Let X be a discrete random variable with PMF:

$$P(X = x) = \begin{cases} 0.2 & \text{if } x = -2 \\ 0.3 & \text{if } x = 0 \\ 0.5 & \text{if } x = 1 \\ 0 & \text{otherwise} \end{cases}$$

Let
$$Y = 3X + 2$$

Compute $E\left[Y\right]$ and $var\left(Y\right)$. State your answers as decimals with 2 decimal precision. Use dot (.) as a decimal separator.

$$E[Y] =$$

Check Answer

Let X and Y be continuous random variables with joint PDF:

$$f_{X,Y}(x,y) = egin{cases} 3x, & 0 < x < 1, 0 < y < x \ 0, & ext{otherwise} \end{cases}$$

Find the conditional expectation $E\left[Y|X=x\right]$ for $x\in\left(0,1\right)$. State your answer as an irreducible fraction.

$$E[Y|X=x] = \frac{x}{ }$$

A radioactive particle detector receives on average 5 hits per minute, modeled by a Pois	son process.
What is the probability that the detector records 5 or more hits in 2 minutes?	
State your answers as decimals with 4 decimal precision. Use dot (.) as a decimal separ	rator.
	Check Answer

Consider the following state transition diagram for a given Markov chain for states $S=\{1,\ 2,\ 3\}.$

Compute the probability of transitioning from state 1 to 3 in two steps. State your answers as decimals with 2 decimal precision. Use dot (.) as a decimal separator.

	sample size of 36 samples from a normal distribution gives $ar x=105$ and $\sigma=12$ mean is different from 100 at $lpha=0.05$.	Test whether the
State you	r answers as decimals with 2 decimal precision. Use dot (.) as a decimal separator.	
a. Calcul	te $ z_{test} $ and $ z_{crit} $.	
$ z_{test} = \!\! igg[$		
$ z_{crit} = $		
		Check Answer
b. Base	d on these values, the hypothesis is:	
Α	Rejected since $ z_{test} > z_{crit} $	
В	Rejected since $ z_{test} < z_{crit} $	
С	Not rejected since $ z_{test} > z_{crit} $	
D	Not rejected since $ z_{test} < z_{crit} $	
		Check Answer

Let $X,Y\sim \mathcal{N}(0,1)$ be independent.

Let
$$A=X^2$$
 and $B=Y^2-1$.

Calculate $cov\left(A,B\right)$. State your answers as integer.

$$cov\left(A,B\right) =$$

Let $f(x,y) = 24x^2y$ for $0 \le x \le 1, 0 \le y \le 1 - x$.

a. Calculate $E\left[XY\right]$. State your answers as decimals with 4 decimal precision. Use dot (.) as a decimal separator.

Check Answer

b. Calculate the marginal PDFs of x and y. Fill in the answers with non-negative integers.

$$f_x(x) = x \left(-x \right)$$

Check Answer

$$f_{y}\left(y
ight) = y \left(y - y\right)$$

weights (in	ontrol engineer is inspecting the weight of cereal boxes. A random sample of 16 begrams) are measured. The sample mean weight is found to be $\bar{x}=502$ grams, as $s=4$ grams. Assume the weights of the cereal boxes are normally distributed.	
	ot a 95% confidence interval for the true mean weight μ of all cereal boxes. State vecision. Use dot (.) as a decimal separator. Form your answer as [lower, upper].	your interval limits with 3
[
		Check Answer
	of the following statements best interprets the 95% confidence interval	I [lower (L), upper
Α	There is a 95% probability that the sample mean \bar{x} lies between L and U.	
В	If we were to take many random samples and construct a 95% confidence interval approximately 95% of those intervals would contain the true population mean μ .	
С	95% of all cereal boxes have weights that lie between L and U.	
D	There is a 95% probability that the true population mean μ is exactly equal to the	e sample mean $ar{x}$.
		Check Answer
	ain a narrower confidence interval using the same sample data ($n=1$ eer should:	$6, ar{x} = 502, s = 4$),
Α	Use a higher confidence level (e.g., 99%).	
В	Use a lower confidence level (e.g., 90%).	
С	Increase the sample standard deviation.	
D	It's impossible to make the interval narrower without changing the sample data.	
		Check Answer

A basketball player makes free throws with a probability of $P=0.7$. Assume each free throw attempt is
independent. Let X be the number of attempts until the player makes their first successful free throw.

State both your answers with 3 decimal precision. Use dot (.) as a decimal separator.

a. What is the probability that the player makes their first successful free throw on their 3rd attempt?

$$P(X=3) =$$

Check Answer

b. What is the expected number of attempts until the first successful free throw?

$$E[X] =$$

Let $N_1(t)$ and $N_2(t)$ be two independent Poisson processes with rates $\lambda_1=1$ and $\lambda_2=1$, respectively. Define the merged process $N(t)=N_1(t)+N_2(t).$ State all inputs as positive integers such that the answers are irreducible fractions.

a. Given that N(3)=3, find

$$P\left(N_{1}(3)=1\mid N(3)=3
ight) \ =rac{\square}{\square}$$

Check Answer

b. Given that N(4)=5, find

ave been obtained?
Check Answer

Let X and Y be independent random variables with

- $X \sim \text{Poisson}(2)$,
- $Y \sim \text{Geometric}(p = 1/3)$.

Let Z=2X+3Y. Find E[Z] and $\mathrm{Var}(Z)$. State both answers as positive integers

$$E[Z] = igcap ext{and } Var(Z) = igcap ext{}$$