Name: Solutions

- 1. Suppose that $L = (\vec{v}_1, ..., \vec{v}_p)$ is a list of p vectors in \mathbb{R}^n .
- a. Assuming that 0 , describe completely but succinctly aspecific procedure, employing standard techniques of this course, to unambiguously determine if L is linearly independent. Let A be the $n \times p$ matrix whose columns are the corresponding vectors in L, i.e. $A = [\vec{v}_1 | \cdots | \vec{v}_n]$. Find the rref of A. Then, L is linearly independent if and only if every column of A_{rref} contains a leading 1 [every column of A is a pivot column or rank(A) = p].
- b. Assuming that p > 0 and n > 0, describe completely but succinctly a specific procedure, employing standard techniques of this course, to unambiguously determine if a given vector \vec{w} in \mathbf{R}^n belongs to span(L). This is equivalent to determining whether a solution exists to the equation $A\vec{x} = \vec{w}$ where the column vectors of A are the corresponding vectors in L. So, find the rref of $[A|\vec{w}]$. Then, \vec{w} belongs to span(L) if and only if the last column of $[A | \vec{w}]_{rref}$ does not contain a leading 1 [the last column of A is not a pivot column].
- 2. a. Suppose that n > 0, and \vec{a} is a nonzero vector in \mathbf{R}^n , and S is the subset of all vectors in \mathbb{R}^n that are orthogonal to \vec{a} . Prove that S is a subspace of \mathbb{R}^n and determine dim(S).
- If \vec{v}_1 and \vec{v}_2 both belong to S and α_1 and α_2 are any reals, then $a \cdot (\beta_1 \vec{v}_1 + \beta_2 \vec{v}_2) = \beta_1 a \cdot \vec{v}_1 + \beta_2 a \cdot \vec{v}_2 = 0 + 0 = 0$. That is, all linear combinations of vectors in S are also in S. Hence, S is closed under vector addition and multiplication by scalars and is therefore a subspace. Another way of seeing that this is a subspace is observe that it is the kernel of the $1 \times n$ matrix $\begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$ and its dimension is clearly n-1since there is only one pivot row and so only one pivot column for such a matrix.
- b. Prove that the subset T of all vectors \vec{x} in \mathbb{R}^4 that satisfy $||\vec{x}|| \le 1$ is not a subspace of \mathbb{R}^4 .

The first standard basis vector \hat{e}_1 clearly belongs to T since $\|\hat{e}_1\| = 1$. However, $2\hat{e}_1$ does not belong to T since $||2\hat{e}_1|| = 2$. So, T is not closed under multiplication by scalars and is therefore not a subspace.

4.
$$A = \begin{bmatrix} 1 & 2 & 1 & 3 & 4 \\ 2 & 0 & 1 & 0 & 3 \\ 0 & 1 & 2 & 5 & 3 \\ 1 & 3 & 3 & 8 & 7 \end{bmatrix}$$
 and $A_{rref} = \begin{bmatrix} 1 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

a. Determine a basis \mathcal{R} for ker(A) and find dim(ker(A)).

From the Solution Algorithm,
$$\mathcal{A} = \begin{pmatrix} 1 \\ -1 \\ -2 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
 and $\dim(\ker(A)) = 2$.

b. Determine a basis \mathfrak{M} for im(A) and find dim(im(A)).

Examination of A_{rref} reveals that the fourth and fifth columns of A are linear combinations of the first three columns of A which comprise a basis

for im(A). Hence,
$$\mathfrak{M} = \begin{pmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$
 and dim(im(A)) = 3.

c. For which vectors \vec{b} does $A\vec{x} = \vec{b}$ have solutions? Explain. $A\vec{x} = \vec{b}$ has solutions if and only if \vec{b} belongs to im(A).

d. If \vec{b} is a vector for which $A\vec{x} = \vec{b}$ has solutions, when is the solution unique? Explain.

If \vec{b} belongs to im(A), $A\vec{x} = \vec{b}$ will always have infinitely many solutions since ker(A) consists of infinitely many distinct vectors. Any nonzero vector in ker(A) added to a solution results in a different solution.

e. Labeling the columns of A as $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4, \vec{v}_5$, respectively, find the coordinate vectors $[\vec{v}_2]_{\mathfrak{M}}$ and $[\vec{v}_4]_{\mathfrak{M}}$.

Since \mathfrak{M} is a basis for $\operatorname{im}(A)$, every vector in $\operatorname{im}(A)$ is a unique linear combination of the vectors in \mathfrak{M} . The coefficients of these linear combinations provide the \mathfrak{M} -coordinate vectors of any vector in $\operatorname{im}(A)$. But, A_{rref} reveals how each column vector of A is a specific linear

combination of the vectors in \mathfrak{M} (the first three column vectors of im(A).

Specifically, we see that
$$[\vec{v}_2]_{\mathfrak{M}} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 and $[\vec{v}_4]_{\mathfrak{M}} = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$

- 5. M is the line in \mathbb{R}^2 whose equation is 2x y = 0. Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation that triples all vectors in \mathbb{R}^2 that are parallel to M and leaves unchanged all vectors in \mathbb{R}^2 that are perpendicular to M.
- a. Choose a convenient basis $\mathcal{B} = (\vec{v}_1, \vec{v}_2)$ for \mathbf{R}^2 so that T transforms the basis vectors in a simple way. Identify \vec{v}_1 and \vec{v}_2 . Also express $T(\vec{v}_1)$ and $T(\vec{v}_2)$ in terms of \vec{v}_1 and \vec{v}_2 .

A vector parallel to M is $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and a vector perpendicular to M is

$$\vec{v}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
. Clearly, $T(\vec{v}_1) = 3\vec{v}$, and $T(\vec{v}_2) = \vec{v}_2$.

b. What is the matrix S such that $\vec{x} = S[\vec{x}]_{\mathcal{B}}$ for any vector \vec{x} in \mathbb{R}^2 and what is its inverse?

$$S = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \text{ and so, } S^{-1} = \frac{1}{-5} \begin{bmatrix} -1 & -2 \\ -2 & 1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}.$$

c. What is the matrix B for T in \mathcal{B} -coordinates? That is, what is the matrix B such that $[T(\vec{x})]_{\mathcal{B}} = B[\vec{x}]_{\mathcal{B}}$ for any \vec{x} in \mathbb{R}^2 ?

$$B = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}.$$

SM261.1011

d. Determine the standard matrix A for T. That is, find A so that $T(\vec{x}) = A\vec{x}$ for any vector \vec{x} in \mathbb{R}^2 .

$$A = SBS^{-1} = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \frac{1}{5} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 3 & 6 \\ 2 & -1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 7 & 4 \\ 4 & 13 \end{bmatrix}.$$

e. Compute $T\begin{bmatrix}1\\1\end{bmatrix}$.

$$T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = A\begin{bmatrix}1\\1\end{bmatrix} = \frac{1}{5}\begin{bmatrix}7 & 4\\4 & 13\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}11/5\\13/5\end{bmatrix}.$$