Chapter 2 Transmission Fundamentals

Mohammed Abdalla Youssif

Electromagnetic Signal

- Function of time
- Can also be expressed as a function of frequency
 - Signal consists of components of different frequencies.

Time-Domain Concepts

- Analog signal: signal intensity varies in a smooth fashion over time
 - No breaks or discontinuities
- **Digital signal:** signal intensity maintains a constant level for some period of time and then changes to another constant level.
- **Periodic Signal:** analog or digital signal pattern that repeats over the time.

$$s(t+T) = s(t) - 4 < t < + 4$$

where T is the period of the signal

Time-Domain Concepts

- Aperiodic Signal: analog or digital signal pattern that does not repeat over the time
- Peak amplitude (A): a maximum value or strength of the signal over time, typically measured in volts.
- **Frequency(F):** Rate, in cycles per second, or Hertz(Hz) at which the signal repeats.

Time-Domain Concepts

- Period (T): amount of time it takes for one repetition of the signal T=1/F
- **Phase**(φ) –measure of the relative position in time within a single period of a signal.
- Wavelength(λ) distance occupied by a single cycle of the signal.
 - Or, the distance between two points of corresponding phase of two consecutive cycles.

Periodic Signal Example

Sine Wave Parameters

General Sine Wave

$$s(t) = A \sin(2\pi f t + \phi)$$

 The next figure shows the effect of varying each of the three parameters (amplitude, frequency, phase):

- (a) $A = 1, f = 1 \text{ Hz}, \phi = 0$; thus T = 1s
- (b) Reduced peak amplitude; A=0.5
- (c) Increased frequency; f = 2, thus $T = \frac{1}{2}$
- (d) Phase shift; $\phi = \pi/4$ radians (45 degrees)

Note:

 $2\pi \text{ radians} = 360^{\circ} = 1 \text{ period}$

• **Parameters**: Amplitude =1, Frequency=1, phase=0

$$s(t) = A \sin \left(2 ft + \phi\right)$$

• Parameters: Amplitude =0.5, Frequency=1, phase=0

$$s(t) = A \sin \left(2 ft + \phi\right)$$

• **Parameters**: Amplitude =1, Frequency=2, phase=0

$$s(t) = A \sin \left(2 ft + \phi\right)$$

• Parameters: Amplitude =1, Frequency=2, phase=0

$$s(t) = A \sin \left(2 ft + \phi\right)$$

Time VS. Distance

- When the horizontal axis is <u>time</u>, as shown in the pervious figure, the graph displays the value of a signal at a given point in space as a function of time.
- With horizontal axis in <u>space</u>, graph displays the value of a signal at a given point in time as function of distance
 - At a particular instant of time, the intensity of the signal varies as a function of distance from the source.

Frequency-Domain Concepts

- Fundamental frequency when all frequency components of a signal are integer multiples of one frequency, it's refereed to as the fundamental frequency
- Spectrum range of frequencies that a signal contains
- Absolute bandwidth- width of the spectrum of signal
- Effective bandwidth (or just bandwidth) narrow band of frequencies that most of signal's energy is contained in.

Frequency-Domain Concepts

- Any electromagnetic signal can be shown to consists of a collection of periodic analog signals (sine waves) at different amplitudes, frequencies, and phases
- The period of the total signal is equal to the period of the fundamental frequency.

Data Communication Terms

- Data entities that convey meaning, or information
- **Signals** electric or electromagnetic representations of data., Signals can be analog or digital.
 - Examples of analog data: video and audio
 - Examples of digital data : text
- Transmission communication of data by the propagation and processing of signals

Analog signals

- A continuously varying electromagnetic wave that may be propagated over a variety of media, depending on the frequency.
- Analog signals can propagate analog and digital data

Analog signals

Digital signals

- A sequence of voltage pulses that may be transmitted over a copper wire medium
- Generally cheaper than analog signaling
- Less susceptible to noise interference
- Suffer more from attenuation
- Digital signals can propagate analog and digital data.

Digital signals

Reasons for Choosing Data and Signal Combinations

Digital data, digital signal

 Equipment for encoding is less expensive than digital-toanalog equipment

Analog data, digital signal

Conversion permits use of modern digital transmission and switching equipment

Digital data, analog signal

- Some transmission media will only propagate analog signals
- Examples include optical fiber and satellite

Analog data, analog signal

Analog data easily converted to analog signal

Analog Transmission

- Transmit analog signals without regard to content
- Attenuation limits length of transmission link
- Cascade amplifiers boost signal's energy for longer distances but cause distortion
 - Analog data can tolerate distortion
 - Introduces errors in digital data.

Digital Transmission

- Concerned with the content of the signal
- Attenuation endangers integrity of data
- Digital Signal
 - Repeaters achieve greater distance
 - Repeaters recover the signal and retransmit
- Analog signal carrying digital data
 - Retransmission device recovers the digital data from analog signal
 - Generate new, clean analog signal.

About Channel Capacity

- Impairments, such as noise, limit data rate that can be achieved
- For digital data, to what extent do impairments limit data rate?
- Channel Capacity the maximum rate at which data can be transmitted over a given communication path, or channel, under given conditions

- Data rate rate at which data can be communicated (bps)
- Bandwidth the bandwidth of the transmitted signal as constrained by the transmitter and the nature of the transmission medium (Hertz)
- Noise average level of noise over the communications path
- Error rate rate at which errors occur
 - Error = transmit 1 and receive 0; transmit 0 and receive 1

Nyquist Bandwidth

- For binary signals (two voltage levels)
 - C = 2B
- With multilevel signaling
 - $C = 2B \log_2 M$
 - M = number of discrete signal or voltage levels

Signal-to-Noise Ratio

- Ratio of the power in a signal to the power contained in the noise that's present at a particular point in the transmission
 - Typically measured at a receiver
 - Signal-to-noise ratio (SNR, or S/N)

$$(SNR)_{dB} = 10 \log_{10} \frac{\text{signal power}}{.}$$

- $(SNR)_{dB} = 10 \log_{10} \frac{\text{signal power}}{\text{noise power}}$ A high SNR means a high-quality signal, low number of required intermediate repeaters
- SNR sets upper bound on achievable data rate

Shannon Capacity Formula

Equation:

$$C = B \log_2(1 + SNR)$$

- Represents theoretical maximum that can be achieved
- In practice, only much lower rates achieved
 - Formula assumes white noise (thermal noise)
 - Impulse noise is not accounted for
 - Attenuation distortion or delay distortion not accounted for

Example of Nyquist and Shannon Formulations

Spectrum of a channel between 3 MHz and 4 MHz; $SNR_{dB} = 24 \text{ dB}$

$$B = 4 \text{ MHz} - 3 \text{ MHz} = 1 \text{ MHz}$$

 $SNR_{dB} = 24 \text{ dB} = 10 \log_{10}(SNR)$
 $SNR = 251$

Using Shannon's formula

$$C = 10^6 \times \log_2(1 + 251) \approx 10^6 \times 8 = 8$$
Mbps

Example of Nyquist and Shannon Formulations

How many signaling levels are required?

$$C = 2B \log_2 M$$

$$8 \times 10^6 = 2 \times (10^6) \times \log_2 M$$

$$4 = \log_2 M$$

$$M = 16$$

Classifications of Transmission Media

- Transmission Medium
 - Physical path between transmitter and receiver
- Guided Media
 - Waves are guided along a solid medium
 - E.g., copper twisted pair, copper coaxial cable, optical fiber
- Unguided Media
 - Provides means of transmission but does not guide electromagnetic signals
 - Usually referred to as wireless transmission
 - E.g., atmosphere, outer space

Unguided Media

- Transmission and reception are achieved by means of an antenna
- Configurations for wireless transmission
 - Directional
 - Omnidirectional

General Frequency Ranges

- Microwave frequency range
 - 1 GHz to 40 GHz
 - Directional beams possible
 - Suitable for point-to-point transmission
 - Used for satellite communications
- Radio frequency range
 - 30 MHz to 1 GHz
 - Suitable for omnidirectional applications
- Infrared frequency range
 - Roughly, 3x10¹¹ to 2x10¹² Hz
 - Useful in local point-to-point multipoint applications within confined areas

Terrestrial Microwave

- Description of common microwave antenna
 - Parabolic "dish", 3 m in diameter
 - Fixed rigidly and focuses a narrow beam
 - Achieves line-of-sight transmission to receiving antenna
 - Located at substantial heights above ground level
- Applications
 - Long haul telecommunications service
 - Short point-to-point links between buildings

Satellite Microwave

- Description of communication satellite
 - Microwave relay station
 - Used to link two or more ground-based microwave transmitter/receivers
 - Receives transmissions on one frequency band (uplink), amplifies or repeats the signal, and transmits it on another frequency (downlink)
- Applications
 - Television distribution
 - Long-distance telephone transmission
 - Private business networks

Multiplexing

- Capacity of transmission medium usually exceeds capacity required for transmission of a single signal
- Multiplexing carrying multiple signals on a single medium
 - More efficient use of transmission medium

Multiplexing

Reasons for Widespread Use of Multiplexing

- Cost per kbps of transmission facility declines with an increase in the data rate
- Cost of transmission and receiving equipment declines with increased data rate
- Most individual data communicating devices require relatively modest data rate support

Multiplexing Techniques

- Frequency-division multiplexing (FDM)
 - Takes advantage of the fact that the useful bandwidth of the medium exceeds the required bandwidth of a given signal
- Time-division multiplexing (TDM)
 - Takes advantage of the fact that the achievable bit rate of the medium exceeds the required data rate of a digital signal

Frequency-division Multiplexing

Time-division Multiplexing

Questions

