Update on the search for contact interactions using the inclusive jet p_T spectrum

Greg Myers¹, Harrison Prosper¹, Suman Beri², Supriya Jain³

¹Florida State University

²Panjab University

³SUNY, Buffalo

17 October, 2013

Goal: Look for deviations in the observed inclusive jet p_T at 8 TeV, in the phase space (|y| < 0.5) × (507 < $p_T < 2500$) GeV, from the predicted spectrum at next-to-leading order (NLO) and interpret deviations in terms of NLO contact interaction (CI) models.

- ► Spectra computed using the CT10, MSTW, NNPDF PDFs
- QCD spectra computed using fastNLO (v2.1.0-1360 + fn13323y0.tab)
- ► CI spectra computed using CIJET (v1.0, argXiv:1301.7263)

Today: Discuss the inclusion of PDF uncertainties and the smearing of spectra assuming 4% uncertainty in the Jet Energy Scale (JES) and 10% uncertainty in Jet Energy Resolution (JER).

At NLO, the deviation from QCD in the i^{th} jet p_T bin due to CI is calculated as follows:

$$\sigma_i^{CI} = \frac{1}{\Lambda^2} \left[B_i + B_i' \ln(\Lambda) - B_i' \ln(\mu_{0i}) \right]$$

$$+ \frac{1}{\Lambda^4} \left[A_i + A_i' \ln(\Lambda) - A_i' \ln(\mu_{0i}) \right]$$

- ► A,B coefficients come from CIJET by J. Gao.
- μ_{0i} is the central value of the i^{th} p_T bin.
- \triangleright Λ is the mass scale of the CI interactions.

The primed terms vanish at leading order.

Review of PDF Uncertainty

- We follow the procedure outlined here: https://mstwpdf.hepforge.org/random/
- ▶ The error in an observable, *F*, is computed as follows:

$$\Delta F = \frac{1}{2} \sum_{k=1}^{n} |F(S_{k}^{+}) - F(S_{k}^{-})| R_{k}$$

where R_k is a random number generated from a Gaussian distribution with a mean of 0 and σ of 1,

 S_k^{\pm} are the \pm variations in the kth PDF parameter and n is the number of non-central members in the PDF set (n=26 for CT10nlo, n=20 for MSTW2008nlo68cl).

The same set of n random numbers is used for all bins, all models.

Smearing A, B coefficients with JES, and JER uncertainty

$$A_{\text{obs}} = \int_{p_{T} \text{hin}} \int_{0}^{\infty} R(p_{T}|xz, y\sigma_{z}(z)) \frac{dA(z)}{dz} dz dp_{T}$$

- $ightharpoonup z = true p_T$
- $R(p_T|xz,y\sigma_z) = Gaussian(p_T,xz,y\sigma_z(z))$
- N = 5.886, S = 1.136, C = 0.032 (SMP-12-012)
- ightharpoonup x models the JES uncertainty, sampled from a Gaussian with mean of 1 and $\sigma=0.04$
- \blacktriangleright y models the JER uncertainty, sampled from a Gaussian with mean of 1 and $\sigma=0.10$
- ▶ In practice we approximate the semi-infinite z integral by integrating from $p_T 5\sigma_z(p_T)$ to $p_T + 5\sigma_z(p_T)$

Central Coefficients (LL model)

Only SamplingUncertainty

Jet Smearing and PDF Uncertainty

Only Sampling Uncertainty

Jet Smearing and PDF Uncertainty

CI withPDF Uncertainty

CI with PDF and Smearing Uncertainty

To Do:

- Sort out CI smearing issues
- Include PDF+jet smearing uncertainties on signal
- ► Compute limits on Λ for each PDF and CI model
- Pool results from CT10nlo, MSTW2008nlo68cl, and NNPDF21_100 PDF sets
- Currently drafting an analysis note