Consider the following transportation problem:

Stores -> Warehouses		Ţ	П	<u>iii</u>	ŢV,	Availability.
**	A	7	3	5	5	34
	B	5	5	7	6	15
	C	8	6	6	5	12
	D	1 6	1	6	4	19
Demand >		21	25	17	17	80

First solve manually: (A)

For initial barre fearible solution Use

(i) North West Comes rule.

or (ii) Row-Min Rule.

or (iii) Colm_min Rule.

or (iv) Vogel's Methor

After gelting initial solution proceed to find optimal solution

(B) After solving manually, write a C-program to solve a general transportator problem and match your answer.

output: Initial solution, method. optimal solution

(Write program for all methods, discussed in your theory class)