Проект

Искусственные нейронные сети в задаче классификации

С. Лагутин О

2018 год

Содержание

1.	Обзор	3
	1.1. Классификация	٩
	1.2. Методы решения	Ę
2.	Постановка задачи	5
3.	Решение задачи	6
	3.1. Перцептрон	(
	3.2. Предикторы из записей	Ć
4.	Реализация	11
	4.1. Подготовка предикторов	11
	4.2. Нейросеть	
5.	Тестирование	13
	5.1. Tect 0	13
	5.2. Tect 1	14
	5.3. Tect 2	15
	5.4. Тест 3	16
6	Использованные источники	17

1. Обзор

1.1. Классификация

Классификация объектов — одна из стандартных задач машинного обучения. Её можно описать так: имеется множество объектов, которые каким-то образом разделены на классы. Задано конечное множество объектов, для которых известно, к каким классам они относятся. Это множество называется *обучающей выборкой*. Классовая принадлежность остальных объектов неизвестна. Требуется построить алгоритм, способный классифицировать произвольный объект (то есть указать к какому классу он относится) из исходного множества.

В машинном обучении задача классификации относится к разделу обучения с учителем. Существует также обучение без учителя, когда разделение объектов обучающей выборки на классы не задаётся, и требуется классифицировать объекты только на основе их сходства друг с другом. В этом случае принято говорить о задачах класстеризации.

Одним из самых простых типов классификации является бинарная классификация, когда различных классов всего два. Данный тип служит основой для решения более сложных задач.

1.2. Методы решения

Для решения задач классификации могут использоваться следующие методы:

- Байесовский классификатор;
- Решающие деревья;
- Логистическая регрессия;
- Искусственные нейронные сети.

Байесовский классификатор — тип алгоритмов классификации, основанный на теореме, утверждающей, что если плотности распределения каждого из классов известны, то искомый алгоритм можно выписать в явном аналитическом виде. Более того, этот алгоритм оптимален, то есть обладает минимальной вероятностью ошибок. На практике плотности распределения классов, как правило, не известны. Их приходится оценивать по обучающей выборке. В результате байесовский алгоритм перестаёт быть оптимальным, так как восстановить плотность по выборке можно только с некоторой погрешностью. В задаче бинарной классификации звуков восстановление плотности классов является плохо решаемой проблемой.

Решающие деревья — средство поддержки принятия решений, структура которого представляет собой *листья* и *ветки*. На ветках дерева записаны атрибу-

ты, от которых зависит целевая функция, в листьях записаны значения целевой функции, а в остальных узлах — атрибуты, по которым различаются случаи. Цель состоит в том, чтобы создать модель, которая предсказывает значение целевой переменной на основе нескольких переменных на входе.

Одним из основных вопросов в реализации решающих деревьев для задачи классификации является выбор атрибутов, по которым будет осуществляться разделение данных на классы.

Логистическая регрессия — метод построения линейной разделяющей поверхности. В случае двух классов разделяющей поверхностью является гиперплоскость. В задаче бинарной классификации звуков нельзя гарантировать возможность разделения пространства параметров одной гиперплоскостью.

Искусственная нейронная сеть — это математическая модель, построенная в некотором смысле по образу и подобию сетей нервных клеток живого организма. Для решения задачи классификации может использоваться такой тип ИНС, как *многослойный перцептрон Розенблатта*. Он представляет собой передающую сеть, состоящую из генераторов сигнала трёх типов: сенсорных элементов, ассоциативных элементов и реагирующих элементов. Производящие функции этих элементов зависят от сигналов, возникающих либо где-то внутри передающей сети, либо, для внешних элементов, от сигналов, поступающих из внешней среды.

2. Постановка задачи

Имеется набор данных — оцифрованные записи звука удара мячей для настольного тенниса. Каждая запись длительностью примерно 3-6 секунд. Всего записей 100 штук. Все представлены в виде wave-файлов, пронумерованных от 1 до 100.

Записи с 1 по 50 соответствуют сломанным мячам. Типов сломанных мячей четыре: мячи с вмятинами с одной стороны, мячи с проколами и разрывами с одной стороны, мячи из одной целой полусферы, мячи с вмятинами и проколами с разных сторон.

Записи с 51 по 100 соответствуют целым мячам.

Все записи были сделаны при ударах о разные типы поверхностей: кафельный пол, металлическая поверхность электрической плиты, деревянная поверхность стола, пластиковая поверхность подоконника.

Необходимо, используя разные компоновки обучающей и контрольной выборки из исходных данных, получить предсказания о классификации каждого примера с возможной ошибкой не более 10% неправильных ответов от размера контрольной выборки.

3. Решение задачи

Для решения поставленной задачи я использовал многослойный перцептрон Розенблатта.

3.1. Перцептрон

Перцептрон состоит из нескольких слоёв нейронов:

- 1. Входной слой, содержащий псевдо-нейроны, которые передают дальше значения *предикторов* параметров объекта;
- 2. Один или несколько скрытых слоёв;
- 3. Выходной слой, содержащий один нейрон.

Передача сигналов (активация) нейронной сети происходит от входного слоя, через скрытые слои, к выходному слою.

Все нейроны (кроме входного слоя) имеют одинаковое строение, состоят из двух частей — сумматорной и активационной функций. Сумматорная функция определяет то, как нейрон будет использовать входящую информацию из предыдущего слоя. Активационная функция определяет реакцию нейрона, которая будет передана по всем выходным связям в следующий слой.

В качестве сумматорной функции выбрана взвешенная сумма всех входящих сигналов:

$$S = b + \sum_{j=1}^{m} x_j w_j$$

где m — количество входящих сигналов нейрона, x_j — значение, получаемое по j-ому входу, w_j — вес j-ого входа, b — некоторое смещение, изменяемое в процессе обучения. Смещение можно учитывать в сумме, если добавить в каждый слой,

кроме выходного на первое место нейрон, у которого значение активации будет всегда равно 1.

Активационная функция — логистическая (сигмоидальная):

$$\sigma\left(S\right) = \frac{1}{1 + e^{-S}}$$

Логистическая функция является гладкой, что необходимо для работы алгоритма обучения. Кроме того, её значение можно интерпретировать как вероятность принадлежности объекта к одному из двух классов.

Обучение нейронной сети — это настройка весов для входящих связей всех нейронов, с целью получения достоверных предсказаний. Для обучения используется алгоритм обратного распространенния ошибки, который основывается на градиентном спуске по простанству весов в сторону уменьшения значений целевой функции ошибки.

Для оценки правдоподобности предсказаний используется $\kappa вадратичная функция ошибки$:

$$E = \frac{1}{2N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

где N — количество примеров, \hat{y}_i — предсказанное значение для i-ого примера, y_i — правильный ответ для него.

Для того, чтобы понять, как изменится значение функции ошибки при изменении какого-либо веса входящих сигналов нейрона, нужно взять её частную производную по этому весу.

Сначала считается изменение весов в выходном слое:

$$\Delta w_j = -\alpha \frac{\partial E}{\partial w_j}$$

где $\alpha \in \mathbb{R}$ — скорость обучения.

В векторном виде:

$$\Delta W = -\alpha \nabla_W E$$

где
$$\nabla_W E = \left(\frac{\partial E}{\partial w_1}, \dots, \frac{\partial E}{\partial w_m}\right)$$
 — градиент E в точке W .

Посчитаем частную производную от функции E по j-му весу:

$$\frac{\partial E}{\partial w_j} = \frac{\partial \left(\frac{1}{2N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2\right)}{\partial w_j}$$

Так как производная суммы равна сумме производных, возьмём для простоты один пример, а после просуммируем все значения:

$$\frac{1}{2} \cdot \frac{\partial (\hat{y} - y)^2}{\partial w_j} = \frac{1}{2} \cdot \frac{\partial (\hat{y} - y)^2}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial w_j} = (\hat{y} - y) \frac{\partial \sigma(S)}{\partial w_j} =$$

$$= (\sigma(S) - y) \sigma'(S) \frac{\partial \sum_{j=1}^m x_j w_j}{\partial w_j} = (\sigma(S) - y) \sigma(S) (1 - \sigma(S)) x_j$$

Итак, общая формула для j-ого веса по N примерам:

$$\frac{\partial E}{\partial w_j} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i) \, \hat{y}_i (1 - \hat{y}_i) \, x_j$$

Далее полученная ошибка распространяется по ИНС в обратном порядке, от выходного слоя ко входному, изменяя веса скрытых слоёв.

Введём следующие обозначения:

- w_{jk}^l значение j-ого веса k-ого нейрона в l-ом слое (вес связи из j-ого нейрона l-1 слоя в k-ый нейрон l-ого слоя);
- m_l количество нейронов в l-ом слое;
- ullet s_k^l значение сумматорной функции k-ого нейрона в l-ом слое;
- a_k^l значение активационной функции k-ого нейрона в l-ом слое;
- ullet $\delta_k^l = rac{\partial E}{\partial s_k^l}$ ошибка k-ого нейрона в l-ом слое.

Зная значение ошибки δ_k^l для каждого нейрона, можно получить соответствующее изменение его весов:

$$\Delta w_{jk}^l = -\alpha \delta_k^l a_j^{l-1}$$

Посчитаем значение ошибки для нейронов выходного (L-ого) слоя. Для простоты возьмём один пример:

$$\delta_k^L = \frac{\partial E}{\partial s_k^L} = \frac{1}{2} \cdot \frac{\partial \left(\sigma\left(s_k^L\right) - y_k\right)^2}{\partial s_k^L} = \left(a_k^L - y_k\right) a_k^L \left(1 - a_k^L\right)$$

где y_k — правильный ответ для k-ого нейрона выходного слоя.

Теперь выразим ошибку нейрона на l-ом слое через ошибки на l+1 слое:

$$\delta_{j}^{l} = \sigma \prime \left(s_{j}^{l} \right) \sum_{k=1}^{m_{l+1}} w_{jk}^{l+1} \delta_{k}^{l+1} = a_{j}^{l} \left(1 - a_{j}^{l} \right) \sum_{k=1}^{m_{l+1}} w_{jk}^{l+1} \delta_{k}^{l+1}$$

3.2. Предикторы из записей

Для получения численных предикторов из записей звука, массив интенсивности сигналов по времени из wave-файла переводится с помощью быстрого дискретного преобразования Фурье в спектр — массив интенсивности частот.

Если посмотреть на спектры сломанных и целых мячей, можно отчётливо заметить разницу: у целых мячей имеется узкий диапазон частот, которые имеют высокую интенсивность, по сравнению с остальными частотами; у сломанных же мячей спектры имеют несколько не очень высоких пиков.

Таким образом в качестве предикторов можно использовать значения нескольких самых интенсивных частот, или, другими словами — значения частот, в которых есть пики интенсивности в спектре.

Пример спектра записи звука целого мяча:

Пример спектра записи звука повреждённого мяча:

4. Реализация

4.1. Подготовка предикторов

Для подготовки предикторов из записей звука используется библиотека работы с wave-файлами и быстрое преобразование Фурье из библиотеки **numpy**, реализованные в Python 3.

Весь исходный код для подготовки предикторов находится в подкаталоге ./predictors/.

В файле wavetransform.py написан код, который последовательно обрабатывает файлы из подкаталога с записями звуков ./wav/ следующим образом:

- 1. Из файла считывается массив сэмплов;
- 2. Данный массив преобразуется при помощи функции numpy.rfft в спектр;
- 3. Во временные промежуточные файлы (для сломанных и целых мячей отдельно) записывается промежуточный результат: сначала интенсивности, как абсолютные значения из спектра, затем частоты, которые соответствуют данному распределению.

После этого работает код, написанный в файле **predictors.cpp**:

- 1. Каждые интенсивность и частоты связываются в единый массив пар, в которых на первом месте стоит значение интенсивности, на втором соответствующая частота std::pair<double, double>;
- 2. Полученный массив сортируется по неубыванию интенсивностей в спектре;
- 3. Из отсортированного массива выводятся 20 частот с конца, для каждого примера выводятся значения правильных ответов на него (1 для целых, 0 для сломанных мячей).

Выходной файл с предикторами создаётся в корневом каталоге проекта. Его имя генерируется по времени запуска генерации и имеет вид **pred*.p**.

4.2. Нейросеть

Исходный код основного приложения находится в подкаталоге $./\mathrm{src}/.$

Подготовленные данные считываются из файла с предикторами в функции reading (реализация в **body.cpp**) в массив векторов **input**, правильные ответы в вектор у.

Нейросеть реализована в виде класса NeuronNet, в котором создаются вектора, соответствующие слоям нейросети, содержащим отдельные нейроны, а также вектора значений активаций нейронов каждого слоя. Предсказание нейросети на конкретном примере производится вызовом метода NeuronNet::forward_pass.

В нейроне, реализованном в классе **Neuron**, содержится вектор весов для входящих сигналов этого нейрона, а также два метода: сумматорная и активационная функции. Исходные значения весов задаются случайно. Активационная функция задаётся через конструктор нейросети и хранится как указатель на функцию (по умолчанию — сигмоида).

Metod NeuronNet::forward_pass получает в качестве параметра вектор значений предикторов одного примера и проводит последовательную активацию нейронов по слоям от входного к выходному, после чего возвращает значение активации нейрона в выходном слое.

Metod NeuronNet::backpropagation реализует алгоритм обратного распространения ошибки. Он получает в качестве параметров вектор значений предикторов и правильный ответ для одного примера, а также константу скорости обучения, производные активационной функции нейронов и целевой функции ошибки (по умолчанию — квадратичная функция ошибки).

Сначала считается значение ошибки на выходном слое. Затем ошибка распространяется на предыдущие слои в обратном порядке. Для каждого слоя хранится временный вектор ошибок wdelt.

Обучение нейросети происходит в функции learning (body.cpp). В данной функции заданное количество раз (значение параметра epoch) вызывается метод NeuronNet::backpropagation, с передачей ему случайного примера из входных данных.

Функция **check** (**body.cpp**) выводит предсказания по выборке, передаваемой в качестве параметра, а также возвращает количество ошибочных предсказаний в процентах от размера выборки.

5. Тестирование

Во всех тестах в нейросети использовалось два скрытых слоя, количество эпох обучения: 50000.

5.1. Тест 0

В данном тесте обучающая выборка равна контрольной и содержит все 100 примеров из исходных данных. Наилучший результат получается при конфигурации сети по 10 нейронов на каждом скрытом слое, скорость обучения $\alpha = 0.05$.

Ошибочных предсказаний для контрольной выборки 6%.

```
0.91466 => whole [WHOLE]
                           0.93033 => whole [WHOLE]
                                                        0.07389 => broken [BROKEN]
0.92536 => whole [WHOLE]
                           0.94007 => whole [WHOLE]
                                                        0.01795 => broken [BROKEN]
0.86948 => whole [WHOLE]
                           0.93053 => whole [WHOLE]
                                                        0.10768 => broken [BROKEN]
0.92332 => whole [WHOLE]
                           0.93854 => whole [WHOLE]
                                                        0.01942 => broken [BROKEN]
0.06457 => broken [WHOLE]
                                                        0.01784 => broken [BROKEN]
                           0.92613 => whole [WHOLE]
                                                        0.11092 => broken [BROKEN]
0.76195 => whole [WHOLE]
                           0.93447 => whole [WHOLE]
0.88933 => whole [WHOLE]
                           0.74654 => whole [WHOLE]
                                                        0.16283 => broken [BROKEN]
0.91868 => whole [WHOLE]
                           0.87381 => whole [WHOLE]
                                                        0.02781 => broken [BROKEN]
0.93270 => whole [WHOLE]
                           0.89680 => whole [WHOLE]
                                                        0.01773 => broken [BROKEN]
0.91229 => whole [WHOLE]
                           0.85227 => whole [WHOLE]
                                                        0.14024 => broken [BROKEN]
0.93687 => whole [WHOLE]
                           0.90901 => whole [WHOLE]
                                                        0.02727 => broken [BROKEN]
0.93814 => whole [WHOLE]
                           0.87969 => whole [WHOLE]
                                                        0.42470 => broken
                                                                           [BROKEN]
                           0.75836 => whole [WHOLE]
0.91840 => whole [WHOLE]
                                                        0.09244 => broken
                                                                           [BROKEN]
                                                        0.01776 => broken
0.92433 => whole [WHOLE]
                           0.90925 => whole [WHOLE]
0.93472 => whole [WHOLE]
                           0.05479 => broken [BROKEN]
                                                        0.14121 => broken [BROKEN]
0.93497 => whole [WHOLE]
                           0.06725 => broken [BROKEN]
                                                        0.01778 => broken [BROKEN]
0.93500 => whole [WHOLE]
                           0.02194 => broken [BROKEN]
                                                        0.01772 => broken [BROKEN]
                           0.01793 => broken [BROKEN]
0.92785 => whole [WHOLE]
                                                        0.09035 => broken
                                                                           [BROKEN]
0.79843 => whole [WHOLE]
                           0.01791 => broken [BROKEN]
                                                        0.18876 => broken [BROKEN]
                           0.06550 => broken [BROKEN]
0.83747 => whole [WHOLE]
                                                        0.01798 => broken [BROKEN]
                           0.03068 => broken [BROKEN]
0.85760 => whole [WHOLE]
                                                        0.04425 => broken [BROKEN]
0.91041 => whole [WHOLE]
                           0.01813 => broken [BROKEN]
                                                        0.02922 => broken
                                                                           [BROKEN]
                           0.11732 => broken [BROKEN]
0.81506 => whole [WHOLE]
                                                        0.06879 => broken
                                                                           [BROKEN]
0.84865 => whole [WHOLE]
                           0.93463 => whole [BROKEN]
                                                        0.35827 => broken
                                                                           [BROKEN]
0.89208 => whole [WHOLE]
                           0.89746 => whole [BROKEN]
                                                        0.14423 => broken [BROKEN]
0.93433 => whole [WHOLE]
                           0.11028 => broken [BROKEN]
                                                        0.01813 => broken [BROKEN]
                           0.92953 => whole [BROKEN]
0.93554 => whole [WHOLE]
                                                        0.01810 => broken [BROKEN]
                           0.91972 => whole [BROKEN]
0.93209 => whole [WHOLE]
                                                        0.07674 => broken [BROKEN]
                           0.01784 => broken [BROKEN]
0.90710 => whole [WHOLE]
0.92311 => whole [WHOLE]
                           0.01763 => broken [BROKEN]
0.92684 => whole [WHOLE]
                           0.02453 => broken [BROKEN]
0.90673 => whole [WHOLE]
                           0.07670 => broken [BROKEN]
0.85894 => whole [WHOLE]
                           0.01780 => broken [BROKEN]
0.80472 => whole [WHOLE]
                           0.02327 => broken [BROKEN]
0.93985 => whole [WHOLE]
                           0.93476 => whole [BROKEN]
0.92340 => whole [WHOLE]
                           0.19039 => broken [BROKEN]
```

5.2. Tect 1 14

5.2. Тест 1

В данном тесте обучающая выборка содержит 13 примеров сломанных мячей и 13 целых. Контрольная выборка состоит из 37 сломанных и 37 целых мячей. Наилучший результат получается при конфигурации сети по 10 нейронов на каждом скрытом слое, скорость обучения $\alpha=0.05$.

Ошибочных предсказаний для контрольной выборки 8.11%.

```
0.86883 => whole [WHOLE]
                           0.18323 => broken [BROKEN]
0.83513 => whole [WHOLE]
                           0.04862 => broken [BROKEN]
0.89146 => whole [WHOLE]
                           0.04362 => broken [BROKEN]
0.68832 => whole [WHOLE]
                           0.18867 => broken [BROKEN]
0.84803 => whole [WHOLE]
                           0.09965 => broken [BROKEN]
0.88611 => whole [WHOLE]
                           0.04489 => broken [BROKEN]
0.88224 => whole [WHOLE]
                           0.90610 => whole [BROKEN]
0.89941 => whole [WHOLE]
                           0.88863 => whole [BROKEN]
0.90742 => whole [WHOLE]
                           0.24989 => broken [BROKEN]
0.89497 => whole [WHOLE]
                           0.87759 => whole [BROKEN]
0.90630 => whole [WHOLE]
                           0.04365 => broken [BROKEN]
0.90653 => whole [WHOLE]
                           0.04350 => broken [BROKEN]
0.87365 => whole [WHOLE]
                           0.23854 => broken [BROKEN]
0.07257 => broken [WHOLE]
                           0.04323 => broken [BROKEN]
0.53595 => whole [WHOLE]
                           0.05355 => broken [BROKEN]
0.09779 => broken [WHOLE]
                           0.37166 => broken [BROKEN]
0.75706 => whole [WHOLE]
                           0.22746 => broken [BROKEN]
0.74206 => whole [WHOLE]
                           0.04383 => broken [BROKEN]
0.90103 => whole [WHOLE]
                           0.06506 => broken [BROKEN]
0.89372 => whole [WHOLE]
                           0.04334 => broken [BROKEN]
0.88410 => whole [WHOLE]
                           0.13947 => broken [BROKEN]
0.89364 => whole [WHOLE]
                           0.05799 => broken [BROKEN]
0.88014 => whole [WHOLE]
                           0.04276 => broken [BROKEN]
0.88855 => whole [WHOLE]
                           0.30227 => broken [BROKEN]
0.78265 => whole [WHOLE]
                           0.24371 => broken [BROKEN]
0.91362 => whole [WHOLE]
                           0.23174 => broken [BROKEN]
0.87802 => whole [WHOLE]
                           0.04303 => broken [BROKEN]
0.91140 => whole [WHOLE]
                           0.04299 => broken [BROKEN]
0.89917 => whole [WHOLE]
                           0.04261 => broken [BROKEN]
0.91231 => whole [WHOLE]
                           0.22592 => broken [BROKEN]
0.89441 => whole [WHOLE]
                           0.04358 => broken [BROKEN]
0.54544 => whole [WHOLE]
                           0.08008 => broken [BROKEN]
0.77022 => whole [WHOLE]
                           0.06038 => broken [BROKEN]
0.70774 => whole [WHOLE]
                           0.74800 => whole [BROKEN]
0.84532 => whole [WHOLE]
                           0.27998 => broken [BROKEN]
                           0.04494 => broken [BROKEN]
0.81911 => whole [WHOLE]
0.82465 => whole [WHOLE]
                           0.18266 => broken [BROKEN
```

5.3. Tect 2

5.3. Тест 2

В данном тесте обучающая выборка содержит 20 примеров сломанных мячей и 10 целых. Контрольная выборка состоит из 30 сломанных и 40 целых мячей. Наилучший результат получается при конфигурации сети: 15 нейронов на первом и 10 нейронов на втором скрытом слоях, скорость обучения $\alpha = 0.08$.

Ошибочных предсказаний для контрольной выборки 10%.

```
0.75277 => whole [WHOLE]
                           0.65612 => whole [WHOLE]
0.76631 => whole [WHOLE]
                           0.40393 => broken [WHOLE]
0.71750 => whole [WHOLE]
                           0.70864 => whole [WHOLE]
0.53100 => whole [WHOLE]
                           0.06657 => broken [BROKEN]
0.72068 => whole [WHOLE]
                           0.05830 => broken [BROKEN]
0.82525 => whole [WHOLE]
                           0.13887 => broken [BROKEN]
0.84041 => whole [WHOLE]
                           0.05913 => broken [BROKEN]
0.79710 => whole [WHOLE]
                           0.82716 => whole [BROKEN]
0.80766 => whole [WHOLE]
                           0.16643 => broken [BROKEN]
0.82814 => whole [WHOLE]
                           0.80560 => whole [BROKEN]
0.75752 => whole [WHOLE]
                           0.05825 => broken [BROKEN]
0.12478 => broken [WHOLE]
                           0.07749 => broken [BROKEN]
0.45073 => broken [WHOLE]
                           0.13636 => broken [BROKEN]
0.63429 => whole [WHOLE]
                           0.05800 => broken [BROKEN]
0.08960 => broken [WHOLE]
                           0.07174 => broken [BROKEN]
0.66710 => whole [WHOLE]
                           0.14314 => broken [BROKEN]
0.61502 => whole [WHOLE]
                           0.05845 => broken [BROKEN]
0.71656 => whole [WHOLE]
                           0.11781 => broken [BROKEN]
0.81895 => whole [WHOLE]
                           0.06956 => broken [BROKEN]
0.81162 => whole [WHOLE]
                           0.15220 => broken [BROKEN]
                           0.20689 => broken [BROKEN]
0.75327 => whole [WHOLE]
0.80467 => whole [WHOLE]
                           0.05779 => broken [BROKEN]
0.78920 => whole [WHOLE]
                           0.07544 => broken [BROKEN]
0.80883 => whole [WHOLE]
                           0.29598 => broken [BROKEN]
0.62333 => whole [WHOLE]
                           0.15864 => broken [BROKEN]
0.85052 => whole [WHOLE]
                           0.16823 => broken [BROKEN]
0.78192 => whole [WHOLE]
                           0.05791 => broken [BROKEN]
                           0.15991 => broken [BROKEN]
0.81010 => whole [WHOLE]
                           0.08864 => broken [BROKEN]
0.83463 => whole [WHOLE]
0.81017 => whole [WHOLE]
                           0.07450 => broken [BROKEN]
0.83369 => whole [WHOLE]
                           0.12645 => broken [BROKEN]
0.79327 => whole [WHOLE]
                           0.78505 => whole [BROKEN]
                           0.05913 => broken [BROKEN]
0.80847 => whole [WHOLE]
0.63732 => whole [WHOLE]
0.68006 => whole [WHOLE]
0.65621 => whole [WHOLE]
0.73782 => whole [WHOLE]
```

 $5.4. \quad Tecr \ 3$

5.4. Тест 3

В данном тесте обучающая выборка содержит 10 примеров сломанных мячей и 20 целых. Контрольная выборка состоит из 40 сломанных и 30 целых мячей. Наилучший результат получается при конфигурации сети по 10 нейронов на каждом скрытом слое, скорость обучения $\alpha=0.05$.

Ошибочных предсказаний для контрольной выборки 8.57%.

```
0.86127 => whole [WHOLE]
                            0.93381 => whole [BROKEN]
0.80693 => whole [WHOLE]
                            0.24604 => broken [BROKEN]
                            0.91213 => whole [BROKEN]
0.90649 => whole [WHOLE]
0.69740 => whole [WHOLE]
                            0.88096 => whole [BROKEN]
0.83617 => whole [WHOLE]
                            0.07286 => broken [BROKEN]
0.90881 => whole [WHOLE]
                            0.10212 => broken [BROKEN]
0.91480 => whole [WHOLE]
                            0.22461 => broken [BROKEN]
                            0.06964 => broken [BROKEN]
0.93470 => whole [WHOLE]
0.93471 => whole [WHOLE]
                            0.09078 => broken [BROKEN]
0.86749 => whole [WHOLE]
                            0.93400 => whole [BROKEN]
0.50794 => whole [WHOLE]
                            0.28443 => broken [BROKEN]
0.73944 => whole [WHOLE]
                            0.07039 => broken [BROKEN]
0.13996 => broken [WHOLE]
                            0.15395 => broken [BROKEN]
0.71808 => whole [WHOLE]
                            0.09167 => broken [BROKEN]
0.92516 => whole [WHOLE]
                            0.06978 => broken [BROKEN]
0.91195 => whole [WHOLE]
                            0.20343 => broken [BROKEN]
0.84947 => whole [WHOLE]
                            0.29275 => broken [BROKEN]
0.91575 => whole [WHOLE]
                            0.09870 => broken [BROKEN]
0.73113 => whole [WHOLE]
                            0.06898 => broken [BROKEN]
0.88338 => whole [WHOLE]
                            0.41319 => broken [BROKEN]
0.92208 => whole [WHOLE]
                            0.23660 => broken [BROKEN]
0.94421 => whole [WHOLE]
                            0.06927 => broken [BROKEN]
0.90788 => whole [WHOLE]
                            0.21689 => broken [BROKEN]
0.92560 => whole [WHOLE]
                            0.06872 => broken [BROKEN]
0.62820 => whole [WHOLE]
                            0.23812 => broken [BROKEN]
0.75536 => whole [WHOLE]
                            0.07011 => broken [BROKEN]
0.83552 => whole [WHOLE]
                            0.13148 => broken [BROKEN]
0.85612 => whole [WHOLE]
                            0.21372 => broken [BROKEN]
0.61075 => whole [WHOLE]
                            0.82134 => whole [BROKEN]
0.81555 => whole [WHOLE]
                            0.27594 => broken [BROKEN]
0.20091 => broken [BROKEN]
                            0.07195 => broken [BROKEN]
0.08352 => broken [BROKEN]
                            0.07163 => broken [BROKEN]
0.07009 => broken [BROKEN]
                            0.21029 => broken [BROKEN]
0.07021 => broken [BROKEN]
0.20264 => broken [BROKEN]
0.07178 => broken [BROKEN]
0.14245 => broken [BROKEN]
```

6. Использованные источники

- 1. machinelearning.ru описание задачи классификации, перцептрона Розенблатта и других методов машинного обучения;
- 2. stepik.org практический курс по нейронным сетям от Института биоинформатики;
- 3. habr.com статья про распознавание речи, в частности способ получения предикторов из звука.