UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9701 CHEMISTRY

9701/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		Mark Scheme: Teachers' version	Syllabus	Paper		
		GCE AS/A LEVEL – May/June 2011	9701	22		
1	(a) $K_c = \frac{[C]}{[C]}$ no units	CH ₃ CH ₂ R][H ₂ 0] CH ₃ CH ₂ H][ROH]		(1) (1)	[2]	
	(b) (i) <i>n</i> (Na	aOH) = <u>22.5 x 2.00</u> = 0.045 1000		(1)		
	(ii) n(Na	aOH) = n(HCl) = 0.005		(1)		
	(iii) CH ₃	$CO_2H + NaOH \rightarrow CH_3CO_2Na + H_2O$		(1)		
		aOH) = 0.045 - 0.005 = 0.04 w ecf on (i) and/or (ii)		(1)	[4]	
		aOH) and $n(CH_3CO_2H) = 0.04$ H ₃ CO ₂ R) and $n(H_2O) = 0.06$		(1) (1)		
	(ii) K _c =	$\frac{0.06 \times 0.06}{0.04 \times 0.04} = 2.25$				
		w ecf on wrong values in (b)(i) w ecf on wrong expression in (a)		(1)	[3]	
		action with ester is high or action with acid is low				
		with ester is slow or with acid is fast		(1)	[1]	
		um moves to RHS/more ester would be formed ain value of K_c or		(1)		
		e system to equilibrium		(1)	[2]	

[Total: 12]

	Page 3						Syllabus	Paper	,	
			GCE	AS/A LEV	EL – May/J	une 2011		9701	22	
2	(a)		CH ₂ =CH	l ₂ + HF	\rightarrow C	H₃CH₂F				
			ds 4 C-H ken 1 C=C mol ⁻¹ 1 H-F	1640 610 <u>562</u> 2812	bonds made /kJ mol ⁻¹	5 C-H 1 C-C 1 C-F (240	2050 350 <u>E</u> 00 + E)			
		_	reactant bond + 610 + 562 =		ol ⁻¹				(1)	
		making product bonds gives								
			+ 350 + E =	•	·				(1)	
			_n = - (2400 + <i>E</i>	•		J ⁻¹			(1)	
		$(2400 + E) = 2812 + 73 = 2885 \text{ kJ mol}^{-1}$								
		$E = 2885 - 2400 = 485 \text{ kJ mol}^{-1}$				(1)				
		allow ecf on wrong bond energy values and/or incorrect arithmetic					[4]			
	(b)	any two non-toxio unreactiv volatile non-flam easily liq	c ve nmable						(1 + 1)	[2]
	(c)	C-C1 bor	nd energy is 34 nd is broken by radicals are for	uvl or	and is wea	ker than C	C-F or C-I	H bonds	(1) (1)	[2]
	(d)	` '	trapping of refl ducing global w		from the Ea	arth in the	lower atr	nosphere		
		(ii) CO ₂	/carbon dioxid	е					(1)	[3]

[Total: 12]

(1) [1]

(e) octahedral

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – Mav/June 2011	9701	22

(b) (i) T to W

$$Ba(OH)_2 + 2HNO_3 \rightarrow Ba(NO_3)_2 + 2H_2O$$
 (1)

heat on
$$\mathbf{V}$$

BaCO₃ \rightarrow BaO + CO₂ (1)

(ii) T to V
$$CO_2$$
 (1) $Ba(OH)_2 + CO_2 \rightarrow BaCO_3 + H_2O$ (1) [4]

(c)
$$Na_2SO_4(aq)/K_2SO_4(aq)$$
 or any soluble sulfate (1) [1]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9701	22

(d) (i)
$$Ba:O = 81.1 : 18.9 137 : 16$$

 = 0.59 : 1.18
 = 1 : 2
 gives BaO_2 (1)

(ii) $BaSO_4$ (1)

(iii)
$$BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$$
 (1) [4]

[Total: 15]

(ii) anode
$$2Cl(aq) \to Cl_2(g) + 2e^-$$
 (1)
cathode $2H^+(aq) + 2e^- \to H_2(g)$ or $2H_2O(I) + 2e^- \to H_2(g) + 2OH^-(aq)$ (1) [2]

(iii) sodium hydroxide (1) [1]

[Total: 7]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9701	22

5 (a) CH₂OCO(CH₂)₁₆CH₃

all three alcohol groups must be esterified

(1) [1]

(b) dilute HC*l* or dilute H₂SO₄ or dilute mineral acid or NaOH(aq) followed by dilute acid

(1) [1]

(c)

$$CH_3(CH_2)_7$$
 C C $CH_2)_7CO_2H$

(1) [1]

(d) (i) fatty acid that contains more than one C=C bond

(1)

(ii) hydrogen nickel/Raney nickel/platinum/palladium

(1) (1) [3]

(e) (i) $CH_3(CH_2)_7CHO$ $OHC(CH_2)_7CX$

(1) (1)

(ii) 2,4-dinitrophenylhydrazine yellow/orange/red precipitate

(1) (1)

(iii) Tollens' reagent silver mirror/

grey precipitate

or Fehling's/Benedict's solutionor brick red ppt.

(1) (1)

[6]

(f) (i) two

(1)

(ii) ester

(1) [2]

[Total: 14]