POLITECNICO DI MILANO - UNIVERSITY OF ILLINOIS CHICAGO HPPS PROJECT

QCADESIGNER POWERED BY CUDA

Instructor: Prof.ssa Sciuto Donatella

Tutor: Santambrogio MARCO DOMENICO

Authors:

Gibilisco Giovanni Paolo, Matr. 755066

Marconi Francesco, Matr. 755439 Miglierina Marco, Matr. 754848

Contents

1	State of the Art	1
2	Rationale	2
3	implementation	•
4	Results	4
5	Conclusions	Ę

List of Figures

Abstract

2 righe sul lavoro, -¿VENDITI BENE

Chapter 1

State of the Art

- QCA * QCADesigner * Two Engines: BISTABLE and COHERENCE, describe them shortly (see MINA site) -; BISTABLE IS JUST A FAST APPROXIMATION to test circuits - CUDA

Chapter 2

Rationale

- Why QCA? * novel emerging paradigm * 2 Thz, low energy consumption and miniaturization * quantum computing - QCADesigner simulator slow on big circuits: * Every sample, each cell's polarization is computed based on the values of his neighbors, sequentially. * Bottleneck from profiling (table with times) * Simulation core: pseudo code * Identical operations repeated for each cell, big circuits -¿ thousands of cells * We chose to speedup this part of the code with CUDA because: SIMD architecture (SIMT): single instruction repeated on different data hundreds of core -¿ many threads running simultaneously, each thread responsible of computing a cell's polarization scalable, adding new cores implies a greater number of cells computed simultaneously, higher speedup - Objective * Speed up simulation for big circuits * batch simulator * Given a file .qca -¿ produce output: binary, continous values, plot on png, log with info of simulation * if same .qca -¿ same results CPU and CUDA

Chapter 3 implementation

Chapter 4

Results

Chapter 5
Conclusions

Bibliography