National University of Computer and Emerging Sciences, Lahore Campus

Course:
Program:
Duration:
Paper Date:
Section:
Exam:

Digital Image Processing BS(Computer Science) 60 Minutes

ALL Midterm-I Course Code: Semester: Spring 2018
Total Marks: 100
Weight 15%
Page(s): 6

Your Name:		-
Your Roll I	No:	

Instructions:

- 1: Please show all your work.
- 2: Please use the space provided for each problem. You can use extra sheet for rough work.
- 3: A list of formulas and relationships you might find useful are given on the last page.
- 4: In case of an ambiguity, you can make reasonable assumptions after stating them clearly.

Good luck!

• Problem 1:(30 points)

(a):

Apply filter
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 on $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ assuming free boundary conditions.

(b):

Two Fourier Transforms $F_1(u, v)$ and $F_2(u, v)$ are exactly equal everywhere except at one frequency. How can we find that one frequency, using only images $F_1(u, v)$ and $F_2(u, v)$, given nothing else.

- Problem 2 (30 points)
 - (a): Let S1={Set of all 1s} in $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$. Find a pair of 1s that is NOT neighbors of each other in an 8-point neighborhood system and:
 - (i) With free boundary conditions
 - (ii) With toroidal boundary conditions

(b): We have an image f(x, y) with a histogram $p_f(f)$. The image is to be transformed using the transformation g(x, y) = 3f(x, y). How is $p_g(g)$ related to $p_f(f)$?

- Problem 3 (40 points)
 - (a)
 - (i) Design a 3x3 filter that performs the following:

$$y_i = x_i - \mu_l$$

where

$$\mu_l = \sum_{j \in \partial i} x_j$$

i.e subtracts the local average of neighboring pixels from the current pixel.

(ii) The Fourier Transform of a filter is shown in figure below. What will this filter do to horizontal edges, vertical edges and flat regions?

(b): A real image has the property that it is equal to its complex conjugate i.e $f(x,y)=f^*(x,y)$. Prove that the magnitude of Fourier Transform of a real image f(x,y) is symmetric, i.e

Given f(x,y) is real, you have to prove |F(u,v)|=|F(-u,-v)|

Useful Fourier Properties And Other Relations

Property	Space Domain Function	CSFT
Linearity	af(x,y) + bg(x,y)	aF(u,v) + bG(u,v)
Conjugation	$f^*(x,y)$	$F^*(-u, -v)$
Scaling	f(ax, by)	$\frac{1}{ ab }F(u/a,v/b)$
Shifting	$f(x-x_0, y-y_0)$	$e^{-j2\pi(ux_0+vy_0)}F(u,v)$
Modulation	$e^{j2\pi(u_0x+v_0y)}f(x,y)$	$F(u-u_0,v-v_0)$
Convolution	f(x,y) * g(x,y)	F(u,v)G(u,v)
Multiplication	f(x,y)g(x,y)	F(u,v) * G(u,v)
Duality	F(x,y)	f(-u,-v)

From basic probability theory

$$p_f(f)$$
 $\xrightarrow{f} T(f) \xrightarrow{g}$ $p_g(g) = \left[p_f(f) \frac{df}{dg}\right]_{f=T^{-1}(g)}$

8-point neighborhood