SOLUCION DE ECUACIONES NO LINEALES

Dada una función continua f(x), se quiere encontrar el valor x_0 de x, para el cual $f(x_0) = 0$; los x_0 para los que se cumple $f(x_0) = 0$ se denominan raíces o solución de la ecuación o ceros .

Problema a resolver:

$$f(x) = 0$$

Métodos Numéricos I

METODO DE ITERACION DE PUNTO FIJO

Método que se basa en la forma de la función:

$$f(x) = 0$$
 \longrightarrow $x = g(x)$

la iteración es:

$$x_{n+1} = g(x_n)$$
 $n = 0, 1, ...$

Definición: Dada g(x): $[a,b] \rightarrow R$, g continua y si $g(\alpha) = \alpha$, para algún $\alpha \in [a,b]$ entonces g(x) tiene un *punto fijo* en [a,b]

Si α es punto fijo de g(x) : α es cero de f(x)

Ej: como definir una función de iteración

$$f(x) = x^2-2x+3$$
 \Rightarrow $2x = x^2+3$
 $x = (x^2+3)/2$ \Rightarrow $g(x) = (x^2+3)/2$

$$f(x) = x^2 - 2x + 3$$
 \Rightarrow $x^2 = 2x - 3$
 $x = \sqrt{(2x-3)}$ \Rightarrow $g(x) = \sqrt{(2x-3)}$

$$f(x) = \sin x$$
 \Rightarrow $x = \sin x + x$ \Rightarrow $g(x) = \sin x + x$

$$f(x) = e^{-x} - x$$
 \Rightarrow $x = e^{-x}$ \Rightarrow $g(x) = e^{-x}$

$$x_{n+1} = g(x_n)$$
 $n = 0, 1, ...$

Métodos Numéricos I

Iteración Convergente

$$x_{n+1} = g(x_n)$$
 $n = 0, 1, ...$ $x_1 = g(x_0)$ $x_2 = g(x_1)$

Iteración no Convergente

$$x_{n+1} = g(x_n)$$
 $n = 0, 1, ...$ $x_1 = g(x_0)$

En función de lo visto, pueden surgir algunas preguntas:

Cuantas funciones g(x) se pueden determinar dada una ecuación f(x) = 0?

Cuales de estas funciones de iteración van a dar una sucesión que sea convergente al cero buscado ?

Teorema (Existencia y unicidad del punto fijo)

Si $g \in C_{[a,b]}$ y $g(x) \in [a,b]$ $\forall x \in [a,b]$. Si además g'(x) existe en (a,b), es continua y $|g'(x)| \le K < 1 \ \forall \ x \in [a,b]$. Si $x_0 \in [a,b]$ entonces la sucesión definida $x_{n+1} = g(x_n)$, $n \ge 1$ converge al único punto fijo $\alpha \in [a,b]$.

Es importante interpretar, dentro de las H) del teorema:

- $-g(x) \in [a,b] \ \forall x \in [a,b]$?
- $|g'(x)| \le K < 1 \forall x \in [a,b]$?

Métodos Numéricos I

Teorema (existencia y unicidad del punto fijo)

Ejemplo: vale $f(x) = x^2 - x - 2$ $x_{12} = -1, 2$

i)
$$x = x^2 - 2$$
 $gI(x) = x^2 - 2$

- $|g_1'(x)| = 2x < 1 \text{ si } x < 1/2$ $\rightarrow g_1$ no verifica teorema

ii)
$$x^2 = x + 2$$
 $g_2(x) = (x + 2)^{1/2}$

$$|g_2'(x)| = 0.5(x+2)^{-1/2} < 1 \text{ si } x > 0$$

 $g_2(1) = 1.732 \text{ y } g_2(3) = 2.236 \rightarrow g_2 \text{ verifica teorema, o}$ sea genera una sucesión convergente

• Por ej.
$$f(x) = x^2 - 2x - 3 = 0$$

$$x = 3$$
, $x = -1$

$$x^{2}-2x-3=0$$

$$\Rightarrow x^{2}=2x+3$$

$$\Rightarrow x=\sqrt{2x+3}$$

$$\Rightarrow g_{1}(x)=\sqrt{2x+3}$$

$$x^{2}-2x-3=0$$

$$\Rightarrow x^{2}=2x+3$$

$$\Rightarrow x=\sqrt{2x+3}$$

$$\Rightarrow g_{1}(x)=\sqrt{2x+3}$$

$$x^{2}-2x-3=0$$

$$\Rightarrow x(x-2)-3=0$$

$$\Rightarrow x=\frac{3}{x-2}$$

$$\Rightarrow g_{2}(x)=\frac{3}{x-2}$$

$$x^{2} - 2x - 3 = 0$$

$$\Rightarrow 2x = x^{2} - 3$$

$$\Rightarrow x = \frac{x^{2} - 3}{2}$$

$$\Rightarrow g_{3}(x) = \frac{x^{2} - 3}{2}$$

Métodos Numéricos I

$$\mathbf{g_1(x)}$$
$$x_{i+1} = \sqrt{2x_i + 3}$$

$$x_{i+1} = \sqrt{2x_i + 3}$$
 $x_{i+1} = \frac{3}{x_i - 2}$

1.
$$x_0 = 4$$

2.
$$x_1 = 3.31662$$

3.
$$x_2 = 3.10375$$

4.
$$x_3 = 3.03439$$

5.
$$x_4 = 3.01144$$

6.
$$x_5 = 3.00381$$

Converge x = 3

$$g_2(x)$$

$$x_{i+1} = \frac{3}{x_i - 2}$$

1.
$$x_0 = 4$$

2.
$$x_1 = 1.5$$

3.
$$x_2 = -6$$

4.
$$x_3 = -0.375$$

5.
$$x_4 = -1.263158$$

6.
$$x_5 = -0.919355$$

7.
$$x_6 = -1.02762$$

8.
$$x_7 = -0.990876$$

9.
$$x_8 = -1.00305$$

$g_3(x)$

$$x_{i+1} = \frac{x_i^2 - 3}{2}$$

1.
$$x_0 = 4$$

2.
$$x_1 = 6.5$$

3.
$$x_2 = 19.625$$

4.
$$x_3 = 191.070$$

No Converge

Converge x = -1

- (a) |g'(x)| < 1, g'(x) > 0
- ⇒ converge, monótona
- (b) |g'(x)| < 1, g'(x) < 0
- ⇒ converge, oscilante
- (c) |g'(x)| > 1, g'(x) > 0
- ⇒ diverge, monótona
- (d) |g'(x)| > 1, g'(x) < 0
- ⇒ diverge, oscilante

Métodos Numéricos I

Algoritmo de Iteración de Punto Fijo

ENTRADA: x_0 ; Eps: real; max: entero

 x_1 : real o mensaje de error SALIDA:

VARIABLES: iter: entero

PASO 1: iter = 0, $x_1 \leftarrow x_0 + 2^*$ Eps

PASO2: MIENTRAS (iter \leq max $\wedge |x_I - x_0| >$ Eps)

$$x_1 \leftarrow g(x_0)$$
 iter \leftarrow iter+1

$$x_0 \leftarrow x_1$$

PASO3 : Si (iter > max) ENTONCES

ESCRIBIR (('No converge en max iteraciones')

SINO

ESCRIBIR('Raiz =', x_I)

PASO4: Parar

Métodos Numéricos I

ORDEN DE CONVERGENCIA

Definición: Supongamos que $\{x_n\}$ es una sucesión que converge a x' y que $e_n = x_n - x'$ para cada n>0 Si existen constantes positivas λ , α tal que

$$|x_{n+1} - x'| \qquad |e_{n+1}|$$

$$\lim \cdots = \lim \cdots = \lambda$$

$$n \rightarrow \infty |x_n - x'|^{\alpha} \quad n \rightarrow \infty |e_n|^{\alpha}$$

decimos que $\{x_n\}$ converge a x con orden α , con una constante de error asintótico λ . Por lo tanto:

 α = 1 : método lineal

 $\alpha = 2$: método cuadrático

Métodos Numéricos I

13

ORDENES DE CONVERGENCIA

$$\alpha = 1 \begin{tabular}{l} método de bisección \\ método Regula Falsi \\ iteración de punto fijo \end{tabular}$$

 $\alpha = 1.6$ método de la secante

 $\alpha = 2$ método de Newton-Raphson

Métodos Numéricos I

Newton-Raphson vs. Iteración de Punto Fijo

$$f(x) = e^{-x} - x$$

$$x_{n+1} = \underline{e^{-xn} (xn + 1)}$$

 $(e^{-xn} + 1)$

i	X _i	F(xi)
0	0	1
1	0,500000000	0,10653066
2	0,566311003	0,00130451
3	0,567143165	1,9654E-07
4	0,567143290	6,4219E-10

$$x_{n+1} = e^{-xn}$$

i	X _i	F(xi)
0	0	1,00000000
1	1,000000	1,71828183
2	0,367879	1,07679312
3	0,692201	1,30590753
4	0,500473	1,14902830
5	0,606244	1,22728770
6	0,545396	1,17989546
7	0,579612	1,20573358
8	0,560115	1,19075884
9	0,571143	1,19914634
10	0,564879	1,19435590

Métodos Numéricos I

15

Δ^2 DE AITKEN

Supóngase que $\{x_n\}$ converge linealmente al limite p y que, para valores suficientemente grandes de n, $(x_n - p)(x_{n+1} - p) > 0$ Entonces, la sucesión

$$\hat{x} = x_n - \frac{(\Delta x)_n^2}{(\Delta^2 x)_n} = x_n - \frac{(x_{n+1} - x_n^2)^2}{x_{n+2} - 2x_{n+1} + x_n}$$

Converge con orden cuadrático

Acelera la convergencia de cualquier sucesión de orden lineal.

Métodos Numéricos I

METODO DE STEFFENSEN

Se obtiene al aplicar Δ^2 de Aitken a la sucesión generada con

iteración de punto fijo:
$$\hat{x}_s = x_n - \frac{\left(x_{n+1} - x_n\right)^2}{x_{n+2} - 2x_{n+1} + x_n}, \quad n = 0,1,...$$

```
Dado xo, Eps
iter = 0, x_1 \leftarrow x_0 + 2^* Eps
MIENTRAS ( iter \leq max \wedge |x_1 - x_0| > Eps )
               x_1 \leftarrow g(x_0)
               x_2 \leftarrow g(x_1)
               iter ← iter+1
               x_{s} \leftarrow x_{0} - (x_{1} - x_{0})^{2} / (x_{2} - 2x_{1} + x_{0})
             x_0 \leftarrow x_s
Si (iter > max) ENTONCES
              ESCRIBIR ('No converge en max iteraciones')
              ESCRIBIR('Raiz =', x_0)
```

CEROS DE POLINOMIOS

Métodos Numéricos I

Dado un polinomio, de orden n, con coeficientes ai, i = 0,..., n

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Recordemos:

- •Para un orden n, hay n raíces reales o complejas, no necesariamente distintas.
- •Si n es impar, hay al menos una raíz real.
- •Si las raíces complejas existen, existe un par conjugado.

Teorema de Acotación de Raíces: Todos los ceros de un polinomio se hallan en el disco cerrado cuyo centro está en el origen del plano complejo y cuyo radio es *P*siendo:

$$\rho = 1 + \left| a_n \right|^{-1} \max_{0 \le k \le n} \left| a_k \right|$$

Ej: si tomamos el polinomio

$$p(x) = 3x^4 - 3x^3 - 3x^2 - 3x - 6$$

Calculamos:

$$\rho = 1 + \frac{6}{3} = 3$$

En función de este valor las raíces están el intervalo (-3,3)

Métodos Numéricos I

19

METODO DE HORNER

Dado un polinomio $P(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n$ y un valor x_0

Si se toman
$$\begin{cases} b_n=a_n\\ b_k=a_k+b_{k+1}x_0 & (k=n-1,n-2,\dots,1,0)\\ \therefore \ b_0=P(x_0) \end{cases}$$

más aun si : $Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1$

entonces $P(x) = (x - x_0)Q(x) + b_0$

Métodos Numéricos I

METODO DE HORNER

Dado que
$$P(x) = (x - x_0)Q(x) + b_0$$
 (1)

Siendo
$$Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1$$

Si derivamos (1)
$$P'(x) = Q(x) + (x - x_0)Q'(x)$$

Para
$$x = x_0$$
 $P'(x_0) = Q(x_0)$

Métodos Numéricos I

21

Método de Newton Raphson

Dado el polinomio, P(x), se calcula:

$$x_{n+1} = x_n - P(x_n) / P'(x_n)$$
 $n = 0, 1, 2, 3, ...$

usando Horner para calcular $P_{(x)}$ y $P'_{(x)}$.

Mediante el proceso de **deflación** podemos calcular todos los ceros del polinomio

METODO DE HORNER

Ejemplo:

$$P(x) = (x+2)(2x^3 - 4x^2 + 5x - 7) + 10$$

$$Q(x) = P'(x)$$

Métodos Numéricos I

23

METODO DE HORNER

Ejemplo:

Aplico Horner nuevamente para encontrar Q(-2)=P'(-2)

Método de Newton Raphson

Esta seria 1era iteración del método

$$x_1 = x_0 - P(x_0) / P'(x_0) = -2 - 10 / (-49) \cong -1.796$$

Se continuan las iteraciones hasta alcanzar la precisión buscada

Métodos Numéricos I

25

Algoritmo para calcular P(x) y P'(x)

ENTRADA: n: grado de P(x), ai: coeficientes de P(x),

 x_0 : punto donde evaluar P(x)

SALIDA : $y = P(x_0), z = P'(x_0)$

PASO 1: y = an

PASO2: z = an

PASO 3: PARA j=n-1, n-2, ... 1

$$y = x_0 *_y + a_j$$

$$z = x_0 *_z + y$$

PASO 4: $y = x_0 * y + a_0$

PASO 5: Devolver y, z

Métodos Numéricos I

Método de Muller

Permite calcular las raíces del polinomio, $p_n(x)$, donde n es el orden del polinomio y las a_n son coeficientes constantes.

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Este método es una generalización del método de la secante, trabaja con la parábola que intersecta al polinomio dado en tres puntos

Métodos Numéricos I

27

Supongamos buscar las raíces de

$$p_2(x) = a(x-x_2)^2 + b(x-x_2) + c$$

Debemos conocer a, b y c

Dados P0, P1 y P2, planteamos el sig. sistema de ecuaciones:

$$p_2(x_0) = a(x_0 - x_2)^2 + b(x_0 - x_2) + c = f(x_0)$$

$$p_2(x_1) = a(x_1 - x_2)^2 + b(x_1 - x_2) + c = f(x_1)$$

$$p_2(x_2) = a(x_2 - x_2)^2 + b(x_2 - x_2) + c = f(x_2)$$

vemos que

$$f(x_2) = c$$

El sistema será: $c = f(x_2)$

$$b = \frac{(x_0 - x_2)^2 [f(x_1) - f(x_2)] - (x_1 - x_2)^2 [f(x_0) - f(x_2)]}{(x_0 - x_2)(x_1 - x_2)(x_0 - x_1)}$$

$$a = \frac{(x_1 - x_2) [f(x_0) - f(x_2)] - (x_0 - x_2) [f(x_1) - f(x_2)]}{(x_0 - x_2)(x_1 - x_2)(x_0 - x_1)}$$

Métodos Numéricos

La nueva aproximación a la raíz será la solución de $p_2(x3) = 0$ Para el cálculo de la raíz, x_3 , debemos resolver:

$$x_3 - x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

para prevenir error de redondeo

$$x_3 = x_2 + \frac{-2c}{b \pm \sqrt{b^2 - 4ac}}$$
Cual sign

Cual signo hay que tomar?

En cada iteración, se recalculan los valores $[x_0, f(x_0)], [x_1, f(x_1)] y [x_2, f(x_2)]$ hasta alcanzar la raíz con la precisión deseada

Este método también permite calcular raíces complejas, se debe tomar un v.i. complejo, y es más estable que Newton, siendo su orden de convergencia $\cong 1.8$.

Métodos Numéricos I

29

En resumen:

- Los métodos numéricos para resolver raíces se dividen en abiertos y de intervalo
- Métodos que usan intervalos, necesitan dos valores iniciales que contengan la raíz, tienen garantizada la convergencia. Pero son lentos.
- Métodos abiertos abandonan la acotación de la raíz, ganando en velocidad; pero pueden diverger. La convergencia depende de una buena elección de los valores iniciales