Subgrupos

- $\bullet \ ab \in H \ \forall a,b \in H \ y \ a^{-1} \in H \ \forall a \in H$
- \bullet $1 \in H \text{ y } ab^{-1} \in H \ \forall a, b \in H$

Órdenes y subgrupos

- $o(a^k) = \frac{o(a)}{mcd(o(a),k)}$
- Si ab = ba y mcd(o(a), o(b)) = 1 entonces o(ab) = o(a) * o(b)
- $|H||K| = |HK||H \cap K|$
- Si mcd(|H|, |K|) = 1 entonces $H \cap K = \{e\}$
- [G:K] = [G:H][H:K]

Subgrupos normales

- $\blacksquare H \trianglelefteq G \Leftrightarrow gH = Hg \Leftrightarrow g^{-1}Hg = H \ \forall g \in G$
- Si $H \leq G$ y es el único con ese orden, $H \leq G$
- Si $H \leq G$ y [G:H] = 2 entonces $H \leq G$
- Si $H \triangleleft G$ entonces $HK \triangleleft G$
- Si $H, K \triangleleft G$ entonces $HK \triangleleft G$
- Si $H, K \subseteq G$ y $H \cap K = \{e\}$ entonces hk = kh

Subgrupos especiales

- Conjugado: $g^{-1}Hg \leq G$. Isomorfo a H.
- $|\{g^{-1}Hg\}| = [G:N_G(H)]$
- Centro: $\mathcal{Z}(G) = \{g \in G : gh = hg \ \forall h \in G\}$
- Centralizador $(S \subseteq G)$: $C_G(S) = \{g \in G : gs = sg \ \forall s \in S\}$
- Normalizador: $N_G(H) = \{g \in G : Hg = gH\}$ \rightarrow El mayor subgrupo que tiene a H normal.
- Si $H, K \leq G$ son conjugados, sus normalizadores también.
- \blacksquare Si $K \unlhd G,\, H \subseteq G$ y
 $K \unlhd H$ entonces $N_{G/K}(H/K) = N_G(H)/K$

Homomorfismos

- Conservan neutros, inversos y subgrupos.
- f^{-1} conserva normalidad. Si sobreyectiva, también f.
- o(f(a)) divide a o(a)
- lacktriangle Es biyectivo y conserva normalidad {Subgrupos de G que contienen a H} \longrightarrow {Subgrupos de G/H} tal que $K \longmapsto K/H$

Permutaciones

- $\mathbb{Z}(\mathcal{S}_n) = \{id\} \text{ si } n \geq 3$
- Si σ ciclo, $o(\sigma) = long(\sigma)$
- S_n tiene $\binom{n}{k}(k-1)!$ ciclos de longitud k
- Si σ , τ ciclos disjuntos, $o(\sigma\tau) = o(\sigma)o(\tau)$
- Si $\sigma = \sigma_1 \cdot \ldots \cdot \sigma_k$ con σ_i ciclos disjuntos, $o(\sigma) =$ $mcm(long(\sigma_1), \dots, long(\sigma_k))$ y $long(\sigma_1) + \dots + long(\sigma_k) \le n$
- Signatura: $s(\sigma) = (-1)^t$ con t = #transposiciones
- $A_n = ker(s)$ (permutaciones pares)
- \mathcal{A}_n no abeliano si $n \geq 4$
- \mathcal{A}_n simple y es el único subgrupo normal de \mathcal{S}_n si $n \geq 5$

Teoremas del isomorfismo

- 1. Si f homomorfismo, $G/ker(f) \cong Im(f)$
- 2. $\frac{G/K}{H/K} \cong G/H$
- 3. $\frac{H}{H \cap N} \cong \frac{HN}{N}$

Grupo diédrico: \mathcal{D}_n

- $\begin{array}{l} \bullet \ o(\rho^k) = \frac{n}{mcd(n,k)} \\ \bullet \ G \cong \mathcal{D}_n \Longleftrightarrow G = < a,b>, \ o(a) = n, \ o(b) = 2, \ o(ab) = 2 \end{array}$

Acciones

- Homomorfismo $\phi: G \longrightarrow Biy(X)$. También $\phi: G \times X \longrightarrow X$
- $Drb(x) = \{ y \in X : \exists g \in G : \tilde{g}(x) = x' \} \subseteq X$
- $Stab(x) = \{g \in G : \tilde{g}(x) = x\} \le G$
 - $S_n \longrightarrow Biy(I_n)$
 - Si $H \leq G$, $(h, g) \longmapsto hg$
 - Si $H \leq G$, $(h,g) \longmapsto h^{-1}gh$

Teoremas de Sylow

- Teorema de Cauchy: Si |G| = n, y p primo tal que p divide a n, entonces $\exists g \in G : o(g) = p$
- G es p-grupo $(|G| = p) \Leftrightarrow \forall g \in G : o(g) = p^m$.
- $H \leq G$ es p-Sylow si $|G| = p^n m$ y $|H| = p^n$
- 1. Si $|G| = p^n m \text{ con } mcd(p, m) = 1$, entonces $\exists H_1 \unlhd H_2 \unlhd \ldots \unlhd H_n \subseteq G \text{ con } |H_i| = p^i$
- 2. Si H_1, H_2 son p-Sylow, entonces son conjugados: $\exists g \in G : g^{-1}H_2g = H_1$
- 3. Si $|G| = p^n m$ y s_p es el número de p-Sylow, s_p divide a m y $s_p \equiv 1 \pmod{p}$

Grupos abelianos finitos

- Si $\exists N_1, N_2 \leq G$ con $N_1 \cap N_2 = \{e\}$ y $N_1 N_2 = G$ entonces $G \cong N_1 \times N_2$
 - \rightarrow Si todos los Sylow de G son normales, G es el producto directo de ellos.
- \blacksquare Si G es p-grupo abeliano con un solo subgrupo cíclico de orden p, entonces G es cíclico.
- Si G es p-grupo abeliano y $C \subseteq G$ maximal, entonces $\exists D \subseteq G \text{ tal que } C \cap D = \{e\} \text{ y } CD = G$
- Caracterización de los p-grupos abelianos: $\exists ! \ k_1 \geq \ldots \geq k_l$: $G \cong \mathbb{Z}_{p^{k_1}} \times \ldots \times \mathbb{Z}_{p^{k_l}}$
- n-torsión de $G: G[n] = \{g \in G : g^n = e\} \leq G$ (es el núcleo de $g \longmapsto g^n$; la imagen es G^n) $\rightarrow \mathbb{Z}_{p^k}[p^s] = \langle [p^{k-s}] \rangle = \mathbb{Z}_{p^s}$

Anillos

- 1. (A, +) es un grupo abeliano.
- 2. (A, *) es asociativo, [conmutativo y con 1].
- 3. (A, +, *) es distributivo.
- 0a = a0 = 0, (-a)b = a(-b) = -ab, $A_1 \times A_2$ anillo.
- $\mathcal{U}(A) = \{ a \in A : \exists b \in A : ab = ba = 1 \}$
- A es cuerpo si $\mathcal{U}(A) = A^*$
- $Div(A) = \{ a \in A^* : \exists b \in A^* : ab = 0 \}$
- $A \text{ es DI si } Div(A) = \emptyset$
- $\mathcal{U}(A) \cap Div(A) = \emptyset$

Subanillos e ideales

- B subanillo: $(B, +) \le (A, +)$ y $b_1b_2 \in B$ para $b_1, b_2 \in B$
 - \rightarrow Si B es subanillo de A conmutativo con 1, B es conmutativo, pero no tiene por qué tener 1.
- I ideal: (I, +) < (A, +) y $ai \in I$ para $i \in I$, $a \in A$
 - \rightarrow Si $I = \{0\}$ o I = A entonces I es impropio.
 - \rightarrow A es cuerpo \Leftrightarrow todos sus ideales son impropios.
 - $\rightarrow I + J, I \cap J, IJ = \{\sum i_k j_k\}$ son ideales.

Ideales especiales

- Ideal generado: $(S) = \{\sum s_i a_i : s_i \in S, a_i \in A\}$
- Ideal principal: $iA = (i) = \{ia : a \in A\}$
- Ideal primo: $\forall a, b \in A \text{ si } ab \in I \text{ entonces } a \in I \text{ o } b \in I$ $\Leftrightarrow A/I \text{ es DI.}$

- Ideal maximal: $I \neq A$ y $\forall J: I \subseteq J$ entonces J = I o J = A \Leftrightarrow A/I es cuerpo.
 - $\Rightarrow I \text{ primo}$

Homomorfismos de anillos

- f es homomorfismo si conserva +, * y el 1. → Entonces conserva el 0 y $f(\mathcal{U}(A)) \subseteq \mathcal{U}(B)$
- $f^{-1}(J)$ es ideal.
- f sobreyectiva $\Rightarrow f(I)$ es ideal.
- f sobreyectiva $\Leftrightarrow f^{-1}(M)$ es maximal.
- f sobreyectiva $\Leftrightarrow f^{-1}(P)$ es primo.
- \bullet K cuerpo $\Rightarrow f$ inyectiva.

Correspondencia: Sea el homomorfismo $\Pi(a) = [a]$.

- 1. Si $J \subseteq A/I$, entonces $\Pi^{-1}(J)$ es ideal de A y contiene a I. Si J es primo o maximal, $\Pi^{-1}(J)$ también.
- 2. Si $J \subseteq A$ y contiene a I, entonces J/I es ideal de A/I. Si J es primo o maximal, J/I también.

Cuerpo de fracciones

- \bullet Sea $A \times A^*$ y $(a,b) \sim (c,d) \Leftrightarrow ad = bc.$ Entonces $[(a,b)] = \frac{a}{b}$
- Si A no es DI, no existe $f:A \longrightarrow K$ un homomorfismo invectivo con K cuerpo.

Divisibilidad y factorización

- a divide b (a|b) si b = ac
- \bullet a, b asociados si a|b y b|a
- $a \in A \setminus \mathcal{U}(A)$ reducible si $\exists b, c \in A \setminus \mathcal{U}(A)$ tales que a = bc $\rightarrow a$ irreducible si no es reducible ni unidad.
- $a \in A^*$ primo si $\forall b, c \in A$ tales que a|bc entonces a|b o a|c $\Leftrightarrow aA$ primo.
 - \Rightarrow a irreducible.
- $mcd(a_1, ..., a_n) = d$ si $d|a_i \ y \ \forall d' \in A$ que cumpla lo anterior, entonces d'|d

Dominio de Factorización Única (DFU)

Si $\forall a \in A^* \setminus \mathcal{U}(A) \ \exists a_1 \dots a_n \in A$ irreducibles y únicos salvo asociación tales que $a = a_1 \dots a_n$

- \bullet a irreducible \Leftrightarrow a primo
- \blacksquare Existe el mcd
- Si a irreducible $\Leftrightarrow a$ primo y existe descomposición en irreducibles, entonces A es DFU.

Dominio de Ideales Principales (DIP)

Si $\forall I \subseteq A \text{ ideal}, I \text{ es principal } (I = iA = (i))$

• a irreducible $\Leftrightarrow a$ primo $\Leftrightarrow aA$ maximal

Dominio Euclídeo (DE)

Si $\exists \varphi : A^* \longrightarrow \mathbb{N}^0$ tal que

- 1. $\forall a, b \in A^* \ \varphi(a) \le \varphi(ab)$
- 2. $\forall a,b \in A \text{ con } b \neq 0 \ \exists q,r \in A \text{ con } r=0 \text{ o } \varphi(r) < \varphi(b) \text{ tal }$ que a=bq+r
- $\varphi(1) \le \varphi(1 * a) = \varphi(a) \implies \varphi(1) = \min\{\varphi(a)\}\$
- $U(A) = \{ a \in A^* : \varphi(a) = \varphi(1) \}$

Ecuaciones diofánticas

- $ax + ny = b \Leftrightarrow ax \equiv b \pmod{n}$
- Tiene solución $\Leftrightarrow mcd(a, n)|b$
- Una solución es $x_0 = u_0 c$, con b = c * mcd(a, n) y Bezout: $mcd(a, n) = au_0 + nv_0$
- La solución general es $x = x_0 + nt$, $y = y_0 at$

Enteros de Gauss

- Si p primo impar, p reducible en $\mathbb{Z}[i] \Leftrightarrow p \equiv 1 \pmod{4}$ $\Leftrightarrow \exists x \in \mathbb{Z} \text{ tal que } -1 \equiv x^2 \pmod{p}$
- $x \in \mathbb{Z}[i]$ es irreducible $\Leftrightarrow ||x||$ es primo o $[x = p, -p, ip, -ip y p \equiv 3 \pmod{4}$ con p primo]

Polinomios

- $deg(PQ) \le deg(P) + deg(Q)$
- $\quad \blacksquare \ deg(P+Q) \leq max\{deg(P), deg(Q)\}$
- Si $\ell(P)\ell(Q) \neq 0$, deg(PQ) = deg(P) + deg(Q)

Anillo de polinomios

- $A \text{ DI} \Rightarrow \mathcal{U}(A[t]) = \mathcal{U}(A)$
- $A \text{ DI} \Leftrightarrow A[t] \text{ DI}$
- Sean $P, Q \in A[t]$ con $\ell(Q) \in \mathcal{U}(A) \Rightarrow$ $\exists ! \ C, R \in A[t] : P = CQ + R$ con R = 0 o deg(R) < deg(Q)
- Ruffini: P(t) = C(t)(t-a) + P(a)
- $A \text{ cuerpo} \Leftrightarrow A[t] \text{ es DE} \Leftrightarrow A[t] \text{ es DIP}$

Raíces

- $ev_d(P) = P(d)$ es un homomorfismo.
- a es raíz si P(a) = 0 $\Leftrightarrow t - a|P$
- Si A DI, $mult_{a_1}(P) + \ldots + mult_{a_n}(P) \leq deg(P)$
- Si K cuerpo finito, $|K| = p^r$
- a es raíz simple si es raíz y $mult_a(P) = 1$ $\Leftrightarrow P'(a) \neq 0$

Teorema de Gauss

- Contenido de P: $C(P) = mcd(a_n \dots a_1)$
 - $\rightarrow P$ primitivo si $\mathcal{C}(P) = 1$
 - \rightarrow Si $P \in \mathbb{Z}[t]$ con $deg(P) \ge 1$ irreducible \Rightarrow es primitivo
- \bullet $\mathcal{C}(PQ) = \pm \mathcal{C}(P)\mathcal{C}(Q)$
- Si $P(t) \in \mathbb{Z}[t]$ es primitivo con $deg(P) \ge 1$ entonces P irreducible en $\mathbb{Z}[t] \Leftrightarrow P$ irreducible en $\mathbb{Q}[t]$
- Teorema de Gauss: A DFU $\Longrightarrow A[t]$ DFU

Criterios de irreducibilidad

- Si K cuerpo, $P(t) \in K[t]$ y $2 \le deg(P) \le 3$ entonces P irreducible \Leftrightarrow no tiene raíces.
- Si A DI, $P(t) \in A[t]$ con $2 \le deg(P) \le 3$ y P primitivo, P irreducible \Leftrightarrow no tiene raíces.
- Si A DI, $P(t) \in A[t]$ y $a \in A$, P(t) irreducible $\Leftrightarrow P(t+a)$ irreducible.
- Si A DFU, $P(t) \in A[t]$ y $deg(P) \ge 1$, si p primo tal que $p \nmid a_n, p^2 \nmid a_0$ y $p \nmid a_i \forall i \in [0, n)$, entonces P irreducible.
- Si p primo tal que $p \nmid a_n$, y sea $\overline{P} = \sum \overline{a_i} \ t^i$ con $\overline{a_i} \in \mathbb{Z}_p$, $\overline{P}(t)$ irreducible en $\mathbb{Z}_p \Rightarrow P(t)$ irreducible en \mathbb{Z} .