Topología

Alec Zabel-Mena.

January 21, 2021

Chapter 1

Topological Spaces and Continuous Functions.

1.1 Espacios Métricos.

Definition. Una **Métrica** sobre un conjunto X es ina funcion $d: X \times X\mathbb{R}$ tal que para toda $x, yz \in X$:

- (1) $d(x,y) \ge 0$ y d(x,y) = 0 si y solo si x = y.
- (2) d(x,y) = d(y,x).
- (3) $d(x,z) \leq d(x,y) + d(y,z)$ (La Desigualdad Triangular).

Si d es una métrica sobre el conjunto X, entonces decimos que el par ordenado (X, d) es un **espacio métrico**, y que d(x, y) es la **distancia** entre x y y.

Example 1.1. Sea $X = \mathbb{R}$ y $d = |\cdot|$, entonces $(\mathbb{R}, |\cdot|)$ es una espacio métrico. Para $X = \mathbb{R}^2$ y $d = ||\cdot||$, $(\mathbb{R}^2, ||\cdot||)$ tambien es un espacio metrico.

Example 1.2 (La Métrica Discreta). Sea X cualquier conjunto, y sea $d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$ Vemos que las propiedades (1) y (2) estan satisfecho. Tambien vemos que para $x,y,z \in X$ que d(x,z) = 1,0 y que d(x,y),d(y,x) = 1,0. Pues d(x,y)+d(y,z) = 2,1,0, pues en todo caso $d(x,z) \leq d(x,y)+d(y,z)$.