

Pontificia Universidad Católica de Chile Departamento de Estadística Facultad de Matemática

Profesor: Fernando Quintana Ayudante: Daniel Acuña León

Ayudantía 12 EPG3310 - Probabilidad 5 de Junio

- 1. Sea $\{X_n\}_{n\geq 1}$ una sucesión de variables aleatorias en un espacio de probabilidad (Ω, \mathcal{F}, P) . Sea X_0 una variable aleatoria en (Ω, \mathcal{F}, P) . Muestre que si $X_n \stackrel{P}{\to} X_0$, entonces $X_n \stackrel{d}{\to} X_0$.
- 2. Sea $\{X_n\}_{n\geq 1}$ una sucesión de variables aleatorias con p.d.f's dadas por

$$f_{X_n} = 1 - \cos(2n\pi x)$$

Muestre que $X_n \stackrel{d}{\to} X$, donde $X \sim Unif(0,1)$.

- 3. Sea $\{X_n\}_{n\geq 1}$ una sucesión de variables aleatorias con distribución común Exp(1). Muestre que $Y_n = \max(X_1, \ldots, X_n) \ln(n)$ converge en distribución a una variable con cdf $F(x) = e^{-e^{-x}}$.
- 4. Sea $\{F_n\}_{n\geq 1}$ una sucesión de funciones de distribución de variables aleatorias $\{X_n\}_{n\geq 1}$, distribuidas uniformemente en el intervalo [0,n] y F_0 la función de distribución de una variable aleatoria degenerada X_0 . Se define

$$G_n(x) = \frac{1}{n}F_n(x) + \left(1 - \frac{1}{n}\right)F_0(x)$$

Muestre que $G_n \stackrel{d}{\to} F_0$, pero sus momentos no convergen para ningún orden.

5. Sean $\{a_n\}_{n\geq 1}$ y $\{u_n\}_{n\geq 1}$ dos sucesiones de números reales positivos. Sea $\{F_n\}_{n\geq 1}$ una sucesión de funciones de distribución tal que $F_n(a_nx+b_n)\to G(x)$ y $F_n(u_nx+v_n)\to F(x)$, donde F y G son funciones de distribución no-degeneradas. Entonces existen a,b, con a>0 tal que

$$\lim_{n \to \infty} \frac{a_n}{u_n} = a,$$

$$\lim_{n \to \infty} \frac{b_n - v_n}{u_n} = b$$

у

$$F(ax + b) = G(x)$$