

EE3019 – Integrated Electronics

Part 1d – Feedback Circuits

Learning Objectives

By the end of this lesson, you should be able to:

- Explain the general feedback structure and characteristics of a negative feedback amplifier.
- Explain the advantages of a negative feedback amplifier.
- Discuss the four feedback topologies.
- Describe the procedures of feedback amplifier analysis.
- Analyse the loading effect of feedback analysis.
- Execute the examples on negative feedback amplifier.
- Identify the Gain (A_f) , Input Impedance (R_{if}) and Output Impedance (R_{of}) of a feedback amplifier.

Feedback: Outline

Sedra and Smith, "Microelectronic Circuits", 5th Edition, 2014 Chapter 8.

1. The General Feedback Structure

Single-loop Feedback Amplifier

$$X_i = X_S - X_f - (1)$$

$$X_o = AX_i -(2)$$

$$X_o = AX_i$$
 -(2)
 $X_f = \beta X_o$ -(3)

Gain of Negative Feedback Amplifier

Gain of Feedback amplifier:

$$A_f = \frac{X_o}{X_S} = \frac{A}{1 + A\beta}$$

In many circuits, $A\beta >> 1$ then:

$$A_f \approx \frac{1}{\beta}$$

Notation:

A: Basic Amp. Open-loop Gain (without feedback)

 β : Feedback factor

 $A\beta$:Loop gain (determine the stability of the feedback Amp)

1+ $A\beta$: Amount of feedback

 A_f : Closed-loop Gain (with feedback)

2. Characteristics of Negative Feedback Amplifier

Advantages

A. Gain De-sensitivity

B. Reduced Frequency Distortion

C. Noise Reduction

D. Reduced Non-Linear Distortion

E. I/P and O/P Impedance Change

All these are obtained at the expense of **GAIN REDUCTION**.

A. Gain De-sensitivity

Closed-loop Gain,
$$A_f = \frac{A}{1 + A\beta}$$
 – (1)

i.e.
$$dA_f = \frac{(1+A\beta)dA - A\beta dA}{(1+A\beta)^2}$$
 $\Rightarrow dA_f = \frac{dA}{(1+A\beta)^2}$ -(2)

$$\frac{(2)}{(1)}: \quad \frac{dA_f}{A_f} = \frac{1}{(1+A\beta)} \frac{dA}{A}$$
 -(3)

Gain sensitivity of A_f is reduced by $1 + A\beta$

The de-sensitivity factor is $(1 + A\beta)$, which is the amount of feedback.

A. Gain De-sensitivity

Example 1

$$v_f = \frac{R_1}{R_1 + R_2} v_o \Rightarrow \beta = \frac{v_f}{v_o} = \frac{R_1}{R_1 + R_2}$$

If $A = \infty$ (idea)

$$\frac{v_o}{v_s} = 1 + \frac{R_2}{R_1} = 1 + \frac{99}{1} = 100$$

If $A = 10^5$ and $\beta = 0.01$, then closed-loop gain is:

$$A_f = \frac{A}{1 + A\beta} = \frac{10^5}{1 + 10^5 \times 10^{-2}}$$
$$= \frac{10^5}{1001} = 99.9$$

A. Gain De-sensitivity

Example 1 (Contd.)

Loop gain, $A\beta = 10^3$. Amount of feedback, $1 + A\beta = 1001$

 $A = 10^5$, $\beta = 0.01$ and $A_f = 99.9$

Expressed in dB: $A_f(dB) = A(dB) - (1+A\beta)(dB)$

In dB, the difference between open-loop gain, A, and closed-loop gain, A_f , is the amount of feedback $(1 + A\beta)$.

If the op-amp gain of A decreased by 10%, the corresponding decrease in A_f is given by:

$$\frac{dA_f}{A_f} = \frac{1}{(1+A\beta)} \frac{dA}{A}$$

where (1+A β) is also known as the desensitivity factor

$$= \frac{1}{1001} \times \frac{-10}{100} = -0.01\%$$

(very small)

B. Bandwidth Extension

Reduction of frequency distortion

For a basic amplifier, A:

a. Without **negative feedback**:

b. With **negative feedback** added:

dB

Upper − 3dB point

 f_H

 $(1 + A\beta)$

 f_{Hf}

-20dB/dec

New

−3dB point

(a) Extension of Bandwidth : $\omega_H = 2\pi f_H$

Mid-band gain

Low pass function

Consider the case where $F_H(s)$ is characterised by a dominant pole.

$$A(s) = \frac{A_m}{1 + \frac{S}{\omega_H}} = \frac{A_m}{1 + \frac{j\omega}{\omega_H}}$$

$$F_H = \frac{1}{1 + \frac{S}{\omega_H}}$$

The closed-loop gain is given by:

$$A_f(s) = \frac{A(s)}{1 + A(s)\beta} = \frac{\frac{A_m}{1 + \frac{S}{\omega_H}}}{1 + \frac{A_m \beta}{1 + \frac{S}{\omega_H}}}$$

(a) Extension of Bandwidth : ω_H (Contd.)

$$\therefore \quad A_f(s) = \frac{\frac{A_m}{1 + A_m \beta}}{1 + \frac{S}{\omega_H (1 + A_m \beta)}} = \frac{A_{mf}}{1 + \frac{S}{\omega_{Hf}}}$$
 Closed-loop Amp Mid-band gain where $A_{mf} = \frac{A_m}{1 + A_m \beta}$ where $A_{mf} = \omega_H (1 + A_m \beta)$ $\omega_{Hf} = \omega_H (1 + A_m \beta)$

Upper 3-dB frequency is increased by a factor equal to the amount of feedback $(1 + A_m \beta)$ when negative feedback is applied.

(b) Extension of Bandwidth : ω_L

Consider $F_L(s)$ being characterised by a dominant pole, ω_L and a zero at 0.

$$A(s) = A_m \frac{s}{s + \omega_L}$$

$$A_f(s) = \frac{A(s)}{1 + A(s)\beta} = \frac{A_m \frac{s}{s + \omega_L}}{1 + \frac{A_m \beta s}{s + \omega_L}}$$

(b) Extension of Bandwidth : ω_L (Contd.)

$$A_f(s) = \frac{\frac{A_m}{1 + A_m \beta} s}{s + \frac{\omega_L}{1 + A_m \beta}}$$

$$\therefore A_f(s) = \frac{A_{mf} s}{s + \omega_{Lf}} \qquad A_{mf} = \frac{A_m}{1 + A_m \beta}$$

$$\omega_{Lf} = \frac{\omega_L}{1 + A_m \beta}$$

 \therefore Lower 3-dB frequency is decreased by $\frac{1}{1+A_m\beta}$ when negative feedback is applied.

Graphical Representation

Example 2

Given:

$$A = 10^5$$

$$\beta = \frac{1}{100} = \frac{v_f}{v_0}$$

$$F_H = 10 \text{ kHz},$$

$$F_H = 10 \text{ kHz},$$

$$F_{Hf} = (1 + A\beta)F_H$$

$$\left(1+10^5\times\frac{1}{100}\right)10 \text{ kHz}$$

C. Noise Reduction

Noise reduction by negative feedback is possible with the special configuration displayed below.

Here A_1 is a noisy amplifier and A_2 is a noise-free amplifier.

C. Noise Reduction

Output,
$$v_o = A_1 A_2 (v_i - \beta v_o) + A_1 v_n$$

$$v_o = \frac{A_1 A_2}{1 + A_1 A_2 \beta} v_i + \frac{A_1}{1 + A_1 A_2 \beta} v_n$$
 Signal Noise

Improved by A_2 with negative feedback

D. Non-linear Distortion Reduction

With negative feedback, the slope of the transfer curve has been reduced.

 v_o

The resulting curve is less non-linear.

$$A_{1f} = \frac{A_1}{1 + A_1 \beta}$$

w/o Feedback

 v_{in}

with –ve Feedback

D. Non-linear Distortion Reduction

With negative feedback, the slope of the transfer curve has been reduced.

The resulting curve is less non-linear.

Basic Feedback Topologies

Overview

There are four basic feedback topologies:

Mixing Sampling

> I/P O/P

Voltage Amplifier + Example: Series-Shunt Feedback Α.

Voltage or parallel sampling

Current Amplifier + Example: Shunt-Series Feedback В.

Current or series sampling

- Trans-conductance Amplifier + Example: Series-Series Feedback

 v_i

 v_o

Feedback Topologies – Sampling (at output)

The sampling of the output signal of an amplifier can be in series with the load or in shunt with the load depending on the type of output signal (i.e. voltage or current).

Voltage Sampling (Shunt-Sampling)

Feedback Topologies – Sampling (Contd.)

Current Sampling (Series-Sampling)

Feedback Topologies - Mixing (at Input)

The mixing of the feedback signal at the input of an amplifier can be in **series** with source or in **shunt** with source depending on the type of input (i.e. voltage or current).

$$v_i = v_s - v_f$$

Voltage mixing (Series-mixing)

Feedback Topologies - Mixing (Contd.)

Current mixing (**Shunt**-mixing)

Feedback Topology

The Feedback Topology depends on:

The **type of amplifier** used for the basic amplifier block.

: The type of signal (**voltage** or **current**) of the <u>input</u> and <u>output</u> of the feedback network block must be <u>identical</u> to those of the basic amplifier block.

... There are **FOUR** basic feedback topologies with four different types of amplifier.

A. Voltage Amplifier

 Feedback Topology is voltage mixing (at input) and voltage sampling (at output). Input Signal : **Voltage**, v_i Output Signal : **Voltage**, v_o

$$A_{v} = \frac{v_{o}}{v_{i}}$$

i.e. A voltage amplifier with negative feedback is a **Series – Shunt** feedback amplifier.

Series-Shunt Feedback Amplifier

Example 3

(Voltage MixingVoltageSampling)

Series-Shunt Feedback Amplifier

Example 3 (Contd.)

(Voltage Mixing- VoltageSampling)

Feedback signal is connected in series with external excitation source (voltage mixing)

$$v_f = \frac{R_E}{R_E + R_F} v_o$$

Feedback from collector (voltage sampling) at output to emitter at input

B. Current Amplifier

:. Feedback topology for current amplifer is **current** mixing (at input) and **current** sampling (at output).

i.e. A <u>current amplifier</u> with negative feedback is a <u>Shunt -</u><u>Series</u> feedback amplifier.

Shunt-Series Feedback Amplifier

with external source

(Current mixing)

Example 4:

(Current mixing - Current sampling)

Feedback Network

Sample is taken from the output loop, not the output node (Current sampling)

C. Trans-conductance Amplifier

∴ Feedback network I/O signal:

Feedback topology is **current** sampling (at o/p) and **voltage** mixing (at i/p) i.e. <u>Trans-conductance Amp.</u> with negative feedback is a <u>Series-Series</u> Feedback Amplifier.

Series-Series Feedback Amplifier

Example 5: (Voltage Mixing – Current Sampling)

Series-Series Feedback Amplifier

Example 5: (Contd.)

(Voltage Mixing- CurrentSampling)

D. Trans-resistance Amplifier

Feedback network I/O signal:

Feedback topology is **voltage** sampling and **current** mixing, i.e., <u>Trans-resistance Amp.</u> with Negative Feedback is <u>Shunt-Shunt</u> Feedback Amplifier.

Shunt-Shunt Feedback Amplifier

Example 6:

Shunt-Shunt Feedback Amplifier (current mixing – voltage sampling)

Input and Output Resistance of an Amplifier

Effect of feedback on Input and Output Resistance of an Amplifier

Change of R_{in} and R_{out} depends on:

- (i) Mixing method
- (ii) Sampling method

To maximise the o/p drive

Series $R \uparrow$

Multiply

$$R_f = R(1 + A\beta)$$

i.e. with feedback, the I/O resistance is increased by a factor equal to the amount of feedback

For **Shunt-Mixing** or **Shunt-sampling**

$$R_f = \frac{R}{(1 + A\beta)}$$

i.e. I/O resistance decreases by a factor equal to the amount of feedback

R_{if} and R_{of} of the Series-Shunt Feedback Amplifier

Input Resistance, R_{if}

$$v_{s} = v_{i} + v_{f}$$

But

$$v_f = \beta v_o$$
 Ideally

$$v_o = A_v v_i$$

Output Resistance, R_{of}

(Short v_s and apply v_t at output)

$$v_i = -v_f = -\beta v_t$$
$$v_t = I_t R_o + A_v v_i$$

$$v_t = I_t R_o - A_v \beta v_t$$
or $v_t (1 + A_v \beta) = I_t R_o$

Hence
$$R_{of} = \frac{v_t}{I_t} = \frac{R_o}{(1 + A_v \beta)}$$
 (S

(Shunt-sampling)

R_{if} and R_{of} of the Shunt-Series Feedback Amplifier

Input Resistance, R_{if}

$$I_i = I_s - I_f$$

But ideally:

$$I_f = \beta I_o$$
 and $I_o = A_i I_i$

$$I_S = I_i(1 + A_i\beta) - (1)$$

$$v_i = I_i R_i - (2)$$

(2)/(1)

Hence
$$R_{if} = \frac{v_i}{I_S} = \frac{R_i}{(1 + A_i \beta)}$$

(Shunt-mixing)

Smaller R_{if} to extract more current from the source

Output Resistance, R_{of}

Open Circuit I_s and Apply V_t at output

$$I_i = -\beta I_t$$

$$v_t = (I_t - A_i I_i) R_o$$

$$v_t = (I_t + A_i \beta I_t) R_o$$

$$R_{of} = \frac{v_t}{I_t} = (1 + A_i \beta) R_o \qquad (S$$

(Series-Sampling)

R_{if} and R_{of} of the Series-Series Feedback Amplifier

Series $R_f = R(1 + A\beta)$

Ideal Series-Series Feedback Amplifier

R_{if} and R_{of} of the Shunt-Shunt Feedback Amplifier

Shunt (Parallel)

$$R_f = \frac{R}{(1 + A\beta)}$$

Ideal Shunt-Shunt Feedback Amplifier

Input Resistance,

$$R_{if} = \frac{R_i}{(1 + A\beta)}$$

Output Resistance,

$$R_{of} = \frac{R_o}{(1 + A\beta)}$$

Summary of Feedback Topology

 A_v : Voltage Gain G_m : Trans-conductance

 A_i : Current Gain R_m : Trans-resistance

Type of Amplifier	Voltage Amplifier	Current Amplifier	Trans-conductance Amplifier	Trans-resistance Amplifier
Input Signal	v_i	I_i	v_i	I_i
Output Signal	v_o	I_o	I_o	v_o
Transfer Characteristics	$A_v v_s$	A_iI_s	$G_m v_s$	$R_m I_s$
Feedback Topology	Series-Shunt	Shunt-Series	Series-Series	Shunt-Shunt
Feedback Factor $oldsymbol{eta}$	v_f/v_o	I_f/I_0	v_f/I_o	I_f/v_o
Input Resistance $oldsymbol{R_{if}}$	$R_i(1+A\beta)$	$\frac{R_i}{(1+A\beta)}$	$R_i(1+A\beta)$	$\frac{R_i}{(1+A\beta)}$
Output Resistance R_{of}	$\frac{R_o}{(1+A\beta)}$	$R_o(1+A\beta)$	$R_o(1+A\beta)$	$\frac{R_o}{(1+A\beta)}$

4. Procedures of Feedback Amplifier Analysis

1. **Identify** the Topology:

(Mixing)

- (a) Is the feedback signal X_f a **voltage** or a **current** signal? i.e., is X_f applied in **Series** or in **Shunt** with external excitation?
- (b) Is the sampled signal X_o a **voltage** or a **current** signal? i.e., is X_o taken at the **output voltage node** or from the **output current loop**?

amplifier, $\bf A$, and find Input and Output resistance, $\bf R_{\beta i}$ and $\bf R_{\beta o}$, of feedback circuit and also, feedback factor, $\bf \beta$, from the feedback circuit.

2. Separate feedback network from basic

(Sampling)

4. Procedures of Feedback Amplifier Analysis (Contd.)

3. Draw the basic amplifier circuit without feedback network but with $R_{\beta i}$ and $R_{\beta o}$ obtained in step 2. This new basic amplifier is called A'.

4. Use a **Thevenin's** equivalent source input if the feedback signal X_f is a **voltage** or a **Norton's** equivalent source if X_f is a **current**.

The venin's equivalent circuit

Norton's equivalent circuit I_S R_S V_S R_S

5. Replace each active device in A' circuit by a proper model (i.e. h-parameter or hybrid- π model) and evaluate amplifer gain A' of the A' circuit with $R_{\beta i}$ and $R_{\beta o}$ included. Also, find the Input and Output resistance of the A' circuit (R'_i and R'_o).

4. Procedures of Feedback Amplifier Analysis (Contd.)

6. From amplifier gain, $\bf A'$ with $\bf R_{\beta i}$ and $\bf R_{\beta o}$ and feedback factor, $\bf \beta$, find A_f , R_{if} and R_{of} .

$$R_{if} = (1 + A'\beta)R_i' \qquad \text{(Series mixing - Voltage)} \\ R_{if} = R_i'/(1 + A'\beta) \qquad \text{(Shunt mixing - Current)} \\ A_f = \frac{A'}{1 + A'\beta} \\ R_{of} = (1 + A'\beta)R_o' \qquad \text{(Series sampling - Current)} \\ R_{of} = R_o'/(1 + A'\beta) \qquad \text{(Shunt sampling - Voltage)} \\ \text{New gain with } R_{\beta i} \text{ and } R_{\beta o} \\ \text{(Loading effect)} \\ \text{New O/P} \\ \text{impedance} \\ \text{I$$

Feedback Network β

Input and Output Resistance ($R_{\beta i}$ and $R_{\beta o}$) of the Feedback Network β

First, separate the whole **Feedback** Amplifier into <u>TWO</u> blocks, the basic amp A and the **Feedback** network. Apply the following rules to find $R_{\beta i}$ and $R_{\beta o}$.

Input resistance of Feedback circuit, $R_{\beta i}$ Open circuit

For Voltage (Series) mixing, SEVER the output node of the Feedback circuit.

Feedback Network β

Input and Output Resistance ($R_{\beta i}$ and $R_{\beta o}$) of the Feedback Network β

Output Resistance of Feedback Circuit, $R_{\beta o}$

1. For voltage (Shunt) sampling, SHORT the input node of Feedback circuit.

2. For current (Series) sampling, SEVER the input node of Feedback circuit.

A simple rule to remember:

"If connection is <u>SH</u>unt, <u>SH</u>ort it, if connection is <u>SE</u>ries, <u>SE</u>ver it."

Practical Series-Shunt Feedback Amplifier

Example 7:

Separate the *A* block and the **Feedback** block:

*Compare this with the ideal **Series-Shunt Feedback** amplifier structure.

Practical Series-Shunt Feedback Amplifier (Contd.)

Example 7:

Include $R_{\beta i}$ and $R_{\beta o}$ with the **A** Block:

Note that the current dependent source γI_1 is neglected.

In fact, β is the forward transmission of the **Feedback** network and γ is the reverse transmission of the **Feedback** network.

This reverse transmission, in comparison to the much larger forward transmission of the basic amp A, is very negligible.

Practical Series-Shunt Feedback Amplifier (Contd.)

Example 7:

 $R_{\beta i}$ and $R_{\beta o}$ are the loading effects of the feedback network **Feedback** on the basic amplifier **A**.

They are obtained by destroying the feedback, i.e. while looking into the appropriate port (input port for $R_{\beta i}$ and output port for $R_{\beta o}$), the other port is either sever or short so as to destroy the feedback.

Equivalent Circuit of Feedback Network with $R_{eta i}$ and $R_{eta o}$

Output of **Feedback** circuit is **voltage**

Thevenin's equivalent circuit.

$$v_f = v_{R_{\beta o}} + \beta v_o$$

Output of **Feedback** circuit is **current**

$$I_f = I_{R_{\beta o}} + \beta I_o$$

5. Loading Effect of Feedback Network on Basic Amplifier A

Basic Amplifier **A** with Feedback Network resistance $R_{eta i}$ and $R_{eta o}$

5.1 - Input of **A** circuit with $R_{\beta o}$

5. Loading Effect of Feedback Network on Basic Amplifier A

Basic Amplifier **A** with Feedback Network resistance $R_{eta i}$ and $R_{eta o}$

5.2 - Input of **A** circuit with $R_{\beta i}$

Series-Shunt Feedback Amplifier

Basic Amplifier **A** with $R_{\beta i}$ and $R_{\beta o}$:

New gain, $A' = \frac{v_o}{v_s}$ New voltage gain with $R_{\beta o}$ and $R_{\beta i}$

Loading effect

Feedback network $\boldsymbol{\beta}$ without $R_{\beta i}$ and $R_{\beta o}$

Series-Shunt Feedback Amplifier (Contd.)

New open-loop gain, A', considering the loading effect $(R_{\beta i}, R_{\beta o})$

Closed-loop gain:
$$A_f = \frac{A'}{1 + A'\beta}$$

Input-Output Resistance, R_{if} and R_{of}

$$R_{if} = (1 + A'\beta)R'_i$$
 (Series-mixing)

$$R_{of} = \frac{R'_o}{(1 + A'\beta)}$$
 (Shunt-sampling)

The amount of feedback = $(1 + A'\beta)$

Analysis of a Feedback Amplifier

Example 8:

Topology check

1

From **Feedback** circuit, sampling is taken from output node (v_o)=> Voltage sampling (Shunt-sampling).

Feedback signal is fed into Op-amp in series with external source, $(v_s) =>$ Voltage mixing (Series-mixing).

.: This is a **Series-Shunt Feedback** amplifier.

Example 8:

Separate feedback circuit and find β , $R_{\beta i}$ and $R_{\beta o}$.

7

$$v_f = \frac{R_1}{R_1 + R_2} v_o$$

Example 8:

Separate feedback circuit and find β , $R_{\beta i}$ and $R_{\beta o}$.

2

Example 8:

Separate feedback circuit and find β , $R_{\beta i}$ and $R_{\beta o}$.

2

Shunt-sampling (Short: Short circuit)

Example 8:

Redraw basic amplifier with Feedback network I/O resistances, and apply Thevenin's equivalent source

3

Example 8:

Find new gain A' and new I/O resistances R'_i and R'_o of new A' block.

Example 8:

Redraw Circuit

Redraw Circuit

$$\frac{V_o}{V_i} = A \times \frac{\left(R_{\beta i}//R_L\right)}{r_o + \left(R_{\beta i}//R_L\right)} \quad - (2)$$

∴ New gain
$$A' = \frac{v_o}{v_s} = \frac{v_o}{v_i} \times \frac{v_i}{v_s}$$

$$A' = \frac{A(R_{\beta i}//R_L)}{r_o + (R_{\beta i}//R_L)} \times \frac{R_{id}}{(R_s//2R_{icm} + R_{id} + R_{\beta o}//2R_{icm})} \times \frac{2R_{icm}}{(R_s + 2R_{icm})}$$

Example 8:

Redraw Circuit

Input resistance, R'_i

$$R_i' = \left[\left(R_{id} + R_{\beta o} / / 2R_{icm} \right) / / 2R_{icm} \right] + R_s$$

Output resistance, R'_o

$$R_o' = r_o / / R_{\beta i} / / R_L$$

Find closed-loop gain A_f and Input-Output resistance R_{if} and R_{of}

$$A_f = \frac{A'}{1 + A'\beta}$$

$$R_{if} = (1 + A'\beta)R'_i$$
 (Series-mixing)

$$R_{of} = \frac{R'_o}{1 + A'\beta}$$
 (Shunt-sampling)

Example 8A:

With numerical values

$$R_{icm} = 5k\Omega$$

$$r_o = 1k\Omega$$

Example 8A:

With numerical values

$$\beta = \frac{v_f}{v_o} = \frac{R_1}{R_1 + R_2} = \frac{1 \text{k}}{1 \text{k} + 1 \text{M}} \approx 10^{-3}$$

$$\beta = \frac{v_f}{v_o} = \frac{R_1}{R_1 + R_2} = \frac{1 \text{k}}{1 \text{k} + 1 \text{M}} \approx 10^{-3} \qquad \begin{array}{c} R_{\beta i} = R_1 + R_2 = 1001 \text{k}\Omega \\ R_{\beta o} = R_1 / / R_2 = 1 \text{k} / 1 \text{M} \approx 1 \text{k}\Omega \end{array}$$

$$A' = \frac{A(R_{\beta i}//R_L)}{r_o + (R_{\beta i}//R_L)} \times \frac{R_{id}}{(R_s//2R_{icm} + R_{id} + R_{\beta o}//2R_{icm})} \times \frac{2R_{icm}}{(R_s + 2R_{icm})}$$

$$A' = \frac{10^4 (1001 \text{k}//2 \text{k})}{1 \text{k} + (1001 \text{k}//2 \text{k})} \times \frac{100 \text{k}}{10 \text{k}//10 \text{M} + 100 \text{k} + 1 \text{k}//10 \text{M}} \times \frac{10 \text{M}}{10 \text{k} + 10 \text{M}} \approx 600 \text{V/V}$$

Analysis of a Feedback Amplifier (Contd.)

Example 8A:

With numerical values

$$R'_i = (100k + 1k//10M)//10M + 10k \approx 111k\Omega$$

$$R_o' = 1 \text{k}//1001 \text{M}//2 \text{k} \approx 0.67 \text{k}\Omega$$

$$A_{f3} = \frac{A'}{1 + A'\beta} = \frac{6000}{1 + 6000 \times 10^{-3}} = 857 \text{V/V}$$

$$R_{if} = R_i(1 + A'\beta) = 111k(1 + 6) = 777k\Omega$$

$$R_{of} = \frac{R_o}{(1 + A'\beta)} = \frac{0.67 \text{k}}{1 + 6} 95.7 k\Omega$$

Compare with Conventional Analysis of Op-amp

If $A = \infty$ (Ideal case)

$$A_{f1} = \frac{R_1 + R_2}{R_1} = 1 + \frac{1M}{1k}$$
$$= 1001$$

Input R, $R_i \approx \infty$

Output R, $R_o \approx 0$

If
$$A = 10,000$$

$$A_{f2} = \frac{A}{1 + A\beta} = \frac{10000}{1 + 10000 \left(\frac{1}{1001}\right)} = 909.9$$

Example of Series-Shunt Feedback Amplifier

6. Examples of Feedback Amplifier Analysis: Shunt-Series

New Basic Amplifier - A'

New gain, $A' = \frac{I_o}{I_s}$

Feedback circuit - β

Closed-loop gain A_f and I/O Resistance R_{if} and R_{of}

$$A_f = \frac{A'}{1 + A'\beta}$$

$$R_{if} = \frac{R_i'}{1 + A'\beta}$$
 (Shunt-mixing)

$$R_{of} = R'_o(1 + A'\beta)$$
 (Series-sampling)

Example of Shunt-Series Feedback Amplifier

6. Examples of Feedback Amplifier Analysis: Series-Series

New gain,
$$A' = \frac{I_o}{v_s}$$

Feedback circuit - β

Closed-loop gain A_f and I/O Resistance R_{if} and R_{of}

$$A_f = \frac{A'}{1 + A'\beta}$$

$$R_{if} = R'_i(1 + A'\beta)$$
 (Series-mixing)

$$R_{of} = R'_o(1 + A'\beta)$$
 (Series-sampling)

Example of Series-Series Feedback Amplifier

The current sampled at output current loop and emitter voltage is connected in series with input source.

6. Examples of Feedback Amplifier Analysis: Shunt-Shunt

New gain,
$$A' = \frac{v_o}{I_S}$$

Closed-loop gain A_f and I/O Resistance R_{if} and R_{of}

$$A_f = \frac{A'}{1 + A'\beta}$$

$$R_{if} = \frac{R_i'}{1 + A'\beta}$$
 (Shunt-mixing)

Example of Shunt-Shunt Feedback Amplifier

Summary

Here are the key takeaways from this lesson.

The general feedback structure of the negative feedback amplifier consists of a basic amplifier A and a feedback network β .

The characteristics of a negative feedback amplifier are gain de-sensitivity, reduced frequency distortion, noise reduction, reduced non-linear distortion, input and output impedance change which are obtained at the expense of gain reduction.

There are four feedback topologies, Series-Shunt, Shunt-Series, Series-Series and Shunt-Shunt feedback topology.

There are six steps to analyse the feedback amplifier with the loading effect of $R_{\beta i}$ and $R_{\beta o}$. The steps are as follows:

- Identify the topology.
- Separate A and β .
- Find β , $R_{\beta i}$ and $R_{\beta o}$.
- Draw the basic amplifier with $R_{\beta i}$ and $R_{\beta o}$ to covert into a new basic amplifier A'.
- Find A', R'_i and R'_o .
- Determine the Gain (A_f) , Input Impedance (R_{if}) and Output Impedance (R_{of}) of a feedback amplifier.

Thank You

Feedback Circuits

