

| Assignatura | Codi   | Data       | Hora inici |
|-------------|--------|------------|------------|
| Lògica      | 05.570 | 14/01/2012 | 15:30      |

**□05.570** ℜ14ℜ01ℜ12ℜΕΞΛ∈ 05.570 14 01 12 EX

\_\_\_\_\_

Enganxeu en aquest espai una etiqueta identificativa amb el vostre codi personal Examen

#### Fitxa tècnica de l'examen

- Comprova que el codi i el nom de l'assignatura corresponen a l'assignatura en la qual estàs matriculat.
- Només has d'enganxar una etiqueta d'estudiant a l'espai corresponent d'aquest full.
- No es poden adjuntar fulls addicionals.
- No es pot realitzar la prova en llapis ni en retolador gruixut.
- Temps total: 2 h.
- En cas que els estudiants puguin consultar algun material durant l'examen, quin o quins materials poden consultar?

No es pot consultar cap material

- Valor de cada pregunta: Problema 1: 30%; problema 2: 25%; problema 3: 25%; problema 4: 10%; problema 5: 10%
- En cas que hi hagi preguntes tipus test: Descompten les respostes errònies? NO Quant?
- Indicacions específiques per a la realització d'aquest examen:

### **Enunciats**



| Assignatura | Codi   | Data       | Hora inici |
|-------------|--------|------------|------------|
| Lògica      | 05.570 | 14/01/2012 | 15:30      |

### Problema 1

a) Formalitzeu utilitzant la lògica d'enunciats les frases següents. Utilitzeu els àtoms proposats.

R:"Hi ha retallades en sanitat"

G:"Es prescriuen medicaments genèrics"

T:"Es tanquen llits als hospitals"

C:"Creixen les llistes d'espera"

1) Cal que es prescriguin medicaments genèrics perquè no es tanquin llits als hospitals, quan hi ha retallades en sanitat

 $R \rightarrow (\neg T \rightarrow G)$ 

- 2) Si no creixen les llistes d'espera, es tanquen llits als hospitals si hi ha retallades en sanitat  $\neg C \rightarrow (R \rightarrow T)$
- 3) Quan per tancar llits als hospitals és necessari que hi hagi retallades en sanitat, creixen les llistes d'espera però no es prescriuen medicaments genèrics.

 $(T \rightarrow R) \rightarrow (C \land \neg G)$ 

b) Formalitzeu utilitzant la lògica de predicats les frases següents. Utilitzeu els predicats proposats.

Domini: un conjunt no buit

P(x): x és una persona M(x,y): x mossega a y Z(x): x és un zombi

A(x): x és una arma automàtica carregada

T(x,y): x té y

- 1) Les persones mossegades per zombis també són zombis  $\forall x \{P(x) \land \exists y [Z(y) \land M(x,y)] \rightarrow Z(x)\}$
- 2) Tot zombi ha estat mossegat per algun zombi  $\forall x \{Z(x) \rightarrow \exists y [Z(y) \land M(y,z)]\}$
- 3) Per a que una persona no sigui mossegada per cap zombi cal que tingui una arma automàtica carregada.

 $\forall x \{ P(x) \land \neg \exists y [Z(y) \land M(y,x)] \rightarrow \exists z [A(z) \land T(x,z)] \}$ 

## Problema 2



| Assignatura | Codi   | Data       | Hora inici |
|-------------|--------|------------|------------|
| Lògica      | 05.570 | 14/01/2012 | 15:30      |

Demostreu, utilitzant la deducció natural, que el següent raonament és correcte. Utilitzeu només les 9 regles bàsiques (és a dir, no utilitzeu ni regles derivades ni equivalents deductius).

$$\neg (Q \land R) \rightarrow \neg T$$
,  $S \rightarrow (P \rightarrow R)$ ,  $P$   $\therefore$   $T \lor S \rightarrow R$ 

### Solució

| (1)  | $\neg (Q \land R) \rightarrow \neg T$ |            |                                |                    | P                     |
|------|---------------------------------------|------------|--------------------------------|--------------------|-----------------------|
| (2)  | $S \rightarrow (P \rightarrow R)$     |            |                                |                    | P                     |
| (3)  | P                                     |            |                                |                    | P                     |
| (4)  |                                       | $T \vee S$ |                                |                    | Н                     |
| (5)  |                                       |            | T                              |                    | Н                     |
| (6)  |                                       |            |                                | $\neg (Q \land R)$ | H                     |
| (7)  |                                       |            |                                | $\neg T$           | E→ 1, 6               |
| (8)  |                                       |            |                                | T                  | It 5                  |
| (9)  |                                       |            | $\neg \neg (Q \wedge R)$       |                    | I¬ 6, 7, 8            |
| (10) |                                       |            | $\mathbf{Q} \wedge \mathbf{R}$ |                    | E¬ 9                  |
| (11) |                                       |            | R                              |                    | E∧ 10                 |
|      |                                       |            |                                |                    |                       |
| (12) |                                       |            | S                              |                    | Н                     |
| (13) |                                       |            | $P \rightarrow R$              |                    | $E\rightarrow 2, 12$  |
| (14) |                                       |            | R                              |                    | $E \rightarrow 3, 13$ |
| (15) |                                       | R          |                                |                    | $E \vee 4, 11, 14$    |
| (16) | $T \vee S \rightarrow R$              |            |                                |                    | I→ 4, 15              |

## Problema 3

Esbrineu aplicant resolució amb l'estratègia del conjunt de suport si el següent raonament és vàlid o no. Esbrineu també si les premisses són consistents.

$$D {\rightarrow} R {\wedge} A, \quad A {\rightarrow} S {\wedge} F, \quad F {\vee} S {\rightarrow} G, \quad G {\rightarrow} (S {\rightarrow} \neg A) \quad \therefore \quad A {\rightarrow} \neg G {\wedge} \neg D$$

### Solució

$$\begin{split} & \mathsf{FNC}(\mathsf{D} {\rightarrow} \mathsf{R} {\wedge} \mathsf{A}) = (\neg \mathsf{D} {\vee} \mathsf{R}) \wedge (\neg \mathsf{D} {\vee} \mathsf{A}) \\ & \mathsf{FNC}(\mathsf{A} {\rightarrow} \mathsf{S} {\wedge} \mathsf{F}) = (\neg \mathsf{A} {\vee} \mathsf{S}) \wedge (\neg \mathsf{A} {\vee} \mathsf{F}) \\ & \mathsf{FNC}(\mathsf{F} {\vee} \mathsf{S} {\rightarrow} \mathsf{G}) = (\neg \mathsf{F} {\vee} \mathsf{G}) \wedge (\neg \mathsf{S} {\vee} \mathsf{G}) \\ & \mathsf{FNC}(\mathsf{G} {\rightarrow} (\mathsf{S} {\rightarrow} \neg \mathsf{A}) = \neg \mathsf{G} {\vee} \neg \mathsf{S} {\vee} \neg \mathsf{A} \\ & \mathsf{FNC}( \ \neg (\mathsf{A} {\rightarrow} \neg \mathsf{G} {\wedge} \neg \mathsf{D}) \ ) = \ \mathsf{A} \wedge (\mathsf{G} {\vee} \mathsf{D}) \end{split}$$

$$S = \{ \neg D \lor R, \neg D \lor A, \neg A \lor S, \neg A \lor F, \neg F \lor G, \neg S \lor G, \neg G \lor \neg S \lor \neg A, \textbf{A}, \textbf{G} \lor \textbf{D} \}$$

A subsumeix  $\neg D \lor A$ 

La regla del literal pur permet d'eliminar  $\neg D \lor R$ La regla del literal put permet d'eliminar  $G \lor D$ 

$$S'=\{\neg A\lor S, \neg A\lor F, \neg F\lor G, \neg S\lor G, \neg G\lor \neg S\lor \neg A, A\}$$



| Assignatura | Codi   | Data       | Hora inici |
|-------------|--------|------------|------------|
| Lògica      | 05.570 | 14/01/2012 | 15:30      |

| A     | ¬A∨S                             |
|-------|----------------------------------|
| S     | ¬S∨G                             |
| G     | $\neg G \lor \neg S \lor \neg A$ |
| ¬S∨¬A | A                                |
| ¬S    | ¬A∨S                             |
| ⊸A    | A                                |
|       |                                  |

Consistència de premisses

$$Sp=\{\neg D\lor R, \neg D\lor A, \neg A\lor S, \neg A\lor F, \neg F\lor G, \neg S\lor G, \neg G\lor \neg S\lor \neg A\}$$

La regla del literal pur permet d'eliminar ¬D∨R i ¬D∨A

$$S'p=\{\neg A\lor S, \neg A\lor F, \neg F\lor G, \neg S\lor G, \neg G\lor \neg S\lor \neg A\}$$

L'absència del literal A permet d'eliminar totes clàusules que contenen ¬A

$$S"p={ \neg F \lor G, \neg S \lor G}$$

L'absència del literal ¬G permet descartar totes dues clàusules

Atès que aquest conjunt no permet d'obtenir la clàusula buida, podem concloure que les premisses del raonament són CONSISTENT

### Problema 4

Donat el següent raonament demostra la seva validesa mitjançant el mètode de resolució:

```
 \forall x (P(x) \rightarrow \exists y \ R(x,y) \land \exists z \ S(x,z))   \forall x \forall y (R(x,y) \rightarrow \neg R(y,x))   \exists x \ \forall y (S(x,y) \rightarrow R(y,x) \land P(x))   \therefore \ \exists x \exists y \ \neg S(x,y)
```

#### **FNC**

#### Premissa 1

$$\begin{split} &\forall x (P(x) \rightarrow \exists y \ R(x,y) \land \exists z \ S(x,z)) \\ &\forall x (\neg P(x) \lor (\exists y \ R(x,y) \land \exists z \ S(x,z))) \\ &\forall x ((\neg P(x) \lor \exists y \ R(x,y)) \land (\neg P(x) \lor \exists z \ S(x,z))) \\ &\forall x ((\neg P(x) \lor R(x,f(x))) \land (\neg P(x) \lor S(x,g(x)))) \end{split}$$

#### Premissa 2

$$\forall x \forall y (R(x,y) \rightarrow \neg R(y,x))$$
  
 $\forall x \forall y (\neg R(x,y) \lor \neg R(y,x))$ 

#### Premissa 3

 $\exists x \ \forall y (S(x,y) \to R(y,x) \land P(x))$ 



| Assignatura | Codi   | Data       | Hora inici |
|-------------|--------|------------|------------|
| Lògica      | 05.570 | 14/01/2012 | 15:30      |

```
 \exists x \ \forall y (\neg S(x,y) \lor (R(y,x) \land P(x))) \\ \exists x \ \forall y ((\neg S(x,y) \lor R(y,x)) \land (\neg S(x,y) \lor P(x))) \\ \forall y ((\neg S(a,y) \lor R(y,a)) \land (\neg S(a,y) \lor P(a)))
```

#### Conclusió negada

 $\neg\exists x\exists y \neg S(x,y)$  $\forall x\forall y \neg \neg S(x,y)$  $\forall x\forall y S(x,y)$ 

#### Conjunt de clàusules:

$$\{\neg P(x) \lor R(x,f(x)), \neg P(x) \lor S(x,g(x)), \neg R(x,y) \lor \neg R(y,x), \neg S(a,y) \lor R(y,a), \neg S(a,y) \lor P(a), \textbf{S(x,y)}\}$$

| S(x,y)     | ¬S(a,y) ∨P(a)                  | Substitució x=a y=y    |
|------------|--------------------------------|------------------------|
| P(a)       | $\neg P(x) \lor R(x,f(x))$     | Substitució x=a        |
| R(a,f(a))  | $\neg R(x,y) \lor \neg R(y,x)$ | Substitució x=a y=f(a) |
| ¬R(f(a),a) | $\neg S(a,y) \lor R(y,a)$      | Substitució y=f(a)     |
| ¬S(a,f(a)) | S(x,y)                         | Substitució x=a y=f(a) |
|            |                                |                        |

## Problema 5

Considereu un sistema de 4 commutadors (A, B, C, D) que permeten accionar un cert mecanisme. Cada commutador admet dues posicions: 0 i 1. Doneu una expressió booleana que expressi la condició d'haver-hi un nombre senar de commutadores en la posició 0; es a dir que l'expressió valgui 1 si el nombre de commutadors en la posició 0 és senar, i que valgui 0 en cas contrari.(No es necessari fer cap taula ni tampoc justificar la manera com s'ha obtingut l'expressió. N'hi ha prou amb donar l'expressió sol·licitada.)

#### Solució:

$$(\sim A) \cdot B \cdot C \cdot D \ + \ A \cdot (\sim B) \cdot C \cdot D \ + \ A \cdot B \cdot (\sim C) \cdot D \ + \ A \cdot B \cdot C \cdot (\sim D) \ + \ (\sim A) \cdot (\sim B) \cdot (\sim C) \cdot D \ + \ (\sim A) \cdot (\sim B) \cdot (\sim C) \cdot (\sim D) \ + \ (\sim A) \cdot B \cdot (\sim C) \cdot (\sim D) \ + \ (\sim A) \cdot (\sim B) \cdot (\sim C) \cdot (\sim D)$$



| Assignatura | Codi   | Data       | Hora inici |
|-------------|--------|------------|------------|
| Lògica      | 05.570 | 14/01/2012 | 15:30      |



| Assignatura | Codi   | Data       | Hora inici |
|-------------|--------|------------|------------|
| Lògica      | 05.570 | 14/01/2012 | 15:30      |



| Assignatura | Codi   | Data       | Hora inici |
|-------------|--------|------------|------------|
| Lògica      | 05.570 | 14/01/2012 | 15:30      |



| Assignatura | Codi   | Data       | Hora inici |
|-------------|--------|------------|------------|
| Lògica      | 05.570 | 14/01/2012 | 15:30      |



| Assignatura | Codi   | Data       | Hora inici |
|-------------|--------|------------|------------|
| Lògica      | 05.570 | 14/01/2012 | 15:30      |



| Assignatura | Codi   | Data       | Hora inici |
|-------------|--------|------------|------------|
| Lògica      | 05.570 | 14/01/2012 | 15:30      |