Permit Numbers 142261 and N254

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point	Source Name (2)	Air Contaminant	Emissio	on Rates
No. (1)		Name (3)	lbs/hour	TPY (4)
TK-1601	IFR Storage Tank 1601	VOC	16.02	(6)
	(Phase 1)	H ₂ S	0.03	(6)
TK-1602	IFR Storage Tank 1602 (Phase 1)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1603	IFR Storage Tank 1603	VOC	16.02	(6)
	(Phase 1)	H ₂ S	0.03	(6)
TK-1604	IFR Storage Tank 1604	VOC	16.02	(6)
	(Phase 1)	H ₂ S	0.03	(6)
TK-1605	IFR Storage Tank 1605	VOC	16.02	(6)
	(Phase 1)	H ₂ S	0.03	(6)
TK-803	IFR Storage Tank 803 (Phase 1)	VOC	12.52	(6)
		H ₂ S	0.03	(6)
TK-808	IFR Storage Tank 808 (Phase 1)	VOC	12.52	(6)
		H ₂ S	0.03	(6)
TK-809	IFR Storage Tank 809 (Phase 1)	VOC	12.52	(6)
		H ₂ S	0.03	(6)
TK-401	IFR Storage Tank 401 (Phase 1)	VOC	26.34	(6)
		H₂S	0.06	(6)
TK-201	IFR Storage Tank 201	VOC	3.48	(6)
	(Phase 1)	H₂S	0.01	(6)
TK-202	IFR Storage Tank 202	VOC	3.48	(6)
	(Phase 1)	H ₂ S	0.01	(6)
TK-1606	IFR Storage Tank 1606	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1607	IFR Storage Tank 1607	VOC	16.02	(6)
	(Phase 2)	H₂S	0.03	(6)
TK-1608	IFR Storage Tank 1608	VOC	16.02	(6)
	(Phase 2)	H₂S	0.03	(6)
TK-1609	IFR Storage Tank 1609	VOC	16.02	(6)
	(Phase 2)	H₂S	0.03	(6)

TK-1610	IFR Storage Tank 1610	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1611	IFR Storage Tank 1611	VOC	16.02	(6)
	(Phase 2)	H₂S	0.03	(6)
TK-1612	IFR Storage Tank 1612	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1613	IFR Storage Tank 1613	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1614	IFR Storage Tank 1614	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1615	IFR Storage Tank 1615	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1616	IFR Storage Tank 1616	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1617	IFR Storage Tank 1617 (Phase 2)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1618	IFR Storage Tank 1618 (Phase 2)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1619	IFR Storage Tank 1619 (Phase 2)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1620	IFR Storage Tank 1620	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1621	IFR Storage Tank 1621	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1622	IFR Storage Tank 1622	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1623	IFR Storage Tank 1623	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1624	IFR Storage Tank 1624	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-402	IFR Storage Tank 402	VOC	26.34	(6)
	(Phase 2)	H ₂ S	0.06	(6)
TK-403	IFR Storage Tank 403	VOC	14.42	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-203	IFR Storage Tank 203	VOC	3.48	(6)

		H₂S	0.01	(6)
TK-204	IFR Storage Tank 204	VOC	3.48	(6)
	(Phase 2)	H ₂ S	0.01	(6)
TK-802	IFR Storage Tank 802	VOC	12.52	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-101	IFR Storage Tank 101	VOC	4.73	(6)
	(Phase 2)	H ₂ S	0.01	(6)
TK-102	IFR Storage Tank 102	VOC	4.73	(6)
	(Phase 2)	H ₂ S	0.01	(6)
TK-1625	IFR Storage Tank 1625	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1626	IFR Storage Tank 1626	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1627	IFR Storage Tank 1627	VOC	16.02	(6)
202.	(Future Phase)	H ₂ S	0.03	(6)
TK-1628	IFR Storage Tank 1628 (Future Phase)	VOC	16.02	(6)
11020		H ₂ S	0.03	(6)
TK-1629	IFR Storage Tank 1629 (Future Phase)	VOC	16.02	(6)
11023		H ₂ S	0.03	(6)
TK-1630	IFR Storage Tank 1630	VOC	16.02	(6)
11000	(Future Phase)	H ₂ S	0.03	(6)
TK-1631	IFR Storage Tank 1631	VOC	16.02	(6)
11(1001	(Future Phase)	H ₂ S	0.03	(6)
TK-1632	IFR Storage Tank 1632	VOC	16.02	(6)
11002	(Future Phase)	H ₂ S	0.03	(6)
TK-1633	IFR Storage Tank 1633	VOC	16.02	(6)
11(1000	(Future Phase)	H ₂ S	0.03	(6)
TK-1634	IFR Storage Tank 1634	VOC	16.02	(6)
TK-1054	(Future Phase)	H ₂ S	0.03	(6)
TK-1635	IFR Storage Tank 1635	VOC	16.02	(6)
11/ 1000	(Future Phase)	H ₂ S	0.03	(6)
TK-1636	IFR Storage Tank 1636	VOC	16.02	(6)
11/-1020	(Future Phase)	H ₂ S	0.03	
TK-1637	IER Storage Tank 1637	VOC	16.02	(6) (6)
TK-1637	IFR Storage Tank 1637 (Future Phase)	V 0 C	10.02	(0)

TK-1638	IFR Storage Tank 1638 (Future Phase)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1639	IFR Storage Tank 1639	VOC	16.02	(6)
	(Future Phase)	H₂S	0.03	(6)
TK-1640	IFR Storage Tank 1640	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1641	IFR Storage Tank 1641	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1642	IFR Storage Tank 1642	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1643	IFR Storage Tank 1643	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1644	IFR Storage Tank 1644	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1645	IFR Storage Tank 1645 (Future Phase)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1646	IFR Storage Tank 1646 (Future Phase)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1647	IFR Storage Tank 1647 (Future Phase)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1648	IFR Storage Tank 1648	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1649	IFR Storage Tank 1649	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1650	IFR Storage Tank 1650	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1651	IFR Storage Tank 1651	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1652	IFR Storage Tank 1652	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1653	IFR Storage Tank 1653	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1654	IFR Storage Tank 1654	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1655	IFR Storage Tank 1655	VOC	16.02	(6)

		H ₂ S	0.03	(6)
TK-1656	IFR Storage Tank 1656	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1657	IFR Storage Tank 1657	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-801	IFR Storage Tank 801	VOC	12.52	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-804	IFR Storage Tank 804	VOC	12.52	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-805	IFR Storage Tank 805	VOC	12.52	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-806	IFR Storage Tank 806	VOC	12.52	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-807	IFR Storage Tank 807	VOC	12.52	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-810	IFR Storage Tank 810 (Future Phase)	VOC	12.52	(6)
		H ₂ S	0.03	(6)
TK-811	IFR Storage Tank 811 (Future Phase)	VOC	12.52	(6)
		H ₂ S	0.03	(6)
TK-601	IFR Storage Tank 601	VOC	14.42	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-602	IFR Storage Tank 602	VOC	14.42	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-404	IFR Storage Tank 404	VOC	14.42	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-205	IFR Storage Tank 205	VOC	3.48	(6)
	(Future Phase)	H ₂ S	0.01	(6)
TK-206	IFR Storage Tank 206	VOC	3.48	(6)
	(Future Phase)	H ₂ S	0.01	(6)
TK-207	IFR Storage Tank 207	VOC	3.48	(6)
	(Future Phase)	H ₂ S	0.01	(6)
TK-208	IFR Storage Tank 208	VOC	3.48	(6)
	(Future Phase)	H₂S	0.01	(6)
IFRCAP (6)	IFR Storage Tank Annual Cap	VOC	-	15.11
	(Phase 1)	H ₂ S	-	0.03

	IFR Storage Tank Annual Cap	VOC	-	43.64
	(Phases 1 & 2)	H ₂ S	-	0.07
	IFR Storage Tank Annual Cap	VOC	-	106.25
	(All Phases)	H ₂ S	-	0.17
ADD-1	Additive Storage Tank (Phase 2)	VOC	0.92	(7)
ADD-2	Additive Storage Tank (Phase 2)	VOC	0.35	(7)
ADD-3	Additive Storage Tank (Phase 2)	VOC	8.30	(7)
ADD-4	Additive Storage Tank (Phase 2)	VOC	0.14	(7)
ADD-5	Additive Storage Tank (Phase 2)	VOC	7.42	(7)
ADD-6	Additive Storage Tank (Phase 2)	VOC	1.13	(7)
ADD-7	Additive Storage Tank (Phase 2)	VOC	22.13	(7)
ADD-8	Additive Storage Tank (Phase 2)	VOC	0.06	(7)
ADD-9	Additive Storage Tank (Phase 2)	VOC	0.02	(7)
ADD-10	Additive Storage Tank (Phase 2)	VOC	1.36	(7)
ADD-11	Additive Storage Tank (Phase 2)	VOC	0.14	(7)
ADD-12	Additive Storage Tank (Future Phase)	VOC	1.13	(7)
ADD-13	Additive Storage Tank (Future Phase)	VOC	1.13	(7)
ADDCAP (7)	Additive Storage Tank Annual Cap (Phase 2)	VOC	-	0.18
	Additive Storage Tank Annual Cap (All Phases)	VOC	-	0.19
TK-51	Biodiesel Storage Tank (Phase 2)	VOC	4.19	0.35
TK-151	Biodiesel Storage Tank (Future Phase)	VOC	4.19	1.03
TK-152	Biodiesel Storage Tank (Future Phase)	VOC	4.19	1.03

MLVRU-1	Marine Loading VRUs 1 & 2	VOC	10.51	(8)
MLVRU-2	(Ship Dock 1) (Phase 1)	H₂S	0.02	(8)
MLVRU-3	Marine Loading VRUs 3 & 4	VOC	10.51	(8)
MLVRU-4	(Ship Dock 2 & Barge Dock 1) (Phase 2)	H₂S	0.02	(8)
MLVRU-5	Marine Loading VRUs 5 & 6	VOC	10.51	(8)
MLVRU-6	(Ship Dock 3) (Future Phase)	H₂S	0.02	(8)
MLVRU-7	Marine Loading VRUs 7 & 8	VOC	10.51	(8)
MLVRU-8	(Ship Dock 4) (Future Phase)	H ₂ S	0.02	(8)
MLVRUCAP (8)	Marine Loading VRU Annual Cap	VOC	-	9.59
	(Phase 1)	H₂S	-	0.02
	Marine Loading VRU Annual Cap (Phases 1 & 2)	VOC	-	21.29
		H₂S	-	0.04
	Marine Loading VRU Annual Cap (All Phases)	VOC	-	40.48
		H ₂ S	-	0.08
MLOAD	Marine Loading Fugitives	VOC	18.32	3.38
	(Phase 1)	H ₂ S	<0.01	<0.01
	Marine Loading Fugitives	VOC	36.64	6.76
	(Phases 1 & 2)	H ₂ S	0.01	0.01
	Marine Loading Fugitives	VOC	73.28	13.52
	(All Phases)	H ₂ S	0.02	0.02
TLVRU	Tank Truck Loading VRU (Phase 2)	VOC	0.40	1.28
	Tank Truck Loading VRU (All Phases)	VOC	1.00	3.20
TUNLOAD	Tank Truck Unloading Fugitives (Phase 1)	VOC	2.68	7.91
	Tank Truck Unloading Fugitives (Phases 1 & 2)	VOC	3.00	8.61
	Tank Truck Unloading Fugitives (All Phases)	VOC	5.67	16.52

FUG	Process Fugitives (5)	VOC	0.31	1.36
	(Phase 1)	H ₂ S	<0.01	<0.01
	Process Fugitives (5)	VOC	0.79	3.47
	(Phases 1 & 2)	H₂S	<0.01	0.01
	Process Fugitives (5)	VOC	1.59	6.98
	(All Phases)	H₂S	<0.01	0.02
ENG-1	Fire Water Pump Engine 1	VOC	5.26	0.26
	(Phase 1)	NO _x	5.26	0.26
		СО	4.62	0.23
		PM	0.28	0.01
		PM ₁₀	0.28	0.01
		PM _{2.5}	0.28	0.01
		SO ₂	0.01	<0.01
ENG-2	Fire Water Pump Engine 2 (Phase 1)	VOC	5.26	0.26
		NO _x	5.26	0.26
		СО	4.62	0.23
		PM	0.28	0.01
		PM ₁₀	0.28	0.01
		PM _{2.5}	0.28	0.01
		SO ₂	0.01	<0.01
ENG-3	Fire Water Pump Engine 3	VOC	5.26	0.26
	(Phase 1)	NO _x	5.26	0.26
		СО	4.62	0.23
		PM	0.28	0.01
		PM ₁₀	0.28	0.01
		PM _{2.5}	0.28	0.01
		SO ₂	0.01	<0.01

SUMP	Sumps (Phase 1)	VOC	2.45	0.30
	Sumps (Phase 1 & 2)	VOC	7.34	0.89
	Sumps (All Phases)	VOC	9.78	1.18
TKVCU-1	Tank VCU (10)	VOC	39.77	(9)
	(Phase 1)	NO _x	25.89	(9)
		СО	111.02	(9)
		PM	0.16	(9)
		PM ₁₀	0.16	(9)
		PM _{2.5}	0.16	(9)
		SO ₂	0.15	(9)
		H ₂ S	0.07	(9)
TKVCU-2	Tank VCU (10) (Phase 2)	VOC	39.77	(9)
		NO _x	25.89	(9)
		СО	111.02	(9)
		PM	0.16	(9)
		PM ₁₀	0.16	(9)
		PM _{2.5}	0.16	(9)
		SO ₂	0.15	(9)
		H ₂ S	0.07	(9)
TKVCU-3	Tank VCU (10)	VOC	39.77	(9)
	(Future Phase)	NO _x	25.89	(9)
		СО	111.02	(9)
		PM	0.16	(9)
		PM ₁₀	0.16	(9)
		PM _{2.5}	0.16	(9)
		SO ₂	0.15	(9)
		H ₂ S	0.07	(9)

TKVCU-4	Tank VCU (10) (Future Phase)	VOC	39.77	(9)
	(Future Phase)	NO _x	25.89	(9)
		СО	111.02	(9)
		PM	0.16	(9)
		PM ₁₀	0.16	(9)
		PM _{2.5}	0.16	(9)
		SO ₂	0.15	(9)
		H₂S	0.07	(9)
TKVCUCAP (9)	Tank VCU Annual Cap (10)	VOC	-	1.85
	(Phase 1)	NO _x	-	2.28
		СО	-	5.93
		PM	-	0.09
		PM ₁₀	-	0.09
		PM _{2.5}	-	0.09
		SO ₂	-	0.01
		H₂S	-	<0.01
	Tank VCU Annual Cap (10) (Phases 1 & 2)	VOC	-	6.86
		NO _x	-	8.47
		СО	-	22.00
		PM	-	0.34
		PM ₁₀	-	0.34
		PM _{2.5}	-	0.34
		SO ₂	-	0.05
		H₂S	-	0.01
	Tank VCU Annual Cap (10)	VOC	-	17.57
	(All Phases)	NO _x	-	22.14
		СО	-	56.66
		PM	-	0.91
		PM ₁₀	-	0.91
		PM _{2.5}	-	0.91
		SO ₂	-	0.13
		H₂S	-	0.03
PORTVCU	Portable VCU (11) (Phase 1)	VOC	2.35	0.18

		NO _x	1.33	0.13
		СО	2.61	0.22
		PM	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
		SO ₂	0.01	<0.01
		H ₂ S	<0.01	<0.01
	Portable VCU (11) (All Phases)	VOC	2.35	0.37
		NO _x	1.33	0.26
		СО	2.61	0.44
		PM	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
		SO ₂	0.01	<0.01
		H ₂ S	<0.01	<0.01
TKVENT	Tank MSS Fugitives (12) (Phase 1)	VOC	3.69	0.09
		H ₂ S	<0.01	<0.01
	Tank MSS Fugitives (12) (Phases 1 & 2)	VOC	52.76	1.01
		H₂S	<0.01	<0.01
	Tank MSS Fugitives (12) (All Phases)	VOC	52.76	1.04
		H ₂ S	<0.01	<0.01
PORTCTRL	Portable Flare (13)	VOC	58.05	0.12
	(Phase 1)	NO _x	7.87	0.02
		СО	15.72	0.03
	Portable Flare (13)	VOC	541.76	0.39
	(Phases 1 & 2)	NO _x	73.49	0.05
		СО	146.72	0.10
	Portable Flare (13)	VOC	541.76	0.66
	(All Phases)	NO _x	73.49	0.09
		СО	146.72	0.18
VACLOAD	Vacuum Truck Loading (14)	VOC	0.93	0.03
	(Phase 1)	H ₂ S	<0.01	<0.01
	Vacuum Truck Loading (14)	VOC	1.87	0.06
	(Phases 1 & 2)	H ₂ S	<0.01	<0.01
	Vacuum Truck Loading (14)	VOC	2.31	0.12

		H ₂ S	<0.01	<0.01
FUG-MSS	Process Equipment MSS (15) (Phase 1)	VOC	5.36	0.21
		H ₂ S	0.01	<0.01
	Process Equipment MSS (15)	VOC	5.36	0.42
	(Phases 1 & 2)	H ₂ S	0.01	<0.01
	Process Equipment MSS (15) (All Phases)	VOC	5.36	0.85
		H ₂ S	0.01	<0.01

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.
- (3) VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as represented

PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide H₂S - hydrogen sulfide

- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) Total routine annual emissions for IFR storage tanks are limited to the rates represented under EPN IFRCAP.
- (7) Total routine annual emissions for additive tanks are limited to the rates represented under EPN ADDCAP.
- (8) Total annual emissions for marine loading VRU's are limited to the rates represented under EPN MLVRUCAP.
- (9) Total annual emissions for tank VCU's are limited to the rates represented under EPN TKVCUCAP.
- (10) Includes controlled tank roof landing emissions (standing idle, degassing, and refilling) from routine and maintenance tank roof landings.
- (11) Includes controlled tank roof landing emissions (standing idle, degassing, cleaning, and refilling) from maintenance tank roof landings and emissions from loading of vacuum trucks and vacuum boxes.
- (12) Includes uncontrolled tank roof landing emissions (standing idle, degassing, post-control venting, and refilling) from routine and maintenance tank roof landings. Also includes post-control venting emissions from pressure tanks.
- (13) Includes controlled degassing emissions from pressure tanks.
- (14) Includes emissions from loading of vacuum trucks and vacuum boxes.
- (15) Includes emissions from draining and venting process equipment during MSS activities.

Date:	July 14, 2017	