Part I

Abstract Algebra

- Closure: $a * b \in G$
- ② Associative: (a*b)*c = a*(b*c)
- ullet Identity: a unique element $e \in G$ such that
 - a * e = e * a = a
- Inverse: an element $a' \in G$ of a, written as a^{-1} , such that a*a'=a'*a=e, or $a*a^{-1}=a^{-1}*a=e$
- **6** Commutative: a * b = b * a

- Closure: $a * b \in G$
- 2 Associative: (a*b)*c = a*(b*c)
- $\textbf{ 0} \textbf{ Identity: a unique element } e \in G \textbf{ such that }$
 - $\exists a * e = e * a = a$
- Inverse: an element $a' \in G$ of a, written as a^{-1} , such that a*a'=a'*a=e, or $a*a^{-1}=a^{-1}*a=e$
- **6** Commutative: a * b = b * a

- Closure: $a * b \in G$
- 2 Associative: (a*b)*c = a*(b*c)
- ullet Identity: a unique element $e \in G$ such that

- ① Inverse: an element $a' \in G$ of a, written as a^{-1} , such that a*a'=a'*a=e, or $a*a^{-1}=a^{-1}*a=e$
- **5** Commutative: a * b = b * a

- Closure: $a * b \in G$
- 2 Associative: (a*b)*c = a*(b*c)
- ullet Identity: a unique element $e \in G$ such that
 - a * e = e * a = a
- Inverse: an element $a' \in G$ of a, written as a^{-1} , such that a * a' = a' * a = e, or $a * a^{-1} = a^{-1} * a = a$
- **5** Commutative: a * b = b * a

- Closure: $a * b \in G$
- 2 Associative: (a*b)*c = a*(b*c)
- ullet Identity: a unique element $e \in G$ such that

$$a*e = e*a = a$$

- **1** Inverse: an element $a' \in G$ of a, written as a^{-1} , such that
 - a * a' = a' * a = e, or
 - $a * a^{-1} = a^{-1} * a = e$
- **5** Commutative: a * b = b * a

Given a set G and a binary operation \ast on G. For any elements a,b, and c in G

- Closure: $a * b \in G$
- 2 Associative: (a*b)*c = a*(b*c)
- **3** Identity: a unique element $e \in G$ such that

• Inverse: an element $a' \in G$ of a, written as a^{-1} , such that

$$a * a' = a' * a = e$$
, or

$$a * a^{-1} = a^{-1} * a = e$$

5 Commutative: a * b = b * a

Given a set G and a binary operation \ast on G. For any elements a,b, and c in G

- Closure: $a * b \in G$
- $\textbf{2} Associative: } (a*b)*c = a*(b*c)$
- ullet Identity: a unique element $e \in G$ such that

1 Inverse: an element $a' \in G$ of a, written as a^{-1} , such that

$$a * a' = a' * a = e$$
, or

$$a * a^{-1} = a^{-1} * a = e$$

6 Commutative: a * b = b * a

Given a set G and a binary operation \ast on G. For any elements a,b, and c in G

- Closure: $a * b \in G$
- 2 Associative: (a*b)*c = a*(b*c)
- ullet Identity: a unique element $e \in G$ such that

$$a*e = e*a = a$$

• Inverse: an element $a' \in G$ of a, written as a^{-1} , such that

$$a * a' = a' * a = e$$
, or

$$a * a^{-1} = a^{-1} * a = e$$

5 Commutative: a * b = b * a

- Groupoid,
 - if (1) is true
 - Semigroup,
 - J if (1)-(2) are true
 - Monoid,
 - □ if (1)-(3) are true
 - ♪ Group,
 - → if (1)-(4) are true
 - Abelian groupoid (semigroup, monoid, group),
 - 1 if (5) is true

- ♪ Groupoid,
 - if (1) is true
- Semigroup,
 - \bullet if (1)-(2) are true
- Monoid,
 - 1) if (1)-(3) are true
- Φ if (1)-(4) are true
- Abelian groupoid (semigroup, monoid, group),
 - □ if (5) is true

- Groupoid,
 - → if (1) is true
- Semigroup,
 - if (1)-(2) are true
 - ♪ Monoid,
 - □ if (1)-(3) are true
 - ♪ Group,
 - → if (1)-(4) are true.
 - Abelian groupoid (semigroup, monoid, group),
 - -1 if (5) is true

- ♪ Groupoid,
 - → if (1) is true
- Semigroup,
 - if (1)-(2) are true
- Monoid,
 - Φ if (1)-(3) are true
- ♪ Group,
 - □ if (1)-(4) are true
- Abelian groupoid (semigroup, monoid, group),
 - □ if (5) is true

- ♪ Groupoid,
 - → if (1) is true
- Semigroup,
 - if (1)-(2) are true
- Monoid,
 - if (1)-(3) are true
 - Group,
 - \blacksquare if (1)-(4) are true
 - Abelian groupoid (semigroup, monoid, group),
 - \Box if (5) is true

- ♪ Groupoid,
 - ♪ if (1) is true
- Semigroup,
 - if (1)-(2) are true
- Monoid,
 - if (1)-(3) are true
- ♪ Group,
 - → if (1)-(4) are true
- Abelian groupoid (semigroup, monoid, group),
 - □ if (5) is true

- ♪ Groupoid,
 - → if (1) is true
- Semigroup,
 - → if (1)-(2) are true
- Monoid,
 - → if (1)-(3) are true
- roup,
 - if (1)-(4) are true
 - ♪ Abelian groupoid (semigroup, monoid, group),
 - 1 if (5) is true

- ♪ Groupoid,
 - ♪ if (1) is true
- Semigroup,
 - if (1)-(2) are true
- Monoid,
 - → if (1)-(3) are true
- ♪ Group,
 - if (1)-(4) are true
- Abelian groupoid (semigroup, monoid, group)
 - \square if (5) is true

- Groupoid,
 - ♪ if (1) is true
- Semigroup,
 - if (1)-(2) are true
- Monoid,
 - → if (1)-(3) are true
- ♪ Group,
 - → if (1)-(4) are true
- Abelian groupoid (semigroup, monoid, group),
 - if (5) is true

- ♪ Groupoid,
 - ♪ if (1) is true
- Semigroup,
 - if (1)-(2) are true
- Monoid,
 - → if (1)-(3) are true
- ♪ Group,
 - → if (1)-(4) are true
- ♪ Abelian groupoid (semigroup, monoid, group),
 - if (5) is true

Theorem (Associativity)

▶ If $a_1, a_2, ..., a_n, n \geqslant 3$, are arbitrary elements of a semigroup, then all products of the elements $a_1, a_2, ..., a_n$ that can be formed by inserting meaningful parentheses arbitrarily are equal.

Notice

♪ The Theorem shows that the products are all equal.

$$((a_1 * a_2) * a_3) * a_4$$

$$a_1 * (a_2 * (a_3 * a_4))$$

$$a_1 * (a_2 * a_3) * a_4$$

If a_1, a_2, \ldots, a_n are elements in a semigroup (S, *), then the product can be written as

$$a_1 * a_2 * \cdots * a_r$$

Theorem (Associativity)

▶ If $a_1, a_2, ..., a_n, n \ge 3$, are arbitrary elements of a semigroup, then all products of the elements $a_1, a_2, ..., a_n$ that can be formed by inserting meaningful parentheses arbitrarily are equal.

Notice

- ◆ The Theorem shows that the products are all equal.
 - $((a_1 * a_2) * a_3) * a_4$
 - $a_1 * (a_2 * (a_3 * a_4))$
 - $(a_1 * (a_2 * a_3)) * a_4$
- ▶ If a_1, a_2, \ldots, a_n are elements in a semigroup (S, *), then the product can be written as
 - $a_1 * a_2 * \cdots * a_n$

$(\mathbb{Z}, +)$

- ightharpoonup ightharpoonup: the set of all integers
- ↑ +: ordinary addition
- $(\mathbb{Z}, -)$
 - $ightharpoonup \mathbb{Z}$: the set of all integers
 - → —: ordinary subtraction
- $(\mathscr{P}(S),\ \cup)$
 - $ightharpoonup (\mathscr{P}(S))$: the powerset of S
 - ♪ U: union operation on sets

$(\mathbb{Z}, +)$

- ightharpoonup ightharpoonup: the set of all integers
- ↑ +: ordinary addition

$(\mathbb{Z}, -)$

- ightharpoonup ightharpoonup: the set of all integers
- → —: ordinary subtraction

$$(\mathscr{P}(S),\ \cup)$$

- $ightharpoonup (\mathscr{P}(S))$: the powerset of S

$(\mathbb{Z}, +)$

- ightharpoonup ightharpoonup: the set of all integers
- → +: ordinary addition

$(\mathbb{Z}, -)$

- ightharpoonup ightharpoonup: the set of all integers
- ♪ —: ordinary subtraction

$$(\mathscr{P}(S),\ \cup)$$

- ♪ U: union operation on sets

Definition (Let $A = \{a_1, a_2, ..., a_n\}$ be an alphabet)

- ♪ Let
 - A^* is the set of all finite sequences of elements of A.
 - \bullet α, β , and γ be elements of A^* .
- ▶ The catenation is a binary operation \cdot on A^* .
 - if $\alpha = a_{i_1} a_{i_2} \dots a_{i_s}$ and $\beta = a_{j_1} a_{j_2} \dots a_{j_t}$, then

Definition (Let $A = \{a_1, a_2, ..., a_n\}$ be an alphabet)

- ♪ Let
 - A^* is the set of all finite sequences of elements of A.
 - \bullet α, β , and γ be elements of A^* .
- ▶ The catenation is a binary operation \cdot on A^* .
 - \bullet if $\alpha = a_{i_1} a_{i_2} \dots a_{i_s}$ and $\beta = a_{i_1} a_{i_2} \dots a_{i_t}$, then
 - $\mathbf{a} \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$

Definition (Let $A = \{a_1, a_2, ..., a_n\}$ be an alphabet)

- ♪ Let
 - A^* is the set of all finite sequences of elements of A.
 - \bullet α, β , and γ be elements of A^* .
- ▶ The catenation is a binary operation \cdot on A^* .
 - \bullet if $\alpha = a_{i_1} a_{i_2} \dots a_{i_s}$ and $\beta = a_{i_1} a_{i_2} \dots a_{i_t}$, then

Theorem (Free Semigroup)

- ▶ (A^*, \cdot) is a semigroup
 - $lack {f \square}$ called the free semigroup generated by A

- ♪ Let
 - \Box G be the set of all nonzero real numbers, and
 - a * b = ab/2
- Show
 - $\ \ \square \ (G,\ *)$ is an Abelian group

Proof. * is a binary operation.

▶ If a and b are elements of G, then ab/2 is a nonzero real number and hence is in G.

- ♪ Let
 - \Box G be the set of all nonzero real numbers, and
 - a * b = ab/2
- Show
 - $\ \ \square \ (G,\ *)$ is an Abelian group

Proof. Associativity.

$$(a*b)*c = (ab/2)*c = (ab)c/4$$

$$a*(b*c) = a*(bc/2) = a(bc)/4 = (ab)c/4$$

▶ * is associative

- ♪ Let
 - $\ \ \Box$ G be the set of all nonzero real numbers, and
 - a * b = ab/2
- Show
 - $\ \ \square \ (G,\ *)$ is an Abelian group

Proof. 2 is the identity.

$$a * 2 = (a)(2)/2 = a = (2)(a)/2 = 2 * a$$

- ♪ Let
 - \Box G be the set of all nonzero real numbers, and
 - a * b = ab/2
- Show
 - $\ \ \square \ (G,\ *)$ is an Abelian group

Proof. a' = 4/a is an inverse of a.

$$a*a' = a*4/a = a(4/a)/2 = 2 = (4/a)(a)/2 = (4/a)*a = a'*a$$

- ♪ Let
 - \Box G be the set of all nonzero real numbers, and
 - a * b = ab/2
- ♪ Show
 - $\ \ \square \ (G,\ *)$ is an Abelian group

Proof. Abelian.

$$a*b = ab/2 = ba/2 = b*a$$

- ♪ Let
 - \Box G be the set of all nonzero real numbers, and
 - a*b = ab/2
- ♪ Show
 - $oldsymbol{\square}$ (G, *) is an Abelian group

Proof.

ightharpoonup So, G is an Abelian group.

Theorem (Uniqueness of Inverse)

▶ Let G be a group. Each element $a \in G$ has only one inverse in G.

Proof.

- ♪ Let
 - \bullet a' and a" be inverses of a
- Then

$$a' = a'e = a'(aa'') = a'aa'' = (a'a)a'' = ea'' = a''$$

Theorem (Uniqueness of Inverse)

• Let G be a group. Each element $a \in G$ has only one inverse in G.

Proof.

- ♪ Let
 - \bullet a' and a" be inverses of a
- Then

$$a' = a'e = a'(aa'') = a'aa'' = (a'a)a'' = ea'' = a''$$

Theorem (Uniqueness of Inverse)

• Let G be a group. Each element $a \in G$ has only one inverse in G.

Proof.

- ♪ Let
 - \bullet a' and a" be inverses of a
- Then

$$a' = a'e = a'(aa'') = \frac{a'aa''}{aa''} = (a'a)a'' = ea'' = a''$$

Theorem (Uniqueness of Inverse)

▶ Let G be a group. Each element $a \in G$ has only one inverse in G.

Proof.

- ♪ Let
 - \bullet a' and a" be inverses of a
- Then

$$a' = a'e = a'(aa'') = \frac{a'aa''}{aa''} = (a'a)a'' = ea'' = a''$$

- Let
 - \blacksquare G be a group, and a,b, and c be elements of G
- ♪ Then
 - \bullet ab = ac implies b = c
 - ba = ca implies b = c

- $A a^{-1}(ab) = a^{-1}(ac)$
- $\land (a^{-1}a)b = (a^{-1}a)c$, by associativity
- $\land eb = ec$, by the def. of an inverse
- b = c by definition of an identity

- ♪ Let
 - \bullet G be a group, and a, b, and c be elements of G
- ♪ Then
 - \bullet ab = ac implies b = c
 - ba = ca implies b = c

$$a^{-1}(ab) = a^{-1}(ac)$$

- $\ \ \ (a^{-1}a)b=(a^{-1}a)c$, by associativity
- ightharpoonup eb = ec, by the def. of an inverse
- b = c by definition of an identity

- ♪ Let
 - \bullet G be a group, and a, b, and c be elements of G
- ♪ Then
 - $\Rightarrow ab = ac \text{ implies } b = c$
 - $\bullet a = ca \text{ implies } b = c$

$$a^{-1}(ab) = a^{-1}(ac)$$

$$(a^{-1}a)b = (a^{-1}a)c$$
, by associativity

- ightharpoonup eb = ec, by the def. of an inverse
- $lackbox{1}{b} = c$ by definition of an identity

- ♪ Let
 - \blacksquare G be a group, and a, b, and c be elements of G
- ♪ Then
 - $\Rightarrow ab = ac \text{ implies } b = c$
 - $\bullet a = ca \text{ implies } b = c$

$$a^{-1}(ab) = a^{-1}(ac)$$

$$(a^{-1}a)b = (a^{-1}a)c$$
, by associativity

$$eb = ec$$
, by the def. of an inverse

$$b = c$$
 by definition of an identity

- ♪ Let
 - \blacksquare G be a group, and a, b, and c be elements of G
- ♪ Then
 - $\Rightarrow ab = ac \text{ implies } b = c$
 - ba = ca implies b = c

$$a^{-1}(ab) = a^{-1}(ac)$$

$$\bullet$$
 $(a^{-1}a)b = (a^{-1}a)c$, by associativity

$$ightharpoonup eb = ec$$
, by the def. of an inverse

$$b = c$$
 by definition of an identity

Theorem (Inverse of Inverse)

- ♪ Let
 - lacklash G be a group, and a and b be elements of G
- ♪ Then

$$(a^{-1})^{-1} = a \text{ and } (ab)^{-1} = b^{-1}a^{-1}$$

Proof

Theorem (Inverse of Inverse)

- ♪ Let
 - lacksquare G be a group, and a and b be elements of G
- ♪ Then

$$(a^{-1})^{-1} = a \text{ and } (ab)^{-1} = b^{-1}a^{-1}$$

Proof. $(a^{-1})^{-1} = a$.

$$a^{-1}a = aa^{-1} = e$$

- ▶ the inverse of an element is unique,
- $ightharpoonup So, (a^{-1})^{-1} = a$

Theorem (Inverse of Inverse)

- ♪ Let
 - \blacksquare G be a group, and a and b be elements of G
- ♪ Then

$$(a^{-1})^{-1} = a$$
 and $(ab)^{-1} = b^{-1}a^{-1}$

Proof. $(ab)^{-1} = b^{-1}a^{-1}$.

- $(ab)(b^{-1}a^{-1}) = a(b(b^{-1}a^{-1})) = a((bb^{-1})a^{-1}) = a(ea^{-1}) = aa^{-1} = e$
- **♪** Similarly, $(b^{-1}a^{-1})(ab) = e$
- ♪ So $(ab)^{-1} = b^{-1}a^{-1}$

Theorem (Solution to Equation)

- ♪ Let
 - lacktriangledown G be a group, and a and b be elements of G
- Then
 - **♪** The equation ax = b has a unique solution in G
 - The equation ya = b has a unique solution in G

Proof.

Omitted

Definition

▶ If G is a group that has a finite number of elements, G is said to be a finite group, and the order of G is the number of elements |G| in G.

Notice

A finite group can be represented in the form of the multiplication table.

Definition

♪ If G is a group that has a finite number of elements, G is said to be a finite group, and the order of G is the number of elements |G| in G.

Notice

♪ A finite group can be represented in the form of the multiplication table.

$$(\{e\}, *)$$

Group of Order 2

$$(\{e, a\}, *)$$

$$\begin{array}{c|ccc} * & e & a \\ \hline e & e & a \\ a & a & e \end{array}$$

$$(\{e,a,b\},*)$$

$$(\{e\}, *)$$

Group of Order 2

$$(\{e, a\}, *)$$

$$(\{e,a,b\},*)$$

$$(\{e\}, *)$$

$$\begin{array}{c|c} * & e \\ \hline e & e \end{array}$$

Group of Order 2

$$(\{e, a\}, *)$$

$$\begin{array}{c|ccc} * & e & a \\ \hline e & e & a \\ a & a & e \end{array}$$

$$(\{e,a,b\},*)$$

Group of Order 1, 2, and 3

Group of Order 1

$$(\{e\},*)$$

Group of Order 2

$$(\{e, a\}, *)$$

$$(\{e,a,b\},*)$$

Group of Order 1, 2, and 3

Group of Order 1

$$(\{e\},*)$$

Group of Order 2

$$(\{e, a\}, *)$$

$$\begin{array}{c|ccc} * & e & a \\ \hline e & e & a \\ a & a & e \end{array}$$

$$(\{e,a,b\},*)$$

Group of Order 1, 2, and 3

Group of Order 1

$$(\{e\},*)$$

Group of Order 2

$$(\{e, a\}, *)$$

$$\begin{array}{c|ccc} * & e & a \\ \hline e & e & a \\ a & a & e \end{array}$$

$$(\{e,a,b\},*)$$

*	e	a	b	c
e	e	a c e	b	c
a	a	c	e	b
b	b	e	c	a
c	c	b	a	e

An Interesting Group - Group of Symmetries of the Triangle

Problem Description

- → Given the equilateral triangle with vertices 1, 2, and 3. Consider it's symmetries.
 - Rotation about the triangle center
 - Reflection about the angle bisector

Definition (Symmetries of the Triangle)

↑ Three counter-clockwise rotations f_1 , f_2 , f_3 of the triangle about O through 0° , 120° , 240° , respectively.

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

↑ Three reflections g_1, g_2, g_3 of the triangle about the lines l_1, l_2, l_3 , respectively.

$$g_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, g_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, g_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

Theorem

- $ightharpoonup (S_3, *)$ is a group, where
 - $S_3 = \{f_1, f_2, f_3, g_1, g_2, g_3\}$
 - \blacksquare the operation *, followed by, on the set S_3 is defined as follows:

*	f_1	f_2	f_3	g_1	g_2	g_3
f_1	f_1	f_2	f_3	g_1	g_2	g_3
f_2	f_2	f_3	f_1	g_3	g_1	g_2
f_3	f_3	f_1	f_2	g_2	g_3	g_1
g_1	g_1	g_2	g_3	f_1	f_2	f_3
g_2	g_2	g_3	g_1	f_3	f_1	f_2
g_3	$ \begin{array}{c c} f_1 \\ f_2 \\ f_3 \\ g_1 \\ g_2 \\ g_3 \\ \end{array} $	g_1	g_2	f_2	f_3	f_1

Compute $f_2 * g_2$ Algebraically

$$f_2 \circ g_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = g_1$$

Therefore

$$f_2 * g_2 = g_1$$

Compute $f_2 * g_2$ Geometrically

▶ We can also compute $f_2 * g_2$ geometrically by rotating or flipping the triangle.

Given triangle

Triangle resulting after applying f₂

Triangle resulting after applying g₂ to the triangle at the left

Definition (Permutation Group)

- ightharpoonup The set of all permutations of n elements is a group of order n! under the operation of composition.
 - ightharpoonup called the symmetric group on n letters, denoted by S_n .
 - $oldsymbol{\square}$ permutation group: a group with some permutations of n elements

Theorem (Cayley's Group Theorem)

▶ Every Finite Group of order n can be represented as a Permutation Group on n letters.

Example

♪ A Cyclic Group

*	e	a	b	c
e	e	a	b	c
a	a	b	c	e
b	b	c	e	a
c	c	e	a	b

Definition (Cyclic Group)

Check the Table on the left, we have

$$a^0 = e$$

$$a^1 = a$$

$$a^2 = b$$

$$a^3 = c$$

▶ Such a group is called a cyclic group.

Homework

- ♪ 20,28 @page 323-324
- ♪ 12,16 @page 348
- **1** Let G be a group. For $a,b\in G$, we say that b is conjugate to a, written $b\sim a$, if there exists $g\in G$ such that $b=gag^{-1}$. Show that \sim is an equivalence relation on G. The equivalence classes of \sim are called the conjugacy classes of G.
- 2 Let G be a group, and suppose that a and b are any elements of G. Show that if $(ab)^2 = a^2b^2$, then ba = ab.
- **3** Let $G=\{x\in R|x>1\}$ be the set of all real numbers greater than 1. For $x,y\in G$, define x*y=xy-x-y+2. Show that (G,*) is a group.