

Audit Report

Ecobonus

July 2023

Network Eth Goerli

Address 0x68580A5dBbeb92132E9b9234508bC8DBCb1f1F83

Audited by © cyberscope

Analysis

CriticalMediumMinor / InformativePass

Severity	Code	Description	Status
•	ST	Stops Transactions	Unresolved
•	OTUT	Transfers User's Tokens	Passed
•	ELFM	Exceeds Fees Limit	Passed
•	MT	Mints Tokens	Passed
•	ВТ	Burns Tokens	Passed
•	ВС	Blacklists Addresses	Passed

2

Diagnostics

CriticalMediumMinor / Informative

Severity	Code	Description	Status
•	MVN	Misleading Variables Naming	Unresolved
•	MEE	Missing Events Emission	Unresolved
•	RSW	Redundant Storage Writes	Unresolved
•	PAV	Pair Address Validation	Unresolved
•	L04	Conformance to Solidity Naming Conventions	Unresolved
•	L07	Missing Events Arithmetic	Unresolved
•	L09	Dead Code Elimination	Unresolved
•	L15	Local Scope Variable Shadowing	Unresolved
•	L18	Multiple Pragma Directives	Unresolved
•	L19	Stable Compiler Version	Unresolved

Table of Contents

Analysis	1
Diagnostics	2
Table of Contents	3
Review	5
Audit Updates	5
Source Files	5
Findings Breakdown	6
ST - Stops Transactions	7
Description	7
Recommendation	7
MVN - Misleading Variables Naming	8
Description	8
Recommendation	8
MEE - Missing Events Emission	9
Description	9
Recommendation	9
RSW - Redundant Storage Writes	10
Description	10
Recommendation	10
PAV - Pair Address Validation	12
Description	12
Recommendation	12
L04 - Conformance to Solidity Naming Conventions	13
Description	13
Recommendation	13
L07 - Missing Events Arithmetic	15
Description	15
Recommendation	15
L09 - Dead Code Elimination	16
Description	16
Recommendation	16
L15 - Local Scope Variable Shadowing	17
Description	17
Recommendation	17
L18 - Multiple Pragma Directives	18
Description	18
Recommendation	18
L19 - Stable Compiler Version	19
Description	19

Recommendation	19
Functions Analysis	20
Inheritance Graph	23
Flow Graph	24
Summary	25
Disclaimer	26
About Cyberscope	27

Review

Contract Name	EcoBonus
Compiler Version	v0.8.10+commit.fc410830
Optimization	200 runs
Explorer	https://goerli.etherscan.io/address/0x68580a5dbbeb92132e9b9 234508bc8dbcb1f1f83
Address	0x68580a5dbbeb92132e9b9234508bc8dbcb1f1f83
Network	GOERLI
Symbol	ECB
Decimals	18
Total Supply	8,000,000,000

Audit Updates

Initial Audit	17 Jul 2023
---------------	-------------

Source Files

Filename	SHA256
EcoBonus.sol	fdc1b493dbaf1f788505faa36f08bbab449200a6717c2a65fbb3403296f8f 970

Findings Breakdown

Severity	Unresolved	Acknowledged	Resolved	Other
Critical	1	0	0	0
Medium	0	0	0	0
Minor / Informative	12	0	0	0

ST - Stops Transactions

Criticality	Critical
Location	EcoBonus.sol#L684
Status	Unresolved

Description

The transactions are initially disabled for all users excluding the authorized addresses. The owner can enable the transactions for all users. Once the transactions are enable the owner will not be able to disable them again.

```
if (!tradingActive) {
   require(whitelisted[from] && whitelisted[to], "Trading is not
active.");
}
```

Recommendation

The team should carefully manage the private keys of the owner's account. We strongly recommend a powerful security mechanism that will prevent a single user from accessing the contract admin functions. Some suggestions are:

- Introduce a multi-sign wallet so that many addresses will confirm the action.
- Introduce a governance model where users will vote about the actions.

MVN - Misleading Variables Naming

Criticality	Minor / Informative
Location	EcoBonus.sol#L606
Status	Unresolved

Description

Variables can have misleading names if their names do not accurately reflect the value they contain or the purpose they serve. The contract uses some variable names that are too generic or do not clearly convey the information stored in the variable. Misleading variable names can lead to confusion, making the code more difficult to read and understand.

The variable maxTransaction is only used on sell transactions.

```
uint256 public maxTransaction;
```

Recommendation

It's always a good practice for the contract to contain variable names that are specific and descriptive. The team is advised to keep in mind the readability of the code.

MEE - Missing Events Emission

Criticality	Minor / Informative
Location	EcoBonus.sol#L633,651
Status	Unresolved

Description

The contract performs actions and state mutations from external methods that do not result in the emission of events. Emitting events for significant actions is important as it allows external parties, such as wallets or dApps, to track and monitor the activity on the contract. Without these events, it may be difficult for external parties to accurately determine the current state of the contract.

```
function setUniswapPair(address _uniswapPairAddress) external onlyOwner
{
    require(_uniswapPairAddress != address(0), "Cannot provide the zero
address as parameter");

    uniswapV2Pair = _uniswapPairAddress;
}

function setWhitelisted(address _address, bool _value) public onlyOwner
{
    require(_address != address(0), "Cannot provide the zero address as
parameter");

    whitelisted[_address] = _value;
}
```

Recommendation

It is recommended to include events in the code that are triggered each time a significant action is taking place within the contract. These events should include relevant details such as the user's address and the nature of the action taken. By doing so, the contract will be more transparent and easily auditable by external parties. It will also help prevent potential issues or disputes that may arise in the future.

RSW - Redundant Storage Writes

Criticality	Minor / Informative
Location	EcoBonus.sol#L629,633,651
Status	Unresolved

Description

There are code segments that could be optimized. A segment may be optimized so that it becomes a smaller size, consumes less memory, executes more rapidly, or performs fewer operations.

The contract updates the state of excluded addresses even if their current state is the same as the one passed as an argument. As a result, the contract performs redundant storage writes.

```
function enableTrading() external onlyOwner {
    tradingActive = true;
}

function setUniswapPair(address _uniswapPairAddress) external onlyOwner
{
    require(_uniswapPairAddress != address(0), "Cannot provide the zero
address as parameter");

    uniswapV2Pair = _uniswapPairAddress;
}

function setWhitelisted(address _address, bool _value) public onlyOwner
{
    require(_address != address(0), "Cannot provide the zero address as
parameter");

    whitelisted[_address] = _value;
}
```

Recommendation

The team is advised to take these segments into consideration and rewrite them so the runtime will be more performant. That way it will improve the efficiency and performance of the source code and reduce the cost of executing it.

PAV - Pair Address Validation

Criticality	Minor / Informative
Location	EcoBonus.sol#L633
Status	Unresolved

Description

The contract is missing address validation in the pair address argument. The absence of validation reveals a potential vulnerability, as it lacks proper checks to ensure the integrity and validity of the pair address provided as an argument. The pair address is a parameter used in certain methods of decentralized exchanges for functions like token swaps and liquidity provisions.

The absence of address validation in the pair address argument can introduce security risks and potential attacks. Without proper validation, if the owner's address is compromised, the contract may lead to unexpected behavior like loss of funds.

```
function setUniswapPair(address _uniswapPairAddress) external onlyOwner
{
    require(_uniswapPairAddress != address(0), "Cannot provide the zero
address as parameter");

    uniswapV2Pair = _uniswapPairAddress;
}
```

Recommendation

To mitigate the risks associated with the absence of address validation in the pair address argument, it is recommended to implement comprehensive address validation mechanisms. A recommended approach could be to verify pair existence in the decentralized application. Prior to interacting with the pair address contract, perform checks to verify the existence and validity of the contract at the provided address. This can be achieved by querying the provider's contract or utilizing external libraries that provide contract verification services.

L04 - Conformance to Solidity Naming Conventions

Criticality	Minor / Informative
Location	EcoBonus.sol#L633,639,645,651,664
Status	Unresolved

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity code. Adhering to a style guide can help improve the readability and maintainability of the Solidity code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

- 1. Use camelCase for function and variable names, with the first letter in lowercase (e.g., myVariable, updateCounter).
- 2. Use PascalCase for contract, struct, and enum names, with the first letter in uppercase (e.g., MyContract, UserStruct, ErrorEnum).
- 3. Use uppercase for constant variables and enums (e.g., MAX_VALUE, ERROR_CODE).
- 4. Use indentation to improve readability and structure.
- 5. Use spaces between operators and after commas.
- 6. Use comments to explain the purpose and behavior of the code.
- 7. Keep lines short (around 120 characters) to improve readability.

```
address _uniswapPairAddress
uint256 _maxTransaction
uint256 _maxWallet
address _address
bool _value
address _tokenAddress
uint256 _amount
```

Recommendation

By following the Solidity naming convention guidelines, the codebase increased the readability, maintainability, and makes it easier to work with.

Find more information on the Solidity documentation

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-convention.

L07 - Missing Events Arithmetic

Criticality	Minor / Informative
Location	EcoBonus.sol#L642,648
Status	Unresolved

Description

Events are a way to record and log information about changes or actions that occur within a contract. They are often used to notify external parties or clients about events that have occurred within the contract, such as the transfer of tokens or the completion of a task.

It's important to carefully design and implement the events in a contract, and to ensure that all required events are included. It's also a good idea to test the contract to ensure that all events are being properly triggered and logged.

```
maxTransaction = _maxTransaction * (10**18)
maxWallet = _maxWallet * (10**18)
```

Recommendation

By including all required events in the contract and thoroughly testing the contract's functionality, the contract ensures that it performs as intended and does not have any missing events that could cause issues with its arithmetic.

L09 - Dead Code Elimination

Criticality	Minor / Informative
Location	EcoBonus.sol#L572
Status	Unresolved

Description

In Solidity, dead code is code that is written in the contract, but is never executed or reached during normal contract execution. Dead code can occur for a variety of reasons, such as:

- Conditional statements that are always false.
- Functions that are never called.
- Unreachable code (e.g., code that follows a return statement).

Dead code can make a contract more difficult to understand and maintain, and can also increase the size of the contract and the cost of deploying and interacting with it.

```
function _beforeTokenTransfer(address from, address to, uint256 amount)
internal virtual {}
```

Recommendation

To avoid creating dead code, it's important to carefully consider the logic and flow of the contract and to remove any code that is not needed or that is never executed. This can help improve the clarity and efficiency of the contract.

L15 - Local Scope Variable Shadowing

Criticality	Minor / Informative
Location	EcoBonus.sol#L615
Status	Unresolved

Description

Local scope variable shadowing occurs when a local variable with the same name as a variable in an outer scope is declared within a function or code block. When this happens, the local variable "shadows" the outer variable, meaning that it takes precedence over the outer variable within the scope in which it is declared.

```
uint256 totalSupply = 8_000_000_000 * 1e18
```

Recommendation

It's important to be aware of shadowing when working with local variables, as it can lead to confusion and unintended consequences if not used correctly. It's generally a good idea to choose unique names for local variables to avoid shadowing outer variables and causing confusion.

L18 - Multiple Pragma Directives

Criticality	Minor / Informative
Location	EcoBonus.sol#L6,33,118,199,229,595
Status	Unresolved

Description

If the contract includes multiple conflicting pragma directives, it may produce unexpected errors. To avoid this, it's important to include the correct pragma directive at the top of the contract and to ensure that it is the only pragma directive included in the contract.

```
pragma solidity ^0.8.0;
pragma solidity ^0.8.10;
```

Recommendation

It is important to include only one pragma directive at the top of the contract and to ensure that it accurately reflects the version of Solidity that the contract is written in.

By including all required compiler options and flags in a single pragma directive, the potential conflicts could be avoided and ensure that the contract can be compiled correctly.

L19 - Stable Compiler Version

Criticality	Minor / Informative
Location	EcoBonus.sol#L6,33,118,199,229,595
Status	Unresolved

Description

The symbol indicates that any version of Solidity that is compatible with the specified version (i.e., any version that is a higher minor or patch version) can be used to compile the contract. The version lock is a mechanism that allows the author to specify a minimum version of the Solidity compiler that must be used to compile the contract code. This is useful because it ensures that the contract will be compiled using a version of the compiler that is known to be compatible with the code.

```
pragma solidity ^0.8.0;
pragma solidity ^0.8.10;
```

Recommendation

The team is advised to lock the pragma to ensure the stability of the codebase. The locked pragma version ensures that the contract will not be deployed with an unexpected version. An unexpected version may produce vulnerabilities and undiscovered bugs. The compiler should be configured to the lowest version that provides all the required functionality for the codebase. As a result, the project will be compiled in a well-tested LTS (Long Term Support) environment.

Functions Analysis

Contract	Туре	Bases		
	Function Name	Visibility	Mutability	Modifiers
Context	Implementation			
	_msgSender	Internal		
	_msgData	Internal		
Ownable	Implementation	Context		
		Public	✓	-
	owner	Public		-
	_checkOwner	Internal		
	renounceOwnership	Public	✓	onlyOwner
	transferOwnership	Public	✓	onlyOwner
	_transferOwnership	Internal	✓	
IERC20	Interface			
	totalSupply	External		-
	balanceOf	External		-
	transfer	External	√	-
	allowance	External		-
	approve	External	✓	-

	transferFrom	External	✓	-
IERC20Metadat	Interface	IERC20		
	name	External		-
	symbol	External		-
	decimals	External		-
ERC20	Implementation	Context, IERC20, IERC20Meta data		
		Public	✓	-
	name	Public		-
	symbol	Public		-
	decimals	Public		-
	totalSupply	Public		-
	balanceOf	Public		-
	transfer	Public	✓	-
	allowance	Public		-
	approve	Public	✓	-
	transferFrom	Public	✓	-
	increaseAllowance	Public	✓	-
	decreaseAllowance	Public	✓	-
	_transfer	Internal	✓	
	_mint	Internal	✓	

	_burn	Internal	✓	
	_approve	Internal	✓	
	_spendAllowance	Internal	✓	
	_beforeTokenTransfer	Internal	✓	
	_afterTokenTransfer	Internal	✓	
EcoBonus	Implementation	Ownable, ERC20		
		Public	1	ERC20
		External	Payable	-
	enableTrading	External	✓	onlyOwner
	setUniswapPair	External	✓	onlyOwner
	updateMaxTransaction	External	1	onlyOwner
	updateMaxWallet	External	✓	onlyOwner
	setWhitelisted	Public	✓	onlyOwner
	withdraw	External	✓	onlyOwner
	recoverTokensFromContract	External	✓	onlyOwner
	_beforeTokenTransfer	Internal	✓	
	burn	External	✓	-

Inheritance Graph

Flow Graph

Summary

Ecobonus contract implements a token mechanism. This audit investigates security issues, business logic concerns and potential improvements. There are some functions that can be abused by the owner like stop transactions. A multi-wallet signing pattern will provide security against potential hacks.

Disclaimer

The information provided in this report does not constitute investment, financial or trading advice and you should not treat any of the document's content as such. This report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes nor may copies be delivered to any other person other than the Company without Cyberscope's prior written consent. This report is not nor should be considered an "endorsement" or "disapproval" of any particular project or team. This report is not nor should be regarded as an indication of the economics or value of any "product" or "asset" created by any team or project that contracts Cyberscope to perform a security assessment. This document does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies proprietors' business, business model or legal compliance. This report should not be used in any way to make decisions around investment or involvement with any particular project. This report represents an extensive assessment process intending to help our customers increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk Cyberscope's position is that each company and individual are responsible for their own due diligence and continuous security Cyberscope's goal is to help reduce the attack vectors and the high level of variance associated with utilizing new and consistently changing technologies and in no way claims any guarantee of security or functionality of the technology we agree to analyze. The assessment services provided by Cyberscope are subject to dependencies and are under continuing development. You agree that your access and/or use including but not limited to any services reports and materials will be at your sole risk on an as-is where-is and as-available basis Cryptographic tokens are emergent technologies and carry with them high levels of technical risk and uncertainty. The assessment reports could include false positives false negatives and other unpredictable results. The services may access and depend upon multiple layers of third parties.

About Cyberscope

Cyberscope is a blockchain cybersecurity company that was founded with the vision to make web3.0 a safer place for investors and developers. Since its launch, it has worked with thousands of projects and is estimated to have secured tens of millions of investors' funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has built a high-profile network of clients and partners.

