2021 ST 27-39

AI24BTECH11031 - Shivram S

1) If the marginal probability density function of the k^{th} order statistic of a random sample of size 8 from a uniform distribution on [0, 2] is

$$f(x) = \begin{cases} \frac{7}{32} x^6 (2 - x), & 0 < x < 2, \\ 0, & \text{otherwise,} \end{cases}$$

then k equals $\frac{1}{\{X_n^{(\alpha)}\}_{n\geq 1}}$. 2) For $\alpha>0$, let $\frac{\{X_n^{(\alpha)}\}_{n\geq 1}}{\{X_n^{(\alpha)}\}_{n\geq 1}}$ be a sequence of independent random variables such that

$$P(X_n^{(\alpha)} = 1) = \frac{1}{n^{2\alpha}} = 1 - P(X_n^{(\alpha)} = 0).$$

Let $S = \{\alpha > 0 : X_n^{(\alpha)} \text{ converges to } 0 \text{ almost surely as } n \to \infty \}$. Then the infimum of S equals (round off to 2 decimal places).

3) Let $\{X_n\}_{n\geq 1}$ be a sequence of independent and identically distributed random variables each having uniform distribution on [0,2]. For $n \ge 1$, let

$$Z_n = -\log_e \left(\prod_{i=1}^n (2 - X_i) \right)^{\frac{1}{n}}$$

Then, as $n \to \infty$, the sequence $\{Z_n\}_{n \ge 1}$ converges almost surely to _____ (round off to two decimal places).

4) Let $\{X_n\}_{n\geq 0}$ be a time-homogeneous discrete time Markov chain with state space {0, 1} and transition probability matrix

$$\begin{pmatrix} 0.25 & 0.75 \\ 0.75 & 0.25 \end{pmatrix}$$

If $P(X_0 = 0) = P(X_0 = 1) = 0.5$ then

$$\sum_{k=1}^{100} E\left[(X_{2k})^{2k} \right]$$

equals _____

- 5) Let {0,2} be a realization of a random sample of size 2 from a binomial distribution with parameters 2 and p, where $p \in (0,1)$. To test $H_0: p = \frac{1}{2}$ against $H_1: p \neq \frac{1}{2}$, the observed value of the likelihood ratio test statistic equals _____ (round off to 2 decimal places).
- 6) Let X be a random variable having the probability density function

$$f(x) = \begin{cases} \frac{3}{13} (1 - x) (9 - x) & 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

Then $\frac{4}{3}E\left[X\left(X^2-15X+27\right)\right]$ equals _____ (round off to two decimal places).

7) Let (Y, X_1, X_2) be a random vector with mean vector $\begin{pmatrix} 5 \\ 2 \\ 0 \end{pmatrix}$ and variance-covariance

matrix
$$\begin{pmatrix} 10 & 0.5 & -0.5 \\ 0.5 & 7 & 1.5 \\ -0.5 & 1.5 & 2 \end{pmatrix}$$
. Then the value of the multiple correlation coefficient

between Y and its best linear predictor on X_1 and X_2 equals _____ (round off to two decimal places).

- 8) Let $\underline{X_1}$, $\underline{X_2}$ and $\underline{X_3}$ be a random sample from a bivariate normal distribution with unknown mean vector μ and unknown variance-covariance matrix Σ , which is a positive definite matrix. The p-value corresponding to the likelihood ratio for testing $H_0: \underline{\mu} = \underline{0}$ against $H_1: \underline{\mu} \neq \underline{0}$ based on the realization $\left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 4 \\ -2 \end{pmatrix}, \begin{pmatrix} -5 \\ 0 \end{pmatrix} \right\}$ of the random sample equals _____ (round off to two decimal places).
- 9) Let $Y_i = \alpha + \beta x_i + \epsilon_i$, i = 1, 2, 3 where x_i 's are fixed covariates, α and β are unknown parameters, and ϵ_i 's are independent and identically distributed random variables with mean zero and finite variance. Let $\hat{\alpha}$ and $\hat{\beta}$ be the ordinary least squares estimators of α and β respectively. Given the following observations

y_i	0.62	26.86	54.02
x_i	3.29	21.53	48.69

the value of $\hat{\alpha} + \hat{\beta}$ equals _____ (round off to two decimal places).

10) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x^3 \sin x & x = 0 \text{ or } x \text{ is irrational} \\ \frac{1}{q^3} & x = \frac{p}{q}, p \in \mathbb{Z} \setminus \{0\}, q \in \mathbb{N} \text{ and } \gcd(p, q) = 1 \end{cases}$$

where \mathbb{R} denotes the set of all real numbers, \mathbb{Z} denotes the set of all integers, \mathbb{N} denotes the set of all positive integers and $\gcd(p,q)$ denotes the greatest common divisor of p and q. Then which one of the following statements is true?

- a) f is not continuous at 0
- b) f is not differentiable at 0
- c) f is differentiable at 0 and the derivative of f at 0 equals 0
- d) f is differentiable at 0 and the derivative of f at 0 equals 1
- 11) Let $f[0, \infty) \to \mathbb{R}$ be a function, where \mathbb{R} denotes the set of all real numbers. Then which of the following statements is true?
 - a) If f is bounded and continuous, then f is uniformly continuous
 - b) If f is uniformly continuous, then $\lim_{x \to a} f(x)$ exists.
 - c) If f is uniformly continuous, then the function $g(x) = f(x) \sin x$ is also uniformly continuous
 - d) If f is continuous and $\lim_{x\to\infty} f(x)$ is finite, then f is uniformly continuous.
- 12) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f(0) = 0 and f'(x) + 2f(x) > 0 for all $x \in \mathbb{R}$ where f' denotes the derivative of f and \mathbb{R} denotes the set of all real

numbers. Then which one of the following statements is true?

- a) f(x) > 0 for all x > 0 and f(x) < 0 for all x < 0
- b) f(x) < 0 for all $x \neq 0$
- c) f(x) > 0 for all $x \neq 0$
- d) f(x) < 0 for all x > 0 and f(x) > 0 for all x < 0
- 13) Let M be the collection of all 3×3 real symmetric positive definite matrices. Consider the set

$$S = \left\{ \mathbf{A} \in M : \mathbf{A}^{50} - \frac{1}{4} \mathbf{A}^{48} = \mathbf{0} \right\}$$

where $\mathbf{0}$ denotes the 3×3 zero matrix. Then the number of elements in S equals

a) 0

b) 1

c) 8

d) ∞