APMA 1650 Problem Set 1

Tanish Makadia

February 2023

- 1. (a) $S = \{\text{turn left, turn right, continue straight}\}$
 - (b) 2/3
 - (c) $(2/3)^2 = 4/9$
- 2. (a) i. $P(A \cup B) = P(A) + P(B) P(A \cap B) = 0.4 + 0.12 0.12 = 0.4$
 - ii. $P(A \cap B) = P(B) = 0.12$
 - iii. $P((A \cap B)^C) = 1 P(A \cap B) = 1 0.12 = 0.88$
 - (b) i. $P(A \cup B) = P(A) + P(B) = 0.4 + 0.12 = 0.52$
 - ii. $P(A \cap B) = 0$ (disjointness implies $A \cap B = \emptyset$, $P(\emptyset) = 0$)
 - iii. $P((A \cap B)^C) = 1 P(A \cap B) = 1$
- 3. (a) 31/366
 - (b) 12/366 = 2/61
 - (c) 1/366
- 4. (a) $S = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), 4,5,6\}$
 - (b) 21 elements
 - (c) $A = \{(1,5), (2,4), (2,6), (3,3), (3,5), 6\}$
 - (d) 6 elements
 - (e) $P(A) = 5(\frac{1}{36}) + \frac{1}{6} = \frac{11}{36}$
 - (f) 3/36 = 1/12

5. (a) *Proof.* Let $A \subseteq S$. By the definition of a complement, we have that $A \cup A^C = S$ and $A \cap A^C = \emptyset$. Thus,

$$\begin{split} 1 &= P(S) & (P(S) = 1) \\ &= P(A \cup A^C) & (\text{definition of complement}) \\ &= P(A) + P(A^C) & (A \text{ and } A^C \text{ disjoint}) \end{split}$$

Therefore, we can conclude that $P(A) = 1 - P(A^{C})$

- 6. (a) $P(E_1) + \cdots + P(E_5) = 1$ $P(E_4) + P(E_5) = 1 - (P(E_1) + \cdots + P(E_3)) = 1 - 0.7 = 0.3$ Thus, $P(E_4) = 0.2$ and $P(E_5) = 0.1$.
 - (b) Let $p = P(E_3) = P(E_4) = P(E_5)$. We have that $P(E_1) = 3P(E_2) = 0.3$, which implies that $P(E_2) = 0.1$. $P(E_1) + \cdots + P(E_5) = 1$. So, $3p = 1 - P(E_1) - P(E_2) = 0.6$. Therefore, p = 0.6/3 = 0.2.