MATH-F211 : Topologie TP 3 - Espaces métriques II

Thomas Saillez, Andriy Haydys

Exercice 1 (1.2.6). Soit d_E la métrique euclidienne sur \mathbb{R}^2 et d_P la métrique parisienne.

- (a) Démontrer qu'une suite converge vers l'origine pour d_E ssi elle converge vers l'origine pour d_P .
- (b) Pour $a \in \mathbb{R}^2 \setminus \{0\}$, démontrer qu'une suite converge vers a pour d_P implique qu'elle converge vers a pour d_E .
- (c) Pour $a \in \mathbb{R}^2 \setminus \{0\}$, construire une suite converge vers a pour d_E mais qui ne converge pas vers a pour d_P .

Exercice 2 (1.5.1). Démontrer que si deux métriques sur un même espace sont Lipschitz équivalents alors ils ont les mêmes ouverts.

Exercice 3 (1.4.7). Soit (M, d) un espace métrique et $x \in M$, démontrer que $\{x\}$ est fermé.

Exercice 4 (1.3.2). Soit $f:(M,d_M) \to (N,d_N)$ une application entre deux espaces métriques telle que pour tout $x,y \in M$ on a

$$d_M(x,y) = d_N(f(x), f(y)).$$

Démontrer que f est une injection continue.

Exercice 5. Donner un critère nécessaire et suffisant pour qu'une suite converge dans l'espace (M, d_{disc}) .

Exercice 6 (1.5.2). Démontrer que les métriques d_1, d_2 et d_{∞} sont Lipschitz équivalentes.

Exercices frigo

Exercice 7. Soit (M,d) un espace métrique. Démontrer que l'inégalité

$$\left| d(x,z) - d(y,z) \right| \le d(x,y)$$

est satisfaite pour tous $x, y, z \in M$.

Exercice 8. Démontrer que tout ouvert U d'un espace métrique est une union de fermés.