

PRIME NUMBER FACTORIZATIONS

Result

Proposition 1. Suppose $n \in \mathbb{N}$ and n > 1. Then there exists a factorization (π_1, \ldots, π_p) of n where π_i is prime for $i = 1, \ldots, p$. In other words,

$$n = \pi_1 \pi_2 \cdots \pi_p$$

The above result is known as the fundamental theorem of arithmetic and the prime factorization theorem. Future editions will include the proof.

