

ECE 270: Embedded Logic Design

 All members of the 7-series families have dualport 36 Kb block RAM with port widths of up to 72

Fully synchronous operation

 Multiple configuration options: True dual port, simple dual port, single port

- Each BRAM can be segmented as:
 - 36 Kb BRAM
 - 36 Kb FIFO
 - Independent 18 Kb BRAMs
 - 18 Kb FIFO and 18 Kb BRAM

- Each BRAM can be segmented as:
 - 36 Kb BRAM
 - 36 Kb FIFO
 - Independent 18 Kb BRAMs
 - 18 Kb FIFO and 18 Kb BRAM
- Dedicated hardware to convert BRAM in to FIFO
- Integrated cascade logic to build larger memories
- Integrated error correction logic to fix bit errors*

Dual Port Block RAM

Dual-Port Block RAM

Port Function	Description	
DI[A B]	Data input bus.	
DIP[A B] ⁽¹⁾	Data input parity bus. Can be used for additional data inputs.	
ADDR[A B]	Address bus.	
WE[A B]	Byte-wide write enable.	
EN[A B]	When inactive no data is written to the block RAM and the output bus remains in its previous state.	
RSTREG[A B]	Synchronous Set/Reset the output registers (DO_REG = 1). The RSTREG_PRIORITY attribute determines the priority over REGCE.	
RSTRAM[A B]	Synchronous Set/Reset the output data latches.	
CLK[A B]	Clock input.	
DO[A B]	Data output bus.	
DOP[A B] ⁽¹⁾	Data output parity bus. Can be used for additional data outputs.	
REGCE[A B]	Output Register clock enable.	
CASCADEIN[A B]	Cascade input for 64K x 1 mode.	
CASCADEOUT[A B]	Cascade output for 64K x 1 mode.	

UG473_c1_01_052610

Dual-Port Block RAM

- Two separate read/write ports
 - Each port has separate clock, address, data in, data out, write enable...
 - Clocks can be asynchronous to each other
 - The two ports can have different widths
 - The two ports can have different write modes
- Each block RAM can be divided into two completely independent 18 Kb block RAMs

UG473_c1_01_052610

Dual-Port Block RAM

Configurations 32K x 1 16K x 2 8K x 4 4K x 8(or 9) 2K x 16(or 18) 1K x 32(or 36)

Primitive	Port A Width	Port B Width
RAMB16_S1_S1	1	1
RAMB16_S1_S2		2
RAMB16_S1_S4		4
RAMB16_S1_S9		(8+1)
RAMB16_S1_S18		(16+2)
RAMB16_S1_S36		(32+4)
RAMB16_S2_S2	2	2
RAMB16_S2_S4		4
RAMB16_S2_S9		(8+1)
RAMB16_S2_S18		(16+2)
RAMB16_S2_S36		(32+4)
RAMB16_S4_S4	4	4
RAMB16_S4_S9		(8+1)
RAMB16_S4_S18		(16+2)
RAMB16_S4_S36		(32+4)
RAMB16_S9_S9	(8+1)	(8+1)
RAMB16_S9_S18		(16+2)
RAMB16_S9_S36		(32+4)
RAMB16_S18_S18	(16.2)	(16+2)
RAMB16_S18_S36	(16+2)	(32+4)
RAMB16_S36_S36	(32+4)	(32+4)

Block RAM Cascading

- Built-in cascade logic for 64Kx1
 - Cascade two vertically adjacent 32Kx1 block RAMs without using external CLB logic or compromising performance

Block RAM Cascading

Block RAM Cascading

- Built-in cascade logic for 64Kx1
 - Cascade two vertically adjacent 32Kx1 block RAMs without using external CLB logic or compromising performance
 - Saves resources and improves speed of larger memories
- Cascade option for larger arrays
 - 128Kb, 256Kb, 512Kb, 1 Mb, ...
 - Using external CLB logic for depth expansion
 - Not quite as fast as cascaded block RAMs
 - Width expansion uses parallel block RAMs

Verilog Codes for Memory

 Dual-Port RAM with Asynchronous Read (Distributed RAM)

```
module rams_dist (clk, we, a, dpra, di, spo, dpo);
input clk;
input we;
input [5:0] a;
input [5:0] dpra;
input [15:0] di;
output [15:0] spo;
output [15:0] dpo;
reg [15:0] ram [63:0];
always @(posedge clk)
begin
if (we)
 ram[a] <= di;
end
assign spo = ram[a];
assign dpo = ram[dpra];
endmodule
```

128x2 Dual Post LUT reg [1:0] Lut [127:0];