Deep learning in neuroscience Tutorial 1

Carsen Stringer, PhD

About me

HHMI Janelia

How do neurons perform complex, high-dimensional computations?

inside pixel

flow field

Thanks to tutorial And thanks to tutorial Roozbeh Farhoodi Madineh Sarvestani Ella Batty

Decoding models vs

encoding models

Neural recordings in mice

Stringer, Michaelos, Pachitariu, bioRxiv, 2019

resp contains responses of 23589 neurons to 360 stimuli

Building a deep network

to predict *stimuli* from *neural* responses

Building a linear network

Can we predict better using a deep network?

Building a linear network

Creating a linear network in pytorch

run the network

```
import torch
from torch import nn
class DeepNet(nn.Module):
  def __init__(self, n_inputs, n_hidden):
    super().__init__() # needed to invoke the properties of the parent class nn.Module
    self.in_layer = nn.Linear(n_inputs, n_hidden) # neural activity --> hidden units
    self.out_layer = nn.Linear(n_hidden, 1) # hidden units --> output
  def forward(self, r):
    h = self.in_layer(r) # hidden representation
    y = self.out_layer(h)
    return y
net = DeepNet(n_neurons, 200)
istim = 0 # index of first stimulus
r = resp[istim] # neural responses to this stimulus
out = net(r) # compute output from network, equivalent to net.forward(r)
```

Activation functions

Activation functions add non-linearities that allow flexible fitting

RELU activation function in pytorch

```
class DeepNetReLU(nn.Module):
    def __init__(self, n_inputs, n_hidden):
        super().__init__()
        self.in_layer = nn.Linear(n_inputs, n_hidden)
        self.out_layer = nn.Linear(n_hidden, 1)

    def forward(self, r):
        h = torch.relu(self.in_layer(r))
        y = self.out_layer(h)
        return y
```


Optimizing Neural Networks

Loss function

```
# Decode orientation from these neural responses
out = net(r) # compute output from network

# Initialize PyTorch mean squared error loss
function
loss_fn = nn.MSELoss()

# Evaluate mean squared error
loss = loss_fn(out, ori)
print('mean squared error: %.2f' % loss)
```

mean squared error: 12.73

Gradient descent

compute gradients wrt loss function L

$$\frac{\partial L}{\partial \mathbf{W}^{in}}, \frac{\partial L}{\partial \mathbf{b}^{in}}, \frac{\partial L}{\partial \mathbf{W}^{out}}, \frac{\partial L}{\partial \mathbf{b}^{out}}$$

update parameters by gradients on each iteration

$$\mathbf{W}^{in} \leftarrow \mathbf{W}^{in} - \alpha \frac{\partial L}{\partial \mathbf{W}^{in}}$$
 $\mathbf{b}^{in} \leftarrow \mathbf{b}^{in} - \alpha \frac{\partial L}{\partial \mathbf{b}^{in}}$
 $\mathbf{W}^{out} \leftarrow \mathbf{W}^{out} - \alpha \frac{\partial L}{\partial \mathbf{W}^{out}}$
 $\mathbf{b}^{out} \leftarrow \mathbf{b}^{out} - \alpha \frac{\partial L}{\partial \mathbf{b}^{out}}$

Loss function

Li , Xu, Taylor, Studer, Goldstein, *arXiv*, 2018

Gradient descent in pytorch

```
optimizer = optim.SGD(net.parameters(), lr=.001)
for i in range(n_iter):
  out = net(train data)
  loss = loss fn(out, train labels)
  optimizer.zero_grad() # clear gradients
  loss.backward()
  optimizer.step()
```

automatic differentiation!

you can use this for any complex model you want to fit!

Gradient descent in pytorch

Regularization

Regularizing deep nets

Deep networks can have millions of parameters

How to prevent overfitting? ⇒ Regularization

- L2 regularization (weight decay)
- L1 regularization
- Batch normalization*
- Dropout
- Fewer neurons, fewer layers, use convolutions

Canziani et al, 2016

L2 regularization (weight decay)

$$\mathbf{Cost} = ||Y_{target} - \mathbf{net}(X_{input})||^2 + \lambda \sum ||W||^2$$

$$\partial \mathbf{Cost}/\partial W = \partial/\partial W||Y_{target} - \mathbf{net}(X_{input})||^2 + 2\lambda \sum W$$

$$W \leftarrow W - \eta \cdot (\ldots + 2\lambda W)$$
 learning weight rate decay

L1 regularization

$$\mathbf{Cost} = ||Y_{target} - \mathbf{net}(X_{input})||^2 + \lambda \sum |W|^1$$

$$W \leftarrow W - \eta \cdot (\dots + \lambda \cdot \mathbf{sign}(W))))$$

- L1 produces sparse solutions
- L1 is more interpretable
- L1 is harder to optimize

B L2 regularization

L1 = L1_penalty * torch.abs(weights).sum()

