fKenzo: a user interface for computations in Algebraic Topology

Jónathan Heras Vicente

Departamento de Matemáticas y Computación Universidad de La Rioja Spain

February 11, 2010

Table of Contents

- Introduction
- 2 Technical Issues
- 3 Connecting Computer Algebra Systems and Theorem Provers
- Conclusions and Further Work

Table of Contents

- Introduction
 - Preliminaries
 - Kenzo and fKenzo as learning tools
- 2 Technical Issues
- 3 Connecting Computer Algebra Systems and Theorem Provers
- 4 Conclusions and Further Work

- Kenzo:
 - Symbolic Computation System devoted to Algebraic Topology
 - Homology groups unreachable by any other means
 - A Common Lisp package:

- Kenzo:
 - Symbolic Computation System devoted to Algebraic Topology
 - Homology groups unreachable by any other means
 - A Common Lisp package:
 - Advantage: freedom given by Common Lisp remains available
 - Disadvantage: technicalities of Common Lisp remain present as well

- Kenzo:
 - Symbolic Computation System devoted to Algebraic Topology
 - Homology groups unreachable by any other means
 - A Common Lisp package:
 - Advantage: freedom given by Common Lisp remains available
 - Disadvantage: technicalities of Common Lisp remain present as well
- fKenzo:
 - An extensible user interface:

- Kenzo:
 - Symbolic Computation System devoted to Algebraic Topology
 - Homology groups unreachable by any other means
 - A Common Lisp package:
 - Advantage: freedom given by Common Lisp remains available
 - Disadvantage: technicalities of Common Lisp remain present as well
- fKenzo:
 - An extensible user interface:
 - friendly access to Kenzo (fKenzo)
 - connect different Computer Algebra Systems and Theorem Provers

- Kenzo:
 - Symbolic Computation System devoted to Algebraic Topology
 - Homology groups unreachable by any other means
 - A Common Lisp package:
 - Advantage: freedom given by Common Lisp remains available
 - Disadvantage: technicalities of Common Lisp remain present as well
- fKenzo:
 - An extensible user interface:
 - friendly access to Kenzo (fKenzo)
 - connect different Computer Algebra Systems and Theorem Provers
 - Not necessary to know Common Lisp

 Consider a postgraduate course devoted to Algebraic Topology:

- Consider a postgraduate course devoted to Algebraic Topology:
 - Introducing the loop space Ω and classifying space B functors

- Consider a postgraduate course devoted to Algebraic Topology:
 - Introducing the loop space Ω and classifying space B functors
 - May J.P., Simplicial objects in Algebraic Topology, Van Nostrand Mathematical Studies (11), (1967).
 - There is a symmetry between both functors

- Consider a postgraduate course devoted to Algebraic Topology:
 - Introducing the loop space Ω and classifying space B functors
 - May J.P., Simplicial objects in Algebraic Topology, Van Nostrand Mathematical Studies (11), (1967).
 - There is a symmetry between both functors
 - are the functors Ω and B inverse of each other?

- Consider a postgraduate course devoted to Algebraic Topology:
 - Introducing the loop space Ω and classifying space B functors
 - May J.P., Simplicial objects in Algebraic Topology, Van Nostrand Mathematical Studies (11), (1967).
 - There is a symmetry between both functors
 - are the functors Ω and B inverse of each other?
 - Compare with Kenzo and fKenzo S^2 and $B\Omega S^2$ (Computing Homology groups)

- Consider a postgraduate course devoted to Algebraic Topology:
 - Introducing the loop space Ω and classifying space B functors

- There is a symmetry between both functors
- are the functors Ω and B inverse of each other?
- Compare with Kenzo and fKenzo S^2 and $B\Omega S^2$ (Computing Homology groups)
- Compare with Kenzo and fKenzo ΩS^2 and $\Omega B \Omega S^2$ (Computing Homology groups)

- Consider a postgraduate course devoted to Algebraic Topology:
 - Introducing the loop space Ω and classifying space B functors

- There is a symmetry between both functors
- are the functors Ω and B inverse of each other?
- Compare with Kenzo and fKenzo S^2 and $B\Omega S^2$ (Computing Homology groups)
- Compare with Kenzo and fKenzo ΩS^2 and $\Omega B \Omega S^2$ (Computing Homology groups)
- That provides plausibility to the relation $B\Omega = id$

- Consider a postgraduate course devoted to Algebraic Topology:
 - Introducing the loop space Ω and classifying space B functors

- There is a symmetry between both functors
- are the functors Ω and B inverse of each other?
- Compare with Kenzo and fKenzo S^2 and $B\Omega S^2$ (Computing Homology groups)
- Compare with Kenzo and fKenzo ΩS^2 and $\Omega B \Omega S^2$ (Computing Homology groups)
- That provides plausibility to the relation $B\Omega = id$
- Demo

- Consider a postgraduate course devoted to Algebraic Topology:
 - Introducing the loop space Ω and classifying space B functors

- There is a symmetry between both functors
- are the functors Ω and B inverse of each other?
- Compare with Kenzo and fKenzo S^2 and $B\Omega S^2$ (Computing Homology groups)
- Compare with Kenzo and fKenzo ΩS^2 and $\Omega B \Omega S^2$ (Computing Homology groups)
- That provides plausibility to the relation $B\Omega = id$
- Demo
- All the spaces (except S^2) are not of finite type

- Consider a postgraduate course devoted to Algebraic Topology:
 - Introducing the loop space Ω and classifying space B functors

- There is a symmetry between both functors
- are the functors Ω and B inverse of each other?
- Compare with Kenzo and fKenzo S^2 and $B\Omega S^2$ (Computing Homology groups)
- Compare with Kenzo and fKenzo ΩS^2 and $\Omega B \Omega S^2$ (Computing Homology groups)
- That provides plausibility to the relation $B\Omega = id$
- Demo
- All the spaces (except S^2) are not of finite type
- Challenging task, but easy with our systems

Table of Contents

- 1 Introduction
- 2 Technical Issues
 - fKenzo mediated access to Kenzo
 - fKenzo as CAS and TP framework
 - Specifying with OMDoc Documents
- 3 Connecting Computer Algebra Systems and Theorem Provers
- Conclusions and Further Work

• fKenzo:

• fKenzo:

user interface + an intermediary layer

7/24

• fKenzo:

• fKenzo:

• fKenzo:

- Intelligent enhancements:
 - Controlling the input specification
 - Avoiding operations that will raise errors
 - Providing new operations

• fKenzo:

- Intelligent enhancements:
 - Controlling the input specification
 - Avoiding operations that will raise errors
 - Providing new operations
- Demo

fKenzo as CAS and TP framework

Main Goal: friendly interaction with Kenzo

8/24

fKenzo as CAS and TP framework

- Main Goal: friendly interaction with Kenzo
- Secondary Goal: Framework to interact with Computer Algebra Systems and Theorems Provers related with Algebraic Topology

8/24

fKenzo as CAS and TP framework

- Main Goal: friendly interaction with Kenzo
- Secondary Goal: Framework to interact with Computer Algebra Systems and Theorems Provers related with Algebraic Topology

- OMDoc format:
 - mathematical documents + knowledge encapsulate in them
 - three levels of information:
 - formulæ
 - mathematical statements
 - mathematical theories

- OMDoc format:
 - mathematical documents + knowledge encapsulate in them
 - three levels of information:
 - formulæ
 - mathematical statements
 - mathematical theories
- Sub-languages:

- OMDoc format:
 - mathematical documents + knowledge encapsulate in them
 - three levels of information:
 - formulæ
 - mathematical statements
 - mathematical theories
- Sub-languages:

- OMDoc format:
 - mathematical documents + knowledge encapsulate in them
 - three levels of information:
 - formulæ
 - mathematical statements
 - mathematical theories
- Sub-languages:
- 3 kinds of OMDoc documents:
 - Definition of Mathematical Structures
 - Functionality of the System
 - Definition of GUI structure

Table of Contents

- 1 Introduction
- 2 Ich al Issues
- 3 Connecting Computer Algebra Systems and Theorem Provers
 - Kenzo and ACL2
 - GAP, Kenzo and ACL2
- Conclusions and Further Work

Kenzo Content Dictionaries

 Kenzo works with the main mathematical structures used in Simplicial Algebraic Topology

Organization of CDs

- All the mathematical structures Kenzo works with are graded structures.
- Each graded structure is represented in Kenzo by means of the invariant of its underlying set.

```
inv: U nat -> bool

x n -> True if x \in K^n

False if x \notin K^n
```

Organization of CDs

- All the mathematical structures Kenzo works with are graded structures.
- Each graded structure is represented in Kenzo by means of the invariant of its underlying set.

```
inv: U nat -> bool  x \quad n \quad -> \text{ True } \text{ if } x \in K^n  False if x \notin K^n
```

- Each OpenMath Representation of a Mathematical Structure has:
 - Signature (in a Signature Dictionary)
 - Properties of the mathematical structure
 - Example
 - Predefined Objects (optional)

ACL2

 ACL2 (A Computational Logic for an Applicative Common Lisp)

ACL2

- ACL2 (A Computational Logic for an Applicative Common Lisp)
- ACL2
 - Programming Language
 - First-Order Logic
 - Theorem Prover

ACL2

- ACL2 (A Computational Logic for an Applicative Common Lisp)
- ACL2
 - Programming Language
 - First-Order Logic
 - Theorem Prover
- Proof techniques:
 - Simplification
 - Induction
 - "The Method"

ACL₂

- ACL2 (A Computational Logic for an Applicative Common Lisp)
- ACL2
 - Programming Language
 - First-Order Logic
 - Theorem Prover
- Proof techniques:
 - Simplification
 - Induction
 - "The Method"
- Encapsulate: to the constrained introduction of new functions
 - Signatures
 - Properties
 - Witness

From a Kenzo CD to an ACL2 encapsulate

- Goal: Integration of Kenzo with ACL2 to increase the reliability of the Kenzo system
- ACL2 axiomatic structures: encapsulate

From a Kenzo CD to an ACL2 encapsulate

- Goal: Integration of Kenzo with ACL2 to increase the reliability of the Kenzo system
- ACL2 axiomatic structures: encapsulate
- Encapsulate:
 - Signatures
 - Properties
 - Witness

From a Kenzo CD to an ACL2 encapsulate

- Goal: Integration of Kenzo with ACL2 to increase the reliability of the Kenzo system
- ACL2 axiomatic structures: encapsulate
- Encapsulate:
 - Signatures
 - Properties
 - Witness
- Interpreter from Kenzo CDs to ACL2 Encapsulates

```
\begin{array}{ccc} \text{OMDoc CDs} & \text{ACL2 Encapsulates} \\ \textit{Signatures} & \rightarrow & \textit{Signatures} \\ \textit{Properties} & \rightarrow & \textit{Properties} \\ \textit{Example} & \rightarrow & \textit{Witness} \end{array}
```

Definition

A simplicial set K, is a disjoint union $K = \bigcup_{q \geq 0} K^q$, where the K^q are sets, together with functions

$$\begin{array}{ll} \partial_i^q : K^q \to K^{q-1}, & q>0, \quad i=0,\dots,q, \\ \eta_i^q : K^q \to K^{q+1}, & q\geq0, \quad i=0,\dots,q, \end{array}$$

subject to relations

$$\begin{array}{lcl} \partial_{i}^{q-1}\partial_{j}^{q} & = & \partial_{j-1}^{q-1}\partial_{j}^{q}, & i < j \\ \eta_{i}^{q+1}\eta_{j}^{q} & = & \eta_{j}^{q+1}\eta_{i-1}^{q}, & i > j \\ \partial_{i}^{q+1}\eta_{j}^{q} & = & \eta_{j-1}^{q-1}\partial_{i}^{q}, & i < j \\ \partial_{i}^{q+1}\eta_{i}^{q} & = & \partial_{i+1}^{q-1}\eta_{i}^{q}, & \text{identity} \\ \partial_{j}^{q+1}\eta_{j}^{q} & = & \eta_{j-1}^{q-1}\partial_{i-1}^{q}, & i > j+1 \end{array}$$

```
<Signature name="simplicial-set">
    <OMOBJ xmlns="http://www.openmath.org/OpenMath">
        < AMA>
            <OMS name="mapsto" cd="sts"/>
            <OMA id="inv">
                <OMS cd="sts" name="mapsto"/>
                <OMV name="Simplicial-Set-Element"/>
                <OMV name="PositiveInteger"/>
                <OMS cd="setname2" name="boolean"/>
            </OMA>
            <OMA id="face">
                <OMS cd="sts" name="mapsto"/>
                <OMV name="Simplicial-Set-Element"/>
                <OMV name="PositiveInteger"/>
                <OMV name="PositiveInteger"/>
                <OMV name="Simplicial-Set-Element"/>
            </DMA>
            <OMA id="degeneracy">
                <OMS cd="sts" name="mapsto"/>
                <OMV name="Simplicial-Set-Element"/>
                <OMV name="PositiveInteger"/>
                <OMV name="PositiveInteger"/>
                <OMV name="Simplicial-Set-Element"/>
            </MMA>
            <OMV name="Simplicial-Set"/>
        </NMA>
    </OMOB.J>
</Signature>
```

```
(((face * * *) => *)
((degeneracy * * *) => *)
((inv * *) => *))
```

```
<CMP> The face operator is well defined </CMP>
<FMP>
< AMA>
    <OMS cd="logic1" name="implies"/>
    < AMA>
        <OMV name="inv"/>
        <OMV name="x"/>
        <OMV name="q"/>
    </OMA>
    < AMO>
        <NMV name="inv"/>
        <NMA>
            <OMV name="face"/>
            <OMV name="x"/>
            <OMV name="i"/>
            <OMV name="q"/>
        </DMA>
        < MMA>
            <OMS cd="arith1" name="minus"/>
            <OMV name="q"/>
            <OMI>1</OMI>
        </NMA>
    </MMA>
</OMA>
</FMP>
```

```
; The face operator is well defined
(defthm prop1
(implies (inv x q) (inv (face x i q) (- q 1))))
```

```
(local (defun face (x i q)
  (declare (IGNORE x i q))
  nil))
```

GAP, Kenzo and ACL2

• GAP:

System for computational discrete algebra Focuses on Group Theory HAP: A Homological Algebra library

GAP, Kenzo and ACL2

• GAP:

System for computational discrete algebra Focuses on Group Theory HAP: A Homological Algebra library

Kenzo:

Symbolic Computation System devoted to Algebraic Topology Homology groups unreachable by any other means

GAP, Kenzo and ACL2

• GAP:

System for computational discrete algebra Focuses on Group Theory HAP: A Homological Algebra library

Kenzo:

Symbolic Computation System devoted to Algebraic Topology Homology groups unreachable by any other means

ACL2:

Theorem Prover First order logic Based on Common Lisp

Aim:

Obtain resolutions of Cyclic Groups from HAP

Aim:

Obtain resolutions of Cyclic Groups from HAP
Use these resolutions in Kenzo to build Eilenberg-MacLane
Spaces and to compute homology groups

Aim:

Aim:

Obtain resolutions of Cyclic Groups from HAP
Use these resolutions in Kenzo to build Eilenberg-MacLane
Spaces and to compute homology groups
Certify that the cyclic groups of Kenzo are Abelian Groups

Working manually:

Aim:

- Working manually:
 - 1 Load the necessary packages and files in GAP and Kenzo

Aim:

- Working manually:
 - Load the necessary packages and files in GAP and Kenzo
 - Build the cyclic group in GAP

Aim:

- Working manually:
 - 1 Load the necessary packages and files in GAP and Kenzo
 - Build the cyclic group in GAP
 - Build a resolution of the cyclic group using HAP package

Aim:

- Working manually:
 - 1 Load the necessary packages and files in GAP and Kenzo
 - Build the cyclic group in GAP
 - Suild a resolution of the cyclic group using HAP package
 - Export the resolution in a file using OpenMath format from GAP

Aim:

- Working manually:
 - 1 Load the necessary packages and files in GAP and Kenzo
 - 2 Build the cyclic group in GAP
 - Build a resolution of the cyclic group using HAP package
 - Export the resolution in a file using OpenMath format from GAP
 - Import the resolution to Kenzo

Aim:

Obtain resolutions of Cyclic Groups from HAP
Use these resolutions in Kenzo to build Eilenberg-MacLane
Spaces and to compute homology groups
Certify that the cyclic groups of Kenzo are Abelian Groups

- Working manually:
 - 1 Load the necessary packages and files in GAP and Kenzo
 - Build the cyclic group in GAP
 - Suild a resolution of the cyclic group using HAP package
 - Export the resolution in a file using OpenMath format from GAP
 - Import the resolution to Kenzo
 - 6 Build the cyclic group in Kenzo

Aim:

- Working manually:
 - Load the necessary packages and files in GAP and Kenzo
 - Build the cyclic group in GAP
 - Suild a resolution of the cyclic group using HAP package
 - Export the resolution in a file using OpenMath format from GAP
 - Import the resolution to Kenzo
 - 6 Build the cyclic group in Kenzo
 - Assign the resolution to the correspondent cyclic group in Kenzo

Aim:

- Working manually:
 - Load the necessary packages and files in GAP and Kenzo
 - Build the cyclic group in GAP
 - Build a resolution of the cyclic group using HAP package
 - Export the resolution in a file using OpenMath format from GAP
 - Import the resolution to Kenzo
 - Build the cyclic group in Kenzo
 - Assign the resolution to the correspondent cyclic group in Kenzo
 - Build the space K(G,1) where G is the cyclic group in Kenzo

Aim:

- Working manually:
 - 1 Load the necessary packages and files in GAP and Kenzo
 - Build the cyclic group in GAP
 - Suild a resolution of the cyclic group using HAP package
 - Export the resolution in a file using OpenMath format from GAP
 - Import the resolution to Kenzo
 - Build the cyclic group in Kenzo
 - Assign the resolution to the correspondent cyclic group in Kenzo
 - 8 Build the space K(G,1) where G is the cyclic group in Kenzo
 - O Compute $H_n(K(G,1))$ in Kenzo

• SCSCP: Remote Procedure Call Framework based on OpenMath Language

- SCSCP: Remote Procedure Call Framework based on OpenMath Language
- Working in fKenzo:

- SCSCP: Remote Procedure Call Framework based on OpenMath Language
- Working in fKenzo:
 - Load the GAP-Kenzo-ACL2 module in our system

- SCSCP: Remote Procedure Call Framework based on OpenMath Language
- Working in fKenzo:
 - 1 Load the GAP-Kenzo-ACL2 module in our system
 - 2 Build the cyclic group

- SCSCP: Remote Procedure Call Framework based on OpenMath Language
- Working in fKenzo:
 - Load the GAP-Kenzo-ACL2 module in our system
 - 2 Build the cyclic group
 - 3 Build the space K(G,1) where G is the cyclic group

- SCSCP: Remote Procedure Call Framework based on OpenMath Language
- Working in fKenzo:
 - 1 Load the GAP-Kenzo-ACL2 module in our system
 - 2 Build the cyclic group
 - 3 Build the space K(G,1) where G is the cyclic group
 - Ompute $H_n(K(G,1))$

- SCSCP: Remote Procedure Call Framework based on OpenMath Language
- Working in fKenzo:
 - Load the GAP-Kenzo-ACL2 module in our system
 - Build the cyclic group
 - 3 Build the space K(G,1) where G is the cyclic group
 - Ompute $H_n(K(G,1))$
- Demo

- Goal:
 - Improve the reliability of our system
 - Certification of the cyclic groups implemented in Kenzo

20/24

- Goal:
 - Improve the reliability of our system
 - Certification of the cyclic groups implemented in Kenzo
- Steps to certify cyclic groups:

- Goal:
 - Improve the reliability of our system
 - Certification of the cyclic groups implemented in Kenzo
- Steps to certify cyclic groups:
 - Interpreter loads the definition of Cyclic Groups from an OMDoc file

- Goal:
 - Improve the reliability of our system
 - Certification of the cyclic groups implemented in Kenzo
- Steps to certify cyclic groups:
 - Interpreter loads the definition of Cyclic Groups from an OMDoc file
 - An instance of the previous definition is automatically generated for the selected cyclic group

- Goal:
 - Improve the reliability of our system
 - Certification of the cyclic groups implemented in Kenzo
- Steps to certify cyclic groups:
 - Interpreter loads the definition of Cyclic Groups from an OMDoc file
 - An instance of the previous definition is automatically generated for the selected cyclic group
 - The cyclic group is certified

- Goal:
 - Improve the reliability of our system
 - Certification of the cyclic groups implemented in Kenzo
- Steps to certify cyclic groups:
 - Interpreter loads the definition of Cyclic Groups from an OMDoc file
 - An instance of the previous definition is automatically generated for the selected cyclic group
 - The cyclic group is certified

- Goal:
 - Improve the reliability of our system
 - Certification of the cyclic groups implemented in Kenzo
- Steps to certify cyclic groups:
 - Interpreter loads the definition of Cyclic Groups from an OMDoc file
 - An instance of the previous definition is automatically generated for the selected cyclic group
 - The cyclic group is certified
- Demo

Table of Contents

- 1 Introduction
- 2 1 ch ical Issues
- 3 Comeoling Computer Algebra Systems and Theorem Provers
- Conclusions and Further Work

- Friendly + Mediated access to Kenzo
- Framework to interact with several CAS and TP related with Algebraic Topology
- Underlying lessons to interact with different systems:

- Friendly + Mediated access to Kenzo
- Framework to interact with several CAS and TP related with Algebraic Topology
- Underlying lessons to interact with different systems:
 - Example: Interaction with Mathematica

- Friendly + Mediated access to Kenzo
- Framework to interact with several CAS and TP related with Algebraic Topology
- Underlying lessons to interact with different systems:
 - Example: Interaction with Mathematica
 - Definition of Mathematical Structures: Fractals

- Friendly + Mediated access to Kenzo
- Framework to interact with several CAS and TP related with Algebraic Topology
- Underlying lessons to interact with different systems:
 - Example: Interaction with Mathematica
 - Definition of Mathematical Structures: Fractals
 - Definition of Interaction with Mathematica

- Friendly + Mediated access to Kenzo
- Framework to interact with several CAS and TP related with Algebraic Topology
- Underlying lessons to interact with different systems:
 - Example: Interaction with Mathematica
 - Definition of Mathematical Structures: Fractals
 - Definition of Interaction with Mathematica
 - Definition of GUI structure

Further Work

- Find a suitable way of editing spaces
- Extend fKenzo:
 - Kenzo evolves
 - Connection with other CAS and TP.

fKenzo: a user interface for computations in Algebraic Topology

Jónathan Heras Vicente

Departamento de Matemáticas y Computación Universidad de La Rioja Spain

February 11, 2010

