Class Notes (experimental)

Jonathan Rosenblatt

April 8, 2015

1 Estimation

In this section, we present several estimation principles. Their properties are not discussed, as the section is merely a reminder and a preparation for Section 2. These concepts and examples can be found in many introductory books to statistics. I particularly recommend [Wasserman, 2004].

1.1 Moment matching

The fundamental idea: match empirical moments to theoretical. I.e., estimate

by

$$\mathbb{E}[g(X)]$$

where $\mathbb{E}[g(X)] := \frac{1}{n} \sum_{i} g(X_i)$, is the empirical mean.

Example 1 (Exponential Rate). Estimate λ in $X_i \sim exp(\lambda)$, i = 1, ..., n, i.i.d. $E[X] = 1/\lambda$. $\Rightarrow \hat{\lambda} = 1/\mathbb{E}[X]$

Example 2 (Linear Regression). Estimate β in $Y \sim \mathcal{N}(X\beta, \sigma^2 I)$, a p dimensional random vector. $E[Y] = X\beta$ and $\mathbb{E}[Y] = y$. Clearly, moment mathing won't work because no β satisfies $X\beta = Y$. A technical workaround: Since β is p dimensional, I need to find some $g(Y) : \mathbb{R}^n \mapsto \mathbb{R}^p$. Well, g(Y) := XY is such a mapping. I will use it, even though my technical justification is currently unsatisfactory. We thus have: $E[X'Y] = X'X\beta$ which I match to $\mathbb{E}[X'Y] = X'y$:

$$X'X\beta = X'y \Rightarrow \hat{\beta} = (X'X)^{-1}X'y.$$

1.2 Quantile matching

The fundamental idea: match empirical quantiles to theoretical. Denoting by $F_X(t)$ the CDF of X, then $F_X^{-1}(\alpha)$ is the α quantile of X. Also denoting by $\mathbb{F}_X(t)$ the Empirical CDF of X_1, \ldots, X_n , then $\mathbb{F}_X^{-1}(\alpha)$ is the α quantile of X_1, \ldots, X_n . The quantile matching method thus implies estimating

$$F_X^{-1}(\alpha)$$

by

$$\mathbb{F}_X^{-1}(\alpha)$$
.

Example 3 (Exponential rate). Estimate λ in $X_i \sim exp(\lambda)$, $i = 1, \ldots, n$, i.i.d.

$$F_X(t) = 1 - \exp(-\lambda t) = \alpha \Rightarrow$$

$$F_X^{-1}(\alpha) = \frac{-\log(1 - \alpha)}{\lambda} \Rightarrow$$

$$F_X^{-1}(0.5) = \frac{-\log(0.5)}{\lambda} \Rightarrow$$

$$\hat{\lambda} = \frac{-\log(0.5)}{\mathbb{F}_X^{-1}(0.5)}.$$

1.3 Maximum Likelihood

The fundamental idea is that if the data generating process (i.e., the sampling distribution) can be assumed, then the observations are probably some high probability instance of this process, and not a low probability event: Let $X_1, \ldots, X_n \sim P_{\theta}$, with density (or probability) $p_{\theta}(X_1, \ldots, X_n)$. Denote the likelihood, as a function of θ : $\mathcal{L}(\theta)$: $p_{\theta}(X_1, \ldots, X_n)$. Then $\hat{\theta}_{ML} := argmax_{\theta}\{\mathcal{L}(\theta)\}$.

Example 4 (Exponential rate). Estimate λ in $X_i \sim exp(\lambda)$, i = 1, ..., n, i.i.d. Using the exponential PDF and the i.i.d. assumption

$$\mathcal{L}(\lambda) = \lambda^n \exp(-\lambda \sum_i X_i).$$

Using a monotone mapping such as the log, does not change the argmax. Denoting $L(\theta) := \log(\mathcal{L}(\theta))$, we have

$$L(\lambda) = n \log(\lambda) - \lambda \sum_{i} X_{i}.$$

By differentiating and equating 0, we get $\hat{\lambda}_{ML} = 1/\mathbb{E}[X]$.

Example 5 (Discrete time Markov Chain). Estimate the transition probabilities, p_1 and p_2 in a two state, $\{0,1\}$, discrete time, Markov chain where: $P(X_{t+1} = 1 | X_t = 0) = p_1$ and $P(X_{t+1} = 1 | X_t = 1) = p_2$. The likelihood:

$$\mathcal{L}(p_1, p_2) = P(X_1, \dots, X_n; p_1, p_2) = \prod_{t=0}^T P(X_{t+1} = x_{t+1} | X_t = x_t).$$

We denote n_{ij} the number of observed transitions from i to j and get that $\hat{p}_1 = \frac{n_{01}}{n_{01} + n_{00}}$, and that $\hat{p}_2 = \frac{n_{11}}{n_{11} + n_{10}}$.

Remark 1. Well, this is a rather artificial example, as because of the Markov property, and the stationarity of the process, we only need to look at transition events, themselves Brenoulli distributed. This example does show, however, the power of the ML method to deal with non i.i.d. samples. As does the next example.

Example 6 (Brownian motion with drift). Estimate the drift parameter a, in a discrete time Gaussian process where: $X_{t+1} = X_t + \varepsilon$; $\varepsilon \sim \mathcal{N}(0, \sigma^2) \Rightarrow X_{t+1}|X_t \sim \mathcal{N}(aX_t, \sigma^2)$.

We start with the conditional density at time t + 1:

$$p_{X_{t+1}|X_t=x_t}(x_{t+1}) = (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{1}{2\sigma^2}(x_{t+1}-ax_t)^2\right).$$

Moving to the likelihood:

$$\mathcal{L}(a) = (2\pi\sigma^2)^{-T/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{t=1}^{T} (x_{t+1} - ax_t)^2\right).$$

Differentiating with respect to a and equating 0 we get $\hat{a}_{ML} = \frac{\sum x_{t+1}x_t}{\sum x_t^2}$. We again see the power of the ML device. Could we have arrive to this

We again see the power of the ML device. Could we have arrive to this estimator by intuiton alone? Hmmmm... maybe. See that $Cov[X_{t+1}, X_t] = a \ Var[X_t] \Rightarrow a = \frac{Cov[X_{t+1}, X_t]}{Var[X_t]}$. So a can also be derived using the moment matching method which is probably more intuitive.

Example 7 (Linear Regression). Estimate β in $Y \sim \mathcal{N}(X\beta, \sigma^2 I)$, a p dimensional random vector. Recalling the multivariate Gaussian PDF:

$$p_{\mu,\Sigma}(y) = (2\pi)^{-n/2} |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(y-\mu)'\Sigma^{-1}(y-\mu)\right)$$

So in the regression setup:

$$\mathcal{L}(\beta) = p_{\beta,\sigma^2}(y) = (2\pi)^{-n/2} |\sigma^2 I|^{-1/2} \exp\left(-\frac{1}{2\sigma^2} ||y - X\beta||^2\right)$$

1.4 M-Estimation and Empirical Risk Minimization

M-Estimation, know as Empirical Risk Minimizaton (ERM) in the machine learning literature, is a very wide framework which stems from statistical desicion theory. The underlying idea is that each realization of X incurs some loss, and we seek to find a "policy", in this case a parameter, θ^* that minimizes the average loss. In the econometric literature, we dot not incur a loss, but rather a utility, we thus seek a policy that maximizes the average utility.

Define a loss function $l(X;\theta)$, and a risk function, being the expected loss, $R(\theta) := E[l(X;\theta)]$. Then

Risk Func-

tion

$$\theta^* := \operatorname{argmin}_{\theta} \left\{ R(\theta) \right\}. \tag{1}$$

As we do not know the distribution of X, we cannot solve Eq.(1), so we minimize the *empirical* risk. Define the empirical risk as $\mathbb{R}(\theta) := \mathbb{E}[l(X;\theta)]$, then

Empirical Risk

$$\hat{\theta} := argmin_{\theta} \left\{ \mathbb{R}(\theta) \right\}. \tag{2}$$

Remark 2. The risk function, $R(\theta)$ defined above

Example 8 (Squared Loss). Let $l(X;\theta) = (X-\theta)^2$. Then $R(\theta) = E[(X-\theta)^2] = (E[X]-\theta)^2 + Var[X]$. Clearly Var[X] does not depend on θ so that $R(\theta)$ is minimized by $\theta^* = E[X]$. We thus say that the expectation of a random variable is the minimizer of the squared loss.

How do we estimate the population expectation? Well a natural estimator is the empirical mean, which is also the minimizer of the empirical risk $\mathbb{R}(X)$. The proof is immediate by differentiating.

Example 9 (Least Squares Regression). Define the loss $l(Y, X; \beta) := \frac{1}{2}(Y - X\beta)^2$. Computing the risk, $E[\|Y - X\beta\|^2]$ will require dealing with the X's by either assuming the *Generative Model*¹, as expectation is taken over X and Y. We don't really care about that right now. We merely want to see that the empirical risk minimizer, is actually the classical OLS Regression. And well, it is, by definition...

Generative
Model

$$\mathbb{R}(\beta) = \sum_{i=1}^{n} \frac{1}{2} (y - x_i \beta)^2 = \frac{1}{2} ||y - x\beta||^2.$$

¹A Generative Model is a supervised learning problem where the we use the assumed distribution of the Xs and not only Y|X. The latter are known as Discriminative Models.

Minimization is easiest with vector derivatives, but I will stick to regular derivatives:

$$\frac{\partial \mathbb{R}(\beta)}{\partial \beta_j} = \sum_{i} \left[(y_i - \sum_{j=1}^p x_{ij} \beta_j) (-x_{ij}) \right]$$

Equating 0 yields $\hat{\beta}_j = \frac{\sum_i y_i x_{ij}}{\sum_i x_{ij}^2}$. Solving for all j's and putting in matrix notation we get

$$\hat{\beta}_{OLS} = (X'X)^{-1}X'y. \tag{3}$$

1.5 Notes

Maximum Likelhood If we set the loss function to be the negative log likelihood of the (true) sampling distribution, we see that maximum likelihood estimators in independent samples are actually a certain type of Mestimators.

2 From Estimation to Supervised Learning

This section draws from Hastie et al. [2003] and Shalev-Shwartz and Ben-David [2014]. The former is freely available online. For a softer introduction, with more hands-on examples, see James et al. [2013]. All books are very well written and strongly recommended.

2.1 Empirical Risk Minimization (ERM) and Inductive Bias

In Supervised Learning problems where we want to extract the relation y = f(x) between attributes x and some outcome y. In particular, we don't need to explain the causal process relating the two, so there is no need to commit to a sampling distribution. The implied M-Estimation problem is thus

$$\hat{f}(x) = \operatorname{argmin}_{f} \left\{ \sum_{i} l(y_{i} - f(x_{i})) \right\}. \tag{4}$$

Alas, there are clearly infinitely many f for which $\mathbb{R}(\hat{f}(x)) = 0$, in particular, all those where $\hat{f}(x_i) = y_i$. All these f feel like very bad predictors, and we will indeed formalize this intuition in Section 4.

We need to make sure that we do not learn overly complex poor predictors. Motivated by the fact that humans approach new problems equipped with their past experience, this regularization is called *Inductive Bias*. There are several ways to introduce this bias, which can be combined:

Inductive
Bias

- The Hypothesis Class We typically do not allow f to be "any function" but rather restrict it to belong to a certain class. In the machine learning terminology, f is a Hypothesis, and it belongs to \mathcal{F} which is the Hypothesis Class.
- **Prior Knowledge** We do not need to treat all $f \in \mathcal{F}$ equivalently. We might have prior preferences towards particular f's and we can introduce these preference in the learning process. This is called *Regularization*.
- Non ERM Approaches Many learning problems can be cast as ERM problems, but another way to introduce bias is by learning f via some other scheme, which cannot be cast as an ERM problem. Learning algorithms that cannot be cast as ERMs include: Nearest Neighbour, Kernel Smoothing, Boosting. Naive Bayes and Fisher's LDA are also not considered ERMs, but they can be cast as such [TODO: verify].

We now proceed to show that many supervised learning algorithms are in fact ERMs with some type of inductive bias.

2.2 Linear Regression (OLS)

As seen in Example 9, by adopting a squared error loss, and restricting \mathcal{F} by assuming f is a linear function of x, we get the OLS problem. In this case, learning f is effectively the same as learning β as they are isomorphic.

Remark 3. We distinguish between OLS and Linear Regression. In these notes, we refer to linear regression when we assume that the data generating process it actually $y = x\beta + \varepsilon$, whereas in OLS we merely fit a linear function without claiming it is the data generating one.

2.3 Ridge Regression

Consider the Ridge regression problem:

$$argmin_{\beta} \left\{ \frac{1}{n} \sum_{i} (y_i - x_i \beta)^2 + \frac{\lambda}{2} \|\beta\|^2 \right\}$$
 (5)

$$\hat{\beta}_{Ridge} = (X'X + \lambda I)^{-1}X'y \tag{6}$$

We can see that again, \mathcal{F} is restricted to be the space of linear functions of x, but we also add a regularization that favors the linear functions with small coefficients.

The regularization of β can have several interpretations and justifications.

- A mathematical device Strengthening the diagonal of X'X makes is more easily invertible. This is a standard tool in applied mathematics called Tikhonov Regularization. It is also helpful when dealing with multicolinearity, as $(X'X + \lambda I)$ is always invertible.
- A Subjective Bayesian View If we believe that β should be small; say our believes can be quantified by $\beta \sim \mathcal{N}(0, \lambda I)$, then the Ridge solution is actually the mean of our posterior believes on $\beta|y$.

Whatever the justification may be, it can be easily shown that $\frac{\partial R(\lambda, \beta)}{\partial l} \lambda$ at $\lambda = 0$ is negative, thus, we can only improve the predictions by introducing some regularization.

For more on Ridge regression see Hastie et al. [2003].

2.4 LASSO

Consider the LASSO problem:

$$argmin_{\beta} \left\{ \frac{1}{n} \sum_{i} (y_i - x_i \beta)^2 + \lambda \|\beta\|_1^2 \right\}$$
 (7)

As can be seen, just like in Ridge regression, \mathcal{F} is restricted to linear functions. The regularization however differs. Instead of l_2 penalty, we use an l_1 penalty. Eq.(7) does not have a closed form solution for $\hat{\beta}$ but the LARS algorithm, a quadratic programming algorithm, solves it efficiently.

The LASSO has gained much popularity as it has the property that $\hat{\beta}_{LASSO}$ has many zero entries. It is thus said to be *sparse*. The sparsity property is very attractive as it acts as a model selection method, allowing to consider Xs where p > n, and making predictions computationally efficient.

Sparsity

The sparsity property can be demonstrated for the orthogonal design case (X'X = I) where $\hat{\beta}$ admits a closed form solution:

$$\hat{\beta}_{j,LASSO} = sign(\beta_j) \left[|\hat{\beta}_{j,OLS}| - \frac{\lambda}{2} \right]_{+}. \tag{8}$$

We thus see that the LASSO actually performs *soft thresholding* on the OLS estimates.

Soft Thresholding

2.5 Logistic Regression

The logistic regression is the first categorical prediction problem. I.e., the outcome y is not a continuous variable, but rather takes values in some finite set \mathcal{G} . In the logistic regression problem, it can take two possible values. In the statistical literature, y is encoded as $\mathcal{G} = \{0,1\}$ and f is assumed to take to take the following form:

Categorical Prediction

$$P(y=1|x) = \Psi(x\beta) \tag{9}$$

$$\Psi(t) = \frac{1}{1 + e^{-t}} \tag{10}$$

The hypothesis class \mathcal{F} is thus all $f(x) = \Psi(x\beta)$. In the $\{0,1\}$ encoding, the loss is the negative log likelihood, i.e.:

$$l(y, x, \beta) = -\log \left[\Psi(x\beta)^y (1 - \Psi(x\beta))^{1-y} \right]. \tag{11}$$

In the learning literature it is more common for $\{1, -1\}$ encoding of y in which case the loss is

$$l(y, x, \beta) = -\log [1 + \exp(-yf(x))].$$
 (12)

How to classify? In the $\{0,1\}$ encoding, we predict class 1 if $\Psi(x\beta) > 0.5$ and class 0 otherwise. The logistic problem thus defines a separating hyperplane \mathbb{L} between the classes: $\mathbb{L} = \{x : f(x) = 0.5\}$.

In the $\{1, -1\}$ encoding, we predict class 1 if $\Psi(x\beta) > 0$ and class 0 otherwise. The plane \mathbb{L} is clearly invariant to the encoding of y.

Remark 4 (Log Odds Ratio). The formulation above, implies that the log odds ratio is linear in the predictors:

$$\log \frac{P(y=1|x)}{P(y=0|x)} = x\beta$$

Remark 5 (GLMs). Logistic regression is a particular instance of the very developed theory of Generalized Linear Models. These models include the OLS, Probit Regression, Poisson Regression, Quasi Likelihood, Multinomial Regression, Proportional Odds regression and more. The ultimate reference on the matter is McCullagh and Nelder [1989].

GLM

2.6 Regression Classifier

Can we use the OLS framework for prediction? Yes! With proper encoding of y. Solving the same problem from Example 9 by encoding y as $\{0,1\}$ gives us the linear separating hyperplane $\mathbb{L}: \{x: x\hat{\beta}_{OLS} = 0.5\}.$

Remark 6. We can interpret \hat{y} as the probability of an event, but there a slight technical difficulty as \hat{y} might actually be smaller than 0 or larger than 1.

2.7 Linear Support Vector Machines (SVM)

We will now not assume anything on the data, and seek for a hyperplane that seperates two classes. This, purely geometrical intuition, was the one that motivated Vapnik's support vector classifier [Vapnik, 1998]. In this section we will see the this geometrical intuition can also be seen as an ERM problem over a linear hypothesis class.

Problem Setup Encode y as $\mathcal{G} = \{-1, 1\}$. Define a plane $\mathbb{L} = \{x : f(x) = 0\}$, and assume a linear hypothesis class, $f(x) = x\beta + \beta_0$. Now find the plane \mathbb{L} that maximizes the (sum of) distances to the data points. We call the minimal distance from \mathbb{L} to the data points, the *Margin*, and denote it by M.

To state the optimization problem, we need to note that $f(x) = x\beta + \beta_0$ is not only the value of our classifier, but it is actually proportional to the signed distance of x from \mathbb{L} .

Proof. The distance of x to \mathbb{L} is defined as $\min_{x_0 \in \mathbb{L}} \{ \|x - x_0\| \}$. Note $\beta^* := \beta/\|\beta\|$ is a normal vector to \mathbb{L} , since $\mathbb{L} = \{x : x\beta + \beta_0 = 0\}$, so that for $x_1, x_2 \in \mathbb{L} \Rightarrow \beta(x_1 - x_2) = 0$. Now $x - x_0$ is orthogonal to \mathbb{L} because x_0 is, by definition, the orthogonal projection of x onto \mathbb{L} . Since $x - x_0$ are both orthogonal to \mathbb{L} , they are linearly dependent, so that by the Cauchy Schwarz inequality $\|\beta^*\|\|x - x_0\| = \|\beta^*(x - x_0)\|$. Now recalling that $\|\beta^*\| = 1$ and $\beta^*x_0 = -\beta_0/\|\beta\|$ we have $\|x - x_0\| = \frac{1}{\|\beta\|}(x\beta + \beta_0) = \frac{1}{\|\beta\|}f(x)$.

Using this fact, then $y_i f(x_i)$ is the distance from \mathbb{L} to point i, positive for correct classifications and negative for incorrect classification. The (linear) support vector classifier is defined as the solution to

$$\max_{\beta,\beta_0} \{ M \quad s.t. \quad \forall i : y_i f(x_i) \ge M, \quad \|\beta\| = 1 \}$$
 (13)

If the data is not separable by a plane, we need to allow some slack. We thus replace $y_i f(x_i) \ge M$ with $y_i f(x_i) \ge M(1 - \xi_i)$, for $\xi_i > 0$ but require that the missclassifications are controlled using a regularization parameter $C: \sum_i \xi_i \le C$. Eq.(13) now becomes [Hastie et al., 2003, Eq.(12.25)]

$$\max_{\beta,\beta_0} \left\{ M \quad s.t. \quad \forall i : y_i f(x_i) \ge M(1 - \xi_i), \ \|\beta\| = 1, \ \sum_i \xi_i \le C, \ \forall i : \xi_i \ge 0 \right\}$$
(14)

This is the classical geometrical motivation for support vector classification problem. The literature now typically discusses how to efficiently optimize this problem, which is done via the dual formulation of Eq.(14). We will not go in this direction, but rather, note that Eq.(14) can be restated as an ERM problem:

$$\min_{\beta,\beta_0} \left\{ \sum_{i} \left[1 - y_i f(x_i) \right]_+ + \frac{\lambda}{2} \|\beta\|_2^2 \right\}$$
 (15)

Eq.(15) thus reveals that the linear SVM is actually an ERM problem, over a linear hypothesis class, with l_2 regularization of β .

See Section 12 in Hastie et al. [2003] for more details on SVMs.

Remark 7 (Name Origins). SVM takes its name from the fact that $\hat{\beta}_{SVM} = \sum_i \hat{\alpha}_i y_i x_i$. The explicit form of $\hat{\alpha}_i$ can be found in [Hastie et al., 2003, Section 12.2.1]. For our purpose, it suffices to note that $\hat{\alpha}_i$ will be 0 for all data points far away from \mathbb{L} . The data points for which $\hat{\alpha}_i > 0$ are the *support vectors*, which give the method its name.

Remark 8 (Solve the right problem). Comparing with the logistic regression, and the linear classifier, we see that the SVM cares only about the decision boundary \mathbb{L} . Indeed, if only interested in predictions, estimating probabilities is a needless complication. As Put by Vapnik:

When solving a given problem, try to avoid a more general problem as an intermediate step.

Then again, if the assumed logistic model of the logistic regression, is actually a good approximation of reality, then it will outperform the SVM as it borrows information from all of the data, and not only the support vectors.

- 2.8 Generalized Additive Models (GAMs)
- 2.9 Neural Nets (NNETs)
- 2.10 Classification and Regression Trees (CARTs)
- 3 Unsupervised Learning

[TODO]

4 Statistical Decision Theory

[TODO]

5 Dimensionality Reduction

[TODO]

6 Latent Space Models

[TODO]

References

- T. Hastie, R. Tibshirani, and J. Friedman. *The Elements of Statistical Learning*. Springer, July 2003. ISBN 0387952845.
- G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statistical Learning: with Applications in R. Springer, New York, 1st ed. 2013. corr. 4th printing 2014 edition edition, Aug. 2013. ISBN 9781461471370.
- P. McCullagh and J. A. Nelder. *Generalized Linear Models, Second Edition*. Chapman and Hall/CRC, Boca Raton, 2 edition edition, Aug. 1989. ISBN 9780412317606.
- S. Shalev-Shwartz and S. Ben-David. *Understanding Machine Learning:* From Theory to Algorithms. Cambridge University Press, New York, NY, May 2014. ISBN 9781107057135.
- V. N. Vapnik. Statistical Learning Theory. Wiley-Interscience, New York, 1 edition edition, Sept. 1998. ISBN 9780471030034.
- L. Wasserman. All of statistics: a concise course in statistical inference. Springer, New York, 2004. ISBN 0387402721 9780387402727.