

"Application of Statistical Model Checking for Robustness Comparison of Power Electronics Controllers"

Mateja Novak¹, Iwona Grobelna², Ulrik Nyman¹, Frede Blaabjerg¹

(1)Aalborg University, Denmark

(2)University of Zielona Gora, Poland

▶ Outline

- Introduction
- Modeling formalism
- Statistical Model Checking (SMC)
- Controller structures (PI controller, FS-MPC controller, NN controller)
- Controller performance validation
- Conclusion

▶ Introduction

- ☐ Requirements for control algorithms in power electronics systems:
 - Accurate reference tracking
 - Fast transient response
 - Verified robustness and stability
 - Low computational burden

- y(t) output variables u(t) - input variable

- Control algorithms used in power electronics applications
 - Linear control (P, PI, PR)
 - Direct torque control
 - Model predictive control
 - Fuzzy-logic control
 - Sliding mode control
 - Neural networks

How to verify the requirements for all control algorithms?

How to perform it simultaneously for all control algorithms?

Hypothesis: Our power electronics system is deterministic Is that true?

▶ Introduction

- Reality:
 - ☐ Power electronics systems don't operate in deterministic operating conditions
 - How do we select which conditions to compare?
 - How many iterations are needed for obtaining performance certainty?
 - ☐ System components degrade over time
 - It will influence performance over time how do we adapt our control?

Problem: Deterministic validation of robustness might miss potential critical scenarios

- Proposed solution:
 - Model the stochasticity of components
 - Define the confidence level
 - Obtain statistical guarantee of the desired performance

Statistical Model Checking (SMC)

Statistical Model Checking (SMC)

- ☐ Formal method which uses techniques from mathematics for checking the system behavior
 - Applies statistical instead of exact analysis of the models

Every system that has states and transitions between the states is suitable for SMC application

- Well known technique used in:
 - Aeronautics, embedded automotive systems, sensor networks, communication systems
- UPPAAL toolbox(https://uppaal.org/)
 - integrated tool environment for modeling, validation and verification of real-time systems
 - free for non-commercial applications in academia

► Statistical Model Checking (SMC)

Define a hypothesis about the system

Run multiple simulations and perform Monte-Carlo analysis

Obtain probability of the hypothesis or estimate the value

Example

$$\Delta v = \left(v_{ref} - v_{meas}\right)^2 < 5\%$$
or
 $\max(\Delta v)$

$$P(\Delta v < 5\%) = 0.907 - 1$$

 $No. runs = 36$
or
 $E(max(\Delta v)) = 7.5V$

► Modeling formalism

- Hybrid timed automata
 - Can model deterministic dynamics (e.g., control algorithm, modulator)
 - Can model stochastic dynamics (e.g., grid sags, load changes)

Automaton (State machine)

► Modeling formalism

- Hybrid timed automata
 - Can model deterministic dynamics (e.g., control algorithm, modulator)
 - Can model stochastic dynamics (e.g., grid sags, load changes)

Stochastic load modeled in UPPAAL

► Modeling formalism

- Hybrid timed automata
 - Can model deterministic dynamics (e.g., control algorithm, modulator)
 - Can model stochastic dynamics (e.g., grid sags, load changes)

Stochastic load modeled in UPPAAL

► Controller structures (PI controller, FS-MPC controller, NN controller)

Two level voltage source converter with output LC filter and passive load

SYSTEM PARAMETERS.

Parameter	Value
DC link voltage (V_{dc})	700 V
Filter inductance (L_f)	2.4 mH
Filter capacitance (C_f)	14 μF
Reference voltage $(V_{c\ rms}^*)$	400 V
Reference freq. (f^*)	50 Hz

■ System controllers

- Slower dynamics (cascade)
- Low model parameter dependency
- Low computation burden
- Fixed switching frequency

Model **Predictive** controller

- Fast dynamics
- Model parameter dependency
- Highest computational burden
- Variable switching frequency

NN controller

- Fast dynamics
- Training data quality
- High computational burden
- Variable switching frequency

Controller structures (PI controller, FS-MPC controller, NN controller)

Linear controller

- Pinner current loop control
- PR outer voltage loop control (5th and 7th harmonics)
- State-feedback decoupling system delay compensation
- Switching frequency 10 kHz
- **Tunning: Nyquist criterion**

■ Load step response

PR voltage controller

$$G_v = k_{pV} + \sum_{h=1,5,7} k_{iV,h} \frac{scos(\phi_h) - h\omega_1 sin(\phi_h)}{s^2 + (h\omega_1)^2}$$

State-feedback decoupling with low pass filter

$$G_{dec} = \frac{1 + \tau_z s}{1 + \tau_p s} \cdot G_{LPF}$$

Reference: F. de Bosio, L. A. de Souza Ribeiro, F. D. Freijedo, M. Pastorelli, and J. M. Guerrero, "Effect of state feedback coupling and system delays on the transient performance of stand-alone VSI with LC output filter," IEEE Trans. Ind. Electron., vol. 63, no. 8, pp. 4909-4918, 2016.

► Controller structures (PI controller, FS-MPC controller, NN controller)

☐ Finite Control Set Model Predictive Controller (FS-MPC)

- Predictive model is used to obtain voltage and current predictions
- Cost function defined for low distortion of voltage
- No modulator (1 voltage vector applied to whole Ts)
- Computational delay compensated with two step prediction

☐ Load step response with 50% error in the model parameters

System model

$$\frac{d}{dt} \begin{bmatrix} i_{f}_{\alpha\beta} \\ v_{c}_{\alpha\beta} \\ i_{o}_{\alpha\beta} \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1}{Lf} & 0 \\ \frac{1}{C_f} & 0 & -\frac{1}{C_f} \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} i_{f}_{\alpha\beta} \\ v_{c}_{\alpha\beta} \\ i_{o}_{\alpha\beta} \end{bmatrix} + \begin{bmatrix} \frac{1}{Lf} \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} v_{i}_{\alpha\beta} \end{bmatrix}$$

Cost function

$$g = (v_{c\alpha}^* - v_{c\alpha}^P)^2 + (v_{c\beta}^* - v_{c\beta}^P)^2 + \lambda_d \cdot g_d$$

$$g_d = (i_{f\alpha}^P - i_{o\alpha}^P + C_f \omega v_{c\beta}^*)^2 + (i_{f\beta}^P - i_{o\beta}^P + C_f \omega v_{c\alpha}^*)^2$$

Reference: T. Dragicevic, "Model predictive control of power converters for robust and fast operation of ac microgrids," IEEE Trans. Power Electron., vol. 33, no. 7, pp. 6304–6317, 2018.

Controller structures (PI controller, FS-MPC controller, NN controller)

Neural networks controller (trained on FS-MPC data)

 \Box Load step response with 50% reduced V_{dc}

- Data from FS-MPC algorithm are used for training the NN
- NN structure: 8 inputs, 15 hidden neurons, 7 outputs
- Adam optimization algorithm used in training
- No modulator (1 voltage vector applied to whole Ts)

Output of the n-th neuron in the hidden layer

$$h_n = f_1(b_{n1} + \sum_{i=1}^8 w_{nj}^{(1)} \cdot x_n)$$

Output of the y-th neuron in output layer

$$y_m = f_2(b_{n2} + \sum_{k=1}^{15} w_{nk}^{(2)} \cdot h_n)$$

Source: M. Novak and T. Dragicevic, "Supervised imitation learning of finite set model predictive control systems for power electronics," IEEE Trans. Ind. Electron., vol. 68, no. 2, pp. 1717-1723, 2021

► Controller performance validation – steady state

- Controllers for 2L-VSC converter supplying a passive load were modeled using timed automata and simulated in UPPAL
- ☐ For each simulation run a calculation of root mean square difference of the load voltage is performed

$$RMSD = \sqrt{\frac{\sum_{j=1}^{N}(v_j - v_j^*)}{N}}$$
 N - number of samples v_j - measured voltage v_j^* - reference voltage

Results for estimation of max RMSD ($\Delta v_{c\alpha}$, $\Delta v_{c\beta}$) for three controllers with constant load (steady state performance)

Load (Ω)	L error	C error	Vref ampl. (V)	Vdc (V)	Linear Controller	FS-MPC	NN
30	0	0	325	700	$\Delta V_{\alpha} = 3.57$	$\Delta V_{\alpha} = 2.39$	$\Delta V_{\alpha} = 3.20$
					$\Delta V_{\beta} = 3.41$	$\Delta V_{\beta} = 2.61$	$\Delta V_{\beta} = 3.20$
60	0	0	325	700	$\Delta V_{\alpha} = 2.26$	$\Delta V_{\alpha} = 2.28$	$\Delta V_{\alpha} = 3.10$
					$\Delta V_{\beta} = 2.21$	$\Delta V_{\beta} = 2.47$	$\Delta V_{\beta} = 3.10$

► Controller performance validation – dynamics

- Confidence interval for MC simulations is set to 95%
- Results for estimation of max RMSD ($\Delta v_{c\alpha}$, $\Delta v_{c\beta}$) for three controllers with variable load $30\Omega \rightarrow 60\Omega$

C1:
$$L_{error} = 0$$
, $C_{error} = 0$, $V_{ref} = 325 \text{ V}$, $V_{dc} = 700 \text{ V}$
C2: $L_{error} = 0$, $C_{error} = 0$, $V_{ref} = 120 \text{ V}$, $V_{dc} = 700 \text{ V}$

Linear Controller	FS-MPC	NN	
$\Delta V_{\alpha} = 9.07 + /-0.34$	$\Delta V_{\alpha} = 2.56 + /- 0.11$	$\Delta V_{\alpha} = 3.31 + /- 0.10$	
$\Delta V_{\beta} = 9.50 + /- 0.26$	$\Delta V_{\beta} = 2.83 + /- 0.07$	$\Delta V_{\beta} = 3.37 + /- 0.14$	
$\Delta V_{\alpha} = 4.03 + /- 0.15$	$\Delta V_{\alpha} = 1.79 + /- 0.02$	$\Delta V_{\alpha} = 1.65 + /-0.02$	
$\Delta V_{\beta} = 3.92 + /- 0.14$	$\Delta V_{\beta} = 1.83 + /- 0.02$	$\Delta V_{\beta} = 1.72 + /- 0.02$	

Observations:

Load changes have the highest effect on PI controller performance (no effect of parameter mismatch)

Controller performance validation - dynamics

- Confidence interval for MC simulations is set to 95%
- Results for estimation of max RMSD ($\Delta v_{c\alpha}$, $\Delta v_{c\beta}$) for three controllers with variable load $30\Omega \to 60\Omega$

C3:
$$L_{error}$$
 = **+25%,** C_{error} = **+25%,** V_{ref} = 120 V, V_{dc} = **300** V

C4: L _{error} = **+25%,** C _{error} = **+25%,**
$$V_{ref}$$
 = 325 V, V_{dc} = 700 V

C5:
$$L_{error} = -25\%$$
, $C_{error} = -25\%$, $V_{ref} = 325 \text{ V}$, $V_{dc} = 700 \text{ V}$

System parameters are smaller then in the model

Observations:

- Changing the DC-link voltage effected the performance of NN controller (missing training data)
- Negative parameter mismatch effects the performance of NN controller

► Conclusion

- Application of SMC for comparative controller robustness verification
 - can show in which conditions controllers are underperforming and need retuning
 - e.g., parameter adjustment (PI, FS-MPC), obtain missing training data (NN)
 - is applicable for different power electronics systems applications
 - e.g., grid-connected systems (voltage dips and harmonic pollution)
- Future development
 - Incorporate stability validation in automated SMC test to find a set of controller parameters that can provide stable response in a system with stochastic elements

► Acknowledgement

"Part of this work was supported by the Innovation Fund Denmark (IFD) through the project of Artificial Intelligence for Next-Generation Power Electronics (Al-Power)"

Thank you for your attention! Questions?

Mateja Novak

nov@energy.aau.dk