Varianta 13

Subjectul I.

- **a)** $|4-6i|=2\sqrt{13}$.
- **b)** $AC = \sqrt{2}$.
- **c**) S = 0.
- $\mathbf{d}) \, \left\{ \begin{array}{l} a = 1 \\ b = -1 \end{array} \right.$
- e) Aria triunghiului *ABC* este $S = \frac{3}{2}$.
- **f**) a = 0 și b = 1.

Subjectul II.

- a) În \mathbf{Z}_8 avem $\hat{2}^{2006} = \hat{0}$.
- b) E = 1.
- c) x = 5.
- d) $x = \frac{5}{4}$.
- e) Probabilitatea este $p = \frac{2}{5}$.
- **a**) $f'(x) = 5x^4 + 2$, $\forall x \in \mathbf{R}$.
- **b**) $\int_{0}^{1} f(x) dx = \frac{1}{6}$.
- c) $\lim_{x \to 0} \frac{f(x) f(0)}{x} = 2$. d) f'(x) > 0, $\forall x \in \mathbf{R}$, deci funcția f este strict crescătoare pe \mathbf{R} .
- e) $\lim_{n\to\infty} \frac{2\ln n + 3}{5\ln n 2} = \frac{2}{5}$.

Subjectul III.

- **a**) $f_2(1) = -1$.
- **b**) $f_3(x) = x^3 3x$, pentru $x \in \mathbf{R}$.
- c) Calcul direct.

- **d)** Se folosesc f_1 și f_2 , iar pentru $k \in \mathbb{N}^*$, se presupune că $f_k(2\cos x) = 2\cos kx$
- și $f_{k+1}(2\cos x) = 2\cos(k+1)x$ și se demonstrează că $f_{k+2}(2\cos x) = 2\cos(k+2)x$.
- e) Se demonstrează prin inducție, folosind relația de recurență din enunț.
- **f**) Deoarece pentru orice $n \in \mathbb{N}^*$, coeficientul dominant al funcției f_n coincide cu cel al funcției f_{n-1} și termenul liber al funcției f_n coincide cu cel al funcției $-f_{n-2}$, afirmația din enunț se demonstrează prin inducție.

g) Pentru
$$r \in \mathbf{Q}$$
, există $p \in \mathbf{Z}$, $q \in \mathbf{N}^*$, astfel încât $r = \frac{p}{q}$.

Din **d**), avem că $f_q(2\cos r\pi) = 2\cos p\pi \in \{-2, 2\}$.

Pentru orice $n \in \mathbb{N}^*$, considerăm funcțiile $g_n, h_n : \mathbb{R} \to \mathbb{R}$, $g_n(x) = f_n(x) - 2$, $h_n(x) = f_n(x) + 2$.

Dacă $f_q(2\cos r\pi) = -2$, numărul $\alpha = 2\cos r\pi \in \mathbf{Q}$ este o rădăcină a funcției h_q , iar dacă $f_q(2\cos r\pi) = 2$, numărul $\alpha = 2\cos r\pi \in \mathbf{Q}$ este o rădăcină a funcției g_q . Din \mathbf{e}) și \mathbf{f}) obținem că $\alpha = 2\cos r\pi \in \{-4, -2, -1, 0, 1, 2, 4\}$ și deci

$$\alpha = 2\cos r\pi \in \left\{-2, -1, 0, 1, 2\right\}, \text{ de unde rezultă } \cos r\pi \in \left\{-1, -\frac{1}{2}, 0, \frac{1}{2}, 1\right\}.$$

Subjectul IV.

$$\mathbf{a)} \quad \sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n+1}} \quad \text{$;$ i} \quad \frac{1}{\sqrt{n+1} + \sqrt{n+1}} < \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{\sqrt{n} + \sqrt{n}} \; , \; \text{ de unde rezultă concluzia.}$$

- b) Se folosește punctul a).
- c) Trecând la limită în prima inegalitate obținută la punctul **b**), avem: $\lim x_n \ge \lim (2\sqrt{n+1} 2) = +\infty$.

d) Din **b**) obtinem
$$\frac{2\sqrt{n+1}-2}{\sqrt{n}} < \frac{x_n}{\sqrt{n}} < \frac{2\sqrt{n}-1}{\sqrt{n}}, \forall n \in \mathbb{N}, n \ge 2.$$

Trecând la limită în dubla inegalitate anterioară și folosind criteriul cleștelui, găsim $\lim_{n\to\infty} \frac{x_n}{\sqrt{n}} = 2$.

e) Pentru orice
$$n \in \mathbb{N}^*$$
, $y_{n+1} - y_n = 2 \cdot \left(\frac{1}{2\sqrt{n+1}} - \left(\sqrt{n+1} - \sqrt{n}\right)\right) \stackrel{\text{a)}}{<} 0$, deci şirul

 $(y_n)_{n\geq 1}$ este strict descrescător.

f) Scăzând $2\sqrt{n}$ în dubla inegalitate din b) obținem:

$$-2 < 2(\sqrt{n+1} - \sqrt{n}) - 2 < y_n < -1, \iff -2 < y_n < -1, \forall n \in \mathbb{N}, n \ge 2.$$

Şirul $(y_n)_{n\geq 1}$ este convergent, fiind strict descrescător și mărginit inferior.

g) Din **f**) rezultă că $-2 < y_n \le -1$, $\forall n \in \mathbb{N}^*$. Trecând la limită în inegalitatea anterioară, obținem $-2 \le \lim_{n \to \infty} y_n \le -1$ și cum șirul $(y_n)_{n \ge 1}$ este strict descrescător, rezultă $-2 \le \lim_{n \to \infty} y_n < -1$.