Feb. 17	Announcements	Feb. 17	5.3 The Poisson Process
For Monday, read Section 5.4.1 HW#5 will be due next Friday. It mus The midterm will be??? (Wedness Notes: HW#5 is somewhat shorter than relectronically.	sday evening?)	 Counts of events ir For any 0 ≤ s < t, parameter λt. Technically, we show 	special type of counting process: n disjoint time intervals are independent. the number of events in $(s, s+t]$ is Poisson with buld also say $N(0)=0$. sson-based" definition of the Poisson process. It's on Wednesday.
Feb. 17 5	5.3 The Poisson Process	Feb. 17	5.3 The Poisson Process
A Poisson process is a special type of counting process (equivalent re-definition): • Counts of events in disjoint time intervals are independent. • $P[N(s+h)-N(s)=1]=\lambda h+o(h)$ as $h\to 0$. • $P[N(s+h)-N(s)\geq 2]=o(h)$ as $h\to 0$. • Technically, we should also say $N(0)=0$. Notes: This is the "first-principles" definition of the Poisson process. To understand it, we had to define the little-o notation: If $f(x)=o(x)$ as $x\to 0$, this means that $f(x)/x-0$ as $x\to 0$. Intuitively, $f(x)=o(x)$ as $x\to 0$ means that $f(x)$ goes to zero faster than x does. An important special case of this notation is this: If $f(x)=o(1)$ as $x\to 0$, then $f(x)\to 0$ as $x\to 0$.		Why are the two definitions equivalent? • How can we check that the first definition ("Poisson") implies the second ("first principles")? • How about the other way around (i.e., first principles implies Poisson)? Notes: The first proof may be done directly (using "brute force") and uses the fact that $e^{-\lambda h} = 1 - \lambda h + o(h)$ as $h \to 0$. The second proof requires some type of moment-generating function approach (the book uses the Laplace transform, which is similar to the MGF). However, it is possible to understand the intuition by dividing a time interval of length t into t equal subintervals, then studying what happens as t goes to infinity. Basically, the distribution of the number of events can be shown to be roughly binomial with parameters $(t, \lambda t/k)$, and therefore the Poisson approximation to the binomial (with parameter $t\lambda$) gets more and more accurate as $t t$ $t \to t$.	