

Modélisation du Moteur à Courant continu – Schéma blocs

-	=
٠.	=
	ັບ
	<u>ම</u>
•	
-	<u> </u>
	_

En vue de pouvoir analyser le comportement d'un moteur à courant continu, on souhaite disposer de son modèle causal (schéma-bloc).

Activité 1 - Modélisation du moteur à courant continu Donner les équations du moteur à courant continu et son schéma-bloc. Réaliser le schéma-bloc en utilisant le module xcos de Scilab. Les valeurs données par le constructeur du moteur sont les suivantes : Moteur à courant continu Modéliser Résistance de l'induit : $R_m = 3 \Omega$. Inductance de l'induit : $L_m = 4 \text{ mH}$. Inertie du motoréducteur ramené à l'arbre moteur (à vérifier) : $J_m = 3 \times 10^{-6} \text{ kg. m}^2$. Constante du moteur K = 0.009 V/(rad/s) = 0.009 Nm/A. Coefficient de frottement visqueux en sortie du réducteur f = 0.0014 Nms/rad. ☐ Tracer la vitesse du moteur pour un échelon de tension de 9 V. Tracer le courant moteur. Activité 2 - Modélisation de l'asservissement en position Modifier le schéma-bloc pour obtenir un asservissement en position avec un correcteur proportionnel. Les valeurs sont les suivantes : Réducteur

Nodéliser

Activité 4

On souhaite un système avec écart statique nul sans dépassement.

Déterminer un correcteur permettant de respecter ces exigences.

☐ Réaliser une synthèse dans le but d'une préparation orale

vnthèse

Pour XENS – CCINP – Centrale :

н

 \trianglerighteq Pour CCMP :