Report - Assignment 1

Inderpreet Singh Chera

Problem Statement:

To understand the effect of Cache.

System Setup:

• Clock Speed:

CPU max MHz: 1900.00 CPU min MHz: 500.00

• Memory Size: 8076584 kB = 7887 MB

 Cache Sizes: L1d cache: 32K L1i cache: 32K L2 cache: 256K L3 cache: 3072K

Theoretical Estimations for different values of 'N':

Assumptions: Multiplication requires 3 clock cycles and Addition requires 1 clock cycle. We are assuming both the matrices are of sizes NxN.

Now for matrix multiplication, we have for each element N multiplications and N-1 additions. And we do this for all N² elements, hence theoretically we will be requiring $N^2(3N_{(for\ multiplication)} + (N-1)_{(for\ addition)}) = N^2(4N-1)$ clock cycles. Hence theoretical time required is (4N³ - N²)/(Clock Speed).

I am taking maximum clock speed of my pc, hence 1900 MHz.

o N=32:

$$(4*32^3 - 32^2)/(1.9 \times 10^9) = 68.449 \times 10^{-6} \text{ s}.$$

o N=64:

$$(4*64^3 - 64^2)/(1.9 \times 10^9) = 0.000549726 \text{ s.}$$

Similarly,

- o N=128: 0.00440643 s.
- N=256: 0.035286 s.
- o N=512: 0.282426 s.
- o N=1024: 2.25996 s.
- o N=2048: 18.0819 s.
- o N=4096: 144.664 s.
- o N=8192: 1157.35 s.

• Theoretical estimation of 's' for optimization 2:

 $s^2 = O(Memory Size)$

Therefore $s = O(\sqrt{M})$

Now, cache memory size is $32kB = 32 \times 1024$ Bytes.

Assuming 1 integer takes 4 bytes,

The max. number of integers that can fit in L1d cache = sqrt(32*1024/4) = 90.5.

Keeping s power of 2 for good division of matrices, s = 64.

Values Observed:

I have taken 2 values of 's' for optimisation 2, s=32 and s=64.

N	Theoretical	Naive	Opt-1	Opt-2 (s = 32)	Opt-2 (s = 64)	Opt-3
32	6.84463e-0 5	0.000223	0.000186	0.000194		0.000461
64	0.0005497 26	0.001749	0.001451	0.001511		0.003732
128	0.0044064 3	0.017780	0.011352	0.013084		0.031031
256	0.035286	0.142042	0.091328	0.093948		0.237299
512	0.282426	1.388570	0.708196	0.742125		1.891817
1024	2.25996	24.969940	5.667843	5.950698		15.196035
2048	18.0819	254.91186 6	45.265446	47.896635		122.09030 0
4096	144.664	2233.6435 28	362.50002 7	391.20008 7		973.81965 5
8192	1157.35	18600.950 48	2914.1899 76	3304.4067 17		7894.4288 63

