# **CS 3120**

# **Machine Learning and Neural Computing**

# **Reinforcement Learning**

# Assignment

Name : D. R. R. Wijewardene

Index No. : S14245

Reg. No. : 2018s16778

**Faculty** : Faculty of Science (Bioinformatics)

## **Contents**

|        |                                                                                                                                                                                         | Page<br>No. |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Part 1 | Practice the code examples given in <a href="https://www.viralml.com/video-content.html?v=nSxaG_Kjw_w">https://www.viralml.com/video-content.html?v=nSxaG_Kjw_w</a> using Google Colab. | 2           |
| Part 2 | Model the Example 1 problem discussed in the lecture note using Python and compare the outputs/results (Octave vs. Python)                                                              | 3           |
| Part 3 | Give your answer by modeling the Exercise problem (maze solving) given in the lecture note.                                                                                             | 7           |

Part 1 - Practice the code examples given in <a href="https://www.viralml.com/video-content.html?v=nSxaG\_Kjw\_w">https://www.viralml.com/video-content.html?v=nSxaG\_Kjw\_w</a> using Google Colab.



# Colab Notebook Link:

https://colab.research.google.com/drive/100faclVx6gZpFuMxNjskLtMk27KSz\_Bf?usp=sharing

The "Reinforcement Learning - Simple Python Q-learning Example" given in the provided website was demonstrated, and the expected results were obtained.

Part 2 - Model the Example 1 problem discussed in the lecture note using Python and compare the outputs/results (Octave vs. Python)



| Room Number    | Python Index | Octave Index |
|----------------|--------------|--------------|
| 0              | 0            | 1            |
| 1              | 1            | 2            |
| 2 - START      | 2            | 3            |
| 3              | 3            | 4            |
| 4              | 4            | 5            |
| 5 - <b>END</b> | 5            | 6            |

Since the indexing of Python and Octave are different, the indexes used to indicate each room/state are also different. Therefore, the final output should be compared accordingly.

The Python and Octave implementations and result comparisons are as follows;

#### **Python Implementation**

Colab Notebook Link:

https://colab.research.google.com/drive/1a0yd2u2932yQRogUi9d-ca RfJFgHXLe?usp=sharing

#### **Octave Implementation**

```
1 % Reinforcement Learning Assignment - Part 2
 2 % S14245 - D. R. R. Wijewardene
4 disp("Best path to travel from one room (start) to another (final) in a house")
7 % Reward table
8 disp("Reward Table")
9 R = [-inf, -inf, -inf, -inf, 0, -inf;
        -inf, -inf, -inf, 0, -inf, 100;
10
        -inf, -inf, -inf, 0, -inf, -inf;
11
12
        -inf, 0, 0, -inf, 0, -inf;
13
       0, -inf, -inf, 0, -inf, 100;
14
        -inf, 0, -inf, -inf, 0, 100]
16 gamma = 0.8;
                 % learning rate
17 goalState = 6;
18
19 % Q table
20 q = zeros(size(R));
21 disp("Initial Q-table")
22 q
23
24 % Exploration
2.5
26 □for episode = 1:1000
27
    % Select a random initial state
28
    y = randperm(size(R,1));
29
     state = y(1);
30
31
     % Find all possible actions from the state
     actions = find(R(state,:)>=0);
32
33
34 [
    if size(actions, 2)>0
      %Select one action randomly
i = randperm(size(actions,2));
35
36
37
       action = actions(i(1));
38
39
40
     % Return a column vector with the max values of each row
41
     qMax = max(q,[], 2);
42
43
     % Compute the q values
     q(state, action) = R(state, action) + gamma * qMax(action);
44
45
46
     % Translation to the next state
47
     state = action;
48
49
50 l
51 disp("Q-table after 1000 episodes of training (not normalized)")
52 q
54 disp("Normalized Q-table after 1000 episodes of training")
55 q*100/max(max(q))
56
57 % Exploitation
58 disp("Starting room = 2 (state = 3)")
59 disp("Final goal = 5 (state = 6)")
60 disp("Most efficient path:")
61
62 state = 3; % Set the initial state
63
64 □while state ~= goalState
65
     % From current state, find the action with the highest Q value
66
    [mx,action] = max(q(state,:));
67
     % Take the action (transition to the next state)
    state
68
state = action;
70 end
71 state
```

# Comparison between Octave and Python tables and outputs/results;

| Octave                                                                                                                                                                          | Python                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Rewards Table                                                                                                                                                                   |                                                                                     |
| Reward Table R =  -Inf -Inf -Inf -Inf 0 -Inf -Inf -Inf -Inf 0 -Inf 100 -Inf -Inf -Inf 0 -Inf -Inf -Inf 0 0 -Inf 0 -Inf 0 -Inf 0 -Inf 100 -Inf 0 -Inf 100 -Inf 0 -Inf -Inf 0 100 | R  matrix([[ -1., -1., -1., -1., 0., -1.],                                          |
| Initial Q Table                                                                                                                                                                 |                                                                                     |
| Initial Q-table q =  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                        | Trained Q matrix: [[ 0.                                                             |
| 0 80.0000 0 0 79.9999 100.0000                                                                                                                                                  | 0. ] [63.99996169 0. 0. 64. 0. 99.99994014] [0. 80. 0. 0. 79.99995211 99.99994014]] |
| Most Efficient Path from Room 2 to Room 5 Python: Index 2 -> 5 Octave: Index 3 -> 6                                                                                             |                                                                                     |
| Most efficient path:<br>state = 3<br>state = 4<br>state = 2<br>state = 6                                                                                                        | Most efficient path: [2, 3, 1, 5]                                                   |

### Comparison of Octave and Python trained Q tables;

|   |        | 0     | 1    | 2     | 3     | 4     | 5      |
|---|--------|-------|------|-------|-------|-------|--------|
| 0 | Octave | 0     | 0    | 0     | 0     | 79.99 | 0      |
| 0 | Python | 0     | 0    | 0     | 0     | 79.99 | 0      |
| 1 | Octave | 0     | 0    | 0     | 63.99 | 0     | 100.0  |
| 1 | Python | 0     | 0    | 0     | 64.00 | 0     | 100.0  |
| 2 | Octave | 0     | 0    | 0     | 64.00 | 0     | 0      |
| 2 | Python | 0     | 0    | 0     | 63.99 | 0     | 0      |
| 2 | Octave | 0     | 80.0 | 51.20 | 0     | 79.99 | 0      |
| 3 | Python | 0     | 80.0 | 51.19 | 0     | 79.99 | 0      |
| 4 | Octave | 63.99 | 0    | 0     | 64.0  | 0     | 99.99  |
| 4 | Python | 63.99 | 0    | 0     | 64.0  | 0     | 99.99  |
| 5 | Octave | 0     | 80.0 | 0     | 0     | 79.99 | 100.00 |
|   | Python | 0     | 80.0 | 0     | 0     | 79.99 | 99.99  |

The trained Q-tables for this situation are approximately similar in both Octave and Python implementations. This is because both are trained until the end of the learning process. If this was done only for a few iterations, these tables might be different because they train for random episodes.

The final output which gave the most efficient path to real the goal (room 5) when the agent began from room 2 is;

Python: 2, 3, 1, 5 
$$\Rightarrow$$
 Room 2  $\rightarrow$  3  $\rightarrow$  1  $\rightarrow$  5

Octave: 3, 4, 2, 6 
$$\Rightarrow$$
 Room  $2 \rightarrow 3 \rightarrow 1 \rightarrow 5$ 

It is evident that both implementations gave the same result after receiving the same training for this situation, as both programs have completed their learning processes.

# Part 3 - Give your answer by modeling the Exercise problem (maze solving) given in the lecture note.

You are required to build a maze solving robot who should be able to reach the end point when it's placed at any starting point. The layout of the maze (paths) is given below.



Give the resulting q-tables with calculations after the following state transitions during the exploration.

- Start = (0, 0); Actions: UP, RIGHT, RIGHT
- Start = (0, 2), Actions: DOWN, RIGHT, UP, RIGHT, DOWN, RIGHT
- Start = (1, 2); Actions: DOWN, RIGHT, RIGHT

Now, what would be the sequence of states if the robot exploits to reach the goal starting from (0, 0)? Explain your answer.

Colab Notebook Link:

https://colab.research.google.com/drive/102MDw1sZv10NNy4uht2JI8p2c0US14zF?usp=sharing

#### **State Transition Table**

| Next State | Action | UP | DOWN | LEFT | RIGHT |
|------------|--------|----|------|------|-------|
| State      | Index  | 0  | 1    | 2    | 3     |
| (0,0)      | 0      | 1  | -1   | -1   | -1    |
| (0,1)      | 1      | 2  | 0    | -1   | 7     |
| (0,2)      | 2      | 3  | 1    | -1   | 8     |
| (0,3)      | 3      | -1 | 2    | 6    | -1    |
| (-1,-1)    | 4      | 5  | -1   | -1   | 9     |
| (-1,2)     | 5      | 6  | 4    | -1   | -1    |
| (-1,3)     | 6      | -1 | 5    | -1   | 3     |
| (1,1)      | 7      | 8  | -1   | 1    | 10    |
| (1,2)      | 8      | -1 | 7    | 2    | 11    |
| (2,-1)     | 9      | 10 | -1   | 4    | -1    |
| (2,1)      | 10     | 11 | 9    | 7    | 14    |
| (2,2)      | 11     | -1 | 10   | 8    | 12    |
| (3,2)      | 12     | 13 | -1   | 11   | -1    |
| (3,3)      | 13     | -1 | 12   | -1   | -1    |
| (3,1)      | 14     | -1 | -1   | 10   | -1    |

|      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                        | 2 '                                                                  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| [ 2, | 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1,                                                                                                                                                      | 7],                                                                  |
| [ 3, | 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1,                                                                                                                                                      | 8],                                                                  |
| [-1, | 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6,                                                                                                                                                       | -1],                                                                 |
| [ 5, | -1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1,                                                                                                                                                      | 9],                                                                  |
| [6,  | 4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1,                                                                                                                                                      | -1],                                                                 |
| [-1, | 5,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1,                                                                                                                                                      | 3],                                                                  |
| [ 8, | -1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,                                                                                                                                                       | 10],                                                                 |
| [-1, | 7,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,                                                                                                                                                       | 11],                                                                 |
| [10, | -1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4,                                                                                                                                                       | -1],                                                                 |
| [11, | 9,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7,                                                                                                                                                       | 14],                                                                 |
| [-1, | 10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8,                                                                                                                                                       | 12],                                                                 |
| [13, | -1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11,                                                                                                                                                      | -1],                                                                 |
| [-1, | 12,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1,                                                                                                                                                      | -1],                                                                 |
| [-1, | -1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10,                                                                                                                                                      | -1]])                                                                |
|      | [ 2, [ 3, [-1, [ 5, [ 6, [-1, [ 10, [ 11, [ -1, [ 13, [ [-1, [ 13, [ [-1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ 13, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ -1, [ [ -1, [ [ -1, [ [ -1, [ [ -1, [ [ [ -1, [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ | [ 2, 0,<br>[ 3, 1,<br>[-1, 2,<br>[ 5, -1,<br>[ 6, 4,<br>[-1, 5,<br>[ 8, -1,<br>[-1, 7,<br>[ 10, -1,<br>[ 11, 9,<br>[ -1, 10,<br>[ 13, -1,<br>[ -1, 12, ] | [ 1, -1, -1, [ 2, 0, -1, [ 3, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |

-1 represents an impossible transition (null link)

# **Reward for reaching each state**

| State   | Index | Reward |
|---------|-------|--------|
| (0,0)   | 0     | 0      |
| (0,1)   | 1     | 0      |
| (0,2)   | 2     | 0      |
| (0,3)   | 3     | 0      |
| (-1,-1) | 4     | 0      |
| (-1,2)  | 5     | 0      |
| (-1,3)  | 6     | 0      |
| (1,1)   | 7     | 0      |
| (1,2)   | 8     | 0      |
| (2,-1)  | 9     | 0      |
| (2,1)   | 10    | 0      |
| (2,2)   | 11    | 0      |
| (3,2)   | 12    | 0      |
| (3,3)   | 13    | 0      |
| (3,1)   | 14    | 100    |

| [ 0],<br>[ 0],<br>[ 0],<br>[ 0],<br>[ 0],<br>[ 0], | matrix([[<br>[<br>[<br>[<br>[ |
|----------------------------------------------------|-------------------------------|
| [ 0],<br>[100]])                                   |                               |

# **Initial Q table**

|         | Action | UP | DOWN | LEFT | RIGHT |
|---------|--------|----|------|------|-------|
| State   | Index  | 0  | 1    | 2    | 3     |
| (0,0)   | 0      | 0  | 0    | 0    | 0     |
| (0,1)   | 1      | 0  | 0    | 0    | 0     |
| (0,2)   | 2      | 0  | 0    | 0    | 0     |
| (0,3)   | 3      | 0  | 0    | 0    | 0     |
| (-1,-1) | 4      | 0  | 0    | 0    | 0     |
| (-1,2)  | 5      | 0  | 0    | 0    | 0     |
| (-1,3)  | 6      | 0  | 0    | 0    | 0     |
| (1,1)   | 7      | 0  | 0    | 0    | 0     |
| (1,2)   | 8      | 0  | 0    | 0    | 0     |
| (2,-1)  | 9      | 0  | 0    | 0    | 0     |
| (2,1)   | 10     | 0  | 0    | 0    | 0     |
| (2,2)   | 11     | 0  | 0    | 0    | 0     |
| (3,2)   | 12     | 0  | 0    | 0    | 0     |
| (3,3)   | 13     | 0  | 0    | 0    | 0     |
| (3,1)   | 14     | 0  | 0    | 0    | 0     |

#### **Exploration**

Learning rate Gamma = 0.8

Q update rule Q(state, action) = R(state, action) + Gamma \* max[Q(next state, all

actions)]

### Episode 1

Start = 
$$(0, 0)$$
; Actions: UP, RIGHT, RIGHT (up = 0, right = 3)

$$(0,0) \rightarrow ((0,1) \rightarrow ((1,1) \rightarrow (2,1) \rightarrow (3,1)$$

$$0 \rightarrow 1 \rightarrow 7 \rightarrow 10 \rightarrow 14$$

• Q(0, up) = R + 0.8 \* max[Q(1,0), Q(1,1), Q(1,3)]

State 0 to 1 reward 
$$R = 0$$
  
Q(0, 0) = 0 + 0.8 \* 0 = **0**

• Q(1, right) = R + 0.8 \* max[Q(7,0), Q(7,2), Q(7,3)]

$$Q(1, 3) = 0 + 0.8 * 0 = 0$$

• Q(7, right) = R( + 0.8 \* max[Q(10,0), Q(10,1), Q(10,2), Q(10,3)]

$$Q(7, 3) = 0 + 0.8 * 0 = 0$$

• Q(10, right) = R(x,0) + 0.8 \* max[Q(14,2)]

State 10 to 14 reward R = 100

$$Q(10, 3) = 100 + 0.8 * 0 = 100$$

## **Updated Q table after episode 1**

|         | Action | UP | DOWN | LEFT | RIGHT |
|---------|--------|----|------|------|-------|
| State   | Index  | 0  | 1    | 2    | 3     |
| (0,0)   | 0      | 0  | 0    | 0    | 0     |
| (0,1)   | 1      | 0  | 0    | 0    | 0     |
| (0,2)   | 2      | 0  | 0    | 0    | 0     |
| (0,3)   | 3      | 0  | 0    | 0    | 0     |
| (-1,-1) | 4      | 0  | 0    | 0    | 0     |
| (-1,2)  | 5      | 0  | 0    | 0    | 0     |
| (-1,3)  | 6      | 0  | 0    | 0    | 0     |
| (1,1)   | 7      | 0  | 0    | 0    | 0     |
| (1,2)   | 8      | 0  | 0    | 0    | 0     |
| (2,-1)  | 9      | 0  | 0    | 0    | 0     |
| (2,1)   | 10     | 0  | 0    | 0    | 100   |
| (2,2)   | 11     | 0  | 0    | 0    | 0     |
| (3,2)   | 12     | 0  | 0    | 0    | 0     |
| (3,3)   | 13     | 0  | 0    | 0    | 0     |
| (3,1)   | 14     | 0  | 0    | 0    | 0     |

| ]] | 0. | 0. | 0. | 0.]   |
|----|----|----|----|-------|
| [  | 0. | 0. | 0. | 0.]   |
| [  | 0. | 0. | 0. | 0.]   |
| [  | 0. | 0. | 0. | 0.]   |
| [  | 0. | 0. | 0. | 0.]   |
| ]  | 0. | 0. | 0. | 0.]   |
| [  | 0. | 0. | 0. | 0.]   |
| [  | 0. | 0. | 0. | 0.]   |
| [  | 0. | 0. | 0. | 0.]   |
| ]  | 0. | 0. | 0. | 0.]   |
| [  | 0. | 0. | 0. | 100.] |
| [  | 0. | 0. | 0. | 0.]   |
| [  | 0. | 0. | 0. | 0.]   |
| [  | 0. | 0. | 0. | 0.]   |
| [  | 0. | 0. | 0. | 0.]]  |
|    |    |    |    |       |

#### Episode 2

Start = (0, 2); Actions: DOWN, RIGHT, UP, RIGHT, DOWN, RIGHT   
(0,2) 
$$\rightarrow$$
 (0,1)  $\rightarrow$  (1,1)  $\rightarrow$  ((1,2)  $\rightarrow$  (2,2)  $\rightarrow$  (2,1)  $\rightarrow$  (3,1)   
2  $\rightarrow$  1  $\rightarrow$  7  $\rightarrow$  8  $\rightarrow$  11  $\rightarrow$  10  $\rightarrow$  14

• 
$$Q(7, up) = R + 0.8 * max[Q(8,1), Q(8,2), Q(8,3)]$$
  
State 7 to 8 reward R = 0  
 $Q(7, 0) = 0 + 0.8 * 0 = \mathbf{0}$ 

## Updated Q table after episode 1 and 2

|         | Action | UP | DOWN | LEFT | RIGHT |
|---------|--------|----|------|------|-------|
| State   | Index  | 0  | 1    | 2    | 3     |
| (0,0)   | 0      | 0  | 0    | 0    | 0     |
| (0,1)   | 1      | 0  | 0    | 0    | 0     |
| (0,2)   | 2      | 0  | 0    | 0    | 0     |
| (0,3)   | 3      | 0  | 0    | 0    | 0     |
| (-1,-1) | 4      | 0  | 0    | 0    | 0     |
| (-1,2)  | 5      | 0  | 0    | 0    | 0     |
| (-1,3)  | 6      | 0  | 0    | 0    | 0     |
| (1,1)   | 7      | 0  | 0    | 0    | 0     |
| (1,2)   | 8      | 0  | 0    | 0    | 0     |
| (2,-1)  | 9      | 0  | 0    | 0    | 0     |
| (2,1)   | 10     | 0  | 0    | 0    | 100   |
| (2,2)   | 11     | 0  | 80   | 0    | 0     |
| (3,2)   | 12     | 0  | 0    | 0    | 0     |
| (3,3)   | 13     | 0  | 0    | 0    | 0     |
| (3,1)   | 14     | 0  | 0    | 0    | 0     |

| ]] | 0. | 0.  | 0. | 0.]   |
|----|----|-----|----|-------|
| [  | 0. | 0.  | 0. | 0.]   |
| [  | 0. | 0.  | 0. | 0.]   |
| [  | 0. | 0.  | 0. | 0.]   |
| [  | 0. | 0.  | 0. | 0.]   |
| [  | 0. | 0.  | 0. | 0.]   |
| [  | 0. | 0.  | 0. | 0.]   |
| [  | 0. | 0.  | 0. | 0.]   |
| [  | 0. | 0.  | 0. | 0.]   |
| [  | 0. | 0.  | 0. | 0.]   |
| [  | 0. | 0.  | 0. | 100.] |
| [  | 0. | 80. | 0. | 0.]   |
| [  | 0. | 0.  | 0. | 0.]   |
| [  | 0. | 0.  | 0. | 0.]   |
| [  | 0. | 0.  | 0. | 0.]]  |
|    |    |     |    |       |

## Episode 3

Start = (1, 2); Actions: DOWN, RIGHT, RIGHT   
(1,2) 
$$\rightarrow$$
 (1,1)  $\rightarrow$  (2,1)  $\rightarrow$  (3,1)   
8  $\rightarrow$  7  $\rightarrow$  10  $\rightarrow$  14

# Updated Q table after episode 1, 2 and 3

|         | Action | UP | DOWN | LEFT | RIGHT |
|---------|--------|----|------|------|-------|
| State   | Index  | 0  | 1    | 2    | 3     |
| (0,0)   | 0      | 0  | 0    | 0    | 0     |
| (0,1)   | 1      | 0  | 0    | 0    | 0     |
| (0,2)   | 2      | 0  | 0    | 0    | 0     |
| (0,3)   | 3      | 0  | 0    | 0    | 0     |
| (-1,-1) | 4      | 0  | 0    | 0    | 0     |
| (-1,2)  | 5      | 0  | 0    | 0    | 0     |
| (-1,3)  | 6      | 0  | 0    | 0    | 0     |
| (1,1)   | 7      | 0  | 0    | 0    | 80    |
| (1,2)   | 8      | 0  | 0    | 0    | 0     |
| (2,-1)  | 9      | 0  | 0    | 0    | 0     |
| (2,1)   | 10     | 0  | 0    | 0    | 100   |
| (2,2)   | 11     | 0  | 80   | 0    | 0     |
| (3,2)   | 12     | 0  | 0    | 0    | 0     |
| (3,3)   | 13     | 0  | 0    | 0    | 0     |
| (3,1)   | 14     | 0  | 0    | 0    | 0     |

Final Trained Q-table after the 3 given episodes of training;

|         | Action | UP | DOWN | LEFT | RIGHT |
|---------|--------|----|------|------|-------|
| State   | Index  | 0  | 1    | 2    | 3     |
| (0,0)   | 0      | 0  | 0    | 0    | 0     |
| (0,1)   | 1      | 0  | 0    | 0    | 0     |
| (0,2)   | 2      | 0  | 0    | 0    | 0     |
| (0,3)   | 3      | 0  | 0    | 0    | 0     |
| (-1,-1) | 4      | 0  | 0    | 0    | 0     |
| (-1,2)  | 5      | 0  | 0    | 0    | 0     |
| (-1,3)  | 6      | 0  | 0    | 0    | 0     |
| (1,1)   | 7      | 0  | 0    | 0    | 80    |
| (1,2)   | 8      | 0  | 0    | 0    | 0     |
| (2,-1)  | 9      | 0  | 0    | 0    | 0     |
| (2,1)   | 10     | 0  | 0    | 0    | 100   |
| (2,2)   | 11     | 0  | 80   | 0    | 0     |
| (3,2)   | 12     | 0  | 0    | 0    | 0     |
| (3,3)   | 13     | 0  | 0    | 0    | 0     |
| (3,1)   | 14     | 0  | 0    | 0    | 0     |

```
Q table after 3 given episodes :
          0.
                     0.]
    0.
                0.
    0.
                0.
                     0.]
                     0.]
    0.
          0.
                0.
    0.
          0.
                0.
                     0.]
    0.
          0.
                0.
                     0.1
          0.
                     0.]
    0.
                0.
    0.
          0.
                0.
                     0.]
    0.
          0.
                0.
                    80.]
                     0.]
    0.
          0.
                0.
          0.
                0.
                     0.]
    0.
    0.
          0.
                0. 100.]
    0.
         80.
                0.
                     0.]
    0.
          0.
                0.
                     0.]
    0.
          0.
                0.
                     0.]
                0.
                     0.]]
```

#### **Exploitation**

```
The "Most Efficient Path" when Start = (0,0) \rightarrow Index 0
```

When a starting state is provided, and the most efficient path to reach the goal state is asked, the robot tries to use the knowledge gained during its learning process to give a result.

Even though it is not completely trained, it is likely to give,

## (Up, Right, Right, Right)

as the most efficient path to reach the end state (3,1) when starting from (0,0). This is because such a path was among the training episodes and the robot is aware of that. It sees it as a path with high rewards.

```
Indexes of ACTIONS:
UP
        = 0
DOMN
       = 1
LEFT
        = 2
RIGHT = 3
Goal state = (3,1) -> Index 14
Trained Episodes:
             Start = (0,0) -> Index 0;
                                              Actions: UP, RIGHT, RIGHT, RIGHT
Actions: DOWN, RIGHT, UP, RIGHT,
Actions: DOWN, RIGHT, RIGHT
Episode 1:
Episode 2:
                Start = (0,2) -> Index 2;
                                                 Actions: DOWN, RIGHT, UP, RIGHT, DOWN, RIGHT
            Start = (1,2) -> Index 8;
Episode 3:
Exploitation:
when the Start State is (0,0) -> Index 0 ,
                                                                                                       [0, 3, 3, 3]
                  The Actions to follow the Most Efficient Path towards the Goal State :
```

However, it may produce inefficient results with longer pathways as well. This is because this system is not trained enough to learn about the optimum path. It only went through 3 episodes of learning, which is insufficient for it to produce accurate results.

When the training is not sufficient, it is still trying to learn more about this system. For that, it has to try out other possible pathways as well. Until it is well-trained, the results provided might not be as accurate as possible.

Therefore, during the exploration period it is important to let the learning process continue until it is well-trained, before exploitation.

# **References**

- Amunategui, M. (n.d.). Reinforcement Learning A Simple Python Example and A Step Closer
  to AI with Assisted Q-Learning. Reinforcement Learning. Retrieved August 23, 2021, from
  <a href="https://www.viralml.com/video-content.html?v=nSxaG\_Kjw\_w">https://www.viralml.com/video-content.html?v=nSxaG\_Kjw\_w</a>
- M. (n.d.). Getting AI smarter with Q-learning: a simple first step in Python. The Beginner
  Programmer. Retrieved August 23, 2021, from
  <a href="http://firsttimeprogrammer.blogspot.com/2016/09/getting-ai-smarter-with-q-learning.html">http://firsttimeprogrammer.blogspot.com/2016/09/getting-ai-smarter-with-q-learning.html</a>
- Lecture Note Reinforcement Learning

# ~ THE END ~