# Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding



Kanta Ono <sup>5</sup>



Tatsunori Tania

Ryo Igaras

Yuta Suzuki <sup>2</sup>

Naoya Chiba <sup>3</sup>

Kotaro Saito 4,5

oshitaka Ushiku <sup>1</sup>

<sup>1</sup> OMRON SINIC X Corporati

<sup>2</sup> Toyota Motor Corporation

<sup>3</sup> Tohoku University

<sup>4</sup> Randeft Inc.

Osaka Universit

# Transformers are good for molecules

Key is fully-connected self-attention for finite atoms, with relative position representations (scalar  $\phi$  and vector  $\psi$ ) encoding spatial relations between atom pairs.



$$\mathbf{y}_i = \frac{1}{Z_i} \sum_{j=1}^{N} \exp(\mathbf{q}_i^T \mathbf{k}_j / \sqrt{d_K} + \phi_{ij}) (\mathbf{v}_j + \mathbf{\psi}_{ij})$$

(Similar to *Graphormer* by Ying et al., 2021)

But transformers for crystal are very rare.

# Why not use transformers for crystals?

Let finite atoms i in a unit cell attend to infinite atoms j(n) in periodically repeated unit cells n.



$$\mathbf{y}_i = \frac{1}{Z_i} \sum_{j=1}^N \sum_{\mathbf{n} \in \mathbb{Z}^3} \exp(\mathbf{q}_i^T \mathbf{k}_j / \sqrt{d_K} + \phi_{ij(\mathbf{n})}) (\mathbf{v}_j + \mathbf{\psi}_{ij(\mathbf{n})})$$

We call it the *infinitely connected attention*.

### Infinitely connected attention can be

**Interpreted as** *Neural Potential Summation*by introducing **distance decay attention** 

$$\exp(\phi_{ij(n)}) = \exp\left(-\frac{\|\boldsymbol{p}_{j(n)} - \boldsymbol{p}_i\|^2}{2\sigma_i^2}\right)$$

Performed just like standard self-attention

$$y_i = \frac{1}{Z_i} \sum_{j=1}^{N} \exp(\mathbf{q}_i^T \mathbf{k}_j / \sqrt{d_K} + \alpha_{ij}) (\mathbf{v}_j + \boldsymbol{\beta}_{ij})$$
where  $\alpha_{ij} = \log \sum_{n} \exp(\phi_{ij(n)})$ 

$$\boldsymbol{\beta}_{ij} = \sum_{n}^{n} \exp(\phi_{ij(n)} - \alpha_{ij}) \boldsymbol{\psi}_{ij(n)}$$

# Closely follow original Transformer architecture



#### Proposed self-attention layer

Self-attention block

### **Architectural Recipe**

- 1) Relative position repres
- $\phi$  for distance decay attention
- $\psi$  for periodicity-aware modeling
- 2) Normalization-free arch for training stability

#### Results

#### Beats most existing methods!

|           | Materials Project (MEGNET's snapshot) |              |                        |                         |  |  |  |
|-----------|---------------------------------------|--------------|------------------------|-------------------------|--|--|--|
|           | E form<br>eV/atom                     | BG<br>eV     | Bulk mod.<br>log (GPa) | Shear mod.<br>log (Gpa) |  |  |  |
| CGCNN     | 0.031                                 | 0.292        | 0.047                  | 0.077                   |  |  |  |
| SchNet    | 0.033                                 | 0.345        | 0.066                  | 0.099                   |  |  |  |
| MEGNET    | 0.030                                 | 0.307        | 0.060                  | 0.099                   |  |  |  |
| GATGNN    | 0.033                                 | 0.280        | 0.045                  | 0.075                   |  |  |  |
| ALIGNN    | 0.022                                 | 0.218        | 0.051                  | 0.078                   |  |  |  |
| Matformer | 0.021                                 | 0.211        | 0.043                  | 0.073                   |  |  |  |
| PotNet    | 0.0188                                | <u>0.204</u> | <u>0.040</u>           | 0.065                   |  |  |  |
| Ours      | 0.0198                                | 0.201        | 0.0399                 | 0.0692                  |  |  |  |

#### More efficient and light-weight!

|           | Туре        | Time/ep     | Test/mat. | # params | # blk. params |
|-----------|-------------|-------------|-----------|----------|---------------|
| PotNet    | GNN         | 43 s        | 313 ms    | 1.8 M    | 527 K         |
| Matformer | Transformer | 60 s        | 20.4 ms   | 2.9 M    | 544 K         |
| Ours      | Transformer | <b>32</b> s | 6.6 ms    | 853 K    | 206 K         |

| E form<br>eV/atom | E total<br>eV/atom | BG (OPT)<br>eV | BG (MBJ)<br>eV | E hull<br>eV |
|-------------------|--------------------|----------------|----------------|--------------|
| 0.063             | 0.078              | 0.20           | 0.41           | 0.17         |
| 0.045             | 0.047              | 0.19           | 0.43           | 0.14         |
| 0.047             | 0.058              | 0.145          | 0.34           | 0.084        |
| 0.047             | 0.056              | 0.17           | 0.51           | 0.12         |
| 0.0331            | 0.037              | 0.142          | 0.51           | 0.076        |
| 0.0325            | 0.035              | 0.137          | 0.30           | 0.064        |
| 0.0294            | 0.032              | 0.127          | 0.27           | 0.055        |
| 0.0319            | 0.0342             | 0.131          | 0.275          | 0.0482       |

JARVIS-DFT 3D

#### What's more in paper

- Fourier-space attention for long-range interaction
- Importance of  $\psi$  term