statistical Significance for nnL peak

The following method is used to calculate the statistical significance for E12_17_003 Experiment

1. The region around the peak is selected and the selected region is chopped by using the graphical cut. The chopped portion is printed in a separate canvas and no of events in the region is recorded by integrating the whole chopped region. This includes the background events.

Lets denote these events (signal + BG) = N1

2. For the 1st peak, the region above the background and for the second peak, region above the QF line is selected by graphical cut method and chopped. The chopped region is again printed in a different canvas and the no of events are recorded by using the integral method.

Note: This events contains signal only Lets denote these events(signal only) = N2

The statistical significance = total signal /sqrt(signal +BG) = N2/sqrt(N1)

For the first peak Mean = -0.19 MeV and sigma = 0.81 MeV 1. band width = 1sigma = -1.0 to + 0.62 MeV

N1 = 12.9527 and N2 = 6.3

Statistical Significance = 6.3/sgrt(12.9527) 1.75

1.98

2. band width = 2sigma = -1.81 to + 1.43 MeV N1 = 22.87 and N2 = 9.47954Statistical Significance = 9.47954/sqrt(22.87)

3. band width = 3sigma = -2.62 to + 2.24 MeV N1 = 30.7697 and N2 = 10.8973

Statistical Significance = 10.8973/sqrt(30.7697) 1.96 Mean = 8.05 MeV and sigma = 1.0 MeV1. band width = 1sigma = 7.05 to 9.05 MeV N1 = 41.698 and N2 = 21.8998

For the second peak

~ 3,39

3,55

2. band width = 2sigma = 6.05 to 10.05 MeV N1 = 41.9863 and N2 = 23.0158Statistical Significance = 23.0158/sgrt(41.9863)

Statistical Significance = 21.8998/sqrt(41.698)

3. band width = 3sigma = 5.05 to 11.05 MeV N1 = 69.7759 and N2 = 34.0366Statistical Significance = 34.0366/sqrt(69.7759)

