Théorie des graphes (3)

Michel Rigo

http://www.discmath.ulg.ac.be/

Année 2015-2016

Homomorphismes, Isomorphismes, Automorphismes de graphes

DÉFINITION

Soient $G_i = (V_i, E_i)$, i = 1, 2, deux digraphes.

 $f:V_1 o V_2$ est un homomorphisme de G_1 dans G_2 , si

$$(x,y) \in E_1 \Rightarrow (f(x),f(y)) \in E_2$$

Définition

Soient $G_i = (V_i, E_i)$, i = 1, 2, deux graphes non orientés.

 $f:V_1 o V_2$ est un homomorphisme de G_1 dans G_2 , si

$$\{x,y\} \in E_1 \Rightarrow \{f(x),f(y)\} \in E_2.$$

On dit qu'on a un homomorphisme de G_1 dans G_2 .

$${x,y} \in E_1 \Rightarrow {f(x),f(y)} \in E_2.$$

un homomorphisme de G dans H n'implique PAS un homomorphisme de H ds G.

un homomorphisme de G dans H n'est PAS nécessairemement injectif.

Pour rappel, une application $f:V_1\to V_2$ est injective si, pour tous $x,y\in V_1$, $x\neq y$ implique $f(x)\neq f(y)$.

Exemple d'homomorphisme dans le cas orienté :

$$(x,y) \in E_1 \Rightarrow (f(x),f(y)) \in E_2$$

Un graphe (non orienté) est k-colorable si

- on peut colorer ses sommets avec, au plus, k couleurs;
- des sommets voisins ont des couleurs distinctes,

REMARQUE

Un graphe (non orienté) G est k-colorable, s'il existe un homomorphisme de G dans K_k .

Le nombre chromatique $\chi(G)$ de G est le plus petit k tel que G est k-colorable.

$$\chi(G) = k$$
:

- ▶ il existe un homomorphisme de G dans K_k ,
- ▶ il n'existe aucun homomorphisme de G dans K_{k-1} .

NB : le nombre chromatique est 'difficile' à calculer (NP-complet).

Nombre chromatique d'un arbre, d'une forêt

Nombre chromatique d'un cycle de longueur paire / impaire

REMARQUE

Un graphe G est biparti si et seulement si $\chi(G) = 2$.

Nombre chromatique de $K_n: \chi(K_n)=n$ Nombre chromatique de K_n privé d'une arête : n-1

▶ 2 digraphes $G_i = (V_i, E_i)$, i = 1, 2, sont isomorphes si \exists bijection $f: V_1 \to V_2$ t.q.

$$(x,y) \in E_1 \Leftrightarrow (f(x),f(y)) \in E_2$$

▶ 2 graphes non orientés sont isomorphes si \exists bijection $f: V_1 \rightarrow V_2$ t.q.

$$\{x,y\} \in E_1 \Leftrightarrow \{f(x),f(y)\} \in E_2$$

▶ 2 multi-graphes sont isomorphes si \exists bijection $f: V_1 \to V_2$ t.q. (x,y) arc de multiplicité k de G_1 SSI (f(x), f(y)) arc de multiplicité k de G_2 .

REMARQUE

Si f est un isomorphisme, f^{-1} aussi.

Deux graphes isomorphes 'même forme'

 $\varphi: a\mapsto 4,\ b\mapsto 5, c\mapsto 6, d\mapsto 1,\ e\mapsto 2,\ f\mapsto 3.$

REMARQUE

Décider si deux graphes sont isomorphes est un problème 'difficile' (NP-complet).

Proposition

Soient G,H deux graphes isomorphes et φ un isomorphisme de G dans H. Pour tous sommets u,v de G, on a

- $d(u, v) = d(\varphi(u), \varphi(v)).$

ETUDE DES SYMÉTRIES D'UN GRAPHE

Soit G=(V,E) un graphe (orienté ou non). Un automorphisme de G est un isomorphisme de G dans G.

Aut(G): groupe des automorphismes de G muni de la loi de composition d'applications

Aut(G) est un sous-groupe du groupe symétrique S_n des permutations de n=#V éléments.

Un graphe pour lequel Aut(G) est réduit à l'identité id_V est asymétrique.

Exemple d'un graphe orienté

In[]:= GraphAutomorphismGroup[g]

fournit un ensemble de générateurs

Out[]:= PermutationGroup[{Cycles[{{1, 2, 3, 4}}]}]

In[]:=GroupElements[%]

Out[]:={Cycles[{}], Cycles[{{1, 2, 3, 4}}],

Cycles[{{1, 3}, {2, 4}}], Cycles[{{1, 4, 3, 2}}]}

exemple d'un graphe non orienté

fournit un ensemble de générateurs (ici 3 générateurs)

$$Cycles[{1, 2}, {3, 7}, {5, 6}]]$$

le groupe des automorphismes contient 120 permutations (10! = 3628800)

Le graphe de Cayley correspondant

 ${\tt In[]:=CayleyGraph[GraphAutomorphismGroup[PetersenGraph[]]]}$

une des permutations de l'ensemble des automorphismes

$$(1\ 6)(2\ 9\ 5\ 8)(3\ 7\ 4\ 10)$$

In[]:= g=CirculantGraph[10, {2, 4}]

In[]:= GraphAutomorphismGroup[g]

le groupe des automorphismes est engendré par 8 permutations

```
Out[]:= PermutationGroup[ {Cycles[{{7, 9}}],
    Cycles[{{5, 7}}], Cycles[{{3, 5}}],
    Cycles[{{8, 10}}], Cycles[{{6, 8}}],
    Cycles[{{4, 6}}], Cycles[{{2, 4}}],
    Cycles[{{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}}]}]
In[]:= GroupElements[%]//Length Out[]:= 28800
```

Graphe de Petersen avec deux arêtes ajoutées et une enlevée...

In[]:= GraphAutomorphismGroup[%]
Out[]:= PermutationGroup[{}]
Ici, un seul automorphisme, l'identité!
Il s'agit donc d'un graphe asymétrique.

Une rare incursion dans le monde des graphes infinis

- ► Alphabet {a, b}
- ▶ Mots : aa, bba, b, abbbaabaa (suites finies de symboles).
- ► Arbre lexicographique : arbre binaire infini, ses sommets sont en bijection avec les mots sur {a, b}.

Si un sommet est en bijection avec le mot m:

- son fils de gauche est en bijection avec ma
- ightharpoonup son fils de droite est en bijection avec mb

La racine de l'arbre correspond au mot vide : ε .

Cet arbre possède exactement 2^i sommets de niveau i, les mots de longueur $i:\underbrace{a\cdots aa}_{i\times},\ a\cdots ab,\ \ldots,\ b\cdots ba,\ \underbrace{b\cdots bb}_{i\times}.$

Soit un ensemble L de mots écrits sur $\{a,b\}$ (un langage). p_L : à un mot m associe 1 (resp. 0) si $m \in L$ (resp. $m \notin L$).

La pondération est un codage définissant le dictionnaire des mots de L (fonction caractéristique).

REMARQUE IMPORTANTE

La notion d'isomorphisme s'étend aux graphes pondérés :

Si deux graphes $G_i=(\,V_i,E_i),\ i=1,2$ ont leurs sommets pondérés par $p_i:\,V_i\to\Sigma$, la définition d'un isomorphisme $f:\,V_1\to V_2$ doit aussi respecter

$$p_1(v) = p_2(f(v)), \ \forall v \in V_1.$$

Un langage et l'arbre pondéré

L formé des mots commençant par un nombre arbitraire de a (éventuellement aucun) et suivi par un nombre arbitraire de b (éventuellement aucun), l'arbre pondéré A_L

 ε , a, b, aa, ab, bb, aaa, aab, abb, bbb, . . .

 A_m : sous-arbre obtenu en considérant comme nouvelle racine le sommet m et en ne conservant dans A_m que les descendants de m

Arbre régulier

l'arbre A_L ne possède, à isomorphisme près, que 3 sous-arbres non isomorphes (par exemple, A_L lui-même, A_b et A_{ba})

Arbre régulier

l'arbre A_L ne possède, à isomorphisme près, que 3 sous-arbres non isomorphes (par exemple, A_L lui-même, A_b et A_{ba})

Arbre régulier

l'arbre A_L ne possède, à isomorphisme près, que 3 sous-arbres non isomorphes (par exemple, A_L lui-même, A_b et A_{ba})

Arbre régulier

l'arbre A_L ne possède, à isomorphisme près, que 3 sous-arbres non isomorphes (par exemple, A_L lui-même, A_b et A_{ba})

Arbre régulier

l'arbre A_L ne possède, à isomorphisme près, que 3 sous-arbres non isomorphes (par exemple, A_L lui-même, A_b et A_{ba})

Arbre régulier

l'arbre A_L ne possède, à isomorphisme près, que 3 sous-arbres non isomorphes (par exemple, A_L lui-même, A_b et A_{ba})

Graphes hamiltoniens

Sir William Hamilton (1805–1865)

Analogie avec les graphes eulériens passant par chaque arête :

DÉFINITION

Un chemin (resp. circuit) hamiltonien de G: passe une et une seule fois par chaque sommet de G.

Un graphe hamiltonien : graphe possédant un circuit hamiltonien.

- ► En général, on se pose la question pour les graphes ayant au moins 3 sommets.
- ▶ Inutile de considérer des multigraphes → graphes simples.
- ▶ Un arbre ayant au moins 3 sommets n'est jamais hamiltonien.

Condition nécessaire pour qu'un graphe soit hamiltonien.

Proposition

Soit G = (V, E) est un graphe hamiltonien.

Pour tout ensemble non vide $S \subseteq V$,

le nombre de composantes connexes de G-S est $\leq \#S$.

EXEMPLE

Ce graphe est-il hamiltonien?

Le nombre de composantes connexes de G-S est > #S, donc le graphe n'est pas hamiltonien (contraposée).

EXEMPLE

Ce graphe est-il hamiltonien?

$$\#S = 2$$

Le nombre de composantes connexes de G-S est > #S, donc le graphe n'est pas hamiltonien (contraposée).

EXEMPLE

Ce graphe est-il hamiltonien?

$$\#S = 2$$

Preuve:

- ▶ Par hypothèse, on dispose d'un circuit hamiltonien.
- ▶ Si on enlève un sommet à un circuit, il reste connexe.
- ▶ Si on enlève deux sommets, on a au plus deux composantes connexes (on pourrait en garder une seule).
- **.** . . .
- ▶ Par récurrence, si on enlève k sommets, on a au plus k composantes connexes (sans même tenir compte des autres arêtes du graphe).

REMARQUE

Décider si un graphe donné est hamiltonien est un problème difficile (NP-complet). Méthode na $\ddot{\text{u}}$: passer en revue les n! permutations des sommets.

→ On dispose uniquement de conditions suffisantes assurant le caractère hamiltonien d'un graphe.

- Théorème de Dirac
- ► Théorème d'Ore → fermeture d'un graphe
- ► Théorème de (Bondy–)Chvátal

Théorème de Dirac (1952)

Soit un graphe G (simple et non orienté) ayant $n \geq 3$ sommets.

Si le degré de chaque sommet est $\geq n/2$, G est hamiltonien.

Théorème d'Ore (1960)

Soit un graphe G (simple et non orienté) ayant $n \geq 3$ sommets.

Si il existe 2 sommets x et y t.q. $\deg(x) + \deg(y) \ge n$.

Le graphe G est hamiltonien SSI $G + \{x, y\}$ l'est.

Définition de la fermeture $\mathcal{F}(G)$ d'un graphe G.

La fermeture d'un graphe simple et non orienté $G_0 = (V_0, E_0)$. On définit une suite finie de graphes (simples)

$$G_0, G_1, \ldots, G_i = (V_i, E_i), \ldots, G_k$$

Pour tout i, on ajoute à G_i une arête comme suit :

$$G_{i+1} = G_i + \{u, v\}$$

où u et v sont t.q. $\{u,v\} \not\in E_i$ et

$$\deg_{G_i}(u) + \deg_{G_i}(v) \ge \# V$$

où \deg_{G_i} désigne le degré d'un sommet dans le graphe G_i .

La procédure s'arrête à G_k si, pour tous sommets u, v, soit $\{u, v\} \in E_k$, soit $\deg_{G_k}(u) + \deg_{G_k}(v) < \#V$.

La définition ne dépend PAS de l'ordre dans lequel les arêtes sont ajoutées.

On parle donc de LA fermeture $\mathcal{F}(G)$.

Corollaires directs du théorème d'Ore

COROLLAIRE

Soit un graphe G (simple et non orienté) ayant $n \geq 3$ sommets.

Le graphe G est hamiltonien SSI sa fermeture l'est.

COROLLAIRE

Soit un graphe G (simple et non orienté) ayant $n \geq 3$ sommets.

Si la fermeture de G est K_n , alors G est hamiltonien.

La réciproque est fausse.

COROLLAIRE

Soit un graphe G (simple et non orienté) ayant $n \geq 3$ sommets.

Si pour tout couple de sommets non adjacents (x, y), on a $deg(x) + deg(y) \ge n$, alors G est hamiltonien.

En particulier, si $\min_{v \in V} \deg(v) \ge n/2$, alors G est hamiltonien.

Le thm. d'Ore implique donc le thm. de Dirac.

Les deux derniers corollaires ne fournissent pas de condition nécessaire.

Contre-exemple:

 $\text{ un unique cycle } C \text{ ayant } \geq 5 \text{ sommets} : \mathcal{F}(C) = C.$

Théorème de Dirac (1952)

Soit un graphe G (simple et non orienté) ayant $n \geq 3$ sommets.

Si le degré de chaque sommet est $\geq n/2$, G est hamiltonien.

Preuve du thm. de Dirac.

1) le graphe est connexe :

Sinon, on aurait au moins deux composantes connexes.

Donc, une des composantes a $\leq \lfloor n/2 \rfloor$ sommets.

Or, chaque sommet a $\geq \lceil n/2 \rceil$ voisins!

- 2) Soit (v_0, \ldots, v_k) un chemin simple de longueur maximum k.
 - $\triangleright k < n$
 - les voisins de v_0 sont tous dans $\{v_1, \ldots, v_k\}$
 - ▶ les voisins de v_k sont tous dans $\{v_0, \ldots, v_{k-1}\}$

On va montrer qu'il existe i < k tel que

$$\{v_0,v_{i+1}\}\in E \text{ et } \{v_i,v_k\}\in E$$

Par l'absurde :

- ▶ Soit $I \subseteq \{0, ..., k-1\}$ l'ensemble des indices i tels que $\{v_0, v_{i+1}\} \in E(G)$. Si $i \in I$, alors $\{v_i, v_k\} \notin E(G)$.
- ▶ Soit $J \subseteq \{0, \dots, k-1\}$ l'ensemble des indices i tels que $\{v_i, v_k\} \in E(G)$. Si $i \in J$, alors $\{v_0, v_{i+1}\} \not\in E(G)$.
- ▶ Par hypothèse, $\#I \ge n/2$ et $\#J \ge n/2$.
- ▶ $I \cap J = \emptyset$ donc $\#(I \cup J) \ge n$.
- ▶ Mais $I, J \subseteq \{0, \dots, k-1\}$, donc $\#(I \cup J) \le k < n$.

On a donc un circuit.

Le graphe est connexe. Si un sommet n'appartient pas au circuit, il existe un chemin de ce sommet vers le circuit (connexité).

 \rightarrow on crée alors un chemin simple plus long que (v_0, \dots, v_k) .

Théorème d'Ore (1960)

Soit un graphe G (simple et non orienté) ayant $n \geq 3$ sommets.

Si il existe 2 sommets x et y t.q. $\deg(x) + \deg(y) \geq n$. Le graphe G est hamiltonien SSI $G + \{x, y\}$ l'est.

Preuve du thm. d'Ore.

Seul cas non trivial : $\{x,y\}$ n'est pas une arête de G et on dispose d'un circuit hamiltonien utilisant $\{x,y\}$

$$(x=v_1,v_2,\ldots,v_n=y).$$

Thèse : trouver un autre circuit hamiltonien (sans $\{x, y\}$)

On suppose $n \geq 4$

But : montrer qu'il existe $i \in \{3, \dots, n-1\}$ tel que

$$\{v_1, v_i\} \in E(G) \text{ et } \{v_{i-1}, v_n\} \in E(G)$$

 $x = v_1$ a au moins 2 voisins dans G:

 v_2 et un sommet dans $\{v_3,\dots,v_{n-1}\}$ sinon, $\deg(v_1)=1$ et donc, par hypothèse, $\deg(v_n)\geq n-1$ alors, $v_n=y$ voisin de tous les sommets, or $\{x,y\}\not\in E(G)$!

Idem, v_n a au moins 2 voisins dans G: v_{n-1} et un sommet dans $\{v_2, \ldots, v_{n-2}\}$.

Par l'absurde :

- ▶ Soit $I \subseteq \{3, \ldots, n-1\}$ l'ensemble des indices i tels que $\{v_1, v_i\} \in E(G)$. Si $i \in I$, alors $\{v_{i-1}, v_n\} \not\in E(G)$.
- ▶ Soit $J \subseteq \{3, \ldots, n-1\}$ l'ensemble des indices i tels que $\{v_{i-1}, v_n\} \in E(G)$. Si $i \in J$, alors $\{v_1, v_i\} \not\in E(G)$.
- ▶ Par hypothèse, $\#I + \#J \ge n-2$ (on décompte les arêtes $\{v_1, v_2\}$ et $\{v_{n-1}, v_n\}$).
- $I \cap J = \emptyset \text{ donc } \#(I \cup J) = \#I + \#J \ge n-2.$
- ▶ Mais $I, J \subseteq \{3, \ldots, n-1\}$, donc $\#(I \cup J) \le n-3$.

Théorème de Chvátal (1972)

Soit G un graphe (simple et non orienté) ayant $n \geq 3$ sommets ordonnés par degré croissant, i.e.,

$$deg(v_1) \le deg(v_2) \le \cdots \le deg(v_n).$$

Si, pour tout k < n/2, le graphe satisfait

$$\deg(v_k) \le k \Rightarrow \deg(v_{n-k}) \ge n - k,\tag{1}$$

alors G possède un circuit hamiltonien.

REMARQUE

Si pour tout couple de sommets non adjacents (x,y), on a $\deg(x)+\deg(y)\geq n$. Alors ce graphe vérifie (1). La réciproque est fausse.

Un exemple de graphe vérifiant la condition (1)

Sort[VertexDegree[%]]

D'un point de vue 'logique mathématique'

$$p \Rightarrow q \equiv \neg p \lor q$$

$$\frac{p \quad q \quad p \Rightarrow q}{V \quad V \quad V}$$

$$V \quad F \quad F$$

$$F \quad V \quad V$$

$$F \quad F \quad V$$

(1)
$$\forall k < n/2, \quad \deg(v_k) \le k \Rightarrow \deg(v_{n-k}) \ge n - k$$

$$n = 7$$

$$(2, 2, 4, 5, 5, 5, 5)$$

$$k = 1, 2, 3 \deg(v_1) = 2 > 1$$

$$k = 1, 2, 3 \deg(v_1) = 2 > 1$$

 $\deg(v_2) = 2 \le 2 \& \deg(v_5) \ge 5$
 $\deg(v_3) = 4 > 3$

Thèse : montrer que (1) entraı̂ne $\mathcal{F}(G) = K_n$.

1) Si G vérifie (1), $\mathcal{F}(G)$ vérifie aussi (1).

Quand on passe à $\mathcal{F}(G)$, certains degrés augmentent... Quid de la condition (1) quand un élément "fait +1"?

$$t_1 \leq \cdots \leq t_i \leq \cdots \leq t_n$$

 t_i devient $t_i + 1$ et on réordonne en : $s_1 \le \cdots \le s_n$. Vérifions que $s_k \ge t_k$ pour tout $k \iff (s_i)_{1 \le i \le n}$ vérifie (1)).

- ▶ Si $t_i + 1 \le t_{i+1}$, e.g. $(3, 3, \underline{3}, 4, 4, 4, 5)$ et i = 3, on remplace le dernier 3 par $4 : (3, 3, \underline{4}, 4, 4, 4, 5)$. Aucun réarrangement $: s_k = t_k$ si $k \ne i$ et $s_i = t_i + 1 \ge t_i$.
- ▶ Si $t_i + 1 > t_{i+1} = \cdots = t_{i+\ell}$, e.g. $(3, 3, 3, \underline{4}, 4, 4, 5)$ et i = 4, $\ell = 2$, on doit réarranger :

 - $s_{i+\ell} = t_i + 1 > t_{i+\ell}$ et
 - $ightharpoonup s_k = t_k \text{ si } k \notin \{i, \dots, i + \ell\}.$

2) On peut supposer que G est égal à sa fermeture. Par l'absurde, supposons que $G \neq K_n$.

Donc, il existe $u, v \in V$ t.q. $\{u, v\} \notin E$. et $\deg(u) + \deg(v) < n$. Choisir u, v tels que $\deg(u) + \deg(v)$ max. et $\deg(u) \leq \deg(v)$.

Soit $i = \deg(u)$. On a i < n/2 car, sinon $\deg(u) + \deg(v) \ge n$

$$A = \{w \in V \mid \{w, v\} \not\in E(G) \text{ and } w \neq v\} \ni u.$$

Vu le choix de u,v, tout sommet $w\in A$ est t.q. $\deg(w)\leq \deg(u)$. A contient tous les sommets $\neq v$ non-voisins de v

$$\#A = (n-1) - \deg(v) \ge \deg(u).$$

 $\rightarrow \geq i$ sommets de degré $\leq i$.

Autrement dit, $deg(v_i) \leq i$ et i < n/2.

Donc, vu l'hypothèse (1) on devrait avoir $deg(v_{n-i}) \ge n - i$.

$$B = \{w \in V \mid \{u, w\} \not\in E(G) \text{ and } w \neq u\} \ni v.$$

Vu le choix de u, v, tout sommet $w \in A$ est t.q. $\deg(w) \leq \deg(v) < n - i$.

$$\#B = (n-1) - \deg(u) = n - i - 1.$$

 $\rightarrow n-i-1$ sommets de degré < n-i.

De plus, le sommet u de degré i et i < n - i.

En effet, $i < n - \deg(v)$ et $\deg(v) \ge i$.

 $\rightarrow \geq n-i$ sommets de degré < n-i.

Donc $deg(v_{n-i}) < n-i$ une contradiction!

Partition de K_n en circuits hamiltoniens

Proposition

Pour $n\geq 3$, K_n peut être partitionné en circuits hamiltoniens disjoints SSI n impair. Le nombre de tels circuits partitionnant K_n vaut (n-1)/2.

LEMME

Si n pair, K_n peut être partitionné en n/2 chemins hamiltoniens disjoints.

Graphe de De Bruijn (d'ordre 3 sur deux symboles) est hamiltonien

Rappel : on sait que le graphe de De Bruijn d'ordre n est Eulérien

circuit eulérien du graphe d'ordre $n \leadsto \text{circuit}$ hamiltonien du graphe d'ordre n+1

les arête de G_n correspondent exactement aux sommets de G_{n+1}

Chaque suite de 3 couleurs rouge/noir apparaît une et une seule fois dans le cyce de longueur 8 :

Chaque suite de 5 couleurs rouge/noir apparaît une et une seule fois dans le cyce de longueur 32 :

http://images.math.cnrs.fr/La-magie-des-colliers-de-perles-de-Nicolaas-Govert-de-Bruijn