PROBLEM-SOLVING AND PROOFS: ASSIGNMENT 4 DUE FRIDAY, MARCH 24, 4PM.

Warm-up problems. These are completely optional.

- (1) Give an example of a function $f: \mathbb{N} \to \mathbb{N}$ which is injective, but not surjective. Give an example of a function $g: \mathbb{N} \to \mathbb{N}$ which is surjective, but not injective.
- (2) Let $a, b \in \mathbb{R}$ with $a \neq 0$. Prove that the function $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b is a bijection. Compute a formula for f^{-1} .

Problems to be handed in. Solve four of the following five problems. One of the four must be Problem (1).

- (1) Let $f:A\to B$ and let $g:B\to C$ be functions, and let $h=g\circ f$. Determine which of the following statements are true. Give proofs of the true statements and counterexamples for the false statements.
 - (a) If h is injective, then f is injective.
 - (b) If h is injective, then g is injective.
 - (c) If h is surjective, then f is surjective.
- 4.34
- (d) If h is surjective, then g is surjective.
- (2) Let $f:A\to B$ be any function. A function $g:B\to A$ is called a *left-inverse for f* if it satisfies

$$(g \circ f)(a) = a$$
 for all $a \in A$.

It is called a *right-inverse for f* if it satisfies

$$(f \circ q)(b) = b$$
 for all $b \in B$.

It is called two-sided inverse for f if it satisfies both these conditions.

- (a) Prove that if f has a two-sided inverse, then f is a bijection.
- (b) Give an example of a function f which has a left-inverse, but is not a bijection.
- (c) Give an example of a function f which has a right-inverse, but is not a bijection.
- (3) Recall that $[n] = \{1, 2, ..., n\}$. Let A denote set of subsets of [n] with an even number of elements, and let B denote the set of subsets of [n] with an odd number of elements. Prove that |A| = |B| by constructing an explicit bijection from A to B.
- (4) Construct explicit bijections $f:(0,1)\to[0,1)$ and $g:(0,1)\to[0,1]$.
- (5) Let L be the set of all sentences of the english language. Prove that L is countable. (For the purpose of this exercise, a sentence of the english language is any finite sequence of characters chosen from the set of characters visible on your computer's keyboard.)