for
$$(i=0; i< n; i+f)$$
 \rightarrow $(n+i)$ \Rightarrow $($

Fr:
$$P=0;$$

for $(i=k);$ $P \ge m;$ $1+++$)

Periff

Assume, $P>n$

Time complemity

P=0 .24	i	Ρ
P=0 2/4 for (i=1; p < =n; i+t)	1	0+1=1
	2	1+2 P T
β P= P+i; 3 += 0+1	0)1	1+2+3 P 1
Assenume $P > n$ ($P < = n$) opposite	4	0+1=1 1+2+3 1+2+3+4 1+2+3+4
1+2+3+ ···· M= n(n+1)	: K	1+2+3+" K
P>n — \text{0}	K	≥ (K(k+1))
I value substituted in 90 $\frac{(k+1)}{2} > n$		P
$\frac{1}{2} + \frac{2}{2} > n$		
$k^2 > n$		
K > √n Cond ⁿ → Time Comple O(why Th	

for
$$(i=i)$$
 $i \leq n$; $(i=i) \neq 2$

$$| = 2^{\circ}$$
 $| \times 2 = 9 = 2$

Assume $i \ge n$ — Eq.(i) $2x2 = 2^2$ $1 = 2^{L}$ $2^{L} \ge n$ $2^{L} = n$ Apply logs both the sides $K = \log n$ Time Complexity $\log n$

for (i=1; i<n; i=172) a st; 1=1x2x2x2x2 n 2 = n K=109,0 O(log,n) for (i=1; i==n; i++) Q(u)₹ 3 st; 1=1++1+1- ... n Kan O(n) for (i=1', i < n; i = 1 x2)

banz for (i=1); i > 1 5 (i=1/2) \$ st; Assume i<1 m= 2 K K= logn ((log n) for (i=0; i * i < n; i++) St, cond 12 = n 0 (Vn) $i = \sqrt{n}$

for (i=1; 1<n; i=i+2)

for
$$(i=0;i\geq n;i+t)$$
 \longrightarrow $O(n)$

for $(i=0;i\geq n;i=i+2)$ \longrightarrow $\frac{n}{2}$ \longrightarrow $O(n)$

for $(i=0;i\geq n;i=i+2)$ \longrightarrow $O(n)$

for $(i=1;i\geq n;i=i+2)$ \longrightarrow $O(\log n)$

for $(i=1;i\leq n;i=i+3)$ \longrightarrow $O(\log n)$

for $(i=1;i\leq n;i=i+3)$ \longrightarrow $O(\log n)$

for $(i=n;i>1;i=1)$ \longrightarrow $O(\log n)$

Types of Time functions -

$$O(1)$$
 — Constant

 $O(logn)$ — Lognithmic

 $O(n)$ — Linear

 $O(n^2)$ — Quadratic

 $O(n^3)$ — Cubic $f(n) = 2 \ O(1)$
 $O(n^3)$ — Exponential $f(n) = 5 \ O(n) =$

$$O(g^n) = Exponential$$

$$O(n^n) = Exponential$$

$$f(n) = 2nt3 = 30(n)$$
 $f(n) = 50001700$
 $o(n)$
 $f(n) = 1000$
 $f(n) = 1000$

Asympotic Notatic

Best case _____

lower bound

Average case -> 0

Average bound

-> Worst case ---

Upper bound

8 6 12 15 19 23 27

Best case $\rightarrow \text{key} \Rightarrow 8 \rightarrow (i) \rightarrow 0(1)$ Worst case $\rightarrow \text{key} \Rightarrow 2$;
29

Best case - First mid element - 0(1)

Worst case - log(n)

Average - log(n)

Linear search

Best Care - O(1)

Worst care - O(n)

Aurage care - Lit 2+3+ --- n

$$= \frac{m(n+1)}{2} - \frac{n+1}{2}$$

$$= O(n)$$

$$= O(n)$$
Best can = O(1), O(1), O(1)