WO 99/24411 PCT/AU98/00919

- 49 -

THE CLAIMS.

25

1. A compound of the formula I:

where R is the residue of an organic compound, X is O or S and Y is a divalent group making up a 5 or 6 membered ring, which compound has a selectivity for an Ox receptor over one or both of the α₂- and I₂- receptors of greater than 1.

2. A compound according to claim 1 which is a compound of formula II

wherein W is optionally substituted aryl, optionally substituted C_5 - C_7 cycloalkyl or - CHR^1R^2 where R^1 and R^2 are independently selected from hydrogen, optionally substituted 20 C_1 - C_6 alkyl, optionally substituted C_3 - C_7 cycloalkyl, optionally substituted aryl, and OR' where R' is optionally substituted aryl, optionally substituted C_3 - C_7 cycloalkyl or optionally substituted C_1 - C_6 alkyl, provided that both of R^1 and R^2 are not both hydrogen, C_1 - C_2 alkylene, C_1 - C_3 alkylene, C_4 - C_4 alkylene, provided that C_4 - C_5 when C_5 is imino or C_4 - C_5 - C_4 alkylene, provided that C_5 - C_7 when C_5 is imino or C_5 - C_7 alkylene, provided that C_7 - C_8 is imino or C_8 - $C_$

A compound of claim 2 wherein W is aryl (optionally substituted with hydroxy, C₁-C₆ alkyl, C₁-C₆ alkoxy, NO₂, NH₂, C₁-C₆ haloalkyl, halogen, C₃-C₆ cycloalkyl, aryl, C₂-C₆ alkenyl, C₂-C₆ alkynyl or aryloxy); C₅-C₆ cycloalkyl (optionally substituted with hydroxy, C₁-C₆ alkyl, C₁-C₆ alkoxy, NO₂, NH₂, C₁-C₆ haloalkyl, halogen, C₃-C₆
 cycloalkyl, aryl, C₂-C₆ alkenyl, C₂-C₆ alkynyl or aryloxy); or -CHR¹R² where R¹ and R²

are independently selected from hydrogen, C_1 - C_6 alkyl (optionally substituted with hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, NO_2 , NH_2 , C_1 - C_6 haloalkyl, halogen, C_3 - C_6 cycloalkyl, aryl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or aryloxy), C_3 - C_6 cycloalkyl (optionally substituted with hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, NO_2 , NH_2 , C_1 - C_6 haloalkyl,

- 5 halogen, C_3 - C_6 cycloalkyl, aryl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or aryloxy), aryl (optionally substituted with hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, NO_2 , NH_2 , C_1 - C_6 haloalkyl, halogen, C_3 - C_6 cycloalkyl, aryl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or aryloxy), and OR where R is aryl (optionally substituted with hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, NO_2 , NH_2 , C_1 - C_6 haloalkyl, halogen, C_3 - C_6 cycloalkyl, aryl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or aryloxy),
- 10 C₃-C₆ cycloalkyl (optionally substituted with hydroxy, C₁-C₆ alkyl, C₁-C₆ alkoxy, NO₂, NH₂, C₁-C₆ haloalkyl, halogen, C₃-C₆ cycloalkyl, aryl, C₂-C₆ alkenyl, C₂-C₆ alkynyl or aryloxy), or C₁-C₆ alkyl (optionally substituted with hydroxy, C₁-C₆ alkyl, C₁-C₆ alkoxy, NO₂, NH₂, C₁-C₆ haloalkyl, halogen, C₃-C₆ cycloalkyl, aryl, C₂-C₆ alkenyl, C₂-C₆ alkynyl or aryloxy); provided R¹ and R² are not both hydrogen.

15

- 4. A compound of claim 2 or claim 3 where W is phenyl or cyclohexyl, naphthyl, each of which may be optionally substituted with one to three substituents selected from hydroxy, methoxy, ethoxy, benzyloxy, NO₂, NH₂, halogen, methyl and ethyl; or CHR¹R² where R¹ and R² are independently selected from phenyl, naphthyl, cyclohexyl, cyclopentyl, cyclopropyl, methyl, ethyl, propyl and butyl, each of which may be optionally substituted with hydroxy, methoxy, ethoxy, benzyloxy, NO₂, NH₂, halogen, methyl and ethyl, provided R¹ and R² are not both hydrogen.
 - 5. A compound of any one of claims 2 to 4 wherein Z is imino or $-CH_2CH_2NH$ -.

25

- 6. A compound of any one of claims 1 to 5 wherein X is oxygen.
- 7. A compound of any one of claims 1 to 6 wherein Y is C_2 - C_4 alkylene optionally substituted with C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, C_1 - C_6 alkanoyloxy or C_1 - C_6

5

15

alkyloxycarbonyl, or with two substituents which join together to form a 5-6 numbered carbocyclic on heterocyclic ring.

- 8. A compound of claim 7 wherein Y is unsubstituted C_2 - C_4 alkylene.
- 9. A compound of claim 8 wherein Y is ethylene.
- 10. A compound according to claim 1 which is a compound of formula III:

wherein R³, R⁴, R⁵ and R⁶ are independently selected from hydrogen, hydroxy, C₁-C₆ alkyl, C₁-C₆ alkoxy, NO₂, NH₂, C₁-C₆ haloalkyl, halogen, C₃-C₆ cycloalkyl, aryl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, aryloxy, Z is imino, C₁-C₂ alkylene, or -CH₂CH₂NH-, R⁵ and R⁵ are independently selected from hydrogen, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₁-C₆ alkanoyloxy or C₁-C₆ alkyloxycarbonyl or R⁵ and R⁵ may together form a 5 or 6 aromatic or non-aromatic membered carbocyclic or heterocyclic ring.

11. A compound according to claim 1 which is a compound of formula IV:

$$R^3$$
 R^8
 R^8
 R^8

where R³, R⁴, R⁷ and R⁸ are as defined in claim 10.

12. A compound according to claim 1 which is a compound of formula V:

5

$$R^3$$
 Z
 N
 R^7
 V
 R^8

where R^3 , R^4 , R^7 , R^8 and Z are as defined as claim 10, and R^9 is C_1 - C_4 alkyl or C_1 - C_4 10 alkoxy.

13. A compound according to claim 1 which is a compound of formula VI:

15

$$R^{10}$$
 Z
 R^{1}
 R^{8}
 VI

where R^7 , R^8 and Z are as defined in claim 10 and R^{10} and R^{11} are independently selected 20 from hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, NO_2 , NH_2 , C_1 - C_6 haloalkyl, halogen, C_3 - C_6 cycloalkyl, aryl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl and aryloxy.

14. A compound according to claim 1 which is a compound of formula VII

25

$$\mathbb{Z}$$
 \mathbb{R}^{12}
 \mathbb{R}^{7}
 \mathbb{R}^{8}
 \mathbb{R}^{8}

X

where R^7 , R^8 and Z are as defined in claim 10 and R^{12} is hydrogen optionally substituted C_1 - C_6 alkyl, optionally substituted C_3 - C_7 cycloalkyl or optionally substituted aryl.

5 15. A compound according to claim 1 which is a compound of formula VIII:

$$\phi$$
 Z R^{8} VIII

10

where ϕ is optionally substituted aryl and R^7 , R^8 and Z are defined in claim 10.

16. A compound according to claim 1 which is a compound of formula IX:

15

$$\phi$$
 Z
 R^{8}
 R^{8}

where R^7 , R^8 and Z and ϕ are as defined in claim 15.

20

17. A compound according to claim 1 which is a compound of formula X:

25

where R^7 , R^8 , R^{12} and Z are as defined in claim 14 and φ is as defined in claim 15.

18. A compound according to any one of claims 15 to 17 where φ is phenyl or

10

25

naphthyl either of which may have one to four substituents selected from hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, NO_2 , NH_2 , C_1 - C_6 haloalkyl, halogen, C_3 - C_6 cycloalkyl, aryl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl and aryloxy.

- 5 19. A compound according to any one of claims 1 to 18 having a selectivity of greater than 3 over one or both of α_2 and I_2 receptors.
 - 20. A compound according to any one of claims 1 to 19 having a selectivity for the Ox receptor over both the α_2 and I_2 receptors of greater than 1.
 - 21. A compound according to any one of claims 1 to 20 having a selectivity for the Ox receptor over the I_1 receptor of greater than 1.
- 22. A compound according to any one of claims 1 to 21 when used to bind to and/or modulate the activity of an Ox receptor.
 - 23. A compound of any one of claims 1 to 21 which is an agonist of Ox receptor activity.
- 20 24. A compound of any one of claims 1 to 21 which is an antagonist of Ox receptor activity.
 - 25. A modulator of Ox receptor activity which is a compound of any one of claims 1 to 21.
 - 26. Use of a compound of any one of claims 1 to 21 to bind to and/or modulate the activity of Ox receptor.
 - 27. An isolated Ox receptor in sequencially pure form.

WO 99/24411 PCT/AU98/00919

- 55 -

- 28. An isolated Ox receptor characterised by a high binding affinity for O501 and a poor binding affinity for methoxyidazoxan, clonidine and idazoxan.
- 29. An isolated Ox receptor characterised by having a binding affinity for O501 of 1 to 500 nM and affinities for methoxyidazoxan, clonidine and idazoxan of greater than 1000.
 - 30. A receptor according to claim 29 characterised by having a binding affinity for O501 is between 10 and 100 nM and affinities for methoxyidazoxan, clonidine and idazoxan is greater than 5000 nM.

10

- 31. An isolated nucleic acid molecule which encodes an Ox receptor as claimed in any one of claims 27 to 30.
- 32. A recombinant plasmid, cosmid, bacteriophage or other recombinant molecule comprising a nucleic acid molecule according to claim 31.
- 33. A method for identifying a modulator or Ox receptor activity, said method comprising assaying recombinant Ox receptor activity in the presence of a potential modulator and comparing said activity to the activity of recombinant Ox receptor in the absence of said potential modulator.
 - 34. A method according to claim 33 wherein the recombinant Ox receptor is obtained by expressing a functional recombinant Ox receptor polypeptide in a cell for a time and under conditions sufficient for said polypeptide to be produced in an assayable quantity.

25

- 35. A composition comprising a compound according to any one of claims 1 to 21 and a pharmaceutically acceptable carrier or diluent.
- 36. A method for the treatment of diseases of the central nervous system,
- 30 cardiovascular system, or the kidney, or diseases associated with abnormal adrenal gland secretions which comprises administering an effective amount of a compound of any one

of claims 1 to 21 or a pharmaceutically acceptable salt or ester thereof to a subject in need thereof.

- 37. A pharmaceutical composition for the treatment of diseases of the central nervous system, cardiovascular system, or the kidney, or diseases associated with abnormal adrenal gland secretions comprising a compound of any one of claims 1 to 21 or a pharmaceutically acceptable ester or salt thereof together with a pharmaceutically acceptable carrier or diluent.
- 10 38. Use of a compound of any one of claims 1 to 21 in the manufacture of a medicament for the treatment of diseases of the central nervous system, cardiovascular system, or the kidney, or diseases associated with abnormal adrenal gland secretions.
- 39. Use of a compound of any one of claims 1 to 21 as an agonist or antagonist to the 15 Ox receptor.
 - 40. Use of a compound of any one of claims 1 to 21 or a pharmaceutically acceptable salt or ester thereof in the treatment of hyperglycaemia, glaucoma, peptic ulcer or in the production of analgesia.