Игра «Кегли»

В ряд с некоторыми пропусками стоят n кеглей. Игроки по очереди вышибают кегли. За один ход можно вышибить любые одну или две рядом стоящих кегли. Выигрывает тот, кто вышиб последнюю кеглю.

Теория игры.

Каждой конфигурации кеглей G можно сопоставить число в двоичной системе счисления, Ним-значение N(G), по двум принципам:

- 1. если ряд кеглей G разделен уже выбитой кеглей (или несколькими) на два участка G_1 и G_2 , то $N(G)=N(G_1)\ XOR\ N(G_2)$
- 2. если из конфигурации G, выбив кегли согласно правилам, можно попасть в конфигурации G_1, G_2, \ldots, G_k , то $N(G) = \min\{t \mid t \geq 0, \forall i : t \neq N(G_i)\}$. Если словами, то N(G) равно наименьшему двоичному числу не совпадающему ни с одним $N(G_i)$.

Первый игрок выигрывает если и только если N(G) > 0.

 $\underline{\text{Табличка }N}(G)$ для n кеглей стоящих подряд без пропусков:

n	N(G)
0	000
1	001
2	010
3	011
4	001
5	100
6	011
7	010
8	001
9	100
10	010

 $\overline{\text{Например, рассмотрим позицию } (6,7,8)$, т.е. 6 кеглей в ряд, пропуск, 7 кеглей в ряд, пропуск, 8 кеглей в ряд. Её Ним-значение равно 011 XOR 010 XOR 001 = 000, т.е. это позиция проигрышная для ходящего первым.

Например, рассмотрим (4,5,6). Ним стоимость равна $001\ XOR\ 100\ XOR\ 011=110$. Это выигрышная позиция для первого. Если перевести $100\$ в 010, то стоимость станет равной нулю, а позиция — проигрышной для того, кто будет ходить вторым. Значит из ряда в 5 кеглей можно уничтожить 3 крайних, тогда в этом ряду останется две кегли, которые стоят 010.

Игра полностью решается, начиная с некоторого n для ряда из n кеглей величина N(G) начинает вести себя периодически.