- **433.** A 3.3 Ω resistor and another resistor are connected in parallel across a 3.0 V battery. The current in the circuit is 1.41 A. Find the unknown resistance.
- **434.** A 56 Ω resistor and another resistor are connected in parallel across a 12 V battery. The current in the circuit is 3.21 A. Find the unknown resistance.
- **435.** Three bulbs with resistances of 56 Ω , 82 Ω , and 24 Ω are wired in series. If the voltage across the circuit is 9.0 V, what is the current in the circuit?
- **436.** Three bulbs with resistances of 96 Ω , 48 Ω , and 29 Ω are wired in series. What is the current through the bulbs if the voltage across them is 115 V?
- **437.** A refrigerator $(R_1 = 75 \Omega)$ wired in parallel with an oven $(R_2 = 91 \Omega)$ is plugged into a 120 V outlet. What is the current in the circuit of each appliance?
- **438.** A computer $(R_1 = 82 \Omega)$ and printer $(R_2 = 24 \Omega)$ are wired in parallel across a 120 V potential difference. Find the current in each machine's circuit.

- **439.** For the figure above, what is the equivalent resistance of the circuit?
- **440.** For the figure above, find the current in the circuit.
- **441.** For the figure above, what is the potential difference across the $6.0~\Omega$ resistor?
- **442.** For the figure above, what is the current through the 6.0 Ω resistor?

- **443.** For the figure above, calculate the equivalent resistance of the circuit.
- **444.** For the figure above, what is the total current in the circuit?

445. For the figure above, what is the current in the 3.0Ω resistors?

- **446.** For the figure above, calculate the equivalent resistance of the circuit.
- **447.** For the figure above, what is the total current in the circuit?
- **448.** For the figure above, what is the current in either of the 8.0 Ω resistors?

Chapter 19 Magnetism

- **449.** A proton moves at right angles to a magnetic field of 0.8 T. If the proton's speed is 3.0×10^7 m/s, how large is the magnetic force exerted on the proton?
- **450.** A weak magnetic field exerts a 1.9×10^{-22} N force on an electron moving 3.9×10^6 m/s perpendicular to the field. What is the magnetic field strength?
- **451.** A 5.0×10^{-5} T magnetic field exerts a 6.1×10^{-17} N force on a 1.60×10^{-19} C charge, which moves at a right angle to the field. What is the charge's speed?
- **452.** A 14 A current passes through a 2 m wire. A 3.6×10^{-4} T magnetic field is at right angles to the wire. What is the magnetic force on the wire?
- **453.** A 1.0 m printer cable is perpendicular to a 1.3×10^{-4} T magnetic field. What current must the cable carry to experience a 9.1×10^{-5} N magnetic force?
- **454.** A wire perpendicular to a 4.6×10^{-4} T magnetic field experiences a 2.9×10^{-3} N magnetic force. How long is the wire if it carries a 10.0 A current?
- **455.** A 12 m wire carries a 12 A current. What magnetic field causes a 7.3×10^{-2} N magnetic force to act on the wire when it is perpendicular to the field?
- **456.** A magnetic force of 3.7×10^{-13} N is exerted on an electron moving at 7.8×10^6 m/s perpendicular to a sunspot. How large is the sunspot's magnetic field?