SHARPENING AND GENERALIZATIONS OF SHAFER'S INEQUALITY FOR THE ARC TANGENT FUNCTION

FENG QI AND BAI-NI GUO

ABSTRACT. In this paper, we sharpen and generalize Shafer's inequality for the arc tangent function. From this, some known results are refined.

1. Introduction and main results

In [8], the following elementary problem was posed: Show that for x > 0

$$\arctan x > \frac{3x}{1 + 2\sqrt{1 + x^2}}.\tag{1}$$

In [9], the following three proofs for the inequality (1) were provided.

Solution by Grinstein: Direct computation gives

$$\frac{\mathrm{d}F(x)}{\mathrm{d}x} = \frac{\left(\sqrt{1+x^2} - 1\right)^2}{\left(1+x^2\right)\left(1+2\sqrt{1+x^2}\right)^2},$$

where

$$F(x) = \arctan x - \frac{3x}{1 + 2\sqrt{1 + x^2}}.$$

Now $\frac{\mathrm{d}F(x)}{\mathrm{d}x}$ is positive for all $x \neq 0$, whence F(x) is an increasing function. Since F(0) = 0, it follows that F(x) > 0 for x > 0.

Solution by Marsh: It follows from $(\cos \phi - 1)^2 \ge 0$ that

$$1 \ge \frac{3 + 6\cos\phi}{(\cos\phi + 2)^2}.$$

The desired result is obtained directly upon integration of the latter inequality with respect to ϕ from 0 to $\arctan x$ for x > 0.

Solution by Konhauser: The substitution $x = \tan y$ transforms the given inequality into $y > \frac{3 \sin y}{2 + \cos y}$, which is a special case of an inequality discussed on [4, pp. 105–106].

It may be worthwhile to note that the inequality (1) is not collected in the authorized monograph [2] and [3].

In [2, pp. 288–289], the following inequalities for the arc tangent function are collected:

$$\arctan x < \frac{2x}{1 + \sqrt{1 + x^2}},\tag{2}$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 33B10; Secondary 26D05.

Key words and phrases. sharpening, generalization, Shafer's inequality, arc tangent function, monotonicity.

The first author was partially supported by the China Scholarship Council.

This paper was typeset using $\mathcal{A}_{M}\mathcal{S}$ -IATEX.

$$\frac{x}{1+x^2} < \arctan x < x,\tag{3}$$

$$x - \frac{x^3}{3} < \arctan x < x,\tag{4}$$

$$\frac{1}{2x}\ln(1+x^2) < \arctan x < (1+x)\ln(1+x),\tag{5}$$

where x > 0.

The aim of this paper is to sharpen and generalize inequalities (1) and (2). Our results may be stated as the following theorems.

Theorem 1. For x > 0, let

$$f_a(x) = \frac{\left(a + \sqrt{1 + x^2}\right) \arctan x}{x},\tag{6}$$

where a is a real number.

- (1) When $a \leq -1$ or $0 \leq a \leq \frac{1}{2}$, the function $f_a(x)$ is strictly increasing on
- (2) When $a \geq \frac{2}{\pi}$, the function $f_a(x)$ is strictly decreasing on $(0, \infty)$; (3) When $\frac{1}{2} < a < \frac{2}{\pi}$, the function $f_a(x)$ has a unique minimum on $(0, \infty)$.

As direct consequences of Theorem 1, the following inequalities may be derived.

Theorem 2. For $0 \le a \le \frac{1}{2}$,

$$\frac{(1+a)x}{a+\sqrt{1+x^2}} < \arctan x < \frac{(\pi/2)x}{a+\sqrt{1+x^2}}, \quad x > 0.$$
 (7)

For $\frac{1}{2} < a < \frac{2}{\pi}$,

$$\frac{4a(1-a^2)x}{a+\sqrt{1+x^2}} < \arctan x < \frac{\max\{(\pi/2), 1+a\}x}{a+\sqrt{1+x^2}}, \quad x > 0.$$
 (8)

For $a \geq \frac{2}{\pi}$, the inequality (7) is reversed.

Moreover, the constants 1 + a and $\frac{\pi}{2}$ in inequalities (7) and (8) are the best possible.

2. Remarks

Before proving our theorems, we are about to give several remarks on them.

Remark 1. The inequality (1) is the special case $a=\frac{1}{2}$ of the left-hand side inequality in (7).

Remark 2. The inequality (2) is the special case a = 1 of the reversed version of the left hand-side inequality in (7).

Remark 3. The inequality (2) is better than (5). If taking $a = \frac{2}{\pi}$ in (7), then

$$\frac{\pi^2 x}{2 + 2\pi\sqrt{1 + x^2}} < \arctan x < \frac{(\pi + 2)x}{2 + \pi\sqrt{1 + x^2}}, \quad x > 0.$$
 (9)

This double inequality refines corresponding ones in (1), (2), (3), (4) and (5).

Remark 4. The substitution $x = \tan y$ may transform inequalities in (7) and (8) into some trigonometric inequalities.

Remark 5. The approach below used in the proofs of Theorem 1 and Theorem 2 has been employed in [1, 5, 6, 7].

3. Proofs of theorems

Now we are in a position to prove our theorems.

Proof of Theorem 1. Direct calculation gives

$$f'_{a}(x) = \frac{\left(1+x^{2}\right)\left(1+a\sqrt{1+x^{2}}\right)}{x^{2}\left(1+x^{2}\right)^{3/2}} \left[\frac{x+x^{3}+ax\sqrt{1+x^{2}}}{\left(1+x^{2}\right)\left(1+a\sqrt{1+x^{2}}\right)} - \arctan x\right]$$

$$\triangleq \frac{\left(1+x^{2}\right)\left(1+a\sqrt{1+x^{2}}\right)}{x^{2}\left(1+x^{2}\right)^{3/2}} g_{a}(x),$$

$$g'_{a}(x) = -\frac{x^{2}\left(2a^{2}\sqrt{x^{2}+1}+a-\sqrt{x^{2}+1}\right)}{\left(x^{2}+1\right)^{3/2}\left(a\sqrt{x^{2}+1}+1\right)^{2}}$$

$$\triangleq -\frac{x^{2}h_{a}(x)}{\left(x^{2}+1\right)^{3/2}\left(a\sqrt{x^{2}+1}+1\right)^{2}},$$

and the function $h_a(x)$ has two zeros

$$a_1(x) = -\frac{1+\sqrt{9+8x^2}}{4\sqrt{1+x^2}}$$
 and $a_2(x) = \frac{-1+\sqrt{9+8x^2}}{4\sqrt{1+x^2}}$.

Further differentiation yields

$$a_1'(x) = \frac{x\left(1 + \sqrt{9 + 8x^2}\right)}{4(1 + x^2)^{3/2}\sqrt{9 + 8x^2}} > 0$$

and

$$a_2'(x) = \frac{x(\sqrt{9+8x^2}-1)}{4(1+x^2)^{3/2}\sqrt{9+8x^2}} > 0.$$

This means that the functions $a_1(x)$ and $a_2(x)$ are increasing on $(0, \infty)$. From

$$\lim_{x \to 0^{+}} a_{1}(x) = -1, \qquad \lim_{x \to \infty} a_{1}(x) = -\frac{\sqrt{2}}{2},$$

$$\lim_{x \to 0^{+}} a_{2}(x) = \frac{1}{2}, \qquad \lim_{x \to \infty} a_{2}(x) = \frac{\sqrt{2}}{2},$$

it follows that

(1) when $a \leq -1$ or $a \geq \frac{\sqrt{2}}{2}$, the derivative $g'_a(x)$ is negative and the function $g_a(x)$ is strictly decreasing on $(0, \infty)$. From

$$\lim_{x \to 0^+} g_a(x) = 0 \quad \text{and} \quad \lim_{x \to \infty} g_a(x) = \frac{1}{a} - \frac{\pi}{2}, \tag{10}$$

it is deduced that $g_a(x) < 0$ on $(0, \infty)$. Accordingly,

- (a) when $a \leq -1$, the derivative $f'_a(x) > 0$ and the function $f_a(x)$ is strictly increasing on $(0, \infty)$;
- (b) when $a \ge \frac{\sqrt{2}}{2}$, the derivative $f_a'(x)$ is negative and the function $f_a(x)$ is strictly decreasing on $(0, \infty)$.
- (2) when $\frac{1}{2} \geq a \geq 0$, the derivative $g'_a(x)$ is positive and the function $g_a(x)$ is increasing on $(0, \infty)$. By (10), it follows that the function $g_a(x)$ is positive on $(0, \infty)$. Thus, the derivative $f'_a(x)$ is positive and the function $f_a(x)$ is strictly increasing on $(0, \infty)$.

- (3) when $\frac{1}{2} < a < \frac{\sqrt{2}}{2}$, the derivative $g'_a(x)$ has a unique zero which is a minimum of $g_a(x)$ on $(0, \infty)$. Hence, by the second limit in (10), it may be deduced that
 - (a) when $\frac{2}{\pi} \leq a < \frac{\sqrt{2}}{2}$, the function $g_a(x)$ is negative on $(0, \infty)$, so the derivative $f'_a(x)$ is also negative and the function $f_a(x)$ is strictly decreasing on $(0, \infty)$;
 - (b) when $\frac{1}{2} < a < \frac{2}{\pi}$, the function $g_a(x)$ has a unique zero which is also a unique zero of the derivative $f'_a(x)$, and so the function $f_a(x)$ has a unique minimum of the function $f_a(x)$ on $(0, \infty)$.

The proof of Theorem 1 is complete.

Proof of Theorem 2. Direct calculation yields

$$\lim_{x \to 0^+} f_a(x) = 1 + a \quad \text{and} \quad \lim_{x \to \infty} f_a(x) = \frac{\pi}{2}.$$

By the increasing monotonicity in Theorem 1, it follows that $1 + a < f_a(x) < \frac{\pi}{2}$ for $0 \le a \le \frac{1}{2}$, which can be rewritten as (7). Similarly, the reversed version of the inequality (7) and the right-hand side inequality in (8) can be procured.

When $\frac{1}{2} < a < \frac{2}{\pi}$, the unique minimum point $x_0 \in (0, \infty)$ of the function $f_a(x)$ satisfies

$$\arctan x_0 = \frac{x_0 + x_0^3 + ax_0\sqrt{1 + x_0^2}}{(1 + x_0^2)(1 + a\sqrt{1 + x_0^2})},$$

and so the minimum of $f_a(x)$ on $(0, \infty)$ is

$$f_a(x_0) = \frac{x_0 + x_0^3 + ax_0\sqrt{1 + x_0^2}}{(1 + x_0^2)(1 + a\sqrt{1 + x_0^2})} \cdot \frac{a + \sqrt{1 + x_0^2}}{x_0}$$

$$= \frac{(a + \sqrt{1 + x_0^2})(1 + x_0^2 + a\sqrt{1 + x_0^2})}{(1 + x_0^2)(1 + a\sqrt{1 + x_0^2})}$$

$$= \frac{(a + u)^2}{u(1 + au)}, \quad u = \sqrt{1 + x_0^2} \in (1, \infty)$$

$$> 4a(1 - a^2),$$

as a result, the left-hand side inequality in (8) follows. The proof of Theorem 2 is complete. $\hfill\Box$

References

- [1] B.-N. Guo and F. Qi, Sharpening and generalizations of Carlson's double inequality for the arc cosine function, Available online at http://arxiv.org/abs/0902.3039.
- [2] J.-Ch. Kuang, Chángyòng Bùdĕngshì (Applied Inequalities), 3rd ed., Shāndōng Kēxué Jìshù Chūbăn Shè (Shandong Science and Technology Press), Ji'nan City, Shandong Province, China, 2004. (Chinese)
- [3] D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, 1970.
- [4] D. S. Mitrinović, Elementary Inequalities, Groningen, 1964, 159 pages.
- [5] F. Qi and B.-N. Guo, A concise proof of Oppenheim's double inequality relating to the cosine and sine functions, Available online at http://arxiv.org/abs/0902.2511.
- [6] F. Qi and B.-N. Guo, Concise sharpening and generalizations of Shafer's inequality for the arc sine function, Available online at http://arxiv.org/abs/0902.2588.
- [7] F. Qi and B.-N. Guo, Sharpening and generalizations of Shafer-Fink's double inequality for the arc sine function, Available online at http://arxiv.org/abs/0902.3036.
- [8] R. E. Shafer, E 1867, Amer. Math. Monthly 73 (1966), no. 3, 309.

- [9] R. E. Shafer, L. S. Grinstein, D. C. B. Marsh and J. D. E. Konhauser, Problems and Solutions: Solutions of Elementary Problems: E 1867, Amer. Math. Monthly 74 (1967), no. 6, 726–727.
- (F. Qi) RESEARCH INSTITUTE OF MATHEMATICAL INEQUALITY THEORY, HENAN POLYTECHNIC UNIVERSITY, JIAOZUO CITY, HENAN PROVINCE, 454010, CHINA

 $E\text{-}mail\ address:$ qifeng6180gmail.com, qifeng6180hotmail.com, qifeng6180qq.com URL: http://qifeng618.spaces.live.com

(B.-N. Guo) School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China

 $E{-}mail\ address: \ \texttt{bai.ni.guo@mail.com}, \ \texttt{bai.ni.guo@hotmail.com} \\ URL: \ \texttt{http://guobaini.spaces.live.com}$