Analysis Midterm Review Notes

(Based on Sample Midterm, HW4, HW5)

These notes cover key concepts in continuity, limits, sequences, series, function sequences/series, and power series, integrating examples from the sample midterm and relevant homework problems.

1 Continuity

1.1 Definitions

Definition 1.1 (Continuity at a Point[1, Def 17.1]). A function $f: S \to \mathbb{R}$, where $S \subseteq \mathbb{R}$, is **continuous** at $x_0 \in S$ if for every $\varepsilon > 0$, there exists a $\delta > 0$ such that for all $x \in S$,

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon.$$

Definition 1.2 (Continuity on a Set[1, Def 17.1]). A function f is **continuous on** a set $S' \subseteq S$ if it is continuous at every point $x_0 \in S'$.

Definition 1.3 (Uniform Continuity[1, Def 19.1]). A function $f: S \to \mathbb{R}$ is **uniformly continuous on** S if for every $\varepsilon > 0$, there exists a $\delta > 0$ such that for all $x, y \in S$,

$$|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$$
.

Remark 1.1. The key difference from pointwise continuity is that δ depends only on ε and not on the specific points $x, y \in S$. Uniform continuity is a global property on the set S.

Definition 1.4 (Lipschitz Continuity (HW5.1)). A function $f: I \to \mathbb{R}$ on an interval I is **Lipschitz continuous** if there exists a constant L > 0 (the Lipschitz constant) such that for all $x, y \in I$,

$$|f(x) - f(y)| < L|x - y|.$$

Definition 1.5 (Bounded Function[1, p. 123]). A function $f: S \to \mathbb{R}$ is **bounded** if its range f(S) is a bounded subset of \mathbb{R} , i.e., there exists $M \ge 0$ such that $|f(x)| \le M$ for all $x \in S$.

Definition 1.6 (Convex Function (HW4.11)). A function f on an interval I is **convex** if for all $x, y \in I$, and all $\lambda \in (0, 1)$,

$$f((1-\lambda)x + \lambda y) \le (1-\lambda)f(x) + \lambda f(y).$$

Geometrically, the line segment connecting any two points on the graph lies above or on the graph.

1.2 Fundamental Theorems on Continuity

Theorem 1.1 (Sequential Criterion for Continuity[1, Thm 17.2]). A function $f: S \to \mathbb{R}$ is continuous at $x_0 \in S$ if and only if for every sequence (x_n) in S converging to x_0 , the sequence $(f(x_n))$ converges to $f(x_0)$. That is,

$$\lim_{n \to \infty} x_n = x_0 \implies \lim_{n \to \infty} f(x_n) = f(x_0).$$

Theorem 1.2 (Algebra of Continuous Functions[1, Thm 17.4]). If $f, g: S \to \mathbb{R}$ are functions continuous at $x_0 \in S$, then the functions f+g, f-g, $k \cdot f$ (for any constant $k \in \mathbb{R}$), and $f \cdot g$ are also continuous at x_0 . Furthermore, if $g(x_0) \neq 0$, then the function f/g is continuous at x_0 (defined on $S' = \{x \in S : g(x) \neq 0\}$, assuming x_0 is in S').

Theorem 1.3 (Composition of Continuous Functions[1, Thm 17.5]). Let $f: S \to T$ and $g: T \to \mathbb{R}$ be functions where $S, T \subseteq \mathbb{R}$. If f is continuous at $x_0 \in S$ and g is continuous at $f(x_0) \in T$, then the composition $g \circ f: S \to \mathbb{R}$, defined by $(g \circ f)(x) = g(f(x))$, is continuous at x_0 .

Theorem 1.4 (Intermediate Value Theorem (IVT)[1, Thm 18.2]). If $f : [a,b] \to \mathbb{R}$ is continuous on the closed interval [a,b], and if y_0 is any real number between f(a) and f(b) (i.e., $f(a) \le y_0 \le f(b)$ or $f(b) \le y_0 \le f(a)$), then there exists at least one $c \in [a,b]$ such that $f(c) = y_0$. If y_0 is strictly between f(a) and f(b), then c can be chosen in the open interval (a,b).

Corollary 1.5 (Existence of Zeros (HW4.9)). If $f : [a,b] \to \mathbb{R}$ is continuous and f(a) and f(b) have opposite signs (i.e., f(a)f(b) < 0), then there exists $c \in (a,b)$ such that f(c) = 0.

Theorem 1.6 (Properties of Continuous Functions on Compact Sets[1, Thm 18.1, 19.2]). Let $K \subset \mathbb{R}$ be a compact set (i.e., closed and bounded) and let $f: K \to \mathbb{R}$ be continuous on K. Then:

- 1. f is bounded on K.
- 2. f attains its maximum and minimum values on K. (Extreme Value Theorem)
- 3. f is uniformly continuous on K. (Heine-Cantor Theorem)

Theorem 1.7 (Lipschitz implies Uniform Continuity (HW5.1a)). If $f: I \to \mathbb{R}$ is Lipschitz continuous on an interval I, then f is uniformly continuous on I.

Proof. Let f be Lipschitz with constant L>0. Let $\varepsilon>0$ be given. We need to find $\delta>0$ such that $|x-y|<\delta \implies |f(x)-f(y)|<\varepsilon$ for all $x,y\in I$. Choose $\delta=\varepsilon/L$. Since $\varepsilon>0$ and L>0, $\delta>0$. Now, assume $x,y\in I$ and $|x-y|<\delta$. By the Lipschitz condition:

$$|f(x) - f(y)| \le L|x - y|.$$

Since $|x - y| < \delta = \varepsilon/L$, we have:

$$|f(x) - f(y)| < L(\varepsilon/L) = \varepsilon.$$

This holds for all $x, y \in I$. Therefore, f is uniformly continuous on I.

Theorem 1.8 (Uniform Continuity of Sums and Compositions (HW5.2a,b)). Let $S, T \subseteq \mathbb{R}$.

- 1. If $f,g:S\to\mathbb{R}$ are uniformly continuous on S, then f+g is uniformly continuous on S.
- 2. If $f: S \to T$ is uniformly continuous on S and $g: T \to \mathbb{R}$ is uniformly continuous on T, then $g \circ f: S \to \mathbb{R}$ is uniformly continuous on S.

Proof. (1) Let $\varepsilon > 0$. Find $\delta_f > 0$ for f w.r.t. $\varepsilon/2$ and $\delta_g > 0$ for g w.r.t. $\varepsilon/2$. Let $\delta = \min(\delta_f, \delta_g) > 0$. If $x, y \in S$ and $|x - y| < \delta$, then

$$|(f+g)(x) - (f+g)(y)| = |(f(x) - f(y)) + (g(x) - g(y))|$$

$$\leq |f(x) - f(y)| + |g(x) - g(y)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

(2) Let $\varepsilon > 0$. Find $\delta_g > 0$ for g w.r.t. ε . Find $\delta_f > 0$ for f w.r.t. δ_g . If $x, y \in S$ and $|x - y| < \delta_f$, then $|f(x) - f(y)| < \delta_g$. Let u = f(x), v = f(y). Then $u, v \in T$ and $|u - v| < \delta_g$, so by uniform continuity of g, $|g(u) - g(v)| < \varepsilon$. That is, $|(g \circ f)(x) - (g \circ f)(y)| < \varepsilon$. The required δ for $g \circ f$ is δ_f .

Theorem 1.9 (Density of \mathbb{Q} and Continuous Functions (HW4.7)). Let $f, g: I \to \mathbb{R}$ be continuous functions on an interval I.

- 1. If f(q) = 0 for all rational numbers $q \in I \cap \mathbb{Q}$, then f(x) = 0 for all $x \in I$.
- 2. If f(q) = g(q) for all rational numbers $q \in I \cap \mathbb{Q}$, then f(x) = g(x) for all $x \in I$.

Proof. (1) Let $x \in I$. Since $I \cap \mathbb{Q}$ is dense in I (as \mathbb{Q} is dense in \mathbb{R}), there exists a sequence (q_n) in $I \cap \mathbb{Q}$ such that $q_n \to x$. By assumption, $f(q_n) = 0$ for all n. Since f is continuous at x, by the sequential criterion:

$$f(x) = \lim_{n \to \infty} f(q_n) = \lim_{n \to \infty} 0 = 0.$$

(2) Apply part (1) to the function h(x) = f(x) - g(x). h is continuous on I, and h(q) = f(q) - g(q) = 0 for all $q \in I \cap \mathbb{Q}$. Therefore, h(x) = 0 for all $x \in I$, which means f(x) = g(x) for all $x \in I$.

Theorem 1.10 (Growth of Uniformly Continuous Functions (HW5.3)). If $f : \mathbb{R} \to \mathbb{R}$ is uniformly continuous, then there exist constants A, B > 0 such that $|f(x)| \le A + B|x|$ for all $x \in \mathbb{R}$. (Linear growth bound).

Proof. Since f is uniformly continuous, for $\varepsilon = 1$, there exists $\delta > 0$ such that $|u - v| < \delta \implies |f(u) - f(v)| < 1$. Let $x \in \mathbb{R}$. Case 1: $x \ge 0$. Let $n = \lfloor x/\delta \rfloor$. So $n \le x/\delta < n+1$. Consider points $0, \delta, 2\delta, \ldots, n\delta, x$. The distance between consecutive points is $\le \delta$. Using the triangle inequality:

$$|f(x) - f(0)| = \left| (f(x) - f(n\delta)) + \sum_{k=1}^{n} (f(k\delta) - f((k-1)\delta)) \right|$$

$$\leq |f(x) - f(n\delta)| + \sum_{k=1}^{n} |f(k\delta) - f((k-1)\delta)|.$$

Since $|x - n\delta| < \delta$ and $|k\delta - (k-1)\delta| = \delta$, each term in the sum and the first term are less than 1 (or ≤ 1 if δ was chosen s.t. $|u - v| \leq \delta \implies |f(u) - f(v)| \leq 1$). There are n + 1 terms total.

$$|f(x) - f(0)| < (n+1) \cdot 1 = n+1.$$

Since $n \le x/\delta$, we have $n+1 \le x/\delta + 1$.

$$|f(x) - f(0)| < \frac{x}{\delta} + 1.$$

Case 2: x < 0. Let $n = |x|/\delta$. Consider points $x, x + \delta, \dots, x + n\delta, 0$. A similar argument gives

$$|f(0) - f(x)| < (n+1) \cdot 1 \le \frac{|x|}{\delta} + 1.$$

Combining cases: For all $x \in \mathbb{R}$, $|f(x) - f(0)| < \frac{|x|}{\delta} + 1$. Using $|f(x)| \le |f(0)| + |f(x) - f(0)|$, we get

$$|f(x)| < |f(0)| + \frac{|x|}{\delta} + 1 = (|f(0)| + 1) + \frac{1}{\delta}|x|.$$

Choose A = |f(0)| + 1 and $B = 1/\delta$. Both are positive constants. Thus, $|f(x)| \le A + B|x|$.

Theorem 1.11 (Convexity and Continuity (HW4.11)). If f is convex on an open interval (a, b), then f is continuous on (a, b).

1.3 Examples and Counterexamples

Example 1.1 (Uniform vs. Lipschitz (HW5.1b)). **Problem Statement:** Find an example of a function g defined on an interval I that is uniformly continuous but not Lipschitz continuous.

Solution: Consider $g(x) = \sqrt{x}$ on I = [0, 1].

- Uniform Continuity: g is continuous on the compact interval [0,1]. By Theorem 1.6, g is uniformly continuous on [0,1].
- Not Lipschitz: Assume g is Lipschitz with constant L>0. Then for all $x\in(0,1]$ and y=0, we need $|\sqrt{x}-\sqrt{0}|\leq L|x-0|$, which means $\sqrt{x}\leq Lx$. Dividing by \sqrt{x} gives $1\leq L\sqrt{x}$, or $\sqrt{x}\geq 1/L$. This inequality cannot hold for all $x\in(0,1]$, because we can choose x such that $0< x<(1/L)^2$. For instance, if $x=1/(4L^2)$ (assuming $L\geq 1/2$ so $x\leq 1$), then $\sqrt{x}=1/(2L)$, and the inequality becomes $1/(2L)\geq 1/L$, which implies $1/2\geq 1$, a contradiction. Alternatively, the difference quotient $\frac{g(x)-g(0)}{x-0}=\frac{\sqrt{x}}{x}=\frac{1}{\sqrt{x}}$ is unbounded as $x\to 0^+$. A Lipschitz function must have bounded difference quotients.

Thus, $g(x) = \sqrt{x}$ on [0, 1] is uniformly continuous but not Lipschitz.

Example 1.2 (Product not Uniformly Continuous (HW5.2c)). **Problem Statement:** Show that there exist uniformly continuous functions f, g from S to \mathbb{R} such that $f \cdot g$ is not uniformly continuous.

Solution: Let $S = \mathbb{R}$. Let f(x) = x and g(x) = x.

- f and g are uniformly continuous on \mathbb{R} : They are Lipschitz with L=1, since $|f(x)-f(y)|=|x-y|=1\cdot|x-y|$. By HW5.1a, they are uniformly continuous.
- The product is $h(x) = f(x)g(x) = x^2$. We show h is not uniformly continuous on \mathbb{R} . By Theorem 1.10, if h were uniformly continuous, it would satisfy $|h(x)| \leq A + B|x|$ for some constants A, B > 0. However, $|x^2|$ grows quadratically, faster than any linear function A + B|x| for large |x|. For example, $\lim_{x\to\infty}\frac{x^2}{A+Bx}=\infty$. Thus, $h(x)=x^2$ cannot be uniformly continuous on \mathbb{R} .

Example 1.3 (Piecewise Rational/Irrational (HW4.5)). **Problem Statement:** Consider $h(x) = (1 - x^2)$ if $x \in \mathbb{Q}$ and h(x) = 0 if $x \notin \mathbb{Q}$. Show h is continuous at ± 1 but at no other points.

Solution:

- Continuity at $x_0 = 1$: We have $h(1) = 1 1^2 = 0$. Let $\varepsilon > 0$. We need $\delta > 0$ such that $|x 1| < \delta \implies |h(x) h(1)| = |h(x)| < \varepsilon$. If $x \notin \mathbb{Q}$, $|h(x)| = 0 < \varepsilon$. If $x \in \mathbb{Q}$, $|h(x)| = |1 x^2| = |1 x||1 + x|$. Choose $\delta_1 = 1$. If $|x 1| < \delta_1$, then 0 < x < 2, so |1 + x| < 3. Then |h(x)| < 3|x 1|. We want this less than ε , so we need $|x 1| < \varepsilon/3$. Choose $\delta = \min(1, \varepsilon/3)$. If $|x 1| < \delta$, then $|h(x)| < \varepsilon$. Thus h is continuous at x = 1. By symmetry (h(x) = h(-x)), h is also continuous at x = -1.
- **Discontinuity at** $x_0 \neq \pm 1$: Case 1: $x_0 \in \mathbb{Q}$. Then $h(x_0) = 1 x_0^2 \neq 0$. Since $\mathbb{R} \setminus \mathbb{Q}$ is dense, there is a sequence of irrational numbers $y_n \to x_0$. Then $h(y_n) = 0$ for all n. So $\lim h(y_n) = 0 \neq h(x_0)$. By the sequential criterion, h is discontinuous at x_0 . Case 2: $x_0 \notin \mathbb{Q}$. Then $h(x_0) = 0$. Since \mathbb{Q} is dense, there is a sequence of rational numbers $q_n \to x_0$. Then $h(q_n) = 1 q_n^2$. By continuity of polynomials, $\lim h(q_n) = 1 x_0^2$. Since $x_0 \neq \pm 1$, $1 x_0^2 \neq 0 = h(x_0)$. By the sequential criterion, h is discontinuous at x_0 .

Example 1.4 (Oscillatory Damped (HW4.6)). **Problem Statement:** For $\alpha \in \mathbb{R}$, define $f(x) = |x|^{\alpha} \sin(1/x)$ for $x \neq 0$, and f(0) = 0. Find the exact range of α for which f is continuous at 0.

Solution: We need $\lim_{x\to 0} f(x) = f(0) = 0$. Since $-1 \le \sin(1/x) \le 1$, we have for $x \ne 0$:

$$-|x|^{\alpha} < f(x) < |x|^{\alpha}$$
.

By the Squeeze Theorem, if $\lim_{x\to 0} |x|^{\alpha} = 0$, then $\lim_{x\to 0} f(x) = 0$. The limit $\lim_{x\to 0} |x|^{\alpha} = 0$ if and only if $\alpha > 0$. If $\alpha = 0$, $f(x) = \sin(1/x)$ for $x \neq 0$. Consider $x_n = 1/(n\pi)$. $x_n \to 0$, but $f(x_n) = \sin(n\pi) = 0$.

Consider $y_n = 1/(2n\pi + \pi/2)$. $y_n \to 0$, but $f(y_n) = \sin(2n\pi + \pi/2) = 1$. Since we get different limits (0 and 1) for sequences approaching 0, $\lim_{x\to 0} f(x)$ does not exist for $\alpha = 0$. If $\alpha < 0$, let $\beta = -\alpha > 0$. Then $f(x) = \frac{\sin(1/x)}{|x|^{\beta}}$. Consider $y_n = 1/(2n\pi + \pi/2) \to 0$. $f(y_n) = \frac{1}{|y_n|^{\beta}} = (2n\pi + \pi/2)^{\beta} \to \infty$. The limit is not 0. Therefore, f is continuous at 0 if and only if $\alpha > 0$.

Example 1.5 (IVT Application (Sample Midterm 5)). **Problem Statement:** Suppose f is continuous on [0,2] and f(0)=f(2). Prove that there exist $x,y \in [0,2]$ where |x-y|=1 and f(x)=f(y).

Solution: Define the auxiliary function $g:[0,1]\to\mathbb{R}$ by

$$g(x) = f(x+1) - f(x).$$

Since f is continuous on [0,2], g is continuous on [0,1] (as a difference of continuous functions). Evaluate g at the endpoints:

$$g(0) = f(1) - f(0).$$

$$g(1) = f(1+1) - f(1) = f(2) - f(1).$$

Using the given condition f(0) = f(2), we have

$$g(1) = f(0) - f(1) = -(f(1) - f(0)) = -g(0).$$

If g(0)=0, then f(1)-f(0)=0, so f(1)=f(0). We can choose x=0,y=1. Then |x-y|=1 and f(x)=f(y). If $g(0)\neq 0$, then g(0) and g(1) have opposite signs. Since g is continuous on [0,1], by the Intermediate Value Theorem, there must exist some $c\in (0,1)$ such that g(c)=0. This means f(c+1)-f(c)=0, or f(c+1)=f(c). We can choose x=c and y=c+1. Since $c\in (0,1)$, both $x,y\in [0,2]$. Also |x-y|=|c-(c+1)|=1, and f(x)=f(y). In either case, the desired x and y exist.

Example 1.6 (Function Defined by Supremum (HW4.10)). **Problem Statement:** Let f be continuous on [a,b]. Show that $f^*(x) = \sup\{f(z) : a \le z \le x\}$ is an increasing continuous function on [a,b].

Solution:

- Increasing: Let $a \le x < y \le b$. The set $S_x = \{f(z) : a \le z \le x\}$ is a subset of $S_y = \{f(z) : a \le z \le y\}$. Therefore, $\sup S_x \le \sup S_y$, which means $f^*(x) \le f^*(y)$. So f^* is increasing.
- Continuous: Let $x_0 \in [a,b]$ and let $\varepsilon > 0$. Since f is continuous on [a,b], it is uniformly continuous (Thm 1.6). There exists $\delta > 0$ such that if $z \in [a,b]$ and $|z-x_0| < \delta$, then $|f(z)-f(x_0)| < \varepsilon$. Let $x \in [a,b]$ with $|x-x_0| < \delta$. Case 1: $x > x_0$. Then $f^*(x) = \max(f^*(x_0), \sup\{f(z) : x_0 < z \le x\})$. For $z \in (x_0,x]$, we have $|z-x_0| \le |x-x_0| < \delta$, so $f(z) < f(x_0) + \varepsilon \le f^*(x_0) + \varepsilon$. Thus $\sup\{f(z) : x_0 < z \le x\} \le f^*(x_0) + \varepsilon$. This implies $f^*(x) \le f^*(x_0) + \varepsilon$. Since f^* is increasing, $f^*(x) \ge f^*(x_0)$. So $|f^*(x)-f^*(x_0)| = f^*(x)-f^*(x_0) \le \varepsilon$. Case 2: $x < x_0$. Since f^* is increasing, $f^*(x) \le f^*(x_0)$. By the Extreme Value Theorem, f attains its max on $[a,x_0]$, say at $z_0 \in [a,x_0]$, so $f^*(x_0) = f(z_0)$. If $z_0 \le x$, then $f^*(x_0) = f(z_0) \le f^*(x)$, implying $f^*(x) = f^*(x_0)$. If $x < z_0 \le x_0$, then $|z_0 x_0| \le |x x_0| < \delta$. So $f(z_0) < f(x_0) + \varepsilon$. Also $f^*(x_0) = f(z_0)$. We need to show $f^*(x_0) f^*(x) < \varepsilon$. Since $f^*(x) = \sup\{f(z) : a \le z \le x\}$, we have $f^*(x) \ge f(z)$ for $z \in [a,x]$. It is known that $f^*(x_0) = f(z_0)$. If we choose x close enough to x_0 , specifically $|x x_0| < \delta'$ where δ' corresponds to ε for uniform continuity of f, a more detailed argument shows $f^*(x_0) \le f^*(x) + \varepsilon$. Combining cases, $|f^*(x) f^*(x_0)| \le \varepsilon$ when $|x x_0| < \delta$. So f^* is continuous.

Example 1.7 (Convexity and Endpoints (HW4.11)). **Problem Statement:** Show a convex function on [a, b] is continuous on (a, b) but need not be at a or b.

Solution: The proof for continuity on (a,b) involves showing that for any $x_0 \in (a,b)$, the function values f(x) are bounded above and below by linear functions passing through $f(x_0)$ for x near x_0 , leading to $|f(x) - f(x_0)| \le K|x-x_0|$ locally (Lipschitz continuity locally implies continuity). For the endpoint counterexample, consider f on [0,1] defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in (0,1) \\ 0 & \text{if } x = 0 \text{ or } x = 1 \end{cases}$$

This function is convex (the segment between any two points lies above or on the graph), but $\lim_{x\to 0^+} f(x) = 1 \neq f(0) = 0$ and $\lim_{x\to 1^-} f(x) = 1 \neq f(1) = 0$, so it's discontinuous at the endpoints.

2 Limits of Functions

2.1 Definitions and Properties

Definition 2.1 (Limit of a Function (Neighborhood Def)[1, Def 20.1]). Let $f: S \to \mathbb{R}$, and let a be a limit point of S. We say $\lim_{x\to a} f(x) = L$ if $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $\forall x \in S$,

$$0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon.$$

Definition 2.2 (One-Sided Limits[1, Def 20.8]). • **Right-hand limit:** $\lim_{x\to a^+} f(x) = L$ if $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. $\forall x \in S, \ a < x < a + \delta \implies |f(x) - L| < \varepsilon$.

• Left-hand limit: $\lim_{x\to a^-} f(x) = L$ if $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. $\forall x \in S, a - \delta < x < a \implies |f(x) - L| < \varepsilon$.

Definition 2.3 (Infinite Limits[1, Sec 20]). $\lim_{x\to a} f(x) = +\infty$ if $\forall M > 0$, $\exists \delta > 0$ s.t. $\forall x \in S$, $0 < |x-a| < \delta \implies f(x) > M$. (Similar definitions for $-\infty$ and one-sided limits).

Theorem 2.1 (Two-Sided vs One-Sided Limits[1, Thm 20.10]). Let f be defined on an interval around a, except possibly at a. Then $\lim_{x\to a} f(x) = L$ if and only if $\lim_{x\to a^+} f(x) = L$ and $\lim_{x\to a^-} f(x) = L$.

Theorem 2.2 (Limit Laws[1, Thm 20.4]). If $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$ (where $L, M \in \mathbb{R}$), then

- $\lim_{x\to a} (f(x) + g(x)) = L + M$
- $\lim_{x\to a} (f(x)g(x)) = LM$
- $\lim_{x\to a} (f(x)/g(x)) = L/M$, provided $M \neq 0$.

These hold similarly for one-sided limits.

Theorem 2.3 (Order Properties of Limits[1, Thm 20.5] (HW5.5a)). Assume $\lim_{x\to a^+} f(x) = L$ and $\lim_{x\to a^+} g(x) = M$ exist (as finite numbers). If there exists $\delta_0 > 0$ such that $f(x) \leq g(x)$ for all $x \in (a, a+\delta_0)$, then $L \leq M$.

Proof. Assume for contradiction that L>M. Let $\varepsilon=(L-M)/2>0$. By definition of limits, there exist $\delta_1,\delta_2>0$ such that: If $a< x< a+\delta_1$, then $|f(x)-L|<\varepsilon\Longrightarrow f(x)>L-\varepsilon=(L+M)/2$. If $a< x< a+\delta_2$, then $|g(x)-M|<\varepsilon\Longrightarrow g(x)< M+\varepsilon=(L+M)/2$. Let $\delta=\min(\delta_0,\delta_1,\delta_2)>0$. For any $x\in(a,a+\delta)$, we have: $f(x)\leq g(x)$ (since $x\in(a,a+\delta_0)$). f(x)>(L+M)/2 (since $x\in(a,a+\delta_1)$). Combining these gives $(L+M)/2< f(x)\leq g(x)<(L+M)/2$, which is impossible. Therefore, the assumption L>M must be false, so $L\leq M$.

2.2 Examples

Example 2.1 (Limits of a Rational Function (HW5.4)). **Problem Statement:** Let $f(x) = \frac{1}{(x+1)^2(x-2)}$. Find the one-sided limits at x=2 and x=-1, and the two-sided limits if they exist.

Solution:

- Near x=2: As $x\to 2^+$, $x-2\to 0^+$ and $(x+1)^2\to 9$. Denominator $\to 9\cdot 0^+=0^+$. $f(x)\to +\infty$. As $x\to 2^-$, $x-2\to 0^-$ and $(x+1)^2\to 9$. Denominator $\to 9\cdot 0^-=0^-$. $f(x)\to -\infty$. Since $\lim_{x\to 2^+} f(x)\neq \lim_{x\to 2^-} f(x)$, $\lim_{x\to 2} f(x)$ does not exist.
- Near x=-1: As $x\to -1^+$, $x+1\to 0^+$ so $(x+1)^2\to 0^+$. $x-2\to -3$. Denominator $\to 0^+\cdot (-3)=0^-$. $f(x)\to -\infty$. As $x\to -1^-$, $x+1\to 0^-$ so $(x+1)^2\to 0^+$. $x-2\to -3$. Denominator $\to 0^+\cdot (-3)=0^-$. $f(x)\to -\infty$. Since $\lim_{x\to -1^+}f(x)=\lim_{x\to -1^-}f(x)=-\infty$, we write $\lim_{x\to -1}f(x)=-\infty$. (Note: This limit does not exist as a real number).

Example 2.2 (Limits and Strict Inequality (HW5.5b)). **Problem Statement:** Suppose $f_1(x) < f_2(x)$ for x in (a,b). Does it follow that $\lim_{x\to a^+} f_1(x) < \lim_{x\to a^+} f_2(x)$?

Solution: No. Strict inequality between functions does not guarantee strict inequality between their limits. Consider a=0, b=1. Let $f_1(x)=0$ and $f_2(x)=x$ for $x\in(0,1)$. Clearly $f_1(x)< f_2(x)$ for all $x\in(0,1)$. However,

$$L_1 = \lim_{x \to 0^+} f_1(x) = \lim_{x \to 0^+} 0 = 0.$$

$$L_2 = \lim_{x \to 0^+} f_2(x) = \lim_{x \to 0^+} x = 0.$$

$$L_2 = \lim_{x \to 0^+} f_2(x) = \lim_{x \to 0^+} x = 0$$

Here $L_1 = L_2$, not $L_1 < L_2$.

Example 2.3 (Symmetric Difference Limit vs. Continuity (HW4.8)). Problem Statement: Suppose f: $\mathbb{R} \to \mathbb{R}$ is such that for a given $x_0 \in \mathbb{R}$, $\lim_{n \to \infty} (f(x_0 + a_n) - f(x_0 - a_n)) = 0$ for all sequences $a_n \to 0$. Is $f(x_0 + a_n) = 0$. continuous at x_0 ?

Solution: No. Consider the function

$$f(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x \neq 0 \end{cases}$$

Let $x_0 = 0$. Let (a_n) be any sequence such that $a_n \to 0$. For n large enough, $a_n \neq 0$, so $-a_n \neq 0$. Then $f(x_0 + a_n) = f(a_n) = 0$ and $f(x_0 - a_n) = f(-a_n) = 0$. So, $f(x_0 + a_n) - f(x_0 - a_n) = 0 - 0 = 0$. The limit is $\lim_{n\to\infty} 0=0$. The condition holds for $x_0=0$. However, f is not continuous at $x_0=0$, because $\lim_{x\to 0} f(x) = 0$, but f(0) = 1.

3 Convergence of Numerical Series

Definitions 3.1

Definition 3.1. A series $\sum_{n=1}^{\infty} a_n$ converges to $S \in \mathbb{R}$ if its sequence of partial sums $s_k = \sum_{n=1}^k a_n$ converges to S. Otherwise the series **diverges**.

3.2Convergence Tests

Theorem 3.1 (Term Test for Divergence[1, Thm 14.5]). If $\sum a_n$ converges, then $\lim_{n\to\infty} a_n = 0$. Equivalently, if $\lim a_n \neq 0$ or the limit DNE, then $\sum a_n$ diverges.

Theorem 3.2 (Comparison Test[1, Thm 14.6]). Let $0 \le a_n \le b_n$ for n sufficiently large.

- If $\sum b_n$ converges, then $\sum a_n$ converges.
- If $\sum a_n$ diverges, then $\sum b_n$ diverges.

Theorem 3.3 (Limit Comparison Test[1, Thm 14.7]). Let $a_n > 0, b_n > 0$ for n sufficiently large. Let $L = \lim_{n \to \infty} (a_n/b_n).$

- If $0 < L < \infty$, then $\sum a_n$ converges iff $\sum b_n$ converges.
- If L = 0 and $\sum b_n$ converges, then $\sum a_n$ converges.
- If $L = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Theorem 3.4 (Alternating Series Test[1, Thm 15.3]). If (a_n) is a sequence such that $a_n \ge 0$, $a_{n+1} \le a_n$ for n sufficiently large, and $\lim a_n = 0$, then the alternating series $\sum (-1)^n a_n$ (and $\sum (-1)^{n+1} a_n$) converges.

Remark 3.1 (p-series[1, Sec 14]). The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if and only if p > 1.

3.3 Examples

Example 3.1 (Sample Midterm 4a). **Problem Statement:** Determine convergence/divergence of $S_1 = \sum_{n=2}^{\infty} \frac{1}{\sqrt{n^2-1}}$ and $S_2 = \sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n^2-1}}$.

Solution:

• For S_1 : Let $a_n = 1/\sqrt{n^2 - 1}$. Compare with $b_n = 1/n$. $\sum b_n$ diverges (harmonic, p=1).

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{n}{\sqrt{n^2-1}}=\lim_{n\to\infty}\frac{n}{n\sqrt{1-1/n^2}}=1.$$

Since $0 < 1 < \infty$, by LCT, S_1 diverges.

• For S_2 : Let $a_n = 1/\sqrt{n^2 - 1}$. 1. $a_n > 0$ for $n \ge 2$. 2. a_n is decreasing since $\sqrt{n^2 - 1}$ is increasing for $n \ge 2$. 3. $\lim_{n \to \infty} a_n = 0$. By AST, S_2 converges.

4 Sequences and Series of Functions

4.1 Definitions

Definition 4.1 (Pointwise Convergence[1, Def 24.1]). A sequence of functions (f_n) defined on $S \subseteq \mathbb{R}$ converges pointwise to f on S if for each $x \in S$, $\lim_{n\to\infty} f_n(x) = f(x)$.

Definition 4.2 (Uniform Convergence[1, Def 24.2]). (f_n) converges uniformly to f on S if $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n > N$ and $\forall x \in S$,

$$|f_n(x) - f(x)| < \varepsilon.$$

Equivalently, $\lim_{n\to\infty} \sup_{x\in S} |f_n(x) - f(x)| = 0$.

Definition 4.3 (Uniformly Cauchy[1, Def 25.3]). (f_n) is **uniformly Cauchy** on S if $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall m, n > N$ and $\forall x \in S$,

$$|f_n(x) - f_m(x)| < \varepsilon.$$

4.2 Theorems on Uniform Convergence

Theorem 4.1 (Cauchy Criterion[1, Thm 25.4]). A sequence of functions (f_n) converges uniformly on S if and only if it is uniformly Cauchy on S.

Theorem 4.2 (Uniform Convergence implies Cauchy (Sample Midterm 6)). If $f_n \to f$ uniformly on S, then (f_n) is uniformly Cauchy on S.

Proof. Let $\varepsilon > 0$. By uniform convergence, $\exists N$ such that $k > N \implies |f_k(x) - f(x)| < \varepsilon/2$ for all $x \in S$. If m, n > N, then for all $x \in S$:

$$|f_n(x) - f_m(x)| = |(f_n(x) - f(x)) + (f(x) - f_m(x))|$$

$$\leq |f_n(x) - f(x)| + |f(x) - f_m(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus (f_n) is uniformly Cauchy.

Theorem 4.3 (Continuity of Limit Function[1, Thm 24.3] (HW5.8)). Let (f_n) be a sequence of functions continuous on $S \subseteq \mathbb{R}$. If $f_n \to f$ uniformly on S, then the limit function f is continuous on S.

Theorem 4.4 (Uniform Continuity of Limit Function (Sample Midterm 1)). Let (f_n) be a sequence of uniformly continuous functions on an interval I. If $f_n \to f$ uniformly on I, then the limit function f is uniformly continuous on I.

Proof. Let $\varepsilon > 0$. 1. (Uniform Convergence) $\exists N$ such that $n > N \implies |f_n(z) - f(z)| < \varepsilon/3$ for all $z \in I$. Let $n_0 = N + 1$. 2. (Uniform Continuity of f_{n_0}) Since f_{n_0} is uniformly continuous, $\exists \delta > 0$ such that $|x - y| < \delta \implies |f_{n_0}(x) - f_{n_0}(y)| < \varepsilon/3$ for $x, y \in I$. 3. (Triangle Inequality) Let $x, y \in I$ with $|x - y| < \delta$.

$$|f(x) - f(y)| \le |f(x) - f_{n_0}(x)| + |f_{n_0}(x) - f_{n_0}(y)| + |f_{n_0}(y) - f(y)|$$

 $< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$

Thus f is uniformly continuous on I.

Theorem 4.5 (Boundedness of Limit Function[1, Ex 25.5] (Sample Midterm 7a)). Let (f_n) be a sequence of bounded functions on S. If $f_n \to f$ uniformly on S, then the limit function f is bounded on S.

Proof. Let $\varepsilon = 1$. By uniform convergence, $\exists N$ such that $n > N \implies |f_n(x) - f(x)| < 1$ for all $x \in S$. Consider f_{N+1} . Since it's bounded, $\exists M$ such that $|f_{N+1}(x)| \leq M$ for all $x \in S$. For any $x \in S$:

$$|f(x)| = |f(x) - f_{N+1}(x) + f_{N+1}(x)| \le |f(x) - f_{N+1}(x)| + |f_{N+1}(x)|$$

$$< 1 + M.$$

Let M' = M + 1. Then |f(x)| < M' for all $x \in S$, so f is bounded.

Theorem 4.6 (Interchange of Limits[1, Ex 24.17] (Sample Midterm 3)). Let (f_n) be a sequence of continuous functions on [a,b] converging uniformly to f on [a,b]. Let (x_n) be a sequence in [a,b] such that $x_n \to x \in [a,b]$. Then

$$\lim_{n \to \infty} f_n(x_n) = f(x).$$

Proof. Let $\varepsilon > 0$. 1. By Thm 24.3, f is continuous on [a,b]. Since $x_n \to x$, $\exists N_1$ such that $n > N_1 \Longrightarrow |f(x_n) - f(x)| < \varepsilon/2$. 2. By uniform convergence, $\exists N_2$ such that $n > N_2 \Longrightarrow |f_n(y) - f(y)| < \varepsilon/2$ for all $y \in [a,b]$. In particular, $|f_n(x_n) - f(x_n)| < \varepsilon/2$. 3. Let $N = \max(N_1, N_2)$. For n > N:

$$|f_n(x_n) - f(x)| = |(f_n(x_n) - f(x_n)) + (f(x_n) - f(x))|$$

$$\leq |f_n(x_n) - f(x_n)| + |f(x_n) - f(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus $\lim f_n(x_n) = f(x)$.

Theorem 4.7 (Weierstrass M-Test[1, Thm 25.7]). Let (f_n) be a sequence of functions defined on $S \subseteq \mathbb{R}$. Suppose there exists a sequence of non-negative numbers (M_n) such that

- 1. $|f_n(x)| \leq M_n$ for all $x \in S$ and for all n,
- 2. The numerical series $\sum_{n=1}^{\infty} M_n$ converges.

Then the series of functions $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on S.

4.3 Examples

Example 4.1 (Pointwise vs Uniform (HW5.7)). **Problem Statement:** For $x \in [0, \infty)$, define $f_n(x) = \frac{x}{n}$. (a) Find $f(x) = \lim_{n \to \infty} f_n(x)$. (b) Uniform on [0, 1]? (c) Uniform on $[0, \infty)$?

Solution: (a) For fixed $x \ge 0$, $f(x) = \lim_{n \to \infty} x/n = x \cdot 0 = 0$. Pointwise limit is f(x) = 0. (b) On [0, 1]: We check $\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1]} |x/n - 0| = \sup_{x \in [0,1]} x/n$. Since x/n increases with x, the supremum occurs at x = 1.

$$M_n = \sup_{x \in [0,1]} |f_n(x) - f(x)| = 1/n.$$

Since $\lim_{n\to\infty} M_n = \lim 1/n = 0$, convergence is uniform on [0,1]. (c) On $[0,\infty)$: We check $\sup_{x\in[0,\infty)} |f_n(x)-f(x)| = \sup_{x\in[0,\infty)} x/n$. For any fixed n, x/n is unbounded as $x\to\infty$.

$$M_n = \sup_{x \in [0,\infty)} |f_n(x) - f(x)| = \infty.$$

Since $M_n \not\to 0$, convergence is not uniform on $[0, \infty)$.

Example 4.2 (Pointwise/Uniform Convergence and Continuity (HW5.8)). **Problem Statement:** Analyze continuity and convergence for (a) $f_n(x) = 1$ if x = 1/k (k = 1..n), 0 otherwise; (b) $g_n(x) = x$ if x = 1/k (k = 1..n), 0 otherwise.

Solution: (a) Sequence f_n :

- Continuity of f_n at 0: $f_n(0) = 0$. For |x| < 1/n, $x \ne 1/k$ for k = 1..n, so $f_n(x) = 0$. Thus $\lim_{x\to 0} f_n(x) = 0 = f_n(0)$. Yes, f_n continuous at 0.
- Pointwise limit f(x): If x = 1/k, then $f_n(x) = 1$ for $n \ge k$, so f(x) = 1. Otherwise $f_n(x) = 0$ for all n, so f(x) = 0.

$$f(x) = \begin{cases} 1 & \text{if } x = 1/k \text{ for some integer } k \ge 1, \\ 0 & \text{otherwise.} \end{cases}$$

- Uniform convergence: $M_n = \sup |f_n(x) f(x)|$. Consider x = 1/(n+1). $f_n(x) = 0$, f(x) = 1. So $|f_n(x) f(x)| = 1$. Thus $M_n \ge 1$. Since $M_n \not\to 0$, convergence is not uniform.
- Continuity of f at 0: f(0) = 0. Let $x_k = 1/k \to 0$. $f(x_k) = 1$. $\lim f(x_k) = 1 \neq f(0)$. No, f is not continuous at 0.

(b) Sequence g_n :

- Continuity of g_n at 0: $g_n(0) = 0$. For |x| < 1/n, $g_n(x) = 0$. Thus $\lim_{x\to 0} g_n(x) = 0 = g_n(0)$. Yes, g_n continuous at 0.
- Pointwise limit g(x): If x = 1/k, then $g_n(x) = x$ for $n \ge k$, so g(x) = x. Otherwise $g_n(x) = 0$, so g(x) = 0.

$$g(x) = \begin{cases} x & \text{if } x = 1/k \text{ for some integer } k \ge 1, \\ 0 & \text{otherwise.} \end{cases}$$

• Uniform convergence: $M_n = \sup |g_n(x) - g(x)|$. The difference is non-zero only if x = 1/k for k > n, where $|g_n(x) - g(x)| = |0 - x| = 1/k$.

$$M_n = \sup\{1/k : k > n\} = 1/(n+1).$$

Since $\lim M_n = \lim 1/(n+1) = 0$, convergence is uniform.

• Continuity of g at 0: g(0) = 0. We have $|g(x)| \le |x|$ (since g(x) is either 0 or x). Let $\varepsilon > 0$. Choose $\delta = \varepsilon$. If $|x - 0| < \delta$, then $|g(x) - g(0)| = |g(x)| \le |x| < \delta = \varepsilon$. Yes, g is continuous at 0. (Consistent with Thm 24.3).

Example 4.3 (Pointwise Limit Need Not Be Bounded (Sample Midterm 7b)). **Problem Statement:** Construct $S \subseteq \mathbb{R}$ and a sequence of bounded functions (f_n) on S such that $f_n \to f$ pointwise, but f is not bounded.

Solution: Let S = (0,1]. Define $f_n : S \to \mathbb{R}$ by

$$f_n(x) = \min\left\{n, \frac{1}{x}\right\}.$$

- Boundedness of f_n : For any $x \in (0,1]$, $1/x \ge 1$. If $1/x \le n$, then $f_n(x) = 1/x$. If 1/x > n, then $f_n(x) = n$. In either case, $0 < f_n(x) \le \max(n, 1/x)$. More simply, $f_n(x)$ is either n or 1/x. If $x \ge 1/n$, $1/x \le n$, so $f_n(x) = 1/x \le n$. If x < 1/n, $f_n(x) = n$. Thus, $|f_n(x)| \le n$ for all $x \in S$. Each f_n is bounded.
- Pointwise Limit: Let $x \in (0,1]$ be fixed. Choose $N \in \mathbb{N}$ such that N > 1/x. For all n > N, we have n > 1/x, which implies x > 1/n. By definition of f_n , for n > N, $f_n(x) = 1/x$. The sequence $(f_n(x))$ is eventually constant (1/x), so $\lim_{n \to \infty} f_n(x) = 1/x$. The pointwise limit is f(x) = 1/x.
- Unboundedness of f: The limit function f(x) = 1/x is not bounded on S = (0,1] because $\lim_{x\to 0^+} f(x) = +\infty$.

Example 4.4 (M-Test Application (Sample Midterm 2b alt)). **Problem Statement:** Show that $f_3(y) = \sum_{n=1}^{\infty} \frac{1}{n^2} \left(\frac{y}{1+y^2}\right)^n$ converges for all $y \in \mathbb{R}$.

Solution: Let $f_n(y) = \frac{1}{n^2} \left(\frac{y}{1+y^2}\right)^n$. Let $g(y) = y/(1+y^2)$. We find the maximum of |g(y)|. $g'(y) = (1-y^2)/(1+y^2)^2$. Critical points at $y = \pm 1$. g(1) = 1/2, g(-1) = -1/2. Also g(0) = 0 and $\lim_{y \to \pm \infty} g(y) = 0$. So the maximum absolute value is $|g(\pm 1)| = 1/2$. Thus, $|g(y)| \le 1/2$ for all $y \in \mathbb{R}$. Now bound $|f_n(y)|$:

$$|f_n(y)| = \left| \frac{1}{n^2} (g(y))^n \right| = \frac{1}{n^2} |g(y)|^n \le \frac{1}{n^2} \left(\frac{1}{2} \right)^n.$$

Let $M_n = \frac{1}{n^2 2^n}$. The series $\sum M_n$ converges by comparison with the convergent p-series $\sum 1/n^2$ (since $1/2^n \le 1$). By the Weierstrass M-Test, the series $\sum f_n(y)$ converges uniformly on \mathbb{R} . Uniform convergence implies pointwise convergence for all $y \in \mathbb{R}$.

5 Power Series

5.1 Definitions and Basic Properties

Definition 5.1 (Power Series[1, Sec 23]). A power series centered at a is an infinite series of the form

$$\sum_{n=0}^{\infty} a_n (x-a)^n = a_0 + a_1 (x-a) + a_2 (x-a)^2 + \dots$$

We often consider a = 0: $\sum a_n x^n$.

Theorem 5.1 (Radius of Convergence[1, Thm 23.1]). For any power series $\sum a_n(x-a)^n$, there exists a unique $R \in [0, \infty]$, called the **radius of convergence**, such that:

- The series converges absolutely for all x satisfying |x a| < R.
- The series diverges for all x satisfying |x a| > R.

The value R is given by the formula:

$$R = \frac{1}{\limsup_{n \to \infty} |a_n|^{1/n}}$$

(with conventions $1/0 = \infty$ and $1/\infty = 0$).

Proposition 5.2 (Ratio Test for Radius of Convergence[1, Sec 9]). If the limit $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ exists (possibly 0 or ∞), then the radius of convergence is R = 1/L (with conventions $1/0 = \infty, 1/\infty = 0$).

Definition 5.2 (Interval of Convergence). The set of all $x \in \mathbb{R}$ for which the power series $\sum a_n(x-a)^n$ converges. It is always an interval centered at a. If $0 < R < \infty$, the interval is one of (a-R,a+R), [a-R,a+R], or [a-R,a+R]. Convergence at the endpoints $x=a\pm R$ must be tested separately.

Theorem 5.3 (Uniform Convergence of Power Series[1, Thm 26.1]). If a power series $\sum a_n(x-a)^n$ has radius of convergence R > 0, then for any c such that 0 < c < R, the series converges uniformly on the closed interval [a-c, a+c].

Corollary 5.4 (Continuity of Power Series). The function $f(x) = \sum a_n(x-a)^n$ defined by a power series is continuous on its open interval of convergence (a-R,a+R).

5.2 Examples

Example 5.1 (Calculating R and Interval (HW5.6)). **Problem Statement:** For each series, find the radius R and the interval of convergence I.

1. $\sum_{n=0}^{\infty} n^2 x^n$: $a_n = n^2$. Use Ratio Test:

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)^2}{n^2} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^2 = 1.$$

R=1/L=1. Check endpoints $x=\pm 1$: $\sum (\pm 1)^n n^2$. Since $|(\pm 1)^n n^2|=n^2 \not\to 0$, both diverge by Term Test. I=(-1,1).

2. $\sum_{n=1}^{\infty} \left(\frac{x}{n}\right)^n = \sum_{n=1}^{\infty} \frac{1}{n^n} x^n$: $a_n = 1/n^n$. Use Root Test:

$$\alpha = \limsup_{n \to \infty} |a_n|^{1/n} = \limsup_{n \to \infty} \left| \frac{1}{n^n} \right|^{1/n} = \limsup_{n \to \infty} \frac{1}{n} = 0.$$

$$R = 1/\alpha = 1/0 = \infty$$
. $I = (-\infty, \infty)$.

3. $\sum_{n=1}^{\infty} x^{n!}$: Coefficients $a_k = 1$ if k = m! for some $m \ge 1$, $a_k = 0$ otherwise. Use Root Test:

$$\alpha = \limsup_{k \to \infty} |a_k|^{1/k}$$

The sequence $|a_k|^{1/k}$ contains terms equal to 1 infinitely often (when k=m!). The other terms are 0. The limit superior is 1. $R=1/\alpha=1$. Check endpoints $x=\pm 1$: If x=1, $\sum 1^{n!}=\sum 1$, diverges. If x=-1, $\sum (-1)^{n!}=(-1)^1+(-1)^2+(-1)^6+\cdots=-1+1+1+\ldots$ Terms are $-1,1,1,\ldots$, do not approach 0. Diverges by Term Test. I=(-1,1).

4. $\sum_{n=0}^{\infty} 5^n x^{2n+1}$: Rewrite as $x \sum_{n=0}^{\infty} 5^n (x^2)^n$. Let $y=x^2$. Series is $x \sum (5y)^n$. This is geometric, converges iff $|5y| < 1 \implies |y| < 1/5$. So $|x^2| < 1/5 \implies x^2 < 1/5 \implies |x| < 1/\sqrt{5}$. $R = 1/\sqrt{5}$. Check endpoints $x = \pm 1/\sqrt{5}$: If $x = 1/\sqrt{5}$, series is $\sum 5^n (1/\sqrt{5})^{2n+1} = \sum \frac{5^n}{5^n\sqrt{5}} = \sum 1/\sqrt{5}$, diverges (Term Test). If $x = -1/\sqrt{5}$, series is $\sum 5^n (-1/\sqrt{5})^{2n+1} = \sum (-1) \frac{5^n}{5^n\sqrt{5}} = \sum -1/\sqrt{5}$, diverges (Term Test). $I = (-1/\sqrt{5}, 1/\sqrt{5})$.

Example 5.2 (Calculating R (Sample Midterm 2a)). **Problem Statement:** Find R for $f_1(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}$ and $f_2(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{2^n}$.

Solution:

- For f_1 : $a_n = 1/n^2$. Ratio Test: $L = \lim |a_{n+1}/a_n| = \lim n^2/(n+1)^2 = 1$. R = 1/1 = 1.
- For f_2 : Let $y=x^2$. Series is $\sum y^n/2^n=\sum (1/2^n)y^n$. For this series in y, use Ratio Test on coefficients $b_n=1/2^n$: $L_y=\lim |b_{n+1}/b_n|=\lim (1/2^{n+1})/(1/2^n)=1/2$. Radius for y is $R_y=1/(1/2)=2$. Converges for |y|<2. Substitute back: $|x^2|<2\Longrightarrow x^2<2\Longrightarrow |x|<\sqrt{2}$. Radius for x is $R=\sqrt{2}$.

Example 5.3 (Using Endpoint Behavior for R (Sample Midterm 4b)). **Problem Statement:** Find R for $\sum_{n=2}^{\infty} \frac{5^n x^n}{\sqrt{n^2-1}}$. Use results from SM 4a: $\sum 1/\sqrt{n^2-1}$ diverges, $\sum (-1)^n/\sqrt{n^2-1}$ converges.

Solution: Let the power series be S(x).

- Test x=1/5: $S(1/5)=\sum \frac{5^n(1/5)^n}{\sqrt{n^2-1}}=\sum \frac{1}{\sqrt{n^2-1}}$. This diverges. Since the series diverges at x=1/5, we must have $R\leq |1/5|=1/5$.
- Test x = -1/5: $S(-1/5) = \sum \frac{5^n (-1/5)^n}{\sqrt{n^2 1}} = \sum \frac{(-1)^n}{\sqrt{n^2 1}}$. This converges. Since the series converges at x = -1/5, we must have $R \ge |-1/5| = 1/5$.

Combining $R \le 1/5$ and $R \ge 1/5$, we conclude R = 1/5.

Example 5.4 (Function Series as Power Series (Sample Midterm 2b)). **Problem Statement:** Show that $f_3(y) = \sum_{n=1}^{\infty} \frac{1}{n^2} \left(\frac{y}{1+y^2}\right)^n$ converges for all $y \in \mathbb{R}$.

Solution: Let $x=g(y)=\frac{y}{1+y^2}$. The series is $f_1(x)=\sum_{n=1}^\infty\frac{x^n}{n^2}$. From SM 2a, $f_1(x)$ has R=1. Check endpoints for $f_1(x)$: If x=1, $\sum 1/n^2$ converges (p-series, p=2). If x=-1, $\sum (-1)^n/n^2$ converges (AST or absolutely). So, the interval of convergence for $f_1(x)$ is [-1,1]. Now find the range of $g(y)=y/(1+y^2)$. As shown in HW5 M-Test example, $|g(y)| \le 1/2$ for all $y \in \mathbb{R}$. The range is [-1/2,1/2]. Since the argument x=g(y) always lies in [-1/2,1/2], and this interval is contained within the interval of convergence [-1,1] for $f_1(x)$, the series $f_3(y)=f_1(g(y))$ converges for all $y \in \mathbb{R}$.

References

[1] Ross, K. A. *Elementary Analysis: The Theory of Calculus*. 2nd ed., Springer, 2013.