Proves de Caixa blanca

Índex

- Definició
- Control flow (camins bàsics)

Índex

- Definició
- Control flow (camins bàsics)

Definició

- Testing que analiza i té en compte l'estructura interna del sistema
- Analitza mòduls, funcions, blocs, sentencies, cobertura del codi, ...

Definició

 No sempre executem TOT el codi quan executem tot els test case

Black box test coverage

Índex

- Definició
- Control flow (camins bàsics)

Control flow

Suposem que tenim aquest codi

```
... int A,B,C;
  A=System.in.read(); B=System.in.read(); C=System...;
  if (A>15 && C>20) {
   if (B<10)
     B=A+5;
  else
     B=A-5;
8 else
   A=B+5i
```


Test i Qualitat

10 ...

Control flow

- Tipus: Els test cases es generen de manera que ...
 - Statement coverage: ... totes les sentències s'executen com a mínim un cop.
 - Decision (branch) coverage: ... totes les decisions (p.ex. condicionals-if) prenen els valors true o false.
 - Condition coverage: ... totes les condicions (predicats) que formen l'expressió lògica d'una decisió prenen els valors true o false.
 - Path coverage: ... s'executen tots els path.

Statement coverage

 Executar totes les sentències

Xavier Otazu

Decision (branch) coverage

 Totes les decisions prenen els valors true o false

Xavier Otazu

Condition coverage

 Totes les condicions (predicats) que formen l'expressió lògica d'una decisió prenen els valors true o false.

Xavier Otazu

Test i Qualitat

Condition coverage

- Composed condition:
 ((X and Y) or C)
 - Els casos de prova han de cobrir tots els valors true o false de cada condició (predicat) de l'expressió lògica.
 - Explosió de combinacions ⇒ només coverage per simple condition ...
 - ... però simple condition coverage no assegura decision coverage
- Simple condition: (A)
 - Degenera a decision coverage

X	Υ	Z	(X and Y) or C
true	true	true	true
true	true	false	true
true	false	true	true
true	false	false	false
false	true	true	true
false	true	false	false
false	false	true	true
false	false	false	false

decisió

S'executen tots els path

Per què?

- Errors lògics i assumpcions incorrectes són inversament proporcionals a la probabilitat d'execució del path.
- És probable que un path no testejat contingui errors

El testing exhaustiu NO és possible

Hi ha 10¹⁴ paths possibles!

Si cadascun s'executa en 1ms trigariem 3170 anys a testejar aquest programa!!

Xavier Otazu

- Passos per realitzar path coverage:
 - Convertir el codi (o unitat) en un flow graph (diagrama de fluxe)
 - Calcular una mesura de la complexitat lògica de la unitat.
 - Utilitzar la mesura per derivar un conjunt "bàsic" de paths independents i definir els seus test cases.
- Nota: El conjunt de paths per fer path coverage
 NO és únic!

- Complexitat ciclomàtica
 - És una mètrica, V(G), que descriu la complexitat lògica d'un diagrama de fluxe (*flow graph*), G.
 - V(G) = E N + 2 on E = # arcs i N = # nodes a G.
 - Estudis demostren que
 - V(G) està directament relacionat al nombre d'errors
 - V(G)=10 és un límit superior pràctic a l'hora de fer el testing

Test i Qualitat

• Trobem els *paths* independents:

$$- V(G) = 10 arcs - 8 nodes + 2 = 4 paths$$

- Path 1: 1,2,3,6,7,8

- *Path* 2: 1,2,3,5,7,8

- Path 3: 1,2,4,7,8

- Path 4: 1,2,4,7,2,4 ... 7,8

 Definim test cases per executar aquests paths, i per tant paràmetres que ens facin executar aquests paths.

Loop testing

• Tipus de loops

Test i Qualitat

Loop testing

Loop simple

- Test cases
 - Evitar el loop
 - Una passada pel loop
 - Dues passades pel loop
 - m passades pel loop m<n
 - (n-1), n passades pel loop (n és el nombre màxim de passades)

Pregunta: Aquest esquema equival a?

Valors límit pel nombre de passades pel loop

Loop testing

Loops aniuats

- Si extenem el test pel loop simple
 - ⇒ explosió en el nombre de tests
- Reduim el nombre de tests
 - Començar amb un test simple pel loop més interior, fixant els demés loops al valor mínim
 - Testejar un loop més extern (com si fos un loop simple) mantenint el nombre d'iteracions dels loops interiors a valors habituals.
 - Continuar fins testejar tots els loops.

