INF01 118

UFRGS

Técnicas Digitais para Computação

Conceitos Básicos de Circuitos Elétricos

Aula 2

1. Grandezas Elétricas

1.1 Carga

A grandeza fundamental em circuitos elétricos é a carga elétrica Q.

- As cargas elétricas são bipolares, existem cargas negativas (elétrons) e positivas (prótons)
- Existe uma carga mínima de carga elétrica. Todas as cargas são multiplos inteiros da carga do elétron.

Carga de 1 elétron = $-1,6 \times 10^{-19}$ Coulomb

- O efeito elétrico é atribuido a separação das cargas e ao seu movimento.
- A separação de cargas dá origem a uma tensão elétrica
- O movimento de cargas origina a corrente elétrica.

1. Grandezas Elétricas

1.2 Energia

Uma **força elétrica** (ou uma energia total eletromagnética) existe entre elementos com cargas elétricas.

Unidade de Energia : **Joule**

Grandezas derivadas usadas para explicar comportamento de circuitos elétricos:

- corrente (I) = vazão de cargas no espaço
- tensão (V)
- potência (P)

1.3 Corrente

A grandeza básica de medida em um circuito elétrico **não é a carga,** mas sim a razão de variação da carga ao longo do tempo, ou **corrente I.**

$$I = dQ / dt$$
 (Corrente)

Unidade de corrente: **Ampère** (1 Ampère = 1 Coulomb / segundo)

• Corrente tem sentido, pois é um fluxo de carga.

Admitindo um sentido da corrente:

- Corrente fluindo no sentido da seta será convencionada como positiva.
- Corrente fluindo no sentido oposto à seta será convencionada como negativa.

A I B
$$I = +10 \text{ mA}$$
 (ou $I = -10 \text{ mA}$ se a convenção fosse no outro sentido)

1.3 Corrente

A corrente pode significar ...

- carga positiva (prótons) fluindo num sentido.
- carga negativa (elétrons) fluindo no sentido oposto.

Por convenção, corrente positiva representa um fluxo de carga positiva.

1.4 Tensão

Tensão V entre A e B é proporcional à diferença de energia (ganha ou perdida) por uma carga elétrica elementar positiva quando este desloca-se de A para B.

- existe uma tensão entre dois terminais de um dispositivo que tenham cargas diferentes
- esta diferença causa um fluxo de carga e uma variação na energia.

V = dW / dQ, unidade de tensão: Volt (1 Volt = 1 Joule / Coulomb)

Tensão não possui sentido, como a corrente.

Tensão possui no entanto polaridade, pois deve ser referenciada a uma tensão ZERO.

Diferença de potencial $(V_A - V_B)$

Diferença de potencial $(V_B - V_A)$

Normalmente,

- sentidos para as correntes são atribuídos arbitrariamente
- as polaridades para as tensões devem ser então atribuídas de forma consistente, conforme os dispositivos forneçam ou absorvam energia.

Uma tensão entre os pontos x e y será representada por V_{xy} .

- ullet $\mathbf{V}_{\mathbf{xv}}$ será positiva se o ponto x for positivo em relação a y.
- V_{xy} será negativa se o ponto x for negativo em relação a y.

Existe a representação $V_{xy} = -V_{yx}$ Exemplo:

$$V_{BE} = -5V$$
 ou $-V_{BE} = 5V$ ou $V_{EB} = 5V$

são equivalentes e significam que a tensão entre E e B é de 5V, onde E é positivo em relação a B.

$$V_{EB} = -V_{BE}$$

$$5V = -(-5)V$$

Potencial: O potencial V é a tensão de um ponto em relação ao ponto de referência comum (0 Volts). $\mathbf{V_x} = \mathbf{V_{x0}}$

Em um circuito o potencial de referência é representado por um sinal de **terra, massa ou ground**.

Associação paralela e serie de fontes

Para a tensão entre 2 pontos x e y vale:

$$\mathbf{V}\mathbf{x}\mathbf{y} = \mathbf{V}\mathbf{x} - \mathbf{V}\mathbf{y}$$

$$Vxy = +5V$$
$$Vzy = +2V$$

Exercício

$$Va = ?$$

$$Vb = 10V$$

$$Vab = ?$$

$$Vc = ?$$

$$Vd = ?$$

$$Ve = ?$$

$$Vbc = ?$$

$$Vcd = ?$$

$$Vde = 4V$$

1.5 Potência

• A **potência** fornecida ou dissipada por um dispositivo é dada em **Watts** = Joules / segundo.

Potência fornecida = energia ganha

Potência dissipada = energia perdida

- A partir das definições de corrente e tensão, se tem
- Watts = (Joules/Coulomb) x (Coulombs/segundo) = Joules/segundo

$$P = V \times I$$

• Unidade: Watts = Volts x Ampères

Energia pode ser fornecida a um dispositivo ou recebida deste.

Supondo corrente entrando num terminal de um dispositivo. Por convenção:

- uma tensão positiva neste terminal indica que o dispositivo absorve energia
- - uma tensão negativa neste terminal indica que o dispositivo fornece energia

Exercício

2. Elementos Lineares Passivos e Ativos

A energia associada a um elemento é dada pela corrente que passa através dele e pela tensão entre seus terminais.

A relação entre corrente e tensão depende da natureza do elemento

- elementos **passivos**
- elementos ativos

Passivo significa ...

- não amplificar corrente
- não gerar energia (na forma de corrente ou tensão)

Existem três tipos de elementos lineares passivos

- resistores
- capacitores
- indutores

Elementos Ativos:

Fontes de Tensão de de Corrente

Fonte de Tensão Ideal: garante a variação de potencial (tensão entre os pontos A e B) independente da corrente exigida pelo sistema

Fonte de Corrente Ideal: garante a corrente entre os pontos A e B independente da tensão gerada entre os pontos A e B.

2.1 Resistores

Um **resistor** é um elemento que simplesmente dissipa potência, reduzindo a corrente que flui no circuito.

A quantidade de potência dissipada é função da resistência do elemento, medida em **Ohms.**

Para um resistor ideal, a corrente através do elemento é linearmente proporcional à tensão. *Lei de Ohm:*

2%, 5%, 10%

		1				
COLOR	1st BAND	2nd BAND	3rd B AND	MULTIPLIER	TOLERANCE	
Black	0	0	0	1Ω		
Brown	1	1	1	10Ω	± 1%	(F)
Red	2	2	2	100Ω	± 2%	(G)
Orange	3	3	3	1ΚΩ		
Yellow	4	4	4	10ΚΩ		
Green	5	5	5	100ΚΩ	±0.5%	(D)
Blue	6	6	6	1ΜΩ	±0.25%	(C)
Violet	7	7	7	10ΜΩ	±0.10%	(B)
Grey	8	8	8		±0.05%	
White	9	9	9			
Gold		2		0.1	± 5%	(J)
Silver				0.01	± 10%	(K)

Link para calculo automatico do valor do R: http://www.electrician.com/resist_calc/resist_calc.htm

Electronix Express/RSR http://www.elexp.com

0.1%, 0.25%, 0.5%, 1%

5-Band-Code

1-800-972-2225 In NJ 732-381-8020

237Ω± 1%

560kΩ± 5%

2.2 Capacitores

- Elemento passivo, não gera energia, apenas armazena.
- Elemento que se opõe a variação de tensão
- Composição: duas placas condutores separadas por um material isolante.

• Quando a tensão entre as placas varia com o tempo, surge um campo elétrico que também varia, o que origina uma corrente de deslocamento por entre as placas.

2.2 Capacitores

O **capacitor** é um elemento linear caracterizado por sua capacidade de reter cargas (gerar corrente) em função da variação da tensão entre seus terminais.

A carga retida por um capacitor é função de sua capacitância C, medida em Farads.

2.2 Capacitores

A carga retida por um capacitor é função de sua **capacitância C**, medida em Farads.

$$\mathbf{C} = \mathbf{dQ} / \mathbf{dV} \tag{1}$$

A capacitância é um parâmetro de construção do capacitor que depende do material dielétrico e das dimensões e distância entre as placas.

A corrente elétrica e a carga são relacionadas pela seguinte equação fundamental:

$$\mathbf{I} = \mathbf{dQ} / \mathbf{dt} \tag{2}$$

De (1) e (2), obtém-se que a capacitância é definida pela seguinte relação entre corrente e tensão:

$$\mathbf{I} = \mathbf{C} \, \mathbf{dV} \, / \, \mathbf{dt} \tag{3}$$

Importante:

- Quando a tensão é constante, a derivada é **zero** e portanto **não há fluxo de corrente**.
- Apenas uma variação na tensão pode gerar corrente e portanto causar armazenamento de energia (cargas) no capacitor.

Variação de tensão nos terminais de um capacitor

$$I = C dV / dt$$
 (3)

A equação (3) pode ser reescrita para permitir a análise da variação da tensão nos terminais de um capacitor, quando por ele circula corrente:

$$dV = (1/C)I dt$$
 (4)

Integrando esta equação a partir de um tempo inicial t₀:

$$v(t) = (1/C) \int_{0}^{t} i dt + v(t_{0})$$

Exemplos

• Capacitores ceramicos, papel,

• Capacitores eletrolíticos (com polaridade)

2.3 Indutores

Um **indutor** é um elemento que armazena energia eletromagnética através do fluxo de corrente.

Há variação de tensão em função da variação do fluxo de corrente através do indutor .

Na eletrônica clássica esses elementos são amplamente utilizados.

O indutor é útil nos circuitos transformadores, nos auto-falantes (como transdutor eletromagnético - mecânico), e nas oscilações espontâneas (geradores de sinais eletromagnéticos).

3. Leis de KIRCHHOFF

3.1 Lei dos Nós

A soma de todas as correntes que entram no nó é nula.

- as correntes que chegam no nó são arbitradas p.ex. como positivas
- as correntes que saem do nó são então negativas.

Nó elétrico – intersecção de mais de dois fios

Exemplo:

Supondo

$$V1 = 10 V$$
 $R1 = 5 \Omega$
 $V2 = 8 V$ $R2 = 4 \Omega$
 $V3 = ?$ $R3 = 1 \Omega$

Procura-se o valor da tensão V_3 .

Para o seu cálculo emprega-se a regra dos nós para o nó K

$$I_1 + I_2 - I_3 = 0$$
 \rightarrow $I_3 = I_1 + I_2$

Pela lei de Ohm:

$$I_1 = (V_1 - V_3) / R_1$$

 $I_2 = (V_2 - V_3) / R_2$
 $I_3 = V_3 / R_3$

Resolver o sistema: I1, I2, I3, V3

$$I_{3} = I_{1} + I_{2}$$

$$V3 / 1 = (10 - V3) / 5 + (8 - V_{3}) / 4$$

$$20 V3 = 40 - 4 V3 + 40 - 5 V3$$

$$V3 = 80 / 29 \implies V3 = 2,75 V$$

I1 =
$$(10 - V3) / 5 = 1,45 A$$

I2 = $(8 - V3) / 4 = 1,31 A$
I3 = $2,75 / 1 = 2,75 A$

3.2 Lei das Malhas

A soma de todas as tensões ao longo de uma malha fechada é nula.

- para cálculo desta soma, a malha é percorrida num único sentido
- cada tensão é considerada positiva ou negativa conforme a polaridade para ela arbitrada

Exemplo:

Exercício

Calcule a tensão e corrente em cada elemento do circuito

Exercício

Quanto vale Vg?