Exercise 10. Show that every positive number a has exactly one positive square root, as follows:

(a) Show that if x > 0 and $0 \le h < 1$, then

$$(x+h)^2 \le x^2 + h(2x+1)$$

 $(x-h)^2 > x^2 - h(2x)$

- (b) Let x > 0. Show that if $x^2 < a$, then $(x+h)^2 < a$ for some h > 0; and if $x^2 > a$, then $(x-h)^2 > a$ for some h > 0.
- (c) Given a > 0, let B be the set of all real numbers x such that $x^2 < a$. Show that B is bounded above and contains at least one positive number. Let $b = \sup B$; show that $b^2 = a$.
- (d) Show that if b and c are positive and $b^2 = c^2$, then b = c.

Proof.

(a) Let x > 0 and $0 \le h < 1$. We have $0 \le h^2 \le h$, so that:

$$(x+h)^2 = x^2 + 2xh + h^2 \le x^2 + h(2x+1)$$

And since $h^2 \ge 0$, we have:

$$(x-h)^2 = x^2 - 2xh + h^2 \ge x^2 - h(2x)$$

(b) Let x > 0 such that $x^2 < a$, and let $0 \le h < 1$. Since 2x + 1 > 0, we have:

$$(x+h)^2 \ge a$$

$$\implies x^2 + h(2x+1) \ge a$$

$$\implies h \ge \frac{a-x^2}{2x+1} = m$$

From $x^2 < a$ we deduce that m > 0. Therefore we can choose h such that $0 < h < \sup\{m, 1\}$. By the contrapositive of the implication shown above, we have, for such a choice of h, $(x + h)^2 < a$.

Similarly, from $h \geq 0$, we have:

$$(x-h)^2 \le a$$

$$\implies x^2 - h(2x) \le a$$

$$\implies h \ge \frac{x^2 - a}{2x} = p$$

From $x^2 > a$ we deduce that p > 0, and we can choose h such that $0 < h < \sup\{p, 1\}$. By the contrapositive of the implication shown above, we have, for such a choice of h, $(x - h)^2 > a$.

- (c) Let a>0 and $B=\{x\in\mathbb{R}\mid 0< x^2< a\}$. Taking $y=\sup\{1,a\}$, we have $y^2\geq a$, so B is bounded above by y. If $a\geq 1$, then $0<(1/2)^2<1$, so $1/2\in B$. Otherwise, $0< a^2\leq a$, so that $a\in B$. Thus B is nonempty. From this we deduce that $b=\sup B$ exists and is positive. Suppose that $b^2< a$. Then there exists h>0 such that $(b+h)^2< a$, so that b is not an upper bound of B, which is a contradiction. Therefore $b^2\geq a$. Suppose now that $b^2>a$, then there exists b>0 such that b>0 such that
- (d) Let b and c be positive reals such that $b^2 = c^2$. Suppose that 0 < b < c, then we have $0 < b^2 < c^2$, which is a contradiction. Similarly if 0 < c < b we arrive at $0 < c^2 < b^2$, which is again a contradiction. Therefore b = c, and the square root of any positive real number is unique.