Matrius i vectors (grup de matí)

Curs 2018–2019

4.1 Components d'un vector en una base

Recordem que, si E és un espai vectorial de dimensió n i v_1, \ldots, v_n és una base de E, llavors tot vector $w \in E$ es pot escriure com

$$w = a_1 v_1 + \dots + a_n v_n$$

de manera única, i aquests nombres reals a_1, \ldots, a_n s'anomenen *components* de w en la base v_1, \ldots, v_n . A vegades és útil denotar la base v_1, \ldots, v_n per \mathcal{B} i escriure

$$w = (a_1, \ldots, a_n)_{\mathcal{B}}$$

per descriure el fet que w té components a_1, \ldots, a_n en la base \mathcal{B} .

Observem que l'aplicació $E \to \mathbb{R}^n$ que assigna a cada vector $w \in E$ l'element $(a_1, \ldots, a_n) \in \mathbb{R}^n$ si $w = (a_1, \ldots, a_n)_{\mathcal{B}}$ és una aplicació bijectiva. Per tant, fixada una base \mathcal{B} de E, el conjunt E està en correspondència bijectiva amb \mathbb{R}^n ; però és important tenir present que la bijecció depèn de la base escollida. Per exemple, si la base \mathcal{B} és v_1, \ldots, v_n , llavors

$$v_1 = (1, 0, \dots, 0)_{\mathcal{B}}, \quad v_2 = (0, 1, \dots, 0)_{\mathcal{B}}, \quad \dots, \quad v_n = (0, 0, \dots, 1)_{\mathcal{B}}.$$

Observem, a més, que aquesta bijecció conserva la suma i el producte per nombres reals, ja que si $u = (a_1, \ldots, a_n)_{\mathcal{B}}$ i $v = (b_1, \ldots, b_n)_{\mathcal{B}}$, llavors

$$u + v = (a_1 + b_1, \dots, a_n + b_n)_{\mathcal{B}},$$
 (4.1)

i també si $u = (a_1, \dots, a_n)_{\mathcal{B}}$ i $c \in \mathbb{R}$ llavors $cu = (ca_1, \dots, ca_n)_{\mathcal{B}}$.

4.2 Reducció mitjançant components

Suposem donat un conjunt $\{w_1, \ldots, w_m\}$ de vectors en un espai vectorial E i suposem que ens interessa obtenir una base del subespai generat per aquests vectors:

$$F = \langle w_1, \dots, w_m \rangle.$$

El procediment que descriurem es basa en els dos fets següents:

Proposició 4.1. Es compleix

$$\langle w_1, \ldots, w_m \rangle = \langle w_1, w_2 + c_2 w_1, \ldots, w_m + c_m w_1 \rangle$$

per a qualsevol elecció de nombres reals c_2, \ldots, c_m .

Demostració. En primer lloc hem de veure que cadascun dels generadors w_1, \ldots, w_m pertany al subespai $\langle w_1, w_2 + c_2 w_1, \ldots, w_m + c_m w_1 \rangle$. Això és cert perquè

$$w_i = (w_i + c_i w_1) - c_i w_1$$

per a tot $i \in \{2, \dots, m\}$. Així queda demostrada la inclusió

$$\langle w_1, \ldots, w_m \rangle \subseteq \langle w_1, w_2 + c_2 w_1, \ldots, w_m + c_m w_1 \rangle.$$

La inclusió contrària es dedueix anàlogament del fet que $w_i + c_i w_1 \in \langle w_1, \dots, w_m \rangle$ per a tot $i \in \{2, \dots, m\}$.

Proposició 4.2. Fixada una base \mathcal{B} de E, tot conjunt de vectors de la forma

$$w_1 = (a_1^1, a_1^2, a_1^3, \dots, a_1^n)_{\mathcal{B}}, \ w_2 = (0, a_2^2, a_2^3, \dots, a_2^n)_{\mathcal{B}}, \ w_3 = (0, 0, a_3^3, \dots, a_3^n)_{\mathcal{B}}, \ \dots$$

amb $a_i^i \neq 0$ per a tot i són linealment independents.

Demostració. Tenint en compte (4.1), podem utilitzar les components dels vectors w_1, w_2, w_3, \ldots per als càlculs. Suposem que

$$x_1(a_1^1, a_1^2, a_1^3, \dots, a_1^n) + x_2(0, a_2^2, a_2^3, \dots, a_2^n) + x_3(0, 0, a_3^3, \dots, a_3^n) + \dots = (0, 0, 0, \dots, 0).$$

Llavors $x_1a_1^1=0$ i, com que $a_1^1\neq 0$, ha de ser $x_1=0$. A continuació tenim

$$x_1 a_1^2 + x_2 a_2^2 = 0;$$

com que ja sabem que $x_1 = 0$ i també que $a_2^2 \neq 0$, resulta que $x_2 = 0$. Anàlogament obtenim que $x_3 = 0$ i així successivament.

El procediment per construir una base d'un subespai $F = \langle w_1, \dots, w_m \rangle$ pel mètode de reducció és el següent. Escollim una base \mathcal{B} de E i expressem els vectors w_1, \dots, w_m en coordenades en la base escollida:

$$w_1 = (a_1^1, a_1^2, a_1^3, \dots, a_1^n)_{\mathcal{B}}, \ w_2 = (a_2^1, a_2^2, a_2^3, \dots, a_2^n)_{\mathcal{B}}, \ w_3 = (a_3^1, a_3^2, a_3^3, \dots, a_3^n)_{\mathcal{B}}, \ \dots$$

Canviem-los d'ordre, si cal, per tal que $a_1^1 \neq 0$ (en cas que la primera component de tots els vectors donats sigui 0, posem com a w_1 un que tingui la segona component no nul·la; si totes les segones components fossin també nul·les, n'escolliríem un que tingués la tercera component no nul·la, etc.). Llavors substituïm w_2, w_3, \ldots per

$$w_2' = w_2 - (a_2^1/a_1^1)w_1, \quad w_3' = w_3 - (a_3^1/a_1^1)w_1, \quad \dots,$$

amb la qual cosa la primera component de w'_2, w'_3, \ldots serà 0. Tanmateix, els vectors w_1, w'_2, w'_3, \ldots segueixen essent generadors de F per la proposició 4.1.

Un cop acabat aquest primer pas, ho repetim tot exactament de la mateixa manera a partir de la segona component de w'_2 (canviant w'_2, w'_3, \ldots d'ordre, si cal, per tal que aquesta segona component sigui no nul·la, si alguna de les segones components de w'_2, w'_3, \ldots és no nul·la). Després ho tornem a fer amb el tercer vector, i així fins al final. Un cop acabat aquest procés, els vectors hauran quedat amb les components esglaonades i continuaran formant un conjunt de generadors de F per la proposició 4.1. Aleshores els vectors que hagin quedat amb components diferents de $(0, \ldots, 0)$ formaran una base de F, per la proposició 4.2.