Control Automático II - Ing. Electrónica Ejercicio resuelto 4: Controlabilidad y observabilidad

Considere el siguiente sistema

$$\dot{x}_1 = 2x_1 + 3x_2 + 2x_3 + x_4 + u
\dot{x}_2 = -2x_1 - 3x_2 - 2u
\dot{x}_3 = -2x_1 - 2x_2 - 4x_3 + 2u
\dot{x}_4 = -2x_1 - 2x_2 - 2x_3 - 5x_4 - u$$
(1)

siendo la variable de salida

$$y = 7x_1 + 6x_2 + 4x_3 + 2x_4. (2)$$

El sistema dado por (1) es útil para estudiar como un sistema puede subdividir en subsistemas controlable y no controlable, observable y no observable.

Por inspección fácilmente pueden encontrase las matrices A, B y C del sistema:

$$A = \begin{bmatrix} 2 & 3 & 2 & 1 \\ -2 & -3 & 0 & 0 \\ -2 & -2 & -4 & 0 \\ -2 & -2 & -2 & -5 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ -2 \\ 2 \\ -1 \end{bmatrix}, \quad C = \begin{bmatrix} 7 & 6 & 4 & 2 \end{bmatrix}.$$

La función de transferencia H(s) desde la entrada u a la salida y está dada por

$$H(s) = \frac{Y(s)}{U(s)} = C(sI - A)^{-1}B$$
(3)

donde

$$(sI - A)^{-1} =$$

$$\underbrace{\frac{1}{\Delta(s)}} \begin{bmatrix} s^3 + 12s^2 + 47s + 6 & 3s^2 + 21s + 36 & 2s^2 + 14s + 24 & s^2 + 7s + 12 \\ -2s^2 - 18s - 40 & s^3 + 7s^2 + 8s - 16 & -4s - 16 & -2s - 8 \\ -2s^2 - 12s - 10 & -2s^2 - 12s - 10 & s^3 + 6s^2 + 7s + 2 & -2s - 2 \\ -2s^2 - 6s - 4 & -2s^2 - 6s - 4 & -2s^2 - 6s - 4 & s^3 + 5s^2 + 8s + 4 \end{bmatrix}$$

con

$$\Delta(s) = |sI - A| = s^4 + 21s^3 + 35s^2 + 50s + 24.$$

Resolviendo, la (3) resulta

$$H(s) = C(sI - A)^{-1}B = \frac{s^3 + 9s^2 + 26s + 24}{s^4 + 21s^3 + 35s^2 + 50s + 24},$$
 (4)

$$H(s) = C(sI - A)^{-1}B = \frac{s^3 + 9s^2 + 26s + 24}{s^4 + 21s^3 + 35s^2 + 50s + 24},$$

$$H(s) = \frac{(s+2)(s+3)(s+4)}{(s+1)(s+2)(s+3)(s+4)} = \frac{1}{(s+1)}$$
(5)

La cancelación entre polos y ceros de H(s), está poniendo en evidencia un problema de controlabilidad y/o observabilidad. Empleemos el test de Gilbert para evaluarlo. Con esta finalidad, buscamos una matriz de transformación T, que nos permita obtener un modelo diagonal del sistema. Procediendo como hemos visto en prácticas anteriores, la transformación en este caso resulta

$$T = \begin{bmatrix} 4 & 3 & 2 & 1 \\ 3 & 2 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}, \quad T^{-1} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

Luego, de aplicar la transformación tenemos las siguientes ecuaciones de estado

$$\dot{z} = A_d z + B_d u
y = c_d z$$
(6)

donde

$$A_d = TAT^{-1} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -4 \end{bmatrix}, \quad B_d = TB = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad C_d = CT^{-1} = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}.$$

Esto es equivalente a las siguientes ecuaciones diferenciales

$$\dot{z}_1 = -z_1 + u,
\dot{z}_2 = -2z_2,
\dot{z}_3 = -3z_3 + u,
\dot{z}_4 = -4z_4,$$
(7)

y ecuación de salida

$$y = z_1 + z_2. (8)$$

Estas ecuaciones representadas en diagrama de bloques corresponde a la Fig. 1.

Figura 1: Representación de las ecuaciones (7) y (8)

Puede observarse que sólo las variables z_1 y z_3 son afectadas por la acción de control; y que la salida sólo es influenciada por los estados z_1 y z_2 . Por tanto,

- el estado z_1 es controlable y observable,
- el estado z_2 no es controlable pero si observable,
- el estado z_1 es controlable pero no observable,
- el estado z_4 no es ni controlable y ni observable.

Finalmente, el sistema puede descomponerse en cuatro subsistemas:

- uno controlable y observable correspondiente al estado z_1 ,
- uno no controlable pero observable correspondiente al estado z_2 ,
- uno controlable pero no observable correspondiente al estado z_3
- y uno ni controlable ni observable correspondiente al estado z_4 .

Teniendo en cuenta, que la transformación T no afecta las propiedades de controlabilidad y observabilidad del sistema. Luego, puede concluirse que sólo el estado z_1 es controlable y observable. Como la transferencia es determinada sólo por el subsistema controlable y observable, es claro que

$$H(s) = \frac{Y(s)}{U(s)} = \frac{1}{s+1}.$$