题号	_	=	=	四	五	六	七	八	九	+	总分
得分											

一、 单项选择题(每小题3分,共15分)

11、设 $f'(x_0)$ 存在,则 $\lim_{h\to 0} \frac{f(x_0-h)-f(x_0)}{h} =$

- (A) $f'(x_0)$ (B) $2f'(x_0)$ (C) $-f'(x_0)$ (D) $-2f'(x_0)$

】2、设 $f(x)=1-\cos x$, $g(x)=x^2$, 则当 $x\to 0$ 时

- (A) f(x) 是比 g(x) 高阶的无穷小 (B) f(x) 是比 g(x) 低阶的无穷小
- (C) f(x) 与g(x) 是同阶但非等价的无穷小(D) f(x) 与g(x) 是等价无穷小

】3、 对于 $\int_a^b \frac{dx}{(x-a)^p}$, 下列说法正确的是

- (A) p>1 时收敛, p≤1 时发散
 (B) p≥1 时收敛, p<1 时发散
 (C) p≤1 时收敛, p>1 时发散
 (D) p<1 时收敛, p≥1 时发散

】4、 设F(x)是f(x)的一个原函数,则下列结论正确的是

- (A) $\frac{d}{dx} \left[\int f(x) dx \right] = F(x)$
- (B) $\int dF(x) = f(x) + C$

】5、 设 $f(x) = \begin{cases} x^2 \sin{\frac{1}{x}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$,则 f(x) 在 x = 0 处

- (A) 连续且可导
- (B) 连续但不可导
- (C) 不连续

(D) 左右导数都存在但不相等

- 1. $\lim_{x\to 0} (1+2x)^{\frac{1}{x}} =$ _____.
- 2. 设 $y = x^2 e^{2x}$,则 $dy = _____$.
- 3. 方程 y" + y = 0 的通解为______
- 4. $\int \frac{dx}{3x+2} =$ _____.
- 5. $\int_0^a \sqrt{a^2 x^2} dx = \underline{\hspace{1cm}}$

三、计算题 | (每小题 6 分, 共 12 分)

1. 求极限 $\lim_{x\to 0} \frac{\int_{\cos x}^{1} e^{-t^2} dt}{r^2}$.

得分

二、填空题(每小题3分,共15分)

江

专业班级

得分

四、计算题(II)(每小题 6 分, 共 18 分)

得分 五、计算题(III)(每小题 6 分, 共 12 分)

1. 求由方程 $\sin y + xe^y = 0$ 所确定的隐函数 y 的一阶导数 $\frac{dy}{dx}$.

1. 求定积分 $\int_{0}^{1} \frac{dx}{1+e^{x}}$.

2. 求微分方程 $\frac{dy}{dx} + y = e^{-x}$ 的通解.

3. 求不定积分 $\int e^x \cos x dx$.

户

得分

六、 应用题(每小题 7分, 共 14分)

得分 七、 证明题(每小题 7 分, 共 14 分)

1. 证明:设a > b > 0,证明不等式: $\frac{a-b}{a} < \ln \frac{a}{b} < \frac{a-b}{b}$.

内至少存在一点 ξ 使得 $\xi f'(\xi) + f(\xi) = 0$.

- 1. 设曲线 $y = x^2$ 和 $x = y^2$ 所围成的平面图形为 D, 求
 - (1) 平面图形 D 的面积;
 - (2) 平面图形 D 绕 y 轴旋转一周所得旋转体的体积.

2. 设函数 f(x) 在[0,1]上连续, f(x) 在(0,1) 内可导,且 f(1)=0. 证明: 在(0,1)

2. 设一圆锥形蓄水池,深 15 米,口径 20 米,盛满了水.求要把池内的水全部吸出需作多少功?

莊名 .

) <u>-</u>

户

HLY.

M M

专业班级