eflowsim: A simulation framework for e-flows power analysis

Doug Leasure, Seth Wenger, Mary Freeman

River Basin Center Odum School of Ecology University of Georgia

Lahontan Cutthroat Trout: Database

Lahontan Cutthroat Trout: Database

232 populations

200 miles of electrofishing surveys

Spatio-Temporal Population Viability Analysis

Observation Model

Site abundance = observed + unobserved animals

Sampling Model

Total population = sampled + unsampled habitat 100 1

Process Model

Spatio-Temporal Population Viability Analysis

Spatio-Temporal Population Viability Analysis

Spatio-Temp

Observation Model

eflowsim

Sampling Model

Process Model

iability Analysis

Gage ID: Maggie Creek, NV

Annual Flow Statistics

- 1. Mean discharge
- 2. Base flow
- 3. Flood magnitude
- 4. Flow variability

Response:

Abundance estimator

Simulations: 50

Years: 30

Showing results from only one of these simulations

Stochasticity

Demographic: 0.01

Sampling: 0.01 Detection: 0.01

Sites: 20/year (50 m each)

Passes: 3

Response:

Abundance estimator

Simulations: 50

Years: 30

Showing results from only one of these simulations

Stochasticity

Demographic: 0.01

Sampling: 0.01 Detection: 0.01

Sites: 20/year (50 m each)

Passes: 3

Response:

Abundance estimator

Simulations: 50

Years: 30

Stochasticity

Demographic: 0.01

Sampling: 0.01 Detection: 0.01

Sites: 20/year (50 m each)

Passes: 3

Response:

Abundance estimator

Simulations: 50

Years: 30

Stochasticity

Demographic: 0.01

Sampling: 0.01 Detection: 0.01

Sites: 20/year (50 m each)

Passes: 3

Response:

Change in abundance estimator

Simulations: 50

Years: 30

Stochasticity

Demographic: 0.01

Sampling: 0.01 Detection: 0.01

Sites: 20/year (50 m each)

Passes: 3

Response:

Change in abundance estimator

Simulations: 50

Years: 30

Stochasticity

Demographic: 0.01

Sampling: 0.01 Detection: 0.01

Sites: 20/year (50 m each)

Passes: 3

Response:

Change in abundance estimator

Simulations: 50

Years: 30

Stochasticity

Demographic: 0.01

Sampling: 1.00

Detection: 0.01

Sites: 20/year (50 m each)

Passes: 3

Response:

Change in abundance estimator

Simulations: 50

Years: 30

Stochasticity

Demographic: 0.01

Sampling: 1.00 Detection: 0.01

Sites: 20/year (50 m each)

Passes: 3

Response:

Change in abundance estimator

Simulations: 50

Years: 30

Stochasticity

Demographic: 0.70

Sampling: 1.00

Detection: 0.01

Sites: 20/year (50 m each)

Passes: 3

Response:

Change in abundance estimator

Simulations: 50

Years: 30

Stochasticity

Demographic: 0.70

Sampling: 1.00

Detection: 0.01

Sites: 20/year (50 m each)

Passes: 3

Response:

Change in abundance estimator

Simulations: 50

Years: 30

Stochasticity

Demographic: 0.10

Sampling: 0.10

Detection: 0.00

Sites: 20/year (50 m each)

Passes: 3

Response:

Change in abundance estimator

Simulations: 50

Years: 30

Stochasticity

Demographic: 0.10

Sampling: 0.10

Detection: 0.00

Sites: 20/year (50 m each)

Passes: 3

Response:

Change in abundance estimator

Simulations: 30

Years: 5

Stochasticity

Demographic: 0.10

Sampling: 0.10 Detection: 0.00

Sites: 20/year (50 m each)

Passes: 3

Response:

Change in abundance estimator

Simulations: 30

Years: 5

Stochasticity

Demographic: 0.10

Sampling: 0.10

Detection: 0.00

Sites: 20/year (50 m each)

Passes: 3

Response:

Change in abundance estimator

Simulations: 5 ■

Years: 30

Demographic: 0.10

Sampling: 0.10

Detection: 0.00

Sites: 20/year (50 m each)

Passes: 3

Response:

Change in abundance estimator

Simulations: 5

Years: 30

Demographic: 0.10

Sampling: 0.10

Detection: 0.00

Sites: 20/year (50 m each)

Passes: 3

Summary/Conclusions

- 1. Hidden effects on growth rates
- 2. Signal-to-noise
 - Demographic stochasticity + unexplained variance
 - Sampling error
 - Observation error
- 3. States vs. rates
- 4. Many short-term studies vs. few long-term studies

** Simulation results may change in a different stream!

What's next?

1. The e-flows data challenge.

- a. Data generated for several scenarios (fish/river/data collection characteristics).
- b. Simulation parameters kept secret.
- c. Participating labs analyze replicate datasets independently.
- d. Compare conclusions to known flow effects.

2. eflowsim: A web app and/or R package.

- a. Simulate your own fish populations in any stream
- b. Generate fish survey data using different sampling designs
- c. Assess error rates of your preferred analytical approach