清华大学本科生考试试题专用纸

	考试课程	微积分 A(1)	1) 2	2019年12月22日	
系名		班级	姓名	学号	
	填空题(每空3分,	共 15 题)		
1.	函数 $f(x) = \frac{1}{\sqrt{2}}$	x 1-4x 在 0 处的	的带皮亚诺余项的 n 阶	·秦勒展开为。	
2.	曲线 $ \begin{cases} x = \int_{t}^{t(t)} y = t(1) \end{aligned} $	$\int_{-t}^{2+t} \sqrt{1+2ct}$	$\overline{os heta}\ d heta$ 在(0,0)点处的 †	刃线方程为。	
3.	函数 $f(x) = \frac{1}{x}$	ln x 2019的极大值	直为,拐	点为。	
4.	函数 $y = 5\sqrt{\frac{3}{2}}$	(x+1)(x+2)(x+3)	<u>-</u> -在x → +∞的渐近线方	万程为。	
5.	不定积分∫	$\frac{sx - 2sinx}{sx + 2sinx} dx =$	o		
6.	$\lim_{n\to\infty} \left(\frac{1}{n^2} + \frac{2}{n^2}\right)$	$+\cdots+\frac{n}{n^2}\Big)=$	0		
7.	设 $g(x) = \int_x^1$	$\frac{t}{1+t^3}dt$,则∫	$\int_0^1 g(x)dx = \underline{\hspace{1cm}}$	•	
	若曲线在极 为		$太式为r = \sin \theta$,则	该曲线围成的平面图形面积	
			:o		
10.	求不定积分	$\int \frac{1}{1+x^3} dx = \underline{}$	o		
11.	广义积分∫ _e °;	$\frac{1}{((\ln x)^p)} dx \psi$	敛,则 p 的取值范围为	<u>, </u>	
12.	瑕积分 $\int_0^1 \frac{\sin x}{x^p(1)}$	nx -x)qdx收敛	,则 p,q 的取值范围分	别为。	
13.	常微分方程y	y'' = y的通解	为	o	
14.	常微分方程y	$' + y \cos x =$	子为 - cos <i>x</i> 的通解为	o	
15.	满足常微分	方程 y'(z	$x) = \frac{x^2 + y(x)^2}{xy(x)} (x \ge 1)$	以及初值条件y(1) = 1的解	
	为		o		

二. 计算题(每题 10 分, 共 4 题)(请写出详细的计算过程和必要的根据!)

- 1. 对于瑕积分 $I_p = \int_0^1 \frac{x^p \arctan x}{\sqrt{1+x^2}}$ 与广义积分 $J_q = \int_1^\infty \frac{x^q \arctan x}{\sqrt{1+x^2}}$
 - (I) 讨论 I_p, J_a 的收敛性;
 - (II) 求*I*₁的值。
- 2. 设 $I_n(x) = \int_x^\infty \frac{t^n}{n!} e^{-t} dt \quad (n \in N)$,
 - (I)求 $I_n(x)$ 表达式;
 - (II) 求 $I_2(x)$ 在原点处带皮亚诺余项的 n 阶泰勒展开式、单调区间和凸性区间。

(III) 求
$$f(x) = \frac{I_2(x)e^x}{1+x}$$
 $(x \to +\infty)$ 的渐近线。

- 3. 设曲线 $r = \theta$, $\left(\theta \in \left[0, \frac{\pi}{2}\right]\right)$,
 - (I) 求该曲线的长度;
 - (II) 求该曲线和 y 轴包围起来的区域面积;
 - (III) 求该曲线的曲率公式,表达为 θ 的函数;
 - (IV) 求该曲线绕 y 轴旋转得到的旋转体的体积。
- 4. 求微分方程 y'' 5y' + 6y = cos(x) 的通解。

三. 证明题(请写出详细的证明过程!)

- 1. 已知可导函数f(x)满足 $\int_{-1}^{0} x f(x) dx = \int_{0}^{1} x f(x) dx = 0$,
 - (I) 求证存在 $\xi \in (0,1)$ 使得 $\xi f'(\xi) + 2f(\xi) = 0$;
 - (II) 求证存在 $\eta \in (-1,1)$ 使得 $\eta f''(\eta) + 4f'(\eta) = 0$

2. 证明:
$$2x(x-y) + \frac{\arctan x - \arctan y}{x-y} > \frac{1}{1+y^2}$$
, $(x > y > 0)$ 。