Examen « Compilation II » Enseignant : Karim Baïna Durée = 2H00

Seuls les documents de Cours et de TD sont autorisés !! Le barème est donné seulement à titre indicatif !! Les **réponses directes** et **synthétiques** seront appréciées

Nom :		 	 	
Prénom	:	 	 	

Exercice I: QCM 5 pts (à rendre avec votre copie!!)

Pour chaque concept/question, remplissez la case de la colonne des choix uniques correspondante par un choix qui soit le plus adéquat :

Concept/Question	Choix unique	Choix possibles	
(1) Control Flow Graph	(b)	(a) démontrer qu' « une	
		grammaire est ambiguë » est décidable mais l'inverse est	
		non décidable	
(2) bytecode J2EE		(b) Représentation	
(3) Grammaire		(c) Analyseur Ascendant	
attribuée			
(4) Grammaire LL		(d) Erreur Syntaxique	
(5) A corn R ISC		(e) Représentation	
M achine-ARM			
(6) select * from * ;		(f) Analyseur Descendant	
(7) bytecode	(e)	(g) Erreur Sémantique	
(8) select T1.A1 from		(h) Erreur Lexicale	
T2;			
(9) Grammaire LR		(i) actions sémantiques	
(10) Commentaire C		(j) one-address code	
non fermé (/* sans */)			
(11) semi-décidabilité	(a)	(k) three-address code	
	« RESOLUE »		

Exercice II: Analyse Syntaxique / Contextuelle 10 pts

Soit la grammaire LALR G_{pcsh} du langage sous la forme BNF suivante :

```
<SCRIPTPCSH> ::= <HEAD> <INSTLIST>
<HEAD> ::= "#!/bin/pcsh" RC
<INSTLIST> ::= <INST> <INSTLISTAUX>
<INSTLISTAUX> ::= \epsilon \mid RC <INSTLIST>
          ::= <ECHO> | <ASSIGN> | <IF> | <FOREACH> |
<WHILE> | COMMENT
<ECHO> ::= echo <ECHOAUX>
<ECHOAUX> ::= '$'IDF | <ELT>
<ASSIGN> ::= '@' IDF '=' <EXPNUM> | "set" IDF = STRING
<IF> ::= "if" '(' <EXPBOOL> ')' then RC <INSTLIST> <ELSE> RC
"endif"
\langle ELSE \rangle ::= \varepsilon \mid RC \text{ "else" } RC \langle INSTLIST \rangle
<FOREACH> ::= "foreach" IDF '(' <ELTLIST> ')' RC <INSTLIST> RC
"end"
<WHILE> ::= "while" '(' <EXPBOOL> ')' RC <INSTLIST> RC "end"
<EXPNUM> ::= NUM | ' $'IDF | <EXPNUM> OPNUM NUM |
<EXPNUM> OPNUM '$'IDF
<EXPBOOL> ::= ' $'IDF | <EXPBOOL> OPBOOL <EXPBOOL> | !
'('<EXPBOOL> ' )' | ' $'IDF COMP <ELT>
<ELTLIST> ::= <ELT> <ELTLISTAUX>
<ELTLISTAUX> ::= \epsilon \mid <ELTLIST>
<ELT> ::= STRING | NUM
```

Où respectivement la description des terminaux est la suivante : RC (retour chariot), COMMENT (commentaire c-shell sur une ligne : toute suite de caractères commençant par une #) IDF (identificateur), OPNUM (opérateur arithmétique : *, +, -, /, %), STRING (chaîne de caractères entre apostrophes ''), OPBOOL (opérateur logique : &&, ||, !), IDFORNUM (IDF ou NUM), COMP (opérateur relationnel : ==, <=, >=, !=). On utilisera la sémantique usuelle des instructions C-SHELL.

- 1. Démontrer que la grammaire G_{pcsh} est Ambiguë (a) contreexemple et (b) causes d'ambiguïté (2 pt)
- Eliminer l'ambiguïté en se basant sur les mêmes conventions que le cours (2 pts)
- 3. Eliminer la récursivité gauche de la grammaire G_{pcsh} (2 pt)
- 4. Rendre la grammaire G_{pcsh} LL(1) (2 pts)
- 5. Donner trois défauts ou limitations syntaxiques de la grammaire G_{pcsh} et proposer les solutions pour ces trois défauts (2 pts)

Exercice III : Sémantique et Programmation 6 pts1

- 1. Rendre la grammaire G_{pcsh} attribuée LL(1) (2 pt)
- 2. Programmer la grammaire attribuée LL(1) en C (2 pt)
- 3. Programmer la grammaire attribuée LALR en bison ? (2 pt)

dont 1 pt optionnel)