Week 9 Thursday L-16 Grey atmospheres

$$\tilde{J}(\tau_z) = \frac{\sigma^{T^4(\tau_z)}}{\pi}$$

1
$$\tilde{J}(\tau_z) = \frac{\sigma T^4(\tau_z)}{\pi}$$

2 $\frac{d\tilde{K}(\tau_z)}{d\tau_z} = \frac{\sigma T_{\text{eff}}^4}{4\pi}$ \rightarrow Step 1: Integrate this $\tilde{K}(\tau_z) = \frac{\sigma T_{\text{eff}}^4}{4\pi}(\tau_z + \text{const})$

$$\tilde{J}(\tau_z) = 3\tilde{K}(\tau_z)$$
 \rightarrow Step 2: replace \tilde{K} in here $\tilde{J}(\tau_z) = \frac{3\sigma T_{\rm eff}^4}{4\pi}(\tau_z + {\rm const})$

Step 3: replace
$$\tilde{J}$$
 in here
$$\frac{\sigma T^4(\tau_z)}{\pi} = \frac{3\sigma T_{\text{eff}}^4}{4\pi}(\tau_z + \text{const})$$

$$T^4(\tau_z) = \frac{3T_{\text{eff}}^4}{4}(\tau_z + q(\tau_z))$$

$$\tilde{J}(\tau_z) = \frac{\sigma T^4(\tau_z)}{\pi}$$

$$\frac{d\tilde{K}(\tau_z)}{d\tau_z} = \frac{\sigma T_{\text{eff}}^4}{4\pi}$$

1
$$\tilde{J}(\tau_z) = \frac{\sigma T^4(\tau_z)}{\pi}$$
 \to Remember, this came for out result that $\tilde{J} = \tilde{S}$
$$\frac{d\tilde{K}(\tau_z)}{d\tau_z} = \frac{\sigma T_{\text{eff}}^4}{4\pi}$$
 \to Remember, this came for $0 = \kappa \int_0^\infty (J_\lambda - S_\lambda) d\lambda$ $\int_0^\infty J_\lambda d\lambda = \int_0^\infty S_\lambda d\lambda$ $\int_0^\infty J_\lambda d\lambda = \int_0^\infty S_\lambda d\lambda$ But if $S_\lambda \simeq B_\lambda$, we can also write: $\tilde{J}(\tau_z) = \tilde{B}(T(\tau_z)) = \frac{\sigma T^4(\tau_z)}{\pi}$

Reminder

$$\tilde{J}(\tau_z) = 3\tilde{K}(\tau_z)$$

$$\tilde{J}(\tau_z) = 3\tilde{K}(\tau_z)$$
 \rightarrow Step 2: replace \tilde{K} in here $\tilde{J}(\tau_z) = \frac{3\sigma T_{\rm eff}^4}{4\pi}(\tau_z + {\rm const})$

$$J_{\lambda}(\tau) = +\frac{1}{2} \int_{\tau'=0}^{\tau} S_{\lambda}(\tau') E_{1}(\tau - \tau') d\tau' + \frac{1}{2} \int_{\tau'=\tau}^{\infty} S_{\lambda}(\tau') E_{1}(\tau' - \tau) d\tau'$$

$$\begin{split} \tilde{J}(\tau) &= +\frac{1}{2} \int_{\tau'=0}^{\tau} \tilde{S}(\tau') E_1(\tau - \tau') d\tau' + \frac{1}{2} \int_{\tau'=\tau}^{\infty} \tilde{S}(\tau') E_1(\tau' - \tau) d\tau' \\ \frac{3\sigma T_{\rm eff}^4}{4\pi} (\tau_z + q(\tau_z)) & \frac{3\sigma T_{\rm eff}^4}{4\pi} (\tau_z + q(\tau_z)) \end{split}$$

 $q(\tau) = 0.7104 - 0.133e^{-3.4488\tau_z}$

We can find another approximation for q, using again the expressions for the large optical depth case.

We can do the same procedure (approximation for large τ) for all of the 'moment' equations, and also for the intensity solution.

$$I(\tau,u) = S(\tau) + u \frac{dS(\tau')}{d\tau'} \bigg|_{\tau} + 2! \ u^2 \frac{d^2S(\tau')}{d\tau'^2} \bigg|_{\tau} + \dots \qquad \qquad \text{Reminder}$$

$$J(\tau) = S(\tau) + \frac{1}{3} \frac{d^2 S(\tau')}{d\tau'^2} \Big|_{\tau} + \dots$$

$$\frac{F}{4\pi} = \frac{1}{3} \frac{dS(\tau')}{d\tau'} \Big|_{\tau} + \frac{1}{5} \frac{d^3 S(\tau')}{d\tau'^3} \Big|_{\tau} + \dots$$

$$K(\tau) = \frac{1}{3}S(\tau) + \frac{1}{5} \frac{d^2 S(\tau')}{d\tau'^2} \Big|_{\tau} + \dots$$

$$I(\tau, u) = S(\tau) + u \frac{dS(\tau')}{d\tau'} \Big|_{\tau}$$

$$\frac{F_{\lambda}(\tau=0)}{4\pi} = \frac{1}{2} \int_{-1}^{+1} I_{\lambda} u du$$
Surface flux, no "in" rays

$$F_{\lambda}(\tau=0) = 2\pi \int_0^{+1} \left| S_{\lambda}(\tau=0) + u \frac{dS_{\lambda}}{d\tau} \right|_{\tau=0} udu$$

Source function does not depend on direction

$$= 2\pi S_{\lambda}(\tau = 0) \int_{0}^{+1} u du + 2\pi \frac{dS_{\lambda}}{d\tau} \bigg|_{\tau=0}^{+1} \int_{0}^{+1} u^{2} du$$

Integrate

$$= 2\pi S_{\lambda}(\tau = 0) \left[\frac{1}{2} \right] + 2\pi \frac{dS_{\lambda}}{d\tau} \bigg|_{\tau=0} \left[\frac{1}{3} \right]$$

$$= \pi S_{\lambda}(\tau = 0) + \frac{1}{2}F_{\lambda}(\tau = 0)$$

$$F_{\lambda}(\tau=0) = 2\pi S_{\lambda}(\tau=0)$$

$$F_{\lambda}(\tau=0)=2\pi S_{\lambda}(\tau=0)$$

Source function is the plank function

$$=2\pi B_{\lambda}(\tau=0)$$

Integrate over wavelengths
$$\int_{\lambda} F_{\lambda}(\tau=0)d\lambda = 2\pi \int_{\lambda} B_{\lambda}(\tau=0)d\lambda$$

$$\sigma T_{\rm eff}^4 = 2\pi \frac{\sigma T^4(\tau=0)}{\pi} \qquad T^4(\tau_z) = \frac{3T_{\rm eff}^4}{4}(\tau_z+q(\tau_z))$$

$$T_{\rm eff}^4 = \frac{3}{2}T_{\rm eff}^4 \ q(0)$$

$$q(\tau_z) \sim \frac{2}{3}$$

$$T^4(\tau_z) = \frac{3T_{\text{eff}}^4}{4}(\tau_z + q(\tau_z))$$

So how good is it?

Notebook part I

We can also use the temperature structure to find the wavelength-depend flux (i.e. the spectrum)

Worksheet for the math part

Goal of this worksheet: find the wavelength dependent flux (the spectrum!) predicted by our analytical estimate for the temperature structure of a star (with a given effective temperature).

$$F_{\lambda}(\tau) = -2\pi \int_{\tau'=0}^{\tau} S_{\lambda}(\tau') E_2(\tau-\tau') d\tau' + 2\pi \int_{\tau'=\tau}^{\infty} S_{\lambda}(\tau') E_2(\tau'-\tau) d\tau'$$

We know that that $S_{\lambda}(\tau)=B_{\lambda}(T(\tau))$, that $B_{\nu}(T)=\frac{2h}{c^2}\nu^3\frac{1}{\mathrm{e}^{h\nu/kT}-1}$, and that

$$T^4(\tau_z) = \frac{3T_{\text{eff}}^4}{4}(\tau_z + q(\tau_z))$$

Step1: We will do a change of variable where $\alpha = \frac{n\nu}{kT_{\rm eff}} = \frac{nc}{\lambda kT_{\rm eff}}$. Find an expression for

 $B_{\alpha}(T)$ (remember that $B_{\alpha}d\alpha = B_{\nu}d\nu$).

Step2: Replace the source function in the equation for the flux by your expression for B_{α} in Step 1. This means that the resulting quantity will be $F_{\alpha}(\tau)$. Make an additional substitution so that $p(\tau) = T_{\rm eff}/T(\tau)$. Pull all of the constant quantities outside of the integrals.

Step3: Check your answer with the solution, and replace the term in [] with $C(\alpha, \tau)$.

Worksheet L16: Grey atmospheres

Step4: In the notebook, we will be interested to make a graph of F_{λ}/\tilde{F} (at a given optical depth). First, let's find \tilde{F} . We know what the wavelength-integrated flux will be $\sigma T_{\rm eff}^4$ at all layers. Find the definition of σ in terms of fundamental constants (see the BB lecture — there will be some cs, hs, πs , etc in there).

Step 5: Now find F_{α}/\tilde{F} by dividing your expression for F_{α} from Step 3 by the expression for $\sigma T_{\rm eff}^4$ from Step 4 (a whole bunch of stuff should cancel out!)

Step 6: Now, we need to convert F_{α}/\tilde{F} into F_{λ}/\tilde{F} . Find the factor you need to multiply F_{α}/\tilde{F} by to do this.

Step7: Check your answer on the solution.

How good is it?

Notebook part 2

