LINEARNO PROGRAMIRANJE – PROBLEM MINIMIZACIJE TROŠKOVA

Zadatak.

Za naredni period od mesec dana u studentskom restoranu planirano je dominantno korišćenje junećeg i svinjskog mesa, pri čemu ukupna mesečna potrošnja obe vrste mesa mora iznositi najmanje 2000 kg. Sadržaj hranljivih materija H_1 i H_2 u 1 kg mesa, minimalna propisana količina hranljivih sastojaka u toku tog meseca, kao i nabavna cena za obe vrste mesa dati su u tabeli ispod.

Hranljivi sastojci	Sadržaj hranljivih materija u 1 kg mesa		Propisana mesečna
	juneće	svinjsko	količina
\mathbf{H}_{1}	4 jed.	1 jed.	min 4100 jed.
H_2	1 jed.	3 jed.	min 3000 jed.
Cena	6 N.J. / kg	5 N.J. / kg	

Odrediti optimalan plan nabavke mesa za koji će biti ostvareni minimalni troškovi nabavke i zadovoljeni standardi kvaliteta ishrane studenata?

Rešenje:

Obeležimo sa x_1 količinu junećeg mesa (u kg), a sa x_2 količinu svinjskog mesa (u kg). Ako sa z obeležimo funkciju troškova, očigledno je da ona ima oblik: $z = 6x_1 + 5x_2$.

Kako ukupna mesečna potrošnja obe vrste mesa mora iznositi najmanje 2000 kg, sledi:

$$x_1 + x_2 \ge 2000$$
.

S obzirom na to da svaki kilogram junećeg mesa sadrži 4 jedinice hranljive materije H_1 , a svaki kilogram svinjskog mesa sadrži jednu jedinicu hranljive materije H_1 , ukupna količina hranljive materije H_1 je $4x_1 + x_2$.

Kako je minimalna propisana količina hranljivog sastojka H_1 u toku tog meseca 4100 jedinica, jasno je da mora važiti:

$$4x_1 + x_2 \ge 4100$$
.

Potpuno analogno se dobija ograničenje vezano minimalnu propisanu količinu hranljivog sastojka H_2 :

$$x_1 + 3x_2 \ge 3000$$
.

S obzirom na to da naručena količina obe vrste mesa ne može biti negativna, jasno je da mora važiti:

$$x_1 \ge 0$$
, $x_2 \ge 0$.

Dakle, linearni program ima oblik:

Funkcija profita: $z = 6x_1 + 5x_2$

Ograničenja:

$$x_1 + x_2 \ge 2000$$

$$4x_1 + x_2 \ge 4100$$

$$x_1 + 3x_2 \ge 3000$$

$$x_1 \ge 0, x_2 \ge 0$$

Obeležimo sa p_1 : $x_1 + x_2 = 2000$ graničnu pravu poluravni $x_1 + x_2 \ge 2000$, sa p_2 : $4x_1 + x_2 = 4100$ graničnu pravu poluravni $4x_1 + x_2 \ge 4100$ i sa p_3 : $x_1 + 3x_2 = 3000$ graničnu pravu poluravni $x_1 + 3x_2 \ge 3000$.

Presečna tačka prave p_1 sa x_1 -osom se dobija za uslov $x_2=0$, odnosno $x_1=2000$. Presečna tačka prave p_1 sa x_2 -osom se dobija za uslov $x_1=0$, odnosno $x_2=2000$. Potpuno analogno se određuju presečne tačke prave p_2 sa koordinatnim osama ($x_1=1025$ i $x_2=4100$) i prave p_3 sa koordinatnim osama ($x_1=3000$ i $x_2=1000$).

Očigledno je da koordinatni početak O(0,0) ne pripada pravoj p_1 koja je granična prava poluravni $x_1+x_2\geq 2000$. S obzirom na to da ne važi $0+0\geq 2000$, sledi da tačka O(0,0) ne pripada poluravni $x_1+x_2\geq 2000$, tako da je poluravan $x_1+x_2\geq 2000$ oblast iznad prave p_1 (uključujući i samu pravu). Potpuno analogno zaključujemo za oblasti $4x_1+x_2\geq 4100$ i $x_1+3x_2\geq 3000$.

Uslovi $x_1 \ge 0$ i $x_2 \ge 0$ u geometrijskom smislu znače da se posmatraju tačke samo u prvom kvadrantu.

U preseku poluravni definisanih ograničenjima linearnog programa nalazi se skup mogućih rešenja prikazan na slici ispod.

Kako je tačka B presečna tačka pravih p_1 i p_3 , njene koordinate koordinate se dobijaju rešavanjem sistema linearnih jednačina koji definišu jednačine pravih p_1 i p_3 :

$$p_1: x_1 + x_2 = 2000,$$

$$p_3$$
: $x_1 + 3x_2 = 3000$.

Množenjem prve jednačine sa (-1) i dodavanjem drugoj dobijamo ekvivalentan sistem:

$$x_1 + x_2 = 2000$$
,

$$2x_2 = 1000 \Rightarrow x_2 = 500$$
.

Zamenom $x_2 = 500$ u $x_1 + x_2 = 2000$ dobijamo da je $x_1 = 1500$. Dakle, tačka B ima koordinate B(1500, 500).

Kako je tačka C presečna tačka pravih p_1 i p_2 , njene koordinate koordinate se dobijaju rešavanjem sistema linearnih jednačina koji definišu jednačine pravih p_1 i p_2 :

$$p_1: x_1 + x_2 = 2000$$

$$p_2: 4x_1 + x_2 = 4100$$
.

Množenjem prve jednačine sa (-1) i dodavanjem drugoj dobijamo ekvivalentan sistem:

$$x_1 + x_2 = 2000$$
,

$$3x_1 = 2100 \Rightarrow x_1 = 700$$
.

Zamenom $x_1 = 700$ u $x_1 + x_2 = 2000$ dobijamo da je $x_2 = 1300$. Dakle, tačka C ima koordinate C(700,1300).

S obzirom na to da funkcija troškova $z = 6x_1 + 5x_2$ dostiže minimum u nekom od temena donje granice skupa mogućih rešenja, izračunajmo vrednost funkcije troškova u temenima donje granice skupa mogućih rešenja:

$$A(3000,0)$$
 $z_A = 6.3000 + 5.0 = 18000$,

$$B(1500,500)$$
 $z_B = 6.1500 + 5.500 = 9000 + 2500 = 11500$,

$$C(700,1300)$$
 $z_C = 6.700 + 5.1300 = 4200 + 6500 = 10700$,

$$D(0,4100)$$
 $z_D = 6.0 + 5.4100 = 20500$.

Dakle, uvažavajući propisane standarde kvaliteta ishrane studenata, minimalni troškovi se postižu nabavkom proizvodnjom 700 kilograma junećeg mesa i 1300 kilograma svinjskog mesa i oni iznose 10700 novčanih jedinica.

Zadatak.

Za naredni period od mesec dana u studentskom restoranu planirano je dominantno korišćenje junećeg i svinjskog mesa, pri čemu ukupna mesečna potrošnja obe vrste mesa mora iznositi najmanje 2800 kg. Sadržaj hranljivih materija H_1 i H_2 u 1 kg mesa, minimalna propisana količina hranljivih sastojaka u toku tog meseca, kao i nabavna cena za obe vrste mesa dati su u tabeli ispod.

Hranljivi sastojci	Sadržaj hranljivih materija u 1 kg mesa		Propisana mesečna
	juneće	svinjsko	količina
\mathbf{H}_1	1 jed.	3 jed.	min 4500 jed.
\mathbf{H}_2	3 jed.	1 jed.	min 6000 jed.
Cena	3 N.J. / kg	2 N.J. / kg	

Odrediti optimalan plan nabavke mesa za koji će biti ostvareni minimalni troškovi nabavke i zadovoljeni standardi kvaliteta ishrane studenata?

Rešenje: Minimalni troškovi se postižu nabavkom proizvodnjom 1600 kilograma junećeg mesa i 1200 kilograma svinjskog mesa i oni iznose 7200 novčanih jedinica.