- Réseaux de Hopfield : préseentation
- 2 Définition
- Entraînement
- 4 Utilisation
- Exemples

Principe

Architecture

- Un ensemble de *d* états binaires interconnectés par des poids.
- On peut représenter 2^d vecteurs binaires différents.

Apprentissage

- Un exemple est un vecteur binaire de dimension d.
- ullet On donne un ensemble ${\cal S}$ d'exemples et une règle d'apprentissage des poids.
- Le réseau évolue et se stabilise.

Utilisation

- On initialise le réseau avec un nouveau vecteur binaire.
- Il évolue jusqu'à « retrouver » un des exemples d'apprentissage.

- Réseaux de Hopfield : préseentation
- 2 Définition
- Entraînement
- 4 Utilisation
- Exemples

Figure – Un réseau de Hopfield, avec d=6.

Architecture

- Un réseau de Hopfield est un graphe non orienté composé de *d* unités, ou neurones.
- Chaque paire d'unités (i,j) avec $i \neq j$ est relié par une arête valuée par un poids w_{ij} .
- Les poids sont regroupés dans une matrice W symétrique $(d \times d)$ à diagonale nulle.

À chaque neurone i sont associés :

- un état $x_i \in \{0,1\}$
- et un biais b_i .

Évolution

L'état du neurone *i* est régi par :

$$x_i = \begin{cases} 1 & \text{si } \sum_j w_{ij} x_j > b_i \\ 0 & \text{sinon} \end{cases}$$

Apprentissage

Comment mémoriser un ensemble d'apprentissage?

- Les poids w_{ij} indiquent le degré de corrélation entre les états du réseau.
- ullet Ils sont appris par un algorithme d'optimisation à partir de ${\cal S}.$
- On minimise une fonction d'énergie pour à imposer à des neurones connectés avec une forte valeur w_{ij} positive (ou négative) d'être dans le même état (ou dans des états contraires).

La fonction Énergie

$$E(\mathbf{x}) = -\sum_{i=1}^d b_i x_i - \sum_{1 \leq i < j \leq d} x_i w_{ij} x_j = -\sum_{i=1}^d b_i x_i - \frac{1}{2} \sum_{i,j=1}^d x_i w_{ij} x_j = -\mathbf{b}^\top \mathbf{x} - \frac{1}{2} \mathbf{x}^\top \mathbf{W} \mathbf{x}$$

 $x \in \{0,1\}^d$ est le vecteur des états et $b \in \mathbb{R}^d$ le vecteur des biais.

Capacité

- ullet Lorsque ${\mathcal S}$ est de petite taille, le réseau agit comme une mémoire.
- On peut retrouver des exemples d'apprentissage à partir de données x similaires, incomplètes ou corrompues
- Par convergence vers les minima d'énergie au voisinage de ces x.
- La capacité du réseau est le nombre maximum d'exemples qui peuvent être mémorisés. On montre que, pour un réseau à d unités, la capacité de stockage est de l'ordre de 0.15d exemples d'apprentissage.
- Chaque exemple contenant d bits, le réseau peut stocker de l'ordre de $0.15d^2$ bits.

- Réseaux de Hopfield : préseentation
- 2 Définition
- Entraînement
- 4 Utilisation
- Exemples

Entraînement

 $S = \{x_1 \cdots x_m\}$ ensemble d'entraînement, et x_{ii} le bit j de x_i .

Les réseaux de Hopfield sont entraînés par la règle de Hebb :

$$w_{ij} = \frac{4}{m} \sum_{k=1}^{m} (x_{ki} - 0.5)(x_{kj} - 0.5)$$

Si deux bits i et j de x_k sont corrélés positivement, alors $(x_{ki} - 0.5)(x_{ki} - 0.5)$ est positif.

- Le poids entre les unités correspondantes sera donc aussi positif.
- Si les deux bits sont en désaccord, alors le poids sera négatif.
- Les biais sont mis à jour en supposant un état fictif toujours à 1, b_i représentant le poids entre cet état et x_i :

$$(\forall i \in [1 \cdots d]) b_i = b_i + 2(x_{ki} - 0.5)$$

Convergence

Théorème de convergence

Si la mise à jour des états est effectuée de manière asynchrone, alors le réseau se stabilise sur un vecteur d'états en un nombre fini d'étapes.

Vers quoi converge-t'on?

- Un minimum est défini comme une combinaison d'états pour laquelle permuter un bit particulier du réseau ne fait pas décroître l'énergie.
- Un réseau entraîné contient après convergence de nombreux minima d'énergie.

Chaque minimum correspond

- soit à un exemple de S,
- ullet soit à un point représentatif dans une région dense de ${\cal S}.$

- Réseaux de Hopfield : préseentation
- 2 Définition
- Entraînement
- 4 Utilisation
- Exemples

Utilisation

- Étant donné un nouveau vecteur d'états d'états, on recherche le minimum local le plus proche
- On utilise une règle de mise à jour par seuillage sur chaque état du réseau.
- Pour un état x_i , la variation d'énergie induite par son changement de valeur (energy gap) est :

$$\Delta E = E(x)_{x_i=0} - E(x)_{x_i=1} = b_i + W_{i, x}$$

où W_{i.} est la i^e ligne de W.

- Cette valeur doit être positive pour faire passer x_i de 0 à 1.
- D'où la règle de mise à jour de chaque état x_i, appliquée itérativement :

$$x_i = \mathbb{1}_{b_i + W_{i,T} \times \geq 0}$$

où 1 est la fonction indicatrice.

Miclet (IRISA) Introduction

Introduction à l'AA. Thème 1

- Réseaux de Hopfield : préseentation
- 2 Définition
- Entraînement
- 4 Utilisation
- Exemples

Dense Associative Memory for Pattern Recognition (2016) by Dmitry Krotov and John J. Hopfield, Princeton University, USA

