Topología, curso 2019-20

Ноја 5

- 1. Estudia si los siguientes conjuntos son compactos en los espacios que se indican.
- i) $\{(-1)^n + \frac{1}{n} : n \in \mathbb{N}\} \subset \mathbb{R}$.
- ii) $\left\{\frac{n+2}{n+1}:n\in\mathbb{N}\right\}\subset\mathbb{R}$.
- iii) $\{\frac{n+1}{n}:n\in\mathbb{N}\}\cup\{1\}\subset\mathbb{R}.$
- iv) $[0,1] \subset \mathbb{R}$ con la topología del límite inferior $\mathcal{T}_{[]}$.
- v) $[0,1] \times \{3\} \subset \mathbb{R}^2$ con la topología del orden lexicográfico.
- 2. Halla un recubrimiento de [0, 1) por intervalos abiertos que no admita subrecubrimiento finito.
- 3. Da un ejemplo de un subconjunto A de un espacio topológico (X,\mathcal{T}) tal que:
- i) A no es compacto y \overline{A} es compacto.
- ii) A es compacto pero \overline{A} no es compacto. Sugerencia: $X = \mathbb{N}$, con la topología que consta de \emptyset y de todos los conjuntos que contienen a 1.
- 4. Si un espacio es compacto con cierta topología, ¿lo será con una menos fina? ¿Y con una más fina?
- **5.** Demuestra que si C_1 y C_2 son dos subconjuntos compactos disjuntos de un espacio de Hausdorff, existen dos abiertos disjuntos U_1, U_2 tales que $C_i \subset U_i$.
- **6.** Demuestra que si C es un compacto de un espacio de Hausdorff, entonces el conjunto C' de puntos de acumulación de C es también compacto.
- 7. Demuestra que si $(B_j)_{j\in\mathbb{N}}$ es una sucesión de bolas cerradas encajadas de \mathbb{R}^n (es decir, $B_1\supseteq B_2\supseteq B_3\supseteq\ldots$), entonces $\bigcap_{j\in\mathbb{N}}B_j\neq\varnothing$.
- 8. Indica razonadamente si las siguientes afirmaciones son verdaderas o falsas.
- i) La unión finita de subconjuntos compactos de un espacio es un subconjunto compacto.
- ii) La unión de una familia cualquiera de compactos de un espacio es un subconjunto compacto.
- iii) La intersección de una familia de compactos de un espacio de Hausdorff es un subconjunto compacto.
- 9. Decide cuáles son los subconjuntos compactos en \mathbb{R} con la topología cofinita, con la topología de los complementos numerables y, finalmente, con la topología discreta.
- **10.** Demuestra que los conjuntos compactos en la recta de Sorgenfrey $(\mathbb{R}, \mathcal{T}_{[\)})$ son necesariamente numerables. Indicación: Prueba primero que en un conjunto no numerable existe siempre una sucesión estrictamente creciente.
- 11. Consideremos los conjuntos $[0,1] \times [0,1] \times [0,1] \times [0,1]$.
- i) ¿Son espacios compactos con la topología del orden lexicográfico?
- ii) ¿Son subconjuntos compactos de \mathbb{R}^2 con la topología del orden lexicográfico?
- 12. i) Demuestra que \mathbb{R}^2 y \mathbb{S}^2 no son homeomorfos.
- ii) Sea $X = \{(x,y) \in \mathbb{R}^2 : x^2 = y^2, x,y \in [-1,1]\}$, con la topología usual. ¿Existe alguna función continua y suprayectiva de X en \mathbb{R} ?
- 13. Sea (X,d) un espacio métrico compacto. Prueba que la función distancia está acotada.
- **14.** Demuestra que si X es compacto, Y es Hausdorff y $f: X \to Y$ es continua entonces f es cerrada. Concluye que si f es además biyectiva, entonces es un homeomorfismo.
- **15.** Demuestra que si (X, \mathcal{T}_1) y (X, \mathcal{T}_2) es compacto y Hausdorff para dos topologías \mathcal{T}_1 y \mathcal{T}_2 que sean comparables, entonces $\mathcal{T}_1 = \mathcal{T}_2$.
- **16.** Demuestra que si Y es compacto entonces $\pi_1: X \times Y \to X$ es cerrada. Da un ejemplo de un conjunto no compacto en \mathbb{R}^2 cuyas proyecciones sean compactas. Indicación: Si A es cerrado y $x \notin \pi_1(A)$, hallamos un «tubo» $T = U_x \times Y$ tal que $T \cap A = \emptyset$.