IOI2016国家集训队第一次作业 泛做表格

福建省长乐第一中学 高闻远

January 20, 2016

传统题部分:

试题编号:	试题名称:
Codechef July13 RIVPILE	Across the River
题目大意:	算法讨论:
给定二维平面上n个点的坐标,	我们定义(x,u)为点x上放上
以及加种圆盘的价格与半径。	第4种圆盘时的状态,若点x上
我们可以买任意多的圆盘把它	放第4个圆盘,点4上放第4个
放到点上(圆心坐标与点坐标	圆盘,且此时能从 x 点走到 y 点,
一致)。我们只能在直	那么我们连一条连
	$\mid g(x,u)$ 和 (y,v) 的双向边,边
动,问想从直线 $y=0$ 走	上权值为对应的购买价值。加
到 $y = W$,需要用来购买圆盘	上直线 $y = 0$ 和 $y = W$ 时的状
的最少价格是多少。有T组数	态,对这张图做最短路即是所
据.	求答案。
$T \leq 10$, $n, m \leq 250$, $2 \leq W \leq$	注意到我们将圆盘按半径排序
10^9	后,若 (x,u) 到 (y,v) 有边,那么
	对于之后的 v' , (x,u) 到 (y,v') 也
	肯定有边,因此我们改为让每
	$\uparrow \uparrow (z,w)$ 向 $(z,w+1)$ 连边。这
	样处理后对于一个三元
	组 (x,u,y) , (x,u) 最多只和一
	\uparrow 个 (y,v') 连边,这样我们将边的
	数目降为 $O(n^2*m)$,可以通过
	此题。
时间复杂度: $O(nm\log(nm))$	空间复杂度: $O(n^2*m)$

试题编号:		试题名称:
Codechef	November13	Queries With Points
QPOINT		
题目大意:		算法讨论:
给定二维平面上n-	个互不相交	将坐标离散化后,注意到相邻
的简单多边形,多	边形总点数	两个x坐标之间的区域中,存在
为 K ,有 Q 次询问	,每次询问	许多只在端点处相交的线段,
一个点在哪个多边	形内部。强	且这些线段有严格的上下序关
制在线		系。因此若可以离线处理,只
$n \leq 10^5$, $K \leq 3*1$	10^5 , $Q \leq 10^5$	需利用扫描线扫一遍 <i>x</i> 轴,用平
		衡树维护穿过当前x的所有线
		段,并将询问排序,每次询问
		时找到当前点上方最近的线段,
		这个点所在的区域便是这条线
		段下方的区域。强制在线的话
		只需预处理出可持久化平衡树
		即可。
时间复杂度:0	$(K \log K +$	空间复杂度: $O(K \log K)$
$Q \log K)$	Hz	

试题编号:		试题名称:
Codechef	November13	Gangsters of Treeland
MONOPOLY		
题目大意:		算法讨论:
给定一棵n个点	的树,每个节点	我们重新构出一棵树,在新树
有一个颜色,初	刀始时所有节点	中两个点有边,当且仅当两个
颜色都不相同。	在相邻节点移	点颜色相同。那么可以发现原
动时, 若两个点	瓦颜色不一样则	树的一次修改操作相当于对新
会产生一点代价	r。一共有 <i>Q</i> 次	树进行一次LCT算法中
操作,每次操作	三会将一个节点	的access(expose)操作,所
到根的路径上所	f有点颜色改为	以我们利用LCT模拟修改操作,
一个从未出现过	世的颜色。或是	并且每次更改父子关系时,对
询问以一个点u	为根的子树中	应的子树代价都会加一或减一,
所有点移动到棉	艮节点的代价的	这步用线段树或BIT对原树
平均值。		的dfs序进行区间修改即可。
$n,Q \le 10^5$		询问就直接用线段树或BIT进
		行区间询问。
时间复杂度:0($(n \log^2 n)$	空间复杂度:O(n)
	斯	i <i>a</i>

试题编号:	试题名称:
Codechef May13 QTREE	Queries on tree again
题目大意:	算法讨论:
给定一个包含n个点n条边的简	做出原图的一棵BFS树,那么
单无向联通图,保证图中仅有	唯一的一条非树边一定连接两
一个环且环长度为奇数。每条	个在BFS树中深度相同的点。
边上有一个权值, 定义点4到	那么对于两个点的最短路,可
点 v 的最短路为连接 u,v 的路径	以拆成三个部分,分别是u到
中边数最少的路径。有Q次操	环,环上边数少的一条路径,
作,每次操作给出两个点 u,v ,	和环到 v 。环上边数少的路径可
操作会将u,v最短路上的边的	以通过预处理一些信息简单得
权值全部取反,或是将u,v最短	出。剩下的问题可以用树链剖
路上边的权值按顺序取出看做	分和经典的线段树维护最大连
一个序列,并询问这个序列的	续子序列和做法简单解决。
最大连续子序列和。	
$n, Q \le 10^5$	
时间复杂度: $O(n + Q \log^2 n)$	空间复杂度: O(n)

试题编号:	试题名称:
Codechef December14 RIN	Course Selection
题目大意:	算法讨论:
有 n 个课程和 m 个学期,每个课	考虑用网络流最小割解决这题。
程都需要在某个学期完成。不	将每个点拆为 $m+1$ 个点记
同课程在不同学期完成会有不	为 $p_{i,j}$, S 为源, T 为汇,
同分数,用数组 $x_{i,j}$ 来描述。同	$(S, p_{i,0})$, $(p_{i,m+1}, T)$ 容量为无穷
时还有K组前置课程关系,表	大, $(p_{i,j}, p_{i,j+1})$ 容量
示要先学完课程 a_i 才能学课	为 $100 - x_{i,j+1}$ 。若有一组前置
程 b_i (每个课程可能有多个前置	关系 (a_i,b_i) ,则对于每个 $p_{a_i,j}$,
课程)。要求安排学习计划,并	让它向 $p_{b_i,j+1}$ 连一条容量无穷
求分数平均值的最大值。	大的边。 $100*n-Mincut$ 便是
$n, m, K, x_{i,j} \le 100$	答案。
时 间 复 杂	空间复杂度: $O(nm + Km)$
度: $O(MaxFlow(nm, nm) +$	
(Km)	

试题编号:	试题名称:
Codechef April12 CONNECT	Find a special connected
	block
题目大意:	算法讨论:
给定一个 $n \times m$ 的矩阵,每个	假设只有K种不同的数,那么
格子上填着-1到n*m中的一个	用斯坦纳树即可解决问题。所
整数。任务是找出一个连通	以数字多的情况下,我们对所
块(四联通),这个连通块要包	有数随机一个[1, K]内的数进行
含至少 K 个不同的正数,且不	重标号。然后进行斯坦纳树。
能有-1.每个格子有选取代价。	显然这种操作只会让答案变劣,
求选取出符合要求的联通块的	因此我们重复进行这个操作,
最小代价。	以保证正确性。经过计算,进
$n,m \leq 15$, $1 \leq K \leq 7$	行700次随机就可以保证99%的
	正确性。
时间复杂度: O(随机次数 *	空间复杂度: $O(2^K nm)$
$2^K nm$)	

试题编号:	试题名称:
Codechef February14 DAGCH	Graph Challenge
题目大意:	算法讨论:
给定一张n个节点m条边的有向	根据题目定义, 可以发现一个
图,节点编号为这张图的一	节点的superior vertex就
个dfs序,所有点从1号点开始	是dominator tree算法中的
可达。若一条从 x 到 y 的有向路	半必经点。所以对图按dfs序
径满足所有中间节点编号均大	做dominator tree即可。
于 x 和 y 且 $x < y$,那么	
称 x是 y 的supreme vertex,	
如果 v 是点 w 所有的 $supreme$	
vertex中编号最小的,	
称 v是 w 的superior vertex。	
现在有 Q 个询问,每次询问给	
出一个点 v ,问有多少点将 v 视	
为其superior vertex。	
$n \leq 10^5$, $m \leq 2*10^5$, $Q \leq 10^5$	
时间复杂度: $O(n \log n + Q)$	空间复杂度:O(n)

试题编号:	试题名称:
Codechef April12 TSUBSTR	Substrings on a Tree
题目大意:	算法讨论:
给定一棵以1为根的树,每个节	将给出的树看做一棵Trie树,
点上有个小写字母。一个字符	在这个Trie树上做后缀自动机
串是这棵树的子串,当且仅当	即可。
它能通过一个点到其子孙的一	
条路径上所依次构成的字符串	
来获得。求这棵树有多少不同	
的子串。同时还有 Q 次询问,	
每次给出一个定义26个小写字	
母大小关系的排列P和一个	
数 K 。求将所有不同子串按新	
的大小关系按字典序排序后,	
第K小的字符串。	
$n \leq 250000$, $Q \leq 50000$, 输出	
大小不超过800KB	
时间复杂度: $O(n+Q)$	空间复杂度: $O(n \times 26)$

试题编号:	试题名称:
Codechef February14 COT5	Count on a Treap
题目大意:	算法讨论:
题目要求维护一棵大根	treap的中序遍历序列是关键
堆Treap,要求支持三个操作:	字大小顺序,两个节点
1.插入一个关键字为k权值	在Treap中的LCA就是他们中序
为 w 的点。2.删除一个关键字	遍历序列所在区间中权值最大
为 k 的点。3.询问关键字	的点。所以我们可以用线段树
为ku和kv的两个节点	求出两个点的LCA。接下来只
在Treap中的距离。保证任意	要能计算出任意点的深度即可
时刻树中节点关键字和权值都	$ 用 dep_u + dep_v - dep_{LCA} * 2 来 $
两两不同。	计算答案。注意到 x 是 y 的祖
$n \leq 2*10^5$, $0 < k, w, ku, kv < 0$	先($x \le y$),当且仅当在中序遍
2^{32}	历序列中区间[x,y]里不存在权
	值大于 x 的点。 $x \ge y$ 的情况也
	类似。所以我们考虑将祖先按
	照中序遍历中的位置分为左右
	两侧,分开统计。我们用线段
	树记录一个区间中最左节点左
	侧的祖先个数,询问时记录当
	前区间左侧的最大权值,再维
	护出区间权值最大值后每次查
	询都只会递归到一侧子树,另
	一侧子树可以利用一次递归直
	接算出答案。右侧的情况类似。
	插入删除的话由于允许离线,
	所以提前预处理出位置(预留
	位置)即可。
时间复杂度: $O(n \log^2 n$	空间复杂度: $O(n)$

试题编号:	试题名称:
Codechef December12 HYPER	Hypertrees
题目大意:	算法讨论:
一个3-超图类似于一个普通图,	在本地搜索出答案后打表提交
但其中每条边都连接三个点。	即可。
一个3-超树是一个去掉任意一	
条边以后都不连通的3-超图。	
给定 n ,问有几种含有 n 个带标	
号点的本质不同的3-超树。	
$n \le 17$	
时间复杂度:O(T)	空间复杂度: $O(n)$

斯11

试题编号:	试题名称:
Codechef April15 BWGAME	Black-white Board Game
题目大意:	算法讨论:
给定一个 $n \times n$ 的矩阵,第 i 行	我们将这个矩阵白色格子视
中的第 L_i 到第 R_i 列的格子被涂	为0,黑色格子视为1,则这个
黑,其余格子为白色。两个人	矩阵的行列式的值,实际上就
轮流给出一个排列,要求第一	是第一个人能给出的排列
个人给出的排列逆序对数为偶	数-第二个人能给出的排列数。
数,第二个人给出的排列逆序	因此求出这个矩阵的行列式就
对数为奇数。且两个人给出的	能知道答案。这个矩阵十分特
排列 p ,要满足格子 (i, p_i) 为黑	殊,在一行中1的列是连续的,
色。不能重复给出已给出的排	所以我们可以利用可并堆进行
列,问第一个人先手的情况下	消元,并利用拉普拉斯展开来
游戏最后的结果。	快速计算行列式。
$n \le 10^5$	
时间复杂度: $O(n \log n)$	空间复杂度:O(n)

试题编号:	试题名称:
Codechef April15 LPARTY	Little Party
题目大意:	算法讨论:
给定一个由加个元素组成的集	我们可以找出所有3 ⁿ 种元素,
合,每个元素由n个布尔变量组	并枚举所有可能的集合进行判
成,每个变量可以为真或假。	断。考虑到所有的元素中有很
要求找出一个总长度最小的基	多是不合法或没有必要的,所
集合, 使得以这个基集合中元	以可以先用一个集合DP来求出
素为子集的元素的集合恰好为	所有有用的元素,称为基元素。
给出的集合。基集合中元素	可以发现最坏情况下基元素的
由n个变量中某些变量组成,每	个数最多32个。具体DP时,若
个变量也仍然可以为真或假。	一个元素的某一变量取真假两
给出的加个元素一定包含所	值时其都暂时为基元素,那么
有n个变量。共有T组数据。	这两个元素便都是没有必要的
$n \leq 5$, $m \leq 1000$, $T \leq 120$	元素。问题转化为用这些基元
	素去覆盖给定的所有元素。接
	下来我们只需要用记忆化搜索
	以及最优性剪枝、可行性剪枝
	等搜索技巧来解决这题。
时间复杂度: $O(3^n + 状态数)$	空间复杂度: $O(4^n + 状态数)$

试题编号:	试题名称:
Codechef March15 TREECNT2	Counting on a Tree
题目大意:	算法讨论:
给定一棵包含n个节点的有标	对于单组询问,设 f_i 表示路
号边带权无根树。要求计算有	径Gcd为i倍数的点对个数,那
多少个无序点对 (S,T) 满	么答案即为 $\sum f_i * \mu(i)$ 。我们
足 S 到 T 的路径上所有边的边权	只需处理 $\mu(i)$ 不为 0 的 i 即可,
的最大公约数为 1 .同时有 Q 组	设 $\mu(i)$ 不为 0 的 i 个数为 x 。求一
询问,每组询问会将某条边的	次 f_i 只需用并查集即可。
权值进行修改,要求回答每次	现在有修改操作,由于修改操
修改后的答案。	作数比较少,所以我们考虑将
$n \leq 10^5$,权值 $\leq 10^6$, $Q \leq 100$	所有没有修改的边先加入并查
	集中。每次询问将剩余的
	那 Q 条边加入,询问完再复原
	回去。为了保证复杂度,需要
	对并查集进行启发式合并或按
	秩合并。
时间复杂度:O(x × (n +	空间复杂度: $O(x*n)$
$Q^2)\log n$	
미국:	1 /

题14

试题编号:	试题名称:
Codechef November14	Sereja and Order
SEAORD	
题目大意:	算法讨论:
给定n个程序,每个程序都需要	可以发现答案下界
在两台电脑上分别运行,每个	为 $max(\sum a_i, \sum b_i, a_i + b_i)$,且
程序在两台电脑上运行时间分	这个下界一定会被取到。若下
别是 a_i 和 b_i 秒,一台电脑不能同	界为 $a_i + b_i$,则其他程序对应
时运行两个程序, 一个程序也	填进去即可。否则有台电脑在
不能在两台电脑上同时运行,	不间断运行。由于最优解的情
求运行完所有程序的最短时间	况非常多,所以直接随机两台
并输出方案。有多组数据。	电脑运行程序的顺序,知道顺
$\sum n \leq 2*10^5$, $a_i,b_i \leq 10^5$	序后可以贪心求当前的最短运
	行时间, 若达到下界则说明得
	到了一个解。
时间复杂度: $O(随机次数 \times n)$	空间复杂度: O(n)

题15

试题编号:	试题名称:
Codechef November14 FNCS	Chef and Churu
题目大意:	算法讨论:
给定一个含有n个元素的序列,	问题就是维护一个序列支持单
同时有 n 个函数,每个函数返回	点修改以及区间和的区间和。
序列中的一个区间和。现在	考虑对 n 个函数分块,设块的大
有m次操作,每次操作会修改	小为b, 预处理出每个点在每个
一个序列中的元素,或是询问	块中的出现次数,这样修改可
一段编号连续的函数值的和。	以在 $O(\frac{n}{b})$ 时间内完成。对于询
$n, m \le 10^5$	问,整块的答案用块的和直接
	回答,单独元素用BIT查询即
	可。
时间复杂度: $O(n*\frac{n}{b}+m*(\frac{n}{b}+$	空间复杂度: $O(n * \frac{n}{b})$
$b \log n))$	10

试题编号:	, =	试题名称:
Codechef	December12	Different Trips
DIFTRIP		
题目大意:		算法讨论:
给定一棵n个点	(的树 , 1 号点为	将度数看做一个字符,那么这
根。一条可行的	的路径为一个点	棵树相等于一个Trie树,问题
到这个点的某个	个祖先的路径。	就是求这个Trie树有多少不同
两条路径被认为	为是相似的,当	子串。在Trie上构SAM或者做
且仅当他们长后	度相等且按顺序	树上SA即可。
所经过的城市的	的度数一一相等。	
问一共有多少和	种不相似的可行	
路径。		
$n \le 10^5$		
时间复杂度:0	$(n \log n)$	空间复杂度: $O(n \log n)$

Codechef February15 DE- Devu and Locks VLOCK	
VLOCK	
题目大意: 算法讨论:	
求有多少 n 位十进制数是 P 的倍 $设f_{i,j,k}$ 表示一共有 i 位,数	
数且每位之和小于等于 m ,允 $模P$ 为 j ,每位之和为 k 的数的	j
许前导 $oldsymbol{0}$,答案对 $oldsymbol{9}$ 98244353取 $ig $ 个数。 $f_{i*2,j,k}=$	
模。要求回答 m 分别 $\sum f_{i,p,q} * f_{i,(j-p) \bmod P,k-q},$ 这	ζ
为[0, MM]时的答案 是个卷积式子,因此我们可	以
两种数据范围: $1.n \le$ 用倍增 FFT 来计算答案。由于	1
10^9 , $P \le 50$, $MM \le 500$ 第二维比较小,所以我们考	慧
$2.n \le 10^9$, $P \le 16$, $MM \le$ 暴力枚举平方转移,只对第二	<u>=</u>
15000 维做FFT。因此为了保证复务	÷
度,我们先对所有	
的 $f_{i,j}(x)$ 做 DFT ,然后暴力相	
乘,最后再全部IDFT回去。	
时间复杂度: $O(\log n \times (P * $	
$MM\log(MM) + P^2*MM))$	

题18

试题编号:	试题名称:
Codechef December13	Query on a tree VI
QTREE6	
题目大意:	算法讨论:
给定一棵 n 个节点的树,每个节点有一个颜色(黑/白),初始都为黑。有 m 次操作,每次会切换一个点的颜色(黑变白,白变黑),或者询问有多少个点到点 u 的路径上所有点颜色都相同。 $n, m \leq 10^5$	我们对这棵树进行树链剖分, 维护每个节点是黑色时它子树 中的答案。修改询问时找到这 个点最远的同色点祖先进行操 作即可。
时间复杂度: $O(n \log^2 n)$	空间复杂度: O(n)

题19

试题编号:	试题名称:
Codechef February12 FIND-	Find a Subsequence
SEQ	
题目大意:	算法讨论:
给定一个含有n个元素的序列,	我们枚举序列的第二个数与第
要求找到其中的一个长度	四个数,这样剩下三个数的位
为5的子序列,使得这五个元素	置互不影响。且第一个数或是
按顺序的大小关系与一	第五个数的要求会是尽量大或
$1 \sim 5$ 的排列一致。有 T 组数	是尽量小(贪心,给其他数更大
据。	的选择空间),如果这个数被确
$n \leq 1000$, $T \leq 20$	定下来,剩下的两个位置也可
	以通过类似的贪心得到。(一个
	尽量大,一个尽量小)。这个确
	定是否存在的步骤可以通过二
	维前缀和O(1)判断。同样我们
	可以预处理出一个二维前缀最
	大值等,来O(1)找到第一个数
	或第五个数,剩下的两个位置
	暴力寻找来得到方案。
时间复杂度: $O(n^2)$	空间复杂度: $O(n^2)$

题20

试题编号:	试题名称:
Codechef May12 TICKETS	Selling Tickets
题目大意:	算法讨论:
-	
时间复杂度: $O(n^3 + n^2m)$	空间复杂度 : $O(n+m)$
門 同 复 示 反 : O (n ~ + n ~ m)	工미友示及: $O(n+m)$

题21

试题编号:	试题名称:
Codechef May12 LEBOXES	Little Elephant and Boxes
题目大意:	算法讨论:
有 n 个盒子,第 i 个盒子有 P_i 概	先用 \mathtt{DP} 求出 $f_{i,j}$ 表示有 i 个钻石,
率打开获得 V_i 的金币,	买到j个物品所需要的最少钱
有 $1 - P_i$ 的概率打开获得一个	数。然后做meet in the
钻石。有 m 个物品,第 j 个物品	middle,利用二分找到前半部
要花费 C_j 的金币和 D_j 个钻石,	分一个状态能恰好买到k个物
打开所有盒子后,我们会尽可	品所需要的的后半部分状态概
能多的购买物品,每个物品只	率和。
能买一次。问打开所有盒子后,	
期望买到的物品个数。	
$n,m \leq 30$, $V_i,C_j \leq 10^7$, $D_j \leq$	
30	
时间复杂度: $\frac{n}{2} * 2^{\frac{n}{2}} + m * (\frac{n}{2})^2 *$	空间复杂度: $O(2^{\frac{n}{2}})$
2 ⁿ / ₂	

试题编号:	试题名称:
Codechef August15 DISTNUM	Simple Queries
题目大意:	算法讨论:
给定一个长度为n的数列和m个	对于每个位置, 求出上一个拥
操作: 1 .定义 S 为区间 $[l,r]$ 中出	有当且位置的数的位置。那么
现过的数字的集	一次询问相当于在二维平面上
$igcap_{oldsymbol{1}}$ 合,求 $(\sum_{1 \leq i < j < k \leq S } S_i S_j S_k)$ mod	间间一个矩形,第一种询问可
109+7 2.插入一个数。3.删	以通过容斥来算出。由于可以
除一个数。4.修改一个位置的	离线,所以插入删除操作我们
值。5.询问一个区间内出现过	可以预处理出他们的位置(预
的数字种类数。	留位置),并且对于每次操作预
$n,Q \le 10^5$	处理出它在最终序列的操作位
	置。然后用CDQ分治解决即可。
时间复杂度: $O(m \log^2 n)$	空间复杂度: $O(m \log n)$
题23	

试题编号:	试题名称:
Codechef May14 SEINC	Sereja and Subsegment In-
	creasings
题目大意:	算法讨论:
给定两个个含有n个元素的序	$\partial C_i = B_i - A_i$,对于没有模
列 A 和 B ,每次可以将 A 中一个	的操作,答案即
区间内的元素加1模4,求最少	为 $\sum max(0, C_i - C_{i-1})$,有模
多少次操作能让A变为B。	以后相等于他可以选择一
$n \leq 10^5$	对 i, j ,使得 $c_i + 4$, $c_{j+1} - 4$,因
	此我们贪心,使得差分后 C 数
	组正数和最小。显然此时只有
	操作2,3,-2,-3能使得答案更
	优,贪心匹配即可。
时间复杂度:O(n)	空间复杂度:O(n)

试题编号:	试题名称:
Codechef November12 MAR-	Martial Arts
TARTS	
题目大意:	算法讨论:
一个完全二分图,边有两个权	定义每条边价值
值 $A_{i,j}$ 和 $B_{i,j}$,要进行匹配。令	为 $C_{i,j} = A_{i,j} - B_{i,j}$,我们任务
匹配边的 A 值总和为 H , B 值总	便是最大价值和,其次最大
和为 G 。对手的目的是最大	化 <i>H</i> ,对手是最小化价值和,
(4G-H),其次最大化 G ,他会	其次最大化H(最大化G与最大
在知道了匹配之后选择是否去	化H等价)。考虑枚举对手删掉
掉一条匹配边,使得该边的权	的边,这样把边按权值从小到
值不算入 $H和G$ 。任务是找一	大排序并加入图中,这样对手
个完全匹配,最大化 $H-G$,	如果删边一定删当前边,如果
其次最大化H。	我们强制匹配当前这条边,那
$n \leq 100$, $A_{i,j}, B_{i,j} \leq 10^{12}$	么就能算出答案。我们的任务
	便是加入一条边和强制匹配一
	条边,这用KM算法实现。强制
	匹配时只需要将当前边价值置
	为无穷大即可。更改价值后,
	修改图中KM算法的label数组
	然后重新匹配即可。
时间复杂度: $O(n^4)$	空间复杂度: $O(n^2)$

试题编号:	试题名称:
Codechef November12 COUN-	Arithmetic Progressions
TARI	
题目大意:	算法讨论:
给定一个含有n个元素的整数	我们对序列分块,设块的大小
序列 a_i ,求有多少个三元	为 b ,序列中数的最大值为 V ,
组 (i, j, k) 满足 $1 \le i < j < k \le$	那么中间点在块内,其他点在
$n \coprod a_k - a_j = a_j - a_i .$	两侧的三元组数目可以
$n \leq 10^5$, $a_i \leq 30000$	用FFT计算出来(利
	用 $a_m id = a_i + a_k$),两个点在
	块内,一个点在一侧的三元组
	数目和三个点都在块内的数目
	可以通过枚举直接统计出来。
时间复杂度: $O(\frac{n^2}{b} + \frac{n}{b} *$	空间复杂度: $O(n * \frac{n}{b})$
$V \log V)$	26

试题编号:	试题名称:
Codechef January15 XRQRS	Xor Queries
题目大意:	算法讨论:
给定一个初始为空的整数序列,	类似主席树那样维护一
以及一些询问: 1.在序列后插	个Trie树的前缀和结构即可。
入一个数。2.询问一个区间内	
的数 x ,最大化 x xor y ,	
xor表示异或操作。3.删除序	
列中最后的 k 个数。 $4.$ 询问一	
个区间内小等于x的元素数。	
5.询问区间内第k小的数。	
$m \le 5 * 10^5$	
时间复杂度: $O(n \log n)$	空间复杂度: $O(n \log n)$

题27

试题编号:	试题名称:
Codechef October14 BTREE	Union on Tree
题目大意:	算法讨论:
给定一棵含有n个节点的树,现	首先对于每一天我们做出关于
在有 Q 天,每天有 k_i 个警卫分布	警卫的虚树,假设一个点被距
在树中,第 j 个警卫在点 a_j 处,	离自己最近的守卫管辖。那么
能保护距离 a_j 不超过 r_j 的点。	对于虚树中的一条边, 可以找
求每天有多少个点被保护到。	到这条边所代表的原图中的路
$n,Q \leq 5*10^4$, $\sum k_i \leq 5*10^5$	径中的一个点为分界点,上下
	部分分属不同的管辖。这样就
	将问题转化为求距离一个点某
	个值的点的个数,这步用点分
	治即可解决。对于重复统计的
	部分,相当于询问某个点子树
	中深度小于一个值的个数,这
	可以用主席树解决。
时 间 复 杂	空间复杂度: $O(\sum k_i + n \log n)$
$n\log^2 n$	20

试题编号:	试题名称:
Codechef October14 TRIPS	Children Trips
题目大意:	算法讨论:
给定一个含有n个点的树,每条	将路径拆为 u 到LCA和 v 到LCA,
边长度为 1 或 2 ,有 m 次询问,	剩余一小段可以暴力判断。同
问要从 u 走到 v ,每天最多	时按询问的D的大小分别处理,
走 D 的距离,最少几天能走完。	对于 D 大于 \sqrt{n} 的询问,答案小
$n, m \le 10^5$	于 \sqrt{n} ,所以利用二分暴力走。
	而小于 \sqrt{n} 的询问我们将 D 相同
	的一起处理,倍增预处理出这
	个点向上走 2^i 天能走到哪里,
	然后类似二分向上走即可。
时间复杂度: $O(n \log n \sqrt{n})$	空间复杂度: $O(n \log n)$
题	29
试题编号:	试题名称:

试尟编号:	试尟名称:
Codechef August13 LYRC	Music & Lyrics
题目大意:	算法讨论:
给定 m 个字符串 S_i ,以及 n 个字	对所有 T_i 建出一个 AC 自动机,
符串 T_i ,求出每个 T_i 在所	然后让 S_i 在自动机中匹配。匹
有 S_i 中的出现次数和。字符串	配到的点,以及这个点fail树
包含二十六个大写英文字母、	中的祖先出现次数均加一,所
二十六个小写英文字母、十个	以我们匹配到一个点就在这个
阿拉伯数字和减号。	点上打个加一标记,处理完所
$n \leq 500$, $ T_i \leq 5000$, $m \leq$	有串最后沿着fail树累计即
$ 100$, $ S_i \le 50000$	可。
时间复杂度: $O(\sum T_i + \sum S_i)$	空间复杂度: $O(\sum T_i \times 63)$

试题编号:	试题名称:
Codechef August13	Prime Distance On Tree
PRIMEDST	
题目大意:	算法讨论:
给定一棵有n个点的树,树上每	我们考虑求出所有点对间的距
条边长度均为1.若等概率从树	离值。那么这只需要用点分
中挑选两个点,问这两个点间	治+FFT统计即可。注意每层
距离值是质数的概率是多大。	做FFT时要按照子树大小从小
$n \le 50000$	到大合并来保证复杂度。
时间复杂度: $O(n \log^2 n)$	空间复杂度:O(n)
题	
试题编号:	试题名称:
Codechef June14 TWOCOMP	Two Companies
题目大意:	算法讨论:
给定一棵n个点的树,以	首先用M1 * M2的时间判断哪
及 $M1$ 条 A 路径和 $M2$ 条 B 路径,	些路径不能同时被选中,这可
每条路径都有一定权值。要求	以通过LCA来判断。剩下的问
从两种路径中提取出一个子集,	题就是一个最大权独立集问题,
使得两种路径互不相交(同种	用最小割解决即可。
路径可以相交)且价值和最大。	
$n \leq 10^5$, $M1, M2 \leq 700$	
时间复杂度:O(M1 * M2 +	空间复杂度:O(M1 * M2)
MaxFlow(M1 + M2, M1 *	
M2))	

题32

试题编号:	试题名称:
Codechef June13 TKCONVEX	Two k-Convex Polygons
题目大意:	算法讨论:
题目大意: 给定 n 个棍子的长度和整数 k ,求能否在其中选出 $2*k$ 个棍子拼成两个凸多边形。使得两个凸多边形都恰好有 k 根棍子组成,且任意相邻的边都不共线。 $n \leq 1000$, $3 \leq k \leq 10$	算法讨论: k根棍子能组成一个凸多边形的条件是最长边长度小于其他k-1条边长度和。那么将所有棍子排序后,选取k根组成一个凸多边形时,最优方案肯定会挑选连续的k根棍子。现在选取2*k个组成两个凸多边形也类似,假如两组棍子选取的区间没有交集,这个可以直接O(n)判断。否则它们也一定是一个长度为2*k的连续区间,
	我们搜索这个区间内选取的所
	有方案判断即可。
时间复杂度: $O(n+n\times \mathbf{C}^{k-1}_{2*k-1})$	空间复杂度:O(n)

试题编号:	试题名称:
Codechef March12 EVILBOOK	Evil Book
题目大意:	算法讨论:
有 n 个人,你打败第 i 个人可以	可以发现对一个人最多只
获得 m_i 点魔法但要花费 c_i 点力	有4种使用帮助的可能,因此我
量。你可以花费X点魔法寻求	们可以考虑搜索。同时可以发
帮助,将一个人的魔法和力量	现一定存在一种最优方案使得
都乘以三分之一,但你至少要	打败每个人,使用帮助的次数
有X点魔法才能寻求帮助。每	单调不减。于是利用这个定义
个人只能被打败一次。初始时	状态(当前至少使用多少次帮
你没有魔法,问至少需要多少	助,没被战胜的人,剩余魔法,
力量才能收集到666点魔法。	已经付出的力量),加最优性剪
有T组数据。	枝和可行性剪枝后即可通过此
$T \leq 5$, $10 \leq X \leq 666$, $c_i, m_i \leq 666$	题。
109	
时间复杂度: $O(T \times n^4)$	空间复杂度: $O(n)$

题34

试题编号:	试题名称:
Codechef July12 DGCD	Dynamic GCD
题目大意:	算法讨论:
给定一棵有n个节点的树,每个	首先考虑数列上的情况,因
点上有个正权值,接下来	为 $gcd(a,b,c,d)$ = $gcd(a,b-$
有m次操作,每次操作会将一	a, c-a, d-a),所以我们可以
条路径上点的权值都加上一个	维护 $gcd(a$, $S = gcd(b-a, c-$
数,或是询问路径上点权值的	a,d-a)), 这样修改时只会影
最大公约数。	响a, 所以暴力修改然后重新计
$n, m \le 50000$	算即可。对于树上的情况我们
	只要进行树链剖分转化为链上
	的操作,同时发现这个操作是
	可以合并和下传更新的,那么
	就可以利用线段树处理了。
时间复杂度: $O(n \log^2 n)$	空间复杂度: O(n)

题35

试题编号:	试题名称:
Codechef January14 TAPAIR	Counting The Important
	Pairs
题目大意:	算法讨论:
给定一张有n个点m条边的简单	求出这张图的任意一个生成树,
无向连通图。求有多少种边的	然后对于每个非树边随机一个
选择使得删掉两条边后图不连	权值,树边的权值是所有覆盖
通。	它的非树边的权值异或和。如
$n \leq 10^5$, $m \leq 3*10^5$	果一个边集删掉后图不连通,
	那么一定可以找到一个边的子
	集使得它们的异或和为0.如果
	随机范围足够大,错误概率可
	以忽略不计。因为只删两条边,
	所以排序后扫一遍即可。
时间复杂度: $O(m \log m)$	空间复杂度: $O(m)$

题36

试题编号:	试题名称:
Codechef January14 CNTD-	Counting D-sets
SETS	
题目大意:	算法讨论:
问有多少组n维点集的等价类	考虑统计点集直径小等于D的
使得点集的直径等于 D ,点集	数目,那么 $ans_D - ans_{D-1}$ 便
的直径指的是点集中两两点之	是答案。为了避免统计重复,
间切比雪夫距离的最大值。两	我们强制让点集中每一维都至
个点集算作等价的当且仅当他	少有一个点,它的这一维为0。
们可以通过平移互相得到。	这样我们的坐标取值范围就
$n \leq 1000$, $D \leq 10^9$	为[0, D]。剩下的答案可以通过
	经典的容斥原理来计算得到。
	(设 f_i 表示至少有 i 维坐标不存
	在一个0的点集数)。
时间复杂度: $O(n^2)$	空间复杂度:O(n²)

题37

试题编号:	试题名称:
Codechef June12 MATCH	Expected Maximum Matching
题目大意:	算法讨论:
按以下方式随机生成一个二分	根据Hall定理,一个二分图有
图: 左边第 i 个点和右边第 j 个	完备匹配当且仅当,左边
点之间有边的概率为 $p_{i,j}$ 。求这	的S个点每个点都至少与右
样生成的二分图的最大匹配的	边 S 个点相连。那么我们可以
期望值。	依次作为状态进行状压DP。
$n \leq 5$, $m \leq 100$	$f_{i,j}$ 表示考虑右边前 i 个点,左
	边的n个点满足 Hall定理条件
	的子集情况为 <i>j</i> 。我们发现合法
	的 j 的数目很少,所以可以提前
	搜索出来并预处理转移。
时间复杂度:O(m×状态数)	空间复杂度:O(m×状态数
	38

题38	
试题编号:	试题名称:
Codechef May15 CBAL	Chef and Balanced Strings
题目大意:	算法讨论:
一个字符串是平衡的当且仅当	考虑用一个二进制数a _i 来表示
它的每一个字符都出现了偶数	前1个位置中所有字母的出现次
次,一个字符串的type权值是	数奇偶性,那么一个子串的是
它的所有平衡子串长度	平衡的当且仅当 a_r xor a_{l-1} 等
的type次方和。现在给定一个	于,xor是异或操作。接着剩下
长度为n的由小写字符构成的	的问题就是找出所有这样的点
字符串,有 Q组询问,每次询	对使得异或值为0.这个步骤用
问由一个区间组成的子串	分块就可以解决。
的type权值大小。强制在线。	
$n,Q \leq 10^5$, $type = \{0,1,2\}$	
时间复杂度: $O(n\sqrt{n})$	空间复杂度: $O(n\sqrt{n})$

试题编号:	试题名称:
Codechef May15 GRAPHCNT	Counting on a directed
	graph
题目大意:	算法讨论:
给定一个n个点m条边的有向	一个合法的 (x,y) 点对说
图。请你统计无序对(x,y)的个	明 x 和 y 不存在除了 1 以外的公
数,其中 (x,y) 满足存在一条从	共必经点。所以我们求出这张
点 1 到点 x 的路径,和一条从	图的dominator tree,两个
点 1 到点 y 的路径,且两条路径	点LCA为1号点则它们就是一个
除了点1以外没有公共点。	合法的点对。这样我们dfs一
$n \leq 10^5$, $m \leq 5*10^5$	遍求出子树大小,然后扫一遍
	点1的儿子进行统计即可。
时间复杂度: $O(n \log n)$	空间复杂度:O(n)
16.40	

题40

试题编号:	试题名称:
Codechef March14 STREETTA	The Street
题目大意:	算法讨论:
维护一个有n个元素的数列,每	线段树可以很容易维护 a_i 的值,
个元素有两个值 a_i,b_i ,有 m 次	b _i 值我们同样可以用线段树维
操作,每次操作会对一个区间	护,我们对每个节点维护覆盖
的 a_i 依次加上一个等差数列,	这个节点的"最优"的一个等差
或是用一个等差数列依次对一	数列,每次修改时我们总是可
个区间内的 b_i 取最大值。或是	以找到某个数列的优势区间,
询问一个位置的 $a_i + b_i$ 。	使得它只会影响到一侧的子树,
$n \leq 10^9$, $m \leq 3*10^5$	这样修改和询问都可以
	在 $O(\log n)$ 的时间内完成。
时间复杂度: $O(m \log n)$	空间复杂度: $O(m \log n)$

试题编号:	试题名称:
Codechef March14 GERALD07	Chef and Graph Queries
题目大意:	算法讨论:
给定一个n个点m条边的无向	考虑离线,我们用LCT维护关
图,有Q次询问,每次询问保	于边编号的最大生成树,并
留编号为 $[l,r]$ 间的边时,图中	用BIT维护当且生成树中边的
有多少联通块。	编号是哪些,这样有区间中有
$n, m, Q \le 2 * 10^5$	一条边连通块个数就减一。所
	以询问用BIT查询即可。
时间复杂度: $O(n \log n)$	空间复杂度: $O(n)$
, -	42
试题编号:	试题名称:
Codechef February13 QUERY	Observing the Tree
题目大意:	算法讨论:
给定一棵n个点的树,树上每个	题目就是要求支持链上加等差
点有权值。有m次操作,每次	数列,以及查询链和。我们用
操作会对一条链上的点的权值	树链剖分维护这棵树dfs序的
依次加一个等差数列,或是询	权值,为了支持返回历史版本
问一条链上点的权值和,或是	和强制在线的操作,我们将线
将树的状态改为某次操作后的	段树可持久化即可。
状态。要求强制在线。	
$n, m \le 10^5$	
时间复杂度: $O(n \log^2 n)$	空间复杂度: $O(n \log^2 n)$

题43

试题编号:	试题名称:
Codechef September14	Rectangle Query
QRECT	
题目大意:	算法讨论:
给定一个二维平面, Q 次操作。要求支持插入一个矩形,删除一个矩形,以及询问当前平面上有多少个矩形与给出的矩形相交。矩形包括这个矩形的内部。 $Q \leq 10^5$	我们可以将矩形相交的条件写成许多偏序条件,那么这题就可以使用CDQ分治+容斥原理解决。
时间复杂度: $O(Q \log^2 Q)$	空间复杂度: $Q\log Q$

题44

试题编号:	试题名称:
Codechef September11 CN-	Counting Hexagons
THEX	
题目大意:	算法讨论:
长度为[1,n]的木棍都有无限根,	由于 $n-L$ 很小所以考虑枚举 L ,
要求从中挑出6根组成一个六	然后问题就变成找出5根木棍,
边形。需要满足以下条件: 最	长度和大于L,每根木棍长度
长的木棍长度不小于L, 其余木	不超过 X ,相同长度木棍不超
棍长度不超过X,相同长度木	过 K 根,这可以用数位 dp 解决。
棍最多不超过 <i>K</i> 根,木棍的选	$f_{i,j,k,0/1,0/1}$ 表示处理到第 i 位,
取顺序不同仍视作同一种选法。	上一位对当前位进位为 j ,5根
问有多少种满足条件的选法。	木棍大小关系为 k ,和与 L 的关
$\mid n \leq 10^9$, $0 \leq n-L \leq 100$, $1 \leq \mid$	系,最长的木棍与 X 的关系。
$K \leq 5$	为了优化转移复杂度,需要将
	木棍长度转为二进制来进行计
	算。
时间复杂度: $O(\log n \times 5 * 3^4 *$	空间复杂度: $O(\log n \times 5 * 3^4 *$
$2^2 * 2^5$)	(2^2)

试题编号:	试题名称:
Codechef September11	Short
SHORT	
题目大意:	算法讨论:
给你两个数 n,k ,你需要找出	设 $c=a-n$, $d=b-n$,然后
所有的数对 (a,b) ,满	将原式化为 $d = \frac{cn+n^2-n}{kc-c-n}$,然后
足 $n < a < k$, $n < b < k$,并	可以发现 $c(c < d)$ 的值很小最大
且ab-n可以	只有 $2.12n$,所以我们枚举 c ,
d(a-n)(b-n)整除。	当c大于4000时我们可以转为
$n \leq 10^5$, $k \leq 10^{18}$	枚举 k 。
时间复杂度:O(n)	空间复杂度: $O(n \log n)$

试题编号: 试题名称: Codechef September12 **KNGHTMOV** 题目大意: 算法讨论: 当 $A_x*B_y-A_y*B_x$ 等于 $\mathbf{0}$ 时两 给定两种移动方式 (A_x, A_y) , (B_x, B_y) , 求从(0,0)移动 种移动方案是二维平面的一组 到(X,Y)的不经过k个障碍点的 基, 所有点可以被这两种移动 方案数。 方案唯一表示,那么问题转化 $K \le 15$, |坐标值| ≤ 500 为每次只能向右或向上移动一 格,且不经过障碍点到目标点 的方案数,这可以通过容斥原 理+组合数计算出来。不等 于0时相当于在一条直线上进 行移动, 如果答案不是无穷解, 那么可以通过拓扑排序计算答 案。 时间复杂度: $O(k^2$ 或坐标值²) 空间复杂度:O(坐标值²)

题47

试题编号:	试题名称:
Codechef September12 PA-	Annual Parade
RADE	
题目大意:	算法讨论:
给定一张 n 个点 m 条边的有向图。若干英雄(可能 0 个)会在一条 s_i 到 t_i 的路径上游行,费用是经过边的权值和。若 $s_i \neq t_i$ 则要额外支付 C 的代价。若一个点没有被任何英雄经过也要额外 C 的代价。请你安排英雄的游行路线使得代价最小。有 K 组询问,每组只有 C 不同。 $n \leq 250$, $m \leq 30000$, $K \leq$	一个点显然只会作为一条路径的端点。那么我们可以求出原图两两点之间的最短路并重新构图,将问题转化为每个点只能经过一次,并让费用最小,这很像最小路径覆盖的模型。我们考虑像最小路径覆盖那样拆点,然后做费用流。假设我们流了x条路径,可以发现我们需要额外支付(n-x)*C的代价。
10000	由于有K组询问,所以我们将每次流量为1的流的费用记下来,然后用二分求出每一组询问,用流或是用C来填充的分界点,并计算答案。
时间复杂度: $O(n^3$ + $CostFlow(n*2 ext{@}n^2))$	空间复杂度: $O(n^2 + K)$