二元关系

关系的表示

Lijie Wang

集合表示法

大术国农小区

布尔矩阵的运算

关系的表示

王丽杰

Email: ljwang@uestc.edu.cn

电子科技大学 计算机学院

2016-

关系的集合表示

关系的表示

Lijie Wang

集合表示法

关系图表示法

关系矩阵表示

布尔矩阵的运算

38

关系是一种特殊的集合,因此集合的两种基本表示法(枚举法和叙述法),可以用到关系的表示中.

Example

① 集合 $A = \{1, 2, 3, 4\}$ 上的整除关系 R 可用枚举法表示为:

$$\textit{R} = \{<1,1>,<1,2>,<1,3>,<1,4>,<2,2>,<2,4>,<3,3>,<4,4>\} \; ;$$

② 实数集 R 上的 "相等" 关系 S 可用叙述法表示为 :

$$S = \{ \langle x, y \rangle \mid (x, y \in R) \land (x = y) \}_{\bullet}$$

关系的图形表示 $(A \neq B)$

关系的表示

Lijie Wang

关系图表示法

Definition

设 $A = \{a_1, a_2, \dots, a_n\}$, $B = \{b_1, b_2, \dots, b_m\}$, R 是从 A 到 B 的一个关系.

- 集合中的元素 a₁, a₂, ··· , a_n 和
 b₁, b₂, ··· , b_m 分别作为图中的结点 ,
 用 "o" 表示 ;
- ② 如果 $\langle a_i, b_j \rangle \in R$, 则从 a_i 到 b_j 可用一有向边 $a_i \longrightarrow b_j$ 相连。

某选课关系 R

关系的图形表示 (A = B)

关系图表示法

Definition

设 $A = \{a_1, a_2, \dots, a_n\}$, $R \neq A$ 上的一个 关系.

- 集合中的元素 *a*₁, *a*₂, · · · , *a*_n 分别作为 图中的结点 , 用 "。" 表示 ;
- ② 如果 $\langle a_i, a_i \rangle \in R$, 则从 a_i 到 a_i 可用 一有向边 $a_i \longrightarrow a_i$ 相连。
- **③** 如果 $\langle a_i, a_i \rangle \in R$,则从 a_i 到 a_i 可用 一带箭头的小圆圈 ai ** 表示,即画一 个自环。

某小干等干关系 R

关系的矩阵表示

关系的表示

Lijie Wang

果百农小法

大系国表示法

关系矩阵表示法

Definition

设 $A = \{a_1, a_2, \cdots, a_n\}$, $B = \{b_1, b_2, \cdots, b_m\}$, R 是从 A 到 B 的一个二元关系,称矩阵 $M_R = (m_{ij})_{n \times m}$ 为关系 R 的关系矩阵(relation matrix) ,其中:

$$m_{ij} = \left\{ egin{array}{ll} 1 & < a_i, b_j > \in R \\ 0 & < a_i, b_j > \notin R \end{array}
ight.$$
 $(1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n)$ 又称 M_R 为 R 的邻接矩阵(adjacency matrix)。

某选课关系 R

$$M_R = \left(egin{array}{ccc} 1 & 0 & 1 \ 1 & 1 & 0 \ 1 & 1 & 1 \ 0 & 0 & 1 \end{array}
ight)$$

关系的表示

Lijie Wang

大系国表示法

布尔矩阵的运算

Definition

① 如果 $A = (a_{ij})$ 和 $B = (b_{ij})$ 是两个 $m \times n$ 矩阵,则A 和 B 的并也是一个 $m \times n$ 矩阵,记为 $A \vee B = C = (c_{ij})$,其中:

$$c_{ij} = \begin{cases} 1 & \text{if } a_{ij} = 1 \text{ or } b_{ij} = 1 \\ 0 & \text{if } a_{ij} = 0 \text{ and } b_{ij} = 0 \end{cases}$$

② 如果 $A = (a_{ij})$ 和 $B = (b_{ij})$ 是两个 $m \times n$ 矩阵 , 则A 和 B 的交也是一个 $m \times n$ 矩阵 , 记为 $A \wedge B = C = (c_{ij})$, 其中:

$$c_{ij} = \begin{cases} 1 & \text{if } a_{ij} = 1 \text{ and } b_{ij} = 1 \\ 0 & \text{if } a_{ij} = 0 \text{ or } b_{ij} = 0 \end{cases}$$

布尔矩阵的并和交运算

关系的表示

Lijie Wang

集合表示法

关系图表示法

布尔矩阵的运算

Example

设
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 , $B = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$

$$A \vee B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, A \wedge B = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

布尔矩阵的积运算

关系的表示

Lijie Wang

关系图表示法

布尔矩阵的运算

Definition

如果 $A = (a_{ij})$ 是 $m \times p$ 矩阵, $B = (b_{ij})$ 是 $p \times n$ 矩阵 , 则A 和 B 的积是一个 $m \times n$ 矩阵 , 记为 $A \odot B = C = (c_{ij})$, 其中:

$$c_{ij} = \begin{cases} 1 & \exists k, a_{ik} = 1 \text{ and } b_{kj} = 1 \\ 0 & \text{else} \end{cases}$$

Example

设
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 , $B = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$, 则 $A \odot B = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$.

关系的表示

Lijie Wang

集合表示法

关系图表示法

关系矩阵表示

布尔矩阵的运算

THE END, THANKS!