Ensembles

Coneixement, Raonament i Incertesa.

http://www.cs.utexas.edu/~ear/nsc110/ScienceAndSociety/Lectures/AI-long.ppt http://www.cs.utexas.edu/users/ear/nsc110/Mirrors/DSMirrorsArtificialIntelligence.ppt http://decisiontrees.net/decision-trees-tutorial/

Credit: Fernando Vilariño

Minimum Distance Classifier

Local Decision Boundaries

Finding the Decision Boundaries

Feature 1

Finding the Decision Boundaries

Finding the Decision Boundaries

Overall Boundary = Piecewise Linear

- Bagging and Boosting
 - → Aggregating Classifiers

Breiman (1996) found gains in accuracy by aggregating predictors built from reweighed versions of the learning set

Bagging and Boosting: Aggregating Classifiers

3 questions:

? How to reweigh?

? How to aggregate?

? Which type of gain

in accuracy?

Bagging

- *Bagging* = Bootstrap Aggregating
- Reweighing of the learning sets is done by drawing at random with replacement from the learning sets
- Predictors are aggregated by plurality voting

The Bagging Algorithm

- B bootstrap samples
- From which we derive:

- B Classifiers
$$\in \{-1,1\}: c^1, c^2, c^3, ..., c^B$$

- **B** Estimated probabilities
$$\in [0,1]$$
: $p^1, p^2, p^3, ..., p^B$

The aggregate classifier becomes:

$$c_{bag}(x) = sign\left(\frac{1}{B}\sum_{b=1}^{B}c^{b}(x)\right)$$
 or $p_{bag}(x) = \frac{1}{B}\sum_{b=1}^{B}p^{b}(x)$

Bagging Example (Opitz, 1999)

Original	1	2	3	4	5	6	7	8
Training set 1	2	7	8	3	7	6	3	1
Training set 2	7	8	5	6	4	2	7	1
Training set 3	3	6	2	7	5	6	2	2
Training set 4	4	5	1	4	6	4	3	8

Aggregation Sign

Classifier 1

Classifier 2

Classifier 3

+

. . .

Classifier T

Final rule

Initial set

Boosting

- Freund and Schapire (1997), Breiman (1998)
- Data adaptively resampled

Previously misclassified observations → weights

Previously wellclassified observations → weights

Predictor aggregation done by weighted voting

$$y_i \in \{-1,+1\}$$

- Initialize weights: $w_i^1 = \frac{1}{N}$
- Fit a classifier with these weights
- Give predicted probabilities to observations according to this classifier

$$p_b(x) = \hat{P}_w(y = 1|x) \in [0,1]$$

• Compute "pseudo probabilities": $f_b(x) = \frac{1}{2} \log \left(\frac{p_b(x)}{1 - p_b(x)} \right) \in \Re$

Get new weights:
$$w_i^{b+1} = w_i^b \exp[-y_i f_b(x_i)]$$

- & "Normalize" it (i.e., rescale so that it sums to 1)
- Combine the "pseudo probabilities":

$$c_{Boost} = sign\left[\sum_{b=1}^{B} f_b(x)\right]$$

Weighting

Initial set

Checking &

Modification

Classifier 2

+

Checking &

Modification

Aggregation

Initial set

Final rule

Boosting

• Definition of Boosting:

Boosting refers to a general method of producing a very accurate prediction rule by combining rough and moderately inaccurate rules-of-thumb.

• Intuition:

- 1) No learner is always the best;
- 2) Construct a set of base-learners which when combined achieves higher accuracy

Boosting

- 3) Different learners may:
 - --- Be trained by different algorithms
 - --- Use different modalities(features)
 - --- Focus on different subproblems
 - ---
- 4) A week learner is "rough and moderately inaccurate" predictor but one that can predict better than chance.

A toy example

Ensembles Methods

Funcionament:

 Aprendre multiples definicions alternatives d'un concepte usant diferents dades d'aprenentatge o diferents algorismes d'aprenentatge.

• Combinar les decisions de multiples definicions, p.ex. Usant el vot

pesat.

Perque funcionen?

Suposem que tenim 25 classificadors base

- Cada classificador té un taxa d'error, $\varepsilon = 0.35$
- Suposem que els classificadors són independents
- La probabilitat que el 'ensemble classifier' faci una predicció erronia (si s'equivoca en 13 de les 25 prediccions):

Valor dels 'Ensembles'

 Quan combinem múltiples decisions independents i diverses cada un de les cuals és millor que l'atzar, els errors deguts a atzar es cancel·len els uns als altres, i les decisions correctes es reforcen.

Ensembles Homogenis

Utilitzar un **únic, algorisme d'aprenentatge arbitrari** però manipular les dades d'aprenentatge per a fer-lo aprendre multiples models.

- Data1 ≠ Data2 ≠ ... ≠ Data m
- Learner1 = Learner2 = ... = Learner m
- Model $1 \neq$ Model $2 \neq ... \neq$ Model m

Mètodes per canviar les dades d'aprenentatge:

- Bagging: Re-mostreigar les dades d'aprenentatge
- Boosting: Re-pesar les dades d'aprenentatge
- Decorate: Afegir dades d'aprenentatge adicionals artificials