$O\Pi$ «Политология», 2021-22

Введение в ТВиМС

Дискретные случайные величины: введение (14.01 или 18.01 или 19.01) А. А. Макаров, А. А. Тамбовцева, П. В. Ревина

Задача 1. Фред и Джордж Уизли с вероятностью 0.1 получат 0 штрафных очков за день, с вероятностью 0.4-5 штрафных очков за день, с вероятностью 0.5-8 штрафных очков за день. Пусть случайная величина X – число штрафных очков, полученных Фредом и Джорджем.

- (a) Постройте ряд распределения случайной величины X. Найдите P(X > 0).
- (b) Найдите вероятность того, что X принимает чётные значения.
- (c) Найдите математическое ожидание X.

Задача 2. Случайная величина X принимает значение (-1) в 30% случаев, 0 – в 25% случаев, 2 – в 15% случаев, 5 – в 12% случаев, 6 – в остальных случаях.

- (a) Постройте ряд распределения случайной величины X.
- (b) Найдите $P(X \le 0)$, $P(X \le 4.5)$, $P(X \le 6)$, P(X < 6), P(X > 7).

Задача 3. Дан ряд распределения случайной величины X:

X	-2	-1	0	1	2
р	0.3		0.2		0.1

- (a) Найдите пропущенные вероятности, если известно, что случайная величина X принимает значения -1 и 1 с равными вероятностями.
- (b) Запишите ряд распределения величин $Y = 2X + 1, W = X^2$.

Задача 4. Гарри сидит за столом в Большом Зале, завтракает и ждет почту. С вероятностью 0.2 ему может прийти письмо от профессора МакГонагалл, с вероятностью 0.7 – от Хагрида. Известно, что МакГонагалл и Хагрид действуют независимо. Постройте ряд распределения числа полученных Гарри писем и найдите его математическое ожидание.

Задача 5. На избирательном участке зарегистрировано три избирателя. Вероятность того, что первый из них пойдёт на выборы, равна 0.6, у второго эта вероятность -0.5, а у третьего -0.2. Избиратели принимают решение об участии в выборах независимо. Постройте ряд распределения явки на этом участке. Найдите математическое ожидание явки. 1

Задача 6. Вычислите: C_5^2 ; C_{10}^3 ; C_7^4 .

Задача 7. У Невилла Долгопупса есть запас из 7 шоколадных лягушек, купленных в разное время в разных местах. Известно, что среди них 3 лягушки с Годриком Гриффиндором и 4 лягушки с Альбусом Дамблдором. Невилл случайным образом достаёт 4 лягушки. С какой вероятностью среди них попадётся:

- (а) ровно 3 карточки с Годриком Гриффиндором;
- (b) менее 2 карточек с Годриком Гриффиндором.

 $^{^{1}}$ А.А.Макаров, А.В.Пашкевич, А.А.Тамбовцева. Задачник по математической статистике для студентов социально-гуманитарных и управленческих специальностей. 2018.