

An alumina-supported silver catalyst with high water tolerance for H₂-assisted C₃H₆-SCR of NO_x

Guangyan Xu ^{a,b,1}, Jinzhu Ma ^{a,b,c,1}, Guangzhi He ^a, Yunbo Yu ^{a,b,c,*}, Hong He ^{a,b,c,*}

^a State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

^c Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

ARTICLE INFO

Article history:

Received 11 November 2016

Received in revised form 20 January 2017

Accepted 1 February 2017

Available online 1 February 2017

Keywords:

Ag/Al₂O₃

HC-SCR

Water vapor

H₂

DFT

ABSTRACT

Water vapor is typically present in diesel engine exhausts, and thus the design of catalysts with high water-tolerance is highly desired. The addition of water vapor was shown to have quite different influences on the activity of Ag/Al₂O₃ catalysts with different Ag loadings during the H₂-assisted C₃H₆-SCR of NO_x (H₂-C₃H₆-SCR). The 2 wt% Ag/Al₂O₃ catalyst showed the best activity for H₂-C₃H₆-SCR, with excellent water resistance over the whole temperature range. An enhancement in NO_x conversion was observed after water vapor was introduced, particularly at low temperatures. Over this catalyst, kinetic studies confirmed that H₂O addition did not change the apparent activation energy for NO_x reduction, while it increased the reaction order of C₃H₆ from –0.62 to 0.73. This result indicated that the reaction pathway for NO_x reduction was hardly changed by the introduction of water vapor, while a poisoning effect related to C₃H₆ oxidation was decreased. *In situ* DRIFTS studies and DFT calculations revealed that water vapor significantly inhibits the formation of inert formate during the H₂-C₃H₆-SCR process, and thus more sites are available for the formation of active enolic species and acetates, finally leading to increased activity for 2 wt% Ag/Al₂O₃ in NO_x reduction.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Nitrogen oxides (NO_x), as key precursors to pollutants, induce the formation of acid rain, photochemical smog, and haze. Nowadays, diesel engine NO_x after-treatment is one of the greatest challenges in environmental protection. To this aim, different technologies have been developed, among which selective catalytic reduction by hydrocarbons (HC-SCR) has been paid much attention in the past few decades, considering that the on-board diesel or a fuel additive can be used as the reducing agent for NO_x removal, thus providing an opportunity for simplification of the after-treatment system [1–4]. Previous studies have proved that Ag/Al₂O₃ is one of the most promising catalysts for NO_x reduction by hydrocarbons [1–3,5–10]. At low temperatures, however, the activity of Ag/Al₂O₃ for HC-SCR is not sufficient for its commercial usage in purification of diesel vehicle exhausts.

The discovery of a promoting effect of hydrogen on the low-temperature activity of Ag/Al₂O₃ catalysts by Satokawa et al. [11,12] is undoubtedly a major breakthrough for HC-SCR. Since then, many efforts have been devoted to understanding the “H₂ effect” occurring during NO_x reduction by lighter hydrocarbons [13–17], higher hydrocarbons [18,19] and alcohols [20] over silver catalysts. At present, the origin of H₂ boosting behavior on the low-temperature activity of Ag/Al₂O₃ for NO_x reduction by hydrocarbons has not been revealed in full detail, while it is clear that the presence of H₂ enhances the transformation of hydrocarbons to partially oxidized species. These oxygenates have been proved to be active intermediates for NO_x reduction, leading to an increase in the NO_x conversion at low temperatures [15,21–23].

Water vapor is inevitably present in diesel engine exhausts and thus the design of catalysts with high water tolerance is highly desired. However, the influence of water vapor on HC-SCR processes has attracted a limited number of investigations [24–26]. The water tolerance of the 2 wt% Ag/Al₂O₃ catalyst for NO_x reduction by different alkanes was studied by Shimizu et al. [24]. It was found that the activity of Ag/Al₂O₃ for NO_x reduction and its water resistance were gradually increased with an increase in the carbon number of alkanes. In the case of *n*-octane as a reductant, a signif-

* Corresponding authors at: State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

E-mail addresses: ybyu@rcees.ac.cn (Y. Yu), honghe@rcees.ac.cn (H. He).

¹ These authors contributed equally.

ificant promotion effect on NO_x conversion was induced by water vapor addition, the occurrence of which possibly related to an inhibition of the unselective oxidation of *n*-octane and a suppression of poisoning by carboxylate and carbonate species. Over 1.2 wt% Ag/Al₂O₃, a significant loss in NO_x conversion induced by the presence of H₂O was observed by Meunier et al. [25] during C₃H₆-SCR. As for C₃H₈-SCR and H₂-C₃H₈-SCR over 5 wt% Ag/Al₂O₃, decreased NO_x conversion was also observed in the presence of water vapor [27].

It is well-known that silver loading has a great influence on the activity of Ag/Al₂O₃ catalysts for NO_x reduction by hydrocarbons [28–30], and also for H₂-assisted HC-SCR processes [31–33]. To the best of our knowledge, however, there has been no study focusing on the effect of silver loading on the water tolerance of Ag/Al₂O₃ for H₂-assisted HC-SCR. Herein, it was found that silver loading governs the water tolerance of Ag/Al₂O₃ for H₂-C₃H₆-SCR. Based on a kinetic study and *in situ* DRIFTS measurements, the origin of the water vapor effect on the pathway of H₂-C₃H₆-SCR was revealed. This investigation could offer new insights into the design of silver catalysts for HC-SCR with high water resistance.

2. Materials and methods

2.1. Catalyst preparation and characterization

A series of Ag/Al₂O₃ catalysts with varying Ag loadings (1, 2, 4, and 6 wt%) were synthesized by an impregnation method, with boehmite (SASOL, SB-1) and silver nitrate as the precursors. The detailed information can be found in our previous studies [2,34]. All the samples presented here were calcined in air at 600 °C for 3 h. A pure Al₂O₃ sample was also prepared by the same procedure, with boehmite as the precursor.

The BET surface area measurements were carried out on a Quantachrome Autosorb-1C instrument at –196 °C. X-ray powder diffraction patterns were measured on a Rigaku D/max-RB X-ray Diffractometer (Japan) with Cu K α radiation (over the 2 θ range from 10° to 80°).

UV-vis spectra were collected with a UV-vis spectrophotometer (Hitachi, U3100, Japan) within a range of 200–800 nm with a resolution of 5 nm, using Al₂O₃ as reference to confirm the baseline spectrum. XANES analyses of the Ag-K edges were performed in transmission mode at the BL14W1 XAFS beam line at the Shanghai Synchrotron Radiation Facility (SSRF). The PE storage ring was operated at 3.5 GeV with 200 mA as the average storage current. Data were analyzed using the Athena program.

2.2. Catalyst activity studies

The catalytic measurements were performed in a fixed-bed reactor, by stepwise increase of the temperature and measurement after 30 min reaction at each temperature [35,36]. The feed composition included 800 ppm NO, 1714 ppm C₃H₆, 1% H₂ (if added), 10% O₂, 10% H₂O (if added) in N₂ balance at a total flow of 1000 ml/min, corresponding to a gas hourly space velocity (GHSV) of 100,000 h^{–1} (ca 0.3 g catalyst). The concentrations of NO, NO₂, NH₃, N₂O, and C₃H₆ were measured by an FTIR spectrometer (Nicolet Nexus is10). Water vapor was supplied into the gas stream with a micro-pump and further vaporized by an electric heater. To avoid water condensation, the gas-filled tube and the gas cell of the FTIR spectrophotometer were heated to 120 °C. NO_x conversion and C₃H₆ conversion were calculated as shown in the following equations, respectively:

$$\text{NO}_x \text{ conversion} = \frac{[\text{NO}]_{\text{in}} + [\text{NO}_2]_{\text{in}} - [\text{NO}]_{\text{out}} - [\text{NO}_2]_{\text{out}}}{[\text{NO}]_{\text{in}} + [\text{NO}_2]_{\text{in}}} \times 100\% \quad (1)$$

$$\text{C}_3\text{H}_6 \text{ conversion} = \frac{[\text{C}_3\text{H}_6]_{\text{in}} - [\text{C}_3\text{H}_6]_{\text{out}}}{[\text{C}_3\text{H}_6]_{\text{in}}} \times 100\% \quad (2)$$

2.3. Kinetic studies

The apparent activation energy (E_a) and reaction order for NO_x reduction were measured in the fixed-bed reactor as described above. To eliminate both internal diffusion and external mass transfer resistances, corresponding experiments were performed with results shown in Fig. S1 and Supplementary material. Based on these results, samples with a particle size of 0.45–0.9 mm were used for kinetic measurement. The value of GHSV was varied in the range of 100,000–3,000,000 h^{–1} in order to keep NO_x conversion below 20%. Before kinetic measurements, all samples were pretreated in 10% O₂/N₂ at 450 °C for 30 min.

In agreement with previous studies [35,37], the reaction rate of NO_x conversion (–R_{NO_x}) can be calculated from the kinetic data as follows:

$$-\dot{R}_{\text{NO}_x} (\text{mol}/\text{m}^2/\text{s}) = F_{\text{NO}_x} \times X_{\text{NO}_x} / (W \times S) \quad (3)$$

where F_{NO_x} is the molar flow rate of NO_x (mol/s), X_{NO_x} is the conversion of NO_x, W is the weight of catalyst, and S is the BET surface area. Based on the above results, the Arrhenius plots for NO_x reduction under different conditions were drawn, and then the related activation energies were calculated from the slope of the plots.

2.4. In situ DRIFTS studies

In situ DRIFTS experiments were performed on a Nicolet Nexus FI-IR spectrometer (Nexus 670) with 30 scans at a resolution of 4 cm^{–1}, under a total gas flow rate of 300 ml/min. Water vapor (5%) was supplied by passing the gas flow through a water bottle, with the gas line heated to 120 °C to avoid water condensation. Before each measurement, the Ag/Al₂O₃ catalysts were pretreated in 10% O₂/N₂ at 350 °C for 0.5 h, which was followed by cooling down to the desired temperature to measure a background spectrum.

2.5. DFT calculations

All DFT calculations were carried out by use of the CASTEP package from Accelrys. The Perdew–Wang (PW91) functional of the generalized gradient approximation (GGA) was used as the exchange–correlation function. Convergence tests were done for all initial parameters. The interaction between valence electrons and the ionic core was described by an ultrasoft pseudopotential. The vacuum gap was 20 Å to avoid inter-slab interactions in the periodic systems. Calculations were carried out with a plane-wave energy cutoff of 400 eV. Based on our previous reports [38,39], the dehydrated (100) and (110) surfaces of γ-Al₂O₃ were modeled using a (2 × 2) supercells and four-layer-thick slabs, Al₈₀O₁₂₀ with surface area of 11.17 × 16.83 Å² and Al₆₄O₉₆ with surface area of 16.83 × 16.14 Å², respectively. For the Ag/Al₂O₃ (100) surface (Ag–O–Al_{octa} entities) and Ag/Al₂O₃ (110) surface (Ag–O–Al_{tetra} entities), the AgO units adsorbed on the Al₂O₃ surfaces mentioned above were established and relaxed (Fig. S2) [38]. To investigate the effect of H₂O on the adsorption of the adsorbates, the Ag/Al₂O₃ surfaces were hydroxylated. The 12OH-Ag/Al₂O₃ (100) surface and 20OH-Ag/Al₂O₃ (110) surface were established according to previous calculations [40], and the coverage of hydroxyl was calculated to be 6.4 OH nm^{–2} and 7.4 OH nm^{–2}, respectively. According to our earlier convergence test, the Monkhorst–Pack k-point sets of (2 × 1 × 1) and (1 × 1 × 1) were used for the Al₂O₃ (100) and Al₂O₃ (110) surfaces, respectively [38]. The top two layers and the adsorbents were fully relaxed, while the bottom two layers were fixed to mimic the bulk region. The relaxed structures of the hydroxylated Ag/Al₂O₃ slabs are shown in Fig. S3.

Table 1

Structure parameters of Ag/Al₂O₃ catalysts with different silver loadings.

Sample	BET surface area (m ² /g)	Pore volume (cm ³ /g)	Pore diameter (nm)
γ-Al ₂ O ₃	271.2	0.59	10.33
1 wt% Ag/Al ₂ O ₃	222.5	0.56	10.13
2 wt% Ag/Al ₂ O ₃	220.8	0.55	9.91
4 wt% Ag/Al ₂ O ₃	220.6	0.51	9.33
6 wt% Ag/Al ₂ O ₃	214.7	0.48	8.99

Fig. 1. The UV-vis spectra of Ag/Al₂O₃ catalysts with different silver loadings.

The adsorption energies of the intermediates produced by partial oxidation of C₃H₆ (HCOO⁻, CH₂=CHO⁻, and CH₃COO⁻) on the Ag/Al₂O₃ surface or the hydroxylated one were calculated as follows:

$$E_{\text{ad}} = E_{\text{adsorbate+surface}} - (E_{\text{surface}} + E_{\text{adsorbate}}),$$

where $E_{\text{adsorbate+surface}}$ and E_{surface} are the total energies of the adsorbed system and alumina slab, respectively; and E_{ad} reflects the stability of the adsorbates on either the Ag/Al₂O₃ or the hydroxylated Ag/Al₂O₃ surface. Negative E_{ad} values mean that the adsorbed state is energetically favorable.

3. Results

3.1. Structural properties of Ag/Al₂O₃ catalysts

As shown in Table 1, the Al₂O₃ exhibited a BET surface area of 271.2 m²/g. Compared with the pure Al₂O₃, the Ag/Al₂O₃ catalysts showed a decrease in surface area, particularly the catalysts with high silver loading [34,35,41]. XRD patterns showed that only the γ-Al₂O₃ phase was detected in all Ag/Al₂O₃ catalysts, indicating that Ag was dispersed well on the Al₂O₃ (Fig. S4).

To investigate the state of silver supported on Al₂O₃, UV-vis analysis was performed, with results shown in Fig. 1. According to the literature [4,18,42], the band located at 230 nm is attributed to silver cations (Ag⁺) with high dispersion. The appearance of the peak at 260 nm indicates that oxidized silver clusters (Ag_n^{δ+}) are present on the surface of Ag/Al₂O₃. In addition, peaks appearing at 290 and 350 nm can be assigned to metallic silver clusters (Ag_n⁰). On the 1 wt% and 2 wt% Ag/Al₂O₃, notably, the band at 230 nm exhibited the highest intensity, indicating that highly dispersed silver ions were predominant. As for the samples with 4 wt% and 6 wt% silver loadings, however, the intensity of the band at 260 nm was the highest, suggesting that the silver species were mainly

present as oxidized silver clusters. For these two samples, meanwhile, strong peaks at 350 nm were clearly observed, indicating the existence of numerous metallic silver clusters [2,34,35].

To better understand the precise chemical state of supported silver, the Ag-K XANES spectra of samples with different silver loadings, Ag foil, and AgNO₃ were investigated (Fig. S5). As shown in Fig. S5A, the Ag/Al₂O₃ catalysts showed Ag-K adsorption edge energies similar to that of AgNO₃, while being higher than that of Ag foil. The first-order derivative peak for 2 wt%, 4 wt%, 6 wt% Ag/Al₂O₃ catalysts and AgNO₃ appeared at 25517.5 eV, 25516.4 eV, 25516.7 eV, and 25518.6 eV, respectively. In contrast, the corresponding absorption edge energy for the Ag-K edge in Ag foil was 25514.4 eV (Fig. S5B). These findings further confirm that silver species were mainly present as oxidized silver on 2 wt% Ag/Al₂O₃, while the silver species exhibited a partially metallic state on 4 wt% and 6 wt% Ag/Al₂O₃ [34].

3.2. Effect of H₂O on the deNO_x activity of Ag/Al₂O₃

Fig. 2 shows that the low-temperature activity of Ag/Al₂O₃ for C₃H₆-SCR can be promoted greatly by H₂ introduction. In the absence of water vapor, it should be noted that the higher the silver loading, the better the low-temperature activity of Ag/Al₂O₃ for H₂-assisted C₃H₆-SCR (denoted as H₂-C₃H₆-SCR) is. During this H₂-C₃H₆-SCR process, however, water vapor exhibits quite a different influence on NO_x conversion, which is also closely related to the silver loading. Over 1 wt% Ag/Al₂O₃, water vapor had little influence on H₂-C₃H₆-SCR at temperatures below 420 °C, while further increasing the reaction temperature (>420 °C) significantly lowered the NO_x conversion. In the presence of H₂, the catalyst with 2 wt% silver loading exhibited excellent activity for NO_x conversion, achieving 100% NO_x conversion over a wide temperature range of 295–530 °C. What is more, this catalyst exhibited high water resistance, particularly at low temperatures. Over this sample, indeed, one can easily find an enhancement of NO_x conversion at temperatures below 300 °C. Compared with 2 wt% Ag/Al₂O₃, the samples with silver loadings of 4 wt% and 6 wt% showed better low-temperature activity for NO_x reduction in the presence of H₂. However, their activity was severely suppressed by the introduction of water vapor over the whole temperature range. In the presence of water vapor, the 2 wt% Ag/Al₂O₃ clearly exhibited the highest activity for H₂-C₃H₆-SCR, indicating excellent water resistance.

During the H₂-C₃H₆-SCR process, C₃H₆ conversion was also measured, with results shown in Fig. 3. At temperatures below 400 °C, the activity of 1 wt% Ag/Al₂O₃ for C₃H₆ conversion was hardly changed by water introduction, while at high temperatures, C₃H₆ conversion obviously decreased with the addition of water vapor. Over the 2 wt% Ag/Al₂O₃, the C₃H₆ conversion at low temperatures was enhanced by the introduction of H₂O. As for the 4 wt% and 6 wt% Ag/Al₂O₃ samples, the presence of water vapor severely suppressed C₃H₆ conversion in the whole temperature range.

Combining the results of Figs. 2 and 3, one can easily find that over a given sample, the changes in NO_x and C₃H₆ conversion exhibit the same trend when water vapor is introduced, indicating that C₃H₆ oxidation plays a crucial role in the reduction of NO_x. To further confirm such influence of water vapor on H₂-assisted C₃H₆-SCR, a series of step-response experiments were carried out over Ag/Al₂O₃, at the temperatures of 265 °C and 400 °C, respectively (Figs. 4 and S6). In these cases, the weight of sample employed was varied in the range of 0.1–0.4 g in order to keep NO_x conversion below 90%. Over the sample with 2 wt% silver loading, the NO_x conversion at 265 °C was increased from 22% to 38% by the introduction of water vapor, while it returned to 20% after the removal of water vapor (Fig. 4A). During this process, meanwhile, the C₃H₆ conversion showed the same trend as the NO_x conversion, further

Fig. 2. NO_x conversions over (A) 1 wt% Ag/Al₂O₃, (B) 2 wt% Ag/Al₂O₃, (C) 4 wt% Ag/Al₂O₃, and (D) 6 wt% Ag/Al₂O₃ under different conditions: H₂-C₃H₆-SCR (■), H₂-C₃H₆-SCR with H₂O (□), and C₃H₆-SCR (●). Feed composition: 800 ppm NO, 1714 ppm C₃H₆, 1% H₂ (when added), 10% H₂O (when added), 10% O₂, N₂ balance. GHSV: 100,000 h⁻¹.

confirming a crucial role of C₃H₆ partial oxidation in the reduction of NO_x. At the same reaction temperature, however, the activity of 4 wt% Ag/Al₂O₃ was suppressed severely by water vapor addition (from 74% to 27%), accompanied by a significant loss in C₃H₆ conversion (Fig. 4B). After the removal of water vapor, again, both the NO_x and C₃H₆ conversion was restored to the original levels. Even at the temperature of 400 °C, the activity of 2 wt% Ag/Al₂O₃ for NO_x and C₃H₆ conversion was hardly affected by the addition of water vapor (Fig. 4C), further confirming its excellent water tolerance. As shown in Fig. S6, the performance of 1 wt% Ag/Al₂O₃ for NO_x and C₃H₆ conversion was slightly enhanced by the addition of water vapor, while the low-temperature activity of 6 wt% Ag/Al₂O₃ was severely suppressed (NO_x conversion decreased from 55% to 15%).

3.3. Kinetic studies of Ag/Al₂O₃ for H₂-C₃H₆-SCR

3.3.1. Apparent activation energy

Kinetics has been shown to be extremely valuable in providing unique information on the understanding of catalytic reactions at a molecular level [43], and much attention has been paid to the kinetics of HC-SCR processes [13,24,27,29,31,35,37,41,44–55]. With this in mind, we also carried out kinetic experiments to gain further insights into the influence of water vapor in H₂-C₃H₆-SCR over Ag/Al₂O₃ catalysts.

Fig. 5 presents Arrhenius plots of the reaction rate for NO_x conversion over Ag/Al₂O₃ samples with varying silver loadings. Based on these results, the apparent activation energies (E_a) for NO_x conversion under the employed experimental conditions were calculated, with results listed in Table 2. Over all the Ag/Al₂O₃ samples, the E_a values for the H₂-C₃H₆-SCR varied from 49.9 to 66.1 kJ/mol (Fig. 5A and Table 2), consistent with the literature [13,31]. For a given sample, introduction of water vapor induced a slight decrease in the value of E_a (Fig. 5B and Table 2). The E_a for NO_x reduction in the absence of H₂ was also measured over 2 wt% and 4 wt% Ag/Al₂O₃ (Fig. 5C). In this case, the presence of water vapor resulted in an increase of ca. 40 kJ/mol in the E_a value for NO_x reduction. Therefore, it can be speculated that water vapor did not change the pathway of the H₂-assisted C₃H₆-SCR over Ag/Al₂O₃ catalysts. To further reveal the role of water vapor in H₂-C₃H₆-SCR, the following studies focused on the 2 wt% and 4 wt% Ag/Al₂O₃ catalysts.

3.3.2. Reaction order for NO_x reduction

Fig. 6 and Table 3 show the dependence of the NO_x conversion rate on the concentrations of NO and C₃H₆ over Ag/Al₂O₃ at 280 °C. Over 2 wt% Ag/Al₂O₃, the empirical reaction order of NO for NO_x reduction in the presence of H₂ was 0.56. This result indicates a possibility that the reaction rate is substantially controlled by the surface reaction [1–3,5]. Over this catalyst, introduction of water

Fig. 3. C₃H₆ conversions over (A) 1 wt% Ag/Al₂O₃, (B) 2 wt% Ag/Al₂O₃, (C) 4 wt% Ag/Al₂O₃, and (D) 6 wt% Ag/Al₂O₃ under different conditions: H₂-C₃H₆-SCR (■), H₂-C₃H₆-SCR(H₂O) (□), and C₃H₆-SCR (●). The feed composition was the same as Fig. 2.

Table 2

Apparent activation energy (E_a) for NOx conversion over Ag/Al₂O₃.

Sample	Activation energy (kJ/mol)		Reductant	Ref.
	0% H ₂ O	10% H ₂ O		
1 wt% Ag/Al ₂ O ₃	49.9	46.1	H ₂ +C ₃ H ₆	This work
2 wt% Ag/Al ₂ O ₃	62.3	60.2	H ₂ +C ₃ H ₆	This work
4 wt% Ag/Al ₂ O ₃	74.1	115.4	C ₃ H ₆	This work
6 wt% Ag/Al ₂ O ₃	66.1	61.6	H ₂ +C ₃ H ₆	This work
2 wt% Ag/Al ₂ O ₃	80.3	122.8	C ₃ H ₆	This work
6 wt% Ag/Al ₂ O ₃	60.4	55.6	H ₂ +C ₃ H ₆	This work
2.2 wt% Ag/Al ₂ O ₃	61		H ₂ +C ₃ H ₈	[13]
	224		C ₃ H ₈	[13]
2.2 wt% Ag/Al ₂ O ₃	26		H ₂ +C ₃ H ₆	[31]
	105		C ₃ H ₆	[31]

Table 3

Reaction orders for NOx conversion over Ag/Al₂O₃.

	H ₂ -C ₃ H ₆ -SCR		H ₂ O-H ₂ -C ₃ H ₆ -SCR	
	2 wt% Ag/Al ₂ O ₃	4 wt% Ag/Al ₂ O ₃	2 wt% Ag/Al ₂ O ₃	4 wt% Ag/Al ₂ O ₃
Order in NO ^a	0.56	0.72	0.40	0.65
Order in C ₃ H ₆ ^b	-0.62	0.56	0.73	0.73

^a NO concentration range is 200 ppm to 1000 ppm.

^b C₃H₆ concentration range is 800 ppm to 2000 ppm.

vapor slightly decreased the reaction order of NO to 0.40. As for the 4 wt% Ag/Al₂O₃, the effect of water vapor on the NO reaction order was marginal, giving the value of 0.72 under water-free conditions

and 0.65 in the presence of moisture. As shown in Fig. 6B, surprisingly, the addition of water vapor increased the C₃H₆ reaction order from a negative value (-0.62) to a positive value (0.73) over 2 wt%

Fig. 4. Step-response experiment over (A) 2 wt% Ag/Al₂O₃ at a GHSV = 100,000 (weight of catalyst = 0.3 g), (B) 4 wt% Ag/Al₂O₃ at a GHSV = 300,000 (weight of catalyst = 0.1 g) at 265 °C, and (C) 2 wt% Ag/Al₂O₃ at a GHSV = 300,000 (weight of catalyst = 0.1 g) at 400 °C in the fixed-bed reactor. Feed composition: NO 800 ppm, C₃H₆ 1714 ppm, H₂ 1%, O₂ 10%, H₂O 10% (when added), N₂ balance.

Ag/Al₂O₃. This result indicates that under water-free conditions, the reaction rate for NOx conversion decreased with increasing C₃H₆ concentration, while this apparent poisoning effect was overcome by the introduction of water vapor, further confirming the enhancement effect of water vapor on NOx conversion (Fig. 2B) and C₃H₆ conversion (Fig. 3B). Over 4 wt% Ag/Al₂O₃, however, the reaction order of C₃H₆ was slightly increased by the addition of water vapor (from 0.56 to 0.73), indicating that the surface reaction involved in C₃H₆ oxidation was retarded by water vapor, which was also in agreement with the results of activity testing (Fig. 3C).

The results of kinetic studies show that the introduction of water vapor does not change the apparent activation energy of NOx reduction in H₂-assisted C₃H₆-SCR, indicating that the reaction pathway for NOx reduction remains the same over 2 wt% and 4 wt% Ag/Al₂O₃. Over the two catalysts, however, the effect of water vapor on the C₃H₆ reaction order was distinctly different. This result possibly suggests that the adsorption and activation of C₃H₆ are closely related to water vapor. To highlight this issue, further *in situ* DRIFTS measurements were performed, as presented in the next section.

3.4. In situ DRIFTS studies for NOx reduction by C₃H₆

3.4.1. Influence of H₂O on the partial oxidation of C₃H₆

Generally, the process of HC-SCR over Ag/Al₂O₃ begins with the partial oxidation of hydrocarbons to produce reactive species

[1,15,21,56]. Therefore, the *in situ* DRIFTS of 2 wt% Ag/Al₂O₃ during exposure to H₂+C₃H₆+O₂ was measured first, with the results shown in Fig. 7. In this case, characteristic peaks due to surface species originating from the partial oxidation of C₃H₆ were observed at the temperature of 150 °C (Fig. 7A). The peaks at 1591, 1394, and 1375 cm⁻¹ are assigned to adsorbed formate [20]. The appearance of peaks at 1576 and 1458 cm⁻¹ indicates the formation of adsorbed acetates [18,22,29,57]. According to previous research works [35,41,58,59], the shoulder peak appearing at 1633 cm⁻¹ can be attributed to adsorbed enolic species. Keeping the structural features of surface enolates (C=C—O⁻) in mind, there should be two other characteristic vibration frequencies, located at around 1416 and 1336 cm⁻¹. However, the low concentration of enolic species derived from the partial oxidation of C₃H₆ might explain the absence of the two peaks. In addition, a shoulder peak at 1669 cm⁻¹ assignable to adsorbed acetone was observed over Ag/Al₂O₃ [20,60].

If the reaction time is taken into account, one can easily find that formate was preferentially formed or was stable on the surface of catalysts: 1) it appeared first in the initial stage of partial oxidation of C₃H₆; and 2) the high-frequency peak (1591 cm⁻¹) assignable to formate species always exhibited the strongest intensity. It was only after 50 min of exposure to H₂+C₃H₆+O₂ that the characteristic peak (1633 cm⁻¹) of enolic species appeared, indicative of its instability.

Fig. 5. Arrhenius plots for the rate of NO_x conversion over Ag/Al₂O₃ catalysts in different conditions (A) H₂-C₃H₆-SCR without water vapor, (B) H₂-C₃H₆-SCR with water vapor, and (C) C₃H₆-SCR with or without water vapor. Feed composition: 800 ppm NO, 1714 ppm C₃H₆, 10% O₂, 1% H₂ (when added), 10% H₂O (when added), and N₂ balance. GHSV: varying in the range of 100,000–3,000,000 h⁻¹ in order to obtain NO_x conversion below 20%.

Fig. 6. Reaction rates of NO_x conversion as a function of (A) NO and (B) C₃H₆ concentration over Ag/Al₂O₃ at 280 °C.

Fig. 7. Dynamic change of *in situ* DRIFTS spectra of adsorbed species on 2 wt% Ag/Al₂O₃ during the oxidation of C₃H₆ in the presence of H₂ at 150 °C (A). *In situ* DRIFTS spectra of adsorbed species on (B) 2 wt% Ag/Al₂O₃ and (C) 4 wt% Ag/Al₂O₃ in steady states in a flow of C₃H₆ + H₂ + O₂ at different temperatures. Feed composition: C₃H₆ 1714 ppm, H₂ 1%, O₂ 10%, N₂ balance.

Under the same gas feed conditions, the *in situ* DRIFTS spectra of 2 wt% Ag/Al₂O₃ was further measured at elevated temperatures (Fig. 7B). As temperature increased, the intensities of peaks due to formate significantly decreased, and disappeared at temper-

tures above 250 °C. In contrast, the intensity of peaks due to acetate species distinctly increased, becoming predominant at temperatures above 250 °C. The peak at 1633 cm^{-1} increased in intensity as temperature increased from 150 °C to 250 °C, indicating an increase

Fig. 8. Dynamic changes of *in situ* DRIFTS spectra of adsorbed species over 2 wt% Ag/Al₂O₃ as a function of time in a flow of H₂O + H₂ + C₃H₆ + O₂ at 265 °C (A), and (B) the integrated areas of the peaks due to formate (1591 cm⁻¹), acetate (1458 cm⁻¹), and enolic species (1633 cm⁻¹) in the case of (A). Before measurement, the catalyst was pre-exposed to a flow of H₂ + C₃H₆ + O₂ for 30 min at 265 °C. Feed composition: C₃H₆ 1714 ppm, H₂ 1%, O₂ 10%, H₂O 5% (when added), N₂ balance.

in the concentration of surface enolic species. This increase was accompanied by the appearance of low-frequency bands at 1412 and 1336 cm⁻¹ due to the enolic species. Raising the reaction temperature further lowered the concentration of enolic species over 2 wt% Ag/Al₂O₃.

The same set of DRIFTS measurements was also carried out over 4 wt% Ag/Al₂O₃, with the results shown in Fig. 7C. Notably, the characteristic peaks assignable to formate were hardly observed, while those of acetate (1576 and 1458 cm⁻¹) were predominant over the whole temperature range. Characteristic frequencies of enolic species were clearly observed at 1633, 1412, and 1336 cm⁻¹ at temperatures between 150 °C and 200 °C. Within this temperature range, meanwhile, the highest-frequency peak of the enolic species exhibited much stronger intensity compared with the results presented in Fig. 7B.

The effect of moisture content on the partial oxidation of C₃H₆ over 2 wt% Ag/Al₂O₃ was further studied by *in situ* DRIFTS at 265 °C (Fig. 8A). In order to clarify the dynamic change of surface intermediates induced by the introduction of water vapor, the spectra (Fig. 8A) in the range of 1200–1800 cm⁻¹ were then fitted and deconvoluted to the constituent peaks (with typical results presented in Fig. S7). The integrated areas of peaks at 1591 cm⁻¹ (for formate), 1458 cm⁻¹ (for acetate), and 1633 cm⁻¹ (for enolic species) are plotted as a function of time-on-stream (Fig. 8B). As can be seen from Fig. 8A, after exposure of 2 wt% Ag/Al₂O₃ to a gas mixture of H₂ + C₃H₆ + O₂ for 30 min, strong peaks due to formate (1591 cm⁻¹) and acetate (1458 and 1576 cm⁻¹) were observed, along with the generation of enolic species (1633 cm⁻¹). The addition of water vapor significantly decreased the intensity of the peaks due to formate in the first 2 min, followed by more gradual decrease (Fig. 8B). As the concentration of formate decreased, the intensity of enolic species was slightly increased in the initial 1 min of water introduction, and then decreased slowly. During the entire process of water addition, meanwhile, a monotonic increase in the intensity of acetate was observed over 2 wt% Ag/Al₂O₃.

3.4.2. Influence of H₂O on H₂-C₃H₆-SCR over Ag/Al₂O₃

Over the 2 wt% Ag/Al₂O₃, the kinetic study (Fig. 6 and Table 3) showed that the reaction order of C₃H₆ for H₂-C₃H₆-SCR was -0.62, indicating that certain products derived from C₃H₆ par-

Fig. 9. DRIFTS spectra of adsorbed species during H₂-C₃H₆-SCR with varying C₃H₆ concentration over 2 wt% Ag/Al₂O₃ at steady state at 265 °C. Feed composition: NO 800 ppm, C₃H₆ from 429 to 1714 ppm, H₂ 1%, O₂ 10%, H₂O 5% (when added), N₂ balance.

tial oxidation inhibited the reduction of NOx. To highlight this issue, an *in situ* DRIFTS experiment was carried out under H₂-C₃H₆-SCR conditions while increasing the concentration of C₃H₆ from 429 ppm to 1714 ppm (Fig. 9). As the C₃H₆ concentration increased, notably, the intensities of the peaks due to formate (1591, 1392, and 1375 cm⁻¹) distinctly increased, indicating that the formate coverage strongly depended on the C₃H₆ concentration. During this process, increased intensities of peaks assignable to acetate (1458 cm⁻¹) and enolic species (1633 cm⁻¹) were also observed, while their intensities, particularly for the acetate, were

much lower than that of formate. Also, --NCO (2233 cm^{-1}), monodentate nitrate ($1560\text{--}1543\text{ cm}^{-1}$), and isolated bidentate nitrate (1300 cm^{-1}) were observed [2,15,61]. It has been widely accepted that the --NCO species, derived from the reaction between adsorbed nitrates and oxygenated HC species (including enolic species and acetate), is a key intermediate in the HC-SCR of NOx over Ag/Al₂O₃ [1,2,62]. The --NCO species shows high reactivity toward NO+O_2 to produce N_2 , the appearance of which thus indicates that the global NOx reduction process has occurred. An increased intensity of --NCO species was observed after water vapor was introduced into the gas mixture, indicative of the enhancement for NOx reduction, which was in agreement with the activity result (Fig. 4).

Over Ag/Al₂O₃, our previous study [20] showed that C₃H₆ was more efficient for NOx reduction than CH₄. Formate, as the main product of partial oxidation of CH₄, exhibited low reactivity toward NO+O_2 to produce --NCO , finally leading to a low deNOx activity for CH₄ over Ag/Al₂O₃. The acetate and enolic species exhibit higher activity, thus playing an important role in C₃H₆-SCR and H₂-C₃H₆-SCR, respectively [20]. With this in mind, it is clear that formate acts as a spectator in H₂-C₃H₆-SCR, accumulating severely on the reaction sites of 2 wt% Ag/Al₂O₃ and inhibiting the adsorption and subsequent activation of other reactants, thus contributing to a negative reaction order of C₃H₆ for NOx reduction. Addition of water vapor significantly decreased the formate coverage on the surface of the silver catalyst, giving more sites available for other active intermediates, and thus increased SCR activity. Similarly, a negative reaction order of NO (-2.53) for C₃H₈-SCR was observed by Shimizu et al. [13], the occurrence of which was induced by nitrate coverage on the surface of Ag/Al₂O₃. Further research indicated that addition of hydrogen was effective in decreasing nitrate coverage, leading to a positive value of NO reaction order (0.49).

As shown in Fig. 8A, formate, acetate and enolic species adsorbed on the surface of 2 wt% Ag/Al₂O₃ were produced by the partial oxidation of C₃H₆. The produced enolic species and acetate exhibit high activity towards NO+O_2 , leaving the inert formate on the surface of the silver catalyst. As a result, formate was predominant during the H₂-C₃H₆-SCR process (Fig. 9). Introduction of water vapor into H₂+C₃H₆+O₂ enhanced the generation of enolic species and acetate (Fig. 8A and B). The enolic species was clearly observed during H₂-C₃H₆-SCR over 2 wt% Ag/Al₂O₃, while the acetate exhibited a low concentration (Fig. 9). Introduction of water vapor into the gas feed of H₂-C₃H₆-SCR significantly decreased the intensity of enolic species, whereas it hardly changed the surface concentration of acetate. During the H₂-C₃H₆-SCR over 2 wt% Ag/Al₂O₃, activity measurement showed that water vapor introduction promoted NOx and C₃H₆ conversion (Fig. 4A). As a result, it can be concluded that the decrease of enolic species concentration induced by the introduction of water vapor into the H₂-C₃H₆-SCR system was derived from accelerated consumption of enolic species. This result, in turn, suggests that the pathway involving the generation of enolic species and its further transformation plays a crucial role in the H₂-C₃H₆-SCR process over 2 wt% Ag/Al₂O₃, particularly at low temperatures.

3.5. DFT calculations

Kinetic studies and *in situ* DRIFTS measurements confirmed that water vapor significantly changed the behaviors of surface formate, acetate, and enolic species, thus contributing to the activity of 2 wt% Ag/Al₂O₃ for H₂-C₃H₆-SCR. To highlight this issue, the adsorption of these species on a Ag/Al₂O₃ slab and hydroxylated Ag/Al₂O₃ slab was calculated. Over this catalyst, UV-vis spectra clearly showed that the silver cations were predominant. According to our previous NMR and DFT calculations, silver ions over 2 wt% Ag/Al₂O₃ might be bound on tetra- and octa-coordinate Al sites, forming Ag-O-Al_{octa}

(on Ag/Al₂O₃ (100) surface) and Ag-O-Al_{tetra} (on Ag/Al₂O₃ (110) surface) entities. As a result, periodic models of Ag/Al₂O₃ catalysts and their hydroxylated counterparts containing these two structural features were established (Fig. S2). Over Ag/Al₂O₃, *in situ* DRIFTS and the corresponding calculation results confirmed that the enolic species was preferentially linked with Ag sites, while the acetate tended to adsorb on Al sites [35]. Over pure Al₂O₃, the partial oxidation of C₃H₆ in the presence of H₂ was also measured by *in situ* DRIFTS, with the results shown in Fig. S8. In this case, it should be noted that the formate exhibits the same characteristic frequencies peaks as those on Ag/Al₂O₃, strongly suggesting that the formate is preferentially linked with Al sites. Keeping such intrinsic properties in mind, periodic models for the adsorbed enolic species, acetate, and formate on the Ag/Al₂O₃ surface were established and the relaxed structures are shown in Figs. S9-S11, respectively.

The DFT-calculated adsorption energies are summarized in Table 4. All of the adsorption energies had negative values, which indicates that the surface has a strong affinity for the formate, acetate, and enolic species. For the dehydrated Ag/Al₂O₃ surface, the adsorption energies of formate, acetate, and enolic species on the Ag/Al₂O₃ (110) surface are more negative than on the Ag/Al₂O₃ (100) surface, which indicates that these species are preferentially adsorbed on the (110) surface. Previous theoretical calculations and experimental results showed that the (110) surface predominates on γ -Al₂O₃, with about 70% of the total area, followed by the (100) surface (~20%) [63,64]. The adsorption energies of formate (-2.84 eV) and acetate (-3.09 eV) were significantly more negative than that of the enolic species (-1.99 eV), meaning that formate and acetate are more easily formed on the (110) surface, which is consistent with the results of DRIFTS.

On the hydroxylated Ag/Al₂O₃ (110) surface, the values of adsorption energies for all of the three species became less negative compared to those on the dehydrated Ag/Al₂O₃ surface, meaning the adsorption of these species will be weakened. Such weakening was consistent with a final decreased intensity of IR adsorption bands assignable to the formate and enolic species derived from water vapor addition (Fig. 8). For the acetate species adsorbed on the hydroxylated Ag/Al₂O₃ (110) surface, the 55% weakening of the adsorption energy seems contradictory with the increase of the integrated areas of the IR peak induced by water introduction. On the Ag/Al₂O₃ (100) surface, however, the presence of hydroxyl groups leads to an obvious strengthening (42%) of the adsorption energy of acetate. These results suggest that the adsorption of acetate on the (100) surface is much more favorable than that on the (110) surface in the presence of hydroxyl groups. As a result, it is reasonable that the amount of acetate was increased in the presence of moisture. As can be seen from Table 4, also, the adsorption energy for formate on the (100) surface is more negative in the presence of hydroxyl, whereas the adsorption of formate (-3.70 eV) is still weaker than that of acetate (-3.84 eV). This means that the adsorption of formate is more difficult on the (100) surface considering its competitive adsorption with acetate for the same Al sites.

During the partial oxidation of C₃H₆ over 2 wt% Ag/Al₂O₃ (Fig. 8), it should be noted that an increased intensity of enolic species was clearly observed in the initial stage of water introduction, followed by a slow decrease. After 5 min of water addition, the concentration of enolic species was lower than that under water-free condition. Such dynamic behavior of enolic species triggered by water vapor addition can be explained as follows. As shown in Fig. S8 and S10, although the enolic species and formate were adsorbed on different sites (the enolic species was bound on Ag sites while the formate adsorbed on Al sites), a high concentration of formate would result in a strong steric effect on the adsorption of enolic species. This steric effect would occur during the partial oxidation of C₃H₆ without water vapor. Introduction of water vapor

Table 4
DFT-calculated adsorption energies.

Model	adsorption energy (eV)		
	HCOO ⁻	CH ₂ =CHO ⁻	CH ₃ COO ⁻
Ag/Al ₂ O ₃ (110)	-2.84	-1.99	-3.09
20OH-Ag/Al ₂ O ₃ (110)	-1.62 (-43%)	-1.40 (-30%)	-1.39 (-55%)
Ag/Al ₂ O ₃ (100)	-2.78	-1.95	-2.71
12OH-Ag/Al ₂ O ₃ (100)	-3.70 (33%)	-1.86 (-4%)	-3.84 (42%)

The number in brackets is the change percentage.

Scheme 1. Proposed interpretation of water influence on the H₂ assisted C₃H₆-SCR over Ag/Al₂O₃.

significantly decreased the concentration of formate over Ag/Al₂O₃, reducing the steric effect and enabling more silver sites to be available for enolic species. As a result, an increased intensity of enolic species appeared in the initial stage of water introduction. On the other hand, water vapor addition induced hydroxylation of the Ag/Al₂O₃ surface, the occurrence of which decreases the adsorption energy of enolic species. Thus, it is reasonable that the concentration of surface enolic species in the final stage of water vapor addition was lower than that under water-free conditions.

4. Discussion

Over the 4 wt% Ag/Al₂O₃ catalyst, DRIFTS and GC-MS measurements revealed that the enolic species produced by the partial oxidation of C₃H₆ in the presence of H₂ showed high activity for reaction with NO+O₂ to form N₂, which can be considered to occur as follows: C₃H₆+H₂+NO+O₂→ad-NOx+enolic species (acetate also formed)→R-ONO+R-NO₂→-NCO+-CN→N₂ [15,20]. During this process, acetate was also produced, which exhibited a lower activity than enolic species; thus the pathway involving the generation of enolic species and their further reaction governs the H₂-C₃H₆-SCR process, particularly in the low temperature region. Over 2 wt% Ag/Al₂O₃, the kinetic studies presented here show that the apparent activation energy for NOx reduction was almost the same as that obtained with 4 wt% Ag/Al₂O₃, indicative of a similar pathway of NOx reduction (Scheme 1). Over 2 wt% Ag/Al₂O₃, formate also formed during the partial oxidation of C₃H₆, while this species exhibited low activity toward NO+O₂. During H₂-C₃H₆-SCR, the produced enolic species and acetate were consumed by reaction with NO+O₂ (and/or surface nitrates), while the formate tended to accumulate seriously, thus exhibiting a poisoning effect on the reduction of NOx over 2 wt% Ag/Al₂O₃. The introduction of water vapor into the H₂-C₃H₆-SCR system decreased the formate coverage, leaving more sites for the generation of active species (including enolic species and acetates) and also for their further reaction. As a result, the NOx reduction was promoted by water vapor addition over 2 wt% Ag/Al₂O₃, which was confirmed by the kinetic studies and *in situ* DRIFTS measurements.

UV-vis analysis revealed that silver cations (Ag⁺), oxidized silver clusters (Ag_n^{δ+}), and metallic silver clusters (Ag_n⁰) were present

on the surface of Ag/Al₂O₃. As for the process of HC-SCR taking place over Ag/Al₂O₃, the oxidized silver species (Ag⁺ and Ag_n^{δ+}) contributed to partial oxidation of the reductant, thus serving as the active sites for NOx reduction. The metallic silver entities were often present on Ag/Al₂O₃ with high silver content, promoting the complete oxidation of reductant to produce CO₂ [1,2,33,37]. As for 2 wt% Ag/Al₂O₃, oxidized silver species were predominant while the metallic entities exhibited a low proportion, thus the transformation of formate to CO₂ was difficult at low temperatures during the H₂-C₃H₆-SCR. An increase in metallic silver clusters was clearly observed over 4 wt% Ag/Al₂O₃. This means that the 4 wt% Ag/Al₂O₃ had stronger oxidizing ability than the catalyst with 2 wt% Ag loading, accelerating the decomposition of formate so that this inert species was hardly observed over the whole temperature region in the process of NOx reduction.

Water adsorption is inevitable on oxide surfaces, serving as a promoter/reactant or as an inhibitor in a given reaction taking place over oxide surfaces. Just by tuning the loading of silver, interestingly, quite opposite effects of water vapor were clearly observed over Ag/Al₂O₃ catalysts for H₂-C₃H₆-SCR. As for the water-gas shift reaction, molecular water would react with the key intermediate of surface formate to produce CO₂ and H₂ [65], which is quite different from our result. The theoretical calculation presented here shows that the presence of water can weaken the interactions between the Ag/Al₂O₃ surface and the spectator species formate, thus more surface sites become available for the formation of active intermediates such as acetate.

Over Ag/Al₂O₃ catalysts, it has been suggested that the addition of H₂ enhanced activation of O₂ to active oxygen species (e.g. O₂⁻ and OOH species), and then benefited the partial oxidation of hydrocarbons and NOx reduction [21,66]. In our case, it is possible that the active oxygen species mentioned above would be produced during the H₂-C₃H₆-SCR. On an oxide surface such as the Al₂O₃ surface, meanwhile, dissociative adsorption of H₂O molecules often occurs, providing an efficient pathway for the regeneration of active oxygen species [40]. With this in mind, the presence of water vapor also gives the possibility for the promotion of the H₂-C₃H₆-SCR process, by regeneration of active oxygen species produced by O₂ activation.

5. Conclusion

Oxidized silver species contributed to the partial oxidation of C₃H₆, also serving as the active sites for H₂-assisted C₃H₆-SCR over Ag/Al₂O₃, while metallic silver clusters exhibited strong oxidizing properties and thus promoted the complete oxidation of the reductant to produce CO₂. Over 2 wt% Ag/Al₂O₃, oxidized silver species were predominant, with a small fraction of metallic silver. As a result, the 2 wt% Ag/Al₂O₃ was highly active for H₂-C₃H₆-SCR, whereas it was inactive for the low-temperature transformation of inert formate to CO₂ in the absence of water vapor. In this case, a serious accumulation of formate thus induced a poisoning effect for NO_x conversion over 2 wt% Ag/Al₂O₃, the occurrence of which was confirmed by *in situ* DRIFTS and kinetic studies. *In situ* DRIFTS and DFT calculation studies further revealed that the water molecule may serve as a scavenger of inert formate; its addition therefore significantly decreased the formate coverage, giving more surface sites available for the generation of active enolic species and acetates, finally leading to an increase in the low-temperature activity of 2 wt% Ag/Al₂O₃ for H₂-C₃H₆-SCR.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (21373261, 21673277, and 21637005).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at <http://dx.doi.org/10.1016/j.apcatb.2017.02.001>.

References

- [1] R. Burch, J.P. Breen, F.C. Meunier, *Appl. Catal. B-Environ.* 39 (2002) 283–303.
- [2] H. He, Y.B. Yu, *Catal. Today* 100 (2005) 37–47.
- [3] P. Granger, V.I. Parvulescu, *Chem. Rev.* 111 (2011) 3155–3207.
- [4] M.K. Kim, P.S. Kim, J.H. Baik, I.S. Nam, B.K. Cho, S.H. Oh, *Appl. Catal. B-Environ.* 105 (2011) 1–14.
- [5] K. Shimizu, A. Satsuma, *Phys. Chem. Chem. Phys.* 8 (2006) 2677–2695.
- [6] Z.M. Liu, S.I. Woo, *Catal. Rev.* 48 (2006) 43–89.
- [7] Z.M. Liu, J.H. Li, A.S.M. Junaid, *Catal. Today* 153 (2010) 95–102.
- [8] R. Burch, *Catal. Rev.* 46 (2004) 271–333.
- [9] J.H. Li, R. Ke, W. Li, J.M. Hao, *Catal. Today* 126 (2007) 272–278.
- [10] F. Gunnarsson, J.A. Pihl, T.J. Toops, M. Skoglundh, H. Harelind, *Appl. Catal. B-Environ.* 202 (2017) 42–50.
- [11] S. Satokawa, *Chem. Lett.* (2000) 294–295.
- [12] S. Satokawa, J. Shibata, K. Shimizu, S. Atsushi, T. Hattori, *Appl. Catal. B-Environ.* 42 (2003) 179–186.
- [13] K. Shimizu, J. Shibata, A. Satsuma, *J. Catal.* 239 (2006) 402–409.
- [14] S. Satokawa, J. Shibata, K.I. Shimizu, A. Satsuma, T. Hattori, T. Kojima, *Chem. Eng. Sci.* 62 (2007) 5335–5337.
- [15] X.L. Zhang, Y.B. Yu, H. He, *Appl. Catal. B-Environ.* 76 (2007) 241–247.
- [16] C. Thomas, *Appl. Catal. B-Environ.* 162 (2015) 454–462.
- [17] L. Strom, P.A. Carlsson, M. Skoglundh, H. Harelind, *Appl. Catal. B-Environ.* 181 (2016) 403–412.
- [18] P. Sazama, L. Capek, H. Drobna, Z. Sobalik, J. Dedecek, K. Arve, B. Wichterlova, *J. Catal.* 232 (2005) 302–317.
- [19] R. Brosius, K. Arve, M.H. Groothaert, J.A. Martens, *J. Catal.* 231 (2005) 344–353.
- [20] Y.B. Yu, H. He, X.L. Zhang, H. Deng, *Catal. Sci. Technol.* 4 (2014) 1239–1245.
- [21] K. Shimizu, K. Sawabe, A. Satsuma, *Catal. Sci. Technol.* 1 (2011) 331–341.
- [22] J. Shibata, K. Shimizu, S. Satokawa, A. Satsuma, T. Hattori, *Phys. Chem. Chem. Phys.* 5 (2003) 2154–2160.
- [23] U. Bentrup, M. Richter, R. Fricke, *Appl. Catal. B-Environ.* 55 (2005) 213–220.
- [24] K. Shimizu, A. Satsuma, T. Hattori, *Appl. Catal. B-Environ.* 25 (2000) 239–247.
- [25] F.C. Meunier, R. Ukopec, C. Stapleton, J.R.H. Ross, *Appl. Catal. B-Environ.* 30 (2001) 163–172.
- [26] A. Shichi, T. Hattori, A. Satsuma, *Appl. Catal. B-Environ.* 77 (2007) 92–99.
- [27] M. Richter, U. Bentrup, R. Eckelt, M. Schneider, M.M. Pohl, R. Fricke, *Appl. Catal. B-Environ.* 51 (2004) 261–274.
- [28] T. Miyadera, *Appl. Catal. B-Environ.* 2 (1993) 199–205.
- [29] K. Shimizu, J. Shibata, H. Yoshida, A. Satsuma, T. Hattori, *Appl. Catal. B-Environ.* 30 (2001) 151–162.
- [30] T. Chaieb, L. Delannoy, C. Louis, C. Thomas, *Appl. Catal. B-Environ.* 142 (2013) 780–784.
- [31] T. Chaieb, L. Delannoy, G. Costentin, C. Louis, S. Casale, R.L. Chantry, Z.Y. Li, C. Thomas, *Appl. Catal. B-Environ.* 156 (2014) 192–201.
- [32] N.A. Sadokhina, A.F. Prokhorova, R.I. Kvon, I.S. Mashkovskii, G.O. Bragina, G.N. Baeva, V.I. Bukhtiyarov, A.Y. Stakheev, *Kinet. Catal.* 53 (2012) 107–116.
- [33] K. Shimizu, M. Suzuki, K. Kato, S. Yokota, K. Okumura, A. Satsuma, *J. Phys. Chem. C* 111 (2007) 950–959.
- [34] H. Deng, Y.B. Yu, F.D. Liu, J.Z. Ma, Y. Zhang, H. He, *ACS Catal.* 4 (2014) 2776–2784.
- [35] Y. Yan, Y.B. Yu, H. He, J.J. Zhao, *J. Catal.* 293 (2012) 13–26.
- [36] Y.B. Yu, J.J. Zhao, Y. Yan, X. Han, H. He, *Appl. Catal. B-Environ.* 136 (2013) 103–111.
- [37] X. She, M. Flytzani-Stephanopoulos, *J. Catal.* 237 (2006) 79–93.
- [38] H. Deng, Y.B. Yu, H. He, *Chin. J. Catal.* 36 (2015) 1312–1320.
- [39] H. Deng, Y.B. Yu, H. He, *J. Phys. Chem. C* 119 (2015) 3132–3142.
- [40] M. Digne, P. Sautet, P. Raybaud, P. Euzen, H. Toulhoat, *J. Catal.* 211 (2002) 1–5.
- [41] P.S. Kim, M.K. Kim, B.K. Cho, I.S. Nam, S.H. Oh, *J. Catal.* 301 (2013) 65–76.
- [42] B. Wichterlova, P. Sazama, J.P. Breen, R. Burch, C.J. Hill, L. Capek, Z. Sobalik, *J. Catal.* 235 (2005) 195–200.
- [43] G.D.-M.M. Boudart, *Kinetics of Heterogeneous Catalytic Reactions*, Princeton University Press, Princeton, NJ, 1984.
- [44] S. Tamm, L. Olsson, S. Fogel, P. Gabrielson, M. Skoglundh, *AIChE J.* 59 (2013) 4325–4333.
- [45] B. Sawatmongkhon, A. Tsolakis, K. Theinnoi, A.P.E. York, P.J. Millington, R.R. Rajaram, *Appl. Catal. B-Environ.* 111 (2012) 165–177.
- [46] W.L. Johnson, G.B. Fisher, T.J. Toops, *Catal. Today* 184 (2012) 166–177.
- [47] S. Chansai, R. Burch, C. Hardacre, J. Breen, F. Meunier, *J. Catal.* 281 (2011) 98–105.
- [48] A.B. Mhadeshwar, B.H. Winkler, B. Eiteneer, D. Hancu, *Appl. Catal. B-Environ.* 89 (2009) 229–238.
- [49] D. Creaser, H. Kannisto, J. Sjöblom, H.H. Ingelsten, *Appl. Catal. B-Environ.* 90 (2009) 18–28.
- [50] J.R.H. Carucci, A. Kurman, H. Karhu, K. Arve, K. Eranen, J. Warna, T. Salmi, D.Y. Murzin, *Chem. Eng. J.* 154 (2009) 34–44.
- [51] K. Arve, J.R.H. Carucci, K. Eranen, A. Aho, D.Y. Murzin, *Appl. Catal. B-Environ.* 90 (2009) 603–612.
- [52] J.P. Breen, R. Burch, C. Hardacre, C.J. Hill, C. Rioche, *J. Catal.* 246 (2007) 1–9.
- [53] K. Arve, F. Klingstedt, K. Eranen, J. Warna, L.E. Lindfors, D.Y. Murzin, *Chem. Eng. J.* 107 (2005) 215–220.
- [54] K. Eranen, L.E. Lindfors, F. Klingstedt, D.Y. Murzin, *J. Catal.* 219 (2003) 25–40.
- [55] M. Haneda, Y. Kintaichi, H. Shimada, H. Hamada, *J. Catal.* 192 (2000) 137–148.
- [56] J.H. Li, R. Ke, W. Li, J.M. Hao, *Catal. Today* 139 (2008) 49–58.
- [57] F.C. Meunier, J.P. Breen, V. Zuzaniuk, M. Olsson, J.R.H. Ross, *J. Catal.* 187 (1999) 493–505.
- [58] Y.B. Yu, H. He, Q.C. Feng, H.W. Gao, X. Yang, *Appl. Catal. B-Environ.* 49 (2004) 159–171.
- [59] Y.B. Yu, X.P. Song, H. He, *J. Catal.* 271 (2010) 343–350.
- [60] M.I. Zaki, M.A. Hasan, L. Pasupulety, *Langmuir* 17 (2001) 768–774.
- [61] X.L. Zhang, H. He, H.W. Gao, Y.B. Yu, *Spectrochim. Acta A* 71 (2008) 1446–1451.
- [62] K. Shimizu, J. Shibata, A. Satsuma, T. Hattori, *Phys. Chem. Chem. Phys.* 3 (2001) 880–884.
- [63] M. Digne, P. Sautet, P. Raybaud, P. Euzen, H. Toulhoat, *J. Catal.* 226 (2004) 54–68.
- [64] P. Nortier, P. Fourre, A.B.M. Saad, O. Saur, J.C. Lavalle, *Appl. Catal.* 61 (1990) 141–160.
- [65] J. Paier, C. Penschke, J. Sauer, *Chem. Rev.* 113 (2013) 3949–3985.
- [66] K. Shimizu, A. Satsuma, *J. Phys. Chem. C* 111 (2007) 2259–2264.