PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

	SHED I	UNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 6:		(11) International Publication Number: WO 95/15387
C12N 15/54, A01H 5/10, C12N 15/82, 5/10	A2	(43) International Publication Date: 8 June 1995 (08.06.95)
(21) International Application Number: PCT/U (22) International Filing Date: 30 November 1994	S94/136	Street, Davis, CA 95616 (US).
(22) International Fining Date: 30 November 1994	(30.11.9	
(30) Priority Data: 08/160,602 30 November 1993 (30.11. 08/265,047 23 June 1994 (23.06.94)		(81) Designated States: CA, CN, JP, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(60) Parent Applications or Grants (63) Related by Continuation	coo (cr	Published Without international search report and to be republished upon receipt of that report.
Filed on 30 November 1993	,047 (CI	(3) P)
(71) Applicant (for all designated States except US): C		
INC. [US/US]; 1920 Fifth Street, Davis, CA 956 (72) Inventors; and		
(75) Inventors/Applicants (for US only): METZ, Jame [US/US]; 2803 Belhaven Place, Davis, CA 95 LARDIZABAL, Kathryn, Dennis [US/US]: 15 Valley Road, Woodland, CA 95776 (US). I Michael, W. (US/US]; 721 Falcon Avenue, I 95616 (US).	616 (US 46 Owe ASSNE	Š). ns R,
(54) Title: NUCLEIC ACID SEQUENCES ENCODING METABOLISM	A PLA	ANT CYTOPLASMIC PROTEIN INVOLVED IN FATTY ACYL-COA
(57) Abstract		
catalyzing the production of very long chain fatty acid m and a heterologous DNA sequence not naturally associated transcription of a plant condensing enzyme encoding sequence.	olecules. I with thuence in	sing enzyme is provided free from intact cells of said plant and capable of . Also contemplated are constructs comprising the nucleic acid sequence condensing enzyme encoding sequences, and which provide for at least a host cell. In this fashion very long chain fatty acid molecules may be composition of very long chain fatty acid molecules in a plant cell.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinca	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Paso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	п	Italy	PL	Poland
BR	Bnazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Stovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Licchiensiein	SN	Striegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxemboure	TG	
CZ	Czech Republic	LV	Latvia	TJ	Togo
DE	Germany	MC	Monaco	TT	Tajikistan
DK	Denmark	MD	Republic of Moldova		Trinidad and Tobago
ES	Spain	MG	Madagascar	UA	Ukraine
FI	Finland	ML.	Mali		United States of America
FR	France	MN	Mongolia	UZ	Uzbekisten
GA	Gabon	11214	mulgona	VN	Vist Nam
-/-					

5

20

NUCLEIC ACID SEQUENCES ENCODING A PLANT CYTOPLASMIC PROTEIN INVOLVED IN FATTY ACYL-COA METABOLISM

This application is a continuation-in-part of of USSN 07/796,256, filed November 20, 1991, a continuation-in-part of USSN 07/933,411, filed August 21, 1992, a continuation-in-part of PCT/US92/09863, filed November 13, 1992, a continuation-in-part USSN 08/066,299, filed May 20, 1993 and a continuation-in-part of USSN 08/160,602, filed November 30, 1993 and a continuation-in-part of USSN 08/160,602, filed November 30, 1993 and a continuation-in-part of of USSN 08/265,047, filed June 23, 1994.

15 Technical Field

The present invention is directed to enzymes, methods to purify, and obtain such enzymes, amino acid and nucleic acid sequences related thereto, and methods of use for such compositions in genetic engineering applications.

INTRODUCTION

Background

Through the development of plant genetic engineering techniques, it is possible to transform and regenerate a variety of plant species to provide plants which have novel and desirable characteristics. One area of interest for such plant genetic engineering techniques is the production of valuable products in plant tissues. Such applications require the use of various DNA constructs and nucleic acid sequences for use in transformation events to generate plants which produce the desired product. For example, plant functional promoters are required for appropriate expression of gene sequences, such expression being either in the whole plant or in selected plant tissues. In addition, selective marker sequences are often used to identify the transformed plant material. Such plant promoters and selectable markers provide valuable tools which are useful in obtaining the novel plants.

1

.

One desirable goal, which involves such genetic engineering techniques, is the ability to provide crop plants having a convenient source of wax esters. Wax esters are required in a variety of industrial applications, including pharmaceuticals, cosmetics, detergents, plastics, and lubricants. Such products, especially long chain wax esters, have previously been available from the sperm whale, an endangered species, or more recently, from the desert shrub, jojoba. Neither of these sources provides a convenient supply of wax esters. 10 Jojoba is also a plant which synthesizes very long chain fatty acids (VLCFA) in its seed oil. VLCFA are fatty acids having chain lengths longer than 18 carbons. VLCFA are found in the cuticular "waxes" of many plant species as 15 well as in the seed oil of several plant species. Wild type Brassica plants contain VLCFA in their seed oil. Canola is rapeseed that has been bred to eliminate VLCFA from its seed oil. Enzymes involved in the elongation of fatty acids to VLCFA ("elongase" enzymes) have been 20 difficult to characterize at a biochemical level because they are membrane associated (Harwood, JL, "Fatty acid metabolism", Annual rev. of Plant Physiol. and Plant Mol. Biol. (1988) 39:101-38); (von Wettstein-Knowles, PM, "Waxes, cutin, and suberin" in ed. Moore, TS, Lipid 25 Metabolism in Plants (1993), CRC Press, Ann Arbor, pp. 127-166). Although several groups have claimed to partially purify some of these elongase enzymes, to date no one has claimed complete purification of one of these enzymes or cloning of the corresponding genes. von Wettstein-Knowles, 30 PM, (1993) supra; van de Loo, FJ, Fox, BG, and Somerville C. "Unusual fatty acids" in ed. Moore, TS, Lipid Metabolism in Plants, (1993) CRC Press Ann Arbor, pp. 91-126.

A possible mechanism for fatty acid elongation by the cytoplasmic elongase enzyme system is through a series similar to that found for chloroplast fatty acid synthesis, i.e. via a 4 step reaction (Stumpf and Pollard (1983) supra; van de Loo et al (1993) supra). The first step would be a condensation reaction between malonyl CoA and oleyl

CoA by \$-ketoacy1-CoA synthase. Then \$-ketoacy1-CoA reductase, \$6-hydroxyacy1-CoA dehydratase, and enoy1-CoA reductase ensymes would act sequentially to generate an acy1-CoA molecule elongated by two carbon atoms.

5

1

In order to obtain a reliable source of very long chain fatty acid molecules, such as wax esters or VLCFA, transformation of crop plants, which are easily manipulated in terms of growth, harvest and extraction of products, is desirable. In order to obtain such transformed plants, however, the genes responsible for the biosynthesis of the desired VLCFA or wax ester products must first be obtained.

Wax ester production results from the action of at least two enzymatic activities of fatty acyl CoA

15 metabolism; fatty acyl reductase and fatty acyl:fatty alcohol acyltransferase, or wax synthase. Preliminary studies with such enzymes and extensive analysis and purification of a fatty acyl reductase, indicate that these proteins are associated with membranes, however the enzyme or responsible for the fatty acyl:fatty alcohol ligation reaction in wax biosynthesis has not been well characterized. Thus, further study and ultimately, purification of this enzyme is needed so that the gene sequences which encode the enzymatic activity may be

It is desirable, therefore, to devise a purification protocol whereby the wax synthase protein may be obtained and the amino acid sequence determined and/or antibodies specific for the wax synthase obtained. In this manner, library screening, polymerase chain reaction (PCR) or immunological techniques may be used to identify clones expressing a wax synthase protein. Clones obtained in this manner can be analyzed so that the nucleic acid sequences corresponding to wax synthase activity are identified. The wax synthase nucleic acid sequences may then be utilized in conjunction with fatty acyl reductase proteins, either native to the transgenic host cells or supplied by recombinant techniques, for production of wax esters in host cells.

It would also be desirable to have a gene to an enzyme involved in the formation of very long chain fatty acids. Such a gene could be used to increase the chain length of fatty acids in oilseeds by overexpression of the gene in 5 transgenic plants of virtually any species. The gene could also be used as a probe in low stringency hybridization to isolate homologous clones from other species as a means to clone the gene from other taxa, such as Brassica. Arabidopsis, Crambe, Nasturtium, and Limnanthes, that 10 produce VLCFA. These derived genes could then be used in antisense experiments to reduce the level of VLCFA in the species from which they were isolated, or overexpressed to increase the quantity of VLCFA in transgenic plants of virtually any species. Additionally, the DNA from the 15 homologous Brassica gene encoding this enzyme could be used as a plant breeding tool to develop molecular markers to aid in breeding high erucic acid rapeseed (HEAR) and canola and other oilseed crops. Such techniques would include using the gene itself as a molecular probe or using the DNA sequence to design PCR primers to use PCR based screening techniques in plant breeding programs. Finally, overexpression of the gene in plant epidermal cells could increase cuticle accumulation thereby increasing drought and stress tolerance of transgenic plants over control 25 plants.

Relevant Literature

20

30

Cell-free homogenates from developing jojoba embryos were reported to have acyl-CoA fatty alcohol acyl transferase activity. The activity was associated with a floating wax pad which formed upon differential centrifugation (Pollard et al. (1979) supra; Wu et al. (1981) supra).

Solubilization of a multienzyme complex from Euglena gracilis having fatty acyl-SCoA transacylase activity is reported by Wildner and Hallick (Abstract from The Southwest Consortium Fifth Annual Meeting, April 22-24. 1990, Las Cruces, NM.).

Ten-fold purification of jojoba acyl-CoA: alcohol transacvlase protein is reported by Pushnik et al.

(Abstract from The Southwest Consortium Fourth Annual Meeting, February 7, 1989, Riverside, Ca.).

An assay for jojoba acyl-CoA:alcohol transacylase activity was reported by Garver et al. (Analytical Biochemistry (1992) 207:335-340).

Extracts of developing seeds from HEAR and canola plants were found to differ in their ability to elongate oleyl CoA into VLCFA, with HEAR extracts capable of catalyzing elongation, while canola extracts were not.

10 Stumpf, PK and Pollard MR, "Pathways of fatty acid biosynthesis in higher plants with particular reference to developing rapeseed", in High and Low Erucic Acid Rapeseed

Oils (1983) Academic Press Canada, pp. 131-141.

6 BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1. The nucleic acid sequence and translated amino acid sequence of a jojoba fatty acyl reductase, as 5 determined from the cDNA sequence, is provided in Figure 1.

Figure 2. Preliminary nucleic acid sequence and translated amino acid sequence of a jojoba plant cytoplasmic protein involved in fatty acyl-CoA metabolism cDNA clone are provided.

Figure 3. Nucleic acid and translated amino acid sequences of second class of the jojoba clones, as represented by the sequence of pCCN7614, is provided.

Figure 4. Nucleic acid sequence of an oleosin expression cassette is provided.

10

15

30

35

Figure 5. Nucleic acid sequence of a *Brassica* condensing enzyme clone, CE15, is provided from a LEAR variety (212).

Figure 6. Nucleic acid sequence of a CE20 from the 212 Brassica variety.

20 Figure 7. Nucleic acid sequence of a Brassica Reston variety (HEAR) clone, of the CE20 class, is provided.

Figure 8. Nucleic acid sequence of an Arabadopsis condensing enzyme clone, CE15.

Figure 9. Nucleic acid sequence of an Arabadopsis 25 condensing enzyme clone, CE17.

Figure 10. Nucleic acid sequence of an Arabadopsis condensing enzyme clone, CE19.

Figure 11. Partial nucleic acid sequence of Lunaria condensing enzyme clone designated LUN CE8.

Figure 12. Nucleic acid sequence of a *Lunaria* condensing enzyme clone, Lunaria 1, obtained by probing with LUN CE8.

Figure 13. Nucleic acid sequence of a second Lunaria condensing enzyme clone obtained from LUN CE8, Lunaria 5.

Figure 14. Nucleic acid sequence of third Lunaria condensing enzyme clone from LUN CE8, Lunaria 27.

Figure 15. Nucleic acid sequence to a Nasturtium condensing enzyme clone obtained by PCR.

15

ø

7

SUMMARY OF THE INVENTION

By this invention, a DNA sequence encoding a plant cytoplasmic protein involved in fatty acyl-CoA metabolism is provided. Such a sequence is desirable for use in methods aimed at altering the composition of very long chain wax fatty acid related products, such as wax esters and very long chain fatty acids in host cells

In one aspect, the protein of this invention may demonstrate fatty acyl-CoA: fatty alcohol

10 O -acyltransferase activity, such activity being referred to herein as "wax synthase".

In a second aspect, this protein may be required for elongation reactions involved in the formation of very long chain fatty acids. Thus, for example, the protein provides for elongation of C18 fatty acyl COA molecules to form C20 fatty acids, and also for elongation of C20 fatty acids to form even longer chain fatty acids. It is likely that the elongase activity is the result of \$\mathbb{E}\$-ketoacyl-COA synthase activity of this protein, although the possibility exists that the protein provided herein has a regulatory function required for the expression of a \$\mathbb{E}\$-ketoacyl-COA synthase or provides one of the other activities known to be involved in acyl-COA elongation, such as \$\mathbb{E}\$-ketoacyl-COA reductase, \$\mathbb{E}\$-hydroxyacyl-COA dehydratase, or enoyl-COA reductase

25 activities. In any event, the fatty acyl CoA elongation aspect of this protein is referred to herein as "elongase" activity.

The DNA sequence of this invention is exemplified by sequences obtained from a jojoba embryo cDNA library.

30 Several related jojoba sequences have been discovered and are provided in Figures 2 and 3 herein.

In a different aspect of this invention, nucleic acid sequences associated with other proteins related to the exemplified plant cytoplasmic protein involved in fatty acyl-CoA metabolism are considered. Methods are described whereby such sequences may be identified and obtained from the amino acid sequences and nucleic acid sequences of this invention. Uses of the structural gene sequences for isolation of sequences encoding similar cytoplasmic

proteins involved in fatty acyl-CoA metabolism from other plant species, as well as in recombinant constructs for transcription and/or expression in host cells of the protein encoded by such sequences are described. Uses of 5 other nucleic acid sequences associated with the protein encoding sequences are also considered, such as the use of 5' and 3' noncoding regions.

In yet a different aspect of this invention, cells containing recombinant constructs coding for sense and antisense sequences for plant cytoplasmic protein involved in fatty acyl-CoA metabolism are considered. In particular, cells which contain the preferred long chain acyl-CoA substrates of the jojoba protein, such as those cells in embryos of *Brassica* plants, are considered.

10

15

30

In addition, a method of producing a plant cytoplasmic protein involved in fatty acyl-CoA metabolism in a host cell is provided. Accordingly, a plant cytoplasmic protein involved in fatty acyl-CoA metabolism that is recovered as the result of such expression in a host cell is also considered in this invention.

Further, it may be recognized that the sequences of this invention may find application in the production of wax esters in such host cells which contain fatty acyl and fatty alcohol substrates of the wax synthase. Such host cells may exist in nature or be obtained by transformation with nucleic acid constructs which encode a fatty acyl reductase. Fatty acyl reductase, or "reductase", is active in catalyzing the reduction of a fatty acyl group to the corresponding alcohol. Co-pending US patent applications 07/659,975 (filed 2/22/91), 07/767,251 (filed 9/27/91) and 07/920,430 (filed 7/31/92), which are hereby incorporated by reference, are directed to such reductase proteins. This information is also provided in published PCT patent application WO 92/14816. In addition, other sources of wax synthase proteins are described herein which are also desirable sources of reductase proteins. In this regard, plant cells which contain the preferred alcohol substrates of the jojoba wax synthase activity described herein may be prepared by transformation with recombinant nucleic acid

constructs which encode a fatty acyl reductase nucleic acid sequence.

A further method considered herein involves the production of very long chain fatty acids, or modification 5 of the amounts of such fatty acids, in host cells.

Increased production of very long chain fatty acids may be obtained by expression of DNA sequences described herein. On the other hand, antisense constructs containing such sequences may be used to reduce the content of the very long chain fatty acids in a target host organism. In particular, such sense and antisense methods are directed to the modification of fatty acid profiles in plant seed oils and may result in novel plant seed oils having desirable fatty acid compositions.

15

20

25

1

DETAILED DESCRIPTION OF THE INVENTION

The nucleic acid sequences of this invention encode a plant cytoplasmic protein involved in fatty acyl-CoA metabolism. Such as a protein includes any sequence of amino acids, such as protein, polypeptide or peptide fragment, which provides the "elongase" activity responsible for production of very long chain fatty acids and for the "wax synthase" activity which provides for esterification of a fatty alcohol by a fatty acyl group to produce a wax ester.

The plant cytoplasmic protein involved in fatty acylCOA metabolism of this invention may demonstrate activity
towards a variety of acyl substrates, such as fatty acylCOA fatty alcohol and fatty acyl-ACP molecules. In

30 addition, both the acyl and alcohol substrates acted upon
by the wax synthase may have varying carbon chain lengths
and degrees of saturation, although the plant cytoplasmic
protein involved in fatty acyl-COA metabolism may
demonstrate preferential activity towards certain

35 molecules.

Many different organisms contain products derived from very long chain fatty acyl-CoA molecules and are desirable sources of a plant cytoplasmic protein involved in fatty acyl-CoA metabolism of this invention. For example, plants

produce epidermal, or cuticular wax (Kolattukudy (1980) in The Biochemistry of Plants (Stumpf, P.K. and Conn, E.E., eds.) Vol.4, p. 571-645), and the desert shrub, jojoba. produces a seed storage wax (Ohlrogge et al. (Lipids (1978) 5 13:203-210). Such waxes are the result of a wax synthase catalyzed combination of a long chain or very long chain acyl-CoA molecule with a fatty alcohol molecule. Wax synthesis has also been observed in various species of bacteria, such as Acinetobacter (Fixter et al. (1986) J. Gen. Microbiol. 132:3147-3157) and Micrococcus (Lloyd (1987) Microbios 52:29-37), and by the unicellular organism, Euglena (Khan and Kolattukudy (1975) Arch. Biochem. Biophys. 170:400-408). In addition, wax production and wax synthase activity have been reported in 15 microsomal preparations from bovine meibomian glands (Kolattukudy et al. (1986) J. Lipid Res. 27:404-411), avian uropygial glands, and various insect and marine organisms. Consequently, many different wax esters which will have various properties may be produced by wax synthase 20 activity of plant cytoplasmic protein involved in fatty acyl-CoA metabolism of this invention, and the type of wax ester produced may depend upon the available substrate or the substrate specificity of the particular protein of interest.

Thus, nucleic acid sequences associated with the plant cytoplasmic protein involved in fatty acyl-CoA metabolism may be cloned into host cells for the production of the enzyme and further studies of the activity. For example. one may clone the nucleic acid encoding sequence into 30 vectors for expression in E. coli cells to provide a ready source of the protein. The protein so produced may also be used to raise antibodies for use in identification and purification of related proteins from various sources, especially from plants. In addition, further study of the protein may lead to site-specific mutagenesis reactions to further characterize and improve its catalytic properties or to alter its fatty alcohol or fatty acyl substrate specificity. A plant cytoplasmic protein involved in fatty acyl-CoA metabolism having such altered substrate

25

specificity may find application in conjunction with other FAS enzymes.

Prior to the instant invention, amino acid sequences of wax synthase proteins were not known. Thus, in order to obtain the nucleic acid sequences associated with wax synthase, it was necessary to first purify the protein from an available source and determine at least partial amino acid sequence so that appropriate probes useful for isolation of wax synthase nucleic acid sequences could be prepared.

The desert shrub, Simmondsia chinensis (jojoba) is the source of the encoding sequences exemplified herein. However, related proteins may be identified from other source organisms and the corresponding encoding sequences obtained.

For example, Euglena gracilis produces waxes through the enzymatic actions of a fatty acyl-CoA reductase and a fatty acyl-CoA alcohol transacylase, or wax synthase. Typically, waxes having carbon chain lengths ranging from 24-32 are detected in this organism. The Euglena wax synthase enzyme may be solubilized using a CHAPS/NaCl solution, and a partially purified wax synthase preparation is obtained by Blue A chromatography. In this manner, a 41kD peptide band associated with wax synthase activity is identified.

20

25

Acinetobacter species are also known to produce wax ester compositions, although the mechanism is not well defined. As described herein a fatty acyl-CoA alcohol transacylase, or wax synthase activity is detected in Acinetobacter species. The wax synthase activity is solubilized in CHAPS/NaCl, enriched by Blue A column chromatography and may be further purified using such techniques as size exclusion chromatography. By these methods, an approximately 45kD peptide band associated with wax synthase activity is obtained in a partially purified preparation.

In addition, a plant cytoplasmic protein involved in fatty acyl-CoA metabolism which is required for production of very long chain fatty acids may also be found in various

sources, especially plan sources. In plants, fatty acids up to 18 carbons in chain length are synthesized in the chloroplasts by fatty acid synthase (FAS), a system of several enzymes that elongate fatty acid thioesters of acyl 5 carrier protein (ACP) in 2 carbon increments. After reaching the chain length of 18, the thioester linkage is cleaved by a thioesterase, and the fatty acid is transported to the cytoplasm where it is utilized as a coenzyme A (CoA) thioester as acyl-CoA. Further 10 elongation, when it occurs, is catalyzed by an endoplasmic reticulum membrane associated set of elongation enzymes. Very long chain fatty acids (those fatty acids longer than 18 carbons) are found in the cuticular "waxes" of many plant species, and are found in the seed oil of several plant species. The enzymes involved in elongation of fatty acids to VLCFA are membrane associated (Harwood 1988, von

Plants which contain desirable "elongase" activities include Arabidopsis, Crambe, Nasturtium and Limnanthes. Thus, the proteins responsible for such elongase activity may be purified and the corresponding encoding sequences identified. Alternatively, such sequences may be obtained by hybridization to the jojoba encoding sequences provided herein.

Wettstein-Knowles 1993).

25

Although the hydrophobic nature of the proteins of this invention may present challenges to purification, recovery of substantially purified protein can be accomplished using a variety of methods. See, for example, published PCT application WO 93/10241 where purification of jojoba wax synthase protein is described.

Thus, the nucleic acid sequences which encode a plant cytoplasmic protein involved in fatty acyl-CoA metabolism of this invention may be used to provide for transcription of the sequences and/or expression of the protein in host cells, either prokaryotic or eukaryotic.

. Ultimately, stable plant expression in a plant which produces substrates recognized by this enzyme is desired. If a plant targeted for transformation with wax synthase sequences does not naturally contain the fatty alcohol

libraries.

10

and/or fatty acyl ester substrates of this enzyme, a plant extract may be prepared and assayed for activity by adding substrates to the extract. Constructs and methods for transformation of plant hosts are discussed in more detail below.

As discussed in more detail in the following examples, expression of the nucleic acid sequences provided herein in an initial experiment resulted in increased wax synthase activity. This result, however, was not observed in further E. coli expression experiments. In plants, expression of the exemplified sequences (construct pCGN7626, described in Example 8) resulted in production of very long chain fatty acids in a canola type Brassica, and modification of the very long chain fatty acid profile in 15 transformed Arabidopsis plants (Example 11).

The nucleic acids of this invention may be genomic or cDNA and may be isolated from cDNA or genomic libraries or directly from isolated plant DNA. Methods of obtaining gene sequences once a protein is purified and/or amino acid 20 sequence of the protein is obtained are known to those skilled in the art.

For example, antibodies may be raised to the isolated

protein and used to screen expression libraries, thus identifying clones which are producing the plant 25 cytoplasmic protein involved in fatty acyl-CoA metabolism synthase protein or an antigenic fragment thereof. Alternatively, oligonucleotides may be synthesized from the amino acid sequences and used in isolation of nucleic acid sequences. The oligonucleotides may be useful in PCR to 30 generate a nucleic acid fragment, which may then be used to screen cDNA or genomic libraries. In a different approach. the oligonucleotides may be used directly to analyze Northern or Southern blots in order to identify useful probes and hybridization conditions under which these oligonucleotides may be used to screen cDNA or genomic

Nucleic acid sequences of this invention include those corresponding to the jojoba plant cytoplasmic protein involved in fatty acyl-CoA metabolism, as well as sequences obtainable from the jojoba protein or nucleic acid sequences. By "corresponding" is meant nucleic acid sequences, either DNA or RNA, including those which encode the jojoba plant cytoplasmic protein involved in fatty 5 acyl-CoA metabolism protein or a portion thereof, regulatory sequences found 5' or 3' to said encoding sequences which direct the transcription or transcription and translation (expression) of the protein in jojoba embryos, intron sequences not present in the cDNA, as well 10 as sequences encoding any leader or signal peptide of a precursor protein that may be required for insertion into the endoplasmic reticulum membrane, but is not found in the mature plant cytoplasmic protein involved in fatty acyl-CoA metabolism.

15 By sequences "obtainable" from the jojoba sequence or protein, is intended any nucleic acid sequences associated with a desired plant cytoplasmic protein involved in fatty acvl-CoA metabolism protein that may be synthesized from the jojoba amino acid sequence, or alternatively identified 20 in a different organism, and isolated using as probes the provided jojoba nucleic acid sequences or antibodies prepared against the jojoba plant cytoplasmic protein involved in fatty acyl-CoA metabolism. In this manner, it can be seen that sequences of these other plant cytoplasmic 25 protein involved in fatty acyl-CoA metabolism may similarly be used to isolate nucleic acid sequences associated with such proteins from additional sources.

For isolation of nucleic acid sequences, cDNA or genomic libraries may be prepared using plasmid or viral vectors and techniques well known to those skilled in the art. Useful nucleic acid hybridization and immunological methods that may be used to screen for the desired sequences are also well known to those in the art and are provided, for example in Maniatis, et al. (Molecular Spring Harbor Laboratory Manual, Second Edition (1989) Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).

Typically, a sequence obtainable from the use of nucleic acid probes will show 60-70% sequence identity between the target sequence and the given sequence encoding

a wax synthase enzyme of interest. However, lengthy sequences with as little as 50-60% sequence identity may also be obtained. The nucleic acid probes may be a lengthy fragment of the nucleic acid sequence, or may also be a shorter, oligonucleotide probe. When longer nucleic acid fragments are employed as probes (greater than about 100 bp), one may screen at lower stringencies in order to obtain sequences from the target sample which have 20-50% deviation (i.e., 50-80 sequence homology) from the sequences used as probe. Oligonucleotide probes can be considerably shorter than the entire nucleic acid sequence encoding a wax synthase enzyme, but should be at least about 10, preferably at least about 15, and more preferably at least about 20 nucleotides. A higher degree of sequence identity is desired when shorter regions are used as opposed to longer regions. It may thus be desirable to identify enzyme active sites where amino acid sequence identity is high to design oligonucleotide probes for detecting homologous genes. To determine if a related gene may be isolated by hybridization with a given sequence, the sequence is labeled to allow detection, typically using radioactivity, although other methods are available. The labeled probe is

15

20

hybridization with a given sequence, the sequence is labeled to allow detection, typically using radioactivity, although other methods are available. The labeled probe is added to a hybridization solution, and incubated with filters containing the desired nucleic acids, either Northern or Southern blots (to screen desired sources for homology), or the filters containing cDNN or genomic clones to be screened. Hybridization and washing conditions may be varied to optimize the hybridization of the probe to the sequences of interest. Lower temperatures and higher salt concentrations allow for hybridization of more distantly related sequences (low stringency). If background hybridization is a problem under low stringency conditions, the temperature can be raised either in the hybridization or washing steps and/or salt content lowered to improve detection of the specific hybridizing sequence.

Hybridization and washing temperatures can be adjusted based on the estimated melting temperature of the probe as

discussed in Beltz, et al. (Methods in Enzymology (1983) 100:266-285).

A useful probe and appropriate hybridization and washing conditions having been identified as described 5 above, cDNA or genomic libraries are screened using the labeled sequences and optimized conditions. The libraries are first plated onto a solid agar medium, and the DNA lifted to an appropriate membrane, usually nitrocellulose or nylon filters. These filters are then hybridized with 10 the labeled probe and washed as discussed above to identify clones containing the related sequences.

For immunological screening, antibodies to the jojoba protein can be prepared by injecting rabbits or mice (or other appropriate small mammals) with the purified protein.

15 Methods of preparing antibodies are well known to those in the art, and companies which specialize in antibody production are also available. Either monoclonal or polyclonal antibodies can be produced, although typically polyclonal antibodies are more useful for gene isolation.

20 To screen desired plant species, Western analysis is

20 conducted to determine that a related protein is present in a crude extract of the desired plant species, that crossreacts with the antibodies to the jojoba plant cytoplasmic protein involved in fatty acyl-CoA metabolism. This is 25 accomplished by immobilization of the plant extract proteins on a membrane, usually nitrocellulose, following electrophoresis, and incubation with the antibody. Many different systems for detection of the antibody/protein complex on the nitrocellulose filters are available, including radiolabeling of the antibody and second antibody/enzyme conjugate systems. Some of the available systems have been described by Oberfelder (Focus (1989) BRL/Life Technologies, Inc. 11:1-5). If initial experiments fail to detect a related protein, other 35 detection systems and blocking agents may be utilized. When cross-reactivity is observed, genes encoding the related proteins can be isolated by screening expression libraries representing the desired plant species. Expression libraries can be constructed in a variety of

commercially available vectors, including lambda gtl1, as described in Maniatis, et al. (supra).

The clones identified as described above using DNA hybridization or immunological soreening techniques are then purified and the DNA isolated and analyzed using known techniques. In this manner, it is verified that the clones encode a related protein. Other plant cytoplasmic protein involved in fatty acyl-CoA metabolism may be obtained through the use of the "new" sequences in the same manner as the jojoba sequence was used.

10

It will be recognized by one of ordinary skill in the art that nucleic acid sequences of this invention may be modified using standard techniques of site specific mutation or PCR, or modification of the sequence may be accomplished in producing a synthetic nucleic acid sequence. Such modified sequences are also considered in this invention. For example, wobble positions in codons may be changed such that the nucleic acid sequence encodes the same amino acid sequence, or alternatively, codons can be altered such that conservative amino acid substitutions result. In either case, the peptide or protein maintains the desired enzymatic activity and is thus considered part of the instant invention.

A nucleic acid sequence of this invention may be a DNA 25 or RNA sequence, derived from genomic DNA, cDNA, mRNA, or may be synthesized in whole or in part. The gene sequences may be cloned, for example, by isolating genomic DNA from an appropriate source, and amplifying and cloning the sequence of interest using a polymerase chain reaction 30 (PCR). Alternatively, the gene sequences may be synthesized, either completely or in part, especially where it is desirable to provide plant-preferred sequences. Thus, all or a portion of the desired structural gene (that portion of the gene which encodes the protein) may be synthesized using codons preferred by a selected host. Host-preferred codons may be determined, for example, from the codons used most frequently in the proteins expressed in a desired host species.

The nucleic acid sequences associated with plant cytoplasmic protein involved in fatty acyl-CoA metabolism will find many uses. For example, recombinant constructs can be prepared which can be used as probes or will provide for expression of the protein in host cells. Depending upon the intended use, the constructs may contain the sequence which encodes the entire protein, or a portion thereof. For example, critical regions of the protein, such as an active site may be identified. Further constructs containing only a portion of the sequence which encodes the amino acids necessary for a desired activity may thus be prepared. In addition, antisense constructs for inhibition of expression may be used in which and a portion of the cDNA sequence is transcribed.

10

15

20

30

Useful systems for expression of the sequences of this invention include prokaryotic cells, such as E. coli, yeast cells, and plant cells, both vascular and nonvascular plant cells being desired hosts. In this manner, the plant cytoplasmic protein involved in fatty acyl-CoA metabolism may be produced to allow further studies, such as sitespecific mutagenesis of encoding sequences to analyze the effects of specific mutations on reactive properties of the protein.

The DNA sequence encoding a plant cytoplasmic protein 25 involved in fatty acyl-CoA metabolism of this invention may be combined with foreign DNA sequences in a variety of ways. By "foreign" DNA sequences is meant any DNA sequence which is not naturally found joined to the plant cytoplasmic protein involved in fatty acyl-CoA metabolism sequence, including DNA sequences from the same organism which are not naturally found joined to the plant cytoplasmic protein involved in fatty acyl-CoA metabolism sequences. Both sense and antisense constructs utilizing encoding sequences are considered, wherein sense sequence 35 may be used for expression of a plant cytoplasmic protein involved in fatty acyl-CoA metabolism in a host cell, and antisense sequences may be used to decrease the endogenous levels of a protein naturally produced by a target organism. In addition, the gene

sequences of this invention may be employed in a foreign host in conjunction with all or part of the sequences normally associated with the plant cytoplasmic protein involved in fatty acyl-CoA metabolism such as regulatory or membrane targeting sequences.

In its component parts, a DNA sequence encoding a plant cytoplasmic protein involved in fatty acyl-CoA metabolism

is combined in a recombinant construct having, in the 5' to 3' direction of transcription, a transcription initiation control region capable of promoting transcription and translation in a host cell, the protein encoding sequence and a transcription termination region. Depending upon the host, the regulatory regions will vary, and may include regions from viral, plasmid or chromosomal genes, or the like. For expression in prokaryotic or eukaryotic microorganisms, particularly unicellular hosts, a wide variety of constitutive or regulatable promoters may be employed. Expression in a microorganism can provide a 20 ready source of the plant enzyme. Among transcriptional initiation regions which have been described are regions from bacterial and yeast hosts, such as E. coli, B. subtilis, Sacchromyces cerevisiae, including genes such as beta-galactosidase, T7 polymerase, tryptophan E and the

25 like.

For the most part, the recombinant constructs will involve regulatory regions functional in plants which provide for transcription of the plant cytoplasmic protein involved in fatty acyl-CoA metabolism gene either in the sense or antisense orientation, to produce a functional protein or a complementary RNA respectively. For protein expression, the open reading frame, coding for the plant protein or a functional fragment thereof will be joined at its 5' end to a transcription initiation regulatory region such as the wild-type sequence naturally found 5' upstream to the exemplified jojoba. Numerous other promoter regions from native plant genes are available which provide for a wide variety of constitutive or regulatable, e.g., inducible, expression of structural gene sequences.

20

In addition to sequences from native plant genes, other sequences can provide for constitutive gene expression in plants, such as regulatory regions associated with Agrobacterium genes, including regions associated with 5 nopaline synthase (Nos), mannopine synthase (Mas), or octopine synthase (Ocs) genes. Also useful are regions which control expression of viral genes, such as the 35S and 19S regions of cauliflower mosaic virus (CaMV). The term constitutive as used herein does not necessarily indicate that a gene is expressed at the same level in all cell types, but that the gene is expressed in a wide range of cell types, although some variation in abundance is often detectable. Other useful transcriptional initiation regions preferentially provide for transcription in certain tissues or under certain growth conditions, such as those from napin, seed or leaf ACP, the small subunit of RUBISCO, and the like.

In embodiments wherein the expression of the plant cytoplasmic protein involved in fatty acyl-CoA metabolism 20 is desired in a plant host, the use of all or part of the complete plant gene may be desired, namely the 5' upstream non-coding regions (promoter) together with the structural gene sequence and 3' downstream non-coding regions may be employed. If a different promoter is desired, such as a 25 promoter native to the plant host of interest or a modified promoter, i.e., having transcription initiation regions derived from one gene source and translation initiation regions derived from a different gene source or enhanced promoters, such as double 35S CaMV promoters, the sequences 30 may be joined together using standard techniques. Additionally, 5' untranslated regions from highly expressed plant genes may be useful to provide for increased expression of the proteins described herein.

The DNA constructs which provide for expression in

plants may be employed with a wide variety of plant life,
particularly, plants which produce the fatty acyl-CoA
substrates of the plant cytoplasmic protein involved in
fatty acyl-CoA metabolism, such as Brassica. Other plants
of interest produce desirable fatty acyl substrates, such

as medium or long chain fatty acyl molecules, and include but are not limited to rapeseed (Canola varieties), sunflower, safflower, cotton, Cuphea, soybean, peanut, coconut and oil palms, and corn.

5

20

25

As to the fatty alcohol substrate for the ester production, other than jojoba, seed plants are not known to produce large quantities of fatty alcohols, although small amounts of this substrate may be available to the wax synthase enzyme. Therefore, in conjunction with the 10 constructs of this invention, it is desirable to provide the target host cell with the capability to produce fatty alcohols from the fatty acyl molecules present in the host cells. For example, a plant fatty acyl reductase and methods to provide for expression of the reductase enzymes 15 in plant cells are described in co-pending application USSN 07/767,251. The nucleic acid sequence and translated amino acid sequence of the jojoba reductase is provided in Figure 1. Thus, by providing both the wax synthase and reductase activities to the host plant cell, wax esters may be produced from the fatty alcohol and fatty acyl substrates.

In addition to the jojoba reductase, reductase enzymes from other organisms may be useful in conjunction with the wax synthases of this invention. Other potential sources of reductase enzymes include Euglena, Acinetobacter, Micrococus, certain insects and marine organisms, and specialized mammalian or avian tissues which are known to contain wax esters, such as bovine meibomian glands or avian uropygial glands. Other potential sources of reductase proteins may be identified by their ability to 30 produce fatty alcohols or, if wax synthase is also present, wax esters.

The sequences encoding wax synthase activity and reductase sequences may be provided during the same transformation event, or alternatively, two different 35 transgenic plant lines, one having wax synthase constructs and the other having reductase constructs may be produced by transformation with the various constructs. These plant lines may then be crossed using known plant breeding

techniques to provide wax synthase and reductase containing plants for production of wax ester products.

For applications leading to wax ester production, 5' upstream non-coding regions obtained from genes regulated 5 during seed maturation are desired, especially those preferentially expressed in plant embryo tissue, such as regions derived from ACP, oleosin (Lee and Huang (1991) Plant Physiol, 96:1395-1397) and napin regulatory regions. Transcription initiation regions which provide for preferential expression in seed tissue, i.e., which are undetectable in other plant parts, are considered desirable for wax ester production in order to minimize any disruptive or adverse effects of the gene product in other plant parts. Further, the seeds of such plants may be harvested and the lipid reserves of these seeds recovered to provide a ready source of wax esters. Thus, a novel seed product may be produced in oilseed plants which, absent transformation with wax synthase constructs as described herein, are not known to produce wax esters as a 20 component of their seed lipid reserves.

Similarly, seed promoters are desirable where VLCFA production or inhibition of VLCFA are desired. In this manner, levels of VLCFA may be modulated in various plant species. Such "seed-specific promoters" may be obtained and 25 used in accordance with the teachings of U.S. Serial No. 07/147,781, filed 1/25/88 (now U.S. Serial No. 07/742,834, filed 8/8/81), and U.S. Serial No. 07/494,722 filed on March 16, 1990 having a title "Novel Sequences Preferentially Expressed In Early Seed Development and 30 Methods Related Thereto", all of which co-pending applications are incorporated herein by reference. In addition, where plant genes, such as the jojoba protein is expressed, it may be desirable to use the entire plant gene, including 5' and 3' regulatory regions and any 35 introns that are present in the encoding sequence, for expression of the jojoba genes in a transformed plant species, such as Arabidopsis or Brassica.

Regulatory transcription termination regions may be provided in recombinant constructs of this invention as

well. Transcription termination regions may be provided by the DNA sequence encoding the plant cytoplasmic protein involved in fatty acyl-coA metabolism or a convenient transcription termination region derived from a different gene source, especially the transcription termination region which is naturally associated with the transcription initiation region. The transcript termination region will contain at least about 0.5kb, preferably about 1-3kb of sequence 3' to the structural gene from which the termination region is derived.

Additional plant gene regions may be used to optimize expression in plant tissues. For example, 5' untranslated regions of highly expressed genes, such as that of the small subunit (SSU) of RuBP-carboxylase, inserted 5' to DNA 15 encoding sequences may provide for enhanced translation efficiency. Portions of the SSU leader protein encoding region (such as that encoding the first 6 amino acids) may also be used in such constructs. In addition, for applications where targeting to plant plastid organelles is 20 desirable, transit peptide encoding sequences from SSU or other nuclear-encoded chloroplast proteins may be used in conjunction with wax synthase and reductase sequences.

Depending on the method for introducing the DNA expression constructs into the host cell, other DNA sequences may be required. Importantly, this invention is applicable to dicotyledon and monocotyledon species alike and will be readily applicable to new and/or improved transformation and regeneration techniques.

In developing the recombinant construct, the various components of the construct or fragments thereof will normally be inserted into a convenient cloning vector which is capable of replication in a bacterial host, e.g., E. coli. Numerous vectors exist that have been described in the literature. After each cloning, the plasmid may be isolated and subjected to further manipulation, such as restriction, insertion of new fragments, ligation, deletion, insertion, resection, etc., so as to tailor the components of the desired sequence. Once the construct has been completed, it may then be transferred to an

24 appropriate vector for further manipulation in accordance with the manner of transformation of the host cell.

Normally, included with the recombinant construct will be a structural gene having the necessary regulatory 5 regions for expression in a host and providing for selection of transformant cells. The gene may provide for resistance to a cytotoxic agent, e.g. antibiotic, heavy metal, toxin, etc., complementation providing prototrophy to an auxotrophic host, viral immunity or the like.

Similarly, genes encoding enzymes providing for production of a compound identifiable by color change, such as GUS, or luminescence, such as luciferase are useful. Depending upon the number of different host species the expression construct or components thereof are introduced, one or more markers may be employed, where different conditions for selection are used for the different hosts.

In addition to the sequences providing for transcription of sequences encoding the plant cytoplasmic protein involved in fatty acvl-CoA metabolism of this 20 invention, the DNA constructs of this invention may also provide for expression of an additional gene or genes. whose protein product may act in conjunction with the protein described herein to produce a valuable end product. For example, as discussed above, DNA constructs which 25 provide for expression of wax synthase activity and a fatty acyl reductase so that wax esters may produced in transformed hosts, are considered in this invention. Furthermore, production of different wax esters having varying carbon chain lengths and degrees of saturation is 30 desired and may be provided by transforming host plants having fatty alcohol or fatty acyl substrates of varying chain lengths. Such plants may be provided, for example, by methods described in the published international patent application number PCT WO 91/16421, which describes various thioesterase genes and methods of using such genes to

Furthermore, to optimize the production of wax esters in oilseed plant hosts, one may wish to decrease the

produce fatty acyl substrates having varying chain lengths

in transformed plant hosts.

production of the triacylglyceride oils that are normally produced in the seeds of such plants. One method to accomplish this is to antisense a gene critical to this process, but not necessary for the production of wax 5 esters. Such gene targets include diacylglycerol acyltransferase, and other enzymes which catalyze the synthesis of triacylglycerol. Additionally, it may be desirable to provide the oilseed plants with enzymes which may be used to degrade wax esters as a nutrient source, such as may be isolated from jojoba or various other wax producing organisms. In this manner, maximal production of wax esters in seed plant hosts may be achieved.

Wax esters produced in the methods described herein may be harvested using techniques for wax extraction from jojoba or by various production methods used to obtain oil products from various oilseed crops. The waxes thus obtained will find application in many industries. including pharmaceuticals, cosmetics, detergents, plastics, and lubricants. Applications will vary depending on the chain length and degree of saturation of the wax ester components. For example, long chain waxes having a double band in each of the carbon chains are liquid at room temperature, whereas waxes having saturated carbon chain components, may be solid at room temperature, especially if the saturated carbon chains are longer carbon chains.

15

20

25

30

In applications related to elongase activity, the jojoba gene can be used to increase the chain length of fatty acids in oilseeds by overexpression of the gene in transgenic plants of virtually any species; the gene can also be used as a probe in low stringency hybridization to isolate homologous clones from other species that produce VLCFA. These derived genes can then be used in antisense experiments to reduce the level of VLCFA in the species from which they were isolated, or in other plant species 35 where sufficient gene homology is present. Alternatively, these genes could be overexpressed to increase the quantity of VLCFA in transgenic plants.

Additionally, the DNA from the homologous Brassica gene encoding this enzyme could be used as a plant breeding

26 tool to develop molecular markers to aid in breeding HEAR and canola and other oilseed crops. Such techniques would include using the gene itself as a molecular probe or using the DNA sequence to design PCR primers to use PCR based screening techniques in plant breeding programs.

Furthermore, overexpression of the gene in plant epidermal cells could increase cuticle accumulation thereby increasing drought and stress tolerance of transgenic plants over control plants.

10

35

The method of transformation is not critical to the instant invention; various methods of plant transformation are currently available. As newer methods are available to transform crops, they may be directly applied hereunder. For example, many plant species naturally susceptible to 15 Agrobacterium infection may be successfully transformed via tripartite or binary vector methods of Agrobacterium mediated transformation. Other sequences useful in providing for transfer of nucleic acid sequences to host plant cells may be derived from plant pathogenic viruses or plant transposable elements. In addition, techniques of microinjection, DNA particle bombardment, electroporation have been developed which allow for the transformation of various monocot and dicot plant species.

When Agrobacterium is utilized for plant 25 transformation, it may be desirable to have the desired nucleic acid sequences bordered on one or both ends by T-DNA, in particular the left and right border regions, and more particularly, at least the right border region. These border regions may also be useful when other methods of 30 transformation are employed.

Where Agrobacterium or Rhizogenes sequences are utilized for plant transformation, a vector may be used which may be introduced into an Agrobacterium host for homologous recombination with the T-DNA on the Ti- or Riplasmid present in the host. The Ti- or Ri- containing the T-DNA for recombination may be armed (capable of causing gall formation), or disarmed (incapable of causing gall formation), the latter being permissible so long as a functional complement of the vir genes, which encode transacting factors necessary for transfer of DNA to plant host cells, is present in the transformed Agrobacterium host. Using an armed Agrobacterium strain can result in a mixture of normal plant cells, some of which contain the desired nucleic acid sequences, and plant cells capable of gall formation due to the presence of tumor formation genes. Cells containing the desired nucleic acid sequences, but lacking tumor genes can be selected from the mixture such that normal transgenic plants may be obtained.

10 In a preferred method where Agrobacterium is used as the vehicle for transforming host plant cells, the expression or transcription construct bordered by the T-DNA border region(s) will be inserted into a broad host range vector capable of replication in E. coli and Agrobacterium, there being broad host range vectors described in the 15 literature. Commonly used is pRK2 or derivatives thereof. See, for example, Ditta, et al., (Proc. Nat. Acad. Sci., U.S.A. (1980) 77:7347-7351) and EPA 0 120 515, which are incorporated herein by reference. Alternatively, one may 20 insert the sequences to be expressed in plant cells into a vector containing separate replication sequences, one of which stabilizes the vector in E. coli, and the other in Agrobacterium. See, for example, McBride and Summerfelt (Plant Mol. Biol. (1990) 14:269-276), wherein the pRiHRI 25 (Jouanin, et al., Mol. Gen. Genet. (1985) 201:370-374) origin of replication is utilized and provides for added stability of the plant expression vectors in host Agrobacterium cells.

Utilizing vectors such as those described above, which
30 can replicate in Agrobacterium is preferred. In this
manner, recombination of plasmids is not required and the
host Agrobacterium vir regions can supply trans-acting
factors required for transfer of the T-DNA bordered
sequences to plant host cells. For transformation of
35 Brassica cells, Agrobacterium transformation methods may be
used. One such method is described, for example, by Radke
et al. (Theor. Appl. Genet. (1988) 75:685-694).

The invention now being generally described, it will be more readily understood by reference to the following

28

examples, which are included for purposes of illustration only and are not intended to limit the invention unless so stated.

EXAMPLES

Example 1 - Wax synthase Assays

Methods to assay for wax synthase activity in microsomal membrane preparations or solubilized protein preparations are described.

10 A. Radiolabeled Material

5

The substrate generally used in the wax synthase assays, [1-14C]palmitoyl-CoA, is purchased from Amersham (Arlington Heights, IL). Other chain length substrates were synthesized in order to perform chain length

- specification studies. Long chain [1-14C] fatty acids (specific activity 51-56 Ci/mole), namely 11-cis-eicosenoic acid, 13-cis-docosenoic acid and 15-cis-tetracosenoic acid are prepared by the reaction of potassium [14C] cyanide with the corresponding alcohol mesylate, followed by the base
 - 0 hydrolysis of the alcohol nitrile to the free fatty acid. The free fatty acids are converted to their methyl esters with ethereal diazomethane, and purified by preparative silver nitrate thin layer chromatography (TLC). The fatty acid methyl esters are hydrolyzed back to the free fatty
- 25 acids. Radiochemical purity is assessed by three TLC methods: normal phase silica TLC, silver nitrate TLC, and C18 reversed phase TLC. Radiochemical purity as measured by these methods was 92-98%. Long chain [1-14C] acyl-CoAs are prepared from the corresponding [1-14C] free fatty
- 30 acids by the method of Young and Lynen (J. Bio. Chem. (1969) 244:377), to a specific activity of 10ci/mole. [1-14C]hexadecanal is prepared by the dichromate oxidation of [1-14C]hexadecan-1-ol, according to a micro-scale modification of the method of Pletcher and Tate (Tet. Lett.
- (1978) 1601-1602). The product is purified by preparative silica TLC, and stored as a hexane solution at -70°C until use.
 - B. <u>Assay for Wax synthase Activity in a Microsomal</u>
 Membrane

PCT/US94/13686 29

Preparation

10

Wax synthase activity in a microsomal membrane preparation is measured by incubation of 40µM [1-14Clacvl-CoA (usually palmitoyl-CoA, sp. act. 5.1-5.6 mCi/mmol) and 5 200 µM oleyl alcohol with the sample to be assayed in a total volume of 0.25ml. The incubation mixture also contains 20% w/v glycerol, 1mM DTT, 0.5M NaCl and is buffered with 25mM HEPES (4-[2-hydroxyethyl]-1piperazineethane-sulfonic acid). HEPES, here and as referred to hereafter is added from a 1M stock solution adjusted to pH 7.5.

A substrate mixture is prepared in a glass vial, with oleyl alcohol being added immediately before use, and is added to samples. Incubation is carried out at 30°C for 15 one hour. The assay is terminated by placing the assay tube on ice and immediately adding 0.25ml isopropanol:acetic acid (4:1 v/v). Unlabeled wax esters (0.1mg) and oleyl alcohol (0.1mg) are added as carriers. The [14C] lipids are extracted by the scaled-down protocol 20 of Hara and Radin (Anal. Biochem. (1978) 90:420). Four ml of hexane/isopropanol (3:2, v/v) is added to the terminated assay. The sample is vortexed, 2ml of aqueous sodium sulphate solution (6.6% w/v) is added, and the sample is again vortexed.

25 Assay for Solubilized Wax synthase Activity

For assaying solubilized wax synthase activity, reconstitution of the protein is required. Reconstitution is achieved by the addition of phospholipids (Sigam P-3644, ~40% L-phosphatidyl choline) to the 0.75% CHAPS-solubilized 30 sample at a concentration of 2.5mg/ml, followed by dilution of the detergent to 0.3%, below the CMC. Reconstitution of activity is presumed to be based on the incorporation of wax synthase into the phospholipid vesicles. It is recognized that the amount of wax synthase activity 35 detected after their reconstitution can be influenced by many factors (e.g., the phospholipid to protein ratio and the physical state of the wax synthase protein (e.g. aggregate or dispersed).

Analysis of Assay Products

For analyzing the products of either the microsomal membrane preparation wax synthase assay or the solubilized wax synthase assay, two protocols have been developed. One protocol, described below as "extensive assay" is more 5 time-consuming, but yields more highly quantitative results. The other protocol, described below as "quick assay" also provides a measure of wax synthase activity,

Extensive Analysis: Following addition of the 1. sodium sulphate and vortexing the sample, the upper organic phase is removed and the lower aqueous phase is washed with 4ml hexane/isopropanol (7:2 v/v). The organic phases are pooled and evaporated to dryness under nitrogen. The lipid residue is resuspended in a small volume of hexane, and an 15 aliquot is assayed for radioactivity by liquid scintillation counting. The remainder of the sample can be used for TLC analysis of the labeled classes and thereby

but is faster, more convenient and less quantitative.

For lipid class analysis the sample is applied to a silica TLC plate, and the plate is developed in 20 hexane/diethyl ether/acetic acid (80:20:1 v/v/v). The distribution of radioactivity between the lipid classes, largely wax esters, free fatty acids, fatty alcohols, and polar lipids at the origin, is measured using an AMBIS 25 radioanalytic imaging system (AMBIS Systems Inc., San Diego, CA). If necessary the individual lipid classes can be recovered from the TLC plate for further analysis. Reversed-phase TLC systems using C18 plates developed in methanol have also been used for the analysis.

give a measure of total wax produced.

30

Quick Analysis: Following addition of the sodium sulfate and vortexing the sample, a known percentage of the organic phase is removed and counted via liquid scintillation counting. This calculation is used to estimate the total counts in the organic phase. Another 35 portion of the organic phase is then removed, dryed down under nitrogen, redissolved in hexane and spotted on TLC plates and developed and scanned as described for the detailed assay. In this manner the percentage of the total counts which are incorporated into wax is determined.

Example 2 - Radiolabeling Wax Synthase Protein

Radiolabeled [1-14C]palmitoyl-CoA (Amersham) is added to a wax synthase preparation, either solubilized or a 5 microsomal membrane fraction, in the ratio of 5µl of label to 40µl protein sample. The sample is incubated at room temperature for at least 15 minutes prior to further treatment. For SDS-PAGE analysis the sample is treated directly with SDS sample buffer and loaded onto gels for 10 electrophoresis.

Example 3 - Further Studies to Characterize Wax Synthase Activity

15 Seed Development and Wax Synthase Activity Profiles Embryo development was tracked over two summers on five plants in Davis, CA. Embryo fresh and dry weights were found to increase at a fairly steady rate from about day 80 to about day 130. Lipid extractions reveal that

20 when the embryo fresh weight reaches about 300mg (about day 80), the ratio of lipid weight to dry weight reaches the maximum level of 50%.

Wax synthase activity was measured in developing embryos as described in Example 1. As the jojoba seed coats were determined to be the source of an inhibiting factor(s), the seed coats were removed prior to freezing the embryos in liquid nitrogen for storage at -70°C.

Development profiles for wax synthase activities as measured in either a cell free homogenate or a membrane fraction, indicate a large induction in activity which peaks at approximately 110-115 days after anthesis. Embryos for enzymology studies were thus harvested between about 90 to 110 days postanthesis, a period when the wax synthase activity is high, lipid deposition has not reached maximum levels, and the seed coat is easily removed. The highest rate of increase of wax synthase activity is seen between days 80 and 90 postanthesis. Embryos for cDNA library construction were thus harvested between about 80 to 90 days postanthesis when presumably the rate of

synthase of wax synthase protein would be maximal.

Correspondingly, the level of mRNA encoding wax synthase would be presumed to be maximal at this stage.

B. Substrate Specificity

Acyl-CoA and alcohol substrates having varying carbon chain lengths and degrees of unsaturation were added to a microsomal membrane fraction having wax synthase activity to determine the range of substrates recognized by the jojoba wax synthase. Wax synthase activity was measured as 10 described in Example 1, with acyl specificity measured using 80µM of acyl-CoA substrate and 100µM of radiolabeled oleyl alcohol. Alcohol specificity was measured using 100µM of alcohol substrate and 40µM of radiolabeled eicosenoyl-CoA. Results of these experiments are presented 15 in Table 1 below.

Table 1

Acyl and Alcohol Substrate Specificity of

Jojoba Wax Synthase

5	Substrate	Wax synthase Activity (pmoles/min)			
	Structure	Acyl Group	Alcohol Group		
	12:0	12	100		
	14:0	95	145		
10	16:0	81	107		
	18:0	51	56		
	20:0	49	21		
	22:0	46	17		
15	18:1	22	110		
	18:2	7	123		
	20:1	122	72		
	22:1	39	41		
	24:1	35	24		

20

The above results demonstrate that the jojoba wax synthase utilizes a broad range of fatty acyl-CoA and fatty alcohol substrates.

- In addition, wax synthase activity towards various
 25 acyl-thioester substrates was similarly tested using
 palmitoyl-CoA, palmitoyl-ACP and N-acetyl-S-palmitoyl
 cysteamine as acyl substrates. The greatest activity was
 observed with the acyl-CoA substrate. Significant activity
 (-10% of that with acyl-CoA) was observed with acyl-ACP,
 30 but no activity was detectable with the N-acetyl-S-
 - 0 but no activity was detectable with the N-acetyl-Spalmitoyl cysteamine substrate.

C. Effectors of Activity

Various sulphydryl agents were screened for their effect on wax synthase activity. Organomercurial compounds 35 were shown to strongly inhibit activity. Iodoacetamide and N-ethylmaleamide were much less effective. Inhibition by para-hydroxymercuribenzoate was observed, but this inhibition could be reversed by subsequent addition of DTT. These results demonstrate that inhibition by para-

34

hydroxymercuribenzoate involves blocking of an essential sulphydryl group.

D. Size Exclusion Chromatography

A column (1.5cm x 46cm) is packed with Sephacryl-200 5 (Pharmacia), sizing range: 5,000 - 250,000 daltons) and equilibrated with column buffer (25mM HEPES, 20% glycerol, 0.75% CHAPS, 1mM EDTA) containing 0.5M NaCl. Approximately 2 ml of a pooled concentrate from a single 1.5 M NaCl elution from a Blue A column (see Ex. 4C) is loaded and the column run at 0.5 ml/min. The eluted fractions are assayed 10 for wax synthase activity according to the reconstitution protocol described in Example 1. Wax synthase activity appears as a broad peak beginning at the void fraction and decreasing throughout the remainder of the run. A portion of the fractions having wax synthase activity are treated with 1-14C 16:0-CoA (0.0178 uM) for 15 minutes at room temperature. SDS is added to 2% and the samples are loaded on an SDS-PAGE gel. Following electrophoresis, the gel is blotted to Problott (Applied Biosystems: Foster City, CA) and the dried blot membrane analyzed by autoradiography. Alternatively, the blot may be scanned for radioactivity using an automated scanning system (AMBIS; San Diego, Ca.). In this manner, it is observed that the 57kD radiolabeled band tracks with wax synthase activity in the analyzed 25 fractions.

Protein associated with wax synthase activity is further characterized by chromatography on a second size exclusion matrix. A fraction (100ul) of a 10% concentrated 1.5M NaCl elution from a Blue A column (following a 1.0M NaCl elution step) which contains wax synthase activity is chromatographed on a Superose 12 HR10/30 column (Pharmacia; Piscataway, NJ) and analyzed by Fast Protein Liquid Chromatography (FPLC) on a column calibrated with molecular weight standards (MW GF-70 and MW GF-1000; Sigma). Activity assays are performed on the eluted fractions. Most 53% of the recovered wax synthase activity is found in the void fractions, but an easily detectable activity is found to elute at ~55kd according to the calibration curve.

These data indicate the minimum size of an active native

wax synthase protein is very similar to the 57kD size of the labeled band, thus providing evidence that wax synthase activity is provided by a single polypeptide. The fraction of wax synthase activity observed in the void fractions is 5 presumably an aggregated form of the enzyme.

E. Palmitoyl-CoA Agarose Chromatography

1.0

20

30

35

A column (1.0 x 3cm) is packed with 16:0-CoA agarose (Sigma P-5297) and equilibrated with column buffer (See, Example 1, D.) containing 0.2M NaCl. Approximately 4 ml of a pooled concentrate from the 1.5M NaCl wash of the Blue A column is thawed and the salt concentration reduced by passage of the concentrate over a PD-10 (Pharmacia) desalting column equilibrated in 0.2M NaCl column buffer. The reduced salt sample (5ml) is loaded onto the 16:0 CoA agarose column at a flow rate of 0.15 ml/min. The column is washed with 0.5M NaCl column buffer and then with 1.5M NaCl column buffer. Although some wax synthase activity flows through the column or is removed by the 0.5M NaCl wash, the majority of the recovered activity (21% of the loaded activity) is recovered in the 1.5M NaCl eluted peak.

Portions of the fractions which demonstrate wax synthase activity are radiolabeled with [14C]paintioy1-CoA as described in Example 2 and analyzed by SDS polyacrylamide gel electrophoresis (Laemmli, Nature (1970) 25 227:680-685). Again the approximate 57kD radio labelled protein band is observed to track with wax synthase activity.

Example 4 - Purification of Jojoba Wax Synthase

Methods are described which may be used for isolation of a jojoba membrane preparation having wax synthase activity, solubilization of wax synthase activity and further purification of the wax synthase protein.

A. Microsomal Membrane Preparation

Jojoba embryos are harvested at approximately 90-110 days after flowering, as estimated by measuring water content of the embryos (45-70%). The outer shells and seed coats are removed and the cotyledons quickly frozen in liquid nitrogen and stored at -70°C for future use. For

initial protein preparation, frozen embryos are powdered by pounding in a steel mortar and pestle at liquid nitrogen temperature. In a typical experiment, 70g of embryos are processed.

The powder is added, at a ratio of 280ml of solution per 70g of embryos, to the following high salt solution: 3M NaCl, 0.3M sucrose, 100mM HEPES, 2mM DTT, and the protease inhibitors, 1mM EDTA, 0.7µg/ml leupeptin, 0.5µg/ml pepstatin and 17µg/ml PMSF. A cell free homogenate (CFH) is formed by dispersing the powdered embryos in the buffer with a tissue homogenizer (Kinematica, Switzerland; model PT10/35) for approximately 30 sec. and then filtering through three layers of Miracloth (CalBioChem, LaJolla, CA). The filtrate is centrifuged at 100,000 x g for one

The resulting sample consists of a pellet, supernatant and a floating fat pad. The fat pad is removed and the supernatant fraction is collected and dialyzed overnight (with three changes of the buffering solution) versus a 20 solution containing IM NaCl, 100mM HEPES, 2mM DTT and 0.5M EDTA. The dialyzate is centrifuged at 200,000 x g for 1 1/2 hour to yield a pellet, DP2. The pellet is suspended in 25mM HEPES and 10% glycerol, at 1/20 of the original CFH volume, to yield the microsomal membrane preparation.

Activity is assayed as described in Example 1. Recovery of wax synthase activity is estimated at 34% of the original activity in the cell free homogenate. Wax synthase activity in this preparation is stable when stored at -70°C.

25

В. Solubilization of Wax synthase Protein

CHAPS (3-[(3-cholamidopropyl)-dimethyl-ammonio]-1propanesulfonate) and NaCl are added to the microsomal membrane preparation to yield final concentrations of 2% 5 and 0.5M, respectively. The samples are incubated on ice for approximately one hour and then diluted with 25mM HEPES, 20% glycerol, 0.5M NaCl to lower the CHAPS concentration to 0.75%. The sample is then centrifuged at 200,000 x g for one hour and the supernatant recovered and assayed for wax synthase activity as described in Example 1.C. Typically, 11% of the wax synthase activity from the microsomal membrane preparation is recovered in the supernatant fraction. The solubilized wax synthase activity is stable when stored at -70°C.

15 C. Blue A Column Chromatography

25

A column (2.5 x 8cm) with a bed volume of approximately 30ml is prepared which contains Blue A (Cibacron Blue F3GA; Amicon Division, W.R. Grace & Co.), and the column is equilibrated with the column buffer (25mM 20 HEPES, 20% glycerol, 0.75% CHAPS, 1mM EDTA) containing 0.4M NaCl. The solubilized wax synthase preparation is diluted to 0.4M NaCl by addition of column buffer (25mM HEPES, 20% glycerol, 0.75% CHAPS, 1mM EDTA) and loaded to the Blue A column.

The column is washed with column buffer containing 0.5M NaCl until no protein can be detected (as measured by absorbance at 280nm) in the buffer flowing through the column. Greater than 94% of the wax synthase activity binds to the column, while greater than 83% of other protein 30 passes through. Typically, approximately 20% of the loaded wax synthase activity is recovered by elution. A portion of the recovered activity (17%) elutes with a 1.0M NaCl column buffer wash, while approximately 75% of the recovered activity elutes as a broad peak in a 150ml wash 35 with 1.5M NaCl column buffer. Five ml fractions of the 1.5M wash are collected and assayed for wax synthase activity as described in Example 1. Fractions containing wax synthase activity are pooled and concentrated ten fold using an Amicon stirred cell unit and a YM30 membrane. The

concentrated wax synthase preparation may be stored at $-70\,^{\circ}\text{C.}$

D. Size Exclusion Column Chromatography

In fractions collected from chromatography on Blue A 5 the acyl-transferase enzyme activity responsible for formation of wax esters from fatty alcohol and acyl-CoA coelutes with the measurable activity of S-ketoacvl-CoA synthase. The S-ketoacyl-CoA synthase activity can be separated from this wax synthase activity through size exclusion chromatography using S 100 sepharose. The preferred column buffer for size exclusion chromatography comprises 1.0% CHAPS, as at 0.75% CHAPS the enzyme tends to aggregate, i.e., stick to itself and other proteins. Using a column buffer adjusted to 1.0% CHAPS allows clean 15 separation of the activity of wax synthase on S 100, wax synthase being retained, from the S-ketoacyl-CoA synthase protein, the latter being voided. The majority of wax synthase activity elutes from the S 100 sizing column as a peak with a molecular mass ~ of 57 kDa. At 0.75% CHAPS 20 only a small portion of total assayable wax synthase

only a small portion of total assayable wax synthase activity is found at 57 kDa, with the remainder distributed over void and retained fractioins.

Wax synthase also has an estimated molecular mass of
-57 kDa based on SDS gels of radiolabelled protein, i.e.,
25 wax synthase protein which has been labeled by the
procedure described above by incubation with 14C-palmitoylCoA. The labelled band tracks with wax synthase activity
in fractions collected from a size exclusion column, while
6-ketoacyl-CoA synthase activity is completely voided by
30 the S 100 column.

As a predominant 57 kDa protein from the Blue A column fraction, the 8-ketoacyl-CoA synthase can be amino acid sequenced from bands removed from SDS PAGE. Wax synthase activity can be isolated by SDS PAGE and cloned by a similar procedure from fractions retained on S 100.

E. SDS PAGE Analysis

Samples from the S 100 or active BlueA column fractions are diluted in SDS PAGE sample buffer (1x buffer = 2% SDS, 30mM DTT, 0.001% bromphenol blue) and analyzed by

electrophoresis on 12% tris/glycine precast gels from NOVEX
(San Diego, CA). Gels are run at 150V, constant voltage
for approximately 1.5 hours. Protein is detected by silver
staining (Blum et al., Electrophoresis (1987) 8:93-99).

5 Careful examination of the gel reveals only a few
polypeptides, including one of approximately 57kD, whose
staining intensity in the various fractions can be
correlated with the amount of wax synthase activity
detected in those fractions. Furthermore, if radiolabeled
10 [1-14c]palmitoyl-CoA is added to the protein preparation
prior to SDS PAGE analysis, autoradiography of the gel
reveals that the 57kD labeled band tracks with wax synthase
activity in these fractions. Other proteins are also
present in the preparation, including the 56 and 54kD
15 reductase proteins described in co-pending application USSN

F. Continuous Phase Elution

07/767,251.

Wax synthase protein is isolated for amino acid sequencing using an SDS-PAGE apparatus, Model 491 Prep Cell 20 (Bio-Rad Laboratories, Inc., Richmond, CA), according to manufacturer's instructions. A portion (15 ml) of the wax synthase activity from the 1.5M NaCl elution of the Blue A column is concentrated 10 fold in a Centricon 30 (Amicon Division, W. R. Grace & Co.; Beverly, MA) and desalted with 25 column buffer on a Pharmacia PD-10 desalting column. The sample is treated with 2% SDS and a small amount of bromphenol blue tracking dye and loaded onto a 5 ml, 4% acrylamide stacking gel over a 20 ml, 12% acrylamide running gel in the Prep Cell apparatus. The sample is 30 electrophoresed at 10W and protein is continuously collected by the Prep Cell as it elutes from the gel. The eluted protein is then collected in 7.5-10 ml fractions by a fraction collector. One milliliter of each fraction in the area of interest (based on the estimated 57kD size of the wax synthase protein) is concentrated to 40 $\mu 1$ in a Centricon 30 and treated with 2% SDS. The samples are run on 12% acrylamide mini-gels (Novex) and stained with silver. Various modifications to the continuous phase elution process in order to optimize for wax synthase

recovery may be useful. Such modifications include adjustments of acrylamide percentages in gels volume of the gels, and adjustments to the amount of wax synthase applied to the gels. For example, to isolate greater amounts of 5 the wax synthase protein the Blue A column fractions may be applied to larger volume, 20-55 ml, acrylamide gels at a concentration of approximately 1 mg of protein per 20 ml of gel. The protein fractions eluted from such gels may then be applied 10-15% gradient acrylamide gels for increased band separation.

The protein content of each fraction is evaluated visually and fractions containing wax synthase protein are pooled and concentrated for amino acid sequencing. In order to maximize the amount of wax synthase enzyme 15 collected, fractions which also contain the 56kD reductase protein band are included in the pooled preparation. As the reductase protein sequence is known (see Figure 1), further purification of wax synthase protein in the pooled preparation is not necessary prior to application of amino 20 acid sequencing techniques (see Example 5).

Blotting Proteins to Membranes G.

Alternatively, wax synthase protein may be further isolated for amino acid sequencing by transfer to PVDF membranes following SDS-PAGE, either Immobilon-P 25 (Millipore; Bedford, MA) or ProBlott (Applied Biosystems; Foster City, CA). Although transfer to nitrocellulose may also be useful, initial studies indicate poor transfer to nitrocellulose membranes, most likely due to the hydrophobic nature of this protein. PVDF membranes, such 30 as ProBlott and Immobilon-P find preferential use in different methods, depending on the amino acid sequencing technique to be employed. For example, transfer to ProBlott is useful for N-terminal sequencing methods and for generation of peptides from cyanogen bromide digestion, 35 Immobilon-P is preferred.

Blotting to Nitrocellulose: When protein is electroblotted to nitrocellulose, the blotting time is typically 1-5 hours in a buffer such as 25mM Tris, 192mM glycine in 5-20% methanol. Following electroblotting,

WO 95/15387 PCT/US94/13686

41
membranes are stained in 0.1% (w/v) Ponceau S in 1% (v/v) acetic acid for 2 minutes and destained in 2-3 changes of 0.1% (v/v) acetic acid, 2 minutes for each change. These membranes are then stored wet in heat-sealed plastic bags 5 at -20°C. If time permits, blots are not frozen but used immediately for digestion to create peptides for

- determination of amino acid sequence as described below.

 2. Blotting to PVDF: When protein is electroblotted
- to Immobilon P PVDF, the blotting time is generally about

 10 1-2 hours in a buffer such as 25mM Tris/192mM glycine in

 20% (v/v) methanol. Following electroblotting to PVDF,
 membranes are stained in 0.1% (w/v) Coomassie Blue in 50%

 (v/v) methanol/10% (v/v) acetic acid for 5 minutes and
 destained in 2-3 changes of 50% (v/v) methanol/10% (v/v)

 15 acetic acid, 2 minutes for each change. PVDF membranes are
 - acetic acid, 2 minutes for each change. PVDF membranes are then allowed to air dry for 30 minutes and are then stored dry in heat-sealed plastic bags at -20°C. Protein blotted to PVDF membranes such as Pro Blott, may be used directly to determine N-terminal sequence of the intact protein. A
- 20 protocol for electroblotting proteins to ProBlott is described below in Example 5A.

Example 5 - Determination of Amino Acid Sequence

In this example, methods for determination of amino 25 acid sequences of plant proteins associated with wax synthase activity are described.

A. <u>Cyanogen Bromide Cleavage of Protein and Separation of</u> <u>Peptides</u>

Cyanogen bromide cleavage is performed on the protein
of interest using the methodology described in the ProbeDesign Peptide Separation System Technical Manual from
Promega, Inc. (Madison, WI). The wax synthase protein, if
not available in a purified liquid sample, is blotted to a
PVDF membrane as described above. Purified wax synthase
protein or wax synthase bands from the PVDF blot, are
placed in a solution of cyanogen bromide in 70% (v/v)
formic acid, and incubated overnight at room temperature.
Following this incubation the cyanogen bromide solutions
are removed, pooled and dried under a continuous nitrogen

WO 95/15387

stream using a Reacti-Vap Evaporator (Pierce, Rockford, IL). Additional elution of cyanogen bromide peptides from PVDF may be conducted to ensure complete removal, using a peptide elution solvent such as 70% (v/v) isopropanol, 0.2% (v/v) trifuoroacetic acid, 0.1mM lysine, and 0.1mM thioglycolic acid. The elution solvents are then removed and added to the tube containing the dried cyanogen bromide solution, and dried as described above. The elution procedure may be repeated with fresh elution solvent. 50µ1 10 of HPLC grade water is then added to the dried peptides and the water removed by evaporation in a Speed-Vac (Savant, Inc., Farmindale, NY).

Peptides generated by cyanogen bromide cleavage are separated using a Tris/Tricine SDS-PAGE system similar to 15 that described by Schägger and von Jagow (Anal. Biochem. (1987) 166:368-379). Gels are run at a constant voltage of 125-150 volts for approximately 1 hour or until the tracking dye has begun to run off the bottom edge of the gel. Gels are soaked in transfer buffer (125mM Tris, 50mM 20 glycine, 10% (v/v) methanol) for 15-30 minutes prior to transfer. Gels are blotted to ProBlott sequencing membranes (Applied Biosystems, Foster City, CA) for 2 hours at a constant voltage of 50 volts. The membranes are stained with Coomassie blue (0.1% in 50% (v/v) methanol/10% 25 (v/v) acetic acid) and destained for 3X 2 min. in 50% (v/v) methanol/10% (v/v) acetic acid. Membranes are air-dried for 30-45 minutes before storing dry at -20° C.

Peptides blotted on to ProBlott can be directly loaded to the sequencer cartridge of the protein sequencer without 30 the addition of a Polybrene-coated glass fibre filter. Peptides are sequenced using a slightly modified reaction cycle, BLOT-1, supplied by Applied Biosystems. Also, solution S3 (butyl chloride), is replaced by a 50:50 mix of S1 and S2 (n-heptane and ethyl acetate). These two 35 modifications are used whenever samples blotted to ProBlott are sequenced.

B. Protease Digestion and Separation of Peptides

Purified wax synthase protein provided in a liquid solution or wax synthase proteins blotted to nitrocellulose

WO 95/15387 PCT/IIS94/13686 43

may be subjected to digestion with proteases in order to obtain peptides for sequencing. The method used is that of Aebersold, et al. (PNAS (1987) 84:6970).

For protein provided on nitrocellulose, bands of the 5 wax synthase proteins, and also an equal amount of blank nitrocellulose to be used as a control, are cut out of the nitrocellulose membrane and washed several times with HPLC grade water in order to remove the Ponceau S. Following this wash. 1.0ml of 0.5% polyvinylpyrrolidone (PVP-40, Aldrich, Milwaukee, WI) in 0.5% acetic acid is added to the membrane pieces and this mixture is incubated for 30 minutes at 37°C. In order to remove the PVP-40 completely. nitrocellulose pieces are washed with many volumes of HPLC grade water (8 x 5ml), checking the absorbance of the washes at 214nm on a spectrophotometer. Also, PVP-40 is more easily removed if bands are not cut into small pieces until after PVP-40 treatment and washing.

15

35

The proteins, in solution or on nitrocellulose pieces, are then suspended in an appropriate digest buffer, for 20 example trypsin digest buffer, 100mM sodium bicarbonate pH 8.2, or endoproteinase gluC buffer, 25mM ammonium carbonate/1mM EDTA, pH 7.8. Acetonitrile is added to the digest mixture to a concentration of 5-10% (v/v). Proteases are diluted in digest buffer and added to the 25 digest mixture, typically at a ratio of 1:10 (w/w) protease to protein. Digests are incubated 18-24 hours. For example, trypsin digests are incubated at 37°C and endoproteinase gluC digests are incubated at room temperature. Similarly, other proteases may be used to digest the wax synthase proteins, including lysC and aspN. While the individual digest buffer conditions may be different, the protocols for digestion, peptide separation, purification and sequencing are substantially the same as those described for digestion with trypsin and gluC.

Following overnight incubation, digest reactions are stopped by the addition of 10µl 10% (v/v) trifluoroacetic acid (TFA) or 1µl 100% TFA. When the protein is provided on nitrocellulose, the nitrocellulose pieces are washed with 1-5 100µl volumes of digest buffer with 5-10%

acetonitrile, and these volumes are concentrated to a volume of less than 100µl in a Speed-Vac.

The peptides resulting from digestion are separated on a Vydac reverse phase C18 column (2.1mm x 100mm) installed 5 in an Applied Biosystems (Foster City, CA) Model 130 High Performance Liquid Chromatograph (HPLC). Mobile phases used to elute peptides are: Buffer A: 0.1mM sodium phosphate, pH2.2; Buffer B: 70% acetonitrile in 0.1mM sodium phosphate, pH2.2. A 3-step gradient of 10-55% buffer B over two hours, 55-75% buffer B over 5 minutes, and 75% buffer B isocratic for 15 minutes at a flow rate of

50µl/minute is used. Peptides are detected at 214nm, collected by hand, and then stored at -200 C. Due to the hydrophobic nature of the wax synthase

10

15 proteins, addition of a detergent in enzyme digestions buffers may be useful. For example, fractions from the continuous phase elution procedure described above which contain the jojoba wax synthase are concentrated in a Centricon 30 in 100mM NaHCO3/1.0% CHAPS to a final volume of 110ul. Two ug of trypsin in 5µl of 100mM Na HCO3/1.0% CHAPS is added to the protein solution and the mixture is incubated overnight at 37°C, and the digestion stopped by addition of trifluoroacetic acid (TFA). The sample is centrifuged lightly and the peptides separated on a Vydac 25 C18 column and eluted as described above. In this procedure, the CHAPS elutes at ~40-53% Buffer B, and obscures the peptide peaks in this region.

Where the primary separation yields a complex peptide pattern, such as where excess protein is used or 3.0 contaminants (such as the jojoba reductase protein) are present, peptide peaks may be further chromatographed using the same column, but a different gradient system. For the above jojoba wax synthase preparation, hydrophilic peaks were separated using a gradient of 0-40% Buffer B for 60 minutes, 40-75% B for 35 minutes and 75-100% B for 10 35 minutes. Hydrophobic peaks were separated using 0-40% Buffer B for 40 minutes, 40-80% B for 60 minutes and 80-100% B for 10 minutes. For these separations, Buffer A is 0.1% TFA and Buffer B is 0.1% TFA in acetonitrile.

N-terminal Sequencing of Proteins and Peptides

All sequencing is performed by Edman degradation on an Applied Biosystems 477A Pulsed-Liquid Phase Protein Sequencer; phenylthiohydantoin (PTH) amino acids produced 5 by the sequencer are analyzed by an on-line Applied Biosystems 120A PTH Analyzer. Data are collected and stored using an Applied BioSystems model 610A data analysis system for the Apple Macintosh and also on to a Digital Microvax using ACCESS*CHROM software from PE NELSON, Inc. 10 (Cupertino, CA). Sequence data is read from a chart recorder, which receives input from the PTH Analyzer, and is confirmed using quantitative data obtained from the model 610A software. All sequence data is read independently by two operators with the aid of the data 15 analysis system.

For peptide samples obtained as peaks off of an HFLC, the sample is loaded on to a Polybrene coated glass fiber filter (Applied Biosystems, Foster City, CA) which has been subjected to 3 pre-cycles in the sequencer. For peptides which have been reduced and alkylated, a portion of the PTH-amino acid product material from each sequencer cycle is counted in a liquid scintillation counter. For protein samples which have been electroblotted to Immobilon-P, the band of interest is cut out and then placed above a

25 Polybrene coated glass fiber filter, pre-cycled as above and the reaction cartridge is assembled according to manufacturer's specifications. For protein samples which have been electroblotted to ProBlott, the glass fiber filter is not required.

30

In order to obtain protein sequences from small amounts of sample (5-30 pmoles), the 477A conversion cycle and the 120A analyzer as described by Tempst and Riviere (Anal. Biochem. (1989) 183:290).

Amino acid sequence of jojoba peptides obtained by

35 trypsin digestion as described above are presented in Table

2 below.

WO 95/15387 PCT/US94/13686

46

Table 2

Amino Acid Sequence of Jojoba 57 kDa protein Tryptic

Peptides

5		
	SQ1114	ETYVPESVTKK
	SQ1084	VPXEPSIAAX
	SQ1083	ETYVPEEvtk
	SQ1120	DLMAVAGEA1k
10	SQ1125	MTNVKPYIPDF
	SQ1129	FLPXXVAiTGe
	SQ1131	FGNTSSXXLyxelayak
	SO1137	AEAEEVMYGAIDEVLEK

The amino acid sequence is represented using the one letter code. "X" represents a position where the amino acid could not be identified, and amino acids represented by lower case letters represent residues which were identified with a lesser decree of confidence.

20 Example 6 - Purification of Additional Wax Synthases

and Reductases

A. Adaptation of jojoba wax synthase solubilization and purification methods to obtain partially purified preparations of wax synthase from other organisms are described.

Acinetobacter

Cells of Acinetobacter calcoaceticus strain BD413 (ATCC #33305) are grown on ECLB (E. coli luria broth),

30 collected during the logarithmic growth phase and washed in a buffer containing; Hepes, pH 7.5, 0.1M NaCl, lmM DTT and protease inhibitors. Washed cells were resuspended in fresh buffer and ruptured by passage through a French pressure cell (two passes at -16,000p.s.i.). Unbroken cells are removed by centrifugation at 5000 x g for 10 minutes, and membranes are collected by centrifugation at 100,000 x g for 1 hour. The membrane pellet is homogenized in storage buffer (25mM Hepes, pH 7.5, 10% (w/v) glycerol). Wax synthase activity is detected in these membranes using

WO 95/15387 PCT/US94/13686

assay conditions described for the jojoba enzyme in Example 1B, using $[1-^{14}C]$ palmitoyl-CoA and 18:1 alcohol as the substrates.

Wax synthase activity is solubilized by incubation of the membranes with 2% CHAPS in the presence of 0.5M NaCl, as described for the jojoba enzyme in Example 4B. Solubilization of the activity is demonstrated by the detection of wax synthase enzyme activity in the supernatant fraction after centrifugation at 200,000g for 1 thour and by size exclusion chromatography (i.e. the activity elutes from the column in the retained fractions as a symmetrical peak). The activity of the solubilized enzyme is detected by simple dilution of the CHAPS concentration to ~0.3% (i.e. to below its CMC).

15 Incorporation of the enzyme into phospholipid vesicles is not required to detect solubilized activity.

For purification, the solubilized Acinetobacter wax synthase activity is subjected to chromatographic purification procedures similar to those described for the jojoba acyl-CoA reductase. The soluble protein preparation is loaded to a Blue A agarose column under low salt conditions (150mM NaCl in a column buffer containing 0.75% CHAPS, 10% glycerol, 25mM Hepes, pH 7.5) and eluted from the column using 1.0M NaCl in the column buffer.

20

25

Size exclusion chromatography on Superose 12 (Pharmacia; Piscataway, NJ) medium is used to obtain an estimate of the size of the native enzyme and to aid in identifying candidate polypeptides. Comparison to molecular mass standards chromatographed under identical conditions yields an estimate of ~46kD for the native wax synthase activity. Three polypeptides bands, with apparent molecular masses of 45kD, 58kD and 64kD, were identified which tracked with wax synthase activity. N-terminal sequence of the 45kD polypeptide, the strongest candidate for wax synthase, is determined as XDIAIIGSGsAGLAQaxilkdag, where the one letter code for amino acids is used, "X" represents a position where the amino acid could not be identified, and amino acids represented by lower case letters represent residues which were identified with a

lesser degree of confidence. In addition, sequence of a tryptic peptide of the *Acinetobacter* wax synthase protein is determined as OOFTVWXNASEPS.

Euglena

Euglena gracilis, strain Z (ATCC No. 12716) is grown heterotrophically in the dark (Tani et al. (1987) Agric. Biol. Chem. 51:225-230) at ~26°C with moderate shaking. Cells are collected and washed in buffer containing 25mM Bis-Tris-Propane, pH 7.0, 0.25M NaCl and 1mM EDTA. Washed 10 cells are resuspended in fresh buffer and ruptured by passage through a French pressure cell (two passes at ~16,000 p.s.i.). Unbroken cells, cell debris and nuclei are removed by centrifugation at 20,000 x g for 20 minutes, and microsomal membranes are collected by centrifugation at 15 200,000 x g for 1 hour. The membrane pellet is homogenized in storage buffer (25mM Bis-Tris-Propane, pH 7.0, 0.25M NaCl, 10% (w/v) glycerol and 1mM EDTA). Wax synthase activity is detected in these membranes using assay conditions as described for the jojoba enzyme. The radiolabelled substrate is the same as for the jojoba 20 example (i.e. [1-14C] palmitoyl-CoA), however, 16:0 rather than 18:1 is used as the alcohol acceptor, and Bis-Tris-

The Euglena wax synthase activity is solubilized by incubation of the membranes with 2% CHAPS in the presence of 0.5M NaCl. Solubilization of the protein is demonstrated by the detection of enzyme activity in the supernatant fraction after centrifugation at 200,000 x g for 1 hour. The activity of the solubilized enzyme is detected by dilution of the CHAPS concentration to ~0.3% (i.e. to below its CMC). It is not necessary to incorporate the enzyme into phospholipid vesicles as was the case for the solubilized jojoba wax synthase.

Propane buffer at pH 7.0 is utilized.

35

For partial purification, the solubilized Euglena wax synthase activity is subjected to chromatographic separation on Blue A agarose medium. The column is equilibrated with 0.1M NaCl in a column buffer containing; 25mM Bis-Tris-Propane, pH 7.0, 20% (w/v) glycerol, 0.75% CHAPS and 1mM EDTA. The sample containing solubilized wax

synthase activity is diluted to 0.1M NaCl and loaded onto a 1 x 7cm column (5.5ml bed volume). The column is washed with equilibration buffer and subjected to a linear NaCl gradient (0.1M to 1.0M NaCl) in column buffer. Wax 5 synthase activity is eluted as a broad peak in the last half of the salt gradient.

SDS-PAGE analysis of column fractions reveals that the polypeptide complexity of the activity eluted from the column is greatly reduced relative to the loaded material.

10 A polypeptide with an apparent molecular mass of ~41kD was observed to track with wax synthase activity in the column fractions. Further purification techniques, such as described for jojoba and Acinetobacter are conducted to verify the association of wax synthase activity with the 15 ~41kD peptide.

For further analysis of wax synthase activity in Euglena, size exclusion chromatography was conducted as follows. A microsomal membrane preparation was obtained from Euglena cells grown on liquid, heterotrophic, medium

- 20 (Tani et al., supra) in the dark. Wax synthase activity was solubilized by treating the membranes with 2% (w/v) CHAPS and 500mM NaCl in a buffered solution (25mM Bis-Tris, pH 7.0, 1mM EDTA and 10% (w/v) glycerol) for 1 hour on ice. After dilution of the CHAPS to 0.75% and the NaCl to 200mM
- 25 by addition of a dilution buffer, the sample was centrifuged at ~200,000 x g for 1.5 hours. The supernatant fraction was loaded onto a Blue A dye column preequilibrated with Column Buffer (25mM Bis-Tris pH 7.0, 1mM EDTA, 10% glycerol, 0.75% CHAPS) which also contained 200mM NaCl. The column was washed with Column Buffer containing 200mM NaCl until the A280 of the effluent returned to the preload value. Wax synthase activity which had bound to
- the column was released by increasing the NaCl concentration in the Column Buffer to 1.5M. The fractions 35 from the Blue A column containing wax synthase activity released by the 1.5M NaCl (-20ml combined volume) were pooled and concentrated approximately 30-fold via ultrafiltration (Amicon pressure cell fitted with a YM 30 membrane). The concentrated material from the Blue A

column was used as the sample for a separation via size exclusion chromatography on Superose 12 medium (Pharmacia).

Approximately 200µl of the sample was loaded onto a Superose 12 column (HR 10/30), pre-equilibrated with Column 5 Buffer containing 0.5M NaCl, and developed at a flow rate of 0.1ml/min. The wax synthase activity eluted from the column as a smooth peak. Comparison of the elution volume of the wax synthase activity with the elution profiles of molecular mass standard proteins vielded an estimate of 166kD for the apparent molecular mass of the enzyme. Fractions which contained wax synthase activity were analyzed via SDS-polyacrylamide gel electrophoresis followed by silver staining. A preliminary analysis of the polypeptide profiles of the various fractions did not reveal any proteins with molecular masses of 100kD or greater whose staining intensity appeared to match the activity profile. The wax synthase polypeptide may be present as a minor component in the sample mixture that is not readily detectable on the silver-stained gel.

20 Alternatively, the enzyme may be composed of subunits which are dissociated during SDS-PAGE.

B. In addition to jojoba reductase, such as that encoded by the sequence provided in Figure 1, reductase proteins from other sources are also desirable for use in conjunction with the wax synthase proteins of this invention. Such proteins may be identified and obtained from organisms known to produce wax esters from alcohol and acyl substrates.

For example, an NADH-dependent fatty acyl-CoA reductase activity can be obtained from microsomal membranes isolated from Euglena gracilis. Methods which may be used to isolate microsomal membranes are described, for example in the published PCT patent application WO 92/14816 (application number PCT/US92/03164, filed February 21, 1992). The reductase activity is solubilized from these membranes using the same approaches as used for jojoba reductase and wax synthase. Membranes are incubated on ice for one hour with various amounts of the detergent.

CHAPS, in a buffering solution consisting of 25mM BisTris. pH 6.9, 250mM NaCl, 10% glycerol and 1 mM EDTA. The sample is then centrifuged at 200,000 x g for one hour, and the supernatant and pellet fractions assayed for NADH-dependent reductase activity using radiolabeled palmitoyl-CoA and NADH as substrates. A convenient assay for reductase activity is described in PCT patent application WO 92/14816. Incubation of the membranes with 0.3, 0.5 or 0.7 %(w/v) CHAPS results in retention of reductase activity in the supernatant fractions, indicative of solubilization of the enzyme. If CHAPS is omitted during the incubation and centrifugation, all of the reductase activity is found in

fold in this same buffer solution prior to assaying in 15 order to dilute the CHAPS present during the incubation. The presence of CHAPS in the assay at levels above the CMC (approximately 0.5%(w/v) results in inhibition of enzyme activity. Stability of the reductase activity in up to 2% CHAPS may be improved by increasing the glycerol

the pellet fraction. All of the samples are diluted ten-

20 concentration in the buffering solution to 20%. Reductase activity is recovered by dilution of the CHAPS to below the CMC.

25 Example 7 - Isolation of Nucleic Acid Sequences

Isolation of nucleic acid sequences from cDNA libraries or from genomic DNA is described.

Construction of Jojoba cDNA Libraries

RNA is isolated from jojoba embryos collected at 80-90 30 days post-anthesis using a polyribosome isolation method. initially described by Jackson and Larkins (Plant Physiol. (1976) 57:5-10), as modified by Goldberg et al. (Developmental Biol. (1981) 83:201-217). In this procedure all steps, unless specifically stated, are carried out at 4°C. 10gm of tissue are ground in liquid nitrogen in a

Waring blender until the tissue becomes a fine powder. After the liquid nitrogen has evaporated, 170ml of extraction buffer (200mM Tris pH 9.0, 160mM KC1, 25mM EGTA, 70mM MgC12, 1% Triton X-100, 05% sodium deoxycholate, 1mM

spermidine, 10mm 8-mercaptoethanol, and 500mm sucrose) is added and the tissue is homogenized for about 2 minutes. The homogenate is filtered through sterile miracloth and centrifuged at 12,000 x g for 20 minutes. The supernatant is decanted into a 500ml sterile flask, and 1/19 volume of

centrifuged at 12,000 x g for 20 minutes. The supernatant is decanted into a 500ml sterile flask, and 1/19 volume of a 20% detergent solution (20% Brij 35, 20% Tween 40, 20% Noidet p-40 w/v) is added at room temperature. The solution is stirred at 4°C for 30 minutes at a moderate speed and the supernatant is then centrifuged at 12,000 x g 10 for 30 minutes.

About 30ml of supernatant is aliquoted into sterile Ti 60 centrifuge tubes and underlaid with 7ml of a solution containing 40mM Tris pH 9.0, 5mM EGTA, 200mM KCl, 30mM MgCl2, 1.6M sucrose, 5mM 8-mercaptoethanol. The tubes are filled to the top with extraction buffer, and spun at 60,000 rpm for 4 hours at 4°C in a Ti60 rotor. Following centrifugation, the supernatant is aspirated off and 0.5ml of resuspension buffer (40mM Tris pH 9.0, 5mM EGTA, 200mM KCl, 30mM MgCl2, 5mM 8-mercaptoethanol) is added to each tube. The tubes are placed on ice for 10 minutes, after which the pellets are thoroughly resuspended and pooled. The supernatant is then centrifuged at 120 x g for 10 minutes to remove insoluble material. One volume of self-digested lmg/ml proteinase K in 20mM Tris pH 7.6, 200mM

15

20

minutes.

RNA is precipitated by adding 1/10 volume of sodium acetate and 2 volumes of ethanol. After several hours at 30 -20°C RNA is pelleted by centrifugation at 12,000 x g at 4°C for 30 minutes. The pellet is resuspended in 10ml of TE buffer (10mM Tris, 1mM EDTA) and extracted with an equal volume of Tris pH 7.5 saturated phenol. The phases are

25 EDTA, 2% N-lauryl-sarcosinate is added to the supernatant and the mixture incubated at room temperature for 30

separated by centrifuging at 10,000 x g for 20 minutes at 35 4°C. The aqueous phase is removed and the organic phase is re-extracted with one volume of TE buffer. The aqueous phases are then pooled and extracted with one volume of chloroform. The phases are again separated by

35

centrifugation and the aqueous phase ethanol precipitated as previously described, to yield the polyribosomal RNA.

Polysaccharide contaminants in the polyribosomal RNA preparation are removed by running the RNA over a cellulose 5 column (Sigma-cell 50) in high salt buffer (0.5M NaCl, 20mM Tris pH 7.5, 1mM EDTA, 0.1% SDS). The contaminant binds to the column and the RNA is collected in the eluant. The eluant fractions are pooled and the RNA is ethanol precipitated. The precipitated total RNA is then resuspended in a smaller volume and applied to an oligo d(T) cellulose column to isolate the polyadenylated RNA.

Polyadenylated RNA is used to construct a cDNA library in the plasmid cloning vector pCGN1703, derived from the commercial cloning vector Bluescribe M13- (Stratagene

- 15 Cloning Systems; San Diego, CA), and made as follows. The polylinker of Bluescribe M13- is altered by digestion with BamHI, treatment with mung bean endonuclease, and blunt-end ligation to create a BamHI-deleted plasmid, pCGN1700. pCGN1700 is digested with EcoRI and SstI (adjacent
- restriction sites) and annealed with a synthetic linker having restriction sites for BamHI, PstI, XbaI, ApaI and Smal, a 5' overhang of AATT, and a 3' overhang of TCGA. The insertion of the linker into pCGN1700 eliminates the EcoRI site, recreates the SstI (also, sometimes referred to 25 as "SacI" herein) site found in Bluescribe, and adds the
- new restriction sites contained on the linker. The resulting plasmid pCGN1702, is digested with HindIII and blunt-ended with Klenow enzyme; the linear DNA is partially digested with PvuII and ligated with T4 DNA wax synthase in dilute solution. A transformant having the lac promoter
- region deleted is selected (pCGN1703) and is used as the plasmid cloning vector. Briefly, the cloning method for cDNA synthesis is as follows. The plasmid cloning vector is digested with SstI
 - and homopolymer T-tails are generated on the resulting 3'overhang stick-ends using terminal deoxynucleotidyl transferase. The tailed plasmid is separated from undigested or un-tailed plasmid by oligo(dA)-cellulose chromatography. The resultant vector serves as the primer

for synthesis of cDNA first strands covalently attached to either end of the vector plasmid. The cDNA-mRNA-vector complexes are treated with terminal transferase in the presence of deoxyguanosine triphosphate, generating G-tails 5 at the ends of the cDNA strands. The extra cDNA-mRNA complex, adjacent to the BamHI site, is removed by BamHI digestion, leaving a cDNA-mRNA-vector complex with a BamHI stick-end at one end and a G-tail at the other. This complex is cyclized using an annealed synthetic cyclizing 10 linker which has a 5' BamHI sticky-end, recognition sequences for restriction enzymes NotI, EcoRI and SstI, and a 3' C-tail end. Following ligation and repair the circular complexes are transformed into E. coli strain DH50 (BRL, Gaithersburg, MD) to generate the cDNA library. The 15 jojoba embryo cDNA bank contains between approximately 1.5x106 clones with an average cDNA insert size of approximately 500 base pairs.

Additionally, jojoba polyadenylated RNA is also used to construct a CRNA library in the cloning vector

20 AZAPII/EcoRI (Stratagene, San Diego, CA). The library is constructed using protocols, DNA and bacterial strains as supplied by the manufacturer. Clones are packaged using Gigapack Gold packaging extracts (Stratagene), also according to manufacturer's recommendations. The cDNA library constructed in this manner contains approximately 1 x 105 clones with an average cDNA insert size of approximately 400 base pairs.

B. Polymerase Chain Reaction

Using amino acid sequence information, nucleic acid
sequences are obtained by polymerase chain reaction (PCR).
Synthetic oligonucleotides are synthesized which correspond
to the amino acid sequence of selected peptide fragments.
If the order of the fragments in the protein is known, such
as when one of the peptides is from the N-terminus or the
selected peptides are contained on one long peptide
fragment, only one oligonucleotide primer is needed for
each selected peptide. The oligonucleotide primer for the
more N-terminal peptide, forward primer, contains the
encoding sequence for the peptide. The oligonucleotide

primer for the more C-terminal peptide, reverse primer, is complementary to the encoding sequence for the selected peptide. Alternatively, when the order of the selected peptides is not known, two oligonucleotide primers are 5 required for each peptide, one encoding the selected amino acid sequence and one complementary to the selected amino acid sequence. Any sequenced peptides may be selected for construction of oligonucleotides, although more desirable peptides are those which contain amino acids which are encoded by the least number of codons, such as methionine. tryptophan, cysteine, and other amino acids encoded by fewer than four codons. Thus, when the oligonucleotides are mixtures of all possible sequences for a selected peptide, the number of degenerate oligonucleotides may be low.

PCR is conducted with these oligonucleotide primers using techniques that are well known to those skilled in the art. Jojoba nucleic acid sequences, such as reverse transcribed cDNA, DNA isolated from the cDNA libraries described above or genomic DNA, are used as template in these reactions. In this manner, segments of DNA are produced. Similarly, segments of Acinetobacter w DNA are obtained from PCR reactions using oligonucleotide primers to the N-terminal and tryptic digest peptides described in 25 Example 6A. The PCR products are analyzed by gel electrophoresis techniques to select those reactions yielding a desirable wax synthase fragment.

Screening Libraries for Sequences

15

20

DNA fragments obtained by PCR are labeled and used as 30 a probe to screen clones from the cDNA libraries described above. DNA library screening techniques are known to those in the art and described, for example in Maniatis et al. (Molecular Cloning: A Laboratory Manual, Second Edition (1989) Cold Spring Harbor Laboratory Press). In this manner, nucleic acid sequences are obtained which may be analyzed for nucleic acid sequence and used for expression of the plant cytoplasmic protein involved in fatty acvl-CoA metabolism

in various hosts, both procarvotic and eucarvotic.

An approximately 1500 nucleotide jojoba cDNA clone is obtained in this manner. Comparison to the peptide fragments provided in Table 2 reveals the presence of each of these peptides in the translated sequence, with the 5 exception of SO1129. Northern analysis of jojoba embryo RNA indicates that the mRNA is approximately 2kb in length. Additional nucleic acid sequence is obtained using further PCR techniques, such as 5' RACE (Frohman et al., Proc. Nat. Acad. Sci. (1988) 85:8998-9002). Alternatively, additional sequences may be obtained by rescreening cDNA libraries or 10 from genomic DNA. Preliminary DNA sequence of a jojoba gene is presented in Figure 2. Further DNA sequence analysis of additional clones indicates that there are at least two classes of cDNA's encoding this jojoba protein. 15 A plasmid containing the entire coding region in pCGN1703 is constructed to contain a SalI site approximately 8 nucleotides 5' to the ATG start codon, and is designated pCGN7614. The complete DNA sequence of pCGN7614 is presented in Figure 3. The major difference between the two classes of cDNAs as represented in the sequences in Figures 2 and 3 is the presence (Figure 2) or absence (Figure 3) of the 6 nucleotide coding sequence for amino acids 23 and 24 of Figure 2.

25 D. Expression of Wax Synthase Activity in E. coli

The gene from pCGN7614 is placed under the control of the Tac promoter of E. coli expression vector pDR540 (Pharmacia) as follows. pCGN7614 DNA is digested at the SalI sites and the ends are partially filled in using the 30 Klenow fragment of DNA polymerase I and the nucleotides TTP and dCTP. The pDR540 vector is prepared by digesting with BamHI and partially filling in the ends with dGTP and dATP. The 1.8 kb fragment from pCGN7614 and the digested pDR540 vector are gel purified using low melting temperature 35 agarose and ligated together using T4 DNA ligase. A colony containing the encoding sequence in the sense orientation relative to the E. coli promoter was designated pCGN7620, and a colony containing the gene in the antisense orientation was designated pCGN7621.

To assay for wax synthase activity, 50 ml cultures of pCGN7620 and pCGN7621 are grown to log phase in liquid culture, and induced for 2 hours by the addition of IPTG to a concentration of ImM. The cells are harvested by centrifugation and subjected to the assay for wax synthase activity as described for jojoba extracts. TLC analysis indicates that the cell extract from pCGN7620 directs synthesis of wax ester, while the control extract from pCGN7621 does not direct the synthesis of wax ester. The wax synthase assay in these harvested cells was verified by a second assay, however, further attempts to produce wax synthase activity in E. coli cells transformed with reductase constructs have been unsuccessful.

15 Example 8 - Constructs for Plant Expression

Constructs which provide for expression of the plant cytoplasmic protein involved in fatty acyl-CoA metabolism and reductase sequences in plant cells may be prepared as follows.

20 A. Expression Cassettes

25

30

Expression cassettes which contain 5' and 3' regulatory regions from genes expressed preferentially in seed tissues may be prepared from napin, Bec4 and ACP genes as described, for example in WO 92/03564.

For example, napin expression cassettes may be prepared as follows. A napin expression cassette, pCGN1808, which may be used for expression of wax synthase or reductase gene constructs is described in Kridl et al. (Seed Science Research (1991) 1:209-219), which is incorporated herein by reference.

Alternatively, pCGN1808 may be modified to contain flanking restriction sites to allow movement of only the expression sequences and not the antibiotic resistance marker to binary vectors such as pCGN1557 (McBride and Summerfelt, supra). Synthetic oligonucleotides containing KpnI, NotI and HindIII restriction sites are annealed and ligated at the unique HindIII site of pCGN1808, such that only one HindIII site is recovered. The resulting plasmid, pCGN3200 contains unique HindIII, NotI and KpnI restriction

sites at the 3'-end of the napin 3'-regulatory sequences as confirmed by sequence analysis.

The majority of the napin expression cassette is subcloned from pCGN3200 by digestion with HindIII and SacI 5 and ligation to HindIII and SacI digested pIC19R (Marsh, et al. (1984) Gene 32:481-485) to make pCGN3212. The extreme 5'-sequences of the napin promoter region are reconstructed by PCR using pCGN3200 as a template and two primers flanking the SacI site and the junction of the napin 5'-10 promoter and the pUC backbone of pCGN3200 from the pCGN1808 construct. The forward primer contains ClaI, HindIII, NotI, and KpnI restriction sites as well as nucleotides 408-423 of the napin 5'-sequence (from the EcoRV site) and the reverse primer contains the complement to napin 15 sequences 718-739 which include the unique SacT site in the 5'-promoter. The PCR was performed using a Perkin Elmer/Cetus thermocycler according to manufacturer's specifications. The PCR fragment is subcloned as a bluntended fragment into pUC8 (Vieira and Messing (1982) Gene 20 19:259-268) and digested with HincII to give pCGN3217. Sequence of pCGN3217 across the napin insert verifies that no improper nucleotides were introduced by PCR. The napin 5-sequences in pCGN3217 are ligated to the remainder of the napin expression cassette by digestion with ClaI and SacI 25 and ligation to pCGN3212 digested with ClaI and SacI. The resulting expression cassette pCGN3221, is digested with HindIII and the napin expression sequences are gel purified away and ligated to pIC20H (Marsh, supra) digested with HindIII. The final expression cassette is pCGN3223, which 30 contains in an ampicillin resistant background, essentially identical 1.725 napin 5' and 1.265 3' regulatory sequences as found in pCGN1808. The regulatory regions are flanked with HindIII, NotI and KonI restriction sites and unique SalI, BglII, PstI, and XhoI cloning sites are located 35 between the 5' and 3' noncoding regions.

Similarly, a cassette for cloning of sequences for transcription regulation under the control of 5' and 3' regions from an oleosin gene may be prepared. Sequence of a Brassica napus oleosin gene was reported by Lee and Huang

(Plant Phys. (1991) 96:1395-1397). Primers to the published sequence are used in PCR reactions to obtain the 5' and 3' regulatory regions of an oleosin gene from Brassica napus cv. Westar. Two PCR reactions were performed, one to amplify approximately 950 nucleotides upstream of the ATG start codon for the oleosin gene, and one to PCR amplify approximately 600 bp including and downstream of the TAA stop codon for the oleosin gene. The PCR products were cloned into plasmid vector pAMP1 (BRL) according to manufacturers protocols to yield plasmids pCGN7629 which contains the oleosin 5' flanking region and pCGN7630 which contains the 3' flanking region. The PCR primers included convenient restriction sites for cloning the 5' and 3' flanking regions together into an expression cassette. A PstI fragment containing the 5' flanking region from pCGN7629 was cloned into PstI digested pCGN7630 to yield plasmid pCGN7634. The BssHII (New England BioLabs) fragment from pCGN7634, which contains the entire oleosin expression cassette was cloned into BssHII digested pBCSK+ (Stratagene) to provide the oleosin cassette in a plasmid, pCGN7636. Sequence of the oleosin cassette in pCGN7636 is provided in Figure 4. The oleosin cassette is flanked by BssHII, KpnI and XbaI restriction sites, and

synthase, reductase, or other DNA sequences of interest between the 5' and 3' oleosin regions.

The gene sequences are inserted into such cassettes to provide expression constructs for plant transformation methods. For example, such constructs may be inserted into binary vectors for Agrobacterium-mediated transformation as

contains SalI, BamHI and PstI sites for insertion of wax

Constructs for Plant Transformation

described below.

20

25

The plasmid pCGN7614 is digested with AfIIII, and ligated with adapters to add BcII sites to the AfIIII sticky ends, followed by digestion with SaII and BcII. The fragment containing the plant cytoplasmic protein involved in fatty acyl-CoA metabolism gene is gel purified and cloned into SaII/BamHI digested pCGN3223, a napin expression cassette. The resulting plasmid which contains

the plant cytoplasmic protein involved in fatty acyl-CoA metabolism gene in a sense orientation in the napin expression cassette is designated pCGN7624. DNA isolated from pCGN7624 is digested with Asp718 (a KpmI

5 isoschizimer), and the napin/plant cytoplasmic protein involved in fatty acyl-CoA metabolism fusion gene is cloned into Asp718 digested binary vector pcGN1578 (McBride and Summerfelt, supra). The resultant binary vector, designated pcGN7626, is transformed into Agrobacterium 10 strain EHA101 and used for transformation of Arabidopsis

and rapeseed explants.

25

Additional binary vectors are prepared from pCGN1578, pCGN1559 and other vectors described by McBride et al. (supra) by substitution of the pCGN1578 and pCGN1559 linker regions with a linker region containing the following restriction digestion sites:

Asp718/AscI/PacI/XbaI/BamHI/SwaI/Sse8387 (PstI)/HindIII. This results in pCGN1578PASS or pCGN1559PASS, and other modified vectors which are designated similarly. AscI,

PacI, SwaI and Sse8387 have 8-base restriction recognition sites. These enzymes are available from New England BioLabs: AscI, PacI; Boehringer Manheim: SwaI and Takara (Japan): Sse8387.

C. Reductase Constructs for Plant Transformation

Constructs for expression of reductase in plant cells using 5' and 3' regulatory regions from a napin gene, are prepared.

A reductase cDNA (in the pCGN1703 vector described above) designated pCGN7571, is digested with SphI (site in 3' untranslated sequence at bases 1594-1599) and a SaII linker is inserted at this site. The resulting plasmid is digested with BamHI and SaII and the fragment containing the reductase cDNA gel purified and cloned into BgIII/XhoI digested pCGN3223, the napin cassette described above, resulting in pCGN32585.

A HindIII fragment of pCGN7585 containing the napin 5'/reductase/napin 3' construct is cloned into HindIII digested pCGN1578 (McBride and Summerfelt, supra), resulting in pCGN7586, a binary vector for plant transformation.

Plant transformation construct pCGN7589, also containing the jojoba reductase gene under expression of a napin promoter, is prepared as follows. pCGN7571 is in vitro mutagenized to introduce an NdeI site at the first ATG of the 5 reductase coding sequence and a BglII site immediately upstream of the NdeI site. BamHI linkers are introduced into the SphI site downstream of the reductase coding region. The 1.5 kb BglII-BamHI fragment is gel purified and cloned into BglII-BamHI digested pCGN3686 (see below), resulting in pCGN7582.

10

20

25

30

pCGN3686 is a cloning vector derived from Bluescript KS+ (Stratagene Cloning Systems; San Diego, CA), but having a chloramphenicol resistance gene and a modified linker region. The source of the chloramphenical resistance gene, pCGN565 is a cloning vector based on pUC12-cm (K. Buckley Ph.D. Thesis, Regulation and expression of the phi X174 lysis gene, University of California, San Diego, 1985), but containing pUC18 linkers (Yanisch-Perron, et al., Gene (1985) 53:103-119). pCGN565 is digested with HhaI and the fragment containing the chloramphenical resistance gene is excised, blunted by use of mung bean nuclease, and inserted into the EcoRV site of Bluescript KS- (Stratagene: La Jolla, CA) to create pCGN2008. The chloramphenical resistance gene of pCGN2008 is removed by EcoRI/HindIII digestion. After treatment with Klenow enzyme to blunt the ends, the fragment is ligated to DraI digested Bluescript KS+. A clone that

has the DraI fragment containing ampicillin resistance replaced with the chloramphenical resistance is chosen and named pCGN2015. The linker region of pCGN2015 is modified to provide pCGN3686, which contains the following restriction digestion sites, 5' to 3' in the lacZ linker region: PstI, BglII, XhoI, HincII, SalI, HindIII, EcoRV, EcoRI, PstI, SmaI, BamHI, SpeI, XbaI and SacI.

An XhoI linker is inserted at the XbaI site of pCGN7582. 35 The BglII-XhoI fragment containing the reductase gene is isolated and cloned into BglII-XhoI digested pCGN3223. The resulting plasmid, which lacks the 5' untranslated leader sequence from the jojoba gene, is designated pCGN7802. The napin/reductase fragment from pCGN7802 is excised with

HindIII and cloned into HindIII digested pCGN1578 to yield pCGN7589.

An additional napin/reductase construct is prepared as follows. The reductase cDNA pCGN7571 (Figure 1) is mutagenized to insert SalI sites 5' to the ATG start codon (site is 8 base pairs 5' to ATG) and immediately 3' to the TAA translation stop codon, resulting in pCGN7631. pCGN7631 is digested with SalI and the approximately 1.5 kb fragment containing the reductase encoding sequence is cloned into SalI/Xhol digested napin cassette pCGN3223. A resulting plasmid containing the reductase sequence in the sense orientation is designated pCGN7640. pCGN7640 is digested with HindIII, and the fragment containing the oleosin/reductase construct is cloned into HindIII digested binary vector pCGN1559PASS, resulting in binary construct pCGN7642.

A construct for expression of reductase under control of oleosin regulatory regions is prepared as follows. The reductase encoding sequence is obtained by digestion of 20 pCGN7631 with SalI, and ligated into SalI digested pCGN7636, the oleosin cassette. A resulting plasmid containing the reductase sequence in the sense orientation is designated pCGN7641. pCGN7641 is digested with XbaI, and the fragment containing the oleosin/reductase construct is cloned into 25 XbaI digested binary vector pCGN1559PASS, resulting in binary construct pCGN7643.

Binary vector constructs are transformed into Agrobacterium cells, such as of strain EHA101 (Hood et al., J. Bacteriol (1986) 168:1291-1301), by the method of Holsters 0 et al. (Mol. Gen. Genet. (1978) 163:181-187) and used in plant transformation methods as described below.

Example 9 - Plant Transformation Methods

A variety of methods have been developed to insert a

55 DNA sequence of interest into the genome of a plant host to
obtain the transcription or transcription and translation
of the sequence to effect phenotypic changes.

35

Brassica Transformation

Seeds of high erucic acid, such as cultivar Reston, or Canola-type varieties of Brassica napus are soaked in 95% ethanol for 2 min. surface sterilized in a 1.0% solution of sodium hypochlorite containing a drop of Tween 20 for 45 min., and rinsed three times in sterile, distilled water. Seeds are then plated in Magenta boxes with 1/10th concentration of Murashige minimal organics medium (Gibco; Grand Island, NY) supplemented with pyriodoxine (50µg/1), nicotinic acid (50µg/1), glycine (200µg/1), and 0.6% Phytagar (Gibco) pH 5.8. Seeds are germinated in a Percival chamber at 22°C. in a 16 h photoperiod with cool fluorescent and red light of intensity approximately 65µ Einsteins per square meter per second (µEm-2g-1).

15 Hypocotyls are excised from 5-7 day old seedlings, cut into pieces approximately 4mm in length, and plated on feeder plates (Horsch et al., Science (1985) 227:1229-1231). Feeder plates are prepared one day before use by plating 1.0ml of a tobacco suspension culture onto a petri plate (100x25mm) containing about 30ml MS salt base (Carolina Biological, Burlington, NC) 100mg/l inositol, 1.3mg/l thiamine-HCl, 200mg KH2PO4 with 3% sucrose, 2,4-D (1.0mg/1), 0.6% w/v Phytagar, and pH adjusted to 5.8 prior to autoclaving (MS 0/1/0 medium). A sterile filter paper 25 disc (Whatman 3mm) is placed on top of the feeder layer prior to use. Tobacco suspension cultures are subcultured weekly by transfer of 10ml of culture into 100ml fresh MS medium as described for the feeder plates with 2,4-D (0.2mg/l), Kinetin (0.lmg/l). In experiments where feeder 30 cells are not used hypocotyl explants are cut and placed onto a filter paper disc on top of MSO/1/0 medium. All hypocotyl explants are preincubated on feeder plates for 24 h. at 22°C in continuous light of intensity 30µEm-2s-1 to $65\mu EM^{-2}S^{-1}$.

Single colonies of A. tumefaciens strain EHAlo1 containing a binary plasmid with the desired gene construct are transferred to 5ml MG/L broth and grown overnight at 30°C. Hypocotyl explants are immersed in 7-12ml MG/L broth with bacteria diluted to 1x10⁸ bacteria/ml and after 10-25

min, are placed onto feeder plates. Per liter MG/L broth contains 5g mannitol, 1g L-Glutamic acid or 1.15g sodium glutamate, 0.25g kH2PO4, 0.10g NaCl, 0.10g MGSO4.7H20, 1mg biotin, 5g tryptone, and 2.5g yeast extract, and the broth 5 is adjusted to pH 7.0. After 48 hours of co-incubation with Agrobacterium, the hypocotyl explants are transferred to B5 0/1/0 callus induction medium which contains filter sterilized carbenicillin (500mg/l. added after autoclaving) and kanamycin sulfate (Boehringer Mannheim; Indianapolis, IN) at concentrations of 25mg/l.

After 3-7 days in culture at 65µEM-2S-1 continuous light, callus tissue is visible on the cut surface and the hypocotyl explants are transferred to shoot induction medium, B5BZ (B5 salts and vitamins supplemented with 3mg/l 15 benzylaminopurine, lmg/l zeatin, 1% sucrose, 0.6% Phytagar and pH adjusted to 5.8). This medium also contains carbenicillin (500mg/1) and kanamycin sulfate (25mg/1). Hypocotyl explants are subcultured onto fresh shoot induction medium every two weeks.

20 Shoots regenerate from the hypocotyl calli after one to three months. Green shoots at least 1cm tall are excised from the calli and placed on medium containing B5 salts and vitamins, 1% sucrose, carbenicillin (300mg/1), kanamycin sulfate (50mg/l) and 0.6% w/v Phytagar). After 25 2-4 weeks shoots which remain green are cut at the base and transferred to Magenta boxes containing root induction medium (B5 salts and vitamins, 1% sucrose, 2mg/1 indolebutyric acid, 50mg/l kanamycin sulfate and 0.6% Phytagar). Green rooted shoots are tested for thioesterase 30 activity.

Arabidposis Transformation

10

Transgenic Arabidopsis thaliana plants may be obtained by Agrobacterium-mediated transformation as described by 35 Valverkens et al., (Proc. Nat. Acad. Sci. (1988) 85:5536-5540). Constructs are transformed into Agrobacterium cells, such as of strain EHA101 (Hood et al., J. Bacteriol (1986) 168:1291-1301), by the method of Holsters et al. (Mol. Gen. Genet. (1978) 163:181-187).

WO 95/15387 PCT/US94/13686

Peanut Transformation

DNA sequences of interest may be introduced as expression cassettes, comprising at least a promoter region, a gene of interest, and a termination region, into a plant genome via particle bombardment.

Briefly, tungsten or gold particles of a size ranging from 0.5mM-3mM are coated with DNA of an expression cassette. This DNA may be in the form of an aqueous 10 mixture or a dry DNA/particle precipitate.

Tissue used as the target for bombardment may be from cotyledonary explants, shoot meristems, immature leaflets, or anthers. The bombardment of the tissue with the DNA-coated particles is carried out using a Biolistics*

15 particle gun (Dupont; Wilmington, DE). The particles are placed in the barrel at variable distances ranging from lcm-14cm from the barrel mouth. The tissue to be bombarded is placed beneath the stopping plate; testing is performed on the tissue at distances up to 20cm. At the moment of 20 discharge, the tissue is protected by a nylon net or a combination of nylon nets with mesh ranging from 10mM to 300mM.

Following bombardment, plants may be regenerated following the method of Atreya, et al., (Plant Science 25 Letters (1984) 34:379-383). Briefly, embryo axis tissue or cotyledon segments are placed on MS medium (Murashige and Skoog, Physio. Plant. (1962) 15:473) (MS plus 2.0 mg/l 6-benzyladenine (BA) for the cotyledon segments) and incubated in the dark for 1 week at 25 ± 2°C and are 30 subsequently transferred to continuous cool white fluorescent light (6.8 W/m²). On the 10th day of culture, the plantlets are transferred to pots containing sterile soil, are kept in the shade for 3-5 days are and finally moved to greenhouse. The putative transgenic shoots are rooted. Integration of exogenous DNA into the plant genome may be confirmed by various methods know to those skilled in the art.

Example 10 - Analysis of Transformed Plants for Wax Production

Seeds or other plant material from transformed plants 5 may be analyzed for wax synthase activity using the wax synthase assay methods described in Example 1.

Plants which have both the reductase and wax synthase constructs are also assayed to measure wax production. Such plants may be prepared by Agrobacterium transformation 10 methods as described above. Plants having both of the desired gene constructs may be prepared by cotransformation with reductase and wax synthase constructs or by combining the wax synthase and reductase constructs on a single plant transformation binary vector. In 15 addition, re-transformation of either wax synthase expressing plants or reductase expressing plants with constructs encoding the other desired gene sequence may also be used to provide such reductase and wax synthase expressing plants. Alternatively, transgenic plants expressing reductase produced by methods described herein may be crossed with plants expressing wax synthase which have been similarly produced. In this manner, known methods of plant breeding are used to provide reductase and wax synthase expressing transgenic plants.

Such plants may be assayed for the presence of wax esters, for example by separation of TAG from wax esters as described by Tani et al. (supra). GC analysis methods may be used to further analyze the resulting waxes, for example as described by Pina et al. (Lipids (1987) 22(5):358-361.

25

30

The above results demonstrate the ability to obtain partially purified wax synthase proteins which are active in the formation of wax esters from fatty alcohol and fatty acyl substrates. Methods to obtain the wax synthase proteins and amino acid sequences thereof are provided. In 35 addition wax synthase nucleic acid sequences obtained from the amino acid sequences are also provided. These nucleic acid sequences may be manipulated to provide for transcription of the sequences and/or expression of wax synthase proteins in host cells, which proteins may be used

WO 95/15387 PCT/US94/13686

for a variety of applications. Such applications include the production of wax ester compounds when the wax synthase is used in host cells having a source of fatty alcohol substrates, which substrates may be native to the host cells or supplied by use of recombinant constructs encoding a fatty acyl reductase protein which is active in the formation of alcohols from fatty acyl substrates.

Example 11 - Analysis of Transformed Plants for 10 VLCFA Production

Seeds from transformed plants are analyzed by gas chromatography (GC) for fatty acid content. The following tables provide breakdowns of fatty acids on a percentage basis, demonstrating altered VLCFA production in plants transformed with binary vector pCGN7626 (Example 8).

rable

pCGN7626, showing percentage of fatty acids Seeds from canola plants, some transformed by pCGN7626, showing percentage of fatty acid given carbon chain length:satuxation. Twenty seeds were pooled for each plant and fatty of a given carbon chain length:saturation. acids determined by gas chromatography. Control canola plants (plants 1 and 2) of Table 3 contain less than 28 VLCFA in their seed oil. Plants 3 through 20 in Table 3 are transgenic. The majority (14/18) of the plants transformed with pCGN7626 have significantly higher levels of VLCFA. The VLCFA for the highly expressing transgenics range from about 5% to about 23% of the total fatty acids.

22:2	00.0	0.00	0.01	99.0	0.21	0.02	0.01	00.0	0.02	0.08	0.01	0.02	0.00	0.01	0.02	90.0	0.00	0.	0.02	0.02
8 27	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	l	0		0
\$ 22:1	0.01	0.01	0.47	4.84	1.73	0.88	0.49	0.01	1.39	0.88	00.0	0.46	0.01	00.0	0.46	0.69	0.25	0.44	0.26	0.58
\$ 22:0	0.24	0.25	0.24	0.39	0.31	0.27	0.34	0.31	0.24	0.24	0.25	0.28	0.26	0.34	0.26	0.33	0.26	0.26	0.22	0.15
\$ 20:2	0.08	0.09	0.33	1.11	0.67	0.47	0.35	0.09	0.53	0.48	0.10	0.41	0.11	0.04	0.34	0.47	0.24	0.31	0.25	0.41
\$ 20:11	1.20	1.31	4.97	14.27	9.75	6.93	5.41	1.27	7.24	6.72	1.25	4.88	1.35	1.17	4.19	5.03	3.86	5.13	3.77	4.48
\$ 20:0	0.45	0.41	0.46	0.49	0.49	0.46	0.44	0.45	0.45	0.44	0.41	0.39	0.43	0.39	0.39	0.47	0.47	0.43	0.43	0.36
\$ 18:3	12.48	11.25	15.95	14.57	14.89	13.74	14.90	11.20	16.15	15.52	16.83	17.50	14.35	15.39	19.78	15.51	14.89	15.20	15.09	22.87
% 18:2	21.14	22.09	19.24	19.60	18.76	20.34	19.40	19.52	20.51	20.48	21.44	22.28	21.08	20.93	20.65	23.86	20.04	19.57	19.77	20.15
% 18:1	58.42	58.89	52.01	38.12	46.74	51.00	52.36	60.63	47.57	48.91	53.17	48.04	56.23	53.08	47.06	46.98	53.62	52.20	53.74	44.57
\$ 18:0	1.30	1.12	1.11	0.76	06.0	0.95	0.99	1.10	0.91	0.93	1.16	0.94	1.07	0.88	0.89	0.93	1.26	1.02	1.14	0.92
Q Z	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20

Canola plants, some transformed by pCGN7626, showing percentage of fatty acids of a given Table 4 carbon chain length:saturation.

transformed by pCGN7626, showing inheritance of the altered VLCFA phenotype. One plant, plant This plant also did not show inheritance of the Plants 1 and 2 in Table 4 are controls. Plant 3 is a repeat of plant 4 of Table 3. Plants 4 through 13 are seed of plants grown out from the seed of a single canola plant 11, did not inherit the altered phenotype. transgene by a Kan germination assay.

824:1	0.01	0.10	0.67	0.41	0.36	0.43	0.32	0.24	0.03	0.36	0.00	0.59	0.37
\$24:0	0.01	0.01	0.24	0.18	0.21	0.04	0.01	0.21	0.01	0.19	0.02	0.26	0.04
\$22:2	0.00	0.00	0.58	0.22	0.25	0.20	0.17	0.09	0.01	0.12	0.00	0.23	0.32
\$22:1	0.00	0.01	3.93	1.78	1.76	1.56	1.27	0.84	0.27	1.08	0.01	1.76	1.83
\$22:0	0.25	0.26	0.39	0.34	0.31	0.29	0.29	0.31	0.24	0.33	0.28	0.29	0.34
\$20:5	0.08	0.09	1.05	0.63	0.76	99.0	0.64	0.47	0.24	0.54	0.11	0.62	0.79
\$20:1	1.19	1.30	12.31	7.70	8.83	8.67	7.80	6.83	3.48	7.68	1.18	7.58	7.62
\$20:0	0.43	0.42	0.51	0.50	0.46	0.45	0.46	0.53	0.39	0.55	0.41	0.50	0.47
%18:3	11.87	10.71	15.92	16.61	13.39	13.91	16.31	14.36	13.22	13.53	14.91	14.04	14.92
%18:2	21.61	22.38	20.37	20.97	23.36	22.75	22.15	20.34	23.14	21.21	24.05	23.03	24.20
\$18:1	58.14	58.73	36.80	43.21	42.48	44.00	43.13	48.73	52.27	46.79	51.73	44.56	41.32
\$18:0	1.25	1.02	0.80	0.98	0.87	0.87	0.96	1.17	0.97	1.12	0.98	1.10	0.88
2	н	2	m	4	S	9	7	8	6	10	디	12	13

Table 5

The results of measurements of seeds of HEAR plants, controls and pCGN7626 transgenic, evaluated for VLCFA content. Pools of twenty seeds were analyzed by GC.

The results show significant alteration of the VLCFA patterns. HEAR (variety Reston) has 22:1 levels between 33 and 41 percent of its fatty acids with 24:1 The remaining plants are transgenic. Control Plants 3, 4, 7, 12-14 and 16-19 particularly showed an increase in 24:1 content, with one transgenic plant showing a 24:1 level of 2.7% of the seed oil. Plants 1 and 2 are control HEAR plants. comprising about 0.1 to 0.5%.

\$24:1	0.12	0.66	2 69	1.21	0.13	0.14	1 41	0	13	0 10	0.75	1.43	000	1.58	0.03	2 53	1 46	202	1.85
\$24:0	0.03	0.01	0.06	0.05	90.0	0.05	0.02	00.00	0.04	0.02	0.03	0.03	0 0	0.05	0.01	0.03	0 0	0	0.03
\$22:2	0.78	0.45	1.72	1.16	1.22	1.27	0.95	0.62	0.96	0.59	0.73	0.92	0.72	1.16	0.02	1.56	1.12	1 10	1.24
\$22:1	40.57	33.57	38.32	37.84	37.16	38.29	37.38	37.02	36.48	34.55	35.82	36.34	33.93	35.69	0.78	39.10	36.76	37.05	38.53
\$22:0	0.48	0.28	l	0.54	0.53	0.47	0.44	0.41	0.61	0.06	0.37	0.47	0.49	0.43	0.17	0.77	09.0	09.0	0.68
\$20:2	0.75	0.68	0.80		0.95	0.93	0.80	0.86	0.70	0.72	0.84	0.68	ı	0.87	0.54	0.78	0.79	0.87	
\$20:1	6.00	8.36	5.22	6.60	6.32	6.49	89.9	7.51	6.05	8.48	5.85	7.23	6.97	7.39	5.88	6.30	6.10	7.17	7.16
\$20:0	0.46	0.46	0.45	0.48	0.42	0.44	0.48	0.44	0.56	0.51	0.35	0.46	0.47	0.41	0.35	0.45	0.51	0.52	0.53
\$18:3	12.32	9.74	12.68	11.29	12.77	11.26	11.73	10.60	11.03	10.25	12.52	10.10	10.01	10.92	16.95	10.86	10.79	9.42	11.43
\$18:2	18.07	18.49	17.45	19.74	19.55	19.29	18.35	18.67	18.99	18.22	20.64	18.19	19.65	18.67	22.48	16.48	19.23	18.31	16.50
\$18:1	13.69	19.90	12.94	13.39	13.85	14.56	15.03	16.14	17.00	18.78	14.36	17.10	17.99	16.02	45.08	14.92	15.40	16.35	14.82
\$18:0	06.0	1.03	1.06	0.96	1.05	1.04	1.03	1.02	1.17	1.01	0.92	0.99	0.95	0.87	1.01	0.94	0.93	1.04	0.99
ON	-1	2	m	4	2	9	7	8	σ	10	11	12	13	14	15	16	17	18	19

Table 6

Arabidopsis thaliana typically has 2% 22:1 fatty acid, 0.02% 24:1 fatty acid (control plants 1-The oil composition of plants transformed with pcGN7626 (plants 4-12) is shifted towards The 20:1 in transgenic plants decreased to as low as 15.5% while the 22:1 percentage increased to as high as 7.5%. In one transgenic plant the 24:1 content increased to 1.6% of the total fatty acids in the seed oil Arabidopsis thaliana plants transformed with pCGN7626. the longer chain fatty acids at the expense of 20:1. oil with 21% 20:1 fatty acid, seed

In Table 7 oil seed analysis results are given for T3 Brassica plants, (LEAR variety 212) transformed with pCGN7626. 71

0.05 0.05 0.07 0.51 0.01 $\frac{0.02}{1.11}$ 0.03 0.02 0.32 0.01 0.40 1.80 1.50 1.92 2.72 2.60 3.98 0.26 90.0 0.85 0.04 $1.29 \\ 0.44$ 06.0 1.83 2.02 1.77 1.97 1.64 1.80 2.01 20.95 20.30 15.66 2.22 2.22 2.07 1.99 1.85 1.97 20.80 20.19 18.80 20.56 19.48 18.30 18.61 25.89 24.64 26.43 24.95 26.82 26.46 25.51 16.65 19.55 15.11 17.61 5.41 \$18:0 1.86 2.88 2.83 3.34 ..94 S

72

								TABLE 7	73							
S i	STRAIN ID	\$16:0	\$16:1	\$16:1 \$18:0	\$18:1	\$18:2	\$18:3	\$20:0	\$20:1	\$20:2 \$22:0 \$22:1	\$22:0	\$22:1	\$22:2	\$22:2 \$24:0 \$24:1	\$24:1	>18
н	RESTON	2.54	0.05	0.79	17.54	12.12	9.59	0.54	8.80	0.49	0.55	46.13	0.38	0.00	0.08	56.97
7	RESTON	2.68	0.12	0.78	19.96	11.79	8.80	0.52	9.98	0.45	0.46	42.84	0.05	0.03	0.92	55.25
m	RESTON	2.59	0.12	0.73	19.15	11.96	7.90	0.46	8.40	0.41	0.38	47.30	90.0	0.00	0.10	57.11
4	RESTON	2.49	0.09	0.83	16.37	11.98	10.22	0.50	8.49	0.52	0.52	46.23	0.48	90.0	98.0	57.66
ß	RESTON	2.65	0.15	0.81	17.63	14.18	6.51	0.43	7.80	0.35	0.40	46.87	0.46	0.00	1.21	57.52
9	RESTON	2.52	0.10	0.79	17.50	11.61	10.35	0.49	8.50	0.52	0.67	45.07	0.34	0.12	1.02	56.73
7	RESTON	2.84	0.20	0.73	17.86	11.60	9.18	0.44	9.51	0.46	0.30	45.97	0.21	0.00	0.18	57.07
8	RESTON	2.71	0.14	0.81	17.64	12.09	11.15	0.50	8.56	0.54	09.0	43.46	0.39	0.10	0.81	54.96
D	RESTON	2.46	0.10	0.84	22.84	9.72	6.50	0.56	9.30	0.31	0.50	45.02	0.20	0.00	1.15	57.04
10	RESTON	2.57	0.13	0.78	23.40	9.80	6.41	0.53	8.83	0.36	0.38	45.28	0.15	0.00	98.0	56.39
7	7626-212-2-1	2.92	0.15	0.64	22.92	10.42	6.85	0.46	15.21	0.61	0.92	28.79	1.33	0.45	7.78	55.55
12	7626-212-2-1	3.05	0.28	0.74	29.57	11.37	6.94	0.56	17.72	0.65	0.77	22.67	77.0	0.11	4.43	47.68
13	7626-212-2-1	2.80	0.12	0.52	19.06	11.56	8.73	0.41	13.78	0.77	0.67	33.64	1.45	0.00	5.44	56.16
14	7626-212-2-1	2.88	0.25	0.76	20.92	11.12	5.38	0.58	11.50	0.48	1.19	34.51	1.26	0.65	7.79	57.96
15	7626-212-2-1	3.14	0.23	0.99	26.29	11.02	8.18	0.65	19.12	0.76	0.82	24.17	1.07	0.00	3.06	49.65
16	7626-212-2-1	2.83	0.23	0.77	28.54	10.55	7.50	0.67	18.72	0.62	0.93	23.40	96.0	0.31	3.48	49.11
17	7626-212-2-1	2.82	0.15	0.68	23.05	10.65	6.93	0.53	16.81	0.70	0.88	28.46	1.25	0.08	6.41	55.12
18	7626-212-2-1	2.59	0.17	0.69	22.36	11.75	9.63	0.56	15.58	0.82	0.97	29.52	1.26	0.19	3.48	52.38
13	7626-212-2-1	2.46	0.15	0.71	21.51	11.35	9.03	0.54	13.52	0.64	0.78	33.54	1.14	0.15	3.87	54.18
20	7626-212-2-1	3.07	0.18	0.69	28.80	13.12	9.24	0.40	17.80	0.78	0.45	20.33	0.88	0.00	3.39	44.03
21	7626-212-2-2	3.36	0.30	0.83	25.51	14.30	10.62	0.44	14.30	0.75	0.39	26.58	0.61	0.00	1.48	44.55
22	7626-212-2-2	3.23	0.15	0.92	25.00	12.47	8.23	0.59	16.69	0.69	0.43	28.65	0.59	0.01	1.82	49.47
23	7626-212-2-2	2.62	0.11	0.86	21.14	12.45	11.23	0.54	16.50	0.90	0.48	29.92	98.0	0.07	1.72	50.99
24	7626-212-2-2	3.35	0.24	0.81	24.25	12.09	10.84	0.53	15.83	0.76	0.38	27.79	99.0	0.07	1.99	48.01
25	7626-212-2-2	3.44	0.13	1.12	35.66	14.49	10.23	0.61	16.32	0.59	0.46	14.47	0.14	0.05	1.67	34.31

		i		
		ľ		
			_	
		i		,
	,			
		۰		
			ı	
		Ļ	Į	
		١		1
		ì	5	

											,	,													
>18	50.94	57.40	51.44	32.97	48.76	49.99	54.16	49.20	33.06	51.98	31.38	47.64	46.19	47.31	50.10	53.83	54.27	47.19	55.31	53.83	55.41	45.99	54.46	49.53	46.35
\$24:1	1.60	3.22	2.82	0.10	1.60	2.09	0.97	1.96	0.70	1.68	0.16	1.25	0.14	1.42	1.05	3.36	3.77	2.62	7.39	2.00	3.01	0.00	3.74	2.38	2.68
\$22:2 \$24:0 \$24:1	0.02	0.14	0.00	0.00	0.00	90.0	0.00	0.07	0.00	0.00	0.00	0.03	0.07	0.00	0.07	90.0	90.0	0.07	0.29	0.10	0.00	0.00	0.09	90.0	0.43
\$22:2	60.0	1.40	1.04	0.00	3.09	0.50	90.0	0.41	0.03	0.08	0.01	0.11	0.20	0.18	90.0	1.22	1.31	0.73	1.51	0.72	1.10	0.18	0.70	1.26	0.41
\$22:1	35.58	39.93	30.39	14.66	26.59	35.32	40.76	36.37	14.33	36.39	13.35	30.54	33.74	29.88	36.98	37.72	36.07	25.53	30.73	41.22	40.59	31.24	37.79	33.09	25.96
\$20:1 \$20:2 \$22:0 \$22:1	0.00	0.77	0.72	0.08	0.56	0.58	0.41	0.57	0.24	0.84	0.05	0.35	0.48	0.74	0.45	0.67	0.78	0.47	98.0	0.83	0.53	0.08	0.61	0.56	0.83
\$20:2	0.68	0.77	06.0	0.57	0.84	0.46	0.34	0.53	0.26	0.47	0.55	0.58	0.45	0.36	0.32	0.89	0.85	0.92	0.89	0.72	0.79	92.0	0.58	1.07	0.55
\$20:1	12.54	10.67	14.96	17.10	15.50	10.45	10.98	8.80	16.79	11.37	16.61	14.10	10.43	13.56	10.57	9.40	10.91	16.33	13.32	7.58	8.99	13.37	10.33	10.59	14.43
\$20:0	0.43	0.50	0.61	0.46	0.58	0.53	0.64	0.49	0.71	1.15	0.65	69.0	0.68	1.17	09.0	0.51	0.52	0.52	0.32	99.0	0.40	0.36	0.62	0.52	1.06
\$18:3	11.06	9.99	9.73	10.55	9.58	9.40	7.34	8.17	7.96	4.23	9.58	8.90	11.27	5.03	11.14	10.60	10.23	9.32	6.57	9.39	10.12	14.88	6.07	13.39	6.21
\$18:2	13.05	11.94	12.94	15.14	13.21	11.93	11.13	11.50	13.91	11.98	15.55	12.95	14.75	11.76	13.59	14.51	13.47	15.70	14.82	14.75	14.40	14.78	14.19	15.05	12.66
	20.44	16.89	21.71	36.19	24.24	24.30	23.18	23.96	39.52	26.41	37.32	25.49	22.30	29.46	20.51	16.79	17.32	23.10	19.54	17.40	15.72	18.64	20.82	16.43	29.12
\$18:0 \$18:1	0.79	0.69	0.82	1.07	96.0	0.87	0.94	2.28	1.74	1.74	1.49	1.37	1.37	1.98	1.06	0.74	0.80	0.94	09.0	96.0	0.63	96.0	0.93	0.91	1.69
\$16:1	0.22	0.08	0.12	0.15	0.11	0.12	0.12	0.18	0.13	00.0	0.20	0.16	0.13	0.18	0.12	0.15	0.26	0.09	0.11	0.14	0.25	0.18	0.21	0.10	0.24
816:0	2.90	2.59	2.80	3.41	2.97	2.71	2.71	3.83	3.22	2.79	3.81	2.88	3.47	3.61	2.77	2.71	3.07	3.00	2.77	2.87	2.86	3.30	3.10	3.70	3.10
STRAIN ID	7626-212-2-2	7626-212-2-2	7626-212-2-2	7626-212-2-2	7626-212-2-2	7626-212-2-3	7626-212-2-3	7626-212-2-3	7626-212-2-3	7626-212-2-3	7626-212-2-3	7626-212-2-3	7626-212-2-3	7626-212-2-3	7626-212-2-3	7626-212-2-4	7626-212-2-4	7626-212-2-4	7626-212-2-4	7626-212-2-4	7626-212-2-4	7626-212-2-4	7626-212-2-4	7626-212-2-4	7626-212-2-4
NO	56	27	28	59	30	31	32	33	34	35	36	37	38	33	40	4	42	43	44	45	46	47	48	43	20

Analysis of T3 seed oil from LEAR plants transformed with the jojoba CE shows that up to 7.8 % of the seed oil is 24:1. As is seen from the controls, the Reston plants, which are HEAR, typically have only about 1% or less 24:1.

5

10

20

30

intermediate.

These data clearly show that the plant cytoplasmic protein involved in fatty acyl-CoA metabolism encoded by pCGN7626 can markedly alter the fatty acid composition of seed oil from several plant species. In plants that do not accumulate VLCFA, pCGN7626 causes the accumulation of significant quantities of VLCFA. In plants that do accumulate VLCFA, pCGN7626 shifts the fatty acid composition towards longer VLCFA.

When searching protein data bases for the jojoba

protein sequence disclosed herein, a large region of 15 homology was found between the jojoba encoded protein and stilbene, reservatrol, and chalcone synthase. Stilbene, reservatrol and chalcone synthases are very similar to each other, catalyzing multiple condensing reactions between two CoA thioesters, with malonyl CoA as one subtrate. The condensing reactions are similar to the proposed condensing reaction for the cytoplasmic membrane bound elongase enzymes, in that in both cases an enzyme condenses two CoA thioester molecules to form two products: a B-ketoacyl-CoA thioester and a carbon dioxide. The region of homology 25 between the jojoba gene and chalcone synthase includes the chalcone synthase active site (Lanz et al. "Site-directed mutagenesis of reservatrol and chalcone synthase, two key enzymes in different plant specific pathways" (1991) J. Biol. Chem., 266:9971-6). This active site is postulated

Homology was also detected between the jojoba protein and KASIII. KASIII is a soluble enzyme which catalyzes the condensation of a CoA thioester to an ACP thioester. 35 resulting in a B-ketoacyl-ACP thioester. A carbon dioxide molecule is released in this reaction.

to be involved in forming an enzyme-fatty acid

While not concusive, these noted homologies suggest that the jojoba enzyme may have ß-ketoacvl-CoA synthase activity.

Example 12 - Analysis of Plants By a £-Keto-acyl-CoA Synthase Assay

A. The activity of ß-Keto-acyl-CoA synthase may be 5 directly assayed in plants according to the following procedure.

Developing seeds are harvested after pollination and frozen at -70°C. For Brassica napus, the seeds are harvested 29 days after pollination. An appropriate number of seeds are thawed and homogenized in 1 ml 50 mM Hepes-NaOH, pH 7.5, 2 mM EDTA, 250 mM NaCl, 5 mM besercaptoethanol (twenty seeds per assay for Brassica napus). The homogenate is centrifuged at 15,000 X g for 10 min, and the oil layer is discarded. The supernatant fraction is collected and centifuged again at 200,000 X g for 1 hour.

The pellet is then resuspended in 1 ml of homogenization buffer and centrifuged a second time at 200,000 X g for 1 hour. The pellet is resuspended in 50 µl 20 of 100 mM Hepes-NaOH, pH 7.5, 4 mM EDTA, 10% (w/v) glycerol, 2 mM b-mercaptoethanol. 10 µl of the sample is added to 10 µl of a reaction mixture cocktail and incubated at 30°C for 15 min. The final concentrations of components in the reaction mixture are: 100 mM Hepes-NaOH, 25 pH 7.5, 1 mM b-mercaptoethanol, 100 mM oleyl CoA, 44 µM (2-

14C) malonyl CoA, 4 mM EDTA and 5% (w/v) glycerol.

The reaction is stopped and the S-ketoacyl product reduced to a diol by adding 400 µl of reducing agent solution comprised of 0.1 M K2HF04, 0.4 M KCl, 30 % (v/v) tetrahydrofuran, and 5 mg/ml NaBH4 (added to the solution just prior to use). The mixture is incubated at 37 °C for 30 min. Neutral lipids are extracted from the sample by addition of 400 µl of toluene. Radioactivity present in 100 µl of the organic phase is determined by liquid scintillation counting. The remaining toluene extract is collected and spotted onto a silica G TLC plate. The TLC plate is developed in diethyl ether:concentrated NH4OH (100:1, v/v). The migration of the diol product of the

76
reduction reaction is located by use of a cold diol
standard.

B. Using this procedure plants can be assayed to determine the level of, or lack of, detectable \$B\$-ketoacyl 5 synthase activity. For example, HEAR plants have high levels of \$B\$-ketoacyl synthase activity, while canola plants do not show appreciable enzyme activity. By this assay, plant species or varieties can be screened for \$B\$-ketoacyl synthase activity to determine candidates for

10 transformation with the sequences of this invention to achieve altered VLCFA production, or to determine canditates for screening with probes for related enzymes.

The &-ketoacyl-CoA synthase enzyme assays demonstrate that developing embryos from high erucic acid rapeseed

15 contain &-ketoacyl-CoA synthase activity, while LEAR embryos do not. Embryos from transgenic plants transformed with the jojoba cDNA exhibit restored &-ketoacyl-CoA synthase activity.

The jojoba cDNA encoding sequence thus appears to

20 complement the mutation that differenitiates high and low erucic acid rapeseed cultivars. The phenotype of the transgenic plants transformed with the jojoba gene show that a single enzyme can catalyze the formation of 20, 22 and 24 carbon fatty acids. The seed oil from the primary 25 LEAR transformants also contains higher levels of 22:1 than 20:1 fatty acids. This was also true for the majority of the individual T2 seed analyzed from the 7626-212/86-2 plant. Five T2 seeds that exhibited the highest VLCFA content also contain higher levels of 22:1 than 20:1. This 30 suggests that the S-ketoacyl-CoA synthase is a rate limiting step in the formation of VLCFA's, and that as the enzyme activity increases in developing embryos, the fatty acid profile can be switched to the longer chain lengths. The increase in the amount of 24:1 fatty acid in the oil of 35 transgenic HEAR plants and the increase in the amount of 22:1 in transgenic arabidopsis plants without a concomitant increase in the quantity of VLCFAs may be a result of a difference in substrate specificities of the jojoba, Arabidopsis, and Brassica enzymes rather than an increase

The active S-ketoacyl CoA synthase chromatographs on

in enzyme activity which is already abundant in HEAR and Arabidopsis.

Example 13 - Other S-Keto-acvl-CoA Synthases

5

10

15

as dimers.

superose with a size consistant with the enzyme being composed of two 138 kDa subunits. This suggests that the enzyme is active as a multimer, although the enzyme may be a homodimer, a heterodimer, or a higher order multimer. The mass of one of the subunits is estimated to be 57 kDa by SDS gel electrophoresis and 59 kDA by calculation of the theoretical mass from translation of the cDNA sequence. The analogous soluble enzymes in plant and bacterial FAS, 8-ketoacyl-ACP synthases, are active as dimers with ~50 kDa subunits. Chalcone and Stilbene synthases are also active

The jojoba &-ketoacyl-CoA synthase subunit is a discrete 59 kDa protein. Thus, seed lipid FAE in jojobas is comprised of individual polypeptides with discrete

20 enzyme activities similar to a type II FAS, rather than being catalyzed by the large multifunctional proteins found in type I FAS. Since the jojoba enzyme complements a Brassica mutation in FAE, it is possible that Brassica FAE is a type I system.

25 The dBEST data bank was searched with the jojoba 6ketoacyl-CoA synthase DNA sequence at the NCBI using BLAST software (Altschul et al., 1990). Two Arabidopsis clones (Genbank accession Z26005, Locus 39823; and genbank accession TO4090, Locus315250) homologous to the jojoba CE 30 cDNA were detected. The 39823 clone exhibited a high degree of homology with the jojoba &-ketoacyl-CoA synthase clone. PCR primers were designed to PCR amplify and clone this sequence from Arabidopsis genomic DNA. No mRNA was detected in either developing Arabidopsis or developing Brassica seeds that cross hybridized with this clone. The probe was also hybridized to RFLP blots designed to determine if homologous sequences segregate with the difference between HEAR and LEAR lines. At low hybridization stringency too many cross hybridizing bands

are present to detect polymorphism between the HEAR and LEAR lines. At higher hybridization stringency, the bands did not cosegregate with the HEAR phenotype.

In order to isolate clones that encode related

5 enzymes, the protein sequences of the jojoba &-ketoacyl-CoA
synthase and the Arabidopsis locus 398293 were compared to
find conserved domains. Several peptide sequences were
identical in the jojoba &-ketoacyl-CoA synthase and the
translation of the Arabidopsis homologue 398293. Two

10 peptides: 1) NITITG (amino acids 389 to 394 of the jojoba
&-ketoacyl-CoA synthase) and 2) SNCKFG (amino acids 525 to
532 of the jojoba &-ketoacyl-CoA synthase) were also
present in the translation of 398293. Degenerate
oligonucleote primers AAYATHACNACNYINGG and

15 SWRTTRCAYTTRAANCC encode the sense and antisense strands of the respective peptides.

The above primers PCR amplify an approximately 430 bp DNA fragment from both the jojoba &-ketoacyl-CoA synthase cDNA and the Arabidopsis 398293 sequence. These primers 20 can be used to PCR amplify DNA sequences that encode related proteins from other tissues and other species that share nearly idendical amino acids at these conserved peptides. Using the degenerate oligonucleotides Arabidopsis green silique, HEAR, and LEAR RNA were 25 subjected to RTPCR. Prominant bands of the expected size were amplified from all 3 RNAs. One clone was obtained from the reston PCR reaction, and 2 clones from the 212/86 reaction, which appear to form two classes of cDNA clones. designated CE15 and CE20. The 212/86 CE15 clone encoded 30 the entire CE protein (Figure 5). The protein sequences translated from these clones are >98% identical to one another. The clones are approximately 50% homologous to the jojoba &-ketoacyl-CoA synthase. The C-terminal portions of the proteins are more conserved, with the cDNAs 35 sharing about 70% identity. Northern analysis of RNA isolated from Brassica leaf tissue and developing seed tissue showed that CE20 is highly expressed in developing seeds, and is expressed at very low levels in leaves. CE15 is expressed at high levels in leaves, and at a much lower

level in developing seeds. The CE20 class is thus most likely to be the active condensing enzyme involved in fatty acid elongation in developing Brassica seeds.

The original 212/86 CE20 clone was short, and did not 5 contain the initiator methionine. The HEAR Brassica campestris library screened with the CE15 and CE20 probes was of poor quality, and yielded only short clones. Thus, 5' RACE was used to clone the 5' end of the CE20 cDNA from 212/86 and from Reston. The sequence of the 5' race clones showed that coding region of CE 20 in both reston (HEAR) and 212/86 (LEAR) extended 3 amino acids past the 5' end of the 212/86 CE20 clone.

10

CE20 primers were then chosen to get full-length CE20 sequences. Consequently,

CUACUACUACUAGTCGACGGATCCTATTTGGAAGCTTTGACATTGTTTAG were utilized. These are homologous to the 5' and 3' ends of the protein coding region of CE20, respectively. These primers were used to PCR the entire coding region of the 20 CE20 cDNA (by RTPCR) from 212/86 (Figure 6) and Reston (Figure 7). Sequences were additionally designed for the ends of the primers which facilitated cloning of the PCR products in the CloneAmp vector (BRL), and restriction enzyme sites were introduced to allow introduction of the 25 CE20 clones into the napin expression cassette for both sense and antisense expression of CE20 in transgenic Brassica plants.

15 CAUCAUCAUCAUGTCGACAAAATGACGTCCATTAACGTAAAG and

The proteins deduced from Brassica clones CE15 and CE20 can be aligned with the protein sequence of the jojoba 30 ß-ketoacyl-CoA synthase and Arabidopsis loci 398293 and 315250, with several regions of conserved protein sequence detectable. Different pairs of sense and antisense primers can thus be used to PCR amplify and isolate DNA encoding related G-ketoacyl-CoA synthases from many different

35 tissues, of both plant and animal species.

80

Table 8

The CE15, and CE20 Brassica cDNA sequences shown in Figures 8, 9 and 10 and the condensing enzyme encoding sequence from jojoba (Figure 3) were used in determining the following primers from conserved amino acids.

	SENSE PRIMER TO PEPTIDE KL(L/G)YHY
10	5381-CAUCAUCAUCAUGAATTCAAGCTTAARYTNBKNTAYCAYTA
15	SENSE PRIMER TO PEPTIDE NLGGMGC 5384-CAUCAUCAUCAUGAATTCAAGCTTAAYYTNGGNGGNATGGG
20	ANTISENSESENSE PRIMER TO PEPTIDE NLGGMGC
	5382-CUACUACUACUAGGATCCGTCGACCCATNCCNCCNARRTT
25	
	ANTISENSESENSE PRIMER TO PEPTIDE GFKCNS
30	5385-CUACUACUAGGATCCGTCGACSWRTTRCAYTTRAANCC
	ANTISENSESENSE PRIMER TO PEPTIDE GFKCNS

4872-CUACUACUASWRTTRCAYTTRAANCC

35

These primers from Table 8 were variously used to PCR (RTPCR) amplify fragments from RNA isolated from developing seeds of Lunaria annua, Tropaoelu majus (Nasturtium), and 5 green siliques of Arabidopsis thaliana. The primers most successfully utilized were 5381-CAUCAUCAUCAUGAATTCAAGCTTAARYTNBKNTAYCAYTA (a sense primer to peptide KL(L/G)YHY) and CUACUACUACUAGGATCCGTCGACCCATNCCNCCNARRTT (an antisense primer to peptide NLGGMGC). These primers were used to

produce three clones encoding a portion of the elongase condensing enzyme from Arabidopsis, designated ARAB CE15. ARAB CE17 and ARAB CE19 (Figures 8, 9 and 10, respectively) From Lunaria a single clone was identified, LUN CE8

10

15 (Figure 11). Since Lunaria produces high levels of 24:1 fatty acid in its seed oil (up to 30%), a cDNA library from RNA isolated from developing seeds of Lunaria was constructed, and LUN CE8 was used to screen this Lunaria cDNA library.

20 Three classes of cDNA clones were isolated, Lunaria 1, Lunaria 5, and Lunaria 27 (Figures 12, 13 and 14, respectively). Of total clones, 81% (26/32) of the clones isolated were of a class similar to Lunaria 5. Of the remainder, 16% (5/32) of the clones were similar to the PCR 25 probe, LUN CE8, designated Lunaria 1. One clone, Lunaria 27, was unique.

As seen in Table 9, Lunaria 5 shares approximately 85% homology with the Brassica CE20 clones. The high degree of homology with the Brassica seed expressed cDNA, and the 30 high abundance of the Lunaria 5 cDNA in developing seed tissue suggest that Lunaria 5 is the cDNA that is active in seed oil fatty acid elongation.

Table 9

Sequence pair distances based on the BIG ALIGN™ program, using a Clustal method with PAM250 residue weight table.

5

Percent Similarity

		1	2	3	4	5	6	7	
.	_1_		55.6	55.4	53.0	51.2	59.0	67.9	1
Divergence	2	44.7		99.1	85.1	41.0	61.7	52.3	2
erg	3		0.7		85.2	40.6	61.7	52.8	3
	4	44.7	16.1	16.2		40.5	63.4	53.0	4
ercent	5	44.8	53.1	53.1	52.5		49.1	49.1	5
Per	6	40.6	37.9	38.9	36.4	43.7		58.8	6
_	7	33.0	45.6	46.0	45.0	46.3	39.2		7
		1	2	3	4	5	6	7	•

JOJOBA 212/86 CE20 RESTON CE20 LUNARIA 5 (PRELIMINARY) 212/86 CE15 LUNARIA 1 (PRELI LUNARIA 27 (PRELI

Finally, a partial Nasturtium PCR clone was obtained using the same primers as were used to isolate LUN CE8. The sequence to the nasturtuim clone (NAST CE26) is provided in Figure 15.

The use of S-ketoacyl-CoA synthases obtained in this manner from other tissues or other species that have different substrate specificities can be used to create modified seed oils with different chain length fatty acids. 10 This could include enzymes isolated from plant taxa such as lunaria, which synthesizes significant quantities of 24:1 fatty acid in its seed tissue. This could also include enzymes involved in cuticular wax synthesis of any plant species which may be capable of synthesizing fatty acids of 15 chain lengths greater than 24 carbons. For instance, Lunaria seeds contain up to 30% 24:1 in their seed oil. Condensing enzyme assay on crude extract from developing Lunaria seeds shows that the enzyme is active at elongating 18:1 to 20:1, 20:1 to 22:1 and 22:1 to 24:1. These data 20 suggest that the Lunaria enzyme will be useful for producing 24:1 in transgenic plants. As it is, expression of the jojoba enzyme in transgenic Brassica has resulted in plants having up to 7.8% of the seed oil composed of 24:1. The source jojoba seeds only produce 4.1 % of the oil in 25 the seed as 24:1. The above respresents the first description of an approach for increasing the 24:1 content of transgenic oil.

The above Examples also demonstrate that the primers of Table 7 can be used to successfully isolate condensing on enzyme clones from diverse plant species. These oligonucleotides may be especially useful for isolating the corresponding fatty acid synthase animal genes, which have not been previously cloned. Since the 8-ketoacyl-CoA synthase expression is repressed in several demyelinating nervous system disorders of humans, for instance adrenoleukodystrophy, adrenomyeloneuropathy, and multiple svlrtodid(reviewed in Sargent and Coupland, 1994), the human genes may be useful in human gene therapy.

84

Similarly, vegetable oils high in 22:1 or 24:1 may be useful dietary therapeutic agents for these diseases.

All publications and patent applications cited in this
secification are herein incorporated by reference as if
each individual publication or patent application were
specifically and individually indicated to be incorporated
by reference.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity and understanding, it will be readily apparent to those of ordinary skill in the art in light of the teaching of this invention that certain changes and modifications may be made thereto without departing from 15 the spirit or scope of the appended claims.

85

CLAIMS

What is claimed is:

5

 A method for the production of a 24:1 very long chain fatty acid molecule in a plant seed cell, said plant otherwise incapable of producing seed having more than 5% by weight of said very long chain fatty acid molecule, said method comprising the steps of:

growing a plant under conditions wherein said plant produces long chain fatty acyl-CoA molecules in the plant seed, in the presence of an expression product of a very long chain fatty acid molecule-altering DNA sequence

15 operably linked to regulatory elements for directing the expression of said DNA sequence such as to effect the contact between such long chain fatty acyl-CoA molecules and said expression product, and producing said very long chain fatty acid molecule in said plant seed at a level above 5% by weight.

The method of Claim 1 wherein said very long chain fatty acid molecule is produced in said plant seed to a level greater than 7% by weight.

25

- The method of Claim 1 wherein said regulatory elements direct preferrential expression of said DNA sequence in plant seed embryo cells.
- The method of Claim 1 wherein said very long chain fatty acid molecule-altering DNA sequence is a condensing enzyme encoding sequence from Brassica.
 - 5. The method of Claim 4 wherein said Brassica encoding sequence is to the CE15 class of condensing enzymes.

- The method of Claim 4 Wherein said Brassica encoding sequence is to the CE20 class of condensing enzymes.
- 7. The method of Claim 1 wherein said very long chain fatty acid molecule-altering DNA sequence is a condensing enzyme encoding sequence from Arabadopsis.
- The method of Claim 1 wherein said very long chain
 fatty acid molecule-altering DNA sequence is a condensing enzyme encoding sequence from Nasturtium.
- The method of Claim 1 wherein said very long chain fatty acid molecule-altering DNA sequence is a condensing
 enzyme encoding sequence from Lunaria.
 - 10. The method of Claim 9 wherein said Lunaria encoding sequence is Lunaria 5.
- 20 11. The method of Claim 1 wherein said regulatory elements direct preferrential expression of said DNA sequence in plant seed embryo cells.
- 12. A plant seed containing a very long chain fatty 25 acid molecule produced in accordance with Claim 1.
 - 13. A plant seed produced in accordance with Claim 1.
- 14. A method for decreasing the proportion of VLCFA 30 in a plant from a given proportion of VLCFA comprising the steps of:

growing a plant under conditions wherein said plant produces VLCFA and S-ketoacyl-CoA synthase, in the presence of a S-ketoacyl-CoA-decreasing DNA sequence operably linked to regulatory elements for directing the expression of said DNA sequence in said cell, wherein said DNA sequence encodes a S-ketoacyl-CoA DNA sequence of said plant and the expression of said DNA sequence of said plant and the production of S-ketoacyl-CoA synthase by said plant

cell and a decrease in the proportion of VLCFA produced by said plant cell.

- 15. The method of Claim 14 wherein said regulatory elements direct the antisense transcription of said DNA sequence.
 - 16. The method of Claim 14 wherein said regulatory elements direct preferrential expression of said DNA sequence in plant seed embryo cells and wherein said VLCFA and said S-keto acyl-CoA is produced in plant seed.
 - A plant seed cell produced in accordance with Claim 9.

15

- 18. A construct comprising a DNA sequence which encodes a condensing enzyme and a heterologous DNA sequence not naturally associated with said encoding sequence wherein said condensing enzyme encoding sequence is obtained by screening a DNA library prepared from an organism which is capable of producing very long chain fatty acid molecules with degenerate oligonucleotide
- CAUCAUCAUGAATTCAAGCTTAARYTNBKNTAYCAYTA,
 25 CAUCAUCAUCAUGAATTCAAGCTTAAYYTNGGNGGNATGGG,
 CUACUACUAGGATCCGTCGACCCATNCCNCCNARRTT,
 CUACUACUACUAGGATCCGTCGACSMRTTRCAYTTRAANCC and
 CUACUACUACUACUASKRTTRCAYTTRAANCC.

primers selected from the group consisting of

30 19. An isolated nucleic acid sequence encoding a condensing enzyme which can be isolated according to a method comprising the step of FCR amplification utilizing primers CAUCAUCAUGANTICAAGCTTAARYTNEKNTAYCAYTA and CUACUACUACUAGGATCCGTCGACCCATNCCNCCNARRTT.

35

20. A construct comprising a nucleic sequence according to Claim 19 and a heterologous DNA sequence not naturally associated with said encoding sequence.

21. A construct according to Claim 20 wherein said heterologous DNA sequence comprises regulatory elements which direct preferrential expression of said DNA sequence in plant seed embryo cells.

5

- 22. A construct according to Claim 20 wherein said condensing enzyme encoding sequence is from Brassica.
- A construct according to Claim 22 wherein said
 Brassica encoding sequence is to the CE15 class of condensing enzymes.
 - 24. A construct according to Claim 22 wherein said Brassica encoding sequence is to the CE20 class of condensing enzymes.
 - 25. A construct according to Claim 20 wherein said condensing enzyme encoding sequence is from Arabadopsis.
- 20 26. A construct according to Claim 20 wherein said condensing enzyme encoding sequence is from Nasturtium.
 - 27. A construct according to Claim 20 wherein said condensing enzyme encoding sequence is from Lunaria.

25

15

28. A construct according to Claim 27 wherein said Lunaria encoding sequence is Lunaria 5.

09	112	160	208	256	304	
AAATCCTCCA CTCATACACT CCACTTCTCT CTCTCTCT	GTAGCAAACT TAAAAGAAA ANG GAA ANG GGA AGC ATT TTA GAG TTT CTT 112 Met Glu Glu Met Gly Ser Ile Leu Glu Phe Leu 10	AAA GCC ATT TIG GTC ACT GGT GCT ACT GGC TCC TTA GCA AAA Lys Ala 11e Leu Val Thr Gly Ala Thr Gly Ser Leu Ala Lys 15	GTG GAG AAG GTA CTG AGG AGT CAA CCG AAT GTG AAG AAA CTC Val Glu Lys Val Leu Arg Ser Gln Pro Asn Val Lys Lys Leu 30	CTT TTG AGA GCA ACC GAT GAC GAG ACA GCT GCT CTA CGC TTG Leu Leu Arg Ala Thr Asp Asp Glu Thr Ala Ala Leu Arg Leu 50	AAT GAG GTT TTT GGA AAA GAG TTG TTC AAA GTT CTG AAA CAA AAT 304 Asn Glu Val Phe Gly Lys Glu Leu Phe Lys Val Leu Lys Gln Asn 65 75	
TCCI	GCAA	AAC	TTT Phe	CTT Leu 45		
AA.	GTP	GAT ASD	ATT Ile	TAT Tyr	CAA Gln 60	

FIG. 1A

352	400	448	496	544	592
GTA Val	TTG	GCT	ACA	TTA Leu 155	AAT Asn
GTA Val 90	AAT Asn	GCT	AAC Asn	AAA Lys	AAA Lys 170
ACT	GTC Val 105	CTA	ATC	AAC Asn	GAG Glu
GTG Val	GAC ASD	AAT Asn 120	CTT	TGC	GGA
AAA Lys	AAA Lys	GTC Val	CTG Leu 135	AAG Lys	TCT
GAA Glu	CTC	GTT Val	TCT	AAG Lys 150	GTA Val
TCA Ser 85	TGT Cys	GTT Val	GTG Val	GCG Ala	$\frac{\text{TAT}}{165}$
GTA Val	TTG Leu 100	GAT Asp	GAC ASP	TTC	GCT Ala
TTT	GAC	ATC 116 115	TAC	GAC	ACT
TCC	GAA Glu	GAA Glu	AGG Arg 130	TTG	TCT Ser
TAT Tyr	GGT	AGG	GAA Glu	GTT Val 145	GTA Val
TTC Phe 80	ACT	166 17p	AIT Ile	TAT Tyr	CAT His 160
AAT Asn	ATT Ile 95	ATG Met	TTC	AAG Lys	GTT Val
GCA	GAT ASP	GAA Glu 110	AAC	GCC	TTT
GGT	GGT Gly	GAA Glu	ATC Ile 125	GGA Gly	ATA Ile
TTA	CCC	AAG Lys	ACA	TAT Tyr 140	AAG Lys

PCT/US94/13686

640	889	736	784	832	880
GGA G1y	AAA Lys	TCG	CCA Pro 235	CAA Gln	ACC
AAT Asn	GCA Ala	AAA Lys	TGG	ATG Met 250	ATC Ile
CTT Leu 185	GAG Glu	ATT 11e	GGA GLY	TTG	ATC 11e 265
TCA	GTG Val 200	TCC	733 777	CTT	ACC
Glu	CIT	AAG Lys 215	CAC	ATG Met	CCC
66C 61y	AAA	GAA	AGA Arg 230	GAG	CGT
ATG	AAG Lys	ACG	GCA	GGG GLY 245	ATT Ile
TAT Tyr 180	GAG Glu	GCA	AGG	TTA	ATT Ile 260
TAT Tyr	GTA Val 195	666 G1y	GAG	GCA	ACT
CCT	AAT Asn	GCG Ala 210	ATC Ile	AAG Lys	CTT
AAG Lys	ATT Ile	GCA	GGC GLY 225	ACC	CCG
GAG Glu	GAC ASP	CAA	ATG	TTC Phe 240	ATT Ile
CTG Leu 175	CTG	CTT	GAC	GTA Val	GAC ASD 255
ATA Ile	GGT G1y 190	GAA Glu	AAG Lys	\mathtt{TAT}	GGG
TTA	TTA	AAT Asn 205	ATG Met	GTG Val	AAA Lys
GGG G1y	AGA Arg	ATC	ACA Thr 220	AAT Asn	TAC

TG. 1C

928	976	1024	1072	1120	1168
		H	H	Ħ	H
ACC	ATG	GTC Val 315	TAC	ATG	AAT Asn
AGG	TGT Cys	ATG Met	AGA Arg 330	CCA	AAG Lys
GTC Val	AGG	GAT	CAA Gln	AAT Asn 345	ACC
GGT G1y 280	TTG	GCA Ala	AAC Asn	GCG	TTC Phe 360
GAA Glu	AGA Arg 295	CCG	GCA Ala	GCG	TAC
GIT Val	GGG G1y	ATA Ile 310	CAC His	TCA Ser	CGT
TGG	AAA Lys	CTG	GCG Ala 325	TCT Ser	CAC
GGT GLY	$_{\rm GLy}^{\rm GGT}$	GAC	GTG Val	GGA G1y 340	GCA Ala
CCT Pro 275	TAT Tyr	ATT Ile	ATG	GTG Val	ATG Met 355
TTT	TAT TYF 290	ATA Ile	GCC	CAT His	GAG Glu
CCC Pro	GTA Val	ACA Thr 305	GTA Val	${ m TAC}$	CCA
GAG Glu	CCT	AGC	ATA Ile 320	ACA	TTA
AAA Lys	GTA Val	CCC	ACG	GTG Val 335	GCA Ala
TTT Phe 270	AAT Asn	GGA G1y	GCA Ala	CCG	AGT Ser 350
ACT	GAT ASP 285	TGC	AAT Asn	GAG Glu	CTG
AGC	ATC Ile	CTT Leu 300	GTG Val	GTA Val	AAA Lys

1216	1264	1312	1360	1408	1456
ATG	TTC Phe 395	CAA	TTG	ATC	AGC
GCT	AAT Asn	TGC Cys 410	TTG	GGC Gly	GAA Glu
CGG	CTT	TTC	AGG Arg 425	CAA Gln	AAA Lys
$_{\rm GLY}^{\rm GGT}$	ACC	ATA Ile	ACG	TTC Phe 440	GCA Ala
GTG Val 375	CTC	ACA Thr	AAG Lys	TTC	GCT Ala 455
CAT	TAT TYT 390	AAT	AGG	CTC	ATT Ile
GTA Val	CIT	GCA Ala 405	AAA Lys	TAC	CGG
CCA Pro	CAC	ATA Ile	CTT Leu 420	CCC Pro	TTG
AAC	TTC	GAG Glu	GAT ASP	AAA Lys 435	AAG Lys
CGC Arg 370	ACC	CTG	ATG	TAT Tyr	GAG Glu 450
GAT ASD	TCC Ser 385	GTA Val	TAC	ATT Ile	ACT
CCG Pro	TTC	AAG Lys 400	AAG Lys	GAC	AAC Asn
AAC	TCC	TTG	GGT G1y 415	GTA Val	ATG
ATC Ile	Ser	CCT	AAG Lys	TTA Leu 430	GAC Asp
TGG Trp 365	TTC	CIT	TTC	CGT	GAT Asp 445
CCA Pro	GTC Val 380	CIC	TGG	TTG	TTT Phe

FIG. 1E

1504	1552	1608	1668	1728	1786
AGG GCA ATT AAC TGG Arg Ala Ile Asn Trp 475	CCA GGN GTV GTA GAG CAC GTT Pro Gly Val Val Glu His Val 485	CTT AAC TAAAAGTTAC GGTACGAAAA TGAGAAGATT GGAATGCATG CACCGAAAGN Leu Asn	NCAACKTAAA AGACGTGGTT AAAGTCATGG TCAAAAAGA AATAAAATGC AGTTAGGTTT 1668	CTTTTTTAAT 1728	GAAATTICIC ICITIIGITIT GIGAAAAAA AAAAAAAA GAGCICCIGC AGAAGCIT
A ATT	A GAG	GAC	ATGC	GIGITISCAGT TITISAITICT TGIATIGITA CITIGIACITI TGAICTITIT	TGC
GC.	GTZ Va.	CATC	PAA?	Ę) JIC
AGG	GTC Val	ATG	AAT	TGA'	GAG
CCC Pro 470	GGN	755	AGA	TTT	AAA
GAT	CCA Pro 485	GATT	AAAA	GTAC	AAAA
TTT	TTC	AGAA	TC	£	AAA
TAC Tyr	CAT	A TG	ATGG	GTTA	AAAA
GAA GCT GAT ATG TTT Glu Ala Asp Met Phe 4	GAA GAT TAC TTC TTG AAA ACT Glu Asp Tyr Phe Leu Lys Thr 480	GAAA	AGTC	TAT	GAAA
ATG Met 465	AAA Lys	GTAC	T.	£.	T G
GAT Asp	TTG Leu 480	AC G	TGGI	TTCC	GTTT
GCT	TTC	AGTT	GACG	TTGA	CTT
GAA Glu	TAC Tyr	TAA?	AA A	GT 1	TC T
GTT Val	GAT	AAC Asn	CATA	TGCA	TTTC
ATA Ile 460	GAA Glu	CTT	NCAA	GTGI	GAAA

FIG. 11

26	104	152	200	248	296
GGAACTCCAT CCCTTCCTCC CTCACTCCTC TCTCTACA AIG AAG GCC AAA ACA ATC Met Lys Ala Lys Thr Ile 1 5	ACA AAC CCG GAG ATC CAA GTC TCC ACG ACC ATG ACC ACG ACG ACG Thr Asn Pro Glu Ile Gln Val Ser Thr Thr Met Thr	ACT ATG ACC GCC ACT CTC CCC AAC TTC AAG TCC TCC ATC AAC TTA CAC Thr Met Thr Ala Thr Leu Pro Asn Phe Lys Ser Ser Ile Asn Leu His 35	CAC GTC AAG CTC GGC TAC CAC TAA ATC TCC AAT GCC CTC TTC CTC 11 11 12 Val Lys Leu Gly Tyr His Tyr Leu Ile Ser Aan Ala Leu Phe Leu 45 40	GTA FITC AITC CCC CITY ITG GGC CITC GCT ICG GCC CAN CITC TCC TTC 7Val Phe Ile Pro Leu Leu Gly Leu Ala Ser Ala His Leu Ser Ser Phe 55	TCG GCC CAT GAC TIC TCC CTG CTC TTC GAC CTC CTT CGC CGC AAC CTC Ser Ala His Asp Leu Ser Leu Leu Phe Asp Leu Leu Arg Arg Ash Leu 75

FIG. 2A

344	392	440	488	536	584
CTA	TGC	GAC Asp	CAG Gln 150	CCC	AGG
ACC	GGA	ATG	TTT	GTC Val 165	GCC
GCA Ala 100	TTT Phe	TTC	GAG Glu	TAT Tyr	GCA Ala 180
TTA	GAC ASD 115	ATG Met	ATT Ile	ACC	GCA Ala
TTA	GTG Val	GAG Glu 130	AAT	GAA Glu	ATA Ile
GTT TTA Val Leu	TTG	CAC	GAG Glu 145	CGG Arg	AGC
TTC	TAC	TCC	AAG Lys	GGT GLY 160	CCG
CIC Leu 95	GTC Val	ACA	TCT	ATG Met	GAG Glu 175
TTC	AAT Asn 110	ATG Met	TTT Phe	$_{\rm GLy}^{\rm GGT}$	GCC
Ser	AGG	CTG Leu 125	TCG	GCC Ala	CCC
TGT Cys	CCC	AAC Asn	GGG G1y 140	AGG	GTG Val
GIT Val	CGG Arg	CCG	GCC	GAG Glu 155	AAG Lys
GTC Val 90	ACC	CAA Gln	CGG	TTG	ACT Thr 170
GTT Val	TTG Leu 105	CCT	TCC	ATC Ile	GTC Val
CCT	TTC	AAG Lys 120	ACC	AAG Lys	TCC
CIC	CAT	TAT	OGG Arg 135	AGG	GAA

632	680	728	776	824	872
GAG	TGC	CAT His 230	$_{ m GLY}^{ m GGT}$	CAG Gln	ATG
TTG	ANC	AAC Asn	ATG Met 245	CTA	AAC Asn
GTG Val	GTG Val	GTT Val	66C 61y	CTC Leu 260	GAA Glu
GAG Glu 195	GTG Val	ATA Ile	$_{ m GLY}$	GAC ASP	ACG Thr 275
GAC Asp	CTG Leu 210	ATG	CTT	AAG Lys	AGC
ATC Ile	ATA Ile	Ser 225	AAT	GCC	GTG Val
GCG	GGA Gly	TCA	TAT Tyr 240	CTT	GTA Val
GGG Gly	ATA Ile	CTG	AGC	GAT Asp 255	TTA
TAC Tyr 190	CAG	TCG	CTT	ATT	GTG Val 270
ATG	AAG Lys 205	CCG	ATA Ile	TCC	TAT
GTG Val	CCG	ACG Thr 220	AAT	ATT Ile	ACA
GAG Glu	AAG Lys	CCA Pro	GGT G1y 235	CTC	AAC
GAG Glu	GTG Val	AAC Asn	AGG	GGG G1y 250	AAA Lys
GCG Ala 185	GGG	TTT	CIN	GCT	CGT Arg 265
GAG	ACG Thr 200	TTG	AAG Lys	AGT Ser	TAC
GCC	AAG Lys	AGC Ser 215	TAC	TGC	GTT Val

FIG. 2C

10/59

	~		_		_	
920	896	1016	1064	1112	1160	1208
AAC Asn	TGG Trp 310	ACC	GAA Glu	GCA Ala	CIC	GCA Ala 390
ACC	CGC	CGC Arg 325	CAA Gln	ATG Met	CCC	GTG Val
ATC Ile	AAC	GTA Val	CAA Gln 340	CTG	$_{\rm GLy}^{\rm GGT}$	TTA
CTT	TCA	ACA	TTA	GAT ASP 355	CTT	ACC
ATG Met 290	CTC	CAT	GTC Val	AAG	ACC Thr 370	GCC
TCC Ser	ATC Ile 305	CTT	TGC	TCC	ACG	TTT Phe 385
CGC	ATC Ile	CTC Leu 320	AGA Arg	TTA	ATC Ile	ည္၍ 📆
GAC	GCC	CAA	TAT Tyr 335	GCC	AAC	CTC TT Leu Ph FIG.
AAT Asn	GCT	TAC	TCC	GTT Val 350	GCC	CTC
GGC G1y 285	GGC	AAG Lys	AAG Lys	$_{ m GGT}$	AAG Lys 365	CAA Gln
TGG	GGT G1y 300	TCC	GAC	GTA Val	CTA	GAA GLu 380
TAC	ATG	CGA Arg 315	GAC	AAG Lys	GCC	TCA
TGG	CGC	CGC	GCT Ala 330	AAC Asn	GAA Glu	ATG
AAT	TTT Phe	CGT	96C 61y	AAT Asn 345	$^{ m GGT}_{ m G1y}$	CCC
CTT Leu 280	CTA	GAT Asp	AAG Lys	GAA Glu	GCC Ala 360	CTC
ACC	TGC Cys 295	CGT	CAC His	GAT	GTT Val	GTG Val 375

1256	1304	1352	1400	1448	1496
TTC	GTG Val	GAA Glu	TCA	AAG Lys 470	AAC Asn
GAT ASP 405	GCA	CTT	AGC	CGT Arg	TGT Cys 485
CCA	AAA Lys 420	CAC His	AGT Ser	ATC	AAG
ATC Ile	GGC G1y	TGG Trp 435	TCG	AGG Arg	TTC
TAC	GGA Gly	CCA	ACA Thr 450	GGG	GGT Gly
CCA	GCA Ala	ACG	AAC	AAA Lys 465	TCA
AAG Lys 400	CAT	TTG	GGG G1y	GCA Ala	GGT G1y 480
GTG Val	ATC 11e 415	GAG Glu	$ ext{TT}$	GAA Glu	TTT Phe
AAC Asn	TGC	TTG Leu 430	AGG	GCT Ala	GGA Gly
ACG	TTC	Asn	TAT Tyr 445	TAC	ATT Ile
ATG Met	GAC	AAG Lys	CIG	GCA Ala 460	ATG Met
AAG Lys 395	AAC Asn	GAG Glu	ACA Thr	TTG	TGG Trp 475
TTC	GCG Ala 410	CTC	ATG Met	GAG Glu	ACT
GTC Val	GCA	GAG Glu 425	AGG	TAC	CGA Arg
AAG Lys	TTG	GAT Asp	TCG Ser 440	TGG	GAT Asp
CGT	AAG Lys	TTG	CCC	TTA Leu 455	GGT Gly

FIG. 21

12/59

1544	1592	1640	1700	1733
AGT GTT GTG TGG AGG GCT TTG AGG AGT GTC AAP CCG GCT AGA GAG AAG Ser Val Val Trp Arg Ala Leu Arg Ser Val Asn Pro Ala Arg Glu Lys 495	AAT CCT TGG ATG GAT GAA ATT GAG AAG TTC CCT GTC CAT GTG CCT AAA 3 Asn Pro Trp Met Asp Glu Ile Glu Lys Phe Pro Val His Val Pro Lys 515	ATC GCA CCT ATC GCT TCG TAGAACTGCT AGGATGTGAT TAGTAATGAA 11e Ala Pro Ile Ala Ser 520	AAATGTGTAT TATGTTAGTG ATGTAGAAA AGAAACTTTA GTTGATGGGT GAGAACATGT 1700	CTCATTGAGA AFAACGIGIG CAICGFIGIG TIG

30 010

51	66	147	195	243	291
GTCGACACA ATG AAG GCC AAA ACA ATC ACA AAC CCG GAG ATC CAA GTC TCC Met Lys Ala Lys Thr 11e Thr Asn Pro Glu 11e Gln Val Ser 1 1 5	ACC ATG ACC ACG ACG ACG ACC GCC ACT CTC CCC AAC TTC AAG Thr Met Thr Thr Thr Thr Thr Thr Thr Ala Thr Leu Pro Asn Phe Lys 20 25	TCC AIC AAC TIA CAC CAC GIC AAG CTC GGC TAC CAC TAC TIA AIC Ser Ile Asn Leu His His Val Lys Leu Gly Tyr His Tyr Leu Ile 35	AAT GCC CTC TTC CTC GTA TTC ATC CCC CTT TTG GGC CTC GCT TCG ASA Ala Leu Phe Leu Val Phe Ile Pro Leu Leu Gly Leu Ala Ser 50 60	CAC CTC TCC TCC TTC TCG GCC CAT GAC TTG TCC CTG CTC TTC GAC His Leu Ser Ser Phe Ser Ala His Asp Leu Ser Leu Leu Phe Asp 75	CTT CGC CGC AAC CTC CTC CCC GTT GTC TCT TCT TTC CTC TTC Leu Arg Arg Asn Leu Leu Pro Val Val Val Cys Ser Phe Leu Phe 80
GTCG	ACG Thr 15	TCC	TCC	GCC Ala	CIC

FIG. 3A

14/59

	4				
339	387	435	483	531	579
TAC TYT 110	TCC	AAG Lys	GGC Gly	CCG	GCG Ala 190
GTC Val	ACA Thr 125	TCT	ATG Met	GAG Glu	GGG
AAT Asn	ATA Ile	rrr Phe 140	GGT Gly	CCC	TAC
AGG	CTG	TCG	GCC Ala 155	CCG	ATG
CCT Pro	AAC Asn	666 G1y	AGG	GTG Val 170	GTG Val
CGG Arg 105	CCG Pro	GCC	GAG Glu	AAG Lys	GAG Glu 185
ACC	CAC His 120	CGG	TTG	ACT	GAG Glu
TTG	CCT Pro	TCC Ser 135	ATC Ile	GTC Val	GCG
TTC	AAG Lys	ACC	AAG Lys 150	TCC	GAG
CAT	TAT	CGG Arg	AGG	GAA Glu 165	GCC
CTA Leu 100	TGC Cys	GAC	CAG	OCC Pro	AGG Arg 180
ACC	GCC Ala 115	ATG Met	TTT Phe	GTC Val	GCC
GCA Ala	TTT Phe	TTC Phe 130	GAG	TAC	GCA Ala
TTA	GAC	ATG Met	ATT 11e 145	ACC	GCA Ala
TTA	GTG Val	GAG Glu	AAT Asn	GAA Glu 160	ATA Ile
GTT Val 95	TTG	CAC His	GAG	CGG	AGC Ser 175

FIG. 3B

15/59

627	675	723	771	819	867
<i>4</i> \	A ()	E . U	E. e.	rn . 1 C	71.6.
GGA Gly	TCA	TAT TYT	CTT	GTG Val 270	TCC
ATA Ile 205	CTG	AGC Ser	GAT ASD	GTA Val	CGC Arg 285
CAG Gln	TCG Ser 220	CTT	ATT Ile	TTA	GAC Asp
AAG Lys	CCG Pro	ATA Ile 235	TCC	GTG Val	AAT Asn
Pro Pro	ACG	AAT Asn	ATT 11e 250	TAT Tyr	GGC
AAG Lys	CCA Pro	GGT GLY	Sec.	ACA Thr 265	TGG
GTG Val 200	AAC Asn	AGG	GGG G1y	AAC	TAC Tyr 280
GGG G1y	TTT Phe 215	CIT	GCT	CGT	TGG Trp
Acg	TTG	AAG Lys 230	AGT Ser	TAC	AAT Asn
AAG Lys	AGC	TAC	TGC Cys 245	GTT Val	CIT
GAG Glu	7GC Cys	CAT	\mathtt{GGT}	CAG Gln 260	ACC
rrg Leu 195	Asn	AAC	ATG Met	CTA	ATG Met 275
GTG Val	GTG Val 210	GTT Val	GGC G1y	CIC	AAC
GAG Glu	GTG Val	ATA 11e 225	$_{ m GGT}$	GAC	GAA Glu
GAC Asp	CTG	ATG Met	CTT Leu 240	AAG Lys	ACA Thr
AIC	ATA Ile	Ser	AAT	GCC Ala 255	AGC

i.G. 30

915	963	1011	1059	1107	1155
ATC Ile	CTT	TGC	TCC Ser 350	ACG	TTT
ATC Ile	CTC	AGA Arg	TTA	ATC Ile 365	TTC
GCC Ala 300	CAA Gln	TAT Tyr	GCC	Asn	CTC Leu 380
GCT Ala	TAC TYY 315	TCC	GIT Val	GCC	CTC
GGC G1y	AAG Lys	AAG Lys 330	$_{ m GGI}$	AAG Lys	CAA
GGT Gly	TCC	GAC	GTA Val 345	CTA	GAA Glu
ATG	CGA Arg	GAC	AAG Lys	GCC Ala 360	TCA
CGC Arg 295	CGC Arg	GCT	Asn	GAA	ATG Met 375
TTT Phe	CGT Arg 310	66C 61y	Asn	$_{ m GLy}$	CCC
CTA	GAT Asp	AAG Lys 325	GAA Glu	GCC Ala	CIC
TGC Cys	CGT	CAC	GAT Asp 340	GTT Val	GTG Val
AAC Asn	TGG	ACC	GAA Glu	GCA Ala 355	CIC
ACC Thr 290	CGC Arg	CGC Arg	CAA Gln	ATG Met	CCC Pro 370
ATC Ile	AAC Asn 305	GTA Val	CAA Gln	CTG	GGT Gly
CIT	TCA	ACA Thr 320	TTA	GAT Asp	CTT
ATG Met	CIC	CAC	GTC Val 335	AAG Lys	ACC

FIG. 3D

1203	1251	1299	1347	1395	1443
CCA Pro	GCA Ala	ACG Thr 430	AAC Asn	AAA Lys	TCA
AAG Lys	CAT	TTG	GGG G1y 445	GCA	$_{\mathrm{GLy}}$
GTG Val	ATC Ile	GAG Glu	TTT Phe	GAA Glu 460	TTT Phe
AAC Asn 395	TGC	TTG	AGG	GCT Ala	GGA G1y 475
ACG	TTC Phe 410	AAC	TAT	TAC	AIT Ile
ATG	CAC	ACG Thr 425	CTG	GCA	ATG Met
AAG Lys	AAG Lys	GAG Glu	ACA Thr 440	TTG	TGG
TTC	GCG	CTC	ATG	GAG Glu 455	ACT
GTC Val 390	GCA Ala	GAG Glu	AGG	TAC Tyr	CGA Arg 470
AAG Lys	TTG Leu 405	GAT Asp	TCG	TGG	GAT ASD
CGT	AAG Lys	TTG Leu 420	CCC	TTA	GGT
GCA	TTC Phe	GTG Val	GAA Glu 435	TCA	AAG Lys
GTG Val	GAT Asp	GCA Ala	CTT	AGC Ser 450	CGT Arg
TTA Leu 385	CCA	AAA Lys	CAC His	AGT	ATC Ile 465
ACC	ATC Ile 400	GGC	TGG	TCG	AGG
GCC	TAC	GGA Gly 415	CCA	ACA	$^{\rm GGG}_{\rm G1y}$

FIG. 3E

18/59

1491	1539	1592	1652	1712	1772	1783
TTG AGG AGT GTC AAT Leu Arg Ser Val Asn 490	ATT GAG AAT TTC CCT Ile Glu Asn Phe Pro 510	TCG TAGAACTGCT AGGAIGTGAT Ser	AGAAACTTTA GTTGATGGGT	ITGAATITGA ATITTGAGTAT	TACAAATTTA AGTAAGATTT	
TGG AGG GCT Trp Arg Ala	CCT TGG ATG GAT GAA Pro Trp Met Asp Glu 505	SCA CCT ATC GCT Ala Pro Ile Ala 520	IGITAGIG AIGIAGAAAA	AACGIGIG CAICGIIGIG	ACGCATGA GTCATATA	
GGT TTC AAG TGT AAC AGT GTT GTG Gly Phe Lys Cys Asn Ser Val Val 480	CCG GCT AGA GAG AAG AAT C Pro Ala Arg Glu Lys Asn I 495	GTC CAT GTG CCT AAA ATC C Val His Val Pro Lys Ile ? 515	TAGTAATGAA AAATGTGTAT TATGTTAGTG AIGTAGAAAA AGAAACTTTA GTTGATGGGT 1652	GAGAACAIGI CICAITGAGA AIAACGIGIG CAICCIIGIG ITGAAITIGA AITIGAGIAI	TGGTGAAATT CTGTTAGAAT TGACGCAIGA GTCATATRA TACAAATTTA AGTAAGAITT	TACGCTTTCT T
0 0	OHA	ح; ق	Н	9	Г	Н

FIG. 3F

WO 95/15387 PCT/US94/13686

19/59

9 120 180 240 300 360 420 480 540 009 GECECCEC TACCICTAGA CCIGGCGAIT CAACGIGGIC GGAICAIGAC GCITICCAGAA AACATCGAGC AAGCTCTCAA AGCTGACCTC TITCGGATCG TACTGAACCC GAACAATCTC GITATGICCC GICGICICCG AACAGACAIC CICGIAGCIC GGAITAICGA CGAAICCAIG GGGTCCTTGC GCGATTGCGG CGGAAGCCGG GTCGGGTTGG GGACGAGACC CGAATCCGAG GCTATACCCA ACCICCGICI ICGICACGCC IGGAACCCIC IGGIACGCCA AITCCGCICC CCAGAAGCAA CCGGCGCCGA ATTGCGCGAA TTGCTGACCT GGAGACGGAA CATCGTCGTC CCTGGTGAAG AGGTTGTTCA TCGGAGATTT ATAGACGGAG ATGGATCGAG CGGTTTTTGGG GAAAGGGGAA GTGGGTTTGG CTCTTTTGGA TAGAGAGAGT GCAGCTTTGG AGAGAGACTG TATCGAAGGG GAGGGAGAAA GAGTGACGTG GAGAAATAAG AAACCGTTAA GAGTCGGATA GAGAGGITITA GAGAGACG CGGCGGATAT TACCGGAGGA GAGGCGACGA GAGATAGCAT

FIG.

AT	TAAAAGCCCA	ATGGGCCTGA	ITITATCATAT TAAAAGCCCA ATGGGCCTGA ACCCATTTAA ACAAGACAGA TAAATGGGCC	ACAAGACAGA	TAAATGGGCC	099
	TTAACAGAGT	GTTAACGTTC	FIGURITARG TIRACAGAGT GITAACGITC GGITTCAAAT GCCAACGCCA TAGGAACAAA	GCCAACGCCA	TAGGAACAAA	720
	CCTCAAGTAA	ACCCCTGCCG	NOAAACETGT CCTCAAGTAA ACCCCTGCCG ITTACACCTC AATGGCTGCA TGGTGAAGCC	AATGGCTGCA	TGGTGAAGCC	780
	GGCGTAGGAT	GCATGACGAC	NITAACAGGI GGCGIAGGAI GCAIGACGAC GCCAITGACA CCIGACTCIC TICCCTICIC	CCTGACTCTC	TTCCCTTCTC	840
	TCTAATCAAT	TCAACTACTC	FICATATATC TCTAATCAAT TCAACTACTC ATTGTCATAG CTATTCGGAA AATACATACA	CTATTCGGAA	AATACATACA	006
	TCTTCGATCT	CTCTCAATTC	PAICCITITIC TCTTCGATCT CTCTCAAITC ACAAGAAGCA AAGTCGACGG ATCCCTGCAG	AAGTCGACGG	ATCCCTGCAG	096
	CATGACTATT	TTCATAGTCC	PAAATTAGGC CATGACTATT TTCATAGTCC AATAAGGCTG ATGTCGGGAG TCCAGTTTAT	ATGTCGGGAG	TCCAGTTTAT	1020
	GTGTTTAGAA	TTTGATCAAT	arccartaag gigittagaa titigaicaat gittataata aaaggggaa gaigataica	AAAGGGGGAA	GATGATATCA	1080
	TYCTTTTGG	CTTTTTGTTAA	ASTOTITIG TICTITIIGG CITIIIGIIAA ATTIGRGIGF TICTATITIGF AAACCICCIG	TTCTATTTGT	AAACCTCCTG	1140
	ACTTCTTTCC	CTTTTTAAGT	AIBIGITGT ACTICTITCC CTITITAAGT GGTATCGTCT ATAIGGTAAA ACGITAIGTT	ATATGGTAAA	ACGITIAIGIT	1200

FIG. 4

1260 1320 1380 1440 1500 1560 1620 1647 TGGTCTTTCC TTTTCTCTGT TTAGGATAAA AAGACTGCAT GTTTTATCTT TAGTTATATT ATGTTGAGTA AATGAACTTT CATAGATCTG GTTCCGTAGA GTAGACTAGC AGCCGAGCTG AGCTGAACTG AACAGCTGGC AATGTGAACA CTGGATGCAA GATCAGATGT GAAGATCTCT AATATGGTGG TGGGATTGAA CATATCGTGT CTATATTTTT GTTGGCATTA AGCTCTTAAC ATAGATATAA CTGATGCAGT CATTGGTTCA TACACATATA TAGTAAGGAA TTACAATGGC AACCCAAACT TCAAAAACAG TAGGCCACCT GAATTGCCTT ATCGAATAAG AGTTTTGTTTC CCCCCACTTC ATGGGATGTA ATACATGGGA TTTGGGAGTT TGAATGAACG TTGAGACATG GCAGAACCTC TAGAGGTACC GGCGCGC

FIG. 4C

48	96	144	192	240	288	336
GTT Val	TTC	AAC	GTT Val	GTT Val	GAT	TGC
ATT Ile	ACG	GTA Val	GCG Ala	GAA Glu	TAT	GTT Val
GAG Glu	CCA	TCC	CAT	GCC Ala	GAC	ACC
ACC	TCA	CAA	AAC	AGT	TGG	TTG
TCT	GGT Gly	CTT	ATA Ile	TTT Phe	CTT	GTC Val
CTC	GCC Ala	TTT	CIC	GTG Val	AAG Lys	TTT Phe
CTA Leu	AAC	GAT	TAC	CIT	AAG Lys	GTC Val
GAT Asp	CCA	CCG Pro	CAC His	GTG Val	TGG	$_{\rm GLy}^{\rm GGT}$
CAA Gln	GGT	TTA	TAT Tyr	CIT	ATT Ile	TTC
GAA Glu	TCC	CGT	$_{ m GGT}$	GTT Val	GAG	TTC
AGC	CCT	AGA Arg	CTT	CCG	GAA Glu	GGA G1y
TCT	GAA Glu	CGG	AAA Lys	ATA Ile	GGA G1y	ATC Ile
AGG	ATC Ile	GTC Val	GTG Val	ACG	AGC	GTC Val
AGT	GGG	AGA Arg	TAC	GCG Ala	TTA	ACC
ATG Met	CGT	GTC Val	AAG Lys	TTG	AGT	GCA Ala
GAA	AAC Asn	TCG	TTĞ	TAC	666 61y	ATC Ile

FIG. 5/

384	432	480	528	576	624	672	720	
GCT	ATA Ile	TTC	GTC Val	GGT Gly	TTC	AAC Asn	AAC	
TTC	TTC	GGA Gly	TAC	GAA Glu	CTC	GTT Val	ATT Ile	
GAC	GAG Glu	CTC	ACG	AAA Lys	GAA Glu	GTG Val	GTG Val	
ATT Ile	GAA Glu	ATC Ile	GAA Glu	ATG	GAC	CTC	ATG	
CTC	AGA Arg	GAG Glu	GAT	ACG	CTC	GTC	GCG	
TAT	ACA	GAA Glu	96C Gly	ACA	GCA	GGT Gly	TCC	SB
GTT Val	GTG Val	GAC	ATA Ile	ACA	GGC	GTA Val	CTC	FIG.
TCT	AAG Lys	TTC	GGA Gly	AAC	TTC	GAC	TCA	
CGA	CTT	AAG Lys	TCA	GAA Glu	ATA Ile	AAA Lys	Pro Pro	
CCA Pro	gaa Glu	96C 61y	GCC	TCG	ATG	CCG	ACT	
CGT	GAT	TCA	CAA	TCG	ATG	AAA Lys	CCG	
TCT	TCC	AAA Lys	CTT	TCT	TCG	GTC Val	AAC	
ATG	CCT	AGA	ATC	ATC	GCC	CGT	TTT	
TTC	AAG Lys	GCT Ala	AGG	TCA	GAA Glu	ACA	ATC 11e	
TAC	TTC	CTA	AAG Lys	AGA Arg	GAA Glu	AAG Lys	AGT	
GTC Val	TGT	GAT ASD	AAG Lys	CCA Pro	CGT Arg	GAG	TGC	

ЭЦ	150
۲2	133

768	816	864	912	096	1008	1056	1104	
ATG	CTT	GTT Val	AAC	CGC	ACT	GAA	GAA	
666 61y	ATG	ATG	CCT	CGC	CGG	GAA	ATG	
GGA Gly	GAC ASD	GAG Glu	ATA Ile	AAC Asn	GIC	CAG	CTA	
CTA	CGT	ACC	GTT Val	TCT	ATT	TAC	GAC	
AAC	GCT	AGT	ATG	CTG	CAC	GTG	AGA	
TAC	CIT	GTG Val	TCA	ATG	GAG Glu	AGT	AGC	SC.
AGC	GAT ASD	GTT Val	AAG Lys	GTT Val	CIT	AGG	ATA	FIG.
CH	GTT Val	GTG Val	GAC	GCC	CGC	TTC	AAA	
ATA Ile	GCC	GCG Ala	CGT	TCC	TAC	AGC	TTA	
AAC Asn	ATA Ile	TAC	GGA Gly	TGC	AAG Lys	CGT Arg	GGA Gly	
GGG G1y	ATC Ile	AGT Ser	GTG Val	GGT G1y	GCT	GAC	AAG Lys	
AGA Arg	GGA Gly	AAT Asn	TAC	ATG	CAT	GAC	TTC	
ATG Met	GCA Ala	CCG Pro	75G Trp	AGG Arg	CGC	GCC	$_{\rm GLy}^{\rm GGA}$	
AAG Lys	TCA	AAC Asn	AAT Asn	TTT	TTC	GCT	CAA Gln	
TAC	TGC	TCT Ser	TAT	TTC	GAC	AAG Lys	GAA G1u	
CAC	$_{ m GLY}$	CAG Gln	GGG	TGC	CGT	CAC His	GAT	

1152	1200	1248	1296	1344	1392	1440	1488	
CTC	CGT	GCC	TCC	TTC	GGC	TTT Phe	GAG	
CCT	ATC Ile	TCA	CTA	TGC	CTA	AGG Arg	ATG	
GGC	TTG	TCC	GAT	TTC	AAT Asn	CAC	TAC	
TTA	GCT Ala	TCC	TCT	CAT	AAG	TTA (GCT	
ACC Thr	GCC	ACC	TCC	GAG	CAG	ACT	CTT	
ACC	TTT	ACC	TCC	TTC	CTT	ATG	GAG Glu	SD
ATC	TTC	ACC	TCA	GCC	GAG Glu	AAG	TAC	FIG.
AAC	CTC	ACT	TCG	CIT	GAG	TCT	TGG	
ACC	CTT	AAA Lys	AAG Lys	AAG	CIT	GCT	ATC	
AAG Lys	CAG Gln	GCC	GCC	TAC	GTG Val	GAG	GGA G1y	
CTC	GAG	GCC Ala	GGA G1y	GAC	GCG	ATG	AGT	
GCT Ala	TCC	CCC	AAC Asn	CCG	AAA Lys	AAC	AGC	
GAA Glu	TTC	TCA	ATC Ile	ATC Ile	AGC	GAG	TCC	
GGT	CCT	TTC Phe	AAA Lys	TAC	GCA Ala	GAT	ACT	
GGA	CTT	ACT	GCG	CCG	GCG	AGT	AAC	
GIT Val	GTC Val	AGA Arg	ACT	AAG Lys	CAC	TTG	GGA	

WO 95/15387 PCT/US94/13686

26/59

1536	1584	1632	1687	747	807	1810
Н	H	Н	Н	- 1	~!	Н
TTT Phe	AAG	CGT	TAA	ATCATCTATG ALCYCTIC CYTGYTGTIG GAYGARAGAC GYYYGYYTGC 1GGYCAYYCG 1747	TRICCTTAAGA CITCTATAAG AATGGATGGT TCAAGTCCAA AAAAAAAAA AAAAAAAA 1807	
GCT Ala	AGG AAG Arg Lys	AAC CGT Asn Arg	TAAT	GGTC	AAA?	
ATT	ATG	ATT Ile	r TG	1	AAA A	
CAG Gln	GCA Ala	TGC	TGAFCATITA TITITAAAAI TAHTATITCI TCTTAAITAA	IGTTT	AAAA?	
TGG	AAG Lys	GAT	ATTA:	GIAL	AAA	
GTT Val	TGG	GTT Val	AT T	AGAC	CCAA	
AGG	GTT Val	TGG	TAAA	TGAT	AAGT	
GAT ASP	GTG Val	CCT	PPTT	G.	r TC	
96C 61y	AGT	AAT	rta '	rgtī	ATGG	
AGA Arg	AAC	AGG AAC Arg Asn	PCAT	PTGT	ATGG	
CGT	TGT	AGG	TGA	r S	AG AJ	
GTT Val	AAG Lys	GCA	CTC	CTCT	rata.	
AGT Ser	TTT Phe	CCG	GCT	ATCT	CTTC	
GAG Glu	GGT Gly	AAG Lys	GTC Val	ATG ;	AGA (
AAG Lys	TCA	AAG	CCT	ATCT	CTTA	
GCC	$_{\rm GLG}$	GTG Val	TAC	ATC	TAT	AAA

FIG. SE

51	66	147	195	243	291	339
GTCCACAAA ATG ACG TCC ATT AAC GTA AAG CTC CTT TAC CAF TAC GTC ATA Met Thr Ser Ile Asn Val Lys Leu Leu Tyr His Tyr Val Ile	ACC AAC CTT TTC AAC CTT TGT TTT TTT CCA TTA ACG GCG ATC GTC GCC Thr Asn Leu Phe Asn Leu Cys Phe Pro Leu Thr Ala Ile Val Ala	GGA AAA GCC TAN CGG CTT ACC ATA GAC GAT CTT CAC CAC TTA TAC TAN GIY Lys Ala Tyr Arg Leu Thr Ile Asp Asp Leu His His Leu Tyr Tyr	TCC TAT CTC CAA CAC AAC CTC ATA ACC ATT GCT CCA CTC TTT GCC TTC Ser Tyr Leu Gln His Asn Leu Ile Thr Ile Ala Pro Leu Phe Ala Phe	ACC GIT ITC GGT TCG GIT CIC TAC AIC GCA ACC CGG CCC AAA CCG GTT Thr Val Phe Gly Ser Val Leu Tyr Ile Ala Thr Arg Pro Lys Pro Val	TAC CTC GTT GAG TAC TCA TGC TAC CTT CCA CCA ACG CAT TGT AGA TCA Tyr Leu Val Glu Tyr Ser Cys Tyr Leu Pro Pro Thr His Cys Arg Ser	ACT ATC TCC AAG GTC ATG GAT ATC TTT TAC CAA GTA AGA AAA GCT GAT Ser Ile Ser Lys Val Met Asp Ile Phe Tyr Gln Val Arg Lys Ala Asp

3

387	435	483	531	579	627	675	723	
TTG	CCC	CGT	AAG Lys	TCA	ACT	$_{\rm GLy}^{\rm GGT}$	CAT	
TTC	GGG G1y	GCG	TTC	AAC	AAC	ATG	TTG	
GAC	CAC	GCG	CTA	GTG Val	GTT Val	GGC Gly	TTG	
CTT	ACC	GCG Ala	AAT	GTG Val	GTC Val	GGT	GAC	
TGG	GAA Glu	TTT	GAA	CTT	ATG	CTT	AAG Lys	
TCC	GAT	ACT	CTA	ATA Ile	GCG	AAC Asn	GCA	
TCG	GGC Gly	AAG Lys	GCG	GGT	TCC	TTT	CTA	6B
GAC	CTA	CGG	GGT	ATA Ile	CIC	AGC	GAT	FIG.
GAT	GGT Gly	CCC	ATT Ile	GAT	TCG	AGA Arg	ATT Ile	
TGC	TCA	CCT	ATC Ile	AAA Lys	CCT	GTA Val	GCC	
ACG Thr	CGT	GTC Val	GTT Val	CCT	ACT	AAC	ATA Ile	
GGC	GAA Glu	CAG Gln	GAA	AAC Asn	CCA	AGC	GTT Val	
AAC	CAA	CTT	GAG Glu	GTT Val	AAT Asn	CGA	$\frac{66C}{61y}$	
CGG	ATT Ile	CIG	ACG	AAT Asn	TTT	CIC	GCC	
TCT	AAG Lys	$\frac{GGG}{G1Y}$	GAG Glu	ACC	ATG	AAG Lys	AGT	
CCT	AGG	GAG	GAA Glu	AAC	AGC	TTC	TGT	

771	819	867	915	963	1011	1059	1107	
ACT	TGC	AGA Arg	CAT	GIT	GTT Val	ATT	AAG Lys	
ATC Ile	AAT Asn	CCT	ACG	GAC Asp	GAT	TTG	GGC Gly	
AAC Asn	TCA	AAG Lys	CGA	GGA Gly	Acc	CCG	ATG	
GAG Glu	GTT Val	AAC	GTT	CAA	ATA	$_{\rm GLY}^{\rm GGT}$	TTC	
ACA Thr	ATG	TCC	ACG	CAA Gln	GAC	CTG	ACC	
AGC	ATG	CTC	CAC	GTG Val	AAG	ACG	GIT	
GTG Val	TCC	TTG	GTT Val	TGC Cys	TCC	GCA	TTC	29
GTG Val	AGG	ATT	CTA	CGT	TTG	ATA Ile	TTT	FIG.
CIT	AAT Asn	GCT	GAG Glu	TTT	AGT	AAC	CIT	_
GCT Ala	GAT	GCC	TAC	TCT	GTG Val	AAA Lys	CIT	
TAT Tyr	$_{\rm G1y}^{\rm GGT}$	666 61y	AAG Lys	AAG Lys	GGA G1y	AAG Lys	AAA Lys	
ACG	GCT Ala	$_{\rm G1y}^{\rm GGT}$	TCC	GAC	ACC	GTT Val	GAG	
AAT	TAC	GTT Val	CGG	GAC	AAA	ACG	AGC	
AAA Lys	ATT Ile	CGT	AGA Arg	GCT	66C G1y	CGA Arg	TTA	
CAT	AAC Asn	TTC	CGT	GGA Gly	AAC Asn	$\operatorname{GGI}_{\mathbf{y}}$	CCG	
GTC Val	TAT	TTG	GAT Asp	ACC	GAG Glu	GCT	CTT	

1155	1203	1251	1299	1347	1395	1442
CCG GAC TTC AAG Pro Asp Phe Lys	AAA GCC GTG ATT Lys Ala Val Ile	GAT GTA GAG GCA Asp Val Glu Ala	TCT AGC TCA ATA Ser Ser Ser Ile	ATG AAG AAA GGT Met Lys Lys Gly	AAG TGT AAC AGT Lys Cys Asn Ser	AAA TAGGATCC Lys
GTC Val	66C 61y	ATC Ile	TCA	AGG	TTT Phe	TCC
TAC	GGA Gly	CCG Pro	ACT	GGA Gly	96C 61y	GCT
TAT Tyr	GCC	GCA Ala	AAC	AAA Lys	TCA	AAA Lys
CAT His	CAT	CTA Leu	GGA Gly	GCA Ala	666	GTC Val
AAA Lys	ATA Ile	660	TTT Phe	GAA Glu	TTA	AAT Asn
ATC Ile	TGT Cys	CTA Leu	AGA Arg	ATA Ile	GCT Ala	AAC Asn
AAA Lys	TTT Phe	AAC Asn	CAT His	TAC	ATT Ile	CTA
GAC	CAT His	AAG Lys	TTA	GCA	CAG Gln	GCT
AAA Lys	GAC Asp	GAG Glu	ACG	TTG	TGG	GTG Val
TTC	ATC Ile	CTA Leu	TCA	GAG Glu	GTT Val	TGG Trp
CTT	GCT	GTG Val	AGA Arg	TAT	AAA Lys	GTT Val
AAA Lys	CTT	GAT	TCA	766 Trp	AAT	GCA Ala

FIG. 6D

51	66	147	195	243	291	339
GTCGACAAA ATG ACG TCC AIT AAC GTA AAG CTC CIT TAC CAT TAC GTC AIA	ACC AAC CIT ITC AAC CIT TGC ITT CCG ITA AGG GCG ATC GTC GCC Thr Asn Leu Phe Asn Leu Cys Phe Phe Pro Leu Thr Ala Ile Val Ala	GGA AAA GCC TAT CGG CTT ACC ATA GAC GAT CTT CAC CAC TTA TAC TAT 1.	TCC TAT CTC CAA CAC AAC CTC ATA ACC ATC GCT CCA CTC TTT GCC TTC 1.	ACC GTT TTC GGT TCG GTT CTC TAC ATC GCA ACC CGG CCC AAA CCG GTT 2.	TAC CTC GTT GAG TAC TCA TGC TAC CTT CCA CCA ACG CAT TGT AGA TCA 2.	AGF ATC TCC AAG GTC ATG CAT ATC TTT TAT CAA GTA AGA AAA GCT GAT 3:
Met Thr Ser Ile Asn Val Lys Leu Leu Tyr His Tyr Val Ile		Gly Lys Ala Tyr Arg Leu Thr Ile Asp Asp Leu His His Leu Tyr Tyr	Ser Tyr Leu Gln His Asn Leu Ile Thr Ile Ala Pro Leu Phe Ala Phe	Thr Val Phe Gly Ser Val Leu Tyr Ile Ala Thr Arg Pro Lys Pro Val	Tyr Leu Val Glu Tyr Ser Cys Tyr Leu Pro Pro Thr His Cys Arg Ser	Ser Ile Ser Lys Val Met Asp Ile Phe Tyr Gln Val Arg Lys Ala Asp

FIG. 7A

	2	m	н	o.	7	ທ	m	
	435	483	531	579	627	675	723	
Leu	CCC	CGT	AAG Lys	TCA	ACT	$_{ m GGT}$	CAT	
TTC	666	GCG	TTC	AAC	AAC	ATG	TTG	
GAC ASP	CAC	GCG	CTA	GTG Val	GIT Val	$_{ m GGC}$	TTG	
CIT	ACT	GCG	AAT Asn	GTG Val	GTC	GGT	GAC	
Jr. Trp	GAA Glu	TTT	GAA Glu	CIT	ATG Met	CTT	AAG	
Ser	GAT	ACT	CTA	ATA Ile	GCG	AAC	GCA	
Ser	GGC G1y	AAG Lys	GCG	$_{ m GGT}$	TCC	TTT Phe	CTA	7.8
GAC	CIA	CGG	GGT G1y	ATA Ile	CTC	AGC	GAT	EIG.
GAT Asp	GGT G1y	CCC	ATT Ile	GAT	TCG	AGA	ALT Ile	
Cys	TCA	CCT	ATC Ile	AAA Lys	CCA Pro	GTA Val	GCC	
ACG	CGT	GTC	GTT Val	CCT	ACT	AAC	ATA Ile	
GGC Gly	GAA Glu	CAG Gln	CAA Gln	AAC	CCA	AGC	GTT Val	
Asn	CAA	CTT	GAG Glu	GTT Val	AAT Asn	CGA	GGC	
CGG Arg	ATT Ile	CTG	ACG	AAC Asn	TTT Phe	CTC	GCC	
Ser	AAG	GGG G1y	GAG Glu	ACC	ATG	AAG Lys	AGT Ser	
CCT Pro	AGG	GAG Glu	GAA G1u	AAC	AGC	TTC	TGT	

771	819	867	915	963	1011	1059	1107	
ACT	TGC	$_{\rm GGA}^{\rm GGA}$	CAT His	GAT	GTT Val	ATT Ile	AAG Lys	
ATC Ile	AAT Asn	CCT	ACG	GAC	GAT	TTG	GGC	
AAC Asn	TCA	AAG Lys	CGA	GGA G1y	ACC	CCG	ATG	
GAG Glu	GTT Val	AAC	GTT Val	CAA	ATA Ile	GGT Gly	TTC	
ACA	ATG	TCC	ACG	CAA Gln	GAC	TTG	ACC	
AGC	ATG	CIC	CAC	GTG Val	AAG Lys	ACG	GIT	
GTG Val	TCC	TTG	GTT Val	TGC Cys	TCC	GCA	TTC	70
GTG Val	AGG	AIT Ile	CTA	CGT	TTG	ATA Ile	TTT	FIG. 7C
CIT	AAT Asn	GCT	GAG	TTT	AGT	AAC Asn	CTT	
GCT Ala	GAT Asp	GCC	TAC	TCT	GTG Val	AAA Lys	CTT	
TAT	$_{\rm GLy}^{\rm GGT}$	GGG	AAG Lys	AAG Lys	GGA	AAG Lys	AAA Lys	
ACG	GCT	GGT	TCC	GAC	ATC Ile	GIT Val	GAG	
AAT Asn	TAC	GTT Val	CGG	GAC	AAA Lys	ACG	AGC	
AAA Lys	ATT 11e	CGT Arg	AGA Arg	GCT	GGC G1y	CGA Arg	TTA	
CAT	AAC	TTC	CGT	GGA Gly	AAC Asn	$_{ m GGT}$	CCG	
GTC Val	TAT Tyr	TTG	GAT	ACC	GAG GLu	GCT	CIT	

1155	1203	1251	1299	1347	1395	1442
AAA Lys	ATT	GCA	ATA Ile	$^{ m GGT}_{ m 21y}$	AGT	
TTC	GTG Val	GAG	TCA	AAA Lys	AAC	TAGGATCC
GAT	GCC	GTA Val	AGC	AAG Lys	TGT Cys	TAGG
CCG	AGA Arg	GAT	TCT	ATG Met	AAG Lys	AAA Lys
GTC Val	GGC	ATC Ile	TCA	AGG	TTT	TCC
TAC	GGA Gly	CCG	ACT	GGA G1y	66C 61y	GCT
TAC	GCC	GCA Ala	AAC	AAA Lys	TCA	AAA Lys
CAT	CAT	CTA	GGA Gly	GCA Ala	666	GTC Val
AAA Lys	ATA Ile	GCC	TTT Phe	GAA Glu	TTA	AAT Asn
ATC Ile	TGT	CTA	AGA Arg	ATA Ile	GCT	AAC
AAA Lys	TTT	AAC	CAT	TAC	AIT	CTA
GAT	CAT	AAG Lys	TTA	GCA	CAG Gln	GCT
AAA Lys	GAC	GAG Glu	ACG	TTG	TGG Trp	GTG Val
TTC	ATT Ile	CTA	TCA	GAG	GTT Val	TGG
CTT	GCT	GTG Val	AGA Arg	TAT	AAA Lys	GIT Val
AAA Lys	CTT	GAT	TCA	TGG	AAT	GCA Ala

FIG. 7D

48	96	144	192	240	288	336
ATC Ile	TTC	TTC	GCT	TGT	GAC	CAA
TAC	TCT	CAT	ACC	TCG	ATG	TTC
CIC	TCT	TTC	TCC	TTC	TTC	GCT
GCT	CTC	CGT Arg	CIC	GAC	ACA	TTA
AAC	AAC Asn	CTC	TCT	CTC	GAA	AAC Asn
TCC	GCT Ala	ACA Thr	ATC Ile	CIC	CGT	GAC
ATC Ile	ATC Ile	AAC	TTG	TTC	ACT	GAA Glu
CTA	ACA	TAC	CIC	GTC Val	TGC	ACA
TAC Tyr	GCA	CTC	GCA	CGT	ATC Ile	TTC
CAT His	GCC	CTC	ACC	CGC	CTG	ATC Ile
TAT Tyr	CIC	TCT	GCC	CCT	TCA	66C 61y
GTG Val	CIC	CTC	CTC	CGT	CCT	GTA Val
CTA	CCT	GAC	ACA	ACC	GAC	CGT
AAA Lys	CIT	AAC Asn	GCC	ACC	CCA	CAA
CTT	CTC	ATC	TCC	TTC	AAA Lys	TCT
AAG Lys	CTC	ACC	CIC	TAC	TAC	AGA

384	432	480	528	576	623
CCT Pro	AGA	GAG Glu	TGT	AAG Lys	96 G1y
TTC	GCG	CTT Leu	AAT Asn	AAT Asn	ATG
TAC	GAA Glu	GTT Val	GTG Val	GTG Val	$\frac{GGG}{G1y}$
ACT Thr	GAA Glu	GCG	GTG Val	ATT Ile	GGC Gly
AAA Lys	ATG Met	GAC	CIT	ATG	TTC
CAG Gln	TGT Cys	AIT	ATC	GCT	AAT
$\operatorname{GGI}_{\mathbf{y}}$	CCT	GCT	GGA	TCT	TAT
CTA	AAT Asn	GGA Gly	ATT Ile	CTT	AGC
GGT GLY	CCT	TTC	GAT	TCA	TTG
TCC	CCT	ATG	AAA Lys	CCG	ATT Ile
AGA	GTT Val	GTT Val	CCT	ACA	AAC
GAA Glu	CGT	ACA	AAA Lys	CCA	GGC Gly
CIC	CTT	GAA Glu	GTG Val	AAT Asn	AGA
ATC Ile	CTT	GCA Ala	$_{\rm GLY}^{\rm GGT}$	TTT Phe	CTT
AAG Lys	GCT Ala	GAG Glu	ACC	TTG	AAG Lys
Gln Gln	GAA Glu	AAA Lys	AAG Lys	AGC	TAT

TG. 8B

m	10		01	_			_
48	96	144	192	240	288	336	384
CTC	TTA	TTC	CGA	TCG	ATT Ile	ATT	TCT
AAA Lys	TTG	ATC	TCT	CCT	TTG	TTG	CAC
TTT	TCA	TTC	ATG	CCG	AGT	AIC Ile	ATT
TTT Phe	GTC Val	GGA	TTC	CTC	TCT	AAG Lys	TCT
CAC His	AAT Asn	ACC	TTC	TAC	AAC	AGG	GAT
ACT	ATG	TCC	GIIC Val	TGC	AAC	CAG	CCG
ATC Ile	TTC	AAT Asn	ATT Ile	TCT	ATG	TTC	TTA Leu 9A
CTG	TTG	TAC	TCC	TAC	TTC	GAG	TAT Tyr FIG.
TAT Tyr	GTT Val	TAT Tyr	GGA Gly	GAT Asp	AAA Lys	CTT	ACT Thr
CAC	GCT	CIC	GTC Val	CTA	CAG Gln	TCT	GAG Glu
TAC	ATG	CAG Gln	ATT Ile	CTT	TAC	ACT	GAA Glu
GGC Gly	CTA	CTT	GCC	TAC	AGC	GAA Glu	GGT
TTA	CCT	CAT	CIC	ATC Ile	GTT Val	AGC	CTC
AAG Lys	CTC	AAC	ACT	TCC	AAA Lys	TTC Phe	GGT Gly
CTT	TTC	CTA	ATC Ile	AGA Arg	CAA Gln	GAT	TCT
AAG Lys	ATG	AGC	GTC Val	CCT	AGT	CAA	CGC

432	480	528	576	607
CAG	AAT Asn	CCC	GGA G1y	
GAG Glu	ATC	AAC Asn	AGA	
GĆG Ala	AAA Lys	TTT	CIT	
GAA Glu	ACA	TTG	AAG Lys	
GAA Glu	AAT Asn	AGT	TAT	
CGT Arg	GAG	TGT	AAG	ტ
GCG Ala	TTC	AAT	AAC	ATG
GCA Ala	CTT	GTG Val	GTT Val	9 GC
GCT Ala	AAT Asn	GTT Val	ATT Ile	960
ATG Met	GAC	CTT	ATG	AAT CTC Asn Leu
ACT	CTC	GTT Val	GCC	AAT
CCT	GCA Ala	$_{\rm G1y}^{\rm GGT}$	TCC	TTT
CGT	$_{\rm G1y}^{\rm GGT}$	ATT Ile	TTA	AGC
Pro	TTC	GAG Glu	TCT	AAG Lys
CCT Pro	ATC	AGG	CCT	ATT
ATC Ile	GTA Val	CCT	ACG	AAC Asn

TG. 9B

48	96	144	192	240	288	336
CIC	TTA	CIC	Grr Val	TGT	GAT	CAG
AAG Lys	CGA	AAT	ACC	TCT	ATG	TTT
TTC	TCC	TAC	TCC	TAC	TTT	GAG
CTC	ATC Ile	CAA Gln	66c 61y	GAT Asp	AAG Lys	TTA
CAT His	GAG Glu	CTC	TTT Phe	GTT Val	CAG	TCT
ACT	ACA	CAT	ATC Ile	CTC	TAT	TCA
ATT Ile	GTC Val	CTT	GCT	TAT Tyr	AAG Lys	GAG
CTC	TTA	TGC	TTA	GTT Val	GTT Val	AAT
TAC Tyr	Grr Val	ATT	GCT	TCT	CAG	TTC
CAC His	GCG	CAG	TCT	AGA Arg	CIT	GAT
TAC	ATG	TAC	CTC	CCC	AGT	GAA
GGG	TTA	CIT	TTT Phe	CGT Arg	GAG Glu	ATT
CTG	CCA	GAT Asp	ATC Ile	AGT	CCG	TTG
AAA Lys	GTT Val	GAC Asp	TTC	ATG	CCT	AAG Lys
CIT	TTG	ACA	GCT	ATC	CTT	TCT
AAG Lys	TGT Cys	ACA	GTT Val	TAC	TAT Tyr	CAT

FIG. 10A

384	432	480	528	576	622
CCT	CGT	GAG	TGT	AAG Lys	ტ
CIC	GCT	TIC	AAT Asn	AAC	ATT Ile
TAT Tyr	GCG	CTT	GTG Val	GTT Val	GGC
ACT	ATG	AAG Lys	GTT Val	ATT Ile	$\frac{GGG}{G1y}$
GAG Glu	ATG Met	GAT ASD	TTG	ATG	CTG
GAA Glu	ACG Thr	CIT	GTG Val	GCT	AAC
GGA G1y	CCT	GCT	GGT	TCA	TTT
TTA	AGG	GGT G1y	ATT Ile	TTG	AGT Ser
$_{\rm GLy}^{\rm GGT}$	CCG	TTT	GAT	TCG	AAG Lys
Ser	CCT	ATG	AGG	CCT	GTT Val
CGT Arg	ATC Ile	GTA Val	CCT	ACA	AAT Asn
GAA Glu	TGT Cys	CAG	AAC Asn	CCT	666
CIT	CAT	GAG Glu	ATT Ile	AAT Asn	AGA Arg
ATT Ile	TTA	GCT	AAG Lys	TTT Phe	CTT
AAG	GCT Ala	GAA Glu	ACC	TTG	AAG Lys
AGG	GAA	GAG	AAT Asn	AGC	TAT

FIG. 10B

48	96	144	192	240	288	336	
CIC	TTA	AAT Asn	ACA	TCA	ATG	TTC	
AAG Lys	CGG	TTC	TTC	TAC Tyr	TTC	GAG Glu	
TTT Phe	TCC	CAG	GGA G1y	GAC	ACA Thr	CTT	
CTT	GTC Val	CTC	TTC	CTC	CAG Gln	TCG	
CAC His	AAT Asn	CAG Gln	ATT	CTC	TAC	TCG	
Ser	ACG	CIC	TCC	TAC Tyr	AGC	GAG	
ATT Ile	TTC	TCT	GTC Val	GIT Val	GTT Val	GAC Asp	
CTG	CTG	CIC	ACC	TCC	AAA Lys	TTC	
TAC	GTT Val	GAT	ATT Ile	AGA Arg	CTC	GAT	
CAC	GCG Ala	CIC	TTC	CCT	AAT Asn	GAA Glu	
TAT	ATG Met	TGT Cys	TTC	CGA Arg	TCG	ATT Ile	
733 717	TTA	CIC	ATC Ile	TCC	CCG	CIG	
TTA Leu	CCT	CAG Gln	TTC Phe	ATG	CCG	AAA Lys	
AAG Lys	GTT Val	AAC Asn	GGA G1y	TTC	CIC	TCT	
Lea	rrg Leu	CTA	GTC Val	ATC Ile	TAC	CAT His	
AAG Lys	TTG	AGC	CIC	Grr Val	TGT	AAT Asn	

FIG. 11A

384	432	480	528	576	625
ប្ដ	D 0	O O	υ¤	ប្រជ	ω Δ
CTC	GCG	TTC	AAC	AAC Asn	ATG Met>
TAC	GCG	CTC	GTG Val	GTG Val	66C 61y
ACT	GCG	AAT Asn	GTG Val	ATT	$_{\rm GLY}^{\rm GGT}$
GAG Glu	ATG	GAC	GTG Val	ATG Met	CTC
GAA Glu	ACT	CIC	GTT Val	GCC	AAT Asn
GGC G1y	CCG	GCA Ala	GGT Gly	TCC	TTT
CTC	CGT	$_{ m GGT}$	ATT Ile	TTA	AGC
GGT	CCG	TTC	GAG	TCT	AAG Lys
TCC	CCG	ATC Ile	AGG	CCT	GTG Val
CGA Arg	ATC Ile	GTA Val	CCT	ACG	AAC Asn
AAG Lys	TGC	CAG Gln	GAC	CCG	GGA Gly
CTG	CAC	GAG Glu	ATC Ile	AAC Asn	AGA
ATC Ile	ATC Ile	TCG	AAA Lys	TTT Phe	CIT
AAG Lys	TCT	GAA Glu	ACC	TTG	AAG Lys
CGG Arg	GAA Glu	GAG Glu	AAT Asn	AGC	TAT
CAG Gln	CCG	CGT	GAG Glu	TGC	AAG Lys

FIG. 111

WO 95/15387 PCT/US94/13686

43/59

26	104	152	200	248	296	344
TIGITIGAGA CICTGITGCA GAAAICICCA C AIG GAI GAI GAA ICC	GGA GGA TCC GTA CAG ATC CGG ACC CGA AAG TAC GTC AAG CTG	CAC TAC CTG ATT TCT CAC CTT TTT AAG CTC TTG TTG GTT CCT	GCG GTT CTG TTC ACG AAT GTC TCC CGG TTA AGC CTA AAC CAG	CTC GAT CTC TCT CTC CAG CTC CAG TTC AAT. CTC GTC GGA TTC	TTC ATT ACC GCC TCC ATT TTC GGA TTC ACA GTT ATC TTC ATG	CCT AGA TCC GTT TAC CTC CTC GAC TAC TCA TGT TAC CTC CCG
Met Asp Asp Glu Ser	Gly Gly Ser Val Gln ile Arg Thr Arg Lys Tyr Val Lys Leu	His Tyr Leu Ile Ser His Leu Phe Lys Leu Leu Leu Val Pro	Ala Val Leu Phe Thr Asn Val Ser Arg Leu Ser Leu Asn Gln	Leu Asp Leu Ser Leu Gln Leu Gln Phe Asn Leu Val Gly Phe	Phe Ile Thr Ala Ser Ile Phe Gly Phe Thr Val Ile Phe Met	Pro Arg Ser Val Tyr Leu Leu Asp Tyr Ser Cys Tyr Leu Pro
GTTCATTGAT	GTT AAT	GGT TAT	TTA ATG	CTC TGT	ATC TTC	TCC CGA
	Val Asn	Gly Tyr	Leu Met	Leu Cys	Ile Phe	Ser Arg

'IG. 12A

4	4	1	5	g

392	440	488	536	584	632	680
AAA Lys	ATC	ATC	TCG	AAA Lys	TTT	CIT
TCT	AAG Lys	TCT	GAA Glu	Acc	TTG	AAG Lys
CAT	CGG	GAA Glu	GAG Glu	AAT	AGC	TAT
AAT	CAG Gln	CCG	CGT Arg	GAG Glu	TGC	AAG
ATG Met	TTC	CIC	GCG	TTC	AAC	AAC
TTC	GAG	TAC	GCG	CIC	GTG	GTG
ACA Thr	CIT	ACT	GCG	AAT	GTG	ATT Ile
CAG Gln	TCG	GAG	ATG	GAC	GTG	ATG
TAC Tyr	TCG	GAA Glu	ACT	CTC	GTT	GCC
AGC	GAG	GGC	CCG	GCA	GGT	TCC
GIT	GAC Asp	CIC	CGT	GGT	ATT	TTA
AAA Lys	TTC	GGT G1y	CCG	TTC	GAG Glu	TCT
CIC	GAT Asp	TCC	CCG	ATC Ile	AGG	CCT
AAT Asn	GAA Glu	CGA	ATC Ile	GTA Val	CCT	ACG
GCG	ATT Ile	AAG Lys	TGC	CAG Gln	GAC	CCG
XXX	CTG	CTG	CAC	GAG	ATC Ile	AAC Asn

FIG. 12

728	776	824	872	920	896	1016
GCT	AGA	TGG	AGG	AAA Lys	TCT	TTG
AGG	CAT	AAT Asn	TrT	CGA	GGA Gly	GAC
TGT	CTC	CAG	TTG	GAT Asp	AAA Lys	GAG Glu
$_{\rm GGA}$	CAG Gln	ACT	TGC Cys	CGT	CAT	GAC
ATG Met	TTA	ATC Ile	AAT Asn	CCT	ACT Thr	CAA
6GA	ATT Ile	AAC Asn	CCT	AAG Lys	CGG Arg	GAA
GGA G1y	GAC	GAG Glu	ATT	AAC Asn	GTA Val	CAA
CIC	AAT Asn	ACA	TTG	TCG	ACG	TAC
AAC	GCT	AGC	ATG	CTT	CAC His	GTG
TIT	CTC	GTT Val	GCA	CTG	GTT Val	TGT
AGC	GAT	GTG Val	AAA Lys	GTT Val	CIT	AAC Asn
AAG Lys	GTT Val	CTT	AAC Asn	GCG Ala	AAA Lys	TTC
GTG Val	GCC	GCT	AAC Asn	TCC	TAT	GCA
AAC Asn	ATC Ile	TTA	$_{\rm GLy}^{\rm GGT}$	GGA Gly	AAG Lys	AAA Lys
GGA Gly	GTC Val	ACA	TTT Phe	GGT	TCC	GAG
AGA Arg	GGT	AAC	TAC	GTT Val	CGA	GAT

TG. 120

WO 95/15387 PCT/US94/13686

46/59

1064	1112	1160	1208	1256	1304	1352	
GAA	ATA Ile	TTC	CTT	GAT	TCT	TGG	
GGA	CCA Pro	TTG	AAG Lys	ATC Ile	GCT	ATT Ile	
GCT	CTT	AGA Arg	TTC	GTG Val	GAG Glu	TCT	
ATA Ile	GTT Val	AAG Lys	GAT	GCC	GTG	AGC	
TCT	CTG	GCA	CCG	AGA	CAT	TCG	
CTA ATG Leu Met	CCT	GTT Val	ATA Ile	GGT	AAA Lys	TCA	
ra Fen	$_{ m GLy}$	TTT	TAC	GGA Gly	CCA	ACT	
GAC	TTG	ACT	CCT	GCA	TTG	AAC Asn	
AAA GAC Lys Asp	ACT	GCG	AAG Lys	CAC	CTA	GGA G1y	
TCT Ser	ACC	ATT 11e	AAG Lys	ATT Ile	AAG Lys	TTT	
rrg Leu	ATC	TTC	AAG Lys	TGT	TTA	AGA	
TCT TTG Ser Leu	AAT Asn	CTG	AAG Lys	TTC	AGT	CAT	
GIT Val	ACA	ATT Ile	AAG Lys	CAT	AAG Lys	TTG	
$_{ m GLy}^{ m GGA}$	AAG Lys	CAG Gln	AAG Lys	GAT Asp	GAG Glu	ACA	
Acc	CTA	GAG Glu	GCC	TTT Phe	CTA	ATG	
AAA Lys	GCT Ala	AGC	AGT	GCC	GAA G1u	AGA Arg	

FIG. 12F

FIG. 13/

383	431	479	527	575	623	671
AAG Lys	GGA	GAG	AAC Asn	ATG Met	AAG Lys	AGT
AGA	GAG Glu	GAA	AAC	AGC	TCC	TGC Cys
TTG	CCC	CGT	GAG Glu	TCA	ACT	GGT
TTC	GGC G1y	GCG Ala	TTC Phe	AAC	AAT Asn	ATG
GAT Asp	TAC	TCG	CIA	GTG Val	GTT Val	GGA
CTT	ACC	GCG	AAT Asn	GTG Val	GTA Val	GGA
TCT	GAA	TTA	AAA Lys	CIT	ATG Met	CIT
TCI	GAT Asp	AAT Asn	CTA	ATA Ile	GCG	AAT Asn
TCG	66C 61y	AAG Lys	GCG Ala	GGT G1y	Ser	TTT Phe
GAT ASP	CTA	AGG	GGT	ATT Ile	TTA	AGC
GAT ASP	$_{ m GLY}$	CCCG	AAC Asn	GAG Glu	TCG	AAA Lys
TTA	TCA	CCT	ATC Ile	AAA Lys	CCT	ATC Ile
GCA Ala	CGT	ATT 11e	GTA Val	CCT Pro	ACT	AAC Asn
GTG Val	GAG Glu	GAG Glu	CAA Gln	AAC Asn	CCG	AGC
AAC Asn	CAA	TTT	GAG	GTT Val	AAT Asn	CGA Arg
CGA	ATT Ile	CIG	ACG	AAA Lys	TTT	CTC

FIG. 13

1007

GGT AAA ACC GGA GTT AGT TTG TCA AAA GAC ATA ACC GTT GTT GCC GGG GLY Lys Thr Gly Val Ser Leu Ser Lys Asp Ile Thr Val Val Ala Gly

719	767	815	863	911	949	
CAT	AAC	TTC	CGA	GGA G1y	AGC	
GTT Val	CAA Gln	TTG	GAT	ACC	GAT Asp	
CAT	ACT Thr	TGC	666	CAT His	GAT Asp	
TTG	ATC Ile	AAT Asn	CCG	ACG	GAA Glu	
TTG	AAC	TCG	AAG Lys	CGA	GAA Glu	
GAC	GAG Glu	GTT Val	AAC Asn	GTT Val	CAA	
AAA Lys	ACA	ATG	TCC	ACG	CGG	
GCT Ala	AGC	ATG	CTC	CAC His	GTG Val	
CTA	GTG Val	TCC	CTG	GCT Ala	TGT	
GAT	GTG Val	AGA Arg	ATT Ile	CTA	GGA G1y	
ATT Ile	CTT	AAC Asn	GCG	AAG Lys	TTT	
GCC	GCT Ala	GAT	GCA	TAC	TCT	
ATC Ile	TAT	GGT Gly	GGG G1y	AAG Lys	AAG Lys	
GIT Val	ACA	ACC	GGT G1y	TCC	GAC	
GGT	AAC Asn	TAT	GTC Val	CGG Arg	GAC	
GCT Ala	AAA Lys	ATT Ile	CGT	AGA Arg	GCT Ala	

IG. 13C

1055	1103	1151	1199	1247	1295	1343
CCT	CTA	GCA	GTG Val	AGA	TAT	AAA Lys
CTT	AAA Lys	CTT	GAT	TCA	TGG Trp	AAT Asn
GTT Val	AAG Lys	AAA Lys	ATA Ile	GCA	ATT Ile	$_{\rm GGT}^{\rm GGT}$
TTG	GCC	TTC	GTG Val	GAG Glu	TCA	AAA Lys
CCG Pro	GTA Val	GAT	GCC	GTG Val	AGT	AAG
GGI	TTC	CCG	AGA	GAT	TCT	ATG
TTG	ACA	GTG Val	$_{\rm GLY}^{\rm GGT}$	ATA Ile	Ser	AGG
ACA	GTT Val	TAC	GGA Gly	CCG	ACA	GGA Gly
ACA Thr	GTC Val	TAT	GCG	TCG	AAT	AAA Lys
ATA Ile	TTT	CAC	CAT	CIA	GGG G1y	CCA
AAC Asn	CIT	AAA Lys	ATT Ile	$_{ m GGG}$	TTT	GAG Glu
AAA Lys	ATC Ile	ATC Ile	TGT	TTA	AGA Arg	ATA Ile
CAG Gln	AAA Lys	AAG Lys	TTC	AAC Asn	CAT	TAC
GTT Val	GAA Glu	GAT	CAT	AAG Lys	TTA	GCA
ACG	AGC	AAA Lys	GAT	GAG Glu	ACA Thr	TTA
ATA Ile	CTG	TTA	GTA Val	TTA	TCA	GAA

TG. 131

1391 1439 1537 3 1597 3 1654
р. 4
SCT TCC CAA ATA GCT GGT GGG TTA AAG TCT AAT AGT GCG GTT ALA Cys Gln Ile Ala Gly Gly Ser Gly Phe Lys Cys Asn Ser Ala Val TCG GTC TTA CCC AAT GTC GAG GCT TCA GCT AAT AGT CCT TGG GAA TTA CCC ATT CAC AAT TCC GTL ALA Ser ALA ASN SER Pro TTG GLU CAT TCC ATT CAC AAA TAT CCG GTT CAA ATG TAT TCT GGT TCA TCA AAG His Cys Ile His Lys Tyr Pro Val Gln Met Tyr Ser Gly Ser Ser Lys TCA GAG ACT CCT GTC CAA AAC GGT CCG TCC TAATTATGT ATCTCAAATG Ser Glu Thr Pro Val Gln Asn Gly Acg Ser ATGTTGTCCA CTTTCTTTTTTTTTTTTTTTTTTTTTTTT

TG. 13E

51	66	147	195	243	291	339
GCA Ala	CAA Gln	AAA Lys	CIC	AAC	GCC Ala	ACC
CGG Arg	AAC Asn	GTA Val	CIC	CIC	TCC	TTC
CAC	CAA	TAT	CIC	ACA Thr	CTC	TAC
CCT	AAC Asn	AAA Lys	ATC Ile	TTC	TTC	GCC
CAA Gln	CAA Gln	CIC	TAC	TCC	CAT	ACC
AAC Asn	AAC	CGG	CTC	TCT	TTT Phe	TCC
CAA Gln	CAA Gln	GTT Val	GGT Gly	CTC	CGT Arg	CTC
AAC Asn	GAT Asp	TCT	AAC	AAA Lys	CTC	TCT
CAT	TCC	TTA	TCC	GTA Val	CAC	ATC 11e
Acc	AAC Asn	CTC	ATC Ile	ATC Ile	AAC	TTA
ATG	ACA	TTT	CIA	ACA	TAC	CTC
AACA	GIT Val	AAT Asn	TAC	GGC Gly	CIC	GGA
CCCCAACA	CAC	CCA	CAT	66C 61y	CIC	ACC
	GTT Val	CTC	TAC	CIC	TCT	GCT Ala
CTTTCTTCTT	CCG	AAT Asn	966 61y	CIC	CIC	CTC
CILI	GTT Val	AAC Asn	CTT	CCT	GAA Glu	ACA

IG. 14A

١

54/59

387	435	483	531	579	627	675	723	
CCT	CAA	ATC	CTT	GCA	$_{\rm GLy}^{\rm GGT}$	TTT	CTT	
AAA Lys	TCT	AAG Lys	GCT	GAA Glu	ACC	TTG	AAG Lys	
TAC	CGA	CAA	GAA Glu	AAA Lys	AAA Lys	AGT Ser	TAT Tyr	
TGC	GAC	CAA	CCT	AGA Arg	GAG Glu	TGT Cys	AAG Lys	
TCA	ATG	TTT Phe	TTC	GCG Ala	CIT	AAT	AAT	
TTC	TTC	GCT	TAC	GAA Glu	GTT Val	GTG	GTG	
GAC Asp	ACA	CIC	ACT	GAA Glu	TCT	GTC Val	AIT Ile	14B
CIC	GAA Glu	AAC	AAA Lys	ATG	GAC	CIT	ATG	FIG.
CTC	CGT	GAC	CAG	TGT	ATA Ile	ATC 11e	GCC	Ŧ
TTC	ACT	GAA Glu	GGG	CCT	GCT	GGA G1y	TCC	
GTC Val	TGC	ACA	CTT	AAT Asn	GGA Gly	ATC Ile	CTT	
CAT	ATA Ile	TTC	GGT	CCC	TTC	GAT	TCA	
CGT	TTA	ATC Ile	TCC	CCT	ATG Met	AAA Lys	CCG	
CCT	TCC	GGT Gly	AGA Arg	GTT Val	GTT Val	CCT	ACG	
CGT	CCT	GTA Val	GAA Glu	CGT	ACT	AAA Lys	CCG	
ACC	GAC	CGT	CIC	CTT	GAG Glu	GTG Val	AAT	

771	819	867	915	963	1011	1059
GCT	CCA	TGG	CGT	ACC	GCC	GAA Glu
AGT Ser	CAA Gln	AAC	TTC	CGC	GGA Gly	AAC
TGT Cys	GTC Val	TTA	ATC	GAT	AAA Lys	AAC
$_{ m GGT}$	CAG Gln	ACC	TGC	TCC	CAC	GAC
ATG Met	CTT	ATA Ile	AAC	TCC	ACC	GAA
GGA Gly	CTT	AAC	TCT	CGT	CGT	CGA
$_{\mathrm{GIJ}}$	CAG	GAG	CTC	AAC Asn	GTC	CAA
CIC	AAA Lys	ACA	CIT	TCA	CCC	TAC
AAT Asn	GCT Ala	AGC	ATG	CIC	CAC	GTT Val
TAT	CTC	GTG Val	TCA	CTT	ATC Ile	TGC
AGC	GAT	GTG Val	CGA	GTA Val	CTC	GGC Gly
TTG	ATT Ile	CTA	GAC	GCC	CAG Gln	TTT
ATT Ile	TCC	GCA Ala	AAC	GCC	TAT	GCA
AAC	ATC Ile	TAC	GGC G1y	GGA GLy	AAA Lys	AAC
GGA Gly	CTT	TCA	TTA	GGA Gly	TCA	GAC
AGA	GGA Gly	AAC	TAC	ATG Met	CGT Arg	AAC

. 14 14

1107	1155	1203	1251	1299	1347	1395
GCA	CTA	GCT	TTC	GTG Val	GAA G1u	TCA
ATG	CCA	GTG Val	GAT Asp	GCA Ala	ATG	AGC
CTA	GGA G1y	CTC	CCC	AGA Arg	CAT	AGT
AAC Asn	CTC	ACA	ATA	GGT	TGG	TCG
AAA Lys	ACA	CCA	TAC	GGA	GAG Glu	ACT
TCT	ACA	TTC	CCT	GCG	TCA	AAT
CTC	ATA Ile	TTT Phe	AAG Lys	CAT	TTA	GGT
TCA	AAC Asn	CTG	ATA Ile	ATC Ile	GAT	TTT
GTC Val	ACA	ATT Ile	AAA Lys	TGC	TTG	CGG
GGA	AAG Lys	CAG Gln	AAG Lys	TTC	AAT	AAC
ATC Ile	CTC	GAA Glu	GTC Val	CAT	AAG Lys	TTA
AAA Lys	GCT	TCC	AAA Lys	GAG Glu	GAG Glu	ACT
GCC	GAA Glu	ATG Met	TTC	TTC	ATA Ile	ATG
ACC	GGA G1y	CCA	ATC 11e	GCT	GAG Glu	AGG
GAA Glu	GCC	TTA	AAA Lys	CTA	GAT Asp	TCG
GAA Glu	ATA Ile	GTC Va1	CGA	AAG Lys	CIT	CCA

TG. 14D

1732

ATTGGTTTCA TAAAAAAAA AAAAAAAAA A

1443	1491	1539	1587	1641	1701
AGA Arg	AAT	AAG Lys	CCT	TAGICITIT TITITGGGIC CAACTAGGGA	TAATATTIGI TAIGGITTIG ITCTTACGIA CGIACTITAA GIGAITTTAGI CTAAAAATAA
AAG Lys	TGT	GAG Glu	GTT Val	ACTA	TAAA
ATT Ile	AAG Lys	GAT	TCT	ປ <u>ິ</u> ບ	S IS
AGG	TTT	ATT Ile	GIT Val	GGGT	TTTA
$^{366}_{31y}$	GGA Gly	CCT Pro	CCA	TTTT	GTGA
GCT AAA O	TCG	GAT	TTT	TT T	TAA
GCT	GGA Gly	ATT	GAG	GTTT	ACTT
GAA Glu	TTT Phe	ACC	CAT	TAGI	CGT
AGT Ser	GCG	AGA	ATT Ile	TCT AAC Ser Asn	CGTA
TAT Tyr	ATT Ile	TTG	GAG Glu	TCT	CITA
GCG	CAA Gln	GCT	GAT	P.C.	ĘŢ.
CIT	TGC	AAA Lys	AGT	CCA GIT 7	TTTT
GAA Glu	ACT	TGG	TGG	CCA	ATG
TAT	AGG	GTT Val	CCA Pro	ACT	GT T
TGG	GAT Asp	GCG	AAT Asn	ATC Ile	ATT
CIT	GGA Gly	AGT	AAG Lys	AGG	TAA1

TG. 14E

48	96	144	192	240	288	336
TTG	TTG	TTA	CTG	TGT	GAG Glu	CAA
TAT Tyr	ACG	AAT	ACT	TCT	TAT Tyr	TTC
ATG Met	TCC	TTC	966 G1y	TTC	TTC	ACT
GCC	CIC	AAG Lys	TTA	GAT Asp	ATT Ile	TTA
AAC Asn	CAT His	CTT	TTT Phe	GTG Val	GAG Glu	AAT
TCC	GCT	CAG	GTG Val	TTG	AGA Arg	GAT
ATC Ile	TTT Phe	GAA	ATG	TAC	ACG	GAT
TTG	GCC	TGG	CTT	ATT Ile	TGC	ACC
TAC	GTA Val	CTT	AGC	AAG Lys	ATA Ile	TTT
CAT	GCA	CAT	TCG	ACG	CGT	AAT
TAC	CTA	GTT Val	TGC	CCG	GAG Glu	666
GTA Val	CIT	CIG	CTC	CGA	AAA Lys	ACT
CTA	CCG	GAT	ACT	AGC	GAA Glu	CTA
AAA Lys	GTG Val	CAA	GTA Val	ATG	CCG	AAA Lys
CIT	ATG	ATT Ile	TCA	TTC	AAG Lys	TCG
AAG Lys	TTA	ACG	CTG	TAT Tyr	TAC	AGA Arg

FIG. 15A

384	432	480	528	576	622
CCT	AGA Arg	GAG Glu	TGC Cys	CGG	Ö
TTA	GCT	TTG	AAT Asn	AAT Asn	ATG
TAC	GAG Glu	TTG	GTG Val	GIT Val	666
ACG	GCG	GAA Glu	GTG	GTG Val	GGC G1y
AAC	ATG	GAT	CIT	ATG	CTT
CAG Gln	TGT Cys	ATC	ATT Ile	GCA Ala	AAC
GGT	CCG	GCG	$_{ m GGT}$	TCC	TAT
TTA	AAT Asn	GGT	ATC Ile	CTG	AGT
GGA Gly	CCC	TTC	GAT	TCT	ATA Ile
TCT	CCG	ATG	AAG Lys	Pro Pro	ATC Ile
AGA Arg	GTT Val	GTT Val	CCT	ACG	AAT
GAA Glu	CGG Arg	ATG	AAA Lys	CCG	GGG
ATC Ile	CTA	GAG Glu	GTT Val	AAT Asn	AGA
ATT Ile	GIT Val	GCT	GGG G1y	TTC	CTT
AAA Lys	GCC	GAG Glu	ACC	TTG	AAG Lys
AAG Lys	GAG Glu	AAG Lys	AAA Lys	AGC	TAC

FIG. 15B