5.1 Continued

Spring-Mass System (Free damped motion):

Now we consider a damping force, usually modeled by a term proportional to the velocity: $F = \beta \chi'$

Thus the resultant of the forces acting on m is as follows: -Kx - Bx

We get the differential equation: $m \cdot \frac{d^2x}{dt^2} = -Kx - \beta \frac{dx}{dt}$

$$\frac{d^2X}{dt^2} + \frac{B}{M}\frac{dx}{dt} + \frac{K}{M}X = 0$$
 Free Dauped motion D.E. Model.

let $2\lambda = \beta/m$ and $\omega^2 = k/m \Rightarrow \frac{d^2x}{dt^2} + 2\lambda \frac{dx}{dt} + \omega^2 X = 0$

Quxiliany Equation Roots:
$$-2\lambda^{\pm}\sqrt{4\lambda^2-4\omega^2} = -\lambda^{\pm}\sqrt{\lambda^2-\omega^2}$$

MATH 267

February 23, 2018 1 / 4

Recall we have three cases (according to the discriminant $\lambda^2 - \omega^2$):

Case $\lambda^2 - \omega^2 > 0$: Two (real) distinct hoots $\Gamma_{1,2} = -\lambda \pm \sqrt{\lambda^2 - \omega^2}$, the two

Note:
$$=\lambda$$

$$\sqrt{\lambda^2} > \sqrt{\lambda^2 - \omega^2}$$

$$0 > -\lambda + \sqrt{\lambda^2 - \omega^2}$$

General Sol: x(t) = Cierit + Gerzt

At Since 1,1/2 <0 we have zelt) -> 0

= "overdamped motion"

Case $\lambda^2 - \omega^2 = 0$: Due repeated root $r_1 = r_2 = -\lambda$, the general solution x(t) = c, erit + c, terit +> 0 (*Verify with L'Hôpital's rule).

" critically damped motion"

February 23, 2018

Case $\lambda^2 - \omega^2 < 0$: Two complex conjugate roots $\Gamma_{1,2} = -\lambda \pm i \sqrt{1\lambda^2 - \omega^2}$

=> General Sol: XIt) = CIE LOS (1x2-w2/t) + GE sin (1x2-w2/t)

x(t)= e (C cos (1x2-w21t)+ C2 sin (1x2-w21t))

V a sine graph. Asin (12-w2/++)

Again z(t) ++00 0

" underdamped motion"

MATH 267

Section 5.1 (Second Part)

February 23, 2018

3/4

The nonhomogeneous case corresponds to a Driven of Forced Motion (not Free), where an external force f acts on the vibrating mass:

Equation:

$$\frac{d^2x}{d+2} + \frac{B}{M}\frac{dx}{dt} + \frac{K}{M}X = f$$

B could be zero or runzero (undamped or damped).

(see pg. 204-207)

February 23, 2018

Example

A mass weighing 8 pounds stretches a spring 2 feet. Assuming that a damping force numerically equal to 2 times the instantaneous velocity acts on the system, determine the equation of motion if the mass is initially released from the equilibrium position with an upward velocity of 3 ft/s. State the kind of motion the mass presents.

MATH 267

Review 2

February 28, 2018 14 1233

General Sol:
$$z(t) = c_1 e^{-4t} + c_2 t e^{-4t}$$

 $z'(t) = -4c_1 e^{-4t} + c_2 e^{-4t} - 4c_2 t e^{-4t}$

Plug in initial conditions x (0)=0, x1(0)=-3

$$2(0) = C_1 = 0$$

 $2(0) = -4c_1 + c_2 = -3$

: Sol. (Equation of Motion) $\chi(t) = -3te^{-4t}$

" critically damped motion".

Review for Exam 2

Topics for Exam 2 (All sections covered in class except for 3.1 and 3.2):

From Chapter 4 you should know:

- · How to find the Wronskian · Know meaning: l.i., fundamental set.
- How to find y_c the general sol to ay'' + by' + cy = 0
- How to find y_p a particular solution of ay'' + by' + cy = g(x)
 - Undetermined Coefficients
 - Variation of Parameters
 - Superposition Principle
- How to find the general solution of ay'' + by' + c = g(x)
- How to solve a Cauchy-Euler Equation (only homogeneous)
- How to solve Initial Value Problems (IVPs)
- 5.1 Application problems (free undamped and damped motion cases).

MATH 267

Review 2

February 26, 2018

1 / 13

One of the most comprehensive types of problems (2^{nd} order DE) is solving a nonhomogeneous IVP:

$$ay'' + by' + cy = g(x), \ y(0) = y_0, \ y'(0) = y_1.$$

Ist We find y_c , that is, find the general solution of ay'' + by' + cy = 0Quxiliany Equation: $am^2 + bm + c = 0$ yields three cases: Case1 Two distinct (real) roots $m_1 \neq m_2 \Rightarrow y_c = c_1 e^{m_1 x} + c_2 e^{m_2 x}$ Case2 One repeated root $m_1 = m_2 \Rightarrow y_c = c_1 e^{m_1 x} + c_2 x e^{m_1 x}$ Case3 Two complex conjugate nots $m_{1,2} = \alpha \pm i \beta$ $y_c = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x)$

2 / 13

2nd We find a particular solution y_p , if g(x) allows us to use undetermined coefficients remember the form of y_p :

	Form of $g(x)$	Form of y_p
i	$c_0+c_1x+\cdots+c_nx^n$	$A_0 + A_1 x + \cdots + A_n x^n$
ii	$ce^{lpha x}$	$A x^t e^{\alpha x}$
iii	$c_1 \sin \beta x + c_2 \cos \beta x$	$x^t(A\cos\beta x + B\sin\beta x)$
iv	$e^{\alpha x}(c_1 \sin \beta x + c_2 \cos \beta x)$	$x^t e^{\alpha x} (A \cos \beta x + B \sin \beta x)$

Where t will be 0, 1 or 2 depending on the roots of the auxiliary equation:

- · In case ii: t=0 if α≠ noot of aux equ, t=1 ya= noot; t=2 y α= repeated noot.
- In case iii: t=1 if not of aux equ. m= +Bi; t=0 otherwise.
- · In case iv: t=1 4 M= x+Bi; t=0 otherwise.

MATH 267

February 26, 2018

For the given DE and g(x) determine the form of y_p required for undetermined coefficients method:

1.
$$y'' + 9y = g(x) \Rightarrow m = \pm 3i$$
 $(y_1 = \cos 3x, y_2 = \sin 3x)$

$$\Rightarrow$$
 $g(x) = 2\cos 3x \Rightarrow \forall P = X (A \cos 3x + B \sin 3x)$

$$g(x) = 5e^{2x} \sin 3x \Rightarrow 9p = e^{2x} (A\cos 3x + B\sin 3x)$$

II.
$$y'' - 4y' + 9y = g(x) \implies m = 2 \pm \sqrt{5}$$

$$g(x) = \cos(\sqrt{5}x) \rightarrow y_p = A\cos(\sqrt{5}x) + B\sin(\sqrt{5}x)$$

$$g(x) = e^{2x} \sin(\sqrt{5}x) \quad \text{yp} = x e^{2x} \left(A \cos(\sqrt{5}x) + B \sin(\sqrt{5}x) \right)$$

III.
$$y'' = g(x) \rightarrow m = 0$$
 repeated $y_1 = 1$ $y_2 = x$

$$\Rightarrow g(x) = e^{-x/2} \leftarrow y_p = A e^{-x/2}$$

$$P g(x) = e^{-x/2}$$
 $Q = A e^{-x/2}$

1x2, because m=0 is repeated root!