FUNCIONES

Tipos de funciones. Representación gráfica. Dominio y rango.

¿Alguna duda de la sesión anterior?

¡Fácil!

Vamos a ver...

En una función, ¿a cada valor x le puede corresponder 2 o más valores en y?

LOGRO DE SESIÓN

Al finalizar la sesión, el estudiante determina el dominio, rango y gráfico respectivo de una función identificando su tipo.

¿Qué entiendes por funciones?

¿Puedes mencionar algún tipo de función? ¿A quiénes representan el eje de las abscisas y el eje de las ordenadas?

mites, propiedades y cálculo de lijnites

¿Para qué sirven las funciones?

Las funciones nos permiten modelar procesos dentro de empresas y mediante una función se puede representar el Ingreso por bienes y servicios, el costo o la utilidad obtenida en procesos comerciales. A partir de este modelado se puede interpretar el comportamiento o tendencia de una determinada situación.

FUNCIONES: DOMINIO Y RANGO

Desaprende lo que te limita

1

Universidad Tecnológica del Perú

FUNCIONES ESPECIALES

Dominio y Rango

1. Función Constante f(x) = k

$$Dom(f) = \mathbb{R}$$
 $Dom(f) = \mathbb{R}$

Ejemplo.

Determinar el dominio, rango, gráfica y puntos de intersección a los ejes coordenados de la función:

$$f(x) = -3x + 5$$

Donde $x \in [-2, 4]$

SOLUCIÓN:

Es una función lineal f(x) = mx + b, por tanto, su representación es una recta Siendo b = 5, la recta corta al $eje\ Y$ en y = 5 y es de pendiente negativa

Evaluamos los extremos y los puntos de corte a los ejes:

$$f(-2) = -3(-2) + 5 = 11$$

$$(-2,11)$$

$$f(4) = -3(4) + 5 = -7$$

$$(4, -7)$$

(0, 5)

Si
$$x = 0$$
, entonces:

$$y = -3(0) + 5 = 5$$

 \rightarrow

Si
$$y = 0$$
, entonces:

$$0 = -3x + 5$$

$$\frac{5}{3}$$
 $(\frac{5}{3},0)$

FUNCIONES ESPECIALES

Dominio y Rango

3. Función Cuadrática $f(x) = ax^2 + bx + c$ $a \neq 0$

$$Dom(f) = \mathbb{R}$$
 ; $Ran(f) = [k, +\infty)$

El vértice se puede obtener mediante la siguiente fórmula:

$$h = -\frac{b}{2a} \qquad k = f\left(-\frac{b}{2a}\right)$$

$$V(k,k) = \left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$

Determine el dominio, rango y graficar la función $f(x) = x^2 - 6x + 10$ Ejemplo.

$$a = 1; b = -6; c = 10$$

$$V(h,k) = \left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$

$$h = -\frac{b}{2a} = -\frac{-6}{2(1)} = 3$$

$$k = f\left(-\frac{b}{2a}\right) = f(3)$$

$$= (3)^2 - 6(3) + 10$$

$$Dom(f) = \mathbb{R}$$

$$Dom(f) = \mathbb{R}$$
 $Ran(f) = [1, +\infty]$

= 9 - 18 + 10 = 1

2

FUNCIONES ESPECIALES

Dominio y Rango

4. Función Raíz Cuadrada $f(x) = \sqrt{x}$

$$Dom(f) = [0, +\infty)$$
; $Ran(f) = [0, +\infty)$

Ejemplo.

Determine el dominio, rango de la función $f(x) = \sqrt{2x^2 - 11x + 12} + 1$

(Sugerencia.: Obtenga el rango a partir de la tabulación de la función en su dominio)

SOLUCIÓN:

$$2x^{2} - 11x + 12 \ge 0$$

$$(2x - 3)(x - 4) \ge 0$$

$$x = \frac{3}{2} \quad x = 4$$

$$\frac{3}{2} \quad 4$$

$$Dom(f) = \langle -\infty, 3/2] \cup [4, +\infty \rangle$$

$Ran(f) = [1, +\infty)$

0	3/2	4	5
4.5	1	1	22.4

EJERCICIOS EXPLICATIVOS

$$f(x) = \sqrt{\frac{1 - x}{x^2 - 5x + 6}}$$

SOLUCIÓN:

Determinando el dominio

$$\frac{1-x}{x^2-5x+6} \ge 0$$

$$\frac{x-1}{x^2-5x+6} \le 0$$

$$\frac{x-1}{(x-3)(x-2)} \le 0$$

$$P.C.$$
 $x = 1; x = 2; x = 3$

$$Dom(f) = \langle -\infty, 1] \cup \langle 2, 3 \rangle$$

EJERCICIOS EXPLICATIVOS

2. Sea $f(x) = -x^2 + 2x + 8$; donde -1 < x < 5. Determine el dominio, rango y gráfica de la función considerando sus interceptos a los ejes coordenados si los hubiera.

SOLUCIÓN:

$$V(h,k) = \left(-\frac{b}{2a}; f\left(-\frac{b}{2a}\right)\right)$$

$$h = -\frac{2}{2(-1)} = 1$$

$$k = f(1)$$

$$k = -1 + 2 + 8$$

$$k = 9 \qquad V = (1; 9)$$

$$-1 < x < 5$$

$$f(-1) = -1 - 2 + 8 = 5$$

$$f(5) = -25 + 10 + 8 = -7$$

$$Dom(f) = \langle -1, 5 \rangle$$

$$Ran(f) = \langle -7, 9 \rangle$$

INTERCEPTOS CON LOS EJES

$$y = -x^{2} + 2x + 8$$

$$Eje \ y: \implies x = 0$$

$$y = 0 + 2(0) + 8$$

$$y = 8 \implies (0, 8)$$

$$Eje \ x: \implies y = 0$$

$$0 = -x^{2} + 2x + 8$$

$$x^{2} - 2x - 8 = 0$$

$$(x - 4)(x + 2) = 0$$

$$x = 4 \quad x = -2 \implies (4, 0)$$

¡Manos a la obra!

A desarrollar los ejercicios propuestos

INICIAMOS LOS EJERCICIOS RETO

EJERCICIOS RETO

- 1. La grafica de la función $y = \frac{2}{3}x^2 + bx + c$ intercectan al eje x en los puntos (-2,0) y (5,0) y al eje y en el punto (0,k). Halle el valor de R=b+c+k.
- 2. Hallar el dominio y rango de la función $f(x) = \sqrt{6 + x x^2}$
- 3. Hallar el dominio, rango y grafica de la función $f(x) = 2x^2 + x + 6$; con $-3 \le x \le 8$.
- 4. Hallar el dominio de la función $f(x) = \sqrt{\frac{x^2 + 2x 15}{x^2 100}}$
- 5. Determine el dominio, rango y gráfica de la función $f(x) = x^2 + 3x \frac{3}{4}$

RESPUESTAS

1.
$$R = -\frac{46}{3}$$

2.
$$D_f = [-2, 3]$$
; $R_f = \left[0, \frac{5}{2}\right]$

3.
$$D_f = [-3, 8]$$
 ; $R_f = \left[\frac{47}{8}, 142\right]$

4.
$$D_f = \langle -\infty, -10 \rangle \cup [-5, 3] \cup \langle 10, +\infty \rangle$$

5.
$$D_f = \mathbb{R}$$
 ; $R_f = [-3, +\infty)$

Espacio de Preguntas

Pregunta a través del chat o levantando la mano en el Zoom. No te quedes con tus dudas, si quieres preguntar o comentar algo respecto a lo que hemos trabajado, es momento de hacerlo y así poder ayudarte. Si no tienes preguntas el profesor realizará algunas

Tiempo: 10 min

¿Qué hemos aprendido hoy?

1. ¿Cómo se representa una función constante?

2. ¿ Cómo se representa una función cuadrática?

3. ¿Cómo se determina el vértice de una función cuadrática?

Desaprende lo que te limita

Desaprende lo que te limita

FINALMENTE

Excelente tu participación

Los ganadores nos ponemos metas los perdedores se ponen excusas

Ésta sesión quedará grabada para tus consultas.

PARA TI

- 1. Realiza los ejercicios propuestos de ésta sesión y sigue practicando.
- 2. Consulta en el FORO tus dudas.

Universidad Tecnológica del Perú