Digital Image Processing

Image Enhancement (Histogram Processing)

Contents

Over the next few lectures we will look at image enhancement techniques working in the spatial domain:

- What is image enhancement?
- Different kinds of image enhancement
- Histogram processing
- Point processing
- Neighbourhood operations

A Note About Grey Levels

So far when we have spoken about image grey level values we have said they are in the range [0, 255]

- Where 0 is black and 255 is white

There is no reason why we have to use this range

- The range [0,255] stems from display technologes

For many of the image processing operations in this lecture grey levels are assumed to be given in the range [0.0, 1.0]

What Is Image Enhancement?

Image enhancement is the process of making images more useful

The reasons for doing this include:

- Highlighting interesting detail in images
- Removing noise from images
- Making images more visually appealing

Image Enhancement Examples

Image Enhancement Examples (cont...)

Image Enhancement Examples (cont...)

Image Enhancement Examples (cont...)

Spatial & Frequency Domains

There are two broad categories of image enhancement techniques

- Spatial domain techniques
 - Direct manipulation of image pixels
- Frequency domain techniques
 - Manipulation of Fourier transform or wavelet transform of an image

For the moment we will concentrate on techniques that operate in the spatial domain

Histogram of an Image

Histogram: the distribution of gray intensity over all pixels in the images

```
r presents the gray level of a pixel n presents the number of pixels with intensity r
```

L presents the highest gray level

Normalized histogram: Divide its value to total number of pixels

N presents total number of pixels in the image

Histogram Example

2	5	7	6
4	5	4	7
6	5	6	4
0	7	5	6

Intensity	0	1	2	3	4	5	6	7
Histogram	1	0	1	0	3	4	4	3
N.Histogram	0.0625	0	0.0625	0	0.1875	0.25	0.25	0.1875

0	2	1	7
3	2	5	2
1	1	7	6
5	0	0	3

3	3	2
1	1	0
2	2	2

Image Histograms

The histogram of an image shows us the distribution of grey levels in the image Massively useful in image processing, especially in segmentation

Histogram Examples

A selection of images and their histograms

Notice the relationships between the images and their histograms

Note that the high contrast image has the most evenly spaced histogram

Contrast Stretching

We can fix images that have poor contrast by applying a pretty simple contrast specification

The interesting part is how do we decide on this transformation function?

Histogram Equalisation

Spreading out the frequencies in an image (or equalising the image) is a simple way to improve dark or washed out images

The formula for histogram equalisation is given where

- $-r_k$: input intensity
- $-s_k$: processed intensity
- -k: the intensity range (e.g 0.0 1.0)
- $-n_j$: the frequency of intensity j
- -n: the sum of all frequencies

$$S_k = T(r_k)$$

$$= \sum_{j=1}^k p_r(r_j)$$

$$= \sum_{j=1}^k \frac{n_j}{n}$$

Equalisation Transformation Function

Equalisation Examples

Equalisation Transformation Functions

The functions used to equalise the images in the previous example

Equalisation Examples

Equalisation Transformation Functions

The functions used to equalise the images in the previous example

Equalisation Examples (cont...)

Equalisation Examples (cont...)

Equalisation Transformation Functions

The functions used to equalise the images in the previous examples

Histogram equalization

 Cumulative Distribution Function: cdf (r) the total number of pixels with intensity up to r

$$cdf(r) = \sum_{i=0}^{r} h(i)$$

Histogram h(r) the number of pixels with intensity r

Intensity	0	1	2	3	4	5	6	7
Histogram	1	0	1	0	3	4	4	3
N.Histogram	0.0625	0	0.0625	0	0.1875	0.25	0.1875	0. 25
cdf	1	1	2	2	5	9	13	16

Histogram and cumulative distribution function

Histogram and CDF are identical

Ideal histogram ⇔ Ideal CDF

Histogram Equalization Technique

Histogram Equalization Technique

2	5	7	6
4	5	4	7
6	5	6	4
0	7	5	6

Intensity	0	1	2	3	4	5	6	7
Histogram	1	0	1	0	3	4	4	3
N.Histogram	0.0625	0	0.0625	0	0.1875	0.25	0.1875	0. 25
cdf	1	1	2	2	5	9	13	16
N.cdf	0.0625	0.0625	0.125	0.125	0.3125	0.5625	0.8125	1
N.cdf*L	0.4375	0.4375	0.875	0.875	2.1875	3.9375	5.6875	7
New Intensity	0	0	1	1	2	4	6	7

Histogram Equalization Technique

2	5	7	6
4	5	4	7
6	5	6	4
0	7	5	6

1	4	7	6
2	4	2	7
6	4	6	2
0	7	4	6

Thank you for your attention!