Computation of the Triangular Representation of a Splitting Field SAGE DAYS 10

Guénaël Renault

1: INRIA SALSA Project / LIP6 / University Paris 06, France

October 10-15, 2008, LORIA Nancy, France

Part I

Introduction

The Splitting Field of a Polynomial

Let $f \in \mathbb{Z}[x]$ be a monic irreducible polynomial with degree n and $\underline{\alpha} = \{\alpha_1, \dots, \alpha_n\}$ a set of its roots.

Aim

Compute a representation of $\mathbb{Q}_f = \mathbb{Q}(\underline{\alpha})$ the Splitting Field of f.

This corresponds to the normal closure of the number field defined by the polynomial f.

Representations of The Splitting Field of a Polynomial

Representation of \mathbb{Q}_f : as a simple extension of degree N = |G| (the Galois groupe of f is G)

 \Rightarrow Representation of the roots needs polynomials of degree N

Representation of \mathbb{Q}_f : as a tower of extensions defined by the quotient algebra

$$\mathbb{Q}[x_1,\ldots,x_n]/\mathcal{I}$$

where \mathcal{I} is the splitting ideal defined by

The kernel of the valuation map in $\underline{\alpha}$

$$\mathcal{I} = \{ R \in \mathbb{Q}[x_1, \dots, x_n] \mid R(\underline{\alpha}) = 0 \}$$

⇒ Recursive definition of the roots

SD10 LORIA, Nancy - Guénaël Renault

(Note: \mathcal{I} depends on the numbering of the roots $\underline{\alpha}$)

Representations of The Splitting Field of a Polynomial

Representation of \mathbb{Q}_f as a tower of extensions

Computations in this Quotient Algebra

The ideal \mathcal{I} is generated by the following triangular set \mathcal{T}

$$egin{array}{lcl} g_1(x_1) &=& x_1^{d_1} + r_1(x_1) & \deg_{x_1}(r_1) < d_1 \ g_2(x_1,x_2) &=& x_2^{d_2} + r_2(x_1,x_2) & \deg_{x_2}(r_2) < d_2 \ & \dots \ g_n(x_1,\dots,x_n) &=& x_n^{d_n} + r(x_1,\dots,x_n) & \deg_{x_n}(r_n) < d_n \end{array}$$

$$g_i(\alpha_1,\ldots,\alpha_{i-1},x_i)$$

minimal polynomial of α_i over $\mathbb{Q}(\alpha_1, \dots, \alpha_{i-1})$.

Gröbner basis (LEX $x_1 < x_2 < ... < x_n$) \Rightarrow computations $\mathbb{Q}[x_1, ..., x_n]/\mathcal{I}$.

The Galois Group in this Representation

The \mathbb{Q} -automorphism group of \mathbb{Q}_f can be represented by a subgroup G_f of S_n , the Galois group of f:

$$\mathbb{Q}_f = \mathbb{Q}(\underline{\alpha}) \longrightarrow \mathbb{Q}_f = \mathbb{Q}(\underline{\alpha})$$

$$\alpha_i \longmapsto \alpha_j$$

The permutation group G_f stabilizes the ideal \mathcal{I} :

$$G_f = \{ \sigma \in S_n \mid \forall R \in \mathcal{I}, \sigma \cdot R := R(x_{\sigma(1)}, \dots, x_{\sigma(n)}) \in \mathcal{I} \}$$

(Note: G_f depends on the numbering of the roots α)

Computation of the Set T

Direct methods

- Successive factorizations (Kronecker-Tchebotarev method)
- Resolvents computations (Arnaudiès, Aubry, Ducos, Valibouze ...)
- \Rightarrow We can compute G_f from T

Driven methods

 \Rightarrow Very efficient implementation for the computation of the G_f action over $\underline{\alpha}$ (Magma, Kash).

Problematic

How to use the knowledge of G_f in order to efficiently compute T?

Computation of the Set T

Driven methods

- \Rightarrow Interpolation method, the action of G_f over p-adic approximations of $\underline{\alpha}$ is known [Yokoyama 97][Lederer 05]: generic
- ⇒[R., Yokoyama ANTS'06]: Interpolation based on linear algebra with a careful treatment on reducing computational difficulty (computation scheme).
- \Rightarrow [R., Yokoyama ISSAC'08]: Linear algebra \rightarrow Lagrange Formulae and multi-modular strategy.

Part II

Computation Scheme

The generic shape of g_i 's and T

From the knowledge of G_f we obtain:

The generic shape of g_i 's and T_i

From the knowledge of G_f we obtain:

$$d_i = |\operatorname{Stab}_{G_i}([1,\ldots,i-1])|/|\operatorname{Stab}_{G_i}([1,\ldots,i])|.$$

$$\Downarrow$$

$$g_i = x_i^{d_i} + \sum_{0 \leqslant k_j < d_j} c x_1^{k_1} x_2^{k_2} \cdots x_i^{k_i}$$

With this generic shape, there are $d_1 d_2 \cdots d_i$ indeterminate coefficients to compute for identifying g_i ([Yokoyama 97], [Lederer 05]).

 \mathcal{T} contains n polynomials with $\simeq |G_f|$ indeterminate coefficients

The principle of the computation scheme

⇒[R., Yokoyama ANTS'06] [R. ISSAC'06]

Definition

Be given a permutation group G, a computation scheme consists of a pre-computed data that guides the computation of the splitting field of a polynomial with Galois group G.

- reducing the number of indeterminates to compute
- reducing the number of polynomials to compute

 $\Rightarrow c(G)$ will denote the number of coefficients to compute in T

Sparse shape of g_i

i-relation

$$E = \{e_1 < \ldots < e_s < i\} \subset \{1, \ldots, i\}$$

$$\exists r_i \in \mathbb{Q}[x_{e_1}, \dots, x_{e_s}, x_i] : \quad \alpha_i^{d_i} + r_i(\underline{\alpha}) = 0 \text{ and } \deg_{x_i}(r_i) < d_i$$

i-relations with minimal $D(E) \Rightarrow$ minimal number of coefficients for g_i .

Avoiding some computations

Techniques

From a polynomial $g \in \mathcal{T}$ already computed it is possible to deduce a new one by using the knowledge of G_f :

- By action of G_f over g (Transporter technique)
- By divided differences of g (generalized Cauchy moduls)

Avoiding some computations : (i, j)-transporters

 $E_i = \{e_1 < e_2 < \dots < e_s = i\}$ is an *i*-relation and $j \in \{i + 1, \dots, n\}$.

Definition

$$\sigma \in G_f$$
 is a (i,j) -transporter if $d_i = d_j$ and

$$\sigma(i) = j$$
 with $j = \max(\{\sigma(e) : e \in E_i\})$

Avoiding some computations: Cauchy moduls

Let $\mathcal{O} = \{i_1 = i < i_2 < \dots < i_{d_i}\}$ be the orbit of i under the action of $\operatorname{Stab}_{G_i}([1,\dots,i-1])$.

Definition

The generalized Cauchy moduls of g_i are

$$egin{array}{lcl} c_1(g_i)(\dots,x_{i_1}) &=& g_i \ c_2(g_i)(\dots,x_{i_2}) &=& rac{c_1(g_i)(x_{i_2})-c_1(g_i)(x_{i_1})}{(x_{i_2}-x_{i_1})} \ &dots \ c_{d_i}(g_i)(\dots,x_{i_{d_i}}) &=& rac{c_{d_i-1}(g_i)(x_{i_{d_i}})-c_{d_i-1}(g_i)(x_{i_{d_i}-1})}{(x_{i_{d_i}}-x_{i_{d_{i-1}}})} \end{array}$$

$$c_j(g_i) \in \mathbb{Q}[x_1, \dots, x_{i_j}] \cap \mathcal{I}$$
 monic in x_{i_j} and $\deg_{i_j}(c_j(g_i)) = d_i - j + 1$. $c_j(g_i)(\underline{\alpha}, x_{i_j})$ is a univariate polynomial which vanishes on α_{i_j} .

Avoiding some computations: Cauchy moduls

 $c_j(g_i) \in \mathbb{Q}[x_1, \dots, x_{i_j}] \cap \mathcal{I}$ monic in x_{i_j} and $\deg_{i_j}(c_j(g_i)) = d_i - j + 1$. $c_j(g_i)(\underline{\alpha}, x_{i_j})$ is a univariate polynomial which vanishes on α_{i_j} .

Computation Scheme, Conclusion

Conclusion

Given G_f we can obtain a sparse shape for each polynomial g_i or a technique to obtain it without computation:

- 1: Compute d_i .
- 2: Search for generalized Cauchy moduls.
- 3: Search for a transporter.
- 4: If necessary, compute an *i*-relation E_i with minimal $D(E_i)$.

We denote by $c(G_f) = \sum D(E_i)$ the total number of indeterminate coefficients of polynomials in \mathcal{T} we have to compute.

- The integer $c(G_f)$ is not an invariant for a conjugacy class.
- A representative with minimal c-size can be pre-computed and stored with its attached computation scheme.

Computation Scheme, example

Example : $G_2 \simeq 8T_{44} \simeq [2^4]S_4$, $|G_2| = 384$, imprimitive

$$G_2 = \langle (2,1), (8,6,4,1)(7,5,3,2), (8,1)(7,2) \rangle$$

Computation Scheme, example

Example : $G_2 \simeq 8T_{44} \simeq [2^4]S_4$, $|G_2| = 384$, imprimitive

$$G_2 = \langle (2,1), (8,6,4,1)(7,5,3,2), (8,1)(7,2) \rangle$$

$$\begin{array}{l} \text{Generic} \\ \text{Generic} \\ \begin{cases} g_1 = x_1^8 + \dots & 8 \\ g_2 = x_2^1 + \dots & 8 \\ g_3 = x_3^6 + \dots & 8 \\ g_4 = x_4^1 + \dots & 8 \\ g_5 = x_5^4 + \dots & 8 \\ g_6 = x_6^1 + \dots & 8 \\ g_7 = x_7^2 + \dots & 8 \\ g_8 = x_8^1 + \dots & 8 \\ \end{cases} \\ \end{array}$$

Part III

Modular method for computing \mathcal{T}

Computation of a candidate: inputs

 \Rightarrow From the knowledge of G_f we know a computation scheme, thus a subset

$$\mathcal{S} := \{g_{i_1}, \ldots, g_{i_k}\} \subset \mathcal{T}$$

of polynomials to compute and techniques for obtaining the others.

 \Rightarrow To g in S corresponds an i-relation $E = \{e_1 < e_2 < \cdots < e_s = i\}$:

$$g = x_i^{d_i} + r(x_{e_1}, x_{e_2}, \dots, x_i)$$

D(E) indeterminate coefficients to compute

Computation of a candidate: interpolation

From the action of G_f over $\underline{\alpha} \mod p^k$ ([Yokoyama 97], [Geissler, Klüners 00]) we can reconstruct $g \mod p^k$ by interpolation.

[R., Yokoyama ANTS'06]:

• $g(\beta) = 0 \mod p^k, \forall \beta \in G_f \cdot \underline{\alpha} \Rightarrow D(E)$ linear equations

$$\left(\qquad D(E)^2 \qquad \right)$$

$$D(E) = d_{e_1} d_{e_2} \cdots d_i$$

Computation of a candidate: interpolation

From the action of G_f over $\underline{\alpha} \mod p^k$ ([Yokoyama 97], [Geissler, Klüners 00]) we can reconstruct $g \mod p^k$ by interpolation.

[R., Yokoyama ISSAC'08]:

- We can directly apply [Dahan, Schost 04] on sub-triangular set,
- and the formula can be established by Galois theory

$$g = \sum_{\sigma \in G_f / / \operatorname{Stab}_{G_f}(E_i \setminus \{i\})} \left(\prod_{j \in E_i \setminus \{i\}} \prod_{\beta \in B(\sigma,j,E_i)} \frac{\mathsf{x}_j - \beta}{\alpha_{\sigma(j)} - \beta} \right) \prod_{\beta \in B(\sigma,i,E_i)} \frac{\mathsf{x}_i - \beta}{\alpha_{\sigma(i)} - \beta}$$

Correctness test

⇒After rational reconstruction, how to check the result?

Theoretical Bounds: ([Lederer 05] for a generic shape of ideal T).

$$d(E_i)\binom{d_1-1}{k_1}\nu^{d_1-1-k_1}\cdots\binom{d_s}{k_s}\nu^{d_s-k_s}\mathbb{B}.$$

where ν and $\mathbb B$ are bounds computed from numerical app. roots of f

Normal Form Computation: Let h_i be the rational reconstruction of g_i mod p^k . Assume that g_1, \ldots, g_{i-1} are already computed.

Theorem. We have the following equivalence

$$h_i = g_i \Leftrightarrow NF_{\{g_1, \dots, g_{i-1}, h_i\}}(\mathsf{CauchyMod}_i(f)) = 0$$
.

First comparisons

Complexity:

Interpolation based on lin. algebra $c(G)^{\omega} \to \text{Lagrange formulae } c(G)^2$.

Experiments: Magma 2.14-13 (1.5GHz Intel Pentium 4, GNU/Linux), k = 10, f splits completely modulo p. All timings in seconds.

group	gen.	c(G)	Lagrange	NF	Total	Magma	Lederer
7 <i>T</i> ₆	3611	1260	47.5	3.04	52.5	>	1508.3
8 <i>T</i> ₃₂	624	96 + 96	0.55	0.14	0.72	33.5	12.5
8 <i>T</i> ₄₂	1008	24 + 24	0.05	0.02	0.1	17.9	20.08
8 <i>T</i> ₄₇	1008	24	0.03	0.0	0.5	422.3	238.3
9 <i>T</i> ₂₅	828	27 + 324	3.41	0.33	3.77	106.1	67.9
9 <i>T</i> ₂₇	3096	504	7.98	105.49	116.3	>	397.3
9 <i>T</i> ₃₁	2178	18	0.01	0.03	0.5	>	403.3
9 <i>T</i> ₃₂	9648	1512 + 1512	142.17	752.4	905.4	>>	1967.1

(>,>>): we wait at least (600,2000) seconds

Part IV

Conclusion

SAGE possibilities

- KASH/KANT : Galois action over p-adic approximations of the roots $\underline{\alpha}$
- GAP: Computation Scheme
- Singular : Multivariate polynomials and normal forms computations

⇒This algorithm could be easily implemented in SAGE.