

Melody meeting

Hugo Frezat with Guillaume $\mathsf{Balarac}^1$ Julien Le Sommer^2 Ronan Fablet^3 Redouane $\mathsf{Lguensat}^4$

October 14, 2020

¹LEGI

²IGE

³IMT Atlantique

⁴Laboratoire des Sciences du Climat et de l'Environnement

Subgrid-scale modeling

Figure 1: Resolved and modeled scales in spectral space in LES.

- DNS is still impossible for realistic applications.
- LES models being used in climate science, oceanography.
- Challenges remaining with algebraic models (not stable, large error over time, etc).

1

NS - **SGS** scalar transport

In an incompressible Navier-Stokes framework,

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho}\nabla \rho + \nu \nabla^2 \mathbf{u}, \qquad \nabla \cdot \mathbf{u} = 0, \tag{1}$$

transport of a scalar quantity Φ

$$\frac{\partial \Phi}{\partial t} + (\mathbf{u} \cdot \nabla)\Phi = \nabla \cdot (\kappa \nabla \Phi) \tag{2}$$

$$\Downarrow \text{ filtered s.t. } \overline{\Phi(x)} = \int_{V} \Phi(x_f) G(x_f - x) dx_f \qquad (3)$$

$$\frac{\partial \overline{\Phi}}{\partial t} + (\overline{\mathbf{u}} \cdot \nabla) \overline{\Phi} = \nabla \cdot (\kappa \nabla \overline{\Phi}) + \nabla \cdot \underbrace{(\overline{\mathbf{u}} \, \overline{\Phi} - \overline{\mathbf{u}} \, \overline{\Phi})}_{\mathsf{SGS residual flux s}} \tag{4}$$

Dataset generation

Figure 2: Data from DNS. (available on Zenodo)

State of the art: machine learning

Topic	Model	Input	Output
Specific app.			
Reaction rates (Lapeyre et al. 2019 [2])	Compressible	-	-
Ocean dynamics (Bolton et al. 2019 [1])	QG -		-
Spectral			
3D HIT (Vollant et al. 2017 [6])	Incompressible	Noll's	$ abla \cdot s$
3D HIT (Portwood et al. 2020 [4])	Incompressible	Gradients	S

Table 1: Some applications of SGS modeling in specific topics where inputs and outputs are application dependent and idealized scenarios such as HIT with spectral solvers.

Transformation-invariant NN

framework

Physical constraints

We define our model such that

$$\mathcal{M}_{\mathrm{NN}}(i) \approx \nabla \cdot s, \qquad \quad i = \left\{ \overline{u}, \overline{\Phi} \right\} \tag{5}$$

Following classical physical invariances [3, 5] and mathematical equalities, we chose to embed the following:

- Translation invariance
- Scalar linearity
- Galilean invariance
- Permutation (rotation) invariance

Figure 3: Illustration of the sub-grid transport neural network architecture (SGTNN).

Translation invariance

$$\forall \delta \in \mathbb{R}, \quad \mathcal{M}_{\mathrm{NN}}(T_{\delta}\overline{\mathbf{u}}, T_{\delta}\overline{\Phi}) = T_{\delta}\mathcal{M}_{\mathrm{NN}}(\overline{\mathbf{u}}, \overline{\Phi})$$
 (6)

Figure 4: Illustration of the sub-grid transport neural network architecture (SGTNN).

Scalar linearity

$$\forall \lambda \in \mathbb{R}, \quad \mathcal{M}_{\mathrm{NN}}(\overline{\mathbf{u}}, \lambda \overline{\Phi}) = \lambda \mathcal{M}_{\mathrm{NN}}(\overline{\mathbf{u}}, \overline{\Phi})$$
 (7)

Figure 5: Illustration of the sub-grid transport neural network architecture (SGTNN).

Galilean invariance

$$\forall \beta \in \mathbb{R}, \quad \mathcal{M}_{\text{NN}}(\overline{\mathbf{u}} + \beta, \overline{\Phi}) = \mathcal{M}_{\text{NN}}(\overline{\mathbf{u}}, \overline{\Phi})$$
 (8)

Figure 6: Illustration of the sub-grid transport neural network architecture (SGTNN).

Permutation (rotation) invariance

$$\mathcal{M}_{\mathrm{NN}}(A_{ij}\overline{\mathbf{u}},\overline{\Phi}) = \mathcal{M}_{\mathrm{NN}}(\overline{\mathbf{u}},\overline{\Phi}) \tag{9}$$

Verifying invariances

- \bullet Random realizations with λ and β
- 6 permutations

	$\mathcal{M}_{ ext{CNN}}$		$\mathcal{M}_{ ext{SGTNN}}$	
	E[MSE]	Var[MSE]	E[MSE]	Var[MSE]
$\mathcal{M}_{\mathrm{NN}}(\overline{u},\lambda\overline{\Phi})$	1.7251	0.0629	1.4643	0.0
$\mathcal{M}_{\mathrm{NN}}(\overline{u}+eta,\overline{\Phi})$	1.8307	0.0373	1.4643	0.0
$\mathcal{M}_{\mathrm{NN}}(A_{ij}\overline{\mathtt{u}},\overline{\Phi})$	1.6022	$1.9539 \cdot 10^{-6}$	1.4638	$2.5107 \cdot 10^{-7}$

Table 2: Evaluation of the three additional physical constraints provided by $\mathcal{M}_{\mathrm{SGTNN}}.$

Results: testing dataset a priori

	$\downarrow \mathcal{L}_2(X,Y)$	$\uparrow \mathcal{P}(X,Y)$	$\downarrow \mathcal{J}(P_X P_Y)$	$\downarrow \mathcal{I}(X,Y)$
$\mathcal{M}_{\mathrm{DynSmag}}$	1.8531	0.3602	0.2840	0.1767
$\mathcal{M}_{\mathrm{DynRG}}$	1.6048	0.4969	0.3471	0.0624
$\mathcal{M}_{\mathrm{MLP}}$	3.1645	0.1365	0.0449	0.0896
$\mathcal{M}_{ ext{CNN}}$	1.5996	0.5597	0.0868	0.1021
$\mathcal{M}_{ ext{SGTNN}}$	1.4643	0.6118	0.1070	0.1190

Table 3: A priori evaluation of the SGS term in developed turbulence regime. Mean-squared-error \mathcal{L}_2 , Pearson's coefficient \mathcal{P} , Jensen-Shannon distance $\mathcal{J}(P_X||P_Y)$ and integral dissipation error $\mathcal{I}(X,Y)$.

Figure 7: Statistical evaluation with testing data.

Results: decaying scalar a priori

Figure 8: Time evolution of the different metrics in decaying scalar regime.

Results: developed turbulence a posteriori

Figure 9: Statistics of simulation in developed turbulence regime. Scalar variance (left), resolved scalar enstrophy (middle), spectrum (right).

Results: decaying scalar a posteriori

Figure 10: Statistics of simulation in decaying scalar regime. Scalar variance (left), resolved scalar enstrophy (middle), spectrum (right).

Flow learning: ideas

- 1. Preprint: https://arxiv.org/abs/2010.04663
- 2. End-to-end learning: access to many more diagnostic variables
- 3. Effect of training on multiple time-steps (as compared to single one with a dataset)
- 4. Large filter size, computationally less consuming system: e.g. QG
- 5. Investigate asymptotics quantities: e.g. stability

References i

T. Bolton and L. Zanna.

Applications of deep learning to ocean data inference and subgrid parameterization.

Journal of Advances in Modeling Earth Systems, 11(1):376–399, 2019.

C. J. Lapeyre, A. Misdariis, N. Cazard, D. Veynante, and T. Poinsot. Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates.

Combustion and Flame, 203:255-264, 2019.

M. Oberlack.

Invariant modeling in large-eddy simulation of turbulence. Annual Research Briefs, pages 3–22, 1997.

References ii

C. G. Speziale.

Galilean invariance of subgrid-scale stress models in the large-eddy simulation of turbulence.

Journal of fluid mechanics, 156:55-62, 1985.

A. Vollant, G. Balarac, and C. Corre.
Subgrid-scale scalar flux modelling based on optimal estimation theory and machine-learning procedures.

Journal of Turbulence, 18(9):854-878, 2017.