# Homework 1

## Michael Nameika

## August 2023

# 1.1 Problems

**6**. Show that d in 1.1-6 satisfies the triangle inequality.

*Proof*: Let X be the set of all bounded sequences and define  $d: X \times X \to \mathbb{R}$  by

$$d(x,y) = \sup_{i \in \mathbb{N}} |x_i - y_i|$$

where  $x_i, y_i$  are the  $i^{\text{th}}$  elements of  $x, y \in X$ , respectively.

Let  $x, y, z \in X$ . Then for any i, using the triangle inequality for  $|\cdot|$ , we have

$$|x_i - y_i| = |x_i - z_i + z_i - y_i|$$

$$< |x_i - z_i| + |z_i - y_i|.$$

Notice by definition of supremum,

$$|x_i - z_i| \le \sup_{i \in \mathbb{N}} |x_i - z_i|$$
$$|z_i - y_i| \le \sup_{i \in \mathbb{N}} |z_i - y_i|.$$

So then

$$|x_i - y_i| \le \sup_{i \in \mathbb{N}} |x_i - z_i| + \sup_{i \in \mathbb{N}} |z_i - y_i|$$
$$= d(x, z) + d(z, y)$$

then  $|x_i - y_i|$  is bounded above by d(x, z) + d(z, y) for all i, hence

$$\sup_{i \in \mathbb{N}} |x_i - y_i| \le d(x, z) + d(z, y)$$
$$d(x, y) \le d(x, z) + d(z, y).$$

Hence, d satisfies the triangle inequality.

12. (Triangle inequality) The triangle inequality has several usefull consequences. For instance, using (1), show that

$$|d(x,y) - d(z,w)| \le d(x,z) + d(y,w)$$

*Proof*: Let (X,d) be a metric space and  $x,y,z,w\in X$ . By the triangle inequality, we have

$$d(x,y) \le d(x,z) + d(z,w) + d(w,y)$$

1

so that

$$|d(x,y) - d(z,w)| = |d(x,z) + d(z,w) + d(w,y) - d(z,w)|$$
  
= |d(x,z) + d(y,w)|.

Since  $d(x,z) \ge 0$ ,  $d(y,w) \ge 0$ ,

$$|d(x,z) + d(w,y)| = d(x,z) + d(y,w)$$

hence,

$$|d(x,y) - d(z,w)| \le d(x,z) + d(y,w).$$

# 1.2 Problems

**4.** (Space  $l^p$ ) Find a sequence which converges to 0, but is not in any space  $l^p$ , where  $1 \le p < +\infty$ .

Consider the sequence of real numbers  $\{x_n\}$  defined by

$$x_n = \frac{1}{\ln(n+1)}.$$

Notice since  $\ln(n+1) \to \infty$  as  $n \to \infty$ , so  $\frac{1}{\ln(1+n)} \to 0$  as  $n \to \infty$ . We will show that the series

$$\sum_{n=1}^{\infty} \frac{1}{|\ln(1+n)|^p}$$

diverges for all natural numbers  $1 \le p < +\infty$ . Recall that

$$\lim_{x \to \infty} \frac{x^n}{e^x} = 0$$

for all natural numbers n. Hence, there exists some real number  $x_0$  such that for all  $x > x_0$ ,

$$x^n < e^x$$
.

Take  $x = \ln(y+1) > x_0$  for  $y+1 > e^{x_0} = y_0$ . Then by the above inequality, we have

$$(\ln(y+1))^n < y+1$$

so

$$\frac{1}{1+y} < \frac{1}{(\ln(1+y))^n}$$

for all  $y > y_0$ . Then

$$\sum_{k=\lceil y_0 \rceil}^{\infty} \frac{1}{1+y} < \sum_{k=\lceil y_0 \rceil}^{\infty} \frac{1}{(\ln(1+y))^n} < \sum_{k=1}^{\infty} \frac{1}{(\ln(1+y))^n}.$$

Since  $\sum_{k=\lceil k_0 \rceil}^{\infty} \frac{1}{1+y}$  diverges, by direct comparison, we have

$$\sum_{k=1}^{\infty} \frac{1}{(\ln(1+y))^n}$$

diverges for all natural numbers n.

# 1.3 Problems

8. Show that the closure  $\overline{B(x_0;r)}$  of an open ball  $B(x_0;r)$  in a metric space can differ from the closed ball  $\overline{B}(x_0;r)$ .

*Proof*: Consider the metric space  $(\mathbb{Q}, d)$  where  $\mathbb{Q}$  denotes the set of rational real numbers and d(x, y) = |x - y|. Let  $x \in \mathbb{Q}$ , r > 0 and consider the open ball of radius r centered at x,

$$B_r(x) = \{ y \in \mathbb{Q} \mid d(x, y) < r \}.$$

Then the closed ball of radius r centered at x is given by

$$\overline{B}_r(x) = \{ y \in \mathbb{Q} \mid d(x, y) \le r \}.$$

However, since the set of limit points of  $\mathbb{Q}$  is all of  $\mathbb{R}$ , the closure of the open ball of radius r is given by

$$\overline{B_r(x)} = \{ y \in \mathbb{R} \mid d(x, y) \le r \}.$$

Hence,  $\overline{B_r(x)} \neq \overline{B_r(x)}$  since  $\overline{B_r(x)}$  contains all irrational numbers in the interval [x-r,x+r], but  $\overline{B_r(x)}$  contains no irrational numbers in the interval [x-r,x+r].

#### 1.4 Problems

**6.** If  $(x_n)$  and  $(y_n)$  are Cauchy sequences in a metric space (X, d), show that  $(a_n)$ , where  $a_n = d(x_n, y_n)$ , converges. Give illustrative examples.

*Proof*: Let (X,d) be a metric space and  $\{x_n\}$ ,  $\{y_n\}$  be Cauchy sequences in (X,d). Define the sequence of real numbers  $\{a_n\}$  by  $a_n = d(x_n, y_n)$ . Since  $\mathbb{R}$  is a complete metric space, we will show that  $\{a_n\}$  is a Cauchy sequence in  $\mathbb{R}$  and is therefore convergent.

Since  $\{x_n\}$  and  $\{y_n\}$  are Cauchy sequences in (X, d), there exist natural numbers  $N_1, N_2$  such that whenever  $n, m > N_1$ ,

$$d(x_n, x_m) < \frac{\epsilon}{2}$$

and similarly, whenever  $n, m > N_2$ ,

$$d(y_n, y_m) < \frac{\epsilon}{2}.$$

Take  $N = \max\{N_1, N_2\}$  and n, m > N and consider

$$|a_{n} - a_{m}| = |d(x_{n}, y_{n}) - d(x_{m}, y_{m})|$$

$$\leq |d(x_{n}, x_{m}) + d(x_{m}, y_{m}) + d(y_{m}, y_{n}) - d(x_{m}, y_{m})|$$

$$= |d(x_{n}, x_{m}) + d(y_{n}, y_{m})|$$

$$= d(x_{n}, x_{m}) + d(y_{n}, y_{m})$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon.$$

We then have

$$|a_n - a_m| < \epsilon.$$

Hence,  $\{a_n\}$  is a Cauchy sequence in  $\mathbb{R}$ .

As an example, consider the metric space  $(\mathbb{R}, |\cdot|)$  and the sequences  $\{x_n\}$  and  $\{y_n\}$  defined by

$$x_n = \frac{1}{n}\cos(n)$$
$$y_n = \log\left(1 + \frac{1}{n^{1/4}}\right)$$

Clearly, these sequences converge in  $\mathbb{R}$  and are therefore Cauchy by the completeness of  $\mathbb{R}$ . Define the sequence  $\{a_n\}$  by

 $a_n = |x_n - y_n| = \left| \frac{1}{n} \cos(n) - \log\left(1 + \frac{1}{n^{1/4}}\right) \right|$ 

From our work above, we have that  $\{a_n\}$  converges in  $\mathbb{R}$ . An illustration of these sequences can be found in the following figure:



For an example in an incomplete metric space, consider the space of polynomials on the interval [-1,1] equipped with the sup metric, denote this space by P[-1,1]. Consider the Cauchy sequences  $\{y_n\}$  and  $\{z_n\}$  defined by

$$y_n = \sum_{k=1}^n \frac{x^k}{k!}$$

and

$$z_n = \sum_{k=0}^{n} \frac{(-1)^k (\pi x)^{2k+1}}{(2k+1)!}$$

Clearly,  $y_n \to e^x$  and  $z_n \to \sin(\pi x)$  in C[-1,1], but  $e^x$  and  $\sin(\pi x)$  not in P[-1,1]. Hence, P[-1,1] is an incomplete metric space. Now define the sequence  $\{a_n\}$  of real numbers by  $a_n = d(y_n, z_n) = \sup_{x \in [-1,1]} |y_n - z_n|$ . By our work above, we know that  $\{a_n\}$  converges. For a visualization, see the figure below.



Figure 1: Plots for  $y_n = \sum_{k=0}^n \frac{x^k}{k!}$ ,  $z_n = \sum_{k=0}^n \frac{(-1)^k (\pi x)^{2k+1}}{(2k+1)!}$  and the sequence of their maximum difference,  $a_n$ , for various values of n.