Notes on notation: basics

- Data are usually given as $\{(x_1, y_1), \dots, (x_n, y_n)\}$, where $x_i \in \mathbb{R}^d$ are called *data* points and $y_i \in \mathbb{R}$ are called *labels*.
- We then assemble the x_i into a data matrix $X \in \mathbb{R}^{d \times n}$, where the columns of X are the x_i :

$$X = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix},$$

and the labels into a label vector $\mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}^{1 \times n}$.

Notes on notation: weight vector and random variable

■ Given a data matrix $X \in \mathbb{R}^{d \times n}$ and a (weight-) vector $\mathbf{w} \in \mathbb{R}^d$ we sometimes calculate $\mathbf{w}^\top X$

$$\mathbf{w}^{\top}X = \left(\mathbf{w}^{\top}\mathbf{x}_{1}, \dots, \mathbf{w}^{\top}\mathbf{x}_{n}\right),$$

thus, $\mathbf{w}^{\top}X$ is a row vector. Therefore, we sometimes write $\mathbf{w}^{\top}X \in \mathbb{R}^{1 \times n}$, to emphasize that it is a row.

 We denote the matrix whose columns are all equal to the mean of all data points as

$$ar{X}=(ar{x},\ldots,ar{x}), ext{ with } ar{x}=rac{1}{n}\sum_{i=1}^n x_i.$$

• We denote a random variable as $X : \Omega \to \mathbb{R}$. Unfortunately, this coincides with the notation for the data matrix! We are using the same symbol for two different objects here.

Notes on notation: feature maps in linear regression

- Maps $\phi: \mathbb{R}^d \to \mathbb{R}^{\tilde{d}}$ or $\varphi: \mathbb{R}^d \to \mathbb{R}^{\tilde{d}}$ are often called *feature maps*, because they formalize the idea that a data point \mathbf{x}_i gives rise to features $\varphi(\mathbf{x}_i)$ in a different space. Note that ϕ and φ are just variants of the same letter! In the context of linear regression, maps ϕ are also called *basis functions*.
- Basic example

$$\phi: \mathbb{R}^d \to \mathbb{R}^{d+1}$$

$$\phi(\mathbf{x}) = \begin{pmatrix} 1 \\ x_1 \\ \dots \\ x_d \end{pmatrix}$$

Note that here x_i denotes the components of \mathbf{x} . For $\mathbf{w} \in \mathbb{R}^{d+1}$, we have $\mathbf{w}^{\top} \phi(\mathbf{x}) = w_0 + w_1 x_1 + \ldots + w_n x_n$.

Notes on notation: feature maps

Another example

$$\phi: \mathbb{R} \to \mathbb{R}^3$$

$$\phi(x) = \begin{pmatrix} 1 \\ x \\ x^2 \end{pmatrix}$$

For $\mathbf{w} \in \mathbb{R}^3$, we have $\mathbf{w}^{\top} \phi(x) = w_0 + w_1 x + w_2 x^2$. This allows using polynomial basis functions in linear regression. Note that the components of \mathbf{w} still appear *linearly*!

Notes on notation

lacksquare We sometimes write $(1, oldsymbol{w})^ op$ to express $(1, w_1, \dots, w_d)^ op$

Notes on notation: kernels and feature maps

- In the context of kernels, we write $\mathbf{x} \in \mathcal{X}$, $\varphi : \mathcal{X} \to \mathcal{F}$, where \mathcal{F} is some (usually high-dimensional) space with a scalar product.
- To emphasize the use of a scalar product, we write $\varphi(\mathbf{x})^{\top} \cdot \varphi(\mathbf{x}')$ (For purists: it would be more correct to write either $\varphi(\mathbf{x})^{\top}\varphi(\mathbf{x}')$ or $\varphi(\mathbf{x}) \cdot \varphi(\mathbf{x}')$, because · already denotes the scalar product, hence no need to transpose.)
- Given a data matrix X with columns x_i , we also use the notation $\varphi(X)$ (for example in the derivation of kernel ridge regression). This notation is not self-evident, it is defined as follows, for $\varphi : \mathbb{R}^d \to \mathbb{R}^{\tilde{d}}$:

$$\varphi(X) = \begin{pmatrix} \varphi(\mathbf{x}_1) & \dots & \varphi(\mathbf{x}_n) \end{pmatrix} = \begin{pmatrix} \varphi_1(\mathbf{x}_1) & \dots & \varphi_1(\mathbf{x}_n) \\ & \dots & \\ \varphi_{\tilde{d}}(\mathbf{x}_1) & \dots & \varphi_{\tilde{d}}(\mathbf{x}_n) \end{pmatrix},$$

where $\varphi_1, \ldots, \varphi_{\tilde{d}}$ denote the components of the feature map φ .

Notes on notation: feature maps continued

We have $\mathbf{x} \in \mathbb{R}^d$, $\varphi(\mathbf{x}) \in \mathbb{R}^{\tilde{d}}$, $X \in \mathbb{R}^{d \times n}$, $\varphi(X) \in \mathbb{R}^{\tilde{d} \times n}$, $\varphi(X)^{\top} \in \mathbb{R}^{n \times \tilde{d}}$.

$$\varphi(X)\varphi(X)^{\top} = \begin{pmatrix} \varphi_{1}(\mathbf{x}_{1}) & \dots & \varphi_{1}(\mathbf{x}_{n}) \\ & \dots & \\ \varphi_{\tilde{d}}(\mathbf{x}_{1}) & \dots & \varphi_{\tilde{d}}(\mathbf{x}_{n}) \end{pmatrix} \begin{pmatrix} \varphi_{1}(\mathbf{x}_{1}) & \dots & \varphi_{\tilde{d}}(\mathbf{x}_{1}) \\ & \dots & \\ \varphi_{1}(\mathbf{x}_{n}) & \dots & \varphi_{\tilde{d}}(\mathbf{x}_{n}) \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{i} \varphi_{1}(\mathbf{x}_{i})\varphi_{1}(\mathbf{x}_{i}) & \dots & \sum_{i} \varphi_{1}(\mathbf{x}_{i})\varphi_{\tilde{d}}(\mathbf{x}_{i}) \\ & \dots & \\ \sum_{i} \varphi_{\tilde{d}}(\mathbf{x}_{i})\varphi_{1}(\mathbf{x}_{i}) & \dots & \sum_{i} \varphi_{\tilde{d}}(\mathbf{x}_{i})\varphi_{\tilde{d}}(\mathbf{x}_{i}) \end{pmatrix}$$

This expression occurs in the derivation of ridge regression.

Notes on notation: feature maps continued

$$\varphi(X)^{\top}\varphi(X) = \begin{pmatrix} \varphi_{1}(\mathbf{x}_{1}) & \dots & \varphi_{\tilde{d}}(\mathbf{x}_{1}) \\ \dots & \dots & \\ \varphi_{1}(\mathbf{x}_{n}) & \dots & \varphi_{\tilde{d}}(\mathbf{x}_{n}) \end{pmatrix} \begin{pmatrix} \varphi_{1}(\mathbf{x}_{1}) & \dots & \varphi_{1}(\mathbf{x}_{n}) \\ \dots & \dots & \\ \varphi_{\tilde{d}}(\mathbf{x}_{1}) & \dots & \varphi_{\tilde{d}}(\mathbf{x}_{n}) \end{pmatrix}$$

$$= \begin{pmatrix} \varphi(\mathbf{x}_{1})^{\top}\varphi(\mathbf{x}_{1}) & \dots & \varphi(\mathbf{x}_{1})^{\top}\varphi(\mathbf{x}_{n}) \\ \dots & \dots & \\ \varphi(\mathbf{x}_{n})^{\top}\varphi(\mathbf{x}_{1}) & \dots & \varphi(\mathbf{x}_{n})^{\top}\varphi(\mathbf{x}_{n}) \end{pmatrix}$$

$$= \begin{pmatrix} k(\mathbf{x}_{1}, \mathbf{x}_{1}) & \dots & k(\mathbf{x}_{1}, \mathbf{x}_{n}) \\ \dots & \dots & \dots & k(\mathbf{x}_{n}, \mathbf{x}_{n}) \end{pmatrix}$$

This expression occurs in the derivation of kernel ridge regression.