Métodos de aprendizaje de maquina para inferir el nivel de cobertura de banda ancha fija en municipios de México

César Zamora Martínez

December 16, 2019

Índice

Cobertura de banda ancha fija en México

Problemas a explorar

Velocidad y red de acceso

Diagrama ilustrativo de la de red acceso

Velocidad y red de acceso

La velocidad de Internet se encuentra limitada, por la tecnología de acceso.

Interés de este trabajo

Cobertura de cable coaxial y fibra óptica (alta velocidad); requiere grandes inversiones; solo se despliegan en zonas densamente pobladas o con recursos.

¿Cómo está México en cobertura de banda ancha fija?

- México: 18.9 millones. de accesos + 120 millones de habitantes.
- Accesos: 22% fibra + 37% cable coaxial (total 59%)
- OCDE, proxy de los suscriptores de BAF por cada 100 habitantes la región ¹:

Accesos por cada 100 habitantes
$$=\frac{Accesos}{Habitantes} \times 100$$
 (1)

¿Cómo está México en cobertura de banda ancha fija?

- En México hay 2,457 municipios,
- ¿cómo se ve la cobertura de fibra óptica y cable coaxial en ellos?
- Veamos el mapa (Junio 2019).
- Cobertura municipal: dependemos de mucha información de operadores que no siempre está disponible (públicamente) o actualizada
- ¿Se puede inferir el nivel de cobertura con información alterna?

Problemas de clasificación de cobertura

A nivel municipal...

P1: ¿Existe o no penetración de BAF de fibra óptica o cable coaxial?

P2: ¿Cuál es el nivel de penetración de BAF de fibra óptica o cable coaxial?

Table: Niveles de penetración en un municipio

Nivel de penetración	Rango de penetración
Muy Alta	Penetracion > Media OCDE
Alta	$20 < Penetracion \leq Media OCDE$
Media	$10 < Penetracion \leq 20$
Baja	$0 < extit{Penetracion} \leq 10$
Nula	Penetracion = 0

Ideas

Información socio-demográfica de municipios:

- Encuesta Intercensal 2015 (INEGI),
- Información de índice de marginación 2015 (CONAPO)
- Accesos por tecnología, Junio 2019 (IFT)
- Ingreso per cápita "Índice de Desarrollo Humano" (PNUD-ONU)

Pipeline:

- Modelos: Regresión logística, Random Forest, Gradient Tree Bost
- Gridsearch, calibrar los posibles hiper-parámetros de los modelos + validación cruzada,
- Comparar modelos,
- Analizar los resultados

Ideas

P1 - Variables principales :

- hogares, habitantes
- Densidad hogares y habitantes por km²
- % hogares sin energía eléctrica
- % pob. en localidades de menos de 5,000 habitantes
- Ingreso anual per cápita (proedi)
- % Habs. que ganan menos de 2 SMM,
- % hogs con tv paga + teléfono fijo/celular

P2 - Variables principales :

Se requieren información adicional para inferir un nivel específico de cobertura a nivel geográfico; (por ejemplo; nivel de competencia en infraestructura/servicios)

- Mismas que en P1
- Indicador de si hay 2 o más operadores de BAF
- % hogares con Internet

P1 - Resultados

#	Modelo	Precisión	Recall	F1-score	Soporte
$\overline{1}$	Logístico	0.87	0.87	0.86	612
2	Bosque Aleatorio	0.87	0.86	0.87*	612
3	Gradient Tree Boosting	0.87	0.86	0.86	612

Table: Promedio ponderado de resultados obtenidos para P1

P1 - Resultados - Matrices de confusión

Fig. 10. Matriz de confusión del modelo de bosque aleatorio- P1

Fig. 11. Matriz de confusión del modelo gradient tree boost-P1

P1 - Resultados - Shap municipios sin cobertura

P2 - Resultados

#	Modelo	Precisión	Recall	F1-score	Soporte
$\overline{1}$	Logístico (1 vs all)	0.90	0.88	0.89	612
2	Logístico (all vs all)	0.90	0.88	0.89	612
3	Bosque aleatorio	0.90	0.89	0.89*	612
4	Gradient Tree Boosting	0.89	0.88	0.88	612

Table: Promedio ponderado de resultados obtenidos para P2

P2 - Resultados - Matrices de confusión

Fig. 16. Matriz de confusión del modelo logístico all vs all - P2

Fig. 17. Matriz de confusión del modelo de bosque aleatorio - P2

Fig. 18

P2 - Resultados - Shap municipios de cobertura Media

Conclusiones y trabajo a futuro

Conclusiones:

- Los métodos de aprendizaje de máquina muestran resultados prometedores para inferir cobertura de BAF ante falta de información.
- La falta de información sobre cobertura puede ser combatida con datos de fuentes públicas (encuestas, estudios económicos, otros)
- Métodos de aprendizaje de máquina pueden ayudar a establecer factores por los cuales hay un cierto nivel de cobertura en una zona del país.

Conclusiones y trabajo a futuro

Líneas que se podrían explorar:

- Incorporar información a nivel geográfico;
- Considerar distancia a infraestructura que permita ampliar la que los operadores tienes en los municipios; por ejemplo cercanía a centrales, distancia a red troncal CFE/Uninet,
- Incorporar información de cobertura de banda ancha con otras tecnologías (banda ancha móvil 4G/5G)
- Extender metodologías/modelos zonas o países donde sin suficiente información del mercado de BAF (e.g. si tienen un nivel de madurez comparable al de México)

Referencias

- OCDE:
 - http://www.oecd.org/internet/broadband/broadband-fags.htm
- Banco de información de telecomunicaciones (IFT): https://bit.ift.org.mx/BitWebApp/
- Documentos del proyecto: https://github.com/czammar/BandaAnchaFija
- Mapas interactivos:
 - https://github.com/czammar/BandaAnchaFija/tree/master/Mapas