

# Computational Physics (PHYS6350)

Lecture 3: Interpolation



January 23, 2025

**Instructor:** Volodymyr Vovchenko (<u>vvovchenko@uh.edu</u>)

Course materials: <a href="https://github.com/vlvovch/PHYS6350-ComputationalPhysics/tree/spring2025">https://github.com/vlvovch/PHYS6350-ComputationalPhysics/tree/spring2025</a>

# Interpolation

Sometimes we know the value of some function f(x) at a discrete set of points  $x_0, x_1, \dots, x_N$ , but we do not know how to (easily) calculate its value at an arbitrary x

### **Examples:**

- Physical measurements
- Long numerical calculations

**Interpolation** is a mathematical technique used to estimate values between a discrete set of known data points. It is also employed to approximate an unknown function based on its known values over a certain range.

#### Two steps:

- 1. Fitting the interpolating function to data points
- 2. Evaluating the interpolating function at a target point x

Reference: Chapter 3 of Numerical Recipes Third Edition by W.H. Press et al.

# Interpolation

Recall the function  $f(x) = \sin(x)$ 

Imagine that we cannot easily compute sin(x) at arbitrary x and all we are given is its values at some finite number of points

| X | sin(x)     |
|---|------------|
| 0 | 0.         |
| 1 | 0.841471   |
| 2 | 0.9092974  |
| 3 | 0.14112    |
| 4 | -0.7568025 |
| 5 | -0.9589243 |
| 6 | -0.2794155 |
|   |            |



Now let us consider different methods of interpolating the function

# **Nearest-neighbor interpolation**

Simply assign the value of the closest data point to x, i.e.

$$f(x) = f_{nn}(x)$$
 where  $f_{nn}(x) = y_i$ 

Where i is chosen such that |x - xi| is the smallest among all i.



### **Nearest-neighbor interpolation**

### In Python:

```
def f nearestneighbor int(x, xdata, fdata):
    """Returns the nearest-neighbor interpolation of a function at point x.
   xdata and ydata are the data points used in interpolation.
   xdata is assumed to be in sorted in ascending order."""
   ind = np.searchsorted(xdata, x) # Search for the interval for point x
   if (ind == 0):
        return xdata[0]
   if (ind == len(xdata)):
        return xdata[-1]
   x0,f0 = xdata[ind-1],fdata[ind-1]
   x1,f1 = xdata[ind],fdata[ind]
   if (abs(x-x0) < abs(x-x1)):
        return f0
    else:
        return f1
xcalc = np.linspace(0,6,100)
fcalc = [f nearestneighbor int(xin,xdat,fdat) for xin in xcalc]
```



### **Advantages:**

- Very simple
- Easy to generalize to multiple dimensions

### **Disadvantages:**

- Limited accuracy
- Better & simple options available

# **Linear interpolation**

Let us have the data points  $(x_0,y_0)$  and  $(x_1,y_1)$ 

Linear interpolant is a straight line between these points

Use it to calculate the function value at any  $x \in [x_0, x_1]$ 

$$f_{\text{lerp}}(x) = y_0 + \frac{x - x_0}{x_1 - x_0} (y_1 - y_0)$$

For a larger set of points  $x_0 < x_1 < ... < x_N$ , find the interval  $(x_i, x_{i+1})$  enveloping x and use the linear interpolant formula

$$f_{\text{lerp}}(x) = y_i + \frac{x - x_i}{x_{i+1} - x_i} (y_{i+1} - y_i)$$



Credit: Wikipedia

### **Linear interpolation**

#### In Python:

```
def linear int(x, x0, f0, x1, f1):
    """Returns the value of a function at point x
    through linear interpolation between points (x0,y0) and (x1,y1)."""
    return f0 + (f1 - f0) * (x-x0) / (x1-x0)
def f linear int(x, xdata, fdata):
    """Returns linear interpolation of a function at point x.
    xdata and ydata are the data points used in interpolation.
    xdata is assumed to be in sorted in ascending order."""
    ind = np.searchsorted(xdata, x) # Search the right interval for point x
    if (ind == 0):
        if ((xdata[0] - x) > 1e-12):
            print("x = ", x, " is outside the interpolation range [",xdata[0],",",xdata[-1],"]")
        ind = ind + 1
    if (ind == len(xdata)):
        if ((x - xdata[-1]) > 1e-12):
            print("x = ", x, " is outside the interpolation range [",xdata[0],",",xdata[-1],"]")
        ind = ind - 1
   x0,f0 = xdata[ind-1],fdata[ind-1]
    x1,f1 = xdata[ind],fdata[ind]
    return linear int(x,x0,f0,x1,f1)
# Calculate the values of f(x) using the linear interpolation
xcalc = np.linspace(0,6,100)
fcalc = [f linear int(xin,xdat,fdat) for xin in xcalc]
```



### Advantages:

- Simple
- Generalizes to multiple dimensions
- More accurate than nearest-neighbor appr.

### **Disadvantages:**

- Limited accuracy compared to polynomials
- Not good for derivatives

# Polynomial interpolation (Lagrange form)

**Theorem:** There exists a *unique* polynomial of order n that interpolates through n+1 data points  $(x_0,y_0)_{,}(x_1,y_1)_{,}...,(x_n,y_n)$ 

How to build such a polynomial?

Consider *Lagrange basis functions*:

$$L_j(x) = \prod_{k \neq j} \frac{x - x_k}{x_j - x_k}$$

Easy to see that for  $x = x_k$  one has  $L_i(x_k) = \delta_{ki}$ 

Therefore:

$$f(x) \approx p(x) = \sum_{j=0}^{n} y_j L_j(x)$$



# Polynomial interpolation

For our example  $f(x) = \sin(x)$ 

#### one obtains

$$p(x) = \sum_{j=0}^n y_j L_j(x)$$
 
$$= \sum_{j=0}^6 \sin(x_j) \prod_{j \neq k}^6 \frac{x - x_j}{x_k - x_j} \quad \text{Lagrange form}$$



 $=-0.0001521x^6-0.003130x^5+0.07321x^4-0.3577x^3+0.2255x^2+0.9038x$ . Canonical form

In practice, the Lagrange form is more stable with respect to round-off errors

# **Polynomial interpolation**

### In Python:

```
def Lnj(x,n,j,xdata):
    """Lagrange basis function."""
    ret = 1.
    for k in range(0, len(xdata)):
        if (k != j):
            ret *= (x - xdata[k]) / (xdata[j] - xdata[k])
    return ret
def f poly int(x, xdata, fdata):
    """Returns the polynomial interpolation of a function at point x.
    xdata and ydata are the data points used in interpolation."""
    ret = 0.
   n = len(xdata) - 1
   for j in range(0, n+1):
        ret += fdata[j] * Lnj(x,n,j,xdata)
    return ret
xpoly = np.linspace(0,6,100)
fpoly = [f poly int(xin,xdat,fdat) for xin in xpoly]
```



# Polynomial interpolation: Newton polynomial

Newton interpolating polynomial

$$p(x) = \sum_{j=0}^{n} f[x_0, x_1, \dots, x_j] N_j(x).$$

Newton basis functions

$$N_j(x) = \prod_{k=0}^{j-1} (x - x_k).$$

Divided differences

$$f[x_i] = f(x_i),$$
  $f[x_i, x_{i+1}, \dots, x_{i+j}] = \frac{f[x_{i+1}, \dots, x_{i+j}] - f[x_i, \dots, x_{i+j-1}]}{x_{i+j} - x_i}.$ 

The polynomial itself is the same as Lagrange!

Advantage: Easier to incrementally add data points





# Polynomial interpolation: Errors and artefacts

- Truncation errors
  - Lagrange remainder

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{n+1} \prod_{i=0}^{n} (x - x_i)$$
derivative factor product factor

- Round-off errors
  - Especially for high-order polynomials

Truncation errors can be a problem if

- High-order derivatives  $f^{(n+1)}(x)$  of the function are significant
- The choice of nodes leads to a large value of the product factor

**Runge phenomenon:** Oscillation at the edges of the interval which gets *worse* as the interpolation order is increased

# Polynomial interpolation: Runge phenomenon

Consider the Runge function:

$$f(x)=rac{1}{1+25x^2}$$

Let us do polynomial interpolation using equidistant nodes



# Polynomial interpolation: Chebyshev nodes

Recall the truncation error

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{n+1} \prod_{i=0}^{n} (x - x_i)$$

So far, we used the equidistant nodes:

$$x_k = a + hk,$$
  $k = 0, ..., n,$   $h = (b - a)/n$ 

Can we choose the nodes  $x_i$  differently to minimize the product factor?

Yes!

### **Chebyshev nodes:**

$$x_k = \frac{a+b}{2} + \frac{b-a}{2} \cos\left(\frac{2k+1}{2n+2}\pi\right), \qquad k = 0, ..., n,$$

# **Equidistant vs Chebyshev nodes**

Plot  $\prod_{i=0}^{n} (x - x_i)$  as a function of x for different number of nodes n on a (-1,1) interval



# Back to the Runge function: Chebyshev nodes



# Polynomial interpolation: Summary

### **Advantages:**

- Generally, more accurate than the linear interpolation
- Derivatives are continuous
- Can be used for numerical integration and differential equations

### **Disadvantages:**

- Implementation not so simple
- Artefacts possible (such as large oscillations between nodes)
- Polynomials of large order susceptible to round-off errors
- Not easily generalized to multiple dimensions

# **Spline interpolation**

Connect each pair of nodes by a cubic polynomial

$$q_i(x) = a_i x^3 + b_i x^2 + c_i x + d_i, \qquad x \in (x_i, x_{i+1})$$

4n coefficients  $a_i$ , bi, ci, di determined from

- data points and continuity (2n equations)
- + continuity of 1st and 2nd derivatives (2n-2 equations)
- + boundary conditions for first derivative (2 equations)

### **Advantages:**

- More accurate than linear interpolation
- Derivatives are continuous
- Avoids issues with polynomials of high degree

### **Disadvantages:**

- Implementation not so simple
- Artefacts such as large oscillations between nodes are possible





# Multiple dimensions

Functions of more than one variable, e.g.  $f(x,y) = \sin(x+y)$ 

Data points:  $(x_i, yi, fi)$ 

#### Main methods:

- Nearest-neighbor
- Successive 1D interpolations





# 2D nearest-neighbor

### 2D nearest-neighbor:

Simply assign the value of the closest data point to (x,y) in the plane

Consider  $f(x,y) = \sin(x+y)$ 

Data points at integer values x,y=0,1,...6 (regular grid)





# **Bilinear interpolation**

### Bilinear interpolation: apply linear interpolation twice

- 1. Find  $(x_1, x_2)$  and  $(y_1, y_2)$  such that  $x \in (x_1, x_2)$  and  $y \in (y_1, y_2)$
- 2. Calculate  ${\it R}_1$  and  ${\it R}_2$  for  $y=y_1$  and  $y=y_2$ , respectively, by applying linear interpolation in x
- 3. Calculate the interpolated function value at (x, y) by performing linear interpolation in y using the computed values of  $R_1$  and  $R_2$







# Advanced topics (further reading)

### Gaussian process regression (Kriging)

- Uses prior assumption on covariances
- Provides a measure of uncertainty
- Extendable to noisy data and multiple dimensions

final project idea(?)

#### Hermite interpolation

- Interpolation of both the function values and derivative
- Can be polynomial or splines

final project idea(?)



