Catalog of Publications per Educational Stage

Open-Source Hardware in Education: a Systematic Mapping Study

January 11, 2018

AdultEducation

- [1] S. Aaron, A. Blackwell, and P. Burnard. The development of sonic pi and its use in educational partnerships: Co-creating pedagogies for learning computer programming. *Journal of Music, Technology and Education*, 9(1):75–94, 2016.
- [2] M. Abdelrahman, M. Salem, and M. Nijim. Towards an integrated Hardware And SOftware Book (HASOB). volume 122nd ASEE Annual Conference and Exposition: Making Value for Society, 2015.
- [3] Abhas, A. Shukla, A. Borah, R. Singh, and A. Gehlot. Arduino and Rx/Tx based low cost class monitoring system. In *2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom)*, pages 2785–2790, Mar. 2016.
- [4] M. Adusei and D. Lee. "clicks" appressory for visually impaired children. In *Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems*, CHI EA '17, pages 19–25, New York, NY, USA, 2017. ACM.
- [5] F. Agatolio and M. Moro. Aworkshop to promote arduino-based robots aswide spectrum learning support tools. *Advances in Intelligent Systems and Computing*, 457:113–125, 2017.
- [6] S. Arakliotis, D. G. Nikolos, and E. Kalligeros. Lawris: A rule-based arduino programming system for young students. In *5th International Conference on Modern Circuits and Systems Technologies (MOCAST)*, pages 1–4, May 2016.

- [7] N. Arora, N. Agarwal, and S. R. N. Reddy. Funpi: An interactive learning experience using story narration. In *Proceedings of the Sixth International Conference on Computer and Communication Technology 2015*, ICCCT '15, pages 398–402, New York, NY, USA, 2015. ACM.
- [8] D. Assante, C. Fornario, A. E. Sayed, and S. A. Salem. Edutronics: Gamification for introducing kids to electronics. In *IEEE Global Engineering Education Conference (EDUCON)*, pages 905–908, Apr. 2016.
- [9] M. Bajzek, H. Bort, O. Hunpatin, L. Mivshek, T. Much, C. O'Hare, and D. Brylow. Muzecs: Embedded blocks for exploring computer science. In *IEEE Blocks and Beyond Workshop (Blocks and Beyond)*, pages 127–132, Oct. 2015.
- [10] D. Bar-El and O. Zuckerman. Maketec: A makerspace as a third place for children. In *10th International Conference on Tangible, Embedded, and Embodied Interaction*, TEI '16, pages 380–385, New York, NY, USA, 2016. ACM.
- [11] S. Barrett, J. Anderson, and M. Love. Robots! introduction to engineering and computer science. In *ASEE Annual Conference and Exposition*, New Orleans, LA, USA, 2016.
- [12] L. Benotti, M. Gomez, and C. Martinez. Unc++duino: A kit for learning to program robots in python and c++ starting from blocks. *Advances in Intelligent Systems and Computing*, 457:181-192, 2017.
- [13] L. Bertelli, F. Bovo, L. Grespan, S. Galvan, and P. Fiorini. Eddy: An open hardware robot for education. volume 216, pages 47–54, 2007.
- [14] C. Brady, K. Orton, D. Weintrop, G. Anton, S. Rodriguez, and U. Wilensky. All roads lead to computing: Making, participatory simulations, and social computing as pathways to computer science. *IEEE Transactions on Education*, 60(1):59–66, Feb. 2017.
- [15] M. Brinkmeier and D. Kalbreyer. A case study of physical computing in computer science education. In *11th Workshop in Primary and Secondary Computing Education*, WiPSCE '16, pages 54–59, New York, NY, USA, 2016. ACM.
- [16] L. Buechley and M. Eisenberg. Boda blocks: A collaborative tool for exploring tangible three-dimensional cellular automata. In *8th International Conference on Computer Supported Collaborative Learning*, CSCL'07, pages 102–104. International Society of the Learning Sciences, 2007.
- [17] L. Buechley, M. Eisenberg, J. Catchen, and A. Crockett. The lilypad arduino: Using computational textiles to investigate engagement, aesthetics, and diversity in computer science education. In *SIGCHI Conference on Human Factors in Computing Systems*, CHI '08, pages 423–432, New York, NY, USA, 2008. ACM.

- [18] L. Buechley, M. Eisenberg, and N. Elumeze. Towards a curriculum for electronic textiles in the high school classroom. *SIGCSE Bulletin*, 39(3):28–32, June 2007.
- [19] J. R. Byrne, L. Fisher, and B. Tangney. Computer science teacher reactions towards raspberry pi continuing professional development (cpd) workshops using the bridge21 model. In *2015 10th International Conference on Computer Science Education (ICCSE)*, pages 267–272, July 2015.
- [20] D. G. Carvalho and W. C. B. Lins. Labduino: An open source tool for science education. In *IEEE Frontiers in Education Conference (FIE)*, pages 1–5, Erie, PA, USA, USA, Oct. 2016.
- [21] P. Carvalho and M. Hahn. A simple experimental setup for teaching additive colors with arduino. *Physics Teacher*, 54(4):244–245, 2016. cited By 0.
- [22] W. Dams, M. Roggemans, P. Pelgrims, T. Tierens, and D. Pauwels. Open hardware platform helps students getting started in analog and digital design. In *IEEE International Conference on Microelectronic Systems Education (MSE'07)*, pages 133–134, June 2007.
- [23] Y. B. Kafai, E. Lee, K. Searle, D. Fields, E. Kaplan, and D. Lui. A crafts-oriented approach to computing in high school: Introducing computational concepts, practices, and perspectives with electronic textiles. *ACM Transactions on Computing Education*, 14(1):1:1–1:20, Mar. 2014.
- [24] E.-S. Katterfeldt, D. Cuartielles, D. Spikol, and N. Ehrenberg. Talkoo: A new paradigm for physical computing at school. In *Proceedings of the The 15th International Conference on Interaction Design and Children*, IDC '16, pages 512–517, New York, NY, USA, 2016. ACM.
- [25] E.-S. Katterfeldt, N. Dittert, and H. Schelhowe. Eduwear: Smart textiles as ways of relating computing technology to everyday life. In *International Conference on Interaction Design and Children*, IDC '09, pages 9–17, New York, NY, USA, 2009. ACM.
- [26] J. Kawash, A. Kuipers, L. Manzara, and R. Collier. Undergraduate assembly language instruction sweetened with the raspberry pi. In *Proceedings of the 47th ACM Technical Symposium on Computing Science Education*, SIGCSE '16, pages 498–503, New York, NY, USA, 2016. ACM.
- [27] B.-H. Kim, Y.-D. Lim, M.-Y. Jung, and J. Kim. The effects of steam class using science-art-it convergence art work for middle school education under a free semester system in korea. *Advanced Science Letters*, 23(3):1700–1704, 2017. cited By 0.

- [28] A. Kobeissi, A. Sidoti, F. Bellotti, R. Berta, and A. De Gloria. Building a tangible serious game framework for elementary spatial and geometry concepts. pages 173–177, 2017.
- [29] C. Kopic and K. Gohlke. Inflatibits: A modular soft robotic construction kit for children. In *Proceedings of the TEI '16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction*, TEI '16, pages 723–728, New York, NY, USA, 2016. ACM.
- [30] S. P. Krishnamoorthy and V. Kapila. Using a visual programming environment and custom robots to learn c programming and k-12 stem concepts. In *Proceedings of the 6th Annual Conference on Creativity and Fabrication in Education*, FabLearn '16, pages 41–48, New York, NY, USA, 2016. ACM.
- [31] Y. Lee. Integrated information and communication learning model for raspberry pi environment. *ARPN Journal of Engineering and Applied Sciences*, 12(17):5088–5093, 2017.
- [32] M. Martinez, J. Campion, T. Gholami, M. Rittikaidachar, A. Barron, and A. Okamura. Open source, modular, customizable, 3-d printed kinesthetic haptic devices. pages 142–147, 2017.
- [33] R. Meintjes and H. Schelhowe. Inclusive interactives: The transformative potential of making and using craft-tech social objects together in an after-school centre. In *Proceedings of the The 15th International Conference on Interaction Design and Children*, IDC '16, pages 89–100, New York, NY, USA, 2016. ACM.
- [34] A. Merkouris and K. Chorianopoulos. Introducing computer programming to children through robotic and wearable devices. In *Proceedings of the Workshop in Primary and Secondary Computing Education*, WiPSCE '15, pages 69–72, New York, NY, USA, 2015. ACM.
- [35] A. Millner and E. Baafi. Modkit: Blending and extending approachable platforms for creating computer programs and interactive objects. In *10th International Conference on Interaction Design and Children*, IDC '11, pages 250–253, New York, NY, USA, 2011. ACM.
- [36] S. Papavlasopoulou, M. N. Giannakos, and L. Jaccheri. Creative programming experiences for teenagers: Attitudes, performance and gender differences. In *Proceedings of the The 15th International Conference on Interaction Design and Children*, IDC '16, pages 565–570, New York, NY, USA, 2016. ACM.
- [37] P. Putjorn, C. S. Ang, and D. Farzin. Learning iot without the "i"- educational internet of things in a developing context. In *Proceedings of the 2015 Workshop on Do-it-yourself Networking: An Interdisciplinary Approach*, DIYNetworking '15, pages 11–13, New York, NY, USA, 2015. ACM.

- [38] M. Resnick. All I Really Need to Know (About Creative Thinking) I Learned (by Studying How Children Learn) in Kindergarten. In *6th ACM SIGCHI Conference on Creativity & Cognition*, C&C '07, pages 1–6, New York, NY, USA, 2007. ACM.
- [39] M. Resnick and B. Silverman. Some reflections on designing construction kits for kids. In *Conference on Interaction Design and Children*, IDC '05, pages 117–122, New York, NY, USA, 2005. ACM.
- [40] G. T. Richard and Y. B. Kafai. "maker innovators": A workshop for youth creating responsive and wearable game interfaces with tangible and digital construction toolkits (abstract only). In *Proceedings of the 46th ACM Technical Symposium on Computer Science Education*, SIGCSE '15, pages 682–682, New York, NY, USA, 2015. ACM.
- [41] G. T. Richard and Y. B. Kafai. Making physical and digital games with e-textiles: A workshop for youth making responsive wearable games and controllers. In *Proceedings of the 14th International Conference on Interaction Design and Children*, IDC '15, pages 399–402, New York, NY, USA, 2015. ACM.
- [42] I. Russell, K. H. Jin, and M. Sabin. Make and learn: A cs principles course based on the arduino platform. In *Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science Education*, ITiCSE '16, pages 366–366, New York, NY, USA, 2016. ACM.
- [43] J. Sadler, K. Durfee, L. Shluzas, and P. Blikstein. Bloctopus: A novice modular sensor system for playful prototyping. In *Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction*, TEI '15, pages 347–354, New York, NY, USA, 2015. ACM.
- [44] E. Schweikardt. Modular robotics as tools for design. In *6th ACM SIGCHI Conference on Creativity & Cognition*, C&C'07, pages 298–298, New York, NY, USA, 2007. ACM.
- [45] E. Schweikardt and M. D. Gross. A brief survey of distributed computational toys. In *First IEEE International Workshop on Digital Game and Intelligent Toy Enhanced Learning (DIGITEL'07)*, pages 57–64, Mar. 2007.
- [46] K. A. Searle, C. Tofel-Grehl, and V. Allan. The e-textiles bracelet hack: Bringing making to middle school classrooms. In *Proceedings of the 6th Annual Conference on Creativity and Fabrication in Education*, FabLearn '16, pages 107–110, New York, NY, USA, 2016. ACM.
- [47] D. Ursutiu, C. Samoila, and V. Jinga. Creative developments in labview student training: (creativity laboratory labview academy). pages 309–312, 2017.
- [48] M. Virnes. Robotics in special needs education. In *7th International Conference on Interaction Design and Children*, IDC '08, pages 29–32, New York, NY, USA, 2008. ACM.

- [49] M. Vizner and A. Strawhacker. Curious construction kit: A programmable building kit for early childhood. In *Proceedings of the 6th Annual Conference on Creativity and Fabrication in Education*, FabLearn '16, pages 90–93, New York, NY, USA, 2016. ACM.
- [50] D. Wang, L. Zhang, Y. Qi, and F. Sun. A tui-based programming tool for children. In *Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer Science Education*, ITiCSE '15, pages 219–224, New York, NY, USA, 2015. ACM.
- [51] B. Yulianto, R. Layona, and L. Dewi. A low-cost wireless multi-presentation on single screen in classroom using raspberry pi. *International Journal of Web-Based Learning and Teaching Technologies*, 12(3):23–33, 2017.

K12

- [52] F. Adamo, F. Attivissimo, G. Cavone, C. G. C. n. Carducci, and A. M. L. Lanzolla. New technologies and perspectives for laboratory practices in measurement science. In *2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings*, pages 1–6, May 2015.
- [53] S. Adinandra, N. A. Adhilaga, and D. Erfawan. Waybot: A low cost manipulator for playing javanese puppet. In *2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE)*, pages 376–381, Oct. 2015.
- [54] A. Albayrak, M. Albayrak, and R. Bayir. Design of matlab/simulink based development board for fuzzy logic education. In *2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)*, pages 1–7, Aug. 2015.
- [55] O. Alsos. Teaching product design students how to make everyday things interactive with arduino. volume 1450, pages 7–14, 2015.
- [56] A. Altadmri, N. C. Brown, and M. Kölling. Using bluej to code java on the raspberry pi. In *Proceedings of the 46th ACM Technical Symposium on Computer Science Education*, SIGCSE '15, pages 178–178, New York, NY, USA, 2015. ACM.
- [57] S. Analytis, J. Sadler, and M. Cutkosky. Paper robot: A design activity to increase beginner's prototyping confidence with microcontrollers. In *3rd International Conference on Design Creativity, Indian Institute of Science, Bangalore*, pages 200–208, 2015.
- [58] S. Analytis, J. Sadler, and M. Cutkosky. Creating paper robots increases designersÃŕ£Â; confidence to prototype with microcontrollers and electronics. *International Journal of Design Creativity and Innovation*, 5(1-2):48–59, 2017.

- [59] P. Aradi. Offline and online thermostat experiment with labview and arduino. In 2016 International Symposium on Small-scale Intelligent Manufacturing Systems (SIMS), pages 127–131, June 2016.
- [60] J. A. Ariza. A proposal for teaching programming languages through open hardware tools. In *IEEE 8th International Conference on Engineering Education (ICEED)*, pages 202–207, Dec. 2016.
- [61] J. Arrizabalaga, A. Simmons, and M. Nollert. Fabrication of an Economical Arduino-Based Uniaxial Tensile Tester. *Journal of Chemical Education*, 94(4):530–533, 2017.
- [62] K. Asato, K. Asato, T. Nagado, and S. Tamaki. Development of low cost educational material for learning fundamentals of mechatronics. In *International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)*, pages 454–456, Nov. 2015.
- [63] D. Assante and C. Fornaro. Involving graduating engineers in applying a commercial brain computer interface to motorized wheelchair driving. In *2015 IEEE Global Engineering Education Conference (EDUCON)*, pages 446–452, Mar. 2015.
- [64] D. Assante and M. Tronconi. Photovoltaic system as a remote didactic laboratory for electrical engineering courses. *International Journal of Interactive Mobile Technologies*, 11(4):39–46, 2015. cited By 1.
- [65] D. Assante and M. Tronconi. A remotely accessible photovoltaic system as didactic laboratory for electrical engineering courses. In *2015 IEEE Global Engineering Education Conference (EDUCON)*, pages 479–485, Mar. 2015.
- [66] A. Aziz Khater, M. El-Bardini, and N. El-Rabaie. Embedded adaptive fuzzy controller based on reinforcement learning for dc motor with flexible shaft. *Arabian Journal for Science and Engineering*, 40(8):2389–2406, 2015.
- [67] E. Barba and S. Chancellor. Tangible media approaches to introductory computer science. In *Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer Science Education*, ITiCSE '15, pages 207–212, New York, NY, USA, 2015. ACM.
- [68] C. J. Bay and B. P. Rasmussen. Exploring controls education: A re-configurable ball and plate platform kit. In *American Control Conference (ACC)*, pages 6652–6657, Boston, MA, USA, July 2016.
- [69] E. Bear, T. Maxwell, T. Anglea, D. Raval, I. Buckley, and Y. Wang. An undergraduate research platform for cooperative control and swarm robotics. In *IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)*, pages 1876–1879, Hefei, China, June 2016.

- [70] J. Bermudez-Ortega, E. Besada-Portas, J. Lopez-Orozco, J. Bonache-Seco, and J. Cruz. Remote web-based control laboratory for mobile devices based on ejss, raspberry pi and node.js. *IFAC-PapersOnLine*, 48(29):158–163, 2015. cited By 7.
- [71] T. Bewley, J. Strawson, and C. Briggs. Leveraging open standards and credit-card-sized linux computers in embedded control & Conference and Exposition, Seattle, WA, USA, 2015.
- [72] M. Black. Export to arduino: A tool to teach processor design on real hardware. *Journal of Computer Science and Technology*, 31(6):21–26, June 2016.
- [73] L. Boaroli, A. D. Spacek, C. L. Izidoro, J. M. Neto, E. Maestrelli, and O. H. A. Junior. Data monitoring and hardware control for app android by bluetooth communication for laboratory teaching in electrical engineering courses. *IEEE Latin America Transactions*, 15(1):31–39, Jan. 2017.
- [74] K. Bougot-Robin, J. Paget, S. Atkins, and J. Edel. Optimization and design of an absorbance spectrometer controlled using a raspberry pi to improve analytical skills. *Journal of Chemical Education*, 93(7):1232–1240, 2016.
- [75] C. BouSaba, T. Kazar, and W. Pizio. Wireless network security using rasp-berry pi. In *ASEE Annual Conference and Exposition*, volume 2016-June, New Orleans, LA, 2016.
- [76] C. Brady, D. Weintrop, K. Gracey, G. Anton, and U. Wilensky. The ccl-parallax programmable badge: Learning with low-cost, communicative wearable computers. In *Proceedings of the 16th Annual Conference on Information Technology Education*, SIGITE '15, pages 139–144, New York, NY, USA, 2015. ACM.
- [77] J. D. Brock. Being the dba (database administrator): Nifty assignment. *Journal of Computing Sciences in Colleges*, 31(2):275–277, Dec. 2015.
- [78] P. Brox, G. Huertas-Sñnchez, A. Lñpez Angulo, M. ñlvarez Mora, and I. Haya. Design of sensory systems using the platform arduino by undergraduate physics students. In *Technologies Applied to Electronics Teaching (TAEE)*, pages 1–6, Seville, Spain, June 2016.
- [79] R. F. Bruce, J. D. Brock, and S. L. Reiser. Make space for the pi. In *IEEE SoutheastCon 2015*, pages 1–6, Fort Lauderdale, Florida, USA, Apr. 2015.
- [80] D. D. Buhl-Brown. Developing a robotics education platform using android based cellbots (abstract only). In *Proceedings of the 46th ACM Technical Symposium on Computer Science Education*, SIGCSE '15, pages 714–714, New York, NY, USA, 2015. ACM.
- [81] A. Butterfield and K. Branch. Results & lessons learned from a chemical engineering freshman design laboratory. In *ASEE Annual Conference and Exposition*, Seattle, WA, USA, 2015.

- [82] J. Byrne, L. Fisher, and B. Tangney. A 21st century teaching and learning approach to computer science education: Teacher reactions. *Communications in Computer and Information Science*, 583:523–540, 2016.
- [83] F. Candelas, G. GarcÃŕ£Â¡a, S. Puente, J. Pomares, C. Jara, J. PÃŕ£Â¡rez, D. Mira, and F. Torres. Experiences on using arduino for laboratory experiments of automatic control and robotics. *IFAC-PapersOnLine*, 48(29):105–110, 2015.
- [84] F. A. Candelas, S. T. Puente, and F. Torres. Competition benchmarking to design and program mobile robots. In *2016 IEEE Conference on Control Applications (CCA)*, pages 839–844, Sept. 2016.
- [85] M. Cata. Smart university, a new concept in the internet of things. In 2015 14th RoEduNet International Conference Networking in Education and Research (RoEduNet NER), pages 195–197, Sept. 2015.
- [86] R. Chacon and S. Oller. Designing experiments using digital fabrication in structural dynamics. *Journal of Professional Issues in Engineering Education and Practice*, 143(3), 2017.
- [87] S. Cheong, I. Chai, and R. Logeswaran. Quick response multimodal learning system with raspberry pi. *Asian Journal of Information Technology*, 15(16):2737–2742, 2016.
- [88] J.-S. Choi and Y.-S. Lee. The implementation of a hardware-in-the-loop simulator for an inverted pendulum system using open-source hardware. *Journal of Institute of Control, Robotics and Systems*, 23(2):117–125, 2017.
- [89] D. Connors, K. Dunn, and R. Bueter. Pycomparch: Python-based modules for exploring computer architecture concepts. In *Proceedings of the Workshop on Computer Architecture Education*, WCAE '15, pages 4:1–4:6, New York, NY, USA, 2015. ACM.
- [90] S. Cox, J. Cox, R. Boardman, S. Johnston, M. Scott, and N. O'Brien. Iridis-pi: A low-cost, compact demonstration cluster. *Cluster Computing*, 17(2):349–358, 2014. cited By 23.
- [91] G. G. da Silva and C. A. Petry. Teaching ac-ac converters using voltage regulators. In 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), pages 1–6, Nov. 2015.
- [92] L. de la Torre, M. Guinaldo, R. Heradio, and S. Dormido. The Ball and Beam System: A Case Study of Virtual and Remote Lab Enhancement With Moodle. *IEEE Transactions on Industrial Informatics*, 11(4):934–945, Aug 2015.
- [93] P. Di Giamberardino and M. Temperini. Adaptive access to robotic learning experiences in a remote laboratory setting. pages 565–570, 2017.

- [94] B. Dixon. Code isolation for accurate performance scoring using raspberry pis. *J. Comput. Sci. Coll.*, 31(4):94–99, Apr. 2016.
- [95] W. J. Esposito, F. A. Mujica, D. G. Garcia, and G. T. A. Kovacs. The lab-in-a-box project: An arduino compatible signals and electronics teaching system. In *2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)*, pages 301–306, Aug. 2015.
- [96] D. A. Fields, K. A. Searle, and Y. B. Kafai. Deconstruction kits for learning: Students' collaborative debugging of electronic textile designs. In *Proceedings of the 6th Annual Conference on Creativity and Fabrication in Education*, FabLearn 16, pages 82–85, New York, NY, USA, 2016. ACM.
- [97] K. Fox, W. Mongan, and J. Popyack. Raspberry hadoopi: A low-cost, hands-on laboratory in big data and analytics (abstract only). In *Proceedings of the 46th ACM Technical Symposium on Computer Science Education*, SIGCSE '15, pages 687–687, New York, NY, USA, 2015. ACM.
- [98] J. Fritz, M. Matthews, T. Wulf, J. Scott, and J. Fritz. University of cincinnati and saint ursula academy partnership: Introducing female high school students to the field of information technology, year 2. In *Proceedings of the 17th Annual Conference on Information Technology Education*, SIGITE '16, pages 109–109, New York, NY, USA, 2016. ACM.
- [99] S. Gokceli, H. B. Tugrel, S. Pisirgen, G. K. Kurt, and B. ñrs. A building automation system demonstration. In *2015 9th International Conference on Electrical and Electronics Engineering (ELECO)*, pages 56–60, Nov. 2015.
- [100] C. Gonzalez, I. Alvarado, and D. Pea. Low cost two-wheels self-balancing robot for control education. *IFAC-PapersOnLine*, 50(1):9174–9179, 2017.
- [101] B. Gottlob. Real time occupancy notification: A comparison between passive infrared and ibeacon implementations (abstract only). In *Proceedings of the 46th ACM Technical Symposium on Computer Science Education*, SIGCSE '15, pages 716–716, New York, NY, USA, 2015. ACM.
- [102] K. Hajdarevic and S. Konjicija. A low energy computer infrastructure for radio voip supported communication and sdr aprs in education and disaster relief situations. In 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pages 556–561, May 2015.
- [103] R. C. Hill. Hardware-based activities for flipping the system dynamics and control curriculum. In *2015 American Control Conference (ACC)*, pages 2777–2782, July 2015.

- [104] T. U. Islamgozhayev, S. S. Mazhitov, A. K. Zholmyrzayev, and E. T. Toishybek. lict-bot: Educational robotic platform using omni-directional wheels with open source code and architecture. In *2015 International Siberian Conference on Control and Communications (SIBCON)*, pages 1–3, May 2015.
- [105] I. Ivan, C. Petit, I. Gurgu, and R. Toscano. Afm nanye  development of an education oriented high resolution profilometer. *IFAC-PapersOnLine*, 50(1):2385–2390, 2017.
- [106] S. Kurkovsky and C. Williams. Raspberry pi as a platform for the internet of things projects: Experiences and lessons. volume Part F128680, pages 64–69, 2017.
- [107] D. Kyuchukova, G. Hristov, P. Zahariev, and S. Borisov. A study on the possibility to use raspberry pi as a console server for remote access to devices in virtual learning environments. In 2015 International Conference on Information Technology Based Higher Education and Training (ITHET), pages 1-4, June 2015.
- [108] R. S. Lawyer. Student driven digital signage. In *Proceedings of the 2015 ACM Annual Conference on SIGUCCS*, SIGUCCS '15, pages 133–135, New York, NY, USA, 2015. ACM.
- [109] C. Madritsch, T. Klinger, A. Pester, and W. Schwab. Work in progress: Using pocket labs in master degree programs. *Advances in Intelligent Systems and Computing*, 545:54–59, 2017.
- [110] Q. H. Mahmoud, D. Qendri, and M. Lescisin. The sensorian shield: Transforming the raspberry pi into an iot platform. In *Proceedings of the 47th ACM Technical Symposium on Computing Science Education*, SIGCSE '16, pages 162–162, New York, NY, USA, 2016. ACM.
- [111] S. Marichal, E. Bakala, A. Rosales, F. Perilli, G. Sansone, J. Blat, and A. Pires. Ceta: Open, affordable and portable mixed-reality environment for low-cost tablets. 2017.
- [112] P. Martín-Ramos, M. M. L. da Silva, M. J. a. Lopes, and M. R. Silva. Student2student: Arduino project-based learning. In *Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality*, TEEM '16, pages 79–84, New York, NY, USA, 2016. ACM.
- [113] D. L. McPherson, A. R. Ofoli, and T. D. Loveless. Basketballbot: Developing an intelligent controls teaching platform using labview, matlab, and arduino. In *SoutheastCon 2015*, pages 1–8, Apr. 2015.
- [114] L. Michels, L. Schaeffer, V. Gruber, R. Marcelino, and L. Casagrande. Remote compression test machine for experimental teaching of mechanical forming. *International Journal of Online Engineering*, 12(4):20–22, 2016.

- [115] Y. Mita and Y. Kawahara. 15-year educational experience on autonomous electronic information devices by flipped classroom and try-by-yourself methods. *IET Circuits, Devices and Systems*, 11(4):321–329, 2017.
- [116] D. Mohapatra, N. Kashyap, A. Biswal, and S. Padhee. Design of measurement and data acquisition laboratory for instrumentation engineering course. 2017.
- [117] H. Mostefaoui and A. Benachenhou. Design of a remote electronic laboratory. In *2015 International Conference on Interactive Mobile Communication Technologies and Learning (IMCL)*, pages 160–162, Nov. 2015.
- [118] K. Muterspaw, T. Urner, R. Lewis, I. Babic, D. Srinath, C. Peck, D. Cerda-Granados, P. Lemiszki, M. Sánchez-Miranda, M. Mayorga-Méndez, O. Petursson, and B. Smith. Multidisciplinary research and education with open tools: Metagenomic analysis of 16s rrna using arduino, android, mothur and xsede. In *Proceedings of the 2015 XSEDE Conference: Scientific Advancements Enabled by Enhanced Cyberinfrastructure*, XSEDE '15, pages 22:1–22:8, New York, NY, USA, 2015. ACM.
- [119] T. Oda, K. Matsuo, L. Barolli, M. Yamada, and Y. Liu. Design and implementation of an iot-based e-learning testbed. *International Journal of Web and Grid Services*, 13(2):228–241, 2017.
- [120] G. Pasolini, A. Bazzi, and F. Zabini. A raspberry pi-based platform for signal processing education [sp education]. *IEEE Signal Processing Magazine*, 34(4):151–158, 2017.
- [121] S. Patil, K. Supriya, M. Uma, R. Shettar, and P. Kumar. Open ended approach to empirical learning of iot with raspberry pi in modeling and simulation lab. pages 179–183, 2017.
- [122] K. Peppler and K. Wohlwend. Theorizing the nexus of steam practice. *Arts Education Policy Review*, pages 1–12, 2017.
- [123] S. Puente, A. beda, and F. Torres. e-health: Biomedical instrumentation with arduino. *IFAC-PapersOnLine*, 50(1):9156–9161, 2017.
- [124] J. Qi, A. b. Huang, and J. Paradiso. Crafting technology with circuit stickers. In *Proceedings of the 14th International Conference on Interaction Design and Children*, IDC '15, pages 438–441, New York, NY, USA, 2015. ACM.
- [125] N. Radzi, A. Ismail, S. Karunanithi, L. Weng, K. Jern, G. Hock, J. Jamaluddin, and P. Krishnan. Integrating programming with beaglebone black for undergraduate's "programming for engineers" syllabus. pages 12–15, 2017. cited By 0.
- [126] S. Ray and A. Al Dhaheri. Using single board computers in university education: A case study. *Advances in Intelligent Systems and Computing*, 571:371–377, 2017. cited By 0.

- [127] P. Reguera, S. Alonso, M. Domnguez, M. Prada, A. Morn, and J. Fuertes. Using low-cost open source hardware to control puma560 motors. *IFAC-PapersOnLine*, 50(1):9180–9185, 2017.
- [128] J. Reitinger, P. Balda, and M. Schlegel. Steam turbine hardware in the loop simulation. pages 380–385, 2017.
- [129] G. T. Richard, Y. B. Kafai, B. Adleberg, and O. Telhan. Stitchfest: Diversifying a college hackathon to broaden participation and perceptions in computing. In *Proceedings of the 46th ACM Technical Symposium on Computer Science Education*, SIGCSE '15, pages 114–119, New York, NY, USA, 2015. ACM.
- [130] A. Rowe, A. Bonham, R. White, M. Zimmer, R. Yadgar, T. Hobza, J. Honea, I. Ben-Yaacov, and K. Plaxco. Cheapstat: An open-source, "do-it-yourself" potentiostat for analytical and educational applications. *PLoS ONE*, 6(9), 2011.
- [131] J. Sarik and I. Kymissis. Lab kits using the arduino prototyping platform. In *2010 IEEE Frontiers in Education Conference (FIE)*, pages T3C-1-T3C-5, Oct. 2010.
- [132] J. Schaeffer and R. Lindell. Arduino in museum exhibition: Lessons learned when working with design students inexperienced in coding. In *Proceedings* of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction, TEI '15, pages 715–720, New York, NY, USA, 2015. ACM.
- [133] J. Schaeffer and R. Lindell. It could just as well have been in greek: Experiences from introducing code as a design material to exhibition design students. In *Proceedings of the TEI '16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction*, TEI '16, pages 126–132, New York, NY, USA, 2016. ACM.
- [134] A. Srivastava and S. Dawle. Mudra: A multimodal interface for braille teaching. In *Proceedings of the 6th Augmented Human International Conference*, AH '15, pages 169–170, New York, NY, USA, 2015. ACM.
- [135] D. Sullivan, W. Chen, and A. Pandya. Design of remote control of home appliances via bluetooth and android smart phones. pages 371–372, 2017.
- [136] M. Tan, Y. Yang, and P. Yu. The influence of the maker movement on engineering and technology education. *World Transactions on Engineering and Technology Education*, 14(1):89–94, 2016.
- [137] D. Tarnoff. Integrating the arm-based raspberry pi into an architecture course. *Journal of Computing Sciences in Colleges*, 30(5):67–73, 2015.
- [138] H. Z. Wang, X. L. Zhang, W. Li, P. Q. Yang, C. Liu, and C. H. Ren. The application research on mini-type magnetic resonance imaging instrument. In *2007 IEEE/ICME International Conference on Complex Medical Engineering*, pages 1996–1999, May 2007.

- [139] G. Wetzstein, R. Konrad, H. Ikoma, and N. Padmanaban. Build your own vr system an introduction to vr displays and cameras for hobbyists and educators. 2017.
- [140] J. Wolfer and W. Keeler. From geiger-counters to file systems: Remote hardware access for the operating systems course. *International Journal of Online Engineering*, 12(9):26–31, 2016.

K12-University

- [141] M. Ali, N. Azlan, and K. Safian. Development of low-cost robotic hands for introduction to mechatronics engineering courses. *ARPN Journal of Engineering and Applied Sciences*, 11(10):6222–6227, 2016.
- [142] B. Li, J. Mooring, S. Blanchard, A. Johri, M. Leko, and K. Cameron. Seemore: A kinetic parallel computer sculpture for educating broad audiences on parallel computation. *Journal of Parallel and Distributed Computing*, 105:183–199, 2017.
- [143] D. Trivedi and J. Pearce. Open source 3-d printed nutating mixer. *Applied Sciences (Switzerland)*, 7(9), 2017.
- [144] X. Wang, S. Jiang, X. Xu, Z. Wu, and Y. Tao. A raspberry pi and lxc based distributed computing testbed. pages 170–174, 2017.

University

[145] T. Baden, A. M. Chagas, G. Gage, T. Marzullo, L. L. Prieto-Godino, and T. Euler. Open Labware: 3-D Printing Your Own Lab Equipment. *PLOS Biology*, 13(5):1–12, 2015.