CATEGORICAL DATA ANALYSIS

Institute for Advanced Analytics
MSA Class of 2020

DESCRIBING CATEGORICAL DATA

Examining Categorical Variables

- By examining the distributions of categorical variables, you can do the following:
 - 1. Determine the frequencies of data values
 - 2. Recognize possible associations among variables

Categorical Variables Association

- An association exists between two categorical variables if the distribution of one variable changes when the level (or value) of the other variable changes.
- If there is no association, the distribution of the first variable is the same regardless of the level of the other variable.

No Association

Is your manager's mood associated with the weather?

Association

Is your manager's mood associated with the weather?

Frequency Tables

 A frequency table shows the number of observations that occur in certain categories or intervals. A one-way frequency table examines one variable.

Income	Frequency	Percent	Cumulative Frequency	Cumulative Percent
High	155	36	155	36
Low	132	31	287	67
Medium	144	33	431	100

Crosstabulation Tables

• A *crosstabulation* table shows the number of observations for each combination of the row and column variables.

	column 1	column 2		column c
row 1	cell ₁₁	cell ₁₂	•••	cell _{1c}
row 2	cell ₂₁	cell ₂₂		cell _{2c}
	•••			
row r	cell _{r1}	cell _{r2}		cell _{rc}

Ames Housing-Bonus Eligible Sale

 Realtors in Ames, Iowa receive the standard 3% commission on homes sales. One particular realty company offers an additional bonus for homes that sell for more than \$175,000. Are there attributes of the home that can predict whether it will be bonus eligible?


```
proc freq data=bootcamp.ameshousing3;
   tables Bonus Fireplaces Lot_Shape_2
        Fireplaces*Bonus Lot_Shape_2*Bonus/
        plots(only)=freqplot(scale=percent);
   format Bonus bonusfmt.;
run;
```

The FREQ Procedure

Sale Price > \$175,000						
Bonus	Frequency Percent Cumulative Frequency Percent Percent					
Not Bonus Eligible	255	85.00	255	85.00		
Bonus Eligible	45	15.00	300	100.00		

Distribution of Bonus

Sale Price > \$175,000

Number of fireplaces						
Fireplaces	Percent Cumulative Frequency Percent Percent					
0	195	65.00	195	65.00		
1	93	31.00	288	96.00		
2	12	4.00	300	100.00		

Regular or irregular lot shape						
Lot_Shape_2 Frequency Percent Cumulative Frequency Percent						
Irregular	93	31.10	93	31.10		
Regular 206 68.90 299 100.00						
Frequency Missing = 1						

Distribution of Lot_Shape_2

Frequency Percent Row Pct Col Pct

Table of Fireplaces by Bonus					
	Bonus(Sale Price > \$175,000)				
Fireplaces(Number of fireplaces)	Not Bonus Eligible	Bonus Eligible	Total		
0	177 59.00 90.77 69.41	18 6.00 9.23 40.00	195 65.00		
1	68 22.67 73.12 26.67	25 8.33 26.88 55.56	93 31.00		
2	10 3.33 83.33 3.92	2 0.67 16.67 4.44	12 4.00		
Total	255 85.00	45 15.00	300 100.00		

Distribution of Fireplaces by Bonus

Table of Lot_Shape_2 by Bonus					
Lot_Shape_2(Regular		Bonus(Sale Price >	\$175,000)		
or irregular lot shape)	0	1	Total		
Irregular	62 20.74 66.67 24.31	31 10.37 33.33 70.45	93 31.10		
Regular	193 64.55 93.69 75.69	13 4.35 6.31 29.55	206 68.90		
Total	255 85.28	44 14.72	299 100.00		
	Freq	uency Missing = 1	1		

Distribution of Lot_Shape_2 by Bonus


```
proc univariate data=bootcamp.ameshousing3 noprint;
    class Bonus;
    var Basement_Area;
    histogram Basement_Area;
    inset mean std median min max / format=5.2 position=nw;
    format Bonus bonusfmt.;
run;
```

Distribution of Basement_Area

TESTS OF ASSOCIATION

Introduction

Table of Lot_Shape_2 by Bonus					
Lot_Shape_ 2	Bonus				
Row Pct	Not Bonus Bonus Total Eligible Eligible				
Irregular	66.67%	33.33%	N=93		
Regular	93.69%	6.31%	N=206		
Total	N=255	N=44	N=299		

Tests of Association - Hypotheses

Null Hypothesis

- There is no association between Lot_Shape_2 and Bonus.
- The probability of a home sale being bonus eligible is the same regardless of lot shape.

Alternative Hypothesis

- There is an association between Lot_Shape_2 and Bonus.
- The probability of a home sale being bonus eligible is not the same for irregular and regular lot shapes.

Chi-Square Test

NO ASSOCIATION

observed frequencies=expected frequencies

ASSOCIATION

observed frequencies + expected frequencies

The expected frequencies are calculated by the formula: (row total*column total) / sample size.

Chi-Square Tests

- Chi-square tests and the corresponding p-values:
 - Determine whether an association exists
 - DO NOT measure the strength of an association
 - Depend on and reflect the sample size

$$\chi^{2} = \sum_{i=1}^{R} \sum_{j=1}^{C} \frac{\left(Obs_{i,j} - Exp_{i,j}\right)^{2}}{Exp_{i,j}}$$

Chi-Square Tests

- Sample size requirements:
 - 80% or more of the cells need expected count larger than 5.

$$\chi^{2} = \sum_{i=1}^{R} \sum_{j=1}^{C} \frac{\left(Obs_{i,j} - Exp_{i,j}\right)^{2}}{Exp_{i,j}}$$

Measures of Association

^{*} Cramer's V is always nonnegative for tables larger than 2*2.

Odds Ratios

- An odds ratio indicates how much more likely, with respect to odds, a certain event occurs in one group relative to its occurrence in another group.
- How do the odds of irregular lot shapes being bonus eligible compare to those of regular lot shapes?

$$Odds = \frac{p_{\text{event}}}{1 - p_{\text{event}}}$$

	Yes	No	Total
Group A	60	20	80
Group B	90	10	100
Total	150	30	180

	Yes	No	Total
Group A	60	20	80
Group B	90	10	100
Total	150	30	180

Probability of **YES** in **Group B**
$$=\frac{90}{100} = 0.90$$

	Yes	No	Total
Group A	60	20	80
Group B	90	10	100
Total	150	30	180

Probability of **NO** in **Group B**
$$=\frac{10}{100}=0.10$$

	Yes	No	Total
Group A	60	20	80
Group B	90	10	100
Total	150	30	180

Odds of **YES** in **Group B**
$$=\frac{\text{Prob. of Yes}}{\text{Prob. of No}} = \frac{0.90}{0.10} = 9$$

	Yes	No	Total
Group A	60	20	80
Group B	90	10	100
Total	150	30	180

Odds Ratio: Group B to Group A
$$=\frac{9}{3}=3$$

Odds Ratio

Odds Ratio: Group B to Group A
$$=\frac{9}{3}=3$$

Group B observations have 3 times the odds of having the outcome (Yes) as compared to the observations in Group A.

Associations with Bonus The FREQ Procedure

Frequency
Expected
Cell Chi-Square
Row Pct

Table of Lot_Shape_2 by Bonus			
Lot_Shape_2(Regular	Bonus(Sale Price > \$175,000)		
or irregular lot shape)	0	1	Total
	62	31	93
Irrogular	79.314	13.686	
Irregular	3.7797	21.905	
	66.67	33.33	
	193	13	206
Poqulor	175.69	30.314	
Regular	1.7064	9.8893	
	93.69	6.31	
Total	255	44	299
Frequency Missing = 1			

Statistics for Table of Lot_Shape_2 by Bonus

Statistic	DF	Value	Prob
Chi-Square	1	37.2807	<.0001
Likelihood Ratio Chi-Square	1	34.4226	<.0001
Continuity Adj. Chi-Square	1	35.1587	<.0001
Mantel-Haenszel Chi-Square	1	37.1561	<.0001
Phi Coefficient		-0.3531	
Contingency Coefficient		0.3330	
Cramer's V		-0.3531	

Fisher's Exact Test		
Cell (1,1) Frequency (F) 62		
Left-sided Pr <= F	<.0001	
Right-sided Pr >= F	1.0000	
Table Probability (P)	<.0001	
Two-sided Pr <= P	<.0001	

Odds Ratio and Relative Risks				
Statistic Value		95% Confidence Limits		
Odds Ratio	0.1347	0.0664	0.2735	
Relative Risk (Column 1)	0.7116	0.6137	0.8251	
Relative Risk (Column 2)	5.2821	2.9002	9.6202	

Frequency
Expected
Cell Chi-Square
Row Pct

Table of Fireplaces by Bonus			
	Bonus(Sale Price > \$175,000)		
Fireplaces(Number of fireplaces)	0	1	Total
0	177 165.75 0.7636 90.77	18 29.25 4.3269 9.23	195
1	68 79.05 1.5446 73.12	25 13.95 8.7529 26.88	93
2	10 10.2 0.0039 83.33	2 1.8 0.0222 16.67	12
Total	255	45	300

Statistics for Table of Fireplaces by Bonus

Statistic	DF	Value	Prob
Chi-Square	2	15.4141	0.0004
Likelihood Ratio Chi-Square	2	14.4859	0.0007
Mantel-Haenszel Chi-Square	1	10.7458	0.0010
Phi Coefficient		0.2267	
Contingency Coefficient		0.2211	
Cramer's V		0.2267	

Sample Size = 300

Association among Ordinal Variables

Is Fireplaces

associated with

Mantel-Haenszel Chi-Square Test

Test Ordinal Association

Mantel-Haenszel Chi-Square Test

- Determines whether an ordinal association exists
- DOES NOT measure the strength of the ordinal association
- Depends on and reflects the sample size

Spearman Correlation Statistic

Spearman versus Pearson

- The Spearman correlation uses ranks of the data.
- The Pearson correlation uses the observed values when the variable is numeric.

Detecting Ordinal Associations

```
proc freq data=bootcamp.ameshousing3;
    tables Fireplaces*Bonus / chisq measures cl;
    format Bonus bonusfmt.;
    title 'Ordinal Association between FIREPLACES and BONUS?';
run;
```

Ordinal Association between FIREPLACES and BONUS? The FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table of Fireplaces by Bonus				
Fireplaces(Number of	Bonus(Sale Price > \$175,000)			
fireplaces)	0	1	Total	
0	177 59.00 90.77 69.41	18 6.00 9.23 40.00	195 65.00	
1	68 22.67 73.12 26.67	25 8.33 26.88 55.56	93 31.00	
2	10 3.33 83.33 3.92	2 0.67 16.67 4.44	12 4.00	
Total	255 85.00	45 15.00	300 100.00	

Detecting Ordinal Associations

Statistics for Table of Fireplaces by Bonus

Statistic	DF	Value	Prob
Chi-Square	2	15.4141	0.0004
Likelihood Ratio Chi-Square	2	14.4859	0.0007
Mantel-Haenszel Chi-Square	1	10.7458	0.0010
Phi Coefficient		0.2267	
Contingency Coefficient		0.2211	
Cramer's V		0.2267	

Detecting Ordinal Associations

Statistic	Value	ASE		5% ce Limits
Gamma	0.4964	0.1111	0.2786	0.7143
Kendall's Tau-b	0.2072	0.0585	0.0926	0.3218
Stuart's Tau-c	0.1449	0.0433	0.0600	0.2298
Somers' D C R	0.1510	0.0451	0.0626	0.2395
Somers' D R C	0.2842	0.0786	0.1301	0.4383
Pearson Correlation	0.1896	0.0591	0.0737	0.3054
Spearman Correlation	0.2107	0.0594	0.0943	0.3272
Lambda Asymmetric C R	0.0000	0.0000	0.0000	0.0000
Lambda Asymmetric R C	0.0667	0.0603	0.0000	0.1849
Lambda Symmetric	0.0467	0.0424	0.0000	0.1298
Uncertainty Coefficient C R	0.0571	0.0298	0.0000	0.1156
Uncertainty Coefficient R C	0.0313	0.0167	0.0000	0.0640
Uncertainty Coefficient Symmetric	0.0404	0.0213	0.0000	0.0823

Poll

Quiz

Multiple Answer Poll

- A researcher wants to measure the strength of an association between two binary variables. Which statistic(s) can he use?
 - a. Hansel and Gretel Correlation
 - b. Mantel-Haenszel Chi-Square
 - c. Pearson Chi-Square
 - d. Odds Ratio
 - e. Spearman Correlation

Multiple Answer Poll – Correct Answer

- A researcher wants to measure the strength of an association between two binary variables. Which statistic(s) can he use?
 - a. Hansel and Gretel Correlation
 - b. Mantel-Haenszel Chi-Square
 - c. Pearson Chi-Square
 - d.) Odds Ratio
 - e.) Spearman Correlation

INTRODUCTION TO LOGISTIC REGRESSION

Objectives

- Define the concepts of logistic regression.
- Fit a binary logistic regression model using the LOGISTIC procedure.
- Describe the standard output from the LOGISTIC procedure with one continuous predictor variable.
- Read and interpret odds ratio tables and plots.

Overview

Types of Logistic Regression

Why Not Least Squares Regression?

$$y_i = \beta_0 + \beta_1 x_{1,i} + \varepsilon_i$$

- If the response variable is categorical, then how do you code the response numerically?
- If the response is coded (1=Yes and 0=No) and your regression equation predicts 0.5 or 1.1 or -0.4, what does that mean practically?
- If there are only two (or a few) possible response levels, is it reasonable to assume constant variance and normality?

Linear Probability Model?

$$p_i = \beta_0 + \beta_1 x_{1,i}$$

- Probabilities are bounded, but linear functions can take on any value. (Once again, how do you interpret a predicted value of -0.4 or 1.1?)
- Given the bounded nature of probabilities, can you assume a linear relationship between X and p throughout the possible range of X?
- Can you assume a random error with constant variance?
- What is the observed probability for an observation?

Logistic Regression Model

The Logit Link Transformation

$$logit(p_i) = ln\left(\frac{p_i}{1 - p_i}\right) = \beta_0 + \beta_1 x_{1i}$$

- To create a linear model, a link function (logit) is applied to the probabilities.
- The relationship between the parameters and the logits are linear.
- Logits unbounded.

Assumption

Poll

Quiz

Multiple Choice Poll

- What are the upper and lower bounds for a logit?
 - a. Lower=0, Upper=1
 - b. Lower=0, No upper bound
 - c. No lower bound, No upper bound
 - d. No lower bound, Upper=1

Multiple Choice Poll – Correct Answer

- What are the upper and lower bounds for a logit?
 - a. Lower=0, Upper=1
 - b. Lower=0, No upper bound
- (c.) No lower bound, No upper bound
 - d. No lower bound, Upper=1

LOGISTIC MODEL (1):Bonus=Basement_Area The LOGISTIC Procedure

Model Information			
Data Set	BOOTCAMP.AMESHOUSING3		
Response Variable	Bonus	Sale Price > \$175,000	
Number of Response Levels	2		
Model	binary logit		
Optimization Technique	Fisher's scoring		

Number of Observations Read	300
Number of Observations Used	300

	Response Profile		
Ordered Bonus Total Frequency			
1	0	255	
2	1	45	

Probability modeled is Bonus='1'.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics				
Criterion	Intercept Only	Intercept and Covariates		
AIC	255.625	161.838		
SC	259.329	169.246		
-2 Log L	253.625	157.838		

Testing Global Null Hypothesis: BETA=0				
Test	Chi-Square	DF	Pr > ChiSq	
Likelihood Ratio	95.7870	1	<.0001	
Score	65.5624	1	<.0001	
Wald	48.0617	1	<.0001	

Analysis of Maximum Likelihood Estimates						
Parameter	DF Estimate Standard Wald Chi-Square Pr >					
Intercept	1	-9.7854	1.2896	57.5758	<.0001	
Basement_ Area	1	0.00739	0.00107	48.0617	<.0001	

Association of Predicted Probabilities and Observed Responses					
Percent 89.5 Somers' D 0.791					
Percent Discordant	10.4	Gamma	0.792		
Percent Tied 0.1 Tau-a 0.202					
Pairs	11475	С	0.896		

Odds Ratio Estimates and Profile-Likelihood Confidence Intervals					
Effect	Unit	Estimate	95% Confidence Limits		
Basement_Area	1.0000	1.007	1.005	1.010	

Odds Ratio Calculation from the Current Logistic Regression Model

Logistic regression model:

$$logit(\hat{p}) = log(odds) = \beta_0 + \beta_1 * (Basement _Area)$$

Odds ratio (1-year difference in Basement Area):

$$odds_{larger} = e^{\beta_0 + \beta_1 * (Basement_Area+1)}$$
$$odds_{smaller} = e^{\beta_0 + \beta_1 * (Basement_Area)}$$

Odds Ratio =
$$\frac{e^{\beta_0 + \beta_1*(Basement_Area+1)}}{e^{\beta_0 + \beta_1*(Basement_Area)}} = e^{\beta_1}$$
$$= e^{(0.00739)} = 1.007$$

Odds Ratio for a Continuous Predictor

Odds Ratio Estimates and Profile-Likelihood Confidence Intervals					
Effect	Unit	Estimate	95% Confidence Limits		
Basement_Area	1.0000	1.007	1.005	1.010	

Model Assessment: Comparing Pairs

- Counting concordant, discordant, and tied pairs is a way to assess how well the model predicts its own data and therefore how well the model fits.
- In general, you want a high percentage of concordant pairs and low percentages of discordant and tied pairs.

Comparing Pairs

To find concordant, discordant, and tied pairs, compare houses that had the outcome of interest against houses that did not.

Not Bonus Eligible

Bonus Eligible

Concordant Pair

Compare a 1200 square foot basement that was bonus eligible with an 800 square foot basement that was not.

Not Eligible, 800 sqft

Bonus Eligible, 1200 sqft

P(Eligible)=.0204

P(Eligible)=.2865

The actual sorting agrees with the model.

This is a **concordant** pair.

Discordant Pair

Compare a 1400 square foot basement that was bonus eligible with a 1600 square foot basement that was not.

Not Eligible, 1600 sq ft

P(Eligible)=.8855

Bonus Eligible, 1400 sq ft

P(Eligible)=.6379

The actual sorting disagrees with the model.

This is a **discordant** pair.

Tied Pair

Compare two 1350 square foot basements. One was bonus eligible and the other not.

Not Eligible, 1350 sqft

P(Eligible)=.5490

Bonus Eligible, 1350 sqft

P(Eligible)=.5490

The model cannot distinguish between the two.

This is a **tied** pair.

Concordant, Discordant, Tied Pairs

Association of Predicted Probabilities and Observed Responses					
Percent Concordant 89.2 Somers' D 0.790					
Percent Discordant	10.2	Gamma	0.795		
Percent Tied	0.6	Tau-a	0.202		
Pairs	11475	С	0.895		

LOGISTIC REGRESSION WITH CATEGORICAL PREDICTORS

Objectives

- State how a logistic model with categorical predictors does and does not differ from one with continuous predictors.
- Describe what a CLASS statement does.
- Define the standard output from the LOGISTIC procedure with categorical predictor variables.

CLASS Statement

- The CLASS statement creates a set of "design variables" representing the information in the categorical variables.
- Character variables cannot be used, as is, in a model.
- The design variables are the ones actually used in model calculations.
- There are several "parameterizations" available in PROC LOGISTIC.

Effect (Default) Coding: Three Levels

Design Variables

<u>CLASS</u>	<u>Value</u>	<u>Label</u>	<u>1</u>	<u>2</u>	
IncLevel	1	Low Income	1	0	
	2	Medium Income	0	1	
	3	High Income	-1	-1	

Effect Coding: An Example

$$logit(p) = \beta_0 + \beta_1 * D_{Low income} + \beta_2 * D_{Medium income}$$

- β_0 = the average value of the logit across all categories
- β_1 = the difference between the logit for Low income and the average logit
- β_2 = the difference between the logit for Medium income and the average logit

Analysis of Maximum Likelihood Estimates						
				Standard	Wald	
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept		1	-0.5363	0.1015	27.9143	<.0001
IncLevel	1	1	-0.2259	0.1481	2.3247	0.1273
IncLevel	2	1	-0.2200	0.1447	2.3111	0.1285

Reference Cell Coding: Three Levels

Design Variables

<u>CLASS</u>	<u>Value</u>	<u>Label</u>	<u>1</u>	<u>2</u>	
IncLevel	1	Low Income	1	0	
	2	Medium Income	0	1	
	3	High Income	0	0	

Reference Cell Coding: An Example

$$logit(p) = \beta_0 + \beta_1 * D_{Low income} + \beta_2 * D_{Medium income}$$

- β_0 = the value of the logit when income is High
- β_{1} = the difference between the logits for Low and High income
- β_{2} = the difference between the logits for Medium and High income

Analysis of Maximum Likelihood Estimates						
				Standard	Wald	
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept		1	-0.0904	0.1608	0.3159	0.5741
IncLevel	1	1	-0.6717	0.2465	7.4242	0.0064
IncLevel	2	1	-0.6659	0.2404	7.6722	0.0056

Odds Ratio for Categorical Predictor

Odds Ratios with 95% Profile-Likelihood Confidence Limits

$$logit(p) = \beta_0 + \beta_1 X_{irregular} + \beta_2 X_{fireplace=1} + \beta_3 X_{fireplace=2} + \beta_4 X_{Basement_Area}$$

```
proc logistic data=bootcamp.ameshousing3 plots(only)=(effect oddsratio);
    class Fireplaces(ref='0') Lot_Shape_2(ref='Regular') / param=ref;
    model Bonus(event='1')=Basement_Area Fireplaces Lot_Shape_2 / clodds=pl;
    units Basement_Area=100;
    title 'LOGISTIC MODEL (2):Bonus= Basement_Area Fireplaces Lot_Shape_2';
run;
```

Class Level Information					
Class	Value Design Variables				
Fireplaces	0	0	0		
	1	1	0		
	2	0	1		
Lot_Shape_2	Irregular	1			
	Regular	0			

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics					
Criterion Intercept Only Intercept and Covariates					
AIC	251.812	140.499			
SC	255.513	159.001			
-2 Log L	249.812	130.499			

Testing Global Null Hypothesis: BETA=0					
Test	Chi-Square	DF	Pr > ChiSq		
Likelihood Ratio	119.3133	4	<.0001		
Score	91.7250	4	<.0001		
Wald	49.8671	4	<.0001		

	Type 3 Analysis of Effects				
Effect	DF	Wald Chi-Square	Pr > ChiSq		
Basement_Are a	1	38.1356	<.0001		
Fireplaces	2	5.2060	0.0741		
Lot_Shape_2	1	16.9421	<.0001		

	Analysis o	of Max	imum Likel	ihood Estim	nates	
Parameter		DF	Estimate	Standard Error	Wald Chi- Square	Pr > ChiSq
Intercept		1	-11.0882	1.5384	51.9467	<.0001
Basement_Area		1	0.00744	0.00120	38.1356	<.0001
Fireplaces	1	1	0.8810	0.4658	3.5770	0.0586
Fireplaces	2	1	-0.7683	0.9654	0.6335	0.4261
Lot_Shape_2	Irregular	1	1.9025	0.4622	16.9421	<.0001

Association of	of Predicted Probab	oilities and Observe	d Responses
Percent Concordant	92.9	Somers' D	0.859
Percent Discordant	7.0	Gamma	0.860
Percent Tied	0.1	Tau-a	0.216
Pairs	11220	С	0.930

Odds	Ratio Estimates a	nd Profile-Likeliho	od Confidence Inte	ervals
Effect	Unit	Estimate	95% Confid	ence Limits
Basement_Area	100.0	2.105	1.696	2.727
Fireplaces 1 vs 0	1.0000	2.413	0.973	6.127
Fireplaces 2 vs 0	1.0000	0.464	0.054	2.703
Lot_Shape_2 Irregular vs Regular	1.0000	6.703	2.786	17.301

Odds Ratios with 95% Profile-Likelihood Confidence Limits

STEPWISE SELECTION WITH INTERACTIONS

Objectives

- Fit a multiple logistic regression model with main effects and interactions using the backward elimination method.
- Explain interactions using graphs.

Stepwise Methods – Default

		REG/ MSELECT	PROC LO	OGISTIC
	SLENTRY	SLSTAY	SLENTRY	SLSTAY
FORWARD	0.50		0.05	
BACKWARD		0.10		0.05
STEPWISE	0.15	0.15	0.05	0.05

Stepwise Hierarchy Rules

By default, at each step model hierarchy is retained. This means that higher level effects cannot be in a model when any of its lower level composite effects are not present.

Logistic Regression – Backward Selection

Logistic Regression – Predictions

```
data newhouses:
     length Lot Shape 2 $9;
     input Fireplaces Lot Shape 2 $ Basement Area;
     datalines:
     0 Regular 1060
     2 Regular 775
     2 Irregular 1100
     1 Irregular 975
                800
     1 Regular
run;
proc logistic data=bootcamp.ameshousing3;
    class Fireplaces(ref='0') Lot Shape 2(ref='Regular') / param=ref;
    model Bonus(event='1') = Basement Area | Lot Shape 2 Fireplaces;
    units Basement Area=100;
    score data=newhouses out=scored houses;
run;
```

Logistic Regression – Predictions

	Lot_Shape_2	Fireplaces	Basement_Area	Into: Bonus	Predicted Probability: Bonus=0	Predicted Probability: Bonus=1
1	Regular	0	1060	0	0.98	0.022
2	Regular	2	775	0	1	4E-4
3	Irregular	2	1100	0	0.86	0.142
4	Irregular	1	975	0	0.69	0.306
5	Regular	1	800	0	1	0.003

