Quantum Computing LaTeX Quick Reference

Quick Command Sheet for Quantum Computing Lecture Notes

Basic Quantum State Nota- 3 Quantum Measurements 1 tion

Measurement operator: \mathcal{M} (19)State Vectors 1.1 Projectors: $|0\rangle\langle 0|, |1\rangle\langle 1|, \P_i$ (20)

Ket: $|\psi\rangle$ or $|\psi\rangle$ (1)Probability: $\Pr[i] = \langle \psi \rangle |i\rangle \langle i| |\psi|$ Bra: $\langle \psi |$ (2)

Braket: $\langle \psi | \phi \rangle$ (3)

 $|0\rangle, |1\rangle$

Outer product: $|\psi\rangle\langle\phi|$ (4)Quantum Channels and Expectation: $\langle A \rangle = \langle \psi \rangle A | \psi$ (5)Noise

1.2 Common States

Computational basis:

General channel: $\mathcal{E}(\rho)$ (22)

> Depolarizing: $\mathcal{D}_p(\rho)$ (23)

> > Bit flip: $\mathcal{B}_p(\rho)$ (24)

Superposition: $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ Phase flip: $\mathcal{P}_p(\rho)$ (25)

 $|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$ Quantum Information Measures

 $\ket{\Phi^+},\ket{\Phi^-},\ket{\Psi^+},\ket{\Psi^-}$ Bell states: Von Neumann entropy: $S(\rho)$ (26)(9)

Conditional entropy: H(A|B)(27)Multi-qubit: $|GHZ\rangle$, $|W\rangle$ (10)I(A:B)Mutual information: (28)

Fidelity: $F(\rho, \sigma)$ (29)Quantum Gates and Opera-Trace distance: $D(\rho, \sigma)$ (30)

2 tions

Fredkin: Fredkin

Quantum Algorithms 6 Single-Qubit Gates 2.1

Fourier Transform 6.1 Pauli matrices: $\sigma_X, \sigma_Y, \sigma_Z$ (11)

Hadamard: H(12)QFT: QFT $|x\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i x k/N} |k\rangle$ Phase gates: $S, T, P(\theta)$ (13)

Rotations: $R_x(\theta), R_y(\theta), R_z(\theta)$ (14)(31)

Inverse QFT: QFT^{-1} (32)

2.2 Multi-Qubit Gates

6.2 Oracles CNOT: CNOT (15)

Toffoli: Toffoli or CCNOT (16)Boolean oracle: $O_f |x\rangle |y\rangle = |x\rangle |y \oplus f(x)\rangle$

(17)Phase oracle: $O_f |x\rangle = (-1)^{f(x)} |x\rangle$ (34)

SWAP: SAWP (18)

7 Error Correction

8.2 Linear Algebra

Stabilizer group: $S = \langle g_1, g_2, \dots, g_k \rangle$ Tensor product: $A \otimes B$ (43)

Trace: tr(A) (44)

Syndrome: $s = (s_1, s_2, \dots, s_k)$ Partial trace: $\operatorname{Tr}_B(\rho_{AB})$ (45)

(36) Rank: $\operatorname{rank}(A)$ (46)

Code space: C (37)

Logical codeword: $|\overline{\psi}\rangle$ (38) 8.3 Probability

8 Mathematical Utilities

Probability: Pr[event] (47)

Expectation: $\mathbb{E}[X]$ (48)

8.1 Complex Numbers Variance: δX (49)

Imaginary unit: i (39)

Real part: $\Re(z)$ (40)

Imaginary part: Im(z) (41)

Complex conjugate: z^* (42)

9 Circuit Notation (with quantikz)

Basic circuit elements:

\begin{quantikz}

\end{quantikz}

10 Complexity Classes

Bounded-error quantum polynomial: BQP (50)

Quantum Merlin-Arthur: QMA (51)

Quantum polynomial space: QPSPACE (52)

11 Usage Examples

11.1 Quantum Teleportation Protocol

The quantum teleportation protocol transfers the state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ using the following steps:

Protocol 11.1. 1. Alice and Bob share the Bell state $|\Phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

- 2. Alice performs a Bell measurement on her qubit and the qubit to be teleported
- 3. Alice sends the classical result to Bob
- 4. Bob applies the appropriate correction based on Alice's measurement

11.2 Grover's Algorithm

Grover's algorithm amplifies the amplitude of marked states:

Algorithm 11.1. 1. Initialize: $|\psi_0\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$

- 2. Apply $G = -H^{\otimes n} |0\rangle\langle 0|^{\otimes n} H^{\otimes n} O_f$ for $O(\sqrt{N})$ iterations
- 3. Measure to obtain the marked state with high probability

11.3 Quantum Error Correction Example

The 3-qubit bit flip code protects against single bit flip errors:

Circuit 11.1. Encoding: $|0\rangle \rightarrow |000\rangle$, $|1\rangle \rightarrow |111\rangle$ Syndrome measurement: $s_1 = Z_1 Z_2$, $s_2 = Z_2 Z_3$

12 Common Quantum Gates

		Gate	Matrix
Gate	Matrix	CNOT (CX)	$ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} $
Hadamard (H)	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$		$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$
Identity (I)	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	Controlled-Z (CZ)	$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
Phase (S)	$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$		$\begin{bmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$
T-gate (T)	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$	Controlled- U (CU)	$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & U_{00} & U_{01} \end{bmatrix}$
NOT (X)	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & -i \end{bmatrix}$		$\begin{bmatrix} 0 & 0 & U_{10} & U_{11} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$
Y-gate (Y)	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \end{bmatrix}$	SWAP	$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
Z-gate (Z)	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \end{bmatrix}$		$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
Rotation $R(\theta)$ / Phase $P(\theta)$	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$	- Toffoli (CCNOT)	0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
			$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$

Figure 1: Quantum circuit for preparing and measuring a Bell state