Exercice 2.01

$$\frac{AN}{T} : \begin{cases} K = 2 \\ T = 5 \end{cases}$$

An :
$$\begin{pmatrix} K = 2 \\ T = 5 \end{pmatrix}$$
 $\begin{pmatrix} G3\% & d_1 & y(\infty) & \rightarrow T \\ 95\% & d_1 & y(\infty) & \rightarrow 37 \end{pmatrix}$ $(=>)$ $G(0) = \frac{2}{1+S_0}$

A Model à TC: Ob K, T me dépendat pos de la périsde d'échantillon-age.

4 Forme temporale.

Objectif :

Composaion entre sonnies de l'Enonce (Y) once le temmée colcula (y(t))

En .	0	1	2	3	4	2	6	7
y (Y)	0	7,2642	1,7298	1,9004	1,9634	1,9865	1,9950	1,9982
g (Mr.)	0	1,2642	1,7293	1,9004	1,9634	1,9865	1,9950	1,9982

- ylt) vran
- Bloneur d'siche 1 (Tustin)

(3) Entrée en forme d'écholor cos 302

$$\mathcal{O}_{TD} = G(z^{-1}) - \frac{1}{2} \frac{1}{1+2}$$

one
$$\begin{cases} a_1 = -e^{-\frac{1}{2}e/T} & = -93679 \\ \frac{1}{2} + \frac{1}{2} + \frac{1}{2} & = 1,2642. \end{cases}$$

(1) Si To doonge: $G(2^{-1})$, $\frac{S_1 \cdot \xi^{-1}}{1+\epsilon^2 \cdot \xi^{-1}}$ our $e'_1 \cdot \xi$ on $\epsilon = \frac{1}{\epsilon} \cdot \frac{1}{\epsilon}$

modili à
$$R$$

$$\begin{cases}
G(b) = \frac{K}{277s} = \frac{2}{1150} \\
Fr & \text{ influstedle an } 1^{-1} \text{ order} \\
Shirten explicite; y(t)
\end{cases}$$

4) Eg? am d'Mirence.

A - Laplace (F)
$$(x, U(0)) = (1+\Gamma_2) \cdot Y(0)$$

So operation at differentiation $(x, U(0)) = Y(0) + T$. If $(y(0)) = \frac{d}{dt}$
 $(x, U(0)) = (1+\Gamma_2) \cdot Y(0)$
 $(x, U(0)) = (1+\Gamma_2) \cdot Y(0)$

$$En \text{ tornoit so solution}: \text{ y(t)} = k \left(1 - e^{-\frac{1}{2}t}\right) \cdot \Gamma'$$

$$En \text{ tornoit so solution}: \text{ y(t)} = k \left(1 - e^{-\frac{1}{2}t}\right) \cdot \Gamma'$$

$$En \text{ tornoit so solution}: \text{ y(t)} = k \left(1 - e^{-\frac{1}{2}t}\right) \cdot \Gamma'$$

$$En \text{ tornoit so solution}: \text{ y(t)} = k \left(1 - e^{-\frac{1}{2}t}\right) \cdot \Gamma'$$

$$En \text{ tornoit so solution}: \text{ y(t)} = k \left(1 - e^{-\frac{1}{2}t}\right) \cdot \Gamma'$$

$$En \text{ tornoit so solution}: \text{ y(t)} = k \left(1 - e^{-\frac{1}{2}t}\right) \cdot \Gamma'$$

$$En \text{ tornoit so solution}: \text{ y(t)} = k \left(1 - e^{-\frac{1}{2}t}\right) \cdot \Gamma'$$

$$En \text{ tornoit so solution}: \text{ y(t)} = k \left(1 - e^{-\frac{1}{2}t}\right) \cdot \Gamma'$$

$$En \text{ tornoit so solution}: \text{ y(t)} = k \left(1 - e^{-\frac{1}{2}t}\right) \cdot \Gamma'$$

$$En \text{ tornoit so solution}: \text{ y(t)} + 2n \text{ tornoit so solution}: \text{ y(t)} = k \left(1 - e^{-\frac{1}{2}t}\right) \cdot \Gamma'$$

$$En \text{ tornoit so solution}: \text{ y(t)} + 2n \text{ tornoit so s$$

(=) == u(tu-1) == y(tu) + (en y(tu-1))

Eg = aux siffrence (y(tn) = 4, u(tn-1) - any(tn-1)

4.N.; y(tu) = 1,264,2 altu-,) + 9,3679 y (tu-,)

$$\frac{(k_{2})}{y(k_{1})} = 1,2642 \times u(k_{0}) + 0,3679 y(k_{0})$$

$$y(k_{1}) = 1,2642.$$

= 1,2642 + 0,3679 + 1,2642

Eux	0	1	٤	3	4	2	6	ヲ
						1,9865	· ·	1,9982
g (Hz)	0	1,2642	1,7293	1,9004	1,9634	1,9865	1,9950	1,9982
$\hat{y}(\mathcal{H}_{TD})$	0	1,264 2	1,7 <i>19</i> 3	1,9024	7,9634	1,9865	1,9950	1,9982

Mottob: 0, = - exp(1); 6, = 2 x (1+on) bn ; yz= bn - on yn; yz = bn - on yz 1 ---

Approximation de divises, 4 y(t)) - 1 (y(tn)-y(tn))

En remplace:

$$y(t_n) = -\frac{T}{T_e} \left[y(t_n) - y(t_{n-1}) \right] + k n(t_n)$$

$$\left(1 + \frac{\tau}{\tau_e} - \frac{\tau}{\tau_e} \cdot 9^{-1}\right) y(t_a) = k n(t_a)$$

$$\frac{\chi(q^{-1})}{\chi(q^{-1})} = \frac{\chi}{\left(\frac{1}{1}, \frac{1}{1}, \frac{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}$$

ep = aux diffrence (9 -) opinoteur ubord)

Résumi (suti).

Données issues d'un systèm y

916)= K(n+ Tel7).

() eg- aux & ffrence Post status explicate

Mon (oppr. Livies) (2 (2)) - 1 2 2)

G epi sur d'Afrera

Simulation yltu)

(+ solihon aprite)

. 114