Assessment Schedule – 2023

Calculus: Apply the algebra of complex numbers in solving problems (91577)

Evidence Statement

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
ONE (a)	$(5-2\sqrt{p})(5-2\sqrt{p}) = 25-10\sqrt{p}-10\sqrt{p}+4p$ $= 25+4p-20\sqrt{p}$	Required expression.		
(b)	No real roots so $b^2 - 4ac < 0$ $16 - 4 \times 4 \times (3r - 2) < 0$ 16 - 48r + 32 < 0 -48r + 48 < 0 -48r < -48 r > 1	Correct inequality.		
(c)	$\frac{z}{w} = \frac{p+qi}{a+bi} = \frac{(p+qi)(a-bi)}{(a+bi)(a-bi)}$ $= \frac{ap-bpi+aqi-bqi^2}{a^2-b^2i^2}$ $= \frac{ap-bpi+aqi+bq}{a^2+b^2} #(1)$ $= \frac{ap+bq+(aq-bp)i}{a^2+b^2}$ $Re\left(\frac{z}{w}\right) = 0 \Rightarrow \frac{ap+bq}{a^2+b^2} = 0$ $\Rightarrow ap+bq=0$ $\Rightarrow ap=-bq$ As required.	• Reaching stage #(1).	• Proof completed.	
(d)	$z_{1} = 5 - i \text{ so } z_{2} = 5 + i$ $z - 5 = i \Rightarrow (z - 5)^{2} = i^{2}$ $\Rightarrow z^{2} - 10z + 26 = 0$ $f(z) = (Az + B)(z^{2} - 10z + 26)$ $\Rightarrow A = 1; B = 2$ i.e. $f(z) = (z + 2)(z^{2} - 10z + 26)$ So $z_{3} = -2$ and $d = 52$	• The other two solutions found. OR • d found.	The other two solutions found. AND found.	

(e)	$\left \frac{u}{v} + k \right = \sqrt{k+2}$ $\left \frac{3+i}{1+2i} + k \right = \sqrt{k+2}$ $\left \frac{(3+i)(1-2i)}{(1+2i)(1-2i)} + k \right = \sqrt{k+2}$ $\left \frac{5-5i}{5} + k \right = \sqrt{k+2}$ $\left 1-i+k \right = \sqrt{k+2}$ $\sqrt{(1+k)^2 + 1} = \sqrt{k+2}$ $\sqrt{(1+k)^2 + 1} = k+2$ $k^2 + 2k + 2 = k+2$ $k^2 + k = 0 k(k+1) = 0$ Either $k = 0$ or $k = -1$	• Expressing $\frac{u}{v}$ in the form $1 - i$.	• Reaching stage #(1).	E7 Not including $k = 0$ as a valid solution. OR Correct solution but with one minor error. E8 Finding $k = 0$ and $k = -1$. Both solutions required, with valid and clear justification.
-----	---	--	------------------------	---

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	lr	2r	1t with minor error(s).	1t

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
TWO (a)	$q^4 \operatorname{cis}\left(\frac{9\pi}{40}\right)$	Correct answer.		
(b)	$ z - w = (1 + ki) - (7 - ki) $ $= -6 + 2ki $ $= \sqrt{36 + 4k^2}$	• Correct expression.		
(c)	$13z = (11-3i)(z+1)$ $13z = 11z+11-3iz-3i$ $2z+3iz=11-3i$ $z(2+3i) = 11-3i$ $z = \frac{11-3i}{2+3i}$ $z = 1-3i$ $Arg z = -71.6^{\circ} (or -1.25 \text{ rads}) (or 288.4^{\circ})$	• Reaching stage #(1).	• Correct value for Arg z.	
(d)	$z^{3} = -64m^{12} = 64m^{12}\operatorname{cis}\pi$ $\vartheta_{1} = \frac{\pi}{3}$ $\vartheta_{2} = \pi$ $\vartheta_{3} = \frac{5\pi}{3} = -\frac{\pi}{3}$ $z_{1} = 4m^{4}\operatorname{cis}\frac{\pi}{3}$ $z_{2} = 4m^{4}\operatorname{cis}\pi$ $z_{3} = 4m^{4}\operatorname{cis}\frac{5\pi}{3} = 4m^{4}\operatorname{cis}\left(-\frac{\pi}{3}\right)$ Or equivalent.	One correct solution.	All three correct solutions, with appropriate justification.	

(e)	Let $z = x + yi$, then $ x + yi - 2 + i = \sqrt{3}$ $ (x - 2) + (y + 1)i = \sqrt{3}$ $\sqrt{(x - 2)^2 + (y + 1)^2} = \sqrt{3}$ #(1)	• Reaching stage #(1).	• Reaching stage #(2).	E 7 Correct solution but with one minor error.
	$(x-2)^2 + (y+1)^2 = 3$			E 8
	Let $y = mx - 1$, then			Correct value
	$(x-2)^2 + (mx-1+1)^2 = 3$			Of <i>m</i> with valid and clear
	$x^2 - 4x + 4 + m^2 x^2 = 3$			justification.
	$(1+m^2)x^2 - 4x + 1 = 0 #(2)$			
	Tangent gives $b^2 - 4ac = 0$			
	$16 - 4(1 + m^2) \times 1 = 0$			
	$16 - 4 - 4m^2 = 0$			
	$12 = 4m^2$			
	$m^2 = 3$			
	$m = \sqrt{3}$			
	Do not penalise $m = \pm \sqrt{3}$			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	1r	2r	1t with minor error(s).	1t

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
THREE (a)	f(-3) = 30 $-54 + 9p - 21 - 3 = 30$ $9p - 78 = 30$ $9p = 108$ $p = 12$	• Correct value of p.		
(b)	$\frac{n-i}{2-3i} = 3+4i$ $n-i = (3+4i)(2-3i)$ $n-i = 6-9i+8i+12$ $n-i = 18-i$ $n = 18$ Alternative method: $\frac{n-i}{2-3i} = 3+4i$ $\frac{(n-i)(2+3i)}{(2-3i)(2+3i)} = 3+4i$ $\frac{2n+3ni-2i+3}{4+9} = 3+4i$ $\frac{2n+3+(3n-2)i}{13} = 3+4i$ Comparing real parts gives: $\frac{2n+3}{13} = 3, \text{ giving } n = 18$ OR Comparing imaginary parts gives: $\frac{3n-2}{13} = 4, \text{ giving } n = 18$	• Correct value of n.		
(c)	$16(4x - w) = (5 - 8\sqrt{x})(5 - 8\sqrt{x})$ $64x - 16w = 25 - 80\sqrt{x} + 64x$ $80\sqrt{x} = 25 + 16w$ $\sqrt{x} = \frac{25 + 16w}{80}$ $x = \left(\frac{25 + 16w}{80}\right)^2$ Or equivalent.	• Reaching stage #(1).	• Correct expression for <i>x</i> .	

(d)	$\frac{1}{x+yi} = 1 - \frac{1}{1+pi}$ $\frac{1}{x+yi} = \frac{1+pi-1}{1+pi}$ $\frac{1}{x+yi} = \frac{pi}{1+pi}$ $x+yi = \frac{1+pi}{pi}$ $x+yi = \frac{(1+pi)i}{pi \times i}$ $x+yi = \frac{i-p}{-p}$ $x+yi = 1 - \frac{1}{p}i$ So $x = 1$ and $y = -\frac{1}{p}$	• Reaching stage #(1).	• Correct values for x and y.	
(e)	$z + 2i = iz + k$ $z - iz = k - 2i$ $z(1-i) = k - 2i$ $z = \frac{k - 2i}{1-i}$ $w = z(2+2i)$ $w = \frac{k - 2i}{1-i} \times (2+2i)$ $w = \frac{(k-2i)(2+2i)(1+i)}{(1-i)(1+i)}$ $w = \frac{(k-2i)(2+4i+2i^2)}{1-i^2}$ $w = \frac{(k-2i)4i}{2}$ $w = (k-2i)2i$ $w = 2ki - 4i^2$ $w = 4 + 2ki$	• Reaching stage #(1).	• Reaching stage #(2).	E 7 Reaching stage #(3). OR Correct solution but with one minor error. E 8 Correct value of k, with valid and clear justification.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	lr	2r	1t with minor error(s).	1t

Cut Scores

Not Achieved	Not Achieved Achievement		Achievement with Excellence	
0 – 7	8 – 12	13 – 18	19 – 24	