Semaine du 4 Novembre - Planche nº 1

Exercice no 1:

(Question de cours): Que savez-vous de la fonction arctan?

Exercice nº 2:

(Fonctions usuelles):

- 1. Rappeler la formule d'addition pour le cosinus.
- 2. Établir que pour tout entier naturel n, on a l'égalité

$$\arccos\left(\frac{1}{n}\right) + \arccos\left(\frac{1}{n+1}\right) = \arccos\left(\frac{1-\sqrt{(n^2-1)n(n+2)}}{n(n+1)}\right)$$

Exercice no 3:

(Nombres complexes): Montrer que

$$z \in \mathbb{U} \setminus \{-1\} \iff \exists x \in \mathbb{R}, z = \frac{1+ix}{1-ix}$$

Semaine du 4 Novembre - Planche nº 2

Exercice no 1:

(Question de cours) : Propriétés de $e^{i\theta}$ et Formules d'Euler (Propriétés 12 et 13 du Chapitre 8).

Exercice $n^o 2$:

(Fonctions usuelles) : Soient a et b deux nombres réels positifs.

- 1. Rappeler la formule de soustraction pour tan.
- 2. Prouver qu'il existe un unique $c \in \mathbb{R}$ tel que $\arctan(a) \arctan(b) = \arctan(c)$ et exprimer c en fonction de a et b.

Exercice no 3:

(Nombres complexes) : Soit $(z_1, z_2) \in \mathbb{C}^2$ tels que $|z_1| = |z_2| = 1$ et $z_1 z_2 \neq -1$. On pose $Z = \frac{z_1 + z_2}{1 + z_1 z_2}$.

- 1. Montrer que Z est réel.
- 2. On désigne respectivement par θ_1 et θ_2 des arguments de ces complexes. Exprimer Z en fonction de θ_1 et de θ_2 .

Semaine du 4 Novembre - Planche nº 3

Exercice no 1:

(Question de cours) : Formule de Moivre.

Exercice $n^o 2$:

(Fonctions usuelles):

- 1. Rappeler la formule de soustraction pour tan
- 2. Montrer que pour tout entier naturel n, on a l'égalité suivante

$$\arctan\left(\frac{1}{n+2}\right) - \arctan\left(\frac{1}{n+1}\right) = -\arctan\left(\frac{1}{n^2+3n+3}\right)$$

3. En déduire la valeur de $S_N = \sum_{n=0}^N \arctan\left(\frac{1}{n^2+3n+3}\right)$ en fonction de N puis $\lim_{N\to+\infty} S_N$.

Exercice no 3:

(Nombres complexes) : On pose $\omega = \sqrt{3} + i$. Déterminer $n \in \mathbb{Z}$ tel que

- 1. $\omega^n \in \mathbb{R}$
- $2. \ \omega^n \in i\mathbb{R}.$