CS M146: Introduction to Machine Learning Support Vector Machines

Aditya Grover

Recap: Perceptrons

Training instances

$$\mathbf{x} \in \mathbb{R}^{d+1}, x_0 = 1$$

 $y \in \{-1, 1\}$

Model parameters

$$\boldsymbol{\theta} \in \mathbb{R}^{d+1}$$

Hyperplane separator

$$\boldsymbol{\theta}^{\intercal} \mathbf{x} = \langle \boldsymbol{\theta}, \mathbf{x} \rangle = 0$$

Decision function

$$h(\mathbf{x}) = \operatorname{sign}(\boldsymbol{\theta}^{\mathsf{T}}\mathbf{x}) = \operatorname{sign}(\langle \boldsymbol{\theta}, \mathbf{x} \rangle)$$

Recall:

Inner (dot) product:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v} = \mathbf{u}^{\mathsf{T}} \mathbf{v}$$

= $\sum u_i v_i$

A "Good" Separator

Noise in the Observations

Ruling Out Non-Robust Separators

Lots of Noise

Only One Robust Separator Remains

Margin of a Linear Separator

- Consider binary classification with {1, -1} labels and a hypothesis class of linear separators
- Further, we assume data is linearly separable (relaxed later)
- **Definition:** The margin of a point $x^{(i)}$ w.r.t. a hyperplane is the perpendicular distance between $x^{(i)}$ and the hyperplane

$$\gamma^{(i)} = \text{length(AB)}$$

Computing Margin

$$\gamma^{(i)} = \text{length(AB)}$$

- Assume that θ is a perfect linear separator for the data with no bias (i.e., $x^{(i)}$ does **not** have a dummy dimension $x_0^{(i)} = 1$)
- Without loss of generality, we also assume that $x^{(i)}$ (denoted as A) has a **positive label** $y^{(i)} = 1$. Hence, $\theta^T x^{(i)} > 0$
- From geometry, we know that $\frac{\theta}{\|\theta\|_2}$ is a unit normal vector to the hyperplane. Hence,

$$\mathsf{B} = x^{(i)} - \gamma^{(i)} \frac{\theta}{\|\theta\|_2}$$

• Since B lies on the hyperplane, it satisfies

$$\boldsymbol{\theta}^T \boldsymbol{x} = 0$$

• Hence, $\pmb{\theta}^T \left(\pmb{x}^{(i)} - \pmb{\gamma}^{(i)} \frac{\pmb{\theta}}{\|\pmb{\theta}\|}\right) = 0$ which gives us $\pmb{\gamma}^{(i)} = \frac{\pmb{\theta}^T \pmb{x}^{(i)}}{\|\pmb{\theta}\|_2}$

Computing Margin

$$\gamma^{(i)} = \text{length(AB)}$$

- If we assume that $x^{(i)}$ (denoted as A) has a negative label $y^{(i)}=-1$, then $\theta^T x^{(i)}<0$
- From geometry, we know that $\frac{\theta}{\|\theta\|_2}$ is a unit normal vector to the hyperplane. Hence,

$$\mathsf{B} = \boldsymbol{x}^{(i)} + \boldsymbol{\gamma}^{(i)} \frac{\boldsymbol{\theta}}{\|\boldsymbol{\theta}\|_2}$$

Since B lies on the hyperplane, it satisfies

$$\boldsymbol{\theta}^T \boldsymbol{x} = 0$$

• Hence, $\pmb{\theta}^T \left(\pmb{x}^{(i)} + \pmb{\gamma}^{(i)} \frac{\pmb{\theta}}{\|\pmb{\theta}\|}\right) = 0$ which gives us $\pmb{\gamma}^{(i)} = -\frac{\pmb{\theta}^T \pmb{x}^{(i)}}{\|\pmb{\theta}\|_2}$

Computing Margin

$$\gamma^{(i)} = \text{length(AB)}$$

• If
$$y^{(i)}=+1$$
, then $\gamma^{(i)}=rac{oldsymbol{ heta}^Tx^{(i)}}{\|oldsymbol{ heta}\|_2}$

• If
$$y^{(i)} = +1$$
, then $\gamma^{(i)} = \frac{\theta^T x^{(i)}}{\|\theta\|_2}$
• If $y^{(i)} = -1$, then $\gamma^{(i)} = -\frac{\theta^T x^{(i)}}{\|\theta\|_2}$

We can combine the two cases as:

$$\gamma^{(i)} = y^{(i)} \frac{\boldsymbol{\theta}^T \boldsymbol{x}^{(i)}}{\|\boldsymbol{\theta}\|_2}$$

• (DIY) If there is bias ($\theta_0 \neq 0$, add $x_0^{(i)} = 1$), then:

$$\gamma^{(i)} = y^{(i)} \frac{\theta^T x^{(i)}}{\|w\|_2}$$

(recall weights $w = \theta_{1:d}$)

Max Margin Classification

• **Definition:** The margin of a dataset $\{x^{(i)}\}_{i=1}^n$ w.r.t. a hyperplane is the minimum of the margins of all datapoints

$$\gamma = \min_{i=1,2,\cdots,n} \gamma^{(i)}$$

 Max Margin Classification: Optimize for a hyperplane that maximizes the margin of the training dataset

$$\max_{\boldsymbol{\theta}} \min_{i=1,2,\cdots,n} \gamma^{(i)}$$

Today's Lecture

3 Different Views of SVMs

Constrained Optimization

- Hard-margin SVM
- Soft-margin SVM

Unconstrained Optimization

Hinge Loss

Maximizing the Margin

High Margin Separators

High Margin Separators

Maximizing Margins

 Principle: Optimize for a hyperplane that maximizes the margin of the training dataset

$$\max_{\boldsymbol{\theta}} \gamma = \max_{\boldsymbol{\theta}} \min_{i=1,2,\dots,n} \gamma^{(i)}$$
$$= \max_{\boldsymbol{\theta}} \frac{1}{\|\boldsymbol{w}\|_2} \min_{i=1,2,\dots,n} y^{(i)} \boldsymbol{\theta}^T \boldsymbol{x}^{(i)}$$

- Note $w = \theta_{1:d}$ includes variables being optimized
- (Stated without proof): Objective is non-convex
 - Hard optimization problem
- Can we transform it to a simpler problem?
 - Intuition: separate $\frac{1}{\|w\|_2}$ (nice) from $\min_{i=1,2,\cdots,n} y^{(i)} \theta^T x^{(i)}$ (nasty) using **constraints**

Background: Constrained Optimization

Hard-Margin SVMs

Hard-Margin Support Vector Machines (SVM)

$$\min_{\boldsymbol{\theta}} \frac{1}{2} ||\boldsymbol{w}||_2^2$$
 Objective function

such that

$$y^{(i)}\boldsymbol{\theta}^T\boldsymbol{x}^{(i)} \geq 1$$
 for all $i = 1, 2, \dots, n$

Constraints

- (Stated without proof): Same solution for θ as previous slide
- Convex quadratic objective, n linear constraints
 - Can be solved using off-the-shelf quadratic programming solvers

Intuition: Hard Margin

Assume $\min_{i=1,2,\cdots,n} y^{(i)} \boldsymbol{\theta}^T \boldsymbol{x}^{(i)} = 1$

Support Vectors:

Datapoints closest to the hyperplane

Support Vector Machines

Hard-Margin Support Vector Machines (SVM)

$$\max_{\boldsymbol{\theta}} \frac{1}{\|\boldsymbol{w}\|_2}$$
 Objective function

such that

$$y^{(i)}\boldsymbol{\theta}^T \boldsymbol{x}^{(i)} \ge 1 \text{ for all } i = 1, 2, \cdots, n$$

Constraint

- (Stated without proof): This is equivalent to max-margin classification
- SVMs are also called max-margin classifiers
- Hard-margin: Every training point has a margin

Support Vector Machines

- Note: $\arg \max_{\theta} \frac{1}{\|w\|_2} = \arg \min_{\theta} \frac{1}{2} \|w\|_2^2$
 - RHS is convex (similar to MSE)
- Hard-Margin Support Vector Machines (SVM) -

$$\min_{\boldsymbol{\theta}} \frac{1}{2} \|\boldsymbol{w}\|_2^2$$

such that

$$y^{(i)}\boldsymbol{\theta}^T \boldsymbol{x}^{(i)} \geq 1$$
 for all $i = 1, 2, \dots, n$

- Same solution for θ as previous slide; just written in standard form as a minimization problem
- Convex quadratic objective, linear constraints
- Can be solved using off-the-shelf quadratic programming solvers

Non Separable Data

$$\begin{aligned} & \min_{\pmb{\theta}} \frac{1}{2} \| \pmb{\theta} \|_2^2 \\ \text{subject to} \\ & y^{(i)} \pmb{\theta}^T \pmb{x}^{(i)} \geq 1 \ \forall i = 1, 2, \cdots, n \end{aligned}$$

- So far, we have assumed our data is linearly separable
- For any linear separator here, at least one constraint is violated and hence, the problem is infeasible
- Can we relax the constraints?

Soft-margin SVM with Slack Variables

$$\begin{aligned} & \min_{\pmb{\theta}} \frac{1}{2} \| \pmb{\theta} \|_2^2 \\ \text{subject to} \\ & y^{(i)} \pmb{\theta}^T \pmb{x}^{(i)} \geq 1 \ \forall i=1,2,\cdots,n \end{aligned}$$

$$\min_{\substack{\boldsymbol{\theta},\boldsymbol{\varepsilon}\\ \boldsymbol{\theta},\boldsymbol{\varepsilon}}} \frac{1}{2} \|\boldsymbol{\theta}\|_2^2 + C \sum_{i=1}^n \varepsilon_i$$
 subject to
$$y^{(i)}\boldsymbol{\theta}^T \boldsymbol{x}^{(i)} \geq 1 - \varepsilon_i \ \forall i = 1,2,\cdots,n$$

$$\varepsilon_i \geq 0 \quad \forall i = 1,2,\cdots,n$$

Hard Margin SVM

Soft Margin SVM

- Slack variables: Introduce an additional non-negative optimization variable for each training point $\varepsilon_i \geq 0$, i = 1, ..., n
- Set margin threshold to $1 \varepsilon_i$ [i.e., the permitted slack]
- Incorporate another loss term to minimize overall slack
- New optimization problem (objective, constraints) is still convex

Interpreting Slack Constraints

$$\begin{aligned} \min_{\boldsymbol{\theta}, \boldsymbol{\varepsilon}} \frac{1}{2} \|\boldsymbol{\theta}\|_2^2 + C \sum_{i=1}^n \varepsilon_i \\ \text{subject to} \\ y^{(i)} \boldsymbol{\theta}^T \boldsymbol{x}^{(i)} \geq 1 - \varepsilon_i \ \forall i = 1, 2, \cdots, n \\ \varepsilon_i \geq 0 \quad \forall i = 1, 2, \cdots, n \end{aligned}$$

$$\varepsilon_i > 0$$
 for points violating $y^{(i)}\theta^T x^{(i)} \ge 1$ and $\varepsilon_i = 0$ otherwise

Interpreting C

How to choose C?

Treat as hyperparameter and validate +

$$\min_{\substack{\boldsymbol{\theta},\boldsymbol{\varepsilon}\\ \boldsymbol{\theta},\boldsymbol{\varepsilon}}} \frac{1}{2} \|\boldsymbol{\theta}\|_2^2 + C \sum_{i=1}^n \varepsilon_i$$
 subject to
$$y^{(i)}\boldsymbol{\theta}^T x^{(i)} \geq 1 - \varepsilon_i \ \forall i = 1,2,\cdots,n$$

$$\varepsilon_i \geq 0 \quad \forall i = 1,2,\cdots,n$$

High slack preferred

when C is low

Low slack preferred when C is high

General Definition of Support Vectors

- The SVM solution only depends on a subset of the points called support vectors
 - Misclassified points i.e. $y^{(i)} \theta^T x^{(i)} \le 0$
 - Points within default margin i.e., $0 < y^{(i)} \theta^T x^{(i)} \le 1$
- Removing any other point will not change the SVM solution
- All red points are support vectors

Hinge Loss Perspective for SVMs

Recall Regularized Linear models

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = g(\boldsymbol{\theta}^T \boldsymbol{x})$$

$$J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} L(\boldsymbol{\theta}^T \boldsymbol{x}^{(i)}, y^{(i)}) + \lambda \|\boldsymbol{\theta}_{1:d}\|_2^2$$

where

- Linear Regression: g(z) = z and $L(\theta^T x^{(i)}, y^{(i)}) = (y^{(i)} \theta^T x^{(i)})^2$
- Perceptron: g(z) = sign(z) and $L(\boldsymbol{\theta}^T \boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}) = \max(0, -\boldsymbol{y}^{(i)} \boldsymbol{\theta}^T \boldsymbol{x}^{(i)})$
- Logistic Regression: g(z) = sigmoid(z) and $L(\boldsymbol{\theta}^T \boldsymbol{x}^{(i)}, y^{(i)}) = -y^{(i)} \log \left(\text{sigmoid}(\boldsymbol{\theta}^T \boldsymbol{x}^{(i)}) \right) (1 y^{(i)}) \log \left(1 \text{sigmoid}(\boldsymbol{\theta}^T \boldsymbol{x}^{(i)}) \right)$
- For **SVMs**, g(z) = sign(z). Can we find an $L(\cdot)$ to fit SVMs in this template?

Hinge Loss

• Given an input pair $(x^{(i)}, y^{(i)})$ and a linear separator θ , the hinge loss is:

$$L(\boldsymbol{\theta}^T \boldsymbol{x}^{(i)}, y^{(i)}) = \max(0, 1 - y^{(i)} \boldsymbol{\theta}^T \boldsymbol{x}^{(i)}) = (1 - y^{(i)} \boldsymbol{\theta}^T \boldsymbol{x}^{(i)})_+$$

- No penalty if raw output, $\theta^T x^{(i)}$ has same sign and is far enough from decision boundary
- Otherwise pay a growing penalty, between 0 and 1 if signs match, and greater than one otherwise

Summary

Margin

Formalizing distance of a separating hyperplane to a dataset

Support Vector Machines

New class of ML models that based on maximizing margins Can be transformed into a constrained optimization problem

- Convex quadratic objective, linear constraints