Université Badji Mokhtar-Annaba Faculté de Technologie Département d'Informatique

Année : 2022/2023 Licence 3 22/01/2023

Examen Semestriel : Compilation Duré 01h30

Exercice 1: (5.5 pts)

1.

a. int a = 2, b = 3;b. a = ((b+c)*d;0.5 pt boolean a = b + c = 3: 0.5 pt Compilation : la variable a ne peut pas être Compilation: une parenthèse fermante qui déclarée 2 fois. manque (ou une parenthèse ouvrante de plus). Compilation: opération booléenne d'égalité au lieu d'une affectation. (== au lieu de =) c. if $(a \le 0) \{x = 2 / a\}$ else x = 0d. *int tab*[5]; 0.5 pt tab[5] = 2; *a* ; 0.5 pt Compilation: un point-virgule qui manque Exécution : La taille du tableau = 5 mais les indices prennent les valeurs entre [0-4] $(x = 2 / a_i)$ Exécution : une division par 0 si la variable a (l'indice 5 n'existe pas). prend la valeur 0 (vu que le teste est $a \le 0$)

2. L'expression régulière de l'adresse IP v4 est formée de 4 chiffres qui ne dépassent pas 255 : (\d peut remplacer l'intervalle [0-9])

a. 0

b. De 1 à 99 : [1-9][0-9] (La solution [0-9]{1, 2} est acceptée pour remplacer a. et b.)

c. De 100 à 199 : 1[0-9]{1,2} (La solution (0|1)?[0-9]{1,2} peut remplacer a. b. et c.)

d. De 200 à 249 : 2[0-4][0-9]

e. De 250 à 255 : 25[0-5]

$$\begin{split} ER_{IP} = & 0 | [1-9][0-9]|1[0-9]\{1,2\}|2[0-4][0-9]|25[0-5] \setminus 0 | [1-9][0-9]|1[0-9]\{1,2\}|2[0-4][0-9]|25[0-5] \setminus 0 | [1-9][0-9]|1[0-9]\{1,2\}|2[0-4][0-9]|25[0-5] \setminus 0 | [1-9][0-9]|1[0-9]|1[0-9]|1[0-9]|1[0-9]|25[0-5] \end{split}$$

Toute solution proche de la correction est acceptée. Les expressions régulières suivantes sont comptées comme suit :

$$\circ \quad [0-9]\{1,3\}, [0-9]\{1,3\}, [0-9]\{1,3\}, [0-9]\{1,3\}$$

$$\circ \quad (0|[1-9][0-9]|1[0-9]\{1,2\}|2[0-4][0-9]|25[0-5] \setminus.)\{3\} \ 0|[1-9][0-9]|1[0-9]\{1,2\}|2[0-4][0-9]|25[0-5]$$

3.

	1	2	3	4	5	6
Chaine	GRIS	GRAS	GRS	MAISON	MAISON	MAISON
Expression	GR(.) ⁺ S	GR(.)?S	GR(.)?S	M(.) ⁺ N	$M(.)^{+}([a-$	$M(.)^{+}(O)^{+}N$
régulière					z])*N	
	Vrai	Vrai	Vrai	Vrai	Faux	Vrai
	0.25 pt	0.25 pt	0.25 pt	0.25 pt	0.25 pt	0.25 pt

Exercice 2: (7 pts)

Soit la grammaire $G = (\{[,], d, e\}, \{S, T, U\}, S, P)$ avec les règles de production P suivantes :

$$S \rightarrow [T]$$

$$T$$

$$\rightarrow TU \mid \varepsilon$$

$$U$$

$$\rightarrow d \mid e \mid S$$

- 1. Cette grammaire est-elle récursive à gauche ? Justifier. (1 pt)
- Oui elle est récursive à gauche car elle contient une production avec une récursivité à gauche immédiate : $T \rightarrow T U$
- 2. Cette grammaire n'est pas LL(1), pourquoi ? (1 pt) Transformer la en une grammaire *G*' de type LL(1). (1 pt)
- 1 pt
- O Cette grammaire n'est pas LL(1) car elle est récursive à gauche.
- o Pour la rendre LL(1) il faut éliminer la récursivité à gauche :

$$T \rightarrow T'$$

$$T' \rightarrow UT'|\varepsilon$$

3. Construire la table d'analyse prédictive LL(1) de la grammaire G'. (2 pts)

	Non-	Premier	Suivant
	Terminal		
1 pt	S	[d, e, [,],\$
	T	ε, d, e, []
	T'	ε, d, e, []

	[]	d	e	\$	
S	$S \rightarrow [T]$					
T	$T \rightarrow T'$	$T \rightarrow T'$	$T \rightarrow T'$	$T \rightarrow T'$	1	pt
T'	$T' \rightarrow UT'$	$T' \rightarrow \varepsilon$	$T' \rightarrow UT'$	$T' \rightarrow UT'$		
U	$U \rightarrow S$		$U \rightarrow d$	$U \rightarrow e$		

d, e, [d, e, [,]

4. Analyser le mot [d] par un analyseur LL(1). (2 pts)

	Pile	Entrée	Sortie
--	------	--------	--------

1	\$ <i>S</i>	[d []e]\$	$S \rightarrow [T]$
2	\$] <i>T</i> [[d []e]\$	Comparer, Dépiler, avancer
3	\$] <i>T</i>	[d []e]\$	$T \rightarrow T'$
4	\$] <i>T'</i>	[d []e]\$	$T' \rightarrow UT'$
5	T'U	[<mark>d</mark> []e]\$	$U \rightarrow d$
6	T'd	[<mark>d</mark> []e]\$	Comparer, Dépiler, avancer
7	\$] <i>T'</i>	[d []e]\$	$T' \rightarrow UT'$
8	\$] <i>T'U</i>	[d []e]\$	$U \rightarrow S$
9	\$] <i>T'S</i>	[d []e]\$	$S \rightarrow [T]$
10	\$] <i>T'</i>] <i>T</i> [[d []e]\$	Comparer, Dépiler, avancer
11	\$] <i>T'</i>] <i>T</i>	[d []e]\$	$T \rightarrow T'$
12	\$] <i>T'</i>] <i>T'</i>	[d []e]\$	$T' \rightarrow \varepsilon$
13	T'	[d []e]\$	Comparer, Dépiler, avancer
14	\$] <i>T'</i>	[d []e]\$	$T' \rightarrow UT'$
15	\$] <i>T'U</i>	[d []e]\$	$U \rightarrow e$
16	\$] <i>T'e</i>	[d []e]\$	Comparer, Dépiler, avancer
17	\$] <i>T'</i>	[d []e]\$	$T' \rightarrow \varepsilon$
18	\$]	[d []e]\$	Comparer, Dépiler, avancer
19	\$	[d []e]\$	Chaine acceptée

Barème : 0.25 pt pour chaque numéro de ligne et étape de comparaison (0.25 pt * 6 = 1.5 pt) + 0.5pt pour l'acceptation de la chaine.

Exercice 3: (7.5 pts)

 $Trans(I_2, b) = I_4$

Soit la grammaire $G = (\{V, \Lambda, \neg, (,), b\}, \{S\}, S, P)$ avec les règles de production P suivantes :

$$S \rightarrow S \lor S \mid S \land S \mid \neg S \mid (S) \mid b$$

- 1. Construire la collection d'ensemble d'items LR(0) (3 pts)
- Augmentation de la grammaire : $S' \rightarrow S$
- Collection d'ensembles d'item LR(0) : (de I_0 à I_{11} 0.25pt * 12 = 3 pts)

 $I_8 = Trans(I_3, S) = \{S \rightarrow (S.); S \rightarrow S. \lor S; S \rightarrow S. \land S\}$

$$I_{0} = Ferm(S' \rightarrow .S) = \{S' \rightarrow .S; S \rightarrow .S \lor S; S \rightarrow .S \land S; S \rightarrow .\neg S; S \rightarrow .(S); S \rightarrow .b\}$$

$$I_{1} = Trans(I_{0}, S) = \{S' \rightarrow S.; S \rightarrow S.\lor S; S \rightarrow S.\land S\}$$

$$I_{2} = Trans(I_{0}, \neg) = \{S \rightarrow \neg .S; S \rightarrow .S \lor S; S \rightarrow .S \land S; S \rightarrow .\neg S; S \rightarrow .(S); S \rightarrow .b\}$$

$$I_{3} = Trans(I_{0}, ()) = \{S \rightarrow (.S); S \rightarrow .S \lor S; S \rightarrow .S \land S; S \rightarrow .\neg S; S \rightarrow .(S); S \rightarrow .b\}$$

$$I_{4} = Trans(I_{0}, b) = \{S \rightarrow b.\}$$

$$I_{5} = Trans(I_{1}, \lor) = \{S \rightarrow S \lor .S; S \rightarrow .S \lor S; S \rightarrow .S \land S; S \rightarrow .\neg S; S \rightarrow .(S); S \rightarrow .b\}$$

$$I_{6} = Trans(I_{1}, \land) = \{S \rightarrow S \land .S; S \rightarrow .S \lor S; S \rightarrow .S \land S; S \rightarrow .\neg S; S \rightarrow .(S); S \rightarrow .b\}$$

$$I_{7} = Trans(I_{2}, S) = \{S \rightarrow \neg S.; S \rightarrow .S \lor S; S \rightarrow .S \land S\}$$

$$Trans(I_{2}, \neg) = I_{2}$$

$$Trans(I_{2}, ()) = I_{3}$$

$$Trans(I_{3}, \neg) = I_{2}$$
 $Trans(I_{3}, () = I_{3})$
 $Trans(I_{3}, b) = I_{4}$
 $I_{9} = Trans(I_{5}, S) = \{S \rightarrow S \lor S.; S \rightarrow S. \lor S; S \rightarrow S. \land S\}$
 $Trans(I_{5}, \neg) = I_{2}$
 $Trans(I_{5}, () = I_{3})$
 $Trans(I_{5}, b) = I_{4}$
 $I_{10} = Trans(I_{6}, S) = \{S \rightarrow S \land S.; S \rightarrow S. \lor S; S \rightarrow S. \land S\}$
 $Trans(I_{6}, \neg) = I_{2}$
 $Trans(I_{6}, () = I_{3})$
 $Trans(I_{6}, b) = I_{4}$
 $Trans(I_{7}, \lor) = I_{5}$
 $Trans(I_{7}, \lor) = I_{6}$
 $I_{11} = Trans(I_{8}, \lor) = I_{5}$
 $Trans(I_{8}, \lor) = I_{5}$
 $Trans(I_{9}, \lor) = I_{5}$
 $Trans(I_{9}, \lor) = I_{5}$
 $Trans(I_{10}, \lor) = I_{6}$
 $Trans(I_{10}, \lor) = I_{6}$
 $Trans(I_{10}, \lor) = I_{6}$
 $Trans(I_{10}, \lor) = I_{6}$

2. Etablir la table d'analyse prédictive SLR: pour chaque colonne juste 0.25pt (0.25 pt * 8 = 2 pts), La présence des 6 conflits = 1 pts.

	Action							Successeur
	V	٨	7	()	b	\$	S
0			d_2	d_3		d_4		1
1	d_5	d_6					Acc	
2			d_2	d_3		d_4		7
3			d_2	d_3		d_4		8
4	r_5	r_5			r_5		r_5	
5			d_2	d_3		d_4		9
6			d_2	d_3		d_4		10
7	d_{5}/r_{3}	d_6/r_3			r_3		r_3	
8	d_5	d_6			d_{11}			
9	d_5/r_1	d_6/r_1			r_1		r_1	
10	d_5/r_2	d_6/r_2			r_2		r_2	
11	r_4	r_4			r_4		r_4	

3. Est-ce que cette grammaire est une grammaire SLR ? Justifier (1.5 pts)

-	Cette grammaire n'est pas SLR (1 pt) car on a obtenu contiennent plusieurs entrées (plusieurs actions) (0.5 pt).	plusieurs o	cases (dans	sa table	prédictive	qui