	Amigos de Yuki - ICPC Librar
Contents	
1 D . C.	

1	Data	Structures	1
	1.1	BIT 2D Comprimida	1
	1.2		2
	1.3		2
	1.4		2
	1.5		2
	1.6		3
	1.7		4
	1.8		4
	1.9		4
2	-	6	4
	2.1		4
	2.2		5 5
	2.4		о 6
	2.4		6
	2.6	, , , ,	7
	2.6		7
	2.8		7
	2.8		8
	2.10		8
	2.10		8
	2.11		9
	2.12		
	2.13	Kuhn	U
3	Dyna	amic Programming	a
	3.1	Line Container	0
	3.2	Li Chao Tree	
	3.3	Divide and Conquer Optimization	0
	3.4	Knuth Optimization	1
	3.5.13		_
4	Math		
	4.1	Chinese Remainder Theorem	_
	4.2	Diophantine Equations	
	4.3	Discrete Logarithm	
	4.4	Discrete Root	
	4.5	Division Trick	
	4.6	Modular Sum	
	4.7	Primitive Root	
	4.8	Extended Euclides	
	4.9	Matrix	
	4.10	FFT - Fast Fourier Transform	
	4.11	NTT - Number Theoretic Transform	
	4.12	Fast Walsh Hadamard Transform	_
	4.13	Miller and Rho	
	4.14	Determinant using Mod	
	4.15	Gauss	
	4.16	Lagrange Interpolation	
	4.17	Lagrange extracting polynomial	
	4.18	Count integer points inside triangle	
	4.19	Prime Counting	
	4.20	Berlekamp Massey	
	4.21	Polynomial exp	7
5	Geor	netry 1	7
9	5.1	Geometry	
	5.2	Convex Hull	
	5.3	Cut Polygon	
	5.4	Smallest Enclosing Circle	
	0.4		
	5.5	Minkowski	
	5.5 5.6	Minkowski	

6	Stri	ing Algorithms	21
	6.1	KMP	 21
	6.2	Aho-Corasick	 22
	6.3	Algoritmo de Z	 22
	6.4	Suffix Array	 22
	6.5	Suffix Automaton	 22
	6.6	Manacher	 23
	6.7	Polish Notation	 23
	6.8	String Hash	 23
7	Mis	scellaneous	23
	7.1	Random Number Generator	 23
	7.2	Safe Hash	 23
	7.3	Unordered Map Tricks	 23
	7.4	Iterate masks in bitcount order	 24
	7.5	Submask Enumeration	 24
	7.6	Sum over Subsets DP	 24
	7.7	Subset Sum	 24
	7.8	Stable Marriage	 24
8	Teo	remas e formulas uteis	24
	8.1	Grafos	 24
	8.2	Math	 25
	8.3	Geometry	 25
	8.4	Dynamic Programming	 25

1 Data Structures

1.1 BIT 2D Comprimida

```
template<class T = int>
struct Bit2D {
public:
  // send updated points
  Bit2D(vector<pair<T, T>> pts) {
    sort(pts.begin(), pts.end());
for(auto a : pts) {
      if(ord.empty() || a.first != ord.back()) {
         ord.push_back(a.first);
    fw.resize(ord.size() + 1);
    coord.resize(fw.size());
    for(auto &a : pts) {
      swap(a.first, a.second);
    sort(pts.begin(), pts.end());
    for(auto &a : pts) {
      swap(a.first, a.second);
       for(int on = upper_bound(ord.begin(), ord.end(), a.first) - ord.begin(); on < fw</pre>
             .size(); on += on & -on) {
         if(coord[on].empty() || coord[on].back() != a.second) {
   coord[on].push_back(a.second);
    for(int i = 0; i < fw.size(); i++) {</pre>
       fw[i].assign(coord[i].size() + 1, 0);
  void upd(T x, T y, T v) {
    for(int xx = upper_bound(ord.begin(), ord.end(), x) - ord.begin(); xx < fw.size();</pre>
           xx += xx & -xx) {
      for(int yy = upper_bound(coord[xx].begin(), coord[xx].end(), y) - coord[xx].
    begin(); yy < fw[xx].size(); yy += yy & -yy) {
    fw[xx][yy] += v;</pre>
  T qry(T x, T y) {
  T ans = 0;
```

1.2 Seg Tree

```
int n, t[2 * ms];

void build() {
    for(int i = n - 1; i > 0; --i) t[i] = t[i<<1] + t[i<<1|1]; // Merge
}

void update(int p, int value) { // set value at position p
    for(t[p += n] = value; p > 1; p >>= 1) t[p>>1] = t[p] + t[p^1]; // Merge
}

S query(int 1, int r) {
    // initialize with null value
    S resl, resr;
    for (l += n, r += n+1; l < r; l >>= 1, r >>= 1) {
        if (l&1) resl = combine(resl, t[l++1);
        if (r&1) resr = combine(t[--r], resr);
    }
    return combine(resl, resr);
}
```

1.3 Seg Tree Lazy

```
int arr[ms], seg[4 * ms], lazy[4 * ms], n;
struct LazyContext {
 LazyContext() { }
 void reset() { }
 void operator += (LazyContext o) { }
struct Node {
 Node() { }
Node() { }
 Node (Node 1, Node r) { }
 bool canBreak(LazyContext lazy) { } // false if non beats
 bool canApply(LazyContext lazy) { } // true if non beats
 void apply(LazyContext &lazy) { }
void build(int idx = 0, int l = 0, int r = n-1) {
 int mid = (1+r)/2;
 lazy[idx] = 0;
 if(1 == r) {
   seg[idx] = arr[l];
 build(2*idx+1, 1, mid); build(2*idx+2, mid+1, r);
 seg[idx] = seg[2*idx+1] + seg[2*idx+2]; // Merge
void apply(int idx, int 1, int r) {
 if(lazy[idx] && !canBreak) { // if not beats canBreak = false
   if(1 < r) {
```

```
lazy[2*idx+1] += lazy[idx]; // Merge de lazy
      lazy[2*idx+2] += lazy[idx]; // Merge de lazy
    if(canApply) { // if not beats canApply = true
      seg[idx] += lazy[idx] * (r - 1 + 1); // Aplicar lazy no seg
    } else {
      apply (2*idx+1, 1, mid); apply (2*idx+2, mid+1, r);
      seg[idx] = seg[2*idx+1] + seg[2*idx+2]; // Merge
  lazy[idx] = 0; // Limpar a lazy
int query(int L, int R, int idx = 0, int l = 0, int r = n-1) {
 int mid = (1+r)/2;
  apply(idx, l, r);
  if(l > R || r < L) return 0; // Valor que nao atrapalhe</pre>
  if(L <= 1 && r <= R) return seq[idx];</pre>
  return query(L, R, 2*idx+1, 1, mid) + query(L, R, 2*idx+2, mid+1, r); // Merge
void update(int L, int R, int V, int idx = 0, int l = 0, int r = n-1) {
 int mid = (1+r)/2;
  apply(idx, l, r);
  if(1 > R | | r < L) return;
  if(L <= 1 && r <= R) {
   lazy[idx] = V;
   apply(idx, l, r);
  update(L, R, V, 2*idx+1, 1, mid); update(L, R, V, 2*idx+2, mid+1, r);
  seq[idx] = seq[2*idx+1] + seq[2*idx+2]; // Merge
```

1.4 Persistent Segment Tree

```
struct Node{
        int \mathbf{v} = 0:
        Node *1 = this, *r = this;
int CNT = 1;
Node buffer[ms * 201;
Node* update (Node *root, int 1, int r, int idx, int val) {
        Node *node = &buffer[CNT++];
        *node = *root;
        int \ mid = (1 + r) / 2;
        node->v += val;
        if(1+1 != r) {
                if(idx < mid) node->1 = update(root->1, 1, mid, idx, val);
                else node->r = update(root->r, mid, r, idx, val);
        return node:
int query(Node *node, int tl, int tr, int l, int r){
        if(1 <= t1 && tr <= r) return node->v;
        if(tr <= 1 || tl >= r) return 0;
        int mid = (t1+tr) / 2;
        return query(node->1, t1, mid, 1, r) + query(node->r, mid, tr, 1, r);
```

1.5 Treap

```
mt19937 rng ((int) chrono::steady_clock::now().time_since_epoch().count());
typedef int Value;
typedef struct item * pitem;
struct item {
  item () {}
  item (Value v) { // add key if not implicit
    value = v;
    prio = uniform_int_distribution<int>() (rng);
    cnt = 1;
    rev = 0;
    l = r = 0;
  }
  pitem l, r;
```

```
Value value;
 int prio, cnt;
  bool rev;
int cnt (pitem it) {
 return it ? it->cnt : 0;
void fix (pitem it) {
 if (it)
    it->cnt = cnt(it->1) + cnt(it->r) + 1;
void pushLazy (pitem it) {
 if (it && it->rev) {
    it->rev = false;
    swap(it->l, it->r);
    if (it->1) it->1->rev ^= true;
   if (it->r) it->r->rev ^= true;
void insert (pitem & t, pitem it) {
 if (!t)
   t = it;
  else if (it->prio > t->prio)
    split (t, it->key, it->l, it->r), t = it;
  else
    insert (t->key <= it->key ? t->r : t->l, it);
void merge (pitem & t, pitem 1, pitem r) {
  pushLazy (1); pushLazy (r);
 if (!1 || !r) t = 1 ? 1 : r;
  else if (l->prio > r->prio)
    merge (1->r, 1->r, r), t = 1;
  else
    merge (r->1, 1, r->1), t = r;
  fix (t);
void erase (pitem & t, int key) {
  if (t->key == key) {
   pitem th = t;
    merge (t, t->1, t->r);
    delete th;
    erase (key < t->key ? t->l : t->r, key);
void split (pitem t, pitem & l, pitem & r, int key) {
  if (!t) return void( 1 = r = 0 );
  pushLazy (t);
  int cur_key = cnt(t->1); // t->key if not implicit
  if (key <= cur_key)</pre>
   split (t->1, 1, t->1, key), r = t;
   split (t->r, t->r, r, key - (1 + cnt(t->1))), 1 = t;
  fix (t);
void reverse (pitem t, int 1, int r) {
  pitem t1, t2, t3;
  split (t, t1, t2, 1);
  split (t2, t2, t3, r-1+1);
  t2->rev ^= true;
  merge (t, t1, t2);
 merge (t, t, t3);
void unite (pitem & t, pitem 1, pitem r) {
 if (!l || !r) return void ( t = 1 ? l : r );
  if (l->prio < r->prio) swap (l, r);
 pitem lt, rt;
  split (r, lt, rt, l->key);
 unite (1->1, 1->1, 1t);
 unite (1-> r, 1->r, rt);
  t = 1;
pitem kth_element(pitem t, int k) {
        if(!t) return NULL;
        if(t->1)
                if(t->1->size >= k) return kth_element(t->1, k);
                else k -= t->1->cnt;
        return (k == 1) ? t : kth element (t->r, k-1);
int countLeft(pitem t, int key) {
        if(!t) {
```

```
return 0;
} else if(t->key < key) {
          return 1 + (t->1 ? t->l->size : 0) + countLeft(t->r, key);
} else {
          return countLeft(t->l, key);
}
```

1.6 KD-Tree

```
int d:
long long getValue(const PT &a) {return (d & 1) == 0 ? a.x : a.y; }
bool comp (const PT &a, const PT &b) {
 if((d & 1) == 0) { return a.x < b.x; }</pre>
  else { return a.y < b.y; }</pre>
long long sqrDist(PT a, PT b) { return (a - b) * (a - b); }
class KD_Tree {
public:
  struct Node {
   PT point:
   Node *left, *right;
  void init(std::vector<PT> pts) {
    if(pts.size() == 0) {
      return;
    int n = 0;
   tree.resize(2 * pts.size());
    build(pts.begin(), pts.end(), n);
  long long nearestNeighbor(PT point) {
    long long ans = (long long) le18;
    nearestNeighbor(&tree[0], point, 0, ans);
    return ans;
private:
  std::vector<Node> tree;
  Node* build(std::vector<PT>::iterator 1, std::vector<PT>::iterator r, int &n, int h
      = 0) {
    int id = n++;
   if(r - 1 == 1) {
      tree[id].left = tree[id].right = NULL;
      tree[id].point = *1;
    \} else if (r - 1 > 1)
      std::vector<PT>::iterator mid = 1 + ((r - 1) / 2);
      d = h;
      std::nth_element(l, mid - 1, r, comp);
      tree[id].point = \star (mid - 1);
      // DO EVERYTHING BEFORE BUILDING THE LOWER PART!
      tree[id].left = build(1, mid, n, h^1);
      tree[id].right = build(mid, r, n, h^1);
   return &tree[id];
  void nearestNeighbor(Node* node, PT point, int h, long long &ans) {
   if(!node) {
      return;
   if(point != node->point) {
      // THIS WAS FOR A PROBLEM
      // THAT YOU DON'T CONSIDER THE DISTANCE TO ITSELF!
      ans = std::min(ans, sqrDist(point, node->point));
    d = h;
    long long delta = getValue(point) - getValue(node->point);
    if(delta <= 0) {
      nearestNeighbor(node->left, point, h^1, ans);
      if(ans > delta * delta) +
        nearestNeighbor(node->right, point, h^1, ans);
    } else {
      nearestNeighbor(node->right, point, h^1, ans);
      if(ans > delta * delta)
        nearestNeighbor(node->left, point, h^1, ans);
};
```

1.7 Sparse Table

```
vector<vector<int>> table;
vector<int> lg2:
void build(int n, vector<int> v) {
  lg2.resize(n + 1);
  lg2[1] = 0;
  for (int i = 2; i <= n; i++) {
   lg2[i] = lg2[i >> 1] + 1;
  table.resize(lg2[n] + 1);
  for (int i = 0; i < lq2[n] + 1; i++) {
   table[i].resize(n + 1);
  for (int i = 0; i < n; i++) {</pre>
   table[0][i] = v[i];
  for (int i = 0; i < lq2[n]; i++) {
   for (int j = 0; j < n; j++) {
      if (j + (1 << i) >= n) break;
      table[i + 1][j] = min(table[i][j], table[i][j + (1 << i)]);
int get(int 1, int r) {
  int k = lg2[r - 1 + 1];
  return min(table[k][1], table[k][r - (1 << k) + 1]);
```

1.8 Policy Based Structures

```
#include <ext/pb_ds/assoc_container.hpp> // Common file
#include <ext/pb_ds/tree_policy.hpp> // Including tree_order_statistics_node_update
using namespace __gnu_pbds;
typedef tree<int, null_type, less<int>, rb_tree_tag,
tree_order_statistics_node_update> ordered_set;
ordered_set X;
X.insert(1); X.find_by_order(0);
X.order_of_key(-5); end(X), begin(X);
```

1.9 Color Updates Structure

```
struct range {
  int 1, r;
  range (int 1 = 0, int r = 0, int v = 0) : 1(1), r(r), v(v) {}
  bool operator < (const range &a) const
    return 1 < a.1;
set<range> ranges;
vector<range> update(int 1, int r, int v) { // [1, r)
  vector<range> ans;
  if(1 >= r) return ans;
 auto it = ranges.lower_bound(1);
  if(it != ranges.begin()) {
   it--;
   if(it->r>1) {
      auto cur = *it;
      ranges.erase(it);
      ranges.insert(range(cur.1, 1, cur.v));
      ranges.insert(range(l, cur.r, cur.v));
  it = ranges.lower_bound(r);
 if(it != ranges.begin()) {
   it--;
    if(it->r>r) {
      auto cur = *it;
      ranges.erase(it);
      ranges.insert(range(cur.l, r, cur.v));
```

```
ranges.insert(range(r, cur.r, cur.v));
}
for(it = ranges.lower_bound(l); it != ranges.end() && it->l < r; it++) {
    ans.push_back(*it);
} ranges.erase(ranges.lower_bound(l), ranges.lower_bound(r));
    ranges.insert(range(l, r, v));
    return ans;
}
int query(int v) { // Substituir -1 por flag para quando nao houver resposta
    auto it = ranges.upper_bound(v);
    if(it == ranges.begin()) {
        return -1;
        it--;
        return it->r >= v ? it->v : -1;
}
```

2 Graph Algorithms

2.1 Blossom

```
#define MAXN 110
#define MAXM MAXN*MAXN
int n, m;
int mate[MAXN], first[MAXN], label[MAXN];
int adj[MAXN][MAXN], nadj[MAXN], from[MAXM], to[MAXM];
#define OUTER(x) (label[x] >= 0)
void L(int x, int y, int nxy) {
  int join, v, r = first[x], s = first[y];
  if (r == s) { return; }
  nxy += n + 1;
  label[r] = label[s] = -nxy;
  while (1) {
   if (s != 0) { swap(r, s); }
    r = first[label[mate[r]]];
    if (label[r] != -nxy) { label[r] = -nxy; }
   else {
      break;
  v = first[x];
  while (v != join) {
   if (!OUTER(v)) { q.push(v); }
   label[v] = nxy;
   first[v] = join;
    v = first[label[mate[v]]];
 v = first[y];
  while (v != join) {
   if (!OUTER(v)) { q.push(v); }
    label[v] = nxy;
   first[v] = join;
   v = first[label[mate[v]]];
  for (int i = 0; i <= n; i++) {</pre>
    if (OUTER(i) && OUTER(first[i])) { first[i] = join; }
void R(int v, int w) {
  int t = mate[v];
  mate[v] = w;
  if (mate[t] != v) { return; }
  if (label[v] >= 1 \&\& label[v] <= n) {
   mate[t] = label[v];
   R(label[v], t);
   return;
  int x = from[label[v] - n - 1], y = to[label[v] - n - 1];
  R(x, y);
  R(y, x);
int E() {
```

```
memset(mate, 0, sizeof(mate));
  int r = 0;
  bool e7:
  for (int u = 1; u \le n; u++) {
    memset(label, -1, sizeof(label));
    while (!q.empty()) { q.pop(); }
    if (mate[u]) { continue; }
    label[u] = first[u] = 0;
    q.push(u);
e7 = false;
    while (!q.empty() && !e7) {
      int x = q.front();
      q.pop();
      for (int i = 0; i < nadj[x]; i++) {</pre>
        int y = from[adj[x][i]];
        if (y == x) { y = to[adj[x][i]]; }
        if (!mate[y] && y != u) {
          mate[y] = x;
           R(x, y);
          r++;
e7 = true;
          break;
        } else if (OUTER(y)) { L(x, y, adj[x][i]); }
        else {
           int v = mate[y];
          if (!OUTER(v)) {
            label[v] = x;
            first[v] = y;
            q.push(v);
    label[0] = -1;
  return r:
/*Exemplo simples de uso*/
memset(nadj, 0, sizeof nadj);
for (int i = 0; i < m; ++i) { // arestas
    scanf("%d%d", &a, &b);</pre>
  a++, b++; // nao utilizar o vertice 0
  adj[a][nadj[a]++] = i;
  adj[b][nadj[b]++] = i;
  from[i] = a;
  to[i] = b;
printf("O emparelhamento tem tamanho %d\n", E());
for (int i = 1; i <= n; i++) {</pre>
  if (mate[i] > i) { printf("%d com %d\n", i - 1, mate[i] - 1); }
```

2.2 Dinic Max Flow

```
const int ms = 1e3; // vertices
const int me = 1e5; // arestas
int adj[ms], to[me], ant[me], wt[me], z, n;
int copy_adj[ms], fila[ms], level[ms];
void clear() { // Lembrar de chamar no main
  memset(adj, -1, sizeof adj);
  _{7} = 0:
void add(int u, int v, int k) {
  to[z] = v;
  ant[z] = adj[u];
  wt[z] = k;
  adj[u] = z++;
  swap(u, v);
  to[z] = v;
  ant[z] = adj[u];
wt[z] = 0; // Lembrar de colocar = 0
  adj[u] = z++;
int bfs(int source, int sink) {
  memset(level, -1, sizeof level);
level[source] = 0;
  int front = 0, size = 0, v;
  fila[size++] = source;
  while(front < size) {</pre>
    v = fila[front++];
```

```
for(int i = adj[v]; i != -1; i = ant[i]) {
     if(wt[i] && level[to[i]] == -1) {
        level[to[i]] = level[v] + 1;
        fila[size++] = to[i];
  return level[sink] != -1;
int dfs(int v, int sink, int flow) {
 if(v == sink) return flow;
  for(int &i = copy_adj[v]; i != -1; i = ant[i]) {
   if(wt[i] && level[to[i]] == level[v] + 1 &&
      (f = dfs(to[i], sink, min(flow, wt[i])))) {
      wt[i] -= f;
      wt[i ^ 1] += f;
     return f;
  return 0;
int maxflow(int source, int sink) {
  int ret = 0, flow;
  while(bfs(source, sink)) {
   memcpy(copy_adj, adj, sizeof adj);
   while((flow = dfs(source, sink, 1 << 30))) {</pre>
      ret += flow;
  return ret;
```

2.3 Min Cost Max Flow

```
template <class T = int>
class MCMF {
public:
  struct Edge {
   Edge(int a, T b, T c) : to(a), cap(b), cost(c) {}
   int to;
   T cap, cost;
  MCMF(int size) {
   n = size;
   edges.resize(n);
    pot.assign(n, 0);
    dist.resize(n);
   visit.assign(n, false);
  pair<T, T> mcmf(int src, int sink) {
    pair<T, T > ans(0, 0);
    if(!SPFA(src, sink)) return ans;
    fixPot();
    // can use dijkstra to speed up depending on the graph
    while(SPFA(src, sink)) {
      auto flow = augment(src, sink);
      ans.first += flow.first;
      ans.second += flow.first * flow.second;
      fixPot();
   return ans;
  void addEdge(int from, int to, T cap, T cost) {
    edges[from].push_back(list.size());
    list.push_back(Edge(to, cap, cost));
    edges[to].push_back(list.size());
    list.push_back(Edge(from, 0, -cost));
private:
  int n:
  vector<vector<int>> edges;
  vector<Edge> list;
  vector<int> from;
  vector<T> dist, pot;
  vector<bool> visit;
  /*bool dij(int src, int sink) {
```

```
T INF = std::numeric_limits<T>::max();
    dist.assign(n, INF);
    from.assign(n, -1);
    visit.assign(n, false);
    dist[src] = 0;
    for(int i = 0; i < n; i++) {
      int best = -1;
      for (int j = 0; j < n; j++) {
       if(visit[j]) continue;
        if(best == -1 || dist[best] > dist[j]) best = j;
      if (dist[best] >= INF) break;
      visit[best] = true;
      for(auto e : edges[best]) {
        auto ed = list[e];
        if (ed.cap == 0) continue;
        T toDist = dist[best] + ed.cost + pot[best] - pot[ed.to];
        assert (toDist >= dist[best]);
        if(toDist < dist[ed.to]) {
          dist[ed.to] = toDist;
          from[ed.to] = e;
    return dist[sink] < INF;
  pair<T, T> augment(int src, int sink) {
    pair<T, T> flow = {list[from[sink]].cap, 0};
    for(int v = sink; v != src; v = list[from[v]^1].to) {
      flow.first = min(flow.first, list[from[v]].cap);
      flow.second += list[from[v]].cost;
    for(int v = sink; v != src; v = list[from[v]^1].to) {
      list[from[v]].cap -= flow.first;
      list[from[v]^1].cap += flow.first;
    return flow;
  gueue<int> g;
  bool SPFA(int src, int sink) {
   T INF = numeric limits<T>::max();
    dist.assign(n, INF);
    from.assign(n, -1);
    q.push(src);
    dist[src] = 0;
    while(!q.empty()) {
      int on = q.front();
      q.pop();
      visit[on] = false;
      for(auto e : edges[on]) {
        auto ed = list[e];
        if(ed.cap == 0) continue;
        T toDist = dist[on] + ed.cost + pot[on] - pot[ed.to];
        if(toDist < dist[ed.to]) {</pre>
          dist[ed.to] = toDist;
          from[ed.to] = e;
          if(!visit[ed.to])
            visit[ed.to] = true;
            q.push(ed.to);
   return dist[sink] < INF;</pre>
 void fixPot() {
   T INF = numeric_limits<T>::max();
    for (int i = 0; i < n; i++) {
      if(dist[i] < INF) pot[i] += dist[i];</pre>
};
```

2.4 Euler Path and Circuit

```
int del[me],adj[ms], to[me], ant[me], wt[me], z, n;
vector<int> pathE, pathV;
```

```
// Funcao de add e clear no dinic
void eulerPath(int u) {
  for(int &i = adj[u]; ^i; i = ant[i]) if(!del[i]) {
    del[i] = del[i^1] = 1;
    eulerPath(to[i]);
    pathE.emplace_back(i);
  }
  pathV.emplace_back(u);
}
```

2.5 Articulation Points/Bridges/Biconnected Components

```
int adj[ms], to[me], ant[me], z;
int num[ms], low[ms], timer;
bool art[ms], bridge[me], f[me];
int bc[ms], nbc;
stack<int> st, stk;
vector<vector<int>> comps;
void clear() { // Lembrar de chamar no main
 memset(adj, -1, sizeof adj);
void add(int u, int v) {
 to[z] = v;
  ant[z] = adj[u];
  adj[u] = z++;
void generateBc (int v) {
  while (!st.empty()) {
   int u = st.top();
   st.pop();
bc[u] = nbc;
   if (v == u) break;
  ++nbc;
void dfs (int v, int p)
 st.push(v), stk.push(v);
  low[v] = num[v] = ++timer;
  for (int i = adj[v]; i != -1; i = ant[i]) {
   if (f[i] || f[i^1]) continue;
   f[i] = 1;
    int u = to[i];
    if (num[u] == -1) {
     dfs(u, v);
      low[v] = min(low[v], low[u]);
      if (low[u] > num[v]) bridge[i] = bridge[i^1] = 1;
      if (low[u] >= num[v]) {
        art[v] = (num[v] > 1 || num[u] > 2);
        comps.push back({v});
        while (comps.back().back() != u)
          comps.back().push_back(stk.top()), stk.pop();
    } else {
      low[v] = min(low[v], num[u]);
  if (low[v] == num[v]) generateBc(v);
void biCon (int n) {
 nbc = 0, timer = 0;
  memset(num, -1, sizeof num);
  memset(bc, -1, sizeof bc);
  memset(bridge, 0, sizeof bridge);
  memset(art, 0, sizeof art);
  memset(f, 0, sizeof f);
  for (int i = 0; i < n; i++) {</pre>
   if (num[i] == -1) {
     timer = 0;
     dfs(i, 0);
```

```
vector<int> g[ms];
int id[ms];
void buildBlockCut (int n) {
   int z = 0;
   for (int u = 0; u < n; ++u) {
      if (art[u]) id[u] = z++;
   }
   for (auto &comp : comps) {
      int node = z++;
      for (int u : comp) {
       if (!art[u]) id[u] = node;
       else {
            g[node].push_back(id[u]);
            g[id[u]].push_back(node);
        }
      }
    }
}</pre>
```

2.6 SCC - Strongly Connected Components / 2SAT

```
const int ms = 212345;
vector<int> q[ms];
int idx[ms], low[ms], z, comp[ms], ncomp;
stack<int> st;
  if(~idx[u]) return idx[u] ? idx[u] : z;
  low[u] = idx[u] = z++;
  st.push(u);
  for(int v : g[u]) {
    low[u] = min(low[u], dfs(v));
  if(low[u] == idx[u]) {
    while(st.top() != u) {
      int v = st.top();
      idx[v] = 0;
low[v] = low[u];
      comp[v] = ncomp;
      st.pop();
    idx[st.top()] = 0;
    st.pop();
    comp[u] = ncomp++;
  return low[u];
bool solveSat(int n)
 memset(idx, -1, sizeof idx);
z = 1; ncomp = 0;
  for (int i = 0; i < 2*n; i++) dfs(i);
  for(int i = 0; i < 2*n; i++) if(comp[i] == comp[i^1]) return false;</pre>
int trad(int v) { return v < 0 ?(\tilde{v}) *2^1 : v * 2; }
void add(int a, int b) { g[trad(a)].push_back(trad(b)); }
void addOr(int a, int b) { add(~a, b); add(~b, a); }
void addImp(int a, int b) { addOr(~a, b); }
void addEqual(int a, int b) { addOr(a, ~b); addOr(~a, b); }
void addDiff(int a, int b) { addEqual(a, ~b); }
// value[i] = comp[trad(i)] < comp[trad(~id)];</pre>
```

$2.7 \quad LCA O(1)$

```
template<class T>
struct RNQ {
    vector<vector<T>> jmp;

RMQ(const vector<T>& V) : jmp(1, V) {
    for (int pw = 1, k = 1; pw * 2 <= (int)size(V); pw *= 2, ++k) {
        jmp.emplace_back(size(V) - pw * 2 + 1);
        for (int j = 0; j < (int)size(jmp[k]); ++j)
            jmp[k][j] = min(jmp[k - 1][j], jmp[k - 1][j + pw]);
    }
} T query(int a, int b) {</pre>
```

```
assert(a < b); // or return inf if a == b</pre>
    int dep = 31 - __builtin_clz(b - a);
    return min(jmp[dep][a], jmp[dep][b - (1 << dep)]);</pre>
};
struct LCA
  int T = 0;
  vector<int> time, path, ret;
  RMO<int> rmg;
  LCA(vector < vector < int >> \& C) : time(size(C)), rmq((dfs(C,0,-1), ret)) {}
  void dfs(vector<vector<int>>& C, int v, int par) {
    time[v] = T++;
    for (int y : C[v]) if (y != par) {
      path.push_back(v), ret.push_back(time[v]);
      dfs(C, y, v);
  int lca(int a, int b) {
    if (a == b) return a;
    tie(a, b) = minmax(time[a], time[b]);
    return path[rmq.query(a, b)];
};
```

2.8 Heavy Light Decomposition

```
class HLD {
public:
  void init(int n) { /* resize everything */ }
  void addEdge(int u, int v) {
    edges[u].push_back(v);
    edges[v].push_back(u);
  void setRoot(int r) {
    t = 0;
    p[r] = r;
h[r] = 0;
    prep(r, r);
nxt[r] = r;
    hld(r);
  int getLCA(int u, int v) {
    while(!inSubtree(nxt[u], v)) u = p[nxt[u]];
    while(!inSubtree(nxt[v], u)) v = p[nxt[v]];
    return in[u] < in[v] ? u : v;</pre>
  // is v in the subtree of u?
  bool inSubtree(int u, int v)
    return in[u] <= in[v] && in[v] < out[u];</pre>
  // returns ranges [l, r) that the path has
  vector<pair<int, int>> getPath(int u, int anc) {
    vector<std::pair<int, int>> ans;
    //assert(inSubtree(anc, u));
    while(nxt[u] != nxt[anc]) {
      ans.emplace_back(in[nxt[u]], in[u] + 1);
      u = p[nxt[u]];
    // this includes the ancestor! care
    ans.emplace_back(in[anc], in[u] + 1);
    return ans;
private:
  vector<int> in, out, p, rin, sz, nxt, h;
  vector<vector<int>> edges;
  int t;
  void prep(int on, int par) {
    p[on] = par;
    for(int i = 0; i < (int) edges[on].size(); i++) {</pre>
      int &u = edges[on][i];
      if(u == par) {
        swap(u, edges[on] back());
        edges[on].pop_back();
      } else {
        h[u] = 1 + h[on];
        prep(u, on);
```

```
sz[on] += sz[u];
    if(sz[u] > sz[edges[on][0]]) {
        swap(edges[on][0], u);
    }
}

void hld(int on) {
    in[on] = t++;
    rin[in[on]] = on;
    for(auto u : edges[on]) {
        nxt[u] = (u == edges[on][0] ? nxt[on] : u);
        hld(u);
    }
    out[on] = t;
};
```

2.9 Centroid Decomposition

```
vector<int> g[ms];
int dis[ms][30];
int par[ms], sz[ms], rem[ms], h[ms];
void dfsSubtree(int u, int p) {
  for(auto v : q[u])
    if(v != p && !rem[v]) {
  dfsSubtree(v, u);
       sz[u] += sz[v];
int getCentroid(int u, int p, int size) {
  for(auto v : g[u]) {
    if(v != p && !rem[v] && sz[v] * 2 >= size)
       return getCentroid(v, u, size);
  return u;
void setDis(int u, int p, int nv) {
  for (auto v : g[u]) {
    if (v == p || rem[v]) continue;
     dis[v][nv] = dis[u][nv]+1;
     setDis(v, u, nv);
void decompose(int u, int p = -1, int nv = 0) {
  dfsSubtree(u, -1);
  int ctr = getCentroid(u, -1, sz[u]);
par[ctr] = p;
h[ctr] = nv;
rem[ctr] = 1;
  setDis(ctr, p, nv);
for(auto v : g[ctr])
    if(v != p && !rem[v]) {
       decompose(v, ctr, nv+1);
```

2.10 Hungarian Algorithm - Maximum Cost Matching

```
int u[ms], v[ms], p[ms], way[ms], minv[ms];
bool used[ms];
pair<vector<int>, int> solve(const vector<vector<int>>> &matrix) {
   int n = matrix.size();
   if(n == 0) return {vector<int>(), 0};
   int m = matrix[0].size();
   assert(n <= m);
   memset(u, 0, (n+1)*sizeof(int));
   memset(v, 0, (m+1)*sizeof(int));
   memset(p, 0, (m+1)*sizeof(int));
   for(int i = 1; i <= n; i++) {</pre>
```

```
memset(minv, 0x3f, (m+1)*sizeof(int));
  memset(way, 0, (m+1)*sizeof(int));
  for(int j = 0; j <= m; j++) used[j] = 0;</pre>
  p[0] = i;
  int k0 = 0;
  do {
   used[k0] = 1;
    int i0 = p[k0], delta = inf, k1;
    for (int j = 1; j \le m; j++) {
      if(!used[j]) {
        int cur = matrix[i0-1][j-1] - u[i0] - v[j];
        if (cur < minv[j]) {</pre>
          minv[j] = cur;
          way[j] = k0;
        if(minv[j] < delta) {</pre>
          delta = minv[j];
          k1 = j;
    for(int j = 0; j <= m; j++) {</pre>
      if(used[j]) {
        u[p[j]] += delta;
      v[j] -= delta;
} else {
       minv[j] -= delta;
    k0 = k1
  } while(p[k0]);
  do {
    int k1 = wav[k0];
    p[k0] = p[k1];

k0 = k1;
  } while(k0);
vector<int> ans(n, -1);
for(int j = 1; j <= m; j++) {</pre>
 if(!p[j]) continue;
 ans[p[j] - 1] = j - 1;
return {ans, -v[0]};
```

2.11 Minimum Arborescence

```
// uncommented O(V^2) arborescence
struct Edges {
  //set<pair<long long, int>> cost; O(Elog^2)
 long long cost[ms];
 // possible optimization, use vector of size n
  // instead of ms
 long long sum = 0;
   memset(cost, 0x3f, sizeof cost);
 void addEdge(int u, long long c) {
   // cost.insert({c - sum, u}); O(Elog^2)
   cost[u] = min(cost[u], c - sum);
 pair<long long, int> getMin() {
   //return *cost.begin(); O(E*log^2)
   pair<long long, int> ans(cost[0], 0);
    // in this loop can change ms to n to make it faster for many cases
   for(int i = 1; i < ms; i++) {
     if(cost[i] < ans.first)</pre>
        ans = pair<long long, int>(cost[i], i);
   return ans;
  void unite (Edges &e) {
   O(E*log^2E)
   if(e.cost.size() > cost.size()) {
     cost.swap(e.cost);
     swap(sum, e.sum);
   for (auto i : e.cost) {
```

```
addEdge(i.second, i.first + e.sum);
    e.cost.clear();
    // O(V^2)
    // can change ms to n
    for(int i = 0; i < ms; i++) {</pre>
      cost[i] = min(cost[i], e.cost[i] + e.sum - sum);
};
typedef vector<vector<pair<long long, int>>> Graph;
Edges ed[ms]:
int par[ms];
long long best[ms];
int col[ms];
int getPar(int x) { return par[x] < 0 ? x : par[x] = getPar(par[x]); }</pre>
void makeUnion(int a, int b) {
  a = getPar(a);
  b = getPar(b);
  if(a == b) return;
  ed[a].unite(ed[b]);
  par[b] = a;
long long arborescence (Graph edges) {
  // root is 0
  // edges has transposed adjacency list (cost, from)
  // edge from i to j cost c is
  // edge[j].emplace_back(c, i)
  int n = (int) edges.size();
  long long ans = 0;
  for(int i = 0; i < n; i++) {
    ed[i] = Edges();
    par[i] = -1;
    for(auto j : edges[i]) {
      ed[i].addEdge(j.second, j.first);
    col[i] = 0;
  // to change the root you can simply change this next line to
  // col[root] = 2;
  col[0] = 2;
  for (int i = 0; i < n; i++) {
    if(col[getPar(i)] == 2) {
      continue;
    int on = getPar(i);
    vector<int> st;
    while(col[on] != 2) {
  assert(getPar(on) == on);
      if(col[on] == 1) {
        int v = on;
        vector<int> cycle;
        //cout << "found cycle\n";
        while(st.back() != v) {
          //cout << st.back() << endl;
cycle.push_back(st.back());</pre>
          st.pop_back();
        for(auto u : cycle) { // compress cycle
          makeUnion(v, u);
        \dot{v} = getPar(v);
        col[v] = 0;
        on = v;
      } else {
        // still no cycle
        // while best is in compressed cycle, remove
        // THIS IS TO MAKE O(E*log^2) ALGORITHM!!
        // while(!ed[on].cost.empty() && getPar(on) == getPar(ed[on].getMin().second))
        1/1 }
             ed[on].cost.erase(ed[on].cost.begin());
        // O(V^2)
        for (int x = 0; x < n; x++) {
          if(on == getPar(x)) {
            ed[on].cost[x] = 0x3f3f3f3f3f3f3f3f1LL;
        // best edge
        auto e = ed[on].getMin();
        // O(E*log^2) assert(!ed[on].cost.empty()) if every vertex appears in the
             arborescence
        // O(V^2)
```

2.12 Dominator Tree

```
struct dominator_tree {
  vector<basic_string<int>> g, rg, bucket;
  vector<int> arr, par, rev, sdom, dom, dsu, label;
  int n, t;
  dominator_tree(int n) : g(n), rg(n), bucket(n), arr(n, -1),
    par(n), rev(n), sdom(n), dom(n), dsu(n), label(n), n(n), t(0) {}
  void add_edge(int u, int v) { g[u] += v; }
  void dfs(int u) {
    arr[u] = t;
rev[t] = u;
    label[t] = sdom[t] = dsu[t] = t;
    t++;
    for (int w : g[u]) {
      if (arr[w] == -1) {
        dfs(w);
        par[arr[w]] = arr[u];
      rg[arr[w]] += arr[u];
  int find(int u, int x=0) {
    if (u == dsu[u])
     return x ? -1 : u;
    int v = find(dsu[u], x+1);
    if (\mathbf{v} < 0)
     return u;
    if (sdom[label[dsu[u]]] < sdom[label[u]])</pre>
      label[u] = label[dsu[u]];
    dsu[u] = v;
    return x ? v : label[u];
  vector<int> run(int root) {
    dfs(root);
    iota(dom.begin(), dom.end(), 0);
    for (int i=t-1; i>=0; i--) {
      for (int w : rg[i])
        sdom[i] = min(sdom[i], sdom[find(w)]);
      if (i)
        bucket[sdom[i]] += i;
      for (int w : bucket[i]) {
        int v = find(w);
        if (sdom[v] == sdom[w])
          dom[w] = sdom[w];
        else
          dom[w] = v:
      if (i > 1)
        dsu[i] = par[i];
    for (int i=1; i<t; i++) {</pre>
      if (dom[i] != sdom[i])
        dom[i] = dom[dom[i]];
    vector<int> outside_dom(n);
    iota(begin(outside_dom), end(outside_dom), 0);
    for (int i=0; i<n; i++)</pre>
```

```
outside_dom[rev[i]] = rev[dom[i]];
return outside_dom;
};
```

2.13 Kuhn

3.2 Li Chao Tree

};

auto 1 = *lower_bound(x);
return 1.k * x + 1.m;

int n, m; vector<vector<int>> g; vector<int> mt; vector<bool> used: bool try_kuhn(int v) { if (used[v]) return false; used[v] = true; for (int to : g[v]) { if (mt[to] == -1 || try_kuhn(mt[to])) { mt[to] = v;return true; return false; int main () { mt.assign(m, -1); vector<bool> used1(n, false); for (int i = 0; i < n; i++) { for (int to : g[i]) { if (mt[to] == -1) { mt[to] = i;used1[i] = true; break; for (int i = 0; i < n; i++) { if (used1[i]) continue;</pre> used.assign(n, false); try_kuhn(i);

typedef long long T; const T INF = 2e18, EPS = 1; struct Line { Line(T m = 0, T b = INF): m(m), b(b){} T apply(T x) { return x * m + b; } struct Node { Node *1 = this, *r = this;Line line; Node buffer[mx * 31]; const T MIN_VALUE = 0, MAX_VALUE = 1e9; int CNT = 1; Node* update(Node *root, Line line, T l = MIN_VALUE, T r = MAX_VALUE+1) { Node *node = &buffer[CNT++]; *node = *root; T m = 1 + (r - 1) / 2; bool left = line.apply(1) < node->line.apply(1); bool mid = line.apply(m) < node->line.apply(m); bool right = line.apply(r) < node->line.apply(r); if (mid) swap(node->line, line); if (r - 1 <= EPS) return node;</pre> if (left == right) return node; if (mid != left) node->l = update(root->l, line, l, m); else node->r = update(root->r, line, m, r); return node; T query(Node *root, T x, T l = MIN_VALUE, T r = MAX_VALUE+1) { if (!root) return INF; if (r - 1 <= EPS) return root->line.apply(x); T m = 1 + (r - 1) / 2; T ans;if (x < m) ans = query(root->1, x, 1, m); else ans = query(root->r, x, m, r); return min(ans, root->line.apply(x));

3 Dynamic Programming

3.1 Line Container

```
struct Line {
  mutable 11 k, m, p;
  bool operator<(const Line& o) const { return k < o.k; }</pre>
  bool operator<(11 x) const { return p < x; }</pre>
struct LineContainer : multiset<Line, less<>>> {
 // (for doubles, use \inf = 1/.0, \operatorname{div}(a,b) = a/b)
  static const ll inf = LLONG_MAX;
 11 div(ll a, ll b) { // floored division
   return a / b - ((a ^ b) < 0 && a % b); }
  bool isect(iterator x, iterator y) {
   if (y == end()) return x \rightarrow p = inf, 0;
    if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
   else x - > p = div(y - > m - x - > m, x - > k - y - > k);
   return x->p >= y->p;
  void add(ll k, ll m) {
    auto z = insert(\{k, m, 0\}), y = z++, x = y;
    while (isect(y, z)) z = erase(z);
    if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
    while ((y = x) != begin() \&\& (--x)->p >= y->p)
      isect(x, erase(v));
  il query(ll x) {
    assert(!empty());
```

3.3 Divide and Conquer Optimization

```
ll dpold[ms], dp[ms], c[ms][ms]; // c(i, j) pode ser funcao
void compute(int 1, int r, int opt1, int optr) {
   if(l>r) return;
    int mid = (1+r)/2;
    pair<11, int> best = {inf, -1}; // long long inf
    for(int k = optl; k <= min(mid, optr); k++) {</pre>
        best = min(best, \{dpold[k-1] + c[k][mid], k\});
    dp[mid] = best.first:
    int opt = best.second;
    compute(l, mid-1, optl, opt);
    compute(mid+1, r, opt, optr);
il solve() {
    dp[0] = 0;
    for(int i = 1; i <= n; i++) dp[i] = inf; // initialize row 0 of the dp</pre>
    for(int i = 1; i <= k; i++) {
        swap(dpold, dp);
        compute(0, n, 0, n); // solve row i of the dp
    return dp[n]; // return dp[k][n]
```

3.4 Knuth Optimization

4 Math

4.1 Chinese Remainder Theorem

```
long long modinverse (long long a, long long b, long long s0 = 1, long long s1 = 0) {
  if(!b) return s0;
  else return modinverse(b, a % b, s1, s0 - s1 * (a / b));
long long gcd(long long a, long long b) {
  if(!b) return a;
  else return gcd(b, a % b);
return (r + 5 * m) % m;
long long safemod(long long a, long long m) {
  return (a % m + m) % m;
struct equation{
  equation(long long a, long long m) {mod = m, ans = a, valid = true;}
  equation() {valid = false;}
  equation (equation a, equation b) {
    if(!a.valid || !b.valid) {
      valid = false;
      return;
    long long g = gcd(a.mod, b.mod);
    if((a.ans - b.ans) % g != 0) {
      valid = false;
      return;
    valid = true;
    mod = a.mod * (b.mod / q);
    ans = a.ans +
    mul(
      mul(a.mod, modinverse(a.mod, b.mod), mod),
      (b.ans - a.ans) / g
      , mod);
    ans = safemod(ans, mod);
  long long mod, ans;
  bool valid:
  void print()
    if(!valid)
      std::cout << "equation is not valid\n";</pre>
      std::cout << "equation is " << ans << " mod " << mod << '\n';
};
```

4.2 Diophantine Equations

```
int gcd_ext(int a, int b, int& x, int &y) {
 if (b == 0) {
    x = 1, y = 0;
   return a;
  int nx, ny;
  int gc = gcd_ext(b, a % b, nx, ny);
 x = ny;

y = nx - (a / b) * ny;
  return gc;
vector<int> diophantine(int D, vector<int> 1) {
 int n = l.size();
  vector<int> gc(n), ans(n);
  gc[n-1] = 1[n-1];
  for (int i = n - 2; i >= 0; i--) {
   int x, y;
   gc[i] = gcd_ext(l[i], gc[i + 1], x, y);
  if (D % gc[0] != 0) {
   return vector<int>();
  for (int i = 0; i < n; i++) {
   if (i == n - 1) {
     ans[i] = D / l[i];
      D = 1[i] * ans[i];
      continue;
    gcd_ext(l[i] / gc[i], gc[i + 1] / gc[i], x, y);
    ans[i] = (long long int) D / gc[i] * x % (gc[i + 1] / gc[i]);
    if (D < 0 \&\& ans[i] > 0) {
      ans[i] -= (gc[i + 1] / gc[i]);
    if (D > 0 \&\& ans[i] < 0) {
      ans[i] += (gc[i + 1] / gc[i]);
   D -= 1[i] * ans[i];
```

4.3 Discrete Logarithm

```
11 discreteLog (ll a, ll b, ll m) {
    a % = m; b % = m;
    ll n = (ll) sqrt (m + .0) + l, an = l;
    for (ll i = 0; i < n; i++) {
        an = (an * a) % m;
    }
    map<ll, ll> vals;
    for (ll i = l, cur = an; i <= n; i++) {
        if (!vals.count(cur)) vals[cur] = i;
        cur = (cur * an) % m;
    }
    ll ans = lel8; //inf
    for (ll i = 0, cur = b; i <= n; i++) {
        if (vals.count(cur)) {
            ans = min(ans, vals[cur] * n - i);
        }
        cur = (cur * a) % m;
    }
    return ans;
}</pre>
```

4.4 Discrete Root

```
//x^k = a % mod
ll discreteRoot(ll k, ll a, ll mod) {
   ll g = primitiveRoot(mod);
```

```
11 y = discreteLog(fexp(g, k, mod), a, mod);
if (y == -1) {
    return y;
}
return fexp(g, y, mod);
```

4.5 Division Trick

```
for (int l = 1, r; l <= n; l = r + 1) {
r = n / (n / l);
/ n / i has the same value for l <= i <= r}
```

4.6 Modular Sum

```
//calcula (sum(0 <= i <= n) P(i)) % mod,
//onde P(i) eh uma PA modular (com outro modulo)
namespace sum_pa_mod{
  11 calc(ll a, ll b, ll n, ll mod) {
    assert (a&&b);
    if(a >= b){
       11 ret = ((n*(n+1)/2) *mod) *(a/b);
       if(a%b) ret = (ret + calc(a%b,b,n,mod))%mod;
else ret = (ret+n+1)%mod;
       return ret;
    return ((n+1)*(((n*a)/b+1)*mod) - calc(b,a,(n*a)/b,mod) + mod + n/b + 1)*mod;
//P(i) = a*i \mod m
11 solve(11 a, 11 n, 11 m, 11 mod){
    a = (a*m + m)*m;
    if(!a) return 0;
    11 ret = (n*(n+1)/2)%mod;
    ret = (ret*a)%mod;
    11 g = __gcd(a,m);
ret -= m*(calc(a/g, m/g, n, mod)-n-1);
    return (ret%mod + mod)%mod;
//P(i) = a + r * i \mod m
  ll solve(ll a, ll r, ll n, ll m, ll mod) {
    a = (a%m + m)%m;
    r = (r%m + m)%m;
    if(!r) return (a*(n+1))%mod;
    if(!a) return solve(r, n, m, mod);
    11 g, x, y;
g = gcdExtended(r, m, x, y);
x = (x%m + m) %m;
    11 d = a - (a/g)*g;
    a = d;

x = (x*(a/q))%m;
    return (solve(r, n+x, m, mod) - solve(r, x-1, m, mod) + mod + d*(n+1)) *mod;
};
```

4.7 Primitive Root

```
//is n primitive root of p ?
bool test(long long x, long long p) {
    long long m = p - 1;
    for(int i = 2; i * i <= m; ++i) if(!(m % i)) {
        if(fexp(x, i, p) == 1) return false;
        if(fexp(x, m / i, p) == 1) return false;
    }
    return true;
}
//find the smallest primitive root for p
int search(int p) {
    for(int i = 2; i < p; i++) if(test(i, p)) return i;
    return -1;
}</pre>
```

4.8 Extended Euclides

```
// euclides estendido: acha u e v da equacao:
// u * x + v * y = gcd(x, y);
// u eh inverso modular de x no modulo y
// v eh inverso modular de y no modulo x

pair<ll, ll> euclides(ll a, ll b) {
    ll u = 0, oldu = 1, v = 1, oldv = 0;
    while(b) {
        ll q = a / b;
        oldv = oldv - v * q;
        oldu = oldu - u * q;
        a = a - b * q;
        swap(a, b);
        swap(u, oldu);
        swap(v, oldv);
    }
    return make_pair(oldu, oldv);
}
```

4.9 Matrix

4.10 FFT - Fast Fourier Transform

```
typedef double ld;
const ld PI = acos(-1);
struct Complex {
 ld real, imag;
  Complex conj() { return Complex(real, -imag); }
  Complex (ld a = 0, ld b = 0) : real(a), imag(b) {}
  Complex operator + (const Complex &o) const { return Complex(real + o.real, imag + o
       .imag);
  Complex operator - (const Complex &o) const { return Complex(real - o.real, imag - o
      .imag); }
  Complex operator * (const Complex &o) const { return Complex(real * o.real - imag *
      o.imag, real * o.imag + imag * o.real); }
  Complex operator / (ld o) const { return Complex(real / o, imag / o); }
  void operator *= (Complex o) { *this = *this * o; }
  void operator /= (ld o) { real /= o, imag /= o; }
typedef std::vector<Complex> CVector;
const int ms = 1 \ll 22;
int bits[ms];
Complex root[ms];
void initFFT() {
  root[1] = Complex(1);
  for(int len = 2; len < ms; len += len) {</pre>
   Complex z(cos(PI / len), sin(PI / len));
    for(int i = len / 2; i < len; i++) {</pre>
     root[2 * i] = root[i];
      root[2 * i + 1] = root[i] * z;
void pre(int n) {
 int LOG = 0;
  while (1 << (LOG + 1) < n) {
  for (int i = 1; i < n; i++) {
   bits[i] = (bits[i >> 1] >> 1) | ((i & 1) << LOG);
```

```
CVector fft (CVector a, bool inv = false) {
  int n = a.size();
  pre(n);
  if(inv) {
    std::reverse(a.begin() + 1, a.end());
  for (int i = 0; i < n; i++) {
    int to = bits[i];
    if(to > i) {
      std::swap(a[to], a[i]);
  for(int len = 1; len < n; len *= 2) {</pre>
    for (int i = 0; i < n; i += 2 * len) {
      for(int j = 0; j < len; j++)</pre>
        Complex u = a[i + j], v = a[i + j + len] * root[len + j];
        a[i + j] = u + v;
        a[i + j + len] = u - v;
  if(inv) {
    for (int i = 0; i < n; i++)
      a[i] /= n;
  return a:
void fft2in1(CVector &a, CVector &b) {
  int n = (int) a.size();
  for (int i = 0; i < n; i++)
   a[i] = Complex(a[i].real, b[i].real);
  auto c = fft(a);
  for (int i = 0; i < n; i++) {
    a[i] = (c[i] + c[(n-i) % n].conj()) * Complex(0.5, 0);
    b[i] = (c[i] - c[(n-i) % n].conj()) * Complex(0, -0.5);
void ifft2in1(CVector &a, CVector &b) {
  int n = (int) a.size();
  for(int i = 0; i < n; i++) a[i] = a[i] + b[i] * Complex(0, 1);</pre>
  a = fft(a, true);
  for (int i = 0; i < n; i++) {
    b[i] = Complex(a[i].imag, 0);
    a[i] = Complex(a[i].real, 0);
std::vector<long long> mod_mul(const std::vector<long long> &a, const std::vector<long
    long> &b, long long cut = 1 << 15) {</pre>
  int n = (int) a.size();
  CVector C[4];
  for(int i = 0; i < 4; i++) C[i].resize(n);</pre>
  for(int i = 0; i < n; i++) {
    C[0][i] = a[i] % cut;
    C[1][i] = a[i] / cut;
    C[2][i] = b[i] % cut;
    C[3][i] = b[i] / cut;
  fft2in1(C[0], C[1]);
  fft2in1(C[2], C[3]);
  for(int i = 0; i < n; i++) {
   // 00, 01, 10, 11
   Complex cur[4];</pre>
    for(int j = 0; j < 4; j++) cur[j] = C[j/2+2][i] * C[j % 2][i];</pre>
    for(int j = 0; j < 4; j++) C[j][i] = cur[j];</pre>
  ifft2in1(C[0], C[1]);
  ifft2in1(C[2], C[3]);
  std::vector<long long> ans(n, 0);
  for (int i = 0; i < n; i++) {
    // if there are negative values, care with rounding
    ans[i] += (long long) (C[0][i].real + 0.5);
    ans[i] += (long long) (C[1][i].real + C[2][i].real + 0.5) * cut;
    ans[i] += (long long) (C[3][i].real + 0.5) * cut * cut;
  return ans:
std::vector<int> mul(const std::vector<int> &a, const std::vector<int> &b) {
  int n = 1;
  while (n - 1 < (int) \ a.size() + (int) \ b.size() - 2) \ n += n;
  CVector poly(n);
```

```
for(int i = 0; i < n; i++) {
    if(i < (int) a.size()) {
        poly[i].real = a[i];
    }
    if(i < (int) b.size()) {
        poly[i].imag = b[i];
    }
}
poly = fft(poly);
for(int i = 0; i < n; i++) {
        poly[i] ** poly[i];
    }
poly = fft(poly, true);
std::vector<int> c(n, 0);
for(int i = 0; i < n; i++) {
        c[i] = (int) (poly[i].imag / 2 + 0.5);
    }
while (c.size() > 0 && c.back() == 0) c.pop_back();
return c;
```

4.11 NTT - Number Theoretic Transform

```
const int MOD = 998244353;
const int me = 15;
const int ms = 1 << me;
#define add(x, y) x+y>=MOD?x+y-MOD:x+y
const int gen = 3; // use search() from PrimitiveRoot.cpp if MOD isn't 998244353
int bits[ms], root[ms];
void initFFT() {
  root[1] = 1;
  for(int len = 2; len < ms; len += len) {</pre>
   int z = fexp(gen, (MOD - 1) / len / 2);
   for(int i = len / 2; i < len; i++) {</pre>
     root[2 * i] = root[i];
      root[2 * i + 1] = (long long) root[i] * z % MOD;
void pre(int n) {
 int LOG = 0;
  while (1 << (LOG + 1) < n) {
  for (int i = 1; i < n; i++) {
   bits[i] = (bits[i >> 1] >> 1) | ((i & 1) << LOG);
vector<int> fft(vector<int> a, bool inv = false) {
 int n = (int) a.size();
  pre(n);
  if(inv) {
    reverse(a.begin() + 1, a.end());
  for (int i = 0; i < n; i++) {
   int to = bits[i];
    if(i < to)
      swap(a[i], a[to]);
  for(int len = 1; len < n; len *= 2)</pre>
   for (int i = 0; i < n; i += len * 2) {
      for (int j = 0; j < len; j++) {
       int u = a[i + j], v = (l1) a[i + j + len] * root[len + j] % mod;
        a[i + j] = add(u, v);
        a[i + j + len] = add(u, mod - v);
  if(inv) {
   int rev = fexp(n, mod-2, mod);
   for(int i = 0; i < n; i++)
     a[i] = (ll) a[i] * rev % mod;
  return a;
std::vector<int> operator *(std::vector<int> a, std::vector<int> b) {
```

```
while(!a.empty() && a.back() == 0) a.pop_back();
while(!b.empty() && b.back() == 0) b.pop_back();
if(a.empty() || b.empty()) return std::vector<int>(0, 0);
int n = 1;
while(n-1 < (int) a.size() + (int) b.size() - 2) n += n;
a.resize(n, 0);
b.resize(n, 0);
a = fft(a, false);
b = fft(b, false);
for(int i = 0; i < n; i++) {
   a[i] = (int) ((long long) a[i] * b[i] % MOD);
}
return fft(a, true);</pre>
```

4.12 Fast Walsh Hadamard Transform

```
vector<1l> FWHT(char oper, vector<1l> a, const bool inv = false) {
  int n = (int) a.size();
  for(int len = 1; len < n; len += len) {</pre>
    for (int i = 0; i < n; i += 2 * len) {
      for(int j = 0; j < len; j++) {
        auto u = a[i + j] % mod, v = a[i + j + len] % mod;
        if(oper == '^') {
          a[i + j] = (u + v) % mod;
          a[i + j + len] = (u - v + mod) % mod;
        if(oper == '|') {
          if(!inv) {
            a[i + j + len] = (u + v) % mod;
          } else {
            a[i + j + len] = (v - u + mod) % mod;
        if(oper == '&') {
          if(!inv) {
            a[i + j] = (u + v) % mod;
          } else {
            a[i + j] = (u - v + mod) % mod;
  if(oper == '^' && inv) {
    11 \text{ rev} = \text{fexp(n, mod - 2);}
    for (int i = 0; i < n; i++) {
      a[i] = a[i] * rev % mod;
  return a;
vector<ll> multiply(char oper, vector<ll> a, vector<ll> b) {
  int n = 1;
  while (n < (int) max(a.size(), b.size())) {</pre>
   n <<= 1;
  vector<ll> ans(n);
  while (a.size() < ans.size()) a.push_back(0);</pre>
  while (b.size() < ans.size()) b.push_back(0);</pre>
  a = FWHT(oper, a);
  b = FWHT(oper, b);
  for (int i = 0; i < n; i++) {
    ans[i] = a[i] * b[i] % mod;
  ans = FWHT (oper, ans, true);
  return ans:
const int mxlog = 17;
vector<ll> subset_multiply(vector<ll> a, vector<ll> b) {
  int n = 1;
  while (n < (int) max(a.size(), b.size())) {</pre>
   n <<= 1;
  vector<ll> ans(n);
  while (a.size() < ans.size()) a.push_back(0);</pre>
  while (b.size() < ans.size()) b.push_back(0);</pre>
```

```
vector<vector<1l>> A(mxlog + 1, vector<1l>(a.size())), B(mxlog + 1, vector<1l>(b.
     size()));
for (int i = 0; i < n; i++) {
 A[__builtin_popcount(i)][i] = a[i];
 B[__builtin_popcount(i)][i] = b[i];
for (int i = 0; i <= mxlog; i++) {</pre>
 A[i] = FWHT('|', A[i]);
 B[i] = FWHT('|', B[i]);
for (int i = 0; i <= mxlog; i++) {</pre>
 vector<11> C(n);
  for (int x = 0; x <= i; x++) {
   int v = i - x;
    for (int j = 0; j < n; j++) {
     C[j] = (C[j] + A[x][j] * B[y][j] % mod) % mod;
 C = FWHT('|', C, true);
 for (int j = 0; j < n; j++) {</pre>
   if (__builtin_popcount(j) == i) {
     ans[j] = (ans[j] + C[j]) % mod;
return ans:
```

4.13 Miller and Rho

```
//miller_rabin
typedef unsigned long long ull;
typedef long double ld;
ull fmul(ull a, ull b, ull m)
 ull q = (ld) a * (ld) b / (ld) m;
ull r = a * b - q * m;
  return (r + m) % m;
bool miller(ull p, ull a) {
  while(s % 2 == 0) s >>= 1;
  while (a >= p) a >>= 1;
  ull mod = fexp(a, s, p);
  while(s != p - 1 && mod != 1 && mod != p - 1) {
   mod = fmul(mod, mod, p);
  if (mod != p - 1 && s % 2 == 0) return false;
  else return true;
bool prime(ull p) {
  if(p <= 3)
    return true;
  if(p % 2 == 0)
   return false;
  return miller(p, 2) && miller(p, 3)
    && miller(p, 5) && miller(p, 7)
    && miller(p, 11) && miller(p, 13)
    && miller(p, 17) && miller(p, 19)
    && miller(p, 23) && miller(p, 29)
    && miller(p, 31) && miller(p, 37);
//pollard rho
ull func(ull x, ull c, ull n) {
  return (fmul(x, x, n) + c) % n;
ull gcd(ull a, ull b) {
  if(!b) return a;
  else return gcd(b, a % b);
ull rho(ull n) {
  if(n % 2 == 0) return 2;
  if(prime(n)) return n;
  while(1) {
    do {
   c = rand() % n;
    } while(c == 0 || (c + 2) % n == 0);
ull x = 2, y = 2, d = 1;
    ull pot = 1, lam = 1;
```

```
do {
      if(pot == lam) {
       x = y;
pot <<= 1;
        lam = 0;
       = func(y, c, n);
      1am++;
      d = gcd(x >= y ? x - y : y - x, n);
    } while(d == 1);
   if(d != n) return d;
vector<ull> factors(ull n) {
 vector<ull> ans, rest, times;
 if(n == 1) return ans;
 rest.push_back(n);
 times.push_back(1);
 while(!rest.empty()) {
   ull x = rho(rest.back());
   if(x == rest.back()) {
     int freq = 0;
      for(int i = 0; i < rest.size(); i++) {</pre>
       int cur_freq = 0;
        while (rest[i] % x == 0) {
          rest[i] /= x;
          cur_freq++;
        freq += cur_freq * times[i];
        if(rest[i] == 1) {
          swap(rest[i], rest.back());
          swap(times[i], times.back());
          rest pop_back();
          times.pop_back();
      while(freq--) {
       ans.push_back(x);
      continue;
    ull e = 0;
    while (rest.back() % x == 0) {
      rest.back() /= x;
      e++;
    e *= times.back();
   if(rest.back() == 1)
      rest.pop_back();
      times.pop_back();
   rest push_back(x);
   times.push_back(e);
 return ans:
```

4.14 Determinant using Mod

```
res = -res;
break;
}
if (!flag) {
    return 0;
}

for (int j = i + 1; j < n; j++) {
    while (mat[j][i]) {
        ll t = mat[i][i] / mat[j][i];
        for (int k = i; k < n; k++) {
            mat[i][k] = (mat[i][k] - t * mat[j][k]) % mod;
            swap (mat[i][k], mat[j][k]);
        res = -res;
    }
}
res = (res * mat[i][i]) % mod;
}
return (res + mod) % mod;
}</pre>
```

4.15 Gauss

```
const double eps = 1e-9;
int gauss (vector<vector<double>> a, vector<double> & ans) {
    int n = (int) a.size();
    int m = (int) a[0].size() - 1;
    vector<int> where (m, -1);
    for (int col=0, row=0; col<m && row<n; ++col) {</pre>
        int sel = row;
        for (int i=row; i<n; ++i) {</pre>
             if (abs (a[i][col]) > abs (a[sel][col]))
                 sel = i:
        if (abs (a[sel][col]) < eps) continue;</pre>
        for (int i=col; i<=m; ++i)</pre>
             swap (a[sel][i], a[row][i]);
        where[col] = row;
        for (int i=0; i<n; ++i) {</pre>
             if (i != row) {
                 double c = a[i][col] / a[row][col];
for (int j=col; j<=m; ++j)</pre>
                     a[i][j] = a[row][j] * c;
         ++row;
    ans.assign (m, 0);
    for (int i=0; i<m; ++i) {</pre>
        if (where[i] != -1)
             ans[i] = a[where[i]][m] / a[where[i]][i];
    for (int i=0; i<n; ++i) {</pre>
        double sum = 0;
        for (int j=0; j < m; ++j)
            sum += ans[j] * a[i][j];
        if (abs (sum - a[i][m]) > eps)
             return 0:
    for (int i=0; i<m; ++i) {</pre>
        if (where[i] == -1)
             return INF;
    return 1;
// mod 2 (xor);
int gauss (vector <bitset<ms>> a, int m, bitset<ms> &ans) {
    int n = (int) a.size();
    vector<int> where (m, -1);
    for (int col=0, row=0; col<m && row<n; ++col) {</pre>
        for (int i=row; i<n; ++i) {</pre>
             if (a[i][col]) {
                  swap (a[i], a[row]);
                 break;
```

```
if (!a[row][col]) continue;
    where[col] = row;
    for (int i=0; i<n; ++i) {</pre>
       if (i != row && a[i][col])
            a[i] ^= a[row];
    ++row;
for (int i = 0; i < m; ++i)
    if(where[i] != -1) {
     ans[i] = a[where[i]][m];
for (int i = 0; i < n; ++i) {
    int sum = 0;
    for (int j = 0; j < m; ++j) {
      sum ^= (ans[j] & a[i][j]);
    if(sum != a[i][m]) {
      return 0;
for (int i = 0; i < m; ++i)
    if(where[i] == -1)
      return 1e9;
return 1;
```

4.16 Lagrange Interpolation

```
class LagrangePoly {
public:
  LagrangePoly(vector<long long> _a) {
    //f(i) = \underline{a[i]}
    //interpola o vetor em um polinomio de grau v.size() - 1
    v = a;
    den.resize(y.size());
    int n = (int) y.size();
    for (int i = 0; i < n; i++) {
      y[i] = (y[i] % MOD + MOD) % MOD;
      den[i] = ifat[n - i - 1] * ifat[i] % MOD;
      if((n - i - 1) % 2 == 1) {
        den[i] = (MOD - den[i]) % MOD;
  long long getVal(long long x) {
   int n = (int) y.size();
    x %= MOD:
    if(x < n) {
      //return y[(int) x];
    vector<long long> 1, r;
    1.resize(n);
    1[0] = 1;
    for (int i = 1; i < n; i++) {
     l[i] = l[i - 1] * (x - (i - 1) + MOD) % MOD;
    for (int i = n - 2; i >= 0; i--) {
      r[i] = r[i + 1] * (x - (i + 1) + MOD) % MOD;
    long long ans = 0;
    for (int i = 0; i < n; i++) {
      long long coef = l[i] * r[i] % MOD;
      ans = (ans + coef * v[i] % MOD * den[i]) % MOD;
    return ans;
 vector<long long> y, den;
int main(){
  fat[0] = ifat[0] = 1;
```

```
for(int i = 1; i < ms; i++) {
    fat[i] = fat[i - 1] * i % MOD;
    ifat[i] = fexp(fat[i], MOD - 2);
}
// Codeforces 622F
int x, k;
cin >> x >> k;
vector<long long> a;
a.push_back(0);
for(long long i = 1; i <= k + 1; i++) {
    a.push_back((a.back() + fexp(i, k)) % MOD);
}
LagrangePoly f(a);
cout << f.getVal(x) << '\n';</pre>
```

4.17 Lagrange extracting polynomial

```
// O(n^2), receve v {x, y} e retorna o polinomio em fracao
vector<pair<int, int>> interpolate(vector<ii> v) {
 int n = v.size();
  vector<int> prod(n+1);
  prod[0] = 1;
  for(auto p : v) {
   for (int i = n; i > 0; i--) {
     prod[i] = prod[i-1] - p.first * prod[i];
   prod[0] = -p.first * prod[0];
  vector<pair<int, int>> ans(n+1);
  for(int i = 0; i <= n; i++) ans[i].second = 1;</pre>
  for (int i = 0; i < n; i++) {
    vector<int> pol(n+1); // (x - v[i].first)
    for (int j = n; j > 0; j--) {
      pol[j-1] = prod[j] + pol[j] * v[i].first;
    for (int j = 0; j < n; j++) {
      pol[j] *= v[i].second;
    int k = 1;
    for (int j = 0; j < n; j++) {
     if(i==j) continue;
      k *= v[i].first - v[j].first;
      for (auto &p : pol) p = -p;
    for (int i = 0; i < n; i++) {
      ans[i] = {ans[i].first*k + pol[i]*ans[i].second, k*ans[i].second};
      if(ans[i].first == 0) ans[i].second = 1;
        int gc = __gcd(abs(ans[i].first), ans[i].second);
        ans[i].first /= qc;
        ans[i].second /= gc;
  return ans;
```

4.18 Count integer points inside triangle

```
//gcd(p, q) == 1
ll get(ll p, ll q, ll n, bool floor = true) {
    if (n == 0) {
        return 0;
    }
    if (p % q == 0) {
        return n * (n + 1) / 2 * (p / q);
    }
    if (p > q) {
        return n * (n + 1) / 2 * (p / q) + get(p % q, q, n, floor);
    }
    ll new_n = p * n / q;
    ll ans = (n + 1) * new_n - get(q, p, new_n, false);
```

```
if (!floor) {
   ans += n - n / q;
}
return ans;
```

4.19 Prime Counting

```
const int ms = 5001000, lim_n = 3e5, lim_p = 1e2;
std::vector<int> primes;
int id[ms];
int memo[lim_n][lim_p];
void pre() {
  std::vector<bool> isPrime(ms, true);
  for(int i = 2; i < ms; i++) {</pre>
    id[i] = (int) primes.size();
    if(!isPrime[i]) continue;
    id[i]++;
    primes.push_back(i);
    for(int j = i+i; j < ms; j += i) isPrime[j] = false;</pre>
  for(int i = 1; i < lim_n; i++) {</pre>
    memo[i][0] = i;
    for(int j = 1; j < lim_p; j++) memo[i][j] = memo[i][j-1] - memo[i/primes[j-1]][j</pre>
         -11;
int cbc(long long n) {
  int ans = std::max(0, (int) pow((double) n, 1.0 / 3) - 2);
  while((ll) ans * ans * ans < n) ans++;</pre>
  return ans;
long long dp (long long n, int i) {
  if(n == 0) return 0; if(i == 0) return n;
  if(primes[i-1] >= n) return 1;
  if((11) primes[i-1] * primes[i-1] > n && n < ms) return id[n] - (i-1);</pre>
  else if(n < lim_n && i < lim_p) return memo[n][i];</pre>
  else return dp(n, i-1) - dp(n / primes[i-1], i-1);
long long primeFunction(long long n) {
  if(n < ms) return id[(int)n];</pre>
  int i = id[cbc(n)];
  long long ans = dp(n, i) + i - 1;
  while((long long) primes[i] * primes[i] <= n) {</pre>
    ans -= primeFunction(n / primes[i]) - i;
    i++;
  return ans;
```

4.20 Berlekamp Massey

```
vector<int> berlekampMassey(const vector<int> &s) {
    int n = (int) s.size(), l = 0, m = 1;
    vector<int> b(n), c(n);
    int 1d = b[0] = c[0] = 1;
    for (int i=0; i<n; i++, m++) {</pre>
        int d = s[i];
        for (int j=1; j<=1; j++)</pre>
            d = (d + c[j] * s[i-j]) % mod;
        if (d == 0)
            continue;
        vector<int> temp = c;
        int coef = d * fexp(ld, mod-2) % mod;
        for (int j=m; j<n; j++)</pre>
            c[j] = ((c[j] - coef * b[j-m]) % mod + mod) % mod;
        if (2 * 1 <= i) {
            1 = i + 1 - 1;
            b = temp;
            1d = d:
            \mathbf{m} = 0;
    c.resize(l + 1);
```

```
c.erase(c.begin());
    for (int &x : c)
        x = mod-x;
    return c:
// p = p*q % h
void mull(vector<int> &p,vector<int> &q, vector<int> &h, int m) {
        vector<int> t_(m+m);
        for(int i=0;i<m;++i) if(p[i])</pre>
                 for (int j=0; j < m; ++j)
                         t_{[i+j]} = (t_{[i+j]} + p[i] * q[j]) %mod;
        for(int i=m+m-1;i>=m;--i) if(t_[i])
                 //miuns t_{[i]}x^{i-m}(x^m-\sum_{j=0}^{m-1} x^{m-j-1}h_{j})
                 for(int j=m-1; ~j; --j)
                        t_{[i-j-1]} = (t_{[i-j-1]} + t_{[i]} *h[j]) *mod;
        for(int i=0;i<m;++i) p[i]=t_[i];</pre>
// a = caso base, h = recorrencia, m = tamanho da recorrencia
inline int calc(vector<int> &a, vector<int> &h, int K, int m) {
        vector<int> s(m), t(m);
        //init
        s[0]=1; if(m!=1) t[1]=1; else t[0]=h[0];
        //binary-exponentiation
        while(K) {
                 if(K&1) mull(s,t,h,m);
                 mull(t,t,h,m); K>>=1;
        int su=0;
        for (int i=0;i<m;++i) su=(su+s[i]*a[i])%mod;</pre>
        return (su%mod+mod) %mod;
```

4.21 Polynomial exp

```
// by ijmg
vector(int) power(vector(int) &a, int k, int limit = -1) {
    while(a.back() == 0) a.pop_back();
    if(a.size() == 0 || limit == 0) return {};
    if(limit == -1) {
        limit = (a.size() - 1) * k;
    }
    vector(int) ans(limit + 1, 0);
    ans[0] = fexp(a[0], k);
    for(int i = 1; i <= limit; ++i) {
        for(int j = 1; j <= min(i, (int) a.size() - 1); ++j) {
            ans[i] += a[j] * ans[i - j] * (k * j - (i - j));
        }
        ans[i] /= i * a[0];
    }
    return ans;
}</pre>
```

5 Geometry

5.1 Geometry

```
const double inf = le100, eps = le-9;
const double PI = acos(-1.0L);
int cmp (double a, double b = 0) {
   if (abs(a-b) < eps) return 0;
   return (a < b) ? -1 : +1;
}
struct PT {
   double x, y;
   PT(double x = 0, double y = 0) : x(x), y(y) {}
   PT operator + (const PT &p) const { return PT(x+p.x, y+p.y); }
   PT operator = (const PT &p) const { return PT(x-p.x, y-p.y); }
   PT operator * (double c) const { return PT(x+c, y+c); }
   PT operator < (double c) const { return PT(x+c, y+c); }
   bool operator < (const PT &p) const {
      if(cmp(x, p.x) != 0) return x < p.x;
      return cmp(y, p.y) < 0;
}</pre>
```

```
bool operator == (const PT &p) const {return !cmp(x, p.x) && !cmp(y, p.y);}
  bool operator != (const PT &p) const {return ! (p == *this);}
ostream &operator<<(ostream &os, const PT &p) {
  return os << "(" << p.x << "," << p.y << ")";</pre>
double dist2 (PT p, PT q = PT(0, 0)) { return dot(p-q, p-q); }
double dist (PT p, PT q) { return hypot(p.x-q.x, p.y-q.y); }
double norm (PT p) { return hypot(p.x, p.y); }
PT normalize (PT p) { return p/hypot(p.x, p.y); } double angle (PT p, PT q) { return atan2(cross(p, q), dot(p, q)); }
double angle (PT p) { return atan2(p.y, p.x); }
double polarAngle (PT p) {
  double a = atan2(p.y,p.x);
  return a < 0 ? a + 2*PI : a;
PT rotateCCW90 (PT p) { return PT(-p.y, p.x); }
PT rotateCW90 (PT p) { return PT(p.y, -p.x); }
PT rotateCCW (PT p, double t) {
  return PT(p.x*cos(t)-p.y*sin(t), p.x*sin(t)+p.y*cos(t));
typedef pair<PT, int> Line;
PT getDir (PT a, PT b) {
  if (a.x == b.x) return PT(0, 1);
  if (a.y == b.y) return PT(1, 0);
  int dx = b.x-a.x;
  int dy = b.y-a.y;
  int g = \underline{gcd(abs(dx), abs(dy))};
  if (dx < 0) g = -g;
  return PT(dx/g, dy/g);
Line getLine (PT a, PT b) {
  PT dir = getDir(a, b);
  return {dir, cross(dir, a)};
PT projPtLine (PT a, PT b, PT c) { // ponto c na linha a - b, a.b = |a| cost * |b|
  return a + (b-a) * dot(b-a, c-a)/dot(b-a, b-a);
PT reflectPointLine (PT a, PT b, PT c) {
  PT p = projPtLine(a, b, c);
  return p*2 - c;
PT projPtSeg (PT a, PT b, PT c) { // c no segmento a - b
  double r = dot(b-a, b-a);
  if (cmp(r) == 0) return a;
  r = dot(b-a, c-a)/r;
  if (cmp(r, 0) < 0) return a;
  if (cmp(r, 1) > 0) return b;
return a + (b - a) * r;
double distancePointSegment (PT a, PT b, PT c) { // ponto c e o segmento a - b
  return dist(c, projPtSeg(a, b, c));
bool ptInSegment (PT a, PT b, PT c) { // ponto c esta em um segmento a - b
  if (a == b) return a == c;
  a = a-c, b = b-c;
  return cmp(cross(a, b)) == 0 \&\& cmp(dot(a, b)) <= 0;
bool parallel (PT a, PT b, PT c, PT d) {
  return cmp(cross(b - a, c - d)) == 0;
bool collinear (PT a, PT b, PT c, PT d) {
  return parallel(a, b, c, d) && cmp(cross(a - b, a - c)) == 0 && cmp(cross(c - d, c -
        a)) == 0;
// Calcula distancia entre o ponto (x, y, z) e o plano ax + by + cz = d
double distPtPlane(double x, double y, double z, double a, double b, double c, double
    return abs(a * x + b * y + c * z - d) / sqrt(a * a + b * b + c * c);
bool segInter (PT a, PT b, PT c, PT d) {
  if (collinear(a, b, c, d)) {
    if (a == c || a == d || b == c || b == d) return true;
    if (cmp(dot(c - a, c - b)) > 0 && cmp(dot(d - a, d - b)) > 0 && cmp(dot(c - b, d - b))) > 0 && cmp(dot(c - b, d - b)))
          b)) > 0) return false;
    return true;
  if (cmp(cross(d - a, b - a) * cross(c - a, b - a)) > 0) return false;
  if (cmp(cross(a - c, d - c) * cross(b - c, d - c)) > 0) return false;
  return true;
```

```
// Calcula a intersecao entre as retas a - b e c - d assumindo que uma unica
     intersecao existe
// Para intersecao de segmentos, cheque primeiro se os segmentos se intersectam e que
     nao sao paralelos
PT lineLine (PT a, PT b, PT c, PT d) {
 b = b - a; d = c - d; c = c - a;
// assert(cmp(cross(b, d)) != 0);
  return a + b * cross(c, d) / cross(b, d);
PT circleCenter (PT a, PT b, PT c) {
  b = (a + b) / 2; // bissector
  c = (a + c) / 2; // bissector
  return lineLine(b, b + rotateCW90(a - b), c, c + rotateCW90(a - c));
vector<PT> circle2PtsRad (PT p1, PT p2, double r) {
  vector<PT> ret;
  double d2 = dist2(p1, p2);
double det = r * r / d2 - 0.25;
  if (det < 0.0) return ret;</pre>
  double h = sqrt(det);
  for (int i = 0; i < 2; i++) {
    double x = (p1.x + p2.x) * 0.5 + (p1.y - p2.y) * h;

double y = (p1.y + p2.y) * 0.5 + (p2.x - p1.x) * h;
    ret.push_back(PT(x, y));
    swap(p1, p2);
  return ret:
bool circleLineIntersection(PT a, PT b, PT c, double r) {
    return cmp(dist(c, projPtLine(a, b, c)), r) <= 0;</pre>
vector<PT> circleLine (PT a, PT b, PT c, double r) {
  vector<PT> ret;
  PT p = projPtLine(a, b, c), p1; double h = norm(c-p);
  if (cmp(h,r) == 0) {
  ret.push_back(p);
  else if (cmp(h,r) < 0)
    double k = sqrt(r*r - h*h);
    p1 = p + (b-a) / (norm(b-a)) *k;
    ret.push_back(p1);
    p1 = p - (b-a)/(norm(b-a))*k;
    ret.push_back(p1);
  return ret;
bool ptInsideTriangle(PT p, PT a, PT b, PT c) {
  if(cross(b-a, c-b) < 0) swap(a, b);
  if(ptInSegment(a,b,p)) return 1;
  if(ptInSegment(b,c,p)) return 1;
  if(ptInSegment(c,a,p)) return 1;
  bool x = cross(b-a, p-b) < 0;
bool y = cross(c-b, p-c) < 0;
bool z = cross(a-c, p-a) < 0;
  return x == y && y == z;
bool pointInConvexPolygon(const vector<PT> &p, PT q) {
  if (p.size() == 1) return p.front() == q;
  int 1 = 1, r = p.size()-1;
  while (abs(r-1) > 1) {
    int m = (r+1)/2;
    if(cross(p[m]-p[0], q-p[0]) < 0) r = m;
  return ptInsideTriangle(q, p[0], p[1], p[r]);
// Determina se o ponto esta num poligono possivelmente nao-convexo
// Retorna 1 para pontos estritamente dentro, 0 para pontos estritamente fora do
// e 0 ou 1 para os pontos restantes
bool pointInPolygon(const vector<PT> &p, PT q) {
  bool c = 0;
  for(int i = 0; i < p.size(); i++) {</pre>
    int j = (i + 1) % p.size();
    \textbf{if}((p[i].y \mathrel{<=} q.y \&\& q.y \mathrel{<} p[j].y \mathrel{||} p[j].y \mathrel{<=} q.y \&\& q.y \mathrel{<} p[i].y) \&\&
      q.x < p[i].x + (p[j].x - p[i].x) * (q.y - p[i].y) / (p[j].y - p[i].y))
  return c;
// area / semiperimeter
double rIncircle (PT a, PT b, PT c) {
  double ab = norm(a-b), bc = norm(b-c), ca = norm(c-a);
```

return abs(cross(b-a, c-a)/(ab+bc+ca));

```
vector<PT> circleCircle (PT a, double r, PT b, double R) {
  vector<PT> ret;
 double d = norm(a-b);
 if (d > r + R || d + min(r, R) < max(r, R)) return ret;</pre>
  double x = (d*d - R*R + r*r) / (2*d); // x = r*cos(R opposite angle)
  double y = sqrt (r*r - x*x);
PT v = (b - a)/d;
  ret.push_back(a + v*x + rotateCCW90(v)*y);
  if (cmp(y) > 0)
    ret.push_back(a + v*x - rotateCCW90(v)*y);
 return ret;
double circularSegArea (double r, double R, double d) {
  double ang = 2 * acos((d*d - R*R + r*r) / (2*d*r)); // cos(R opposite angle) = x/r
  double tri = sin(ang) * r * r;
  double sector = ang * r * r;
  return (sector - tri) / 2;
double computeSignedArea (const vector<PT> &p) {
  double area = 0;
  for (int i = 0; i < p.size(); i++) {</pre>
   int j = (i+1) % p.size();
   area += p[i].x*p[j].y - p[j].x*p[i].y;
  return area/2.0;
double computeArea(const vector<PT> &p) { return abs(computeSignedArea(p)); }
PT computeCentroid(const vector<PT> &p) {
  double scale = 6.0 * computeSignedArea(p);
 for(int i = 0; i < p.size(); i++){</pre>
   int j = (i + 1) % p.size();
   c = c + (p[i] + p[j]) * (p[i].x * p[j].y - p[j].x * p[i].y);
  return c / scale;
// Testa se o poligno listada em ordem CW ou CCW eh simples (nenhuma linha se
     intersecta)
bool isSimple(const vector<PT> &p) {
 for(int i = 0; i < p.size(); i++) {</pre>
    for (int k = i + 1; k < p.size(); k++) {
      int j = (i + 1) % p.size();
      int 1 = (k + 1) % p.size();
      if (i == 1 \mid \mid j == k) continue;
      if (segInter(p[i], p[j], p[k], p[l]))
        return false;
  return true;
vector< pair<PT, PT> > getTangentSegs (PT c1, double r1, PT c2, double r2) {
 if (r1 < r2) swap(c1, c2), swap(r1, r2);</pre>
  vector<pair<PT, PT> > ans;
 double d = dist(c1, c2);
  if (cmp(d) <= 0) return ans;</pre>
  double dr = abs(r1 - r2), sr = r1 + r2;
 if (cmp(dr, d) >= 0) return ans;
  double u = acos(dr / d);
  PT dc1 = normalize(c2 - c1) *r1;
 PT dc2 = normalize(c2 - c1) *r2;
  ans.push_back(make_pair(c1 + rotateCCW(dc1, +u), c2 + rotateCCW(dc2, +u)));
  ans.push_back(make_pair(c1 + rotateCCW(dc1, -u), c2 + rotateCCW(dc2, -u)));
 if (cmp(sr, d) >= 0) return ans;
  double v = acos(sr / d);
 ans.push_back({c1 + rotateCCW(dc1, -v), c2 + rotateCCW(dc2, -v)});
  return ans;
```

5.2 Convex Hull

```
vector<PT> convexHull(vector<PT> p, bool needs = 1) {
  if(needs) sort(p.begin(), p.end());
  p.erase(unique(p.begin(), p.end()), p.end());
  int n = p.size(), k = 0;
  if(n <= 1) return p;
  vector<PT> h(2*n + 5);
```

```
for (int i = 0; i < n; i++) {
   while (k \ge 2 \&\& cross(h[k-1] - h[k-2], p[i] - h[k-2]) \le 0) k--;
   h[k++] = p[i];
 for (int i = n - 2, t = k + 1; i >= 0; i--) {
   while (k \ge t \&\& cross(h[k-1] - h[k-2], p[i] - h[k-2]) \le 0) k--;
   h[k++] = p[i];
 h.resize(k); // n+1 points where the first is equal to the last
vector<PT> splitHull(const vector<PT> &hull) {
 vector<PT> ans(hull.size());
  for(int i = 0, j = (int) hull.size()-1, k = 0; k < (int) hull.size(); k++) {</pre>
   if(hull[i] < hull[j]) {</pre>
      ans[k] = hull[i++];
   ) else
     ans[k] = hull[j--];
 return ans:
// uniao de convex hulls
vector<PT> ConvexHull(const vector<PT> &a, const vector<PT> &b) {
 auto A = splitHull(a);
 auto B = splitHull(b);
 vector<PT> C(A.size() + B.size());
 merge(A.begin(), A.end(), B.begin(), B.end(), C.begin());
 return ConvexHull(C, false);
int maximizeScalarProduct(const vector<PT> &hull, PT vec) {
 // this code assumes that there are no 3 colinear points
 int ans = 0;
 int n = hull.size();
 if(n < 20) {
   for (int i = 0; i < n; i++) {
     if(dot(hull[i], vec) > dot(hull[ans], vec)) {
        ans = i;
 } else {
   if(dot(hull[1], vec) > dot(hull[ans], vec)) {
     ans = 1;
   for(int rep = 0; rep < 2; rep++) {</pre>
     int 1 = 2, r = n - 1;
      while (1 != r) {
        int mid = (1 + r + 1) / 2;
        bool flag = dot(hull[mid], vec) >= dot(hull[mid-1], vec);
        if(rep == 0) { flag = flag && dot(hull[mid], vec) >= dot(hull[0], vec); }
        else { flag = flag || dot(hull[mid-1], vec) < dot(hull[0], vec); }</pre>
        if(flag) {
         1 = mid;
        } else {
         r = mid - 1;
      if(dot(hull[ans], vec) < dot(hull[l], vec)) {</pre>
        ans = 1:
 return ans;
```

5.3 Cut Polygon

```
struct Segment {
    typedef long double T;
    PT p1, p2;
    T a, b, c;

    Segment() {}

    Segment (PT st, PT en) {
        p1 = st, p2 = en;
        a = -(st.y - en.y);
        b = st.x - en.x;
        c = a * en.x + b * en.y;
    }
}
```

```
T plug(T x, T y) {
    // plug >= 0 is to the right
return a * x + b * y - c;
  T plug(PT p) {
    return plug(p.x, p.y);
  bool inLine(PT p) { return cross((p - p1), (p2 - p1)) == 0; }
  bool inSegment(PT p) {
    return inLine(p) && dot((p1 - p2), (p - p2)) >= 0 && dot((p2 - p1), (p - p1)) >=
           0;
  PT lineIntersection(Segment s) {
    long double A = a, B = b, C = c;
long double D = s.a, E = s.b, F = s.c;
long double x = (long double) C * E - (long double) B * F;
long double y = (long double) A * F - (long double) C * D;
    long double tmp = (long double) A * E - (long double) B * D;
    y /= tmp;
return PT(x, y);
  bool polygonIntersection(const vector<PT> &poly) {
  long double 1 = -1e18, r = 1e18;
    for (auto p : poly) {
  long double z = plug(p);
       1 = \max(1, z);
       r = min(r, z);
    return 1 - r > eps;
};
vector<PT> cutPolygon(vector<PT> poly, Segment seg) {
  int n = (int) poly.size();
  vector<PT> ans;
  for (int i = 0; i < n; i++) {
    double z = seg.plug(poly[i]);
    if(z > -eps) {
       ans.push_back(poly[i]);
    double z2 = seg.plug(poly[(i + 1) % n]);
    if((z > eps && z2 < -eps) || (z < -eps && z2 > eps)) {
       ans.push_back(seq.lineIntersection(Segment(poly[i], poly[(i + 1) % n])));
  return ans:
```

5.4 Smallest Enclosing Circle

```
typedef pair<PT, double> circle;
bool inCircle (circle c, PT p) {
  return cmp(dist(c.first, p), c.second) <= 0;</pre>
PT circumcenter (PT p, PT q, PT r) {
  PT a = p-r, b = q-r;
PT c = PT(dot(a, p+r)/2, dot(b, q+r)/2);
  return PT(cross(c, PT(a.y,b.y)), cross(PT(a.x,b.x), c)) / cross(a, b);
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
circle spanningCircle (vector<PT> &v) {
  int n = v.size();
  shuffle(v.begin(), v.end(), rng);
  circle C(PT(), -1);
  for (int i = 0; i < n; i++) if (!inCircle(C, v[i])) {</pre>
    C = circle(v[i], 0);
    for (int j = 0; j < i; j++) if (!inCircle(C, v[j])) {</pre>
      C = circle((v[i]+v[j])/2, dist(v[i], v[j])/2);
      for (int k = 0; k < j; k++) if (!inCircle(C, v[k])) {
        PT o = circumcenter(v[i], v[j], v[k]);
        C = circle(o, dist(o, v[k]));
```

return C;

5.5 Minkowski

```
bool comp (PT a, PT b) {
  int hp1 = (a.x < 0 \mid | (a.x==0 && a.y<0));
  int hp2 = (b.x < 0 \mid | (b.x==0 \&\& b.y<0));
  if(hp1 != hp2) return hp1 < hp2;</pre>
  long long R = cross(a, b);
  if(R) return R > 0;
  return dot(a, a) < dot(b, b);</pre>
 // This code assumes points are ordered in ccw and the first points in both vectors
      is the min lexicographically
vector<PT> minkowskiSum(const vector<PT> &a, const vector<PT> &b) {
  if(a.empty() || b.empty()) return vector<PT>(0);
  vector<PT> ret;
  int n1 = a.size(), n2 = b.size();
  if(min(n1, n2) < 2){
    for(int i = 0; i < n1; i++) {</pre>
      for (int j = 0; j < n2; j++) {
        ret.push_back(a[i]+b[j]);
    return ret;
  PT v1, v2, p = a[0]+b[0];
  ret push_back(p);
  for (int i = 0, j = 0; i + j + 1 < n1+n2; ) {
   v1 = a[(i+1) %n1]-a[i];</pre>
    v2 = b[(j+1) n2] - b[j];
    if(j == n2 \mid | (i < n1 && comp(v1, v2))) p = p + v1, i++;
    else p = p + v2, j++;
    while(ret.size() >= 2 && cmp(cross(p-ret.back(), p-ret[(int)ret.size()-2])) == 0)
      // needs the scalar product stuff it the result is a line
      ret.pop_back();
    ret.push_back(p);
  return ret;
```

5.6 Half Plane Intersection

```
struct L { // salvar (p[i], p[i + 1]) poligono CCW, (p[i + 1], p[i]) poligono CW
    PT a, b, dir;
L(){}
    L(PT a, PT b) : a(a), b(b) {
      dir = b - a;
    int quadrant() const {
      if (dir.y > 0 && dir.x >= 0) return 0;
      if (dir.x < 0 && dir.y >= 0) return 1;
      if (dir.y < 0 && dir.x <= 0) return 2;</pre>
      return 3:
    bool operator < (const L &l) const {
      int q1 = quadrant(), q2 = 1.quadrant();
      if (q1 != q2) return q1 < q2;</pre>
      double c = cross(dir, 1.dir);
      if(cmp(c) == 0) {
        return cmp(cross((1.b - 1.a), (b - 1.a))) > 0;
      return cmp(c) > 0;
};
PT computeLineIntersection (L la, L lb) {
    return lineLine(la.a, la.b, lb.a, lb.b);
bool check (L la, L lb, L lc) {
    PT p = computeLineIntersection(lb, lc);
    double det = cross((la.b - la.a), (p - la.a));
    return cmp(det) < 0;</pre>
```

```
vector<PT> hpi (vector<L> line) {
    vector<PT> box = {PT(inf, inf), PT(-inf, inf), PT(-inf, -inf), PT(inf, -inf)};
    for (int i = 0; i < 4; i++) {
        line.emplace_back(box[i], box[(i + 1) % 4]);
    sort(line.begin(), line.end());
    vector<L> pl(1, line[0]);
    for (int i = 0; i < (int)line.size(); ++i) if (cmp(cross(line[i].dir, pl.back().</pre>
         dir)) != 0) pl.push_back(line[i]);
    vector<int> dq;
    int start = 0;
    for (int i = 0; i < (int)pl.size(); ++i) {</pre>
        \textbf{while ((int)} \, \texttt{dq.size()} \, - \, \texttt{start} \, > \, 1 \, \, \texttt{\&\& check(pl[i], pl[dq.back()], pl[dq[dq.size)]} \\
              () - 2]])) dq.pop_back();
        while ((int)dq.size() - start > 1 && check(pl[i], pl[dq[start]], pl[dq[start +
               1]])) start++;
        if((int)dq.size() - start > 0 && cmp(cross(pl[i].dir, pl[dq.back()].dir)) ==
          if(cmp(dot(pl[i].dir, pl[dq.back()].dir)) < 0) return vector<PT>();
          if(cmp(cross(pl[i].dir, pl[dq.back()].a - pl[i].a)) < 0) dq.pop_back();</pre>
          else continue;
        dq.push_back(i);
    while ((int)dq.size() - start > 1 && check(pl[dq[start]], pl[dq.back()], pl[dq[dq.
         size() - 2]])) dq.pop_back();
    while ((int)dq.size() - start > 1 && check(pl[dq.back()], pl[dq[start]], pl[dq[start + 1]])) start++;
    vector<PT> res;
    if((int)dq.size() - start < 3) return vector<PT>(); // remove this if res can be
    for (int i = start; i < (int)dq.size(); ++i){</pre>
      res.emplace_back(computeLineIntersection(pl[dq[i]], pl[dq[i + 1 == dq.size() ?
           start : i + 1]]));
    return res:
```

5.7 Closest Pair

```
double closestPair(vector<PT> p) {
  int n = p.size(), k = 0;
  sort(p.begin(), p.end());
  double d = inf;
  set<PT> ptsInv;
  for(int i = 0; i < n; i++) {
    while (k < i && p[k].x < p[i].x - d) {
        ptsInv.erase(swapCoord(p[k++]));
    }
    for(auto it = ptsInv.lower_bound(PT(p[i].y - d, p[i].x - d));
        it != ptsInv.end() && it->x <= p[i].y + d; it++) {
        d = min(d, dist(p[i] - swapCoord(*it), PT(0, 0)));
    }
    ptsInv.insert(swapCoord(p[i]));
    return d;
}</pre>
```

5.8 Voronoi

```
Segment getBisector(PT a, PT b) {
    Segment ans(a, b);
    swap(ans.a, ans.b);
    ans.b *= -1;
    ans.c = ans.a * (a.x + b.x) * 0.5 + ans.b * (a.y + b.y) * 0.5;
    return ans;
}

// BE CAREFUL!
// the first point may be any point
// O(N'3)
vector<PT> getCell(vector<PT> pts, int i) {
    vector<PT> ans;
    ans.emplace_back(0, 0);
    ans.emplace_back(1e6, 0);
    ans.emplace_back(1e6, 0);
    ans.emplace_back(1e6, 1e6);
```

```
ans.emplace_back(0, 1e6);
 for(int j = 0; j < (int) pts.size(); j++) {</pre>
   if(j != i) {
     ans = cutPolygon(ans, getBisector(pts[i], pts[j]));
 return ans;
// O(N^2) expected time
vector<vector<PT>> getVoronoi(vector<PT> pts) {
 // assert(pts.size() > 0);
 int n = (int) pts.size();
 vector<int> p(n, 0);
  for (int i = 0; i < n; i++) {
   p[i] = i;
 shuffle(p.begin(), p.end(), rng);
  vector<vector<PT>> ans(n);
  ans[0].emplace_back(0, 0);
  ans[0].emplace_back(w, 0);
 ans[0].emplace_back(w, h);
 ans[0].emplace_back(0, h);
  for (int i = 1; i < n; i++) {
   ans[i] = ans[0];
 for(auto i : p) {
   for(auto i : p) {
      if(j == i) break;
      auto bi = getBisector(pts[j], pts[i]);
      if(!bi.polygonIntersection(ans[j])) continue;
     ans[j] = cutPolygon(ans[j], getBisector(pts[j], pts[i]));
      ans[i] = cutPolygon(ans[i], getBisector(pts[i], pts[j]));
 return ans;
```

6 String Algorithms

6.1 KMP

```
vector<int> getBorder(string str) {
  int n = str.size();
  vector<int> border(n, -1);
  for (int i = 1, j = -1; i < n; i++) {
    while (j \ge 0 \&\& str[i] != str[j+1]) {
      j = border[j];
    if(str[i] == str[j + 1]) {
      j++;
    border[i] = j;
  return border;
int matchPattern(const string &txt, const string &pat, const vector<int> &border) {
  int freq = 0;
  for(int i = 0, j = -1; i < txt.size(); i++) {</pre>
    while (j \ge 0 \&\& txt[i] != pat[j+1]) {
      j = border[j];
    if(pat[j + 1] == txt[i]) {
      j++;
    if(j + 1 == (int) pat.size()) {
       //found occurence
      freq++;
      j = border[j];
  return freq;
```

6.2 Aho-Corasick

```
const int ms = 1e6;  // quantidade de caracteres
const int sigma = 26; // tamanho do alfabeto
int trie[ms][sigma], fail[ms], superfail[ms], terminal[ms], z = 1;
void add(string &s) {
  int node = 0;
  for (char ch : s)
    int pos = val(ch); // no caso de alfabeto a-z: val(ch) = ch - 'a'
    if (!trie[node][pos]) {
     terminal[z] = 0;
      trie[node][pos] = z++;
    node = trie[node][pos];
  ++terminal[node]; // trocar pela info que quiser
void buildFailure() {
  memset(fail, 0, sizeof(int) * z), memset(superfail, 0, sizeof(int) * z);
  queue<int> Q;
  Q.push(0);
  while (Q.size()) {
   int node = Q.front();
    Q.pop();
    for (int pos = 0; pos < sigma; ++pos) {</pre>
      int &v = trie[node][pos];
      int f = node == 0 ? 0 : trie[fail[node]][pos];
      // int sf = present[f] ? f : superfail[f];
      // present marks if that vertex is a terminal node or not
      // if summing up on terminal, doesn't work
      if (!v) {
      } else {
       fail[v] = f;
      // superfail[v] = sf;
       Q.push(v);
       // dar merge nas infos (por ex: terminal[v] += terminal[f])
void search(string &s) {
 int node = 0;
 for (char ch : s) {
   int pos = val(ch);
   node = trie[node][pos];
    // processar infos no no atual (por ex: ocorrencias += terminal[node])
// se tiver usando super fail, cuidado com o estado que voce ta, antes de subir pro sf
     , porque pode ser que o estado que ta nao seja no terminal
```

6.3 Algoritmo de Z

```
template <class T>
vector<int> ZFunc(const vector<T> &v) {
    vector<int> ZFunc(const vector<T> &v) {
        vector<int> z(v.size(), 0);
        int n = (int) v.size(), a = 0, b = 0;
        if (!z.empty()) z[0] = n;
        for (int i = 1; i < n; i++) {
            int end = i; if (i < b) end = min(i + z[i - a], b);
        while(end < n && v[end] == v[end - i]) ++end;
        z[i] = end - i; if(end > b) a = i, b = end;
        return z;
    }
}
```

6.4 Suffix Array

```
vector<int> buildSa(const string& in) {
  int n = in.size(), c = 0;
  vector<int> temp(n), posBucket(n), bucket(n), bpos(n), out(n);
  for (int i = 0; i < n; i++) out[i] = i;</pre>
```

```
sort(out.begin(), out.end(), [&](int a, int b) { return in[a] < in[b]; });</pre>
  for (int i = 0; i < n; i++) {
   bucket[i] = c;
   if (i + 1 == n || in[out[i]] != in[out[i + 1]]) c++;
  for (int h = 1; h < n && c < n; h <<= 1) {
    for (int i = 0; i < n; i++) posBucket[out[i]] = bucket[i];</pre>
    for (int i = n - 1; i >= 0; i--) bpos[bucket[i]] = i;
    for (int i = 0; i < n; i++) {</pre>
      if (out[i] >= n - h) temp[bpos[bucket[i]]++] = out[i];
    for (int i = 0; i < n; i++) {
      if (out[i] >= h) temp[bpos[posBucket[out[i] - h]]++] = out[i] - h;
    c = 0;
    for (int i = 0; i + 1 < n; i++) {
        int a = (bucket[i] != bucket[i + 1]) || (temp[i] >= n - h)
           || (posBucket[temp[i + 1] + h] != posBucket[temp[i] + h]);
        bucket[i] = c;
        c += a;
    bucket [n-1] = c++;
   temp.swap(out);
  return out;
vector<int> buildLcp(string s, vector<int> sa) {
  int n = (int) s.size();
  vector < int > pos(n), lcp(n, 0);
  for (int i = 0; i < n; i++) {
   pos[sa[i]] = i;
  int k = 0;
  for (int i = 0; i < n; i++) {
   if (pos[i] + 1 == n) {
      continue;
    int j = sa[pos[i] + 1];
    while (i + k < n \&\& j + k < n \&\& s[i + k] == s[j + k]) k++;
    lcp[pos[i]] = k;
    k = \max(k - 1, 0);
  return lcp;
```

6.5 Suffix Automaton

```
int len[ms*2], link[ms*2], nxt[ms*2][sigma];
int sz, last;
void build(string &s)
  len[0] = 0; link[0] = -1;
  sz = 1; last = 0;
  memset(nxt[0], -1, sizeof nxt[0]);
  for(char ch : s) {
    int c = ch-'a', cur = sz++;
    len[cur] = len[last]+1;
    memset(nxt[cur], -1, sizeof nxt[cur]);
    int p = last;
    while (p != -1 && nxt[p][c] == -1) {
      nxt[p][c] = cur; p = link[p];
    if(p == -1) {
      link[cur] = 0;
      else {
      int q = nxt[p][c];
      if(len[p] + 1 == len[q]) {
        link[cur] = q;
        len[sz] = len[p]+1; link[sz] = link[q];
        memcpy(nxt[sz], nxt[q], sizeof nxt[q]);
        while (p != -1 \&\& nxt[p][c] == q) {
          nxt[p][c] = sz; p = link[p];
        link[q] = link[cur] = sz++;
    last = cur;
```

6.6 Manacher

6.7 Polish Notation

```
inline bool isOp(char c) {
        return c=='+' || c=='-' || c=='*' || c=='/' || c=='^';
inline bool isCarac(char c) {
        return (c>='a' && c<='z') || (c>='A' && c<='Z') || (c>='0' && c<='9');
int paren2polish(char* paren, char* polish) {
        map<char, int> prec;
prec['('] = 0;
prec['+'] = prec['-'] = 1;
prec['*'] = prec['/'] = 2;
        prec['^'] = 3;
        int len = 0;
        stack<char> op;
        for (int i = 0; paren[i]; i++) {
                 if (isOp(paren[i])) {
                          while (!op.empty() && prec[op.top()] >= prec[paren[i]]) {
                                   polish[len++] = op.top(); op.pop();
                          op.push(paren[i]);
                 else if (paren[i] == '(') op.push('(');
                 else if (paren[i]==')') {
                          for (; op.top()!='('; op.pop())
                          polish[len++] = op.top();
op.pop();
                 else if (isCarac(paren[i]))
                          polish[len++] = paren[i];
        for(; !op.empty(); op.pop())
                 polish[len++] = op.top();
        polish[len] = 0;
        return len;
```

6.8 String Hash

```
ret = (ret & MOD) + (ret >> 61);
    ret = (ret & MOD) + (ret >> 61);
    return ret - 1;
  uint64_t getKey(int 1, int r) { // [1, r]
    uint64_t res = h[r];
    if(1 > 0) res = (res + MOD - modMul(p[r - 1 + 1], h[1 - 1])) % MOD;
    return res;
  uint64_t getInt(char c) {
  return c - 'a' + 1;
  StringHashing(string &s) {
    int n = s.size();
    h.resize(n);
    p.resize(n);
    p[0] = 1;
h[0] = getInt(s[0]);
    for (int i = 1; i < n; ++i) {
      p[i] = modMul(p[i - 1], base);
      h[i] = (modMul(h[i-1], base) + getInt(s[i])) % MOD;
};
```

7 Miscellaneous

7.1 Random Number Generator

```
// mt19937_64 se LL
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
// Random_Shuffle
shuffle(v.begin(), v.end(), rng);
// Random number in interval
int randomInt = uniform_int_distribution(0, i)(rng);
double randomDouble = uniform_real_distribution(0, 1)(rng);
// bernoulli_distribution, binomial_distribution, geometric_distribution
// normal_distribution, poisson_distribution, exponential_distribution
```

7.2 Safe Hash

7.3 Unordered Map Tricks

```
// pair<int, int> hash function
struct HASH{
    size_t operator() (const pair<int,int>&x) const{
    return (size_t) x.first * 37U + (size_t) x.second;
};
```

```
unordered_map<int,int>mp;
mp.reserve(1024);
mp.max_load_factor(0.25);
```

7.4 Iterate masks in bitcount order

```
for(int k = n-1; k >= 0; k--) {
  unsigned int i = (1 << k) -1;
  while(i < (1 << n)) {
    // do what you want
    unsigned int t = (i | (i - 1)) + 1;
    if(i == 0) break;
    i = t | ((((t & -t) / (i & -i)) >> 1) - 1);
  }
}
```

7.5 Submask Enumeration

```
for (int s=m; ; s=(s-1)&m) {
   ... you can use s ...
if (s==0) break;
}
```

7.6 Sum over Subsets DP

```
// F[i] = Sum of all A[j] where j is a submask of i
for(int i = 0; i < (1 < N); ++i)
   F[i] = A[i];
for(int i = 0; i < N; ++i) for(int mask = 0; mask < (1 < N); ++mask){
   if(mask & (1 < i))
        F[mask] += F[mask^(1 < i)];
}</pre>
```

7.7 Subset Sum

```
* Given N non-negative integer weights w and a non-negative target t,
 * computes the maximum S <= t such that S is the sum of some subset of the weights.
 * Time: O(N \max(w_i))
int knapsack(vector<int> w, int t) {
 int a = 0, b = 0;
  while (b < w.size() && a + w[b] <= t) a += w[b++];</pre>
  if (b == w.size()) return a;
  int m = *max_element(w.begin(), w.end());
 vector < int > u, v(2*m, -1);
  v[a+m-t] = b;
  for(int i = b; i < w.size(); i++) {</pre>
    for (int x = 0; x < m; x++) v[x+w[i]] = max(v[x+w[i]], u[x]);
    for (int x = 2*m; --x > m;)
      for (int j = max(011, u[x]); j < v[x]; j++)
        v[x-w[j]] = max(v[x-w[j]], j);
  for (a = t; v[a+m-t] < 0; a--);
  return a;
```

7.8 Stable Marriage

```
std::vector<std::vector<int>> stableMarriage(std::vector<std::vector<int>> first, std
     ::vector<std::vector<int>> second, std::vector<int> cap) {
        assert(cap.size() == second.size());
        int n = (int) first.size(), m = (int) second.size();
        // if O(N * M) first in memory, use table
        std::map<std::pair<int, int>, int> prio;
        std::vector<std::set<std::pair<int, int>>> current(m);
        for (int i = 0; i < n; i++) {
                std::reverse(first[i].begin(), first[i].end());
        for (int i = 0; i < m; i++) {
                for(int j = 0; j < (int) second[i].size(); j++) {</pre>
                        prio[{second[i][j], i}] = j;
        for (int i = 0; i < n; i++) {
                int on = i;
                while(!first[on].empty()) {
                        int to = first[on].back();
                        first[on].pop_back();
                        if(cap[to]) {
                                cap[to]--;
                                assert(prio.count({on, to}));
                                current[to].insert({prio[{on, to}], on});
                        assert(!current[to].empty());
                        auto it = current[to].end();
                        it.--:
                        if(it->first > prio[{on, to}]) {
                                int nxt = it->second;
                                current[to].erase(it);
                                current[to].insert({prio[{on, to}], on});
                                on = nxt;
        std::vector<std::vector<int>> ans(m);
        for (int i = 0; i < m; i++) {
               for(auto it : current[i]) {
                        ans[i].push_back(it.second);
        return ans;
```

8 Teoremas e formulas uteis

8.1 Grafos

```
Formula de Euler: V - E + F = 2 (para grafo planar)
Handshaking: Numero par de vertices tem grau impar
Kirchhoff's Theorem: Monta matriz onde Mi,i = Grau[i] e Mi,j = -1 se houver aresta i-j
      ou O caso contrario, remove uma linha e uma coluna qualquer e o numero de
     spanning trees nesse grafo eh o det da matriz
Grafo contem caminho hamiltoniano se:
Dirac's theorem: Se o grau de cada vertice for pelo menos n/2
Ore's theorem: Se a soma dos graus que cada par nao-adjacente de vertices for pelo
    menos n
Boruvka's: enquanto grafo nao conexo, para cada componente conexa use a aresta que sai
      de menor custo.
Trees:
Tem Catalan(N) Binary trees de N vertices
Tem Catalan (N-1) Arvores enraizadas com N vertices
Caley Formula: n^(n-2) arvores em N vertices com label
Prufer code: Cada etapa voce remove a folha com menor label e o label do vizinho eh
     adicionado ao codigo ate ter 2 vertices
Recuperar min cut eh ver se level[u] != -1 ai eh do lado do source
Max Edge-disjoint paths: Max flow com arestas com peso 1
Max Node-disjoint paths: Faz a mesma coisa mas separa cada vertice em um com as
     arestas de chegadas e um com as arestas de saida e uma aresta de peso 1
     conectando o vertice com aresta de chegada com ele mesmo com arestas de saida
```

- Konig's Theorem: minimum node cover = maximum matching se o grafo for bipartido, complemento eh o maximum independent set
- Min vertex cover sao os vertices da particao do source que nao tao do lado do source do cut e os do sink que tao do lado do source, independent set o contrario
- Min edge cover eh N match, pega as arestas do match mais qualquer aresta dos outros vertices
- Min Node disjoint path cover: formar grafo bipartido de vertices duplicados, onde aresta sai do vertice tipo A e chega em tipo B, entao o path cover eh N matching
- Min General path cover: Mesma coisa mas colocando arestas de A pra B sempre que houver caminho de A pra B
- Dilworth's Theorem: Min General Path cover = Max Antichain (set de vertices tal que nao existe caminho no grafo entre vertices desse set)
- Hall's marriage: um grafo tem um matching completo do lado X se para cada subconjunto $\mathbb W$ de X,
 - |W| <= |vizinhosW| onde |W| eh quantos vertices tem em W
- feasible flow in a network with both upper and lower capacity constraints, no source or sink: capacities are changed to upper bound lower bound. Add a new source and a sink. let M[v] = (sum of lower bounds of ingoing edges to v) (sum of lower bounds of outgoing edges from v). For all v, if M[v] > 0 then add edge (S,v) with capacity M, otherwise add (v,T) with capacity -M. If all outgoing edges from S are full, then a feasible flow exists, it is the flow plus the original lower_bounds

8.2 Math

```
Goldbach's: todo numero par n > 2 pode ser representado com n = a + b onde a e b sao
Twin prime: existem infinitos pares p, p + 2 onde ambos sao primos
Legendre's: sempre tem um primo entre n^2 e (n+1)^2
Lagrange's: todo numero inteiro pode ser inscrito como a soma de 4 quadrados
Zeckendorf's: todo numero pode ser representado pela soma de dois numeros de
     fibonnacis diferentes e nao consecutivos
Euclid's: toda tripla de pitagoras primitiva pode ser gerada com
    (n^2 - m^2, 2nm, n^2+m^2) onde n, m sao coprimos e um deles eh par
Wilson's: n eh primo quando (n-1)! mod n = n - 1
Mcnugget: Para dois coprimos x, y a quantidade de inteiros que nao pode ser escrito como ax + by eh (x-1)(y-1)/2,
     o maior inteiro que nao consegue eh x*y-x-y
Fermat: Se p eh primo entao a(p-1) % p = 1
Se x e m tambem forem coprimos entao x^k % m = x^k (k \mod (m-1)) % m
Euler's theorem: x^{(phi(m))} \mod m = 1 onde phi(m) eh o totiente de euler
Chinese remainder theorem:
Para equacoes no formato x = al \mod ml, ..., x = an \mod mn onde todos os pares ml,
     ..., mn sao coprimos
Deixe Xk = m1 * m2 * .. * mn/mk = Xk^-1 \mod mk = inverso de Xk mod mk, entao
x = somatorio com k de 1 ate n de ak*Xk*(Xk,mk^-1 mod mk)
Para achar outra solucao so somar m1*m2*..*mn a solucao existente
Catalan number: exemplo expressoes de parenteses bem formadas
C0 = 1, Cn = somatorio de <math>i=0 \rightarrow n-1 de Ci*C(n-1+1)
outra forma: Cn = (2n \text{ escolhe } n)/(n+1)
Bertrand's ballot theorem: p votos tipo A e q votos tipo B com p>q, prob de em todo
     ponto ter mais As do que Bs antes dele = (p-q)/(p+q)
Se puder empates entao prob = (p+1-q)/(p+1), para achar quantidade de possibilidades
     nos dois casos basta multiplicar por (p + g escolhe g)
Propriedades de Coeficientes Binomiais:
Somatorio de k = 0 \rightarrow m de (-1)^k \star (n \text{ escolhe } k) = (-1)^m \star (n - 1 \text{ escolhe } m)
(N \text{ escolhe } K) = (N \text{ escolhe } N-K)
(N \text{ escolhe } K) = N/K * (n-1 \text{ escolhe } k-1)
Somatorio de k = 0 \rightarrow n de (n escolhe k) = 2^n
Somatorio de m = 0 \rightarrow n de (m \ escolhe \ k) = (n+1 \ escolhe \ k+1)
Somatorio de k = 0 -> m de (n+k) escolhe k) = (n+m+1) escolhe m)
Somatorio de k = 0 \rightarrow n de (n escolhe k)^2 = (2n escolhe n)
Somatorio de k = 0 ou 1 \rightarrow n de k*(n escolhe k) = n * 2^(n-1)
```

```
Somatorio de k = 0 \rightarrow n de (n-k) escolhe k = Fib(n+1)
Hockey-stick: Somatorio de i = r \rightarrow n de (i \text{ escolhe } r) = (n + 1 \text{ escolhe } r + 1)
Vandermonde: (m+n \ escolhe \ r) = somatorio \ de \ k = 0 \rightarrow r \ de \ (m \ escolhe \ k) \ \star \ (n \ escolhe \ r)
Burnside lemma: colares diferentes nao contando rotações quando m = cores e n =
     comprimento
(m^n + somatorio i = 1 - > n-1 de m^qcd(i, n))/n
Distribuicao uniforme a,a+1, ..., b Expected[X] = (a+b)/2
Distribuicao binomial com n tentativas de probabilidade p, X = sucessos:
    P(X = x) = p^x * (1-p)^(n-x) * (n escolhe x) e E[X] = p*n
Distribuicao geometrica onde continuamos ate ter sucesso, X = tentativas:
    P(X = x) = (1-p)^(x-1) * p e E[X] = 1/p
Linearity of expectation: Tendo duas variaveis X e Y e constantes a e b, o valor
    esperado de aX + bY = a*E[X] + b*E[X]
V(X) = E((X-u)^2)
V(X) = E(X^2) - E(X^2)
PG: a1 * (q^n - 1)/(q - 1)
Mobius Inverse: Sum(d|n): mobius(d) = [n = 1] (expressao booleana)
Soma dos cubos de 1 a N = a^2 onde a = somatorio de 1 a N
Lindstrom-Gessel-Viennot: quantidade de caminhos disjuntos nas linhas do grid eh o
     determinante da matriz de onts caminhos
```

8.3 Geometry

Formula de Euler: V - E + F = 2

```
Pick Theorem: Para achar pontos em coords inteiras num poligono Area = i + b/2 - 1 onde i eh o o numero de pontos dentro do poligono e b de pontos no perimetro do poligono

Two ears theorem: Todo poligono simples com mais de 3 vertices tem pelo menos 2 orelhas, vertices que podem ser removidos sem criar um crossing, remover orelhas repetidamente triangula o poligono

Incentro triangulo: (a(Xa, Ya) + b(Xb, Yb) + c(Xc, Yc))/(a+b+c) onde a = lado oposto ao vertice a, incentro eh onde cruzam as bissetrizes, eh o centro da circunferencia inscrita e eh equidistante aos lados

Delaunay Triangulation: Triangulacao onde nenhum ponto esta dentro de nenhum circulo circunscrito nos triangulos

Eh uma triangulacao que maximiza o menor angulo e a MST euclidiana de um conjunto de pontos eh um subconjunto da triangulacao

Brahmagupta's formula: Area cyclic quadrilateral s = (a+b+c+d)/2 area = sqrt((s-a)*(s-b)*(s-c)*(s-d))
```

8.4 Dynamic Programming

 $d = 0 \Rightarrow area = sgrt((s-a)*(s-b)*(s-c)*s)$

```
Divide and conquer - dp[i][j] = mink < j{dp[i - 1][k] + C[k][j]} dividir o subsegmento ate j em i segmentos com custo, valido se A[i][j] <= A[i][j+1] Knuth - p[i][j] = mini < k < j{dp[i][k] + dp[k][j]} + C[i][j], valido se A[i, j - 1] <= A[i][j] <= A[i+1, j] onde A[i][j] eh o menor k que da a resposta otima slope trick - funcao piecewise linear convexa, descrita pelos pontos de mudanca de slope (multiset/heap) lembre que existe fft, cht, aliens trick e bitset
```