6

- 1. Sprawdzić, czy formuła zdaniowa $((p \lor q) \land (p \Rightarrow q)) \Rightarrow (q \Rightarrow p)$ jest tautologią.
- 2. Formułę zdaniową $(p \lor q) \Rightarrow (p \land q)$ zapisać za pomocą funktora NAND (czyli za pomocą kreski Sheffera). Przedstawić poszczególne etapy dochodzenia do ostatecznej postaci.
- 3. Zbadać formalną poprawność następującego rozumowania: $Gdyby\ Jan\ byt\ rycerzem,\ to\ bytby\ odważny.\ Lecz\ Jan\ nie\ jest\ rycerzem.\ Zatem\ Jan\ jest\ tchórzem.$
- 4. Czy dla dowolnych zbiorów A, B i C prawdziwa jest równość $(A \cup B \cup C) \setminus (A \cup B) = C$? Uzasadnić swoje stwierdzenie. Podać odpowiedni przykład.
- 5. Formalnie wykazać, że dla dowolnych zbiorów A, B i C prawdziwa jest równość $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$.

6. Indukcyjnie wykazać, że liczba $x_n = 5 \cdot 7^{2n+2} + 2^{3n}$ jest podzielna przez 41 dla każdej liczby $n \in \mathbb{N}$.

7. Udowodnić, że dla każdej liczby naturalnej $n \ge 66$ istnieją <u>liczby naturalne</u> x_n i y_n , takie że $n = 7 \cdot x_n + 12 \cdot y_n$.

6

10. Dane są funkcje $f: A \to B$ i $g: B \to C$. Wykazać, że jeśli f i g są różnowartościowe, to także funkcja $g \circ f: A \to C$ jest różnowartościowa. Czy z faktu, że funkcja $g \circ f: A \to C$ jest różnowartościowa wynika, że funkcje f i g są różnowartościowe? Podać odpowiedni przykład.

11. Dany jest zbiór częściowo uporządkowany (X, \leq) oraz podzbiory A i B zbioru X. Zapisać symbolicznie (korzystając z kwantyfikatorów) następujące zdania: (a) W X nie ma elementu minimalnego. (b) Żaden element B nie ogranicza z dołu zbioru A. (c) B jest zbiorem wszystkich elementów minimalnych w X.

6

12. Podać definicję bijekcji. Podać przykład bijekcji f odwzorowującej zbiór $N = \{0, 1, 2, 3, \ldots\}$ w zbiór $M = \{5, 10, 15, \ldots\}$. Wykazać, że podany przykład funkcji f faktycznie jest bijekcją.