

Design and Implementation of Vectorized Pseudorandom Number Generators

Master's Thesis Defense and Presentation

Markus Pawellek

May 24, 2020

Outline

Introduction

Pseudorandom Number Generators

Design of the Library

Vectorization and SIMD Architectures

Implementation of the Xoroshiro 128+

Implementation of the MT19937

Implementation of Uniform Distribution Functions

Evaluation and Results

Conclusions and Future Work

What do we need random numbers for?

What do we need random numbers for?

Physical Simulations, based on Monte-Carlo Methods

What do we need random numbers for?

Physical Simulations, based on Monte-Carlo Methods

What do we need random numbers for?

Physical Simulations, based on Monte-Carlo Methods

Goals:

implement RNGs and according algorithms

What do we need random numbers for?

Physical Simulations, based on Monte-Carlo Methods

- implement RNGs and according algorithms
- vectorize those implementations

What do we need random numbers for?

Physical Simulations, based on Monte-Carlo Methods

- implement RNGs and according algorithms
- vectorize those implementations
- create a software library with powerful API

What do we need random numbers for?

Physical Simulations, based on Monte-Carlo Methods

- implement RNGs and according algorithms
- vectorize those implementations
- create a software library with powerful API
- compare performance to others implementations

What do we need random numbers for?

Physical Simulations, based on Monte-Carlo Methods

- implement RNGs and according algorithms
- vectorize those implementations
- create a software library with powerful API
- compare performance to others implementations
- apply library to physical problems

Pseudorandom Number Generators

What is a random sequence?

What is a random sequence?

existing formal concepts not applicable to computer systems

What is a random sequence?

- existing formal concepts not applicable to computer systems
- nondeterministic, noncomputable, unpredictable

What is a random sequence?

- existing formal concepts not applicable to computer systems
- nondeterministic, noncomputable, unpredictable
- generated by hardware components based on chaotic processes

What is a random sequence?

- existing formal concepts not applicable to computer systems
- nondeterministic, noncomputable, unpredictable
- generated by hardware components based on chaotic processes

Disadvantages:

What is a random sequence?

- existing formal concepts not applicable to computer systems
- nondeterministic, noncomputable, unpredictable
- generated by hardware components based on chaotic processes

Disadvantages:

Unreproducibility

What is a random sequence?

- existing formal concepts not applicable to computer systems
- nondeterministic, noncomputable, unpredictable
- generated by hardware components based on chaotic processes

Disadvantages:

- Unreproducibility
- Speed Limitations

Pseudorandom Number Generator Definition

 $S \dots$ Set of States

 $T \dots$ Transition Function

 $U \dots$ Set of Possible Outputs

 $G \dots$ Generator Function

$$\mathfrak{G} \coloneqq (S, T, U, G), \qquad T \colon S \to S, \qquad G \colon S \to U$$
 $s_0 \in S, \qquad s_{n+1} \coloneqq T(s_n), \qquad u_n \coloneqq G(s_n)$

Pseudorandom Number Generator Concept

$$s_0 \sim \mathcal{U}_S, \quad u_1 \leftarrow \mathcal{G}(), \quad u_2 \leftarrow \mathcal{G}(), \quad u_3 \leftarrow \mathcal{G}(), \quad \dots$$

Pseudorandom Number Generator Example

$$s_0 \coloneqq 0, \qquad (s_n) = \overline{2310}, \qquad (u_n) = \overline{0110}$$

Pseudorandom Number Generator Example

construction of "good" PRNG is difficult

Pseudorandom Number Generator Example

- construction of "good" PRNG is difficult
- pseudorandom number sequences will be periodic

Design of the Library

Design Components

Usage in C++

```
#include <pxart/pxart.hpp>
//
std::random_device rd{};
//
pxart::mt19937 rng1{};
pxart::mt19937 rng1{rd};
pxart::mt19937 rnq1{pxart::mt19937::default_seeder{rd()}};
//
pxart::xrsr128p rng2{rng1};
//
const auto x = pxart::uniform<float>(rng1);
//
const auto y = pxart::uniform(rng2, -1.0f, 1.0f);
```


$$A = \frac{\pi}{4}, \qquad \hat{\pi} = \frac{4N_A}{N}$$

$$A = \frac{\pi}{4}, \qquad \hat{\pi} = \frac{4N_A}{N} = \frac{4 \cdot 87}{100} = 3.48$$

$$A = \frac{\pi}{4}, \qquad \hat{\pi} = \frac{4N_A}{N} = \frac{4 \cdot 765}{1000} = 3.06$$

$$A = \frac{\pi}{4}, \qquad \hat{\pi} = \frac{4N_A}{N} = \frac{4 \cdot 7856}{10000} = 3.1424$$

Example Usage

```
// ...
#include <pxart/pxart.hpp>
// ...
pxart::mt19937 rng{};
const int samples = 100000000;
int pi = 0;
for (auto i = samples; i > 0; --i) {
  const auto x = pxart::uniform<float>(rng);
 const auto y = pxart::uniform<float>(rng);
 pi += (x * x + v * v <= 1);
pi = 4.0f * pi / samples;
// ...
```

Vectorization and SIMD Architectures

SIMD Architecture

SIMD Architecture

exploits data-level parallelism on a low level

- exploits data-level parallelism on a low level
- ► Intel CPUs use fixed-length vector registers

- exploits data-level parallelism on a low level
- ► Intel CPUs use fixed-length vector registers
- vector operations are performed on all values at once

SSE, AVX and AVX512 instruction set features

- SSE, AVX and AVX512 instruction set features
- Assembler Instructions vs.
 Automatic Vectorization vs.
 SIMD Intrinsics

- SSE, AVX and AVX512 instruction set features
- Assembler Instructions vs.
 Automatic Vectorization vs.
 SIMD Intrinsics

```
// 128-bit registers
m128 a;
m128d b;
m128i c;
c = _{mm\_add\_ps(a, b)};
// 256-bit registers
m256 a;
 m256i b:
 m256d c;
c = _mm256_add_ps(a, b);
```

Why should we vectorize PRNGs manually?

exploit full functionality of today's processors

- exploit full functionality of today's processors
- no automatic vectorization possible

- exploit full functionality of today's processors
- no automatic vectorization possible
- other vectorized code needs vectorized random numbers

- exploit full functionality of today's processors
- no automatic vectorization possible
- other vectorized code needs vectorized random numbers
- faster generation of numbers

- exploit full functionality of today's processors
- no automatic vectorization possible
- other vectorized code needs vectorized random numbers
- faster generation of numbers
- PRNGs are low-level, SIMD is low-level

What are conditions for good vectorization?

nearly no data dependencies

- nearly no data dependencies
- same processing pipeline

- nearly no data dependencies
- same processing pipeline
- branchless execution

- nearly no data dependencies
- same processing pipeline
- branchless execution
- CPU-bound algorithms

$$x, y \in \mathbb{R}, \qquad r^2 = x^2 + y^2$$

$$x, y \in \mathbb{R}, \qquad r^2 = x^2 + y^2$$

$$x, y \in \mathbb{R}, \qquad r^2 = x^2 + y^2$$


```
double x = pxart::uniform<double>(rng);
double y = pxart::uniform<double>(rng);

double x2 = x * x;
double y2 = y * y;
double r2 = x2 + y2;
```



```
__m256d x = pxart::uniform<double>(vrng);
__m256d y = pxart::uniform<double>(vrng);
__m256d x2 = __mm256_mul_pd(x, x);
__m256d y2 = __mm256_mul_pd(y, y);
__m256d r2 = __mm256_add_pd(x2, y2);
```

Implementation of the Xoroshiro 128+

Xoroshiro128+ Scheme

Xoroshiro128+ Scheme

scrambled linear PRNG

Xoroshiro128+ Scheme

- scrambled linear PRNG
- ▶ 128-bit state, 64-bit output

Xoroshiro 128+ Scheme

- scrambled linear PRNG
- ▶ 128-bit state, 64-bit output

• period: $2^{128} - 1$

Xoroshiro 128+ Scheme

- scrambled linear PRNG
- ▶ 128-bit state, 64-bit output

- period: $2^{128} 1$
- jump operations

several parallelization techniques for multiple streams

- several parallelization techniques for multiple streams
- ▶ here: multiple instances of the same generator

- several parallelization techniques for multiple streams
- ▶ here: multiple instances of the same generator
- seeding and parameter variations for multiple streams

Implementation of the MT19937

MT19937

de-facto standard

- de-facto standard
- ► linear PRNG

- de-facto standard
- ► linear PRNG
- ▶ 19937-bit state, 32-bit output

- de-facto standard
- ▶ linear PRNG
- ▶ 19937-bit state, 32-bit output

▶ period: $2^{19937} - 1$

- de-facto standard
- ► linear PRNG
- ▶ 19937-bit state, 32-bit output

- period: $2^{19937} 1$
- ► 623-dimensional equidistributed

MT19937 Abbreviation

moving all elements with one transition is inefficient

- moving all elements with one transition is inefficient
- instead do n transitions at once

- moving all elements with one transition is inefficient
- \triangleright instead do n transitions at once
- example with n=8 and m=5; reality with n=624 and m=397

MT19937 SIMD Leap Frogging

vectorized generator will give same output as scalar one, only faster

example: two-element-vector; reality: up to eight-element-vector

- example: two-element-vector; reality: up to eight-element-vector
- add vector-register-sized buffer at the end

- example: two-element-vector; reality: up to eight-element-vector
- add vector-register-sized buffer at the end
- copy generated head to the end and do the vectorized loop

Implementation of Uniform Distribution Functions

Real Uniform Distribution: Floating-Point Encoding

$$x = (-1)^s \cdot m \cdot 2^{e-o}$$

- ► IFFF 754
- we use only normalized numbers

get random integer

- get random integer
- shift bits with highest entropy into fraction part

- get random integer
- shift bits with highest entropy into fraction part
- ightharpoonup set sign and exponent to put floating-point value in range [1,2)

- get random integer
- shift bits with highest entropy into fraction part
- lacktriangle set sign and exponent to put floating-point value in range [1,2)
- subtract one from result

unbiased uniform integer algorithms should not be vectorized

- unbiased uniform integer algorithms should not be vectorized
- use simple multiplication-based approximation

$$x \in \mathbb{N}_0, \ x < 2^{32}, \qquad y = \left\lfloor \frac{(b-a) \cdot x}{2^{32}} \right\rfloor + a$$

- unbiased uniform integer algorithms should not be vectorized
- use simple multiplication-based approximation

$$x \in \mathbb{N}_0, \ x < 2^{32}, \qquad y = \left\lfloor \frac{(b-a) \cdot x}{2^{32}} \right\rfloor + a$$

use 64-bit multiplication for 32-bit integers

- unbiased uniform integer algorithms should not be vectorized
- use simple multiplication-based approximation

$$x \in \mathbb{N}_0, \ x < 2^{32}, \qquad y = \left\lfloor \frac{(b-a) \cdot x}{2^{32}} \right\rfloor + a$$

- use 64-bit multiplication for 32-bit integers
- bias can be neglected for typical simulations

Evaluation and Results

Consistency and Correctness: Unit Tests, API Tests, Examples

- Consistency and Correctness: Unit Tests, API Tests, Examples
- Statistical Performance: TestU01, dieharder

- Consistency and Correctness: Unit Tests, API Tests, Examples
- ► Statistical Performance: TestU01, dieharder
- \blacktriangleright Performance: Filling a Cache, Monte Carlo π

MT19937 Speed-Up Monte Carlo π

Xoroshiro 128+ Speed-Up Monte Carlo π

RNGAVXLIB	Intel MKL VSL	Cached AVX	Pure AVX
$0.38\mathrm{s}$	$0.10\mathrm{s}$	$0.09\mathrm{s}$	$0.08\mathrm{s}$

RNGAVXLIB	Intel MKL VSL	Cached AVX	Pure AVX
$0.38\mathrm{s}$	$0.10\mathrm{s}$	$0.09\mathrm{s}$	$0.08\mathrm{s}$

ightharpoonup pXart is faster when applied in Monte Carlo π benchmark

RNGAVXLIB	Intel MKL VSL	Cached AVX	Pure AVX
$0.38\mathrm{s}$	$0.10\mathrm{s}$	$0.09\mathrm{s}$	$0.08\mathrm{s}$

- ightharpoonup pXart is faster when applied in Monte Carlo π benchmark
- scalar interface reduces performance

RNGAVXLIB	Intel MKL VSL	Cached AVX	Pure AVX
$0.38\mathrm{s}$	$0.10\mathrm{s}$	$0.09\mathrm{s}$	$0.08{\rm s}$

- ightharpoonup pXart is faster when applied in Monte Carlo π benchmark
- scalar interface reduces performance
- Intel MKL VSL always fills vector of data

RNGAVXLIB	Intel MKL VSL	Cached AVX	Pure AVX
$0.38\mathrm{s}$	$0.10\mathrm{s}$	$0.09\mathrm{s}$	$0.08{\rm s}$

- ightharpoonup pXart is faster when applied in Monte Carlo π benchmark
- scalar interface reduces performance
- Intel MKL VSL always fills vector of data
- benchmarks are biased

Conclusions and Future Work

Comparison

	pXart	RNGAVXLIB	Intel MKL
Portable	~	×	×
User-Friendly API	~	×	×
Header-Only	~	×	×
Open Source	~	•	×
Documentation	~	×	~
Distributions	×	•	✓
CMake and build2 Support	~	×	×
Dependency-Free	~	•	\sim
Easy-to-get	~	\sim	\sim
AVX512	×	\sim	✓

Conclusions and Future Work

- possible applications in simulations
- ► mt19937 vs. xoroshiro128+

Thank you for Your Attention!

References

Processor

Memory Hierarchy

