1 Elektrisches Feld

Punkte: 20

a)
$$C = \varepsilon \frac{A}{d}$$
 (1)

Reihenschaltung von Kondensatoren: $\frac{1}{C_G} = \frac{1}{C_1} + \frac{1}{C_2}$ (1)

$$C_1 = \varepsilon_1 \frac{A_0}{d_1}, \ C_2 = \varepsilon_2 \frac{A_0}{d_2} \ (0.5)$$

$$\frac{1}{C_G} = \frac{d_1}{\varepsilon_1 A_0} + \frac{d_2}{\varepsilon_2 A_0}$$
 (0.5)

$$C_G = \frac{\varepsilon_1 \varepsilon_2 A_0}{\varepsilon_1 d_2 + \varepsilon_2 d_1}$$
 (1)

 $\sum_a 4$

b)
$$Q = CU$$
 (1)

$$Q_0 = C_G \cdot U_0 = \frac{\varepsilon_1 \varepsilon_2 A_0 \cdot U_0}{\varepsilon_1 d_2 + \varepsilon_2 d_1}$$
 (1)

 $\sum_{b} 2$

c)
$$\iint_A \vec{D}d\vec{A} = Q \ (1)$$

$$\iint\limits_{A} \vec{D} \, d\vec{A} = \sum_{i=1}^{6} \iint\limits_{Ai} \vec{D} \, d\vec{A} \text{ Fläche aufstellen (0,5)}$$

Ausserhalb des Kondensators A_6 : kein E-Feld (0,5)

an den Seiten des Kondensators $A_2 - A_4$: $\vec{D} \perp d\vec{A}$ (0,5)

im Kondensator A_1 : $\vec{D} \parallel d\vec{A}, D$ - konstant auf A (1)

$$\iint_{A} \vec{D} \, d\vec{A} = \iint_{A_1} D \, dA = D \iint_{A_1} dA = D \cdot A_1 = D \cdot A_0 \, \, (0,5)$$

$$D = \frac{Q}{A_0} = \frac{\varepsilon_1 \varepsilon_2 U_0}{\varepsilon_1 d_2 + \varepsilon_2 d_1}$$
 (1)

Skizze (1)

 $\sum_{c} 6$

d)
$$\vec{D} = \varepsilon \vec{E}$$
 (1)

$$\vec{F} = q\vec{E}$$
 (1)

$$F_1 = \frac{q_a D}{\varepsilon_1} = \frac{\varepsilon_2 q_a \cdot U_0}{\varepsilon_1 d_2 + \varepsilon_2 d_1}$$
 (1)

$$F_2 = \frac{q_a D}{\varepsilon_2} = \frac{\varepsilon_1 q_a \cdot U_0}{\varepsilon_1 d_2 + \varepsilon_2 d_1} \tag{1}$$

 $\sum_d 4$

e)
$$a = \frac{F}{m}$$
 (1)

$$v_1 = \sqrt{v_0^2 + 2\frac{F_1}{m}d_1} = \sqrt{0 + 2\frac{\varepsilon_2 q_a \cdot U_0}{\varepsilon_1 d_2 + \varepsilon_2 d_1} \frac{d_1}{m}}$$
 (1)

$$v_2^2 = v_1^2 + 2\frac{F_2}{m}d_2 = 2\frac{\varepsilon_2 q_a \cdot U_0}{\varepsilon_1 d_2 + \varepsilon_2 d_1} \frac{d_1}{m} + 2\frac{\varepsilon_1 q_a \cdot U_0}{\varepsilon_1 d_2 + \varepsilon_2 d_1} \frac{d_2}{m}$$
 (1)

$$v_2 = \sqrt{2\frac{q_a U_0}{m} \left(\frac{\varepsilon_2 d_1 + \varepsilon_1 d_2}{\varepsilon_2 d_1 + \varepsilon_1 d_2}\right)} = \sqrt{2\frac{q_a U_0}{m}} \tag{1}$$

 $\sum_{e} 4$

Punkte: 10

2 Gleichstromnetzwerk

a) Superpositionsprinzip

die Wirkung jeder Quelle getrennt betrachten, danach die Einzelwirkungen zur Gesamtwirkung überlagern. Quellen, deren Wirkung gerade nicht betrachtet wird, durch ihre Innenwiderstände ersetzen.

Wirkung der Spannungsquellen betrachten (I_0 und R_4 dabei entfallen).

Skizze (oder Ansatz ohne Skizze): 1 Punkt

$$I_{11} = \frac{+U_{12}}{R_1 + R_{23}} = \frac{U_{12}}{R_1 + \frac{R_2 R_3}{R_2 + R_2}} = \frac{R_2 + R_3}{R_1(R_2 + R_3) + R_2 R_3} \cdot U_{12}$$

Wirkung der Stromquelle I_0 betrachten (Spannungsquellen sind dabei ein Kurzschluss, R_4 in der Reihe mit der Stromquelle entfällt).

Skizze (oder Ansatz ohne Skizze): 1 Punkt

Stromteiler:

$$I_{12} = \frac{R_{23}}{R_1 + R_{23}} \cdot (-I_0) = -\frac{\frac{R_2 R_3}{R_2 + R_3}}{R_1 + \frac{R_2 R_3}{R_2 + R_3}} \cdot I_0 = -\frac{R_2 R_3}{R_1 (R_2 + R_3) + R_2 R_3} \cdot I_0$$

Berechnung: 1 Punkt und 0.5 Punkte richtiges Vorzeichen

Superposition:

$$I_{1} = I_{11} + I_{12} = \frac{R_{2} + R_{3}}{R_{1}(R_{2} + R_{3}) + R_{2}R_{3}} \cdot U_{12} - \frac{R_{2}R_{3}}{R_{1}(R_{2} + R_{3}) + R_{2}R_{3}} \cdot I_{0}$$

$$= \frac{(R_{2} + R_{3})U_{12} - R_{2}R_{3}I_{0}}{R_{1}(R_{2} + R_{3}) + R_{2}R_{3}}$$

Ergebnis: 0.5 Punkte

 $\sum_a 5$

b)

$$I_4 = I_0$$

 $U_4 = R_4 \cdot I_4 = R_4 \cdot I_0$

je Zeile 1 Punkt

c)

$$U_{AB} = -U_{12}$$

$$R_i = 0$$

Die Klemmen A und B sind mit den Klemmen der beiden idealen Spannungsquellen identisch und bilden somit die Ersatzspannungsquelle.

Ergebnis U_{AB} : 1 Punkt, Ergebnis R_i : 1 Punkt

 $\sum_{c} 2$

d)

Leistung in R_L :

$$P_L = U_L I_L = \frac{U_{AB}^2}{R_L} = \frac{U_{12}^2}{R_L}$$

3 Magnetischer Kreis

Punkte: 20

a)

Skizze 1 Punkt

$$R_{m} = \frac{l}{\mu A}$$

$$R_{J} = \frac{9a}{\mu_{r}\mu_{0}a^{2}} = \frac{9}{\mu_{r}\mu_{0}a}$$

$$R_{A} = \frac{4a}{\mu_{r}\mu_{0}a^{2}} = \frac{4}{\mu_{r}\mu_{0}a}$$

$$R_{x} = \frac{x_{0}}{\mu_{0}a^{2}}$$

$$\Theta = NI$$

allg. Formel R_m : 1 Punkt, Je weitere Zeile 0.5 Punkte = 2 Punkte

 $\sum_a 4$

b) $\phi = const$, da keine Streuung, $\Theta = N_1 I_1$ 1 Punkt

$$\theta = \phi \cdot R_{m,ges} \Rightarrow \phi = \frac{\theta}{R_{m,ges}} = \frac{N_1 I}{R_{m,ges}}$$
 1 Punkt

$$R_{m,ges} = R_J + R_A + 2R_x$$

$$= \frac{(9+4)a}{\mu_r \mu_0 a^2} + \frac{2x_0 \mu_r}{\mu_r \mu_0 a^2}$$

$$= \frac{13a + 2\mu_r x_0}{\mu_r \mu_0 a^2}$$

$$\phi = \frac{N_1 I \mu_r \mu_0 a^2}{13a + 2\mu_r x_0}$$

7

3 Punkte

 $\sum_b 5$

c) $\phi = \int \overrightarrow{B}_L d\overrightarrow{A}_L, A_L = a^2, \text{ da } \overrightarrow{B} \text{ senkrecht auf } \overrightarrow{A} \text{ gilt: } \phi = B_L A_L \Rightarrow B_L = \frac{\phi}{A_L}$ 1 Punkt

$$B_L = \frac{N_1 I \mu_r \mu_0}{13a + 2\mu_r x_0}$$

1 Punkt

 $\sum_{c} 2$

d) Für einen Luftspalt (gegeben): $F_L=\frac{B_L^2}{2\mu_0}a^2$ Für zwei Luftspalte: $F=2F_L=\frac{B_L^2}{\mu_0}a^2$ 1 Punkt

$$F = \left(\frac{N_1 I \mu_r \mu_0}{13a + 2\mu_r x_0}\right)^2 \frac{a^2}{\mu_0} = \left(\frac{N_1 I \mu_r a}{13a + 2\mu_r x_0}\right)^2 \mu_0$$

1 Punkt

 $\sum_{d} 2$

e)

 $U_2(t) = -N_2 \frac{d\phi}{dt}$ und $x = x(t) = x_0 - vt \Rightarrow \phi = \phi(t)$ 1 Punkt für den richtigen Ansatz

$$\phi = \frac{N_1 I \mu_r \mu_0 a^2}{13a + 2\mu_r (x_0 - vt)}$$

$$\frac{d\phi}{dt} = -N_1 I \mu_r \mu_0 a^2 \cdot \frac{-2\mu_r v}{(13a + 2\mu_r (x_0 - vt))^2}$$

$$U_2(t) = -\frac{2N_1 N_2 I \mu_0 \mu_r^2 a^2 v}{(13a + 2\mu_r (x_0 - vt))^2}$$

3 Punkte

 $\sum_{e} 4$

f)

Für $x = const \Rightarrow \frac{d\phi}{dt} = 0 \Rightarrow U_2 = 0$ 1 Punkt

 $\sum_f 1$

g)

oder:

Prüfung H'13

Grundlagen der Elektrotechnik

9

Skizze und richtige Modellierung je 1 Punkt

4 Komplexe Wechselstromrechnung

Punkte: 30

a) $f_{Generator} = 0Hz$ (1)

Begründung: Kondensator im Leerlauf, Induktivität kurzgeschlossen, nur über R fließt der Strom (1)

Ersatzschaltbild (1)

 $\sum_a = 3$

b)

$$R = \frac{|\underline{U}_0|}{|\underline{I}_0|} = \frac{15V}{5A} = 3\Omega(1)$$

 $\sum_{b} = 1$

c)

$$\underline{I}_{2} = \frac{\underline{U}_{0}}{\frac{1}{j\omega C}} = \underline{U}_{0}j\omega C = j100V \cdot 2\pi \cdot \frac{10}{\pi} 10^{3} \frac{1}{s} 4 \cdot 10^{-6} \frac{As}{V} = j8A \text{ (1)}$$

$$\underline{I}_{1} = \frac{\underline{U}_{0}}{R + j\omega L} = \underline{U}_{0} \frac{R - j\omega L}{R^{2} + \omega^{2}L^{2}} = 100V \frac{3\frac{V}{A} - j2\pi \frac{10}{\pi} 10^{3} \frac{1}{s} 0, 2 \cdot 10^{-3} \frac{Vs}{A}}{3^{2} \frac{V^{2}}{A^{2}} + 2^{2}\pi^{2} \frac{10^{2}}{\pi^{2}} 10^{6} \frac{1}{s^{2}} \cdot 0, 2^{2}10^{-6} \frac{V^{2}s^{2}}{A^{2}}$$

$$= 100V \frac{3\frac{V}{A} - j4\frac{V}{A}}{3\frac{V^{2}}{A^{2}} + 400 \cdot 0, 04\frac{V^{2}}{A^{2}}} = 12A - j16A \text{ (1)}$$

$$\underline{I}_{0} = \underline{I}_{1} + \underline{I}_{2} = j8A + 12A - j16A = 12A - j8A \text{ (1)}$$

$$\underline{U}_{C} = \underline{U}_{0} \text{ (1)}$$

$$\underline{U}_{R} = \underline{I}_{1}R = (12A + j16A)3\Omega = 36V - j48V \text{ (1)}$$

$$\underline{U}_{L} = \underline{U}_{0} - \underline{U}_{R} = 100V - (36V - j48V) = 64V + j48V \text{ (1)}$$

d) Pro richtigem Zeiger (1)

$$\sum_d = 6$$

e)
$$\varphi = 45^{\circ} (1)$$

induktives Verhalten, da der Strom der Spannung nacheilt (1)

$$\sum_e = 2$$

f) Parallelschwingkreis (1)

$$f_R = \frac{1}{2\pi\sqrt{LC}}(1)$$

$$f_R = \frac{1}{2\pi\sqrt{0, 2 \cdot 10^{-3} \frac{Vs}{A} 4 \cdot 10^{-6} \frac{As}{V}}} = \frac{1}{2\pi\sqrt{8} \cdot 10^{-5}s} = \frac{1}{2\pi \cdot 2 \cdot \sqrt{2} \cdot 10^{-5}s}$$

$$= \frac{1}{2 \cdot 3 \cdot 2\frac{4}{3}10^{-5}s} = \frac{1}{16}10^5 \frac{1}{s} = 0,0625 \cdot 10^5 \frac{1}{s} = 6,25 \cdot 10^3 \frac{1}{s}$$

$$f_R = 6,25kHz$$

Die Schaltung sperrt. Bei Resonanzfrequenz wird der Strom zwischen Induktivität und Kapazität ausgetauscht. Von außen wird kein Strom gemessen. (1)

$$\sum_f = 4$$

g) Kapazität. Das induktive Verhalten der Schaltung kann nur mit kapazitivem Bauteil kompensiert werden. (0,5 für Bauteil, 0,5 für Begründung)

$$\sum_{q} = 1$$

h) Richtig eingezeichneter Pfeil im ZD, siehe d) (1)

$$\sum_{b} = 1$$

i) Ansatz: $\varphi_{U_0} = \varphi_{I_0^*} = 0^\circ$

$$\Rightarrow \tan \varphi_{I_0^*} = \frac{Im \{\underline{I}_0^*\}}{Re \{\underline{I}_0^*\}} = 0$$
$$\Rightarrow Im \{\underline{I}_0^*\} = 0$$

$$\underline{\underline{I}_0}^* = \underline{\underline{I}_0} + \underline{\underline{I}_X}$$

$$\Leftrightarrow Re \{\underline{\underline{I}_0}^*\} + Im \{\underline{\underline{I}_0}^*\} = Re \{\underline{\underline{I}_0}\} + Im \{\underline{\underline{I}_0}\} + Re \{\underline{\underline{I}_X}\} + Im \{\underline{\underline{I}_X}\}$$

$$\Rightarrow Im \{\underline{I_0}^*\} = Im \{\underline{I_0}\} + Im \{\underline{I_X}\}$$
$$\Rightarrow 0 = Im \{I_0\} + Im \{I_X\}$$

$$\begin{split} \underline{I}_X &= \frac{\underline{U}_0}{\frac{1}{j\omega C}} = \underline{U}_0 j\omega C \\ \Rightarrow Im\left\{\underline{I}_X\right\} &= |\underline{U}_0|\omega C \end{split}$$

$$\begin{split} 0 &= Im \, \{ \underline{I}_0 \} + |\underline{U}_0| \omega C \\ C &= \frac{-Im \, \{ \underline{I}_0 \}}{|\underline{U}_0| \omega} \\ C &= \frac{-(-6A)}{50V \cdot 2\pi \frac{10}{\pi} 10^3 \frac{1}{s}} = \frac{6As}{10^3 10^3 V} \\ C &= 6 \cdot 10^{-6} \frac{As}{V} = 6\mu F \end{split}$$

Ansatz (1), Rechnung (1) Ergebnis (1)

$$\sum_{i} = 3$$

j) Veränderter Betrag der speisenden Spannung hat keinen Einfluss auf die Phasenlage, Pfeile werden nur skaliert. Aussage richtig 0,5, Begründung 0,5

$$\sum_{j} = 1$$

k)

$$\frac{\underline{S}_{Neu}}{\underline{S}} = \frac{\underline{U}_{0,Neu}^2 \cdot \underline{Z}}{\underline{U}_0^2 \cdot \underline{Z}} = \frac{2^2 \cdot \underline{U}_0^2 \cdot \underline{Z}}{\underline{U}_0^2 \cdot \underline{Z}} = 4 = 400\%$$

Die Scheinleistung vervierfacht sich. Da φ konstant bleibt, ändern sich $\cos \varphi$ und $\sin \varphi$ auch nicht. Das heißt, Wirk- und Blindleistung vervierfachen sich ebenfalls.

Scheinleistung 1, Blind- und Wirkleistung je 0.5

$$\sum_{k} = 2$$

5 Kondensatornetzwerk

Punkte: 20

a) Skizze (1)

 $\sum_a 1$

b)
$$U_{C1} = U_0 - U_{R1}$$
 (1) $U_{C1} = 15 \text{ V} - 5 \text{ V} = 10 \text{ V}$ (1)

 $\sum_b 2$

c)
$$C_{Ges1} = C_1 + C_1 = 2C_1$$
 (1)
 $C_{Ges1} = 2 \text{ F}$ (1)
 $Q = C \cdot U$ (1)
 $Q_{Ges1} = C_{Ges1} \cdot U_{C1} = 2 \text{ F} \cdot 10 \text{ V} = 20 \text{ C}$ (1)
 $W = \frac{1}{2}Q \cdot U$ (1)
 $W_{Ges1} = \frac{1}{2} \cdot Q_{Ges1} \cdot U_{C1} = \frac{1}{2} \cdot 20 \text{ C} \cdot 10 \text{ V} = 100 \text{ Ws}$ (1)

 $\sum_{c} 6$

d) Skizze (1)

e) Reihenschaltung
$$(C_2, C_3)$$
 \Rightarrow $\frac{1}{C_{2,3}} = \frac{1}{C_2} + \frac{1}{C_3} = \frac{C_2 + C_3}{C_2 \cdot C_3}$ (1)
 $C_{23} = \frac{C_2 C_3}{C_2 + C_3} = \frac{6 \cdot 6}{6 + 6} \text{ F} = \frac{36}{12} \text{ F} = 3 \text{ F}$ (1)
 $C_1 \| C_{23} \Rightarrow C_{Ges2} = 2 \text{ F} + 3 \text{ F} = 5 \text{ F}$ (1)

 $\sum_e 3$

f) Die Gesamtladung bleibt erhalten

 $\sum_f 1$

g)
$$C_1 \parallel$$
 (C_2 in Reihe zu C_3)

mit e) und f) erhält man: $Q_{Ges1} = U_{C1} \cdot C_{Ges2}$ (1)

$$U_{C1} = \frac{Q_{Ges1}}{C_{Ges2}} = \frac{20 \text{ C}}{5 \text{ F}} = 4 \text{ V} \text{ (1)}$$

Reihenschaltung: $U_{C2} \cdot C_2 = U_{C3} \cdot C_3 \quad \Rightarrow \quad U_{C2} = U_{C3}$ (1)

Parallel zu C_1 : $U_{C1} = U_{C2} + U_{C3} = 2U_{C2}$ (1)

$$U_{C2} = 2 \text{ V (1)}$$

$$U_{C3} = 2 \text{ V (1)}$$

 $\sum_{g} 6$