```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, cross_val_score,cross_validate
from sklearn.preprocessing import normalize,StandardScaler
from sklearn.linear_model import LinearRegression,Lasso
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean_squared_error
df=pd.read_csv("USA_Housing.csv")
#df=pd.read_csv("USA_Housing.csv",header=None) => it means my dataset didn't contain column names
#Otherwise this dataset considers 1st row is the header.
#So to explicitly provide column names to the dataset follow below instructions:
#col_list=['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms',
        'Avg. Area Number of Bedrooms', 'Area Population', 'Price']
#df=pd.read_csv("USA_Housing.csv",names=col_list)
df.shape
→ (5000, 6)
df.head()
```

}	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05
4						

df.columns

df.describe()

_ →		Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
	count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
	mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
	std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
	min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
	25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
	50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
	75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
	max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

df.info()

```
Avg. Area Number of Rooms
                                        5000 non-null
                                                        float64
      2
                                                        float64
      3
         Avg. Area Number of Bedrooms
                                        5000 non-null
         Area Population
                                        5000 non-null
                                                        float64
         Price
                                        5000 non-null
                                                        float64
     dtypes: float64(6)
     memory usage: 234.5 KB
#From the above interpretation i can say that
#No missing values
#Outliers in price
#No string datatype
#scaling required becoz area_population,area_income are in large range
df.isnull().sum()
```

```
→ Avg. Area Income
                                    0
    Avg. Area House Age
                                    0
    Avg. Area Number of Rooms
                                    0
    Avg. Area Number of Bedrooms
                                    0
    Area Population
                                    0
    Price
                                    0
    dtype: int64
```

```
plt.figure(figsize =(20,8))
sns.boxplot(data=df,width=0.8)
plt.show()
```


#From the above plot we can say that there are outliers in the Area Income, Area Population, Price

```
sns.heatmap(df.corr(),annot=True,fmt='1.2f',annot_kws={'size':10},linewidth=1,cmap="coolwarm")
plt.show()
```


#After the basic EDA, before doing any manipulation, make sure to divide the data into train and test

train,test=train_test_split(df,test_size=0.2,random_state=1)

```
train.shape,test.shape
```

((4000, 6), (1000, 6))

#Treatment of Missing values

#Let's replace everything with Median.why not mean?

#if there are outliers, then impute the missing values with median, if not impute with mean.

#(df.isnull().sum()>0).index

#Taking out the names of the columns which have missing values

#missing_list=list(df.isnull().sum()[df.isnull().sum()>0].index)

#for col in missing_list:

- # median=train[col].median()
- # train[col].fillna(median,inplace=True)
- # test[col].fillna(median,inplace=True)

#Outlier treatment

df['Price'].min(),df['Price'].max()

(15938.6579232879, 2469065.5941747)

df['Price'].quantile(0.9)

→ 1684620.9544020083

df['Price'].quantile(0.95)

→ 1813570.37914836

upper_limit=df['Price'].quantile(0.98)

upper_limit

→ 1945653.0537544438

df['Price']=np.where(df['Price']>upper_limit,upper_limit,df['Price'])

```
plt.figure(figsize=(20,8))
sns.boxplot(data=df,width=0.8)
plt.show()
```



```
#If we observe in graph there are outliers in the Price which is my target ,but when i observe here there
#is no great difference between maximum and minimum value and 98% quantile value is also feasible.
#So,If there are potential outliers then cap the value at 98% quantile and replace the values which is greater
#than the cap value with the cap value.
#Otherwise that outliers may be useful insights for our data. So try to build a model in both scenarios
#Which gives best accuracy or least error choose that model.
#Just to keep it simple ,i'll not do Outliers treatment and removal of featurs based on Corr
#The range of features is different
#Let's Normalize all the features
#But i dont't want to Normalize my target
#therefore,i'll divide the data into features and target
#Formula of Normalization
#xnew=(xi-xmin)/(xmax-xmin)
#But if we have outliers, we should use Standardscaler instead =>why??
\#xnew = xi-xmean/xstd
#Here i scaled both my features and target, if you want to scale only ur features, do scaling after completion of x_{t} and x_{t}
Start coding or generate with AI.
ss=StandardScaler()
train_scaled=ss.fit_transform(train)
test_scaled=ss.transform(test)
```

```
train_scaled=pd.DataFrame(train_scaled,columns=train.columns)
test_scaled=pd.DataFrame(test_scaled,columns=test.columns)
x_train=train_scaled.drop(['Price'],axis=1)
y_train=train_scaled['Price']
#ss=StandardScaler()
#x_train_scaled=ss.fit_transform(x_train)
#x_test_scaled=ss.transform(x_test)
#x_train_scaled=pd.DataFrame(x_train_scaled,columns=x_train.columns)
#x_test_scaled=pd.DataFrame(x_test_scaled,columns=x_test.columns)
             ()
```

x_train.head	(
--------------	---	--

₹	Д	lvg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population
	0	-0.004591	0.340194	0.316584	-0.618734	-0.066558
	1	0.004351	1.382290	1.800349	1.924455	0.776112
	2	-1.012327	-0.355078	0.612859	-0.481046	-0.435302
	3	0.022056	-1.123554	-0.072649	-0.562039	1.235740
	4	-0.619123	0.716766	0.132689	-0.594436	1.001570

y_train.head()

- 0.293888 1.471125 2 -0.992134
 - -0.064477 0.409800

Name: Price, dtype: float64

x_train.shape,y_train.shape

```
→ ((4000, 5), (4000,))
```

x_test=test_scaled.drop(['Price'],axis=1) y_test=test_scaled['Price']

x_test.shape,y_test.shape

→ ((1000, 5), (1000,))

#Building models

#First Model

lr=LinearRegression()

lr.fit(x_train,y_train)

pred=lr.predict(x_test)

error=mean_squared_error(y_test,pred)

print(error)

→ 0.08627922454690747

lr.coef_

array([0.6576505 , 0.46974225, 0.34516644, 0.00544806, 0.42984357])

Start coding or generate with AI.

ls.coef_

⇒ array([0., 0., 0., 0., 0.])

Start coding or generate with AI.

```
#Cross-Validation
#Now ,we'll use train-val-test split instead of train-test split
linscores=cross_validate(knn,x_train,y_train,scoring="neg_mean_squared_error",cv=5,return_estimator=True)
linscores
{ 'fit_time': array([0.00813794, 0.00570035, 0.00695467, 0.00449061, 0.00476313]),
       score_time': array([0.01209021, 0.01185918, 0.01132798, 0.01806164, 0.01129198]),
       'estimator': [KNeighborsRegressor(),
       KNeighborsRegressor(),
       KNeighborsRegressor(),
       KNeighborsRegressor(),
       KNeighborsRegressor()],
      'test_score': array([-0.15119307, -0.14977611, -0.13617985, -0.13068712, -0.1457427 ])}
linscores['test_score']
→ array([-0.15119307, -0.14977611, -0.13617985, -0.13068712, -0.1457427])
cv_score_of_model= -1*(linscores['test_score'].mean())
cv_score_of_model
→ 0.142715772604106
\#Choosing the Right value of K
score={}
for i in range(1,16):
  knncv=knn=KNeighborsRegressor(n_neighbors=i)
  linscores = cross\_validate(knn,x\_train,y\_train,scoring = "neg\_mean\_squared\_error",cv=5,return\_estimator = True)
  cv_score= -1*(linscores['test_score'].mean())
  score[i]=cv_score
score
 2: 0.17548191344850742,
      3: 0.15748454122894548,
      4: 0.14787041915636984,
      5: 0.142715772604106,
      6: 0.13921616877578602,
      7: 0.13715476181568878.
      8: 0.13498130264505798,
      9: 0.1338358999678834,
      10: 0.13231141478737468.
      11: 0.13119842735630943,
      12: 0.1320637220144672,
      13: 0.13170269956015987,
      14: 0.1317367193119779,
      15: 0.1324184704596564}
best_k=[key for (key,value) in score.items() if value==min(score.values())][0]
best_k
<u>→</u> 11
#Retrain the model with k=11
knnbest=KNeighborsRegressor(n_neighbors=11)
knnbest.fit(x_train,y_train)
pred=knnbest.predict(x_test)
error=mean_squared_error(y_test,pred)
print(error)
→ 0.12879023831689335
Start coding or generate with AI.
Start coding or generate with AI.
Start coding or generate with AI.
```