Санкт-Петербургский Политехнический Университет им. Петра Великого

Институт прикладной математики и механики Кафедра прикладной математики

Отчёт по лабораторной работе №2 по дисциплине "Математическая статистика"

Характеристики положения выборки

Выполнил студент:

Мишутин Д. В.

Группа:

3630102/70301

Проверил:

К.ф.-м.н., доцент

Баженов Александр Николаевич

Санкт-Петербург

2020 г.

Оглавление

1 Постановка задачи	3
2 Теория	.3
3 Реализация	.4
4 Результаты	.4
5 Выводы	.6
6 Литература	.6
7 Приложения	.6
Список таблиц	
Стандартное нормальное распределение	.4
Стандартное распределение Коши	.5
Распределение Лапласа	5
Распределение Пуассона	.5
Равномерное распределение	.5

1 Постановка задачи

Любыми средствами сгенерировать выборки с мощностями 10, 100 и 1000 элементов для 5 распределений. Для каждой выборки вычислить следующие характеристики положения:

 $avrg(выборочное\ cpeднеe), med\ x\ , Z_{R}, Z_{Q}, Z_{tr}, npu\ rpprox rac{n}{4}.$ Построить по ним таблицы.

Распределения:

• Стандартное нормальное распределение:

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}$$
(1.1)

• Стандартное распределение Коши:

$$C(x,0,1) = \frac{1}{\pi(1+x^2)}$$
 (1.2)

• Распределение Лапласа:

$$L\left(x,0,\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|} \tag{1.3}$$

• Распределение Пуассона:

$$P(k,10) = \frac{10^k}{k!} e^{-10} \tag{1.4}$$

• Равномерное распределение:

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}}, npu|x| \le \sqrt{3} \\ 0, npu|x| > \sqrt{3} \end{cases}$$
 (1.5)

2 Теория

Характеристики положения:

• Выборочное среднее:

$$avrg = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{2.1}$$

• Выборочная медиана:

$$med x = \begin{cases} x_{k+1}, n=2k+1 \\ \frac{1}{2}(x_k + x_{k+1}), n=2k \end{cases}$$
 (2.2)

• Полусумма экстремальных значений:

$$Z_R = \frac{1}{2} \left(x_1 + x_n \right) \tag{2.3}$$

• Полусумма квартилей:

$$Z_{Q} = \frac{1}{2} \left(Z_{\frac{1}{4}} + Z_{\frac{3}{4}} \right) \tag{2.4}$$

• Усечённое среднее:

$$Z_{tr} = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_i \tag{2.5}$$

3 Реализация

Был использован язык *Python 3.8.2*: модуль *питру* для генерации выборок с различными распределениями и математических расчётов, модуль *pandas* для оптимального хранения статистических данных и функция *display* из модуля *IPython.display* для их корректного отображения в таблицах.

После вычисления характеристик положения 1000 раз, для каждой характеристики находятся их средние значения и дисперсии:

$$E(z) = \frac{1}{n} \sum_{i=1}^{n} z_{i}$$
(3.1)

$$D(z) = E(z^2) - E^2(z)$$
 (3.2)

4 Результаты

Таблица 1 Стандартное нормальное распределение

n=10	avrg	med x	Z_R	Z_Q	Z_{tr}
E(z)	0.009773	0.008853	0.019712	0.003966	0.021376
D(z)	0.097848	0.128740	0.190887	0.110150	0.160456
n=100	avrg	med x	Z_R	Z_Q	Z_{tr}
E(z)	0.003273	0.003452	0.002322	-0.000084	0.003374
D(z)	0.009964	0.015673	0.093959	0.012457	0.020648
n=1000	avrg	med x	Z_R	Z_Q	Z_{tr}
E(z)	0.000905	0.000723	-0.000894	0.00124	0.000420
D(z)	0.000940	0.001552	0.062108	0.00116	0.001945

Таблица 2 Стандартное распределение Коши

n=10	avrg	med x	Z_R	Z_Q	Z_{tr}
E(z)	-12.309807	0.004064	-6.148294e+01	-0.016856	-20.416613
D(z)	161834.04706 9	0.276286	4.045976e+06	0.750808	448912.99123 2
n=100	avrg	med x	Z_R	Z_Q	Z_{tr}
E(z)	-0.523585	-0.004339	-2.431580e+01	-0.006744	0.948759
D(z)	875.221257	0.025640	2.090211e+06	0.055550	1124.344348
n=1000	avrg	med x	Z_R	Z_Q	Z_{tr}
E(z)	-0.404621	0.000934	-1.985864e+02	-0.000136	0.175097
D(z)	520.951391	0.002476	1.282599e+08	0.004587	995.705649

Таблица 3 Распределение Лапласа

n=10	avrg	med x	Z_R	Z_Q	Z_{tr}
E(z)	0.000229	0.006801	0.003777	0.001469	-0.000735
D(z)	0.098106	0.066493	0.405711	0.085741	0.163438
n=100	avrg	med x	Z_R	Z_Q	Z_{tr}
E(z)	0.003109	0.002424	-0.002923	0.003922	-0.003257
D(z)	0.010295	0.005968	0.419241	0.010031	0.019170
n=1000	avrg	med x	Z_R	Z_Q	Z_{tr}
E(z)	0.000696	0.000528	0.017757	0.001273	0.001895
D(z)	0.001020	0.000534	0.404961	0.001030	0.002020

Таблица 4 Распределение Пуассона

n=10	avrg	med x	Z_R	Z_Q	Z_{tr}
E(z)	9.979300	9.818500	10.288000	9.885750	9.957500
D(z)	0.939362	1.378308	1.653056	1.114103	1.550555
n=100	avrg	med x	Z_R	Z_Q	Z_{tr}
E(z)	10.010780	9.852000	10.996500	9.914500	10.022340
D(z)	0.098454	0.202596	0.987738	0.156002	0.201905
n=1000	avrg	med x	Z_R	Z_Q	Z_{tr}
E(z)	10.000941	9.997000	11.657000	9.991125	9.999796
D(z)	0.010283	0.002991	0.689351	0.004562	0.019172

Таблица 5 Равномерное распределение

n=10	avrg	med x	Z_R	Z_Q	Z_{tr}
E(z)	-0.026104	-0.034972	-0.014265	-0.028204	-0.034356
D(z)	0.099940	0.228635	0.048268	0.138834	0.170442
n=100	avrg	med x	Z_R	Z_Q	Z_{tr}
E(z)	0.003063	0.004823	0.000906	0.003369	0.010592
D(z)	0.009809	0.028060	0.000538	0.014772	0.019582
n=1000	avrg	med x	Z_R	Z_Q	Z_{tr}
E(z)	0.000368	-0.000764	-0.000029	0.000347	0.000398

D(z)	0.000960	0.002870	0.000006	0.001504	0.001909

5 Выводы

В процессе работы вычислены значения характеристик положения для каждого из 5 распределений на выборках фиксированных мощностей и получены следующее ранжирование характеристик положения:

1. Стандартное нормальное распределение:

$$Z_R < Z_{tr} < med \ x < avrg < Z_Q$$

2. Стандартное распределение Коши:

$$Z_R$$
Z_QZ_{tr}

3. Распределение Лапласа:

$$med x < avrg < Z_O < Z_{tr} < Z_R$$

4. Распределение Пуассона:

$$Z_O < med \ x < Z_{tr} < avrg < Z_R$$

5. Равномерное распределение:

$$med x < Z_R < Z_O < avrg < Z_{tr}$$

6 Литература

Основы работы с питру (отдельная глава курса)

Pandas обзор

7 Приложения

Код лабораторной