Collapsed Gibbs sampling in LDA

"Collapsed" Gibbs sampling for LDA

Based on special structure of LDA model, can sample **just** indicator variables z_{iw}

- No need to sample other parameters
 - corpus-wide topic vocab distributions
 - per-doc topic proportions

Often leads to much better performance because examining uncertainty in smaller space

Collapsed Gibbs sampling for LDA

Never draw topic vocab distributions or doc topic proportions

TOPIC 2 develop 0.18 computer 0.09 processor 0.032 user 0.027 internet 0.02 ...

Abstract

player	0.15			
score	0.07			
team	0.06			
goal	0.03			
injury	0.01			

Patients with epilepsy can manifest short, sub-clinical epileptic "bursts" in addition to full-blown clinical seizures. We believe the relationship between these two classes of events—something not previously studied quantitatively could yield important insights into the nature and intrinsic dynamics of seizures. A goal of our work is to parse these compley preptic events into distinct dynamic regimes. A challenge posed of the intracranial EEG (iEEG) data we study is the fact that the number and placement of electrodes can vary between patients. We develop a Bayesian nonparametric Markov switching process that allows for (i) shared dynamic regimes between a variable number of channels, (ii) asynchronous regime-switching, and (iii) an unknown dictionary of dynamic regimes. We encode a sparse and changing set of dependencies between the channels using a Markov-switching Gaussian graphical model for the innovations process driving the channel dynamics and demonstrate the importance of this model in parsing and out-of-sample predictions of iEEG data. We show that our model produces intuitive state assignments that can help automate clinical analysis of seizures and enable the comparison of sub-clinical bursts and full clinical seizures Keywords: Bayesian nonparametric EEG, factorial hidden Markov model. graphical model, time series 1. Introduction

Despite over three decades of research, we still have very little idea of what defines a seizure. This ignorance stems both from the complexity of epilepsy as a disease and a paucity of quantitative tools that are flexible

Randomly reassign z_{iw} based on current assignments z_{jv} of all other words in document and corpus

Select a document

epilepsy	dynamic	Bayesian	EEG	model

5 word document

Randomly assign topics

3	2	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

(one possible approach)

Randomly assign topics

3	2	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

Maintain local statistics

3	2	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

	Topic 1	Topic 2	Topic 3
Doc i	2		2

Maintain global statistics

3	2	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

	Topic 1	Topic 2	Topic 3
epilepsy	1	0	35
Bayesian	50	0	1
model	42	1	0
EEG	0	0	20
dynamic	10	8	1

	Topic 1	Topic 2	Topic 3
Doc i	2	1	2

Total counts from **all** docs

Randomly reassign topics

3	X	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

	Topic 1	Topic 2	Topic 3
epilepsy	1	0	35
Bayesian	50	0	1
model	42	1	0
EEG	0	0	20
dynamic	10	7 \$	1

	Topic 1	Topic 2	Topic 3
Doc i	2	OX	2

decrementing
counts
after removing
current assignment
current 2:w=2

3	?	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

reassign with probability

reassign with probability

p(Ziw | every other Ziv in corpus)

p(Ziw | every other Ziv in corpus)

3	?	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

current assignments to topic k in doc i $\frac{}{N_i - 1 + K\alpha}$ smoothing param from Bayes prior word

3	?	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

assignments corpus-wide of word "dynamic" $\frac{m_{\mathrm{dynamic},k} + \gamma}{\sum_{w \in V} m_{w,k} + V\gamma} \text{ size of vocab}$

3	?	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

Topic 2 also really likes "dynamic", but in a different context... e.g., a topic on fluid dynamics

3	?	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

3	?	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

Randomly draw a new topic indicator

3	?	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

Topic 2

Topic 3

To draw new topic assignment (equivalently):

- roll K-sided die with these probabilities
- throw dart at these regions

Normalize this product of terms over K possible topics!

How much doc likes topic

$$\frac{n_{ik} + \alpha}{N_i - 1 + K\alpha} \frac{m_{\text{dynamic},k} + \gamma}{\sum_{w \in V} m_{w,k} + V\gamma}$$

How much topic likes word

Update counts

3	1	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

	Topic 1	Topic 2	Topic 3
epilepsy	1	0	35
Bayesian	50	0	1
model	42	1	0
EEG	0	0	20
dynamic	11 20	7	1

	Topic 1	Topic 2	Topic 3
Doc i	3 /	0	2

increment counts
based on new
assignment of
Ziw=1

Geometrically...

3	1	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

Iterate through all words/docs

3	1	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

	Topic 1	Topic 2	Topic 3
epilepsy	1	0	35
Bayesian	50	0	1
model	42	1	0
EEG	0	0	20
dynamic	10	7	1
•••			

	Topic 1	Topic 2	Topic 3
Doc i	2	0	2

Using samples from collapsed Gibbs

What to do with the collapsed samples?

experiment	0.1
test	0.08
discover	0.05
hypothesize	0.03
climate	0.01

TOPIC 2	
develop	0.18
computer	0.09
processor	0.032
user	0.027
internet	0.02

player	0.15
score	0.07
team	0.06
goal	0.03
injury	0.01

Modeling the Complex Dynamics and Changing Correlations of Epileptic Events

Drausin F. Wulsin^a, Emily B. Fox^c, Brian Litt^{a,b}

^aDepartment of Bioengineering, University of Pennsylvania, Philadelphia, PA
^bDepartment of Neurology, University of Pennsylvania, Philadelphia, PA
^cDepartment of Statistics, University of Washington, Seattle, WA

Abstract

Patients with epilepsy can manifest short, sub-clinical epileptic "bursts" in addition to full-blown clinical seizures. We believe the relationship between these two classes of events—something not previously studied quantitatively could yield important insights into the nature and intrinsic dynamics of seizures. A goal of our work is to parse these complex epileptic events into distinct dynamic regimes. A challenge posed by the intracranial EEG (iEEG) data we study is the fact that the number and placement of electrodes can vary between patients. We develop a Bayesian nonparametric Markov switching process that allows for (i) shared dynamic regimes between a variable number of channels, (ii) asynchronous regime-switching, and (iii) an unknown dictionary of dynamic regimes. We encode a sparse and changing set of dependencies between the channels using a Markov-switching Gaussian graphical model for the innovations process driving the channel dynamics and demonstrate the importance of this model in parsing and out-of-sample predictions of iEEG data. We show that our model produces intuitive state assignments that can help automate clinical analysis of seizures and enable the comparison of sub-clinical bursts and full clinical seizures

Keywords: Bayesian nonparametric EEG, factorial hidden Markov model, graphical model, time series

1. Introduction

Despite over three decades of research, we still have very little idea of what defines a seizure. This ignorance stems both from the complexity of epilepsy as a disease and a paucity of quantitative tools that are flexible

From "best" sample of {z_{iw}}, can infer:

What to do with the collapsed samples?

TOPIC 1	
experiment	0.1
test	0.08
discover	0.05
hypothesize	0.03
climate	0.01

TOPIC 2	
develop	0.18
computer	0.09
processor	0.032
user	0.027
internet	0.02

TOPIC 3	
player	0.15
score	0.07
team	0.06
goal	0.03
injury	0.01

Modeling the Complex Dynamics and Changing Correlations of Epileptic Events

Drausin F. Wulsin^a, Emily B. Fox^c, Brian Litt^{a,b}

^aDepartment of Bioengineering, University of Pennsylvania, Philadelphia, PA
^bDepartment of Neurology, University of Pennsylvania, Philadelphia, PA
^cDepartment of Statistics, University of Washington, Seattle, WA

Abstract

Patients with epilepsy can manifest short, sub-clinical epileptic "bursts" in addition to full-blown clinical seizures. We believe the relationship between these two classes of events—something not previously studied quantitatively could yield important insights into the nature and intrinsic dynamics of seizures. A goal of our work is to parse these complex epileptic events into distinct dynamic regimes. A challenge posed by the intracranial EEG (iEEG) data we study is the fact that the number and placement of electrodes can vary between patients. We develop a Bayesian nonparametric Markov switching process that allows for (i) shared dynamic regimes between a variable number of channels, (ii) asynchronous regime-switching, and (iii) an unknown dictionary of dynamic regimes. We encode a sparse and changing set of dependencies between the channels using a Markov-switching Gaussian graphical model for the innovations process driving the channel dynamics and demonstrate the importance of this model in parsing and out-of-sample predictions of iEEG data. We show that our model produces intuitive state assignments that can help automate clinical analysis of seizures and enable the comparison of sub-clinical bursts and full clinical seizures

Keywords: Bayesian nonparametric EEG, factorial hidden Markov model, graphical model, time series

1. Introduction

Despite over three decades of research, we still have very little idea of what defines a seizure This ignorance stems both from the complexity of epilepsy as a disease and a paucity of quantitative tools that are flexible

From "best" sample of {z_{iw}}, can infer:

- 1. Topics from conditional distribution...
 - need corpus-wide info

What to do with the collapsed samples?

experiment	0.1
test	0.08
discover	0.05
hypothesize	0.03
climate	0.01

TOPIC 2	
develop	0.18
computer	0.09
processor	0.032
user	0.027
internet	0.02

player	0.15
score	0.07
team	0.06
goal	0.03
injury	0.01

Modeling the Complex Dynamics and Changing Correlations of Epileptic Events

Drausin F. Wulsin^a, Emily B. Fox^c, Brian Litt^{a,b}

^aDepartment of Bioengineering, University of Pennsylvania, Philadelphia, PA
^bDepartment of Neurology, University of Pennsylvania, Philadelphia, PA
^cDepartment of Statistics, University of Washington, Seattle, WA

Abstract

Patients with epilepsy can manifest short, sub-clinical epileptic "bursts" in addition to full-blown clinical seizures. We believe the relationship between these two classes of events—something not previously studied quantitatively could yield important insights into the nature and intrinsic dynamics of seizures. A goal of our work is to parse these complex epileptic events into distinct dynamic regimes. A challenge posed by the intracranial EEG (iEEG) data we study is the fact that the number and placement of electrodes can vary between patients. We develop a Bayesian nonparametric Markov switching process that allows for (i) shared dynamic regimes between a variable number of channels, (ii) asynchronous regime-switching, and (iii) an unknown dictionary of dynamic regimes. We encode a sparse and changing set of dependencies between the channels using a Markov-switching Gaussian graphical model for the innovations process driving the channel dynamics and demonstrate the importance of this model in parsing and out-of-sample predictions of iEEG data. We show that our model produces intuitive state assignments that can help automate clinical analysis of seizures and enable the comparison of sub-clinical bursts and full clinical seizures

Keywords: Bayesian nonparametric EEG, factorial hidden Markov model, graphical model, time series

1. Introduction

Despite over three decades of research, we still have very little idea of what defines a seizure. This ignorance stems both from the complexity of epilepsy as a disease and a paucity of quantitative tools that are flexible

From "best" sample of {z_{iw}}, can infer:

- 1. Topics from conditional distribution...
 - need corpus-wide info
- 2. Document "embedding"... need doc info only

Embedding new documents

Modeling the Complex Dynamics and Changing Correlations of Epileptic Events

Drausin F. Wulsin^a, Emily B. Fox^c, Brian Litt^{a,b}

^aDepartment of Bioengineering, University of Pennsylvania, Philadelphia, PA
^bDepartment of Neurology, University of Pennsylvania, Philadelphia, PA
^cDepartment of Statistics, University of Washington, Seattle, WA

Abstract

Patients with epilepsy can manifest short, sub-clinical epileptic "bursts" in addition to full-blown clinical seizures. We believe the relationship between these two classes of events—something not previously studied quantitatively could yield important insights into the nature and intrinsic dynamics of seizures. A goal of our work is to parse these complex epileptic events into distinct dynamic regimes. A challenge posed by the intracranial EEG (iEEG) data we study is the fact that the number and placement of electrodes can vary between patients. We develop a Bayesian nonparametric Markov switching process that allows for (i) shared dynamic regimes between a variable number of channels, (ii) asynchronous regime-switching, and (iii) an unknown dictionary of dynamic regimes. We encode a sparse and changing set of dependencies between the channels using a Markov-switching Gaussian graphical model for the innovations process driving the channel dynamics and demonstrate the importance of this model in parsing and out-of-sample predictions of iEEG data. We show that our model produces intuitive state assignments that can help automate clinical analysis of seizures and enable the comparison of sub-clinical bursts and full clinical seizures

1. Introduction

graphical model, time series

Despite over three decades of research, we still have very little idea of what defines a seizure. This ignorance stems both from the complexity of epilepsy as a disease and a paucity of quantitative tools that are flexible

Keywords: Bayesian nonparametric, EEG, factorial hidden Markov model.

Simple approach:

- 1. Fix topics based on training set collapsed sampling
- 2. Run uncollapsed sampler on new doc(s) only