# nf-core/ t molkart

Targeted spatial transcriptomics data processing

### Session Objectives

### To learn

- What is nf-core/molkart
- How to set up nf-core/molkart for your targeted transcriptomic data
- Example of a pipeline run
- How to read the output
- Where to get more information and support for nf-core/molkart

# What is nf-core/molkart?

nf-core/molkart is a scalable and reproducible bioinformatics best-practise pipeline for processing targeted spatial transcriptomics data.

Originally developed for processing Molecular Cartography data, it can also be used for MERFISH, as well as any targeted spatial transcriptomic method that produces TIFF images and spot positions.

# What does the input data look like?

- Nuclear image as a TIFF
- Additional image to help with segmentation as a TIFF
- Spot table as either CSV, TSV or TXT with X, Y, (Z), and gene columns

### Advantages of Nextflow and nf-core

### Fully featured pipelines

#### Documentation

Extensive documentation covering installation, usage and description of output files ensures that you won't be left in the dark.



#### Portable and reproducible

Pipelines follow best-practices to ensure maximum portability and reproducibility. The large community makes the pipelines exceptionally well tested and easy to run.



#### Stable Releases

nf-core pipelines use GitHub releases to tag stable versions of the code and software, making pipeline runs totally reproducible.



#### CI Testing

Every time a change is made to the pipeline code, nf-core pipelines use continuous-integration testing to ensure that nothing has broken.



#### Cloud-ready

Pipelines are tested on AWS after every release. You can even browse results live on the website and use outputs for your own benchmarking.



#### Packaged software

Pipeline dependencies are automatically downloaded and handled using Docker, Singularity, Conda or others. No need for any software installations.



### Full workflow



# Samplesheet

| sample               | nuclear_image                           | spot_table                                | membrane_image                            |  |
|----------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|--|
| sample_control_r1_s1 | /images/sample_control_r1_s1. DAPI.tiff | /spots/sample_control_r1_s1.sp<br>ots.tsv | /images/sample_control_r1_s1. WGA.tiff    |  |
| sample_control_r2_s1 | /images/sample_control_r2_s1. DAPI.tiff | /spots/sample_control_r2_s1.sp<br>ots.tsv | /images/sample_control_r2_s1. WGA.tiff    |  |
| sample_control_r1_s2 | /images/sample_control_r1_s2. DAPI.tiff | /spots/sample_control_r1_s2.sp<br>ots.tsv | /images/sample_control_r1_s2.<br>WGA.tiff |  |
|                      |                                         |                                           |                                           |  |

Presenting on cardiac data from Wünnemann et al. 2024

# Image-based inputs



## Image preprocessing

Contrast-limited adaptive histogram equalization



# Create training subset

For atypical cell shapes and sizes, a well-performing **segmentation model** might not be readily available.



Crop output in HDF5 and TIFF formats for interactive model training with ilastik and/or Cellpose 2.



### Segmentation options



ilastik: pixel classifier + Multicut



**DeepCell Mesmer**: pre-trained models



Cellpose: pre-trained models / custom model



# Segmentation output





Cellpose 2 custom trained model



# Spot processing

Duplicated gene detection and filtering

Spot assignment to cells based on overlap





Cell-by-gene count matrix with region properties

# Quality control and report

The **MultiQC report** presents gathered samplespecific QC metrics interactively





A modular tool to aggregate results from bioinformatics analyses across many samples into a single report.

This report has been generated by the nf-core/molkart analysis pipeline. For information about how to interpret these results, please see the documentation.

Report generated on 2024-01-08, 15:11 CET based on data in: /gpfs/bwfor/work/ws/hd\_gr294-HIproject\_nfcore\_molkart/data/Molecular\_Cartography/work/la/e8c369f38f17218146d82388a17192

#### QC statistics from segmentation

| & Copy table ☐ Configure Colum | ns de Plot Showing *1) | as rows and "/ ", columns. |                   |                       |                                 |           |
|--------------------------------|------------------------|----------------------------|-------------------|-----------------------|---------------------------------|-----------|
| sample_id                      | Segmentation method    | Total Number of cells      | Average cell area | Total number of spots | Average spots assigned per cell | Total spe |
| sample_4d_r2_s2_cellpose       | celpose                | 8 755.0                    | 5 756.1           | 758 629.0             | 78,1                            | 683 971.0 |
| sample_4h_r1_s1_ilastik        | BMSK                   | 16 860.0                   | 9 391.3           | 3 036 550.0           | 172.3                           | 2 904 552 |
| sample_4h_r1_s1_cellpose       | celipose               | 15 413.0                   | 8.811.0           | 3 056 550.0           | 170.9                           | 2 634 913 |
| sample_2d_r1_s2_cellpose       | celpose                | 12 106.0                   | 7 487.8           | 2 241 977.0           | 169.1                           | 2 046 665 |
| sample_2d_r1_s1_mesmer         | mesmer                 | 13 627.0                   | 6 091.6           | 940 758.0             | 57.0                            | 777 065.0 |
| sample_2d_r2_s1_mesmer         | mesmer                 | 12:341.0                   | 6 605.0           | 1 055 456.0           | 58.6                            | 722 999.0 |
| sample_control_r1_s2_cellpose  | celpose                | 14 202.0                   | 7 544.9           | 5 167 141.0           | 326.0                           | 4 629 258 |
| sample_2d_r2_s1_liastik        | Santik                 | 23 350.0                   | 5 708.8           | 1 055 456.0           | 45.0                            | 1 050 927 |



### Pipeline outputs



# Contributions to nf-core



# Future plans and ongoing work

### **SpatialData** support

More segmentation options including spot-based methods such as **BOMS** and **Baysor** 

**GPU** support for segmentation

### Slack and Github

For support feel free to open an issue on Github or ask questions in the #molkart Slack channel!



### **Session Objectives**

#### To learn

- What is nf-core/molkart
- How to set up nf-core/molkart for your targeted transcriptomic data
- Example of a pipeline run
- How to read the output
- Where to get more information and support for nf-core/molkart

### Before we finish...

Come and develop with us!







### More Info & Acknowledgements



https://nf-co.re



github.com/nf-core



nfcore.slack.com



youtube.com/nf-core



 $@nf\_core@mstdn.science\\$ 



@nf\_core

Financial & Infrastructure Support:

Chan Zuckerberg Initiative ®











HackMD

Speaker's Support













