qpp

0.1

Generated by Doxygen 1.8.5

Tue Apr 22 2014 19:26:35

Contents

1	Nam	nespace	Index													1
	1.1	Names	pace List				 			1						
2	Hier	archical	Index													3
	2.1	Class I	Hierarchy				 	3								
3	Clas	ss Index														5
	3.1	Class I	ist				 	5								
4	File	Index														7
	4.1	File Lis	t				 		7							
5	Nam	nespace	Documer	ntatio	n											9
	5.1	qpp Na	ımespace	Refe	rence		 	9								
		5.1.1	Function	Docu	umenta	tion	 	13								
			5.1.1.1	abs	m		 	13								
			5.1.1.2	adjo	oint .		 		14							
			5.1.1.3	anti	comm		 		14							
			5.1.1.4	cha	nnel .		 		14							
			5.1.1.5	cha	nnel .		 	15								
			5.1.1.6	cho	i		 		15							
			5.1.1.7	cho	i2kraus	s	 		16							
			5.1.1.8	com	nm .		 		16							
			5.1.1.9	com	npperm	١	 		17							
			5.1.1.10	con	jugate		 		17							
			5.1.1.11	cos	m		 	17								
			5.1.1.12	cwis	se		 	18								
			5.1.1.13	det			 	18								
			5.1.1.14	disp)		 	18								
			5.1.1.15	disp)		 	18								
			5.1.1.16	disp)		 	18								
			5.1.1.17	disp)		 	18								
			5.1.1.18	disc	oln .		 	19								

iv CONTENTS

5.1.1.19	displn	19
5.1.1.20	displn	19
5.1.1.21	displn	20
5.1.1.22	entanglement	20
5.1.1.23	evals	21
5.1.1.24	evects	21
5.1.1.25	expandout	22
5.1.1.26	expm	22
5.1.1.27	funm	22
5.1.1.28	gate	24
5.1.1.29	gconcurrence	25
5.1.1.30	grams	25
5.1.1.31	grams	26
5.1.1.32	hevals	26
5.1.1.33	hevects	26
5.1.1.34	inverse	27
5.1.1.35	invperm	27
5.1.1.36	kron	27
5.1.1.37	kronlist	28
5.1.1.38	kronpow	28
5.1.1.39	load	28
5.1.1.40	loadMATLABmatrix	28
5.1.1.41	loadMATLABmatrix	28
5.1.1.42	loadMATLABmatrix	28
5.1.1.43	logdet	29
5.1.1.44	logm	29
5.1.1.45	mket	29
5.1.1.46	mket	30
5.1.1.47	mket	30
5.1.1.48	multiidx2n	30
5.1.1.49	n2multiidx	31
5.1.1.50	norm	31
5.1.1.51	powm	31
5.1.1.52	prj	32
5.1.1.53	ptrace	33
5.1.1.54	ptrace1	34
5.1.1.55	ptrace2	34
5.1.1.56	ptranspose	35
5.1.1.57	qmutualinfo	36
5.1.1.58	rand	36

CONTENTS

5.1.1.59	rand	36
5.1.1.60	rand	36
5.1.1.61	rand	37
5.1.1.62	randH	37
5.1.1.63	randint	37
5.1.1.64	randket	38
5.1.1.65	randkraus	38
5.1.1.66	randn	38
5.1.1.67	randn	38
5.1.1.68	randn	38
5.1.1.69	randn	39
5.1.1.70	randperm	39
5.1.1.71	randrho	39
5.1.1.72	randU	39
5.1.1.73	randV	40
5.1.1.74	renyi	40
5.1.1.75	renyi_inf	40
5.1.1.76	reshape	41
5.1.1.77	save	41
5.1.1.78	saveMATLABmatrix	41
5.1.1.79	saveMATLABmatrix	41
5.1.1.80	saveMATLABmatrix	42
5.1.1.81	schmidtcoeff	42
5.1.1.82	schmidtprob	43
5.1.1.83	schmidtU	43
5.1.1.84	schmidtV	44
5.1.1.85	shannon	44
5.1.1.86	sinm	45
5.1.1.87	spectralpowm	45
5.1.1.88	sqrtm	45
5.1.1.89	sum	46
5.1.1.90	super	46
5.1.1.91	syspermute	47
5.1.1.92	trace	47
5.1.1.93	transpose	48
5.1.1.94	tsallis	48
Variable [Documentation	48
5.1.2.1	gt	48
5.1.2.2	rdevs	48
5.1.2.3	st	48

5.1.2

vi CONTENTS

	5.2	qpp::ct	Namespa	ce Reference	48
		5.2.1	Function	Documentation	49
			5.2.1.1	omega	49
		5.2.2	Variable I	Documentation	49
			5.2.2.1	chop	49
			5.2.2.2	ee	49
			5.2.2.3	eps	49
			5.2.2.4	ii	49
			5.2.2.5	maxn	49
			5.2.2.6	pi	49
	5.3	qpp::int	ternal Nam	nespace Reference	49
		5.3.1	Function	Documentation	50
			5.3.1.1	_check_col_vector	50
			5.3.1.2	_check_dims	50
			5.3.1.3	_check_dims_match_cvect	50
			5.3.1.4	_check_dims_match_mat	50
			5.3.1.5	_check_dims_match_rvect	50
			5.3.1.6	_check_eq_dims	50
			5.3.1.7	_check_nonzero_size	50
			5.3.1.8	_check_perm	50
			5.3.1.9	_check_row_vector	50
			5.3.1.10	_check_square_mat	50
			5.3.1.11	_check_subsys_match_dims	50
			5.3.1.12	_check_vector	50
				_multiidx2n	50
				_n2multiidx	50
	5.4			space Reference	50
		5.4.1		Occumentation	50
			5.4.1.1	bra	50
			5.4.1.2	cmat	50
			5.4.1.3	cplx	51
			5.4.1.4	dmat	51
			5.4.1.5	DynMat	51
			5.4.1.6	ket	51
6	Clas	s Docur	mentation		53
	6.1	qpp::Di	screteDist	ribution Class Reference	53
		6.1.1	Construct	tor & Destructor Documentation	53
			6.1.1.1	DiscreteDistribution	53
			6.1.1.2	DiscreteDistribution	53

CONTENTS vii

		6.1.1.3 Discrete Distribution
	6.1.2	Member Function Documentation
		6.1.2.1 probabilities
		6.1.2.2 sample
	6.1.3	Member Data Documentation
		6.1.3.1 _d
6.2	qpp::D	iscreteDistributionAbsSquare Class Reference
	6.2.1	Constructor & Destructor Documentation
		6.2.1.1 DiscreteDistributionAbsSquare
		6.2.1.2 Discrete Distribution Abs Square
		6.2.1.3 DiscreteDistributionAbsSquare
		6.2.1.4 Discrete Distribution Abs Square
	6.2.2	Member Function Documentation
		6.2.2.1 cplx2weights
		6.2.2.2 probabilities
		6.2.2.3 sample
	6.2.3	Member Data Documentation
		6.2.3.1 _d
6.3	qpp::E	xception Class Reference
	6.3.1	Member Enumeration Documentation
		6.3.1.1 Type
	6.3.2	Constructor & Destructor Documentation
		6.3.2.1 Exception
		6.3.2.2 Exception
		6.3.2.3 ~Exception
	6.3.3	Member Function Documentation
		6.3.3.1 _construct_exception_msg
		6.3.3.2 what
	6.3.4	Member Data Documentation
		6.3.4.1 _custom
		6.3.4.2 _msg
		6.3.4.3 _type
		6.3.4.4 _where
6.4	qpp::G	ates Class Reference
	6.4.1	Constructor & Destructor Documentation
		6.4.1.1 Gates
		6.4.1.2 Gates
		6.4.1.3 ~Gates
	6.4.2	Member Function Documentation
		6.4.2.1 CTRL

viii CONTENTS

		6.4.2.2	Fd	. 61
		6.4.2.3	getInstance	. 61
		6.4.2.4	ld	. 61
		6.4.2.5	operator=	. 61
		6.4.2.6	Rtheta	. 61
		6.4.2.7	Xd	. 62
		6.4.2.8	Zd	. 62
	6.4.3	Member D	Oata Documentation	. 62
		6.4.3.1	CNOTab	. 62
		6.4.3.2	CNOTba	. 62
		6.4.3.3	CZ	. 62
		6.4.3.4	FRED	. 62
		6.4.3.5	Н	. 62
		6.4.3.6	ld2	. 62
		6.4.3.7	S	. 62
		6.4.3.8	SWAP	. 62
		6.4.3.9	Т	. 62
		6.4.3.10	TOF	. 62
		6.4.3.11	x	. 62
		6.4.3.12	Y	. 63
		6.4.3.13	Z	. 63
6.5	qpp::N	ormalDistrib	oution Class Reference	. 63
	6.5.1	Constructo	or & Destructor Documentation	. 63
		6.5.1.1	NormalDistribution	. 63
	6.5.2	Member F	unction Documentation	. 63
		6.5.2.1	sample	. 63
	6.5.3	Member D	Oata Documentation	. 63
		6.5.3.1	_d	. 63
6.6	qpp::Q	udit Class F	Reference	. 64
	6.6.1	Constructo	or & Destructor Documentation	. 64
		6.6.1.1	Qudit	. 64
		6.6.1.2	\sim Qudit	. 64
	6.6.2	Member F	unction Documentation	. 64
		6.6.2.1	getD	. 64
		6.6.2.2	getRho	. 64
		6.6.2.3	measure	. 65
		6.6.2.4	measure	. 65
	6.6.3	Member D	Pata Documentation	. 65
		6.6.3.1	_D	. 65
		6.6.3.2	_rho	. 65

CONTENTS

6.7	qpp::R	andomDev	vices Class Reference	66
	6.7.1	Construc	tor & Destructor Documentation	66
		6.7.1.1	RandomDevices	66
		6.7.1.2	RandomDevices	66
		6.7.1.3	\sim RandomDevices	66
	6.7.2	Member I	Function Documentation	66
		6.7.2.1	getInstance	66
		6.7.2.2	operator=	66
	6.7.3	Member I	Data Documentation	66
		6.7.3.1	_rd	66
		6.7.3.2	_rng	66
6.8	qpp::S	tates Class	Reference	66
	6.8.1	Construc	tor & Destructor Documentation	67
		6.8.1.1	States	67
		6.8.1.2	States	67
		6.8.1.3	~States	67
	6.8.2	Member I	Function Documentation	67
		6.8.2.1	getInstance	67
		6.8.2.2	operator=	68
	6.8.3	Member I	Data Documentation	68
		6.8.3.1	b00	68
		6.8.3.2	b01	68
		6.8.3.3	b10	68
		6.8.3.4	b11	68
		6.8.3.5	GHZ	68
		6.8.3.6	pb00	68
		6.8.3.7	pb01	68
		6.8.3.8	pb10	68
		6.8.3.9	pb11	68
		6.8.3.10	pGHZ	68
		6.8.3.11	pW	68
		6.8.3.12	px0	68
		6.8.3.13	px1	68
		6.8.3.14	py0	68
		6.8.3.15	py1	68
		6.8.3.16	pz0	68
		6.8.3.17	pz1	68
		6.8.3.18	w	68
			x0	68
			x1	68

X CONTENTS

			6.8.3.21 y0	68
			6.8.3.22 y1	68
			6.8.3.23 z0	68
			6.8.3.24 z1	68
	6.9	qpp::Ti	mer Class Reference	69
		6.9.1	Constructor & Destructor Documentation	69
			6.9.1.1 Timer	69
			6.9.1.2 ~Timer	69
		6.9.2	Member Function Documentation	69
			6.9.2.1 seconds	69
			6.9.2.2 tic	69
			6.9.2.3 toc	69
		6.9.3	Friends And Related Function Documentation	69
			6.9.3.1 operator <<	69
		6.9.4	Member Data Documentation	69
			6.9.4.1 _end	69
			6.9.4.2 _start	69
	6.10	qpp::Ur	niformRealDistribution Class Reference	69
		6.10.1	Constructor & Destructor Documentation	70
			6.10.1.1 UniformRealDistribution	70
		6.10.2	Member Function Documentation	70
			6.10.2.1 sample	70
		6.10.3	Member Data Documentation	70
			6.10.3.1 _d	70
7	File I	Docume	entation	71
	7.1			71
	7.2			72
	7.3			73
	7.4		-	74
	7.5			75
	7.6			76
	7.7	include	/classes/states.h File Reference	77
	7.8	include	/classes/timer.h File Reference	79
	7.9	include	/constants.h File Reference	79
	7.10	include	/entanglement.h File Reference	81
	7.11	include	/entropies.h File Reference	82
	7.12	include	/functions.h File Reference	83
	7.13	include	/internal.h File Reference	86
	7.14	include	/io.h File Reference	87

7.15 include/matlab.h File Reference	89
7.16 include/qpp.h File Reference	90
7.17 include/random.h File Reference	91
7.18 include/types.h File Reference	92

χi

CONTENTS

Chapter 1

Namespace Index

1.1 Namespace List

Here is a list of all namespaces with brief descriptions:

qpp	 9
qpp::ct	 48
qpp::internal	 49
qpp::types	 50

2 Namespace Index

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

o::DiscreteDistribution	53
o::DiscreteDistributionAbsSquare	54
peption	
qpp::Exception	56
o::Gates	60
o::NormalDistribution	63
o::Qudit	
o::RandomDevices	66
o::States	
o::Timer	69
o::UniformRealDistribution	69

Hierarchical Index

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

qpp::DiscreteDistribution	53
qpp::DiscreteDistributionAbsSquare 5	54
qpp::Exception	56
qpp::Gates	
qpp::NormalDistribution	63
qpp::Qudit	
qpp::RandomDevices	
qpp::States	
qpp::Timer	
qpp::UniformRealDistribution	39

6 Class Index

Chapter 4

File Index

4.1 File List

Here is a list of all files with brief descriptions:

į	include/channels.h	1
	include/constants.h	9
	include/entanglement.h	1
į	include/entropies.h	2
	include/functions.h	3
	include/internal.h	6
	include/io.h	7
	include/matlab.h	9
	include/qpp.h	0
	include/random.h	
	include/types.h	2
į	include/classes/exception.h	2
	include/classes/gates.h	3
	include/classes/qudit.h	-
	include/classes/randevs.h	5
	include/classes/stat.h	6
	include/classes/states.h	1
i	include/classes/timer.h	9

8 File Index

Chapter 5

Namespace Documentation

5.1 qpp Namespace Reference

Namespaces

- ct
- · internal
- types

Classes

- class Exception
- · class Gates
- class Qudit
- class RandomDevices
- class NormalDistribution
- class UniformRealDistribution
- · class DiscreteDistribution
- · class DiscreteDistributionAbsSquare
- · class States
- class Timer

Functions

- template<typename Derived >
 types::cmat channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< types::cmat > &Ks)
- types::cmat super (const std::vector< types::cmat > &Ks)
- types::cmat choi (const std::vector< types::cmat > &Ks)
- std::vector< types::cmat > choi2kraus (const types::cmat &A)
- template<typename Derived >
 types::cmat channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< types::cmat > &Ks,
 const std::vector< size_t > &subsys, const std::vector< size_t > &dims)
- $\begin{tabular}{ll} \bullet & template < typename \ Derived > \\ types::cmat \ schmidtcoeff \ (const \ Eigen::MatrixBase < Derived > \&A, \ const \ std::vector < size_t > \&dims) \\ \end{tabular}$
- $\label{eq:const_policy} \begin{array}{ll} \bullet & \mathsf{template} < \mathsf{typename} \ \mathsf{Derived} > \\ & \mathsf{types} :: \mathsf{cmat} \ \mathsf{schmidtU} \ (\mathsf{const} \ \mathsf{Eigen} :: \mathsf{MatrixBase} < \mathsf{Derived} > \& \mathsf{A}, \ \mathsf{const} \ \mathsf{std} :: \mathsf{vector} < \ \mathsf{size_t} > \& \mathsf{dims}) \end{array}$
- template<typename Derived >
 types::cmat schmidtV (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)

```
    template<typename Derived >

  types::cmat schmidtprob (const Eigen::MatrixBase< Derived > &A, const std::vector< size t > &dims)
• template<typename Derived >
  double entanglement (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)

    template<typename Derived >

  double gconcurrence (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double shannon (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double renyi (const double alpha, const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double renyi_inf (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double tsallis (const double alpha, const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  double qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &subsys, const
  std::vector< size t > &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > transpose (const Eigen::MatrixBase < Derived > &A)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > conjugate (const Eigen::MatrixBase < Derived > &A)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > adjoint (const Eigen::MatrixBase < Derived > &A)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > inverse (const Eigen::MatrixBase < Derived > &A)

    template<typename Derived >

  Derived::Scalar trace (const Eigen::MatrixBase< Derived > &A)
 template<typename Derived >
  Derived::Scalar det (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  Derived::Scalar logdet (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  Derived::Scalar sum (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double norm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat evals (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat evects (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::dmat hevals (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat hevects (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat funm (const Eigen::MatrixBase< Derived > &A, types::cplx(*f)(const types::cplx &))

    template<typename Derived >

  types::cmat sqrtm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat absm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat expm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >
```

types::cmat logm (const Eigen::MatrixBase< Derived > &A)

```
• template<typename Derived >
  types::cmat sinm (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  types::cmat cosm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat spectralpowm (const Eigen::MatrixBase< Derived > &A, const types::cplx z)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > powm (const Eigen::MatrixBase< Derived > &A, size_t n)

    template<typename OutputScalar , typename Derived >

  types::DynMat< OutputScalar > cwise (const Eigen::MatrixBase< Derived > &A, OutputScalar(*f)(const
  typename Derived::Scalar &))

    template<typename Derived1 , typename Derived2 >

  types::DynMat< typename
  Derived1::Scalar > kron (const Eigen::MatrixBase < Derived1 > &A, const Eigen::MatrixBase < Derived2 >
  &B)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > kronlist (const std::vector< types::DynMat< typename Derived::Scalar > > &As)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > kronpow (const Eigen::MatrixBase< Derived > &A, size_t n)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > reshape (const Eigen::MatrixBase < Derived > &A, size_t rows, size_t cols)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > syspermute (const Eigen::MatrixBase < Derived > &A, const std::vector < size t > &perm,
  const std::vector< size t > &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > ptrace1 (const Eigen::MatrixBase < Derived > &A, const std::vector < size_t > &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > ptrace2 (const Eigen::MatrixBase < Derived > &A, const std::vector < size t > &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > ptrace (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &subsys,
  const std::vector< size_t > &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > ptranspose (const Eigen::MatrixBase< Derived > &A, const std::vector< size t > &sub-
  sys, const std::vector< size t > \&dims)

    template<typename Derived1 , typename Derived2 >

  types::DynMat< typename
  Derived1::Scalar > comm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< Derived2
  > &B)
• template<typename Derived1 , typename Derived2 >
  types::DynMat< typename
  Derived1::Scalar > anticomm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< De-
  rived2 > &B)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > prj (const Eigen::MatrixBase < Derived > &V)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > expandout (const Eigen::MatrixBase < Derived > &A, size_t pos, const std::vector < size_t
  > &dims)
```

• template<typename Derived1 , typename Derived2 > types::DynMat< typename Derived1::Scalar > gate (const Eigen::MatrixBase < Derived1 > &state, const Eigen::MatrixBase < Derived2 > &A, const std::vector< size_t > &subsys, const std::vector< size_t > &dims) template<typename Derived > types::DynMat< typename Derived::Scalar > grams (const std::vector< types::DynMat< typename Derived::Scalar > > &Vs) template<typename Derived > types::DynMat< typename ${\tt Derived::Scalar} > {\tt grams} \; ({\tt const} \; {\tt Eigen::MatrixBase} < {\tt Derived} > \& {\tt A})$ std::vector< size_t > n2multiidx (size_t n, const std::vector< size_t > &dims) size_t multiidx2n (const std::vector< size_t > &midx, const std::vector< size_t > &dims) types::ket mket (const std::vector< size t > &mask) types::ket mket (const std::vector< size t > &mask, const std::vector< size t > &dims) types::ket mket (const std::vector< size t > &mask, size t d) std::vector< size t > invperm (const std::vector< size t > &perm) std::vector< size_t > compperm (const std::vector< size_t > &perm, const std::vector< size_t > &sigma) • template<typename T > void disp (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout) template<typename T > void displn (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout) • template<typename T > void disp (const T *x, const size_t n, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout) • template<typename T > void displn (const T *x, const size_t n, const std::string &separator, const std::string &start="[", const std-::string &end="]", std::ostream &os=std::cout) • template<typename Derived > void disp (const Eigen::MatrixBase < Derived > &A, double chop=ct::chop, std::ostream &os=std::cout) template<typename Derived > void displn (const Eigen::MatrixBase< Derived > &A, double chop=ct::chop, std::ostream &os=std::cout) • void disp (const types::cplx c, double chop=ct::chop, std::ostream &os=std::cout) • void displn (const types::cplx c, double chop=ct::chop, std::ostream &os=std::cout) template<typename Derived > void save (const Eigen::MatrixBase< Derived > &A, const std::string &fname) • template<typename Derived > types::DynMat< typename Derived::Scalar > load (const std::string &fname) template<typename Derived > Derived loadMATLABmatrix (const std::string &mat_file, const std::string &var_name) • template<> types::dmat loadMATLABmatrix (const std::string &mat file, const std::string &var name) template<> types::cmat loadMATLABmatrix (const std::string &mat_file, const std::string &var_name) • template<typename Derived > void saveMATLABmatrix (const Eigen::MatrixBase< Derived > &A, const std::string &mat_file, const std-::string &var_name, const std::string &mode)

template<> void saveMATLABmatrix (const Eigen::MatrixBase< typename types::dmat > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)
 template<>

void saveMATLABmatrix (const Eigen::MatrixBase< typename types::cmat > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)
 template<typename Derived >

Derived rand (size_t rows, size_t cols, double a=0, double b=1)

- template<>
 types::dmat rand (size_t rows, size_t cols, double a, double b)
- template<>
 types::cmat rand (size t rows, size t cols, double a, double b)
- double rand (double a=0, double b=1)
- int randint (int a, int b)
- template<typename Derived >
 Derived randn (size_t rows, size_t cols, double mean=0, double sigma=1)
- template<>
 types::dmat randn (size_t rows, size_t cols, double mean, double sigma)
- template<>
 types::cmat randn (size_t rows, size_t cols, double mean, double sigma)
- double randn (double mean=0, double sigma=1)
- types::cmat randU (size_t D)
- types::cmat randV (size_t Din, size_t Dout)
- std::vector< types::cmat > randkraus (size_t n, size_t D)
- types::cmat randH (size_t D)
- types::ket randket (size_t D)
- types::cmat randrho (size_t D)
- std::vector< size_t > randperm (size_t n)

Variables

- RandomDevices & rdevs = RandomDevices::getInstance()
- const Gates & gt = Gates::getInstance()
- const States & st = States::getInstance()

5.1.1 Function Documentation

5.1.1.1 template<typename Derived > types::cmat qpp::absm (const Eigen::MatrixBase< Derived > & A)

5.1.1.2 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::adjoint (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.3 template<typename Derived1 , typename Derived2 > types::DynMat<typename Derived1::Scalar> qpp::anticomm (const Eigen::MatrixBase< Derived1 > & A, const Eigen::MatrixBase< Derived2 > & B)

Here is the call graph for this function:

5.1.1.4 template<typename Derived > types::cmat qpp::channel (const Eigen::MatrixBase< Derived > & rho, const std::vector< types::cmat > & Ks)

5.1.1.5 template<typename Derived > types::cmat qpp::channel (const Eigen::MatrixBase< Derived > & rho, const std::vector< types::cmat > & Ks, const std::vector< size_t > & subsys, const std::vector< size_t > & dims)

Here is the call graph for this function:

5.1.1.6 types::cmat qpp::choi (const std::vector< types::cmat > & Ks)

5.1.1.7 std::vector<types::cmat> qpp::choi2kraus (const types::cmat & A)

Here is the call graph for this function:

5.1.1.8 template<typename Derived1 , typename Derived2 > types::DynMat<typename Derived1::Scalar> qpp::comm (const Eigen::MatrixBase< Derived1 > & A, const Eigen::MatrixBase< Derived2 > & B)

5.1.1.9 std::vector<size_t> qpp::compperm (const std::vector< size_t> & perm, const std::vector< size_t> & sigma)

Here is the call graph for this function:

5.1.1.10 template < typename Derived > types::DynMat < typename Derived::Scalar > qpp::conjugate (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.11 template < typename Derived > types::cmat qpp::cosm (const Eigen::MatrixBase < Derived > & A)

5.1.1.12 template < typename OutputScalar , typename Derived > types::DynMat < OutputScalar > qpp::cwise (const Eigen::MatrixBase < Derived > & A, OutputScalar(*)(const typename Derived::Scalar &) f)

Here is the call graph for this function:

5.1.1.13 template < typename Derived > Derived::Scalar qpp::det (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

- 5.1.1.14 template<typename T > void qpp::disp (const T & x, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)
- 5.1.1.15 template < typename T > void qpp::disp (const T * x, const size_t n, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)
- 5.1.1.16 template<typename Derived > void qpp::disp (const Eigen::MatrixBase< Derived > & A, double chop = ct::chop, std::ostream & os = std::cout)
- 5.1.1.17 void qpp::disp (const types::cplx c, double chop = ct : :chop, std::ostream & os = std: :cout)

5.1.1.18 template<typename T > void qpp::displn (const T & x, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)

Here is the call graph for this function:

5.1.1.19 template < typename T > void qpp::displn (const T * x, const size_t n, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)

Here is the call graph for this function:

5.1.1.20 template<typename Derived > void qpp::displn (const Eigen::MatrixBase< Derived > & A, double chop = ct::chop, std::ostream & os = std::cout)

5.1.1.21 void qpp::displn (const types::cplx c, double chop = ct : :chop, std::ostream & os = std::cout)

Here is the call graph for this function:

5.1.1.22 template < typename Derived > double qpp::entanglement (const Eigen::MatrixBase < Derived > & A, const std::vector < size_t > & dims)

5.1.1.23 template < typename Derived > types::cmat qpp::evals (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.24 template < typename Derived > types::cmat qpp::evects (const Eigen::MatrixBase < Derived > & A)

5.1.1.25 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::expandout (const Eigen::MatrixBase< Derived > & A, size_t pos, const std::vector< size_t > & dims)

Here is the call graph for this function:

5.1.1.26 template<typename Derived > types::cmat qpp::expm (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.27 template<typename Derived > types::cmat qpp::funm (const Eigen::MatrixBase< Derived > & A, types::cplx(*)(const types::cplx &) f)

Parameters

Α	input matrix
f	function pointer

Returns

types::cmat

5.1.1.28 template<typename Derived1 , typename Derived2 > types::DynMat<typename Derived1::Scalar> qpp::gate (const Eigen::MatrixBase< Derived1 > & state, const Eigen::MatrixBase< Derived2 > & A, const std::vector< size_t > & subsys, const std::vector< size_t > & dims)

5.1.1.29 template < typename Derived > double qpp::gconcurrence (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.30 template < typename Derived > types::DynMat < typename Derived::Scalar > qpp::grams (const std::vector < types::DynMat < typename Derived::Scalar > > & Vs)

5.1.1.31 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::grams (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.32 template < typename Derived > types::dmat qpp::hevals (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

 $5.1.1.33 \quad template < typename \ Derived > types::cmat \ qpp::hevects \ (\ const \ Eigen::Matrix Base < Derived > \& \ \textit{A} \)$

5.1.1.34 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::inverse (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.35 std::vector<size_t> qpp::invperm (const std::vector< size_t> & perm)

Here is the call graph for this function:

5.1.1.36 template<typename Derived1 , typename Derived2 > types::DynMat<typename Derived1::Scalar> qpp::kron (const Eigen::MatrixBase< Derived1 > & A, const Eigen::MatrixBase< Derived2 > & B)

5.1.1.37 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::kronlist (const std::vector< types::DynMat< typename Derived::Scalar > > & As)

Here is the call graph for this function:

5.1.1.38 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::kronpow (const Eigen::MatrixBase< Derived > & A, size_t n)

- $5.1.1.39 \quad template < typename \ Derived > types:: DynMat < typename \ Derived:: Scalar > qpp:: load (\ const \ std:: string \ \& \ \textit{fname}$)
- 5.1.1.40 template < typename Derived > Derived qpp::loadMATLABmatrix (const std::string & mat_file, const std::string & var name)
- 5.1.1.41 template<> types::dmat qpp::loadMATLABmatrix (const std::string & mat_file, const std::string & var_name)
- 5.1.1.42 template <> types::cmat qpp::loadMATLABmatrix (const std::string & mat_file, const std::string & var_name)

5.1.1.43 template<typename Derived > Derived::Scalar qpp::logdet (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.44 template<typename Derived > types::cmat qpp::logm (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.45 types::ket qpp::mket (const std::vector < size_t > & mask)

5.1.1.46 types::ket qpp::mket (const std::vector < size_t > & mask, const std::vector < size_t > & dims)

Here is the call graph for this function:

5.1.1.47 types::ket qpp::mket (const std::vector < size_t > & mask, size_t d)

Here is the call graph for this function:

5.1.1.48 size_t qpp::multiidx2n (const std::vector < size_t > & midx, const std::vector < size_t > & dims)

5.1.1.49 std::vector<size_t> qpp::n2multiidx (size_t n, const std::vector< size_t > & dims)

Here is the call graph for this function:

5.1.1.50 template<typename Derived > double qpp::norm (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.51 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::powm (const Eigen::MatrixBase< Derived > & A, size_t n)

5.1.1.52 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::prj (const Eigen::MatrixBase< Derived > & V)

5.1.1.53 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::ptrace (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & subsys, const std::vector< size_t > & dims)

5.1.1.54 template < typename Derived > types::DynMat < typename Derived::Scalar > qpp::ptrace1 (const Eigen::MatrixBase < Derived > & A, const std::vector < size_t > & dims)

Here is the call graph for this function:

5.1.1.55 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::ptrace2 (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & dims)

5.1.1.56 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::ptranspose (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & subsys, const std::vector< size_t > & dims)

5.1.1.57 template<typename Derived > double qpp::qmutualinfo (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & subsys, const std::vector< size_t > & dims)

- 5.1.1.58 template < typename Derived > Derived qpp::rand (size_t rows, size_t cols, double a = 0, double b = 1)
- 5.1.1.59 template <> types::dmat qpp::rand (size_t rows, size_t cols, double a, double b)
- 5.1.1.60 template <> types::cmat qpp::rand (size_t rows, size_t cols, double a, double b)

5.1.1.61 double qpp::rand (double a = 0, double b = 1)

Here is the call graph for this function:

5.1.1.62 types::cmat qpp::randH (size_t D)

Here is the call graph for this function:

5.1.1.63 int qpp::randint (int a, int b)

5.1.1.64 types::ket qpp::randket (size_t D)

Here is the call graph for this function:

5.1.1.65 std::vector<types::cmat> qpp::randkraus (size_t n, size_t D)

Here is the call graph for this function:

- 5.1.1.66 template < typename Derived > Derived qpp::randn (size_t rows, size_t cols, double mean = 0, double sigma = 1)
- 5.1.1.67 template <> types::dmat qpp::randn (size_t rows, size_t cols, double mean, double sigma)

Here is the call graph for this function:

5.1.1.68 template<> types::cmat qpp::randn (size_t rows, size_t cols, double mean, double sigma)

5.1.1.69 double qpp::randn (double mean = 0, double sigma = 1)

Here is the call graph for this function:

5.1.1.70 std::vector<size_t> qpp::randperm (size_t n)

Here is the call graph for this function:

5.1.1.71 types::cmat qpp::randrho (size_t D)

Here is the call graph for this function:

5.1.1.72 types::cmat qpp::randU (size_t D)

5.1.1.73 types::cmat qpp::randV (size_t Din, size_t Dout)

Here is the call graph for this function:

 $\textbf{5.1.1.74} \quad \textbf{template} < \textbf{typename Derived} > \textbf{double qpp::renyi (const double } \textbf{alpha, const Eigen::MatrixBase} < \textbf{Derived} > \textbf{\& A)}$

Here is the call graph for this function:

 $5.1.1.75 \quad template < type name \ Derived > double \ qpp::renyi_inf \ (\ const \ Eigen::MatrixBase < Derived > \& \ A \)$

5.1.1.76 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::reshape (const Eigen::MatrixBase< Derived > & A, size_t rows, size_t cols)

Here is the call graph for this function:

5.1.1.77 template<typename Derived > void qpp::save (const Eigen::MatrixBase< Derived > & A, const std::string & fname)

Here is the call graph for this function:

- 5.1.1.78 template<typename Derived > void qpp::saveMATLABmatrix (const Eigen::MatrixBase< Derived > & A, const std::string & mat_file, const std::string & mode)
- 5.1.1.79 template<> void qpp::saveMATLABmatrix (const Eigen::MatrixBase< typename types::dmat > & A, const std::string & mat_file, const std::string & var_name, const std::string & mode)

5.1.1.80 template<> void qpp::saveMATLABmatrix (const Eigen::MatrixBase< typename types::cmat > & A, const std::string & mat_file, const std::string & var_name, const std::string & mode)

Here is the call graph for this function:

5.1.1.81 template<typename Derived > types::cmat qpp::schmidtcoeff (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & dims)

5.1.1.82 template < typename Derived > types::cmat qpp::schmidtprob (const Eigen::MatrixBase < Derived > & A, const std::vector < size_t > & dims)

Here is the call graph for this function:

5.1.1.83 template < typename Derived > types::cmat qpp::schmidtU (const Eigen::MatrixBase < Derived > & A, const std::vector < size_t > & dims)

5.1.1.84 template < typename Derived > types::cmat qpp::schmidtV (const Eigen::MatrixBase < Derived > & A, const std::vector < size_t > & dims)

Here is the call graph for this function:

5.1.1.85 template < typename Derived > double qpp::shannon (const Eigen::MatrixBase < Derived > & A)

5.1.1.86 template<typename Derived > types::cmat qpp::sinm (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.87 template<typename Derived > types::cmat qpp::spectralpowm (const Eigen::MatrixBase< Derived > & A, const types::cplx z)

Here is the call graph for this function:

5.1.1.88 template < typename Derived > types::cmat qpp::sqrtm (const Eigen::MatrixBase < Derived > & A)

5.1.1.89 template < typename Derived > Derived::Scalar qpp::sum (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.90 types::cmat qpp::super (const std::vector< types::cmat > & Ks)

5.1.1.91 template < typename Derived > types::DynMat < typename Derived::Scalar > qpp::syspermute (const Eigen::MatrixBase < Derived > & A, const std::vector < size_t > & perm, const std::vector < size_t > & dims)

Here is the call graph for this function:

5.1.1.92 template < typename Derived > Derived::Scalar qpp::trace (const Eigen::MatrixBase < Derived > & A)

5.1.1.93 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::transpose (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.94 template < typename Derived > double qpp::tsallis (const double alpha, const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

- 5.1.2 Variable Documentation
- 5.1.2.1 const Gates& qpp::gt = Gates::getInstance()
- 5.1.2.2 RandomDevices& qpp::rdevs = RandomDevices::getInstance()
- 5.1.2.3 const States& qpp::st = States::getInstance()

5.2 qpp::ct Namespace Reference

Functions

std::complex< double > omega (size_t D)

Variables

• const double chop = 1e-10

```
 const double eps = 1e-12

    • const size_t maxn = 64
    const std::complex < double > ii = { 0, 1 }

    const double pi = 3.141592653589793238462643383279502884

    const double ee = 2.718281828459045235360287471352662497

       Function Documentation
5.2.1.1 std::complex < double > qpp::ct::omega ( size_t D )
5.2.2 Variable Documentation
5.2.2.1 const double qpp::ct::chop = 1e-10
5.2.2.2 const double qpp::ct::ee = 2.718281828459045235360287471352662497
5.2.2.3 const double qpp::ct::eps = 1e-12
5.2.2.4 const std::complex < double > qpp::ct::ii = { 0, 1 }
5.2.2.5 const size_t qpp::ct::maxn = 64
```

5.3 gpp::internal Namespace Reference

5.2.2.6 const double qpp::ct::pi = 3.141592653589793238462643383279502884

Functions

```
    void _n2multiidx (size_t n, size_t numdims, const size_t *dims, size_t *result)

• size t multiidx2n (const size t *midx, size t numdims, const size t *dims)

    template<typename Derived >

 bool <u>_check_square_mat</u> (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
 bool <u>_check_vector</u> (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  bool check row vector (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

 bool <u>_check_col_vector</u> (const Eigen::MatrixBase< Derived > &A)
template<typename T >
 bool <u>_check_nonzero_size</u> (const T &x)

    bool <u>_check_dims</u> (const std::vector< size_t > &dims)

    template<typename Derived >

 bool <u>check_dims_match_mat</u> (const std::vector< size_t > &dims, const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  bool _check_dims_match_cvect (const std::vector< size_t > &dims, const Eigen::MatrixBase< Derived >

    template<typename Derived >

  bool _check_dims_match_rvect (const std::vector< size_t > &dims, const Eigen::MatrixBase< Derived >

    bool <u>_check_eq_dims</u> (const std::vector< size_t > &dims, size_t dim)

    bool check subsys match dims (const std::vector < size t > &subsys, const std::vector < size t > &dims)
```

bool check perm (const std::vector < size t > &perm)

5.3.1 Function Documentation

- 5.3.1.1 template < typename Derived > bool qpp::internal::_check_col_vector (const Eigen::MatrixBase < Derived > & A)
- 5.3.1.2 bool qpp::internal::_check_dims (const std::vector < size_t > & dims)
- 5.3.1.3 template<typename Derived > bool qpp::internal::_check_dims_match_cvect (const std::vector< size_t > & dims, const Eigen::MatrixBase< Derived > & V)
- 5.3.1.4 template<typename Derived > bool qpp::internal::_check_dims_match_mat (const std::vector< size_t > & dims, const Eigen::MatrixBase< Derived > & A)
- 5.3.1.5 template<typename Derived > bool qpp::internal::_check_dims_match_rvect (const std::vector< size_t > & dims, const Eigen::MatrixBase< Derived > & V)
- 5.3.1.6 bool qpp::internal::_check_eq_dims (const std::vector < size_t > & dims, size_t dim)
- 5.3.1.7 template<typename T > bool qpp::internal::_check_nonzero_size (const T & x)
- 5.3.1.8 bool qpp::internal::_check_perm (const std::vector< size_t > & perm)
- 5.3.1.9 template < typename Derived > bool qpp::internal::_check_row_vector (const Eigen::MatrixBase < Derived > & A)
- 5.3.1.10 template < typename Derived > bool qpp::internal::_check_square_mat (const Eigen::MatrixBase < Derived > & A)
- 5.3.1.11 bool qpp::internal::_check_subsys_match_dims (const std::vector< size_t > & subsys, const std::vector< size_t > & dims)
- 5.3.1.12 template < typename Derived > bool qpp::internal::_check_vector (const Eigen::MatrixBase < Derived > & A)
- 5.3.1.13 size_t qpp::internal::_multiidx2n (const size_t * midx, size_t numdims, const size_t * dims)
- 5.3.1.14 void qpp::internal::_n2multiidx (size_t n, size_t numdims, const size_t * dims, size_t * result)

5.4 qpp::types Namespace Reference

Typedefs

- typedef std::complex < double > cplx
- · typedef Eigen::MatrixXcd cmat
- · typedef Eigen::MatrixXd dmat
- typedef Eigen::Matrix < cplx, Eigen::Dynamic, 1 > ket
- typedef Eigen::Matrix < cplx,
 1, Eigen::Dynamic > bra
- template<typename Scalar >
 using DynMat = Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic >

5.4.1 Typedef Documentation

- 5.4.1.1 typedef Eigen::Matrix<cplx, 1, Eigen::Dynamic> qpp::types::bra
- 5.4.1.2 typedef Eigen::MatrixXcd qpp::types::cmat

- 5.4.1.3 typedef std::complex<double> qpp::types::cplx
- 5.4.1.4 typedef Eigen::MatrixXd qpp::types::dmat
- 5.4.1.5 template<typename Scalar > using qpp::types::DynMat = typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>
- $5.4.1.6 \quad typedef \ Eigen:: Matrix < \textbf{cplx}, \ Eigen:: Dynamic, 1 > \textbf{qpp}:: types:: ket$

Names	pace	Docu	ment	tation

Chapter 6

Class Documentation

6.1 qpp::DiscreteDistribution Class Reference

```
#include <stat.h>
```

Public Member Functions

- template<typename InputIterator > DiscreteDistribution (InputIterator first, InputIterator last)
- DiscreteDistribution (std::initializer_list< double > weights)
- Discrete Distribution (std::vector< double > weights)
- size_t sample ()
- std::vector< double > probabilities ()

Protected Attributes

```
std::discrete_distributionsize_t > _d
```

6.1.1 Constructor & Destructor Documentation

- 6.1.1.1 template<typename InputIterator > qpp::DiscreteDistribution::DiscreteDistribution (InputIterator first, InputIterator last) [inline]
- **6.1.1.2** qpp::DiscreteDistribution::DiscreteDistribution (std::initializer_list < double > weights) [inline]
- 6.1.1.3 qpp::DiscreteDistribution::DiscreteDistribution (std::vector< double > weights) [inline]

6.1.2 Member Function Documentation

6.1.2.1 std::vector<double> qpp::DiscreteDistribution::probabilities () [inline]

54 Class Documentation

6.1.2.2 size_t qpp::DiscreteDistribution::sample() [inline]

Here is the call graph for this function:

6.1.3 Member Data Documentation

6.1.3.1 std::discrete_distribution<**size_t**> **qpp::DiscreteDistribution::_d** [protected]

The documentation for this class was generated from the following file:

· include/classes/stat.h

6.2 qpp::DiscreteDistributionAbsSquare Class Reference

#include <stat.h>

Public Member Functions

- template<typename InputIterator >
 DiscreteDistributionAbsSquare (InputIterator first, InputIterator last)
- DiscreteDistributionAbsSquare (std::initializer_list< types::cplx > amplitudes)
- DiscreteDistributionAbsSquare (std::vector< types::cplx > amplitudes)
- DiscreteDistributionAbsSquare (const types::cmat &V)
- size_t sample ()
- std::vector< double > probabilities ()

Protected Member Functions

template<typename InputIterator >
 std::vector< double > cplx2weights (InputIterator first, InputIterator last)

Protected Attributes

std::discrete_distribution < size_t > _d

6.2.1 Constructor & Destructor Documentation

6.2.1.1 template<typename InputIterator > qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare (InputIterator *first*, InputIterator *last*) [inline]

Here is the call graph for this function:

6.2.1.2 qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare(std::initializer_list< types::cplx > amplitudes) [inline]

Here is the call graph for this function:

 $\textbf{6.2.1.3} \quad \textbf{qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare (\ \textbf{std::vector} < \textbf{types::cplx} > \textbf{amplitudes} \ \textbf{)} \\ \text{[inline]}$

56 Class Documentation

6.2.1.4 qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare (const types::cmat & V) [inline]

Here is the call graph for this function:

6.2.2 Member Function Documentation

- 6.2.2.1 template<typename InputIterator > std::vector<double> qpp::DiscreteDistributionAbsSquare::cplx2weights (InputIterator first, InputIterator last) [inline], [protected]
- $\textbf{6.2.2.2} \quad \textbf{std::vector} < \textbf{double} > \textbf{qpp::DiscreteDistributionAbsSquare::probabilities ()} \quad [\texttt{inline}]$
- $\textbf{6.2.2.3} \quad \textbf{size_t qpp::DiscreteDistributionAbsSquare::sample ()} \quad \texttt{[inline]}$

Here is the call graph for this function:

6.2.3 Member Data Documentation

6.2.3.1 std::discrete_distribution<size_t> qpp::DiscreteDistributionAbsSquare::_d [protected]

The documentation for this class was generated from the following file:

• include/classes/stat.h

6.3 qpp::Exception Class Reference

#include <exception.h>

Inheritance diagram for qpp::Exception:

Collaboration diagram for qpp::Exception:

Public Types

enum Type {

Type::UNKNOWN_EXCEPTION = 1, Type::ZERO_SIZE, Type::MATRIX_NOT_SQUARE, Type::MATRIX_NOT_CVECTOR,

Type::MATRIX_NOT_RVECTOR, Type::MATRIX_NOT_VECTOR, Type::MATRIX_NOT_SQUARE_OR_CV-ECTOR, Type::MATRIX_NOT_SQUARE_OR_RVECTOR,

Type::MATRIX_NOT_SQUARE_OR_VECTOR, Type::DIMS_INVALID, Type::DIMS_NOT_EQUAL, Type::DIMS_MISMATCH_MATRIX,

Type::DIMS_MISMATCH_CVECTOR, Type::DIMS_MISMATCH_RVECTOR, Type::DIMS_MISMATCH_VECTOR, Type::SUBSYS_MISMATCH_DIMS,

Type::PERM_INVALID, Type::NOT_QUBIT_GATE, Type::NOT_QUBIT_SUBSYS, Type::NOT_BIPARTITE, Type::OUT_OF_RANGE, Type::UNDEFINED_TYPE, Type::TYPE_MISMATCH, Type::CUSTOM_EXCEPTION }

Public Member Functions

- Exception (const std::string &where, const Type &type)
- Exception (const std::string &where, const std::string &custom)
- virtual const char * what () const noexceptoverride
- virtual ∼Exception () noexcept

58 Class Documentation

Private Member Functions

• std::string _construct_exception_msg ()

Private Attributes

```
• std::string _where
```

- std::string _msg
- Type _type
- std::string <u>_custom</u>

6.3.1 Member Enumeration Documentation

```
6.3.1.1 enum qpp::Exception::Type [strong]
```

Enumerator

UNKNOWN_EXCEPTION

ZERO_SIZE

MATRIX_NOT_SQUARE

MATRIX_NOT_CVECTOR

MATRIX_NOT_RVECTOR

MATRIX_NOT_VECTOR

MATRIX_NOT_SQUARE_OR_CVECTOR

MATRIX_NOT_SQUARE_OR_RVECTOR

MATRIX_NOT_SQUARE_OR_VECTOR

DIMS_INVALID

DIMS_NOT_EQUAL

DIMS_MISMATCH_MATRIX

DIMS_MISMATCH_CVECTOR

DIMS_MISMATCH_RVECTOR

DIMS_MISMATCH_VECTOR

SUBSYS_MISMATCH_DIMS

PERM_INVALID

NOT_QUBIT_GATE

NOT_QUBIT_SUBSYS

NOT_BIPARTITE

OUT_OF_RANGE

UNDEFINED_TYPE

TYPE_MISMATCH

CUSTOM_EXCEPTION

6.3.2 Constructor & Destructor Documentation

6.3.2.1 qpp::Exception::Exception (const std::string & where, const Type & type) [inline]

Here is the call graph for this function:

6.3.2.2 qpp::Exception::Exception (const std::string & where, const std::string & custom) [inline]

Here is the call graph for this function:

- **6.3.2.3 virtual qpp::Exception::**~Exception() [inline], [virtual], [noexcept]
- 6.3.3 Member Function Documentation
- **6.3.3.1 std::string qpp::Exception::_construct_exception_msg()** [inline], [private]
- 6.3.3.2 virtual const char* qpp::Exception::what() const [inline], [override], [virtual], [noexcept]
- 6.3.4 Member Data Documentation
- **6.3.4.1 std::string qpp::Exception::_custom** [private]
- **6.3.4.2 std::string qpp::Exception::_msg** [private]
- **6.3.4.3 Type qpp::Exception::_type** [private]
- **6.3.4.4 std::string qpp::Exception::_where** [private]

The documentation for this class was generated from the following file:

• include/classes/exception.h

60 Class Documentation

6.4 qpp::Gates Class Reference

```
#include <gates.h>
```

Public Member Functions

- Gates (const Gates &)=delete
- Gates & operator= (const Gates &)=delete
- virtual ∼Gates ()=default
- types::cmat Rtheta (double theta) const
- types::cmat Id (size_t D) const
- types::cmat Zd (size_t D) const
- types::cmat Fd (size_t D) const
- types::cmat Xd (size_t D) const
- types::cmat CTRL (const types::cmat &A, const std::vector< size_t > &ctrl, const std::vector< size_t > &subsys, size_t n, size_t d=2) const

Static Public Member Functions

• static const Gates & getInstance ()

Public Attributes

- types::cmat ld2
- types::cmat H
- types::cmat X
- types::cmat Y
- types::cmat Z
- types::cmat Stypes::cmat T
- types::cmat CNOTab
- types::cmat CZ
- types::cmat CNOTba
- · types::cmat SWAP
- types::cmat TOF
- types::cmat FRED

Private Member Functions

• Gates ()

6.4.1 Constructor & Destructor Documentation

```
6.4.1.1 qpp::Gates::Gates( ) [inline],[private]
6.4.1.2 qpp::Gates::Gates( const Gates & ) [delete]
6.4.1.3 virtual qpp::Gates::~Gates( ) [virtual],[default]
```

6.4.2 Member Function Documentation

6.4.2.1 types::cmat qpp::Gates::CTRL (const types::cmat & A, const std::vector < size_t > & ctrl, const std::vector < size_t > & subsys, size_t n, size_t d = 2) const [inline]

Here is the call graph for this function:

6.4.2.2 types::cmat qpp::Gates::Fd (size_t D) const [inline]

Here is the call graph for this function:

- 6.4.2.3 static const Gates& qpp::Gates::getInstance() [inline], [static]
- 6.4.2.4 types::cmat qpp::Gates::ld (size_t D) const [inline]
- 6.4.2.5 Gates& qpp::Gates::operator=(const Gates &) [delete]
- 6.4.2.6 types::cmat qpp::Gates::Rtheta (double theta) const [inline]

62 Class Documentation

6.4.2.7 types::cmat qpp::Gates::Xd(size_t D)const [inline]

Here is the call graph for this function:

6.4.2.8 types::cmat qpp::Gates::Zd(size_t D)const [inline]

Here is the call graph for this function:

- 6.4.3 Member Data Documentation
- 6.4.3.1 types::cmat qpp::Gates::CNOTab
- 6.4.3.2 types::cmat qpp::Gates::CNOTba
- 6.4.3.3 types::cmat qpp::Gates::CZ
- 6.4.3.4 types::cmat qpp::Gates::FRED
- 6.4.3.5 types::cmat qpp::Gates::H
- 6.4.3.6 types::cmat qpp::Gates::ld2
- 6.4.3.7 types::cmat qpp::Gates::S
- 6.4.3.8 types::cmat qpp::Gates::SWAP
- 6.4.3.9 types::cmat qpp::Gates::T
- 6.4.3.10 types::cmat qpp::Gates::TOF
- 6.4.3.11 types::cmat qpp::Gates::X

6.4.3.12 types::cmat qpp::Gates::Y

6.4.3.13 types::cmat qpp::Gates::Z

The documentation for this class was generated from the following file:

• include/classes/gates.h

6.5 qpp::NormalDistribution Class Reference

```
#include <stat.h>
```

Public Member Functions

- NormalDistribution (double mean=0, double sigma=1)
- double sample ()

Protected Attributes

· std::normal_distribution_d

6.5.1 Constructor & Destructor Documentation

6.5.1.1 qpp::NormalDistribution::NormalDistribution (double mean = 0, double sigma = 1) [inline]

6.5.2 Member Function Documentation

6.5.2.1 double qpp::NormalDistribution::sample() [inline]

Here is the call graph for this function:

6.5.3 Member Data Documentation

6.5.3.1 std::normal_distribution qpp::NormalDistribution::_d [protected]

The documentation for this class was generated from the following file:

• include/classes/stat.h

64 Class Documentation

6.6 qpp::Qudit Class Reference

```
#include <qudit.h>
```

Public Member Functions

- Qudit (const types::cmat &rho=States::getInstance().pz0)
- size_t measure (const types::cmat &U, bool destructive=false)
- size_t measure (bool destructive=false)
- types::cmat getRho () const
- size_t getD () const
- virtual \sim Qudit ()=default

Private Attributes

- · types::cmat _rho
- size_t _D

6.6.1 Constructor & Destructor Documentation

6.6.1.1 qpp::Qudit::Qudit (const types::cmat & rho = States::getInstance () .pz0) [inline]

Here is the call graph for this function:

- 6.6.1.2 virtual qpp::Qudit::~Qudit() [virtual], [default]
- 6.6.2 Member Function Documentation
- 6.6.2.1 size_t qpp::Qudit::getD() const [inline]
- 6.6.2.2 types::cmat qpp::Qudit::getRho()const [inline]

6.6.2.3 size_t qpp::Qudit::measure (const types::cmat & U, bool destructive = false) [inline]

Here is the call graph for this function:

6.6.2.4 size_t qpp::Qudit::measure(bool destructive = false) [inline]

Here is the call graph for this function:

6.6.3 Member Data Documentation

6.6.3.1 size_t qpp::Qudit::_D [private]

6.6.3.2 types::cmat qpp::Qudit::_rho [private]

The documentation for this class was generated from the following file:

• include/classes/qudit.h

66 Class Documentation

6.7 qpp::RandomDevices Class Reference

```
#include <randevs.h>
```

Public Member Functions

- RandomDevices (const RandomDevices &)=delete
- RandomDevices & operator= (const RandomDevices &)=delete
- virtual ∼RandomDevices ()=default

Static Public Member Functions

• static RandomDevices & getInstance ()

Public Attributes

- std::random device rd
- std::mt19937 _rng

Private Member Functions

· RandomDevices ()

6.7.1 Constructor & Destructor Documentation

```
6.7.1.1 qpp::RandomDevices::RandomDevices() [inline], [private]
```

6.7.1.2 qpp::RandomDevices::RandomDevices (const RandomDevices &) [delete]

 $\textbf{6.7.1.3} \quad \textbf{virtual qpp::RandomDevices::} \sim \textbf{RandomDevices()} \quad [\texttt{virtual}], \texttt{[default]}$

6.7.2 Member Function Documentation

6.7.2.1 static RandomDevices& qpp::RandomDevices::getInstance() [inline], [static]

6.7.2.2 RandomDevices& qpp::RandomDevices::operator= (const RandomDevices &) [delete]

6.7.3 Member Data Documentation

6.7.3.1 std::random_device qpp::RandomDevices::_rd

6.7.3.2 std::mt19937 qpp::RandomDevices::_rng

The documentation for this class was generated from the following file:

• include/classes/randevs.h

6.8 qpp::States Class Reference

#include <states.h>

Public Member Functions

- States (const States &)=delete
- States & operator= (const States &)=delete
- virtual ∼States ()=default

Static Public Member Functions

• static const States & getInstance ()

Public Attributes

- types::ket x0
- types::ket x1
- types::ket y0
- types::ket y1
- types::ket z0
- types::ket z1
- types::cmat px0
- types::cmat px1
- types::cmat py0
- types::cmat py1
- types::cmat pz0
- types::cmat pz1
- types::ket b00
- types::ket b01
- types::ket b10
- types::ket b11
- types::cmat pb00
- types::cmat pb01
- types::cmat pb10
- types::cmat pb11types::ket GHZ
- types::ket W
- types::cmat pGHZ
- types::cmat pW

Private Member Functions

• States ()

6.8.1 Constructor & Destructor Documentation

```
6.8.1.1 qpp::States::States( ) [inline],[private]
```

- **6.8.1.2** qpp::States::States (const States &) [delete]
- **6.8.1.3 virtual qpp::States::**~States() [virtual], [default]
- 6.8.2 Member Function Documentation
- **6.8.2.1** static const States& qpp::States::getInstance() [inline], [static]

68 Class Documentation

6.8.2.2	States & qpp::States::operator=(const States &) $[\mathtt{delete}]$
6.8.3	Member Data Documentation
6.8.3.1	types::ket qpp::States::b00
6.8.3.2	types::ket qpp::States::b01
6.8.3.3	types::ket qpp::States::b10
6.8.3.4	types::ket qpp::States::b11
6.8.3.5	types::ket qpp::States::GHZ
6.8.3.6	types::cmat qpp::States::pb00
6.8.3.7	types::cmat qpp::States::pb01
6.8.3.8	types::cmat qpp::States::pb10
6.8.3.9	types::cmat qpp::States::pb11
6.8.3.10	types::cmat qpp::States::pGHZ
6.8.3.11	types::cmat qpp::States::pW
6.8.3.12	types::cmat qpp::States::px0
6.8.3.13	types::cmat qpp::States::px1
6.8.3.14	types::cmat qpp::States::py0
6.8.3.15	types::cmat qpp::States::py1
6.8.3.16	types::cmat qpp::States::pz0
6.8.3.17	types::cmat qpp::States::pz1
6.8.3.18	types::ket qpp::States::W
6.8.3.19	types::ket qpp::States::x0
6.8.3.20	types::ket qpp::States::x1
6.8.3.21	types::ket qpp::States::y0
6.8.3.22	types::ket qpp::States::y1
6.8.3.23	types::ket qpp::States::z0
6.8.3.24	types::ket qpp::States::z1

The documentation for this class was generated from the following file:

• include/classes/states.h

6.9 qpp::Timer Class Reference

```
#include <timer.h>
```

Public Member Functions

- Timer ()
- void tic ()
- void toc ()
- double seconds () const
- virtual ∼Timer ()=default

Protected Attributes

- std::chrono::high_resolution_clock::time_point _start
- std::chrono::high resolution clock::time point end

Friends

• std::ostream & operator<< (std::ostream &os, const Timer &rhs)

6.9.1 Constructor & Destructor Documentation

```
6.9.1.1 qpp::Timer::Timer( ) [inline]
6.9.1.2 virtual qpp::Timer::~Timer( ) [virtual], [default]
```

6.9.2 Member Function Documentation

```
6.9.2.1 double qpp::Timer::seconds( )const [inline]
```

```
6.9.2.2 void qpp::Timer::tic( ) [inline]
```

6.9.2.3 void qpp::Timer::toc() [inline]

6.9.3 Friends And Related Function Documentation

```
6.9.3.1 std::ostream& operator<< ( std::ostream & os, const Timer & rhs ) [friend]
```

6.9.4 Member Data Documentation

```
6.9.4.1 std::chrono::high_resolution_clock::time_point qpp::Timer::_end [protected]
```

```
6.9.4.2 std::chrono::high_resolution_clock::time_point qpp::Timer::_start [protected]
```

The documentation for this class was generated from the following file:

• include/classes/timer.h

6.10 qpp::UniformRealDistribution Class Reference

```
#include <stat.h>
```

70 Class Documentation

Public Member Functions

- UniformRealDistribution (double a=0, double b=1)
- double sample ()

Protected Attributes

• std::uniform_real_distribution_d

6.10.1 Constructor & Destructor Documentation

6.10.1.1 qpp::UniformRealDistribution::UniformRealDistribution (double a = 0, double b = 1) [inline]

6.10.2 Member Function Documentation

6.10.2.1 double qpp::UniformRealDistribution::sample() [inline]

Here is the call graph for this function:

6.10.3 Member Data Documentation

6.10.3.1 std::uniform_real_distribution qpp::UniformRealDistribution::_d [protected]

The documentation for this class was generated from the following file:

• include/classes/stat.h

Chapter 7

File Documentation

7.1 include/channels.h File Reference

```
#include <cmath>
#include <vector>
#include "constants.h"
#include "functions.h"
#include "internal.h"
#include "types.h"
#include "classes/exception.h"
Include dependency graph for channels.h:
```


This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Functions

- template<typename Derived >
 types::cmat qpp::channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< types::cmat > &Ks)
- types::cmat qpp::super (const std::vector< types::cmat > &Ks)
- types::cmat qpp::choi (const std::vector< types::cmat > &Ks)
- std::vector< types::cmat > qpp::choi2kraus (const types::cmat &A)
- template<typename Derived >
 types::cmat qpp::channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< types::cmat > &Ks,
 const std::vector< size_t > &subsys, const std::vector< size_t > &dims)

7.2 include/classes/exception.h File Reference

```
#include <stdexcept>
#include <string>
Include dependency graph for exception.h:
```


This graph shows which files directly or indirectly include this file:

Classes

· class qpp::Exception

Namespaces

• qpp

7.3 include/classes/gates.h File Reference

```
#include "constants.h"
#include "functions.h"
#include "exception.h"
#include "internal.h"
#include "types.h"
Include dependency graph for gates.h:
```


This graph shows which files directly or indirectly include this file:

Classes

class qpp::Gates

Namespaces

• qpp

7.4 include/classes/qudit.h File Reference

```
#include "exception.h"
#include "functions.h"
#include "internal.h"
#include "types.h"
#include "classes/gates.h"
#include "classes/stat.h"
#include dependency graph for qudit.h:
```


This graph shows which files directly or indirectly include this file:

Classes

class qpp::Qudit

Namespaces

qpp

7.5 include/classes/randevs.h File Reference

#include <cstdlib>
#include <random>
Include dependency graph for randevs.h:

This graph shows which files directly or indirectly include this file:

Classes

• class qpp::RandomDevices

Namespaces

• qpp

7.6 include/classes/stat.h File Reference

```
#include <algorithm>
#include <functional>
#include "exception.h"
#include "internal.h"
#include "randevs.h"
#include "types.h"
```

Include dependency graph for stat.h:

This graph shows which files directly or indirectly include this file:

Classes

- · class qpp::NormalDistribution
- class qpp::UniformRealDistribution
- class qpp::DiscreteDistribution
- class qpp::DiscreteDistributionAbsSquare

Namespaces

• qpp

7.7 include/classes/states.h File Reference

#include <cmath>

```
#include "constants.h"
#include "types.h"
Include dependency graph for states.h:
```


This graph shows which files directly or indirectly include this file:

Classes

• class qpp::States

Namespaces

qpp

7.8 include/classes/timer.h File Reference

#include <chrono>
#include <ostream>

Include dependency graph for timer.h:

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::Timer

Namespaces

• qpp

7.9 include/constants.h File Reference

#include <complex>

Include dependency graph for constants.h:

This graph shows which files directly or indirectly include this file:

Namespaces

- qpp
- qpp::ct

Functions

• std::complex< double > qpp::ct::omega (size_t D)

Variables

- const double qpp::ct::chop = 1e-10
- const double qpp::ct::eps = 1e-12
- const size_t qpp::ct::maxn = 64
- const std::complex< double > qpp::ct::ii = { 0, 1 }
- const double qpp::ct::pi = 3.141592653589793238462643383279502884
- const double qpp::ct::ee = 2.718281828459045235360287471352662497

7.10 include/entanglement.h File Reference

```
#include <Eigen/SVD>
#include "entropies.h"
#include "functions.h"
#include "internal.h"
#include "types.h"
```

Include dependency graph for entanglement.h:

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Functions

- template<typename Derived >
 types::cmat qpp::schmidtcoeff (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)
- template<typename Derived >
 types::cmat qpp::schmidtU (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)

- template<typename Derived >
 types::cmat qpp::schmidtV (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)
- template<typename Derived >
 types::cmat qpp::schmidtprob (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)
- template<typename Derived >
 double qpp::entanglement (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)
- template<typename Derived >
 double qpp::gconcurrence (const Eigen::MatrixBase< Derived > &A)

7.11 include/entropies.h File Reference

```
#include <cmath>
#include "functions.h"
#include "internal.h"
#include "types.h"
#include "classes/exception.h"
#include dependency graph for entropies.h:
```


This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Functions

```
    template<typename Derived >
        double qpp::shannon (const Eigen::MatrixBase< Derived > &A)
```

- template<typename Derived >
 double qpp::renyi (const double alpha, const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 double qpp::renyi_inf (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 double qpp::tsallis (const double alpha, const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 double qpp::qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &subsys,
 const std::vector< size_t > &dims)

7.12 include/functions.h File Reference

```
#include <cmath>
#include <numeric>
#include <vector>
#include "constants.h"
#include "internal.h"
#include "types.h"
#include "classes/exception.h"
Include dependency graph for functions.h:
```


This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Functions

```
    template<typename Derived >
        types::DynMat< typename
        Derived::Scalar > qpp::transpose (const Eigen::MatrixBase< Derived > &A)
```

- template<typename Derived >
 types::DynMat< typename
 Derived::Scalar > qpp::conjugate (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 types::DynMat< typename
 Derived::Scalar > qpp::adjoint (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 types::DynMat< typename
 Derived::Scalar > qpp::inverse (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 Derived::Scalar qpp::trace (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 Derived::Scalar qpp::det (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 Derived::Scalar qpp::logdet (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 Derived::Scalar qpp::sum (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived > double qpp::norm (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 types::cmat qpp::evals (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 types::cmat qpp::evects (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 types::dmat qpp::hevals (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 types::cmat qpp::hevects (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 types::cmat qpp::funm (const Eigen::MatrixBase< Derived > &A, types::cplx(*f)(const types::cplx &))

```
• template<typename Derived >
  types::cmat qpp::sqrtm (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  types::cmat qpp::absm (const Eigen::MatrixBase< Derived > &A)
template<typename Derived >
  types::cmat qpp::expm (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  types::cmat qpp::logm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat qpp::sinm (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  types::cmat qpp::cosm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat qpp::spectralpowm (const Eigen::MatrixBase< Derived > &A, const types::cplx z)
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > qpp::powm (const Eigen::MatrixBase< Derived > &A, size_t n)

    template<typename OutputScalar , typename Derived >

  types::DynMat< OutputScalar > qpp::cwise (const Eigen::MatrixBase< Derived > &A, Output-
  Scalar(*f)(const typename Derived::Scalar &))

    template<typename Derived1 , typename Derived2 >

  types::DynMat< typename
  Derived1::Scalar > qpp::kron (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< De-
  rived2 > &B)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::kronlist (const std::vector< types::DynMat< typename Derived::Scalar >> &As)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::kronpow (const Eigen::MatrixBase< Derived > &A, size_t n)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::reshape (const Eigen::MatrixBase < Derived > &A, size t rows, size t cols)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::syspermute (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t >
  &perm, const std::vector< size_t > &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::ptrace1 (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t >
  &dims)
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > qpp::ptrace2 (const Eigen::MatrixBase< Derived > &A, const std::vector< size t >
  &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::ptrace (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &sub-
  sys, const std::vector< size_t > &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::ptranspose (const Eigen::MatrixBase< Derived > &A, const std::vector< size t >
  &subsys, const std::vector < size t > &dims)

    template<typename Derived1 , typename Derived2 >

  types::DynMat< typename
  Derived1::Scalar > qpp::comm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< De-
  rived2 > &B)
```

```
    template<typename Derived1, typename Derived2 >
        types::DynMat< typename
        Derived1::Scalar > qpp::anticomm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase
    Derived2 > &B)
```

 template<typename Derived > types::DvnMat< typename

Derived::Scalar > qpp::prj (const Eigen::MatrixBase< Derived > &V)

template<typename Derived >

types::DynMat< typename

Derived::Scalar > qpp::expandout (const Eigen::MatrixBase< Derived > &A, size_t pos, const std::vector< size t > &dims)

• template<typename Derived1 , typename Derived2 >

types::DynMat< typename

 $\label{lem:decomp} Derived1::Scalar > \underset{\color{local}{qpp::gate}}{qpp::gate} \ (const \ Eigen::MatrixBase < Derived1 > \&state, \ const \ Eigen::MatrixBase < Derived2 > \&A, \ const \ std::vector < size_t > \&subsys, \ const \ std::vector < size_t > \&dims)$

• template<typename Derived >

types::DynMat< typename

Derived::Scalar > qpp::grams (const std::vector < types::DynMat < typename Derived::Scalar > > &Vs)

• template<typename Derived >

types::DynMat< typename

Derived::Scalar > qpp::grams (const Eigen::MatrixBase < Derived > &A)

- std::vector< size_t > qpp::n2multiidx (size_t n, const std::vector< size_t > &dims)
- size t qpp::multiidx2n (const std::vector< size t > &midx, const std::vector< size t > &dims)
- types::ket qpp::mket (const std::vector< size t > &mask)
- types::ket qpp::mket (const std::vector< size t > &mask, const std::vector< size t > &dims)
- types::ket qpp::mket (const std::vector< size_t > &mask, size_t d)
- std::vector< size_t > qpp::invperm (const std::vector< size_t > &perm)
- std::vector< size_t > qpp::compperm (const std::vector< size_t > &perm, const std::vector< size_t > &sigma)

7.13 include/internal.h File Reference

```
#include <iostream>
#include <utility>
#include <vector>
#include "types.h"
#include "classes/exception.h"
Include dependency graph for internal.h:
```


This graph shows which files directly or indirectly include this file:

Namespaces

- qpp
- qpp::internal

Functions

- void qpp::internal::_n2multiidx (size_t n, size_t numdims, const size_t *dims, size_t *result)
- size_t qpp::internal::_multiidx2n (const size_t *midx, size_t numdims, const size_t *dims)
- template<typename Derived >
 bool qpp::internal::_check_square_mat (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::_check_vector (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::_check_row_vector (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::_check_col_vector (const Eigen::MatrixBase< Derived > &A)
- template < typename T >
 bool qpp::internal:: check nonzero size (const T &x)
- bool qpp::internal::_check_dims (const std::vector< size_t > &dims)
- template<typename Derived >
 bool qpp::internal::_check_dims_match_mat (const std::vector< size_t > &dims, const Eigen::MatrixBase
 Derived > &A)
- template<typename Derived >
 bool qpp::internal::_check_dims_match_cvect (const std::vector< size_t > &dims, const Eigen::MatrixBase
 Derived > &V)
- template<typename Derived >
 bool qpp::internal::_check_dims_match_rvect (const std::vector< size_t > &dims, const Eigen::MatrixBase
 Derived > &V)
- bool qpp::internal::_check_eq_dims (const std::vector< size_t > &dims, size_t dim)
- bool qpp::internal::_check_subsys_match_dims (const std::vector< size_t > &subsys, const std::vector< size_t > &dims)
- bool qpp::internal::_check_perm (const std::vector< size_t > &perm)

7.14 include/io.h File Reference

#include <fstream>

```
#include <iomanip>
#include <iostream>
#include <stdexcept>
#include <vector>
#include "types.h"
#include "classes/exception.h"
Include dependency graph for io.h:
```

include/io.h

fstream iomanip iostream vector classes/exception.h types.h

stdexcept string Eigen/Dense complex

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

template<typename T >
 void qpp::disp (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]",
 std::ostream &os=std::cout)

- template<typename T >
 void qpp::displn (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)
- template<typename T >
 void qpp::disp (const T *x, const size_t n, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)
- template<typename T >
 void qpp::displn (const T *x, const size_t n, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)
- template<typename Derived >
 void qpp::disp (const Eigen::MatrixBase< Derived > &A, double chop=ct::chop, std::ostream &os=std::cout)
- template<typename Derived >
 void qpp::displn (const Eigen::MatrixBase< Derived > &A, double chop=ct::chop, std::ostream &os=std::cout)
- void qpp::disp (const types::cplx c, double chop=ct::chop, std::ostream &os=std::cout)
- void qpp::displn (const types::cplx c, double chop=ct::chop, std::ostream &os=std::cout)
- template<typename Derived >
 void qpp::save (const Eigen::MatrixBase< Derived > &A, const std::string &fname)
- template<typename Derived >
 types::DynMat< typename
 Derived::Scalar > qpp::load (const std::string &fname)

7.15 include/matlab.h File Reference

```
#include <Eigen/Dense>
#include <stdexcept>
#include <string>
#include "internal.h"
#include "types.h"
#include "classes/exception.h"
#include "mat.h"
#include "mex.h"
```

Include dependency graph for matlab.h:

Namespaces

• qpp

Functions

template<typename Derived >
 Derived qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)

template<>
 types::dmat qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)

template<>
types::cmat qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)

- template<typename Derived >
 void qpp::saveMATLABmatrix (const Eigen::MatrixBase< Derived > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)
- template<>
 void qpp::saveMATLABmatrix (const Eigen::MatrixBase< typename types::dmat > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)
- template<>
 void qpp::saveMATLABmatrix (const Eigen::MatrixBase< typename types::cmat > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)

7.16 include/qpp.h File Reference

```
#include "channels.h"
#include "constants.h"
#include "entanglement.h"
#include "entropies.h"
#include "functions.h"
#include "io.h"
#include "random.h"
#include "types.h"
#include "classes/exception.h"
#include "classes/gates.h"
#include "classes/qudit.h"
#include "classes/randevs.h"
#include "classes/stat.h"
#include "classes/states.h"
#include "classes/timer.h"
Include dependency graph for qpp.h:
```


Namespaces

qpp

Variables

- RandomDevices & qpp::rdevs = RandomDevices::getInstance()
- const Gates & qpp::gt = Gates::getInstance()
- const States & qpp::st = States::getInstance()

7.17 include/random.h File Reference

```
#include "constants.h"
#include "types.h"
#include "classes/exception.h"
#include "classes/stat.h"
Include dependency graph for random.h:
```


This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Functions

- template<typename Derived >
 Derived qpp::rand (size_t rows, size_t cols, double a=0, double b=1)
- template<>
 types::dmat qpp::rand (size_t rows, size_t cols, double a, double b)
- template<>
 types::cmat qpp::rand (size_t rows, size_t cols, double a, double b)
- double qpp::rand (double a=0, double b=1)
- int qpp::randint (int a, int b)

- template<typename Derived >
 Derived qpp::randn (size_t rows, size_t cols, double mean=0, double sigma=1)
- template<>
 types::dmat qpp::randn (size_t rows, size_t cols, double mean, double sigma)
- template<>
 types::cmat qpp::randn (size t rows, size t cols, double mean, double sigma)
- double qpp::randn (double mean=0, double sigma=1)
- types::cmat qpp::randU (size_t D)
- types::cmat qpp::randV (size_t Din, size_t Dout)
- std::vector< types::cmat > qpp::randkraus (size_t n, size_t D)
- types::cmat qpp::randH (size t D)
- types::ket qpp::randket (size_t D)
- types::cmat qpp::randrho (size_t D)
- std::vector< size_t > qpp::randperm (size_t n)

7.18 include/types.h File Reference

#include <Eigen/Dense>
#include <complex>

Include dependency graph for types.h:

This graph shows which files directly or indirectly include this file:

Namespaces

- qpp
- qpp::types

Typedefs

- typedef std::complex< double > qpp::types::cplx
- typedef Eigen::MatrixXcd qpp::types::cmat
- typedef Eigen::MatrixXd qpp::types::dmat
- typedef Eigen::Matrix< cplx,
 Eigen::Dynamic, 1 > qpp::types::ket
- typedef Eigen::Matrix< cplx,
- 1, Eigen::Dynamic > qpp::types::bra
- template<typename Scalar >
 using qpp::types::DynMat = Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic >