Determinism and Parsing

CENG 280

Course outline

- Preliminaries: Alphabets and languages
- Regular languages (NFIA =
- Context-free languages
 - Context-free grammars
 - Parse trees
 - Push-down automaton
 - Push-down automaton context-free languages
 - Languages that are and that are not context-free, Pumping lemma
 - Deterministic CFLs
- Turing-machines

Determinism and Parsing

Parsing for programming languages
 Parsing with PDAs
 (9, ω', 2) +

Deterministic CFLs with deterministic PDAs

—— Heuristic rules for converting grammar to get a deterministic PDA

A pushdown automaton \underline{M} is **deterministic** if for each configuration there is at most one configuration that can succeed it in a computation by M.

Two strings are said to be **consistent** if one of them is the prefix of the other.

• e-aa, a-aa, aa-a, e-e, a-e, b-ba,

- Two transitions $((\overrightarrow{q}, \overrightarrow{a}, \overrightarrow{\beta}), (p, \gamma))$ and $((\overrightarrow{q}, \overrightarrow{a'}, \overrightarrow{\beta'}), (p', \gamma'))$ are said to be **compatible** if both \overrightarrow{a} and $\overrightarrow{a'}$ are consistent, and $\overrightarrow{\beta}$ and $\overrightarrow{\beta'}$ are also consistent.
- where both transitions applicable.

 $= ((\underline{q}, \underline{a}, \underline{e}), (p, \gamma)) - ((\underline{q}, \underline{a}, \underline{a}), (p', \gamma')) \qquad (q, ab, ab) \leftarrow ((\underline{q}, \underline{e}, \underline{ab}), (p, \gamma)) - ((\underline{q}, \underline{e}, \underline{a}), (p', \gamma')) \qquad q, \qquad \square$

A PDA is **deterministic** if it does not have compatible transitions, i.e., no non-deterministic choices.

Deterministic-Nondeterministic PDA Examples

Example
$$L = \{wcw^R\}, \quad \omega \in \{a, b\}^*$$

$$S \to c \mid aSa \mid bSb \quad 1-2, 2-3, 1-3$$

$$1.((\underline{s}, \underline{a}, e), (s, \underline{a})) \quad \text{not} \quad 2.((\underline{s}, \underline{b}, e), (s, \underline{b})) \quad \text{ampable} \quad 3.((\underline{s}, \underline{c}, e), (f, e)) \quad \text{for } \quad 5.((\underline{f}, \underline{a}, a), (f, e)) \quad \text{for } \quad 5.((\underline{f}, \underline{b}, b), (f, e))$$

$$deterministic PDA$$

Deterministic-Nondeterministic PDA Examples

Example

$$L = \{wcw^{R}\},\$$

$$S \to c \mid aSa \mid bSb$$

$$1.((s, a, e), (s, a))$$

$$2.((s, b, e), (s, b))$$

$$3.((s, c, e), (f, e))$$

$$4.((f, a, a), (f, e))$$

$$5.((f, b, b), (f, e))$$

$$L = \{\underline{ww}^R\}, \qquad \underline{l-3} \text{ one compatible}$$

$$S \to aSa \mid bSb \mid e \text{ 2-3 one compatible}$$

$$2.((\underline{s},\underline{a},\underline{e}),(s,a))$$

$$2.((\underline{s},b,\underline{e}),(s,b))$$

$$3.((\underline{s},\underline{e},\underline{e}),(f,e))$$

$$4.((\underline{f},\underline{a},a),(f,e)) \text{ not}$$

$$5.((\underline{f},b,b),(f,e)) \text{ compatible}$$

$$1.((\underline{f},\underline{a},a),(f,e)) \text{ not}$$

Definition

A language $\underline{L} \subseteq \Sigma^*$ is a deterministic context-free language if $\underline{L} = L(M)$ for some deterministic pushdown automaton M (\underline{M} senses the end of the input).

- Why \$ is necessary? Consider $L = \{\hat{a}^i \mid i \ge 0\} \cup \{\hat{a}^n \hat{b}^n \mid n \ge 0\}$
- Every deterministic context-free language is a context-free language. Why? $\stackrel{\triangle}{=} \stackrel{\triangle}{=} \stackrel{\triangle}{\sim} \stackrel{\triangle}{\sim}$
 - Is every CFL deterministic?

- Consider $L = \{\underline{a}^n \underline{b}^m \underline{c}^p \mid m, n, p \ge 0, \underline{m \ne n} \text{ or } \underline{n \ne p} \}$. Is L context-free, if yes, is it deterministic?
 - Consider the complement of *L*. It's complement is not CFL (in a few minutes). Deterministic CFL's are closed under complementation.

Example

Consider $L = \{a^n b^m c^p \mid m, n, p \ge 0, m \ne n \text{ or } n \ne p\}$. Is L context-free, if yes, is it deterministic?

Consider the complement of L. It's complement is not CFL (in a few minutes). Deterministic CFL's are closed under complementation.

Theorem

The class of deterministic context-free languages is closed under complementation. If L is a D-CFL, then $\overline{L} = \overline{L}^* - L$ is D-FL

Proof: Read the book.
$$M$$
, $L\$=L(M)$, costnot M'' is deterministic $L(M')=\overline{L}$

Theorem

The class of deterministic context-free languages is closed under complementation. $\sim 11 \quad \text{w} \in L(M^1)$ $\downarrow \quad \text{w} \in L(M^1)$

- First convert M to a simple $M' = (K, \Sigma, \Gamma, \Delta, S, F)$ (it only depends on input symbol, top of the stack, does not change the deterministic property). $((\alpha, \alpha, \underline{\times}), \beta, \underline{\times})$
- Consider the acceptance condition, simple switch of final/non-final states are not sufficient. $F \subseteq K \setminus F \cup f \neq \emptyset$
- If the computation ends in F and the stack is empty, then REJECT (no issue, $K \setminus F$ is the set of final states).
 - A If the computation ends in $K \setminus F$, then accept (need to empty the stack)
 - A If the computation ends in F and the stack is not empty, then empty the stack and ACCEPT. If f empty the stack
 - A If the computation ends in a dead-end, no transitions-stack operations is possible. Read the rest, empty the stack and accept the word. $L(M'') = \overline{L}$ \$

Theorem

The class of deterministic context-free languages is closed under complementation.

Corollary

The class of deterministic context-free languages is a proper subset of the class of context-free languages.

Proof?

Example

Consider $L = \{a^n b^m c^p \mid m, n, p \ge 0, \underline{m \ne n} \text{ or } \underline{n \ne p}\}$. $\bar{L} = \{\underline{a^n b^n c^n} \mid n \ge 0\} \cup \dots \text{ the order changes}$ $\{\underline{b}, \underline{c}, \underline{c$

$\mathsf{Theorem}$

The class of deterministic context-free languages is closed under complementation.

Corollary

The class of deterministic context-free languages is a proper subset of the class of context-free languages.

Proof?

Example

 \rightarrow Consider $L = \{a^n b^m c^p \mid m, n, p \ge 0, m \ne n \text{ or } n \ne p\}.$

 $\bar{L} = \{a^n b^n c^n \mid n \ge 0\} \cup \dots$ the order changes

 $\bar{L} \cap a^{\star}b^{\star}c^{\star} = \{a^nb^nc^n \mid n \geq 0\}$

→ Nondeterminism is more powerful than determinism in the context of pushdown automata.

Parsing

$$wel(G)$$
 L_1 y deterministic,
 L_2
 $L_1 V L_2$ is not det-

- Deterministic CFLs are not closed under union. Proof?
- only deterministic CFL can be recognized by a deterministic PDA.
 - Given a grammar G, can we construct a deterministic PDA M with L(G) = L(M)?
 - This question is undecidable. There is no algorithm to answer the question for an arbitrary grammar.
- Deterministic context-free languages are never inherently ambiguous. Proof?
- There are some heuristic approaches to eliminate grammar rules that result in compatible transitions, so that the resulting automaton will be deterministic (some examples in the book).

Top-Down Parsing

Definition (Top-down parser)

A deterministic pushdown automaton M is considered to be a topdown parser when its stack operations along a computation reconstructs the parse tree in a top-down left-to right fashion.

Top-Down Parsing

Definition (Top-down parser)

A deterministic pushdown automaton M is considered to be a topdown parser when its stack operations along a computation reconstructs the parse tree in a top-down left-to right fashion.

$$L = \{a^n b^n \mid n \ge 0\}, \ \underline{S \to e \mid aSb}$$

$$G \qquad L(G) = L(M)$$

1.(
$$(s, e, e)$$
, (q, S))
2.((q, e, S) , (q, aSb))
3.((q, e, S) , (q, e))
4.((q, a, a) , (q, e))
5.((q, b, b) , (q, e))

Top-Down Parsing

Definition (Top-down parser)

A deterministic pushdown automaton M is considered to be a topdown parser when its stack operations along a computation reconstructs the parse tree in a top-down left-to right fashion.

$$L = \{a^nb^n \mid n \ge 0\}, S \rightarrow e \mid aSb\}$$

1.
$$((s, e, e), (q, S))$$

2. $((q, e, S), (q, aSb))$
3. $((q, e, S), (q, e))$
4. $((q, a, a), (q, e))$
5. $((q, b, b), (q, e))$

Bottom up parsing

Definition

Given $G = (V, \Sigma, R, S)$, the bottom up push-down automaton $M = (K, \Sigma, \Gamma, \Delta, p, F)$ is defined as follows: $K = \{p, q\}$, $\Gamma = V$, $F = \{q\}$, and Δ :

- 1.((p, a, e), (p, a)) for each $a \in \Sigma$
- $2.((p, e, \alpha^R), (p, A))$ for each rule $A \to \underline{\alpha}$ in R
- $3.((p, e, \underline{S}), (q, e))$

Bottom up parsing

Definition

Given $G = (V, \Sigma, R, S)$, the bottom up push-down automaton $M = (K, \Sigma, \Gamma, \Delta, p, F)$ is defined as follows: $K = \{p, q\}$, $\Gamma = V$, $F = \{q\}$, and Δ :

- 1.((p, a, e), (p, a)) for each $a \in \Sigma$
- $2.((p, e, \alpha^R), (p, A))$ for each rule $A \to \alpha$ in R
- 3.((p, e, S), (q, e))

Example

Construct a bottom up parser for $G = (V, \Sigma, R, S)$, with rules

$$\rightarrow$$
 $S \rightarrow aSa \mid bSb \mid e$