Elementary Number Theory: Homework2

刘泓尊 2018011446 计84

2020年4月2日

Exercises 3.1

8. 证明整数 $Q_n = n! + 1$ 有一个大于 n 的素因子, $n \in \mathbb{Z}^+$ (可以推出存在无穷多个素数)

证明. 因为 $Q_n > 1$,所以由 Lemma 3.1, Q_n 有一个素因子 p. 下面采用反证法,假设 $p \le n$,则 $p \mid n!$,则 $p \mid Q_n - n! = 1$,p 不是素数,矛盾! 所以 $Q_n = n! + 1$ 有一个大于 n 的素因子。利用此结论可以证明素数的无穷性: 设 p_1 是 Q_1 的素因子,那么有 $p_1 > 1$,所以存在 p_2 是 Q_{p_1} 的素因子。故而存在 p_{i-1} 是 Q_{p_i} 的素因子。因此我们得到了无穷素数列 $p_1, p_2, \cdots, p_n, \cdots$,所以素数有无穷多个。

9. 是否能够通过观察整数 $S_n = n! - 1$ 来证明无限多个素数?

证明. 当 $n \ge 3$ 时, $S_n > 1$, 有一个素因子 p。如果 $p \le n$ 则 $p \mid n! - S_n = 1$, 即 p = 1, 矛盾! 所以 p > n.

类似 3.1.8 的方法,可以得出有无限多个素数。

10. 用欧几里得对素数无限多的证明说明: 第 n 个素数 $p \leq 2^{2^{n-1}}, n \in \mathbb{Z}^+$. 由此证明 $n \in \mathbb{Z}^+$ 时,小于 2^{n^n} 的素数至少有 n+1 个

证明, 采用数学归纳法:

基础: n=1 时, $p_1=2 \le 2^{2^0}=2$.

假设: $\forall k < n$,有 $p_k < 2^{2^k}$.

递推: 根据 Euclid 的证明,存在 $q \neq p_1, p_2, \cdots, p_n$,使得 $q \mid Q_n = p_1 p_2 \cdots p_n + 1$. 所以 $p_n < q \leq Q_n = p_1 p_2 \cdots p_n + 1 < 2^{2^0} 2^{2^1} \cdots 2^{2^{n-1}} + 1 = 2^{2^0 + 2^1 + \cdots 2^{n-1}} + 1 = 2^{2^{n-1} - 1} + 1$. 即 $p_n \leq 2^{2^{n-1} - 1} \leq 2^{2^{n-1}}$.

接下来证明第二个命题:

假设: 小于 2^{n^n} 的素数只有少于 n 个. 那么对于第 n+1 个素数 p_{n+1} ,有 $p_{n+1} \leq 2^{2^n}$ 。因为 p_{n+1} 必定为奇数,所以实际上 $p_{n+1} < 2^{2^n}$,矛盾。所以小于 2^{n^n} 的素数至少有 n+1 个。 \square

11. 令 $Q_n = p_1 p_2 \cdots p_n + 1$, 其中 p_1, p_2, \cdots, p_n 是前 n 个素数。对于 n = 1, 2, 3, 4, 5, 6 给出 Q_n 的最小素因子。

证明. $p_1=2, p_2=3, p_3=5, p_4=7, p_5=11, p_6=13$ $Q_1=3, Q_2=7, Q_3=31, Q_4=211, Q_5=2311, Q_6=30031$

设 Q_n 的最小素因子为 q_n , 则: $q_1 = 3, q_2 = 7, q_3 = 31, q_4 = 211, q_5 = 2311, q_6 = 59$ Exercises 3.3 **14.** 证明: 如果整数 a, b, c 使得 (a, b) = 1 且 $c \mid (a + b)$, 那么 (c, a) = (c, b) = 1. 证明. 因为 $c \mid (a+b)$, 所以存在正整数 k 使得 (a+b) = kc。设 $p \mid a$ 且 $p \mid c$,则 $p \mid b = kc - a$, 即 p|(a,b) = 1,所以 p = 1。即 (a,c) = (b,c) = 1**15.** 证明: 如果非零整数 a, b, c 互素, 那么 (a, bc) = (a, b)(a, c)证明. 设 d = (a,b)。则 (a/d,b/d) = 1. 下证 (a/d,bc/d) = (a,c): 设 e = (a/d, bc/d),则 $e \mid a/d$,所以 (e, b/d) = 1,所以 $e \mid c$ 。又因为 $e \mid a/d$, 所以 $e \mid a$,所以 $e \mid (a,c)$ 。设 f = (a,c),则 (f,b) = 1,进而 (f,d) = 1.所以 $f \mid a/d$ 且 $f \mid bc/d$ 。所以 $f \mid e$ 。 因为 $e \mid f = (a, c)$, 所以 f = e. 所以 (a, b)(a, c) = de = d(a/d, bc/d) = (a, bc)16. (a). 证明: 如果整数 a, b, c, (a, b) = (a, c) = 1, 那么 (a, bc) = 1证明. 存在整数 m, n, s, t 使得 ma + nb = 1, sa + tc = 1. 则 1 = (ma + nb)(sa + tc) =(msa + nbs + mtc)a + (nt)bc, 所以 (a,bc) = 1(b). 用数学归纳法证明, 如果对整数 a_1, a_2, \dots, a_n , 有另一整数 b, 使得 $(a_1, b) = (a_2, b) =$ $\cdots = (a_n, b) = 1$, 那么 $(a_1 a_2 \cdots a_n, b) = 1$. 证明. 若 $(a_i,b)=1, \forall i=1,2,\cdots,n$. 令 $A_i=\prod_{k=1}^i a_k$. 下面用数学归纳法证明 $(A_n,b)=1$: 基础: n = 2 时, 由 (a) 可知正确。 假设: n = k 时 $(A_k, b) = 1$ 递推: n = k + 1 时, 因为 $(a_{k+1}, b) = 1$ 且 $(A_k, b) = 1$, 由 (a) 可知 $(A_{k+1},b) = (A_k a_{k+1},b) = 1$ Exercises 3.5

37.

(a). [a,b] | c 当且仅当 a | c 且 b | c

证明. 必要性: 因为 $[a,b] \mid c, a \mid [a,b]$, 所以 $a \mid c$ 。同理 $b \mid c$

充分性: 对 a,b,c 做最小素分解, $a = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}, b = p_1^{s_1} p_2^{s_2} \cdots p_k^{s_k}, c = p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k}$. 若 $a \mid c$ 且 $b \mid c$,则 $r_i \leq c_i, s_i \leq c_i$,进而 $\max(r_i, s_i) \leq c_i$,

所以
$$[a,b] = p_1^{\max(s_1,r_1)} p_2^{\max(s_2,r_2)} \cdots p_k^{\max(s_k,r_k)} \mid c$$
,即 $[a,b] \mid c$

(b). $[a_1, a_2, \dots, a_n] \mid d$ 当且仅当 $a_i \mid d, i = 1, 2, \dots, n$. 证明. 必要性: 因为 $[a_1, a_2, \dots, a_n] \mid d, a_i \mid [a_1, a_2, \dots, a_n]$, 所以 $a_i \mid d, i = 1, 2, \dots, n$ 充分性: 对 a_i , d 做最小素分解 $i = 1, 2, \dots, n$.
$$\begin{split} &a_i = p_1^{r_{i_1}} p_2^{r_{i_2}} \cdots p_k^{r_{i_k}}, \, d = p_1^{s_1} p_2^{s_2} \cdots p_k^{s_k} \cdot 若 \; a_i \mid d, \, \text{则} \; r_{i_k} \leq s_k, \, \text{进而} \; \max(r_{1_k}, r_{2_k}, \cdots, r_{n_k}) \leq s_k, \end{split}$$
 所以 $[a_1, a_2, \cdots, a_n] = p_1^{\max(r_{1_1}, r_{2_1}, \cdots, r_{n_1})} p_2^{\max(r_{1_2}, r_{2_2}, \cdots, r_{n_2})} \cdots p_k^{\max(r_{1_k}, r_{2_k}, \cdots, r_{n_k})} \mid d, \end{split}$ $\mathbb{P}\left[a_1, a_2, \cdots, a_n\right] \mid d$ **38**. 若 p 为素数, $p \mid a^2$, 则 $p \mid a$ 证明. 由 Lemma 3.5,若 p 为素数, $p \mid a^2 = |a| \cdot |a|$,则有 $p \mid |a|$,进而 $p \mid a$. **39.** 证明: 若 $p \mid a^n$, 则 $p \mid a$ 证明. 由 Lemma 3.5,若 p 为素数, $p \mid a^n = \pm |a| |a| \cdots |a|$,则有 $p \mid |a|$,进而 $p \mid a$. **40.** 证明: 若 $c \mid ab$, 则 $c \mid (a,c)(b,c)$ 证明. 采用反证法: 假设 $c \nmid (a,c)(b,c)$, 则 $c \nmid (a,c)$ 且 $c \nmid (b,c)$ 。因为 $c \mid c$, 所以 $c \nmid a$, $c \nmid b$. 进而 $c \nmid ab$, 矛盾! 所以 $c \mid (a,c)(b,c)$. 41. (a). 若 (a,b) = 1, 则 $(a^n, b^n) = 1, \forall n$. 证明. 因为 (a,b) = 1, 设 $p \mid (a^n,b^n)$, 下证 p = 1: 因为 $p \mid a^n, p \mid b^n$,所以由 3.5.39 题: $p \mid a, p \mid b$,进而 $p \mid (a, b) = 1$,所以 p = 1. (b). 若 $a^n | b^n$, 则 a | b. 证明. 采用反证法: 假设 $a \nmid b$, 则存在素数幂 $p^k \mid a, p^k \nmid b$. 设 $a = p^k a'$, 则 $a^n = p^{nk} a'^n$, 所以 $p_{kn} \mid a^n \mid b^n$. 所以 $b^n = b'p^{kn}$, 一定有 $b = \sqrt[n]{b'}p^k$. 矛盾! 所以 $a \mid b$. **64.** 若 a_1, a_2, \dots, a_n 两两互素,则 $[a_1, a_2, \dots, a_n] = a_1 a_2 \dots a_n$ 证明. 采用数学归纳法: 基础: $[a_1, a_2] = a_1 a_2/(a_1, a_2) = a_1 a_2$

递推: 对于 n, $[a_1, a_2, \dots, a_n] = [[a_1, a_2, \dots, a_{n-1}], a_n] = [a_1 a_2 \dots a_{n-1}, a_n] = a_1 a_2 \dots a_n$

假设: 若 a_1, a_2, \dots, a_{n-1} 两两互素, 则 $[a_1, a_2, \dots, a_{n-1}] = a_1 a_2 \dots a_{n-1}$