

CALCULUS

Prof. Liang ZHENG

Spring 2025

Applications of Derivatives

- One of the most important applications of the derivative is its use as a tool for finding the optimal (best) solutions to problems.
- In this chapter we apply derivatives to find extreme values of functions, to determine and analyze shapes of graphs, and to solve equations numerically. We also introduce the idea of recovering a function from its derivative.
- The key to many of these applications is the Mean Value Theorem, which connects the derivative and the average change of a function.

1 Absolute (global) Maximum and Minimum

DEFINITIONS Let f be a function with domain D. Then f has an **absolute maximum** value on D at a point c if

$$f(x) \le f(c)$$
 for all x in D

and an **absolute minimum** value on D at c if

$$f(x) \ge f(c)$$
 for all x in D .

Maximum and minimum values are called extreme values of the function f.
 Absolute maxima or minima are also referred to as global maxima or minima.

Example 1

The absolute extrema of the following functions on their domains can be seen in the following Figure. Each function has the same defining equation, $y = x^2$, but the domains vary.

Function rule	$\operatorname{Domain} D$	Absolute extrema on D
(a) $y = x^2$	$(-\infty, \infty)$	No absolute maximum Absolute minimum of 0 at $x = 0$
(b) $y = x^2$	[0, 2]	Absolute maximum of 4 at $x = 2$ Absolute minimum of 0 at $x = 0$
(c) $y = x^2$	(0, 2]	Absolute maximum of 4 at $x = 2$ No absolute minimum
(d) $y = x^2$	(0, 2)	No absolute extrema

• Some of the functions do not have a maximum or a minimum value. The following theorem asserts that a function which is *continuous* over (or on) a finite *closed* interval [a, b] has an absolute maximum and an absolute minimum value on the interval.

THEOREM 1 – The Extreme Value Theorem

If f is continuous on a closed interval [a, b], then f attains both an absolute maximum value M and an absolute minimum value m in [a, b]. That is, there are numbers x_1 and x_2 in [a, b] with $f(x_1) = m$, $f(x_2) = M$, and $m \le f(x) \le M$ for every other x in [a, b].

• The requirements in Theorem 1 that the interval be closed and finite, and that the function be continuous, are essential. Without them, the conclusion of the theorem need not hold.

• Figure 4.3 illustrates possible locations for the absolute extrema of a continuous function on a closed interval [a, b].

Maximum and minimun at endpoints

at interior points

Maximum at interior point, minimum at endpoint

maximum at endpoint

FIGURE 4.3 Some possibilities for a continuous function's maximum and minimum on a closed interval [a, b].

2 Local (Relative) Extreme Values

DEFINITIONS A function f has a **local maximum** value at a point c within its domain D if $f(x) \le f(c)$ for all $x \in D$ lying in some open interval containing c.

A function f has a **local minimum** value at a point c within its domain D if $f(x) \ge f(c)$ for all $x \in D$ lying in some open interval containing c.

• If the domain of f is the closed interval [a, b], then f has a local maximum at the endpoint x = a if $f(x) \le f(a)$ for all x in some half-open interval $[a, a + \delta)$, $\delta > 0$. Likewise, f has a local maximum at an interior point x = c if $f(x) \le f(c)$ for all x in some open interval $(c - \delta, c + \delta)$, $\delta > 0$, and a local maximum at the endpoint x = b if $f(x) \le f(b)$ for all x in some half-open interval $(b - \delta, b]$, $\delta > 0$.

• In Figure 4.5, the function f has local maxima at c and d and local minima at a, e, and b. Local extrema are also called **relative extrema**. Some functions can have infinitely many local extrema, even over a finite interval. One example is the function $f(x) = \sin(1/x)$ on the interval (0, 1).

③ Finding Extrema

THEOREM 2 — Fermat's Theorem (The First Derivative Theorem)

If f has a local maximum or minimum value at an interior point c of its domain, and if f' is defined at c, then f'(c) = 0.

Proof: The two-sided limit at x = c is:

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

$$= \lim_{x \to c^{+}} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c}$$

• This proves the theorem for local maximum values. To prove it for local minimum values, we simply use $f(x) \ge f(c)$, which reverses the inequalities.

- Fermat's Theorem indicates that a function's first derivative is always zero at an interior point where the function has a local extreme value and the derivative is defined.
- The only places where a function f can possibly have a local extreme value are
 - (1) interior points where f' = 0.

(2) interior points where *f'* is undefined.

DEFINITION An interior point of the domain of a function f where f' is zero or undefined is a **critical point** of f.

However, a function may have a critical point at x = c without having a local extreme value there. For instance, both of the functions $y = x^3$ and $y = x^{1/3}$ have critical points at the origin, but neither function has a local extreme value at the origin. Instead, each function has a *point of inflection* there.

$$y = x^3$$
: $f'(0) = 0$ and $f''(0) = 0$.

• Most problems that ask for extreme values call for finding the extrema of a continuous function on a closed and finite interval. Theorem 1 assures us that such values exist; Theorem 2 tells us that they are taken on only at critical points and endpoints.

Finding the Absolute Extrema of a Continuous Function f on a Finite Closed Interval

- 1. Find all critical points of f on the interval.
- **2.** Evaluate f at all critical points and endpoints.
- **3.** Take the largest and smallest of these values.

Example 2 Find the absolute maximum and minimum values on [-2, 1]:

(a)
$$f(x) = x^2$$

(b)
$$g(t) = 8t - t^4$$

Example 3

Find the absolute maximum and minimum values of

$$f(x) = x^{2/3}$$
 on [-2, 3].

Skill Practice 1

Determine all critical points for each function:

(a)
$$f(x) = 6x^2 - x^3$$

(b)
$$g(x) = (2x - x^2)^{1/2}$$

Skill Practice 2

Find the critical points for the function $f(x) = x^{2/3}(x^2 - 4)$. Then find the function value at each critical point and identify extreme values (absolute and local).