Logistic Regression Lead Score

Updated: 13 Mar 2024

Step 1: Importing and Data general overview

About the dataset

- The data set contains 9240 rows and 37 columns.
- Prospect ID: A unique ID with which the customer is identified.
- Converted: The target variable.
 Indicates whether a lead has been successfully converted or not.
- 35 independence variables
- Data types: float64(4), int64(3), object(30)

_	eIndex: 9240 entries, 0 to 9239 columns (total 37 columns):		
#	Column	Non-Null Count	Dtypo
#	Cordinii	NOII-NUIT COUIT	DLype
0	Prospect ID	9240 non-null	object
1	Lead Number	9240 non-null	int64
2	Lead Origin	9240 non-null	object
3	Lead Source	9204 non-null	object
4	Do Not Fmail	9240 non-null	object
5	Do Not Call	9240 non-null	object
6	Converted	9240 non-null	int64
7	TotalVisits	9103 non-null	float64
8	Total Time Spent on Website	9240 non-null	int64
9	Page Views Per Visit	9103 non-null	
10	Last Activity	9137 non-null	object
11	Country	6779 non-null	object
12	Specialization	7802 non-null	object
13	How did you hear about X Education	7033 non-null	object
14	What is your current occupation	6550 non-null	object
15	What matters most to you in choosing a course		object
16	Search	9240 non-null	object
17	Magazine	9240 non-null	object
18	Newspaper Article	9240 non-null	object
19	X Education Forums	9240 non-null	object
			J
35	A free copy of Mastering The Interview	9240 non-null	object
36	Last Notable Activity	9240 non-null	object

Step 2: EDA and Cleansing Data - Converted variable analysis

The target variable in your dataset, which represents whether a lead has been successfully converted or not with 0 for "not converted" and 1 for "converted successfully," would be considered a categorical variable.

HOW TO DO

- 1/ Check unique value of target column
- 2/ Change Converted into category
- 3/ Show the distribution of unique value in Converted by countplot
- 4/ Count numbers of each unique values for the target column

RESULT:

- Target var: should be category.
- There are 5679 customers with converted unsuccessfully with value 0 in target column and 3561 are converted successfully with value 1.
- % customer can be converted successfully in data frame: 38.5% in this dataset

HOW TO DO

- 1/ Finding missing data and check % missing value in each column.
- 2/ Drop cols having missing values.
- 3/ Replace missing values with the mean value.
- 4/ Check unique value of some cols before making decision of treating missing values.
- 5/ Replace missing values in specified columns with "Other" and "Select".
- 6/ Check % missing value in each column.

RESULT: No missing value in data lead

Prospect ID	0.00
Lead Number	0.00
Lead Origin	0.00
Lead Source	0.39
Do Not Email	0.00
Do Not Call	0.00
Converted	0.00
TotalVisits	0.00
Total Time Spent on Website	0.00
Page Views Per Visit	0.00
Last Activity	1.11
Country	0.00
Specialization	0.00
How did you hear about X Education	0.00
What is your current occupation	0.00
What matters most to you in choosing a course	0.00
Search	0.00
Magazine	0.00
Newspaper Article	0.00
X Education Forums	0.00
Newspaper	0.00
Digital Advertisement	0.00
Through Recommendations	0.00
Receive More Updates About Our Courses	0.00
Tags	0.00
•••	
Asymmetrique Profile Score	0.00
I agree to pay the amount through cheque	0.00
A free copy of Mastering The Interview	0.00
Last Notable Activity	0.00
dtype: float64	

Step 2: EDA and Cleansing Data - Check outliers

Hist for some num col having outliers

Step 3: Data preparation

HOW TO DO

1/ Transform binary variables by one hot encoding(Yes/No >> 0/1)
2/ Transform remaining category variables into numeric by dummies

RangeIndex: 9240 entries, 0 to 9239 Data columns (total 56 columns):		
# Column	Non-Null Count	Dtype
0 Tags Interested in other courses	9240 non-null	int64
1 Tags Other	9240 non-null	int64
2 Tags Ringing	9240 non-null	int64
3 Tags Will revert after reading the email	9240 non-null	int64
4 Last Activity Email Opened	9240 non-null	int64
5 Last Activity Olark Chat Conversation	9240 non-null	int64
6 Last Activity Other	9240 non-null	int64
7 Last Activity_Page Visited on Website	9240 non-null	int64
8 Last Activity SMS Sent	9240 non-null	int64
9 Lead Source Google	9240 non-null	int64
10 Lead Source Olark Chat	9240 non-null	int64
11 Lead Source Organic Search	9240 non-null	int64
12 Lead Source_Other	9240 non-null	int64
13 Lead Source_Reference	9240 non-null	int64
14 Lead Origin_Landing Page Submission	9240 non-null	int64
15 Lead Origin_Lead Add Form	9240 non-null	int64
16 Lead Origin_Lead Import	9240 non-null	int64
17 Lead Origin_Quick Add Form	9240 non-null	int64
18 City_Other	9240 non-null	int64
<pre>19 City_Other Cities</pre>	9240 non-null	int64
54 Asymmetrique Activity Score	9240 non-null	float6
55 Asymmetrique Profile Score	9240 non-null	float6

Step 4 - 5: Split into train - test set and Scale Data

Scale Data Split into train and test set 1/ Create subset y For continuous variables, we will use 2/ Split subsets X and y into train sets scaling method of Z-score and test sets Normalization (Standardization) for 3/ Check dimension of subsets scaling these cols

HOW TO DO

1/ Find the variables having high correlation with one another >= 70%2/ Remove high correlation attributes

HOW TO DO

1/ Train Model on X_train

2/ First model

3/ Using REF to choose the best attributes

Generalized Linear Model Regression Results						
Dep. Variable:	Converted	No. Observations:	6468			
Model:	GLM	Df Residuals:	6427			
Model Family:	Binomial	Df Model:	40			
Link Function:	Logit	Scale:	1.0000			
Method:	IRLS	Log-Likelihood:	-1756.2			
Date:	Wed, 13 Mar 2024	Deviance:	3512.3			
Time:	03:36:30	Pearson chi2:	8.91e+03			
No. Iterations:	19	Pseudo R-squ. (CS):	0.5445			
Covariance Type:	nonrobust					

Step 8: Data Evaluation

Metrics Cut-off Determine the threshold that give the 1/ Accuracy reach 85% on train set best model base on ROC Curve 2/ Specificity is 87% that mean most of positive samples are predicted correctly

Step 8: Data Evaluation

Step 8: Data Evaluation

Test Set with Cut-off 0.3

1/ Accuracy reach 84% on test set 2/ Specificity is 90% that mean most of positive samples are predicted correctly

```
metrics.accuracy_score(y_train_pred_final.Converted, y_train_pred_final.final_predicted)

0.8330241187384044

# specificity
TN / float(TN+FP)

0.9005497251374313
```

Business Case Study

A user, becoming a lead when they have accessed to X Education's system: website, ads, surveys,...

From these customers' behaviors, the list of leads is built and the staffs will contact to them and persuade they become the real customer. This process could take much effort than it's necessary.

Business Case Study

Base on existing data, we try to build a machine learning model to handle this. The accuracy of model is about 85%, an considerate number to believe in practice. In fact, in some case, accuracy is not the most important metric we need to count. Specificity and Sensitivity are also crucial in special situation. The result of model return a probability for each input sample. Our mission is to choose an appropriate threshold for each condition.

