Comonnada al	miárcolos 10 de continuo de 2024 16:01
Comenzado ei	miércoles, 18 de septiembre de 2024, 16:01
Estado	Finalizado
Finalizado en	miércoles, 18 de septiembre de 2024, 17:04
Tiempo	1 hora 3 minutos
empleado	
Calificación	97,41 de 100,00

Pregunta 1

Parcialmente correcta

Se puntúa 67,41 sobre 70,00

Determinar los parámetros de Denavit Hartenberg del siguiente robot.

Considerar que el estado de reposo es el que se muestra en la figura.

Parámetros de D - H

Luego, determinar la posición del efector final considerando:

Pregunta 2

Finalizado

Sin calificar

Copia o adjunta a continuación el script con los comandos que utilizaste para resolver la pregunta.

```
45- acgziaa( 22.50),
q6 = pi/4;
% Parámetros D-H
q = [q1 q2 q3 0 q5 0];
d = [11\ 0\ 0\ 13 + d4\ 0\ 14];
a = [0 | 2 | 0 | 0 | 0 | 0];
alfa = [-pi/2 \ 0 \ pi/2 \ -pi/2 \ pi/2 \ 0];
% Matrices de transformación homogénea
A01 = matrizDenavitHartenberg(q(1), d(1), a(1), alfa(1));
A12 = matrizDenavitHartenberg(q(2), d(2), a(2), alfa(2));
A23 = matrizDenavitHartenberg(q(3), d(3), a(3), alfa(3));
A34 = matrizDenavitHartenberg(q(4), d(4), a(4), a(4), alfa(4));
A45 = matrizDenavitHartenberg(q(5), d(5), a(5), alfa(5));
A56 = matrizDenavitHartenberg(q(6), d(6), a(6), alfa(6));
% Modelo cinemático directo
T = A01 * A12 * A23 * A34 * A45 * A56;
disp(T);
```

Pregunta 3

Correcta

Se puntúa 20,00 sobre 20,00

Un sistema OUVW ha sido girado -171.00° alrededor del eje 0Z, posteriormente trasladado un vector p1 = (-5.00, -6.00, -8.00), y finalmente ha sido girado -115.00° alrededor del eje 0Y

Calcular las coordenadas (rx, ry, rz) del vector r con coordenadas ruvw = (-5.00, -9.00, -4.00)

$$rx = \left(11.4967 \right)$$

Pregunta 4

Finalizado

Sin calificar

Copia o adjunta a continuación el script con los comandos que utilizaste para resolver la pregunta.

```
theta_z = -171;
theta_y = -115;

r_uvw = [-5, -9, -4, 1]';

% Matrices de rotación

R_z = [rotz(theta_z) [0 0 0]'; 0 0 0 1]; % Rotación alrededor de Z

R_y = [roty(theta_y) [0 0 0]'; 0 0 0 1]; % Rotación alrededor de Y

% Matriz de traslación p1

T1 = [eye(3) p1; 0 0 0 1];

% Aplicar las transformaciones

T_total = R_y * T1 * R_z;

% Aplicar la transformación total al vector r_uvw

r_xyz = T_total * r_uvw;

disp('Las coordenadas del vector r en el sistema 0XYZ son:');

disp(r_xyz(1:3));
```

Pregunta 5

Correcta

Se puntúa 10,00 sobre 10,00

Un sistema OUVW ha sido girado 37.00° alrededor del eje 0X,

luego ha sido girado -85.00° alrededor del eje 0Y,

y finalmente ha sido girado 56.00° alrededor del eje 0X

Calcular las coordenadas (rx, ry, rz) del vector r con coordenadas ruvw = (-3.00, -2.00, -5.00)

$$rx = 4.9156$$
 $ry = 3.6426$
 $rz = -0.7540$

Pregunta 6

Finalizado

Sin calificar

Copia o adjunta a continuación el script con los comandos que utilizaste para resolver la pregunta.

```
close all; clear all; clc

theta_x = 37;
theta_y = -85;
theta_x_2 = 56;

r_uvw = [-3, -2, -5, 1]';

% Matrices de rotación
R_x = [rotx(theta_x) [0 0 0]'; 0 0 0 1];
R_y = [roty(theta_y) [0 0 0]'; 0 0 0 1];
R_x_2 = [rotx(theta_x_2) [0 0 0]'; 0 0 0 1];

% Aplicar las rotaciones
T_total = R_x_2 * R_y * R_x;

% Aplicar la transformación total al vector r_uvw
r_xyz = T_total * r_uvw;

disp('Las coordenadas del vector r en el sistema 0XYZ son:');
```