Divsion of Mathematics and applied mathematics Mälardalen University Examiner: Mats Bodin

Examination Vector algebra MAA150 - TEN1 Date: 2015-10-01

Exam aids: not any

All solutions should be presented so that calculations and arguments are easy to follow. All answers should be motivated. Each solution should end with a clearly stated answer.

1 Find all solutions of the linear system

a.

$$\begin{cases} x + 3y - z &= 2\\ x + y + z &= 1\\ x + y &= 3 \end{cases}$$
 (3p)

b.

$$\begin{cases} x + y + z &= 2x + z \\ x - y &= 1 - 2y \end{cases}$$
 (3p)

2 Given

$$A = \begin{bmatrix} 1 & 0 & -1 & -1 \\ 0 & 0 & -1 & -1 \\ -1 & -1 & 0 & 0 \\ -1 & -1 & 0 & 1 \end{bmatrix}$$

- **a.** Evaluate the determinant of A. (3p)
- **b.** Explain why A is invertible and find A^{-1} . (4p)
- Let $\mathbf{u} = (3, -1, 1)$ and $\mathbf{v} = (5, 2, -2)$
- a. Determine the point of intersection between the line $l: \mathbf{u} + t\mathbf{v}, t \in \mathbb{R}$ and the plane $\Pi: 2x - 6y + z = 1.$ (3p)
- **b.** Determine the parameter t so that the vectors $2\mathbf{u} + t\mathbf{v}$ and \mathbf{u} are orthogonal. (3p)

4

- **a.** Express the complex number $z = \frac{1+\sqrt{3}i}{1+i} \cdot (1-i)$ in the form a+bi and in polar form. **b.** Factorize the polynomial $p(z) = 4z^3 4z^2 + z 1$. (3p)
- (3p)

Avdelningen för Matematik och tillämpad matematik Mälardalens högskola Examinator: Mats Bodin

Tentamen Vektoralgebra MAA150 - TEN1 Datum: 2015-10-01 Hjälpmedel: inga

Lösningarna skall presenteras på ett sådant sätt att räkningar och resonemang blir lätta att följa. Alla svar skall motiveras. Avsluta varje lösning med ett tydligt angivet svar!

1 Bestäm alla lösningar till ekvationssystemet

a.

$$\begin{cases} x + 3y - z &= 2\\ x + y + z &= 1\\ x + y &= 3 \end{cases}$$
 (3p)

b.

$$\begin{cases} x + y + z &= 2x + z \\ x - y &= 1 - 2y \end{cases}$$
 (3p)

(4p)

2 Givet

$$A = \begin{bmatrix} 1 & 0 & -1 & -1 \\ 0 & 0 & -1 & -1 \\ -1 & -1 & 0 & 0 \\ -1 & -1 & 0 & 1 \end{bmatrix}$$

- **a.** Bestäm determinanten av A. (3p)
- **b.** Motivera varför A är inverterbar och bestäm A^{-1} .
- Låt $\mathbf{u} = (3, -1, 1)$ och $\mathbf{v} = (5, 2, -2)$
- a. Bestäm koordinaten för skärningspunkten mellan linjen $l: \mathbf{u} + t\mathbf{v}, t \in \mathbb{R}$ och planet $\Pi:$ 2x - 6y + z = 1.(3p)
- **b.** Bestäm parametern t så att vektorn $2\mathbf{u} + t\mathbf{v}$ blir ortogonal mot \mathbf{u} . (3p)

4

- a. Skriv det komplexa talet $z=\frac{1+\sqrt{3}i}{1+i}\cdot(1-i)$ på formen a+bi och på polär form. b. Faktorisera polynomet $p(z)=4z^3-4z^2+z-1$. (3p)
- (3p)

Answers

1. a)
$$x = 9/2$$
, $y = -3/2$, $z = -2$.

1. b)
$$x = 1/2$$
, $y = 1/2$, $z = t$.

2. a)
$$det(A) = -1$$

2. b) A is invertible since $det(A) \neq 0$

$$A^{-1} = \begin{bmatrix} 1 & -1 & -0 & 0 \\ -1 & 1 & -1 & 0 \\ 0 & -1 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

3. a)
$$P = (18, 5, -5)$$

3. b)
$$t = -2$$

4. a)
$$z = 2(\cos(-\pi/6) + i\sin(-\pi/6)) = \sqrt{3} - i$$

4. b)
$$p(z) = 4(z-1)(z-i/2)(z+i/2)$$

MAA150 Vektoralgebra, ht-15.

Bedömningskriterier TEN1 2015-10-01

Allmän bedömningsgrund

Lösningarna skall presenteras på ett sådant sätt att räkningar och resonemang blir lätta att följa. Alla svar skall motiveras. Avsluta varje lösning med ett tydligt angivet svar.

Bedömning uppgifter

- 1. a. Fullständigt löst uppgift ger 3 poäng. Relevanta och korrekta radoperationer ger 2 poäng. Korrekt svar ger 1 poäng.
 - b. Fullständigt löst uppgift 3 poäng. Skriva problemet på formen Ax=0 och att ställa upp den utvidgade matrisen ger 1 poäng. Relevanta radoperationer ger 1 poäng. Att ansätta fria variabel z=t och korrekt svar ger 1 poäng.
- 2. a. Att beräkna det(A) med en korrekt metod ger 3 poäng. Relevant kofaktorutveckling eller radreducering ger maximalt 2 poäng. Korrekt svar ger 1 poäng.
 - b. Fullständigt löst uppgift 4 poäng. En korrekt motivering av att inversen existerar ger 1 poäng. Bestämma inversen ger 3 poäng. Korrekt metod och relevant radreducering ger 2 poäng. Korrekt svar ger 1 poäng.
- **3.** a. Fullständigt löst uppgift ger 3 poäng. Ställa upp relevant ekvation korrekt för att hitta skärningspunkten ger 2 poäng. Lösa ekvationen ger 1 poäng.
 - b. Fullständigt löst uppgift ger 3 poäng. Ställa upp relevant ekvation korrekt ger 2 poäng. Lösa ekvationen ger 1 poäng.
- **4.** a. Fullständigt löst uppgift ger 3 poäng. Skriva talet på formen a+bi ger 1 poäng. Att skriva talet på polär form ger 2 poäng. Att bestämma absolutbelopp och argument ger vardera 1 poäng.
 - b. Fullständigt löst uppgift ger 3 poäng. Att korrekt motivera varför z-1 är en faktor ger 1 poäng. Att med polynomdivision bestämma att $p(z)=(z-1)(4z^2+1)$ ger 1 poäng. Att faktorisera $4z^2+1$ ger 1 poäng. Är inte 4:an med i p(z)=4(z-1)(z-i/2)(z+i/2) dras 1 poäng.

$$\Rightarrow$$
 x = $\frac{9}{2}$, y = $-\frac{3}{2}$, and Z = -2

$$\sim \begin{bmatrix} 1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 1/2 \end{bmatrix}$$

Answer: a)
$$x = 9/2$$
, $y = -3/2$, $z = -2$

Check;

$$(1a) \times = 9/2, y = -3/2, z = -2$$

①
$$\times +3y-Z=9/2+3(-\frac{3}{2})-(-2)=9/2-9/2+2=2$$
 06

①
$$x + y + 2 = 9/2 + (-3/2) + (-2) = 6/2 - 2 = 3, -2 = 1$$
 ok!

(3)
$$x + y = 9/2 + (-3/2) = 6/2 = 3$$
 ok!

$$\begin{bmatrix}
1 - 1 & 0 & 0 \\
- 1 & 1 - 1 & 0
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 - 1 & 1 - 1 \\
0 & 0 - 1 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

```
3a) \overline{u} = (3,-1,1), \overline{v} = (5,2,-2)

l: \begin{cases} x = 3+5t \\ y = -1+2t \end{cases} A point (x_1y_1, \overline{t}) on the line belongs \begin{cases} z = 1-2t \end{cases} to the playe if 2x-6y+\overline{z}=1

Therefore 2(3+5t)-6(-1+2t)+(1-2t)=1

6+10t+6-12t+1-2t=1

-4t=-12 \Leftrightarrow t=3

So x = 3+5\cdot 3=18, y = -1+2\cdot 3=5, z = 1-2\cdot 3=-5
```

$$(2\cdot(3,-1,1)+t\cdot(5,2,-2)) \circ (3,-1,1) = 0$$

$$(6,-2,2)+(5t,2t,-2t)) \circ (3,-1,1) = 0$$

$$(6+5t,-2+2+,2-2t) \circ (3,-1,1) = 0$$

$$3\cdot(6+5t)-1\cdot(-2+2t)+1\cdot(2-2t) = 0$$

$$18+15t+2-2t+2-2t=0$$

$$22+11t=0 \Leftrightarrow t=-22=-2$$

Answer: a)
$$(18, 5, -5)$$

b) $t = -2$

Check:

3a) Does (18,5,-5) belong to the line? Let t=3 in the equation for the line, then

Does (18,5,-5) belong to the plane?

```
Multiply numerator and denominator
   4a) z = 1 + \sqrt{3}i \cdot (1 - i) = (1 + \sqrt{3}i)(1 - i)^2 = (1 + \sqrt{3}i)(1 - 2i - 1)
1 + i
(1 + i)(1 - i)
1^2 + 1^2
   =(1+\sqrt{3}i)\cdot(-2i)=(1+\sqrt{3}i)\cdot(-i)=-i+\sqrt{3}=\sqrt{3}-i
                                      121=13-1=13+1=2
                                                     30° 7 100 1
     => Z= \(\frac{3}{3}-i=2\)\((\cos(-\pi)+i\)\(\frac{1}{6}\)\)
             atib form polar form
   6) p(z)=423-422+2-1, Since P(1)=0, (Z-1) is
      a factor of p(z). The division algorithm gives
        422+1
         423-422+2-1
                              2-1
      -(423-422)
Z-1
                 (3-1)
    > p(z)=(z-1). (422+1)=4(z-1).(22+1)
      ヹ+ 1=0 ( ) ヹ=-」 ( ) マ=サール
    P(Z) = 4.(Z-1).(Z-21).(Z+11)
Auswar: a) Z= 131-i = 2.(cos(-1)+isin(-1))
```

b) p(z) = 4.(z-1). (z-1i).(z+1i)

Checks

$$4a$$
) 2. $(cos(-\frac{\pi}{6})+isin(-\frac{\pi}{6}))=2.(\frac{\pi}{2}+i(-\frac{1}{2}))=\pi -i ok!$

$$= 4.(2-1).(2^2+\frac{1}{4}) = (2-1)(42^2+1) = 42^2+2-42^2-1$$