

Dual Low Power Operational Amplifier, Single or Dual Supply

OP221

FEATURES

Excellent TCVos Match, 2 μV/°C Max
Low Input Offset Voltage, 150 μV Max
Low Supply Current, 550 μA Max
Single Supply Operation, 5 V to 30 V
Low Input Offset Voltage Drift, 0.75 μV/°C
High Open-Loop Gain, 1500 V/mV Min
High PSRR, 3 μV/V
Wide Common-Mode Voltage
Range, V- to within 1.5 V of V+
Pin Compatible with 1458, LM158, LM2904
Available in Die Form

PIN CONNECTIONS

8-Lead

GENERAL DESCRIPTION

The OP221 is a monolithic dual operational amplifier that can be used either in single or dual supply operation. The wide supply voltage range, wide input voltage range, and low supply current drain of the OP221 make it well-suited for operation from batteries or unregulated power supplies.

The excellent specifications of the individual amplifiers combined with the tight matching and temperature tracking between channels provide high performance in instrumentation amplifier designs. The individual amplifiers feature very low input offset voltage, low offset voltage drift, low noise voltage, and low bias current. They are fully compensated and protected.

Matching between channels is provided on all critical parameters including input offset voltage, tracking of offset voltage vs. temperature, non-inverting bias currents, and common-mode rejection.

SIMPLIFIED SCHEMATIC

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 www.analog.com
Fax: 781/326-8703 © Analog Devices, Inc., 2002

$\begin{tabular}{ll} \textbf{OP221--SPECIFICATIONS} & \textbf{(Electrical Characteristics at V}_s = \pm 2.5 \text{ V to } \pm 15 \text{ V, T}_A = 25^{\circ}\text{C, unless otherwise noted.)} \\ \end{tabular}$

·			OP221A/E		(OP221G			
Parameter	Symbol	Conditions	Min	Typ	Max	Min	Typ	Max	Unit
Input Offset Voltage	Vos			75	150		250	500	μV
Input Offset Current	Ios	$V_{CM} = 0$		0.5	3		1.5	7	nA
Input Bias Current	I_{B}	$V_{CM} = 0$		55	100		70	120	nA
Input Voltage Range	IVR	V+ = 5 V, V- = 0 V (Note 2) $V_S = \pm 15 V$	0/3.5 -15/13.5	5		0/3.5 -15/13.	5		V
Common-Mode Rejection Ratio	CMRR	$V+ = -5 \text{ V}, V- = 0 \text{ V}$ $0 \text{ V} \le V_{CM} \le 3.5 \text{ V}$ $V_S = \pm 15 \text{ V}$ $-15 \text{ V} \le V_{CM} \le 13.5 \text{ V}$	90 95	100 100		75 80	85 90		dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 2.5 \text{ V to } \pm 15 \text{ V}$ V- = 0 V, V+ = 5 V to 30 V		3 6	10 18		32 57	100 180	μV/V
Large-Signal Voltage Gain	Avo	$V_S = \pm 15 \text{ V}, R_L = 10 \text{ k}\Omega$ $V_O = \pm 10 \text{ V}$	1500			800			V/mV
Output Voltage Swing	Vo	V+ = 5 V, V- = 0 V $R_L = 10 k\Omega$ $V_S = 15 V, R_L = 10 k\Omega$	0.7/4.1 ±13.8			0.8/4 ±13.5			V
Slew Rate	SR	$R_L = 10 \text{ k}\Omega \text{ (Note 1)}$	0.2	0 3		0.2	0.3		V/µS
Bandwidth	BW			600			600		kHz
Supply Current (Both Amplifiers)	I _{SY}	$V_S = \pm 2.5 \text{ V}$, No Load $V_S = \pm 15 \text{ V}$, No Load		450 600	550 800		550 850	650 900	μА

NOTES

-2-REV. A

¹Sample tested. ²Guaranteed by CMRR test limits.

$\begin{array}{l} \textbf{SPECIFICATIONS} & \text{(Electrical Characteristics at V}_S = \pm 2.5 \text{ V to } \pm 15 \text{ V}, -55^{\circ}\text{C} \leq T_A + 125^{\circ}\text{C for OP221A}, \\ -25^{\circ}\text{C} \leq T_A \leq +85^{\circ}\text{C for OP221E}, -40^{\circ}\text{C} \leq T_A \leq +85^{\circ}\text{C for OP221G, unless otherwise noted.)} \\ \end{array}$

		OP221A/E			OP221G				
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Average Input Offset Voltage	TCVos			0.75	1.5		2	3	μV/°C
Input Offset Voltage	Vos			150	300		400	700	μV
Input Offset Current	I _{OS}	$V_{CM} = 0$		1	5		2	10	nA
Input Bias Current	I_{B}	$V_{CM} = 0$		55	100		80	140	nA
Input Voltage Range	IVR	V+ = 5 V, V- = 0 V (Note 2) $V_S = \pm 15 V$	0/3.2 -15/13.2	2		0/3.2 -15/13.2	<u></u>		V
Common-Mode Rejection Ratio	CMRR	$V+ = -5 \text{ V}, V- = 0 \text{ V}$ $0 \text{ V} \le V_{CM} \le 3.5 \text{ V}$ $V_S = \pm 15 \text{ V}$ $-15 \text{ V} \le V_{CM} \le 13.5 \text{ V}$	85 90	90 95		70 75	80 85		dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 2.5 \text{ V to } \pm 15 \text{ V}$ V- = 0 V, V+ = 5 V to 30 V		6 10	18 32		57 100	180 320	μV/V
Large-Signal Voltage Gain	A _{VO}	$V_S = \pm 15 \text{ V}, R_L = 10 \text{ k}\Omega$ $V_O = \pm 10 \text{ V}$	1000			600			V/mV
Output Voltage Swing	Vo	V+ = 5 V, V- = 0 V $R_L = 10 k\Omega$ $V_S = 15 V, R_L = 10 k\Omega$	0.8/3.8 ±13.5			0.9/3.7			V
Supply Current (Both Amplifiers)	I _{SY}	$V_S = \pm 2.5 \text{ V}$, No Load $V_S = \pm 15 \text{ V}$, No Load		500 700	650 900		600 950	750 1000	μА

NOTES

Matching Characteristics at $V_s=\pm 15$ V, $T_A=25^{\circ}\text{C}$, unless otherwise noted.

-			()P221A/I	Ξ		OP221G		
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Typ	Max	Unit
Input Offset Voltage Match	ΔV_{OS}			50	200		250	600	μV
Average Noninverting Bias Current	I _B +				80			120	nA
Noninverting Input Offset Current	I _{OS} +			2	5		4	10	nA
Common-Mode Rejection Ratio Match (Note 1)	ΔCMRR	$V_{CM} = -15 \text{ V to } 13.5 \text{ V}$	92			72			dB
Power Supply Rejection Ratio Match (Note 1)	ΔPSRR	$V_S = \pm 2.5 \text{ V to } \pm 15 \text{ V}$			14			140	μV/V

REV. A -3-

¹Sample tested. ²Guaranteed by CMRR test limits.

 $\label{eq:continuous} \textbf{OP221-SPECIFICATIONS} \begin{subarray}{l} \textbf{(Matching Characteristics at V}_s = \pm\,15 \text{ V}, -55^\circ\text{C} \le T_A \le +125^\circ\text{C} \text{ for OP221A}, \\ -25^\circ\text{C} \le T_A \le +85^\circ\text{C for OP221E}, -40^\circ\text{C} \le T_A \le +85^\circ\text{C for OP221G}, \text{ unless otherwise noted.} \\ \end{subarray}$ Grades E and G are sample tested.)

			()P221A/I	E		OP221G		
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage Match	ΔV_{OS}			100	400		400	800	μV
Average Noninverting Bias Current	I _B +	$V_{CM} = 0$			100			140	nA
Input Offset Voltage Tracking	ICΔV _{OS}			1	2		3	5	μV°C
Noninverting Input Offset Current	I _{OS} +	$V_{CM} = 0$		3	7		6	12	nA
Common-Mode Rejection Ratio Match (Note 1)	ΔCMRR	$V_{CM} = -15 \text{ V to } 13.2 \text{ V}$	87	90		72	80		dB
Power Supply Rejection Ratio Match (Note 1)	ΔPSRR				26		140	μV/V	

 ΔV_S

Wafer Test Limits at $V_s=\pm 2.5~V$ to $\pm 15~V,\, T_A=25^{\circ}C,$ unless otherwise noted.

Parameter	Symbol	Conditions	OP221N Limit	Unit
Input Offset Voltage	V _{OS}		200	μV Max
Input Offset Current	I_{OS}	$V_{CM} = 0$	3.5	nA Max
Input Bias Current	I_{B}	$V_{CM} = 0$	85	nA Max
Input Voltage Range	IVR	V+ = 5 V, V- = 0 V $V_S = \pm 15 V$	0/3.5 -15/13.5	V Min/Max V Min
Common-Mode Rejection Ratio	CMRR	$V- = 0 \text{ V}, \text{ V+} = 5 \text{ V}, \\ 0 \text{ V} \le \text{V}_{\text{CM}} \le 3.5 \text{ V} \\ \text{V}_{\text{S}} = \pm 15 \text{ V} \\ -15 \text{ V} \le \text{V}_{\text{CM}} \le 13.5 \text{ V}$	88	dB Min
Power Supply Rejection Ratio	PSRR	$V_S = \pm 2.5 \text{ V to } \pm 15 \text{ V}$ $V_{-} = 0 \text{ V}, V_{+} = 5 \text{ V to } 30 \text{ V}$	12.5 22.5	V/mV Min
Large-Signal Voltage Gain	Avo	$V_S = \pm 15 \text{ V}$ $R_L = 10 \text{ k}\Omega$	1500	V/mV Max
Output Voltage Swing	Vo	$V+ = 5 V, V- = 0 V, R_L = 10 kΩ$ $V_S = 15 V, R_L = 10 kΩ$	0.7/4.1 ±13.8	V Min/Max V Min
Supply Current (Both Amplifiers)	I_{SY}	$V_S = \pm 2.5 \text{ V}$, No Load $V_S = \pm 15 \text{ V}$, No Load	560 810	μΑ Мах

NOTE

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

> -4-REV. A

 $^{^1\}Delta$ CMRR is 20 $\log_{10}~V_{CM}/\Delta$ CME, where V_{CM} is the voltage applied to both noninverting inputs and Δ CME is the difference in common-mode input-referred error. ²ΔPSRR is: <u>Input-Referred Differential Error</u>

ABSOLUTE MAXIMUM RATINGS (Note 1)

TESSEE TE MERITAGE (NOTE 1)
Supply Voltage
Differential Input Voltage30 V or Supply Voltage
Input Voltage Supply Voltage
Output Short-Circuit Duration Indefinite
Storage Temperature Range65°C to +150°C
Operating Temperature Range
OP221A
OP221E
OP221G40°C to +85°C
Lead Temperature (Soldering 60 sec)300°C
Junction Temperature (T_I)65°C to +150°C

Package Type	θ _{JA} (Note 2)	$\theta_{ m JC}$	Unit
8-Lead Hermetic DIP (Z)	148	16	°C/W
8-Lead Plastic DIP (P)	103	43	°C/W
8-Lead SO (S)	158	43	°C/W

NOTES

ORDERING INFORMATION^{1,2}

$T_A = +25^{\circ}C$	Pacl	kages	Operating	Package
V _{OS} MAX (μV)	Cerdip 8-Lead	Plastic 8-Lead	Temperature Range	Options
150	OP221AZ ³		MIL	Q-8
150	OP221 EZ ³		IND	
300				
500				
500		OP221GP ³	XIND	R-8
500		OP221GS	XIND	

¹Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-can packages.

³Not for new design, obsolete April 2002.

DIE SIZE 0.097 X 0.063 INCH, 6111 SQ. MILS (2.464 X 1.600 MM, 3.94 SQ. MM)

NOTE: ALL V+ PADS ARE INTERNALLY CONNECTED.

1. INVERTING INPUT (A) 2. NONINVERTING INPUT (A)

3. BALANCE (A)

5. BALANCE (B) 6. INVERTING INPUT (B) 7. NONINVERTING INPUT (B)

8. BALANCE (B)

10. OUT (B)

11.V+

12. OUT (A)

14. BALANCE (A)

Figure 1. Dice Characteristics

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP221 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

REV. A -5-

¹Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.

 $^{^{2}\}theta_{IA}$ is specified for worst case mounting conditions, i.e., θ_{IA} is specified for device in socket for TO, Cerdip, and PDIP packages; elA is specified for device soldered to printed circuit board for SO package.

²For devices processed in total compliance to MIL-STD-883, add/883 after part number. Consult factory for 883 data sheet.

Typical Perfomance Characteristics – 0P221

TPC 1. Open-Loop Gain at $\pm 15 \, V$ vs. Temperature

TPC 2. Open-Loop Gain at \pm 5 V vs. Temperature

TPC 3. Open-Loop Gain at vs. Supply Voltage

TPC 4. Open-Loop Gain at $\pm 15 \, \text{V}$ vs. Frequency

TPC 5. Closed-Loop Gain vs. Frequency

TPC 6. Gain and Phase Shift vs. Frequency

TPC 7. Phase Margin, Gain Bandwidth, and Slew Rate vs. Temperature

TPC 8. PSRR vs. Frequency

TPC 9. CMRR vs. Frequency

-6- REV. A

OP221

TPC 10. Maximum Output Swing vs. Frequency

TPC 13. Voltage Noise Density vs. Frequency

TPC 11. Maximum Output Voltage vs. Load Resistance

TPC 13. Current Noise Density vs. Frequency

TPC 12. Maximum Output Voltage vs. Load Resistance

REV. A -7-

Figure 2a. Noninverting Step Response

Figure 2b. Noninverting Step Response

Figure 4. TBD.

Figure 3a. Inverting Step Response

Figure 3b. Inverting Step Response

Figure 5. TBD.

-8- REV. A

SPECIAL NOTES ON THE APPLICATION OF DUAL MATCHED OPERATIONAL AMPLIFIERS

Advantages of Dual Monolithic Operational Amplifiers

Dual matched operational amplifiers provide the engineer with a powerful tool for designing instrumentation amplifiers and many other differential-input circuits. These designs are based on the principle that careful matching between two operational amplifiers can minimize the effect of dc errors in the individual amplifiers.

Reference to the circuit shown in Figure 6, a differential-in, differential-out amplifier, shows how the reductions in error can be accomplished. Assuming the resistors used are ideally matched, the gain of each side will be identical. If the offset voltages of each amplifier are perfectly matched, then the net differential voltage at the amplifier's output will be zero. Note that the output offset error of this amplifier is not a function of the offset voltage of the individual amplifiers, but only a function of the difference (degree of matching) between the amplifiers' offset voltages. This error-cancellation principle holds for a considerable number of input referred error parameters—offset voltage, offset voltage drift, inverting and noninverting bias currents, common mode and power supply rejection ratios. Note also that the impedances of each input, both common-mode and differential-mode, are high and tightly matched, an important feature not practical with single operation amplifier circuits.

Figure 6. Differential-In, Differential-Out Amplifier

INSTRUMENTATION AMPLIFIER APPLICATIONS Two-Op Amp Configuration

The two-op amp circuit (Figure 7) is recommended where the common-mode input voltage range is relatively limited; the common-mode and differential voltage both appear at V1. The high open-loop gain of the OP221 is very important in achieving good CMRR in this configuration. Finite open-loop gain of A1 (Ao1) causes undesired feedthrough of the common-mode input. For Ad/Ao, << 1, the common-mode error (CME) at the output due to this effect is approximately (2 Ad/Ao1) x VCM. This circuit features independent adjustment of CMRR and differential gain.

Three-Op Amp Configuration

The three-op amp circuit (Figure 8) has increased common-mode voltage range because the common-mode voltage is not amplified as it is in Figure 7. The CMR of this amplifier is directly proportional to the match of the CMR of the input op amps. CMRR can be raised even further by trimming the output stage resistors.

Figure 7. Two-Op Amp Circuit

Figure 8. Three-Op Amp Circuit

REV. A -9-

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

8-Lead CERDIP Package

(Q-8)

8-Lead SOIC Package

(R-8)

-10- REV. A

OP221

Revision History

Location	Page
09/01—Data Sheet changed from REV. 0 to REV. A.	
Edits to PIN CONNECTIONS	1
Global deletion of references to OP221B and OP221C	. 2, 3, 4
Edits to WAFER TEST LIMITS	4
Edits to ABSOLUTE MAXIMUM RATINGS	5
Edits to ORDERING GUIDE	5
Edits to PACKAGE TYPE	5

REV. A -11-