520 Phase 2 Notes

1.3: Span

- Definition: $v_1, ..., v_p$ are in \mathbb{R}^n ; set of all linear combinations of $v_1, ..., v_p$ is denoted by Span $\{v_1, ..., v_p\}$; this is called the subset of \mathbb{R}^n spanned by $v_1, ..., v_p$
- Span $\{v_1, ..., v_p\}$ is the collection of all vectors that can be written in the form $c_1v_1 + ... + c_pv_p$
- vector b is in Span $\{v_1,...,v_p\}$ if augmented matrix $[v_1 \dots v_p]$ be has a solution
- zero vector must be in Span $\{v_1, ..., v_p\}$

1.5: Homogeneous Linear Systems

- system of linear equations is homogeneous if it can be written in form Ax = 0
- Ax = 0 has a nontrivial solution if and only if the equation as at least one free variable

1.7: Linear Independence and Dependence

- Dependent Definition: vector $\{v_1, ..., v_p\}$ in \mathbb{R}^n is said to be linearly independent if Ax = 0 has only the trivial solution
- if a set contains more vectors than entries in each vector (more columns than rows) the set is linearly dependent
- if a set contains the zero vector, the set is linearly dependent
- Independent Definition: vector $\{v_1, ..., v_p\}$ in \mathbb{R}^n is said to be linearly independent if Ax = 0 there exist non trivial solutions to the equation

1.8: Introduction to Linear Transformations

- Definition: Linear Transformation
 - A transformation T is linear if
 - (i) T(u+v) = T(u) + T(v) for all u, v in the domain of T
 - (ii) T(cu) = cT(u) for all scalars c and all u in the domain of T

1.9: The Matrix of Linear Transformation

- Definition: onto (surjective)
 - A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be onto \mathbb{R}^m if each b in \mathbb{R}^m is the image of at least one x in \mathbb{R}^n
 - each y has at least one x
- Definition: one-to-one (injective)
 - each v has at most one x
- Theorem 11: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation; T is one-to-one if and only if the equation T(x) = 0 has only the trivial solution
- Theorem 12: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let A be the standard matrix for T, then:

- a: T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m
- b: T is one to one if and only if the columns of A are linearly independent

2.1: Matrix Operations

- Theorem 3: Transpose Properties
 - Let A and B denote matrices whose sizes are appropriate for the following sums and products

- a:
$$(A^T)^T = A$$

- b:
$$(A+B)^T = A^T + B^T$$

- c: For any scalar r,
$$(rA^T) = rA^T$$

$$- d: (AB)^T = B^T A^T$$

• the transpose of a product of matrices equals the product of their transposes in reverse order

2.2: The Inverse of a Matrix

- Theorem 5: If A is an invertible nxn matrix, then for each b in \mathbb{R}^n , the equation Ax = b has the unique solution $x = A^{-1}b$
- Theorem 6:

$$-(A^{-1})^{-1} = A$$

$$-(AB)^{-1} = B^{-1}A^{-1}$$

$$-(A^T)^{-1} = (A^{-1})^T$$

- Finding the inverse of a matrix:
 - Gauss-Jordan elimination [A I] to [I A^{-1}]
 - 2d: check visual notes

2.3: The Invertible Matrix Theorem

- A is an invertible matrix
- A is row equivalent to the nxn identity matrix
- A has n pivot positions
- The equation Ax = 0 has only the trivial solution
- The columns of A form a linearly independent set
- The linear transformation $x \to Ax$ is one to one
- The equation Ax = b has at least one solution for each b in \mathbb{R}^n
- The columns of A span \mathbb{R}^n
- the linear transformation $x \to Ax$ maps \mathbb{R}^n onto \mathbb{R}^n
- There is an nxn matrix C such that CA = I
- there is an nxn matrix D such that AD = I
- A^T is an invertible matrix

2.8: Subspaces of \mathbb{R}^n

• Definition of subspace: A subspace of \mathbb{R}^n is any set H in \mathbb{R}^n that has three properties:

- a: The zero vector is in H
- b: For each u and v in H, the sum u+v is in H
- c: For each u in H and each scalar c, the vector cu is in H
- basically, a subspace is closed under addition and scalar multiplication
- Column space Definition: The Column space of a matrix A is the set Col A of all linear combinations of the columns of A
- column space of an mxn matrix is a subspace of \mathbb{R}^m ; COl A equals \mathbb{R}^m only when the columns of A span \mathbb{R}^m
- Null space definition: The null space of a matrix A is the set Nul A of all solutions of the homogeneous equation Ax = 0
- null space of A is the subset of \mathbb{R}^n
- Basis Definition: A basis for subspace H of \mathbb{R}^n is linearly independent set in H that spans H

2.9: Dimension and Rank

- Coordinate vector definition:
 - given set B $\{b_1, ..., b_p\}$, a basis for a subspace H; for each vector x in H, the coordinates of x relative to the basis B are the weights $c_1, ..., c_p$ such that $x = c_1b_1 + ... + c_pb_p$; also known as the B coordinate vector of x
- Dimension definition: the dimension of a nonzero subspace H, denoted by dim H, is the number of vectors in any basis for H. The dimension of the zero subspace 0 is defined to be 0.
- Rank Definition: The rank of a matrix A, denoted by rank A, is the dimension of the column space of A
- Theorem 14: The Rank Theorem
 - If a matrix A has n columns then rank A + dim Nul A = n
- Theorem 15: The Basis Theorem
 - Let H be a p-dimensional subspace of \mathbb{R}^n
 - Any linearly independent set of exactly p elements in H is automatically a basis for H
 - Any set of p elements of H that spans H is automatically a basis for H

The Invertible Matrix Theorem Continued

- Let A be an nxn matrix
- The columns of A form a basis for \mathbb{R}^n
- Col A = \mathbb{R}^n
- $\bullet \ \dim \operatorname{Col} \, A = n$
- rank A = n

- Nul $A = \{0\}$
- dim Nul A = 0

3.1: Intro to Determinants

- $\bullet \ det A = \sum_{j=1}^{n} (-1)^{i+j} a_{1j}$
- determinant can be computed by cofactor expansion across any row or down any column
- Theorem 2: If A is a triangular matrix, then det A is the product of the entries on the main diagonal of A

Properties of Determinants

- Theorem 3: Row Operations
 - Let A be a square matrix
 - a: multiple of one row added to another row \rightarrow det B=det A
 - b: rows are interchanged \rightarrow det B = det A
 - c: if one row of A is multiplied by k to produce B, then det B = $k \cdot Det A$
- Theorem 5: A is a nxn matrix, det $A^T = \det A$

3.3: Cramer's Rule

- Let A be an invertible nxn matrix
- For any b in \mathbb{R}^n , the unique solution x of Ax = b has entries given by $x_i = \frac{\det A_i(b)}{\det A}$ for i = 1, ..., n

3.3: Theorem 8: An Inverse Formula

• Let A be an invertible nxn matrix, then:

$$A - 1 = \frac{1}{\det A} \operatorname{adj} A$$

4.1: Vector Spaces and Subspaces

- Subspace definition:
 - A subspace of a vector space V is a subset H of v has 3 properties:
 - a: zero vector of V is in H
 - H is closed under vector addition: for each u and v in H, the sum (u+v) is in H
 - H is closed under multiplication by scalars: for each u in H and each scalar c, the vector cu is in H
- Theorem 1: If $v_1, ..., v_p$ are in a vector space V, then Span $\{v_1, ..., v_p\}$ is a subspace of V

4.2: Null spaces, column spaces, and linear transformations

• Null space definition: The null space of an mxn matrix A, written as Nul A, is the set of all solutions of the homogeneous equation Ax=0: Nul $A=\{x:x \text{ is in }\mathbb{R}^n \text{ and } Ax=0\}$

- Column space definition: The column space of an mxn matrix A, written as Col A, is the set of all linear combinations of A; if $A = [a_1...a_n]$ then Col A = Span $\{a_1,...,a_n\}$
- Theorem 3: the column space of an mxn matrix A is a subsapce of \mathbb{R}^m
- the column space of an mxn matrix A is all of \mathbb{R}^m if and only if the equation Ax=b has a solution for each b in \mathbb{R}^m
- Linear Transformation Definition: A linear transformation T form a vector space V into a vector space W is a rule that assigns to each vector x in V a unique vector T(x) in W, such that
 - T(u+v) = T(u)+T(v) for all u, v in V
 - T(cu) = cT(u) for all u in V and all scalars c

4.3: Linearly Independent Sets; Bases

- Theorem 4: given a set of vectors, if one vector is a linear combination of any of the other vectors, the set is linearly dependent (and vice versa)
- Basis Definition: Let H be a subspace of a vector space V; An indexed set of vectors $B = \{b_1, ..., b_p\}$ in V is a basis for H if
 - B is a linearly independent set
 - the subspace spanned by B coincides with H -; $H = Span\{b_1,...,b_p\}$
- Theorem 5: The Spanning Set Theorem
 - Let S = $\{v_1,...,v_p\}$ be a set in V, let $H=\operatorname{Span}\{v_1,...,v_p\}$
 - if one of the vectors that is a linear combination of any of the other vectors is removed, the set without that vector still spans H
 - if $H \neq \{0\}$ some subset of S is a basis for H
- Theorem 6: the pivot columns of a matrix A form a basis for Col A

4.4: Coordinate Systems

- B-coordinates of X definition (see 2.9 section)
- Theorem 8: Let $B = \{b_1, ..., b_n\}$ be a basis for a vector space V; then the coordinate mapping $x \mapsto [x]_B$ is a one-to-one linear transformation from V onto \mathbb{R}^n
- Isomorphism definition: a one-to-one linear transformation from a vector space V onto a vector space W is called an isomorphism from V onto W

4.5: The Dimension of a Vector Space

- Dimension Definition:
 - If V is spanned by a finite set, V is finite-dimensional and dim V is the number of vectors in a basis for V

- dimension of the zero vector space is defined to be 0
- if V is not spanned by a finite set, V is infinite dimensional
- The dimension of Nul A is the number of free variables in the equation Ax=0
- The dimension of Col A is the number of pivot columns in A

4.6: Rank

- Row Space Definition: set of all linear combinations of the row vectors is called the row space of A (row A); Col $A^T = \text{row A}$
- Theorem 13: If 2 matrices A and B are row equivalent, their row spaces are the same; If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B
- Rank Definition: the rank of A is the dimension of the column space of A
- Theorem 13: The Rank Theorem
 - the dimensions of the column space and the row space of an mxn matrix A are equal
 - rank $A = \dim Nul A = n$
 - number of pivot columns + number of non pivot columns = number of columns
- The Invertible Matrix Theorem (continued)
 - Let A be an nxn matrix
 - columns of A form a basis of \mathbb{R}^n
 - $\operatorname{Col} A = \mathbb{R}^n$
 - $\dim \operatorname{Col} A = n$
 - $\operatorname{rank} A = n$
 - $\text{ Nul A} = \{0\}$
 - $-\dim \operatorname{nul} A = 0$

4.7: Change of Basis

- Theorem 15:
 - Let B = $\{b_1, ..., b_n\}$ and C = $\{c_1, ..., c_n\}$ be bases of a vector space V
 - then there is a unique nxn matrix $P_{C \leftarrow B}[x]_B$
 - the columns of $P_{C \leftarrow B}$ are the C-coordinate vectors of the vectors in the basis B
- Change of Basis in \mathbb{R}^n : $[c_1 \ c_2 \mid b_1 \ b_2] \to [I \mid P_{C \leftarrow B}]$

5.1: Eigenvectors and Eigenvalues

- Definition: An eigenvector of an nxn matrix A is a nonzero vector x such that $Ax = \lambda x$ for some scalar λ
- Definition: A scalar λ is called an eigenvalue of A if there is a nontrivial solution x of $Ax = \lambda x$; such an x is called an eigenvector corresponding to λ

• Theorem 2: If $\{v_1, ..., v_r\}$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, ..., \lambda_r$ of an nxn matrix A, then the set $\{v_1, ..., v_r\}$ is linearly independent

5.2: Characteristic Equation

- The Invertible Matrix Theorem Continued
 - Let A be an nxn matrix, A is invertible if and only if
 - The number 0 is not an eigenvalue of A
 - The determinant of A is not zero
- Definition: A scalar λ is an eigenvalue of an nxn matrix A if and only if λ satisfies the characteristic equation $\det(A \lambda I) = 0$
- Similarity Definition: A is similar to B if there is an invertible matrix P such that $P^{-1}AP = B$ or equivalently $A = PBP^{-1}$
- Theorem 4: If nxn matrices A and B are similar, they have the same characteristic polynomial and hence the same eigenvalues with the same multiplicities

5.3: Diagonalization

- Diagonalizable definition: A square matrix A is said to be diagonalizable if A is similar to a diagonal matrix; that is, if $A = PDP^{-1}$ for some invertible matrix P and some diagonal matrix D
- Theorem 5: Diagonalization Theorem
 - An nxn matrix A is diagonalizable if and only if A has n linearly independent eigenvectors
 - $-A = PDP^{-1}$ with D a diagonal matrix if and only if the columns of P are n linearly independent eigenvectors of A; then the diagonal entries of D are eigenvalues of A that correspond respectively to the eigenvectors in P
- A is diagonalizable if and only if there are enough eigenvectors to form a basis of \mathbb{R}^n
- Diagonalizing Matrices:
 - 1: Find the eigenvalues of A
 - 2: Find 3 linearly independent eigenvectors of A
 - 3: Construct P form vectors in step 2
 - 4: Construct D from corresponding eigenvalues

5.4: Eigenvectors and Linear Transformations

- Theorem 8: Diagonal Matrix Representation
 - Suppose $A = PDP^{-1}$, D is the diagonal nxn matrix
 - B is the basis for \mathbb{R}^n formed from the columns of P
 - D is teh B matrix for the transformation $x \mapsto Ax$

5.5: Complex Eigenvalues

• complex scalar λ satisfies $\det(A - \lambda I) = 0$ if and only if there is a nonzero vector x in \mathbb{C}^n such that $Ax = \lambda x$; λ is the complex eigenvalue and x is the complex eigenvector corresponding to λ