2022 LJSA Data visualization with R Workshop

Sergio Uribe, @sergiouribe

Preparation, load the required packages

If not installed, first install the pacman package

```
# install.packages("pacman") # uncomment this line, removing the first #
```

Load the required packages

```
pacman::p_load(tidyverse, palmerpenguins)
```

Load the data

```
data(penguins)
```

Basic data exploration

Check the structure

Similar to structure, but printer-friendly

```
glimpse(penguins)
```

```
## Rows: 344
## Columns: 8
## $ species
                       <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adelie,
                       <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torgerse~
## $ island
## $ bill_length_mm
                       <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, ~
## $ bill depth mm
                       <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18.1, ~
## $ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, 186~
                       <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 3475, ~
## $ body_mass_g
## $ sex
                       <fct> male, female, female, NA, female, male, female, male~
## $ year
                       <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007
```

Check the first and last rows

```
head(penguins)
## # A tibble: 6 x 8
     species island bill_length_mm bill_depth_mm flipper_length_~ body_mass_g sex
##
     <fct>
             <fct>
                              <dbl>
                                            <dbl>
                                                              <int>
                                                                           <int> <fct>
## 1 Adelie Torge~
                               39.1
                                             18.7
                                                                            3750 male
                                                                181
## 2 Adelie Torge~
                               39.5
                                             17.4
                                                                186
                                                                            3800 fema~
## 3 Adelie Torge~
                               40.3
                                             18
                                                                195
                                                                            3250 fema~
## 4 Adelie Torge~
                               NA
                                             NA
                                                                 NA
                                                                              NA <NA>
                                             19.3
## 5 Adelie Torge~
                               36.7
                                                                193
                                                                            3450 fema~
## 6 Adelie Torge~
                               39.3
                                             20.6
                                                                190
                                                                            3650 male
## # ... with 1 more variable: year <int>
```

```
tail(penguins)
```

```
## # A tibble: 6 x 8
     species island bill_length_mm bill_depth_mm flipper_length_~ body_mass_g sex
                                             <dbl>
##
     <fct>
             <fct>
                              <dbl>
                                                              <int>
                                                                           <int> <fct>
## 1 Chinst~ Dream
                               45.7
                                              17
                                                                195
                                                                            3650 fema~
## 2 Chinst~ Dream
                               55.8
                                              19.8
                                                                207
                                                                            4000 male
## 3 Chinst~ Dream
                                                                            3400 fema~
                               43.5
                                              18.1
                                                                202
## 4 Chinst~ Dream
                               49.6
                                              18.2
                                                                193
                                                                            3775 male
## 5 Chinst~ Dream
                               50.8
                                              19
                                                                210
                                                                            4100 male
## 6 Chinst~ Dream
                               50.2
                                              18.7
                                                                198
                                                                            3775 fema~
## # ... with 1 more variable: year <int>
```

View the dataset in spreadsheet format

```
View(penguins)
```

View the names of the columns

names(penguins)

```
## [1] "species" "island" "bill_length_mm"
## [4] "bill_depth_mm" "flipper_length_mm" "body_mass_g"
## [7] "sex" "year"
```

Create a summary of the dataset

summary(penguins)

```
##
         species
                          island
                                    bill_length_mm
                                                     bill_depth_mm
                                            :32.10
##
   Adelie
             :152
                    Biscoe
                             :168
                                                     Min.
                                                            :13.10
                                    Min.
                                     1st Qu.:39.23
                                                     1st Qu.:15.60
##
   Chinstrap: 68
                    Dream
                             :124
##
   Gentoo
            :124
                    Torgersen: 52
                                    Median :44.45
                                                     Median :17.30
##
                                    Mean
                                            :43.92
                                                     Mean
                                                            :17.15
                                     3rd Qu.:48.50
                                                     3rd Qu.:18.70
##
##
                                    Max.
                                            :59.60
                                                     Max.
                                                            :21.50
                                    NA's
                                                     NA's
##
                                            :2
                                                            :2
##
   flipper_length_mm body_mass_g
                                                        year
                                          sex
##
  Min.
          :172.0
                      Min.
                            :2700
                                     female:165
                                                   Min.
                                                          :2007
##
   1st Qu.:190.0
                      1st Qu.:3550
                                     male :168
                                                   1st Qu.:2007
  Median :197.0
                      Median:4050
                                     NA's : 11
                                                   Median:2008
           :200.9
##
  Mean
                      Mean
                             :4202
                                                   Mean
                                                          :2008
##
   3rd Qu.:213.0
                      3rd Qu.:4750
                                                   3rd Qu.:2009
## Max.
           :231.0
                             :6300
                                                   Max.
                                                          :2009
                      Max.
## NA's
           :2
                      NA's
                             :2
```

Access a specific column of the dataset

Using dataset\$column

```
summary(penguins$sex)
```

```
## female male NA's
## 165 168 11
```

summary(penguins\$bill_length_mm)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 32.10 39.23 44.45 43.92 48.50 59.60 2
```

My first plot

We need

- 1. data
- 2. some aesthetic
- 3. a geom to plot the data on the aesthetic

The data

```
penguins %>%  # load the data, and with this data >
    ggplot() # create a plot
```

The aesthetic

```
penguins %>%  # load the data, and with this data >
  ggplot(aes(x = body_mass_g))  # create a plot and add an aesthetic
```



```
penguins %>%  # load the data, and with this data >
   ggplot(aes(x = body_mass_g)) + # create a plot and add an aesthetic
   geom_histogram() # add the geom, that allow to represent the data inside the aesthetic with some spec
```


Make some transformations

Usually, it is necessary to make some transformations to the data before plotting them.

The general formula is

data %>%

some transformation %>%

the plot

In this case, we are going to filter a type of penguin to see its weight distribution.

```
penguins %>% # this is the data
filter(species == "Gentoo") %>% # filter only the gentoo penguin
ggplot(aes(x = body_mass_g)) +
geom_histogram()
```


Alternatively, we can use all the data and make different graphs for some variables, e.g. sex and species.

```
penguins %>% # this is the data
ggplot(aes(x = body_mass_g)) +
geom_histogram() +
facet_grid(sex ~ species)
```



```
penguins %>%
  drop_na() %>% # to remove the NA's we can make a transformation before plotting
  ggplot(aes(x = body_mass_g)) +
  geom_histogram() +
  facet_grid(sex ~ species)
```


Two variables

Is any correlation?

Verify whether the correlation is robust, disaggregating by species

An example of Simpon's paradox

Polish the graph

Change the theme

Add labels

Export the plot

Check https://ggplot2.tidyverse.org/reference/ggsave.html

```
ggsave(filename = "myFirstPlot.pdf",
    width = 12,
    height = 10,
    dpi = 300,
    units = "cm")
```