# Applicazione di tecniche di ML su progetti open source

Pierciro Caliandro

July 16, 2021

### Indice

- Introduzione
- Derivazione dei dataset
  - Metriche scelte
- Tecnica di classificazione
  - Tecniche utilizzate
- Metriche analizzate
  - Analisi dei valori
- 6 Analisi della AUC per BookKeeper
  - Analisi della AUC per BookKeeper miglioramento dei valori
- Analisi della AUC per ZooKeeper
  - Analisi della AUC per ZooKeeper miglioramento dei valori
- 8 Medie dei valori per AUC
  - Analisi di Precision e Recall per BooKeeper
    - Tentativo di miglioramento dei valori
  - Analisi di Precision e Recall per ZooKeeper
    - Tentativo di miglioramento dei valori
- Risultati analitici per FP abbassamento dei valori di Precision
  - Analisi di Kappa per BookKeeper
    - Miglioramento dei valori di Kappa per BookKeeper
    - Analisi di Kappa per ZooKeeper
    - Miglioramento dei valori
    - Medie dei valori per Kappa
  - Analisi di Sonar Cloud del codice utilizzato



#### Introduzione

- Lo scopo della presentazione è quello di mostrare i risultati a seguito dell'applicazione di tecniche di sampling, classificazioni sensibili al costo, e feature selection su modelli di ML.
   In particolare, ci si concentra su come tali tecniche impattano sulle metriche di accuratezza per i seguenti classificatori:
  - NaiveBayes
  - RandomForest
  - IBk
- I dati forniti ai classificatori per il training ed il testing sono stati raccolti da due progetti open source della Apache Software Foundation:
  - Apache BookKeeper
  - Apache ZooKeeper
- Le analisi partono dai risultati ottenuti, per tutti i classificatori, senza l'applicazione di alcuna tecnica per poi vedere con quali tecniche e per quali classificatori si ottengono risultati migliori

### Derivazione dei dataset

- Come prima cosa, per entrambi i progetti, è stata utlizzata la rest API di Jira per poter ottenere tutti i Ticket di tipo bug relativi ad entrambi i progetti
- Dopo aver ordinati i ticket in base alle loro date di risoluzione, sono stati trovati ed ordinati i corrispettivi commit andando a consultare il log ottenibile da git, per fare ciò si è utilizzato il tool JGit
- A questo punto, scorrendo le varie release, sono state calcolate le 9 metriche scelte per entrambi i progetti, andando poi a riempire un file csv per ogni singolo progetto. Per ciascun progetto, vengono riportati solo i dati relativi alla prima metà del totale delle release
- La struttura di entrambi i dataset è la seguente:

| Project name Release | Class name                                                                        | Size 5 | B N | Auth | Age | MAX_LQC_ADDED | LOC_ADDED | AVG LOC ADDDED | Churp | AVG CHURN buggyness |
|----------------------|-----------------------------------------------------------------------------------|--------|-----|------|-----|---------------|-----------|----------------|-------|---------------------|
|                      | bookkeeper server/src/main/jaya/org/apacha/bookkeeper/bookje/Bookie.jaya          | 1026   | 15  | 3    | 35  | 545           |           | 119            |       | 68 yes              |
| BOOKKEEPP 4.0.0      | bookkeeper-server/src/main/lava/org/apache/bookkeeper/bookle/LedgerEntryPage.java | 157    | 4   | 3    | 35  | 151           | 315       | 78             | 157   | 39 yes              |
|                      | bookkeeper-server/src/main/jaya/org/apache/bookkeeper/bookie/BookieException.jaya | 92     | - 4 | 3    | 35  | 81            | 202       | 50             |       | 23 no               |
|                      | bookkeeper server'src/makrijava/org/apacha/bookkeeper/bookie/EntryLogger,java     | 471    | 10  | 3    | 35  | 487           | 1120      | 112            |       | 47 yes              |
| BOOKKEEPP 4.0.0      | bookkeeper-server/src/main/java/org/apache/bookkeeper/bookle/BufferedChannel.java | 180    | 5   | 2    | 35  | 168           | 363       | 72             | 180   | 36 no               |
|                      | bookkeeper.server/src/roskr/ava/org/apache/bookkeeper/bookle/ElieInfo_Java        | 204    | 6   | 3    | 35  | 124           |           | 55             | 204   | 34 yes              |
|                      | bookkeeper-server/src/makr/aya/org/apacha/bookkeeper/bookia/Ledge/Descriptor.iava | 149    | 6   | 3    | 35  | 133           |           | 50             |       | 24 yes              |
| BOOKKEEPP 4.0.0      | bookkeeper-server/src/main/jaya/org/apacha/bookkeeper/bookje/LedgerCache_jaya     | 551    | 8   | 3    | 35  | 536           | 1157      | 144            | 551   | 68 no               |

Figure: Header per i file csv

## Metriche scelte

- In entrambi i dataset sono stati riportati 9 metriche, relative alla singola classe, usate poi dai classificatori per stimare se una classe presentasse un bug in una determinata release:
  - Size: numero di LOC
  - NR: Numero di revisioni
  - NAuth: Numero di autori della classe
  - Age: 'età', in settimane
  - MAX\_LOC\_ADDED: massimo numero di LOC aggiunte in una release

- LOC\_ADDED: LOC aggiunte in una release
- AVG\_LOC\_ADDED: media di LOC aggiunte in una release
- Churn: differenza fra LOC aggiunte e rimosse
- AVG\_Churn: media della differenza fra LOC aggiunte e rimosse
- L'ultimo attributo del dataset è la buggyness nella release corrente, calcolata usando le Affected Version quando disponibili dai ticket di Jira, o altrimenti applicando il metodo proportion per stimare le affected version

#### Tecnica di classificazione

- La tecnica di classificazione utilizzata è Walk Forward
- Il training set è stato incrementato di volta in volta, andando ad aggiungere sempre i dati relativi alla successiva release
- Per il testing set si usa sempre la prima release non ancora inclusa nel training set
- Ad esempio, per la prima run si avrà il training set contenente la release 1 ed il testing set formato dalla release 2. Nella run successiva il training set sarà costituito dalle release 1 e 2, mentre il testing set dalla release 3
- Per la classificazione, è stato usato il tool weka, sfruttando sia la API che la versione stand alone.
- I valori riportati nei due dataset sono stati calcolati dall'API, e confrontati con quanto veniva riportato dall'esecuzione sugli stessi dati con la versione stand alone

#### Tecniche utilizzate

- Per cercare di migliorare i valori ottenuti dalla prima analisi, sono state applicate alcune tecniche:
  - Feature Selection, utilizzando Best First come tecnica
  - Sampling, utilizzando
    - under-sampling: vengono diminuite le istanze della classe maggioritaria fino a pareggiare quelle della classe minoritaria
    - over-samplig: vengono aumentate le istanze della classe minoritaria fino a pareggiare quelle della classe maggioritaria
    - SMOTE: vengono create istanze aggiuntive per la classe minoritaria in maniera "sintetica"
  - Cost sensitive valuation, usando:
    - sensitive threshold, viene aggiustato il valore della threshold
    - sensitive learning, le classi vengono replicate in base al peso, quindi è come se venissero ripesate

In entrambe i casi, la matrice dei costi prevede un costo 10 volte maggiore per un falso negativo rispetto a quello per un falso positivo

## Metriche analizzate

- Sono stati considerati ed analizzati i valori per le seguenti metriche di performance:
  - AUC: Area Under The Curve, area sottesa alla ROC.
  - Recall: definita come  $\frac{TP}{TP+FN}$ , che fornisce una misura relativamente a quanti valori positivi sono stati classificati su quanti effettivamente ce ne erano
  - Precision: definita come  $\frac{TP}{TP+FP}$ , da una misura dell'errore che si commette nello stimare un positivo.
  - Kappa: metrica che definisce quanto il classificatore è meglio rispetto ad un classificatore dummy, ovvero uno puramente randomico

### Analisi dei valori

- Per alcune metriche, l'analisi dei valori è stata guidata dal confronto con i valori che si avrebbero se si usasse un classificatore "dummy", ovvero random
- Per la AUC, avere un valore pari a 0.5 vuol dire che il classificatore si comporta come uno random, mentre averlo minore di 0.5 indica un comportamento peggiore
- La metrica Kappa è un indice di quanto il classificatore va meglio rispetto ad uno random: valori pari a 0 indicano un comportamento del classificatore analogo a quello di uno random, mentre valori minori di 0 ne indicano un comportamento peggiore
- Precision e Recall vengono analizzate insieme, in quanto la Precision da una indicazione di quanto i valori ottenuti per la Recall siano "affidabili"

# Analisi della AUC per BookKeeper

 Dall'analisi dei valori per la AUC dei tre classificatori, considerando il progetto BookKeeper, è stato estrapolato il seguente box plot:



- IBk presenta un una distribuzione della AUC con valori migliori di quelli di un classificatore random, anche se di poco, con un outlier intorno al valore 0.77
- Anche Random Forest ha una distribuzione dei valori migliore di quella di un classificatore random, pur presentando un outliers nel punto 0.32
- Naive Bayes risulta il classificatore con la migliore distribuzione per la metrica AUC

# Analisi della AUC per BookKeeper - miglioramento dei valori

- L'analisi successiva dei valori era volta a capire quale tecnica migliorasse il valore per la metrica di AUC per i singoli classificatori
- Da una prima analisi, risulta che cambiare il valore della metrica peggiora sempre quando viene utilizzato un classificatore cost sensitive
- Fra tutti, il classificatore su cui ci si è concentrati per l'aumento della metrica è IBk, che mostra i valori peggiori
- Risulta che l'applicazione di over-sampling e di feature selection migliorano di molto i valori per la metrica IBk, con anche un leggero miglioramento per i valori di Random Forest



## Analisi della AUC per ZooKeeper

- Per determinate run, alcuni dei classificatori presentavano NaN come valore della metrica, quindi tali valori sono stati scartati
- La prima analisi per la AUC sul progetto ZooKeeper fornisce i seguenti risultati:



- In questo caso, Random Forest è il classificatore con la distribuzione dei valori migliore, mentre il peggiore è IBk.
- Sia IBk che Random Forest mostrano, per alcune run, valori peggior del caso di un classificatore random

# Analisi della AUC per ZooKeeper - miglioramento dei valori

- Anche in questo caso, il primo classificatore di cui si cerca di migliorare i valori per la metrica di AUC è IBk
- Confrontando le diverse tecniche, si evince che sia per IBk i valori della distribuzione della metrica migliorano usando SMOTE come filtro per il sampling
- Il box plot sottostante mostra i risultati ottenuti



# Medie dei valori per AUC



Figure: Confronto dei valori di AUC per il progetto BookKeeper

Figure: Confronto dei valori di AUC per il progetto ZooKeeper

## Analisi di Precision e Recall per BookKeeper

• Per il progetto BookKeeper, si ottengono i seguenti risultati:



- Tutti i classificatori sembrano mostrare delle metriche coerenti col fatto che il dataset è
  molto sbilanciato, essendo molto più presenti i valori "no" per l'attributo buggyness, che è
  quello che viene stimato
- Questo giustifica i bassi valori di Precision, in quanto riuscire a predirre correttamente una istanza positiva non è semplice, ed anche di Recall

15 / 25

## Tentativo di miglioramento dei valori

 Dall'analisi dei valori, si evince che applicando over sampling come meccanismo di balancing, feature selection e sensitive threshold, c'è una aumento molto importante dei valori delle distribuzioni per le metriche di Recall ottenute da Naive Bayes e Random Forest



- Avendo applicato over sampling, le istanze nella classe minoritaria stata aumentate e quindi questo spiega il vertiginoso aumento dei valori per le distribuzioni
- I valori di Precision si abbassano rispetto al caso precedente, questo in poiché c'è un elevato numero di istanze classificate come FP

16/25

## Analisi di Precision e Recall per ZooKeeper

• Per il progetto ZooKeeper, si ottengono i seguenti risultati:



- Anche in questo caso, tutti i classificatori non mostrano dei valori di Precision e di Recall alti, coerenti però con i dataset che vengono analizzati
- Anche qui, l'obiettivo è quello di cercare di alzare i valori per le metriche di tutti i classificatori

## Tentativo di miglioramento dei valori

- Anche in questo caso, lo scopo dell'analisi è cercare di applicare le tecniche viste per aumentare i valori di Precision e Recall
- Applicando feature selection, sensitive threshold e SMOTE come filtro di balancing, si
  ottengono dei valori di Recall più alti per i classificatori IBk e Random Forest, ma la
  Precision rimane bassa



 La varianza per la distribuzione dei valori di Recall per Naive Bayes è molto maggiore rispetto agli altri due classificatori, quindi non c'è miglioramento

# Risultati analitici e grafici

| Classificatore | Media dei FP | Tecniche usate             |
|----------------|--------------|----------------------------|
| IBk            | 18.95        | Nessuna                    |
| IBk            | 38.68        | SMOTE + FS + Sens. Thresh. |
| Naive Bayes    | 4.1          | Nessuna                    |
| Naive Bayes    | 27.22        | SMOTE + FS + Sens. Thresh. |
| Random Forest  | 13.13        | Nessuna                    |
| Random Forest  | 48.12        | SMOTE + FS + Sens. Thresh. |

Table: Valori medi dei FP per il progetto ZooKeeper prima e dopo l'applicazione delle tecniche

| Classificatore | Media dei FP | Tecniche usate                     |
|----------------|--------------|------------------------------------|
| IBk            | 8.93         | Nessuna                            |
| IBk            | 12.53        | over-sampl. $+ FS + Sens. Thresh.$ |
| Naive Bayes    | 5.93         | Nessuna                            |
| Naive Bayes    | 56.07        | over-sampl. $+ FS + Sens. Thresh.$ |
| Random Forest  | 8.8          | Nessuna                            |
| Random Forest  | 38.87        | over-sampl. $+ FS + Sens.$ Thresh. |

Table: Valori medi dei FP per il progetto BookKeeper prima e dopo l'applicazione delle tecniche

• I valori medi mostrano chiaramente i risultati ottenuti per Precision, ovvero l'abbassamento dei valori per tutti i classificatori

Pierciro Caliandro

# Analisi di Kappa per BookKeeper

 Le distribuzioni dei valori per la metrica kappa, per tutti i classificatori, sul progetto BookKeeper senza l'utilizzo delle tecniche viste in precedenza sono mostrati nel box plot sottostante



- I classificatori che mostrano la distribuzione dei valori migliori sono IBk e Random Forest
- Naive Bayes presenta dei valori che risultano, per determinate run, peggiori o uguali ad un classificatore random, quindi il miglioramento è stato concentrato su tale classificatore

20 / 25

# Analisi di Kappa per BookKeeper

 Applicando SMOTE come filtro per il sampling e feature selection, la distribuzione dei valori per la kappa ottenuta da Naive Bayes migliorano di molto, così come anche quelli di Random Forest



• Per IBk invece, viene riscontrato un peggioramento dei valori della distribuzione

# Analisi di Kappa per ZooKeeper

 Per il progetto Zookeeper, senza l'applicazione di alcuna tecnica, si ottengono i seguenti valori



- Per tutti i classificatori, ci sono valori della distribuzione che risultano peggiori di quanto si avrebbe con un classificatore random
- L'obiettivo è quello di cercare di migliorare i valori per tutti e 3 i classificatori

# Miglioramento dei valori

 Applicando SMOTE come filtro per il balancing, si ottiene un modesto miglioramento nei valori per IBk e per Naive Bayes



La distribuzione presenta alcuni valori negativi, quindi per le relative run i classificatori si
comporta peggio fi uno random, ma questo è nuovamente dovuto al dataset usato per il
testing set, che presenta pochi valori positivi

# Medie dei valori per Kappa



Figure: Confronto dei valori di Kappa per il progetto BookKeeper

Figure: Confronto dei valori di Kappa per il progetto ZooKeeper

## Analisi di Sonar Cloud del codice utilizzato

Viene riportato il link al repository GitHbu con il codice ed all'analisi di Soncar Cloud del codice utilizzato:

- Repository GitHub
- Sonar Analysis