Tutorial y

1)
$$T(n) = 3T(n/2) + n^2$$

 $T(n) = aT(n/b) + f(n^2)$
 $a \ge 1, b \ge 1$

On comparing a=3, b=2 f(n)=n2

Now,

$$C = log_b a = log_3$$

 $= 1.584$
 $n' = n^{1.584} < n^2$

$$\frac{f(n) > n^2}{\int \Gamma(n) = \beta(n^2)}$$

2)
$$T(n) = 4T(n/2) + n^2$$

 $a \ge 1$ $b > 1$
 $a = 4$, $b = 2$, $f(n) = n^2$

$$a = 9$$
, $b = 2$, $c = 10$

$$n^{c} = n^{2} = f(n) = n^{2}$$

 $T(n) = \theta (n^{2} \log_{2} n)$

3)
$$T(n) = T(n/2) + 2^{n}$$

 $a = 1$, $b = 2$
 $f(n) = 2^{n}$
 $c = \log_{b} a = \log_{2} c = 0$
 $n^{c} = n^{b} = 1$
 $f(n) = 0$

Y)
$$T(n) = 2\pi (n/2) + n^n$$

 $a = 2^n$
 $b = 2$, $f(n) = n^2$
 $C = \log_b a = \log_2 2^m$
 $= n$
 $n' + n^n$
 $f(n) = n$
 $T(n) = \frac{\partial}{\partial n^2} \log_2 n$

5)
$$T(n) = 16T(n|y) + n$$

 $a = 16$, $b = 9$
 $f(n) = n$
 $c = \log_{4} 16 = \log_{9} (y)^{2} = 2 \log_{9} k$
 $= 2$

$$n^{c} \Rightarrow n^{2}$$

$$f(n) \geq n^{c}$$

$$\vdots |T(n) = \theta(n^{2})$$

6)
$$T(n) = 2T(n/2) + nlog n$$
 $a = 2$, $b = 2$
 $f(n) = nlog n$
 $c = log_2 2 = l$
 $n' = n' = n$
 $nlog n > n$
 $f(n) > n'$
 $T(nl = \theta(nlog n))$

7)
$$T(n) = 2T(n/2) + n/\log n$$
 $a = 2, b = 2, f(n) = n/\log n$
 $(= \log_{2} 2 = 1)$
 $n = n = n$
 $n = n$
 $T(n) = \theta(n)$

O) $T(n) = 2T(n/4) + n = 0.51$
 $a = 2, b = 4 f(n) = m$
 $(= \log_{2} a = \log_{2} 2 = 0.5)$
 $n^{0.5} < n^{0.5}$
 $f(n) > h^{0}$
 $f(n) = 16T(n/4) + n$
 $f(n) = 10$
 $f(n) = 10$

11)
$$4T(h/2) + log n$$

 $a = 4, b = 2, f(n) = log$
 $c = log$, $a = log$, $4 = 2$
 $n = n^2$
 $f(n) = log$ n $2n^2$
 $f(n) = log$ n $2n^2$
 $f(n) = 0$ $f(n)$
 $f(n) = 0$ $f(n^2)$
 $f(n) = 0$ $f(n^2)$

T(n) = squit(n) T(n/z) T(n/z

13) T(h) = 3T(n/2) + n a = 3, b = 2 $c = log_2 3 = l \le 8$ $n^c = n$ $n \le n$ $n \le n$

T(n) = $3 \Gamma(n/3) + squat(n)$ $a = 3 \quad b = 3$ $c = log_3 \quad 3 = 1$ n = n $squat(n) \leq n$ $n \leq f(n)$ $T(n) \geq O(n)$

$$T(n) = 4T (n/2) + n$$

$$a=4, b=2$$

$$C = \{og_b a = log_2, 4=2\}$$

$$n' = n^2$$

$$n' > f(n)$$

$$T(n) = \theta(n^2)$$

$$16) T(n) = 3T (\frac{n}{4}) + n log_n$$

$$a=3, b=4$$

$$C = log_4 3 = 6.792$$

$$n' = n^{0.792}$$

$$n' = n^{0.792}$$

$$n' = n^{0.792}$$

$$n' = n^{0.792}$$

$$17) T(n) = 3T (\frac{n}{3}) + \frac{n}{2}$$

$$a=3 b=3$$

$$C = log_3 3=1$$

$$n' = n$$

$$n' > f(n)$$

$$T(n) = 6T (\frac{n}{3}) + n^2 log_n$$

$$a=6, b=3$$

$$C = log_3 6 = l-6309$$

$$n' < n^2 log_n$$

$$T(n) = \theta(n^2 log_n)$$

19)
$$T(n) = 4\Gamma(n/s) + n/\log n$$
 $a = 4 + 5b = 2 + f(n) = \frac{n}{\log n}$
 $c = \log_b a = (\log_2 4 = 2)$
 $c = n^2$
 $c = n^2$
 $c = n^2$
 $c = \log_8 64 = 2$
 $c = \log_8 7 = 1.7712$
 $c = n^{-77}$
 $c = n^{-7}$