REGULÄRE AUSDRÜCKE UND AUTOMATEN

© Prof. Dr. Juho Mäkiö - juho.maekioe@hs-emden-leer.de

Reguläre Ausdrücke und Automaten

Endliche Automaten

Reguläre Ausdrücke

(DEA, NEA, NEA/ε)

Α L(A)

L(r)

Zu zeigen:

"Für A gibt es r mit L(A) = L(r)." und "Für r gibt es A (NEA/ ϵ) mit L(r) = L(A).",

 $L \subset \sum^*$ heißt regulär, falls es einen endlichen Automaten A bzw. einen regulären Ausdruck r gibt mit L = L(A) = L(r)

 $r \in REG_{\Sigma} \rightarrow endlicher Automat A mit L(r) = L(A)$

@ Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Reguläre Ausdrücke und Automaten

- Analog zur "inneren" rekursiven Struktur von r wird ein Automat konstruiert
- \emptyset , $\varepsilon \in REG_{\Sigma}$, $a \in REG_{\Sigma}$ $(a \in \Sigma)$
- Automaten:

Ø

⊅ z

3

 $a \longrightarrow z_1 \xrightarrow{a} z_2$

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

114

Reguläre Ausdrücke und Automaten

- $r, s \in REG_{\Sigma} \implies r + s \in REG_{\Sigma}$
- Automat A(r) und Automat A(s) müssen zusammen montiert werden

• $r, s \in REG_{\Sigma} => r \bullet s \in REG_{\Sigma}$

A(r) A(s)

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Reguläre Ausdrücke und Automaten

Endzustände von A(r)

Endzustände von A(s)

 Alle Endzustände von A(r) werden über einen ε-Übergang mit dem Startzustand von A(s) verbunden.

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

11

Reguläre Ausdrücke und Automaten

 $r \in REG_{\Sigma} \implies r^* \in REG_{\Sigma}$

r - Schleife - kann oft verkürzt werden

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Reguläre Ausdrücke und Automaten

· Beispiel:

Für
$$r = 10^* + 01^*$$
 soll ein NEA/ ϵ konstruiert werden $10^* + 01^*$ -> A(10*+01*)

© Prof. Dr. Juho Mäkiö – iuho.maekioe@hs-emden-leer.de

111

Reguläre Ausdrücke und Automaten

A(0) entsprechend

A(10*) entsprechend

Damit entsteht der folgende NEA/ε: (ohne Zustandsnamen)...

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Übung

- a) Konstruieren Sie Automaten A für die Sprache $L(A) = \{ x \in \{a,b\}^* \mid x \text{ enthält aa oder bb} \}$ Geben Sie einen regulären Ausdruck r an, so dass es gilt: L(r) = L(A)
- b) Konstruieren Sie Automaten A für die Sprache $L(A) = \{ x \in \{0,1\}^* \mid |x|_1 \bmod 2 = 1 \}$ Geben Sie einen regulären Ausdruck r an, so dass es gilt: L(r) = L(A)
- c) Konstruieren Sie Automaten A für die Sprache $L(A) = \{ x \in \{a,b\}^* \mid x \text{ endet mit bb} \}$ Geben Sie einen regulären Ausdruck r an, so dass es gilt: L(r) = L(A)

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Übung

- Gegeben sei der reguläre Ausdruck RA({a, b}) : α = (b + ab)*aa(abb + b)*
- Konstruieren Sie einen deterministischen endlichen Automaten A mit L(A) = L(α). Geben Sie A vollständig an.

HOCHSCHULE EMDEN-LEER

© Prof. Dr. Juho Mäkiö - juho.maekioe@hs-emden-leer.de

122

Übung

- Geben Sie die regulären Ausdrücke für die folgenden Sprachen an:
 - Die Wörter der Sprache haben höchstens 4 Zeichen:
 L = {α ∈ {a, b}* | |α| ≤ 4}
 - In den Wörter der Sprache dürfen a's nur alleine vorkommen: L = {α ϵ {a, b}* | \forall u, v ϵ {a, b}* : α ≠ uaav}
 - Die Wörter der Sprache dürfen keine drei oder mehr a's hintereinander auftreten:
 - $\mathsf{RA}(\{a,\,b\}) : \mathsf{L} = \{\alpha \in \{a,\,b\}^* \mid \forall \ \mathsf{u},\,\mathsf{v} \in \{a,\,b\}^* : \alpha \neq \mathsf{uaaav}\}$
 - Die Wörter der Sprache haben eine gerade Anzahl von Zeichen, wobei es dürfen nie gleiche Zeichen hintereinander stehen:
 L = {α ∈ {a, b}²ⁿ | n ∈ N₀; ∀ t, l ∈ {a, b}*, ∀ z ∈ {a, b} : α ≠ tzzl}

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

KONTEXTSENSITIVE GRAMMATIKEN (TYP-1-GRAMMATIK)

© Prof. Dr. Juho Mäkiö - juho.maekioe@hs-emden-leer.de

124

 Eine Grammatik heißt <u>kontextsensitiv</u> (<u>Typ-1-Grammatik</u>), wenn alle Regeln von folgender Form sind:

$$S \rightarrow \epsilon \qquad \text{oder}$$

$$I \rightarrow r \qquad \qquad \text{mit} \quad I \in (\sum \cup V)^+ \setminus \sum^*$$

$$r \in (\sum \cup V)^*$$

$$\text{und} \quad |I| \leq |r|$$

[I enthält mindestens eine Variable, |I| ≤ |r| bedeutet, dass es keine Verkürzung gibt]

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

• Anmerkungen:

Jede Typ-3-/Typ-2-Grammatik ist auch vom Typ-1. (Die Umkehrung gilt nicht.)

abhängig vom "Kontext" wird B ersetzt.

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

12

Beispiel

```
G = (\{S, B, C\}, \{a, b, c\}, P, S)
S \rightarrow aSBC|aBC
[B, C \rightarrow b, c]
\Rightarrow a^{n} (BC)^{n} = a^{n} BC BC ...
CB \rightarrow BC
\Rightarrow a^{n} B^{n} C^{n}
aB \rightarrow ab
bB \rightarrow bb
bC \rightarrow bc
cC \rightarrow cc
L(G) = \{a^{n} b^{n} c^{n} \mid n \geq 1\}
CPOT. Juho Mäkiö - juho.maekioe@hs-emden-leer.de 127
```

•8

