Scientific Computing II: Exam Solutions

May 29, 2023

Question 1: The correct answer is 1.65805.

For the given ODE we have $f(t,y) = 10y(t)^2 + t$. Only a single step of Heun's method needs to be computed since we are considering a step size of h = 0.1 and are interested in finding the value of y at t = 0.1. So we have $K_1 = f(t_0, y_0) = f(0, 0.7) = 10 \times (0.7)^2 + 0 = 4.9$ and $K_2 = f(t_1, y_0 + hK_1) = f(0.1, 0.7 + 0.1 \times 4.9) = 14.267$. Finally, $y_1 = y_0 + \frac{h}{2}(K_1 + K_2) = 0.7 + 0.05(4.9 + 14.267) = 1.65805$.

Question 2: The correct answer is 7.

The given table contains frequencies for each side of the dice. First we compute probabilities by dividing by the sum, here 150:

Side (k)	1	2	3	4	5	6	7	8
Probability (p_k)	21/150	33/150	12/150	25/150	8/150	15/150	26/150	10/150

To apply the inverse transform method (ITM), we compute the cumulative density values $F_k = \sum_{j=1}^k p_j$ in the table below:

Side (k)	1	2	3	4	5	6	7	8
$CDF(F_k)$	21/150	54/150	66/150	91/150	99/150	114/150	140/150	150/150=1

According to ITM for generating from a discrete distribution, the uniform number u = 0.8012 corresponds to side 7 because it lies between 114/150 and 140/150.

Question 3: What are the characteristics of a stiff ODE? Correct answers are:

☑ The solution can have vastly different scales components	•
▼ The solution varies quickly	•
☑ Implicit methods are beneficial	•
☐ The solution varies slowly	
☐ The RK4 method can solve it with a relatively large steplength	
☑ It requires a small steplength for stability in explicit methods	•
□ Explicit methods are beneficial	

Question 4: Classification:

	Deterministic Model	Stochastic Method	Deterministic Method	Stochastic Model
Monte Carlo integration	0	• 📀	0	0
Explicit Euler (Euler forward)	0		• 📀	0
$\frac{dS}{dt} = \mu N - \mu S - \beta \frac{I}{N} S$ $\frac{dI}{dt} = \beta \frac{I}{N} S - \mu I - \gamma I$ $\frac{dR}{dt} = \gamma I - \mu R$	• •	•	©	
SSA (Gillespies algorithm)	0	• 📀	0	0
Mid-point rule for integration	0		0	0
$\emptyset \xrightarrow{\mu N} S$	0	0	0	○ ◆
$S \xrightarrow{\beta \frac{I}{N}S} I$				
$I \xrightarrow{\gamma I} R$				

Question 5: The answer is N = 40000.

For a given probability (for example 99%) and by increasing the number of samples, i.e. N, the length of the confidence interval (or the size of standard deviation of the mean) is reduced by rate $1/\sqrt{N}$. Thus, we can write

$$\frac{0.2}{0.1} = \frac{\varepsilon_1}{\varepsilon_2} = \frac{\sqrt{N_2}}{\sqrt{N_1}} = \frac{\sqrt{N_2}}{\sqrt{10000}}$$

which gives $N_2 = 4 \times 10000 = 40000$.

Question 6: The answer is 0.00062.

The order of convergence of the RK4 is h^4 , thus we can write

$$\frac{\varepsilon_1}{\varepsilon_2} = \left(\frac{h_1}{h_2}\right)^4$$

or

$$\frac{0.05}{\varepsilon_2} = \left(\frac{0.3}{0.1}\right)^4$$

which gives $\varepsilon_2 = 0.05/81 \doteq 0.00062$.

Question 7: Specify the suitable method for each application:

	Explicit method	Implicit method
$y'(t)=-(y-\cos(t))+\sin(t)$	• 🗸	0
lower complexity per timestep	• 🗸	0
Non-stiff equation	· •	0
Fast transients	0	• •
Stiff equation	0	· •
Stability is critical	0	· •
y'(t)=-10000(y-cos(t))+sin(t)	0	0 🗸
Systems with highly different scales	0	0 🗸

Question 8: Specify the suitable method for each application:

	Stokastisk metod	Deterministisk metod
ODE	0	o 🗸
Integral 2D	0	• •
Stochastic process	O	0
Solution is continuous (concentration, velocity,)	0	• •
Solution is discrete (individuals, number of molecules,)	o 🗸	0
Scenarios in epidemic models with limited number of individuals	 	0
Integral 10D	O	0

Question 9: The probability density function (pdf) is $f(x) = \frac{e^{-x}}{(1+e^{-x})^2}$ for $x \in (-\infty, \infty)$. The cumulative density function (cdf) is given by $F(x) = \frac{1}{1+e^{-x}}$. To apply the inverse transform method we must compute $F^{-1}(x)$. If we set F(y) = x then we have $\frac{1}{1+e^{-y}} = x$ which gives $e^{-y} = \frac{1}{x} - 1$ or

$$y = \ln \frac{x}{1 - x} = F^{-1}(x).$$

To generate a random number X from f we generate a uniform random number $U \sim \mathcal{U}(0,1)$ and set

$$X = F^{-1}(U) = \ln \frac{U}{1 - U}.$$

To estimate the given integral by Monte Carlo method we can write

$$I = \int_{-\infty}^{\infty} (1+x^2)f(x)dx = \mathbb{E}_f(1+x^2) \approx \frac{1}{N} \sum_{k=1}^{N} (1+X_k^2)$$

where X_k are generated from the logistic density f. A (pseudo) code is given as below:

```
for k = 1:N
  u = rand;
  x(k) = log(u/(1-u));
end
I = sum(1+x.^2)/N;
```

Question 10: Replacing f(t,y) by λy in the given method, we obtain

$$y_{k+1} = y_k + \lambda h z_2$$

$$= y_k + \lambda h \left(y_k + \frac{1}{2} \lambda h y_k \right)$$

$$= y_k + \lambda h y_k + \frac{1}{2} (\lambda h)^2 y_k$$

$$= \left(1 + \lambda h + (\lambda h)^2 / 2 \right) y_k$$

$$= R(z) y_k \quad \text{(if } z \equiv \lambda h \text{)}$$

where $R(z) = 1 + z + z^2/2$. The absolute stability region is obtained by assuming $|R(z)| \le 1$, or

$$S = \{ z \in \mathbb{C} : |1 + z + z^2/2| \le 1 \}.$$

If z is real, i.e. $z = x + 0i \in \mathbb{R}$, then we can write

$$|1+x+x^2/2| \leqslant 1 \Longrightarrow -1 \leqslant 1+x+x^2/2 \leqslant 1 \Longrightarrow -2 \leqslant 2+2x+x^2 \leqslant 2 \Longrightarrow$$
$$-3 \leqslant 1+2x+x^2 \leqslant 1 \Longrightarrow -3 \leqslant (1+x)^2 \leqslant 1 \Longrightarrow 0 \leqslant (1+x)^2 \leqslant 1 \Longrightarrow$$
$$|1+x| \leqslant 1 \Longrightarrow -2 \leqslant x \leqslant 0$$

In this case, the stability region (interval) is [-2,0] which mean $-2 \le \lambda h \le 0$ or $0 \le h \le -2/\lambda$. Keep in mind that λ is negative.

Question 11: First we convert the given ODE into a first order system of 4 equations by doing the following change of variables

$$y_1 = \theta_1, \quad y_2 = \theta'_1, \quad y_3 = \theta_2, \quad y_4 = \theta'_2.$$

The new system is

$$y'_{1} = y_{2}$$

$$y'_{2} = -\sin(y_{1}) - \alpha(y_{1} - y_{3})$$

$$y'_{3} = y_{4}$$

$$y'_{4} = -\sin(y_{3}) + \alpha(y_{1} - y_{3})$$

with initial conditions

$$y_1(0) \sim \mathcal{N}(\pi/4, 0.02), \quad y_2(0) = 0, \quad y_3(0) \sim \mathcal{N}(\pi/4, 0.02), \quad y_4(0) = 0.$$

To generate a normal number X with mean μ and variance σ^2 , we can generate a standard normal number Z using command randn and set $X = \mu + \sigma Z$. Also, to generate a uniform random number α in interval $[10 - \delta, 10 + \delta]$, we can generate a uniform number U in interval [0,1] using rand and set $\alpha = 10 + (2U - 1)\delta$. The code is given below:

```
clearvars; close all
1
               % final time
   T = 10;
   N = 1000;
   hold on
4
5
   for k = 1:N
       % initial values for parameters
6
       y1 = pi/4 + sqrt(0.02)*randn;
       y2 = 0;
8
       y3 = pi/4 + sqrt(0.02)*randn;
9
       y4 = 0;
10
       y0 = [y1 \ y2 \ y3 \ y4];
11
       del = 0.2;
12
       alpha = 10 + del*(2*rand-1);
13
14
       % here we define the right hand side equations of the system
15
```

```
16
       pendulum = Q(t,y) [y(2);
                            -\sin(y(1))-alpha*(y(1)-y(3));
17
18
                            -\sin(y(3)) + alpha*(y(1) - y(3))];
19
20
       [t,y] = ode45(pendulum,[0 T],y0);
21
22
       theta1(k) = y(end,1);
23
                                % theta1(T)
       theta2(k) = y(end,3); % theta2(T)
24
25
       % Task 1
       plot(t,y(:,1));
26
27
   end
   % Task 2
28
   figure; histogram(theta1);
29
   figure; histogram(theta2);
31
   % Task 3
   mean_theta1 = sum(theta1)/N
                                        % or mean(theta1)
32
   std_theta1 = sqrt(sum((theta1-mean_theta1).^2)/(N-1))
33
   % or std(theta1)
34
```

We use ode45 as there is no sign of stiffness in the system. ode23 is also a suitable alternative. In the event of an observed nonphysical or blown-up solution, we can improve the error options within the ode setting or opt for ode23t or ode15s instead.

Below you can find the plot of the solutions θ_1 with various random parameters, as well as histograms of the random variables $\theta_1(T)$ and $\theta_2(T)$ for an execution. Please note that this portion is not included in the requested solution since Matlab access was unavailable to you.

