(11)特許出願公開番号

特開平11-130753

(43)公開日 平成11年(1999) 5月18日

(51) Int.Cl. ⁶	識別記号	·	FΙ			•	
C 0 7 D 231/12			C07D2	31/12		В	9
233/60	103		2	33/60		1.03	
249/08	5 1 4		2	249/08		514	
2/7/24	•		. 2	77/24			•
401/04	2 3 1		4	101/04		231	
•		審査請求	未請求 請求	項の数3	OL	(全 29 頁)	最終頁に続く
(21)出願番号	特願平9-300384		(71)出頭人	000207	827		
				大鵬薬	品工業	株式会社	
(22)出願日	平成9年(1997)10月31日			東京都	千代田	区神旧錦町1	-2 7
			(72)発明者	1 北出	誠		
				東京都	あきる	野市小川東1	-19-13
			(72)発明者	大野 大野	友靖		
				埼玉県	飯能市	脊木103−8	
			(72)発明者	寺田	忠史		
				埼玉県	门高市	武蔵台7-5	- 18
•			(72)発明者	後尾	有次	`	
				埼玉県	所沢市	山口5063-1	48-2-504
			(74)代理人	、 弁理士	三枝	英二(外	10名)
				•			最終頁に続く

(54) 【発明の名称】 フェニルカルボン酸誘導体

(57)【要約】 (修正有)

【課題】脂肪酸生合成とコレステロール生合成を同時に 阻害する作用を有することにより、血中のトリグリセラ イド及びコレステロールを同時に低下させることがで き、しかも安全性が高い医薬として有用な文献等に未掲 載の新規な化合物を提供する。

【解決手段】一般式(I)

$$R^{1}$$
 $R^{-Q-(CH_{2})_{n}-B-(CH_{2})_{n}}$
 R^{1}
 $CO_{2}R^{2}$
(1)

具体的には、例えば

で表されるフェニルカルボン酸誘導体又はその塩。

【特許請求の範囲】 【請求項1】一般式(I) 【化1】

$$A-Q-(CH_2)_n-B-(CH_2)_{\blacksquare} \xrightarrow{\mathbb{R}^1} -CO_2\mathbb{R}^2 \tag{1}$$

(式中、Aは、低級アルキル基;又は置換基として、ハ

(式中、R³及びR⁴は、同一又は異なって、水素原子、低級アルキル基、窒素原子上の水素原子が低級アルキル基で置換されていてもよいアミノ基又はピロール基を示し、

R⁶及びR⁶は、それぞれ水素原子又は低級アルキル基を示す。)を示し、

Bは、酸素原子又は NR^7 (式中、 R^7 は水素原子又は低級アルキル基を示す。)を示し、

R¹は、水素原子、ハロゲン原子又は低級アルコキシ基を示し、

(式中、R³及びR⁴は、同一又は異なって、水素原子又は低級アルキル基を示し、R⁵及びR⁶は、それぞれ低級アルキル基を示す。)であり、Bが酸素原子であり、R¹が水素原子であり、R²が水素原子又は低級アルキル基であり、nが1であり、mが0である請求項1記載のフェニルカルボン酸誘導体又はその塩。

【請求項3】Aがフェニル基又はハロゲン原子で置換されたフェニル基であり、Qが、

【化4】

(式中、R³はメチル基を示し、R⁴は水素原子を示し、 R⁵はメチル基を示す。)である請求項2記載のフェニ ルカルボン酸誘導体又はその塩。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、新規なフェニルカルボン酸誘導体又はその薬学的に許容される塩に関する。該フェニルカルボン酸誘導体又はその塩は、脂肪酸生合成とコレステロール生合成を同時に阻害する作用を有し、抗高脂血症剤等として有用である。

[0002]

【従来の技術】血清脂質であるトリグリセライド(以

ロゲン原子、低級アルキル基、低級アルコキシ基及び窒素原子上の水素原子が低級アルキル基で置換されたアミノ基から選ばれた基を有することのある、置換されていてもよいフェニル基若しくは置換されていてもよいピリジル基を示し、Qは、

【化2】

$$\begin{array}{cccc}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$$

R²は、水素原子又は低級アルキル基を示し、

nは、1又は2を示し、

mは、O又は1を示す。)で表されるフェニルカルボン 酸誘導体又はその塩。

【請求項2】Aが、置換基として、ハロゲン原子、低級アルキル基、低級アルコキシ基及び窒素原子上の水素原子が低級アルキル基で置換されたアミノ基から選ばれた基を有することのある、置換されていてもよいフェニル基であり、Qが、

【化3】

下、TGと略す。)又は低比重リボ蛋白ーコレステロールを低下させることにより、冠動脈疾患の発症を低減できることが最近明らかにされてきた。例えば、TGの低下剤であるクロフィブラートを用いたユナイテッド エアーライン トライアル (United Airline Trial) (Krasno, L. R. 及びKidera, G. J.: Journal of the American Medical Association, 219, 845, 1972) では、心筋梗塞を有意に減少できることが証明された。又、コレステロールを低下させる3-ヒドロキシー3-メチルグルタリルーCoAリダクターゼ阻害剤であるプラバスタチンを用いたウエスト オブ スコットランドコロナリープレベンション スタディ (West of Scotland Coronary Prevention Study) (Shepherd, J.等: New England Journal of Medicine, 333, 1301, 1995) では、冠動脈疾患を減少させ死亡率を低下させることが証明された。

【0003】従って、TGとコレステロールを同時に強力に低下できれば、冠動脈疾患を減少させ死亡率を低下できることが期待される。

【0004】従来より、脂肪酸生合成を阻害してTGを低下させ、また同時にコレステロール生合成を阻害する化合物については、例えば特開平2-56452号公報、特開平3-275666号公報、特開平4-111773号公報、特開平4-242887号公報、特開平4-243228号公報、特開平5-519129号公報、特開平5-507962号公報、特開平5-140

826号公報等に記載されているが、有用な薬剤は未だ報告されていない。

[0005]

【発明が解決しようとする課題】本発明の主な目的は、 脂肪酸生合成とコレステロール生合成を同時に阻害する 作用を有することにより、血中のトリグリセライド及び コレステロールを同時に低下させることができ、しかも 安全性が高い医薬として有用な文献等に未掲載の新規な 化合物を提供することにある。

[0006]

【課題を解決するための手段】本発明者は、かかる実情に鑑み鋭意研究を行った結果、下記一般式(1)で表されるフェニルカルボン酸誘導体又はその薬学的に許容される塩が、脂肪酸生合成阻害作用とコレステロール生合成阻害作用を同時に有することを見出し、本発明を完成

【0011】(式中、 R^3 及び R^4 は、同一又は異なって、水素原子、低級アルキル基、窒素原子上の水素原子が低級アルキル基で置換されていてもよいアミノ基又はピロール基を示し、 R^5 及び R^6 は、それぞれ水素原子又は低級アルキル基を示す。)を示し、Bは、酸素原子又は R^7 (式中、 R^7 は水素原子又は低級アルキル基を示す。)を示し、 R^1 は、水素原子、N口ゲン原子又は低級アルコキシ基を示し、 R^2 は、水素原子又は低級アルキル基を示し、 R^2 は、水素原子又は低級アルキル基を示し、 R^2 は、水素原子又は低級アルキル基を示し、 R^1 は、水素原子又は低級アルキル基を示し、 R^1 は、水素原子又は低級アルキル基を示し、 R^2 は、水素原子又は低級アルキル基を示し、 R^2 は、 R^2 は、 R^3 は、 R^3 は、 R^4 は、 R^4 は、 R^5 は、

[0012]

【発明の実施の形態】上記一般式(I)中、A、R²、R³、R⁴、R⁵、R⁶及びR⁷で示される低級アルキル基としては、炭素数 1~4の直鎖又は分枝鎖のアルキル基を挙げることができ、具体的にはメチル基、エチル基、nープロピル基、イソプロピル基、nーブチル基、イソブチル基、secーブチル基、tertーブチル基等を例示できる。

【0013】A及びR¹で示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等を例示できる。

【0014】A及び R^1 で示される低級アルコキシ基としては、炭素数 $1\sim4$ の直鎖のアルコキシ基を挙げることができ、具体的にはメトキシ基、エトキシ基、n-プロポキシ基、n-プトキシ基等を例示できる。

【0015】R³及びR⁴で示される窒素原子上の水素原子が低級アルキル基で置換されていてもよいアミノ基としては、アミノ基の他に、アミノ基の2個の水素原子のうち1個又は2個が上記低級アルキル基で置換されたアミノ基を挙げることができ、具体的にはN-メチルアミ

させるに至った。

【0007】即ち、本発明は、一般式(1)

[0008]

【化5】

$$A-Q-(CH2)n-B-(CH2)n -CO2R2 (1)$$

【0009】(式中、Aは、低級アルキル基;又は置換基として、ハロゲン原子、低級アルキル基、低級アルコキシ基及び窒素原子上の水素原子が低級アルキル基で置換されたアミノ基から選ばれた基を有することのある、置換されていてもよいフェニル基若しくは置換されていてもよいピリジル基を示し、Qは、

[0010]

【化6】

ノ、N, N-ジメチルアミノ、N-エチルアミノ、N, N-ジエチルアミノ、N-(n-プロピル) アミノ、N, N-ジ(n-プロピル) アミノ、N-(n-ブチル) アミノ、N, N-ジ(n-ブチル) アミノ基等を例示できる。

【0016】Aで示される「置換基として、ハロゲン原 子、低級アルキル基、低級アルコキシ基及び窒素原子上 の水素原子が低級アルキル基で置換されたアミノ基から 選ばれた基を有することのある、置換されていてもよい フェニル基若しくは置換されていてもよいピリジル基」 におけるフェニル基及びピリジル基のそれぞれの置換基 としては、上記したものと同様のハロゲン原子、低級ア ルキル基、低級アルコキシ基、窒素原子上の水素原子が 低級アルキル基で置換されたアミノ基等を挙げることが できる。置換されていてもよいフェニル基及び置換され ていてもよいピリジル基としては、より具体的には、フ ェニル、2-クロロフェニル、3-クロロフェニル、4 ークロロフェニル、2ーフロロフェニル、3ーフロロフ ェニル、4-フロロフェニル、2-ブロモフェニル、3 ーブロモフェニル、4ーブロモフェニル、2ーヨードフ ェニル、3-ヨードフェニル、4-ヨードフェニル、2 ーメチルフェニル、3ーメチルフェニル、4ーメチルフ ェニル、2-エチルフェニル、3-エチルフェニル、4 ーエチルフェニル、2ープロピルフェニル、3ープロピ ルフェニル、4ープロピルフェニル、4ーアミノフェニ ル、3-アミノフェニル、2-アミノフェニル、4-(N-メチル) アミノフェニル、3-(N-メチル) ア ミノフェニル、2-(N-メチル)アミノフェニル、4 - (N , N - ジメチル) アミノフェニル、3 - (N , N ージメチル) アミノフェニル、2-(N, N-ジメチ ル) アミノフェニル、4-(N-エチル) アミノフェニ ル、3-(N-x+h) アミノフェニル、2-(N-x+h) アミノフェニル、4-(N, N-i) アミノフェニル、3-(N, N-i) アミノフェニル、2-(N, N-i) アミノフェニル、4-(N-i) アミノフェニル、4-(N-i) アミノフェニル、4-(N-i) アミノフェニル、2-(N-i) アミノフェニル、1-i (1-i アロピル) アミノフェニル、1-i (1-i アロポキシ) フェニル、1-i (1-i アロポキシ) フェニル、1-i (1-i アロポキシ) フェニル、1-i (1-i アロポキシ) フェニル、1-i アロポキシ)フェニル、1-i アロポキシ

【0019】(式中、R[®]及びR⁴は、同一又は異なって、水素原子又は低級アルキル基を示し、R[®]及びR[®]は、それぞれ低級アルキル基を示す。)であり、Bが酸素原子であり、R¹が水素原子であり、R²が水素原子又は低級アルキル基であり、nが1であり、mが0である化合物である。

【0020】また、より好ましいフェニルカルボン酸誘導体(I)は、上記した好ましい化合物において、Aがフェニル基又はハロゲン原子で置換されたフェニル基であり、Qが、

[0021]

【化8】

【0022】(式中、R³はメチル基を示し、R⁴は水素 原子を示し、R⁵はメチル基を示す。)である化合物で ある。

【0023】特に好ましいフェニルカルボン酸誘導体 (I)は、より好ましい化合物として示した上記化合物 において、Aがフェニル基又は4-クロロフェニル基であり、R²が水素原子、メチル基又はエチル基である化 合物である。

【0024】特に好ましいフェニルカルボン酸誘導体 (1)の具体例としては、例えば下記の化合物を挙げる ことができる。

【0025】・1-フェニル-5-メチル-4-(4'

ニル、2-イソプロポキシフェニル、3-イソプロポキーシフェニル、4-イソプロポキシフェニル、2-ピリジル、3-ピリジル、4-クロロ-2-ピリジル、4-フロモ-2-ピリジル基等を例示できる。

【0017】一般式(I)で表される本発明フェニルカルボン酸誘導体の内で、好ましい化合物は、Aが、置換基として、ハロゲン原子、低級アルキル基、低級アルコキシ基及び窒素原子上の水素原子が低級アルキル基で置換されたアミノ基から選ばれた基を有することのある、置換されていてもよいフェニル基であり、Qが、

(0018)

【化7】

ーメトキシカルボニルフェノキシ)メチルピラゾール
・1-(4-クロロフェニル)-5-メチル-4(4'-エトキシカルボニルフェノキシ)メチルピラゾール

 $\cdot 1 - (4 - \rho \Box \Box \Box z = \lambda) - 5 - \lambda + \lambda - 4 - (4^{\prime} - \lambda \lambda \ddot{z} + \lambda \dot{z} +$

上記一般式(I)で表されるフェニルカルボン酸誘導体の塩としては、特に限定されないが、薬学的に許容される酸及び/又は塩基性化合物を作用させた酸付加塩及び/又は塩基塩が挙げられる。この酸付加塩としては、例えば塩酸、硫酸、リン酸、臭化水素酸等の無機酸との塩;シュウ酸、マレイン酸、フマール酸、リンゴ酸、酒石酸、クエン酸、安息香酸、酢酸、p-トルエンスルボン酸、メタンスルホン酸等の有機酸との塩等を例示できる。塩基塩としては、例えばナトリウム、カリウム、マグネシウム、カルシウム等のアルカリ金属、アルカリ土類金属等との塩;アンモニア、メチルアミン、ジメチルアミン、ピベリジン、シクロヘキシルアミン、トリエチルアミン等のアミン類との塩等を例示できる。

【0026】本発明のフェニルカルボン酸誘導体(I)は、例えば下記の反応工程式に示した合成ルートにより 製造することができる。

[0027]

【化9】

【0028】(式中A、Q、B、R¹、R²、n及びmは 前記に同じ。)

一般式(I)のフェニルカルボン酸誘導体の内で、Qが、

【0029】 【化10】

【0030】の化合物は、例えば、上記反応工程式の内で、公知の原料(II)を用いて、(工程1)→(工程2)→(工程3)→一般式(I)のルート、(工程1)→(工程4)→(工程5)→一般式(I)のルート、又は(工程1)→(工程6)→一般式(I)のルートにより合成できる。

【0031】又、一般式(I)のフェニルカルボン酸誘導体の内で、Qが、

[0032]

【化11】

$$\frac{1}{N}$$

【0033】の化合物は、例えば、上記反応工程式の内で、公知の原料(IV)を用いて、(工程3) → 般式 (I) のルートを採るか、又は公知の化合物(III)を用いて、(工程6) → 一般式(I) のルートを採ることにより合成できる。

【0034】上記反応工程式における各工程は、より詳細には、以下の如くして実施される。

【0035】(工程1)上記一般式(II)で表される公 知化合物を還元することにより、一般式(III)で表さ れる化合物を製造することができる。本反応で使用する 還元剤としては、特に限定されないが、水素化アルミニ ウムリチウム(LiAlH₄)、水素化ホウ素ナトリウ ム(NaBH₄)、水素化ホウ素リチウム(LiB H₄)、ジヒドロビス(2-メトキシエトキシ)アルミ ニウムナトリウム (NaAlH₂(OCH₂CH₂OC H₃)₂)、水素化ホウ素ナトリウムとルイス酸の系、水 素化アルミニウムリチウムとルイス酸の系等を例示でき る。このルイス酸については、特に限定されないが、塩 化アルミニウム、塩化亜鉛、三フッ化ホウ素・ジエチル エーテレート(BF3-Et2O)等を例示できる。本反 応は、通常、適当な溶媒中で行なわれる。用いる溶媒と しては、反応に関与しないものであれば特に制限はな く、例えばベンセン、トルエン、キシレン等の芳香族炭 化水素類、ジエチルエーテル、テトラヒドロフラン、ジ オキサン、ジグリム等のエーテル類等を例示できる。還 元剤は、一般式(11)の化合物1モルに対して0.5~ 3モル当量程度使用することが適当である。反応温度は ○℃~溶媒の沸点程度であり、好ましくは10℃~50 ℃程度である。反応時間は0.1~6時間程度であり、 好ましくは0.5~2時間程度である。

【0036】本反応により得られる一般式(III)の化合物は、単離し又は単離せずに、工程2、工程4及び工

程6に用いることができる。

【0037】(工程2)上記一般式(III)で表される 化合物を、無溶媒若しくは適当な溶媒中でクロル化剤と 反応させることにより、一般式 (IV) で表される化合物 を製造することができる。溶媒としては、反応に関与し ないものであれば特に制限はなく、例えばベンゼン、ト ルエン、キシレン等の芳香族炭化水素類、ジエチルエー テル、テトラヒドロフラン、ジオキサン等のエーテル 類、ジクロロメタン、クロロホルム等のハロゲン化炭化 水素類、アセトニトリル等の非プロトン性極性溶媒等を 用いることができる。本反応で使用されるクロル化剤と しては、特に限定されるわけではないが、塩素ガス、チ オニルクロライド、スルフリルクロライド、三塩化リ ン、五塩化リン、オキシ塩化リン等を例示できる。クロ ル化剤は、一般式(III)の化合物1モルに対して1~ 10モル当量程度、好ましくは1~1.5モル当量程度 使用するのがよい。反応温度は-10℃~溶媒の沸点程 度とすればよく、好ましくは0~50℃程度とする。反 応時間は0.1~6時間程度であり、好ましくは0.5 ~2時間程度である。

【0038】本反応により得られる一般式 (IV) の化合物は、単離し又は単離せずに、工程3に用いることができる。

【0039】(工程3)上記一般式(IV)で表される化 合物と一般式(V)においてR2が低級アルキルである 化合物とを、適当な溶媒中で塩基性化合物と反応させる ことにより、一般式(I)においてR2が低級アルキル である化合物を製造することができる。溶媒としては、 反応に関与しないものであれば特に制限はなく、例えば ベンゼン、トルエン、キシレン等の芳香族炭化水素類、 ジエチルエーテル、テトラヒドロフラン、ジオキサン等 のエーテル類、ジクロロメタン、クロロホルム等のハロ ゲン化炭化水素類、アセトニトリル、ジメチルホルムア ミド、ジメチルアセトアミド、ジメチルスルホキシド等 の非プロトン性極性溶媒等を用いることができる。塩基 性化合物としては、例えばトリエチルアミン、ピリジン 等の第3級アミン類等の有機塩基性化合物、炭酸ナトリ ウム、炭酸カリウム等のアルカリ金属炭酸塩、炭酸水素 ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸水 素塩、水酸化ナトリウム、水酸化カリウム等のアルカリ 金属水酸化物、ナトリウム、カリウム等のアルカリ金 属、水素化ナトリウム等の水素化アルカリ金属等の無機 塩基性化合物等を例示できる。一般式(V)で表される 化合物は、一般式(IV)の化合物1モルに対して、O. 9~2モル当量程度、好ましくは1~1.2モル当量程 度使用するのがよい。塩基性化合物は、一般式 (1V) の 化合物1モルに対して、1~10モル当量程度、好まし くは1~2モル当量程度使用するのがよい。 反応温度は ○℃~溶媒の沸点程度であり、好ましくは0~50℃程 度である。反応時間は0.5~48時間程度であり、好 ましくは1~12時間程度である。

【0040】(工程4)上記一般式(III)で表される 化合物を、適当な溶媒中で酸化剤と反応させることによ り、一般式(VI)で表される化合物を製造することがで きる。ここで用いる溶媒としては、反応に関与しないも のであれば特に制限はなく、例えばベンゼン、トルエ ン、キシレン等の芳香族炭化水素類、ジエチルエーテ ル、テトラヒドロフラン、ジオキサン等のエーテル類、 ジクロロメタン、クロロホルム等のハロゲン化炭化水素 類、アセトン、メチルエチルケトン、メチルイソブチル ケトン等のアルキルケトン類、N,N-ジメチルホルム アミド、N, N-ジメチルアセトアミド、アセトニトリ ル、ジメチルスルホキシド等の非プロトン性極性溶媒等 を例示できる。酸化剤としては、特に限定されず各種酸 化剤を使用できる。クロム酸を用いた酸化剤としては、 例えば、クロム酸、ピリジニウムクロロクロメート、ピ リジニウムジクロメート等を例示できる。親電子剤とジ メチルスルホキシドを用いた酸化剤では、例えば、親電 子剤として、無水酢酸、無水トリフルオロ酢酸、五酸化 リン、三酸化イオウーピリジン錯体、オキサリルクロラ イド等を使用することができる。マンガンを用いた酸化 剤としては、二酸化マンガンを例示できる。又、次亜塩 素酸やジメチルスルフィド・N-クロルサクシンイミド 等の酸化剤も使用できる。酸化剤は、一般式(III)の 化合物1モルに対して1~50モル当量程度、好ましく は1~2モル当量程度使用するのがよい。反応温度は-78~30℃程度である。反応時間は0.1~48時間 程度であり、好ましくは0.5~12時間程度である。 本反応により得られる一般式(VI)の化合物は、単離し 又は単離せずに、工程5に用いることができる。

【0041】(工程5)上記一般式(VI)で表される化 合物と一般式(V)においてR2が低級アルキルである。 化合物とを、適当な溶媒中で還元剤と反応させることに より、一般式(I)においてR2が低級アルキルである 化合物を製造することができる。ここで用いる溶媒とし ては、反応に関与しないものであれば特に制限はなく、 メタノール、エタノール、プロパノール、イソプロパノ ール等のアルコール類、ギ酸、酢酸等の有機酸類、ベン ゼン、トルエン、キシレン等の芳香族炭化水素類、ジエ チルエーテル、テトラヒドロフラン、ジオキサン等のエ ーテル類等を例示でき、これらは一種単独で又は二種以 上を混合して使用できる。還元剤としては、水素化ホウ 素ナトリウム、シアノ水素化ホウ素ナトリウム、ピリジ ンボラン錯体、ピベリジンボラン錯体等を例示できる。 一般式(V)の化合物は、一般式(VI)の化合物1モル に対して、0.9~2モル当量程度、好ましくは1~ 1. 2モル当量程度使用するのがよい、還元剤は、一般 式(VI)の化合物1モルに対して、1~10モル当量程 度、好ましくは1~2モル当量程度使用するのがよい。 反応温度は0~50℃程度である。反応時間は0.1~

8時間程度であり、好ましくは0.5~2時間程度である。

【0042】(工程6)上記-般式(111)で表される 化合物と-般式(V)においてR2が低級アルキルであ る化合物とを、適当な溶媒中で縮合剤と反応させること により、一般式(I)においてR²が低級アルキルであ る化合物を製造することができる。ここで用いる溶媒と しては、反応に関与しないものであれば特に制限はな く、例えばベンゼン、トルエン、キシレン等の芳香族炭 化水素類、ジエチルエーテル、テトラヒドロフラン、ジ オキサン等のエーテル類、ジクロロメタン、クロロホル ム等のハロゲン化炭化水素類、アセトン、メチルエチル ケトン、メチルイソブチルケトン等のアルキルケトン 類、N、Nージメチルホルムアミド、N、Nージメチル アセトアミド、アセトニトリル、ジメチルスルホキシド 等の非プロトン性極性溶媒等を例示できる。縮合剤とし ては、トリフェニルホスフィンージエチルアゾジカルボ キシレートを例示できる。一般式(V)の化合物は、一 般式(III)の化合物1モルに対して、0.9~2モル 当量程度、好ましくは1~1.2モル当量程度使用する のがよい。縮合剤は、一般式(III)の化合物1モルに 対して、1~10モル当量程度、好ましくは1~2モル 当量程度使用するのがよい。反応温度は0℃~50℃程 度である。反応時間は1~48時間程度であり、好まし くは1~8時間程度である。

【0043】さらに、一般式(I)においてR2が水素 原子である化合物は、上記した方法で得られた一般式 (I)においてR2が低級アルキルである化合物を、適 当な溶媒中でアルカリ加水分解することにより製造する ことができる。溶媒としては、水単独又は水と有機溶媒 とを混合して使用することが可能である。有機溶媒とし ては、反応に関与しないものであれば特に制限はなく、 例えばベンセン、トルエン、キシレン等の芳香族炭化水 素類、ジエチルエーテル、テトラヒドロフラン、ジオキ サン等のエーテル類、ジクロロメタン、クロロホルム等 のハロゲン化炭化水素類、アセトニトリル、ジメチルホ ルムアミド、ジメチルアセトアミド、ジメチルスルホキ シド等の非プロトン性極性溶媒等を例示できる。アルカ リ化合物としては、例えば炭酸ナトリウム、炭酸カリウ ム等のアルカリ金属炭酸塩、炭酸水素ナトリウム、炭酸 水素カリウム等のアルカリ金属炭酸水素塩、水酸化ナト リウム、水酸化カリウム等のアルカリ金属水酸化物等の 無機アルカリ化合物等を例示できる。アルカリ化合物 は、一般式(I)においてR2が低級アルキルである化 合物1モルに対して、0.1~10モル当量程度、好ま しくは1~2モル当量程度使用するのがよい。反応温度 は0℃~溶媒の沸点程度である。反応時間は0.5~4 8時間程度であり、好ましくは1~12時間程度であ

【0044】上記方法により得られる本発明のフェニル

る。

カルボン酸誘導体(1)は、通常の分離手段、例えばカ ラムクロマトグラフィー、再結晶等により単離及び精製 して用いることができる。

【0045】このようにして得られた本発明のフェニルカルボン酸誘導体(I)又はその塩は、脂肪酸生合成阻害作用及びコレステロール生合成阻害作用を有しており、高脂血症治療剤、動脈硬化予防及び治療剤、抗肥満薬、冠動脈疾患の減少等の医薬品として有用である。【0046】

【実施例】以下に参考例、実施例及び試験例を示して、 本発明を更に詳しく説明する。

【0047】(参考例1)

1-(4-クロロフェニル)-5-メチル-4-エトキ。 シカルボニルピラゾールの合成

アセト酢酸エチル (51.6g、0.39mol)に N, N-ジメチルホルムアミドジメチルアセタール(5 5.7g、0.46mol)を滴下し、100℃にて1 時間加熱撹拌した。反応後、冷却し減圧下濃縮して得ら れた残渣を、減圧下蒸留して、N, N-ジメチルアミノ メチレンアセト酢酸エチルエステル63.7g(収率8 7%:156℃/O. 2Torr)を得た。この化合物(1 2. 2g、66. 3mmol)を、4-クロロフェニル ヒドラジン塩酸塩(11.8g、66.3mmol)、 エタノール(100ml)及び酢酸(1.9g)の混合 溶液中に加え、60℃にて12時間加熱撹拌した。冷却 後、濃縮して得られた残渣に、酢酸エチルー水を加えて 抽出した。有機層を1N-塩酸、水、1M-炭酸カリウ ム水、食塩水、水にて洗浄後、無水硫酸マグネシウムに て乾燥した。沪過後、減圧下濃縮して得られた残渣に、 n-ヘキサン(500ml)を加え、析出した結晶を沪 取して、標記化合物130g(収率74%)を得た。

【0048】(参考例2) 1 - (4 - 25577 - 12) - 4 - 1

1-(4-クロロフェニル)-4-エトキシカルボニル ピラゾールの合成

エトキシカルボニルマロンアルデヒド(7.2g、50 mmol)のエタノール(50ml)溶液に、4-クロロフェニルヒドラジン(8.5g、60mmol)のジェチルエーテル溶液(200ml)を、氷冷下、滴下した。室温にて3時間撹拌後、溶媒を留去して得られた残渣に、エタノールを加えて結晶化させた。析出した結晶を沪取して、標記化合物8.3g(収率66%)を得た。

【0049】(参考例3)

1-クロロフェニルー5-ジメチルアミノー4-エトキ シカルボニルピラゾールの合成

エトキシメチレンシアノ酢酸エチルエステル (1.69 g、10 m m o 1) のエタノール (50 m 1) 溶液に、4ークロロフェニルヒドラジン (1.7g、12 m m o 1) を加え、12時間還流撹拌した。反応後、溶媒を留去して得られた残渣に、ジエチルエーテルを加えて結晶

化させた。析出した結晶を沪取し、1ークロロフェニルー5ーアミノー4ーエトキシカルボニルピラゾール2.2g(収率82%)を得た。この化合物(1.3g、5mmo1)のテトラヒドロフラン溶液(20m1)に、氷冷下、60%ー水素化ナトリウム(0.44g)を加え撹拌した。30分撹拌後、ヨウ化メチル(1.7g、12mmo1)を加え、室温にて12時間撹拌した。反応後、酢酸エチルー炭酸水素ナトリウム水を加えて抽出した。有機層を、食塩水、水により洗浄後、硫酸マグネシウムにて乾燥した。沪過後、減圧下濃縮して得られた残渣をエーテルにより再結晶することにより、標記化合物1.4g(収率95%)を得た。

【0050】(参考例4)

1-クロロフェニル-3-ジメチルアミノ-4-エトキ シカルボニルピラゾールの合成

フェニルヒドラジン(10.8g、0.1mol)のキ シレン(80m1)溶液に、ベンズアルデヒド(10. 6g、O. 1moⅠ)を加え室温で撹拌した。結晶析出 後、エトキシメチレンシアノ酢酸エチルエステル(2) 0.3g、0.12mol)を加えて3日間還流撹拌し た。一度溶解後、析出した結晶を沪取し、ジエチルエー テルにて洗浄して白色結晶(25g)を得た。この結晶・ を濃塩酸(10m1)とエタノール(60m1)の混合 溶媒に加え、15分間還流撹拌した。反応後、溶媒を留 去して得られた残渣に、氷冷下、10%-水酸化カリウ ム水 (200ml)を加え、クロロホルム抽出した。有 -機層を、食塩水、水により洗浄後、硫酸マグネシウムに て乾燥した。沪過後、減圧下濃縮して得られた残渣を、 エーテルにより再結晶することによって、1-クロロフ ェニルー3-アミノー4-エトキシカルボニルピラゾー ル7.8g(収率37%)を得た。この化合物(6.2) g、30mmol)のテトラヒドロフラン溶液(50m 1) に、氷冷下、60%-水素化ナトリウム(2.6) g)を加え撹拌した。30分撹拌後、ヨウ化メチル(1 O. 2g、72mmo1)を加え、室温にて12時間撹 拌した。反応後、酢酸エチルー炭酸水素ナトリウム水を 加え抽出した。有機層を、食塩水、水により洗浄後、硫 酸マグネシウムにて乾燥した。沪過後、減圧下濃縮する ことにより、標記化合物7.0g(収率90%)を得 た。

【0051】(参考例5)

1-(4-クロロフェニル)-5-メチル・4-ヒドロキシメチルピラゾールの合成

水素化アルミニウムリチウム (1g、26.4mmo 1)のテトラヒドロフラン (50ml)溶液に、室温下、参考例1で得た1-(4-クロロフェニル)-5-メチル-4-エトキシカルボニルピラゾール (10g、37.8mmol)のテトラヒドロフラン (50ml)溶液を滴下した。室温にて30分撹拌後、反応溶液を、氷冷した希塩酸中へ少量ずつ加えた後、酢酸エチルを加

えて抽出した。有機層を食塩水、水にて洗浄後、無水硫酸マグネシウムにて乾燥した。沪過後、減圧下濃縮して得られた残渣に、ジエチルエーテル20m1を加え、析出した結晶を沪取して、標記化合物6.46g(収率77%)を得た。

【0052】(参考例6)

1-(4-クロロフェニル)-3-ヒドロキシメチルー5-メチルー1,2,4-トリアゾールの合成 水素化アルミニウムリチウム(319mg、8.4mm ol)のテトラヒドロフラン(15ml)溶液に、氷冷下、1-(4-クロロフェニル)-3-エトキシカルボニルー5-メチルー1,2,4-トリアゾール(3.19g、12mmol)のテトラヒドロフラン(15ml)溶液を滴下して2時間撹拌後、反応溶液を、氷冷した1N-塩酸中へ少量ずつ加え、その後、酢酸エチルを加えて抽出した。有機層を食塩水、水にて洗浄後、無水硫酸マグネシウムにて乾燥した。沪過後、減圧下濃縮して得られた残渣に、ジエチルエーテル20mlを加え、析出した結晶を沪取して、標記化合物1.5g(収率57%)を得た。

【0053】(実施例1)

1-(4-クロロフェニル)-5-メチル-4-(4′ -メトキシカルボニルフェノキシ)メチルピラゾール (化合物1)の合成

参考例5で得られた1-(4-クロロフェニル)-5-メチル-4-ヒドロキシメチルピラゾール(6g、27 mmo1)のテトラヒドロフラン(25m1)溶液に、 氷冷下、チオニルクロライド(3.2g、27mmo 1)のテトラヒドロフラン(5ml)溶液を滴下した。 室温にて30分撹拌後、反応溶液を、氷冷した飽和炭酸 水素ナトリウム水中へ少量ずつ加え、その後、酢酸エチ ルを加えて抽出した。有機層を食塩水、水にて洗浄後、 無水硫酸マグネシウムにて乾燥した。沪過後、減圧下濃 縮して得られた1-(4-クロロフェニル)-5-メチ ルー4ークロロメチルピラゾールを、精製せずに次反応 に使用した。この粗成物のジメチルホルムアミド溶液 (10ml)を、p-ヒドロキシベンゾイックアシッド メチルエステル(4.1g、27mmo1)と炭酸カリ ウム (4.47g、32.3mmol) のジメチルホル ムアミド混合溶液(70m1)中に加え、25℃にて2 4時間撹拌した。反応後、酢酸エチルを加えて不溶物を 沪去し、沪液を減圧下濃縮した。得られた残渣に、水: メタノール(40m1、1:1)を加え、加熱撹拌後氷 冷して得た結晶を沪取し、減圧下乾燥して標記化合物 6.4g(収率67%)を得た。

[0054]

元素分析 (C₁, H₁, N₂O₃C 1 として)

C H N

計算値63.964.807.85測定値64.144.667.89

融点:142-143℃

(実施例2)

1-(4-クロロフェニル)-5-メチル-4-(N-メチルーN-4′-エトキシカルボニルフェニル)アミ ノメチルピラゾール(化合物16)の合成 参考例5で得られた1-(4-クロロフェニル)-5-メチルー4ーヒドロキシメチルピラゾール(10g、4 4.9mmol)のクロロホルム(300ml)溶液 に、活性二酸化マンガン(100g、1.15mol) を加え、室温で撹拌した。反応後、不溶物をセライト沪 過し、沪液を濃縮して得られた1-(4-クロロフェニ ル)-5-メチル-4-ホルミルピラゾールを、精製せ ずに次反応に使用した。この粗生物のエタノール溶液 (30ml)に、酢酸(1ml)及びp-アミノベンゾ イックアシッドエチルエステル(7.4g、44.9m mo1)を加え、氷冷下、シアノ水素化ホウ素ナトリウ ム(2.8g、44.9mmol)を少量づつ加えた。 反応後、さらに、97%-ホルマリン水(5m1)を加 えた後、シアノ水素化ホウ素ナトリウム(2.8g、4 4.9 mm o 1)を少量づつ加えた。反応後、減圧下濃 縮して得られた残渣に、酢酸エチルー炭酸水素ナトリウ ム水を加えて抽出した。有機層を、食塩水、水により洗 浄後、硫酸マグネシウムにて乾燥した。沪過後、減圧下 濃縮して得られた残渣をエタノールにより再結晶するこ とによって、標記化合物11.2g(収率65%)を得

[0055]

た。

元素分析 (C21 H22 N3 O2 C1 として)

 C
 H
 N

 計算値
 65.71
 5.78
 10.95

 測定値
 65.70
 5.76
 10.96

融点:79-80℃

(実施例3)

1-(4-ピリジル)-5-メチル-4-(4´-メト キシカルボニルフェノキシ)メチルピラゾール(化合物 7)の合成

参考例5と同様の方法で得られた1-(4-ピリジル)-5-メチル-4-ヒドロキシメチルピラゾール(1.7g、8.99mmol)とpーヒドロキシベンゾイックアシッドメチルエステル(1.67g、11mmol)のテトラヒドロフラン(50ml)溶液に、トリフェニルフォスフィン(2.35g、8.99mmol)、ジエチルアゾジカルボキシレート(3.9ml、40%トルエン溶液、9mmol)を加え、室温にて14時間撹拌した。反応後、減圧下濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー精製(クロロホ

ルム:メタノール=1:4)した。対応するフラクションを濃縮して得た残渣を、ジエチルエーテルにて結晶化させることにより、標記化合物1.2g(収率41%)を得た。

[0056]

元素分析 (C₁, H₁, N₃O₃として)

C H N 計算値 66.86 5.30 13.00 測定値 66.74 5.19 12.84 融点:171-172℃

(実施例4)実施例1~3と同様の方法で下記表に示す 化合物2~6、8~15及び17~19を合成した。 【0057】(実施例5)

1-(4-クロロフェニル)-5-メチルー3-(4′-メトキシカルボニルフェノキシ)メチルー1,2,4-トリアゾール(化合物29)の合成

参考例6で得られた1-(4-クロロフェニル)-3-ヒドロキシメチルー5-メチルー1,2,4-トリアゾ ール (2.24g、10mmol)とp-ヒドロキシベ ンゾイックアシッドメチルエステル(1.52g、10 mmo1)のテトラヒドロフラン(30m1)溶液に、 トリフェニルフォスフィン(3.15g、12mmo 1)、ジエチルアゾジカルボキシレート(5.22g、 40%トルエン溶液、12mmol)を加え、室温にて 14時間撹拌した。反応後、減圧下濃縮して得られた残 渣に、酢酸エチルを加えて抽出した。有機層を食塩水、 水にて洗浄後、無水硫酸マグネシウムにて乾燥した。沪 過後、減圧下濃縮して得られた残渣をシリカゲルカラム クロマトグラフィー精製(酢酸エチル:n-ヘキサン= 1:1)した。対応するフラクションを濃縮して得た残 渣を、ジエチルエーテルにて結晶化させることにより、 標記化合物2.6g(収率74%)を得た。

[0058]

元素分析 (C18H16N3O3C1として)

C H N
計算値 60.42 4.51 11.74
測定値 60.35 4.50 11.76
融点:139-140℃
(実施例6)

2-(4-クロロフェニル)-4-(2-(4´-メト キシカルボニルフェノキシ)エチル)チアゾール(化合 物32)の合成

2-(4-0ロロフェニル) -4-(2-ヒドロキシエチル) チアゾール (1g, 4.18mmo1) とp-ヒドロキシベンゾイックアシッドメチルエステル (699mg, 4.59mmo1) のテトラヒドロフラン (50m1) 溶液に、トリフェニルフォスフィン (1g, 5.02mmo1)、ジエチルアゾジカルボキシレート (2.2m1, 40%トルエン溶液、5.02mmo

1)を加え、室温にて14時間撹拌した。反応後、減圧

下濃縮して得られた残渣に、酢酸エチルと水を加えて抽出した。有機層を1N-NaOH水溶液、飽和食塩水にて洗浄後、硫酸マグネシウムにて乾燥した。沪過後、減圧下濃縮して得られた残渣をメタノールにより結晶化することによって、標記化合物1.1g(収率70%)を得た。

[0059]

元素分析 (C1, H1, NO, SC1として)

C H N 61.04 4.31 3.

計算値61.044.313.75測定値60.874.283.74

融点:155-156℃

(実施例7)

2- (4-クロロフェニル) -4- (4´-メトキシカ ルボニルフェノキシ) メチルチアゾール (化合物31) の合成

の合成 p-クロロチオベンズアミド (5g、29.1mmo l)とα,α′-ジクロロアセトン (3.7g、29.

1 mm o 1)のアセトン (50 m 1)溶液を室温で3時間撹拌した。析出した結晶を沪取し、アセトンにて洗浄した粗生成物をメタノール (50 m 1)にて1時間還流撹拌した。反応混合物を減圧下濃縮して得られた2-

した粗生成物をメタノール(50ml)にて1時間還流 撹拌した。反応混合物を減圧下濃縮して得られた2-(4-クロロフェニル)-4-クロロメチルチアゾール の粗生成物を、精製せずに次反応に使用した。この粗成 物のジメチルホルムアミド溶液(10ml)を、p-ヒ ドロキシベンゾイックアシッドメチルエステル(3.8 g、25mmol)と炭酸カリウム(5.2g、37.7mmol)のジメチルホルムアミド混合溶液(70ml)中に加え、室温にて24時間撹拌した。反応後、減 圧下濃縮した残渣に酢酸エチルと水を加えて抽出した。 有機層を1N-NaOH水、水、食塩水にて洗浄後、硫 酸マグネシウムにて乾燥した。沪過後、減圧下濃縮して 得られた残渣をメタノールにより結晶化することによっ

て、標記化合物6.2g(収率61%)を得た。

[0060]

元素分析 (C18 H14 NOs SCIとして)

 C
 H
 N

 計算値
 60.08
 3.92
 3.89

 測定値
 60.09
 3.74
 3.88

融点:118-120℃

(実施例8)実施例6~7と同様の方法で下記表に示す 化合物33を合成した。

【0061】(実施例9)

1-(4-クロロフェニル)-5-メチル-4-(4′ -カルボキシフェノキシ)メチルピラゾール(化合物2 0)の合成

実施例1の化合物(5.1g、14.9mmol)のメタノール:ジオキサン(200ml、1:1)溶液中に、0.2N-NaOH水溶液(100ml)を加え、70℃にて5時間加熱撹拌した。反応後、溶媒を留去し、冷希塩酸を加え酢酸エチルにて抽出した。有機層を食塩水、水にて洗浄後、無水硫酸マグネシウムにて乾燥した。沪過後、減圧下濃縮して得られた残渣に、ジエチルエーテル20mlを加え、析出した結晶を沪取乾燥して、標記化合物4.99g(収率97.3%)を得た。【0062】

元素分析 (C18H16N2O3C1として)

 C
 H
 N

 計算値
 63.07
 4.41
 8.17

 測定値
 63.07
 4.39
 8.10

融点:201-202℃

(実施例10)実施例9と同様の方法で下記表に示す化合物 $21\sim28$ 、30、34及び35を合成した。

[0063]

【表1】

化合物 I CI———————————————————————————————————	- 143 °C C ₁₉ H ₁₇ CIN C 63.96 64.14	Н 4.80		¹ H NMR (CDCl ₃): δ 2.36(3H,s), 3.89(3H,s), 5.00(2H,s), 7.01(2H,d,J=9.0Hz,), 7.40(2H,d,J=8.8Hz,), 7.46(2H,d,J=8.8Hz,), 7.71(1H,s,), 8.02(2H,d,J=8.8Hz,)
化合物 2 N H ₃ C 12 融点	0-(₂ O ₃ H 5.63	N 8.69 8.75	¹ H NMR (DMSO-d ₆): δ 2.34 (3H, s,), 3.82 (3H, s), 5.09 (2H, s). 7.15 (2H, d, J = 9Hz), 7.4-7.6 (5H, m), 7.76 (1H, s), 7.93 (2H, d, J = 9Hz)

[0064]

【表2】

日・アナル	•			7.45(1H,s,),
計算值	64.78	5.16	7 .55 :	7.45(2H,d,J=8.9Hz,),
	C	Н	N.	7.40(2H,d,J=8.9Hz,),
元素分析	C20H1	₉ CIN ₂ O ₃		7.00(2H,d,J=8.9Hz,),
	122 - 124			2.36(3H,s), 4.35(2H,q,J=7.3Hz), 5.00(2H,s),
CI—(H ₃ C	N.N.		CH ₂ CH ₃	¹ H NMR (CDCl ₃): δ 1.39(3H,t,J=7.3Hz),
化合物 4				
測定値	63.14	4.20	8.15	8.67 (lH, s)
計算値	63.07	4.41	8.17	7.93 (2H, d, J = 9Hz)
	C .	Н	Ν	7.89 (1H, s)
元素分析	f C ₁₈ H ₁	₅ CIN ₂ O ₃		7.87 (2H, d, J = 9Hz)
点蛹	152 - 15	3 °C		7.15 (2H, d, $J = 9Hz$) 7.57 (2H, d, $J = 9Hz$)
	~*			5.15 (2H, s)
cı—(-N.N.	-(=)-cr	D₂CH₃	3.82 (3H, \$)
化合物 3				¹ H NMR (DMSO-d ₆) : δ

[0065]

【表3】

¹H NMR (CDCl3) : ô
2.70(3H,s), 3.89(3H,s), 5.02(2H,s),
7.02(2H,d,J=8.9Hz,),
7.23(1H,m).
7.72(1H,s),
7.80~7.90(2H,m),
` 8.01 _. (2H,d,J=9.2Hz),
8.46(1H,m)
8.46(1H,m)
8.46(1H,n)
8.46(1H ₄ n) ¹ H NMR (DMSO-d ₆): δ
¹H NMR (DMSO-dς): δ
¹ H NMR (DMSO-d ₆) : δ 2.2(3H, S) ,
¹ H NMR (DMSO-d ₆): δ 2.2(3H, S) , 3.8(3H, S,),
¹ H NMR (DMSO-d ₆): δ 2.2(3H, S) , 3.8(3H, S,), 5.0(2H, S),
¹ H NMR (DMSO-d ₆): δ 2.2(3H, S) 3.8(3H, S,), 5.0(2H, S), 7.0(2H, d, J = 8.0Hz)
¹ H NMR (DMSO-d ₆): δ 2.2(3H, S) , 3.8(3H, S,), 5.0(2H, S), 7.0(2H, d, J = 8.0Hz) 7.1(2H, d, J = 8.0Hz)

化合物 7				
N N	\.) —со _г сн _з		¹ H NMR (CDCl ₃): δ
130	. · —			2.5(3H, S)
点	171 - 17	2°C		3.9(3H, S,),
元素分析	Ċ ₁₈ H ₁₇	N ₃ O ₃		5.0(2H, S),
	. с	Н.	Ν	7.0(2H, d, J = 8.0Hz),
計算法		5.30		7.5(2H, d, J = 6.3Hz),
計算値				7.7(1H, S) ,
測定値	66.74	5.19	12.84	8.0(2H, d, J = 8.0Hz),
			•	8.7(2H, d, J = 6.1Hz)
化合物 8				
N.N.	N(CH ₃) ₂	≻-со _г сн₃		¹ H NMR (DMSO-d ₆): δ 2.88 (6H, s), 3.82 (3H, s),
融点	159 - 16	51 °C		5.08 (2H, s) 7.16 (2H, d, J = 9Hz)
元素分析	C ₂₀ H ₂₁	N ₃ O ₃		7.19 (1H, d, J = 7.5Hz) 7.44 (2H, dd, J = 8Hz,7.5Hz)
	С	Η .	N	7.70 (2H, d, J = 8Hz)
計算値	68.36	6.02	11.96	7.93 (2H, d, J = 9Hz)
測定值	68.42	6.02	12.08	

[0067]

【表5】

	-			
化合物 9				
C1-(-N,N	-(_)-c	O₂CH₃	¹H NMR (DMSO-d ₆) : ∂
	N(CH ₃) ₂			2.66 (6H, s), 3.82 (3H, s)
融点	150 - 15	1 °C		5.11 (2H, s)
				7.15 (2H, d, $J = 9Hz$)
元素分析	E C₂₀H	2 0 C I N	I 2 O 3	7.55 (2H, d, J = 9Hz)
·				7.68 (1H, s)
	С	Н	. N .,	7.70 (2H, d, J = 9Hz)
計算値	62.26	5.22	10.89	7.93 (2H, d, J = 9Hz)
測定値	62.22	5.23	10.91	
化合物!()			
CI — H.C			CH ₃	H NMR (CDCl ₃): 8
融点	́ м•о́ 179 - 180	0°C		2.36(3H,s), 3.90(3H,s), 3.91(3H,s), 5.06(2H,s),
元素分析	C ₂₀ H ₁₉	CIN ₂ O ₄	1/5 H ₂ O	7.30(177.17.0 (77.)
	С	Н	N	7.03(1H,d,J=8.6Hz),
計算值	66.86	5.30	13.00	7.39(2H,d,J=8.9Hz), 7.45(2H,d,J=8.6Hz),
測定値	66.74	5.19	12.84	7.57(1H,d, J=2.0Hz),
المرابعة المرابعة	JU.1 4	J. 13	14.04	7.68(1H,dd,J=2.0,8.6Hz),
•				7.71(1H,s)
·	· · ·			

[0068]

化合物11

1.39(3H,t,J=7.3Hz), 2.39(3H,s),

Ν

Ν

融点 171 - 172 °C

4.37(2H,q,J=7.3Hz), 5.10(2H,s),

¹H NMR (CDCl₃): δ

元素分析 C₂₀H₁₈Cl₂N₂O₃

7.09(1H,d,J=8.6Hz),

С Н

7.41(2H,d,J=8.6Hz),

計算値 59.27 4.48 6.91

7.46(2H,d,J=8.9Hz),

測定値 59.20 4.46 6.91

7.71(1H,s)

7.96(1H,dd,J=2.3,8.6Hz)

8.07(1H,d, J=2.0Hz)

化合物 1 2

¹H NMR (CDCl₃): δ

融点 144 - 145 °C

1.39(3H, t),

元素分析 C₂₀H₁₉ClN₂O₃

2.39(3H, S)

C H

4.36(2H, q, J = 7.3Hz),

計算値 64.78 5.16 7.55

5.12(2H, S),

測定値 64.76 5.14 7.57

7.1(2H, d, J = 8.0Hz),

7.37-7.52(2H, m)

7.71(1H, S)

7.96(1H, dd, J = 2.3, 8.6 Hz)

8.07(1H, d, J = 2.0Hz)

[0069]

【表7】

化合物 1 3

融点 243 - 244°C

元素分析 C₁₇H₁₃CIN₂O₃

C H N

計算値 62.11 3.99 8.52

測定値 61.98 3.93 8.42

1H NMR (DMSO-d₆): 8

3.48 (1H; br.s), 5.06 (2H, s)

6.95 (2H, d, J = 9Hz)

7.56 (2H, d, J = 8.5Hz)

7.83 (2H, d, J = 8.5Hz)

7.87 (IH, s)

7.87 (2H, d, J = 9Hz)

8.67 (1H, s)

化合物 1 4

融点 151 - 152 °C

元素分析 C₁₈H₁₇N₃O₃ 1/4 H₂O

C H N

計算値 69.64 6.64 11.07

測定値 69.42 6.61 11.01

¹H NMR (CDCl₃): δ

1.38(3H, t, J - 7.0Hz),

2.3(3H, S,.) ,

3.0(6H, S),

4.3(2H, q, J = 7.0Hz),

4.99(2H, S),

6.7(2H, d, J = 9.0Hz),

7.0(2H, d, J = 8.7Hz)

7.2(2H, d, J = 9.0Hz),

7.6(1H, S),

8.0(2H, d, J = 8.2Hz)

[0070]

【表8】

化合物 15				
H ₃ C-N	,o-(CO ^z C: 13		^L H NMR (DMSO-d ₆): ô
	_			3.64 (3H, s)
				3.80 (3H, s)
原点	136 - 13	7°C		4.86 (2H, s)
元素分析	C ₁₇ H ₁₇	,N3O3		6.32-6.34 (1H, m)
+	С	H	N	7.00 (2H, d, J = 9Hz)
51.44c Pdc	65.58			7.03-7.06 (1H, m)
計算値	65.56	5.50	13.50	7.71 (1H, s)
測定値	65.46	5.56	13.39	7.87 (2H, d, J = 9Hz)
化含物 1	6			
G → →	OH CH	-co	O₂CH₂CH₃	¹ H NMR (CDCl ₃) : 8
融点	79 - 80	°C		1.37(3H,t,J=7.3Hz), 2.27(3H,s),
·元素分析	C ₂₁ H ₂₂	CIN ₃ O ₂		3.04(3H,s), 4.33(2H,q,J=7.3Hz), 4.45(2H,s).
	С	Н	N	6.77(2H,d,J=9.2Hz),
計算值	65.51	5.78	10.95	
測定値	C = 70	_		7.34(2H,d,J=9.2Hz),
例化值	65.70	5.76	10.96	7.44(2H,d,J-9.2Hz),
		•		7.45(1H,s),
				7.93(2H,d,J=9.2Hz)

[0071]

化合物 1 7				
H ₃ C-	-NN 0-	(<u> </u>	5C2H5	¹ H NMR (CDCl ₃): δ
. H ³		<u> </u>	202.13	1.39 (3H,t,J=7.3Hz)
			•	2.34 (3H,s)
融点 1	15 - 1	17°C		2.42 (3H,s)
二主八七	0			4.35 (2H,q,J=7.3Hz)
元素分析	$C_{21}H_2$	$_{2}N_{2}O_{3}$.	1/5H ₂ 0	5.01 (2H,s)
	С	Н	N	7.02 (2H,d,J=8.9Hz)
	_		TV.	7.27 (2H,d,J=8.6Hz)
計算值	71.25	6.38	7.91	7.31 (2H,d,J=8.6Hz)
测中体				7.68 (1H,s)
測定值	71.28	6.33	7.73	8.01 $(2H,d,J=8.9H2)$
•				

F-\(\bigcup_{\mu_i}\)			7 ^H 5	¹ H NMR (CDCl ₃): δ
H ₃ C	• (~ "		1.39 (3H,t,J=7.3Hz)
融点 12	20 - 12	2°C		2.34 (3H,s)
		•		(4.36 (2H,q,J=7.3Hz)
元素分析	C ₂₀ H ₁₉ F	$-N_2O_3$		5.00 (2H,s)
	_	.ப	N.I	7.02 (2H,d,J=8.9Hz)
	, •	·H	N	7.18 (2H,dd,J=8.2,8.9Hz
計算值	67.79	5.40	7.90	7.41 (2H,dd,J=4.6,8.9Hz
784 -4- 44			•	7.70 (1H,s)
測定值	67.89	5.44	7.82	8.02 (2H,dJ=8.9Hz)

[0072]

【表10】

化合物 19

¹H NMR (CDCl₃): δ

融点 139 - 140°C

3.7(3H, S), 3.88(3H, S),

5.2(2H, S),

元素分析 C₁₉H₁₈N₂O₃ 7.1(2H, d, J = 8.8I4z),

С Н Ν 7.2(1H, S),

70.79 5.63 8.69 計算值

7.3(5H, m),

測定值 8.65 8.0(2H, d, J = 8.8Hz)

70.79 5.56

化合物 2 0

¹H NMR (DMSO- d_6): δ

融点 201 - 202℃ . 2.2(3H, S),

元素分析 C₁₈H₁₅CIN₂O₃ 5.0(2H, S),

7.1(2H, d, J = 8.0Hz),

ŢΗ С Ν 7.5(4H,S),

63.07 4.41 計算值 8.17 7.7(1H, S),

7.9(2H, d, J = 8.0Hz).

測定值 63.07 4.39 8.10 12.6(1H, b)

化合物 2	1			
N.N.	\-(-\)	—со₂н		1 H NMR (DMSO-d ₆) : $\hat{\sigma}$
ingC 融点 18	32 - 1849	G		2.71(3H,s), 5.04(2H,s), 7.05(2H,d,J=8.9Hz),
元素分析	C ₁₇ H ₁₆	$_5N_3O_3$		7.24(1H,in),
	С	Н	N	7.74(1H,s), 7.80~7.90(2H,m),
計算値	66.01	4.89	13.58	8.08(2H,d,J=9.2Hz),
測定值	66.33	4.74	13.66	8.45(1H,m)
化合物 2 2		 ,		
н ₃ co-(H ₃ C O	-(_)-0	CO _Z H	^l H NMR (DMSO-d ₆) : δ
融点	187 - 188			2.2(3H, S) ,
				3.8(3H, S),
元素分析	С ₁₉ Н ₁₈ I	N ₂ O ₄		5.0(2H, S),
	С	Н	N	7.0(2H, d, J = 8.0Hz),
計算値	67.45	5.36	8.28	7.1(2H, d, J = 8.0Hz),
測定値	67.46	5 28	8.26	7.4(2H, d, J = 8.0Hz),
	U1.7U	9.20	0.20	7.7(1H, S) ,
				7.9(2H, d, J = 8.0Hz),
				12.5(1H, b)

[0074]

【表12】

化合物23				
N N		—СО₃Н	•	^I H NMR (DMSO- d_6): δ
i1 ₃ C	<	-		2.6(3H, S) ,
融点 24	3 - 245℃	;		5.1(2H, S),
元素分析	C ₁₇ H ₁₅ l	N ₃ O ₃		7.1(2H, d, J = 8.2Hz),
	C	Н	N	7.9(2H, d, J = 8.2Hz),
 計算値	66.01	4.89	13.58	8.0(1H, S) ,
測定値	66.28			8.0(2H, d, J = 5.8Hz)
W/CIE	00.20	4.01	10.00	8.8(2H, d, J = 5.8Hz)
化合物 2 4 ci—(=)—N H ₃ C	N O MeO		ı	¹ H NMR (DMSO-d ₆) : δ
融点 2	37 - 238	°C		2.35(3H,s), 3.79(3H,s), 5.05(2H,s),
元素分析	C ₁₉ H ₁₇ (CIN ₂ O ₄		7.25(1H,d,J=8.2Hz),
	С	Н	N	7.46(1H,d, J=2.0Hz),
計算値	61.21	4.60	7.51	7.60(5H,m),
		7.00	1.51	7.77(1H,s.),
測定値	61.48	4.61	7,49	12.69(1H,brs)

[0075]

【表13】

化合物 25 ¹H NMR (DMSO- d_{δ}): δ 2.38(3H,s), 融点 210 - 211°C 4.50(2H,s), 7.00(2H,d,J-9.2Hz), C18H14Cl2N2O3 元素分析 7.60(4H,m), C Н Ν 7.80(1H,s), 計算值 $7.91 \sim 7.93(2H,m,J=9.2Hz)$ 57.31 3.74 7.43 測定值 57.20 3.71 7.33 化合物 2 6 ¹H NMR (DMSO- d_6): δ 2.37(3H, S), 融点 189 - 191°C 5.21(2H, S), 7.46(2H, m), 元素分析 C18H15CIN2O3 1/4 H2O 7.54(4H, m), C H Ν 7.78(1H, S), 計算值 62.25 4.50 8.07 7.92(2H, m) 測定值 62.47 4.38 7.98

[0076]

【表14】

化合物27	·
CH3 CH3 CO2H	^l H NMR (DMSO-d ₆) : δ
融点 213 - 215°C	2.33(3H,s), 3.02(3H,s), 4.50(2II,s),
元素分析 C ₁₉ H ₁₈ ClN ₃ O ₂	7.00(2H,d,J=8.9Hz),
. C .H N	7.47(1H,s),
計算値 64.14 5.10 11.81	7.54(2H,d,J=8.9Hz), 7.57(2H,d,J=8.9Hz),
 測定値	7.76(2H.d.J=9.2Hz)
化合物 2 8	
CI — — — — — — — — — — — — — — — — — — —	¹H NMR (DMSO-d ₆): δ
融点 162 - 163℃	2.30(3H,s), 4.46(2H,s), 4.59(2H,s),
元素分析 C ₁₉ H ₁₇ CIN ₂ O ₃	7.46(2H,d,J=7.9Hz),
СНИ	7.58(4H,m),
,	7.67(1H,s),
計算値 63.96 4.80 7.85	7.92(2H,d, J=8.2Hz)
測定値 64.08 4.78 7.65	·

[0077]

【表15】

化合物 2 9 ¹H NMR (DMSO- d_3): δ 2.5.1 (3H, s) 139 - 140℃ 融点 3.82 (3H, s) 元素分析 C18H16CIN3O3 5.21 (2H, s) C Н 7.18 (2H, d, J = 9Hz)Ν 7.65 (4H, s) 計算值 60.42 4.51 11.74 7.93 (2H, d, J = 9Hz)測定値 60.35 4.50 11.76 化合物 3 0 'H NMR (DMSO-do): ô 2.49 (3H, s) 融点 212 - 214°C 5.19 (2H, s) 元素分析 C₁₇H₁₄CIN₃O₃ 7.15 (2H, d, J = 9Hz) 7.65 (4H, s) C H Ν 7.90(2H, d, J = 9Hz)計算值 59.40 4.10 12.22 12.65 (1H, s) 測定值 59.69 4.14 12.09

[0078]

【表16】

化合物 3 1						
CI————————————————————————————————————	^L H NMR (CDCl ₃): δ					
融点 118 - 120℃	3.89(3H.s), 5.30(2H.s),					
元素分析 C ₁₈ H ₁₄ CINO ₃ S	7.04(2H,d,J=8.9Hz),					
C H N	7.33(1H,s),					
	7.43(2H,d,J=8.9Hz),					
計算値 60.08 3.92 3.89	7.89(2H,d,J=8.9Hz),					
測定値 60.09 3.74 3.88	8.01(2H,d,J=8.9Hz)					
30.03 3.74 3,66	·					
化合物 3 2 CI———————————————————————————————————						
融点 155-156°C 3.32(2H,m), 3.88(3H,s), 4.41(2H,m).						
元素分析 C ₁₉ H ₁₆ CINO ₃ S	6.94(2H,d,J=8.9Hz),					
сни	7.07(1H,s),					
計算値 61.04 4.31 3.75	7.41(2H.d.J=8.6Hz),					
	7.86(2H,d,J=8.6Hz),					
測定値 60.87 4.28 3.74	7.97(2H,d,J=8.6Hz)					

[0079] .

【表17】

化合物 3 3 ¹H-NMR(CDCl₃): ∂ 融点。100-101°C 1.38(3H,t,J=7.3Hz)3.34(2H,m), 4.35(2H,q,J=7.3Hz), 元素分析 $C_{19}H_{18}N_zO_3S$ 4.43(2H,m,), Ç H N 6.94(2H,d,J-8.9Hz), 計算值 64.39 7.14(1H.s), 5.12 7.90 7.38(1H,dd,J-4.9,7.9Hz). 測定值 64.48 5.09 7.99(2H,d,J=8.9H2), 7.90 8.22(1H,dt,J=2.0,7.9Hz), 8.65(1H,dd,J=2.0,7.9Hz), 9.15(1H,d,J=1.7Hz)化合物 3.4 1H NMR (DMSO-46): 8 5.31(2H,s), 融点 237 - 238°C 7.17(2H,d,J=3.9Hz), 元素分析 7.58(2H,d,J=8.6Hz), C₁₇H₁₂CINO₃S 7.88(2H,d,J=8.9Hz), Ç H Ν 7.93(1H,s), 7.97(2H,d,J=8.6Hz) 59.05 計算值 3.50 4.05 測定値 \$8.92 3.26 4.05

[0080]

【表18】

【0081】試験例

ラット肝切片を用いたステロール及び脂肪酸生合成系に 対する効果と、ラットを用いたトリグリセライド及びコ レステロール低下作用について、以下に示す方法により 検討した。

【0082】試験例1

ラット肝切片を用いたステロール及び脂肪酸生合成系に対する効果(in vitro試験)

下記文献を参考として、以下の操作に従って試験を実施した。

【0083】Endo, A.,Tsujita, Y., Kuroda, M.及び Tanzawa, K., Eur. J. Biochem.,77,31-36(1977)。

【0084】即ち、雄性S. D. ラット (体重約200g) 断頭致死後速やかに肝臓を摘出し、氷冷したクレブスーリンゲル (Krebs-Ringer) 重炭酸緩衝液で充分潅流した。 [1-14C] 酢酸 (74kBq/2

 μ mol)及び各種濃度に調製した供試化合物を含むクレブスーリンゲル重炭酸緩衝液1ml中に肝切片100mgを加え、 $95\%O_2-5\%CO_2$ の混合ガス中で、37℃で2時間反応を行なった。冷却後、石油エーテル2mlを加えてステロール画分を振盪抽出し、濃縮後1%ジギトニン溶液1mlを加えた。静置後遠心分離操作により沈渣として得られたステロール画分を有機溶媒で数回洗浄し、酢酸1mlに溶解した後、放射活性を求めた。供試化合物を除いた対照群の放射活性に対して50%阻害する供試化合物の濃度(IC_{50})を求めた。

【0085】同様の方法により、上記操作の石油エーテル下層から塩酸処理により得られた脂肪酸画分の放射活性を求めた。

【0086】得られた結果を下記表に示す。

[0087]

【表19】

	脂肪酸、ステロール風害を	舌性(ラット肝スライス)				
化合物	In vitro (Ι C μ m)					
番号	ステロール	脂 坊 酸				
2	14.44	5. 34				
4	. 8.36	7. 49				
2 0	17.2	7. 13				
2 9	28.84	11.71				

【0088】試験例2 ラットを用いたトリグリセライド及びコレステロール低下作用(in vivo試験)正常食飼育の雄性S.D.ラット(5週齢、8匹)に、薬剤30mg/5ml0.5%ヒドロキシプロピルメチルセルロース水溶液/kgの投与液を、7日間連続胃内強制経口投与を行った。一方、コントロール群(雄性S.D.ラット、5週齢、8匹)に対しては、ヒドロキ

シプロピルメチルセルロース水溶液のみを同様に投与した。 最終投与16時間後、エーテル麻酔下で腹部大静脈

より採血し、血清脂質項目(トータルコレステロール(TC)、高比重リポ蛋白コレステロール(HDL・C)、リン脂質(PL)、トリグリセライド(TG))を測定した。

【0089】又、超低比重リポ蛋白コレステロール ((V)LDL・C)、動脈硬化指数(AI)及び変化 率は次式により算出した。

[0090] (V) LDL \cdot C=TC-HDL \cdot C AI=(V) LDL \cdot C/HDL \cdot C 変化率(%)={(薬剤投与群の実測値/コントロール群の

実測値)-1}×100

【0091】 【表20】

得られた結果を下記表に示す。

化合物		тc	(V)LDL-C	HDL-C	ΑI	TG	PL
番号							
2	実測値(mg/dl)	69. 0	19.7	49.3	0.4	78. 6	121. 4
	変化率 (%)	-7.0	* * -32. 9	9. 3	**-38.5	**-43. 5	* * -14.7
4	実測値(mg/dl)	69. 4	22. 8	46. 8	0.49	70.8	119.8
	変化率 (%)	- G . 5	**-22. 9	3. 8	*-24.6	**-49. 3	**-15. 9
2 0	実測値(ag/dl)	58. 9	17. 9	41	0.45	61.4	105. 3
	変化率 (%)	**-20.6	★ \$-38.5	-9. 1	**-30.8	**-55. 9	**-28.1
Control	実砌値(ໝ/dl)	74.2	29. 1	45.1	0. 85	139. 2	142. 4

*: p < 0, 05 **: p < 0, 01 (Dunnet's test)

[0092]

【発明の効果】本発明のフェニルカルボン酸誘導体 (I)又はその塩は、上記したin vitro試験結果に示したように、脂肪酸生合成阻害作用及びコレステロール生合成阻害作用を有し、また上記したin vivo試験結果に示したように、血中のトリグリセライド(TG)と超低比重リポ蛋白コレステロール((V)LDL・C、悪玉 コレステロール)を同時に低下させ、一方、高比重リポ蛋白コレステロール(HDL・C、善玉コレステロール)は低下させることがなく、動脈硬化指数を低下させることができる。このため、本発明のフェニルカルボン酸誘導体(I)又はその塩は、高脂血症治療剤、動脈硬化予防及び治療剤、抗肥満薬、冠動脈疾患の減少等の医薬品として有用である。

フロントページの続き

(51) Int. Cl. 6		識別記号		FΙ		
C07D	403/04	207		C07D	403/04	207
	417/04	213			417/04	213
// A61K	31/41			A 6 1 K	31/41	
	31/415	ADN	•		31/415	ADN
•	31/425		•		31/425	
	. 31/44	AED	•		31/44	AED

(72)発明者 山本 明良

徳島県徳島市不動本町1丁目35-1

(72)発明者 山田 晴雄

徳島県徳島市住吉6丁目6番33-503

(72) 発明者 三宅 秀和

徳島県板野郡松茂町中喜来字牛飼野東の越 5-4