

SPDA EXTERNO CONFORME NBR 5419/2015

AULA 02:

SPDA E SUAS CLASSES

Prof.Ms Luciano Duque

- O SPDA possui características que são determinadas pelas características da estrutura a ser protegida e pelo nível de proteção considerado para descargas atmosféricas.
- A NBR 5419/2015 apresenta as quatro classe de SPDA (I a IV), conforme tabela abaixo:

Nível de Proteção	Classe do SPDA
1	1
11	
III	111
IV	IV

Tabela 1: Nível de proteção e classe do SPDA: NBR 5419/2015 Parte 2 Tabela 1

Classe do SPDA

A classe pode ser caracterizada por :

Dados dependentes da classe de SPDA são:

- parâmetros da descarga atmosférica;
- □ raio da esfera rolante (método eletromagnético), tamanho da malha (Gaiola de Faraday) e ângulo de proteção (Frankilin);
- Distância entre condutores de descida e dos condutores em anel;
- Distância de segurança contra centelhamento perigoso;
- Comprimento mínimo dos eletrodos de terra.

Classe do SPDA e projeto

- A eficiência de cada classe de SPDA é fornecida e pela NBR 5419-2/2015 Anexo B.
- A classe do SPDA requerido deve ser selecionada com base em uma avaliação de risco (NBR 5419-2/2015) e vimos nas aulas de gerenciamento de risco (aula 1,aula 2,aula 3,aula 4 e aula 5).
- Quanto maior for a sintonia e a coordenação entre os projetos e execuções das estruturas a serem protegidas e do SPDA, melhores serão as soluções adotadas, possibilitando otimizar custo dentro da melhor solução técnica possível.
- O próprio projeto da estrutura, preferencialmente, deve viabilizar a utilização das partes metálicas deste como componentes naturas do SPDA.

Classe do SPDA: parâmetros da descarga atmosférica

Proteção	Nível I	Nível II	Nível III	Nível IV
Corrente	3	5	10	16
de pico				
(KA)				
Raio da	20	30	45	60
esfera				
rotante (m)				

Tabela 2: adaptada da tabela 4 da NBR 5419- Parte 1.

Primeiro impuls	so positivo	1/4/		10.10	NP	
Parâmetros da corrente	Símbolo	Unidade	ı	Al .	III	IV
Corrente de pico	1	kA	200	150	1	00
Carga do impulso	Q _{curta}	С	100	75		50
Energia específica	W/R	MJ/Ω	10	5,6	2	2,5
Parâmetros de tempo	T_1 / T_2	μs / μs	10/350			
Primeiro impulso negativo ^a			NP			
Parâmetros da corrente	Símbolo	Unidade	I	II	III	IV
Componente longa da descarga atmosférica		NP				
Parâmetros da corrente	Símbolo	Unidade	1	II	III	IV
Carga da componente longa	Q _{longa}	С	200	150		100
Parâmetros de tempo	T _{longa}	s	0,5			
Descarga atmosférica					NP	
Parâmetros da corrente	Símbolo	Unidade	1	II	III	IV
Carga da descarga atmosférica	Q _{flash}	С	300	225		150

Tabela 3: tabela 4 da NBR 5419- Parte 1.

	MÉTODO DE PROTEÇÃO			
		MÁXIMO	ESPAÇAMENTO	
CLASSE DE	RAIO DA	AFASTAMENTO	ENTRE AS	ÂNGULO DE
SPDA	ESFERA	DOS	DESCIDAS	PROTEÇÃO
	ROLANTE -	CONDUTORES	(m)	
	R (m)	DE MALHAS (m)		
1	20	5 X 5	10	
0	30	10 X 10	10	FIGURA 2
Ш	45	15 X 15	15	ABAIXO
IV	60	20 X 20	20	

Tabela 4: valores do raio da esfera e reticulado da malha , Tabela 2 e 4 da NBR 5419/2015 parte 3 E é aceitável que o espaçamento dos condutores de descidas tenha no máximo 20% além dos valões da tabela acima

A probabilidade (PB) de uma descarga atmosférica provocar danos a uma estrutura é dado pela tabela abaixo:

Características da estrutura	Classe do SPDA	
Estrutura não protegida por SPDA		1
	ĪV	0,2
	101	0,1
Estrutura protegida por SPDA	II II	0,05
	ı	0,02
Estrutura com sistema de captação conforme estrutura metálica contínua ou de concreto a um subsistema de descida natural	0,01	

Estrutura com cobertura metálica e um subsistema de captação possivelmente incluindo componentes naturais, como proteção completa de qualquer instalação na cobertura contra descargas 0,001 atmosféricas diretas e uma estrutura metálica contínua ou de concreto armado atuando como subsistema de descidas natural.

Fonte: NBR 5419 Parte 2

Uniceub Centro Universitário de Brasília

Componentes naturais de um SPDA: NBR 5419-3/2015

- As seguintes partes podem ser consideradas como captores naturais:
- 1. Chapas metálicas cobrindo a estrutura a ser protegida, desde que:
 - A continuidade elétrica entre as diversas partes seja feita de forma duradoura (solda forte, caldeamento, firsamento, costurado, aparafusado ou conectado com parafuso e porca);
 - A espessura da chapa não seja menor que t` da tabela abaixo:

	em sistemas		
Classe do SPDA	Material	Espessura ^a t mm	Espessura ^b t' mm
	Chumbo	_	2,0
	Aço (inoxidável, galvanizado a quente)	4	0,5
I a IV	Titânio	4	0,5
	Cobre	5	0,5
	Alumínio	7	0,65
	Zinco	_	0,7

a t previne perfuração, pontos quentes ou ignição.

b t´ somente para chapas metálicas, se não for importante prevenir a perfuração, pontos quentes ou problemas com ignição.

Componentes naturais de um SPDA: NBR 5419-3/2015

✓ A espessura de folha metálica não seja menor que o valor t fornecido na tabela 3 da NBR 5419-3/2016. Se for necessário precauções contra perfuração ou ser for necessário considerar os problemas com pontos quentes.

Espessura mínima de chapas metálicas ou tubulações metálicas	
em sistemas de captação	

Classe do SPDA	Material	Espessura ^a t mm	Espessura ^b t´ mm
	Chumbo	-	2,0
	Aço (inoxidável, galvanizado a quente)	4	0,5
I a IV	Titânio	4	0,5
	Cobre	5	0,5
	Alumínio	7	0,65
	Zinco		0,7

a t previne perfuração, pontos quentes ou ignição.

b t' somente para chapas metálicas, se não for importante prevenir a perfuração, pontos quentes ou problemas com ignição.

Componentes naturais de um SPDA: NBR 5419-3/2015

- 2. Componentes metálicos de construção de cobertura (treliças, ganchos de ancoragem, armadura de aço da estrutura etc).
- 3. Partes metálicas, como grades, tubulações, coberturas de para peitos, porém que sejam instaladas de forma permanente, ou seja, que sua retirad desconfigura a característica da estrutura e que tenham seções não inferiores as especificadas para componentes captores.
- 4. Tubulações metálicas e tanques na cobertura , desde que eles sejam construídos de material com espessuras e seções transversais de acordo com tabela a seguir.

Tubulações metálicas e tanques contendo misturas explosivas ou prontamente combustíveis desde que elas sejam construídas de material com espessura não inferior aos valores apropriado: de t fornecidos na Tabela 3 e que a elevação de temperatura da superfície interna no ponto de impacto não constitua alto grau de risco (ver Anexo D).

SPDA Franklin

O Método de Franklin nada mais é do que um caso particular do Modelo Eletrogeométrico, em que o segmento de circulo é aproximado por um segmento de reta, tangente ao circulo na altura do captor.

SPDA Franklin e sua Classe NBR 5419/2015

NOTA 1 Não aplicável além dos valores marcados com *.

Somente os métodos da esfera rolante e das malhas são aplicáveis nestes casos.

NOTA 2 H é a altura do captor acima do plano de referência da área a ser protegida.

NOTA 3 O ângulo não será alterado para valores de H abaixo de 2m.

SPDA Gaiola de Faraday conforme NBR 5419/2015

- Neste sistema de proteção, uma rede de condutores, lançada na cobertura e nas laterais da instalação a ser protegida, forma uma descargas blindagem eletrostática, destinada a interceptar as atmosféricas incidentes.
- Elementos metálicos estruturais, de fachada e de cobertura, podem integrar esta rede de condutores, desde que atendam a requisitos específicos.
- Edificações com estrutura metálica na cobertura e continuidade elétrica nas ferragens estruturais e aterramento em fundação (ou anel) tem bom

desembenho como Gaiolas de Faraday.

	MÁXIMO
CLASSE DE	AFASTAMENTO
SPDA	DOS
	CONDUTORES DE
	MALHAS (m)
I	5 X 5
П	10 X 10
III	15 X 15
IV	20 X 20

- Prevê que o volume de proteção de um elemento captor seria definido por um cone com vértice na extremidade do captor, delimitado pela rotação de um segmento de circulo tangente ao solo.
- O raio deste segmento de circulo é função do nível de proteção desejado para a instalação.

Somente captor único protege apenas uma parte da igreja (deixando desprotegida a quina acima da curva cheia), fazendo-se necessário mais um na ponta da nave da igreja para complementar a proteção.

- O modelo eletrogeométrico é compatível com a constatação pratica de que estruturas muito altas são suscetíveis de serem atingidas por descargas laterais.
- Efetivamente, se a estrutura tiver uma altura superior à distancia R, um elemento captor no seu topo não garantirá uma proteção adequada, pois o segmento de circulo tangente ao solo tocará lateralmente na estrutura.

- A analise até aqui apresentada foi conduzida considerando-se apenas duas dimensões.
- A extensão deste modelo para três dimensões resulta no conceito da "esfera rolante".
- Pode-se visualizar que se esta esfera for rolada por toda a área de uma instalação protegida por uma determinada geometria de elementos captores, ela não poderá nunca tocar em qualquer parte que não seja elemento captor.
- As partes da edificação eventualmente tocadas pela esfera poderão ser consideradas falhas de blindagem, e serão pontos suscetíveis de serem atingidos por uma descarga atmosférica direta.

CLASSE DE	RAIO DA
SPDA	ESFERA
	ROLANTE-
	R (m)
I	20
Ξ	30
Ш	45
IV	60

Fonte NBR 5419-2/2015

Bibliografias

- ABNT Associação Brasileira de Normas Técnicas NBR5419 Proteção contra descarga atmosférico, Parte 1, Princípios gerais, maio 2015.
- 2. ABNT Associação Brasileira de Normas Técnicas NBR5419 Proteção contra descarga atmosférico, Parte 2, Gerenciamento de risco, maio 2015.
- 3. ABNT Associação Brasileira de Normas Técnicas NBR5419 Proteção contra descarga atmosférico, Parte 3, Danos físicos as estruturas e perigos á vida, maio 2015.