≺ VOLTAR

Álgebra Relacional - Junção e Divisão

Apresentar os conceitos de álgebra relacional envolvendo as operações de junção normal e junção natural e divisão.

NESTE TÓPICO

- > Junção
- > Junção natural |X|
- > Divisão
- > Referências

Marcar tópico

Junção

A operação denominada junção combina as operações de seleção e produto cartesiano produzindo uma combinação entre as tuplas de uma tabela com as tuplas correspondentes de outra tabela que obedecem a uma condição. A sintaxe básica é a seguinte: σ relação A.chave1=relaçãoB.chave2 (relação A X relação B).

A figura a seguir demonstra como é realizada a operação de **junção** entre duas tabelas DEPARTAMENTO e FUNCIONARIO:

DEPARTAMENTO	
CODDEPT	NOMEDEPT
D1	Engenharia
D2	Comercial

	FUNCIONARIO	
DFUNC	NOMEFUNC	CODDEPT
101	Antonio Alves	D2
102	Beatriz Bernardes	D1
103	Claudio Cardoso	D2
104	Daniela Dantas	D1

CODDEPT	NOMEDEPT	IDFUNC	NOMEFUNC	CODDEPT
D1	Engenharia	102	Beatriz Bernardes	D1
D1	Engenharia	104	Daniela Dantas	D1
D2	Comercial	101	Antonio Alves	D2
D2	Comercial	103	Claudio Cardoso	D2

A operação de junção foi criada justamente porque esse tipo de combinação de tabelas é de uso muito comum, facilitando, assim, a escrita de expressões. A tabela resultante de uma junção tem todas as colunas da primeira tabela e todas da segunda tabela. Isso faz os valores dos campos utilizados como critério para a correspondência entre as linhas aparecerem duplicados, já que um vem da primeira tabela e outro da segunda.

Junção natural |X|

Existe uma variação da junção, chamada *junção natural*, que fornece o mesmo resultado, mas sem essa repetição de valores: uma das colunas correspondentes aos atributos de relacionamento é descartada.

A sintaxe básica é a seguinte:

(relação A |X| relação B)

A figura a seguir demonstra como é realizada a operação de **junção natural** entre as duas tabelas anteriores (DEPARTAMENTO e FUNCIONARIO):

(1	DEPARTAMENTO X	FUNCIONAR	10)
CODDEPT	NOMEDEPT	IDFUNC	NOMEFUNC
D1	Engenharia	102	Beatriz Bernardes
D1	Engenharia	104	Daniela Dantas
D2	Comercial	101	Antonio Alves
D2	Comercial	103	Claudio Cardoso

Divisão

Produz uma nova tabela ou relação contendo todas as tuplas da primeira tabela (dividendo) que aparecem na segunda (mediador) com todas as tuplas da terceira tabela (divisor).

No exemplo apresentado a seguir, observa-se que a TABELA_S contém todas as tuplas da TABELA_1 (dividendo) que aparecem na TABELA_R (mediador) com todas as tuplas da TABELA_2 (divisor):

TABELA_1	TABE	LA_R	TABELA_2	TABELA_S
CODIGO	CODIGO	CODIGO	CODIGO	CODIGO
A	A	Х	X	A
В	A	Y		В
С	A	Z		С
	В	Х		
	В	Υ		
	С	Х		

O próximo exemplo apresenta o mesmo dividendo (TABELA_1) e o mesmo mediador (TABELA_R), mas agora há outro divisor (TABELA_2). Note o resultado:

TABELA_1	TABE	LA_R
CODIGO	CODIGO	CODIGO
A	A	Х
В	Α	Υ
С	Α	Z
	В	Х
	В	Υ
	С	Х

TABELA_2	TABELA_S
CODIGO	CODIGO
Х	Α
Y	В

As últimas quatro aulas (15, 16, 17 e 18) apresentaram as operações da álgebra relacional. Conforme mencionado (na aula 15), trata-se de uma linguagem formal utilizada nos Sistemas de Gerenciamento de Banco de Dados para consultar os dados solicitados por um usuário. A linguagem possui um conjunto de operações baseadas na *teoria de conjuntos* que permite selecionar, unir, subtrair e projetar um conjunto de dados relacionados.

As operações primitivas que utilizam a álgebra relacional são:

- Seleção
- Projeção
- Produto cartesiano
- União
- Diferença

As operações derivadas que utilizam a álgebra relacional são:

- Intersecção
- Junção (normal e natural)
- Divisão

Mas não foi apresentado ainda como aplicar estas operações utilizando-se um Sistema de Gerenciamento de Banco de Dados. Esta importante etapa será abordada nas duas últimas aulas.

Referências

CHEN, Peter. *Modelagem de dados*: a abordagem entidade-relacionamento para projeto lógico. São Paulo: Makron Books, 1990.

DATE, C. J. Introdução a sistemas de banco de dados. Rio de Janeiro: Campus, 1991.

ELMASRI, Ramez; NAVATHE, Shamkant B. *Sistemas de banco de dados*. 4. ed. São Paulo: Pearson Addison Wesley, 2005.

HEUSER, Carlos Alberto. Projeto de banco de dados. Porto Alegre: Sagra Luzzatto, 2004.

SETZER, Valdemar W.; SILVA, Flávio Soares Corrêa da. *Banco de dados*: aprenda o que são, melhore seu conhecimento, construa os seus. São Paulo: Edgard Blücher, 2005.

SILBERSCHATZ, Abraham; KORTH, Henry F.; SUDARSHAN, S. *Sistema de banco de dados*. 3. ed. São Paulo: Makron Books, 1999.

Avalie este tópico

