

Sequential Logic

S	R	Q	Q'
0	0	Q_{t}	Q' _t
0	1	0	1
1	0	1	0
1	1	X	X

S and R control how the state changes.

Put a gate/latch on when change applies SR w/ enable input

SR Latch

E	S	R	S	R	Q	Q'
0	X	X	0	0	Q_{t}	Q' _t
1	0	0	0	0	Q_{t}	Q' _t
1	0	1	0	1	0	1
1	1	0	1	0	1	0
1	1	1	1	1	X	X

```
SR Latch
Gated SR

-E
```


SR Latch

Section 5.3 Storage Elements: Latches 195

FIGURE 5.5
SR latch with control input

En	S	R	Next state of Q
0 1 1 1 1	X 0 0 1	X 0 1 0 1	No change No change Q = 0; reset state Q = 1; set state Indeterminate

(b) Function table

Section 5.3 Storage Elements: Latches 195

FIGURE 5.5		
SR latch with	control	input

En S	S = R	Next state of Q
0 X 1 0 1 0 1 1 1 1	X X 0 0 0 1 0 1	No change No change Q = 0; reset state Q = 1; set state Indeterminate

(b) Function table

Characteristic Table

S	R	Q
0	0	Q_{t}
0	1	0
1	0	1
1	1	X

State Transition Diagram

Other Latches

Let's avoid the forbidden action! R≠S R=S' and S=R'

X	E	S	R	Q	Q'
0	0	X	X	Q_{t}	Q' _t
1	0	X	X	Q_t	Q' _t
0	1	0	1	0	1
1	1	1	0	1	0
Never h	nappens	4	4	×	×

X	E	5	R	Q	Q'
0	0	X	X	Q_{t}	Q' _t
1	0	X	X	Q_{t}	Q' _t
0	1	0	1	0	1
1	1	1	0	1	0
Never h	nappens	1	1	×	×

X	E	S	R	Q	Q'
0	0	X	X	Q_{t}	Q' _t
1	0	X	X	Q_{t}	Q' _t
0	1	0	1	0	1
1	1	1	0	1	0
Never h	nappens	4	4	×	×

D	E	Q
0	0	Q_{t}
1	0	Q_{t}
0	1	0
1	1	1

D	Q
0	0
1	1

Block Diagram

Characteristic Table

State Transition Diagram

T Latch

Complement

T	D	Q
0	Q ⊕0	Q
1	Q 1	Q'

Block Diagram T E

Characteristic Table

State Transition Diagram

JK Latch

Jack St. Clair Kilby

(Nov. 8, 1923 – June 20, 2005) Electrical Engineer The 1st integrated circuit 1958 Nobel Prize in Physics, 2000

Although you have to guess, we'll see a design algorithm it ©

S	R	S	R	Q
0	0	0	0	Store= Q_t =1
0	1	0	1	Reset=0
1	0	0	0	Store= Q_t =1
1	1	0	1	Reset=0

S	R	S	R	Q
0	0	0	0	Store= $Q_t=0$
0	1	0	0	$Store=Q_t=0$
1	0	1	0	Set=1
1	1	1	0	Set=1

S=J	R=K	Q
0	0	Store=Q _t
0	1	Reset = 0
1	0	Set = 1
1	1	Comp. $=Q'_t$

Block Diagram

Characteristic Table

State Transition Diagram

Recap

S	R	Q
0	0	Q_t
0	1	0
1	0	1
1	1	X

J	K	Q
0	0	Q_t
0	1	0
1	0	1
1	1	Q' _t

Clock shortened as clk

timing device that generates a train of pulses

One period is called pulse!

Clock shortened as clk

Synchronize *all* the memory units *when* to work

Clock Positive Level (default)

```
SR Latch
Active High
E
```

Clock Negative Level

Clock Frequency (Hz)

Heinrich Rudolf Hertz

A Metric for Speed

How many pulse in 1 sec?

How many pulse in 1 sec?

How long is one pulse? 1/freq. (Hz)

Intel® Xeon® Platinum 8380HL Processor (38.5M Cache, 2.90 GHz)

• 38.5 MB Cache

• 28 Cores 1,000,000,000 (one billion) Hz (hertz)

• 56 Threads 1,000,000,000 (one billion) pulse per sec!

• 4.30 GHz Max Turbo Frequency

Microprocessor clock speed

Microprocessor clock speed measures the number of pulses per second generated by an oscillator that sets the tempo for the processor. It is measured in hertz (pulses per second).

Source: Ray Kurzweil (2005, updated to 2016). The Singularity Is Near: When Humans Transcend Biology.

CPU: X Hz

Memory: Y Hz

Mainboard (BUS): Z Hz

Final Speed?

CPU: X Hz

Memory: Y Hz

Mainboard (BUS): Z Hz

At market:

X > Y = Z

X=2.9GHz

Y=Z=2.6GHz

CPU: X Hz

Memory: Y Hz

Mainboard (BUS): Z Hz

Final Speed:

CPU internal: X

CPU external $\leftarrow \rightarrow$ Memory

Y=Z=2.6GHz

Overclock?

Flip-Flop