

(12) UK Patent Application (19) GB (11) 2 338 307 (13) A

(43) Date of A Publication 15.12.1999

(21) Application No 9913156.7

(22) Date of Filing 08.06.1999

(30) Priority Data

(31) 9812422

(32) 10.06.1998

(33) GB

(51) INT CL⁶
G01N 17/00

(52) UK CL (Edition Q)
G1N NBMR N25G8
U1S S1884

(56) Documents Cited

EP 0258170 A EP 0052388 A US 5332900 A
US 5171524 A US 4506540 A

(58) Field of Search
UK CL (Edition Q) G1N NBMR NBPR
INT CL⁶ G01N 17/00 17/02
ONLINE: EPODOC, JAPIO, WPI, DIALOG DIALINDEX
category PETROL

(71) Applicant(s)

Copipe Systems Limited
(Incorporated in the United Kingdom)
Badentoy Avenue, Portlethen, ABERDEEN, AB12 4YB,
United Kingdom

Common Limited
(Incorporated in the United Kingdom)
Riverbank Business Centre, Old Shoreham Road,
SHOREHAM-BY-SEA, West Sussex, BN43 5FL,
United Kingdom

(72) Inventor(s)

Anthony Yates
Barry Hemblade

(74) Agent and/or Address for Service

Kennedy & Co
Floor 4, Queens House, 39 St Vincent Place,
GLASGOW, G1 2DT, United Kingdom

(54) Abstract Title

Sensing corrosivity in a pipeline

(57) The device detects a chemical environment in the pipeline that is likely to cause corrosion of the pipeline, and comprises sensors 6 mounted on a mobile carrier 5 moveable within the pipeline. The sensors may be electrochemical and the carrier may be a pipeline pig. The sensors are mounted in cavities disposed at the peripheral wall of the carrier, which also contains either a recording device 7 or a device for transmitting data to a location outside the pipeline, so that measurements can be made at locations along the pipeline. The measurements may be of water in oil, and an assessment of the possibility of corrosion can be made. The pig can be propelled by flow of fluid in the pipe, by remote control, or by the application of an external force.

Fig. 1

GB 2 338 307 A

1/1

Fig. 1

Fig. 2

1 APPARATUS AND METHOD FOR SENSING CORROSION IN A
2 PIPELINE

3

4 This invention relates to the detection of corrosivity in
5 a pipeline or tubing.

6

7 The occurrence of corrosion in pipelines continues to
8 give rise to substantial maintenance costs and
9 inefficiencies. Typically, corrosion will begin on the
10 inside of a pipe and thus will not become apparent to an
11 external examination until it has penetrated through the
12 pipe wall, at which time any medium or fluid being
13 conveyed in the pipe may leak and maintenance is required
14 urgently. For this reason it has been found beneficial
15 to devise means for conducting internal examinations
16 within a pipeline or the like to detect for corrosion.

17

18 In the past such examinations have involved a variety of
19 equipment and methodology. One common method involves
20 the measuring or at least detecting of irregularities on
21 the internal surface of a pipeline. For example, US
22 Patent 4,541,278 teaches the use of sensors mounted on a
23 pipeline pig to measure physical irregularities. The
24 sensing device comprises the use of radial, spring-loaded

2

1 fingers that maintain constant contact with the interior
2 of the pipe. The fingers are acoustically linked to
3 microphones inside a liquid tight drum. A recording
4 device records the audio signals picked up by the
5 microphones.

6

7 In practice, this device is likely to give inaccurate
8 results at best; there being an inexact correlation
9 between the audio signals and the integrity of the pipe
10 wall. The lack of sensitivity of the microphones makes
11 measurement of trace imperfections very difficult to
12 quantify. A further disadvantage of such apparatus is
13 that the detection device can only be used in one
14 direction and cannot be used to pass the same section
15 repeatedly.

16

17 PCT/DE92/01034 teaches the use of an ultrasonic
18 inspection probe to detect abnormalities on the surface
19 of a pipe. The probe slides through the pipe and enables
20 the measurement of a data-compression factor that is used
21 to calculate the extent of the abnormalities.

22

23 Other techniques for measuring or detecting corrosion
24 include introducing an electrode near a buried pipeline
25 or other object, applying a charge to the pipeline or
26 object and measuring the decay of the charge to determine
27 the extent of corrosion. A similar technique is taught
28 in US Patent 4,611,175, although not in direct relation
29 to a pipeline. Generally, such techniques are suitable
30 only for detecting the existence of corrosion at fixed
31 locations on a buried structure. Improper or sparse
32 positioning of the charges can cause failure to detect
33 corrosion or an otherwise misrepresentation of the true
34 condition of the pipeline.

1
2 US Patent 4,400,782 teaches the use of the pipeline
3 itself as a method of transmitting data signals to a
4 monitoring station. The signals that measure the extent
5 of corrosion are recorded from a plurality of substations
6 placed at intervals along the pipeline. These
7 substations can be very expensive to maintain or replace.
8 In addition, the technique does not give an accurate
9 indication of the location of any impediment or flaw in
10 the pipeline.

11
12 Other methods known include the measurement of changes in
13 capacitance, change of speed of a shoe moving through a
14 pipeline and change of strain using spring mechanisms.

15
16 However, apart from the disadvantages already described
17 in these and other known methods, they each are designed
18 to merely detect the existence of corrosion only after it
19 has become sufficiently problematic to affect the
20 integrity of the pipeline.

21
22 In the present invention it is recognised that it would
23 be far more preferable to detect the imminency of
24 corrosion occurring, yet before it does so occur. It is
25 further recognised in this invention that corrosion
26 becomes probable when certain chemical environments are
27 allowed to exist. Apparatus and method designed to
28 detect the existence of such environments may be employed
29 to warn personnel of potential oxidation reactions
30 occurring.

31
32 In US Patent 4,506,540 sensors are used to detect the
33 presence of water or other electrolytes in a dry
34 pipeline, such as a gas line. This is achieved by

1 measuring the deposition of conductive impurity by a gas
2 on its passage through the pipeline. The sensors
3 comprise of conductive members spaced by an insulating
4 material. The presence of the conductive impurity can be
5 established by measuring its resistance or boiling point.
6 The invention described therein is limited, however, to
7 dry gas lines. In practice, gas lines are frequently
8 made of plastics materials not prone to corrosive attack.
9 In contrast, pipe lines carrying oil and other fluids are
10 required to be of stronger construction and accordingly
11 made of metallic materials in respect of which corrosion
12 is a more real consideration.

13

14 It is an object of the present invention to provide a
15 tool to predict the possible onset of corrosion of the
16 interior of a pipeline, while a further object herein is
17 to provide for the tool to be used in a wet pipeline.

18

19 A further object of the invention is to provide for the
20 use of a plurality of electromechanical sensors to detect
21 the chemical conditions within a pipeline.

22

23 A yet further object of the invention is provide for the
24 use of a mobile pipeline carrier on which the sensors may
25 be mounted such that the invention may sweep the length
26 of the pipeline and record the chemical conditions at a
27 number of locations.

28

29 A yet further object herein is to provide apparatus and
30 method for detecting a chemical environment encouraging
31 to corrosive activity in a pipeline or other tubing,
32 wherein the apparatus and method may function during the
33 normal use and operation of the pipeline.

34

1 According to a first aspect of the present invention
2 there is provided apparatus for detecting a chemical
3 environment in a pipeline that is likely to cause
4 corrosion of the pipeline wall, wherein the apparatus
5 includes sensors mounted on a mobile carrier moveable
6 within the pipeline.

7

8 The carrier may be, but is not limited to, a pipeline
9 pig.

10

11 Preferably, the sensors are mounted in cavities disposed
12 at the circumference of the peripheral wall of the
13 carrier. Typically, the apparatus further includes means
14 for communicating information or data detected by the
15 sensors to a remote location outwith the pipeline.

16

17 The movement of the pig may be controlled via the flow of
18 fluid through the pipe exerting a force on the pig.

19 Alternatively, the movement of the carrier may be
20 controlled via an external means, for example via the use
21 of a remote control or by the application of an external
22 force.

23

24 Preferably, the sensors are electro-chemical sensors.

25

26 According to a second aspect of the invention there is
27 provided a method of monitoring the likelihood of
28 corrosive activity in a pipeline or other tubing, the
29 method comprising the steps of positioning one or more
30 electrochemical sensors internally in the pipeline or
31 tubing and detecting the nature of the chemical
32 environment therein.

33

1 Preferably the method further involves the movement of
2 the sensors throughout the pipeline to obtain a more
3 complete appraisal of the pipeline condition.

4

5 In order to provide a better understanding of the
6 invention, an embodiment will now be described by way of
7 example only, and with reference to the accompanying
8 Figures, in which:

9

10 Figure 1 shows a tool in its state of operation
11 according to the invention; and

12

13 Figure 2 shows an external view of an alternative
14 tool detailing the positions of the sensors.

15

16 Referring firstly to Figure 1, a representation of the
17 tool, generally described at 1, is depicted in a pipeline
18 2. The tool 1 is comprised of a mobile carrier 3 having
19 a front drive cup 4 and a rear drive cup 5. In the
20 example embodiment shown, the mobile carrier 3 is a pig.

21

22 The tool 1 has a plurality of sensors 6 mounted at
23 intervals both circumferentially and axially.

24

25 The sensors 6 are electro-chemical sensors, particularly
26 capable of detecting moisture and, more specifically, the
27 ratio of moisture or water in the surrounding
28 environment.

29

30 The tool 1 also contains a recording device 7 that is
31 linked to the sensors 6. Thus, in the example embodiment
32 shown in Figure 1, information detected by the sensors 6
33 is stored in the recording device 7 and may then be

1 subject to analysis after the pig has been run through
2 the pipeline 2.

3

4 In the tool 11 of Figure 2, however, the recording device
5 is replaced by a transmitter 8 adapted to transmit, in
6 real time, information or data detected by the sensors 6
7 to a remote station 9. Typically, the information or
8 data transmitted to the station 9 includes details of the
9 environment at defined locations or points within the
10 pipeline. More specifically, the information or data
11 identifies the level of water or other potentially
12 corrosive agents in the chemical environment at which the
13 carrier 3 is located at any specific time.

14

15 In use, a tool in accordance with the invention is
16 inserted into a pipeline and is moved along the interior
17 by using a remote system controlled at the surface; by
18 pressurising the tool using the normal fluid carried by
19 the pipeline; or by providing some other source of
20 pressure.

21

22 The mobile carrier 3 moves along the pipeline and the
23 sensors 6 measure the chemical conditions at different
24 locations. The conditions measured can be, but are not
25 limited to, those relating to the presence of water in
26 the fluid being conducted in the pipe. The level of
27 water in the oil can be calculated and an assessment of
28 the possibility of corrosion made.

29

30 The measurement taken by the sensors can then be stored
31 ready for retrieval when the tool has completed its sweep
32 or can be instantly relayed to a remote processor. On
33 the basis of the measurements taken, assessments may be
34 made as to the likelihood of corrosion occurring.

- 1
- 2 Further modifications and improvements may be
- 3 incorporated without departing from the scope of the
- 4 invention herein intended.

1 Claims:

2

3 1. Apparatus for detecting a chemical environment in a
4 pipeline that is likely to cause corrosion of the
5 pipeline wall, wherein the apparatus includes sensors
6 mounted on a mobile carrier moveable within the
7 pipeline.

8

9 2. Apparatus as claimed in Claim 1 wherein the carrier is
10 a pipeline pig.

11

12 3. Apparatus as claimed in Claims 1 or 2 wherein the
13 sensors are mounted in cavities disposed at the
14 circumference of the peripheral wall of the carrier.

15

16 4. Apparatus as claimed in any of the preceding Claims
17 wherein the apparatus further includes means for
18 communicating information or data detected by the
19 sensors to a remote location outwith the pipeline.

20

21 5. Apparatus as claimed in any of the preceding Claims
22 wherein the movement of the pig is controlled via the
23 flow of fluid through the pipe exerting a force on the
24 pig.

25

26 6. Apparatus as claimed in Claims 1-4 wherein the movement
27 of the carrier may be controlled via an external means,
28 for example via the use of a remote control or by the
29 application of an external force.

30

31 7. Apparatus as claimed in any of the preceding Claims
32 wherein the sensors are electro-chemical sensors.

33

1 8. A method of monitoring the likelihood of corrosive
2 activity in a pipeline or other tubing, the method
3 comprising the steps of positioning one or more
4 electrochemical sensors internally in the pipeline or
5 tubing and detecting the nature of the chemical
6 environment therein.

7
8 9. A method as claimed in Claim 8 wherein the method
9 further involves the movement of the sensors throughout
10 the pipeline to obtain a more complete appraisal of the
11 pipeline condition.