Income Prediction Using Census Income Data Set

Problem Statement

Predict whether income exceeds \$50K/yr based on census data. Also known as "Adult" dataset.

Data Collection

dataset: https://archive.ics.uci.edu/ml/datasets/Census+Income (https://archive.ics.uci.edu/ml/datasets/Census+Income)

Attribute Information:

The Census Income dataset has 48,842 entries. Each entry contains the following information about an individual:

- salary (target feature/label): whether or not an individual makes more than \$50,000 annually. (<= 50K, >50K)
- age: the age of an individual. (Integer greater than 0)
- workclass: a general term to represent the employment status of an individual. (Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked)

- fnlwgt: this is the number of people the census believes the entry represents. People with similar demographic characteristics should have similar weights. There is one important caveat to remember about this statement. That is that since the CPS sample is actually a collection of 51 state samples, each with its own probability of selection, the statement only applies within state.(Integer greater than 0)
- education: the highest level of education achieved by an individual. (Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.) education-num: the highest level of education achieved in numerical form. (Integer greater than 0)
- marital-status: marital status of an individual. Married-civ-spouse corresponds to a civilian spouse while Married-AF-spouse is a spouse in the Armed Forces. Married-spouse-absent includes married people living apart because either the husband or wife was employed and living at a considerable distance from home (Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse)
- occupation: the general type of occupation of an individual. (Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces) relationship: represents what this individual is relative to others. For example an individual could be a Husband. Each entry only has one relationship attribute. (Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried)
- race: Descriptions of an individual's race. (White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black)
- sex: the biological sex of the individual. (Male, female)
- capital-gain: capital gains for an individual. (Integer greater than or equal to 0)
- capital-loss: capital loss for an individual. (Integer greater than or equal to 0)
- hours-per-week: the hours an individual has reported to work per week. (continuous)
- native-country: country of origin for an individual (United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands)

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoo
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification report, ConfusionMatrixDis
                            precision score, recall score, f1 score, roc auc score,
from sklearn import metrics
from sklearn.model selection import train test split, RepeatedStratifiedKFold, cros
from sklearn.preprocessing import OneHotEncoder, MinMaxScaler
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer, KNNImputer
from xgboost import XGBClassifier
from sklearn.preprocessing import StandardScaler, MinMaxScaler,RobustScaler
from sklearn.compose import ColumnTransformer
from catboost import CatBoostClassifier
from sklearn.model selection import GridSearchCV
from sklearn.model selection import StratifiedKFold
import warnings
warnings.filterwarnings("ignore")
```

In [2]:

```
df=pd.read_csv('../data/adult.csv',names=['age','workclass','fnlwgt','education','ed
```

EDA

In [3]:

```
# Taking a first look
df.head()
```

Out[3]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in- family	White	
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	I
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	White	1
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	I
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	Fei

In [4]:

df.shape

Out[4]:

(32561, 15)

In [5]:

test=pd.read_csv('../data/test.csv',names=['age','workclass','fnlwgt','education','e

In [6]:

test.drop(0,inplace=True)
test.head()

Out[6]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	
1	25	Private	226802.0	11th	7.0	Never- married	Machine- op-inspct	Own-child	Black	
2	38	Private	89814.0	HS-grad	9.0	Married- civ- spouse	Farming- fishing	Husband	White	
3	28	Local-gov	336951.0	Assoc- acdm	12.0	Married- civ- spouse	Protective- serv	Husband	White	
4	44	Private	160323.0	Some- college	10.0	Married- civ- spouse	Machine- op-inspct	Husband	Black	
5	18	?	103497.0	Some- college	10.0	Never- married	?	Own-child	White	F

In [7]:

df = pd.concat([df,test],ignore_index=True)

In [8]:

#Final shape of data
df.shape

Out[8]:

(48842, 15)

In [9]:

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 48842 entries, 0 to 48841
Data columns (total 15 columns):
 #
    Column
                    Non-Null Count
                                    Dtype
     _____
                     -----
                     48842 non-null
 0
    age
                                    object
 1
    workclass
                     48842 non-null
                                    object
 2
                     48842 non-null float64
    fnlwgt
 3
    education
                     48842 non-null
                                    object
 4
    education-num
                     48842 non-null
                                    float64
 5
    marital-status 48842 non-null
                                    object
 6
    occupation
                     48842 non-null
                                    object
 7
    relationship
                     48842 non-null
                                    object
 8
    race
                     48842 non-null
                                    object
 9
                     48842 non-null
                                    object
    sex
 10
    capital-gain
                     48842 non-null
                                    float64
                     48842 non-null float64
 11
    capital-loss
    hours-per-week 48842 non-null
                                    float64
 13
    native-country
                     48842 non-null
                                    object
    salarv
                     48842 non-null
                                    object
 14
dtypes: float64(5), object(10)
memory usage: 5.6+ MB
In [10]:
```

```
df['age'] = df['age'].astype('int')
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 48842 entries, 0 to 48841
Data columns (total 15 columns):
```

#	Column Non-Null Count		Dtype	
0	age	48842 non-null	int64	
1	workclass	48842 non-null	object	
2	fnlwgt	48842 non-null	float64	
3	education	48842 non-null	object	
4	education-num	48842 non-null	float64	
5	marital-status	48842 non-null	object	
6	occupation	48842 non-null	object	
7	relationship	48842 non-null	object	
8	race	48842 non-null	object	
9	sex	48842 non-null	object	
10	capital-gain	48842 non-null	float64	
11	capital-loss	48842 non-null	float64	
12	hours-per-week	48842 non-null	float64	
13	native-country	48842 non-null	object	
14	salary	48842 non-null	object	
dtyp	es: float64(5),	int64(1), object	(9)	
memory usage: 5.6+ MB				

In [11]:

```
df.describe(include='all').T
```

Out[11]:

	count	unique	top	freq	mean	std	min	25%
age	48842.0	NaN	NaN	NaN	38.643585	13.71051	17.0	28.0
workclass	48842	9	Private	33906	NaN	NaN	NaN	NaN
fnlwgt	48842.0	NaN	NaN	NaN	189664.134597	105604.025423	12285.0	117550.5
education	48842	16	HS-grad	15784	NaN	NaN	NaN	NaN
education- num	48842.0	NaN	NaN	NaN	10.078089	2.570973	1.0	9.0
marital- status	48842	7	Married- civ- spouse	22379	NaN	NaN	NaN	NaN
occupation	48842	15	Prof- specialty	6172	NaN	NaN	NaN	NaN
relationship	48842	6	Husband	19716	NaN	NaN	NaN	NaN
race	48842	5	White	41762	NaN	NaN	NaN	NaN
sex	48842	2	Male	32650	NaN	NaN	NaN	NaN
capital-gain	48842.0	NaN	NaN	NaN	1079.067626	7452.019058	0.0	0.0
capital-loss	48842.0	NaN	NaN	NaN	87.502314	403.004552	0.0	0.0
hours-per- week	48842.0	NaN	NaN	NaN	40.422382	12.391444	1.0	40.0
native- country	48842	42	United- States	43832	NaN	NaN	NaN	NaN
salary	48842	4	<=50K	24720	NaN	NaN	NaN	NaN

In [12]:

df.isna().sum()

Out[12]:

age	0
workclass	0
fnlwgt	0
education	0
education-num	0
marital-status	0
occupation	0
relationship	0
race	0
sex	0
capital-gain	0
capital-loss	0
hours-per-week	0
native-country	0
salary	0
dtype: int64	

Report

- · Great, No null values.
- But I can see? in dataset. I think we can consider them as null.

In [13]:

```
df.replace(" ?",np.nan,inplace=True)
df.isnull().sum()
```

Out[13]:

age	0
workclass	2799
fnlwgt	0
education	0
education-num	0
marital-status	0
occupation	2809
relationship	0
race	0
sex	0
capital-gain	0
capital-loss	0
hours-per-week	0
native-country	857
salary	0
dtype: int64	

In [14]:

```
df.isnull().sum()/len(df)*100
```

Out[14]:

```
0.00000
age
workclass
                  5.730724
                  0.00000
fnlwgt
education
                  0.000000
education-num
                  0.000000
marital-status
                  0.000000
occupation
                  5.751198
                  0.00000
relationship
                  0.00000
race
                  0.00000
sex
capital-gain
                  0.00000
capital-loss
                  0.00000
hours-per-week
                  0.000000
                  1.754637
native-country
salary
                  0.00000
dtype: float64
```

In [15]:

```
df.duplicated().value_counts()
```

Out[15]:

False 48813 True 29 dtype: int64

```
In [16]:
```

```
# Drop Duplicates
df.drop(df[df.duplicated()].index, inplace=True)

In [17]:
df.shape
Out[17]:
```

Target column (salary)

```
In [18]:
```

(48813, 15)

```
df['salary'].value counts()
Out[18]:
 <=50K
           24698
 \leq =50K.
           12430
 >50K
            7839
            3846
 >50K.
Name: salary, dtype: int64
In [19]:
df['salary'].replace(" <=50K.", " <=50K",inplace=True)</pre>
df['salary'].replace(" >50K.", " >50K",inplace=True)
In [20]:
df['salary'].value counts()
Out[20]:
 <=50K
          37128
 >50K
          11685
Name: salary, dtype: int64
```

In [21]:

```
img = sns.countplot(x=df['salary'])
for c in img.containers:
    img.bar_label(c)
```


In [22]:

Out[22]:

<matplotlib.legend.Legend at 0x7fca88124ee0>

Report

• We'll try balance data by oversampling using SMOTE

In [23]:

```
#define numerical & categorical columns
numeric_features = [feature for feature in df.columns if df[feature].dtype != '0']
categorical_features = [feature for feature in df.columns if df[feature].dtype == '0
categorical_features.remove('salary')
# print columns
print('We have {} numerical features : {}'.format(len(numeric_features), numeric_features)', categorical_features : {}'.format(len(categorical_features), categorical_features), categorical_features : ['age', 'fnlwgt', 'education-num', 'cap ital-gain', 'capital-loss', 'hours-per-week']
We have 8 categorical features : ['workclass', 'education', 'marital-s tatus', 'occupation', 'relationship', 'race', 'sex', 'native-country']
```

Univariant Analysis on numerical features

Checking on distribution of numeric features

In [24]:

```
plt.figure(figsize=(10, 10))
for i, col in enumerate(numeric_features):
    plt.subplot(3, 2, i+1)
    sns.distplot(x=df[col], color='indianred')
    plt.xlabel(col, weight='bold')
    plt.tight_layout()
```


Report

- As per the above plot most of the features are not normally distributed.
- Transformation of data is not of prime importance since it is a classification problem.

Checking outliers on numberic features

In [25]:

```
plt.figure(figsize=(10, 10))
for i, col in enumerate(numeric_features):
    plt.subplot(3, 2, i+1)
    sns.boxplot(x=df[col], color='indianred')
    plt.xlabel(col, weight='bold')
    plt.tight_layout()
```


Report

- · Lots of outliers in each features.
- We'll try remove outliers by using IQR method.

Checking correlation

In [26]:

sns.heatmap(df.corr(), annot=True, cmap="YlGnBu")

Out[26]:

<AxesSubplot:>

Report

· No correlation.

Checking distribution of categorical features

In [27]:

```
plt.figure(figsize=(20, 15))
plt.suptitle('Univariate Analysis of Categorical Features', fontsize=20, fontweight=
category = categorical_features.copy()
for i in range(0, len(category)):
   plt.subplot(5, 2, i+1)
   img = sns.countplot(x=df[category[i]],palette="Set2")
   plt.xlabel(category[i])
   plt.xticks(rotation=45)
   for c in img.containers:
      img.bar_label(c)
   plt.tight_layout()
```

Univariate Analysis of Categorical Features

Report

- We have majority of people working in private sector.
- · Most of them are high school graduate.
- We can see most of them are US native. We'll to divide native country into US and non-US.
- we can see relationship and marital-status are similar kind of column. Better to drop relationship column.

- We'll try to summarize marital-status into Married and Unmarried.
- We can see education and education-num are similar kind of column. Better to drop education-num column.
- · We'll summarize marital status into Single and Married

```
In [28]:
df["native-country-summary"] = np.where(df["native-country"] == " United-States",
In [29]:
df["native-country-summary"].isna().sum()
Out[29]:
In [30]:
df['marital-status-summary'] = df['marital-status'].replace(' Never-married','Single
df['marital-status-summary'] = df['marital-status-summary'].replace(' Married-civ-sr
df['marital-status-summary'] = df['marital-status-summary'].replace( ' Divorced', 'Si
df['marital-status-summary'] = df['marital-status-summary'].replace(' Married-spouse
df['marital-status-summary'] = df['marital-status-summary'].replace(' Married-AF-spectrum)
df['marital-status-summary'] = df['marital-status-summary'].replace(' Widowed','Single
df['marital-status-summary'] = df['marital-status-summary'].replace(' Separated','Si
In [31]:
df['marital-status-summary'].isna().sum()
Out[31]:
In [32]:
df['marital-status-summary'].unique()
Out[32]:
array(['Single', 'Married'], dtype=object)
In [33]:
df['native-country-summary'].unique()
Out[33]:
array(['US', 'Non-US'], dtype=object)
```

Bivariant Analysis of numerical features

Checking effect of numerical feature on salary

In [34]:

```
plt.figure(figsize=(10, 10))
for i, col in enumerate(numeric_features):
    plt.subplot(3, 2, i+1)
    sns.boxplot(y=df['salary'],x=df[col])
    plt.xlabel(col, weight='bold')
    plt.tight_layout()
```


In [35]:

sns.pairplot(df, hue="salary", corner=True)

Out[35]:

<seaborn.axisgrid.PairGrid at 0x7fca7b81dd90>

Report

- Older population earns more than younger population.
- No effect of fnlwgt,capital gain and capital loss to salary.
- If your hours-per-week is more then your salary will be more.

Bivariant Analysis of Categorical features

In [36]:

```
def analysis(col):
    count = df.groupby(col)["salary"].value counts(normalize=True)
    count df = pd.DataFrame(count)
    count df.rename(columns = {"salary" : "percentage"}, inplace = True)
    count df.reset index(inplace = True)
    count_df.sort_values(by = ["salary", col], inplace=True)
    plt.figure(figsize = (50, 50))
    index = 1
    for c in list(count df[col].unique()):
        plt.subplot(1,len(list(count df[col].unique())),index)
        count df.groupby(col)["percentage"].get group(c).plot.pie(subplots=True,
                                                  labels=list(count df['salary'].uniq
                                                  autopct="%.2f%%",
                                                  textprops={'fontsize': 20},
        plt.title(c, fontdict = {'fontsize': 20})
        index += 1
```

In [37]:

```
category = ['workclass',
  'education',
  'occupation',
  'race',
  'sex',
  'native-country-summary',
  'marital-status-summary']
```

In [38]:

for col in category:
 analysis(col)

- If you are self employed then your chances of getting more than 50k salary.
- High Enducation(Doctorate, Master, Prof-school) brings more salary.
- Armed-force and Exec. Manager pay good salary.

Other Specific Question

1. What is the average age of males and females by income level?

```
In [39]:
```

```
age = df.groupby(["salary", "sex"])[["age"]].mean().reset_index()
age
```

Out[39]:

	salary	sex	age
0	<=50K	Female	36.283980
1	<=50K	Male	37.251508
2	>50K	Female	42.219333
3	>50K	Male	44.642800

In [40]:

```
fig, ax = plt.subplots()
ax = sns.barplot(data=age, x="salary", y="age", hue="sex")
for container in ax.containers:
    ax.bar_label(container);
```


2. What is the workclass percentages of Americans in high-level income group?

In [41]:

```
workclass_US = df[(df.salary == " >50K") & (df['native-country-summary'] == "US")].workclass_US
```

Out[41]:

Private	63.252899
Self-emp-not-ind	9.165731
Local-gov	8.099514
Self-emp-inc	7.846988
Federal-gov	4.732510
State-gov	4.582866
NaN	2.300786
Without-pay	0.018706
Name: workclass,	dtype: float64

In [42]:

Out[42]:

```
([<matplotlib.patches.Wedge at 0x7fca7c190cd0>,
 <matplotlib.patches.Wedge at 0x7fca7c19e460>,
 <matplotlib.patches.Wedge at 0x7fca7c19eb80>,
 <matplotlib.patches.Wedge at 0x7fca7c1ab2e0>,
 <matplotlib.patches.Wedge at 0x7fca7c1aba00>,
 <matplotlib.patches.Wedge at 0x7fca7c1b7160>,
 <matplotlib.patches.Wedge at 0x7fca7c1b7880>,
 <matplotlib.patches.Wedge at 0x7fca7c1b7fa0>],
 [Text(-0.44486967643214986, 1.0060273211951822, ' Private'),
 Text(-0.4786027321318543, -0.9904238611806183, 'Self-emp-not-inc'),
 Text(0.10134392701527184, -1.0953216004704387, 'Local-gov'),
 Text(0.614951569620751, -0.9120496516204448, ' Self-emp-inc'),
 Text(0.9186813134701971, -0.6049997060170142, 'Federal-gov'),
 Text(1.054158569556669, -0.3142446661921846, ' State-gov'),
 Text(1.0970336136678516, -0.08072948954908042, 'nan'),
 Text(1.0999998101468191, -0.0006462793218057553, 'Without-pay')],
[Text(-0.242656187144809, 0.5487421751973721, '63.3%'),
 Text(-0.2610560357082841, -0.5402311970076099, '9.2%'),
 Text(0.05527850564469373, -0.5974481457111483, '8.1%'),
 Text(0.335428128884046, -0.49748162815660624, '7.8%'),
 Text(0.501098898256471, -0.3299998396456441, '4.7%'),
 Text(0.5749955833945467, -0.1714061815593734, '4.6%'),
 Text(0.5983819710915553, -0.044034267026771136, '2.3%'),
 Text(0.5999998964437195, -0.00035251599371223015, '0.0%')])
```


3. What is the occupation percentages of Americans who work as "Private" workclass in high-level income group?

```
In [43]:
```

Out[44]:

4. What is the education level percentages of Asian-Pac-Islander race group in high-level income group?

In [45]:

```
Asian_Pac_Islander = df[(df.salary == " >50K") & (df.race == " Asian_Pac_Islander")]
Asian_Pac_Islander
```

Out[45]:

Bachelors	34.474328
Masters	15.892421
Some-college	12.224939
HS-grad	11.980440
Prof-school	8.801956
Doctorate	7.579462
Assoc-voc	3.422983
Assoc-acdm	3.178484
5th-6th	1.222494
11th	0.488998
9th	0.244499
10th	0.244499
12th	0.244499

In [46]:

Out[46]:

```
([<matplotlib.patches.Wedge at 0x7fca7bdd4b20>,
 <matplotlib.patches.Wedge at 0x7fca7bde4280>,
 <matplotlib.patches.Wedge at 0x7fca7bde49a0>,
 <matplotlib.patches.Wedge at 0x7fca7bdf0100>,
 <matplotlib.patches.Wedge at 0x7fca7bdf0820>,
 <matplotlib.patches.Wedge at 0x7fca7bdf0f40>,
 <matplotlib.patches.Wedge at 0x7fca7bdff6a0>,
 <matplotlib.patches.Wedge at 0x7fca7bdffdc0>,
 <matplotlib.patches.Wedge at 0x7fca7be09520>,
 <matplotlib.patches.Wedge at 0x7fca7be09c40>,
 <matplotlib.patches.Wedge at 0x7fca7bdd4af0>,
 <matplotlib.patches.Wedge at 0x7fca7be17a90>,
 <matplotlib.patches.Wedge at 0x7fca7be231f0>],
 [Text(0.5155067563608526, 0.9717267023944092,
                                                Bachelors'),
 Text(-0.977601544927056, 0.5042769272495357, 'Masters'),
 Text(-1.0100997863645464, -0.43554382280810483, 'Some-college'),
 Text(-0.4316617827167408, -1.0117648468600822, ' HS-grad'),
                                                ' Prof-school'),
 Text(0.271757698930754, -1.0659023187290015,
 Text(0.761214904264689, -0.7940729623437008, ' Doctorate'),
 Text(0.9852326537749447, -0.48919997744846644, 'Assoc-voc'),
 Text(1.0648505557794055, -0.27585012933890657, 'Assoc-acdm'),
 Text(1.0927067541798394, -0.12645927949249103, ' 5th-6th'),
 Text(1.0979238208137845, -0.06755208131257812, ' 11th'),
 Text(1.099188830529107, -0.04223641604177739, '9th'),
 Text(1.0997079518931416, -0.02534601631404266, ' 10th'),
 Text(1.0999675466430234, -0.008449635029308173, ' 12th')],
[Text(0.28118550346955595, 0.5300327467605868, '34.5%'),
 Text(-0.5332372063238486, 0.2750601421361103, '15.9%'),
 Text(-0.5509635198352071, -0.23756935789532987, '12.2%'),
 Text(-0.2354518814818586, -0.5518717346509538, '12.0%'),
 Text(0.14823147214404764, -0.5814012647612735, '8.8%'),
 Text(0.4152081295989212, -0.4331307067329277, '7.6%'),
 Text(0.537399629331788, -0.26683635133552713, '3.4%'),
 Text(0.5808275758796756, -0.15046370691213082, '3.2%'),
 Text(0.596021865916276, -0.068977788814086, '1.2%'),
 Text(0.5988675386257005, -0.036846589806860786, '0.5%'),
 Text(0.5995575439249674, -0.023038045113696757, '0.2%'),
 Text(0.5998407010326227, -0.013825099807659632, '0.2%'),
 Text(0.5999822981689218, -0.0046088918341680935, '0.2%')])
```


5. What is the occupation percentages of Asian-Pac-Islander race group who has a Bachelors degree in high-level income group?

In [47]:

Out[47]:

Prof-specialty	27.659574
Exec-managerial	26.950355
Adm-clerical	13.475177
Sales	12.056738
Other-service	6.382979
Craft-repair	5.673759
Tech-support	4.255319
Protective-serv	1.418440
Transport-moving	0.709220
Machine-op-inspct	0.709220
Farming-fishing	0.709220
Name: occupation, dty	pe: float64

In [48]:

Out[48]:

```
([<matplotlib.patches.Wedge at 0x7fca6c129610>,
 <matplotlib.patches.Wedge at 0x7fca6c129e20>,
 <matplotlib.patches.Wedge at 0x7fca6c135580>,
 <matplotlib.patches.Wedge at 0x7fca6beffe20>,
 <matplotlib.patches.Wedge at 0x7fca6c1431c0>,
 <matplotlib.patches.Wedge at 0x7fca6c1438b0>,
 <matplotlib.patches.Wedge at 0x7fca6c143fd0>,
 <matplotlib.patches.Wedge at 0x7fca6c150730>,
 <matplotlib.patches.Wedge at 0x7fca6c150e50>,
 <matplotlib.patches.Wedge at 0x7fca6c15c5b0>,
 <matplotlib.patches.Wedge at 0x7fca6c1295e0>],
[Text(0.7101907237296053, 0.8400173426355075, ' Prof-specialty'),
 Text(-0.9337175819397948, 0.5815251303052198, 'Exec-managerial'),
 Text(-0.8320538646809795, -0.7195042503484231, ' Adm-clerical'),
 Text(-0.06124090394507291, -1.0982939277279058, 'Sales'),
 Text(0.5499996358014774, -0.9526281544329048, 'Other-service'),
 Text(0.8632790589894519, -0.681725213198314, 'Craft-repair'),
 Text(1.0308390664726683, -0.3838890712611629, ' Tech-support'),
 Text(1.0825716570558654, -0.19503488749277142, ' Protective-serv'),
 Text(1.0931810366955135, -0.12229154103748459, 'Transport-moving'),
 Text(1.097543534825798, -0.07347237005904077, 'Machine-op-inspct'),
 Text(1.099726961999124, -0.02450732650000626, 'Farming-fishing')],
 [Text(0.3873767583979665, 0.45819127780118585, '27.7%'),
 Text(-0.509300499239888, 0.317195525621029, '27.0%'),
 Text(-0.45384756255326153, -0.3924568638264126, '13.5%'),
 Text(-0.03340412942458522, -0.5990694151243122, '12.1%'),
 Text(0.29999980134626036, -0.5196153569634026, '6.4%'),
 Text(0.47087948672151914, -0.37185011628998943, '5.7%'),
 Text(0.5622758544396371, -0.20939403886972519, '4.3%'),
 Text(0.5904936311213811, -0.10638266590514804, '1.4%'),
 Text(0.59628056547028, -0.06670447692953704, '0.7%'),
 Text(0.5986601099049806, -0.04007583821402223, '0.7%'),
 Text(0.5998510701813402, -0.013367632636367052, '0.7%')])
```


Conclusion

- Data suggest High Education High Salary.
- Experiece brings high salary.
- if you are at high job role such as Exec-manager, you will get paid more.
- We have not seen any gender biases on salary.

Feature Engineering

Droping Uncessary Columns

```
In [49]:
```

df.drop(columns = ['marital-status', 'relationship', 'native-country'], inplace=True)

Handling missing values

```
In [50]:
```

```
df.isna().sum()
Out[50]:
                               0
age
                            2799
workclass
fnlwgt
                               0
education
                               0
education-num
                               0
                            2809
occupation
                               0
race
                               0
sex
                               0
capital-gain
capital-loss
                               0
hours-per-week
                               0
salary
native-country-summary
                               0
marital-status-summary
                               0
dtype: int64
```

Since both workclass and occupation are categorical feature, we'll try to impute it with mode.

```
In [51]:

df = df.fillna(df.mode().iloc(0))
```

```
In [52]:
```

```
df.isna().sum()
```

Out[52]:

age	0
workclass	0
fnlwgt	0
education	0
education-num	0
occupation	0
race	0
sex	0
capital-gain	0
capital-loss	0
hours-per-week	0
salary	0
native-country-summary	0
marital-status-summary	0
dtype: int64	

Handling Outliers

Interquartile Range Method(IQR) method

In [53]:

```
plt.figure(figsize=(10, 10))
for i, col in enumerate(numeric_features):
    plt.subplot(3, 2, i+1)
    sns.boxplot(x=df[col], color='indianred')
    plt.xlabel(col, weight='bold')
    plt.tight_layout()
```


In [54]:

```
df1 = df.copy()
def remove_outliers_IQR(col):
    # Finding the IQR
    percentile25 = df1[col].quantile(0.25)
    percentile75 = df1[col].quantile(0.75)
    iqr = percentile75 - percentile25
    upper_limit = percentile75 + 1.5 * iqr
    lower_limit = percentile25 - 1.5 * iqr
    df1[col] = np.where(df1[col]>upper_limit, upper_limit, np.where(df1[col]<lower_limit = return df1[df1[col] > upper_limit]
```

In [55]:

```
for col in numeric_features:
    remove_outliers_IQR(col)
```

```
In [56]:
```

```
plt.figure(figsize=(10, 10))
for i, col in enumerate(numeric_features):
    plt.subplot(3, 2, i+1)
    sns.boxplot(x=df1[col], color='indianred')
    plt.xlabel(col, weight='bold')
    plt.tight_layout()
```



```
In [57]:
```

```
df = df1.copy()
```

Checking normal distribution

QQ-plot

In [58]:

```
from scipy import stats
def plot_qq_plot(column):
    plt.figure(figsize=(14,4))
    plt.subplot(121)
    sns.distplot(df[column])
    plt.title("{} PDF".format(column))
    plt.subplot(122)
    stats.probplot(df[column], dist="norm", plot=plt)
    plt.title('{} QQ Plot'.format(column))
    plt.show()
for col in numeric_features:
    plot_qq_plot(col)
```


Report

· Some features are not normally distributed.

In [59]:

```
from sklearn.preprocessing import PowerTransformer
def power_plots(df,var,t):
    plt.figure(figsize=(13,5))
    plt.subplot(121)
    sns.kdeplot(df[var])
    plt.title('before ' + str(t))
    plt.subplot(122)
    p1 = t.fit_transform(df[[var]]).flatten()
    sns.kdeplot(p1)
    plt.title('After ' + str(t))
for col in numeric_features:
    power_plots(df,col,PowerTransformer())
```


In [60]:

```
data=pd.get_dummies(df,drop_first=True)
data.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 48813 entries, 0 to 48841
Data columns (total 51 columns):

#	Column	Non-Null Count	Dtype
0	age	48813 non-null	float64
1	fnlwgt	48813 non-null	float64
2	education-num	48813 non-null	float64
3	capital-gain	48813 non-null	float64
4	capital-loss	48813 non-null	float64
5	hours-per-week	48813 non-null	float64
6	workclass Federal-gov	48813 non-null	uint8
7	workclass_ Local-gov	48813 non-null	uint8
8	workclass_ Never-worked	48813 non-null	uint8
9	workclass_ Private	48813 non-null	uint8
10	workclass_ Self-emp-inc	48813 non-null	uint8
11	workclass_ Self-emp-not-inc	48813 non-null	uint8
12	workclass State-gov	48813 non-null	uint8
13	workclass_ Without-pay	48813 non-null	uint8
14	education 11th	48813 non-null	uint8
15	education_ 12th	48813 non-null	uint8
16	education_ 1st-4th	48813 non-null	uint8
17	education_ 5th-6th	48813 non-null	uint8
18	education_ 7th-8th	48813 non-null	uint8
19	education_ 9th	48813 non-null	uint8
20	education_ Assoc-acdm	48813 non-null	uint8
21	education_ Assoc-voc	48813 non-null	uint8
22	education_ Bachelors	48813 non-null	uint8
23	education_ Doctorate	48813 non-null	uint8
24	education_ HS-grad	48813 non-null	uint8
25	education_ Masters	48813 non-null	uint8
26	education_ Preschool	48813 non-null	uint8
27	education_ Prof-school	48813 non-null	uint8
28	education_ Some-college	48813 non-null	uint8
29	occupation_ Adm-clerical	48813 non-null	uint8
30	occupation_ Armed-Forces	48813 non-null	uint8
31	occupation_ Craft-repair	48813 non-null	uint8
32	occupation_ Exec-managerial	48813 non-null	uint8
33	occupation_ Farming-fishing	48813 non-null	uint8
34	occupation_ Handlers-cleaners	48813 non-null	uint8
35	occupation_ Machine-op-inspct	48813 non-null	uint8
36	occupation_ Other-service	48813 non-null	uint8
37	occupation_ Priv-house-serv	48813 non-null	uint8
38	occupation_ Prof-specialty	48813 non-null	uint8
39	occupation_ Protective-serv	48813 non-null	uint8
40	occupation_ Sales	48813 non-null	uint8
41	occupation_ Tech-support	48813 non-null	uint8
42	occupation_ Transport-moving	48813 non-null	uint8
43	race_ Asian-Pac-Islander	48813 non-null	uint8
44	race_ Black	48813 non-null	uint8
45	race_ Other	48813 non-null	uint8
46	race_ White	48813 non-null	uint8
47	sex_ Male	48813 non-null	uint8
48	salary_ >50K	48813 non-null	uint8
49	native-country-summary_US	48813 non-null	uint8
50	marital-status-summary_Single	48813 non-null	uint8

```
dtypes: float64(6), uint8(45)
memory usage: 5.7 MB

In [61]:

X = data.drop('salary_ >50K',axis=1)
y = data['salary_ >50K']
```

Handling Imbalance Data

```
In [62]:
```

```
from imblearn.combine import SMOTETomek

# Resampling the minority class. The strategy can be changed as required.
smt = SMOTETomek(random_state=42,sampling_strategy='minority',n_jobs=-1)
# Fit the model to generate the data.
X_res, y_res = smt.fit_resample(X, y)
```

Model Training

```
In [63]:
```

In [64]:

```
# Create a function which can evaluate models and return a report
def evaluate models(X, y, models):
    This function takes in X and y and models dictionary as input
    It splits the data into Train Test split
    Iterates through the given model dictionary and evaluates the metrics
    Returns: Dataframe which contains report of all models metrics with cost
    # separate dataset into train and test
    X train, X test, y train, y test = train test split(X,y,test size=0.2,random sta
   cost_list=[]
    models_list = []
    accuracy list = []
    for i in range(len(list(models))):
       model = list(models.values())[i]
       model.fit(X train, y train) # Train model
        # Make predictions
       y train pred = model.predict(X train)
       y test pred = model.predict(X test)
        # Training set performance
       model train accuracy, model train f1, model train precision, \
       model train recall, model train rocauc score=evaluate clf(y train ,y train pr
        # Test set performance
       model test accuracy, model test f1, model test precision, \
       model test recall, model test rocauc score=evaluate clf(y test, y test pred)
       print(list(models.keys())[i])
       models list.append(list(models.keys())[i])
       print('Model performance for Training set')
       print("- Accuracy: {:.4f}".format(model train accuracy))
       print('- F1 score: {:.4f}'.format(model train f1))
       print('- Precision: {:.4f}'.format(model_train_precision))
       print('- Recall: {:.4f}'.format(model_train_recall))
       print('- Roc Auc Score: {:.4f}'.format(model train rocauc score))
       print('----')
       print('Model performance for Test set')
       print('- Accuracy: {:.4f}'.format(model test accuracy))
       print('- F1 score: {:.4f}'.format(model_test_f1))
       print('- Precision: {:.4f}'.format(model test precision))
       print('- Recall: {:.4f}'.format(model test recall))
       print('- Roc Auc Score: {:.4f}'.format(model test rocauc score))
       print('='*35)
       print('\n')
```

In [65]:

```
# Dictionary which contains models for experiment
models = {
    "Random Forest": RandomForestClassifier(),
    "Decision Tree": DecisionTreeClassifier(),
    "Gradient Boosting": GradientBoostingClassifier(),
    "Logistic Regression": LogisticRegression(),
    "K-Neighbors Classifier": KNeighborsClassifier(),
    "XGBClassifier": XGBClassifier(),
    "CatBoosting Classifier": CatBoostClassifier(verbose=False),
    "AdaBoost Classifier": AdaBoostClassifier()
}
```

In [66]:

```
evaluate_models(X_res, y_res, models)
```

In [67]:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X_res, y_res, test_size=0.20, rand)
```

```
In [68]:
```

```
xgb model = XGBClassifier(
    objective= 'binary:logistic',
    nthread=4,
    seed=42
)
#brute force scan for all parameters, here are the tricks
#usually max depth is 6,7,8
#learning rate is around 0.05, but small changes may make big diff
#tuning min child weight subsample colsample bytree can have
#much fun of fighting against overfit
#n estimators is how many round of boosting
#finally, ensemble xgboost with multiple seeds may reduce variance
parameters = {
    'max depth': [6],
    'n estimators': [5000],
    'learning rate': [0.05]
}
skf=StratifiedKFold(n_splits=5, shuffle=True)
clf = GridSearchCV(xgb_model, parameters, n_jobs=10,
                   cv=skf.get n splits(y train),
                   scoring='roc auc',
                   verbose=True, refit=True)
clf.fit(X train, y train)
```

Fitting 5 folds for each of 1 candidates, totalling 5 fits

Out[68]:

```
► GridSearchCV
► estimator: XGBClassifier
► XGBClassifier
```

In [69]:

```
Clf.best_params_
Out[69]:
{'learning rate': 0.05, 'max depth': 6, 'n estimators': 5000}
```

In [70]:

```
final_model=clf.best_estimator_
y_pred = final_model.predict(X_test)
```

In [76]:

```
model test accuracy, model test f1, model test precision, model test recall, model test
```

In [77]:

```
print('Model performance for Test set')
print('- Accuracy: {:.4f}'.format(model_test_accuracy))
print('- F1 score: {:.4f}'.format(model_test_f1))
print('- Precision: {:.4f}'.format(model_test_precision))
print('- Recall: {:.4f}'.format(model_test_recall))
print('- Roc Auc Score: {:.4f}'.format(model_test_rocauc_score))
```

```
Model performance for Test set
- Accuracy: 0.9010
- F1 score: 0.8999
- Precision: 0.9086
- Recall: 0.8913
- Roc Auc Score: 0.9010
```

In [73]:

```
#Saving the model
import pickle
with open('../artifacts/model.pkl', 'wb') as files:
    pickle.dump(final_model, files)
```

In []: