Correlated Pseudo-Marginal Method

James Thornton Yuxi Jiang

University of Oxford

University of Warwick

October 2018

Background

- ▶ What is the Correlated Pseudo Marginal (CPM) Method?
 - Metropolis Hastings (MH) → Pseudo-Marginal (PM) → CPM
 - ▶ Deligiannidis et al. (2015)
- Why do this?
 - In a Bayesian context, where MH target distribution can not be evaluated; using an unbiased estimator facilitates MH
 - Correlation improves efficiency of scheme
- ▶ Our R implementation: https://github.com/JTT94/cpmmc
 - Empirical Results / Does it work?

The Correlated Pseudo-Marginal Algorithm

For observation $y_{1:T}$ with likelihood function $p(y_{1:T}|\theta)$, let θ be the parameter of interest with prior density $p(\theta)$.

$$\pi(\theta) \propto p(y_{1:T}|\theta)p(\theta)$$

Let $U \sim m$ be the auxiliary random variable used to obtain a non-negative, unbiased estimator $\hat{p}(y_{1:T}|\theta, U)$ for the likelihood $p(y_{1:T}|\theta)$.

$$\bar{\pi}(\theta, u) = \pi(\theta) m(u) \frac{\hat{p}(y_{1:T}|\theta, u)}{p(y_{1:T}|\theta)}$$

The Correlated Pseudo-Marginal Algorithm

Algorithm 1 Correlated Pseudo-Marginal Algorithm

```
1: Initialise \theta_0 and U_0
```

2: **for** Iteration $\ell \in 1, ..., L$ **do**

3: Sample
$$\theta' \sim q(\theta_{\ell-1}, \cdot)$$

4: Sample
$$\epsilon \sim \mathcal{N}(0_M, I_M)$$
, set $U' = \rho U + \sqrt{1 - \rho^2 \epsilon}$

- Compute the estimator $\hat{p}(v_1 \cdot \tau | \theta', U')$ of $p(v_1 \cdot \tau | \theta, U)$ 5:
- 6: With probability

$$\alpha_{E}\{(\theta_{\ell-1}, U_{\ell-1}), (\theta', U')\} = \min\left\{1, \frac{\hat{\rho}(y_{1:T}|\theta', U')q(\theta', \theta_{\ell-1})p(\theta')}{\hat{\rho}(y_{1:T}|\theta_{\ell-1}, U_{\ell-1})q(\theta_{\ell-1}, \theta')p(\theta_{\ell-1})}\right\}$$
set $(\theta_{\ell}, U_{\ell}) \leftarrow (\theta', U')$ else $(\theta_{\ell}, U_{\ell}) \leftarrow (\theta_{\ell-1}, U_{\ell-1})$

set
$$(\theta_{\ell}, U_{\ell}) \leftarrow (\theta', U')$$
, else $(\theta_{\ell}, U_{\ell}) \leftarrow (\theta_{\ell-1}, U_{\ell-1})$

Random Effects Model

$$egin{aligned} X_t \overset{ ext{i.i.d.}}{\sim} f_{ heta}(\cdot) \ Y_t | X_t &\sim & g_{ heta}(\cdot | X_t) \end{aligned}$$

For a realisation $Y_{1:T} = y_{1:T}$, the likelihood is

$$p(y_{1:T}) = \prod_{t=1}^{T} p(y_t|\theta)$$
$$p(y_t|\theta) = \int g_{\theta}(y_t|x_t, \theta) f_{\theta}(x_t) dx_t$$

Random Effects Model

Importance sampling estimator can be used if the integral is intractable.

$$\hat{\rho}(y_{1:T}|\theta, U) = \prod_{t=1}^{T} \hat{\rho}(y_t|\theta, U_t)$$
$$\hat{\rho}(y_t|\theta, U_t) = \frac{1}{N} \sum_{i=1}^{N} w(y_t, U_{t,i}; \theta)$$

Assuming that there exists a deterministic map $\Xi: \mathbb{R}^p \times \Theta \to \mathbb{R}^k$ such that $X_{t,i} = \Xi(U_{t,i},\theta) \sim q_{\theta}(\cdot|y_t)$ and $U_{t,i} \sim \mathcal{N}(0_p,I_p)$.

$$w(y_t, U_{t,i}|\theta) = \frac{g_{\theta}(y_t|X_{t,i})f_{\theta}(X_{t,i})}{q_{\theta}(X_{t,i}|y_t)}$$

Implementation

Class Diagram:

Simulation Study

Random effect model experiment with $\theta=0.5$, T=8192 and tuned ρ and N_T . $f_\theta=\mathcal{N}(\theta,1)$ and $g_\theta=\mathcal{N}(X,1)$, where $X\sim f_\theta$. Proposal: $\theta'|\theta\sim\mathcal{N}(\theta,0.02^2)$, and prior $\theta\sim\mathcal{N}(0,1)$

			Average Acceptance			Inefficiency Score		
T	N_T	ρ	₽мн	₽СРМ	₽РМ	IF_{MH}	IF _{CPM}	IF_{PM}
1024	19	0.9894	0.85	0.45	0.0052	18.78	27.04	78.95
2048	28	0.9925	0.78	0.47	0.0044	11.96	21.65	76.56
4096	39	0.9947	0.72	0.44	0.0040	11.91	20.54	53.66

- ► $IF = 1 + 2 \sum_{n=1}^{40} \phi_n(\theta)$, for chain θ
- $ightharpoonup \phi_n$ is auto-correlation estimator with lag n
- \triangleright ρ is acceptance rate

References

George Deligiannidis, Arnaud Doucet, and Michael K Pitt. The correlated pseudo-marginal method. *arXiv preprint arXiv:1511.04992*, 2015.