Graph Signal Processing

Bastian Seifert Sommersemester 2025

Algorithm Unrolling Networks

Figures: Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing, Monga et al.

Network layers inherit interpretability from the iteration procedure

Literature

Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing V Monga, Y Li, YC Eldar

1406

2021

IEEE Signal Processing Magazine 38 (2), 18-44

Graph unrolling networks: Interpretable neural networks for graph signal denoising

93

2021

S Chen, YC Eldar, L Zhao IEEE Transactions on Signal Processing

Porting Signal Processing from Undirected to Directed Graphs: Case Study Signal Denoising with Unrolling Networks

V Mihal, B Seifert, M Püschel

30th European Signal Processing Conference (EUSIPCO), 2076-2080

2022

Sparsity

A signal representation is sparse if it has few non-zero components

$$\mathbf{x} = \sum_{k=0}^{K} a_k \mathbf{r}_k$$
 where $K \ll n$

Sparsity can be measured by the ℓ_0 pseudo-norm

$$||\mathbf{x}||_0 = |\{x_i \mid x_i \neq 0\}|$$

which can be approximated by L1-norm

$$||\mathbf{x}||_1 = |x_1| + \ldots + |x_n|$$

Sparse coding

Given a set of signals

$$X = [\mathbf{x}_1, \dots, \mathbf{x}_P]$$

we want to find a dictionary

$$D = [\mathbf{d}_1, \dots, \mathbf{d}_K]$$

such that sparse signal representations

$$R = [\mathbf{r}_1, \dots, \mathbf{r}_P]$$

are optimal approximations, i.e.,

$$||X - DR||_2^2$$

is minimized. So we have the optimization problem

$$\operatorname{argmin}_{D,R} \sum_{i=1}^{P} ||\mathbf{x}_i - D\mathbf{r}_i||_2^2 + \lambda ||\mathbf{r}_i||_0$$

The sparse coding problem can typically be either solved for D or R

Graph sparse coding

Assume the signal representations are the denoised signal, i.e., the signals are given as sparse signal propagated through a filter plus noise:

$$\mathbf{t}_i = \mathbf{x}_i + \mathbf{e}_i \text{ s.t. } \mathbf{x}_i = H\mathbf{s}_i$$

 $\mathbf{t}_i = \mathbf{x}_i + \mathbf{e}_i \ \text{s.t.} \ \mathbf{x}_i = H\mathbf{s}_i$ Then the graph sparse coding problem is the optimization problem

roblem is the optimization problem
$$\min_{\mathbf{s}\in\mathbb{R}^n} \tfrac{1}{2}\|\mathbf{t}-\mathbf{x}\|_2^2 + \alpha\|\mathbf{s}\|_1, \quad \text{s.t. } \mathbf{x} = H\mathbf{s}$$
 the graph filter.

That is the dictionary is given by the graph filter.

Half-quadratic splitting

$$L(\mathbf{x}, \mathbf{s}, \mathbf{z}) = \frac{1}{2} \|\mathbf{t} - \mathbf{x}\|_{2}^{2} + \alpha \|\mathbf{z}\|_{1} + \frac{\mu_{1}}{2} \|\mathbf{x} - H\mathbf{s}\|_{2}^{2} + \frac{\mu_{2}}{2} \|\mathbf{z} - \mathbf{s}\|_{2}^{2}$$

The variable z separates linear from non-linear part

Iterative algorithm

$$\begin{split} \mathbf{x} &\leftarrow \frac{1}{1+\mu_1} (\mathbf{t} + \mu_1 H \mathbf{s}), \\ \mathbf{s} &\leftarrow (\mu_1 H^T H + \mu_2 I)^{-1} (\mu_1 H^T \mathbf{x} + \mu_2 \mathbf{z}), \\ \mathbf{z} &\leftarrow \mathrm{argmin}_{\mathbf{z}} \|\mathbf{z}\|_1, \quad \longleftarrow \quad \text{Soft} \quad \text{These } \left(\text{These } \right) \quad \text{Cign}(\textbf{F}) \quad \text{These } \left(\text{These } \right) \quad \text{These } \left(\text{These }$$

Goal: Learn step-sizes and filter from data

Unrolled Network

$$K_1$$
 input signals $X = [\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K_1)}] \in \mathbb{R}^{n \times K_1}$

$$K_2$$
 output signals $Y = [\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(K_2)}]$

 $\mathbb{H} *_a X$ Trainable graph convolution

Parametrized by learnable kernel function

$$\Psi_{i,j} = \psi_w(\mathbf{v}_j - \mathbf{v}_i) \in \mathbb{R}$$

based on truncated graph Fourier basis

$$\{\mathbf v_1,\ldots,\mathbf v_p\}$$

Unrolled Network

$$\Sigma = [\mathbf{s}^{(1)}, \dots, \mathbf{s}^{(k)}]$$

Use layers of the form

$$X^{(b)} \leftarrow \mathbb{A} *_{a} T + \mathbb{B} *_{a} \Sigma^{(b-1)},$$

$$\Sigma^{(b)} \leftarrow \mathbb{D} *_{a} X^{(b)} + \mathbb{E} *_{a} Z^{(b-1)},$$

$$Z^{(b)} \leftarrow \operatorname{thresh}_{\alpha}(\Sigma^{(b)}),$$

Other algorithms can be unrolled similar (e.g., graph trend filtering)

Fig. 3: Noisy version of the signal in Figure 2 with an SNR ≈ 2 .

Experimental Setup: Digraphs Used

2 random geometric digraphs:

- 500 random points in [0,1] imes [0,1]
- connected if distance less than 0.065
- edge direction determined with probability $p \ (0.5, 0.9)$

Experimental Setup – digraph signals for denoising

For each basis:

- 6 sets of 100 low frequency signals (low frequency notion depends on basis!)
- · one set for hyperparameter tuning, 5 sets for testing

Noise:

- additive Gaussian noise
- NMSE: $\frac{\|\mathbf{t} \mathbf{x}\|_2^2}{\|\mathbf{x}\|_2^2} pprox 0.5$

For each basis:

• apply 5 (4) methods

Total:

• 5 + 5 + 5 + 4 + 4 = 23 experiments

Results Forget Dir never performs best

SelfLoops is close to AssocShift for GenBC

p = 0.5	ForgetDir	AdHoc	SelfLoops	UndShift	AssocShift
SprFreq	0.43 ± 0.01	0.46 ± 0.01	0.35 ± 0.01	0.19 ± 0.00	-
HermL	0.28 ± 0.01	0.31 ± 0.01	0.19 ± 0.00	0.07 ± 0.01	0.19 ± 0.04
StabApp	0.13 ± 0.00	0.08 ± 0.00	0.09 ±0.00	0.10 ± 0.00	-
GenBC1	0.10 ± 0.00	0.01 ± 0.00	0.01 ± 0.00	0.03 ± 0.00	0.01 ± 0.00
GenBC2	0.10 ± 0.00	0.01 ± 0.00	0.01 ± 0.00	0.03 ± 0.00	0.01 ± 0.00

GenBC basis and shift work best

p = 0.9	ForgetDir	AdHoc	SelfLoops	UndShift	AssocShift
SprFreq	0.19 ± 0.01	0.19 ± 0.01	0.12 ± 0.00	0.06 ± 0.00	-
HermL	0.21 ± 0.01	0.28 ± 0.01	0.16 ± 0.01	0.07 ± 0.00	0.19 ± 0.01
StabApp	0.24 ± 0.00	0.10 ± 0.00	0.11 ± 0.00	0.11 ± 0.00	-
GenBC1	0.15 ± 0.01	0.03 ± 0.00	0.03 ± 0.01	0.06 ± 0.01	0.05 ± 0.00
GenBC2	0.15 ± 0.00	0.06 ± 0.00	0.06 ± 0.00	0.05 ± 0.00	0.01 ± 0.00
_				· · · · · · · · · · · · · · · · · · ·	

GenBC basis and shift work best