Class Diagram

- A class diagram depicts classes and their interrelationships
- Used for describing structure and behavior in the use cases
- Provide a conceptual model of the system in terms of entities and their relationships
- Used for requirement capture, end-user interaction
- Detailed class diagrams are useful for software developers

Class Diagram

S.No	Name	Description	Notation
1	Classes and interface	They are used to show the different objects in a system, their attributes, their operations and the relationships among them.	Class name Attributes Operations
2	Object	An object is an instance or occurrence of a class.	Object: Class
3	Aggregation	An aggregation describes a group of objects and how you interact with them.	
4	Composition	Composition represents whole-part relationships and is a form of aggregation.	
5	Dependency	Dependency relationship is a relationship in which one element, the client, uses or depends on another element, the supplier.	

Class Diagram

S	.No	Name	Description	Notation
3		Generalization	Generalization is a relationship in which one model element (the child) is based on another model element (the parent).	
4		Association	Association is a relationship between two classifiers, such as classes or use cases, that describes the reasons for the relationship and the rules that govern the relationship.	
5		Multiplicity		Multiplicity Symbol Meaning One and only one O1 Zero or one MN From M to N (natural language) From zero to any positive integer O* From zero to any positive integer 1* From one to any positive integer

Drawing a Class Diagram?

- Identify and model classes—Which classes do we need?
- Identify and model associations—How are the classes connected?
- Define attributes—What do we want to know about the objects?

Attributes

A Single Class

Class name
Attributes
Operations

Rectangle

width: int

height: int

/ area: double

+ Rectangle(w: int, h: int)

+ distance(r: Rectangle): double

Student

name: String

- id: int

totalStudents: int

getID(): int

~ getEmail(): String

Notatio n	Visibility Name
-	Private
+	Public
#	Protected
~	Package/default

Types of Relations in Class Diagram

Another Example

Example: Library Management System

Benefits of class diagrams

- To understand the general overview of plan of an application.
- Illustrate data models for information systems, no matter how simple or complex.
- Visually express any specific needs of a system.
- Describing the static view of the system.
- Showing the collaboration among the elements of the static view.
- Describing the functionalities performed by the system.
- Construction of software applications using object oriented languages.

References

- Ian Sommerville, Software Engineering∥, Addison and Wesley. 9th Ed., 2011.
- Roger S Pressman, Software Engineering: A Practitioner's Approach, Mcgraw-Hill,
 ISBN: 0073375977, Seventh Edition, 2014
- Pankaj Jalote, Software Engineering: A Precise Approach, Wiley India.2010.

Disclaimer:

- a. Information included in this slides came from multiple sources. We have tried our best to cite the sources. Please refer to the <u>References</u> to learn about the sources, when applicable.
- b. The slides should be used only for academic purposes (e.g., in teaching a class), and should not be used for commercial purposes.

Thank You