Table of Contents

Parameters
Main Program
End Main Program
Initialize
Get the refractive index for further calculation
Free-space with flat-earth
Troposphere condition
Surface Duct condition
Graded Surface Duct Condition
Generate the source
Sinc Source
Create Taylor Line pattern
Fourier Transform of known aperture distribution
Store the data for Plotting in p-space
Inverse Fourier Transform
Store the data for calculation
Marching
Refractive Index difference corretion and Hanning window
Maximum of field distribution
Plotting routine
<pre>function Abbas_HW_11_Parabolic_equation_modifications_final() % Hasan Tahir Abbas % ECEN 637</pre>
% Homework 11: Study on Wave Propagation in the Troposphere % 12/12/2015 %
<pre>% This code is a translation of the Fortran code provided in class % simulating:</pre>
<pre>% % Dockery, G. D., "Modeling Electromagnetic Wave Propagation in th % Troposphere Using the Parabolic Equation," IEEE Trans. Antennas Propag.</pre>
% 36(10), 1464-1470 (1988). %
% Taylor-pattern source % FFT of the signal
% Far-field profile
% Utilization of Toeplitz nature of the impedance matrix (Only one ro
% needs to be computed)
8
% PARAMETERS AND VARIABLES LIST %
% N = Spectral Length
% Nx Spatial Length
% p = p_space axis

```
% z = z_{space} axis
% pat p = Pattern in p-space
% f z = Profile in z-space
% Picture = Field profile in the environment
% x = Spatial iteration
% a = radius of the earth
% m = dielectric of the space
% epsi o = Free-space permittiivty
% index = Refractive index of the medium
% epsi_c = Complex dielectric of the medium
% dNdz = Graded duct gradient
% zmax = medium change locations in space
% xx = Horizontal x-axis profile positions
% choice = choice of medium
% p max = maximum value in p-space
% z_max = maximum value in z-space
% dp = Delta increment in p-direction
% dz = Delta increment in z-direction
% pe = beam tilt angle
% za = height of the source
% dx = spatial intervla
% a_e = effective radius of the earth
% pattern = p_space pattern
% fz = source signal
% temp = temporary variable
% freq = source frequency
% lambda = wavelength of the source
% c = speed of light
% kappa = propagation constanct
% theta max = Beam direction of the source
% beamwidth = beamwidth of the Taylor-patterened source
% Length = length of the source
% epsi_r = relative permittivity of sea water
% sigma = conductivity
% omega = angular frequency
% FUNCTIONS LIST
% DATA() = initializes the variables and arrays to be used in the code
% REFR_INDEX_N() = models the refractive index of the different cases
                   atmosphere
% GEN_SOURCE() = Taylor-pattern based source
% P_SPACE() = Pattern in the p-space by FFT
% DRAW_DATA() = Arrange pattern in p-space
% Z SPACE() = Profile in the z-space by IFFT
% REPLACE() = Choose signal for FFT
% PRE PROCESS() = Take care of marching to the next step
% POST_PROCES() = Refractive Index difference corretion and Hanning
window
% MAX_FZ() = Find maximum value of field distribution
% PLOTS() = Plots results
```

2

Parameters

Global variables are used to span across all the functions in this code According to MATLAB's documentation, a better and safer option will be persistent type variables

Main Program

End Main Program

Initialize

```
function data()
% Set all the variables to zero

global N Nx
global p_max z_max dp dz
global pe za dx a a_e
global p z pat_p f_z
global pattern fz temp m
global freq lambda c kappa theta_max
```

```
global beamwidth Length han
global epsi o epsi r sigma omega epsi c Picture
global xx dxx
% Data to be used
% ********
N = 16384;
Nx = 800;
% Nx = 1024;
freq = 3e9 ; % Antenna operation frequency
c = 3e8;
epsi o = 8.854e-12;
epsi_r = 69;
sigma = 6.5;
omega = 2*pi*freq;
epsi_c = epsi_o * epsi_r + 1i* sigma/omega;
lambda = c/freq; % One wavelength
kappa = 2*pi/lambda;
Length = 38*lambda; % Length of aperture in wavelengths
za = 31;
dx = 200;
a = 6.37e6; % % Radius of the earth
a = a*(4/3); % effective radius of the earth
theta max = 13;
beamwidth = 22.2718567e-3; % Half-power beamwidth of Taylor pattern
p_max = kappa*sind(theta_max); % Maximum propagation angle %% sind()
for degree based arguments
dp = 2*p_max/(N-1);
dz = 1/(p_max/pi); % Delta increment in z-direction
z_max = (N-1)/2*dz; % Physical area analyzed
pe = kappa*sin(beamwidth/2); % Beam tilt angle
z = dz*(0:N-1) - z max;
p = dp*(0:N-1) - p_max;
xx = (1:Nx)*dx; % Horizontal x-axis profile positions
pattern = zeros(1,N);
fz = zeros(1,N);
temp = zeros(1,N);
m = zeros(1,N);
pat_p = zeros(1,N);
f z = zeros (1,N);
Picture = zeros(N,Nx);
han = zeros (1,N);
dxx = (0:Nx-1)*dx;
end
% *****************
% **************
```

Get the refractive index for further calculation

```
function refr_index_n()
global N a z m
global epsi_o index epsi_c
global dNdz zmax
global xx x choice
if x == 1
    disp('
                                              ');
                 Choose the media
                                              ');
    disp('
                                              ');
    disp('
    disp('1. Free space');
    disp('2. for Standard Atmosphere');
    disp('3. for Surface Duct');
    disp('4. for Graded Duct');
                                            ' ;
    prompt = 'Enter option from 1-4:
    choice = input(prompt);
end
% Set the environment
switch (choice)
```

Free-space with flat-earth

Troposphere condition

```
case(2)
  if x == 1
      disp(' Choice = 2 ');
  end
  for i = 1 : N
```

Surface Duct condition

```
case(3)
       if x == 1
           disp('
                            Choice = 3
                                                         ');
       end
       for i = 1 : N
           if (z(i) < 0) % Sea water
               m(i) = epsi_c/epsi_o - 1;
           elseif (z(i) > 0 \&\& z(i) \le 37) % Surface Duct
               index = 1 + (300 - .5*z(i))*1e-6;
               m(i) = index^2 - 1 + 2*z(i)/a;
               k = i;
           else
               index = 1 + (300 - .5*z(k) - .0394*(z(i) -
z(k)))*1e-6; % Standard atmosphere
               m(i) = index^2 - 1 + 2*z(i)/a;
           end
       end
```

Graded Surface Duct Condition

```
case(4)
       if x == 1
           disp('
                           Choice = 4
                                                         ');
       end
       if (xx(x) <= 40000)
           dNdz = (.5 - .167) / 40000 * xx(x) - .5;
           zmax = (150 - 37) / 40000 * xx(x) + 37;
       end
       for i = 1 : N
           if (z(i) < 0) % Sea water
               m(i) = epsi_c/epsi_o - 1;
           elseif (z(i) > 0 && z(i) <= zmax) % Graded surface Duct</pre>
               index = 1 + (300 + dNdz * z(i)) * 1e-6;
               m(i) = index^2 - 1 + 2 * z(i) / a;
               k = i;
           else
               index = 1 + (300 + dNdz * z(k) - .0394 * (z(i) -
z(k))) * 1e-6; % Standard atmosphere
               m(i) = index^2 - 1 + 2 * z(i) / a;
           end
       end
```

Generate the source

```
function gen_source()
% The aperture distribution and its far field pattern
global N z Length
global pe za fz f_z zz
% global pattern pat_p p
% global Picture x
```

Sinc Source

x = 0; for i = 1: N pp = p(i) - pe; if pp == 0 pattern(i) = Length; else pattern(i) = $2*\sin(pp*Length/2)/pp*exp(-1i*pp*za)$; end pat_p(i) = abs(pattern(i)); end

Create Taylor Line pattern

```
SLL = -20 dB n_bar = 10; ! Taylor pattern SLL=-20dB, n_bar=10
for k = 1 : N
    if z(k) >= (za - Length/2) \&\& z(k) <= (za + Length/2)
            zz = z(k) - za;
            fz(k) = exp(1i*pe*z(k))...
            *( 1.0 ...
            + 2.0*( 0.0977020907)*cos(2*pi*1.0*zz/Length)...
            + 2.0*( 0.045938932)*cos(2*pi*2.0*zz/Length)...
            + 2.0*(-0.0567750651)*cos(2*pi*3.0*zz/Length)...
            + 2.0*( 0.0543140899)*cos(2*pi*4.0*zz/Length)...
            + 2.0*(-0.0472939433)*cos(2*pi*5.0*zz/Length)...
            + 2.0*( 0.0381149255)*cos(2*pi*6.0*zz/Length)...
            + 2.0*(-0.0279769765)*cos(2*pi*7.0*zz/Length)...
            + 2.0*( 0.0177444933)*cos(2*pi*8.0*zz/Length)...
            + 2.0*(-0.0081655839)*cos(2*pi*9.0*zz/Length))*(1.0/
Length);
```

Fourier Transform of known aperture distribution

Store the data for Plotting in p-space

function draw_data()

global N pattern pat_p

for i = 1 : N
 if (i <= floor(N/2+1))
 k = i + floor(N/2) - 1;
 pat_p(k) = abs(pattern(i));
 else
 k = i - floor(N/2) - 1;
 pat_p(k) = abs(pattern(i));
 end
end</pre>

Inverse Fourier Transform

```
***************
function z_space()
% Take inverse fourier transform of the previous pattern at the next
step
global N dz temp
global f_z fz ii fmax
global Picture x
ii = 1;
replace(); % Store data in temporary array
pre_process(); % Take care of marching
temp = N*ifft(temp,N);
post_process(); % Take care of index difference in z-direction
\max_{fz()};
fz = temp/(N*dz);
f_z = abs(fz)/fmax;
Picture(:,x) = f_z;
% save z_space.mat
```

Store the data for calculation

Marching

end

Refractive Index difference corretion and Hanning window

Maximum of field distribution

function max_fz()
%
% Find maximum value of field distribution
global N dz fmax temp

fmax = 0;
for i = 1 : N
 ftemp = abs(temp(i))/(N*dz);
 if ftemp >= fmax
 fmax = ftemp;
% else
% fmax = fmax;
 end

Plotting routine

function plots() global Picture choice global p pat_p z f_z dxx % Plot Input Admittance figure(1); H = plot(pat_p, p); H.Color = 'black'; H.LineWidth = 1.4;title('Plot in p-space','Interpreter','latex') set(gcf,'Color','white'); % Set background color to white set(gca, 'FontName', 'times new roman') % Set axes fonts to Times New Roman xlabel('Magnitude ','Interpreter','latex'); % X-axis label ylabel('\$p = k \times sin(\theta) | \theta <=13^\circ</pre> \$','Interpreter','latex'); % y-axis label grid on % cleanfigure(); % matlab2tikz('filename',sprintf('ECEN637_HW11_p_space_choice_%d.tex', choice)); 응 응 figure(2) H = plot(20*log10(f z),z);H.Color = 'black'; H.LineWidth = 1.4; ylim([0 500]); title('Plot in z-space','Interpreter','latex') set(gcf,'Color','white'); % Set background color to white set(gca, 'FontName', 'times new roman') % Set axes fonts to Times New Roman xlabel('Normalized Power \$(dB)\$','Interpreter','latex'); % X-axis ylabel('Altitude \$(m)\$','Interpreter','latex'); % y-axis label grid on % cleanfigure(); % matlab2tikz('filename',sprintf('ECEN637 HW11 z space plot choice %d.tex', choice));

```
%
figure(3)
surf(dxx,z,Picture);
shading interp;
ylim([-50 300]);
view([0 90]);
colormap jet
title('Spatial Field Distribution','Interpreter','latex')
set(gcf,'Color','white'); % Set background color to white
set(gca,'FontName','times new roman') % Set axes fonts to Times New
xlabel('Distance $(m)$','Interpreter','latex'); % X-axis label
ylabel('Altitude $(m)$','Interpreter','latex'); % y-axis label
% cleanfigure();
% matlab2tikz('filename',sprintf('ECEN637_HW11_E_space_plot_choice_
%d.tex', choice));
응 응
응
end
```

Published with MATLAB® R2015b