Nota. Особое значение имеют симметричные билинейные формы. Если рассмотреть матрицы симметричную билинейную форму как матрицу самосопряженного оператора, то можно найти базис (ортонормированный базис собственных векторов), в котором матрица билинейной формы диагонализируется

Этот базис называется каноническим базисом билинейной формы

3.2. Квадратичные формы

Def. Квадратичной формой называется форма $\mathcal{B}(u,u)$, порожденная билинейной формой $\mathcal{B}(u,v)$

Ex. Поверхность: u = (x, y), v = (x, y, z)

$$\mathcal{B}(u,u) = b_{11}u_1u_1 + b_{12}u_1u_2 + b_{21}u_2u_1 + b_{22}u_2u_2 = b_{11}x^2 + b_{12}xy + b_{21}xy + b_{22}y^2$$

$$\mathcal{B}(v,v) = \beta_{11}x^2 + \beta_{12}xy + \beta_{13}xz + \beta_{21}xy + \beta_{22}y^2 + \beta_{23}yz + \beta_{31}xz + \beta_{32}yz + \beta_{33}z^2$$
$$= \beta_{11}x^2 + \beta_{22}y^2 + \beta_{33}z^2 + (\beta_{12} + \beta_{21})xy + (\beta_{23} + \beta_{32})yz + (\beta_{13} + \beta_{31})xz$$

Mem. Ранее уравнение поверхности второго порядка (без линейной группы, то есть сдвига): $a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{23}yz + 2a_{13}xz + a_{33}z^2 = c$

Nota. Заметим, что здесь коэффициент a_{ij} соответствуют матрице симметричной билинейной форме:

$$B(v,v) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

Если диагонализировать B(v,v), то уравнение поверхности приводится к каноническому виду: $\mathcal{B}(v,v)_{\text{канон.}} = c_{11}x^2 + c_{22}y^2 + c_{33}z^2$

Поэтому квадратичная форма, соответствующая поверхности второго порядка, рассматривается, как форма, порожденная симметричной билинейной формой

Def. Положительно определенная форма

- 1) Оператор $\mathcal A$ называется положительно определенным, если $\exists \gamma > 0 \mid \forall x \in V \quad (\mathcal A x, x) \ge \gamma \|x\|^2$
- 2) \mathcal{A} называется положительным, если $\forall x \in V, x \neq 0 \quad (\mathcal{A}x, x) > 0$

Nota. Можно говорить о положительно определенном операторе $\mathcal{A}:V^n\to V^n$

Th. Определения 1), 2)
$$\iff \forall \lambda_i$$
 - собственное число $\mathcal{A}, \lambda_i > 0$

 $Nota. \det A$ инвариантен при замене базиса, $\det A = \lambda_1 \cdot \dots \cdot \lambda_n > 0$. Тогда $\exists \mathcal{A}^{-1}$

Th. Критерий Сильвестра.

$$\mathcal{A}: V^n \to V^n$$
 - положительно определен $\Longleftrightarrow \forall k=1..n \ \Delta_k = \begin{vmatrix} a_{11} & \dots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{kk} \end{vmatrix} > 0$

Угловой минор матрицы положительно определенного оператора больше нуля

 $\Longrightarrow \mathcal{A}$ - положительно определен, значит, \mathcal{A} диагонализируется в базисе $\{e_1,\ldots,e_n\}$ собственных векторов. Тогда, \mathcal{A} диагонализируется в базисе $\{e_1,\ldots,e_k\},\ k\leq n$

$$A_k = \begin{pmatrix} a_{11} & \dots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{kk} \end{pmatrix}$$
 $\Delta_k = \det A_k \stackrel{inv}{=} \begin{vmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_k \end{vmatrix} > 0$ \longleftarrow Метод математической индукции

 $\forall k=1..n, \Delta_k>0,$ тогда:

- 1. База: для k=1 \mathcal{A} положительно определен $\mathcal{A}x = a_{11}x \quad |a_{11}| > 0 \Longrightarrow \mathcal{A}$ - положительно определен
- 2. Шаг индукции: \mathcal{A}_{n-1} положительно определен $\Longrightarrow \mathcal{A}_n$ положительно определен \mathcal{A} диагонализируется в базисе e_i , в этом базисе:

$$\mathcal{A}_e x = \begin{vmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{vmatrix} x = \sum_{i=1}^{n-1} \lambda_i c_i e_i + \lambda_n c_n e_n$$
 Для $i \leq n-1$ все $\lambda_i > 0$

$$(\mathcal{A}x,x) = \left(\sum_{i=1}^{n-1} \lambda_i c_i e_i + \lambda_n c_n e_n, \sum_{i=1}^{n-1} c_i e_i\right) = \sum_{i=1}^{n-1} \lambda_i c_i^2 + \lambda_n c_n^2 -$$
знак зависит от λ_n

$$\Delta_n = \underbrace{\lambda_1 \cdot \dots \cdot \lambda_{n-1}}_{1 \cdot 0} \cdot \lambda_n \Longrightarrow \lambda_n > 0 \Longrightarrow (\mathcal{A}x,x) > 0$$

Ex. Поверхность: $x^2 + y^2 + z^2 = 1$

$$\mathcal{B}(u,u) = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}, \quad \Delta_k = 1 > 0 \ \forall k$$

Положительная определенность - наличие экстремума

Def. Оператор \mathcal{A} называется отрицательно определенным, если $-\mathcal{A}$ - положительно определенный

$$Nota.$$
 Для $-\mathcal{A}$ работает критерий Сильвестра: $\Delta_k(-\mathcal{A}) = \begin{vmatrix} -a_{11} & \dots & -a_{1n} \\ \vdots & \ddots & \vdots \\ -a_{n1} & \dots & -a_{nn} \end{vmatrix} = (-1)^k \Delta_k(\mathcal{A}) > 0$ Таким образом, \mathcal{A} - отрицательно определен $\Longleftrightarrow \Delta_k$ чередует знаки

Nota. Аналогично операторам определяются положительно или отрицательно билинейные формы

$$\mathcal{B}(u,v) = \sum_{j=1}^{n} \sum_{i=1}^{n} b_{ij} u_i v_j = \sum_{j=1}^{n} v_j \sum_{i=1}^{n} b_{ij} u_i = (\mathcal{A}u, v)$$

Так как $\mathcal{B}(u,v)$ и $\mathcal{B}(u,u)$ - числа, то \mathcal{B} называется положительно определенным, если $\mathcal{B}(u,v) > 0$

Nota. После приведения $\mathcal{B}(u,v)$ к каноническому виду, получаем $\mathcal{B}(u,u)_{\text{канон.}} = \lambda_1 x_1^2 + \cdots + \lambda_n x_n^2$ В общем случае λ_i любого знака, но можно доказать, что количества $\lambda_i > 0, \lambda_j < 0, \lambda_k = 0$ постоянны по отношению к способу приведения к каноническому виду (так называемый закон инерции квадратичной формы)

¹ Точнее положительная определенность матрицы Гессе $\left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{i,j}$ в критической точке, в которой $\nabla f = 0$, является достаточным условием для наличия в этой точке строгого локального минимума функции