Indian Institute of Technology Roorkee

MAN-001(Mathematics-1): B. Tech. I Year

Autumn Semester: 2018-19

Assignment Sheet-2: Matrix Algebra II

(1) For each matrix, find all eigenvalues and the corresponding linearly independent eigenvectors;

(a) $\begin{bmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$ (d) $\begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$. (2) (a) Let λ be an eigenvalue of a nonsingular square matrix A of order n and \mathbf{x} be the corre-

- sponding eigenvector. Show that λ^{-1} is an eigenvalue of A^{-1} and identify the corresponding eigenvector. Also, identify the eigenvalue and eigenvector of (A - kI), where I is the identity matrix and k is a scalar.
 - (b) Show that A and A^T have same eigenvalues. Are their eigenvectors also same?
 - (c) If A and P are square matrices of order n, and P is nonsingular, then A and $P^{-1}AP$ have the same eigenvalues.
- (3) Prove that
 - (a) all eigenvalues of a Hermitian matrix are real.
 - (b) eigenvalues of a skew Hermitian matrix are purely imaginary or zero.
 - (c) eigenvectors corresponding to two distinct eigenvalues of a real symmetric matrix are orthogonal.
 - (d) eigenvalues of a unitary matrix have unit modulus.
 - (e) any skew-symmetric matrix of odd order has zero determinant.
 - (f) the eigenvalues of an idempotent matrix A are either 0 or 1.
 - (g) all eigenvalues of a nilpotent matrix B are 0.
- (4) Let A and B be square matrices of order n. Show that if λ be an eigenvalue of AB then it will be an eigenvalue of BA. Hence, prove that I - AB is invertible iff I - BA is invertible.
- (5) Prove that every Hermitian matrix can be written as A + iB, where A is real and symmetric, and B is real and skew-symmetric.
- (6) Given that $A = \begin{bmatrix} 0 & 1+2i \\ -1+2i & 0 \end{bmatrix}$, show that $(I-A)(I+A)^{-1}$ is a unitary matrix. (7) (a) The eigenvalues of a 3×3 matrix A are 2, 2, 4 and the corresponding eigenvectors are
- $(-2,1,0)^T$, $(-1,0,1)^T$ and $(1,0,1)^T$. Find A.
- (a) Find a matrix I such that I and I are diagonal matrix, where I is I (ii) $\begin{bmatrix} 4 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 4 \end{bmatrix}$ (ii) $\begin{bmatrix} 0 & 2 & -1 \\ 2 & 3 & -2 \\ -1 & -2 & 0 \end{bmatrix}$ (iii) $\begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$ (iv) $\begin{bmatrix} 2 & 0 & -1 \\ 3 & 4 & 0 \\ 3 & 2 & 0 \end{bmatrix}$ (8) Find e^{2A} and A^{50} when (a) $A = \begin{bmatrix} -4 & 1 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & -2 \end{bmatrix}$ (b) $A = \begin{bmatrix} -2 & 4 & 3 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$
- (9) Using Cayley-Hamilton theorem, find the inverse of the following matrice
 - (a) $\begin{bmatrix} 1 & 3 & 3 \\ 1 & 3 & 4 \\ 1 & 4 & 3 \end{bmatrix}$ (b) $\begin{bmatrix} 7 & 6 & 2 \\ -1 & 2 & 4 \\ 3 & 6 & 8 \end{bmatrix}$ (c) $\begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$
- (10) Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & 1 \\ 4 & 0 & 1 \end{bmatrix}$. Hence, find A^{-1} and A^4 .
- (11) Let $A = \begin{pmatrix} 4 & \alpha & -1 \\ 2 & 5 & \beta \\ 1 & 1 & \gamma \end{pmatrix}$. Given that the eigenvalues of the matrix A are $3, 3, \delta$ (where $\delta \neq 3$) and A is diagonalizable, find the values of constants $\alpha, \beta, \gamma, \delta$.

(12) Find an orthogonal or unitary matrix P such that P^*AP is diagonal where A is given by the following:

(a)
$$\begin{bmatrix} 7 & 3 \\ 3 & -1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 11 & -8 & 4 \\ -8 & -1 & -2 \\ 4 & -2 & -4 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 1-i \\ 1+i & 2 \end{bmatrix}$

ANSWERS

1. (a)
$$2, 2, 6, (-1, 0, 1)^T, (-1, 1, 0)^T, (1, 2, 1)^T$$
 (b) $1, 1, 1, (1, 0, 1)^T, (1, 0, 0)^T$ (c) $-2, -2, 4$ $(0, 1, 1)^T, (1, 0, -1)^T, (1, 1, 2)^T$ (d) $1, 1, 3, (1, 0, 3)^T, (1, -3, 0)^T, (-1, 1, -1)^T$

7. (a)
$$\begin{bmatrix} 3 & 2 & 1 \\ 0 & 2 & 0 \\ 1 & 2 & 3 \end{bmatrix}$$
(b) (i)
$$\begin{bmatrix} 1 & -1 & 1 \\ 2 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 2 & 1 & -1 \\ -1 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix}$$
 (iii)
$$\begin{bmatrix} -1 & -11 & 1 \\ 1 & -1 & 1 \\ 1 & 14 & 1 \end{bmatrix}$$
 (iv)
$$\begin{bmatrix} 1 & -2 & -1 \\ -1 & 3 & 3 \\ 1 & 0 & 1 \end{bmatrix}$$
8. (a)
$$\begin{bmatrix} \alpha & \beta - \alpha & (\alpha - 2\beta + \gamma)/2 \\ 0 & \beta & \gamma - \beta \\ 0 & 0 & \gamma \end{bmatrix}$$
 where $\alpha = e^{-8}, \beta = e^{-6}, \gamma = e^{-4}$ for e^{2A} and $\alpha = 4^{50}, \beta = 3^{50}, \gamma = 2^{50}$ for A^{50}

$$\alpha=4^{50},\beta=3^{50},\gamma=2^{50}$$
 for A^{50}

(b)
$$\frac{1}{6} \begin{bmatrix} 6\alpha & 4(\beta - \alpha) & 3(\beta - \alpha) \\ 0 & 6\beta & 0 \\ 0 & 0 & 6\beta \end{bmatrix}$$
 where $\alpha = e^{-4}, \beta = e^{8}$ for e^{2A} and

$$\alpha = 2^{50}, \beta = 4^{50} \text{ for } A^{50}$$

9. (a)
$$\begin{bmatrix} 7 & -3 & -3 \\ -1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} -0.20 & -0.90 & 0.50 \\ 0.50 & 1.25 & -0.75 \\ -0.30 & -0.60 & 0.50 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$
10.
$$\frac{1}{11} \begin{bmatrix} 1 & -2 & 2 \\ 5 & 1 & -1 \\ -4 & 8 & 3 \end{bmatrix}$$
,
$$\begin{bmatrix} 25 & 8 & 8 \\ 12 & 25 & 4 \\ 16 & 32 & 33 \end{bmatrix}$$

11.
$$\alpha = 1, \beta = -2, \gamma = 2, \delta = 5.$$

12. (a)
$$\frac{1}{\sqrt{10}} \begin{bmatrix} -1 & 3 \\ 3 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 0 & -5/\sqrt{105} & 4/\sqrt{21} \\ 1/\sqrt{5} & -8/\sqrt{105} & -2/\sqrt{21} \\ 2/\sqrt{5} & 4/\sqrt{105} & 1/\sqrt{21} \end{bmatrix}$ (c) $\begin{bmatrix} -2/\sqrt{6} & 1/\sqrt{3} \\ (1+i)/\sqrt{6} & (1+i)/\sqrt{3} \end{bmatrix}$