

Comparison study for implementation efficiency of CUDA GPU parallel computation with the fast iterative shrinkage-thresholding algorithm

Younsang Cho, Donghyeon Yu

Department of Statistics, Inha university

Introduction

- Parallel computation using graphics processing units (GPUs) gets much attention and is efficient for single-instruction multiple-data (SIMD) processing.
- Theoretical computation capacity of the GPU device has been growing fast and is much higher than that of the CPU nowadays (Figure 1).
- There are several platforms for conducting parallel computation on GPUs using compute unified device architecture (CUDA) developed by NVIDIA. (Python, PyCUDA, Tensorflow, etc.)
- However, it is unclear what platform is the most efficient for CUDA.

Basic Implementation Procedure for Kernel function with CUDA C

We introduce a procedure for using CUDA with R and Python (Figure 2).

[Figure 2] Procedure for using CUDA C extensions in platforms R and Python

1) Writing CUDA C code

We implement algorithms to C extensions which are used for CUDA kernel functions.

2) Compiling CUDA C code

We compile CUDA C code with NVCC compiler to object file, which can be loaded in platforms. ex) nvcc add.C -o add.so --shared -Xcompiler -fPIC -lcublas -gencode arch=compute_75,code=sm_75

3) Loading DLL (Dynamic Link Library) in platforms (R and Python)

After compiling CUDA C code, we call the functions written in C language by using the function dyn.load and .C in R or ctypes.CDLL in Python.

Platforms

We compared seven implementation methods for CUDA kernel functions. Among those, two implementation methods are used for just-in-time (JIT) compilation and neural network, not CUDA kernel functions.

1. Numba on CPU in Python (Numba-CPU)

Numba is used by compiling with just-in-time. Hence it is much faster than general functions defined by users in Python. In Figure 3, we represent how to work Numba for our algorithm internally.

[Figure 3] Compilation process in Numba

2. Numba on GPU in Python (Numba-GPU)

Numba can be easily able to define the CUDA kernel function by "@cuda.jit" decorator or functions executed on the GPU using CUDA by "@vectorize" or "@guvectorize" decorator with a "target = 'cuda' " argument.

3. PyCUDA in Python (PyCUDA)

In PyCUDA, it is still needed to write a C code but not to compile in command lines. CUDA C code is compiled in Python with PyCUDA compiler, and the kernel function in CUDA C code can be called as function's name (Figure 4).

4. TensorFlow functions in Python (TF-F)

There are some functions executed on GPU in TensorFlow. So, we implemented our algorithm just using that functions.

5. Neural network with TensorFlow in Python (TF-NN)

Neural network model is flexible, and the LASSO problem can be represented as a simple neural network with an ℓ_1 -regularized loss function

6. Using dynamic link library in Python (P-DLL)

As mentioned before, we can load DLL files, which are written in CUDA C, using "ctypes.CDLL" that is a built-in function in Python.

7. Using dynamic link library in R (R-DLL)

We can also load DLL files, which are written in CUDA C, using "dyn.load" in R.

FISTA (Fast Iterative Shrinkage-Thresholding Algorithm)

We consider FISTA (Beck and Teboulle, 2009) with backtracking as the following:

Step 0. Take $L_0 > 0$, some $\eta > 1$, and $x_0 \in \mathbb{R}^n$. Set $y_1 = x_0$, $t_1 = 1$.

Step k. $(k \ge 1)$ Find the smallest nonnegative integers i_k such that with $\bar{L} = \eta^{i_k} L_{k-1}$ $F(p_{\bar{L}}(\mathbf{y}_k)) \leq Q_{\bar{L}}(p_{\bar{L}}(\mathbf{y}_k), \mathbf{y}_k).$

Set $L_k = \eta^{i_k} L_{k-1}$ and compute

$$x_k = p_{L_k}(y_k),$$

$$t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2},$$

$$y_{k+1} = x_k + \left(\frac{t_k - 1}{t_{k+1}}\right)(x_k - x_{k-1}).$$

Numerical study

Problem

FISTA algorithm finds the solution x for the following minimization with ℓ_1 -norm penalty:

$$\min \frac{1}{2} \| Ax - b \|_{2}^{2} + \lambda \| x \|_{1}$$

Simulation setting

■ Dimensions: $n = \{500, 1000, 2500\}, p = \{2500, 5000, 10000\}$

• Lambda: $\lambda = 0.5 \cdot \sqrt{\frac{2 \log(p)}{n}}$ for each dimensions

Precision: single precision, double precision

[Table 1] Summary of computation times (sec.) for FISTA algorithm in single precision. Numbers in parenthesis denote the standard errors.

n	р	NB-CPU	NB-GPU	TF-F	PyCUDA	P-DLL	P-DLL-32	TF-NN
500	2500	1.4335	189.4049	1.2041	1.0607	0.4627	0.2607	9.1716
		(0.0824)	(8.0439)	(0.0979)	(0.0791)	(0.0318)	(0.0180)	(1.4541)
500	5000	3.4089	453.4099	1.3547	1.4388	0.9801	0.4903	0.9559
		(0.1476)	(16.6947)	(0.1040)	(0.0641)	(0.0323)	(0.0168)	(0.0336)
500	10000	9.4199	1221.0449	1.7114	1.9640	2.4081	0.9838	1.0620
		(0.2921)	(47.0390)	(0.1163)	(0.1046)	(0.1125)	(0.0454)	(0.0271)
1000	2500	3.3298	487.8102	1.4256	1.2855	0.5747	0.3682	11.5588
1000		(0.1646)	(28.2207)	(0.0954)	(0.0688)	(0.0300)	(0.0199)	(3.4998)
1000	5000	8.4049	1127.5282	1.5681	1.6981	1.1080	0.5904	1.4385
1000		(0.3076)	(50.9946)	(0.1405)	(0.0969)	(0.0469)	(0.0250)	(0.0300)
1000	10000	18.5007	2547.7037	1.7711	2.3873	2.4160	1.0615	1.6393
1000		(5.9672)	(818.9664)	(0.0838)	(0.0976)	(0.7544)	(0.3329)	(0.0325)
2500	2500	13.7332	1756.7701	2.0224	2.0401	0.8658	0.6953	70.7893
		(2.0433)	(246.6578)	(0.2719)	(0.2414)	(0.1200)	(0.0952)	(16.7180)
2500	5000	25.2819	3251.5472	1.6998	2.0548	1.4155	1.0136	2.8745
		(1.0731)	(189.6372)	(0.5224)	(0.6243)	(0.0511)	(0.0412)	(0.0473)
2500	10000	62.0108	8388.9189	2.2380	3.8747	3.3655	2.0873	3.3711
		(2.4768)	(252.8839)	(0.1086)	(0.1435)	(0.1196)	(0.0764)	(0.0171)

[Table 2] Summary of computation times (sec.) for FISTA algorithm in double precision. Numbers in parenthesis denote the standard errors.

n	р	NB-CPU	NB-GPU	TF-F	PyCUDA	P-DLL	P-DLL-32	TF-NN	R-DLL	R-DLL-32
500	2500	1.5076 (0.0729)	154.4324 (7.3262)	1.1854 (0.0946)	1.2187 (0.0655)	0.5800 (0.0274)	0.3797 (0.0182)	10.2749 (1.6698)	0.4975 (0.0183)	0.4288 (0.0183)
500	5000	3.7415 (0.1651)	363.5905 (13.5200)	1.4027 (0.0972)	1.6198 (0.0785)	1.1849 (0.0428)	0.6627 (0.0248)	1.0678 (0.0288)	0.8035 (0.0305)	0.6557 (0.0305)
500	10000	9.7471 (0.5415)	942.6866 (38.3124)	1.5280 (0.0905)	2.4830 (0.1643)	3.2228 (0.1312)	1.4536 (0.0607)	1.2341 (0.0332)	1.6894 (0.0510)	1.3028 (0.0510)
1000	2500	3.6231 (0.1949)	370.2242 (27.8036)	1.3661 (0.0881)	1.4257 (0.0917)	0.7021 (0.0521)	0.4793 (0.0350)	13.0257 (2.9117)	0.6539 (0.0219)	0.5296 (0.0219)
1000	5000	8.6451 (0.4510)	827.2198 (29.1598)	1.6186 (0.1117)	1.9771 (0.1233)	1.3521 (0.0463)	0.8005 (0.0280)	1.6580 (0.0257)	1.0519 (0.0433)	0.8314 (0.0433)
1000	10000	19.0893 (6.1287)	1865.1549 (597.4873)	1.8941 (0.0932)	2.8716 (0.1087)	3.2657 (1.0222)	1.5667 (0.4888)	1.9429 (0.0126)	2.0693 (0.0451)	1.6067 (0.0451)
2500	2500	16.0259 (2.2434)	1300.2521 (181.5767)	1.9295 (0.2802)	2.2760 (0.3244)	1.1369 (0.1589)	0.8461 (0.1161)	102.4257 (26.4692)	0.9879 (0.0754)	0.8194 (0.0754)
2500	5000	27.9770 (1.3787)	2496.0400 (48.1004)	1.6181 (0.4924)	2.2523 (0.6907)	1.8553 (0.0363)	1.2462 (0.0242)	3.4139 (0.0437)	1.4977 (0.0444)	1.3005 (0.0444)
2500	10000	73.0963 (3.1649)	6329.5722 (133.6182)	2.5480 (0.0751)	4.4759 (0.1007)	4.6840 (0.0990)	2.7530 (0.0573)	4.2218 (0.0482)	3.1150 (0.0811)	2.7229 (0.0811)

- "P-DLL-32" denotes the Python with a dynamic link library using 32 threads per block in CUDA C and "R-DLL-32" denotes that is similar to "P-DLL-32" in R.
- "P-DLL-32" is the fastest platform on overall simulation settings.
- In high dimensional setting, the Numba platforms are not efficient for FISTA.

Conclusions

- In general, the python with a dynamic link library which is written in CUDA C is the most efficient platform on GPU parallel computing.
- In the high dimensional case, there is not much difference between "P-DLL-32" and "TF-F" platform.
- We recommend python or R with a dynamic link library for GPU parallel computation if researchers are familiar with python or R and CUDA C.
- If researchers are only familiar with python, the python with TensorFlow functions is an alternative for the efficient implementation of GPU parallel computation

References

[1] Abadi, M., Barham. P, Chen. J, et al. (2016). Tensorflow: A system for large-scale machine learning, 12th USENIX Symposium on

Operating Systems Design and Implementation(OSID), USENIX Association, 265--283

[2] Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM journal on *imaging sciences*, **2**, 183—202.

[3] Cho, Y., Yu, D., Son, W., Park, S. (2020). Introduction to Numba library in Python for efficient statistical computing. The Korean Journal

of Applied statistics, **33**(6), 665—682. [4] Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., Fasih, A. (2012). PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU

Run-Time Code Generation, Parallel Computing, 38(3), 157--174

[5] Lei, J. Li, Dl., Zhou, Yl., et al (2019). Optimization and acceleration of flow simulations for CFD on CPU/GPU architecture. J Braz. Soc. Mech. Sci. Eng. 41, 290 . https://doi.org/10.1007/s40430-019-1793-9

[6] S.K. Lam, A. Pitrou, and S.Seibert. (2015). Numba: A LLVM-based Python JIT compiler, *Proc. 2nd Workshop LLVM Compiler Infrastructure HPC*, **7**, 1—6