# OpenCMISS-iron examples and tests used by OpenCMISS developers at University of Stuttgart, Germany

Christian Bleiler, Dr.-Ing. Nehzat Emamy, Andreas Hessenthaler, Thomas Klotz, Aaron Krämer, Benjamin Maier, Sergio Morales, Mylena Mordhorst, Harry Saini\*

July 28, 2017 15:03

## **CONTENTS**

| 1 | Introduction |                               |    |  |  |  |
|---|--------------|-------------------------------|----|--|--|--|
|   | 1.1          | Cmgui files for cmgui-2.9     | 2  |  |  |  |
|   | 1.2          | Variations to consider        | 2  |  |  |  |
|   | 1.3          | Folder structure              |    |  |  |  |
| 2 | Prog         | Progress                      |    |  |  |  |
|   | 2.1          | Equations to test             | 6  |  |  |  |
|   | 2.2          | Setting up a new test         | 6  |  |  |  |
|   | 2.3          | Long-term goals               | 7  |  |  |  |
| 3 | Diff         | Diffusion equation            |    |  |  |  |
| , | 3.1          | Equation in general form      | 8  |  |  |  |
|   | 3.2          | Example-0004 [VALIDATED]      | 9  |  |  |  |
|   |              | 3.2.1 Mathematical model - 2D | 9  |  |  |  |
|   |              | 3.2.2 Computational model     | 9  |  |  |  |
|   |              | 3.2.3 Result summary          | 9  |  |  |  |
| 4 | Line         | Linear elasticity             |    |  |  |  |
|   | 4.1          | Equation in general form      | 11 |  |  |  |
|   | 4.2          | Example-0102 [PLAUSIBLE]      | 12 |  |  |  |
|   |              | 4.2.1 Mathematical model      | 12 |  |  |  |
|   |              | 4.2.2 Computational model     | 12 |  |  |  |
|   |              | 4.2.3 Results                 | 1: |  |  |  |

<sup>\*</sup> Institute of Applied Mechanics (CE), University of Stuttgart, Pfaffenwaldring 7, 70569 Stuttgart, Germany

<sup>†</sup> Institute for Parallel and Distributed Systems, University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany

<sup>‡</sup> Lehrstuhl Mathematische Methoden für komplexe Simulation der Naturwissenschaft und Technik, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany

<sup>§</sup> Institute for Parallel and Distributed Systems, University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany

|     |        | 4.2.4    | Validation                                        | 14              |
|-----|--------|----------|---------------------------------------------------|-----------------|
|     | 4.3    | Examp    | ple-0111 [PLAUSIBLE]                              | 16              |
|     |        | 4.3.1    | Mathematical model                                | 16              |
|     |        | 4.3.2    | Computational model                               | 16              |
|     |        | 4.3.3    | Results                                           | 17              |
|     |        | 4.3.4    | Validation                                        | 18              |
|     | 4.4    | Examp    | ole-0112 [PLAUSIBLE]                              | <b>2</b> 0      |
|     |        | 4.4.1    | Mathematical model                                | <b>2</b> 0      |
|     |        | 4.4.2    | Computational model                               | <b>2</b> 0      |
|     |        | 4.4.3    |                                                   | 21              |
|     |        | 4.4.4    | TT 14 1                                           | 22              |
| 5   | Finit  | e elasti | •.                                                | 24              |
| 6   |        | ier-Stok |                                                   | <br>25          |
| 0   | 6.1    |          |                                                   | <b>2</b> 5      |
|     | 6.2    |          | · ·                                               | 26<br>26        |
|     | 0.2    | 6.2.1    |                                                   | 20<br>26        |
|     |        |          |                                                   |                 |
|     |        | 6.2.2    |                                                   | 27              |
|     |        | 6.2.3    | _                                                 | 27              |
|     |        | 6.2.4    |                                                   | 28              |
| 7   | Mon    | odoma    |                                                   | 29              |
|     | 7.1    | Examp    |                                                   | 30              |
|     |        | 7.1.1    |                                                   | 30              |
|     |        | 7.1.2    |                                                   | 30              |
|     |        | 7.1.3    | Results                                           | 31              |
|     |        | 7.1.4    | Validation                                        | 31              |
|     | 7.2    | Examp    | ole-0402 [PLAUSIBLE]                              | 34              |
|     | -      | 7.2.1    |                                                   | 34              |
|     |        | 7.2.2    |                                                   | 34              |
|     |        | 7.2.3    |                                                   | 35              |
|     |        | 7.2.4    |                                                   | 36              |
|     | 7.3    |          |                                                   | 37              |
|     | 7.5    | 7.3.1    |                                                   | 37              |
|     |        | 7.3.2    | · _ · · · · · · · · · · · · · · · · · ·           | <i>37</i><br>37 |
|     |        | 7.3.3    | •                                                 | <i>31</i><br>38 |
|     |        |          |                                                   | ور<br>38        |
| 0   | Calli  | 7.3.4    |                                                   | _               |
| 0   | Cem    | ML mod   | aei                                               | 41              |
|     |        |          |                                                   |                 |
|     |        |          |                                                   |                 |
| LΙ  | ST     | OF FI    | GURES                                             |                 |
|     |        |          |                                                   |                 |
| Fig | gure 1 | Ĺ        | 2D results, iron reference w/ command line argu-  |                 |
| •   | 9      |          | , 10                                              | 10              |
| Fig | gure 2 | ,        | 2D results, current run w/ command line arguments |                 |
| (   | Suic 2 | -        | 10                                                | 10              |
| Fie | gure 3 | ,        | D 1: 1 2D C 1                                     |                 |
|     |        |          |                                                   | 13              |
|     | gure 2 |          |                                                   | 13              |
|     | gure 5 |          |                                                   | 14              |
| -   | gure 6 |          |                                                   | 15              |
|     | gure 7 |          |                                                   | 17              |
| •   | gure 8 |          |                                                   | 17              |
| •   | gure 9 |          | 1                                                 | 18              |
| •   | gure 1 |          | -                                                 | 19              |
| Fie | oure 1 | 1 1      | Results iron 2D fine mesh                         | 21              |

23

| Figure 12  | Results, iron 3D fine mesh 21                                                                           |
|------------|---------------------------------------------------------------------------------------------------------|
| Figure 13  | Results, Abaqus 2D fine mesh                                                                            |
| Figure 14  | Results, abaqus 3D fine mesh 23                                                                         |
| Figure 15  | Results movie, 24 × 24 elements (only works in cer-                                                     |
| O o        | tain pdf viewers, e.g. Adobe Acrobat Reader) 31                                                         |
| Figure 16  | Results, $10 \times 10$ elements, $t = 200 \dots 32$                                                    |
| Figure 17  | Results, $24 \times 24$ elements, $t = 200 \dots 32$                                                    |
| Figure 18  | Results, $24 \times 24$ elements, $t = 500 \dots 33$                                                    |
| Figure 19  | Results, $2 \times 2$ elements, $t = 200 \dots 35$                                                      |
| Figure 20  | Results, $10 \times 10$ elements                                                                        |
| Figure 21  | $V_m$ for time $t = 1.0$ , different time step widths $dt \in \{0.01, 0.005, 0.001, 0.0005, 0.00025\}$  |
| Figure 22  | Error at $t = 1.0$ for different time steps widths 39                                                   |
| Figure 23  | $V_m$ for time $t = 3.0$ , different time step widths $ddt \in \{0.01, 0.005, 0.001, 0.0005, 0.00025\}$ |
| Figure 24  | Error at $t = 3.0$ for different time steps widths 40                                                   |
| _          |                                                                                                         |
|            |                                                                                                         |
| LIST OF TA | RIFS                                                                                                    |
| LIST OF TA | DLLS                                                                                                    |
| Table 1    | Quantiative error between Abaqus 2017 and iron sim-                                                     |
|            | ulations for linear elastic shear                                                                       |
| Table 2    | Quantiative error between Abaqus 2017 and iron sim-                                                     |
|            | ulations for linear elastic uniaxial extenions 19                                                       |
|            |                                                                                                         |

Table 3

#### INTRODUCTION 1

This document contains information about examples used for testing OpenCMISSiron. Read: How-to<sup>1</sup> and [1].

- Cmgui files for cmgui-2.9
- Variations to consider
  - Geometry and topology

1D, 2D, 3D

Length, width, height

Number of elements

Interpolation order

Generated or user meshes

quad/hex or tri/tet meshes

- Initial conditions
- Load cases

Dirichlet BC

Neumann BC

Volume force

Mix of previous items

- Sources, sinks
- Time dependence

Static

Quasi-static

Dynamic

Material laws

Linear

Nonlinear (Mooney-Rivlin, Neo-Hookean, Ogden, etc.)

Active (Stress, strain)

- Material parameters, anisotropy
- Solver

Direct

Iterative

Test cases

Numerical reference data

Analytical solution

• A mix of previous items

<sup>1</sup> https://bitbucket.org/hessenthaler/opencmiss-howto

1.3 Folder structure

TBD..

## 2 PROGRESS

People working on setting up tests in alphabetical order (surnames) with initials:

- CB: Christian Bleiler
- NE : Dr.-Ing. Nehzat Emamy
- AH: Andreas Hessenthaler
- TK: Thomas Klotz
- AK : Aaron Krämer
- BM : Benjamin Maier
- SM: Sergio Morales
- MM : Mylena Mordhorst
- HS: Harry Saini

### 2.1 Equations to test

Test single-physics problems before multi-physics problems!

- Diffusion equation (Laplace, Poisson, Generalized Laplace, ALE Diffusion, etc.)
- Linear elasticity equation (compressible and incompressible)
- Finite elasticity equation (compressible and incompressible Mooney-Rivlin, etc.)
- Navier-Stokes equation (ALE, Stokes, etc.)
- Monodomain equation
- CellML models
- Skeletal muscle models
- Fluid-structure interaction
- etc.

## 2.2 Setting up a new test

Use the following guideline to set up a new test:

- 1. Check if it is already there
- 2. Talk to other developers
- 3. Create a new subfolder examples/example-oxxx
- 4. Document the setup (computational domain, etc.) in examples/exampleoxxx/doc/example.tex
- 5. Set up example with all parameters as command line arguments, see Section 1.2

- 6. Set up reference results (CHeart, Abaqus, analytical solution, etc.)
- 7. Set up script to run all tests in your example directory
- 8. Set up script to perform comparison between iron results and reference results
- 9. Set up visualization scripts
- 10. Compile, run, test, visualize your example
- 11. Compile, run, test, visualize all examples

For each example, progress is documented in the respective section titles with the following TAG:

- DOCUMENTED: finish the documentation of the example (spatial domain, number of time steps, boundary conditions, etc.
- COMPILES: example compiles (for default parameters)
- RUNS: example runs (for default parameters)
- CONVERGES: no convergence issues (for default parameters, results not plausible)
- PLAUSIBLE: results look sensible (for default parameters)
- VALIDATED: for all parameter sets it gives the correct results as compared to CHeart/Abaqus/analytical solution (includes visualization scripts, run scripts, comparison scripts, documentation!, . . .)

Move all tags CONVERGE, PLAUSIBLE to VALIDATED.

Next steps include:

- Everybody runs everything!
- Meeting with Oliver
- Meeting with Auckland
- 2.3 Long-term goals
  - Different testing targets

SMALL: small, fast tests

BIG : same as before; further, bigger and more complex geometries, convergence analysis

PARALLEL: same as before but in parallel

- Add more examples/those which were on the agenda but not started
- Jenkins continuous testing, integration and deployment

test SMALL/BIG/PARALLEL targets

integrate with GitHub (pull-requests triggers Jenkins, merge on success)

# 3 DIFFUSION EQUATION

## 3.1 Equation in general form

The governing equation is,

$$\partial_t \mathbf{u} + \nabla \cdot [\boldsymbol{\sigma} \nabla \mathbf{u}] = \mathbf{f}, \tag{1}$$

with conductivity tensor  $\boldsymbol{\sigma}.$  The conductivity tensor is,

- defined in material coordinates (fibre direction),
- diagonal,
- defined per element.

## 3.2 Example-0004 [VALIDATED]

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

## 3.2.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla u = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{2}$$

with boundary conditions

$$u = 2.0e^{x} \cdot \cos(y)$$
 on  $\partial\Omega$ . (3)

No material parameters to specify.

## 3.2.2 Computational model

• Commandline arguments are:

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

integer: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

• Commandline arguments for tests are:

42010

84010

21020

42020

84020

42011

84011

21021

42021

84021

100 50 0 1 0 (not tested yet..)

100 50 0 2 0 (not tested yet..)

100 50 0 1 1 (not tested yet..)

100 50 0 2 1 (not tested yet..)

## 3.2.3 Result summary

We use CHeart rev. 6292 to produce numerical reference solutions.

Passed tests: 10 / 10

No failed tests.



Figure 1: 2D results, iron reference w/ command line arguments [8 4 0 2 0].



Figure 2: 2D results, current run w/ command line arguments [8 4 0 2 0].

# 4 LINEAR ELASTICITY

## 4.1 Equation in general form

$$\label{eq:delta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_theta_$$

## 4.2.1 Mathematical model

We solve the following equation (both 2D and 3D domains are considered),

$$\nabla \cdot \mathbf{\sigma}(\mathbf{u}, \mathbf{t}) = \mathbf{0}$$
  $\Omega = [0, 160] \times [0, 120] \times [0, 120], \mathbf{t} \in [0, 5],$  (5)

with time step size  $\Delta_t = 1$  and  $u = [u_x, u_y]$  in 2D  $u = [u_x, u_y, u_z]$  in 3D. The boundary conditions in 2D are given by

$$u_{x} = u_{y} = 0 \qquad \qquad y = 0, \tag{6}$$

$$u_y = 8 \qquad x = 160, \tag{7}$$

and in 3D by

$$u_{x} = u_{z} = 0 \qquad \qquad x = 0, \tag{8}$$

$$u_{\mathbf{u}} = 0 \qquad \qquad \mathbf{y} = \mathbf{0}, \tag{9}$$

$$u_x = 160$$
  $x = 160$ , (10)

$$u_y = 8$$
  $x = 160.$  (11)

The material parameters are

$$E = 10000MPa,$$
 (12)

$$v = 0.3,$$
 (13)

$$\rho = 5 \times 10^{-9} \text{tonne.mm}^3. \tag{14}$$

## 4.2.2 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

nous length along y affection

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

integer: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

float: elastic modulus float: Poisson ratio

float: displacement percentage load

• Command line arguments for tests are:

160 120 0 8 6 0 1 0 10000 0.3 0.05

160 120 0 16 12 0 1 0 10000 0.3 0.05

160 120 0 32 24 0 1 0 10000 0.3 0.05

160 120 120 8 6 6 1 0 10000 0.3 0.05

160 120 120 16 12 12 1 0 10000 0.3 0.05

160 120 120 32 24 24 1 0 10000 0.3 0.05

160 120 0 8 6 0 2 0 10000 0.3 0.05 160 120 0 16 12 0 2 0 10000 0.3 0.05 160 120 0 32 24 0 2 0 10000 0.3 0.05 160 120 120 8 6 6 2 0 10000 0.3 0.05 160 120 120 16 12 12 2 0 10000 0.3 0.05 160 120 120 32 24 24 2 0 10000 0.3 0.05

## 4.2.3 Results



Figure 3: Results, iron 2D fine mesh.



Figure 4: Results, iron 3D fine mesh.

#### Validation 4.2.4

The iron results are compared to those from Abaqus (version 2017). The figures below show selected results from the validation simulations carried out in Abaqus and provide a qualitative validation. A quantitative validation was carried out by comparing the horizontal displacement  $\mathfrak{u}_{\kappa}$  along the free-edge (y = 120 for 2D and y = z = 120 for 3D) and computing the L2-norm according to

$$L_{2}\text{-norm} = \frac{1}{N} \times \sum_{i=1}^{N} \sqrt{\left(u_{y,\text{abaqus}}^{i} - u_{y,\text{iron}}^{i}\right)^{2}}, \tag{15}$$

where N is the total number of nodes along the free-edge. The results over the mesh refinements are given in Table 2.



Figure 5: Results, Abaqus 2D fine mesh.



Figure 6: Results, abaqus 3D fine mesh.

| Dimension | Mesh   | $L_2$ -norm            | Interpolation |
|-----------|--------|------------------------|---------------|
| 2D        | Coarse | $6.696 \times 10^{-3}$ | Linear        |
| 2D        | Medium | $1.273 \times 10^{-3}$ | Linear        |
| 2D        | Fine   | $2.489 \times 10^{-4}$ | Linear        |
| 3D        | Coarse | $4.234 \times 10^{-4}$ | Linear        |
| 3D        | Medium | $4.184 \times 10^{-5}$ | Linear        |
| 3D        | Fine   | $3.781 \times 10^{-6}$ | Linear        |
| 2D        | Coarse | $3.036 \times 10^{-4}$ | Quadratic     |
| 2D        | Medium | $6.099 \times 10^{-5}$ | Quadratic     |
| 2D        | Fine   | $1.089 \times 10^{-5}$ | Quadratic     |
| 3D        | Coarse | • • •                  | Quadratic     |
| 3D        | Medium |                        | Quadratic     |
| 3D        | Fine   |                        | Quadratic     |

Table 1: Quantiative error between Abaqus 2017 and iron simulations for linear elastic shear

## 4.3 Example-0111 [PLAUSIBLE]

## 4.3.1 Mathematical model

We solve the following equation (both 2D and 3D domains are considered),

$$\nabla \cdot \mathbf{\sigma}(\mathbf{u}, t) = \mathbf{f}(\mathbf{u}, t)$$
  $\Omega = [0, 160] \times [0, 120] \times [0, 120], t \in [0, 5],$  (16)

with time step size  $\Delta_t = 1$  and  $u = [u_x, u_y]$  in 2D  $u = [u_x, u_y, u_z]$  in 3D. The boundary conditions in 2D are given by

$$u_{x} = u_{y} = 0 \qquad \qquad x = y = 0, \tag{17}$$

$$f(u_x) = 6.0 \times 10^4$$
  $x = 160$ , (18)

and in 3D by

$$u_x = u_y = u_z = 0$$
  $x = y = z = 0$ , (19)

$$f(u_x) = 7.2 \times 10^6$$
  $x = 160.$  (20)

The material parameters are

$$E = 10000MPa,$$
 (21)

$$v = 0.3,$$
 (22)

$$\rho = 5 \times 10^{-9} \text{tonne.mm}^3$$
. (23)

## 4.3.2 Computational model

Commandline arguments are:

float: length along x-direction

float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

integer: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

float: elastic modulus float: Poisson ratio

float: XXX

• Command line arguments for tests are:

160 120 0 8 6 0 1 0 10000 0.3 XXX

160 120 0 16 12 0 1 0 10000 0.3 XXX

160 120 0 32 24 0 1 0 10000 0.3 XXX

160 120 120 8 6 6 1 0 10000 0.3 XXX

160 120 120 16 12 12 1 0 10000 0.3 XXX

160 120 120 32 24 24 1 0 10000 0.3 XXX

160 120 0 8 6 0 2 0 10000 0.3 XXX

160 120 0 16 12 0 2 0 10000 0.3 XXX

160 120 0 32 24 0 2 0 10000 0.3 XXX 160 120 120 8 6 6 2 0 10000 0.3 XXX 160 120 120 16 12 12 2 0 10000 0.3 XXX 160 120 120 32 24 24 2 0 10000 0.3 XXX

## 4.3.3 Results



Figure 7: Results, iron 2D fine mesh.



Figure 8: Results, iron 3D fine mesh.

#### Validation 4.3.4

The iron results are compared to those from Abaqus (version 2017). The figures below show selected results from the validation simulations carried out in Abaqus and provide a qualitative validation. A quantitative validation was carried out by comparing the horizontal displacement  $u_y$  along the free-edge (y = 120 for 2D and y = z = 120 for 3D) and computing the L2-norm according to

$$L_{2}\text{-norm} = \frac{1}{N} \times \sum_{i=1}^{N} \sqrt{\left(u_{y,\text{abaqus}}^{i} - u_{y,\text{iron}}^{i}\right)^{2}}, \tag{24}$$

where N is the total number of nodes along the free-edge. The results over the mesh refinements are given in Table 2.



Figure 9: Results, Abaqus 2D fine mesh.



Figure 10: Results, abaqus 3D fine mesh.

| Dimension | Mesh   | $L_2$ -norm | Interpolation |
|-----------|--------|-------------|---------------|
| 2D        | Coarse |             | Linear        |
| 2D        | Medium |             | Linear        |
| 2D        | Fine   |             | Linear        |
| 3D        | Coarse |             | Linear        |
| 3D        | Medium |             | Linear        |
| 3D        | Fine   |             | Linear        |
| 2D        | Coarse |             | Quadratic     |
| 2D        | Medium |             | Quadratic     |
| 2D        | Fine   |             | Quadratic     |
| 3D        | Coarse |             | Quadratic     |
| 3D        | Medium |             | Quadratic     |
| 3D        | Fine   |             | Quadratic     |

Table 2: Quantiative error between Abaqus 2017 and iron simulations for linear elastic uniaxial extenions

## 4.4 Example-0112 [PLAUSIBLE]

## 4.4.1 Mathematical model

We solve the following equation (both 2D and 3D domains are considered),

$$\nabla \cdot \mathbf{\sigma}(\mathbf{u}, t) = \mathbf{f}(\mathbf{u}, t)$$
  $\Omega = [0, 160] \times [0, 120] \times [0, 120], t \in [0, 5],$  (25)

with time step size  $\Delta_t = 1$  and  $\mathbf{u} = [u_x, u_y]$  in 2D  $\mathbf{u} = [u_x, u_y, u_z]$  in 3D. The boundary conditions in 2D are given by

$$u_{x} = u_{y} = 0 \qquad \qquad y = 0, \tag{26}$$

$$f(u_y) = 6.0 \times 10^4$$
  $x = 160,$  (27)

and in 3D by

$$u_{x}=u_{z}=0 \hspace{1cm} x=0, \hspace{1cm} (28)$$

$$u_y = 0$$
  $y = 0,$  (29)

$$u_x = 160$$
  $x = 160$ , (30)

$$f(u_y) = 7.2 \times 10^6$$
  $x = 160.$  (31)

The material parameters are

$$E = 10000MPa,$$
 (32)

$$v = 0.3, \tag{33}$$

$$\rho = 5 \times 10^{-9} \text{tonne.mm}^3. \tag{34}$$

## 4.4.2 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

integer: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

float: elastic modulus float: Poisson ratio

float: XXX

• Command line arguments for tests are:

160 120 0 8 6 0 1 0 10000 0.3 XXX

160 120 0 16 12 0 1 0 10000 0.3 XXX

160 120 0 32 24 0 1 0 10000 0.3 XXX

160 120 120 8 6 6 1 0 10000 0.3 XXX

160 120 120 16 12 12 1 0 10000 0.3 XXX

160 120 120 32 24 24 1 0 10000 0.3 XXX

160 120 0 8 6 0 2 0 10000 0.3 XXX 160 120 0 16 12 0 2 0 10000 0.3 XXX 160 120 0 32 24 0 2 0 10000 0.3 XXX 160 120 120 8 6 6 2 0 10000 0.3 XXX 160 120 120 16 12 12 2 0 10000 0.3 XXX 160 120 120 32 24 24 2 0 10000 0.3 XXX

## 4.4.3 Results



Figure 11: Results, iron 2D fine mesh.



Figure 12: Results, iron 3D fine mesh.

#### Validation 4.4.4

The iron results are compared to those from Abaqus (version 2017). The figures below show selected results from the validation simulations carried out in Abaqus and provide a qualitative validation. A quantitative validation was carried out by comparing the horizontal displacement  $\mathfrak{u}_{\kappa}$  along the free-edge (y = 120 for 2D and y = z = 120 for 3D) and computing the L2-norm according to

$$L_{2}\text{-norm} = \frac{1}{N} \times \sum_{i=1}^{N} \sqrt{\left(u_{y,\text{abaqus}}^{i} - u_{y,\text{iron}}^{i}\right)^{2}}, \tag{35}$$

where N is the total number of nodes along the free-edge. The results over the mesh refinements are given in Table 2.



Figure 13: Results, Abaqus 2D fine mesh.



Figure 14: Results, abaqus 3D fine mesh.

| Dimension | Mesh   | $L_2$ -norm | Interpolation |
|-----------|--------|-------------|---------------|
| 2D        | Coarse |             | Linear        |
| 2D        | Medium |             | Linear        |
| 2D        | Fine   |             | Linear        |
| 3D        | Coarse |             | Linear        |
| 3D        | Medium |             | Linear        |
| 3D        | Fine   |             | Linear        |
| 2D        | Coarse |             | Quadratic     |
| 2D        | Medium |             | Quadratic     |
| 2D        | Fine   |             | Quadratic     |
| 3D        | Coarse |             | Quadratic     |
| 3D        | Medium |             | Quadratic     |
| 3D        | Fine   |             | Quadratic     |

Table 3: Quantiative error between Abaqus 2017 and iron simulations for linear elastic shear

# 5 FINITE ELASTICITY

#### 6 NAVIER-STOKES FLOW

6.1 Equation in general form

$$\partial_{\mathbf{t}}(\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v} + p\mathbf{I}) = \rho \mathbf{f}$$
 (36)

## 6.2 Example-0302-u [COMPILES]

Example uses user-defined simplex meshes in CHeart mesh format with quadratic/linear interpolation for velocity/pressure and solves a dynamic problem.

Setup is the well-known lid-driven cavity problem on the unit square or unit cube in two and three dimensions.

Current issue: does not converge after 30 some time iterations (2D and 3D).

Visualization issue: In exelem-file, replace

- constant(2)\*constant, no modify, grid based. #xi1=0, #xi2=0
- 2. constant(2)\*constant, no modify, grid based.

with

- constant∗constant, no modify, grid based. 1. #xi1=0, #xi2=0
- constant\*constant, no modify, grid based.

and likewise for 3D, replace

- constant(2;3)\*constant\*constant, no modify, grid based. #xi1=0, #xi2=0, #xi3=0
- 2. constant(2;3)\*constant\*constant, no modify, grid based.

with

- constant\*constant, no modify, grid based. #xi1=0, #xi2=0, #xi3=0
- constant\*constant, no modify, grid based.

## 6.2.1 Mathematical model - 2D

We solve the incompressible Navier-Stokes equation,

$$\partial_{t}(\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v}) - \nabla \cdot (\mu \nabla \mathbf{v} - \rho \mathbf{I}) = \rho \mathbf{f} \qquad \Omega = [0, 1] \times [0, 1], \qquad (37)$$

$$\nabla \cdot \mathbf{v} = 0, \qquad (38)$$

with boundary conditions

$$v = 0$$
  $x = 0,$  (39)  
 $v = 0$   $x = 1,$  (40)  
 $v = 0$   $y = 0,$  (41)

$$v = [1, 0]^{T}$$
  $y = 1.$  (42)

Viscosity  $\mu = 0.0025$ , density  $\rho = 1$ . Thus, Reynolds number Re = 400.

## 6.2.2 Mathematical model - 3D

We solve the incompressible Navier-Stokes equation,

$$\begin{split} \vartheta_{\mathbf{t}}(\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v}) - \nabla \cdot (\mu \nabla \mathbf{v} - p\mathbf{I}) &= \rho \mathbf{f} \quad \Omega = [0, 1] \times [0, 1] \times [0, 1], \ (43) \\ \nabla \cdot \mathbf{v} &= 0, \end{split}$$

with boundary conditions

$$v = 0$$
 $x = 0$ , (45)

  $v = 0$ 
 $x = 1$ , (46)

  $v = 0$ 
 $v = 0$ , (47)

  $v = [1, 0]^T$ 
 $v = 0$ , (48)

  $v = 0$ 
 $v = 0$ , (49)

  $v = 0$ 
 $v = 0$ , (50)

Viscosity  $\mu = 0.01$ , density  $\rho = 1$ . Thus, Reynolds number Re = 100.

## 6.2.3 Computational model

• Commandline arguments are:

integer: number of dimensions (2: 2D, 3: 3D integer: mesh refinement level (1, 2, 3, ...)

float: start time float: stop time float: time step size

float: density float: viscosity

integer: solver type (o: direct; 1: iterative)

• Commandline arguments for tests are:

2 1 0.0 1.0 0.001 0.0025 1.0 0 2 2 0.0 1.0 0.001 0.0025 1.0 0 2 3 0.0 1.0 0.001 0.0025 1.0 0 2 1 0.0 1.0 0.001 0.0025 1.0 1 2 2 0.0 1.0 0.001 0.0025 1.0 1 2 3 0.0 1.0 0.001 0.0025 1.0 1 3 1 0.0 1.0 0.001 0.01 1.0 0 3 2 0.0 1.0 0.001 0.01 1.0 0 3 3 0.0 1.0 0.001 0.01 1.0 0 3 1 0.0 1.0 0.001 0.01 1.0 1 3 2 0.0 1.0 0.001 0.01 1.0 1 3 3 0.0 1.0 0.001 0.01 1.0 1

• Note: Binary uses command line arguments to search for the relevant mesh files.

## 6.2.4 Result summary

We use CHeart rev. 6292 to produce numerical reference solutions.

Passed tests: 0 / 12

All tests failed.

# 7 MONODOMAIN

## 7.1 Example-0401 [PLAUSIBLE]

## 7.1.1 Mathematical model

We solve the Monodomain Equation

$$\sigma \Delta V_m(t) = A_m \left( C_m \frac{\partial V_m}{\partial t} + I_{\text{ionic}}(V_m) \right) \quad \Omega = [0, 1] \times [0, 1], \quad t \in [0, 3.0] \tag{51}$$

where  $V_m(t)$  is given by the Hodgkin-Huxley system of ODEs [2] with boundary conditions

$$V_{\rm m} = 0$$
  $x = y = 0,$  (52)

$$V_{\rm m} = 0$$
  $x = y = 1.$  (53)

and initial values

$$V_{\rm m}(t=0) = -75$$

Additionally a stimulation current  $I_{\text{stim}}$  is applied for  $t_{\text{stim}} = [0, 0.1]$  at the center node of the domain (i.e. at  $(x, y) = (\frac{1}{2}, \frac{1}{2}, )$ ).

Material parameters:

$$\sigma = 3.828$$

$$A_{\rm m} = 500$$

 $C_m = 0.58$  for the slow-twitch case,  $C_m = 1.0$  for the fast-twitch case

 $I_{Stim} = 1200$  for the slow-twitch case,  $I_{Stim} = 2000.0$  for the fast-twitch case

## 7.1.2 Computational model

- This example uses generated meshes
- Commandline arguments are:

number elements X

number elements Y

interpolation order (1: linear; 2: quadratic)

solver type (o: direct; 1: iterative)

PDE step size

stop time

output frequency

CellML Model URL

slow-twitch

ODE time-step

• Commands for tests are:

```
./folder/src/example 24 24 1 0 0.005 3.0 1 hodgkin_huxley_1952.cellml F 0.0001
```

./folder/src/example 10 10 1 0 0.005 3.0 1 hodgkin\_huxley\_1952.cellml F 0.0001

mpirun -n 2 ./folder/src/example 24 24 1 0 0.005 3.0 1 hodgkin\_huxley\_1952.cellml

mpirun -n 8 ./folder/src/example 24 24 1 0 0.005 3.0 1 hodgkin\_huxley\_1952.cellml
./folder/src/example 2 2 1 0 0.005 3.0 1 hodgkin\_huxley\_1952.cellml F 0.0001
mpirun -n 2 ./folder/src/example 2 2 1 0 0.005 3.0 1 hodgkin\_huxley\_1952.cellml F

• This is a dynamic problem.

7.1.3 Results

Passed tests: 36 / 36

No failed tests.

Figure 15: Results movie,  $24 \times 24$  elements (only works in certain pdf viewers, e.g. Adobe Acrobat Reader)

You get a better understanding of the solutions by looking at the automatically generated animations in iron-tests/examples/example-0401/doc/figures.

7.1.4 Validation

We compare with a Matlab implementation.



Figure 16: Results,  $10 \times 10$  elements, t = 200



Figure 17: Results,  $24 \times 24$  elements, t = 200



Figure 18: Results,  $24 \times 24$  elements, t = 500

## 7.2.1 Mathematical model

We solve the Monodomain Equation

$$\sigma \Delta V_m(t) = A_m \left( C_m \frac{\partial V_m}{\partial t} + I_{\text{ionic}}(V_m) \right) \quad \Omega = [0, 1] \times [0, 1], \quad t \in [0, 3.0]$$

where  $V_m(t)$  is given by the CellML description of Noble's 1998 improved guinea-pig ventricular cell model system of ODEs [3]

with boundary conditions

$$V_{\rm m} = 0$$
  $x = y = 0,$  (55)

$$V_{\rm m} = 0$$
  $x = y = 1.$  (56)

and initial values

$$V_{\rm m}(t=0) = -75$$

Additionally a stimulation current  $I_{stim}$  is applied for  $t_{stim} = [0, 0.1]$  at the center node of the domain (i.e. at  $(x, y) = (\frac{1}{2}, \frac{1}{2}, )$ ).

Material parameters:

$$\sigma = 3.828$$

$$A_{\rm m} = 500$$

 $C_{\rm m}=0.58$  for the slow-twitch case,  $C_{\rm m}=1.0$  for the fast-twitch case

 $I_{Stim} = 1200$  for the slow-twitch case,  $I_{Stim} = 2000.0$  for the fast-twitch case

## 7.2.2 Computational model

- This example uses generated meshes
- Commandline arguments are:

number elements X

number elements Y

interpolation order (1: linear; 2: quadratic)

solver type (o: direct; 1: iterative)

PDE step size

stop time

output frequency

CellML Model URL

slow-twitch

ODE time-step

- Commands for tests are:
  - ./folder/src/example 24 24 1 0 0.005 3.0 1 n98.xml F 0.0001
  - ./folder/src/example 24 24 1 0 0.005 3.0 1 n98.xml F 0.005
  - ./folder/src/example 10 10 1 0 0.005 3.0 1 n98.xml F 0.0001

mpirun -n 2 ./folder/src/example 24 24 1 0 0.005 3.0 1 n98.xml F 0.0001
mpirun -n 8 ./folder/src/example 24 24 1 0 0.005 3.0 1 n98.xml F 0.0001
./folder/src/example 2 2 1 0 0.005 3.0 1 n98.xml F 0.0001
mpirun -n 2 ./folder/src/example 2 2 1 0 0.005 3.0 1 n98.xml F 0.0001

• This is a dynamic problem.

## 7.2.3 Results



Figure 19: Results,  $2 \times 2$  elements, t = 200



Figure 20: Results,  $10 \times 10$  elements

You get a better understanding of the solutions by looking at the automatically generated animations in iron-tests/examples/example-0402/doc/figures.

# 7.2.4 Validation

We compare with a Matlab implementation.

## 7.3 Example-0404-c [PLAUSIBLE]

## 7.3.1 Mathematical model

We solve the Monodomain Equation

$$\sigma \Delta V_{m}(t) = A_{m} \left( C_{m} \frac{\partial V_{m}}{\partial t} + I_{ionic}(V_{m}) \right) \quad \Omega = [0, 1], \quad t \in [0, 10.0] \quad (57)$$

where  $V_m(t)$  is given by the Hodgkin-Huxley system of ODEs [2] with Neumann boundary conditions

$$\frac{\partial u}{\partial n} = 0 x = 0, (58)$$

$$\frac{\partial u}{\partial n} = 0 x = 0, (58)$$

$$\frac{\partial u}{\partial n} = 0 x = 1. (59)$$

and initial values

$$V_{\rm m}(t=0) = -75$$

Additionally a stimulation current  $I_{stim}$  is applied for  $t_{stim} = [0, 0.5]$  at the center node of the domain (i.e. at  $(x,y) = (\frac{1}{2}, \frac{1}{2}, )$ ).

Material parameters:

$$\sigma = 3.828$$

$$A_{\rm m} = 500$$

 $C_{\rm m}=0.58$  for the slow-twitch case,  $C_{\rm m}=1.0$  for the fast-twitch case

$$I_{\text{Stim}} = \begin{cases} 75/10 \cdot (2X) & \text{for } X \geqslant 10 \text{ reference elements} \\ 75 & \text{for } < \text{ 10 reference elements} \end{cases} \text{ for the slow-twitch case,}$$
 
$$I_{\text{Stim}} = \begin{cases} 75/12 \cdot (2X) & \text{for } X \geqslant 12 \text{ reference elements} \\ 75 & \text{for } < \text{ 12 reference elements} \end{cases} \text{ for the fast-twitch case,}$$

## 7.3.2 Computational model

- This example uses generated meshes
- Commandline arguments are:

number of elements

order of interpolation

solver type (o: direct; 1: iterative)

time step PDE

end time

output file stride

cellml model file

if slow-twitch (T: slow-twitch, F: fast-twitch)

time step ODE

• Commandline arguments for tests are:

64 2 0 0.01 10 5 hodgkin\_huxley\_1952.cellml F 0.01

64 2 0 0.005 10 10 hodgkin\_huxley\_1952.cellml F 0.005

64 2 0 0.001 10 50 hodgkin\_huxley\_1952.cellml F 0.001 64 2 0 0.0005 10 100 hodgkin\_huxley\_1952.cellml F 0.0005 64 2 0 0.00025 10 200 hodgkin\_huxley\_1952.cellml F 0.00025

• This is a dynamic problem.

## 7.3.3 Results

We run the scenario for different time step widths and examine the experimental order of convergence.



Figure 21: V<sub>m</sub> for 1.0, different widths time t time step =  $dt \in \{0.01, 0.005, 0.001, 0.0005, 0.00025\}$ 

#### Validation 7.3.4



Figure 22: Error at t=1.0 for different time steps widths



Figure 23:  $V_m$  for time t 3.0, different time widths step  $ddt \in \{0.01, 0.005, 0.001, 0.0005, 0.00025\}$ 



Figure 24: Error at t=3.0 for different time steps widths

# 8 CELLML MODEL

## REFERENCES

- [1] Chris Bradley, Andy Bowery, Randall Britten, Vincent Budelmann, Oscar Camara, Richard Christie, Andrew Cookson, Alejandro F Frangi, Thiranja Babarenda Gamage, Thomas Heidlauf, et al. Opencmiss: a multi-physics & multi-scale computational infrastructure for the vph/physiome project. Progress in biophysics and molecular biology, 107(1):32-47, 2011.
- [2] Alan L Hodgkin and Andrew F Huxley. Propagation of electrical signals along giant nerve fibres. Proceedings of the Royal Society of London. Series B, Biological Sciences, pages 177–183, 1952.
- [3] Denis Noble, Anthony Varghese, Peter Kohl, and Penelope Noble. Improved guinea-pig ventricular cell model incorporating a diadic space, ikr and iks, and length-and tension-dependent processes. Canadian Journal of Cardiology, 14(1):123–134, 1998.