

Prova d'esame di Fondamenti di Chimica industriale

29 Giugno 2012 Durata: 3 ore

Esercizio N. 1

L'ossido di etilene è prodotto per ossidazione catalitica dell'etilene:

$$C_2H_4(g) + \frac{1}{2}O_2(g) \rightarrow C_2H_4O(g)$$

Una reazione secondaria è la combustione dell'etilene a diossido di carbonio.

L'alimentazione al reattore contiene 2 moli di C₂H₄ per mole di O₂. La conversione e la resa del reattore (mol C₂H₄O prodotto/mol C₂H₄ consumato) sono, rispettivamente, il 25 e il 70%. A valle del reattore una sezione di separazione separa i componenti: C₂H₄ e O₂ sono riciclati al reattore, C₂H₄O esce come prodotto principale, i sottoprodotti sono scaricati.

Le correnti in ingresso e uscita dal rettore sono a 450°C, mentre tutte le correnti in ingresso e uscita dal processo sono a 25°C.

- Disegnare lo schema di processo.
- Etichettare lo schema e procedere al calcolo dei gradi di libertà con il metodo delle tie streams.
- Quantificare le correnti materiali di processo (kg/h) per una produzione di 1500 kg/giorno di ossido di etilene.
- Calcolare il fabbisogno di potenza termica (kW) del processo globale e del reattore (processo a pressione atmosferica).

	C_p (J/mol·K)	$\Delta H_{\rm f}^0 (kJ/mol)$
C ₂ H ₄	62,38	52,28
C ₂ H ₄ O	69,96	- 67,36
O ₂	31,46	-
CO ₂	45,10	- 393,51
H2O(v)	36,15	- 241,83
$H_2O(1)$	75,31	- 285,84

Esercizio N. 2

SINTESI DI AMMONIACA: REATTORE CON PRODUZIONE INTERNA DI VAPORE

Determinare la conversione nel reattore e la produzione di vapore (kg vapore/kg NH3 prodotta).

	C_p (cal/mol·°C)	
H ₂	7,0	
N ₂	6,9	
NH ₃	9,7	
CH4	10,9	
Ar	5,0	
$\Delta H_r^0 = -13320 \text{cal/molNH}_3$		