\$8 of Analysis on Manifolds by Munkres A C IR" $t: A \rightarrow 15_{\nu}$ C_{∞} f has a diffible inv > fof = id \Rightarrow Df \cdot D(f⁻¹) = I_n (Of (a)) > Of is invertible. Lemma A ZIRn, f:A -> 12n of class C! If Df(a) is non-singular, then I a>O rst. 11 f(x,) - f(x,)]] > a 11 x - x, 11 for all x., x, in some open cube centered at a. In particular, f is 1-1 on this open cube. Brower than on invariance of domain Thm: If A is open in \mathbb{R}^n , and $f: A \to \mathbb{R}^n$ is continuous and I-I, then f(A) is open and the inverse f-1: f(A) -> A is continuous. Thm: If, in addition, Df(x) is non-singular Y XEA, then the triverse for 1-1: f(A) -> A is of class Cr f is of class (and

Thun (Inverse function than). If Df(x) is nonsingular & a & A, then I abd U of a s.t. of corries U in a 1-1 fashusin anto an apon set V of Rn and the inverse function is of class C.

Note: f will not, in general, le 1-1.

Ex' $f: \mathbb{R}^2 \to \mathbb{R}^2$ $(r, \theta) \longmapsto (r \cos \theta, r \sin \theta)$

$$Df(r,\theta) = \begin{bmatrix} \cos \theta & -r\sin \theta \\ \sin \theta & r\cos \theta \end{bmatrix}$$

det $Df(r, \theta) = r$.

lf b72r, f is not 1-1.