Algorithme de vérification du raisonnement énergétique en $O(n \log^2 n)$ et algorithme de filtrage en $O(n^2 \log n)$.

Yanick Ouellet

Claude-Guy Quimper

23 février 2018

Université Laval

Introduction: Problème à résoudre

Étudiant

• Plusieurs travaux à remettre dans la session

Introduction: Problème à résoudre

Étudiant

- Plusieurs travaux à remettre dans la session
- Estime le temps de chaque travail

Introduction: Problème à résoudre

Étudiant

- Plusieurs travaux à remettre dans la session
- Estime le temps de chaque travail
- Souhaite savoir la date à laquelle il doit commencer s'il veut remettre tous ses travaux à temps

Introduction : Problème à résoudre

Étudiant

- Plusieurs travaux à remettre dans la session
- Estime le temps de chaque travail
- Souhaite savoir la date à laquelle il doit commencer s'il veut remettre tous ses travaux à temps
- Malheureusement pour l'étudiant, c'est NP-Difficile :(

Plan de la présentation

- 1. Introduction à la programmation par contraintes
- 2. Problèmes d'ordonnancement
- 3. Algorithmes et structures de données
- 4. Résultats expérimentaux

Programmation par contraintes

Objectif

- Résoudre des problèmes NP-Difficiles
- Résoudre des instances industrielles dans un temps raisonnable

Modélisation du problème

Variables

- Type (Entier, Réel, Booléen, Ensemble, etc.)
- Domaine

Contraintes

- Restreint le domaine des variables
- Unaire (Une variable)
- Binaire (Deux variables)
- Globales

Exemple d'un modèle

Problème

$$X + Y \leq Z$$

Variables

- *X* ∈ {0..10}
- $Y \in \{0..10\}$
- *Z* ∈ {0..10}

Contrainte

• $X + Y \leq Z$

Résolution d'un problème de programmation par contraintes

Solveur

- Logiciel spécialisé qui prend en entrée un modèle et retourne une solution
- Construit un arbre de recherche
 - Assignation d'une valeur à une variable
 - Algorithmes de vérification
 - Algorithmes de filtrage

Arbre de recherche

Contrainte $X + Y \leq Z$

Ordonnancement

Anatomie d'une tâche

Tâche

Notation

- est : Earliest Starting Time
- ect : Earliest Completion Time
- Ist : Latest Starting Time
- lct : Latest Completion Time
- p : Processing time
- h : Height

Contrainte cumulative

Contrainte cumulative

- Ensemble de tâches
- La hauteur des tâches en cours d'exécution à un instant t est au plus C

Intersection minimum

•
$$LS(1,8) = 3$$

Intersection minimum

- LS(1,8) = 3
- RS(1,8)=2

Intersection minimum

Intersection minimum

- LS(1,8) = 3
- RS(1,8)=2
- $MI(1,8) = \min(LS(1,8), RS(1,8)) = 2$

Raisonnement énergétique

Raisonnement énergétique

- Slack $(I, u) = C \cdot (u I) MI(I, u)$
- Si le Slack est négatif, il y a incohérence
- Il est suffisant de considérer $O(n^2)$ intervalles

Raisonnement énergétique

Raisonnement énergétique

- Slack $(I, u) = C \cdot (u I) MI(I, u)$
- Si le Slack est négatif, il y a incohérence
- Il est suffisant de considérer $O(n^2)$ intervalles

Algorithme de vérification en $O(n \log^2 n)$

Algorithme de vérification en $O(n \log^2 n)$

Idée générale

- Utiliser la matrice du Slack
 - Lignes : Bornes inférieures d'un intervalle
 - Colonne : Bornes supérieures d'un intervalle
 - Une entrée représente le Slack dans un intervalle
- Si une entrée est inférieure à 0, il y a incohérence

Mat	rice												
	1	3	4	5	6	7	8	9	10	11	12	13	
3			2	4	2	2	1	0	1	3	5	7	
4				2	0	0	-1	0	1	3	5	7	
5					0	0	1	2	3	5	7	9	
6						0	1	2	3	5	7	9	
7							1	2	4	6	8	10	
9									2	4	6	8	

ا	Mat	rice												
		1	3	4	5	6	7	8	9	10	11	12	13	
İ	3			2	4	2	2	1	0	1	3	5	7	
Ì	4				2	0	0	-1	0	1	3	5	7	
	5					0	0	1	2	3	5	7	9	
	6						0	1	2	3	5	7	9	
	7							1	2	4	6	8	10	
	9									2	4	6	8	

Algorithme sous-quadratique

Objectif

- Trouver le minimum en vérifiant $O(n \log n)$ entrées
- Calcul en $O(\log n)$ d'une entrée

Matrice

	1	3	4	5	6	7	8	9	10	11	12	13
3			2	4	2	2	1	0	1	3	5	7
4				2	0	0	-1	0	1	3	5	7
5					0	0	1	2	3	5	7	9
6						0	1	2	3	5	7	9
7							1	2	4	6	8	10
9									2	4	6	8

Algorithme sous-quadratique

Objectif

- Trouver le minimum en vérifiant $O(n \log n)$ entrées
- Calcul en $O(\log n)$ d'une entrée

Solution

• Utiliser des propriétés de la matrice

Matrice de monge

Matrice de Monge

- Soit une matrice M de taille $n \times m$
- $M[i,j] M[i+1,j] \le M[i,j+1] M[i+1,j+1]$ $\forall 1 < i \le n, 1 < j \le m$

	13	12	11	10	9	8	7	6	5	4	3	1
3	7	5	3	1	0	1	2	2	4	2		
4	7	5	3	1	0	-1	0	0	2			
5	9	7	5	3	2	1	0	0				
6	9	7	5	3	2	1	0					
7	10	8	6	4	2	1						
9	8	6	4	2								

Matrice de monge

Matrice de Monge

- Soit une matrice M de taille $n \times m$
- $M[i,j] M[i+1,j] \le M[i,j+1] M[i+1,j+1]$ $\forall 1 < i \le n, 1 < j \le m$

	13	12	11	10	9	8	7	6	5	4	3	1
3	7	5	3	1	0	1	2	2	4	2		
4	7	5	3	1	0	-1	0	0	2			
5	9	7	5	3	2	1	0	0				
6	9	7	5	3	2	1	0					
7	10	8	6	4	2	1						
9	8	6	4	2								

Enveloppe

- L'enveloppe d'une colonne j est la ligne i où M[i,j] est minimal
- Chaque ligne *i* défini une fonction $f_i(j) = M[i, j]$
- Les fonctions de deux lignes se croisent au plus une fois

	13	12	11	10	9	8	7	6	5	4	3	1
3	7	5	3	1	0	1	2	2	4	2		
4	7	5	3	1	0	-1	0	0	2			
5	9	7	5	3	2	1	0	0				
6	9	7	5	3	2	1	0					
7	10	8	6	4	2	1						

Calcul de l'enveloppe

- Calcul ligne par ligne
- Recherche de la plus petite colonne où l'élément de la ligne courante est plus petit que ceux des lignes précédentes

	13	12	11	10	9	8	7	6	5	4	3	1
3	7	5	3	1	0	1	2	2	4	2		
4	7	5	3	1	0	-1	0	0	2			
5	9	7	5	3	2	1	0	0				
6	9	7	5	3	2	1	0					
7	10	8	6	4	2	1						

Calcul de l'enveloppe

- Calcul ligne par ligne
- Recherche de la plus petite colonne où l'élément de la ligne courante est plus petit que ceux des lignes précédentes

	13	12	11	10	9	8	7	6	5	4	3	1
3	7	5	3	1	0	1	2	2	4	2		
4	7	5	3	1	0	-1	0	0	2			
5	9	7	5	3	2	1	0	0				
6	9	7	5	3	2	1	0					
7	10	8	6	4	2	1						

Calcul de l'enveloppe

- Calcul ligne par ligne
- Recherche de la plus petite colonne où l'élément de la ligne courante est plus petit que ceux des lignes précédentes

	13	12	11	10	9	8	7	6	5	4	3	1
3	7	5	3	1	0	1	2	2	4	2		
4	7	5	3	1	0	-1	0	0	2			
5	9	7	5	3	2	1	0	0				
6	9	7	5	3	2	1	0					
7	10	8	6	4	2	1						

Algorithme

- Calculer l'enveloppe à l'aide de recherches binaires sur les colonnes
- Vérifier, pour chaque colonne, si l'élément sur l'enveloppe de la colonne est négatif

	13	12	11	10	9	8	7	6	5	4	3	1
3	7	5	3	1	0	1	2	2	4	2		
4	7	5	3	1	0	-1	0	0	2			
5	9	7	5	3	2	1	0	0				
6	9	7	5	3	2	1	0					
7	10	8	6	4	2	1						

Analyse

• Matrice de O(n) lignes par $O(n^2)$ colonnes

Analyse

- Matrice de O(n) lignes par $O(n^2)$ colonnes
- Jamais construite explicitement

Analyse

- Matrice de O(n) lignes par $O(n^2)$ colonnes
- Jamais construite explicitement
- Seulement O(n) colonnes sont traitées explicitement

Analyse

- Matrice de O(n) lignes par $O(n^2)$ colonnes
- Jamais construite explicitement
- Seulement O(n) colonnes sont traitées explicitement
- $O(n \log n)$ calculs d'éléments

Algorithme de vérification

Objectif

Exemple

9 | 8

- Trouver le minimum en vérifiant $O(n \log n)$ entrées
- Calcul en $O(\log n)$ d'une entrée

-1

Algorithme de vérification

Objectif

- Trouver le minimum en vérifiant $O(n \log n)$ entrées
- Calcul en $O(\log n)$ d'une entrée

Exemple												
	13	12	11	10	9	8	7	6	5	4	3	1
3	7	5	3	1	0	1	2	2	4	2		
4	7	5	3	1	0	-1	0	0	2			
5	9	7	5	3	2	1	0	0				
6	9	7	5	3	2	1	0					
7	10	8	6	4	2	1						
9	8	6	4	2								

Algorithme de vérification

Objectif

- Trouver le minimum en vérifiant $O(n \log n)$ entrées
- Calcul en $O(\log n)$ d'une entrée

Solution

- Décomposer le calcul du slack en sous-problèmes
- Résoudre les sous-problèmes à l'aide de structure de données

Deux types d'énergie

- Énergie Fixe : Doit absolument s'exécuter entre le lst et le ect
- Énergie Libre : Le reste de l'énergie

Deux types d'énergie

- Énergie Fixe : Doit absolument s'exécuter entre le lst et le ect
- Énergie Libre : Le reste de l'énergie

```
est | lct |
```

Deux types d'énergie

- Énergie Fixe : Doit absolument s'exécuter entre le lst et le ect
- Énergie Libre : Le reste de l'énergie

Décomposition en segments

 Segment de longueur 1 pour chaque unité d'Énergie Fixe

Décomposition en segments

 Segment de longueur 1 pour chaque unité d'Énergie Fixe

Décomposition en segments

- Segment de longueur 1 pour chaque unité d'Énergie Fixe
- Segment défini par les bornes du plus petit interval incluant une unité d'Énergie Libre

Décomposition en segments

- Segment de longueur 1 pour chaque unité d'Énergie Fixe
- Segment défini par les bornes du plus petit interval incluant une unité d'Énergie Libre

Transformation de ligne à plan

- Les segments sont transformés en points
 - L'orgine du segment est l'abscisse
 - La fin du segment est l'ordonnée

Construction des Sommes Partielles

- Vecteur T de temps où l'Énergie Fixe commence et termine
- Vecteur Y : Y_t est la somme des hauteurs des tâches ayant de l'Énergie Fixe au temps T_t
- Vecteur Z : Z_t est la somme de l'Énergie Fixe dans l'intervalle $[0, T_t)$

T :	2	3	4	6
Y :	2	0	1	0
Z :	0	2	2	4

Requête un intervalle

- Requête sur l'intervalle [I, u]
- Recherche binaire de t_1 tel que $T_{t_1-1} < l \le T_{t_1}$
- Recherche binaire de t_2 tel que $T_{t_2} \le u < T_{t_2+1}$
- Énergie Fixe = $Z_{t_2} + Y_{t_2}(u T_{t_2}) (Z_{t_1} + Y_{t_1}(I T_{t_1}))$

Exemple

T: 2 3 4 6 Y: 2 0 1 0 Z: 0 2 2 4

Requête un intervalle

- Requête sur l'intervalle [3,5]
- Recherche binaire de t_1 tel que $T_{t_1-1} < l \le T_{t_1}$
- Recherche binaire de t_2 tel que $T_{t_2} \le u < T_{t_2+1}$
- Énergie Fixe = $Z_{t_2} + Y_{t_2}(u T_{t_2}) (Z_{t_1} + Y_{t_1}(I T_{t_1}))$

Requête un intervalle

- Requête sur l'intervalle [3,5]
- Recherche binaire de t_1 tel que $T_{t_1-1} < 3 \le T_{t_1}$
- Recherche binaire de t_2 tel que $T_{t_2} \le u < T_{t_2+1}$
- Énergie Fixe = $Z_{t_2} + Y_{t_2}(u T_{t_2}) (Z_{t_1} + Y_{t_1}(I T_{t_1}))$

Requête un intervalle

- Requête sur l'intervalle [3,5]
- Recherche binaire de $t_1 = 1$ tel que $T_{t_1-1} < 3 \le T_{t_1}$
- Recherche binaire de t_2 tel que $T_{t_2} \le u < T_{t_2+1}$
- Énergie Fixe = $Z_{t_2} + Y_{t_2}(u T_{t_2}) (Z_{t_1} + Y_{t_1}(I T_{t_1}))$

Requête un intervalle

- Requête sur l'intervalle [3,5]
- Recherche binaire de $t_1 = 1$ tel que $T_{t_1-1} < 3 \le T_{t_1}$
- Recherche binaire de t_2 tel que $T_{t_2} \leq 5 < T_{t_2+1}$
- Énergie Fixe = $Z_{t_2} + Y_{t_2}(u T_{t_2}) (Z_{t_1} + Y_{t_1}(I T_{t_1}))$

Requête un intervalle

- Requête sur l'intervalle [3,5]
- Recherche binaire de $t_1 = 1$ tel que $T_{t_1-1} < 3 \le T_{t_1}$
- Recherche binaire de $t_2 = 2$ tel que $T_{t_2} \le 5 < T_{t_2+1}$
- Énergie Fixe = $Z_{t_2} + Y_{t_2}(u T_{t_2}) (Z_{t_1} + Y_{t_1}(I T_{t_1}))$

Requête un intervalle

- Requête sur l'intervalle [3,5]
- Recherche binaire de $t_1 = 1$ tel que $T_{t_1-1} < 3 \le T_{t_1}$
- Recherche binaire de $t_2 = 2$ tel que $T_{t_2} \le 5 < T_{t_2+1}$
- Énergie Fixe = $Z_{t_2} + Y_{t_2}(u T_{t_2}) (Z_{t_1} + Y_{t_1}(I T_{t_1}))$
- EF = 2 + 1 (5 4)

Requête un intervalle

- Requête sur l'intervalle [3,5]
- Recherche binaire de $t_1 = 1$ tel que $T_{t_1-1} < 3 \le T_{t_1}$
- Recherche binaire de $t_2 = 2$ tel que $T_{t_2} \le 5 < T_{t_2+1}$
- Énergie Fixe = $Z_{t_2} + Y_{t_2}(u T_{t_2}) (Z_{t_1} + Y_{t_1}(I T_{t_1}))$
- EF = 2 + 1 (5 4) (2 + 0 (3 3))

Requête un intervalle

- Requête sur l'intervalle [3,5]
- Recherche binaire de $t_1 = 1$ tel que $T_{t_1-1} < 3 \le T_{t_1}$
- Recherche binaire de $t_2 = 2$ tel que $T_{t_2} \le 5 < T_{t_2+1}$
- Énergie Fixe = $Z_{t_2} + Y_{t_2}(u T_{t_2}) (Z_{t_1} + Y_{t_1}(I T_{t_1}))$
- EF = 2 + 1 (5 4) (2 + 0 (3 3)) = 3 2 = 1

Requête un intervalle

- Requête sur l'intervalle [3,5]
- Recherche binaire de $t_1 = 1$ tel que $T_{t_1-1} < 3 \le T_{t_1}$
- Recherche binaire de $t_2 = 2$ tel que $T_{t_2} \le 5 < T_{t_2+1}$
- Énergie Fixe = $Z_{t_2} + Y_{t_2}(u T_{t_2}) (Z_{t_1} + Y_{t_1}(I T_{t_1}))$
- EF = 2 + 1 (5 4) (2 + 0 (3 3)) = 3 2 = 1

Calcul de l'Énergie Libre

Transformations géométriques

- Séparation de *EL* en deux : *EL*¹ et *EL*²
- Chaque point $(a, b) \in EL$ génère deux nouveaux points
 - $(a, a + b) \in EL^1$
 - $(-b, -a-b) \in EL^2$
- On applique la même transformation à la requête

Range-Tree à une dimension

- Requête $Q(\chi)$: somme pondérée des points dont l'abscisse est plus grande ou égale à χ
- Chaque point est une feuille
- Chaque noeud résume ses enfants

Range-Tree à une dimension

- Requête $Q(\chi)$: somme pondérée des points dont l'abscisse est plus grande ou égale à χ
- Chaque point est une feuille
- Chaque noeud résume ses enfants

Feuille

x : Abcsisse du point

W : Poids du point

Noeud

 x^{mid} : Plus grand x dans le sous-arbre de gauche

W: Somme des W des enfants

Requête

- Requête $Q(\chi)$: somme pondérée des points dont l'abscisse est plus grande ou égale à χ
- Algorithme
 - 1. v = Racine
 - 2. Tant que v n'est pas une feuille
 - Si $x_v^{mid} \ge \chi$, on rapporte right(v) et v = left(v)
 - Sinon v = right(v)
 - 3. Si $x_{\nu} \geq \chi$, on rapporte ν

Rapporter un noeud v

ullet Additionner $W_{
u}$ au total

Exemple avec Q(1)

Exemple avec Q(1) = 3

Exemple avec
$$Q(1) = 3 + 1 = 4$$

Range-Tree à une dimension

- Requête $Q(\chi, \gamma)$: somme pondérée des points avec l'abscisse $\geq \chi$ et l'ordonnée $\leq \gamma$
- Nouveaux vecteurs :
 - Y : Ordonnées des points (vecteur trié)
 - W : Poids
 - L et R : Pointeurs vers des éléments Y des enfants

Range-Tree à une dimension

- Requête $Q(\chi, \gamma)$: somme pondérée des points avec l'abscisse $\geq \chi$ et l'ordonnée $\leq \gamma$
- Nouveaux vecteurs :
 - Y : Ordonnées des points (vecteur trié)
 - W : Poids
 - L et R : Pointeurs vers des éléments Y des enfants

Construction des vecteurs

- Bottom-up, similaire à Fusion du tri fusion
- W_i: Somme des poids des points dont l'ordonnée est inférieure à Y_i
- L_i: Pointe vers la plus grande valeur plus petite ou égale à Y_i dans le vecteur Y de l'enfant gauche

Requête

- Recherche du plus grand i tel que $Y_i \leq \gamma$ à la racine
- Lors du parcours
 - $i = L_i$ si on descend à gauche
 - $i = R_i$ si on descend à droite

Rapporter un noeud v

• Additionner W_i à la somme

Exemple avec Q(1,6)

$$x^{mid} = 1$$

$$Y = [5, 5, 10, 10]$$

$$W = [2, 4, 5, 6]$$

$$L = [0, 0, 1, 1]$$

$$R = [-1, 0, 0, 1]$$

$$x^{mid} = 0$$

$$Y = [5, 10]$$

$$W = [2, 3]$$

$$L = [0, 0]$$

$$R = [-1, 0]$$

$$x = 0$$

$$Y = [5]$$

$$W = [1]$$

$$X = 0$$

$$Y = [10]$$

$$X = 3$$

$$Y = [10]$$

$$W = [1]$$

Exemple avec Q(1,6)

$$x^{mid} = 1$$

$$Y = [5, 5, 10, 10]$$

$$W = [2, 4, 5, 6]$$

$$L = [0, 0, 1, 1]$$

$$R = [-1, 0, 0, 1]$$

$$x^{mid} = 0$$

$$Y = [5, 10]$$

$$W = [2, 3]$$

$$L = [0, 0]$$

$$R = [-1, 0]$$

$$x = 0$$

$$Y = [5]$$

$$W = [1]$$

$$X = 0$$

$$Y = [10]$$

$$X = 3$$

$$Y = [10]$$

$$W = [1]$$

Exemple avec Q(1,6) = 2

Requête sur des rayons

- Requête $Q(\chi,\gamma)$: somme pondérée des portions de rayons plus grands ou égal à χ et plus petits ou égal à γ
- Rayon : $\langle -\infty, x, y, w \rangle$

Requête sur des rayons

- Requête $Q(\chi,\gamma)$: somme pondérée des portions de rayons plus grands ou égal à χ et plus petits ou égal à γ
- Rayon : $\langle -\infty, x, y, w \rangle$

Nouveaux attributs

- x^{min} : Plus petit x d'une feuille
- Σ_i : Somme pondérée à partir de x^{min} de tous les rayons plus petits ou égal à Y_i

Transformation des segments en rayons

- Chaque segments $\langle x_i, x_i', y_i, w_i \rangle$ génère deux rayons
 - $\langle -\infty, x_i, y_i, -w_i \rangle$
 - $\langle -\infty, x_i', y_i, w_i \rangle$
- Avant x_i , les poids s'annulent

Requête

• Le parcours demeure inchangé

Rappoter un noeud

• Additionner $\Sigma_i + W_i(x^{min} - \chi)$ au total

Exemple avec Q(1,6)

$$x^{mid} = 1$$

$$Y = [5, 5, 10, 10]$$

$$W = [-2, 0, -1, 0]$$

$$x^{min} = 0$$

$$\Sigma = [0, 4, 3, 6]$$

$$x^{mid} = 0$$

$$Y = [5, 10]$$

$$W = [2, 3]$$

$$x^{min} = 0$$

$$\Sigma = [0, -1]$$

$$x^{min} = 0$$

$$\Sigma = [0, -1]$$

$$x = 0$$

$$Y = [10]$$

$$Y = [10]$$

$$W = [1]$$

Exemple avec
$$Q(1,6) = 0 + 2(2-1) = 2$$

$$x^{mid} = 1$$

$$Y = [5, 5, 10, 10]$$

$$W = [-2, 0, -1, 0]$$

$$x^{min} = 0$$

$$\Sigma = [0, 4, 3, 6]$$

$$X^{mid} = 0$$

$$Y = [5, 10]$$

$$W = [2, 3]$$

$$X^{min} = 0$$

$$\Sigma = [0, -1]$$

$$X^{min} = 0$$

$$\Sigma = [0, -1]$$

$$X = 0$$

$$Y = [5]$$

$$Y = [10]$$

$$Y = [5]$$

$$W = [-1]$$

$$W = [2]$$

$$X = 3$$

$$Y = [10]$$

$$W = [1]$$

Range-Tree

Résumé des Range-Tree

- Construction en $O(n \log n)$
- Calcule en O(log n) la somme pondérée de portions de segments dans un rectangle semi-ouvert
- Plusieurs variantes possibles pour différents problèmes
- Se généralise à plusieurs dimensions

Algorithme de vérification

Objectif

- Trouver le minimum en vérifiant $O(n \log n)$ entrées
- Calcul en $O(\log n)$ d'une entrée
- Algorithme en $O(n \log^2 n)$

Exemple

	13	12	11	10	9	8	7	6	5	4	3	1
3	7	5	3	1	0	1	2	2	4	2		
4	7	5	3	1	0	-1	0	0	2			
5	9	7	5	3	2	1	0	0				
6	9	7	5	3	2	1	0					
7	10	8	6	4	2	1						

Algorithme

- 1. Filtrer une tâche à son plus tôt
- 2. Exécuter l'algorithme de vérification
- 3. S'il y a échec, ajuster le est de la tâche

Algorithme

- 1. Filtrer une tâche à son plus tôt
- 2. Exécuter l'algorithme de vérification
- 3. S'il y a échec, ajuster le est de la tâche

Analyse

• $O(n \log^2 n)$ pour une tâche

Algorithme

- 1. Filtrer une tâche à son plus tôt
- 2. Exécuter l'algorithme de vérification
- 3. S'il y a échec, ajuster le est de la tâche

Analyse

- $O(n \log^2 n)$ pour une tâche
- $O(n^2 \log^2 n)$ pour n tâches en pire cas

Algorithme

- 1. Filtrer une tâche à son plus tôt
- 2. Exécuter l'algorithme de vérification
- 3. S'il y a échec, ajuster le est de la tâche

Analyse

- $O(n \log^2 n)$ pour une tâche
- $O(n^2 \log^2 n)$ pour n tâches en pire cas
- $O(n^2 \log n)$ pour n tâches en cas moyen

Résultats

Résultats

Résultats

Algorithme de filtrage Benchmark % time n 1200 Number of tasks BL 20 0.92 30 1000 60 BL 25 0.89 800 90 120 **PSPLIB** 30 0.94 600 **PSPLIB** 60 0.57 400 200 **PSPLIB** 90 0.44 1000 1200 600 800 **PSPLIB** 120 0.48 Derrien and Petit checker

Conclusion

Contributions

- Raisonnement énergétique avec seulement $O(n \log n)$ intervalles
- Amélioration du temps d'exécution d'algorithmes de vérification et de filtrage
- Adaptation de structure de données

Résumé de l'amélioration de la complexité

Algorithme	État de l'art	Algorithme de Monge
Vérification Filtrage	$\frac{O(n^2)}{O(n^2 \log^2 n)}$	`

Fin

Merci!