BEST AVAILABLE COPY

SOLAR CELL

Publication number: JP3239375
Publication date: 1991-10-24

Inventor:

KAWAKAMI SOICHIRO; FUKAE KIMITOSHI

Applicant:

CANON KK

Classification:

- international:

H01L31/04; H01L31/042; H01L31/04; H01L31/042;

(IPC1-7): H01L31/04; H01L31/042

- european:

Application number: JP19900035272 19900216 Priority number(s): JP19900035272 19900216

Report a data error here

Abstract of JP3239375

PURPOSE:To attain a simplification of configuration, a reduction of cost, and integrations performed in parallel by providing a bus bar for collecting currents, which is a good conductor having the lower specific resistance than the one of stainless steel, in the middle of the side opposed to an incident light of a stainless steel board.

CONSTITUTION:A solar cell comprises a stainless steel board 200, a metallic layer 201 as a lower electrode, a semiconductor layer 202 as a photoelectric converting member, a transparent electrode layer 203 as an upper

202 as a photoelectric converting member, a transparent electrode layer 203 as an upper electrode, finger electrodes 204, a bus bar 205 for collecting currents caused from the lower electrode 201, a bus bar 209 for connecting the finger electrodes 204 of solar cell elements with each other, and the like. In this manner, the bus bar 205 for collecting currents, which is a good conductor having the lower specific resistance than the one of stainless steel, is provided in the middle of the lower side of the stainless steel board 200. Thereby, a simplification of configuration, a reduction of cost, and integrations performed in parallel can be attained.

Data supplied from the esp@cenet database - Worldwide

19日本国特許庁(JP)

⑩特許出願公開

◎ 公 開 特 許 公 報 (A) 平3-239375

(9) Int. Cl. 3

識別記号 庁内整理番号

❸公開 平成3年(1991)10月24日

H 01 L 31/04 31/042

7522-5F H 01 L 31/04

S

審査請求 未請求 請求項の数 1 (全9頁)

9発明の名称 太陽電池

②特 願 平2-35272

20出 願 平2(1990)2月16日

@発明者 川上 総一郎 @発明者 深江 公僚

東京都大田区下丸子3丁目30番2号 キャノン株式会社内 東京都大田区下丸子3丁目30番2号 キャノン株式会社内

の出 願 人 キャノン株式会社

東京都大田区下丸子3丁目30番2号

四代 理 人 弁理士 丸島 儀一 外1名

明知者

1. 発明の名称

大陽思池

2. 特許請求の範囲

ステンレス 悲极上に 金属 電 後層、 半導体層、 透明 電 極層、 フィンガー 状 電 極 が 順 次 形成 された 大 陽 電 池 素 子 を 並 列 接 様 した 太 陽 電 池 に 於 て 、 入 射 光 剛 と 反 対 創 の ステンレス 恭 板 の 中 央 に 、 集 電 用 と して ステンレス より 比 抵 抗 が 低 い 良 溥 体 の バス バー が 数 け て ある ことを 特 敬 と す る 太 陽 電 池 。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、ステンレス基板上に形成された大陽 電池素子を並列に接続した太陽電池に関する。

(従来技術)

吸近、 CO ,の増加による温高効果で地球の温暖化が生じることが予測され、 クリーンなエネルギーの要求がますます高まっている。また、CO ,を排出しない原子力発電も、安全性を疑問視する声もあり、より安全性の高いクリーンなエ

ネルギーが望まれている。

将来期待されているクリーンなエネルギーの中でも、特に太陽電池はモのクリーンさと安全性と、 取扱い易さから期待が大きい。

各種太陽電池の中で、非品質シリコンや銅イン シュウムセレナイド等は大面積に製造でき、製造 コストも安価であることから、熱心に研究されて

更に、 太陽電池の中でも、 安価で、 耐候性、 耐 街琴性、 可とう性に 優れていることから、 芸板材 に ステンレス等の金属 芸板が用いられている。

提来、ステンレス基板上に形成された太陽電池 素子を並列配線した太陽電池では、電流損失をできるだけ少なくするためにステンレス基板面の両 端部に下部電極のための集電用バスバーが設け られていた。上記集電用バスバーの材料として は、ステンレスの比抵抗の1/20~1/50の A & . C u . A & 等が使用される。第4 図は 従来 のステンレス基板面の両端部に果電用バスバーが 設けられた太陽電池数子の構成図で、(a)と

(b) はそれぞれ光入射倒の表面と裏面の平面図 である。第4図に於て、400はステンレス苔 板、405は下部缸極側英缸用パスパー、410 は同一ステンレス茲板上に分割された太陽低池袋 子、404はフインガー包括である。故バスパー は、接触抵抗を下げ確実な導通を取るために、大 限電池素子の分離された非発電部位のステンレス 越板面両端部にスポット裕接などの方法で、多点 接続されていた。第5図は、第4図に示した同一 ステンレス基板上に分割された複数の太陽電池景 子を、並列に集積化した太陽電池の概略図で、 (a) は光入射側の平面図、(b) は裏面の平面 図、(c)は(b)図C-D間の断面構成図であ る。第5回に於て、400、404、405、 410は第4図に同じ、501は下部電板として の金属層、502は光電変換部材としての半導 体層、503は上部電極としての透明電極層、 505はステンレス基板両端にある下部電板集電 用パスパーを接続するパスパー、509は複数 の大陽電池素子のフィンガー電板をつなぐバス

バー、508は複数本の509をまとめて楽電するパスパー、506は509と400のステンレス 基板が認過するのを防ぐための絶縁性 めのには 507は508と405の認過を防ぐための絶縁性 めので ない で ある。上記構造の大昭電池 で は、405のよび で ある。上記構造の大昭電池 で は、405のよび で あるにと、 両端に パスパーを 設ける につて 没 で あるにと、 両端に パスパーを 設ける に ひが アン で あること、 両端に パスパーを 設ける に が スパーの 使 用本 数が 多いこと、 裏面 朝の 凹凸が 大き いため 充 頃 材の 使用 量が多いこと な 変 因の一つに いため 使用の 大路電池のコスト 高の 要因の一つに なっていた。

そのため、より簡単な構成で、製造コストの安 価な太陽電池が望まれていた。

(発明の目的)

本発明は、上述の従来の欠点を解決し、簡単な 構成で、製造コストの安価な、並列に集積化した 大陽電池を提供することを目的とする。

(発明の構成及び作用)

本発明者は、上記従来の欠点を解決すべく、鋭

3

窓研究を重ねた結果、並列に集積化したステンレス基板太陽電池に於て、入射光と反対側のステンレス基板大陽電池に於て、後端が簡単で一本のバスを設けることを見いだした。本発明は、ステンレス基板上に金属電極関、半導体層、透明電池を大路電池の中央に、集電用にステンレスより比抵抗が低い点導体のバスパーが設けてあることを特徴とする太陽電池である。

第1 図は、本発明による太陽電池のステンレス あ板に設けた集電用パスパーを示した図である。 第1 図に於て、100 は太陽風池裏面のステンレ ス路板、105 は下部電極からの集電用パスパー である。

第2図(s)は、本発明により作製される並列に集積化した太陽電池の裏面の平面図の一例で、(b)は(s)図A-B関の断面構成図である。第2図に於て、200はステンレス基板、201

は下部電極としての金属層、202は光電変換部材としての半導体層、203は上部電極としての透明電板層、204はフィンガー電極、205は下部電極からの集電用バスバー、209は複数の大陽電池無子のフィンガー電極をつなぐバスバー、208は複数本の209をまとめて集電するバスバー、206は209と200のステンレス遊板が導通するのを防ぐための絶縁性対応、207は208と200。205の導通を防ぐための絶縁材である。

本発明による第2図の太陽電池の作製方法を以下に説明する。ステンレス基板200に、金属層201、半導体層202、透明電低層203を脱水形成した太陽電池の透明電極層の一部を除去して、複数の太陽電池素子に分割する。次に、冬太陽電池素子の透明電極上にフィンガー電極204を形成した後、裏面のステンレス基板面に、テープ状点導体から成るバスパー205を設置する。ついで、絶縁樹間206と絶縁材207で基板瞬面及び領部を被覆する。フィンガー電板204か

5の電流を最終的にまとめて集電するバスパー208を絶縁材207上に設ける。その後、芸板上で同じ列に位置する大陽電池煮子を並列接続するバスパー209をフィンガー電極204とバスパー208に接続して、本発明の太陽電池を得る。バスパー205と208は出力漢子になる。

本発明により、下部電板集包用バスバーをステンレス基板の両端から等距離の位置に設けることによって、従来の下部電板集電用バスバーの本数を2本から1本に減らすことができ、かつ上部電板から殺耗的に集電するバスバーを、絶耗部を介して下部電板集電用バスバー上に重ねて設けなくてもよいので、作製される太陽電池の凹凸も減少する。そのため、充塡剤の使用量が少なくてすみ、モジュール化も容易になる。一般に長さし、中W、厚さ七、比抵抗ρの基板中での電力扱失は

で表わされる。ここで I は大陽電池の単位面積当 りの発生電波である。大陽電池に於て特徴的なこ

の、コストが上ってしまう。

本発明に用いられる下部電極集電用バスバー 105.205は、良事体材料から成り、ステンレスより比抵抗の低い良導体材料としては飼、 銀、ニッケル等の金属箔が用いられる。金属箔は 他の金属やハンダがメッキされていてもよい。他 のバスパー208、209いずれも、上記本発明 に用いられるバスパー105、205と同様の良 導体材料から成っている。

本発明に用いられるパスパー1 0 5 、 2 0 5 の ステンレス基版への接続は、レーザーによる重ね 待接・ハンダ付け、導電性接着剤による接着等の 方法がある。ハンダ付けの場合には、ステンレス 基版の接合部表面を荒すこと、ステンレス用ハン ダフィラーを用いることなどが必要である。上記 運ば性接着剤は金属粉末、運電性カーボンブラッ ク、炭素機能等の運電性フィラーを高分子化合物 に添加したものである。2 0 8 と 2 0 9 の接続も 同様の方法で接合できる。

206の絶疑例胎には、ポリエステル、ポリエ

とは、発電部各所で発電が行われるため、セル及 さが長くなるに従って阻流が増えて来る。その結 果、電力損失は電流路長(L)の3型で効いてき てしまう。

本来であれば、ステンレス芸板も導電体であるので、追加のバスバーを使わずに済ませたいのだが上記理由により躍しい。

さて、ステンレス基板での電力損失を減少させるべく、第6図の如く良導体バスパーをとりつけると、電力損失は1 (x)に比例する。

$$f(x_i) = x^3 + (L - x_i)^3$$

$$f'(x) = 3 x^2 - 3 (L - x)^2 = 0$$

 $x^2 - x^2 + 2 x L - L^2 = 0$

$$x = \frac{L}{2}$$

従って×=L/2の時に、低力損失は最小になる。従来の技術に見られる様に基板両側に2本配便しても電力損失は同様になるが、上述の様な欠点をもってしまう。しを小さくする為に多数のバスバーを配置すれば電力損失は小さくなるもの

8

ステルイミド、ポリイミド、ポリウレタン、シリコーン、エポキシ、アクリル制闘等がある。 206の絶縁制励の形式方法は、樹脂溶液のスプレーやディップ法による塗布、粘着材付き樹脂フィルムを貼付ける等の方法がある。

207の絶縁材には、粘着剤付きガラスクロス テープやポリイミドテーブ等が用いられる。

本発明で用いられる太陽電池紫子の金属電極層 201の材質としては、Ti, Cr, Mo, W、A.A. A.S. N.I.等が用いられ、形成方法としては抵抗加熱蒸着、電子ビーム蒸発、スパッタリング法等がある。

本発明で用いられる太陽電池森子の光電変換節材としての半導体層202には、pin接合非晶質シリコン、pn接合多結晶シリコン。CuinSe、/Cds等の化合物半導体が挙げられる。上記半導体層は、非異質シリコンの場合、シランガス等のプラズマCVDにより、多結晶シリコンの場合、溶陸シリコンのシート化により、CuinSe、/Cdsの場合、電子ビーム蒸費、ス

パッタリング、 電析 (電解液の電気分解による析出)等の方法で、 形成される。

フィンガーは低 2 0 4 は導電性樹脂で形成され、導電性樹脂は、微粉末状の銀。金、銅、ニッケル・カーボン等をパインダーボリマーと分散させたものが使用される。上記パインダーボリマーとしては、ポリエステル、エポキシ、アクリル、アルキド、ポリビニルアセテート、ゴム、クレタン、フェノール等の樹脂がある。フィンガー電板

即を認識して、透明電板除去部上の下部電極集電 用パスパーの位置に、レーザー発振器から光ファ イパーで伝送したレーザー光を照射して集電用パ スパーをステンレス基板と接合する。

第2図の構成の本発明の大陽低池に於て、半導体層が非品質シリコンである場合の、作製方法を 順次設明する。

まず、洗浄したロール状ステンレス芸板上に、ロールツーロール法で、SIを1%含有するA2201をスパッタ法により膜厚5000人蒸粉し、SIHA。PH。 B: Ha . H。 ガス等のプラズマCVDにより、誤厚1000~4000人のp/i/nの非晶質シリコン層を2層を2のみ取むてp/i/n/p/!/nの光電変換部としての半導体層202を形成した後、膜厚600のITO203を抵抗加熱蒸着で形成した。更に、ITOのエッチング剤(FeCa, . HCa)合有ベーストのスクリーン印刷によりITO層の一部を除去し、各太陽電池表子に分越した。(上記構成の太陽電池表子のA2201と非晶質シコ

204は、上記遠電性樹脂のスクリーン印刷等の方法で作製される。フィンガーな優204と上部な個個集電バスパー209は、逐電性投資剤などで接合される。

バスパー209と208は運転性投着剤、ハンダ、レーザー指接などで、接続される。

(实施例)

以下、実施例に基づき太発明を詳細に説明する。 なお、本発明はこれらの実施例に限定されるものではない。

第3図は本実施側の下部電極集電用バスバーをステンレス基板に接続するための一方法として使用するレーザー溶接限の機略図である。第3図に於て、300は太陽電池素子の形成されたステンレス基板、301は下部電極側集電用バスバー、302はレーザー光、303は出射光学系、304は先ファイバー、305はレーザー発振器、304は先ファイバー、305はレーザー発振器、306はテレビカメラあるいはイメージをンサー、307は移動可能なステージであり、テレビカメラ306で太陽電池森子の透明質を除去

1 2

ン周 2 0 2 との間にシャント防止層として Z n O を形成してもよい。)

次に、フィンガー幅0、2mmのフィンガー電 伍204を銀ペーストのスクリーン印刷で形成し. た。その後、光入射と反対側のステンレス基板中 央郎に悩19mm、厚み0、2mmの倒箔テープ 205を配置し、第3図のレーザー溶接機を用い て、光入射側のITO除去部下部に位置する網箔 郎に、レーザー光を照射し接合した。ついで、 ステンレス基板両端部の端面を覆うようにポリイ ミドテープ206を接着し、ガラスクロステーブ 207を基板裏両端部に接着して、幅12mm. 厚み0. 2mmの銅箔テープ208をガラスクロ ステープ207上に接着した。更に、表側フィン ガーは極204に、幅2.5mm、厚み0.1 mmのハンダメツキを施した銅箔209を浮花住 接着剤で接続した後、銅箔209の阿末蛸即を 208にレーザーで接合して、太阳は池君子を. 複数個並列級統した大腦電池を得た。また、上記: 作製方法で17cmのサブセルのフィンガー選長

204を8個明結208で並列に接続したものを更に10個並列接続した場合、AM1.5 100mW/c㎡の光照射時の開放輸缸圧Vocと短結電流Iscは、それぞれVoc=1.6 V.15c=4.8Aであった。

(発明の効果)

本発明によれば、従来のステンレス基板上に形成した大阪電池素子を、並列接続して集積化した 構成の大陽電池の欠点を解決し、集成パスパーの 接続構造を簡単にすることによって、配線部の凹 凸が小さくなり、モジュール化も容易になる。さ らに製造工程の間略化が可能になり、製造コスト を低減できる。

・4. 図面の筒単な説明

第1回は本発明の太陽電池のステンレス基板に 取り付けた下部電極関楽電用パスパーを説明する ための構成図、

第2図(a)(b)は太発明により作製される 太陽電池の一例の概略像成図、

第3回は本発明の実施例に用いたレーザー溶接

1 5

- 3 0 4 -- 光ファイバー
- ` 3 0 5 … レーザー発振器
- 3 0 6 ... テレビカメラ
- 307…レーザー溶接用作業ステータ
- 300… 太陽低池の形成されたステンレス基板

出頭人 代理人

キャノン株式会社

. . .

複の例の概略図、

第4回(a)(b)は従来の太陽電池素子が形成されたステンレス基板に設けられた下部電板側 集電用パスパーを示す図、

第5図(e)(b)(c)は従来の複数の大阪 電池衆子を並列接続した太陽電池の優略構成図、

第6回は見力損失を説明するための概念図であ ス

100,200.400…ステンレス基板

105, 205, 208, 209, 301,

405, 508, 509 m K x K ~~

201,501…金属曆

2.0.2. 502…半冰体周

203,503…透明電極層

204,404…フィンガー電信

206.506…絶疑樹脂

207.507…铯緑材

410…分離された太陽電池条子

3 0 2 … レーザー光

303…出引光学系

1 6

第1图

第2図(a)

(b)

—456—

第3図

第 4 图(a)

第 4 図(b)

第5図(a)

第5图(b)

第 6 図

第5図(0)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
\square image cut off at top, bottom or sides
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.