Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Телекоммуникационные технологии

Отчет по лабораторной работе №4 Аналоговая модуляция

> Работу выполнил:

Соболь В.О.

Группа: 33501/4 **Преподаватель:**

Богач Н.В.

Санкт-Петербург 2017

Содержание

1.	Цель работы	2
2.	Постановка задачи	2
3.	Теоретическая информация	2
	3.1. Модуляция	2
	3.2. Однотональный сигнал	2
	3.3. Типы модуляции	2
	3.3.1. Амплитудная модуляция	2
	3.3.2. Амплитудная модуляция с подавлением несущей	3
	3.3.3. Однополосная модуляция	3
	3.3.4. Демодуляция с помощью синхронного детектирования	4
	3.3.5. КПД модуляции	4
4.	Ход работы	4
	4.1. Генерация однотонального сигнала	4
	4.2. Амплитудная модуляция	
	4.3. Амплитудная модуляция с подавлением несущей	
	4.4. Однополосная амплитудная модуляция	
	4.5. Демодуляция с помощью синхронного детектирования	
	4.6. КПД модуляции	17
5 .	Выводы	18
6.	Листинг	18

1. Цель работы

Изучение амплитудной модуляции и демодуляции сигнала.

2. Постановка задачи

- 1. сгенерировать однотональный низкочастотный сигнал
- 2. выполнить амплитудную модуляцию этого сигнала
- 3. выполнить модуляцию с подавлением несущей
- 4. выполнить однополосную модуляцию
- 5. для всех типов модуляции осуществить синхронное детектирование
- 6. рассмотреть спектры сигналов после модуляции и после детектирования
- 7. рассчитать КПД модуляции

3. Теоретическая информация

3.1. Модуляция

Модуляция — это перенос спектра сигналов из низкочастотной области на заданную частоту. Это применяется для передачи сигнала в заданном частотном диапазоне. Для модулирующего (исходного) сигнала S(t) в канале связи для передачи формируется вспомогательный периодический высокочастотный сигнал $u(t) = f(t, [a_1, a_2, ... a_m])$. Параметры a_i определяют форму сигнала. При модуляции исходный сигнал S(t) переносят на один из параметров a_i , форма сигнала u(t) (несущей) изменяется и служит для переноса информации, содержащейся в сигнале S(t). Обратная операция выделения сигнала S(t) из модулированного сигнала u(t) называется демодуляция.

3.2. Однотональный сигнал

Для генерации гармонического сигнала можно воспользоваться формулой $signal = A*cos(2*\pi*f*t+\varphi),$ где A — амплитуда сигнала, f — частота, t — вектор отсчетов времени, φ — смещение по фазе.

3.3. Типы модуляции

3.3.1. Амплитудная модуляция

Формула амплитудной модуляции имеет вид:

$$u(t) = (1 + MU_m cos(\Omega t))cos(\omega_0 t + \varphi_0)$$
(1)

Спектр сигнала с амплитудной модуляцией показан на рис.3.3.1. На графике ω_0 — частота несущей, Ω — частота модуляции.

Рис. 3.3.1. Спектр амплитудно-модулированного сигнала

Амплитудная модуляция имеет низкий КПД и применяется очень редко.

3.3.2. Амплитудная модуляция с подавлением несущей

Основная мощность АМ сигнала приходится на несущую частоту. При АМ с подавлением несущей производится перемножение двух сигналов — модулирующего и несущего. В результате несущая частота подавляется и КПД модуляции становится 100%. Формула такой модуляции:

$$u(t) = MU_m cos(\Omega t) cos(\omega_0 t + \varphi_0)$$
(2)

Спектр сигнала с амплитудной модуляцией с подавлением несущей представлен на Рис.3.3.2: На графике ω_0 — частота несущей, Ω — частота модуляции. Как видно в спектре отсутствует несущая частота.

Рис. 3.3.2. Спектр амплитудно модулированного сигнала с подавлением несущей

3.3.3. Однополосная модуляция

При идентичности информации в группах верхних и нижних боковых частот нет необходимости в их одновременной передаче. Можно удалить одну из боковых частот и получить сигнал с одной боковой полосой (ОБП). Функция сигнала с ОБП имеет вид:

$$u(t) = U_m cos(\Omega t) cos(\omega_0 t + \varphi_0) + \frac{U_m}{2} \sum_{n=1}^{N} M_n cos((\omega_0 + \Omega_n)t + \varphi_0 + \Phi_n)$$
(3)

Форма ОБП сигнала похожа на форму сигнала с АМ, но ее огибающая имеет меньшую амплитуду. Для демодуляции ОБП сигнала может использоваться как двухполупериодное, так и синхронное детектирование, со всеми особенностями, присущими этим методам. Результаты демодуляции отличаются от демодуляции АМ сигналов только меньшей амплитудой выходных сигналов.

Спектр однополосно-модулированного сигнала представлен на рис.3.3.3:

Рис. 3.3.3. Спектр однополосно-модулированного сигнала

3.3.4. Демодуляция с помощью синхронного детектирования

При синхронном детектировании модулированный сигнал умножается на опорное колебание с частотой несущего колебания:

$$y(t) = U(t)\cos(\omega_0 t)\cos(\omega_0 t) = \frac{U(t)}{2}(1 + \cos(2\omega_0 t))$$
(4)

Сигнал разделяется на два слагаемых, первое из которых повторяет исходный модулирующий сигнал, а второе повторяет модулированный сигнал на удвоенной несущей частоте $2\omega_0$.

Амплитудный спектр сигналов после демодуляции однозначно соотносится со спектром входного модулированного сигнала: амплитуды гармоник модулированного сигнала на частоте $2\omega_0$ в два раза меньше амплитуд входного сигнала, постоянная составляющая равна амплитуде несущей частоты ω_0 и не зависит от глубины модуляции, амплитуда информационного демодулированного сигнала в два раза меньше амплитуды исходного модулирующего сигнала.

Особенностью синхронного детектирования является независимость от глубины модуляции, т.е. коэффициент модуляции сигнала может быть больше единицы. При синхронном детектировании требуется точное совпадение фаз и частот опорного колебания демодулятора и несущей гармоники АМ сигнала.

3.3.5. КПД модуляции

КПД амплитудной модуляции зависит от коэффициента модуляции и может быть рассчитано по следующей формуле:

$$\eta(t) = \frac{U_m^2(t)M^2}{4P_U} = \frac{M^2}{2+M^2} \tag{5}$$

4. Ход работы

Код, написанный для исследования представлен в листинге 1.

4.1. Генерация однотонального сигнала

Для получения гармонического сигнала используется функция $s(t) = A * cos(2 * \pi * f * t + \varphi)$. Сгенерированный однотональный сигнал представлен на рис. 4.1.1.

Рис. 4.1.1. Однотональный гармонический сигнал

Спектр однотонального сигнала показан на рис. 4.1.2.

Рис. 4.1.2. Спектр однотонального гармонического сигнала

4.2. Амплитудная модуляция

Для сгенерированного однотонального сигнала получим амплитудную модуляцию с различными коэффициентами модуляции M (соотношением амплитуды модулирующего сигнала и амплитуды несущей). Так же для каждого модулированного сигнала постро-им спектр. Кроме гармоники информационного сигнала в спектре видно две гармоники несущего сигнала по бокам.

1. Коэффициент M = 0.2

Рис. 4.2.1. Амплитудно-модулированный сигнал

Рис. 4.2.2. Спектр амплитудно-модулированного сигнала

2. Коэффициент M=0.5

Рис. 4.2.3. Амплитудно-модулированный сигнал

Рис. 4.2.4. Спектр амплитудно-модулированного сигнала

3. Коэффициент M=1.0

Рис. 4.2.5. Амплитудно-модулированный сигнал

Рис. 4.2.6. Спектр амплитудно-модулированного сигнала

4. Коэффициент M=2.0

Рис. 4.2.7. Амплитудно-модулированный сигнал

Рис. 4.2.8. Спектр амплитудно-модулированного сигнала

5. Коэффициент M=5.0

Рис. 4.2.9. Амплитудно-модулированный сигнал

Рис. 4.2.10. Спектр амплитудно-модулированного сигнала

При M>1 имеем случай перемодуляции, при M=1 - случай глубокой модуляции, а при M<1 - обычный случай модуляции без совмещений полупериодов гармонического сигнала огибающей.

4.3. Амплитудная модуляция с подавлением несущей

Подавление несущей осуществляется узкополосной фильтрацией сигнала на частоте информационного. Сигнал с AM с подавлением несущей представлен на рис 4.3.1. Спектр модулированного сигнала показан на рис. 4.3.2

Рис. 4.3.1. Амплитудно-модулированный сигнал с подавлением несущей

Рис. 4.3.2. Спектр амплитудно-модулированного сигнала с подавлением несущей

В спектре видно отсутствие несущей, что соответствует АМ с подавлением несущей. Подавление несущей приводит к тому, что основная мощность сигнала (приходящаяся на несущую гармонику) фильтруется. Демодулировать такой сигнал невозможно, поэтому применяют частичную фильтрацию, то есть сохранение амплитуды несущей гармоники ненулевой, но более низкой, чем у информационной составляющей.

4.4. Однополосная амплитудная модуляция

Помимо подавления несущей, можно избавиться от лишней (дублирующейся) боковой полосы спектра с помощью фильтра низких частот. Модулированный сигнал представлен на рис. 4.4.1. Его спектр показан на рис. 4.4.2.

Рис. 4.4.1. Однополосно-модулированный сигнал

Рис. 4.4.2. Спектр однополосно-модулированного сигнала

Спектр содержит одну полосу, что соответствует однополосной амплитудной модуляции.

4.5. Демодуляция с помощью синхронного детектирования

Произведем демодуляцию модулированных сигналов с разными коэффициентами модуляции.

1. Коэффициент M=0.2

Рис. 4.5.1. Демодулированный сигнал

Рис. 4.5.2. Спектр демодулированного сигнала

2. Коэффициент M=0.5

Рис. 4.5.3. Демодулированный сигнал

Рис. 4.5.4. Спектр демодулированного сигнала

3. Коэффициент M=1.0

Рис. 4.5.5. Демодулированный сигнал

Рис. 4.5.6. Спектр демодулированного сигнала

4. Коэффициент M=2.0

Рис. 4.5.7. Демодулированный сигнал

Рис. 4.5.8. Спектр демодулированного сигнала

5. Коэффициент M=5.0

Рис. 4.5.9. Демодулированный сигнал

Рис. 4.5.10. Спектр демодулированного сигнала

Как можно видеть, нелинейные искажения сигнала при демодуляции тем незначительнее, чем больше коэффициент модуляции. В спектре демодулированного сигнала видны искажения в области низких частот, но с увеличением коэффициента модуляции они уменьшаются.

4.6. КПД модуляции

На графике (рис. 4.6.1), приведена зависимость КПД модуляции от амплитуды модулирующего сигнала (т.е. от коэффициента модуляции).

Рис. 4.6.1. Зависимость КПД модуляции от амплитуды модулирующего сигнала

5. Выводы

В ходе этой работы нами были исследованы типы аналоговой модуляции - амплитудная, с подавлением несущей и однополосная, также исследован способ демодуляции с помощью синхронного детектирования и определена зависимость КПД модуляции от коэффициента модуляции. Также были построены спектры модулированных сигналов, их вид совпал с ожидаемым результатом для каждого типа модуляции.

По результатам работы можно сделать вывод о низкой эффективности амплитудной модуляции. Качество модуляции зависит от амплитуды несущего сигнала, и для обеспечения высокого качества нужна высокая амплитуда. Из-за этого появляется необходимость использовать для передачи сигнал с очень большой амплитудой, что приводит к высоким потреблениям энергии.

6. Листинг

Листинг 1: Код использованный для исследования

```
function lab4()
  close all
3
  clc
  A = 2;
6 \mid OMEGA = 3;
  omega 0 = 10; % Fc
7
  Fd = 100;
8
9
  t = 0:1/Fd:10;
10
11
  sig \mod = A * cos(OMEGA * t);
12
13
  signal\_one\_tone = figure();
14
  plot(t, sig_mod);
15 | ylim([-2 \ 2]);
16 title ( 'Модулирующий_сигнал ');
```

```
17
18 signal one tone spec = figure();
19 specplot (sig mod, Fd);
20 \mid x \text{lim} ([0 \ 10]);
21 ylim ([0 1000]);
22 title ( 'Спектр_модулирующего_сигнала');
23
24 am figures = [];
25 \mid A0 = 1;
26| phi0 = 0;
27
28 d = designfilt ('lowpassfir', ...
29
        'PassbandFrequency', 0.15, 'StopbandFrequency', 0.2, ...
30
        'PassbandRipple', 1, 'StopbandAttenuation', 20, ...
31
        'DesignMethod', 'equiripple');
32
33
        \mathbf{function} \ [\mathrm{demod\_f}, \ \mathrm{demod\_s\_f}] = \mathrm{demodulate}(\mathrm{s\_AM}, \ \mathrm{m\_name})
34
             y = s AM .* cos(2*pi*omega 0 * t);
35
             z = filtfilt(d, y);
36
             demod f = figure();
37
38
             plot(t, s AM, '---', t, z);
             {f title} \ (\ {f strcat} \ (\ {\c 'Демодулированный\_сигнал\_'}\ , \ {f m\_name}) \ )
39
40
             demod s f = figure();
             specplot(z, Fd);
41
42
             x \lim ([0 \ 10]);
43
             title ( 'Спектр_демодулированного_сигнала')
44
       end
45
46
        function [sAM, mod f, mod s f] = modulate(signal, am, m name)
47
            sm = am .* signal;
            sAM = ammod(sm, omega 0, Fd, phi0, A0);
48
            mod f = figure();
49
50
            hold on
51
             \mathbf{plot}(t, sAM);
             plot(t, A0+sm, '---', 'Color', 'red');
52
53
             hold off
54
             title (strcat ('Модуляция_', m name))
55
56
            mod s f = figure();
57
             specplot (sAM, Fd);
58
             x \lim ([0 \ 100]);
59
             title ( 'Спектр_модулированного_сигнала')
60
       end
61 |  for am = [0.2, 0.5, 1.0, 2.0, 5.0]
62 | m_name = strcat(` M_= , ' num2str(am));
63 | f_{name} = strcat('_{m_{i}}', num2str(am));
64 f_name = strrep(f_name, '. ', '_');
65 | [s\_AM, mod\_f, mod\_s\_f] = modulate(sig\_mod,am,m\_name);
66 [demod, demod s] = demodulate(s AM, m name);
67
68 am figures = [am figures; {am, f name, mod f, mod s f, demod, demod s}];
69 end
70
71 | Am = 0.1:0.2:10;
72|M = Am./A0;
73 | \text{kpd} = \text{M.}^2 . / (\text{M.}^2 . + 2);
74 | \text{kpd}_{f} = \text{figure}();
75 plot (Am, kpd);
76 | xlabel ( 'Амплитуда ');
```

```
77 | ylabel ( 'КПД ' )
 78
 79
 80 \mid \text{omega\_0} = \text{omega\_0} / (2 * \mathbf{pi});
 81 | s\_AM\_SC = ammod(sig\_mod, omega\_0, Fd);
 82 | s \text{ am } f = figure();
 83 plot (t, s AM SC, t, sig mod, '---r');
 84 | s_am_s_f = figure();
 85 specplot (s_AM_SC, Fd)
 86 xlim ([0 20]);
 87
 88
 89|s\_AM\_SSB = ssbmod(sig\_mod, omega\_0, Fd);
 90 \mid s \text{ am ssb } f = figure();
 91 plot (t, s AM SSB);
 92 | s_am_ssb_s_f = figure();
 93 specplot (s_AM_SSB, Fd)
 94 xlim ([0 20]);
 95
 96 path = '.../ fig/';
 97
         function files ave (name, fig)
 98
 99
             full path = strcat(path, name);
100
             saveas(fig , full_path , 'png')
101
         end
102
103
    filesave('signal_one_tone', signal_one_tone);
104 filesave ('signal_one_tone_spec', signal_one_tone_spec);
105
106 | \mathbf{for} | \mathbf{itm} = \mathbf{am} | \mathbf{figures}'
107
        name = itm(2);
108
        names = [
109
             strcat('mod_sig',name) ;
             strcat('mod_sig_spec',name);
110
             strcat('demod_sig',name);
111
112
             strcat('demod_sig_spec',name)];
113
114
        for i = 1:4
115
             fig = itm(i+2);
116
             fig = fig \{1\};
117
             fname = names(i);
118
             fname = fname \{1\};
119
             filesave (fname, fig)
120
        end
121 end
122
123 filesave ('kpd_plot',kpd_f);
124 filesave ('sig_mod_carrier',s_am_f);
125 filesave ('sig_mod_carrier_spec',s_am_s_f);
126 filesave ('sig_mod_single',s_am_ssb_f);
127 files ave ('sig mod single spec', s am ssb s f);
128
129 end
```