# 1 Определения

# 1.1 Упорядоченная пара

Для некоторого множества X и I - множество "индексов", тогда  $(x_{\alpha})_{\alpha \in I}$  - семейство элементов X. ( $\forall \alpha \in I \ x_{\alpha} \in X$ )

**Упорядоченная пара** — семейство из двух элементов, построенная при  $I=\{1,2\}$ . Обозначается (a,b).

Кроме того,

$$(a,b) = (c,d) \Leftrightarrow a = c, b = d$$

# 1.2 Декартово произведение

**Декартово произведение** двух множеств — множество всех упорядоченных пар элементов этих множеств.  $A \times B = \{(a,b) : a \in A, b \in B\}$ 

Кроме того, декартово произведение можно обобщить для произвольного числа множеств.  $A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2 \ldots a_n) : a_1 \in A_1, a_2 \in A_2 \ldots a_n \in A_n\}$ 

# 1.3 Аксиомы вещественных чисел

#### 1.3.1 Аксиомы поля

В множестве  $\mathbb{R}$  определены две операции, называемые сложением и умножением, действующие из  $\mathbb{R} \times \mathbb{R}$  в  $\mathbb{R}$  ( $+, \cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ ), удовлетворяющие следующим свойствам: Аксоимы сложения (здесь и далее  $\forall a \in \mathbb{R}, b \in \mathbb{R}, c \in \mathbb{R}$ ):

- 1. a + b = b + a коммутативность
- 2. (a+b)+c=a+(b+c) ассоциативность
- 3.  $\exists 0 : 0 + a = a$
- 4.  $\exists a' : a + a' = \mathbf{0}$

Аксиомы умножения:

- 1. ab = ba коммутативность
- 2. (ab)c = a(bc) ассоциативность
- 3.  $\exists \mathbf{1} \neq \mathbf{0} : \forall a \in \mathbb{R} : a \cdot \mathbf{1} = a$
- 4.  $\forall a \neq \mathbf{0} : \exists \tilde{a} : a \cdot \tilde{a} = \mathbf{1}$

Аксоима комбинации сложения и умножения:

1. (a+b)c = ac + bc — дистрибутивность

**Поле** — множество, в котором определены операции  $+,\cdot$ , удовлетворяющие группе аксиом І. Например,  $\mathbb{R},\mathbb{Q},\mathbb{F}_3$ 

#### 1.3.2 Аксиомы порядка

- 1.  $\forall x, y \in \mathbb{R} : x \leq y$  или  $y \leq x$
- 2.  $x \le y; y \le x \Rightarrow x = y$
- 3.  $x \le y; y \le z \Rightarrow x \le z$  транзитивность
- 4.  $x \le y \Rightarrow \forall z \in \mathbb{R} : x + z \le y + z$
- 5. 0 < x;  $0 < y \Rightarrow 0 < xy$

Упорядоченное поле — множество, для которого выполняются аксиомы групп I и II.

 $\mathbb{F}_3,\mathbb{C}$  - не упорядоченные поля

 $\mathbb{R}, \mathbb{Q}, \mathcal{R}$  - упорядоченные поля

# 1.4 Аксиома Кантора, аксиома Архимеда

#### 1.4.1 Аксиома Архимеда

$$\forall x, y > 0 : \exists n \in \mathbb{N} : nx > y$$

Следствие: существуют сколько угодно большие натуральные числа:

$$\forall y \in \mathbb{R} : \exists n \in \mathbb{N} : n > y$$

Архимедовы поля — упорядоченные поля, в которых выполняется Аксиома Архимеда.

 $\mathcal{R}$  - не архимедово поле

 $\mathbb{R}, \mathbb{Q}$  - архимедовы поля

#### 1.4.2 Аксиома Кантора

Для последовательности вложенных отрезков  $\{[a_n,b_n]\}_{n=1}^{\infty}$  ( $\forall n\in\mathbb{N}\ a_n\leq a_{n+1}\leq b_{n+1}\leq b_n$ )

$$\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset$$

 $\mathbb Q$  не удволетворяет этой аксиоме, в отличие от  $\mathbb R$ .

# 1.5 Пополненное множество вещественных чисел, операции и порядок в нем

 $\overline{\mathbb{R}}=\mathbb{R}\cup\{-\infty,+\infty\}$  — пополненное множество вещественных чисел. Свойства ( $\forall x\in\mathbb{R}$ ):

- $-\infty < +\infty$
- $\pm \infty \cdot \pm \infty = +\infty$
- $\pm \infty \cdot \mp \infty = -\infty$
- $-\infty < x < +\infty$
- $x \pm \infty = \pm \infty$

- $\pm \infty \pm \infty = \pm \infty$
- $\pm \infty \mp \infty$  не определено

Для  $\forall x \in \mathbb{R}, x > 0$ 

•  $x \cdot \pm \infty = \pm \infty$ 

#### 1.6 Максимальный элемент множества

 $M \in A$  называется максимальным элементом множества A, если  $\forall a \in A \ a \leq M$ 

### 1.7 Последовательность

 $x: \mathbb{N} \to Y$  — последовательность

# 1.8 Образ и прообраз множества при отображении

Для  $A \subset X, f: X \to Y$  образ — множество  $\{f(x), x \in A\} \subset Y$  — обозначается f(A) Для  $B \subset Y$  прообраз —  $\{x \in X: f(x) \in B\}$  — обозначается  $f^{-1}(B)$ 

# 1.9 Инъекция, сюръекция, биекция

Сюръекция — такое отображение  $f: X \to Y$ , что f(X) = Y, т.е.  $\forall y \in Y \ f(x) = y$  имеет решение относительно x.

**Инъекция** — такое отображение  $f: X \to Y$ , что  $\forall x_1, x_2 \in X, x_1 \neq x_2 \ f(x_1) \neq f(x_2)$ , т.е.  $\forall y \in Y \ f(x) = y$  имеет не более одного решения относительно x.

Биекция — отображение, являющееся одновременно сюръекцией и инъекцией, т.е.  $\forall y \in Y \ f(x) = y$  имеет ровно одно решение относительно x.

# 1.10 Векторнозначаная функция, ее координатные функции

Если  $F:X\to \mathbb{R}^m;x\mapsto F(x)=(F_1(x),...,F_m(x)),$  то F — векторнозначная функция (значения функции - вектора)

 $F_1(x)..F_m(x)$  - координатные функции отображения F

# 1.11 График отображения

$$\Gamma_f = \{(x, y) \in X \times Y : y = f(x)\}$$

# 1.12 Композиция отображений

 $f:X \to Y, g:Y \to Z$ , тогда композиция f и g (обозначается  $g\circ f$ ) — такое отображение, что  $g\circ f:X \to Z, x\mapsto g(f(x)).$ 

Также возможно определение, которое допускает  $g: Y_1 \to Z, Y_1 \supset Y$ 

# 1.13 Сужение и продолжение отображений

Для  $g: X \to Y$  f — сужение g на множество A, если  $f: A \to Y, A \subset X$ . g называется продолжением f.

# 1.14 Предел последовательности (эпсилон-дельта определение)

Если для  $(x_n), a \in \mathbb{R}$  выполняется  $\forall \varepsilon > 0 \ \exists N \ \forall n > N \ |x_n - a| < \varepsilon$ , то a — предел последовательности  $(x_n)$ , обозначается  $x_n \to a$  или  $\lim_{n \to \infty} x_n = a$ 

# 1.15 Окрестность точки, проколотая окрестность

Окрестность точки  $a=\{x\in\mathbb{R}:|x-a|<\varepsilon\}$ , обозначается  $U_{\varepsilon}(a)$  Проколотая окрестность точки  $a=U_{\varepsilon}(a)\setminus\{a\}$ , обозначается  $\dot{U}_{\varepsilon}(a)$ 

# 1.16 Предел последовательности (определение на языке окрестностей)

$$\forall U(a) \ \exists N \ \forall n > N \ x_n \in U(a)$$

# 1.17 Метрика, метрическое пространство, подпространство

На множестве X отображение  $\rho: X \times X \to \mathbb{R}$  называется **метрикой**, если выполняются свойства 1-3:

- 1.  $\forall x, y \ \rho(x, y) \ge 0; \rho(x, y) = 0 \Leftrightarrow x = y$
- 2.  $\forall x, y \ \rho(x, y) = \rho(y, x)$
- 3. Неравенство треугольника:  $\forall x,y,z\in X \ \rho(x,y)\leq \rho(x,z)+\rho(z,y)$

Метрическое пространство — упорядоченная пара  $(X, \rho)$ , где X — множество,  $\rho$  — метрика на X.

Подпространством метрического пространства  $(X,\rho)$  называется  $(A,\rho|_{A\times A})$ , если  $A\subset X$ 

# 1.18 Шар, замкнутый шар, окрестность точки в метрическом пространстве

Шар (открытый шар)  $B(a,r) = \{x \in X : \rho(a,x) < r\}$ 

Замкнутый шар  $B(a,r)=\{x\in X: \rho(a,x)\leq r\}$ 

Окрестность точки a в метрическом пространстве:  $B(a,\varepsilon) \Leftrightarrow U(a)$ .

# 1.19 Линейное пространство

Если K — поле ( $K = \mathbb{R}$   $unu\mathbb{C}$ ), X — множество, то X называется линейным пространством над полем K (и тогда K называется полем скаляр), если определены следующие две операции:

- 1.  $+: X \times X \to X$  сложение векторов
- 2.  $\,\cdot:K\times X\to X$  умножение векторов на скаляры

Для этих операций выполняются соответствующие аксиомы (здесь  $A, B, C \in X$ ;  $a, b \in K$ ):

#### 1.19.1 Аксиомы сложения векторов

- 1. A + B = B + A
- 2. A + (B + C) = (A + B) + C
- 3.  $\exists 0 \in X : A + 0 = A$
- 4.  $\exists -A \in X: A+(-A)=0$  обратный элемент

#### 1.19.2 Аксиомы умножения векторов на скаляры

- 1.  $(A+B) \cdot a = A \cdot a + B \cdot a$
- 2.  $A \cdot (a+b) = A \cdot a + A \cdot b$
- 3.  $(ab) \cdot A = a(b \cdot A)$
- 4.  $\exists 1 \in K : 1 \cdot A = A$

# 1.20 Норма, нормированное пространство

**Норма** - отображение  $X \to \mathbb{R}, x \mapsto ||x||$ , если X - линейное пространство (над  $\mathbb{R}$  или  $\mathbb{C}$ ) и выполняется следующее:

- 1.  $\forall x \ ||x|| \ge 0, ||x|| = 0 \Leftrightarrow x = 0$
- 2.  $\forall x \in X \ \forall \lambda \in \mathbb{R}(\mathbb{C}) \ ||\lambda x|| = |\lambda| \cdot ||x||$
- 3. Неравенство треугольника:  $\forall x, y \in X \ ||x + y|| \le ||x|| + ||y||$

**Нормированное пространство** — упорядоченная пара  $(X, ||\cdot||)$ , где |||| - норма

### 1.21 Ограниченное множество в метрическом пространстве

 $A \subset X$  — ограничено, если  $\exists x_0 \in X \ \exists R > 0 \ A \subset B(x_0, R)$ , т.е. если A содержится в некотором шаре в X.

# 1.22 Внутренняя точка множества, открытое множество, внутренность

a — внутренняя точка множества D, если  $\exists U(a): U(a) \subset D$ , т.е.  $\exists r>0: B(a,r) \subset D$  D — открытое множество, если  $\forall a \in D: a$  — внутренняя точка D Внутренностью множества D называется  $Int(D) = \{x \in D: x$  — внутр. точка  $D\}$ 

#### 1.23 Предельная точка множества

a — предельная точка множества D, если

$$\forall \dot{U}(a) \ \dot{U}(a) \cap D \neq \emptyset$$

#### 1.24 Замкнутое множество, замыкание, граница

D — замкнутое множество, если оно содержит все свои предельные точки.

 $D = D \cup$  (множество предельных точек D) — замыкание.

**Граница множества** — множество его граничных точек. Обозначается  $\partial D$ 

#### 1.25 Изолированная точка, граничная точка

a — изолированная точка D, если  $a \in D$  и a — не предельная, то есть:

$$\exists U(a) \quad U(a) \cap D = \{a\}$$

a — граничная точка D, если  $\forall U(a) \quad U(a)$  содержит точки как из D, так и из  $D^c$ 

#### 1.26 Описание внутренности множества

- 1. IntD откр. множество
- 2.  $IntD = \bigcup_{D \supset G}$  максимальное открытое множество, содержащееся в D
- 3. D откр. в  $X \Leftrightarrow D = IntD$

## Описание замыкания множества в терминах пересечений

$$\overline{D} = \bigcap_{\substack{D \subset F \\ F- \, {
m Samkh.}}} F - {
m Muh.}$$
 (по вкл.) замкн. множество, содержащее  $D.$ 

#### 1.28 Верхняя, нижняя границы; супремум, инфимум

 $E \subset \mathbb{R}$ . E — огр. сверху, если  $\exists M \in \mathbb{R} \ \forall x \in E \ x \leq M$ . Кроме того, всякие такие Mназываются верхними границами E.

Аналогично ограничение снизу.

$$E \subset \mathbb{R}, E \neq \emptyset.$$

Для E — огр. сверху **супремум** (sup E)— наименьшая из верхних границ E.

Для E — огр. снизу **инфимум** (inf E) — наибольшая из нижних границ E.

# Техническое описание супремума

Техническое описание супремума: 
$$b = \sup E \Leftrightarrow \begin{cases} \forall x \in E \ x \leq b \\ \forall \varepsilon > 0 \ \exists x \in E \ b - \varepsilon < x \end{cases}$$

#### 1.30 Последовательность, стремящаяся к бесконечности

 $B \mathbb{R}$ :

1. 
$$x_n \to +\infty \quad \forall E > 0 \ \exists N \ \forall n > N \ x_n > E$$

2. 
$$x_n \to -\infty \quad \forall E \ \exists N \ \forall n > N \ x_n < E$$

3. 
$$x_n \to \infty \Leftrightarrow |x_n| \to +\infty$$

#### Компактное множество

 $K \subset X$  — компактное, если для любого открытого покрытия этого множества  $\exists$  конечное подпокрытие  $\Leftrightarrow \exists \alpha_1 \dots \alpha_n \quad K \subset \bigcup_{i=1}^n G_{\alpha_i}$ 

#### 1.32 Секвенциальная компактность

Секвенциально компактным называется множество  $A \subset X : \forall$  посл.  $(x_n)$  точек A $\exists$  подпосл.  $x_{n_k}$ , которая сходится к точке из A

# 1.33 Определения предела отображения (3 шт)

$$(X, \rho^x), (Y, \rho^y)$$
  $D\subset X$   $f:D\to Y$   $a\in X, a$  — пред. точка множества  $D,A\in Y$  Тогда  $\lim_{x\to a}f(x)=A$  — предел отображения, если:

1. По Коши:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D : 0 < \rho^X(a, x) < \delta \quad \rho^Y(f(x), A) < \varepsilon$$

2. На языке окрестностей:

$$\forall U(A) \ \exists V(a) \ \forall x \in \dot{V}(a) \ f(x) \in U(A)$$

- 3. По Гейне:  $\forall (x_n) \text{посл. в } X$ :
  - (a)  $x_n \to a$
  - (b)  $x_n \in D$
  - (c)  $x_n \neq a$

$$f(x_n) \to A$$

# 1.34 Определения пределов в $\overline{\mathbb{R}}$

Для  $Y = \overline{\mathbb{R}}, -\infty < x < +\infty$ :

1. 
$$\lim_{x \to a} f(x) = +\infty$$
:  $\forall E \ \exists \delta > 0 \ \forall x \in X : 0 < |x - a| < \delta \ f(x) > E$ 

2. 
$$\lim_{x \to a} f(x) = -\infty$$
:  $\forall E \ \exists \delta > 0 \ \forall x \in X : 0 < |x - a| < \delta \ f(x) < E$ 

3. 
$$\lim_{x \to +\infty} f(x) = c \in \mathbb{R} \quad \forall \varepsilon > 0 \ \exists \delta \ \forall x \in X : x > \delta \ |f(x) - c| < \varepsilon$$

4. 
$$\lim_{x \to -\infty} f(x) = c \in \mathbb{R} \quad \forall \varepsilon > 0 \ \exists \delta \ \forall x \in X : x < \delta \ |f(x) - c| < \varepsilon$$

# 1.35 Предел по множеству

$$f:D\subset X o Y, D_1\subset D, x_0$$
 — пред. точка  $D_1$  Тогда предел по множеству  $D_1$  в точке  $x_0$  — это  $\lim_{x o x_0}f|_{D_1}(x)$ 

# 1.36 Односторонние пределы

В  $\mathbb R$  одностор. =  $\{$  левостор., правостор.  $\}$  Левосторонний предел  $\lim_{x\to x_0-0}f(x)=L$  - это  $\lim f|_{D\cap (-\infty,x_0)}$ 

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in (x_0 - \delta, x_0) \cap D \ |f(x) - L| < \varepsilon$$

Аналогично правосторонний.

# 1.37 Непрерывное отображение

$$f: D \subset X \to Y \quad x_0 \in D$$
  $f$  — непрерывное в точке  $x_0$ , если:

- 1.  $\lim_{x \to x_0} f(x) = f(x_0)$ , либо  $x_0$  изолированная точка D
- 2.  $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D \ \rho(x, x_0) < \delta \ \rho(f(x), f(x_0)) < \varepsilon$
- 3.  $\forall U(f(x_0)) \ \exists V(x_0) \ \forall x \in V(x_0) \cap D \ f(x) \in U(f(x_0))$
- 4. По Гейне  $\forall (x_n): x_n \to x_0; x_n \in D \ f(x_n) \xrightarrow[n \to +\infty]{} f(x_0)$

# 1.38 Непрерывность слева

f — непр. слева в  $x_0$ , если  $f|_{(-\infty,x_0]\cap D}$  — непрерывно в  $x_0$ 

# 1.39 Разрыв, разрывы первого и второго рода

Если Д  $\lim_{x \to x_0} f(x)$ , либо Д  $\lim_{x \to x_0} f(x) \neq f(x_0)$  — точка разрыва.

Пусть  $\exists f(x_0-0), f(x_0+0)$  и не все 3 числа равны:  $f(x_0-0), f(x_0), f(x_0+0)$ . Это разрыв I рода *(скачок)*.

Остальные точки разрыва — разрыв II рода.

Примечание.

$$f(x_0 - 0) \Leftrightarrow \lim_{x \to x_0 - 0} f(x)$$

#### 1.40 О большое, о маленькое

$$f,g:D\subset X o\mathbb{R}$$
  $x_0$  — пр. точка  $D$  Если  $\exists V(x_0)$   $\exists \varphi:V(x_0)\cap D o\mathbb{R}$   $f(x)=g(x)\varphi(x)$  при  $x\in V(x_0)\cap D$ 

- 1.  $\varphi$  ограничена. Тогда говорят f=O(g) при  $x\to x_0$  "f ограничена по сравнению с g при  $x\to x_0$ "
- 2.  $\varphi(x) \xrightarrow[x \to x_0]{} 0$  f беск. малая по отношению к g при  $x \to x_0$ , f = o(g)
- 3.  $\varphi(x) \xrightarrow[x \to x_0]{} 1$  f и g экв. при  $x \to x_0$   $f \underset{x \to x_0}{\sim} g$

Примечание. О большое и о малое — разные вопросы в табличке.

# 1.41 Эквивалентные функции, таблица эквивалентных

Эквивалентные функции даны выше.

Таблица эквивалентных для  $x \to 0$ :

$$\sin x \sim x$$

$$\sinh x \sim x$$

$$\tan x \sim x$$

$$\arctan x \sim x$$

$$1 - \cos x \sim \frac{x^2}{2}$$

$$\cosh x - 1 \sim \frac{x^2}{2}$$

$$e^x - 1 \sim x$$

$$\ln(1+x) \sim x$$

$$(1+x)^{\alpha} - 1 \sim \alpha x$$

$$a^x - 1 \sim x \ln a$$

# 1.42 Асимптотически равные (сравнимые) функции

В условиях прошлых определений  $f = O(g), g = O(f) \Leftrightarrow f \asymp g$  — асимптотически сравнимы на множестве D, "величины одного порядка".

# 1.43 Асимптотическое разложение

# 1.44 Наклонная асимптота графика

Пусть 
$$f(x)=Ax+B+o(1), x\to +\infty$$
 Прямая  $y=Ax+B$  — наклонная асимптота к графику  $f$  при  $x\to +\infty$ 

# 1.45 Путь в метрическом пространстве

$$Y$$
 — метр. пр-во  $\gamma:[a,b] o Y$  — непр. на  $[a,b]$  = путь в пространстве  $Y$ 

#### 1.46 Линейно связное множество

$$E \subset Y$$

E — линейно связное, если  $\forall A, B \in E \; \exists$  путь  $\gamma: [a,b] \to E$  такой, что:

- $\gamma(a) = A$
- $\gamma(b) = B$

# 1.47 Функция, дифференцируемая в точке и производная

$$f:\langle a,b
angle o\mathbb{R}$$
  $x_0\in\langle a,b
angle$   $f$  — дифференцируема. в точке  $x_0$ , если  $\exists A\in\mathbb{R}$ 

$$f(x) = f(x_0) + A \cdot (x - x_0) + o(x - x_0), x \to x_0$$

При этом A называется производной f в точке  $x_0$ 

Примечание. Это два разных билета.

#### 1.48 Счётное множество

A — **счётное множество**  $\Leftrightarrow$  равномощно  $\mathbb N$ 

# 1.49 Мощность континуума

A равномощно  $[0,1]\Rightarrow A$  имеет мощность континуума.

# 1.50 Фундаментальная последовательность

 $x_{n}-$ фундаментальная, последовательность Коши, сходящаяся в себе, если:

$$\forall \varepsilon > 0 \ \exists N \ \forall m, n > N \ \rho(x_m, x_n) < \varepsilon$$

# 1.51 Полное метрическое пространство

X — метрическое пространство называется **полным**, если в нём любая фундаментальная последовательность — сходящаяся.

1.52 Классы функций  $C^n([a,b])$ 

?

# 1.53 Производная n-го порядка

?

# 1.54 Многочлен Тейлора n-го порядка

**Многочленом Тейлора** n-той степени (nоряdкa) функции f в точке a называется:

$$T_n(f,a)(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

## 1.55 Разложения Тейлора основных элементарных функций

Некоторые разложения по Тейлору:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

$$\cos x = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n})$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + (-1)^{n+1} \frac{x^{n}}{n} + o(x^{n})$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3} + \dots + \binom{\alpha}{n} x^{n} + o(x^{n})$$

# 2 Теоремы

## 2.1 Законы де Моргана

Пусть  $(X_{\alpha})_{\alpha \in A}$  - семейство множеств, Y - множество. Тогда:

1. 
$$Y \setminus (\bigcup_{\alpha \in A} X_{\alpha}) = \bigcap_{\alpha \in A} (Y \setminus X_{\alpha})$$
 ①

2. 
$$Y \setminus (\bigcap_{\alpha \in A} X_{\alpha}) = \bigcup_{\alpha \in A} (Y \setminus X_{\alpha})$$
 ②

Вариант 2:

1. 
$$Y \cap (\bigcup_{\alpha \in A} X_{\alpha}) = \bigcup_{\alpha \in A} (Y \cap X_{\alpha})$$

2. 
$$Y \cup (\bigcap_{\alpha \in A} X_{\alpha}) = \bigcap_{\alpha \in A} (Y \cup X_{\alpha})$$

*Proof.* Чтобы доказать, что A=B, можно доказать, что  $A\subset B, B\subset A$ . Воспользуемся этим методом, чтобы доказать (1)

$$x \in Y; x \notin \bigcup X_{\alpha}$$

$$x \in Y; x \notin \{y : \exists \alpha : y \in X_{\alpha}\}$$

$$x \in Y; \forall \alpha \in A : x \notin X_{\alpha}$$

 $\triangleleft x \in$  правая часть ①

$$\forall \alpha : x \notin Y \setminus X_{\alpha}$$

Из чего левая и правая части эквивалентны. Аналогично доказывается ②

# 2.2 Неравенство Коши-Буняковского, евклидова норма в $\mathbb{R}^m$

### 2.2.1 Неравенство Коши-Буняковского

$$(\sum a_i b_i)^2 \le (\sum a_i^2)(\sum b_k^2)$$

### 2.2.2 Евклидова норма в $\mathbb{R}^m$

$$||x|| = \sqrt{\sum_{i=1}^{m} x_i^2}$$

Неравенство Коши-Буняковского следует из тождества Лагранжа. Докажем его:

Proof.

Таким образом,

$$\sum_{(i,k)\in A\times B} (a_ib_i)^2 = \sum_{(i,k)\in A\times B} a_i^2 \sum_{(i,k)\in A\times B} b_k^2 + \frac{1}{2} \sum_{(i,k)\in A\times B} (a_ib_k - a_kb_i)^2 \ge \sum_{(i,k)\in A\times B} a_i^2 \sum_{(i,k)\in A\times B} b_k^2$$

# 2.3 Аксиома Архимеда. Плотность множества рациональных чисел в $\mathbb R$

#### 2.3.1 Аксиома Архимеда

$$\forall x, y > 0 : \exists n \in \mathbb{R} : nx > y$$

#### 2.3.2 Плотность множества $\mathbb Q$ в $\mathbb R$

$$\mathbb Q$$
 плотно в  $\mathbb R \stackrel{def}{\Longleftrightarrow} \forall a,b \in \mathbb R, a < b \ (a,b) \cap \mathbb Q \neq \emptyset$ 

В любом интервале в  $\mathbb R$  содержится число  $\in \mathbb Q$ .

*Proof.* 
$$\mathbb Q$$
 плотно в  $\mathbb R$ , т.е.  $\forall a,b\in\mathbb R,a< b\quad (a,b)\cap\mathbb Q\neq\emptyset$  Возьмем  $n\in\mathbb N:n>\frac{1}{b-a}.$  Тогда  $\frac{1}{n}< b-a$  
$$q:=\frac{[na]+1}{n}\in\mathbb Q$$
 
$$q\leq \frac{na+1}{n}=a+\frac{1}{n}< a+ba< b\Rightarrow q< b$$
 
$$q>\frac{na}{n}=a\Rightarrow q>a$$

M3137y2019

### 2.4 Неравенство Бернулли

$$(1+x)^n \ge 1 + nx$$
  $x \ge -1, n \in \mathbb{N}$ 

$$(1+x)^n \geq 1+nx+rac{n(n-1)}{2}x^2 \quad x>0, n\in\mathbb{N}$$
 — более сложная версия

*Proof.* База: n = 1:  $(1+x)^1 \ge 1+x$ 

Переход: Дано неравенство  $(1+x)^n \geq 1+nx$ , оно верно при каком-то n. Докажем, что  $(1+x)^{n+1} \geq 1+(n+1)x$ 

$$(1+x)^{n+1} = (1+x)(1+x)^n \ge (1+x)(1+nx) = 1 + (n+1)x + nx^2 \ge 1 + (n+1)x$$

# 2.5 Единственность предела и ограниченность сходящейся последовательности

$$(X,\rho)$$
 — метрическое пр-во,  $a,b\in X$ ,  $(x_n)$  — послед. в  $X$ ,  $x_n\xrightarrow[n\to+\infty]{}a$ ,  $x_n\xrightarrow[n\to+\infty]{}b$ , тогда  $a=b$ 

Proof.

Докажем от противного — пусть  $a \neq b$ . Возьмем  $0 < \varepsilon < \frac{1}{2} \rho(a,b)$ 

$$\exists N(\varepsilon) \ \forall n > N(\varepsilon) \ \rho(x_n, a) < \varepsilon$$

$$\exists K(\varepsilon) \ \forall n > K(\varepsilon) \ \rho(x_n, b) < \varepsilon$$

При  $n > \max(N(\varepsilon), K(\varepsilon))$   $\rho(a,b) < \rho(a,x_n) + \rho(b,x_n) < 2\varepsilon < \rho(a,b)$  — противоречие

# 2.6 Теорема о предельном переходе в неравенствах для последовательностей и для функций

#### 2.6.1 Для последовательностей

Если  $(x_n), (y_n)$  — вещественные последовательности  $x_n \to a, y_n \to b, \exists N \ \forall n > N \ x_n \le y_n,$  тогда  $a \le b$ .

#### 2.6.2 Для функций

Если  $f,g:X\to\mathbb{R},$  a — предельная точка X, и  $\forall x\in X$   $f(x)\leq g(x).$  Тогда  $\lim_{x\to a}f(x)\leq \lim_{x\to a}g(x)$ 

Proof.

Докажем от противного. Пусть 
$$a>b, 0<\varepsilon<\frac{a-b}{2}.$$

$$\exists N(\varepsilon) \ \forall n > N \ a - \varepsilon < x_n < a + \varepsilon$$

$$\exists K(\varepsilon) \ \forall n > K \ b - \varepsilon < y_n < b + \varepsilon$$

При  $n > \max(N,K)$   $y_n < b + \varepsilon < a - \varepsilon < x_n$  — противоречие

Proof. По Гейне.

$$\forall (x_n) \to a, x_n \in X, x_n \neq a$$
:

$$f(x_n) \to A, g(x_n) \to B, \forall x \ f(x) \le g(x) \Rightarrow f(x_n) \le g(x_n) \Rightarrow A \le B$$

# 2.7 Теорема о двух городовых

Если  $(x_n), (y_n), (z_n)$  - вещ. посл.,  $\forall n \ x_n \leq y_n \leq z_n, \lim x_n = \lim z_n = a$ , тогда  $\exists \lim y_n = a$ . *Proof.* 

$$\forall \varepsilon>0 \ \exists N \ \forall n>N \ a-\varepsilon < x_n < a+\varepsilon$$
 
$$\forall \varepsilon>0 \ \exists K \ \forall n>K \ a-\varepsilon < z_n < a+\varepsilon$$
 
$$\forall \varepsilon>0 \ \exists N_0=max(N,K) \ \forall n>N_0 \ a-\varepsilon < x_n \leq y_n \leq z_n < a+\varepsilon$$
 По определению  $\lim y_n=a$ 

### 2.8 Бесконечно малая последовательность

Произведение бесконечно малой последовательности на ограниченную — бесконечная последовательность, т.е.  $(x_n)$  — беск. малая,  $(y_n)$  — ограничена  $\Rightarrow x_n y_n$  — беск. малая

*Proof.* Возьмём K такое, что  $\forall n \mid y_n \mid \leq K$ .

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ |x_n| \le \frac{\varepsilon}{K}$$

$$|x_n y_n| \le \frac{\varepsilon}{K} K = \varepsilon \Rightarrow x_n y_n \to 0$$

# 2.9 Теорема об арифметических свойствах предела последовательности в нормированном пространстве и в ${\cal R}$

Об арифметических свойствах предела в нормированном пространстве.

Если  $(X,||\cdot||)$  — норм. пр-во,  $(x_n),(y_n)$  — посл. в  $X,\lambda_n$  — посл. скаляров, и  $x_n\to x_0,y_n\to y_0,\lambda_n\to\lambda_0$ , тогда:

- 1.  $x_n \pm y_n \rightarrow x_0 \pm y_0$
- 2.  $\lambda_n x_n \to \lambda_0 x_0$
- 3.  $||x_n|| \to ||x_0||$

*Proof.* Это доказательство написано не по лекциям.

1. 
$$\forall \varepsilon \exists N_2 \ \forall n > N_1 \ ||x_n - x_0|| < \varepsilon$$

$$\forall \varepsilon \ \exists N_2 \ \forall n > N_2 \ ||y_n - y_0|| < \varepsilon$$

$$N := \max(N_1, N_2)$$

$$\forall \varepsilon \ \forall n > N \ ||(x_n + y_n) - (x_0 + y_0)|| \le ||x_n - x_0|| + ||y_n - y_0|| \le 2\varepsilon$$

M3137y2019

2. 
$$||\lambda_n x_n - \lambda_0 x_0|| = ||\lambda_n x_n - \lambda_0 x_0 + \lambda_0 x_n - \lambda_0 x_n|| = ||(\lambda_n - \lambda_0) x_n + (x_n - x_0) \lambda_0|| \le ||(\lambda_n - \lambda_0) x_n|| + ||(x_n - x_0) \lambda_0|| = ||x_n|||\lambda_n - \lambda_0| + ||x_n - x_0|||\lambda_0|$$
  $||\lambda_n - \lambda_0|| + ||x_n - x_0||| -$ бесконечно малые,  $||x_n||$  и  $||\lambda_n|| -$ ограниченные  $\Rightarrow ||x_n|||\lambda_n - \lambda_0|| + ||x_n - x_0|||\lambda_0|| -$ бесконечно малая

3. 
$$|||x_n|| - ||x_0||| \le ||x_n - x_0||$$

Об арифметических свойствах пределов в  $\mathbb{R}$ .

Для  $(x_n), (y_n)$  — вещ.посл.,  $\forall n \ y_n \neq 0, y_0 \neq 0$ :

$$4. \ \frac{x_n}{y_n} \to \frac{x_0}{y_0}$$

# 2.10 Неравенство Коши-Буняковского в линейном пространстве, норма, порожденная скалярным произведением

Для X — линейного пространства (над  $\mathbb{R}, \mathbb{C}$ )

$$\forall x, y \in X \quad |\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle$$

*Proof.* Возьмём  $\lambda \in \mathbb{R}(\mathbb{C})$ 

При y=0 тривиально, пусть  $y\neq 0$ 

$$\lambda := -\frac{\langle x, y \rangle}{\langle y, y \rangle}, \overline{\lambda} = -\frac{\langle y, x \rangle}{\langle y, y \rangle}$$

$$0 \le \langle x, x \rangle - \frac{\langle x, y \rangle}{\langle y, y \rangle} \langle y, x \rangle - \frac{\langle y, x \rangle}{\langle y, y \rangle} \langle x, y \rangle + \frac{\langle x, y \rangle \langle y, x \rangle}{\langle y, y \rangle}$$

$$0 \le \langle x, x \rangle - \frac{\langle x, y \rangle}{\langle y, y \rangle} \langle y, x \rangle$$

$$\frac{\langle x, y \rangle}{\langle y, y \rangle} \langle y, x \rangle \le \langle x, x \rangle$$

 $0 < \langle x + \lambda y, x + \lambda y \rangle = \langle x, x \rangle + \lambda \langle y, x \rangle + \overline{\lambda} \langle x, y \rangle + \lambda \overline{\lambda} \langle y, y \rangle$ 

$$\langle x, y \rangle \langle y, x \rangle \le \langle x, x \rangle \langle y, y \rangle$$

$$|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle$$

Если  $(X,||\cdot||)$  — норм. пр-во, тогда  $\rho(x,y):=||x-y||$  — метрика, порожденная нормой. Не все метрики порождены нормами, например  $\rho=\frac{|x-y|}{1+|x-y|}.$ 

# 2.11 Леммы о непрерывности скалярного произведения и покоординатной сходимости в $\mathbb{R}^n$

### 2.11.1 О покоординатной сходимости в $\mathbb{R}^m$

О покоординатной сходимости в  $\mathbb{R}^m$ 

 $(x^{(n)})$  — последовательность векторов в  $\mathbb{R}^m$ 

в  $\mathbb{R}^m$  задано евклидово скалярное пространство и норма.

Тогда 
$$(x^{(n)}) \to x \Leftrightarrow \forall i \in \{1, 2, \dots m\} \ x_i^{(n)} \underset{n \to +\infty}{\to} x_i$$

*Proof.* Модуль координаты  $\leq$  нормы всего вектора:

$$|x_i^{(n)} - x_i| \le ||x^{(n)} - x|| \le \sqrt{m} \max_{1 \le i \le m} |x_i^n - x_i|$$

Первое неравенство доказывает  $\Rightarrow$ , второе неравенство доказывает  $\Leftarrow$ 

#### 2.11.2 О непрерывности скалярного произведения

X - лин. пространство со скалярным произведением,  $||\cdot||$  — норма, порожденная скалярным произведением.

Тогда 
$$\forall (x_n)x_n \to x, \forall (y_n)y_n \to y, \quad \langle x_n, y_m \rangle \to \langle x, y \rangle$$

Proof.

$$\begin{aligned} |\langle x_n, y_m \rangle - \langle x, y \rangle| &= |\langle x_n, y_n \rangle - \langle x_n, y \rangle + \langle x_n, y \rangle - \langle x, y \rangle| \le |\langle x_n, y_n \rangle - \langle x_n, y \rangle| + |\langle x_n, y \rangle - \langle x, y \rangle \le \\ &\le |\langle x_n, y_n - y \rangle| + |\langle x_n - x, y \rangle| \le ||x_n|| \cdot ||y_n - y|| + ||x_n - x|| \cdot ||y|| \to 0 \end{aligned}$$

По теореме о двух городовых чтд.

### 2.12 Открытость открытого шара

$$B(a,r) = \{x \in X : \rho(a,x) < r\}$$
 — открыт

*Proof.*  $x_0 \in B(a,r)$ 

Докажем, что  $x_0$  — внутренняя, т.е.  $\exists U(x_0) \subset B(a,r)$ 

 $k := r - \rho(a, x_0)$ 

Докажем, что  $B(x_0, k) \subset B(a, r)$ 

$$\forall x \in B(x_0, k) \quad \rho(x, x_0) < k$$

$$\rho(a, x_0) + \rho(x, x_0) < r$$

$$\rho(x, a) \le \rho(a, x_0) + \rho(x, x_0) < r$$

# 2.13 Теорема о свойствах открытых множеств

- 1.  $(G_{\alpha})_{\alpha \in A}$  семейство открытых множеств в  $(X, \rho)$  Тогда  $\bigcup G_{\alpha}$  открыто в X.
- 2.  $G_1, G_2, \dots G_n$  открыто в X.

Тогда  $\bigcap_{i=1}^n G_i$  - открыто в X.

Proof. 1. 
$$x_0 \in \bigcup_{\alpha \in A} G_\alpha$$

$$\exists \alpha_0 : x_0 \in G_{\alpha_0}$$

$$G_{\alpha_0}$$
 — открыто  $\Rightarrow \exists U(x_0) \subset G_{\alpha_0} \subset \bigcup_{\alpha \in A} G_{\alpha} \Rightarrow x_0$  — внтуренняя точка  $\bigcup_{\alpha \in A} G_{\alpha} \Rightarrow \bigcup_{\alpha \in A} G_{\alpha}$  — открыто, т.к. в нём все точки внутренние.

2. 
$$x_0 \in \bigcap_{\alpha \in A} G_\alpha$$

$$\forall \alpha \in A : x_0 \in G_\alpha$$

$$\forall \alpha \in A \ G_{\alpha}$$
 — открыто  $\Rightarrow \exists B_{\alpha}(x_0, r_{\alpha}) \subset G_{\alpha}$ 

$$\forall x_0: \exists U(x_0) = B(x_0, \min_{\alpha} r_{\alpha}) \subset \bigcap_{\alpha \in A} G_{\alpha} \Rightarrow x_0 - \text{внутренняя точка} \bigcap_{\alpha \in A} G_{\alpha} \Rightarrow \bigcap_{\alpha \in A} G_{\alpha}$$

— открыто, т.к. в нём все точки внутренние.

# 2.14 Теорема о связи открытых и замкнутых множеств, свойства замкнутых множеств

D — замкнуто  $\Leftrightarrow D^c = X \setminus D$  (дополнение) — открыто. Свойства:

1. 
$$(F_{\alpha})_{\alpha \in A}$$
 — замкн. в  $X$ 

Тогда 
$$\bigcap F_{\alpha}$$
 — замкн. в  $X$ 

2. 
$$F_1 \dots F_n$$
 — замкн. в  $X$ 

Тогда 
$$\bigcup F_i$$
 — замкн. в  $X$ 

*Proof.* Докажем ⇒: 
$$D$$
 — замкн. ⇒?  $X \setminus D$ 

$$x\in X\setminus D\Rightarrow x$$
— не пред. точка  $D$ , т.к.  $D$  содержит все свои пред. точки и  $x\not\in D$   $\Rightarrow \exists r: B(x,r)\subset X\setminus D$ 

Докажем 
$$\Leftarrow: X \setminus D$$
 — откр.,  $D$  — замкн.?, т.е.  $\forall x \in \{$ пр.точки  $D\}$   $?x \in D$ 

Если  $x \in D$  — тривиально.

$$x \notin D$$
  $x \in X \setminus D$   $\exists U(x) \subset X \setminus D \Rightarrow x$  - не пред. точка

*Proof.* 1. 
$$(\bigcap F_{\alpha})^{c} = X \setminus (\bigcap F_{\alpha}) = \bigcup (X \setminus F_{\alpha})$$

$$F_{\alpha}$$
 — закрыто  $\Rightarrow X \setminus F_{\alpha}$  — открыто  $\Rightarrow \bigcup (X \setminus F_{\alpha})$  — открыто

$$(\bigcap F_{\alpha})^{c}$$
 — открыто  $\Rightarrow \bigcap F_{\alpha}$  — закрыто

M3137y2019

2. 
$$(\bigcup F_i)^c = \bigcap (F_i)^c$$
  $\bigcap (F_i)^c$  — открыто, т.к.  $F_i^c$  — открыто  $\Rightarrow (\bigcup F_i)^c$  — открыто  $\Rightarrow \bigcup F_i$  — закрыто

# 2.15 Теорема об арифметических свойствах предела последовательности (в $\overline{\mathbb{R}}$ ). Неопределенности

2.15.1 Теорема об арифметических свойствах предела последовательности (в  $\overline{\mathbb{R}}$ )

$$(x_n),(y_n)$$
 — вещ.,  $x_n \to a,y_n \to b, \quad a,b \in \overline{\mathbb{R}}$  Тогда:

1. 
$$x_n \pm y_n \rightarrow a \pm b$$

2. 
$$x_ny_n o ab$$
 , если  $\forall n \; y_n \neq 0; b \neq 0$ 

3. 
$$\frac{x_n}{y_n} \to \frac{a}{b}$$

При условии, что выражения в правых частях имеют смысл.

#### 2.15.2 Неопределенности

$$\bullet \begin{cases} x_n \to +\infty \\ y_n \to -\infty \end{cases} \Rightarrow x_n + y_n \to ?$$

• 
$$\begin{cases} x_n \to n + \sin n \\ y_n \to -n \end{cases} \Rightarrow x_n + y_n = \sin n, \not\exists \lim$$

• 
$$\begin{cases} x_n \to n \\ y_n \to -\sqrt{n} \end{cases} \Rightarrow x_n + y_n = n - \sqrt{n} \to +\infty$$

• 
$$\begin{cases} x_n \to 0 \\ y_n \to a \neq 0 \end{cases} \Rightarrow \frac{x_n}{y_n} \to \infty$$