# Appendix A

## Mathematical stuff

### A.1 Differentiation and vectors

Suppose we have a vector  $\mathbf{w}$  and a function  $f(\mathbf{w})$ . Differentiation of f with respect to  $\mathbf{w}$  is defined as,

$$\frac{\partial}{\partial \mathbf{w}} f(\mathbf{w}) = \frac{\partial f}{\partial \mathbf{w}} \equiv \left(\frac{\partial f}{\partial \omega_1}, \frac{\partial f}{\partial \omega_2}, \dots, \frac{\partial f}{\partial \omega_N}\right)^T$$

#### Example 1:

$$f(\mathbf{w}) = \mathbf{x}^T \mathbf{w}$$
 (inner product) (A.1)

$$f(\mathbf{w}) = \sum_{i=1}^{N} x_i \omega_i \Rightarrow$$
 (A.2)

$$\frac{\partial f}{\partial \omega_i} = x_i \qquad \Rightarrow \qquad \frac{\partial f}{\partial \mathbf{w}} = \mathbf{x}$$
 (A.3)

#### Example 2:

$$f(\mathbf{w}) = \mathbf{w}^T \mathbf{R} \mathbf{w}$$
 (**R** is a symmetric *N* by *N* matrix) (A.4)

$$f(\mathbf{w}) = \sum_{i=1}^{N} \sum_{j=1}^{N} \omega_i R_{ij} \omega_j \qquad \Rightarrow \tag{A.5}$$

$$\frac{\partial f}{\partial \omega_i} = 2 \sum_{j=1}^{N} R_{ij} \omega_j \qquad \Rightarrow \tag{A.6}$$

$$\frac{\partial f}{\partial \mathbf{w}} = 2\mathbf{R}\mathbf{w} \tag{A.7}$$

# Appendix B

## **Statistics**

### B.1 Bays Theorem

This section is intended as a small introduction to Bays probabilities and Bays theorem. We will use a small example for illustration <sup>1</sup>.



Figure B.1: Data from a set of images and the measurements. The measurement for a given image can result in one of a discrete set of values  $\{X_l\}$  and the images can belong to one of two possible classes  $C_1$  and  $C_2$ . The number of dots in each cell represents the number of images with the values  $X_l$  and corresponding class label. Various probabilities can be computed by the fractions of points falling in different regions of the cells.

We have images that belongs to two different classes,  $C_1$  and  $C_2$ . A measure of the image results in one of a discrete set of values  $\{X_l\}$ . The set of images and their measurements is shown in Fig. B.1.

GOAL: To classify a new images in such a way as to minimize the probability of misclassi-

<sup>&</sup>lt;sup>1</sup>This example is taken from the book of Bishop (Neural Networks for Pattern Recognition)

fication.

Introduce

$$P(C_k) =$$
prior probability of an image belonging to class  $C_k$ 

If we don't have any measurements of the new image we can use the prior probabilites and assign the new images to class  $C_1$  if  $P(C_1) > P(C_2)$  otherwise class  $C_2$ . How do you compute  $P(C_1)$  and  $P(C_2)$  using Fig. B.1? Now suppose we have a measurement then introduce,

$$P(C_k, X_l)$$
 = joint probability, i.e. probability that an image belongs to  $C_l$  AND has the measurement  $X_l$ .

 $P(X_l|C_k)$  = conditional probability, i.e. the probability of measurement  $X_l$  GIVEN that the image belongs to class  $C_k$ .

It is quite obvious that

$$P(C_k, X_l) = P(X_l | C_k) P(C_k)$$
  

$$P(C_k, X_l) = P(C_k | X_l) P(X_l)$$

One can also understand these relations by counting points in the different cells in Fig. B.1. Combining these two expression results in the famous Bays's theorem,

$$P(C_k|X_l) = \frac{P(X_l|C_k)P(C_k)}{P(X_l)}$$
(B.1)

where  $P(C_k|X_l)$  is called the posterior probability and  $P(X_l|C_k)$  is called the class-conditional probability. Usually we are interested in  $P(C_k|X_l)$  since it gives us the probability of class  $C_k$  given the measurement  $X_l$ .

Note that any new mesurement  $X_l$  must be assigned to one of the two classes,

$$P(C_1|X_l) + P(C_2|X_l) = 1$$

Using this together with Eqn. B.1 we obtain

$$P(X_l) = P(X_l|C_1)P(C_1) + P(X_l|C_2)P(C_2) \quad \left(= P(X_l,C_1) + P(X_l,C_2)\right)$$

which again is quite obvious.

A word about continuous variables. Most of the time the measurements are continuous which means that we have a probability density function p(x). The probability for x being in an interval is as usual,

$$P(x \in [a, b]) = \int_{a}^{b} p(x)dx$$

The class-conditional probability becomes the class-conditional probability density.

$$P(C_k|x) = \frac{p(x|C_k)P(C_k)}{p(x)}$$