МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ П. О. СУХОГО

Машиностроительный факультет

Кафедра «Информатика»

по дисциплине «Информатика»									
ОТЧЕТ	ПО	ЛАБОРАТОРНОЙ	РАБОТЕ	Nº 8					

на тему: «Решение прикладных задач»

Выполнил: студент гр. ТМ-11

Н.Е. Ковтунов

Принял: преподаватель

Т.А. Трохова

Дата сдачи отчета:	
Дата допуска к защите:	
Дата защиты:	

Цель работы: Получить навыки решения прикладных задач методами вычисления корней уравнений и систем линейных в СКМ.

Ход выполнения лабораторной работы

Задание 2.

- 1) С использованием системы Mathcad рассчитать длины звеньев кривошипноползунного механизма по заданным исходным данным.
- 2) Проверить условие существования механизма.

Исходными данными для работы являются:

 $\phi 1, \ \phi 2, \ \phi 3$ — начальные значения угла поворота кривошипа (перевести в радианы)

S1, S2, S3 – начальные значения перемещения ползуна

а4 – длина звена механизма

β – угол между звеньями механизма

N	φ_1	φ_2	φ_3	S_I	S_2	S_3	a_4	В
варианта	(град)	(град)	(град)	(м)	(м)	(м)	(м)	(град)
1	45	22.5	67.5	1.2	1.4	0.95	0,1	100

Описание математической модели

Дан кривошипно-ползунный механизм (рисунок 1), исходными данными для проектирования которого служит функциональная зависимость перемещения ползуна S от угла поворота кривошипа ф. Необходимо определить длины звеньев a1, a2 и значение параметра a3. Значения a4 и β заданы.

Таблица значений ϕ і и Si может содержать по три значения, т.е. задаются три положения механизма (i=1,2,3). В этом случае, если удовлетворяется условие существования механизма

$$a1 < a2 - a3$$

то задача сводится к решению трех уравнений и имеет единственное решение.

При і=3 механизм описывается системой уравнений вида:

$$K_1 S_1 \cos \varphi_1 + K_2 \sin \varphi_1 - K_3 = S_1^2$$

 $K_1 S_2 \cos \varphi_2 + K_2 \sin \varphi_2 - K_3 = S_2^2$
 $K_1 S_3 \cos \varphi_3 + K_2 \sin \varphi_3 - K_3 = S_3^2$

Длины звеньев вычисляются по формулам:

$$a_{2} = \sqrt{a_{1}^{2} + a_{3}^{2} - K_{3}}$$

$$a_{1} = \frac{K_{1}}{2}$$

$$a_{3} = \frac{K_{2}}{2a_{1}}$$

$$\phi 1 := 45 \cdot \text{deg} \hspace{0.5cm} \phi 2 := 22.5 \cdot \text{deg} \hspace{0.5cm} \phi 3 := 67.5 \cdot \text{deg} \hspace{0.5cm} B := 100 \cdot \text{deg}$$

$$S := \begin{pmatrix} S1^{2} \\ S2^{2} \\ S3^{2} \end{pmatrix} \qquad X := 1 solve(V, S) \qquad X = \begin{pmatrix} 1.012 \\ -0.214 \\ -0.732 \end{pmatrix}$$

$$a1 := \frac{X_1}{2}$$
 $a3 := \frac{X_2}{2 \cdot a1}$ $a2 := \sqrt{a1^2 + a3^2 - X_3}$

$$a1 = 0.506$$
 $a2 = 1.017$ $a3 = -0.212$

a1 < a2 - a3

Вывод: получил навыки решения прикладных задач методами вычисления корней уравнений и систем линейных в СКМ.