3150103823 韩熠星

3150103823							
1. 设与某资源关联的 <u>信号量</u> 初 M、N分别是	值为3,当前值为1,若M	表示该资源的可用个数,	N表示等待资源的进程数,	则			
A. 0, 1 B. 1, 0	C. 1, 2	D. 2, 0					
B:初始值3,当前1,也就是 ²	有两个进程正在占用资源,	还可以进入一个,没有	进程等待。				
2. 有两个进程P1和P	2描述如下:						
shared data:							
int counter = 6;							
P1:							
Computi	ng;						
counter=	counter+1;						
P2:							
Printing;							
counter=counter-2;							
两个进程并发热	1行,运行完成后,	counter的值不可能	能为。				
A. 4	B. 5	C. 6	D. 7				
С							
3. 在执行V操作时,当信 A. 小于0							
C: v操作的作用是归还资源, 有进程阻塞在当前资源上,唤	将所申请的资源数加一,	然后判断资源数是否小		朗			

C.接收进程

D.信箱

4. 在消息缓冲通信方式中, 临界资源为____。

A.发送进程 B.消息队列

mutex的初值的	立该为 <u></u> 。					
A. 1	B. 6	C. 8	D. 9	9		
Α						
- 		- 'a\F ++ /+				
	系统中,信号量表示	_				
A.只能进行加减乘除运算来改变			B.进行任意的算术运算来改变			
C.只能	进行布尔型运算来	改变	D.仅能用初	D始化和P、V操作来改	变	
D						
7 左級:共进	段问句步和方式机制由	右—种机制具田	I个标志本代表	某种资源的状态,该标志称为 某种资源的状态,该标志称为	L 1	
7. 任 <i>胜人</i> 足/ A. 共享到		ら 1寸1ル助定力 C. 信		来作员减弱机态,该协心协力 D. 整型变量	/ป ิง	
C						
8. 下列	哪一个问题只	包含讲程7	万斥问题?			
Α.	田径场上的接	初比费				
В.	两个进程都要	使用打印	机			
C	—个生产老和	1—个消费	老通讨—	个缓冲区传递产品	2	
				1 30/11/21/20/ 1	н	
D.	公共汽车上司	」机和售票	员的协作			
В						
• T-Unio)				
	中方法不能实现进程之 /**		C <u></u>	20 サラカケ		
A. 共享又行	件 B. 数据	5/牛	C. 全局变量	D. 共享内存		
Α						
10. 我们把在·	一段时间内,只允许一个	`进程访问的资源,	称为临界资源,	因此,我们可以得出下列论述	,请选择	
一条正确的论	≥述。					
A. 对临界资源是不能实现资源共享的。						
B. 对临界资源,应采取互斥访问方式,来实现共享。 C. 为临界资源配上相应的设备控制块后,便能被共享。						
	原应采取同时访问方式,					
D						

5. 有9个生产者,6个消费者,共享容量为8的缓冲区。在这个生产者-消费者问题中,互斥使用缓冲区的信号量

11. 在生产者和消费者问题中,信号量mutex, empty, full的作用是什么?如果对调生产者进程中的两个wait操作 和两个signal操作,则可能发生什么情况?

信号量mutex:是保证各生产者进程和消费者进程对缓冲池的互斥访问。

信号量empty和full:资源信号量、它们分别对应于缓冲池中的空闲缓冲区和缓冲池中的产品、生产者需要通 过 wait(empty)来申请使用空闲缓冲区,而消费者需要通过 wait(full)才能取得缓冲中的产品.**所以这两个信号量起** 着同步生产者和消费者的作用、它们保证生产者不会将产品存放到满缓冲区中、而消费者不会从空缓冲区中取 产品。

如果将两个 wait 操作,即 wait(full)和 wait(mutex)互换位置,或者 wait(empty)和 wait(mutex)互换位置,都可能 引起死锁。

如果系统中缓冲区全满时,若一生产者进程先执行了 wait(mutex)操作并获得成功,当再执行wait(empty) 操作时,它将因失败而进入阻塞状态,它期待消费者执行signal(empty)来唤醒自己,在此之前,它不可 能执行signal(mutex)操作,从而使企图通过 wait(mutex)进入自己的临界区的其他生产者和所有的 消费者 进程全部进入阻塞状态,系统进入死锁状态。

将signal(full)和 signal(mutex)互换位置,或者 signal(empty) 和 signal(mutex)互换位置,则不会引起死锁,其影响 只是使某个临界资源的释放略为推迟一些。

12. 一组合作进程,执行顺序如下图。请用wait、signal操作实现进程间的同步操作。

各进程的执行顺序

可设置8个信号量 a、b、c、d、e、f、g、h、它们的初值均为0,而相应的进程可描述为(其中"…"表示进程原 来的代码):

```
main()
cobegin{
  Process P1() { ...;
                            signal(a); signal(b);
  Process P2() { wait(a);
                                        signal(c); signal(d);
                            ...;
 Process P3() { wait(b);
                                        signal(e); signal(f);
                                                                }
 Process P4() {
                 wait(c);
                            wait(e);
                                                    signal(q);
                                                                }
                                        ...;
 Process P5() { wait(d);
                            wait(f);
                                                    signal(h);
                                                                }
                                        ...;
 Process P6() { wait(g);
                                                                 }
                            wait(h);
                                        ...;
}coend
```

13. 试从"互斥"(mutual exclusion)、"空闲让进"(progress)、"有限等待"(bounded waiting)三方面讨论程序中用软件方法解决二个进程互斥访问临界区问题。

下述关于双进程临界区问题的算法(对编号为id的进程)是否正确:

```
do{
blocked[id]=true;
while(turn !=id)
{
while(blocked[1-id]);
turn=id;
}
编号为id的进程的临界区
blocked[id]=false;
编号为id的进程的非临界区
} while (true)
```

其中,布尔型数组blocked[2]初始值为为{false,false},整型turn初始值为0,id代表进程编号(0或1)。请说明它的正确性,或指出错误所在

- 1. 互斥 P1,P2不会同时进入临界区,满足互斥条件。
- 2. 有空进让设开始无进程在临界区中,PO执行turn=0进入临界区,当PO退出临界区时,执行blocked[0]=flase,使P1得以进入临界区,P1先执行的情况类似,所以满足有空进让的原则。
- 3. 有限等待假定进程PO在临界区执行,进程P1申请进入临界区,则因进程PO会在有限时间内执行完并退出临界区,然后,将执行blocked[0]=flase,这使得进程P1因blocked[0]值为0,而使turn值变为1,立即可进入临界区。因而,能满足有限等待的原则。

综上所述,该算法可以解决双进程临界区问题。

14. 三个进程P1、P2、P3互斥使用一个包含N(N>0)个单元的缓冲区。P1每次用produce()生成一个正整数并用put()送入缓冲区某一个空单元中;P2每次用getodd()从该缓冲区中取出一个奇数并用countodd()统计奇数个数;P3每次用geteven()从该缓冲区中取出一个偶数并用counteven()统计偶数个数。请用信号量机制实现这三个进程的同步与互斥活动,并说明所定义的信号量的含义。要求用伪代码描述。

```
semaphore mutex=1;
                             // 用于互斥访问缓冲区
semaphore odd=0, even=0;
semaphore empty=N;
main()
cobegin{
   Process P1()
   while(True)
       x=produce();
                              //生成一个数
       P(empty);
                               //判断缓冲区是否有空单元
       P(mutex);
                              //缓冲区是否被占用
       Put();
       V(mutex);
                              //释放缓冲区
       if(x\%2==0)
```

```
V(even);
                          //如果是偶数,向P3发出信号
      else
        V(odd);
                          //如果是奇数,向P2发出信号
   }
   Process P2()
   while(True)
      P(odd);
                          //收到P1发来的信号,已产生一个奇数
      P(mutex);
                          //缓冲区是否被占用
      getodd();
      V(mutex);
                          //释放缓冲区
      V(empty);
                          //向P1发信号,多出一个空单元
      countodd();
   }
   Process P3()
   while(True)
   {
      P(even);
                          //收到P1发来的信号,已产生一个偶数
      P(mutext);
                          //缓冲区是否被占用
      geteven();
      V(mutex);
                          //释放缓冲区
                          //向P1发信号,多出一个空单元
      V(empty);
      counteven();
}coend
```