Modeling the Rehearsal Effect of Humans

Agarwal Mohit and Stevens Christopher

Introduction

- Why do humans forget?
 - Hermann Ebbinghaus
- Capacity of Neural Networks
 - Fixed or variable?
 - Kernel Density Functions

- Do artificial neural networks "forget" similar to humans?
 - Forgetting/Learning curve
 - Rehearsal effects

- Neural-Network based model
 - Goal: Learn the word associations with its feature vector
 - Recurrent model (based on LSTMs)
 - Implemented in Tensorflow

Model

- 16 LSTM units
- Single layer
- Word embedding
- Gradient descent

Data

- Word2vec
- Training data: feature vector
- Training label: word spelling
- Fixed length words (8)
- Size: 7000 words

Experiments and Results

Experiment 1: Number of iterations required to learn words in a serial fashion

	Word1	Word2	Word3	Word5
Mean	790.28	251.81	192.54	156.27
Std	301.27	123.33	105.87	65.43

Experiment 2: Accuracy of i words after training of i-th word

	Word1	Word2	Word5	Word10	Word20	Word50	Word100
Accuracy	1	0.5980	0.3437	0.2462	0.1803	0.1389	0.1198

Experiment 3: Learning behavior

Experiment 4: Forgetting behavior

Discussion

- Alike humans
 - Learning with association (Exp1)
 - S-curve in learning (Exp3)
 - Forgetting and Rehearsal (Exp2,4)
- What is forgetting?
 - Fidelity loss, not loss of information
 - Shifting weights and thresholds
- Artificial Neural Networks
 - Very quick forgetting behavior
 - Fast retraining through rehearsal
- Future Directions:
 - Short-Term Memory Models
 - Plasticity?
 - Sequential vs Intermixed training
 - Perfect recall training