

National Taiwan University
Dept. of Chemical Engineering
Prof. Chengche Hsu

謹記:「ERROR都是暫時的,沒有解不掉的BUG,莫忘心靈祥和。」

What Will We Learn?

- *if...*
- *if....else....*
- if...else if ... else if...else....
- switch (Skip....)
- Do while (Skip....)
- for loop
- while loop

if statement and Rational Operator

Not equal to

Operator

<

 $\leq =$

>

>=

!=

Meaning	
Less than	
Less than or equal to	
Greater than	
Greater than or equal to	
Equal to	

```
Syntax for single action:
if (condition) action statement
```

```
Syntax for multiple actions:
if (condition) {
action statement 1
action statement 2
```

```
score=75;
if (score<=60) cout<<"You fail!\n";
```

```
score=75;
if (score<=60) {
cout<<"You fail!\n";
cout <<"Work harder!\n";</pre>
}
```

Test Your Understanding

 Ask the user to input two integers between 0 and 100. Display the following if the average is greater than 60:

You pass!!

Ask the user to input an integer as between 0 and 100. Display the following if aa=100:

Good Job!

Congratulations!!

- Do the above problem, but replace if (....) with if (bb=100): Congratulations!!
- Check the following

```
if (10==3) cout <<"test for 10==3" <<endl;
if (2) cout <<"test for 2 \n";
if (0) cout <<"test for 0 \n";
if (10=3) cout <<"test for 10=3 \n";
int a=3.5; if (a==3) cout <<"test for int a=3.5 \n";</pre>
```

if...else statement

Syntax for single action

If (condition) action statement

Else action statement

```
Syntax for single or multiple actions:

if (condition) {

action statements
} else {

Action statements
}
```

```
...
if (a<60) cout << "You failed!!" << endl;
else cout << "Congratulations"<<endl;
...
```

```
a=75;
if (a<60){
    cout << "You failed!!" << endl;
}else{
    cout << "Congratulations"<<endl;
}</pre>
```

Flow for Finding the Roots

Finding the roots of a quadratic equation : $ax^2+bx+c=0$

(i) Formulate the flow chart

(ii) Coding based on this flow chart

4

If...else if...else


```
Syntax:

if (expression 1) {

action statements
} else if (expression 2){

action statements
} else if (expression 3){

action statements
}

....

else {

action statements
}

}
```


Logical Operators

Logical Operator	Meaning
&&	and
	or
!	not

```
int a=3, b=5;
if (a>4 && b>6) cout << "true" << endl;
else cout << "false";
```

```
int a=3, b=5;
if (a>4 || b>6) cout << "true" << endl;
else cout << "false";
```

```
int a=3, b=5;
if (!b>6) cout << "true" << endl;
else cout << "false";</pre>
```

Any problem???

Boolean Logic

а	b	expression	value
true	true	a && b	true
true	false		false
false	true		false
false	false		false

а	expression	value
true	- 0	false
false	!a	true

а	b	expression	value
true	true	a b	true
true	false		true
false	true		true
false	false		false

! (a || b) is the same as (!a && !b) ! (a && b) is the same as (!a || !b)

Acknowledgement: Prof. S. T. Lin

Test Your Understanding

- Ask the user to input a real number, then output the square root of this number. (Hint: check the use of the function sqrt.)
- (Take home) Ask the user to input the grade (g) of the exam (0-100). If grade<60, the new grade (n_g) is sqrt(grade)*10. If grade >=60, n_g is grade+20. But the maximum grade has to be no more than 100. Properly calculate and display the grade and new grade.
- (Take home) Ask the user to input three real numbers: a, b, and c. Find and display the roots of $ax^2+bx+c=0$.
- (Take home) Ask the user to input two numbers a and b, compare the values and properly display the results. Ex. a is greater (or less) than (or equal to) b.
- Ask the user to input a number x, find and properly display the output of the following function:

```
x<0, y=abs(x);
0<=x<3, y=2*x;
x>=3, y=sin(x)
```

• Repeat the above problem, for x > = 3, y = sqrt(sin(x))

Hint: Try not to finish all at once. Code a portion, test, then move on....

Loops

What if you need to repeat actions multiple times?

What if you need to:

1+2+3+....+n (with known or unknown n)

Sin(1) + sin(2) +

Add/read multiple inputs (with known or unknown number of inputs)

Check and see if a number is a prime number.

. . . .

for loop

Go through the loop for given (known) times.

What does this do?

```
int i;
for (i=0 ; i<3 ; i++){
    cout << "i=" << i <<endl;
}</pre>
```

for loop Start BE UA Syntax: Initialization Action (IA) IA **False** Boolean for (i=0; i<=5; i++){ Update **Expression** Statement 1; Action (UA) True Statement 2; Statement 1 Stateent 2 End What do these do? int i, sum; int i, sum; sum = 0;sum = 0;for (i=0; i<5; i++){ for (i=0; i=5; i++){ sum=sum+i; sum=sum+i; cout << "sum=" << sum <<endl;</pre> cout << "sum=" << sum <<endl;

While loop

Go through the loop for uncertain times.

```
Syntax: BE

while (i<=5){
Statement 1;
Statement 2;
....
UA
```

4

Test Your Understanding

For loop:

- Calculate: 1+2+... +100
- Ask the user to input a positive integer, then calculate and display n!
- Calculate 1*3*5+2*4*6+3*5*7+...+n*(n+2)*(n+4) for n=10.
- Find the approximated value of $\int_0^2 x^2 dx$ with 100 increments and compare with the actual number.

While loop:

- Calculate 1+2+....+n, until the summation is greater than 1000. Display n and the summation.
- Check the above calculation using a for loop, compare the results of the two, and properly display.
- Calculate 1*3*5+2*4*6+3*5*7+...+n*(n+2)*(n+4) when the summation is greater than 20000. Properly display sum and n.

1

Test Your Understanding

Challenging Problems

Following are curves for $y = \sqrt{1 - x^2}$ (part of $x^2 + y^2 = 1$), the area underneath is pi/4 $(\int_0^1 \sqrt{1 - x^2} \, dx)$. Use a given n (increments) and integration, find the approximated pi.

- Pi/4 = 1 1/3 + 1/5 1/7 + ...
 - Find the approximated pi using 100 term approximation.
 - Find the number of terms needed when the error is below 0.0001.
- Ask the user to input two positive integers a and b. Properly display if b is a factor(因數)
 of a.
- Ask the user to input a positive integer, then find the number of positive factors (正因數 數量)
- Ask the user to input a positive integer, then check and display whether it is a prime number.