CS660

Homework 2

Complete all **five** problems. Put your pages in order and scan your solutions and upload one PDF. I will not grade multiple files, jpegs, Mac Pages, or any other image files. Each problem is worth 4 points for a total of 20 points.

1. Consider \mathbb{R}^3 with the inner product

$$\langle x, y \rangle \coloneqq x^T \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} y$$

Furthermore, we define e_1 , e_2 , e_3 as the standard/canonical basis in \mathbb{R}^3 .

- (a) Determine the orthogonal projection $\pi_U(\mathbf{e}_2)$ of \mathbf{e}_2 onto $U = span[\mathbf{e}_1, \mathbf{e}_3]$.
- (b) Compute the distance $d(e_2, U)$.
- 2. Let W be the subspace of \mathbb{R}^3 spanned by $u_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $u_2 = \begin{bmatrix} 7 \\ -2 \\ -11 \end{bmatrix}$.

(i. e., $W = Span \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 7 \\ -2 \\ -11 \end{pmatrix} \right\}$). Find the vector(s) that span(s) the orthogonal complement W^{\perp} of W.

- 3. Let W be the subspace of \mathbb{R}^5 spanned by $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ -1 \\ 2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ 4 \\ 7 \\ 2 \\ -1 \end{bmatrix}$. Find a basis of the orthogonal complement W^{\perp} of W.
- 4. Find the orthonormal basis for the subspace U of \mathbb{R}^4 spanned by the vectors

$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 4 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1 \\ 2 \\ -4 \\ -3 \end{bmatrix}$

5. Let

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 3 & 4 \\ 7 & -5 & 2 \end{bmatrix}$$

- (a) Are the rows of **A** orthogonal? YES
- (b) Is A an orthogonal matrix? NO
- (c) Are the columns of **A** orthogonal? NO

Provide support for your answers.