Peter Charlton

Publication List

Journal Articles

Preprints (currently under review)

- S. Y. Ho, Z. Ding, D. C. Wong, F. Kristof, J. Brimicombe, M. R. Cowie, A. Dymond, H. C. Clair Linden, G. Y. Lip, K. Williams, J. Mant, and P.H. Charlton. Accurate RR-interval extraction from single-lead, telehealth electrocardiogram signals. *medRxiv*, 2025
- ii. **P. H. Charlton**, V. Marozas, E. Mejia-Mejia, P. Kyriacou, and J. Mant. Determinants of photoplethysmography signal quality at the wrist. *TechRxiv*, 2024. URL https://doi.org/10.36227/techrxiv.172954491.17588920/v1
- iii. M. Moulaeifard, L. Coquelin, M. Rinkevičius, A. Sološenko, O. Pfeffer, C. Bench, N. Hegemann, S. Vardanega, M. Nandi, J. Alastruey, C. Heiss, V. Marozas, A. Thompson, P. J. Aston, P. H. Charlton, and N. Strodthoff. Machine-learning for photoplethysmography analysis: Benchmarking feature, image, and signal-based approaches. arXiv, 2025. URL https://doi.org/10.48550/arXiv.2502.19949
- iv. M. Moulaeifard, **P. H. Charlton**, and N. Strodthoff. Generalizable deep learning for photoplethysmography-based blood pressure estimation a benchmarking study. *arXiv*, 2025. URL https://doi.org/10.48550/arXiv.2502.19167
- v. V. Penmetcha, L. Rambabu, B. Smith, O. Mantle, T. Edmiston, L. Hobbs, S. Nagraj, **P. H. Charlton**, and T. Bashford. Evaluating diversity in open photoplethysmography (ppg) datasets: a protocol for systematic review. 2025. URL http://doi.org/10.2196/preprints.73040

2025

- 1. **P. H. Charlton**, E. J. Arguello-Prada, J. Mant, and P. Kyriacou. The MSPTDfast photoplethysmography beat detection algorithm: design, benchmarking, and open-source distribution. *Physiological Measurement*, 46:035002, 2025. URL https://doi.org/10.1088/1361-6579/adb89e
- 2. A. Sen, M. Aguirre, **P. H. Charlton**, L. Navarro, S. Avril, and J. Alastruey. Machine learning-based pulse wave analysis for classification of circle of willis topology: an in silico study with 30,618 virtual subjects. *Biomedical Signal Processing and Control*, 100:106999, 2025. URL https://doi.org/10.1016/j.bspc.2024.106999

- 3. K. P. Bhayankaram, J. Mant, J. Brimicombe, A. Dymond, K. Williams, and **P. H. Charlton**. Telephone training to improve ECG quality in remote screening for atrial fibrillation. *Physiological Measurement*, 45:125005, 2024. URL https://doi.org/10.1088/1361-6579/ad9798
- 4. S. Zanelli, D. Agnoletti, J. Alastruey, J. Allen, E. Bianchini, V. Bikia, P. Boutouyrie, R. M. Bruno, R. Climie, D. Djamaleddine, E. Gkaliagkousi, A. Giudici, K. Gopcevic, A. Grillo, A. Guala, B. Hametner, J. Joseph, P. Karimpour, V. Kodithuwakku, P. A. Kyriacou, A. Lazaridis, M. T. Lonnebakken, M. R. Martina, P. M. Mayer, C C Nabeel, P. Navickas, J. Nemcsik, S. Orter, C. Park, T. Pereira, G. Pucci, A. B. A. Rey, P. Salvi, A. C. G. Seabra, U. Seeland, T. van Sloten, B. Spronck, G. Stansby, I. Steens,

- T. Stieglitz, I. Tan, D. Veerasingam, S. Wassertheurer, T. Weber, B. E. Westerhof, and **P. H. Charlton**. Developing technologies to assess vascular ageing: a roadmap from VascAgeNet. *Physiological Measurement*, 45:121001, 2024. URL https://doi.org/10.1088/1361-6579/ad548e
- 5. K. Kario, B. Williams, N. Tomitani, R. J. McManus, A. E. Schutte, A. Avolio, D. Shimbo, J.-G. Wang, N. A. Khan, D. S. Picone, I. Tan, P. H. Charlton, M. Satoh, K. N. Mmopi, J. P. Lopez-Lopez, T. L. Bothe, E. Bianchini, B. Bhandari, J. Lopez-Rivera, F. J. Charchar, M. Tomaszewski, and G. Stergiou. Innovations in blood pressure measurement and reporting technology: International Society of Hypertension position paper endorsed by the World Hypertension League, European Society of Hypertension, Asian Pacific Society of Hypertension, and Latin American Society of Hypertension. *Journal of Hypertension*, 42(11):1874, Nov. 2024. URL https://doi.org/10.1097/HJH.00000000000003827
- 6. M. Rinkevicius, J. Lazaro, E. Gil, P. Laguna, **P. H. Charlton**, R. Bailon, and V. Marozas. Obstructive sleep apnea characterization: A multimodal cross-recurrence-based approach for investigating atrial fibrillation. *IEEE Journal of Biomedical and Health Informatics*, 28(10):6155–6167, 2024. URL https://doi.org/10.1109/JBHI.2024.3428845
- F. Kristof, M. Kapsecker, L. Nissen, J. Brimicombe, M. Cowie, Z. Ding, A. Dymond, S. Jonas, H. C. Linden, G. Lip, K. Williams, J. Mant, and P. H. Charlton. QRS detection in single-lead, telehealth electrocardiogram signals: benchmarking open-source algorithms. *PLOS Digital Health*, 3(8):e0000538, 2024. URL https://doi.org/10.1371/journal.pdig.0000538
- 8. K. Hibbitt, J. Brimicombe, M. Cowie, A. Dymond, B. Freedman, S. J. Griffin, F. R. Hobbs, H. C. Linden, G. Lip, J. Mant, R. J. McManus, M. Pandiaraja, K. Williams, and **P. H. Charlton**. Reliability of single-lead electrocardiogram interpretation to detect atrial fibrillation: insights from the SAFER Feasibility Study. *EP Europace*, 26:euae181, 2024. URL https://doi.org/10.1093/europace/euae181
- 9. G. Yang, Y. Kang, **P. H. Charlton**, P. Kyriacou, K. Kim, L. Li, and C. Park. Energy-efficient PPG-based respiratory rate estimation using spiking neural networks. *Sensors*, 24:3980, 2024. URL https://doi.org/10.3390/s24123980
- 10. J. Mant, R. N. Modi, **P. H. Charlton**, A. Dymond, E. Massou, J. Brimicombe, B. Freedman, S. J. Griffin, F. D. R. Hobbs, G. Y. H. Lip, R. J. McManus, and K. Williams. The feasibility of population screening for paroxysmal atrial fibrillation using hand-held electrocardiogram devices. *EP Europace*, 26:euae056, 2024. URL https://doi.org/10.1093/europace/euae056
- 11. M. A. Goda, **P. H. Charlton**, and J. A. Behar. pyPPG: A python toolbox for comprehensive photoplethysmography signal analysis. *Physiological Measurement*, 45:045001, 2024. URL https://doi.org/10.1088/1361-6579/ad33a2
- 12. A. Mathieu, M. Pascual, **P. H. Charlton**, M. Volovaya, J. Venton, P. Aston, M. Nandi, and J. Alastruey. Advanced waveform analysis of the photoplethysmogram signal using complementary signal processing techniques for extraction of biomarkers of cardiovascular function. *JRSM Cardiovascular Disease*, 13:1–12, 2024. URL https://doi.org/10.1177/20480040231225384
- 13. C. Pettit, **Peter H Charlton**, and P. Aston. Photoplethysmogram beat detection using symmetric projection attractor reconstruction. *Frontiers in Physiology*, 15:1228439, 2024. URL https://doi.org/10.3389/fphys.2024.1228439
- E. Bianchini, R. E. Climie, C. C. Mayer, M. R. Martina, M. Nandi, A. Schmidt-Trucksass, P. Segers, C. Park, G. Pucci, D. Terentes-Printzios, and **Peter H. Charlton**. Unified language for knowledge dissemination: the vascular ageing glossary, an initiative by VascAgeNet. *Artery Research*, 2024. URL https://doi.org/10.1007/s44200-023-00041-5

- 15. J. Hong, M. Nandi, **P. H. Charlton**., and J. Alastruey. Non-invasive haemodynamic indices of vascular ageing: An in silico assessment. *American Journal of Physiology-Heart and Circulatory Physiology*, 325:H1290–H1303, 2023. URL https://doi.org/10.1152/ajpheart.00454.2023
- 16. S. Zanelli, K. Eveilleau, **P. H. Charlton**, M. Ammi, M. Hallab, and M. EL Yacoubi. Clustered photoplethysmogram pulse wave shapes and their associations with clinical data. *Frontiers in Physiology*, 14:1176753, 2023. URL https://doi.org/10.3389/fphys.2023.1176753
- 17. **P. H. Charlton**, J. Allen, R. Bailon, S. Baker, J. A. Behar, F. Chen, G. D. Clifford, D. A. Clifton, H. J. Davies, C. Ding, X. Ding, J. Dunn, M. Elgendi, M. Ferdoushi, D. Franklin, E. Gil, M. F. Hassan, J. Hernesniemi, X. Hu, N. Ji, Y. Khan, S. Kontaxis, I. Korhonen, P. A. Kyriacou, P. Laguna, J. Lazaro, C. Lee, J. Levy, Y. Li, C. Liu, J. Liu, L. Lu, D. P. Mandic, V. Marozas, E. Mejia-Mejia, R. Mukkamala, M. Nitzan, T. Pereira, C. C. Y. Poon, J. C. Ramella-Roman, H. Saarinen, M. M. H. Shandhi, H. Shin, G. Stansby, T. Tamura, A. Vehkaoja, W. K. Wang, Y.-T. Zhang, N. Zhao, D. Zheng, and T. Zhu. The 2023 wearable photoplethysmography roadmap. *Physiological Measurement*, 44:111001, 2023. URL http://iopscience.iop.org/article/10.1088/1361-6579/acead2
- 18. R. E. Climie, J. Alastruey, C. C. Mayer, A. Schwarz, A. Laucyte-Cibulskiene, J. Voicehovska, E. Bianchini, R.-M. Bruno, P. H. Charlton, A. Grillo, A. Guala, M. Hallab, B. Hametner, P. Jankowski, K. Konigstein, A. Lebedeva, I. Mozos, G. Pucci, H. Puzantian, D. Terentes-Printzios, G. Yetik-Anacak, C. Park, P. M. Nilsson, T. Weber, and on behalf of the VascAgeNet Education and Dissemination Working Group. Vascular ageing: moving from bench towards bedside. European Journal of Preventive Cardiology, 11:1101–1117, 2023. URL https://doi.org/10.1093/eurjpc/zwad028
- 19. R. Al-Halawani, **P. H. Charlton**, M. Qassem, and P. A. Kyriacou. A review of the effect of skin pigmentation on pulse oximeter accuracy. *Physiological Measurement*, 44:05TR01, 2023. URL https://doi.org/10.1088/1361-6579/acd51a
- 20. M. Rinkevicius, **P. H. Charlton**., R. Bailon, and V. Marozas. Influence of photoplethysmogram signal quality on pulse arrival time during polysomnography. *Sensors*, 23(4):2220, 2023. URL https://doi.org/10.3390/s23042220
- 21. T. Hygrell, F. Viberg, E. Dahlberg, **P. H. Charlton**, K. Kemp Gudmundsdottir, J. Mant, J. L. Harnlund, and E. Svennberg. An artificial intelligence-based model for prediction of atrial fibrillation from single-lead sinus rhythm electrocardiograms facilitating screening. *EP Europace*, 25(4):1332–1338, 2023. URL https://doi.org/10.1093/europace/euad036
- 22. J. Alastruey, **P. H. Charlton.**, V. Bikia, B. Paliakaite, B. Hametner, R. M. Bruno, M. P. Mulder, S. Vennin, S. Piskin, A. W. Khir, A. Guala, C. C. Mayer, J. Mynard, A. D. Hughes, P. Segers, and B. E. Westerhof. Arterial pulse wave modeling and analysis for vascular age studies: a review from VascAgeNet. *American Journal of Physiology-Heart and Circulatory Physiology*, 325:H1–H29, 2023. URL https://doi.org/10.1152/ajpheart.00705.2022
- 23. K. Kotzen, **P. H. Charlton**., S. Salabi, L. Amar, A. Landesberg, and J. A. Behar. SleepPPG-Net: A deep learning algorithm for robust sleep staging from continuous photoplethysmography. *IEEE Journal of Biomedical and Health Informatics*, 27(2):924–932, 2023. URL https://doi.org/10.1109/JBHI. 2022.3225363

2022

24. **P. H. Charlton.**, K. Kotzen, E. Mejia-Mejia, P. J. Aston, K. Budidha, J. Mant, C. Pettit, J. A. Behar, and P. A. Kyriacou. Detecting beats in the photoplethysmogram: benchmarking open-source algorithms. *Physiological Measurement*, 43(8):085007, 2022. URL https://doi.org/10.1088/1361-6579/ac826d

- 25. S. Vennin, Y. Li, J. Mariscal-Harana, **P. H. Charlton**., H. Fok, H. Gu, P. Chowienczyk, and J. Alastruey. Novel pressure wave separation analysis for cardiovascular function assessment highlights major role of aortic root. *IEEE Transactions on Biomedical Engineering*, 69(5):1707–1716, 2022. URL https://doi.org/10.1109/TBME.2021.3127799
- 26. **P. H. Charlton**, K. Pilt, and P. A. Kyriacou. Establishing best practices in photoplethysmography signal acquisition and processing. *Physiological Measurement*, 43(5):050301, 2022. URL https://doi.org/10.1088/1361-6579/ac6cc4
- 27. P. A. Kyriacou, **P. H. Charlton**, R. Al-halawani, and K. H. Shelley. Inaccuracy of pulse oximetry with dark skin pigmentation: clinical implications and need for improvement. *British Journal of Anaesthesia*, 130(1):E33–E36, 2023. URL https://doi.org/10.1016/j.bja.2022.03.011
- 28. **P. H. Charlton**., P. A. Kyriacou, J. Mant, V. Marozas, P. Chowienczyk, and J. Alastruey. Wearable photoplethysmography for cardiovascular monitoring. *Proceedings of the IEEE*, 110(3):355–381, 2022. URL https://doi.org/10.1109/JPROC.2022.3149785
- 29. **P. H. Charlton**., B. Paliakaite, K. Pilt, M. Bachler, S. Zanelli, D. Kulin, J. Allen, M. Hallab, E. Bianchini, C. C. Mayer, D. Terentes-Printzios, V. Dittrich, B. Hametner, D. Veerasingam, D. Žikić, and V. Marozas. Assessing hemodynamics from the photoplethysmogram to gain insights into vascular age: a review from VascAgeNet. *American Journal of Physiology-Heart and Circulatory Physiology*, 322(4):H493–H522, 2022. URL https://doi.org/10.1152/ajpheart.00392.2021

- 30. Y. Li, A. Guilcher, **P. H. Charlton.**, S. Vennin, J. Alastruey, and P. Chowienczyk. Relationship between fiducial points on the peripheral and central blood pressure waveforms: rate of rise of the central waveform is a determinant of peripheral systolic blood pressure. *American Journal of Physiology Heart and Circulatory Physiology*, 320(4):H1601–H1608, 2021. URL https://doi.org/10.1152/ajpheart.00818.2020
- 31. V. Bikia, T. Fong, R. E. Climie, R.-M. Bruno, B. Hametner, C. Mayer, D. Terentes-Printzios, and **P. H. Charlton**. Leveraging the potential of machine learning for assessing vascular ageing: state-of-the-art and future research. *European Heart Journal Digital Health*, 2(4):676–690, 2021. URL https://doi.org/10.1093/ehjdh/ztab089
- 32. A. Adami, R. Boostani, F. Marzbanrad, and **P. H. Charlton**. A new framework to estimate breathing rate from electrocardiogram, photoplethysmogram, and blood pressure signals. *IEEE Access*, 9:45832–45844, 2021. URL https://doi.org/10.1109/ACCESS.2021.3066166
- 33. **P. H. Charlton**., T. Bonnici, L. Tarassenko, D. A. Clifton, R. Beale, P. J. Watkinson, and J. Alastruey. An impedance pneumography signal quality index: Design, assessment and application to respiratory rate monitoring. *Biomedical Signal Processing and Control*, 65:102339, 2021. URL https://doi.org/10.1016/j.bspc.2020.102339
- 34. J. Mariscal-Harana, **P. H. Charlton.**, S. Vennin, J. Aramburu, M. C. Florkow, A. van Engelen, T. Schneider, H. de Bliek, B. Ruijsink, I. Valverde, P. Beerbaum, H. Grotenhuis, M. Charakida, P. Chowienczyk, S. J. Sherwin, and J. Alastruey. Estimating central blood pressure from aortic flow: development and assessment of algorithms. *American Journal of Physiology Heart and Circulatory Physiology*, 320 (2):H494–H510, 2021. URL https://doi.org/10.1152/AJPHEART.00241.2020

2020

35. P. Celka, **P. H. Charlton**., B. Farukh, P. Chowienczyk, and J. Alastruey. Influence of mental stress on the pulse wave features of photoplethysmograms. *Healthcare Technology Letters*, 7(1):7–12, 2020. URL https://doi.org/10.1049/htl.2019.0001

- 36. D. Jarchi, **P. H. Charlton**, M. Pimentel, A. Casson, L. Tarassenko, and D. A. Clifton. Estimation of respiratory rate from motion contaminated photoplethysmography signals incorporating accelerometry. *Healthcare Technology Letters*, 6(1):19–26, 2019. URL https://doi.org/10.1049/htl.2018. 5019
- 37. **P. H. Charlton**., J. Mariscal Harana, S. Vennin, Y. Li, P. Chowienczyk, and J. Alastruey. Modeling arterial pulse waves in healthy aging: a database for in silico evaluation of hemodynamics and pulse wave indexes. *American Journal of Physiology-Heart and Circulatory Physiology*, 317(5):H1062–H1085, 2019. URL https://doi.org/10.1152/ajpheart.00218.2019

2018

- 38. **P. H. Charlton**, P. Celka, B. Farukh, P. Chowienczyk, and J. Alastruey. Assessing mental stress from the photoplethysmogram: a numerical study. *Physiological Measurement*, 39(5):054001, 2018. URL https://doi.org/10.1088/1361-6579/aabe6a
- 39. **P. H. Charlton.**, M. Willemet, P. Chowienczyk, and J. Alastruey. Comment on 'Numerical assessment and comparison of pulse wave velocity methods aiming at measuring aortic stiffness'. *Physiological Measurement*, 39(7):078001, 2018. URL https://doi.org/10.1088/1361-6579/aaca80
- 40. **P. H. Charlton.**, D. A. Birrenkott, T. Bonnici, M. A. F. Pimentel, A. E. W. Johnson, J. Alastruey, L. Tarassenko, P. J. Watkinson, R. Beale, and D. A. Clifton. Breathing rate estimation from the electrocardiogram and photoplethysmogram: a review. *IEEE Reviews in Biomedical Engineering*, 11:2–20, 2018. URL https://doi.org/10.1109/RBME.2017.2763681

2017

- 41. S. Vennin, Y. Li, M. Willemet, H. Fok, H. Gu, **P. H. Charlton**, J. Alastruey, and P. Chowienczyk. Identifying hemodynamic determinants of pulse pressure: a combined numerical and physiological approach. *Hypertension*, 70(6):1176–1182, 2017. URL https://doi.org/10.1161/HYPERTENSIONAHA.117.09706
- 42. M. A. F. Pimentel, A. E. W. Johnson, **P. H. Charlton.**, D. Birrenkott, P. J. Watkinson, L. Tarassenko, and D. A. Clifton. Toward a robust estimation of respiratory rate from pulse oximeters. *IEEE Transactions on Biomedical Engineering*, 64(8):1914–1923, 2017. URL https://doi.org/10.1109/TBME. 2016.2613124
- 43. **P. H. Charlton**, T. Bonnici, L. Tarassenko, J. Alastruey, D. A. Clifton, R. Beale, and P. J. Watkinson. Extraction of respiratory signals from the electrocardiogram and photoplethysmogram: technical and physiological determinants. *Physiological Measurement*, 38(5):669–690, 2017. URL https://doi.org/10.1088/1361-6579/aa670e

- 44. J. Aboab, L. A. Celi, **P. H. Charlton**, M. Feng, M. Ghassemi, D. C. Marshall, L. Mayaud, T. Naumann, N. McCague, K. E. Paik, T. J. Pollard, M. Resche-Rigon, J. D. Salciccioli, and D. J. Stone. A datathon model to support cross-disciplinary collaboration. *Science Translational Medicine*, 8(333):333ps8–333ps8, 2016. URL https://doi.org/10.1126/scitranslmed.aad9072
- 45. **P. H. Charlton**, T. Bonnici, L. Tarassenko, D. A. Clifton, R. Beale, and P. J. Watkinson. An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram. *Physiological Measurement*, 37(4):610–26, 2016. URL https://doi.org/10.1088/0967-3334/37/4/610

46. C. Orphanidou, T. Bonnici, **P. Charlton**, D. Clifton, D. Vallance, and L. Tarassenko. Signal-quality indices for the electrocardiogram and photoplethysmogram: derivation and applications to wireless monitoring. *IEEE Journal of Biomedical and Health Informatics*, 19(3):832–8, 2015. URL https://doi.org/10.1109/JBHI.2014.2338351

2012

- 47. D. J. Meredith, D. Clifton, **P. H. Charlton**, J. Brooks, C. W. Pugh, and L. Tarassenko. Photoplethysmographic derivation of respiratory rate: a review of relevant physiology. *Journal of Medical Engineering and Technology*, 36(1):1–7, 2012. URL https://doi.org/10.3109/03091902.2011.638965
- 48. R. Charlton and **P. H. Charlton**. A medical classic: Liza of Lambeth. *Clinical Medicine*, 12(4):393–4, 2012. URL https://doi.org/10.7861/clinmedicine.12-4-393

Book Chapters

2022

- 49. E. Mejía-Mejía, J. Allen, K. Budidha, C. El-Hajj, P. A. Kyriacou, and **P. H. Charlton**. Photoplethysmography signal processing and synthesis. In P. Kyriacou and J. Allen, editors, *Photoplethysmography*, chapter 4, pages 69–146. Elsevier, 1st editio edition, 2022. URL https://doi.org/10.1016/B978-0-12-823374-0.00015-3
- 50. **P. H. Charlton**. and V. Marozas. Wearable photoplethysmography devices. In P. Kyriacou and J. Allen, editors, *Photoplethysmography*, chapter 12, pages 401–439. Elsevier, 1st editio edition, 2022. URL https://doi.org/10.1016/B978-0-12-823374-0.00011-6

2016

- 51. **P. H. Charlton.**, M. Villarroel, and F. Salguiero. Waveform analysis to estimate respiratory rate. In *Secondary Analysis of Electronic Health Records*, chapter 26, pages 377–390. Springer International Publishing, 2016. URL https://doi.org/10.1007/978-3-319-43742-2_26
- 52. **P. H. Charlton.**, M. Pimentel, and S. Lokhandwala. Data fusion techniques for early warning of clinical deterioration. In *Secondary Analysis of Electronic Health Records*, pages 325–338. Springer International Publishing, 2016. URL https://doi.org/10.1007/978-3-319-43742-2_22

2015

- 53. D. A. Clifton, K. E. Niehaus, **P. H. Charlton**, and G. W. Colopy. Health Informatics via Machine Learning for the Clinical Management of Patients. In *IMIA Yearbook of Medical Informatics*, volume 24, pages 38–43. Georg Thieme Verlag KG, 2015. URL https://doi.org/10.15265/IY-2015-014
- 54. M. A. F. Pimentel, **P. H. Charlton**, and D. A. Clifton. Probabilistic estimation of respiratory rate from wearable sensors. In S. C. Mukhopadhyay, editor, *Wearable Electronics Sensors*, volume 15, pages 241–62. Springer International Publishing, 2015. URL https://doi.org/10.1007/978-3-319-18191-2_10

Conference Papers

- 55. **P. H. Charlton**, J. Mant, and P. Kyriacou. MSPTDfast: an efficient photoplethysmography beat detection algorithm. In *Proc CinC*., Karlsruhe, Germany, 2024. URL https://cinc.org/2024/Program/accepted/45_Preprint.pdf
- 56. **P. H. Charlton**, T. Bonnici, J. Brimicombe, C. Chapman, A. Dymond, M. Van Emmenis, P. Kyriacou, V. Marozas, A. Rapalis, K. Williams, J. Mant, and J. Mant. The acceptability of wearables for atrial fibrillation screening: Interim analysis of the safer wearables study. In *Proc CinC.*, Karlsruhe, Germany, 2024. URL https://cinc.org/2024/Program/accepted/60_Preprint.pdf
- 57. Z. Ding, J. Mant, J. Brimicombe, T. Bucci, B. Buckley, P. Calvert, W. Ding, A. Dymond, G. Lip, R. Proietti, K. Williams, E. Punskaya, and **P. H. Charlton**. Comparing RR-interval-based and whole-signal-based machine learning models for atrial fibrillation detection from single-lead electrocardiograms. In *Proc CinC.*, Karlsruhe, Germany, 2024. URL https://cinc.org/2024/Program/accepted/59_Preprint.pdf
- 58. S. Ho, F. Kristof, J. Mant, and **P. H. Charlton**. Automated RR interval detection and quality assessment in telehealth electrocardiograms. In *Proc CinC.*, Karlsruhe, Germany, 2024. URL https://cinc.org/2024/Program/accepted/84_Preprint.pdf
- 59. M. Rinkevicius, **P. H. Charlton**, and V. Marozas. Uncertainty in photoplethysmography-based cuffless blood pressure trend monitoring: A personalized approach. In *Proc CinC*., Karlsruhe, Germany, 2024. URL https://cinc.org/2024/Program/accepted/98_Preprint.pdf

- 60. **P. H. Charlton** and P. Kyriacou. Wearable photoplethysmography: Current status and future challenges. In *Proc CinC.*, Atlanta, USA, 2023. URL https://doi.org/10.22489/CinC.2023.076
- 61. **P. H. Charlton**, J. Behar, M. Goda, J. Mant, and P. Kyriacou. Accelerometry-guided inter-beat-interval assessment from wrist photoplethysmography. In *Proc CinC.*, Atlanta, USA, 2023. URL https://doi.org/10.22489/CinC.2023.046
- 62. J. Behar, J. Levy, S. Gendelman, A. Rosenberg, E. Zvuloni, A. Alexandrovich, **P. H. Charlton**, and G. MA. Physiozoo: The open physiological biomarkers resource. In *Proc CinC*., Atlanta, USA, 2023. URL https://doi.org/10.22489/CinC.2023.190
- 63. M. A. Goda, **P. H. Charlton**., and J. A. Behar. Robust peak detection for photoplethysmography signal analysis. In *Proc CinC*., 2023. URL https://doi.org/10.22489/CinC.2023.189
- 64. M. D. Prihatmoko, N. Ahmadi, **Peter H. Charlton**, and T. Adiono. Signal quality assessment for wearable multichannel photoplethysmography signals. In *Proc APSIPA ASC*., pages 267–271, 2023. URL https://doi.org/10.1109/APSIPAASC58517.2023.10317377
- 65. M. H. Hyanda, N. Ahmadi, **Peter H. Charlton**, T. G. Constandinou, A. Purwarianti, and T. Adiono. A comparative evaluation of video codecs for rPPG-based heart rate estimation. In *Proc APSIPA ASC*., pages 243–247, 2023. URL https://doi.org/10.1109/APSIPAASC58517.2023.10317392
- 66. R. Akande, J. Brimicombe, M. Cowie, A. Dymond, H. C. Lindén, G. Y. H. Lip, J. Lund, J. Mant, M. Pandiaraja, E. Svennberg, K. Williams, **P. H. Charlton**, and on behalf of the SAFER Investigators. Characterising RR intervals in atrial fibrillation detected through screening. In *Proc CinC.*, 2023. URL https://doi.org/10.22489/CinC.2023.270

- 67. N. Ahmadi, M. S. Al Farisyi, M. D. Prihatmoko, M. H. Hyanda, H. Muhaimin, R. Mulyawan, **P. H.**Charlton, and T. Adiono. Development and evaluation of a contactless heart rate measurement device based on rppg. In 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Oct. 2022. URL https://doi.org/10.1109/ICECS202256217.2022.9971006
- 68. M. Adeniji, J. Brimicombe, M. Cowie, A. Dymond, H. Clair Lindén, G. Lip, J. Mant, M. Pandiaraja, K. Williams, and **P. H. Charlton**. Prioritising electrocardiograms for manual review to improve the efficiency of atrial fibrillation screening. In *Proc IEEE EMBS*. IEEE, 2022. URL https://doi.org/10.1109/EMBC48229.2022.9871092

2021

- 69. B. Paliakaite, **P. H. Charlton**, A. Rapalis, V. Plusciauskaite, P. Piartli, E. Kaniusas, and V. Marozas. Blood pressure estimation based on photoplethysmography: Finger versus wrist. In *Proc CinC*. IEEE, 2021. URL https://doi.org/10.23919/CinC53138.2021.9662716
- 70. K. Kotzen, **P. H. Charlton**, A. Landesberg, and J. A. Behar. Benchmarking photoplethysmography peak detection algorithms using the electrocardiogram signal as a reference. In *Proc CinC*. IEEE, 2021. URL https://doi.org/10.23919/CinC53138.2021.9662889

2020

- 71. **P. H. Charlton**., P. Kyriacou, J. Mant, and J. Alastruey. Acquiring wearable photoplethysmography data in daily life: The PPG Diary Pilot Study. *Engineering Proceedings*, 2(1):80, 2020. URL https://doi.org/10.3390/ecsa-7-08233
- 72. M. Pandiaraja, J. Brimicombe, M. Cowie, A. Dymond, H. C. Lindén, G. Y. H. Lip, J. Mant, K. Williams, **P. H. Charlton**, and on behalf of the SAFER Investigators. Screening for atrial fibrillation: Improving efficiency of manual review of handheld electrocardiograms. *Engineering Proceedings*, 2(1):78, 2020. URL https://doi.org/10.3390/ecsa-7-08195

2019

- 73. J. Mariscal Harana, **P. H. Charlton**, S. Sherwin, and J. Alastruey. An assessment of algorithms to estimate central blood pressure from non-invasive measurements. In *Conf Proc CMBE*, pages 603–606, 2019. URL https://www.compbiomed.net/getfile.php?type=14/site_documents&id=CMBE19proceedings-vol2.pdf
- 74. A. Mathieu, **P. H. Charlton**, and J. Alastruey. Using smart wearables to monitor cardiac ejection. *Proceedings*, 4(1):48, 2019. URL https://doi.org/10.3390/ecsa-5-05744
- 75. A. D. Pontoriero, **P. H. Charlton**., and J. Alastruey. Alzheimer's disease: A step towards prognosis using smart wearables. *Proceedings*, 4(1):8, 2019. URL https://doi.org/10.3390/ecsa-5-05742
- 76. H. Dijab, J. Alastruey, and **P. H. Charlton**. Measuring vascular recovery rate after exercise. *Proceedings*, 4(1):12, 2019. URL https://doi.org/10.3390/ecsa-5-05746
- 77. D. Tecelão and **P. H. Charlton**. Automated P-wave quality assessment for wearable sensors. *Proceedings*, 4(1):13, 2019. URL https://doi.org/10.3390/ecsa-5-05743

2017

78. J. Lyle, **P. H. Charlton**, E. Bonet-Luz, G. Chaffey, M. Christie, M. Nandi, and P. Aston. Beyond HRV: Analysis of ECG Signals using Attractor Reconstruction. In *Proc CinC.*, 2017. URL https://doi.org/10.22489/CinC.2017.091-096

79. **P. H. Charlton**, L. Camporota, J. Smith, M. Nandi, M. Christie, P. J. Aston, and R. Beale. Measurement of cardiovascular state using attractor reconstruction analysis. In *Proc. EUSIPCO*, pages 444–8, Nice, 2015. IEEE. URL https://doi.org/10.1109/EUSIPCO.2015.7362422

2014

- 80. **P. H. Charlton**, T. Bonnici, D. Clifton, L. Tarassenko, P. Watkinson, and R. Beale. Achieving Clinical Quality from Wireless Sensors. In *Conf Proc Eng Med Biol Soc.*, Chicago, IL, 2014. IEEE. URL https://peterhcharlton.github.io/publication/charlton-2014-b/
- 81. **P. H. Charlton**, J. Smith, L. Camporota, R. Beale, and J. Alastruey. Optimising the Windkessel model for cardiac output monitoring during changes in vascular tone. In *Conf Proc Eng Med Biol Soc.*, pages 3759–3762, Chicago, IL, 2014. IEEE. URL https://doi.org/10.1109/EMBC.2014.6944441

2012

82. C. Orphanidou, T. Bonnici, D. Vallance, A. Darrell, **P. H. Charlton**, and L. Tarassenko. A method for assessing the reliability of heart rates obtained from ambulatory ECG. In 2012 IEEE 12th International Conference on Bioinformatics and Bioengineering (BIBE), pages 193–196. IEEE, 2012. URL https://doi.org/10.1109/BIBE.2012.6399672

Conference Abstracts

2024

- 83. K. P. Bhayankaram, J. Mant, J. Brimicombe, A. Dymond, K. Williams, and **P. H. Charlton**. Telephone training to improve ECG quality in remote screening for atrial fibrillation. In *European Stroke Organisation Conference*, Basel, Switzerland, 2024
- 84. K. P. Bhayankaram, J. Mant, J. Brimicombe, A. Dymond, K. Williams, and **P. H. Charlton**. Can telephone training to improve ECG quality in remote screening for atrial fibrillation? In *Cambridge Clinical Academic Training Annual Symposium*, Cambridge, UK, 2024
- 85. K. P. Bhayankaram, J. Mant, J. Brimicombe, A. Dymond, K. Williams, and **P. H. Charlton**. Telephone training to improve ECG quality in remote screening for atrial fibrillation. In *Cambridge Cardiovascular Annual Research Symposium*, Cambridge, UK, 2024
- 86. S. Ho, F. Kristof, J. Mant, and **P. H. Charlton**. Automated telehealth electrocardiogram analysis to detect accurate RR intervals. In *Medical Women's Federation Spring Conference*, Cambridge, UK, 2024
- 87. K. P. Bhayankaram, J. Mant, J. Brimicombe, A. Dymond, K. Williams, and **P. H. Charlton**. The use of telephone training to improve ECG quality in remote screening for atrial fibrillation. In *Medical Women's Federation Spring Conference*, Cambridge, UK, 2024
- 88. K. P. Bhayankaram, J. Mant, J. Brimicombe, A. Dymond, K. Williams, and **P. H. Charlton**. Telephone training to improve ECG quality in remote screening for atrial fibrillation. In *Society for Academic Primary Care Southeastern Conference*, Cambridge, UK, 2024

2023

89. F. Alimahomed, M. Charakida, M. Tang, **P. H. Charlton**, K. Christensen-Jeffries, and J. Alastruey. Ultrasound-based pulse wave analysis for enhanced diagnosis of fetal growth restriction and aortic stiffness. In *ARTERY23*, Bonn, Germany, 2022

- 90. **P. H. Charlton**. Developing software to monitor respiratory rate using wearable sensors. In *Development of Software as a Medical Device, Institute of Physics and Engineering in Medicine*, 2022. URL https://doi.org/10.5281/zenodo.6413092
- 91. J. Alastruey, **P. H. Charlton**, W. Jin, F. Liang, and T. Wang. The relevant role of in silico pulse wave databases in machine learning-based pulse wave analysis. In *World Congress of Biomechanics* 2022, Taipei, Taiwan, 2022

2021

- 92. **P. H. Charlton**, R. Climie, C. Mayer, M. Nandi, A. Schmidt-Trucksass, P. Segers, D. Terentes-Printzios, and E. Bianchini. Vascular Ageing Glossary: unifying language for knowledge diffusion. In *Artery Conference*, 2021. URL https://doi.org/10.1007/s44200-021-00008-4
- 93. F. Viberg, T. Hygrell, E. Dahlberg, **P. H. Charlton**, K. K. Gudmundsdottir, J. Mant, J. L. Hornlund, and E. Svennberg. An artificial intelligence-based model for prediction of atrial fibrillation from single-lead sinus rhythm ecgs enabling screening. *Heart Rhythm*, 18(8):S466, 2021. URL https://doi.org/10.1016/j.hrthm.2021.06.1150

2020

94. **P. H. Charlton**, M. Aresu, J. Spear, P. Chowienczyk, and J. Alastruey. Assessing vascular age from peripheral pulse waves: a study of existing indices, and directions for future research. *Artery Research*, 25(Supplement 1):S49, 2020. URL https://doi.org/10.2991/artres.k.191224.042

2019

95. J. Mariscal Harana, **P. H. Charlton**., S. Sherwin, and J. Alastruey. Algorithms for estimating central blood pressure from aortic blood flow. In *Proc. BioMedEng19*, page 108, London, UK, 2019

- 96. **P. H. Charlton**, J. Mariscal Harana, S. Vennin, M. Willemet, P. Chowienczyk, and J. Alastruey. Modelling arterial pulse wave propagation during healthy ageing. In *World Congress of Biomechanics* 2018, Dublin, Ireland, 2018. URL https://kclpure.kcl.ac.uk/portal/en/publications/modelling-arterial-pulse-wave-propagation-during-healthy-ageing
- 97. **P. H. Charlton**, M. Aresu, J. Spear, P. Chowienczyk, and J. Alastruey. Indices to assess aortic stiffness from the finger photoplethysmogram: In silico and in vivo testing. *Artery Research*, 24:128, 2018. URL https://doi.org/10.1016/j.artres.2018.10.217
- 98. J. Mariscal Harana, **P. H. Charlton.**, S. Vennin, A. van Engelen, T. Schneider, M. Florkow, H. de Bliek, B. Ruijsink, I. Valverde, M. Charakida, K. Pushparajah, S. Sherwin, R. Botnar, and J. Alastruey. Estimating Central Blood Pressure from MRI data using reduced-order computational models. *Artery Research*, 24:93–94, 2018. URL https://doi.org/10.1016/j.artres.2018.10.105
- 99. **P. H. Charlton**, T. Bonnici, L. Tarassenko, P. Watkinson, R. Beale, D. Clifton, and J. Alastruey. A signal quality index for the impedance respiratory signal. In *Proc. BioMedEng18*, page 130, London, UK, 2018. URL https://kclpure.kcl.ac.uk/portal/en/publications/a-signal-quality-index-for-the-impedance.
- 100. S. Vennin, Y. Li, M. Willemet, H. Fok, H. Gu, **P. H. Charlton**, J. Alastruey, and P. Chowienczyk. Determining cardiac and arterial contributions to central Pulse Pressure. *Artery Research*, 24:88–89, 2018. URL https://doi.org/10.1016/j.artres.2018.10.085

- 101. **P. H. Charlton**, P. Chowienczyk, and J. Alastruey. An assessment of aortic stiffness indices using a model of healthy cardiovascular ageing, in 'Abstracts from the 2018 Annual Scientific Meeting of the British and Irish Hypertension Society (BIHS)'. *Journal of Human Hypertension*, 32(10):693–721, 2018. URL http://www.nature.com/articles/s41371-018-0109-3
- 102. **P. H. Charlton**., J. Mariscal Harana, S. Vennin, P. Chowienczyk, and J. Alastruey-Arimon. A database for the development of pulse wave analysis algorithms. In *BioMedEng18 Conference*, London, UK, 2018. URL https://kclpure.kcl.ac.uk/portal/en/publications/a-database-for-the-development-of-p

- 103. J. Mariscal Harana, A. van Engelen, T. Schneider, M. Florkow, P. H. Charlton, B. Ruijsink, H. De Bliek, I. Valverde, M. Carakida, K. Pushparajah, S. Sherwin, R. Botnar, and J. Alastruey. Non-invasive, MRI-based estimation of patient-specific aortic blood pressure using one-dimensional blood flow modelling. Artery Research, 20:54–55, 2017. URL https://doi.org/10.1016/j.artres.2017.10.036
- 104. S. Vennin, Y. Li, M. Willemet, H. Fok, H. Gu, **P. H. Charlton**, J. Alastruey, and P. Chowienczyk. Identifying haemodynamic determinants of pulse pressure: An integrated numerical and physiological approach. *Artery Research*, 20:78, 2017. URL https://doi.org/10.1016/j.artres.2017.10. 103
- 105. **P. H. Charlton.**, L. Camporota, J. Smith, G. Chaffey, M. Nandi, M. I. Christie, P. Aston, R. Beale, and J. Alastruey. Clinical applications of attractor reconstruction analysis. In *Science and Engineering Impact Showcase, King's College London*, London, UK, 2017. URL https://doi.org/10.5281/zenodo.495887

2016

- 106. P. H. Charlton, T. Bonnici, L. Tarassenko, D. Clifton, R. Beale, and P. Watkinson. An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram. In MEIBioeng16, Oxford, 2016. URL https://doi.org/10.5281/zenodo.439966
- 107. J. Salciccioli, P. H. Charlton, A. Hartley, M. Komorowski, D. Marshall, J. Shalhoub, M. Sykes, and L. Celi. Lactate Rebound as an Independent Predictor of Mortality in Intensive Care. *American Journal of Respiratory and Critical Care Medicine*, 193:A2732, 2016. URL http://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2016.193.1_MeetingAbstracts.A2732

2015

- 108. T. Bonnici, **P. H. Charlton**, D. Pierre, L. Tarassenko, P. Watkinson, and R. Beale. Experiences implementing a system for widespread recording of patient physiology. *Journal of the Intensive Care Society*, 16(1 suppl):24–92, 2015. URL https://doi.org/10.1177/1751143715577565
- 109. P. H. Charlton, L. Camporota, J. Smith, M. Nandi, M. Christie, P. J. Aston, and R. Beale. Non-invasive attractor reconstruction analysis for early detection of deteriorations. In *Imaging Sciences and Biomedical Engineering Divisional Symposium, King's College London*, London, UK, 2015. URL https://kclpure.kcl.ac.uk/portal/files/42032524/Att_Recon_Poster.pdf

2014

110. T. Bonnici, P. H. Charlton, J. Alastruey, L. Tarassenko, P. Watkinson, and R. Beale. Continuous Physiological Monitoring of Ambulatory Patients. In *MEC Annual Meeting and Bioengineering14 Programme and Abstracts*, page 38. MECbioeng14, Imperial College London, London, 2014. URL http://www.mecbioeng.org/2014/wp-content/uploads/MECbioeng14-brochure.pdf

- 111. **P. H. Charlton**, T. Bonnici, D. Clifton, J. Alastruey, L. Tarassenko, R. Beale, and P. Watkinson. The influence of recording equipment on the accuracy of respiratory rate estimation from the electrocardiogram and photoplethysmogram. In *MEC Annual Meeting and Bioengineering14 Programme and Abstracts*, page 96. MECbioeng14, Imperial College London, London, 2014. URL http://www.mecbioeng.org/2014/wp-content/uploads/MECbioeng14-brochure.pdf
- 112. P. H. Charlton, T. Bonnici, L. Tarassenko, P. Watkinson, and R. Beale. Electronic Acquisition of Vital Signs on General Wards. In MEC Annual Meeting and Bioengineering 14 Programme and Abstracts. MECbioeng 14, Imperial College London, London, 2014. URL http://www.mecbioeng.org/2014/wp-content/uploads/MECbioeng 14-brochure.pdf

- 113. J. Smith, M. Scaramuzzi, **P. H. Charlton**, J. Brooks, D. Arces, G. Wong, L. Camporota, and R. Beale. Effects of norepinephrine-driven change in arterial blood pressure on four different continuous cardiac output systems in critically ill patients. *Intensive Care Medicine*, 37 Suppl 1(September):S280, 2011. URL https://doi.org/10.1007/s00134-011-2322-1
- 114. J. Smith, M. Scaramuzzi, P. H. Charlton, J. Brooks, D. Arces, G. Wong, L. Camporota, and R. Beale. Performance of two Flotrac-Vigileo TM versions during norepinephrine-driven change in arterial blood pressure in critically ill patients. *Intensive Care Medicine*, 37 Suppl 1(September):S242, 2011. URL https://doi.org/10.1007/s00134-011-2322-1
- 115. J. Smith, M. Scaramuzzi, P. H. Charlton, J. Brooks, D. Arces, G. Wong, L. Camporota, and R. Beale. Comparison of Nicom bioreactance technology and transpulmonary thermodilution during norepinephrine-driven change in arterial blood pressure in critically ill patients. *Intensive Care Medicine*, 37 Suppl 1 (September):S242, 2011. URL https://doi.org/10.1007/s00134-011-2322-1
- 116. J. Smith, M. Scaramuzzi, P. H. Charlton, J. Brooks, D. Arces, G. Wong, L. Camporota, and R. Beale. Effects of norepinephrine on four different continuous cardiac output systems using the femoral and radial arterial pressure waveform in critically ill patients. *Intensive Care Medicine*, 37 Suppl 1(September): S241, 2011. URL https://doi.org/10.1007/s00134-011-2322-1

Theses and Dissertations

- 117. **P. H. Charlton**. Continuous respiratory rate monitoring to detect clinical deteriorations using wearable sensors, 2017. URL http://peterhcharlton.github.io/publication/cont_resp_monitoring/
- 118. P. H. Charlton. Monitoring Physiological Trajectories. Phd transfer report, King's College London, 2014. URL https://kclpure.kcl.ac.uk/portal/files/52776855/PCharlton_PhD_Transfer_ Report.pdf
- 119. **P. H. Charlton**. *Demonstrating elastic stability theory*. Master's thesis, University of Oxford, 2010. URL https://doi.org/10.5281/zenodo.13997350

Book

120. MIT Critical Data. *Secondary Analysis of Electronic Health Records*. Springer International Publishing, 2016. URL https://doi.org/10.1007/978-3-319-43742-2