Introduction to Analysis I HW3

B13902024 張沂魁

September 28, 2025

Problem 0.0.1 (16pts).

(a) Let

$$X := \left\{ (a_n)_{n=0}^{\infty} : \sum_{n=0}^{\infty} |a_n| < \infty \right\}$$

be the space of absolutely convergent sequences. Define the ℓ^1 and ℓ^∞ metrics on this space by

$$d_{\ell^1}((a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty}) := \sum_{n=0}^{\infty} |a_n - b_n|,$$

$$d_{\ell^{\infty}}((a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty}) := \sup_{n \in \mathbb{N}} |a_n - b_n|.$$

Show that these are both metrics on X, but show that there exist sequences

$$x^{(1)}, x^{(2)}, \dots$$

of elements of X (i.e. sequences of sequences) which are convergent with respect to the $d_{\ell^{\infty}}$ metric but not with respect to the $d_{\ell^{1}}$ metric. Conversely, show that any sequence which converges in the $d_{\ell^{1}}$ metric automatically converges in the $d_{\ell^{\infty}}$ metric.

(b) Let (X, d_{ℓ^1}) be the metric space from part (a). For each natural number n, let $e^{(n)} = (e_j^{(n)})_{j=0}^{\infty}$ be the sequence in X such that

$$e_j^{(n)} := \begin{cases} 1, & \text{if } n = j, \\ 0, & \text{if } n \neq j. \end{cases}$$

Show that the set

$$\{e^{(n)}:n\in\mathbb{N}\}$$

is a closed and bounded subset of X, but is not compact.

(This is despite the fact that (X, d_{ℓ^1}) is even a complete metric space—a fact which we will not prove here. The problem is not that X is incomplete, but rather that it is "infinite-dimensional," in a sense that we will not discuss here.)

- (a). We first show that d_{ℓ^1} is a metric:
 - For any $(a_n)_{n=0}^{\infty} \in X$, we have

$$d_{\ell^1}((a_n)_{n=0}^{\infty}, (a_n)_{n=0}^{\infty}) = \sum_{n=0}^{\infty} |a_n - a_n| = 0.$$

• For any distinct $(a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty} \in X$, we have

$$d_{\ell^1}((a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty}) = \sum_{n=0}^{\infty} |a_n - b_n| > 0.$$

• For any $(a_n)_{n=0}^{\infty}$, $(b_n)_{n=0}^{\infty} \in X$, we have

$$d_{\ell^1}((a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty}) = d_{\ell^1}((b_n)_{n=0}^{\infty}, (a_n)_{n=0}^{\infty}).$$

• For any $(a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty}, (c_n)_{n=0}^{\infty} \in X$, we have

$$d_{\ell^{1}}\left((a_{n})_{n=0}^{\infty},(c_{n})_{n=0}^{\infty}\right) = \sum_{n=0}^{\infty}|a_{n}-c_{n}| \leq \sum_{n=0}^{\infty}|a_{n}-b_{n}| + |b_{n}-c_{n}|$$
$$= d_{\ell^{1}}\left((a_{n})_{n=0}^{\infty},(b_{n})_{n=0}^{\infty}\right) + d_{\ell^{1}}\left((b_{n})_{n=0}^{\infty},(c_{n})_{n=0}^{\infty}\right).$$

We then show that $d_{l^{\infty}}$ is also a metric:

• For any $(a_n)_{n=0}^{\infty} \in X$, we have

$$d_{\ell^{\infty}}((a_n)_{n=0}^{\infty}, (a_n)_{n=0}^{\infty}) = \sup_{n \in \mathbb{N}} |a_n - a_n| = 0.$$

• For any distinct $(a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty} \in X$, we have

$$d_{\ell^{\infty}}((a_n)_{n=0}^{\infty},(b_n)_{n=0}^{\infty}) = \sup_{n \in \mathbb{N}} |a_n - b_n| > 0.$$

• For any $(a_n)_{n=0}^{\infty}$, $(b_n)_{n=0}^{\infty} \in X$, we have

$$d_{\ell^{\infty}}\left((a_n)_{n=0}^{\infty},(b_n)_{n=0}^{\infty}\right) = d_{\ell^{\infty}}\left((b_n)_{n=0}^{\infty},(a_n)_{n=0}^{\infty}\right).$$

• For any $(a_n)_{n=0}^{\infty}$, $(b_n)_{n=0}^{\infty}$, $(c_n)_{n=0}^{\infty} \in X$, we have

$$d_{\ell^{\infty}}\left((a_{n})_{n=0}^{\infty},(c_{n})_{n=0}^{\infty}\right) = \sup_{n \in \mathbb{N}}|a_{n} - c_{n}| \leq \sup_{n \in \mathbb{N}}|a_{n} - b_{n}| + |b_{n} - c_{n}|$$

$$\leq \sup_{n \in \mathbb{N}}|a_{n} - b_{n}| + \sup_{n \in \mathbb{N}}|b_{n} - c_{n}|$$

$$= d_{\ell^{\infty}}\left((a_{n})_{n=0}^{\infty},(b_{n})_{n=0}^{\infty}\right) + d_{\ell^{\infty}}\left((b_{n})_{n=0}^{\infty},(c_{n})_{n=0}^{\infty}\right).$$

Now we show that there exists a sequence of X, say $(x^{(n)})_{n=1}^{\infty}$ s.t. $(x^{(n)})_{n=1}^{\infty}$ converges with respect to $d_{\ell^{\infty}}$ but not to $d_{\ell^{1}}$. Now we let $(x^{(n)})_{n=1}^{\infty}$ to be

$$x_n^{(k)} = \begin{cases} \frac{1}{k}, & \text{if } 0 \le n \le k-1; \\ 0, & \text{if } n \ge k. \end{cases}$$

We first show that $(x_n)_{n=1}^{\infty}$ converges with respect to $d_{\ell^{\infty}}$. Note that

$$d_{\ell^{\infty}}\left(x^{(p)},(0)\right) = \left|\frac{1}{p} - 0\right| = \frac{1}{p}$$

where (0) is the sequence with all entries 0. Hence, for every $\varepsilon > 0$, then there exists N > 0 s.t. $\frac{1}{N} < \varepsilon$, and thus for all $p \ge N$, we have

$$d_{\ell^{\infty}}\left(x^{(p)},0\right) = \frac{1}{p} \le \frac{1}{N} < \varepsilon.$$

Now we show that $(x^{(n)})_{n=1}^{\infty}$ does not converge with respect to d_{ℓ^1} . Suppose for contradiction, $(x^{(n)})_{n=1}^{\infty}$ converges with respect to d_{ℓ^1} , then $(x^{(n)})_{n=1}^{\infty}$ is a Cauchy sequence in (X, d_{ℓ^1}) since every convergent sequence is a Cauchy sequence. Now if $(x^{(n)})_{n=1}^{\infty}$ is a Cauchy sequence, then for all $\varepsilon > 0$, there exists N > 0 s.t. $p, q \ge N$ implies $d_{\ell^1}(x^{(p)}, x^{(q)}) < \varepsilon$. Now if we pick some $\varepsilon < 1$, and the corresponding N is N_{ε} , and let $q = N_{\varepsilon}$, then we know for all $p > 2N_{\varepsilon} > N_{\varepsilon}$, we must have

$$\begin{split} &1>\varepsilon>d_{\ell^1}\left(x^{(p)},x^{(N_\varepsilon)}\right)\\ &=\sum_{n=0}^{\infty}\left|x_n^{(p)}-x_n^{(N_\varepsilon)}\right|=\sum_{n=0}^{p}\left|x_n^{(p)}-x_n^{(N_\varepsilon)}\right|\\ &=\sum_{n=0}^{N_\varepsilon}\left|\frac{1}{p}-\frac{1}{N_\varepsilon}\right|+\sum_{n=N_\varepsilon+1}^{p}\left|\frac{1}{p}-0\right|\\ &=N_\varepsilon\left(\frac{1}{p}-\frac{1}{N_\varepsilon}\right)+\frac{p-N_\varepsilon}{p}=2-\frac{2N_\varepsilon}{p}>1, \end{split}$$

which is a contradiction. Hence, $(x_n)_{n=1}^{\infty}$ cannot be Cauchy with respect to d_{ℓ^1} , and thus it does not converge with respect to d_{ℓ^1} .

Now we show that any sequence converges in the d_{ℓ^1} metric automatically converges in the $d_{\ell^{\infty}}$ metirc. If $(x_n)_{n=1}^{\infty}$ converges to y, then for all $\varepsilon > 0$, there exists N > 0 s.t. $k \ge N$ implies

$$\sum_{n=0}^{\infty} \left| x_n^{(k)} - y_n \right| < \varepsilon,$$

and thus for all $k \geq N$, we have $\sup_{n \in \mathbb{N}} \left| x_n^{(k)} - y_n \right| < \varepsilon$. Hence, $\left(x^{(n)} \right)_{n=1}^{\infty}$ also converges to y in the

- **(b).** We first show that $\{e^{(n)}\}_{n=1}^{\infty}$ is closed. Suppose $\{e^{(n_j)}\}_{j=1}^{\infty} \subseteq \{e^{(n)}\}_{n=1}^{\infty}$ converges to some $y \in X$, then for all $\varepsilon > 0$, there exists N > 0 s.t. $k \ge N$ implies $\sum_{n=0}^{\infty} \left| e_n^{(n_k)} y_n \right| < \varepsilon$. Then we do case analysis:
 - Case 1: $\{n_k\}_{k=1}^{\infty}$ has no constant tail, that is, there does not exists N'>0 s.t. $k\geq N'$ implies $n_k = n_{N'}$. If we pick some $k' > k \ge N$ with $n_k \ne n_{k'}$ (we can do this since the sequence has no constant tail), then we will have

$$d_{\ell^1}(e^{n_k}, y) = \sum_{n=0}^{\infty} \left| e_n^{(n_k)} - y_n \right| = |1 - y_{n_k}| + \sum_{n \neq n_k} |y_n| < \varepsilon.$$

Hence, we must have $y_{n_k} = 1$ and $y_n = 0$ for all $n \neq n_k$, otherwise the above equation cannot holds for all $\varepsilon > 0$. However, if we write down the same equation but replace n_k with $n_{k'}$, that is,

$$d_{\ell^1}(e^{n_{k'}}, y) = \sum_{n=0}^{\infty} \left| e_n^{(n_{k'})} - y_n \right| = \left| 1 - y_{n_{k'}} \right| + \sum_{n \neq n_{k'}} |y_n| < \varepsilon,$$

then we have $y_{n_{k'}}=1$ and $y_n=0$ for all $n\neq n_{k'}$, but this means $y_{n_k}=1$ and $y_{n_k}=0$ since $n_k\neq n_{k'}$, so this is a contradiction, and so it is impossible that $\{n_k\}_{k=1}^\infty$ has no constant tail if $\{e^{(n_j)}\}_{j=1}^\infty$ converges.

• Case 2: $\{n_k\}_{k=1}^{\infty}$ has constant tail i.e. there exists N' > 0 s.t. $k \ge N'$ implies $n_k = n_{N'}$. If so, we will show that $\{e^{(n_k)}\}_{k=1}^{\infty}$ converges to $y \in X$ s.t.

$$y_n = \begin{cases} 1, & \text{if } n = n_{N'}; \\ 0, & \text{if } n \neq n_{N'}. \end{cases}$$

Here we know for all $\varepsilon > 0$, if $k \geq N'$, then

$$d_{\ell^1}\left(e^{(n_k)}, y\right) = \sum_{n=0}^{\infty} \left| e_n^{(n_k)} - y_n \right| = |1 - y_{n_k}| + \sum_{n \neq n_k} |y_n| = 0 + 0 = 0 < \varepsilon$$

since for all $k \geq N'$ we have $n_k = n_{N'}$. Now since the limit of a sequence is unique, so $\left\{e^{(n_k)}\right\}_{k=1}^{\infty}$ converges to this y and does not converge to any other $y' \in X$. Note that $y \in \left\{e^{(n)}\right\}_{n=1}^{\infty}$, so $\left\{e^{(n_k)}\right\}_{k=1}^{\infty}$ converges in $\left\{e^{(n)}\right\}_{n=1}^{\infty}$.

Since we have discussed all cases, so we know if $\{e^{(n_k)}\}_{k=1}^{\infty}$ converges, then it must converges in $\left\{e^{(n)}\right\}_{n=1}^{\infty}$, which means $\left\{e^{(n)}\right\}_{n=1}^{\infty}$ is closed. Now we show that $\left\{e^{(n)}\right\}_{n=1}^{\infty}$ is bounded. Note that

$$e^{(n)} \in B_{\left(X, d_{\ell^1}\right)}\left((0), 1.1\right) \quad \forall n \in \mathbb{N}$$

since

$$d_{\ell^1}\left(e^{(n)},(0)\right) = 1 < 1.1 \quad \forall n \in \mathbb{N}.$$

Hence, we have $\{e^{(n)}\}_{n=1}^{\infty}\subseteq B_{\left(X,d_{\ell^{1}}\right)}\left((0),1.1\right)$, and thus $\{e^{(n)}\}_{n=1}^{\infty}$ is bounded. Now we show that $\{e^{(n)}\}_{n=1}^{\infty}$ is not compact. Consider $\{e^{(n)}\}_{n=1}^{\infty}$ itself, which is a subsequence of $\{e^{(n)}\}_{n=1}^{\infty}$. Since it corresponds to the Case 1 above, so it does not converges in $(X,d_{\ell^{1}})$, and thus there is a subsequence of $\{e^{(n)}\}_{n=1}^{\infty}$ that does not converge, and thus $\{e^{(n)}\}_{n=1}^{\infty}$ is not compact. \blacksquare

Problem 0.0.2 (24pts). A metric space (X,d) is called *totally bounded* if for every $\varepsilon > 0$, there exists a natural number n and a finite number of balls

$$B(x^{(1)},\varepsilon), B(x^{(2)},\varepsilon), \ldots, B(x^{(n)},\varepsilon)$$

which cover X (i.e. $X = \bigcup_{i=1}^{n} B(x^{(i)}, \varepsilon)$).

- (a) Show that every totally bounded space is bounded.
- (b) Show the following stronger version of Proposition 1.5.5: if (X,d) is compact, then it is complete and totally bounded. Hint: if X is not totally bounded, then there is some $\varepsilon > 0$ such that X cannot be covered by finitely many ε -balls. Then use Exercise 8.5.20 (on page 182 of Analysis I) to find an infinite sequence of balls $B(x^{(n)}, \varepsilon/2)$ which are disjoint from each other. Use this to construct a sequence which has no convergent subsequence.
- (c) Conversely, show that if X is complete and totally bounded, then X is compact. Hint: if $(x^{(n)})_{n=1}^{\infty}$ is a sequence in X, use the total boundedness hypothesis to recursively construct a sequence of subsequences $(x^{(n;j)})_{n=1}^{\infty}$ of $(x^{(n)})_{n=1}^{\infty}$ for each positive integer j, such that for each j the elements of the sequence $(x^{(n;j)})_{n=1}^{\infty}$ are contained in a single ball of radius 1/j. Also ensure that each sequence $(x^{(n;j+1)})_{n=1}^{\infty}$ is a subsequence of the previous one $(x^{(n;j)})_{n=1}^{\infty}$. Then show that the "diagonal" sequence $(x^{(n;n)})_{n=1}^{\infty}$ is a Cauchy sequence, and then use the completeness hypothesis.

Problem 0.0.3 (16pts).

- (a) A metric space (X,d) is compact if and only if every sequence in X has at least one limit point in X.
- (b) Let (X,d) have the property that every open cover of X has a finite subcover. Show that X is compact.

Hint: If X is not compact, then by part (a) there is a sequence $(x^{(n)})_{n=1}^{\infty}$ with no limit points. Then for every $x \in X$ there exists a ball $B(x, \varepsilon)$ containing x which contains at most finitely many elements of this sequence. Now use the hypothesis.

(a).

- (\Rightarrow) Suppose (X,d) is compact, then for all sequence $\{a_n\}_{n=1}^{\infty}\subseteq X$, we know there exists a subsequence $\{a_{n_k}\}_{k=1}^{\infty}$ converges to some $L\in X$. Now we claim that L is a limit point of $\{a_n\}_{n=1}^{\infty}$. For all $\varepsilon > 0$, we know there exists $N_{\varepsilon} > 0$ s.t. $k \geq N_{\varepsilon}$ implies $d(a_{n_k}, L) < \varepsilon$. Hence, given any $\varepsilon > 0$ and N > 0, we know there exists $k \ge \max\{N_{\varepsilon}, N\}$ s.t. $d(a_{n_k}, L) < \varepsilon$. Note that $n_k \ge k$ since $\{a_{n_k}\}_{k=1}^{\infty}$ is a subsequence of $\{a_n\}_{n=1}^{\infty}$ and thus $1 \le n_1 \le n_2 < \dots$ By this, we know $n_k \ge k \ge N$, and $d(a_{n_k}, L) < \varepsilon$, which means L is a limit point of $\{a_n\}_{n=1}^{\infty}$. Thus, every sequence in X has at least one limit point in X.
- (\Leftarrow) If every sequence in X has at least one limit point in X, then consider a sequence $\{a_n\}_{n=1}^{\infty}$, and suppose L is a limit point of $\{a_n\}_{n=1}^{\infty}$. Then for all $\varepsilon > 0$ and $N_{\varepsilon} > 0$, we know there exists $n_{\varepsilon} > N_{\varepsilon}$ s.t. $d(a_{n_{\varepsilon}}, L) < \varepsilon$. Now we construct a subsequence $\{a_{n_{p}}\}_{p=1}^{\infty}$ s.t. $d\left(a_{n_p},L\right)<\frac{1}{p}$. First, we pick $\varepsilon=\frac{1}{1}$ and $N_1=1$, then there is a $n_1>N_1$ s.t. $d\left(a_{n_1},L\right)<\frac{1}{1}$. Then this is the a_{n_1} we want. Next, we pick $\varepsilon = \frac{1}{2}$ and $N_2 = n_1 + 1$, then there is a $n_2 > N_2 > n_1$ s.t. $d(a_{n_2}, L) < \frac{1}{2}$. By repeating this step, we can construct $\{a_{n_p}\}_{p=1}^{\infty}$. Note that $1 \leq n_1 < n_2 < \ldots$, so $\{a_{n_p}\}_{p=1}^{\infty}$ is a subsequence of $\{a_n\}_{n=1}^{\infty}$ and $d(a_{n_p}, L) < \frac{1}{p}$ for all

 $p \ge 1$. Now we claim that $\left\{a_{n_p}\right\}_{p=1}^{\infty}$ converges to L. For all $\varepsilon > 0$, we can pick some N > 0 s.t. $\frac{1}{N} < \varepsilon$, then for all $k \ge N$, we have

$$d\left(a_{n_k}, L\right) < \frac{1}{k} < \frac{1}{N} < \varepsilon.$$

Hence, we know $\{a_{n_p}\}_{n=1}^{\infty}$ converges to L and thus (X,d) is compact.

(b). If (X,d) is not compact, then $\exists \left(x^{(n)}\right)_{n=1}^{\infty}$ which has no limit point by (a). Thus, for all $L \in X$ and for all $\varepsilon > 0$, we know there exists some N > 0 s.t. $n \geq N$ implies $d\left(x^{(n)}, L\right) \geq \varepsilon$. Now for all $x \in X$, we can pick some $\varepsilon_x > 0$ so that $X \subseteq \bigcup_{x \in X} B(x, \varepsilon_x)$, and by the hypothesis given in the problem, we know $X \subseteq \bigcup_{i=1}^n B(x_i, \varepsilon_{x_i})$ for some x_i 's in X. Now since for every $1 \leq j \leq n$, there exists $N_j > 0$ s.t. $n \geq N_j$ implies $d\left(x^{(n)}, x_j\right) \geq \varepsilon_{x_j}$, so $B(x_j, \varepsilon_{x_j})$ contains at most $N_j - 1$ points of $\left(x^{(n)}\right)_{n=1}^{\infty}$. Hence, $\bigcup_{i=1}^n B(x_i, \varepsilon_{x_i})$ contains finitely many points of $\left(x^{(n)}\right)_{n=1}^{\infty}$. However,

$$(x^{(n)})_{n=1}^{\infty} \subseteq X \subseteq \bigcup_{i=1}^{n} B(x_i, \varepsilon_{x_i}),$$

so this is a contradiction. Hence, (X, d) is compact.

Problem 0.0.4 (10pts). Let (X, d) be a compact metric space. Suppose that $(K_{\alpha})_{\alpha \in I}$ is a collection of closed sets in X with the property that any finite subcollection of these sets necessarily has non-empty intersection, thus

$$\bigcap_{\alpha \in F} K_{\alpha} \neq \emptyset \quad \text{for all finite } F \subseteq I.$$

(This property is known as the *finite intersection property*.)

Show that the entire collection has non-empty intersection, thus

$$\bigcap_{\alpha\in I} K_{\alpha}\neq\varnothing.$$

Show by counterexample that this statement fails if X is not compact.

Problem 0.0.5 (24pts).

(a) Let (X,d) be a metric space, and let $(E,d|_{E\times E})$ be a subspace of (X,d). Let $\iota_{E\to X}:E\to X$ be the inclusion map, defined by setting

$$\iota_{E \to X}(x) := x \text{ for all } x \in E.$$

Show that $\iota_{E\to X}$ is continuous.

(b) Let $f: X \to Y$ be a function from one metric space (X, d_X) to another (Y, d_Y) . Let E be a subset of X (which we give the induced metric $d_X|_{E\times E}$), and let $f|_E: E \to Y$ be the restriction of f to E, thus

$$f|_E(x) := f(x)$$
 when $x \in E$.

If $x_0 \in E$ and f is continuous at x_0 , show that $f|_E$ is also continuous at x_0 . (Is the converse of this statement true? Explain.)

Conclude that if f is continuous, then $f|_E$ is continuous. Thus restriction of the domain of a function does not destroy continuity.

Hint: use part (a).

(c) Let $f: X \to Y$ be a function from one metric space (X, d_X) to another (Y, d_Y) . Suppose that the image f(X) of X is contained in some subset $E \subseteq Y$ of Y. Let $g: X \to E$ be the function which is the same as f but with the codomain restricted from Y to E, thus g(x) = f(x) for all $x \in X$.

Note on codomain: The *codomain* of a function is the declared target set of the function, in contrast to the *image* (or range), which is the set of values the function actually takes. So while f is originally defined with codomain Y, its values all lie in the smaller set $E \subseteq Y$. Therefore, one can equivalently regard f as a function $g: X \to E$. The metric on E is the one *induced from* Y, i.e. $d_Y|_{E\times E}$.

Show that for any $x_0 \in X$, f is continuous at x_0 if and only if g is continuous at x_0 . Conclude that f is continuous if and only if g is continuous.

(Thus the notion of continuity is not affected if one restricts the codomain of the function.)

Problem 0.0.6 (20pts). Let (X, d_X) and (Y, d_Y) be metric spaces and $f: X \mapsto Y$ is a function from X to Y.

(a) Prove that f is continuous on X if, and only if,

$$f(\overline{A})\subseteq \overline{f(A)}$$

for every subset A of X.

(b) Prove that f is continuous on X if, and only if, f is continuous on every compact subset of X.

Hint: If $x_n \to p$ in X, the set $\{p, x_1, x_2, \dots\}$ is compact.