MTH 9831 Assignment 1 (9/06 - 9/12).

Read Lecture 1. Some additional references for this material are:

- 1. J. Jacod, Ph. Protter, Probability Essentials, Chapter 16.
- 2. S. Shreve, Stochastic Calculus for Finance II, Chapter 3.
- 3. A. Etheridge, A Course in Financial Calculus, Chapter 3.

Rules of the game: When solving these problems you are allowed to use (with a proper reference) any statement from lecture notes, even if it was given without a proof. Citing a convenient theorem from some other source and deriving your solution from it is not allowed.

Solve:

- (1) Let $B(t) = (B_1(t), B_2(t)), t \ge 0$, be a two dimensional Brownian motion (assume that the coordinates are independent). Find the distribution of the distance from B(t) to the origin.
- (2) Let $B(t) = (B_1(t), B_2(t))$, $t \ge 0$, be a two dimensional Brownian motion (assume that the coordinates are independent), and $\rho \in [-1, 1]$. Is the process $X(t) = \rho B_1(t) + \sqrt{1 \rho^2} B_2(t)$ a Brownian motion? What is the correlation between X(t) and $B_1(t)$?
- (3) Let $(B(t))_{t\geq 0}$ be a Brownian motion. Determine, which of the following processes are Brownian motions. Justify your answers.
 - (a) $(-B(t))_{t>0}$;
 - (b) $(cB(t/c^2)_{t>0})$, where c>0 is a constant;
 - (c) $(\sqrt{t}B(1))_{t\geq 0}$;
 - (d) $(B(2t) B(t))_{t>0}$;
 - (e) $(B(s) B(s-t))_{0 \le t \le s}$, where s is fixed.
- (4) Let $(B(t))_{t\geq 0}$ be a Brownian motion. Define $B^*(t) := \max_{0\leq s\leq t} B(s)$. For $0\leq a\leq x$ calculate $P(B^*(t)\geq a,\,B(t)\leq x)$.

The next two problems are review problems for Gaussian random vectors. For your convenience I first recall some linear algebra. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Then *inner product* (dot product) of \mathbf{x} and \mathbf{y} is

$$\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i,$$

the *norm* (length) of \mathbf{x} is $\|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$, and \mathbf{x} and \mathbf{y} are said to be orthogonal if $\mathbf{x} \cdot \mathbf{y} = 0$. Given (non-zero) vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbb{R}^n$ we can perform the Gram-Schmidt orthogonalization by setting

$$\begin{split} y_1 &= x_1 \\ y_2 &= x_2 - \frac{(x_2 \cdot y_1)}{(y_1 \cdot y_1)} y_1 \\ y_3 &= x_3 - \frac{(x_3 \cdot y_1)}{(y_1 \cdot y_1)} y_1 - \frac{(x_3 \cdot y_2)}{(y_2 \cdot y_2)} y_2 \\ & \dots \\ y_n &= x_n - \frac{(x_n \cdot y_1)}{(y_1 \cdot y_1)} y_1 - \frac{(x_n \cdot y_2)}{(y_2 \cdot y_2)} y_2 - \dots - \frac{(x_n \cdot y_{n-1})}{(y_{n-1} \cdot y_{n-1})} y_{n-1}. \end{split}$$

Then $\mathbf{y_i} \cdot \mathbf{y_j} = 0$ for all $\mathbf{i} \neq \mathbf{j}$ and the collection of all non-zero vectors¹ from the set $\{\mathbf{y_1}, \mathbf{y_2}, \dots, \mathbf{y_n}\}$ forms an orthogonal basis of the span of $\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n}$:

$$\begin{split} x_1 &= y_1 \\ x_2 &= \frac{(x_2 \cdot y_1)}{(y_1 \cdot y_1)} y_1 + y_2 \\ x_3 &= \frac{(x_3 \cdot y_1)}{(y_1 \cdot y_1)} y_1 + \frac{(x_3 \cdot y_2)}{(y_2 \cdot y_2)} y_2 + y_3 \\ &\dots \\ x_n &= \frac{(x_n \cdot y_1)}{(y_1 \cdot y_1)} y_1 + \frac{(x_n \cdot y_2)}{(y_2 \cdot y_2)} y_2 + \dots + \frac{(x_n \cdot y_{n-1})}{(y_{n-1} \cdot y_{n-1})} y_{n-1} + y_n. \end{split}$$

Now let's go back to probability. For any square-integrable mean zero random variables X and Y define their inner product to be $\mathbb{E}(XY)$ and the L^2 -norm $||X||_2 := \sqrt{\mathbb{E}(X^2)} = \sigma(X)$. Note that if (X,Y) is a mean zero Gaussian vector then orthogonality of X and Y (i.e. $\mathbb{E}(XY) = 0$) is equivalent to independence of X and Y.

- (5) Let $(X_1, X_2, ..., X_n)$ be a Gaussian vector with mean zero. Write down the Gram-Schmidt procedure for this vector.
 - (a) Use the result to give an alternative proof of Theorem 1.6 from Lecture 1.
 - (b) Show that for every $1 < k \le n$, $\mathbb{E}(X_k \mid X_1, X_2, \dots, X_{k-1})$ is a linear function of X_1, X_2, \dots, X_{k-1} .
 - (c) Show that for every 1 < k < n, the conditional distribution of

$$((X_{k+1}, X_{k+2}, \dots, X_n)|(X_1, X_2, \dots, X_k) = (x_1, x_2, \dots, x_k))$$

is Gaussian and that the dependence of the parameters on x_1, x_2, \ldots, x_k is linear.

(6) Let $(\mathbf{X_1}, \mathbf{X_2})$ be a Gaussian vector, dim $\mathbf{X_1} = k$ and dim $\mathbf{X_2} = m$. The mean vector of $(\mathbf{X_1}, \mathbf{X_2})$ is (μ_1, μ_2) and the covariance matrix is

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

where C_{11} the covariance matrix of $\mathbf{X_1}$, C_{22} is the covariance matrix of $\mathbf{X_2}$ and $C_{12} = C_{21}^t = \|\operatorname{Cov}(X_1^i, X_2^j)\|_{1 \leq i \leq k, 1 \leq j \leq m}$. Assume that C_{11} is non-degenerate and find the distribution of $(\mathbf{X_2}|\mathbf{X_1} = \mathbf{x})$.

Hint: the conditional distribution is Gaussian by the previous problem. One possible way to find the parameters is to use the idea presented in class, i.e. write

$$\mathbf{X_2} - \mu_2 = \Lambda(\mathbf{X_1} - \mu_1) + \mathbf{W},$$

where Λ is a non-random matrix and **W** is a mean zero Gaussian vector independent from $\mathbf{X_1}^2$. First multiply both sides by $(\mathbf{X_1} - \mu_1)^t$, compute the expectation, and find Λ . Then multiply both parts by $(\mathbf{X_2} - \mu_2)^t = (\Lambda(\mathbf{X_1} - \mu_1) + \mathbf{W})^t$ and compute the expectation to find the covariance matrix of **W**. Finally perform the conditioning and write down the parameters.

¹Some vectors $\mathbf{y_i}$ can be zero vectors as we did not assume that the original vectors were linearly independent. We agree to replace such terms in the Gram-Schmidt process simply by $\mathbf{0}$.

²This is a version of Gram-Schmidt idea of orthogonalization: the vector $\Lambda(\mathbf{X}_1 - \mu_1)$ is the orthogonal (in the L^2 sense) projection of $(\mathbf{X}_2 - \mu_2)$ on $(\mathbf{X}_1 - \mu_1)$. Subtracting it from $(\mathbf{X}_2 - \mu_2)$ gives a vector \mathbf{W} which is orthogonal to $(\mathbf{X}_1 - \mu_1)$.