8. Символ Лежандра. Свойства.
$$\left(\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$$
. Вычисление $\left(\frac{-1}{p}\right)$.)

9. Формула
$$(\frac{a}{p}) = (-1)^{\sum_{x=1}^{\frac{p-1}{2}} \left[\frac{2ax}{p}\right]}$$
.

+задачка

Определение

Пусть $p \in \mathbb{P}$, $a \in \mathbb{Z}$. Тогда символ Лежандра

Свойство 1

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}.$$

Доказательство. • a — квадратичный вычет по модулю p $\iff \overline{a}$ — квадратичный вычет в \mathbb{Z}_p $\iff (\overline{a})^{\frac{p-1}{2}}=1$.

ullet a — квадратичный невычет по модулю p \iff \overline{a} — квадратичный невычет в \mathbb{Z}_p \iff $(\overline{a})^{\frac{p-1}{2}}=-1.$

$$\bullet \ a=0 \iff a^{\frac{p-1}{2}}=0.$$

Buscheme kbalp.
$$xap-pa$$
 (a). Semma Taycca:

(p) = 1, ecm & chucke [a, 2a, 3a, ..., $\frac{p-1}{2}a$],

hoche uphbedeux ero K Budy $\{\pm 1, \pm 2, ..., \pm \frac{p-1}{2}\}$
Syder methoe mucho oppugareuxurx; $(a) = -1$, ecm (a) neremo.

1,2, (a) = 1 (a) Ra+ (a) (a)

Свойство 2

(Первое дополнение к закону взаимности Гаусса.) $\left(\frac{-1}{p}\right) \equiv (-1)^{\frac{p-1}{2}} \pmod{p}.$

«Молния» проходит только в нижней части «чемодана Гаусса»

Свойство 3
$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \cdot \left(\frac{b}{p}\right)$$
.

Доказательство. • Следует из Леммы 5 и определения символа Лежандра.

Лемма 5

Пусть $p \in \mathbb{P}$, $a,b \in \mathbb{Z}_p$, $a \neq 0$, $b \neq 0$. Тогда:

- 1) Если a, b- квадратичные вычеты, то ab- квадратичный вычет.
- 2) Если а квадратичный вычет, а b квадратичный невычет, то ab квадратичный невычет.
- 3) Если a, b квадратичные невычеты, то ab квадратичный вычет.

$$(-1)^*(-1) = 1$$

Лемма 6

Пусть
$$p\in\mathbb{P}$$
, $p_1=rac{p-1}{2}$, $a\in\mathbb{Z}$, $a
otin p$. Тогда $\left(rac{a}{p}
ight)=(-1)^{\sum\limits_{x=1}^{p_1}[rac{2ax}{p}]}.$

$$a = 2; p = 29$$

2; 2*2; 3*2; 4*2; 5*2; 6*2; 7*2; 8*2; 9*2; 10*2; 11*2; 12*2; 13*2; 14*2

	2	4	6	8	10	12	14	16	18	20	22	24	26	28
Ī	2	4	6	8	10	12	14	-13	-11	-9	-7	-5	-3	-1

1	2	3	4	5	6	7	8	9	10	11	12	13	14
-1	-2	-3	-4	-5	-6	-7/	-8	-9 <u>/</u>	-10	-14	-12	-134	-14

Доказательство. \bullet Пусть $M = \{1, 2, \dots, p_1\}$.

Утверждение 1

Для каждого $j \in M$ существует $s_j \in \{0,1\}$ и $r_j \in M$ такие, что $ja \equiv (-1)^{s_j} r_j \pmod{p}$.

Доказательство. • Пусть r'_j — остаток от деления ja на p.

- ullet Если $r_j' \in M$, то положим $r_j := r_j'$, $s_j = 0$.
- ullet Если $r_j'
 otin M$, то $r_j' \in \{p_1+1,\ldots,p-1\}$, тогда $p-r_j' \in \{1,\ldots,p-1-p_1=p_1\}=M$.
- ullet В этом случае положим $\mathit{r_j} = \mathit{p} \mathit{r'_j}$, $\mathit{s_j} = 1$.

Утверждение 2

Если $i,j \in M$, $i \neq j$, то $r_i \neq r_i$.

Доказательство. \bullet Предположим противное, пусть $r_i = r_j$.

- ullet Если $s_i=s_j$, то $r_i'=r_i'$.
- ullet Следовательно, $ia\equiv_p ja\iff a(i-j)\ \dot{\ }p\Rightarrow i-j\ \dot{\ }p,$ что не так (последний переход верен, так как (a,p)=1).
- ullet Если $s_i
 eq s_j$, то $r_i' = p r_i'$.
- ullet Следовательно, $ia\equiv_p -ja\iff a(i+j)\ \dot{:}\ p\Rightarrow i+j\ \dot{:}\ p,$ что не так: $2\leq i+j\leq 2p_1=p-1.$

Утверждение 3

$$s_j = 1 \iff \left[\frac{2aj}{p}\right] / 2.$$

Доказательство. • Напомним, что

$$aj=pq+r_i'\iff 2aj=2pq+2r_i'$$
, где $r_i'\in\{1,\ldots,p-1\}$.

$$s_{j} = 1 \iff \frac{p+1}{2} = p_{1} + 1 \le r'_{j} \le p-1 \iff$$
 $p+1 \le 2r'_{j} \le 2p-2 \iff p+1+2pq \le 2aj \le 2p-2+2pq \iff$
 $p+2pq < 2aj < 2p+2pq \iff$
 $2q+1 < \frac{2aj}{p} < 2q+2 \iff \left\lceil \frac{2aj}{p} \right\rceil = 2q+1 \slashed{/} 2.$

- ullet Пояснение 1. Так как разность целых чисел не менее 1, $p+1+2pq\leq 2aj\iff p+2pq<2aj$.
- Пояснение 2. Так как разность четных чисел не менее 2, $2aj \le 2p 2 + 2pq \iff 2aj < 2p + 2pq$.

- Вернемся к доказательству Леммы 6. По Утверждению 2, $\{r_1,\ldots,r_{p_1}\}=M$ (так как все эти числа из M и различны, а $|M|=p_1$).
- ullet Пусть $R=1\cdot 2\cdot \cdots \cdot p_1$. Тогда $r_1r_2\cdot \cdots \cdot r_{p_1}=R$.
- Напишем цепочку сравнений:

$$(-1)^{\sum_{x=1}^{p_1} s_x} R \equiv (-1)^{\sum_{x=1}^{p_1} s_x} \cdot \prod_{x=1}^{p_1} r_x \equiv \prod_{x=1}^{p_1} (-1)^{s_x} r_x \equiv \prod_{x=1}^{p_1} ax \pmod{p} \equiv a^{p_1} R \pmod{p}$$
 (1).

ullet Сокращая (1) на R (можно, так как (R,p)=1),

получаем $a^{p_1} \equiv (-1)^{\sum\limits_{x=1}^{p_1} s_x} \equiv (-1)^{\sum\limits_{x=1}^{p_1} \left[\frac{2ax}{p}\right]} \pmod{p}$ (последний переход верен по Утверждению 3).

Лемма б Пусть
$$p\in\mathbb{P},\ p_1=\frac{p-1}{2},\ a\in\mathbb{Z},\ a\c/p$$
. Тогда $\left(rac{a}{p}
ight)=(-1)^{\sum\limits_{\chi=1}^{p_1}\left[rac{2a\chi}{p}
ight]}.$

Теперь оценим аналогично, если ах попадает в «правую» половину

$$\frac{p-1}{2}+1+kp \leq ax \leq kp-1+p$$

$$p - 1 + 2 + 2kp \le 2ax \le 2kp - 2 + 2p$$

$$p(2k+1) + 1 \le 2ax \le 2kp - 2 + 2p$$

$$(2k+1)+rac{1}{p} \leq rac{2ax}{p} \leq 2k+2-rac{2}{p}$$
 , то есть

$$\left[rac{2ax}{p}
ight]=2k+1$$
, в общем, нечётное число.

Задачка:

Сколько корней имеет

$$x^4 + 20 = 0 \text{ B } F_{101}$$
?

$$x^4 = 81 \text{ B} F_{101}$$

 $(x^2-9)(x^2+9)=0$ (то есть надо посмотреть, является ли 9 и -9 квадратичным вычетом по модулю 101)

$$\binom{9}{101} = \binom{3}{101}^2 = 1$$
, то есть 9 – квадратичный вычет по модулю 101

$$\binom{-9}{101} = \binom{-1}{101}\binom{9}{101} = (-1)^{\frac{101-1}{2}} * 1 = 1$$
, то есть -9 – квадратичный вычет по модулю 101