

Ускоренные градиентные методы

МЕТОДЫ ВЫПУКЛОЙ ОПТИМИЗАЦИИ

НЕДЕЛЯ 8

Градиентный спуск:

$$\min_{x \in \mathbb{R}^n} f(x)$$

$$\min_{x \in \mathbb{R}^n} f(x) \hspace{1cm} x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

выпуклая (негладкая)	гладкая (невыпуклая)	гладкая & выпуклая	гладкая & сильно выпуклая
$f(x_k) - f^* = \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$\min_{0 \leq i \leq k} \ \nabla f(x_i)\ = \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$f(x_k) - f^* = \mathcal{O}\left(\tfrac{1}{k}\right)$	$\ x_k - x^*\ ^2 = \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right)$
$k_{\varepsilon}=\mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$	$k_{\varepsilon} = \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$	$k_{arepsilon} = \mathcal{O}\left(rac{1}{arepsilon} ight)$	$k_{arepsilon} = \mathcal{O}\left(arkappa \log rac{1}{arepsilon} ight)$

Градиентный спуск:

$$\min_{x \in \mathbb{R}^n} f(x)$$

$$\min_{x \in \mathbb{R}^n} f(x) \hspace{1cm} x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

выпуклая (негладкая)	гладкая (невыпуклая)	гладкая & выпуклая	гладкая & сильно выпуклая
$f(x_k) - f^* = \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$\min_{0 \leq i \leq k} \ \nabla f(x_i)\ = \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$f(x_k) - f^* = \mathcal{O}\left(\tfrac{1}{k}\right)$	$\ x_k - x^*\ ^2 = \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right)$
$k_{\varepsilon}=\mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$	$k_{\varepsilon} = \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$	$k_{arepsilon} = \mathcal{O}\left(rac{1}{arepsilon} ight)$	$k_{arepsilon} = \mathcal{O}\left(arkappa \log rac{1}{arepsilon} ight)$

Для гладкой сильно выпуклой функции мы имеем:

$$f(x_k)-f^* \leq \left(1-\frac{\mu}{L}\right)^k (f(x_0)-f^*).$$

Градиентный спуск:

$$\min_{x \in \mathbb{R}^n} f(x)$$

$$\min_{x \in \mathbb{R}^n} f(x) \hspace{1cm} x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

выпуклая (негладкая)	гладкая (невыпуклая)	гладкая & выпуклая	гладкая & сильно выпуклая
$f(x_k) - f^* = \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$\min_{0 \leq i \leq k} \ \nabla f(x_i)\ = \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$f(x_k) - f^* = \mathcal{O}\left(\tfrac{1}{k}\right)$	$\ x_k - x^*\ ^2 = \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right)$
$k_{\varepsilon} = \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$	$k_{\varepsilon} = \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$	$k_{arepsilon} = \mathcal{O}\left(rac{1}{arepsilon} ight)$	$k_{\varepsilon} = \mathcal{O}\left(\varkappa\log\tfrac{1}{\varepsilon}\right)$

Для гладкой сильно выпуклой функции мы имеем:

$$f(x_k)-f^* \leq \left(1-\frac{\mu}{L}\right)^k (f(x_0)-f^*).$$

Обратите внимание, что для любого x, поскольку e^{-x} выпуклая и 1-x является её касательной в точке x=0, мы имеем:

$$1 - x \le e^{-x}$$

Градиентный спуск:

$$\min_{x \in \mathbb{R}^n} f(x)$$

$$\min_{x \in \mathbb{R}^n} f(x) \hspace{1cm} x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

выпуклая (негладкая)	гладкая (невыпуклая)	гладкая & выпуклая	гладкая & сильно выпуклая
$f(x_k) - f^* = \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$\min_{0 \leq i \leq k} \ \nabla f(x_i)\ = \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$f(x_k) - f^* = \mathcal{O}\left(\tfrac{1}{k}\right)$	$\ x_k - x^*\ ^2 = \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right)$
$k_{\varepsilon} = \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$	$k_{arepsilon} = \mathcal{O}\left(rac{1}{arepsilon^2} ight)$	$k_{arepsilon} = \mathcal{O}\left(rac{1}{arepsilon} ight)$	$k_{\varepsilon} = \mathcal{O}\left(\varkappa\log\tfrac{1}{\varepsilon}\right)$

Для гладкой сильно выпуклой функции мы имеем:

$$f(x_k)-f^* \leq \left(1-\frac{\mu}{L}\right)^k (f(x_0)-f^*).$$

Наконец:

$$\varepsilon = f(x_{k_\varepsilon}) - f^*$$

Обратите внимание, что для любого x, поскольку e^{-x} выпуклая и 1-x является её касательной в точке x=0, мы имеем:

$$1 - x \le e^{-x}$$

Градиентный спуск:

$$\min_{x \in \mathbb{R}^n} f(x)$$

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

выпуклая (негладкая)	гладкая (невыпуклая)	гладкая & выпуклая	гладкая & сильно выпуклая
$f(x_k) - f^* = \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$\min_{0 \leq i \leq k} \ \nabla f(x_i)\ = \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$f(x_k) - f^* = \mathcal{O}\left(\tfrac{1}{k}\right)$	$\ x_k - x^*\ ^2 = \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right)$
$k_{\varepsilon} = \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$	$k_{arepsilon} = \mathcal{O}\left(rac{1}{arepsilon^2} ight)$	$k_{\varepsilon} = \mathcal{O}\left(\frac{1}{\varepsilon}\right)$	$k_{arepsilon} = \mathcal{O}\left(\varkappa \log rac{1}{arepsilon} ight)$

Для гладкой сильно выпуклой функции мы имеем:

$$f(x_k)-f^* \leq \left(1-\frac{\mu}{L}\right)^k (f(x_0)-f^*).$$

Наконец:

$$\varepsilon = f(x_{k_\varepsilon}) - f^* \leq \left(1 - \frac{\mu}{L}\right)^{k_\varepsilon} \left(f(x_0) - f^*\right)$$

Обратите внимание, что для любого x, поскольку e^{-x} выпуклая и 1-x является её касательной в точке x=0, мы имеем:

$$1-x \leq e^{-x}$$

Градиентный спуск:

$$\min_{x \in \mathbb{R}^n} f(x)$$

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

выпуклая (негладкая)	гладкая (невыпуклая)	гладкая & выпуклая	гладкая & сильно выпуклая
$f(x_k) - f^* = \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$\min_{0 \leq i \leq k} \ \nabla f(x_i)\ = \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$f(x_k) - f^* = \mathcal{O}\left(\tfrac{1}{k}\right)$	$\ x_k - x^*\ ^2 = \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right)$
$k_{\varepsilon} = \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$	$k_{arepsilon} = \mathcal{O}\left(rac{1}{arepsilon^2} ight)$	$k_{arepsilon} = \mathcal{O}\left(rac{1}{arepsilon} ight)$	$k_{arepsilon} = \mathcal{O}\left(arkappa \log rac{1}{arepsilon} ight)$

Для гладкой сильно выпуклой функции мы имеем:

$$f(x_k) - f^* \le \left(1 - \frac{\mu}{L}\right)^k (f(x_0) - f^*).$$

Обратите внимание, что для любого x, поскольку e^{-x} выпуклая и 1-x является её касательной в точке x=0, мы имеем:

$$1-x \leq e^{-x}$$

Наконец:

$$\begin{split} \varepsilon &= f(x_{k_\varepsilon}) - f^* \leq \left(1 - \frac{\mu}{L}\right)^{k_\varepsilon} \left(f(x_0) - f^*\right) \\ &\leq \exp\left(-k_\varepsilon \frac{\mu}{L}\right) \left(f(x_0) - f^*\right) \end{split}$$

Градиентный спуск:

$$\min_{x \in \mathbb{R}^n} f(x)$$

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

выпуклая (негладкая)	гладкая (невыпуклая)	гладкая & выпуклая	гладкая & сильно выпуклая
$f(x_k) - f^* = \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$\min_{0 \leq i \leq k} \ \nabla f(x_i)\ = \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$f(x_k) - f^* = \mathcal{O}\left(\tfrac{1}{k}\right)$	$\ x_k - x^*\ ^2 = \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right)$
$k_{\varepsilon}=\mathcal{O}\left(\frac{1}{\varepsilon^{2}}\right)$	$k_{\varepsilon} = \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$	$k_{arepsilon} = \mathcal{O}\left(rac{1}{arepsilon} ight)$	$k_{arepsilon} = \mathcal{O}\left(arkappa \log rac{1}{arepsilon} ight)$

Для гладкой сильно выпуклой функции мы имеем:

$$f(x_k) - f^* \le \left(1 - \frac{\mu}{L}\right)^k (f(x_0) - f^*).$$

Обратите внимание, что для любого x, поскольку e^{-x} выпуклая и 1-x является её касательной в точке x=0, мы имеем:

$$1-x \leq e^{-x}$$

Наконец:

$$\begin{split} \varepsilon &= f(x_{k_{\varepsilon}}) - f^* \leq \left(1 - \frac{\mu}{L}\right)^{k_{\varepsilon}} \left(f(x_0) - f^*\right) \\ &\leq \exp\left(-k_{\varepsilon}\frac{\mu}{L}\right) \left(f(x_0) - f^*\right) \\ k_{\varepsilon} &\geq \varkappa \log \frac{f(x_0) - f^*}{\varepsilon} = \mathcal{O}\left(\varkappa \log \frac{1}{\varepsilon}\right) \end{split}$$

Вопрос: Можно ли добиться лучшей скорости сходимости, используя только информацию первого порядка?

Вопрос: Можно ли добиться лучшей скорости сходимости, используя только информацию первого порядка? Да, можно.

Нижние оценки

Нижние оценки

Для нижних оценок пишут $\Omega\left(\cdot\right)$ вместо $\mathcal{O}\left(\cdot\right)$.

выпуклая (негладкая)	гладкая (невыпуклая) ¹	гладкая & выпуклая ²	гладкая & сильно выпуклая
$f(x_k) - f^* = \Omega\left(\frac{1}{\sqrt{k}}\right)$	$\min_{0 \leq i \leq k} \ \nabla f(x_i)\ = \Omega\left(\tfrac{1}{\sqrt{k}}\right)$	$f(x_k) - f^* = \Omega\big(\tfrac{1}{k^2}\big)$	$f(x_k) - f^* = \Omega\left(\left(\frac{\sqrt{\varkappa} - 1}{\sqrt{\varkappa} + 1}\right)^{2k}\right)$
$k_{\varepsilon} = \Omega\left(\frac{1}{\varepsilon^2}\right)$	$k_\varepsilon = \Omega\big(\tfrac{1}{\varepsilon^2}\big)$	$k_\varepsilon = \Omega\!\left(\tfrac{1}{\sqrt{\varepsilon}}\right)$	$k_\varepsilon = \Omega(\sqrt{\varkappa}\log\tfrac{1}{\varepsilon})$

¹Carmon, Duchi, Hinder, Sidford, 2017

²Nemirovski, Yudin, 1979

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

$$\begin{split} x_{k+1} &= x_k - \alpha_k \nabla f(x_k) \\ &= x_{k-1} - \alpha_{k-1} \nabla f(x_{k-1}) - \alpha_k \nabla f(x_k) \end{split}$$

$$\begin{split} x_{k+1} &= x_k - \alpha_k \nabla f(x_k) \\ &= x_{k-1} - \alpha_{k-1} \nabla f(x_{k-1}) - \alpha_k \nabla f(x_k) \\ &\vdots \end{split}$$

$$\begin{split} x_{k+1} &= x_k - \alpha_k \nabla f(x_k) \\ &= x_{k-1} - \alpha_{k-1} \nabla f(x_{k-1}) - \alpha_k \nabla f(x_k) \\ &\vdots \\ &= x_0 - \sum_{i=0}^k \alpha_{k-i} \nabla f(x_{k-i}) \end{split}$$

Итерация градиентного спуска:

$$\begin{split} x_{k+1} &= x_k - \alpha_k \nabla f(x_k) \\ &= x_{k-1} - \alpha_{k-1} \nabla f(x_{k-1}) - \alpha_k \nabla f(x_k) \\ &\vdots \\ &= x_0 - \sum_{i=0}^k \alpha_{k-i} \nabla f(x_{k-i}) \end{split}$$

Рассмотрим семейство методов первого порядка, где

$$x_{k+1} \in x_0 + \text{Lin}\left\{\nabla f(x_0), \nabla f(x_1), \dots, \nabla f(x_k)\right\} \qquad f - \text{гладкая}$$

$$x_{k+1} \in x_0 + \text{Lin}\left\{g_0, g_1, \dots, g_k\right\}, \text{где } g_i \in \partial f(x_i) \qquad f - \text{негладкая}$$

(1)

Итерация градиентного спуска:

$$\begin{split} x_{k+1} &= x_k - \alpha_k \nabla f(x_k) \\ &= x_{k-1} - \alpha_{k-1} \nabla f(x_{k-1}) - \alpha_k \nabla f(x_k) \\ &\vdots \\ &= x_0 - \sum_{i=0}^k \alpha_{k-i} \nabla f(x_{k-i}) \end{split}$$

Рассмотрим семейство методов первого порядка, где

$$\begin{aligned} x_{k+1} &\in x_0 + \text{Lin}\left\{\nabla f(x_0), \nabla f(x_1), \dots, \nabla f(x_k)\right\} & f - \text{гладкая} \\ x_{k+1} &\in x_0 + \text{Lin}\left\{g_0, g_1, \dots, g_k\right\}, \text{ где } g_i \in \partial f(x_i) & f - \text{негладкая} \end{aligned} \tag{1}$$

Чтобы построить нижнюю оценку, нам нужно найти функцию f из соответствующего класса, такую, что любой метод из семейства (1) будет работать не быстрее этой нижней оценки.

1 Theorem

$$f(x_k) - f^* \geq \frac{3L\|x_0 - x^*\|_2^2}{32(k+1)^2}$$

1 Theorem

Существует L-гладкая и выпуклая функция f , такая, что любой метод (1) для всех k , $1 \leq k \leq \frac{n-1}{2}$, удовлетворяет:

$$f(x_k) - f^* \geq \frac{3L\|x_0 - x^*\|_2^2}{32(k+1)^2}$$

• Какой бы метод из семейства методов первого порядка вы ни использовали, найдётся функция f, на которой скорость сходимости не лучше $\mathcal{O}\left(\frac{1}{L^2}\right)$.

1 Theorem

$$f(x_k) - f^* \geq \frac{3L\|x_0 - x^*\|_2^2}{32(k+1)^2}$$

- Какой бы метод из семейства методов первого порядка вы ни использовали, найдётся функция f, на которой скорость сходимости не лучше $\mathcal{O}\left(\frac{1}{L^2}\right)$.
- Ключом к доказательству является явное построение специальной функции f.

1 Theorem

$$f(x_k) - f^* \geq \frac{3L\|x_0 - x^*\|_2^2}{32(k+1)^2}$$

- Какой бы метод из семейства методов первого порядка вы ни использовали, найдётся функция f, на которой скорость сходимости не лучше $\mathcal{O}\left(\frac{1}{k^2}\right)$.
- Ключом к доказательству является явное построение специальной функции f.
- Обратите внимание, что эта граница $\mathcal{O}\left(\frac{1}{k^2}\right)$ не соответствует скорости градиентного спуска $\mathcal{O}\left(\frac{1}{k}\right)$. Два возможных варианта:

i Theorem

$$f(x_k) - f^* \geq \frac{3L\|x_0 - x^*\|_2^2}{32(k+1)^2}$$

- Какой бы метод из семейства методов первого порядка вы ни использовали, найдётся функция f, на которой скорость сходимости не лучше $\mathcal{O}\left(\frac{1}{k^2}\right)$.
- Ключом к доказательству является явное построение специальной функции f.
- Обратите внимание, что эта граница $\mathcal{O}\left(\frac{1}{k^2}\right)$ не соответствует скорости градиентного спуска $\mathcal{O}\left(\frac{1}{k}\right)$. Два возможных варианта: а. Нижняя оценка не является точной.

1 Theorem

$$f(x_k) - f^* \geq \frac{3L\|x_0 - x^*\|_2^2}{32(k+1)^2}$$

- Какой бы метод из семейства методов первого порядка вы ни использовали, найдётся функция f, на которой скорость сходимости не лучше $\mathcal{O}\left(\frac{1}{k^2}\right)$.
- Ключом к доказательству является явное построение специальной функции f.
- Обратите внимание, что эта граница $\mathcal{O}\left(\frac{1}{k^2}\right)$ не соответствует скорости градиентного спуска $\mathcal{O}\left(\frac{1}{k}\right)$. Два возможных варианта:
 - а. Нижняя оценка не является точной.
 - b. Метод градиентного спуска не является оптимальным для этой задачи.

1 Theorem

$$f(x_k) - f^* \geq \frac{3L\|x_0 - x^*\|_2^2}{32(k+1)^2}$$

- Какой бы метод из семейства методов первого порядка вы ни использовали, найдётся функция f, на которой скорость сходимости не лучше $\mathcal{O}\left(\frac{1}{k^2}\right)$.
- Ключом к доказательству является явное построение специальной функции f.
- Обратите внимание, что эта граница $\mathcal{O}\left(\frac{1}{k^2}\right)$ не соответствует скорости градиентного спуска $\mathcal{O}\left(\frac{1}{k}\right)$. Два возможных варианта:
 - а. Нижняя оценка не является точной.
 - b. Метод градиентного спуска не является оптимальным для этой задачи.

• Пусть n=2k+1 и $A\in\mathbb{R}^{n\times n}$.

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

• Пусть n=2k+1 и $A\in\mathbb{R}^{n\times n}$.

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

• Обратите внимание, что

$$x^{T}Ax = x_1^2 + x_n^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2,$$

Следовательно, $x^TAx \geq 0$. Также легко увидеть, что $0 \leq A \leq 4I$.

• Пусть n=2k+1 и $A\in\mathbb{R}^{n\times n}$.

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

• Обратите внимание, что

$$x^{T}Ax = x_1^2 + x_n^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2,$$

Следовательно, $x^TAx \geq 0$. Также легко увидеть, что $0 \leq A \leq 4I$.

• Пусть n=2k+1 и $A\in\mathbb{R}^{n\times n}.$

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

• Обратите внимание, что

$$x^TAx = x_1^2 + x_n^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2,$$

Следовательно, $x^TAx \geq 0$. Также легко увидеть, что $0 \leq A \leq 4I$.

Пример, когда n=3:

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

• Пусть n=2k+1 и $A\in\mathbb{R}^{n\times n}$.

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

• Обратите внимание, что

$$x^{T}Ax = x_1^2 + x_n^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2,$$

Следовательно, $x^TAx \geq 0$. Также легко увидеть, что $0 \prec A \prec 4I$.

Пример, когда n=3:

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Нижняя оценка:

$$\begin{split} x^TAx &= 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3 \\ &= x_1^2 + x_1^2 - 2x_1x_2 + x_2^2 + x_2^2 - 2x_2x_3 + x_3^2 + x_3^2 \\ &= x_1^2 + (x_1 - x_2)^2 + (x_2 - x_3)^2 + x_3^2 \geq 0 \end{split}$$

• Пусть n=2k+1 и $A\in\mathbb{R}^{n\times n}$.

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

• Обратите внимание, что

$$x^TAx = x_1^2 + x_n^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2,$$

Следовательно, $x^TAx \geq 0$. Также легко увидеть, что $0 \prec A \prec 4I$.

Пример, когда n=3:

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Нижняя оценка:

$$\begin{split} x^TAx &= 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3 \\ &= x_1^2 + x_1^2 - 2x_1x_2 + x_2^2 + x_2^2 - 2x_2x_3 + x_3^2 + x_3^2 \\ &= x_1^2 + (x_1 - x_2)^2 + (x_2 - x_3)^2 + x_3^2 \geq 0 \end{split}$$

$$x^T A x = 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1 x_2 - 2x_2 x_3$$

• Пусть n=2k+1 и $A\in\mathbb{R}^{n\times n}$.

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

• Обратите внимание, что

$$x^{T}Ax = x_1^2 + x_n^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2,$$

Следовательно, $x^TAx \geq 0$. Также легко увидеть, что $0 \preceq A \preceq 4I$.

Пример, когда n=3:

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Нижняя оценка:

$$\begin{split} x^TAx &= 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3 \\ &= x_1^2 + x_1^2 - 2x_1x_2 + x_2^2 + x_2^2 - 2x_2x_3 + x_3^2 + x_3^2 \\ &= x_1^2 + (x_1 - x_2)^2 + (x_2 - x_3)^2 + x_3^2 \geq 0 \end{split}$$

$$\begin{split} x^T A x &= 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1 x_2 - 2x_2 x_3 \\ &\leq 4(x_1^2 + x_2^2 + x_3^2) \end{split}$$

• Пусть n=2k+1 и $A\in\mathbb{R}^{n\times n}$.

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

• Обратите внимание, что

$$x^{T}Ax = x_1^2 + x_n^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2,$$

Следовательно, $x^TAx \geq 0$. Также легко увидеть, что $0 \prec A \prec 4I$.

Пример, когда n=3:

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Нижняя оценка:

$$\begin{split} x^TAx &= 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3 \\ &= x_1^2 + x_1^2 - 2x_1x_2 + x_2^2 + x_2^2 - 2x_2x_3 + x_3^2 + x_3^2 \\ &= x_1^2 + (x_1 - x_2)^2 + (x_2 - x_3)^2 + x_3^2 \geq 0 \end{split}$$

$$\begin{split} x^TAx &= 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3 \\ &\leq 4(x_1^2 + x_2^2 + x_3^2) \\ 0 &\leq 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_2x_3 \end{split}$$

• Пусть n=2k+1 и $A\in\mathbb{R}^{n\times n}$.

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

• Обратите внимание, что

$$x^{T}Ax = x_1^2 + x_n^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2,$$

Следовательно, $x^TAx \geq 0$. Также легко увидеть, что $0 \prec A \prec 4I$.

Пример, когда n=3:

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Нижняя оценка:

$$\begin{split} x^TAx &= 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3 \\ &= x_1^2 + x_1^2 - 2x_1x_2 + x_2^2 + x_2^2 - 2x_2x_3 + x_3^2 + x_3^2 \\ &= x_1^2 + (x_1 - x_2)^2 + (x_2 - x_3)^2 + x_3^2 \geq 0 \end{split}$$

$$\begin{split} x^TAx &= 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3 \\ &\leq 4(x_1^2 + x_2^2 + x_3^2) \\ 0 &\leq 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_2x_3 \\ 0 &\leq x_1^2 + x_1^2 + 2x_1x_2 + x_2^2 + x_2^2 + 2x_2x_3 + x_3^2 + x_3^2 \end{split}$$

• Пусть n=2k+1 и $A\in\mathbb{R}^{n\times n}$.

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

• Обратите внимание, что

$$x^TAx = x_1^2 + x_n^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2,$$

Следовательно, $x^TAx \geq 0$. Также легко увидеть, что $0 \preceq A \preceq 4I$.

Пример, когда n=3:

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Нижняя оценка:

$$\begin{split} x^TAx &= 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3 \\ &= x_1^2 + x_1^2 - 2x_1x_2 + x_2^2 + x_2^2 - 2x_2x_3 + x_3^2 + x_3^2 \\ &= x_1^2 + (x_1 - x_2)^2 + (x_2 - x_3)^2 + x_3^2 \geq 0 \end{split}$$

$$\begin{split} x^TAx &= 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3 \\ &\leq 4(x_1^2 + x_2^2 + x_3^2) \\ 0 &\leq 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_2x_3 \\ 0 &\leq x_1^2 + x_1^2 + 2x_1x_2 + x_2^2 + x_2^2 + 2x_2x_3 + x_3^2 + x_3^2 \\ 0 &\leq x_1^2 + (x_1 + x_2)^2 + (x_2 + x_3)^2 + x_3^2 \end{split}$$

• Определим следующую L-гладкую выпуклую функцию: $f(x)=rac{L}{4}\left(rac{1}{2}x^TAx-e_1^Tx
ight)=rac{L}{8}x^TAx-rac{L}{4}e_1^Tx.$

- Определим следующую L-гладкую выпуклую функцию: $f(x) = \frac{L}{4} \left(\frac{1}{2} x^T A x e_1^T x \right) = \frac{L}{8} x^T A x \frac{L}{4} e_1^T x.$
- Оптимальное решение x^* удовлетворяет $Ax^*=e_1$, и решение этой системы уравнений дает:

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} x_1^* \\ x_2^* \\ x_3^* \\ \vdots \\ x_n^* \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \begin{cases} 2x_1^* - x_2^* = 1 \\ -x_{i-1}^* + 2x_i^* - x_{i+1}^* = 0, \ i = 2, \dots, n-1 \\ -x_{n-1}^* + 2x_n^* = 0 \end{cases}$$

- Определим следующую L-гладкую выпуклую функцию: $f(x)=rac{L}{4}\left(rac{1}{2}x^TAx-e_1^Tx
 ight)=rac{L}{8}x^TAx-rac{L}{4}e_1^Tx.$
- Оптимальное решение x^* удовлетворяет $Ax^*=e_1$, и решение этой системы уравнений дает:

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} x_1^* \\ x_2^* \\ x_3^* \\ \vdots \\ x_n^* \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ x_n^* \end{bmatrix} \begin{cases} 2x_1^* - x_2^* = 1 \\ -x_{i-1}^* + 2x_i^* - x_{i+1}^* = 0, \ i = 2, \dots, n-1 \\ -x_{n-1}^* + 2x_n^* = 0 \end{cases}$$

• Гипотеза: $x_i^* = a + bi$ (вдохновлённая физикой). Проверьте, что выполнено второе уравнение, в то время как a и b вычисляются из первого и последнего уравнений.

- Определим следующую L-гладкую выпуклую функцию: $f(x) = \frac{L}{4} \left(\frac{1}{2} x^T A x e_1^T x \right) = \frac{L}{8} x^T A x \frac{L}{4} e_1^T x.$
- Оптимальное решение x^* удовлетворяет $Ax^*=e_1$, и решение этой системы уравнений дает:

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} x_1^* \\ x_2^* \\ x_3^* \\ \vdots \\ x_n^* \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ x_n^* \end{bmatrix} \begin{cases} 2x_1^* - x_2^* = 1 \\ -x_{i-1}^* + 2x_i^* - x_{i+1}^* = 0, \ i = 2, \dots, n-1 \\ -x_{n-1}^* + 2x_n^* = 0 \end{cases}$$

- Гипотеза: $x_i^* = a + bi$ (вдохновлённая физикой). Проверьте, что выполнено второе уравнение, в то время как a и b вычисляются из первого и последнего уравнений.
- Решение:

$$x_i^* = 1 - \frac{i}{n+1},$$

- Определим следующую L-гладкую выпуклую функцию: $f(x) = \frac{L}{4} \left(\frac{1}{2} x^T A x e_1^T x \right) = \frac{L}{8} x^T A x \frac{L}{4} e_1^T x.$
- Оптимальное решение x^* удовлетворяет $Ax^*=e_1$, и решение этой системы уравнений дает:

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} x_1^* \\ x_2^* \\ x_3^* \\ \vdots \\ x_n^* \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ x_n^* \end{bmatrix} = \begin{bmatrix} 2x_1^* - x_2^* = 1 \\ -x_{i-1}^* + 2x_i^* - x_{i+1}^* = 0, \ i = 2, \dots, n-1 \\ -x_{n-1}^* + 2x_n^* = 0 \end{bmatrix}$$

- Гипотеза: $x_i^* = a + bi$ (вдохновлённая физикой). Проверьте, что выполнено второе уравнение, в то время как a и b вычисляются из первого и последнего уравнений.
- Решение:

$$x_i^* = 1 - \frac{i}{n+1},$$

• И значение функции равно

$$f(x^*) = \frac{L}{8}{x^*}^T A x^* - \frac{L}{4}\langle x^*, e_1 \rangle = -\frac{L}{8}\langle x^*, e_1 \rangle = -\frac{L}{8}\left(1 - \frac{1}{n+1}\right).$$

• Предположим, что мы начинаем с $x_0=0$. Запросив у оракула градиент, мы получаем $g_0=-\frac{L}{4}e_1$. Тогда, x_1 должен лежать на линии, генерируемой e_1 . В этой точке все компоненты x_1 равны нулю, кроме первой, поэтому

$$x_1 = \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

• Предположим, что мы начинаем с $x_0=0$. Запросив у оракула градиент, мы получаем $g_0=-\frac{L}{4}e_1$. Тогда, x_1 должен лежать на линии, генерируемой e_1 . В этой точке все компоненты x_1 равны нулю, кроме первой, поэтому

$$x_1 = \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

• На второй итерации оракул возвращает градиент $g_1=rac{L}{4}\left(Ax_1-e_1
ight)$. Тогда, x_2 должен лежать на линии, генерируемой e_1 и Ax_1-e_1 . Все компоненты x_2 равны нулю, кроме первых двух, поэтому

$$\begin{bmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix} \Rightarrow x_2 = \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

• Предположим, что мы начинаем с $x_0=0$. Запросив у оракула градиент, мы получаем $g_0=-rac{L}{4}e_1$. Тогда, x_1 должен лежать на линии, генерируемой e_1 . В этой точке все компоненты x_1 равны нулю, кроме первой, поэтому

$$x_1 = \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

• На второй итерации оракул возвращает градиент $g_1=rac{L}{4}\left(Ax_1-e_1
ight)$. Тогда, x_2 должен лежать на линии, генерируемой e_1 и Ax_1-e_1 . Все компоненты x_2 равны нулю, кроме первых двух, поэтому

$$\begin{bmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix} \Rightarrow x_2 = \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

• Из-за структуры матрицы A можно показать, что после k итераций все последние n-k компоненты x_k равны нулю.

$$x_k = \begin{bmatrix} \bullet \\ \bullet \\ 2 \\ \vdots \\ \bullet \\ k \\ 0 \\ k + \\ \vdots \\ \vdots \\ 0 \\ n \end{bmatrix}$$

• Предположим, что мы начинаем с $x_0=0$. Запросив у оракула градиент, мы получаем $g_0=-rac{L}{4}e_1$. Тогда, x_1 должен лежать на линии, генерируемой e_1 . В этой точке все компоненты x_1 равны нулю, кроме первой, поэтому

$$x_1 = \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

• На второй итерации оракул возвращает градиент $g_1=rac{L}{4}\left(Ax_1-e_1
ight)$. Тогда, x_2 должен лежать на линии, генерируемой e_1 и Ax_1-e_1 . Все компоненты x_2 равны нулю, кроме первых двух, поэтому

$$\begin{bmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix} \Rightarrow x_2 = \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

• Из-за структуры матрицы A можно показать, что после k итераций все последние n-k компоненты x_k равны нулю.

$$x_k = \begin{bmatrix} \bullet \\ \bullet \\ 2 \\ \vdots \\ \bullet \\ k \\ 0 \\ k+1 \\ \vdots \\ \vdots \\ 0 \end{bmatrix}$$

• Однако, поскольку каждая итерация x_k , произведенная нашим методом, лежит в $S_k=\mathrm{Lin}\{e_1,e_2,\dots,e_k\}$ (т.е. имеет нули в координатах $k+1,\dots,n$), она не может "достичь" полного оптимального вектора x^* . Другими словами, даже если бы мы выбрали лучший возможный вектор из S_k , обозначаемый

$$\tilde{x}_k = \arg\min_{x \in S_k} f(x),$$

значение функции в нём $f(\tilde{x}_k)$ будет выше, чем $f(x^*).$

• Поскольку $x_k \in S_k = \mathrm{Lin}\{e_1, e_2, \dots, e_k\}$ и \tilde{x}_k является лучшим возможным приближением к x^* в S_k , мы имеем

$$f(x_k) \geq f(\tilde{x}_k).$$

• Поскольку $x_k \in S_k = \mathrm{Lin}\{e_1, e_2, \dots, e_k\}$ и \tilde{x}_k является лучшим возможным приближением к x^* в S_k , мы имеем

$$f(x_k) \geq f(\tilde{x}_k).$$

• Следовательно,

$$f(x_k) - f(x^*) \geq f(\tilde{x}_k) - f(x^*).$$

• Поскольку $x_k \in S_k = \mathrm{Lin}\{e_1, e_2, \dots, e_k\}$ и \tilde{x}_k является лучшим возможным приближением к x^* в S_k , мы имеем

$$f(x_k) \geq f(\tilde{x}_k).$$

• Следовательно,

$$f(x_k) - f(x^*) \geq f(\tilde{x}_k) - f(x^*).$$

• Аналогично, для оптимума исходной функции, мы имеем $ilde{x}_{k_{(i)}}=1-rac{i}{k+1}$ и $f(ilde{x}_k)=-rac{L}{8}\left(1-rac{1}{k+1}
ight)$.

• Поскольку $x_k \in S_k = \mathrm{Lin}\{e_1, e_2, \dots, e_k\}$ и \tilde{x}_k является лучшим возможным приближением к x^* в S_k , мы имеем

$$f(x_k) \geq f(\tilde{x}_k).$$

• Следовательно,

$$f(x_k) - f(x^*) \geq f(\tilde{x}_k) - f(x^*).$$

- Аналогично, для оптимума исходной функции, мы имеем $ilde{x}_{k_{(i)}}=1-rac{i}{k+1}$ и $f(ilde{x}_k)=-rac{L}{8}\left(1-rac{1}{k+1}
 ight)$.
- Теперь мы имеем:

$$f(x_k) - f(x^*) \geq f(\tilde{x}_k) - f(x^*)$$

• Поскольку $x_k \in S_k = \mathrm{Lin}\{e_1, e_2, \dots, e_k\}$ и \tilde{x}_k является лучшим возможным приближением к x^* в S_k , мы имеем

$$f(x_k) \ge f(\tilde{x}_k).$$

• Следовательно,

$$f(x_k) - f(x^*) \geq f(\tilde{x}_k) - f(x^*).$$

- Аналогично, для оптимума исходной функции, мы имеем $ilde{x}_{k_{(i)}}=1-rac{i}{k+1}$ и $f(ilde{x}_k)=-rac{L}{8}\left(1-rac{1}{k+1}
 ight)$.
- Теперь мы имеем:

$$\begin{split} f(x_k) - f(x^*) &\geq f(\tilde{x}_k) - f(x^*) \\ &= -\frac{L}{8} \left(1 - \frac{1}{k+1}\right) - \left(-\frac{L}{8} \left(1 - \frac{1}{n+1}\right)\right) \end{split}$$

• Поскольку $x_k \in S_k = \mathrm{Lin}\{e_1, e_2, \dots, e_k\}$ и \tilde{x}_k является лучшим возможным приближением к x^* в S_k , мы имеем

$$f(x_k) \ge f(\tilde{x}_k).$$

• Следовательно,

$$f(x_k) - f(x^*) \geq f(\tilde{x}_k) - f(x^*).$$

- Аналогично, для оптимума исходной функции, мы имеем $ilde{x}_{k_{(i)}}=1-rac{i}{k+1}$ и $f(ilde{x}_k)=-rac{L}{8}\left(1-rac{1}{k+1}
 ight)$.
- Теперь мы имеем:

$$\begin{split} f(x_k) - f(x^*) &\geq f(\tilde{x}_k) - f(x^*) \\ &= -\frac{L}{8} \left(1 - \frac{1}{k+1} \right) - \left(-\frac{L}{8} \left(1 - \frac{1}{n+1} \right) \right) \\ &= \frac{L}{8} \left(\frac{1}{k+1} - \frac{1}{n+1} \right) = \frac{L}{8} \left(\frac{n-k}{(k+1)(n+1)} \right) \end{split}$$

• Поскольку $x_k \in S_k = \text{Lin}\{e_1, e_2, \dots, e_k\}$ и \tilde{x}_k является лучшим возможным приближением к x^* в S_k , мы имеем

$$f(x_k) \ge f(\tilde{x}_k).$$

• Следовательно,

$$f(x_k) - f(x^*) \geq f(\tilde{x}_k) - f(x^*).$$

- Аналогично, для оптимума исходной функции, мы имеем $ilde{x}_{k_{(i)}}=1-rac{i}{k+1}$ и $f(ilde{x}_k)=-rac{L}{8}\left(1-rac{1}{k+1}
 ight)$.
- Теперь мы имеем:

$$\begin{split} f(x_k) - f(x^*) &\geq f(\tilde{x}_k) - f(x^*) \\ &= -\frac{L}{8} \left(1 - \frac{1}{k+1} \right) - \left(-\frac{L}{8} \left(1 - \frac{1}{n+1} \right) \right) \\ &= \frac{L}{8} \left(\frac{1}{k+1} - \frac{1}{n+1} \right) = \frac{L}{8} \left(\frac{n-k}{(k+1)(n+1)} \right) \\ &\stackrel{n=2k+1}{=} \frac{L}{16(k+1)} \end{split}$$

$$\|x_0 - x^*\|_2^2 = \|0 - x^*\|_2^2 = \|x^*\|_2^2 = \sum_{i=1}^n \left(1 - \frac{i}{n+1}\right)^2$$

$$\begin{split} \|x_0 - x^*\|_2^2 &= \|0 - x^*\|_2^2 = \|x^*\|_2^2 = \sum_{i=1}^n \left(1 - \frac{i}{n+1}\right)^2 \\ &= n - \frac{2}{n+1} \sum_{i=1}^n i + \frac{1}{(n+1)^2} \sum_{i=1}^n i^2 \end{split}$$

$$\begin{split} \|x_0 - x^*\|_2^2 &= \|0 - x^*\|_2^2 = \|x^*\|_2^2 = \sum_{i=1}^n \left(1 - \frac{i}{n+1}\right)^2 \\ &= n - \frac{2}{n+1} \sum_{i=1}^n i + \frac{1}{(n+1)^2} \sum_{i=1}^n i^2 \\ &\leq n - \frac{2}{n+1} \cdot \frac{n(n+1)}{2} + \frac{1}{(n+1)^2} \cdot \frac{(n+1)^3}{3} \end{split}$$

$$\begin{split} \|x_0 - x^*\|_2^2 &= \|0 - x^*\|_2^2 = \|x^*\|_2^2 = \sum_{i=1}^n \left(1 - \frac{i}{n+1}\right)^2 \\ &= n - \frac{2}{n+1} \sum_{i=1}^n i + \frac{1}{(n+1)^2} \sum_{i=1}^n i^2 \\ &\leq n - \frac{2}{n+1} \cdot \frac{n(n+1)}{2} + \frac{1}{(n+1)^2} \cdot \frac{(n+1)^3}{3} \\ &= \frac{n+1}{3} \stackrel{n=2k+1}{=} \frac{2(k+1)}{3}. \end{split}$$

• Теперь мы ограничиваем $R = \|x_0 - x^*\|_2$:

$$\begin{split} \|x_0 - x^*\|_2^2 &= \|0 - x^*\|_2^2 = \|x^*\|_2^2 = \sum_{i=1}^n \left(1 - \frac{i}{n+1}\right)^2 \\ &= n - \frac{2}{n+1} \sum_{i=1}^n i + \frac{1}{(n+1)^2} \sum_{i=1}^n i^2 \\ &\leq n - \frac{2}{n+1} \cdot \frac{n(n+1)}{2} + \frac{1}{(n+1)^2} \cdot \frac{(n+1)^3}{3} \\ &= \frac{n+1}{3} \stackrel{n=2k+1}{=} \frac{2(k+1)}{3}. \end{split}$$

• Следовательно,

$$k+1 \ge \frac{3}{2} \|x_0 - x^*\|_2^2 = \frac{3}{2} R^2$$
 (3)

• Теперь мы ограничиваем $R = \|x_0 - x^*\|_2$:

$$\begin{split} \|x_0 - x^*\|_2^2 &= \|0 - x^*\|_2^2 = \|x^*\|_2^2 = \sum_{i=1}^n \left(1 - \frac{i}{n+1}\right)^2 \\ &= n - \frac{2}{n+1} \sum_{i=1}^n i + \frac{1}{(n+1)^2} \sum_{i=1}^n i^2 \\ &\leq n - \frac{2}{n+1} \cdot \frac{n(n+1)}{2} + \frac{1}{(n+1)^2} \cdot \frac{(n+1)^3}{3} \\ &= \frac{n+1}{3} \stackrel{n=2k+1}{=} \frac{2(k+1)}{3}. \end{split}$$

• Следовательно,

$$k+1 \ge \frac{3}{2} \|x_0 - x^*\|_2^2 = \frac{3}{2} R^2$$
 (3)

• Теперь мы ограничиваем $R = \|x_0 - x^*\|_2$:

$$\begin{split} \|x_0 - x^*\|_2^2 &= \|0 - x^*\|_2^2 = \|x^*\|_2^2 = \sum_{i=1}^n \left(1 - \frac{i}{n+1}\right)^2 \\ &= n - \frac{2}{n+1} \sum_{i=1}^n i + \frac{1}{(n+1)^2} \sum_{i=1}^n i^2 \\ &\leq n - \frac{2}{n+1} \cdot \frac{n(n+1)}{2} + \frac{1}{(n+1)^2} \cdot \frac{(n+1)^3}{3} \\ &= \frac{n+1}{3} \stackrel{n=2k+1}{=} \frac{2(k+1)}{3}. \end{split}$$

• Следовательно,

$$k+1 \ge \frac{3}{2} \|x_0 - x^*\|_2^2 = \frac{3}{2} R^2$$
 (3)

Заметим, что

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
$$\leq \frac{(n+1)^3}{3}$$

Наконец, используя (2) и (3), мы получаем:

$$f(x_k) - f(x^*) \geq \frac{L}{16(k+1)} = \frac{L(k+1)}{16(k+1)^2}$$

Наконец, используя (2) и (3), мы получаем:

$$\begin{split} f(x_k) - f(x^*) &\geq \frac{L}{16(k+1)} = \frac{L(k+1)}{16(k+1)^2} \\ &\geq \frac{L}{16(k+1)^2} \frac{3}{2} R^2 \end{split}$$

Наконец, используя (2) и (3), мы получаем:

$$\begin{split} f(x_k) - f(x^*) &\geq \frac{L}{16(k+1)} = \frac{L(k+1)}{16(k+1)^2} \\ &\geq \frac{L}{16(k+1)^2} \frac{3}{2} R^2 \\ &= \frac{3LR^2}{32(k+1)^2} \end{split}$$

Наконец, используя (2) и (3), мы получаем:

$$\begin{split} f(x_k) - f(x^*) &\geq \frac{L}{16(k+1)} = \frac{L(k+1)}{16(k+1)^2} \\ &\geq \frac{L}{16(k+1)^2} \frac{3}{2} R^2 \\ &= \frac{3LR^2}{32(k+1)^2} \end{split}$$

Это завершает доказательство с желаемой скоростью $\mathcal{O}\left(\frac{1}{k^2}\right)$

Нижние оценки для гладкого случая

Гладкий выпуклый случай

Существует L-гладкая выпуклая функция f , такая, что любой метод в форме 1 для всех k , $1 \leq k \leq \frac{n-1}{2}$, удовлетворяет:

$$f(x_k) - f^* \geq \frac{3L\|x_0 - x^*\|_2^2}{32(k+1)^2}$$

1 Гладкий сильно выпуклый случай

Для любого x_0 и любого $\mu>0$, $\varkappa=\frac{L}{\mu}>1$, существует L-гладкая и μ -сильно выпуклая функция f, такая, что для любого метода в форме 1 выполняются неравенства:

$$\begin{split} \|x_k - x^*\|_2 &\geq \left(\frac{\sqrt{\varkappa} - 1}{\sqrt{\varkappa} + 1}\right)^k \|x_0 - x^*\|_2 \\ f(x_k) - f^* &\geq \frac{\mu}{2} \left(\frac{\sqrt{\varkappa} - 1}{\sqrt{\varkappa} + 1}\right)^{2k} \|x_0 - x^*\|_2^2 \end{split}$$

Ускорение для квадратичных функций

Результат сходимости для квадратичных функций

Предположим, что мы решаем задачу минимизации сильно выпуклой квадратичной функции, с помощью метода градиентного спуска:

$$f(x) = \frac{1}{2} x^T A x - b^T x \qquad x_{k+1} = x_k - \alpha_k \nabla f(x_k).$$

Результат сходимости для квадратичных функций

Предположим, что мы решаем задачу минимизации сильно выпуклой квадратичной функции, с помощью метода градиентного спуска:

$$f(x) = \frac{1}{2} x^T A x - b^T x \qquad x_{k+1} = x_k - \alpha_k \nabla f(x_k).$$

1 Theorem

Градиентный спуск с шагом $\alpha_k = \frac{2}{\mu + L}$ сходится к оптимальному решению x^* со следующей гарантией:

$$\|x_{k+1} - x^*\|_2 \leq \left(\frac{\varkappa - 1}{\varkappa + 1}\right)^k \|x_0 - x^*\|_2 \qquad f(x_{k+1}) - f(x^*) \leq \left(\frac{\varkappa - 1}{\varkappa + 1}\right)^{2k} \left(f(x_0) - f(x^*)\right)$$

где $\varkappa = \frac{L}{\mu}$ является числом обусловленности A.

Число обусловленности ${\mathcal U}$

$$f(x) = \frac{1}{2}x^TAx - b^Tx \qquad x_{k+1} = x_k - \alpha_k \nabla f(x_k).$$

Пусть x^* будет единственным решением системы линейных уравнений Ax=b и пусть $e_k=x_k-x^*$, где $x_{k+1}=x_k-\alpha_k(Ax_k-b)$ определяется рекурсивно, начиная с некоторого x_0 , а α_k — шаг, который мы определим позже.

$$e_{k+1} = (I - \alpha_k A) e_k.$$

$$f(x) = \frac{1}{2} x^T A x - b^T x \qquad x_{k+1} = x_k - \alpha_k \nabla f(x_k).$$

Пусть x^* будет единственным решением системы линейных уравнений Ax=b и пусть $e_k=x_k-x^*$, где $x_{k+1}=x_k-\alpha_k(Ax_k-b)$ определяется рекурсивно, начиная с некоторого x_0 , а α_k — шаг, который мы определим позже.

$$e_{k+1} = (I - \alpha_k A)e_k.$$

Полиномы

Вышеуказанный расчет дает нам $e_k=p_k(A)e_0,$ где p_k является полиномом

$$p_k(a) = \prod_{i=1}^k (1 - \alpha_i a).$$

$$f(x) = \frac{1}{2} x^T A x - b^T x \qquad x_{k+1} = x_k - \alpha_k \nabla f(x_k).$$

Пусть x^* будет единственным решением системы линейных уравнений Ax=b и пусть $e_k=x_k-x^*$, где $x_{k+1}=x_k-\alpha_k(Ax_k-b)$ определяется рекурсивно, начиная с некоторого x_0 , а α_k — шаг, который мы определим позже.

$$e_{k+1} = (I - \alpha_k A) e_k.$$

Полиномы

Вышеуказанный расчет дает нам $e_k=p_k(A)e_0,$ где p_k является полиномом

$$p_k(a) = \prod_{i=1}^k (1 - \alpha_i a).$$

Мы можем ограничить норму ошибки как

$$\|e_k\|\leq \|p_k(A)\|\cdot \|e_0\|\,.$$

$$f(x) = \frac{1}{2} x^T A x - b^T x \qquad x_{k+1} = x_k - \alpha_k \nabla f(x_k).$$

Пусть x^* будет единственным решением системы линейных уравнений Ax=b и пусть $e_k=x_k-x^*$, где $x_{k+1}=x_k-\alpha_k(Ax_k-b)$ определяется рекурсивно, начиная с некоторого x_0 , а α_k — шаг, который мы определим позже.

$$e_{k+1} = (I - \alpha_k A)e_k.$$

Полиномы

Вышеуказанный расчет дает нам $e_k=p_k(A)e_0,$ где p_k является полиномом

$$p_k(a) = \prod_{i=1}^k (1 - \alpha_i a).$$

Мы можем ограничить норму ошибки как

$$\|e_k\|\leq \|p_k(A)\|\cdot \|e_0\|\,.$$

Поскольку A является симметричной матрицей с собственными значениями в $[\mu,L],$:

$$\|p_k(A)\| \leq \max_{\mu \leq a \leq L} |p_k(a)| \ .$$

Это приводит к интересной постановке задачи: среди всех полиномов, удовлетворяющих $p_k(0)=1$, мы ищем полином, значение которого как можно меньше отклоняется от нуля на интервале $[\mu,L].$

Наивное решение состоит в том, чтобы выбрать постоянный шаг $\alpha_k=rac{2}{\mu+L}.$ Благодаря этому $|p_k(\mu)|=|p_k(L)|.$

$$\|e_k\| \leq \left(\frac{\varkappa-1}{\varkappa+1}\right)^k \|e_0\|$$

Наивное решение состоит в том, чтобы выбрать постоянный шаг $\alpha_k=rac{2}{\mu+L}.$ Благодаря этому $|p_k(\mu)|=|p_k(L)|.$

$$\|e_k\| \leq \left(\frac{\varkappa-1}{\varkappa+1}\right)^k \|e_0\|$$

Наивное решение состоит в том, чтобы выбрать постоянный шаг $\alpha_k=rac{2}{\mu+L}.$ Благодаря этому $|p_k(\mu)|=|p_k(L)|.$

$$\|e_k\| \leq \left(\frac{\varkappa-1}{\varkappa+1}\right)^k \|e_0\|$$

Наивное решение состоит в том, чтобы выбрать постоянный шаг $\alpha_k=rac{2}{\mu+L}.$ Благодаря этому $|p_k(\mu)|=|p_k(L)|.$

$$\|e_k\| \leq \left(\frac{\varkappa-1}{\varkappa+1}\right)^k \|e_0\|$$

Наивное решение состоит в том, чтобы выбрать постоянный шаг $\alpha_k=rac{2}{\mu+L}.$ Благодаря этому $|p_k(\mu)|=|p_k(L)|.$

$$\|e_k\| \leq \left(\frac{\varkappa-1}{\varkappa+1}\right)^k \|e_0\|$$

Полиномы Чебышёва дают оптимальный ответ на поставленный вопрос. При соответствующем шкалировании они минимизируют абсолютное значение на заданном интервале $[\mu,L]$, одновременно удовлетворяя нормировочному условию p(0)=1.

$$\begin{split} T_0(x) &= 1 \\ T_1(x) &= x \\ T_k(x) &= 2xT_{k-1}(x) - T_{k-2}(x), \qquad k \geq 2. \end{split}$$

Полиномы Чебышёва дают оптимальный ответ на поставленный вопрос. При соответствующем шкалировании они минимизируют абсолютное значение на заданном интервале $[\mu,L]$, одновременно удовлетворяя нормировочному условию p(0)=1.

$$\begin{split} T_0(x) &= 1 \\ T_1(x) &= x \\ T_k(x) &= 2xT_{k-1}(x) - T_{k-2}(x), \qquad k \geq 2. \end{split}$$

Полиномы Чебышёва дают оптимальный ответ на поставленный вопрос. При соответствующем шкалировании они минимизируют абсолютное значение на заданном интервале $[\mu,L]$, одновременно удовлетворяя нормировочному условию p(0)=1.

$$\begin{split} T_0(x) &= 1 \\ T_1(x) &= x \\ T_k(x) &= 2xT_{k-1}(x) - T_{k-2}(x), \qquad k \geq 2. \end{split}$$

Полиномы Чебышёва дают оптимальный ответ на поставленный вопрос. При соответствующем шкалировании они минимизируют абсолютное значение на заданном интервале $[\mu,L]$, одновременно удовлетворяя нормировочному условию p(0)=1.

$$\begin{split} T_0(x) &= 1 \\ T_1(x) &= x \\ T_k(x) &= 2xT_{k-1}(x) - T_{k-2}(x), \qquad k \geq 2. \end{split}$$

Полиномы Чебышёва дают оптимальный ответ на поставленный вопрос. При соответствующем шкалировании они минимизируют абсолютное значение на заданном интервале $[\mu,L]$, одновременно удовлетворяя нормировочному условию p(0)=1.

$$\begin{split} T_0(x) &= 1 \\ T_1(x) &= x \\ T_k(x) &= 2xT_{k-1}(x) - T_{k-2}(x), \qquad k \geq 2. \end{split}$$

Оригинальные полиномы Чебышёва определены на интервале [-1,1]. Чтобы использовать их для наших целей, мы должны отшкалировать их на интервал $[\mu,L]$.

Оригинальные полиномы Чебышёва определены на интервале [-1,1]. Чтобы использовать их для наших целей, мы должны отшкалировать их на интервал $[\mu,L]$.

Мы будем использовать следующее аффинное преобразование:

$$x=\frac{L+\mu-2a}{L-\mu},\quad a\in [\mu,L],\quad x\in [-1,1].$$

Обратите внимание, что x=1 соответствует $a=\mu$, x=-1 соответствует a=L и x=0 соответствует $a=\frac{\mu+L}{2}$. Это преобразование гарантирует, что поведение полинома Чебышёва на интервале [-1,1] транслируется на интервал $[\mu,L]$.

Оригинальные полиномы Чебышёва определены на интервале [-1,1]. Чтобы использовать их для наших целей, мы должны отшкалировать их на интервал $[\mu,L]$.

Мы будем использовать следующее аффинное преобразование:

$$x=\frac{L+\mu-2a}{L-\mu},\quad a\in [\mu,L],\quad x\in [-1,1].$$

Обратите внимание, что x=1 соответствует $a=\mu, x=-1$ соответствует a=L и x=0 соответствует $a=\frac{\mu+L}{2}$. Это преобразование гарантирует, что поведение полинома Чебышёва на интервале [-1,1] транслируется на интервал $[\mu,L]$.

В нашем анализе ошибок мы требуем, чтобы полином был равен 1 в 0 (т.е. $p_k(0)=1$). После применения преобразования значение T_k в точке, соответствующей a=0, может не быть 1. Следовательно, мы умножаем на обратную величину T_k в точке

$$\frac{L+\mu}{L-\mu}, \qquad \text{что обеспечивает} \qquad P_k(0) = T_k \left(\frac{L+\mu-0}{L-\mu}\right) \cdot T_k \left(\frac{L+\mu}{L-\mu}\right)^{-1} = 1.$$

Оригинальные полиномы Чебышёва определены на интервале [-1,1]. Чтобы использовать их для наших целей, мы должны отшкалировать их на интервал $[\mu,L]$.

Мы будем использовать следующее аффинное преобразование:

$$x=\frac{L+\mu-2a}{L-\mu},\quad a\in [\mu,L],\quad x\in [-1,1].$$

Обратите внимание, что x=1 соответствует $a=\mu, x=-1$ соответствует a=L и x=0 соответствует $a=\frac{\mu+L}{2}$. Это преобразование гарантирует, что поведение полинома Чебышёва на интервале [-1,1] транслируется на интервал $[\mu,L]$.

В нашем анализе ошибок мы требуем, чтобы полином был равен 1 в 0 (т.е. $p_k(0)=1$). После применения преобразования значение T_k в точке, соответствующей a=0, может не быть 1. Следовательно, мы умножаем на обратную величину T_k в точке

$$\frac{L+\mu}{L-\mu}, \qquad \text{что обеспечивает} \qquad P_k(0) = T_k \left(\frac{L+\mu-0}{L-\mu}\right) \cdot T_k \left(\frac{L+\mu}{L-\mu}\right)^{-1} = 1.$$

Построим отшкалированные полиномы Чебышёва

$$P_k(a) = T_k \left(\frac{L + \mu - 2a}{L - \mu}\right) \cdot T_k \left(\frac{L + \mu}{L - \mu}\right)^{-1}$$

и увидим, что они больше подходят для нашей задачи, чем наивные полиномы на интервале $[\mu, L]$.

Мы можем видеть, что максимальное значение полинома Чебышёва на интервале $[\mu,L]$ достигается на концах отрезка в точках $a=\mu$ и a=L. Следовательно, мы можем использовать следующую верхнюю оценку:

$$\|P_k(A)\|_2 \leq P_k(\mu) = T_k\left(\frac{L+\mu-2\mu}{L-\mu}\right) \cdot T_k\left(\frac{L+\mu}{L-\mu}\right)^{-1} = T_k\left(1\right) \cdot T_k\left(\frac{L+\mu}{L-\mu}\right)^{-1} = T_k\left(\frac{L+\mu}$$

Мы можем видеть, что максимальное значение полинома Чебышёва на интервале $[\mu,L]$ достигается на концах отрезка в точках $a=\mu$ и a=L. Следовательно, мы можем использовать следующую верхнюю оценку:

$$\|P_k(A)\|_2 \leq P_k(\mu) = T_k\left(\frac{L+\mu-2\mu}{L-\mu}\right) \cdot T_k\left(\frac{L+\mu}{L-\mu}\right)^{-1} = T_k\left(1\right) \cdot T_k\left(\frac{L+\mu}{L-\mu}\right)^{-1} = T_k\left(\frac{L+\mu}{L-\mu}\right)^{-1}$$

Используя определение числа обусловленности $\varkappa=rac{L}{u}$, мы получаем:

$$\|P_k(A)\|_2 \leq T_k \left(\frac{\varkappa+1}{\varkappa-1}\right)^{-1} = T_k \left(1+\frac{2}{\varkappa-1}\right)^{-1} = T_k \left(1+\varepsilon\right)^{-1}, \quad \varepsilon = \frac{2}{\varkappa-1}.$$

Мы можем видеть, что максимальное значение полинома Чебышёва на интервале $[\mu,L]$ достигается на концах отрезка в точках $a=\mu$ и a=L. Следовательно, мы можем использовать следующую верхнюю оценку:

$$\|P_k(A)\|_2 \leq P_k(\mu) = T_k\left(\frac{L+\mu-2\mu}{L-\mu}\right) \cdot T_k\left(\frac{L+\mu}{L-\mu}\right)^{-1} = T_k\left(1\right) \cdot T_k\left(\frac{L+\mu}{L-\mu}\right)^{-1} = T_k\left(\frac{L+\mu}$$

Используя определение числа обусловленности $\varkappa=rac{L}{u}$, мы получаем:

$$\|P_k(A)\|_2 \leq T_k \left(\frac{\varkappa+1}{\varkappa-1}\right)^{-1} = T_k \left(1+\frac{2}{\varkappa-1}\right)^{-1} = T_k \left(1+\varepsilon\right)^{-1}, \quad \varepsilon = \frac{2}{\varkappa-1}.$$

Именно в этот момент явно возникнет ускорение. Мы ограничим значение $\|P_k(A)\|_2$ сверху величиной $\left(\frac{1}{1+\sqrt{\varepsilon}}\right)^k$. Для этого детально изучим величину $|T_k(1+\varepsilon)|$.

Чтобы ограничить $|P_k|$ сверху, мы должны ограничить $|T_k(1+arepsilon)|$ снизу.

Чтобы ограничить $|P_k|$ сверху, мы должны ограничить $|T_k(1+arepsilon)|$ снизу.

1. Для любого $x \geq 1$, полиномы Чебышёва первого рода могут быть записаны как

$$\begin{split} T_k(x) &= \cosh\left(k \operatorname{arccosh}(x)\right) \\ T_k(1+\varepsilon) &= \cosh\left(k \operatorname{arccosh}(1+\varepsilon)\right). \end{split}$$

Чтобы ограничить $|P_k|$ сверху, мы должны ограничить $|T_k(1+arepsilon)|$ снизу.

1. Для любого $x \geq 1$, полиномы Чебышёва первого рода могут быть записаны как

$$\begin{split} T_k(x) &= \cosh\left(k \operatorname{arccosh}(x)\right) \\ T_k(1+\varepsilon) &= \cosh\left(k \operatorname{arccosh}(1+\varepsilon)\right). \end{split}$$

2. Помните, что:

$$\cosh(x) = \frac{e^x + e^{-x}}{2} \quad \operatorname{arccosh}(x) = \ln(x + \sqrt{x^2 - 1}).$$

Чтобы ограничить $|P_k|$ сверху, мы должны ограничить $|T_k(1+arepsilon)|$ снизу.

1. Для любого $x \geq 1$, полиномы Чебышёва первого рода могут быть записаны как

$$\begin{split} T_k(x) &= \cosh\left(k \operatorname{arccosh}(x)\right) \\ T_k(1+\varepsilon) &= \cosh\left(k \operatorname{arccosh}(1+\varepsilon)\right). \end{split}$$

2. Помните, что:

$$\cosh(x) = \frac{e^x + e^{-x}}{2} \quad \operatorname{arccosh}(x) = \ln(x + \sqrt{x^2 - 1}).$$

3. Теперь, пусть $\phi = \operatorname{arccosh}(1+\varepsilon)$,

$$e^{\phi} = 1 + \varepsilon + \sqrt{2\varepsilon + \varepsilon^2} \ge 1 + \sqrt{\varepsilon}.$$

Чтобы ограничить $|P_k|$ сверху, мы должны ограничить $|T_k(1+\varepsilon)|$ снизу.

1. Для любого $x \geq 1$, полиномы Чебышёва первого рода могут быть записаны как

$$\begin{split} T_k(x) &= \cosh\left(k \operatorname{arccosh}(x)\right) \\ T_k(1+\varepsilon) &= \cosh\left(k \operatorname{arccosh}(1+\varepsilon)\right). \end{split}$$

2. Помните, что:

$$\cosh(x) = \frac{e^x + e^{-x}}{2} \quad \operatorname{arccosh}(x) = \ln(x + \sqrt{x^2 - 1}).$$

3. Теперь, пусть $\phi = \operatorname{arccosh}(1+\varepsilon)$,

$$e^{\phi} = 1 + \varepsilon + \sqrt{2\varepsilon + \varepsilon^2} \ge 1 + \sqrt{\varepsilon}.$$

$$\begin{split} T_k(1+\varepsilon) &= \cosh\left(k \operatorname{arccosh}(1+\varepsilon)\right) \\ &= \cosh\left(k\phi\right) \\ &= \frac{e^{k\phi} + e^{-k\phi}}{2} \geq \frac{e^{k\phi}}{2} \\ &= \frac{\left(1 + \sqrt{\varepsilon}\right)^k}{2}. \end{split}$$

4. Следовательно,

Чтобы ограничить $|P_k|$ сверху, мы должны ограничить $|T_k(1+arepsilon)|$ снизу.

1. Для любого $x \geq 1$, полиномы Чебышёва первого рода могут быть записаны как

$$\begin{split} T_k(x) &= \cosh\left(k \operatorname{arccosh}(x)\right) \\ T_k(1+\varepsilon) &= \cosh\left(k \operatorname{arccosh}(1+\varepsilon)\right). \end{split}$$

2. Помните, что:

$$\cosh(x) = \frac{e^x + e^{-x}}{2} \quad \operatorname{arccosh}(x) = \ln(x + \sqrt{x^2 - 1}).$$

3. Теперь, пусть $\phi = \operatorname{arccosh}(1+\varepsilon)$,

$$e^{\phi} = 1 + \varepsilon + \sqrt{2\varepsilon + \varepsilon^2} \ge 1 + \sqrt{\varepsilon}.$$

4. Следовательно,

$$\begin{split} T_k(1+\varepsilon) &= \cosh\left(k \operatorname{arccosh}(1+\varepsilon)\right) \\ &= \cosh\left(k\phi\right) \\ &= \frac{e^{k\phi} + e^{-k\phi}}{2} \geq \frac{e^{k\phi}}{2} \\ &= \frac{\left(1+\sqrt{\varepsilon}\right)^k}{2}. \end{split}$$

5. Наконец, мы получаем:

$$\begin{split} \|e_k\| &\leq \|P_k(A)\| \|e_0\| \leq \frac{2}{\left(1+\sqrt{\varepsilon}\right)^k} \|e_0\| \\ &\leq 2\left(1+\sqrt{\frac{2}{\varkappa-1}}\right)^{-k} \|e_0\| \\ &\leq 2\exp\left(-\sqrt{\frac{2}{\varkappa-1}}k\right) \|e_0\| \end{split}$$

Ускоренный метод [1/2]

Из-за рекурсивного определения полиномов Чебышёва мы непосредственно получаем итерационную схему ускоренного алгоритма. Переформулируя рекурсию в терминах наших отшкалированных полиномов Чебышёва, мы получаем:

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x) \\$$

Ускоренный метод [1/2]

Из-за рекурсивного определения полиномов Чебышёва мы непосредственно получаем итерационную схему ускоренного алгоритма. Переформулируя рекурсию в терминах наших отшкалированных полиномов Чебышёва, мы получаем:

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x) \\$$

Принимая во внимание, что $x=rac{L+\mu-2a}{L-\mu}$, и:

$$P_k(a) = T_k \left(\frac{L+\mu-2a}{L-\mu}\right) T_k \left(\frac{L+\mu}{L-\mu}\right)^{-1}$$

Ускоренный метод [1/2]

Из-за рекурсивного определения полиномов Чебышёва мы непосредственно получаем итерационную схему ускоренного алгоритма. Переформулируя рекурсию в терминах наших отшкалированных полиномов Чебышёва, мы получаем:

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x) \\$$

Принимая во внимание, что $x=rac{L+\mu-2a}{L-\mu}$, и:

$$\begin{split} P_k(a) &= T_k \left(\frac{L+\mu-2a}{L-\mu}\right) T_k \left(\frac{L+\mu}{L-\mu}\right)^{-1} \\ T_k \left(\frac{L+\mu-2a}{L-\mu}\right) &= P_k(a) T_k \left(\frac{L+\mu}{L-\mu}\right) \end{split}$$

Из-за рекурсивного определения полиномов Чебышёва мы непосредственно получаем итерационную схему ускоренного алгоритма. Переформулируя рекурсию в терминах наших отшкалированных полиномов Чебышёва, мы получаем:

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x) \\$$

Принимая во внимание, что $x=rac{L+\mu-2a}{L-\mu}$, и:

$$\begin{split} P_k(a) &= T_k \left(\frac{L+\mu-2a}{L-\mu}\right) T_k \left(\frac{L+\mu}{L-\mu}\right)^{-1} \\ T_k \left(\frac{L+\mu-2a}{L-\mu}\right) &= P_k(a) T_k \left(\frac{L+\mu}{L-\mu}\right) \\ T_k \left(\frac{L+\mu-2a}{L-\mu}\right) &= P_k(a) T_k \left(\frac{L+\mu}{L-\mu}\right) \end{split}$$

Из-за рекурсивного определения полиномов Чебышёва мы непосредственно получаем итерационную схему ускоренного алгоритма. Переформулируя рекурсию в терминах наших отшкалированных полиномов Чебышёва, мы получаем:

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x) \\$$

Принимая во внимание, что $x=rac{L+\mu-2a}{L-\mu}$, и:

$$\begin{split} P_k(a) &= T_k \left(\frac{L + \mu - 2a}{L - \mu}\right) T_k \left(\frac{L + \mu}{L - \mu}\right)^{-1} & T_{k-1} \left(\frac{L + \mu - 2a}{L - \mu}\right) = P_{k-1}(a) T_{k-1} \left(\frac{L + \mu}{L - \mu}\right) \\ T_k \left(\frac{L + \mu - 2a}{L - \mu}\right) &= P_k(a) T_k \left(\frac{L + \mu}{L - \mu}\right) & T_{k+1} \left(\frac{L + \mu - 2a}{L - \mu}\right) = P_{k+1}(a) T_{k+1} \left(\frac{L + \mu}{L - \mu}\right) \\ P_{k+1}(a) t_{k+1} &= 2 \frac{L + \mu - 2a}{L - \mu} P_k(a) t_k - P_{k-1}(a) t_{k-1}, \text{ где } t_k = T_k \left(\frac{L + \mu}{L - \mu}\right) \end{split}$$

Из-за рекурсивного определения полиномов Чебышёва мы непосредственно получаем итерационную схему ускоренного алгоритма. Переформулируя рекурсию в терминах наших отшкалированных полиномов Чебышёва, мы получаем:

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x) \\$$

Принимая во внимание, что $x=rac{L+\mu-2a}{L-\mu}$, и:

$$\begin{split} P_k(a) &= T_k \left(\frac{L+\mu-2a}{L-\mu}\right) T_k \left(\frac{L+\mu}{L-\mu}\right)^{-1} & T_{k-1} \left(\frac{L+\mu-2a}{L-\mu}\right) = P_{k-1}(a) T_{k-1} \left(\frac{L+\mu}{L-\mu}\right) \\ T_k \left(\frac{L+\mu-2a}{L-\mu}\right) &= P_k(a) T_k \left(\frac{L+\mu}{L-\mu}\right) & T_{k+1} \left(\frac{L+\mu-2a}{L-\mu}\right) = P_{k+1}(a) T_{k+1} \left(\frac{L+\mu}{L-\mu}\right) \\ P_{k+1}(a) t_{k+1} &= 2 \frac{L+\mu-2a}{L-\mu} P_k(a) t_k - P_{k-1}(a) t_{k-1}, \text{ где } t_k = T_k \left(\frac{L+\mu}{L-\mu}\right) \\ P_{k+1}(a) &= 2 \frac{L+\mu-2a}{L-\mu} P_k(a) \frac{t_k}{t_{k+1}} - P_{k-1}(a) \frac{t_{k-1}}{t_{k+1}} \end{split}$$

Из-за рекурсивного определения полиномов Чебышёва мы непосредственно получаем итерационную схему ускоренного алгоритма. Переформулируя рекурсию в терминах наших отшкалированных полиномов Чебышёва, мы получаем:

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)$$

Принимая во внимание, что $x=rac{L+\mu-2a}{L-\mu}$, и:

$$\begin{split} P_k(a) &= T_k \left(\frac{L + \mu - 2a}{L - \mu}\right) T_k \left(\frac{L + \mu}{L - \mu}\right)^{-1} & T_{k-1} \left(\frac{L + \mu - 2a}{L - \mu}\right) = P_{k-1}(a) T_{k-1} \left(\frac{L + \mu}{L - \mu}\right) \\ T_k \left(\frac{L + \mu - 2a}{L - \mu}\right) &= P_k(a) T_k \left(\frac{L + \mu}{L - \mu}\right) & T_{k+1} \left(\frac{L + \mu - 2a}{L - \mu}\right) = P_{k+1}(a) T_{k+1} \left(\frac{L + \mu}{L - \mu}\right) \\ P_{k+1}(a) t_{k+1} &= 2 \frac{L + \mu - 2a}{L - \mu} P_k(a) t_k - P_{k-1}(a) t_{k-1}, \text{ rige } t_k = T_k \left(\frac{L + \mu}{L - \mu}\right) \\ P_{k+1}(a) &= 2 \frac{L + \mu - 2a}{L - \mu} P_k(a) \frac{t_k}{t_{k+1}} - P_{k-1}(a) \frac{t_{k-1}}{t_{k+1}} \end{split}$$

Поскольку мы имеем $P_{k+1}(0) = P_k(0) = P_{k-1}(0) = 1$, получаем рекуррентную формулу вида:

$$P_{k+1}(a) = \left(1 - \alpha_k a\right) P_k(a) + \beta_k \left(P_k(a) - P_{k-1}(a)\right).$$

Перегруппируя члены, мы получаем:

$$P_{k+1}(a)=(1+\beta_k)P_k(a)-\alpha_k a P_k(a)-\beta_k P_{k-1}(a),$$

Перегруппируя члены, мы получаем:

$$\begin{split} P_{k+1}(a) &= (1+\beta_k)P_k(a) - \alpha_k a P_k(a) - \beta_k P_{k-1}(a), \\ P_{k+1}(a) &= 2\frac{L+\mu}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{4a}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{t_{k-1}}{t_{k+1}}P_{k-1}(a) \end{split}$$

Перегруппируя члены, мы получаем:

$$\begin{split} P_{k+1}(a) &= (1+\beta_k)P_k(a) - \alpha_k a P_k(a) - \beta_k P_{k-1}(a), \\ P_{k+1}(a) &= 2\frac{L+\mu}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{4a}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{t_{k-1}}{t_{k+1}}P_{k-1}(a) \end{split}$$

$$\begin{cases} \beta_k = \frac{t_{k-1}}{t_{k+1}}, \\ \alpha_k = \frac{4}{L-\mu} \frac{t_k}{t_{k+1}}, \\ 1+\beta_k = 2 \frac{L+\mu}{L-\mu} \frac{t_k}{t_{k+1}} \end{cases}$$

Перегруппируя члены, мы получаем:

$$\begin{split} P_{k+1}(a) &= (1+\beta_k)P_k(a) - \alpha_k a P_k(a) - \beta_k P_{k-1}(a), \\ P_{k+1}(a) &= 2\frac{L+\mu}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{4a}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{t_{k-1}}{t_{k+1}}P_{k-1}(a) \end{split}$$

$$\begin{cases} \beta_k = \frac{t_{k-1}}{t_{k+1}}, \\ \alpha_k = \frac{4}{L-\mu} \frac{t_k}{t_{k+1}}, \\ 1+\beta_k = 2 \frac{L+\mu}{L-\mu} \frac{t_k}{t_{k+1}} \end{cases}$$

Перегруппируя члены, мы получаем:

$$\begin{split} P_{k+1}(a) &= (1+\beta_k)P_k(a) - \alpha_k a P_k(a) - \beta_k P_{k-1}(a), \\ P_{k+1}(a) &= 2\frac{L+\mu}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{4a}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{t_{k-1}}{t_{k+1}}P_{k-1}(a) \end{split}$$

$$\begin{cases} \beta_k = \frac{t_{k-1}}{t_{k+1}}, \\ \alpha_k = \frac{4}{L-\mu} \frac{t_k}{t_{k+1}}, \\ 1+\beta_k = 2 \frac{L+\mu}{L-\mu} \frac{t_k}{t_{k+1}} \end{cases}$$

$$x_{k+1} = P_{k+1}(A)x_0$$

Перегруппируя члены, мы получаем:

$$\begin{split} P_{k+1}(a) &= (1+\beta_k)P_k(a) - \alpha_k a P_k(a) - \beta_k P_{k-1}(a), \\ P_{k+1}(a) &= 2\frac{L+\mu}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{4a}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{t_{k-1}}{t_{k+1}}P_{k-1}(a) \end{split}$$

$$\begin{cases} \beta_k = \frac{t_{k-1}}{t_{k+1}}, \\ \alpha_k = \frac{4}{L-\mu} \frac{t_k}{t_{k+1}}, \\ 1+\beta_k = 2 \frac{L+\mu}{L-\mu} \frac{t_k}{t_{k+1}} \end{cases}$$

$$x_{k+1} = P_{k+1}(A)x_0 = \left(I - \alpha_k A\right)P_k(A)x_0 + \beta_k \left(P_k(A) - P_{k-1}(A)\right)x_0$$

Перегруппируя члены, мы получаем:

$$\begin{split} P_{k+1}(a) &= (1+\beta_k)P_k(a) - \alpha_k a P_k(a) - \beta_k P_{k-1}(a), \\ P_{k+1}(a) &= 2\frac{L+\mu}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{4a}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{t_{k-1}}{t_{k+1}}P_{k-1}(a) \end{split}$$

$$\begin{cases} \beta_k = \frac{t_{k-1}}{t_{k+1}}, \\ \alpha_k = \frac{4}{L-\mu} \frac{t_k}{t_{k+1}}, \\ 1+\beta_k = 2 \frac{L+\mu}{L-\mu} \frac{t_k}{t_{k+1}} \end{cases}$$

$$\begin{split} x_{k+1} &= P_{k+1}(A)x_0 = \left(I - \alpha_k A\right)P_k(A)x_0 + \beta_k\left(P_k(A) - P_{k-1}(A)\right)x_0 \\ &= \left(I - \alpha_k A\right)x_k + \beta_k\left(x_k - x_{k-1}\right) \end{split}$$

Перегруппируя члены, мы получаем:

$$\begin{split} P_{k+1}(a) &= (1+\beta_k)P_k(a) - \alpha_k a P_k(a) - \beta_k P_{k-1}(a), \\ P_{k+1}(a) &= 2\frac{L+\mu}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{4a}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{t_{k-1}}{t_{k+1}}P_{k-1}(a) \end{split}$$

$$\begin{cases} \beta_k = \frac{t_{k-1}}{t_{k+1}}, \\ \alpha_k = \frac{4}{L-\mu} \frac{t_k}{t_{k+1}}, \\ 1+\beta_k = 2 \frac{L+\mu}{L-\mu} \frac{t_k}{t_{k+1}} \end{cases}$$

Мы почти закончили :) Помним, что $e_{k+1}=P_{k+1}(A)e_0$. Также обратим внимание, что мы работаем с квадратичной задачей, поэтому мы можем предположить $x^*=0$ без ограничения общности. В этом случае $e_0=x_0$ и $e_{k+1}=x_{k+1}$.

$$\begin{split} x_{k+1} &= P_{k+1}(A)x_0 = (I - \alpha_k A)P_k(A)x_0 + \beta_k \left(P_k(A) - P_{k-1}(A)\right)x_0 \\ &= (I - \alpha_k A)x_k + \beta_k \left(x_k - x_{k-1}\right) \end{split}$$

Для квадратичной задачи мы имеем $abla f(x_k) = Ax_k$, поэтому мы можем переписать обновление как:

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) + \beta_k \left(x_k - x_{k-1} \right)$$

Ускорение из первых принципов

Метод тяжёлого шарика

Колебания и ускорение

Давайте представим идею моментума (импульса, тяжёлого шарика), предложенную Б.Т. Поляком в 1964 году. Обновление метода тяжёлого шарика имеет вид

$$x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1}).$$

Давайте представим идею моментума (импульса, тяжёлого шарика), предложенную Б.Т. Поляком в 1964 году. Обновление метода тяжёлого шарика имеет вид

$$x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1}).$$

В нашем (квадратичном) случае это

$$\hat{x}_{k+1} = \hat{x}_k - \alpha\Lambda\hat{x}_k + \beta(\hat{x}_k - \hat{x}_{k-1}) = (I - \alpha\Lambda + \beta I)\hat{x}_k - \beta\hat{x}_{k-1}$$

Давайте представим идею моментума (импульса, тяжёлого шарика), предложенную Б.Т. Поляком в 1964 году. Обновление метода тяжёлого шарика имеет вид

$$x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1}).$$

В нашем (квадратичном) случае это

$$\hat{x}_{k+1} = \hat{x}_k - \alpha \Lambda \hat{x}_k + \beta (\hat{x}_k - \hat{x}_{k-1}) = (I - \alpha \Lambda + \beta I) \hat{x}_k - \beta \hat{x}_{k-1}$$

Это можно переписать как

$$\begin{split} \hat{x}_{k+1} &= (I - \alpha \Lambda + \beta I) \hat{x}_k - \beta \hat{x}_{k-1}, \\ \hat{x}_k &= \hat{x}_k. \end{split}$$

Давайте представим идею моментума (импульса, тяжёлого шарика), предложенную Б.Т. Поляком в 1964 году. Обновление метода тяжёлого шарика имеет вид

$$x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1}).$$

В нашем (квадратичном) случае это

$$\hat{x}_{k+1} = \hat{x}_k - \alpha \Lambda \hat{x}_k + \beta (\hat{x}_k - \hat{x}_{k-1}) = (I - \alpha \Lambda + \beta I) \hat{x}_k - \beta \hat{x}_{k-1}$$

Это можно переписать как

$$\begin{split} \hat{x}_{k+1} &= (I - \alpha \Lambda + \beta I) \hat{x}_k - \beta \hat{x}_{k-1}, \\ \hat{x}_k &= \hat{x}_k. \end{split}$$

Давайте введем следующее обозначение: $\hat{z}_k = \begin{bmatrix} \hat{x}_{k+1} \\ \hat{x}_k \end{bmatrix}$. Следовательно, $\hat{z}_{k+1} = M\hat{z}_k$, где матрица итерации M имеет вид:

Давайте представим идею моментума (импульса, тяжёлого шарика), предложенную Б.Т. Поляком в 1964 году. Обновление метода тяжёлого шарика имеет вид

$$x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1}).$$

В нашем (квадратичном) случае это

$$\hat{x}_{k+1} = \hat{x}_k - \alpha \Lambda \hat{x}_k + \beta (\hat{x}_k - \hat{x}_{k-1}) = (I - \alpha \Lambda + \beta I) \hat{x}_k - \beta \hat{x}_{k-1}$$

Это можно переписать как

$$\begin{split} \hat{x}_{k+1} &= (I - \alpha \Lambda + \beta I) \hat{x}_k - \beta \hat{x}_{k-1}, \\ \hat{x}_k &= \hat{x}_k. \end{split}$$

Давайте введем следующее обозначение: $\hat{z}_k = \begin{bmatrix} \hat{x}_{k+1} \\ \hat{x}_k \end{bmatrix}$. Следовательно, $\hat{z}_{k+1} = M\hat{z}_k$, где матрица итерации M имеет вид:

$$M = \begin{bmatrix} I - \alpha \Lambda + \beta I & -\beta I \\ I & 0_d \end{bmatrix}.$$

Обратим внимание, что M является матрицей $2d \times 2d$ с четырьмя блочно-диагональными матрицами размера $d \times d$ внутри. Это означает, что мы можем изменить порядок координат, чтобы сделать M блочно-диагональной. Обратите внимание, что в уравнении ниже матрица M обозначает то же самое, что и в обозначении выше, за исключением описанной перестановки строк и столбцов. Мы используем эту небольшую перегрузку обозначений для простоты.

Обратим внимание, что M является матрицей $2d \times 2d$ с четырьмя блочно-диагональными матрицами размера $d \times d$ внутри. Это означает, что мы можем изменить порядок координат, чтобы сделать M блочно-диагональной. Обратите внимание, что в уравнении ниже матрица M обозначает то же самое, что и в обозначении выше, за исключением описанной перестановки строк и столбцов. Мы используем эту небольшую перегрузку обозначений для простоты.

$$\begin{bmatrix} \hat{x}_k^{(1)} \\ \vdots \\ \hat{x}_k^{(d)} \\ \hat{x}_{k-1}^{(1)} \\ \vdots \\ \hat{x}_k^{(d)} \end{bmatrix} \rightarrow \begin{bmatrix} \hat{x}_k^{(1)} \\ \hat{x}_{k-1}^{(1)} \\ \vdots \\ \hat{x}_k^{(d)} \\ \hat{x}_{k-1}^{(d)} \end{bmatrix} \quad M = \begin{bmatrix} M_1 & & & \\ & M_2 & & \\ & & & M_d \end{bmatrix}$$

Рисунок 1. Иллюстрация перестановки матрицы M

где $\hat{x}_k^{(i)}$ является i-й координатой вектора $\hat{x}_k \in \mathbb{R}^d$ и M_i обозначает 2×2 матрицу. Переупорядочение позволяет нам исследовать динамику метода независимо от размерности. Асимптотическая скорость сходимости 2d-мерной последовательности векторов \hat{z}_k определяется наихудшей скоростью сходимости среди его блока координат. Следовательно, достаточно исследовать оптимизацию в одномерном случае.

Для i-й координаты, где λ_i — i-е собственное значение матрицы A, имеем:

$$M_i = \begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix}.$$

Для i-й координаты, где λ_i — i-е собственное значение матрицы A, имеем:

$$M_i = \begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix}.$$

Метод будет сходиться, если ho(M) < 1, и оптимальные параметры могут быть вычислены путем оптимизации спектрального радиуса

$$\alpha^*,\beta^* = \arg\min_{\alpha,\beta} \max_i \rho(M_i), \quad \alpha^* = \frac{4}{(\sqrt{L}+\sqrt{\mu})^2}, \quad \beta^* = \left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^2.$$

Для i-й координаты, где λ_i — i-е собственное значение матрицы A, имеем:

$$M_i = \begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix}.$$

Метод будет сходиться, если ho(M) < 1, и оптимальные параметры могут быть вычислены путем оптимизации спектрального радиуса

$$\alpha^*,\beta^* = \arg\min_{\alpha,\beta} \max_i \rho(M_i), \quad \alpha^* = \frac{4}{(\sqrt{L}+\sqrt{\mu})^2}, \quad \beta^* = \left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^2.$$

Можно показать, что для таких параметров матрица M имеет комплексные собственные значения, которые образуют комплексно-сопряжённую пару, поэтому расстояние до оптимума (в этом случае $\|z_k\|$) обычно не убывает монотонно.

Мы можем явно вычислить собственные значения M_i :

$$\lambda_1^M, \lambda_2^M = \lambda \left(\begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix} \right) = \frac{1 + \beta - \alpha \lambda_i \pm \sqrt{(1 + \beta - \alpha \lambda_i)^2 - 4\beta}}{2}.$$

Мы можем явно вычислить собственные значения M_i :

$$\lambda_1^M, \lambda_2^M = \lambda \left(\begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix} \right) = \frac{1 + \beta - \alpha \lambda_i \pm \sqrt{(1 + \beta - \alpha \lambda_i)^2 - 4\beta}}{2}.$$

Когда α и β оптимальны (α^*,β^*) , собственные значения являются комплексно-сопряженной парой $(1+\beta-\alpha\lambda_i)^2-4\beta\leq 0$, т.е. $\beta\geq (1-\sqrt{\alpha\lambda_i})^2$.

Сходимость метода тяжёлого шарика для квадратичной функции

Мы можем явно вычислить собственные значения M_i :

$$\lambda_1^M, \lambda_2^M = \lambda \left(\begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix} \right) = \frac{1 + \beta - \alpha \lambda_i \pm \sqrt{(1 + \beta - \alpha \lambda_i)^2 - 4\beta}}{2}.$$

Когда α и β оптимальны (α^*,β^*) , собственные значения являются комплексно-сопряженной парой $(1+\beta-\alpha\lambda_i)^2-4\beta\leq 0$, т.е. $\beta\geq (1-\sqrt{\alpha\lambda_i})^2$.

$$\mathrm{Re}(\lambda^M) = \frac{L + \mu - 2\lambda_i}{(\sqrt{L} + \sqrt{\mu})^2}, \quad \mathrm{Im}(\lambda^M) = \frac{\pm 2\sqrt{(L - \lambda_i)(\lambda_i - \mu)}}{(\sqrt{L} + \sqrt{\mu})^2}, \quad |\lambda^M| = \frac{L - \mu}{(\sqrt{L} + \sqrt{\mu})^2}.$$

Мы можем явно вычислить собственные значения M_i :

$$\lambda_1^M, \lambda_2^M = \lambda \left(\begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix} \right) = \frac{1 + \beta - \alpha \lambda_i \pm \sqrt{(1 + \beta - \alpha \lambda_i)^2 - 4\beta}}{2}.$$

Когда α и β оптимальны (α^*,β^*) , собственные значения являются комплексно-сопряженной парой $(1+\beta-\alpha\lambda_i)^2-4\beta\leq 0$, т.е. $\beta\geq (1-\sqrt{\alpha\lambda_i})^2$.

$$\mathrm{Re}(\lambda^M) = \frac{L + \mu - 2\lambda_i}{(\sqrt{L} + \sqrt{\mu})^2}, \quad \mathrm{Im}(\lambda^M) = \frac{\pm 2\sqrt{(L - \lambda_i)(\lambda_i - \mu)}}{(\sqrt{L} + \sqrt{\mu})^2}, \quad |\lambda^M| = \frac{L - \mu}{(\sqrt{L} + \sqrt{\mu})^2}.$$

И скорость сходимости не зависит от шага и равна $\sqrt{\beta^*}.$

Сходимость метода тяжёлого шарика для квадратичной функции

i Theorem

Предположим, что f является μ -сильно выпуклой и L-гладкой квадратичной функцией. Тогда метод тяжёлого шарика с параметрами

$$\alpha = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}, \beta = \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2$$

сходится линейно:

$$\|x_k-x^*\|_2 \leq \left(\frac{\sqrt{\varkappa}-1}{\sqrt{\varkappa}+1}\right)^k \|x_0-x^*\|$$

Глобальная сходимость метода тяжёлого шарика

i Theorem

Предположим, что f является гладкой и выпуклой и что

$$\beta \in [0,1), \quad \alpha \in \left(0, \frac{2(1-\beta)}{L}\right).$$

Тогда последовательность $\{x_k\}$, генерируемая итерациями тяжёлого шарика, удовлетворяет

$$f(\overline{x}_T) - f^\star \leq \left\{ \begin{array}{l} \frac{\|x_0 - x^\star\|^2}{2(T+1)} \left(\frac{L\beta}{1-\beta} + \frac{1-\beta}{\alpha}\right), & \text{if } \alpha \in \left(0, \frac{1-\beta}{L}\right], \\ \frac{\|x_0 - x^\star\|^2}{2(T+1)(2(1-\beta)-\alpha L)} \left(L\beta + \frac{(1-\beta)^2}{\alpha}\right), & \text{if } \alpha \in \left[\frac{1-\beta}{L}, \frac{2(1-\beta)}{L}\right), \end{array} \right.$$

где \overline{x}_T среднее Чезаро последовательности итераций, т.е.

$$\overline{x}_T = \frac{1}{T+1} \sum_{k=0}^T x_k.$$

 $^{^3}$ Глобальная сходимость метода тяжёлого шарика для выпуклой оптимизации, Euhanna Ghadimi et al.

Глобальная сходимость метода тяжёлого шарика 4

1 Theorem

Предположим, что f является гладкой и сильно выпуклой и что

$$\alpha \in \left(0, \frac{2}{L}\right), \quad 0 \leq \beta < \frac{1}{2} \bigg(\frac{\mu \alpha}{2} + \sqrt{\frac{\mu^2 \alpha^2}{4} + 4(1 - \frac{\alpha L}{2})}\bigg).$$

Тогда последовательность $\{x_k\}$, генерируемая итерациями методатяжёлого шарика, сходится линейно к единственному оптимальному решению x^\star . В частности,

$$f(x_k) - f^\star \leq q^k (f(x_0) - f^\star),$$

где $q \in [0, 1)$.

⁴Глобальная сходимость метода тяжёлого шарика для выпуклой оптимизации, Euhanna Ghadimi et al.

• Обеспечивает ускоренную сходимость для сильно выпуклых квадратичных задач.

- Обеспечивает ускоренную сходимость для сильно выпуклых квадратичных задач.
- Локально ускоренная сходимость была доказана в оригинальной статье.

- Обеспечивает ускоренную сходимость для сильно выпуклых квадратичных задач.
- Локально ускоренная сходимость была доказана в оригинальной статье.
- Недавно 5 было доказано, что глобального ускорения сходимости для метода не существует.

⁵Provable non-accelerations of the heavy-ball method

- Обеспечивает ускоренную сходимость для сильно выпуклых квадратичных задач.
- Локально ускоренная сходимость была доказана в оригинальной статье.
- Недавно ⁵ было доказано, что глобального ускорения сходимости для метода не существует.
- Метод не был чрезвычайно популярен до ML-бума.

⁵Provable non-accelerations of the heavy-ball method

Итоги по методу тяжёлого шарика

- Обеспечивает ускоренную сходимость для сильно выпуклых квадратичных задач.
- Локально ускоренная сходимость была доказана в оригинальной статье.
- Недавно ⁵ было доказано, что глобального ускорения сходимости для метода не существует.
- Метод не был чрезвычайно популярен до ML-бума.
- Сейчас он фактически является стандартом для практического ускорения методов градиентного спуска, в том числе для невыпуклых задач (обучение нейронных сетей).

⁵Provable non-accelerations of the heavy-ball method

Ускоренный градиентный метод Нестерова

Концепция ускоренного градиентного метода Нестерова

$$x_{k+1} = x_k - \alpha \nabla f(x_k) \\ x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1}) \\ \begin{cases} y_{k+1} = x_k + \beta (x_k - x_{k-1}) \\ x_{k+1} = y_{k+1} - \alpha \nabla f(y_{k+1}) \end{cases}$$

Дц_у

Концепция ускоренного градиентного метода Нестерова

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

$$x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1})$$

Давайте определим следующие обозначения

$$x^+ = x - lpha
abla f(x)$$
 Градиентный шаг $d_k = eta_k (x_k - x_{k-1})$ Импульс

Тогда мы можем записать:

$$x_{k+1}=x_k^+$$
 Градиентный спуск $x_{k+1}=x_k^++d_k$ Метод тяжёлого шарика $x_{k+1}=(x_k+d_k)^+$ Ускоренный градиентный метод Нестерова

$$\begin{cases} y_{k+1} = x_k + \beta(x_k - x_{k-1}) \\ x_{k+1} = y_{k+1} - \alpha \nabla f(y_{k+1}) \end{cases}$$
 Polyak momentum

Nesterov momentum

Сходимость для выпуклых функций

1 Theorem

Предположим, что $f:\mathbb{R}^n o \mathbb{R}$ является выпуклой и L-гладкой. Ускоренный градиентный метод Нестерова (NAG) предназначен для решения задачи минимизации, начиная с начальной точки $x_0=y_0\in\mathbb{R}^n$ и $\lambda_0=0$. Алгоритм выполняет следующие шаги:

Обновление градиента:
$$x_{k+1} = y_k - \frac{1}{L} \nabla f(y_k)$$

Вес экстраполяции:
$$\lambda_{k+1} = \frac{1+\sqrt{1+4\lambda_k^2}}{2}$$

$$\gamma_k = \frac{\lambda_k-1}{\lambda_{k+1}}$$

Экстраполяция:
$$y_{k+1} = x_{k+1} + \gamma_k \left(x_{k+1} - x_k \right)$$

Последовательность $\{f(x_k)\}_{k\in\mathbb{N}}$, генерируемая алгоритмом, сходится к оптимальному значению f^* со скоростью $\mathcal{O}\left(\frac{1}{k^2}\right)$, в частности:

$$f(x_k) - f^* \leq \frac{2L\|x_0 - x^*\|^2}{k^2}$$

1 Theorem

Предположим, что $f:\mathbb{R}^n \to \mathbb{R}$ является μ -сильно выпуклой и L-гладкой. Ускоренный градиентный метод Нестерова (NAG) предназначен для решения задачи минимизации, начиная с начальной точки $x_0=y_0\in\mathbb{R}^n$ и $\lambda_0=0$. Алгоритм выполняет следующие шаги:

Обновление градиента:
$$x_{k+1} = y_k - \frac{1}{L} \nabla f(y_k)$$

Экстраполяция:
$$y_{k+1} = x_{k+1} - \gamma \left(x_{k+1} - x_k \right)$$

Вес экстраполяции:
$$\gamma = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$$

Последовательность $\{f(x_k)\}_{k\in\mathbb{N}}$, генерируемая алгоритмом, сходится к оптимальному значению f^* линейно:

$$f(x_k) - f^* \leq \frac{\mu + L}{2} \|x_0 - x^*\|_2^2 \exp\left(-\frac{k}{\sqrt{\varkappa}}\right)$$

Численные эксперименты

Выпуклая квадратичная задача (линейная регрессия)

Convex quadratics: n=60, random matrix, $\mu=0$, L=10

Сильно выпуклая квадратичная задача (регуляризованная линейная регрессия)

Strongly convex quadratics: n=60, random matrix, $\mu=1$, L=10

Сильно выпуклая квадратичная задача (регуляризованная линейная регрессия)

Strongly convex quadratics: n=60, random matrix, $\mu=1$, L=1000

Сильно выпуклая квадратичная задача (регуляризованная линейная регрессия)

Strongly convex quadratics: n=1000, random matrix, $\mu=1$, L=1000

Нижние оценки для методов I порядка (*®*источник)

Тип задачи	Критерий	Нижняя оценка	Верхняя оценка	Ссылка (Ниж.)	Ссылка (Верх.)
L-гладкая выпуклая	Зазор оптимальности	$\Omega(\sqrt{L \varepsilon^{-1}})$	✓ (точное совпадение)	[1], Теорема 2.1.7	[1], Теорема 2.2.2
L -гладкая μ -сильно выпуклая	Зазор оптимальности	$\Omega(\sqrt{\varkappa} \log \frac{1}{\varepsilon})$	✓	[1], Теорема 2.1.13	[1], Теорема 2.2.2
Негладкая G -липшицева выпуклая	Зазор оптимальности	$\Omega(G^2 \varepsilon^{-2})$	✓(точное совпадение)	[1], Теорема 3.2.1	[1], Теорема 3.2.2
Негладкая G -липшицева μ -сильно выпуклая	Зазор оптимальности	$\Omega(\hat{G}^2(\mu\varepsilon)^{-1})$	✓	[1], Теорема 3.2.5	[3], Теорема 3.9
L-гладкая выпуклая (сходимость по функции)	Стационарность	$\Omega(\sqrt{\Delta L}\varepsilon^{-1})$	✓ (с точностью до логарифмического множителя)	[2], Теорема 1	[2], Приложение А.1
L-гладкая выпуклая (сходимость по аргументу)	Стационарность	$\Omega(\sqrt{DL} \varepsilon^{-1/2})$	✓	[2], Теорема 1	[6], Раздел 6.5
С-гладкая невыпуклая	Стационарность	$\Omega(\Delta L \varepsilon^{-2})$	✓	[5], Теорема 1	[7], Теорема 10.15
Негладкая G -липшицева $ ho$ -слабо выпуклая (WC)	Квази-стационарность	Неизвестно	$\mathcal{O}(\varepsilon^{-4})$	1	[8], Следствие 2.2
L -гладкая μ -PL	Зазор оптимальности	$\Omega\left(\varkappa\log\frac{1}{\varepsilon}\right)$	✓	[9], Теорема 3	[10], Теорема 1

Источники:

- . [1] Lectures on Convex Optimization, Y. Nesterov.
- [2] Lower bounds for finding stationary points II: first-order methods, Y. Carmon, J.C. Duchi, O. Hinder, A. Sidford.
- . [3] Convex optimization: Algorithms and complexity, S. Bubeck, others.
- [4] Optimizing the efficiency of first-order methods for decreasing the gradient of smooth convex functions D. Kim, J.A.
 Fessier.
- . [5] Lower bounds for finding stationary points I, Y. Carmon, J.C. Duchi, O. Hinder, A. Sidford.
- [6] Dotimizing the efficiency of first-order methods for decreasing the gradient of smooth convex functions. D. Kim. J.A.
- Fessier.
- [7] First-order methods in optimization, A. Beck. SIAM. 2017.
- [8] Stochastic subgradient method converges at the rate \$ O (k^{-1/4}) \$ on weakly convex functions, D. Davis, D. Drusvyatskiy.
- [9] On the lower bound of minimizing Polyak-Lojasiewicz functions, P. Yue, C. Fang, Z. Lin.
- [10] Linear convergence of gradient and proximal-gradient methods under the Polyak-Lojasiewicz condition, H. Karimi, J. Nutini. M. Schmidt.

бозначения

- Зазор оптимальности: $f(x_k) f^* \leq arepsilon$
- Стационарность: $\|
 abla f(x_k) \| \leq arepsilon$
- Квази-стационарность: $\| \nabla f_{\lambda}(x_k) \| \leq arepsilon$, где $f_{\lambda}(x) = \inf_{y \in \mathbb{R}^n} \left(f(y) + \frac{1}{2\lambda} \|y x\|^2 \right)$
- Липшицевость функции: $|f(x) f(y)| \leq G \|x y\| orall x \,,\, y \in \mathbb{R}^n$
- Липшицевость градиента (L-гладкость): $\| \nabla f(x) \nabla f(y) \| \leq L \|x-y\| \forall x, y \in \mathbb{R}^n$
- μ -сильная выпуклость: $f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y) \frac{\mu}{2} \lambda (1-\lambda)\|x-y\|^2$ α -слабо выпуклость: $f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y) \frac{\mu}{2} \lambda (1-\lambda)\|x-y\|^2$

$$f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y) + \rho \lambda (1-\lambda)\|x - y\|^2 \forall x \,, \, y \in \mathbb{R}^n$$

- Число обусловленности: $\varkappa = \frac{L}{\mu}$
- Зазор в начальной точке: $f(x_0) f^* \leq \Delta$
- Зазор по аргументу: $D = \|x_0 x^*\|$