

Firewalls

UBNetDef, Fall 2022 Week 3

Lead Presenter: Raymond Harenza

Networking Part 2

Learning Objectives

- More networking
- Specifics of transport layer of OSI Model
- TCP Handshake
- Understanding of directional flow
- Understanding of the various types of firewalls
- Able to understand firewall rules and configure them yourself

Agenda – Week 3

- Reviewing current network state
- Networking Part 2 with Ports
- Hands-on Activity 1
- The Application layer
- Domain Name Service Demo
- Directional Flow
- Hands-on Activity 2
- The Logic of Firewalls
- Homework System Prep

Current Network State

Networking Part 2

- Data is transmitted using network packets
- Packets contain headers
 - Headers tell networking appliances what to do with packets

Intro to Ports

- Recall MAC Addresses
- Consider these similar to physical coordinates

Intro to Ports

- Recall IP Addresses
- Consider these similar to postal addresses for buildings

Intro to Ports

- Ports are similar to room numbers
 - MAC: 43.000483,-78.783078
 - o IP: 103 Center for the Arts
 - o Port: Room 116
- Ports are indicated next to IP addresses
 - 192.168.15.152:116

The Transport Layer

Transport Layer
(TCP, UDP, ICMP)
Header Data

- Ports are managed by the OSI network transport layer
- The transport layer also manages packet exchange protocols
 - TCP
 - Downloading a File
 - UDP
 - Streaming or Video Call

Network Packet Headers

TCP Header

sc	ource por	t number	destination port number		
	2 by	tes	2 bytes		
		sequence 4 by			
	acknowledgement number 4 bytes				
data offset	reserved	control flags	window size		
4 bits	3 bits	9 bits	2 bytes		
checksum			urgent pointer		
2 bytes			2 bytes		
optional data 0-40 bytes					

UDP Header

Source port	Destination port
UDP length	Checksum

In Class Activity

TCP/UDP Packet Polo

TCP Handshake

pfTop: Up	Stat	te 1-100/114033, View: default	, Order: bytes					
PR	DIR	SRC	DEST	STATE	AGE	EXP	PKTS	BYTES
icmp	Out	192.168.253.18:17838	192.168.253.17:17838	0:0	75:14:36	00:00:10	1060806	29702568
icmp	Out	192.168.253.18:42531	192.168.0.1:42531	0:0	75:14:33	00:00:10	1060796	29702288
tcp	In	192.168.15.137:45602	192.168.253.18:80	ESTABLISHED: ESTABLISHED	00:01:51	23:59:55	983	1102747
tcp	In	192.168.15.137:45604	192.168.253.18:80	ESTABLISHED: ESTABLISHED	00:01:45	24:00:00	989	959986
tcp	In	10.3.1.70:61246	52.177.166.224:443	ESTABLISHED: ESTABLISHED	14:30:20	23:59:49	2654	352606
tcp	Out	192.168.253.18:52428	52.177.166.224:443	ESTABLISHED: ESTABLISHED	14:30:20	23:59:49	2654	352606

"Application Layer"

APPLICATION LAYER 7

PRESENTATION LAYER 6

SESSION LAYER 5

TRANSPORT LAYER 4

NETWORK LAYER 3

DATALINK LAYER 2

PHYSICAL LAYER

Port#	Protocol
21	FTP Control
20	FTP Data
23	Telnet
25	SMTP
53	DNS
80	HTTP
110	POP3
143	IMAP
443	HTTPS

The Application Layer

- The transport layer cannot do it all
- For example:
 - Domain Name Service (DNS) Protocol
 - May require TCP or UDP protocols
 - Hypertext Transfer Protocol (HTTP)
 - Often requires two different devices
- Common port numbers are assigned to popular application protocols

DNS

- How does your computer get to <u>www.Google.com</u>?
- A DNS server is used to translate a domain name to an IP address

Name: google.com

Addresses: 2607:f8b0:4006:81c::200e

142.250.176.206

DNS Demo

- Open a CLI
- nslookup washington.edu
- Copy IP Address into web browser
- You may need to use http://as a URL prefix

Directional Flow

Data flows freely... for now

Break slide

Please return in 10 minutes Also turn on your UbuntuClient

Networking Recap

- IP Addresses contain 4 octets 0-255.0-255.0-255.0-255
 - O reserved
 - 255 used to the broadcast address
- Subnet masks let us separate IP addresses
 - We can create Local Area Networks (LAN)
- Default gateway is where data must go to leave our LAN
- Domain Name Service makes life easy for us but is not required

eneral	Alternate Configuration					
this cap	n get IP settings assigned a pability. Otherwise, you nee appropriate IP settings.					
	btain an IP address automa	tically				
On	se the following IP address:					
IP a	ddress:				10	
Subnet mask: Default gateway:				16		
	btain DNS server address au	utomatically	,			
Οu	se the following DNS server	addresses:				
Pref	erred DNS server:			*	•	
Alte	rnate DNS server:					
	/alidate settings upon exit				A -J.	vanced

PS C:\Users\Ant	thonyM>	resolve-dnsname www.google.com select Name ,spacer ,IPAddress
Name	spacen	IPAddress
7.7.7		
www.google.com		2607:f8b0:4006:804::2004
www.google.com		172.217.10.68

In Class Activity

Hands-on Migration

Activity - Migrate Linux to AdminNet

Migrate UbuntuClient from ServerNet to AdminNet.

Activity - Migrate Linux to AdminNet Before

Activity - Migrate Linux to AdminNet After

Why Firewalls?

Any networked device can access the mission-critical system

DMZ

Types of Firewalls

- Packet Filters (GEN 1)
- Stateful Firewalls (GEN 2)
 - Host-Based
 - pfSense
- Next-generation Firewalls (NGFW)
 - Palo Alto (coming soon in this class)

In Class Activity

TCP/UDP Packet Polo with Firewall

TCP/UDP Packet Polo with Firewall

Host based Firewalls


```
| Description |
```


Break slide

Please return in 10 minutes Also turn on your Win10Client

In Class Activity

Login to pfSense

Accessing pfSense

- Open your Win10Client
- Open a browser of your choice and a CLI
- Run command ipconfig
- Type the IP of the "default gateway" device into the address bar of your browser
- The credentials for pfSense will be admin as the user and the password is pfsense

Disabling Default WAN(External) Firewall Rules

- Select the Firewalls dropbox at the top of the menu and select rules
- Click on the gear

g.	States	Protocol	Source	Port	Destination	Port	Gateway	Queue	Schedule	Description	Actions
×	0 /0 B	*	RFC 1918 networks	*	*	*	*	*		Block private networks	•
×	0 /0 B	*	Reserved	*	*	*	*	*		Block bogon networks	*

- Scroll to the bottom and uncheck the two checkboxes
- Don't forget to save at the bottom and by pressing apply changes

Disabling Default LAN(AdminNet) Firewall Rules (Cont.)

Change your interface to your LAN (AdminNet)

Remove the default firewall rules, remember to save and apply after

Do not remove the Anti-Lockout Rule... yet! (Hint: that's part of your HW)

Current Network State

Ru	Rules (Drag to Change Order)													
0		States	Protocol	Source	Port	Destination	Port	Gateway	Queue	Schedule	Description	Actions		
	~	0 /480 B	IPv4 ICMP any	*	*	8.8.8.8	*	*	none			₺ 🖋 🖾 🛇 🛅		
	~	0 /217 KiB	IPv4 TCP	*	*	*	443 (HTTPS)	*	none			₺ ● □ ○ 面		
	~	0 /877 B	IPv4 TCP	*	*	*	80 (HTTP)	*	none			₺ ● □ ○ 面		
	×	0 /1 KiB	IPv4 TCP	*	*	*	*	*	none			₺ ₺ □ ○ 亩		

Destination IP Addr

source port number destination port number 2 bytes destination port number

Ru	Rules (Drag to Change Order)													
		States	Protocol	Source	Port	Destination	Port	Gateway	Queue	Schedule	Description	Actions		
	~	0 /480 B	IPv4 ICMP any.	*	*	8.8.8.8	*	*	none			₺ Ø □ ○ 面		
	~	0 /217 KiB	IPv4 TCP	*	*	*	443 (HTTPS)	*	none			₺ 💇 🖾 🛇 🛅		
	~	0 /877 B	IPv4 TCP	*	*	*	80 (HTTP)	*	none			₺ 🖋 🖾 🛇 🛅		
	×	0 /1 KiB	IPv4 TCP	*	*	*	*	*	none			₺ 🖋 🖾 🛇 🛅		

Packet Header

Protocol

Source IP Addr

Destination IP Addr

source port number 2 bytes destination port number 2 bytes

Ru	Rules (Drag to Change Order)												
0		States	Protocol	Source	Port	Destination	Port	Gateway	Queue	Schedule	Description	Actions	
	~	0 /480 B	IPv4 ICMP any	*	*	8.8.8.8	*	*	none			₺ 🖋 🖾 🔾 🛅	
	~	0 /217 KiB	IPv4 TCP	*	*	*	443 (HTTPS)	*	none			₺ 🖋 🖸 🛇 🛅	
	~	0 /877 B	IPv4 TCP	*	*	*	80 (HTTP)	*	none			₺ / □ ○ 亩	
	×	0 /1 KiB	IPv4 TCP	*	*	*	*	*	none			₺ 🖍 🖸 🛇 🛅	

Ru	Rules (Drag to Change Order)													
0		States	Protocol	Source	Port	Destination	Port	Gateway	Queue	Schedule	Description	Actions		
	~	0 /480 B	IPv4 ICMP any.	*	*	8.8.8.8	*	*	none			₺ ₽ □○面		
	~	0 /217 KiB	IPv4 TCP	*	*	*	443 (HTTPS)	*	none			₺ 🖋 🖸 🛇 🛅		
	~	0 /877 B	IPv4 TCP	*	*	*	80 (HTTP)	*	none			₺ ● □ ○ 面		
	×	0 /1 KiB	IPv4 TCP	*	*	*	*	*	none			₺ 🖋 🖾 🛇 🛅		

Ru	Rules (Drag to Change Order)												
_		States	Protocol	Source	Port	Destination	Port	Gateway	Queue	Schedule	Description	Actions	
	~	0 /480 B	IPv4 ICMP any	*	*	8.8.8.8	*	*	none			₺ ₽ □○面	
	~	0 /217 KiB	IPv4 TCP	*	*	*	443 (HTTPS)	*	none			₺ ● □ ○ 面	
	~	0 /877 B	IPv4 TCP	*	*	*	80 (HTTP)	*	none			₺ ● □ ○ 面	
	×	0 /1 KiB	IPv4 TCP	*	*	*	*	*	none			₺ 🖋 🖾 🛇 🛅	

Hands-On

Activity – Host Based Firewalls

- Disable the default WAN rules
- Block all Ping requests using your Linux host based firewall.
 - Test by having someone at your table try to ping your device before and after
- Allow all ping requests using your Windows host based firewall.
 - Test by having someone at your table try to ping your device before and after.

The Logic of Firewalls

Rule Hierarchy

- Each packet is checked against rules.
 - Rules are enforced from top to bottom
 - Packets can be:
 - Rejected
 - Dropped
 - Allowed

Ru	Rules (Drag to Change Order)												
0		States	Protocol	Source	Port	Destination	Port	Gateway	Queue	Schedule	Description	Actions	
	~	0 /480 B	IPv4 ICMP any.	*	*	8.8.8.8	*	*	none			₺ 🖍 🖾 🛇 🛅	
	~	0 /217 KiB	IPv4 TCP	*	*	*	443 (HTTPS)	*	none			₺ 🖍 🖸 🛇 🛅	
	V	0 /877 B	IPv4 TCP	*	*	*	80 (HTTP)	*	none			₺ 🖋 🖾 🔿 🛅	
	×	0 /1 KiB	IPv4 TCP	*	*	*	*	*	none			₺ 🖋 🖾 🛇 🛅	

How Traffic Flows

Your network

How Traffic Flows

From LAN (AdminNet) to Web

How Traffic Flows

From Web to LAN (AdminNet)

Web inbound is managed by the WAN

(External) interface

Floating WAN LAN OPT1

Ru	les	(Drag to Ch	ange Orde	r)				
0		States	Protocol	Source	Port	Destination	Port	Gateway
	V	2 /249 KiB	IPv4 TCP	192.168.13.71	*	10.42.29.11	3389	*

Catch all rule

What if a packet doesn't match any of our rules?

Catch all rule

- What if a packet doesn't match any of our rules?
 - Firewalls use one or more default "catch all rule(s)" that is enforced when a packet does not match any listed rules.
 - The default behavior depends on firewall manufacturer

Define Your Own Default Rule(s)

 Default firewall rule(s) need to be at the bottom of the firewall's rule list

	States	Prot	ocol		Source	Port	Destination	Port	Gateway	Queue
×	0 /2 KiB	IPv-	4+6*		*	*	*	*	*	none
1		/						>		
~	5 /7.08 MiB	IPv4 *	LAN net	*	*	*	*	none	Default allow LAN to	any rule
~	0 /0 B	IPv6 *	LAN net	*	*	*	*	none	Default allow LAN IPv	6 to any rule

Logic of Firewalls Questions?

In Class Activity

Compromised Device & pfSense Hands-On

Activity – pfSense Firewall

- Prevent all ping requests from inside AdminNet to anywhere on
 - External (Anywhere on Gretzky's LAN or the internet)
 - Test by attempting to ping IP address 8.8.8.8
- If this is too easy
 - Make it so you can ping Gretzky (192.168.254.254) but not 8.8.8.8

Activity - Compromised Windows 10 Host

- Prevent me from being able to access your system.
 - Credentials:
 - Username: sysadmin
 - Password: Change.me!
- Hint[0]: get-nettcpconnection
- Hint[1]: What are the remote control protocols that Windows uses?

Homework Prep

System Prep

- Prep 1: Install SSH on your Linux client
 - Package name: openssh-server
 - sudo apt install openssh-server
 - https://youtu.be/HJXo68LnNOs
- Prep 2: Run script from GitHub on Windows Client (PrepareWindowsSystem.ps1)
 - https://github.com/ubnetdef/WindowsScriptsForLecture
 - https://www.youtube.com/watch?v=Z6kNyfZiNxg

- Credentials
 - Username: admin
 - Password: pfsense

Navigation through pfSense UI can generally be done using the top bar

Rules menu is under Firewall > Rules

Rules are grouped by the interface that handles the packets

Homework Hint

- If after you apply a firewall rule you can no longer connect to your pfsense router through the Web Interface it is likely you have a firewall rule that is blocking you.
 - Use pfctl -d to disable the firewall and make sure to fix the offending rule before applying and additional rules.
- Everytime you modify any rule and commit the change your firewall will be reenabled
- Changing one rule at a time and testing may be best practice

Summary and Wrap-up

Today's achievements:

- Reviewed networking
- Further dive into OSI model specifically in the transport layer with the TCP handshake and UDP
- Migrated UbuntuClient to AdminNet
- Learned about firewalls and the different types
- Configured firewall rules to block a compromised device

Class dismissed

See you next week!