Data Analytics, Geostatistics and Machine Learning

Introduction

Lecture outline . . .

- Who am I?
- Motivation / Goals
- Class Description / Objectives
- The Plan
- Resources

Introduction

Modeling Prerequisites

Spatial Estimation

Spatial Uncertainty

Multivariate, Spatial

Novel Workflows

Conclusions

Instructor: Michael Pyrcz, the University of Texas at Austin

Who Am I?

Spring 2018 Class of Introduction to Geostatistics

Oil and Gas University, Florence, Italy

1. Pyrcz: is pronounced "perch"

Anadarko, Midland, TX

- 2. I'm New: new to UT PGE, started August, 2017. Everything is new!
- **3. I have practical experience**: over 17 years of experience in consulting, teaching and industrial R&D in statistical modeling, reservoir modeling and uncertainty characterization.

Who Am I?

Fall 2018 Class of Introduction to Geostatistics

Fall 2017 PGE 383

Michael Pyrcz

- **4. Flexible**: got ideas, feedback to improve the learning opportunities. Let's work together to reach our learning objective.
- **5. Available**: I have an open door policy. Drop by my office. Drop a line anytime.
- **6. An Engineer, but**: My B.Sc. was Mining Engineering, my M.Sc. started as Geotechnical Engineering (then skipped to Ph.D.) and my Ph.D. was in Quantitative Geology. I spent 13 years in Earth Science R&D working with geological and geophysical reservoir modeling. I speak geo.

Who Am I?

AAPG SEPM Panel Discussion on Modeling

CPGE Webinar on Big Data

Michael Pyrcz

8. Active in Outreach, Social Media and Professional Organizations

- associate editor with Computers and Geosciences, editorial board of Mathematical Geosciences for the International Association of Mathematical Geosciences
- program chair for SPE Data Analytics Technical Section
- associate editor with Computers and Geosciences
- author of the textbook "Geostatistical Reservoir Modeling"
- board member for Mathematical Geosciences
- GeostatsGuy on Twitter, GitHub, GeostatsGuy Lectures on YouTube

I'm committed to supporting / partnering for development opportunities of working professionals

Introductions

Short Introductions:

Name

Role

Expectations from this Class

The Goal – tools to impact your daily work in:

- data analytics
- geostatistics
- machine learning

Introduction

Day 1 | Modeling Prerequisites

Day 2 | Spatial Estimation

Day 3 | Spatial Uncertainty

Day 4 | Multivariate, Spatial

Day 5 | Novel Workflows

Conclusions

These five days are an investment in learning

- Build operational capability
- Provide incremental value.

Multivariate, Spatial Uncertainty Methods

Reaching our Goal

This week we will:

- Cover the building blocks
- Build up from building blocks, theory to practical workflows

Of course, full workflow development would require time to investigate the problem and available data.

Introduction

Modeling Prerequisites

Spatial Estimation

Spatial Uncertainty

Multivariate, Spatial

Novel Workflows

Conclusions

There is Much More! – the building blocks can be reimplemented and expanded to address various other problems, opportunities.

There is much more that we can cover.

- Statistical Inference
- Representative Statistics
- Debiasing
- Uncertainty Sources
- · Trend Modeling
- Model Optimization
- Discrete Uncertainty
- Facies Models
- Object-based Modeling
- Support Vector Machines
- Fair Spatial Model Testing
- Stochastic Simulations
- Value of Information

Introduction

Modeling Prerequisites

Spatial Estimation

Spatial Uncertainty

Multivariate, Spatial

Novel Workflows

Conclusions

How Will You Learn All of That?

Here's the Plan:

- 1. Interactive lectures / discussion to cover the theory
- 2. Live demonstrations in Excel, Python
- 3. Simple, well-documented experiential learning in Excel and Python

We will adjust for success:

- Let me know if you are lost, stuck, something is not working or you aren't learning!
- e.g. we could switch from experiential to live demo
- e.g. we could use less Python and more Excel

Feedback welcome as we proceed.

Why Excel and Python?

Excel (without Visual Basic Applications):

- Everyone has it
- Most know the basics, many are really good at it
- It is very easy to interrogate, click on any cell, see the equations!
- You can actually build complicated methods and workflows, up from simple operations

'If you can't explain it simply, you don't understand it well enough!'

- Albert Einstein

Python:

- Is very powerful, the most resources and assistance
- Packages allow us to put together workflows with limited old-fashioned 'coding'
- Leverage the world's brilliance

'Certainly there's a phenomenon around open source. You know free software will be a vibrant area. 'There will be a lot of nest things that get done there.'

- Bill Gates

'20 years with C++ and FORTRAN, but with Python I code less, but get more done.'

- Michael Pyrcz

Jupyter Notebooks?

Python with Jupyter Notebooks

Workflows that integrate blocks of code, documentation, results

- Work with a variety of kernels (Python, R, C, javascript, etc.)
- Make professional workflows with Markdown docs
- Use containers and run online (e.g. Docker)

GeostatsPy?

GeostatsPy

- Set of Functions in Python
 - GeostatsPy is a set of Python functions for most of the required workflow steps
 - Much is reimplemented in Python.
 - Package written by myself, we will tailor, augment to support training.
 - I welcome feedback.
 - Open Source anyone can use it
 - Free for any use
 - Download it from PyPi with:

'pip install geostatspy'

Project description

GeostatsPy Package

The GeostatsPy Package brings GSLIB: Geostatistical Library (Deutsch and Journel, 1998) functions to Python. GSLIB is extrememly robust and practical code for building spatial modeling workflows. I specifically wanted it in Python to support my students in my Data Analytics, Geostatistics and Machine Learning courses. I find my students benefit from hands-on opportunities, infact it is hard to imagine teaching these topics without providing the opportunity to handle the numerical methods and build workflows.

This package includes 2 parts:

- geostatspy.gslib includes low tech wrappers of GSLIB functionality (note: some functions require access
 to GSLIB executables)
- 2. geostatspy.geostats includes GSLIB functions rewritten in Python.

Package Inventory

Here's a list and some details on each of the functions available.

geostatspy.gslib Functions

Utilities to support moving between Python DataFrames and ndarrays, and Data Tables, Gridded Data and Models in Geo-EAS file format (standard to GSLIB):

- ndarray2GSLIB utility to convert 1D or 2D numpy ndarray to a GSLIB Geo-EAS file for use with GSLIB
 methods
- GSLIB2ndarray utility to convert GSLIB Geo-EAS files to a 1D or 2D numpy ndarray for use with Python
 methods

More on Coding

More on Software / Coding:

- This is not a coding / software workshop.
- I can't teach Python in 1 day.
- We will demonstrate well-documented workflows in Python.
- We will focus on the steps, inputs and outputs.
- Don't be concerned if you don't completely understand the code.

The Plan - We will use workflows in Python to demonstrate concepts, for hands-on you will use paper and Excel for accessibility!

Reasons to Learn Coding

Transparency – *no compiler accepts hand waiving!* Coding forces your logic to be uncovered for any other scientist or engineer to review.

Reproducibility – run it, get an answer, hand it over, run it, get the same answer. This is a main principle of the scientific method.

Quantification – *programs need numbers.* Feed the program and discover new ways to look at the world.

Open-source – *leverage a world of brilliance.* Check out packages, snippets and be amazed with what great minds have freely shared.

Break Down Barriers – *don't throw it over the fence*. Sit at the table with the developers and share more of your subject matter expertise for a better product.

Deployment – *share it with others and multiply the impact*. Performance metrics or altruism, your good work benefits many others.

Efficiency – *minimize the boring parts of the job*. Build a suite of scripts for automation of common tasks and spend more time doing science and engineering!

Always Time to Do it Again! – how many times did you only do it once? It probably takes 2-4 times as long to script and automate a workflow. Usually worth it.

Be Like Us – *it will change you*. Users feel limited, programmers truly harness the power of their applications and hardware.

Reasons to Learn Coding

The Liniversity of Texas at their

Caveats for the previous reasons for coding:

- 1. Any type of coding, scripting, workflow automation matched to your working environment is great. We don't all need to be C++ experts.
- 2. I respect the experience component of geoscience and engineering expertise. This is beyond coding and is essential to workflow logic development, best use of data etc.
- 3. Some expert judgement will remain subjective and not completely reproducible. I'm not advocating for the geoscientist or engineer being replaced by a computer.

What Will You Gain?

Anticipated Take-aways:

- 1. New theory to strengthen your understanding of subsurface modeling.
- 2. New methods for your tool box.
- 3. Resources to assist you in the future.
- 4. Some ideas for new opportunities.

All of these immediately impact your ability to add value.

Data Analytics, Geostatistics and Machine Learning

Introduction

Lecture outline . . .

Who am I?

Motivation / Goals

 Class Description / Objectives

The Plan

Resources

Introduction

Modeling Prerequisites

Spatial Estimation

Spatial Uncertainty

Multivariate, Spatial

Novel Workflows

Conclusions

Instructor: Michael Pyrcz, the University of Texas at Austin