МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ) ФИЗТЕХ-ШКОЛА ЭЛЕКТРОНИКИ, ФОТОНИКИ И МОЛЕКУЛЯРНОЙ ФИЗИКИ

Лабораторная работа № 5.2.1

Опыт Франка-Герца

выполнил студент 3 курса группы Б04-006 **Белостоцкий Артемий**

Цель работы

Измерение энергии первого уровня атома гелия методом электронного возбуждения в динамическом и статическом режимах.

Теоретические сведения

Одним из простых опытов, подтверждающих существование дискретных уровней энергии атомов, является эксперимент Франка и Герца. Схема опыта изображена на рис 1.

Разреженный одноатомный гелий заполняет трехэлектродную лампу. Электроны, испускаемые разогретым катодом, ускоряются в постоянном электрическом поле созданным между катодом и сеткой. В зависимости от энергии электрона возможны упругие и неупругие столкновения с атомами гелия. При неупругих столкновениях электрон передает свою кинетическую энергию одному из атомных электронов, вызывая его переход на свободных энергетический уровень (возбуждение) или совсем отрывая его от атома (ионизация)

Рис. 1: Схема опыта Франка-Герца. Взято из [1]

Третьим электродом лампы является коллектор. Ток коллектора, пропорциональный числу попадающих на него за секунду электронов, измеряется микроамперметром.

При увеличении потенциала на аноде ток в лампе вначале растет, однако, когда энергия электронов становится достаточной для возбуждения атомов, ток коллектор резко уменьшается. Это происходит потому, что при неупругих соударениях с атомами электроны почти полностью теряют свою энергию и не могут преодолеть задерживающий потенциал ($\approx 1B$) между анодом и коллектором. При дальнейшем увеличении потенциала анода ток коллектора вновь возрастает: электроны, испытавшие неупругие столкновения, при дальнейшем движении к аноду успевают набрать энергию, достаточную для преодоления задерживающего потенциала.

Рис. 2: Зависимость тока коллектора от напряжения на аноде. Взято из [1]

Следующее замедление роста тока происходит в момент, когда часть электронов неупруго сталкивается с атомами два

раза: первый раз посередине пути, второй у анода и т.д. Таким образом, на кривой зависимости тока коллектора от напряжения анода имеется ряд максимумов и минимумов, отстоящие друго от друга на равные расстояние ΔV ; эти расстояние равны энергии первого возбужденного состояние (рис 1)

При тщательной постановке опыта можно увидеть и тонкую структуру кривой спада тока, содержащую ряд минимумов, возбуждению других уровней и ионизации атома гелия. Для этого нужны лампы специальной конструкции. В нашей постановке опыта эта тонкая структура не видна.

Экспериментальная установка

Рис. 3: Схема экспериментальной установки

Ход работы

Получение вольт-амперной характеристики на экране осциллографа

Поставим переключатель «Режим» в положение «Динамич.», накал и ускоряющее напряжение установим на максимум.

Измерим расстояние между максимумами и между минимумами осциллограммы – ΔV – при разных значениях задерживающего напряжения (U_3) . Полученные данные занесем в Таблицу 1, учитывая что цена деления осциллографа – $5~\mathrm{B/дел}$

Таблица 1: Расстояния между минимумами и максимумами осциллограммы при различных запирающих напряжений

U_3 , B	4	6	8
ΔV_{max} , B	18,5	19	18
ΔV_{min} , B	20	20	21

Тогда среднее значение:

$$\overline{\Delta V} = 19, 4 \pm 2, 5 \text{ B},$$

где погрешность рассчитывалась по формуле:

 $\sigma_{\Delta V}=1~\mathrm{B}-\mathrm{систематическая}$ погрешность каждого измерения

$$\sigma_{
m cлуч} = \sqrt{rac{\sum\limits_{i=1}^{6}(\Delta V_i - \overline{\Delta V})^2}{6*5}} pprox 0,5 \; {
m B} - {
m cлу}$$
чайная погрешность
$$\sigma_{
m chct} = \sqrt{6*\sigma_{\Delta V}^2} pprox 2,4 \; {
m B}$$

$$\sigma_{
m noлh} = \sqrt{\sigma_{
m chct}^2 + \sigma_{
m cлу}^2} pprox 2,5 \; {
m B}$$

Получение вольт-амперной характеристики в статическом режиме

Поставим переключатель «Режим» в положение «Статич.», установим максимальный накал и задерживающее напряжение на 4 В. Включим микроамперметр и вольтметр.

Плавно увеличивая ускоряющее напряжение — V_a , снимем зависимость коллекторного тока от анодного напряжения $I_{\kappa}=f(V_a)$ при разных значениях запирающего напряжения. Данные занесем в Таблицу 2

Таблица 2: Зависимость коллекторного тока от анодного напряжения при различных значениях запирающего напряжения

$U_3 =$	4 B
U_a, \mathbf{B}	І, мА
21,11	0,252
21,90	0,249
22,33	0,243
23,02	0,211
23,70	0,194
24,05	0,198
24,61	0,205
25,11	0,216
25,67	0,227
26,07	0,235
27,10	0,253
27,94	0,268
28,66	0,288
29,60	0,308
30,56	$0,\!327$
33,18	$0,\!375$
36,14	0,412
38,10	0,414
39,07	0,411
40,18	0,401
41,20	0,392
42,06	0,390
43,16	0,388
43,98	0,389
44,47	0,391

T.7	
$U_3 =$	6 B
U_a, \mathbf{B}	І, мА
36,24	$0,\!361$
37,20	0,364
38,20	0,366
39,09	0,362
39,59	0,359
40,50	0,350
41,23	0,343
42,00	0,337
42,46	0,335
44,06	0,324
44,58	0,322
45,18	0,321
45,66	0,319
46,22	0,318
47,00	0,318
47,38	0,319
48,35	0,323
49,10	0,326

$U_3 =$	8 B
U_a, \mathbf{B}	І, мА
3,00	0,001
7,24	0,054
10,06	0,109
15,16	0,195
18,06	0,236
20,24	0,259
20,90	0,261
21,94	0,260
22,39	0,257
23,13	0,247
23,95	0,217
25,24	0,094
26,31	0,094
26,69	0,096
27,43	0,105
28,05	0,116
29,93	0,165
32,20	0,218
34,21	0,261
36,22	0,291
38,02	0,296
38,80	0,300
39,86	0,293
40,65	0,286
41,89	0,277
43,58	0,263
44,57	0,254
46,09	0,243
48,28	0,235
49,12	0,235
50,02	0,238

По полученным данным построим графики, учитывая что $\sigma_{U_a}=0,01$ В, $\sigma_I=0,05$ мА.

Рис. 4: Зависимость $I_{\kappa}=f(V_a)$ в статическом режиме при $U_{\scriptscriptstyle 3}=4$ В

Рис. 5: Зависимость $I_{\kappa}=f(V_a)$ в статическом режиме при $U_{\scriptscriptstyle 3}=6$ В

Рис. 6: Зависимость $I_{\mbox{\tiny K}}=f(V_a)$ в статическом режиме при $U_{\mbox{\tiny 3}}=8$ В

Рассчитаем разницу ΔV значений анодного напряжения между последовательными максимумами и минимумами графика при различных значениях запирающего напряжения. Данные занесем в Таблицу 3

Таблица 3: Разница значений анодного напряжения между последовательными максимумами и минимумами зависимости $I_{\kappa}=f(U_a)$ при различных значениях запирающего напряжения

U_3 , B	4	6	8
$\Delta V_{max}, \mathbf{B}$	17,84	18,11	17,90
$\Delta V_{min}, \mathbf{B}$	18,36	22,36	23,04

Тогда среднее значение:

$$\overline{\Delta V} = 19,6 \pm 1,0 \text{ B},$$

где погрешность рассчитывалась по формуле:

 $\sigma_{\Delta V}=0,01~\mathrm{B}-\mathrm{c}$ истематическая погрешность каждого измерения

$$\sigma_{
m cлуч} = \sqrt{rac{\sum\limits_{i=1}^6 (\Delta V_i - \overline{\Delta V})^2}{6*5}} pprox 1~{
m B} - {
m cлу}$$
чайная погрешность
$$\sigma_{
m cист} = \sqrt{6*\sigma_{\Delta V}^2} pprox 0,02~{
m B}$$

$$\sigma_{
m полн} = \sqrt{\sigma_{
m cист}^2 + \sigma_{
m cлу}^2} pprox 1~{
m B}$$

Выводы

1.В ходе работы были получены значения для первого возбужденного состояния атома гелия двумя способами – динамическим и статическим.

$$\Delta V_{ ext{ctatuq}} = 19, 4 \pm 2, 5 \ ext{эВ}$$
 $\Delta V_{ ext{динамич}} = 19, 6 \pm 1 \ ext{эВ}$ $\Delta V_{ ext{teop}} = 20, 96 \ ext{эВ}$

Значение, полученное статическим методом, совпадает с теоретическим, в пределах погрешности.

Значение, полученное динамическим методом, отличается от теоретического на 2%. Данное расхождение может быть связано с тем, что систематическая погрешность вольтметра составляет более $0.01~\mathrm{B}$.

2. Таким образом, в нашем случае статический метод является более точным.

Список литературы

- [1] Лабораторный практикум по общей физике. Квантовая физика под ред. Ю. М. Ципенюка
- [2] Дополнительное описание. Опыт Франка-Герца