Graph Theory and Complex Networks: An Introduction

Maarten van Steen

VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl

Chapter 04: Network traversal

Version: April 14, 2014

vrije Universiteit amsterdam

.

Contents

Chapter	Description
01: Introduction	History, background
02: Foundations	Basic terminology and properties of graphs
03: Extensions	Directed & weighted graphs, colorings
04: Network traversal	Walking through graphs (cf. traveling)
05: Trees	Graphs without cycles; routing algorithms
06: Network analysis	Basic metrics for analyzing large graphs
07: Random networks	Introduction modeling real-world networks
08: Computer networks	The Internet & WWW seen as a huge graph
09: Social networks	Communities seen as graphs

2/28

Network traversal	Network traversal
Introduction	
Algorithms that allow one to move or route through a network	
Euler tours: visit every edge exactly once.	
Hamilton cycles: visit every vertex exactly once.	

Question

Can one walk through the city and cross each of the seven bridges exactly once?

Euler tours	
Definition	
A tour of a graph G is a (u, v) -walk in which $u = v$ (i.e., it is a closed walk) and that traverses each edge in G . An Euler tour is a tour in which all edges are traversed exactly once.	
Related: Chinese postman problem	
So called because originally formulated by a Chinese mathematician.	
 Issue: Schedule the round of a postman such that (1) all streets are passed at least once and (2) the total traveled distance is minimal. 	
 Solution: Extend map of streets to a Eulerian graph with minimal weight. 	

Network traversal 4.1. Euler tours	Network traversal 4.1. Euler tours
Necessary and sufficient conditions	
,	
Theorem	
A connected graph G (with more than one vertex) has an Euler tour iff	
it has no vertices of odd degree.	
Droof: Fuler tour Amendal degree vertices	
Proof: Euler tour ⇒ no odd-degree vertices	
• Let <i>C</i> be an Euler tour starting/ending in vertex <i>v</i> . Let $u \neq v$	
$\bullet \ u \in V(C), \forall \langle w_{in}, u \rangle \in E(C) : \exists \langle u, w_{out} \rangle \in E(C).$	
• Every edge is traversed exactly once \Rightarrow unique pairing of edges $\langle w_{in}, u \rangle$ and $\langle u, w_{out} \rangle$	
$ullet$ $\delta(u)$ must be even.	
	· -
7/28	7/28

Network traversal 4.1. Euler tours	Network traversal 4.1. Euler tours
Necessary and sufficient conditions	
,	
Dreef, no add degree vertices a existe Fuley teur	
Proof: no odd-degree vertices ⇒ exists Euler tour	
 Select v and construct trail P until you need to cross an edge for 	
the second time. Let P end in w.	
• Assume $w \neq v \Rightarrow$ entered w once more than left it $\Rightarrow \delta(w)$ is odd.	
Contradiction. Hence <i>P</i> must end in <i>v</i> .	
• $E(P) = E(G) \Rightarrow$ done. Assume $E(P) \subset E(G)$:	
• Let $u \in V(P)$ be incident with edges not in P . Consider	
H = G[E(G) - E(P)].	
• $\forall x \in V(P)$: $\delta(x)$ is even $\Rightarrow \forall x \in V(H)$: $\delta(x)$ is even.	
• Let u lie in component $H' \Rightarrow$ construct similar largest trail P'	
• $P \leftarrow P \cup P'$ and repeat until $E(P) = E(G)$.	
The first open and E(r) = E(d).	

Fleury's algorithm	
Algorithm (Fleury)	-
Consider an Eulerian graph G.	
 Choose an arbitrary vertex v₀ ∈ V(G) and set W₀ = v₀. Assume that we have constructed a trail W_k = [v₀, e₁, v₁, e₂, v₂,, e_k, v_k]. Choose an edge e_{k+1} = ⟨v_k, v_{k+1}⟩ from E(G)\E(W_k) such that, preferably, e_{k+1} is not a cut edge of the induced subgraph G_k = G − E(W_k). 	
1 We now have a trail W_{k+1} . If there is no edge $e_{k+2} = \langle v_{k+1}, v_{k+2} \rangle$ to select from $E(G) \setminus E(W_{k+1})$, stop. Otherwise, repeat the previous step.	
9/28	

Network traversal 4.1. Euler tours	Network traversal 4.1. Euler tours
Postman: algorithm	
Consider a weighted, connected graph G with odd-degree vertices $V_{odd} = \{v_1, \dots, v_{2k}\}$ where $k \ge 1$.	
• For each pair of distinct odd-degree vertices v_i and v_j , find a minimum-weight (v_i, v_i) -path $P_{i,j}$.	
② Construct a weighted complete graph on $2k$ vertices in which vertex v_i and v_i are joined by an edge having weight $w(P_{i,j})$.	
3 Find the set E of k edges e_1, \ldots, e_k such that $\sum w(e_i)$ is minimal and no two edges are incident with the same vertex.	
For each edge $e ∈ E$, with $e = \langle v_i, v_j \rangle$, duplicate the edges of $P_{i,j}$ in graph G .	
13/28	13/28

Network traversal 4.2. Hamilton cycles	Network traversal 4.2. Hamilton cycles
Hamilton cycles	
Definition	
A Hamilton path of a connected graph <i>G</i> is a path that contains every	
vertex of G. A Hamilton cycle is a cycle containing every vertex of G.	
G is called Hamiltonian if it has a Hamilton cycle.	
Important note	
There is no known efficient algorithm to determine whether a graph is	
Hamiltonian. Yet, finding Hamilton cycles is important: Traveling	
Salesman Problem (TSP)	
·	,

TSP: Example

Drilling holes: Consider a board for electrical circuits. To fasten the components, we need to drill holes. Issue: Which track should the drilling machine follow?

Some formal properties

Theorem

G Hamiltonian $\Rightarrow \forall S \subset V(G), S \neq \emptyset : \omega(G - S) \leq |S|$.

Proof

• Let C be a Hamilton cycle \Rightarrow every vertex is visited exactly once $\Rightarrow \omega(C - S) \leq |S|$.

• $V(C) = V(G) \Rightarrow \omega(G - S) \leq \omega(C - S)$.

Some formal properties: Dirac

Theorem (Dirac)

G is simple with $n \ge 3$ vertices and $\forall v : \delta(v) \ge n/2 \Rightarrow G$ is Hamiltonian.

Proof: by induction

• For n = 3 vertices: trivial. Assume the theorem has been proven correct for graphs with $k \ge 3$ vertices.

• Let G have k + 1 vertices, constructed from any graph G^* with k vertices, by adding a vertex u and joining u to at least (k + 1)/2 other vertices.

• Let $C^* = [v_1, v_2, \dots, v_k]$ be a Hamilton cycle in G^* .

• Vertex u is joined to at least (k + 1)/2 vertices from C^* \Rightarrow there is at least a pair v_i and v_{i+1} that are adjacent in C^* • Construct a new cycle $C = [v_1, \dots, v_i, u, v_{i+1}, v_k]$

Finding Hamilton cycles

Brute force: Select a vertex v, and explore all possible Hamilton paths originating from v, and check whether they can be expanded to a cycle:

22

Network traversal

2. Hamilton cycles

4.2. Hamilton cycle

Posa: applying rotational transformations

Algorithm (Posa)

Randomly select $u \in V(G)$, forming the starting point of path P. Let last(P) = u denote the current end point of P.

- **1** Randomly select $v \in N(last(P))$, such that
 - Preferably, $v \notin V(P)$
 - If v ∈ V(P) ⇒ v has not been previously selected as neighbor of an end point before.

If no such vertex exists, stop.

2 If $v \notin V(P)$, set $P \leftarrow P + \langle last(P), v \rangle$.

Network traversal

4.2. Hamilton cycles

ton de tono de la constitución d

Posa: applying rotational transformations

Algorithm (Posa - cntd)

• If $v \in V(P)$, apply a **rotational transformation of** P using edge $\langle last(P), v \rangle$:

leading to P^* . If last(P^*) has not yet been end point for paths of the current length, $P \leftarrow P^*$.

1 V(P) = V(G) and $\langle u, last(P) \rangle \in E(G) \Rightarrow$ found a Hamilton cycle. Otherwise, continue with step 1.

24/28

24/28

71,000 cities, 4,566,563 edges \leq 0.024% longer than optimal one.

