Laboratorio di Meccanica e Termodinamica Relazione di Laboratorio

GRUPPO 3

Gerardo Selce, Maurizio Liguori, Emanuela Galluccio, Francesco Messano

12/11/2024

Piano inclinato - Guida a cuscino d'aria

1 Introduzione

Obiettivo dell'esperimento è determinare indirettamente l'accelerazione di un corpo che si muove lungo un piano inclinato. Il piano è stato posizionato con cinque diverse inclinazioni e, per ciascuna di esse, è stata calcolata la velocità media del corpo su sei diverse lunghezze, applicando la formula Scopo dell'esperienza è la misurazione indiretta dell'accelerazione di un corpo che si muove lungo un piano inclinato. Il piano è stato posto a cinque diverse inclinazioni dopodichè, per ognuna di esse, è stata misurata la velocità media del corpo per sei lunghezze utilizzando la legge:

$$\overline{v} = \frac{\Delta s}{t} \tag{1}$$

Per ogni ampiezza del piano inclinato è stato costruito un grafico della velocità media in funzione del tempo e tracciando la retta di regressione, è stato possibile ricavare il valore dell'accelerazione. Infine è stato tracciato un ultimo grafico che mette in relazione l'accelerazione del corpo in funzione del seno dell'angolo di inclinazione del piano.

2 Richiami teorici

Il piano inclinato è essenzialmente una superficie piatta inclinata di un angolo α rispetto al piano orizzontale. Quando un corpo di muove lungo il piano, le forze che agiscono sono:

- 1. La forza gravitazionale (mg), che agisce lungo la verticale.
- 2. La componente perpendicolare alla superficie $(mg\cos(\alpha))$ che mantiene l'oggetto premuto contro il piano e non contribuisce al moto.
- 3. La componente parallela al piano $(mq\sin(\alpha))$ che causa il moto lungo il piano.

L'oggetto inizierà a muoversi solo quando la componente parallela $(mg\sin(\alpha))$ supera in intensità l'attrito statico. Una volta in moto, l'accelerazione impressa dalla gravità viene smorzata per effetto dell'attrito dinamico. Poichè l'accelerazione di un corpo su un piano inclinato è costante in assenza di forze esterne, il suo moto può essere descritto attraverso la legge oraria del moto uniformemente accelerato:

$$s(t) = s_o + v_0 t + \frac{1}{2} a t^2 \tag{2}$$

Spostando il termine s_0 al primo membro e dividendo entrambi i membri per t si ottiene la velocità media descritta dalla Legge (1), la quale corrisponde a:

$$\overline{v} = v_0 + \frac{1}{2}at\tag{3}$$

La velocità media in funzione del tempo sarà quindi descritta da una retta la cui intercetta sarà v_0 (velocità iniziale del corpo) e il cui coefficiente angolare sarà $\frac{a}{2}$.

3 Descrizione dell'apparato sperimentale

Per svolgere questa esperienza è stato utilizzato il seguente apparato sperimentale:

- Rotaia a cuscino d'aria
- Carrello per la rotaia
- Due celle fotoelettriche
- Elettrocalamita
- Metro a nastro
- Cronometro digitale
- Compressore d'aria

Strumenti di misura	Risoluzione
Metro a nastro	1 mm
Cronometro digitale	$0.01 \ s$

Tabella 1: Risoluzione degli strumenti di misura utilizzati

Figura 1: Piano inclinato composto dalla rotaia a cuscino d'aria, carrello, due celle fotoelettriche ed elettrocalamita.

(b) Metro a nastro

Figura 2: Compressore d'aria utilizzato per generare il cuscino d'aria intorno al piano inclinato e permettere al corpo di scivolare minimizzando il coefficiente di attrito statico.

4 Descrizione e analisi dei dati sperimentali

Considerato un triangolo rettangolo in cui l'ipotenusa rappresenta il piano inclinato, abbiamo misurato dell'angolo α utilizzando la formula

$$\alpha = \arctan(\frac{C_1}{C_2}) \tag{4}$$

In cui C_1 è l'altezza e C_2 la base. L'inclinazione del piano può essere modificata attraverso la rotazione di una manovella. Una rotazione completa corrisponde alla variazione di 1 mm di C1 lungo la verticale. Sono state misurate cinque diverse inclinazioni, che corrispondo a cinque diversi valori di C_1 . L'incertezza è trascurata.

N°	C_1 (cm)
1	0.5
2	1.0
3	1.5
4	1.9
5	2.3

Tabella 2: Valori di C_1

Utilizzando il metro a nastro abbiamo misurato $C_2 = (85 \pm 0.05) \ cm$. Si noti che la lunghezza di C_2 è costante.

Per ogni ampiezza sono state prese in considerazione sempre le stesse sei Δs , misurate utilizzando il metro a nastro.

N°	Δs (m)
1	0.2165 ± 0.0005
2	0.3500 ± 0.0005
3	0.4800 ± 0.0005
4	0.6100 ± 0.0005
5	0.7800 ± 0.0005
6	0.9400 ± 0.0005

Tabella 3: Valori di Δs

Fissata un'ampiezza α_i , per ogni lunghezza Δs_i la misurazione del tempo è stata effettuata tre volte. Il valore finale è stato stimato come punto medio tra la misura più piccola e più grande ottenute, mentre l'incertezza sulla misura è stata valutata con la semidispersione, poichè il suo valore risulta maggiore della risoluzione strumentale. Nel calcolo di $\overline{v_i}$ è stata tenuta in considerazione la propagazione dell'errore strumentale che affligge le misurazioni di lunghezza e tempo.

4.1 Ampiezza $\alpha_1 = 0.00588 \ rad$

t(s)	\overline{v} $(\frac{m}{s})$
1.28 ± 0.01	0.1691 ± 0.0017
1.80 ± 0.01	0.1944 ± 0.0014
2.23 ± 0.01	0.2153 ± 0.0012
2.61 ± 0.01	0.2337 ± 0.0011
3.05 ± 0.01	0.2557 ± 0.0010
3.45 ± 0.01	0.2725 ± 0.0010

Tabella 4: t indica il tempo di percorrenza dei rispettivi Δs riportati in Tabella (4) e \overline{v} la velocità media.

O.26 - Retta di best fit Dati con errore 0.24 - O.22 - O.

Figura 3: Grafico della velocità media in funzione del tempo dei valori in Tabella (4). Coefficiente angolare = $(0.04804 \pm 0.00150) \frac{m}{s^2}$ (Vedi Legge (5) e (7)).

2.0

4.2 Ampiezza $\alpha_2 = 0.01176 \ rad$

1.5

0.20

0.18

t(s)	$\overline{v} \left(\frac{m}{s} \right)$
0.99 ± 0.01	0.2187 ± 0.0028
1.41 ± 0.01	0.2482 ± 0.0022
1.73 ± 0.01	0.2775 ± 0.0019
2.02 ± 0.01	0.3020 ± 0.0018
2.36 ± 0.01	0.3305 ± 0.0017
2.65 ± 0.01	0.3547 ± 0.0016

2.5

Tempo (s)

3.0

3.5

Tabella 5: t indica il tempo di percorrenza dei rispettivi Δs riportati in Tabella (4) e \overline{v} la velocità media.

Figura 4: Grafico della velocità media in funzione del tempo dei valori in Tabella (5). Coefficiente angolare = $(0.08302 \pm 0.00427) \frac{m}{s^2}$ (Vedi Legge (5) e (7)).

4.3 Ampiezza $\alpha_3 = 0.01765 \ rad$

t (s)	$\overline{v} \left(\frac{m}{s} \right)$
0.84 ± 0.01	0.2577 ± 0.0037
1.18 ± 0.01	0.2966 ± 0.0030
1.46 ± 0.01	0.3288 ± 0.0026
1.71 ± 0.01	0.3567 ± 0.0024
1.99 ± 0.01	0.3920 ± 0.0023
2.24 ± 0.01	0.4196 ± 0.0021

Tabella 6: t indica il tempo di percorrenza dei rispettivi Δs riportati in Tabella (4) e \overline{v} la velocità media.

Figura 5: Grafico della velocità media in funzione del tempo dei valori in Tabella (6). Coefficiente angolare = $(0.11606 \pm 0.00269) \frac{m}{s^2}$ (Vedi Legge (5) e (7)).

4.4 Ampiezza $\alpha_4 = 0.02235 \ rad$

t(s)	\overline{v} $(\frac{m}{s})$
0.76 ± 0.01	0.2849 ± 0.0044
1.07 ± 0.01	0.3271 ± 0.0036
1.30 ± 0.01	0.3692 ± 0.0033
1.53 ± 0.01	0.3987 ± 0.0030
1.78 ± 0.01	0.4382 ± 0.0028
2.00 ± 0.01	0.4700 ± 0.0026

Tabella 7: t indica il tempo di percorrenza dei rispettivi Δs riportati in Tabella (4) e \overline{v} la velocità media.

Figura 6: Grafico della velocità media in funzione del tempo dei valori in Tabella (7). Coefficiente angolare = $(0.15044 \pm 0.00817) \frac{m}{s^2}$ (Vedi Legge (5) e (7)).

4.5 Ampiezza $\alpha_5 = 0.02705 \ rad$

t (s)	$\overline{v} \left(\frac{m}{s} \right)$
0.69 ± 0.01	0.3138 ± 0.0053
0.98 ± 0.01	0.3571 ± 0.0042
1.20 ± 0.01	0.4000 ± 0.0038
1.40 ± 0.01	0.4357 ± 0.0035
1.63 ± 0.01	0.4785 ± 0.0033
1.83 ± 0.01	0.5137 ± 0.0031

Tabella 8: t indica il tempo di percorrenza dei rispettivi Δs riportati in Tabella (4) e \overline{v} la velocità media.

Grafico con Bande di Errore

Figura 7: Grafico della velocità media in funzione del tempo dei valori in Tabella (8). Coefficiente angolare = $(0.17793 \pm 0.00982) \frac{m}{s^2}$ (Vedi Legge (5) e (7)).

Come volevasi dimostrare, la velocità media è direttamente proporzionale al tempo e la retta di regressione coincide perfettamente con l'andamento descritto dalla Legge (3). La stima del coefficiente angolare e dell'intercetta delle rette di best fit è stata effettuata utilizzando il metodo dei minimi quadrati. Siano b il coefficiente angolare e a l'intercetta della retta:

$$b = \frac{\sum_{i=1}^{N} [(x_i - \overline{x})(y_i - \overline{y})]}{\sum_{i=1}^{N} (x_i - \overline{x})^2}$$

$$(5)$$

$$a = \overline{y} - b\overline{x} \tag{6}$$

 $\operatorname{Con}\,\overline{x}=\frac{\sum\limits_{i=1}^N x_i}{N}\,\,\operatorname{e}\,\overline{y}=\frac{\sum\limits_{i=1}^N y_i}{N}\,\,\operatorname{mentre}\,\operatorname{le}\,\operatorname{incertezze}\colon$

$$\Delta b = 3\sigma_b \tag{7}$$

$$\Delta a = 3\sigma_a \tag{8}$$

Con

$$\sigma_b = \sigma_y \sqrt{\frac{N}{\Delta}} \tag{9}$$

$$\sigma_y = \sqrt{\frac{\sum_{i=1}^{N} (y_i - bx_i - a)^2}{N - 2}}$$

$$(9)$$

$$\sigma_a = \sigma_y \sqrt{\frac{\sum_{i=1}^N x_i^2}{\Delta}} \tag{11}$$

$$\Delta = N \sum_{i=1}^{N} (x_i - \overline{x})^2 \tag{12}$$

Conoscendo il coefficiente angolare della retta di regressione si ricava facilmente il valore dell'accelerazione per ognuna delle cinque inclinazioni. Infatti, dalla Legge (3), notiamo che

$$a = 2b \tag{13}$$

E l'incertezza assoluta Δa :

$$\Delta a = \frac{\Delta b}{b}a\tag{14}$$

Con b coefficiente angolare calcolato con la Legge (5) e Δb sua incertezza assoluta calcolata con la Legge (7). Le accelerazioni sono poi state inserite in un grafico in funzione del seno dell'angolo d'inclinazione del piano.

$sin(\alpha)$	$a\left(\frac{m}{s^2}\right)$
0.00588	0.096 ± 0.003
0.01176	0.116 ± 0.007
0.01764	0.232 ± 0.006
0.02235	0.301 ± 0.018
0.02705	0.35 ± 0.02

Tabella 9: La tabella riporta i valori delle accelerazioni in funzione del seno dell'angolo d'inclinazione.

Figura 8: Grafico dei valori riportati in Tabella (9)

5 Conclusione

In conclusione notiamo che l'accelerazione in funzione del seno dell'inclinazione del piano segue un andamento fortemente non lineare. A causa dei pochi campioni analizzati non è possibile stimare una legge che leghi queste due variabili. Infatti, analizzando il grafico in Figura (8), possiamo notare che a causa dell'incertezza l'andamento può essere approssimato come una funzione esponenziale o come una radice. Dagli esperimenti e dalle varie misurazioni è stata verificata la validità della Legge (3).