ECE/MATH 520, Spring 2008

Homework Problems 1

Solutions (version: February 5, 2008, 11:7)

1.5 Suppose you are shown four cards, laid out in a row. Each card has a letter on one side and a number on the other. On the visible side of the cards are printed the symbols:

$$S = 8 = 3 = A$$

Determine which cards you should turn over to decide if the following rule is true or false: "If there is a vowel on one side of the card, then there is an even number on the other side."

Ans.: The cards that you should turn over are 3 and A. The remaining cards are irrelevant to ascertaining the truth or falsity of the rule. The card with S is irrelevant because S is not a vowel. The card with S is not relevant because the rule does not say that if a card has an even number on one side, then it has a vowel on the other side.

Turning over the A card directly verifies the rule, while turning over the 3 card verifies the contraposition.

2.6 Show that for any two vectors $x, y \in \mathbb{R}^n$, $|||x|| - ||y||| \le ||x - y||$. *Hint:* Write x = (x - y) + y, and use the Triangle inequality. Do the same for y.

Ans.: We have $||x|| = ||(x-y) + y|| \le ||x-y|| + ||y||$ by the Triangle Inequality. Hence, $||x|| - ||y|| \le ||x-y||$. On the other hand, from the above we have $||y|| - ||x|| \le ||y-x|| = ||x-y||$. Combining the two inequalities, we obtain $|||x|| - ||y||| \le ||x-y||$.

3.2 Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of the matrix $A \in \mathbb{R}^{n \times n}$. Show that the eigenvalues of the matrix $I_n - A$ are $1 - \lambda_1, \ldots, 1 - \lambda_n$.

Ans.: Suppose v_1, \ldots, v_n are eigenvectors of A corresponding to $\lambda_1, \ldots, \lambda_n$, respectively. Then, for each $i = 1, \ldots, n$, we have

$$(\boldsymbol{I}_n - \boldsymbol{A})\boldsymbol{v}_i = \boldsymbol{v}_i - \boldsymbol{A}\boldsymbol{v}_i = \boldsymbol{v}_i - \lambda_i \boldsymbol{v}_i = (1 - \lambda_i)\boldsymbol{v}_i$$

which shows that $1 - \lambda_1, \dots, 1 - \lambda_n$ are the eigenvalues of $I_n - A$.

Alternatively, we may write the characteristic polynomial of $\boldsymbol{I}_n - \boldsymbol{A}$ as

$$\pi_{\boldsymbol{I}_{n-\boldsymbol{A}}}(1-\lambda) = \det((1-\lambda)\boldsymbol{I}_{n} - (\boldsymbol{I}_{n}-\boldsymbol{A})) = \det(-[\lambda\boldsymbol{I}_{n}-\boldsymbol{A}]) = (-1)^{n}\pi_{\boldsymbol{A}}(\lambda),$$

which shows the desired result.

3.12a Consider the matrix

$$Q = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

a. Is this matrix positive definite, negative definite, or indefinite?

Ans.: a. The matrix Q is indefinite, since $\Delta_2 = -1$ and $\Delta_3 = 2$.

5.5 Let $\boldsymbol{x}(t) = [e^t + t^3, t^2, t + 1]^T$, $t \in \mathbb{R}$, and $f(\boldsymbol{x}) = x_1^3 x_2 x_3^2 + x_1 x_2 + x_3$, $\boldsymbol{x} = [x_1, x_2, x_3]^T \in \mathbb{R}^3$. Find $(d/dt) f(\boldsymbol{x}(t))$ in terms of t.

Ans.: We have

$$Df(\mathbf{x}) = [3x_1^2x_2x_3^2 + x_2, \ x_1^3x_3^2 + x_1, \ 2x_1^3x_2x_3 + 1]$$

and

$$\frac{d\mathbf{x}}{dt}(t) = \begin{bmatrix} e^t + 3t^2 \\ 2t \\ 1 \end{bmatrix}.$$

By the chain rule,

$$\frac{d}{dt}f(\boldsymbol{x}(t))$$

$$= Df(\boldsymbol{x}(t))\frac{d\boldsymbol{x}}{dt}(t)$$

$$= [3x_1(t)^2x_2(t)x_3(t)^2 + x_2(t), x_1(t)^3x_3(t)^2 + x_1(t), 2x_1(t)^3x_2(t)x_3(t) + 1] \begin{bmatrix} e^t + 3t^2 \\ 2t \\ 1 \end{bmatrix}$$

$$= (3x_1(t)^2x_2(t)x_3(t)^2 + x_2(t))(e^t + 3t^2) + (x_1(t)^3x_3(t)^2 + x_1(t))(2t)$$

$$+ 2x_1(t)^3x_2(t)x_3(t) + 1$$

$$= 12t(e^t + 3t^2)^3 + 2te^t + 6t^2 + 2t + 1.$$

(Actually, you're not expected or required to expand out and simplify to the last formula.)

5.8 Let

$$f_1(x_1, x_2) = x_1^2 - x_2^2;$$

 $f_2(x_1, x_2) = 2x_1x_2.$

Sketch the level sets associated with $f_1(x_1, x_2) = 12$ and $f_2(x_1, x_2) = 16$ on the same diagram. Indicate on the diagram the values of $\boldsymbol{x} = [x_1, x_2]^T$ for which $\boldsymbol{f}(\boldsymbol{x}) = [f_1(x_1, x_2), f_2(x_1, x_2)]^T = [12, 16]^T$.

2

Ans.: We have that

$$\{\boldsymbol{x}: f_1(\boldsymbol{x}) = 12\} = \{\boldsymbol{x}: x_1^2 - x_2^2 = 12\},\$$

and

$$\{x: f_2(x) = 16\} = \{x: x_2 = 8/x_1\}.$$

To find the intersection points, we substitute $x_2 = 8/x_1$ into $x_1^2 - x_2^2 = 12$ to get $x_1^4 - 12x_1^2 - 64 = 0$. Solving gives $x_1^2 = 16, -4$. Clearly, the only two possibilities for x_1 are $x_1 = +4, -4$, from which we obtain $x_2 = +2, -2$. Hence, the intersection points are located at $[4, 2]^T$ and $[-4, -2]^T$.

The level sets associated with $f_1(x_1, x_2) = 12$ and $f_2(x_1, x_2) = 16$ are shown as follows.

5.9 Write down the Taylor series expansion of the following functions about the given points x_0 . Neglect terms of order three or higher.

a.
$$f(\mathbf{x}) = x_1 e^{-x_2} + x_2 + 1, \mathbf{x}_0 = [1, 0]^T$$

b.
$$f(x) = x_1^4 + 2x_1^2x_2^2 + x_2^4, x_0 = [1, 1]^T$$

c.
$$f(\mathbf{x}) = e^{x_1 - x_2} + e^{x_1 + x_2} + x_1 + x_2 + 1, \mathbf{x}_0 = [1, 0]^T.$$

Ans.: a. We have

$$f(\boldsymbol{x}) = f(\boldsymbol{x}_o) + Df(\boldsymbol{x}_o)(\boldsymbol{x} - \boldsymbol{x}_o) + \frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}_o)^T D^2 f(\boldsymbol{x}_o)(\boldsymbol{x} - \boldsymbol{x}_o) + \cdots$$

We compute

$$Df(\mathbf{x}) = [e^{-x_2}, -x_1e^{-x_2} + 1],$$

$$D^2f(\mathbf{x}) = \begin{bmatrix} 0 & -e^{-x_2} \\ -e^{-x_2} & x_1e^{-x_2} \end{bmatrix}.$$

Hence,

$$f(\mathbf{x}) = 2 + [1,0] \begin{bmatrix} x_1 - 1 \\ x_2 \end{bmatrix} + \frac{1}{2} [x_1 - 1, x_2] \begin{bmatrix} 0 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 - 1 \\ x_2 \end{bmatrix} + \cdots$$
$$= 1 + x_1 + x_2 - x_1 x_2 + \frac{1}{2} x_2^2 + \cdots$$

b. We compute

$$Df(\mathbf{x}) = [4x_1^3 + 4x_1x_2^2, 4x_1^2x_2 + 4x_2^3],$$

$$D^2f(\mathbf{x}) = \begin{bmatrix} 12x_1^2 + 4x_2^2 & 8x_1x_2 \\ 8x_1x_2 & 4x_1^2 + 12x_2^2 \end{bmatrix}.$$

Expanding f about the point x_o yields

$$f(\mathbf{x}) = 4 + [8,8] \begin{bmatrix} x_1 - 1 \\ x_2 - 1 \end{bmatrix} + \frac{1}{2} [x_1 - 1, x_2 - 1] \begin{bmatrix} 16 & 8 \\ 8 & 16 \end{bmatrix} \begin{bmatrix} x_1 - 1 \\ x_2 - 1 \end{bmatrix} + \cdots$$
$$= 8x_1^2 + 8x_2^2 - 16x_1 - 16x_2 + 8x_1x_2 + 12 + \cdots$$

c. We compute

$$Df(\mathbf{x}) = [e^{x_1 - x_2} + e^{x_1 + x_2} + 1, -e^{x_1 - x_2} + e^{x_1 + x_2} + 1]$$

$$D^2f(\mathbf{x}) = \begin{bmatrix} e^{x_1 - x_2} + e^{x_1 + x_2} & -e^{x_1 - x_2} + e^{x_1 + x_2} \\ -e^{x_1 - x_2} + e^{x_1 + x_2} & e^{x_1 - x_2} + e^{x_1 + x_2} \end{bmatrix}.$$

Expanding f about the point x_o yields

$$f(\mathbf{x}) = 2 + 2e + [2e + 1, 1] \begin{bmatrix} x_1 - 1 \\ x_2 \end{bmatrix} + \frac{1}{2} [x_1 - 1, x_2] \begin{bmatrix} 2e & 0 \\ 0 & 2e \end{bmatrix} \begin{bmatrix} x_1 - 1 \\ x_2 \end{bmatrix} + \cdots$$
$$= 1 + x_1 + x_2 + e(1 + x_1^2 + x_2^2) + \cdots$$

6.2 Show that, if x^* is a global minimizer of f over Ω , and $x^* \in \Omega' \subset \Omega$, then x^* is a global minimizer of f over Ω' .

Ans.: Suppose x^* is a global minimizer of f over Ω , and $x^* \in \Omega' \subset \Omega$. Let $x \in \Omega'$. Then, $x \in \Omega$ and therefore $f(x^*) \leq f(x)$. Hence, x^* is a global minimizer of f over Ω' .

6.5 Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given below:

$$f(\boldsymbol{x}) = \boldsymbol{x}^T \begin{bmatrix} 1 & 2 \\ 4 & 7 \end{bmatrix} \boldsymbol{x} + \boldsymbol{x}^T \begin{bmatrix} 3 \\ 5 \end{bmatrix} + 6$$

- **a.** Find the gradient and Hessian of f at the point $[1,1]^T$.
- **b.** Find the directional derivative of f at $[1,1]^T$ in the direction of maximal rate of increase.
- **c.** Find a point that satisfies the FONC (interior case) for f. Does this point satisfy the SONC (for a minimizer)?

Ans.: a. The gradient and Hessian of f are

$$\nabla f(\boldsymbol{x}) = 2 \begin{bmatrix} 1 & 3 \\ 3 & 7 \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$
$$\boldsymbol{F}(\boldsymbol{x}) = 2 \begin{bmatrix} 1 & 3 \\ 3 & 7 \end{bmatrix}.$$

Hence, $\nabla f([1,1]^T) = [11,25]^T$, and $F([1,1]^T)$ is as shown above.

b. The direction of maximal rate of increase is the direction of the gradient. Hence, the directional derivative with respect to a unit vector in this direction is

$$\left(\frac{\nabla f(\boldsymbol{x})}{\|\nabla f(\boldsymbol{x})\|}\right)^T \nabla f(\boldsymbol{x}) = \frac{(\nabla f(\boldsymbol{x}))^T \nabla f(\boldsymbol{x})}{\|\nabla f(\boldsymbol{x})\|} = \|\nabla f(\boldsymbol{x})\|.$$

At $\boldsymbol{x} = [1, 1]^T$, we have $\|\nabla f([1, 1]^T)\| = \sqrt{11^2 + 25^2} = 27.31$.

c. The FONC in this case is $\nabla f(x) = 0$. Solving, we get

$$\boldsymbol{x} = \begin{bmatrix} 3/2 \\ -1 \end{bmatrix}$$
.

The point above does not satisfy the SONC because the Hessian is not positive semidefinite (its determinant is negative).

6.11 An art collector stands at distance of x feet from the wall where a piece of art (picture) of height a feet is hung, b feet above his eyes, as shown below.

Find the distance from the wall for which the angle θ subtended by the eye to the picture is maximized.

Hint: (1) Maximizing θ is equivalent to maximizing $\tan(\theta)$;

(2) If
$$\theta = \theta_2 - \theta_1$$
, then $\tan(\theta) = (\tan(\theta_2) - \tan(\theta_1))/(1 + \tan(\theta_2) \tan(\theta_1))$.

Ans.: Let θ_1 be the angle from the horizontal to the bottom of the picture, and θ_2 the angle from the horizontal to the top of the picture. Then, $\tan(\theta) = (\tan(\theta_2) - \tan(\theta_1))/(1 + \tan(\theta_2) \tan(\theta_1))$. Now, $\tan(\theta_1) = b/x$ and $\tan(\theta_2) = (a+b)/x$. Hence, the objective function that we wish to maximize is

$$f(x) = \frac{(a+b)/x - b/x}{1 + b(a+b)/x^2} = \frac{a}{x + b(a+b)/x}.$$

We have

$$f'(x) = -\frac{a^2}{(x + b(a+b)/x)^2} \left(1 - \frac{b(a+b)}{x^2}\right).$$

Let x^* be the optimal distance. Then, x^* must satisfy the FONC. Now, the point $x^* = 0$ does not satisfy the FONC (why?). Therefore, x^* must be an interior point of the constraint set $\Omega = \{x : x \ge 0\}$. Hence, we have $f'(x^*) = 0$, which gives

$$1 - \frac{b(a+b)}{(x^*)^2} = 0$$

$$\Rightarrow x^* = \sqrt{b(a+b)}.$$

6.20 Line Fitting. Let $[x_1, y_1]^T, \ldots, [x_n, y_n]^T, n \ge 2$, be points on the \mathbb{R}^2 plane (each $x_i, y_i \in \mathbb{R}$). We wish to find the straight line of "best fit" through these points ("best" in the sense that the average squared error is minimized); that is, we wish to find $a, b \in \mathbb{R}$ to minimize

$$f(a,b) = \frac{1}{n} \sum_{i=1}^{n} (ax_i + b - y_i)^2$$

a. Let

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$\overline{X^2} = \frac{1}{n} \sum_{i=1}^{n} x_i^2$$

$$\overline{Y^2} = \frac{1}{n} \sum_{i=1}^{n} y_i^2$$

$$\overline{XY} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i.$$

Show that f(a,b) can be written in the form $\mathbf{z}^T \mathbf{Q} \mathbf{z} - 2 \mathbf{c}^T \mathbf{z} + d$, where $\mathbf{z} = [a,b]^T$, $\mathbf{Q} = \mathbf{Q}^T \in \mathbb{R}^{2 \times 2}$, $\mathbf{c} \in \mathbb{R}^2$, and $d \in \mathbb{R}$, and find expressions for \mathbf{Q} , \mathbf{c} , and d in terms of \overline{X} , \overline{Y} , $\overline{X^2}$, $\overline{Y^2}$, and \overline{XY} .

b. Assume that the x_i , i = 1, ..., n, are not all equal. Find the parameters a^* and b^* for the line of best fit in terms of \overline{X} , \overline{Y} , $\overline{X^2}$, $\overline{Y^2}$, and \overline{XY} . Show that the point $[a^*, b^*]^T$ is the only local minimizer of f.

Hint:
$$\overline{X^2} - (\overline{X})^2 = (1/n) \sum_{i=1}^n (x_i - \overline{X})^2$$
.

c. Show that if a^* and b^* are the parameters of the line of best fit, then $\overline{Y} = a^* \overline{X} + b^*$ (and hence once we have computed a^* , we can compute b^* using the formula $b^* = \overline{Y} - a^* \overline{X}$).

Ans.: a. We write

$$f(a,b) = \frac{1}{n} \sum_{i=1}^{n} a^{2} x_{i}^{2} + b^{2} + y_{i}^{2} + 2x_{i}ab - 2x_{i}y_{i}a - 2y_{i}b$$

$$= a^{2} \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right) + b^{2} + 2\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) ab$$

$$- 2\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}y_{i}\right) a - 2\left(\frac{1}{n} \sum_{i=1}^{n} y_{i}\right) b + \left(\frac{1}{n} \sum_{i=1}^{n} y_{i}^{2}\right)$$

$$= [a \ b] \begin{bmatrix} \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} & \frac{1}{n} \sum_{i=1}^{n} x_{i} \\ \frac{1}{n} \sum_{i=1}^{n} x_{i} & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

$$- 2\left[\frac{1}{n} \sum_{i=1}^{n} x_{i}y_{i}, \frac{1}{n} \sum_{i=1}^{n} y_{i}\right] \begin{bmatrix} a \\ b \end{bmatrix} + \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2}$$

$$= \mathbf{z}^{T} \mathbf{Q} \mathbf{z} - 2\mathbf{c}^{T} \mathbf{z} + d,$$

where z, Q, c and d are defined in the obvious way.

b. If the point $z^* = [a^*, b^*]^T$ is a solution, then by the FONC, we have $\nabla f(z^*) = 2Qz^* - 2c = 0$, which means $Qz^* = c$. Now, since $\overline{X^2} - (\overline{X})^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{X})^2$, and the x_i are not all equal, then $\det Q = \overline{X^2} - (\overline{X})^2 \neq 0$. Hence, Q is nonsingular, and hence

$$\boldsymbol{z}^* = \boldsymbol{Q}^{-1}\boldsymbol{c} = \frac{1}{\overline{X^2} - (\overline{X})^2} \begin{bmatrix} 1 & -\overline{X} \\ -\overline{X} & \overline{X^2} \end{bmatrix} \begin{bmatrix} \overline{XY} \\ \overline{Y} \end{bmatrix} = \begin{bmatrix} \frac{\overline{XY} - (\overline{X})(\overline{Y})}{\overline{X^2} - (\overline{X})^2} \\ \frac{(\overline{X^2})(\overline{Y}) - (\overline{X})(\overline{XY})}{\overline{X^2} - (\overline{X})^2} \end{bmatrix}.$$

Since Q > 0, then by the SOSC, the point z^* is a strict local minimizer. Since z^* is the only point satisfying the FONC, then z^* is the only local minimizer.

c. We have

$$a^*\overline{X} + b^* = \left(\frac{\overline{XY} - (\overline{X})(\overline{Y})}{\overline{X^2} - (\overline{X})^2}\right)\overline{X} + \frac{(\overline{X^2})(\overline{Y}) - (\overline{X})(\overline{XY})}{\overline{X^2} - (\overline{X})^2} = \overline{Y}.$$