ルベーグ積分の定義

1. 単関数とその積分

単関数の定義

集合 \$E\$ 上の非負値関数 ϕ \$\phi\$ が**単関数**であるとは、有限個の非負実数 \$a_1, a_2, \ldots, a_n\$ と互いに素な可測集合 \$E_1, E_2, \ldots, E_n\$ が存在して、 \$\$\phi(x) = \sum_{i=1}^{n} a_i \chi_{E_i}(x)\$\$ と表されることである。ここで \$\chi_{E_i}\$ は集合 \$E_i\$ の特性関数である。

単関数の積分

可測集合 \$E\$ 上の非負単関数 \$\phi(x) = \sum_{i=1}^{n} a_i \chi_{E_i}(x)\$ に対して、そのルベーグ積分を \$\$\int_E \phi , d\mu = \sum_{i=1}^{n} a_i \mu(E_i \cap E)\$\$ で定義する。ここで \$\mu\$ は測度である。

2. 非負可測関数の積分

非負可測関数のルベーグ積分

可測集合 \$E\$ 上の非負可測関数 \$f\$ に対して、そのルベーグ積分を \$\$\int_E f , d\mu = \sup\left{\int_E \phi , d\mu : 0 \leq \phi \leq f, \phi \text{ は単関数}\right}\$\$ で定義する。

可積分性

非負可測関数 \$f\$ が \$E\$ 上で**可積分**であるとは、\$\int_E f , d\mu < +\infty\$ が成り立つことである。

3. 一般の可測関数の積分

正部と負部

可測関数 \$f\$ に対して、その**正部** \$f^+\$ と**負部** \$f^-\$ を \$\$f^+(x) = \max{f(x), 0}, \quad f^-(x) = \max{-f(x), 0}\$\$ で定義する。このとき \$f = f^+ - f^-\$ かつ \$|f| = f^+ + f^-\$ が成り立つ。

一般の可測関数のルベーグ積分

可測集合 \$E\$ 上の可測関数 \$f\$ に対して、\$f^+\$ と \$f^-\$ がともに \$E\$ 上で可積分であるとき、\$f\$ は \$E\$ 上で**可積分**であるといい、そのルベーグ積分を \$\$\int_E f , d\mu = \int_E f^+ , d\mu - \int_E f^- , d\mu\$\$ で定義する。

4. 重要な性質

線形性

\$f, g\$ が可積分ならば、任意の実数 \$a, b\$ に対して \$\$\int_E (af + bg) , d\mu = a\int_E f , d\mu + b\int_E g , d\mu\$\$

単調性

\$f \leq g\$ a.e. かつ両関数が可積分ならば \$\$\int_E f, d\mu \leq \int_E g, d\mu\$\$

可測集合の分割

\$E = E_1 \cup E_2\$ かつ \$E_1 \cap E_2 = \emptyset\$ ならば \$\$\int_E f , d\mu = \int_{E_1} f , d\mu + \int_{E_2} f , d\mu\$\$

5. 収束定理

単調収束定理(Monotone Convergence Theorem)

非負可測関数列 \${f_n}\$ が単調増加し、\$f_n \to f\$ a.e. ならば \$\$\lim_{n \to \infty} \int_E f_n , d\mu = \int_E f , d\mu\$\$

疲労収束定理(Fatou's Lemma)

非負可測関数列 \${f_n}\$ に対して \$\$\int_E \liminf_{n \to \infty} f_n , d\mu \leq \liminf_{n \to \infty} \int_E f_n , d\mu \$\$

優収束定理(Dominated Convergence Theorem)

可測関数列 \${f_n}\$ が \$f\$ に a.e. 収束し、可積分関数 \$g\$ が存在して \$|f_n| \leq g\$ a.e. が全ての \$n\$ に対して成り立つならば \$\$\lim_{n \to \infty} \int_E f_n , d\mu = \int_E f , d\mu\$\$