# Relational Databases

#### Guillaume Raschia — Université de Nantes

Last update: April 8, 2013

[Source : J. Cheney, Univ. of Edinburgh]

[Source : L. Libkin, Univ. of Edinburgh]

## **Databases**

#### What is a database?

- Any collection?
- A file system?
- A collection of relational tables?
- A bunch of XML documents?
- A multimedia digital library containing text, images, music, and sound recordings?

What differentiates a big pile of data from a database?

## **Databases**

#### A database is...

- ...a collection of structured data (files, records, trees, key-values)
- ...that provides a high-level interface (query/update languages)
- ...and isolates users from low-level (and transient) implementation details (storage layout, query optimization, data structure traversals)

In other words, databases are **ADTs for managing large** amounts of information

# Database theory

# Is it all just about making SQL Server 0.3% faster? No.

- Database technology is very important commercially, hence an alphabet soup of acronyms, buzzwords, standards, and fads
- But the underlying theory of databases is elegant and technology-independent
- In fact, database systems (in their current form) would not exist without theory

 1960s: Databases provided "network" (graph) or "hierarchical" (tree) data model. CODASYL, COBOL. No underlying theory or declarative semantics

- 1960s: Databases provided "network" (graph) or "hierarchical" (tree) data model. CODASYL, COBOL. No underlying theory or declarative semantics
- 1970s: Codd proposes relational model: everything is a table, separate interface from implementation, etc.

- 1960s: Databases provided "network" (graph) or "hierarchical" (tree) data model. CODASYL, COBOL. No underlying theory or declarative semantics
- 1970s: Codd proposes relational model: everything is a table, separate interface from implementation, etc.
- 1980s: Commercial success of RDBMS technology (Oracle, IBM, etc.)

- 1960s: Databases provided "network" (graph) or "hierarchical" (tree) data model. CODASYL, COBOL. No underlying theory or declarative semantics
- 1970s: Codd proposes relational model: everything is a table, separate interface from implementation, etc.
- 1980s: Commercial success of RDBMS technology (Oracle, IBM, etc.)
- 1990s: Object oriented DB research popular, but fails to make significant commercial impact

- 1960s: Databases provided "network" (graph) or "hierarchical" (tree) data model. CODASYL, COBOL. No underlying theory or declarative semantics
- 1970s: Codd proposes relational model: everything is a table, separate interface from implementation, etc.
- 1980s: Commercial success of RDBMS technology (Oracle, IBM, etc.)
- 1990s: Object oriented DB research popular, but fails to make significant commercial impact
- 2000s: XML/semistructured DB research popular, but...?

- 1960s: Databases provided "network" (graph) or "hierarchical" (tree) data model. CODASYL, COBOL. No underlying theory or declarative semantics
- 1970s: Codd proposes relational model: everything is a table, separate interface from implementation, etc.
- 1980s: Commercial success of RDBMS technology (Oracle, IBM, etc.)
- 1990s: Object oriented DB research popular, but fails to make significant commercial impact
- 2000s: XML/semistructured DB research popular, but...?
- 2010s: NoSQL DB systems: cloud for scaling-up, simple makes it efficient, anti-relational

- 1960s: Databases provided "network" (graph) or "hierarchical" (tree) data model. CODASYL, COBOL. No underlying theory or declarative semantics
- 1970s: Codd proposes relational model: everything is a table, separate interface from implementation, etc.
- 1980s: Commercial success of RDBMS technology (Oracle, IBM, etc.)
- 1990s: Object oriented DB research popular, but fails to make significant commercial impact
- 2000s: XML/semistructured DB research popular, but...?
- 2010s: NoSQL DB systems: cloud for scaling-up, simple makes it efficient, anti-relational
- The future: ACID/SQL revolution with NewSQL?

# Preaching to the choir

- In retrospect, widely agreed that simple, clear, compelling data model is what made RDBMSs so successful
- Lack of same is what killed network, hierarchical, OO databases
- Some feeling that XML DB work has same problem

So: Theory is—at least—as important than practice

## Source material

- For relational database theory:
  - Foundations of Databases, S. Abiteboul, R. Hull, and V. Vianu, Addison-Wesley 1995.
  - Elements of Finite Model Theory, L. Libkin, Springer-Verlag 2004.
- For database research foundations:
  - Readings in Database Systems (*The Red Book*), J. H.
     Hellerstein, and M. Stonebraker, 4th Edition, MIT Press 2005.
- For database systems:
  - Database Systems: The Complete Book, H. Garcia-Molina, J.
     D. Ullman, and J. Widom, 2nd Edition, Prentice Hall 2008.
  - Database Management Systems, R. Ramakrishnan, and J. Gehrke, 3rd Edition, McGraw-Hill Science, 2002.

# Overview

# It is all about...

#### The relational data model

- Data is stored in *n*-ary relations (i.e., tables)
- Data is described using "schema" (relations are typed)
- Data is manipulated using set-at-a-time relational operators (SQL)

## Behind the scenes

# Key theoretical issues

- Query language semantics and logical interpretation
- Descriptive power of query language features: conjunction, disjunction, negation, quantification
- Decision problems: query equivalence, constraint entailment
- Related area: finite model theory

# The relational model

# Some terminology

- **Domain**: countably infinite set D of individual data values (by convention,  $D = \{a, b, c, d, ...\}$
- Rows, records or **tuples** : a sequence of data elements  $\langle \vec{d} \rangle$ .
- Relations or tables: finite sets of records (of the same width)
- Database (instance): collection of named relations
- Schema: a description of the structure of a record, table, or database

# Schemas

- Relations "typed" by number of arguments: R:n iff  $R \subset D^n$
- The only base type is D, so number of arguments suffices. If R:n, define arity ary(R) = n
- ullet Database instances I are "typed" by schemas  ${\cal R}$

$$\mathcal{R} ::= \{R_1: m_1, \ldots, R_n: m_n\}$$

Example:

means "relation R has two fields, and S has three fields."

#### Instances

An instance I (of a database schema  $\mathcal{R}$ ) is a collection of finite relations matching  $\mathcal{R}$ 

$$\Big\{R = \{\langle a, b \rangle, \langle b, c \rangle\}, S = \{\langle a, a, a \rangle, \langle a, b, b \rangle\}\Big\}$$

is an instance of  $\mathcal{R} = \{R:2, S:3\}$ 

- Order of rows doesn't matter, duplicates irrelevant
- adom(R) ⊂ D is the active domain of R, i.e. the set of domain values that occur in R
- Tabular notation:

| F | ₹ |   | S |   |
|---|---|---|---|---|
| а | b | a | a | a |
| b | С | а | b | b |

# Exercises 1/2

#### 1. Definitions

Database, Table, Relation, Attribute, Tuple, Schema, Instance, Domain, Value, Active domain

#### 2. True or False?

- i) A relation may have an infinite number of tuples.
- ii) Every relation follows a schema.
- iii) Attributes are typed.
- iv)  $I \subset J$  implies that  $adom(I) \subset adom(J)$ .

# Exercises 2/2

#### 3. Is it a relation?

Which of the following relations conform to the schema R:2?

```
1. R = \{\langle a, b \rangle, \langle c, b \rangle\}
```

2. 
$$R = \{\langle a, b \rangle, \langle c \rangle\}$$

3. 
$$R = \{\langle a, b \rangle, \langle b, a \rangle\}$$

4. 
$$R = \{\langle a, b \rangle, \langle a, b \rangle\}$$
 (abuse of set notation)

5. 
$$R = \{\langle a, b \rangle, \langle c, \text{NULL} \rangle\}$$

6. 
$$R = \{\} = \emptyset$$

7. 
$$R = \{\langle \rangle \}$$

#### 4. Problem

How many different ways are there to draw a relation of schema S:n within m tuples?

# Core algebra

## Expressions:

$$v ::= i \mid a$$
 $Q ::= \langle a \rangle \mid R \mid \sigma_{v=w}(Q) \mid \pi_{\overline{i}}(Q) \mid Q \times Q'$ 

- Index i, domain value a
- Singleton (1-tuple constant)  $\langle a \rangle$
- Relation variables R
- Selection σ
- Projection  $\pi$
- Cross product x

This core algebra is so-called **SPC** 

## Selection

- $\sigma_{v=w}(Q)$  selects those rows  $\langle \vec{d} \rangle$  satisfying v=w from Q
- Here, v, w are either indices or domain constants
- Example:

$$\sigma_{1=2} \left( \begin{array}{c|ccc} a & a & b \\ a & b & c \\ b & b & d \\ b & c & c \\ c & c & d \end{array} \right) = \begin{bmatrix} a & a & b \\ b & b & d \\ c & c & d \end{bmatrix}$$

# Projection

- $\pi_{\vec{i}}(Q)$  projects the field indices listed in  $\vec{i}$ , in order (that is, drops all other fields)
- Example:

$$\pi_{1,3} \left( egin{array}{c|ccc} a & a & b & b \ a & b & b & d \ b & b & c & c \ c & c & c & d \ \end{array} 
ight) = egin{array}{c|ccc} a & b \ b & d \ b & c \ c & d \ \end{array}$$

Set-theoretic semantics: duplicate elimination

# Cross product

- $Q \times Q'$  is the cross product of Q and Q'
- Example:



## Normalization

- Two queries are equivalent (Q<sub>1</sub> ≡ Q<sub>2</sub>) iff for every input, they produce the same output
- There are obviously lots of ways of writing "the same" query
- It would be handy to have a canonical representation of a given query

#### **Theorem**

Every SPC query has a normal form such that  $Q \equiv Q'$  if and only if norm(Q) = norm(Q')

General idea: Rewrite to form

$$\pi_{\vec{j}}\Big(\sigma_F(R_1\times\cdots\times R_n)\Big)$$

# Normalizing selection and projection

• Neighboring projections can be composed

$$\pi_{\vec{\ell}}(\pi_{\vec{k}}(Q)) = \pi_{\vec{\ell}}(Q)$$

where  $\ell_i = k_{ii}$  for each i

Problem: Neighboring selections commute

$$\sigma_{i=j}(\sigma_{i'=j'}(Q)) = \sigma_{i'=j'}(\sigma_{i=j}(Q))$$

• Solution: Allow sets (conjunction) of equations in selections

$$\sigma_F(\sigma_{F'}(Q)) = \sigma_{F \cup F'}(Q)$$

# More rewriting rules

$$\sigma_F(\pi_{\vec{j}}(Q)) = \pi_{\vec{j}}(\sigma_{F'}(Q))$$

$$\text{where } F' = F[j_i/i]$$

$$\sigma_{1=j}(\langle a \rangle \times Q) = \langle a \rangle \times \sigma_{(j-1)=a}(Q)$$

$$((Q_1 \times \dots \times Q_n) \times Q) = (Q_1 \times \dots \times Q_n \times Q)$$

$$(Q \times (Q_1 \times \dots \times Q_n)) = (Q \times Q_1 \times \dots \times Q_n)$$

$$Q \times Q' = \pi_{\vec{\ell}\vec{m}}(Q' \times Q)$$

$$\text{where } \vec{m} = 1, \dots, \operatorname{ary}(Q'),$$

$$\vec{\ell} = \operatorname{ary}(Q') + 1, \dots, \operatorname{ary}(Q) + \operatorname{ary}(Q')$$

$$\sigma_F(Q) \times Q' = \sigma_F(Q \times Q')$$

$$\pi_{\vec{\ell}}(Q) \times Q' = \pi_{\vec{\ell}}(Q \times Q')$$

#### Numbers vs. names

- So far, we have used indices to refer to values in records
- This is convenient from a theoretical perspective because such expressions are concise and easy to specify
- But in real life (e.g. SQL), field names are useful
- Example. Guess what this does:

$$\pi_{1,2,5}(\sigma_{1=4}(R \times S))$$

How about this?

$$\pi_{\mathsf{Name},\mathsf{Address},\mathsf{Phone}}(\sigma_{\mathsf{Name}=\mathsf{PName}}(\mathsf{AddressDir}\times\mathsf{PhoneDir}))$$

## Schemas with names

- Relations  $R:\langle \vec{A} \rangle$  are typed by list of field names
- We say **sort** of R is  $\langle \vec{A} \rangle$
- The only base type remains D, so list of names suffices
- Database instances are typed by schemas R mapping relation names to sorts
- Example:

$$\mathcal{R} = \{R:\langle A, B \rangle, S:\langle A, B, C \rangle\}$$

means "relation R has two fields named A, B, and relation S has three fields named A, B, C."

# A running example

#### Cinema database

```
___ Cinema = {Movie, Featuring, Location, Schedule} ___
```

Movie: title, director, length, release\_date

Featuring: title, actor, role

Location: theater, address, phone\_number

Schedule: theater, title, showtime

#### Instances with names

- A named record is a finite map  $\langle A_1:d_1,\ldots,A_n:d_n\rangle$  from names to values
- By convention, field order doesn't matter
- A named relation  $R:\langle \vec{A} \rangle$  is a set of named records
- An instance of  ${\mathcal R}$  is a collection of named relations matching named schema  ${\mathcal R}$
- An instance of  $\mathcal{R} = \{R: \langle A, B \rangle, S: \langle A, B, C \rangle\}$ :

| ĸ |   |  |
|---|---|--|
| Α | В |  |
| а | a |  |
| b | С |  |
| С | С |  |

|   | S |   |
|---|---|---|
| Α | В | С |
| а | а | а |
| b | d | e |
| С | е | f |

# Core algebra with names

$$v ::= A \mid a$$

$$Q ::= \langle A := a \rangle \mid R \mid \sigma_{v=w}(Q) \mid \pi_{\vec{A}}(Q) \mid Q \bowtie Q' \mid \rho_{A_1...A_n \to B_1...B_n}(Q)$$

- Singleton constants  $\langle A:a \rangle$ , relation variables R
- **S**election  $\sigma$
- Projection  $\pi$
- Join ⋈
- Renaming  $\rho$

This algebra is called **SPJR** 

## Selection

- $\sigma_{v=w}(Q)$  selects those rows satisfying v=w from Q
- Here, v, w are either constants or implicit field labels
- Example:

$$\sigma_{A=B} \left( \begin{array}{c|ccc} A & B & C \\ a & a & b \\ a & b & c \\ b & b & d \\ b & c & c \\ c & c & d \end{array} \right) = \begin{array}{c|cccc} A & B & C \\ a & a & b \\ b & b & d \\ c & c & d \end{array}$$

# Projection

- $\pi_{\vec{A}}(Q)$  projects the field names listed in  $\vec{A}$  (that is, drops all other fields)
- Example:

$$\pi_{A,C} \left( \begin{array}{c|ccc} A & B & C \\ \hline a & a & b \\ a & b & b \\ b & b & d \\ b & c & c \\ c & c & d \end{array} \right) = \begin{array}{c|ccc} A & C \\ \hline a & b \\ b & d \\ b & c \\ c & d \end{array}$$

# Join

- $Q \bowtie Q'$  joins Q and Q' by merging all pairs of records whose **common fields are equal**. Duplicate fields are omitted
- Example:

| Α | В | C |
|---|---|---|
| а | а | b |
| а | b | С |
| b | b | d |
| b | С | С |
| С | С | d |

|   | Α | D   |  |
|---|---|-----|--|
|   | а | 55  |  |
| 1 | а | 100 |  |
|   | С | 42  |  |
|   |   |     |  |

| Α | В | C | D   |
|---|---|---|-----|
| а | а | b | 55  |
| a | а | b | 100 |
| a | b | С | 55  |
| а | b | С | 100 |
| С | С | d | 42  |
|   |   |   |     |

## Renaming

- The renaming operator  $\rho_{A_1...A_n\to B_1...B_n}(R)$  applies the simultaneous substitution  $[B_1/A_1,\ldots,B_n/A_n]$  to the field names of R.
- Example:

$$\rho_{BC \to DB} \left( \begin{array}{c|ccc} A & B & C \\ \hline a & a & b \\ a & b & c \\ b & b & d \\ b & c & c \\ c & c & d \end{array} \right) = \begin{array}{c|ccc} A & D & B \\ \hline a & a & b \\ a & b & c \\ b & b & d \\ b & c & c \\ c & c & d \end{array}$$

## Equivalence

- Unnamed and named relations are equivalent
- Named [records, relations, instances, schemas] are in bijective correspondence with unnamed [records, relations, instances, schemas]
- Howto: fix an ordering on field names; assume all field name sequences are in increasing order

$$\langle d_1, \ldots, d_n \rangle : n \Leftrightarrow \langle A_1 : d_1, \ldots, A_n : d_n \rangle : \langle \vec{A} \rangle$$

# Equivalence

- A SPJR query  $Q:\langle \vec{A} \rangle$  on  $\mathcal{R}$  defines a function from named instances I of  $\mathcal{R}$  to named relations Q(I) over  $\langle \vec{A} \rangle$
- We say that two query languages are equivalent if their expressions define the same functions

#### **Theorem**

SPC and SPJR queries are equivalent in expressive power

- This is good because SPC is somewhat "lower level": easier to analyze, but not as convenient
- Hence, can "compile" SPJR queries down to SPC queries without loss of expressiveness

# Equivalence: sketch of the proof

It suffices to translate SPC queries to SPJR queries and vice-versa

- Selection, projection, renaming cases are easy
- **Key case 1**:  $(R \bowtie S)^* = \pi_{\vec{i}}(\sigma_{i_1=j_1,...,i_n=j_n}(R^* \times S^*))$  where  $i_1$ ,  $j_1$ , etc. are indices of equal field names in R and S
- **Key case 2**:  $(R^* \times S^*) = (\rho_{A_1...A_n \to B_1...B_n}(R)) \bowtie S$  where  $\langle \vec{B} \rangle$  is all distinct from S field names
- Careful proof/implementation requires bookkeeping (to maintain mapping between field names and positions)

# Exercises 1/2

#### 1. Definitions

Algebra, SPC, SPJR, Query normal form, Query equivalence

#### 2. True or False?

- i) Renaming is only "syntactic sugar" in SPJR.
- ii) Every SPC query is expressible within SPJR and vice-versa.
- iii)  $\pi_{\vec{i}}(\pi_{\vec{k}}(R)) = \pi_{\vec{k}}(\pi_{\vec{i}}(R)).$
- v)  $\{\langle\rangle\}$  op  $R=R, op \in \{\times, \bowtie\}$ .
- vi)  $\sigma_{i=a \ \lor \ j=b}(R)$  is expressible within SPC.
- vii)  $\sigma_{i\neq a}(R)$  is not expressible within SPC.

# Exercises 2/2

## 3. SPC and SPJR

- 1. Give the all schedule of **Katorza** theater.
- 2. Find theaters that show some movies directed by Chabrol.
- 3. Give the addresses of theaters that play some movies featuring **Jaoui** and where the director is also an actor.

### 4. Problem

Let R be a database schema and Q a SPC query over R;

- 1. Prove that Q(I) is finite for each instance I of  $\mathcal{R}$ .
- 2. Given instance I of  $\mathcal{R}$  and output arity n for SPC query Q(I):n, show an upper bound for the number of tuples that can occur in Q(I). Show that this bound can be achieved.

# Conjunctive calculus

- Calculus is a query formalism based on set comprehension notation
- Fragment of first-order logic (FO)

$$v ::= a \mid x$$
  
 $\Phi ::= R(\vec{v}) \mid v = v' \mid \exists x. \Phi \mid \Phi \land \Psi$   
 $Q ::= \{(\vec{v}) \mid \Phi\}$ 

 Because only conjunctions are allowed in Φ, these are called conjunctive queries

### Evaluation of formula

#### **Semantics**

Returns all tuples  $\vec{v}$  such that  $\Phi$  is true

- Free variables free( $\Phi$ ) are those that occur in  $\vec{v}$
- $adom(\Phi)$  is the **active domain** of  $\Phi$ , i.e. set of constants in  $\Phi$
- Valuation  $\nu$  maps variables to constants from D:  $\nu(\vec{x}) = \vec{a}$
- I satisfies  $\Phi$  under  $\nu$  denoted I  $\models \Phi[\nu]$   $Q(I) = \{\nu(\vec{\nu}) \mid I \models \Phi[\nu] \text{ and } \nu \text{ is a valuation over } \vec{\nu}\}$

## Calculus example

$$\begin{cases} (x, y, z) \mid \exists w. R(x, y, w) \land S(x, z) \} \\ R \\ \hline a \mid a \mid b \\ a \mid b \mid c \\ b \mid b \mid c \\ c \mid b \mid d \end{cases}, \begin{matrix} S \\ a \mid 55 \\ c \mid 42 \end{matrix} = \begin{bmatrix} a \mid a \mid 55 \\ a \mid b \mid 55 \\ c \mid b \mid 42 \end{bmatrix}$$

• w could be an anonymous variable:

$$\{(x,y,z)\mid R(x,y,_{-})\wedge S(x,z)\}$$

## More examples

Find addresses of theaters that play movies directed by Chabrol

$$Q = \{(x,y) \mid \exists z. \mathsf{Movie}(z, Chabrol, \_, \_) \land \\ \mathsf{Location}(x,y,\_) \land \mathsf{Schedule}(x,z,\_)\}$$

## Expressiveness

• Selection:

$$\sigma_{v=w}(R) = \{(\vec{x}) \mid R(\vec{x}) \land \vec{x}_{[v]} = \vec{x}_{[w]}\}$$

where  $\vec{x}_{[i]} = x_i, \vec{x}_{[a]} = a$ 

• Projection:

$$\pi_{\vec{\ell}}(R) = \{(x_{\ell_1}, \dots, x_{\ell_k}) \mid R(\vec{x})\}$$

Cross product:

$$R \times S = \{ (\vec{x}, \vec{y}) \mid R(\vec{x}) \land S(\vec{y}) \}$$

## Tableau queries

•  $(\mathbf{T}, \vec{u})$ : it consists of a set of tables, so-called **Tableau T** with constant and variable entries, and an answer row  $\vec{u}$ 

| R                      |       |          |                                              |
|------------------------|-------|----------|----------------------------------------------|
| <i>v</i> <sub>11</sub> | • • • | $v_{1n}$ |                                              |
| :                      | ÷     | :        |                                              |
| v <sub>i1</sub>        |       | Vin      |                                              |
| :                      |       |          | $\Longrightarrow [x_1 \mid \cdots \mid x_p]$ |
| 5                      |       |          |                                              |
| w <sub>11</sub>        | • • • | $w_{1m}$ |                                              |
| :                      | :     | :        |                                              |
| W <sub>j1</sub>        |       | Wjm      |                                              |

## Tableau query: example

Find addresses of theaters that play movies directed by Chabrol



## Expressiveness

• Selection  $\sigma_{i=j}(R)$ :

where  $v_i = v_j = y$ ,  $v_k = x_k$  otherwise

• Selection  $\sigma_{i=a}(R)$ :

where  $v_i = a$ ,  $v_k = x_k$  otherwise

# Expressiveness (cont'd)

• Projection  $\pi_{\vec{\ell}}(R)$ :

$$\begin{array}{c|c}
R \\
x_1 & \cdots & x_n
\end{array} \Longrightarrow \begin{bmatrix} x_{\ell_1} & \cdots & x_{\ell_n} \end{bmatrix}$$

• Cross product  $R \times S$ :



# Conjunctive queries

So far, we've seen several **equivalent** query languages:

- SPC
- SPJR
- Conjunctive Calculus
- Tableau

These are all conjunctive query languages

# Why is it so important?

### Property 1

Conjunctive queries are closed under composition

For all CQs  $Q' \vdash Q$  and  $\mathcal{R} \vdash Q'$ , then  $Q \circ Q'$  is CQ as well

### Property 2

Conjunctive queries are satisfiable

There exists an instance I of  $\mathcal{R}$  for which Q(I) is non-empty

### Property 3

Conjunctive queries are monotonic

For all instances I, J over  $\mathcal R$  such that  $\mathtt I\subseteq \mathtt J$ , then  $Q(\mathtt I)\subseteq Q(\mathtt J)$ 

# About satisfiability

 Conjunctive calculus with equality raises the following problem:

$$\{(\vec{x}) \mid R(\vec{x}) \land x_i = a \land x_i = b\} = Q^{\emptyset}$$

- Unsatisfiable queries could easily be checked by transitive closure of equality terms
- SPC and SPJR include unsatisfiable queries as well:
  - $\sigma_{\{i=a,i=b\}}(R)=Q^{\emptyset}$
  - $\sigma_{\{A=a,A=b\}}(R)=Q^{\emptyset}$

CQs are satisfiable queries only

# Why is it so important? (cont'd)

### Property 4

Conjunctive query containment is decidable and complexity is **NP-complete** 

 $\mathcal{R} \vdash Q \subseteq \mathcal{R} \vdash Q'$  iff for each instance I of  $\mathcal{R}$ ,  $Q(I) \subseteq Q'(I)$ 

- Small Q on large DB makes it acceptable
- Equivalence by checking mutual containment  $Q \subseteq Q' \land Q \supseteq Q'$
- Very useful for query evaluation and optimization

# Exercises 1/2

#### 1. Definitions

Conjunctive query, Calculus, Tableau query, Satisfiability, Monotonicity

#### 2. True or False?

- i) Conjunctive calculus is a fragment of FO.
- ii) SPC expressions are satisfiable queries only.
- iii) SPC and SPJR algebras are equivalent to CQs.
- iv) Conjunctive calculus w/o equality is no more CQ.
- v) NP-completeness of CQ query containment is a mess.
- vi)  $\{R(1,2)\}$  is a valid calculus formula.

# Exercises 2/2

### 3. Conjunctive Calculus and Tableau Queries

- 1. Write calculus formulas for queries of the previous section.
- 2. Draw an unsatisfiable Tableau query.

### 4. Problem

- 1. Give evidence of satisfiability of CQs.
- 2. Give evidence of monotonicity of CQs.

# What can't conjunctive queries handle?

#### Lots!

- Union ∪ / disjunction ∨
- Difference / negation  $\neg$  and universal quantification  $\forall$
- Recursive queries (e.g., transitive closure, connectivity)
- Primitive operations on *D* (arithmetic, string operations)
- Aggregation: counting, sum, average
- Complex data (nested records, variants, arbitrary trees)
- Arbitrary computations

# Set operations

### Relations are sets of tuples

So what about set operations?

- Intersection ∩
- Union ∪
- Complement or set difference —

# Actually...

- Intersection is already expressible in SPC
- Union, complement are not
- How would one show this?
   Idea: Follows from normal form theorem
- In fact, the value  $\{\langle a \rangle, \langle b \rangle\}$  is not even expressible in SPC

# Core algebra with union

$$v ::= i \mid a$$
 $Q ::= \langle a \rangle \mid R \mid \sigma_{v=w}(Q) \mid \pi_{\vec{i}}(Q) \mid Q \times Q' \mid \mathbf{Q} \cup \mathbf{Q}'$ 

- Selection  $\sigma$
- **P**rojection  $\pi$
- Cross product ×
- Union ∪

This calculus is called **SPCU** 

# Named core algebra with union

$$v ::= A \mid a$$

$$Q ::= \langle A:a \rangle \mid R \mid \sigma_{v=w}(Q) \mid \pi_{\vec{A}}(Q)$$

$$\mid Q \bowtie Q' \mid \rho_{A_1...A_n \to B_1...B_n}(Q) \mid \mathbf{Q} \cup \mathbf{Q}'$$

- Selection  $\sigma$
- Projection  $\pi$
- Join ⋈
- Renaming  $\rho$
- Union ∪

This calculus is called **SPJRU** 

### Difference

- Difference Q Q' can easily be added to [SPCU, SPJRU]
- [SPCU, SPJRU] + difference are called the (named)

### Relational Algebra

 Union/disjunction and difference/negation pose little or no difficulty for algebra

#### **Theorem**

Query equivalence is no more decidable in RA

# So far so good!

Add syntax for disjunction and negation to **relational calculus**:

$$\Phi ::= \exists x. \Phi \mid R(\vec{v}) \mid v = v' \mid \Phi \lor \Psi \mid \Phi \land \Psi \mid \neg \Phi$$

$$Q ::= \{(\vec{v}) \mid \Phi\}$$

- Really,  $\Phi$  can be an arbitrary first-order formula since  $\forall x.\Phi \equiv \neg \exists x. \neg \Phi$
- Very really,  $\wedge$ ,  $\exists$ ,  $\neg$  suffice since  $\Phi \vee \Psi \equiv \neg(\neg \Phi \wedge \neg \Psi)$
- Semantics: same as for ordinary first-order (FO) formulas?

## Disjunction: problems

Conjunctive calculus + disjunction = **positive calculus**Positive calculus is equivalent to [SPJRU, SPCU]

$$\{(x,y,z)\mid R(x,y)\vee R(y,z)\}$$

- For nonempty R, answer is infinite due to free x or z
- Unsafe query may produce infinite output from finite input
- Because databases are finite, we restrict to safe queries

# Negation: problems

Give it a try:

$$\{(x) \mid \neg R(x)\}$$

• Obviously unsafe. . . and this one:

$$\{(x) \mid \forall y.R(x,y)\} = \{(x) \mid \neg \exists y. \neg R(x,y)\}$$

- Whoa! This query is domain-dependent: answer depends on domain of quantification
  - e.g. if R(a, b), R(a, a) hold, and y ranges over  $\{a, b\}$ , then x = a works...
  - but if y ranges over  $\{a, b, c\}$  then x = a doesn't work!

# Safe domain-independent queries

Wanted: Guarantees that FO makes sense as a query language

- Unfortunately, domain independence is undecidable
- Two solutions:
  - Find decidable sufficient conditions for domain dependence; prove that no loss of expressiveness ensues
  - Observe that infinite models have finite descriptions in terms of equations; generalize database theory to finite sets of constraints rather than finite sets of facts
- Approach #2 is more general/satisfying; usually, focus on #1

## Safety analysis

Range-restricted variable  $x \in \text{free}(\Phi)$  s.t.  $\nu(x) \in \text{adom}(\Phi, I)$ Basic idea: every head variable must be constrained in the body

$$rr(R(\vec{v})) = free(R(\vec{v}))$$

$$rr(x = a) = rr(a = x) = \{x\}$$

$$rr(\Phi \land x = y) = \begin{cases} rr(\Phi) & (x, y \notin rr(\Phi)) \\ rr(\Phi) \cup \{x, y\} & (x \in rr(\Phi) \text{ or } y \in rr(\Phi)) \end{cases}$$

$$rr(\Phi \land \Psi) = rr(\Phi) \cup rr(\Psi)$$

$$rr(\Phi \lor \Psi) = rr(\Phi) \cap rr(\Psi)$$

$$rr(\neg \Phi) = \emptyset$$

$$rr(\exists x. \Phi) = \begin{cases} rr(\Phi) - \{x\} & (x \in rr(\Phi)) \\ \bot & (x \notin rr(\Phi)) \end{cases}$$

 $\{\vec{v} \mid \Phi\}$  is **safe-range** iff for some  $\Psi \equiv \Phi$ , then free $(\vec{v}) \subseteq rr(\Psi)$ 

# Exercises 1/2

#### 1. Definitions

Relational algebra, Positive calculus, Safe query, Domain-dependent query, Safe-range query

#### 2. True or False?

- i) Union and difference make CQ become RA.
- ii) Safe-range RC is equivalent to RA.
- iii) Query containment can be evaluated algorithmically.
- iv) It is possible to express unsafe query in RA.
- v) Domain-dependancy is decidable.
- vi)  $\{(x, y, z) \mid R(x, y) \lor R(y, z)\}$  is finite when x, y, z in adom(R).

# Exercises 2/2

### 3. RA and RC

- 1. Which theaters do not show any movies directed by Chabrol?
- 2. Which theaters show only movies directed by Chabrol?
- 3. Which theaters show all movies directed by Chabrol?

#### 4. Problem

For each of the following queries, guess whether it is domain-independent and/or safe range.

$$\{(x,y) \mid \exists z. (R(x,z) \land \exists w. S(w,x,y)) \land x = y\}$$
 (1)

$$\{\langle\rangle\mid\exists x\forall y.(R(y)\to S(x,y))\}\tag{2}$$

$$\{(x,y) \mid (x=a \vee \exists z.R(y,z)) \wedge S(y)\}$$
 (3)

If it is not domain-independent, exhibit a counter-example; and if it is safe range, translate it into an RA expression.

### Declarative vs. Procedural

Query languages are declarative: what in the output?

```
\{x_{th} \mid \exists x_{ti}. \texttt{Movie}(x_{ti}, \mathsf{Chabrol}, \_, \_) \land \mathsf{Schedule}(x_{th}, x_{ti}, \_)\}
```

 Database system operates internally with different, procedural languages, which specify how to get the result

```
for each tuple T1=(ti1,di,le,rd) in table Movie do
for each tuple T2=(th,ti2,ts) in table Schedule do
if ti1=ti2 and di='Chabrol' then output th
end
end
```

# Declarative vs. Procedural (cont'd)

### Theoretical languages

• Declarative: relational calculus

Procedural: relational algebra

### Practical languages

Mix of both but mostly one use declarative features

- QBE (Tableau queries)
- SQL

# SQL

- Structured Query Language
- Developed originally at IBM in the late 70s
- First standard: SQL-86 (with minor revision in SQL-89)
- Second standard: SQL-92
- Latest standard: SQL-99, or SQL3, well over 1,000 pages
- SQL2003 and SQL2008 add extra features
- De-facto standard of the relational database world—replaced all other languages

## Example of SQL queries

Reminder of the database schema:

Featuring: title, actor, role

```
Location: theater, address, phone_number

Schedule: theater, title, showtime

______ Find titles of current movies ______

SELECT Title
```

Movie: title, director, length, release\_date

- SELECT lists attributes that go into the output of a query
- FROM lists input relations

FROM Movie ;

- Algebraic formula:  $\pi_{\text{title}}(\text{Movie})$
- Warning: SQL uses bags rather than sets

# Relational operations on bags

### RDBMS implements relations as bags (or multisets)

- Union adds occurrences:  $|R \cup S| = |R| + |S|$
- Duplicates are preserved in projection:  $|\pi_{\vec{A}}(R)| = |R|$
- Consistent aggregate computation:  $AVG(R[\vec{A}])$
- t in  $R \cap S$ : min(|R(t)|, |S(t)|)
- $t \text{ in } R S: \max(0, |R(t)| |S(t)|)$
- No surprise for  $\sigma$ ,  $\times$ ,  $\bowtie$
- Algebraic laws revisited:  $(R \cup S) T = (R T) \cup (S T)$ ?

#### Relations as multisets

The results for Conjunctive Query containment over relations-as-sets no longer hold!

### Property 1

CQ containment is no longer in NP

### Property 2

Query containment of unions of CQ is undecidable

#### Lesson:

Small changes in the data model can have a big impact

# Example of SQL queries (cont'd)

```
Find theaters showing movies directed by Chabrol

SELECT S.Theater
FROM Schedule S, Movie M
WHERE M.Title = S.Title
AND M.Director='Chabrol';
```

#### New features:

- SELECT now specifies which relation the attributes came from—because we use more than one
- FROM lists two relations with aliases
- WHERE specifies the condition for selecting a tuple

### Translation to SPC

### Conjunctive Query

SELECT DISTINCT-FROM-WHERE SQL queries with conjunct of equality conditions are equivalent to SPC

• Algebraic expression:



## SQL and RC

### Tuple Relational Calculus

Core declarative part of SQL is close to TRC, a variant of Relational Calculus

```
\{t.\mathsf{theater} \mid \exists u.\mathsf{Movie}(u) \land \mathit{Schedule}(t) \land \\ t.\mathsf{title} = u.\mathsf{title} \land u.\mathsf{director} = \mathsf{Chabrol'}\}
```

- Same operators than (Domain)RC
- Variables are tuples
- Attribute values can be reached b.t.w. of dot notation

TRC is obviously equivalent to (D)RC

## Joining relations

- WHERE allows to join together several relations
   R.Title = S.Title
- A JOIN statement also exists in SQL

```
1 SELECT S.Theater
```

- FROM Movie M NATURAL JOIN Schedule S
- 3 WHERE M.Director='Chabrol';

### Join variants

#### Natural join is the ⋈ operator from SPJR

Preferred SQL statement:

```
SELECT S.Theater FROM Movie M
INNER JOIN Schedule S USING (Title)
WHERE M.Director='Chabrol';
```

- Family of join operators in SQL:
  - Equi-join: R INNER JOIN S ON R.A=S.B
  - $\theta$ -join: R INNER JOIN S ON R.A > S.B
  - Outer join: R LEFT OUTER JOIN S ON R.A != S.B
  - Cross product: R CROSS JOIN S

# Positive Relational Algebra within SQL

#### Reminder

#### **SPJR+Union operator** makes Positive RA

Find actors who played in movies directed by Chabrol OR Polanski

```
SELECT F.Actor FROM Featuring F JOIN Movie M USING (Title)
WHERE M.Director='Chabrol' OR M.Director='Polanski';
```

#### SQL has also a dedicated UNION operator

```
(SELECT Actor FROM Featuring JOIN Movie USING (Title)
WHERE Director='Chabrol')
UNION
(SELECT Actor FROM Featuring JOIN Movie USING (Title)
WHERE Director='Polanski');
```

## More Thoughts on Union

- UNION ALL to preserve duplicates
- Renaming to the rescue

```
_____ List all directors or actors _____
```

- (SELECT Director AS Person FROM Movie)
- 2 UNION
- $_3$  (SELECT Actor AS Person FROM Featuring);

### Intersection and Difference

 $\cap$  is expressible within SPJRU, - is not

$$R \cap S = \rho_{\mathsf{sort}(R) \to \vec{X}}(R) \bowtie \rho_{\mathsf{sort}(S) \to \vec{X}}(S)$$

SQL syntax for

- $R \cap S$ : R INTERSECT S or R INTERSECT ALL S
- R-S: R EXCEPT S or R EXCEPT ALL S

Find all actors who are...

|               |     | O   |        |
|---------------|-----|-----|--------|
| (SELECT Actor | AS  | Per | rson   |
| FROM Featuri  | ng) |     |        |
| EXCEPT        |     |     |        |
| (SELECT Direc | tor | AS  | Person |
| FROM Movie)   | •   |     |        |

not directors

```
_____ also directors _____
(SELECT Actor AS Person
FROM Featuring)
INTERSECT
(SELECT Director AS Person
FROM Movie);
```

# Beyond simple queries

- So far we mostly translated RA= $\{\sigma,\pi,\bowtie,\rho,\cup,-\}$  into SQL
- Other SQL statements allow to express complex queries in a slightly different way than pure RA
  - Nested queries
  - "For all" queries
- Also, extra SQL features go far beyond RA

### Nested queries

```
    WHERE clause could contain subquery

   - Find actors who did not play in a movie by Chabrol -
  SELECT F.Actor FROM Featuring F
   WHERE F.Actor NOT IN (SELECT F1.Actor FROM Featuring F1
                 JOIN Movie M USING (Title)
3
                 WHERE M.Director='Chabrol') ;
4
  Nested guery could be correlated to the outermost guery
   Find dirs. whose movies are playing at Le Katorza
   SELECT M. Director FROM Movie M
  WHERE EXISTS (SELECT * FROM Schedule S JOIN M USING (Title)
                 WHERE S. Theater='Le Katorza');
3
```

Actually, nested query could occur anywhere!

## For all in SQL

Find directors whose movies are playing in all theaters

$$\{ (x.\mathsf{director}) \mid M(x) \land \forall y [L(y), \exists z (S(z) \land z.\mathsf{title} = x.\mathsf{title} \land y.\mathsf{theater} = z.\mathsf{theater}) ] \}$$

M stands for Movie and S for Schedule and L for Location

$$\pi_{\text{director}}(M) - \pi_{\text{director}}\Big((\pi_{\text{theater}}(L) \times \pi_{\text{director}}(M)) - \pi_{\text{theater,director}}(M \bowtie S)\Big)$$

RA query is much less intuitive than RC query

# For all in SQL (cont'd)

### SQL's way of saying this

3

6

Find directors such that **there does not exist** a theater where their movies **do not** play

• Main idea:  $\forall x.P(x) \Leftrightarrow \neg \exists x. \neg P(x)$ 

```
SELECT M.Director FROM Movie M
WHERE NOT EXISTS (SELECT * FROM Location L
WHERE NOT EXISTS (SELECT * FROM Movie M1
JOIN Schedule S ON (Title)
WHERE M1.Director=M.Director
AND S.Theater=L.Theater));
```

#### Relational division

$$\alpha \div \beta = \pi_{A-B}(\alpha) - \pi_{A-B}((\pi_{A-B}(\alpha) \times \beta) - \alpha)$$

At least four ways to write division in SQL

- 1. Direct conversion of the relational algebra expression: translate -,  $\pi$ ,  $\times$
- 2. Logical tautology (see previous slide)
- 3. Set containment: if  $X \supseteq Y$ , then  $Y X = \emptyset$  (or  $\neg \exists x. x \in Y X$ )
- 4. Set cardinalities: check for |Y| |X| = 0. Need for SQL group by/having and count, discard negation

# Relational division (cont'd)

3

## Other features of SQL

- Datatypes, type-specific operations
- Table declaration, constraint enforcement (DDL part)
- Database modifications: insert, update, delete
- NULL values
- Views and temporary tables
- Aggregation

# Simple aggregate queries

| 1 2 | Count the number of Movies<br>SELECT COUNT(*)<br>FROM Movie ;             |
|-----|---------------------------------------------------------------------------|
| 1 2 | Add up all movie lengths<br>SELECT SUM(Length)<br>FROM Movie ;            |
| 1 2 | Find the number of directors  SELECT COUNT(DISTINCT Director) FROM Movie; |

## Aggregation and grouping

For each theater playing at least one long (over 2 hours) movie, find the average length of all movies played there

```
SELECT S.Theater, AVG(M.Length) AS Average_Length
FROM Schedule S
JOIN Movie M USING (Title)
GROUP BY S.Theater
HAVING MAX(M.Length) > 120
```

# Exercises 1/2

#### 1. Definitions

SQL, Bag-RA, Nested query,  $\theta$ -join, Outer join

#### 2. True or False?

- i) Every RA query is expressible within SQL.
- ii) SELECT R.A FROM R  $\equiv \pi_A(R)$ .
- iii)  $\{(1),(1),(2)\}$  EXCEPT  $\{(2),(3)\}=\{(1),(1)\}.$
- iv)  $(R \cup S) T = (R T) \cup (S T)$  with SQL bag semantics.
- v) Boolean expression with a NULL value returns True or False.

# Exercises 2/2

## 3. SQL queries

- 1. Find actors who did not play in a movie by Chabrol.
- 2. Find theaters that play movies not played anywhere else.
- 3. Write division in the translated RA flavor.

#### 4. Problem

"For each theater playing at least one long (over 2 hours) movie, find the average length of all movies played there."

The above aggregate query has a straightforward SQL translation with GROUP BY/HAVING statement. Show another way to write SQL query without GROUP BY/HAVING. *Hint*: use subqueries in the SELECT clause and in the WHERE clause.

#### Database constraints

- In our running examples we assumed that the title attribute identifies a movie
- But this may not be the case:

| title   | director | length | $release\_date$ |
|---------|----------|--------|-----------------|
| Dracula | Browning | 84mn   | 1931            |
| Dracula | Fischer  | 82mn   | 1958            |
| Dracula | Badham   | 109mn  | 1979            |
| Dracula | Coppola  | 127mn  | 1992            |

- Database constraints: provide additional semantic information about the data
- Most common ones: functional and inclusion dependencies, and their special cases: keys and foreign keys

## Functional dependency

 If we want the title to identify a movie uniquely (i.e., no multiple Dracula records), we express it as a functional dependency

title 
$$\longrightarrow$$
 director, length, release\_date

More generally:

$$X \longrightarrow Y ::= \Big( \forall t, u \in R, \ t[X] = u[X] \implies t[Y] = u[Y] \Big)$$

# Running Example

| R |   |   |   |   |  |
|---|---|---|---|---|--|
| Α | В | С | D | Ε |  |
| а | а | b | а | d |  |
| а | b | b | а | d |  |
| а | С | С | d | d |  |
| b | а | а | а | d |  |
| b | b | а | а | d |  |
| b | d | d | С | а |  |

Functional dependencies that hold in R are:

$$\mathcal{F} = \{AB \longrightarrow CD, C \longrightarrow ADE, B \longrightarrow DE, D \longrightarrow E\}$$

# Keys

Let K be a subset of attributes of  $R:\langle \vec{U} \rangle$ . Then K is a **key** if R satisfies functional dependency  $K \longrightarrow U$  and K is minimal

### Follow-on of the example

Keys are  $\{AB, BC\}$ 

Among candidate keys, one can be arbitrarily promoted into primary key

#### Inclusion constraints

### Referential integrity

Attributes of one relation refer to values in another one

- These particular constraints are called inclusion dependencies (ID)
- Formally, we have an inclusion dependency  $R[X] \subseteq S[Y]$  when every value of the set of attributes X in R also occurs as a value of the set of attributes Y in S:

$$\pi_{\vec{X}}(R) \subseteq \pi_{\vec{Y}}(S)$$

## Foreign keys

- Most often IDs occur as part of a foreign key
- Foreign key is a conjunction of a key and an ID:

$$R[X] \subseteq S[Y]$$
 and  $Y \longrightarrow U$ , with  $S:\langle \vec{U} \rangle$ 

### Example

We expect Theater and Title from Schedule to be found resp. in Location and Movie:

- Schedule[Theater]  $\subseteq$  Location[Theater]
- Schedule[Title] ⊆ Movie[Title]

If Title is a key for Movie, then it is **foreign key** in Schedule Same arises for Theater

# Reasoning about FDs

#### Closure

Denote by  $\mathcal{F}$  the set of functional dependancies on R; **Closure** of  $\mathcal{F}$  is  $\mathcal{F}^+ = \{f \mid \mathcal{F} \models f\}$ 

**Attribute closure** of X on  $\mathcal{F}$ :  $X_{\mathcal{F}}^+ = \{A \mid X \longrightarrow A \in \mathcal{F}^+\}$ 

## Armstrong's axioms

- **Reflexivity**: if  $X \supseteq Y$ , then  $X \longrightarrow Y$
- **Augmentation**: if  $X \longrightarrow Y$ , then  $XZ \longrightarrow YZ$  for any Z
- **Transitivity**: if  $X \longrightarrow Y$  and  $Y \longrightarrow Z$ , then  $X \longrightarrow Z$
- These are sound and complete inference rules for FDs!

# Reasoning about FDs (cont'd)

### Commonly derived rules:

- **Union**: if  $X \longrightarrow Y$  and  $X \longrightarrow Z$ , then  $X \longrightarrow YZ$
- **Decomposition**: if  $X \longrightarrow YZ$ , then  $X \longrightarrow Y$  and  $X \longrightarrow Z$
- **Pseudo-transitivity**: if  $X \longrightarrow Y$  and  $YZ \longrightarrow T$ , then  $XZ \longrightarrow T$

### Back to the example

$$\mathcal{F}^{+} = \mathcal{F} \cup \{A \longrightarrow A, AB \longrightarrow A, BC \longrightarrow D,$$

$$BC \longrightarrow BC, DA \longrightarrow E, AB \longrightarrow DE, ABCD \longrightarrow A,$$

$$ABCD \longrightarrow ABCD, \ldots\}$$

#### Canonical cover

#### On the other side

**Canonical cover**  $\mathcal{F}_{min}$  such that  $\mathcal{F}_{min}^+ = \mathcal{F}^+$  and FDs in  $\mathcal{F}_{min}$  are all **irreducible** 

- Non unique
- Preferred form for normalization

$$\mathcal{F}_{\mathsf{min}} = \{ AB \longrightarrow C, C \longrightarrow D, C \longrightarrow A, B \longrightarrow D, D \longrightarrow E \}$$

Idea: Is 
$$AB \longrightarrow D$$
 redundant in  $\mathcal{F}$ ?  
Check for  $D \in AB_G^+$ ,  $\mathcal{G} = \mathcal{F} - \{AB \longrightarrow D\}$ 

# Database design

#### Normalization

Avoid redundancy and modification anomalies

### Example

Assume AC, BD and DE are three distinct entities in R

- 1. d value occurs 5 times in column E of R
- 2. **Updating** *E:a* to *E:a'* in the first row requires to update 4 more rows, making the database inconsistent otherwise
- 3. **Inserting**  $\langle A:b,C:b\rangle$  in R requires to provide BDE values as well
- **4. Deleting** last pair  $\langle D:a, E:d \rangle$  in R implies to delete ABC values as well

#### Normal forms

#### 1NF

Table has (a) a **key** and (b) **atomic** columns and (c) **no repeating groups** of columns

- R is 1NF
- Sets or tuples or tables are not allowed as attribute values
- (Author<sub>1</sub>, Author<sub>2</sub>) is not allowed as a subset of columns

# Normal forms (cont'd)

#### 2NF

 ${\sf 1NF} + {\sf full} \; {\sf FD} \; {\sf from \; keys \; to \; non-prime \; attributes}$  Prime attributes are those that belong to any candidate key

- R is not 2NF since  $B \longrightarrow D$  holds in R and AB is a key and D is a non-prime attribute
- $R_1 = \pi_{BDE}(R)$  and  $R_2 = \pi_{ABC}(R)$  are both 2NF

# Normal forms (cont'd)

#### 3NF

 $2{\sf NF} + {\sf non\text{-}transitive}\ {\sf FD}$  from keys to non-prime attributes

- $R_2:\langle ABC \rangle$  is 3NF with key AB
- $R_1:\langle BDE \rangle$  is not since  $D \longrightarrow E$  holds
- $R_{11} = \pi_{BD}(R_1)$  and  $R_{12} = \pi_{DE}(R_1)$  are both 2NF

# Normal forms (cont'd)

#### **BCNF**

3NF + every non-trivial FD is on a **superkey** 

- $R_{11}$ : $\langle BD \rangle$  and  $R_{12}$ : $\langle DE \rangle$  are both BCNF
- $R_2:\langle ABC \rangle$  is not since  $C \longrightarrow A$  holds
- $R_{21}=\pi_{AC}(R_2)$  and  $R_{22}=\pi_{BC}(R_2)$  are both BCNF

## Decomposing a relation

Decomposition of R into  $S:\langle \vec{X} \rangle$  and  $T:\langle \vec{Y} \rangle$ 

- Lossless-join decomposition of R:  $\pi_{\vec{x}}(R) \bowtie \pi_{\vec{v}}(R) = R$
- Lossless w.r.t. F:

$$X \cap Y \longrightarrow X$$
, or  $X \cap Y \longrightarrow Y$ 

• Dependency preservation:  $(\mathcal{F}_X \cup \mathcal{F}_Y)^+ = \mathcal{F}^+$ 

#### **Theorem**

Lossless-join dependency preserving decomposition of R into a collection of 3NF relations is always possible

What about decomposition into BCNF?

# Multivalued and join dependencies

### More stringent normal forms

- MVD: 4NF...
- FD+JD: ETNF (H. Darwen et al., 2012)...
- JD: 5NF...
- JD: 6NF...
- Domain and Key constraints: DKNF...

# Exercises 1/2

#### 1. Definitions

Functional dependency, Inclusion dependency, Key, Foreign key, Closure, Armstrong's axioms, Canonical cover, Modification anomaly, 1NF, 2NF, 3NF, BCNF

#### 2. True or False?

- i) A relation may have several keys.
- ii) Closure is not unique.
- iii)  $\mathcal{F}_{\mathsf{min}} \subseteq \mathcal{F} \subseteq \mathcal{F}^+$ .
- iv)  $\emptyset \longrightarrow X$  always holds.
- v)  $2^n \le |\mathcal{F}^+| \le 2^{2n}$ , where n = ary(R).

# Exercises 2/2

### 3. Misc.

Consider a database with a single relation  $R:\langle abcde \rangle$ ; the set of functional dependencies that hold in R is

$$\mathcal{F} = \{ab \rightarrow cd, a \rightarrow d, e \rightarrow b, cd \rightarrow ce, ac \rightarrow bde, c \rightarrow a\}.$$

- 1. Give (i) keys of R, (ii) NF of R, (iii) a canonical cover of  $\mathcal{F}$ .
- 2. Decompose R up to the BCNF.

### 4. Problem — Armstrong Relations

- Prove that there exists an instance of R:⟨Ū⟩ such that for each FD f over U, R |= f iff f ∈ F<sup>+</sup>. It is called an Armstrong relation.
- Exhibit a set F<sub>2</sub> of FDs over {A, B, C} such that each Armstrong relation for F<sub>2</sub> has at least 4 distinct values occurring in the A column.

## To Sum-up

- 1. The relational model is a set-theoretic approach to database
- 2. Theoretical languages: RA (procedural)  $\equiv$  RC (declarative)
- 3. Two flavors of RA: named (SPJRUD) or unnamed (SPCUD)
- 4. Nice fragments of RA:  $SPJR \equiv Conjunctive Queries$
- Practical languages: QBE (Tableau-like queries) and SQL (TRC-like queries at the heart)
- Many sophisticated statements and extra-features in SQL
- 7. Functional and incl. dependencies between columns and tables
- 8. DB design prevents from redundancy and modification anomalies
- 9. Losseless-join dependency preserving decomposition up to 3NF

## Database Management Systems

#### Main topics are

- Physical model: storage, access methods
- Query optimization: execution plan, cost evaluation, join algorithms, external sort
- Transactions and concurrency control: ACID properties, serializability, 2PL
- Failure recovery: logs
- **Tuning**: de-normalization, query tricks, administration

Great opportunities for self-learning!