Introduction To Flowcharting

Today's Topics

- Flowchart Symbols
- Structures
- Sequence
- Selection
- Repetition

Flowchart:

Represents an algorithm in graphical symbols

Flowchart Symbols

Flowchart Symbols

	Decision: Used to represent operations in which there are two possible selections. One flow line enters and two flow lines (labeled as "Yes" and "No") exit.
	Function / Subroutine: Used to identify an operation in a separate flowchart segment (module). One flow line enters and one flow line exits.
	On-page Connector: Used to connect remote flowchart portion on the same page. One flow line enters and one flow line exits.
	Off-page Connector: Used to connect remote flowchart portion on different pages. One flow line enters and one flow line exits.
	Comment: Used to add descriptions or clarification.
	Flow line: Used to indicate the direction of flow of control.

Comments or description

Connectors on the same page

1- connection on the same flowchart portion

2- connection on the different flowchart portion

- 1.Sequence
- 2. Selection
- 3. Repetition

A flowchart expressing the solution to an involved problem may have:

- 1. the main program flowchart on one page
- 2. with subprograms continuing the problem solution on subsequent pages.

Each of the five acceptable structures can be built from the basic elements as shown below.

Each of the five acceptable structures can be built from the basic elements as shown below.

Sequence

In a computer program or an algorithm,
sequence involves simple steps which are
to be executed one after the other.
The steps are executed in the same order in which they are written.

In **pseudocode**, sequence is expressed as:

process 1 process 2

• • •

process n

In a **flowchart**, sequence is expressed as:

Sequence

An Example Using Sequence

Problem: Write a set of instructions that describe how to make a pot of tea.

Pseudocode

BEGIN

fill a kettle with water boil the water in the kettle put the tea leaves in the pot pour boiling water in the pot

END

Flowchart

to **determine which** particular step or set of **step**s is to be executed

Binary Selection

In **pseudocode**, binary selection is expressed in the following ways:

IF condition THEN process 1
 ENDIF

2. IF condition THEN process 1
ELSE process 2
ENDIF

Binary Selection

In **flowcharts**, binary selection is expressed in the following ways:

Binary (structure)

Binary Selection

In **pseudocode**, binary selection is expressed in the following ways:

IF condition THEN process 1
 ENDIF

2. IF condition THEN process 1
ELSE process 2
ENDIF

Binary Selection

In **flowcharts**, binary selection is expressed in the following ways:

Binary (flowchart structure)

Note: In a flowchart it is most important to indicate

- 1. which path is to be followed when the condition is true, and
- 2. which path to follow when the condition is false.

Without these indications the flowchart is open to more than one interpretation.

Note: There are two acceptable ways to represent a decision in all of the structures. *Either method is acceptable. For consistency, the method 1 is used throughout this document.*

- The condition is expressed as a statement and the two possible outcomes are indicated by
 - True
 - False

- 2. The **condition** is expressed as a **question** and the two possible outcomes are indicated by
 - Yes
 - No

Binary (examples)

Selection is used in a computer program or algorithm to **determine which** particular step or set of **steps** is to be executed.

Examples Using Binary Selection

Problem 1: Write a set of instructions to describe when to answer the phone.

Binary Selection Pseudocode

IF the telephone is ringing THEN answer the telephone ENDIF

Binary Selection Flowchart

Binary (examples)

Examples Using Binary Selection

Problem 2: Write a set of instructions to follow when approaching a set of traffic control lights.

Binary Selection Pseudocode

IF the signal is green
THEN

proceed through the intersection
ELSE

stop the vehicle
ENDIF

Binary Selection Flowchart

Multi-way (structure)

Multi-way Selection

In **pseudocode**, multiple selection is expressed as:

CASEWHERE expression evaluates to

choice a : process a choice b : process b

. . .

OTHERWISE: default

process ENDCASE

Note: As the flowchart version of the multi-way selection indicates, **only one** process on each pass is executed as a result of the implementation of the

Multi-way Selection

In **flowcharts**, multi-way selection is expressed as:

Multi-way (examples)

Example Using Multi-way Selection

Problem: Write a set of instructions that describes how to: respond to all possible signals at a set of traffic control lights.

Multi-way Selection Pseudocode

CASEWHERE signal is

red : stop the

vehicle

amber : stop the

vehicle

green : proceed

through the intersection

OTHERWISE: proceed

with caution ENDCASE

Multi-way Selection Flowchart

Repetition allows for a portion of an algorithm or computer program to be done any number of times dependent on some condition being met.

An occurrence of repetition is usually known as a loop.

An **essential feature** of repetition is that each loop has a **termination condition** to **stop** the repetition, or the obvious outcome is that the *loop never completes* execution (*an infinite loop*).

The termination condition can be checked or tested

- 1. at the **beginning** and is known as a **pre-test** loop *or*
- 2. at the end of the loop and is known as a post-test loop.

Pre-test (structure)

Repetition: Pre-Test

A pre-tested loop is so named because the **condition** has to be met at the **very beginning of the loop** or the body of the loop is not executed.

This construct is often called a *guarded loop*.

The body of the loop is executed repeatedly while the termination condition is true.

Repetition

In **pseudocode**, pre-test repetition is expressed as:

WHILE condition is true process(es)
ENDWHILE

Repetition

In **flowcharting** pre-test repetition is expressed as:

Repetition Post-test (structure)

Repetition: Post-Test

- A post-tested loop executes the body of the loop before testing the termination condition.
- This construct is often referred to as an unguarded loop.
- The body of the loop is repeatedly executed until the termination condition is true.

An **important difference** between a pre-test and post-test loop is that the **statements of a post-test loop** are **executed at least once** even if the condition is originally true, whereas the **body of the pre-test loop** *may never be executed* if the *termination condition is originally true*.

A close look at the representations of the two

Repetition

In **pseudocode**, post-test repetition is expressed as:

REPEAT process
UNTIL condition is true

Repetition

In a **flowchart** post-test repetition is expressed as:

Repetition Pre-test (example)

An Example Using Pre-Test Repetition

Problem: Determine a safety procedure for travelling in a carriage on a moving train.

Pre-test Repetition Pseudocode

WHILE the train is moving keep wholly within the carriage ENDWHILE

Pre-test Repetition

Flowchart

An Example Using Post-Test Repetition

Problem: Determine a procedure to beat egg whites until fluffy.

Post-test Repetition Pseudocode

REPEAT

beat the egg whites

UNTIL fluffy

Post-test Repetitio⁻ Flowchart

Example:

What is the output of the following flowchart when the input Num= 10

What is the output of the following flowchart when the input is N = 6

- 1. What is a flowchart?
- 2. It is used to connect remote flowchart portion on the same page. One flow line enters and one flow line exits.
- 3-5. Control Structures of Flowchart.