

## Seizure Detection Device

Using TinyML to detect epilieptic seizures

### TABLE OF CONTENTS

- 01 Introduction
- 02 Literature Review
- 03 Dataset Characteristics
- 04 Baseline Model
- 05 Model Definition and Evaluation
- 06 Results
- 07 Challenges and Errors
- 08 Discussion
- 09 Conclusion and Future Work
- 10 Live Demo
- 11 Q&A

#### WHAT ARE SEIZURES?

#### Seizure types:

- 1. Generalized Seizures (Affect both brain hemispheres)
  - Tonic-Clonic: Loss of consciousness, stiffening (tonic) followed by full-body jerking (clonic).
  - Myoclonic: Sudden, brief muscle jerks.
- 2. Focal Seizures (Start in one brain region)
  - Focal Motor: Repeated jerking in one limb or face.
  - Focal Nonmotor: Can spread, leading to generalized seizures.

#### How can they be detected?

- 1. Electroencephalography (EEG):
  - Gold standard for seizure detection.
  - Used in labs or via portable EEG devices.
  - Effective in Epileptic Convulsion
    Recognition (ECR) but limited to short-term monitoring.
- 2. Wearable Technology:
  - Devices transmit data to smartphones and medical staff for enhanced diagnosis.

#### INTRODUCTION

## We need better seizure detection devices



Current seizure detection devices are large, expensive, and not energy-efficient.



They often rely on cloud or phonebased processing, raising privacy concerns.



A wristband-based device can be lightweight, always on, and specifically designed for epilepsy patients

## **Key Considerations for an Effective Solution**



Motion-based detection is noninvasive and cost-effective, but seizure movements are complex.



The device must balance accuracy, power efficiency, and real-time reliability.



A fully on-device system enhances privacy, reduces latency, and lowers costs compared to cloud-based alternatives.

#### LITERATURE REVIEW

Generalized Models for the Classification of Abnormal Movements in Daily Life and its Applicability to Epilepsy Convulsion Recognition [1]

**Objective**: identify epilepsy convulsions during daily activities using wearable devices

**Method:** comparing Support Vector Machines, k-Nearest Neighbors, and Decision Trees with Fuzzy systems

**Results:** indicated that Fuzzy Systems demonstrated superior generalization capabilities in recognizing clonic convulsions, effectively minimizing false alarms

WISDM Smartphone and Smartwatch Activity and Biometrics Dataset [2]

**Objective:** accelerometer and gyroscope data collected from 51 subjects performing 18 different daily activities for 3 minutes each, aiming to facilitate research in activity recognition and biometric identification.

**Method:** sliding window approach to segment the time-series sensor data into labeled examples, for ML applications

### DATASET CHARACTERISTICS

#### **WISDM DATASET**

- collected from 59 subjects
- Doing 18 activities (so 18 labels) No
  epilepsy seizure data
- Used accelerometer and gyroscope data sampled at 20HZ
- Each activity lasted for ~ 3 minutess
  - We only used data for 9 people and
- used it to enrich our model to generalize
- Relabeled all data to non-epileptic

#### **EPILEPSY DATASET**

- collected from 6 subjects
- Doing 4 activities (including epilepsy seizure simulation)
- Used accelerometer data sampled at 16Hz
- Each activity lasted for ~ 13 seconds
- We used all data to infer epileptic seizures
- Relabeled all data to Epileptic and nonepileptic

## DATASET CHARACTERISTICS - DATA SNIPPET

#### WISDM DATASET

|   | ассХ      | accY      | accZ      | Activity |
|---|-----------|-----------|-----------|----------|
| 0 | 9.397051  | -1.127401 | -1.061029 | Α        |
| 1 | 6.633513  | 0.187718  | -0.440013 | Α        |
| 2 | 5.096351  | 2.329629  | -0.079968 | Α        |
| 3 | 6.510423  | 1.363041  | -0.363211 | Α        |
| 4 | 12.215082 | -0.998780 | -0.603777 | Α        |

#### EPILEPSY DATASET

|   | 0х    | 0y    | 0z    | 1x    | 1y    | 1z    | 204z  | 205x  | 205y  | 205z  | 206x     |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|
| 0 | 0.60  | -1.72 | -0.47 | 0.60  | -1.28 | 0.02  | -0.51 | -0.70 | 1.03  | -0.57 | EPILEPSY |
| 1 | -0.35 | -0.99 | 0.05  | -0.44 | -2.30 | 0.05  | 0.55  | -0.14 | -0.34 | 0.83  | EPILEPSY |
| 2 | -0.08 | -1.02 | -0.03 | -0.01 | -2.12 | -0.48 | -0.62 | 0.32  | -0.67 | -0.56 | EPILEPSY |
| 3 | -0.43 | 0.78  | -0.44 | -0.44 | 0.78  | -0.18 | -0.46 | -0.31 | 1.08  | -0.59 | EPILEPSY |
| 4 | -0.30 | -2.40 | -0.31 | -0.81 | 0.80  | -0.26 | -0.03 | -0.80 | 0.33  | -0.02 | EPILEPSY |

## BASELINE MODEL



## Metrics for Classifier1

| METRIC                       | VALUE |
|------------------------------|-------|
| Area under ROC Curve ②       | 0.91  |
| Weighted average Precision ② | 0.96  |
| Weighted average Recall ②    | 0.95  |
| Weighted average F1 score ②  | 0.95  |

#### **Confusion matrix**

|               | EPILEPSY | NON-EPILEPTIC | UNCERTAIN |
|---------------|----------|---------------|-----------|
| EPILEPSY      | 82.3%    | 16.196        | 1.6%      |
| NON-EPILEPTIC | 0.1%     | 99.9%         | 0.196     |
| F1 SCORE      | 0.90     | 0.97          |           |

- Only used the Epileptic data
- Default edge net impulse model used

## MODEL DEFINITION AND EVALUATION



| Training settings                            |         |   |  |  |
|----------------------------------------------|---------|---|--|--|
| Number of training cycles ②                  | 30      |   |  |  |
| Use learned optimizer ②                      |         |   |  |  |
| Learning rate ③                              | 0.0005  |   |  |  |
| Training processor ③                         | CPU     | ~ |  |  |
| Advanced training settings                   |         |   |  |  |
| Validation set size ②                        | 20      | % |  |  |
| Split train/validation set on metadata key ③ |         |   |  |  |
| Batch size ③                                 | 32      |   |  |  |
| Auto-weight classes ②                        |         |   |  |  |
| Profile int8 model ③                         |         |   |  |  |
| Neural network architecture                  |         |   |  |  |
| Input layer (1,504 fea                       | itures) |   |  |  |
| Dense layer (256 neu                         | urons)  |   |  |  |
| Dropout (rate 0.2)                           |         |   |  |  |
| Dense layer (256 neu                         | urons)  |   |  |  |
| Dropout (rate 0.2)                           |         |   |  |  |
| Dense layer (256 neurons)                    |         |   |  |  |
| Dropout (rate 0.2)                           |         |   |  |  |
| Output layer (2 clas                         | sses)   |   |  |  |

### RESULTS



- combined data used for 9 people in WISDM dataset
- Optimized edge model with auto weights and more epochs

### RESULTS



#### Metrics for Classifier1

| - 4 |    |  |
|-----|----|--|
|     | у_ |  |
|     |    |  |

| METRIC                       | VALUE |
|------------------------------|-------|
| Area under ROC Curve ②       | 0.99  |
| Weighted average Precision ② | 1.00  |
| Weighted average Recall ②    | 1.00  |
| Weighted average F1 score ③  | 1.00  |

#### Confusion matrix

|               | EPILEPSY | NON-EPILEPTIC | UNCERTAIN |
|---------------|----------|---------------|-----------|
| EPILEPSY      | 99.1%    | 0.8%          | 0.1%      |
| NON-EPILEPTIC | 0.2%     | 99.8%         | 0.0%      |
| F1 SCORE      | 0.96     | 1.00          |           |

- combined data used for 9 people in WISDM dataset
- Optimized edge model with auto weights and more epochs
- Accuracy as well as the Epilepsy F1 score improved

### CHALLENGES AND ERRORS

- Combining different datasets from different sources
  - different measurement devices
  - different measurement times
  - other unknowns?
- Simulating seizures ourselfes
- Limited data for Seizures
- Deployment

#### DISCUSSION

- This is a proof of concept that it does work and be implemented in embedded systems.
- We cannot account for multiple forms of seizures yet
- We need more epileptic seizure data
- We have good test scores, but what do they mean?

#### CONCLUSION

We implemented a Deep learning model in an embedded system to infer epileptic seizures with good test accuracies and F1 scores, proving that our model could accurately classify real time seizures with a wrist worn device and assist people with epilepsy.

#### FUTURE WORK

- Collect more data related to seizures to further test and train our model
  - https://github.com/OpenSeizureDetector/OpenSeizureDatabase
- Try out different model architectures
- Add more sensors
- Deploy our model on a prototype (Arduino, STM boards...) and design a wristband
- Start clinical testing with control and experimental group

https://thepihut.com/products/adafruit-adxl335-5v-ready-triple-axis-accelerometer-3g-analog-ou



## LIVE DEMO



## QSA





# Thank you!



