

Statistics for Data Science, Winter 2023

1. Introduction:

Data and Models

OVERVIEW

- Introduction (statistical perspective on data)
- ► Recap: Probability Theory
- Formalism of statistical modeling
- Estimators, tests and confidence intervals

LEARNING FROM DATA AKA. STATISTICAL INFERENCE

- data are everywhere!
- purely descriptive vs. learning/inference
- ► To learn (generalize, make inference) we need to know something about our data!
- ► ⇒ 'assumptions', statistical model, data generating process

THE STATISTICAL PERSPECTIVE ON DATA: SAMPLING FROM A POPULATION

STATISTICAL MODEL VS. ML MODEL

Statistical Model

$$\begin{array}{l} p_{\mu,\sigma^2}(x) = \\ \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right) \end{array}$$

$$\mu \in \mathbb{R}, \sigma^2 > 0$$

ML Model

$$\hat{Y}_{new} = g(X_{new})$$

ML ... mochine learning

ML + maximous likelihead

Data: souple

id	age	sex	party
1	37	m	A
2	59	f	В
:			:
500	25	m	В

Population: all voters of a country

Data:

id	age	sex	party
1	37	m	A
2	59	f	В
:			:
500	25	m	В

Model:

- individuals are selected randomly from the population
- independent of each other
- everybody had the same probability to be selected
- every selected person gave a complete and truthful answer

Data:

id	age	sex	party
1	37	m	A
2	59	f	В
:			:
500	25	m	В

Goal: draw conclusions about the unknown fraction of supporters of party *A* in the whole population

Data:

$$(x_1,y_1),\ldots,(x_n,y_n)$$

$$x_i \in \mathbb{R}^{3p}$$
, RGB-values

 $y_i \in \{0, 1\}$, cat or dog

Population: oll images of cols or dogs

Data:

$$(x_1,y_1),\ldots,(x_n,y_n)$$

 $x_i \in \mathbb{R}^{3p}$, RGB-values

 $y_i \in \{0,1\}$, cat or dog

Model:

- Data are realizations of iid pairs of random variables $(X_i, Y_i)_{i=1}^n$.
- In particular: The function $x \mapsto P(Y_i = 1 | X_i = x)$ is the same for all $i = 1, \ldots, n$.

Goal:

Find/learn/estimate the function (Bayes classifier)

$$g(x) := \begin{cases} 1, & \text{if } P(Y_1 = 1 | X_1 = x) \ge \frac{1}{2}, \\ 0, & \text{if } P(Y_1 = 1 | X_1 = x) < \frac{1}{2}. \end{cases}$$

▶ Predict the class Y_{new} of the unlabeled picture X_{new} by $\hat{g}(X_{new})$. \Rightarrow generalization

Notice:

- $g: \mathbb{R}^{3p} \to \{0,1\}$ is an unknown/unobserved 'population' quantity
- ► We need to estimate/learn g from the sample $(X_i, Y_i)_{i=1}^n$ ⇒ \hat{q}

DESCRIPTIVE STATISTICS VS. STATISTICAL INFERENCE

description	inference
summarize and visualize data	learn about population
describe	generalize/estimate
only data, no models	statistical modeling
no assumptions	idealizations/assumptions
	data generating process?
all data sets are different/unique	sampling error/statistical error
	uncertainty quantification γ
	quantify probability of error
A	

► Here: statistical inference For data visualization see: VU Visual and Exploratory Data Analysis

sometimes: estimation vs. inference

Data:

id	party	X_i
1	A	1
2	В	0
÷	:	:
500	В	0

description:

n	votes for A	votes for B
500	318	182

proportion of A votes:
$$p = \frac{318}{500} = 0.636$$

Data:

id	party	X_i
1	A	1
2	В	0
÷	:	:
500	В	0

description:

n	votes for A	votes for B
500	318	182

proportion of A votes:
$$p = \frac{318}{500} = 0.636$$

Data:

id	party	X_i
1	A	1
2	В	0
:	:	:
500	В	0

description:

n	votes for A	votes for B
500	293	207

proportion of A votes:
$$p = \frac{293}{500} = 0.586$$

Data:

id	party	X_i
1	A	1
2	В	0
:	:	:
500	В	0

Model:

- $ightharpoonup X_1, \ldots, X_n \stackrel{iid}{\sim} Bernoulli(\theta)$
- i.e. $P(X_i = 1) = 1 P(X_i = 0) = \theta \in [0, 1]$
- θ ... true proportion of supporters of party A in the population

Model:

- $X_1, \ldots, X_n \stackrel{iid}{\sim} Bernoulli(\theta)$
- i.e. $P(X_i = 1) = 1 P(X_i = 0) = \theta \in [0, 1]$
- lacktriangledown θ ... true proportion of supporters of party A in the population

estimation:

$$\hat{\theta}_{n} = \frac{1}{N} \sum_{i=1}^{n} X_{i} \qquad (= 0.636, 0.586, etc.)$$

$$\mathbb{E}_{\theta}[\hat{\theta}_{n}] = \frac{1}{N} \sum_{i=1}^{n} \mathbb{F}_{\theta}(X_{i}) = \frac{1}{N} \sum_{i=1}^{n} \mathbb{F}_{\theta}(X_{i}) \qquad \text{"unbiased estimator"}$$

Model:

- $ightharpoonup X_1, \dots, X_n \stackrel{iid}{\sim} Bernoulli(\theta)$
- i.e. $P(X_i = 1) = 1 P(X_i = 0) = \theta \in [0, 1]$
- lacktriangledown θ ... true proportion of supporters of party A in the population

Model:

- $X_1, \ldots, X_n \stackrel{iid}{\sim} Bernoulli(\theta)$
- i.e. $P(X_i = 1) = 1 P(X_i = 0) = \theta \in [0, 1]$
- lacktriangledown θ ... true proportion of supporters of party A in the population

inference: (approximate Gaussian level $1 - \alpha$ CI for θ)

$$CI_{\alpha} := \left[\hat{\theta}_n - q_{1-\frac{\alpha}{2}}^{(N)}\hat{\sigma}, \, \hat{\theta}_n + q_{1-\frac{\alpha}{2}}^{(N)}\hat{\sigma}\right] \qquad (= [0.594, 0.678]), \alpha = 0.05$$

$$\hat{\sigma} := \sqrt{\frac{\hat{\theta}_n(1 - \hat{\theta}_n)}{n}}, \quad q_{1 - \frac{\alpha}{2}}^{(N)} : P\left(N(0, 1) \le q_{1 - \frac{\alpha}{2}}^{(N)}\right) = 1 - \frac{\alpha}{2}$$

$$P(\theta \in CI_{\alpha}) \approx 1 - \alpha$$
 if *n* is large

"quantifies uncertainty of estimation"

Model:

- Data are realizations of iid pairs of random variables $(X_i, Y_i)_{i=1}^n$ on $\mathbb{R}^{3p} \times \{0, 1\}$.
- Optimal predictor (Bayes classifier)

$$g(x) := \begin{cases} 1, & \text{if } P(Y_1 = 1 | X_1 = x) \ge \frac{1}{2}, \\ 0, & \text{if } P(Y_1 = 1 | X_1 = x) < \frac{1}{2}. \end{cases}$$

 x_{new}

estimation/classification:

Estimate *g* by a CNN with SGD

$$\hat{g}_n: \mathbb{R}^{3p} \to \{0, 1\}$$

classification:

$$\hat{y}_{new} = \hat{g}_n(x_{new})$$

Unew

- ▶ Data are realizations of iid pairs of random variables $(X_i, Y_i)_{i=1}^n$ on $\mathbb{R}^{3p} \times \{0, 1\}$.
- estimated/learned classifier $\hat{g}_n : \mathbb{R}^{3p} \to \{0,1\}$

validation/error quantification:

split data
$$S_{train} \cup S_{val} = [n]$$
, $S_{train} \cap S_{val} = \emptyset$, $|S_{train}| = n_1 = n - |S_{val}|$.

train \hat{g}_{n_1} on S_{train}

estimate false positive rate of the classifier \hat{g}_{n_1} by

$$\hat{FP} = \frac{1}{n-n_1} \# \{ i \in S_{val} : \hat{g}_{n_1}(X_i) = 1, Y_i = 0 \}.$$

"quantifies uncertainty of classification"

