Part D: Instrumental Variables

D4: Judge IV Design

Kirill Borusyak

ARE 213 Applied Econometrics

UC Berkeley, Fall 2023

D4 Outline

1 Judge IV / Examiner IV / Judge FE / Leniency designs

A few words on control functions

Readings: Scott Cunnigham's "Mixtape" textbook, Ch. 7.8.2

Setting

- There are many situations where:
 - 1. the treatment (usually binary) is decided by one of K "judges" (examiners, caseworkers, ...)
 - 2. judge's decision is discretionary
 - 3. judges are assigned to cases randomly (perhaps within strata, e.g. location-period)
- Examples of treatments:
 - ▶ Incarceration (Kling 2006, Mueller-Smith 2015), bail (Arnold, Dobbie, Yang 2018)
 - Patent granting (Sampat and Williams 2019)
 - Credit ratings (Rieber and Schechinger 2019)
 - Psychotherapy treatment (Blæhr and Søgaard 2021)
 - ► Several types of job training programs for the unemployed (Humlum, Munch, Rasmussen 2023)

Idea

Judges typically vary by leniency

Percentage of Each Kind of Sentence Given by Each Judge

- Can use this heterogeneity to instrument for treatment
 - ▶ Leniency is unobserved ⇒ what should we do?
 - Under which assumptions is the answer causal?

3

Estimated leniency?

- Notation: judge assignment $Q_i = k \in \{1, ..., K\}$; $Z_{ki} = 1$ $[Q_i = k]$
- Consider binary treatment. Popular naïve idea:
 - ▶ Measure judge leniency as % of lenient decisions: $\hat{L}_k = \frac{\sum_i Z_{ki} D_i}{\sum_i Z_{ki}}$
 - ▶ Then instrument D_i with \hat{L}_{Q_i}
- Problem 1: assignment is only random within strata
 - We want to avoid variation in \hat{L}_k reflecting the types of cases k's strata receives
- Problem 2: \hat{L}_k is noisy if there are many judges (and not so many cases per judge)
 - \hat{L}_{Q_i} is influenced by D_i , which correlates with $\varepsilon_i \Longrightarrow$ bias
 - Conventional inference doesn't take into account estimation noise

Correct IV framework

• Note that $\hat{L}_k = \text{judge fixed effects}$, i.e. OLS estimates from a first-stage

$$D_i = \sum_k L_k Z_{ik} + u_i$$

- And \hat{L}_{Q_i} are first-stage fitted values
- \Rightarrow Using \hat{L}_{Q_i} as IV \iff 2SLS with Z_1, \ldots, Z_K instruments
- Problem $1 \Longrightarrow$ include strata FEs as covariates
 - ▶ Identify judge FEs relative to strata mean but that's fine
- Problem 2 is the standard many weak IV problem
 - ▶ Without covariates, JIVE is intuitive: uses leave-out leniency $\hat{L}_i = \frac{\sum_j \mathbf{1}[Q_j = Q_i]D_j}{\sum_j \mathbf{1}[Q_j = Q_i]}$
 - ▶ With (many) covariates, better to use UJIVE ("unbiased JIVE"; Kolesar 2013): a version of JIVE that is consistent with many controls

Underlying assumptions

With judge assignment dummies Z_{i1}, \ldots, Z_{iK} as IVs, what about:

• Independence?

• Exclusion?

• Monotonicity?

Underlying assumptions

With judge assignment dummies Z_{i1}, \ldots, Z_{iK} as IVs, what about:

- Independence?
 - Guaranteed by random assignment, as long as strata FEs are controlled for
- Exclusion?
 - Does the judge directly make only one decision D_i?
 - Can the judge indirectly affect others treatments, e.g. by affecting who will be making those decisions?
- Monotonicity: very strong
 - ▶ A judge who is more lenient on average should be weakly more lenient on everyone
 - ▶ Violated if judges put different weights on different characteristics of the case

Partial tests for monotonicity and exclusion

- Reject monotonicity if leniency in subgroups (based on observables) don't have the same ranks across judges as overall leniency (see Dobbie, Goldin, Yang 2018)
- Frandsen, Lefgren, Leslie (2023):
 - Under LATE assumptions, comparing any two judges gives causal effects for some complier population
 - ► Causal effects cannot be too large: e.g. bounded by the range of possible outcomes
 - ▶ Reject exclusion or monotonicity if the relationship between $\mathbb{E}[Y_i \mid Q_i]$ and $\mathbb{E}[D_i \mid Q_i]$ is too steep for some pair of judges
- Should we panic if monotonicity doesn't hold?
 - ▶ Not with homogeneous effects (see also de Chaisemartin 2017 "Tolerating defiers")
 - Frandsen et al.: 2SLS identifies a convex average of causal effects under "average monotonicity": for all i, $D_i(k)$ is positively correlated with L_k

Outline

1 Judge IV / Examiner IV / Judge FE / Leniency designs

2 A few words on control functions

2SLS as a control function estimator

- We have two strategies for dealing with endogenous D_i : adding controls and IV
 - Are they related to each other?
- IV isolates "clean" variation in D_i
 - ▶ 2SLS estimates first-stage $D_i = \hat{\pi}' Z_i + \hat{u}_i$ and regresses Y_i on $\hat{\pi}' Z_i$
- What if we control for "dirty" variation in D_i (control function estimator):

$$Y_i = \tau D_i + \mu \hat{u}_i + \text{error}$$

- Exercise: the two estimators are numerically the same (even with covariates)
- Curious. But is the control function approach to IV useful?
 - ▶ Equivalence breaks with nonlinearities: e.g. first-stage is probit or has square terms
 - ▶ Helpful when combining IVs with parametric restrictions: e.g. Heckman selection model that imposes joint normality of ε_i and latent first-stage error