Yes Wege NB nout Colleg Yes nodes worl Relie

Impure split: Pure Sphit Mini Impurity mens of Impurity

Entropy
$$H(S)$$
 $Y+N =-\frac{3}{5}\log_2(P+)-P-\log_2(P-)$
 $=-\frac{3}{5}\log_2(\frac{3}{5})-\frac{2}{5}\log_2(\frac{2}{5})$
 $=0.97$
 $=\frac{-3}{3}\log_2(\frac{3}{5})-\frac{2}{5}\log_2(\frac{2}{5})$
 $=\frac{-3}{3}\log_2(\frac{3}{5})-\frac{2}{5}\log_2(\frac{2}{5})$

3	(3)			
- Wg2	(1)	-	0	2

Outlook	Temp	Humidity	Wind	Play		
Sunny	Hot	High	False	No		
Sunny	Hot	High	True	No		
Overcast	Hot	High	Weak	Yes		
Rain	Mild	High	Weak	Yes		
Rain	Cool	Normal	False	Yes		
Rain	Cool	Normal	True	No		
Overcast	Cool	Normal	True	Yes		
Sunny	Mild	High	False	No		
Sunny	Cool	Normal	False	Yes		
Rain	Mild	Normal	False	Yes		
Sunny	Mild	Normal	True	Yes		
Overcast	Mild	High	True	Yes		
Overcast	Hot	Normal	False	Yes		
Rain	Mild	High	True	No		
(1) (1) (2)						

$$H(S) = \frac{2}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4} \right) - \frac{2}{4} \log_{4} \left(\frac{2}{4} \right)$$

$$= \frac{1}{4} \log_{4} \left(\frac{2}{4$$

G.L. = 1 - \(\frac{\x}{2} \left(\rho)^2\) $=1-[(p_{+})^{2}+(p_{-})^{2}]$ (1. | C1 : 1 - \(\frac{2i}{4}\) + \(\frac{2}{4}\) G[1:1-172)17:070

(Futur) entrop = 0-1 GT : N- N : D - D. 5 0+/-

-P+ Wg2(P-) Overcent

Outlook	Temp	Humidity	Wind	Play
Sunny	Hot	High	False	_No_
Sunny	Hot	High	True	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	False	Yes
Rain	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False -	No
Sunny	Cool	Normal	False	Yes
Rain	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rain	Mild	High	True	No

Information Gain: flature sulction 1.G (S, fi) = H(S) - E 15v H(Sv) VEVAL 15)

٠