# Linux OS

Tuur Vanhoutte

February 10, 2021

# **Contents**

| 1 | Intro | oductie 1                               |
|---|-------|-----------------------------------------|
|   | 1.1   | Verschil Server & Workstation           |
|   |       | 1.1.1 Server                            |
|   |       | 1.1.2 Workstation                       |
|   | 1.2   | Extra information/resources             |
|   | 1.3   | What is Linux?                          |
|   |       | 1.3.1 What is an operating system (OS)? |
|   |       | 1.3.2 What is a Kernel?                 |
|   | 1.4   | GNU Operating System                    |
|   | 1.5   | Linux, the kernel                       |
|   |       | 1.5.1 Distributions                     |
|   | 1.6   | Open Source                             |
|   |       | 1.6.1 Commercial distributions          |
|   |       | 1.6.2 In this course: Debian            |
|   |       |                                         |
| 2 | Deb   | ian Installation 4                      |
|   | 2.1   | Networking in Linux (with VMWare)       |
|   | 2.2   | Users in Linux                          |
|   | 2.3   | Disks, partition, filesystems           |
|   |       | 2.3.1 Partitions                        |
|   | 2.4   | MBR <> GPT                              |
|   |       | 2.4.1 MBR                               |
|   |       | 2.4.2 GPT                               |
|   |       | 2.4.3 Bootstrap procedure               |
|   |       | 2.4.4 Linux boot process                |
|   |       | 2.4.5 BIOS <> UEFI                      |
|   | 2.5   | Filesystems                             |
|   |       | 2.5.1 Windows                           |
|   |       | 2.5.2 Linux                             |
|   |       | 2.5.3 Swap                              |
|   | 2.6   | File structure                          |
|   | 2.7   | Configuration                           |
|   |       | 2.7.1 Packages                          |
|   |       | 2.7.2 Package management                |
|   |       | 2.7.3 Useful packages                   |
|   | 2.8   | Shutdown of VM                          |
|   | 2.9   | Basic network                           |
|   |       | 2.9.1 Basic networking commands         |
|   | 2 10  | Sorvices                                |

# 1 Introductie

#### 1.1 Verschil Server & Workstation

#### 1.1.1 Server

- Deliver services to (multiple) users
- · Focussed: only this and nothing else
- · Secure
- · No GUI, everything happens through the commandline
- ullet  $\Rightarrow$  as small a footprint as possible

#### 1.1.2 Workstation

- · Use services
- · Create documents
- · Look for information
- · Consume multimedia
- GUI
- $\Rightarrow$  Large footprint

#### 1.2 Extra information/resources

- The Linux Documentation Project: http://tldp.org
- Pluralsight LPIC-1: Linux Professional Institute Certification: https://www.pluralsight.com/paths/lpic-1
- The Arch Linux Wiki is one of the most extensive sources of info about Linux: https://wiki.archlinux.org
  - In this module we will use Debian, not Arch, but many things are very similar
- Google

### 1.3 What is Linux?

### 1.3.1 What is an operating system (OS)?

**Definitie 1.1 (Operating System)** An operating system, or OS, is software that communicates with the hardware and alows other programs to run.

It is comprised of system software = the fundamental files your computer needs to function.

Linux is NOT an operating system: Linux = the kernel

#### 1.3.2 What is a Kernel?

**Definitie 1.2 (Kernel)** The kernel is software that is the core of a computer's operating system, with complete control over the system.

It is the first program loaded on start-up.

It handles...:

- ... the rest of the startup
- ... input/output requests from software, translating them into instructions for the CPU
- ... memory
- · ... peripherals

# 1.4 GNU Operating System

**Definitie 1.3 (GNU)** *GNU = GNU's Not Unix (recursive algorithm)* 

Founded by Richard Stallman (ex-MIT, founder of the Free Software Foundation), 1984 Goal: completely free Operating System

# 1.5 Linux, the kernel

By Linus Torvalds (Finland), 1991

- · Own personal development, not initially intended to distribute
- · Interest from other developers, mainly to use with GNU OS
- Meanwhile contributions of over 12000+ developers
- 492 of top-500 supercomputers in the world run Linux
- · Basis for Android, Chrome OS

Linux = the kernel

GNU = OS-tools around the kernel

 $\Rightarrow$  GNU/Linux

#### 1.5.1 Distributions

**Definitie 1.4 (Distribution)** A Linux distribution (or distro for short) is GNU/Linux + extra tools and applications to create a full-fledged OS.

That distribution can be easily copied and installed to other computers.

- RedHat (CentOS)
- Debian (Ubuntu)
- · Arch Linux
- Void Linux
- Gentoo
- · Pop! OS

# Red Hat family tree

# **Debian family tree**





Figure 1: https://upload.wikimedia.org/wikipedia/commons/1/1b/Linux\_Distribution\_ Timeline.svg

https://en.wikipedia.org/wiki/List\_of\_Linux\_distributions

# 1.6 Open Source

**Definitie 1.5 (Open Source)** Open source software is software of which the code is licensed to be open to everyone.

Anyone can use, change, distribute the software. This allows code to be developed in a public manner.

#### **OPEN SOURCE DOES NOT MEAN FREE**

#### 1.6.1 Commercial distributions

- = Open source, non-free distributions
  - SUSE Linux Enterprise Server (SLES)
  - SUSE Linux Enterprise Desktop (SLED)
  - Red Hat Enterprise Linux (RHEL)
  - Oracle Enterprise Linux

Commercial distributions have official support channels.

⇒ You're not paying for the operating system, you're paying for the support.

#### 1.6.2 In this course: Debian

- Current version: 10.7
- · Forms the basis of many others: Ubuntu, Raspbian, Knoppix, Linux Mint
- Available on many platforms: Intel x86, AMD64, Intel64, ARM, MIPS, Power Systems, ...

# 2 Debian Installation

#### See Labs for detailed Installation tutorial

# 2.1 Networking in Linux (with VMWare)

- · VMWare presents ethernet adapter
- · During creation of virtual machine: MAC-address is created
- · During installation: network configuration through DHCP
  - IPv4-address
  - Default gateway
  - DNS-server
  - Optional: proxy-server

#### 2.2 Users in Linux

- · Linux is multi-user from the ground up
  - Multiple users can be active at the same time
- · 'Administrator'-user is called root
- Each user has a user-ID (uid)
  - root has uid=0
  - uid=0 has all rights
- · Each user has a home-directory

# 2.3 Disks, partition, filesystems

- · Our VM has 1 disk
  - Presented on the SCSI-bus
  - First disk on SCSI-bus: sda
  - Then sdb, sdc, ...
- Disk = concatenation of blocks
- Divide blocks in collections (=partitions)
  - 1st partition: sda1
  - 2nd partition: sda2
  - ...
- · 2 types of partitions
  - Primary
  - Extended

#### 2.3.1 Partitions

### Primary partition

- · A filesystem can be created inside this
- · Up to 4 primary partitions

# **Extended Partition**

· 'Logical' partitions can be created inside this

# Our setup:

- sda1: primary partition
- sda2: extended partition
- sda5: 'logical' partition inside extended partition sda2



Figure 2: Our setup

# 2.4 MBR <> GPT

#### 2.4.1 MBR

We use the MBR Partitioning scheme

**Definitie 2.1 (MBR)** MBR, or Master Boot Record, is a special type of boot sector at the start of a disk.

#### It contains:

- · a set of instructions necessary to boot operating systems.
- · info about how partitions are placed on disk

#### Limitations:

- · Maximum disks of 2TB
- · 32-bit for number of logical sectors
- · Common sector size: 512 bytes
- $2^{32} \cdot 512$  bytes =  $4294967296 \cdot 512$  bytes  $\approx 2$ TB

BIOS can boot from a disk with MBR partitioning

#### 2.4.2 GPT

**Definitie 2.2 (GPT)** GPT, or GUID Partition Table, is a standard for the layout of partition tables on a disk. It's an alternative to MBR.

It uses unique identifiers (GUIDs)

- BIOS cannot boot from a disk with GPT-partitioning: UEFI required when using GPT
- GPT allows disks larger than 2TB

**Definitie 2.3 (UEFI)** UEFI, or Unified Extensible Firmware Interface, is a newer firmware interface by Intel (90's) that replaces the BIOS interface by IBM (70's).

#### How does it work?

- Disk = collection of blocks
- Group of blocks together = sector
- · Common sector size: 512 bytes
- Sectors indicated with Logical Block Addresses (LBA)
- MBR in LBA 0
- · GPT headers in LBA 1
- · Partition tabel right after that

#### 2.4.3 Bootstrap procedure

- 1. Motherboard gets electricity
- 2. Mini-loader hardcoded in memory
  - BIOS gets loaded
- 3. Boot media are consulted
- 4. First boot medium, first sectors are being read ⇒
- 5. MBR contains a bit-more-advanced loader: GRUB
  - · GRand Unified Bootloader
- 6. This loader loads a more advanced loader (GRUB second stage bootloader)
- 7. The OS is loaded

# 2.4.4 Linux boot process

#### 6 high level steps

- BIOS (Basic Input/Output System) loads MBR
- MBR (Master Boot Record) loads GRUB
- GRUB (Grand Unified Bootloader) loads kernel
- Kernel executes /sbin/init
- · Init executes runlevel programs
- Runlevel programs from /etc/rc.d/rcXX.d are started

#### 2.4.5 BIOS <> UEFI

- · Recent systems use UEFI, not BIOS
- · UEFI is required to boot from GPT-disk
- · Linux has no trouble working with UEFI

# So why will we use MBR?

- · Virtualisation is the norm
- · Virtual machines typically have small disks
- · Small disks are MBR partitioned

# 2.5 Filesystems

#### 2.5.1 Windows

- FAT (1977)
- FAT32 (1996)
- NTFS (1993)
- ReFS (2012)

### 2.5.2 Linux

- Ext (1992)
- Ext2 (1993)
- Ext3 (2001)
- Ext4 (2008)
- ZFS (2005)
- BtrFS (2007)

# 2.5.3 Swap

- = Paging
  - Free up physical memory (RAM) by moving pages to slower storage (storage disks instead of RAM)
  - Page out = memory page moves to swap
  - "Swapiness"
    - = parameter between 0 and 100
    - = how quickly linux will swap
      - \* 0 = very conservative
      - \* 100 = very agressive
  - Windows uses a swap file (pagefile.sys)
  - · Linux uses a swap partition

# 2.6 File structure



Figure 3: Linux uses a tree structure



Figure 4: Windows uses a similar structure, but every volume uses a letter.



Figure 5: With linux, volumes are 'mounted' to folders somewhere under root /

# 2.7 Configuration

#### 2.7.1 Packages

- · Tools and applications are build up by files
- · All files belonging to 1 application are bundled in a package
- · Packages in debian have the .deb extension

# Repositories

- Packages are collected in repositories
- · Are made available through the internet
- Packages have dependencies

# 2.7.2 Package management

Debian: dpkg & apt (Advanced Package Tool)

- · dpkg: Install, remove, give info about .deb packages
  - dpkg -l = lists packages
- apt: Get packages from a repository and install, remove, give info, ...
  - apt update
    - \* Contact the repositories
    - \* Get most recent list of packages and versions
  - apt upgrade
    - \* Of the packages which are more recent in the repositories compared to what is installed: install newest version
  - apt install <xyz>
    - \* Download package <xyz> from the repository

- \* Check the dependencies and download depending packages
- \* Install package <xyz> and all corresponding dependencies

Which repositories? See /etc/apt/sources.list for the list of repositories. You can add/remove/change repositories in this file.

#### 2.7.3 Useful packages

- · open-vm-tools
- vim
- sudo
- tcpdump

Install multiple pacakges in one command: apt install vim sudo topdump ntp

# 2.8 Shutdown of VM

- Power button (=ACPI shutdown)
- · Shut down operating system only
  - = halt
- · Shut down operating system and VM, multiple ways:
  - shutdown -P now
  - init 0
  - poweroff
- Reboot
  - reboot
  - init 6
  - shutdown -r now

#### 2.9 Basic network

- No GUI ⇒
- Layer 1: Physical (VMWare virtual network)
- Layer 2: Datalink (Ethernet & MAC address)
- Layer 3: Network (IPv4)
- Layer 4: Transport (Transport Control Protocol (TCP), User Datagram Protocol (UDP))
- Layer 5: Application (SSH, HTTP, ...)

# 2.9.1 Basic networking commands

- arp
- ping
- route
- bmon

# 2.10 Services

- · Processes that 'listen' on the network
  - TCP or UDP port
- Overview of currently running / listening services: ss command
  - ss -tulpn
  - t: show TCP
  - u: show UDP
  - I: show listening
  - p: show process ID
  - n: no name-resolving