Autómatas y Lenguajes Formales

Unidad 1: Lenguaje, Gramáticas y autómatas

Antecedentes:

Lenguaje, Gramáticas y Autómatas

Lenguaje:

- · Conjunto de palabras formadas por símbolos que tienen un significado de un determinado alfabeto.
- · Se clasifican en:
 - o Formales:
 - § Desarrollados a partir de una teoría preestablecida.

- § Completa formalización
- § Libres de ambigüedad.
- § Se produce entre maquinas.
- § EJ. Python, C, etc.

o Naturales:

- § Se producen de persona a persona.
- Desarrollados por enriquecimiento progresivo.
- § Carácter expresivo (Gran riqueza del componente semántico).
- § Dificultad o imposibilidad de una formalización completa.
- § Ej: Español, Ingles.
- · Los lenguajes naturales y los formales, difieren significativamente uno de otro por su origen y por su área de aplicación.

Gramática:

- · Estructura del lenguaje.
- · Formalismo.
- · Bases para escribir palabras/sentencias validas y cual es su significado.
- · Describe o genera el lenguaje.

Maquina:

- · Formada por estados.
- · Reciben estímulos.
- · Se obtiene una respuesta de ellas.
- · Reconoce/Genera un lenguaje.

Isomorfismo:

· Vinculo/Equivalencia entre gramática, lenguaje y maquina de un determinado tipo.

Teoría de Chomsky:

Símbolos:

- · Representación distinguible de información.
- Entidad atómica e indivisible. Menor unidad de información que se pueda manejar en un lenguaje

Alfabeto:

- · Conjunto de símbolos finito y no vacío.
- · Se representa con letras griegas mayúsculas, normalmente Σ.
- · Ej: cirilico, abecedario,etc.

Cadena/Palabra:

- · Cadena de caracteres:
 - o Secuencia finita de símbolos seleccionados de un alfabeto organizados de una determinada manera.
 - o Cadena vacía es un caso particular, tiene cero apariciones de símbolos
 - o Se representa con ε o λ .
- Longitud de Palabra es la cantidad de símbolos que contiene incluyendo repeticiones.

Potencias de un alfabeto:

- · Si Σ es un alfabeto, es el conjunto de las cadenas de longitud k, tales que cada uno de los símbolos de las mismas pertenece a Σ .
- · El conjunto de todas las palabras que se pueden formar con los símbolos de un alfabeto Σ se llama **universo del discurso** o **lenguaje universa**l de Σ y se representa con Σ *.

Lenguaje:

- · Se llama **Lenguaje L** definido sobre el alfabeto Σ a cualquier subconjunto de cadenas de Σ * (lenguaje universal).
- · Especificación:
 - o Por comprensión

L = {w $\in \Sigma^*$ / w cumple con propiedad P}

o Por extensión

Enumerando sus componentes

Operaciones

- · Con cadenas:
 - o Concatenación:
 - § Sean x, y $\in \Sigma^*$. Donde
 - § Se llama concatenación de las palabras x e y a la palabra o bien z=xy.

	Propiedades	
Cerrada	Si x e y se definen sobre \sum^* , xy también.	Laamiaruna
Asociativa	(xy)z = x(yz)	semigrupo
Elemento neutro	$x \lambda = \lambda x = x$	Jillonolae
Longitud	xy = x + y	,
Cancelación por izq.	Si x , y , $z \in \Sigma^* \land xy = xz \rightarrow y = z$	
Cancelación por der.	Si x , y , $z \in \Sigma^* \land xy = zy \rightarrow x = z$	Facultad de Ciencias UNER de la Administración

o Potencia:

§ Se denomina **potencia-iésima** de una palabra a la operación que resulta de concatenarla consigo misma **i** veces.

Propiedades	
$x^0 =$	λ
$x^1 =$	x
$x^i x^j =$	$x^{i+j}(i, j \ge 0)$
$ x^i =$	$i \times x $
Asociativa	$x_i = xxxxx (i veces)$

o Reflexión, cadena refleja o inversa:

§ Sea
$$x = \sigma_1 \sigma_2 ... \sigma_n \rightarrow x^R = \sigma_n ... \sigma_2 \sigma_1$$

Propiedades	
$(x^R)^R =$	X
$(x^R)^i =$	$(x^i)^R \ \forall i \ge 0$
$ x ^R =$	x

Sobre Lenguajes

- o Concatenación:
 - § Sean dos lenguajes:

$$L_1, L_2 \subset \Sigma^* \rightarrow L_1 \bullet L_2 = \{x \bullet y \mid x \in L_1 \land y \in L_2\}$$

	Propiedades		
Cerrada	Si L_1 , L_2 se definen sobre Σ , L_1L_2 también.	semigrupo	monoide
Asociativa	$(L_1 L_2) L_3 = L_1 (L_2 L_3)$	Ĵ	}
Elemento neutro L_{λ} = $\{\lambda\}$	$L_{\lambda}L = LL_{\lambda} = L$	_	

o Unión:

§ Sean dos lenguajes:

$$L_1, L_2 \subset \Sigma^* \rightarrow L_1 \cup L_2 = \{x \mid x \in L_1 \lor x \in L_2\}$$

	Propiedades			
Cerrada	Si L_1 , L_2 se definen sobre Σ , L_1 U L_2 también.	semigrupo]	
Asociativa	$(L_1 \cup L_2) \cup L_3 = L_1 \cup (L_2 \cup L_3)$		monoide	monoide abeliano
Elemento neutro Ø	$\emptyset U L = L U \emptyset = L$		J	abellano
Conmutativa	$L_1 \cup L_2 = L_2 \cup L_1$			J
Idempotente	$L_1 \cup L_1 = L_1$			

o Intersección:

§ Sean dos lenguajes:

$$L_1, L_2 \subset \Sigma^* \rightarrow L_1 \cap L_2 = \{x \mid x \in L_1 \land x \in L_2\}$$

	Propiedades	
Cerrada	Si L_1 , L_2 se definen sobre Σ , L_1 \cap L_2 también.	semigrupo
Asociativa	$(L_1 \cap L_2) \cap L_3 = L_1 \cap (L_2 \cap L_3)$	monoide monoide abeliano
Elemento neutro Σ^{\star}	$\sum^* \bigcap L = L \bigcap \sum^* = L$	J
Conmutativa	$L_1 \cap L_2 = L_2 \cap L_1$	J
Idempotente	$L_I \cap L_I = L_I$	

o Diferencia:

§ Sean dos lenguajes:

$$L_1, L_2 \subset \Sigma^* \rightarrow L_1 - L_2 = \{x \mid x \in L_1 \land x \notin L_2\}$$

o Complementación:

§ Se denomina complemento de L, al lenguaje que contiene todas las palabras sobre el alfabeto Σ y que no pertenecen a L.

$$\overline{L} = \left\{ x / x \in \Sigma^* \land x \notin L \right\}$$

Propiedades
$\overline{\sum^*} = \emptyset$
$\overline{\varnothing} = \sum^*$
$\overline{\overline{L}} = L$

o Lenguaje Reflejo:

§ Sea L un lenguaje:

$$L^R = \{x^R / x \in L\}$$

- o Potencia:
 - § Se denomina **potencia i-ésima** de un lenguaje L a la operación que consiste en concatenarlo consigo mismo **i** veces.

$$L^{i} = \underbrace{L \bullet L \bullet \dots \bullet L}_{i}$$

- o Clausura o Cierre Positivo:
 - § Si L es un lenguaje:

$$L^+ = \bigcup_{i=1}^{\infty} L^i$$

- o Clausura, Cierre o Cerradura de Kleene:
 - § Si L es un lenguaje:

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

- § L* es el conjunto que contiene:
 - · La palabra vacía λ.
 - · El Conjunto L.
 - · Todas las palabras formadas por la concatenación de miembros de L*.