# PROJET 8 – DÉPLOYEZ UN MODÈLE DE DANS LE CLOUD **RACHEDI YASSINE**

## **FRUITS**

### Objectif:

• Sensibiliser le grand public à la biodiversité des fruits

#### Défi:

Proposer une application mobile permettant d'obtenir des informations à partir d'une photo

#### Mission:

• Réaliser l'étape de préparation des données avec une mise à l'échelle

#### Avantages:

• Gagner en visibilité auprès du grand public

## DONNÉES

- 90 483 images de fruits
- 62 fruit, 131 variétés
- Photos de 100x100 pixels
- L'extrait de données est dispo publiquement avec cette commande :

aws s3 sync s3://p8-data-yr/Test
"C:\Users\path\test" --no-sign-request











## EMR - ARCHITECTURE

- 1. Location du service EMR et de S3
- 2. Localisé à PARIS
- 3. Installation de Tensorflow, JupyterHUB et Spark
- 4. Bootstrap pour l'installation des librairies nécessaires (pandas, pillow, etc.)



## EMR – CONFIGURATION

- 3 instances : 1 principales + 2 Tâches
- Profils par défaut créés et utilisés

## Configuration de mise en service

Définissez la taille de votre noyau et tâchegroupes d'instance. Amazon EMR tente de fournir cette capacité lorsque vous lancez votre cluster.

| Nom              | Type d'instance | Taille de l'instance(s) | Utiliser l'option d'achat Spot |
|------------------|-----------------|-------------------------|--------------------------------|
| Tâche - 1        | m5.xlarge       | 2                       |                                |
| Unité principale | m5.xlarge       | 1                       |                                |



# EMR – ENTRÉE

- 1. Création d'une connexion SSH avec notre clé
- 2. Utilisation de FoxyProxy comme proxy pour le lancement de JupyterHUB

## PROCESS – ÉTAPES CLÉS

- Chargement des données
- Chargement de MobileNetV2 avec suppression de la couche de sortie, et broadcast des poids
- Pre-preprocess :
  - Redimensionnement
  - Conversion en array
- Extraction des features avec MobileNetV2
- Ecritures des features
- Application d'une ACP et écritures des résultats au format csv
- aws s3 sync s3://p8-data-yr/Results"C:\Users\path\test" --no-sign-request
- aws s3 sync s3://p8-data-yr/PCA\_result"C:\Users\path\test" --no-sign-request

# PROCESS - DÉMO

Vidéo

# CONCLUSION

- Pre-Process
- Extraction des features
- Mise à l'échelle grâce à AWS
- La suite :
  - Entrainement d'un modèle de classification
  - Création de l'application mobile

# QUESTIONS / RÉPONSES

