電腦視覺 Computer Vision: from Recognition to Geometry

簡韶逸 Shao-Yi Chien

Department of Electrical Engineering
National Taiwan University

Spring 2023

Computer Vision

- Describe the world that the computer see in one or more images and to reconstruct its properties, such as shape, illumination, and color distribution
- Is it hard? An inverse problem

Computer Vision

[R. C. James]

Computer Vision

FAILURE PRESS PHOTO EXHIBITION

失敗新聞攝影展 09.01.2018 - 09.10.2018

開幕 Reception 09.01 02:00 p.m.

新北市政府1樓大廳東側 New Taipei City Hall 1F East

220 新北市板橋區中山路一段 161 號 1 樓

協力贊助

Avocado

Optical character recognition (OCR)

Digit recognition, AT&T labs http://www.research.att.com/~yann/

License plate readers

http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

• Face detection: in all digital cameras and smart phones

Face detection: in all digital cameras and smart phones

Iris recognition
 (Vision-based biometrics)

"How the Afghan Girl was Identified by Her Iris Patterns" Read the story

Object recognition

ANIG SPRINGSIER OF THE SPRINGS

[Girod et al. 2011]

[slyce.it]

Shape capture

Motion capture

Pirates of the Carribean, Industrial Light and Magic

Computer vision in sports

Hawk-Eye: helping/improving referee decisions

Smart cars: ADAS

Surveillance system

Ref: Chih-Wei Wu, Meng-Ting Zhong, Yu Tsao, Shao-Wen Yang, Yen-Kuang Chen, and Shao-Yi Chien, "Track-clustering Error Evaluation for Track-based Multi-camera Tracking System Employing Human Re-identification," *CVPR 2016 Workshop*.

Vision-based interaction

DodecaPen: Puppy

Robotics

NASA's Mars Spirit Rover http://en.wikipedia.org/wiki/Spirit_rover

http://www.robocup.org/

Medical image

Image guided surgery
Grimson et al., MIT

AR/VR devices for the metaverse

[Midjourney]

Important Near-Future Applications

- AR/VR, Metaverse
- Autonomous vehicle
- Robot
- IoT: AIoT (AI+IoT), IoVT (Internet-of-Video-Things)
- Medical imaging
- Large-scale video analysis
- Computational photography/image synthesis
- Industrial automation

•

Related Fields

 The boundaries between digital image processing/computer vision/computer graphics become vague nowadays

About this Course...

- Provide a comprehensive introduction to the field of computer vision (CV)
 - From classical methods to deep learning based methods
 - From recognition to geometry
 - No experiences in CV and image processing are required
- The two courses, Computer Vision and Deep Learning for Computer Vision, can give you a complete view of modern CV techniques
- Grading
 - Four homeworks: 60%
 - Class/talk participation: 10%
 - Group final project: 30%

Course Website

- Course website
 - https://cool.ntu.edu.tw/courses/26914
 - http://media.ee.ntu.edu.tw/courses/cv/23S/

- TA
 - Yu-Kai Chen (陳昱愷) <u>chenyukai@media.ee.ntu.edu.tw</u>
 - Tzu-Chieh Liu (劉子傑) tzujliu@media.ee.ntu.edu.tw
 - Yi-Hsun Lee (李奕勳) smilel6g84@media.ee.ntu.edu.tw
 - Yung-Wei Fan (范詠為) ywfan@media.ee.ntu.edu.tw

(Tentative) Schedule: May be Modified...

Week	Date	Topic
1	2/24	Introduction to human vision systems
2	3/3	Camera basic, image formation and basic Image processing
3	3/10	Feature detection and matching
4	3/17	Machine learning basics
5	3/24	Deep learning basics
6	3/31	Recognition
7	4/7	Segmentation
8	4/14	Projective Geometry
9	4/21	Estimation of Transformations
10	4/28	Single Camera Geometry/Camera calibration
11	5/5	Two-View Geometry
12	5/12	Dense motion estimation/stereo
13	5/19	Optical flow + object tracking
14	5/26	3D reconstruction/depth sensing
15	6/2	Structure from motion
16	6/9	Final project presentation

Homeworks

- Four assignments:
 - HW1: Image filters
 - HW2: Detection or recognition
 - HW3: Pose estimation
 - HW4: Stereo matching
- Official language is Python
- Lab0: Python and basic image processing
 - 3/1 18:30--20:00 @ TBD

Final Project

- Will have one or two problems/challenges
- Each team should have 3—4 members
- Project may be supported by industry with awards
- Evaluated by professor, TAs, guest judges from industry, and you (peer review)!
- The problems/challenges will be announced around the week of mid exam

Reference Materials

Reference books

http://szeliski.org/Book/

 And papers in CVPR, ICCV, ECCV, BMVC, WACV, ACCV,

加簽規則

- 請慎重考慮.....
- 以教室容量為限,可加簽約40位同學
- 篩選順序
 - 電資學院及重點科技學院(含輔系) > 工學院 > 理學院 > 其他
 - 博班 > 碩二 > 碩一 = 大四 > 大三 > 大二 > 大一
- 想加簽的同學,請於第二節上課之前填寫好下列表單:
 - https://forms.gle/FQTK4rpkRAVhCG4b9
- 有選上的同學將在一週內寄送授權碼

