

Art of Problem Solving

2016 Canada National Olympiad

Canada National Olympiad 2016

1	The integers $1, 2, 3, \ldots, 2016$ are written on a board. You can choose any two numbers on the board and replace them with their average. For example, you can replace 1 and 2 with 1.5, or you can replace 1 and 3 with a second copy of 2. After 2015 replacements of this kind, the board will have only one number left on it.
	(a) Prove that there is a sequence of replacements that will make the final number equal to 2.
	(b) Prove that there is a sequence of replacements that will make the final number equal to 1000.
2	Consider the following system of 10 equations in 10 real variables v_1, \ldots, v_{10} :
	$v_i = 1 + \frac{6v_i^2}{v_1^2 + v_2^2 + \dots + v_{10}^2}$ $(i = 1, \dots, 10).$
	Find all 10-tuples $(v_1, v_2, \dots, v_{10})$ that are solutions of this system.
3	Find all polynomials $P(x)$ with integer coefficients such that $P(P(n) + n)$ is a prime number for infinitely many integers n .
4	Let A, B , and F be positive integers, and assume $A < B < 2A$. A flea is at the number 0 on the number line. The flea can move by jumping to the right by A or by B . Before the flea starts jumping, Lavaman chooses finitely many intervals $\{m+1, m+2, \ldots, m+A\}$ consisting of A consecutive positive integers, and places lava at all of the integers in the intervals. The intervals must be chosen so that:
	 (i) any two distinct intervals are disjoint and not adjacent; (ii) there are at least F positive integers with no lava between any two intervals; and (ii) no lava is placed at any integer less than F.
	Prove that the smallest F for which the flea can jump over all the intervals and avoid all the lava, regardless of what Lavaman does, is $F = (n-1)A + B$, where n is the positive integer such that $\frac{A}{n+1} \leq B - A < \frac{A}{n}$.

Let $\triangle ABC$ be an acute-angled triangle with altitudes AD and BE meeting at

H. Let M be the midpoint of segment AB, and suppose that the circumcircles of $\triangle DEM$ and $\triangle ABH$ meet at points P and Q with P on the same side of

Contributors: AlcumusGuy

 $\mathbf{5}$

Art of Problem Solving

2016 Canada National Olympiad

CH as A. Prove that the lines ED, PH, and MQ all pass through a single point on the circumcircle of $\triangle ABC$.

 $\label{lem:www.artofproblemsolving.com/community/c256451} \\ Contributors: AlcumusGuy$