Examples: Cartesian Coordinates

Sketch the following vector fields:

$$\mathbf{H} = \frac{1}{x} \,\hat{\mathbf{y}} \, \left(\frac{\mathbf{A}}{\mathbf{m}} \right)$$

$$\mathbf{E} = x \,\hat{\mathbf{x}} - y \,\hat{\mathbf{y}} \, \left(\frac{\mathbf{V}}{\mathbf{m}}\right)$$

Examples: Cylindrical Coordinates

Sketch the following vector fields:

$$\mathbf{H} = -1\,\hat{\boldsymbol{\phi}}\,\left(\frac{\mathbf{A}}{\mathbf{m}}\right)$$

$$\mathbf{E} = \sin \phi \,\,\hat{\mathbf{r}} \,\, \left(\frac{\mathbf{V}}{\mathbf{m}}\right)$$

Dr. Gregory J. Mazzaro Spring 2015

ELEC 318 – Electromagnetic Fields

Lecture 3(c)

Review of Vector Calculus: Differential Length/Area/Volume, Integrals

Diff. Length, Area, Volume: Cartesian

differential length, area, volume:

- -- useful for integration along a path, open/closed surface
- -- allows us to answer questions like
 - "What is the strength of **E** along this path?"
 - "What is the density of **H** across this surface?"
 - "How much of **q** is contained within this shape?"

differential length (displacement, distance):

$$d\mathbf{l} = dx \,\hat{\mathbf{x}} + dy \,\hat{\mathbf{y}} + dz \,\hat{\mathbf{z}}$$

<u>differential area</u>:

$$d\mathbf{S} = dS \,\,\hat{\mathbf{n}}$$

$$= dx \, dy \,\,\hat{\mathbf{z}} \quad \text{or} \quad dy \, dz \,\,\hat{\mathbf{x}} \quad \text{or} \quad dz \, dx \,\,\hat{\mathbf{y}}$$

<u>differential volume</u>: dv = dx dy dz

Diff. Length, Area, Volume: Cylindrical

<u>differential length</u> (displacement, distance):

$$d\mathbf{l} = dr \,\hat{\mathbf{r}} + r \,d\phi \,\hat{\boldsymbol{\phi}} + dz \,\hat{\mathbf{z}}$$

<u>differential area</u>:

$$d\mathbf{S} = dS \,\,\hat{\mathbf{n}}$$

$$= r \,d\phi \,dz \,\,\hat{\mathbf{r}} \quad \text{or} \quad dr \,dz \,\,\hat{\boldsymbol{\phi}} \quad \text{or} \quad r \,dr \,d\phi \,\,\hat{\mathbf{z}}$$

<u>differential volume</u>: $dv = r dr d\phi dz$

Example:

If the charge density in the wedge (above, right), is $\rho_v = 2r - 3z$ (C/cm³), then the amount of charge contained in the tiny curved cube is

$$(2r^2-3rz) dr d\phi dz$$
 (coulombs)

Example: Cylindrical Area

Find the area of a cylindrical surface described by r = 5, $30^{\circ} \le \phi \le 60^{\circ}$, and $0 \le z \le 3$.

Diff. Length, Area, Volume: Spherical

<u>differential length</u> (displacement, distance):

$$d\mathbf{l} = dR \,\hat{\mathbf{R}} + R \,d\theta \,\hat{\mathbf{\theta}} + R \sin\theta \,d\phi \,\hat{\boldsymbol{\phi}}$$

differential area:
$$d\mathbf{S} = dS \,\hat{\mathbf{n}}$$

$$= R^2 \sin \theta \, d\theta \, d\phi \, \hat{\mathbf{R}} \quad \text{or}$$

$$= R \sin \theta \, dR \, d\phi \, \hat{\mathbf{\theta}} \quad \text{or}$$

$$= R \, dR \, d\theta \, \hat{\boldsymbol{\phi}}$$

Example:

If the magnetic flux density crossing the sphere (above, right), is $\mathbf{B} = 4 \sin \phi \mathbf{R}$ (Wb/m²), then the amount of flux through the tiny curved square (on the outside of the sphere) is

$$4 R^2 \sin \phi \sin \theta d\theta d\phi$$
 (Wb)

Line Integrals

line (single) integral:

- -- integration of the tangential (parallel) component of a vector (\mathbf{A}) along a path (L):
- -- allows us to answer the question "How much of *A* is projected along a path?"

If the path (L) is closed (forms a *surface*), then the integral becomes $\oint_L \mathbf{A} \cdot d\mathbf{l}$

$$V_{21} = -\int_{P_1}^{P_2} \mathbf{E} \cdot d\mathbf{l}$$

$$I_{\rm enc} = \oint \mathbf{H} \cdot d\mathbf{l}$$

As before, for rectangular coordinates, for cylindrical coordinates, and for spherical coordinates,

$$d\mathbf{l} = dx \,\hat{\mathbf{x}} + dy \,\hat{\mathbf{y}} + dz \,\hat{\mathbf{z}}$$

$$d\mathbf{l} = dr \,\hat{\mathbf{r}} + r \,d\phi \,\hat{\boldsymbol{\phi}} + dz \,\hat{\mathbf{z}}$$

$$d\mathbf{l} = dR \,\hat{\mathbf{R}} + R \,d\theta \,\hat{\mathbf{\theta}} + R \sin\theta \,d\phi \,\hat{\boldsymbol{\phi}}$$

Example: Mixed Coordinates

$$r = \sqrt{x^2 + y^2}, \quad \phi = \tan^{-1} \frac{y}{x}, \quad z = z$$
$$x = r \cos \phi, \quad y = r \sin \phi, \quad z = z$$

$$d\mathbf{l} = dx \,\hat{\mathbf{x}} + dy \,\hat{\mathbf{y}} + dz \,\hat{\mathbf{z}}$$
$$d\mathbf{l} = dr \,\hat{\mathbf{r}} + r \,d\phi \,\hat{\boldsymbol{\phi}} + dz \,\hat{\mathbf{z}}$$

$$\hat{\mathbf{x}} = \cos\phi \,\hat{\mathbf{r}} - \sin\phi \,\hat{\boldsymbol{\phi}} \qquad \hat{\mathbf{z}} = \hat{\mathbf{z}}$$

$$\hat{\mathbf{y}} = \sin\phi \,\hat{\mathbf{r}} + \cos\phi \,\hat{\boldsymbol{\phi}}$$

$$\hat{\mathbf{r}} = \cos\phi \,\hat{\mathbf{x}} + \sin\phi \,\hat{\mathbf{y}} \qquad \hat{\mathbf{z}} = \hat{\mathbf{z}}$$

$$\hat{\boldsymbol{\phi}} = -\sin\phi \,\hat{\mathbf{x}} + \cos\phi \,\hat{\mathbf{y}}$$

For the path from P_1 (x = 0, y = 2 m) to P_2 (x = 2 m, y = 0) and \mathbf{E} illustrated, compute $-\int_{P_2}^{P_2} \mathbf{E} \cdot d\mathbf{l}$

Surface Integrals

surface (double) integral:

-- integration of the normal component of a vector (**A**) across a surface (*S*):

$$\int_{S} \mathbf{A} \cdot d\mathbf{S}$$
("flux")

-- allows us to answer the question "How much of A crosses a given surface?"

If the surface (S) is closed (forms a *volume*), then the integral becomes

$$\oint_{S} \mathbf{A} \cdot d\mathbf{S}$$
 ("ne

("net outward flux")

$$\Psi = \int_{S} \mathbf{B} \cdot d\mathbf{S}$$

$$Q_{\rm enc} = \oint \mathbf{D} \cdot d\mathbf{S}$$

As before, for rectangular coordinates, $d\mathbf{S} = dx \, dy \, \hat{\mathbf{z}}$ or $dy \, dz \, \hat{\mathbf{x}}$ or $dz \, dx \, \hat{\mathbf{y}}$ for cylindrical coordinates, $d\mathbf{S} = r \, d\phi \, dz \, \hat{\mathbf{r}}$ or $d\rho \, dz \, \hat{\boldsymbol{\phi}}$ or $r \, dr \, d\phi \, \hat{\mathbf{z}}$ for spherical coordinates, $d\mathbf{S} = R^2 \sin\theta \, d\theta \, d\phi \, \hat{\mathbf{R}}$ or $R \sin\theta \, dR \, d\phi \, \hat{\mathbf{\theta}}$ or $R \, dR \, d\theta \, \hat{\boldsymbol{\phi}}$

Example: Surface Integral

$$r = \sqrt{x^2 + y^2}, \ \phi = \tan^{-1} \frac{y}{x}, \ z = z$$
$$x = r \cos \phi, \ y = r \sin \phi, \ z = z$$

$$\Psi = \int_{S} \mathbf{B} \cdot d\mathbf{S}$$

$$\hat{\mathbf{x}} = \cos\phi \,\hat{\mathbf{r}} - \sin\phi \,\hat{\boldsymbol{\phi}}$$

$$\hat{\mathbf{y}} = \sin\phi \,\hat{\mathbf{r}} + \cos\phi \,\hat{\boldsymbol{\phi}}$$

$$\hat{\mathbf{r}} = \cos\phi \,\hat{\mathbf{x}} + \sin\phi \,\hat{\mathbf{y}}$$

$$\hat{\boldsymbol{\phi}} = -\sin\phi \,\hat{\mathbf{x}} + \cos\phi \,\hat{\mathbf{y}}$$

$$d\mathbf{S} = dx \, dy \, \hat{\mathbf{z}} \quad \text{or} \quad dy \, dz \, \hat{\mathbf{x}} \quad \text{or} \quad dz \, dx \, \hat{\mathbf{y}}$$
$$d\mathbf{S} = r \, d\phi \, dz \, \hat{\mathbf{r}} \quad \text{or} \quad d\phi \, dz \, \hat{\boldsymbol{\phi}} \quad \text{or} \quad r \, dr \, d\phi \, \hat{\mathbf{z}}$$

Determine the total flux (upward) that crosses over the surface defined by y = 0, z = -1 to 1 m, x = 2 to 5 m, for the flux density depicted.

Volume Integrals

volume (triple) integral:

-- integration of a scalar *density* throughout a volume (*V*):

$$\int_{v} A_{v} \cdot dv$$

-- allows us to answer the question

"How much of [a particular quantity] is
contained within [a given volume]?"

Examples:

$$Q = \int_{v} \rho_{v} \ dv$$

$$W_E = \frac{1}{2} \varepsilon \int_{v} \left| \mathbf{E} \right|^2 dv$$

As before, for rectangular coordinates, $dv = dx \, dy \, dz$ for cylindrical coordinates, $dv = r \, dr \, d\phi \, dz$ for spherical coordinates, $dv = R^2 \sin \theta \, dR \, d\theta \, d\phi$