Géométrie repérée

1^{re} Spécialité mathématiques Géométrie - Cours

I. Équation cartésienne d'une droite et vecteur normal

Définition:

Soit d une droite de vecteur directeur \vec{u} .

Un vecteur normal à la droite (d) est un vecteur non nul orthogonal au vecteur \vec{u} .

Schéma:

Propriété:

Soit a, b et c trois réels tels que a et b ne sont pas simultanément nuls.

Dans un repère orthonormé, le vecteur $\vec{n} \binom{a}{b}$ est normal à la droite (d) si et seulement si la droite admet une équation cartésienne de la forme ax + by + c = 0 avec c un réel à déterminer.

Exemple

On cherche à déterminer une équation cartésienne de la droite (d) passant par le point A(5;-1) et de vecteur normal $\vec{n} \binom{2}{-3}$.

$$\begin{split} M(x;y) \in (d) &\Leftrightarrow \overrightarrow{AM} \binom{x-5}{y+1} \text{ et } \overrightarrow{n} \binom{2}{-3} \text{ sont orthogonaux} \\ &\Leftrightarrow \overrightarrow{AM} \bullet \overrightarrow{n} = 0 \\ &\Leftrightarrow 2(x-5) - 3(y+1) = 0 \\ &\Leftrightarrow 2x - 10 - 3y - 3 = 0 \\ &\Leftrightarrow 2x - 3y - 13 = 0 \end{split}$$

Donc une équation cartésienne de (d) est 2x - 3y - 13 = 0.

II. Équation cartésienne d'un cercle

Définition:

On appelle cercle de centre Ω et de rayon r>0 l'ensemble des points M du plan qui vérifie $\Omega M=r$.

Propriété de l'équation d'un cercle connaissant son centre et son rayon :

Le plan est muni d'un repère orthonormé (O, I, J).

Soit C le cercle de centre $\Omega(x_0; y_0)$ et de rayon R.

Une équation du cercle C est $(x-x_0)^2+(y-y_0)^2=R^2$.

Exemple:

On cherche à déterminer l'équation du cercle de centre A(2;3)et de rayon 3.

$$M(x;y) \in C \Leftrightarrow AM = 3$$

$$\Leftrightarrow AM^2 = 9 \text{ avec } AM = \sqrt{(x-2)^2 + (y-3)^2}$$

$$\Leftrightarrow (x-2)^2 + (y-3)^2 = 9$$

$$\Leftrightarrow x^2 - 4x + 4 + y^2 - 6x + 9 = 9$$

$$\Leftrightarrow x^2 + y^2 - 4x - 6x + 4 = 0$$

Une équation cartésienne du cercle de centre A(2;3) et de rayon 3 est $(x-2)^2 + (y-3)^2 = 9$ ou $x^2 + y^2 - 4x - 6x + 4 = 0$.

Propriété de l'équation d'un cercle connaissant son diamètre :

Soit C le cercle de diamètre [AB].

Un point M(x;y) appartient au cercle C si et seulement si $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$. Une équation cartésienne du cercle C est donc $(x-x_A)(x-x_B)+(y-y_A)(y-y_B)=0$.

III. Équation cartésienne d'une parabole

Définition:

Soit a, b et c trois réels tels que $a \neq 0$.

Soit f une fonction polynôme du second degré définie par $f(x) = ax^2 + bx + c$.

La courbe représentative de la fonction f qui a pour équation $y = ax^2 + bx + c$ est une parabole.

Propriété:

Cette courbe représentative admet pour axe de symétrie de la droite d'équation $x=\frac{-b}{2a}$ et pour sommet le point $S\left(\frac{-b}{2a}; f\left(\frac{-b}{2a}\right)\right)$.

Exemple:

On cherche à déterminer le sommet et l'axe de symétrie de la parabole d'équation $y=-x^2+2x-5$.

Axe de symétrie :

On a
$$a = -1$$
, $b = 2$ et $c = -5$

On a
$$a=-1$$
, $b=2$ et $c=-5$. On calcule $x=\frac{-b}{2a}=\frac{-2}{2(-1)}=1$.

Donc l'axe de symétrie de la parabole est x=1.

Sommet:

Donc le sommet a pour abscisse 1.

Son ordonnée est $y = -1^2 + 2 \times 1 - 5 = -4$.

Donc S(1; -4)