Polytechnique Montréal Département de Mathématiques et de Génie Industriel

MTH3400 - Analyse mathématique pour ingénieurs Automne 2021

Devoir 4

Nom: Laguë Prénom: Frédéric

Matricule: 1986131 Section: 01

$\mathbf{Q}1$	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

Tout d'abord, pour montrer la linéarité de T-1 on doit montrer que, $\forall x,y\in U$:

i)

$$T^{-1}(x+y) = T^{-1}x + T^{-1}y,$$

et

ii)

$$T^{-1}(\alpha x) = \alpha T^{-1} x$$

Pour i), posons x' = Tx, $\in V$ et y' = Ty, $\in V$. On peut donc écrire

$$T^{-1}(x'+y') = T^{-1}(Tx+Ty)$$

Puisque T est linéaire,

$$T^{-1}(Tx + Ty) = T^{-1}(T(x + y)) = T^{-1}T(x + y) = x + y$$

On avait x' = Tx et y' = Ty. Puisque T est bijectif, $x = T^{-1}x$ et $y = T^{-1}y'$ On trouve donc bel et bien

$$T^{-1}(x'+y') = T^{-1}x' + T^{-1}y'$$

Pour ii), on pose x' = Tx. Similairement,

$$T^{-1}(\alpha x') = T^{-1}(\alpha T x)$$

Puisque T est linéaire,

$$T^{-1}(\alpha Tx) = T^{-1}(T(\alpha x)) = \alpha x$$

Puisque T est bijectif, $x' = Tx \implies x = T^{-1}x$. On trouve donc effectivement

$$T^{-1}(\alpha x) = \alpha T^{-1}(x)$$

Donc T^{-1} est donc linéaire.

Ensuite, pour la condition sur $||T^{-1}||$, on commence par écrire la définition de la norme de T^{-1} .

$$||T^{-1}|| = \sup \left\{ \frac{||T^{-1}x||_U}{||x||_V} | x \in V \text{ tel que } x \neq 0. \right\}$$

Posons ensuite $x=Tx',\,x\in V,\,x'\in U.$ Puisque T est bijectif, on a $x'=T^{-1}x.$ On peut donc réécrire

$$||T^{-1}|| = \sup \left\{ \frac{||x'||_U}{||Tx'||_V} | x' \in U \text{ tel que } x' \neq 0 \right\}$$

En utilisant $||Tx'||_V \leq ||T|| \cdot ||x'||_U$, (livre, p.53) on a que

$$\frac{1}{||T||} \le \frac{||x'||_U}{||Tx'||V} \implies \sup\left\{\frac{||x'||_U}{||Tx'||V}\right\} \ge \frac{1}{||T||}$$

On trouve donc effectivement que

$$\frac{1}{||T||} \le ||T^{-1}||$$

a) L'opérateur T est borné si : $\exists M \in \mathbb{R}^+$, tel que

$$||Tf|| \leq M \cdot ||f||_{\infty}, \forall f \in C^0[-a, a]$$

$$\iff$$
 $|f(0)| \le M \cdot \sup_{x \in [-a,a]} |f(x)|, \forall f \in C^0[-a,a]$

On remarque que pour $M=1, |f(0)| \leq \sup_{x \in [-a,a]} |f(x)|$, si f n'est pas la fonction identiquement nulle. L'opérateur est donc borné par $||T|| \leq 1$

b) Puisque T est un opérateur linéaire entre deux espaces vectoriels, T est continue si et seulement si il est borné. On doit donc montrer que T n'est pas borné. C'est-à-dire que, $\forall M < \infty, \exists f \in C^0[-a,a]$ tel que

$$|f(0)| > M \int_{-a}^{a} |f(x)| dx$$

Soit la fonction $f_n(x)$ définie comme :

$$\lim_{n \to \infty} f_n(x) = \begin{cases} n^2 x + n, & \text{si } x \in [-\frac{1}{n}, 0] \\ -n^2 x + n & \text{si } 0x \in [0, \frac{1}{n}] \\ 0, & \text{sinon.} \end{cases}$$

On remarque que $\lim_{n\to\infty} f_n(0) = \lim_{n\to\infty} n = \infty$. De plus, on peut calculer que :

$$\lim_{n \to \infty} \int_{-a}^{a} |f(x)| dx = \lim_{n \to \infty} \int_{-\frac{1}{n}}^{0} n^{2}x + n \, dx + \int_{0}^{\frac{1}{n}} -n^{2}x + n \, dx$$
$$= 1$$

Ainsi, $\forall M < \infty$, $\lim_{n \to \infty} f_n(0) > M||f_n||_{\infty}$ et donc, on a montré que T n'est pas borné. Puisque T n'est pas borné, il n'est pas continu car il s'agit d'un opérateur linéaire, entre deux espaces vectoriels normés.

- a) Pour montrer que Ker(T) est un sous-espace vectoriel on doit montrer
 - i) Fermeture sous l'addition:

$$\forall \mathbf{x}, \mathbf{y} \in \text{Ker}(T) \implies \mathbf{x} + \mathbf{y} \in \text{Ker}(T)$$

Pour prouver ceci, prenons $\mathbf{x}, \mathbf{y} \in \text{Ker}(T)$. Alors, en utilisant la linéarité de T:

$$T(\mathbf{x} + \mathbf{y}) = T\mathbf{x} + T\mathbf{y} = \mathbf{0} + \mathbf{0} = \mathbf{0}$$

Donc $\mathbf{x} + \mathbf{y}$ est dans le noyeau.

ii) Fermeture sous la multiplication par un scalaire (du corps F)

$$\forall \alpha \in \mathbb{F}, \forall \mathbf{x} \in \text{Ker}(T) \implies alpba\mathbf{x} \in \text{Ker}(T)$$

Encore une fois, en utilisant le fait que T est linéaire :

$$T\alpha \mathbf{x} = \alpha T\mathbf{x} = \alpha \cdot \mathbf{0} = \mathbf{0}$$

Donc, $\alpha \mathbf{x}$ est dans le noyeau.

iii) Existence du vecteur nul dans le noyeau Pour prouver ceci, on fait ressortir l'élément inverse de l'addition de vecteurs, et en utilisant la linéarité. Soit \mathbf{x} $in\mathrm{Ker}(T)$

$$T0 = T(\mathbf{x} + -\mathbf{x} = T(\mathbf{x}) + T(-\mathbf{x}) = T(\mathbf{x}) - T(\mathbf{x}) = \mathbf{0} - \mathbf{0} = \mathbf{0}$$

Le vecteur nul **0** est donc dans le noyeau.

Ker(T) est donc effectivement un sous-espace vectoriel.

b) Pour montrer que $\operatorname{Ker}(T)$ est fermé, on utilise le fait que T est linéaire et borné, donc continu. Supposons que $T \neq 0$, et prenons $\mathbf{x}_n \notin \operatorname{Ker}(T) \Longrightarrow \mathbf{x}_n \in \operatorname{Ker}(T)^C$, défini comme :

$$\mathbf{x_n} = \lim_{n \to \infty} \frac{\mathbf{x}}{n} | \mathbf{x} \notin \text{Ker}(T)$$

Par la linéarité de T, on peut voir que \mathbf{x}_n n'est pas dans le noyeau pour aucun n;

$$T(\mathbf{x}_n) = \lim_{n \to \infty} \frac{1}{n} T(\mathbf{x}).$$

Cependant, \mathbf{x}_n converge vers $\mathbf{x}' = 0 \notin \operatorname{Ker}(T)^C$. Cela signifie donc que la limite n'est pas dans le complément du noyeau. Le complément du noyeau est donc ouvert, et donc $\operatorname{Ker}(T)$ est fermé.

c) Tout d'abord, commençons par montrer que T est injectif \Longrightarrow $\operatorname{Ker}(T) = \{0\}$. Supposons que T est injectif. Par linéarité,

$$T(\mathbf{0}) = \mathbf{0} \implies \mathbf{0} \in \operatorname{Ker}(T)$$

Ensuite, prenons $\mathbf{x} \in U$. On a donc, si $\mathbf{x} \in \text{Ker}(T)$, que $T(\mathbf{x}) = 0$

$$\implies T(\mathbf{x}) = T(\mathbf{0})$$

, puisque T est injectif,

$$\implies \mathbf{x} = \mathbf{0}$$

Ainsi, $\mathbf{x} \in \text{Ker}(T) \implies \mathbf{x} = \mathbf{0}$ et donc

$$T \text{ est injectif } \implies \operatorname{Ker}(T) = \{\mathbf{0}\}\$$

Montrons ensuite que $Ker(T) = \{0\} \implies T$ est injectif. Soient \mathbf{x}, \mathbf{y} tels que $T\mathbf{x} = T\mathbf{y}$. Ainsi,

$$\implies T\mathbf{x} - T\mathbf{y} = 0.$$

Par linéarité,

$$T\mathbf{x} - T\mathbf{y} = T(\mathbf{x} - \mathbf{y}) = 0.$$

Donc, $\mathbf{x} - \mathbf{y} \in \text{Ker}(T)$. Cependant, on avait $\text{Ker}(T) = \{\mathbf{0}\}$

$$\implies x - y = 0 \iff x = y$$

On a donc que T est injectif. Donc, $\operatorname{Ker}(T) = \{0\} \implies T$ est injectif.

Puisque T est injectif \implies $\operatorname{Ker}(T) = \{\mathbf{0}\}$ et $\operatorname{Ker}(T) = \{\mathbf{0}\}$ \implies T est injectif, on a

$$Ker(T) = \{\mathbf{0}\} \iff T \text{ est injectif}$$

a) Tout d'abord, on peut commencer par réécrire :

$$||A\mathbf{u}||_2^2 = \left(\sum_{k=1}^n (A\mathbf{u})_k^2\right)$$

En posant $\mathbf{x}=A\mathbf{u}$, on obtient $||\mathbf{x}||_2^2=\sum_{k=1}^n\mathbf{x}_k^2$ Ou, de façon équivalente

$$||\mathbf{x}||_2^2 = \mathbf{x}^T \mathbf{x}$$

Donc,

$$||A\mathbf{u}||_2^2 = (A\mathbf{u})^T A\mathbf{u}$$
$$= \mathbf{u}^T A^T A\mathbf{u}$$

En posant $F = A^T A$, on peut écrire en termes matriciels

$$||A\mathbf{u}||_2^2 = \sum_{i,j=1}^n u_i F_{ij} u_j$$

Donc le gradient est

$$\frac{\partial}{\partial u_k} ||A\mathbf{u}||_2^2 = \sum_{j=1}^n F_{kj} u_j + \sum_{i=1}^n u_i F_{ik}$$

Puisque $F^T = (A^T A)^T = A^T A = F$ On peut réécrire

$$\frac{\partial}{\partial u_i}||A\mathbf{u}||_2^2 = 2\sum_{j=1}^n F_{ij}u_j = 2A^T A\mathbf{u}$$

Le lagrangien s'écrit sous forme matricielle

$$\mathcal{L}(u_i, \lambda) = \sum_{i,j=1}^{n} u_i F_{ij} u_j + \lambda \sum_{i=1}^{n} (u_i^2 - 1)$$

Les dérivées sont donc, en utilisant le résultat précédent

$$\frac{\partial \mathcal{L}}{\partial u_i} = 2\sum_{j=1}^n G_{ij}u_j - 2\lambda u_i$$

ou

$$\nabla_{\mathbf{n}} \mathcal{L} =$$

Et

$$\frac{\partial \mathcal{L}}{\partial \lambda} = \sum_{i=1}^{n} u_i^2 - 1$$

b) On trouve les points critiques en posant

$$\frac{\partial \mathcal{L}}{\partial u_i} = 0$$

et

$$\frac{\partial \mathcal{L}}{\partial \lambda} = 0$$

Donc,

$$2\sum_{j=1}^{n} G_{ij}u_{j} - 2\lambda u_{i} = 0$$

$$\iff \sum_{j=1}^{n} G_{ij} u_j = \lambda u_i$$

$$\iff G\mathbf{u} = A^T A\mathbf{u} = \lambda \mathbf{u}$$

Donc les points critiques correspondent à un vecteur propre de A^TA . Puisque G est réelle et symétrique, elle est Hermitienne. On a montré en classe que les valeurs propres d'une matrice Hermitienne sont réelles.

$$\mathbf{u}^* A^T A \mathbf{u} = \mathbf{u}^* \lambda \mathbf{u}$$

$$\iff (A \mathbf{u}^T) A \mathbf{u} = \lambda \mathbf{u}^T \mathbf{u}$$

$$\iff ||A \mathbf{u}||_2^2 = \lambda ||\mathbf{u}||_2^2$$

On doit donc avoir que $\lambda \geq 0$, car $||A\mathbf{u}||_2^2, ||\mathbf{u}||_2^2 \geq 0$ On peut donc prendre la racine des deux côtés

$$||A||_2||\mathbf{u}||_2 \ge ||A\mathbf{u}||_2 = \sqrt{\lambda}||\mathbf{u}||_2$$

On trouve donc bien que $||A||_2 \ge \sqrt{\lambda}$ où λ est une valeur propre réelle et positive. On a

$$||A||_{2} = \sup_{\|\mathbf{u}\|_{2}=1} \{||A\mathbf{u}||_{2}\}$$

$$= \sup_{\|\mathbf{u}\|_{2}=1} \{\sqrt{\lambda}||\mathbf{u}||_{2} | \text{ il existe } \mathbf{u} \text{ tel que } A^{T}A\mathbf{u} = \lambda \mathbf{u} \}$$

$$= \max \{\sqrt{\lambda} | \text{ il existe } \mathbf{u} \text{ tel que } A^{T}A\mathbf{u} = \lambda \mathbf{u} \}$$