ANALISI FUNZIONALE PROF. ALESSIO MARTINI A.A. 2023-2024

ESERCITAZIONE 2

- 1. Siano $1 \leq p < q < \infty$. Determinare la chiusura di ℓ^p in $(\ell^q, \|\cdot\|_q)$ e in $(\ell^\infty, \|\cdot\|_\infty)$.
- 2. Siano $0 < \alpha \le \beta < \infty$. Sia $f: (0, \infty) \to \mathbb{R}$ definita da $f(x) = 1/(x^{\alpha} + x^{\beta})$ per ogni $x \in (0, \infty)$. Determinare per quali $p \in [1, \infty]$ si ha $f \in L^p(0, \infty)$.
- 3. Siano $1 \le p < q \le \infty$ e $-\infty < a < b < \infty$.
 - (a) Dimostrare che l'inclusione $L^q(a,b)\subseteq L^p(a,b)$ è propria.
 - (b) Dimostrare che non ci sono inclusioni fra $L^p(\mathbb{R})$ e $L^q(\mathbb{R})$.
 - (c) Ci sono inclusioni fra $L^p(a,\infty)$ e $L^q(a,\infty)$?
- 4. Sia (M, \mathcal{M}, μ) uno spazio di misura. Siano $1 \le p \le r \le q \le \infty$.
 - (a) Dimostrare che, se $f \in L^p(M)$ e $|f| \leq 1$ μ -quasi ovunque, allora $f \in L^r(M)$.
 - (b) Dimostrare che $L^p(M) \cap L^{\infty}(M) \subseteq L^r(M)$.
 - (c) Dimostrare che, se $q < \infty$, $f \in L^q(M)$ e $|f| \ge 1$ μ -quasi ovunque sull'insieme $\{x \in M : f(x) \ne 0\}$, allora $f \in L^r(M)$.
 - (d) Dimostrare che $L^p(M) \cap L^q(M) \subseteq L^r(M)$. [Suggerimento: per $q < \infty$, posto $E = \{x \in M : |f(x)| \le 1\}$, spezzare $f = f\mathbf{1}_E + f\mathbf{1}_{M \setminus E}$.]
- 5. Siano $(f_n)_{n\in\mathbb{N}}$ una successione di funzioni misurabili sull'intervallo (0,1) e $g\in L^{\infty}(0,1)$ tali che $|f_n|\leq g$ per ogni $n\in\mathbb{N}$. Supponiamo che $f_n\to f$ puntualmente su (0,1) per $n\to\infty$.
 - (a) Dimostrare che $(f_n)_n$ è una successione limitata in $L^{\infty}(0,1)$ e che $f \in L^{\infty}(0,1)$.
 - (b) È necessariamente vero che $f_n \to f$ in $L^{\infty}(0,1)$?
 - [Questo esercizio discute il problema se valga per L^{∞} un analogo del teorema di convergenza dominata.]
- 6. Sia X uno spazio normato.
 - (a) Siano $x, y \in X$ e r, s > 0. Dimostrare che $\overline{B}(x, r) \cap \overline{B}(y, s) \neq \emptyset$ se e solo se $||x y|| \le r + s$.
 - [Suggerimento: per \Leftarrow cercare un punto della forma $(1-\theta)x + \theta y$ per opportuno $\theta \in [0,1]$ nell'intersezione.]
 - (b) Supponiamo ora che $X = \ell^2$. Posto r = 1/2, $s = (3 \sqrt{2})/(2\sqrt{2})$,

$$\underline{x} = (1, 0, 0, 1/27, 1/81, 0, 0, 0, 0, 0, 0, ...),$$

$$y = (0, 1/3, 1/9, 0, 0, 0, 0, 0, ...)$$

(le rimanenti componenti di \underline{x} e \underline{y} sono tutte nulle), determinare se le palle chiuse $\overline{B}(\underline{x},r)$ e $\overline{B}(y,s)$ in ℓ^2 si intersecano.

7. Data $\underline{x} \in \ell^{\infty}$, definiamo, per ogni $n \in \mathbb{N}$, la troncata n-esima $\underline{x}^{(n)}$ di \underline{x} ponendo

$$x_k^{(n)} = \begin{cases} x_k & \text{se } k \le n, \\ 0 & \text{se } k > n. \end{cases}$$

(a) Dimostrare che $(\underline{x}^{(n)})_n$ è una successione limitata a valori nello spazio di Banach $(\ell^{\infty}, \|\cdot\|_{\infty})$.

[Nota: ogni singola $\underline{x^{(n)}}$ è una successione numerica (a valori in \mathbb{F}); qui si chiede invece di considerare la successione di successioni $(\underline{x^{(n)}})_n$.]

- (b) È necessariamente vero che $\underline{x}^{(n)} \to \underline{x}$ in ℓ^{∞} per $n \to \infty$?
- 8. Per ogni $n \in \mathbb{N}$, sia $f_n : \mathbb{R} \to \mathbb{R}$ definita da

$$f_n(t) = \frac{1}{1 + (t - n)^2}$$
 per ogni $t \in \mathbb{R}$.

- (a) Dimostrare che $(f_n)_{n\in\mathbb{N}}$ è una successione limitata in $L^p(\mathbb{R})$ per ogni $p\in[1,\infty]$.
- (b) Dimostrare che $f_n \to 0$ puntualmente.
- (c) Determinare per quali $p \in [1, \infty]$ si ha $f_n \to 0$ in $L^p(\mathbb{R})$.
- 9. Sia $p \in [1, \infty)$. Sia $I \subseteq \mathbb{R}$ un intervallo non vuoto (limitato o illimitato).
 - (a) Dimostrare che, per ogni intervallo $[c,d] \subseteq I$, se $c_n,d_n \in I$ sono tali che $c_n \leq d_n$ e inoltre $c_n \to c$ e $d_n \to c$ per $n \to \infty$, allora $\mathbf{1}_{[c_n,d_n]} \to \mathbf{1}_{[c,d]}$ in $L^p(I)$.

[Suggerimento: verificare la convergenza puntuale su $I \setminus \{c,d\}$ e usare convergenza dominata.]

(b) Dimostrare che l'insieme

$$\operatorname{span}\{\mathbf{1}_{[c,d]}: [c,d] \subseteq I, \ c,d \in \mathbb{Q}\}\$$

è denso in $L^p(I)$.

- (c) Dimostrare che lo spazio $L^p(I)$ è separabile. [Questo esercizio dà un approccio alternativo alla separabilità di $L^p(I)$ senza passare dal teorema di Stone–Weierstrass.]
- 10. La variazione totale di una successione $\underline{x}=(x_k)_{k\in\mathbb{N}}\in\mathbb{F}^{\mathbb{N}}$ è definita da

$$V(\underline{x}) = \sum_{k \in \mathbb{N}} |x_{k+1} - x_k|.$$

Sia bv l'insieme delle successioni a $variazione\ limitata$:

$$bv = \{x \in \mathbb{F}^{\mathbb{N}} : V(x) < \infty\}.$$

- (a) Dimostrare che bv è un sottospazio vettoriale di ℓ^{∞} .
- (b) Dimostrare che V non è una norma su bv.
- (c) Sia

$$\|\underline{x}\|_{bv} = |x_0| + V(\underline{x})$$

per ogni $\underline{x} \in \mathbb{F}^{\mathbb{N}}$. Dimostrare che $\|\cdot\|_{bv}$ è una norma su bv.

- (d) Dimostrare che $(bv, \|\cdot\|_{bv})$ è uno spazio di Banach.
- 11. Sia $C_c(\mathbb{R})$ l'insieme delle funzioni continue $f:\mathbb{R}\to\mathbb{F}$ a supporto compatto, cioè tali che l'insieme

$$\operatorname{supp} f = \overline{\{t \in \mathbb{R} : f(t) \neq 0\}}$$

è un sottoinsieme compatto di \mathbb{R} .

- (a) Dimostrare che una funzione continua $f : \mathbb{R} \to \mathbb{F}$ appartiene a $C_c(\mathbb{R})$ se e solo se esiste M > 0 tale che f(t) = 0 per ogni $t \in \mathbb{R} \setminus [-M, M]$.
- (b) Dimostrare che $C_c(\mathbb{R})$ è un sottospazio vettoriale di $L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$.
- (c) Dimostrare che ogni $f \in C_c(\mathbb{R})$ è uniformemente continua. [Suggerimento: usare Heine-Cantor su un'opportuna restrizione di f.]
- (d) Sia $p \in [1, \infty)$. Dimostrare che, se $[c, d] \subseteq \mathbb{R}$, allora $\mathbf{1}_{[c,d]}$ è limite in $L^p(\mathbb{R})$ di una successione a valori in $C_c(\mathbb{R})$.

[Suggerimento: usare l'analogo risultato per $L^p(a,b)$ noto dalla teoria.]

- (e) Dimostrare che $C_c(\mathbb{R})$ è denso in $L^p(\mathbb{R})$ per ogni $p \in [1, \infty)$.
- (f) $C_c(\mathbb{R})$ è denso in $L^{\infty}(\mathbb{R})$?