ECE 271 Microcomputer Architecture and Applications Lab 6: Pulse Width Modulation Instructor: Prof. Yifeng Zhu **Spring 2015**

Goals

- 1. Understand the concept of Pulse Width Modulation (PWM)
- 2. Use PWM to control the LED brightness

Pre-Lab Assignment

- 1. Read Chapter 15
- 2. Complete the pin and timer configuration tables

Lab Demo

- 1. Periodically dimming a LED
- 2. Use an oscilloscope to measure duty cycles.
- 3. Something cool. Note that dimming another LED does not count as something cool. The following gives a few example of something cool.
 - a. Use PWM to control stepper motors to perform micro-stepping
 - b. Use PWM to generate a music tone (a 440-Hz sine wave, tone A)
 - c. Adjust PWM accuracy by calibrating the accuracy of MSI.

Post-Lab Assignment

1. Complete the post lab report and write your answer in Readme.md

Timer Control for Channel 1 of Timer X:

Figure 107. Output stage of capture/compare channel (channel 1)

Output compare 1 mode

- 000: Frozen 001: Toggle 100: Force inactive level
- 101: Force active level 110: PWM mode 1:
- Up counting: active if CNT < CCR1, else inactive Down counting: active if CNT > CCR1, else inactive 111: PWM mode 2
- Up counting: inactive if CNT < CCR1, else active
 - Down counting: inactive if CNT > CCR1, else active

TIMx PWM Mode

- TIMx_APR (Auto-Reload register): frequency TIMx_CCRx (Capture/Compare register): duty TIMx_CCMRx (Capture/Compare Mode register):
- OCxM for PWM mode 1 or 2 OCxPE to enable preload
- TIMX_EGR (Event Generation register):
 UG to Re-initialize the counter and generates an update of the registers
- TIMx_CCER (Capture/Compare Enable register): CCxP for polarity and CCxE for enabling
- TIMx_CR1 (Control register 1): ARPE: Auto-reload enable:
- CMS for edge-align mode or center-aligned mode
 TIMX_DIER (DMA/Interrupt Enable register)

Figure 2. PIN Connection of STML-Discovery Board

The above diagram shows the functions of each pin. The blue and green LED is connected to the PB 6 pin and the PB 7 pin, respectively. The following table shows the alternative functions available for these two pins.

LED	Pin	Available Alternative Functions
Blue	PB 6	I2C1_SCL/TIM4_CH1/USART1_TX
Green	PB 7	I2C1_SDA/TIM4_CH2/USART1_RX/PVD_IN

This shows:

- PB 6 pin can be programmed to connect to Channel 1 of Timer 4, and
- PB pin 7 can be connected to Channel 2 of Timer 4.

Comments about comments

Properly documenting is especially important for assembly programs.

Thumb of Rule: "If you are able to easily and quickly modify your codes one year after your initial development, then your code comments are excellent."

When writing comments, you can assume that readers of your codes know the assembly syntax but do not know your program goals, logic, and methodology.

- Give meaningful name to registers
- Recommend to using corresponding C code to make comment

Instruction	Bad comment	Good comment
add r2, r2, #1	; add one to a register	; array_index++
sub r2, r2, #1	; r2 = r2 - 1	; counter++
mul r3, r2, r1	; r3 = r2 * r1	; distance = speed * time

Specific Requirements

For each subroutine (also called function or procedure), your program should have a comment header. Your program should include a register usage page. Give each register a meaningful name. Here is an example.

```
; Name: strcat
; Description: Concatenate two strings
; Input: r0 - pointer to the first string
; r1 - pointer to the second string
; Returns: r0 - pointer to the resulting string
; Register usage:
; r3 - array index i of the second string
; r4 - array index j of the resulting string
; r5 - temporary value to hold a char loaded from memory

strcat PROC
...
ENDP
```

Lab 6: Pre-Lab Assignment

Student Name:	

NOTE:

- The Blue LED (PB 6) is connected to the Channel 1 of Timer 4.
- The Green LED (PB 7) is connected the Channel 2 of Timer 4.

1. Configure RCC_AHBENR to enable the clock of GPIO Port B

Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	3	2	1	0
AHBENR	Reserved	FSMCEN	Dovrago	מאמ	AESEN	Reserved	DMA2EN	DMA1EN			-	2000	erveo	1			FLITFEN		Reserved	CRCEN		Res	erve	ad	GPIOPGEN	GPIOPFEN	GPIOPHEN	GPIOPEEN	GPIOPDEN	GPIOPCEN	GPIOPBEN	GPIOPAEN
Mask											•	1000), v O	•								1100	0	Ju								
Value																																

Write your assembly code below to enable the GPIO B clock:

2. Configure RCC_APB1ENR to enable the clock of Timer 4

Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	3	2	1	0
APB1ENR	COMPEN	Reserved	DACEN	PWREN		Res	serve	be	USBEN	I2C2EN	I2C1EN	USART5EN	USART4EN	USART3EN	USART2EN	Reserved	SPI3EN	SPIZEN		Reserved	WWDGEN	Reserved	LCDEN	Re	eser	ved	TIM7EN	TIM6EN	TIMSEN	TIM4EN	TIM3EN	TIM2EN
Mask																																
Value																																

Write your assembly code below to enable the Timer 4 clock:

3. Configure PB 6 (Blue LED), PB 7 (Green LED) as Alternative Function Mode

GPIO Mode: Input (00, reset), Output (01), AlterFunc (10), Analog (11)

Register	31	30	29	28	27	26	25	24	23	22	21	20	19		17	16	15	14	13	12	1	10	6	8	2	9	2	4	3	7	_	0
GPIOB MODER	MODER15[1:0]	-	MODER14[1:0]	•	MODER13[1:0]	1	MODER12[1:0]		MODEP4111.01		MODER10[1:0]	٠	MODER9[1:0]	[o]o	MODER8[1:0]	,	MODER 711-01		MODER6[1:0]		MODER5[1:0]	[]	MODER4[1:0]		MODED 314:01	MODERS[1.0]	MODER2[1:0]		MODER 1[1:0]	-	MODER0[1:0]	
Mask																																
Value																																

GPIOB Mode Register MASK Value = 0x______ (in HEX)
GPIOB Mode Register Value = 0x______ (in HEX)

4. Configure and Select the Alternative Function for PB 6 (Blue LED), PB 7 (Green LED)

GPIOx_AFRL[31:00] defines the alternate function for pins 0 to 7, and GPIO_AFHL for pins 8 to 15.

Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	8	7	9	2	4	ဗ	7	1	0
GPIOB AFR[0]	A	ιFR	L7[3	3:0]	P	λFR	L6[3	3:0]	A	۱FR	L5[3	3:0]	Д	FRI	_4[3	:0]	,	٩FR	L3[3	3:0]	Α	FRI	L2[3	3:0]	ļ	۱FR	L1[3:0]	A	ιFR	L0[3	3:0]
MASK																																
VALUE																																
GPIOB AFR[1]	AF	RH	115[3:0]	AF	RH	114[3	3:0]	Al	RH	113[3:0]	AF	RH	12[3	3:0]	Al	FRH	111[3:0]	AF	RH	10[3	3:0]	А	FRI	19[3	3:0]	Αŀ	RH	18[3:	:0]
MASK																																
VALUE																																

GPIOB Alternative Function Register [0] MASK = 0x (in HEX) GPIOB Alternative Function Register [0] = 0x (in HEX) GPIOB Alternative Function Register [1] MASK = 0x (in HEX) GPIOB Alternative Function Register [1] = 0x (in HEX)

5. Complete the following table to configure the PWM output for Channel 1 of Timer 4

Register	31	30	29	28	27	26	25	24	23	22	21	20	19	9	2 7	-	16	15	4	13	12	11	10	6	œ	7	9	2	4	3	2	7	0
TIMx_CR1											R	Reserve	ed											CK [1:		ARPE	CM [1:0		DIR	ОРМ	URS	SIGN	CEN
Value	-																																
TIMx_CR2												Re	serv	ed												TI1S	MM	S[2:0)]	CCDS	Re	serve	e d
Value																																	
TIMx_CCMR1 Output Compare mode								Res	erve	d								OC2CE		C2M 2:0]		OC2PE	OC2FE	CC [1:		OC1CE		OC1 [2:0]	M]	OC1PE	OC1FE	CC [1:0	
Value																																	
TIMx_CCMR2 Output Compare mode								Res	erve	d								O24CE		C4M 2:0]	'	OC4PE	OC4FE	CC [1:0	24S 0]	OC3CE		C3M 2:0]	•	OC3PE	OC3FE	CC [1:0	
Value																																	
TIMx_CCER								Res	erve	d								CC4NP	Reserved	CC4P	CC4E	CC3NP	Reserved	CC3P	CC3E	CC2NP	Reserved	CC2P	CC2E	CC1NP	Reserved	CC1P	CC1E
value																			Res				Res				Res				Res		
TIMx_CCR1		CCR	1[32:	6] (TIM5	only	, res	erve	d on t	the o	the	er timei	s)												CCR	1[15:	[0]						
value	0	0	0	0	0	0	0	0	0	0	0	0	0	ľ	0 ()	0																
TIMx_PSC						Re	serv	ed																	PSC	C[15:0	0]						
value																																	
TIMx_ARR	,	ARR	32:16] (T	IM5 c	only,	rese	rved	on th	e oth	ner	timers)												ARF	R[15:0	0]						
value	0	0	0	0	0	0	0	0	0	0	0	0	0		0 ()	0																

ECE 271 Microcomputer Architecture and Applications Lab 6: Pulse Width Modulation Lab Demo

Student Name:
Demo 1: Diming an LED Demo 2: Use an oscilloscope to measure duty cycles.
Keep TIM4_ARR fixed but set TIM4_CCR1 to three different values.
TIM4_ARR = TIM4_PSC =

Case		TIM4_CCR1	Pulse Width	Pulse Period	Duty Cycle
			Measured	Measured	Measured
#1	TIM4_CCR1 = 1/6* TIM4_ARR				
#2	TIM4_CCR1 = 1/3* TIM4_ARR				
#3	TIM4_CCR1 = 1/2* TIM4_ARR				

ECE 271 Microcomputer Architecture and Applications Lab 6: Pulse Width Modulation Post-Lab Assignment

- 1. Suppose the HSE (high-speed external clock) of 16 MHz is selected the clock of a timer. In order to generate 1 Hz square wave with duty cycle of 50%, how would set up the timer? Indicate your counting mode and show the value of ARR, CRR, and PSC registers.
- 2. Do you have any suggestions or comments for this lab, the textbook or the lab?