Relação de Equivalência - Classes de Equivalência nos Inteiros

José Antônio O. Freitas

MAT-UnB

27 de agosto de 2020

Definição

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$ é chamado **representante** de C.

Proposição

Seja A um conjunto não vazio e R uma relação de equivalência em A. Então A é a união disjunta das classes \overline{b} , $b \in A$, ou seja,

$$A=\bigcup_{b\in A}\overline{b}.$$

Prova: Para todo $b \in A$ temos, pela definição de classe de equivalência, que $\overline{b} \subseteq A$. Logo $\bigcup_{b \in A} \overline{b} \subseteq A$. Agora seja $x \in A$. Logo $x \in \overline{x}$ e daí $x \in \bigcup_{b \in A} \overline{b}$. Assim $A \subseteq \bigcup_{a \in A} \overline{a}$. Portanto, $A = \bigcup_{b \in A} \overline{b}$.

Definição

Sejam a, $b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk. Nesse caso escrevemos $b \mid a$. Quando b **não divide** a, escrevemos $b \mid a$.

Exemplos

- 1) Os inteiros 1 e -1 dividem qualquer número inteiro a, pois a = 1a e a = (-1)(-a).
- 2) O número 0 não divide nenhum inteiro b, pois não existe $a \in \mathbb{Z}$ tal que b=0a.
- 3) Para todo $b \neq 0$, b divide $\pm b$.
- 4) Para todo inteiro $b \neq 0$, b divide 0, pois 0 = b0.
- *5*) 3 /8.
- 6) 17 | 51.

Proposição

- i) a | a, para todo $a \in \mathbb{Z}$.
- ii) Se $a \mid b \in b \mid a$, a, b > 0 então a = b.
- iii) Se a | b e b | c, então a | c.
- iv) Se $a \mid b$ e $a \mid c$, então $a \mid (bx + cy)$, para todos x, $y \in \mathbb{Z}$.
 - i) Imediata.
- ii) De fato, existem $k, l \in \mathbb{Z}$ tais que b = ka e a = lb. Assim b = klb, isto é, b(1 kl) = 0. Como $b \neq 0$ então 1 kl = 0. Daí kl = 1 e então $k = \pm 1$ e $l = \pm 1$. Mas a > 0 e b > 0, logo k = l = 1. Logo a = b.
- iii) De fato, existem k, $l \in \mathbb{Z}$ tais que b = ka e c = bl. Assim c = kal = (kl)a, ou seja, $a \mid c$.

iv) Temos b=ka e c=al, com k, $l\in\mathbb{Z}$. Daí bx+cy=(ka)x+(al)y=a(kx+ly) e como $kx+ly\in\mathbb{Z}$ segue que $a\mid (bx+cy)$.

Definição

Sejam a, $b \in \mathbb{Z}$, dizemos que a **é congruente à** b **módulo** m se $m \mid (a - b)$. Neste caso, escrevemos $a \equiv_m b$ ou $a \equiv b \pmod{m}$.

Exemplos

- 1) $5 \equiv 2 \pmod{3}$, pois $3 \mid (5-2)$.
- 2) $3 \equiv 1 \pmod{2}$, pois $2 \mid (3-1)$.
- 3) $3 \equiv 9 \pmod{6}$, pois $6 \mid (3-9)$.

Proposição

A congruência módulo m é uma relação de equivalência em \mathbb{Z} .

Prova:

- i) Para todo $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$ pois $m \mid (a a)$.
- ii) Se $a \equiv b \pmod{m}$, então $m \mid (a b)$. Daí existe $k \in \mathbb{Z}$, tal que (a b) = km. Agora, (b a) = -(a b) = -(km) = (-k)m, ou seja, $m \mid (b a)$. Daí $b \equiv a \pmod{m}$.
- iii) Se $a \equiv b \pmod{m}$ e $b \equiv c \pmod{m}$, então $m \mid (a b)$ e $m \mid (b c)$. Assim, $m \mid [(a - b) + (b - c)]$. Logo, $m \mid (a - c)$, isto é, $a \equiv c \pmod{m}$.

Portanto a congruência módulo m é uma relação de equivalência.

Teorema

A relação de congruência módulo m satisfaz as seguintes propriedades:

- i) $a_1 \equiv b_1 \pmod{m}$ se, e somente se, $a_1 b_1 \equiv 0 \pmod{m}$.
- ii) Se $a_1 \equiv b_1 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, então $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$.
- iii) Se $a_1 \equiv b_2 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, então $a_1a_2 \equiv b_1b_2 \pmod{m}$.
- iv) Se $a \equiv b \pmod{m}$, então $ax \equiv bx \pmod{m}$, para todo $x \in \mathbb{Z}$.
- v) Vale a lei do cancelamento: se $d \in \mathbb{Z}$ e mdc(d, m) = 1 então $ad \equiv bd \pmod{m}$ implica $a \equiv b \pmod{m}$.

Como $a_1 \equiv b_2 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, existem $k, l \in \mathbb{Z}$ tais que

$$a_1 - b_1 = km$$
$$a_2 - b_2 = lm,$$

isto é,

$$a_1 = b_1 + km$$
$$a_2 = b_2 + lm,$$

Assim

$$a_{1}a_{2} = (b_{1} + km)(b_{2} + lm)$$

$$= b_{1}b_{2} + b_{1}lm + b_{2}km + klm^{2}$$

$$= b_{1}b_{2} + \underbrace{(lb_{1} + kb_{2} + klm)}_{\in \mathbb{Z}} m$$

Ou seja, $a_1a_2-b_1b_2=pm$, onde $p=lb_1+kb_2+klm\in\mathbb{Z}$. Portanto, $a_1a_2\equiv b_1b_2\pmod{m}$.