Revision 2 02/07/2004 Included in rectified voltage calculations the fact that: Diode detection law below threshold voltage is linear Diode detection law over threshold voltage is quadratic Minimum detected power is taken as 0,5% of meter full scale L1/R2 ratio at minimum frequecy decreased from >8 to ~5 to improve accuracy at high side of the useful band

Revision 3

Included software MINIRK.EXE in spreadsheet Improved DC rectified voltages calculations lines 25 & 26

Revision 4 25/07/2004

Added wattmeter full scale value

Modified minimum detected power calculation

17/07/2004

Revision 5 January 2006

Added schottky diode max voltage

and check of value in fwd & ref voltages. Becomes black on red if value too high

Revision 6 July 15, 2006

Check of value of diode maximum reverse peak voltage (Vr). Becomes black on red if value too low Diode Vr max shall be less than Vrms x ~4

Revision 6a July 17, 2006

Removed check in fwd & ref dc voltages

Added test measurements results table & graph Page now in "landscape" Added calculations for R1 with 2 paralleded resistors

November 11, 2006 Revision 7a

Added information about GND strap

April 21, 2007 Revision 7b

Added Check flux with MINIRK12 to avoid toroid saturation at lowest frequency If toroid is saturated, increase size or redduce voltage

Revision 8 September 09, 2008

Modified bridge drawing to have phase compensation antenna side Added maximum flux in toroid verification sheet Added selection list for toroids and automatic Al choice

Added AMIDON material 43 and 61 toroids data

Revision 8a September 10, 2008

Added material "2" in calculations and documentation

Revision 8b **September 19, 2008**

Included coupling factor 99% for L1 added nota about ratio L1/R2 and accuracy

September 30, 2008 Revision 8c

added warning colors for ratio L1/R2 less than 7 and 5

November 06, 2008

Modified safety ratio warning for detectors PIV. Is now 2.88 x RMS voltage

Revision 8d

November 23, 2010 Revision 8e

Correction of not very clear texts: in C1 manual calculation and in R2 dissipated power

Revision 9 November 25, 2010

Added TRUE MEASURED value of toroid AL

December 07, 2010 Revision 10

Added minimum supply voltage of automatic SWR board

Revision 10a March 30, 2011

Added nota about TRUE measured AL

Revision 10b April 21, 2011

Corrected data source in results graph which was not working

Revision 10c February 1st, 2012

Added nota line 30, to decrease output voltages if necessary.

Revision 10d August 15, 2012

Deleted the material 2, red toroids, as NOT ADAPTED TO WIDEBAND DESIG

January 07, 2014 Revision 11

Modified Cell C18: C2 (pF) adjustable (+ fixed value if necessary)

Formula was: =(2*2^0.5*C8*C16*C3)/C12-C16 Formula now: =(2*C8*C16*C3)/C12-C16

Replaced R1 by variable resistor VR1

NOTA: For monoband 50 MHz with material 61, divide NOMINAL AI of toroid by 2

December 11, 2014 Revision 12

Modified Cell C7: Becomes "True AL" if true AL entered in cell F7

R2 BPC10 (10 Watts) serie standard values see picture

Added wire CSA calculation

Added notas lines 31 to 33

200

500

101

STAN	ANDARD RESISTANCE VALUES (OHMS)									
Value	1	2	5	10	20	50	100			

100

5R0

2R0

1R0

Code

 $@25^{\circ}C, 1V / 100k = 0.01mA = 0.21V$

 $@25^{\circ}C, 10V / 100k = 0.1 \text{ mA} = 0.29V$

50

Figure 5. I-V Curve Showing Typical Temperature Variation for 5082-2800 or 1N5711 Schottky Diodes.

NOTA: For monoband 144 MHz with material 61, divide NOMINAL AI of toroid by 6

Added nota about max nb of turns.

Revision 13 January 2020

Modified formula in cells C26 & C27 which was: =SI(C20>C25;((C25+(C20-C25)*PI()/2));C20)

FWD

REF

IT IS ALWAYS EASIER TO HAVE 1 RESISTOR & 2 SECONDARY IDENTICAL WINDINGS, THAN 2 EXACTLY IDENTICAL RESISTORS ... F1FRV 05/2004

REV 01/2014

FWD

FT 5

FT8

FT 13

FT 14

FT 24

FT 5

FT8

FT 13

FT 14

FT 24

TOROIDS FLUX CALCULATIONS	S FLUX CALCULATIONS CALCUL DU FLUX DANS LES TORES		F1FRV January 2020 REVISION 13				
Results: Red on yellow	Résultats: Rouge sur fond jaune						
IE ELLIVIE TOO HICH INCREASE NO OF	CECONDARY TURNS IIII						
IF FLUX IS TOO HIGH, INCREASE NB OF		_					
SILE FLUX EST TROP IMPORTANT, AUG	GMENTER LE NB DE SPIRES SECONDAIRE !!!	!					
Toroids	Tores	FT 50-43	FT 82-43	FT 114-43	FT 140-43	FT 240-43	3
1 toroid nominal specific inductance (Al)	Inductance specifique nominale (AI) d'un tore	480	470	510	885	1075	nH/Sp2
1 toroid Cross sectional area	Section d'un tore	0,133	0,246	0,375	0,806	1,61	Cm2
Maximum flux density for material 43	Flux maximum pour Materiau 43	2750	2750	2750	2750	2750	Gauss
Max flux to be used (20% of max flux)	Flux à ne pas depasser (20% du flux maxi)	550	550	550	550	550	Gaus
Flux density	Flux	520	281	184	86	43	Gauss
Toroids	Tores	FT 50-61	FT 82-61	FT 114-61	FT 140-61	FT 240-61	L
1 toroid nominal specific inductance (Al)	Inductance specifique nominale (AI) d'un tore	69	75	80	140	170	nH/Sp2
1 toroid Cross sectional area	Section	0,133	0,246	0,375	0,806	1,61	Cm2
Maximum flux density for material 61	Flux maximum pour Materiau 61	2350	2350	2350	2350	2350	Gauss
Max flux to be used (20% of max flux)	Flux à ne pas depasser (20% du flux maxi)	470	470	470	470	470	Gaus
Flux density	Flux	520	281	184	86	43	Gauss

SWR Calculations by Ron Barker, G4JNH						
Enter Zo	50,0	50,0	50,0	50,0	50,0	ohms
Enter delivered power at wattmeter	2500,0	2500,0	2500,0	2500,0	2500,0	watts
Enter SWR	10,00	10,00	10,00	10,00	10,00	
Angle of reflection coefficient at wattmeter	0,0	45,0	90,0	135,0	180,0	degrees
Magnitude of reflection coefficient is	0,818	0,818	0,818	0,818	0,818	
Forward voltage is	614,9	614,9	614,9	614,9	614,9	volts (rms)
Forward current is	12,298	12,298	12,298	12,298	12,298	amps (rms)
Forward power is	7562,5	7562,5	7562,5	7562,5	7562,5	watts
Reflected voltage is	503,1	503,1	503,1	503,1	503,1	volts (rms)
Reflected current is	10,062	10,062	10,062	10,062	10,062	amps (rms)
Reflected power is	5062,5	5062,5	5062,5	5062,5	5062,5	watts
Line voltage at Wattmeter is	1118,0	1033,8	794,5	440,1	111,8	volts (rms)
Phase angle referenced to forward voltage is	0,000	0,351	0,686	0,941	0,000	radians
Percentage of reflected power	66,94215	66,94215	66,94215	66,94215	66,94215	%
Percentage of reflected voltage	81,81818	81,81818	81,81818	81,81818	81,81818	%
Line current at wattmeter is	2,236	8,803	15,890	20,676	22,361	amps (rms)
Phase angle referenced to forward current is	0,000	-0,941	-0,686	-0,351	0,000	radians
Coupling dB	47,0927	47,0927	47,0927	47,0927	47,0927	dB
Coupling ratio	226,2742	226,2742	226,2742	226,2742	226,2742	
Voltage derived from voltage sampler (Ev) is	4,941	4,569	3,511	1,945	0,494	volts (rms)
Voltage derived from current sampler (Ei) is	0,494	1,945	3,511	4,569	4,941	volts (rms)
Phase angle between Ev and Ei is	0,000	-1,293	-1,371	-1,293	0,000	radians
Vector sum of Ev and Ei is	5,435	5,435	5,435	5,435	5,435	volts (rms)
Vector difference between Ev and Ei is	4,447	4,447	4,447	4,447	4,447	volts (rms)
Rectified voltage presented to forward power meter is	7,686	7,686	7,686	7,686	7,686	volts DC
Rectified voltage presented to reflected power meter is	6,289	6,289	6,289	6,289	6,289	volts DC
Derived magnitude of reflection coefficient is	0,818	0,818	0,818	0,818	0,818	
Derived SWR is	10,00	10,00	10,00	10,00	10,00	
Ev/Ei ratio	10,00	2,35	1,00	0,43	0,10	

