8.5 方向导数与梯度

8.5.1 方向导数

定义 5.1. 设三元函数 f(x,y,z) 在点 $P_0(x_0,y_0,z_0)$ 的某邻域 $U(P_0)$ 内有定义, l 为从点 P_0 出发的射线. P(x,y,z) 为 l 上且含于 $U(P_0)$ 内的任一点, 以 ρ 表示 P 与 P_0 两点间的距离. 若极限

$$\lim_{\rho \to 0^+} \frac{f(P) - f(P_0)}{\rho} = \lim_{\rho \to 0^+} \frac{\Delta f}{\rho}$$

存在,则称此极限为函数 f(x,y,z) 在点 P_0 处沿方向 I 的方向导数,记作 $\frac{\partial f}{\partial l}|_{P_0}$, $f'_l(P_0)$ 或 $f'_l(x_0,y_0,z_0)$.

沿 x 轴、y 轴和 z 轴的正向的方向分别为 $e_1=(1,0,0)$, $e_2=(0,1,0)$, $e_3=(0,0,1)$. 函数 f(x,y,z) 在点 $P_0(x_0,y_0,z_0)$ 关于 x (y 或 z) 偏导数存在的充分必要条件是f(x,y,z) 沿方向 e_1 和 $-e_1$ (e_2 和 $-e_2$ 或 e_3 和 $-e_3$) 的方向导数都存在且为相反数,且 $\frac{\partial f}{\partial e_1}\Big|_{(x_0,y_0,z_0)}=\frac{\partial f}{\partial x}\Big|_{(x_0,y_0,z_0)}$ ($\frac{\partial f}{\partial e_2}\Big|_{(x_0,y_0,z_0)}=\frac{\partial f}{\partial z}\Big|_{(x_0,y_0,z_0)}$).

方向导数 $\frac{\partial f}{\partial e_1}\Big|_{(x_0,y_0)}$ 存在, 偏导数 $\frac{\partial f}{\partial x}\Big|_{(x_0,y_0)}$ 不一定存在.

f(x,y,z) = |x| 在 (0,0,0) 处沿 $\mathbf{l} = \mathbf{e}_1$ 方向的方向导数 $\frac{\partial f}{\partial \mathbf{e}_1}\Big|_{(0,0,0)} = 1$, 但偏导数 $\frac{\partial f}{\partial x}\Big|_{(0,0,0)}$ 却不存在.

例 5.1. 设 $f(x,y,z) = x + y^2 + z^3$. 求函数 f(x,y,z) 在点 $P_0(1,1,1)$ 处沿方向 l = (2,-2,1) 的方向导数.

解: 过点 $P_0(1,1,1)$, 以 l = (2,-2,1) 为方向向量的直线为

$$x = 2t + 1, \quad y = -2t + 1, \quad z = t + 1, \quad t \ge 0.$$

由于 $f(P_0) = 3$,

$$f(P) = f(2t+1, -2t+1, t+1) = t^3 + 7t^2 + t + 3,$$
$$\rho = \sqrt{(x-1)^2 + (y-1)^2 + (z-1)^2} = 3t.$$

因此

$$\frac{\partial f}{\partial l}\Big|_{P_0} = \lim_{\rho \to 0^+} \frac{f(P) - f(P_0)}{\rho} = \lim_{t \to 0^+} \frac{t^3 + 7t^2 + t}{3t} = \frac{1}{3}.$$

例 5.2. 设 $f(x,y,z) = x + y^2 + z^3$. 求函数 f(x,y,z) 在点 $P_0(1,1,1)$ 处沿从点 (1,1,1) 到点 (2,-2,1) 的方向导数.

解: 过点 $P_0(1,1,1)$, 以 l = (1,-3,0) 为方向向量的直线为

$$x = t + 1$$
, $y = -3t + 1$, $z = 1$, $t \ge 0$.

由于 $f(P_0) = 3$,

$$f(P) = f(t+1, -3t+1, 1) = 9t^2 - 5t + 3,$$

$$\rho = \sqrt{(x-1)^2 + (y-1)^2 + (z-1)^2} = \sqrt{10}t.$$

因此

$$\frac{\partial f}{\partial l}\Big|_{P_0} = \lim_{\rho \to 0^+} \frac{f(P) - f(P_0)}{\rho} = \lim_{t \to 0^+} \frac{9t^2 - 5t}{\sqrt{10}t} = -\frac{5}{\sqrt{10}}.$$

方向导数与偏导数的关系

定理 5.1. 设函数 u = f(x, y, z) 在点 $P_0(x_0, y_0, z_0)$ 可微, 则函数 f(x, y, z) 在点 $P_0(x_0, y_0, z_0)$ 沿任 意方向 l 的方向导数都存在, 且

$$\frac{\partial f}{\partial l}\Big|_{(x_0, y_0, z_0)}$$

$$= f'_x(x_0, y_0, z_0) \cos \alpha + f'_y(x_0, y_0, z_0) \cos \beta + f'_z(x_0, y_0, z_0) \cos \gamma.$$

其中 $\cos \alpha, \cos \beta, \cos \gamma$ 是方向 l 的方向余弦. 记

$$e_l = (\cos \alpha, \cos \beta, \cos \gamma),$$

表示与1同方向的单位向量.

可以类似定义一般 n 元函数的方向导数,并有以上类似定理.

若函数 u = f(x, y, z) 不可偏导, 但可能有沿任意方向的方向导数.

函数 $f(x,y) = \sqrt{x^2 + y^2}$ 在点 (0,0) 处两个偏导数都不存在, 故不可微. 但在点 (0,0) 处沿任意方向的方向导数都存在,

$$\lim_{\rho \to 0^+} \frac{f(P) - f(P_0)}{\rho} = \lim_{\rho \to 0^+} \frac{\sqrt{(\Delta x)^2 + (\Delta y)^2}}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 1.$$

例 5.3. 设 $f(x,y,z) = x^{y-z}$, 求 f 在点 (2,1,2) 处沿方向 l = (2,1,-2) 的方向导数.

解:由于

$$f'_x(2,1,2) = (y-z)x^{y-z-1}|_{(2,1,2)} = -\frac{1}{4},$$

$$f'_y(2,1,2) = x^{y-z} \ln x|_{(2,1,2)} = \frac{1}{2} \ln 2,$$

$$f'_z(2,1,2) = -x^{y-z} \ln x|_{(2,1,2)} = -\frac{1}{2} \ln 2,$$

$$e_l = \frac{1}{\sqrt{2^2 + 1^2 + (-2)^2}} (2,1,-2) = \frac{1}{3} (2,1,-2),$$

所以

$$\left. \frac{\partial f}{\partial l} \right|_{(2,1,2)} = -\frac{1}{4} \times \frac{2}{3} + \frac{1}{2} \ln 2 \times \frac{1}{3} - \frac{1}{2} \ln 2 \times \left(\frac{-2}{3} \right) = \frac{1}{6} \left(3 \ln 2 - 1 \right).$$

8.5.2 梯度

定义 5.2. 设函数 u = f(x, y, z) 在点 $P_0(x_0, y_0, z_0)$ 处偏导数存在, 称向量

$$\left(\frac{\partial f}{\partial x}\Big|_{(x_0,y_0,z_0)}, \frac{\partial f}{\partial y}\Big|_{(x_0,y_0,z_0)}, \frac{\partial f}{\partial z}\Big|_{(x_0,y_0,z_0)}\right)$$

为函数 u = f(x, y, z) 在点 $P_0(x_0, y_0, z_0)$ 处的梯度,记作 $\mathbf{grad} f(x_0, y_0, z_0)$, $\mathbf{grad} f|_{P_0}$ 或 $\nabla f(x_0, y_0, z_0)$.

n 元函数的梯度定义为

$$\mathbf{grad}f(x_1, x_2, \dots, x_n) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right).$$

由梯度概念,方向导数计算公式可以写成

$$\left. \frac{\partial f}{\partial l} \right|_{(x_0, y_0, z_0)} = \mathbf{grad} f(x_0, y_0, z_0) \cdot \boldsymbol{e}_l = |\mathbf{grad} f(x_0, y_0, z_0)| \cos \theta,$$

其中 θ 为向量 $\mathbf{grad} f(x_0, y_0, z_0)$ 与向量 l 之间的夹角.

由此看出, 若函数 u = f(x, y, z) 在点 (x_0, y_0, z_0) 可微分, 则当 l 与 $\mathbf{grad} f(x_0, y_0, z_0)$ 方向一致时, 就有

 $\left. \frac{\partial f}{\partial l} \right|_{(x_0, y_0, z_0)} = |\mathbf{grad} f(x_0, y_0, z_0)|.$

于是得到下述结果:

设函数 u = f(x, y, z) 在点 (x_0, y_0, z_0) 可微分,且 $\mathbf{grad} f(x_0, y_0, z_0)$ 不是零向量,则

- (1) f(x,y,z) 在点 (x_0,y_0,z_0) 处沿梯度 $\mathbf{grad} f(x_0,y_0,z_0)$ 方向的方向导数最大,最大值等于 $|\mathbf{grad} f(x_0,y_0,z_0)|$; 而沿梯度反方向的方向导数最小,最小值等于 $-|\mathbf{grad} f(x_0,y_0,z_0)|$.
- (2) f(x,y,z) 在点 (x_0,y_0,z_0) 处沿与 $\mathbf{grad} f(x_0,y_0,z_0)$ 垂直方向的方向导数等于零.

简单地说,可微函数在一点处沿着梯度的方向具有最大的增长率,最大增长率等于梯度的模.

说明梯度概念的例子

假设在平面的原点 O(0,0) 处有一个点热源,于是在平面的每一点 P(x,y) 处都对应了确定的温度. 设温度 T 与该点到热源的距离 r 成反比,比例系数为常数 k > 0,即

$$T(x,y) = \frac{k}{r}, \quad r = \sqrt{x^2 + y^2}.$$

由 $T_x = -\frac{kx}{r^3}$, $T_y = -\frac{ky}{r^3}$, 得梯度

$$grad T(x,y) = (T_x, T_y) = -\frac{k}{r^3}(x,y).$$

上式说明, $\mathbf{grad}T(x,y)$ 与向径 $\mathbf{r}=(x,y)$ 的方向相反, 即梯度指向原点. 根据梯度的意义知, 温度沿着指向原点的方向上升最快; 反之, 沿着背离原点的方向下降得最快.

例 5.4. 已知函数 $u = x^2 + 2y^2 + 3z^2$, 求

- (1) 函数在点 (1,1,1) 的梯度;
- (2) 函数在点 (1,1,1) 处沿从点 (1,1,1) 到点 (2,3,2) 的直线方向的方向导数;
- (3) 函数在点 (1,1,1) 处的增长率最大和最小的方向.

解:

- (1) $\mathbf{grad}u = (2x, 4y, 6z)$, $\mathbf{t} \mathbf{grad}u|_{(1,1,1)} = (2,4,6)$.
- (2) $l = (1,2,1), e_l = \frac{1}{\sqrt{6}}(1,2,1), \text{ fig. }$

$$\frac{\partial u}{\partial l}\Big|_{(1,1,1)} = (2,4,6) \cdot \frac{1}{\sqrt{6}}(1,2,1) = \frac{16}{\sqrt{6}}.$$

(3) 函数在点(1,1,1)处的增长率最大和最小的方向分别为

$$\frac{1}{\sqrt{14}}(1,2,3), -\frac{1}{\sqrt{14}}(1,2,3).$$

8.5.3 数量场与向量场

如果对于空间区域 G 内的任一点 M,都有一个确定的数量 f(M),则称在这空间区域 G 内确定了一个数量场(数量场、密度场等).一个数量场可用一个数量函数 f(M) 来确定.

如果与点 M 对应的是一个向量 F(M),则称在这空间区域 G 内确定了一个向量场(力场、速度场等). 一个向量场可用一个向量函数 F(M) 来确定,其中

$$F(M) = P(M)i + Q(M)j + R(M)k,$$

其中 P(M), Q(M), R(M) 是点 M 的数量函数.

向量函数 $\operatorname{grad} f(M)$ 确定了一个向量场——梯度场, 它是由数量场 f(M) 产生的. 通常称函数 f(M) 为这个向量场的势, 而这个向量场又称为 势场. 任意一个向量场不一定是势场, 因为它不一定是某个数量函数的梯度场.

例 5.5. 试求数量场 $\frac{m}{r}$ 所产生的梯度场, 其中常数 m > 0, $r = \sqrt{x^2 + y^2 + z^2}$ 为原点 O 与点 M(x,y,z) 间的距离.

解:

$$\mathbf{grad}\frac{m}{r} = -\frac{m}{r^2}\left(\frac{x}{r}\mathbf{i} + \frac{y}{r}\mathbf{j} + \frac{z}{r}\mathbf{k}\right) = -\frac{m}{r^2}\mathbf{e}_r,$$

其中 $e_r = \left(\frac{x}{r}\mathbf{i} + \frac{y}{r}\mathbf{j} + \frac{z}{r}\mathbf{k}\right)$.

力学解释

- $-\frac{m}{r^2}e_r$ 表示位于原点 O 质量为 m 的质点对位于点 M 质量为 1 的质点的引力.
- 这引力的大小与两质点的质量的乘积成正比、而与它们的距离平方成反比,这引力的方向由点 M 指向原点.
- 因此数量场 $\frac{m}{r}$ 的势场即梯度场 $\operatorname{grad} \frac{m}{r}$ 称为引力场, 而函数 $\frac{m}{r}$ 称为引力势.

8.5.4 思考与练习

练习 224. 求 $f(x,y) = x^2 + 2xy - y$ 在点 (2,1) 处沿方向 l = (2,-1) 的方向导数.

解:由于

$$f_x = 2x + 2y$$
, $f_y = 2x - 1$,

所以

$$f_x(2,1) = 6$$
, $f_y(2,1) = 3$, $e_l = \frac{1}{\sqrt{5}}(2,-1)$.

故

$$\frac{\partial f}{\partial l} = \frac{2}{\sqrt{5}} f_x(2,1) - \frac{1}{\sqrt{5}} f_y(2,1) = \frac{9}{\sqrt{5}}.$$

练习 225. 求 $f(x,y) = \sin(x+y)$ 在点 (0,0) 处沿方向 $e_l = (\cos\theta, \sin\theta)$ 的方向导数.

解: 由于

$$f_x(0,0) = \cos(x+y)|_{(0,0)} = 1, \quad f_y(0,0) = \cos(x+y)|_{(0,0)} = 1,$$

所以

$$\frac{\partial f}{\partial l} = f_x(0,0)\cos\theta + f_y(0,0)\sin\theta = \cos\theta + \sin\theta.$$

练习 226. 求函数 $z = x^y$ 在任意点处的梯度.

解: 由于

$$z_x = yx^{y-1}, \quad z_y = x^y \ln x$$

所以

$$\nabla z = (yx^{y-1}, x^y \ln x).$$

练习 227. 设 $z = f(x, y) = xe^y$.

- (1) 求出 f 在点 P(2,0) 处沿从 P 到 $Q\left(\frac{1}{2},2\right)$ 方向的变化率;
- (2) f 在点 P(2,0) 处沿什么方向具有最大的增长率,最大增长率为多少?

解:

(1) 设 e_l 是与 \overrightarrow{PQ} 同向的单位向量, 即 $e_l = \left(-\frac{3}{5}, \frac{4}{5}\right)$, 又 $\mathbf{grad} f(x,y) = \left(e^y, xe^y\right)$, 所以

$$\left. \frac{\partial f}{\partial l} \right|_{(2,0)} = \mathbf{grad} f(2,0) \cdot \boldsymbol{e}_l = (1,2) \cdot \left(-\frac{3}{5}, \frac{4}{5} \right) = 1.$$

(2) f(x,y) 在点 P(2,0) 处沿 grad f(2,0) = (1,2) 方向具有最大的增长率,最大增长率为

$$|\mathbf{grad} f(2,0)| = \sqrt{5}.$$

练习 228. 设 $f(x,y,z) = x \sin(yz)$, 求 $\mathbf{grad} f(1,3,0)$ 与 $\frac{\partial f}{\partial l}|_{(1,3,0)}$, 其中 $\mathbf{l} = (1,2,-1)$.

解: 由于

$$f_x = \sin(yz), \quad f_y = xz\cos(yz), \quad f_z = xy\cos(yz),$$

所以

$$\mathbf{grad}f(1,3,0)=(f_x,f_y,f_z)|_{(1,3,0)}=(0,0,3).$$

又因为

$$e_l = \frac{1}{\sqrt{6}}(1, 2 - 1),$$

于是

$$\left. \frac{\partial f}{\partial l} \right|_{(1,3,0)} = 0 \times \frac{1}{\sqrt{6}} + 0 \times \frac{2}{\sqrt{6}} + 3 \times \frac{-1}{\sqrt{6}} = -\frac{\sqrt{6}}{2}.$$