# **Dérivation**

## I. Dérivabilité en un point

#### 1. Nombre dérivé

#### **Définition**

Soit une fonction f définie sur un intervalle ouvert I et a un point de I.

On dit que la fonction f est *dérivable* en a s'il existe un nombre réel l tel que  $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = l \in \mathbb{R}$ . Le nombre l s'appelle le nombre dérivé de la fonction f en a et se note f'(a)

et on écrit 
$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

#### Exemple:

Soit f une fonction numérique définie par  $f(x) = 2x^2 + 2x$ 

Montrer que la fonction f est dérivable en a=1 puis déduire le nombre dérivé en 1

Calculons la limite suivante :  $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$ 

On a 
$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 3)}{x - 1} = \lim_{x \to 1} x + 3 = 4$$

Donc la fonction f est dérivable en 1 et le nombre dérivé en 1 est 4, et on écrit f'(1) = 4

## <u>Remarque:</u>

Si 
$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \infty$$
 alors f *n'est pas dérivable* en a

## Application *O*

Etudier la dérivabilité de f en a dans les cas suivants :

$$f(x) = 3x+1$$
 ;  $a=1$   $f(x) = \frac{x^2-2x}{x+1}$  ;  $a=0$   $f(x) = \sqrt{x-3}$  ;  $a=4$ 

# 2. Interprétation géométrique -Equation de la tangente

## **Introduction**

Soit f une fonction numérique, dérivable en a et soient M(x, f(x)) et A(a, f(a)) deux points de la courbe. Le coefficient directeur de la droite (AM) est :  $\alpha = \frac{f(x) - f(a)}{x - a}$ .

Si le point M se rapproche du point A (x tend vers a), alors la droite (AM) confondue avec la droite (T) de coefficient directeur f'(a)

La droite (T) s'appelle *la tangente* de la courbe ( $C_f$ ) en A(a, f(a)).

L'équation de la droite (T) est comme suit : y = f'(a)(x-a) + f(a)



## **Propriété**

Soit f une fonction définie sur I et dérivable en a signifié géométriquement que la courbe  $C_f$  admet une tangente (T) en a d'équation : (T) : y = f'(a)(x-a) + f(a)



## **Exemple**

Soit f une fonction définie par f(x) = 2x - 3

Montrons que f est dérivable en 2 puis interpréter les résultats géométriquement

$$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{2x - 3 - (4 - 3)}{x - 2} = \lim_{x \to 2} \frac{2x - 4}{x - 2} = \lim_{x \to 2} \frac{2(x - 2)}{x - 2} = 2$$

Donc f est dérivable en 2.

## Géométriquement :

La courbe de la fonction admet une tangente en un point A(2, f(2)) avec f(2) = 1

Donc l'équation de la tangente est : y = f'(2)(x-2) + f(2) = 2(x-2) + 1 = 2x - 3

## Application @

Déterminer l'équation de la tangente de la fonction f en un point d'abscisse a dans les cas suivants :

a) 
$$f(x) = 4x^2 - 5x + 3$$
;  $a = 1$ 

b) 
$$f(x) = \frac{x+1}{x}$$
 ;  $a = -1$ 

c) 
$$f(x) = \sqrt{x+1} - 4$$
;  $a = 3$ 

#### II. Dérivabilité à gauche et à droite

## 1. Définition

Soit f une fonction numérique définie sur I et soit  $a \in I$ .

On dit que f est dérivable à droite de a si  $\lim_{\substack{x \to a \\ x \ge a}} \frac{f(x) - f(a)}{x - a} = l \in \mathbb{R}$ . Le nombre l s'appelle le nombre

dérivé de la fonction à droite de a et se note  $f_d'(a)$  et on écrit  $f_d'(a) = \lim_{\substack{x \to a \\ x > a}} \frac{f(x) - f(a)}{x - a}$ .

On dit que f est dérivable à gauche de a si  $\lim_{\substack{x\to a\\x\le a}} \frac{f(x)-f(a)}{x-a} = l' \in \mathbb{R}$ . Le nombre l' s'appelle le

nombre dérivé de la fonction f à gauche de a et se note  $f_g'(a)$  et on écrit  $f_g'(a) = \lim_{\substack{x \to a \\ x \le a}} \frac{f(x) - f(a)}{x - a}$ 

#### Propriété:

Soit f une fonction numérique définie sur I et soit  $a \in I$ .

On dit que f est dérivable en a si et seulement si f est dérivable à droite et à gauche de a et  $f'_a(a) = f'_g(a)$  et dans ce cas on écrit  $f'(a) = f_{a}'(a) = f_{g}'(a)$ .

#### Exemple:

Soit f une fonction définie par f(x) = |x|; a = 0

On a 
$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{|x| - 0}{x - 0} = \lim_{x \to 0^+} \frac{x}{x} = 1$$
  $\left( x \ge 0 \Rightarrow |x| = x \right)$ 

Donc f est dérivable à droite de 0 et on a  $f'_{d}(0)=1$ .

Et on a 
$$\lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^-} \frac{|x| - 0}{x - 0} = \lim_{x \to 0^-} \frac{-x}{x} = -1$$
  $\left(x \le 0 \Rightarrow |x| = -x\right)$ 

Donc f est dérivable à gauche de 0 et on a  $f'_g(0) = -1$ .

Or  $f'_{g}(0) \neq f'_{d}(0)$  donc f n'est pas dérivable en 0.

## Application 3

On considère les fonctions suivantes :  $f(x) = x^3 - x$  et g(x) = x |x-2|

- 1) Etudier la Dérivabilité de la fonction f en 0
- 2) Etudier la dérivabilité de la fonction g en 2

# 2. Interprétation géométrique

# <u>Propriété</u>

\* Si f est dérivable à droite de a alors  $C_f$  admet une demi-tangente (T) à droite en a d'équation (T):  $y = f_d'(a)(x-a) + f(a)$ 

\* Si f est dérivable à gauche de a alors  $C_f$  admet une demi-tangente (T) à gauche en a d'équation (T):  $y = f_g'(a)(x-a) + f(a)$ 

# Application **©**:

Soit f une fonction numérique définie par  $\begin{cases} f(x) = x^3 + 1 & ; x > -1 \\ f(x) - x^2 + x + 2 & ; x \le -1 \end{cases}$ 

- 1) Etudier la dérivabilité de la fonction f en -1
- 2) Interpréter les résultats graphiquement

#### **Propriété** :

Soit f une fonction définie sur un intervalle ouvert I et soit  $a \in I$ 

\* Si  $\lim_{\substack{x \to a \\ x \ge a}} \frac{f(x) - f(a)}{x - a} = +\infty$  alors f n'est pas dérivable à droite en a et  $C_f$  admet une demi-

tangente (T) à droite de a d'équation x = a dirigé vers le haut.

\* Si  $\lim_{\substack{x \to a \\ x \ni a}} \frac{f(x) - f(a)}{x - a} = -\infty$  alors f n'est pas dérivable à droite en a et  $C_f$  admet une demi-

tangente (T) à droite de a d'équation x = a dirigé vers le bas.

\* Si  $\lim_{\substack{x\to a\\x\neq a}} \frac{f(x)-f(a)}{x-a} = +\infty$  alors f n'est pas dérivable à gauche en a et  $C_f$  admet une demi-

tangente (T) à gauche de a d'équation x = a dirigé vers le bas.

\* Si  $\lim_{\substack{x \to a \\ x \le a}} \frac{f(x) - f(a)}{x - a} = -\infty$  alors f n'est pas dérivable à gauche en a et  $C_f$  admet une demi-

tangente (T) à gauche de a d'équation x = a dirigé vers le haut.

# **Exemple** :

Soit f une fonction définie par  $f(x) = \sqrt{x}$ 

Etudions la dérivabilité de f à droite de 0

On a 
$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{\sqrt{x} - 0}{x - 0} = \lim_{x \to 0^+} \frac{1}{\sqrt{x}} = +\infty$$

Donc f n'est pas dérivable à droite de 0; donc la courbe de la fonction f admet un demi-tangente d'équation x=0 et dirigé vers le haut.

# Application **5**

Soit f une fonction numérique définie par  $f(x) = \sqrt{x^2 - 4}$ 

Etudier la dérivabilité de la fonction f à droite de 2; puis interpréter les résultats.

## III. Fonction dérivée

#### 1. Dérivabilité sur un intervalle

#### **Définition**

Soit f une fonction numérique définie et dérivable sur un intervalle I ouvert.

On dit que f est dérivable sur I s'elle est dérivable en tout point de l'intervalle I

#### Remarque :

- La fonction polynomiale est dérivable sur  $\mathbb{R}$
- La fonction rationnelle est dérivable sur tout intervalle de son ensemble de définition.
- La fonction de la tangente est dérivable sur  $\mathbb{R} \left\{ \frac{\pi}{2} + k\pi / k \in \mathbb{Z} \right\}$

#### Exemples:

- $f(x) = x^3 5x^2 + 2$ : est une fonction polynomiale alors est dérivable sur  $\mathbb{R}$
- $f(x) = \frac{x+1}{x-2}$ : est une fonction rationnelle alors est dérivable sur  $\mathbb{R} \{2\}$
- $f(x) = \sqrt{x}$ : est dérivable sur  $]0; +\infty[$ .
- $f(x) = \cos(x)$ : est dérivable sur  $\mathbb{R}$
- $f(x) = \sin(x)$ : est dérivable sur  $\mathbb{R}$

## 2. Fonction dérivée d'une fonction sur un intervalle

## **Définition**

Soit f une fonction numérique définie et dérivable sur un intervalle I.

La fonction qui associée chaque nombre réel x de I par le réel f'(x) s'appelle *fonction dérivée* de la fonction f sur I et se note f'; et on écrit  $f': I \to \mathbb{R}$ 

## Exemple:

On considère la fonction f qui est définie sur  $\mathbb{R}$  par  $f(x) = x^2$ 

Soit 
$$x_0 \in \mathbb{R}$$
. On a  $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x^2 - x_0^2}{x - x_0} = \lim_{x \to x_0} \frac{(x - x_0)(x + x_0)}{x - x_0} = \lim_{x \to x_0} x + x_0 = 2x_0$ 

Donc f est dérivable en  $x_0$  et le nombre dérivé est  $f'(x_0) = 2x_0$  (l'image de  $x_0$  par la fonction f'

Par conséquent f est dérivable sur  $\mathbb{R}$  et  $(\forall x \in \mathbb{R})$ ; f'(x) = 2x

# Application ©

Soit f fonction définie sur  $\mathbb{R}$  par  $f(x) = 2x^3$ 

Montrer que  $(\forall x \in \mathbb{R})$ ;  $f'(x) = 6x^2$ 

#### 3. Fonctions dérivées des fonctions usuelles

| Fonction f                                     | $D_f$                                                                   | La dérivée f'                                       | $D_{f^{'}}$                                                             |
|------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------|
| $f: x \mapsto k \; \; ; \; (k \in \mathbb{R})$ | $\mathbb{R}$                                                            | $f': x \mapsto 0 \ ; (k \in \mathbb{R})$            | $\mathbb{R}$                                                            |
| $f: x \mapsto x$                               | $\mathbb{R}$                                                            | $f': x \mapsto 1$                                   | $\mathbb{R}$                                                            |
| $f: x \mapsto ax$                              | $\mathbb{R}$                                                            | $f': x \mapsto a$                                   | $\mathbb{R}$                                                            |
| $f: x \mapsto x^n ; (n \in \mathbb{N}^*)$      | $\mathbb{R}$                                                            | $f': x \mapsto nx^{n-1} ; (n \in \mathbb{N}^*)$     | $\mathbb{R}$                                                            |
| $f: x \mapsto \frac{1}{x}$                     | R*                                                                      | $f': x \mapsto \frac{-1}{x^2}$                      | R*                                                                      |
| $f: x \mapsto 1/x^n \ (n \in \mathbb{N}^*)$    | ℝ*                                                                      | $f': x \mapsto -n/x^{n+1} \ (n \in \mathbb{N}^*)$   | R*                                                                      |
| $f: x \mapsto \sqrt{x}$                        | $\mathbb{R}^+$                                                          | $f': x \mapsto \frac{1}{2\sqrt{x}}$                 | $\mathbb{R}_+^*$                                                        |
| $f: x \mapsto \sin(x)$                         | $\mathbb{R}$                                                            | $f': x \mapsto \cos(x)$                             | $\mathbb{R}$                                                            |
| $f: x \mapsto \cos(x)$                         | $\mathbb{R}$                                                            | $f': x \mapsto -\sin(x)$                            | $\mathbb{R}$                                                            |
| $f: x \mapsto \tan(x)$                         | $\mathbb{R} - \left\{ \frac{\pi}{2} + k\pi / k \in \mathbb{Z} \right\}$ | $f': x \mapsto 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$ | $\mathbb{R} - \left\{ \frac{\pi}{2} + k\pi / k \in \mathbb{Z} \right\}$ |

#### **Exemple**

 $f(x) = x^5$  On a f une fonction polynôme donc est dérivable sur  $\mathbb R$ .

Donc 
$$(\forall x \in \mathbb{R})$$
;  $f'(x) = (x^5)' = 5x^4$ 

 $f(x) = \frac{1}{x^2}$ : on a f une fonction rationnelle donc est dérivable sur  $D_f = \mathbb{R}^*$ ;

Donc 
$$f'(x) = \left(\frac{1}{x^2}\right)^{1} = \frac{-2}{x^3}$$

# 4. Opération sur les fonctions dérivées :

# **Propriété** :

Si f et g deux fonctions dérivables sur un I alors la fonction :

- f + g est dérivable sur I et on a  $(\forall x \in I)$ ; (f + g)'(x) = f'(x) + g'(x)
- kf est dérivable sur I et on a  $(\forall x \in I)$ ;  $(k \times f)'(x) = k \times f'(x)$
- $f \times g$  est dérivable sur I et on a  $(\forall x \in I)$ ;  $(f \times g)'(x) = f'(x) \times g(x) + g'(x) \times f(x)$
- $\frac{1}{f}$  est dérivable en tout point de I telle que  $f(x) \neq 0$  et on a  $(\forall x \in I)$ ;  $(\frac{1}{f})'(x) = \frac{-f'(x)}{f^2(x)}$
- Si f est positive alors  $\sqrt{f}$  est dérivable sur I et on a  $(\forall x \in I)$ ;  $(\sqrt{f})'(x) = \frac{f'(x)}{2\sqrt{f}}$
- $f^n$  est dérivable sur I et on a  $(\forall x \in I)$ ;  $(f^n)'(x) = n \times f'(x) \times f^{n-1}(x)$   $(n \in \mathbb{N}^*)$

 $\frac{f}{g}$  est dérivable en tout point de I telle que  $g(x) \neq 0$  et on a  $(\forall x \in I)$ ;  $\left(\frac{f}{g}\right) = \frac{f' \times g - g' \times f}{g^2}$ 

# Application 🛭 :

Etudier la dérivabilité de la fonction f sur et I déterminer sa fonction dérivée f'

$$f(x) = (3x^2 + 2)\sqrt{x}$$
;  $I = \mathbb{R}_+^*$ 

; 
$$f(x) = \sqrt{x^2 - 2x + 2}$$
 ;  $I = \mathbb{R}$ 

$$f(x) = (x^3 - 1)^6$$
;  $I = \mathbb{R}$ 

; 
$$f(x) = \frac{x}{\sqrt{x+1}}$$
 ;  $I = ]-1; +\infty[$ 

$$f(x) = \frac{2x^4}{(x+2)^2}$$
  $I = \mathbb{R} - \{2\}$ 

## Propriété

Soit f une fonction dérivable sur I et soient a et b deux nombres réels.

Soit J l'ensemble des nombres réel x tel que  $(ax+b) \in J$ .

La fonction  $x \mapsto f(ax+b)$  est dérivable sur I et on a  $(\forall x \in J)$ ; (f(ax+b)) = af'(ax+b)

## Application ®

Calculer f'(x) dans les cas suivants :

$$\otimes f(x) = \sin(3x + 2)$$

$$\otimes f(x) = \tan(2x-1)$$

; 
$$\otimes f(x) = \tan(2x-1)$$
 ;  $\otimes f(x) = \cos(2x^2 - 4x + 1)$ 

# 5. Dérivées successives d'une fonction

Définition

Soit f une fonction dérivable sur I.

- Si f' est dérivable su I alors sa dérivée s'appelle la *dérivée seconde* de la fonction f sur I et se note f"
- De même on peut définir la dérivée à l'ordre n  $(n \ge 2)$  et se note  $f^{(n)}$  telle que :

$$(\forall x \in I); f^{(n)}(x) = (f^{(n-1)})'$$

## Application @

Déterminer la dérivée seconde et la troisième dérivée de la fonction  $f(x) = 3x^3 - 2x^2 + 5$ 

# Applications de la dérivation

1. La fonction dérivée et sens de variations

# **Propriété** :

Soit une fonction f' dérivable sur un intervalle I et x un élément de I

- \* Si f'(x) = 0, alors la fonction est *constante* sur I
- \* Si f'(x) > 0 alors la fonction f est *strictement croissante* sur I.
- \* Si f'(x) < 0 alors la fonction f est *strictement décroissante* sur I.

#### Exemple:

Soit f une fonction numérique définie et dérivable sur  $\mathbb{R}$  par  $f(x) = x^3 + 3x^2 + 3x + 1$ 

On a 
$$(\forall x \in \mathbb{R})$$
;  $f'(x) = 3x^2 + 6x + 3 = 3(x^2 + 2x + 1) = 3(x + 1)^2$ 

On résoudre l'équation f'(x) = 0

$$f'(x) = 0 \Leftrightarrow 3(x+1)^2 = 0 \Leftrightarrow x+1 = 0 \Leftrightarrow x = -1$$

Donc 
$$f'(-1) = 0$$
; Or  $(\forall x \in \mathbb{R}); (x+1)^2 \ge 0$ 

Donc la fonction f est croissante sur  $\mathbb{R}$ 

#### Tableau de variations:

|       |           |   |    | _ |           |
|-------|-----------|---|----|---|-----------|
| x     | $-\infty$ |   | -1 |   | $+\infty$ |
| f'(x) |           | + | o  | + |           |
| f(x)  | $-\infty$ |   | O  |   | $+\infty$ |

## Application 10

Etudier les variations de la fonction f dans les cas suivants :

$$\otimes f(x) = x^3 - 6x + 1$$
 ;  $\otimes f(x) = \frac{2x + 1}{2x - 4}$ 

# 2. Extremum d'une fonction dérivable

## Propriété

Soit une fonction f dérivable sur un intervalle I et  $a \in I$ 

- Si f admet un extremum en a alors f'(a) = 0
- Si f'(a) = 0 et f' change le signe en a alors f admet un extremum en a.

#### Remarque:

- \* Si f'(a) = 0 n'implique pas forcément que f admet un extremum en a.
- \* Si f'(a) = 0 alors la courbe de la fonction f admet une tangente horizontale en un point A(a, f(a))

#### **Exemple**:

On considère la fonction f définie et dérivable sur  $\mathbb{R}$  par  $f(x) = x^4 - 2x^3 + 1$ 

On a  $(\forall x \in \mathbb{R})$ ;  $f'(x) = 4x^3 - 6x^2 = 2x^2(2x - 3)$ 

Or  $(\forall x \in \mathbb{R})$ ;  $2x^2 \ge 0$ ; alors le signe de f'(x) est le signe de 2x-3

$$f'(x) = 0 \Leftrightarrow x = 0 \text{ Ou } x = \frac{3}{2}$$

#### Tableau de variations



On a f'(0) = 0 mais f(0) = 1 n'est pas un extremum car f' ne change pas le signe en 0

 $f'\left(\frac{3}{2}\right) = 0$  et f' Change le signe en  $\frac{3}{2}$  donc f admet une valeur minimale (extremum) en  $\frac{3}{2}$  qui est  $\frac{-11}{16}$ .

## Application OO

Soit f une fonction numérique définie par  $f(x) = \frac{2x}{x^2+1}$ .

- 1) Déterminer  $D_f$  l'ensemble de définition de la fonction f.
- 2) Déterminer f'(x) pour tout  $x \in D_f$
- 3) Etudier les variations de la fonction f
- 4) Dresser le tableau de variations de la fonction f.
- 5) Déduire les extremums de la fonction f.

# **V.** Equation différentielle $y'' + \omega^2 y = 0$

# **Définition**

Soit  $\omega \in \mathbb{R}$ 

Une équation différentielle, est toute équation  $y'' + \omega^2 y = 0$  dont l'inconnu est la fonction  $y'' + \omega^2 y = 0$  derivée secondaire.

 $\forall x \in \mathbb{R}$ , toute fonction f dérivable deux fois sur  $\mathbb{R}$  et vérifie l'égalité  $f''(x) + \omega^2 f(x) = 0$  s'appelle la solution d'équation différentielle  $y'' + \omega^2 y = 0$ .

## **Exemple** :

y"+4y=0: Est une équation différentielle telle que  $\omega=2$ 

## **Propriété**

Soit  $\omega \in \mathbb{R}$ 

La solution générale de l'équation différentielle  $y'' + \omega^2 y = 0$  est l'ensemble des fonctions y définies

 $\sup \mathbb{R} \operatorname{par} : y : x \to \alpha \cos(\omega x) + \beta \sin(\omega x) \text{ où } \alpha \in \mathbb{R} \operatorname{et} \beta \in \mathbb{R}$ 

## Application **O**O

Résoudre les équations différentielles suivantes :

$$y'' + 16y = 0$$

$$y'' = -y$$

$$2y'' + 9y = 0$$