Пример. Уточнить решение нелинейного уравнения

$$x^3 - \frac{x^2 + x}{5} = 1,2$$

используя метода секущих на интервале [1; 1,5] с точностью $\varepsilon = \delta = 10^{-3}$.

Решение. Для запуска итерационного процесса по методу секущих необходимо задать две начальных точки. В качестве первой x_0 выбирается правая граница интервала, точка b = 1,5, а вторая x_1 , вычисляется с помощью выражения

$$x_1 = x_0 - \varepsilon = 1,5 - 0,001 = 1,499.$$

В каждой начальной точке проводится вычисление значений функции

$$f(1,5)=1,5^3-\frac{1,5^2+1,5}{5}-1,2=1,425,$$

$$f(1,499) = 1,499^3 - \frac{1,499^2 + 1,499}{5} - 1,2 = 1,41905.$$

Определенные значения используются для вычисления координаты новой точки x_2 , определяющей место пересечения секущей с осью абсцисс

$$x_2 = 1,499 - \frac{1,41905 \cdot (1,499 - 1,5)}{1,41905 - 1,425} = 1,26033.$$

Вычисленное значение x_2 сравнивается с x_1 и проверяется на достижение заданной точности

$$|x_2 - x_1| \le \varepsilon$$
 или $|1,26033 - 1,499| = 0,23867 < 0,001$.

Требуемая точность после первой итерации не достигнута, следовательно, процедура уточнения корня должна быть продолжена.

На второй итерации проводится вычисление, только значения функции в точке x_2

$$f(1,26033) = 1,26033^3 - \frac{1,26033^2 + 1,26033}{5} - 1,2 = 0,2322.$$

Определенное значение функции в точке x_2 подставляются в выражение для определения координаты следующей точки x_3 пересечения хорды с осью абсцисс

$$x_3 = 1,26033 - \frac{0,2322 \cdot (1,26033 - 1,499)}{0,2322 - 1,41905} = 1,21364.$$

Вновь найденная координата x_3 сравнивается с координатой, вычисленной на предыдущем шаге x_2 , для оценки точности вычислений

$$|1,21364-1,26033|=0,04669<0,001$$
.
Видно, что погрешность уменьшилась почти в пять раз, но

Видно, что погрешность уменьшилась почти в пять раз, но требуемой точности достигнуть не получилось, значит, итерационный процесс следует продолжить.

Последующие итерации метода секущих представлены в табл. 13.

Таблица 13 – Уточнение решения нелинейного уравнения методом секущих

k	x_{k-1}	$f(x_{k-1})$	x_k	$f(x_k)$
0	1,5	1,425	1,499	1,41905
1	1,499	1,41905	1,26033	0,2322
2	1,26033	0,2322	1,21364	0,05027
3	1,21364	0,05027	1,20073	0,00267
4	1,20073	0,00267	1,20001	0,00003

Анализируя данные в табл. 13 видно, что после четвертой итерации получено решение, удовлетворяющее заданной точности $|1,20001-1,20073| = 0,00072 < 0,001 \, .$

Кроме того, найденное значение функции во вновь вычисленной точке, также меньше заданной точности.

Ответ. Найдено численное решение методом секущих заданного нелинейного уравнения с точностью $\varepsilon = \delta = 10^{-3}$ после четвертой итерации и равно x = 1,20001.