Metode iterative pentru rezolvarea sistemelor de ecuații liniare: Jacobi, Gauss-Siedel, Suprarelaxare

Noțiuni teoretice

Metodele exacte de rezolvare a sistemelor de ecuații liniare, având complexitate $O(n^3)$, au aplicabilitate limitată la ordine de sisteme ce nu depășesc 1000. Pentru sisteme de dimensiuni mai mari se utilizează metode cu complexitate $O(n^2)$ întrun singur pas de iterație. Acestea utilizează relații de recurență, care prin aplicare repetată furnizează aproximații, cu precizie controlată, a soluției sistemului.

Metodele iterative transformă sistemul Ax = b în x = Gx + c. Pornindu-se cu o aproximație inițială $x^{(0)}$ a soluției, relația de recurență folosită are forma:

$$x^{(p+1)} = Gx^{(p)} + c$$

unde:

- $x^{(0)}, x^{(1)}, ..., x^{(p)}, ...$ sunt aproximările soluției;
- $\bullet \ G$ reprezintă matricea de iterație;
- c reprezintă vectorul de iterație.

O metodă este convergentă dacă este stabilă și consistentă. Condiția necesară și suficientă de convergență este:

$$\rho(G) < 1$$

unde $\rho(G) = \max(|\lambda_1|, |\lambda_2|, ..., |\lambda_n|)$ reprezintă raza spectrală a matricei de iterație G și $\lambda_i, i = 1 : n$ reprezintă valorile proprii ale matricei.

Metodele iterative se bazează pe descompunerea matricei A sub forma A=N-P. Atunci sistemul devine:

$$(N-P)x = b$$
, adică $x = N^{-1}Px + N^{-1}b$.

Astfel, rezultă relația de recurență:

$$x^{(p+1)} = N^{-1}Px^{(p)} + N^{-1}b$$

de unde putem identifica $G = N^{-1}P$ și $c = N^{-1}b$.

Se partiționează matricea A punând în evidență o matrice diagonală D, o matrice strict triunghiular inferioară L și o matrice strict triunghiular superioară U:

$$A = D - L - U.$$

Metoda Jacobi

În metoda Jacobi se aleg:

$$N = D$$

$$P = L + U$$

$$G_J = D^{-1}(L+U)$$

Soluţia sistemului este:

$$x_i^{(p+1)} = \frac{b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(p)}}{a_{ii}}$$

Metoda Gauss-Seidel

La această metodă se aleg:

$$N = D - L$$

$$P = U$$

$$G_{GS} = (D - L)^{-1}U$$

Soluţia sistemului este:

$$x_i^{(p+1)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(p+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(p)}}{a_{ii}}$$

Observații:

- 1. Dacă matricea sistemului este diagonal dominantă pe linii, metoda Gauss Seidel este convergentă. Reciproca nu este adevarată.
- 2. O matrice A este diagonal dominantă pe linii dacă și numai dacă are următoarea proprietate: pentru fiecare linie i, modulul elementului de pe diagonala principală, A(i,i) este strict mai mare decât suma modulelor elementelor de pe aceeași linie i.

Metoda suprarelaxării

Pentru găsirea unei descompuneri cât mai rapid convergente, se introduce un parametru de relaxare ω :

$$A = N - P = N - \omega N - P + \omega N = (1 - \omega)N - (P - \omega N) = N(\omega) - P(\omega)$$

de unde obţinem:

$$N(\omega) = (1 - \omega)N$$

$$P(\omega) = P - \omega N$$

$$G(\omega)=N^{-1}(\omega)P(\omega)=\frac{N^{-1}}{1-\omega}(P-\omega N)=\frac{N^{-1}P-\omega I_n}{1-\omega}$$

Condiția de stabilitate impune $\omega \in (0,2)$. În practică se face o altă alegere, astfel:

$$N(\omega) = \frac{1}{\omega}D - L$$
, $P(\omega) = (\frac{1}{\omega} - 1)D + U$, $G_{\omega} = (D - \omega L)^{-1}[(1 - \omega)D + \omega U]$

Soluția sistemului se poate scrie sub forma:

$$x_i^{(p+1)} = \omega \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(p+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(p)}}{a_{ii}} + (1 - \omega) x_i^{(p)}$$

Dacă se alege $\omega = 1 \Rightarrow$ metoda Gauss-Seidel.

Probleme rezolvate

Problema 1

Să se rezolve sistemul folosind metoda Gauss-Seidel:

$$\begin{cases} 7x_1 + 2x_2 - 4x_3 = 7 \\ 3x_1 + 6x_2 + 2x_3 = 15 \\ 2x_1 - 5x_2 + 8x_3 = 28 \end{cases}$$

Soluție:

Scriem formulele de recurență

$$\begin{cases} x_1^{(k+1)} &= -2/7x_2^{(k)} + 4/7x_3^{(k)} + 7/7 \\ x_2^{(k+1)} &= -3/6x_1^{(k+1)} - 2/6x_3^{(k)} + 15/6 \\ x_3^{(k+1)} &= -2/8x_1^{(k+1)} + 5/8x_2^{(k+1)} + 28/8 \end{cases}$$

Dacă alegem $x_1^{(0)}=x_2^{(0)}=x_3^{(0)}=0$ obținem următoarele rezultate:

Soluţia exactă este: $x_1 = 2.63, x_2 = 0.19 x_3 = 2.96.$

Problema 2

Folosiți metoda Jacobi pentru a aproxima soluția sistemului:

$$\left\{ \begin{array}{cccccc} 10x_1 & - & 5x_2 & + & x_3 & = & 1 \\ x_1 & + & 4x_2 & + & 3x_3 & = & 4 \\ 4x_1 & - & 3x_2 & - & 9x_3 & = & 6 \end{array} \right.$$

Soluție:

Scriem formulele de recurență

$$\begin{cases} x_1^{(k+1)} &= 5/10x_2^{(k)} &- 1/10x_3^{(k)} &+ 1/10\\ x_2^{(k+1)} &= -1/4x_1^{(k)} &- 3/4x_3^{(k)} &+ 4/4\\ x_3^{(k+1)} &= 4/9x_1^{(k)} &- 3/9x_2^{(k)} &- 6/9 \end{cases}$$

Alegând
$$x_1^{(0)} = x_2^{(0)} = x_3^{(0)} = 0 \Rightarrow$$

Soluţia exactă este: $x_1 = 0.84, x_2 = 1.34, x_3 = -0.73.$

Problema 3

Fie sistemul $Ax=b, A\in R^{2\times 2}, x,b\in R^2, A=\begin{bmatrix}2&2\\1&3\end{bmatrix}$. Matricea A nu este diagonal dominantă pe linii. În aceste condiții este convergentă metoda Gauss-Seidel? Soluție:

Se determină matricea de iterație a sistemului pentru metoda Gauss-Seidel, G_{GS} .

$$A = D - L - U \Rightarrow \quad D = \left[\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array} \right], \quad L = \left[\begin{array}{cc} 0 & 0 \\ -1 & 0 \end{array} \right], \quad U = \left[\begin{array}{cc} 0 & -2 \\ 0 & 0 \end{array} \right]$$

Atunci:

$$G_{GS} = (D - L)^{-1}U = \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 0 & -2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 0 & \frac{1}{3} \end{bmatrix}.$$

$$\det (\lambda I - G_{GS}) = \begin{vmatrix} \lambda & 1 \\ 0 & \lambda - \frac{1}{3} \end{vmatrix} = 0 \Rightarrow \lambda(G_{GS}) = \{0, \frac{1}{3}\} \text{ si } \rho(G_{GS}) = \frac{1}{3} < 1.$$

 \Rightarrow metoda Gauss-Seidel este convergentă.

Problema 4

Să se implementeze o funcție OCTAVE care rezolvă un sistem de ecuații liniare folosind metoda iterativă Gauss-Seidel. Date de intrare: A - matricea sistemului; b - vectorul termenilor liberi; x0 - aproximația inițială a soluției; tol - precizia determinării soluției; maxiter - numărul maxim de iterații. Date de ieșire: x - soluția sistemului; succes - variabilă care indică convergența metodei.

Soluție:

```
function [x succes iter] = GaussSeidel(A, b, x0, tol, maxiter)
    [n n] = size(A);
    succes=0;
    iter=maxiter;
    x=zeros(n,1);
    while maxiter > 0
      maxiter--;
      for i=1:n
        suma=A(i,1:i-1)*x(1:i-1)+A(i,i+1:n)*x0(i+1:n);
        x(i) = (b(i) - suma) / A(i,i);
      endfor
      if norm(x-x0) < tol
        succes=1;
16
        break;
      endif
19
      x0=x;
    endwhile
    iter=iter-maxiter;
  endfunction
```

Listing 1: Algoritmul Gauss-Seidel.

Date de intrare:

$$A = \left[\begin{array}{cc} 2 & 2 \\ 1 & 3 \end{array} \right] \quad b = \left[\begin{array}{c} 2 \\ 1 \end{array} \right] \quad x0 = \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \quad tol = 0.0001 \quad maxiter = 100.$$

Date de ieşire:

$$x = \left[\begin{array}{c} 1 \\ 0 \end{array} \right]$$

Probleme propuse

Problema 1

Fie sistemul $Ax = b, A \in \mathbb{R}^{2\times 2}, b \in \mathbb{R}^2$, cu $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$. Determinați raza spectrală a matricei de iterație Jacobi. Stabiliți convergența metodei Jacobi.

Problema 2

Fie sistemul liniar:

$$\begin{cases} 2x + y + z = 4 \\ x + 2y + z = 4 \\ x + y + 2z = 4 \end{cases}$$

Stabiliţi a) dacă matricea este diagonal dominantă pe linii; b) convergenţa metodei Jacobi; c) convergenţa metodei Gauss-Seidel. Dacă metoda este convergenţă, calculaţi soluţia iterativă după trei paşi. Alegeţi voi aproximaţia iniţială.

Problema 3

Fie o matrice $A \in \mathbb{R}^{n \times n}$ tridiagonală ¹ și sistemul de ecuații Ax = b, cu $b, x \in \mathbb{R}^n$. Scrieți o funcție OCTAVE care rezolvă sistemul de ecuații prin metoda Jacobi.

```
function x = solJacobi(A, b, x0, tol, maxiter)
% Rezolvarea sistemului Ax=b folosind metoda Jacobi
% Intrari:
% A - matricea sistemului
% b - vectorul termenilor liberi
% x0 - aproximatia intiala a solutiei
```

¹http://mathworld.wolfram.com/TridiagonalMatrix.html

```
% tol - precizia determinarii solutiei
% maxiter - numarul maxim de iteratii
9 % Iesiri:
10 % x - solutia sistemului
```

Listing 2: Algoritmul Jacobi.

Problema 4

Să se implementeze o funcție OCTAVE care rezolvă un sistem liniar de ecuații folosind metoda suprarelaxării.

```
function [x succes] = sor(A, b, x0, w, tol, maxiter)

%    Metoda Suprarelaxarii
%    Functia rezolva sisteme liniare Ax=b folosind metoda
    suprarelaxarii

4    Input:
5    A - matricea sistemului
6    b - vectorul termenilor liberi
7    x0 - aproximarea intiala a sistemului
8    w - factorul de relaxare
9    tol - toleranta
10    maxiter - numarul maxim de iteratii
11    Output:
12    x - solutia sistemului
13    succes - 0 = a fost gasita o solutie / 1 = metoda nu
    converge pentru maxiter
```

Listing 3: Algoritmul metode suprarelaxării.

Să se testeze funcția folosind diferite valori pentru ω .