Name_____

PROBLEM 1 (15 POINTS)

Determine the distance x such that the magnitude of the moment at O equals 15 N * m. x must be positive. (Figure not to scale)

Name	
------	--

PROBLEM 2 (20 POINTS)

Crate B weighs 150 lb. It is connected to crate A by a cable (CD on the figure) and placed on an inclined plane. Let w_A be the weight of crate A. What value of w_A will cause the system to be on the verge of sliding down? The coefficients of static friction between the crates and the plane are μ_A = 0.25 and μ_B = 0.35.

Name

PROBLEM 3 (15 POINTS)

Determine the force in members CL and EJ of the truss, and state if the members are in tension or compression. Neglect the weight of the members. Write your results on the table.

BAR	MAGNITUDE (kN)	Tension or Compression
CL		
EJ		

Name	
------	--

PROBLEM 4 (20 POINTS)

Determine the horizontal and vertical components of reaction that the pins A and B exert on the two-member frame. Length of AC is 1.5 m. Set F = 200 lb. Draw a figure with your results and box it.

Name_____

PROBLEM 5 (15 POINTS)

Determine the reactions at pin support A and roller support B. Draw a figure with your results and box it.

Name_____

PROBLEM 6 (15 POINTS)

If cable BC is subjected to a tension of 300 lb and the force shown in the figure F = 900 lb

- a) Determine distance d
- b) Compute the components of the reaction at hinge A.

