Test 2 Solutions

Fundamentals of Calculus II

Name: Senior/Seniorita Correcto/a!

True or False. No justification necessary.

- 1. T The integral of $\frac{1}{x}$ with respect to x is $\ln|x| + C$.
- 2. F $\int e^{3x} dx = e^{3x} * 3 + C$
- 3. F (a,b) is a relative max if $D = f_{xx}f_{yy} (f_{yx})^2 < 0$.
- 4. T Double integrals yield the volume under a surface.

$$f(x,y) = x^2y + 15x$$

Evaluate the expressions below. No justification necessary.

- 5. $\int x(f(x,y))^{99} dx$ DISREGARD Ideally, I hoped to see: you can't relate the rate of change of u to that of x.
- 6. Find $f_x 2xy + 15$
- 7. What are the critical points of f(x,y)? 2xy + 15 = 0 and $x^2 = 0$, meaning no values for x, y satisfy the equations. Therefore, there are no critical points.
- 8. $\int_{y=0}^{y=1} f(x,y) \ dy = x^2/2 + 15x$
- 9. $\int_{y=0}^{y=2} \int_{x=0}^{x=1} f(x,y) dx dy = 47/3$ (remember, use any order you'd like)
- 10. $\int_0^\infty e^{-7x} \ dx = 1/7.$

Respond to the questions below. Explain and justify your thought process.

11. For $\int u(x)v'(x)dx$, state the integration by parts technique. $\int u(x)v'(x)dx = u(x)v(x) - \int v(x)u'(x)dx$

- 12. Explain why this technique works. product rule
- 13. Use integration by parts to solve $\int x^2 ln(x) dx$.

$$u = ln(x), dv = x^2$$

Then,
$$\frac{du}{dx} = 1/x$$
 and $v = x^3/3$.

By integration by parts we can simplify the integral to

$$\int x^2 \ln(x) \ dx = \ln(x) x^3 / 3 - \int x^2 / 3 \ dx$$

yielding
$$\frac{x^3}{3}ln(x) - \frac{x^3}{9} + C$$
.

- 14. State one application of double integrals or partial derivatives. your favorite real-world application is perfect!
- 15. What's your favorite part of the course so far? I \heartsuit Calculus II