57.
$$y = 2\sqrt{3}x + 1 - \pi\sqrt{3}/3$$

59.
$$y = 2x + 1$$

61.
$$y = -x + 2$$
; $y = x + 2$

63. (a)
$$\frac{10 - 3x}{2\sqrt{5 - x}}$$

(b)
$$y = \frac{7}{4}x + \frac{1}{4}$$
, $y = -x + 8$

65.
$$(\pi/4, \sqrt{2}), (5\pi/4, -\sqrt{2})$$

71.
$$2xg(x) + x^2g'(x)$$

73.
$$2g(x)g'(x)$$

(b)44
75.
$$g'(e^x)e^x$$

77.
$$g'(x)/g(x)$$

79.
$$\frac{f'(x)[g(x)]^2 + g'(x)[f(x)]^2}{[f(x) + g(x)]^2}$$

81.
$$f'(g(\text{sen } 4x))g'(\text{sen } 4x)(\cos 4x)(4)$$

83.
$$(-3,0)$$

85.
$$y = -\frac{2}{3}x^2 + \frac{14}{3}x$$

87.
$$v(t) = -Ae^{-ct}[c\cos(\omega t + \delta) + \omega\sin(\omega t + \delta)],$$
$$a(t) = Ae^{-ct}[(c^2 - \omega^2)\cos(\omega t + \delta) + 2c\omega\sin(\omega t + \delta)]$$

89. (a)
$$v(t) = 3t^2 - 12$$
; $a(t) = 6t$

(b)
$$t > 2$$
; $0 \le t < 2$

- 93. (a) 200(3,24)¹
- (b) ≈ 22040
- (c) ≈ 25 910 bactérias/h
- (d) $(\ln 50)/(\ln 3,24) \approx 3,33 \text{ h}$

95. (a)
$$C_0 e^{-kt}$$

(b)
$$\approx 100 \text{ h}$$

97.
$$\frac{4}{3}$$
 cm²/min

99.
$$117/\sqrt{666} \approx 4.53 \text{ m/s}$$

103. (a)
$$L(x) = 1 + x$$
; $\sqrt[3]{1 + 3x} \approx 1 + x$; $\sqrt[3]{1,03} \approx 1,01$
(b) $-0.23 < x < 0.40$

105.
$$12 + \frac{3}{2}\pi \approx 16.7 \text{ cm}^2$$
 107. $\frac{1}{32}$ **109.** $\frac{1}{4}$ **111.** $\frac{1}{8}x^2$

07.
$$\frac{1}{32}$$
 109.

PROBLEMAS QUENTES ■ PÁGINA 248

1.
$$(\pm \frac{1}{2}\sqrt{3}, \frac{1}{4})$$

9.
$$(0,\frac{5}{4})$$

11. (a)
$$4\pi\sqrt{3}/\sqrt{11}$$
 rad/s

(b)
$$40(\cos\theta + \sqrt{8 + \cos^2\theta})$$
 cm

(c)
$$-480\pi \operatorname{sen} \theta \left(1 + \cos \theta / \sqrt{8 + \cos^2 \theta}\right) \operatorname{cm/s}$$

15.
$$x_T \in (3, \infty), y_T \in (2, \infty), x_N \in (0, \frac{5}{3}), y_N \in (-\frac{5}{2}, 0)$$

19. R se aproxima do ponto médio do raio AO.

23.
$$2\sqrt{e}$$
 27. $(1, -2), (-1, 0)$

29.
$$\sqrt{29/58}$$

31.
$$2 + \frac{375}{128} \pi \approx 11\ 204\ \text{cm}^3/\text{min}$$

CAPÍTULO 4

EXERCÍCIOS 4.1 PÁGINA 258

Abreviações: abs., absoluto; loc., local; máx., máximo; mín., mínimo

- Mínimo absoluto: menor valor da função no domínio todo da função; mínimo local em c: menor valor da função quando x está próximo de c
- Máx. abs. em s, mín. abs. em r, máx. loc. em c, mín. loc. em b e r
- Máx. abs. f(4) = 5, máx. loc. f(4) = 5 e f(6) = 4, mín. loc. f(2) = 2 e f(5) = 3

11. (a)

(b)

(c)

13. (a)

(b)

15. Máx. abs.
$$f(1) = 5$$

19. Mín. abs.
$$f(0) = 0$$

21. Máx. abs.
$$f(-3) = 9$$
, mín. abs. e loc. $f(0) = 0$

23. Nenhum

25. Máx. abs.
$$f(0) = 1$$

27. Máx. abs.
$$f(3) = 2$$

29.
$$-\frac{2}{5}$$
 31. -4 , 2 **33.** 0 , $\frac{1}{2}(-1 \pm \sqrt{5})$

37.
$$0, \frac{4}{9}$$
 39. $0, \frac{8}{7}, 4$ 41. $n\pi(n \text{ um inteiro})$ 43. $0, \frac{2}{3}$

47.
$$f(0) = 5, f(2) = -7$$