AD408125

ML TDR 64-180

COPY _____ OF _____ | Myon HARD COPY \$.3.00 | MICROFICHE \$.0.75

CORRELATION OF THE DSR WITH THE STRENGTH OF GLASS
OF DIFFERENT COMPOSITIONS AND CONFIGURATIONS

TECHNICAL DOCUMENTARY REPORT NO. ML TDR 64-180
August 1964

Air Force Materials Laboratory Research Technology Division Air Force Systems Command Wright-Patterson Air Force Base, Ohio

Project No. 7381, Task No. 738102

(Prepared under Contract No. AF 33(657)-11219 by the Pittsburgh Plate Glass Company, Glass Research Center, Harmar Township, Pennsylvania; R. W. Ansevin, author)

ARCHIVE COPY

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report from the Defense Documentation Center (DDC), (formerly ASTIA), Cameron Station, Bldg. 5, 5010 Duke Street, Alexandria, Virginia, 22314.

This report has been released to the Office of Technical Services, U.S. Department of Commerce, Washington 25, D.C., for sale to the general public.

Copies of this report should not be returned to the Research and Technology Division, Wright-Patterson Air Force Base, Ohio, unless return is required by security considerations, contractual obligations, or notice on a specific document.

PITTSBURGH PLATE GLASS COMPANY GLASS DIVISION RESEARCH LABORATORIES

CORRELATION OF THE DSR WITH THE STRENGTH OF GLASS OF DIFFERENT COMPOSITIONS AND CONFIGURATIONS

FINAL TECHNICAL REPORT

GOVERNMENT CONTRACT NO. AF 33(657)-11219

PROJECT NO. 7381, TASK NO. 738102

Prepared By R. W. Ansevin
Project Leader

Approved By P. W. French, Head
Optics Department

Date August 7, 1964

Approved By

Research Planning and Control Division

FOREWORD

This report was prepared by the Pittsburgh Plate Glass Company, Glass Research Center, under USAF Contract No. AF 33(657)-11219. The contract was initiated under Project No. 7381, Task No. 738102. The work was administrated under the direction of the Air Force Materials Laboratory, Research Technology Division, Mr. E. W. McKelvey, Project Officer.

This report covers work conducted 1 July 1963 to 30 June 1964.

The author would like to acknowledge the guidance and technical support provided by both Mr. P. W. French and Mr. L. E. Orr. The study of limitations was performed by Mr. R. J. Obenreder. Credit goes to Dr. F. H. Gillery for the method used in the estimation of membrane stresses. Mr. A. N. George and Mr. J. Shelestak are to be thanked for their assistance in the preparation and testing of the many samples used in this work.

ABSTRACT

The Differential Surface Refractometer (DSR) is an instrument recently developed at the Glass Research Division of the Pittsburgh Plate Glass Company to detect and estimate the stress in the surface layers of glass by nondestructive means. This work shows a correlation between the instrument readings and experimental break strength data for glass of different compositions and configurations. In addition, the utility and some of the limitations of the instrument are discussed.

This report has been reviewed and is approved.

W. P. CONRARDY, Chief

Materials Engineering Branch Materials Applications Division

AF Materials Laboratory

TABLE OF CONTENTS

	PAGE
INTRODUCTION	1
CORRELATION REQUIREMENTS	2
PROCEDURE	3
Adaptation of the DSR to Other Glass Types	3
Calibration	3
Sample Preparation	4
Surface Compression Via DSR Readings	5
Center Tension Measurements	5
Destructive Strength Tests	5
DESTRUCTIVE STRENGTH TEST RESULTS AND CORRELATION	6
Results	6
Discussion of Results	6
CONCLUSIONS	6
STUDY OF LIMITATIONS	9
Curvature	9
Other Limitations	10
Waviness	10
Edge Proximity	10
Surface Finish	10
REFERENCES	11
APPENDIX I DETAILED PROCEDURE	12
CALIBRATION	12
Calibration Methods	12
Type I MIL-G-25667	12
Chemcor	12

	PAGE
Alumino Silicate	14
Herculite II	14
Index Measurements	14
DESTRUCTIVE STRENGTH TESTS	19
Testing Methods	19
Testing Techniques	20
Calculation of Bending Stresses	21
Rectangular Specimens (Beam Bending)	21
Square Specimens (Concentric Rings of 2:1 Ratio)	21
Corrections for Fracture Origins Outside Maximum Stress Area	22
Corrections for Membrane Stress in Concentric Ring Testing	22
APPENDIX II INDIVIDUAL TESTING RESULTS	26

ILLUSTRATIONS

FIGURE		PAGE
1	Representative Calibration Results for Type I MIL-G-25667 Glass (Polished Plate)	13
2	Representative Calibration Results for Chemcor Glass	15
3	Representative Calibration Results for Alumino Silicate Glass	16
4	Representative Calibration Results for Herculite II Glass	17
5	Corrections for Fracture Origins Outside Maximum Stress Area for 4 and 12 In. Span Beam Loading Method	23
6	Corrections for Fracture Origins Outside Maximum Stress Area for Concentric Ring Loading Method	23
7	Graphical Estimation of Correction Factor for Membrane Stresses for Typical Full Tempered Herculite II Sample	25

TABLES

TABLE		PAGE
1	Glass Types Investigated	2
2	Summarized Mean Calibration Results	4
3	Birefringence Constants	5
1,	Summarized Destructive Strength Test Results and Correlation	8
5	Curvature Limitations	9
6	Calibration, Surface Index and Stress Optical Constant Results	18
7	Individual Testing Results, Full Temper Chemcor Sample Size 4 x 4 x 1/10 In., Testing Method 1-1/2 and 3 In. Diameter Concentric Rings, Testing Machine - Instron, Loading Rate 15000 Psi/Min.	27
8	Individual Testing Results, Annealed Herculite II Sample Size 4 x 4 x 1/10 In., Testing Method 1-1/2 and 3 In. Diameter Concentric Rings, Testing Machine - Instron, Loading Rate 15000 Psi/Min.	28
9	Individual Testing Results, Full Temper Herculite II Sample Size 4 x 4 x 1/10 In., Testing Method 1-1/2 and 3 In. Diameter Concentric Rings, Testing Machine - Instron, Loading Rate 15000 Psi/Min.	30
10	Individual Testing Results, Annealed Alumino Silicate Sample Size 6-1/8 x 6-1/8 x 1/4 In., Testing Method 3 and 6 In. Diameter Concentric Rings, Testing Machine - Instron, Loading Rate 7000 Psi/Min.	31
11	Individual Testing Results, 1/2 Temper Alumino Silicate Sample Size 6-1/8 x 6-1/8 x 1/4 In., Testing Method 3 and 6 In. Diameter Concentric Rings, Testing Machine - Instron, Loading Rate 7000 Psi/Min.	32
12	Individual Testing Results, 3/4 Temper Alumino Silicate Sample Size 6-1/8 x 6-1/8 x 1/4 In., Testing Method 3 and 6 In. Diameter Concentric Rings, Testing Machine - Instron, Loading Rate 7000 Psi/Min.	33
13 ू	Individual Testing Results, Full Temper Alumino Silicate Sample Size 6-1/8 x 6-1/8 x 1/4 In., Testing Method 3 and 6 In. Diameter Concentric Rings, Testing Machine - Instron, Loading Rate 7000 Psi/Min.	3 ¹ 4

TABLE		PAGE
14	Individual Testing Results, Annealed Alumino Silicate Sample Size 6-1/8 x 6-1/8 x 1/2 In., Testing Method 3 and 6 In. Diameter Concentric Rings, Testing Machine - Instron, Loading Rate 5000 Psi/Min.	35
15	Individual Testing Results, 1/2 Temper Alumino Silicate Sample Size 6-1/8 x 6-1/8 x 1/2 In., Testing Method 3 and 6 In. Diameter Concentric Rings, Testing Machine - Instron, Loading Rate 5000 Psi/Min.	36
16	Individual Testing Results, 3/4 Temper Alumino Silicate Sample Size 6-1/8 x 6-1/8 x 1/2 In., Testing Method 3 and 6 In. Diameter Concentric Rings, Testing Machine - Instron, Loading Rate 5000 Psi/Min.	37
17	Individual Testing Results, Full Temper Alumino Silicate Sample Size 6-1/8 x 6-1/8 x 1/2 In., Testing Method 3 and 6 In. Diameter Concentric Rings, Testing Machine - Baldwin, Loading Rate 5000 Psi/Min.	3 8
18	Individual Testing Results, Annealed Type I MIL-G-25667 Sample Size 6-1/8 x 6-1/8 x 3/16 In., Testing Method 3 and 6 In. Diameter Concentric Rings, Testing Machine - Instron, Loading Rate 5000 Psi/Min.	39
19	Individual Testing Results, 1/2 Temper Type I MIL-G-25667 Sample Size 6-1/8 x 6-1/8 x 3/16 In., Testing Method 3 and 6 In. Diameter Concentric Rings, Testing Machine - Instron, Loading Rate 5000 Psi/Min.	40
20	Individual Testing Results, 3/4 Temper Type I MIL-G-25667 Sample Size 6-1/8 x 6-1/8 x 3/16 In., Testing Method 3 and 6 In. Diameter Concentric Rings, Testing Machine - Instron, Loading Rate 5000 Psi/Min.	41
21	Individual Testing Results, Full Temper Type I MIL-G-25667 Sample Size 6-1/8 x 6-1/8 x 3/16 In., Testing Method 3 and 6 In. Diameter Concentric Rings, Testing Machine - Instron, Loading Rate 5000 Psi/Min.	42
22	Individual Testing Results, Annealed Type I MIL-G-25667 Sample Size 6-1/8 x 6-1/8 x 1/4 In., Testing Method 3 and 6 In. Diameter Concentric Rings, Testing Machine - Instron, Loading Rate 6000 Psi/Min.	43
23	Individual Testing Results, 1/2 Temper Type I MIL-G-25667 Sample Size 6-1/8 x 6-1/8 x 1/4 In., Testing Method 3 and 6 In. Diameter Concentric Rings, Testing Machine - Instron, Loading Rate 6000 Psi/Min.	<u>հ</u> կ

E

PABLE		PAGE
24	Individual Testing Results, 3/4 Temper Type I MIL-G-25667 Sample Size 6-1/8 x 6-1/8 x 1/4 In., Testing Method 3 and 6 In. Diameter Concentric Rings, Testing Machine - Instron, Loading Rate 6000 Psi/Min.	45
25	Individual Testing Results, Full Temper Type I MIL-G-25667 Sample Size 6-1/8 x 6-1/8 x 1/4 In., Testing Method 3 and 6 In. Diameter Concentric Rings, Testing Machine - Instron, Loading Rate 6000 Psi/Min.	46
26	Individual Testing Results, Annealed Type I MIL-G-25667 Sample Size 6-1/8 x 6-1/8 x 1/2 In., Testing Method 3 and 6 In. Diameter Concentric Rings, Testing Machine - Instron, Loading Rate 4000 Psi/Min.	47
27	J-dividual Testing Results, 1/2 Temper Type I MIL-G-25667 Sample Size 6-1/8 x 6-1/8 x 1/2 In., Testing Method 3 and 6 In. Diameter Concentric Rings, Testing Machine - Instron, Loading Rate 4000 Psi/Min.	48
28	Individual Testing Results, 3/4 Temper Type I MIL-G-25667 Sample Size 6-1/8 x 6-1/8 x 1/2 In., Testing Method 3 and 6 In. Diameter Concentric Rings, Testing Machine - Baldwin, Loading Rate 5000 Psi/Min.	49
29	Individual Testing Results, Full Temper Type I MIL-G-25667 Sample Size 6-1/8 x 6-1/8 x 1/2 In., Testing Method 3 and 6 In. Diameter Concentric Rings, Testing Machine - Baldwin, Loading Rate 5000 Psi/Min.	50
30	Individual Testing Results, Annealed Type I MIL-G-25667 Sample Size 6-1/8 x 6-1/8 x 3/4 In., Testing Method 3 and 6 In. Diameter Concentric Rings, Testing Machine - Baldwin, Loading Rate 5000 Psi/Min.	51
31,	Individual Testing Results, Full Temper Type I MIL_G_25667 Sample Size 6-1/8 x 6-1/8 x 3/4 In., Testing Method 3 and 6 In. Diameter Concentric Rings, Testing Machine - Baldwin, Loading Rate 5000 Psi/Min.	52
32	Individual Testing Results, Annealed Type I MIL-G-25667 Sample Size 12-1/4 x 12-1/4 x 1/2 In., Testing Method 6 and 12 In. Diameter Concentric Rings, Testing Machine - Baldwin, Loading Rate 5000 Psi/Min.	53
33	Individual Testing Results, 1/2 Temper Type I MIL-G-25667 Sample Size 12-1/4 x 12-1/4 x 1/2 In., Testing Method 6 and 12 In. Diameter Concentric Rings, Testing Machine - Baldwin, Loading Rate 5000 Psi/Min.	54

TABLE		PAGE
3 ^l 4	Individual Testing Results, 3/4 Temper Type I MIL-G-25667 Sample Size 12-1/4 x 12-1/4 x 1/2 In., Testing Method 6 and 12 In. Diameter Concentric Rings, Testing Machine - Baldwin, Loading Rate 5000 Psi/Min.	55
35	Individual Testing Results, Full Temper Type I MIL-G-25667 Sample Size 12-1/4 x 12-1/4 x 1/2 In., Testing Method 6 and 12 In. Diameter Concentric Rings, Testing Machine - Baldwin, Loading Rate 5000 Psi/Min.	56
36	Individual Testing Results, Annealed Type I MIL-G-25667 Sample Size 12-1/4 x 12-1/4 x 3/4 In., Testing Method 6 and 12 In. Diameter Concentric Rings, Testing Machine - Baldwin, Loading Rate 5000 Psi/Min.	57
37	Individual Testing Results, Full Temper Type I MIL-G-25667 Sample Size 12-1/4 x 12-1/4 x 3/4 In., Testing Method 6 and 12 In. Diameter Concentric Rings, Testing Machine - Baldwin, Loading Rate 5000 Psi/Min.	58
38	Individual Testing Results, Annealed Type I MIL-G-25667 Sample Size 3 x 13 x 3/16 In., Testing Method - Beam Loading - 4 and 12 In. Span, Testing Machine - Instron, Loading Rate 4000 Psi/Min.	59
39	Individual Testing Results, 1/2 Temper Type I MIL-G-25667 Sample Size 3 x 13 x 3/16 In., Testing Method - Beam Loading - 4 and 12 In. Span, Testing Machine - Instron, Loading Rate 4000 Psi/Min.	60
40	Individual Testing Results, 3/4 Temper Type I MIL-G-25667 Sample Size 3 x 13 x 3/16 In., Testing Method - Beem Loading - 4 and 12 In. Span, Testing Machine - Instron, Loading Rate 4000 Psi/Min.	61
41	Individual Testing Results, Full Temper Type I MIL-G-25667 Sample Size 3 x 13 x 3/16 In., Testing Method - Beam Loading - 4 and 12 In. Span, Testing Machine - Instron, Loading Rate 4000 Psi/Min.	62
42	Individual Testing Results, Annealed Type I MIL-G-25667 Sample Size 3 x 13 x 1/4 In., Testing Method - Beam Loading - 4 and 12 In. Span, Testing Machine - Instron, Loading Rate 4000 Psi/Min	63
43	Individual Testing Results, 1/2 Temper Type I MIL-G-25667 Sample Size 3 x 13 x 1/4 In., Testing Method - Beam Loading - 4 and 12 In. Span, Testing Machine - Instron, Loading Rate 8000 Psi/Min.	64

TABLE		PAGE
ù.	Individual Testing Results, 3/4 Temper Type I MIL-G-25667 Sample Size 3 x 13 x 1/4 In., Testing Method - Beam Loading - 4 and 12 In. Span, Testing Machine - Instron, Loading Rate 8000 Pai/Min.	65
45	Individual Testing Results, Full Temper Type I MIL-G-25667 Sample Size 3 x 13 x 1/4 In., Testing Method - Beam Loading - 4 and 12 In. Span, Testing Machine - Instron, Loading Rate 8000 Psi/Min.	66
46	Individual Testing Results, Annealed Type I MIL-G-25667 Sample Size 3 x 13 x 1/2 In., Testing Method - Beam Loading - 4 and 12 In. Span, Testing Machine - Instron, Loading Rate 5000 Psi/Min.	67
47	Individual Testing Results, 1/2 Temper Type I MIL-G-25667 Sample Size 3 x 13 x 1/2 In., Testing Method - Beam Loading - 4 and 12 In. Span, Testing Machine - Instron, Loading Rate 5000 Psi/Min.	68
48	Individual Testing Results, 3/4 Temper Type I MIL-G-25667 Sample Size 3 x 13 x 1/2 In., Testing Method - Beam Loading - 4 and 12 In. Span, Testing Machine - Instron, Loading Rate 5000 Psi/Min.	69
49	Individual Testing Results, Full Temper Type I MIL-G-25667 Sample Size 3 x 13 x 1/2 In., Testing Method - Beam Loading - 4 and 12 In. Span, Testing Machine - Instron, Loading Rate 5000 Psi/Min.	70
50	Individual Testing Results, Annealed Type I MIL-G-25667 Sample Size 3 x 13 x 3/4 In., Testing Method - Beam Loading - 4 and 12 In. Span, Testing Machine - Instron, Loading Rate 5000 Psi/Min.	71
51	Individual Testing Results, Full Temper Type I MIL-G-25667 Sample Size 3 x 13 x 3/4 In., Testing Method - Beam Loading - 4 and 12 In. Span, Testing Machine - Instron, Loading Rate 8000 Psi/Min.	72

INTRODUCTION

Numerous attempts have been made in the past to determine the strength of tempered glass by nondestructive examination of the finished product. The results of these attempts, however, were not accurate enough to be of practical value and, in general, the strength of glass had to be found by the destructive testing of a large number of samples. With the development of the Differential Surface Refractometer, we believe the nondestructive evaluation of the strength of tempered glass is now possible.

The breakage of glass takes place under tension, and in general, the degree of tension required to cause failure is controlled by the presence of surface flaws. The surface condition has a considerable influence on the strength of glass; the stability of glass is dependent upon the magnitude and distribution of these surface flaws so that under ordinary conditions, the strength of a piece of glass is determined by the strength of its surface. The dependence of strength on the distribution of flaws explains the large variations obtained in any determination of the modulus of rupture. Due to this variation, the strength of glass is a property which has a meaning only in a statistical sense. Hence, in this sense, the strength of annealed glass of a given production process can be expressed in terms of a critical or basic tensile stress. The tempering of glass causes the surface to be placed in a state of compression which has to be overcome before the glass surface can be subjected to a tensile stress of sufficient magnitude to cause failure. As a result, the strength of glass is increased by the presence of compressive stresses on the surface. This strength or modulus of rupture of tempered glass may be assessed as the sum of the basic strength, i.e., the stress required to cause failure in the absence of compressive forces on the surface, plus the compressive stress induced by the tempering process. Therefore, with a knowledge of the basic strength, the ability to measure the degree of surface compression present on glass by nondestructive means would provide a method of determining glass strength.

Among the optical methods investigated over the past decade for the nondestructive evaluation of the strength of tempered glass, surface refractionetry was found to be particularly well suited for the quantitative measurement of the surface compression of tempered glass. The Differential Surface Refractometer (DSR), an instrument based on the principles of surface refractometry (1), was recently developed at the Pittsburgh Plate Glass Company, Glass Research Center, expressly for this purpose. After suitable calibration, the DSR is capable of measuring the degree of surface compression present on tempered glass directly in pounds per square inch.

The primary intent of this report is to show a correlation between the DSR and the strength of glass of various compositions and configurations through the use of experimental break strength data obtained in the laboratory. Specifically, the following table lists the types and thicknesses of glass that were investigated:

Manuscript released by the author 5 June 1964 for publication as an RTD Technical Documentary Report.

TABLE 1
GLASS TYPES INVESTIGATED

Thickness		Degree of Temper		
in Inches	None (Annealed)	<u>1/2</u>	3/4	Full
1/10 to 3/16	E	.	-	D and E
3/16	A	A	A	A
1/4	A and B	A and B	A and B	A and B
1/2	A and B	A and B	A and B	A and B
3/4	A	_	•	A

Legend: Type of Glass

- A Type I MIL-G-25667, polished plate glass obtained from Pittsburgh Plate Glass Company.
- B Alumino Silicate, high strain point glass No. 6695 obtained from Pittsburgh Plate Glass Company.
- D Chemcor, code 0311 glass obtained from Corning Glass Company.
- E Herculite II, No. 7265 glass obtained from Pittsburgh Plate Glass Company.

In addition, the utility and some of the limitations of the DSR were determined.

CORRELATION REQUIREMENTS

In order to correlate the readings of the DSR with the strength of tempered glass it is necessary to determine the following information for each glass type listed in Table 1:

- (1) The DSR calibration value for the glass.
- (2) The basic strength of the glass, i.e., the strength of the glass in the annealed state.
- (3) The degree of surface compression present on the tempered glass by means of the DSR readings.
- (4) The breaking strength, or modulus of rupture, of the tempered glass.

From this data we would want to show the following equation to be valid within the limits of experimental accuracy:

Of course, the three components of this equation are to be interpreted statistically and each component would represent the mean result obtained in the examination of a number of samples.

PROCEDURE

Adaptation of the DSR to Other Glass Types

Since the DSR was originally designed to operate specifically on plate and sheet glass of a given index range, some slight changes were required in the basic design of the instrument to extend its use to the other glass types investigated in this work. This was necessitated by the different indices and/or the magnitudes of stress which are characteristic of the other glass types. As a result, three different instruments were used in this study. The basic design, the DSR, was used on Type I MIL-G-25667 glass (polished plate); the Modified Differential Surface Refractometer-I, or MDSR-I, was used for the measurement of surface compression on both Chemcor and Herculite II; and, the MDSR-II was used for the examination of the Alumino Silicate glass.

Calibration

The DSR, suitably modified for each glass type when required, was calibrated by subjecting fully tempered samples to mechanical beam loading. Loading was applied in suitable increments; at each load increment, a corresponding reading of the DSR instrument was made. The DSR reading was compared with the induced stress calculated from beam bending theory. From this data, the surface compression of the sample at zero load was estimated using the method of least squares. Dividing the value obtained for the surface compression at zero load by the DSR reading for the same condition gives the instrument's calibration value, K, in psi per micrometer eyepiece unit, for each sample.

In addition, the stress-optic constant for each glass type was determined by measuring the difference between the surface refractive indices, $n_{\rm m}$ and $n_{\rm i}$, for light polarized parallel and perpendicular to the surface of the stressed sample, respectively. The stress-optic constant C, in psi per unit birefringence, is given by

$$C = \sigma / n_H - n_L$$

where o is the surface laminar stress.

The difference $n_{ii} - n_{i}$ used to calculate the stress-optic constant is measured directly with the DSR. This direct measurement of $n_{ii} - n_{i}$ is more accurate, to at least an order of magnitude, than the measurement of n_{ii} and n_{i} separately and then forming the difference. The separate surface indices were also measured, however, to give an indication of their relative values. These results are summarized below in Table 2.

TABLE 2 SUMMARIZED MEAN CALIBRATION RESULTS

Glass Type	Surface Stress Instrument	Calibration Value, K, psi/Eyepiece Unit		Stress-Optic Constant**, C, psi/Unit Birefringence	Surface Indices
Type I MIL-G-25667	DSR	60.18 *	0.41	5.4 x 10 ⁷	1.5246 1.5250
Chemcor	MDSR-I	173.4 *	13.	4.4×10^{7}	1.5121 1.5130
Alumino Silicate	MDSR-II	167.2 *	2.5	5.8 x 10 ⁷	1.5576 1.5580
Herculite II	MDSR-I	189.3 *	11.	5.0 x 107	1.5142 1.5153

*The relative differences in the magnitudes of the calibration values listed here are, to a great extent, accounted for by a difference of telescope power between the DSR and its modified forms.

**The stress-optic constants listed here represent values obtained by examining the surface layers of each type glass. These values may be different from those obtained by examining the bulk material. This would be especially true for Chemcor and Herculite II.

The methods used in determining the surface refractive indices and their differences, and the details of the calibration procedure are contained in Appendix I. Detailed results are listed in Table 6 of Appendix I.

Sample Preparation

All specimens, with the exception of Chemcor, were made from regular production glass from the Pittsburgh Plate Glass Company. The cutting was handled by normal plant methods with an added stipulation that all cutting be made from the same surface. These samples were tempered at the Glass Research Center in accordance with Table 1. No edge work was performed on these samples. The Chemcor samples were obtained fully tempered from the Corning Glass Company. These samples were received with the edges ground to a rounded contour.

In general, 25 specimens were prepared for each category listed in Table 1. Approximately twice this amount, however, were prepared for the testing of the Chemcor and Herculite II glass types.

The glass surfaces were carefully protected against mechanical damage during preparation of the specimens and during measurements. Paper was placed between each sample and its neighbor in order to avoid surface defects from glass to glass contact. The thickness was measured at the corners without touching the central portion of the specimen. Width measurements, when required, were taken with equal care.

Surface Compression Via DSR Readings

DSR readings were made in the center of each tempered sample on the surface with the cutter marks. The surface on which the DSR readings were made was the side that would be under compression during the destructive tests. This was done in order to eliminate the possibility of affecting the results of the destructive testing by contacting, and possibly damaging, the side to be placed under tension. It was assumed that the surface stress in the central portion of each sample would be essentially isotropic and equal from side to side. No less than four, and in general, five readings were made on each sample and the average value was used, by means of the calibration value, to determine the surface compression in psi.

Center Tension Measurements

Although not required in this investigation, center tension measurements were made to provide additional information for those accustomed to gaging the degree of temper by this means. Measurements were made using a quartz wedge graduated to read relative retardation in millimicrons. For the strips, 3 x 13 in., the measurements were made across the width in the center of each sample. The square samples were measured across diagonally opposite corners, along a 2 in. optical path for the 6-1/8 in. squares, and along a 4 in. optical path for the 12-1/4 in. square samples. The 4 in. squares of Chemcor and Herculite II were measured through the whole width of the samples. This data was converted to psi by using the following conversion factors provided by the manufacturers.

TABLE 3 BIREFRINGENCE CONSTANTS

Ġlass Type	Manufacturer and Code Number	Birefringence Constant psi/mmu/in.
Type I MIL_G_25667	PPG Polished Plate	2.13
Chemcor	Corning 0311	2.28
Alumino Silicate	PPG 6695	2.17
Herculite II	PPG 7265	2.26

Using this information of the center tension and the values obtained for the surface compression via the DSR, the ratio of the surface compression to the center tension was calculated for each type glass in their various states of temper. These results are summarized in Table 4. More detailed information is contained in Appendix II. Individual Testing Results.

Destructive Strength Tests

The strength of the ennealed and tempered specimens was measured by either a modified beam loading method or a concentric ring method. Both of these testing methods have been in use at the Glass Research Center for the past 15 to 20 years. The beam loading method involves loading to breakage,

rectangular specimens simply supported near each end and loaded at two points symmetrically placed about the center. In the concentric ring method, a square plate is loaded by a circular member which moves coaxially to a support ring. The details of these methods are contained in Appendix I.

DESTRUCTIVE STRENGTH TEST RESULTS AND CORRELATION

Results

The results of the destructive strength tests and the results of the measurements of the surface compression and center tension are summarized in Table 4. The results listed in this table indicate that the principle of surface refractometry, as used in the DSR, the MDSR-I, and the MDSR-II, to measure surface compression of tempered glass is capable of predicting the breaking strength to within ±10% for seventy per cent of the samples tested and to within ±15% for the entire testing program. The average of the percentage deviation from breaking stress is -2.6% with the sign of the deviation taken into account. The mean of the absolute values of the per cent deviation, however, is 8.1%.

Tables of individual testing results are contained in Appendix II.

Discussion of Results

The agreement of the equation

to within 10% certainly indicates the validity of surface refractometry, as exemplified in the stress instruments used in this study, as a means of assessing the strength of tempered glass. With instrumentation of this type, it is now possible to specify and control the strength of tempered glass of a given production process without the need of extensive destructive testing. That is, once a DSR instrument has been calibrated for a particular glass and the basic strength of this glass determined, this report shows that the strength of the tempered product can be determined nondestructively with statistical certainty.

CONCLUSIONS

The Differential Surface Refractometer, an instrument based on the principles of surface refractometry, and modifications of this instrument as required to extend its usefulness to other glass types, is capable of determining the magnitude of the surface compression, in psi, present on tempered glass by nondestructive means. Since the strength of glass is dependent upon the strength of its surface, this ability to measure the surface compression of tempered glass enables one to assess the strength of this glass without the need for destructive tests.

This report has demonstrated the correlation of the DSR readings with the strength of tempered glass of four different compositions in a variety of configurations. Specifically, the glass types and the stress instruments which were correlated are:

Type I MIL-G-25667 glass, PPG Polished Plate, and the DSR; Chemcor Glass, Corning Glass Company Code 0311, and the MDSR-I; Herculite II Glass, PPG No. (265, and the MDSR-I; Alumino Silicate, PPG No. 6695, and the MDSR-II.

TABLE 4 SUMMARIZED DESTRUCTIVE STRENGTH TEST REST

FRANCE	Vanhan	N			
FRAMES	Number of	Number of			Mean
	Samples	Edge		Testing	Center
Glass Type	Tested	Breaks	Sample Size	Method	Tension
Chescor	51	0	1/10 x 4 x 4	$CR 1-1/2 \times 3$	6530
Herculite II, Annealed	51 44	ŏ	1/10 x 4 x 4	CR 1-1/2 x 3	30
Herculite II	51	Ō	1/10 x 4 x 4	$CR 1-1/2 \times 3$	6950
Polished Plate, Annealed	27	0	$3/16 \times 6-1/8 \times 6-1/8$	CR 3 x 6	
Polished Piate, Annealed	28	0	$1/4 \times 6 - 1/8 \times 6 - 1/8$	CR 3 x 6	
Polished Plate, Annealed	29	16	1/2 x 6-1/8 x 6-1/8	CR 3 x 6	
Polished Plate, Annealed	-	-	Same data as above but		breaks
Polished Plate, Annealed Polished Plate, Annealed	22	13	$3/4 \times 6-1/8 \times 6-1/8$ Same data as above but	CR 3 x 6	hreaks
Polished Plate, Annealed	29	ō	1/2 x 12-1/4 x 12-1/4	CR 6 x 12	235
Polished Plate, Annealed	31	4	$3/4 \times 12-1/4 \times 12-1/4$	CR 6 x 12	311
Polished Plate, 1/2 Temper	31 28	0	$3/16 \times 6-1/8 \times 6-1/8$	CR 3 x 6	
Polished Plate, 1/2 Temper	25 25 26	0	1/4 x 6-1/8 x 6-1/8	CR3x6	4060
Polished Plate, 1/2 Temper	25	o o	$1/2 \times 6-1/8 \times 6-1/8$	CR 3 x 6	4310
Polished Plate, 1/2 Temper	26	0	1/2 x 12-1/4 x 12-1/4	CR 6 x 12	4480
Polished Plate, 3/4 Temper	25 26	0	3/16 x 6-1/8 x 6-1/8 1/4 x 6-1/8 x 6-1/8	CR 3 x 6	6430
Polished Plate, 3/4 Temper	20	ŏ	1/2 x 6-1/8 x 6-1/8	CR 3 x 6 CR 3 x 6 CR 3 x 6	5090
Polished Plate, 3/4 Temper Polished Plate, 3/4 Temper	27 27	ŏ	1/2 x 12-1/4 x 12-1/4	CR 6 x 12	5320
Polished Plate, Full Temper	27	ŏ	$3/16 \times 6-1/8 \times 6-1/8$	CR 3 x 6	6870
Polished Plate, Full Temper	25 26	0	1/4 x 6-1/8 x 6-1/8	CR 3 x 6	7160
Polished Plate, Pull Temper		3	1/2 x 6-1/8 x 6-1/8	CR 3 x 6	7850
Polished Plate, Full Temper	-	0 0 0 3 - 7	Same data as above but	neglecting edge	breaks
Polished Plate, Full Temper	25		3/4 x 6-1/8 x 6-1/8	CR 3 x 6	8190
Polished Plate, Full Temper Polished Plate, Full Temper	25	0	Same data as above but 1/2 x 12-1/4 x 12-1/4	CR 6 x 12	7440
Polished Plate, Full Temper	25 26	ŏ	3/4 x 12-1/4 x 12-1/4	CR 6 x 12	8100
Alumino Silicate, Annealed	25	ŏ	1/4 x 6-1/8 x 6-1/8	CR 3 x 6	225
Alumino Silicate, Annealed	22	. 0	$1/2 \times 6 - 1/8 \times 6 - 1/8$	CR 3 x 6 CR 3 x 6	343
Alumino Silicate, 1/2 Temper	22	Ō	$1/4 \times 6 - 1/8 \times 6 - 1/8$	CR 3 x 6	3970
Alumino Silicate, 1/2 Temper	21	0	$1/2 \times 6 - 1/8 \times 6 - 1/8$	CR 3 x 6	3480
Alumino Silicate, 3/4 Temper	20	0	1/4 x 6-1/8 x 6-1/8	CR 3 x 6	5190
Alumino Silicate, 3/4 Temper	21 21	Ö	1/2 x 6-1/8 x 6-1/8 1/4 x 6-1/8 x 6-1/8	CR 3 x 6 CR 3 x 6 CR 3 x 6 CR 3 x 6 CR 3 x 6	5540 2750
Alumino Silicate, Full Temper Alumino Silicate, Full Temper	21	ŏ	1/2 x 6-1/8 x 6-1/8	CR 3 x 6	7750 7400
Polished Plate, Annealed	31	0	3/16 x 3 x 13	Beam 4 x 12	147
Polished Plate, Annealed	31 28 28	13	1/4 x 3 x 13	Beam 4 x 12	142
Polished Plate, Annealed	28	11	1/2 x 3 x 13 3/4 x 3 x 13	Beam 4 x 12	256
Polished Plate, Annealed	25 24	25	3/4 x 3 x 13	Beam 4 x 12	171
Polished Plate, 1/2 Temper	24	12	$3/16 \times 3 \times 13$	Beam + x 12	4030
Polished Plate, 1/2 Temper Polished Plate, 1/2 Temper	25 25	21 16	1/4 x 3 x 13 1/2 x 3 x 13	Beam 4 x 12	4030 1:330
Polished Plate, 3/4 Temper	25	11	3/16 x 3 x 13	Beam 4 x 12 Beam 4 x 12	4360 5320
Polished Plate, 3/4 Temper	25	24	1/4 x 3 x 13	Beam 4 x 12	5230
Polished Plate, 3/4 Temper	25 25 25 27 23 25	17	1/2 x 3 x 13	Beag 4 x 12	5290
Polished Plate, Full Temper	23	20	$3/16 \times 3 \times 13$	Beam 4 x 12	7700
Polished Plate, Full Temper	25	23	1/4 x 3 x 13	Beam 4 x 12	7350
Polished Plate, Full Temper	25	13	1/2 x 3 x 13	Beam 4 x 12	8640
Polished Plate, Pull Temper	26	15	3/4 x 3 x 13	Beam 4 x 12	9640

Legend: CR - Concentric Ring Method, numbers following CR indicate the diameter of the rings in inch Beam - Beam Loading Method, numbers following Beam indicate stress span and load span in inc

TABLE 4
TRUCTIVE STRENGTH TEST RESULTS AND CORRELATION

Testing <u>Method</u>	Mean Center Tension	Mean Surface Compression	Mean Surface on Center Ratio	Mean Breaking Stress	Standard Deviation	Range	Basic Strength Plus Jurface Compression
CR 1-1/2 x 3 CR 1-1/2 x 3 CR 1-1/2 x 3 CR 3 x 6 CR 3 x 6 CR 3 x 6	6530 30 6950	45770 56970	7.07 8.21	51180 14330 67010 10020 9270	7230 2780 6540 2310 2080 3090	28200 11300 40000 9600 8900 9800	71300
neglecting edge CR 3 x 6 neglecting edge CR 6 x 12 CR 6 x 12		040-		7930 10760 7410 9580 10740 10570	2430 4020 4150 1200 2890	9000 15400 14700 4900 10200	
CR 3 x 6 CR 3 x 6 CR 3 x 6 CR 6 x 12 CR 3 x 6 CR 3 x 6 CR 3 x 6 CR 6 x 12	4060 4310 4480 6430	8680 9800 9240 9920 11160 15900	2.41 2.14 2.22 2.47	17980 21980 23420 23510 22040 29360	3130 2560 4310 2150 2620 3150	13000 9800 16900 7900 11400 14100	18700 19070 20000 20660 21180 25170
CR 3 x 6 CR 6 x 12 CR 3 x 6 CR 3 x 6 CR 3 x 6 reglecting edge	5090 5320 6870 7160 7850 breaks	12540 12910 15270 17 300 18980	2.47 2.42 2.22 2.42 2.32	27090 27460 26370 30780 29920 31930	3380 2880 3280 2480 7130 4544	14600 11500 13000 10100 27400 15400	23300 23650 25290 26570 26910 29740
CR 3 x 6 leglecting edge CR 6 x 12 CR 6 x 12	8190 breaks 7440 8100 225 343	23770 18810 23370	2.90 2.53 2.88	32060 36930 32610 35990 10920	11190 7640 3350 3190 1840	35800 28400 14600 12000 7200	31180 33350 29550 33940
CR 3 x 6 CR 3 x 6 CR 3 x 6 CR 3 x 6 CR 3 x 6	3970 3480 5190 5540 7750	10340 10920 13410 17500 21150	2.61 3.14 2.58 3.15 2.73	10970 19350 20790 24340 25690 30630	1280 1830 2180 1780 3500 2220	5000 8500 7300 7600 12000 10700	21260 21890 24330 28470 32070
CR 3 x 6 Beam 4 x 12	7400 147 142 256 171 4030	23080 9370	3.12 2.31	30250 10940 9050 12410 6670 21570	3410 2610 1920 2260 3410 2080	14200 10400 7200 11000 16400 7800	34050 20310
Beam + x 12	4030 4360 5320 5230 5290 7700	9380- 1:>570 1:700 11860 13080 17160	2.33 2.42 2.19 2.27 2.47 2.22	20250 21470 23750 20360 24590 27040	2780 2510 2750 2630 3230 2190	10500 10400 11100 10700 15900	18430 22980 22640 20910 25490
Beam 4 x 12 Beam 4 x 12 Beam 4 x 12	7350 8640 9640	17210 21430 26830	2.32 2.48 2.78	23700 30860 36500	2800 3240 3690	9700 9700 13100 16300	28100 26260 33840 33500

ameter of the rings in inches. s span and load span in inches.

TABLE 4
SUMMARIZED DESTRUCTIVE STRENGTH TEST RESULTS AND CORRELAT

Type	Number of Samples Tested	Number of Edge Breaks	Semple Size	Testing <u>Method</u>	Mean Center Tension	Mean Surface <u>Compression</u>	Me Sui Cei _Ri
	51 44	0	1/10 x 4 x 4	$CR 1-1/2 \times 3$	6530	45770	7.
nealed	işiş Ta	0	1/10 x 4 x 4	CR 1-1/2 x 3	30	56000	0
lancal ad	51 27 28	0	1/10 x 4 x 4 3/16 x 6-1/8 x 6-1/8	CR 1-1/2 x 3	6950	56970	8.
Annealed Annealed	žŔ	ŏ	1/4 x 6-1/8 x 6-1/8	CR 3 x 6 CR 3 x 6			
Annealed	29	16	$1/2 \times 6 - 1/8 \times 6 - 1/8$	CR 3 x 6			
Annealed	•	-	Same data as above but	t neglecting edge	breaks		
Annealed	22	13	$3/4 \times 6-1/8 \times 6-1/8$	CR 3 x 6			
Annealed	-	-	Same data as above but	t neglecting eage CR 6 x 12	Preaks		
Annealed	29	0	1/2 x 12-1/4 x 12-1/4 3/4 x 12-1/4 x 12-1/4	CR 6 x 12	235 311		
Annealed 1/2 Temper	3 <u>1</u> 28	5	3/16 x 6-1/8 x 6-1/8	CR 3 x 6	344	8680	
1/2 Temper	25	ŏ	1/4 x 6-1/8 x 6-1/8	CR 3 x 6	4060	9800	2.
1/2 Temper	25 25 26	0000	$1/2 \times 6-1/8 \times 6-1/8$	CR 3 x 6 CR 3 x 6 CR 6 x 12	4310	9240	2.
1/2 Temper	26	o o	1/2 x 12-1/4 x 12-1/4	CR 6 x 12	11. 80	9920	2.
- 3/4 Temper	25 26	0	3/16 x 6-1/8 x 6-1/8	CR 3 x 6 CR 3 x 6 CR 3 x 6 CR 6 x 12	61,20	11160 15900	2.
- 3/4 Temper	20	Ö	1/4 x 6-1/8 x 6-1/8 1/2 x 6-1/8 x 6-1/8	CR 3 x 6	6430 5090	12540	2.
. 3/4 Temper - 3/4 Temper	27 27	ŏ	1/2 x 12-1/4 x 12-1/4	CR 6 x 12	5320	12910	2.
ull Temper	27	ŏ	3/16 x 6-1/8 x 6-1/8	CHRID	6870	15270	2.
. Pull Temper	2'5 2:6	Ŏ	1/4 x 6-1/8 x 6-1/8	CR 3 x 6 CR 3 x 6	7160	17300	2.
full Temper	<i>2:</i> 6	3	$1/2 \times 6 - 1/8 \times 6 - 1/8$	CR 3 x 6	7850	18980	2.
ull Temper	-	0 0 3 7	Same date as above but	t neglecting edge	breaks	02000	•
'ull Temper	25	7	3/4 x 6-1/8 x 6-1/8 Same data as above but	CR 3 x 6	8190	23770	2.
Tull Temper	25	ō	1/2 x 12-1/4 x 12-1/4	CR 6 x 12	7440	18810	2.
Juli Temper	25 26	ŏ	3/4 x 12-1/4 x 12-1/4	CR 6 x 12	8100	23370	2.
Annealed	25	0	1/4 x 6-1/8 x 6-1/8	70 1 K	225	-33,	
, Annealed	22	0	$1/2 \times 6 - 1/8 \times 6 - 1/8$	CR 3 x 6	343		
, 1/2 Temper	22	Q.	$1/4 \times 6 - 1/8 \times 6 - 1/8$	CR 3 x 6	3970	10340	2.
, 1/2 Temper	21	0	1/2 x 6-1/8 x 6-1/8 1/4 x 6-1/8 x 6-1/8	. CR 3 x 6	3480 5190	10920 13410	3.
3/4 Temper	20 21	Ö	1/2 x 6-1/8 x 6-1/8	CR 3 x 6 CR 3 x 6 CR 3 x 6 CR 3 x 6 CR 3 x 6	5540	17500	2. 3.
Full Temper	21	ŏ	1/4 x 6-1/8 x 6-1/8	CR 3 x 6	7750	21150	2.
Full Temper	21	0 0 6	$1/2 \times 6 - 1/8 \times 6 - 1/8$	CR 3 x 6	7400	23080	3.
innealed	31 28	6	$3/16 \times 3 \times 13$	Beam 4 x 12	147	•	_
· \nneeled	28	13 11	1/4 x 3 x 13	Beam 4 x 12	142		
nnealed	28	11	1/2 x 3 x 13 3/4 x 3 x 13	Beam 4 x 12	256		
nnealed /2 Temper	25 24	25 12	3/4 x 3 x 13 3/16 x 3 x 13	Beam + x 12 Beam + x 12	171 4030	9370	.
/2 Temper	25	21	1/4 x 3 x 13	Beam 4 x 12	4030	9370 9380	2.
/2 Temper	2 5	16	1/4 x 3 x 13 1/2 x 3 x 13	Beam 4 x 12	4360	10570	$\bar{2}$.1
1/4 Temper	25	11	3/16 x 3 x 13	Beam 4 x 12	5320	11700	2.:
//4 Temper	25	24	1/4 x 3 x 13	Beam 4 x 12	5230	11860	2.4
/4 Temper	27 22	17	1/2 x 3 x 13	Beam 4 x 12	5290	13080	5.
ull Temper	<u>دع</u> 25	23	3/16 x 3 x 13 1/4 x 3 x 13	Beam 4 x 12 Beam 4 x 12	7700 7350	17160 17210	2.4
'ull Temper	25 25 25 27 27 22 25 26	20 23 13 15	1/2 x 3 x 13	Beam 4 x 12	8640	21430	**************************************
ull Temper	<u>2</u> 6	ī5	$3/4 \times 3 \times 13$	Beam 4 x 12	9640	26830	2.7
•			=	-		_	

centric Ring Method, numbers following CR indicate the diameter of the rings in inches. eam Loading Method, numbers following Beam indicate stress span and load span in inches.

BLE 4 GTH TEST RESULTS AND CORRELATION

Mean Center Tension	Mean Surface <u>Compression</u>	Mean Surface on Center Ratio	Mean Breaking Stress	Standard Deviation	Range	Basic Strength Plus Surface Compression	% Deviation from Breaking Stress
6530	45770	7.07	51180	7230	28200		
3 0 6950	56970	8.21	14330 67010 10020 9270	2780 6540 2310 2080	11300 40000 9600 8900	71300	+ 6.4
e breaks			7930 10760	3090 2430	9800 9000		
> breaks 235 311	8680		7410 9580 10740 10570	4020 4150 1200 2890	15400 14700 4900 10200		
4060	9800	2.41	17980 21980	3130 2560	13000 9800	18700 19070	+ 4.0 -13.2
4310 4480	9240 9920 11160	2.14	23420 23510 22040	4310 2150 2620	16900 7900 11400	20000 20660 21180	-14.6 -12.1 - 3.9
6430 5090	15900	2.47 2.47	29360	3150	14100	25170	-14.3
5320	12540 12910	2.42	27090 27460	3380 2880	14600 11500	23300 23650	-14.0 -13.9
5320 6870	15270	2.22	26370	3280	13000	25290	- 4.1
7160 7850	173 00 18980	2.42 2.32	30780 29920	2480 7130	10100 27400	26570 26010	-13.7
breaks	· · · · · ·	2.32	31930	4544	15400	26910 29740	-10.1 - 6.9
8190	23770	2.90	32060	11190	35800	31180	- 2.8
: breaks 7ዛዛ0	18810	2.53	36930 32610	7640 3350	28400 14600	33350	- 9.7
8100 225 343	23370	2.53 2.88	35990 10920	3190 1840	12000 7200	29550 33940	- 9.4 - 5.7
3970 3480	10340	2.61	10970 19350	1280 1830	5000 8500	21.260	+ 9.9
3480	10920	3.14	19350 20790	2180	7300	21890	+ 5.3
5190 5540	13410 17500	2.58 3.15	24340 25690	1780 3500	7600 12000	24330 28470	- 0.1
5540 7750	21150	2.73	30630	2220	10700	32070	+10.8 + 4.7
7400	23080	3.12	30250	3410	14200	34050	+12.6
147 142			10940 9050	2610 1920	10400 7200		
256			12410	2260	11000		
171	0350		6670	3410	16400		
4030 4030	9370 9380	2.31 2.33 2.42	21570 20250	2080 2780	7800 10500	20310 18430	- 5.9
4360	10570	2.42	21470	2510	10400	22980	- 9.0 + 7.0
5320	11700	2.19 2.27	23750	2750	11100	22640	- 4.7
5230 5290	11860 13080	2.27 2.47	20360 24590	2630 3230	10700 15900	20910 25490	+ 2.7
7700	17160	2.22	27040	3230 2190	9700	25490 28100	+ 3.7 + 3.9
7350 8640	17210	2.32 2.48	23700	2800	9700	26260	+10.8
9640	21430 26830	2.48	30860 36500	3240 3690	13100 16300	33840 33500	+ 9.7 - 8.2

rings in inches.

STUDY OF LIMITATIONS

The limitations of the DSR, in its basic design, with respect to the effects of curvature, waviness, edge proximity, and surface finish were determined by direct examination. Initially it was assumed that glass composition would not affect the limitations of the DSR and this work was carried out using only Type I MIL-G-25667 glass. However, in the extension of the basic design to the other glass types, especially Chemcor and Herculite II, there is reason to believe that the limitations of the DSR may not, in general, apply to the MDSR-I and MDSR-II instruments.

Curvature

The limitations of the DSR with respect to surface curvature were determined on four basic surface types: (1) concave cylindrical; (2) convex cylindrical; (3) concave spherical; and (4) convex spherical. In the case of cylindrically bent glass the limitations must be established for two orientations, one, when the optical axis of the instrument is oriented parallel to the cylinder axis, and the other, when the optical axis is oriented perpendicular to the cylinder axis. Thus, a total of six cases have been studied.

The limiting radius for each case was based on the quality of the stress image observed in the DSR telescope, i.e., the point at which the image quality deteriorates to a degree sufficient to affect the readability of the instrument. Also, the radius of curvature at which the stress image disappears, or becomes impractical to read due to large variations, was determined in each case. The results of this study are listed in the following table:

TABLE 5
CURVATURE LIMITATIONS

Surface	$\frac{R_1}{}$	R2		
Concave Spherical	175 in.	100 in.		
Convex Spherical	250 in.	125 in.		
Concave Cylindrical parallel to Axis	< 5 in.	_*		
Concave Cylindrical perpendicular to Axis	200 in.	150 in.		
Convex Cylindrical parallel to Axis	100 in.	5 in.		
Convex Cylindrical perpendicular to Axis	150 in.	100 in.		

Legend:

- R₁ Radius of curvature at which stress image quality begins to deteriorate.
- R₂ Limiting radius of curvature
- * This limit has not been estallished but would be less than 5.

At the limiting radius, R_2 , the stress image may be poor, but it is still possible to determine the surface stress with a reasonable amount of accuracy. Beyond this point, the stress readings become impractical with the DSR in its present design. The term "reasonable amount of accuracy" is relative and may be given more meaning when considered in light of the following remarks.

When several readings are taken with the DSR at one location on a flat sample of fully tempered glass, a variation in the readings of 2-3% is normal. In the above work on curved surfaces, when the variation in readings approached 10-15%, the author considered this to be "reasonably accurate". Beyond this point, the usefulness of the DSR, in its present design, would have to be determined by the application.

The variation in readings is not affected by a deterioration of the stress image as much as by a tendency to wobble or rock on the curved surfaces. This rocking can be corrected by proper changes in the design of the DSI. instrument.

Other Limitations

The limitations of the DSR with respect to waviness, edge proximity, and surface finish were determined for flat samples only. These results are summarized below.

Waviness: This will not be a problem in the use of the DSR on aircraft quality glass since the waviest sheet glass is readable.

Edge Proximity: The limitation on edge proximity is the prism contact length, i.e., as long as the length of the prism is in contact, readings may be made at the edge of a sample. When making readings at an edge, however, it must be remembered that the stress is no longer isotropic in this region and that the stress instrument reads the surface stress in a direction 90° to its optical axis.

Surface Finish: Short finish presents no problem - as the DSP is capable of reading through surfaces ground to a matte finish with 800X abrasive.

REFERENCES

- (1) The theory of operation of the DSR is discussed in Progress Report No. 1. Ansevin, R. W. and French, P. W., Correlation of the DSR with the Strength of Glass of Different Compositions and Configurations,

 Progress Report No. 1. Covering the period 1 July 1963 to 30 September 1963.
- (2) Timoshenko, S., Strength of Materials, Part I, Second Edition, D. Van Nostrand, New York, 1940, p. 61.
- (3) Roark, R. J., Formulas for Stress and Strain, Second Edition, McGraw-Hill, New York, 1943, p. 189.
- (4) Vitman, F. F., Bartenev, G. M. Pukh, V. P., and Tsepkov, L. P.,

 A Method for Measuring the Strength of Sheet Glass, Translated from

 Steklo i Keramika, Vol. 19, No. 8, pp. 9-11, August, 1962.
- (5) Vitman, F. F., and Pukh, V. P., A Method for Determining the Strength of Sheet Glass, Translated from Zavodskaya Laboratoriya, Vol. 29, No. 7, pp. 863-867, July, 1963.

APPENDIX I

DETAILED PROCEDURE

CALIBRATION

Calibration Methods

Type I MIL-G-25667: The calibration of the DSR for Type I MIL-G-25667 glass (polished plate) was determined by subjecting 10 fully tempered samples, of size 6 x 24 x 1/2 in., to beam bending using a Baldwin Testing Machine. Each sample was simply supported, with a load span of 22 in. a. a stress span of 6 in., in such a manner that the surface which would experience the tension during the test was in a convenient position for examination with the DSR. The DSR was placed on the sample in the area over the 6 in. stress span and oriented to detect the resultant surface stress due to loading. The DSR reads the surface stress in a direction 90° to the optical axis of the instrument. At zero load the DSR reading corresponds to the magnitude of the surface compression introduced during the tempering process. Loading was applied in suitable increments until the surface being examined was in tension; the degree of this tension was held to a level below the expected rupture point in order to avoid sample failure. At each load increment, the corresponding DSR reading was noted by taking several measurements.

The average DSR readings were then plotted against the surface stresses calculated from beam bending theory, see Calculation of Bending Stresses, Appendix I. From this data, the surface compression at zero load was determined by passing a line of least squares through the points recorded. This value obtained for the surface compression at zero load divided by the DSR reading for the same condition produced the calibration value, K, in psi per micrometer eyepiece unit for each sample. The data for a typical sample is illustrated in Figure 1. The linear relationship between the surface compression and the DSR reading is quite evident in this illustration.

The results of examining these ten samples of Type I MIL-G-25667 glass determined the mean calibration value of the DSR for this glass to be 60.18 psi per eyepiece unit with a standard deviation of 0.41. The stress-optic constant, C, was found to be 5.4×10^7 psi per unit birefringence. This is an average result for the ten samples.

The pertinent data of the calibration study for this and the other glass types is contained in Table 6. Figures 1 through 4 illustrate the linear relationship between the surface stress and the DSR readings for each type glass.

Chemcor: The characteristics of this glass differ greatly from those of polished plate for which the basic DSR was designed. Therefore a different version of the DSR was required to measure the surface compression of this glass. This version is termed the Modified Differential Surface Refractometer-I or MDSR-I. Also, due to the sample size and thickness limitations at the time this glass was procured, a considerably smaller sample in comparison to the sample size of 6 x 24 x 1/2 in. used for polished plate, was used in

Figure 1 - Representative Calibration Results for Type 1 MIL-G-25667 Glass (Polished Plate).

the calibration procedure. The size was nominally $2 \times 7 \times 1/8$ in. Twenty samples of fully tempered Chemcor were examined by subjecting them to beam bending with a load span of 6 in. and a stress span of 2 in. Loading was applied using a Instron Testing Machine. Due to the small sample thickness, it was not possible to continue taking MDSR-I readings until the surface was placed in tension as was done in the calibration of Type I MIL-G-25667 glass. The sample curvature became excessive after about 2/3 of the surface compression was removed by loading with a subsequent deterioration in the quality of the stress image. As a result of this deterioration, loading had to be discontinued before the surface was placed in tension. Consequently, the surface compression at zero load had to be determined by extrapolating the line of least squares for the points recorded. This need to extrapolate introduced a greater variation in the results as evidenced by a larger standard deviation in comparison with the results for Type I MIL-G. 25667 glass. The results of examining these twenty samples of Chemcor glass determined the mean calibration value for the MDSR-I to be 173.4 psi per eyepiece unit with a standard deviation of 13. The stress optic constant, C, for the surface layers of this glass was found to be 4.4 x 107 psi/unit birefringence.

As in the case of the Type I MIL-G-25667 glass, there is a strong linear relationship between the surface compression and the MDSR-I readings for Chemcor glass, see Figure 2.

Alumino Silicate: The characteristics of this glass also differ from those of polished plate to a degree sufficient to require a different version of the DSR in order to measure the surface compression. This model is termed the Modified Differential Surface Refractometer-II or MDSR-II. Otherwise the calibration procedure was identical to that described for the calibration of Type I MIL-G-25667 glass. Ten fully tempered samples 6 x 24 x 1/2 in. were examined. The mean calibration value of the MDSR-II for this glass was determined to be 167.2 psi per eyepiece unit with a standard deviation of 2.5. Figure 3 contains an illustration of the calibration results of a typical sample.

Herculite II: The same version of stress instrument as used on Chemcor, the MDSR-I, was used in determining the calibration value of this glass. The same procedure and technique as used with the Chemcor glass was applied here. Twenty samples, $2 \times 7 \times 3/16$ in., of fully tempered Herculite II were examined. The mean calibration value of this data is 189.3 psi per eyepiece unit with a standard deviation of 11. The calibration result, for a typical sample are illustrated in Figure 4. Further data is contained in Table 6.

Index Measurements

The surface refractive indices, n_{ii} and n_{ij} , for light polarized and perpendicular to the surface of the sample, respectively, were meaned for all calibration samples, see Table 6. The surface indices for the large, 6 x 24 in., samples were measured using the corresponding stress instrument for that glass. Surface refractive indices can be measured with the stress instruments by using a glass sample of known index as a reference. The surface refractive index, n_{ij} , of a sample can be readily determined by noting the angle between the critically reflected image of the reference sample and

Figure 2 - Representative Calibration Results for Chemcor Glass

Figure 3 - Representative Calibration Results for Alumino Silicate Glass

Figure 4 - Representative Calibration Results for Herculite II Glass

TABLE 6
CALIBRATION, SURFACE INDEX AND STRESS OPTICAL CONSTANT RESULTS

FRAMES DIAGRATIAN	Stress <u>Instrument</u>	Sample Number	Surface Compression	Stresseter Reading Eveniece Units	Directly Measured Index Difference x10"4	Celibration Value K, psi/Eyepiece Unit	n <u>a</u>	5	Stress Optic Constant C x 105 psi/Unit Birsfringence
Type I MIL-G-25667 Type I MIL-G-25167 Type I MIL-G-25667 Type I MIL-G-25667	DSR DSR DSR DSR DSR DSR DSR DSR DSR DSR	PP-1 PP-2 PP-3 PP-5 PP-5 PP-7 PP-8 PP-9 PP-10	19073 21969 18021 19656 19296 19446 18223 21918 17537 19135	314.3 362.0 362.0 325.3 322.0 303.0 303.0 306.0 316.5	525 525 538 5364 5366 537 539 534	60.68 60.69 59.71 60.42 60.39 60.39 60.14 59.27 60.16 Mean 60.18 SD	1.5251 1.5251 1.5250 1.5250 1.5250 1.5249 1.5249 1.5250 Meen 1.5250	1.5247 1.5246 1.5246 1.5246 1.5246 1.5246 1.5247 1.5247 1.5246 Hean 1.5246	54.2 54.2 54.3 55.36 55.36 55.36 55.28 54.0 Mean 53.7
alusino Silicate Alusino Silicate Alusino Silicate Alusino Silicate Alusino Silicate Alusino Silicate Alusino Silicate Alusino Silicate Alusino Silicate Alusino Silicate	MDSR-II MDSR-II MDSR-II MDSR-II MDSR-II MDSR-II MDSR-II IDSR-II	AS-1 AS-3 AS-4 AS-5 AS-7 AS-8 AS-9 AS-10	23854 24521 24520 23928 24671 24172 23087 24337 24936 24031	147.4 144.6 145.6 145.6 143.8 137.6 141.4 140.4	4.22 4.14 4.15 4.28 4.21 3.94 4.02 4.15	161.83 173.86 165.36 164.79 166.25 162.09 167.78 172.12 170.27 165.73 Mean 167.2	1.5580 1.5580 1.5578 1.55781 1.5580 1.5580 1.5580 1.5580 1.5580	1.5576 1.5575 1.5576 1.5576 1.5576 1.5576 1.5576 1.5576 1.5576 1.5576 1.5576	565 595 576 588 588 586 602 595 599 599 5984
Cheacor	MD SR - I	63-1 60-2 60-4 60-4 60-5 60-7 60-9 60-11 60-12 60-13 60-14 60-16 60-19 60-19	+0476 +4121 +4121 +17580 +1241 +6426 +4461 50003 +3384 51138 511060 +6778 +49308 +8169 +8668 +7768 +3018	269.2 272.8 263.6 264.0 274.2 269.6 2712.6 269.4 261.6 261.6 270.8 261.6 270.8	10.55 10.69 10.57 10.33 10.74 10.75 10.55 10.55 10.55 10.55 10.58 10.58 10.62 10.58	150.36 161.73 165.45 156.45 156.45 168.11 162.14 185.47 167.12 188.02 183.55 179.58 200.25 178.90 179.72 181.00 179.72 181.06	1.5127 1.5130 1.5130 1.5131 1.5132 1.5132 1.5132 1.5132 1.5132 1.5132 1.5131 1.5132 1.5130 1.5130 1.5130	1.5119 1.5122 1.5120 1.5120 1.5121 1.5122 1.5122 1.5122 1.5122 1.5121 1.5121 1.5121 1.5121 1.5120 1.5120 1.5120 1.5120 1.5120 1.5120 1.5120 1.5120 1.5120 1.5120 1.5120 1.5120 1.5120 1.5120 1.5120 1.5120 1.5120 1.5120 1.5120	309 433 499 4314 4736 4688 45116 4688 45116 468 468 468 468 468 468 468 468 468 46
Herculite II	10 38 - I 20 58 - I	H-1 H-3 H-4 H-5 H-9 H-11 H-12 H-12 H-15 H-16 H-19 H-19	56522 61075 51302 57019 58199 58646 57778 61397 61397 61397 61396 64260 57115 64216 64216 578177 60017	316.6 289.6 320.4 316.6 316.6 317.2 318.6 310.2 310.8 310.8 311.8 311.8 311.8	11.97 10.95 12.10 11.51 11.97 11.57 11.91 12.04 11.88 11.63 12.06 11.70 12.02 12.27 11.82 11.79 11.82 11.79 11.88	178.53 210.89 160.22 187.32 183.82 191.53 183.83 175.77 201.77 200.77 189.83 196.92 182.30 195.65 197.65 188.15 188.15 188.15	1.5153 1.5155 1.5152 1.5152 1.5152 1.5152 1.5153 1.5155 1.5156 1.5156 1.5151 1.5151 1.5151 1.5151	1.5143 1.5143 1.5142 1.5142 1.5140 1.5141 1.5143 1.5143 1.5143 1.5143 1.5144 1.5142 1.5142 1.5142 1.5142 1.5142	\$72 \$558 \$424 \$466 \$507 \$663 \$531 \$531 \$531 \$531 \$531 \$531 \$531 \$53

Legend: $n_{\rm H}$ - Surface index of refraction for light polarized parallel to the plane of the surface. $n_{\rm H}$ - Surface index of refraction for light polarized perpendicular to the plane of the surface. SD - Standard Deviation.

the critically reflected image of the sample being examined. For a stressed sample, two images will be formed, one corresponding to m, and the other corresponding to m. The surface refractive index is given by

$$n = \sqrt{N^2 - \sin^2 \beta}$$

where N is the prism index of the stress instrument, and β is the emergent angle of the prism for a given sample, i.e., the angle at which the light leaves the prism as measured from the normal.

The surface indices for the smaller, 2×7 in., samples were measured by reflected light of the proper polarization using a Bausch and Lomb, Abbe-56 Refractometer. The proper polarization was attained by fitting the eyepiece of this instrument with a polarizing filter. By rotating the eyepiece 90° , the two indices, $n_{\rm H}$ and $n_{\rm L}$, were measured directly.

The difference between the two surface refractive indices, $n_n = n_1$, can be measured directly with the DSR in terms of eyepiece units. The following factors apply to each glass type and their respective stress instrument:

Type I MIL-G-25667 glass using the DSR, 1.12 x 10^{-6} ; Chemcor glass using the MDSR-I, 3.92 x 10^{-6} ; Herculite II glass using the MDSR-I, 3.78 x 10^{-6} ; Alumino Silicate glass using the MDSR-II, 2.86 x 10^{-6} .

By multiplying the stressmeter reading, expressed in eyeplece units, by the proper factor, as determined above, we get the absolute value of the index change directly. These conversion factor, are good only in the index ranges listed in Table 6.

DESTRUCTIVE STRENGTH TESTS

Testing Methods

Ī

The beam loading method involved loading to breakage of 3 x 13 in. specimens supported 1/2 in. from either end and loaded at the two points 4 in. from the supports. In the concentric ring method, a square plate was loaded by a circular member which moved coaxially to the support ring. Three different pairs of ring sizes were used on three different sample sizes: 3 and 6 in. diameter rings with 6-1/8 in. square samples; 6 and 12 in. diameter rings with $12-1/\frac{1}{4}$ in. square samples; and 1-1/2 and 3 in. diameter rings with $\frac{1}{4}$ in. square samples.

Both the beam loading and the concentric ring loading methods were used on the Type I MIL-G-25667 glass; then, on the basis of the results, the concentric ring method was selected for the other glass types. The concentric ring method was preferred over the beam loading method because of the large number of edge breaks encountered in the latter method. The evaluation of the strength of glass is a relatively complicated problem; it is known that the strength depends on a number of various edge and surface effects. Therefore, if the strength of glass with a specified surface treatment is to be

determined, it is necessary that the measured strength be characteristic of the properties of the surface layer alone and does not contain errors due to a possible effect of a weakened edge. The concentric ring method, of proper design, excludes the effect of edge defects from the results of strength measurements.

In reference to concentric ring tests of proper design, it was initially intended that only the 3 and 6 in. diameter rings be used to test the Type I MIL-G-25667 glass in a.1 thicknesses, however, a large number of edge breaks were encountered in the testing of the 1/2 in. and 3/4 in. thicknesses. As this testing method is intended to eliminate the edge effects during strength measurements, larger samples were prepared to determine if this may have been the result of the small sample size relative to thickness for these groups. Samples 12-1/4 in. square were tested on a 12 in. diameter support ring with a 6 in. diameter load ring. The results show that this corrected the problem. Another way to eliminate this type of break would be to have the sample extend beyond the support ring by a greater amount. When the latter method is used, however, corrections for the overhang have to be included in the calculation of the breaking stress.

Testing Techniques

Specimens having cut edges were broken with the cutter marks on the side under compression. This surface was taped in order to preserve the origin of failure. Loading rates were in the range of 4000 to 15000 psi per minute depending on the available loading rates of the testing machines used. The loading rate used for a given test, however, was held constant to within ±1000 psi per minute. When possible, a loading rate of 5000 psi per minute was used. These are the loading rates which were maintained during the latter half of the destructive tests. When necessary, in order to keep testing times within a reasonable length, specimens were fast loaded to approximately 50% of the rupture strength. The temperature and humidity were held within certain limits during the tests and at least 48 hours previous to the tests. The temperature was maintained between 70-75°F and the relative humidity did not exceed 50%. A minimum of 20, and in general, 25 samples were tested for each category listed in Table 1. Approximately 50 samples, however, were used in the testing of glass types Chemcor and Herculite II.

Each sample was examined for defects which could possibly affect its strength. Samples which contained defects that are not normally representative of that type sample were rejected.

The location of the fracture origin and the direction of the maximum stress were noted for all samples. If a fracture origin occurred outside of the area of maximum stress, the breaking stress was given the value of the stress at the position of the origin rather than the maximum stress the sample experienced. The methods used in determining this value of stress are listed in the following section.

The amount of center deflection of each group of samples tested by the concentric ring method was monitored in order to detect the presence of membrane s' es. When the deflection of the center exceeded half the sample thickness, the degree of membrane stress was est mated and the breaking

stress corrected to eliminate this effect. Groups of samples for which this occurred will have both the breaking stress including membrane effects and the corrected breaking stress listed in the tables of individual testing results. These tables are contained in Appendix II. This effect was found to occur only in the thin glass samples which were subjected to high loads: 3/4 and full tempered 3/16 in.-thick Type I MIL-G-25667 glass; full tempered 1/10 in.-thick Chemcor; and full tempered 1/10 in.-thick Herculite II.

Calculation of Bending Stresses

The data resulting from the destructive tests and the calibration study was converted into maximum surface stress by use of the following formulas solved from bending theory (2)(3)(4)(5):

Rectangular Specimens (Beam Bending)

$$\sigma_{\text{max.}} = 3/2 \frac{\text{PL}}{\text{wt.}^2}$$
 (2)

where σ_{max} = maximum surface stress within stress span, psi

P = load in pounds

L = effective span, i.e., the load span minus the stress span, in inches

w = width of specimen in inches

t = thickness of specimen in inches

Square Specimens (Concentric Rings of 2:1 Ratio)(3)(4)(5)

$$\sigma_{\text{max.}} = 0.545 \frac{P}{tz}$$
 (3)

This formula, however, is not corrected for overhang while the following three are corrected(4)(5):

1. Formula for 6-1/8 in. square samples on 3 and 6 in. diameter rings.

$$\sigma_{\text{max}}$$
. = 0.511 $\frac{P}{t^2}$

2. Formula for 12-1/4 in. square samples on 6 and 12 in. diameter rings.

$$\sigma_{\text{max.}} = 0.510 \frac{P}{t^2}$$

3. Formula for 4 in. square samples on 1-1/2 and 3 in. diameter rings.

$$\sigma_{\text{max.}} = 0.463 \frac{P}{t2}$$

where σ_{max} = maximum surface stress within the load ring, psi

P = load in pounds

t = thickness of the specimen in inches

Corrections for Fracture Origins Outside Maximum Stress Area

The value calculated for the maximum stress at which a sample failed was reduced by a "fracture origin factor" whenever the fracture originated outside of the maximum stress area. The graph in Figure 5 was used for the 3 x 13 in. beam loading specimens (2) while the graph in Figure 6 was used for the concentric ring loading specimens (3). In the concentric ring loading specimens, whenever the direction of the fracture stress was at some angle to the tangential and radial stresses, the fracture origin factor was estimated by interpolating between the two curves of Figure 6.

Corrections for Membrane Stress in Concentric Ring Testing

Whenever large deflections are required to cause failure of a sample, i.e., whenever the deflection at the center of the glass exceeds half its thickness, a method of estimating the breaking stress which excludes membrane effects is more desirable than the misleading large strengths given by the formulas 1, 2, and 3. The theory for the concentric ring loading method from which these formulas were derived assumes small deflections and pure bending of the center portion of the plate. For large deflections, the glass may stretch like a membrane as well as bend, giving rise to membrane stresses. Since the mathematical methods for treating membrane stresses are cumbersome and lengthy, an empirical approach was used to estimate this effect.

It is known from the existing theory that for pure bending the load is proportional to the deflection, while for pure membrane stressing the load is proportional to the cube of the deflection. Thus when a sample requires a deflection of greater than half its thickness to cause failure, an examination of the graph of the load versus deflection in the region beyond the half thickness will show a nonlinearity due to the presence of membrane stresses. A correction factor for this membrane stress was estimated by forming a ratio of the linear portion of the load at failure, determined by an extension

Figure 5 - Corrections for Fracture Origins Outside Maximum Stress Area for 4 and 12 In. Span Beam Loading Method

Figure 6 - Corrections for Fracture Origins Outside Maximum Stress Area for Concentric Ring Loading Method

of the linear load-deflection curve, divided by the actual load at failure. For a given group of samples, several estimates of the correction factor were made and the average value used to determine the corrected breaking stresses for the entire group. By this method, correction factors were determined for the following groups of samples which showed membrane effects: 3/4 and full tempered 3/16 in.-thick Type I MIL-G-25667 glass - a correction factor or 0.9; full tempered 1/10 in.-thick Chemcor and Herculite II - a correction factor of 0.8. Figure 7 illustrates the method as applied to a sample of full tempered Herculite II. These samples were tested on the Instron Testing Machine which gives a measure of the load ring deflection directly.

Figure 7 - Graphical Estimation of Correction Factor for Membrane Stresses for Typical Fuli Tempered Herculite II Sample

APPENDIX II

INDIVIDUAL TESTING RESULTS

The individual results of the destructive testing for each type glass are presented here.

The following symbols are used in this appendix to indicate the location of the fracture origin and the direction of the maximum stress at failure.

Concentric Ring Testing

- Fracture origin located inside the diameter of the loading ring.
- Ir Fracture origin located at the diameter of the loading ring.
- TO Fracture origin outside of maximum stress area with maximum stress at failure acting in a tangential direction. Numbers in the blank before the T indicate the distance in inches from the load ring.
- _R O _ Same meaning as above except maximum stress at failure acting in a radial direction.
- T ° 0 Additional information contained in the blank following the T indicates the angle to the tangential direction at which the maximum stress at failure occurred. Other symbols have the same meaning as above.
- Or Fracture origin located over diameter of support ring.
- OE Fracture origin located at edge of sample.

Beam Testing

- IC or Ic Fracture origin located inside the area of maximum stress in the center portion of the sample, i.e., not at an edge.
- IE Fracture origin located inside the area of maximum stress, but at an edge.
- OC Fracture origin located outside the area of maximum stress away from the edges. Numbers in the blank indicate the distance in inches from the maximum stress area.
- OE Same as above except fracture origin located at an edge.

Statistical Information

SD - Standard Deviation.

TABLE 7

INDIVIDUAL TESTING RESULTS, FULL TEMPER CHEMCOR

SAMPLE SIZE 4 x 4 x 1/10 IN., TESTING METHOD 1-1/2 AND 3 IN. DIAMETER CONCENTRIC RINGS,

TESTING MACHINE - INSTRON, LOADING RATE 15000 PSI/MIN.

Salipie No.	Average Thickness	Center Tension psi	Average MDSR-I Reading	Surface Compression psi	Surface To Center Ratio	Breaking Load lb.	Fracture Origin	Fracture Origin Factor	Breaking Stress With Membrane Stress, psi	Breaking Stress Corrected for Membrane Stress, psi
1	.1010	6509 5472 6224	268.0 300.0	46471	7.14	1550 1748	0.08"T 0	1	70400	56300
ş	.1043	6224	250.6 261.8	52020 43454	9.51 6.98 7.07 7.30 6.82 6.64	1652 1462	I	1.95	70900 70300 63800	56700 56300
	.1030 .1044	ら払うち	261.8	45396	7.07		I	į	63800	51100
5 6	.1006	6493 6594	273.2 259.2	45396 47373 44945	6.82	1202 1510	I Ir	1	51100 69100	40900 55300
7	.0970 .1049	FOOR	259.2 264.6	I CRRO	6.64	1410	Ĭ	1	69300	55500 55500
	.1049 .0987	6297 6715	262.6	45535 37691	7.23 7.09	1516	Ī	ļ	63800	51000
10	. 1035	6297 6715 6361	274.4 270.2	45535 47581 46853	7.37	972 1620	İ	1	46200 70000	37000 56000
11	.1051 .1061	6138	269.4	46714	7.37 7.61	1690 1742	Ī	ī	70800	56700
12 13	.1043	5490 6441	305.0 274.0 244.6	52887 47512 42414	9.63 7.38	1702	1	1	71700 72400	57400 58000
13	.1040	6373 6635 5467	244.6	42414	7.38 6.66	1466	1 1 1 1 1	1	62800	50200
15 16	.0995 .1059	6635 5867	259.0 301.6	44911 52207	6.77	1240 1318	Ĭ	1	58000 58500	46400
17	•0969	6977	237.0 184.8	52297 41096	9.57 5.89	930	Î	· i	54500 45900	43600 36700
18	.1060	5180	184.8	32044 44841	6.19	1300	Ir	1	53600	¥2900
19 20	.1011 .1041	7260 6794	258.6 256.0	44390	6.17 6.53	1644 1538	I	1	74500 65800	59600 52600
21	. 1038	7034	256.0 263.6	45768 43107	6.53 6.50	1538 1704	Î	1	73200 62800	58600
22 23	.1004 .1055	7034 7239 5992 7223	248.6 308.2	43107 53442	5.95 8.92 6.38	1366 1726 1448	I I I	1	62800 71000	50200
23	.1055 .1003	7223	308.2 265.8 268.8	53442 46090	6.38	1448	î	1	71900 66700 51600 76800	57500 53400 41300
25 26	.1052 .1052	0035	268.8 303.6	46610 52644	7.02 8.86	1232 1834	I I	ļ	51600	41300
27	.1059	5939 6749	271.2	47026	6.97 6.43	1570	İ	i	DAD(X)	61400 51900
5 0 58	.0006 .1026	7200	267.0 266.6	46298 46238	6.43 6.45	1570 1616	Ī	1	75500 52 5 00 64600	60400
30	.1016	7054	267.4	46228 46367 45882	6.57	1200 1438	Ī	1	52800 64600	42300 51600
31.	.1018	7164 7054 7079 6874	264.6	45882	6.57 6.48	1550 1092 1728 1184	Ī	1	70000	56000
32 33	.1040 .0995	7130	249.4 266.4	43246 44194	6.29 6.19	1092 1728	I	1	46800 80800	37400 64700
33 34	กาดใ	6425 6776	192.6	33397 44945	5.20 6.63	1184	i	ī	55500 45 6 00	44400
35 36	.1042 .1059	6760	259.2 262.2	44945 45465	6.63 6.73	1166 1540	Į	1	46 8 00	39800
37 38	1059 1041		257.8	45465 44703	6.73 6.76	1604	İ	1	63600 68600 66000	50900 54900
36 36	.1021	6845 5878	250.8 251.4	43489	6.35 7.42	1486 1464	Ī	1	66000	52800
40	.1021 .1056 .1047	5837 6069	311.4	43593 53997	9.25	1696	1	1	60800 71700	48600 57400
41 42	.1006	6069	182.4	53997 31628	9.25 5.21	996 1662	Ī	1	45600	36500
43 48	.1054 .1043	5832 6949	304.4 265.2 264.6	52783 45986 45882	9.05	1662 1464		1	69300 62400	55500
14 25	.0009	7269 6965	264.6	15882	6.31 6.33 9.24	1386 1676	Ī	1	64400	49900 51500
45 46	.1035	5955	254.2 317.4	44078 55037	6.33 9.24	1676 1564	I Ir	1	71000 67700	56800
47 48	.1035 .1057 .1043	5955 5764	313.4 260.4	55037 54344	9.43 6.41	1564 1810	Ĭ Ĭ	i	75100	54100 60100
40 40	.1043	7041 6826	260.4 250.2	45157	6.41	1490	ī	1	63400	50700
50 51	.1003	5864	223.0 254.6	43385 38668	6.36 6.59	1120 1256	I Ir	1	49700 57800	3 9800 46200
51	•0993	7109	254.6	44148	6.59 6.21	1256 1420	Ir	ī	66700	53400
		Mean		Mean	Mean				Mean	Hean
		6530		45770	7.07				63970	51180
									SD 9030	SD 7230
									High 80800	High
									80800 Low	64700 Low
									\$ 5600	36500
									Range	Range 28200
									35200	28200

TABLE 8
INDIVIDUAL TESTING RESULTS, ANNEALED HERCULITE II
SAMPLE SIZE 4 x 4 x 1/10 IN., TESTING METHOD 1-1/2 AND 3 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - INSTRON, LOADING RATE 15000 PSI/MIN.

10 m4 5/9 60 10 m4 5/9 5/9 10 10 m4 5/9 5/9 6/9 6/9 6/9 6/9 6/9 6/9 6/9 6/9 6/9 6	Sample No.
10999 1010 1011 1010 1021 1021 1023 1023 1023	Average Thickness in.
うさん ううと うさん できる りん かん く く う うままん すうする うらり と く と かん く く く な す ままる しま 184 148148114811481148111811481	Center Tension psi
1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Breaking Load lb.
ныныныныныныныныныныныныныны	Fracture Origin
	Fracture Origin Factor
14500 14500 14500 14500 14500 14500 14500 14500 14500 14500 14500 14500 14500 14500 14500 14500 14500	Breaking Stress psi

٧₄ .

•	Š	S	
•	ζ	•	

	0 700 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sample No.
	.1001 .1002 .1008 .1009 .1013 .1015 .1015	Average Thickness in.
Mean 30	2002 4078 4078 4078 4078 4078 4078 4078 4078	Center Tension
·	22000 0000 0000 0000 0000 0000 0000 00	Breaking Load lb.
·	ннннннн	Fracture Origin
		Fracture Origin Factor
Mean 14330 SD 2780 High 18600 Low 7300 Range	16600 15600 16600 16600 14300 12300 15000	Breaking Stress psi

INDIVIDUAL TESTING RESULTS, PULL TEMPER HERCULITE II

SAMPLE SIZE 4 x 4 x 1/10 IN., TESTING METHOD 1-1/2 AND 3 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - INSTRON, LOADING RATE 15000 PSI/MIN.

Sample No.	Average Thickness	Center Tension psi	.'verage MDSR-I Reading	Surface Compression psi	Surface To Center Ratio	Breaking Load 1b.	Practure Origin	Practure Origin Pactor	Breaking Stress psi With Membrane Stress	Breaking Stress psi Corrected for Membrane Stress
1	.1009	6975	290.0	54897	7.87	1880	Ir	1	84700	67700
2	1005	7088	291.2	54897 55124	7.78	1794	Īr	1	82200	65800 66000
3	.1008	6075	289.2	54746	7.85	1810 1746	I	1	82500 78900	63100
<u>.</u>	.1012	6975	281.8	53345 55806	7.65 8.07	1798	İ	î	80300	64200
5	.1018	6919 69 7 5	294.8 306.2	57964	8.31	1618	Îr	ī	73300	58600
7	.1011 .0908	6919	296.	56109	8.11	1590	I	1	74000	59200 66200
8	.1008	6975	303.4	57434	8.23	1814	<u>I</u> r	1	82700	
ñ	.1006	6975	292.4	55351 55768	7.94 8.06	1920	<u>I</u> r	ļ	87800 96800	70200 77500
10	.1016	6919	294.6	55768	8.06 7.91	2160 2000	I	1	92600	77500 74100
11	.1000	7031	293.8	55616 55057	7.96	1756	Ŷ	~	82000	65500
12	.0996 .1005	7031 6975	295.6 308.4	55957 58380	7.96 8.37	1780	Ī	1	81600	65300
13 14	.1010	6975	296.2	56071	8.04	1852	<u>I</u> r	1	84000	67200
	.1008	7031	290.4	54973	7.82	1758	Ī	1	80100 9090 0	64100 72700
15 16	1004	7031	290.6	55011 58532	7.82	1976 1876	I	†	83600	66900
17	.1019	6975	309.2 285.8	5053≥ 54102	8.39 7.82	1942	Îr	î	86600	69200
18 10	.1019 .1005	6919 70 8 8	305.4	57812	8.16	1824	î	ī	83700	66900
50	.1037	7594	321.2	60803	8.01	2040	I	1	87900	70300
21	.1008	7031	301.8	57131 57547	8.13	1856	ī	1	84700 102900	67700 82 4 00
55	.1004	7088	304.0	57527	8.12 8.26	2240 1988	I Ir	1	84100	67300
23 24	.1046	6581 6581	287.2 306.8	54367 58077	8.82	1920	Îr	î	79600	63700
25	.1056 .1052	6581	315.6	59743	9.08	2150	Ĩr	ī	90000	72000
26	.1054	6525	321.2	59743 60803	9.32 8.81	2175	I	1	90600	72500
27	.1048	6525 6638	303.8	57509	8.81	2150	Ī	. 1	90500	72400
28	.1043	6638	355.4	6 <u>7277</u>	10.14	1742 1844	Ir I	1	74200 78300	59300 62600
20	. 1044	6638	300.2 340.8	56828 64513	8.56 9.18	1708	Ī	i	80500	64400
30 31	.0091 .0008	7031 6975	288.8	54670	7.84	1602	ī	ī	74500 82600	59600 66100
32	1005	6919	297.0	56222	8.13	1802	Ī	1	82600	66100
33 34	. 1007	6919	289.6	54821	7.92	5050	Ī	1	92200 66800	73800 53400
34	.1014	6863	288.2	54556	7.95	1482 1780	I	1	82700	66200
35 36	.0998 .1009	6948 6919	285.8 293.4	54102 55541	7.79 8.03	1912		ī	87000	69600
37	.1009	6919	302.0	57169	8.26	1932	Ĭ	1	87900	70300
3 8	. 1012	6919	307.2	58153	8.40	1776	I	1	80300	64300
30	.1012	6919	295.2	55881	8.08	1838	Įr	1	83100 68700	66500 54900
40	.1018	6863	282.8 296.4	53534 56109	7.80 8.18	1536 1910	I I	1	85200	68200
41 42	.1018 .1013	6863 6010	294.6	55768	8.06	1760	Ī	î	79400	63500
42	.1015	6919 6863	301.2	57017	8.31	1930	Īr	ī	79400 86700	69400
43 44	.101	6863	318.2	60235	8.78	1704	Ī	1	76700	61300 71300
45 46	.1016	6863	294.8	55806	8.13	2065	Ī_	1	92700 116800	74200 93400
	.0096	7144	296.4	56109	7.85	2500 1950	Ir I	1	81600	65300
47 48	.1052 .1049	7481 7425	313.6 312.0	59364 59062	7.94	1898	ī	î		63900
¥0	.1008	7088	317.2	60046	7.95 8.47	1814	Ī	ī	79900 827 0 0	6 6 500
50	,1008	7088	289.4	54783	7.73	1720	Ī	1	78400	62700
51	.1004	6919	311.2	58910	8.51	1654	I	1	75000	60800
		Mean		Hea n	Mean				Mean	Mean
		6950		56970	8.21				83790	67010
		=							SD 8170	S20 6540
									#1#h	Xi∉h
									High 116800	High 93400
									Low	Low
									66800	53400
									Range 50000	Range 40000
									,,,,,,,,,,	. 5 6 5 7

TABLE 10
INDIVIDUAL TESTING RESULTS, ANNEALED ALUMINO SILICATE
SAMPLE SIZE 6-1/8 x 1/4 IN., TESTING METHOD 3 AND 6 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - INSTRON, LOADING RATE 7000 PSI/MIN.

	222222255555555555555555555555555555555	Sample No:
		Average Thickness in.
Mean 225	2019888720222222222222222222222222222222222	Center Tension psi
•	1340 1510 1510 1510 1510 1510 1510 1510 15	Breaking Load lb.
	нныныныныныныныны	Fracture Origin
		Fracture Origin Factor
Mean 10920 SD 1840 High 14400 Low 7200 Range 7200	9300 10300 12700 12700 12000 12000 11200 11200 12400 12300 11700 11700 11700 12700 12700 12900 12900 12300	Breaking Stress psi

これで、それを変えていてきるとは、一切が出るとのようとのはなるのでははできないと

TABLE 11
INDIVIDUAL TESTING RESULTS, 1/2 TEMPER ALUMINO SILICATE
SAMPLE SIZE 6-1/8 x 6-1/8 x 1/4 IN., TESTING METHOD 3 AND 6 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - INSTRON, LOADING RATE 7000 PSI/MIN.

	222048765452160876550	Sample No.
		Average Thickness In.
Mean 3970	1 + 80 97 6 80 80 80 80 80 80 80 80 80 80 80 80 80	Center Tension psi
	04040000000000000000000000000000000000	Average MDSR-II Reading
Mean 10340	10868 10199 11671 11671 10535 10536 10667 11905 11403 10433 10433 10433 10433 10433 10433 10436 11403	Surface Compression psi
Mean 2.61	21 8 8 8 8 8 9 9 2 2 2 2 2 2 2 2 2 2 2 2 2	Surface To Center Ratio
	25 25 25 25 25 25 25 25 25 25 25 25 25 2	Breaking Load 1b.
	нымыныныныныныны	Fracture Origin
		Fracture Origin Factor
Mean 19350 SD 1830 High 23800	18200 20500 20500 20800 19500 20200 18900 23800 21300 17400 17300 18100 19400 19600 17800	Breaking Stress psi

15300 Range 8500

TABLE 12
INDIVIDUAL TESTING RESULTS, 3/4 TEMPER ALUMINO SILICATE
SAMPLE SIZE 6-1/8 x 6-1/8 x 1/4 IN., TESTING METHOD 3 AND 6 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - INSTRON, LOADING RATE 7000 PSI/MIN.

	27 27 27 27 27 27 27 27 27 27 27 27 27 2	Sample No.
		Average Thickness In.
Mean 5190	54555555555555555555555555555555555555	Center Tension psi
	8777 888 8777 888 8779 648 8779 648 8779 648 8779 648 8779 648 8779 648 8779 648 8779 648 8779 648 8779 648 8779 648 8779 648 8779 648 8779 648 8779 648 8779 648 8779 648 8779 649 649 649 649 649 649 649 649 649 64	Average MDSR-II Reading
Mean 13410	14045 12339 12339 12576 12574 12574 12574 12574 12574 125774 125774 12776	Surface Compression psi
Mean 2.58	00000000000000000000000000000000000000	Surface To Center Ratio
	32000 30000 30000	Breaking Load lb.
	нинойнынниййный ф	Fracture Origin
	296 444444444444444444444444444444444444	Fracture Origin Factor
Mean 24340 SD 1780	23000 25900 25100 25000 25800 26900 24700 24700 23600 23600 253000 253000	Breaking Stress psi

High 28100 Low 20500 Range 7600

TABLE 13
INDIVIDUAL TESTING RESULTS, FULL TEMPER ALUMINO SILICATE
SAMPLE SIZE 6-1/8 x 6-1/8 x 1/4 IN., TESTING METHOD 3 AND 6 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - INSTRON, LOADING RATE 7000 PSI/MIN.

227 47 47 21 Co 87 67 47 21	Sample No.
	Average Thickness in.
77777777777777777777777777777777777777	Center Tension psi
125.66 125.66 125.66 125.66 125.66 125.66 125.66 125.66 125.66	Average MDSR-II Reading
1936 21134 21134 21134 21134 22303 2136 2136 2230 2230 2330 2330 2330 2330 2330 23	Surface Compression
7776 6776 6776 6776 6776 6776 6776 677	Surface To Center Ratio
\$3335 \$335 \$335 \$335 \$355 \$355 \$355 \$35	Breaking Load lb.
ннннннннныййннннннн	Fracture Origin
	Fracture Origin Factor
26600 27800 30800 32800 32800 31700 31700 31700 32100 32100 31700 31700 31700 31700	Breaking Stress psi
	1

TABLE 14
INDIVIDUAL TESTING RESULTS, ANNEALED ALUMINO SILICATE
SAMPLE SIZE 6-1/8 x 6-1/8 x 1/2 IN., TESTING METHOD 3 AND 6 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - INSTRON, LOADING RATE 5000 PSI/MIN.

	222244444444444444444444444444444444444	Sample No:
		Average Thickness in.
Mean 343	00000000000000000000000000000000000000	Center Tension
	610,875,70,767,655,665,655,655,655,655,655,655,655	Breaking Load lb.
	ныныныныныныныны н	Fracture Origin
	Pu pu pu pu pu pu pu pu pu pu pu pu pu pu	Fracture Origin Factor
Mean 10970 SD 1280 High 13700 Low 8700 Range 5000	11700 112300 11500 11500 11500 11500 11500 11500 11500 11700 11700 11700	Breaking Stress psi

TABLE 16
INDIVIDUAL TESTING RESULTS,3/4 TEMPER ALUMINO SILICATE
SAMPLE SIZE 6-1/8 x 6-1/8 x 1/2 IN., TESTING METHOD 3 AND 6 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - INSTRON, LOADING RATE 5000 PSI/MIN.

	20 76 76 77 77 77 77 77 77 77 77 77 77 77	Sample No.
		Average Thickness in.
Mean 5540	00 10 10 10 10 10 10 10 10 10 10 10 10 1	Center Tension psi
	% 26 20 20 00 00 00 00 00 00 00 00 00 00 00	Ave rage MDSR-II Reading
Mean 17500	1906 19730 19730 19730 17906 17906 17906 1705 1705 1705 1705 1705 1705 1705 1705	Surface Compression psi
Mean 3.15	20000000000000000000000000000000000000	Surface To Center Ratio
	1895 1895 1895 1895 1895 1895 1895 1895	Breaking Load lb.
	о . 200 17 ПИННО ДИНЦЕНИННИННИН	Fracture Origin
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Fracture Origin Factor
Mean 25690 SD 3500 High 32800 Low 20800 Range 12000	27600 27700 27700 28800 27700 27700 27700 276000 276000 270800 270800 270800	Breaking Stress psi

TABLE 15
INDIVIDUAL TESTING RESULTS, 1/2 TEMPER ALUMINO SILICATE
SAMPLE SIZE 6-1/8 x 6-1/8 x 1/2 IN., TESTING METHOD 3 AND 6 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - INSTRON, LOADING RATE 5000 PSI/MIN.

·	227674777777	Sample No.
	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Average Thickness in.
Mean 3480	33333333333333333333333333333333333333	Center Tension psi
	\$6.5000000000000000000000000000000000000	Average MDSR-II Reading
Mean 10920	10300 11704 11336 10567 11303 10801 11704 111801 11801 10900 10734 10832 10832	Surface Compression psi
Mean 3.14	0.000000000000000000000000000000000000	Surface To Center Ratio
	10950 11430 14200 14200 14265 13530 12720 112390 11220 11220 114190 116425 11824	Breaking Load lb.
	0.25"T 0 I I I O.80"T 0 I I I I I I I I I I I I I I I I I I	Fracture Origin
	1.92 1.73 1.96	Fracture Origin Factor
Mean 20790 SD 2180 High 25400 Low 18100 Range 7300	19900 18200 25300 18700 23500 18700 22100 22100 23400 21100 21700 218800 218900 18900	Breaking Stress psi

TABLE 16
INDIVIDUAL TESTING RESULTS,3/4 TEMPER ALUMINO SILICATE
SAMPLE SIZE 6-1/8 x 6-1/8 x 1/2 IN., TESTING METHOD 3 AND 6 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - INSTRON, LOADING RATE 5000 PSI/MIN.

	20 46 46 45 45 45 45 45 45 45 45 45 45 45 45 45	Sample
		Average Thickness in.
Mean 5540	00 10 10 10 10 10 10 10 10 10 10 10 10 1	Center Tension psi
	3,48,50,50 3,48,50,50 110,20 110,2	Average MDSR-II Reading
Mean 17500	1906 1906 1906 1906 1906 1906 1906 1906	Surface Compression psi
Mean 3.15	20000000000000000000000000000000000000	Surface To Center Ratio
	1895 1890 1890 1890 1890 1895 1990 1990 1990 1990 1990 1990 1990 19	Breaking Load lb.
	0.20 THE THE THE THE THE THE THE THE THE THE	Fracture Origin
	4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Fracture Origin Factor
Mean 25690 SD 3500 High 32800 Low 20800 Range	27600 27700 27700 28800 27700 27700 27700 27600 27600 27600 27600 27600 27600 27600 27600 27600	Breaking Stress psi

TABLE 17
INDIVIDUAL TESTING RESULTS, FULL TEMPER ALUMINO SILICATE
SAMPLE SIZE 6-1/8 x 6-1/8 x 1/2 IN., TESTING METHOD 3 AND 6 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - BALDWIN, LOADING RATE 5000 PSI/MIN.

	10 04 07 07 07 07 07 07 07 07 07 07 07 07 07	Sample No.
	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Average Thickness in.
Mean 7400	7031 7031 7031 7031 7031 7032 7032 7032 7032 7032 7032 7032 7032	Center Tension psi
	\$\f\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Average MDSR-II Reading
Mean 23080	21803 21803 21703 228542 228542 228177 23077 24177 228317 228311 23839 23809	Surface Compression psi
Mean 3.12	0.000000000000000000000000000000000000	Surface To Center Ratio
	19270 16410 16410 14180 14280 17620 17620 17630 17630 177200 177200 177200 177200 177200 177200 177200 177200 177200 177200 177200 177200 177200 177200 177200	Breaking Load lb.
	ныныныныныныныны я в	Fracture Origin
		Fracture Origin Factor
Mean 30250 SD 3410 High 37500 Low 23300 Range 14200	34300 34300 281000 281000 281000 3281000 3281000 3328000 333311300 333311300 333311300 303000	Breaking Stress psi

TABLE 18
INDIVIDUAL TESTING RESULTS, ANNEALED TYPE I MIL-G-25667
SAMPLE SIZE 6-1/8 x 6-1/8 x 3/16 IN., TESTING METHOD 3 AND 6IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - INSTRON, LOADING RATE 5000 PSI/MIN.

	100 mm t					9 &-7 6	くしょうひょ	Sample No.
	1925 1925 1925 1935 1935 1935 1935 1935 1935 1935 193	いたの	4010	2222	229	2425	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Average Thickness in:
	6870 690 690	ποά	<i>your</i> wine	00-100	ゴルジェ	NOFU	H DOO TO O	Breaking Load 1b.
		0.2"T-8°	0.18"T-10°	0.06"R	0.28"T-10°	0.66"T	O. 42TT	Fracture Origin
39		.93	.92 0 .92	I 1.93	I 1.95	I 1.78	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Fractu Origi Facto
Mean 10020 SD 2310 H1gh 15800 Low 6200 Range 9600	9829389 9829389	702 202	سوفنو سو	20,809		, , , , , , , , , , , , , , , , , , ,		ure Break in Stre
	9100 9700 9800	ŏŏċ	ŠŠŠŠŠŠ ŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠ	8000	000	0000	00000	btress psi.

TABLE 19
INDIVIDUAL TESTING RESULTS, 1/2 TEMPER TYPE I MIL-G-25667
SAMPLE SIZE 6-1/8 x 6-1/8 x 3/16 IN., TESTING METHOD 3 AND 6 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - INSTRON, LOADING RATE 5000 PSI/MIN.

	87905 two			00010V1+WNH	Sample No.
	OF NHUU 1	50 0 0 0 V	0000000 000000000000000000000000000000		Average Thickness in.
	のいのかまかん	がれたのにない	75075WW	mm ttaatua aanataan mmnntntnt rrrrrr	Average DSR Reading
Meun 8680	90 40 60 F	コナるけれると	1000 1000 1000 1000 1000 1000 1000 100	17224 88998887 88075797 8898888 8898888 8898888 8898888 889888888	Surface Compression psi.
6	1093 1269 1269 12217	ひろじりのじゃ	100F-100	1008 1008 1008 1008 1008 1008 1008 1008	Breaking Load 1b.
	ннннн н	00. 200 200 200 200 200 200 200 200 200	0.12"T 0 0.25"T 0 1.25"D 1	нннннннн	Fracture Origin
	ئے سیا سیا سیا سیا ہسا	00 00 00		Pul Pul Pul Pul Pul Pul Pul Pul	Fracture Origin Factor
Mean 17980 SD 3130 H1gh 25300 Low 12300 Range	7750000	1005100 1005100	3 エにりい エ かんり	19590 19100 19600 20700 21100 21100	Breaking Stress psi.

4	ľ	_	
_	-	•	

	ひかいか	70 00 in 4	ውጣ ቲማ ነን ፡- ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡	ロ・コ ようろう にしろ こ	San No.
	യമാനാണ് വേധനായ	രാത്തനേത് കർസ് ഗ്രീ	~1 W W ~~ W W I ~		. i m
	CONTRACTOR.		っつゆもののゴバ		0 5
liean 11160	つまかいに	2008 377 C	ソロにっち かんりゃ	11422 11422 11422 11061 11061 11061 10291 10391	Surfare Compression
	57596	\@@ ~ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ららなして なりごうひ (Vu obu obu obu obu obu obu obu obu obu ob	60095089	Breaking Load lb.
•	•	00		•	! +sj
	36.41 11 0 H	OOHHE BE NO	HHHHHHH H	O.12 FI	racture Origin
	нонны п	다. 8 월	HEMPHOLISH HENDER	оннынны	racture Fracture Origin Origin Factor
12700 Range 12700 Range 12700	**	*** - 96 - 96	وم ومن منو منو منو م		e Fractur e Origin Factor

TABLE 20
INDIVICAL TESTING RESULTS, 3/4 TEMPER TYPE I MIL-G-25667
SAMPLE SIZE 6-1/8 x 6-1/1 x 3/16 IN., TESTING METHOD 3 AND 6 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE INSTRON, LOADING RATE 5000 PSI/MIN.

TABLE 21
INDIVIDUAL TESTING RESULTS, FULL TEMPER TYPE I MIL-G-25667
SAMPLE SIZE 6-1/8 x 3/16 IN., TESTING METHOD 3 AND 6 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - INSTRON, LOADING RATE 5000 PSI/HIN.

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Sample
	11889 650 550 550 550 550 550 550 550 550 550	Thickness
6870	6561 6666 6635 6635 6635 67317 7316 7317 7306 6777 68111	Center Tension
		verage DSR Reading
Hean 15270	170 175 175 175 175 175 175 175 175 175 175	Surface Compression
2.22	000478810011011 0001704 0001001001001 0001704	Surface To Center Matlo
	2310 2310 2310 2310 2310 2310 2310 2310	Breaking Load 1b.
	ныныныныныныныныныныны т	Fracture Origin
		Fracture Origin Factor
Mean 29300 SD 3640 High 36200 Low 21800 Range	2312333322222333322233322233322233322233232	Breaking Stress With Membrane Stress, DSi
26370 9D 3280 146h 15600 13000	19100000000000000000000000000000000000	Breaking Stress Corrected for Reabrane Stress,

ŧ

TABLE 22
INDIVIDUAL TESTING RESULTS, ANNEALED TYPE I MIL-G-25667
SAMPLE SIZE 6-1/8 x 6-1/8 x 1/4 IN., TESTING METHOD 3 AND 6 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - INSTRON, LOADING RATE 6000 PSI/MIN.

222222222222555555552222255	ナひひゃ	Sample No.
2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222	.2445	Average Thickness in.
1229 11229 11214 1268 1268 1270 1270 1270 1150 1150 1150 1150 1150	1232 984 1460 1376	Breaking Load lb.
	0 L.121.0 1 0 L.111.0	Fracture Origin
нанининининининонинин	*	Fracture Origin Origin Factor

Mean 9270 SD 2080 High 12600 Low Low A3700 Range E900

TABLE 23
INDIVIDUAL TESTING RESULTS, 1/2 TEMPER TYPE I MIL-G-25667
SAMPLE SIZE 6-1/8 x 6-1/8 x 1/4 IN., TESTING METHOD 3 AND 6 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - INSTRON, LOADING RATE 6000 PSI/MIN.

	— — — — — — — — — — — — — — — — — — —			Frac Ori
		0.38"T 34.	O-13.7	g Fracture Origin
	2400 2400 2600 2710 2725	2380 2120 2780 2780	22222222222222222222222222222222222222	Breaking Load 1b. 2560 2425
2.45 2.45	* 00 - 10 00 1	いいっちょうい	, www.www.ww.ww.ww.ww.ww.ww.ww.ww.ww.ww.w	
<b>Hean</b> 9800	10580 8979 8714 9629 11524	8636 9599 9617	11976 10369 9376 9298 9713 9713	Surface Compression psi.
	m-04-901	,400moet	151155 1515 1516 1516 1516 1516 1516 15	7- 6-51
\$060 \$40 \$40 \$40 \$40 \$40 \$40 \$40 \$40 \$40 \$4	1988 1988 1988 1988 1988 1988 1988 1988	1784.00 1784.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.00 1786.0	7,669,600,800,000,000,000,000,000,000,000,000	Center Tension psi: 3995 3092
	ww sw s s	שישושושוש בת		IN F IS KY
	NAMMON	11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757 11757	ĭ₽00@~6U#\	Sample No.

TABLE 24
INDIVIDUAL TESTING RESULTS, 3/4 TEMPER TYPE I MIL-G-25667
SAMPLE SIZE 6-1/8 x 6-1/8 x 1/4 IN., TESTING METHOD 3 AND 6 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - INSTRON, LOADING RATE 6000 PSI/MIN.

	\$\times \times \	Sample No.
		Average Thickness in.
Mean 6430	56666666666666666666666666666666666666	Center Tension psi.
	0 20 20 20 20 20 20 20 20 20 20 20 20 20	Average DSR Reading
Mean 15900	150 150 150 150 150 150 150 150 150 150	Surface Compression psi.
Mean 2.47	0.422.42.40.00.00.00.00.00.00.00.00.00.00.00.00.	Surface To Center Ratio
	00000000000000000000000000000000000000	Breaking Load lb.
		Fracture Origin
	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Fracture Origin Factor
Mean 29360 SD 315C High 34300 20200 Range 14100	32000 326700 226700 229900 23000 23000 23000 28000 28000 27100 27100 27700 28300 27700 27700 27700 27700 27700 27700 27700 27700	Breaking Stress psi.

TABLE 25 INDIVIDUAL TESTING RESULTS, FULL TEMPER TYPE I MIL-G-25667 SAMPLE SIZE  $6-1/8 \times 6-1/8 \times 1/4$  IN., TESTING METHOD 3 AND 6 IN. DIAMETER CONCENTRIC RINGS, TESTING MACHINE - INSTRON, LOADING RATE 6000 PSI/MIN.

	222222242444444	Sample No.
		Average Thickness in.
Mean 7160	771487 771487 771487 771467 77167 77167 77167 77167 77167 77167 77167 77167 77167 77167	Center Tension
	22222222222222222222222222222222222222	Average DSR Reading
Mean 17300	19510 17151 17151 171251 17260 17260 17260 17260 17260 17260 17260 17224 17224 17091 17091	Surface Compression psi
Mean 2.42		
	00000000000000000000000000000000000000	Breaking Load lb.
		Fracture Origin
	* * * * * * * * * * * * * * * * * * *	Fracture Origin Factor
Mean 30780 SD 2480 H1gh 35000 Low 24900 Range	224 244 254 267 267 267 267 267 267 267 267 267 267	Breaking Stress psi

TABLE 26
INDIVIDUAL TESTING RESULTS, ANNEALED TYPE I MIL-G-25667
SAMPLE SIZE 6-1/8 x 6-1/8 x 1/2 IN., TESTING METHOD 3 AND 6 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - INSTRON, LOADING RATE 4000 PSI/MIN.

	0007550 0000550 00000000000000000000000	220	16 18 18	, <del>, ,</del> ,	12 11 0 9	&~> 6√1 4	FWNH	Sample No.
		2164 2584 2484	.+842 -+862 -+862	. +820 0184.0		8184 0484 0884 0884		Average Thickness
	\$5050 \$5050 \$5060 \$5060	6590 6460	755 500 600 600 600 600 600 600 600 600 6	5700 0	7 + 2555 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5130 5480 5480	6290 4220 5690	Breaking Load 1b.
	TO I I OO OO OO OO OO OO OO OO OO OO OO O	OF CE	0 H H O	o II o	0r 0r 0.2"T 39° 0	0E 0.36"T 0	D H H H	Fracture Origin
Mean SD High Low Rang	1	1.50				,	ת א ח	Fracture Origin Factor
13090 13090 14000 14200 17 4200	10400 9100 9200	11,000 14,000 1,000	11700 12200	12600	10500 5000 5000	5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500 5,500	13800 12400	Breaking Stress psi
10760 2430 14000 5000 9000	10400 9100 9200	14000	11700 12200	12600	5000 5000	9800	13800 9200 12400	Breaking Stress - psi Excluding Edge Breaks

49
TABLE 27
INDIVIDUAL TESTING RESULTS, 1/2 TEMPER TYPE I MIL-G-25667
SAMPLE SIZE 6-1/8 x 6-1/8 x 1/2 IN., TESTING METHOD 3 AND 6 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - INSTRON, LOADING RATE 4000 PSI/MIN.

	24220224242424 242202242424 2422022422 24222422	Sample No.
	++++++++++++++++++++++++++++++++++++++	Average Thickness in.
Меал 4330	££££££££££££££££££££££££££££££££££££££	Center Tension psi
		Average DSR Reading
Mean 9240	10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10205 10	Surface Compression psi
Mean 2.14	22222222222222222222222222222222222222	Surface To Center Ratio
	13380 14730 14730 14730 14730 14730 11470 113470 113110 11820 113335 10680 14370 12080 12080 12080	Breaking Load lb.
	1.35"T 0 0.65"T 0 0.25"T 1 1 1 1 1 1 1 1 1 1 1 1	Fracture Origin
	22 25 28 25 28 25 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	Fracture Origin Factor
Mean 23420 SD 4310 High 32900 Low 16000 Range 16900	21200 28600 17200 217200 217200 217200 227600 227600 227600 227600 227600 227600 227600 227600 227600	Breaking Stress Stress

TABLE 28
INDIVIDUAL TESTING RESULTS, 3/4 TEMPER TYPE I MIL-G-25667
SAMPLE SIZE 6-1/8 x 6-1/8 x 1/2 IN., TESTING METHOD 3 AND 6 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - BALDWIN, LOADING RATE 5000 PSI/MIN.

	2254522222		- 00 00 00 + 00 P	Sample No.
	0 80 80 89 8V	20000000000000000000000000000000000000		ra kn
Mean 5090	1861276	301618666	77777777777777777777777777777777777777	nt ns
	783	1000	20.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	era DSR adi
<b>Mean</b> 12540	32274528 40547289		13029 13029 12668 12668	rfa res psi
Mean 2.47	V++000000	t tu tu n n o u	2 40 80 0 80 4 4 4 2 40 7 7 7 7 4 6 7	at at
	14100 13920 14130 14130 14130 12780 12780	-1	13550 14020 14020 14890 12890 12890 12100	Lo Lo
	нннннннн	L., 40.0	0. T., C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T. C. T.	Fracture
Mean SD High Low Rang	بر نیز لیا لیا لیا لیا لیا	, • • • • • • • • • • • • • • • • • • •	3. 11. 27. 1 1. 97. 1 1. 97. 1	Fracture Origin Factor
27090 3380 33500 18900 e 14600	30300 29100 24700 31600 26800 32000	00000000000000000000000000000000000000	22232332222222222222222222222222222222	Breaking Stress psi

TABLE 29
INDIVIDUAL TESTING RESULTS, FULL TEMPER TYPE I MIL-G-25667
SAMPLE SIZE 6-1/8 x 6-1/8 x 1/2 IN., TESTING METHOD 3 AND 6 IN. DIAMETER CONCENTRIC RINGS,
TESTING NACHINE - BALDWIN, LOADING RATE 5000 PSI/MIN.

		358785 <del>7</del> 5	11100000F	Sample No.
	29222	000 <b>000</b> 0000		298 P 57
7850	7689 7349 7349	77893 77893	76151 76151 76151 76151 76151 76151 76151 76151 76151 76151	Center Tension psi 7796 7700 7977
	\$87578V	<b>30</b> 200000000000000000000000000000000000		Dura Dura 12.
Mean 18980	19769 19107 20461 16327 17019	19769 18433 17353 19366 17046	17711 15456 17861 18054 19318 19799 19486 19577	Surface Compression psi 17181 18794 18054
と ま ・ 3 ま	004747		00000000000000000000000000000000000000	N + N H B H
	とほれるとう	128888272 1288888	13060 13080 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 14290 1420 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200 1	
	0.14"1 0 1"1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.17"T I	0.13"T 0 0E 1 1 1 1 1 1 1	Fracture Origin
	.96 .96	, pp. pp. pp. pp. pp. pp. pp. pp. pp. pp	1 .50 1 .50 1 .50	Fracture Origin Factor
. Mean 29920 SD 7130 H1gh 40200 12800 12800 Range 27400	00000000000000000000000000000000000000	32700 245000 245000 245000	164 35300 12800 14200 27500	Breaking Stress 5125 24800 26600 27000
15+00 3D 3D 3D 45+0 45+0 45+0 31930 31930	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	12 13 25 30 30 30 30 30 30 30 30 30 30 30 30 30	29900 35300 29900 29900 27500	Breaking Stress - psi Excluding Edge Breaks 24800 26600

TABLE 30
INDIVIDUAL TESTING RESULTS, ANNEALED TYPE I MIL-G-25667
SAMPLE SIZE 6-1/8 x 6-1/8 x 3/4 IN., TESTING METHOD 3 AND 6 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - BALDWIN, LOADING RATE 5000 PSI/MIN.

	221	0 18 14 14	165	;;;t	121	J 90	∞ <b>~</b> 1 o	んも	$\omega_N \mu$	Sample No.
	.7378 .7378	.7378	.7388	.7412	.7352 7352	7355	. 7365 7365	.7362 .7368	.7390 .7412 .7410	Average Thickness in.
	13000 9720	10880	10580	7000	16400 16400	7820 13220	19320	14700 12620	9750 8250 6600	Breaking Load lb.
	0.6"T 0 0.55"T 0	1.38"T 0			0.8"T 0 30		0.58mT 0			Fracture Origin
		1	ν. ν.γ.	n S S	,	50	.80	.50	.50	Fracture Origin Factor
Mean 7410 SD 4020 High 18200 Low 2800 Range 15400	9800 7500	13500	5300 5300	3500 3500	2800 11300	3700 6200	18200 8700	10500	4600 7700 3100	Breaking Stress psi
Mean 9580 SD 4150 High 18200 Low 3500 Range 14700	9800 75 <b>0</b> 0	5500 13500	5300	3500	11300		18200 8700	10500	7700	Breaking Stress - psi Excluding Edge Breaks

TABLE 31
INDIVIDUAL TESTING RESULTS, FULL TEMPER TYPE I MIL-G-25667
SAMPLE SIZE 6-1/8 x 6-1/8 : 3/4 IN., TESTING METHOD 3 AND 6 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - BALDWIN, LOADING RATE 5000 PSI/MIN.

	% <u>%</u> %%%%%%	18765	######################################	700 two P	Semple No.
	*****	££5££	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	.7435 .7435 .7420 .7420 .7420 .7420	Average Thickness
Mean 8190	8190 8354 8247 8183 8183	878475 878475 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87892 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 87802 8780	8211 8328 8154 8175 7877	8152 8120 8120 8360 8083 8196	Center Tension
	1431992	38888	35,55,58	399.55 399.55 412.69 412.69 400.55 400.55 400.55	Average DSR Reading
Mean 23770	・ たしょ としょうしょう	7 JULIU 27 JULIU 14	, E N) E NIU E	24102 24842 24192 24192 24192 23470	Surface Compression
2.90	0000000000	00000	0000000	22.23.25 22.23.26 22.99 23.99 24.99 26.86	Surface To Center Ratio
	825222	1285×	2008 2008 2008	45450 45450 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 456000 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 456000 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 456000 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 45600 456	Breaking Load lb.
	ннннно	00000	1.35"T 0	1.26"I 0 00" I 1 0 I	Fracture Origin
		, , , , , , , , , , , , , , , , , , ,	P. PPP	r r 11,558	Fracture Origin Factor
32060 SD 11190 H18h 45400 L04 9600 Bange	39700 39700 32700 32700 45400	37700 36000	17300 18700 18700	7,600 7,71,000 7,71,000 7,71,000 7,71,000 7,71,000 7,71,000	Breaking Stress
Mean 36930 SD 7640 High 45400 Low 17000 Range	13900 39700 32700 32700 45400	37700 36000	17000 38700	\$4500 \$4500 \$4100 \$4100 \$4100	Breaking Stress - psi Excluding Edge Breaks

( )

TABLE 32
INDIVIDUAL TESTING RESULTS, ANNEALED TYPE I MIL-G-25667
SAMPLE SIZE 12-1/4 x 12-1/4 x 1/2 IN., TESTING METHOD 6 and 12 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - BALDWIN, LOADING RATE 5000 PSI/MIN.

	222222222211111111110987651221 287657621211111111110987651221	Sample No.
		Average Thickness in.
Mean 235	22222222222222222222222222222222222222	Center Tension
	55655555555555555555555555555555555555	Breaking Load lb.
		Fracture Origin
Mean SD High Low Range	, 44444444444444 1444 1444 1444 1444 14	Fracture Origin Factor
10740 1200 13100 8200 e 4900	9500 12500 11700 11700 11700 11700 11900 11900 11900 11900 11900 112600 112600	Breaking Stress psi

TABLE 33
INDIVIDUAL TESTING RESULTS, 1/2 TEMPER TYPE I MIL-G-25667
SAMPLE SIZE 12-1/4 x 12-1/4 x 1/2 IN., TESTING METHOD 6 and 12 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - BALDWIN, LOADING RATE 5000 PSI/MIN.

	2222222151515555267625	Sample No.
		Average Thickness in.
Mean 4480	######################################	Center Tension
	780088807088070880008	Average DSR Reading
Mean 9920	9557 10170 10035 10035 10110 9839 10116 9839 10351 10351 10715 9975 10715 9975 10965 10965 10965 10965	Surface Compression psi
Mean 2.22		Surface To Center Ratio
	10840 112680 112680 11290 112140 112240 10540 10580 10960 11440 11440 11680 11680 10980 11680 11680 11680 11680 11680 11680 11680 11680 11680 11680 11680 11680 11680	Breaking Load lb.
	1.17"n 0.111111111111111111111111111111111111	Fracture Origin
	08 - - - - - - - - - - - - - - - - - - -	Fracture Origin Factor
Mean 23510 SD 2150 High 27700 Low 19300 Range 7900	221000 221000 221000 221000 221000 221000 221000 221000 221000 221000 221000 221000 221000 221000 221000 221000 221000	Breaking Stress psi

TABLE 34
INDIVIDUAL TESTING RESULTS, 3/4 TEMPER TYPE I MIL-G-25667
SAMPLE SIZE 12-1/4 x 1/2 IN., TESTING METHOD 6 and 12 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - BALDWIN, LOADING RATE 5000 PSI/MIN.

	00000000000000000000000000000000000000	Sample No.
	++5++5+++5++++++++++++++++++++++++++++	Average Thickness in.
<b>Mean</b> 5320	00000000000000000000000000000000000000	Center Tension
	22222222222222222222222222222222222222	Average DSR Reading
Mean 12910	12578 12939 12939 12939 12939 12939 12939 12939 12939 12938 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131 13131	Surface Compression psi
<b>Mean</b> 2.42		Surface To Center Ratio
	13000 11580 114060 11580 11590 115520 115520 115520 112830 112960 112830 112960 112960 112960 112960 112960 112960 112960	Breaking Load lb.
	0.2° 12° 20° 11° 20° 11° 20° 11° 11° 11° 11° 11° 11° 11° 11° 11° 1	Fracture Origin
Mean SD High Low Range	4 4 4 2 4	Fracture Origin Factor
27460 2880 34300 32800 e 11500	27+000 22+000 22+000 22+000 22+000 22+000 22+000 22000 22000 22000 225000 225000 225000 23700 23700 23700	Breaking Stress psi

TABLE 35
INDIVIDUAL TESTING RESULTS, FULL TEMPER TYPE I MIL-G-25667
SAMPLE SIZE 12-1/4 x 12-1/4 x 1/2 IN., TESTING METHOD 6 and 12 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - BALDWIN, LOADING RATE 5000 PSI/MIN.

	0,400000000000000000000000000000000000	Sample No.
,	5, + + + + + + + + + + + + + + + + + + +	Average Thickness in.
Mean 7440	77777777777777777777777777777777777777	Center Tension
		Average DSR Reading
Mean 18810	18069 17558 18972 190678 190678 19769 19769 177633 177633 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17763 17	Surface Compression psi
Mean 2.53	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	Surface To Center Ratio
	16340 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000	Breaking Load lb.
	ин де пи пи пи пи пи пи пи пи пи пи пи пи пи	Fracture Origin
	r rr 00,	Fracture Origin Factor
Mean 32610 SD 3350 High 41600	34800 31700 328100 32800 32800 32800 329500 34600 34600 34600 34600 34600	Breaking Stress psi

27000 Range 14600

TABLE 36 INDIVIDUAL TESTING RESULTS, ANNEALED TYPE I MIL-G-25667 SAMPLE SIZE 12-1/\(^1\) x 12-1/\(^1\) x 3/\(^1\) IN., TESTING METHOD 6 and 12 IN. DIAMETER CONCENTRIC RINGS, TESTING MACHINE - BALDWIN, LOADING RATE 5000 PSI/MIN.

	00000000000000000000000000000000000000	Sample No.
		Average Thickness in.
Mean 311	01000000000000000000000000000000000000	Center Tension
		Average DSR Reading
		Surface Compression psi
57		Surface To Center Ratio
	15240 12740 15100 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120 10120	Breaking Load lb.
	0.25"T 0 0.50"T 0 0.50"T 0 1 0.50"T 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Fracture Origin
Mean SD High Low Range	1.96 1.96 1.50 1.50 1.50 1.79	Fracture Origin Factor
10570 2890 14300 4100 e 10200	14300 12900 12900 13700 11600 11600 11600 11600 11600 11600 112900 112900 112900 112900 112900 112900 112900 112900	Breaking Stress psi

TABLE 37
INDIVIDUAL TESTING RESULTS, FULL TEMPER TYPF I MIL-G-25667
SAMPLE SIZE 12-1/4 x 12-1/4 x 3/4 IN., TESTING METHOD 6 AND 12 IN. DIAMETER CONCENTRIC RINGS,
TESTING MACHINE - BALDWIN, LOADING RATE 5000 PSI/MIN.

	10 W4 50 P8 60 12 P4 F2 P2 P8 60 10 84 50 P8 P8 P8 P8 P8 P8 P8 P8 P8 P8 P8 P8 P8	Sample No.
		Average Thickness in.
Mean 8100	888888888777777888888888777688888888877668977759869897778888888888	Center Tension
	00000000000000000000000000000000000000	Average DSR Reading
меап 23370	2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000	Surface Compression
≥.88	20173688720088720088757754120 201775678779887207754120 2017878887888788887888878888788887888878	Surface To Center Ratio
	31300 31300 31300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35300 35	Breaking Load lb.
	23"60° H 111111111111111111111111111111111111	Fracture Origin
	, 6 6 6 6	Fracture Origin Factor
Mean 35990 SD 3190 High 40900 Low 28900 Range 12000	28900 377000 377000 357000 357000 357000 357000 357000 357000 357000	Breaking Stress psi

TABLE 38
INDIVIDUAL TESTING RESULTS, ANNEALED TYPE I MIL-G-25667
SAMPLE SIZE 3 x 13 x 3/16 IN., TESTING METHOD - BEAM LOADING - 4 AND 12 IN. SPAN.
TESTING MACHINE - INSTRON, LOADING RATE 4000 PSI/MIN.

	1 γ ω+ 5/9 C α φο 1 α α α α α α α α α α α α α α α α α α	Sample No.
		Average Thickness in.
		Average Width
Mean 147	11111111111111111111111111111111111111	Center Tension psi
- -		Breaking Load lb.
59	1.50" IC IC IC IC IC IC IC IC IC IC IC IC IC	Fracture Origin
	1.63 1.97 1.97 1.98 1.98 1.98 1.98	Fracture Origin Factor
Mean Low 10940 5200 SD Range 2610 10400 H1gh 15600	11900 6800 7000 6200 11500 12000 12000 12700 12300 12400 12400 12400 12400 13800 13800 13900 13900 13900 13900 13900 13500	Breaking Stress psi

SAMPLE	
SAMPLE SIZE 3 x 13 x 3/16 IN., TESTING METHOD - BLAM LOADING - 4 AND 12 IN. SPAN, TESTING MACHINE - INSTRON, LOADING RATE 4000 PSI/MIN.	INDIVIDUAL RESILEG ADSCRIS, FIX REMEDA LERE E SILE-6-0007

			2 2 3	2 2 2 1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ַר כ ג כ	17	ν. Ή'	א ה בין נ	ر د	12 T	2 5	٥	<b>3</b> 0~	ע נ	J	יים	م قد	۰ ب	و و	No.	Sanole
		,	wu i	1033	. 103B	1041	. 1053	1954	. 1958	. 1057	ושפו הסיו	1014	. 1060	1061	. 1910	.1952	1056	1050	1022	1064	3	Average Thickness
			2.09 80.09		_		-					•			•		•				in.	Average Width
	030	Mean	;;;; 600 500 500 500 500 500 500 500 500 500	4011 3968	4034	\$000 \$000 \$000	302	ယ လ လ	# 0 # 0 # 0 # 0 # 0 # 0 # 0 #	4111	ες Σου Σου Σου Σου Σου Σου Σου Σου Σου Σου	4017 710#	<b>4077</b>	500 500 500 500	3928	1000	3064	4087		, 4242	ps i	Center Tension
•			171.2 130.8	179.0	172.8	130.0	170.2	160.8	150.0	140.2	154.8	750 750 750 750	156.5	141.2	158.8	161.2	139.0	146.2	175.2	344.6	Reading	Average DSR
60	9370	Mean	10306 8410	10772	10396	7823	10246	9674	9569	8979	9316	9629 9072	9418	8500	9554	2882	8365	1088	10547	8702	p <b>s1</b>	Surface Compression
	بر د د	Mean	N N 000	2.19			•			•			•				•			<b>,</b>		Surface To Center
			183.2 253.5		•		•			•			•		223.4	192.4	191.6	201.4	216.5	176.0	16.	Breaking Load
			0.70" oc	IE	Sic	ic	I E	ic.	I E	IE	ic	i i i	ic	ie	10	0.21" OE	•	IE	IE	IE	Origin	Fraction
			1 .83	<b></b>	ىر ب	ر سر	مــو مــ	ا فسوا	<b></b>	سر ہ	۱٦	<b> </b> -	مـو آه	ا مو	سو م	.95	_	۽ منؤ			Fac tor	Praction Origin
	21570 2080 2080 118h 25800 18000 18000	Mean	19 <b>1</b> 00	23600	23900	21500	200 200 200	22700	00878 00878	22000	23800	19500	18000	21000	24600	19200	20200	21300	22600	18300	p81	Breaking Stress

2750 High 29700 Low 18600 Range 11100

TABLE 40
INDIVIDUAL TESTING RESULTS, 3/4 TEMPER TYPE I MIL-G-25667
SAMPLE SIZE 3 x 13 x 3/16 IN., TESTING METHOD + BEAM LOADING - 4 AND 12 IN. SPAN,
TESTING METHOD + BEAM LOADING - 4 AND 12 IN. SPAN,

Mean 23750 SD				<b>Mea</b> n 2.19	Mean 11700		Mean 5320			
26600	ا سو	H	253.5	2.55	13601	226.0	5308	2.080	150	ν. υ υ
עת	j-4 j.	ĭ i	Sc	່ນ <b>c</b>		งรู		_	ב ב	N F
0 N	- <b>-</b>	10	n  -		. ~	70.	20 20 20 20 20 20 20 20 20 20 20 20 20 2		. 1082	ง   
29700	سو ه	ic	88	'n		8	5307		3	21
25900	۰,	ic	¥3.	'n		8	5289	•	2	<b>N</b> 0
23200	<b>,</b>	IC	.01	<b>+</b>	_8.	12.	<b>5</b> 836		5	)   
21500	<b>~</b>	IB	ຸດ	ໍນໍ	_1	95	5036		2	) 30-
22200	) مىر	H I	9	0	_	38	700 700 700 700 700 700 700 700 700 700		2 8	17
25100	و مس	T 1-	₩   = (	٠,	_	کرد	7040		2 6	ない
2000	J	<b>1</b>	کرد	ڼد	_	• V	7 (A)	-	28	יו דר
20000	<b>4</b> p		5.5	ښ۰	. ^	30.	5410	-	2	بر . ند:
22800	. ب	H	11.	ច	. ^	15.	5152	•	2	12
18600	• • •	io	76.	•	. ~	55	5210	•	S.	11
25800	مو	H	**	'n	•	ű	5487	•	9	o L
20700	<b>,</b>	J.	3	Ņ	$\overline{}$	2	5432	•	S J	၁
20300	<b>ب</b>	: <b>:</b>	8	•	~	80.	5510	•	S,	ဘ
20800		H	8	سُ		S'	5276	•	S.	7
23900	.92	0.32" OF	7.	ัง	_	8	250 250 250 250 250 250 250 250 250 250	•	Š	ית
21900	ب	IC	8	•	$\boldsymbol{-}$	8	5573 75		Š	л
27000	<u>,</u>	E	, 20		A1.	87	5276		Š.	<b>ar</b> t
27600	<b></b>	IC	<u>ဗ</u>		_1	3	2440		3,	נע
24100	مبو	IC	8	œ	_	<u>ي</u>	5402		S J	N
20400	.95	0.21" 00	ü	ģ	<b>n</b> )	71.	5340	•	ည	<b>ب</b>
Breaking Stress psi	Fraction Origin Factor	Praction Origin	Breaking Load lb.	Surface To Center Ratio	Surface Compression psi	Average DSR Reading	Center Tension psi	Average Width in.	Average Thickness in.	Semple

TABLE 41
INDIVIDUAL TESTING RESULTS, FULL TEMPER TYPE I MIL-G-25667
SUMPLE SIZE 3 x 13 x 3/16 IN., TESTING METHOD - BEAM LOADING - 4 AND 12 IN. SPAN,
TESTING MACHINE - INSTRON, LOADING RATE 4000 PSI/MIN.

	, i.e.	3 22	<u>ه</u>	<b></b>	ָם ה	<b>1</b> %	15:		ដ	11	15	ວສ	7	ות	י ת	لین حد ۱	N	<b>بــ</b> و	Sample Mo.
	1074	.1078	. 1070	1067	. 1070	.2005	. NO.	, 1004 1004	. 1075	. 1978	1074	1074	.1973	1072	1051	. 1077	.1073	. 1980	Average Thickness in.
	2.000	2 00 00 00 00			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•			•		• •	20. 00. 00. 00.	•			0 N		_	Average Width in.
<b>Mean</b> 7700	7728	7670	7317	7877	4087 440 7074	7866	715	7650	7670 7630	7649	7593	4 8 9	7840	7604	750	7904 7904	7687	7723	Center Tension
	278.5	268.	208.2	286.2	284.0	200 200 200 200 200	251.2	291.0	291.8	301.5	274.8	28 5 5 5	300.0	322.0	288.2	075. 0	284.0	275.6	Average DSR Reading
Mean 17160	16760	16152	17940	17227	17091	15060	15120	17633	17558	18144	16534	17181	18054	19378	17347	1027	17091	16586	Surface Compression psi
ນ <b>ຮ</b> ວ ຂອ	2.16	v 2. 10	2.44	-		فٰە			_	-	_		_			_	'n	•	Surface To Center Ratio
	253.5	293.5	261.5	274.0	257.0	303.0	238.5	240.0	296	264.0	276.0	210.0	251.5	266.0	251.5	250		251.0	Breaking Load 1b.
	H to b		IE	IC	1 1 1	II	r:	T 1-	0.34" OE		ic	110	0.70" 08	ľ	IE	T		0.07" OE	Fraction Origin
	<b>J</b>	مـو مـ	۳	μ,	<b></b> 9	بـر د	امو		, <u>92</u>	<b>-</b>	. س	بر سر	, 83	<b>,</b>	ا سو	<b></b>	۔۔	· •	Fraction Origin Factor
Meen 27040 SD 2190 High 31200 Low 21500 Range 9700	26200	30200	26900	28600	200	30400	24000	N 5000	28000	27200	28500	25200	21500	27600	26600	27300	2000	25700	Breaking Stress psi

TABLE 42
INDIVIDUAL TESTING RESULTS, ANNEALED TYPE I MIL-G-25667
SAMPLE SIZE 3 x 13 x 1/4 IN., TESTING METHOD - BEAM LOADING - 4 AND 12 IN. SPAN,
TESTING MACHINE - INSTRON, LOADING RATE 4000 PSI/MIN.

	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	132422	0 0 0 0 0 0 0 .	±ω ν μ	Sample No.
	440000044	10 00 00 00 00 00 00 00 00 00 00 00 00 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.# &&&&&	5555	Average Thickness in.
						Average Width in.
Mean 142		113 132 132 117	821 821 821 831 831 831	100 128 134 100	170 183 179	Center Tension
	23349	0000	2623588	8887 #55	138.4 154.2 157.1	Breaking Load lb.
	ie ic ic ie 0.37" oe	20.44.00 00.46.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	HHHHHH	0.20" 0C 0.11" 0C 0.62" 0C	S I I I	Fracture Origin
	1.91 1.91	888 88. 1111	بر بر بر بر بر بر	1 .95 1.97 1.84	<b></b>	Fracture Origin Factor
Mean 9050 SD 1920 High 12100 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 1920 Fean 19	10800 9800 10800 10800	11100 9100 11800 10200	7400 10800 9300 7600	10,000 0000 0000 0000 0000 0000	9300 10400 8300	Breaking Stress psi

	NANN	2098	176	S.	<b>55</b> 2	ညီ ၁၀၈	<b>70</b> 5	チレルト	Sample No.
	2000 2000 2000 2000 2000 2000 2000 200	سنين 0000		35	نىزىنى ئە <b>كە</b>	نيانيان 2000	بنينير 6000	2000 2000	Average Thickness
	00000 00000					7			Average Width in.
PC30	######################################	13 4 2004 13 983	2084 2084 414	3930	4749 4749	1994 1079	13887 13887	4015 3972 3813	Center Tension psi.
	1515	. W. S	Š.	SS	385	727	375	on co	Average DSE heading
9380	91489 91489 9449 9449 9449	0000 0000 0000 0000	8034 8034	9794	9791 9791	10321	10471 10757	10170 9824 9825 98316	Surface Compression psi.
2.5 2.5 2.5 2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3								0020 0415 0775	Surface To Center Matio
	NNU NU 88494 1000	1666 1666 1667 1667 1667 1667 1667 1667	200 200 200 200 200 200 200 200 200 200	232 2980	215 215 217	ա Խա Ծ Ծ Ծ	000£	<b>~ N N N</b> N O O O O O O O O O O O O O O O	Breaking Load 1b.
		0.68		0.38"				0.18	Fracture Origin
				iřr	កធ្ល	## <b>a</b>		XXXX	
		. 63	1.81	 8	pus (pus (pus		من (سو من	*	racture Origin Factor
	25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	900 16900	19100	0000 12100 12100 12100	250 200 200 200 200 200 200 200 200 200	2000 21200 21100	237600 237600	Breaking Stress psi-

c	`
V	1

20350 20350					Неал 2.27	Mean 11860		Mean 5230			
10000000000000000000000000000000000000	. r. r. r. r. r. r. r. r. r. r. r. r. r.		0.74"	#\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$		12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006		60 8 80 0 TH THE C 80 C 80 C 80 C 80 C 80 C 80 C 80 C 8			88888888888888888888888888888888888888
17900 17900 17900 17900 17900 17900	1199 784822	H10000HH	34 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	700t070t		11488957 11488957 11488957	8802HVHA	70000 80 80 10000 80 80 10000 80 80 1000 80 80 80 1000 80 80 80		n tenninin ten	2000 FW N H
Breaking Stress psi	Fracture Origin Factor	Fracture Origin		Breaking Load lb.	Surface To Center Retio	Surface Compression	Average DSR Reading	Center Tension	lverage	Average Thickness	Cample No.

INDIVIDUAL TESTING RESULTS, 3/4 TEMPLR TYPE I MIL-G-25667
SAMPLE SIZE 3 x 13 1/4 IN., TESTING METHOD - BEAM LOADING - 4 AND 12 IN. SPAH,
TESTING METHOD - BEAM LOADING - 4 AND 12 IN. SPAH,

ı

TABLE 45
THE TESTING RESULTS, FULL TEMPER TYPE I MIL-G-25667
B x 1/4 IN., TESTING METHOD - BEAM LOADING - 4 AND 12 IN. SPAN,
IND MACHINE - INSTRON, LOADING RATE 8000 PSI/MIN.

	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	Sample
		Avarage Thickness
	1000080808080808080808080	Average Width
Hean 7350	77777777777777777777777777777777777777	Center
		Average DSR
Mean 17210	16218 17603 16218 16718 16718 17272 15316 16929 17049 17121 17121 17121 17121 17121 17121 17121 17122	Surface Compression
ye 2.32 2.32		Surface To Center
	1778 87777 779 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Breaking Load
	0.52 0.52 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Fracture
	111. 1	Fracture Origin
23700 SD SD 2800 H1gh 28100 18400	22200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 222200 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2200 220 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 2	Breaking Stress
	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	and the

TABLE 46
INDIVIDUAL TESTING RESULTS, ANNEALED TYPE I MIL-G-25657
SAMPLE SIZE 3 x 13 x 1/2 IN.. TESTING METHOD - BEAM LOADING - L :

222222222544444444	Sample No.
00000000000000000000000000000000000000	Average Thickness
00000000000000000000000000000000000000	Average Width
- 1575 - 500 - 4017 888 9895 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 -	Center Tension
700 803 684 767 746 7799 687 770 800 778 323 780 778 681 737 710 661 891 891 891 891 891 891 891 89	Breaking Load lb.
	RATE 5000 Fracture Origin
11111.98 11111.98	PSI/MIN.  Fracture  Origin  Factor
11400 13200 11200 12600 12300 11200 12300 12300 12800 12800 12700 11500 116000 15000 15000 15000 13000	Breaking Stress psi

67

Mean 12410 SD 2260 High 16400 Low 5400 Range 11000

Mean 256

TABLE 47
INDIVIDUAL TESTING RESULTS, 1/2 TEMPER TYPE I MIL-G-25667
SWIPLL SIZE 3 x 13 x 1/2 IN., TESTING METHOD - BEAM LOADING - 4 AND 12 IN. SPAN,
TESTING MACHINE - INSTRON, LOADING RATE 5000 PSI/MIN.

	22022255555555555555555555555555555555	Sample No.
	**************************************	Average Thickness
	\$69999999000000000000000000000000000000	Average Width
<b>Hean</b> 4360	######################################	Center Tension
	1187725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 27725 2772	Average DSR Reading
Mean 10570	110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 110867 11	Surface Compression
Mean 2.42	よるなのはないできょうできょうできません できょうできょうできょうできょうできょう できょうできょうできょうできょう	Surface To Center Ratio
	12286 12286 12286 12286 12286 12286 12286 12286 12286 12286 12286 12286 12286 12286 12286 12286 12286 12286 12286 12286 12286	Breaking Load lb.
	Log Cica Cica Cica Cica Cica Cica Cica Cica	Fracture Origin
	4, 44444444444444444444444444444444444	Fracture Origin Factor
<b>Mean</b> 21470	**************************************	Breaking Stress

والمراجعة والمراجعة المراجعة والمراجعة والمراجعة والمراجعة المراجعة والمراجعة INDIVIDUAL TASTING RABBLE 48

SAMPLE SIZE 3 x 10 x 1/2 IN., TESTING MATHOD - BEAM LOADING - 4 AND 12 IN. SPAN,

TESTING MACHINA - INSTHON, LOADING RATE 5000 PSI/MIM.

	288722225555555555555555555555555555555	Sample I
		iverage Thickness in
	00000000000000000000000000000000000000	Average Width
Mean 5290	######################################	Center Tension
		Average DSA (
13080	1120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 1200000 120000 120000 120000 120000 120000 120000 120000 120000 1200000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000	Surface Compression
Mean 2.47		Surface To Center Ratio
	· · · · · · · · · · · · · · · · · · ·	Breaking Load lb.
	HICH DINING COCOCO	Fracture Origin
	444444 4444 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Fracture Origin Factor
#### 24590 SD 3230 H1gh 34000 18100 18100 15900	20000000000000000000000000000000000000	Breaking Stress psi

TABLE 49
INDIVIDUAL TESTING RESULTS, PULL TEMPER TYPE I MIL-G-25667
SAMPLE SIZE 3 x 13 x 1/2 IN., TESTING METHOD - BEAM LOADING - 4 AND 12 IN. SPAN,
TESTING MACHINE - INSTRON, LOADING RATE 5000 PSI/MIN.

		23 <b>34</b>	22 23	ይያ	19	; <u>7</u> ?	32	FC	12	- T	<b>.</b> οα	<b>,</b> 7 (	<u>ب</u>	, <b>F</b> *	<i>س</i> می	<b>–</b>	Sample No.
		.4888 8884.		.+925 7564.	. 4930	8684	8884	. +894. 2484.	.4930	- 1933 1933 1933 1933 1933 1933 1933 1933		4910	.4915	0464	, 1915 164.	.4890	Average Thickness
		3.00 2.98	2.98 2.98	2.97 2.97	2.97 2.98	2.97	2 2. 97	3.96 2.96	3.00	2.2.5 97	2.97 97	2.99	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.97	, 88	2.97	Average Width
	<b>He</b> an 864-0	8652 8641	8609 8750	8437 8552	86 <i>27</i> 8637	262	200 200 200 200 200 200 200 200 200 200	8633 8633	8637 8637	8903 2003	90 42 20 20 20 20 20 20 20 20 20 20 20 20 20	8492 200	84.84 8671	8627	8 5 5 8 8 5 5 8 8 6 8	8582	Center Tension
		336.5	8.18c 3.94c	337.0 342.5		364.5	372.2	367.2	349.5	7.7.2 1.21 1.21	0.0 0.0	324.0	374.2	359.0	363.2	389.5	Average DSR Reading
	<b>Mean</b> 21430	23121 20251	20852 22977	20281 20612	20#31 20810	21936	22399 2162	22098 22267	21033	21135	20505 20160	19498	2 <b>25</b> 19	21605	21857 19107	23440	Surface Compression
70	7.48	2.67	2.63 2.63	; ; ;	2.41	2.55	2.61	2.55 5.55	»: F	)	2.28 2.27	2:30	2.60	2.50	200	2.73	Surface To Center Batlo
		20 <del>1</del> 0 0	2150 1772	22 <del>10</del> 0191						1778			1720	16%	1460 1460	1950	Breaking Load
		0.25* OC IE		Ic S		0.21" 00	0.25" OE		0.18" 00	7 H	0.09" OE		7 H	H	Į.	Ιŝ	Fracture Origin
		1.9	<b></b>	<b></b>	۲.	.95		سو سو	`' '&	; منو م	1.98	<b>,</b>	سو د	۱,	سو بــ	ب	Fracture Origin Factor
3240 High 37300 Low 24200 Range 13100	30860	32000 34700	36000 29200	27300 37300	31 <b>90</b> 0 28200	30200	11. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	35500	30700	29500 29500	3 <b>27</b> 00	29300	28700	28100	XX 200 24 24 24 24 24 24 24 24 24 24 24 24 24	33000	Breaking Stress

TABLE 50

	7,20,000,000,000,000,000,000,000,000,000	Sample No.	SAMPLE
		Average Thickness in.	INDIVIDUAI SIZE 3 x 13 x TESTING
	00000000000000000000000000000000000000	Average Width in.	I TESTING 3/4 IN., MACHINE
Mean 171	170 170 170 170 170 170 170 170 170	Center Tension psi	RESULTS, TESTING M INSTRON,
	1060 801 801 968 1498 12744 1062 800 1038 1258 1038 1038 1141 1510 859 1236	Breaking Load . lb.	ANNEALED ( METHOD - B)
	0.42 0.08 0.08 0.72 0.72 0.91 1.02	ולי ו	TYPE I MI BEAM LOADI RATE 5000
		racture <u>Origin</u>	L-G-256 NG - 4 PSI/MI
	1	Fracture Origin Factor	67 AND 12 IN. N.
Mean 6670 SD 3410 High 20200 Low 3800 Range 16400	\$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000	Breaking Stress psi	SPAN,

TABLE 51
INDIVIDUAL TESTING RESULTS, FULL TEMPER TYPE I MIL-G-25667
SAMPLE SIZE 3 x 13 x 3/4 IN., TESTING METHOD - BEAM LOADING - 4 AND 12 IN. SPAN,
TESTING MACHINE - INSTRON, LOADING RATE 8000 PSI/MIN.

%% %20 20 20 20 20 20 20 20 20 20 20 20 20 2	Sample No.
	Average Thickness in.
0 n 7/3 80 2/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3	Center Tension
52555555555555555555555555555555555555	Average DSR Reading
2# 122222222222222222222222222222222222	Surface Compression psi
28 400 200 600 600 600 600 600 600 600 600 6	Surface To Center Ratio
57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000 57000	Breaking Load lb.
0.38"	•
	Fracture Origin
188 88 + + + + + + + + + + + + + + + + +	Fracture Origin Factor
327000 327000 327000 327000 327000 327000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 32700000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 3270000 32700000 3270000 32700000 3270000 3270000 3270000 3270000 32700000 32700000 32700000000 3270000000000	Breaking Stress psi