Anisotropia Magnética

Anisotropia Magnética

 Anisotropia => Propriedade física do material é função da direção

- Anisotropia Magnética
 - Os momentos magnéticos se alinham preferencialmente em uma dada direção:
 - direção de fácil magnetização

Origem da Anisotropia Magnética

- Forma da amostra (anisotropia de forma)
- Simetria Cristalina e Ordenamento de Pares Atômicos (anisotropia magnetocristalina)
- Tensões Internas e Externas (anisotropia induzida/construída)

• Na magnetização se manifesta através de χ (susceptibilidade magnética) ou μ (permeabilidade magnética)

Anisotropia Magnetocristalina

Fenomenologia da Anisotropia

1) Anistropia Uniaxial - Co

Preferência de magnetização em uma só direção em dois

sentidos.

- 2) Anisotropia Cúbica Fe e Ni
 - Preferência de magnetização em 3 direções em 6 sentidos.

Origem da Anisotropia Magnetocristalina

Como os momentos magnéticos locais distinguem entre direções cristalográficas diferentes?

Ou em outras palavras

Como µ_J se acopla à rede?

Interação Spin-Órbita (spin acoplado à forma e orientação do orbital)

+

Ligações Químicas com o meio externo (campo cristalino)

Se o campo cristalino é de baixa simetria \underline{e} se os elétrons da ligação entre átomos têm distribuição de carga assimétrica ($L_z \neq 0$)

- Os orbitais atômicos interagem anisotropicamente com o campo cristalino. O acoplamento spinórbita, causará portanto maiores distorções da rede.
 - Ou seja, certas orientações dos orbitais moleculares ou da distribuição de carga dos elétrons ligantes são energeticamente favoráveis

Anisotropia Magnetocristalina + Aplicação de Campo (H)

- O campo H causará um torque em μ_{s_i} mas S continuará acoplado a L. Há duas energias envolvidas:
 - A energia do campo cristalino (D): que acopla L à rede
 - Interação Spin-Órbita: ξ L.S

Caso 1) D > ξ L.S - metais de transição e ligas metálicas

 μ_s "sentirá" menor influência de H, enquanto que μ_L é praticamente "quenched", isto é, preso a uma dada direção do campo cristalino.

Caso 2) ξ L.5 > D - terras raras

 $\mu_{J^{=}}$ μ_{S} + μ_{L} acoplados "sentem" a influência de H, pois L não é tão fortemente ligado ao campo cristalino.

Anisotropia Uniaxial

- Outros materiais além do Co: Fe₁₄Nd₂B₁, ferritas de Bário, etc.
- Para um material uniaxial:

$$u_a = K_{u_0} + K_{u_{01}} sen^2 \theta + K_{u_{20}} sen^4 \theta + \cdots$$

- Onde θ é o ângulo entre a magnetização e a direção cristalina.
 - Se M é paralelo a o eixo c: θ = 0° e $u_a = K_{u_0}$
- Se M está no plano basal: θ = 90° e $u_a = K_{u_0} + K_{u_{01}} + K_{u_{20}} + \cdots$
- Para o cobalto:

$$K_{u1} = 4.1 \times 10^5 \text{ J/m}^3 \text{ e } K_{u2} = 1.5 \times 10^5 \text{ J/m}^3$$

Anisotropia Cúbica

$$u_{me} = K_0 + K_1(\alpha_1^2 \alpha_2^2 + \alpha_2^2 \alpha_3^2 + \alpha_3^2 \alpha_1^2) + K_2 \alpha_1^2 \alpha_2^2 \alpha_3^2 \cdots$$

• $K1 = 5 \times 10^4 \text{ J/m}^3 \text{ e } K2 << K1 \text{ para o Fe.}$

• dependem dos cossenos diretores da magnetização α_1 (x), α_2 (y) e α_3 (z).

Anisotropia de Forma

- Um material policristalino sem orientação preferencial dos grãos, a anisotropia magnetocristalina resultante pode ser considerada ≈ 0.
- No entanto, somente se a amostra for esférica, o campo irá magnetizar a amostra da mesma maneira em todas as direções.
- Se não for esférica, será mais fácil magnetizar a amostra na direção do eixo mais longo → anisotropia de forma

Material ferromagnético

Material ferromagnético

Anisotropia de Forma → Campo de desmagnetização

Magnetização - M Campo de desmagnetização - H_d

 $\boldsymbol{H_i}$ = campo interno ou campo efetivo $\boldsymbol{H_{ef}}$

 N_d = fator de desmagnetização; depende da geometria da amostra

Fatores de Desmagnetização - Barras cilíndricas e quadradas

Barra quadrada

Barra redonda

Razão de aspecto n	N _d .	Razão de aspecto n	N _d
0.1	0.833333	0.1	0.815876
0.2	0.714286	0.2	0.689013
0.3	0.625000	0.3	0.596293
0.5	0.500000	0.5	0.469841
0.7	0.416667	0.7	0.387637
1	0.333333	1	0.307054
2	0.200000	2	0.181372
3	0.142857	3	0.128696
5	0.090909	5	0.081408
7	0.066667	7	0.059533
10	0.047619	10	0.042431
12	0.040000	12	0.035611
15	0.032258	15	0.028693
20	0.024390	20	0.021675
30	0.016393	30	0.014555
50	0.009901	50	0.008784
70	0.007092	70	0.006290
100	0.004975		
		100	0.004412

N = 1/3 para a esfera

Anisotropia Induzida

- Não é uma propriedade intrínseca do material
- Produzida por processamentos que causem uma característica direcional na microestrutura → grande potencial para "engenheirar" as propriedades magnéticas
- Interessante para materiais policristalinos.

Processos

- Solidificação direcional;
- Laminação seguida de recozimento de chapas;
- Forjamento rotativo e trefilação de fios e barras cilíndricas seguidos de tratamento térmico.
- · Recozimento sob campo magnético
- Recozimento sob tensão mecânica

Efeitos Magnetoelásticos

Magnetostricção Efeito Invar

Magnetostricção

Deformação do material por aplicação de campo magnético

A origem da magnetostricção é o acoplamento da anisotropia magnética com a rede cristalina (anisotropía magnetocristalina)

Deformações Anisotrópicas

- As deformações $\Delta I/I = \lambda$, são chamadas de magnetostricção de Joule ou anisotrópica;
- Pode variar de zero (λ < 10⁻⁷) até \pm 10⁻⁴ em ligas e metais 3d; em alguns metais 4f, compostos intermetálicos e ligas ~ acima de \pm 10⁻³ .

- Material isotrópico
 (e_⊥ e e_{||}, deformações
 para campo
 perpendicular e paralelo
 a direção da medida da
 deformação).
- Esta deformação anisotrópica associada com a direção da magnetização foi primeiramente observada no ferro em 1842 por Joule

Efeito Inverso deformação causa campo

Denominado de Efeito Joule inverso ou efeito Villari, piezomagnetismo, ou mais comumente, anisotropia induzida por tensão.

 Aplicando-se tensões ou deformações a um material magnético, pode-se produzir uma mudança na sua direção de magnetização preferencial.

Se $\lambda_s > 0$, é mais fácil magnetizar o material na direção da tração aplicada ($\sigma > 0$) $\rightarrow \lambda_s \sigma > 0$ Se $\lambda_s < 0$, é mais difícil magnetizar na direção da tração $\rightarrow \lambda_s \sigma < 0$. (o mesmo raciocínio pode ser feito para a compressão, ou seja, $\sigma < 0$)

Dependência da Magnetostricção de Joule do Campo Magnético

• A <u>deformação magnetostrictiva anisotrópica</u>, em um **material isotrópico**, em relação à direção da magnetização pode ser dada por: $e = \frac{3}{2} \lambda_s \left(\cos^2 \theta - \frac{1}{3} \right)$

 $e = \frac{\Delta l}{l}$ é a deformação medida; θ é o ângulo relativo à magnetização de saturação;

- a deformação \underline{e} é denominada de magnetostricção λ .
- \underline{e} é uma função de **M** ou do campo aplicado, portanto não deve ser confundido com λ_s que é uma constante do material.

A magnetização em um material uniaxial na direção de difícil magnetização é $M=M_sH/H_a$ ou m=h.

$$m = cos\theta$$

$$m = \cos\theta$$

$$e = \frac{3}{2}\lambda_s \left(m^2 - \frac{1}{3}\right)$$

Portanto $e=\lambda$ é proporcional a H^2 Acima da saturação:

$$e_{\parallel} = \frac{3}{2}\lambda_s \left(1 - \frac{1}{3}\right) = \lambda_s$$
 $e_{\perp} = \frac{3}{2}\lambda_s \left(0 - \frac{1}{3}\right) = -\frac{\lambda_s}{2}$

Portanto, para materiais isotrópicos:

$$e_{\parallel} - e_{\perp} = \frac{3}{2} \lambda_s \quad ou \quad \lambda_s = \frac{2}{3} (e_{\parallel} - e_{\perp})$$

Alguns dados

Para materiais que não são isotrópicos, a constante de magnetostricção pode ter valores diferentes em diferentes direções.

Por exemplo o ferro:

$$\lambda_{100} = 20.5 \times 10^{-6}$$
 e $\lambda_{111} = -21.5 \times 10^{-6}$

E para o níquel:

$$\lambda_{100} = -46 \times 10^{-6}$$
 e $\lambda_{111} = -25 \times 10^{-6}$

Magnetizar um cristal de Fe na suas direções <100> causa uma elongação ao longo desta direção, mas ao magnetizá-lo nas direções <111> causa contração ao longo destas direções.

O Ni contrai na direção de magnetização para qualquer direção do cristal. Lembrando-se que as direções <100> são de fácil magnetização para o Fe (CCC) e as direções <111> são fáceis para o Ni (CFC).

Constantes de magnetostricção (×10⁻⁶) em 4.2 K e em temperatura ambiente para diversos materiais.

	$T = 4.2 \mathrm{K}$		Temperatura ambiente		
	$\lambda_{100}(\lambda^{\gamma,2})$	$\lambda_{111}(\lambda^{\epsilon,2})$	$\lambda_{100}(\lambda^{\gamma,2})$	$\lambda_{111}(\lambda^{\epsilon,2})$	Policristal, λ,
-		METAIS	3d		
BCC-Fe	26	-30	21	-21	-7
HCP-Co"	(-150)	(45)	(-140)	(50)	(-62)
FCC-Ni	-60	-35	-46	-24	-34
BCC-FeCo		<u>-</u>	140	30	
$a-Fe_{80}B_{20}$	48 (isotropic)	-			+32
a-Fe40Ni40B20	+20				+14
a-Cos ₈₀ B ₂₀	-4	·		. —	-4
	. N	IETAIS/ LI	IGAS 4f		
Gd"	(-175)	(105)	(-10)	0	_
Tb*	` ´	(8700)		(30)	
TbFe ₂	_	4400		2600	1753
Tb _{0.3} Dy _{0.7} Fe ₂				1600	1200
0.0 00 2	\mathbf{F}	ERRITAS	Spinel		
Fe ₃ O ₄	0	50	-15	56	+40
MnFe ₂ O ₄		-	(-54)	(10)	
CoFe ₂ O ₄	_		-670	120	-110
		Garnet	5		
YIG	-0.6	-2.5	-1.4	-1.6	-2
	I	MÃS PERN	MANENTE	S	
Fe ₁₄ Nd ₂ B"				_	· _
BaO·6Fe ₃ O ₄			(13)		

Dilatação Térmica

As linhas sólidas mostram a forma da expansão térmica para um material ferromagnético acima e abaixo de T_c

 $T < T_C$, efeitos adicionais magnetos-volumétricos devido ao ordenamento magnético de longo-alcance são consolidados.

 $T > T_C$, os momentos perdem sua interação de longo alcance, mas não instantaneamente. A pressão interna associada a eles <u>não</u> desaparece completamente acima de T_C

Dilatação Térmica - continuação

O ordenamento magnético poderá se adicionar ou subtrair a expansão do volume.

Deformações anisotrópicas

O sinal da inclinação destas curvas sólidas (coeficiente de expansão térmica a) pode ser, portanto positivo ou negativo.

Todos estes efeitos são isotrópicos

Dilatação Linear e Volumétrica - Ni

- Expansão volumétrica, ω=ΔV/V
- Coeficiente linear de expansão térmica, $a=d(\Delta I/I)/dT$

A diminuição relativa do volume é da ordem de 0,12%, relativamente ao valor do volume extrapolado para T>>T_c

Efeito Invar

dimensões do material são invariantes com a temperatura.

- Ocorre para algumas ligas ferromagnéticas com $T_c \ge T_{ambiente}$; um exemplo típico é a liga $Fe_{70}Ni_{30}$
- O efeito magneto-volumétrico devido ao ordenamento ferromagnético é positivo abaixo de T_c (material dilata)
- Abaixando-se a temperatura o material contrai devido unicamente ao efeito térmico.
- Ao variar a temperatura perto de T_c, os efeitos magnetovolumétrico e puramente térmico são opostos o que resulta em um material com contração/expansão térmica muito baixa nesta faixa de temperatura. Estas ligas são chamadas de ligas INVAR.