0.1 — Il modello SIR

Il modello SIR è un modello compartimentale: la popolazione (che si ritiene costante nel tempo) viene suddivisa in 3 classi

- S: i suscettibili ovvero individui che possono contrarre la malattia
- *I*: gli *infetti* ovvero coloro che sono ammalati
- R: i *rimossi* ovvero quelli tolti dalla prima classe perchè completamente guariti (dunque immuni)

Tale modello si basa su alcune assunzioni

- Il numero della popolazione è costante nel tempo e verrà indicato con ${\cal N}$
- Non si considerano nuove nascite o morti
- Esiste un fattore di contatto β . Tale rapporto indica, mediamente, quanti suscettibili vengono infettati da un infetto.
- Gli infetti lasciano la classe al tasso α per unità di tempo e vanno nella classe R
- Un individuo che entra nella classe R non uscirà da tale classe

Da queste considerazioni segue che

$$S' = -\beta SI$$

$$I' = \beta SI - \alpha I$$

$$R' = \alpha I$$
(1)

Poichè abbiamo assunto ${\cal N}=S+I+R$ fosse costante, il sistema precedente risulta equivalente a

$$S' = -\beta SI$$

$$I' = \beta SI - \alpha I$$
(2)

Studiamo cosa succede se introduciamo un piccolo numeri di infetti in una popolazione di suscettibili, ovvero consideriamo il sistema 2 con le condizioni iniziali

$$I(0) = I_0 > 0$$

 $S(0) = S_0 = N - I_0$

Da 2 osserviamo che S'<0 per ogni tempo tmentre I'>0 se e solo se $\frac{\beta S}{\alpha}>1$ Chiamiamo

 $\mathcal{R}_0 = \frac{\beta S_0}{\alpha}$

il *numero di riproduttività di base* (rappresenta il numero di individui infettati all'interno di una popolazione di suscettibili, consideriamo $I_0 << N$). Tale valore ci permette di capire l'andamento dell'epidemia

- se $\mathcal{R}_0 < 1$ allora l'epidemia si estingue infatti sotto queste condizioni I'(t) < 0 per ogni tempo t
- se $\mathcal{R}_0 > 1$ allora I inizialmente aumenta e dunque l'epidemia può iniziare

Vogliamo studiare il sistema autonomo di equazioni differenziali 2.

Osserviamo che essendo I=0 un equilibrio, per risolvere tale sistema non possiamo trovare gli equilibri e linearizzare attorno ad essi. Occorre dunque tentare un aprooccio diverso.

Sommando le due equazioni otteniamo

$$(S+I)' = -\alpha I \tag{3}$$

Ora S+I è una funzione non negativa, decrescente dunque ammette un limite. Poichè la derivata di una funzione decrescente e limitata deve tendere a 0 si ha $I(t) \to 0$.

Da queste due osservazioni si ha $S(t) \to S_{\infty}$.

Ora integrando da 0 a $+\infty$ in ?? otteniamo

$$\alpha \int_0^{+\infty} I(t) dt = -\int_0^{+\infty} (S(t) + I(t))' == N - S_{\infty}$$

In 2, dividendo per S e integrando da 0 a T otteniamo

$$\log \frac{S_0}{S_\infty} = \beta \int_0^{+\infty} I(t) \, dt = \frac{\beta}{\alpha} \left(N - S_\infty \right) = \mathcal{R}_0 \left(1 - \frac{S_\infty}{N} \right) \tag{4}$$

tale equazione prende il nome di *relazione di dimensione finale* infatti fornisce una relazione tra il numero \mathcal{R}_0 e la dimensione dell'epidemia (numero di membri che sono stati infetti nel corso dell'epidemia: $N-S_{\infty}$).

Osservazione 1. Poichè il lato destro della ?? è finito lo è anche il lato sinistro e dunque $S_{\infty}>0$ ovvero finita l'epidemia esisteranno ancora degli individui suscettibili

Osservazione 2. Mostriamo che la relazione finale ha un'unica soluzione Sia

$$g(x) = \log \frac{S_0}{x} - \mathcal{R}_0 \left(1 - \frac{x}{N} \right)$$

ora

$$\lim_{x \to 0^+} g(x) > 0 \qquad g(N) = \log \frac{S_0}{N} < 0$$

mentre

mo stimare \mathcal{R}_0 .

$$g'(x) = -\frac{1}{x} + \frac{\mathcal{R}_0}{N} < 0 \quad \Leftrightarrow x < \frac{N}{\mathcal{R}_0}$$

• se $\mathcal{R}_0 \leq 1$ allora $N < \frac{N}{\mathcal{R}_0}$ dunque g decresce da un valore positivo in 0^+ fino ad un valore negativo in N. In questo caso esiste g(x) ha un'unica soluzione S_∞ con $S_\infty < N$

• se $\mathcal{R}_0 > 1$ allora la funzione è monotona decrescente da un valore positivo in 0^+ fino al minimo in $\frac{N}{\mathcal{R}_0}$. Poichè

$$g\left(\frac{S_0}{\mathcal{R}_0}\right) = \log \mathcal{R}_0 - \mathcal{R}_0 + \frac{S_0}{N} \le \log \mathcal{R}_0 0 \mathcal{R}_0 + 1 < 0$$

infatti $\log x < x - 1$ per x > 0. Dunque g(x) ha un unico zero in S_{∞} con $S_{\infty} < \frac{N}{R_0}$

Andiamo ora a descrivere le orbite delle soluzioni nel piano (S,I). Dividendo per S l'equazione $\bf 2$ e integrando tra $\bf 0$ a t otteniamo

$$\log \frac{S_0}{S(t)} = \beta \int_0^{+\infty} I(t) dt = \frac{\beta}{\alpha} (N - S(t) - I(t))$$

Osservazione 3 (Stima dei parametri). Il fattore β è di difficile stima: dipenda dalla malattia in esame ma soprattutto da fattori sociali e comportamentali. I valori di S_0 e S_∞ possono essere ricavati tramite test sierologici (misurazione della risposta immunitaria tramite analisi del sangue); da questi valori usando ?? possia-

Questa stima, tuttavia è retrospettiva e può essere ricavata solamente dopo che l'epidemia ha fatto il suo corso.

Presentiamo un altro modo per stimare β . Inizialmente vale la seguente approssimazione

$$I' = (\beta N - \alpha) I$$

dunque il numero degli infetti cresce esponenzialmente con un tasso di crescita

$$r = \beta N - \alpha = \alpha \left(\mathcal{R}_0 - 1 \right)$$

Ora r può essere ricavato dell'incidenza della malattia all'inizio dell'epidemia, dunque otteniamo

$$\beta = \frac{r + \alpha}{N}$$

Osservazione 4 (Immunizzazione). Se un gruppo di infetti viene introdotto in una popolazione, per prevenire un'epidemia è necessario ridurre \mathcal{R}_0 .

Un modo può essere tramite l'immunizzazione, lo scopo è quello di trasferire membri della popolazione della classe S a quella R, così facendo viene ridotto il numero S_0 dunque anche \mathcal{R}_0 .

Andiamo a studiare il nuovo modello che si genera.

Supponiamo che una frazione p della popolazione sia immunizzata: il numeri dei suscettibili passa da S_0 a $S_0(1-p)$.

Se inizialmente il numero di riproduzione di base era $\frac{\beta N}{\alpha}$, nella nuova situazione passa a $\frac{\beta N(1-p)}{\alpha}$ dunque

$$\frac{\beta N(1-p)}{\alpha} < 1 \quad \Leftrightarrow \quad p > 1 - \frac{\alpha}{\beta N} = 1 - \frac{1}{\mathcal{R}_0}$$

0.1.1 Un esempio

Analizziamo i dati della peste bubonica del 1665-66 nel villaggio di Eyam (ref 3) I membri del villaggio hanno annotato giorno per giorno il numero di decessi. Per appianare alcune significative variazioni giornaliera nel tasso di mortalità abbiamo raccolto i dati con una cadenza di $15\frac{1}{2}$ giorni a partire dal 18 Giugno del 1666 (vedi tabella $\ref{166}$)

Periodo (1666)	Deceduti	Rimossi (alla fine del periodo)
19 Giugno-3/4 Luglio	11.5	11.5
4/5 Luglio-19 Luglio	26.5	38
20 Luglio-3/4 Agosto	40.5	78.5
4/5 Agosto-19 Agosto	41.5	120
20 Agosto-3/4 Settembre	25	145
4/5 Settembre-19 Settembre	11	156
20 Settembre-4/5 Ottobre	11.5	167.5
5/6 Ottobre-20 Ottobre	10.5	178

Tabella 1: Popolazione di deceduti e rimossi

Prendendo come periodo medio di infezione 11 giorni, possiamo stimare il numero degli infetti. Alla fine di ogni intervallo di tempo il numero di infetti è dato analizzando il diario dei decessi degli 11 giorni successivi. Sfruttando la relazione

$$N = S(t) + I(t) + R(t)$$

otteniamo la tabella 2

Tabella 2: Numero di suscettibili ed infetti. $S(0)=254\ I(0)=7$ e N=261

Data (1666)	S	I	
3/4 Luglio	235	14.5	
19 Luglio	201	22	
3/4 Agosto	153.5	29	
19 Agosto	121	20	
3/4 Settembre	108	8	
19 Settembre	97	8	
4/5 Ottobre	Sconosciuti	Sconosciuti	
20 Ottobre	83	0	

Dalla relazione di dimensione finale (??) otteniamo $\frac{\alpha}{\beta} \simeq 159$

Andiamo a calcolare i valori implementando il modello SIR in matlab. Utilizzando le funzioni

```
function \ f = sir(t,y,alpha\,,\ beta) \\ f = zeros(2,1); \\ f(1) = -beta*y(1)*y(2); \\ f(2) = beta*y(1)*y(2) - alpha*y(2); \\ end \\ function \ [S,I,R,t] = sir\_model(N,S0,I0\,,\ beta\,,\ alpha\,,t) \\ c = [S0\,;\ I0\,]; \\ [t\,,y] = ode45\,(@(t\,,y)\,\,sir(t\,,y\,,alpha\,,beta)\,,\,\,t\,\,,\,\,c); \\ R = ones\,(\,size\,(t\,,1)\,,1)*N\,\,-y(:\,,1)\,\,-\,y\,(:\,,2); \\ S = y\,(:\,,1); \\ I = y\,(:\,,2); \\ end \\ otteniamo\,i\,seguenti\,dati
```

Tabella 3: Numero di suscettibili ed infetti. S(0) = 254 I(0) = 7 e N = 261

Data (1666)	S	I
3/4 Luglio	230	15
19 Luglio	190	26
3/4 Agosto	147	30
19 Agosto	115	24
3/4 Settembre	96	15
19 Settembre	86	9
4/5 Ottobre	81	4
20 Ottobre	78	2

Figura 1: Orbite nel piano (S,I). In blu i valori reali, in rosso quelli ottenuti applicando il modello SIR

Figura 2: Grafico ottenuto applicando il modello SIR