Modern Circuit Placement

Yao-Wen Chang

張耀文

ywchang@ntu.edu.tw http://cc.ee.ntu.edu.tw/~ywchang National Taiwan University August 6, 2015

Modern Placement Challenges

- High complexity
 - Millions of objects to be placed
- Placement constraints
 - Preplaced blocks
 - Routability/density
 - Regions
- Mixed-size placement
 - Hundreds/thousands of large macros with millions of small standard cells
- Many more
 - 3D IC, datapath, FPGA, etc.

2.5M placeable objects mixed-size design

Macros have revolutionized SoC design

Hot Topic Ranking from EDApedia (IEEE CEDA)

More than 20 new academic placers developed since 2005!!

Topic \$	Importance \$	Difficulty \$	Well-defined ♦	Average \$
Wirelength-driven Standard-Cell Placement	4.60	4.40	3.80	4.27
Global Routing	4.00	4.00	4.50	4.17
Clock Network Synthesis	3.75	4.00	4.50	4.08
Through Silicon Via and Cell Co-Placement	3.50	4.00	3.60	3.70
Power Gating	4.00	3.00	4.00	3.67
Partitioning	3.33	3.50	3.33	3.39
3DIC Thermal Management	3.33	3.67	3.00	3.33
Stochastic Behavioral Modeling	4.00	3.00	3.00	3.33
Static Timing Analysis	3.00	2.00	4.00	3.00
Multi-Voltage Mode Clock Skew Minimization	2.50	3.50	2.50	2.83

Recent contests

Outline

NTUplace3/4 Placement Flow

• Chen et al., "A high quality **analytical placer** considering preplaced blocks and density constraint," ICCAD-06 (TCAD-08)

Global Placement

- Placement flow
 - Global placement
 - Multilevel framework
 - Analytical formulation with a nonlinear objective function
 - Smoothing techniques for preplaced blocks
 - Overlap removal for density control
 - Many more....
 - Legalization
 - Detailed placement

Multilevel Global Placement

Cluster cells based on connectivity/area to reduce the problem size.

Iteratively decluster the clusters and further refine the placement

Analytical Placement Model

- Analytical placement during declustering
- Global placement problem (allow overlaps)

min
$$W(x, y)$$

s.t. $D_b(x, y) \le M_b$

Minimize wirelength D_b : density for bin b M_b : max density for bin b

Relax the constraints into the objective function

min W(x, y) +
$$\lambda \Sigma (D_b(x, y) - M_b)^2$$

- Apply gradient search to solve it, which needs a smooth & differentiable function
- Increase λ gradually to reduce the density penalty to find cell positions (x, y) with desired wirelength

Gradient Solver

min f(x)

[Gradient Solver]

x₀ ← initial value Repeat until convergence

$$x_{i+1} = x_i - f'(x)|_{x=xi}$$
 * stepsize

Function f must be **smooth and differentiable** to apply the gradient solver.

Two Ingredients in Analytical Formulation

Both functions must be smooth & differentiable!!

Our Weighted-Average (WA) Model

$$W_{WA}(\mathbf{x}, \mathbf{y}) = \sum_{e \in E} \left(\frac{\sum_{v_i \in e} x_i \exp(x_i / \gamma)}{\sum_{v_i \in e} \exp(x_i / \gamma)} - \frac{\sum_{v_i \in e} x_i \exp(-x_i / \gamma)}{\sum_{v_i \in e} \exp(-x_i / \gamma)} + \frac{\sum_{v_i \in e} y_i \exp(y_i / \gamma)}{\sum_{v_i \in e} \exp(y_i / \gamma)} - \frac{\sum_{v_i \in e} y_i \exp(-y_i / \gamma)}{\sum_{v_i \in e} \exp(-y_i / \gamma)} \right)$$

- 1st model that outperforms LSE theoretically & empirically [Hsu, Chang, Balabanov, DAC-11, TCAD-13; US Patent, 2014]
- Weighted average of a set of x coordinates, \mathbf{x}_e , of a net e:
 - $X(\mathbf{x}_e)$ can approximate the maximum value of \mathbf{x}_e by setting the weight function of x_i : $F(\mathbf{x}_i) = \exp(\mathbf{x}_i/\gamma)$, a fast growing function

$$X(\mathbf{x}_{e}) = \frac{\sum_{v_{i} \in e} x_{i} F(x_{i})}{\sum_{v_{i} \in e} F(x_{i})} \quad \max_{\mathbf{x}_{3} \dots \mathbf{x}_{3} \dots \mathbf{x}_{i} \sum_{v_{i} \in e} x_{i} \exp(x_{i}/\gamma)} \times X_{\max}(\mathbf{x}_{e}) = \frac{\sum_{v_{i} \in e} x_{i} \exp(x_{i}/\gamma)}{\sum_{v_{i} \in e} \exp(x_{i}/\gamma)}$$

- Is an effective smooth, differentiable function for HPWL approximation
- Approaches exact HPWL when $\gamma \rightarrow 0 \text{ Å}$

Popular Wirelength Models

$$\begin{aligned} \text{HPWL} \qquad W(\mathbf{x},\mathbf{y}) &= \sum_{\text{net } e} \left(\max_{v_i,v_j \in e} |x_i - x_j| + \max_{v_i,v_j \in e} |y_i - y_j| \right) \\ \text{quadratic} \qquad \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \gamma_{ij} [(x_i - x_j)^2 + (y_i - y_j)^2] \\ \text{Log-sum-exp} \qquad \gamma \sum_{e \in E} (\log \sum_{v_k \in e} \exp(x_k/\gamma) + \log \sum_{v_k \in e} \exp(-x_k/\gamma) + \log \sum_{v_k \in e} \exp(-y_k/\gamma)) \\ \text{Log-norm} \qquad \sum_{e \in E} ((\sum_{v_k \in e} x_k^p)^{\frac{1}{p}} - (\sum_{v_k \in e} x_k^{-p})^{-\frac{1}{p}} + (\sum_{v_k \in e} y_k^p)^{\frac{1}{p}} - (\sum_{v_k \in e} y_k^{-p})^{-\frac{1}{p}}) \\ \text{CHKS} \qquad \qquad CHKS(x_1, x_2) &= \frac{\sqrt{(x_1 - x_2)^2 + t^2} + x_1 + x_2}{2}, \\ \text{Weighted-average} \qquad \sum_{e \in E} \left(\frac{\sum_{v_i \in e} x_i \exp(x_i/\gamma)}{\sum_{v_i \in e} \exp(x_i/\gamma)} - \frac{\sum_{v_i \in e} x_i \exp(-x_i/\gamma)}{\sum_{v_i \in e} \exp(-x_i/\gamma)} + \frac{\sum_{v_i \in e} y_i \exp(y_i/\gamma)}{\sum_{v_i \in e} \exp(y_i/\gamma)} - \frac{\sum_{v_i \in e} y_i \exp(-y_i/\gamma)}{\sum_{v_i \in e} \exp(-y_i/\gamma)} \right). \end{aligned}$$

Popular Wirelength Model Comparisons

Theoretical Comparisons

Theorem: The estimation error bound of the WA model is

$$0 \le \varepsilon_{WA}(\mathbf{x}_e) \le \frac{\gamma(x_{\text{max}} - x_{\text{min}})}{1 + e^{(x_{\text{max}} - x_{\text{min}})} / n}.$$

 $\mathbf{x}_e = \{x_i | v_i \in e\}$: a set \mathbf{x} of coordinates associated with net e

 Theorem: The error upper bound of the WA model is smaller than that of the LSE model:

$$\varepsilon_{WA}(\mathbf{x}_e) \le \varepsilon_{LSE}(\mathbf{x}_e) = \gamma \ln n$$

Wirelength Model Comparison

- Integrated both the LSE and WA models into NTUplace3, a leading academic placer
- Used ISPD-06 placement benchmark circuits
 #Cells: 330K—2481K, #Nets: 338K—2636K
- The WA model can achieve shorter wirelength than LSE

Wirelength Model	Wirelength	CPU Time
LSE	1.000	1.000
WA	0.980	1.066

The results show that WA outperforms LSE consistently

Recent works from other groups show the same effects!!

Our Density Smoothing: Sigmoid Function

- Is an effective smooth & differentiable approximation for the bin density function
- Approximates exact 0-1 logistic function when $\alpha \rightarrow 0$

Cell Spreading During Global Placement

Pre-defined density makes cell spreading harder.

Density Map with Preplaced Blocks

Two major problems

- (2) the density map is not smooth
- some densities are too high to spread cells over the mountains/high plateaus

Bell-Shaped Block Smoothing??

- (2) mountain heights are quite different
- (2) there are valleys among mountains
- → might mis-guide the cells to be placed in the valleys (overlaps!!)

Preplaced Block Smoothing

Outline

Methods on Mixed-Size Placement

Type 1: Constructive approach

- Combine floorplanning and placement
- Capo, PATOMA, FLOP

Type 2: Three-stage approach

- Perform (1) prototyping, (2) macro placement, and (3) cell placement
- MP-tree [DAC'07], CG, CP-tree [DAC'14], ePlace-MS [TCAD, 2015]

Type 3: Unified approach

- Place macro and cell simultaneously
- mPG-MS, APlace, mPL, UPlace, NTUplace3 [ICCAD'10], etc.

Three-Stage Approach

Macro Placement

Input

 An initial placement that considers both macros and standard cells and optimizes a simplified cost metric (e.g., wirelength)

Objectives

- Remove all overlaps between macros
- Find macro position and orientation
- Minimize macro displacement

Popular approaches

- Packing-based method: MP-tree[DAC'07, TCAD'08], CP-tree [DAC'14]
- Constraint graph-based method: CG [ICCAD'08]

But What If %Macro Area Is Not High?

All macros will be packed together!!

Chip outline

Multi-Packing (MP) Tree Representation

Generalized MP-Trees

- Working on four independent packing trees may not get a desired solution
 - Lack global interactions among different subproblems
- Key: Combine packing trees packing to different corners
 - Chen et al., "MP-trees: A packing-based macro placement algorithm for modern mixed-size designs," DAC'07 & TCAD'08
- Use the right skewed branch for easier implementation

MP-tree Macro Placement Example

- Use four packing subtrees to handle a rectangular chip
- Applies to a placement region with any number of corners

Operations on MP-tree

- Operations for iterative improvement or simulated annealing to perturb one MP-tree to another
 - Op1: Rotate a macro/cluster
 - Op2: Resize a cluster
 - Op3: Move a node to another place
 - Op4: Swap two nodes
 - Op5: Swap two packing subtrees

Evaluation of a Macro Placement

- Macro placement area
- Wirelength
- Macro displacement

Outline

Potential Research Directions

Scalability

- Faster differentiable wirelength model?
- Multi-level mixed-size placement

Multi-dimension

- Routability-driven placement
- Timing-driven placement
- Cosynthesis with power/ground & clock networks

Heterogeneity

- Datapath-intensive mixed-size design
- Analytical FPGA placement

Technology

Many more!!

- 3D IC placement
- Manufacturability-aware placement
- Reliability-aware placement: FinFET self-heating, stress

1. Faster Differentiable Wirelength Model

Golden: Half-perimeter wirelength (HPWL) model

$$W(\mathbf{x}, \mathbf{y}) = \sum_{e \in E} (\max_{v_i, v_j \in e} |x_i - x_j| + \max_{v_i, v_j \in e} |y_i - y_j|)$$

 Key: Faster smooth & differentiable approximation for the max function??

$$W_{LSE}(\mathbf{x}, \mathbf{y}) = \gamma \sum_{e \in E} \left(\ln \sum_{v_k \in e} \exp(x_k / \gamma) + \ln \sum_{v_k \in e} \exp(-x_k / \gamma) + \ln \sum_{v_k \in e} \exp(y_k / \gamma) + \ln \sum_{v_k \in e} \exp(-y_k / \gamma) \right)$$

$$W_{WA}(\mathbf{x}, \mathbf{y}) = \sum_{e \in E} \left(\frac{\sum_{v_i \in e} x_i \exp(x_i / \gamma)}{\sum_{v_i \in e} \exp(x_i / \gamma)} - \frac{\sum_{v_i \in e} x_i \exp(-x_i / \gamma)}{\sum_{v_i \in e} \exp(-x_i / \gamma)} + \frac{\sum_{v_i \in e} y_i \exp(y_i / \gamma)}{\sum_{v_i \in e} \exp(y_i / \gamma)} - \frac{\sum_{v_i \in e} y_i \exp(-y_i / \gamma)}{\sum_{v_i \in e} \exp(-y_i / \gamma)} \right)$$

2. Large-Scale Mixed-Size Placement

- Still have a long way to go for mixed-size placement!!
 - Find best trade-offs among existing approaches?
 - Need to consider many other placement constraints
 - Could be multiple mixed-size domains: recursive MP-trees? Multi-domain unified formulation?

3. Routability-Driven Mixed-Size Placement

 Hsu et. al, "NTUplace4h: A novel routability-driven placement algorithm for hierarchical mixed-size circuit designs," IEEE TCAD, 2014

Routability-Driven Wirelength-Driven

DAC'12 & ICCAD'13 & ISPD'15 Contests!!

4. Timing-Driven Placement

- Timing does not always co-relate with wirelength well
 - Path-based vs. net-based methods

Net based method may not optimize timing effectively

timing paths increases exponentially

Bézier curve based timing optimization

Source: http://en.wikipedia.org/wiki/Bézier curve

5. Co-synthesis w. Power/Ground/Clock Networks

- Chuang, Lee, and Chang, "Voltage-drop aware analytical placement by global power spreading for mixed-size circuit designs," ICCAD'09, TCAD'11
- Chuang, Lin, Ho, Chang, and Marculescu, "PRICE: Power reduction by placement and clock-network co-synthesis for pulsed-latch designs," ICCAD-2011.

6. Datepath-Intensive Mixed-Size Placement

- Extract datapaths, and then place cells, macros, and datapath with regular structure
- Keys: regular/discrete structure, functional stage alignment, high-degree nets (inaccurate HPWL), etc.

7. Analytical FPGA Placement

 Shift from combinatorial methods and simulated annealing to analytical placement [DAC'13, ICCAD'14, DAC'15]

 Keys: heterogeneous logic structure, segmented wiring, regular (discrete) structure, high-degree nets (inaccurate

Segmented wiring (HPWL is not accurate!!)

8. Thermal-aware 3D IC Placement

- Problem: Place cells into multiple tiers (dies) to optimize wirelength
- Important issues: reliability, thermal, routability, mixedsize design, etc.

9: Manufacturability: Sub-wavelength Lithography

Manufacturability-Aware Placement

- Layout density for better CMP & EUV flare control
 - Control wire density for uniformity [Chen et al., ISPD-08;
 Liu et al., DAC'14]
- Multiple-pattering-aware placement & routing

10. STI Stress / FinFET Self-heating Aware Placement

- Shallow trench isolation (STI) is the mainstream CMOS isolation technique for advanced circuit design
 - By exploiting STI wells between device active regions, STI stress can effectively improve transistor performance
 - STI width (STIW) and length of diffusion (LOD)

- MOB_{L,R} = γ [(LOD/2)^α + β /STIW_{L,R}] [Kahng et al., ICCAD'07]
 - If STIW↑ or LOD↓, then pMOS mobility ↑, but nMOS mobility ↓
- Problem: place cells to optimize STIW between neighboring cells for better performance