HW7 Multiple Regression Yuefei Chen

Yuefei Chen

2024-04-12

The first part: Rent house Data

Model development

Running the following code, we build a multiple regression model based on rent house data. Its independent variables "area", "rooms", "bathroom", "parking spaces", "hoa", "property tax", "fire insurance". The dependent variable is "rent amount".

```
library(readr)
house data <- read csv("Dataset/Rent House random 200 multi regression.csv")
## Rows: 200 Columns: 11
## -- Column specification --------
## Delimiter: ","
## chr (3): floor, animal, furniture
## dbl (8): area, rooms, bathroom, parking_spaces, hoa, rent_amount, property_t...
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
house_data <- house_data[, c(1:4, 6:11)]</pre>
str(house_data)
## tibble [200 x 10] (S3: tbl_df/tbl/data.frame)
              : num [1:200] 120 45 50 35 204 177 15 70 180 180 ...
                 : num [1:200] 3 1 2 1 4 3 1 2 3 4 ...
## $ rooms
## $ bathroom : num [1:200] 4 1 1 1 4 3 1 2 3 4 ...
## $ parking_spaces: num [1:200] 3 1 1 0 2 4 0 1 2 2 ...
## $ animal : chr [1:200] "acept" "not acept" "acept" "acept" ...
                  : chr [1:200] "not furnished" "furnished" "not furnished" "not furnished" ...
## $ furniture
                  : num [1:200] 1350 3000 226 260 0 2700 0 1800 700 2600 ...
## $ hoa
## $ rent amount : num [1:200] 5600 5520 750 1400 3440 6900 1200 4200 2700 2000 ...
## $ property_tax : num [1:200] 560 0 0 0 100 509 0 250 175 584 ...
## $ fire_insurance: num [1:200] 71 70 10 18 62 89 16 55 40 26 ...
reg_data <- house_data[,-c(5,6)]</pre>
fit <- lm(rent_amount~area+rooms+bathroom+parking_spaces+hoa+property_tax+fire_insurance, data=reg_data
```

```
##
## Call:
  lm(formula = rent amount ~ area + rooms + bathroom + parking spaces +
##
##
       hoa + property_tax + fire_insurance, data = reg_data)
##
##
  Coefficients:
                                                           bathroom parking_spaces
##
      (Intercept)
                                              rooms
                              area
                                                           66.10065
##
         54.01250
                          -2.49739
                                          -67.89201
                                                                            33.40648
##
                      property_tax fire_insurance
              hoa
##
          0.32035
                          -0.03111
                                          73.32810
```

Model Acceptance

In the summary of the model, we focus on R squared value, coefficients, and P-value of each coefficient. The R-squared value is 0.9835 and Adjust R-squared value is 0.9829. It shows there is a high proportion of variance in the dependent variable can be explained by the independent variables. The result of coefficient is shown in the following table. P-value result shows that the "area", "hoa", and "fire insurance" are variables which have a significant relationship with the "rent amount" variable. In addition, we use anova to compare full model and reduced model. The result shows that only keeping "area", "hoa", and "fire insurance" does not improve the model performance. Therefore, we use stepAIC to find an optimal model. It contains "area", "rooms", "bathroom", "hoa", "fire insurance".

summary(fit)

```
##
## Call:
  lm(formula = rent_amount ~ area + rooms + bathroom + parking_spaces +
##
##
      hoa + property_tax + fire_insurance, data = reg_data)
##
## Residuals:
##
      Min
                10 Median
                                30
                                       Max
## -2170.3 -126.8
                      -9.6
                             109.1
                                   4011.7
##
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                   54.01250
                              76.47149
                                        0.706 0.48085
## area
                   -2.49739
                               0.63604 -3.926 0.00012 ***
## rooms
                  -67.89201
                              41.35463
                                        -1.642
                                                0.10229
## bathroom
                   66.10065
                                         1.468 0.14383
                              45.03771
                   33.40648
                              35.91696
                                         0.930 0.35349
## parking_spaces
## hoa
                    0.32035
                               0.03715
                                         8.623 2.42e-15
                                        -0.733
## property_tax
                   -0.03111
                               0.04246
                                               0.46466
                  73.32810
                               1.23463
                                       59.393
                                               < 2e-16 ***
## fire_insurance
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 453.1 on 192 degrees of freedom
## Multiple R-squared: 0.9835, Adjusted R-squared: 0.9829
## F-statistic: 1634 on 7 and 192 DF, p-value: < 2.2e-16
coefficients(fit)
```

```
##
      54.0124954
                   -2.4973875 -67.8920130
                                                 66.1006537
                                                               33.4064754
##
             hoa property_tax fire_insurance
##
       0.3203464 -0.0311120 73.3281041
library(MASS)
fit1 <- fit
fit2 <- lm(rent_amount ~ area + hoa + fire_insurance, data = reg_data)</pre>
# compare models
anova(fit1, fit2)
## Analysis of Variance Table
##
## Model 1: rent_amount ~ area + rooms + bathroom + parking_spaces + hoa +
      property_tax + fire_insurance
## Model 2: rent_amount ~ area + hoa + fire_insurance
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1
      192 39425392
## 2
       196 40564017 -4 -1138625 1.3863 0.2402
step <- stepAIC(fit, direction="both")</pre>
## Start: AIC=2454.32
## rent amount ~ area + rooms + bathroom + parking spaces + hoa +
      property_tax + fire_insurance
##
##
                  Df Sum of Sq
                                    RSS
                                           AIC
                 1 110224 39535616 2452.9
## - property_tax
## - parking_spaces 1 177638 39603031 2453.2
## <none>
                                39425392 2454.3
## - bathroom 1 442317 39867709 2454.6
                        553432 39978824 2455.1
## - rooms
                   1
## - area
                  1 3165776 42591168 2467.8
## - hoa
                  1 15268698 54694090 2517.8
## - fire_insurance 1 724340651 763766043 3045.1
## Step: AIC=2452.88
## rent_amount ~ area + rooms + bathroom + parking_spaces + hoa +
      fire_insurance
##
##
##
                  Df Sum of Sq
                                    RSS
                                           AIC
## - parking_spaces 1 145498 39681115 2451.6
                                39535616 2452.9
## <none>
## - bathroom 1 432197 39967813 2453.1
## - rooms
                  1 508595 40044211 2453.4
## + property_tax 1 110224 39425392 2454.3
## - area
                   1 3974795 43510411 2470.0
## - hoa
                   1 16784818 56320434 2521.7
## - fire_insurance 1 787848804 827384420 3059.1
##
## Step: AIC=2451.61
## rent_amount ~ area + rooms + bathroom + hoa + fire_insurance
##
                  Df Sum of Sq
                                    RSS
                                           AIC
```

```
## <none>
                                   39681115 2451.6
                                   40205274 2452.2
## - rooms
                           524159
                      1
## + parking spaces
                     1
                           145498
                                   39535616 2452.9
## - bathroom
                           657291
                                   40338406 2452.9
                      1
## + property_tax
                      1
                            78084
                                   39603031 2453.2
## - area
                      1
                          3903457
                                   43584571 2468.4
                         17055295
## - hoa
                      1
                                   56736410 2521.1
## - fire insurance
                    1 788294198 827975313 3057.2
fit3 <- lm(rent_amount ~ area + rooms + bathroom + hoa + fire_insurance, data = reg_data)
```

Residual Analysis

Two plots are used in these residual analysis. The first plot is QQ plot. We can conclude that most of residual points are located in a straight line. It satisfies normal distribution. Similarly, the componet + residual plots tells that each variable satisfies the normal distribution. The regression can be regarded as normal distribution.

confint(fit3,level=0.95)

```
##
                          2.5 %
                                     97.5 %
## (Intercept)
                    -95.5543465 203.9133827
                     -3.6077450
## area
                                 -1.3634035
## rooms
                   -146.6132114
                                 15.2417940
## bathroom
                     -7.6949583 161.2625040
                      0.2443655
                                  0.3790055
## fire_insurance
                     71.2507593
                                 75.9265335
```

fitted(fit3)

```
##
                          2
                                      3
                                                  4
                                                               5
                                                                           6
                                                                                       7
             1
##
    5511.5579
                6039.6885
                              681.6406
                                         1383.9164
                                                      4154.0107
                                                                  7038.4675
                                                                              1205.4123
                                                                          13
##
             8
                          9
                                     10
                                                             12
                                                 11
##
    4510.7949
                2801.7961
                             2374.8555
                                         1061.6334
                                                      5011.4386
                                                                  2624.1868
                                                                               1352.2636
                                                              19
                                                                          20
##
            15
                        16
                                     17
                                                 18
                                                                                      21
                  825.6313
                             4895.2536
                                         2455.6685
##
    1127.6547
                                                      5272.1779
                                                                  1097.7289
                                                                               834.4511
            22
                        23
                                     24
                                                 25
                                                              26
                                                                          27
##
                                                                                      28
##
    4490.7649
                6566.8034
                            10807.7098
                                         3097.4758
                                                      1250.5806
                                                                  1690.6988
                                                                               922.5070
##
            29
                        30
                                     31
                                                 32
                                                              33
                                                                          34
                                                                                      35
##
    1290.5269
                8693.0235
                             2028.7218
                                         4643.2566
                                                      4360.6289
                                                                  1458.3538
                                                                              3767.4580
##
            36
                        37
                                     38
                                                 39
                                                              40
                                                                          41
##
    1868.4123 15301.4530
                              816.2507
                                         1651.3093
                                                      2004.1224
                                                                  1270.5657
                                                                              7457.7811
##
            43
                        44
                                     45
                                                 46
                                                              47
                                                                          48
                                                                                      49
##
    3449.8608
                3627.2732
                             3423.9529
                                         3802.9174
                                                    14342.9920
                                                                  1255.3540
                                                                             17677.9807
##
            50
                        51
                                     52
                                                 53
                                                              54
                                                                          55
    1401.5203
                1750.0622
                             2018.9243
                                         1774.8381
                                                      5446.8039
                                                                  2433.8874
##
                                                                              1133.8417
##
            57
                        58
                                     59
                                                 60
                                                                          62
                                                              61
                1339.1832
                                         2091.9363
                                                       851.7560
                                                                  3448.6622
                              935.8842
##
    1313.4446
                                                                              6055.1788
##
            64
                        65
                                     66
                                                              68
                                                                          69
                                                                                      70
                                                 67
##
    2247.1027 10188.1025
                             1866.4088
                                         2611.3949
                                                      1254.8880
                                                                  1974.9853
                                                                               702.3652
##
                        72
                                     73
                                                 74
                                                              75
                                                                          76
                                                                                      77
##
     964.9327
                3415.8088
                             2855.8657
                                         1180.5566
                                                     4354.3874
                                                                  2343.5899
                                                                               925.4704
```

##	78	79	80	81	82	83	84
##	1066.2249	3162.9495	3674.5577	1306.5155	919.0199	1992.6905	1043.8500
##	85	86	87	88	89	90	91
##	1440.2634	1101.9778	7737.6622	763.8804	2698.0348	5687.3217	2969.2884
##	92	93	94	95	96	97	98
##	579.6789	9985.8610	2387.3611	2911.1075	2567.5887	1775.5807	1846.7575
##	99	100	101	102	103	104	105
##	1241.8012	4183.5312	15283.0616	2168.4036	972.0547	1523.8742	1995.8247
##	106	107	108	109	110	111	112
##	6132.6245	9645.3327	1338.2410	1895.7396	1540.6618	1628.6900	6868.6737
##	113	114	115	116	117	118	119
##	1618.3260	2687.0499	2586.4870	3540.1317	9661.3000	2247.1525	9881.9970
##	120	121	122	123	124	125	126
##	3503.6685	894.3027	7469.7123	2874.1025	1589.7760	856.4075	704.8975
##	127	128	129	130	131	132	133
##	831.9656	2807.0680	1982.5924	704.5241	947.3628	1174.0745	1623.8423
##	134	135	136	137	138	139	140
##	6039.6885	14846.0121	4502.7869	2119.3653	820.0898	3125.2719	6047.3660
##	141	142	143	144	145	146	147
##	3839.0976	1057.2564	3272.9863	1678.2828	4989.6206	3404.2812	10029.1990
##	148	149	150	151	152	153	154
##	1005.7626	2706.7486	954.8195	4150.9097	4090.8074	1252.9744	3402.8335
##	155	156	157	158	159	160	161
##		12692.3978	2180.9557	8965.6967	6342.4183	4730.8165	961.6378
##	162	163	164	165	166	167	168
##	1621.1194	1300.6583	8962.5088	3335.7245	2553.2451	1989.7880	7105.0819
##	169	170	171	172	173	174	175
##	12734.5496		12011.6440	3130.5997	8334.2638	2991.7432	1045.8071
##	176	177	178	179	180	181	182
##	10870.3632	1286.8722	1143.5071	3619.3600	1148.3880	3486.3153	4027.6544
##	183	184	185	186	187	188	189
##	3834.0908	2179.0729			14411.8397		1883.0096
##	190	191	192	193	194	195	196
##	2152.9957	4378.3633		11572.6168	6635.9162	1248.6417	767.4640
##	197	198	199	200			
##	12457.1312	1082.9657	3602.8115	1974.1104			

residuals(fit3)

##	1	2	3	4	5	6
##	88.442092	-519.688515	68.359449	16.083648	-714.010710	-138.467475
##	7	8	9	10	11	12
##	-5.412311	-310.794918	-101.796062	-374.855542	-61.633434	46.561430
##	13	14	15	16	17	18
##	-124.186787	-152.263645	-61.654674	-17.631315	4004.746445	-147.668489
##	19	20	21	22	23	24
##	227.822100	-17.728868	165.548860	-290.764878	-66.803401	-307.709799
##	25	26	27	28	29	30
##	-297.475848	-230.580552	-200.698809	47.492983	-40.526926	-493.023510
##	31	32	33	34	35	36
##	-378.721778	156.743404	139.371087	141.646158	-67.457978	2631.587683
##	37	38	39	40	41	42
##	-301.453003	203.749273	-151.309333	195.877594	-120.565655	-157.781097
##	43	44	45	46	47	48

шш	EO 120011	07 706707	70 047110	447 000000	CE7 00700C	F 2F4020
##		27.726797		447.082609		-5.354039
##	49	50	51 49.937764	52	53 85.161893	54
##	322.019271	-101.520254				53.196104
##	55	56	57	58	59	60
##	-443.887365	-23.841698	-13.444561		-35.884170	-91.936271
##	61	62	63	64	65	66
##	-151.755952	-248.662227	274.821236		-2188.102529	233.591217
##	67	68	69	70	71	72
##	98.605078	-54.888007	-18.985313			284.191240
##	73	74	75	76	77	78
##	-155.865700	19.443431	145.612614			13.775098
##	79	80	81	82	83	84
##	87.050471	25.442350			437.309511	-43.849987
##	85	86	87	88	89	90
##	209.736567	38.022185	651.337792	-63.880433	-198.034819	-187.321719
##	91	92	93	94	95	96
##	530.711641	181.321088	14.138959	2.638869	-11.107505	-297.588740
##	97	98	99	100	101	102
##	-575.580672	-26.757526	8.198841	-1083.531184	-283.061593	-218.403571
##	103	104	105	106	107	108
##	27.945264	-23.874217	4.175282	-132.624486	154.667298	111.758978
##	109	110	111	112	113	114
##	-95.739641	159.338227	-28.689985	-221.673707	-58.326038	112.950055
##	115	116	117	118	119	120
##	-186.486990	-40.131736	338.700001	52.847540	118.003023	-3.668506
##	121	122	123	124	125	126
##	55.697333	270.287734	-74.102477	90.224017	-56.407505	-64.897482
##	127	128	129	130	131	132
##	-81.965566	342.932028	142.407647	-104.524063	52.637241	24.925525
##	133	134	135	136	137	138
##	176.157683	-519.688515	153.987947	147.213112	-19.365346	-100.089760
##	139	140	141	142	143	144
##	34.728062			-107.256438		-28.282791
##	145	146	147			150
##	10.379416				93.251355	
##	151	152	153			156
##	-0.909698				-116.095663	
##	157	158	159	160	161	162
##					-161.637786	
##	163	164	165			
##		537.491164			160.211988	
##	169	170	171	172		
##		-56.604012			165.736180	
##	175	176	177			
##	-45.807148	-470.363188		-93.507089		
##	181	182	183	184	185	186
##		72.345551	65.909170			
	187					192
##		188	189	190	191	
##		-354.764978			121.636653	
##	193	194	195			
##	427.383213	-785.916150	-98.641/02	52.535969	42.868823	117.034259
##	199	200				
##	397.188508	15.889605				

library(car)

Loading required package: carData

qqPlot(fit3, main="QQ Plot")

QQ Plot

[1] 17 36

crPlots(fit3)

Prediction We set a data point with area = 120, rooms = 3, bathroom = 2, hoa = 0, fire insurance = 50, then the rent amount we predict is 3391.853.

```
predict.lm(fit3, data.frame(area = 120, rooms = 3, bathroom = 2, hoa = 0, fire_insurance = 50))
##     1
## 3391.853
```

Model Accuracy

The accuracy is based on summary of the model and we also calculate the MSE and RMSE for the model. The R-squared value is 0.9834, and the Adjusted R-squared value is 0.983. The MSE is 198405.6 and RMSE is 445.4274.

summary(fit3)

```
##
## Call:
## lm(formula = rent_amount ~ area + rooms + bathroom + hoa + fire_insurance,
##
       data = reg_data)
##
## Residuals:
##
       Min
                 1Q
                     Median
                                 3Q
                                         Max
##
   -2188.1
            -129.5
                      -17.7
                               94.1
                                      4004.7
##
```

```
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
               54.17952 75.91965 0.714 0.4763
                ## area
               -65.68571 41.03272 -1.601 0.1110
## rooms
## bathroom
                76.78377 42.83330 1.793 0.0746 .
                 0.31169 0.03413 9.131 < 2e-16 ***
## fire_insurance 73.58865 1.18538 62.080 < 2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 452.3 on 194 degrees of freedom
## Multiple R-squared: 0.9834, Adjusted R-squared: 0.983
## F-statistic: 2296 on 5 and 194 DF, p-value: < 2.2e-16
predictions <- predict(fit3, reg_data)</pre>
mse <- mean((reg_data$rent_amount - predictions)^2)</pre>
rmse <- sqrt(mse)</pre>
cat("MSE: ", mse, "\n")
## MSE: 198405.6
cat("RMSE: ", rmse, "\n")
```

RMSE: 445.4274