

Bildgestützte Automatisierung I

UE6 Texturen

MATLAB: Kontrast, Korrelation, Energie und Homogenität

Property	Description	Formula
'Contrast'	Returns a measure of the intensity contrast between a pixel and its neighbor over the whole image. Range = [0 (size(GLCM,1)-1)^2] Contrast is 0 for a constant image. The property Contrast is also known as variance and inertia.	$\sum_{i,j} i-j ^2 p(i,j)$
'Correlation'	Returns a measure of how correlated a pixel is to its neighbor over the whole image. Range = [-1 1] Correlation is 1 or -1 for a perfectly positively or negatively correlated image. Correlation is NaN for a constant image.	$\sum_{i,j} \frac{(i-\mu i)(j-\mu j)p(i,j)}{\sigma_i \sigma_j}$
'Energy'	Returns the sum of squared elements in the GLCM. Range = [0 1] Energy is 1 for a constant image. The property Energy is also known as uniformity, uniformity of energy, and angular second moment.	$\sum_{i,j} p(i,j)^2$
'Homogeneity'	Returns a value that measures the closeness of the distribution of elements in the GLCM to the GLCM diagonal. Range = [0 1] Homogeneity is 1 for a diagonal GLCM.	$\sum_{i,j} \frac{p(i,j)}{1+ i-j }$

Kookkurrenzmatrix in 0°-Richtung: 'Offset', [0 1]

Kookkurrenzmatrix in 45°-Richtung: 'Offset', [-1 1]

Kookkurrenzmatrix in 90°-Richtung: 'Offset', [-1 0]

Kookkurrenzmatrix in 135° -Richtung: 'Offset', [-1 -1]

Webfehlerversuch: Eigenschaften der Kookkurrenzmatrix (Energie)

Webfehlerversuch: Eigenschaften der Kookkurrenzmatrix (Energie)

Übergang / Naht

Webfehlerversuch: Eigenschaften der Kookkurrenzmatrix (Energie)

Webfehlerversuch: Eigenschaften der Kookkurrenzmatrix (Homogenität)

Webfehlerversuch: Eigenschaften der Kookkurrenzmatrix (Homogenität)

Übergang / Naht

Webfehlerversuch: Eigenschaften der Kookkurrenzmatrix (Homogenität)

Webfehlerversuch: Eigenschaften der Kookkurrenzmatrix (Kontrast)

Webfehlerversuch: Eigenschaften der Kookkurrenzmatrix (Kontrast)

Übergang /Naht

Webfehlerversuch: Eigenschaften der Kookkurrenzmatrix (Kontrast)

Webfehlerversuch: Eigenschaften der Kookkurrenzmatrix (Korrelation)

Webfehlerversuch: Eigenschaften der Kookkurrenzmatrix (Korrelation)

Übergang / Naht

Webfehlerversuch: Eigenschaften der Kookkurrenzmatrix (Korrelation)

Termine

Datum	Zyklus	Inhalte
03.11.2022		
10.11.2022	Gruppe A	Übung 1 Optik und Beleuchtung
17.11.2022	Gruppe B	Übung 1 Optik und Beleuchtung
24.11.2022	Gruppe A	Übung 2 Operatoren
01.12.2022	Gruppe B	Übung 2 Operatoren
08.12.2022	Gruppe A	Übung 3 Objektsegmentierung
15.12.2022	Gruppe B	Übung 3 Objektsegmentierung Test 1 (A & B)
05.01.2023	Gruppe A	Übung 4 Hough Transformation
12.01.2023	Gruppe B	Übung 4 Hough Transformation
19.01.2023	Gruppe A	Übung 5 Rauschen Test 2 (A & B)
26.01.2023	Gruppe B	Übung 5 Rauschen
02.02.2023	Gruppe A	Übung 6 Texturen
09.02.2023	Gruppe B	Übung 6 Texturen
16.02.2023		Test 3 (A & B), 14:30 Uhr, PTZ 001 (kleiner Hörsaal)
01.03.2023		ISIS-Test zu Vorlesungsinhalten (Raum: MA 241 (UNIX-PC-Pool) , 14:30-15:30 Uhr