Machine Learning: Clustering vs. Classification and Regression vs. Classification

Clustering vs. Classification

Clustering is an unsupervised learning method that groups a set of objects in such a way that objects in the same group (called a cluster) are more similar to each other than to those in other groups.

Classification is a supervised learning approach that involves predicting the category or class of a given input based on labelled training data.

Key difference between them is listed below:

Clustering	Classification		
Unsupervised learning	Supervised learning		
Groups data based on similarity	Predicts the category of data		
No predefined labels	Uses predefined labels		
Used for exploratory data analysis	Used for predictive modeling		
Algorithm examples: K-means, Hierarchical	Algorithm examples: Logistic Regression,		
clustering	Decision Trees		
Outcome is not certain, changes with	Outcome is a specific class label		
algorithm			
Used to understand the structure of data	Used to make decisions based on data		
Sensitive to scale of data	May require feature scaling for better		
	performance		
Example: Grouping customers based on	Example: Predicting if an email is spam or not		
shopping behavior			

Regression vs. Classification

Regression deals with predicting a continuous output variable based on input variables. It is a type of supervised learning like classification, but whereas classification predicts categorical outcomes, regression predicts numeric outcomes.

Regression	Classification		
Predicts a continuous value	Predicts a categorical value		
Outcome is a quantity	Outcome is a class label		
Example: Predicting house prices	Example: Identifying if a tumor is malignant		
	or benign		
Evaluated by MSE, RMSE	Evaluated by accuracy, F1-score		
Models include Linear Regression	Models include SVM, Neural Networks		
Sensitive to outliers	Less sensitive to outliers		
Can have multiple types of regression	Can be binary or multi-class classification		
(linear, polynomial)			
Used in economics, real estate	Used in email filtering, medical diagnoses		
Requires scaling of data for better	Often requires encoding of labels		
performance			
Focus on the relationship between variables	Focus on separating data into classes		