Facile e Difficile

Crittografia

Luciano Margara

Unibo

2022

Facile e Difficile (computazionalmente)

Cosa è facile e cosa è difficile da calcolare?

Numero di cifre di alcune funzioni

$\underline{}$	$ \log_2(n) $	n	$ n^2 $	$ n^5 $	$ 2^n $	$ n^n $
1	1	1	1	1	1	1
100.000	2	6	11	26	30.103	500.001
200.000	2	6	11	27	60.206	1.060.206
300.000	2	6	11	28	90.309	1.643.137
400.000	2	6	12	29	120.412	2.240.824
500.000	2	6	12	29	150.515	2.849.486
600.000	2	6	12	29	180.618	3.466.891
700.000	2	6	12	30	210.721	4.091.569
800.000	2	6	12	30	240.824	4.722.472
900.000	2	6	12	30	270.927	5.358.819
1.000.000	2	7	13	31	301.030	6.000.001

Valore di alcune funzioni

n	$\log_2(n)$	n	n^2	n^5	2^n
10	3	10	100	100.000	1024
100	6	100	10.000	10.000.000.000	\boldsymbol{x}
1000	9	1000	1.000.000	1.000.000.000.000.000	y

x=1267650600228229401496703205376 y=107150860718626732094842504906000181056 14048117055336074437503883703510511249361224931983 78815695858127594672917553146825187145285692314043 59845775746985748039345677748242309854210746050623 71141877954182153046474983581941267398767559165543 94607706291457119647768654216766042983165262438683 7205668069376

Vita dell'Universo

Secondo alcune stime, il sole si spegnerà tra 4 miliardi di anni, ovvero tra 126.144.000.000.000.000.000.000 microsecondi

Fattorizzazione di numeri

 $egin{aligned} ext{Input:} & n & (=p_1^{k_1}\cdot\dots\cdot p_m^{k_m}) \ ext{Output:} & p_1,k_1,\dots,p_m,k_m \ ext{Numero di cifre (in base } b) \ ext{di} \ & n = \log_b(n) \end{aligned}$

Fattorizzazione di numeri: algoritmo migliore

$$T(n)=\mathrm{e}^{\left(\sqrt[3]{rac{64}{9}\cdot\ln(n)\cdot\ln(\ln(n))^2}
ight)}$$
 Se n è un numero di 3000 cifre binarie, allora $T(n)=9.31119\cdot10^{50}$

Elevamento a potenza e Logaritmo

$$a = b^c$$

Elevamento a potenza: dati b e c calcolare a Logaritmo: dati a e b calcolare c Nei numeri reali calcolare il logaritmo è facile!

Logaritmo discreto

Sia p un numero primo Sia $\mathbb{Z}_p^*=\{1,\ldots,p-1\}$ il gruppo degli interi modulo p con l'operazione di moltiplicazione modulo p Siano $a,b,c\in\mathbb{Z}_p^*$

$$a = b^c \mod p$$

Elevamento a potenza: dati b e c calcolare a Logaritmo: dati a e b calcolare c

Logaritmo discreto: Esempio

$$p=17 \ \mathbb{Z}_{17}^*=\{1,\ldots,16\}.$$

$$13 = 3^4 \mod 17$$

Elevamento a potenza: dati 3 e 4 calcolare 13 Logaritmo: dati 13 e 3 calcolare 4 Questo problema è difficile!

Facile vs difficile

Facile: tutto ciò che possiamo calcolare in tempo polinomiale

Difficile: tutto ciò che sappiamo calcolare in tempo esponenziale ma non sembra possibile calcolare in tempo polinomiale

Impossibile: tutto ciò che non sappiamo calcolare

Impossibile: Equazioni diofantee

$$3x^2 - 7y^2z^3 = 18$$
$$-7y^2 + 8z^2 = 0$$

Trovare soluzioni per intere per le variabili x, y, z

Impossibile: non esistono algoritmi per risolvere un sistema di equazioni diofantee