Topic

FUNDAMIENTAL CONCEPTS OF ORGANIC CHEMISTRY

د	3 PRACTICE EXERCISE
2	organic compound/s can be classified as acyclic
	A. Isobutane D. All of these
22	Compounds containing ring of three or more than three carbon atom and
	resembling compounds are called alleyene A. Aliphatic B. Aromatic
	D.
Q.3	Alleyelic hydrocarbons will not follow general for many
	C. C _n H _{2n+2} D. C _n H _{2n-4}
Q. 4.	me can be classified as
	A. Carbocyclic B. Fromers B. Both A and C
0.5	How many secondary carbon atoms are present in Methylcylopropane
	A. 1 D. 0
ر. و	Which of the following is not heterocyclic compound B. Furan
	C. Pyridine D. Pyrrole
Q.7	tic compounds are of two types
	C. Straight chain and branched D. Homocyclic and alicyclic
Q.8	Which is not present as heteroatom in neterocyclic compounds B. Nitrogen
Q.9	Which compounds is alicyclic in nature B. Iso-butane
	C. n-Butane D. Toluene
Q.10	,
	A. Ammonium cyanate C. Methane
Q.11	Pyridine is an example of
	1988
5	C. Carbocyclic compound number of fused benzene rings
(A. 1
	E.3 D.4
Q.13	_
	have same molecular formula is called: A Metamerism
	nerism
014	Ether shows the phenomenon of:

A. Position isomerism

C. Metamerism

B. Functional group isomerism D. Cis trans isomerism

Q.26		Q.25	Q.24			Q.23		Q.22	ζ.	0 21	Q.20				Q.19	Q.18	Q.17	Q.16		0.15
Which of the following is an amide A. (NH ₂) ₂ CO C. C ₆ H ₅ NH ₂	their general formulae A. Phenol Ar –OH C. Carboxylic acid RCOOH	C. CH ₃ -O-CH ₃ Which one of the following class of com	Select from the following the one which is alcohol A. CH3-CH3-OH B. CH3-	C. – C ≡ N	ANH ₂	Which of the following is functional group of amino functional group	C. Position of hydroxyl group	Glycols and glycerols can be differentiated on the basis of	A. R - O - R	C. Alkynes Which one is thioether	Which class of compound cannot show A. Alkanes	C. Metamerism	R A. Functional group isomerism	$H_2N-C-COOH$ H_3N^+-C	C. 4 The type of isomeri H	-	Alkanes do not show geometrical isomerism due to B. Reson A. Asymmetry A. Asymmetry D. Restriction around single bond	_	A. Alkynes C. Carboxylic acid C. Carboxylic acid C. Carboxylic acid C. Carboxylic acid C. Carboxylic acid	11
B. NH ₂ CH ₃ D. N(CH ₃) ₃	B. Ketone R – COR	C. CH ₃ -O-CH ₃ Which one of the following class of compounds has been incorrectly matched	is alcohol B. CH-COOH	D. DC-NH ₂	B. $C = NH$	oup of amino functional group	D. All of these	ted on the basis of B. Number of hydroxyl group	B. R – Se – K D. R – Te – R		B. Alkene D. Alcohol	nositional isomerism	B. Tautomerism	- c-coo-	owing species is	B. 3 D. 5	B. Resonance D. Restricted rotation around doubled bond	B. Five D. Six	D. Alcohol of butylalcohol among alcohols are	not exhibit positional isomerism B. Nitroalkanes

Q.40	Q.39	Q.38	Q.37	Q.36	4. 50	Q.34	Q.33	Q.32	Q.31	Q.30	Q.29	Q.28	Q.27
Skeletal formula of an organic compound is given below		C. 2,2,4-Trimethylhexane Which suffix is used for carboxylic acid A. – al	A. 3-Ethyl 2-methyl hexane C. 4-Ethyl 5-methyl hexane The correct name of 3,5,5-Trimethylhexan A. 3-Ethyl 2-methyl pentane	What is the IUPAC name of this structure $CH_3 - CH_2 - CH - CH_2 - CH_2 - CH_3$ $CH_3 - CH - CH_3$ $CH_3 - CH - CH_3$		Choose the correct name according to IUPAC nomenclature A. 2-Ethyl-3-methyl pentane C. 3-Methyl cyclohexane C. 3-Methyl cyclohexane D. 3-Ethyl-4-methyl pentane C. 3-Methyl cyclohexane D. 3-Ethyl-4-methyl pentane	Propene and propyne have general formula A. C _n H _{2n} and C _n H _{2n-2} B. C _n H _{2n-2} and C _n H _{2n+2} C. C _n H _{2n+2} D. C _n H _{2n} and C _n H _{2n+2}	IUPAC name of neopentane A. 2,2- Dimethyl pentane C. 2,2- Dimethyl propane D. 2,2- Dimethyl butane	tiary carbon is bond ^{1S}	C. 50% In sp²-hybridization, the angle between two hybrid orbitals is A. 120° B. 180° C. 109.5° D. 90°	C. 50% The percentage of p character in sp ³ hybrid orbital is A. 25% A. 25%	centage of s character in sp ² hybr	sp-hybridization takes place by the mixing of orbitals A. One 1s, one 2p B. One 2s, three 2p D. One 2s, one 2n

Name of this compound is

Naphthalene Anthracene

B. Pyrene D. Biphenyl methane

PAST PAPER QUESTIONS

- isomerism 1-chloroproane and 2-chloropropane isomers 2 each other. The MDCAT
- C. Positional isomerism Cis-trans isomerism
- The cis-isomerism is shown by B. Chain isomerism
 D. Functional group isomerism
 MDCAT (2013)

C=C

E E

Ĕ

- Which one of the following pair of compound is cis and trans isomers of each other?
- 5 MDCAT (2014)

- Q.4 Which one of the following is a ketone?
- A. CH₃-CH3-Ç þ CH_2 $-CH_2$ CH₃ $-CH_3$

- B. CH₃COCOOH
- D. CH₃--CH₂CHO
- Q.5 The given three hydrocarbons are

MDCAT (2015)

MDCAT (2014)

- A. Alicyclic hydrocarbons Benzene
- Naphthalene $\mathbf{\Xi}$ Anthracene
- Acyclic Hydrocarbons
- 0.6 The structural formula of 2,3,4 trimethylpentane is

C: Aromatic hydrocarbons

D. Heterocyclic hydrocarbons **MDCAT (2015)**

H₃C-CH-CH-CH-CH₃ CH₃

Ε. H₃C-CH₂ сн, сн, сн-сн,

D CH₃-CH₂-CH-CH3 ĊH3 C-CH₃ ĊH₃

The IUPAC name of the given compound is

MDCAT (2015)

CH₃ - CH - CH₂ - Cl

B. Isobutyl chloride

A. 1-Chloro-2-methylpropane

D. 2-Methyl-3-chloropropane

C. 1-Chloro-2-methylbulane
Which one of the following pairs can be a cis-trans isomer to each other?MDCAT (2016) C. 1-Chloro-2-methylbutane

A. $CHC1 = CC1_2$ and $CH_2 = CH_2$

Q.8

B. CHCl = CH2 and CH2 = CHCl

LC/CH3-CH=CH-CH3 and H3C-CH=CH-CH3

Q.9 The type of structural isomerism which arises due to the difference in the nature of D. CH_3 - CH_3 and $CH_2 = CH_2$ MDCAT (2017)

A. Chain isomerism carbon chain or carbon skeleton is

B. Cis-Trans isomerism

D. Optical isomerism

Q.10 Which one of the followings is the best name according to IUPAC system for the formula given below? C. Position isomerism MDCAT (2017)

A. 4-methyl-6-chloro heptane

B. 2-chloro-3-methyl hexane

C. 2-chloro-4n propyl hexane

D. 2-chloro-4-n propyl pentane

Cyclobutane structure is categorized under:

MDCAT (2017)

A. Aromatic compounds C. Alicyclic compounds

B. Aliphatic compounds D. Heterocyclic compounds

Name the compound, which shows geometric isomerism:

MDCAT (2017)

C. 2-pentene A. 1-bromo-2-chloropropene

D. Both A & C B. 2,3-dimethylpropene

Which one is a functional group of carboxylic acid:

MDCAT (2017)

Ġ H

D. None of these

D. 3

Butane molecule can have maximum no of isomers

MDCAT (2018)

NVIDCA1 (2020)	A. CH ₂ =CH ₂ C. CH ₃ -NH ₂ D. C6H ₆	A. CH ₂ = CH ₂ C. CH ₃ – NH ₂	
	A. Primary alcohol, nitrile and benzene ring B. Secondary alcohol, nitrile and aryl ring C. Secondary alcohol, nitrile and phenol ring D. Secondary alcohol, amine and benzene ring Select the arguin	A. Primar B. Second C. Second D. Second	Q.24
e; MDCAT (2019)	The names of functional groups in the following compound X are;	The names of fu	Q.23
ETEA (2019)	1e type of isomerism	C ₄ H ₁₁ N gives the A. Metamerism	Q.22
ound? ETEA (2019)	following is not the major so	Which of the A. Natural gas C. Coal	Q.21
ETEA (2019)	mers of pentane is	C. Chain isomerism The number of isol A. 2 C. 5	Q.20
NUMS (2019 RC) n	C. 3-Hexane-1,5-diyne D. 3-Hexyne-1,5-diene Diethyl ether and n-butanol are B. Functional isomerism	C. 3-Hexa Diethyl e A. Positic	Q.19
butane NUMS (2019 RC)		A.2-Meth C. 2,4,5-7 IUPAC II	Q.18
SET (2019)	H,C-HC-CH,-HC-CH-CH, CH, CH,	The IIIP.	
	2- butcno	A. 1-butanol C. 2-chloro - Have a critic	Q.17
MDCAT (2018) undergo both sp ³ dentify X MDCAT (2018)	Select one which is alcohol A. CH ₃ -O-CH ₃ A. CH ₃ -O-CH ₃ D. CH ₃ -CH ₂ -OH C. CH ₃ COOH In the following organic compound carbon atoms in all of them undergo both sp ³ and sp ² hybridization except X, which has all sp ³ hybrid orbitals, identify X MDCAT (2018)	Select one which A. CH ₃ -O-CH ₃ C. CH ₃ COOH In the following and sp ² hybridi	Q.15

Q.25 The type of isomerism existing in a compound of molecular formula C2H6O is: Fundamental Concepts of Organic Chemistry

A. Functional group

C. Chain

B. Position

Which of the following compound show geometric isomerism? D. Metamerism

NMDCAT (2020)

NMDCAT (2020)

A

B(

Generic formula of cycloalkane is

 C_nH_{2n+2}

C. C_nH_{2n-1}

Q.28 In alkanes, each carbon has hybridization

 \tilde{A} . sp³ C. sp^2

D.

B. C_nH_{2n}

D. C_nH_{2n-2}

B. sp D. dsp

NMDCAT (2020)

NMDCAT (2020)

answer key ||

10	9	8	7	6	S	4	w	2	-
В	Α	D	C	A	C	D	C	A	D
20	19	18	17	16	15	14	13	12	11
A	В	C	C	A	C	C	묘	C	В
30	29	28	27	26	25	24	23	22	21
			24					J-1981 - 1744	0
40	39	38	37	36	35	34	33	32	31
		i ilu	75						D.

PAPER QUESTIONS

								_
	7	4	1	3	7	,	_	
(?		2	A	E	5	C	
	10	7	0	∞	1.84	7	0	1
	Œ	2		C			A	
	15	1	14	13	1	12	II	=
1	5		A	A		J		2
,	20	3	19	18		17	15	16
				B				
	22	3	24	23	3	22	;	21
	A	>	D	0	J	A		J
				07	20	27		26
						C.		
	_	_						