

SEQUENCE LISTING

<110> Kingsbury, G.
Leiby, K.

<120> COMPOSITIONS AND METHODS FOR THE DIAGNOSIS AND
TREATMENT OF IMMUNE DISORDERS

<130> MPI99-131P1RNDV1AM

<140> 09/899,980
<141> 2001-07-06

<150> 60/155,862
<151> 1999-09-24

<160> 34

<170> FastSEQ for Windows Version 3.0

<210> 1
<211> 255
<212> DNA
<213> Homo sapiens

<400> 1

ttagcgccat tgccatagag agacacctcagc catcaatcac tagcacatga ttgacagaca	60
gagaatggga ctttgggctt tggcaattct gacacttccc atgtatttga cagttacgga	120
gggcagtaaa tcgtcctggg gtctggaaaa tgaggctta atttgtgagat gcccccaaag	180
aggacgctcg acttattcctg tggaatggta ttactcagat acaaataatgaaa gtattcctac	240
ccaaaaaaaaaaaaaa aaaaaa	255

<210> 2
<211> 1011
<212> DNA
<213> Mus musculus

<400> 2

atgattgaca gacagagaat gggactttgg gctttggcaa ttctgacact tcccatgtat	60
ttgacagtta cggagggcag taaatcggtcc tgggggtctgg aaaaatgaggc ttttaattgtg	120
agatcccccc aaagaggacg ctcgacttat cctgtggaaat ggtattactc agatacaaataat	180
gaaagtattc ctactcaaaa aagaaatcgg atctttgtct caagagatcg tctgaagttt	240
ctaccagcca gagtcgaaga ctctgggatt tatgcttgtt ttatcagaag ccccaacttg	300
aataagactg gatacttggaa tgtcaccata cataaaaaagc cgccaagctg caatatccct	360
gattatttga tgtactcgac agtacgttgg tcagataaaaa atttcaagat aagctgtcca	420
acaatttgacc tgtataattt gacagcacct gttcagttgtt ttaagaactg caaagctctc	480
caagagccaa gtttcagggc acacagggtcc tactttgttca ttgacaacgt gactcatgat	540
gatgaagggtg actacacttg tcaattcaca cacgcggaga atggaacccaa ctacatcggt	600
acggccacca gatcattcac agttgaagaa aaaggcttt ctatgtttcc agtaattaca	660
aatcctccat acaaccacac aatggaagtg gaaataggaa aaccagcaag tattgcctgt	720
tcagcttgc ttggcaaagg ctctcacttc ttggctgtat tcctgtggca gattaacaaa	780
acagtagttg gaaattttgg tgaagcaaga attcaagaag aggaagggtcg aaatgaaagt	840
tccagcaatg acatggattt tttaacctca gtgttaagga taactgggtgt gacagaaaaag	900
gacctgtccc tgaaatatgta ctgtctggcc ctgaacccccc atggcatgat aaggcacacc	960
ataaggctga gaaggaaaca accaagtaag gagtgcctt cacacattgc t	1011

<210> 3
<211> 4989
<212> DNA
<213> Mus musculus

<400> 3

tgccattgcc	atagagagac	ctcagccatc	aatcaactagc	acatgattga	cagacagaga	60
atgggacttt	gggctttgc	aattctgaca	cttcccatgt	atttgacagt	tacggaggc	120
agtaaatcg	cctgggtct	ggaaaatgag	gctttaattg	ttagatgcc	ccaaagagga	180
cgctcgactt	atccctgtga	atggtattac	tcagatacaa	atgaaagtat	tcctactcaa	240
aaaagaaaatc	ggatctttgt	ctcaagagat	cgtctgaagt	ttctaccagc	cagagtggaa	300
gactctgg	tttatgcttg	tgttatcaga	agccccaaact	tgaataagac	tggatacttg	360
aatgtcacca	tacataaaaaa	gccccaagc	tgcaatatcc	ctgattattt	gatgtactcg	420
acagttacgt	gatcagataa	aaatttcaag	ataacgtgtc	caacaattga	cctgtataat	480
tggacacgac	ctgttcagtg	gtttaagaac	tgcaaagctc	tccaaagagcc	aaggttcagg	540
gcacacaggt	cctacttgtt	cattgacaac	gtgactcatg	atgatgaagg	tgactacact	600
tgtcaattca	cacacgcgga	gaatggaacc	aactacatcg	tgacggccac	cagatcattc	660
acagttgaag	aaaaaggc	ttctatgttt	ccagtaatta	caaattcctcc	atacaaccac	720
acaatggaag	tggaaatagg	aaaaccagca	agtattgcct	gttcagctt	cttggcaaa	780
ggctctca	tcttggctga	tgtctgtgg	cagattaaca	aaacagtagt	tggaaatttt	840
ggtgaagcaa	gaattcaaga	agagaaggt	cgaaatgaaa	gttccagcaa	tgacatggat	900
tgtttaacct	cagtgttaag	gataactgg	gtgacagaaa	aggacctgtc	cctggaaat	960
gactgtctgg	ccctgaacct	tcatggcatg	ataaggcaca	ccataaggct	gagaaggaaa	1020
caaccaattt	atcaccgaag	catctactac	atagttgctg	gatgttagttt	attgctaatg	1080
tttatcaatg	tcttgggtat	agtcttaaaa	gtgttctgga	ttgaggttgc	tctgttctgg	1140
agagatata	tgacaccccta	caaaccgg	aacgatggca	agctctacga	tgcgtacatc	1200
atttaccctc	gggtcttccg	gggcagcgcg	gcgggaaaccc	actctgtgg	gtactttgtt	1260
caccacactc	tgcccgcac	tcttggaaat	aaatgtggct	acaaattgtg	cattatggg	1320
agagacctgt	tacctggc	agatcagcc	accgtggtgg	aaagcagttat	ccagaatagc	1380
agaagacagg	tgtttgg	ggccctcac	atgatgcaca	gcaaggaatt	tgcctacag	1440
caggagattt	ctctgcac	cgccctcatc	cagaacaact	ccaaggtgt	tcttattgaa	1500
atggagcctc	tgggtgag	aagccgacta	caggttgggg	acctgcaaga	ttctctccag	1560
catcttgta	aaattcagg	gaccatcaag	tggagggaa	atcatgtggc	cgacaagcag	1620
tctctaagtt	ccaaattctg	gaagcatgt	aggtaccaaa	tgccagtgtc	agaaagagcc	1680
tccaagacgg	catctgttgc	ggctccgtt	agtggcaagg	catgcttaga	cctgaaacac	1740
ttttgagttt	agagctgcgg	agtcccagca	gtagggcacc	gagtgcaggt	gtgcagactt	1800
gaaatgcca	gggtggggc	cccaagtctc	agctaaagag	caactcttagt	ttattttct	1860
ggttatggta	ggagccaccc	atcggtt	tccggtttcc	ttttctact	tcactttgt	1920
ggcacaagat	caacccttag	cttttcc	ttcttttatt	tctttttt	ttcttcttt	1980
taaaagctt	ttaaaatttga	ttatcttatt	tatctacctt	tcaaaggta	tcccccttcc	2040
cggtcccccc	tctacaaatc	cccacccctgc	ttcccttctc	cctgcttct	tgagggtgc	2100
cccccacctg	cccatccact	ccagccttac	aggccttgc	ttccctatg	ctggggcattc	2160
gagcctccat	aagacctccc	ctctcattca	tcaattatct	acattctgaa	tatcaagccg	2220
acactttgt	ttttgtttt	gatttttga	gacagggttt	ctctgtgt	ccctggctgt	2280
cttgcacactc	acattgtaga	ccagcgtgc	ctcgaactca	gaaatcagcc	tgcctctgc	2340
tccccgagt	ctgggattaa	aggcgtgc	caccacgccc	ggctaagcct	acactttcag	2400
aataaagt	tgattcac	caaagagcag	tctcattccc	agaggcagag	agccggaaag	2460
agcctccat	gtgctgtcc	aggcagagct	gaccttattt	gcttaccgt	cacaggtaaa	2520
caaagcgtt	ctccgtgtt	cctttagt	acatccctgt	aatagattag	gaagggaaatg	2580
agccgtccta	ctgaccagg	tgtgaattgt	ggtagaaaaaa	gcgttgacgt	ttgttaaata	2640
cttgcgtca	atgtaaac	cattccta	acaccagaat	ttcttactt	ttattcgtca	2700
attaccgagt	tttgcgtca	cagtattaa	agatttgg	gaatacctt	cccaaattgc	2760
cattacagtc	gagcatgtt	tcagttctaa	atgccttta	tatattttt	attcttctt	2820
gaaatactt	ctcactttaa	aagtaatgt	aagatgtgtt	agaaaacata	agggttaaga	2880
gaaagat	taaaatataa	aaaataatag	aaaggaaagg	aaatataatg	aaaatcataa	2940
ctcttaagat	taatttgtt	aggtctgtat	tttaaaat	aattaaattt	tataccgata	3000
actttatag	ctgagattt	acactacaga	ctaggcagct	tttcttattt	accaccataa	3060
tgaaaactgg	tggctgattt	ctttaacatt	cacagaagtt	ccaaatgtct	catttttagac	3120
tgtgctgcag	actatggctg	aagcagccag	aatgagaaac	aggtctgcca	tgtcacatcg	3180
ggacatttcc	ctacttactg	aaatgtatct	gtcactgtgc	gacagctaac	ttttgtgata	3240
ctcctatgaa	atgtgttaggg	aatttggaca	gaacagaatc	aatctatagt	cagaggcct	3300
ctggacagtc	ttttccagga	gcacacacag	accgtgaggt	cctaggcacc	caggaaacgg	3360
atccagagcc	caggcaagtg	tcttacaggt	accttgaatt	ttgccaatag	atatgagccc	3420
tgccttagct	gagttgctca	gtcgggtat	ggactccagg	ctgaggtgac	aatgaacaca	3480
gaatttggga	gactcttga	aggaggggaa	tgttgaactc	acggtaaca	tatgaggctg	3540

cagagaagcc	gtatgcagaa	gtgtgttag	aggatctaga	gtagccggtt	tctctgggga	3600
cagtgtgctc	ttagtctgt	cccttaggct	gggttgcag	gtaaaacattt	gctagtgttc	3660
agttcaaagg	ctgaagcttg	agctgagggt	gatgaggaat	tcaaacttcc	cctcgcatgc	3720
atccaccctg	tggttgcctg	gtttgctaag	tccacctgct	ctgctgttagt	agaaggttt	3780
gatcttctgc	agcttcatact	acttcttagt	gagttgc当地	aactgaccac	tgaaaagcat	3840
gctgtgtaca	taactgtctc	atgtcccaga	acgtgcaatc	aggaggaat	cctcaactccc	3900
gataacggaa	tccttgctct	gtggctgtga	ggacgtccct	tagcaacctc	agatagtaat	3960
ttttcttagg	ttggatggaa	catagtaaacg	tgctggattc	tttgctaact	gaaaatagaa	4020
gtattcggat	ttagaaaaaa	actgataaa	tattaatgtt	ggtgattatg	aatctcatt	4080
gtgagccgtg	ttagttttag	tgtgtattcc	atgattgtgc	tgaatgaaga	cctctaaaaa	4140
tgaardttctc	tccaaatctca	tccctggaa	tagttgcttc	ctcatgcctg	ctgctccatc	4200
catggaaaat	gactaaagag	aattattatt	tgttcccgag	attcttctga	taagtctaaa	4260
ctatttgcata	gtatttgagc	tggcagcat	ggcacactg	ggaggcagag	gcaggtggat	4320
ctctgtgagt	ttgaggccag	cctgtctac	agagtttagt	ccaggacacc	agagctacaa	4380
aaagaaaacc	tgtcctaaca	acaacagcaa	cagctgcagc	agcaacaaca	acaacaaaaga	4440
aaaagaagag	gaggaggagg	aaagaaaaga	aggaagaagg	aagaagaaag	ggaagaaaata	4500
atagattttt	ctgtatgaa	cacacatatg	ctttagtgc	tttgctaaac	tcaaaatatt	4560
agtttattt	tactgtttt	aaaggttcaa	agcatgatcc	atgtaaaaat	gtcttctgtg	4620
gggctttctc	ccatttctac	ttttgttccc	ctcatttctt	caaagtgcct	gtccaggcag	4680
agctgacctt	atttgcttac	cagttacagg	taaacaaaagc	gtttcctcgt	gtgcctctt	4740
gtagccatct	ctgtattttaga	tttagaaggg	aaggagccgt	cctactgtcc	agtttgtgag	4800
ttctgtttaga	aagagtgtt	aagttgtt	aatgcttgc	ttccatgtat	caaaatgtt	4860
tgccttcct	atttattatt	gtatgacaaa	ttattttca	ctggcaaaaa	ataattgtgc	4920
cattgactcc	ttgtgtgtt	tcttcatgt	tgtttgaaga	gttctagctt	attaaaaaaa	4980
aaaatcttag						4989

<210> 4
 <211> 2058
 <212> DNA
 <213> Homo sapiens

<400> 4

aaagagaggc	tggctgttgt	atttagtaaa	gctataaagc	tgttaagagaa	attggcttcc	60
tgagttgtga	aactgtggc	agaaaagttga	ggaagaaaaga	actcaagtac	aacccaatga	120
ggttgagata	taggctactc	ttcccaactc	agtcttgaag	agtatcacca	actgcctcat	180
gtgtgggtac	cttcaactgtc	gtatgccagt	gactcatctg	gagtaatctc	aacaacgagt	240
taccaatact	tgctcttgc	tgataaacag	aatggggttt	tggatcttag	caatttctcac	300
aattctcatg	tattccacag	cagcaaagtt	tagtaaacaa	tcatggggcc	tggaaaatga	360
ggcttaatt	gtaagatgtc	ctagacaagg	aaaacctagt	tacaccgtgg	attggattt	420
ctcacaaaaca	aacaaaagta	ttcccaactca	ggaaagaaaat	cgtgtgttt	cctcaggcaca	480
acttctgaag	tttctaccag	ctgaagttgc	tgattctgtt	atttataacct	gtattgtcag	540
aagtcccaca	ttcaatagga	ctggatatgc	gaatgtcacc	atataaaaaa	aacaatcaga	600
ttgcaatgtt	ccagattatt	tgatgtattc	aacagtatct	ggatcagaaaa	aaaattccaa	660
aatttattgt	cctaccattt	acctctacaa	ctggacagca	cctcttgcgt	ggtttaagaa	720
ttgtcaggct	cttcaaggat	caaggtacag	ggcgcacaag	tcattttgg	tcattgataa	780
tgtgatgact	gaggacgcag	gtgattacac	ctgttaaattt	atacacaatg	aaaatggagc	840
caattatagt	gtgacggcga	ccaggtcctt	cacggtaag	gatgagcaag	gctttctct	900
gtttccagta	atcgaggccc	ctgcacaaaa	tgaaataaaag	gaagtggaaa	ttggaaaaaaaa	960
cgcaaaccta	acttgcctg	cttgggggg	aaaaggcact	cagttcttgg	ctggcgtcct	1020
gtggcagctt	aatggaaacaa	aaattacaga	ctttggtgaa	ccaagaattc	aacaagagga	1080
agggcaaaat	caaagttca	gcaatgggct	ggcttgccta	gacatggttt	taagaatagc	1140
tgacgtgaag	gaagaggatt	tattgctgca	gtacgactgt	ctggccctga	atttgcattt	1200
cttgagaagg	cacaccgtaa	gactaagttag	aaaaaatcca	attgatcatc	atagcatcta	1260
ctgcataatt	gcagtatgt	gtgtattttt	aatgctaattc	aatgtcctgg	ttatcatctt	1320
aaaaatgtt	ttggatttgggg	ccactctgt	ctggagagac	atagctaaac	cttacaagac	1380
taggaatgt	ggaaagctct	atgtatgtt	tgttgtctac	ccacggaaact	acaaatccag	1440
tacagatggg	gccagtcgt	tagactt	tgttcaccag	attctgcctg	atgttcttga	1500
aaataaatgt	ggctataactt	tatgcattt	tgggagagat	atgctacctg	gagaagatgt	1560
agtcactgca	gtggaaacca	acatacgaaa	gagcaggcgg	cacattttca	tcctgacccc	1620
tcagatcact	cacaataagg	agttgccta	cgagcaggag	gttgcctcgt	actgtccct	1680
catccagaac	gacgccaagg	tgatacttat	tgagatggag	gctctgagc	agctggacat	1740

gctgcaggct gaggcgcttc aggactccct ccagcatctt atgaaagtac aggggaccat	1800
caagtggagg gaggaccaca ttgccaataa aaggccctg aattccaaat tctggaaagca	1860
cgtgaggtac caaatgcctg tgccaaagcaa aattcccaga aaggccctcta gtttgactcc	1920
cttggctgcc cagaagcaat agtgcctgct gtgatgtca aagggatctg gttttgaagc	1980
tttcctgact tctccttagct ggcttatgcc cctgactga agtgtgagga gcggaaatat	2040
taaaggatt caggccac	2058

<210> 5
 <211> 1357
 <212> DNA
 <213> Homo sapiens

<400> 5	
atctcaacaa cgagttacca atacttgctc ttgattgata aacagaatgg ggtttggat	60
cttagcaatt ctcacaattc tcatgtattc cacagcagca aagtttagta aacaatcatg	120
gggcctggaa aatgaggcct taattgtaaat atgtcctaga caaggaaaac ctgttacac	180
cgtggattgg tattactcac aaacaaacaa aagtattccc actcaggaaa gaaatcgtgt	240
gtttgcctca ggc当地acttc tgaagtttct accagctgaa gttgctgatt ctggatttta	300
tacctgtatt gtc当地agtc ccacattcaa taggactgga tatgc当地atg tcaccatata	360
taaaaaacaa tcaagattgca atgtccaga ttatttgatg tattcaacag tatctggatc	420
agaaaaaaaaat tccaaaattt attgtcctac cattgaccc tacactgga cagcacctct	480
tgagtggttt aagaattgtc aggcttca aggtcaagg tacagggcgc acaagtcatt	540
tttggcatt gataatgtgta tgactgagga cgc当地gtat tacacctgta aatttataca	600
caatgaaaat ggagccaaat atagtgac ggc当地accagg tccttcacgg tcaaggatga	660
gcaaggcttt tctctgttcc cagtaatcgg agcccctgca caaaatgaaa taaaggaaat	720
ggaaatttggaa aaaaacgcaa acctaacttgc ctctgcttgc tttggaaaag gcactcagtt	780
cttggctgcc gtc当地gtgca agcttaatgg aacaaaattt acagactttt gtgaaccaag	840
aattcaacaa gaggaaggc aaaatcaaag tttcagcaat gggctggctt gtctagacat	900
ggttttaga atagctgacg tgaaggaaga ggatttattt ctgc当地tacg actgtctggc	960
cctgaatttgc catggcttgc gaaggcacac cgtaagacta agtaggaaaa atccaagtaa	1020
ggagtgtttc tgagacttttgc atcacctgaa ctttctctag caagtgtaa cagaatggag	1080
tgtggttcca agagatccat caagacaatg ggaatggcct gtgc当地aaa atgtgcttct	1140
cttcttcggg atgttggtttgc ctgtctgatc tttgttagact gttcctgtt gctggagct	1200
tctctgctgc ttaaattgtt cgtc当地cccc cactccctcc taticgttgg tttgtctagaa	1260
cactcagctg cttctttgtt catccttgc ttctaactttt atgaactccc tctgtgtcac	1320
tgtatgtgaa aggaaatgca ccaacaacccg aaaactg	1357

<210> 6
 <211> 337
 <212> PRT
 <213> Mus musculus

<400> 6	
Met Ile Asp Arg Gln Arg Met Gly Leu Trp Ala Leu Ala Ile Leu Thr	
1 5 10 15	
Leu Pro Met Tyr Leu Thr Val Thr Glu Gly Ser Lys Ser Ser Trp Gly	
20 25 30	
Leu Glu Asn Glu Ala Leu Ile Val Arg Cys Pro Gln Arg Gly Arg Ser	
35 40 45	
Thr Tyr Pro Val Glu Trp Tyr Tyr Ser Asp Thr Asn Glu Ser Ile Pro	
50 55 60	
Thr Gln Lys Arg Asn Arg Ile Phe Val Ser Arg Asp Arg Leu Lys Phe	
65 70 75 80	
Leu Pro Ala Arg Val Glu Asp Ser Gly Ile Tyr Ala Cys Val Ile Arg	
85 90 95	
Ser Pro Asn Leu Asn Lys Thr Gly Tyr Leu Asn Val Thr Ile His Lys	
100 105 110	
Lys Pro Pro Ser Cys Asn Ile Pro Asp Tyr Leu Met Tyr Ser Thr Val	
115 120 125	
Arg Gly Ser Asp Lys Asn Phe Lys Ile Thr Cys Pro Thr Ile Asp Leu	
130 135 140	

Tyr Asn Trp Thr Ala Pro Val Gln Trp Phe Lys Asn Cys Lys Ala Leu
 145 150 155 160
 Gln Glu Pro Arg Phe Arg Ala His Arg Ser Tyr Leu Phe Ile Asp Asn
 165 170 175
 Val Thr His Asp Asp Glu Gly Asp Tyr Thr Cys Gln Phe Thr His Ala
 180 185 190
 Glu Asn Gly Thr Asn Tyr Ile Val Thr Ala Thr Arg Ser Phe Thr Val
 195 200 205
 Glu Glu Lys Gly Phe Ser Met Phe Pro Val Ile Thr Asn Pro Pro Tyr
 210 215 220
 Asn His Thr Met Glu Val Glu Ile Gly Lys Pro Ala Ser Ile Ala Cys
 225 230 235 240
 Ser Ala Cys Phe Gly Lys Gly Ser His Phe Leu Ala Asp Val Leu Trp
 245 250 255
 Gln Ile Asn Lys Thr Val Val Gly Asn Phe Gly Glu Ala Arg Ile Gln
 260 265 270
 Glu Glu Glu Gly Arg Asn Glu Ser Ser Asn Asp Met Asp Cys Leu
 275 280 285
 Thr Ser Val Leu Arg Ile Thr Gly Val Thr Glu Lys Asp Leu Ser Leu
 290 295 300
 Glu Tyr Asp Cys Leu Ala Leu Asn Leu His Gly Met Ile Arg His Thr
 305 310 315 320
 Ile Arg Leu Arg Arg Lys Gln Pro Ser Lys Glu Cys Pro Ser His Ile
 325 330 335
 Ala

<210> 7
 <211> 567
 <212> PRT
 <213> Mus musculus

<400> 7

Met Ile Asp Arg Gln Arg Met Gly Leu Trp Ala Leu Ala Ile Leu Thr		
1 5 10 15		
Leu Pro Met Tyr Leu Thr Val Thr Glu Gly Ser Lys Ser Ser Trp Gly		
20 25 30		
Leu Glu Asn Glu Ala Leu Ile Val Arg Cys Pro Gln Arg Gly Arg Ser		
35 40 45		
Thr Tyr Pro Val Glu Trp Tyr Tyr Ser Asp Thr Asn Glu Ser Ile Pro		
50 55 60		
Thr Gln Lys Arg Asn Arg Ile Phe Val Ser Arg Asp Arg Leu Lys Phe		
65 70 75 80		
Leu Pro Ala Arg Val Glu Asp Ser Gly Ile Tyr Ala Cys Val Ile Arg		
85 90 95		
Ser Pro Asn Leu Asn Lys Thr Gly Tyr Leu Asn Val Thr Ile His Lys		
100 105 110		
Lys Pro Pro Ser Cys Asn Ile Pro Asp Tyr Leu Met Tyr Ser Thr Val		
115 120 125		
Arg Gly Ser Asp Lys Asn Phe Lys Ile Thr Cys Pro Thr Ile Asp Leu		
130 135 140		
Tyr Asn Trp Thr Ala Pro Val Gln Trp Phe Lys Asn Cys Lys Ala Leu		
145 150 155 160		
Gln Glu Pro Arg Phe Arg Ala His Arg Ser Tyr Leu Phe Ile Asp Asn		
165 170 175		
Val Thr His Asp Asp Glu Gly Asp Tyr Thr Cys Gln Phe Thr His Ala		
180 185 190		
Glu Asn Gly Thr Asn Tyr Ile Val Thr Ala Thr Arg Ser Phe Thr Val		
195 200 205		
Glu Glu Lys Gly Phe Ser Met Phe Pro Val Ile Thr Asn Pro Pro Tyr		
210 215 220		

Asn His Thr Met Glu Val Glu Ile Gly Lys Pro Ala Ser Ile Ala Cys
 225 230 235 240
 Ser Ala Cys Phe Gly Lys Gly Ser His Phe Leu Ala Asp Val Leu Trp
 245 250 255
 Gln Ile Asn Lys Thr Val Val Gly Asn Phe Gly Glu Ala Arg Ile Gln
 260 265 270
 Glu Glu Glu Gly Arg Asn Glu Ser Ser Ser Asn Asp Met Asp Cys Leu
 275 280 285
 Thr Ser Val Leu Arg Ile Thr Gly Val Thr Glu Lys Asp Leu Ser Leu
 290 295 300
 Glu Tyr Asp Cys Leu Ala Leu Asn Leu His Gly Met Ile Arg His Thr
 305 310 315 320
 Ile Arg Leu Arg Arg Lys Gln Pro Ile Asp His Arg Ser Ile Tyr Tyr
 325 330 335
 Ile Val Ala Gly Cys Ser Leu Leu Met Phe Ile Asn Val Leu Val
 340 345 350
 Ile Val Leu Lys Val Phe Trp Ile Glu Val Ala Leu Phe Trp Arg Asp
 355 360 365
 Ile Val Thr Pro Tyr Lys Thr Arg Asn Asp Gly Lys Leu Tyr Asp Ala
 370 375 380
 Tyr Ile Ile Tyr Pro Arg Val Phe Arg Gly Ser Ala Ala Gly Thr His
 385 390 395 400
 Ser Val Glu Tyr Phe Val His His Thr Leu Pro Asp Val Leu Glu Asn
 405 410 415
 Lys Cys Gly Tyr Lys Leu Cys Ile Tyr Gly Arg Asp Leu Leu Pro Gly
 420 425 430
 Gln Asp Ala Ala Thr Val Val Glu Ser Ser Ile Gln Asn Ser Arg Arg
 435 440 445
 Gln Val Phe Val Leu Ala Pro His Met Met His Ser Lys Glu Phe Ala
 450 455 460
 Tyr Glu Gln Glu Ile Ala Leu His Ser Ala Leu Ile Gln Asn Asn Ser
 465 470 475 480
 Lys Val Ile Leu Ile Glu Met Glu Pro Leu Gly Glu Ala Ser Arg Leu
 485 490 495
 Gln Val Gly Asp Leu Gln Asp Ser Leu Gln His Leu Val Lys Ile Gln
 500 505 510
 Gly Thr Ile Lys Trp Arg Glu Asp His Val Ala Asp Lys Gln Ser Leu
 515 520 525
 Ser Ser Lys Phe Trp Lys His Val Arg Tyr Gln Met Pro Val Pro Glu
 530 535 540
 Arg Ala Ser Lys Thr Ala Ser Val Ala Ala Pro Leu Ser Gly Lys Ala
 545 550 555 560
 Cys Leu Asp Leu Lys His Phe
 565

<210> 8
 <211> 556
 <212> PRT
 <213> Homo sapiens

<400> 8
 Met Gly Phe Trp Ile Leu Ala Ile Leu Thr Ile Leu Met Tyr Ser Thr
 1 5 10 15
 Ala Ala Lys Phe Ser Lys Gln Ser Trp Gly Leu Glu Asn Glu Ala Leu
 20 25 30
 Ile Val Arg Cys Pro Arg Gln Gly Lys Pro Ser Tyr Thr Val Asp Trp
 35 40 45
 Tyr Tyr Ser Gln Thr Asn Lys Ser Ile Pro Thr Gln Glu Arg Asn Arg
 50 55 60
 Val Phe Ala Ser Gly Gln Leu Leu Lys Phe Leu Pro Ala Glu Val Ala
 65 70 75 80

Asp Ser Gly Ile Tyr Thr Cys Ile Val Arg Ser Pro Thr Phe Asn Arg
 85 90 95
 Thr Gly Tyr Ala Asn Val Thr Ile Tyr Lys Lys Gln Ser Asp Cys Asn
 100 105 110
 Val Pro Asp Tyr Leu Met Tyr Ser Thr Val Ser Gly Ser Glu Lys Asn
 115 120 125
 Ser Lys Ile Tyr Cys Pro Thr Ile Asp Leu Tyr Asn Trp Thr Ala Pro
 130 135 140
 Leu Glu Trp Phe Lys Asn Cys Gln Ala Leu Gln Gly Ser Arg Tyr Arg
 145 150 155 160
 Ala His Lys Ser Phe Leu Val Ile Asp Asn Val Met Thr Glu Asp Ala
 165 170 175
 Gly Asp Tyr Thr Cys Lys Phe Ile His Asn Glu Asn Gly Ala Asn Tyr
 180 185 190
 Ser Val Thr Ala Thr Arg Ser Phe Thr Val Lys Asp Glu Gln Gly Phe
 195 200 205
 Ser Leu Phe Pro Val Ile Gly Ala Pro Ala Gln Asn Glu Ile Lys Glu
 210 215 220
 Val Glu Ile Gly Lys Asn Ala Asn Leu Thr Cys Ser Ala Cys Phe Gly
 225 230 235 240
 Lys Gly Thr Gln Phe Leu Ala Ala Val Leu Trp Gln Leu Asn Gly Thr
 245 250 255
 Lys Ile Thr Asp Phe Gly Glu Pro Arg Ile Gln Gln Glu Glu Gly Gln
 260 265 270
 Asn Gln Ser Phe Ser Asn Gly Leu Ala Cys Leu Asp Met Val Leu Arg
 275 280 285
 Ile Ala Asp Val Lys Glu Glu Asp Leu Leu Leu Gln Tyr Asp Cys Leu
 290 295 300
 Ala Leu Asn Leu His Gly Leu Arg Arg His Thr Val Arg Leu Ser Arg
 305 310 315 320
 Lys Asn Pro Ile Asp His His Ser Ile Tyr Cys Ile Ile Ala Val Cys
 325 330 335
 Ser Val Phe Leu Met Leu Ile Asn Val Leu Val Ile Ile Leu Lys Met
 340 345 350
 Phe Trp Ile Glu Ala Thr Leu Leu Trp Arg Asp Ile Ala Lys Pro Tyr
 355 360 365
 Lys Thr Arg Asn Asp Gly Lys Leu Tyr Asp Ala Tyr Val Val Tyr Pro
 370 375 380
 Arg Asn Tyr Lys Ser Ser Thr Asp Gly Ala Ser Arg Val Glu His Phe
 385 390 395 400
 Val His Gln Ile Leu Pro Asp Val Leu Glu Asn Lys Cys Gly Tyr Thr
 405 410 415
 Leu Cys Ile Tyr Gly Arg Asp Met Leu Pro Gly Glu Asp Val Val Thr
 420 425 430
 Ala Val Glu Thr Asn Ile Arg Lys Ser Arg Arg His Ile Phe Ile Leu
 435 440 445
 Thr Pro Gln Ile Thr His Asn Lys Glu Phe Ala Tyr Glu Gln Glu Val
 450 455 460
 Ala Leu His Cys Ala Leu Ile Gln Asn Asp Ala Lys Val Ile Leu Ile
 465 470 475 480
 Glu Met Glu Ala Leu Ser Glu Leu Asp Met Leu Gln Ala Glu Ala Leu
 485 490 495
 Gln Asp Ser Leu Gln His Leu Met Lys Val Gln Gly Thr Ile Lys Trp
 500 505 510
 Arg Glu Asp His Ile Ala Asn Lys Arg Ser Leu Asn Ser Lys Phe Trp
 515 520 525
 Lys His Val Arg Tyr Gln Met Pro Val Pro Ser Lys Ile Pro Arg Lys
 530 535 540
 Ala Ser Ser Leu Thr Pro Leu Ala Ala Gln Lys Gln
 545 550 555

<210> 9
 <211> 328
 <212> PRT
 <213> Homo sapiens

<400> 9
 Met Gly Phe Trp Ile Leu Ala Ile Leu Thr Ile Leu Met Tyr Ser Thr
 1 5 10 15
 Ala Ala Lys Phe Ser Lys Gln Ser Trp Gly Leu Glu Asn Glu Ala Leu
 20 25 30
 Ile Val Arg Cys Pro Arg Gln Gly Lys Pro Ser Tyr Thr Val Asp Trp
 35 40 45
 Tyr Tyr Ser Gln Thr Asn Lys Ser Ile Pro Thr Gln Glu Arg Asn Arg
 50 55 60
 Val Phe Ala Ser Gly Gln Leu Leu Lys Phe Leu Pro Ala Glu Val Ala
 65 70 75 80
 Asp Ser Gly Ile Tyr Thr Cys Ile Val Arg Ser Pro Thr Phe Asn Arg
 85 90 95
 Thr Gly Tyr Ala Asn Val Thr Ile Tyr Lys Lys Gln Ser Asp Cys Asn
 100 105 110
 Val Pro Asp Tyr Leu Met Tyr Ser Thr Val Ser Gly Ser Glu Lys Asn
 115 120 125
 Ser Lys Ile Tyr Cys Pro Thr Ile Asp Leu Tyr Asn Trp Thr Ala Pro
 130 135 140
 Leu Glu Trp Phe Lys Asn Cys Gln Ala Leu Gln Gly Ser Arg Tyr Arg
 145 150 155 160
 Ala His Lys Ser Phe Leu Val Ile Asp Asn Val Met Thr Glu Asp Ala
 165 170 175
 Gly Asp Tyr Thr Cys Lys Phe Ile His Asn Glu Asn Gly Ala Asn Tyr
 180 185 190
 Ser Val Thr Ala Thr Arg Ser Phe Thr Val Lys Asp Glu Gln Gly Phe
 195 200 205
 Ser Leu Phe Pro Val Ile Gly Ala Pro Ala Gln Asn Glu Ile Lys Glu
 210 215 220
 Val Glu Ile Gly Lys Asn Ala Asn Leu Thr Cys Ser Ala Cys Phe Gly
 225 230 235 240
 Lys Gly Thr Gln Phe Leu Ala Ala Val Leu Trp Gln Leu Asn Gly Thr
 245 250 255
 Lys Ile Thr Asp Phe Gly Glu Pro Arg Ile Gln Gln Glu Gly Gln
 260 265 270
 Asn Gln Ser Phe Ser Asn Gly Leu Ala Cys Leu Asp Met Val Leu Arg
 275 280 285
 Ile Ala Asp Val Lys Glu Glu Asp Leu Leu Leu Gln Tyr Asp Cys Leu
 290 295 300
 Ala Leu Asn Leu His Gly Leu Arg Arg His Thr Val Arg Leu Ser Arg
 305 310 315 320
 Lys Asn Pro Ser Lys Glu Cys Phe
 325

<210> 10
 <211> 1680
 <212> DNA
 <213> Homo sapiens

<400> 10
 ctttagctccg tcactgactc caagttcatc ccctctgtct ttcagtttgg ttgagatata 60
 ggctactctt cccaaactcaag tcttgaagag tatcaccaac tgccctatgt gtggtgacct 120
 tcactgttgt atgccagtga ctcatctgga gtaatctcaa caacgaggtta ccaatacttg 180
 ctcttgattg ataaacagaaa tggggtttg gatcttagca attctcacaa ttctcatgta 240
 ttccacagca gcaaaggta gtaaacaatc atggggcctg gaaaatgagg ctttaattgt 300
 aagatgtcct agacaaggaa aacctagtttta caccgtggat tggattact cacaacaaaa 360

caaaaatatt	cccaactcagg	aaagaaaatcg	tgtgttgcc	tcaggccgac	ttctgaagtt	420
tctaccagct	gaagttgctg	attctggtat	ttatacctgt	attgtcagaa	gtccccacatt	480
caataggact	ggatatgcga	atgtcaccat	atataaaaaaa	caatcagatt	gcaatgttcc	540
agattatttg	atgtattcaa	cagtatctgg	atcagaaaaaa	aattccaaaa	tttattgtcc	600
taccattgac	ctctacaact	ggacagcacc	tcttgagttgg	tttaagaatt	gtcaggctct	660
tcaaggatca	agttacaggg	cgcacaagtgc	attttggtc	attgataatg	tgatgactga	720
ggacgcaggt	gattacacct	gtaaaatttat	acacaatgaa	aatggagcca	attatagtgt	780
gacggcgacc	aggtccttca	cggtaaagggt	ttgggtgtcag	agtttctgca	aattaaaaaa	840
gagcttaatc	tttagtaata	ctcattggat	tcaaagtcta	atgagaggct	ttgtgtatgg	900
atactatggt	gtacataaaat	gttgcgagt	gttttttaat	ctttgtttgc	aataacttca	960
acatcatcaa	tggccttgaa	tgagcaaggc	ttttctctgt	ttccagtaat	cggagcccc	1020
gcacaaaatg	aaataaaagga	agtggaaatt	gaaaaaaacg	caaaccctaa	ttgctctgct	1080
tgaaaaatggaa	aaggcactca	gttctggct	gccgtcctgt	ggcagcttaa	tggaaacaaaa	1140
attacagact	tttgtgaacc	aagaattcaa	caagaggaag	ggcaaaatca	aagtttcagc	1200
aatgggctgg	cttgtctaga	catggttta	agaatagctg	acgtgaagga	agaggattta	1260
ttgctgcagt	acgactgtct	ggccctgaat	ttgcatggct	tgagaaggca	caccgtaaaga	1320
ctaagttagga	aaaatccaag	taaggagtgt	ttctgagact	ttgatcacct	gaactttctc	1380
tagcaagtgt	aagcagaatg	gagtgtggtt	ccaagagatc	catcaagaca	atgggaatgg	1440
cctgtgccat	aaaatgtgct	tctcttcttc	gggatgttgt	ttgctgtctg	atctttgttag	1500
actgttccctg	tttgtggga	gcttctctgc	tgcttaaatt	gttgcctc	ccccactccc	1560
tcctatcggt	ggtttgtcta	gaacactcag	ctgcttcttt	ggtcatcctt	gttttctaac	1620
tttatgaact	ccctctgtgt	cactgtatgt	gaaaggaaat	gcaccaacaa	ccgaaaactg	1680

```
<210> 11  
<211> 259  
<212> PRT  
<213> Homo sapiens
```

<400> 11
 Met Gly Phe Trp Ile Leu Ala Ile Leu Thr Ile Leu Met Tyr Ser Thr
 1 5 10 15
 Ala Ala Lys Phe Ser Lys Gln Ser Trp Gly Leu Glu Asn Glu Ala Leu
 20 25 30
 Ile Val Arg Cys Pro Arg Gln Gly Lys Pro Ser Tyr Thr Val Asp Trp
 35 40 45
 Tyr Tyr Ser Gln Thr Asn Lys Ser Ile Pro Thr Gln Glu Arg Asn Arg
 50 55 60
 Val Phe Ala Ser Gly Arg Leu Leu Lys Phe Leu Pro Ala Glu Val Ala
 65 70 80
 Asp Ser Gly Ile Tyr Thr Cys Ile Val Arg Ser Pro Thr Phe Asn Arg
 85 90 95
 Thr Gly Tyr Ala Asn Val Thr Ile Tyr Lys Lys Gln Ser Asp Cys Asn
 100 105 110
 Val Pro Asp Tyr Leu Met Tyr Ser Thr Val Ser Gly Ser Glu Lys Asn
 115 120 125
 Ser Lys Ile Tyr Cys Pro Thr Ile Asp Leu Tyr Asn Trp Thr Ala Pro
 130 135 140
 Leu Glu Trp Phe Lys Asn Cys Gln Ala Leu Gln Gly Ser Arg Tyr Arg
 145 150 160
 Ala His Lys Ser Phe Leu Val Ile Asp Asn Val Met Thr Glu Asp Ala
 165 170 175
 Gly Asp Tyr Thr Cys Lys Phe Ile His Asn Glu Asn Gly Ala Asn Tyr
 180 185 190
 Ser Val Thr Ala Thr Arg Ser Phe Thr Val Lys Val Trp Cys Gln Ser
 195 200 205
 Phe Cys Lys Leu Lys Lys Ser Leu Ile Phe Ser Asn Thr His Trp Ile
 210 215 220
 Gln Ser Leu Met Arg Gly Phe Val Met Val Tyr Tyr Gly Val His Lys
 225 230 240
 Cys Cys Arg Val Val Phe Asn Leu Cys Leu Gln Tyr Phe Gln His His
 245 250 255

Gln Trp Pro

<210> 12
 <211> 1210
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> CDS
 <222> (84)...(557)

 <400> 12
 gtcgaccac gcgtccggccc acgcgtccgc tggagtaatc tcaacaacga gttaccaata 60
 cttgctttt attgataaaac aga atg ggg ttt tgg atc tta gca att ctc aca 113
 Met Gly Phe Trp Ile Leu Ala Ile Leu Thr
 1 5 10

 att ctc atg tat tcc aca gca gca aag ttt agt aaa caa tca tgg ggc 161
 Ile Leu Met Tyr Ser Thr Ala Ala Lys Phe Ser Lys Gln Ser Trp Gly
 15 20 25

 ctg gaa aat gag gct tta att gta aga tgt cct aga caa gga aaa cct 209
 Leu Glu Asn Glu Ala Leu Ile Val Arg Cys Pro Arg Gln Gly Lys Pro
 30 35 40

 agt tac acc gtg gat tgg tat tac tca caa aca aac aaa agt att ccc 257
 Ser Tyr Thr Val Asp Trp Tyr Tyr Ser Gln Thr Asn Lys Ser Ile Pro
 45 50 55

 act cag gaa aga aat cgt gtg ttt gcc tca ggc caa ctt ctg aag ttt 305
 Thr Gln Glu Arg Asn Arg Val Phe Ala Ser Gly Gln Leu Leu Lys Phe
 60 65 70

 cta cca gct gca gtt gct gat tct ggt att tat acc tgt att gtc aga 353
 Leu Pro Ala Ala Val Ala Asp Ser Gly Ile Tyr Thr Cys Ile Val Arg
 75 80 85 90

 agt ccc aca ttc aat agg act gga tat gcg aat gtc acc ata tat aaa 401
 Ser Pro Thr Phe Asn Arg Thr Gly Tyr Ala Asn Val Thr Ile Tyr Lys
 95 100 105

 aaa caa tca gat tgc aat gtt cca gat tat ttg atg tat tca aca gta 449
 Lys Gln Ser Asp Cys Asn Val Pro Asp Tyr Leu Met Tyr Ser Thr Val
 110 115 120

 tct gga tca gaa aaa aat tcc aaa att tat tgt cct acc att gac ctc 497
 Ser Gly Ser Glu Lys Asn Ser Lys Ile Tyr Cys Pro Thr Ile Asp Leu
 125 130 135

 tac aac tgg aca gca cct ctt gag tgg ttt aag atg agc aag gct ttt 545
 Tyr Asn Trp Thr Ala Pro Leu Glu Trp Phe Lys Met Ser Lys Ala Phe
 140 145 150

 ctc tgt ttc cag taatcgagc ccctgcacaa aatgaaataa aggaagtggaa 597
 Leu Cys Phe Gln
 155

 aattggcact cagttcttgg ctgccgtcct gtggcagctt aatgaaacaa aaattacaga 657
 ctttgtgaa ccaagaattc aacaagagga agggcaaaat caaatgttca gcaatgggct
 qccttgctta gacatggttt taagaatagc tgacgtgaag qaagaggatt tattgtcga 717
 777

gtacgactgt ctggccctga atttgcattgg cttgagaagg cacaccgtaa gactaagtag	837
gaaaaatcca agtaaggagt gtttctgaga ctttgatcac ctgaacttgc tctagcaagt	897
gtaagcagaa tggagtgtgg ttccaaagaga tccatcaaga caatggaat ggcctgtgcc	957
ataaaatgtg cttcttcttc tcggatgtt gtttgctgtc tgatcttgc agactgttcc	1017
tgtttgctgg gagcttctct gctgcttaaa ttgttcgtcc tcccccaactc cctcctatcg	1077
ttggtttgtc tagaacactc agctgcttct ttgttcatcc ttgtttcta actttatgaa	1137
cuccctctgt gtcactgtat gtgaaaggaa atgcaccaac aaccgtaaaa aaaaaaaaaa	1197
aaggcgccc gct	1210

<210> 13
 <211> 158
 <212> PRT
 <213> Homo sapiens

<400> 13	
Met Gly Phe Trp Ile Leu Ala Ile Leu Thr Ile Leu Met Tyr Ser Thr	
1 5 10 15	
Ala Ala Lys Phe Ser Lys Gln Ser Trp Gly Leu Glu Asn Glu Ala Leu	
20 25 30	
Ile Val Arg Cys Pro Arg Gln Gly Lys Pro Ser Tyr Thr Val Asp Trp	
35 40 45	
Tyr Tyr Ser Gln Thr Asn Lys Ser Ile Pro Thr Gln Glu Arg Asn Arg	
50 55 60	
Val Phe Ala Ser Gly Gln Leu Leu Lys Phe Leu Pro Ala Ala Val Ala	
65 70 75 80	
Asp Ser Gly Ile Tyr Thr Cys Ile Val Arg Ser Pro Thr Phe Asn Arg	
85 90 95	
Thr Gly Tyr Ala Asn Val Thr Ile Tyr Lys Lys Gln Ser Asp Cys Asn	
100 105 110	
Val Pro Asp Tyr Leu Met Tyr Ser Thr Val Ser Gly Ser Glu Lys Asn	
115 120 125	
Ser Lys Ile Tyr Cys Pro Thr Ile Asp Leu Tyr Asn Trp Thr Ala Pro	
130 135 140	
Leu Glu Trp Phe Lys Met Ser Lys Ala Phe Leu Cys Phe Gln	
145 150 155	

<210> 14
 <211> 18
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> sense primer

<400> 14
 ttgccataga gagacctc

18

<210> 15
 <211> 19
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> antisense primer

<400> 15
 tgctgtccaa ttatacagg

19

<210> 16
 <211> 22
 <212> DNA

<213> Artificial Sequence	
<220>	
<223> sense primer	
<400> 16	
gaacacggca ttgtcactaa ct	22
<210> 17	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> antisense primer	
<400> 17	
cctcatagat gggcactgtg t	21
<210> 18	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> forward primer	
<400> 18	
tgtgacggcg accaggt	17
<210> 19	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> reverse primer	
<400> 19	
tctctgttcc cagtaatcg agc	23
<210> 20	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> TaqMan probe	
<400> 20	
ttcacggtca aggatgagca agcctt	26
<210> 21	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> forward primer	
<400> 21	

caccccccact gaaaaagatg a	21
<210> 22	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> reverse primer	
<400> 22	
cttaactatc ttgggctgtg acaaag	26
<210> 23	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> TaqMan probe	
<400> 23	
tatgcctgcc gtgtgaacca cgtg	24
<210> 24	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> 5' oligonucleotide	
<400> 24	
ccgcgggtac cagtaaatcg tcctgggtg g	31
<210> 25	
<211> 36	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> 3' oligonucleotide	
<400> 25	
aaataaaagga tccctacatc cagcaactat gtagta	36
<210> 26	
<211> 38	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> 5' oligonucleotide	
<400> 26	
gaacacacta gtactatcct gtgccattgc catagaga	38
<210> 27	
<211> 44	
<212> DNA	
<213> Artificial Sequence	

<220>		
<223> 3' oligonucleotide		
<400> 27		
ggaatattgg gcccttggat cccaaagtctg cacacacctgca ctcc	44	
<210> 28		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> 5' oligonucleotide		
<400> 28		
gtaaatcgta ctggggtc tg g	21	
<210> 29		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> 3' oligonucleotide		
<400> 29		
ccttctgata acacaaggcat aaatc	25	
<210> 30		
<211> 17		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 30		
acggagggca gtaaaatc	17	
<210> 31		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 31		
cagccaagaa gtgagagc	18	
<210> 32		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 32		
tgttgccgga atccagcctc ag	22	

<210> 33
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 33

gtccccccacc cccagataca acc

23

<210> 34
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> linker

<400> 34

Ala-Ala-Ala-Asp-Pro

1

5