Operational Reactor Safety 22.091/22.903

Professor Andrew C. Kadak Professor of the Practice

Lecture 4 Fuel Depletion & Related Effects

Topics to Be Covered

- Fuel "burnup"
- Transmutation
- Conversion/Breeding
- Samarium 149
- Xenon 135
- Operational Impacts

Fuel Burnup

• Depletion Equation

- Definition of burnup
 - thermal energy output per mass of fuel
 - MWD/MTHM

Transmutation

- Equation for production of any nuclide
- Conversion versus Breeding
 - Depending on core physics design of the reactor core
 - $-\eta$ (eta)
 - Number of neutrons produced/absorbed in fuel
- Conversion ratio
 - rate of creation of new fissile/destruction of existing fissile

Massachusetts Institute of Technology
Department of Nuclear Science & Engineering

Prof. Andrew C. Kadak, 2008 Page 5

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

FIGURE 6-1 Values of eta $[\eta]$ for fissile nuclides as a function of energy. [Courtesy of Electric Power Research Institute (Shapiro, 1977).]

Prof. Andrew C. Kadak, 2008 Page 6

Breeding Ratios for Reactor Systems

TABLE 6-1
Average Conversion or Breeding Ratios for Reference Reactor Systems

Reference reactor	Initial fuel [†]	Conversion cycle [†]	Conversion ratio	Breeding ratio
BWR PWR	2-4 wt% ²³⁵ U 2-4 wt% ²³⁵ U	²³⁸ U-Pu ²³⁸ U-Pu	0.6 0.6	
PTGR	1.8-2.1 wt% ²³⁵ U	²³⁸ U~Pu	≥0.6	
PHWR	Natural U	²³⁸ U-Pu ²³² Th- ²³³ U	0.8	
HTGR LMFBR	≈5 wt% ²³⁵ U 10–20 wt% Pu	²³⁸ U-Pu	0.8	1.0-1.6

[†]All plutonium in power reactors is an isotopic mixture based on initial conversion of ²³⁸U to ²³⁹Pu and followed by transmutation to the "higher" isotopes.

Prof. Andrew C. Kadak, 2008

Page 7

Buildup of Plutonium with Burnup

http://atom.kaeri.re.kr/

FIGURE 6-2
Buildup of plutonium isotopes with burnup for a representative LWR fuel composition.

Prof. Andrew C. Kadak, 2008 Page 8

Reactivity Penalty

TABLE 6-2
Reactivity Penalty from Selected Transmutation Products for Recycle of BWR Fuel[†]

	Reactivity penalty at discharge, $\%\Delta k$			
End of cycle number	236 U [‡]	²³⁷ Np [§]	²⁴² Pu	²⁴³ Am [§]
1	0.62	0.13	0.65	0.36
2	0.90	0.59	1.53	0.57
3	1.12	0.73	2.04	0.89

[†]From A. Sesonske, Nuclear Power Plant Design Analysis, TID-26241, 1973.

Prof. Andrew C. Kadak, 2008

Page 9

[‡]The ²³⁶U concentration is assumed not to decrease in the diffusion plant.

Neptunium and americium are removed by reprocessing on each recycle.

Fission Products

- Fission Fragments Fission Products
 - Rate of Creation $\gamma \Sigma_f \Phi$
 - $-\gamma$ fission yield
- Fission Fragment Balance Equation

Samarium Buildup

172 Basic Theory

Samarium Buildup

FIGURE 6-6

Behavior of 149 Sm in representative LWR fuel: (a) decay and reaction chain, (b) fission yields, (c) concentration vs. time.

Prof. Andrew C. Kadak, 2008 Page 12

Xenon Buildup

174 Basic Theory

Massachusetts Institute of Technology

Prof. Andrew C. Kadak, 2008 Page 13

Department of Nuclear Science & Engineering

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

FIGURE 6-7

Behavior of ¹³⁵Xe in representative LWR fuel: (a) decay and reaction chain, (b) fission yields, (c) concentration vs. time.

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

FIGURE 6-8

Poisoning of ¹³⁵Xe as a function of time after shutdown for a representative LWR fuel composition at various neutron flux levels. Curve 1: $\Phi = 1 \times 10^{13}$ n/cm²·s; Curve 2: $\Phi = 5 \times 10^{13}$ n/cm²·s; Curve 3: $\Phi = 1 \times 10^{14}$ n/cm²·s; Curve 4: $\Phi = 5 \times 10^{14}$ n/cm²·s.

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Operational Impacts

- Xenon Oscillations
- Fuel Design for cycle length of core
- Fuel management strategies
- Power peaking limits
- Power distribution control

Reactor Physics Calculations

- Multi-Group Diffusion Equations
 - Model core using fuel pin and assembly homogenization of materials and fuels with pins averaged horizontally but detailed axially
- Run Static calculation for core power and flux distribution
- Fluxes used to perform depletion calculations as noted for a "time step"
- New material calculations used to produce new power and flux distribution for next "time step" – 1 month
- Incorporate only significant isotopes high absorption and/or fission cross sections ignoring short lived isotopes in decay chains. – use lumping procedure
- Need to consider early xenon and Samarium build up 50 hours/500 hours
- Track key isotopes for all fuel assemblies for refueling management

Homework Assignment

- Chapter 6
 - Problems: 6.2, 6, 7, 9, 11, 15

MIT OpenCourseWare http://ocw.mit.edu

22.091 Nuclear Reactor Safety Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.