

Übungsblatt 7

Funktionsuntersuchungen und Optimierungsaufgaben

Aufgabe 1.

Bestimmen Sie die Bereiche, in denen die folgenden Funktionen monoton wachsend bzw. fallend sind

(a)
$$f(x) = -12x^2 + 8x - 1$$

(b)
$$g(x) = \frac{x}{1-x}$$

Aufgabe 2.

In welchem Intervall sind die folgenden Funktionen konvex bzw. konkav?

(a)
$$f(x) = x^3 - 2x^2 + 60x + 100$$

(b)
$$g(x) = \frac{x^2 - 1}{x}$$

Aufgabe 3.

Gemäss dem Satz über das Minimum-Maximum (Kapitel 4, Eigenschaften stetiger Funktionen) existieren für differenzierbare (und somit stetige) Funktionen auf einem abgeschlossenen Intervall [a,b] Werte, in denen die Funktion maximal bzw. minimal ist. Als absolutes Maximum bzw. Minimum kommen also neben den lokalen Extremstellen noch die Randpunkte a und b in Frage.

Untersuchen Sie die Funktion $f(x) = \frac{1}{3}x^3 - 4x$ im Intervall [-3, 5] auf ihre Extremstellen und finden Sie das globale Maximum und Minimum.

Aufgabe 4.

Die Funktion $p(t) = 0.005 \cdot (15t^2 - t^3)$ beschreibe den Verlauf einer Krankheit, wobei t die Zeit in Tagen und p(t) den Prozentsatz der Erkrankten angibt.

- (a) Geben Sie einen sinnvollen Definitionsbereich an (mit Begründung).
- (b) In welchem Zeitbereich nimmt p(t) zu, in welchem ab?
- (c) Wann erreicht die Krankheit ihren Höhepunkt? Wieviel Prozent der Bevölkerung sind dann krank?
- (d) Zu welchem Zeitpunkt nimmt der Prozentsatz der Erkrankten am meisten zu?

Aufgabe 5.

Wie oft sind die folgenden abschnittsweise definierten Funktionen differenzierbar? Skizzieren Sie die Graphen von f, f' und f''.

(a)
$$f(x) = \begin{cases} 1 - x^3 & \text{für } x < 1\\ 3(1 - x^2) & \text{für } x \ge 1 \end{cases}$$

(b)
$$f(x) = \begin{cases} \frac{5}{4}\sqrt{16 - x^2} & \text{für } -4 \le x \le 0\\ 5 - \frac{5}{32}x^2 & \text{für } x > 0 \end{cases}$$

Aufgabe 6.

Untersuchen Sie das Polynom $f(x) = \frac{1}{5}x^3 - \frac{7}{10}x^2 - 2x + \frac{5}{2}$

- (a) Welchen maximalen Defnitionsbereich hat die Funktion f? Wo ist die Funktion stetig und wo ist sie differenzierbar?
- (b) Zeigen Sie, dass x = 1 eine Nullstelle von f ist.
- (c) Bestimmen Sie alle lokalen Extremstellen und alle Wendepunkte von f.
- (d) Ist die Funktion f beschränkt? Welche Monotonieeigenschaften hat die Funktion?
- (e) Skizzieren Sie den Funktionsgraph von f und geben Sie die Wertemenge an.

Aufgabe 7.

Untersuchen Sie die gebrochenrationale Funktion $f(x) = -\frac{(x-2)^2}{x+2}$:

- (a) Welchen maximalen Definitionsbereich besitzt die Funktion f?
- (b) Bestimmen Sie alle Schnittpunkte mit der x-Achse und mit der y-Achse.
- (c) Besitzt die Funktion f Polstellen? Wenn ja, finden Vorzeichenwechsel statt?
- (d) Bestimmen Sie alle Extremstellen und Wendepunkte der Funktion f.
- (e) Skizzieren Sie den Funktionsgraph von f und geben Sie die Wertemenge an.

Aufgabe 8.

Bestimmen Sie die Nullstellen, Extrema und Wendepunkte der Funktion $f(x) = x^4 - 6x^2 + 5$.

Aufgabe 9.

Der Graph eines Polynoms dritten Grades,

$$f(x) = ax^3 + bx^2 + cx + d,$$

verläuft durch den Nullpunkt. Er hat bei x=2 eine waagrechte Tangente und bei x=4 eine Wendestelle. Die Wendetangente hat die Steigung -4. Bestimmen Sie die Koeffizienten a, b, c und d.

 2

Aufgabe 10.

Bestimmen Sie die Konstanten a, b, c der Funktion

$$f(x) = \frac{ax+b}{x^2+c}$$

derart, dass f(x) in x = -2 eine Polstelle und in x = 1 ein lokales Extremum mit dem Funktionswert -0.25 besitzt.

Aufgabe 11.

Die Funktionsgleichung eines kubischen Polynoms $f(x) = ax^3 + bx^2 + cx + d$ soll bestimmt werden. Dazu ermittle man die Konstanten a, b, c und d so, dass f(x) die folgenden Eigenschaften hat:

- f(x) hat bei x=0 eine Nullstelle, die gleichzeitig eine Wendestelle ist.
- Ein lokales Extremum liegt bei x = -2.
- Die Tangente an der Stelle x = 4 hat die Steigung 3.

Aufgabe 12.

Ein Polynom der Form $f(x) = ax^3 + bx^2 + cx + d$ berührt im Nullpunkt die x-Achse. Die Tangente an den Graphen im Punkt $P(-3 \mid 0)$ ist die Parallele zu der Geraden mit der Gleichung g(x) = 6x. Bestimmen Sie das Polynom.

Aufgabe 13.

- (a) Ein Rechteck hat den Flächeninhalt $A=36\,\mathrm{cm}^2$. Bestimmen Sie die Seiten des Rechtecks so, dass sein Umfang möglichst klein wird.
- (b) Ein Rechteck hat den Umfang $U=64\,\mathrm{cm}$. Bestimmen Sie die Seiten des Rechtecks so, dass sein Flächeninhalt möglichst gross wird.

Aufgabe 14.

Eine Dose hat einen Radius $r=2.82\,\mathrm{cm}$ und eine Höhe $h=1.2\,\mathrm{cm}$. Sie enthält $30\,\mathrm{cm}^3$ bei voller Füllung. Überprüfen Sie die Wirtschaftlichkeit der Verpackung, d. h. geringstmöglicher Materialverbrauch bei gleichem Volumen.

Aufgabe 15.

Einem gleichseitigen Dreieck (Seitenlänge $= 1 \,\mathrm{dm}$) soll ein Rechteck mit grösstmöglichem Flächeninhalt A einbeschrieben werden. Bestimmen Sie die Seiten des Rechtecks und den maximalen Flächeninhalt.

Aufgabe 16.

In einem halbkreisförmigen Bogen (Radius $= 1\,\mathrm{m}$) soll ein rechteckiges Fenster mit möglichst grosser Fensterfläche eingesetzt werden. Bestimmen Sie die Seiten des Fensters und die maximale Fläche des Fensters.