC_EVNT_NFOUND	Событие не найдено
148	EGTS_PC_SRVC_NFOUND	Сервис не найден
149	EGTS_PC_SRVC_DENIED	Сервис запрещен
150	EGTS_PC_SRVC_UNKN	Неизвестный тип сервиса
151	EGTS_PC_AUTH_DENIED	Авторизация запрещена
152	EGTS_PC_ALREADY_EXISTS	Объект уже сущест ву ет
153	EGTS_PC_ID_NFOUND	Идентификатор не найден
154	EGTS_PC_INC_DATETIME	Неправильная дата и время
155	EGTS_PC_IO_ERROR	Ошибка ввода/вывода
156	EGTS_PC_NO_RES_AVAIL	Недостаточно ресурсов
157	EGTS_PC_MODULE_FAULT	Внутренний сбой модуля
158	EGTS_PC_MODULE_PWR_FLT	Сбой в работе цепи питания модуля
159	EGTS_PC_MODULE_PROC_FLT	Сбой в работе микроконтроллера модуля
160	EGTS_PC_MODULE_SW_FLT	Сбой в работе программы модуля
161	EGTS_PC_MODULE_FW_FLT	Сбой в работе внутреннего ПО модуля
162	EGTS_PC_MODULE_IO_FLT	Сбой в работе блока ввода/вывода модуля
163	EGTS_PC_MODULE_MEM_FLT	Сбой в работе внутренней памяти модуля
164	EGTS_PC_TEST_FAILED	Тест не пройден

А.10 Пример реализации алгоритма расчета контрольной суммы CRC-16 на языке C

/*

Name: CRC-16 CCITT

Poly: 0x1021 x^16 + x^12 + x^5 + 1 Init: 0Xffff

Init: 0Xffff Revert: false XorOut: 0x0000

Check: 0x29B1 ("123456789")

*/

```
const unsigned short Crc16Table[256] = {
        0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7.
        0x8108, 0x9129, 0Xa14A, 0Xb16B, 0Xc18C, 0Xd1AD, 0Xe1CE, 0Xf1EF,
        0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
        0x9339, 0x8318, 0Xb37B, 0Xa35A, 0Xd3BD, 0Xc39C, 0Xf3FF, 0Xe3DE,
        0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
        0Xa56A, 0Xb54B, 0x8528, 0x9509, 0Xe5EE, 0Xf5CF, 0Xc5AC, 0Xd58D,
        0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
        0Xb75B, 0Xa77A, 0x9719, 0x8738, 0Xf7DF, 0Xe7FE, 0Xd79D, 0Xc7BC,
        0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
        0Xc9CC, 0Xd9ED, 0Xe98E, 0Xf9AF, 0x8948, 0x9969, 0Xa90A, 0Xb92B,
        0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
        0Xdbfd, 0Xcbdc, 0Xfbbf, 0Xeb9E, 0x9B79, 0x8B58, 0Xbb3B, 0Xab1A
        0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
        0Xedae, 0Xfd8F, 0Xcdec, 0Xddcd, 0Xad2A, 0Xbd0B, 0x8D68, 0x9D49,
        0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,
        0Xff9F, 0Xefbe, 0Xdfdd, 0Xcffc, 0Xbf1B, 0Xaf3A, 0x9F59, 0x8F78,
        0x9188, 0x81A9, 0Xb1CA, 0Xa1EB, 0Xd10C, 0Xc12D, 0Xf14E, 0Xe16F,
        0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
        0x83B9, 0x9398, 0Xa3FB, 0Xb3DA, 0Xc33D, 0Xd31C, 0Xe37F, 0Xf35E,
        0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
        0Xb5EA, 0Xa5CB, 0x95A8, 0x8589, 0Xf56E, 0Xe54F, 0Xd52C, 0Xc50D,
        0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
        0Xa7DB, 0Xb7FA, 0x8799, 0x97B8, 0Xe75F, 0Xf77E, 0Xc71D, 0Xd73C,
        0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
        0Xd94C, 0Xc96D, 0Xf90E, 0Xe92F, 0x99C8, 0x89E9, 0Xb98A, 0Xa9AB,
        0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
        0Xcb7D, 0Xdb5C, 0Xeb3F, 0Xfb1E, 0x8BF9, 0x9BD8, 0Xabbb, 0Xbb9A,
        0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
        0Xfd2E, 0Xed0F, 0Xdd6C, 0Xcd4D, 0Xbdaa, 0Xad8B, 0x9DE8, 0x8DC9,
        0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
        0Xef1F, 0Xff3E, 0Xcf5D, 0Xdf7C, 0Xaf9B, 0Xbfba, 0x8FD9, 0x9FF8,
        0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0
     };
     unsigned short Crc16(unsigned char * pcBlock, unsigned short len)
     unsigned short crc = 0Xffff;
     while (len--)
     crc = (crc<< 8) ^ Crc16Table[(crc>> 8) ^ *pcBlock++];
     returnoro;
А.11 Пример реализации алгоритма расчета контрольной суммы СRC-8 на языке С
     Name: CRC-8
     Poly: 0x31 x^8 + x^5 + x^4 + 1
     Init: 0xFF
      Revert: false
     XorOut: 0x00
     Check: 0xF7 ("123456789")
     const unsigned char CRC8Table[256] = {
        0x00, 0x31, 0x62, 0x53, 0xC4, 0xF5, 0xA6, 0x97,
        0xB9, 0x88, 0xDB, 0xEA, 0x7D, 0x4C, 0x1F, 0x2E,
        0x43, 0x72, 0x21, 0x10, 0x87, 0xB6, 0xE5, 0xD4,
        0xFA, 0xCB, 0x98, 0xA9, 0x3E, 0x0F, 0x5C, 0x6D,
        0x86, 0xB7, 0xE4, 0xD5, 0x42, 0x73, 0x20, 0x11,
        0x3F, 0x0E, 0x5D, 0x6C, 0xFB, 0xCA, 0x99, 0xA8,
        0xC5, 0xF4, 0xA7, 0x96, 0x01, 0x30, 0x63, 0x52,
        0x7C, 0x4D, 0x1E, 0x2F, 0xB8, 0x89, 0xDA, 0xEB,
        0x3D, 0x0C, 0x5F, 0x6E, 0xF9, 0xC8, 0x9B, 0xAA,
```

```
0x84, 0xB5, 0xE6, 0xD7, 0x40, 0x71, 0x22, 0x13,
  0x7E, 0x4F, 0x1C, 0x2D, 0xBA, 0x8B, 0xD8, 0xE9,
  0xC7, 0xF6, 0xA5, 0x94, 0x03, 0x32, 0x61, 0x50,
  0xBB, 0x8A, 0xD9, 0xE8, 0x7F, 0x4E, 0x1D, 0x2C,
  0x02, 0x33, 0x60, 0x51, 0xC6, 0xF7, 0xA4, 0x95,
  0xF8, 0xC9, 0x9A, 0xAB, 0x3C, 0x0D, 0x5E, 0x6F,
  0x41, 0x70, 0x23, 0x12, 0x85, 0xB4, 0xE7, 0xD6,
  0x7A, 0x4B, 0x18, 0x29, 0xBE, 0x8F, 0xDC, 0xED,
  0xC3, 0xF2, 0xA1, 0x90, 0x07, 0x36, 0x65, 0x54,
  0x39, 0x08, 0x5B, 0x6A, 0xFD, 0xCC, 0x9F, 0xAE,
  0x80, 0xB1, 0xE2, 0xD3, 0x44, 0x75, 0x26, 0x17,
  0xFC, 0xCD, 0x9E, 0xAF, 0x38, 0x09, 0x5A, 0x6B,
  0x45, 0x74, 0x27, 0x16, 0x81, 0xB0, 0xE3, 0xD2,
  0xBF, 0x8E, 0xDD, 0xEC, 0x7B, 0x4A, 0x19, 0x28,
  0x06, 0x37, 0x64, 0x55, 0xC2, 0xF3, 0xA0, 0x91,
  0x47, 0x76, 0x25, 0x14, 0x83, 0xB2, 0xE1, 0xD0,
  0xFE, 0xCF, 0x9C, 0xAD, 0x3A, 0x0B, 0x58, 0x69,
  0x04, 0x35, 0x66, 0x57, 0xC0, 0xF1, 0xA2, 0x93,
  0xBD, 0x8C, 0xDF, 0xEE, 0x79, 0x48, 0x1B, 0x2A,
  0xC1, 0xF0, 0xA3, 0x92, 0x05, 0x34, 0x67, 0x56,
  0x78, 0x49, 0x1A, 0x2B, 0xBC, 0x8D, 0xDE, 0xEF,
  0x82, 0xB3, 0xE0, 0xD1, 0x46, 0x77, 0x24, 0x15,
  0x3B, 0x0A, 0x59, 0x68, 0xFF, 0xCE, 0x9D, 0xAC
unsigned char CRC8(unsigned char *lpBlock, unsigned char len)
unsigned char crc = 0xFF;
while (len- -)
crc = CRC8Table[crc ^ *lpBlock++];
returnere:
}
```

Приложение Б (обязательное)

Спецификация протокола передачи мониторинговой информации

Б.1 Функции АСН для использования услуги EGTS_TELEDATA_ SERVICE

- Б.1.1 На стороне АСН реализованы функции:
- поддержка сервиса обработки команд EGTS_COMMANDS_SERVICE;
- обработка команд управления и установки параметров ACH, отправляемых оператором через GPRS, и передача соответствующих подтверждений на них.

Б.2 Состав сервиса EGTS_TELEDATA_SERVICE

- Б.2.1 Сервис EGTS_TELEDATA_SERVICE обрабатывает мониторинговую информацию, поступающую от ACH.
 - Б.2.2 Список подзаписей, используемых сервисом EGTS_TELEDATA_SERVICE, представлен в таблице Б.1.

Таблица Б.1 — Список подзаписей сервиса EGTS_TELEDATA_SERVICE

Код	Наименование	Описание
0	EGTS_SR_RECORD_RESPONSE	Применяется для осуществления подтверждения приема и передачи результатов обработки записи уровня поддержки услуг
16	EGTS_SR_POS_DATA	Используется АСН при передаче основных данных определения местоположения
17	EGTS_SR_EXT_POS_DATA	Используется АСН при передаче дополнительных данных определения местоположения
18	EGTS_SR_AD_SENSORS_DATA	Применяется АСН для передачи на аппаратно-программный комплекс информации о состоянии дополнительных дискретных и аналоговых входов
19	EGTS_SR_COUNTERS_DATA	Используется аппаратно-программным комплексом для передачи на АСН данных о значении счетных входов
20	EGTS_SR_STATE_DATA	Используется для передачи на аппаратно-программный комплекс информации о состоянии АСН
22	EGTS_SR_LOOPIN_DATA	Применяется АСН для передачи на аппаратно-программный комплекс данных о состоянии шлейфовых входов
23	EGTS_SR_ABS_DIG_SENS_DATA	Применяется АСН для передачи на аппаратно-программный комплекс данных о состоянии одного дискретного входа
24	EGTS_SR_ABS_AN_SENS_DATA	Применяется АСН для передачи на аппаратно-программный комплекс данных о состоянии одного аналогового входа
25	EGTS_SR_ABS_CNTR_DATA	Применяется АСН для передачи на аппаратно-программный комплекс данных о состоянии одного счетного входа
26	EGTS_SR_ABS_LOOPIN_DATA	Применяется АСН для передачи на аппаратно-программный комплекс данных о состоянии одного шлейфового входа
27	EGTS_SR_LIQUID_LEVEL_SENSOR	Применяется АСН для передачи на аппаратно-программный комплекс данных о показаниях ДУЖ
28	EGTS_SR_PASSENGERS_COUNTERS	Применяется АСН для передачи на аппаратно-программный комплекс данных о показаниях счетчиков пассажиропотока

Б.2.3 Подзапись EGTS SR POS DATA

Структура подзаписи представлена в таблице Б.2.

Таблица Б.2 — Формат подзаписи EGTS SR POS DATA сервиса EGTS TELEDATA SERVICE

Бит 7	Бит 6	Б ит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
	-	N	ITM (Navig	gation Time	e)			М	UINT	4
			LAT (La	atitude)				М	UINT	4
			LONG (L	ongitude)				М	UINT	4
			FLG (М	BYTE	1			
ALTH	LOHS	LAHS	MV	BB	cs	FIX	VLD			
		SPE		М	USHORT	2				
DIRH	ALTS		SPE	(Speed)	старшие б	биты				
			DIR (Di	rection)				М	BYTE	1
	_		ODM (O	dometer)				М	BINARY	3
			DIN (Digi	tal Inputs)				М	BYTE	1
			SRC (S	Source)				М	BYTE	1
				0	BINARY	3				
		;	SRCD (So	urce Data)			0	SHORT	2

Поля таблицы Б.2 содержат:

NTM — время навигации (число секунд с 00:00:00 01.01.2010 UTC);

LAT — широта по модулю, градусы/90 · 0xFFFFFFF и взята целая часть;

LONG — долгота по модулю, градусы/180 · 0xFFFFFFF и взята целая часть;

FLG — определяет дополнительные параметры навигационной посылки;

ALTE — битовый флаг определяет наличие поля ALT в подзаписи:

- 1 поле ALT передается.
- 0 не передается:
- LOHS битовый флаг определяет полушарие долготы:
 - 0 восточная долгота,
 - 1 западная долгота;
- LAHS битовый флаг определяет полушарие широты:
 - 0 северная широта,
 - 1 южная широта;
- MV битовый флаг, признак движения:
 - 1 движение,
 - 0 ТС находится в режиме стоянки;
- ВВ битовый флаг, признак отправки данных из памяти («черный ящик»):
 - 0 актуальные данные.
 - 1 данные из памяти («черного ящика»);
- FIX битовое поле, тип определения координат:
 - 0 2D fix, 1 3D fix;
- CS битовое поле, тип используемой системы:
 - 0 система координат WGS-84,
 - 1 государственная геоцентрическая система координат (ПЗ-90.02);
- VLD битовый флаг, признак валидности координатных данных:
 - 1 данные валидны,
 - 0 невалидные данные;
- SPD скорость, км/ч, с дискретностью 0,1 км/ч (используется 14 младших бит);

ALTS (Altitude Sign) — битовый флаг, определяет высоту относительно уровня моря и имеет смысл только при установленном флаге ALTE:

- 0 точка выше уровня моря,
- 1 ниже уровня моря;
- DIRH (Direction the Highest bit) старший бит (8) параметра DIR;
- DIR направление движения. Определяется как угол в градусах, который отсчитывается по часовой стрелке между северным направлением географического меридиана и направлением движения в точке измерения (дополнительно старший бит находится в поле DIRH);
 - ОДМ пройденное расстояние (пробег), км, с дискретностью 0,1 км;
- DIN битовые флаги, определяют состояние основных дискретных входов 1 ... 8 (если бит равен 1, то соответствующий вход активен, если 0, то неактивен). Данное поле включено для удобства использования и экономии трафика при работе в системах мониторинга транспорта базового уровня;
- SRC определяет источник (событие), инициировавший(ее) посылку данной навигационной информации (информация представлена в таблице Б.3);
- ALT высота над уровнем моря, м (опциональный параметр, наличие которого определяется битовым флагом ALTE);
- SRCD данные, характеризующие источник (событие) из поля SRC. Наличие и интерпретация значения данного поля определяется полем SRC.

Таблица Б.3 — Список источников посылок координатных данных сервиса EGTS_TELEDATA_SERVICE

Код	Описание							
0	Таймер при включенном зажигании							
1	Пробег заданной дистанции							
2	Превышение установленного значения угла поворота							
3	Ответ на запрос							
4	Изменение состояния входа X							
5	Таймер при выключенном зажигании							
6	Отключение периферийного оборудования							
7	Превышение одного из заданных порогов скорости							
8	Перезагрузка центрального процессора (рестарт)							
9	Перегрузка по выходу У							
10	Сработал датчик вскрытия корпуса прибора							
11	Переход на резервное питание/отключение внешнего питания							
12	Снижение напряжения источника резервного питания ниже порогового значения							
13	Нажата «кнопка связи [кнопка связи (тревожная кнопка)]»							
14	Запрос на установление голосовой связи с оператором							
15	Экстренный вызов							
16	Появление данных от внешнего сервиса							
17	Зарезервировано							
18	Зарезервировано							
19	Неисправность резервного аккумулятора							
20	Резкий разгон							
21	Резкое торможение							
22	Отключение или неисправность навигационного модуля							
23	Отключение или неисправность датчика автоматической идентификации события ДТП							

Окончание таблицы Б.3

Код	Описание
24	Отключение или неисправность антенны GSM
25	Отключение или неисправность антенны навигационной системы
26	Зарезервировано
27	Снижение скорости ниже одного из заданных порогов
28	Перемещение при выключенном зажигании
29	Таймер в режиме «экстренное слежение»
30	Начало/окончание навигации
31	«Нестабильная навигация» (превышение порога частоты прерывания режима навигации при включенном зажигании или режиме экстренного слежения)
32	Установка ІР-соединения
33	Нестабильная регистрация в сети подвижной радиотелефонной связи
34	«Нестабильная связь» (превышение порога частоты прерывания/восстановления IP-соединения при включенном зажигании или режиме экстренного слежения)
35	Изменение режима работы

Б.2.4 Подзапись EGTS SR EXT POS DATA

Структура подзаписи представлена в таблице Б.4.

Таблица Б.4 — Формат подзаписи EGTS_SR_EXT_POS_DATA сервиса EGTS_TELEDATA_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
	_		NSFE	SFE	PFE	HFE	VFE	М	BYTE	1
VDOP (Vertical Dilution of Precision)								0	USHORT	2
HDOP (Horizontal Dilution of Precision)									USHORT	2
PDOP (Position Dilution of Precision)									USHORT	2
SAT (Satellites)								0	BYTE	1
NS (Navigation System)									USHORT	2

Поля таблицы Б.4 содержат:

NSFE (Navigation System Field Exists), которая определяет наличие данных о типах используемых навигационных спутниковых систем:

- 1 поле NS передается,
- 0 не передается.

SFE (Satellites Field Exists), который определяет наличие данных о текущем количестве видимых спутников SAT и типе используемой навигационной спутниковой системы NS:

- 1 поля SAT и NS передаются,
- 0 не передаются;

PFE (PDOP Field Exists), который определяет наличие поля PDOP:

- 1 поле PDOP передается,
- 0 не передается;

HFE (HDOP Field Exists), который определяет наличие поля HDOP:

- 1 поле HDOP передается,
- 0 не передается;

VFE (VDOP Field Exists), который определяет наличие поля VDOP:

- 1 поле VDOP передается,
- 0 не передается;

VDOP — снижение точности в вертикальной плоскости (значение, умноженное на 100);

НДОР — снижение точности в горизонтальной плоскости (значение, умноженное на 100);

РДОР — снижение точности по местоположению (значение, умноженное на 100);

SAT — число видимых спутников;

NS — битовые флаги, характеризующие используемые навигационные спутниковые системы. Определены следующие значения (десятичные) флагов:

0 — система не определена, 1 — ГЛОНАСС,

2 — GPS,

4 — Galileo,

8 — Compass,

16 — Beidou.

32 - DORIS,

64 — IRNSS,

128 — QZSS.

Остальные значения зарезервированы.

Б.2.5 Подзапись EGTS SR AD SENSORS DATA

Структура подзаписи представлена в таблице Б.5.

Таблица Б.5 — Формат подзаписи EGTS_SR_AD_SENSORS_DATA сервиса EGTS_TELEDATA_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
DIOE8	DIOE7	DIOE6	DIOE5	DIOE4	DIOE3	DIOE2	DIOE1	М	BYTE	1
			М	BYTE	1					
ASFE8	ASFE8 ASFE7 ASFE6 ASFE5 ASFE4 ASFE3 ASFE2 ASFE1									1
		ADIO1 (A	0	BYTE	1					
_		ADIO2 (A	0	BYTE	1					
		ADIO3 (A	0	BYTE	1					
		ADIO4 (A	0	BYTE	1					
		ADIO5 (A	0	BYTE	1					
		ADIO6 (A	dditional D	igital Input	s Octet 6)			0	BYTE	1
		ADIO7 (A	ddition a l D	igital Input	s Octet 7)			0	BYTE	1
		ADIO8 (A	ddition a l D	igital Input	s Octet 8)			0	BYTE	1
		A	NS1 (Analo	g Sensor	1)			0	BINARY	3
		A	0	BINARY	3					
ANS3 (Analog Sensor 3)									BINARY	3
		Α	0	BINARY	3					
		А	0	BINARY	3					
		А	0	BINARY	3					
		А	0	BINARY	3					
		А	0	BINARY	3					

Поля таблицы Б.5 содержат:

DIOE1 — DIOE8 (Digital Inputs Octet Exists) — битовые флаги, определяющие наличие соответствующих полей дополнительных дискретных входов. Всего в одной подзаписи данного типа может быть передана информация о состоянии дополнительных 64 входов:

1 — соответствующее поле ADIO передается,

0 — не передается;

DOUT — битовые флаги дискретных выходов (если бит установлен в 1, то соответствующий этому биту вы-

ASFE1 ... ASFE8 (Analog Sensor Field Exists) — битовые флаги, определяющие наличие показаний от соответствующих аналоговых датчиков (если бит установлен в 1, то данные от соответствующего датчика присутствуют, если 0, данные отсутствуют). Если, например, поля ASFE1 = 1 и ASFE3 = 1, то в подзаписи после байта флагов ASFE8—ASFE1 будут переданы 3 байта значений ANS1 и 3 байта значений ANS3. Значения для датчика ANS2, а также датчиков ANS4... ANS8 не будут передаваться в данной подзаписи;

ADIO1 ... ADIO8 — показания дополнительных дискретных входов. Поля представляют собой битовую маску, в которой значение каждого бита определяет активность соответствующего дискретного входа:

- 1 соответствующий вход активен,
- 0 не активен:

ANS1 ... ANS8 — значение аналоговых датчиков с 1 по 8 соответственно.

Каждая подзапись EGTS_SR_AD_SENSORS_DATA позволяет передать состояния 64 дополнительных дискретных входов и 8 аналоговых датчиков. Если требуется передать данные от большего числа дискретных или аналоговых входов, то необходимо в одной записи передавать несколько следующих друг за другом подзаписей EGTS_SR_AD_SENSOR_DATA. При этом интерпретация полученных данных производится следующим образом:

- в первой подзаписи EGTS_SR_AD_SENSOR_DATA содержатся данные от дискретных входов с 9 по 72, аналоговых входов с 1 по 8;
 - во второй дискретные входы с 73 по 136 и аналоговые входы с 9 по 16 и т. д.

Б.2.6 Подзапись EGTS_SR_COUNTERS_DATA

Структура подзаписи представлена в таблице Б.6.

Таблица Б.6 — Формат подзаписи EGTS_SR_COUNTERS_DATA сервиса EGTS TELEDATA SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
CFE8	CFE7	CFE6	CFE5	CFE4	CFE3	CFE2	CFE1	М	BYTE	1
				0	BINARY	3				
				0	BINARY	3				
			CN3 (Cd	ounter 3)				0	BINARY	3
			CN4 (Cd	ounter 4)				0	BINARY	3
			CN5 (Co	ounter 5)				0	BINARY	3
			CN6 (Cd	ounter 6)				0	BINARY	3
				0	BINARY	3				
	_			0	BINARY	3				

Поля таблицы Б.6 содержат:

- CFE1 ... CFE8 (Counter Field Exists) битовые флаги, которые определяют наличие соответствующих полей счетных входов:
 - 1 соответствующее поле СN передается,
 - 0 не передается;
 - CN1 ... CN8 значение счетных входов с 1 по 8 соответственно.

Б.2.7 Подзапись EGTS_SR_ACCEL_DATA

Структура подзаписи представлена в таблице Б.7.

Таблица Б.7 — Формат подзаписи EGTS_SR_ACCEL_DATA сервиса EGTS_TELEDATA_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данны _х	Р а змер, байт
		;	SA (Structu	res Amoun	t)			М	BYTE	1
			ATM (Abs		М	UINT	4			
		ADS1 (A	ccelerome	ter Data Str	ucture 1)			М	BINARY	8
		ADS2 (A	ccelerome	ter Data Str	ucture 2)			0	BINARY	8
	,	ADS255 (A		0	BINARY	8				

FOCT P 56360—2015

Поля таблицы Б.7 содержат:

SA — число передаваемых структур данных показаний акселерометра;

ATM — время проведения измерений первой передаваемой структуры показаний акселерометра (число секунд с 00:00:00 01.01.2010 UTC);

ADS1 ... ADS255 — структуры данных показаний акселерометра, формат структуры представлен в таблице Б.8. В составе подзаписи передается минимум одна структура ADS.

Таблица Б.8 — Формат структуры данных показаний акселерометра подзаписи EGTS_SR_ACCEL_DATA сервиса EGTS TELEDATA SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
		ŀ	RTM (Rela	М	USHORT	2				
		XAAV (X Axis Ac	celeration	Value)			М	SHORT	2
		YAAV (Y Axis Ac	celeration	Value)	_		М	SHORT	2
		ZAAV (Z Axis Ac		М	SHORT	2			

Поля таблицы Б.8 содержат:

RTM — приращение к времени измерения предыдущей записи (для первой записи приращение к полю ATM), мс:

XAAV — значение линейного ускорения по оси X (старший бит определяет знак, 1 указывает на отрицательное значение), м/с², с дискретностью 0,1 м/с²;

YAAV — значение линейного ускорения по оси Y (старший бит определяет знак, 1 указывает на отрицательное значение), м/c^2 , с дискретностью 0,1 м/c^2 ;

ZAAV — значение линейного ускорения по оси Z (старший бит определяет знак, 1 указывает на отрицательное значение), м/c², с дискретностью 0,1 м/c²;

разрешающая способность полей ускорения — 0.01G.

Б.2.8 Подзапись EGTS SR STATE DATA

Структура подзаписи представлена в таблице Б.9.

Таблица Б.9 — Формат подзаписи EGTS_SR_STATE_DATA сервиса EGTS_TELEDATA_SERVICE

Бит 7	Бит 6	Б ит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
		_	ST (8	State)				М	BYTE	1
		MPSV (Main Powe	er Source	Voltage)			М	BYTE	1
		BBV	(Back Up I	Battery Vo	ltage)			М	BYTE	1
		IBV	(Internal B	attery Volt	age)			М	BYTE	1
		_		BBU	М	BYTE	1			

Поля таблицы Б.9 содержат:

ST — текущий режим работы. Список режимов представлен в таблице Б.10;

MPSV — значение напряжения основного источника питания, В, с дискретностью 0,1 В;

BBV — значение напряжения резервной батареи, B, с дискретностью 0,1 B;

IBV — значение напряжения внутренней батареи, В, с дискретностью 0,1 В;

NMS — битовый флаг, определяющий состояние навигационного модуля:

- 1 навигационный модуль включен,
- 0 навигационный модуль выключен;
- IBU битовый флаг, определяющий, что в качестве источника питания АСН использован внешний резервный источник:
 - 1 внешний резервный источник используется,
 - 0 внешний резервный источник не используется;
- BBU битовый флаг, определяющий, что в качестве источника питания АСН используется внутренняя батарея:
 - 1 внутренняя батарея используется,
 - 0 внутренняя батарея не используется.

Таблица Б.10 — Список режимов работы ACH, используемых в подзаписи EGTS_SR_STATE_DATA сервиса EGTS TELEDATA SERVICE

Код	Название режима работы АСН
0	«Пассивный»
1	«ЭPA»
2	«Активный»
3	«Экстренный вызов»
4	«Экстренное слежение»
5	«Тестирование»
6	«Автосервис»
7	«Загрузка ПО»

Б.2.9 Подзапись EGTS_SR_LOOPIN_DATA

Структура подзаписи представлена в таблице Б.11.

Таблица Б.11 — Формат подзаписи EGTS_SR_LOOPIN_DATA сервиса EGTS_TELEDATA_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
LIFE8	LIFE7	LIFE6	LIFE5	LIFE4	LIFE3	LIFE2	LIFE1	М	BYTE	1
	LIS	n+1			LIS	3 n		0	BYTE	1
	LIS	n+3			LIS	n+2		0	BYTE	1
	LIS	n+5			LIS	n+4		0	BYTE	1
	LIS n+7				LIS	n+6	_	0	BYTE	1

Поля таблицы Б.11 содержат:

LIFE 1 ... LIFE 8 (Loop In Field Exists) — битовые флаги, определяющие наличие информации о состоянии шлейфовых входов;

LIS n ... LIS n+7 (Loop In State) — значение состояния соответствующего шлейфового входа. Предусмотрены следующие состояния шлейфового входа (бинарное представление):

0 — «норма»,

0001 — «тревога», 0010 — «обрыв»,

0100 — «замыкание на землю»,

1000 — «замыкание на питание».

Б.2.10 Подзапись EGTS SR ABS DIG SENS DATA

Структура подзаписи представлена в таблице Б. 12.

Таблица Б.12 — Формат подзаписи EGTS SR ABS DIG SENS DATA сервиса EGTS TEEDATA SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
DSN (D	igital Senso	М	SHORT	2						
		DSN (Digita								

Поля таблицы Б.12 содержат:

DSN — номер дискретного входа;

DSST — состояние дискретного входа:

0000 — не активен,

остальные значения — активен.

Б.2.11 Подзапись EGTS_SR_ABS_AN_SENS_DATA

Структура подзаписи представлена в таблице Б.13.

FOCT P 56360—2015

Таблица Б.13 — Формат подзаписи EGTS_SR_ABS_AN_SENS_DATA сервиса EGTS_TELEDATA SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 0	Тип	Тип данных	Размер, байт	
		ASN	(Analog S	ensor Nur	nber)			М	BYTE	1
		AS\	М	BINARY	3					

Поля таблицы Б.13 содержат:

ASN — номер аналогового входа;

ASV — значение показаний аналогового входа.

Б.2.12 Подзапись EGTS_SR_ABS_CNTR_DATA

Структура подзаписи представлена в таблице Б.14.

Таблица Б.14 — Формат подзаписи EGTS_SR_ABS_CNTR_DATA сервиса EGTS_TELEDATA_SERVICE

Бит 7	ит 7 Бит 6 Бит 5 Бит 4 Бит 3 Бит 2 Бит 1 Бит 0								Тип данных	Размер, байт
		(CN (Count	er Number)			М	BYTE	1
				М	BINARY	3				

Поля таблицы Б.14 содержат:

CN — номер счетного входа;

CNV — значение показаний счетного входа.

Б.2.13 Подзапись EGTS_SR_ABS_LOOPIN_DATA

Структура подзаписи представлена в таблице Б.15.

Таблица Б.15 — Формат подзаписи EGTS_SR_ABS_LOOPIN_DATA сервиса EGTS_TELEDATA SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Тип	Тип данных	Размер, байт	
LIN (L	_oop In Nu	mber) мла	дшие		LIS (Loop	In State)		М	SHORT	2
		LIN (Loc	p In Numb	er) ст ар ш	ие биты		-			

Поля таблицы Б.15 содержат:

LIN — номер шлейфового входа;

LIS — значение состояния шлейфового входа.

Б.2.14 Подзапись EGTS_SR_LIQUID_LEVEL_SENSOR

Структура подзаписи представлена в таблице Б.16.

Таблица Б.16 — Формат подзаписи EGTS_SR_LIQUID_LEVEL_SENSOR Cepвиса EGTS_TELEDATA_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Б ит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
_	LLSEF	LLS	SVU	RDF		LLSN		_ M	BYTE	1
		MA	ADDR (Mo	dule Addre	ess)			М	USHORT	2
		LLSD	(Liquid Le		М	BINARY	4 512			

Поля таблицы Б.16 содержат:

LLSEF (Liquid Level Sensor Error Flag) — битовый флаг, определяющий наличие ошибок при считывании значения датчика уровня жидкости (далее — ДУЖ):

0 — ошибок не обнаружено,

1 — ошибка при считывании показаний ДУЖ;

LLSVU (Liquid Level Sensor Value Unit) — битовый флаг, определяющий единицы измерения показаний ДУЖ:

00 — нетарированное показание ДУЖ,

01 — показания ДУЖ, %, от общего объема емкости,

10 — показания ДУЖ, л, с дискретностью в 0,1 л;

RDF (Raw Data Flag) — флаг, определяющий формат поля LLSD данной подзаписи:

0 — поле LLSD имеет размер 4 байта (тип данных UINT) и содержит показания ДУЖ в формате, определяемом полем LLSVU,

1 — поле LLSD содержит данные ДУЖ в неизменном виде, как они поступили из внешнего порта АСН (размер поля LLSD при этом определяется исходя из общей длины данной подзаписи и размеров расположенных перед LLSD полей);

LLSN (Liquid Level Sensor Number) — порядковый номер датчика;

MADDR — адрес модуля, данные о показаниях ДУЖ с которого поступили в АСН (номер внешнего порта АСН):

LLSD — показания ДУЖ в формате, определяемом полем RDF.

Б.2.15 Подзапись EGTS_SR_PASSENGERS_COUNTERS

Структура подзаписи представлена в таблице Б.17.

Таблица Б.17 — Формат подзаписи GTS_SR_PASSENGERS_COUNTERS сервиса EGTS_TELEDATA_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
			_	RDF	М					
		D	PR (Doors	Presente	d)			М	BYTE	1
			RL (Doors	s Released	d)			М	BYTE	1
		MA	DDR (Mo	dule Addre	ess)			М	USHORT	2
		PCD (F	Passenger		М	BINARY	2 512			

Поля таблицы Б.17 содержат:

RDF (Raw Data Flag) — флаг, определяющий формат поля PCD данной подзаписи:

0 — поле PCD имеет формат, определяемый полем DPR (представлен в таблице Б.18),

1 — поле PCD содержит данные счетчика пассажиропотока в неизменном виде, как они поступили из внешнего порта ACH (размер поля PD при этом определяется исходя из общей длины данной подзаписи и размеров расположенных перед PD полей);

DPR (Doors Presented) — битовое поле, определяющее наличие счетчиков на дверях и структуру поля PCD (бит 0 определяет наличие счетчика на первой двери, бит 1 — на второй и т. д.). Если бит имеет значение 1, то счетчик используется, если 0 — не используется;

DRL (Doors Released) — битовое поле, определяющее двери, которые открывались и закрывались при подсчете пассажиров (например, 00000000 — ни одна из дверей не открывалась, 00000001 — открывалась только 1-я дверь, 00001001 — открывались 1-я и 4-я дверь);

MADDR — адрес модуля, данные от счетчиков пассажиропотока с которого поступили в ACH (номер внешнего порта ACH);

PCD — данные счетчиков пассажиропотока.

Таблица Б.18 — Формат поля PCD подзаписи TS_SR_PASSENGERS_COUNTERS сервиса EGTS_TELEDATA_ SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
		IPQ1 (0	BYTE	1					
		OPQ1 (0	BYTE	1					
									·	
	IPQ8 (In Passengers Quantity 8)								BYTE	1
OPQ8 (Out Passengers Quantity 8)								0	BYTE	1

FOCT P 56360-2015

Поля таблицы Б.18 содержат:

IPQ1...IPQ8 — число вошедших пассажиров через 1-ю ... 8-ю дверь,

OPQ1...OPQ8 — число вышедших пассажиров через 1-ю ... 8-ю дверь.

Наличие или отсутствие полей IPQ и OPQ определяется битами поля DPR подзаписи EGTS_SR_PASSENGERS_COUNTERS. Если в поле DPR бит, соответствующий определенному номеру двери, имеет значение 1, то соответствующие поля IPQ и OPQ присутствуют в структуре. Если в поле DPR бит имеет значение 0, то соответствующие поля IPQ и OPQ отсутствуют в структуре. Если определенное поле IPQ присутствует, то и соответствующее поле OPQ присутствует.

Б.3 Использование EGTS_COMMANDS_SERVICE

Б.3.1 Список и описание команд, параметров ACH и подтверждений, необходимых для реализации услуги EGTS_TELEDATA_SERVICE, представлены в таблицах Б.19 и Б.20.

Таблица Б.19 — Список команд для АСН

Название команды	Код	Тип	Описание
EGTS_FLEET_DOUT_ON	0x0009	USHORT	Активация дискретных выходов. Параметр интерпретируется как битовое поле, определяющее, какие выходы активировать. Бит 0 соответствует 1-му выходу, 1 — 2-му выходу. Если бит имеет значение 1, то выход активируется, если 0, то состояние выхода не изменяется
EGTS_FLEET_DOUT_OFF	0x000A	USHORT	Деактивация дискретных выходов. Параметр интерпретируется как битовое поле, определяющее, какие выходы деактивировать. Бит 0 соответствует 1-му выходу, 1 — 2-му выходу. Если бит имеет значение 1, то выход деактивируется, если 0, то состояние выхода не изменяется
EGTS_FLEET_GET_DOUT_DATA	0 x000B	_	Команда запроса состояния дискретных вы- ходов
EGTS_FLEET_GET_POS_DATA	0x000C	_	Команда запроса текущих данных местоположения. При получении данной команды помимо подтверждения в виде подзаписи EGTS_SR_COMMAND_DATA сервиса EGTS_COMMAND_SERVICE ACH отправляет телематическое сообщение, содержащее подзапись EGTS_SR_POS_DATA сервиса EGRS_TELEDATA_SERVICE
EGTS_FLEET_GET_SENSORS_DATA	0x000D	_	Команда запроса состояния дискретных и аналоговых входов. При получении данной команды помимо подтверждения в виде подзаписи EGTS_SR_COMMAND_DATA сервиса EGTS_COMMAND_SERVICE ACH отправляет телематическое сообщение, содержащее подзаписи EGTS_SR_POS_DATA и EGTS_SR_AD_SENSORS сервиса EGRS_TELEDATA_SERVICE
EGTS_FLEET_GET_LIN_DATA	0x000E	_	Команда запроса состояния шлейфовых входов. При получении данной команды помимо подтверждения в виде подзаписи EGTS_SR_COMMAND_DATA сервиса EGTS_COMMAND_SERVICE ACH отправляет телематическое сообщение, содержащее подзаписи EGTS_SR_POS_DATA и EGTS_SR_LOOPIN_DATA сервиса EGRS_TELEDATA_SERVICE

Окончание таблицы Б.19

Название команды	Код	Тип	Описание
EGTS_FLEET_GET_CIN_DATA	0x000F	_	Команда запроса состояния счетных входов. При получении данной команды помимо подтверждения в виде подзаписи EGTS_SR_COMMAND_DATA сервиса EGTS_COMMAND_SERVICE ACH отправляет телематическое сообщение, содержащее подзаписи EGTS_SR_POS_DATA и EGTS_SR_COUNTERS_DATA сервиса EGRS_TELEDATA_SERVICE
EGTS_FLEET_GET_STATE	0x0010	_	Команда запроса состояния АСН. При получении данной команды помимо подтверждения в виде подзаписи EGTS_SR_COMMAND_DATA сервиса EGTS_COMMAND_SERVICE ACH отправляет телематическое сообщение, содержащее подзаписи EGTS_SR_POS_DATA и EGTS_SR_STATE_DATA сервиса EGRS_TELEDATA_SERVICE
EGTS_FLEET_ODOM_CLEAR	0x0011	_	Команда для обнуления показаний внутренне- го одометра АСН. Для обработки данной коман- ды оператор отправляет корректные значения полей АСL и АС из таблицы 17 спецификации протокола поддержки услуг

Таблица Б.20 — Список подтверждений на команды и сообщения от АСН

Название команды	Код	Тип	Описание
EGTS_FLEET_DOUT_ON	0x0009	USHORT	Параметр интерпретируется как битовое поле, определяющее состояние дискретных выходов. Бит 0 соответствует 1-му выходу, 1 — 2-му выходу. Если бит имеет значение 1, то выход активирован, если 0 — не активирован
EGTS_FLEET_DOUT_OFF	0x000A	USHORT	Параметр интерпретируется как битовое поле, определяющее состояние дискретных выходов. Бит 0 соответствует 1-му выходу, 1 — 2-му выходу. Если бит имеет значение 1, то выход активирован, если 0 — не активирован
EGTS_FLEET_GET_DOUT_DATA	0x000B	USHORT	Параметр интерпретируется как битовое поле, определяющее состояние дискретных выходов. Бит 0 соответствует 1-му выходу, 1 — 2-му выходу. Если бит имеет значение 1, то выход активирован, если 0 — не активирован

↑ Таблица Б.21 — Список параметров АСН

Параметр	Код	Тип парам етра	Значени е по умолчанию	Описание					
Конфигурация и конфигурационные данные услуг									
Мониторинг транспортных средств									
EGTS_FLEET_ON	0x0261	BOOLEAN	1	1 — разрешает использование услуги мониторинговой информации					
EGTS_FLEET_IGN_ON_PERIOD	0x0262	INT	60	Период передачи телематических сообщений на сервер при включенном зажигании, с					
EGTS_FLEET_IGN_OFF_PERIOD	0x0263	INT	300	Период передачи телематических сообщений на сервер при выключенном зажигании, с					
EGTS_FLEET_DIST_THRESHOLD	0x0264	INT	10	Значение пройденного пути, по достижении которого производится отправка телематического сообщения на сервер с признаком «пробег заданной дистанции», 100 м					
EGTS_FLEET_COURSE_THRESHOLD	0x0265	INT	20	Значение изменения курса, по достижении которого производится отправка телематического сообщения на сервер с признаком «превышение установленного значения угла поворота», градусы					
EGTS_FLEET_MAX_SPEED_THRESHOLD	0x0266	ARRAY OF INT	60,0,0,0,0	Значения порогов скорости, при превышении одного из которых производится передача телематического сообщения на сервер с признаком «превышение одного из заданных порогов скорости», км/ч. Нулевые значения не учитываются при обработке					
EGTS_FLEET_MIN_SPEED_THRESHOLDS	0x0267	ARRAY OF INT	0,0,0,0,0	Значения порогов скорости, при превышении одного из которых производится передача телематического сообщения на сервер с признаком «снижение скорости ниже одного из заданных порогов», км/ч. Нулевые значения не учитываются при обработке					
EGTS_FLEET_MIN_BATTERY_VOLTAGE	0x0268	INT	110	Пороговое значение напряжения на резервном аккумуляторе, при достижении которого производится передача телематического сообщения на сервер с признаком «снижение напряжения источника резервного питания ниже порогового значения», 0,1 В					
EGTS_FLEET_POS_ACCEL_THRESHOLD	0x0269	INT	100	Пороговое значение положительного продольного ускорения, при достижении которого производится передача телематического сообщения на сервер с признаком «резкий разгон», 0,1 м/с ²					
EGTS_FLEET_NEG_ACCEL_THRESHOLD	0x026A	INT	100	Пороговое значение отрицательного продольного ускорения, при достижении которого производится передача телематического сообщения на сервер с признаком «резкое торможение», 0,1 м/с ²					

Параметр	Код	Тип параметра	Значение по умолчанию	Описание
EGTS_FLEET_EM_MON_PERIOD	0x 02 6B	INT	10	Период передачи телематических сообщений на сервер в режиме «экстренное слежение», с
EGTS_FLEET_NAVI_TRB_THRESHOLD	0x026C	INT	6	Пороговое значение частоты прерывания режима навигации при включенном зажигании или режиме экстренного слежения, при достижении которого производится передача телематического сообщения на сервер с признаком «нестабильная навигация», 1/ч
EGTS_FLEET_CONN_TRB_THRESHOLD	0x026D	INT	30	Пороговое значение частоты прерывания/восстановления IP-соединения при включенном зажигании или режиме экстренного слежения, при достижении которого производится передача телематического сообщения на сервер с признаком «нестабильная связь», 1/ч
EGTS_FLEET_GSM_REG_TRB_THRESHOLD	0x026E	INT	3	Пороговое значение частоты регистрации в сети связи стандартов GSM при включенном зажигании или режиме экстренного слежения, при достижении которого производится передача телематического сообщения на сервер с признаком «нестабильная регистрация в сети сотовой связи», 1/ч
EGTS_FLEET_POS_USE_ALT	0x026F	BOOLEAN	1	1 — указывает, что параметр «Altitude» передается в телематическом сообщении от АСН
EGTS_FLEET_EXT_POS_DATA_FLAGS	0x0270	INT	255	Определяет, какие из опциональных параметров передаются в подзаписи EGTS_SR_EXT_POS_DATA сервиса EGTS_TELEDATA_SERVICE. Представляет собой битовую маску, формат которой совпадает с форматом первого байта подзаписи EGTS_SR_EXT_POS_DATA (см. 3.4)
EGTS_FLEET_SR_MASK	0x0271	INT	255	Определяет состав данных, передаваемый с ACH с каждым телематическим сообщением (подзапись EGTS_SR_POS_DATA). Представляет собой битовое поле: 0 — EGTS_SR_EXT_POS_DATA; 1 — EGTS_SR_AD_SENSORS_DATA; 2 — EGTS_SR_COUNTERS_DATA; 3 — EGTS_SR_ACCEL_DATA; 4 — EGTS_SR_STATE_DATA; 5 — EGTS_SR_LOOPIN_DATA. Если соответствующий бит имеет значение 1, то подзапись передается

⁴ Окончание таблицы Б.21

Параметр	Код	Тип параметра	Значение по умолчанию	Описание
EGTS_FLEET_DIN_MASK	0x0272	INT	1	Определяет состав дискретных входов, анализируемых АСН. Представляет собой битовое поле: 0 — дискретные входы 1-ю 8-ю; 1 — входы 9-й 16-й; 2 — входы 17-й 24-й и т. д. Если бит имеет значение 1, то соответствующие дискретные входы (если они физически присутствуют) анализируются АСН
EGTS_FLEET_AIN_MASK	0x0273	INT	15	Определяет состав аналоговых входов, анализируемых АСН. Представляет собой битовое поле: бит 0 — аналоговый вход 1; 1 — вход 2; 2 — вход 3 и т. д. Если бит имеет значение 1, то соответствующий аналоговый вход (если он физически присутствует) анализируется АСН
EGTS_FLEET_CIN_MASK	0x0274	INT	0	Определяет состав счетных входов, анализируемых АСН. Представляет собой битовое поле: бит 0 — счетный вход 1; 1 — вход 2; 2 — вход 3 и т. д. Если бит имеет значение 1, то соответствующий счетный вход (если он физически присутствует) анализируется АСН
EGTS_FLEET_LIN_MASK	0x0275	INT	0	Определяет состав шлейфовых входов, анализируемых АСН. Представляет собой битовое поле: бит 0 — счетный вход 1; 1 — вход 2; 2 — вход 3. Если бит имеет значение 1, то соответствующий шлейфовый вход (если он физически присутствует) анализируются АСН
EGTS_FLEET_USE_ABS_SENS_DATA	0x0276	INT	0	Определяет необходимость использования подзаписей EGTS_SR_ABS_DIG_SENS_DATA, EGTS_SR_ABS_AN_SENS_DATA, EGTS_SR_ABS_LOOP-IN_DATA вместо EGTS_SR_AD_SENSORS_DATA, EGTS_SR_COUNTERS_DATA и EGTS_SR_LOOPIN_DATA для передачи информации о состоянии соответствующих сенсоров. Представляет собой битовое поле: 0—EGTS_SR_ABS_DIG_SENS_DATA 1—EGTS_SR_ABS_AN_SENS_DATA 2—EGTS_SR_ABS_CNTR_DATA 3—EGTS_SR_ABS_LOOPIN_DATA. Если бит имеет значение 1, то используется соответствующая подзапись

Приложение В (обязательное)

Спецификация протокола уровня поддержки услуг и спецификация сервисов предоставления услуг

В.1 Назначение протокола уровня поддержки услуг

Протокол уровня поддержки услуг предназначен для обеспечения обмена данными между АСН и системами и аппаратно-программными комплексами в целях обеспечения функционирования информационных услуг. Каждой услуге соответствует отдельный сервис, который является ключевым элементом в рамках системы, построенной с применением протокола.

Протокол уровня поддержки услуг выполняет следующие основные функции:

- обмен информационными сообщениями, содержащими данные для обработки различными сервисами, а также запросы на выдачу информации сервисами;
 - обеспечение уведомления о результатах доставки и обработки данных уровня поддержки услуг,
 - идентификация принадлежности данных определенному типу сервиса;
 - определение характеристики данных (число, тип, состав, размер, кодировка и др.).

В.1.1 Обмен информационными сообщениями

Основной структурой протокола уровня поддержки услуг, содержащей в себе все необходимые данные для обработки информации или запроса на предоставление той или иной услуги, является запись. Каждая запись может иметь в своем составе несколько подзаписей, содержащих необходимые данные и определяющих действия, которые должен произвести сервис, обрабатывающий данную подзапись.

В.1.2 Обеспечение уведомления о результате доставки и обработки данных уровня поддержки услуг На уровне поддержки услуг уведомление отправляющей стороны о результате доставки и обработки данных обеспечивается механизмом подтверждений информационных записей при помощи специальных подзаписей, содержащих идентификатор полученной/обработанной записи.

В.1.3 Идентификация принадлежности данных

Для идентификации принадлежности записи тому или иному сервису используют идентификатор типа сервиса, который определяет функциональные особенности и характеристики обрабатываемых данных. Тип сервиса является его идентификатором при внутриплатформенной маршрутизации и уникальным в рамках протокола.

В.1.4 Определение характеристики данных

Данные в протоколе уровня поддержки услуг записываются в виде подзаписи, имеющей свой уникальный идентификатор в рамках отдельного типа сервиса, а также строго определенную структуру организации данных в зависимости от подзаписи. Использованием такой организации данных в протоколе достигается однозначное определение типа данных, их физического смысла, размера и способа упаковки.

В.2 Определение структур данных

В.2.1 Общая структура

Общая структура протокола уровня поддержки услуг, которая входит в состав пакета протокола (см. приложение A), может содержать одну или несколько записей, идущих одна за другой и имеющих различный состав данных, предназначенных разным сервисам.

На рисунке В 1 представлена общая структура данных протокола уровня поддержки услуг.

Данные уровня поддержки услуг							
Запись RID-1	Запись RID-2	•••	Запись RID-N				

Рисунок В.1 — Общая структура данных протокола уровня поддержки услуг

В.2.2 Структура отдельной записи

В.2.2.1 Состав записи

Отдельная запись протокола уровня поддержки услуг состоит из заголовка записи и данных записи. На рисунке В.2 представлен состав отдельной записи протокола уровня поддержки услуг.

2огопорок оописи	Данные записи					
Заголовок записи	Подзапись 1		Подзапись N			

Рисунок В.2 — Состав отдельной записи протокола уровня поддержки услуг

FOCT P 56360-2015

В заголовке записи находятся параметры, определяющие типы сервисов получателя и отправителя, идентификатор записи, идентификатор объекта (например, терминала), длину передаваемых данных, а также различные флаги, определяющие наличие опциональных параметров и способ обработки.

Данные записи могут содержать одну или несколько подзаписей определенных типов и содержащих передаваемые данные.

В.2.2.2 Структура записи

В таблице В.1 представлен формат отдельной записи протокола уровня поддержки услуг.

Таблица В.1 — Формат отдельной записи протокола уровня поддержки услуг

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт					
	RL (Record Length)									2					
	RN (Record Number)									2					
	RFL (Record Flags)								BYTE	1					
SSOD	RSOD	GRP	RF	PP	TMFE	EVFÉ	OBFE								
			OID (Objec	t Identifier)				0	UINT	4					
			EVID (Even	t Identifier))			0	UINT	4					
			TM (7	Time)				0	UINT	4					
	SST (Source Service Type)								BYTE	1					
	RST (Recipient Service Type)								RST (Recipient Service Type)				М	BYTE	1
	RD (Record Data)								RD (Record Data)				М	BINARY	365498

Поля таблицы В.1 содержат:

RL (Record Length) — параметр определяет размер данных из поля RD;

RN (Record Number) — номер записи. Значения в данном поле изменяются по правилам циклического счетчика в диапазоне от 0 до 65535, т. е. при достижении значения 65535 следующее значение должно быть 0. Значение данного поля используется для подтверждения записи;

RFL (Record Flags) содержит битовые флаги, определяющие наличие в данном пакете полей OID, EVID и TM, характеризующих содержащиеся в записи данные;

SSOD (Source Service On Device) — битовый флаг, определяющий расположение сервиса-отправителя:

- 1 сервис-отправитель расположен на стороне АСН [авторизуемой телематической платформой (далее ТП)].
- 0 сервис-отправитель расположен на авторизующей ТП;
- RSOD (Recipient Service On Device) битовый флаг, определяющий расположение сервиса-получателя:
 - 1 сервис-получатель расположен на стороне АСН (авторизуемой ТП),
 - 0 сервис-получатель расположен на авторизующей ТП;
- GRP (Group) битовый флаг, определяющий принадлежность передаваемых данных определенной группе, идентификатор которой указан в поле OID:
 - 1 данные предназначены для группы,
 - 0 принадлежность группе отсутствует;
- RPP (Record Processing Priority) битовое поле, определяющее приоритет обработки данной записи сервисом:
 - 00 наивысший,
 - 01 высокий,
 - 10 средний,
 - 11 низкий:
 - TMFE (Time Field Exists) битовое поле, определяющее наличие в данном пакете поля ТМ:
 - 1 поле ТМ присутствует,
 - 0 поле ТМ отсутствует;
 - EVFE (Event ID Field Exists) битовое поле, определяющее наличие в данном пакете поля EVID:
 - 1 поле EVID присутствует,
 - 0 поле EVID отсутствует;

OBFE (Object ID Field Exists) — битовое поле, определяющее наличие в данном пакете поля OID:

- 1 поле OID присутствует.
- 0 поле OID отсутствует;

OID (Object Identifier) — идентификатор объекта, сгенерировавшего данную запись или для которого данная запись предназначена (уникальный идентификатор ACH), либо идентификатор группы (при GRP = 1). При передаче от ACH в одном пакете транспортного уровня нескольких записей подряд для разных сервисов, но от одного и того же объекта, поле OID может присутствовать только в первой записи, а в последующих записях может быть опущено;

EVID (Event Identifier) — уникальный идентификатор события. Поле EVID задает глобальный идентификатор события и применяется, когда необходимо логически связать с одним-единственным событием набор нескольких информационных сущностей, причем сами сущности могут быть разнесены как по разным информационным пакетам, так и по времени. При этом прикладное ПО имеет возможность объединить все эти сущности воедино в момент представления пользователю информации о событии. Например, если с нажатием тревожной кнопки связывается серия фотоснимков, поле EVID должно быть указано в каждой сервисной записи, связанной с этим событием на протяжении передачи всех сущностей, связанных с данным событием, независимо от того, как долго не длилась передача всего пула информации;

TM (Time) — время формирования записи на стороне отправителя (секунды с 00:00:00 01.01.2010 UTC). Если в одном пакете транспортного уровня передаются несколько записей, относящихся к одному объекту и моменту времени, то поле метки времени TM может передаваться только в составе первой записи;

SST (Source Service Type) — идентификатор типа сервиса-отправителя, сгенерировавшего данную запись. Например, сервис, обрабатывающий навигационные данные на стороне АСН, сервис команд на стороне ТП и т. д.:

RST (Recipient Service Type) — идентификатор типа сервиса-получателя данной записи. Например, сервис, обрабатывающий навигационные данные на стороне ТП, сервис обработки команд на стороне АСН и т. д.;

RD (Record Data) — поле, содержащее информацию, присущую определенному типу сервиса (одну или несколько подзаписей сервиса типа, указанного в поле SST или RST, в зависимости от вида передаваемой информации).

В.2.3 Общая структура подзаписей

В таблице В.2 представлен формат отдельной подзаписи протокола уровня поддержки услуг.

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
	SRT (Subrecord Type)								BYTE	1
	SRL (Subrecord Length)								USHORT	2
SRD (Subrecord Data)								0	BINARY	0 65495

Таблица В.2 — Формат отдельной подзаписи протокола уровня поддержки услуг

Поля таблицы В.2 содержат:

SRT (Subrecord Type) — тип подзаписи (подтип передаваемых данных в рамках общего набора типов одного сервиса). Тип 0 — специальный, зарезервирован за подзаписью подтверждения данных для каждого сервиса. Конкретные значения номеров типов подзаписей определяются логикой самого сервиса. Протокол указывает лишь то, что этот номер должен присутствовать, а нулевой идентификатор зарезервирован;

SRL (Subrecord Length) — длина данных в байтах подзаписи в поле SRD;

SRD (Subrecord Data) — данные подзаписи. Наполнение данного поля специфично для каждого сочетания идентификатора типа сервиса и типа подзаписи.

На каждую информационную запись уровня поддержки услуг должно быть отправлено подтверждение, которое содержит подзапись с информацией об идентификаторе подтверждаемой записи и результате ее обработки. Описание и формат подтверждения представлены в В.3.2.2, подпункт а).

На рисунке В.3 представлен алгоритм работы механизма подтверждений протокола уровня поддержки услуг. Каждое сообщение протокола содержит в себе заголовок и контрольную сумму транспортного уровня и одну или несколько записей уровня поддержки услуг. Причем в одном сообщении могут содержаться как информационные записи, так и подтверждения на ранее принятые записи.

Рисунок В.3 — Диаграмма обмена сообщениями

В.3 Описание сервисов предоставления услуг

В.3.1 Список сервисов

Под сервисом в настоящем стандарте подразумевается элемент инфраструктуры ТП, обеспечивающий функциональное выполнение алгоритма той или иной услуги с использованием описываемого протокола.

В таблице В.3 представлен список поддерживаемых сервисов, их функциональное описание и соответствующие идентификаторы (поле «Код») в десятичном виде.

Таблица В.3 — Список сервисов, поддерживаемых протоколом

Код	Название	Описание
1	EGTS_AUTH_SERVICE	Данный тип сервиса применяется для осуществления процедуры аутентификации АСН (авторизуемой ТП) на авторизующей ТП. При использовании протокола ТСР/IР в качестве транспорта, АСН (авторизуемая ТП) должна проходить данную процедуру, и только после успешного завершения данной процедуры происходит дальнейшее взаимодействие
2	EGTS_TELEDATA_SERVICE	Сервис предназначен для обработки телематической информации (координатные данные, данные о срабатывании датчиков и т. д.), поступающей от АСН. Сервис описан в приложении Б
3	EGTS_COMMANDS_SERVICE	Данный тип сервиса предназначен для обработки управляющих и конфигурационных команд, информационных сообщений и статусов, передаваемых между АСН, ТП и операторами

Окончание таблицы В.3

Код	Название	Описание
4	EGTS_FIRMWARE_SERVICE	Сервис предназначен для передачи на АСН конфигурации и непо- средственно ПО аппаратной части АСН, а также различного периферий- ного оборудования, подключенного к АСН и поддерживающего возмож- ность удаленного обновления ПО

B.3.2 Cepbuc EGTS AUTH SERVICE

В.3.2.1 Общие положения

Для описания данного сервиса вводятся понятия: «авторизуемая ТП», «авторизующая ТП».

Авторизуемая ТП — платформа, которая инициирует обмен данными между платформами с запросом на идентификацию (путем передачи записи с идентификационными данными на авторизующую ТП). В качестве авторизуемой ТП, в основном, выступает АСН. Запись с запросом на идентификацию содержит следующие данные:

- идентификатор АСН (авторизуемой ТП), который необходим для регистрации в базе данных (БД) авторизующей ТП.

П р и м е ч а н и е — АСН (авторизуемая ТП) может быть зарегистрирована как в БД одной «домашней» авторизующей ТП, так и на нескольких, произвольно удаленных ТП;

- набор данных, которые необходимы для однозначной идентификации АСН (или авторизуемой ТП) на стороне авторизующей ТП.

Авторизующая ТП — платформа, которая принимает запись с запросом на идентификацию от АСН (авторизуемой ТП). Кроме того, эта платформа проверяет полученные данные (идентификаторы, тип клиента) в своей БД, и при необходимости, производит запрос к АСН (авторизуемой ТП), используя имеющуюся таблицу маршрутизации.

Данный тип сервиса применяется:

- для осуществления процедур идентификации и аутентификации при установлении соединения между АСН (авторизуемой ТП) и авторизующей ТП;
 - получения учетных данных АСН (или авторизуемой ТП) на стороне авторизующей ТП:
- получения информации на авторизующей ТП об инфраструктуре на стороне АСН (авторизуемой ТП), например о составе и версиях ПО модулей, блоков, периферийного оборудования и т. д.

П р и м е ч а н и е — Данная функция настоящего сервиса является опциональной, и АСН (авторизуемая ТП) сама принимает решение об объеме информации, отправляемой на авторизующую ТП;

- получения информации на авторизующей ТП о ТС;
- передачи авторизующей ТП на АСН (авторизуемую ТП) перечня поддерживаемых сервисов;
- передачи авторизующей ТП на АСН (авторизуемую ТП) данных о способе и параметрах шифрования;
- передачи АСН (авторизуемой ТП) на авторизующую ТП аутентификационных данных для реализации шифрования данных;
 - реализации алгоритма «запросов» на использование сервисов на стороне АСН (авторизуемой ТП).

Примечание — Настоящий протокол предполагает реализацию использования сервисов авторизующей ТП на стороне АСН (авторизуемой ТП). Следует различать «простой» алгоритм использования сервисов и алгоритм «запросов». «Простой» алгоритм подразумевает, что для АСН (авторизуемой ТП) доступны все сервисы, и в этом случае авторизуемой ТП разрешено сразу отправлять данные для требуемого сервиса после прохождения процедуры авторизации. Алгоритм «запросов» на использование сервисов подразумевает, что перед тем, как использовать тот или иной тип сервиса (отправлять данные), АСН (авторизуемая ТП) должна получить от авторизующей ТП информацию о доступных для использования сервисов. «Запрос» на использование сервисов может быть выполнен как на этапе авторизации, так и после нее;

- передачи АСН (авторизуемой ТП) от авторизующей ТП результатов процедуры аутентификации.

Сервис должен быть использован АСН (авторизуемой ТП) только в случае применения в качестве транспорта протокола TCP/IP после создания каждого нового соединения с авторизующей ТП.

Описание полного пакета подзаписей сервиса EGTS_AUTH_SERVICE для реализации перечисленных выше функций приведено в В.3.2.2.

Описание алгоритма авторизации АСН на авторизующей ТП приведено в В.3.2.3.

Особенности алгоритма авторизации авторизуемой ТП на авторизующей ТП представлены в В.3.2.4.

В.3.2.2 Описание подзаписей сервиса EGTS AUTH SERVICE

В таблице В.4 представлен список подзаписей, используемых сервисом EGTS AUTH SERVICE.

FOCT P 56360—2015

Таблица В.4 — Список подзаписей сервиса EGTS_AUTH_SERVICE

Код	Название	Описание
0	EGTS_SR_RECORD_RESPONSE	Подзапись применяется для осуществления подтверждения процесса обработки записи протокола уровня поддержки услуг. Данный тип подзаписи должен поддерживаться всеми сервисами
1	EGTS_SR_TERM_IDENTITY	Подзапись используется только АСН при запросе авторизации на авторизующей ТП и содержит учетные данные АСН
2	EGTS_SR_MODULE_DATA	Подзапись предназначена для передачи на ТП информации об инфраструктуре на стороне АСН, о составе, состоянии и параметрах блоков и модулей АСН. Данная подзапись является опциональной, и разработчик АСН сам принимает решение о необходимости заполнения полей и отправки данной подзаписи. Одна подзапись описывает один модуль. В одной записи может передаваться последовательно несколько таких подзаписей, что позволяет передать данные об отдельных составляющих всей аппаратной части АСН и периферийного оборудования
3	EGTS_SR_VEHICLE_DATA	Подзапись применяется АСН для передачи на ТП информации о ТС
5	EGTS_SR_DISPATCHER_IDENTITY	Подзапись используется только авторизуемой ТП при запросе авторизации на авторизующей ТП и содержит учетные данные авторизуемой АСН
6	EGTS_SR_AUTH_PARAMS	Подзапись используется авторизующей ТП для передачи на АСН данных о способе и параметрах шифрования, требуемого для дальнейшего взаимодействия
7	EGTS_SR_AUTH_INFO	Подзапись предназначена для передачи на авторизующую ТП аутентификационных данных АСН (авторизуемой ТП) с использованием ранее переданных со стороны авторизующей ТП параметров для осуществления шифрования данных
8	EGTS_SR_SERVICE_INFO	Данный тип подзаписи используется для информирования принимающей стороны, АСН или ТП, в зависимости от направления отправки, о поддерживаемых сервисах, а также для запроса определенного набора требуемых сервисов (от АСН к ТП)
9	EGTS_SR_RESULT_CODE	Подзапись применяется авторизующей ТП для информирования АСН (авторизуемой ТП) о результатах процедуры аутентификации АСН

а) Подзапись EGTS SR RECORD RESPONSE

В таблице В.5 представлен формат подзаписи EGTS SR RECORD RESPONSE.

Таблица В.5 — Формат подзаписи EGTS_SR_RECORD_RESPONSE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
CRN (Confirmed Record Number)									USHORT	2
RST (Record Status)									BYTE	1

Поля подзаписи EGTS SR RECORD RESPONSE:

При получении подтверждения отправителем, он анализирует поле RST подзаписи EGTS_SR_ RECORD_ RESPONSE и, в случае получения статуса об успешной обработке, стирает запись из внутреннего хранилища, иначе, в случае ошибки и в зависимости от причины, производит соответствующие действия.

Рекомендуется совмещать подтверждение транспортного уровня (тип пакета EGTS_PT_RESPONSE) с подзаписями — подтверждениями уровня поддержки услуг EGTS_SR_RECORD_RESPONSE.

⁻ CRN (Confirmed Record Number) — номер подтверждаемой записи (значение поля RN из обрабатываемой записи);

⁻ RST (Record Status) — статус обработки записи.

б) Подзапись EGTS_SR_TERM IDENTITY

В таблице В.6 представлен формат подзаписи EGTS_SR_TERM_IDENTITY сервиса EGTS_AUTH_SERVICE.

Таблица В.6 — Формат подзаписи EGTS_SR_TERM_IDENTITY сервиса EGTS_AUTH_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
		Т		М	UINT	4				
				м	BYTE					
MNE	BSE	NIDE	SSRA	LNGCE	IMSIE	IMEIE	HDIDE] ^M	BILE	1
	_	HDID ((Home Dis	patcher Ide	entifier)			0	USHORT	2
	IN	/IEI (Interna	ational Mol	oile Equ <mark>ipm</mark>	nent Identit	:y)		0	STRING	15
	IN	/ISI (Interna	ational Mol	oile Subscr	iber Identit	:y)	_	0	STRING	16
		L	NGC (Lanç	guage Cod	e)		_	0	STRING	3
		١	IID (Netwo	rk Identifie	r)			0	BINARY	3
				0	USHORT	2				
мѕ	ISDN (Mol	bile Station	Integrated	d Services	Digital Net	work Numl	per)	0	STRING	15

Поля подзаписи EGTS SR TERM IDENTITY:

- TID (Terminal Identifier) уникальный идентификатор, назначаемый при программировании АСН. Наличие значения 0 в данном поле означает, что АСН не прошла процедуру конфигурирования или прошла ее не полностью. Данный идентификатор назначается оператором и однозначно определяет набор учетных данных АСН. TID назначается при инсталляции АСН как дополнительного оборудования и передаче оператору учетных данных АСН (IMSI, IMEI, serial_id). В случае использования АСН в качестве штатного устройства, TID сообщается оператору автопроизводителем вместе с учетными данными (VIN, IMSI, IMEI);
- HDIDE (Home Dispatcher Identifier Exists) битовый флаг, который определяет наличие поля HDID в подзаписи (если бит равен 1, то поле передается, если 0, то не передается);
- IMEIE (International Mobile Equipment Identity Exists) битовый флаг, который определяет наличие поля IMEI в подзаписи (если бит равен 1, то поле передается, если 0, то не передается);
- IMSIE (International Mobile Subscriber Identity Exists) битовый флаг, который определяет наличие поля IMSI в подзаписи (если бит равен 1, то поле передается, если 0, то не передается);
- LNGCE (Language Code Exists) битовый флаг, который определяет наличие поля LNGC в подзаписи (если бит равен 1, то поле передается, если 0, то не передается);
- SSRA битовый флаг предназначен для определения алгоритма использования сервисов (если бит равен 1, то используется «простой» алгоритм, если 0, то алгоритм «запросов» на использование сервисов):
- NIDE (Network Identifier Exists) битовый флаг определяет наличие поля NID в подзаписи (если бит равен 1, то поле передается, если 0, то не передается);
- BSE (Buffer Size Exists) битовый флаг, определяющий наличие поля BS в подзаписи (если бит равен 1, то поле передается, если 0, то не передается);
- MNE (Mobile Network Exists) битовый флаг, определяющий наличие поля MSISDN в подзаписи (если бит равен 1, то поле передается, если 0, то не передается);
- HDID (Home Dispatcher Identifier) идентификатор «домашней» ТП (подробная учетная информация о терминале хранится на данной ТП);
- IMEI (International Mobile Equipment Identity) идентификатор мобильного устройства (модема). При невозможности определения данного параметра АСН должна заполнять данное поле значением 0 во всех 15 символах;
- IMSI (International Mobile Subscriber Identity) идентификатор мобильного абонента. При невозможности определения данного параметра АСН должна заполнять данное поле значением 0 во всех 16 символах;
- LNGC (Language Code) код языка, предпочтительного к использованию на стороне АСН, по [13], например «rus» русский:
- NID (Network Identifier) идентификатор сети оператора, в которой зарегистрирована АСН на данный момент. Используются 20 младших бит. Представляет пару кодов МСС-МNС (на основе рекомендаций [14]). Таблица В.6 иллюстрирует структуру поля NID;
- BS (Buffer Size) максимальный размер буфера приема ACH в байтах. Размер каждого пакета информации, передаваемого на ACH, не должен превышать данного значения. Значение поля BS может принимать различные значения, например 800, 1000, 1024, 2048, 4096 и т. д., и зависит от реализации аппаратной и программной частей конкретной ACH;

FOCT P 56360—2015

- MSISDN (Mobile Station Integrated Services Digital Network Number) — телефонный номер мобильного абонента. При невозможности определения данного параметра устройство должно заполнять данное поле значением 0 во всех 15 символах (формат описан в [15]).

Передача поля HDID определена настройками ACH и целесообразна при возможности подключения ACH к ТП, отличной от «домашней», например при использовании территориально распределенной сети ТП. При использовании только одной «домашней» ТП передача HDID не требуется.

«Простой» алгоритм использования сервисов, указанный в В.З.2.1, подразумевает, что для АСН (авторизуемой ТП) доступны все сервисы, и в таком режиме АСН разрешено сразу отправлять данные для требуемого сервиса. В зависимости от действующих на авторизующей ТП для данной АСН разрешений, в ответ на пакет с данными для сервиса может быть возвращена запись-подтверждение с соответствующим признаком ошибки. В системах с простым распределением прав на использование сервисов рекомендуется применять именно «простой» алгоритм. Это сокращает объем передаваемого трафика и время, затрачиваемое АСН на авторизацию.

Алгоритм «запросов» на использование сервисов подразумевает, что перед тем, как применять тот или иной тип сервиса (отправлять данные), АСН должна получить от ТП информацию о доступных для использования сервисов. Запрос на использование сервисов можно осуществлять как на этапе авторизации, так и после нее. На этапе авторизации запрос на использование того или иного сервиса производят путем добавления подзаписей типа SR_SERVICE_INFO и установки бита 7 поля SRVP в значение 1. После процедуры авторизации запрос на использование сервиса может быть также осуществлен при помощи подзаписей SR SERVICE INFO.

Таблица В.7 — Формат поля NID подзаписи EGTS_SR_TERM_IDENTITY сервиса EGTS_AUTH_SERVICE

Биты 2023	Биты 1019	Биты 09	Тип	Тип данных	Размер, байт
_	MCC (Mobile Country Code)	MNC (Mobile Network Code)	М	BINARY	3

Совокупность МСС и MNC определяет уникальный идентификатор сотового оператора сетей GSM, CDMA, TETRA, UMTS, а также некоторых операторов спутниковой связи.

Параметры поля NID подзаписи EGTS_SR_TERM_IDENTITY:

- MCC (Mobile Country Code) код страны,
- MNC (Mobile Network Code) код мобильной сети в пределах страны.
- в) Подзапись EGTS_SR_MODULE_DATA

В таблице В.8 представлен формат подзаписи EGTS_SR_MODULE_DATA сервиса EGTS_AUTH_SERVICE.

Таблица B.8 — Формат подзаписи EGTS_SR_MODULE_DATA сервиса EGTS_AUTH_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
			М	BYTE	1					
		\	М	UINT	4					
		F	WV (Firmw	are Versio	n)			М	USHORT	2
		S	WV (Softw	are Versio	n)			М	USHORT	2
			MD (Mod	lification)				М	BYTE	1
			ST (S	State)		_		М	BYTE	1
			SRN (Seria	al Number))	-		0	STRING	0 32
			D (Del	imiter)				М	BYTE	1
			DSCR (De	escription)				0	STRING	0 32
			D (Del	imiter)				М	BYTE	1

Поля подзаписи SR MODULE DATA:

- MT (Module Type) тип модуля, который определяет функциональную принадлежность модуля (1 основной модуль; 2 модуль ввода-вывода; 3 модуль навигационного приемника; 4 модуль беспроводной связи). Здесь указаны рекомендованные правила нумерации типов модулей. Конкретная реализация сервиса авторизации может вводить и расширять собственную нумерацию типов, включая все внешние периферийные контроллеры;
 - VID (Vendor Identifier) код производителя;
- FWV (Firmware Version) версия аппаратной части модуля (старший байт число до точки major version, младший после точки minor version, например версия 2.34 будет представлена числом 0x0222);

- SWV (Software Version) версия программной части модуля (старший байт число до точки, младший после точки);
 - MD (Modification) код модификации программной части модуля;
- ST (State) состояние (1 включен, 0 выключен, >127 неисправность см. Коды результатов обработки);
 - SRN (Serial Number) серийный номер модуля;
 - D (Delimiter) разделитель строковых параметров (всегда имеет значение 0);
 - DSCR (Description) краткое описание модуля.
 - г) Подзапись EGTS_SR_VEHICLE_DATA
 - В таблице В.9 представлен формат подзаписи EGTS SR VEHICLE DATA сервиса EGTS AUTH SERVICE.
- В случае использования АСН в конфигурации дополнительного оборудования данная подзапись должна передаваться совместно с EGTS SR TERM IDENTITY. Идентификация АСН в этом случае производится на основании значения поля VIN.

Таблица В.9 — Формат подзаписи EGTS SR VEHICLE DATA сервиса EGTS AUTH SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
		VIN (V	М	STRING	17					
				М	UINT	4				
		VPST (V	М	UINT	4					

Поля подзаписи EGTS SR VEHICLE DATA:

- VIN (Vehicle Identification Number) идентификационный номер транспортного средства (структура описана в [16]);
 - VHT тип TC:

Віт 31-4: не используется,

Bit 3-0:

0001 — пассажирский (Class M1),

0001 — пассажирский (Class M1),

0010 — автобус (Class M2).

0011 — автобус (Class M3);

- VPST — тип энергоносителя ТС:

если все биты 0, то тип не задан,

Віт 31-6: не используется,

Bit 5: 1 — водород,

Bit 4: 1 — электричество (более 42 v and 100 Ah).

Bit 3: 1 — жидкий пропан (LPG),

Bit 2: 1 — сжиженный природный газ (CNG); Bit 1: 1 — дизель, Bit 0: 1 — бензин.

- д) Подзапись EGTS SR DISPATCHER IDENTITY
- таблице B.10 представлен формат подзаписи EGTS_SR DISPATCHER IDENTITY сервиса EGTS AUTH SERVICE.

Таблица В.10 — Формат подзаписи EGTS SR DISPATCHER IDENTITY сервиса EGTS AUTH SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
			М	BYTE	1					
			М	UINT	4					
			0	STRING	0255					

Поля подзаписи EGTS SR DISPATCHER IDENTITY:

- DT (Dispatcher Type) тип диспетчера;
- DID (Dispatcher ID) уникальный идентификатор диспетчера;
- DSCR (Description) краткое описание.
- e) Подзапись EGTS SR AUTH PARAMS

В таблице В 11 представлен формат подзаписи EGTS SR AUTH_PARAMS сервиса EGTS AUTH SERVICE.

Таблица В.11 — Формат подзаписи EGTS_SR_AUTH_PARAMS сервиса EGTS_AUTH_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
			FLG (Flags)			_		BYTE	4
_	EXE	SSE	MSE	ISLE	PKE	E	NA	М	BYIE	1
		Pl	KL (Public	Key Leng	th)			0	USHORT	2
			PBK (Pu	blic Key)				0	BINARY	0512
		ISL	(Identity	String Len	gth)		_	0	USHORT	2
			MSZ (M	od Size)				0	USHORT	2
		S	SS (Server	Sequence	∍)			0	STRING	0255
			D (Del	imiter)				0	BYTE	1
			EXP	(Exp)				0	STRING	0255
			D (Del	imiter)		_		0	BYTE	1

Поля подзаписи EGTS_SR_AUTH_PARAMS:

- EXE битовый флаг, определяет наличие поля EXP и следующего за ним разделителя D (если 1, то поля присутствуют);
- SSE битовый флаг, определяет наличие поля SS и следующего за ним разделителя D (если 1, то поля присутствуют);
 - MSE битовый флаг, определяет наличие поля MSZ (если 1, то поле присутствует);
 - ISLE битовый флаг, определяет наличие поля ISL (если 1, то поле присутствует);
 - РКЕ битовый флаг, определяет наличие полей РКL и РВК (если 1, то поля присутствуют);
- ENA битовое поле, определяющее требуемый алгоритм шифрования пакетов. Если данное поле содержит значение 0 0, то шифрование не применяется, и подзапись EGTS_SR_AUTH_PARAMS содержит только 1 байт, иначе, в зависимости от типа алгоритма, наличие дополнительных параметров определяется остальными битами поля FLG
 - PKL (Public Key Length) длина публичного ключа в байтах;
 - PBK (Public Key) данные публичного ключа;
 - ISL (Identity String Length) результирующая длина идентификационных данных;
 - MSZ (ModSize) параметр, применяемый в процессе шифрования;
- SS (Server Sequence) специальная серверная последовательность байтов, применяемая в процессе шифрования;
 - D (Delimiter) разделитель строковых параметров (всегда имеет значение 0);
 - ЕХР (Ехр) специальная последовательность, используемая в процессе шифрования.

В том случае если запрашиваемый алгоритм шифрования (если требуется использование шифрования) поддерживается, то авторизуемой стороной производится формирование и отправка записи EGTS_SR_AUTH_INFO, зашифрованной по указанному алгоритму. При этом биты 11 и 12 в поле KEYS заголовка транспортного уровня устанавливаются в соответствующие значения, и весь последующий обмен данными производится с использованием шифрования.

Если требуемый алгоритм шифрования не поддерживается, инициирующая сторона отправляет подзапись EGTS_SR_ RECORD_RESPONSE с соответствующим признаком ошибки.

ж) Подзапись EGTS SR AUTH INFO

В таблице В.12 представлен формат подзаписи EGTS_SR_AUTH_INFO сервиса EGTS_AUTH_SERVICE.

Таблица В.12 — Формат подзаписи EGTS_SR_AUTH_INFO сервиса EGTS_AUTH_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
			М	STRING	032					
			D (Del	imiter)				М	BYTE	1
		U	PSW (Use	r Passwor	d)			М	STRING	032
			D (Del	imiter)				М	BYTE	1
			SS (Server	Sequence	•)			0	STRING	0255
			D (Del	imiter)				0	BYTE	1

Поля подзаписи EGTS SR AUTH INFO:

- UNM (User Name) имя пользователя:
- D (Delimiter) разделитель строковых параметров (всегда имеет значение 0);
- UPSW (User Password) пароль пользователя;
- SS (Server Sequence) специальная серверная последовательность байт, передаваемая в подзаписи EGTS_SR_AUTH_PARAMS (необязательное поле, наличие зависит от используемого алгоритма шифрования).
 - и) Подзапись EGTS SR SERVICE INFO

В таблице В.13 представлен формат подзаписи EGTS_SR_SERVICE_INFO сервиса EGTS_AUTH_SERVICE.

Таблица В.13 — Формат подзаписи EGTS SR SERVICE INFO сервиса EGTS AUTH SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт		
			М	BYTE	1							
		S		М	BYTE	1						
		SR			DVTE	4						
SRVA	\		_	_			SRVRP	- M BYTE 1				

Поля подзаписи EGTS SR SERVICE INFO:

- ST (Service Type) тип сервиса, определяет функциональную принадлежность (например, EGTS_TELEDA-TA_SERVICE, EGTS_ECALL_SERVICE и т. д.);
 - SST (Service Statement) определяет текущее состояние сервиса.

В таблице В 14 представлен перечень возможных состояний сервиса, его кодовое обозначение и описание;

- SRVP (Service Parameters) определяет параметры сервиса;
- SRVA (Service Attribute) битовый флаг, атрибут сервиса:
 - 0 поддерживаемый сервис,
 - 1 запрашиваемый сервис;
- SRVRP (Service Routing Priority) битовое поле, приоритет с точки зрения трансляции на него данных (в случае масштабирования системы и применения нескольких экземпляров приложений одного типа сервиса) определяется битами 0 и 1:
 - 00 наивысший,
 - 01 высокий,
 - 10 средний,
 - 11 низкий.

Таблица В.14 — Список возможных состояний сервиса

Код	Название	Описание
0	EGTS_SST_IN_SERVICE	Сервис в рабочем состоянии и разрешен к использованию
128	EGTS_SST_OUT_OF_SERVICE	Сервис в нерабочем состоянии (выключен)
129	EGTS_SST_DENIED	Сервис запрещен для использования
130	EGTS_SST_NO_CONF	Сервис не настроен
131	EGTS_SST_TEMP_UNAVAIL	Сервис временно недоступен

к) Подзапись EGTS SR RESULT_CODE

В таблице В.15 представлен формат подзаписи EGTS_SR_RESULT CODE сервиса EGTS AUTH SERVICE.

Таблица В.15 — Формат подзаписи EGTS_SR RESULT_CODE сервиса EGTS_AUTH_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
			RCD (Res	sult Code)				М	BYTE	1

Поля подзаписи EGTS SR SERVICE_INFO:

⁻ RCD (Result Code) — код, определяющий результат выполнения операции авторизации (см. таблицу А.14 приложения A).

В.3.2.3 Описание процедуры авторизации АСН на авторизирующей ТП

Для работы АСН в инфраструктуре оператора ей должен быть назначен уникальный идентификатор UNIT_ID, которому должны соответствовать определенные значения IMEI, IMSI и другие учетные данные АСН, необходимые для осуществления взаимодействия в системе оператора.

Конфигурирование АСН может быть произведено одним из следующих способов:

1) После регистрации ACH в сети GSM или UMTS инфраструктура сотового оператора отслеживает появление нового устройства и инициирует отправку ему зашифрованного SMS-сообщения с учетными данными. Шифрование производится ключом и алгоритмом, известными данной ACH и сохраненными к моменту конфигурирования в хранилище оператора. Для определения ключей и алгоритмов шифрования на стороне ACH используются соответствующие поля из заголовка протокола транспортного уровня, а также данные о ключах, зашитых в памяти ACH. Учетные данные передаются в виде конфигурационного файла с использованием подзаписи EGTS_SR_SERVICE_FULL_DATA или EGTS_SR_SERVICE_PART_DATA сервиса EGTS_FIRMWARE_SERVICE.

Файл конфигурации должен содержать:

- параметр EGTS_GPRS_APN (параметры точки доступа для установления GPRS сессии), параметр EGTS_ SERVER_ADDRESS, определяющий адрес и порт сервера, с которым необходимо установить TCP/IP соединение;
- уникальный идентификатор ACH UNIT_ID. В конфигурационном файле также могут присутствовать другие параметры, необходимые для работы ACH. Далее ACH производит расшифровку SMS-сообщения, проверяет корректность структур данных, вычисляет и сравнивает с полученными в сообщении значениями контрольные суммы. Если расшифровка и проверка прошли успешно, ACH устанавливает сессию GPRS и соединяется с указанным сервером по TCP/IP. После прохождения процедуры аутентификации ACH отправляет подтверждение об успешной конфигурации в виде подзаписи EGTS_SR_RECORD_RESPONSE с кодом EGTS_PC_OK на полученную запись EGTS_SR_SERVICE_FULL_DATA или EGTS_SR_SERVICE_PART_DATA сервиса EGTS_FIRMWARE_SERVICE.

На рисунке В.4 представлен описанный алгоритм конфигурирования АСН.

Рисунок В.4 — Алгоритм конфигурации ACH с использованием SMS

2) После регистрации АСН в сети GSM или GPRS устанавливается сессия GPRS и соединение TCP/IP с сервером, информация об адресе которого уже записана в памяти АСН. При прохождении процедуры аутентификации, инфраструктура оператора анализирует параметр TID из подзаписи EGTS_SR_TERM_IDENTITY (см. таблицу В.6). Если TID имеет значение 0, производится процедура конфигурирования при помощи сервиса EGTS_FIRMWARE_SERVICE, как описано в способе 1, отправляется файл конфигурации с использованием подзаписи EGTS_SR_SERVICE_FULL_DATA или EGTS_SR_SERVICE_PART_DATA. Далее, после прихода подтверждения получения конфигурационного файла от ACH, ему отправляется результат авторизации с кодом EGTS_PC_ID_NFOUND, указывающий на то, что TID = 0 в системе не найден. После этого сервер, не разрывая соединения с ACH, ожидает повторной авторизации ACH, но уже с корректным параметром TID.

На рисунке В.5 приведен описанный алгоритм конфигурирования АСН.

Рисунок В.5 — Алгоритм конфигурации ACH с использованием GPRS

Если авторизация прошла успешно, ТП, в зависимости от алгоритма запроса использования сервисов, может перед подзаписью EGTS_SR_RESULT_CODE добавлять подзаписи типа EGTS_SR_SERVICE_INFO, определяющие состав сервисов, разрешенных для АСН и поддерживаемых ТП. Это означает, что АСН сразу после авторизации может использовать только перечисленные сервисы, даже если он предполагает «простой» алгоритм поддержки прав использования сервисов.

Если применен алгоритм «запросов» использования сервисов, то АСН не может использовать сервисы, разрешение на применение которых не получено от стороны ТП. Причем разрешение на некоторые запрашиваемые сервисы может прийти позже. Например, когда сервисы находятся на удаленных ТП, и от этих ТП в асинхронном режиме приходят ответы на запросы. В таком случае ТП, используя имеющиеся данные маршрутизации, отправляет асинхронный запрос на применение сервисов удаленной ТП, если идентификатор HDID указан в подзаписи EGTS_SR_TERM_IDENTITY при авторизации АСН.

На рисунке В.6 представлен изложенный алгоритм обмена сообщениями на этапе авторизации АСН на стороне ТП.

Рисунок В.6 — Алгоритм обмена сообщениями на этапе авторизации АСН на ТП

После успешного подключения АСН к ТП по протоколу TCP/IP, АСН должна быть авторизована. Для передачи первичных аутентификационных данных АСН должна отправить сообщение, содержащее подзапись EGTS_SR_TERM_IDENTITY (сообщение 1) в течение времени EGTS_SL_NOT_AUTH_TO (см. таблицу B.20).

Получив сообщение с подзаписью EGTS_SR_TERM_IDENTITY, ТП отправляет на него сообщение 2 с подтверждением о приеме EGTS_SR_RECORD_RESPONSE на запись с идентификатором ID = 1. Необходимо использовать идентификатор пакета PID = 1 при каждой новой сессии авторизации на ТП. Далее, в зависимости от настроек (использование шифрования, применение дополнительного алгоритма авторизации), ТП отправляет пакет (сообщение 3) с подзаписью EGTS_SR_AUTH_PARAM, содержащей параметры, необходимые для осуществления шифрования и/или алгоритма расширенной авторизации. Если шифрование и алгоритм расширенной авторизации не использованы, то вместо подзаписи EGTS_SR_AUTH_PARAM ТП может отправить подзапись EGTS_SR_RESULT_CODE с результатом проведения процедуры авторизации АСН.

Далее ACH отправляет сообщение 4 с подтверждением EGTS_SR_RECORD_RESPONSE на сообщение 3 с ID = 2. При использовании расширенного алгоритма авторизации и/или шифрования, ACH передает сообщение 5, закодированное по правилам шифрования, указанным в сообщении 3 от TП и содержащем подзапись EGTS_SR_AUTH_INFO с данными для расширенной авторизации.

После получения EGTS_SR_AUTH_INFO ТП отправляет сообщение 6 с подтверждением на сообщение 5 с ID = 3 и выполняет процедуру авторизации. ТП формирует сообщение 7 с результатом проведения авторизации в виде подзаписи EGTS_SR_RESULT_CODE, а также в случае успешной авторизации может добавить информацию о разрешенных для использования данной ACH услуг в виде подзаписей EGTS_SR_SERVICE_INFO.

ACH формирует сообщение 8 с подтверждением на сообщение 7 с ID = 4. ACH может сформировать сообщение 9 и добавить подзаписи EGTS_SR_SERVICE_INFO, содержащие информацию о требуемых услугах (если применяется процедура использования сервисов «по запросу») и/или поддерживаемых сервисах на стороне ACH.

Далее ТП создает сообщение 10 с подтверждением на сообщение 9 с ID = 5.

На этом этап авторизации заканчивается, и АСН переходит на этап обмена информационными сообщениями с ТП согласно установленному в АСН режиму работы.

В том случае, если процедура авторизации проходит неудачно (неверные аутентификационные данные ACH, запрет доступа данной ACH к ТП и т. д.), то после отправки сообщения, содержащего подзапись EGTS_SR_RESULT_CODE с указанием в ней соответствующего кода, ТП должна разорвать установленное терминалом TCP/IP соединение.

В.3.2.4 Описание процедуры авторизации ТП на авторизующей ТП

Данная процедура авторизации предполагает, что информация об адресе авторизующей ТП записана в БД авторизуемой ТП.

На рисунке В.7 представлен алгоритм авторизации между платформами.

Рисунок В.7 — Алгоритм обмена сообщениями на этапе авторизации авторизуемой ТП на авторизующей ТП

Примечание — На рисунке В.7 не представлены сообщения, которые обеспечивают (при необходимости, в зависимости от настроек) алгоритмы шифрования и расширенной авторизации. Для реализации алгоритмов шифрования и расширенной авторизации использованы подзаписи EGTS_SR_AUTH_PARAM, EGTS_SR_AUTH_INFO авторизующей и авторизуемой ТП, соответственно. Порядок обмена сообщениями с указанными подзаписями между авторизуемой и авторизующей ТП совпадает с алгоритмом обмена сообщениями на этапе авторизации АСН на ТП, указанным на рисунке В.6.

Для передачи первичных аутентификационных данных авторизуемая ТП должна отправить сообщение, содержащее подзапись SR_DISPATCHER_IDENTITY (сообщение 1) в течение времени EGTS_SL_NOT_AUTH_TO (см. таблицу B.20).

Необходимо использовать идентификатор пакета PID = 1 при каждой новой сессии авторизации на ТП.

Получив сообщение с подзаписью SR_DISPATCHER_IDENTITY, авторизующая ТП отправляет на него сообщение 2 с подтверждением о приеме EGTS_SR_RECORD_RESPONSE на запись с идентификатором ID = 1.

Получив подзапись SR_DISPATCHER_IDENTITY, авторизующая ТП анализирует параметр DID из подзаписи (см. таблицу В.10). При благополучном завершении авторизации авторизующая ТП формирует подзапись EGTS_SR_RESULT_CODE = EGTS_PC_OK с положительным результатом и передает ее в сообщении 3. Соответственно авторизуемая ТП отправляет сообщение 4 с подтверждением EGTS_SR_RECORD_RESPONSE на сообщение 3 с ID = 2.

Затем авторизуемая и авторизующая ТП последовательно предоставляют друг другу информацию о доступных сервисах, используя подзаписи EGTS SR SERVICE INFO в сообщениях 5 и 7 соответственно. На ука-

FOCT P 56360—2015

занные сообщения 5 и 7 авторизующая и авторизуемая платформы формируют подтверждения (сообщения 6 и 8 соответственно).

B.3.3 Сервис EGTS FIRMWARE SERVICE

Данный тип сервиса предназначен для передачи на АСН конфигурации и обновления ПО аппаратной части модулей и блоков самой АСН, а также периферийного оборудования, подключенного к АСН.

В.3.3.1 Описание подзаписей

Для осуществления взаимодействия в рамках данного сервиса использовано несколько подзаписей, описание и код которых представлены в таблице В.16.

Таблица В.16 — Список подзаписей сервиса EGTS FIRMWARE SERVICE

Код	Название	Описание
0	EGTS_SR_RECORD_RESPONSE	Подзапись применяется для осуществления подтверждения записи протокола уровня поддержки услуг из пакета типа EGTS_PT_ APPDATA
33	EGTS_SR_SERVICE_PART_DATA	Подзапись предназначена для передачи на АСН данных, которые разбиваются на части и передаются последовательно. Данная подзапись применяется для передачи больших объектов, длина которых не позволяет их передать на АСН одним пакетом
34	EGTS_SR_SERVICE_FULL_DATA	Подзапись предназначена для передачи на АСН данных, которые не разбиваются на части, а передаются одним пакетом

а) Подзапись EGTS SR SERVICE PART DATA

Данный тип подзаписи может использоваться сервисом для передачи сущностей на АСН.

В таблице В.17 представлен формат подзаписи EGTS_SR_SERVICE_PART_DATA сервиса EGTS_FIRMWARE_SERVICE.

Таблица В.17 — Формат подзаписи EGTS SR SERVICE PART DATA сервиса EGTS FIRMWARE SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
			М	USHORT	2					
				М	USHORT	2				
		EPQ	(Expected	Parts Qua	intity)			М	USHORT	2
		OD		0	BINARY	071				
				М	BINARY	165400				

Параметр EPQ содержит число частей, которое будет передано, а параметр PN номер текущей части. Поле ID однозначно определяет сущность, которой принадлежит передаваемая часть. Значения параметров EPQ и PN для данной подзаписи должны содержать значения в диапазоне от 1 до 65535, причем значение из поля PN должно быть меньше или равно значению из поля EPQ. Если это условие нарушается, то данные из такой подзаписи не принимаются.

Идентификатор объекта ID, поля PN и EPQ, а также идентификатор источника записи OID из заголовка уровня маршрутизации сервисов позволяют однозначно определить, какая часть и какого объекта получена для обработки. Это дает возможность при достаточной пропускной способности канала одновременно передавать сущности для обновления ПО различных аппаратных частей АСН и периферийного оборудования.

Поля данной подзаписи:

- ID (Identity) уникальный идентификатор передаваемой сущности. Инкрементируется при начале отправки новой сущности. Этот параметр позволяет однозначно идентифицировать, какой именно сущности данная часть принадлежит;
 - PN (Part Number) последовательный номер текущей части передаваемой сущности;
 - EPQ (Expected Parts Quantity) ожидаемое число частей передаваемой сущности;
- ODH (Object Data Header) заголовок, содержащий параметры, характеризующие передаваемую сущность. Данный заголовок передается только для первой части сущности. При передаче второй и последующих частей данное поле не передается.
- В таблице В.18 представлен формат заголовка передаваемой сущности подзаписи EGTS_SR_SERVICE_ PART_DATA сервиса EGTS_FIRMWARE_SERVICE;
 - OD (Object Data) непосредственно данные передаваемой сущности.

Таблица	B.18 —	Формат	з аголо вка	передаваемой	сущности	подзаписи	EGTS_	SR	_SERVICE_	_PART_	_DATA cep-
виса EGTS_	FIRMW	ARE_SEF	₹VICE								

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Б	Бит 1	Бит 0	Тип	Тип данных	Размер, байт	
				DVTE								
	— OT (Object Type) MT (Module Type)								М	BYTE	1	
	CMI (Component or Module Identifier)									BYTE	1	
			VER	(Version)				М	USHORT	2	
			WOS (Whole	Object S	ignature	e)			М	USHORT	2	
	FN (File Name)									STRING	064	
D (Delimiter)									М	BYTE	1	

Поля данной подзаписи:

- OA (Object Attribute) характеристика принадлежности передаваемой сущности;
- OT (Object Type) тип сущности по содержанию. Определены следующие значения данного поля:
 - 00 данные внутреннего ПО («прошивка»),
 - 01 блок конфигурационных параметров;
- MT (Module Type) тип модуля, для которого предназначена передаваемая сущность. Определены следующие значения данного поля:
 - 00 периферийное оборудование,
 - 01 ACH:
- CMI (Componentor Module Identifier) номер компонента в случае принадлежности сущности непосредственно АСН или идентификатор периферийного модуля/порта, подключенного к АСН, в зависимости от значения параметра МТ;
- VER (Version) версия передаваемой сущности (старший байт число до точки major version, младший, после точки minor version, например версия 2.34 будет представлена числом 0x0222);
- WOS (Whole Object Signature) сигнатура (контрольная сумма) всей передаваемой сущности. Используют алгоритм CRC16-CCITT;
- FN (File Name) имя файла передаваемой сущности (данное поле опционально и может иметь нулевую длину);
 - D разделитель строковых параметров (всегда имеет значение 0).
 - б) Подзапись EGTS SR SERVICE FULL DATA
- В таблице В.19 представлен формат подзаписи EGTS_SR_SERVICE_FULL_DATA сервиса EGTS FIRMWARE SERVICE.

Таблица В.19 — Формат подзаписи EGTS SR SERVICE_FULL_DATA сервиса EGTS FIRMWARE SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
		OD	М	BINARY	771					
			М	BINARY	165400					

Поля данной подзаписи:

- ODH (Object Data Header) заголовок, содержащий параметры, характеризующие передаваемую сущность. Структура данного параметра полностью совпадает со структурой, представленной в таблице В.17. Для подзаписи EGTS_SR_SERVICE_FULL_DATA параметр ODH является обязательным и присутствует в каждой такой подзаписи;
 - OD (Object Data) непосредственно данные передаваемой сущности.
 - в) Подзапись EGTS_SR_RECORD_RESPONSE

Данная подзапись имеет такую же структуру, как описано в B.3.2.2, а), и применяется для подтверждения получения и обработки подзаписей EGTS_SR_SERVICE_PART_DATA и EGTS_SR_SERVICE_FULL_DATA. При этом на все подзаписи EGTS_SR_SERVICE_PART_DATA, кроме последней, при успешной обработке в составе EGTS_SR_RECORD_RESPONSE должен передаваться код результата, равный EGTS_PC_IN_PROGRESS. На последнюю подзапись EGTS_SR_SERVICE_PART_DATA и каждую EGTS_SR_SERVICE_FULL_DATA при успешном приеме и обработке со стороны ACH должна передаваться подзапись EGTS_SR_RECORD_RESPONSE, содержащая код EGTS_PC_OK, что будет воспринято сервисом как удачная попытка отправки всей сущности.

FOCT P 56360-2015

г) Временные и количественные параметры протокола уровня поддержки услуг при использовании пакетной передачи данных

В таблице В.20 представлены временные и количественные параметры протокола уровня поддержки услуг.

Таблица В.20 — Временные и количественные параметры протокола уровня поддержки услуг

Название	Тип данных	Диапазон значений	Значение по умолчанию	Описание
EGTS_SL_NOT_AUTH_TO	BYTE	0 255	6	Время ожидания прихода сообщения от АСН (авторизуемой ТП), которое содержит данные для осуществления процедуры авторизации на стороне авторизующей ТП после установления АСН (авторизуемой ТП) нового подключения по протоколу ТСР/ІР, с. Если в течение данного времени сообщение не поступает, авторизующая ТП должна разорвать установленное с АСН (авторизуемой ТП) ТСР/ІР соединение

B.3.4 Cepbuc EGTS COMMANDS SERVICE

Данный тип сервиса предназначен для обработки команд, со<mark>общений и подтверждений, передаваемых меж-ду АСН, ТП и клиентскими приложениями.</mark>

В.3.4.1 Описание подзаписей

В таблице В.21 представлен список подзаписей сервиса EGTS_COMMAND_SERVICE, их описание и кодовое обозначение.

Таблица В.21 — Список подзаписей сервиса EGTS_COMMAND_SERVICE

Код	Название	Описание
0	EGTS_SR_RECORD_RESPONSE	Подзапись применяется для подтверждения процесса обработ- ки записи протокола уровня поддержки услуг. Данный тип подза- писи должен поддерживаться всеми сервисами
51	EGTS_SR_COMMAND_DATA	Подзапись используется АСН и ТП для передачи команд, информационных сообщений, подтверждения доставки, подтверждения выполнения команд, подтверждения прочтения сообщений и т. п.

а) Подзапись EGTS_SR_COMMAND_DATA

В таблице B.22 представлен формат подзаписи EGTS_SR_COMMAND_DATA сервиса EGTS_COMMANDS_SERVICE.

Таблица В.22 — Формат подзаписи EGTS_SR_COMMAND_DATA сервиса EGTS_COMMANDS_SERVICE

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
	CT (Comm	nand Type)		CCT (C	ommand (Confirmation	on Type)	М	BYTE	1
	CID (Command Identifier)								UINT	4
				М	UINT	4				
		_	_		_	ACFE	CHSFE	М	BYTE	1
			CHS (C	Charset)				0	BYTE	1
		ACL (Authorizati	on Code L	ength)			0	BYTE	1
	AC (Authorization Code)									0 255
	CD (Command Data)									0 65205

Поля данной подзаписи:

0001 = CT_COMCONF — подтверждение о приеме, обработке или результат выполнения команды,

⁻ CT (Command Type) — тип команды:

```
0010 = CT_MSGCONF — подтверждение о приеме, отображении и/или обработке информационного сообщения,
```

- 0011 = CT MSGFROM информационное сообщение от ACH,
- 0100 = CT_MSGTO информационное сообщение для вывода на устройство отображения АСН,
- 0101 = СТ СОМ команда для выполнения на АСН,
- 0110 = CT_DELCOM удаление из очереди на выполнение переданной ранее команды.
- 0111 = CT SUBREQ дополнительный подзапрос для выполнения (к переданной ранее команде),
- 1000 = CT_DELIV подтверждение о доставке команды или информационного сообщения;
- CCT (Command Confirmation Type) тип подтверждения (имеет смысл для типов команд CT_COMCONF, CT_MSGCONF, CT_DELIV):
 - 0000 = СС ОК успешное выполнение, положительный ответ,
 - 0001 = CC ERROR обработка завершилась ошибкой,
 - 0010 = CC_ILL команда не может быть выполнена по причине отсутствия в списке разрешенных (определенных протоколом) команд или отсутствия разрешения на выполнение данной команды,
 - 0011 = CC_DEL команда успешно удалена,
 - 0100 = CC NFOUND команда для удаления не найдена,
 - 0101 = CC NCONF успешное выполнение, отрицательный ответ,
 - 0110 = CC_INPROG команда передана на обработку, но для ее выполнения требуется длительное время (результат выполнения еще не известен);
- CID (Command Identifier) идентификатор команды, сообщения. Значение из данного поля должно быть использовано стороной, обрабатывающей/выполняющей команду или сообщение, для создания подтверждения. Подтверждение должно содержать в поле CID то же значение, что содержалось в самой команде или сообщении при отправке:
- SID (Source Identifier) идентификатор отправителя (уровня прикладного ПО, например уникальный идентификатор пользователя в системе диспетчеризации) данной команды или подтверждения;
 - ACFE (Authorization Code Field Exists) битовый флаг, определяющий наличие полей ACL и AC в подзаписи:
 - 1 = поля ACL и AC присутствуют в подзаписи,
 - 0 = поля ACL и AC отсутствуют в подзаписи;
 - CHSFE (Charset Field Exists) битовый флаг, определяющий наличие поля CHS в подзаписи:
 - 1 = поле CHS присутствует в подзаписи,
 - 0 = поле CHS отсутствует в подзаписи;
- CHS (Charset) кодировка символов, используемая в поле CD, содержащем тело команды. При отсутствии данного поля по умолчанию должны использовать кодировку CP-1251. Определены следующие значения поля CHS (десятичный вид):
 - 0 = CP-1251,
 - 1 = IA5 (CCITT T.50)/ASCII (ANSI X3.4),
 - 2 = бинарные данные,
 - 3 = Latin 1 [16],
 - 4 = бинарные данные,
 - 5 = JIS (X 0208-1990).
 - 6 = Cyrllic [17],
 - 7 = Latin/Hebrew [18],
 - 8 = UCS2 [19]:
- ACL (Authorization Code Length) длина в байтах поля ACH, содержащего код авторизации на стороне получателя;
- AC (Authorization Code) код авторизации, используемый на принимающей стороне (ACH) и обеспечивающий ограничение доступа на выполнение отдельных команд. Если указанный в данном поле код не совпадает с ожидаемым значением, то в ответ на такую команду или сообщение ACH должна отправить подтверждение с типом CC ILL;
- CD (Command Data) тело команды, параметры, данные, возвращаемые на команду-запрос, использующие кодировку из поля CHS или значение по умолчанию. Размер данного поля определяют исходя из общей длины записи протокола уровня поддержки услуг и длины предшествующих полей в данной подзаписи.
- В таблице В.23 представлен формат команд терминала. Список команд и их описание представлены в В.3.4.1, б). Данное поле может иметь нулевую длину (отсутствовать) в тех случаях, когда в ответ на команду или сообщение для АСН не передаются никакие данные.

Таблица В.23 — Формат команд терминала

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
	ADR (Address)									2
	SZ	Z (Size)			ACT (Action)				BYTE	1
CCD (Command Code)								М	USHORT	2
DT (Data)									BINARY	0 65200

Поля формата команд терминала:

- ADR (Address) адрес модуля, для которого данная команда предназначена. Адрес определяют исходя из начальной конфигурации ACH или из списка модулей, который может быть получен при регистрации терминала через сервис EGTS AUTH SERVICE и передачи подзаписей EGTS SR MODULE DATA;
- SZ (Size) объем памяти для параметра (используется совместно с действием ACT = 3). При добавлении нового параметра в ACH данное поле определяет, что для нового параметра требуется 2^{SZ} байт памяти в ACH;
- ACT (Action) описание действия, используемое в случае типа команды (поле CT = CT_COM подзаписи EGTS SR COMMAND DATA). Значение поля может быть одним из следующих вариантов:
 - 0 параметры передаваемой команды, которая задается кодом из поля ССD,
 - 1 запрос значения. Используется для запроса информации, хранящейся в АСН. Запрашиваемый параметр определяется кодом из поля ССD,
 - 2 установка значения. Используется для установки нового значения определенному параметру в АСН. Устанавливаемый параметр определяется кодом из поля ССD, а его значение полем DT,
 - 3 добавление нового параметра в АСН. Код нового параметра указывается в поле ССD, его тип в поле SZ. а значение в поле DT.
 - 4 удаление имеющегося параметра из АСН. Код удаляемого параметра указывается в поле ССD;
- CCD (Command Code) код команды при ACT = 0 (см. таблицу B.21) или код параметра при ACT = 1...4 (см. таблицу B.24);
- DT (Data) запрашиваемые данные или параметры, необходимые для выполнения команды. Данные записываются в данное поле в формате, зависящем от типа команды (см. таблицу В.24).
- В таблице В.24 представлен формат подтверждения на ранее переданную команду для терминала при CT = CT_COMCONF при условии, если с АСН передана сопутствующая информация. Описанная структура подтверждения на ранее переданную команду содержится в поле CD (см. таблицу В.22).

Таблица В.24 — Формат подтверждения на команду для терминала

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Тип	Тип данных	Размер, байт
			М	USHORT	2					
		С	М	USHORT	2					
			0	BINARY	0 65200					

Поля формата подтверждения на команду для терминала:

- ADR (Address) адрес модуля, от которого передано подтверждение. Адрес определяют исходя из начальной конфигурации ACH или из списка модулей, который может быть получен при регистрации терминала через сервис EGTS_AUTH_SERVICE и передачи подзаписей EGTS_SR_MODULE_DATA;
- CCD (Command Code) код команды (см. таблицу В.25) или параметра (см. таблицу В.26), в соответствии с которым передана сопутствующая информация в поле DT;
- DT (Data) сопутствующие данные, тип и состав которых определен значением поля ССD. Список и состав сопутствующих данных, передаваемых в подтверждении на некоторые команды, представлен в таблице В.27.
 - б) Описание команд, параметров и подтверждений
- В таблице В.25 представлен список команд для АСН, их кодовое обозначение, тип и предельно допустимое значение параметров.

Таблица В.25 — Список команд для АСН

Название команды	Код	Тип и предельно допустимые зна- чения параметров	Описание
EGTS_RAW_DATA	0x0000	BINARY (до 65200 байт)	Команда для передачи произвольных данных. Применяется, например, для передачи команд, сообщений и данных на периферийные устройства, модули, подключенные к основному блоку терминала, в определяемом данным модулем формате. При этом терминал не должен анализировать данные из поля DT и должен в неизменном виде передать их по адресу, определяемому полем ADR
EGTS_TEST_MODE	0x0001	BYTE	Команда начала/окончания тестирования терминала: 1— начало тестирования; 0— окончание тестирования
EGTS_TEST_GET_ERRORS	0x0004	_	Запрос кодов ошибок
EGTS_TEST_CLEAR_ERRORS	0x0005	_	Очистка кодов ошибок. Для обработки данной команды оператор должен установить корректные значения полей АСL и АСН
EGTS_CONFIG_RESET	0x0006	_	Возврат к заводским установкам. Удаляются все установленные пользователем параметры и производится возврат к заводским установкам. Для обработки данной команды оператор должен установить корректные значения полей АСL и АСН
EGTS_SET_AUTH_CODE	0x0007	BINARY	Установка кода авторизации на стороне АСН. Для обработки данной команды оператор должен установить корректные значения полей АСL и АСН. После подтверждения данной команды АСН будет использовать уже новые данные для сравнения со значением из поля АСН в некоторых присылаемых на АСН командах
EGTS_RESTART	0x0008	_	Команда производит перезапуск основного ПО АСН. Для обработки данной команды оператор должен установить корректные значения полей АСL и АСН

В таблице В.26 представлен список параметров АСН.

🍄 Таблица В.26 — Список параметров АСН

Код	Тип параметра	Значение по умолчанию	Описание	
Радио mute (только для конфигурац ии дополнительного оборудования)				
0x0201	INT	500	Задержка между установкой сигнала радио mute и началом про- игрывания звука, мс	
0x0202	INT	500	Задержка между снятием сигнала радио mute и окончанием про- игрывания звука, мс	
	Установк	и общего назн	ачения	
0x0203	STRING	a n	Параметр, определяющий точку доступа GPRS	
0x0204	STRING	an	Адрес и порт сервера для связи с использованием TCP/IP протокола	
0x0205	INT	0	PIN код SIM (USIM)-карты	
0x0207	BOOLEAN	1	Флаг, разрешающий автоматическую регистрацию SIM (USIM) в сети после включения питания	
0x0208	INT	0	Интервал проведения внутреннего тестирования, ч. Если значение установлено в 0, то самотестирование не проводится	
0x0209	INT	0	Промежуток времени, в течение которого терминал остается за- регистрированным в сети после передачи результатов самотестиро- вания оператору системы, с	
0x020B	INT	300	Дистанция, на которой режим «автосервис» выключается автоматически, м	
0x020C	ENUM {NONE = 0, PIN_1 = 1, PIN_8 = 8}	0	Линия, сигнализирующая, что система находится в режиме «в гараже» NONE— нет сигнализации режима PIN_X— PIN_X; линия, активируемая, когда система находится в данном режиме	
0x020E	INT	10	Интервал тревожного счетчика в режиме тестирования, мин	
			_ `` ' ' '	
		T	_	
0x0230	BOOLEAN	1	Параметр, указывающий на необходимость использования GPRS_WHITE_LIST при организации пакетной передачи данных	
	охо201 0х0201 0х0202 0х0203 0х0204 0х0205 0х0207 0х0208 0х0209 0х020B 0х020C Ко	код параметра дио mute (только для конф 0x0201 INT 0x0202 INT Установк 0x0203 STRING 0x0204 STRING 0x0205 INT 0x0207 BOOLEAN 0x0208 INT 0x0209 INT 0x020B INT 0x020C ENUM {NONE = 0, PIN_1 = 1, PIN_8 = 8} 0x020E INT Конфигурация и ко Пакетна	код параметра умолчанию дио mute (только для конфигурации допо 0x0201 INT 500 0x0202 INT 500 Установки общего назн 0x0203 STRING "" 0x0204 STRING "" 0x0205 INT 0 0x0207 BOOLEAN 1 0x0208 INT 0 0x0209 INT 0 0x0209 INT 300 0x020C ENUM {NONE = 0, PIN_1 = 1, PIN_8 = 8} 0 0x020E INT 10 Конфигурация и конфигурационного дача да Пакетная передача да	

Имя параметра	Код	Тип параметра	Значение по умолчанию	Описание
EGTS_GPRS_WHITE_LIST	0x0231	ARRAY OF STRING [20]	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Список сетей, в которых разрешена пакетная передача данных. Если список GPRS_WHITWE_LIST пуст, то пакетная передача данных запрещена, MCC (Mobile Country Code) 3 символа + MNC(Mobile Network Code) 3 символа
		Реж	им тест ирова н	ия
EGTS_TEST_REGISTRATION_TIMEOUT	0x0241	INT	5	Если АСН была зарегистрирована в сети посредством нажатия на кнопку включения дополнительных услуг и команда на запуск сессии тестирования не была получена со стороны оператора системы в течение данного промежутка времени, то терминал должен прекратить регистрацию в сети, мин
EGTS_TEST_ REGISTRATION_ PERIOD	0x0242	INT	0	Если АСН была зарегистрирована в сети посредством нажатия на кнопку включения дополнительных услуг, то последующая регистрация терминала в сети при нажатии на кнопку включения дополнительных услуг возможна не ранее, чем через данный промежуток времени. Если значение установлено в 0, то ограничений на последующую регистрацию терминала в сети не накладывается, мин
		Про	очие параметр	ры
EGTS_GNSS_POWER_ OFF_TIME	0x0301	INT	0	Промежуток времени, через который отключается питание ГНСС приемника после выключения зажигания, мс
EGTS_GNSS_DATA_ RATE	0x0302	INT/1, 2,5,10	1	Темп выдачи ГНСС приемником, Гц
EGTS_GNSS_MIN_ ELEVATION	0x0303	INT/ 515	5	Минимальное значение угла возвышения (угла отсечки) навигационных космических аппаратов, градусы
		П а ра	метры ус трой с	ства
EGTS_UNIT_SERIAL_ NUMBER	0x0400	STRING	""	Серийный номер устройства
EGTS_UNIT_HW_ VERSION	0x0401	STRING	u v	Версия аппаратной платформы
EGTS_UNIT_SW_ VERSION	0x0402	STRING	un	Версия ПО
EGTS_UNIT_VENDOR_ID	0x0403	INT	0	Идентификатор поставщика устройства
EGTS_UNIT_ID	0x0404	INT	0	Уникальный идентификатор устройства, назначаемый оператором системы при первой активизации устройства
EGTS_UNIT_IMEI	0x0405	STRING	u n	Номер ІМЕІ

Окончание таблицы В.26

Имя параметра	Код	Тип параметра	Значение по умолчанию	Описание
EGTS_UNIT_RS485_ BAUD_RATE	0x0406	INT	19200	Скорость порта RS485
EGTS_UNIT_RS485_ STOP_BITS	0x0407	INT	1	Число стоповых битов при передаче данных через порт RS485
EGTS_UNIT_RS485_ PARITY	0x0408	INT/0,1,2	0	Способ проверки на четность при передаче данных через порт RS485: 0— проверка не производится; 1— проверка типа ODD; 2— проверка типа EVEN
EGTS_UNIT_ LANGUAGE_ID	0x0410	INT	0	Предпочтительный язык для голосового общения по [21]: 0x5F— русский
EGTS_UNIT_HOME_ DISPATCHER_ID	0x0411	INT	0	Идентификатор телематической платформы, в хранилище которой находится информация об учетных данных устройства, списке предоставляемых услуг и их статусах
EGTS_SERVICE_AUTH_METHOD	0x0412	INT	1	Метод использования услуг: 1 — простой метод (подразумевает, что все услуги по умолчанию доступны терминалу); 0 — с подтверждением (разрешены к использованию только те услуги, информация о разрешении использования которых пришла с телематической платформы)
EGTS_SERVER_CHECK_IN_PERIOD	0x0413	INT	30	Время между попытками установить соединение TCP/IP с сервером, с
EGTS_SERVER_CHECK_IN_ATTEMPTS	0x0414	INT	5	Число попыток установления TCP/IP соединения с сервером, по достижении которого будет произведена повторная установка сессии верхнего уровня (GPRS)
EGTS_SERVER_ PACKET_TOUT	0x0415	INT	5	Время, в течение которого терминал ожидает подтверждения с сервера на отправленный пакет, с
EGTS_SERVER_PACKET_RETRANSMIT_ ATTEMPTS	0x0416	INT	3	Число попыток повторной отправки неподтвержденного пакета, по достижении которого терминал производит повторную инициализацию сессии на уровне TCP/IP
EGTS_UNIT_MIC_LEVEL	0x0417	INT/010	8	Уровень чувствительности микрофона
EGTS_UNIT_SPK_ LEVEL	0x0418	INT/010	6	Уровень громкости динамика

Значения следующих параметров АСН могут быть запрошены, но не могут быть изменены или удалены при помощи сервиса команд: EGTS_UNIT_SERIAL_NUMBER, EGTS_UNIT_HW_VERSION, EGTS_UNIT_SW_VERSION, EGTS_UNIT_VENDOR_ID, EGTS_UNIT_IMEI. Значения указанных параметров выставлены производителями соответствующих модулей и блоков терминала, а также разработчиками ПО для них.

Устройствами, установленными в конфигурации штатной системы, должна быть реализована поддержка следующих параметров:

- EGTS_GPRS_APN;
- EGTS_SERVER_ADDRESS;
- EGTS_SIM (USIM)_PIN;
- EGTS_AUTOMATIC_REGISTRATION; EGTS_SELFTEST_INTERVAL;
- EGTS_POST_TEST_REGISTRATION_TIME;
- EGTS_TEST_MODE_END_DISTANCE;
- EGTS_GARAGE_MODE END DISTANCE;
- EGTS TEST MODE WATCHDOG;
- EGTS USE GPRS WHITE LIST;
- EGTS GPRS WHITE LIST;
- EGTS_TEST_REGISTRATION_TIMEOUT;
- EGTS_TEST_REGISTRATION_PERIOD;
- EGTS_GNSS_POWER_OFF_TIME;

- EGTS_GNSS_DATA_RATE; EGTS_GNSS_MIN_ELEVATION; EGTS_UNIT_SERIAL_NUMBER;
- EGTS_UNIT_HW_VERSION;
- EGTS UNIT SW VERSION;
- EGTS UNIT VENDOR ID;
- EGTS UNIT ID;
- EGTS UNIT_LANGUAGE ID;
- EGTS UNIT IMEI;
- EGTS_UNIT_HOME_DISPATCHER ID.

В таблице В.27 представлен список подтверждений на команды и сообщения от АСН, их кодовое обозначение, тип и предельно допустимое значение параметров.

Таблица В.27 — Список подтверждений на команды и сообщения от АСН

Название команды	Код	Тип и число параметров	Описание
EGTS_RAW_DATA	0x0000	BINARY (до 65200 байт)	Данные, поступающие от периферийных устройств, модулей, подключенных к АСН, в определяемом данным модулем формате
EGTS_SELF_TEST_ RESULT	0x0002	STRING	Сообщение о результатах самодиагно- стики. Генерируется АСН автоматически без запроса от оператора
EGTS_TEST_GET_ERRORS	0x0004	BINARY (16 байт)	Список кодов ошибок состояний блоков, модулей и подсистем терминала

Библиография

[1]	утвержденный Решением Коми	енного союза о безопасности колесных транспортных средств ТР ТС (018/2011), пссии Таможенного союза от 9 декабря 2011 г. № 877 (в ред. решения Совета				
[2]	Евразийской экономической ко ИСО 11898-1:2003	Транспорт дорожный. Местная контроллерная сеть (CAN). Часть 1. Каналь-				
	(ISO 11898-1: 2003)	ный уровень и передача сигналов (Road vehicles — Controller area network (CAN) — Part 1: Data link layer and physical signaling)				
[3]	Федеральный закон от 26 июня	рпузісаг зідпашту з 2008 г. № 102 «Об обеспечении единства измерений»				
[4]	802.11-IEEE	Standard for Information technology Telecommunications and information exchange between systems Local and metropolitan area networks Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications				
[5]	MЭK 61162-1 (2010)	Аппаратура и системы морской навигации и радиосвязи. Цифровые интерфейсы. Часть 1. Передача от одного источника на несколько приемников				
	(IEC 61162-1(2010))	(Maritime navigation and radio communication equipment and systems — Digital interfaces — Part 1: Single talker and multiple listeners)				
[6]	Правила ЕЭК ООН № 26-02 (26-03)	Единообразные предписания, касающиеся официального утверждения транспортных средств в отношении их наружных выступов				
[7]		ких станций (абонентских радиостанций) сетей подвижной радиотелефонной (утверждены приказом Министерства информационных технологий и связи				
[8]	с частотным дуплексным разно	жих терминалов систем подвижной радиотелефонной связи стандарта UMTS сом и частотно-кодовым разделением радиоканалов, работающих в диапазоны приказом Министерства информационных технологий и связи РФ от 27 ав-				
[9]	частотным дуплексным разносо	ких терминалов сетей подвижной радиотелефонной связи стандарта UMTS с ом и частотно-кодовым разделением радиоканалов, работающих в диапазоне риказом Министерства связи и массовых коммуникаций Российской Федера-				
[10]	Правила ЕЭК ООН № 10-03	Единообразные предписания, касающиеся официального утверждения транспортных средств в отношении электромагнитной совместимости				
[11]	Федеральный закон от 27 июля 2006 г. № 149-ФЗ «Об информации, информационных технологиях и о защите информации»					
[12]		изводстве, реализации и эксплуатации шифровальных (криптографических) (положение ПКЗ-2005), утвержденное приказом ФСБ России от 9 февраля				
[13]	ИСО 639-2:1998 (ISO 639-2:1998)	Коды для представления названий языков. Часть 2. Трехбуквенный код (Codes for the representation of names of languages — Part 2: Alpha-3 code)				
[14]	ITU-T E.212	План международной идентификации для сетей общего пользования и абонентов				
[15]	ITU-T E.164	План нумерации электросвязи общего пользования				
[16]	ИСО 3779: 2009	Транспорт дорожный. Идентификационный номер автомобилей (VIN). Содержание и структура				
[17]	(ISO 3779:2009) ИСО/МЭК 8859-1:1998	(Road vehicles — Vehicle identification number (VIN) — Content and structure) Информационные технологии. 8-битные однобайтовые наборы кодирован-				
[17]	(ISO/IEC 8859-1:1998)	ных графических знаков. Часть 1. Латинский алфавит № 1 (Information technology — 8-bit single-byte coded graphic character sets —				
[18]	ИСО/МЭК 8859-5:1999	Part 1: Latin alphabet No. 1) Информационные технологии. 8-битные однобайтовые наборы кодирован-				
	(ISO/IEC 8859-5:1999)	ных графических знаков. Часть 5. Латинский/кириллический алфавит (Information technology — 8-bit single-byte coded graphic character sets —				
[19]	ИСО/МЭК 8859-8:1999	Part 5: Latin/Cyrillic alphabet) Информационные технологии. 8-битные однобайтовые наборы кодирован-				
	(ISO/IEC 8859-8:1999)	ных графических знаков. Часть 8. Латинский/древнееврейский алфавит (Information technology — 8-bit single-byte coded graphic character sets — Part 8: Latin/Hebrew alphabet)				
[20]	ИСО/МЭК 10646: 2014	Информационные технологии. Универсальный набор кодированных символов (UCS)				
[21]	(ISO/IEC 10646:2014) ИСО 639-1:2002 (ISO 639-1:2002)	[Information technology — Universal Coded Character Set (UCS)] Коды для представления названий языков. Часть 1. Двухбуквенный код (Codes for the representation of names of languages. Part 1. Alpha-2 code)				

УДК 656.13.004:006.354

OKC 33.070.40

Ключевые слова: аппаратура спутниковой навигации, ГЛОНАСС, GPS, транспорт, категория М

Редактор *Л.С. Зимилова* Технический редактор *В.Н. Прусакова* Корректор *Е.Д. Дульнева* Компьютерная верстка *Л.А. Круговой*

Сдано в набор 01.06.2015. Подписано в печать 15.06.2015. Формат 60×841/в. Гарнитура Ариал. Усл. печ. л. 8,37+вкл. 0,47. Уч.-изд. л. 7,80+вкл. 0,22. Тираж 32 экз. Зак. 2142.

Рисунок А.2 – Блок-схема алгоритма обработки лакета данных протокола транспортного уровня при приеме