Why Reduce Dimensions?

Why reduce dimensions?

- Discover hidden correlations/topics
 - Words that occur commonly together
- Remove redundant and noisy features
 - Not all words are useful
- Interpretation and visualization
- Easier storage and processing of the data

SVD - Definition

$$\mathbf{A}_{[m \times n]} = \mathbf{U}_{[m \times r]} \sum_{[r \times r]} (\mathbf{V}_{[n \times r]})^{\mathsf{T}}$$

- A: Input data matrix
 - m x n matrix (e.g., m documents, n terms)
- U: Left singular vectors
 - m x r matrix (m documents, r concepts)
- \blacksquare Σ : Singular values
 - r x r diagonal matrix (strength of each 'concept')(r : rank of the matrix A)
- V: Right singular vectors
 - n x r matrix (n terms, r concepts)

SVD

SVD

$$\mathbf{A} pprox \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_i \sigma_i \mathbf{u}_i \circ \mathbf{v}_i^T$$

σ_i ... scalar

u_i ... vector

v_i ... vector

SVD - Properties

It is always possible to decompose a real matrix A into A = U Σ V^T, where

- \blacksquare U, Σ , V: unique
- U, V: column orthonormal
 - $U^T U = I$; $V^T V = I$ (I: identity matrix)
 - (Columns are orthogonal unit vectors)
- $\blacksquare \Sigma$: diagonal
 - Entries (singular values) are positive, and sorted in decreasing order $(\sigma_1 \ge \sigma_2 \ge ... \ge 0)$

Nice proof of uniqueness: http://www.mpi-inf.mpg.de/~bast/ir-seminar-ws04/lecture2.pdf

$\blacksquare A = U \Sigma V^{T}$ - example: Users to Movies

0.56 0.59 0.56 0.09
 0.09

 0.12
 -0.02
 0.12
 -**0.69** -**0.69**

 0.40
 -**0.80** 0.40
 0.09
 0.09

$\blacksquare A = U \Sigma V^{T}$ - example: Users to Movies

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

-0.80 0.40

0.09

$\blacksquare A = U \Sigma V^T$ - example: U is "user-to-concept"

U is "user-to-concept" similarity matrix

-0.02 0.12 **-0.69**

0.09

-0.80 0.40

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

-0.69

$\blacksquare A = U \Sigma V^{T}$ - example:

"strength" of the SciFi-concept

(2.4) 0 0
0 9.5 0
0 0 1.3

$\blacksquare A = U \Sigma V^{T}$ - example:

SciFi-concept

-0.80

0.40

0.09

SVD - Interpretation #I

- 'movies', 'users' and 'concepts':
- U: user-to-concept similarity matrix
- V: movie-to-concept similarity matrix
- Σ : its diagonal elements: 'strength' of each concept