<u>CLAIMS</u>

What is claimed is:

- A method of identifying a presence of a first material having a first transverse ı. I nuclear magnetic spin relaxation time T_2 in a mixture with 1 second material 2 having a second transverse nuclear magnetic spin relaxation time T_2 'greater than 3 said first transverse relaxation time, said first material comprising a small fraction 4 5 of the mixture, the method comprising: using a magnet to produce a static field in a region of examination and 6 (a) align nuclear spins in said region substantially parallel to a direction of 7 said static field; 8 applying a pulse sequence **(b)** 9 $A1 - \tau - B1 - \tau - A2 - TW - A3$ 10 where A1 is a first excitation pulse, τ is a Carr-Purcell time, B1 is a first 11 refocusing pulse, A2 is forced inversion pulse, A3 in a second excitation 12 pulse, and TW is a wait time, and 13 determining a value of TW for which a resulting signal from said second 14 (c) 15 material is substantially zero.
- The method of claim 1 wherein said first excitation pulse comprises a pulse
 having a tip angle substantially equal to 90°.
- The method of claim 1 wherein said second excitation pulse comprises a pulse 584-28566US

- 2 having a tip angle substantially equal to 90°.
- 1 4. The method of claim 1 wherein said first refocusing pulse comprises a pulse 2 having a tip angle substantially equal to 180°.
- The method of claim 1 wherein determining said value of TW further comprises

 applying a sequence of refocusing pulses B₂₁ after said second excitation pulse

 and determining a value of TW for which substantially no spin echo signals are

 produced by said sequence of refocusing pulses.
- The method of claim 5 wherein at least one of said sequence of refocusing pulses

 comprises a pulse with a tip angle substantially equal to 180°.
- 1 7. The method of claim 1 further selecting τ to satisfy the concition 2 $T_2' >> \tau >> T_2$.
- 1 8. The method of claim 5 further comprising:
- 2 (i) repeating (b) with different values of TW until no free induction decay
 3 signal after the second excitation pulse A3 is produced;
- 4 (ii) repeating (b) with a value of TW altered from the va ue determined in (i);
 5 and
- 6 (iii) analyzing a resulting free induction decay signal.

1

2

6

- 1 9. The method of claim 1 wherein said first material and said second material are
 2 fluids in an earth formation.
- 1 10. The method of claim 9 further comprising conveying said 1 agnet on a logging tool into a borehole into said earth formation.
- 1 11. The method of claim 10 wherein said logging tool is conveyed on a wireline.
 - 12. The method of claim 10 wherein said logging tool is conveyed on a drilling tubular.
- 1 13. A system for identifying a presence of first fluid having a first transverse nuclear
 2 spin relaxation time T_2 in a mixture in an earth formation with a second fluid
 3 having a second transverse spin relaxation time T_2 'greater than said first
 4 transverse relaxation time, said first fluid comprising a small fraction of the
 5 second fluid, the method comprising:
 - (a) a logging tool conveyed into a borehole into said earth formation,
- 7 (b) a magnet on said logging tool for producing a static field in a region of
 8 said earth formation including said mixture, said magnet aligning nuclear
 9 spins in said region substantially parallel to a direction of said static field;
- 10 (b) a transmitter on said logging tool for applying a radi) frequency pulse

 11 sequence

16

17

- 13 to said mixture in said region, where Al is a first excitation pulse, t is a 14 Carr-Purcell time, B1 is a first refocusing pulse, A1 is forced inversion 15 pulse, and A3 is a second excitation pulse,
 - (¢) a receiver on said logging tool for receiving signals resulting from said nuclear spins resulting from application of said puls : sequence; and
- 18 (d) a processor for determining a value of TW for which a resulting signal 19 from said second fluid is substantially zero.
- 1 14. The system of claim 13 wherein said first excitation pulse comprises a pulse having a tip angle substantially equal to 90°. 2
- The system of claim 13 wherein said second excitation pulse comprises a pulse 1 15. having a tip angle substantially equal to 90°. 2
- 1 16. The system of claim 13 wherein determining said value of TW further comprises 2 applying a sequence of refocusing pulses B₂; after said secor d excitation pulse and determining a value of TW for which substantially no spin echo signals are 3 produced by said sequence of refocusing pules 4
- The system of claim 13 wherein said first refocusing pulse comprises a pulse 17. 1 20 584-28566US

- 2 having a tip angle substantially equal to 180°.
- 1 18. The system of claim 16 wherein at least one of said sequence of refocusing pulses
- 2 comprises a pulse with a tip angle substantially equal to 180°.
- 1 19. The system of claim 13 wherein $T_2 > \tau > T_2$.
- 1 20. The system of claim 13 wherein said processor further performs:
- 2 (i) a repetition of (b) in claim 13 with different value; of TW until no free induction decay signal after the second excitation pulse A3 is produced;
- 4 (ii) a repetition of (b) in claim 13 with the value of TW altered from the value
 5 determined in (i); and
- 6 (iii) analyzes a resulting free induction decay signal.
- The system of claim 13 further comprising a wireline for conveying said logging tool into said borehole.
- 1 22. The system of claim 13 further comprising a drilling tubular for conveying said logging tool into said borehole.
- 1 23. The system of claim 13 wherein said processor is on said logging tool.