- How to model a memory with a large address space?
 - For example a 32 bit address
 - Impractical to allocate the entire memory
- One technique: describe a sparse memory model
 - Associative arrays are a way to implement a sparse memory model

- Instructions
 - In file sparse_mem.sv edit the module sparse_mem
 - Create an enumerated type called "boolean" ("FALSE" and "TRUE")
 - Create an associative array called "big_mem"
 - data type is boolean
 - index type is an unsigned 32 bit value
 - Default value of each entry should be false
 - Write to big_mem
 - Write a random number of entries (max 25), each at a random location
 - Use \$random() to generate random numbers
 - Write the value TRUE at these random locations
 - Display the following information about big_mem:
 - How many entries it has with the value TRUE
 - What is the smallest index with the value TRUE
 - What is the largest index with the value TRUE
 - The index value of all entries with the value TRUE

Sample output

```
# big mem has 23 entries
 the smallest index is 15983361
 the largest index is 3883308750
 Here are the addresses:
    15983361
   112818957
   114806029
   512609597
   992211318
 1177417612
 1189058957
# 1206705039
# 1924134885
# 1993627629
# 2033215986
# 2097015289
 2223298057
# 2301810194
# 2302104082
 2985317987
# 2999092325
 3151131255
 3230228097
# 3574846122
# 3807872197
 3812041926
 3883308750
```

