2. Blonde ray (Raja brachyura)

Sensitivity Assessment

Table A11.2. Sensitivity assessment for blonde ray (*Raja brachyura*). Associated sectors include activities related to offshore renewable energy (O), Fishing (F), or shipping (S). NR = not relevant, NA = not assessed, NEv = no evidence, H = high, M = medium, L = low, NS = not sensitive.

Pressures		Associated	Resistance				Resilience				Sensitivity				References
Classification	Pressure type	sector(s)	Score	QoE	AoE	DoC	Score	QoE	AoE	DoC	Score	QoE	AoE	DoC	nerer en eus
Physical	Physical loss (to land or freshwater habitat)	0	М	L	L	NR	М	L	L	NR	М	L	L	NR	-
	Physical change (to another seabed type)	O, F	М	L	L	NR	M	L	L	NR	M	L	L	NR	-
	Physical change (to another sediment type)	O, F	М	М	Н	NR	Н	М	Н	NR	L	М	Н		6, 8, 10, 15, 16, 18, 19
	Habitat structure change-removal of substratum (extraction)	0	М	М	Н	NR	NEv	М	Н	NR	L	М	Н	NR	5, 18
	Abrasion/disturbance of substratum surface or seabed	O, F	NEv	NR	NR	NR	NEv	NR	NR	NR	NEv	NR	NR	NR	-

Pressures		Associated	Resistance				Resilience				Sensitivity				References
Classification	Pressure type	sector(s)	Score	QoE	AoE	DoC	Score	QoE	AoE	DoC	Score	QoE	AoE	DoC	
	Penetration or disturbance of substratum subsurface	O, F	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	-
	Changes in suspended solids (water clarity)	O, F	NEv	NR	NR	NR	NEv	NR	NR	NR	NEv	NR	NR	NR	-
Physical	Smothering and siltation changes (light)	0	NEv	NR	NR	NR	NEv	NR	NR	NR	NEv	NEv	NR	NR	-
	Smothering and siltation changes (heavy)	0	М	L	L	NR	М	L	L	NR	М	М	L	L	-
	Underwater noise	O, F, S	Н	L	L	NR	Н	L	L	NR	NS	Н	L	L	-
	Electromagnetic energy	0	NEv	NR	NR	NR	NEv	NR	NR	NR	NEv	NEv	NR	NR	-
	Barrier to species movement	O, F	M	L	L	NR	Н	L	L	NR	L	М	L	L	-
	Death or injury by collision	O, F, S	NEv	NR	NR	NR	NEv	NR	NR	NR	NEv	NEv	NR	NR	-
Hydrological	Water flow changes	0	М	L	М	NR	Н	L	М	NR	L	L	М	NR	6, 7

Appendix 11 Sensitivity Analyses - 2 Blonde Ray

Pressures		Associated	Resistance				Resilience				Sensitivity				References
Classification	Pressure type	sector(s)	Score	QoE	AoE	DoC	Score	QoE	AoE	DoC	Score	QoE	AoE	DoC	nore: endes
Chemical	Transition elements & organo-metal contamination	O, F, S	NEv	L	M	NR	Н	L	М	NR	Sensitive	NEv	L	М	-
	Hydrocarbon & PAH contamination	O, F, S	NEv	L	М	NR	Н	L	М	NR	Sensitive	L	М	NR	-
	Synthetic compound contamination	O, F, S	NEv	NR	NR	NR	NEv	NR	NR	NR	NEv	NR	NR	NR	-
	Introduction of other substances	O, F, S	NEv	NR	NR	NR	NEv	NR	NR	NR	NEv	NR	NR	NR	-
	Deoxygenation	0	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	-
Biological	Introduction or spread of invasive non-indigenous species	O, F, S	NEv	NR	NR	NR	NEv	NR	NR	NR	NEv	NR	NR	NR	-
	Removal of target species	F	L	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	1, 3, 4, 6, 9, 14, 15, 17, 20, 21
	Removal of non-target species	F	L	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	2, 5, 11, 12, 13, 14, 15, 17, 18, 21

References for sensitivity assessment

- Alonso-Fernández, A., Mucientes, G., & Villegas-Ríos, D. (2022). Discard survival of coastal elasmobranchs in a small-scale fishery using acoustic telemetry and recapture data.
 Estuarine, Coastal and Shelf Science, 276, 108037.

 https://doi.org/10.1016/j.ecss.2022.108037
- Catalano, B., Dalu, M., Scacco, U., & Vacchi, M. (2007). New biological data on *Raja brachyura* (Chondrichthyes, Rajidae) from around Asinara Island (NW Sardinia, Western Mediterranean). *Italian Journal of Zoology*, 74, 55–61. https://doi.org/10.1080/11250000600831600
- 3. Biton-Porsmoguer, S., & Lloret, J. (2020). Potential impacts of bottom trawling on species of skates (Rajiformes: Rajidae): the case of the Gulf of Cadiz and the Western Mediterranean. *Cybium*, 44, 255–263. https://doi.org/10.26028/cybium/2020-443-006
- 4. Porcu, C., Bellodi, A., Cannas, R., Marongiu, M., Mulas, A., & Follesa, M. (2015). Life-history traits of the commercial blonde ray, *Raja brachyura*, from the central-western Mediterranean Sea. *Mediterranean Marine Science*, 16, 90–102. https://doi.org/10.12681/mms.898
- Figueiredo, I., Moura, T., Bordalo-Machado, P., Neves, A., Rosa, C., & Gordo, L. (2007).
 Evidence for temporal changes in ray and skate populations in the Portuguese coast (1998-2003) its implications in the ecosystem. *Aquatic Living Resources*, 20, 85–93.
 https://doi.org/10.1051/alr:2007019
- Quero, J. (1998). Changes in the Euro-Atlantic fish species composition resulting from fishing and ocean warming. *Italian Journal of Zoology*, 65, 493–499. https://doi.org/10.1080/11250009809386873
- 7. Dedman, S., Officer, R., Brophy, D., Clarke, M., & Reid, D. (2017a). Advanced spatial modeling to inform management of data-poor juvenile and adult female rays. *Fishes*, 2(3), 12. https://doi.org/10.3390/fishes2030012
- 8. Dedman, S., Officer, R., Brophy, D., Clarke, M., & Reid, D. (2017b). Towards a flexible decision support tool for MSY-based Marine Protected Area design for skates and rays. *ICES Journal of Marine Science*. 74, 576–587. https://doi.org/10.1093/icesjms/fsw147
- 9. Biton-Porsmoguer, S. (2020). Fisheries and ecology of the Skates (Rajiformes: Rajidae) in the English Channel. *Vie le Et Milieu-Life and Environment*, 70, 133–140.

10. Farias, I., Figueiredo, I., Moura, T., Gordo, L., Neves, A., & Serra-Pereira, B. (2006). Diet comparison of four ray species (*Raja clavata*, *Raja brachyura*, *Raja montagui* and *Leucoraja naevus*) caught along the Portuguese continental shelf. *Aquatic Living Resources*, 19, 105–114.

https://doi.org/10.1051/alr:2006010

- Machado, P., Gordo, L., & Figueiredo, I. (2004). Skate and ray species composition in mainland Portugal from the commercial landings. *Aquatic Living Resources*, 17, 231–234. https://doi.org/10.1051/alr:2004015
- 12. Marandel, F., Lorance, P., & Trenkel, V. (2019). Determining long-term changes in a skate assemblage with aggregated landings and limited species data. *Fisheries Management and Ecology*, 26, 365–373. https://doi.org/10.1111/fme.12367
- Dedman, S., Officer, R., Brophy, D., Clarke, M., & Reid, D. (2015). Modelling abundance hotspots for data-poor Irish Sea rays. Ecological Modelling, 312, 77–90. https://doi.org/10.1016/j.ecolmodel.2015.05.010
- 14. Ellis, J., Morel, G., Burt, G., & Bossy, S. (2011). Preliminary observations on the life history and movements of skates (Rajidae) around the Island of Jersey, western English Channel. *Journal of the Marine Biological Association of the United Kingdom*, 91, 1185–1192. https://doi.org/10.1017/S0025315410001906
- 15. Serra-Pereira, B., Erzini, K., Maia, C., & Figueiredo, I. (2014). Identification of potential essential fish habitats for skates based on fishers' knowledge. *Environmental Management*, 53, 985–998.

https://doi.org/10.1007/s00267-014-0257-3

https://doi.org/10.1016/j.fishres.2021.106028

- Porcu, C., Marongiu, M., Bellodi, A., Cannas, R., Cau, A., Melis, R., Mulas, A., Soldovilla, G., Vacca, L., & Follesa, M. (2017) Morphological descriptions of the eggcases of skates (Rajidae) from the central-western Mediterranean, with notes on their distribution. *Helgoland Marine Research*, 71. https://doi.org/10.1186/s10152-017-0490-2
- 17. Amelot, M., Batsleer, J., Foucher, E., Girardin, R., Marchal, P., Poos, J., & Sys, K. (2021). Evidence of difference in landings and discards patterns in the English Channel and North Sea Rajidae complex fishery. *Fisheries Research*, 242, 106028.

18. Phillips, S., Scott, F., & Ellis, J. (2015). Having confidence in productivity susceptibility analyses: A method for underpinning scientific advice on skate stocks? *Fisheries Research*, 171, 87–100.

https://doi.org/10.1016/j.fishres.2015.01.005

- 19. Simpson, S., Humphries, N., & Sims, D. (2021). Habitat selection, fine-scale spatial partitioning and sexual segregation in Rajidae, determined using passive acoustic telemetry.

 Marine Ecology Progress Series, 666, 115–134. https://doi.org/10.3354/meps13701
- Simpson, S., Humphries, N., & Sims, D. (2020). The spatial ecology of Rajidae from mark-recapture tagging and its implications for assessing fishery interactions and efficacy of Marine Protected Areas. *Fisheries Research*, 228, 105569.
 https://doi.org/10.1016/j.fishres.2020.105569
- 21. Thys, K.J.M., Lemey, L., & Bogaert, N.V. (2023). Blondes do it better? A comparative study on the morphometry and life-history traits of commercially important skates blonde ray *Raja brachyura*, thornback ray *Raja clavata*, and spotted ray *Raja montagui*, with management implications. *Fisheries Research*, 263, 106679. https://doi.org/10.1016/j.fishres.2023.106679

Literature search

Web of Science search terms

AB=("blonde ray*" OR "blonde skate*" OR "Raja brachyura" OR "R. brachyura") AND AB=("angl*" OR "beam" OR "bottom trawl*" OR "by-catch" OR "dredge*" OR "fish*" OR "gear" OR "gillnet*" OR "hook*" OR "injury" OR "net*" OR "otter trawl*" OR "remov*" OR "aggregate*" OR "anchor*" OR "ballast" OR "barrier*"OR "beach*" OR "launch*" OR "moor*" OR "noise" OR "ship*" OR "steaming" OR "collision*" OR "construction" OR "electro*" OR "turbine*"OR "renewable*" OR "wave" OR "wind" OR "wind farm*" OR "anoxia" OR "copper" OR "current*" OR "deoxy*" OR "disease*" OR "disturbance" OR "endocrine disru*" OR "eutrophication" OR "exposure" OR "heavy metals" OR "hydrocarbon" OR "hypoxia" OR "litter*" OR "non-native*" OR "nitrate*" OR "nitrite*" OR "noise" OR "radionuclide" OR "nutrient*" OR "oil" OR "PAH*" OR "PCB*" OR "regime" OR "sedimentation" OR "silt*" OR "tributyltin" OR "turbid*")

Search date

1st March 2023 - 28 results

8th February 2024 - 29 results

https://www.webofscience.com/wos/woscc/summary/0b00f8f6-ddbe-4cb9-afad-dc14d8527a84-74aadd4e/relevance/1

Search output and screening process

Abstracts screened for relevance i.e. must describe porbeagle sharks and mention of one of the listed sectors and/or pressures from MarESA. Workflow follows the Rapid Evidence Assessment approach. The title and all auxiliary information (including abstract) were downloaded from ISI Web of Science in a .ris and excel format. In Excel, abstracts were read and listed to either pass or fail the initial screening process with a reason provided.

Outcome from screening

March 2023

Of the 28 articles, 25 (89%) passed initial screening. Of these 25, three (12%) were excluded during secondary screening for relevance, and one (4%) text was unavailable. In total, 20 papers were used to conduct the subsequent sensitivity assessment.

February 2024

Of the 28 articles, 26 (93%) passed initial screening. Of these 25, three (12%) were excluded during secondary screening for relevance, and one (4%) text was unavailable. In total, 21 papers were used to conduct the subsequent sensitivity assessment.