COMS3261: Computer Science Theory

Fall 2013

Mihalis Yannakakis

Lecture 12, 10/14/13

Acceptance by empty stack

- Different notion of acceptance by PDA: when stack is empty (whence PDA stops and accepts – no need for F)
- $N(A) = \{ w \in \Sigma^* \mid (q_0, w, Z_0) \mid --^* (p, \varepsilon, \varepsilon) \text{ for some } p \in Q \}$
- For a specific PDA A, the language L(A) (acceptance by final state) and N(A) (acceptance by empty stack) not same
- But expressive power of two styles of acceptance is same:
- Theorem: A language L is = L(A) for some PDA A iff L=N(B) for some PDA B

Empty stack to Final state

- Given PDA B=(Q, Σ, Γ, δ, q₀, Z₀) construct another PDA A such that L(A) = N(B)
- Add new start stack symbol X₀, start state p₀, final state p_f to get new PDA A =(Q∪{p₀, p_f}, Σ, Γ∪{X₀}, δ, p₀, X₀,{p_f})

• Starting from p_0, X_0 , add Z_0 to stack and move to q_0 to simulate B. If B empties its stack (\Leftrightarrow stack of A = X_0) transition to p_f

Cost of translation: linear

Empty stack to Final state - Proof

- Observation: X_0 plays no role in simulation of B (never pops Z_0 to look at it). Therefore, if (q_0,w,Z_0) |--*B (q,ϵ,ϵ) then (p_0,w,X_0) |--A (q_0,w,Z_0X_0) |--*A (q,ϵ,X_0) |--A (p_f,ϵ,X_0)
- If $(p_0,w,X_0) \mid --A \ (p_f,\epsilon,...)$ then $(p_0,w,X_0) \mid --A \ (q_0,w,Z_0X_0) \mid --A \ (q_0,\epsilon,X_0) \mid --A \ (p_f,\epsilon,X_0)$ (for some q) $\Rightarrow (q_0,w,Z_0) \mid --A \ (q_0,\epsilon,\epsilon)$ (because X_0 irrelevant)

 \Rightarrow L(A) =N(B)

Final state to Empty stack

- Given PDA A = (Q, Σ, Γ, δ, q₀, Z₀,F) construct another PDA B such that L(A) = N(B)
- Construct B = (Q \cup {p₀, p_f}, Σ , Γ \cup {X₀}, δ , p₀, X₀)

ullet Once A reaches an accepting state, can transition to state p_f and empty the stack

PDAs = CFGs

Theorem: Context-free Languages = (by definition)

- = Languages generated by CFGs
- = Languages accepted by PDAs.
- 1. Given a CFG, we can construct a PDA that accepts the same language.
- 2. Given a PDA, we can construct a CFG that generates the same language.

$CFG \Rightarrow PDA$

- Given CFG G=(V,T,P,S), construct empty-stack PDA M= ({q}, T, Γ=V∪T, δ, q, S)
 - note: just 1 state q (so can omit in transition function)
- PDA M simulates a leftmost derivation of input string.
- For each production $A \rightarrow \beta$ of G, PDA has transition $(q, \varepsilon, A) \rightarrow (q, \beta)$
- In addition transitions $(q,a,a) \rightarrow (q, \epsilon)$ (pop) for all $a \in T$
- Operation of PDA:
- If top of stack=variable then apply a production if top = terminal, then match with input symbol

Example: CFG for arithmetic expressions

- $T = \{a,b,0,1,+,*,(,)\}$
- V={E,I}, S=E
- Productions
 E → I | E+E | E*E | (E)
 I → a | b | Ia | Ib | I0 | I1

Example: CFG for arithmetic expressions

Input string a*b

leftmost E
$$(q, a^*b, E)$$
 PDA accepting derivation E*E (q, a^*b, E^*E) computation I^*E (q, a^*b, I^*E) a*E (q, a^*b, a^*E) (q, b, E) (q, b, E) a*I (q, b, I) a*b (q, b, b) (q, ϵ, ϵ)

Theorem: L(G) = N(M)

 $L(G)\subseteq N(M)$: Let $w\in L(G)$, consider a leftmost derivation of w:

 $S=\gamma_1 \Rightarrow \gamma_2 \Rightarrow \ldots \Rightarrow \gamma_m = \mathbf{W}.$

Each $\gamma_i = x_i \alpha_i$ where x_i is a prefix of w, i.e. $w = x_i y_i$, and α_i starts with a variable, i.e. $\alpha_i = A_i \sigma_i$ for some σ_i (except $\alpha_m = \epsilon$)

Prove by induction on i that $(q,w,S) \mid --^* (q,y_i,\alpha_i)$

leftmost Derivation

Proof ctd. $L(G)\subseteq N(M)$

L(G) \subseteq N(M): Prove by induction on i that (q,w,S) |--* (q,y_i, α _i)

- Basis: $i=1 \Rightarrow \gamma_1 = S$, $x_1 = \varepsilon$, $\alpha_1 = S$, $y_1 = w$
- Induction step:

 $\gamma_i = x_i \ \alpha_i = x_i \ A_i \ \sigma_i \Rightarrow_{lm} \gamma_{i+1} = x_i \ z \ \beta \ \sigma_i \ by \ a \ production \ A_i \to z \ \beta$ where $z \in T^*$ and β starts with a variable or $=\varepsilon$

Note xiz is a prefix of w=xi yi, so z is a prefix of yi

Then PDA applies transition (q,y_i, A_iσ_i) |-- (q,y_i, zβσ_i) and then makes a sequence of moves that consumes z from the remaining input y_i, while popping it from the stack, so |--* (q,y_{i+1}, βσ_i) and α_{i+1} = βσ_i

Proof : $N(M) \subseteq L(G)$

• Show that if $(q,x,A) \mid --^* (q,\epsilon,\epsilon)$ then $A \Rightarrow^* x$ By induction on the length of the PDA computation

Basis: 1 step. If $x=\varepsilon$ then production $A \rightarrow \varepsilon$

Induction: n>1 steps. (q,x,A) |-- $(q,x,Y_1Y_2...Y_k)$ |--...|-- (q,ϵ,ϵ)

G has production A \rightarrow Y₁Y_{2...}Y_k

Look at first time Y_1 is popped and Y_2 top: x_1 input prefix read ... first time Y_i is popped and Y_{i+1} top: $x_1...x_i$ input prefix read (If $Y_i \in T$ then $x_i = Y_i$, and stack popped & input symbol consumed in the next step)

$$(q,x_1,Y_1) \mid -- (q,\epsilon,\epsilon) \ \Rightarrow \ Y_1 {\Rightarrow}^* x_1 \ \text{ by i.h. (or } Y_1 {=} x_1 \ \text{ if in } T)$$

$$(q,x_2,Y_2)$$
 |-- $(q,\epsilon,\epsilon) \Rightarrow Y_2 \Rightarrow^* x_2$ by i.h. (or $Y_2 = x_2$ if in T), ...

$$\therefore A \Longrightarrow Y_1Y_2..Y_k) \mid --^* x_1x_2..x_k = x$$

PDA to CFG

Picture how a PDA consumes an input x and empties a stack $Y_1Y_2...Y_k$

stack height Y₁

- From state ro with Y1 on top of stack, PDA consumes x1, pops Y₁, moves to state r₁,.....
- From state ri-1 with Yi on top of stack, PDA consumes xi, pops Y_i , moves to state r_i , for i=1,...,k

$PDA \Rightarrow CFG$

- Given PDA M=(Q, Σ, Γ, δ, q₀, Z₀) that accepts by empty stack. Construct grammar G=(V, Σ,P,S),
- Variables V = { [qXp] | p,q ∈Q, X∈Γ } ∪ {S}
- meaning of [qXp]: derives strings x with property that (q,x,X) |--* (p,ε,ε)
- Productions:
- S → [q₀ Z₀ p], for all p∈Q
 (Reason: if (q₀, x,Z₀) |--* (p,ε,ε) want S⇒*x, so that x∈L(G))
- For every transition of PDA $(q,a,X) \rightarrow (r,Y_1Y_2..Y_k)$, where $a=\epsilon$ or $a \in \Sigma$, for every k-tuple of states $r_1,r_2,...,r_k$, we have production: $[q,X,r_k] \rightarrow a [r \ Y_1 \ r_1] [r_1Y_2 \ r_2] ... [r_{k-1}Y_k \ r_k]$

Example of transition → production

- popping transition: (q,a,X) → (r,ε)
 yields production: [qXr] → a
- change-symbol transition: (q,a,X) → (r,Y)
 yields productions: [qXr₁] → a [rYr₁] for all r₁∈Q
- change and push transition: (q,a,X) → (r,Y₁Y₂)
 yields productions: [qXr₂] → a [rY₁r₁] [r₁Y₂r₂] for all r₁, r₂ ∈ Q

Example of translation

- $S \rightarrow [qZq] | [qZp]$
- Self-loop of q:
 [qZq] → 0 [qZq] [qZq] | 0 [qZp] [pZq]
 [qZp] → 0 [qZq] [qZp] | 0 [qZp] [pZp]
- Transition $q \rightarrow p$: $[qZp] \rightarrow \epsilon$
- Self-loop at p: [pZp] → 1

Proof that L(G) = N(M)

- L(G) ⊇ N(M): Show by induction on length of a computation of M that if (q,w,X) |--* (p,ε,ε) then [qXp] ⇒* w
 Since we have productions S → [q₀ Z₀ p], for all p∈Q it follows that if (q₀,w,Z₀) |--* (p,ε,ε) then S ⇒*w, and w∈L(G)
- L(G) ⊆ N(M): Show by induction on length of a derivation that if [qXp] ⇒* w then (q,w,X) |--* (p,ε,ε)
 Since a derivation S ⇒*w must be S⇒ [q₀ Z₀ p] ⇒*w for some p∈Q, it follows that (q₀,w,Z₀) |--* (p,ε,ε) and w ∈N(M)

Cost of translations

- CFG to PDA: linear
- PDA to CFG:

```
#variables = |Q|^2 \times |\Gamma|
```

#productions \leq #transitions \times |Q|^{k-max} where k-max = max length of string put on stack in a PDA transition

- If PDA transitions put many symbols at once on stack then exponential
- But can transform to equivalent PDA that puts always ≤ 2 symbols on stack ⇒ #productions ≤ #transitions × |Q|²
 ⇒ Polynomial blow up. If length of description of PDA is not provided by the polynomial blow up.
 - \Rightarrow Polynomial blow-up. If length of description of PDA is n (includes |Q|, | Γ |, sum of lengths of transitions), then length of description of CFG is O(n³)

Restricted PDAs

- Restricting PDAs to only pop, change top or push single symbol does not change expressive power
- For each transition $(q,a,X) \to (p,\alpha)$ where $a=\epsilon$ or is in Σ and $\alpha=Y_k...Y_1$. If k=0 or 1, nothing to do (pop or change)
- If $k\ge 2$, introduce k-1 new states $r_1, ..., r_{k-1}$ and transitions:

$$(q,a,X) \rightarrow (r_1,Y_1)$$
 (change top to Y_1)
 $(r_1,\varepsilon,Y_1) \rightarrow (r_2,Y_2Y_1)$ (push Y_2)

...
$$(r_{i}, \varepsilon, Y_{i}) \rightarrow (r_{i+1}, Y_{i+1}Y_{i})$$
 (push Y_{i+1})

$$(r_{k-1}, \varepsilon, Y_{k-1}) \rightarrow (p, Y_k Y_{k-1})$$
 (push Y_k)

Then
$$(q,a,X)$$
 |-- (r_1,ε,Y_1) |-- (r_2,ε,Y_2Y_1) |-- ... |-- (p,ε,α)

(If we had allowed moves on ε stack, then push, pop enough)