

Week 05: 2D and 3D Transformations

CS-537: Interactive Computer Graphics

Dr. Chloe LeGendre

Department of Computer Science

For academic use only.

Some materials from the companion slides of Angel and Shreiner, "Interactive Computer Graphics, A Top-Down Approach with WebGL."

Objectives

- Introduce standard transformations
 - Rotation
 - Translation
 - Scaling
- Derive homogenous coordinate transformation matrices
- Learn to build arbitrary transformation matrices from simple transformation building blocks
- Learn how to carry out these same transformations in WebGL

General Transformations

A transformation maps points to other points and/or vectors to other vectors

Affine Transformations

- Line preserving
- Characteristic of many physically important transformations
- Rigid body transformations: rotation, translation
- Scaling, shearing
- Important in graphics is that we need only transform endpoints of line segments and let implementation draw line segment between the transformed endpoints

Notation (for these slides)

 We will be working with both coordinate-free representations of transformations and representations within a particular frame

P,Q, R: points in an affine space

u, v, w: vectors in an affine space

 α , β , γ : scalars

p, q, r: representations of points

-array of 4 scalars in homogeneous coordinates

u, v, w: representations of points

-array of 4 scalars in homogeneous coordinates

Translation

- Move (translate, displace) a point to a new location
- Displacement determined by a vector d
 - Three degrees of freedom (in 3D)
 - P'=P+d

Translation using Representations

Using the homogeneous coordinate representation in some frame

$$\mathbf{p} = [\mathbf{x} \mathbf{y} \mathbf{z} \mathbf{1}]^{\mathrm{T}}$$

$$\mathbf{p}' = [\mathbf{x}' \mathbf{y}' \mathbf{z}' \mathbf{1}]^{\mathrm{T}}$$

$$\mathbf{d} = [\mathbf{d}_{\mathbf{X}} \mathbf{d}_{\mathbf{Y}} \mathbf{d}_{\mathbf{Z}} \mathbf{0}]^{\mathrm{T}}$$

• Hence $\mathbf{p}' = \mathbf{p} + \mathbf{d}$ or

$$x'=x+d_X$$
 $y'=y+d_y$
 $z'=z+d_z$

note that this expression is in four dimensions and expresses point = vector + point

Translation Matrix

We can also express translation using a 4 x 4 matrix T in homogeneous coordinates

p'=Tp where:

$$\mathbf{T} = \mathbf{T}(d_{x}, d_{y}, d_{z}) = \begin{bmatrix} 1 & 0 & 0 & d_{x} \\ 0 & 1 & 0 & d_{y} \\ 0 & 0 & 1 & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 This form is better for implementation because all affine transformations can be expressed this way and multiple transformations can be concatenated together

Rotation (2D)

- Consider rotation about the origin by θ degrees
 - radius stays the same, angle increases by θ

$$x' = r \cos (\phi + \theta)$$
$$= r \sin (\phi + \theta)$$

$$x'=x\cos\theta-y\sin\theta$$
$$y'=x\sin\theta+y\cos\theta$$

$$x = r \cos \phi$$

 $y = r \sin \phi$

Rotation about the z axis (3D)

- ullet Rotation about z axis in three dimensions leaves all points with the same z
 - Equivalent to rotation in two dimensions in planes of constant z

$$x'=x \cos q - y \sin q$$
 $y'=x \sin q + y \cos q$
 $z'=z$

or in homogeneous coordinates:

$$\mathbf{p'} = \mathbf{R}_{\mathbf{Z}}(\theta)\mathbf{p}$$

or as a matrix:

$$\mathbf{R} = \mathbf{R}_{\mathbf{Z}}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation about x and y axes

- Same argument as for rotation about z axis
 - For rotation about x axis, x is unchanged
 - For rotation about y axis, y is unchanged

$$\mathbf{R} = \mathbf{R}_{\mathbf{X}}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R} = \mathbf{R}_{\mathbf{y}}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scaling

Expand or contract along each axis (fixed point of origin)

$$\begin{aligned} \mathbf{x}' &= \mathbf{s}_{x} \mathbf{x} \\ \mathbf{y}' &= \mathbf{s}_{y} \mathbf{y} \\ \mathbf{z}' &= \mathbf{s}_{z} \mathbf{z} \\ \mathbf{p}' &= \mathbf{S} \mathbf{p} \end{aligned} \qquad \begin{bmatrix} s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• To maintain aspect ratio, $s_x = s_y = s_z$

Reflection

Corresponds to negative scale factors

Inverses

- Although we could compute inverse matrices by general formulas, we can
 use simple geometric observations
 - Translation: $\mathbf{T}^{-1}(d_x, d_y, d_z) = \mathbf{T}(-d_x, -d_y, -d_z)$
 - Rotation: $\mathbf{R}^{-1}(\theta) = \mathbf{R}(-\theta)$
 - Holds for any rotation matrix
 - Note that since cos(-q) = cos(q) and sin(-q)=-sin(q):

$$\mathbf{R}^{-1}(\mathbf{\theta}) = \mathbf{R}^{\mathrm{T}}(\mathbf{\theta})$$

• Scaling: $S^{-1}(s_x, s_y, s_z) = S(1/s_x, 1/s_y, 1/s_z)$

Concatenation

- We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices
- Because the same transformation is applied to many vertices, the cost of forming a matrix M=ABCD is not significant compared to the cost of computing Mp for many vertices p
- The difficult part is how to form a desired transformation from the specifications in the application

Order of Transformations

- Note that matrix on the right is the first applied
- Mathematically, the following are equivalent

$$\mathbf{p'} = \mathbf{ABCp} = \mathbf{A}(\mathbf{B}(\mathbf{Cp}))$$

 Note many references use column matrices to represent points. In terms of column matrices

$$\mathbf{p}^{\mathsf{T}} = \mathbf{p}^{\mathsf{T}} \mathbf{C}^{\mathsf{T}} \mathbf{B}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}}$$

General Rotation About the Origin

 A rotation by θ about an arbitrary axis can be decomposed into the concatenation of rotations about the x, y, and z axes

•
$$\mathbf{R}(\mathbf{q}) = \mathbf{R}_{\mathbf{z}}(\mathbf{q}_{\mathbf{z}}) \; \mathbf{R}_{\mathbf{y}}(\mathbf{q}_{\mathbf{y}}) \; \mathbf{R}_{\mathbf{x}}(\mathbf{q}_{\mathbf{x}})$$

• $\theta_x \theta_y \theta_z$ are called the Euler angles

Note that rotations do not commute (order matters). We could use rotations

in another order but with different angles.

Rotation about a Fixed Point other than the Origin

- Move fixed point to origin
- Rotate
- Move fixed point back

$$\mathbf{M} = \mathbf{T}(\mathbf{p}_{f}) \mathbf{R}(\theta) \mathbf{T}(-\mathbf{p}_{f})$$

Instancing

- In modeling, we often start with a simple object centered at the origin, oriented with the axis, and at a standard size
 - (example: Bunny OBJ file in Assignment 2)
- We apply an *instance transformation* to its vertices to scale, orient and locate each
- Allows you to use the same model for many objects

Image: WebGIFundamentals.org

Transformations in WebGL

- We will use the notion of a current transformation matrix (CTM) with the understanding that it may be applied in shaders
- Conceptually this is a 4 x 4 homogeneous coordinate matrix that is part of the state and is applied to all vertices that pass down the pipeline
- The CTM is defined in the user program and loaded into a transformation unit

CTM Operations

- The CTM can be altered either by loading a new CTM or by post-mutiplication
- Load an identity matrix: C ← I
- Load an arbitrary matrix: $\mathbf{C} \leftarrow \mathbf{M}$
- Load a translation matrix: C ← T
- Load a rotation matrix: C ← R
- Load a scaling matrix: C ← S
- Post-multiply by an arbitrary matrix: C ← CM
- Post-multiply by a translation matrix: C ← CT
- Post-multiply by a rotation matrix: C ← C R
- Post-multiply by a scaling matrix: C ← C S

CTM Example: Rotation about a Fixed Point (Attempt 1)

- Start with identity matrix: C ← I
- Move fixed point to origin: $C \leftarrow CT$
- Rotate: $C \leftarrow CR$
- Move fixed point back: C ← CT⁻¹
- Result: C = TR T⁻¹ which is backwards.

- This WRONG result is a consequence of doing post-multiplications.
- · Let's try again.

CTM Example: Rotation about a Fixed Point (Attempt 2)

• We want $C = T^{-1} R T$ so we must do the operations in the following order:

$$\mathbf{C} \leftarrow \mathbf{I}$$
 $\mathbf{C} \leftarrow \mathbf{C}\mathbf{T}^{-1}$
 $\mathbf{C} \leftarrow \mathbf{C}\mathbf{R}$
 $\mathbf{C} \leftarrow \mathbf{C}\mathbf{T}$

- Each operation corresponds to one function call in the program.
- Note that the last operation specified is the first executed in the program!
 - (See slide 16: order of transformations)

CTM in WebGL

- OpenGL (before WebGL) had a model-view and a projection matrix in the pipeline which were concatenated together to form the CTM
- We will emulate this process

The ModelView Matrix

- In WebGL, the model-view matrix is used to
 - Position the camera
 - Can be done by rotations and translations but is often easier to use the lookAt function in MV.js
 - Build models of objects
- The projection matrix is used to define the view volume and to select a virtual camera lens
- Although these matrices are no longer part of the OpenGL state, it is usually a good strategy to create them in our own applications

Rotation, Translation, Scaling in WebGL

- The file MV.js in the "Common" folder contains helpful matrix construction functions.
- Create an identity matrix:

```
var m = mat4(); // identity constructor defined in MV.js
```

Multiply on right by rotation matrix of theta in degrees where (vx, vy, vz) define axis
of rotation

```
var r = rotate(theta, vx, vy, vz) // rotate defined in MV.js
m = mult(m, r); // mult defined in MV.js
```

Do same with translation and scaling:

```
var s = scale( sx, sy, sz); // scale defined in MV.js
var t = translate(dx, dy, dz); // translate defined in MV.js
m = mult(s, t);
```

Rotation, Translation, Scaling in WebGL: Example

Rotation about z axis by 30 degrees with a fixed point of (1.0, 2.0, 3.0)

```
var m = mult(translate(1.0, 2.0, 3.0), rotate(30.0, 0.0, 0.0, 1.0));
m = mult(m, translate(-1.0, -2.0, -3.0));
```

- $\mathbf{m} = \mathbf{T}^{-1} \mathbf{R} \mathbf{T}$ in this example, the correct order (see slide 23)
- The first step to be applied to vertices is translating to the origin (subtraction of the fixed point's coordinates)
- Remember that last matrix specified in the program is the first applied

Arbitrary Matrices in WebGL

- Can load and multiply vertices by matrices defined in the application program in shaders
- Usually you want to pass them to shaders as uniforms, for example:
 - In shader:

uniform mat4 modelViewMatrix;

In application:

gl.uniformMatrix4f

- Matrices in application are stored as one-dimensional array of 16 elements by MV.js but can be treated as 4 x 4 matrices in row major order
- However, WebGL and our shaders expect column major data
- gl.uniformMatrix4f has a parameter for automatic transpose to convert row major to column major matrix layout
- The "flatten" function in MV.js automatically converts to column major order which is required by WebGL functions, so make sure not to apply this transpose.

Applying Transformations

- Example: begin with a cube rotating
- Use mouse or button event listener to change the direction of rotation
- Start with a program that draws a cube in a standard way
 - Centered at the origin
 - Sides aligned with axes
- Where should we apply a transformation?
 - 1. In application to vertices?
 - 2. In vertex shader: send transformation matrix?
 - 3. In vertex shader: send angles of rotation?
- Better choice between 2 and 3 is unclear [amount of data transferred to GPU vs. computed in shader]. Should we perform the trigonometric operations once in the CPU or for every vertex in the shader? GPUs do have trig. functions "hardwired" in silicon


```
vPosition and vColor send to shader
attribute vec4 vPosition;
                                        via application as attributes
attribute vec4 vColor;
varying vec4 fColor; -
                                        varying = set fColor in vertex shader
uniform vec3 theta;
                                        and send to fragment shader
                                           theta sent as uniform from application
void main() {
                                           note this is a vector, representing in this
   vec3 angles = radians( theta );
                                           example rotation around x, y, z axes
  vec3 c = cos(angles);
   vec3 s = sin(angles);
  // Remember: these matrices are column-major
   mat4 rx = mat4(1.0, 0.0, 0.0, 0.0,
                       0.0, c.x, s.x, 0.0,
                      0.0, -s.x, c.x, 0.0,
                      0.0, 0.0, 0.0, 1.0);
```

Rotation Vertex Shader (II)


```
mat4 ry = mat4(c.y, 0.0, -s.y, 0.0,
                 0.0, 1.0, 0.0, 0.0,
                 s.y, 0.0, c.y, 0.0,
                 0.0, 0.0, 0.0, 1.0);
// Remember: these matrices are column-major
mat4 rz = mat4(c.z, -s.z, 0.0, 0.0,
                  s.z, c.z, 0.0, 0.0,
                  0.0, 0.0, 1.0, 0.0,
                  0.0, 0.0, 0.0, 1.0);
fColor = vColor;
gl_Position = rz * ry * rx * vPosition; .
```

set fColor in vertex shader from vertex attribute and send to fragment shader

set gl_Position using concatenated rotation matrix