COMP229: Introduction to Data Science Lecture 2: data clouds and metric spaces

Vitaliy Kurlin, vitaliy.kurlin@liverpool.ac.uk Autumn 2018, Computer Science department University of Liverpool, United Kingdom

The scanner for registrations will be from week 2.

What is data in COMP229?

In many applications, *data* (often written in a singular form, not plural) is given as a cloud.

Definition 2.1. A *point cloud* is a finite set C of points with a real-value function $d: C \times C \to \mathbb{R}$ (called a *metric*) satisfying the axioms below:

- (1) positivity: $d(p, q) \ge 0$ for any $p, q \in C$, and d(p, q) = 0 if and only if p = q (points coincide);
- (2) symmetry: d(p,q) = d(q,p) for any $p, q \in C$;
- (3) triangle inequality (draw a triangle on p, q, r): $d(p, q) + d(q, r) \ge d(p, r)$ for any $p, q, r \in \mathcal{C}$.

1-dimensional non-example

Data points can be real numbers, points in \mathbb{R}^m , matrices, images, molecules, people or anything.

In the simplest case when data points are real numbers, e.g. ages of students, how would you measure a distance between $p, q \in \mathbb{R}$?

Is d(p,q) = p - q or d = q - p a metric in \mathbb{R} ?

No, because the positivity axiom isn't satisfied, e.g. the example d(1,2) = 1 - 2 < 0 disproves the conjecture that d(p,q) = p - q is a metric.

1-dimensional example

Claim 2.2. d(p,q) = |p-q| is a metric on \mathbb{R} .

Proof. We check all the axioms for any real $p, q, r \in \mathbb{R}$. When conclusions are simple, it's enough to explicitly write them as below.

- (1) $|p q| \ge 0$, |p q| = 0 if and only if p = q.
- (2) symmetry: |p q| = |q p|.
- (3) triangle inequality: if $p \ge q \ge r$, then |p-q|+|q-r|=(p-q)+(q-r)=p-r=|p-r|, (sketch 3 points in \mathbb{R}). Other cases are easy: for $p \ge r \ge q$, $|p-q|=p-q \ge p-r=|p-r|$.

Euclidean metric in \mathbb{R}^n

Definition 2.3. For points $p = (p_1, ..., p_n)$, $q = (q_1, ..., q_n) \in \mathbb{R}^n$, the *Euclidean metric* is (2.3) $L_2(p, q) = \sqrt{\sum_{i=1}^n (p_i - q_i)^2} = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \cdots + (p_n - q_n)^2}$.

Claim 2.4. The function L_2 in (2.3) is a metric.

The positivity and symmetry axioms are simple, the triangle inequality follows from Pythagoras' theorem (to be discussed in Lecture 6).

Other metrics on \mathbb{R}^n

Definition 2.5. For any real $s \ge 1$, points $p = (p_1, \ldots, p_n), q = (q_1, \ldots, q_n) \in \mathbb{R}^n$, the L_s -metric is $L_s(p, q) = \left(\sum_{i=1}^n |p_i - q_i|^s\right)^{1/s}$ (2.5).

For s=1, $L_1(p,q)=\sum\limits_{i=1}^n|p_i-q_i|$ is also called a Manhattan metric. When $s\to +\infty$, the limit case gives the max metric $L_\infty(p,q)=\max_{i=1,\dots,n}|p_i-q_i|$.

Compute L_2, L_1, L_{∞} for $p = (4, 0), q = (0, 3) \in \mathbb{R}^2$.

Example computations

p = (4, 0), q = (0, 3). Compute by the definitions:

$$L_{2}(p, q) = \sqrt{(4 - 0)^{2} + (0 - 3)^{2}} = 5,$$

$$L_{1}(p, q) = |4 - 0| + |0 - 3| = 7,$$

$$L_{\infty}(p, q) = \max\{|4 - 0|, |0 - 3|\} = 4.$$

Any point cloud C of n ordered points can be represented by its distance $n \times n$ matrix $d_{ij} =$ distance between i-th and j-th points of C.

Most general algorithms accept any distance matrix as an input, many metrics can be tried.

A metric space

Definition 2.6. A *metric space* is any set C with $d: C \times C \to \mathbb{R}$ (called a *metric*) such that

- (1) positivity: $d(p, q) \ge 0$ for any $p, q \in C$, and d(p, q) = 0 if and only if p = q (points coincide);
- (2) symmetry: d(p,q) = d(q,p) for any $p, q \in C$;
- (3) triangle inequality (draw a triangle on p, q, r): $d(p, q) + d(q, r) \ge d(p, r)$ for any $p, q, r \in C$.

A point cloud in Def 2.1 is a finite metric space.

Claim 2.7. For any metric d, t > 0, td is a metric. *Outline*. All axioms hold for d, hence for td.

Examples and non-examples

Claim 2.8.
$$d(p,q) = \begin{cases} 0 & \text{for } p = q, \\ 1 & \text{for } p \neq q \end{cases}$$
 is a metric.

Outline. Axiom (3)
$$d(p,q) + d(q,r) \ge d(p,r)$$
 can fail only if $d(p,q) = 0 = d(q,r)$, so $p = q = r$.

For real p, q, are these functions metrics?

1)
$$d(p, q) = |p^2 - q^2|$$
. No, because $d(1, -1) = 0$.

2)
$$d(p,q) = |p-2q|$$
. No since $d(0,1) \neq d(1,0)$.

3)
$$d(p,q) = (p-q)^2$$
. No, because axiom (3) fails: $d(1,2) + d(2,3) = 1 + 1 < d(1,3) = 4$.

Other distances (non-metrics)

If positivity axiom (1) is replaced by the weaker (1') $d(p,q) \ge 0$ and d(p,p) = 0, possibly d(p,q) = 0 for $p \ne q$, we get a *pseudometric*, which are common in applications when objects are compared only by their partial descriptors, e.g. distance(people) = abs. difference of ages.

If symmetry axiom (2) is dropped, we get a *quasimetric*, e.g. the time to get from one place to another (via hills or 1-way roads in a town).

More examples are in Encyclopedia of Distances.

Your questions and the quiz

To benefit from the lecture, now you could

- ask or submit your anonymous questions to the COMP229 folder after the lecture;
- write down your summary in 2-3 phrases,
 e.g. list key concepts you have learned;
- talk to your classmates to revise the lecture.

Question. Is the function $d(p, q) = p^2 - pq + q^2$ a metric on real numbers?

Answer to the quiz and summary

Answer. No. Axiom (1) fails: d(1, 1) = 1. Axiom (2) holds: $d(p, q) = p^2 - pq + q^2 = d(q, p)$. Axiom (3) fails: $d(0, \pm 1) = 1$, d(1, -1) = 3.

- A metric space has a metric satisfying the positivity, symmetry, triangle inequality.
- The common metrics on \mathbb{R}^n are L_1, L_2, L_{∞} .
- There are many useful non-metric functions.
- More results can be proved for metric spaces,
 e.g. on convergence of iterative algorithms.

