

特 許 顧 (特許法第38条ただ し書の規定による 特件出顧 4847 * 7n 12

特許庁長官殿

発明の名称

パルス袈裟紫裳

特許額求の範囲に記載された発明の数

発 明 者

東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内

高醇 喜葉

· (u + 1 6)

特許出願人

* 新 東京都千代田区丸の内一丁目5番1号

化多表 中 川 神 -

音 山 博 吉

代・理 人

新 東京都千代田区丸のグラ 丁目5番1号 株式会社 田 女 作 所 内

電 路 東京 270-2111(大代表

K & (7237)弁理士 薄 田 利

47 069124

明 細 書

発明の名称 パルス伝送方式

特許請求の範囲

- 1. 伝送路において被形が劣化したパルスを、受信側において、送信側のパルスよりも幅のひろい矩形被に近似的に等化し、次にこの等化したを矩形被を一定時間遅延したものを微性反転してもとの矩形故よりがルス幅の小れるに逆極性でもとの矩形故よりパルス幅の小スを作り出し、これを用いて送るパルス伝送方式。
- 2 送信側で間欠的にパルス列を送信し、受信側では第1項記載の放形等化を行なうととによつて送信側の1個のパルスに対応して生じた受信側の2個のパルスのうち第2のパルスが送信側でパルスを送信していない時間領域に対応する時点に生ずるようにしたことを特徴とするパルス伝送方式。
- 3. 送信側でパルスの送信間隔をひろげて送信し。

19.日本国特許庁

公開特許公報

①特開昭

49-29003

43公開日

昭49.(1974) 3. 15

②特願昭 ②出願日

審査請求

昭四. (1973

y. (1975)

(全4頁)

庁内整理番号

10日本分類:

6964 53 6549 53 96COFO 96MEZ

受信側で第1項記載の波形等化を行なりことによって生じた2個のパルスのうち第2のパルスが、ある特定の第1のパルスとそれにひきついで生ずる他の第1のパルスとの中間に生じるようにしたことを特徴とするパルス伝送方式。

4. 送信側で一定間隔でパルスを送信し、受信側で第1項配数の被形等化を行なうととによって生にた2個のパルスのうち送信側のパルスに対応する受信側のパルスに対応する受信側のパルスに対応するとのでは、これを変更回路によって、の出力を第1項記載の2個のパルスの時間隔に対応する時間だけ遅延させたものとパルスのは対応する時間だけ遅延させたものとパルスのようによりであるとを特徴とするパルスを活って、ことを特徴とするパルスを活信側とするパルスを得るとを特徴とするパルスを活信側とするパルスを活には、これを開いて送信側とするパルスを持つない。

発明の詳細な説明

・本発明は光ケープルその他のパルス伝送路を用いて借号パルス列を川継伝送する方式に関する。 (
クランド形の光ケーブルでは中心部のガラス

(コア)の屈折率を周辺部のガラス(クラッド) の屈折率よりわずかに大きくしてあるため,クラ ッドの太さが波長にくらべて十分大きい場合には 光は両者の境界面を全反射しながら伝播し。ケー ブルの外に逃げることがない。コアの径あるいは コアとクラッドの屈折率差がある程度大きいと、 光の伝送モードが多数生じ、高次のモードほど境 界面における全反射の回数が多いため、伝播遅延 が大きくなる。したがつてバルスが光ケーブル剤 を伝播する間に低次のモードと高次のモードの間 に遅延差が生じ,伝播距離に比例してパルス幅が 増大するという現象を生ずる。従来との形のケー ブルでは上記のパルス幅の増大が伝送速度を制限 し,たとえば1 km の距離では10メガビツト/ 毎秒程度の伝送が可能であつても . 2 km ではそ の半分の5メガビツト/低秒になるというような 不都合を生じていた。このよりな欠点を克服する ために。光ケープルにおける伝送モードを単一化 することが考えられるが、そのためにはコフをき わめて細くしなくてはならず、ケーブルの接続。

(3)

にして得られた炬形波を第1図のような回路,あ るいはとれと近似的に等価と考えられるようを回 路に印加する。すなわち第2図aの如き矩形放は 第1図1の遅延回路(との遅延時間はパルス幅化) 比して充分小さい)およびインバータ2を通過し た第2図6の如き被形と第1図3の加箕回路によ り合成され第2図cのような波形となる。このよ ·うにして第2図 a の幅のひろいパルスは第2図 c の如き傷の狭い 2個の(互に逆極性の)パルスに 変換される。との2個のパルスのうち1個をパル ス歳別に用いれば伝送能率を向上することができ、 る。以上は低立パルスについて述べたがとれを信 号パルス列に適用する場合。2個のパルスのうち 第1.のパルスを用いて識別を行なおりとする場合 第2のパルスがとれを妨害することも考えられる が、これは後述の如く送信側の符号化、あるいは 受信側の復号化を適当に行なりととによつて避け ることができる。また波形成形に用いた回路は勇 1 図の回路形式に限らずこれと(近似的にでも) 等餌な特性を有するものであればよいことはいう

特別 昭49-29003 夕 レーザ光の導入等実際上の問題は多い。

上記の欠点を除去する方法としては、特定園故 教特性を有する増幅器をもちいる、いわゆる放形 等化を行なうことも考えられるが、バルス幅が 10~100倍に拡大された放形をもとの放形に 等化することは必ずしも容易ではない。

本発明は上記の欠点を除去し、簡易な放形等化 方式により、パルス伝送効率の向上ならしむると とを目的とするものである。

上記の目的を達成するために本発明ではまず,傾の拡大されたパルスを同じ幅の矩形パルスに放形等化する。すなわち各種モードの伝播運延差に起因するパルス放形のひずみは,単にパルス幅のひろがりのみならず,送信淵で矩形放であつたものがケーブル内の伝送モード分布により受信端であるがケーブル内の伝送モード分布により受信端である。とした対象を同一パルス幅の矩形放に等化するととは比較的容易である(あるいは受信放が放形変形をうけず単に幅の拡大された街形放であればこれをそのまゝ用いればよい)。次にこのよう

(4)

までもない。

以下本発明を実施例によつて詳細に説明する。 第3図は本発明の一実施例の構成図を示したもの で,送信側のパルス信号第4図aは符号変換器第 3図5の入力端4に加えられてれを符号変換器5 Kより第4図 b の如くパルスをまとめて数個すつ (個数が多いほど能率がよい。図では3個ずつ) 間欠的に発生させ,とれに引つづいてとの一組の パルスが発生している区間(これは上述の第1の パルスと第2のパルスの時間間隔に対応する)と 同じかそれ以上の休止時間を生ずるよりに符号化 したものを伝送路6に送出する。とれを信仰では、 **前置等化器 7 で幅のひろい矩形波に等化し、さら** に 後置等化器 8 により第4図 c のような逆振性の 対パルスに等化する。この等化により生じた負値 性のパルスは第4図bにおける休止期間に相当す る部分に発生するもので特に歳別の妨害にはなら ない。したがつてこれを歳別再生回路9によつて 正のパルスのみ再生し、ふたたび伝送路10亿送 出する。とのように送信仰の符号化によつて歳別

·~\

化支障を与えることなく勇4図の例においては少 なくともL5倍の能率向上がはかれることは明ら かである。第5図は送信側における符号化の他の 方式を示したものであり、第4図aと同じ第5図 aのパルス符号列を第5図bの如く符号化して送 出し第3図8の回路で等化した負極性のパルスが 正極性のパルスの間に生ずるようにすれば歳別再 、生に何ら支障を与えない。次に受信側の復号によ り弟2のパルスの影響を除去することを考える。 ・との方法は第6図』に示す如く送信側では特に符 号化を行なうととなく送出し、受信側では第3図 の後置等化回路 8 により、第 6 図の如く第 2 のパ ルス (第 6 図 b) がパルス繰返し周期の整数倍だ け遅て生ずるようにする。この場合後置等化回路 . 8の出力は席6図cの如く送信パルス列とは全く 別のものになる。これは毎価的に第7図』の符号 化(11は1パルス周期分の選延回路)を行なつ たことになるからこのようなパルス列(第6図c) を逆回路(第7図b)に通してやればもとのパル ス列(第6図a)を得ることができる。

(7)

9 ; 識別再生

1.1; 遲延回路

代理人 弁理士

特期 昭49-- 29003 (3)

以上述べた如く本発明によれば、放形等化と符号化(または復号化)の組合せにより、伝送路におけるパルス幅拡大による伝送能率の低下を避けることが可能となる。

図面の簡単な説明

第1図は本発明の後置等化器の一構成例、第2 図は第1図の動作波形を示すタイムチャート、第 3図は本発明の一実施例、第4図は本発明の一実施例の動作波形を示すタイムチャート、第5図は 本発明の他の実施例の動作を示すタイムチャート。 第6図は本発明の第3の実施例の動作を示すタイムチャート。 第7図は本発明の第3の実施例の動作を示すタイムチャート。 2000年 2000年

1; 建延回路

2:1ンパータ

3;加算回路

5;符号化回路

6 , 10 ; 伝送ケープル

7;前置等化器

8;後置等化器。

(8)

才 2 图

特開 昭49-29003 (4)

才 5 図

≯4 図

才 3 图

* 6 ®

経附序類の目録 (CIM M か さ 1d (2) 4 ㎡ は (3) 4 ㎡ 状 1d

前記以外の発明者、特許出顧人または代理人

発 明 者。 東京都国分子市東恋ヶ代1月11280番地 株式会社日立製作所中央研究所内 達・**。 新鱼 観生