Part 2k: The Poisson distribution

Textbook: pp. 58-67

		. 5													
Introdu	iction	to Po	DISSC	n p)roc	esse	es								
• Pois	-				- 1					-		-	cess	ses.	
• (In t							-						2 2 12		
• Here	e we su <mark>ibuti</mark> or		irize	SOI	ne c)I LII	e pr	ope	rues	5 OI	ine	POIS	SON		
• In th			o we	co	nsid	er tl	ne P	oiss	on r	roc	ess	on t	he li	ne a	ano
	e third														
proc	ess on	the p	olain	i .											

The Poisson di	stribution		
THE FUISSON GI	Stribution		
X ~ Pois	ison (2)		
$f_{X}(x) = 0$	$\frac{1}{2}$	JC = 0 , 1, 2,	3,
IE(X) = 7	3 (
Var(X)	=>\ \(\alpha(e^s-1)\)		
	2(62-1)		
$M_{X}(s) =$	e	$, s \in \mathbb{R}$	

A sum	of inde	pende	nt Poiss	son ran	dom va	riables		
				oisson(μ) are in	ndepend	<mark>e</mark> nt ther	1
X + Y	~ Poiss	SOII(A +	μ)					
M /				•				
/VI X-	+ > (5)) = 1	(ک) _× (۲	, M)	(ک			
	,		, 6		/-5			
		.0	7(62-	1)	u163-	1)		
		ェピ		· e	µles-			
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0 ⁵ -1)				
		= e	/					
	=>	X+ >	V	toiss	DV (7)	+/1)		

Conditional Poisson random variables
If $X \sim \text{Poisson}(\lambda)$ and $Y \sim \text{Poisson}(\mu)$ are independent then $X \mid \{X + Y = s\} \sim \text{Binomial}\left(s, \frac{\lambda}{\lambda + \mu}\right)$
P(x=x, S=s) = P(x=x, y=s-x)
$= P(x=x) P(y=s-x)$ $= e^{-2} x e^{-y} \frac{s-x}{(s-x)!}$
$P(5=s)=e^{-(\lambda+\mu)}$
$P(x = x S = s) = \frac{s!}{x!(s-x)!} \frac{x}{(x+n)^s}$ $= \left(\frac{s}{x}\right) \left(\frac{a}{x+n}\right) \frac{x}{(x+n)^s} $ $= \left(\frac{s}{x}\right) \left(\frac{a}{x+n}\right) \frac{x}{(x+n)^s} $ $= \left(\frac{s}{x}\right) \left(\frac{a}{x+n}\right) \frac{x}{(x+n)^s}$
$X \mid \{S = 5\} \sim Binomial (= 1, \frac{2}{24\mu})$

The thinning of the Poisson distribution

Assume that $N \sim \text{Poisson}(\lambda)$ and $X_1, X_2, \dots \sim \text{Binomial}(1, p)$ are all independent.

Define the compound variables: $N_1 = \sum_{i=1}^N X_i$, $N_0 = \sum_{i=1}^N (1 - X_i)$.

Then:

- N_1, N_0 are independent,
- $N_1 \sim \text{Poisson}(\lambda p)$ and

•
$$N_0 \sim \text{Poisson}(\lambda(1-p))$$
.

$$\mathbb{E}\left(e^{S,N+S_0N_0} / N = n\right)$$

$$= \mathbb{E}\left(e^{\sum_{i=1}^{n} \leq X_i + S_0(i-X_i)}\right)$$

$$= \prod_{i=1}^{n} \mathbb{E}\left(e^{S,X_i + S_0(i-X_i)}\right)$$

$$= \left(pe^{S_i} + (i-p)e^{S_0}\right)^n$$

$$= \left(e^{S_i} + (i-p)e^{S_0}\right)^n$$

$$= \mathbb{E}\left(e^{S_i} + (i-p)e^{S_0}\right)^n$$

$$= \mathbb{E}$$

N, ~	Poisson (pλ)	> in	dependent
/ * D	1 215000	ハインハ		

The Poisson distribution as a limit

Assume that $X_i^{(n)} \sim \text{Binomial}\left(1, p_i^{(n)}\right)$, $1 \leq i \leq n$, are independent and define $N^{(n)} = \sum_{i=1}^n X_i^{(n)}$. If:

•
$$\sum_{i=1}^{n} p_i^{(n)} \rightarrow \lambda$$
, $0 < \lambda < \infty$,

•
$$\sum_{i=1}^n \left(p_i^{(n)}\right)^2 \to 0$$

Then $N^{(n)} \sim \text{Poisson}(\lambda)$.

$$M_{N^{(n)}}(s) = \prod_{i=1}^{n} (P_{i}^{(n)}e^{s} + 1 - P_{i}^{(n)})$$

$$\log M_{N^{(n)}}(s) = \sum_{i=1}^{n} \log (1 + P_{i}^{(n)}(e^{s} - 1))$$

$$2 \sum_{i=1}^{n} \left[p_{i}^{(k)}(e^{s}-1) + \frac{1}{2} \left(\overline{r_{i}^{(k)}} \right)^{2} (e^{s}-1)^{2} \right]$$

$$\mathcal{N}_{\mathcal{N}^{(g^5-1)}} \rightarrow \mathcal{C}^{\lambda(e^5-1)} \rightarrow \mathcal{N}^{(e^5-1)} \rightarrow \mathcal{N}^{(e^5-1)} \rightarrow \mathcal{N}^{(e^5-1)}$$