

Search – Yelp Dataset Challenge

Professor Xiaozhong Liu Yang Yang, Huzefa Dargahwala, Kamal Adusumilli, Nipurn Doshi, Rama Raghava Reddy

DATA

Just kidding, you should already know what the data looks like :p

Task1

Predict the category/ies of each business from Yelp Dataset

Approaches

- A. Machine Learning
- **B.** Info Retrieval

Machine Learning Approach

Multilabel Classification Problem

A. Machine Learning Approach Inputs : All reviews and tips for all businesses combined

Output: The categories to which the business belongs

Data Preprocessing

- Convert everything to lowercase
- Remove stopwords

A. Machine Learning Approach

Features

- tf-idf scores of the words present in the combined set of processed reviews and tips.
- Size of the Feature Set 27163

A. Machine Learning Approach

Algorithms

- Linear SVC
- Multinomial NB

- Entire data Split used 80:20 and 60:40 using Stratified Sampling, both gave similar results
- One vs Rest Classification approach to handle multiple labels.

A. Machine Learning Approach

Results

A. Machine Learning Approach

Results

A. Machine Learning Approach

Results

Information Retrieval Approach

Data Preprocessing

B.
Information
Retrieval
Approach

- Build indexes for business, review and tip collections to speed up the search process.
- Build the (MongoDB)collection "test_set", which includes the business information, all the reviews and tips for each business_id.

Ground Truth File

3. For each business_id, it already has some categories assigned to it. We will use this as ground truth file.

eg. if business_id1 has category [category2]

Business_id1	Category1	0
Business_id1	Category2	1

4. For each query, search the fields "review" and "tip", and find the top 10 related business_id.

B.
Information
Retrieval
Approach

Algorithms:

Vector Space Model, BM25, Language Model (Dirichlet Smoothing), Language Model (Jelinek Mercer Smoothing)

review

	BM25	LM(D)	LM(J)	VSM
Р	0.4361	0.4396	0 . 3637	0.3637
R	0.1281	0.1230	0.1133	0.1133
F1	0.1244	0.1228	0.1071	0.1071

tip

	BM25	LM(D)	LM(J)	VSM
Р	0.2367	0.2575	0.2192	0.2192
R	0.3067	0.0366	0.0343	0.0343
F1	0.0462	0.0472	0.0430	0.0430

LM(D) Language Model with Dirichlet Smoothing LM(J) Language Model with Jelinek Mercer Smoothing

Approach 2

$$R = 0.24$$

$$F1 = 0.28$$

Task 2

A. Predict Rating of a Review from its text

B. Predict Helpfulness of Review from its text

A.
Predict
Rating of a
Review
from its
text

Problem Statement

Given a review text, predict the rating on a scale of 1 to 5

Data

All Reviews from the dataset, irrespective of the business

Data Preprocessing

Steps done in task 1, Lemmatization using WordNet, Append not_ to negated words eg: not good will be not_good, and Remove Punctuation

Features

Same as Task 1 (836818 number of unigram features)

Algorithmic Approaches

A.
Predict
Rating of a
Review
from its
text

Pure Classification Task

- Linear SVC
- Multinomial NB

with Recursive Feature
Elimination

Classification & Regression Task

 Classification & Regression Trees (CART)

(Data Split 60:40 using Stratified Sampling)

A. Predict Rating of a Review from its

text

Detailed Results for Classification task

Detailed Results for Classification task (contd.)

A.
Predict
Rating of a
Review
from its
text

CART Results

A.
Predict
Rating of a
Review
from its
text

CART Results

A.
Predict
Rating of a
Review
from its
text

Explained Variance Score	0.343
Mean Absolute Error	0.832
Mean Squared Error	1.13
Median Absolute Error	0.6957
R2 Score	0.343

B. Predict Helpfulness of a review from its text

Problem Statement

Given a review text, predict whether the review will be helpful or not

Data

All Reviews from the dataset, irrespective of the business

Data Preprocessing

Same as Task 2a, extract helpfulness and aggregate all helpfulness > 1 to helpful = 1

Features

Same as Task 1

B.
Predict
Helpfulness
of a review
from its
text

Algorithmic Approaches

Linear SGD Multinomial NB

(Data Split 80:20 and 60:40)

Results

B.
Predict
Helpfulness
of a review
from its
text

Results

B.
Predict
Helpfulness
of a review
from its
text

Insights for Task 1

- 1. Class imbalance problem
- 2. Bag of Words Model
- 3. Simple linear classifier
- 4. Precision values 0?

Insights for Task 2

- 1. Classification / Regression problem?
- 2. Class imbalance good or bad?
- 3. CART = Intractable for depth > 15

Overall experience of the project,

