11.3 最短路问题

Shortest Path Problem

邹术才 2018年11月22日星期四

最短路径 (Shortest Path)

• 最短路径问题: 如果从图中某一顶点(称为源点)到达另一顶点(称为终点)的路径可能不止一条,如何找到一条路径使得沿此路径上各边上的权值总和达到最小。

• 问题解法

- 边上权值非负情形的单源最短路径问题
 - Dijkstra算法
- 边上权值为任意值的单源最短路径问题
 - Bellman-Ford算法
- 所有顶点之间的最短路径
 - Floyd算法

Dijkstra 标号法

• 基本思想: 从起点 V_s 开始,逐步给每一个节点 V_j 标号 [d_j , V_i] 其中 d_j 为起点 V_s 到 V_j 的最短距离 V_i 为该最短路线上的前一个节点

- 算法步骤:
 - ①、给起点V₁标号[0,v1]
 - ②、把顶点集V分成两部分:
 V_A: 已经标号点集

 V_B: 未标号点集
 - ③、考虑所有这样的边(V_i, V_j), 其中 $V_i \in V_A, V_j \in V_B$ 。 挑选其中与起点V1距离最短min{ $d_i + C_{ij}$ }的 V_j ,对 V_j 进行标号
 - ④、重复②③,直至终点Vt标上号[dt,Vt],则dt即为V1到Vt的最短距离,反向追踪可求出最短路

②、把顶点集份表点Ⅴ₁标每[0,风经标号点集

V_B:未标号点集

③、考虑所有这样的边 (V_i,V_j) , 其中 $V_i \in V_A,V_j \in V_B$ 。 挑选其中与起点V1距离最短min $\{d_i + C_{ij}\}$ 的 V_j ,对 V_j 进行标号.

③、考虑所有这样的边 (V_i,V_j) , 其中 $V_i \in V_A,V_j \in V_B$ 。 挑选其中与起点V1距离最短min $\{d_i + C_{ij}\}$ 的 V_j ,对 V_j 进行标号.

Dijkstra算法的矩阵版本

点					W _{ij}			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1, v _j)						
	v ₁	V ₂	V3	V4	V ₅	V ₆	V7	V8	V9	t=1	t=2		t=4	t=5	t=6
v_1	0	6	3	1						0	0	0	0	0	0
		0			1					6	6 —	→ 5	5	5	5
V3		2	0	2						3	3	3	3	3	3
V4				0		10				1	1	1	1	1	1
V ₅				6	0	4	3	6					→ 6	6	6
V ₆					10	0	2				→ 11	11	11 —	→ 10	10
V7							0	4						→ 9	9
V8							0							→ 12	12
V9					2			3	0						

Bellman-Ford算法

- 又称列表法 或者 逐次逼近法:
- 基本思想:如果P是D中的从 V_s 到 V_t 的最短路, V_i 是P中的一个点,那么 V_s 沿着P到 V_i 的路是从 V_s 到 V_i 的最短路。

所以总有如下方程: $d(v_s, v_t) = \min_i \{d(v_s, v_i) + w_{ij}\}$

算法步骤: ① 令 $d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$

②
$$d^{(t)}(v_s, v_j) = \min_{i} \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

③ 当进行到第k步时,有

$$d^{(k)}(v_s, v_j) = d^{(k-1)}(v_s, v_j), j = 1, 2, \dots p$$

则停止迭代,否则回到第②步

(1)
$$\Leftrightarrow d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ _{ij}			
ZVV	V_1	V_2	V ₃	V ₄	V ₅	V ₆	V ₇	V 8
V_1	0	-1	-2	3				
V_2	6	0			2			
V_3		-3	0	-5		1		
V_4				0			2	
V ₅		-1			0			
V ₆					1	0	1	7
V ₇				-1			0	
V 8					-3		-5	0

①
$$\Leftrightarrow d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_{i} \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ _{ij}					d ^(t) (\	,,v _j)	
ZWY	V_1	V_2	V ₃	V ₄	V ₅	V ₆	V 7	V 8	t=1	t=2	t=3	t=4
v_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V_3		-3	0	-5		1			-2	-2	-2	-2
V_4				0			2		3	-7	-7	-7
V ₅		-1			0					1	-3	-3
V ₆					1	0	1	7		-1	-1	-1
V 7				-1			0			5	-5	-5
V 8					-3		-5	0			6	6

①
$$\diamondsuit d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ _{ij}					d ^(t) (\	,,v _j)	
/\\i	V_1	V_2	V ₃	V ₄	V ₅	V ₆	V ₇	V 8	t=1	t=2	t=3	t=4
V_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V_3		-3	0	-5		1			-2	-2	-2	-2
V ₄				0			2		3	-7	-7	-7
V ₅		-1			0					1	-3	-3
V ₆					1	0	1	7		-1	-1	-1
V ₇				-1			0			5	-5	-5
V 8					-3		-5	0			6	6

①
$$\diamondsuit d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ ij					d ^(t) (\	′ ₁ ,v _j)	
/\\\\	V_1	V_2	V ₃	V 4	V 5	V ₆	V 7	V ₈	t=1	t=2	t=3	t=4
V_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V_3		-3	0	-5		1			-2	-2	-2	-2
V ₄				0			2		3	-7	-7	-7
V ₅		-1			0					1	-3	-3
V ₆					1	0	1	7		-1	-1	-1
V ₇				-1			0			5	-5	-5
V 8					-3		-5	0			6	6

①
$$\diamondsuit d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ _{ij}					d ^(t) (\	,,v _j)	
ZWY	V_1	V_2	V ₃	V ₄	V 5	V ₆	V 7	V ₈	t=1	t=2	t=3	t=4
v_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V ₃		-3	0	-5		1			-2	-2	-2	-2
V_4				0			2		3	-7	-7	-7
V ₅		-1			0					1	-3	-3
V ₆					1	0	1	7		-1	-1	-1
V 7				-1			0			5	-5	-5
V 8					-3		-5	0			6	6

①
$$\diamondsuit d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ _{ij}					d ^(t) (\	,,v _j)	
ZWY	V_1	V_2	V ₃	V ₄	V ₅	V ₆	V 7	V ₈	t=1	t=2	t=3	t=4
V_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V ₃		-3	0	-5		1			-2	-2	-2	-2
V_4				0			2		3	-7	-7	-7
V ₅		-1			0					1	-3	-3
V ₆					1	0	1	7		-1	-1	-1
V ₇				-1			0			5	-5	-5
V 8					-3		-5	0			6	6

①
$$\diamondsuit d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ ij					d ^(t) (\	,,v _j)	
Zvvi	V_1	V_2	V ₃	V ₄	V ₅	V ₆	V ₇	V 8	t=1	t=2	t=3	t=4
V_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V_3		-3	0	-5		1			-2	-2	-2	-2
V_4				0			2		3	-7	-7	-7
V ₅		-1			0					1	-3	-3
V ₆					1	0	1	7		-1	-1	-1
V ₇				-1			0			5	-5	-5
V 8					-3		-5	0			6	6

①
$$\Leftrightarrow d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_{i} \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ _{ij}					d ^(t) (\	,,v _j)	
ZWY	V_1	V_2	V ₃	V ₄	V 5	V ₆	V ₇	V 8	t=1	t=2	t=3	t=4
V_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V ₃		-3	0	-5		1			-2	-2	-2	-2
V_4				0			2		3	-7	-7	-7
V ₅		-1			0					1	-3	-3
V ₆					1	0	1	7		-1	-1	-1
V ₇				-1			0			5	-5	-5
V 8					-3		-5	0			6	6

①
$$\Leftrightarrow d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ _{ij}					d ^(t) (\	,,v _j)	
/\\\\	V_1	V_2	V ₃	V ₄	V ₅	V ₆	V 7	V8	t=1	t=2	t=3	t=4
V_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V_3		-3	0	-5		1			-2	-2	-2	-2
V_4				0			2		3	-7	-7	-7
V ₅		-1			0					1	-3	-3
V ₆					1	0	1	7		-1	-1	-1
V ₇				-1			0			5	-5	-5
V 8					-3		-5	0			6	6

①
$$\Leftrightarrow d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ _{ij}					d ^(t) (\	₁ ,v _j)	
Zvvi	V_1	V_2	V ₃	V ₄	V ₅	V ₆	V 7	V ₈	t=1	t=2	t=3	t=4
V_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V ₃		-3	0	-5		1			-2	-2	-2	-2
V_4				0			2		3	-7	-7	-7
V ₅		-1			0					1	-3	-3
V ₆					1	0	1	7		-1	-1	-1
V ₇				-1			0			5	-5	-5
V 8					-3		-5	0			6	6

①
$$\Leftrightarrow d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ _{ij}					d ^(t) (v	,,v _j)	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V_1	V_2	V ₃	V ₄	V ₅	V ₆	V 7	V ₈	t=1	t=2	t=3	t=4
V_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V_3		-3	0	-5		1			-2	-2	-2	-2
V ₄				0			2		3	-7	-7	-7
V ₅		-1			0					1	-3	-3
V ₆					1	0	1	7		-1	-1	-1
V ₇				-1			0			5	-5	-5
V 8					-3		-5	0			6	6

①
$$\diamondsuit d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ ij					$d^{(t)}(v_1,v_j)$				
/\\\\	V_1	V_2	V ₃	V ₄	V 5	V ₆	V ₇	V 8	t=1	t=2	t=3	t=4		
V_1	0	-1	-2	3					0	0	0	0		
V_2	6	0			2				-1	-5	-5	-5		
V ₃		-3	0	-5		1			-2	-2	-2	-2		
V ₄				0			2		3	-7	-7	-7		
V ₅		-1			0					1	-3	-3		
V ₆					1	0	1	7		-1	-1	-1		
V ₇				-1			0			5	-5	-5		
V 8					-3		-5	0			6	6		

①
$$\diamondsuit d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点	W _{ij}								$d^{(t)}(v_1,v_j)$				
/\\\\	V_1	V_2	V ₃	V ₄	V ₅	V ₆	V 7	V 8	t=1	t=2	t=3	t=4	
V_1	0	-1	-2	3					0	0	0	0	
V_2	6	0			2				-1	-5	-5	-5	
V_3		-3	0	-5		1			-2	-2	-2	-2	
V ₄				0			2		3	-7	-7	-7	
V ₅		-1			0					1	-3	-3	
V ₆					1	0	1	7		-1	-1	-1	
V ₇				-1			0			5	-5	-5	
V 8					-3		-5	0			6	6	

①
$$\Leftrightarrow d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点	W _{ij}								$d^{(t)}(v_1,v_j)$				
/\\\\\	V_1	V_2	V ₃	V ₄	V ₅	V ₆	V ₇	V 8	t=1	t=2	t=3	t=4	
V_1	0	-1	-2	3					0	0	0	0	
V_2	6	0			2				-1	-5	-5	-5	
V ₃		-3	0	-5		1			-2	-2	-2	-2	
V ₄				0			2		3	-7	-7	-7	
V ₅		-1			0					1	-3	-3	
V ₆					1	0	1	7		-1	-1	-1	
V ₇				-1			0			5	-5	-5	
V 8					-3		-5	0			6	6	

①
$$\diamondsuit d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ _{ij}					d ^(t) (\	₁ ,v _j)	
/\\\\	V_1	V_2	V ₃	V ₄	V ₅	V ₆	V ₇	V ₈	t=1	t=2	t=3	t=4
V_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V_3		-3	0	-5		1			-2	-2	-2	-2
V_4				0			2		3	-7	-7	-7
V ₅		-1			0					1	-3	-3
V ₆					1	0	1	7		-1	-1	-1
V ₇				-1			0			5	-5	-5
V 8					-3		-5	0			6	6

①
$$\diamondsuit d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ _{ij}					d ^(t) (\	,,v _j)	
/\\\	V_1	V_2	V ₃	V ₄	V ₅	V ₆	V 7	V ₈	t=1	t=2	t=3	t=4
V_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V_3		-3	0	-5		1			-2	-2	-2	-2
V_4				0			2		3	-7	-7	-7
V ₅		-1			0					1	-3	-3
V ₆					1	0	1	7		-1	-1	-1
V ₇				-1			0			5	-5	-5
V 8					-3		-5	0			6	6

①
$$\Leftrightarrow d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ _{ij}					d ^(t) (\	,,v _j)	
/wv	V_1	V_2	V ₃	V ₄	V 5	V ₆	V 7	V ₈	t=1	t=2	t=3	t=4
v_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V_3		-3	0	-5		1			-2	-2	-2	-2
V_4				0			2		3	-7	-7	-7
V ₅		-1			0					1	-3	-3
V ₆					1	0	1	7		-1	-1	-1
V 7				-1			0			5	-5	-5
V 8					-3		-5	0			6	6

①
$$\Leftrightarrow d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ ij					d ^(t) (\	,,v _j)	
/\\\\\	V_1	V_2	V ₃	V ₄	V ₅	V ₆	V 7	V ₈	t=1	t=2	t=3	t=4
v_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V ₃		-3	0	-5		1			-2	-2	-2	-2
V_4				0			2		3	-7	-7	-7
V 5		-1			0					1	-3	-3
V ₆					1	0	1	7		-1	-1	-1
V 7				-1			0			5	-5	-5
V 8					-3		-5	0			6	6

①
$$\Leftrightarrow d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ _{ij}					d ^(t) (v	′ ₁ ,∨ _j)	
ZWY	V_1	V_2	V ₃	V ₄	V ₅	V ₆	V 7	V ₈	t=1	t=2	t=3	t=4
V_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V_3		-3	0	-5		1			-2	-2	-2	-2
V_4				0			2		3	-7	-7	-7
V ₅		-1			0					1	-3	-3
V ₆					1	0	1	7		-1	-1	-1
V ₇				-1			0			5	-5	-5
V 8					-3		-5	0			6	6

①
$$\diamondsuit d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ ij					d ^(t) (\	,,v _j)	
/\\\\\	V_1	V_2	V ₃	V 4	V 5	V ₆	V ₇	V ₈	t=1	t=2	t=3	t=4
V_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V ₃		-3	0	-5		1			-2	-2	-2	-2
V ₄				0			2		3	-7	-7	-7
V ₅		-1			0					1	-3	-3
V ₆					1	0	1	7		-1	-1	-1
V ₇				-1			0			5	-5	-5
V ₈					-3		-5	0			6	6

①
$$\diamondsuit d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ ij					d ^(t) (v	′ ₁ ,∨ _j)	
/\\\\	V_1	V_2	V ₃	V ₄	V 5	V ₆	V 7	V ₈	t=1	t=2	t=3	t=4
V_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V ₃		-3	0	-5		1			-2	-2	-2	-2
V ₄				0			2		3	-7	-7	-7
V 5		-1			0					1	-3	-3
V ₆					1	0	1	7		-1	-1	-1
V ₇				-1			0			5	-5	-5
V ₈					-3		-5	0			6	6

①
$$\diamondsuit d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ _{ij}					d ^(t) (v	′ ₁ ,∨ _j)	
/wv	V_1	V_2	V ₃	V ₄	V ₅	V ₆	V 7	V ₈	t=1	t=2	t=3	t=4
V_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V_3		-3	0	-5		1			-2	-2	-2	-2
V_4				0			2		3	-7	-7	-7
V ₅		-1			0					1	-3	-3
V 6					1	0	1	7		-1	-1	-1
V 7				-1			0			5	-5	-5
V 8					-3		-5	0			6	6

①
$$\Leftrightarrow d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ _{ij}					d ^(t) (v	′ ₁ ,v _j)	
ZWY	V_1	V_2	V ₃	V ₄	V ₅	V ₆	V ₇	V ₈	t=1	t=2	t=3	t=4
V_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V_3		-3	0	-5		1			-2	-2	-2	-2
V_4				0			2		3	-7	-7	-7
V ₅		-1			0					1	-3	-3
V ₆					1	0	1	7		-1	-1	-1
V 7				-1			0			5	-5	-5
V 8					-3		-5	0			6	6

①
$$\Leftrightarrow d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ ij					d ^(t) (v	′ ₁ ,v _j)	
ZWY	V_1	V_2	V ₃	V ₄	V 5	V ₆	V ₇	V 8	t=1	t=2	t=3	t=4
V_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V_3		-3	0	-5		1			-2	-2	-2	-2
V_4				0			2		3	-7	-7	-7
V ₅		-1			0					1	-3	-3
V ₆					1	0	1	7		-1	-1	-1
V 7				-1			0			5	-5	-5
V 8					-3		-5	0			6	6

①
$$\Leftrightarrow d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ ij					d ^(t) (v	′ ₁ ,∨ _j)	
ZWY	V_1	V_2	V ₃	V ₄	V 5	V ₆	V ₇	V 8	t=1	t=2	t=3	t=4
V_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V_3		-3	0	-5		1			-2	-2	-2	-2
V_4				0			2		3	-7	-7	-7
V ₅		-1			0					1	-3	-3
V ₆					1	0	1	7		-1	-1	-1
V 7				-1			0			5	-5	-5
V 8					-3		-5	0			6	6

①
$$\diamondsuit d^{(1)}(v_s, v_j) = w_{sj}(j = 1, 2, \dots p)$$

②
$$d^{(t)}(v_s, v_j) = \min_i \{d^{(t-1)}(v_s, v_i) + w_{ij}\}, j = 1, 2, \dots p$$

点				W	/ ij					d ^(t) (\	′ ₁ ,∨ _j)	
/wv	V_1	V_2	V ₃	V ₄	V ₅	V ₆	V 7	V ₈	t=1	t=2	t=3	t=4
V_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V ₃		-3	0	-5		1			-2	-2	-2	-2
V_4				0			2		3	-7	-7	-7
V ₅		-1			0					1	-3	-3
V ₆					1	0	1	7		-1	-1	-1
V ₇				-1			0			5	-5	-5
V 8					-3		-5	0			6	6

对比dijstra算法和列表法:

点					Wij					$d^{(t)}(v_1, v_j)$					
	v_1	V ₂	V3	V4	V ₅	V ₆	V7	V8	V9	t=1	t=2	t=3	t=4	t=5	t=6
v_1	0	6	3	1						0	0	0	0	0	0
v_2		0			1					6	6	5	5	5	5
v_3		2	0	2						3	3	3	3	3	3
V4				0		10				1	1	1	1	1	1
V ₅				6	0	4	3	6					6	6	6
V ₆					10	0	2				11	11	11	10	10
V7							0	4						9	9
v ₈							0							12	12
V9					2			3	0						

点				W	/ ij					d ^(t) (\	,,v _j)	
W	V_1	V_2	V ₃	V 4	V ₅	V ₆	V 7	V 8	t=1	t=2	t=3	t=4
V_1	0	-1	-2	3					0	0	0	0
V_2	6	0			2				-1	-5	-5	-5
V ₃		-3	0	-5		1			-2	-2	-2	-2
V ₄				0			2		3	-7	-7	-7
V 5		-1			0					1	-3	-3
V ₆					1	0	1	7		-1	-1	-1
V ₇				-1			0			5	-5	-5
V ₈					-3		-5	0			6	6

Floyd算法

Floyd算法基本步骤:

- (1)输入权矩阵D⁽¹⁾⁼D; D⁽¹⁾称为一步最短距离矩阵。
- (2)计算二步最短距离矩阵 $D^{(2)} = (d^{(2)}_{ij})_{n \times n}$ 。设 v_i 到 v_j 经过一个中间点 v_r 两步到达 v_i ,则 v_i 到 v_i 的最短距离为

$$d_{ij}^{(2)} = \min_{r} \left\{ d_{ir}^{1} + d_{rj}^{1} \right\}$$

(3)重复(2)步,计算k步最短距离矩阵 $D^{(k)} = \left(d^{(k)}_{ij}\right)_{n \times n}$ 。设 v_i 经过中间点 v_r 到达 v_i , v_i 经过k-1步到达点 v_r 的最短距离为

$$d_{ij}^{(k)} = \min\{d_{ir}^{(k-1)} + d_{rj}^{(k-1)}\}\$$

(4) 当 $D^{(k)} = D^{(k-1)}$ 时,停止迭代, $d^{(k)}_{ij}$ 就是 v_i 到 v_j 的最短路。

结论:设图的点数为n并且 $c_{ii} \geq 0$,迭代次数k由下式估计得到

$$2^{k-1}-1 < n-2 \le 2^k-1$$

$$k - 1 < \frac{\lg(n - 1)}{\lg 2} \le k$$

例:

	v_1	v_2	v_3	v_4	<i>v</i> ₅	v ₆	v ₇	v_8
v_1	0	6	8	5	8	4	∞	8
v_2	6	0	3	2	8	∞	8	8
v_3	8	3	0	∞	7	∞	∞	16
v_4	5	2	8	0	9	12	3	8
v_5	8	8	7	9	0	∞	10	6
v_6	4	8	8	12	8	0	2	8
v_7	8	8	∞	3	10	2	0	12
v_8	8	8	16	8	6	∞	12	0

最短距离表D(1)

	v_1	v_2	v_3	v_4	<i>v</i> ₅	<i>v</i> ₆	<i>v</i> ₇	v_8
v_1	0	6	∞	5	∞	4	∞	∞
v_2	6	0	3	2	8	8	8	∞
v_3	8	3	0	8	7	8	8	16
v_4	5	2	8	0	9	12	3	∞
v_5	8	8	7	9	0	8	10	6
v_6	4	∞	8	12	8	0	2	∞
v_7	8	∞	8	3	10	2	0	12
v_8	80	∞	16	∞	6	∞	12	0

	<i>v</i> ₁	v_2	v_3	v_4	<i>v</i> ₅	v_6	v_7	<i>v</i> ₈
v_1	0	6	9	5	14	4	6	∞
v_2	6	0	3	2	8	10	5	14
v_3	9	3	0	5	7	∞	17	13
v_4	5	2	5	0	9	5	3	15
v_5	14	8	7	9	0	12	10	6
v_6	4	10	∞	5	12	0	2	14
v_7	6	5	17	3	10	2	0	12
v_8	∞	14	13	15	6	14	12	0

$$d_{43}^{(2)} = \min \left\{ c_{41} + c_{13}, c_{42} + c_{23}, c_{43} + c_{33}, c_{44} + c_{43}, c_{45} + c_{53}, c_{46} + c_{63}, c_{47} + c_{73}, c_{48} + c_{83} \right\}$$
$$= \min \left\{ 5 + \infty, 2 + 3, \infty + 0, 0 + \infty, 9 + 7, 0 + \infty, \infty + \infty, 10 + \infty, 6 + 16 \right\} = 5$$

	v_1	v_2	v_3	v_4	<i>v</i> ₅	<i>v</i> ₆	<i>v</i> ₇	v_8
v_1	0	6	∞	5	∞	4	∞	∞
v_2	6	0	3	2	8	8	8	8
v_3	8	3	0	8	7	8	8	16
v_4	5	2	8	0	9	12	3	8
v_5	8	8	7	9	0	8	10	6
v_6	4	∞	8	12	8	0	2	8
v_7	8	∞	8	3	10	2	0	12
v_8	8	∞	16	8	6	∞	12	0

	v_1	v_2	v_3	<i>v</i> ₄	<i>v</i> ₅	v_6	v_7	<i>v</i> ₈
v_1	0	6	9	5	14	4	6	∞
v_2	6	0	3	2	8	10	5	14
v_3	9	3	0	5	7	∞	17	13
v_4	5	2	5	0	9	5	3	15
v_5	14	8	7	9	0	12	10	6
v_6	4	10	∞	5	12	0	2	14
v_7	6	5	17	3	10	2	0	12
v_8	∞	14	13	15	6	14	12	0

$$d_{43}^{(2)} = \min \left\{ c_{41} + c_{13}, c_{42} + c_{23}, c_{43} + c_{33}, c_{44} + c_{43}, c_{45} + c_{53}, c_{46} + c_{63}, c_{47} + c_{73}, c_{48} + c_{83} \right\}$$
$$= \min \left\{ 5 + \infty, 2 + 3, \infty + 0, 0 + \infty, 9 + 7, 0 + \infty, \infty + \infty, 10 + \infty, 6 + 16 \right\} = 5$$

	v_1	v_2	v_3	v_4	<i>v</i> ₅	v ₆	<i>v</i> ₇	v ₈
v_1	0	6	∞	5	∞	4	∞	∞
v_2	6	0	3	2	8	∞	∞	∞
v_3	8	3	0	8	7	∞	∞	16
v_4	5	2	∞	0	9	12	3	∞
v_5	8	8	7	9	0	∞	10	6
v_6	4	8	8	12	∞	0	2	∞
v_7	8	8	∞	3	10	2	0	12
v_8	8	8	16	8	6	∞	12	0

	v_1	v_2	v_3	v_4	<i>v</i> ₅	v_6	v_7	v ₈
v_1	0	6	9	5	14	4	6	∞
v_2	6	0	3	2	8	10	5	14
v_3	9	3	0	5	7	∞	17	13
v_4	5	2	5	0	9	5	3	15
v_5	14	8	7	9	0	12	10	6
v_6	4	10	∞	5	12	0	2	14
v_7	6	5	17	3	10	2	0	12
v_8	∞	14	13	15	6	14	12	0

	v_1	v_2	v_3	v_4	v_5	v ₆	<i>v</i> ₇	v ₈
v_1	0	6	8	5	8	4	∞	∞
v_2	6	0	3	2	8	8	8	∞
v_3	8	3	0	8	7	8	8	16
v_4	5	2	8	0	9	12	3	∞
v_5	8	8	7	9	0	8	10	6
v_6	4	8	8	12	8	0	2	∞
v_7	8	8	8	3	10	2	0	12
<i>v</i> ₈	8	8	16	8	6	∞	12	0

	<i>v</i> ₁	v_2	v_3	<i>v</i> ₄	<i>v</i> ₅	v ₆	v_7	v ₈
v_1	0	6	9	5	14	4	6	∞
v_2	6	0	3	2	8	10	5	14
v_3	9	3	0	5	7	∞	17	13
v_4	5	2	5	0	9	5	3	15
v_5	14	8	7	9	0	12	10	6
v_6	4	10	∞	5	12	0	2	14
v_7	6	5	17	3	10	2	0	12
v_8	∞	14	13	15	6	14	12	0

	v_1	v_2	v_3	v_4	<i>v</i> ₅	v_6	<i>v</i> ₇	v ₈
v_1	0	6	8	5	∞	4	∞	∞
v_2	6	0	3	2	8	8	8	∞
v_3	8	3	0	8	7	8	8	16
v_4	5	2	8	0	9	12	3	∞
v_5	8	8	7	9	0	8	10	6
v_6	4	8	8	12	∞	0	2	∞
v_7	8	8	8	3	10	2	0	12
<i>v</i> ₈	8	8	16	∞	6	8	12	0

	<i>v</i> ₁	v_2	v_3	v ₄	<i>v</i> ₅	v ₆	<i>v</i> ₇	<i>v</i> ₈
v_1	0	6	9	5	14	4	6	∞
v_2	6	0	3	2	8	10	5	14
v_3	9	3	0	5	7	∞	17	13
v_4	5	2	5	0	9	5	3	15
v_5	14	8	7	9	0	12	10	6
v_6	4	10	∞	5	12	0	2	14
v_7	6	5	17	3	10	2	0	12
v_8	∞	14	13	15	6	14	12	0

	v_1	v_2	v_3	v_4	<i>v</i> ₅	v_6	v_7	v ₈
v_1	0	6	8	5	∞	4	8	∞
v_2	6	0	3	2	8	∞	8	∞
v_3	8	3	0	∞	7	∞	8	16
v_4	5	2	8	0	9	12	3	∞
v_5	8	8	7	9	0	∞	10	6
v_6	4	8	8	12	∞	0	2	∞
v_7	8	∞	8	3	10	2	0	12
v_8	∞	∞	16	∞	6	∞	12	0

	v_1	v_2	v_3	v_4	<i>v</i> ₅	v_6	v_7	v ₈
v_1	0	6	9	5	14	4	6	∞
v_2	6	0	3	2	8	10	5	14
v_3	9	3	0	5	7	∞	17	13
v_4	5	2	5	0	9	5	3	15
v_5	14	8	7	9	0	12	10	6
v_6	4	10	∞	5	12	0	2	14
v_7	6	5	17	3	10	2	0	12
v_8	∞	14	13	15	6	14	12	0

	v_1	v_2	v_3	v_4	<i>v</i> ₅	v ₆	<i>v</i> ₇	v ₈
v_1	0	6	8	5	∞	4	∞	∞
v_2	6	0	3	2	8	8	∞	∞
v_3	8	3	0	8	7	8	8	16
v_4	5	2	8	0	9	12	3	∞
v_5	8	8	7	9	0	∞	10	6
v_6	4	8	8	12	8	0	2	∞
v_7	8	8	8	3	10	2	0	12
<i>v</i> ₈	8	8	16	8	6	∞	12	0

	<i>v</i> ₁	v_2	v_3	<i>v</i> ₄	<i>v</i> ₅	v ₆	v_7	v ₈
v_1	0	6	9	5	14	4	6	∞
v_2	6	0	3	2	8	10	5	14
v_3	9	3	0	5	7	∞	17	13
v_4	5	2	5	0	9	5	3	15
v_5	14	8	7	9	0	12	10	6
v_6	4	10	∞	5	12	0	2	14
v_7	6	5	17	3	10	2	0	12
v_8	∞	14	13	15	6	14	12	0

	v_1	v_2	v_3	v_4	<i>v</i> ₅	v ₆	<i>v</i> ₇	v ₈
v_1	0	6	8	5	∞	4	∞	∞
v_2	6	0	3	2	8	8	8	∞
v_3	8	3	0	∞	7	∞	8	16
v_4	5	2	8	0	9	12	3	∞
v_5	8	8	7	9	0	∞	10	6
v_6	4	8	8	12	∞	0	2	∞
<i>v</i> ₇	8	8	8	3	10	2	0	12
<i>v</i> ₈	8	8	16	∞	6	∞	12	0

	<i>v</i> ₁	v_2	v_3	v_4	<i>v</i> ₅	v ₆	v_7	v ₈
v_1	0	6	9	5	14	4	6	∞
v_2	6	0	3	2	8	10	5	14
v_3	9	3	0	5	7	∞	17	13
v_4	5	2	5	0	9	5	3	15
v_5	14	8	7	9	0	12	10	6
v_6	4	10	∞	5	12	0	2	14
v_7	6	5	17	3	10	2	0	12
v_8	∞	14	13	15	6	14	12	0

	<i>v</i> ₁	v_2	v_3	<i>v</i> ₄	<i>v</i> ₅	v ₆	<i>v</i> ₇	v ₈
v_1	0	6	8	5	∞	4	8	∞
v_2	6	0	3	2	8	∞	∞	∞
v_3	∞	3	0	∞	7	∞	∞	16
v_4	5	2	8	0	9	12	3	∞
v_5	8	8	7	9	0	8	10	6
v_6	4	8	8	12	8	0	2	∞
v_7	∞	8	8	3	10	2	0	12
v_8	∞	8	16	8	6	∞	12	0

	v_1	v_2	v_3	v_4	<i>v</i> ₅	v ₆	v_7	v ₈
v_1	0	6	9	5	14	4	6	∞
v_2	6	0	3	2	8	10	5	14
v_3	9	3	0	5	7	∞	17	13
v_4	5	2	5	0	9	5	3	15
v_5	14	8	7	9	0	12	10	6
v_6	4	10	∞	5	12	0	2	14
v_7	6	5	17	3	10	2	0	12
v_8	∞	14	13	15	6	14	12	0

	v_1	v_2	v_3	v_4	<i>v</i> ₅	v ₆	v_7	v ₈
v_1	0	6	8	5	∞	4	8	∞
v_2	6	0	3	2	8	∞	∞	∞
v_3	8	3	0	8	7	∞	8	16
v_4	5	2	8	0	9	12	3	∞
v_5	8	8	7	9	0	∞	10	6
v_6	4	8	8	12	8	0	2	∞
v_7	8	∞	8	3	10	2	0	12
v_8	8	∞	16	8	6	∞	12	0

	<i>v</i> ₁	v_2	v_3	<i>v</i> ₄	<i>v</i> ₅	v ₆	<i>v</i> ₇	<i>v</i> ₈
v_1	0	6	9	5	14	4	6	∞
v_2	6	0	3	2	8	10	5	14
v_3	9	3	0	5	7	∞	17	13
v_4	5	2	5	0	9	5	3	15
v_5	14	8	7	9	0	12	10	6
v_6	4	10	∞	5	12	0	2	14
v_7	6	5	17	3	10	2	0	12
v_8	∞	14	13	15	6	14	12	0

	v_1	v_2	v_3	v_4	<i>v</i> ₅	v ₆	v_7	v ₈
v_1	0	6	8	5	∞	4	8	∞
v_2	6	0	3	2	8	∞	∞	∞
v_3	8	3	0	8	7	∞	8	16
v_4	5	2	8	0	9	12	3	∞
v_5	8	8	7	9	0	8	10	6
v_6	4	8	8	12	8	0	2	∞
v_7	8	8	8	3	10	2	0	12
v_8	8	8	16	8	6	∞	12	0

	v_1	v_2	v_3	v_4	<i>v</i> ₅	v_6	v_7	v ₈
v_1	0	6	9	5	14	4	6	∞
v_2	6	0	3	2	8	10	5	14
v_3	9	3	0	5	7	∞	17	13
v_4	5	2	5	0	9	5	3	15
v_5	14	8	7	9	0	12	10	6
v_6	4	10	∞	5	12	0	2	14
v_7	6	5	17	3	10	2	0	12
v_8	∞	14	13	15	6	14	12	0

	v_1	v_2	v_3	v_4	<i>v</i> ₅	v ₆	v_7	v ₈
v_1	0	6	8	5	∞	4	8	∞
v_2	6	0	3	2	8	∞	∞	∞
v_3	8	3	0	8	7	∞	8	16
v_4	5	2	8	0	9	12	3	8
v_5	8	8	7	9	0	8	10	6
v_6	4	8	8	12	8	0	2	8
v_7	8	8	8	3	10	2	0	12
v_8	8	8	16	∞	6	∞	12	0

	<i>v</i> ₁	v_2	v_3	<i>v</i> ₄	<i>v</i> ₅	v ₆	v_7	v ₈
v_1	0	6	9	5	14	4	6	∞
v_2	6	0	3	2	8	10	5	14
v_3	9	3	0	5	7	∞	17	13
v_4	5	2	5	0	9	5	3	15
v_5	14	8	7	9	0	12	10	6
v_6	4	10	∞	5	12	0	2	14
v_7	6	5	17	3	10	2	0	12
v_8	∞	14	13	15	6	14	12	0

	v_1	v_2	v_3	v_4	<i>v</i> ₅	v_6	<i>v</i> ₇	v ₈
v_1	0	6	8	5	∞	4	8	∞
v_2	6	0	3	2	8	∞	∞	∞
v_3	8	3	0	8	7	8	∞	16
v_4	5	2	8	0	9	12	3	∞
v_5	8	8	7	9	0	8	10	6
v_6	4	8	8	12	∞	0	2	∞
v_7	8	8	8	3	10	2	0	12
v_8	8	8	16	8	6	8	12	0

	<i>v</i> ₁	v_2	v_3	<i>v</i> ₄	<i>v</i> ₅	v ₆	<i>v</i> ₇	<i>v</i> ₈
v_1	0	6	9	5	14	4	6	∞
v_2	6	0	3	2	8	10	5	14
v_3	9	3	0	5	7	∞	17	13
v_4	5	2	5	0	9	5	3	15
v_5	14	8	7	9	0	12	10	6
v_6	4	10	∞	5	12	0	2	14
v_7	6	5	17	3	10	2	0	12
v_8	∞	14	13	15	6	14	12	0

	<i>v</i> ₁	v_2	v_3	v_4	v_5	v ₆	<i>v</i> ₇	v ₈
v_1	0	6	∞	5	8	4	∞	∞
v_2	6	0	3	2	8	∞	∞	∞
v_3	∞	3	0	∞	7	∞	∞	16
v_4	5	2	∞	0	9	12	3	∞
v_5	∞	8	7	9	0	∞	10	6
v_6	4	8	8	12	8	0	2	∞
v_7	∞	8	8	3	10	2	0	12
v_8	∞	∞	16	∞	6	∞	12	0

	v_1	v_2	v_3	v_4	<i>v</i> ₅	v ₆	v_7	v ₈
v_1	0	6	9	5	14	4	6	∞
v_2	6	0	3	2	8	10	5	14
v_3	9	3	0	5	7	∞	17	13
v_4	5	2	5	0	9	5	3	15
v_5	14	8	7	9	0	12	10	6
v_6	4	10	∞	5	12	0	2	14
v_7	6	5	17	3	10	2	0	12
v_8	∞	14	13	15	6	14	12	0

	v_1	v_2	v_3	v_4	<i>v</i> ₅	v ₆	<i>v</i> ₇	v ₈
v_1	0	6	8	5	∞	4	∞	∞
v_2	6	0	3	2	8	∞	∞	∞
v_3	8	3	0	8	7	8	∞	16
v_4	5	2	8	0	9	12	3	∞
v_5	8	8	7	9	0	∞	10	6
v_6	4	8	8	12	8	0	2	∞
v_7	8	8	8	3	10	2	0	12
v_8	8	8	16	∞	6	∞	12	0

	<i>v</i> ₁	v_2	v_3	v_4	<i>v</i> ₅	v ₆	v_7	v ₈
v_1	0	6	9	5	14	4	6	∞
v_2	6	0	3	2	8	10	5	14
v_3	9	3	0	5	7	∞	17	13
v_4	5	2	5	0	9	5	3	15
v_5	14	8	7	9	0	12	10	6
v_6	4	10	∞	5	12	0	2	14
v_7	6	5	17	3	10	2	0	12
v_8	∞	14	13	15	6	14	12	0

	<i>v</i> ₁	v_2	v_3	v_4	<i>v</i> ₅	v ₆	v ₇	v ₈
v_1	0	6	8	5	∞	4	∞	∞
v_2	6	0	3	2	8	∞	∞	∞
v_3	∞	3	0	∞	7	∞	∞	16
v_4	5	2	8	0	9	12	3	∞
v_5	∞	8	7	9	0	∞	10	6
v_6	4	8	8	12	8	0	2	∞
v_7	∞	8	8	3	10	2	0	12
v_8	8	8	16	∞	6	∞	12	0

	<i>v</i> ₁	v_2	v_3	v ₄	<i>v</i> ₅	v ₆	<i>v</i> ₇	<i>v</i> ₈
v_1	0	6	9	5	14	4	6	∞
v_2	6	0	3	2	8	10	5	14
v_3	9	3	0	5	7	∞	17	13
v_4	5	2	5	0	9	5	3	15
v_5	14	8	7	9	0	12	10	6
v_6	4	10	∞	5	12	0	2	14
v_7	6	5	17	3	10	2	0	12
v_8	∞	14	13	15	6	14	12	0

	v_1	v_2	v_3	<i>v</i> ₄	<i>v</i> ₅	v ₆	<i>v</i> ₇	v_8
v_1	0	6	8	5	8	4	8	∞
v_2	6	0	3	2	8	∞	8	∞
v_3	8	3	0	∞	7	∞	∞	16
v_4	5	2	8	0	9	12	3	∞
v_5	8	8	7	9	0	8	10	6
v_6	4	8	8	12	8	0	2	∞
v_7	8	8	8	3	10	2	0	12
v_8	8	∞	16	∞	6	∞	12	0

	<i>v</i> ₁	v_2	v_3	v_4	<i>v</i> ₅	v ₆	v_7	<i>v</i> ₈
v_1	0	6	9	5	14	4	6	∞
v_2	6	0	3	2	8	10	5	14
v_3	9	3	0	5	7	∞	17	13
v_4	5	2	5	0	9	5	3	15
v_5	14	8	7	9	0	12	10	6
v_6	4	10	∞	5	12	0	2	14
v_7	6	5	17	3	10	2	0	12
v_8	∞	14	13	15	6	14	12	0

最短距离表D⁽¹⁾

最短距离表D⁽²⁾

以此迭代,计算所有D⁽²⁾中的元素

	v_1	v_2	v_3	v_4	<i>v</i> ₅	v_6	<i>v</i> ₇	v ₈
v_1	0	6	9	5	14	4	6	∞
v_2	6	0	3	2	8	10	5	14
v_3	9	3	0	5	7	∞	17	13
v_4	5	2	5	0	9	5	3	15
v ₅	14	8	7	9	0	12	10	6
v_6	4	10	∞	5	12	0	2	14
v_7	6	5	17	3	10	2	0	12
v ₈	∞	14	13	15	6	14	12	0

	v_1	v_2	v_3	v_4	<i>v</i> ₅	v_6	v_7	<i>v</i> ₈
v_1	0	6	9	5	14	4	6	18
v_2	6	0	3	2	8	7	5	14
v_3	9	3	0	5	7	10	8	13
v_4	5	2	5	0	9	5	3	15
v_5	14	8	7	9	0	12	10	6
v_6	4	7	10	5	12	0	2	14
v_7	6	5	8	3	10	2	0	12
v_8	18	14	13	15	6	14	12	0

最短距离表D(3)

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	<i>v</i> ₈
v_1	0	6	9	5	14	4	6	∞
v_2	6	0	3	2	8	10	5	14
v_3	9	3	0	5	7	∞	17	13
v_4	5	2	5	0	9	5	3	15
v ₅	14	8	7	9	0	12	10	6
v_6	4	10	∞	5	12	0	2	14
v_7	6	5	17	3	10	2	0	12
<i>v</i> ₈	∞	14	13	15	6	14	12	0

	v_1	v_2	v_3	v_4	v_5	v_6	<i>v</i> ₇	v_8
v_1	0	6	9	5	14	4	6	18
v_2	6	0	3	2	8	7	5	14
v_3	9	3	0	5	7	10	8	13
v_4	5	2	5	0	9	5	3	15
v_5	14	8	7	9	0	12	10	6
v_6	4	7	10	5	12	0	2	14
v_7	6	5	8	3	10	2	0	12
v_8	18	14	13	15	6	14	12	0

最短距离表D(3)

	v_1	v_2	v_3	v_4	<i>v</i> ₅	v_6	v_7	v ₈
v_1	0	6	9	5	14	4	6	∞
v_2	6	0	3	2	8	10	5	14
v_3	9	3	0	5	7	∞	17	13
v_4	5	2	5	0	9	5	3	15
v_5	14	8	7	9	0	12	10	6
v_6	4	10	∞	5	12	0	2	14
v_7	6	5	17	3	10	2	0	12
v_8	∞	14	13	15	6	14	12	0

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8
v_1	0	6	9	5	14	4	6	18
v_2	6	0	3	2	8	7	5	14
v_3	9	3	0	5	7	10	8	13
v_4	5	2	5	0	9	5	3	15
v_5	14	8	7	9	0	12	10	6
v_6	4	7	10	5	12	0	2	14
v_7	6	5	8	3	10	2	0	12
v_8	18	14	13	15	6	14	12	0

最短距离表D(3)

	v_1	v_2	v_3	v_4	<i>v</i> ₅	v_6	<i>v</i> ₇	<i>v</i> ₈
v_1	0	6	9	5	14	4	6	∞
v_2	6	0	3	2	8	10	5	14
v_3	9	3	0	5	7	∞	17	13
v_4	5	2	5	0	9	5	3	15
<i>v</i> ₅	14	8	7	9	0	12	10	6
v_6	4	10	∞	5	12	0	2	14
v_7	6	5	17	3	10	2	0	12
<i>v</i> ₈	∞	14	13	15	6	14	12	0

	v_1	v_2	v_3	v_4	<i>v</i> ₅	v_6	<i>v</i> ₇	<i>v</i> ₈
v_1	0	6	9	5	14	4	6	18
v_2	6	0	3	2	8	7	5	14
v_3	9	3	0	5	7	10	8	13
v_4	5	2	5	0	9	5	3	15
v_5	14	8	7	9	0	12	10	6
v_6	4	7	10	5	12	0	2	14
v_7	6	5	8	3	10	2	0	12
v_8	18	14	13	15	6	14	12	0

最短距离表D⁽³⁾

重复以此迭代,计算所有D⁽⁴⁾中的元素,发现D⁽⁴⁾=D⁽³⁾则停止

More

- 1. WINQSB运筹学软件:
- 2. Optimization-using-R:
- 3. Matlab运筹学中的应用
- 4. 画图以及图形建模: http://igraph.org/