Radio Science: Lecture 2

Kshitij Thorat

January 15, 2015

The Radio Sky

- Radio Emission Mechanisms
 - Basics
 - Line Emission
 - Continuum Emission

Table of Contents

The Radio Sky

- Radio Emission Mechanisms
 - Basics
 - Line Emission
 - Continuum Emission

The Radio Sky

Figure: Radio Continuum Image of the Sky at 1.4 GHz, Calabretta et al. 2013

Common Types of Radio Sources

- AGN Powered Radio Sources
 - Radio Quasars
 - Radio Galaxies
 - BL-Lac Type Radio Sources
- Non-AGN powered radio sources
 - Supernova Remnants
 - Star-forming Galaxies

Figure: Image courtesy of NRAO/AULBILT
Saxton (NRAO/AUI/NSF); Hubble/NASA

Units and Typical Scales

- Flux density: Jansky 1 Jy = $10^{-26} Wm^{-2}Hz^{-1}$
- ▶ Typical Flux density ranges $\sim 10^{-9}$ Jy to ~ 100 Jy for radio sources in the sky.
- ▶ Distance: Parsec 1 pc = 3.08×10^{16} m
- ightharpoonup Typical Observational Frequencies: ~ 10 MHz to ~ 1000 GHz

Table of Contents

The Radio Sky

- Radio Emission Mechanisms
 - Basics
 - Line Emission
 - Continuum Emission

Basics

- $ightharpoonup dP = I_{\nu} cos θ dσ dν dΩ$
- I_{ν} , specific intensity with units of $W~m^{-2}~Hz^{-1}~sr^{-1}$
- Flux density = $S_{\nu} = \int I_{\nu}(\theta, \phi) \cos\theta \ d\Omega$

Radiative Transfer I

The change in specific intensity, or the radiative transfer equation:

$$\frac{dI_{\nu}}{ds} = -\kappa_{\nu} I_{\nu} + \epsilon_{\nu} \tag{1}$$

which gives, in TE, $\frac{dI_{\nu}}{ds}=0$ implying $I_{\nu}=\frac{\epsilon_{\nu}}{\kappa_{\nu}}=B_{\nu}(T)=\frac{2h\nu^3}{c^2}\frac{1}{e^{\frac{h\nu}{kT}}-1}$.

Radiative Transfer II

More generally, in LTE, $I_{\nu}(s) = I_{\nu}(0)e^{-\tau_{\nu}(s)} + \int_{0}^{\tau_{\nu}(s)} B_{\nu}(T(\tau))e^{-\tau}d\tau$, where $d\tau_{\nu} = -\kappa_{\nu} ds$ is the optical depth

Radiative Transfer III

Radiation from Accelerating Charged Particles

Radio Emission Mechanism

- Line Emission
 - ► Radio Recombination Lines
 - ▶ 21 cm Radiation
- Continuum Emission
 - Bremsstrahlung
 - Synchrotorn Emission
 - Inverse Compton

Line Emission

- ▶ Line emission emission is confined to a narrow range in frequency.
- Arises out of energy level transitions $h\nu = E_2 E_1$, where h is Planck's constant, ν is the frequency of the emission and E_2 and E_1 are the energy levels.
- Examples:
 - Recombination Lines
 - 21 cm Neutral Hydrogen

Einstein Coefficients

- Line emission/absorption from any system can be characterized by the Einstein Coefficients:
 - ► A₂₁: The spontaneous emission coefficient
 - ► B₁₂: The Absorption coefficient
 - ► B₂₁: The Stimulated Emission Coefficient

In case of a system in local thermodynamic equilibrium (LTE):

$$n_2 A_{21} + n_2 B_{21} U = n_1 B_{12} U$$

Einstein Coefficients and Radiative Transfer

- ▶ The radiative transfer equation characterized by ϵ_{ν} and κ_{ν} .
- Relating ϵ_{ν} and κ_{ν} to Einstein Coefficients
- ▶ In general, ϵ_{ν} , $\kappa_{\nu} \equiv \epsilon_{\nu}$, $\kappa_{\nu} (n_1, n_2, A_{21}, B_{12}, B_{21})$.
- ▶ Simplifying scenarios systems in TE/LTE.

Recombination Lines I

Recombination Lines II

21-cm Line for Neutral Hydrogen I

- Arises out of hyperfine transition between two states of the electron in the Hydrogen atom.
- Extremely small transition probability:

$$A_{21} = 2.68 \times 10^{-15} s^{-1}.$$

21-cm Line for Neutral Hydrogen II

Rotation Curves

Epoch of Reionization

Continuum Emission

Bremsstrahlung

Starburst Galaxies: HII regions

Synchrotron Emission I

Synchrotron

Radio Galaxies

Starburst Galaxies: Supernova Remnants

Summary

