Στοχαστικές Ανελίξεις Εξετάσεις Φεβρουαρίου 2003 ΣΕΜΦΕ

Ζήτημα 1° . Διακριτή τ.μ. T έχει συνάρτηση πιθανότητας $p_n = P[T = n]$ (n = 0, 1, 2, ...). Αν $\pi(s)$ είναι η γεννήτρια συνάρτηση των πιθανοτήτων p_n και $\Pi(s)$ η γεννήτρια συνάρτηση των πιθανοτήτων

$$P_n = \sum_{v=n+1}^{\infty} p_v$$
 (n = 0, 1, 2, ...),

να δείξετε ότι ισχύει η σχέση

$$\Pi(s) = \frac{1 - \pi(s)}{1 - s}, |s| < 1.$$

Με βάση την παραπάνω σχέση να δείζετε ότι η μέση τιμή και η διασπορά της τ.μ. Τ είναι αντίστοιχα:

$$E[T] = \Pi(1)$$
 kai $Var[T] = 2\Pi'(1) + \Pi(1)\{1 - \Pi(1)\}.$

Zήτημα 2^{o} . Θεωρούμε τον απλό τυχαίο περίπατο $\{X_n : n = 0, 1, 2, ...\}$ με

$$X_n = \sum_{v=1}^n Z_v$$
 $(n = 1, 2, ...)$

όπου

$$Z_n$$
=
$$\begin{cases} +1, & \mu \epsilon \pi i \theta \alpha v \acute{o} \tau \eta \tau \alpha \ p \\ -1, & \mu \epsilon \pi i \theta \alpha v \acute{o} \tau \eta \tau \alpha \ q = 1-p \end{cases}$$

και με αρχική κατάσταση $X_0 = 0$. Η πιθανότητα να βρίσκεται μετά από n βήματα στην αρχική κατάσταση δίνεται από την κατανομή

$$p_{00}^{(n)} = P[X_n = 0 | X_0 = 0] = \begin{cases} \binom{2m}{m} \{pq\}^m & \text{fow } n = 2m, \\ 0 & \text{fow } n = 2m + 1. \end{cases}$$
 $(n = 0, 1, 2, ...)$

η οποία έχει γεννήτρια συνάρτηση την

$$P(s) = \sum_{m=0}^{\infty} p_{ii}^{(2m)} = \{1 - 4pqs^2\}^{-1/2} \ \mu\epsilon \ |s| < \{4pq\}^{-1/2}.$$

Να προσδιορίσετε την γεννήτρια συνάρτηση F(s) του χρόνου της $1^{η_S}$ επανόδου στην κατάσταση "0" και να δείξετε ότι η κατάσταση αυτή είναι επαναληπτική όταν p=q και παροδική όταν $p\neq q$. Να δείξετε επίσης ότι η κατάσταση "0" δεν είναι γνήσια επαναληπτική. Ισχύουν τα ως άνω συμπεράσματα για οποιαδήποτε αρχική κατάσταση i και γιατί;

Ζήτημα 3°. Δίνονται οι παρακάτω Στοχαστικοί Πίνακες:

$$P_1 = \begin{bmatrix} E_1 & E_2 & E_3 & E_4 \\ E_2 & 0.4 & 0 & 0 & 0.6 \\ E_2 & 0.2 & 0 & 0 & 0.8 \\ E_3 & 0 & 0 & 0.3 & 0.7 \\ E_4 & 0.1 & 0 & 0 \end{bmatrix}, \qquad \begin{aligned} E_1 & E_2 & E_3 & E_4 & E_5 \\ E_1 & 0.4 & 0.6 & 0 & 0 & 0 \\ 0.2 & 0 & 0.3 & 0 & 0.5 \\ 0 & 0 & 1 & 0 & 0 \\ 0.2 & 0 & 0.3 & 0 & 0.5 \\ 0 & 0 & 0.4 & 0.1 & 0.5 & 0 \\ 0.1 & 0 & 0 & 0.3 & 0.6 \end{bmatrix}.$$

- (α) Να ταξινομηθούν οι καταστάσεις σε κλάσεις.
- (β) Να γίνει ιεράρχηση των κλάσεων.
- (γ) Να προσδιοριστούν, αν υπάρχουν, οι κλειστές κλάσεις.
- (δ) Να γραφούν οι στοχαστικοί πίνακες υπό την "κανονική" μορφή:

$$P = \begin{bmatrix} Q & 0 \\ R & T \end{bmatrix}$$

και να βρείτε, αν υπάρχουν, τις παροδικές καταστάσεις.

Ζήτημα 4° . Ο παρακάτω στοχαστικός πίνακας αφορά την ποσότητα ύδατος σε δεξαμενή ενός δικτύου ύδρευσης κάθε πρωί. Ανάλογα με την ποσότητα ύδατος που υπάρχει κάθε πρωί, η δεξαμενή θωρείται ότι βρίσκεται στην κατάσταση E_1 όταν η ποσότητα ύδατος που περιέχει είναι πολύ χαμηλή, στην E_2 όταν είναι μέτρια, στην E_3 όταν είναι υψηλή και στην E_4 ότι η δεξαμενή είναι πλήρης.

$$\mathbf{P} = \begin{bmatrix} E_1 & E_2 & E_3 & E_4 \\ E_1 & 0.2 & 0.4 & 0.3 & 0.1 \\ 0.1 & 0.3 & 0.4 & 0.2 \\ E_3 & 0 & 0.2 & 0.4 & 0.4 \\ E_4 & 0 & 0 & 0.5 & 0.5 \end{bmatrix}.$$

Να προσδιοριστεί η κατανομή ισορροπίας. Ποιοι οι μέσοι χρόνοι επανόδου σε κάθε κατάσταση. Αν για την επαρκή υδροδότηση της περιοχής στο διάστημα μιας ημέρας απαιτείται η δεξαμενή να βρίσκεται το πρωί σε μία από τις E_2 , E_3 ή E_4 , ποιο το ποσοστό των ημερών κατά τις οποίες η δεξαμενή θα περιέχει επαρκή ποσότητα ύδατος;

Διάρκεια εξέτασης: 2.30 h. Τα θέματα είναι ισοδύναμα

Καλή επιτυχία