

Achieve stable high performance DPDK Application on modern CPU

TAO YANG XUEKUN HU INTEL

Agenda

- 1. Modern CPU Architecture
- 2. Performance impact on shared resource
 - 1. Shared EU and L1/L2 Cache
 - 2. Shared L3 Cache
 - 3. Shared Core Power
- 3. Summary

Server CPU in Hot Chips 2017

•https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.921-EPYC-Lepak-AMD-v2.pdf

SKX Core- Skylake Server CoreUPI - Intel® UltraPath Interconnect

- •https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.930-Xeon-Skylake-sp-Kumar-Intel.pdf
- •https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.942-Centriq-2400-Wolford-Qualcomm%20Final%20Submission%20corrected.pdf

Shared Execution Engine and L1/L2 Cache DPDK

Hyper-Threading Technology

Figure 2-16. Hyper-Threading Technology on an SMP

•Intel® 64 and IA-32 Architectures Software Developer Manuals

Linux tool for hyper-thread

Hyper-thread and cores in the system

[root@wolfpass-6230n ~]# lscpu

```
CPU(s):
               80
Thread(s) per core:
Core(s) per socket: 20
Socket(s):
NUMA node(s):
[root@wolfpass-6230n ~]# lscpu -e
CPU NODE SOCKET CORE L1d:L1i:L2:L3 ONLINE MAXMHZ MINMHZ
0 0 0
          0:0:0:0
                       yes 3900.0000 800.0000
             1:1:1:0
                           3900.0000 800.0000
                      ves
40 0
          0:0:0:0
                            3900.0000 800.0000
                       ves
```

- Binding application to core
- taskset -c CORE-ID DPDK-APP

Hyper-thread performance impact

- •DPDK L3fwd on 1 core/1 Thread (Intel Xeon 6230N 2.30GHz) with 2*10G port
- Stress workload running on the other hyper thread

DPDK L3fwd performance impact on hyper thread workload

Shared L3 Cache

Figure 2-2. Broadwell Microarchitecture and Skylake Server Microarchitecture Cache Structures

•Intel® 64 and IA-32 architectures optimization reference manual

Shared Memory Bandwidth

CHA: Caching and Home Agent; SF: Snoop Filter; LLC: Last Level Cache

•https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.930-Xeon-Skylake-sp-Kumar-Intel.pdf

Intel® Resource Director Technology

Figure 17-38. A High-Level Overview of the MBA Feature

- •Intel® 64 and IA-32 Architectures Software Developer Manuals
- •https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html

Linux Tools for Resource Control

Intel RDT Kernel Interface Documentation

https://www.kernel.org/doc/html/latest/x86/resctrl_ui.html

•Intel RDT Reference Software Package (Direct access CPU register) https://github.com/intel/intel-cmt-cat

RDT Test configuration

Physical Core	Process/VM	"CAT with Aggressors" Case		Cache Allocation Scheme									Memory Bandwidth Allocation Scheme		
		CoS	Capacity Bit Mask (CBM)	11 bit CBM representation											
33,35,37 60,73,75,77	Other App	3	0xC	10	9	8	7	6	5	4	3	2	1	0	10%
20	ovs-vswitchd	3	0xC	10	9	8	7	6	5	4	3	2	1	0	10%
21,26,27, 28,29,36	OVS-DPDK PMD	1	0x7F0	10	9	8	7	6	5	4	3	2	1	0	100%
22,23,24	VM1 - SUT	1	0x7F0	10	9	8	7	6	5	4	3	2	1	0	100%
30,31,32	VM2 - SUT	1	0x7F0	10	9	8	7	6	5	4	3	2	1	0	100%
25,34,65,74	VM3 - Noisy Neighbor	2	0x3	10	9	8	7	6	5	4	3	2	1	0	10%
38,39,78,79	VM4 - Noisy Neighbor	2	0x3	10	9	8	7	6	5	4	3	2	1	0	10%
0-19,40-59	OS on CPU 0	0	0x7FF												100%

pgos -e "llc:0=0x7ff;llc:1=0x7f0;llc:2=0x3;llc:3=0xc;"

pqos -e "mba:0=100;mba:1=100;mba:2=10;mba:3=10;"

pgos -a "llc:0=0-19,40-59"

pqos -a "llc:1=21,26,27,28,29,36,22,23,24,30,31,32;llc:2=25,34,38,39;llc:3=20,33,35,37"

pgos -a "llc:1=61,66,67,68,69,76,62,63,64,70,71,72;llc:2=65,74,78,79;llc:3=60,73,75,77"

RDT Test data

```
Socket 0
                                                         Socket 1
                                                 Memory Channel Monitoring
       Memory Channel Monitoring
|-- Mem Ch 0: Reads (MB/s):
                                4.29 -- | | -- Mem Ch 0: Reads (MB/s):
                               0.84 --||--
                                                        Writes (MB/s): 2499.69 --
              Writes (MB/s):
|-- Mem Ch 1: Reads (MB/s):
                               4.88 --||-- Mem Ch 1: Reads (MB/s): 6312.72 --
                                                        Writes (MB//s): 2499.57 --|
              Writes (MB/s):
|-- Mem Ch 2: Reads (MB/s):
                               4.95 -- | | -- Mem Ch 2: Reads (MB/s): 6311.08 -- |
                                                        Writes(MB/s): 2499.12 --|
              Writes (MB/s):
                                0.83 --||--
                                5.72 -- | | -- Mem Ch 3: Reads (MB/s): 6324.11 -- |
|-- Mem Ch 3: Reads (MB/s):
                                                        Writes(MB/s): 2499.27 --|
              Writes (MB/s):
|-- Mem Ch 4: Reads (MB/s):
                                5.00 --||-- Mem Ch 4: Reads (MB/s): 6319.79 --|
              Writes (MB/s):
                                                        Writes (MB/s): 2499.24 --|
|-- Mem Ch 5: Reads (MB/s):
                                4.37 --||-- Mem Ch 5: Reads (MB/s): 6319.52 --|
                                                        Writes(MB/s): 2500.65 --|
              Writes (MB/s):
                               0.94 --||--
|-- NODE 0 Mem Read (MB/s) :
                                29.21 -- | | -- NODE 1 Mem Read (MB\s) : 37904.83 -- |
                               6.12 --||-- NODE 1 Mem Write(MB∕s) : 14997.54 --|
|-- NODE 0 Mem Write(MB/s) :
|-- NODE 0 P. Write (T/s):
                              18711 -- | | -- NODE 1 P. Write (T/s)
                                                                       9374863 -- 1
|-- NODE 0 Memory (MB/s):
                              35.33 --||-- NODE 1 Memory (MB/s):
                                                                      52902.37 --
                   System Read Throughput (MB/s):
                                                       37934.04
                  System Write Throughput (MB/s):
                                                     15003.66
                 System Memory Throughput (MB/s):
                                                       52937.70
```

CORE	IPC	MISSES	LLC[KB]	MBL[MB/s]	MBR[MB/s]
20	0.25	10k	0.0	0.3	0.0
21	1.45	3077k	880.0	254.1	0.1
22	0.26	119k	0.0	1.9	0.3
23	1.37	5155k	800.0	333.5	0.0
24	1.37	5179k	640.0	362.5	0.0
25	0.65	142568k	4400.0	13242.8	0.1
26	1.44	3597k	480.0	286.2	0.0
27	1.42	3208k	320.0	311.3	0.1
28	1.28	3305k	480.0	259.5	0.0
29	1.15	16k	0.0	0.4	0.9
30	0.26	165k	80.0	22.9	0.1
31	1.36	5173k	1360.0	356.6	0.0
32	1.46	396k	80.0	10.8	0.0
33	0.25	3 k	0.0	0.0	0.0
34	0.65	143417k	4560.0	13504.5	0.2
35	0.25	3 k	0.0	0.0	0.0
36	1.15	14k	80.0	0.4	1.3
37	0.25	5k	0.0	0.0	0.0
38	0.66	144511k	5120.0	13468.5	0.0
39	0.65	142900k	1440.0	12969.0	0.0
60	0.25	13k	80.0	2.3	0.0
61	1.11	3816k	640.0	399.9	0.2
62	0.25	5k	0.0	0.0	0.1
63	0.23	9 k	0.0	0.9	0.0
64	0.23	6k	0.0	0.8	0.0
65	0.24	22k	0.0	5.5	0.0
66	1.15	3620k	720.0	373.1	0.0
67	0.96	3904k	960.0	283.4	0.0
68	1.13	3654k	800.0	334.0	0.0
69	1.11	20k	0.0	0.3	0.8
70	0.25	4 k	0.0	0.2	0.0
71	0.24	6k	0.0	1.0	0.0
72	0.23	6k	0.0	0.1	0.0
73	0.25	3 k	0.0	0.0	0.0
74	0.24	28k	0.0	8.4	0.0
75	0.25	3k	0.0	0.0	0.0
76	1.11	15k	0.0	0.2	0.7
77	0.25	3k	0.0	0.1	0.0
78	0.24	27k	0.0	9.0	0.0
79	0.24	26k	0.0	9.4	0.0

Performance data with RDT

OVS-DPDK/VPP vRouter performance throughput Mpps

Shared Power

- Intel Speed Select Technology Base Frequency
- •https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-base-frequency-enhancing-performance.pdf

Intel® SST-BF Enabled CPU SKUs

	В	Base Config	Intel SST-BF Configuration							
		Configuration		l SST-BF High	Intel SST-BF Low Priority					
	Parameters		Pri	ority Cores	Cores					
	SSE Base Freq			SSE Base Freq		SSE Base Freq				
	Cores	(GHz)	Cores	(GHz)	Cores	(GHz)				
Intel® Xeon® Gold 6252N										
Processor	24	2.3	8	2.8	16	2.1				
Intel® Xeon® Gold 6230N										
Processor	20	2.3	6	2.7	14	2.1				
Intel® Xeon® Gold 5218N										
Processor	16	2.3	4	2.7	12	2.1				

Linux tool for ISS-BF

- Enable the Intel® SST-BF feature in the BIOS.
- OS can determine high priority cores by enumerating ACPI _CPC object's "guaranteed perf" value for each core for scheduling purposes
 - Linux kernel v5.0.8+ exposes /sys/devices/system/cpu*/cpufreq/base_frequency
- User space script to enable High/Low priority cores
 - https://github.com/intel/CommsPowerManagement

SR-IOV Performance with ISS-BF

•1 core in Xeon 6230N, 4 * 10G, SR-IOV passthrough, DPDK I3fwd in VM, packet size 64B

OVS-DPDK Performance with ISS-BF

- •2*Intel Xeon 6230N + 6*10G in a system
- Only used 16 cores in CPU 1

6 cores for OVS-DPDK data plane

Low priority Core ID:

ovs-vswitchd Core ID: 20

High priority Core ID:

ovs-pmd: 21,26,27,33,34,36

3 cores for every VPP vRouter VM

Low priority Core ID:

VM 1: 22,23,24

VM 2: 28,29,30

VM 3: 32,35,37

•VPP VM core configuration:

VM Core 0: for control plane

VM Core 1,2: VPP data plane

OVS-DPDK Performance with ISS-BF

•Enable ISS-BF(VPP vRouter 2.1Ghz/OVS-DPDK 2.7Ghz) vs Disable ISS-BF(All Core 2.3Ghz)

OVS-DPDK/VPP vRouter Throughput (Mpps)

Summary

- •Many resources are shared in multi-core CPU.
- •Application running on different core compete for the shared resources.
- •Shared resource partition can reduce the competition and achieve stable high performance.

