

RadioProtection Cirkus

Statistiques simples et Corrections de mesure

Nom de l'auteur : Marc AMMERICH

N° chrono: DOC-FO-14_2

Version du : 01 Juin 2018

Le portail de la RP pratique et opérationnelle www.rpcirkus.org - www.forum-rpcirkus.com

STATISTIQUES - CORRECTIONS

- Définitions
- Incertitudes associées à un comptage ou un taux de comptage
- Limite de détection
- Corrections des comptages
 - temps de résolution
 - bruit de fond
 - rendement de mesure

DÉFINITIONS

Nous allons partir du principe que nous avons un nombre d'impulsions comptées supérieures à 1000. Ce qui permet d'avoir la forme d'une courbe de Gauss.

Valeur moyenne: \overline{N}

Variance : $V = \overline{N}$ Écart-type : $\sigma = \sqrt{\overline{N}}$

DÉFINITIONS

Si on prend une valeur N quelconque, la valeur moyenne est comprise dans un intervalle avec la probabilité suivante :

$$\overline{N} = N \pm \sigma N$$
 probabilité 68 %

$$\overline{N} = N \pm 2 \sigma N$$
 probabilité 95 %

$$\overline{N} = N \pm 3 \sigma N$$
 probabilité 99,7 %

On se place souvent dans le cas où l'on fait UNE seule mesure N. Comment se situe cette valeur par rapport à la moyenne ?

INCERTITUDES ASSOCIÉES À UN COMPTAGE

Pour faire l'approximation il faut que N soit au moins égal à 1000. En pratique on associe tout comptage N une incertitude absolue notée εN. Dans ce cas on peut écrire par approximation :

$$\varepsilon N = k.\sigma N = k.\sqrt{N}$$

On définit alors un intervalle de confiance de manière à avoir 95 ou 99,7% de chances de trouver la valeur moyenne, c'est la valeur de k qui varie :

$$N = N \pm 2\sigma N = N \pm 2\sqrt{N}$$

$$N = N \pm 3\sigma N = N \pm 3\sqrt{N}$$

95 % de probabilités

99,7 % de probabilités

INCERTITUDES ASSOCIÉES À UN COMPTAGE

On définit l'incertitude relative notée qui donne la précision de la mesure en %

$$\frac{\epsilon N}{N} = k \cdot \frac{\sigma N}{N} = k \cdot \frac{\sqrt{N}}{N}$$

INCERTITUDES ASSOCIÉES À UN COMPTAGE

Quelques exemples:

Vous avez mesuré N = 3658 impulsions.

Quel est l'intervalle de confiance dans lequel vous allez trouver la valeur moyenne pour une probabilité de 99.7 % ?

N = 3658 d'où:

$$\varepsilon N = k . \sqrt{N} = 3 . \sqrt{N}$$

$$\varepsilon N = 3.\sqrt{3658}$$
 $\varepsilon N = 3.60,48 = 181$

Donc la valeur moyenne se situe dans l'intervalle :

$$\overline{N} = 3658 \pm 181$$

L'incertitude relative est égale à :

$$\frac{\varepsilon N}{N} = 3 \cdot \frac{\sqrt{N}}{N} = 3 \cdot \frac{1}{\sqrt{N}}$$

$$\frac{\epsilon N}{N} = \frac{3}{60,48} = 5 \%$$

INCERTITUDES ASSOCIÉES À UN COMPTAGE

Quelques exemples:

Combien faut-il compter d'impulsions pour obtenir une incertitude relative de 2 % (dans un intervalle de confiance de 3 σ)

$$\frac{\epsilon N}{N} = 3 \cdot \frac{\sqrt{N}}{N} = 0.02$$
 soit $\sqrt{N} = \frac{3}{0.02}$
 $N = \left(\frac{3}{0.02}\right)^2 = 22500$

On définit cette fois-ci un taux de comptage, soit un nombre d'impulsions par unité de temps (la seconde, la minute,...).
On peut écrire :

$$n = \frac{N}{t}$$

Plus le temps de comptage sera long plus la mesure sera précise. Si l'électronique donne directement n, la précision sera grande pour un taux de comptage élevé.

L'incertitude absolue en peut s'écrire :

$$\varepsilon n = k.\sigma n = k.\frac{\sigma N}{t}$$

$$\frac{\sigma N}{t} = \frac{\sqrt{N}}{t} = \frac{\sqrt{nt}}{t} = \sqrt{\frac{nt}{t^2}} = \sqrt{\frac{n}{t}}$$

L'incertitude sera donc égale à :

$$\varepsilon n = k \cdot \sqrt{\frac{n}{t}}$$

L'incertitude relative peut s'écrire : En _____ n

$$\frac{\varepsilon n}{n} = k \cdot \frac{\sqrt{\frac{n}{t}}}{n} = k \cdot \sqrt{\frac{n}{n^2 t}} = k \cdot \sqrt{\frac{1}{n t}} = \frac{k}{\sqrt{N}}$$

....Prenons quelques exemples.....

Vous avez mesuré N = 3658 impulsions en 4 minutes.

- 1 :Quel est le taux de comptage ?
- \triangleright 2 :Quelle est l'incertitude absolue de ce taux de comptage pour un intervalle de confiance de 95 % (2 σ) ?
- 3 :Quelle est l'incertitude relative de ce taux de comptage ?

1)
$$n = \frac{N}{t}$$
 $n = \frac{3658}{4}$ $n = 914,5 \text{ impulsions. min}^{-1}$

2)
$$\operatorname{\epsilon n} = k \cdot \sqrt{\frac{n}{t}}$$
 $\operatorname{\epsilon n} = 2 \cdot \sqrt{\frac{914,5}{4}}$ $\operatorname{\epsilon n} = 30,24$ $n = 914,5 \pm 30,2$ impulsions. \min^{-1}

3)
$$\frac{\varepsilon n}{n} = \frac{k}{\sqrt{N}}$$
 $\frac{\varepsilon n}{n} = \frac{2}{\sqrt{3658}} = \frac{30,2}{914,5}$ $\frac{\varepsilon n}{n} = 3,3 \%$

Vous avez mesuré N = 3658 impulsions en 4 minutes.

Combien de temps faudrait-il compter l'échantillon pour avoir une incertitude relative de 1% avec le même intervalle de confiance de 95 % (2 σ) ?

$$\frac{\epsilon n}{n} = 0.01 = \frac{k}{\sqrt{N}}$$
 $\sqrt{N} = \frac{k}{0.01}$ $N = \frac{k}{(0.01)^2}$ $N = \frac{2}{(0.01)^2} = 20\ 000$

$$t = \frac{20\ 000}{3658}$$
 .4 = 21,9 minutes

Cas de sommes ou différences de taux de comptage :

C'est le cas par exemple pour établir un taux de comptage net, après avoir fait la mesure du bruit de fond et réalisé le comptage de l'échantillon brut.

$$n_{net} = n_{brut} - n_{BDF}$$

On a établi que l'incertitude au carré du comptage net est égale à la somme des carrés des incertitudes.

$$\varepsilon(n_{\text{net}})^2 = \varepsilon(n_{\text{brut}})^2 + \varepsilon(n_{\text{bdf}})^2$$

$$\varepsilon(n_{\text{net}})^2 = \varepsilon(n_{\text{brut}})^2 + \varepsilon(n_{\text{bdf}})^2$$

On a alors:

$$\varepsilon(\text{nnet}) = \sqrt{\varepsilon(n_{\text{brut}})^2 + \varepsilon(n_{\text{bdf}})^2}$$

Prenons un exemple :

Le taux de comptage brut mesuré est de 914,5 impulsions par minute (3658 impulsions en 4 minutes). L'incertitude absolue était de 30,24. Prenons maintenant le comptage d'un bruit de fond On a mesuré 102 impulsions en 4 minutes. La taux de comptage du bruit de fond est de 25,5 impulsions par minutes.

En procédant comme précédemment l'incertitude absolue du bruit de fond pour un intervalle de confiance de 95 % (2 σ) est égale à 5.

- Quel est le taux de comptage net ?
- Quelle est l'incertitude absolue de ce taux de comptage net pour un intervalle de confiance de 95 % (2σ) ?

$$n_{\text{net}} = 914,5 - 25,5 = 889$$
 impulsions par minute

$$\varepsilon(n_{\text{net}}) = \sqrt{\varepsilon(n_{\text{brut}})^2 + \varepsilon(n_{\text{bdf}})^2}$$

$$\varepsilon(n_{\text{net}}) = \sqrt{(30,24)^2 + (5)^2}$$

$$\varepsilon(nnet) = 30,65$$

$$\frac{\epsilon n_{\text{net}}}{n_{\text{net}}} = \frac{30,65}{889} = 3,4 \%$$

Optimiser les temps de comptage:

Comment optimiser les temps de comptage d'un échantillon et du bruit de fond. Imaginons que vous n'ayez que 15 minutes pour faire une mesure de bruit de fond et la mesure de votre échantillon,

Allez-vous compter 10 minutes le bruit de fond et 5 minutes votre échantillon ou l'inverse ?

t total = t échantillon + t bruit de fond soit $t = t_{ech} + t_{BDF}$

La formule ci-dessous vous permet d'optimiser vos mesures :

$$\frac{t_{\text{brut}}}{t_{\text{BDF}}} = \sqrt{\frac{n_{\text{brut}}}{n_{\text{BDF}}}}$$

En reprenant les exemples précédents:

Votre échantillon brut a un taux de comptage de 914,5 impulsions par minutes. Votre bruit de fond a un taux de comptage de 25,5 impulsions par minutes. Vous avez 15 minutes pour vos deux mesures.

Quel est le temps a accorder à chaque mesure ?

t total = t échantillon + t bruit de fond soit $t = t_{ech} + t_{BDF} = 15$ minutes

$$\frac{t_{\text{ech}}}{t_{\text{BDF}}} = \sqrt{\frac{914,5}{25,5}}$$
 $\frac{t_{\text{ech}}}{t_{\text{BDF}}} = 5,99 = 6$ $t_{\text{ech}} = 6 \cdot t_{\text{BDF}}$

6
$$t_{BDF}$$
 + t_{BDF} = 15 soit t_{BDF} = $\frac{15}{7}$ = 2,14 minutes soit 2 minutes et 8 secondes t_{ech} = $\frac{15}{7}$ = 12 minutes et 52 secondes

Seuil de décision – Limite de détection

Ce qui dit la norme :

- Le «seuil de décision» permet de décider si l'effet physique quantifié par le mesurande est présent ou non;
- La «limite de détection» indique la plus petite valeur vraie du mesurande qui peut encore être détectée par la procédure de mesurage utilisée; cela permet de décider si la procédure satisfait ou non aux exigences et si elle est donc adaptée à l'objectif de mesurage prévu.

Et pour terminer :

Le mesurande est ce que l'on veut mesurer tandis que la grandeur mesurée est ce que l'on peut mesurer.

Pour faire plus simple:

Le Seuil de Décision SD (souvent confondu avec Seuil de Détection) est le seuil pour lequel on peut dire que, statistiquement parlant, un appareil de mesure donne un résultat de mesure probant (qui statistiquement émerge du bruit de fond naturel).

Vous retrouverez les formules actualisées des incertitudes associées aux taux de comptages dans le document dédié aux statistiques.

A vous d'estimer le degré de précision qui est nécessaire à apporter à vos mesures.

Par définition, l'incertitude va être égale à la valeur mesurée. d'où :

$$\epsilon n_{min} = n_{min}$$

$$n_{min}^{2} = \epsilon (n_{min})^{2} = 2 \epsilon (n_{bdf})^{2}$$

$$SD = n_{min} = k.\sqrt{2}.\sqrt{\frac{n_{BDF}}{t}}$$

Concernant la précision si vous choisissez un intervalle de 2 σ ou 3σ le résultat sera modifié.

Si vous voulez un intervalle de confiance de 95 % alors :

$$SD = n_{min} = 2.\sqrt{2}.\sqrt{\frac{n_{BDF}}{t}} = 2.8.\sqrt{\frac{n_{BDF}}{t}}$$

Plus logiquement pour un seuil de décision l'intervalle est de 99,7 %

$$SD = n_{min} = 3.\sqrt{2}.\sqrt{\frac{n_{BDF}}{t}} = 4.2.\sqrt{\frac{n_{BDF}}{t}}$$

Si on prend l'exemple de 102 impulsions en 4 minutes soit 25,5 imp/min

$$SD = 4.2 \cdot \sqrt{\frac{102}{4}} = 21.2$$

Par convention, et toujours pour faire simple, la limite de détection LD est égale à 2 fois le seuil de décision SD. LD = 2 SD

$$LD = 2.SD = 2.k.\sqrt{2}.\sqrt{\frac{n_{BDF}}{t}}$$

Si vous voulez un intervalle de confiance de 95 % alors :

$$LD = 5.6 \cdot \sqrt{\frac{n_{BDF}}{t}}$$

Plus logiquement pour un seuil de décision l'intervalle est de 99,7 %

$$LD = 8.4 \cdot \sqrt{\frac{n_{BDF}}{t}}$$

Si on prend l'exemple de 102 impulsions en 4 minutes soit 25,5 imp/min

$$LD = 4.2 \cdot \sqrt{\frac{102}{4}} = 42.4$$

Pour plus d'informations sur la norme ISO 11929, nous vous conseillons la lecture du document plus étoffé sur les statistiques de mesure.

Pour passer d'un taux de comptage a une activité, il faut effectuer les corrections suivantes :

- La perte au comptage : temps de résolution
- Le bruit de fond
- Le rendement de mesure

Le temps de résolution (aussi nommé temps mort):

Certains détecteurs sont incapables de distinguer deux impulsions si ces dernières sont trop rapprochées dans le temps. C'est parfois le cas des compteurs Geiger-Müller. Les compteurs de nouvelle génération ont moins de problèmes maintenant.

Le taux de comptage en nombre d'impulsions par seconde vraies doit être recalculé en fonction du temps mort.

$$n_{\text{vraies}} \text{ (imp. s}^{-1}\text{)} = \frac{n_{\text{comptées}} \text{ (imp. s}^{-1}\text{)}}{1 - n_{\text{comptées}} \text{ (imp. s}^{-1}\text{)} \cdot \tau \text{ (s)}}$$

Exemple:

Le temps de résolution d'un compteur Geiger-Müller est égal à 100 µs. Le détecteur à compter 750 impulsions par seconde.

Quel est le taux de comptage vrai ?

$$n_{\text{vraies}} \text{ (imp. s}^{-1}\text{)} = \frac{750}{1 - 750.10^{-4}}$$
 $n_{\text{vraies}} \text{ (imp. s}^{-1}\text{)} = 811$

Plus le taux de comptage sera élevé, plus la correction sera importante.

Le bruit de fond

On fait parfois une distinction entre « mouvement propre », indication donné par l'appareil en dehors de toute source radioactive et « bruit de fond », valeur donnée par l'appareil installé dans un endroit donné.

En reprenant le compteur Geiger-Müller, il a généralement un mouvement propre aux alentours de 2 impulsions par seconde.

D'où :
$$n_{net} = n_{vrai} - n_{BDF}$$

Dans l'exemple précédent :

$$n_{net} = 811 - 2 = 809$$
 impulsions par seconde

Le rendement de mesure

C'est le paramètre le plus difficile à évaluer car il est fonction :

- de la nature des rayonnements
- de la distance entre source radioactive et détecteur
- de la nature du support
- de la taille de la source radioactive

$$A (Bq) = \frac{n (imp. s^{-1})}{Rendement global}$$

$$A = r1 + r2 + r3 + r4 + r5 + r6$$

$$q_{2\pi} = r1 + r2 + r3 + r5$$

$$\varepsilon_s = q_{2\pi} / A$$

$$\varepsilon_i = n / q_{2\pi}$$

$$I_i = n / r1 + r2$$

 ε_i = rendement de mesure donné par les constructeurs

$$A = n/\epsilon_i \times 0.5$$

Ou selon les rayonnements

A = $n / \epsilon_i \times 0.25$ (pour les alpha et bêta faible énergie selon la norme)

POUR RÉSUMER

Différence entre comptage N et taux de comptage n

Statistique valable pour un nombre d'impulsions suffisantes (supérieures à 1000).

Plus le temps de mesure est long, meilleure est la précision

Incertitude absolue donnée avec un intervalle de confiance de 95 % ou 99,7 % (2σ ou 3σ)

Composition des incertitudes

Seuil de décision et Limite de détection distincts

POUR RÉSUMER

Ordre des corrections à apporter aux comptages

- La perte au comptage : temps de résolution
- > Le bruit de fond
- Le rendement de mesure

RENDEMENT DE MESURE

= PARAMÈTRE LE PLUS DIFFICILE À CONNAÎTRE

Le rendement de mesure (prendre en compte le facteur correctif pour avoir le rendement global) est souvent donné par les constructeurs sous 2π (norme).

