Name: Parth Pareek

UNI: PP2547 Date: 3/9/2016 **Assignment:** HW6

1. a.

b. Call:

lm(formula = Heart ~ ., data = dat)

Residuals:

Min 1Q Median **3Q** Max -8.4014 -3.0263 0.0602 2.6748 8.4646

Coefficients:

Estimate Std. Error t value Pr(>|t|) 3.1787 6.3369 (Intercept) 0.502 0.6194 0.4052 0.1971 0.0480 * Bank 2.056 Walk 0.4516 0.2009 2.248 0.0316 * Talk -0.1796 0.2222 -0.808 0.4249

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.805 on 32 degrees of freedom Multiple R-squared: 0.2236, Adjusted R-squared: 0.1509 F-statistic: 3.073 on 3 and 32 DF, p-value: 0.04162

c.

No evidence that variance of residuals increases with increasing fitted values.

d. Noted in (b)

2.


```
c.
```


d. Call:

lm(formula = logit ~ log(DurationOfVisit) * BeeType, data = dat.trans)

Residuals:

Min 1Q Median **3Q** Max -1.3803 -0.3699 0.0307 0.4552 1.1611

Coefficients:

Estimate Std. Error t value Pr(>|t|) 0.5115 -5.941 4.45e-07 *** (Intercept) -3.0390 5.321 3.52e-06 *** log(DurationOfVisit) 1.0121 0.1902 BeeType 1.3770 0.8722 1.579 0.122 log(DurationOfVisit):BeeType -0.2709 0.2817 -0.962 0.342 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6525 on 43 degrees of freedom Multiple R-squared: 0.6151, Adjusted R-squared: 0.5882

F-statistic: 22.9 on 3 and 43 DF, p-value: 5.151e-09

Two sided p-value = 0.342. Therefore, no evidence that time of duration depends on Bee Type e.

Call:

lm(formula = logit ~ log(DurationOfVisit) + BeeType, data = dat.trans)

Residuals:

Min 10 Median 30 Max -1.40852 -0.49627 0.08815 0.43598 1.15562

Coefficients:

Estimate Std. Error t value Pr(>|t|) 0.3842 -7.065 9.18e-09 *** (Intercept) -2.7146 6.339 1.07e-07 *** log(DurationOfVisit) 0.8886 0.1402 0.5697 0.2364 BeeType 2.409 0.0202 *

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

Residual standard error: 0.652 on 44 degrees of freedom Multiple R-squared: 0.6068, Adjusted R-squared: 0.5889 F-statistic: 33.95 on 2 and 44 DF, p-value: 1.206e-09

No evidence that queens remove more. Two sided P-value for workers removing more is 0.02 (1 for workers 0 for queens)

Possible collinearity that leads to more p-value. Variable is being accounted for in interaction term also. But cannot say for sure since models are different

3. a.

EU and NA have similar slopes for both males and females

b. 1 for females and 0 for males

```
Call:
lm(formula = WingSize ~ Sex * Latitude, data = newdat)
Residuals:
    Min
             1Q Median
                             3Q
                                    Max
-22.545 -5.575
                -0.844
                          5.055
                                32.987
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
              735.9839
(Intercept)
                          19.7815
                                   37.206 < 2e-16 ***
                          27.9753
Sex1
                                    3.185 0.002891 **
               89.0957
Latitude
                1.7738
                           0.4401
                                    4.030 0.000258 ***
                           0.6224
Sex1:Latitude
                0.2189
                                    0.352 0.727050
Signif. codes:
                0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
Residual standard error: 11.23 on 38 degrees of freedom
Multiple R-squared: 0.9572, Adjusted R-squared: 0.9538
```

F-statistic: 283.3 on 3 and 38 DF, p-value: < 2.2e-16

```
4. a.
    Call:
    lm(formula = Speed \sim Year + I(Year^2), data = ex0920)
    Residuals:
         Min
                   10
                       Median
                                      30
    -1.77397 -0.29516 0.02933 0.31150 1.15734
    Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
    (Intercept) -1.048e+03 1.912e+02 -5.481 2.61e-07 ***
                 1.090e+00 1.957e-01 5.569 1.75e-07 ***
               -2.740e-04 5.010e-05 -5.468 2.76e-07 ***
    I(Year^2)
    Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
    Residual standard error: 0.5411 on 113 degrees of freedom
    Multiple R-squared: 0.6442, Adjusted R-squared: 0.6379
    F-statistic: 102.3 on 2 and 113 DF, p-value: < 2.2e-16
    b.
    Call:
    lm(formula = Speed \sim Year + I(Year^2) + Conditions, data = ex0920)
    Residuals:
        Min
                  1Q
                      Median
                                    3Q
                                            Max
    -1.11599 -0.22085 0.03084 0.24188 0.85527
    Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
                  -9.791e+02 1.399e+02 -6.999 2.01e-10 ***
    (Intercept)
                   1.023e+00 1.432e-01 7.142 9.83e-11 ***
    Year
                  -2.575e-04 3.666e-05 -7.025 1.76e-10 ***
    I(Year^2)
    ConditionsSlow -9.861e-01 9.886e-02 -9.975 < 2e-16 ***
    Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
    Residual standard error: 0.3955 on 112 degrees of freedom
    Multiple R-squared: 0.8116, Adjusted R-squared: 0.8065
    F-statistic: 160.8 on 3 and 112 DF, p-value: < 2.2e-16
   c.
    Call:
    lm(formula = Speed ~ Year + I(Year^2) + Conditions + I(Starters *
       Conditions), data = dat)
    Residuals:
        Min
                  1Q Median
                                  3Q
    -1.05633 -0.24425 -0.02043 0.26174 0.77515
    Coefficients:
                             Estimate Std. Error t value Pr(>|t|)
                           -1.013e+03 1.382e+02 -7.332 3.94e-11 ***
    (Intercept)
                           1.055e+00 1.414e-01 7.461 2.06e-11 ***
    Year
    I(Year^2)
                           -2.652e-04 3.617e-05 -7.333 3.92e-11 ***
    Conditions
                           1.279e+00 1.623e-01 7.882 2.40e-12 ***
    I(Starters * Conditions) -2.406e-02 1.068e-02 -2.252 0.0263 *
    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    Residual standard error: 0.3885 on 111 degrees of freedom
    Multiple R-squared: 0.8198, Adjusted R-squared: 0.8133
    F-statistic: 126.2 on 4 and 111 DF, p-value: < 2.2e-16
```

```
Call:
lm(formula = Speed ~ Year + I(Year^2) + Starters * Conditions,
    data = dat
Residuals:
    Min
              10 Median
                              30
                                     Max
-1.08958 -0.24451 -0.02678 0.24784 0.77824
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                  -1.029e+03 1.418e+02 -7.257 5.93e-11 ***
                                      7.383 3.15e-11 ***
                   1.071e+00 1.451e-01
                  -2.693e-04 3.709e-05 -7.261 5.82e-11 ***
I(Year^2)
                  -8.741e-03 1.650e-02 -0.530
Starters
                                                0.597
                                       4.624 1.03e-05 ***
                   1.175e+00 2.542e-01
Conditions
Starters:Conditions -1.622e-02 1.827e-02 -0.888
                                                0.377
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 0.3898 on 110 degrees of freedom
Multiple R-squared: 0.8203, Adjusted R-squared: 0.8121
F-statistic: 100.4 on 5 and 110 DF, p-value: < 2.2e-16
Effect on horses on speed is irrelevant (Two sided p-value 0.597)
a.
   Analysis of Variance Table
   Response: dat$Flowers
                   Df Sum Sq Mean Sq F value
   dat$Intensity 1 2579.75 2579.75 62.181 1.037e-07 ***
                    1 886.95 886.95 21.379 0.0001464 ***
   dat$Time
   Residuals
                   21 871.24
                                 41.49
   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
b.
   Analysis of Variance Table
   Response: Flowers
                               Df Sum Sq Mean Sq F value
                                                              Pr(>F)
   as.factor(Intensity)
                               5 2683.51 536.70 9.8189 0.0006388 ***
                               1 886.95 886.95 16.2266 0.0016745 **
   as.factor(Intensity):Time 5 111.55
                                            22.31 0.4081 0.8341569
   Residuals
                               12 655.92
                                            54.66
   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

d.

5.

```
a.
Call:
lm(formula = Storms ~ ElNino)
Residuals:
          1Q Median
  Min
                        3Q
                             Max
-4.938 -1.938 -0.125 1.062 7.875
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                       0.6996 15.901 < 2e-16 ***
(Intercept)
              11.1250
                         0.9894 -1.200 0.236353
ElNinoneutral -1.1875
                         0.9894 -4.043 0.000204 ***
ElNinowarm
              -4.0000
___
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 2.799 on 45 degrees of freedom
Multiple R-squared: 0.277,
                             Adjusted R-squared: 0.2449
F-statistic: 8.621 on 2 and 45 DF, p-value: 0.0006766
b.
Call:
lm(formula = Hurricanes ~ ElNino)
Residuals:
           1Q Median
                        3Q
                              Max
   Min
-3.250 -1.062 -0.125 1.000 5.750
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                          0.5069 13.810 < 2e-16 ***
(Intercept)
               7.0000
ElNinoneutral -0.7500
                          0.7169 -1.046 0.301043
               -3.0000
                          0.7169 -4.185 0.000131 ***
F1Ni nowarm
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.028 on 45 degrees of freedom
Multiple R-squared: 0.2966, Adjusted R-squared: 0.2653
F-statistic: 9.486 on 2 and 45 DF, p-value: 0.0003651
c.
lm(formula = StormIndex ~ WestAfrica * ElNino)
Residuals:
    Min
             1Q Median
                             3Q
                                    Max
-72.500 -22.273 -6.045 22.265 98.667
Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
                                      16.341 6.079 3.06e-07 ***
(Intercept)
                           99.333
                                             3.153 0.00298 **
WestAfrica
                           65.167
                                      20.670
ElNinoneutral
                           -7.242
                                      20.314 -0.357 0.72324
ElNinowarm
                          -45.333
                                      19.755 -2.295 0.02681 *
WestAfrica:ElNinoneutral -38.458
                                      29.888 -1.287 0.20524
WestAfrica:ElNinowarm
                          -21.500
                                      32.932 -0.653 0.51741
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 40.03 on 42 degrees of freedom
Multiple R-squared: 0.5153,
                              Adjusted R-squared: 0.4576
F-statistic: 8.931 on 5 and 42 DF, p-value: 7.715e-06
```

```
#Question 6
library(Sleuth3)
attach(ex1028)
dat <- ex1028
model1 <- lm(Storms ~ ElNino)
summary(model1)

model2 <- lm(Hurricanes ~ ElNino)
summary(model2)

model3 <- lm(StormIndex ~ WestAfrica*ElNino)
summary(model3)</pre>
```

```
#Question 1
library(lattice)
library(ggplot2)
library(Sleuth3)
attach(ex0914)
dat <- ex0914
#Part a
pairs(dat)
#Part b
model <- lm(Heart~.,data = dat)</pre>
summary(model)
#Part c
plot(dat$Bank,model$residuals,xlab = "Bank", ylab = "Residuals")
abline(0,0)
plot(dat$Walk,model$residuals,xlab = "Walk", ylab = "Residuals")
abline(0,0)
plot(dat$Talk,model$residuals,xlab = "Talk", ylab = "Residuals")
abline(0,0)
#Question 2
library(lattice)
library(ggplot2)
library(car)
library(Sleuth3)
attach(ex0327)
#Part a
dat <- ex0327
datQ <- dat[which(dat$BeeType == "Queen"),]</pre>
datW <- dat[which(dat$BeeType == "Worker"),]</pre>
plot(datQ$DurationOfVisit, datQ$PollenRemoved, pch = 2,
     xlab = "Duration of Visit", ylab = "Pollens Removed",
     xlim = range(0:80), ylim = range(0:1)
points(datW$DurationOfVisit,datW$PollenRemoved)
#Part b
dat.trans <- ex0327
dat.trans$logit <- log(dat$PollenRemoved/(1-dat$PollenRemoved))</pre>
#dat.trans$logit <- logit(dat$PollenRemoved)</pre>
datQ.trans <- dat.trans[which(dat$BeeType == "Queen"),]</pre>
datW.trans <- dat.trans[which(dat$BeeType == "Worker"),]</pre>
plot(datQ.trans$DurationOfVisit, datQ.trans$logit, pch = 2,
     xlab = "Duration of Visit", ylab = "Logit",
     xlim = range(0:80), ylim = range(-3:3))
points(datW.trans$DurationOfVisit,datW.trans$logit)
```

```
#Part c
plot(log(datQ.trans$DurationOfVisit), datQ.trans$logit, pch = 2,
     xlab = "Log (Duration)", ylab = "Logit",
     xlim = range(0:5), ylim = range(-3:3))
points(log(datW.trans$DurationOfVisit),datW.trans$logit)
#Part d
dat.trans$BeeType <- ifelse(BeeType == "Worker", 1, 0)</pre>
model1 <- lm(logit ~ log(DurationOfVisit)*BeeType, data = dat.trans)</pre>
summary(model1)
#Part e
model2 <- lm(logit ~ log(DurationOfVisit) + BeeType, data = dat.trans)</pre>
summary(model2)
#Ouestion 3
library(lattice)
library(ggplot2)
library(Sleuth3)
attach(ex0918)
dat <- ex0918
datNA <- ex0918[which(ex0918$Continent == "NA"),]</pre>
datEU <- ex0918[which(ex0918$Continent == "EU"),]</pre>
plot(datNA$Latitude,datNA$Females, xlab = "Latitude", ylab = "Females")
plot(datEU$Latitude,datEU$Females, xlab = "Latitude", ylab = "Females")
plot(datNA$Latitude,datNA$Males, xlab = "Latitude", ylab = "Males")
plot(datEU$Latitude,datEU$Males, xlab = "Latitude", ylab = "Males")
newdat <- matrix(data = NA, nrow = 42, ncol = 4)</pre>
newdat <- rbind(dat[,1:2],dat[,1:2])</pre>
newdat$Sex[1:21] <- 1</pre>
newdat$Sex[22:42] <- 0
newdat$Sex <- as.factor(newdat$Sex)</pre>
newdat$WingSize[1:21] <- dat$Females</pre>
newdat$WingSize[22:42] <- dat$Males</pre>
model2 <- lm(WingSize ~ Sex*Latitude, data = newdat)</pre>
summary(model2)
#Question 4
library(lattice)
library(ggplot2)
library(Sleuth3)
attach(ex0920)
dat <- ex0920
#Part a
model1 \leftarrow lm (Speed \sim Year + I(Year^2), data = ex0920)
summary(model1)
model2 <- lm (Speed ~ Year + I(Year^2) + Conditions, data = ex0920)</pre>
summary(model2)
dat$Conditions <- ifelse(dat$Conditions == "Fast", 1, 0)</pre>
```

```
model3 <- lm (Speed ~ Year + I(Year^2) + Conditions +</pre>
I(Starters*Conditions),
               data = dat)
summary(model3)
model4 <- lm (Speed ~ Year + I(Year^2) + Starters*Conditions,</pre>
               data = dat)
summary(model4)
#Question 5
library(Sleuth3)
attach(case0901)
dat <- case0901
dat_test1 <- aov(dat$Flowers~dat$Intensity+dat$Time)</pre>
dat_anova1 <- anova(dat_test)</pre>
model2 <- lm(Flowers ~ as.factor(Intensity)*Time, data = dat)</pre>
dat test2 <- aov(model2)</pre>
dat_anova2 <- anova(dat_test2)</pre>
```