« Evaluating CRDTs for Real-time Document Editing » Summary

Ronan-Alexandre Cherrueau Adrien Bougouin Alban Ménager

20 mars 2012

Plan

- Introduction
- Existing
- Goal of the experiment
- Approaches
- Experiment

Introduction

- Increasing of collaboring work and real-time editing systems
- A good example : Google Docs
 - Allows editing on the same document at the same time by multiple authors.

Replication mechanism

- Real-time editing systems use replication mechanism to ensure consistency.
- Optimistic replication gives to users a low time of latency.

Problems

Centralized approach may cause problems :

- Personal datas are stored during the edition.
- It may be a privacy threat if they are used by corporations.

Solution

- Use decentralized mechanisms: Peer-to-peer.
- The main factor for suitable solutions is to respond to the users' actions in a reasonable time (about 50ms).

Goal

- Select algorithms based on optimistic replication.
- Evaluate them on a decentralized real-time collaborative editing system.
- Evaluations based on real context on the same conditions and using the same data flow.

First approach : Operation transformation

- Locally executed.
- Sent to others sites.
- Received by the centralized site.
- Transformed according to concurrent operations
- Executed on local copy.

New approach: CRDT

Commutative Replicated Data Types (CRDT)

- New class of replication mechanisms to preserve consistency.
- For peer-to-peer environment.
- The concurrent operations are natively commutative.
- The document is a linear sequence of elements.
- A single position identifier.

Selected Algorithms

- Logoot
- RGA
- WOOT
- WOOTO
- WOOTH

Theoretical evaluation

ALGORITHM	LOCAL		REMOTE		
	INS	DEL	INS	DEL	
WOOT	$O(H^3)$	O(H)	$O(H^3)$	O(H)	
WOOTO	$O(H^2)$	O(H)	$O(H^2)$	O(H)	
WOOTH	$O(H^2)$	O(H)	$O(H^2)$	O(log(H))	
Logoot	O(H)	O(1)	O(H.log(H))	O(H.log(H))	
RGA	O(H)	O(H)	O(H)	O(log(H))	
SOCT2/TTF	O(H+R)	O(H+R)	$O(H^2)$	$O(H^2)$	

Figure: Worst-case time-complexity analysis

We see that RGA and Logoot have the bests results.

Peer-to-Peer collaboration

- The team designed a real-time peer-to-peer collaborations application.
- In order to obtain real logs.
- And apply logs to the algorithms.

Groups for the experiments

- 3 groups have to do their semester report by only using the collaborating editor for one hour and a half:
 - 2 groups of 4 students.
 - 1 group of 5 students.
- 9 groups of 2 students have to translate an episode of The Big Bang Theory

1H30 for each experiment.

Logs

	Report			SERIES	
	GROUP 1	GROUP 2	GROUP 3	DOC 1	DOC 2
No. user operations	11 211	11 066	13 702	9 042	9 828
No. Char. Operations	26 956	47 992	42 443	29 882	10 268
% of del	12	12	12	9	5

Figure: Total number of user/character operations

Users Operations: execution times - 2nd Group report

Users Operations : execution times - 1st series

Characters Operations : execution times - 2nd group report

Characters Operations: execution times - 1 time series

Conclusion

- First performance evaluation of algorithms with real collaboration traces including concurrency.
- Proves the suitability of CRDT algorithms in real-time collaboration.
- Outperform some representative operational transformation approaches.
- Well established for real-time collaboration in terms of local generation time and remote integration time.

