DISCRETE MATHEMATICS (MAIR-24)

UNIT-III: RELATIONS AND LOGIC

TOPIC COVERED: BINARY RELATIONS
& THEIR PROPERTIES
EQUIVALENCE RELATIONS AND PARTITIONS, PARTIAL

ORDERING

DR. SMITA SONKER (DISCRETE MATHEMATICS)

BINARY OPERATIONS: Let S be a non void set. A function F from SxS to S is called a binary operation on S. i.e. F: SxS →S is a binary operation on set S. Generally binary operations are represented by the symbols *, instead of letters f, g etc.. Thus a Binary operation * on a set S associates each ordered pair (a, b) of elements of S. (or any two elements of S) to a unique element a*b of S.

BINARY OPERATIONS: Let S be a non void set. A function F from SxS to S is called a binary operation on S. i.e. F: SxS →S is a binary operation on set S. Generally binary operations are represented by the symbols *, instead of letters f, g etc.. Thus a Binary operation * on a set S associates each ordered pair (a, b) of elements of S. (or any two elements of S) to a unique element a*b of S.

TYPES OF BINARY OPERATIONS:

N

1. COMMUTATIVE BINARY OPERATION:

A Binary Operation * on a set S is said to be commutative if $(a*b) = (b*a) \quad \forall \ a, b \in S.$

2. ASSOCIATIVE BINARY OPERATION:

A Binary Operation * on a set S is said to be associative if (a*b)*c = a*(b*c) \forall a, b, c ϵ S.

3. DISTRIBUTIVE BINARY OPERATION:

Let * and 0 be two Binary operations on a set S. Then * is said to be

(i)Left distributive over 0 if a*(b0c) = (a*b)0(a*c) for all $a, b, c \in S$.

(ii)Right distributive over 0 if $(b0c)*a=(b*a)\ 0(c*a)$ for all a, b, c ϵS .

4. IDENTITY BINARY OPERATION:

Let * be a Binary Operation on a set S. An element e ε S is said to be an identity element for the binary operation * if a*e=a=e*a, for all a ε S.

5. INVERSE BINARY OPERATION:

Let * be a Binary Operation on a set S. An element a ε S is said to be

invertible with respect to the operation * , if] an element b in S such that

a*b==b*a=e and b is called inverse of a.

4. IDENTITY BINARY OPERATION:

Let * be a Binary Operation on a set S. An element e ε S is said to be an identity element for the binary operation * if a*e=a=e*a, for all a ε S.

5. INVERSE BINARY OPERATION:

Let * be a Binary Operation on a set S. An element a ε S is said to be

invertible with respect to the operation * , if] an element b in S such that

a*b==b*a=e and b is called inverse of a.

NUMBER OF BINARY OPERATIONS:

Let A be a finite set containing m elements then the number of binary operations on A is mmxm

Example:

If $A = \{a, b\}$ then the no. of binary operations on $A = 2^4 = 16$ is equal to number of functions from $A \times A$ to A.

NUMBER OF BINARY OPERATIONS:

Let A be a finite set containing m—elements then the number of binary operations on A is m^{mxm}

Example:

If $A = \{a, b\}$ then the no. of binary operations on $A = 2^4 = 16$ is equal to number of functions from $A \times A$ to A.

DR. SMITA SONKER (DISCRETE MATHEMATICS)

EMPTY RELATION: A relation in a set A is called empty relation, if no element of A is related to any element of A, $R = \phi \subseteq AXA$.

For example: consider a relation R in the set $A = \{1,2,3\}$ given by $R = \{(a, b) : |a - b| = 8\}$.

UNIVERSALRELATION:

A relation in a set A is called universal relation, if each element of A is related to every element of A, i.e., R = AXA.

For example:

consider a relation R in the set $A = \{1,2,3\}$ given by $R = \{(a,b) : |a-b| \ge 0\}$.

NOTE: Both the empty relation and the universal relation are some times called trivial relations.

DR. SMITA SONKER (DISCRETE MATHEMATICS)

Click to add notes

Dekte

EQUIVALENCE RELATION ON A:

Let R be a relation on a non empty set A, then R is called an equivalence relation iff it is:

- (i) Reflexive,
- (ii) Symmetric &
- (iii) Transitive.

Note: If a Relation does not satisfy any of the above properties it is not considered as an equivalence Relation.

DR. SMITA SONKER (DISCRETE MATHEMATICS)

Equivalence Relation

Definition:

A binary relation R on a set A is an equivalence relation if and only if

- (1)R is reflexive
- (2)R is symmetric, and
- (3)R is transitive.

DR. SMITA SONKER (DISCRETE MATHEMATICS)

Symmetric Relation

- A relation R on a set A is symmetric if whenever a R b, then b R a for all a,b ∈ A.
- It means if a is related to b then b also related to a.

For example:

Then R is symmetric relation as $(a,b) \in R$ and $(b,a) \in R$.

DR. SMITA SONKER (DISCRETE MATHEMATICS)

Transitive Relation

- We say that a relation R on a set A is transitive if whenever a R b and b R c, then a R c.
- It means a related to b and b related to c then a related to c for all (a,b,c) ε A.

for example:

Let $A=\{1,2,3\}$ and let $R=\{(1,2),(2,3),(1,3)\}$ then R satisfy transitive relation.

DR. SMITA SONKER (DISCRETE MATHEMATICS)

Definition

Let X be a family of sets.

X is **pairwise disjoint** if every two different sets in X are disjoint.

Definition Let X be a set.

A partition of X is a family P of sets with the following properties.

Cover: P=X,

Disjointness: P is a pairwise disjoint family of sets,

DR. SMITA SONKER (DISCRETE MATHEMATICS)

Example

For i = 0, 1, 2, let $X_i = \{n : \exists_{k \in \mathbb{Z}} n = 3k + i\}$. The family $\{X_0, X_1, X_2\}$ is a partition of Z.

Exercise

- List all the partitions of {1, 2, 3}.
- 2. List all the partitions of [1, 2].
- List all the partitions of [1].
- List all the partitions of

DR. SMITA SONKER (DISCRETE MATHEMATICS)

EXAMPLE: Let $A = \{1,2,3\}$, find the number of relations on A containing (1,2) and (1,3) which are reflexive and symmetric but not transitive.

SOL. The smallest relation R_1 on A containing (1, 2) and (1,3) which is reflexive and symmetric but not transitive is $\{(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1)\}$. We are left with two you can't unmute someone else's presentation pairs (2,3) and (3,2). Now to get another relation R_2 , if we add any pair, say (2,3) to R_1 then we must add the remaining pair (3,2) in order to maintain symmetric of R_2 and then R_2 becomes transitive also. Hence, the number of relation is one.

DR. SMITA SONKER (DISCRETE MATHEMATICS)

EXAMPLE: Let $A = \{1,2,3\}$, find the number of equivalence relations on A containing (1,2) is reflexive and symmetric.

SOL. The smallest relation R_1 on A containing (1, 2) is $\{(1,1),(2,2),(3,3),(1,2),(2,1)\}$. We are left with two pairs (1,3),(3,1),(2,3) and (3,2).

Now to get another relation R_2 , if we add any pair, say (2,3) to R_1 then we must add the remaining pair (3,2) in order to maintain symmetric of R_2 . Also to maintain transitivity we are forced to add (1,3) and (3,1) thus the only biggerthat R_1 is the universal relation. Hence the total number of equivalence relations on A containing (1,2) is two.

DR. SMITA SONKER (DISCRETE MATHEMATICS)

EXAMPLE: Let Q be the set all rational numbers and relation on Q defined by $R = \{(X,Y): 1 + XY > 0\}$. Prove that R is reflexive and symmetric but not transitive.

SOL. Consider any $x,y \in Q$, since $1+x.x = 1+x^2 \ge 1$

(x,x) ER reflexive

flooris)

Let $(x,y) \in R \longrightarrow 1+xy > 0 \longrightarrow 1+yx > 0 \longrightarrow (y,x) \in R \longrightarrow symmetric.$

But not transitive.

Since (-1,0) and (0,2) ∈ R, because 1 > 0 by putting values. But (-1,2) ∉ R because -

1<0

Greatest Integer Function (Flooror step Function) $f: R \to R$ defined as $f(x) = [x] \forall x \in R, \{x\} = x - [x]$

where {x} is Fractional part or decimal part of x. For

Example, $\{3.45\} = 0.45$, $\{-2.75\} = 0.25$

From the definition of [x], greatest integer less than or equal to x we can see that

$$[x] = -1$$
 for $-1 \le x < 0$

= 0 for $0 \le x < 1$

= 1 for 1 ≤ x < 2 and so on.</p>

For smallest Integer Function (ceiling Function), we take smallest integer greater than or equal to x. For example, |4.7| = 5, [-7.2] = -7, [0.75] = 1 and so on. It is neither 1-1 and onto.

DR. SMITA SONKER (DISCRETE MATHEMATICS)

Example : Show that the relation R defined by (a,b) R $(c,d) \Rightarrow a+d = b+c$ on the set N XN is an equivalence relation.

SOL. Let (a,b), (c,d), (e,f) C NXN.

- (i) reflexive : since $a+b = b+a \forall a,b \in \mathbb{N} \Rightarrow (a,b) \in \mathbb{R}$
- (ii) symmetric : let $(a,b)R(c,d) \Rightarrow a+d = b+c \Rightarrow d+a = c+b$
- ⇒ (c,d) R (a,b) [by commutative law in N]
- (iii) transitive: let (a,b) R(c,d), (c,d) R (e,f) ⇒a+d = b+c and c+f = d+e by adding we will get a+d+c+f = b+c+d+e ⇒ (a,b) R (e,f) therefore R is an equivalence relation.

Ι

DR. SMITA SONKER (DISCRETE MATHEMATICS)

DR. SMITA SONKER (DISCRETE MATHEMATICS)

Click to add notes

(United States)

EXAMPLE:

Let R be a relation on N × N, defined by (a, b) R (c, d) \Leftrightarrow ad=bc \forall (a, b) ,(c, d) \in N × N. Show that R is an equivalence relation on N × N.

SOL. Let (a, b) be an arbitrary element of $N \times N$. Then $(a,b) \in N \times N$.

 \Rightarrow ab = ba (by commutative on N) \Rightarrow R is reflexive on N × N. Let (a,b),(c,d) \in N × N such that (a,b) R (c,d) \Rightarrow ad=bc \Rightarrow cb=da (by commutative) \Rightarrow (c,d) R (a,b)

Let (a, b),(c, d), $(e, f) \in \mathbb{N} \times \mathbb{N}$ such that (a, b) R (c, d) and (c, d) R (e, f) then $ad = \underline{bc}$ and $\underline{cf} = de \Rightarrow (ad)(\underline{cf}) = (\underline{bc})(de) \Rightarrow \underline{af} = de \Rightarrow (\underline{ab}) R (\underline{ef})$

DR. SMITA SONKER (DISCRETE MATHEMATICS)

Partial Orderings

Definition: A relation R on a set S is called a **partial ordering**, or **partial order**, if it is reflexive, antisymmetric, and transitive.

Definition: A set A together with a partial ordering R is called a partially ordered set or poset.

Example: Show that the "greater than or equal" relation (≥) is a partial ordering on the set of integers.

Solution:

Reflexivity: $a \ge a$ for every integer a.

Antisymmetry: If $a \ge b$ and $b \ge a$, then a = b.

Transitivity: If $a \ge b$ and $b \ge c$, then $a \ge c$.

DR. SMITA SONKER (DISCRETE MATHEMATICS)

Equivalence class

Definition: For an equivalence relation R defined on A and for $a \in A$, the set

$$[a] = \{x \in A \mid (a, x) \in R\}$$

is called the equivalence class of a in A.

Definition: Any b ∈ [a] is called a representative of this equivalence class.

Definition: The collection of all equivalence classes of elements of A under an equivalence relation R is called the **quotient set**, denoted by A/R, i.e.

$$A/R = \{[a] \mid a \in A\}.$$

Note: The quotient set A/R is a partition of A.

DR. SMITA SONKER (DISCRETE MATHEMATICS)

Click to add notes

b