8. Numerička integracija

1. Površina ispod funkcije

Površina ispod funkcije f(x) nad intervalom [a,b] jednaka je vrednosti određenog integrala I te funkcije nad istim intervalom:

Slika 1. Površina ispod funkcije

2. Zapremina simetričnih tela

Rotacijom površi oko prave koja se nalazi u istoj ravni dobija se simetrično telo. Npr. rotacijom pravougaonika oko x-ose dobija se cilindar:

Slika 2. Cilindar dobijen rotacijom pravougaonika

Zapremina cilindra je: $V = r^2 \pi H$, r = const.

Rotacijom površi ispod proizvoljne funkcije oko x-ose dobija se simetično telo:

Slika 3. Simetrično telo dobijeno rotacijom površi ispod proizvoljne funkcije

Zapremina takvog tela se može naći integracijom po diskovima (sumom zapremina manjih cilindara):

Slika 4. Integracija po diskovima

$$h = \frac{H}{n}$$

$$V = r_1^2 \pi h + r_2^2 \pi h + \dots + r_n^2 \pi h = \sum_{i=1}^n r_i^2 \pi h$$

$$V = f(x_1)^2 \pi h + f(x_2)^2 \pi h + \dots + f(x_n)^2 \pi h = \sum_{i=1}^n f(x_i)^2 \pi h$$

$$V = \lim_{\substack{h \to 0 \\ n \to \infty}} \sum_{i=1}^n f(x_i)^2 \pi h = \int_0^H f(x)^2 \pi dx$$

Zapremina tela je: $V = \pi \int_0^H f(x)^2 dx$

1. Izračunati vrednost integrala funkcije $f(x) = \sin x$ nad intervalom $\left[0, \frac{3\pi}{2}\right]$.

rešenje:

I=1 (za Simpsonovu metodu)

2. Izračunati vrednost integrala $I=\frac{2}{\sqrt{2\pi}}\int_0^{0.2}e^{-\frac{x^2}{2}}dx$.

rešenje:

I = 0.1585 (za Simpsonovu metodu)

3. Izračunati površinu između 2 krive: $f(x) = x^2$, $g(x) = \sqrt{x}$ nad intervalom [0,2].

rešenje:

P = 1.4475 (za Simpsonovu metodu)

4. Izračunati zapreminu tela dobijenog rotacijom površi ispod funkcije $f(x) = \frac{e^{2x}}{x}$ nad intervalom [1,2] oko x-ose.

rešenje:

V = 776.3355 (za Simpsonovu metodu)

5. Izračunati zapreminu tela dobijenog rotacijom površi ograničene funkcijama: $f(x) = e^x + 2$, $g(x) = \sqrt{x}$ nad intervalom [2,3] oko x-ose.

rešenje:

V = 712.2030 (za Simpsonovu metodu)

6. Izračunati površinu između krive: $f(x) = x^2 + 2$ i <u>y-ose</u> nad intervalom $f(x) \in [2, 4]$.

rešenje:

P = 1.8854 (za Simpsonovu metodu)

7. Izračunati zapreminu tela dobijenog rotacijom površi ispod funkcije: $f(x) = x^2 + 2$ nad intervalom $x \in [0,4]$ oko y-ose.

rešenje:

V = 502.6548 (za Simpsonovu metodu)

8. Telo se kreće brzinom $v(t)=t^2-2t+3$. Naći pređeni put tela posle $t_1=5s$.

$$v = \frac{ds}{dt}$$
$$s = \int_0^{t_1} v(t)dt$$

rešenje:

s = 31.6667 (za Simpsonovu metodu)