Example 2.4.

- 1. The map $\varphi \colon \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ given by $\varphi(m) = m \mod n$ for all $m \in \mathbb{Z}$ is a homomorphism.
- 2. The map $\det: \mathbf{GL}(n,\mathbb{R}) \to \mathbb{R}$ is a homomorphism because $\det(AB) = \det(A) \det(B)$ for any two matrices A, B. Similarly, the map $\det: \mathbf{O}(n) \to \mathbb{R}$ is a homomorphism.

If $\varphi \colon G \to G'$ and $\psi \colon G' \to G''$ are group homomorphisms, then $\psi \circ \varphi \colon G \to G''$ is also a homomorphism. If $\varphi \colon G \to G'$ is a homomorphism of groups, and if $H \subseteq G$, $H' \subseteq G'$ are two subgroups, then it is easily checked that

$$\operatorname{Im}\,\varphi = \varphi(H) = \{\varphi(g) \mid g \in H\}$$

is a subgroup of G' and

$$\varphi^{-1}(H') = \{ g \in G \mid \varphi(g) \in H' \}$$

is a subgroup of G. In particular, when $H' = \{e'\}$, we obtain the kernel, Ker φ , of φ .

Definition 2.8. If $\varphi \colon G \to G'$ is a homomorphism of groups, and if $H \subseteq G$ is a subgroup of G, then the subgroup of G',

Im
$$\varphi = \varphi(H) = \{ \varphi(g) \mid g \in H \},\$$

is called the *image* of H by φ , and the subgroup of G,

$$Ker \varphi = \{ g \in G \mid \varphi(g) = e' \},\$$

is called the kernel of φ .

Example 2.5.

- 1. The kernel of the homomorphism $\varphi \colon \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ is $n\mathbb{Z}$.
- 2. The kernel of the homomorphism det: $\mathbf{GL}(n,\mathbb{R}) \to \mathbb{R}$ is $\mathbf{SL}(n,\mathbb{R})$. Similarly, the kernel of the homomorphism det: $\mathbf{O}(n) \to \mathbb{R}$ is $\mathbf{SO}(n)$.

The following characterization of the injectivity of a group homomorphism is used all the time.

Proposition 2.9. If $\varphi \colon G \to G'$ is a homomorphism of groups, then $\varphi \colon G \to G'$ is injective iff $\operatorname{Ker} \varphi = \{e\}$. (We also write $\operatorname{Ker} \varphi = \{0\}$.)

Proof. Assume φ is injective. Since $\varphi(e) = e'$, if $\varphi(g) = e'$, then $\varphi(g) = \varphi(e)$, and by injectivity of φ we must have g = e, so Ker $\varphi = \{e\}$.

Conversely, assume that Ker $\varphi = \{e\}$. If $\varphi(g_1) = \varphi(g_2)$, then by multiplication on the left by $(\varphi(g_1))^{-1}$ we get

$$e' = (\varphi(g_1))^{-1} \varphi(g_1) = (\varphi(g_1))^{-1} \varphi(g_2),$$