浙江工业大学2018/2019(一)期末试卷《复变函数与积分变换》

《Final Exam for 'Functions of a Complex Variable and Integral Transforms'》

Class:	Name (in Chinese):				Student ID:						
Please write in	Englisl	h! Good	d luck!								
Question	1	2	3	4	5	6	7	8	Total		
Score											
1. Choose only	y one co	rrect a	nswer	to each	queati	on (3	points	each, t	otal 15	point	ts)
Score											
(1) (()			.•			1	• 6				,
(1) f(z) = u(x, z)				s at z_0 =						()
$(A) \ u(x,y)$	is contin	uous at	(x_0, y_0)		(B) u (x_0, y_0)		d v(x, y)	are bot	th contin	uous	at
(C) $v(x, y)$ is continuous at (x_0, y_0)					(D) $u(x, y) + v(x, y)$ is continuous at (x_0, y_0)						
(2) If $f(z) = u$			-	n <i>D</i> , wh	ich one	of the fo	llowing	s is not	correct?	()
(A) f'(z) =		•		,		_					,
	O_{Λ}	<i>,</i> ~			(B) J	$f'(z) = \frac{\partial}{\partial z}$ $f'(z) = \frac{\partial}{\partial z}$	$\frac{1}{y} + i \frac{1}{\partial x}$				
(C) $f'(z) =$	$\frac{\partial u}{\partial y} + i \frac{\partial u}{\partial z}$	$\frac{\partial}{\partial y}$			(D) <i>f</i>	$'(z) = \frac{\partial}{\partial}$	$\frac{d}{dx} - i\frac{\partial u}{\partial y}$				
(3) If $C: z+1 $	= 1 in c	counterc	lockwis	e orient	ed, then	$\oint_C \frac{1}{(z-z)^2}$	$\frac{dz}{1)^3(z+}$	$\frac{1}{1}$ =		()
(A) $\frac{3\pi}{8}i$		(B) -	$\frac{3\pi}{3\pi}$	($C = \frac{3\pi}{i}$		(D)	$-\frac{3\pi}{i}$			
Ü			8	,	4		(D)	4 ¹			
(4) $z = 2$ is	$\underline{}$ of $e^{\overline{z}}$	$\frac{1}{-2}$								()
(A) analytic point				(B) removable singularity							
(C) pole					(D) es	ssential	singular	ity			
(5) Let $\mathscr{F}[f(t)]$	$ =F(\omega)$, then w	hich of	the follo	owings i	s not co	rect?			()
(A) $\mathscr{F}[f(t) * f(t)] = [F(\omega)]^2$				(B) $\delta(-t) = \delta(t)$							
(C) $\int_{-\infty}^{+\infty} e^{-}$	$i\omega t dt = 2$	$2\pi\delta(\omega)$			(D) <i>3</i>	$\mathcal{F}[f(at)]$	$=\frac{1}{a}F(\cdot$	$(\frac{w}{a}), a \neq$	$0, a \in \mathbb{R}$		
		.			•••						
2. Fill in each blank (3 points each, total 30 points)						Sc	core				
(1) Determine t	he real c	onstant	k =	such	that $f(z)$	$=e^{x}(c)$	osky + i	sinky) i	s analytic	c.	

(2) The trigonometric and exponential forms of $z = \sin \frac{\pi}{5} + i \cos \frac{\pi}{5}$ are _____ and ____.

- (3) $\sqrt[4]{1+i} =$ (in exponential form).
- (4) Let C be the upper half of the circle |z| = 1 joining 1 to -1, then $\int_C \frac{1}{\sqrt[3]{z}} dz =$ _____.
- (5) The power series of $\frac{1}{(1-z)^2}$ is _____.
- (6) Let $f(z) = \frac{e^{\frac{1}{z}}}{1-z}$, then Res[f(z), 0] =_____.
- (7) The Fourier transform of $f(t) = \delta(t-1)(t-2)^2 \cos t$ is _____.
- (8) What kind of isolated singular point of $f(z) = \frac{z^4}{1+z^4}$ at $z = \infty$?_____.

 What kind of isolated singular point of $f(z) = \cot z \frac{1}{z}$ at z = 0?_____.

 (Please fill in removable, pole and its order, essential singularity, or not isolated singularity).

3. (7 points)	Score	
3. (7 points)	Score	

Verify that

$$f(z) = \begin{cases} 0, & z = 0\\ \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2} & z \neq 0 \end{cases}$$

satisfies C-R equations at the point z = 0, but it is not analytic.

4. (5 points each)

Score

Compute Laurent series of function $f(z) = \frac{1}{(z-1)(z-3)}$ in the assigned annulus:

$$(1)\ 0<|z-1|<1$$

(2)
$$2 < |z - 3| < +\infty$$

5. (6 points each)

Score

Find Laplace transform of the following f(t):

$$(1) f(t) = t \sin kt$$

$$(2) f(t) = \int_0^t \tau e^{-2\tau} \sin 3\tau d\tau$$

6. (6 points each)

Score

Evaluate the following integrals:

$$(1) \int_0^{2\pi} \frac{d\theta}{a + \cos \theta} \qquad (a > 1).$$

$$(2) \int_{-\infty}^{+\infty} \frac{(\cos 3x)^2}{x^2 + 4x + 5} dx$$

7. (6 points)

Score

Solve the following differential equation using Laplace transform:

$$y'' + 3y' + y = 3\cos t$$
, $y(0) = 0$, $y'(0) = 1$.

8. (8 points)

Score

Given
$$\mathscr{F}[e^{-\beta t^2}] = \sqrt{\frac{\pi}{\beta}}e^{-\frac{\omega^2}{4\beta}}, \beta > 0$$
. Let $f(t) = te^{-t^2}$, then

- (1) Find the Fourier transform of f(t). (2) Prove that $\int_0^{+\infty} \omega e^{-\frac{\omega^2}{4}} \sin \omega t d\omega = 2 \sqrt{\pi} t e^{-t^2}$.