

Relational Databases Anomalies Normalization

.NET CORE

A database is made up of a collection of *tables* that stores a specific set of structured data. A table contains a collection of rows (*tuples*) and columns (*attributes*). Each column in the table is designed to store a certain type of data.

HTTPS://DOCS.MICROSOFT.COM/EN-US/SQL/RELATIONALDATABASES/DATABASES/DATABASES?VIEW=SQL-SERVER-VER15

Databases – Instances/Users

https://docs.microsoft.com/en-us/sql/relational-databases/databases/databases?view=sql-server-ver15

There are one (or many)

schemas within a
database. Within each

schema there are database
objects such as tables and

views.

This is a *table*. $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$

DBMS (Database Management System)

https://www.tutorialspoint.com/dbms/dbms_overview.htm

- Data is a collection of facts and figures that can be processed to produce information.
- A Database is a collection of related data.
- A DBMS stores data in such a way that it becomes easier to retrieve and manipulate.

If we have data about grades of all students, we can extrapolate average grades and highest grades.

Primary Key

Last	: Name	Birthday	Grade 1	Grade 2	Grade 3	Final Grade
Smi	th	June 7, 1987	100	98	89	95.67
Jone	9 8	October 5, 1986	75	89	84	82.67
Gan	cia	December 15, 1986	99	97	100	98.67
Kim		February 28, 1987	50	68	42	53.33
Was	shington	May 4, 1987	85	87	79	83.67
Heri	nandez	October 8, 1986	74	72	81	75.67
Gate	98	March 21, 1987	32	54	67	51.00
Pap	ert	April 26, 1987	84	92	81	85.67
Ken	nedy-Onassis	January 18, 1987	92	90	88	90.00
Smi	th	February 8, 1987	72	65	99	78.67

DBMS - Benefits

https://www.tutorialspoint.com/dbms/dbms_overview.htm

Relation-based tables – A Relational DBMS allows entities and relations among them to form tables.

<u>Separation of data and application</u> – A database is separated from its data. A database is an <u>active</u> entity, whereas data on which the database works is said to be <u>passive</u>.

<u>Less redundancy</u> – DBMS follows the rules of *normalization*, which splits a relation when any of its attributes has redundancy.

<u>Consistency</u> – Consistency is the state where every relation in a database is *persisted*.

<u>Query Language</u> – DBMS (or RDBMS) is equipped with query language (usually **SQL**), which makes it more efficient to retrieve and manipulate data.

<u>ACID Properties</u> – A DBMS follows the concepts of **Atomicity**, **Consistency**, **Isolation**, and **Durability**.

<u>Isolation Levels</u> – A DBMS supports a multi-user environment and applies restrictions on the access and manipulation of data in parallel.

Database – Entity-Relationship Models

https://www.tutorialspoint.com/dbms/dbms_data_models.htm

Data models define the structure of a database. **Data Models** are **entities** that introduce abstraction in a **DBMS**.

Data models define how data is connected to each other and how they are processed and stored inside the database.

An *Entity-Relationship (ER) Model* is based on the notion of real-world entities and the relationships between them. An *ER Model* is used for the <u>conceptual design</u> of a database.

Database – Entity-Relationship Models

https://www.tutorialspoint.com/dbms/dbms_data_models.htm

- Entity a real-world thing having properties called attributes.
- Attribute the details about an entity.
- **Relationship** The logical association among entities. Relationships are mapped with entities in various ways.
- Mapping cardinalities defines the number of associations between two entities.
- Mapping cardinalities
 - one to one
 - one to many
 - many to one
 - many to many

Database – Schema Diagram

https://www.tutorialspoint.com/dbms/dbms_data_schemas.htm

A database **schema** is the skeleton structure that represents the logical view of the entire database.

It defines how the data is organized and how the *relations* among them are associated.

It displays all the *constraints* that are to be applied on the data.

A **schema diagram** contains a descriptive detail of the database.

Databases – Primary and Candidate Keys

https://www.tutorialspoint.com/dbms/er_model_basic_concepts.htm https://docs.microsoft.com/en-us/ef/core/modeling/keys?tabs=data-annotations

<u>Candidate Key</u> – An attribute of an entity. An entity set may have more than one candidate key.

<u>Primary Key</u> – A <u>Candidate Key</u> chosen to uniquely identify the <u>entity</u> set(<u>tuple</u>).

<u>Foreign Key</u> – The <u>Primary Key</u> of another table. Used to represent to other entity.

Database - Keys in Entity Framework

https://docs.microsoft.com/en-us/ef/core/modeling/keys?tabs=data-annotations

A **key** serves as a unique identifier for each **entity** instance. Most **entities** in **EF** have <u>a single **key**</u>, which maps to the concept of a **primary key** in relational databases. It's possible for an **entity** to have no keys. **Entities** can have additional **keys** (Alternate **Keys**) beyond the **Primary Key**. By convention, any property named **Id** or <type name>Id will be automatically configured by **EF**

as the *Primary Key* of an *entity*.

You can force configure any single property to be the primary key of an entity.

```
class Car
{
    [Key]
    public string LicensePlate { get; set; }

    public string Make { get; set; }
    public string Model { get; set; }
}
```

Database – Relationships

https://www.tutorialspoint.com/dbms/er_model_basic_concepts.htm

Cardinality

One-to-one

One **entity** from **entity** set A can be associated with at most one **entity** of **entity** set B and vice versa.

One-to-many

One entity from entity set A can be associated with more than one entities of entity set B. However, an entity from entity set B can be associated with at most one other entity

Many-to-many

One *entity* from A can be associated with more than one *entity* from B and vice versa.

Relational Databases

https://en.wikipedia.org/wiki/Relational_database#RDBMS

A *RDBMS* allows *entities* to form *tables* with *relations* between them. One can understand the architecture of a database just by looking at the *table* names.

First Name	Last Name	Birthday	Grade 1	Grade 2	Grade 3	Final Grade
John	Smith	June 7, 1987	100	98	89	95.67
Kathleen	Jones	October 5, 1986	75	89	84	82.67
Juanita	Garcia	December 15, 1986	99	97	100	98.67
Charles	Kim	February 28, 1987	50	68	42	53.33
Natalie	Washington	May 4, 1987	85	87	79	83.67
James	Hernandez	October 8, 1986	74	72	81	75.67
William	Keener	March 21, 1987	32	54	67	51.00
Seymour	Papert	April 26, 1987	84	92	81	85.67
Jackie	Kennedy-Onassis	January 18, 1987	92	90	88	90.00
Timothy	Smith	February 8, 1987	72	65	99	78.67

Relational Databases - Concepts

https://www.tutorialspoint.com/dbms/relational_data_model.htm

<u>Tables</u> – relations are saved in table format. This format stores the relation among *entities*. A table has rows and columns, where rows represent *entities* and columns represent *attributes*.

<u>Tuple</u> – A single row of a *table*, which contains a single record for that *entity* is called a *tuple*.

<u>Relation schema</u> – A relation schema describes the relation name (table name), attributes, and their names.

<u>Primary Key</u> – Each row has one or more attributes, chosen as **Primary keys**. These identify the row in the **table** uniquely.

<u>Composite Key</u> - Multiple Candidate Keys that together form the Primary Key.

<u>Index</u> - A unique number given to each *tuple* in a *table* to serve as the *Primary Key*.

Relational Databases – Constraints

https://www.tutorialspoint.com/dbms/relational_data_model.htm

Key Constraints	Domain Constraints	Referential Integrity Constraints
Candidate Keys must uniquely identify an entity. A Candidate Key can not have NULL values.	Every attribute must have a specific range of values.	A Foreign Key refers to a Primary key of a different table. If a tuple has a Foreign Key, that PK must exist.

Databases – Anomalies

https://www.tutorialspoint.com/dbms/database_normalization.htm

If a Database has inconsistent data, it will incur *anomalies*. A DB with *anomalies* can give inconsistent data.

There are three types of **anomalies**

- Update anomaly If data items are not linked to each other properly, when one data item
 is updated, a few instances may get updated properly while a few others are left with old
 values
- **Deletion anomaly** When a record is deleted, but linked parts of it were left undeleted because of unawareness or when deletion deletes other data unintentionally.
- *Insertion anomaly* When data is inserted into a record that does not exist or cannot be inserted without an unrelated data.

Normalization Assignment-Create an unnormalized table.

List the information of your family members.

There must be at least 5 attributes to each tuple and at least 5 entities.

https://www.tutorialspoint.com/dbms/database_normalization.htm https://www.c-sharpcorner.com/UploadFile/0146e3/database-normalization/

Normalization is a method to prevent **anomalies** and keep the database to a consistent state. **Fields** and **tables** of a relational DB are organized to minimize redundancy and dependency.

Normalization usually involves dividing large **tables** into smaller (and less redundant) **tables** and defining relationships among them.

There are many normal forms but there are **1NF**, **2NF**, and **3NF** are primarily used.

https://www.tutorialspoint.com/dbms/database_normalization.htm https://www.c-sharpcorner.com/UploadFile/0146e3/database-normalization/

This table is <u>not</u> normalized. All the information is stored in one table.

SALUTATION	CUSTOMER NAME	CITY	BOOK ISSUED
MR.	RAJ	BANGALORE	LET US C,ORACLE DATABSE,
IVIIX.	IVAJ	BANGALOIL	LET 03 C,ONACLE DATABSE,
			PROGRAMMING WITH
MISS.	PRIYA	CHENNAI	JAVA,C++ PROGRAMMING
			DBA FUNDAMENTALS, ORACLE
MR.	RAJ	DELHI	PROGRAMMING

https://www.tutorialspoint.com/dbms/database_normalization.htm https://www.c-sharpcorner.com/UploadFile/0146e3/database-normalization/

1st Normal Form (1NF) –

- each table cell should contain a single value.
- Each record needs to be unique.
- It contains atomic values only.

SALUTATION	CUSTOMER NAME	CITY	Book Issued
MR.	Raj	BANGALORE	LET US C
MR.	Raj	BANGALORE	ORACLE DATABSE
Miss	Priya	CHENNAI	PROGRAMMING WITH JAVA
Miss	Priya	CHENNAI	C++ PROGRAMMING
MR.	Raj	DELHI	DBA FUNDAMENTALS
MR.	Raj	DELHI	ORACLE PROGRAMMING

https://www.tutorialspoint.com/dbms/database_normalization.htm https://www.c-sharpcorner.com/UploadFile/0146e3/database-normalization/

2nd Normal Form (2NF) -

- First, be in 1NF.
- Have a single Column Primary Key.
- Remove subsets of data that apply to multiple rows of a *table* and place them in separate *tables* with *PK* → *FK* relationships among the new tables.
- If it is in *1NF* and every non-key attribute is dependent on the *Primary Key*. then 2NF is automatic.

MEMBERSHIP ID	SALUTATION	CUSTOMER NAME	CITY
1	MR.	RAJ	BANGALORE
2	MISS.	PRIYA	CHENNAI
3	MR.	RAJ	DELHI

The **1NF** table is divided into two tables.

Table 1 contains only member information. **Membership_id** is created. It's the **Primary Key** for table

Table 2 contains the information for each book. Table 2's new column is **book_id**. It is the **Primary Key** for table 2.

BOOK ID	MEMBERSHIP ID	BOOK ISSUED
1	1	LET LIC C
1		LET US C
2	1	ORACLE DATABSE
3	2	PROGRAMMING WITH JAVA
4	2	C++ PROGRAMMING
5	3	ORACLE PROGRAMMING
6	3	DBA FUNDAMENTALS

https://www.tutorialspoint.com/dbms/database_normalization.htm https://www.c-sharpcorner.com/UploadFile/0146e3/database-normalization/

"Is field A dependent upon field B, or vice versa?" This means: "Given a value for A, do we then have only one possible value for B, and vice versa?"

MEMBERSHIP ID	SALUTATION	CUSTOMER NAME	CITY
1	MR.	RAJ	BANGALORE
2	MISS.	PRIYA	CHENNAI
3	MR.	RAJ	DELHI

If the answer is yes, then A and B should be put into a new table, with A becoming the *Primary Key*. A reference to A should be left in the original relation and marked as a *Foreign Key*.

BOOK ID	MEMBERSHIP ID	BOOK ISSUED
1	1	LET US C
2	1	ORACLE DATABSE
3	2	PROGRAMMING WITH JAVA
4	2	C++ PROGRAMMING
5	3	ORACLE PROGRAMMING
6	3	DBA FUNDAMENTALS

https://www.tutorialspoint.com/dbms/database_normalization.htm https://www.c-sharpcorner.com/UploadFile/0146e3/database-normalization/

A transitive functional dependency occurs when changing a Candidate Key column might cause any of the other Candidate Key columns to change. Consider table 1. Changing the non-key column

Customer Name may change Salutation.

ID	SALUTAT	ION NAME			
1	MR.	BOOK ID	MEMBERSHIP ID	BOOK ISSUED	
2	MISS	1	1	LET US C	
_		2	1	ORACLE DATABSE	
3	MRS.	3	2	PROGRAMMING WITH JAVA	
4	DR.	4	2	C++ PROGRAMMING	T
Toble	2	5	3	ORACLE PROGRAMMING	ı
Table	e 3	6	3	DBA FUNDAMENTALS	į

		Table	1		
MEMBERSHIP ID	SALUTA	TION ID	CUST	OMER NAME	CITY
1	1		RAJ		BANGALORE
2	2		PRIYA		CHENNAI
3	1		RAJ		DELHI

The table is divided again and a new table is created that stores Salutation only. The database is now in *3NF*.

Table 2

Assignment-Convert your table to a 3NF table.

List the information of your family members.

There must be at least 5 attributes to each tuple and at least 5 entities.