Chapter 2: Training vs Testing (II)

Problem 1. What is the VC dimension of the following hypothesis classes? (These hypothesis classes all come from either Example 2.2 on page 43-45 or the problems in the back of the chapter.)

1. The set of positive rays in 1 dimension:

$$\mathcal{H} = \left\{ x \mapsto \operatorname{sign}(x - a) : a \in \mathbb{R} \right\}$$

$$(1)$$

$$A = \left\{ x \mapsto \operatorname{sign}(x - a) : a \in \mathbb{R} \right\}$$

Al(x, xz) = 3
$$\neq$$
 z \Rightarrow not shartlering \Rightarrow duc cz no value of a can achieve this labelling ≤ 1

2. The set of positive and negative rays in 1 dimension:

$$\mathcal{H} = \left\{ x \mapsto \sigma \operatorname{sign}(x - a) : a \in \mathbb{R}, \sigma \in \{+1, -1\} \right\}$$

$$\text{Vill not Shafter } \mathcal{N} = 3 \text{ dutaset } \implies \text{duc} = 3$$

$$\text{dut} = 2$$

3. The set of positive intervals in 1 dimension:

$$\mathcal{H} = \left\{ x \mapsto \left[a \le x \le b \right] : a \in \mathbb{R}, b \in \mathbb{R} \right\}$$
 (3)

4. The set of positive and negative intervals in 1 dimension:

$$\mathcal{H} = \left\{ x \mapsto \sigma \left[a \le x \le b \right] : a \in \mathbb{R}, b \in \mathbb{R}, \sigma \in \{+1, -1\} \right\}$$
 (4)

5. The set of centered spheres in \mathbb{R}^d :

$$\mathcal{H} = \left\{ \mathbf{x} \mapsto [\| \mathbf{x} \|_2 \le \alpha] : \alpha \in \mathbb{R}^+ \right\}$$
 (5)

6. Convex sets in 2 dimensions: \mathcal{H} is the set of all functions $h: \mathbb{R}^2 \to \{+1, -1\}$ that are positive inside some convex set and negative elsewhere. (Recall that a set is convex if the line segment connecting any two points in the set lies entirely within the set.)

Problem 2. For each statement below, indicate whether it is true or false and explain why. (The best possible explanation for true answers is a proof, and the best possible explanation for false answers is a counterexample.)

1. Let f be the true labeling function. Then for all data distributions, $E_{\text{out}}(f) = 0$.

Any problem with noise > East (2) > 0

2. Let \mathcal{H} be the perceptron hypothesis class, and g be the result of the PLA. Also let f be the true labeling function. Then $E_{\text{out}}(g) \geq E_{\text{out}}(f)$.

f = argmin Eout (h)
he 14*

Tunion of all hyp. classes

3.	Let \mathcal{H} be the perceptron hypothesis class, and g be the result of the PLA. Also let f be the true labeling function. Then $E_{\rm in}(g) \geq E_{\rm in}(f)$.
4.	Let f be the true labeling function. There exists some hypothesis class \mathcal{H} with hypothesis $g \in \mathcal{H}$ satisfying $E_{\mathrm{out}}(g) < E_{\mathrm{out}}(f)$.
5.	If \mathcal{H} is a finite hypothesis class, and g is trained using the TEA algorithm, the it is always true that $ E_{\rm in}(g) - E_{\rm out}(g) \leq E_{\rm in}(g)$.

6. Let g be a hypothesis selected from some hypothesis class $\mathcal H$ with finite dimension. Then it is possible for $E_{\rm in}(g)$ to be less than $E_{\rm out}(g)$.

7. The VC dimension of every finite hypothesis class is finite.

dvc = largest M for which $m_{H} = Z^{M}$ $m_{H}(M) = max$ $|\mathcal{H}(X_{1}, X_{2}, ..., X_{M})| \leq M$ $|\mathcal{H}(X_{1}, X_{2}, ..., X_{M})| \leq M$

| Ein-Eout = O (1 Tog M

8. The VC dimension of every infinite hypothesis class is infinite.

$$\partial_{VC} = \partial + 1 = \Theta(\partial)$$

9.	If there exists a hypothesis $h \in \mathcal{H}$ such that $\min_{h \in \mathcal{H}} E_{\text{in}}(h) = 0$, then the VC dimension of \mathcal{H} must be finite.
10.	If \mathcal{H} can shatter a set of size N , then $d_{\mathrm{VC}}(\mathcal{H}) \geq N$.
11.	For any hypothesis class \mathcal{H} , the value $d_{\mathrm{VC}}(\mathcal{H})+1$ is a break point for $\mathcal{H}.$

12. If the hypothesis class \mathcal{H} shatters some dataset of size N, then $m_{\mathcal{H}}(N) = 2^{N}$.

13. There exists some hypothesis class \mathcal{H} with growth function $m_{\mathcal{H}}(N) = \Theta(2^{\sqrt{N}})$.

14. Let \mathcal{H} be an arbitrary hypothesis class. Then $m_{\mathcal{H}}(N) = O(2^N)$.

15.	Let	\mathcal{H}_1	and	\mathcal{H}_2	be	hypot	hesis	class	es sat	isfying	$_{ m g}~{\cal H}_1$ (\mathcal{H}_2 .	The	n $d_{ m VC}$ ($(\mathcal{H}_1) \leq$	$d_{ m VC}(\mathcal{H})$	$l_2).$
16	Lot	11	and	11	ho	hernot	hogia	alega	og get	iafrina	s d	(11.)	/ J	(21.)	Thon	11 <i>-</i> 1	1/
10.	Let	n_1	and	n_2	De	пурос	116212	Class	es sai	isiyilig	u_{VC}	(n_1)	$\leq a_{VG}$	(n_2) .	THEI	$\mathcal{H}_1\subset \mathcal{T}$	n_2 .
17.	Let	\mathcal{H}_1	and	\mathcal{H}_2	be	hypot	hesis	class	es sat	isfying	$d_{ m VC}$	(\mathcal{H}_1)	$=d_{VO}$	$_{\mathbb{C}}(\mathcal{H}_{2}).$	Then	$\mathcal{H}_1 = \hat{a}$	\mathcal{H}_2 .