HOMEWORK 2 – MATH 392 January 19, 2018

ALEX THIES athies@uoregon.edu

1. Book Problems

Problem 7.66. For the polynomial $a(x) = 2 + x + 2x^2 + x^3 + 0x^4 + 2x^5$ in $\mathbb{Z}_3[x]$, calculate a(c) for every $c \in \mathbb{Z}_3$. Are there any roots for a(x)in \mathbb{Z}_3 ? (Don't forget to use $+_3$ and \cdot_3 for elements of \mathbb{Z}_3 .)

Proof. We compute the following,

Thus
$$a(0) = 2$$
, $a(1) = 2$, and $a(2) = 0$.
Notice that $c = 2$ is a root.

Problem 7.67. Suppose A and K are commutative rings with unity and $f:A\to K$ is a nonzero ring homomorphism. Prove: If $c\in A$ is a root for $a(x) \in A[x]$ then f(c) is a root for f(a(x)) in K[x].

Proof. Let A, K, and f be as above, and let $c \in A$ be a root for $a(x) \in A$ A[x], i.e., let $a(c) = 0_A$. Recall that $\bar{f}(a(x))$ outputs a new polynomial that lives in K[x], we will show that $f(a(f(c))) = 0_K$, and thus $f(c) \in K$ is a root for $f(a(f(c)) \in K[x]$. We compute the following, making frequent use of the fact that f is a ring homomorphism.

$$\bar{f}(a(f(c))) = f(a_0) + f(a_1)f(c) + f(a_2)f^2(c) + \dots + f(a_n)f^n(c),
= f(a_0) + f(a_1c) + f(a_2c^2) + \dots + f(a_nc^n),
= f(a_0 + a_1c + a_2c^2 + \dots + a_nc^n),
= f(a(c)),
= f(0_A),
= 0_K.$$

Thus, $f(c) \in K$ is a root for $\bar{f}(a(x)) \in K[x]$, as we aimed to prove. \square

Problem 7.68. Complete the proof of Theorem 7.35 by showing that $h_c(a(x)+b(x)) = a(c)+b(c) = h_c(a(x))+h_c(b(x))$ for $a(x),b(x) \in A[x]$.

Proof. Let h_c , a(x), b(x) be as defined in Theorem 7.35. We will show that h_c is additive,

$$h_c(a(x) + b(x)) = h_c \left(\sum_{i=0}^n a_i x^i + \sum_{i=0}^m b_i x^i \right),$$

$$= h_c \left(\sum_{i=0}^{\max(n,m)} (a_i + b_i) x^i \right),$$

$$= \sum_{i=0}^{\max(n,m)} (a_i + b_i) c^i,$$

$$= \sum_{i=0}^n a_i c^i + \sum_{i=0}^m b_i c^i,$$

$$= a(c) + b(c),$$

$$= h_c(a(x)) + h_c(b(x)).$$

Thus, h_c is additive, as we aimed to show.

Problem 7.70. Define $S = \{a(x) \in \mathbb{Z}[x] : a(0) = a \text{ and } a(2) = a\}$. Prove that S is an ideal of $\mathbb{Z}[x]$.

Proof. To show that S is an ideal of $\mathbb{Z}[x]$ we must prove that $S \subseteq \mathbb{Z}[x]$ such that $S \neq \emptyset$, that S forms a ring under the polynomial arithmetic operations that are defined on $\mathbb{Z}[x]$, and lastly, that S absorbs multiplication from $\mathbb{Z}[x]$.

Notice that S can be colloquially defined as the set of polynomials with integer coefficients, and roots at 0 and 2. We can see right away that $0(x) \in S$, hence $S \neq \emptyset$; $S \subseteq \mathbb{Z}[x]$ is obvious by how we defined S.

To show that S forms a ring under the simple polynomial arithmetic operations on $\mathbb{Z}[x]$, we must show that S is closed by subtraction, and under additive inverses. Let $a(x), b(x) \in S$, then we can write them like

$$a(x) = x(x-2)(x-c_2)\cdots(x-c_n),$$

 $b(x) = x(x-2)(x-d_2)\cdots(x-d_n),$

where c_i , d_i are the other roots of a(x), b(x), that may or may not exist. We can see that polynomial additition preserves roots,

$$a(x) + b(x) = x(x - 2)(x - c_2) [(x - c_2) \cdots (x - c_n) + (x - d_2) \cdots (x - d_n)].$$

hence $a(x) + b(x) \in S$, and S is closed under addition. We can see that the additive inverse of $a(x) \in \mathbb{Z}[x]$ can be generated by the polynomial -a(x), where $a_i' \in -a(x)$ such that $a_i' = -a_i$ for each $i \in \mathbb{N}$. Since \mathbb{Z} and $\mathbb{Z}[x]$ are rings, these individual additive inverse coefficients exist, thus S is closed under the taking of additive inverses. Taken together, these properties of S imply that S is closed under subtraction; it remains to show that S absorbs multiplication from $\mathbb{Z}[x]$. This is easily seen by the associativity of polynomial multiplication.

Let $f(x) \in \mathbb{Z}[x]$, suc that f(x) has roots e_i , we compute the following,

$$a(x) \cdot f(x) = [x(x-2)(x-c_1)\cdots(x-c_n)] \cdot [(x-e_1)\cdots(x-e_n)],$$

= $x(x-2)[(x-c_1)\cdots(x-c_n)(x-e_1)\cdots(x-e_n)].$

Hence a(x)f(x) has roots at 0 and 2, thus $a(x)f(x) \in S$ and S absorbs multiplication from $\mathbb{Z}[x]$. It follows that we have shown S is an ideal of $\mathbb{Z}[x]$.

Problem 8.1. Prove: If K is a field and $a(x) \in K[x]$ then every constant polynomial in K[x] is a factor of a(x). (Remember that 0(x) is not a constant polynomial.)

Proof. Let K, a(x) be as above, and let $b(x) \in K[x]$ such that $b(x) = b_0$ for arbitrary $b_0 \in K$. We want to show that there exists a polynomial $f(x) \in K[x]$ such that a(x) = b(x)f(x). Consider the polynomial $f(x) = \sum_{i=0}^{n} f_i x^i$, where $f_i = a_i/b_0$. Recall that since K is a field, $1/b_0 \in K$, so $f(x) \in K[x]$. We compute the following,

$$b(x)f(x) = b_0 \sum_{i=0}^{n} f_i x^i,$$

$$= \sum_{i=0}^{n} b_0 \left(\frac{a_i}{b_0}\right) x^i,$$

$$= \sum_{i=0}^{n} a_i x^i,$$

$$= a(x).$$

Thus, for a field K and polynomial ring K[x], each nonzero constant polynomial that lives in K[x] is a factor of any other element of K[x], as we aimed to show.

Problem 8.4. Find nonzero polynomials $a(x), b(x) \in \mathbb{Z}_{10}[x]$ which are associates but $\deg(a(x)) \neq \deg(b(x))$.

Proof. Let $b(x) = 2x^2 + 7x + 1$, and let c = 5. We compute the following, $c \cdot b(x) = 10x^2 + 35x + 5$, $\equiv 0x^2 + 5x + 5 \pmod{10}$.

So with a(x) = 5(x+1), we can see that a(x) and b(x) are associates while their degrees are not equal.

Problem 8.5. Suppose K is a field and $a(x) \in K[x]$ with $a(x) \neq 0(x)$. Prove: If $b(x), e(x) \in K[x]$ with a(x) = b(x)e(x) and $\deg(e(x)) \neq 0$, then $\deg(b(x)) < \deg(a(x))$.

Proof. Let K, a(x) be as above and assume that there exist b(x), $e(x) \in K[x]$ such that a(x) = b(x)e(x), and $e(x) \neq 0(x)$. Since K is a field, K[x] is an integral domain, thus $\deg(a(x)) = \deg(b(x)) + \deg(e(x))$. From here its pretty clear that $\deg(a(x)) \geq \deg(b(x))$.

Problem 8.19. Find two nonconstant polynomials $a(x), b(x) \in \mathbb{Z}_5[x]$ which have exactly the same roots in \mathbb{Z}_5 but are not associates.

Proof. Let $a(x) = (x^2 + 1)(x - 1)$ and $b(x) = (x^2 + 2)(x - 1)$. Notice that a(x) and b(x) have exactly the same roots in \mathbb{Z}_5 , that being c = 1. If we expand these polynomials we see that $a(x) = x^3 - 2x^2 + x - 2$ and $b(x) = x^3 - 2x^2 + 2x - 4$, it is clear that these are not associates. \square

This assignment got away from me a little bit towards the end of the week, so I was unable to finish the last two problems in time.

Problem 8.25. Prove Theorem 8.12.

Theorem 12. Let K be a field, and assume that $p(x) \in K[x]$ is irreducible over K. If a(x), $b(x) \in K[x]$ and p(x) is a factor of the product a(x)b(x), then p(x) is a factor of at least one of a(x) or b(x).

Problem 8.28. Show that the assumption of p(x) irreducible in Theorem 8.12 was needed, by finding nonconstant polynomials $a(x), b(x), c(x) \in \mathbb{Z}_5[x]$ so that b(x) is a factor of a(x)c(x) but b(x) is not a factor of either a(x) or c(x).