Statistics with Spa R ows

Lecture 5

Julia Schroeder

Julia.schroeder@imperial.ac.uk

Outline

• Check-in: 95Cl

• T-test

Conventions: how to report t-test?

What are statistics?

- We want to know if a null hypothesis is rejected
- Most of the time, we want to know if data is distributed according to what we believe it should be distributed, given what we know

What are statistics?

- We want to know if a null hypothesis is rejected
- Most of the time, we want to know if data is distributed according to what we believe it should be distributed, given what we know
- We will test is the mean of the
- 2001 data truthfully represents the
- complete population.

What are statistics?

- We want to know if a null hypothesis is rejected
- Most of the time, we want to know if data is distributed according to what we believe it should be distributed, given what we know
- We will test is the mean of the
- 2001 data truthfully represents the
- complete population.
- We will test if 2001 mean is within
- a certain range of values

Hypothesis testing

- H0 = true mean is equal to mean of 2001
- H1 = true mean is not equal to mean of 2001

$$CI_{95\%} = \pm 1.96 \frac{s}{\sqrt{n}}$$

$$CI_{95\%} = \pm 1.96 \frac{s}{\sqrt{n}}$$

It is the mean plus/minus 1.96 times the standard deviation divided by the square root of the sample size

Histogram of znormal

znormal

40000 30000 Frequency 20000 10000 0 -2

density.default(x = znormal)

N = 1000000 Bandwidth = 0.05678

Looks familiar?

$$CI_{95\%} = \pm 1.96 \frac{s}{\sqrt{n}}$$

Looks familiar?

$$CI_{95\%} = \pm 1.96 \frac{s}{\sqrt{n}}$$

Rule-of-thumb:

Twice the SE!

$$\begin{array}{rcl} se & = & \sqrt{\frac{s^2}{n}} \\ se & = & \frac{s}{\sqrt{n}} \end{array}$$

Remember:

	Tarsus	Tarsus 2001		
Variance	0.74	0.72		
Standard deviation	0.86	0.85		
N	1685	168		
Standard error	0.02	0.07		
Mean	18.52	18.19		

Remember:

	Tarsus	Tarsus 2001
Variance	0.74	0.72
Standard deviation	0.86	0.85
N	1685	168
Standard error	0.02	0.07
Mean	18.52	18.19

Is the sample from 2001 representative of the whole population?

Does the mean of 2001 fall within all possible means of the true distribution? We allow an error of 5%.

Histogram of znormal

znormal

40000 30000 Frequency 20000 10000 0 -2

density.default(x = znormal)

N = 1000000 Bandwidth = 0.05678

• Let's test this!

	Tarsus	Tarsus 2001
N	1685	168
Standard error	0.02	0.07
Mean	18.52	18.19
~95%CI Mean+- (2*SE)		

	Tarsus	Tarsus 2001
N	1685	168
Standard error	0.02	0.07
Mean	18.52	18.19
~95%CI Mean+- (2*SE)		18.05 - 18.33

	Tarsus	Tarsus 2001
N	1685	168
Standard error		0.07
Mean	18.52	18.19
~95%CI Mean+- (2*SE)	DOES NOT SPAN 18.52	18.05 - 18.33

• Let's test this!

NO! We reject H_o!

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5

$$t_{\hat{eta}} = rac{\hat{eta} - eta_0}{ ext{s. e.}(\hat{eta})}$$

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5

$$t_{\hat{eta}} = rac{\hat{eta} - eta_0}{ ext{s. e.}(\hat{eta})}$$

	Tarsus	Tarsus 2001
N	1685	168
Standard error		0.07
Mean	18.52	18.19
~95%CI Mean+- (2*SE)	DOES NOT SPAN 18.52	18.05 - 18.33

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5

$$t_{\hat{eta}} = rac{\hat{eta} - eta_0}{ ext{s. e.}(\hat{eta})}$$

	Tarsus	Tarsus 2001
N	1685	168
Standard error		0.07
Mean	18.52	18.19
~95%CI Mean+- (2*SE)	DOES NOT SPAN 18.52	18.05 - 18.33

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5

$$t_{\hat{\beta}} = \frac{\hat{\beta} - \beta_0}{\text{s. e.}(\hat{\beta})} \qquad \frac{18.19 - 18.5}{0.07} \qquad t = -4.42$$

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5

$$t_{\hat{eta}} = rac{\hat{eta} - eta_0}{ ext{s. e.}(\hat{eta})}$$

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5

$$t_{\hat{eta}} = rac{\hat{eta} - eta_0}{ ext{s. e.}(\hat{eta})}$$

p-value

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5

$$t_{\hat{\beta}} = \frac{\hat{\beta} - \beta_0}{\text{s. e.}(\hat{\beta})}$$

$$\frac{18.19 - 18.5}{0.07}$$

• Sample size is 168, thus *df* = 167

p-value

t = -4.42

TABLE of CRITICAL VALUES for STUDENT'S t DISTRIBUTIONS

Column headings denote probabilities (α) **above** tabulated values

d.f.	0.40	0.25	0.10	0.05	0.04	0.025	0.02	0.01	0.005	0.0025	0.001	0
1	0.325	1.000	3.078	6.314	7.916	12.706	15.894	31.821	63.656	127.321	318.289	6
2	0.289	0.816	1.886	2.920	3.320	4.303	4.849	6.965	9.925	14.089	22.328	3
3	0.277	0.765	1.638	2.353	2.605	3.182	3.482	4.541	5.841	7.453	10.214	1
4	0.271	0.741	1.533	2.132	2.333	2.776	2.999	3.747	4.604	5.598	7.173	
5	0.267	0.727	1.476	2.015	2.191	2.571	2.757	3.365	4.032	4.773	5.894	
6	0.265	0.718	1.440	1.943	2.104	2.447	2.612	3.143	3.707	4.317	5.208	
7	0.263	0.711	1.415	1.895	2.046	2.365	2.517	2.998	3.499	4.029	4.785	
8	0.262	0.706	1.397	1.860	2.004	2.306	2.449	2.896	3.355	3.833	4.501	
9	0.261	0.703	1.383	1.833	1.973	2.262	2.398	2.821	3.250	3.690	4.297	
10	0.260	0.700	1.372	1.812	1.948	2.228	2.359	2.764	3.169	3.581	4.144	
11	0.260	0.697	1.363	1.796	1.928	2.201	2.328	2.718	3.106	3.497	4.025	
12	0.259	0.695	1.356	1.782	1.912	2.179	2.303	2.681	3.055	3.428	3.930	
13	0.259	0.694	1.350	1.771	1.899	2.160	2.282	2.650	3.012	3.372	3.852	П
14	0.258	0.692	1.345	1.761	1.887	2.145	2.264	2.624	2.977	3.326	3.787	
15	0.258	0.691	1.341	1.753	1.878	2.131	2.249	2.602	2.947	3.286	3.733	
16	0.258	0.690	1.337	1.746	1.869	2.120	2.235	2.583	2.921	3.252	3.686	П
17	0.257	0.689	1.333	1.740	1.862	2.110	2.224	2.567	2.898	3.222	3.646	П
18	0.257	0.688	1.330	1.734	1.855	2.101	2.214	2.552	2.878	3.197	3.610	П
19	0.257	0.688	1.328	1.729	1.850	2.093	2.205	2.539	2.861	3.174	3.579	П
20	0.257	0.687	1.325	1.725	1.844	2.086	2.197	2.528	2.845	3.153	3.552	П
21	0.257	0.686	1.323	1.721	1.840	2.080	2.189	2.518	2.831	3.135	3.527	П
22	0.256	0.686	1.321	1.717	1.835	2.074	2.183	2.508	2.819	3.119	3.505	П
23	0.256	0.685	1.319	1.714	1.832	2.069	2.177	2.500	2.807	3.104	3.485	П
24	0.256	0.685	1.318	1.711	1.828	2.064	2.172	2.492	2.797	3.091	3.467	П
25	0.256	0.684	1.316	1.708	1.825	2.060	2.167	2.485	2.787	3.078	3.450	П
26	0.256	0.684	1.315	1.706	1.822	2.056	2.162	2.479	2.779	3.067	3.435	П
27	0.256	0.684	1.314	1.703	1.819	2.052	2.158	2.473	2.771	3.057	3.421	П
28	0.256	0.683	1.313	1.701	1.817	2.048	2.154	2.467	2.763	3.047	3.408	П
29	0.256	0.683	1.311	1.699	1.814	2.045	2.150	2.462	2.756	3.038	3.396	П
30	0.256	0.683	1.310	1.697	1.812	2.042	2.147	2.457	2.750	3.030	3.385	П
31	0.256	0.682	1.309	1.696	1.810	2.040	2.144	2.453	2.744	3.022	3.375	П
32	0.255	0.682	1.309	1.694	1.808	2.037	2.141	2.449	2.738	3.015	3.365	П
33	0.255	0.682	1.308	1.692	1.806	2.035	2.138	2.445	2.733	3.008	3.356	П
34	0.255	0.682	1.307	1.691	1.805	2.032	2.136	2.441	2.728	3.002	3.348	П
35	0.255	0.682	1.306	1.690	1.803	2.030	2.133	2.438	2.724	2.996	3.340	П
36	0.255	0.681	1.306	1.688	1.802	2.028	2.131	2.434	2.719	2.990	3.333	П
37	0.255	0.681	1.305	1.687	1.800	2.026	2.129	2.431	2.715	2.985	3.326	П
38	0.255	0.681	1.304	1.686	1.799	2.024	2.127	2.429	2.712	2.980	3.319	П
39	0.255	0.681	1.304	1.685	1.798	2.023	2.125	2.426	2.708	2.976	3.313	П
40	0.255	0.681	1.303	1.684	1.796	2.021	2.123	2.423	2.704	2.971	3.307	П
60	0.254	0.679	1.296	1.671	1.781	2.000	2.099	2.390	2.660	2.915	3.232	П
80	0.254	0.678	1.292	1.664	1.773	1.990	2.088	2.374	2.639	2.887	3.195	П
100	0.254	0.677	1.290	1.660	1.769	1.984	2.081	2.364	2.626	2.871	3.174	П
120	0.254	0.677	1.289	1.658	1.766	1.980	2.076	2.358	2.617	2.860	3.160	П
140	0.254	0.676	1.288	1.656	1.763	1.977	2.073	2.353	2.611	2.852	3.149	П
160	0.254	0.676	1.287	1.654	1.762	1.975	2.071	2.350	2.607	2.847	3.142	П
180	0.254	0.676	1.286	1.653	1.761	1.973	2.069	2.347	2.603	2.842	3.136	П
200	0.254	0.676	1.286	1.653	1.760	1.972	2.067	2.345	2.601	2.838	3.131	Н
250	0.254	0.675	1.285	1.651	1.758	1.969	2.065	2.341	2.596	2.832	3.123	H
inf	0.253	0.674	1.282	1.645	1.751	1.960	2.054	2.326	2.576	2.807	3.090	H
	0.200	0.014	1.202	1.040	1.701	1.000	2.004	2.020	2.010	2.007	0.000	_

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5

$$t_{\hat{\beta}} = \frac{\hat{\beta} - \beta_0}{\text{s. e.}(\hat{\beta})}$$

$$\frac{18.19 - 18.5}{0.07}$$

• Sample size is 168, thus *df* = 167

p-value

t = -4.42

TABLE of CRITICAL VALUES for STUDENT'S t DISTRIBUTIONS

Column headings denote probabilities (α) **above** tabulated values

			Coldilli	ricadings	deriote p	TODADIIILE	3 (a) abc	ve tabale	ateu value			-
d.f.	0.40	0.25	0.10	0.05	0.04	0.025	0.02	0.01	0.005	0.0025	0.001	1
1	0.325	1.000	3.078	6.314	7.916	12.706	15.894	31.821	63.656	127.321	318.289	6
2	0.289	0.816	1.886	2.920	3.320	4.303	4.849	6.965	9.925	14.089	22.328	13
3	0.277	0.765	1.638	2.353	2.605	3.182	3.482	4.541	5.841	7.453	10.214	1
4	0.271	0.741	1.533	2.132	2.333	2.776	2.999	3.747	4.604	5.598	7.173	П
5	0.267	0.727	1.476	2.015	2.191	2.571	2.757	3.365	4.032	4.773	5.894	П
6	0.265	0.718	1.440	1.943	2.104	2.447	2.612	3.143	3.707	4.317	5.208	П
7	0.263	0.711	1.415	1.895	2.046	2.365	2.517	2.998	3.499	4.029	4.785	П
8	0.262	0.706	1.397	1.860	2.004	2.306	2.449	2.896	3.355	3.833	4.501	\vdash
9	0.261	0.703	1.383	1.833	1.973	2.262	2.398	2.821	3.250	3.690	4.297	\Box
10	0.260	0.700	1.372	1.812	1.948	2.228	2.359	2.764	3.169	3.581	4.144	\Box
11	0.260	0.697	1.363	1.796	1.928	2.201	2.328	2.718	3.106	3.497	4.025	\Box
12	0.259	0.695	1.356	1.782	1.912	2.179	2.303	2.681	3.055	3.428	3.930	\Box
13	0.259	0.694	1.350	1.771	1.899	2.160	2.282	2.650	3.012	3.372	3.852	\Box
14	0.258	0.692	1.345	1.761	1.887	2.145	2.264	2.624	2.977	3.326	3.787	\Box
15	0.258	0.691	1.341	1.753	1.878	2.131	2.249	2.602	2.947	3.286	3.733	\Box
16	0.258	0.690	1.337	1.746	1.869	2.120	2.235	2.583	2.921	3.252	3.686	\Box
17	0.257	0.689	1.333	1.740	1.862	2.110	2.224	2.567	2.898	3.222	3.646	\vdash
18	0.257	0.688	1.330	1.734	1.855	2.101	2.214	2.552	2.878	3.197	3.610	\vdash
19	0.257	0.688	1.328	1.729	1.850	2.093	2.205	2.539	2.861	3.174	3.579	\vdash
20	0.257	0.687	1.325	1.725	1.844	2.086	2.197	2.528	2.845	3.153	3.552	\vdash
21	0.257	0.686	1.323	1.721	1.840	2.080	2.189	2.518	2.831	3.135	3.527	\vdash
22	0.256	0.686	1.321	1.717	1.835	2.074	2.183	2.508	2.819	3.119	3.505	\vdash
23	0.256	0.685	1.319	1.714	1.832	2.069	2.177	2.500	2.807	3.104	3.485	\vdash
24	0.256	0.685	1.318	1.711	1.828	2.064	2.172	2.492	2.797	3.091	3.467	\vdash
25	0.256	0.684	1.316	1.708	1.825	2.060	2.167	2.485	2.787	3.078	3.450	Н
26	0.256	0.684	1.315	1.706	1.822	2.056	2.162	2.479	2.779	3.067	3.435	\vdash
27	0.256	0.684	1.314	1.703	1.819	2.052	2.158	2.473	2.771	3.057	3.421	\vdash
28	0.256	0.683	1.313	1.701	1.817	2.048	2.154	2.467	2.763	3.047	3.408	\vdash
29	0.256	0.683	1.311	1.699	1.814	2.045	2.150	2.462	2.756	3.038	3.396	\vdash
30	0.256	0.683	1.310	1.697	1.812	2.042	2.147	2.457	2.750	3.030	3.385	\vdash
31	0.256	0.682	1.309	1.696	1.810	2.040	2.144	2.453	2.744	3.022	3.375	\vdash
32	0.255	0.682	1.309	1.694	1.808	2.037	2.141	2.449	2.738	3.015	3.365	\vdash
33	0.255	0.682	1.308	1.692	1.806	2.035	2.138	2.445	2.733	3.008	3.356	\vdash
34	0.255	0.682	1.307	1.691	1.805	2.032	2.136	2.441	2.728	3.002	3.348	\vdash
35	0.255	0.682	1.306	1.690	1.803	2.030	2.133	2.438	2.724	2.996	3.340	\vdash
36	0.255	0.681	1.306	1.688	1.802	2.028	2.131	2.434	2.719	2.990	3.333	\vdash
37	0.255	0.681	1.305	1.687	1.800	2.026	2.129	2.431	2.715	2.985	3.326	П
38	0.255	0.681	1.304	1.686	1.799	2.024	2.127	2.429	2.712	2.980	3.319	Н
39	0.255	0.681	1.304	1.685	1.798	2.023	2.125	2.426	2.708	2.976	3.313	Н
40	0.255	0.681	1.303	1.684	1.796	2.021	2.123	2.423	2.704	2.971	3.307	П
60	0.254	0.679	1.296	1.671	1.781	2.000	2.099	2.390	2.660	2.915	3.232	П
80	0.254	0.678	1.292	1.664	1.773	1.990	2.088	2.374	2.639	2.887	3.195	П
100	0.254	0.677	1.290	1.660	1.769	1.984	2.081	2.364	2.626	2.871	3.174	П
120	0.254	0.677	1.289	1.658	1.766	1.980	2.076	2.358	2.617	2.860	3.160	П
140	0.254	0.676	1.288	1.656	1.763	1.977	2.073	2.353	2.611	2.852	3.149	П
160	0.254	0.676	1.287	1.654	1.762	1.975	2.071	2.350	2.607	2.847	3.142	П
180	0.254	0.676	1.286	1.653	1.761	1.973	2.069	2.347	2.603	2.842	3.136	П
200	0.254	0.676	1.286	1.653	1.760	1.972	2.067	2.345	2.601	2.838	3.131	П
250	0.254	0.675	1.285	1.651	1.758	1.969	2.065	2.341	2.596	2.832	3.123	П
inf	0.253	0.674	1.282	1.645	1.751	1.960	2.054	2.326	2.576	2.807	3.090	П
												-

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5

$$t_{\hat{\beta}} = \frac{\hat{\beta} - \beta_0}{\text{s. e.}(\hat{\beta})}$$

$$\frac{18.19 - 18.5}{0.07}$$

• Sample size is 168, thus *df* = 167

p-value

t = -4.42

TABLE of CRITICAL VALUES for STUDENT'S t DISTRIBUTIONS

Column heading denote probabilities (α) above tabulated values

L				Column	heading	denote probabilities (α) above tabulated values.							
Г	d.f.	0.40	0.25	0.10	0.05	0.04	0.025	0.02	0.01	0.005	0.0025	0.001	Τ.
\vdash	1	0.325	1.000	3.078	6.314	7.916	12.706	15.894	31.821	63.656	127.321		6
\vdash	2	0.289	0.816	1.886	2.920	3.320	4.303	4.849	6.965	9.925	14.089	22.328	1
\vdash	3	0.277	0.765	1.638	2.353	2.605	3.182	3.482	4.541	5.841	7.453	10.214	1
\vdash	4	0.271	0.741	1.533	2.132	2.333	2.776	2.999	3.747	4.604	5.598	7.173	Н
\vdash	5	0.267	0.727	1.476	2.015	2.191	2.571	2.757	3.365	4.032	4.773	5.894	H
\vdash	6	0.265	0.718	1.440	1.943	2.104	2.447	2.612	3.143	3.707	4.317	5.208	H
\vdash	7	0.263	0.711	1.415	1.895	2.046	2.365	2.517	2.998	3.499	4.029	4.785	H
\vdash	8	0.262	0.706	1.397	1.860	2.004	2.306	2.449	2.896	3.355	3.833	4.501	H
\vdash	9	0.261	0.703	1.383	1.833	1.973	2.262	2.398	2.821	3.250	3.690	4.297	Н
\vdash	10	0.260	0.700	1.372	1.812	1.948	2.228	2.359	2.764	3.169	3.581	4.144	t
\vdash	11	0.260	0.697	1.363	1.796	1.928	2.201	2.328	2.718	3.106	3.497	4.025	t
\vdash	12	0.259	0.695	1.356	1.782	1.912	2.179	2.303	2.681	3.055	3.428	3.930	t
\vdash	13	0.259	0.694	1.350	1.771	1.899	2.160	2.282	2.650	3.012	3.372	3.852	t
\vdash	14	0.258	0.692	1.345	1.761	1.887	2.145	2.264	2.624	2.977	3.326	3.787	t
\vdash	15	0.258	0.691	1.341	1.753	1.878	2.131	2.249	2.602	2.947	3.286	3.733	t
卜	16	0.258	0.690	1.337	1.746	1.869	2.120	2.235	2.583	2.921	3.252	3.686	T
\vdash	17	0.257	0.689	1.333	1.740	1.862	2.110	2.224	2.567	2.898	3.222	3.646	t
F	18	0.257	0.688	1.330	1.734	1.855	2.101	2.214	2.552	2.878	3.197	3.610	t
\vdash	19	0.257	0.688	1.328	1.729	1.850	2.093	2.205	2.539	2.861	3.174	3.579	t
F	20	0.257	0.687	1.325	1.725	1.844	2.086	2.197	2.528	2.845	3.153	3.552	T
\vdash	21	0.257	0.686	1.323	1.721	1.840	2.080	2.189	2.518	2.831	3.135	3.527	T
F	22	0.256	0.686	1.321	1.717	1.835	2.074	2.183	2.508	2.819	3.119	3.505	T
\vdash	23	0.256	0.685	1.319	1.714	1.832	2.069	2.177	2.500	2.807	3.104	3.485	T
\vdash	24	0.256	0.685	1.318	1.711	1.828	2.064	2.172	2.492	2.797	3.091	3.467	T
\vdash	25	0.256	0.684	1.316	1.708	1.825	2.060	2.167	2.485	2.787	3.078	3.450	T
\vdash	26	0.256	0.684	1.315	1.706	1.822	2.056	2.162	2.479	2.779	3.067	3.435	T
\vdash	27	0.256	0.684	1.314	1.703	1.819	2.052	2.158	2.473	2.771	3.057	3.421	T
\vdash	28	0.256	0.683	1.313	1.701	1.817	2.048	2.154	2.467	2.763	3.047	3.408	T
Г	29	0.256	0.683	1.311	1.699	1.814	2.045	2.150	2.462	2.756	3.038	3.396	Т
Г	30	0.256	0.683	1.310	1.697	1.812	2.042	2.147	2.457	2.750	3.030	3.385	Т
Г	31	0.256	0.682	1.309	1.696	1.810	2.040	2.144	2.453	2.744	3.022	3.375	Г
	32	0.255	0.682	1.309	1.694	1.808	2.037	2.141	2.449	2.738	3.015	3.365	Г
Г	33	0.255	0.682	1.308	1.692	1.806	2.035	2.138	2.445	2.733	3.008	3.356	Г
	34	0.255	0.682	1.307	1.691	1.805	2.032	2.136	2.441	2.728	3.002	3.348	
	35	0.255	0.682	1.306	1.690	1.803	2.030	2.133	2.438	2.724	2.996	3.340	Г
	36	0.255	0.681	1.306	1.688	1.802	2.028	2.131	2.434	2.719	2.990	3.333	
	37	0.255	0.681	1.305	1.687	1.800	2.026	2.129	2.431	2.715	2.985	3.326	L
	38	0.255	0.681	1.304	1.686	1.799	2.024	2.127	2.429	2.712	2.980	3.319	
	39	0.255	0.681	1.304	1.685	1.798	2.023	2.125	2.426	2.708	2.976	3.313	
L	40	0.255	0.681	1.303	1.684	1.796	2.021	2.123	2.423	2.704	2.971	3.307	L
	60	0.254	0.679	1.296	1.671	1.781	2.000	2.099	2.390	2.660	2.915	3.232	L
	80	0.254	0.678	1.292	1.664	1.773	1.990	2.088	2.374	2.639	2.887	3.195	L
	100	0.254	0.677	1.290	1.660	1.769	1.984	2.081	2.364	2.626	2.871	3.174	
L	120	0.254	0.677	1.289	1.658	1.766	1.980	2.076	2.358	2.617	2.860	3.160	L
L	140	0.254	0.676	1.288	1.656	1.763	1.977	2.073	2.353	2.611	2.852	3.149	\perp
	160	0.254	0.676	1.287	1.654	1.762	1.975	2.071	2.350	2.607	2.847	3.142	1
	180	0.254	0.676	1.286	1.653	1.761	1.973	2.069	2.347	2.603	2.842	3.136	\perp
L	200	0.254	0.676	1.286	1.653	1.760	1.972	2.067	2.345	2.601	2.838	3.131	\perp
L	250	0.254	0.675	1.285	1.651	1.758	1.969	2.065	2.341	2.596	2.832	3.123	L
L	inf	0.253	0.674	1.282	1.645	1.751	1.960	2.054	2.326	2.576	2.807	3.090	L

- P-value: statistical significance
- We accept alternative hypothesis with a probability of p=0.000003961 to be wrongly accepted

- P-value: statistical significance
- We accept alternative hypothesis with a probability of p=0.000003961 to be wrongly accepted

- We consider p<0.05 (5%) as statistically significant
- That's a convention, there is no real reason for why that's better than p<0.04 or 0.06

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5

- d1<-subset (d, d\$YEAR==2001)
- t.test(d1\$Tarsus, mu=18.5, na.rm=TRUE)

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5

- d1<-subset(d, d\$YEAR==2001)
- t.test(d1\$Tarsus, mu=18.5, na.rm=TRUE)

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5

- $d1 \leftarrow subset(d, d$YEAR==2001)$
- t.test(d1\$Tarsus, mu=18.5, na.rm=TRUE)

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5

- d1<-subset (d, d\$YEAR==2001)
- t.test(d1\$Tarsus, mu=18.5, na.rm=TRUE)

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5

- d1<-subset(d, d\$YEAR==2001)
- t.test(d1\$Tarsus, mu=18.5, na.rm=TRUE)

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5

- d1<-subset(d, d\$YEAR==2001)
- t.test(d1\$Tarsus, mu=18.5, na.rm=TRUE)

= MEAN

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5

- d1<-subset (d, d\$YEAR==2001)
- t.test(d1\$Tarsus, mu=18.5, na.rm=TRUE)

= MEAN

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5

```
t.test(d1$Tarsus,mu=18.5,na.rm=TRUE)
```

One Sample t-test

```
data: d1$Tarsus
t = -4.7719, df = 167, p-value = 3.961e-06
alternative hypothesis: true mean is not equal to 18.5
95 percent confidence interval:
  18.05779 18.31662
sample estimates:
mean of x
  18.1872
```

- d1<-subset (d, d\$YEAR==2001)
- t.test(d1\$Tarsus, mu=18.5, na.rm=TRUE)

T-test – hypothesis te: data: d1\$Tarsus

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5

```
• d1<-subset (d, d$YEAR==2001)
```

```
• t.test(d1$Tarsus, mu=18.5, na.rm=TRUE)
```

```
> t.test(d1$Tarsus,mu=18.5,na.rm=TRUE)

One Sample t-test

data: d1$Tarsus
t = -4.7719, df = 167, p-value = 3.961e-06
alternative hypothesis: true mean is not equal to 18.5
95 percent confidence interval:
18.05779 18.31662
sample estimates:
mean of x
18.1872
>
```

T-test – hypothesis te data: d1\$Tarsus

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5
- d1<-subset (d, d\$YEAR==2001)
- t.test(d1\$Tarsus, mu=18.5, na.rm=TRUE)

```
One Sample t-test

data: d1$Tarsus

t = -4.7719, df = 167, -value = 3.961e-06

alternative hypothesis: true mean is not equal to 18.5

95 percent confidence interval:

18.05779 18.31662

sample estimates:

mean of x

18.1872

> |
```

> t.test(d1\$Tarsus,mu=18.5,na.rm=TRUE)

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5

```
18.1872
```

> t.test(d1\$Tarsus,mu=18.5,na.rm=TRUE)

t = -4.7719, df = 167, p-value = 3.961e-06

alternative hypothesis: true mean is not equal to 18.5

One Sample t-test

95 percent confidence interval:

18.05779 18.31662 sample estimates:

mean of x

- d1<-subset (d, d\$YEAR==2001)
- t.test(d1\$Tarsus, mu=18.5, na.rm=TRUE)

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5

```
One Sample t-test
<del>t = -4.7719, df = 167, p-value = 3.961e-06</del>
alternative hypothesis: true mean is not equal to 18.5
95 percent confidence interval:
 18.05779 18.31662
sample estimates:
mean of x
  18.1872
```

> t.test(d1\$Tarsus,mu=18.5,na.rm=TRUE)

- d1<-subset (d, d\$YEAR==2001)
- t.test(d1\$Tarsus, mu=18.5, na.rm=TRUE)

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5

```
• d1<-subset (d, d$YEAR==2001)
```

• t.test(d1\$Tarsus, mu=18.5, na.rm=TRUE)

```
> t.test(d1$Tarsus,mu=18.5,na.rm=TRUE)

One Sample t-test

data: d1$Tarsus
t = -4 7719, df = 167, p-value = 3.961e-86
alternative hypothesis: true mean is not equal to 18.3
95 percent confidence interval:
    18.05779    18.31662
sample estimates:
mean of x
    18.1872
>
```

- H0 = true mean is equal to 18.5

```
95 percent confidence interval:
                                              18,05779 18 31662
                                              sample estimates
• H1 = true mean is not equal to 18.5
                                             mean of x
                                               18.1872
• d1<-subset (d, d$YEAR==2001)
```

• t.test(d1\$Tarsus, mu=18.5, na.rm=TRUE)

> t.test(d1\$Tarsus,mu=18.5,na.rm=TRUE)

t = -4.7719, df = 167, p-value = 3.961e-06

alternative hypothesis: true mean is not equal to 18.5

One Sample t-test

- H0 = true mean is equal to 18.5
- H1 = true mean is not equal to 18.5

- d1<-subset (d, d\$YEAR==2001)
- t.test(d1\$Tarsus, mu=18.5, na.

```
> t.test(d1$Tarsus,mu=18.5,na.rm=TRUE)
```

One Sample t-test

>

data: d1\$Tarsus
t = -4.7719, df = 167, p-value = 3.961e-06
alternative hypothesis: true mean is not equal to 18.5
95 percent confidence interval:
 18.05779 18.31662
sample estimates:
mean of x
 18.1872

	Tarsus	Tarsus 2001
' N	1685	168
Standard error		0.07
Mean	18.52	18.19
~95%Cl Mean+- (2*SE)	DOES NOT SPAN 18.52	18.05 - 18.33

- H0 = males and females have equal mean
- H1 = male and female mean is not equal

- H0 = males and females have equal mean
- H1 = male and female mean is not equal

- Lesting if the difference is
- equal to testing for zero

- H0 = males and females have equal mean
- H1 = male and female mean is not equal

```
Welch Two Sample t-test

data: d1$1arsus by d1$5ex

t = 1.2257, df = 139.07, p-value = 0.2224

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:
-0.1012318  0.4314949

sample estimates:
mean in group 0 mean in group 1

18.27763  18.11250
```

> t.test(d1\$rarsus~d1\$Sex,ng_rm=TRUE)

- H0 = males and females have equal mean
- H1 = male and female mean is not equal

```
> t.test(d1$Tarsus~d1$Sex,na.rm=TRUE)

Welch Two Sample t-test

data: d1$Tarsus by d1$Sex
t = 1.2257, df = 139.07, p-value = 0.2224
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
   -0.1012318   0.4314949
sample estimates:
mean in group 0 mean in group 1
        18.27763   18.11250
```


- H0 = males and females have equal mean
- H1 = male and female mean is not equal

```
> t.test(d1$Tarsus~d1$Sex,na.rm=TRUE)
```

Welch Two Sample t-test

data: d1\$Tarsus by d1\$Sex
t = 1.2257. df = 139.07, p-value = 0.2224
alternative hypothesis: true difference in means is no

alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:

-0.1012318 0.4314949

sample estimates:

mean in group 0 mean in group 1 18.27763 18.11250

- H0 = males and females have equal mean
- H1 = male and female mean is not equal

```
Welch Two Sample t-test

data: d1$Tarsus by d1$Sex

t = 1.2257, df = 139.07, p-value = 0.2224

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:
  -0.1012318   0.4314949

sample estimates:

mean in group 0 mean in group 1
```

18.11250

> t.test(d1\$Tarsus~d1\$Sex,na.rm=TRUE)

18.27763

- H0 = males and females have equal mean
- H1 = male and female mean is not equal

- Lesting if the difference is
- equal to testing for zero

t-distribution: dependent on degrees of freedom

Convention – reality check

How to report results from a t-test?

Convention – reality check

- How to report results from a t-test?
- In text:

Male and female tarsi did not differ in size between male and females (mean: 18.18, two sample t-test: t=1.23, df=139, p<0.22).

```
(t_{df=139}=1.23, p<0.001).
```

Convention – reality check

- How to report results from a t-test?
- In text:

Male and female tarsi did not differ in size (mean: 18.18, two sample t-test: t=1.23, df=139, p=0.22).

 $(t_{df=139}=4.23, p<0.001).$

Ect

In a table

Variable Mean Ν Mean Ν t df p females±SE females males±SE males 0.22 18.27±0.09 18.11±0.13 1.23 139 **Tarsus** Wing

>

> t.test(d1\$Tarsus~d1\$Sex,na.rm=TRUE)

Welch Two Sample t-test

data: d1\$Tarsus by d1\$Sex
t = 1.2257, df = 139.07, p-value = 0.2224
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

-0.1012318 0.4314949

sample estimates:

mean in group 0 mean in group 1 18.27763 18.11250

DO IT NOW- HO 5

- Test if wing length in 2001 differs from the grand-total mean in wing length
- Test if male and female wing length differ in 2001
- Test if male and female wing length differ in the full dataset
- Report in a table, don't forget the N's!

Report in text

Exercise – discussion

- What did you notice happened when you took smaller samples?
- Why did the precision go down?
- How many sparrows do you have to sample to get the correct answer?