

Problem sheet for chapter 8: Affine maps and homogeneous coordinates

Problem 1:

Consider the letter F and the two transforms S and T described below:

$$\mathbf{S} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 2 \end{pmatrix}$$

T = translation by 1 unit into x-direction

- (a) Draw the letter F after the transform $\mathbf{S} \cdot \mathbf{T}$ has been applied to it.
- (b) Draw the letter F after the transform $\mathbf{T} \cdot \mathbf{S}$ has been applied to it.
- (c) Write down the 3×3 -matrix representations of $\mathbf{S} \cdot \mathbf{T}$ and $\mathbf{T} \cdot \mathbf{S}$.

Lösung:

(a) $\mathbf{S} \cdot \mathbf{T}$ is

(b) $\mathbf{T} \cdot \mathbf{S}$ is

(c) Because of the presence of translations everything has to be described as 3×3 matrices with homogeneous coordinates. The matrix representations of **S** and **T** are

$$\mathbf{S} = \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad \mathbf{T} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Matrix multiplication gives

$$\mathbf{T} \cdot \mathbf{S} = \begin{pmatrix} \frac{1}{2} & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad \mathbf{S} \cdot \mathbf{T} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

For $S \cdot T$ the translation part also gets scaled. $T \cdot S$ feels more natural. That's why it is the default order in three.js.

Problem 2:

Consider an affine map that transforms the left F to the right F:

(a) Is the map linear? Why or why not?

(b) Determine a 3×3 matrix representing this map in terms of homogeneous coordinates. Hint: Split the map into a linear part and a translation. What does the linear part do to the unit vectors \vec{e}_x and \vec{e}_y ?

Lösung:

- (a) The map is non-linear because it moves the origin.
- (b) The translation is by (1/2,0) because this is where the origin is moved to. After undoing the translation, one sees that the basis vectors transform as

$$\vec{e}_x = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \qquad \vec{e}_y = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} -1/2 \\ 1 \end{pmatrix}$$

The 2×2 linear transform *A* and the 3×3 affine transform *B* are therefore:

$$A = \begin{pmatrix} 0 & -1/2 \\ 1 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & -1/2 & 1/2 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Problem 3:

Construct a 3×3 matrix that implements a (generalized) rotation of 90° in \mathbb{R}^2 around the point (2,1) in terms of homogeneous coordinates. As a test apply your matrix to the points (3,1) and (3,2). Also, construct the 3×3 matrix implementing the inverse map.

Lösung:

The pivot is $\vec{p} = (2, 1)^T$. The pure rotation matrix around 90° is

$$R_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

With $\vec{p} - R \cdot \vec{p} = (3, -1)^T$ we get for the 3×3 matrix

$$R_3 = \begin{pmatrix} 0 & -1 & 3 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Testing

- $R_3(3,1,1)^T = (2,2,1)^T$
- $R_3(3,2,1)^T = (1,2,1)^T$,

both of which make sense. The inverse matrix rotates around -90° :

$$R_3^{-1} = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 3 \\ 0 & 0 & 1 \end{pmatrix}.$$