ЛАБОРАТОРНАЯ РАБОТА 2 Расчет нагрузки

Цель работы – получение навыков расчета нагрузки.

1. Основные сведения 1.1. Нагрузка

Нагрузка есть суммарное время обслуживания вызовов за фиксированное время t. Единицей измерения нагрузки является часозанятие, т.к. величина нагрузки складывается из промежутков времени, соответствующих отдельным занятиям.

Одно часо-занятие — нагрузка, которая может быть обслужена одним соединительным устройством (одним выходом коммутационного поля — КП) при его непрерывном занятии в течении одного часа.

Различают следующие виды телефонной нагрузки:

- 1) Поступающая;
- 2) Обслуженная;
- 3) Потерянная.

Нагрузка обладает аддитивным свойством: обслуженная за некоторый промежуток времени нагрузка равна сумме нагрузок, обслуженных на отдельных непересекающихся отрезках времени, составляющих этот промежуток:

$$Y(0, t1+t2)=Y(0,t1)+Y(t1, t2)$$

1.2. Интенсивность нагрузки

Интенсивность нагрузки – математическое ожидание нагрузки в единицу времени. Единица измерения интенсивности нагрузки – Эрланг:

1 Эрл=1 часо-занятие/час, где 1 Эрл — интенсивность нагрузки, при которой обслуживающий прибор будет полностью занят в течение одного часа.

В теории телетрафика для краткости интенсивность нагрузки называют нагрузкой.

В общем случае система коммутации состоит из коммутационного поля (КП) и управляющего устройства (УУ).

Вызовы, поступающие в систему, характеризуется

- параметром поступающего потока вызовов λ_0 , численно равным числу пакетов, поступающих в единицу времени;
- ullet средней длительностью занятия t_S , зависящей от скорости прохождения вызова через КП.

Каждый поступающий вызов содержит информацию пользователя и служебную информацию. Служебная информация содержит адрес пункта назначения для доставки информации пользователя и используется для

маршрутизации вызова в сети связи. Она обрабатывается УУ, темп ее поступления совпадает с параметром поступающего потока вызовов λ_0 . УУ располагает всеми данными о ресурсах системы и, если необходимые ресурсы для установления соединения имеются, то вызов принимается к обслуживанию.

Поступающая нагрузка A_{θ} , создаваемая простейшим потоком вызовов, численно равна среднему числу вызовов λ , поступивших за среднее время занятия ts: $A_0 = \lambda_0 t_s$.

Время обработки вызова управляющим устройством образует аппаратную задержку, которая не зависит от скорости прохождения вызова через КП. Принятые к обслуживанию вызовы обрабатываются (коммутируются) в КП и образуют *обслуженную нагрузку* A_S , численно равной среднему числу одновременно занятых соединительных линий (занятых выходов КП), которые обслуживают эту нагрузку:

$$A_s = \lambda_s t_s = \underline{V}$$

где \underline{V} – среднее число одновременно занятых соединительных линий (выходов).

В отдельные моменты времени число одновременно поступивших вызовов может превышать ресурсы системы, что приводит к блокировке некоторых вызовов. Блокировка — событие, состоящее в невозможности обслуживания вызова в момент его поступления из-за дефицита ресурсов, например, линий связи или скорости передачи. В зависимости от типа системы коммутации, блокированные вызовы, образующие *блокированную* (потерянную) нагрузку A_L , обслуживаются различно. Они могут сразу же удаляться из системы (система с явными потерями), ставиться в очередь на обслуживание (система с ожиданием) или обслуживаться иным образом.

Таким образом, потерянная нагрузка является частью поступающей A_0 , но не обслуженной нагрузки A_S :

$$A_L = A_0 - A_S$$
.

1.3. Поток освобождений

Поток освобождения представляет из себя последовательность моментов окончания обслуживания вызовов и зависит от поступающего потока вызовов, качества работы коммутационной системы и закона распределения длительности обслуживания. Например, если длительность обслуживания является постоянной величиной и отсутствуют потери по вызовам, то свойства потока освобождений совпадают со свойствами потока вызовов.

Продолжительность разговора абонентов $T_{oбcn}$ является случайной величиной. Таким образом, закон распределения случайного времени обслуживания является показательным, а значит, что моменты окончания обслуживания не зависят от моментов поступления вызовов и такой поток

освобождений не зависит от свойств поступающего потока вызовов (или качества работы коммутационной системы) и определяется числом обслуживающих вызовов:

$$P(T_{o\delta c\pi} < t) = H(t) = 1 - e^{-t/t_s} = 1 - e^{-\mu t}$$

где t_s — среднее время обслуживания; μ =1/ t_s —интенсивность освобождения обслуживающего прибора.

Если в системе коммутации занято x линий, то вероятность освобождения i линий за промежуток t можно определить по теории вероятности с помощью распределения Бернулли:

$$P(i, x, t) = C_x^i (1 - e^{-\mu t})^i e^{-(x-i)\mu t}$$

2. Содержание работы

- 2.1. Вычислить поступающую нагрузку, если абонент в течение часа произвел x1 вызовов со средней длительностью x2/10 минут.
- 2.2. Вычислите нагрузку, создаваемую пакетом длиной 800 байт на интерфейсе со скоростью 10 Мбит/с.
- 2.3. В обслуживании системы находится x1 вызовов, новые вызовы не поступают. Среднее время обслуживания вызова x2 секунд. Определите вероятности того, что за время t:
 - а)освободятся все вызовы;
 - б)не освободится ни один вызов;
 - в)освободится хотя бы один вызов.

Постройте графики этих вероятностей.

2.4. В течение 5 минут на систему поступило 10*x1 вызовов со средней длительностью занятия x2 секунд. Принято к обслуживанию 7 вызовов. Определите вероятность потерь, обслуженную нагрузку, потерянную нагрузку.