Jorge Pais **Professor Adjunto**

Area Departamental de Engenharia de Electrónica e Telecomunicações e de Computadores Instituto Superior de Engenharia de Lisboa

Theoretical trajectory 2

Consider a final point(x_f , y_f , f). When $x_f,>y_f$ and 45> f>-90 and $y_{C2}<y_{C1}$, a possible trajectory is:

 Calculate r₁ e r₂ using the distance d₁₂ between points c1 and c2, which define the center points of two circunference arcs of each curve:

$$c_1 = (x_{C_1}, y_{C_1}),$$

 $x_{C_1} = 0$ and $y_{C_1} = r_1$, implies
 $c_1 = (0, r_1).$
and,
 $c_2 = (x_{C_2}, y_{C_2}),$

$$c_2 = (x_{C_2}, y_{C_2})$$
, $x_{C_2} = x_f + r_2 * sen(f)$ and $y_{C_2} = y_f - r_2 * cos(f)$, implies $c_2 = (x_f + r_2 * sen(f), y_f - r_2 * cos(f))$.

then,
$$d_{12} = ((x_f + r_2 * sen(_f))^2 + (r_1 - y_f + r_2 * cos(_f))^2)^{0,5} = r_1 + r_2.$$

As the equation of d_{12} has two unknown variables r_1 e r_2 , there are three solutions to get only one unknown variable: i. $r_1=r_2=r \Rightarrow (2^*r)^2=(x_f+r^*sen(f))^2+(r^*(cos(f)+1)-y_f))^2$.

ii.
$$r_1 = C \Rightarrow (r_2 + C)^2 = (x_f + r_2 * sen(f))^2 + (C + r_2 * cos(f) - y_f))^2$$
.

iii.
$$r_2 = C \Rightarrow (r_1 + C)^2 = (x_f + C^* sen(f))^2 + (r_1 + C^* cos(f) - y_f))^2$$
.

2. Calculate of angle , sen()=
$$(x_f+r_2*sen(f))/(r_1+r_2)$$
,

=arcsen(
$$(x_f+r_2*sen(f))/(r_1+r_2)$$
).

x_f+r₂*sen(_f)

3. For the example (70,40,20) and considering solution i), the terms of resolvent formula are,

a=2-2*cos(
$$_f$$
),
b= 2*y $_f$ *(1+cos($_f$))-2*x $_f$ *sen($_f$),
c= -(x $_f$ 2+y $_f$ 2)
applying resolvent formula,
r= 56,94 => r $_1$ =r $_2$ =56,94
from equation in point 2, will get
= 51.78

The theorethical trajetory is, CurveLeft(56.94, 51.78), CurveRight(56.94, 31.78).

Note: In practice, robot is not able to do a curve with a radius of 56,94 cm due the manobrability constraints of robot.