MMAN2300

Engineering Mechanics 2

Part A: Week 8

Plane kinetics of rigid bodies: Work-energy method

(Chapter 6 Meriam & Kraige)

Work-energy method

Work done by a force on a rigid body is: $W_{1-2} = F(S_2 - S_1) = F \cdot S$

- F is an applied external force (N)
- S is the displacement of the body (m)

Work done by a moment on a rigid body is: $W_{1-2} = M(\theta_2 - \theta_1) = M \cdot \theta$

- *M* is an applied external moment (Nm)
- θ is the angular displacement of the body (rad)

The rotary motion of a rigid body is *independent* of the translation of the rigid body. Hence, the translation and rotation can be considered separately. The total work done on a rigid body is the sum of the work done by an external force and the work done by an external moment.

$$\begin{aligned} \boldsymbol{W}_{1-2} &= \boldsymbol{F}(\boldsymbol{S}_2 - \boldsymbol{S}_1) + \boldsymbol{M}(\boldsymbol{\theta}_2 - \boldsymbol{\theta}_1) = \boldsymbol{F} \cdot \boldsymbol{S} + \boldsymbol{M} \cdot \boldsymbol{\theta} \\ \boldsymbol{W}_{1-2} &= \boldsymbol{F} \cdot \boldsymbol{S} + \boldsymbol{M} \cdot \boldsymbol{\theta} = \Delta \boldsymbol{T} + \Delta \boldsymbol{V}_g + \Delta \boldsymbol{V}_e \end{aligned}$$

- ΔT is the change in kinetic energy
- ΔV_{g} is the change in potential energy
- ΔV_e is the change in elastic energy

For translational motion:
$$\Delta T = \frac{1}{2}m(v_2^2 - v_1^2)$$

For rotational motion:
$$\Delta T = \frac{1}{2} I_G (\omega_2^2 - \omega_1^2)$$

Hence for a rigid body, the total change in kinetic energy is

$$\Delta T = \frac{1}{2}m(v_2^2 - v_1^2) + \frac{1}{2}I_G(\omega_2^2 - \omega_1^2)$$
translation rotation

- v is the velocity of the centre of mass (v_G)
- I_G is the moment of inertia of the centre of mass

The change in kinetic energy and potential energy are applied to the centre of mass.

The change in potential energy is:

$$\Delta V_{g} = mg(h_2 - h_1)$$

The change in elastic energy is:

$$\Delta V_e = \frac{1}{2} k (x_2^2 - x_1^2)$$

where k is the spring stiffness; x_1 and x_2 are the deformations of the spring at positions 1 and 2, respectively.

Example 1

The uniform 20 kg slender bar AC rotates in a vertical plane about the pin at B. The ideal spring AD has a spring constant k = 15 N/m and an undeformed length $L_0 = 2$ m. When the bar is at rest in the position $\theta = 0^{\circ}$, it is given a small angular displacement and released. Find the angular velocity of the bar when it reaches the horizontal position.

Example 2

Each of the two slender rods shown is 0.75 m long and has a mass of 6 kg. If the system is released from rest with $\beta = 60^{\circ}$, determine:

- (a) the angular velocity of rod AB when $\beta = 20^{\circ}$,
- (b) the velocity of the point *D* at the same instant.

Example 3

A slider-crank mechanism is driven by a constant clockwise couple M=0.5 Nm. All the components are homogeneous, with the mass and dimensions as indicated. When the mechanism is in the position shown, the angular velocity of the crank is $\omega_1=12$ rad/s CW. Determine the angular velocity of the crank after it has rotated 90° from the position shown. Neglect friction and assume that motion is in the vertical plane.

