Lemme de Nakayama et applications

Table des matières

0.1	Avec la formule de Cramer		
0.2	Directement mdr		
0.3	Conséquences		
	0.3.1	$M = B$ est un anneau $\dots \dots \dots \dots \dots$	
	0.3.2	Radical de Jacobson	
	0.3.3	Cas général : $1 + I$ contient que des inversibles	
	0.3.4	Dimension d en tant que k -ev implique généré par d	
		éléments	
0.4	Morphisme fini implique surjectif		
	Propreté des variétés projectives		
	•	± •	

. . .

Bon encore et toujours, le Nakayama, j'ai vu une preuve un peu en détail. En gros, si M est un A-module de type fini. Et si IM = M, on peut dire plusieurs choses : soit (m_0, \ldots, m_n) une famille génératrice de M, on a

$$m_j = \sum_{i=1}^n \alpha_{ij} m_i$$

avec $\alpha_{ij} \in I$. D'où la matrice $A = (\alpha_{ij})$ vérifie, $\ker(A - I_n) = M$ en tant qu'endomorphisme du A-module M. Maintenant on peut faire plusieurs choses.

0.1 Avec la formule de Cramer

Par la formule de Cramer, on a $det(A - I_n).M = d.M = 0$. Avec $d \in 1 + I$, ça ca se vérifie en développant la diagonale.

0.2 Directement mdr

En fait la matrice de $M \mapsto IM$ c'est vraiment l'identité ptdr, en particulier si on écrit la matrice de l'application, on l'appelle C, alors $Ce_i = e_i$ pour

tout vecteur de la famille génératrice. Juste on le réecrit à coefficients dans I. Et on a $C \neq I$ parce que $1 \notin I$. Bon maintenant avec Cayley-Hamilton :

$$C^{n} + a_{n-1}C^{n-1} + \ldots + a_{1}C + a_{0} = 0$$

avec $a_i \in I$. Bon on a $\phi_C.v = v$ pour tout v, en particulier, $\phi_C(\sum a_i + 1) = 0$. En particulier, l'endomorphisme $m_x = m_{\sum a_i + 1}$ a pour noyau tout M et ϕ_C est l'identité. D'où xM = 0 et $\sum a_i \neq -1$ sinon $1 \in I$.

0.3 Conséquences

On a des objets maintenant il reste juste à trouver des critères sur 1+I et d

0.3.1 M = B est un anneau

Si $A \subset B = M$ est un sur-anneau de A, on a $1_A \in M = B$, d'où aB = 0 seulement si a = 0. On peut en déduire via $0 \in 1 + I$ ssi I = (1) que

$$I \subset A \implies IB \subset B$$

où les inclusions sont strictes.

0.3.2 Radical de Jacobson

Maintenant pareil, si 1 + I ne contient que des inversibles. Par exemple si I est le radical de Jacobson, on obtient le critère avec

$$I = \bigcap_{\mathfrak{m} \in Specm(A)} \mathfrak{m}$$

que I.M = M implique M = 0, ici car d est inversible.

0.3.3 Cas général : 1 + I contient que des inversibles

Plus généralement ducoup si 1+I ne contient que des inversible, si M'+IM=M pour un M' quelconque alors M=M', y suffit d'appliquer la méthode à M/M'.

0.3.4 Dimension d en tant que k-ev implique généré par d éléments

L'espace $\mathfrak{m}/\mathfrak{m}^2$ un A/\mathfrak{m} espace-vectoriel. En particulier, si

$$\mathfrak{m}/\mathfrak{m}^2 = \oplus_{i=1}^d ke_i$$

alors $\mathfrak{m} = (e_1, \dots, e_d) + \mathfrak{m}^2$ dans A. En posant $M = \mathfrak{m}$ et $N = (e_1, \dots, e_d)$ on peut regarder

$$\mathfrak{m}/(e_1,\ldots,e_d)=\mathfrak{m}.(\mathfrak{m}/(e_1,\ldots,e_d))$$

avec M/N un A-module et $I=\mathfrak{m}$. On obtient $f\in 1+\mathfrak{m}$ tel que $f\mathfrak{m}=(e_1,\ldots,e_d)$. En particulier si on localise en f on a fini. Et si A est local y'a égalité.

0.4 Morphisme fini implique surjectif

En fait la fibre $f^{-1}(y)$ vérifie des équations $f^*\mathfrak{m}_y$ et f(x) = y veut dire que $f^*\mathfrak{m}_y \subset \mathfrak{m}_x$. À l'inverse, $f^{-1}(y) = \emptyset$ implique $f_*\mathfrak{m}_y = k[X]$. On remarque alors que en identifiant

$$k[Y] = f_* k[Y]$$

Remarque 1. Les flèches finies sont dominantes donc cette identification est pas bizarre, la flèche est injective.

si $X \to Y$ est fini, alors k[X] est un k[X]-module de type fini et

$$\mathfrak{m}_y k[X] = k[X]$$

via l'identification. En particulier, via le critère où M est un anneau ça peut pas arriver. D'où la surjectivité.

Exercices 0.4.1. Preuve constructive?

0.5 Propreté des variétés projectives

Note 1. On utilise seulement l'existence du $f \in 1 + I$.

La preuve de séparation est dans mes notes. Sinon on doit prouver que $X \times Z \to Z$ est fermée. On peut se ramener à $\mathscr{P}^n \times \mathbb{A}^m$. La condition $y \in \mathbb{A}^m - p_2(Z)$ avec $Z = Z(I) \subset \mathbb{A}^m$ se réecrit

$$(U_0,\ldots,U_n)^N \subset I + \mathfrak{m}_{\eta} k[U_0,\ldots,U_n,T_1,\ldots T_m]$$

parce que un fermé du produit est donné par des

$$G_i(U_0, \ldots, U_n, T_1, \ldots, T_m) = 0$$

avec les G_i homogènes en \bar{U} . Et en évaluant sur \mathbb{A}^m en y, on doit pas avoir de solution pour les $G_i(\bar{U},y)=0$ dans \mathbb{P}^n . D'où en quotientant par \mathfrak{m}_y le résultat.

Remarque 2. Penser $A = k[U_0, \dots, U_n, T_1, \dots, T_m] \to A/\mathfrak{m}_y$ qui correspond $\dot{a} \mathbb{A}^m \to \mathbb{A}^{n+1} \times \mathbb{A}^m$.

On peut réecrire du coup en considérant uniquement les éléments homogènes de degré ${\cal N}$:

$$(U_0, \dots, U_n)^N = B_N \subset I_N + \mathfrak{m}_y B_N$$

avec $I_N = I \cap B_N$. D'où on obtient $P \in 1 + \mathfrak{m}_y \subset k[T_1, \dots, T_m]$ homogène tel que $PB_n = I_N$ dans $k[\bar{U}, T_1, \dots, T_m]$.

Remarque 3. Là c'est

$$P(\bar{T})(U_0,\ldots,U_n)^N \subset I_N \subset k[\bar{U},\bar{T}]$$

En particulier, $y\in D^+(P)$ implique en localisant en P via $p_2^{-1}(D(P))$ dans $\mathbb{P}^n\times\mathbb{A}^m$ et via $D(P)\cap Z$ dans \mathbb{A}^m on obtient le résultat.

Exercices 0.5.1. Bien écrire les diagrammes et les déductions.