Package 'gsw'

August 19, 2024

Version 1.2-0

Title Gibbs Sea Water Functions

Copyright Original algorithms and 'Matlab'/C library (c) 2015-2023 WG127 SCOR/IAPSO (Scientific Committee on Oceanic Research / International Association for the Physical Sciences of the Oceans, Working Group 127); C wrapper code and R code (c) 2015-2023 Dan Kelley and Clark Richards

Maintainer Dan Kelley <dan.kelley@dal.ca>

Depends R (>= 3.5.0),

Suggests knitr, rmarkdown, testthat

BugReports https://github.com/TEOS-10/GSW-R/issues

Description Provides an interface to the Gibbs 'SeaWater' ('TEOS-10') C library, version 3.06-16-0 (commit '657216dd4f5ea079b5f0e021a4163e2d26893371', dated 2022-10-11, available at https://github.com/TEOS-10/GSW-C, which stems from 'Matlab' and other code written by members of Working Group 127 of 'SCOR'/'IAPSO' (Scientific Committee on Oceanic Research / International Association for the Physical Sciences of the Oceans).

URL http://teos-10.github.io/GSW-R/

License GPL (>= 2) | file LICENSE

LazyLoad yes
LazyData no
Encoding UTF-8

RoxygenNote 7.3.2 BuildVignettes true VignetteBuilder knitr

NeedsCompilation yes

Author Dan Kelley [aut, cre, cph] (https://orcid.org/0000-0001-7808-5911), Clark Richards [aut, cph] (https://orcid.org/0000-0002-7833-206X), WG127 SCOR/IAPSO [aut, cph] (Original 'Matlab' and derived code)

Repository CRAN

Date/Publication 2024-08-19 17:40:02 UTC

2 Contents

Contents

e	5
gsw_adiabatic_lapse_rate_from_CT	6
gsw_adiabatic_lapse_rate_ice	7
gsw_alpha	8
gsw_alpha_on_beta	9
gsw_alpha_wrt_t_exact	0
gsw_alpha_wrt_t_ice	1
gsw_beta	3
gsw_beta_const_t_exact	4
gsw_cabbeling	5
gsw_chem_potential_water_ice	6
gsw_chem_potential_water_t_exact	7
gsw_cp_ice	8
gsw_cp_t_exact	9
gsw_CT_first_derivatives	0
gsw_CT_first_derivatives_wrt_t_exact	1
gsw_CT_freezing	2
gsw_CT_freezing_first_derivatives	4
gsw_CT_freezing_first_derivatives_poly	5
gsw_CT_freezing_poly	6
gsw_CT_from_enthalpy	7
gsw_CT_from_entropy	8
gsw_CT_from_pt	9
gsw_CT_from_rho	0
gsw_CT_from_t	2
gsw_CT_maxdensity	3
gsw_CT_second_derivatives	4
gsw_C_from_SP	5
gsw_deltaSA_from_SP	6
gsw_dilution_coefficient_t_exact	7
gsw_dynamic_enthalpy	8
gsw_enthalpy	0
gsw_enthalpy_CT_exact	1
gsw_enthalpy_diff	2
gsw_enthalpy_first_derivatives	3
gsw_enthalpy_first_derivatives_CT_exact	5
gsw_enthalpy_ice	6
gsw_enthalpy_second_derivatives	
gsw_enthalpy_second_derivatives_CT_exact	9
gsw_enthalpy_t_exact	0
gsw_entropy_first_derivatives	1
gsw_entropy_from_pt	2
gsw_entropy_from_t	
gsw_entropy_ice	
gsw_entropy_second_derivatives	
gsw_Fdelta	
-	

Contents 3

gsw_frazil_properties	58
gsw_frazil_properties_potential	. 59
gsw_frazil_properties_potential_poly	
gsw_frazil_ratios_adiabatic	62
gsw_frazil_ratios_adiabatic_poly	63
gsw_geo_strf_dyn_height	64
gsw_geo_strf_dyn_height_1	66
gsw_geo_strf_dyn_height_pc	67
gsw_gibbs	69
gsw_gibbs_ice	. 70
gsw_grav	
gsw_Helmholtz_energy_ice	
gsw_ice_fraction_to_freeze_seawater	73
gsw_infunnel	75
gsw_internal_energy	. 76
gsw_internal_energy_ice	77
gsw_IPV_vs_fNsquared_ratio	78
gsw_kappa	79
gsw_kappa_const_t_ice	80
gsw_kappa_ice	81
gsw_kappa_t_exact	82
gsw_latentheat_evap_CT	83
gsw_latentheat_evan_t	8/1
gsw_latentheat_evap_t	85
gsw_latentheat_melting	86
gsw_melting_ice_equilibrium_SA_CT_ratio	97
gsw_melting_ice_equilibrium_SA_CT_ratio_poly	0 / QQ
gsw_melting_ice_into_seawater	. 00
gsw_melting_ice_SA_CT_ratio	. 90
gsw_melting_ice_SA_CT_ratio_poly	. 91
gsw_melting_seaice_into_seawater	. 92
gsw_Nsquared	95
gsw_O2sol	95
gsw_O2sol_SP_pt	96
gsw_pot_enthalpy_from_pt_ice	. 97
gsw_pot_enthalpy_from_pt_ice_poly	. 98
gsw_pot_enthalpy_ice_freezing	. 99
gsw_pot_enthalpy_ice_freezing_first_derivatives	
gsw_pot_enthalpy_ice_freezing_first_derivatives_poly	
gsw_pot_enthalpy_ice_freezing_poly	
gsw_pot_rho_t_exact	
gsw_pressure_coefficient_ice	
gsw_pressure_freezing_CT	
gsw_pt0_from_t	
gsw_pt0_from_t_ice	
gsw_pt_first_derivatives	
gsw_pt_from_CT	
gsw_pt_from_entropy	112
gsw pt from pot enthalpy ice	113

4 Contents

gsw_pt_from_pot_enthalpy_ice_poly
gsw_pt_from_t
gsw_pt_from_t_ice
gsw_pt_second_derivatives
gsw_p_from_z
gsw_rho
gsw_rho_alpha_beta
gsw_rho_first_derivatives
gsw_rho_first_derivatives_wrt_enthalpy
gsw_rho_ice
gsw_rho_second_derivatives
gsw_rho_second_derivatives_wrt_enthalpy
•
gsw_rho_t_exact
gsw_SAAR
gsw_SA_freezing_from_CT
gsw_SA_freezing_from_CT_poly
gsw_SA_freezing_from_t
gsw_SA_freezing_from_t_poly
gsw_SA_from_rho
gsw_SA_from_SP
gsw_SA_from_SP_Baltic
gsw_SA_from_Sstar
gsw_seaice_fraction_to_freeze_seawater
gsw_sigma0
gsw_sigma1
gsw_sigma2
gsw_sigma3
gsw_sigma4
gsw_sound_speed
gsw_sound_speed_ice
gsw_sound_speed_t_exact
gsw_specvol
$\mathbf{c} = \mathbf{r}$
gsw_specvol_alpha_beta
gsw_specvol_anom_standard
gsw_specvol_first_derivatives
gsw_specvol_first_derivatives_wrt_enthalpy
gsw_specvol_ice
gsw_specvol_second_derivatives
gsw_specvol_second_derivatives_wrt_enthalpy
gsw_specvol_t_exact
gsw_spiciness0
gsw_spiciness1
gsw_spiciness2
gsw_SP_from_C
gsw_SP_from_SA
gsw_SP_from_SK
gsw_SP_from_SR
gsw_SP_from_Sstar

argfix 5

Index		189
	saar	188
	gsw_z_from_p	
	gsw_t_from_pt0_ice	
	gsw_t_from_CT	
	gsw_t_freezing_first_derivatives_poly	
	gsw_t_freezing_first_derivatives	182
	gsw_t_freezing	180
	gsw_t_deriv_chem_potential_water_t_exact	179
	gsw_Turner_Rsubrho	178
	gsw_thermobaric	177
	gsw_Sstar_from_SP	176
	gsw_Sstar_from_SA	174
	gsw_SR_from_SP	173
	gsw_SP_salinometer	172

argfix

Reshape list elements to match that of the first element

Description

This is mainly used within gsw, to ensure that arguments sent to the C functions are of equal length. This is a convenience, for processing data that often have this condition. For example, a CTD profile is likely to have many values for SP, t, and p, but just a single value for each of longitude and latitude. It is important to call argfix() to handle such cases, because otherwise the underlying C code will be looking past the end of the vectors storing longitude and latitude, which can yield odd results or even segmentation faults.

Usage

argfix(list)

Arguments

1ist A list of elements, typically arguments that will be used in GSW functions.

Value

A list with all elements of same shape (length or dimension).

Description

Note that the unit is K/Pa; multiply by 1e4 to get the more useful K/dbar.

Usage

```
gsw_adiabatic_lapse_rate_from_CT(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
	g/kg.
СТ	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

adiabatic lapse rate (note unconventional unit) [K/Pa]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_adiabatic_lapse_rate_from_CT.html
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c( 10, 50, 125, 250, 600, 1000)
lr <- gsw_adiabatic_lapse_rate_from_CT(SA, CT, p)
stopifnot(all.equal(lr*1e7,
```

```
gsw_adiabatic_lapse_rate_ice
```

```
7
```

```
c(0.240199646230069, 0.238457486976761, 0.203635157319712, 0.119829566859790, 0.100052760967308, 0.087773070307283)))
```

gsw_adiabatic_lapse_rate_ice

Adiabatic Lapse Rate of Ice

Description

Note that the unit is K/Pa; multiply by 1e4 to get the more useful K/dbar.

Usage

```
gsw_adiabatic_lapse_rate_ice(t, p)
```

Arguments

- t in-situ temperature (ITS-90) [degC]
- p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

adiabatic lapse rate (note unconventional unit) [K/Pa]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_adiabatic_lapse_rate_ice.html
```

Examples

8 gsw_alpha

gsw_alpha

Description

Thermal expansion coefficient with respect to Conservative Temperature, using the 75-term equation for specific volume.

Usage

```
gsw_alpha(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
СТ	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

thermal expansion coefficient with respect to Conservative Temperature [1/K]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_alpha.html

gsw_alpha_on_beta 9

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact() gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)

p <- c( 10, 50, 125, 250, 600, 1000)

alpha <- gsw_alpha(SA,CT,p)

stopifnot(all.equal(alpha*1e3, c(0.324464211877393, 0.322610094680523, 0.281335030247435, 0.173529986885424, 0.146898108553385, 0.130265123640082)))
```

gsw_alpha_on_beta

Thermal expansion coefficient over haline contraction coefficient

Description

Thermal expansion coefficient over haline contraction coefficient, using the 75-term equation for specific volume.

Usage

```
gsw_alpha_on_beta(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
	g/kg.
CT	Conservative Temperature [degC].
p	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

ratio of thermal expansion coefficient to haline contraction coefficient [(g/kg)/K]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained,

a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems

References

http://www.teos-10.org/pubs/gsw/html/gsw_alpha_on_beta.html

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol_ologicalpha_beta(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)

p <- c( 10, 50, 125, 250, 600, 1000)

alpha_on_beta <- gsw_alpha_on_beta(SA,CT,p)

stopifnot(all.equal(alpha_on_beta, c(0.452468543022009, 0.449601695030057, 0.387140203094424, 0.230778871228268, 0.193747796234162, 0.170946048860385)))
```

gsw_alpha_wrt_t_exact Thermal expansion coefficient with respect to in-situ temperature

Description

Thermal expansion coefficient with respect to in-situ temperature.

Usage

```
gsw_alpha_wrt_t_exact(SA, t, p)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

t in-situ temperature (ITS-90) [ degC ]

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
```

gsw_alpha_wrt_t_ice 11

Value

thermal expansion coefficient with respect to in-situ temperature [1/K]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_alpha_wrt_t_exact.html
```

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol_ologicalpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324) t <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036) p <- c( 10, 50, 125, 250, 600, 1000) alpha_wrt_t_exact <- gsw_alpha_wrt_t_exact(SA,t,p) stopifnot(all.equal(alpha_wrt_t_exact*1e3, c(0.325601747227247, 0.323448083851267, 0.281413883319329, 0.172825692975230, 0.145569941503599, 0.128362986933288)))
```

Description

Thermal expansion coefficient of ice, with respect to in-situ temperature.

12 gsw_alpha_wrt_t_ice

Usage

```
gsw_alpha_wrt_t_ice(t, p)
```

Arguments

- t in-situ temperature (ITS-90) [degC]
- p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

thermal expansion coefficient with respect to in-situ temperature [1/K]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_alpha_wrt_t_ice.html
```

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol_ologicalpha_beta(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

Examples

gsw_beta 13

gsw_beta	Haline contraction coefficient at constant Conservative Temperature

Description

Haline contraction coefficient with respect to Conservative Temperature, using the 75-term equation for specific volume.

Usage

```
gsw_beta(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
	g/kg.
CT	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

Haline contraction coefficient at constant Conservative Temperature [kg/g]

Implementation Note

```
This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.
```

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_beta.html
```

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol_(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

Examples

```
gsw_beta_const_t_exact
```

Haline contraction coefficient at constant in-situ temperature

Description

Haline contraction coefficient at constant in-situ temperature.

Usage

```
gsw_beta_const_t_exact(SA, t, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
t	in-situ temperature (ITS-90) [degC]
p	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

Haline contraction coefficient at constant in-situ temperature [kg/g]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_beta_const_t_exact.html
```

gsw_cabbeling 15

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol_(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
t <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
b <- gsw_beta_const_t_exact(SA, t, p)
stopifnot(all.equal(b*1e3, c(0.731120837010429, 0.731071779078011, 0.736019128913071, 0.753810501711847, 0.757259405338257, 0.758649268096996)))
```

gsw_cabbeling

Cabbeling coefficient

Description

Cabbeling coefficient (75-term equation)

Usage

```
gsw_cabbeling(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
	g/kg.
CT	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

Cabbeling coefficient with respect to Conservative Temperature [$1/(K^2)$]

Implementation Note

```
This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.
```

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip

on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_cabbeling.html
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c( 10, 50, 125, 250, 600, 1000)
cabbeling <- gsw_cabbeling(SA,CT,p)
stopifnot(all.equal(cabbeling*1e4, c(0.086645721047423, 0.086837829466794, 0.092525582052438, 0.108884336975401, 0.112971197222338, 0.115483896148927)))
```

Description

Chemical Potential of Ice

Usage

```
gsw_chem_potential_water_ice(t, p)
```

Arguments

```
t in-situ temperature (ITS-90) [ degC ]
```

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

```
chemical potential [ J/kg ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip

on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_chem_potential_water_ice.html
```

See Also

Other things related to chemical potential: gsw_chem_potential_water_t_exact()

Examples

Description

Chemical Potential of Water in Seawater

Usage

```
gsw_chem_potential_water_t_exact(SA, t, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
t	in-situ temperature (ITS-90) [degC]
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

```
chemical potential [ J/kg ]
```

18 gsw_cp_ice

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_chem_potential_water_t_exact.html
```

See Also

Other things related to chemical potential: gsw_chem_potential_water_ice()

Examples

gsw_cp_ice

Specific heat to ice

Description

Specific heat of ice

Usage

```
gsw_cp_ice(t, p)
```

Arguments

```
t in-situ temperature (ITS-90) [ degC ]
```

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

```
specific heat [ J/(K*kg) ]
```

gsw_cp_t_exact 19

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_cp_ice.html
```

Examples

```
t <-c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)

p <-c(10, 50, 125, 250, 600, 1000)

cp <-gsw\_cp\_ice(t, p)

stopifnot(all.equal(cp, c(2017.314262094657, 1997.830122682709, 2002.281331375396, 2006.127319545421, 2015.676303959609, 2033.308170371559)))
```

gsw_cp_t_exact

Isobaric heat capacity

Description

Isobaric heat capacity

Usage

```
gsw_cp_t_exact(SA, t, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
t	in-situ temperature (ITS-90) [degC]
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

```
heat capacity [ J/(kg*K) ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_cp_t_exact.html
```

Examples

```
gsw_CT_first_derivatives
```

First Derivatives of Conservative Temperature

Description

First Derivatives of Conservative Temperature

Usage

```
gsw_CT_first_derivatives(SA, pt)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

pt potential temperature (ITS-90) [ degC ]
```

Value

A list containing CT_SA [K/(g/kg)], the derivative of Conservative Temperature with respect to Absolute Salinity, and CT_pt [unitless], the derivative of Conservative Temperature with respect to potential temperature.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_CT_first_derivatives.html

Examples

```
gsw_CT_first_derivatives_wrt_t_exact
```

Derivatives of Conservative Temperature with Respect to or at Constant in-situ Temperature

Description

Derivatives of Conservative Temperature with Respect to or at Constant in-situ Temperature

Usage

```
gsw_CT_first_derivatives_wrt_t_exact(SA, t, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
	g/kg.
t	in-situ temperature (ITS-90) [degC]
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

22 gsw_CT_freezing

Value

A list containing CT_SA_wrt_t [K/(g/kg)], the derivative of Conservative Temperature with respect to Absolute Salinity at constant temperature and pressure, CT_t_wrt_t [unitless], the derivative of Conservative Temperature with respect to temperature at constant Absolute Salinity and pressure, and CT_p_wrt_t, the derivative of Conservative Temperature with respect to pressure at constant Absolute Salinity and temperature.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_CT_first_derivatives_wrt_t_exact.html

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
t <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(
             10,
                      50,
                             125,
                                        250,
                                                 600,
                                                          1000)
r <- gsw_CT_first_derivatives_wrt_t_exact(SA, t, p)</pre>
stopifnot(all.equal(r$CT_SA_wrt_t,
    c(-0.041988694538987, -0.041596549088952, -0.034853545749326,
      -0.019067140454607, -0.015016439826591, -0.012233725491373)))
stopifnot(all.equal(r$CT_t_wrt_t,
    {\tt c(1.002752642867571,\ 1.002243118597902,\ 1.000835702767227,}
       0.998194915250648 , \ 0.995219303532390 , \ 0.991780205482695))) \\
stopifnot(all.equal(r$CT_p_wrt_t/1e-7,
    c(-0.241011880838437, -0.239031676279078, -0.203649928441505,
      -0.119370679226136, -0.099140832825342, -0.086458168643579)))
```

gsw_CT_freezing

Conservative Temperature of Freezing Seawater

Description

Conservative Temperature of Freezing Seawater

gsw_CT_freezing 23

Usage

```
gsw_CT_freezing(SA, p, saturation_fraction = 1)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar saturation_fraction saturation of dissolved air in seawater
```

Value

Conservative Temperature at freezing of seawater [degC].

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_CT_freezing.html
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c( 10, 50, 125, 250, 600, 1000)
saturation_fraction <- 1
CT <- gsw_CT_freezing(SA, p, saturation_fraction)
stopifnot(all.equal(CT, c(-1.899683776424096, -1.940791867869104, -2.006240664432488, -2.092357761318778, -2.359300831770506, -2.677162675412748)))
```

```
gsw_CT_freezing_first_derivatives
```

First Derivatives of Conservative Temperature for Freezing Water

Description

First Derivatives of Conservative Temperature for Freezing Water

Usage

```
gsw_CT_freezing_first_derivatives(SA, p, saturation_fraction = 1)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar saturation_fraction fraction of air in water [unitless]
```

Value

A list containing CTfreezing_SA [K/(g/kg)], the derivative of Conservative Temperature with respect to Absolute Salinity at constant potential temperature, and CTfreezing_p [unitless], the derivative of Conservative Temperature with respect to pressure at constant Absolute Salinity.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_CT_freezing_first_derivatives.html

Examples

```
SA <- c(
                          34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c(
                                        50,
                                                 125,
                                                          250,
                                                                    600,
                                                                            1000)
saturation_fraction <- c(</pre>
                                1,
                                       0.8,
                                                 0.6,
                                                           0.5,
                                                                    0.4,
                                                                               0)
r <- gsw_CT_freezing_first_derivatives(SA, p, saturation_fraction)</pre>
stopifnot(all.equal(r$CTfreezing_SA,
    c(-0.058193253897272, -0.058265158334170, -0.058345661671901,
     -0.058373842446463, -0.058534544740846, -0.058730846361252)))
stopifnot(all.equal(r$CTfreezing_p/1e-7,
    c(-0.765300390432684, -0.766942996466485, -0.769892679988284,
      -0.774561011527902, -0.787769143040504, -0.802771548245855)))
```

```
gsw_CT_freezing_first_derivatives_poly
```

First Derivatives of Conservative Temperature for Freezing Water (Polynomial version)

Description

First Derivatives of Conservative Temperature for Freezing Water (Polynomial version)

Usage

```
gsw_CT_freezing_first_derivatives_poly(SA, p, saturation_fraction = 1)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar saturation_fraction fraction of air in water [unitless]
```

Value

A list containing CTfreezing_SA [K/(g/kg)], the derivative of Conservative Temperature with respect to Absolute Salinity at constant potential temperature, and CTfreezing_p [unitless], the derivative of Conservative Temperature with respect to pressure at constant Absolute Salinity.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip

on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_CT_freezing_first_derivatives_poly.html

Examples

```
SA <- c(
                         34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
                                      50,
p <- c(
                              10,
                                                125,
                                                         250,
                                                                   600.
                                                                           1000)
saturation_fraction <- c(</pre>
                               1,
                                       0.8,
                                                0.6,
                                                         0.5,
                                                                   0.4,
r <- gsw_CT_freezing_first_derivatives_poly(SA, p, saturation_fraction)</pre>
stopifnot(all.equal(r$CTfreezing_SA,
    c(-0.058191181082769, -0.058263310660779, -0.058343573188907,
     -0.058370514075271, -0.058528023214462, -0.058722959729433)))
stopifnot(all.equal(r$CTfreezing_p/1e-7,
    c(-0.765690732336706, -0.767310677213890, -0.770224214219328,
     -0.774843488962665, -0.787930403016584, -0.802821704643775)))
```

gsw_CT_freezing_poly Conservative Temperature Freezing Point (Polynomial version)

Description

Conservative Temperature Freezing Point (Polynomial version)

Usage

```
gsw_CT_freezing_poly(SA, p, saturation_fraction = 1)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar saturation_fraction saturation of dissolved air in seawater
```

Value

Conservative Temperature at freezing of seawater [degC].

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_CT_freezing_poly.html
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c( 10, 50, 125, 250, 600, 1000)
saturation_fraction <- 1
CT_freezing <- gsw_CT_freezing(SA, p, saturation_fraction)
stopifnot(all.equal(CT_freezing, c(-1.899683776424096, -1.940791867869104, -2.006240664432488, -2.092357761318778, -2.359300831770506, -2.677162675412748)))
```

Description

Conservative Temperature from Enthalpy

Usage

```
gsw_CT_from_enthalpy(SA, h, p)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

h specific enthalpy [ J/kg ]

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
```

Value

Conservative Temperature [degC]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_CT_from_enthalpy.html

See Also

```
Other things related to enthalpy: gsw_dynamic_enthalpy(), gsw_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_first_derivatives_CT_exact(), gsw_enthalpy_ice(), gsw_enthalpy_t_exact(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potenthalpy_from_pt_ice_potenthalpy_ice_freezing(), gsw_pot_enthalpy_ice_freezing(), gsw_pot_enthalpy_ice_freezing_potenthalpy_ice_potenthalpy_ice_freezing_freezing_freezing(), gsw_specvol_first_derivatives(), gsw_specvol_first_derivatives_wrt_enthalpy()
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
h <- c(1.15103e5, 1.14014e5, 0.92180e5, 0.43255e5, 0.33087e5, 0.26970e5)
p <- c( 10, 50, 125, 250, 600, 1000)
pt <- c(28.7832, 28.4209, 22.7850, 10.2305, 6.8292, 4.3245)
CT <- gsw_CT_from_enthalpy(SA, h, p)
stopifnot(all.equal(CT, c(28.809854569021972, 28.439026483379287, 22.786196534098817, 10.226106994920777, 6.827159682675204, 4.323428660306681)))
```

Description

Conservative Temperature from Entropy

Usage

```
gsw_CT_from_entropy(SA, entropy)
```

gsw_CT_from_pt 29

Arguments

SA Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42

g/kg.

entropy specific entropy [J/(degC*kg)]

Value

Conservative Temperature [degC]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_CT_from_entropy.html
```

See Also

```
Other things related to entropy: gsw_entropy_first_derivatives(), gsw_entropy_from_pt(), gsw_entropy_from_t(), gsw_entropy_ice(), gsw_pt_from_entropy()
```

Examples

```
SA <- c( 34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
entropy <- c(400.3892, 395.4378, 319.8668, 146.7910, 98.6471, 62.7919)
CT <- gsw_CT_from_entropy(SA, entropy)
stopifnot(all.equal(CT, c(28.809902787278070, 28.439199226786918, 22.786199266954270,
10.226197672488652, 6.827196739780282, 4.323602945446461)))
```

gsw_CT_from_pt

Conservative Temperature from Potential Temperature

Description

Conservative Temperature from Potential Temperature

30 gsw_CT_from_rho

Usage

```
gsw_CT_from_pt(SA, pt)
```

Arguments

Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

pt potential temperature (ITS-90) [degC]

Value

Conservative Temperature [degC]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_CT_from_pt.html
```

Examples

```
gsw_CT_from_rho Conservative Temperature from Density, Absolute Salinity and Pressure
```

Description

Conservative Temperature from Density, Absolute Salinity and Pressure

gsw_CT_from_rho 31

Usage

```
gsw_CT_from_rho(rho, SA, p)
```

Arguments

```
rho seawater density [ kg/m^3 ]

SA Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
```

Value

A list containing two estimates of Conservative Temperature: CT and CT_multiple, each in [degC].

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_CT_from_rho.html
```

See Also

```
Other things related to density: gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

Examples

```
rho <- c(1021.8484, 1022.2647, 1024.4207, 1027.7841, 1029.8287, 1031.9916)
                      34.8915,
SA \leftarrow c(34.7118,
                                  35.0256,
                                             34.8472,
                                                        34.7366,
                                                                    34.7324)
p <- c(
                                                                       1000)
                10,
                            50,
                                      125,
                                                 250,
                                                             600.
r <- gsw_CT_from_rho(rho, SA, p)
stopifnot(all.equal(r$CT, c(28.784377302226968, 28.432402127485858, 22.808745445250068,
                             10.260169334807866, 6.887336649146716, 4.404594162282834)))
```

32 gsw_CT_from_t

gsw_CT_from_t Convert from temperature to conservative temperature

Description

Convert from temperature to conservative temperature

Usage

```
gsw_CT_from_t(SA, t, p)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

t in-situ temperature (ITS-90) [ degC ]

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
```

Value

Conservative Temperature [degC]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_CT_from_t.html
```

Examples

gsw_CT_maxdensity 33

gsw_CT_maxdensity Conservative Temperature at Maximum Density	
---	--

Description

Conservative Temperature at Maximum Density

Usage

```
gsw_CT_maxdensity(SA, p)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
```

Value

Conservative Temperature [degC]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_CT_maxdensity.html
```

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

Examples

gsw_CT_second_derivatives

Second Derivatives of Conservative Temperature

Description

Second Derivatives of Conservative Temperature

Usage

```
gsw_CT_second_derivatives(SA, pt)
```

Arguments

Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

pt potential temperature (ITS-90) [degC]

Value

A list containing CT_SA_SA [$K/(g/kg)^2$], the second derivative of Conservative Temperature with respect to Absolute Salinity at constant potential temperature, and CT_SA_pt [1/(g/kg)], the derivative of Conservative Temperature with respect to potential temperature and Absolute Salinity, and CT_pt_pt [1/degC], the second derivative of Conservative Temperature with respect to potential temperature.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

gsw_C_from_SP 35

References

http://www.teos-10.org/pubs/gsw/html/gsw_CT_second_derivatives.html

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

pt <- c(28.7832, 28.4209, 22.7850, 10.2305, 6.8292, 4.3245)

r <- gsw_CT_second_derivatives(SA, pt)

stopifnot(all.equal(r$CT_SA_SA/1e-3, c(-0.060718502077064, -0.062065324400873, -0.084017055354742, -0.148436050120131, -0.171270386500246, -0.189920754900116)))

stopifnot(all.equal(r$CT_SA_pt, c(-0.001197415000869, -0.001198309530139, -0.001226523296082, -0.001335896286481, -0.001380492698572, -0.001417751669135)))

stopifnot(all.equal(r$CT_pt_pt/1e-3, c(0.123012754427146, 0.124662008871271, 0.140829458783443, 0.140646803448166, 0.113684095615077, 0.082286843477998)))
```

gsw_C_from_SP

Electrical Conductivity from Practical Salinity

Description

Electrical conductivity (in mS/cm) from Practical Salinity. To convert the return value to conductivity ratio, divide by 42.9140 (the value of conductivity at S=35, T68=15, and p=0).

Usage

```
gsw_C_from_SP(SP, t, p)
```

Arguments

SP	Practical Salinity (PSS-78) [unitless]. The valid range for most 'gsw' functions is from 2 to 42.
t	in-situ temperature (ITS-90) [degC]
p	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

```
electrical conductivity [ mS/cm ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip

on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_C_from_SP.html
```

See Also

```
Other things related to salinity: gsw_SA_from_SP(), gsw_SA_from_SP_Baltic(), gsw_SA_from_Sstar(), gsw_SP_from_C(), gsw_SP_from_SA(), gsw_SP_from_SK(), gsw_SP_from_SR(), gsw_SP_from_Sstar(), gsw_SR_from_SP(), gsw_Sstar_from_SP(), gsw_Gstar_from_SP(), gsw_deltaSA_from_SP()

Other things related to conductivity: gsw_SP_from_C()
```

Examples

Description

Absolute Salinity Anomaly from Practical Salinity

Usage

```
gsw_deltaSA_from_SP(SP, p, longitude, latitude)
```

Arguments

SP	Practical Salinity (PSS-78) [unitless]. The valid range for most 'gsw' functions is from 2 to 42.
p	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
longitude	longitude in decimal degrees, positive to the east of Greenwich. (This is called long in the TEOS-10 Matlab code.)
latitude	latitude in decimal degrees, positive to the north of the equator. (This is called lat in the TEOS-10 Matlab code.)

Value

deltaSA Absolute Salinity Anomaly [g/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_deltaSA_from_SP.html
```

See Also

```
Other things related to salinity: gsw_C_from_SP(), gsw_SA_from_SP(), gsw_SA_from_SP_Baltic(), gsw_SA_from_Sstar(), gsw_SP_from_C(), gsw_SP_from_SA(), gsw_SP_from_SK(), gsw_SP_from_SR(), gsw_SP_from_SStar(), gsw_SR_from_SP(), gsw_Sstar_from_SA(), gsw_Sstar_from_SP()
```

Examples

```
c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p =
      c(
             10,
                      50,
                            125,
                                       250,
                                                600,
              4,
lat = c(
                       4,
                                4,
                                        4,
                                                 4,
                                                           4)
            188,
                     188,
                              188,
                                       188,
                                                188,
                                                         188)
long = c(
deltaSA = gsw_deltaSA_from_SP(SP,p,long,lat)
stopifnot(all.equal(deltaSA, c(0.000167203365230, 0.000268836122231, 0.000665803155705,
                            0.002706154619403, 0.005652977406832, 0.009444734661606)))
```

```
gsw_dilution_coefficient_t_exact

Dilution coefficient
```

Description

Dilution coefficient

Usage

```
gsw_dilution_coefficient_t_exact(SA, t, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
	g/kg.
t	in-situ temperature (ITS-90) [degC]
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

```
dilution coefficient [ (J/kg)(kg/g) ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_dilution_coefficient_t_exact.html
```

Examples

Description

Dynamic enthalpy of seawater (75-term equation)

Usage

```
gsw_dynamic_enthalpy(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
СТ	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

dynamic enthalpy [J/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_enthalpy.html

See Also

```
Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_first_derivatives_CT_exact(), gsw_enthalpy_ice(), gsw_enthalpy_t_exact(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potentialpy_from_pt_ice_potentialpy_ice_freezing(), gsw_pot_enthalpy_ice_freezing(), gsw_pot_enthalpy_ice_freezing_potentialpy_ice_potentialpy_ice_freezing_freezing(), gsw_specvol_first_derivatives(), gsw_specvol_first_derivatives_wrt_enthalpy()
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

CT <-c( 28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)

p <- c( 10, 50, 125, 250, 600, 1000)

de <- gsw_dynamic_enthalpy(SA, CT, p)

stopifnot(all.equal(de/1000, c(0.097864698087770, 0.489161476686235, 1.220512192086506, 2.433731199531144, 5.833880057399701, 9.711443860944032)))
```

40 gsw_enthalpy

gsw_enthalpy	Specific enthalpy of seawater (75-term equation)	
gsw_enthalpy	Specific enthalpy of seawater (75-term equation)	

Description

Specific enthalpy of seawater (75-term equation)

Usage

```
gsw_enthalpy(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
CT	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

```
specific enthalpy [ J/kg ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_enthalpy.html
```

See Also

```
Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_first_derivatives_CT_exact(), gsw_enthalpy_ice(), gsw_enthalpy_t_exact(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potentialpy_from_pt_ice_freezing(), gsw_pot_enthalpy_ice_freezing(), gsw_pot_enthalpy_ice_freezing_potentialpy_ice_freezing_potentialpy_ice_freezing_from_pot_enthalpy_ice(), gsw_pt_from_pot_enthalpy_ice_potentialpy_ice_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_freezing_fr
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

CT <-c( 28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)

p <- c( 10, 50, 125, 250, 600, 1000)

e <- gsw_enthalpy(SA, CT, p)

stopifnot(all.equal(e/1e5, c(1.151031813559086, 1.140146926828028, 0.921800138366058, 0.432553713026279, 0.330871609742468, 0.269706841603465)))
```

gsw_enthalpy_CT_exact Seawater Specific Enthalpy in terms of Conservative Temperature

Description

Seawater Specific Enthalpy in terms of Conservative Temperature

Usage

```
gsw_enthalpy_CT_exact(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
СТ	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

```
specific enthalpy [ J/kg ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_enthalpy_CT_exact.html

42 gsw_enthalpy_diff

See Also

```
Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_first_derivatives_CT_exact(), gsw_enthalpy_ice(), gsw_enthalpy_t_exact(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potentialpy_from_pt_ice(), gsw_pot_enthalpy_ice_freezing(), gsw_pot_enthalpy_ice_freezing_poly(), gsw_pt_from_pot_enthalpy_ice(), gsw_pt_from_pot_enthalpy_ice_potentialpy_ice_freezing_from_pot_enthalpy_ice_freezing_from_pot_enthalpy_ice_potentialpy_ice_freezing_from_pot_enthalpy()
```

Examples

gsw_enthalpy_diff

Specific Enthalpy Difference with Pressure

Description

Specific enthalpy difference [J/kg].

Usage

```
gsw_enthalpy_diff(SA, CT, p_shallow, p_deep)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
СТ	Conservative Temperature [degC].
p_shallow	pressure at a shallower depth [dbar]
p_deep	pressure at a deeper depth [dbar]

Value

```
specific enthalpy difference [ J/kg ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_enthalpy_diff.html
```

See Also

```
Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_first_derivatives_CT_exact(), gsw_enthalpy_ice(), gsw_enthalpy_t_exact(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potentialpy_from_pt_ice(), gsw_pot_enthalpy_ice_freezing(), gsw_pot_enthalpy_ice_freezing_poly(), gsw_pt_from_pot_enthalpy_ice(), gsw_pt_from_pot_enthalpy_ice_potentialpy_ice_freezing_freezing(), gsw_specvol_first_derivatives(), gsw_specvol_first_derivatives_wrt_enthalpy()
```

Examples

```
SA <- c( 34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c( 28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p_shallow <- c(10,
                        50,
                                 125,
                                           250,
                                                    600,
                                                            1000)
p_{deep} \leftarrow c(110,
                        150,
                                 225,
                                           350,
                                                    700,
                                                            1100)
ed <- gsw_enthalpy_diff(SA, CT, p_shallow, p_deep)</pre>
stopifnot(all.equal(ed/1e2, c(9.784180644568052, 9.780195056105020, 9.759587700515114,
                               9.727552719534447, 9.708223170174454, 9.687871289079633)))
```

```
gsw_enthalpy_first_derivatives
First Derivatives of Enthalpy
```

Description

First Derivatives of Enthalpy

Usage

```
gsw_enthalpy_first_derivatives(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
	g/kg.
СТ	Conservative Temperature [degC].
p	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

a list containing $h_SA [(J/kg)/(g/kg)]$, the derivative of enthalpy wrt Absolute Salinity, and $h_CT [(J/kg)/degC]$, the derivative of enthalpy wrt Conservative Temperature.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_enthalpy_first_derivatives.html

See Also

```
Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives_CT_exact(), gsw_enthalpy_ice(), gsw_enthalpy_t_exact(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potentialpy_from_pt_ice(), gsw_pot_enthalpy_ice_freezing(), gsw_pot_enthalpy_ice_freezing_poly(), gsw_pt_from_pot_enthalpy_ice(), gsw_pt_from_pot_enthalpy_ice_potentialpy_ice_freezing_from_pot_enthalpy_ice_freezing_from_pot_enthalpy()
```

Examples

Description

First Derivatives of Enthalpy wrt CT

Usage

```
gsw_enthalpy_first_derivatives_CT_exact(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
СТ	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

a list containing h_SA [(J/kg)/(g/kg)], the derivative of enthalpy wrt Absolute Salinity, and h_CT [(J/kg)/degC], the derivative of enthalpy wrt Conservative Temperature.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

Bugs

The HTML documentation suggests that this function returns 3 values, but there are only 2 returned values in the C code used here (and the matlab code on which that is based). Also, the d/dSA check values given the HTML are not reproduced by the present function. This was reported on Mar 18, 2017 as https://github.com/TEOS-10/GSW-Matlab/issues/7. See https://github.com/TEOS-10/GSW-R/issues/34

46 gsw_enthalpy_ice

References

http://www.teos-10.org/pubs/gsw/html/gsw_enthalpy_first_derivatives_CT_exact.html

See Also

```
Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_ice(), gsw_enthalpy_t_exact(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential_poly(), gsw_pot_enthalpy_from_pt_ice(), gsw_pot_enthalpy_ice_freezing(), gsw_pot_enthalpy_ice_freezing_poly(), gsw_pt_from_pot_enthalpy_ice(), gsw_pt_from_pot_enthalpy_ice_po gsw_specvol_first_derivatives(), gsw_specvol_first_derivatives_wrt_enthalpy()
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)

p <- c( 10, 50, 125, 250, 600, 1000)

d <- gsw_enthalpy_first_derivatives_CT_exact(SA, CT, p)

stopifnot(all.equal(d$h_SA, c(-0.070224183838619, -0.351159869043798, -0.887036550157504, -1.829626251448858, -4.423522691827955, -7.405211691293971)))

stopifnot(all.equal(d$h_CT/1e3, c(3.991899712269790, 3.992025674159605, 3.992210402650973, 3.992283991748418, 3.992685275917238, 3.993014370250710)))
```

gsw_enthalpy_ice

Ice Specific Enthalpy

Description

Specific enthalpy of ice [J/kg]. Note that this is a negative quantity.

Usage

```
gsw_enthalpy_ice(t, p)
```

Arguments

```
t in-situ temperature (ITS-90) [ degC ]
```

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

```
specific enthalpy [ J/kg ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems

References

http://www.teos-10.org/pubs/gsw/html/gsw_enthalpy_ice.html

See Also

```
Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_t_exact(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential_poly(), gsw_pot_enthalpy_from_pt_ice_poly(), gsw_pot_enthalpy_ice_freezing(), gsw_pot_enthalpy_ice_freezing_poly(), gsw_pt_from_pot_enthalpy_ice(), gsw_pt_from_pot_enthalpy_ice_poly(), gsw_specvol_first_derivatives(), gsw_specvol_first_derivatives_wrt_enthalpy()
```

Examples

```
gsw_enthalpy_second_derivatives

Second Derivatives of Enthalpy
```

Description

Second Derivatives of Enthalpy

Usage

```
gsw_enthalpy_second_derivatives(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
СТ	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

A list containing h_SA_SA [(J/kg)/(g/kg)^2], the second derivative of enthalpy with respect to Absolute Salinity, h_SA_CT [(J/kg)/(K*g/kg)], the derivative of enthalpy with respect to Absolute Salinity and Conservative Temperature, and h_CT_CT [(J/kg)/degC^2], the second derivative of enthalpy with respect to Conservative Temperature.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_enthalpy_second_derivatives.html

Examples

```
SA \leftarrow c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT \leftarrow c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(
             10,
                      50,
                              125,
                                        250,
                                                 600.
                                                          1000)
r <- gsw_enthalpy_second_derivatives(SA, CT, p)
stopifnot(all.equal(r$h_SA_SA, c(0.000080922482023, 0.000404963500641, 0.001059800046742,
                               0.002431088963823, 0.006019611828423, 0.010225411250217)))
stopifnot(all.equal(r$h_SA_CT, c(0.000130004715129, 0.000653614489248, 0.001877220817849,
                               0.005470392103793, 0.014314756132297, 0.025195603327700)))
stopifnot(all.equal(r$h_CT_CT, c(0.000714303909834, 0.003584401249266, 0.009718730753139,
                               0.024064471995224, 0.061547884081343, 0.107493969308119)))
```

Description

Second Derivatives of Enthalpy (exact)

Usage

```
gsw_enthalpy_second_derivatives_CT_exact(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
СТ	Conservative Temperature [degC].
p	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

A list containing h_SA_SA [$(J/kg)/(g/kg)^2$], the second derivative of enthalpy with respect to Absolute Salinity, h_SA_CT [(J/kg)/(K*g/kg)], the derivative of enthalpy with respect to Absolute Salinity and Conservative Temperature, and h_CT_CT [$(J/kg)/degC^2$], the second derivative of enthalpy with respect to Conservative Temperature.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_enthalpy_second_derivatives_CT_exact.html

Examples

gsw_enthalpy_t_exact Seawater Specific Enthalpy in terms of in-situ Temperature

Description

Seawater Specific Enthalpy in terms of in-situ Temperature

Usage

```
gsw_enthalpy_t_exact(SA, t, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
	g/kg.
t	in-situ temperature (ITS-90) [degC]
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

```
specific enthalpy [ J/kg ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_enthalpy_t_exact.html

See Also

```
Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_ice(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential_poly(), gsw_pot_enthalpy_from_pt_ice_poly(), gsw_pot_enthalpy_ice_freezing(), gsw_pot_enthalpy_ice_freezing_poly(), gsw_pt_from_pot_enthalpy_ice(), gsw_pt_from_pot_enthalpy_ice_poly(), gsw_specvol_first_derivatives(), gsw_specvol_first_derivatives_wrt_enthalpy()
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
t <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
e <- gsw_enthalpy_t_exact(SA, t, p)
stopifnot(all.equal(e/1e5, c(1.151032604783763, 1.140148036012021, 0.921799209310966, 0.432553283808897, 0.330872159700175, 0.269705880448018)))
```

```
gsw_entropy_first_derivatives
```

First Derivatives of Entropy

Description

First Derivatives of Entropy

Usage

```
gsw_entropy_first_derivatives(SA, CT)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

CT Conservative Temperature [ degC ].
```

Value

a list containing eta_SA [(J/(kg*degC) / (g/kg)], the derivative of entropy wrt Absolute Salinity, and eta_CT [$(J/(kg*degC^2)]$, the derivative of entropy wrt Conservative Temperature.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_entropy_first_derivatives.html

See Also

```
Other things related to entropy: gsw_CT_from_entropy(), gsw_entropy_from_pt(), gsw_entropy_from_t(), gsw_entropy_ice(), gsw_pt_from_entropy()
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)

d <- gsw_entropy_first_derivatives(SA, CT)

stopifnot(all.equal(d$eta_SA, c(-0.263286800711655, -0.263977276574528, -0.255367497912925, -0.238066586439561, -0.234438260606436, -0.232820684341694)))

stopifnot(all.equal(d$eta_CT, c(13.221031210083824, 13.236911191313675, 13.489004628681361, 14.086599016583795, 14.257729576432077, 14.386429945649411)))
```

gsw_entropy_from_pt Specific Entropy ito Absolute Salinity and Potential Temperature

Description

Calculates specific entropy in terms of Absolute Salinity and Potential Temperature.

Usage

```
gsw_entropy_from_pt(SA, pt)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

pt potential temperature (ITS-90) [ degC ]
```

gsw_entropy_from_t 53

Value

```
specific entropy [ J/(kg*degC) ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_entropy_from_pt.html
```

See Also

```
Other things related to entropy: gsw_CT_from_entropy(), gsw_entropy_first_derivatives(), gsw_entropy_from_t(), gsw_entropy_ice(), gsw_pt_from_entropy()
```

Examples

gsw_entropy_from_t

Specific Entropy i.t.o. Absolute Salinity, Temperature, and Pressure

Description

Calculates specific entropy in terms of Absolute Salinity, in-situ temperature and pressure.

Usage

```
gsw_entropy_from_t(SA, t, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
t	in-situ temperature (ITS-90) [degC]
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

```
specific entropy [ J/(kg*K) ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_entropy_from_t.html
```

See Also

```
Other things related to entropy: gsw_CT_from_entropy(), gsw_entropy_first_derivatives(), gsw_entropy_from_pt(), gsw_entropy_ice(), gsw_pt_from_entropy()
```

Examples

gsw_entropy_ice 55

gsw_entropy_ice

Entropy of ice

Description

Entropy of ice

Usage

```
gsw_entropy_ice(t, p)
```

Arguments

- t in-situ temperature (ITS-90) [degC]
- p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

```
entropy [ J/(kg*degC) ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_entropy_ice.html
```

See Also

```
Other things related to entropy: gsw_CT_from_entropy(), gsw_entropy_first_derivatives(), gsw_entropy_from_pt(), gsw_entropy_from_t(), gsw_pt_from_entropy()
```

Examples

```
gsw_entropy_second_derivatives

Second Derivatives of Entropy
```

Description

Second Derivatives of Entropy

Usage

```
gsw_entropy_second_derivatives(SA, CT)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
	g/kg.
CT	Conservative Temperature [degC].

Value

A list containing eta_SA_SA [$(J/(K^*kg))/(g/kg)^2$], the second derivative of entropy with respect to Absolute Salinity, eta_SA_CT [$(J/(K^*kg))/(K^*g/kg)$], the derivative of entropy with respect to Absolute Salinity and Conservative Temperature, and eta_CT_CT [$(J/(K^*kg))/K^2$], the second derivative of entropy with respect to Conservative Temperature.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

gsw_Fdelta 57

References

http://www.teos-10.org/pubs/gsw/html/gsw_entropy_second_derivatives.html

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)

r <- gsw_entropy_second_derivatives(SA, CT)

stopifnot(all.equal(r$eta_SA_SA, c(-0.007627718929669, -0.007591969960708, -0.007528186784540, -0.007455177590576, -0.007441108287466, -0.007414368396280)))

stopifnot(all.equal(r$eta_SA_CT, c(-0.001833104216751, -0.001819473824306, -0.001580843823414, -0.000930111408561, -0.000717011215195, -0.000548410546830)))

stopifnot(all.equal(r$eta_CT_CT, c(-0.043665023731109, -0.043781336189326, -0.045506114440888, -0.049708939454018, -0.050938690879443, -0.051875017843472)))
```

gsw_Fdelta

Ratio of Absolute to Preformed Salinity, minus 1

Description

Ratio of Absolute to Preformed Salinity, minus 1

Usage

```
gsw_Fdelta(p, longitude, latitude)
```

Arguments

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

longitude longitude in decimal degrees, positive to the east of Greenwich. (This is called

long in the TEOS-10 Matlab code.)

latitude latitude in decimal degrees, positive to the north of the equator. (This is called

lat in the TEOS-10 Matlab code.)

Value

```
(S/Sstar)-1 [ unitless ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip

on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_Fdelta.html
```

Examples

```
gsw_frazil_properties Properties of Frazil ice
```

Description

Calculation of Absolute Salinity, Conservative Temperature, and ice mass fraction based on bulk Absolute Salinity, bulk enthalpy, and pressure

Usage

```
gsw_frazil_properties(SA_bulk, h_bulk, p)
```

Arguments

```
SA_bulk Absolute Salinity of a combination of seawater and ice [ g/kg ]

h_bulk enthalpy of a mixture of seawater and ice [ J/kg ]

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
```

Value

```
a list containing SA_final, h_final and w_Ih_final.
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create data directory of https://github. com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_frazil_properties.html

Examples

```
SA_bulk <- c( 34.7118,
                        34.8915,
                                     35.0256,
                                                 34.8472,
                                                            34.7366.
                                                                       34.7324)
h_bulk <- c( -4.5544e4, -4.6033e4, -4.5830e4, -4.5589e4, -4.4948e4, -4.4027e4)
                    10,
                               50,
                                         125,
                                                     250,
                                                                600,
r <- gsw_frazil_properties(SA_bulk, h_bulk, p)</pre>
stopifnot(all.equal(r$SA_final, c(39.111030663000442, 39.407625769681573, 39.595789974885108,
                           39.481230045372889, 39.591177095552503, 39.826467709177123)))
stopifnot(all.equal(r$CT_final, c(-2.156311126114311, -2.204672298963783, -2.273689262333450,
                            -2.363714136353600, -2.644541000680772, -2.977651291726651)))
stopifnot(all.equal(r$w_Ih_final, c(0.112480560814322, 0.114600300867556, 0.115421108602301,
                              0.117372990660305, 0.122617649983886, 0.127906590822347)))
```

```
gsw_frazil_properties_potential
```

Properties of Frazil ice i.t.o. potential enthalpy

Description

Calculation of Absolute Salinity, Conservative Temperature, and ice mass fraction based on bulk Absolute Salinity, bulk potential enthalpy, and pressure

Usage

```
gsw_frazil_properties_potential(SA_bulk, h_pot_bulk, p)
```

Arguments

```
SA_bulk
                   Absolute Salinity of a combination of seawater and ice [ g/kg ]
h_pot_bulk
                   potential enthalpy of a mixture of seawater and ice [ J/kg ]
                   sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
```

Value

a list containing SA_final, h_final and w_Ih_final.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_frazil_properties_potential.html

See Also

```
Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_texact(), gsw_frazil_properties_potential_poly(), gsw_pot_enthalpy_from_pt_ice(), gsw_pot_enthalpy_from_pt_ice_poly(), gsw_pot_enthalpy_ice_freezing(), gsw_pot_enthalpy_ice_freezing_poly(), gsw_pt_from_pot_enthalpy_ice(), gsw_pt_from_pot_enthalpy_ice_poly(), gsw_specvol_first_derivatives(), gsw_specvol_first_derivatives_wrt_enthalpy()
```

Examples

```
SA_bulk <- c( 34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
h_pot_bulk <- c(-4.5544e4, -4.6033e4, -4.5830e4, -4.5589e4, -4.4948e4, -4.4027e4)
p <- c( 10, 50, 125, 250, 600, 1000)
r <- gsw_frazil_properties_potential(SA_bulk, h_pot_bulk, p)
stopifnot(all.equal(r$SA_final, c(39.098258701462051, 39.343217598625756, 39.434254585716296, 39.159536295126657, 38.820511558004590, 38.542322667924459)))
stopifnot(all.equal(r$CT_final, c(-2.155553336670014, -2.200844802695826, -2.264077329325076, -2.344567015865174, -2.598559540430464, -2.900814843304696)))
stopifnot(all.equal(r$w_Ih_final, c(0.112190640891586, 0.113150826758543, 0.111797588975174, 0.110122251260246, 0.105199838799201, 0.098850365110330)))
```

```
{\it gsw\_frazil\_properties\_potential\_poly} \\ {\it Properties of Frazil ice i.t.o. potential enthalpy (polynomial version)}
```

Description

Calculation of Absolute Salinity, Conservative Temperature, and ice mass fraction based on bulk Absolute Salinity, bulk potential enthalpy, and pressure

Usage

```
gsw_frazil_properties_potential_poly(SA_bulk, h_pot_bulk, p)
```

Arguments

SA_bulk Absolute Salinity of a combination of seawater and ice [g/kg]
h_pot_bulk potential enthalpy of a mixture of seawater and ice [J/kg]
p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

a list containing SA_final, h_final and w_Ih_final.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_frazil_properties_potential_poly.html
```

See Also

```
Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_ice(), gsw_enthalpy_t_exact(), gsw_frazil_properties_potential(), gsw_pot_enthalpy_from_prgsw_pot_enthalpy_from_prgsw_pot_enthalpy_ice_freezing(), gsw_pot_enthalpy_ice_freezing_prgsw_pt_from_pot_enthalpy_ice(), gsw_pt_from_pot_enthalpy_ice_poly(), gsw_specvol_first_derivatives(), gsw_specvol_first_derivatives_wrt_enthalpy()
```

Examples

```
SA_bulk <- c(
                  34.7118, 34.8915, 35.0256, 34.8472,
                                                              34.7366,
h_pot_bulk <- c(-4.5544e4, -4.6033e4, -4.5830e4, -4.5589e4, -4.4948e4, -4.4027e4)
                       10,
                                  50,
                                            125,
                                                       250.
                                                                  600,
r <- gsw_frazil_properties_potential_poly(SA_bulk, h_pot_bulk, p)</pre>
stopifnot(all.equal(r$SA_final, c(39.098264696022831, 39.343217436835218, 39.434244243586633,
                           39.159511498029801, 38.820458704205542, 38.542256756176229)))
stopifnot(all.equal(r$CT_final, c(-2.155537691991377, -2.200841508940901, -2.264094318382661,
                           -2.344613208230164, -2.598663953454472, -2.900948531145453)))
stopifnot(all.equal(r$w_Ih_final, c(0.112190777010854, 0.113150823111566, 0.111797356032850,
                              0.110121687760246, 0.105198620534670, 0.098848824039493)))
```

gsw_frazil_ratios_adiabatic

Ratios of SA, CT and p changes when Frazil Ice Forms

Description

Ratios of changes in SA, CT and p that occur when frazil ice forms due to changes in pressure upon the mixture of seawater and ice.

Usage

```
gsw_frazil_ratios_adiabatic(SA, p, w_Ih)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
р	g/kg. sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
w_Ih	initial mass fraction (ice) / (water + ice)

Value

```
a list containing dSA_dCT_frazil, dSA_dP_frazil and dCT_dP_frazil.
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_frazil_ratios_adiabatic.html

Examples

```
SA \leftarrow c(34.7118,
                   34.8915,
                              35.0256,
                                           34.8472, 34.7366,
                                                                 34.7324)
p <- c(
              10,
                          50,
                                 125,
                                             250,
                                                       600,
                                                                    1000)
             0.9,
w_Ih <- c(
                        0.84,
                                    0.4,
                                              0.25,
                                                         0.05,
                                                                    0.01)
r <- gsw_frazil_ratios_adiabatic(SA, p, w_Ih)</pre>
stopifnot(all.equal(r$dSA_dCT_frazil,
    {\tt c(3.035152370800401,\ 1.932548405396193,\ 0.613212115809003,}
     0.516103092738565, 0.436656742034200, 0.425827266533876)))
stopifnot(all.equal(r$dSA_dP_frazil/1e-6,
    c(-0.197406834470366, -0.133213926580032, -0.045580136143659,
     -0.038806356507548, -0.033541272953744, -0.033350141194082)))
stopifnot(all.equal(r$dCT_dP_frazil/1e-7,
   c(-0.650401727338347,\ -0.689317412221414,\ -0.743301297684333,
     -0.751910946738026, -0.768138213038669, -0.783184728059898)))
```

```
gsw_frazil_ratios_adiabatic_poly

Ratios of SA, CT and p changes when Frazil Ice Forms (polynomial form)
```

Description

Ratios of changes in SA, CT and p that occur when frazil ice forms due to changes in pressure upon the mixture of seawater and ice.

Usage

```
gsw_frazil_ratios_adiabatic_poly(SA, p, w_Ih)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg .
p	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
w Ih	initial mass fraction (ice) / (water + ice)

Value

```
a list containing dSA_dCT_frazil, dSA_dP_frazil and dCT_dP_frazil.
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_frazil_ratios_adiabatic_poly.html

Examples

```
SA <- c(34.7118,
                   34.8915,
                              35.0256,
                                         34.8472,
                                                      34.7366,
                                                                 34.7324)
p <- c(
              10,
                        50.
                                   125,
                                              250,
                                                         600,
                                                                    1000)
w_{Ih} <- c(
              0.9.
                        0.84.
                                    0.4.
                                              0.25.
                                                         0.05.
                                                                    0.01)
r <- gsw_frazil_ratios_adiabatic_poly(SA, p, w_Ih)</pre>
stopifnot(all.equal(r$dSA_dCT_frazil,
    c(3.035308957896530, 1.932631198810934, 0.613220785586734,
     0.516106221687200, 0.436657158542033, 0.425827675768018)))
stopifnot(all.equal(r$dSA_dP_frazil/1e-6,
    c(-0.197512213108610, -0.133280971893621, -0.045599951957139,
      -0.038820466574251, -0.033548047632788, -0.033352365425407)))
stopifnot(all.equal(r$dCT_dP_frazil/1e-7,
    c(-0.650715350062703, -0.689634794137768, -0.743613932027895,
     -0.752179782823459, -0.768292629045686, -0.783236208526200)))
```

gsw_geo_strf_dyn_height

Geostrophic Dynamic Height Anomaly

Description

This calculates a geopotential anomaly, called either the dynamic height anomaly or the geostrophic streamfunction in the TEOS-10 document listed as [1] below; users should read that and the references therein for more details on the definition and its calculation here.

To get the column-integrated value in meters, take the first value of the returned vector and divide by $9.7963m/s^2$. Note that this yields an integral with the top measured pressure (not zero) as an upper limit.

Usage

```
gsw_geo_strf_dyn_height(SA, CT, p, p_ref = 0)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
СТ	Conservative Temperature [degC].
p	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
p_ref	reference pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Details

Because of the scheme used in the underlying C code, the pressures must be in order, and must not have any repeats. Also, there must be at least 4 pressure values. Violating any of these three restrictions yields an error.

If p_ref exceeds the largest p value, a vector of zeros is returned, in accordance with the underlying C code.

Note the alteration of the test-value tolerance from a much smaller default. This is required because the test values derive from the GSW-Matlab code, which uses a different interpolation scheme than the GSW-C code, upon which GSW-R relies. See References 2 and 3 for more on this topic.

Value

A vector containing geopotential anomaly in m^2/s^2 for each level. For more on the units, see [2].

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

1. http://www.teos-10.org/pubs/gsw/html/gsw_geo_strf_dyn_height.html 2. https://github.com/TEOS-10/GSW-R/issues/47 3. Barker, Paul M., and Trevor J. McDougall. "Two Interpolation Methods Using Multiply-Rotated Piecewise Cubic Hermite Interpolating Polynomials." Journal of Atmospheric and Oceanic Technology 37, no. 4 (April 2020): 605–19.

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c(10, 50, 125, 250, 600, 1000)
```

```
gsw_geo_strf_dyn_height_1
```

Geostrophic Dynamic Height Anomaly (provisional version)

Description

This calculates a geopotential anomaly, called either the dynamic height anomaly or the geostrophic streamfunction in the TEOS-10 document listed as [1] below.

To get the column-integrated value in meters, take the first value of the returned vector and divide by $9.7963m/s^2$. Note that this yields an integral with the top measured pressure (not zero) as an upper limit.

Usage

```
gsw_geo_strf_dyn_height_1(SA, CT, p, p_ref = 0, max_dp = 1, interp_method = 2)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
СТ	Conservative Temperature [degC].
p	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
p_ref	reference pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
max_dp	numeric value indicating the maximum tolerated pressure separation between levels. If any pressure step exceeds $\max_{d} dp$, then a uniform grid is constructed with $\max_{d} dp$ as the interval.
interp_method	integer specifying interpolation scheme (1 for linear, 2 for pchip)

Details

Because of the scheme used in the underlying C code, the pressures must be in order, and must not have any repeats. Also, there must be at least 4 pressure values. Violating any of these restrictions yields an error.

If p_ref exceeds the largest p value, a vector of zeros is returned, in accordance with the underlying C code.

Value

A vector containing geopotential anomaly in m^2/s^2 for each level. For more on the units, see [2].

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

- 1. http://www.teos-10.org/pubs/gsw/html/gsw_geo_strf_dyn_height.html
- 2. Talley et al., 2011. Descriptive Physical Oceanography, Edition 6, Elsevier.

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c( 10, 50, 125, 250, 600, 1000)
p_ref <- 1000
dh <- gsw_geo_strf_dyn_height_1(SA, CT, p, p_ref, 1, 2)
## FIXME: The following test values fail.
## all.equal(dh, c(17.039204557769487, 14.665853784722286, 10.912861136923812, 7.567928838774945, 3.393524055565328, 0))
```

```
gsw_geo_strf_dyn_height_pc
```

Geostrophic Dynamic Height Anomaly (Piecewise-Constant Profile)

Description

Geostrophic Dynamic Height Anomaly (Piecewise-Constant Profile)

Usage

```
gsw_geo_strf_dyn_height_pc(SA, CT, delta_p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg .
СТ	Conservative Temperature [degC].
delta_p	difference in sea pressure between the deep and shallow limits of layers within which SA and CT are assumed to be constant. Note that delta_p must be positive.

Value

A list containing dyn_height, the dynamic height anomaly [m^2/s^2], and p_mid [dbar], the pressures at the layer centres. Note that the dynamic height anomaly unit, also known as a "dynamic meter", corresponds to approximately 1.02 metres of sealevel height (see e.g. Talley et al., 2011. Descriptive Physical Oceanography, Edition 6. Elsevier).

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_geo_strf_dyn_height.html
```

Examples

gsw_gibbs 69

gsw_gibbs Gibbs Energy of Seawater, and its Derivatives	gsw_gibbs	Gibbs Energy of Seawater, and its Derivatives	
---	-----------	---	--

Description

Gibbs Energy of Seawater, and its Derivatives

Usage

```
gsw_gibbs(ns, nt, np, SA, t, p = 0)
```

Arguments

ns	An integer, the order of the SA derivative. Must be 0, 1, or 2.
nt	An integer, the order of the t derivative. Must be 0, 1, or 2.
np	An integer, the order of the p derivative. Must be 0, 1, or 2.
SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg .
t	in-situ temperature (ITS-90) [degC]
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

Gibbs energy [J/kg] if ns=nt=np=0. Derivative of energy with respect to SA [J/kg/(g/kg)^ns] if ns is nonzero and nt=np=0, etc. Note that derivatives with respect to pressure are in units with Pa, not dbar.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

Caution

The TEOS-10 webpage for gsw_gibbs does not provide test values, so the present R version should be considered untested.

70 gsw_gibbs_ice

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_gibbs.html
```

Examples

```
library(gsw)
p <- seq(0, 100, 1)
SA \leftarrow rep(35, length(p))
t <- rep(-5, length(p))
## Check the derivative wrt pressure. Note the unit change
E <- gsw_gibbs(0, 0, 0, SA, t, p)
# Estimate derivative from linear fit (try plotting: it is very linear)
m \leftarrow lm(E \sim p)
print(summary(m))
plot(p, E)
abline(m)
dEdp1 \leftarrow coef(m)[2]
# Calculate derivative ... note we multiply by 1e4 to get from 1/Pa to 1/dbar
dEdp2 <- 1e4 * gsw_gibbs(0, 0, 1, SA[1], t[1], p[1])
## Ratio
dEdp1 / dEdp2
```

gsw_gibbs_ice

Gibbs Energy of Ice, and its Derivatives

Description

Gibbs Energy of Ice, and its Derivatives

Usage

```
gsw_gibbs_ice(nt, np, t, p = 0)
```

Arguments

nt	An integer, the order of the t derivative. Must be 0, 1, or 2.
np	An integer, the order of the p derivative. Must be 0, 1, or 2.
t	in-situ temperature (ITS-90) [degC]
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

Gibbs energy [J/kg] if ns=nt=np=0. Derivative of energy with respect to t [J/kg/(degC)^nt] if nt is nonzero, etc. Note that derivatives with respect to pressure are in units with Pa, not dbar.

gsw_grav 71

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

Caution

The TEOS-10 webpage for gsw_gibbs_ice does not provide test values, so the present R version should be considered untested.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_gibbs_ice.html
```

Examples

```
library(gsw)
p <- seq(0, 100, 1)
t <- rep(-5, length(p))
## Check the derivative wrt pressure. Note the unit change
E <- gsw_gibbs_ice(0, 0, t, p)
# Estimate derivative from linear fit (try plotting: it is very linear)
m <- lm(E ~ p)
print(summary(m))
plot(p, E)
abline(m)
dEdp1 <- coef(m)[2]
# Calculate derivative ... note we multiply by 1e4 to get from 1/Pa to 1/dbar
dEdp2 <- 1e4 * gsw_gibbs_ice(0, 1, t[1], p[1])
## Ratio
dEdp1 / dEdp2</pre>
```

gsw_grav

Gravitational Acceleration

Description

Gravitational Acceleration

Usage

```
gsw_grav(latitude, p = 0)
```

Arguments

latitude latitude in decimal degrees, positive to the north of the equator. (This is called lat in the TEOS-10 Matlab code.)

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

```
gravitational acceleration [ m/s^2 ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_grav.html
```

Examples

```
gsw_Helmholtz_energy_ice
```

Helmholtz Energy of Ice

Description

Helmholtz Energy of Ice

Usage

```
gsw_Helmholtz_energy_ice(t, p)
```

Arguments

- t in-situ temperature (ITS-90) [degC]
- p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

Helmholtz energy if ice [J/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_Helmholtz_energy_ice.html
```

Examples

```
gsw_ice_fraction_to_freeze_seawater

Ice Fraction to Cool Seawater to Freezing
```

Description

Ice Fraction to Cool Seawater to Freezing

Usage

```
gsw_ice_fraction_to_freeze_seawater(SA, CT, p, t_Ih)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
СТ	Conservative Temperature [degC].
p	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
t_Ih	initial temperature of ice [degC]

Value

a list containing SA_freeze, CT_freeze and w_Ih.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_ice_fraction_to_freeze_seawater.html

```
SA <- c(
           34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
          28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
CT <- c(
p <- c(
                10,
                          50,
                                   125,
                                             250,
                                                       600,
                                                               1000)
t_{Ih} < c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
r <- gsw_ice_fraction_to_freeze_seawater(SA, CT, p, t_Ih)</pre>
stopifnot(all.equal(r$SA_freeze, c(25.823952352620722, 26.120495895535438, 27.460572941868072,
                           30.629978769577168, 31.458222332943784, 32.121170316796444)))
stopifnot(all.equal(r$CT_freeze, c(-1.389936216242376, -1.437013334134283, -1.569815847128818,
                           -1.846419165657020, -2.166786673735941, -2.522730879078756)))
stopifnot(all.equal(r$w_Ih, c(0.256046867272203, 0.251379393389925, 0.215985652155336,
                              0.121020375537284, 0.094378196687535, 0.075181377710828)))
```

gsw_infunnel 75

gsw_infunnel

Determine whether a point is inside the 'funnel' of acceptable values

Description

This function determines whether a given hydrographic value lies what the TEOS-10 literature calls a "funnel" of values that lead to acceptably accurate computation of specific volume. For more details, consult the TEOS-10 literature, perhaps starting with the materials referred to in the webpage cited in the 'References' section.

Usage

```
gsw_infunnel(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
	g/kg.
CT	Conservative Temperature [degC].
p	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

a logical value indicating whether the given point is inside the funnel of acceptable values.

References

```
https://www.teos-10.org/pubs/gsw/html/gsw_infunnel.html
```

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_pot_rho_t_exact(), gsw_rho(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

```
library(gsw)
gsw_infunnel(35, 10, 100) # TRUE
gsw_infunnel(45, 10, 100) # FALSE: too salty
gsw_infunnel(35, -4, 100) # FALSE: below freezing
```

gsw_internal_energy

gsw_internal_energy Specific Internal Energy of Seawater (75-term equation)

Description

Specific Internal Energy of Seawater (75-term equation)

Usage

```
gsw_internal_energy(SA, CT, p)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

CT Conservative Temperature [ degC ].

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
```

Value

specific internal energy [J/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_internal_energy.html

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)

p <- c( 10, 50, 125, 250, 600, 1000)

e <- gsw_internal_energy(SA, CT, p)

stopifnot(all.equal(e/1e5, c(1.148091576956162, 1.134013145527675, 0.909571141498779, 0.408593072177020, 0.273985276460357, 0.175019409258405)))
```

```
gsw_internal_energy_ice
```

```
gsw_internal_energy_ice

Specific Internal Energy of Ice (75-term equation)
```

Description

Specific Internal Energy of Ice (75-term equation)

Usage

```
gsw_internal_energy_ice(t, p)
```

Arguments

- t in-situ temperature (ITS-90) [degC]
- p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

```
specific internal energy [ J/kg ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_internal_energy_ice.html
```

```
gsw_IPV_vs_fNsquared_ratio
```

Ratio of vert. gradient of pot. density to vert grad of locally-referenced pot density

Description

Note that the C library had to be patched to get this working; a new version of the library will address the bug directly.

Usage

```
gsw_IPV_vs_fNsquared_ratio(SA, CT, p, p_ref = 0)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
СТ	Conservative Temperature [degC].
p	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
p_ref	reference pressure [dbar]

Value

list containing IPV_vs_fNsquared_ratio [unitless] and mid-point pressure p_mid [dbar]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_IPV_vs_fNsquared_ratio.html

gsw_kappa 79

Examples

gsw_kappa

Isentropic Compressibility of Seawater (75-term equation)

Description

Isentropic Compressibility of Seawater (75-term equation)

Usage

```
gsw_kappa(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
	g/kg.
CT	Conservative Temperature [degC].
p	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

isentropic compressibility [1/Pa] (not 1/dbar)

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_kappa.html
```

See Also

Other things related to compressibility: gsw_kappa_const_t_ice(), gsw_kappa_ice(), gsw_kappa_t_exact()

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

CT <-c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)

p <- c(10, 50, 125, 250, 600, 1000)

kappa <- gsw_kappa(SA, CT, p)

stopifnot(all.equal(kappa*1e9, c(0.411343648791300, 0.411105416128094, 0.416566236026610, 0.435588650838751, 0.438782500588955, 0.439842289994702)))
```

Description

Calculate isothermal compressibility of ice, in 1/Pa.

Usage

```
gsw_kappa_const_t_ice(t, p)
```

Arguments

- t in-situ temperature (ITS-90) [degC]
- p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

isothermal compressibility of ice [1/Pa] (not 1/dbar)

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

gsw_kappa_ice 81

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_kappa_const_t_ice.html
```

See Also

Other things related to compressibility: gsw_kappa(), gsw_kappa_ice(), gsw_kappa_t_exact()

Examples

```
t <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)

p <- c( 10, 50, 125, 250, 600, 1000)

kappa <- gsw_kappa_const_t_ice(t, p)

stopifnot(all.equal(kappa*1e9, c(0.115874753261484, 0.115384948953145, 0.115442212717850, 0.115452884634531, 0.115454824232421, 0.115619994536961)))
```

gsw_kappa_ice

Isentropic Compressibility of Ice

Description

Calculate isentropic compressibility of ice, in 1/Pa.

Usage

```
gsw_kappa_ice(t, p)
```

Arguments

- t in-situ temperature (ITS-90) [degC]
- p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

isentropic compressibility of ice [1/Pa] (not 1/dbar)

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

82 gsw_kappa_t_exact

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_kappa_ice.html
```

See Also

Other things related to compressibility: gsw_kappa(), gsw_kappa_const_t_ice(), gsw_kappa_t_exact()

Examples

gsw_kappa_t_exact

Isentropic compressibility of seawater (exact)

Description

Isentropic compressibility of seawater (exact)

Usage

```
gsw_kappa_t_exact(SA, t, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
	g/kg.
t	in-situ temperature (ITS-90) [degC]
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

isentropic compressibility [1/Pa] (not 1/dbar)

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_kappa_t_exact.html
```

See Also

Other things related to compressibility: gsw_kappa(), gsw_kappa_const_t_ice(), gsw_kappa_ice()

Examples

```
gsw_latentheat_evap_CT
```

Latent heat of evaporation

Description

Latent heat of evaporation

Usage

```
gsw_latentheat_evap_CT(SA, CT)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

CT Conservative Temperature [ degC ].
```

Value

latent heat of evaporation [J/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip

on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_latentheat_evap_CT.html
```

See Also

Other things related to latent heat: gsw_latentheat_evap_t(), gsw_latentheat_melting()

Examples

```
gsw_latentheat_evap_t Latent heat of evaporation
```

Description

Latent heat of evaporation

Usage

```
gsw_latentheat_evap_t(SA, t)
```

Arguments

```
SA Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

t in-situ temperature (ITS-90) [ degC ]
```

Value

latent heat of evaporation [J/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_latentheat_evap_t.html
```

See Also

Other things related to latent heat: gsw_latentheat_evap_CT(), gsw_latentheat_melting()

Examples

```
gsw_latentheat_melting
```

Latent Heat of Melting

Description

Latent Heat of Melting

Usage

```
gsw_latentheat_melting(SA, p)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
```

Value

latent heat of freezing [J/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_latentheat_melting.html

See Also

Other things related to latent heat: gsw_latentheat_evap_CT(), gsw_latentheat_evap_t()

Examples

```
gsw_melting_ice_equilibrium_SA_CT_ratio 
 Calculate\ d(SA)/d(CT)\ for\ Ice\ Melting\ in\ near-freezing\ Seawater
```

Description

Calculate d(SA)/d(CT) for Ice Melting in near-freezing Seawater

```
gsw_melting_ice_equilibrium_SA_CT_ratio(SA, p)
```

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
	g/kg.
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

ratio of change in SA to change in CT [g/kg/degC].

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_melting_ice_equilibrium_SA_CT_ratio.html

Examples

```
SA <- c( 34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

p <- c( 10, 50, 125, 250, 600, 1000)

r <- gsw_melting_ice_equilibrium_SA_CT_ratio(SA, p)

stopifnot(all.equal(r, c(0.420209509196985, 0.422511693121631, 0.424345503216433, 0.422475836091426, 0.422023427778221, 0.423037622331042)))
```

```
\begin{tabular}{ll} $\sf gsw\_melting\_ice\_equilibrium\_SA\_CT\_ratio\_poly \\ & \it Calculate \ d(SA)/d(CT) \ for \ \it Ice \ \it Melting \ in \ \it near-freezing \ \it Seawater \ \it (Polynomial \ version) \end{tabular}
```

Description

Calculate d(SA)/d(CT) for Ice Melting in near-freezing Seawater (Polynomial version)

```
gsw_melting_ice_equilibrium_SA_CT_ratio_poly(SA, p)
```

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
	g/kg.
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

ratio of change in SA to change in CT [g/kg/degC].

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_melting_ice_equilibrium_SA_CT_ratio_poly.html
```

Examples

```
gsw_melting_ice_into_seawater
```

Calculate properties related to ice melting in seawater

Description

Calculate properties related to ice melting in seawater

```
gsw_melting_ice_into_seawater(SA, CT, p, w_Ih, t_Ih)
```

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
СТ	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
w_Ih	initial mass fraction (ice) / (water + ice)
t_Ih	initial temperature of ice [degC]

Value

a list containing SA_final, CT_final and w_Ih_final.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_melting_ice_into_seawater.html

```
SA <- c( 34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

CT <- c( 4.7856, 2.4329, 1.8103, 1.2600, 0.6886, 0.4403)

p <- c( 10, 50, 125, 250, 600, 1000)

w_Ih <- c( 0.0560, 0.02513, 0.02159, 0.01210, 0.00943, 0.00751)

t_Ih <- c(-4.7856, -4.4329, -3.8103, -4.2600, -3.8863, -3.4036)

r <- gsw_melting_ice_into_seawater(SA, CT, p, w_Ih, t_Ih)

stopifnot(all.equal(r$SA_final, c(32.76793919999994, 34.014676604999998, 34.269397295999994, 34.42554888000001, 34.409033862000001, 34.471559675999998)))

stopifnot(all.equal(r$CT_final, c(-0.298448911022612, 0.215263001418312, -0.074341719211557, 0.207796293045473, -0.123785388299875, -0.202531182809225)))

stopifnot(all.equal(r$w_Ih_final, rep(0, 6)))
```

```
{\it gsw\_melting\_ice\_SA\_CT\_ratio} \\ {\it Calculate~d(SA)/d(CT)~for~Ice~Melting~in~Seawater}
```

Description

Calculate d(SA)/d(CT) for Ice Melting in Seawater

Usage

```
gsw_melting_ice_SA_CT_ratio(SA, CT, p, t_Ih)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
СТ	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
t_Ih	initial temperature of ice [degC]

Value

ratio of change in SA to change in CT [g/kg/degC].

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_melting_ice_SA_CT_ratio.html

Examples

```
SA <- c(
           34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(
            3.7856, 3.4329,
                              2.8103, 1.2600,
                                                    0.6886, 0.4403)
p <- c(
                10,
                          50,
                                   125,
                                             250,
                                                       600,
                                                               1000)
t_{Ih} < c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
r <- gsw_melting_ice_SA_CT_ratio(SA, CT, p, t_Ih)</pre>
stopifnot(all.equal(r, c(0.373840909022490, 0.371878514972099, 0.377104664622191,
                         0.382777696796156, 0.387133845152000, 0.393947316026914)))
```

```
\begin{tabular}{ll} $\sf gsw\_melting\_ice\_SA\_CT\_ratio\_poly \\ & \it Calculate \ d(SA)/d(CT) \ for \ Ice \ Melting \ in \ Seawater \ (Polynomial \ version) \\ \end{tabular}
```

Description

Calculate d(SA)/d(CT) for Ice Melting in Seawater (Polynomial version)

Usage

```
gsw_melting_ice_SA_CT_ratio_poly(SA, CT, p, t_Ih)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
	g/kg.
CT	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
t_Ih	initial temperature of ice [degC]

Value

ratio of change in SA to change in CT [g/kg/degC].

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

References

http://www.teos-10.org/pubs/gsw/html/gsw_melting_ice_SA_CT_ratio_poly.html

Examples

```
gsw_melting_seaice_into_seawater
```

Calculate properties related to seaice melting in seawater

Description

Calculate properties related to seaice melting in seawater

Usage

```
gsw_melting_seaice_into_seawater(SA, CT, p, w_seaice, SA_seaice, t_seaice)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
СТ	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
w_seaice	mass fraction (seaice) / (water + seaice)
SA_seaice	Absolute Salinity of seaice
t_seaice	temperature of seaice

Value

```
a list containing SA_final and CT_final.
```

gsw_Nsquared 93

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_melting_seaice_into_seawater.html

Examples

```
SA \leftarrow c(
             34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(
              4.7856, 2.4329, 1.8103, 1.2600, 0.6886, 0.4403)
p <- c(
                  10,
                           50,
                                   125,
                                            250,
                                                      600,
                                                              1000)
w_seaice <- c( 0.0560, 0.02513, 0.02159, 0.01210, 0.00943, 0.00751)
                  5,
                          4.8,
                                   3.5,
                                           2.5,
SA_seaice <- c(
                                                       1.
t_seaice <- c(-4.7856, -4.4329, -3.8103, -4.2600, -3.8863, -3.4036)
r <- gsw_melting_seaice_into_seawater(SA, CT, p, w_seaice, SA_seaice, t_seaice)
stopifnot(all.equal(r$SA_final, c(33.04793919999995, 34.135300604999998, 34.344962295999999,
                           34.455798880000003, 34.418463862000003, 34.474563675999995)))
stopifnot(all.equal(r$CT_final, c(-0.018822367305381, 0.345095540241769, 0.020418581143151,
                            0.242672380976922, -0.111078380121959, -0.197363471215418)))
```

gsw_Nsquared

Calculate Brunt Vaisala Frequency squared

Description

The result is computed based on first-differencing a computed density with respect pressure, and this can yield noisy results with CTD data that have not been smoothed and decimated. It also yields infinite values, for repeated adjacent pressure (e.g. this occurs twice with the ctd dataset provided in the **oce** package).

```
gsw_Nsquared(SA, CT, p, latitude = 0)
```

94 gsw_Nsquared

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg .
СТ	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
latitude	latitude in decimal degrees, positive to the north of the equator. (This is called lat in the TEOS-10 Matlab code.)

Value

list containing N2 [1/s^2] and mid-point pressure p_mid [dbar]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_Nsquared.html

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)

p <- c( 10, 50, 125, 250, 600, 1000)

latitude <- 4

r <- gsw_Nsquared(SA, CT, p, latitude=4)

stopifnot(all.equal(r$N2*1e3, c(0.060843209693499, 0.235723066151305, 0.216599928330380, 0.012941204313372, 0.008434782795209)))

stopifnot(all.equal(r$p_mid, c(30, 87.5, 187.5, 425, 800)))
```

gsw_O2sol 95

gsw_02sol Oxygen Solubility in Seawater (GSW variables)

Description

Computes oxygen concentration for seawater that is equilibrium with vapour-saturated air at standard atmospheric pressure (101.325 kPa, i.e. for sea pressure of 0dbar). The formula, not created by the SCOR/IAPSO Working Group 127 nor approved by the IOC, is stated in the TEOS-10 documentation to be from Benson and Krause (1984), as fitted by Garcia and Gordon (1992, 1993). That formulation is framed in UNESCO-era water properties, so longitude and latitude are needed here, to convert to these quantities from Absolute Salinity and Conservative Temperature; see also gsw_02sol_SP_pt, which is formulated in UNESCO terms.

Usage

```
gsw_O2sol(SA, CT, p, longitude, latitude)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
СТ	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
longitude	longitude in decimal degrees, positive to the east of Greenwich. (This is called long in the TEOS-10 Matlab code.)
latitude	latitude in decimal degrees, positive to the north of the equator. (This is called

lat in the TEOS-10 Matlab code.)

Value

Oxygen solubility in micro-moles per kg.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

96 gsw_O2sol_SP_pt

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_02sol.html
```

See Also

Other things related to oxygen: gsw_02sol_SP_pt()

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT \leftarrow c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c(
                                                  600,
             10,
                      50,
                               125,
                                        250,
                                                          1000)
latitude <- c(4,
                       4,
                                 4,
                                          4,
                                                  4,
                                                             4)
longitude <- c(188, 188,
                               188,
                                        188,
                                                  188,
                                                           188)
02sol <- gsw_02sol(SA,CT,p,longitude,latitude)</pre>
stopifnot(all.equal(02sol/100, c(1.949651126384804, 1.958728907684003,
            2.148922307892045, 2.738656506758550, 2.955109771828408,
            3.133584919106894)))
```

gsw_02sol_SP_pt

Oxygen Solubility in Seawater (UNESCO variables)

Description

Computes oxygen concentration for seawater that is equilibrium with vapour-saturated air at standard atmospheric pressure (101.325 kPa, i.e. for sea pressure of 0dbar). The formula, not created by the SCOR/IAPSO Working Group 127 nor approved by the IOC, is stated in the TEOS-10 documentation to be from Benson and Krause (1984), as fitted by Garcia and Gordon (1992, 1993). That formulation is framed in UNESCO-era water properties; see gsw_02so1 for the corresponding computation in GSW variables.

Usage

```
gsw_02sol_SP_pt(SP, pt)
```

Arguments

SP Practical Salinity (PSS-78) [unitless]. The valid range for most 'gsw' functions is from 2 to 42.

pt potential temperature (ITS-90) [degC]

Value

Oxygen solubility in micro-moles per kg.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_02sol_SP_pt.html
```

See Also

Other things related to oxygen: gsw_02sol()

Examples

Description

Potential Enthalpy of Ice

Usage

```
gsw_pot_enthalpy_from_pt_ice(pt0_ice)
```

Arguments

```
pt0_ice potential temperature of ice (ITS-90) [ degC ]
```

Value

```
potential enthalpy [ J/kg ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_pot_enthalpy_from_pt_ice.html
```

See Also

```
Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_ice(), gsw_enthalpy_t_exact(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_pot_enthalpy_ice_freezing_potentialpy_ice_freezing_potentialpy_ice(), gsw_pot_enthalpy_ice_poly(), gsw_specvol_first_derivatives(), gsw_specvol_first_derivatives_wrt_enthalpy()
```

Examples

Description

Potential Enthalpy of Ice (Polynomial version)

Usage

```
gsw_pot_enthalpy_from_pt_ice_poly(pt0_ice)
```

Arguments

```
pt0_ice potential temperature of ice (ITS-90) [ degC ]
```

Value

potential enthalpy [J/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_pot_enthalpy_from_pt_ice_poly.html

See Also

```
Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_texact(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_pot_enthalpy_ice_freezing(), gsw_pot_enthalpy_ice_freezing_poly(), gsw_pot_enthalpy_ice(), gsw_pt_from_pot_enthalpy_ice_poly(), gsw_specvol_first_derivatives(), gsw_specvol_first_derivatives_wrt_enthalpy()
```

Examples

```
gsw_pot_enthalpy_ice_freezing
```

Potential Enthalpy of Ice at Freezing Point

Description

Potential Enthalpy of Ice at Freezing Point

```
gsw_pot_enthalpy_ice_freezing(SA, p, saturation_fraction = 1)
```

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar saturation_fraction fraction of air in water [unitless]
```

Value

potential enthalpy [J/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

Bugs

- 1. The C source underlying this function lacks an argument, saturation_fraction, which is present in the Matlab source, and so that argument is ignored here.
- 2. The R code does not reproduce the check values stated at http://www.teos-10.org/pubs/gsw/html/gsw_pot_enthalpy_ice_freezing.html. Those values are incorporated in the test provided in 'Examples', so that test is not performed during build tests. See https://github.com/TEOS-10/GSW-R/issues/27.

References

http://www.teos-10.org/pubs/gsw/html/gsw_pot_enthalpy_ice_freezing.html

See Also

```
Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_texact(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potentialpy_from_pt_ice(), gsw_pot_enthalpy_from_pt_ice_poly(), gsw_pot_enthalpy_ice_freezing_potentialpy_from_pot_enthalpy_ice(), gsw_pt_from_pot_enthalpy_ice_poly(), gsw_specvol_first_derivatives(), gsw_specvol_first_derivatives_wrt_enthalpy()
```

Examples

Description

First Derivatives of Potential Enthalpy

Usage

```
gsw_pot_enthalpy_ice_freezing_first_derivatives(SA, p)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
```

Value

A list containing pot_enthalpy_ice_freezing_SA [(J/kg)/(g/kg)], the derivative of potential enthalpy with respect to Absolute Salinity, and pot_enthalpy_ice_freezing_p [unitless], the derivative of Conservative Temperature with respect to potential temperature. (Note that the second quantity is denoted pot_enthalpy_ice_freezing_P in the documentation for the Matlab function.)

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_pot_enthalpy_ice_freezing_first_derivatives. html

Examples

Description

First Derivatives of Potential Enthalpy (Polynomial version)

Usage

```
gsw_pot_enthalpy_ice_freezing_first_derivatives_poly(SA, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

A list containing pot_enthalpy_ice_freezing_SA [(J/kg)/(g/kg)], the derivative of potential enthalpy with respect to Absolute Salinity, and pot_enthalpy_ice_freezing_p [unitless], the derivative of Conservative Temperature with respect to potential temperature. (Note that the second quantity is denoted pot_enthalpy_ice_freezing_P in the documentation for the Matlab function.)

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_pot_enthalpy_ice_freezing_first_derivatives_
poly.html
```

Examples

```
{\tt gsw\_pot\_enthalpy\_ice\_freezing\_poly}
```

Potential Enthalpy of Ice at Freezing Point (Polynomial version)

Description

Potential Enthalpy of Ice at Freezing Point (Polynomial version)

Usage

```
gsw_pot_enthalpy_ice_freezing_poly(SA, p, saturation_fraction = 1)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar saturation_fraction fraction of air in water [unitless]
```

Value

potential enthalpy [J/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_pot_enthalpy_ice_freezing_poly.html
```

See Also

```
Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_texact(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_pot_enthalpy_ice_freezing(), gsw_pt_from_pot_enthalpy_ice_poly(), gsw_pot_enthalpy_ice_freezing(), gsw_pt_from_pot_enthalpy_ice_poly(), gsw_specvol_first_derivatives(), gsw_specvol_first_derivatives_wrt_enthalpy()
```

Examples

Description

Potential density

```
gsw_pot_rho_t_exact(SA, t, p, p_ref)
```

gsw_pot_rho_t_exact 105

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
t	in-situ temperature (ITS-90) [degC]
p	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
p_ref	reference pressure [dbar]

Value

```
potential density [ kg/m<sup>3</sup> ]
```

Implementation Note

```
This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.
```

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_pot_rho_t_exact.html
```

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_rho(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

```
gsw_pressure_coefficient_ice

Pressure Coefficient for Ice
```

Description

Pressure Coefficient for Ice

Usage

```
gsw_pressure_coefficient_ice(t, p)
```

Arguments

- t in-situ temperature (ITS-90) [degC]
- p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

```
specific internal energy [ Pa/degC ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_pressure_coefficient_ice.html
```

```
gsw_pressure_freezing_CT
```

Pressure at which Seawater Freezes

Description

Pressure at which Seawater Freezes

Usage

```
gsw_pressure_freezing_CT(SA, CT, saturation_fraction = 1)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

CT Conservative Temperature [ degC ].

saturation_fraction
fraction of air in water [unitless]
```

Value

pressure at which freezing will occur [dbar]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_pressure_freezing_CT.html

108 gsw_pt0_from_t

Examples

gsw_pt0_from_t

Potential temperature referenced to the surface

Description

Potential temperature referenced to the surface

Usage

```
gsw_pt0_from_t(SA, t, p)
```

Arguments

Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

t in-situ temperature (ITS-90) [degC]

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

potential temperature [degC]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_pt0_from_t.html

gsw_pt0_from_t_ice 109

Examples

gsw_pt0_from_t_ice

Potential Temperature of Ice Referenced to the Surface

Description

Potential Temperature of Ice Referenced to the Surface

Usage

```
gsw_pt0_from_t_ice(t, p)
```

Arguments

- t in-situ temperature (ITS-90) [degC]
- p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

potential temperature [degC]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_pt0_from_t_ice.html
```

Examples

```
gsw_pt_first_derivatives
```

First Derivatives of Potential Temperature

Description

First Derivatives of Potential Temperature

Usage

```
gsw_pt_first_derivatives(SA, CT)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
	g/kg.
CT	Conservative Temperature [degC].

Value

A list containing $pt_SA [K/(g/kg)]$, the derivative of potential temperature with respect to Absolute Salinity, and $pt_CT [$ unitless], the derivative of potential temperature with respect to Conservative Temperature.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_pt_first_derivatives.html

gsw_pt_from_CT

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)

r <- gsw_pt_first_derivatives(SA, CT)

stopifnot(all.equal(r$pt_SA, c(0.041863223165431, 0.041452303483011, 0.034682095247246, 0.018711079068408, 0.014079958329844, 0.010577326129948)))

stopifnot(all.equal(r$pt_CT, c(0.997192967140242, 0.997451686508335, 0.998357568277750, 0.999996224076267, 1.000283719083268, 1.000525947028218)))
```

gsw_pt_from_CT

Potential temperature from Conservative Temperature

Description

Potential temperature from Conservative Temperature

Usage

```
gsw_pt_from_CT(SA, CT)
```

Arguments

Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

CT Conservative Temperature [degC].

Value

potential temperature [degC]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_pt_from_CT.html
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)

pt <- gsw_pt_from_CT(SA, CT)

stopifnot(all.equal(pt, c(28.783177048624573, 28.420955597191984, 22.784953468087107,

10.230534394434429, 6.829216587061605, 4.324534835990236)))
```

gsw_pt_from_entropy

Potential Temperature from Entropy

Description

Potential Temperature from Entropy

Usage

```
gsw_pt_from_entropy(SA, entropy)
```

Arguments

SA Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42

g/kg.

entropy specific entropy [J/(degC*kg)]

Value

potential temperature [degC]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_pt_from_entropy.html

See Also

```
Other things related to entropy: gsw_CT_from_entropy(), gsw_entropy_first_derivatives(), gsw_entropy_from_pt(), gsw_entropy_from_t(), gsw_entropy_ice()
```

Examples

```
gsw_pt_from_pot_enthalpy_ice
```

Potential Temperature from Potential Enthalpy of Ice

Description

Potential Temperature from Potential Enthalpy of Ice

Usage

```
gsw_pt_from_pot_enthalpy_ice(pot_enthalpy_ice)
```

Arguments

Value

potential temperature [degC]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_pt_from_pot_enthalpy_ice.html
```

See Also

```
Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_texact(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_pot_enthalpy_from_pt_ice_poly(), gsw_pot_enthalpy_ice_freezing(), gsw_pot_enthalpy_ice_freezing_poly(), gsw_pt_from_pot_enthalpy_ice_poly(), gsw_specvol_first_derivatives_wrt_enthalpy()
```

Examples

```
{\it gsw\_pt\_from\_pot\_enthalpy\_ice\_poly} \\ {\it Potential Temperature from Potential Enthalpy of Ice (Polynomial version)} \\
```

Description

Potential Temperature from Potential Enthalpy of Ice (Polynomial version)

Usage

```
gsw_pt_from_pot_enthalpy_ice_poly(pot_enthalpy_ice)
```

Arguments

```
potential temperature [ degC ]
```

gsw_pt_from_t

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_pt_from_pot_enthalpy_ice_poly.html
```

See Also

```
Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_texact(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_pot_enthalpy_from_pt_ice_poly(), gsw_pot_enthalpy_ice_freezing(), gsw_pot_enthalpy_ice_freezing_poly(), gsw_pt_from_pot_enthalpy_ice(), gsw_specvol_first_derivatives(), gsw_specvol_first_derivatives_wrt_enthalpy()
```

Examples

gsw_pt_from_t

Potential Temperature from in-situ Temperature

Description

Potential Temperature from in-situ Temperature

Usage

```
gsw_pt_from_t(SA, t, p, p_ref = 0)
```

116 gsw_pt_from_t_ice

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
t	in-situ temperature (ITS-90) [degC]
p	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
p_ref	reference pressure [dbar]

Value

potential temperature [degC]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_pt_from_t.html
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
t <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
p_ref <- 0
pt <- gsw_pt_from_t(SA, t, p, p_ref)
stopifnot(all.equal(pt, c(28.783196819670632, 28.420983342398962, 22.784930399117108, 10.230523661095731, 6.829230224409661, 4.324510571845719)))
```

gsw_pt_from_t_ice

Potential Temperature of Ice from in-situ Temperature

Description

Potential Temperature of Ice from in-situ Temperature

gsw_pt_from_t_ice 117

Usage

```
gsw_pt_from_t_ice(t, p, p_ref = 0)
```

Arguments

```
t in-situ temperature (ITS-90) [ degC ]

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

p_ref reference pressure [ dbar ]
```

Value

```
potential temperature [ degC ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_pt_from_t_ice.html
```

Examples

gsw_pt_second_derivatives

Second Derivatives of Potential Temperature

Description

Second Derivatives of Potential Temperature

Usage

```
gsw_pt_second_derivatives(SA, CT)
```

Arguments

SA Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42

g/kg.

CT Conservative Temperature [degC].

Value

A list containing pt_SA_SA [$K/(g/kg)^2$], the second derivative of potential temperature with respect to Absolute Salinity at constant potential temperature, and pt_SA_pt [1/(g/kg)], the derivative of potential temperature with respect to Conservative Temperature and Absolute Salinity, and pt_pt_pt [1/degC], the second derivative of potential temperature with respect to Conservative Temperature.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_pt_second_derivatives.html

gsw_p_from_z 119

Examples

gsw_p_from_z

Pressure from height (75-term equation)

Description

Pressure from height (75-term equation)

Usage

```
gsw_p_from_z(z, latitude, geo_strf_dyn_height, sea_surface_geopotential)
```

Arguments

z height, zero at surface (but note last 2 args) and positive upwards [m]

latitude latitude in decimal degrees, positive to the north of the equator. (This is called lat in the TEOS-10 Matlab code.)

geo_strf_dyn_height

vector of same length as z and latitude, indicating dynamic height [m^2/s^2]. If not supplied, this defaults to a vector of 0 values, with length matching that of z.

sea_surface_geopotential

vector of same length as z and latitude, indicating geopotential at zero sea pressure [m^2/s^2]. If not supplied, this defaults to a vector of 0 values, with length matching that of z.

```
sea pressure [dbar]
```

120 gsw_rho

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

Historical Note

The geo_strf_dyn_height and sea_surface_geopotential parameters were added in GSW-R version 1.0-6.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_p_from_z.html
```

See Also

Other things related to depth: gsw_z_from_p()

Examples

gsw_rho

In-situ density

Description

In-situ density, using the 75-term equation for specific volume.

Usage

```
gsw_rho(SA, CT, p)
```

gsw_rho 121

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
	g/kg.
СТ	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

in-situ density [kg/m³]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_rho.html

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c( 10, 50, 125, 250, 600, 1000)
rho <- gsw_rho(SA,CT,p)
stopifnot(all.equal(rho/1e3, c(1.021839935738108, 1.022262457966867, 1.024427195413316, 1.027790152759127, 1.029837779000189, 1.032002453224572)))
```

122 gsw_rho_alpha_beta

0 1 -	e-situ density, thermal expansion coefficient and haline contraction befficient (75-term equation)
-------	--

Description

Calculate the in-situ density, the expansion coefficient (with respect to Conservative Temperature) and the haline contraction coefficient (with respect to Absolute Salinity), using the 75-term equation.

Usage

```
gsw_rho_alpha_beta(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg .
СТ	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

A list containing in-situ density rho [kg/m^3], thermal expansion coefficient alpha [1/degC], and haline contraction coefficient beta [kg/g].

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_rho_alpha_beta.html

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c(
             10,
                      50,
                              125.
                                       250,
                                                 600,
                                                         1000)
r <- gsw_rho_alpha_beta(SA, CT, p)</pre>
stopifnot(all.equal(r$rho/1000, c(1.021839935738108, 1.022262457966867, 1.024427195413316,
                              1.027790152759127, 1.029837779000189, 1.032002453224572)))
stopifnot(all.equal(r$alpha*1000, c(0.324638934509245, 0.322655537959731, 0.281145723210171,
                              0.173199716344780, 0.146289673594824, 0.129414845334599)))
stopifnot(all.equal(r$beta*1000, c(0.717483987596135, 0.717647512290095, 0.726211643644768,
                              0.750500751749777, 0.755052064788492, 0.757050813384370)))
```

```
gsw_rho_first_derivatives
```

Density First Derivatives wrt SA, CT and p (75-term equation)

Description

Density First Derivatives wrt SA, CT and p (75-term equation)

Usage

```
gsw_rho_first_derivatives(SA, CT, p)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

CT Conservative Temperature [ degC ].

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
```

```
list containing drho_dSA [ kg^2/(g m^3) ], drho_dCT [ kg/(K m^3) ] and drho_dp [ kg/(Pa m^3) ]
```

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_rho_first_derivatives.html

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

Examples

```
SA \leftarrow c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c(
            10,
                              125,
                                                 600,
                                                          1000)
                      50,
                                        250.
r <- gsw_rho_first_derivatives(SA, CT, p)</pre>
stopifnot(all.equal(r$drho_dSA, c(0.733153791778356, 0.733624109867480, 0.743950957375504,
                               0.771357282286743, 0.777581141431288, 0.781278296628328)))
stopifnot(all.equal(r$drho_dCT, c(-0.331729027977015, -0.329838643311336, -0.288013324730644,
                            -0.178012962919839, -0.150654632545556, -0.133556437868984)))
stopifnot(all.equal(r$drho_dp, 1e-6*c(0.420302360738476, 0.420251070273888, 0.426773054953941,
                               0.447763615252861, 0.452011501791479, 0.454118117103094)))
```

Description

Density First Derivatives wrt enthalpy (75-term equation)

Usage

```
gsw_rho_first_derivatives_wrt_enthalpy(SA, CT, p)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

CT Conservative Temperature [ degC ].

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
```

Value

A list containing rho_SA_wrt_h [$(kg/m^3)/(g/kg)$] and rho_h [$(kg/m^3)/(J/kg)$].

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_rho_first_derivatives_wrt_enthalpy.html
```

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

Examples

126 gsw_rho_ice

```
stopifnot(all.equal(r$rho_h*1e4,
c(-0.831005413475887, -0.826243794873652, -0.721438289309903,
-0.445892608094272, -0.377326924646647, -0.334475962698187)))
```

gsw_rho_ice

In-situ density of ice

Description

In-situ density of ice [kg/m³]

Usage

```
gsw_rho_ice(t, p)
```

Arguments

- t in-situ temperature (ITS-90) [degC]
- p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

in-situ density [kg/m³]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_rho_ice.html
```

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

Examples

```
t <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
p <- c( 10, 50, 125, 250, 600, 1000)
rho <- gsw_rho_ice(t, p)
stopifnot(all.equal(rho, c(918.2879969148962, 918.7043487325120, 918.6962796312690, 918.7513732275766, 918.9291139833307, 919.0032237449378)))
```

gsw_rho_second_derivatives

Second Derivatives of Density

Description

Second Derivatives of Density

Usage

```
gsw_rho_second_derivatives(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
СТ	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

A list containing rho_SA_SA [$(kg/m^3)/(g/kg)^2$], the second derivative of density with respect to Absolute Salinity, rho_SA_CT [(g/kg)/(g/kg)/degC], the derivative of density with respect to Absolute Salinity and Conservative Temperature, and rho_CT_CT [$(kg/m^3)/degC^2$], the second derivative of density with respect to Conservative Temperature.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_rho_second_derivatives.html

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(
            10,
                     50,
                             125,
                                       250,
                                               600,
                                                        1000)
r <- gsw_rho_second_derivatives(SA, CT, p)</pre>
stopifnot(all.equal(r$rho_SA_SA/1e-3, c(0.207364734477357, 0.207415414547223,
            0.192903197286004, 0.135809142211237, 0.122627562106076,
            0.114042431905783)))
stopifnot(all.equal(r$rho_SA_CT, c(-0.001832856561477, -0.001837354806146,
            -0.001988065808078, -0.002560181494807, -0.002708939446458,
            -0.002798484050141)))
stopifnot(all.equal(r$rho_CT_CT, c(-0.007241243828334, -0.007267807914635,
           -0.007964270843331, -0.010008164822017, -0.010572200761984,
           -0.010939294762200)))
all.equal(r$rho_SA_p, 1e-9*c(-0.617330965378778, -0.618403843947729,
        -0.655302447133274, -0.764800777480716, -0.792168044875350,
        -0.810125648949170))
all.equal(r$rho_CT_p, 1e-8*c(-0.116597992537549, -0.117744271236102,
        -0.141712549466964, -0.214414626736539, -0.237704139801551,
        -0.255296606034074))
```

```
{\it gsw\_rho\_second\_derivatives\_wrt\_enthalpy} \\ {\it Second Derivatives of Density wrt Enthalpy}
```

Description

Second Derivatives of Density wrt Enthalpy

Usage

```
gsw_rho_second_derivatives_wrt_enthalpy(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
	g/kg.
CT	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

A list containing rho_SA_SA [$(kg/m^3)/(g/kg)^2$], the second derivative of density with respect to Absolute Salinity, rho_SA_h [(g/kg)/(g/kg)/(J/kg)], the derivative of density with respect to Absolute Salinity and enthalpy, and rho_h_h [$(kg/m^3)/(J/kg)^2$], the second derivative of density with respect to enthalpy.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_rho_second_derivatives_wrt_enthalpy.html

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
            10,
                      50,
                             125,
                                       250,
                                                600,
                                                        1000)
r <- gsw_rho_second_derivatives_wrt_enthalpy(SA, CT, p)</pre>
stopifnot(all.equal(r$rho_SA_SA/1e-3, c(0.207325714908677, 0.207131960039965,
            0.192001360206293, 0.133399974356615, 0.116504845152129,
            0.103433221305694)))
stopifnot(all.equal(r$rho_SA_h/1e-6, c(-0.459053080088382, -0.460370569872258,
            -0.498605615416296, -0.642833108550133, -0.682091962941161,
            -0.706793055445909)))
stopifnot(all.equal(r$rho_h_h/1e-9, c(-0.454213854637790, -0.455984900239309,
            -0.499870030989387, -0.628337767293403, -0.664021595759308,
            -0.687367088752173)))
```

gsw_rho_t_exact

gsw_rho_t_exact

In-situ Density of Seawater

Description

In-situ Density of Seawater

Usage

```
gsw_rho_t_exact(SA, t, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
t	in-situ temperature (ITS-90) [degC]
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

in-situ density [kg/m³]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_rho_t_exact.html
```

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

gsw_SAAR 131

Examples

gsw_SAAR

Absolute Salinity Anomaly Ratio

Description

Absolute Salinity Anomaly Ratio

Usage

```
gsw_SAAR(p, longitude, latitude)
```

Arguments

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

longitude longitude in decimal degrees, positive to the east of Greenwich. (This is called

long in the TEOS-10 Matlab code.)

latitude latitude in decimal degrees, positive to the north of the equator. (This is called

lat in the TEOS-10 Matlab code.)

Value

a list containing SAAR, which is the (unitless) Absolute Salinity Anomaly Ratio, and in_ocean is set to 1 if SAAR is nonzero, or to 0 otherwise.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

Bugs

The definition of in_ocean is incorrect, because the C function named gsw_saar, which is called by the present R function, does not calculate in_ocean, as the base Matlab function named gsw_SAAR does. However, examination of the Matlab code shows that in_ocean is set to 0 along with SAAR, whenever the original estimate of the latter is nonfinite. Thus, points that would be signalled as being on the land by the Matlab code are indicated in the same way with the present R function. However, other points may also be indicated as being on land, if SAAR is simply zero in the first calculation. Whether this poses a problem in practice is an open question, since it seems likely that this function would only be called with oceanic locations, anyway. If problems arise for users, a patch can be written to improve things.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_SAAR.html
```

Examples

```
gsw_SA_freezing_from_CT
```

Compute Absolute Salinity at Freezing Conservative Temperature

Description

Compute Absolute Salinity at Freezing Conservative Temperature

Usage

```
gsw_SA_freezing_from_CT(CT, p, saturation_fraction = 1)
```

Arguments

```
CT Conservative Temperature [ degC ].

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar saturation_fraction
fraction of air in water [unitless]
```

```
Absolute Salinity [ g/kg ]
```

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_SA_freezing_from_CT.html
```

Examples

```
CT <- c(-0.11901, -0.15608, -0.72138, -1.97738, -2.31728, -2.56764)

p <- c( 10, 50, 125, 250, 600, 1000)

saturation_fraction <- 1

SA <- gsw_SA_freezing_from_CT(CT, p, saturation_fraction)

stopifnot(all.equal(SA, c(2.280500648179144, 2.416867651098550, 11.973503162175106, 32.868973869711390, 34.017513292374431, 32.859871943514150)))
```

```
gsw_SA_freezing_from_CT_poly
```

Compute Absolute Salinity at Freezing Point (Polynomial version)

Description

Compute Absolute Salinity at Freezing Point (Polynomial version)

Usage

```
gsw_SA_freezing_from_CT_poly(CT, p, saturation_fraction = 1)
```

Arguments

```
CT Conservative Temperature [ degC ].

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar saturation_fraction
fraction of air in water [unitless]
```

```
Absolute Salinity [ g/kg ]
```

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_SA_freezing_from_CT_poly.html

Examples

```
gsw_SA_freezing_from_t
```

Compute Absolute Salinity at Freezing in-situ Temperature

Description

Compute Absolute Salinity at Freezing in-situ Temperature

Usage

```
gsw_SA_freezing_from_t(t, p, saturation_fraction = 1)
```

Arguments

```
t in-situ temperature (ITS-90) [ degC ]

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar saturation_fraction

fraction of air in water [unitless]
```

```
Absolute Salinity [ g/kg ]
```

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_SA_freezing_from_t.html
```

Examples

```
gsw_SA_freezing_from_t_poly

Compute Absolute Salinity at Freezing in-situ Temperature (Polynomial version)
```

Description

Compute Absolute Salinity at Freezing in-situ Temperature (Polynomial version)

Usage

```
gsw_SA_freezing_from_t_poly(t, p, saturation_fraction = 1)
```

Arguments

```
t in-situ temperature (ITS-90) [ degC ]

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar saturation_fraction

fraction of air in water [unitless]
```

136 gsw_SA_from_rho

Value

Absolute Salinity [g/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_SA_freezing_from_t_poly.html
```

Examples

```
t <- c(-0.11901, -0.15608, -0.72138, -1.97738, -2.31728, -2.56764)

p <- c( 10, 50, 125, 250, 600, 1000)

saturation_fraction <- 1

SA <- gsw_SA_freezing_from_t_poly(t, p, saturation_fraction)

stopifnot(all.equal(SA, c(2.017072489768256, 2.151989342038462, 11.677649626115608, 32.843128114999026, 34.136459306273451, 33.097427522625182)))
```

gsw_SA_from_rho

Compute Absolute Salinity from Density, etc

Description

Compute Absolute Salinity from Density, etc

Usage

```
gsw_SA_from_rho(rho, CT, p)
```

Arguments

```
rho seawater density [ kg/m^3 ]

CT Conservative Temperature [ degC ].

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
```

 $gsw_SA_from_SP$ 137

Value

Absolute Salinity [g/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_SA_from_rho.html
```

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

Examples

```
rho <- c(1021.8482, 1022.2647, 1024.4207, 1027.7841, 1029.8287, 1031.9916)
CT <-c(
          28.7856,
                      28.4329,
                                 22.8103, 10.2600,
                                                        6.8863,
                                                                   4.4036)
p <- c(
               10,
                                     125,
                                                250,
                                                           600,
                                                                     1000)
                           50.
SA <- gsw_SA_from_rho(rho, CT, p)
stopifnot(all.equal(SA, c(34.712080120418108, 34.891723808488869, 35.026202257609505,
                          34.847160842234572, 34.736398269039945, 34.732228881079742)))
```

gsw_SA_from_SP

Convert from Practical Salinity to Absolute Salinity

Description

Calculate Absolute Salinity from Practical Salinity, pressure, longitude, and latitude.

Usage

```
gsw_SA_from_SP(SP, p, longitude, latitude)
```

138 gsw_SA_from_SP

Arguments

SP	Practical Salinity (PSS-78) [unitless]. The valid range for most 'gsw' functions is from 2 to 42.
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
longitude	longitude in decimal degrees, positive to the east of Greenwich. (This is called long in the TEOS-10 Matlab code.)
latitude	latitude in decimal degrees, positive to the north of the equator. (This is called lat in the TEOS-10 Matlab code.)

Details

If SP is a matrix and if its dimensions correspond to the lengths of longitude and latitude, then the latter are converted to analogous matrices with expand.grid.

Value

Absolute Salinity [g/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_SA_from_SP.html
```

See Also

```
Other things related to salinity: gsw_C_from_SP(), gsw_SA_from_SP_Baltic(), gsw_SA_from_Sstar(), gsw_SP_from_C(), gsw_SP_from_SA(), gsw_SP_from_SK(), gsw_SP_from_SR(), gsw_SP_from_SR(), gsw_SP_from_SP(), gsw_Sstar_from_SP(), gsw_Sstar_from_SP(), gsw_deltaSA_from_SP()
```

Examples

```
SP <- c(34.5487, 34.7275, 34.8605, 34.6810, 34.5680, 34.5600)
          10,
                     50,
                             125,
                                      250,
                                              600,
                                                      1000)
p <- c(
                     4,
                                      4,
                                               4,
lat <- c(
            4,
                             4,
                                                         4)
                    188,
                             188,
long <- c( 188,
                                      188,
                                              188,
                                                       188)
SA <- gsw_SA_from_SP(SP, p, long, lat)
```

```
gsw_SA_from_SP_Baltic
```

```
139
```

```
stopifnot(all.equal(SA, c(34.711778344814114, 34.891522618230098, 35.025544862476920, 34.847229026189588, 34.736628474576051, 34.732363065590846)))
```

gsw_SA_from_SP_Baltic Convert from Practical Salinity to Absolute Salinity (Baltic)

Description

Calculate Absolute Salinity from Practical Salinity, pressure, longitude, and latitude.

Usage

```
gsw_SA_from_SP_Baltic(SP, longitude, latitude)
```

Arguments

SP Practical Salinity (PSS-78) [unitless]. The valid range for most 'gsw' functions

is from 2 to 42.

longitude longitude in decimal degrees, positive to the east of Greenwich. (This is called

long in the TEOS-10 Matlab code.)

latitude latitude in decimal degrees, positive to the north of the equator. (This is called

lat in the TEOS-10 Matlab code.)

Details

If SP is a matrix and if its dimensions correspond to the lengths of longitude and latitude, then the latter are converted to analogous matrices with expand.grid.

Value

Absolute Salinity [g/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_SA_from_SP_Baltic.html
```

140 gsw_SA_from_Sstar

See Also

```
Other things related to salinity: gsw_C_from_SP(), gsw_SA_from_SP(), gsw_SA_from_Sstar(), gsw_SP_from_C(), gsw_SP_from_SA(), gsw_SP_from_SK(), gsw_SP_from_SR(), gsw_SP_from_Sstar(), gsw_SR_from_SP(), gsw_Sstar_from_SP(), gsw_Sstar_from_SP()
```

Examples

```
SP <- c( 6.5683, 6.6719, 6.8108, 7.2629, 7.4825, 10.2796)
lon <- c(
            20, 20,
                            20,
                                   20,
                                           20,
lat <- c(
            59,
                    59,
                            59,
                                   59,
                                           59,
                                                    59)
SA <- gsw_SA_from_SP_Baltic(SP, lon, lat)
stopifnot(all.equal(SA, c(6.669945432342856, 6.773776430742856, 6.912986138057142,
                         7.366094191885713, 7.586183837142856, 10.389520570971428)))
```

gsw_SA_from_Sstar

Absolute Salinity from Preformed Salinity

Description

Calculate Absolute Salinity from Preformed Salinity, pressure, longitude, and latitude.

Usage

```
gsw_SA_from_Sstar(Sstar, p, longitude, latitude)
```

Arguments

Sstar	Preformed Salinity [g/kg]
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
longitude	longitude in decimal degrees, positive to the east of Greenwich. (This is called long in the TEOS-10 Matlab code.)
latitude	latitude in decimal degrees, positive to the north of the equator. (This is called lat in the TEOS-10 Matlab code.)

Details

If Sstar is a matrix and if its dimensions correspond to the lengths of longitude and latitude, then the latter are converted to analogous matrices with expand.grid.

Value

Absolute Salinity [g/kg]

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_SA_from_Sstar.html

See Also

```
Other things related to salinity: gsw_C_from_SP(), gsw_SA_from_SP(), gsw_SA_from_SP_Baltic(), gsw_SP_from_C(), gsw_SP_from_SA(), gsw_SP_from_SK(), gsw_SP_from_SR(), gsw_SP_from_Sstar(), gsw_SR_from_SP(), gsw_Sstar_from_SP(), gsw_Sstar_from_SP()
```

Examples

```
Sstar <- c(34.7115, 34.8912, 35.0247, 34.8436, 34.7291, 34.7197)
p <- c(
                      50,
                              125,
                                       250,
                                                 600,
                                                         1000)
             10.
lat <- c(
                       4,
                                4,
              4,
                                          4,
                                                            4)
                                                  4,
long <- c( 188,
                     188,
                              188,
                                        188,
                                                 188,
                                                          188)
SA <- gsw_SA_from_Sstar(Sstar, p, long, lat)
stopifnot(all.equal(SA, c(34.711724663585905, 34.891561223296009, 35.025594598699882,
                          34.847235885385913, 34.736694493054166, 34.732387111902753)))
```

```
gsw_seaice_fraction_to_freeze_seawater

Sea ice Fraction to Cool Seawater to Freezing
```

Description

Sea ice Fraction to Cool Seawater to Freezing

Usage

```
gsw_seaice_fraction_to_freeze_seawater(SA, CT, p, SA_seaice, t_seaice)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
СТ	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
SA_seaice	Absolute Salinity of sea ice [g/kg]
t_seaice	initial temperature of sea ice [degC]

Value

a list containing SA_freeze, CT_freeze and w_Ih.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_seaice_fraction_to_freeze_seawater.html

Examples

```
SA <- c(
              34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(
              -1.7856, -1.4329, -1.8103, -1.2600, -0.6886,
                                                              0.4403)
p <- c(
                   10.
                            50.
                                    125.
                                             250.
                                                       600.
                                                                1000)
                           4.8,
SA_seaice <- c(
                   5,
                                    3.5,
                                             2.5,
                                                        1,
                                                                 0.4)
t_seaice <- c(-5.7856, -4.4329, -3.8103, -4.2600, -3.8863, -3.4036)
r <- gsw_seaice_fraction_to_freeze_seawater(SA, CT, p, SA_seaice, t_seaice)</pre>
stopifnot(all.equal(r$SA_freeze, c(34.671271207148074, 34.703449677481224, 34.950192062047861,
                           34.525277379661880, 34.077349518029997, 33.501836583274191)))
stopifnot(all.equal(r$CT_freeze, c(-1.895419711000293, -1.927935638317893, -1.999943183939312,
                           -2.071677444370745, -2.318866154643864, -2.603185031462614)))
stopifnot(all.equal(r$w_seaice, c(0.001364063868629, 0.006249283768465, 0.002391958850970,
                              0.009952101583387, 0.019541106156815, 0.035842627277027)))
```

gsw_sigma0 143

gsw_sigma0	Potential density anomaly referenced to 0 dbar

Description

This uses the 75-term density equation, and returns potential density referenced to a pressure of 0 dbar, minus 1000 kg/m³.

Usage

```
gsw_sigma0(SA, CT)
```

Arguments

Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

CT Conservative Temperature [degC].

Value

potential density anomaly [kg/m³]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_sigma0.html
```

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

144 gsw_sigma1

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)

sigma0 <- gsw_sigma0(SA,CT)

stopifnot(all.equal(sigma0, c(21.797900819337656, 22.052215404397316, 23.892985307893923,

26.667608665972011, 27.107380455119710, 27.409748977090885)))
```

gsw_sigma1

Potential density anomaly referenced to 1000 dbar

Description

This uses the 75-term density equation, and returns potential density referenced to a pressure of 1000 dbar, minus 1000 kg/m³.

Usage

```
gsw_sigma1(SA, CT)
```

Arguments

SA Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

CT Conservative Temperature [degC].

Value

potential density anomaly [kg/m³]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_sigma1.html

gsw_sigma2 145

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)

sigma1 <- gsw_sigma1(SA,CT)

stopifnot(all.equal(sigma1, c(25.955618850310202, 26.213131422420247, 28.125423775188438,

31.120360038882382, 31.637724222733368, 32.002453224572037)))
```

gsw_sigma2

Potential density anomaly referenced to 2000 dbar

Description

This uses the 75-term density equation, and returns potential density referenced to a pressure of 2000 dbar, minus 1000 kg/m³.

Usage

```
gsw_sigma2(SA, CT)
```

Arguments

Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

CT Conservative Temperature [degC].

Value

```
potential density anomaly [kg/m^3]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip

146 gsw_sigma3

on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_sigma2.html
```

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma3(), gsw_sigma4(), gsw_specvol(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)

sigma2 <- gsw_sigma2(SA,CT)

stopifnot(all.equal(sigma2, c(30.023152223799116, 30.283783336283477, 32.265556840289719,

35.474550881051073, 36.067289438047737, 36.492606494879510)))
```

gsw_sigma3

Potential density anomaly referenced to 3000 dbar

Description

This uses the 75-term density equation, and returns potential density referenced to a pressure of 3000 dbar, minus 1000 kg/m³.

Usage

```
gsw_sigma3(SA, CT)
```

Arguments

Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

CT Conservative Temperature [degC].

Value

potential density anomaly with reference pressure 3000 dbar [kg/m^3]

gsw_sigma4 147

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_sigma3.html
```

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma4(), gsw_specvol(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)

sigma3 <- gsw_sigma3(SA,CT)

stopifnot(all.equal(sigma3, c(34.003747849903675, 34.267409891564057, 36.316415829697917,

39.732367693977039, 40.397934186745033, 40.881795690566832)))
```

gsw_sigma4

Potential density anomaly referenced to 4000 dbar

Description

This uses the 75-term density equation, and returns potential density referenced to a pressure of 4000 dbar, minus 1000 kg/m³.

```
gsw_sigma4(SA, CT)
```

148 gsw_sigma4

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
	g/kg.
CT	Conservative Temperature [degC].

Value

potential density anomaly with reference pressure 4000 dbar [kg/m³]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_sigma4.html
```

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_specvol(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)

sigma4 <- gsw_sigma4(SA,CT)

stopifnot(all.equal(sigma4, c(37.900374609834898, 38.166979617032439, 40.280876075282549,

43.896091033421953, 44.631677245327637, 45.171817312020039)))
```

gsw_sound_speed 149

Description

Speed of sound in seawater, using the 75-term equation for specific volume.

Usage

```
gsw_sound_speed(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
СТ	Conservative Temperature [degC].
p	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

```
sound speed [ m/s ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_sound_speed.html
```

See Also

Other things related to sound: gsw_sound_speed_ice(), gsw_sound_speed_t_exact()

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)

p <- c( 10, 50, 125, 250, 600, 1000)

speed <- gsw_sound_speed(SA,CT,p)

stopifnot(all.equal(speed/1e3, c(1.542426412426373, 1.542558891663385, 1.530801535436184, 1.494551099295314, 1.487622786765276, 1.484271672296205)))
```

gsw_sound_speed_ice Sound speed in ice

Description

Speed of sound in ice.

Usage

```
gsw_sound_speed_ice(t, p)
```

Arguments

- t in-situ temperature (ITS-90) [degC]
- p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

sound speed [m/s]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_sound_speed_ice.html
```

See Also

Other things related to sound: gsw_sound_speed(), gsw_sound_speed_t_exact()

Examples

```
gsw_sound_speed_t_exact
```

Sound Speed in Seawater

Description

Sound Speed in Seawater

Usage

```
gsw_sound_speed_t_exact(SA, t, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
t	in-situ temperature (ITS-90) [degC]
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

```
sound speed [ m/s ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_sound_speed_t_exact.html

152 gsw_specvol

See Also

Other things related to sound: gsw_sound_speed(), gsw_sound_speed_ice()

Examples

gsw_specvol

Specific Volume of Seawater

Description

Specific Volume of Seawater

Usage

```
gsw_specvol(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
CT	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

Specific volume (1/density)

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_specvol.html

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

Examples

```
gsw_specvol_alpha_beta
Specific Volume, alpha, and beta
```

Description

Specific Volume, alpha, and beta

Usage

```
gsw_specvol_alpha_beta(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
СТ	Conservative Temperature [degC].
p	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

a list holding specvol, the specific volume [m^3/kg], alpha, the thermal expansion coefficient [1/degC], and beta, the haline contraction coefficient [kg/g].

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_specvol_alpha_beta.html

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT \leftarrow c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
                                                         1000)
p <- c(
             10.
                      50,
                               125.
                                        250.
                                                 600.
r <- gsw_specvol_alpha_beta(SA, CT, p)
stopifnot(all.equal(r$specvol/1e-3, c(0.978626852431313, 0.978222365701325, 0.976155264597929,
                               0.972961258011157, 0.971026719344908, 0.968989944622149)))
stopifnot(all.equal(r$alpha/1e-3, c(0.324638934509245, 0.322655537959731, 0.281145723210171,
                               0.173199716344780, 0.146289673594824, 0.129414845334599)))
stopifnot(all.equal(r$beta/1e-3, c(0.717483987596135, 0.717647512290095, 0.726211643644768,
                               0.750500751749777, 0.755052064788492, 0.757050813384370)))
```

```
gsw_specvol_anom_standard
```

Specific volume anomaly [standard] (75-term equation)

Description

Note that the TEOS function named specific_volume_anomaly is not provided in the C library, so it is not provided in R, either.

Usage

```
gsw_specvol_anom_standard(SA, CT, p)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

CT Conservative Temperature [ degC ].

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
```

Value

Specific volume anomaly [m^3/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_specvol_anom_standard.html
```

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol(), gsw_specvol_alpha_beta(), gsw_specvol_ice(), gsw_specvol_t_exact()
```

Examples

Description

First Derivatives of Specific Volume

Usage

```
gsw_specvol_first_derivatives(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
CT	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

A list containing v_SA [(m^3/kg)/(g/kg)], the derivative of specific volume with respect to Absolute Salinity, v_CT [(m^3/kg)/degC], the derivative of specific volume with respect to Conservative Temperature, and v_p [(m^3/kg)/dbar], the derivative of specific volume with respect to pressure. (Note that the last quantity is denoted v_P in the documentation for the Matlab function.)

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_specvol_first_derivatives.html

See Also

Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_ice(), gsw_enthalpy_t_exact(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potentialpy_from_pt_ice(), gsw_pot_enthalpy_ice_freezing(), gsw_pot_enthalpy_ice_freezing(), gsw_pot_enthalpy_ice_freezing_poly(), gsw_pt_from_pot_enthalpy_ice(), gsw_pt_from_pot_enthalpy_ice_potentialpy_ice_freezing_poly(), gsw_pot_enthalpy()

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
           10,
                      50,
                              125,
                                        250,
                                                 600,
                                                         1000)
r <- gsw_specvol_first_derivatives(SA, CT, p)</pre>
stopifnot(all.equal(r$v_SA/1e-6,
    {\tt c(-0.702149096451073,\ -0.702018847212088,\ -0.708895319156155,}
      -0.730208155560782, -0.733175729406169, -0.733574625737474)))
stopifnot(all.equal(r$v_CT/1e-6,
    c(0.317700378655437, 0.315628863649601, 0.274441877830800,
      0.168516613901993, 0.142051181824820, 0.125401683814057)))
stopifnot(all.equal(r$v_p/1e-12,
    c(-0.402527990904794, -0.402146232553089, -0.406663124765787,
     -0.423877042622481, -0.426198431093548, -0.426390351853055)))
```

Description

First Derivatives of Specific Volume wrt Enthalpy

Usage

```
gsw_specvol_first_derivatives_wrt_enthalpy(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg .
CT	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

```
A list containing v_SA_wrt_h [ (m^3/kg)/(g/kg) ] and v_h.
```

158 gsw_specvol_ice

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_specvol_first_derivatives_wrt_enthalpy.
html
```

See Also

```
Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_texact(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_frazil_properties_potential(), gsw_pot_enthalpy_from_pt_ice_potential(), gsw_pot_enthalpy_ice_freezing(), gsw_pot_enthalpy_ice_freezing(), gsw_pot_enthalpy_ice_freezing_potentialpy_ice_potentialpy_ice(), gsw_pot_enthalpy_ice_potentialpy_ice_potentialpy_ice_freezing()
```

Examples

gsw_specvol_ice

Specific Volume of Ice

Description

Specific Volume of Ice

gsw_specvol_ice 159

Usage

```
gsw_specvol_ice(t, p)
```

Arguments

- t in-situ temperature (ITS-90) [degC]
- p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

Specific volume [m^3/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_specvol_ice.html
```

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_t_exact()
```

Examples

gsw_specvol_second_derivatives

Second Derivatives of Specific Volume

Description

Second Derivatives of Specific Volume

Usage

```
gsw_specvol_second_derivatives(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
	g/kg.
СТ	Conservative Temperature [degC].
p	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

A list containing specvol_SA_SA [(m^3/kg)/(g/kg)^2], the second derivative of specific volume with respect to Absolute Salinity, specvol_SA_CT [(m^3/kg)/(g/kg)/degC], the derivative of specific volume with respect to Absolute Salinity and Conservative Temperature, specvol_CT_CT [(m^3/kg)/degC^2], the second derivative of specific volume with respect to Conservative Temperature, specvol_SA_p [(m^3/kg)/(g/kg)/Pa], the derivative of specific volume with respect to Absolute Salinity and pressure, and specvol_CT_p [(m^3/kg)/K/dbar], the derivative of specific volume with respect to Conservative Temperature and pressure.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_specvol_second_derivatives.html

Examples

```
SA \leftarrow c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
                                                         1000)
p <- c(
             10,
                      50,
                              125,
                                        250,
                                                 600,
r <- gsw_specvol_second_derivatives(SA, CT, p)</pre>
stopifnot(all.equal(r\specvol_SA_SA/1e-8, c(0.080906777599140,
            0.080915086639384, 0.084568844270812, 0.096725108896007,
            0.099111765836648, 0.100302277946072)))
stopifnot(all.equal(r$specvol_SA_CT/1e-8, c(0.129965332117084,
            0.130523053162130, 0.149555815430615, 0.217023290441810,
            0.233892039070486, 0.243659989480325)))
stopifnot(all.equal(r\specvol_CT_CT/1e-7, c(0.071409582006642,
            0.071582962051991, 0.077436153664104, 0.095329736274850,
            0.100105336953738, 0.103044572835472)))
stopifnot(all.equal(r$specvol_SA_p/1e-14, c(0.116889015000936,
            0.116897424150385, 0.121500614193893, 0.136008673596132,
            0.139023051292893, 0.140581903529772)))
stopifnot(all.equal(r$specvol_CT_p/1e-14, c(0.085542828707964,
             0.086723632576213, \ 0.112156562396990, \ 0.188269893599500, \\
            0.211615556759369, 0.228609575049911)))
```

Description

Second Derivatives of Specific Volume wrt Enthalpy

Usage

```
gsw_specvol_second_derivatives_wrt_enthalpy(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
СТ	Conservative Temperature [degC].
p	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

A list containing specvol_SA_SA [$(m^3/kg)/(g/kg)^2$], the second derivative of specific volume with respect to Absolute Salinity, specvol_SA_h [$(m^3/kg)/(g/kg)/(J/kg)$], the derivative of specific volume with respect to Absolute Salinity and enthalpy, and specvol_h_h [$(m^3/kg)/(J/kg)^2$], the second derivative of specific volume with respect to enthalpy.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_specvol_second_derivatives_wrt_enthalpy.
html

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT \leftarrow c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
            10,
                      50,
                              125,
                                        250,
r <- gsw_specvol_second_derivatives_wrt_enthalpy(SA, CT, p)</pre>
stopifnot(all.equal(r$specvol_SA_SA/1e-8, c(0.080898741086877,
            0.080931595349498, 0.084648485333225, 0.096952812049233,
            0.099684475381589, 0.101288447077547)))
stopifnot(all.equal(r$specvol_SA_h/1e-12, c(0.325437133570796,
            0.327060462851431, 0.375273569184178, 0.545188833073084,
            0.589424881889351, 0.616101548209175)))
stopifnot(all.equal(r$specvol_h_h/1e-15, c(0.447949998681476, 0.449121446914278,
            0.485998151346315, 0.598480711660961, 0.628708349875318,
            0.647433212216398)))
```

gsw_specvol_t_exact 163

Description

Specific Volume of Seawater

Usage

```
gsw_specvol_t_exact(SA, t, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
t	in-situ temperature (ITS-90) [degC]
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

Specific volume [m^3/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_specvol_t_exact.html
```

See Also

```
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_infunnel(), gsw_pot_rho_t_exact(), gsw_rho(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice()
```

164 gsw_spiciness0

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
t <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
v <- gsw_specvol_t_exact(SA, t, p)
stopifnot(all.equal(v*1e3, c(0.978626625025472, 0.978222143734527, 0.976154768597586, 0.972961211575438, 0.971026779948624, 0.968989990731808)))
```

gsw_spiciness0

Seawater Spiciness at p=0 dbar

Description

Calculate seawater spiciness referenced to 0 dbar (i.e. the surface).

Usage

```
gsw_spiciness0(SA, CT)
```

Arguments

Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

CT Conservative Temperature [degC].

Value

```
spiciness [ kg/m<sup>3</sup> ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_spiciness0.html

gsw_spiciness1 165

See Also

Other things related to spiciness: gsw_spiciness1(), gsw_spiciness2()

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)

spiciness <- gsw_spiciness0(SA, CT)

stopifnot(all.equal(spiciness, c(5.728998558542941, 5.749940496782486, 4.163547112671111,

1.069362556641764, 0.426428274444305, 0.089725188494086)))
```

gsw_spiciness1

Seawater Spiciness at p=1000 dbar

Description

Calculate seawater spiciness referenced to 1000 dbar.

Usage

```
gsw_spiciness1(SA, CT)
```

Arguments

SA Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

CT Conservative Temperature [degC].

Value

```
spiciness [ kg/m<sup>3</sup> ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_spiciness1.html

166 gsw_spiciness2

See Also

Other things related to spiciness: gsw_spiciness0(), gsw_spiciness2()

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
spiciness <- gsw_spiciness1(SA, CT)
stopifnot(all.equal(spiciness, c(6.311038322123224, 6.326411175472160, 4.667218659743284, 1.351722468726905, 0.628494082166029, 0.224779784908478)))
```

gsw_spiciness2

Seawater Spiciness at p=2000 dbar

Description

Calculate seawater spiciness referenced to 2000 dbar.

Usage

```
gsw_spiciness2(SA, CT)
```

Arguments

Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42

CT Conservative Temperature [degC].

Value

```
spiciness [ kg/m^3 ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_spiciness2.html

gsw_SP_from_C

See Also

Other things related to spiciness: gsw_spiciness0(), gsw_spiciness1()

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
spiciness <- gsw_spiciness2(SA, CT)
stopifnot(all.equal(spiciness, c(6.874671751873180, 6.884616399155135, 5.154458892387083, 1.624327800598636, 0.823490797424952, 0.355069307641827)))
```

gsw_SP_from_C

Convert from Electrical Conductivity to Practical Salinity

Description

Convert from Electrical Conductivity to Practical Salinity

Usage

```
gsw_SP_from_C(C, t, p)
```

Arguments

```
C conductivity [ mS/cm ]
```

t in-situ temperature (ITS-90) [degC]

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

Practical Salinity (PSS-78) [unitless]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

168 gsw_SP_from_SA

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_SP_from_C.html
```

See Also

```
Other things related to salinity: gsw_C_from_SP(), gsw_SA_from_SP(), gsw_SA_from_SP_Baltic(), gsw_SA_from_Sstar(), gsw_SP_from_SA(), gsw_SP_from_SK(), gsw_SP_from_SR(), gsw_SP_from_Sstar(), gsw_SR_from_SP(), gsw_Sstar_from_SP(), gsw_deltaSA_from_SP()

Other things related to conductivity: gsw_C_from_SP()
```

Examples

gsw_SP_from_SA

Convert from Absolute Salinity to Practical Salinity

Description

Calculate Practical Salinity from Absolute Salinity, pressure, longitude, and latitude.

Usage

```
gsw_SP_from_SA(SA, p, longitude, latitude)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
p	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
longitude	longitude in decimal degrees, positive to the east of Greenwich. (This is called long in the TEOS-10 Matlab code.)
latitude	latitude in decimal degrees, positive to the north of the equator. (This is called lat in the TEOS-10 Matlab code.)

Details

If SP is a matrix and if its dimensions correspond to the lengths of longitude and latitude, then the latter are converted to analogous matrices with expand.grid.

Note: unlike the corresponding Matlab function, this does not return a flag indicating whether the location is in the ocean.

gsw_SP_from_SK 169

Value

Practical Salinity (PSS-78) [unitless]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_SP_from_SA.html

See Also

```
Other things related to salinity: gsw_C_from_SP(), gsw_SA_from_SP(), gsw_SA_from_SP_Baltic(), gsw_SA_from_Sstar(), gsw_SP_from_C(), gsw_SP_from_SK(), gsw_SP_from_SR(), gsw_SP_from_Sstar(), gsw_SR_from_SP(), gsw_Sstar_from_SA(), gsw_Sstar_from_SP(), gsw_deltaSA_from_SP()
```

Examples

```
SA <-
        c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <-
               10,
                         50,
                                  125,
                                           250,
                                                     600,
                                                              1000)
        c(
lat <- c(
                 4,
                          4,
                                                       4,
                                                                 4)
                                    4,
                                             4,
long <- c(
              188,
                        188,
                                  188,
                                           188,
                                                     188,
                                                               188)
SP <- gsw_SP_from_SA(SA,p,long,lat)</pre>
stopifnot(all.equal(SP, c(34.548721553448317, 34.727477488096639, 34.860554877708005,
                           34.680971112271791, 34.567971663653388, 34.560036751118204)))
```

```
gsw_SP_from_SK
```

Calculate Practical Salinity from Knudsen Salinity

Description

Calculate Practical Salinity from Knudsen Salinity

```
gsw_SP_from_SK(SK)
```

170 gsw_SP_from_SR

Arguments

SK

Knudsen Salinity [parts per thousand, ppt]

Value

```
Practical Salinity (PSS-78) [ unitless ]
```

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_SP_from_SK.html
```

See Also

```
Other things related to salinity: gsw_C_from_SP(), gsw_SA_from_SP(), gsw_SA_from_SP_Baltic(), gsw_SA_from_Sstar(), gsw_SP_from_C(), gsw_SP_from_SA(), gsw_SP_from_SR(), gsw_SP_from_Sstar(), gsw_SR_from_SP(), gsw_Sstar_from_SP(), gsw_Sstar_from_SP(), gsw_deltaSA_from_SP()
```

Examples

```
SK <- c(34.5487, 34.7275, 34.8605, 34.6810, 34.5680, 34.5600)

SP <- gsw_SP_from_SK(SK)

stopifnot(all.equal(SP, c(34.548342096952908, 34.727295637119113, 34.860409847645435,

34.680755706371187, 34.567658670360110, 34.559651800554022)))
```

gsw_SP_from_SR

Calculate Practical Salinity from Reference Salinity

Description

Calculate Practical Salinity from Reference Salinity

Usage

```
gsw_SP_from_SR(SR)
```

Arguments

SR

Reference Salinity [g/kg]

Value

```
Practical Salinity (PSS-78) [ unitless ]
```

gsw_SP_from_Sstar 171

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_SP_from_SR.html
```

See Also

```
Other things related to salinity: gsw_C_from_SP(), gsw_SA_from_SP(), gsw_SA_from_SP_Baltic(), gsw_SA_from_Sstar(), gsw_SP_from_C(), gsw_SP_from_SA(), gsw_SP_from_SK(), gsw_SP_from_Sstar(), gsw_SR_from_SP(), gsw_Sstar_from_SP(), gsw_Sstar_from_SP(), gsw_deltaSA_from_SP()
```

Examples

gsw_SP_from_Sstar

Practical Salinity from Preformed Salinity

Description

Practical Salinity from Preformed Salinity

Usage

```
gsw_SP_from_Sstar(Sstar, p, longitude, latitude)
```

Arguments

Sstar Preformed Salinity [g/kg]

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

longitude longitude in decimal degrees, positive to the east of Greenwich. (This is called

long in the TEOS-10 Matlab code.)

latitude latitude in decimal degrees, positive to the north of the equator. (This is called

lat in the TEOS-10 Matlab code.)

172 gsw_SP_salinometer

Value

Practical Salinity (PSS-78) [unitless]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_SP_from_Sstar.html
```

See Also

```
Other things related to salinity: gsw_C_from_SP(), gsw_SA_from_SP(), gsw_SA_from_SP_Baltic(), gsw_SA_from_Sstar(), gsw_SP_from_C(), gsw_SP_from_SA(), gsw_SP_from_SK(), gsw_SP_from_SR(), gsw_SR_from_SP(), gsw_Sstar_from_SA(), gsw_Sstar_from_SP(), gsw_deltaSA_from_SP()
```

Examples

gsw_SP_salinometer

Practical Salinity from Salinometer Reading

Description

Calculate Practical Salinity from salinometer readings of conductivity ratio and bath temperature.

```
gsw_SP_salinometer(ratio, temperature)
```

gsw_SR_from_SP 173

Arguments

ratio Conductivity ratio [unitless]. (This is called Rt in the GSW documentation.) temperature Bath temperature [degC]. (This is called t in the GSW documentation.)

Value

Practical salinity on the PSS-77 scale [unitless]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_SP_salinometer.html
```

Examples

gsw_SR_from_SP

Calculate Reference Salinity from Practical Salinity

Description

Calculate Reference Salinity from Practical Salinity

```
gsw_SR_from_SP(SP)
```

174 gsw_Sstar_from_SA

Arguments

SP

Practical Salinity (PSS-78) [unitless]. The valid range for most 'gsw' functions is from 2 to 42.

Value

Reference Salinity [g/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_SR_from_SP.html
```

See Also

```
Other things related to salinity: gsw_C_from_SP(), gsw_SA_from_SP(), gsw_SA_from_SP_Baltic(), gsw_SA_from_Sstar(), gsw_SP_from_C(), gsw_SP_from_SA(), gsw_SP_from_SK(), gsw_SP_from_SR(), gsw_SP_from_Sstar(), gsw_Sstar_from_SP(), gsw_deltaSA_from_SP()
```

Examples

gsw_Sstar_from_SA

Convert from Absolute Salinity to Preformed Salinity

Description

Calculate Preformed Salinity from Absolute Salinity, pressure, longitude, and latitude.

```
gsw_Sstar_from_SA(SA, p, longitude, latitude)
```

gsw_Sstar_from_SA 175

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
longitude	longitude in decimal degrees, positive to the east of Greenwich. (This is called long in the TEOS-10 Matlab code.)
latitude	latitude in decimal degrees, positive to the north of the equator. (This is called lat in the TEOS-10 Matlab code.)

Details

If SA is a matrix and if its dimensions correspond to the lengths of longitude and latitude, then the latter are converted to analogous matrices with expand.grid.

Value

Preformed Salinity [g/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_Sstar_from_SA.html
```

See Also

```
Other things related to salinity: gsw_C_from_SP(), gsw_SA_from_SP(), gsw_SA_from_SP_Baltic(), gsw_SA_from_Sstar(), gsw_SP_from_C(), gsw_SP_from_SA(), gsw_SP_from_SK(), gsw_SP_from_SR(), gsw_SP_from_SStar(), gsw_SR_from_SP(), gsw_Sstar_from_SP(), gsw_deltaSA_from_SP()
```

Examples

```
c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
                        50,
                                125,
                                         250,
                                                   600.
                                                           1000)
p <-
        c(
              10,
                                                   4,
               4,
                        4,
                                         4,
lat <- c(
                                                              4)
                                4,
long <- c(
              188,
                       188,
                                188,
                                         188,
                                                   188,
                                                            188)
Sstar <- gsw_Sstar_from_SA(SA,p,long,lat)</pre>
```

gsw_Sstar_from_SP

```
stopifnot(all.equal(Sstar, c(34.711575335926490, 34.891138777337822, 35.024705401162166, 34.843564118358302, 34.729005527604883, 34.719712883389462)))
```

gsw_Sstar_from_SP

Convert from Practical Salinity to Preformed Salinity

Description

Calculate Preformed Salinity from Practical Salinity, pressure, longitude, and latitude.

Usage

```
gsw_Sstar_from_SP(SP, p, longitude, latitude)
```

Arguments

SP	Practical Salinity (PSS-78) [unitless]. The valid range for most 'gsw' functions
	is from 2 to 42.

sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

longitude longitude in decimal degrees, positive to the east of Greenwich. (This is called

long in the TEOS-10 Matlab code.)

latitude latitude in decimal degrees, positive to the north of the equator. (This is called

lat in the TEOS-10 Matlab code.)

Details

If SP is a matrix and if its dimensions correspond to the lengths of longitude and latitude, then the latter are converted to analogous matrices with expand.grid.

Value

Preformed Salinity [g/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

gsw_thermobaric 177

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_Sstar_from_SP.html
```

See Also

```
Other things related to salinity: gsw_C_from_SP(), gsw_SA_from_SP(), gsw_SA_from_SP_Baltic(), gsw_SA_from_Sstar(), gsw_SP_from_C(), gsw_SP_from_SA(), gsw_SP_from_SK(), gsw_SP_from_SR(), gsw_SP_from_SStar(), gsw_SR_from_SP(), gsw_Sstar_from_SA(), gsw_deltaSA_from_SP()
```

Examples

```
c(34.5487, 34.7275, 34.8605, 34.6810, 34.5680, 34.5600)
p <-
       c(
              10,
                        50,
                                125,
                                         250,
                                                  600,
                       4,
               4,
                                                  4,
lat <- c(
                                4,
                                         4,
                                                           4)
long <- c(</pre>
             188,
                       188,
                                188,
                                         188,
                                                  188,
                                                           188)
Sstar <- gsw_Sstar_from_SP(SP,p,long,lat)</pre>
stopifnot(all.equal(Sstar, c(34.711553680880769, 34.891161395333754, 35.024650265047370,
                           34.843593141519356, 34.729033995955525, 34.719675962471783)))
```

gsw_thermobaric

Thermobaric coefficient (75-term equation)

Description

Thermobaric coefficient (75-term equation)

Usage

```
gsw_thermobaric(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
СТ	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

thermobaric coefficient wrt Conservative Temperature [1/(K Pa)]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_thermobaric.html

Examples

gsw_Turner_Rsubrho

Turner Angle and Density Ratio

Description

This uses the 75-term density equation. The values of Turner Angle Tu and density ratio Rrho are calculated at mid-point pressures, p_mid.

Usage

```
gsw_Turner_Rsubrho(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
	g/kg.
CT	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

List containing Tu [degrees], Rsubrho [unitless], and p_mid [dbar]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_Turner_Rsubrho.html

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)

p <- c( 10, 50, 125, 250, 600, 1000)

r <- gsw_Turner_Rsubrho(SA, CT, p)

stopifnot(all.equal(r$Tu, c(-2.063858905281147, 41.758435216784427, 47.606966981687535, 53.710351151706369, 45.527063858211527)))

stopifnot(all.equal(r$Rsubrho, 100*c(-0.009304335069039, -0.176564834348709, 0.219627771740757, 0.065271424662002, 1.087044054679743)))

stopifnot(all.equal(r$p_mid, 100*c(0.300, 0.875, 1.875, 4.250, 8.000)))
```

```
gsw_t_deriv_chem_potential_water_t_exact

Derivative of Chemical Potential of Water in Seawater wrt Temperature
```

Description

Derivative of Chemical Potential of Water in Seawater wrt Temperature

```
gsw_t_deriv_chem_potential_water_t_exact(SA, t, p)
```

180 gsw_t_freezing

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42
	g/kg.
t	in-situ temperature (ITS-90) [degC]
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

```
derivative [ J/(g*degC) ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_t_deriv_chem_potential_water_t_exact.html
```

Examples

gsw_t_freezing

Freezing Temperature of Seawater

Description

This uses the C function named gsw_t_freezing_exact, because the C function named gsw_t_freezing does not produce check values that match the Matlab function called gsw_t_freezing (see references for those test values).

gsw_t_freezing 181

Usage

```
gsw_t_freezing(SA, p, saturation_fraction = 1)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar saturation_fraction fraction of air in water [unitless]
```

Value

in-situ freezing temperature (ITS-90) [degC]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_t_freezing.html
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c( 10, 50, 125, 250, 600, 1000)
saturation_fraction <- 1
tf <- gsw_t_freezing(SA, p, saturation_fraction)
stopifnot(all.equal(tf, c(-1.902730710149803, -1.942908619287183, -2.006861069199743, -2.090985086875259, -2.351293130342102, -2.660498762776720)))
```

```
gsw_t_freezing_first_derivatives

Derivatives of Freezing Water Properties
```

Description

Derivatives of Freezing Water Properties

Usage

```
gsw_t_freezing_first_derivatives(SA, p, saturation_fraction = 1)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar saturation_fraction fraction of air in water [unitless]
```

Value

a list containing tfreezing_SA [K/(g/kg)], the derivative of freezing temperature with Absolute Salinity and tfreezing_p [K/(g/kg)], the derivative with respect to pressure.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_t_freezing_first_derivatives.html

Examples

```
SA <- c(
                       34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c(
                             10,
                                      50,
                                              125,
                                                        250,
                                                                 600,
                                                                         1000)
saturation_fraction <- c(</pre>
                            1,
                                     0.8,
                                              0.6,
                                                        0.5,
                                                                            0)
derivs <- gsw_t_freezing_first_derivatives(SA, p, saturation_fraction)</pre>
stopifnot(all.equal(derivs$tfreezing_SA,
    c(-0.056811800705787, -0.056856999671114, -0.056903079789292,
      -0.056904020028541, -0.056974588411844, -0.057082363270642)))
stopifnot(all.equal(derivs$tfreezing_p/1e-7,
    c(-0.748468312442338, -0.749793159537290, -0.752225023995510,
     -0.756170965034610, -0.767279572670040, -0.779936552091913)))
```

```
{\tt gsw\_t\_freezing\_first\_derivatives\_poly}
```

Derivatives of Freezing Water Properties (Polynomial version)

Description

Derivatives of Freezing Water Properties (Polynomial version)

Usage

```
gsw_t_freezing_first_derivatives_poly(SA, p, saturation_fraction = 1)
```

Arguments

```
Absolute Salinity [ g/kg ]. The valid range for most 'gsw' functions is 0 to 42 g/kg.

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar saturation_fraction fraction of air in water [unitless]
```

Value

a list containing tfreezing_SA [K/(g/kg)], the derivative of freezing temperature with Absolute Salinity and tfreezing_p [K/(g/kg)], the derivative with respect to pressure.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

184 gsw_t_from_CT

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_t_freezing_first_derivatives.html

Examples

```
SA <- c(
                       34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c(
                                           125,
                                                    250,
                                                               600,
                            10,
                                    50,
saturation_fraction <- c( 1,</pre>
                                    0.8,
                                             0.6,
                                                      0.5,
                                                               0.4,
derivs <- gsw_t_freezing_first_derivatives_poly(SA, p, saturation_fraction)</pre>
stopifnot(all.equal(derivs$tfreezing_SA,
    c(-0.056810211094078,\ -0.056855567524973,\ -0.056901968693345,
      -0.056903498206432, -0.056975157476629, -0.057083526206200)))
stopifnot(all.equal(derivs$tfreezing_p/1e-7,
   c(-0.748987354878138, -0.750288853857513, -0.752676389629787,
      -0.756549680608529, -0.767482625710990, -0.779985619685683)))
```

gsw_t_from_CT

In situ temperature from Conservative Temperature

Description

In situ temperature from Conservative Temperature

Usage

```
gsw_t_from_CT(SA, CT, p)
```

Arguments

SA	Absolute Salinity [g/kg]. The valid range for most 'gsw' functions is 0 to 42 g/kg.
СТ	Conservative Temperature [degC].
р	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

in-situ temperature (ITS-90) [degC]

gsw_t_from_pt0_ice 185

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_t_from_CT.html
```

Examples

```
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)

CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)

p <- c( 10, 50, 125, 250, 600, 1000)

t <- gsw_t_from_CT(SA, CT, p)

stopifnot(all.equal(t, c(28.785580227725703, 28.432872246163946, 22.810323087627076, 10.260010752788906, 6.886286301029376, 4.403624452383043)))
```

gsw_t_from_pt0_ice

In situ Temperature from Potential Temperature at Odbar

Description

In situ Temperature from Potential Temperature at Odbar

Usage

```
gsw_t_from_pt0_ice(pt0_ice, p)
```

Arguments

```
pt0_ice potential temperature of ice (ITS-90) [ degC ]

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
```

Value

```
in-situ temperature (ITS-90) [ degC ]
```

186 gsw_z_from_p

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create data directory of https://github. com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_t_from_pt0_ice.html
```

Examples

```
pt0_ice <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
p < -c(10, 50,
                             125,
                                      250,
                                                       1000)
t <- gsw_t_from_pt0_ice(pt0_ice, p)</pre>
stopifnot(all.equal(t, c(-10.783412084414074, -13.422068638139141, -12.783170223330448,
                        -12.205667526492039, -10.755496924674144, -8.184121042593350)))
```

gsw_z_from_p

Height from Pressure

Description

Computation of height (above sea level) from pressure, using the 75-term equation for specific volume.

Usage

```
gsw_z_from_p(p, latitude, geo_strf_dyn_height, sea_surface_geopotential)
```

Arguments

sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar latitude latitude in decimal degrees, positive to the north of the equator. (This is called lat in the TEOS-10 Matlab code.) geo_strf_dyn_height vector of same length as p and latitude, indicating dynamic height [m^2/s^2

]. If not supplied, this defaults to a vector of 0 values, with length matching that of p.

gsw_z_from_p 187

```
sea_surface_geopotential
```

vector of same length as p and latitude, indicating geopotential at zero sea pressure [m^2/s^2]. If not supplied, this defaults to a vector of 0 values, with length matching that of p.

Value

```
height [ m ]
```

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2022-10-11 at https://github.com/TEOS-10/GSW-C with git commit '657216dd4f5ea079b5f0e021a4163e2d26893371'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

Historical Note

The geo_strf_dyn_height and sea_surface_geopotential parameters were added in GSW-R version 1.0-6.

References

```
http://www.teos-10.org/pubs/gsw/html/gsw_z_from_p.html
```

See Also

Other things related to depth: gsw_p_from_z()

Examples

188 saar

saar

Global SA lookup file

Description

This dataset is not intended for users, but rather for internal use within the gsw package. The dataset stores the 1.4M lookup table defined in the 8.3M file src/gsw_saar_data.c in the C library. (The .c file exceeds CRAN limitations on size.)

Details

The data are designed to replace C elements defined as below in src/gsw_saar_data.c:

```
static int gsw_nx=91, gsw_ny=45, gsw_nz=45;
static double longs_ref[91];
static double lats_ref[45];
static double p_ref[45];
static double ndepth_ref[4095];
static double saar_ref[184275];
static double delta_sa_ref[184275];
```

R storage is in a list named saar, with elements named as in the C code, i.e. gsw_nx etc.

C storage for these variables is allocated as needed, and the data are inserted, when gsw is launched. Thus, the existing C library code "knows" about the data as local storage, which keeps alterations to the C library to a minimum.

The saar dataset was created by the following R code. The netcdf file used in this code comes from the GSW-Fortran repository (at commit baa0c09ffc7ed1f74972a1a2902d8754caa5b4cb) and its md5 value is dacb3f981e8e710ac2e83477701b3905.

```
library(ncdf4)
nc <- nc_open("~/git/GSW-Fortran/test/gsw_data_v3_0.nc")</pre>
## Use as.vector() since these will all get handed into C, which does not understand matrices.
p_ref <- as.vector(ncvar_get(nc, "p_ref"))</pre>
lats_ref <- as.vector(ncvar_get(nc, "lats_ref"))</pre>
longs_ref <- as.vector(ncvar_get(nc, "longs_ref"))</pre>
ndepth_ref <- as.vector(ncvar_get(nc, "ndepth_ref"))</pre>
ndepth_ref[!is.finite(ndepth_ref)] <- -9e99</pre>
saar_ref <- as.vector(ncvar_get(nc, "SAAR_ref"))</pre>
saar_ref[!is.finite(saar_ref)] <- -9e99</pre>
delta_sa_ref <- as.vector(ncvar_get(nc, "deltaSA_ref"))</pre>
delta_sa_ref[!is.finite(delta_sa_ref)] <- -9e99</pre>
saar <- list(gsw_nx=gsw_nx, gsw_ny=gsw_ny, gsw_nz=gsw_nz,</pre>
         longs_ref=longs_ref, lats_ref=lats_ref, p_ref=p_ref, ndepth_ref=ndepth_ref,
               saar_ref=saar_ref, delta_sa_ref=delta_sa_ref)
save(saar, file="saar.rda")
tools::resaveRdaFiles("saar.rda")
nc_close(nc)
```

Index

```
* things related to chemical potential
                                                    gsw_specvol_ice, 158
    gsw_chem_potential_water_ice, 16
                                                    gsw_specvol_t_exact, 163
    gsw_chem_potential_water_t_exact,
                                                * things related to depth
                                                    gsw_p_from_z, 119
* things related to compressibility
                                                    gsw_z_from_p, 186
    gsw_kappa, 79
                                                * things related to energy
    gsw_kappa_const_t_ice, 80
                                                    gsw_Helmholtz_energy_ice, 72
    gsw_kappa_ice, 81
                                                * things related to enthalpy
    gsw_kappa_t_exact, 82
                                                    gsw_CT_from_enthalpy, 27
* things related to conductivity
                                                    gsw_dynamic_enthalpy, 38
    gsw_C_from_SP, 35
                                                    gsw_enthalpy, 40
    gsw_SP_from_C, 167
                                                    gsw_enthalpy_CT_exact, 41
* things related to density
                                                    gsw_enthalpy_diff, 42
    gsw_alpha, 8
                                                    gsw_enthalpy_first_derivatives, 43
    gsw_alpha_on_beta,9
                                                    gsw_enthalpy_first_derivatives_CT_exact,
    gsw_alpha_wrt_t_exact, 10
    gsw_alpha_wrt_t_ice, 11
                                                    gsw_enthalpy_ice, 46
    gsw_beta, 13
                                                    gsw_enthalpy_t_exact, 50
    gsw_beta_const_t_exact, 14
                                                    gsw_frazil_properties_potential,
    gsw_CT_from_rho, 30
    gsw_CT_maxdensity, 33
                                                    gsw_frazil_properties_potential_poly,
    gsw_infunnel, 75
    gsw_pot_rho_t_exact, 104
                                                    gsw_pot_enthalpy_from_pt_ice, 97
    gsw_rho, 120
                                                    gsw_pot_enthalpy_from_pt_ice_poly,
    gsw_rho_alpha_beta, 122
    gsw_rho_first_derivatives, 123
                                                    gsw_pot_enthalpy_ice_freezing, 99
    gsw_rho_first_derivatives_wrt_enthalpy,
                                                    gsw_pot_enthalpy_ice_freezing_poly,
        124
    gsw_rho_ice, 126
                                                    gsw_pt_from_pot_enthalpy_ice, 113
    gsw_rho_t_exact, 130
                                                    gsw_pt_from_pot_enthalpy_ice_poly,
    gsw_SA_from_rho, 136
    gsw_sigma0, 143
                                                    gsw_specvol_first_derivatives, 156
                                                    gsw_specvol_first_derivatives_wrt_enthalpy,
    gsw_sigma1, 144
                                                         157
    gsw_sigma2, 145
                                                * things related to entropy
    gsw_sigma3, 146
    gsw_sigma4, 147
                                                    gsw_CT_from_entropy, 28
    gsw_specvol, 152
                                                    gsw_entropy_first_derivatives, 51
    gsw_specvol_alpha_beta, 153
                                                    gsw_entropy_from_pt, 52
    gsw_specvol_anom_standard, 154
                                                    gsw_entropy_from_t, 53
```

gsw_entropy_ice,55	gsw_alpha_wrt_t_ice, 9-11, 11, 13, 15, 31,
<pre>gsw_pt_from_entropy, 112</pre>	33, 75, 105, 121, 123–126, 130, 137,
* things related to latent heat	143, 145–148, 153–155, 159, 163
<pre>gsw_latentheat_evap_CT, 83</pre>	gsw_beta, 9-12, 13, 15, 31, 33, 75, 105, 121,
<pre>gsw_latentheat_evap_t, 84</pre>	123–126, 130, 137, 143, 145–148,
gsw_latentheat_melting,85	153–155, 159, 163
* things related to oxygen	gsw_beta_const_t_exact, 9-13, 14, 31, 33,
gsw_02sol, 95	75, 105, 121, 123–126, 130, 137,
gsw_02sol_SP_pt,96	143, 145–148, 153–155, 159, 163
* things related to salinity	gsw_C_from_SP, 35, 37, 138, 140, 141,
gsw_C_from_SP, 35	168–172, 174, 175, 177
<pre>gsw_deltaSA_from_SP, 36</pre>	gsw_cabbeling, 15
gsw_SA_from_SP, 137	<pre>gsw_chem_potential_water_ice, 16, 18</pre>
<pre>gsw_SA_from_SP_Baltic, 139</pre>	<pre>gsw_chem_potential_water_t_exact, 17,</pre>
gsw_SA_from_Sstar, 140	17
gsw_SP_from_C, 167	gsw_cp_ice, 18
gsw_SP_from_SA, 168	gsw_cp_t_exact, 19
gsw_SP_from_SK, 169	gsw_CT_first_derivatives, 20
gsw_SP_from_SR, 170	<pre>gsw_CT_first_derivatives_wrt_t_exact,</pre>
gsw_SP_from_Sstar, 171	21
gsw_SR_from_SP, 173	gsw_CT_freezing, 22
gsw_Sstar_from_SA, 174	gsw_CT_freezing_first_derivatives, 24
gsw_Sstar_from_SP, 176	<pre>gsw_CT_freezing_first_derivatives_poly,</pre>
* things related to sound	25
gsw_sound_speed, 149	gsw_CT_freezing_poly, 26
<pre>gsw_sound_speed_ice, 150</pre>	gsw_CT_from_enthalpy, 27, 39, 40, 42–44,
<pre>gsw_sound_speed_t_exact, 151</pre>	46, 47, 51, 60, 61, 98–100, 104, 114,
* things related to spiciness	115, 157, 158
gsw_spiciness0,164	gsw_CT_from_entropy, 28, 52-55, 113
gsw_spiciness1, 165	gsw_CT_from_pt, 29
gsw_spiciness2, 166	gsw_CT_from_rho, 9–13, 15, 30, 33, 75, 105,
	121, 123–126, 130, 137, 143,
argfix,5	145–148, 153–155, 159, 163
	gsw_CT_from_t, 32
expand.grid, 138–140, 168, 175, 176	gsw_CT_maxdensity, 9–13, 15, 31, 33, 75,
	105, 121, 123–126, 130, 137, 143,
<pre>gsw_adiabatic_lapse_rate_from_CT, 6</pre>	145–148, 153–155, 159, 163
gsw_adiabatic_lapse_rate_ice, 7	gsw_CT_second_derivatives, 34
gsw_alpha, 8, 10–13, 15, 31, 33, 75, 105, 121,	gsw_deltaSA_from_SP, 36, 36, 138, 140, 141,
123–126, 130, 137, 143, 145–148,	168–172, 174, 175, 177
153–155, 159, 163	gsw_dilution_coefficient_t_exact, 37
gsw_alpha_on_beta, 9, 9, 11–13, 15, 31, 33,	gsw_dynamic_enthalpy, 28, 38, 40, 42–44,
75, 105, 121, 123–126, 130, 137,	46, 47, 51, 60, 61, 98–100, 104, 114,
143, 145–148, 153–155, 159, 163	115, 157, 158
gsw_alpha_wrt_t_exact, 9, 10, 10, 12, 13,	gsw_enthalpy, 28, 39, 40, 42–44, 46, 47, 51,
15, 31, 33, 75, 105, 121, 123–126,	60, 61, 98–100, 104, 114, 115, 157,
130, 137, 143, 145–148, 153–155,	158
159, 163	gsw enthalpy CT exact. 28, 39, 40, 41, 43.

44, 46, 47, 51, 60, 61, 98–100, 104,	gsw_internal_energy, 76
114, 115, 157, 158	<pre>gsw_internal_energy_ice,77</pre>
gsw_enthalpy_diff, 28, 39, 40, 42, 42, 44,	gsw_IPV_vs_fNsquared_ratio,78
46, 47, 51, 60, 61, 98–100, 104, 114,	gsw_kappa, 79, 81-83
115, 157, 158	gsw_kappa_const_t_ice, 80, 80, 82, 83
<pre>gsw_enthalpy_first_derivatives, 28, 39,</pre>	gsw_kappa_ice, 80, 81, 81, 83
40, 42, 43, 43, 46, 47, 51, 60, 61,	gsw_kappa_t_exact, <i>80-82</i> , <i>82</i>
98–100, 104, 114, 115, 157, 158	gsw_latentheat_evap_CT, 83, 85, 86
<pre>gsw_enthalpy_first_derivatives_CT_exact,</pre>	gsw_latentheat_evap_t, 84, 84, 86
28, 39, 40, 42–44, 45, 47, 51, 60, 61,	gsw_latentheat_melting, 84, 85, 85
98–100, 104, 114, 115, 157, 158	<pre>gsw_melting_ice_equilibrium_SA_CT_ratio,</pre>
gsw_enthalpy_ice, 28, 39, 40, 42-44, 46, 46,	86
51, 60, 61, 98–100, 104, 114, 115,	<pre>gsw_melting_ice_equilibrium_SA_CT_ratio_poly,</pre>
157, 158	87
gsw_enthalpy_second_derivatives,47	gsw_melting_ice_into_seawater,88
<pre>gsw_enthalpy_second_derivatives_CT_exact,</pre>	gsw_melting_ice_SA_CT_ratio,90
49	<pre>gsw_melting_ice_SA_CT_ratio_poly, 91</pre>
gsw_enthalpy_t_exact, 28, 39, 40, 42-44,	<pre>gsw_melting_seaice_into_seawater, 92</pre>
46, 47, 50, 60, 61, 98–100, 104, 114,	gsw_Nsquared, 93
115, 157, 158	gsw_02sol, 95, 96, 97
gsw_entropy_first_derivatives, 29, 51,	gsw_02sol_SP_pt, <i>95</i> , <i>96</i> , 96
53–55, 113	gsw_p_from_z, 119, <i>187</i>
gsw_entropy_from_pt, 29, 52, 52, 54, 55, 113	<pre>gsw_pot_enthalpy_from_pt_ice, 28, 39, 40,</pre>
gsw_entropy_from_t, 29, 52, 53, 53, 55, 113	42–44, 46, 47, 51, 60, 61, 97, 99,
gsw_entropy_ice, 29, 52-54, 55, 113	100, 104, 114, 115, 157, 158
gsw_entropy_second_derivatives, 56	<pre>gsw_pot_enthalpy_from_pt_ice_poly, 28,</pre>
gsw_Fdelta, 57	39, 40, 42–44, 46, 47, 51, 60, 61, 98,
gsw_frazil_properties, 58	98, 100, 104, 114, 115, 157, 158
gsw_frazil_properties_potential, 28, 39,	<pre>gsw_pot_enthalpy_ice_freezing, 28, 39,</pre>
40, 42–44, 46, 47, 51, 59, 61,	40, 42–44, 46, 47, 51, 60, 61, 98, 99,
98–100, 104, 114, 115, 157, 158	99, 104, 114, 115, 157, 158
gsw_frazil_properties_potential_poly,	<pre>gsw_pot_enthalpy_ice_freezing_first_derivatives,</pre>
28, 39, 40, 42–44, 46, 47, 51, 60, 61,	101
98–100, 104, 114, 115, 157, 158	<pre>gsw_pot_enthalpy_ice_freezing_first_derivatives_poly,</pre>
gsw_frazil_ratios_adiabatic, 62	102
gsw_frazil_ratios_adiabatic_poly, 63	gsw_pot_enthalpy_ice_freezing_poly, 28,
gsw_geo_strf_dyn_height, 64	39, 40, 42–44, 46, 47, 51, 60, 61,
gsw_geo_strf_dyn_height_1,66	<i>98–100</i> , 103, <i>114</i> , <i>115</i> , <i>157</i> , <i>158</i>
gsw_geo_strf_dyn_height_pc, 67	gsw_pot_rho_t_exact, 9-13, 15, 31, 33, 75,
gsw_gibbs, 69	104, 121, 123–126, 130, 137, 143,
gsw_gibbs_ice, 70	145–148, 153–155, 159, 163
gsw_grav, 71	gsw_pressure_coefficient_ice, 106
gsw_Helmholtz_energy_ice, 72	gsw_pressure_freezing_CT, 107
gsw_ice_fraction_to_freeze_seawater,	gsw_pt0_from_t, 108
73	gsw_pt0_from_t_ice, 109
gsw_infunnel, 9–13, 15, 31, 33, 75, 105, 121,	gsw_pt_first_derivatives, 110
123–126, 130, 137, 143, 145–148,	gsw_pt_from_CT, 111
<i>153–155</i> , <i>159</i> , <i>163</i>	gsw_pt_from_entropy, 29, 52-55, 112

gsw_pt_from_pot_enthalpy_ice, 28, 39, 40,	gsw_sigma0, 9-13, 15, 31, 33, 75, 105, 121,
42–44, 46, 47, 51, 60, 61, 98–100,	123–126, 130, 137, 143, 145–148,
<i>104</i> , 113, <i>115</i> , <i>157</i> , <i>158</i>	153–155, 159, 163
<pre>gsw_pt_from_pot_enthalpy_ice_poly, 28,</pre>	gsw_sigma1, 9-13, 15, 31, 33, 75, 105, 121,
39, 40, 42–44, 46, 47, 51, 60, 61,	<i>123–126, 130, 137, 143,</i> 144,
<i>98–100, 104, 114,</i> 114 <i>, 157, 158</i>	146–148, 153–155, 159, 163
gsw_pt_from_t, 115	gsw_sigma2, 9-13, 15, 31, 33, 75, 105, 121,
gsw_pt_from_t_ice, 116	123–126, 130, 137, 143, 145, 145,
gsw_pt_second_derivatives, 118	147, 148, 153–155, 159, 163
gsw_rho, 9–13, 15, 31, 33, 75, 105, 120,	gsw_sigma3, 9-13, 15, 31, 33, 75, 105, 121,
123–126, 130, 137, 143, 145–148,	123–126, 130, 137, 143, 145, 146,
	146, <i>148</i> , <i>153</i> – <i>155</i> , <i>159</i> , <i>163</i>
153–155, 159, 163	
gsw_rho_alpha_beta, 9–13, 15, 31, 33, 75,	gsw_sigma4, 9-13, 15, 31, 33, 75, 105, 121,
105, 121, 122, 124–126, 130, 137,	123–126, 130, 137, 143, 145–147,
143, 145–148, 153–155, 159, 163	147, <i>153–155</i> , <i>159</i> , <i>163</i>
gsw_rho_first_derivatives, 9-13, 15, 31,	gsw_sound_speed, 149, 150, 152
33, 75, 105, 121, 123, 123, 125, 126,	gsw_sound_speed_ice, 149, 150, 152
130, 137, 143, 145–148, 153–155,	gsw_sound_speed_t_exact, 149, 150, 151
159, 163	gsw_SP_from_C, 36, 37, 138, 140, 141, 167,
<pre>gsw_rho_first_derivatives_wrt_enthalpy,</pre>	169–172, 174, 175, 177
9–13, 15, 31, 33, 75, 105, 121, 123,	gsw_SP_from_SA, 36, 37, 138, 140, 141, 168,
124, 124, 126, 130, 137, 143,	168, 170–172, 174, 175, 177
145–148, 153–155, 159, 163	gsw_SP_from_SK, 36, 37, 138, 140, 141, 168,
gsw_rho_ice, 9-13, 15, 31, 33, 75, 105, 121,	169, 169, 171, 172, 174, 175, 177
123–125, 126, 130, 137, 143,	gsw_SP_from_SR, 36, 37, 138, 140, 141,
145–148, 153–155, 159, 163	168–170, 170, 172, 174, 175, 177
gsw_rho_second_derivatives, 127	gsw_SP_from_Sstar, 36, 37, 138, 140, 141,
gsw_rho_second_derivatives_wrt_enthalpy,	168–171, 171, 174, 175, 177
128	
gsw_rho_t_exact, 9-13, 15, 31, 33, 75, 105,	gsw_SP_salinometer, 172
121, 123–126, 130, 137, 143,	gsw_specvol, 9-13, 15, 31, 33, 75, 105, 121,
	123–126, 130, 137, 143, 145–148,
145–148, 153–155, 159, 163	152, 154, 155, 159, 163
gsw_SA_freezing_from_CT, 132	gsw_specvol_alpha_beta, <i>9–13</i> , <i>15</i> , <i>31</i> , <i>33</i> ,
gsw_SA_freezing_from_CT_poly, 133	75, 105, 121, 123–126, 130, 137,
gsw_SA_freezing_from_t, 134	143, 145–148, 153, 153, 155, 159,
gsw_SA_freezing_from_t_poly, 135	163
gsw_SA_from_rho, <i>9–13</i> , <i>15</i> , <i>31</i> , <i>33</i> , <i>75</i> , <i>105</i> ,	$gsw_specvol_anom_standard, 9-13, 15, 31,$
<i>121</i> , <i>123–126</i> , <i>130</i> , 136, <i>143</i> ,	33, 75, 105, 121, 123–126, 130, 137,
145–148, 153–155, 159, 163	<i>143</i> , <i>145–148</i> , <i>153</i> , <i>154</i> , 154, <i>159</i> ,
gsw_SA_from_SP, <i>36</i> , <i>37</i> , 137, <i>140</i> , <i>141</i> ,	163
168–172, 174, 175, 177	gsw_specvol_first_derivatives, 28, 39,
gsw_SA_from_SP_Baltic, 36, 37, 138, 139,	40, 42–44, 46, 47, 51, 60, 61,
141, 168–172, 174, 175, 177	98–100, 104, 114, 115, 156, 158
gsw_SA_from_Sstar, 36, 37, 138, 140, 140,	<pre>gsw_specvol_first_derivatives_wrt_enthalpy,</pre>
168–172, 174, 175, 177	28, 39, 40, 42–44, 46, 47, 51, 60, 61,
gsw_SAAR, 131	98–100, 104, 114, 115, 157, 157
gsw_seaice_fraction_to_freeze_seawater,	gsw_specvol_ice, 9–13, 15, 31, 33, 75, 105,
141	121, 123–126, 130, 137, 143,
* 1 *	121, 120 120, 100, 107, 110,

```
145–148, 153–155, 158, 163
gsw_specvol_second_derivatives, 160
gsw_specvol_second_derivatives_wrt_enthalpy,
gsw_specvol_t_exact, 9–13, 15, 31, 33, 75,
        105, 121, 123–126, 130, 137, 143,
        145–148, 153–155, 159, 163
gsw_spiciness0, 164, 166, 167
gsw_spiciness1, 165, 165, 167
gsw_spiciness2, 165, 166, 166
gsw_SR_from_SP, 36, 37, 138, 140, 141,
         168–172, 173, 175, 177
gsw_Sstar_from_SA, 36, 37, 138, 140, 141,
        168–172, 174, 174, 177
gsw_Sstar_from_SP, 36, 37, 138, 140, 141,
        168–172, 174, 175, 176
gsw_t_deriv_chem_potential_water_t_exact,
        179
gsw_t_freezing, 180
gsw_t_freezing_first_derivatives, 182
gsw_t_freezing_first_derivatives_poly,
        183
gsw_t_from_CT, 184
gsw_t_from_pt0_ice, 185
gsw_thermobaric, 177
gsw_Turner_Rsubrho, 178
gsw_z_from_p, 120, 186
saar, 188
```