# 電腦輔助控制期末報告

411506529楊舒凱

411500506翁得恩

411500217王康霖

# 目錄

- 1.使用元件及系統架構
- 2.Python介面
- 3.Arduino端與電路
- 4. 兩端的溝通封包
- 5.實驗結果影片
- 6. 遇到的問題

## 使用元件與系統架構

JGA25-370直流馬達

L298N馬達驅動器

ESP32 (替代Arduino)

USB相機 (insta Go3s) Python

GUI

OpenCV

傳送偏差值

Arduino(ESP32)

接收偏差值

PID計算

PWM輸出控制馬達

## Python介面

1. 影像顯示區

原始畫面追蹤畫面

顯示攝影機即時畫面,並可即時調整亮度與飽和度效果 顯示辨識後的畫面,會標出偵測到的色塊範圍

2. 偵測與控制資訊區

目標中心與偏差 ESP32 回傳區 顯示物體中心點與畫面中心的橫向偏差值

顯示來自 ESP32 的 PID 輸出值與偏差值,協助監控與除錯

3. 參數控制區

攝影機選擇

串口輸入

顏色預設選單

色彩條

Hue最小/最大

S/V最小值

亮度/飽和度

重置按鈕

4. 操作按鈕區

啟動追蹤

停止追蹤

重置亮度/飽和度

可選擇使用的攝影機裝置(如 0、1、2)

可自定義 ESP32 串口編號(如 COM8)

提供常用顏色(紅、黃、綠、藍)一鍵套用色域

顯示 Hue 彩虹色條,對應可調整的色域下限與上限滑桿

設定追蹤色彩的 Hue 範圍左右端點

過濾掉過暗或過灰的顏色,避免誤判

可即時調整畫面亮度與彩度,視覺效果即時套用

快速將亮度與飽和度歸零

開始進行色塊辨識與追蹤

停止偵測與追蹤

將亮度與飽和度滑桿歸零



#### Arduino端與電路

Arduino (ESP32) 端

說明 功能簡介接收從 Python 傳送過來的「偏差值 (error)」使用 PID 控制計算輸出值控制 L298N 驅動模組 驅動直流馬達旋轉方向與速度回傳目前「偏差值」與「PID 輸出值」到 Python 顯示

| ESP32 腳位 | L298N 接腳 | 功能           |
|----------|----------|--------------|
| 26       | IN1      | 控制馬達方向1      |
| 27       | IN2      | 控制馬達方向2      |
| 25       | ENA      | 控制馬達速度 (PWM) |
| GND      | GND      | 共地           |
| VIN      | 12V IN   | 為 L298N 供電   |

#### 兩端的溝通封包



Python → ESP32:發送偏差值

內容:傳送追蹤物體的「橫向偏差值」給 ESP32 控制馬達

格式:純文字數值(加上換行)

範例: -36\n 120\n

傳送方式 (Python):

```
1 self.ser.write(f"{error}\n".encode())
```

#### 接收方式 (ESP32):

```
1 if (Serial.available()) {
2 target_error = Serial.parseInt(); // 接收偏差值
3 }
```

#### 兩端的溝通封包

ESP32 → Python:回傳控制資訊

內容:回傳目前「接收到的偏差值」與「PID 計算的輸出值」

格式:偏差:<數值>,輸出:<數值>(純文字)

範例: 偏差:-36,輸出:-72

偏差:0,輸出:0

傳送方式(ESP32):

# 1 Serial.print("偏差:"); 2 Serial.print(error); 3 Serial.print(",輸出:"); 4 Serial.println(output);

#### 接收方式 (Python):

```
1 if self.ser.in_waiting:
2   feedback = self.ser.readline().decode().strip()
3   self.esp32_feedback_signal.emit(f"ESP32 回傳:{feedback}")
```

Python 額外處理 (GUI 顯示): 程式會進一步解析字串,將「偏差值」與「輸出值」分開顯示在不同的欄位。

#### 實驗結果影片



調色值測試

### 實驗結果影片



A DEED HT THINK

PID測試(實照)

PID測試(電腦畫面)

#### 遇到的問題

1. 相機無法正確顯示/無法選擇相機

問題:一開始無法指定相機來源,或畫面未顯示。

解決:加入下拉選單選擇 cam\_index 修正 PyQt5 預覽畫面尺寸與更新方

式加入雙視窗 (原始/追蹤畫面)

2. PID 輸出值不穩定 / 一直往上累積

問題:PID 一直積分導致爆炸性輸出

解決:增加 integral 限制 (constrain) 若誤差過小 (<5), 自動歸零積分

輸出加最小門檻(低於50強制為50)

#### 遇到的問題

3. 色域範圍設定不準 / 偵測不到目標

問題:選了藍色或黃色,卻偵測不到,尤其黃色誤差大。

解決:加入「可微調 H/S/V 範圍」功能、加入彩虹色條視覺化 H 範圍、

Smin/Vmin,預設最大,避免干擾、改為左右極限(Hue min/max)滑桿

控制

4. ESP32 回傳訊息未顯示 / 無法分開看偏差與輸出

問題: ESP32 回傳一整串文字難以閱讀

解決:修改格式為: 偏差:xxx,輸出:yyy 在 GUI 中分開顯示: 一行偏差、

一行輸出

11

