CS 207: Discrete Structures

Abstract algebra and Number theory

- subgroups, cyclic groups, group isomorphisms

Lecture 37 Oct 26 2015

Recap

Definition

A group is a set S along with an operator * such that:

- ▶ Closure: $\forall a, b \in S, a * b \in S$.
- ► Associativity: $\forall a, b, c \in S, \ a * (b * c) = (a * b) * c.$
- ▶ Identity: $\exists e \in S \text{ s.t.}, \forall a \in S, a * e = e * a = a.$
- ▶ Inverse: $\forall a \in S, \exists a' \in S \text{ s.t.}, a * a' = a' * a = e.$

).

Recap

Definition

A group is a set S along with an operator * such that:

- ▶ Closure: $\forall a, b \in S, a * b \in S$.
- ▶ Associativity: $\forall a, b, c \in S, \ a * (b * c) = (a * b) * c.$
- ▶ Identity: $\exists e \in S \text{ s.t.}, \forall a \in S, a * e = e * a = a.$
- ▶ Inverse: $\forall a \in S, \exists a' \in S \text{ s.t.}, a * a' = a' * a = e.$

Egs:

- 1. permutations of a set,
- 2. automorphisms of a graph,
- 3. symmetries of geometrical figures,
- 4. Numbers $(\mathbb{Z}, +)$, $(\mathbb{Q} \setminus 0, \times)$, etc
- 5. Modular counting $(\mathbb{Z}_p \setminus 0, \times)$,
- 6. Invertible matrices $GL_n(\mathbb{R})$, $SL_n(\mathbb{R})$.

).

▶ If any two elements in a group commute, then the group is called a commutative or an Abelian group.

- ▶ If any two elements in a group commute, then the group is called a commutative or an Abelian group.
- Let G be a group under operation *. A subset H of G is called a subgroup if H is also a group under *.

- ▶ If any two elements in a group commute, then the group is called a commutative or an Abelian group.
- Let G be a group under operation *. A subset H of G is called a subgroup if H is also a group under *.

Proposition

 $H \subseteq G$ is a subgroup of G iff $H \neq \emptyset$ and $\forall x, y \in H$, $xy^{-1} \in H$.

- ▶ If any two elements in a group commute, then the group is called a commutative or an Abelian group.
- Let G be a group under operation *. A subset H of G is called a subgroup if H is also a group under *.

Proposition

 $H \subseteq G$ is a subgroup of G iff $H \neq \emptyset$ and $\forall x, y \in H$, $xy^{-1} \in H$.

▶ The order of a finite group is the number of elements in it.

- ▶ If any two elements in a group commute, then the group is called a commutative or an Abelian group.
- ▶ Let G be a group under operation *. A subset H of G is called a subgroup if H is also a group under *.

Proposition

 $H \subseteq G$ is a subgroup of G iff $H \neq \emptyset$ and $\forall x, y \in H$, $xy^{-1} \in H$.

- ▶ The order of a finite group is the number of elements in it.
- ▶ If x is an element of a finite group, then the order of x in G is the least positive integer m such that $x^m = e$.

- ▶ If any two elements in a group commute, then the group is called a commutative or an Abelian group.
- Let G be a group under operation *. A subset H of G is called a subgroup if H is also a group under *.

Proposition

 $H \subseteq G$ is a subgroup of G iff $H \neq \emptyset$ and $\forall x, y \in H$, $xy^{-1} \in H$.

- ▶ The order of a finite group is the number of elements in it.
- ▶ If x is an element of a finite group, then the order of x in G is the least positive integer m such that $x^m = e$.

Proposition

Let x be an element of order m in a finite group G. $x^s = e$ iff

- ▶ If any two elements in a group commute, then the group is called a commutative or an Abelian group.
- Let G be a group under operation *. A subset H of G is called a subgroup if H is also a group under *.

Proposition

 $H \subseteq G$ is a subgroup of G iff $H \neq \emptyset$ and $\forall x, y \in H$, $xy^{-1} \in H$.

- ▶ The order of a finite group is the number of elements in it.
- ▶ If x is an element of a finite group, then the order of x in G is the least positive integer m such that $x^m = e$.

Proposition

Let x be an element of order m in a finite group G. $x^s = e$ iff s is a multiple of m.

- ▶ If any two elements in a group commute, then the group is called a commutative or an Abelian group.
- Let G be a group under operation *. A subset H of G is called a subgroup if H is also a group under *.

Proposition

 $H \subseteq G$ is a subgroup of G iff $H \neq \emptyset$ and $\forall x, y \in H$, $xy^{-1} \in H$.

- ▶ The order of a finite group is the number of elements in it.
- ▶ If x is an element of a finite group, then the order of x in G is the least positive integer m such that $x^m = e$.

Proposition

Let x be an element of order m in a finite group G. $x^s = e$ iff s is a multiple of m.

▶ What is the order of $(\mathbb{Z}_n, +_n)$; $(\mathbb{Z}_p \setminus \{0\}, \times_p)$?

Definition

A group G is said to be cyclic if it contains an element x and every member of G is a power of x, i.e., obtained by repeatedly (possible zero times) applying x to itself!

Definition

A group G is said to be cyclic if it contains an element x and every member of G is a power of x, i.e., obtained by repeatedly (possible zero times) applying x to itself!

- \blacktriangleright x is said to generate G and we write $G = \langle x \rangle$.
- ▶ If $G = \langle x \rangle$ and all powers of x, i.e., ... $x^{-2}, x^{-1}, e, x^1, x^2, ...$ are distinct, then G is called an infinite cyclic group.

Definition

A group G is said to be cyclic if it contains an element x and every member of G is a power of x, i.e., obtained by repeatedly (possible zero times) applying x to itself!

- \triangleright x is said to generate G and we write $G = \langle x \rangle$.
- ▶ If $G = \langle x \rangle$ and all powers of x, i.e., ... $x^{-2}, x^{-1}, e, x^1, x^2, ...$ are distinct, then G is called an infinite cyclic group.
- ▶ Give an example of an infinite and a finite cyclic group.

Definition

A group G is said to be cyclic if it contains an element x and every member of G is a power of x, i.e., obtained by repeatedly (possible zero times) applying x to itself!

- \triangleright x is said to generate G and we write $G = \langle x \rangle$.
- ▶ If $G = \langle x \rangle$ and all powers of x, i.e., ... $x^{-2}, x^{-1}, e, x^1, x^2, ...$ are distinct, then G is called an infinite cyclic group.
- ▶ Give an example of an infinite and a finite cyclic group. $(\mathbb{Z}, +), (\mathbb{Z}_n, +_n)$, symmetries of a polygon?

Definition

A group G is said to be cyclic if it contains an element x and every member of G is a power of x, i.e., obtained by repeatedly (possible zero times) applying x to itself!

- \triangleright x is said to generate G and we write $G = \langle x \rangle$.
- ▶ If $G = \langle x \rangle$ and all powers of x, i.e., ... $x^{-2}, x^{-1}, e, x^1, x^2, ...$ are distinct, then G is called an infinite cyclic group.
- ▶ Give an example of an infinite and a finite cyclic group. $(\mathbb{Z}, +)$, $(\mathbb{Z}_n, +_n)$, rotational symmetries of a polygon

Definition

A group G is said to be cyclic if it contains an element x and every member of G is a power of x, i.e., obtained by repeatedly (possible zero times) applying x to itself!

- \triangleright x is said to generate G and we write $G = \langle x \rangle$.
- ▶ If $G = \langle x \rangle$ and all powers of x, i.e., ... $x^{-2}, x^{-1}, e, x^1, x^2, ...$ are distinct, then G is called an infinite cyclic group.
- ▶ Give an example of an infinite and a finite cyclic group. $(\mathbb{Z}, +), (\mathbb{Z}_n, +_n)$, rotational symmetries of a polygon
- ► Are any two cyclic groups of same order the "same"?

Definition

A group G is said to be cyclic if it contains an element x and every member of G is a power of x, i.e., obtained by repeatedly (possible zero times) applying x to itself!

- \triangleright x is said to generate G and we write $G = \langle x \rangle$.
- ▶ If $G = \langle x \rangle$ and all powers of x, i.e., ... $x^{-2}, x^{-1}, e, x^1, x^2, ...$ are distinct, then G is called an infinite cyclic group.
- ▶ Give an example of an infinite and a finite cyclic group. $(\mathbb{Z}, +), (\mathbb{Z}_n, +_n)$, rotational symmetries of a polygon
- ▶ Are any two cyclic groups of same order the "same"?
- ▶ In general, when are two groups the "same"?

Definition

A group G is said to be cyclic if it contains an element x and every member of G is a power of x, i.e., obtained by repeatedly (possible zero times) applying x to itself!

- \triangleright x is said to generate G and we write $G = \langle x \rangle$.
- ▶ If $G = \langle x \rangle$ and all powers of x, i.e., ... $x^{-2}, x^{-1}, e, x^1, x^2, ...$ are distinct, then G is called an infinite cyclic group.
- ▶ Give an example of an infinite and a finite cyclic group. $(\mathbb{Z}, +), (\mathbb{Z}_n, +_n)$, rotational symmetries of a polygon
- ▶ Are any two cyclic groups of same order the "same"?
- ▶ In general, when are two groups the "same"?
- ▶ What about $(\mathbb{Q} \setminus \{0\}, \times)$ and $(\mathbb{Z}, +)$?

Definition

- ▶ If G_1 and G_2 are groups, then a bijection $f: G_1 \to G_2$ is called an isomorphism if for all $g, g' \in G$, f(gg') = f(g)f(g').
- ▶ G_1 and G_2 are said to be isomorphic, denoted $G_1 \equiv G_2$, if there exists an isomorphism f between them.

Definition

- ▶ If G_1 and G_2 are groups, then a bijection $f: G_1 \to G_2$ is called an isomorphism if for all $g, g' \in G$, f(gg') = f(g)f(g').
- ▶ G_1 and G_2 are said to be isomorphic, denoted $G_1 \equiv G_2$, if there exists an isomorphism f between them.

Questions:

▶ Do g, f(g) have the same order?

Definition

- ▶ If G_1 and G_2 are groups, then a bijection $f: G_1 \to G_2$ is called an isomorphism if for all $g, g' \in G$, f(gg') = f(g)f(g').
- ▶ G_1 and G_2 are said to be isomorphic, denoted $G_1 \equiv G_2$, if there exists an isomorphism f between them.

Questions:

- ▶ Do g, f(g) have the same order?
- ▶ Is the isomorphism relation, \equiv , an equivalence relation?

Definition

- ▶ If G_1 and G_2 are groups, then a bijection $f: G_1 \to G_2$ is called an isomorphism if for all $g, g' \in G$, f(gg') = f(g)f(g').
- ▶ G_1 and G_2 are said to be isomorphic, denoted $G_1 \equiv G_2$, if there exists an isomorphism f between them.

Questions:

- ▶ Do g, f(g) have the same order?
- ▶ Is the isomorphism relation, \equiv , an equivalence relation?
- Show that every infinite cyclic group is isomorphic to $(\mathbb{Z}, +)$.

Definition

- ▶ If G_1 and G_2 are groups, then a bijection $f: G_1 \to G_2$ is called an isomorphism if for all $g, g' \in G$, f(gg') = f(g)f(g').
- ▶ G_1 and G_2 are said to be isomorphic, denoted $G_1 \equiv G_2$, if there exists an isomorphism f between them.

Questions:

- ▶ Do g, f(g) have the same order?
- ▶ Is the isomorphism relation, \equiv , an equivalence relation?
- Show that every infinite cyclic group is isomorphic to $(\mathbb{Z}, +)$.
- ▶ Which of the following are isomorphic: $(\mathbb{R}, +), (\mathbb{Z}, +), (\mathbb{R}^+, \times), (\mathbb{C}, +)$?