Весь стандарт **ГОСТ Р 34.11-2012** написан в алгоритмической форме и ориентирован на конечных разработчиков. Однако **переход от описания на уровне шагов к логико-математическому представлению**, которое типично для криптографических примитивов, позволяет:

- оценить криптостойкость хеш-функции Стрибог,
- выявить уязвимости или сильные стороны алгоритма.

AES (англ. *Advanced Encryption Standard*; также *Rijndael*, [rɛinda:l] — *рейндал*) — симметричный алгоритм блочного шифрования (размер блока 128 бит, ключ 128/192/256 бит), принятый в качестве стандарта шифрования правительством США по результатам конкурса AES.

Представление в **AES-подобной форме** даёт следующие преимущества:

- возможность применения известных криптоаналитических методов, таких как дифференциальный и линейный криптоанализ;
- **возможность быстрой и эффективной реализации** с использованием таблиц и готовых техник;

Алгоритм **g_N(h, m)** внутри GOST можно переписать в **AES-подобной форме**, потому что:

- о собственный **S-бокс** → аналог AES SubBytes
- \circ преобразование **P** \rightarrow аналог ShiftRows (только перестановка другая)
- \circ линейное преобразование L \rightarrow аналог MixColumns
- о раундовые **XOR с ключом** → аналог AddRoundKey

Алгоритм хеширования состоит из трёх стадий:

- 1. Инициализация
- 2. Итерации
- 3. Завершение

Этапы алгоритма

1. Инициализация:

- \circ h = IV
 - IV = 0×00...00 для 512 бит
 - IV = 0x01...01 для 256 бит
- о N = 0 счётчик длины
- \circ $\Sigma = 0$ сумма

2. Итерации:

М разбивается на блоки по 512 бит (m_1 , m_2 , ..., m)

для каждого блока применяется функция сжатия g_N(h, m)

3. Окончательная обработка:

- 4. Выходной хеш:
- Stribog-512: H = h
- Stribog-256: H = MSB(256)(h) только старшие 256 бит

Стандарт определяет три основные трансформации, применяемые внутри функции $g_N(h, m)$:

- 1. **S (SubBytes)** байтовая подстановка (аналог AES S-box)
- 2. **P (Permutation)** перестановка байтов
- 3. L (Linear transformation) линейная трансформация (аналог MixColumns)

Функция сжатия $g_N(h, m)$:

$$gN(h,m)=E(L \cdot P \cdot S(h \cdot N),m) \cdot h \cdot m$$

- Е блочный шифр, состоящий из 12 раундов и финального шага.
- S, P, L применяются в каждом раунде, аналогично структуре AES.
- Внутреннее состояние представляется в виде **матрицы 8×8 байт** (в отличие от 4×4 в AES).

Блочный шифр Е

Функция E(K, m) — это блочный шифр, который используется в компрессионной функции $g_N(h, m)$. Он состоит из 12 раундов и одного завершающего шага:

$$\begin{split} &E(K,m) = X[K13] \circ (L \circ P \circ S \circ X[K12]) \circ ... \circ (L \circ P \circ S \circ X[K1]) \\ &E(K,m) = X[K_{13}] \circ (L \circ P \circ S \circ X[K_{12}]) \circ ... \\ ≡ (L \circ P \circ S \circ X[K_{1}]) \ E(K,m) = X[K13] \circ (L \circ P \circ S \circ X[K12]) \circ ... \circ (L \circ P \circ S \circ X[K1]) \end{split}$$

Где:

- X[K] XOR с раундовым ключом (AddRoundKey)
- К₁...К₁₃ раундовые ключи

- К₁ = К исходный ключ
- $K_i = L \circ P \circ S(K_{i-1} \oplus C_{i-1})$ процедура генерации ключей

Константы Сі — заранее определённые 512-битные значения

S-преобразование выполняется по аналогии с AES: каждая ячейка байтовой матрицы заменяется по таблице. S-бокс отличается от AES.

Р-перестановка в Стрибоге — это не сдвиг строк, как в AES, а выполняется **транспонирование матрицы** по фиксированной перестановке т.

L- линейное преобразование, аналогичное MixColumns в AES. Оно делается по формуле:

$$B=A \cdot M$$

Где:

- А входной вектор (матрица состояния)
- М фиксированная матрица 64×64 над полем **F**₂

Выполняется так:

1. Разбиваем сообщение на 64-битные вектора.

- 2. Для каждого применяем линейное преобразование 1, заданное матрицей.
- 3. Склеиваем результат обратно в байтовый вектор.

Стрибог использует **внутренний блочный шифр**, вдохновлённый **AES**, но у этих алгоритмов **разное представление данных в блоке**:

- **AES** обрабатывает данные в **матрице 4×4 байта** (128 бит), где байты идут **построчно**.
- Стрибог работает с блоками 512 бит (64 байта), но они хранятся и обрабатываются в другом порядке, часто в обратном (байты и биты читаются справа налево или снизу вверх, в зависимости от реализации).

Поскольку представления состояний в AES и Стрибог различны, сначала необходимо **обратить порядок битов** (реверсировать сообщение):

- 1. **R** операция, которая обращает порядок битов входного сообщения.
 - 1. Свойство: $R^{-1} \circ R(x) = x$
- 2. Тогда компрессионная функция g_N(h, m) в AES-подобной форме выполняется в 3 шага:
 - 1. Обращение входных битов: R(m)
 - 2. **AES-**подобные преобразования: S, P, L, X[K]
 - 3. Обратное обращение: R(output)

Чтобы перейти к AES-подобной форме, все основные преобразования (S, P, L, X[K]) адаптируются следующим образом:

S (SubBytes)

- Применяется преобразование: $F'(x)=R\circ F\circ R(x)F'(x)=R\circ F\circ R(x)$ где F оригинальный S-бокс Стрибога.
- F' и F аффинно эквивалентны (имеют те же криптосвойства).
- Новый S-бокс для AES-подобной формы

P (Permutation) и X[K] (XOR с ключом)

• Работают по тем же правилам, но внутри R-обёртки.

L (Linear Transformation)

• Можно выразить как матричное умножение над конечным полем \mathbf{F}_2 ⁸, аналогично MixColumns в AES.

gN(h,m)=R∘(Eκ(R(m))⊕R(h)⊕R(m)) https://github.com/okazymyrov/stribog

Table 3: Comparison of Stribog and AES Substitutions

Properties	Stribog	AES
Vectorial Boolean Function		
Balancedness	True	True
Nonlinearity	100	112
Absolute Indicator	96	32
Sum-of-squares Indicator	258688	133120
Propogation Criterion	0	0
Correlation Immunity	0	0
Minimum of Algebraic Degree	7	7
Resiliency	0	0
Strict Avalanche Criterion	False	False
Substitution		
Bijection	True	True
Maximum of Differential Table	8	4
Maximum of Approximation Table	28	16
Cycles Structure	252:243, 46:13	43:27, 242:87,
		99:59, 124:81, 143:2
Algebraic Immunity	3(441)	2(39)