

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI WORK INTEGRATED LEARNING PROGRAMMES

COURSE HANDOUT

Part A: Content Design

Course Title	Computer Organization and Software Systems	
Course No(s)	SS ZG516	
Credit Units	5 (1 + 2 + 2) Unit split between Class Hours + Lab/Design/Fieldwork + Studer preparation respectively; each unit translates to 32 hours	
Course Author	Lucy J Gudino / Chandra Shekhar	
Version No	2.0	
Date	04/04/2020	

Course Objectives

No	Course Objective
CO1 Introduce students to systems aspects (i.e. Computer Organization and Operation Systems) involved in software development	
Equip the student to understand the computer architectural and operating systems issues that affect the performance and nature of a software	
CO3	To prepare students to be in a position to evaluate/correlate high level software performance based on its system level features (i.e. architectural and operating systems)

Text Book(s)

T1	Stallings William, <i>Computer Organization & Architecture</i> , Pearson Education, 9 th Ed. 2013	
T2	A Silberschatz, Abraham and others, <i>Operating Systems Concepts</i> , Wiley Student Edition, 8 th Ed.	

Reference Book(s) & other resources

R1	Patterson, David A & J L Hennenssy, <i>Computer Organization and Design – The Hardware/Software Interface</i> , Elsevier, 5th Ed., 2014.
R2	Randal E. Bryant, David R. O'Hallaron, <i>Computer Systems – A Programmer's Perspective</i> , Pearson, 3 rd Ed, 2016.
R3 Tanenbaum, <i>Modern Operating Systems</i> , Pearson New International Edition, Pearson	

	Education, 2013 (Pearson Online)
R4	Stallings, <i>Operating Systems: Internals and Design Principles</i> , International Edition, Pearson Education, 2013 (Pearson Online)

Modular Content Structure

1. Introduction to Computer Systems

- 1.1. Hardware Organization of a computer
- 1.2. Running a Hello Program
- 1.3. Instruction Cycle State Diagram
- 1.4. Operating System role in Managing Hardware
 - 1.4.1. Processes
 - 1.4.2. Threads
 - 1.4.3. Virtual Memory
 - 1.4.4. Files
- 1.5. Performance Assessment
 - 1.5.1. MIPS Rate
 - 1.5.2. Amdahl's Law

2. Memory Organization

- 2.1. Storage Technologies
 - 2.1.1. Random Access Memory
 - 2.1.2. Disk Storage
 - 2.1.3. Solid State Disks
 - 2.1.4. Storage Technology Trends
- 2.2. Locality
 - 2.2.1. Locality of Reference to Program Data
 - 2.2.2. Locality of instruction fetches
- 2.3. Memory Hierarchy
- 2.4. Cache Memories
 - 2.4.1. Generic Cache Memory Organization
 - 2.4.2. Direct-Mapped Caches
 - 2.4.3. Fully Associative Caches
 - 2.4.4. Set Associative Caches
 - 2.4.5. Issues with Writes
 - 2.4.6. Performance Impact of Cache Parameters
 - 2.4.7. Writing Cache friendly Codes
 - 2.4.8. Replacement Algorithms

3. Instruction Set Architecture - CISC Vs RISC

- 3.1. CISC Instruction Set (Intel x86 as an example)
 - 3.1.1. Machine Instruction Characteristics
 - 3.1.2. Types of Operands
 - 3.1.3. Types of Operations
 - 3.1.4. Addressing Modes
 - 3.1.5. Instruction Formats
- 3.2. RISC Instruction Architecture (MIPS as an Example)
 - 3.2.1. Machine Instruction Characteristics
 - 3.2.2. Types of Operands
 - 3.2.3. Types of Operations
 - 3.2.4. Addressing Modes
 - 3.2.5. Instruction Formats
 - 3.2.6. Single cycle implementation
 - 3.2.7. Multicycle Implementation

- 3.3. Control Unit
 - 3.3.1. Microprogrammed control unit
 - 3.3.2. Hardwired Control Unit (MIPS as an example)
- 3.4. Pipeline
 - 3.4.1. Overview of pipeline
 - 3.4.2. Resource Hazard
 - 3.4.3. Data Hazard: Forwarding versus Stalling
 - 3.4.4. Control Hazard

4. Process Management

- 4.1. Concept of Process
- 4.2. Process State Diagram
- 4.3. Operations on Processes: Process creation and termination examples
- 4.4. Process vs. Threads
- 4.5. Multithreading Models
- 4.6. Process Scheduling criteria
- 4.7. Process Scheduling Algorithms -FCFS, SJF, Priority, RR, Multilevel Queue, Multilevel Feedback Queue

5. Process Coordination

- 5.1. The Critical section problem
- 5.2. Peterson's Solution
- 5.3. Synchronization Hardware
- 5.4. Semaphores
- 5.5. Deadlock:
 - 5.5.1. System Model
 - 5.5.2. Deadlock Characterization
- 5.6. Methods of Handling Deadlocks
 - 5.5.2.1. Deadlock Prevention
 - 5.5.2.2. Deadlock Avoidance: Banker's Algorithm
 - 5.5.2.3. Deadlock Detection
 - 5.5.2.4. Recovery from Deadlock

6. Memory Management

- 6.1. Memory-Management Strategies
- 6.2. Swapping
- 6.3. Partitioning
- 6.4. Paging
- 6.5. Segmentation
- 6.6. Virtual-Memory
- 6.7. Demand Paging
- 6.8. Page Replacement Algorithms: FIFO, Optimal, LRU, and LFU

7. Optimizing Program Performance

- 7.1. Capabilities and Limitations of Optimizing Compilers
- 7.2. Expressing Program Performance
- 7.3. Eliminating Loop Inefficiencies
- 7.4. Reducing Procedure Calls
- 7.5. Eliminating Unneeded Memory References
- 7.6. Understanding Modern Processors
- 7.7. Loop Unrolling
- 7.8. Enhancing Parallelism

Learning Outcomes:

No	Learning Outcomes
LO1	To apply the knowledge of performance metrics to find the performance of systems.

LO2	To Investigate high performance architecture design	
LO3	To Examine different computer architectures and hardware	
LO4	Students will Analyze and Compare of process management concepts including scheduling, synchronization ,deadlocks	
LO5	Students will Examine multithreading and system resources sharing among the users	
LO6	Students will Outline of file system interface and implementation	

Part B: Contact Session Plan

Academic Term	SEM II, 2019-20
Course Title	Computer Organization and Software Systems
Course No	SS *ZG516
Lead Instructor	Dr. Lucy J Gudino
Instructors	Prof. Chandrashekar R K, Prof. Pruthvi Kumar, Prof. Sarma, Prof. Balamurali Shankar.

Course Contents

Sl. No.	Conta ct Hour #	List of Topic Title (from content structure in Part A)	Topic # (from content structure in Part A)	Text/Ref Book/extern al resource
1	1-2	Introduction to Computer Systems Hardware Organization of a computer Running a Hello Program Instruction Cycle State Diagram Operating System role in Managing Hardware Processes Threads Virtual Memory Files	1.1-1.4	T1, T2
2	3-4	Introduction to Computer Systems (Contd.) • Performance Assessment • MIPS Rate • Amdahl's Law Memory Organization • Storage Technologies • Random Access Memory	1.5, 2.1	Class Notes, T1

		 Disk Storage Solid State Disks Storage Technology Trends 		
3	5-6	Memory Organization (Contd) • Locality • Locality of Reference to Program Data • Locality of instruction fetches • Memory Hierarchy • Cache Memories • Generic Cache Memory Organization • Direct-Mapped Caches • Fully Associative Caches	2.2 – 2.3, 2.4 (2.4.1- 2.4.3)	T1
4	7-8	Memory Organization (Contd) Cache Memories (Contd) Set Associative Caches Issues with Writes Performance Impact of Cache Parameters Writing Cache friendly Codes Replacement Algorithms	2.4 (2.4.4- 2.4.8)	T1, R2
5	9-10	Instruction Set Architecture - CISC Vs RISC • CISC Instruction Set (Intel x86 as an example) • Machine Instruction Characteristics • Types of Operands • Types of Operations • Addressing Modes • Instruction Formats	3.1	T1
6	11-12	Instruction Set Architecture - CISC Vs RISC (Contd) • RISC Instruction Architecture (MIPS as an Example) • Machine Instruction Characteristics • Types of Operands • Types of Operations • Addressing Modes • Instruction Formats • Single cycle implementation	3.2(3.2.1- 3.2.6)	R1
7	13-14	Instruction Set Architecture - CISC Vs RISC (Contd)	3.2.7, 3.3	T1, R1

8	15-16	 Multicycle Implementation Control Unit Microprogrammed control unit Hardwired Control Unit (MIPS as an example) Instruction Set Architecture - CISC Vs RISC (Contd) Pipeline Overview of pipeline Resource Hazard Data Hazard : Forwarding versus Stalling Control Hazard 	3.4	Т1
	ı	MID SEM EXAMINATION		
9	17-18	 Process Management Concept of Process Process State Diagram Operations on Processes: Process creation and termination examples Process vs. Threads Multithreading Models Process Scheduling criteria 	4 .1-4.6	T2
10	19-20	Process Management (Contd) • Process Scheduling Algorithms - FCFS, SJF, Priority, RR, Multilevel Queue, Multilevel Feedback Queue	4.7	T2
11	21-22	Process Coordination	5.1-5.5	T2
12	23-24	Process Coordination (Contd) • Methods of Handling Deadlocks ○ Deadlock Prevention ○ Deadlock Avoidance: Banker's Algorithm ○ Deadlock Detection ○ Recovery from Deadlock	5.6	T2
13	25-26	 Memory Management Memory-Management Strategies Swapping Partitioning Paging 	6.1-6.4	T2

15	14	27-28	Memory Management (Contd) Segmentation Virtual-Memory Demand Paging Page Replacement Algorithms: FIFO, Optimal, LRU and LFU	6.5-6.8	T2
Eliminating Unneeded Memory	15	29-30	 Capabilities and Limitations of Optimizing Compilers Expressing Program Performance Eliminating Loop Inefficiencies 	7.1-7.4	R2
 Understanding Modern Processors Loop Unrolling Enhancing Parallelism Comprehensive Examination	16	31-32	 Eliminating Unneeded Memory References Understanding Modern Processors Loop Unrolling Enhancing Parallelism 	7.5-7.8	R2

Evaluation Scheme

Evaluation Component	Name (Quiz, Lab, Project, Midterm exam, End semester exam, etc)	Type (Open book, Closed book, Online, etc.)	Weight	Duration	Day, Date, Session, Time
EC – 1	Quizzes / Assignment				To be announced
EC – 2	Mid-term Exam	Closed book			To be announced
EC-3	End Semester Exam	Open book			To be announced

Note - Evaluation components can be tailored depending on the proposed model.

Important Information

Syllabus for Mid-Semester Test (Closed Book): Topics in Weeks 1-8 (1-18 Hours) Syllabus for Comprehensive Exam (Open Book): All topics given in plan of study

Evaluation Guidelines:

- 1. EC-1 consists of either two Assignments or three Quizzes. Announcements regarding the same will be made in a timely manner.
- 2. For Closed Book tests: No books or reference material of any kind will be permitted. Laptops/Mobiles of any kind are not allowed. Exchange of any material is not allowed.
- 3. For Open Book exams: Use of prescribed and reference text books, in original (not photocopies) is permitted. Class notes/slides as reference material in filed or bound form is permitted. However, loose sheets of paper will not be allowed. Use of calculators is permitted in all exams. Laptops/Mobiles of any kind are not allowed. Exchange of any material is not allowed.
- 4. If a student is unable to appear for the Regular Test/Exam due to genuine exigencies, the student

should follow the procedure to apply for the Make-Up Test/Exam. The genuineness of the reason for absence in the Regular Exam shall be assessed prior to giving permission to appear for the Make-up Exam. Make-Up Test/Exam will be conducted only at selected exam centres on the dates to be announced later.

It shall be the responsibility of the individual student to be regular in maintaining the self-study schedule as given in the course handout, attend the lectures, and take all the prescribed evaluation components such as Assignment/Quiz, Mid-Semester Test and Comprehensive Exam according to the evaluation scheme provided in the handout.