<과제물 작성시 주의사항>

[공통]

과제물 제출시 완성된 **소스파일 및 보고서**를 반드시 'HW_01_학번.zip' 형식으로 압축하여 첨부합니다. (iris.csv, main_app.py, 이름 약어.py, HW_01_학번.pdf)

[소스파일]

- 1. 소스파일은 .py파일만 작성하며 반드시 문제에서 지시 또는 요구한 조건에 맞추어서 작성합니다.
- (jupyter로 작성하였어도 코드를 제출 (l py파일로 작성하여 제출하여야 합니다.)
- 2. 각 코드마다 **반드시 주석을 달아 주셔야 합니다.** 주석을 달지 않을 경우, 부분적으로 감점이 있을 수 있습니다.
- 3. 결과가 올바르더라도 과정이 옳지 않을 경우, 부분적으로 감점이 있을 수 있습니다.
- 4. 제출한 파일이 실행되지 않을 경우, 제출한 과제물은 0점 처리됩니다.

[보고서]

- 1. PDF로 제출하며, 표지를 포함해야 합니다.
- 2. 보고서에는 (**과제 제목 및 목적), (소스 코드에 대한 설명), (실행 결과), (참고문헌)**이 포함되어야 합니다.
- 3. 자신의 코드에 대한 설명이 명확하지 않거나 copy한 글이라면 0점 처리됩니다.
- 4. 실행 결과는 실행 결과를 캡처하여 첨부하도록 합니다.
- 5. 참고문헌은 반드시 적어도 한 개 이상을 명시하여야 합니다.

NAIVE BAYESIAN CLASSIFIER DESIGN

Machine learning homework-1

Assistant: Junghwan Lee, hjn040281@gmail.com

INDEX

- 1. Introduction
- 2. structure of classifier
- 3. Feature normalization
- 4. Parameter estimation
- 5. Estimation of Probability distribution
- 6. Other functions
- 7. Result
- 8. Reference

INTRODUCTION

Build naïve Bayesian classifier which can classify some flowers

- Given 4 feature
 - Petal width
 - Petal length
 - Sepal width
 - Sepal length

INTRODUCTION

You should build 6 python functions at util.py

•	feature_normalization	(10 points)	- 1
•	get_normal_parameter	(20 points)	- 2
•	get_prior_probability	(10 points)	- 3
•	Gaussian_PDF	(10 points)	- 4
•	Gaussian_Log_PDF	(10 points)	- 5
•	Gaussian_NB	(40 points)	- 6

2 (SVI) 72/2 (11,112)

4497

- You can classify the flowers using main_app.py
- Submission : change below files to zip file and submit it by KLAS
 - iris.csv
 - main_app.py
 - Name.py (please change util.py to your name.py)
 - E.g. if your name is 홍길동 --> (util.py --> GDH.py)
 - HW_01_student ID.pdf (E.g. HW_01_202110605.pdf) <= report

STRUCTURE OF CLASSIFIER

FEATURE NORMALIZATION

- Normalization data $\bar{x} = \frac{x mu}{\sigma}$ 1
 - You can use below function or any built-in function
 - Numpy.sum
 - Numpy.mean
 - Numpy.std

PARAMETER ESTIMATION

- Calculate the mean and standard deviation of train data each for labels and features 2
- Calculate the prior probability 3
- the example of mean matrix of train data

	Feature1	Feature2	Feature3	Feature4
Label1	Mean	Mean	Mean	Mean
Label2	Mean	Mean	Mean	Mean
Label3	Mean	Mean	Mean	mean

- You can use below function or any built-in function
 - Numpy.mean
 - Numpy.std
 - Numpy.where
 - List comprehension (python syntax)

EM: M: Flore Storof Story

ESTIMATION OF PROBABILITY DISTRIBUTION

Use Naive Bayesian theorem

•
$$p(C_k|x) = \frac{p(C_k)p(x|C_k)}{p(x)}$$
 = Posterior
• $p(x|C_k) = k_{th}$ - feature (observation) = Likelihood
• $p(x)$ = normalization factor ($\sum_{k=1}^{class_num} p(C_k)p(x|C_k)$) = Evidence (Never mind)
• $p(C_k)$ = initial probability of class = prior

Calculate Likelihood using Gaussian PDF or Gaussian Log PDF function based on parameters – 4, 5

化似一眼说此柳

ESTIMATION OF PROBABILITY DISTRIBUTION

- Estimate the probability (posterior) of feature vector each for classes 6
- Use Naive Bayesian theorem
 - $p(C_k|x) = \frac{p(C_k)p(x|C_k)}{p(x)}$

= Posterior

- Hints
- Use chain rule
 - $p(C_k)p(x_{1 \text{ and }} x_{2 \text{ and }} x_3 | C_k) = p(C_k)p(x_1 | C_k)p(x_2 | C_k)p(x_3 | C_k)$
- Use log scale
 - $\ln(p(C_k)p(x_1|C_k)p(x_2|C_k)p(x_3|C_k)) = \ln(p(C_k)) + \ln(p(x_1|C_k)) + \ln(p(x_2|C_k)) + \ln(p(x_3|C_k))$

ESTIMATION OF PROBABILITY DISTRIBUTION

E.g)

	Probability of class1	Probability of class2	Probability of class3
Feature vector1	$\ln(p(C_1)p(x1 C_1)p(x2 C_1)p(x3 C_1)p(x4 C_1))$	$\ln(p(C_2)p(x1 C_2)p(x2 C_2)p(x3 C_2)p(x4 C_2))$	$\ln(p(C_3)p(x1 C_3)p(x2 C_3)p(x3 C_3)p(x4 C_3))$
Feature vector2	$\ln(p(C_1)p(x1 C_1)p(x2 C_1)p(x3 C_1)p(x4 C_1))$	$\ln(p(C_2)p(x1 C_2)p(x2 C_2)p(x3 C_2)p(x4 C_2))$	$\ln(p(C_3)p(x1 C_3)p(x2 C_3)p(x3 C_3)p(x4 C_3))$
Feature vector3	$\ln(p(C_1)p(x1 C_1)p(x2 C_1)p(x3 C_1)p(x4 C_1))$	$\ln(p(C_2)p(x1 C_2)p(x2 C_2)p(x3 C_2)p(x4 C_2))$	$\ln(p(C_3)p(x1 C_3)p(x2 C_3)p(x3 C_3)p(x4 C_3))$
Feature vector4	$\ln(p(C_1)p(x1 C_1)p(x2 C_1)p(x3 C_1)p(x4 C_1))$	$\ln(p(C_2)p(x1 C_2)p(x2 C_2)p(x3 C_2)p(x4 C_2))$	$\ln(p(C_3)p(x1 C_3)p(x2 C_3)p(x3 C_3)p(x4 C_3))$

You can use below function or any built-in function

Numpy library : where, exp, log

Python library : len

OTHER FUNCTIONS

- def split_data, classifier, and accuracy are just utility functions
- However, you should report how that functions work

	Probability of class1	Probability of class2	Probability of class3
Feature vector1	$\ln(p(C_1)p(x_1 C_1)p(x_2 C_1)p(x_3 C_1)p(x_4 C_1))$	$\ln(p(C_2)p(x_1 C_2)p(x_2 C_2)p(x_3 C_2)p(x_4 C_2))$	$\ln(p(C_3)p(x_1 C_3)p(x_2 C_3)p(x_3 C_3)p(x_4 C_3))$
Feature vector2	$\ln(p(C_1)p(x_1 C_1)p(x_2 C_1)p(x_3 C_1)p(x_4 C_1))$	$\ln(p(C_2)p(x_1 C_2)p(x_2 C_2)p(x_3 C_2)p(x_4 C_2))$	$\ln(p(C_3)p(x_1 C_3)p(x_2 C_3)p(x_3 C_3)p(x_4 C_3))$
Feature vector3	$\ln(p(C_1)p(x_1 C_1)p(x_2 C_1)p(x_3 C_1)p(x_4 C_1))$	$\ln(p(C_2)p(x_1 C_2)p(x_2 C_2)p(x_3 C_2)p(x_4 C_2))$	$\ln(p(C_3)p(x_1 C_3)p(x_2 C_3)p(x_3 C_3)p(x_4 C_3))$
Feature vector4	$\ln(p(C_1)p(x_1 C_1)p(x_2 C_1)p(x_3 C_1)p(x_4 C_1))$	$\ln(p(C_2)p(x_1 C_2)p(x_2 C_2)p(x_3 C_2)p(x_4 C_2))$	$\ln(p(C_3)p(x_1 C_3)p(x_2 C_3)p(x_3 C_3)p(x_4 C_3))$

	Estimation class
Feature vector1	1
Feature vector2	2
Feature vector3	3
Feature vector4	1

•

.

.

RESULT

 After build all of function, you can see below result from python console when you compile "main_app.py" (or yielded 90% accuracy due to shuffling data)

```
In [21]: runfile('D:/3학기/머신러닝_조교/머신러닝과제1/답안지/main_app.py', wdir='D:/3학기/머신러
닝_조교/머신러닝과제1/답안지')
Reloaded modules: utills
accuracy is 97.95918367346938% ! !
the number of correct data is 48 of 49 ! !
In [22]:
```

Print out the results at least 10 times and write them in the report

REFERENCE

- https://en.wikipedia.org/wiki/Naive Bayes classifier
- https://en.wikipedia.org/wiki/Standard_score