ETH Physik - Formelsammlung

Laurin Brandner — Jakub Kotal — Nino Scherrer

2. Semester 2016

1 Kinematik

1.1 Allgemeine Zusammenhänge

$$Weg \overset{\text{ableiten}}{\underset{\text{integrieren}}{\rightleftarrows}} Geschwindigkeit \overset{\text{ableiten}}{\underset{\text{integrieren}}{\rightleftarrows}} Beschleunigung$$

Verschiebung:

$$\Delta x = x_2 - x_1 = x(t_2) - x(t_1)$$

Mittlere Geschwindigkeit:

$$V_m = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{x(t_2) - x(t_1)}{t_2 - t_1}$$

Momentane Geschwindigkeit

$$v(t) = \frac{dx}{dt} \ oder \ V = at$$

Beschleunigung

$$a_m = \frac{\Delta v}{\Delta t} \ oder \ a = \frac{V}{t}$$

$$a(t) = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{dx}{dt}\right) = \frac{d^2x}{dt^2}$$

1.2 Integration der Bewegung

$$v(t) = \frac{dx}{dt} \rightarrow dx = v(t)dt$$

dx = Weg innerhalb des Zeitintervalls dt

$$x(t) = \int_{t_0}^{t} v(t)dt' = \int_{x(t_0)=x_0}^{x(t)} dx = x(t) - x_0$$

Schlussendlich folgt daraus:

$$x(t) = \int_{t_0}^t v(t')dt' + x_0$$

$$v(t) = \int_{t_0}^{t} a(t')dt' + v_0$$

x(t) ist die Stammfunktion von v(t)

 x_0 entspricht dem Startpunkt

 \boldsymbol{v}_0 entspricht der Startgeschwindigkeit

Bewegung gleichförmig und geradlinig

 $v(t) = konst. \Rightarrow a(t) = 0$ gilt:

$$x(t) = x_0 + v_0(t - t_0)$$

Bewegung gleichförmig beschleunigt und geradlinig $a(t) = a_0 = konst.$ gilt:

$$v(t) = v_0 + a_0(t - t_0)$$

$$x(t) = x_0 + v_0(t - t_0) + \frac{1}{2}a_0(t - t_0)^2$$

Spezialfall: $x_0 = v_0 = t_0 = 0$

$$x(t) = \frac{1}{2}a_0t^2$$

$$v(t) = a_0 t$$

$$a(t) = a_0$$

1.3 Freier Fall / Gravitation

In der Nähe der Erdoberfläche fühlt jeder Köper, ubabhängig von seinem Gewicht, dieselbe Beschleunigung (wenn der Luftwiderstand vernachlässigt wird).

$$h = \frac{1}{2}a_0t^2 = \frac{1}{2}gt^2$$

$$\Rightarrow t = \sqrt{\frac{2h}{g}}$$

mit Fallhöhe h und Fallzeit t.

Hinweis: Es existiert eine Grenzgeschwindigkeit, da der Luftwiderstand mit der Geschwindigkeit (quadratisch) des Körpers zu nimmt.

1.4 Bewegung in mehreren Dimensionen

$$r = r(t) = x(t)e_x + y(t)e_y$$

In Kugelkoordinaten:

$$r = r(t)e_r(t)$$

Geschwindigkeit:

$$v(t) = v_x(t)e_x + v_y(t)e_y = \frac{dx}{dt}e_x + \frac{dy}{dt}e_y$$

In Kugelkoordinaten:

$$v(t) = \frac{dr}{dt}e_r + r\frac{de_r}{dt}e_y = \underbrace{\frac{dr}{dt}e_r}_{1} + \underbrace{r\frac{d\varphi}{dt}e_{\varphi}}_{2}$$

1 : radiale Geschwindigkeit V_r

2 : Winkelgeschwindigkeit V_φ senkrecht zu e_r in Richtung e_φ

Vereinfacht dargestellt:

$$V(t) = V_r + V_{\varphi}$$
 mit $V_{\varphi} = r \frac{d\varphi}{dt} e_{\varphi} = r \omega e_{\varphi}$

Beschleunigung:

$$a(t) = a_x(t)e_x + a_y(t)e_y = \frac{dv_x}{dt}e_x + \frac{dv_y}{dt}e_y = \frac{d^2x}{dt^2}e_x + \frac{d^2y}{dt^2}e_y$$

In Polarkoordinaten:

$$a(t) = \underbrace{\frac{d^2r}{dt^2}e_x - r\left(\frac{d\varphi}{dt}e_y\right)^2}_{1}e_r + \underbrace{\left(\underbrace{2\frac{dr}{dt}\frac{d\varphi}{dt} + r\frac{d^2\varphi}{dt^2}}_{2}\right)}_{2}e_{\varphi}$$

1 = radiale Beschleunigung

2 = Winkelbeschleunigung

1.5 Zerlegung/Integration der Bewegung (mehrdimensional)

Aus den Bewegungsgleichungen sieht man, dass die zueinander senkrecht stehenden x- und y-Bewegungen voneinander unabhänig sind.

=> Bei 3 Dimensionen kann diese Betrachtung einfach erweitert werden

$$v(t) = v_0 + a_0(t)$$

$$r(t) = r_0 + V_0 t \frac{1}{2} a_0 t^2$$

$$= \left(x_0 + v_{0x} + \frac{1}{2} a_{0x} t' 2\right) e_x + \left(y_0 + v_{0y} + \frac{1}{2} a_{0y} t' 2\right) e_y$$

1.6 Bahnkurve beim Ballwurf

Zur Zeit t_{max} erreicht die Kugel den höchsten Punkt ihrer Bahnkurve. In diesem Punkt verschwindet die vertikale Geschwindigkeit:

$$t_{max} = \frac{v_{0y}}{g}$$

Die maximale Höhe der Kugel ist:

$$y_{max} = y_0 + \frac{{v_{0y}}^2}{2g}$$

1.7 Schuss auf fallende Platte

Eventuell noch mit Beispiel ergnzen

1.8 Gleichförmige Kreisbewegung

$$\varphi(t) = \omega t$$

mit Winkelgeschwindigkeit ω und Periode T:

$$\varphi(T) = 2\pi \Rightarrow T = \frac{2\pi}{\omega}$$

Strecke:

$$s(t) = r\varphi(t) = r\omega t$$

Vektorielle Darstellung

$$r(t) = r\cos(\varphi(t))e_x + r\sin(\varphi(t))e_y$$

Da Bewegung gleichförmig ($\omega = \text{konstant}$) folgt:

$$r(t) = r\cos(\omega t)e_x + r\sin(\omega t)e_y$$

1.8.1 Geschwindigkeitsvektor

Betrag: $|\vec{v}| = r\omega = konst.$

Die Richtung der Geschwindigkeit ist senkrecht zum Ortsvektor.

${\bf 1.8.2}\quad {\bf Beschleunigungs vektor} = {\bf Zentripetalbeschle-unigung}$

Zeigt in Richtung Zentrum des Kreises mit Betrag: $\vec{a} = r\omega^2 = \frac{v^2}{r}$

1 Dynamik

1.1 Definitionen

1.1.1 Masse

Masse ist Eigenschaft eines Köpers ⇒ überall gleich (im Gegensatz zu Gewicht).

1.1.2 Lineare Impuls

Der lineare Impuls ist definiert als

$$p = mv$$
 mit Einheit $\frac{kgm}{s}$

$$\frac{m_A}{m_B} = \frac{v_B}{v_A} \Rightarrow p_A + p_B = 0$$

In einem isolierten System ist der Gesamtimpuls erhalten.

1.1.3 Kraft

Die Kraft ist die zeitliche änderung des Impulses:

$$F = ma(t)$$
 mit Einheiten $1N = \frac{kg \cdot m}{s^2}$

1.2 Newtonsche Gesetze

1.2.1 Trägheitsprinzip

Ein Köper bleibt in Ruhe oder bewegt sich mit konstanter Geschwindigkeit, wenn er isoliert ist.

1.2.2 Aktionsprinzip

Die Beschleunigung eines Köpers ist umgekehrt proportional zu seiner Masse und direkt proportional zur resultierenden Kraft, die auf ihn wirkt.

1.2.3 Aktions-Reaktions-Prinzip

Zu jeder Aktion gehört eine gleich grosse Reaktion, die denselben Betrag besitzt aber in die entgegengesetzte Richtung zeigt.

1.3 Raketenantrieb

- v(t) Geschwindigkeit der Rakete bezüglich dem festen Koordinatensystem
 - u Konstante Ausstossgeschwindigkeit des Gases *relativ zur* Rakete (relativ zum festgelegten Koordinatensystem mit Geschwindigkeit v u)
- M(t) Gesamtmasse, also Rakete + Treibstoff zur Zeit t

Der Gesamtimpuls der Rakete zur Zeit t ist gleich

$$p(t) = M(t)v(t)$$

Auf die Rakete wirkt die **Schubkraft** F

$$F = u \frac{dm}{dt}$$

Und die Geschwindigkeit

$$v(t) - v_0 = -u(\ln(M_0 - m) - \ln(M_0))$$

wobei M_0 die Anfangsmasse und m die Gesamtmasse des ausgestossenen Gases ist.

Oder als Funktion der ausgestossenen Masse (mit $v_0 = 0$)

$$v = u \ln(\frac{1}{1 - \frac{m}{M_0}})$$

1.4 Schiefe Ebene

1.4.1 Statischer Fall

$$F + N + Mg = 0$$

Daraus folgt

$$F = Mg\sin(\theta)$$

$$N = Mg\cos(\theta)$$

1.4.2 Dynamischer Fall

$$N + Mg = F_{res} = Ma$$

Dank der Normalkraft verschwindet die Beschleunigung in *y*-Richtung. In *x*-Richtung ist sie gleich

$$a_x = -g \sin(\theta)$$

.5 Federkraft

$$F = -k(x - x_0) = -k\Delta x$$

wobei k die Federkonstante mit Einheit $\frac{N}{m}$, x_0 die Länge der Feder im unbelasteten Zustand ist.

1.6 Bewegung mit Rollen

$$S = Ma$$

$$a = \frac{m}{M+m}g$$

1.7 Atwoodsche Fallmaschine

$$a_1 = -a_2 = \frac{m_2 - m_1}{m_2 + m_1} g$$

$$S = \frac{2m_1 m_2}{m_1 + m_2} g \quad \text{wobei} \quad |a_1| = |a_2| < g$$

1.8 Harmonische Schwingungen

$$x(t) = A\sin(\omega t + \delta)$$

$$v(t) = A\omega\cos(\omega t + \delta)$$

$$a(t) = -A\omega^2 \sin(\omega t + \delta) = -\omega^2 x(t)$$

wobei A die Amplitude, ω die Kreisfrequenz und δ die Phasenkonstante ist.

Die **Kreisfrequenz** ω hängt dabei nur von der Rückstellkraftkonstante k und der Masse m ab

$$\omega = \sqrt{\frac{k}{m}}$$

Der Winkel der Sinusfunktion wird als **Phase** der Schwingung bezeichnet

$$\varphi(t) = \omega t + \delta$$

wobei δ die ursprüngliche Phase zur Zeit t=0 ist.

Die **Periode** T ist die Zeit, die benötigt wird, um eine vollständige Schwingung durchzuführen

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$$

Die **Frequenz** v ist die Anzahl der Schwingungen pro Zeit

$$v = \frac{1}{T} = \frac{\omega}{2\pi}$$

Die Kraft F zeigt immer Richtung Ursprung und ist gleich

$$F(t) = ma(t) = -m\omega^2 x(t)$$

1.9 Gravitation

$$F_{12} = -\frac{Gm_1m_2}{r^2}$$
 wobei $F_{12} = -F_{21}$

Hinweis: Alle Körper, unabhängig von ihren Massen, werden von der Erde gleich beschleunigt.

1 Dynamik

1.1 Definitionen

1.1.1 Masse

Masse ist Eigenschaft eines Köpers ⇒ überall gleich (im Gegensatz zu Gewicht).

1.1.2 Lineare Impuls

Der lineare Impuls ist definiert als

$$p = mv$$
 mit Einheit $\frac{kgm}{s}$

$$\frac{m_A}{m_B} = \frac{v_B}{v_A} \Rightarrow p_A + p_B = 0$$

In einem isolierten System ist der Gesamtimpuls erhalten.

1.1.3 Kraft

Die Kraft ist die zeitliche änderung des Impulses:

$$F = ma(t)$$
 mit Einheiten $1N = \frac{kg \cdot m}{s^2}$

1.2 Newtonsche Gesetze

1.2.1 Trägheitsprinzip

Ein Köper bleibt in Ruhe oder bewegt sich mit konstanter Geschwindigkeit, wenn er isoliert ist.

1.2.2 Aktionsprinzip

Die Beschleunigung eines Köpers ist umgekehrt proportional zu seiner Masse und direkt proportional zur resultierenden Kraft, die auf ihn wirkt.

1.2.3 Aktions-Reaktions-Prinzip

Zu jeder Aktion gehört eine gleich grosse Reaktion, die denselben Betrag besitzt aber in die entgegengesetzte Richtung zeigt.

1.3 Raketenantrieb

- v(t) Geschwindigkeit der Rakete bezüglich dem festen Koordinatensystem
 - u Konstante Ausstossgeschwindigkeit des Gases *relativ zur* Rakete (relativ zum festgelegten Koordinatensystem mit Geschwindigkeit v u)
- M(t) Gesamtmasse, also Rakete + Treibstoff zur Zeit t

Der Gesamtimpuls der Rakete zur Zeit t ist gleich

$$p(t) = M(t)v(t)$$

Auf die Rakete wirkt die **Schubkraft** F

$$F = u \frac{dm}{dt}$$

Und die Geschwindigkeit

$$v(t) - v_0 = -u(\ln(M_0 - m) - \ln(M_0))$$

wobei M_0 die Anfangsmasse und m die Gesamtmasse des ausgestossenen Gases ist.

Oder als Funktion der ausgestossenen Masse (mit $v_0 = 0$)

$$v = u \ln(\frac{1}{1 - \frac{m}{M_0}})$$

1.4 Schiefe Ebene

1.4.1 Statischer Fall

$$F + N + Mg = 0$$

Daraus folgt

$$F = Mg\sin(\theta)$$

$$N = Mg\cos(\theta)$$

1.4.2 Dynamischer Fall

$$N + Mg = F_{res} = Ma$$

Dank der Normalkraft verschwindet die Beschleunigung in *y*-Richtung. In *x*-Richtung ist sie gleich

$$a_x = -g \sin(\theta)$$

.5 Federkraft

$$F = -k(x - x_0) = -k\Delta x$$

wobei k die Federkonstante mit Einheit $\frac{N}{m}$, x_0 die Länge der Feder im unbelasteten Zustand ist.

1.6 Bewegung mit Rollen

$$S = Ma$$

$$a = \frac{m}{M+m}g$$

1.7 Atwoodsche Fallmaschine

$$a_1 = -a_2 = \frac{m_2 - m_1}{m_2 + m_1} g$$

$$S = \frac{2m_1 m_2}{m_1 + m_2} g \quad \text{wobei} \quad |a_1| = |a_2| < g$$

1.8 Harmonische Schwingungen

$$x(t) = A\sin(\omega t + \delta)$$

$$v(t) = A\omega\cos(\omega t + \delta)$$

$$a(t) = -A\omega^2 \sin(\omega t + \delta) = -\omega^2 x(t)$$

wobei A die Amplitude, ω die Kreisfrequenz und δ die Phasenkonstante ist.

Die **Kreisfrequenz** ω hängt dabei nur von der Rückstellkraftkonstante k und der Masse m ab

$$\omega = \sqrt{\frac{k}{m}}$$

Der Winkel der Sinusfunktion wird als **Phase** der Schwingung bezeichnet

$$\varphi(t) = \omega t + \delta$$

wobei δ die ursprüngliche Phase zur Zeit t=0 ist.

Die **Periode** T ist die Zeit, die benötigt wird, um eine vollständige Schwingung durchzuführen

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$$

Die **Frequenz** v ist die Anzahl der Schwingungen pro Zeit

$$v = \frac{1}{T} = \frac{\omega}{2\pi}$$

Die Kraft F zeigt immer Richtung Ursprung und ist gleich

$$F(t) = ma(t) = -m\omega^2 x(t)$$

1.9 Gravitation

$$F_{12} = -\frac{Gm_1m_2}{r^2}$$
 wobei $F_{12} = -F_{21}$

Hinweis: Alle Körper, unabhängig von ihren Massen, werden von der Erde gleich beschleunigt.

1 Energie

1.1 Energieerhaltung

Bei allen Vorgängen muss die Gesamtenergie eines Systems und seiner Umgebung erhalten werden.

$$E_{tot} = E_{Masse} + E_{kin} + E_{pot} + E_{chem} + usw. = konst.$$

1.2 Relativistische Grössen

Geschwindigkeitsparameter $\equiv \frac{v}{c}$

Für hohe Geschwindigkeiten giltet der relativistische Impuls:

$$p = \gamma m v$$

mit dem Lorentzfaktor γ

$$\gamma \equiv \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

1.3 Kinetische Energie

1.3.1 Klassisch (v < 0.3c)

Gesamtenergie

$$E = mc^2 + \frac{1}{2}mv^2$$

Kinetische Energie

$$E = \frac{1}{2}mv^2$$

1.3.2 Relativistisch ($v \ge 0.3c$)

Gesamtenergie

$$E = \gamma mc^2 = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Kinetische Energie

$$E_{kin} = E - mc^2 = mc^2(\gamma - 1)$$

1.4 Potentielle Energie der Gravitation

Die **potentielle Energie** eines Körpers auf der Höhe *h* ist gleich

$$E_{pot}(h) = mgh$$

Die **Gesamtenergie** eines Körpers im freien Fall von der Höhe h ist gleich

$$E(y) = \underbrace{mc^2}_{\text{Ruheenergie}} + \underbrace{\frac{1}{2}mv^2}_{\text{kinetisch}} + \underbrace{mgy}_{\text{potentiell}}$$

falls der Luftwiderstand vernachlässigt werden darf.

1.5 Looping

Ist die Geschwindigkeit kleiner als v_{min} , löst sich der Ball vom Kreis

$$v_{min} = \sqrt{gR}$$

Die Höhe h, von der die Kugel fallen gelassen werden muss, ist gleich

$$h = \frac{5}{2}R > 2R$$

1.6 Arbeit

Die **Arbeit** W ist gleich dem Produkt der Komponente der Kraft längs der Verschiebung und der Verschiebung selbst

$$W = F\Delta x \cos(\theta)$$

1.6.1 Arbeit der Federkraft

Die **Arbeit** zwischen den Verschiebungen x_1 und x_2 ist gleich

$$W_{12} = -\frac{k}{2}(x_2^2 - x_1^2)$$

1.7 Leistung

Die Leistung P ist die in der Zeiteinheit verrichtete Arbeit:

$$P = \frac{dW}{dt} = F \cdot v$$

1.8 Allgemeine potentielle Energie

1.8.1 Konservative Kräfte

Die geleistete Arbeit längs eines geschlossenen Wegs ist gleich null. Die Arbeit ist unabhängig vom zurückgelegten Weg. Potentielle Energie ist für diese Art von Kräften definiert. Beispiel: Gravitationskraft, Federkraft

1.8.2 Nicht-konservative Kräfte

Die geleistete Arbeit hängt vom Weg ab. *Beispiel:* Reibungskraft

1.9 Arbeit-Energie-Theorem

Die Arbeit, die an einem Körper zwischen zwei Punkten (1) und (2) geleistet wird, ist gleich der änderung seiner kinetischen Energie zwischen diesen Punkten.

$$W_{12} = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2$$

1.10 Mechanische Energie

$$E_{mech} \equiv E_{kin} + E_{not}$$

Die mechanische Energie wird *erhalten*, wenn nur konservative Kräfte wirken.

Die änderung der mechanischen Energie ist gleich der Arbeit, die von *nicht-konservativen* Kräften geleistet wird.

1.11 Bremsweg

Betrachtet wird das Gleiten auf einer schiefen Ebene mit der Starthöhe h und dem Neigungswinkel ϑ . Dann ist der **Bremsweg** L

$$L = \frac{v_0^2}{2g(\mu\cos(\theta) - \sin(\theta))}$$