I05a - Sampling distribution

STAT 5870 (Engineering) Iowa State University

August 28, 2024

Sampling distribution

The sampling distribution of a statistic is the distribution of the statistic *over different* realizations of the data.

Find the following sampling distributions:

• If
$$Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$$
,

$$\overline{Y}$$
 and $\frac{\overline{Y} - \mu}{S/\sqrt{n}}$.

• If
$$Y \sim Bin(n, p)$$
,

$$\frac{Y}{n}$$
.

Normal model

Let
$$Y_i \overset{ind}{\sim} N(\mu, \sigma^2)$$
, then $\overline{Y} \sim N(\mu, \sigma^2/n)$.

```
Warning: The dot-dot notation ('..density..') was deprecated in ggplot2 3.4.0. i Please use 'after_stat(density)' instead.
This warning is displayed once every 8 hours.
Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was generated.
```

Sampling distribution for N(35, 25) average

Normal model

Let $Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$, then the t-statistic

$$T = \frac{\overline{Y} - \mu}{S/\sqrt{n}} \sim t_{n-1}.$$

```
Warning: Returning more (or less) than 1 row per 'summarise()' group was deprecated in dplyr 1.1.0.
i Please use 'reframe()' instead.
i When switching from 'summarise()' to 'reframe()', remember that 'reframe()' always returns an ungrouped data frame and adjust accordingly.

Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was generated.
```

Sampling distribution of the t-statistic

(STAT587@ISU)

Binomial model

Let $Y \sim Bin(n, p)$, then

$$P\left(\frac{Y}{n} = p\right) = P(Y = np), \qquad p = 0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1.$$

Sampling distribution for binomial proportion

August 28, 2024

6/8

Approximate sampling distributions

Recall that from the Central Limit Theorem (CLT):

$$S = \sum_{i=1}^n X_i \stackrel{.}{\sim} N(n\mu, n\sigma^2)$$
 and $\overline{X} = S/n \stackrel{.}{\sim} N(\mu, \sigma^2/n)$

for independent X_i with $E[X_i] = \mu$ and $Var[X_i] = \sigma^2$.

Approximate sampling distribution for binomial proportion

If
$$Y = \sum_{i=1}^{n} X_i$$
 with $X_i \stackrel{ind}{\sim} Ber(p)$, then

$$\frac{Y}{n} \sim N\left(p, \frac{p[1-p]}{n}\right).$$

Approximate sampling distributions for binomial proportion

Summary

Sampling distributions:

- If $Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$,
 - ullet $\overline{Y} \sim N(\mu, \sigma^2/n)$ and

•
$$\frac{\overline{Y}-\mu}{S/\sqrt{n}} \sim t_{n-1}$$
.

- If $Y \sim Bin(n, p)$,
 - $P\left(\frac{Y}{n}=p\right)=P(Y=np)$ and
 - $\frac{Y}{n} \sim N\left(p, \frac{p[1-p]}{n}\right)$.
- If X_i independent with $E[X_i] = \mu$ and $Var[X_i] = \sigma^2$, then

$$S = \sum_{i=1}^{n} X_i \sim N(n\mu, n\sigma^2)$$

and

8/8