Exercice 1. Théorie des graphes.

Q1. pas de boucles: $\forall x \in \neg R(x,x)$ mon-orienté: $\forall x \forall y \quad R(x,y) \longleftrightarrow R(y,x)$. (l'implication simple suffit).

D'où M'(Graphen non-enientés simples) = $\{ \forall x \neg R(x,x), \forall x \forall y R(x,y) \hookrightarrow R(y,x) \}$.

Q2. On pose J'= J qui est une théorie sur l'= L.

Q3. $V_n = V_{x_1} ... V_{x_{m-1}} (R(a, x_1) \wedge R(x_1, x_2) \wedge ... \wedge R(x_{n_1}, b))$

Q.L. Qui. On considère G=(V,E) décrit ai-amous. Soit $N=\max\{\{n_1,...,n_k\}+1\}$.

a x x x b

Il out commerce, simple, mon-orienté et mon-viole.

Et, pour tout i e (1, k), il n'y
a pas de chemins de long
no entre a et b dans 6.

Q5. Soit T2A une théorie des grophes connexes.

On pose J' = July nen"?

Toute partie finnie de J'est satirficulale.

Par compacifé, on a que J est satirficulale. Absurde con soul un graphe vide satirfait J'.

Exercice 2. Langage sans fonction.
Q1. Pou récusseure sur on, montions que.
$\forall x_1 \cdots \forall x_n \exists y_1 \cdots \exists y_k A[x_1, \dots, x_n, y_2, \dots, y_k]$
est un théorème sti elle est soutirfaite dans toute interprétation de ronde au plus n+m.
Ψ
● Pour n=0, Jy Jy A[y1,,4] est un théorème soi
y M modèle, de, M,e ≠ q
Si en a un modèle de card > m, en peut le décomposer en modèles
ole and & k. pan dénombrement.
D'et l'équivalence.
Q2. Dans $b = 1c_1,, c_m, f, = 3$,
on considuce $A = \{(y_1, y_2) = \{(y_2, y_1) \land \neg (y_4 = y_2) \land \bigwedge_{\lambda = 3} (y_i = y_{i+2}) \}$
Dans le modèle
M: 40,17, for= xon, c; = 0
la formule A est fourse.

Exercice 3. Wensité.
Q1. On a (D, <) et (R, <) qui sont non-isomorphes.
Soif V:= Vx, ∃y r(x,y).
Dans (R, L), la formule l'est verifiée Dans ([0,1], L) la formule l'ne l'est pas.
Dans ([0,1], <) la formule l'ne l'est pas.
D'où In'est pous complète.
Q3. Soit un modifie et.
Soient a, y e lett tels que 2 cy (pon Az).
Construisons pou récurrence des éléments de 01.
a AM COM MEMBE CURE on all
on commence over or, y
pan Ay, et comme x < y, il existe zy to x < z < y
pon A4, x 25,
Si welx, y, zz, alow pon Az et Az on a une absurdite
D'ai I n'admet pas de modèle gini.
in soone pro so mosac a juni.
Q4. $J_1: (113, 4)$ $J_2: (114, 4)$
$\mathcal{J}_{s}: \left(\frac{1}{1}, \frac{1}{2}, \frac{1}{2}\right)$
[] (30, 1 3, 4)