계산력 연습

[영역] 2.문자와 식

중 3 과정

2-3-3.제곱근을 이용하여 이차방정식 풀이하기

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2016-01-12

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

계산시 참고사항

1. 제곱근을 이용하여 이차방정식 풀이하기

- (1) 이차방정식 $x^2 = q(q \ge 0)$ 의 해 $\Rightarrow x = \pm \sqrt{q}$
- (2) 이차방정식 $(x-p)^2 = q(q \ge 0)$ 의 해 $\Rightarrow x = p \pm \sqrt{q}$

2. 완전제곱식을 이용하여 이차방정식 풀이하기

인수분해를 이용하여 풀 수 없는 이차방정식 $ax^2+bx+c=0$ $(a\neq 0)$ 은 $(x+p)^2=q$ 의 꼴로 변형하여 해를 구할 수 있다.

- (1) 양변을 이차항의 계수로 나누어 이차항의 계수가 1이 되도록 한다.
- (2) 상수항을 우변으로 이항한다.
- (3) 양변에 $\left\{ \frac{(x 의 계수)}{2} \right\}^2$ 을 더한다.
- (4) 좌변을 완전제곱식으로 고친다.
- (5) 제곱근을 이용하여 해를 구한다.

이차방정식의 중근

이차방정식 $(x-p)^2 = q$ 에서

- q=0이면 중근을 갖는다.
- q<0이면 근을 갖지 않는다.

 $x^2 = q$ 꼴의 이차방정식 풀이하기

7. $x^2 = 10$

☑ 다음 이차방정식을 제곱근을 이용하여 풀어라.

1.
$$x^2 = 3$$

2.
$$x^2 = 4$$

3.
$$x^2 = 11$$

4.
$$x^2 = 5$$

5.
$$x^2 = 7$$

6.
$$x^2 = 8$$

8.
$$x^2 = 12$$

9.
$$x^2 = 16$$

10.
$$x^2 = 25$$

11.
$$x^2 = \frac{1}{4}$$

12.
$$9x^2 = 25$$

13.
$$x^2 - 25 = 0$$

14.
$$x^2 - 12 = 0$$

15.
$$2x^2 = 12$$

16.
$$3x^2 = 21$$

17.
$$5x^2 = 40$$

18.
$$4x^2 = 36$$

19.
$$5x^2 = 55$$

20.
$$7x^2 = 91$$

21.
$$x^2 - 64 = 0$$

22.
$$x^2 - 18 = 0$$

23.
$$x^2-2=6$$

24.
$$x^2 - 23 = 4$$

25.
$$4x^2 = 64$$

26.
$$9x^2 = 81$$

27.
$$5x^2 = 50$$

28.
$$6x^2 = 36$$

29.
$$9x^2 - 5 = 0$$

30.
$$49x^2 - 81 = 0$$

31.
$$2x^2 + 4 = 28$$

32.
$$3x^2 - 5 = 55$$

33.
$$9x^2 - 1 = 0$$

34.
$$25 - 16x^2 = 0$$

35.
$$(x-1)^2 = 2$$

36.
$$(x+3)^2 = 5$$

37.
$$(x-4)^2 = 7$$

38.
$$(x+5)^2 = 8$$

39.
$$(x-6)^2 = 9$$

40.
$$(x+7)^2 = 12$$

41.
$$(x+4)^2 = 20$$

42.
$$(x-2)^2-3=0$$

43.
$$(x-5)^2-18=0$$

45.
$$2(x-5)^2-24=0$$

46.
$$3(x+1)^2 = 6$$

47.
$$2(x-3)^2 = 8$$

48.
$$2(x+4)^2 = 12$$

49.
$$5(x-5)^2 = 30$$

50.
$$6(x+3)^2 = 48$$

51.
$$4(x-1)^2 = 28$$

52.
$$3(x-2)^2 = 15$$

53.
$$7(x+3)^2 = 77$$

54.
$$3(x+1)^2 = 12$$

55.
$$3(x+5)^2-24=0$$

$$56. \quad 2\left(x + \frac{1}{2}\right)^2 = 1$$

완전제곱식을 만들어 이차방정식 풀이하기

ightharpoons 다음 이차방정식을 $(x+p)^2=q$ 의 꼴로 나타내어라.

57.
$$x^2 + x = 3$$

58.
$$x^2 - 3x - 2 = 0$$

59.
$$2x^2 - 12x = -6$$

60.
$$5x^2 - 20x = 5$$

61.
$$2x^2 - 8x + 2 = 0$$

62.
$$3x^2 - 6x - 6 = 0$$

63.
$$2x^2 - 6x + 1 = 0$$

64.
$$3x^2 - 15x - 12 = 0$$

65.
$$x^2 + 6x = 1$$

66.
$$x^2 - 8x = -5$$

67.
$$x^2 + 4x = 7$$

68.
$$x^2 - 2x - 5 = 0$$

69.
$$x^2 + 2x - 1 = 0$$

70.
$$x^2 - 10x - 2 = 0$$

\square 다음 이차방정식을 $(x+p)^2 = q$ 의 꼴로 나타낼 때, 상수 p, q의 값을 각각 구하여라.

71.
$$x^2 + 10x + 6 = 0$$

72.
$$x^2 + 8x + 3 = 0$$

73.
$$x^2 - 6x - 5 = 0$$

74.
$$x^2 - 4x - 3 = 0$$

75.
$$x^2 - 14x + 7 = 0$$

76.
$$x^2 + 12x - 4 = 0$$

77.
$$3x^2 + 6x - 12 = 0$$

78.
$$5x^2 + 30x + 5 = 0$$

79.
$$2x^2 - 12x + 8 = 0$$

80.
$$3x^2 - 6x - 2 = 0$$

☑ 다음 이차방정식을 완전제곱식을 이용하여 풀어라.

81.
$$x^2 - 2x - 5 = 0$$

82.
$$x^2 + 6x + 3 = 0$$

83.
$$x^2 + 10x + 1 = 0$$

84.
$$x^2 - 2x - 4 = 0$$

85.
$$x^2 - x - 1 = 0$$

86.
$$x^2 - 12x + 22 = 0$$

87.
$$x^2 - 9x + 10 = 0$$

88.
$$x^2 + 4x - 1 = 0$$

89.
$$x^2 + 2x - 1 = 0$$

90.
$$x^2 - 6x + 2 = 0$$

91.
$$x^2 + 10x - 7 = 0$$

92.
$$x^2 - 8x + 4 = 0$$

93.
$$x^2 + 2x - 4 = 0$$

94.
$$x^2 - 8x = -6$$

95.
$$x^2 - 2x = 5$$

96.
$$x^2 + 4x = 3$$

97.
$$x^2 - 6x = -4$$

98.
$$x^2 + 8x - 1 = 0$$

99.
$$x^2 - 6x - 4 = 0$$

100
$$x^2 - 12x + 2 = 0$$

101.
$$x^2 + x - 1 = 0$$

102
$$x^2 - 3x - 9 = 0$$

103.
$$x^2 + 5x + 2 = 0$$

$$104 \, x^2 - \frac{5}{2}x + \frac{1}{2} = 0$$

$$105 \cdot 2x^2 + 12x - 20 = 0$$

106.
$$3x^2 + 24x + 12 = 0$$

107.
$$6x^2 - 12x - 6 = 0$$

108.
$$4x^2 + 16x + 12 = 0$$

109.
$$2x^2 + 5x - 1 = 0$$

110.
$$2x^2 - 8x + 4 = 0$$

111.
$$2x^2 + 4x - 3 = 0$$

112
$$3x^2 + 9x + 3 = 0$$

113.
$$4x^2 - x - 4 = 0$$

$$114, 2x^2 - 12x - 6 = 0$$

$$115_x - 3x^2 - 6x + 6 = 0$$

$$116 \cdot \frac{1}{2}x^2 - 4x - 1 = 0$$

117.
$$3x^2 - 6x - 18 = 0$$

118.
$$2x^2 - 8x - 4 = 0$$

119.
$$2x^2 - 4x - 5 = 0$$

$$120 \quad 4x^2 + 16x - 4 = 0$$

1)
$$x = \pm \sqrt{3}$$

2)
$$x = \pm 2$$

$$\Rightarrow x^2 = 401 \text{ M} \quad x = \pm \sqrt{4} = \pm 2$$

3)
$$x = \pm \sqrt{11}$$

4)
$$x = \pm \sqrt{5}$$

5)
$$x = \pm \sqrt{7}$$

6)
$$x = \pm 2\sqrt{2}$$

$$\Rightarrow x^2 = 801 \text{ M}$$
 $x = \pm \sqrt{8} = \pm 2\sqrt{2}$

7)
$$x = \pm \sqrt{10}$$

8)
$$x = \pm 2\sqrt{3}$$

$$\Rightarrow x^2 = 120 \text{MH} \quad x = \pm \sqrt{12} = \pm 2\sqrt{3}$$

9)
$$x = \pm 4$$

10)
$$x = \pm 5$$

11)
$$x = \pm \frac{1}{2}$$

12)
$$x = \pm \frac{5}{3}$$

13)
$$x = \pm 5$$

14)
$$x = \pm 2\sqrt{3}$$

15)
$$x = \pm \sqrt{6}$$

$$\Rightarrow 2x^2 = 120 ||M| \quad x^2 = 6 \qquad \therefore \quad x = \pm \sqrt{6}$$

$$r = +\sqrt{6}$$

16)
$$x = +\sqrt{7}$$

$$\Rightarrow 3x^2 = 21$$
에서 $x^2 = 7$

$$\therefore x = \pm \sqrt{7}$$

17)
$$x = +2\sqrt{2}$$

$$\Rightarrow 5x^2 = 400 | M x^2 = 8$$

$$\therefore x = \pm \sqrt{8} = \pm 2\sqrt{2}$$

18)
$$x = \pm 3$$

$$\Rightarrow 4x^2 = 360 | \text{M} \quad x^2 = 9$$

$$\therefore x = \pm \sqrt{9} = \pm 3$$

19)
$$x = \pm \sqrt{11}$$

$$\Rightarrow 5x^2 = 550 | \text{M} x^2 = 11$$

$$\therefore x = \pm \sqrt{11}$$

20)
$$x = \pm \sqrt{13}$$

$$\Rightarrow 7x^2 = 91$$
에서 $x^2 = 13$ $\therefore x = \pm \sqrt{13}$

$$\therefore x = \pm \sqrt{13}$$

21)
$$x = \pm 8$$

$$\Rightarrow x^2 - 64 = 0$$
에서 $x^2 = 64$

22)
$$x = \pm 3\sqrt{2}$$

$$\Rightarrow x^2 - 18 = 0$$
 에서 $x^2 = 18$

$$\therefore x = \pm 3\sqrt{2}$$

23)
$$x = \pm 2\sqrt{2}$$

$$\Rightarrow x^2 - 2 = 601 \text{ M} \quad x^2 = 8 \qquad \therefore x = \pm 2\sqrt{2}$$

$$\therefore x = \pm 2\sqrt{2}$$

24)
$$x = \pm 3\sqrt{3}$$

$$\Rightarrow x^2 - 23 = 401 \text{ M} \quad x^2 = 27$$

$$\therefore x = \pm 3\sqrt{3}$$

25)
$$x = \pm 4$$

$$\Rightarrow 4x^2 = 640 | \text{M} \quad x^2 = 16 \qquad \qquad \therefore \quad x = \pm 4$$

$$x = \pm 4$$

26)
$$x = \pm 3$$

$$\Rightarrow 9x^2 = 810 | M \quad x^2 = 9 \qquad \therefore \quad x = \pm 3$$

$$\therefore x = \pm 3$$

27)
$$x = \pm \sqrt{10}$$

$$\Rightarrow 5x^2 = 50$$
에서 $x^2 = 10$

$$\therefore x = \pm \sqrt{10}$$

28)
$$x = \pm \sqrt{6}$$

$$\Rightarrow 6x^2 = 360 | \text{M} \quad x^2 = 6 \qquad \therefore x = \pm \sqrt{6}$$

$$\therefore x = \pm \sqrt{6}$$

29)
$$x = \pm \frac{\sqrt{5}}{3}$$

$$\Rightarrow 9x^2 - 5 = 0$$
 에서 $9x^2 = 5$, $x^2 = \frac{5}{9}$

$$\therefore x = \pm \frac{\sqrt{5}}{3}$$

30)
$$x = \pm \frac{9}{7}$$

$$\Rightarrow 49x^2 - 81 = 0$$
 에서 $49x^2 = 81$,

$$x^2 = \frac{81}{40}$$

$$x^2 = \frac{81}{49}$$
 $\therefore x = \pm \frac{9}{7}$

31)
$$x = \pm 2\sqrt{3}$$

$$\Rightarrow 2x^2 + 4 = 280 | \text{M} + 2x^2 = 24, \ x^2 = 12$$

$$\therefore x = \pm 2\sqrt{3}$$

32)
$$x = \pm 2\sqrt{5}$$

$$\Rightarrow 3x^2 - 5 = 550$$
 $\Rightarrow 3x^2 = 60, x^2 = 20$

$$\therefore x = \pm 2\sqrt{5}$$

33)
$$x = \pm \frac{1}{3}$$

$$\Rightarrow 9x^2 - 1 = 0$$
 에서 $9x^2 = 1$, $x^2 = \frac{1}{9}$

$$\therefore x = \pm \sqrt{\frac{1}{9}} = \pm \frac{1}{3}$$

34)
$$x = \pm \frac{5}{4}$$

$$\Rightarrow 25-16x^2=0$$
 에서 $16x^2=25$, $x^2=\frac{25}{16}$

$$\therefore x = \pm \sqrt{\frac{25}{16}} = \pm \frac{5}{4}$$

35)
$$x = 1 \pm \sqrt{2}$$

$$\Rightarrow (x-1)^2 = 201 \text{ M} \quad x-1 = \pm \sqrt{2}$$

$$\therefore x = 1 + \sqrt{2}$$

36)
$$x = -3 \pm \sqrt{5}$$

$$\Rightarrow (x+3)^2 = 5 \text{ MH} \quad x+3 = \pm \sqrt{5}$$
$$\therefore x = -3 \pm \sqrt{5}$$

37)
$$x = 4 \pm \sqrt{7}$$

$$\Rightarrow (x-4)^2 = 701 \text{ At } x-4 = \pm \sqrt{7}$$
$$\therefore x = 4 \pm \sqrt{7}$$

38)
$$x = -5 \pm 2\sqrt{2}$$

$$\Rightarrow (x+5)^2 = 8 에서 x+5 = \pm 2\sqrt{2}$$

$$\therefore x = -5 \pm 2\sqrt{2}$$

39)
$$x = 3$$
 또는 $x = 9$

$$\Rightarrow$$
 $(x-6)^2 = 9$ 에서 $x-6 = \pm 3$
 $\therefore x = 3$ 또는 $x = 9$

40)
$$x = -7 \pm 2\sqrt{3}$$

$$\Rightarrow (x+7)^2 = 12 에서 x+7 = \pm 2\sqrt{3}$$
$$\therefore x = -7 \pm 2\sqrt{3}$$

41)
$$x = -4 \pm 2\sqrt{5}$$

$$\Rightarrow (x+4)^2 = 20 \text{ MA} \quad x+4 = \pm 2\sqrt{5}$$
$$\therefore x = -4 \pm 2\sqrt{5}$$

42)
$$x = 2 \pm \sqrt{3}$$

$$\Rightarrow (x-2)^2 = 3, \ x-2 = \pm \sqrt{3}$$
$$\therefore \ x = 2 \pm \sqrt{3}$$

43)
$$x = 5 + 3\sqrt{2}$$

$$(x-5)^2 = 18, x-5 = \pm 3\sqrt{2}$$

 $\therefore x = 5 \pm 3\sqrt{2}$

44)
$$x = -3 \pm \sqrt{5}$$

$$\Rightarrow (x+3)^2 = 5, x+3 = \pm \sqrt{5}$$

$$\therefore x = -3 \pm \sqrt{5}$$

45)
$$x = 5 \pm 2\sqrt{3}$$

$$(x-5)^2 = 12, x-5 = \pm 2\sqrt{3}$$

$$\therefore x = 5 \pm 2\sqrt{3}$$

46)
$$x = -1 \pm \sqrt{2}$$

$$3(x+1)^2 = 6 에서 (x+1)^2 = 2, x+1 = \pm \sqrt{2}$$

$$\therefore x = -1 \pm \sqrt{2}$$

47)
$$x = 1$$
 또는 $x = 5$

$$\Rightarrow 2(x-3)^2 = 8$$
에서 $(x-3)^2 = 4$, $x-3 = \pm 2$
 $\therefore x = 1$ 또는 $x = 5$

48)
$$x = -4 \pm \sqrt{6}$$

$$\Rightarrow 2(x+4)^2 = 1201 \text{ At } (x+4)^2 = 6, \ x+4 = \pm \sqrt{6}$$

$$\therefore x = -4 + \sqrt{6}$$

49)
$$x = 5 \pm \sqrt{6}$$

50)
$$x = -3 \pm 2\sqrt{2}$$

$$\Rightarrow$$
 $6(x+3)^2 = 48에서 $(x+3)^2 = 8$, $x+3 = \pm 2\sqrt{2}$
 $\therefore x = -3 + 2\sqrt{2}$$

51)
$$x = 1 + \sqrt{7}$$

$$⇒ 4(x-1)^2 = 280 | ★ (x-1)^2 = 7, x-1 = \pm \sqrt{7}$$

∴ $x = 1 \pm \sqrt{7}$

52)
$$x = 2 + \sqrt{5}$$

$$⇒ 3(x-2)^2 = 150 | ★ (x-2)^2 = 5, x-2 = \pm \sqrt{5}$$

$$∴ x = 2 \pm \sqrt{5}$$

53)
$$x = -3 \pm \sqrt{11}$$

$$> 7(x+3)^2 = 77$$
에서 $(x+3)^2 = 11$, $x+3 = \pm \sqrt{11}$
 $x = -3 \pm \sqrt{11}$

54)
$$x = 1$$
 또는 $x = -3$

$$\Rightarrow 3(x+1)^2 = 12$$
에서 $(x+1)^2 = 4$, $x+1 = \pm 2$
 $\therefore x = 1$ 또는 $x = -3$

55)
$$x = -5 \pm 2\sqrt{2}$$

$$⇒ 3(x+5)^2 - 24 = 0 \text{ off } 3(x+5)^2 = 24$$

$$(x+5)^2 = 8, x+5 = \pm 2\sqrt{2}$$

$$∴ x = -5 \pm 2\sqrt{2}$$

56)
$$x = -\frac{1}{2} \pm \frac{\sqrt{2}}{2}$$

$$\Rightarrow 2\left(x+\frac{1}{2}\right)^2 = 1 \text{ of } A$$

$$\left(x+\frac{1}{2}\right)^2 = \frac{1}{2}, \ x+\frac{1}{2} = \pm \frac{\sqrt{2}}{2}$$

$$\therefore x = -\frac{1}{2} \pm \frac{\sqrt{2}}{2}$$

57)
$$\left(x+\frac{1}{2}\right)^2 = \frac{13}{4}$$

$$\Rightarrow x^2 + x = 30 ||A| \quad x^2 + x + \frac{1}{4} = 3 + \frac{1}{4}$$

$$\therefore \left(x + \frac{1}{2}\right)^2 = \frac{13}{4}$$

58)
$$\left(x - \frac{3}{2}\right)^2 = \frac{17}{4}$$

$$\Rightarrow x^2 - 3x - 2 = 0 \text{ odd } x^2 - 3x = 2$$

$$x^{2}-3x+\frac{9}{4}=2+\frac{9}{4}$$
 $\therefore \left(x-\frac{3}{2}\right)^{2}=\frac{17}{4}$

59)
$$(x-3)^2 = 6$$

$$\Rightarrow 2x^2 - 12x = -6 \text{ oil M} \quad x^2 - 6x = -3$$
$$x^2 - 6x + 9 = -3 + 9 \qquad \therefore (x - 3)^2 = 6$$

60)
$$(x-2)^2 = 5$$

$$\Rightarrow 5x^2 - 20x = 5 \text{ off } x^2 - 4x = 1$$
$$x^2 - 4x + 4 = 1 + 4 \qquad \therefore (x - 2)^2 = 5$$

61)
$$(x-2)^2 = 3$$

다
$$2x^2 - 8x + 2 = 0$$
에서 $x^2 - 4x + 1 = 0$
 $x^2 - 4x = -1$, $x^2 - 4x + 4 = -1 + 4$
 $(x-2)^2 = 3$

62)
$$(x-1)^2 = 3$$

$$\Rightarrow 3x^2 - 6x - 6 = 0 \text{ on } x^2 - 2x - 2 = 0$$
$$x^2 - 2x = 2, \quad x^2 - 2x + 1 = 2 + 1$$
$$\therefore \quad (x - 1)^2 = 3$$

63)
$$\left(x - \frac{3}{2}\right)^2 = \frac{7}{4}$$

$$\Rightarrow 2x^2 - 6x + 1 = 0 \text{ odd } x^2 - 3x + \frac{1}{2} = 0$$
$$x^2 - 3x = -\frac{1}{2}, \ x^2 - 3x + \frac{9}{4} = -\frac{1}{2} + \frac{9}{4}$$
$$\therefore \left(x - \frac{3}{2}\right)^2 = \frac{7}{4}$$

64)
$$\left(x - \frac{5}{2}\right)^2 = \frac{41}{4}$$

$$\Rightarrow 3x^2 - 15x - 12 = 0 \text{ odd } x^2 - 5x - 4 = 0$$
$$x^2 - 5x = 4, \ x^2 - 5x + \frac{25}{4} = 4 + \frac{25}{4}$$
$$\therefore \left(x - \frac{5}{2}\right)^2 = \frac{41}{4}$$

65)
$$(x+3)^2 = 10$$

$$\Rightarrow x^2 + 6x = 1 \text{ MA} \quad x^2 + 6x + 9 = 1 + 9$$

∴ $(x+3)^2 = 10$

66)
$$(x-4)^2 = 11$$

$$⇒ x^2 - 8x = -5 \text{ old } x^2 - 8x + 16 = -5 + 16$$

$$∴ (x - 4)^2 = 11$$

67)
$$(x+2)^2 = 11$$

$$\Rightarrow x^2 + 4x = 701 \text{ At } x^2 + 4x + 4 = 7 + 4$$

$$\therefore (x+2)^2 = 11$$

68)
$$(x-1)^2 = 6$$

$$⇒ x2 - 2x - 5 = 0$$
 H $x2 - 2x = 5$
$$x2 - 2x + 1 = 5 + 1 ∴ (x - 1)2 = 6$$

69)
$$(x+1)^2 = 2$$

$$\Rightarrow x^2 + 2x - 1 = 0 \text{ MH} \quad x^2 + 2x = 1$$
$$x^2 + 2x + 1 = 1 + 1 \qquad \therefore (x+1)^2 = 2$$

70)
$$(x-5)^2 = 27$$

$$\Rightarrow x^2 - 10x - 2 = 0 \text{ odd } x^2 - 10x = 2$$
$$x^2 - 10x + 25 = 2 + 25 \qquad \therefore (x - 5)^2 = 27$$

71)
$$p = 5$$
. $q = 19$

$$\Rightarrow x^2 + 10x + 6 = 0 \text{ odd } x^2 + 10x = -6$$
$$x^2 + 10x + 25 = -6 + 25, (x+5)^2 = 19$$
$$\therefore p = 5, q = 19$$

72)
$$p = 4$$
, $q = 13$

$$\begin{array}{c} \Longrightarrow \ x^2 + 8x + 3 = 0 \, \text{old} \ \ x^2 + 8x = -3 \\ x^2 + 8x + 16 = -3 + 16 \, , \ \ (x+4)^2 = 13 \\ \therefore \ \ p = 4 \, , \ \ q = 13 \end{array}$$

73)
$$p = -3$$
, $q = 14$

$$\Rightarrow x^2 - 6x - 5 = 0 \text{ old } x^2 - 6x = 5$$
$$x^2 - 6x + 9 = 5 + 9, (x - 3)^2 = 14$$
$$\therefore p = -3, q = 14$$

74)
$$p = -2$$
, $q = 7$

$$\Rightarrow x^2 - 4x - 3 = 0 \text{ odd } x^2 - 4x = 3$$
$$x^2 - 4x + 4 = 3 + 4, (x - 2)^2 = 7$$
$$\therefore p = -2, q = 7$$

75)
$$p = -7$$
. $q = 42$

$$\Rightarrow x^2 - 14x + 7 = 0 \text{ odd } x^2 - 14x = -7$$
$$x^2 - 14x + 49 = -7 + 49, (x - 7)^2 = 42$$
$$\therefore p = -7, q = 42$$

76)
$$p = 6$$
, $q = 40$

$$\Rightarrow x^2 + 12x - 4 = 0 \text{ odd } x^2 + 12x = 4$$
$$x^2 + 12x + 36 = 4 + 36, (x+6)^2 = 40$$
$$\therefore p = 6, q = 40$$

- 77) p=1, q=5
- $3x^{2} + 6x 12 = 0 \text{ odd } x^{2} + 2x 4 = 0$ $x^{2} + 2x = 4, \quad x^{2} + 2x + 1 = 4 + 1$ $(x+1)^{2} = 5$ $\therefore \quad p = 1, \quad q = 5$
- 78) p=3, q=8
- 79) p = -3, q = 5
- $2x^{2}-12+8=0 \text{ odd } x^{2}-6x+4=0$ $x^{2}-6x=-4, \ x^{2}-6x+9=-4+9$ $(x-3)^{2}=5$ $\therefore \ p=-3, \ q=5$
- 80) p = -1, $q = \frac{5}{3}$
- $\Rightarrow 3x^2 6x 2 = 0 \text{ odd } x^2 2x \frac{2}{3} = 0$ $x^2 2x = \frac{2}{3}, \ x^2 2x + 1 = \frac{2}{3} + 1$ $(x 1)^2 = \frac{5}{3}$ $\therefore p = -1, \ q = \frac{5}{2}$
- 81) $x = 1 \pm \sqrt{6}$
- $\Rightarrow x^2 2x 5 = 0 \text{ odd } x^2 2x = 5$ $x^2 2x + 1 = 5 + 1, (x 1)^2 = 6$ $\therefore x = 1 \pm \sqrt{6}$
- 82) $x = -3 \pm \sqrt{6}$
- $\Rightarrow x^2 + 6x + 3 = 0 \text{ odd } x^2 + 6x = -3$ $x^2 + 6x + 9 = -3 + 9, (x+3)^2 = 6$ $x + 3 = \pm \sqrt{6}$ $\therefore x = -3 \pm \sqrt{6}$
- 83) $x = -5 + 2\sqrt{6}$
- $\Rightarrow x^2 + 10x + 1 = 0 \text{ odd } x^2 + 10x = -1$ $x^2 + 10x + 25 = -1 + 25, (x+5)^2 = 24$ $x+5 = \pm 2\sqrt{6}$ $\therefore x = -5 \pm 2\sqrt{6}$
- 84) $x = 1 \pm \sqrt{5}$
- $\Rightarrow x^2 2x 4 = 0 \text{ odd } x^2 2x = 4$ $x^2 2x + 1 = 4 + 1, \ (x 1)^2 = 5$ $x 1 = \pm \sqrt{5}$

$$\therefore x = 1 \pm \sqrt{5}$$

- 85) $x = \frac{1 \pm \sqrt{5}}{2}$
- $\Rightarrow x^2 x 1 = 0 \text{ odd } x^2 x = 1$ $x^2 x + \frac{1}{4} = 1 + \frac{1}{4}, \ \left(x \frac{1}{2}\right)^2 = \frac{5}{4}$ $x \frac{1}{2} = \pm \frac{\sqrt{5}}{2}$ $\therefore x = \frac{1 \pm \sqrt{5}}{2}$
- 86) $x = 6 \pm \sqrt{14}$
- $\begin{array}{c} \Longrightarrow \ x^2-12x+22=0 \, \text{old} \ \ x^2-12x=-22 \\ x^2-12x+36=-22+36 \, , \ \ (x-6)^2=14 \\ x-6=\pm \ \sqrt{14} \\ \ \ \therefore \ \ x=6\pm \sqrt{14} \end{array}$
- 87) $x = \frac{9 \pm \sqrt{41}}{2}$
- $\Rightarrow x^2 9x + 10 = 0 \text{ odd } x^2 9x = -10$ $x^2 9x + \frac{81}{4} = -10 + \frac{81}{4},$ $\left(x \frac{9}{2}\right)^2 = \frac{41}{4}$ $x \frac{9}{2} = \pm \frac{\sqrt{41}}{2}$ $\therefore x = \frac{9 \pm \sqrt{41}}{2}$
- 88) $x = -2 \pm \sqrt{5}$
- $\begin{array}{c} \Longrightarrow \ x^2 + 4x 1 = 0 \, \text{old} \ \ x^2 + 4x = 1 \\ x^2 + 4x + 4 = 1 + 4 \, , \ \ (x+2)^2 = 5 \\ x + 2 = \pm \ \sqrt{5} \\ \therefore \ \ x = -2 \pm \ \sqrt{5} \end{array}$
- 89) $x = -1 \pm \sqrt{2}$
- $\Rightarrow x^2 + 2x 1 = 0 \text{ odd } x^2 + 2x = 1$ $x^2 + 2x + 1 = 1 + 1, (x + 1)^2 = 2$ $x + 1 = \pm \sqrt{2}$ $\therefore x = -1 \pm \sqrt{2}$
- 90) $x = 3 \pm \sqrt{7}$
- $x^2 6x + 2 = 0 \text{ odd } x^2 6x = -2$ $x^2 6x + 9 = -2 + 9, (x 3)^2 = 7$ $\therefore x = 3 \pm \sqrt{7}$
- 91) $x = -5 + 4\sqrt{2}$
- $\Rightarrow x^2 + 10x 7 = 0$ બ \tau \tau^2 + 10x = 7 $x^2 + 10x + 25 = 7 + 25. (x+5)^2 = 32$

$$\therefore x = -5 \pm \sqrt{32} = -5 \pm 4\sqrt{2}$$

92)
$$x = 4 \pm 2\sqrt{3}$$

$$\Rightarrow x^2 - 8x + 4 = 0 \text{ on } \text{ on } x^2 - 8x = -4$$
$$x^2 - 8x + 16 = -4 + 16, (x - 4)^2 = 12$$
$$\therefore x = 4 \pm \sqrt{12} = 4 \pm 2\sqrt{3}$$

93)
$$x = -1 + \sqrt{5}$$

$$\Rightarrow x^2 + 2x - 4 = 0 \text{ odd } x^2 + 2x = 4$$
$$x^2 + 2x + 1 = 4 + 1, (x+1)^2 = 5$$
$$x + 1 = \pm \sqrt{5}$$
$$\therefore x = -1 \pm \sqrt{5}$$

94)
$$x = 4 \pm \sqrt{10}$$

$$\Rightarrow x^2 - 8x + 16 = -6 + 16, (x - 4)^2 = 10$$
$$x - 4 = \pm \sqrt{10} \qquad \therefore x = 4 \pm \sqrt{10}$$

95)
$$x = 1 \pm \sqrt{6}$$

$$x^2 - 2x = 50 ||A|| x^2 - 2x + 1 = 5 + 1$$

$$(x - 1)^2 = 6, x - 1 = \pm \sqrt{6}$$
∴ $x = 1 \pm \sqrt{6}$

96)
$$x = -2 \pm \sqrt{7}$$

$$\Rightarrow x^2 + 4x = 30 | \text{A} | x^2 + 4x + 4 = 3 + 4$$
$$(x+2)^2 = 7, x+2 = \pm \sqrt{7}$$
$$\therefore x = -2 \pm \sqrt{7}$$

97)
$$x = 3 \pm \sqrt{5}$$

$$\Rightarrow x^2 - 6x = -4 \text{ od } x^2 - 6x + 9 = -4 + 9$$
$$(x - 3)^2 = 5, \ x - 3 = \pm \sqrt{5}$$
$$\therefore x = 3 \pm \sqrt{5}$$

98)
$$x = -4 \pm \sqrt{17}$$

$$\Rightarrow x^2 + 8x - 1 = 0 \text{ odd } x^2 + 8x = 1$$
$$x^2 + 8x + 16 = 1 + 16$$
$$(x+4)^2 = 17, \ x+4 = \pm \sqrt{17}$$
$$\therefore \ x = -4 \pm \sqrt{17}$$

99)
$$x = 3 + \sqrt{13}$$

$$\Rightarrow x^2 - 6x - 4 = 001 \text{ M} \quad x^2 - 6x = 4, \quad x^2 - 6x + 9 = 4 + 9$$
$$(x - 3)^2 = 13, \quad x - 3 = \pm \sqrt{13}$$
$$\therefore \quad x = 3 \pm \sqrt{13}$$

100)
$$x = 6 \pm \sqrt{34}$$

$$\Rightarrow x^2 - 12x + 2 = 0 \text{ old } \text{ d}$$

$$x^2 - 12x = -2, \ x^2 - 12x + 36 = -2 + 36$$

$$(x - 6)^2 = 34, \ x - 6 = \pm \sqrt{34}$$

$$\therefore \ x = 6 \pm \sqrt{34}$$

101)
$$x = -\frac{1}{2} \pm \frac{\sqrt{5}}{2}$$

$$\Rightarrow x^2 + x - 1 = 0 \text{ od } x^2 + x = 1$$
$$x^2 + x + \frac{1}{4} = 1 + \frac{1}{4}$$

$$\left(x+\frac{1}{2}\right)^2 = \frac{5}{4}, \ x+\frac{1}{2} = \pm \frac{\sqrt{5}}{2}$$

$$\therefore x = -\frac{1}{2} \pm \frac{\sqrt{5}}{2}$$

102)
$$x = \frac{3}{2} \pm \frac{3\sqrt{5}}{2}$$

$$\Rightarrow x^2 - 3x - 9 = 0 \text{ odd Ad}$$

$$x^2 - 3x = 9, \ x^2 - 3x + \frac{9}{4} = 9 + \frac{9}{4}$$

$$\left(x - \frac{3}{2}\right)^2 = \frac{45}{4}, \ x - \frac{3}{2} = \pm \frac{3\sqrt{5}}{2}$$

$$\therefore x = \frac{3}{2} \pm \frac{3\sqrt{5}}{2}$$

103)
$$x = -\frac{5}{2} \pm \frac{\sqrt{17}}{2}$$

$$\Rightarrow x^2 + 5x + 2 = 001 \text{ M}$$

$$x^{2} + 5x = -2$$
, $x^{2} + 5x + \frac{25}{4} = -2 + \frac{25}{4}$

$$\left(x + \frac{5}{2}\right)^2 = \frac{17}{4}, \ x + \frac{5}{2} = \pm \frac{\sqrt{17}}{2}$$

$$\therefore x = -\frac{5}{2} \pm \frac{\sqrt{17}}{2}$$

104)
$$x = \frac{5 \pm \sqrt{17}}{4}$$

$$\Rightarrow x^2 - \frac{5}{2}x + \frac{25}{16} = -\frac{1}{2} + \frac{25}{16}, \ \left(x - \frac{5}{4}\right)^2 = \frac{17}{16}$$
$$x - \frac{5}{4} = \pm \frac{\sqrt{17}}{4} \qquad \therefore x = \frac{5 \pm \sqrt{17}}{4}$$

105)
$$x = -3 \pm \sqrt{19}$$

$$2x^2 + 12x - 20 = 0 \text{ odd } \text{ A}$$

$$x^2 + 6x - 10 = 0, x^2 + 6x = 10$$

$$x^2 + 6x + 9 = 10 + 9$$

$$(x+3)^2 = 19, \ x+3 = \pm \sqrt{19}$$

$$\therefore \ x = -3 \pm \sqrt{19}$$

106)
$$x = -4 \pm 2\sqrt{3}$$

$$\Rightarrow 3x^2 + 24x + 12 = 0 \text{ off } \text{ off }$$

$$x^2 + 8x + 4 = 0, \ x^2 + 8x = -4$$

$$x^2 + 8x + 16 = -4 + 16$$

$$(x+4)^2 = 12, \ x+4 = \pm 2\sqrt{3}$$

$$\therefore \ x = -4 \pm 2\sqrt{3}$$

107)
$$x = 1 \pm \sqrt{2}$$

$$\Leftrightarrow 6x^2 - 12x - 6 = 0 \text{ MH} \quad x^2 - 2x - 1 = 0, \quad x^2 - 2x = 1$$

$$x^2 - 2x + 1 = 1 + 1$$

$$(x - 1)^2 = 2, \quad x - 1 = \pm \sqrt{2}$$

$$\therefore \quad x = 1 + \sqrt{2}$$

108)
$$x = -1$$
 또는 $x = -3$

다
$$4x^2 + 16x + 12 = 0$$
에서 $x^2 + 4x + 3 = 0$, $x^2 + 4x = -3$
 $x^2 + 4x + 4 = -3 + 4$
 $(x+2)^2 = 1$, $x+2 = \pm 1$
 $x = -1$ 또는 $x = -3$

109)
$$x = -\frac{5}{4} \pm \frac{\sqrt{33}}{4}$$

110)
$$x = 2 \pm \sqrt{2}$$

$$\Rightarrow 2x^2 - 8x + 4 = 0 \text{ odd } x^2 - 4x + 2 = 0$$
$$x^2 - 4x + 4 = -2 + 4, (x - 2)^2 = 2$$
$$\therefore x = 2 \pm \sqrt{2}$$

111)
$$x = -1 \pm \frac{\sqrt{10}}{2}$$

$$\Rightarrow 2x^2 + 4x - 3 = 0 \text{ odd } x^2 + 2x - \frac{3}{2} = 0$$
$$x^2 + 2x + 1 = \frac{3}{2} + 1, \ (x+1)^2 = \frac{5}{2}$$
$$\therefore x = -1 \pm \frac{\sqrt{10}}{2}$$

112)
$$x = -\frac{3}{2} \pm \frac{\sqrt{5}}{2}$$

$$\Rightarrow 3x^2 + 9x + 3 = 0 \text{ on } k \text{ } x^2 + 3x + 1 = 0$$

$$x^2 + 3x + \frac{9}{4} = -1 + \frac{9}{4}, \ \left(x + \frac{3}{2}\right)^2 = \frac{5}{4}$$

$$\therefore \ x = -\frac{3}{2} \pm \frac{\sqrt{5}}{2}$$

113)
$$x = \frac{1}{8} \pm \frac{\sqrt{65}}{8}$$

$$\Rightarrow 4x^2 - x - 4 = 0 \text{ on } x^2 - \frac{1}{4}x - 1 = 0$$
$$x^2 - \frac{1}{4}x + \frac{1}{64} = 1 + \frac{1}{64}, \left(x - \frac{1}{8}\right)^2 = \frac{65}{64}$$

$$\therefore x = \frac{1}{8} \pm \frac{\sqrt{65}}{8}$$

114)
$$x = 3 \pm 2\sqrt{3}$$

$$\Rightarrow x^2 - 6x = 3, \ x^2 - 6x + 9 = 3 + 9, \ (x - 3)^2 = 12,$$
$$x - 3 = \pm 2\sqrt{3} \qquad \therefore x = 3 \pm 2\sqrt{3}$$

115)
$$x = -1 \pm \sqrt{3}$$

$$\Rightarrow x^2 + 2x - 2 = 0, \ x^2 + 2x + 1 = 2 + 1, \ (x+1)^2 = 3,$$
$$x + 1 = \pm \sqrt{3} \quad \therefore x = -1 \pm \sqrt{3}$$

116)
$$x = 4 \pm 3\sqrt{2}$$

$$\Rightarrow x^2 - 8x = 2, \ x^2 - 8x + 16 = 2 + 16, \ (x - 4)^2 = 18,$$
$$x - 4 = \pm 3\sqrt{2} \qquad \therefore x = 4 \pm 3\sqrt{2}$$

117)
$$x = 1 + \sqrt{7}$$

$$\Rightarrow 3x^2 - 6x - 18 = 0 \text{ odd } x^2 - 2x - 6 = 0$$

$$x^2 - 2x + 1 = 6 + 1, (x - 1)^2 = 7$$

$$x - 1 = \pm \sqrt{7}$$

$$\therefore x = 1 \pm \sqrt{7}$$

118)
$$x = 2 \pm \sqrt{6}$$

$$2x^2 - 8x - 4 = 0 \text{ odd } x^2 - 4x - 2 = 0$$

$$x^2 - 4x + 4 = 2 + 4, (x - 2)^2 = 6$$

$$x - 2 = \pm \sqrt{6}$$

$$\therefore x = 2 + \sqrt{6}$$

119)
$$x = 1 \pm \frac{\sqrt{14}}{2}$$

$$\Rightarrow 2x^2 - 4x - 5 = 0 \text{ odd } x^2 - 2x - \frac{5}{2} = 0$$

$$x^2 - 2x + 1 = \frac{5}{2} + 1, (x - 1)^2 = \frac{7}{2}$$

$$x - 1 = \pm \sqrt{\frac{7}{2}} = \pm \frac{\sqrt{14}}{2}$$

$$\therefore x = 1 \pm \frac{\sqrt{14}}{2}$$

120)
$$x = -2 + \sqrt{5}$$

$$\begin{array}{c} \Leftrightarrow \ 4x^2 + 16x - 4 = 0 \\ \text{old } x^2 + 4x - 1 = 0 \\ x^2 + 4x + 4 = 1 + 4 \,, \ (x+2)^2 = 5 \\ x + 2 = \pm \sqrt{5} \\ \therefore \ x = -2 \pm \sqrt{5} \end{array}$$