$12n_{0271} \ (K12n_{0271})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 2.10894 \times 10^{29} u^{39} + 1.76613 \times 10^{30} u^{38} + \dots + 3.90907 \times 10^{30} b + 1.29800 \times 10^{31}, \\ &- 5.78629 \times 10^{30} u^{39} - 1.35625 \times 10^{31} u^{38} + \dots + 1.95453 \times 10^{30} a - 1.20066 \times 10^{30}, \ u^{40} + 2u^{39} + \dots - 2u - 10^{30} u^{39} + 2u^{39} + 2$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 54 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle 2.11 \times 10^{29} u^{39} + 1.77 \times 10^{30} u^{38} + \dots + 3.91 \times 10^{30} b + 1.30 \times 10^{31}, \ -5.79 \times 10^{30} u^{39} - 1.36 \times 10^{31} u^{38} + \dots + 1.95 \times 10^{30} a - 1.20 \times 10^{30}, \ u^{40} + 2u^{39} + \dots - 2u + 1 \rangle$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 2.96044u^{39} + 6.93899u^{38} + \dots + 26.8232u + 0.614297 \\ -0.0539500u^{39} - 0.451804u^{38} + \dots - 0.947110u - 3.32050 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 2.92788u^{39} + 6.66255u^{38} + \dots + 26.8003u - 1.68810 \\ -0.0424279u^{39} - 0.410687u^{38} + \dots - 1.33715u - 3.10919 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 3.86426u^{39} + 7.66563u^{38} + \dots + 30.4928u - 10.5738 \\ 0.320422u^{39} + 0.529059u^{38} + \dots - 0.339238u - 2.95540 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1.97656u^{39} + 3.87161u^{38} + \dots + 21.4803u - 4.58523 \\ 0.944726u^{39} + 1.94465u^{38} + \dots + 5.22209u - 2.88878 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{6} + u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 2.92129u^{39} + 5.81625u^{38} + \dots + 26.7024u - 7.47401 \\ 0.944726u^{39} + 1.94465u^{38} + \dots + 5.22209u - 2.88878 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1.93457u^{39} + 2.86642u^{38} + \dots + 4.61941u - 15.8609 \\ -0.942390u^{39} - 2.36759u^{38} + \dots + 11.6667u - 2.35706 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $3.91026u^{39} + 8.38086u^{38} + \cdots + 29.6027u + 1.57860$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{40} + 56u^{39} + \dots + 84u + 1$
c_2, c_4	$u^{40} - 8u^{39} + \dots - 28u + 1$
c_3	$u^{40} + 2u^{39} + \dots - 2u + 1$
c_5,c_9	$u^{40} - 3u^{39} + \dots + 43u + 13$
c_6	$u^{40} + 4u^{39} + \dots + 18344u + 4339$
c_7, c_{11}	$u^{40} - u^{39} + \dots - 12u + 4$
c ₈	$u^{40} - 44u^{38} + \dots - 2449090u + 232661$
c_{10}	$u^{40} + u^{39} + \dots - 36u + 4$
c_{12}	$u^{40} + 25u^{39} + \dots + 80u + 16$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing		
c_1	$y^{40} - 136y^{39} + \dots + 23220y + 1$		
c_2, c_4	$y^{40} + 56y^{39} + \dots + 84y + 1$		
c_3	$y^{40} + 8y^{39} + \dots + 28y + 1$		
c_5, c_9	$y^{40} - 5y^{39} + \dots + 2779y + 169$		
c_6	$y^{40} + 40y^{39} + \dots - 166465604y + 18826921$		
c_{7}, c_{11}	$y^{40} + 25y^{39} + \dots + 80y + 16$		
c ₈	$y^{40} - 88y^{39} + \dots - 1066872899128y + 54131140921$		
c ₁₀	$y^{40} - 55y^{39} + \dots - 112y + 16$		
c_{12}	$y^{40} - 15y^{39} + \dots - 2816y + 256$		

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.764187 + 0.653787I		
a = 0.315530 - 0.761484I	-1.47509 + 2.25056I	0.06495 - 2.95440I
b = 0.186332 + 0.279615I		
u = -0.764187 - 0.653787I		
a = 0.315530 + 0.761484I	-1.47509 - 2.25056I	0.06495 + 2.95440I
b = 0.186332 - 0.279615I		
u = -0.213036 + 0.949581I		
a = -0.140457 + 1.057230I	1.94553 + 4.51368I	6.38970 - 7.82355I
b = -0.04726 - 2.29506I		
u = -0.213036 - 0.949581I		
a = -0.140457 - 1.057230I	1.94553 - 4.51368I	6.38970 + 7.82355I
b = -0.04726 + 2.29506I		
u = 0.955003 + 0.516879I		
a = 0.487517 + 0.951136I	-6.22578 + 0.90518I	-4.74646 - 0.36762I
b = -0.146437 + 0.072845I		
u = 0.955003 - 0.516879I		
a = 0.487517 - 0.951136I	-6.22578 - 0.90518I	-4.74646 + 0.36762I
b = -0.146437 - 0.072845I		
u = -0.444049 + 0.991733I		
a = 0.526547 + 0.513973I	0.55266 + 1.44737I	-0.667154 + 0.069332I
b = -0.30344 - 1.55709I		
u = -0.444049 - 0.991733I		
a = 0.526547 - 0.513973I	0.55266 - 1.44737I	-0.667154 - 0.069332I
b = -0.30344 + 1.55709I		
u = 0.670524 + 0.887860I		
a = 0.748302 - 0.870483I	0.22448 - 2.62080I	-1.03330 + 3.61519I
b = 0.20959 + 1.99021I		
u = 0.670524 - 0.887860I		
a = 0.748302 + 0.870483I	0.22448 + 2.62080I	-1.03330 - 3.61519I
b = 0.20959 - 1.99021I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.808131 + 0.773706I		
a = 0.177775 + 0.864533I	-3.58036 - 7.21978I	-1.70984 + 7.47042I
b = 0.140485 - 0.763458I		
u = 0.808131 - 0.773706I		
a = 0.177775 - 0.864533I	-3.58036 + 7.21978I	-1.70984 - 7.47042I
b = 0.140485 + 0.763458I		
u = -0.500435 + 1.020290I		
a = -0.288714 + 0.431513I	-0.11396 + 2.62702I	1.21166 - 3.80016I
b = 0.79094 - 1.35172I		
u = -0.500435 - 1.020290I		
a = -0.288714 - 0.431513I	-0.11396 - 2.62702I	1.21166 + 3.80016I
b = 0.79094 + 1.35172I		
u = 0.601637 + 0.967840I		
a = -0.452431 - 0.174923I	-2.80937 + 1.79823I	-2.49074 - 1.24106I
b = 0.779446 + 0.975335I		
u = 0.601637 - 0.967840I		
a = -0.452431 + 0.174923I	-2.80937 - 1.79823I	-2.49074 + 1.24106I
b = 0.779446 - 0.975335I		
u = -0.737881 + 0.290228I		
a = 0.95910 + 1.11896I	-1.82966 + 2.58669I	-3.19003 - 3.49376I
b = 0.508089 - 0.650289I		
u = -0.737881 - 0.290228I		
a = 0.95910 - 1.11896I	-1.82966 - 2.58669I	-3.19003 + 3.49376I
b = 0.508089 + 0.650289I		
u = 0.178235 + 0.755403I		
a = -0.004535 - 1.355120I	2.74915 - 0.87130I	9.38374 - 0.76428I
b = -0.53972 + 1.87193I		
u = 0.178235 - 0.755403I		
a = -0.004535 + 1.355120I	2.74915 + 0.87130I	9.38374 + 0.76428I
b = -0.53972 - 1.87193I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.526875 + 1.146360I		
a = -0.507182 - 0.577873I	-3.91478 - 6.46553I	-1.90714 + 6.14891I
b = 1.35004 + 1.47812I		
u = 0.526875 - 1.146360I		
a = -0.507182 + 0.577873I	-3.91478 + 6.46553I	-1.90714 - 6.14891I
b = 1.35004 - 1.47812I		
u = -0.332002 + 0.640935I		
a = 0.522256 - 0.170528I	-0.02195 + 1.48740I	0.17371 - 4.94146I
b = 0.045479 - 0.256841I		
u = -0.332002 - 0.640935I		
a = 0.522256 + 0.170528I	-0.02195 - 1.48740I	0.17371 + 4.94146I
b = 0.045479 + 0.256841I		
u = 1.030620 + 0.897013I		
a = -1.173260 - 0.172864I	-11.47200 + 0.66922I	0
b = 0.179150 - 1.015860I		
u = 1.030620 - 0.897013I		
a = -1.173260 + 0.172864I	-11.47200 - 0.66922I	0
b = 0.179150 + 1.015860I		
u = -1.073240 + 0.852439I		
a = -1.229830 + 0.153303I	-15.3931 - 6.0460I	0
b = -0.092752 + 1.188350I		
u = -1.073240 - 0.852439I		
a = -1.229830 - 0.153303I	-15.3931 + 6.0460I	0
b = -0.092752 - 1.188350I		
u = 0.926096 + 1.056710I		
a = 0.023831 + 1.156260I	-10.92760 - 7.82692I	0
b = -1.21185 - 2.24051I		
u = 0.926096 - 1.056710I		
a = 0.023831 - 1.156260I	-10.92760 + 7.82692I	0
b = -1.21185 + 2.24051I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.04261 + 0.96199I		
a = -1.160190 + 0.237458I	-15.7491 + 4.5181I	0
b = 0.515590 + 1.140420I		
u = -1.04261 - 0.96199I		
a = -1.160190 - 0.237458I	-15.7491 - 4.5181I	0
b = 0.515590 - 1.140420I		
u = -0.90713 + 1.09807I		
a = -0.010802 - 1.172610I	-14.5518 + 13.2615I	0
b = -1.27643 + 2.56164I		
u = -0.90713 - 1.09807I		
a = -0.010802 + 1.172610I	-14.5518 - 13.2615I	0
b = -1.27643 - 2.56164I		
u = -0.98478 + 1.04683I		
a = 0.065240 - 1.184100I	-15.4588 + 2.8896I	0
b = -1.50476 + 1.94665I		
u = -0.98478 - 1.04683I		
a = 0.065240 + 1.184100I	-15.4588 - 2.8896I	0
b = -1.50476 - 1.94665I		
u = 0.162466 + 0.376483I		
a = 0.55787 - 2.40002I	1.74484 - 0.37727I	6.34033 + 0.02713I
b = -0.720369 + 0.864698I		
u = 0.162466 - 0.376483I		
a = 0.55787 + 2.40002I	1.74484 + 0.37727I	6.34033 - 0.02713I
b = -0.720369 - 0.864698I		
u = 0.139759 + 0.272112I		
a = -1.91657 + 2.94354I	-0.74436 - 3.76425I	2.15171 + 3.16942I
b = -1.36214 - 0.47472I		
u = 0.139759 - 0.272112I		
a = -1.91657 - 2.94354I	-0.74436 + 3.76425I	2.15171 - 3.16942I
b = -1.36214 + 0.47472I		

II.
$$I_2^u = \langle -8b^3u + 2b^2u + \dots - 4b + 7, \ a + u - 1, \ u^2 - u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u+1 \\ b \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} b-2u+1 \\ bu+1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -b^{2}u+2bu-4b+3u \\ -b^{2}u+b^{2}-2bu-b+2u-2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -b+2u-1 \\ -b+u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} b^{2}u+4bu-8b+4u+2 \\ b^{3}u-b^{3}+b^{2}u+4b^{2}-9bu+3b+2u-4 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4b^2u 4b^2 + 8bu + 8b 8u + 8$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4	$(u^2 - u + 1)^4$
c_2	$(u^2 + u + 1)^4$
<i>c</i> ₅	$(u-1)^8$
<i>C</i> ₆	$u^8 - 4u^7 + 12u^6 - 16u^5 + 15u^4 + 8u^3 - 4u^2 + 1$
c_7,c_{11}	$(u^4 + 2u^2 + 2)^2$
C ₈	$u^8 + 4u^7 + 12u^6 + 16u^5 + 15u^4 - 8u^3 - 4u^2 + 1$
<i>c</i> ₉	$(u+1)^8$
c_{10}	$(u^4 - 2u^2 + 2)^2$
c_{12}	$(u^2 + 2u + 2)^4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4	$(y^2 + y + 1)^4$
c_5, c_9	$(y-1)^8$
c_6, c_8	$y^8 + 8y^7 + 46y^6 + 160y^5 + 387y^4 - 160y^3 + 46y^2 - 8y + 1$
c_7, c_{11}	$(y^2 + 2y + 2)^4$
c_{10}	$(y^2 - 2y + 2)^4$
c_{12}	$(y^2+4)^4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000 + 0.866025I		
a = 0.500000 - 0.866025I	-0.82247 - 5.69375I	2.00000 + 7.46410I
b = 0.943461 + 1.008110I		
u = 0.500000 + 0.866025I		
a = 0.500000 - 0.866025I	-0.82247 + 1.63398I	2.00000 - 0.53590I
b = 0.155223 + 0.553018I		
u = 0.500000 + 0.866025I		
a = 0.500000 - 0.866025I	-0.82247 - 5.69375I	2.00000 + 7.46410I
b = -0.94346 + 2.45599I		
u = 0.500000 + 0.866025I		
a = 0.500000 - 0.866025I	-0.82247 + 1.63398I	2.00000 - 0.53590I
b = -0.15522 + 2.91108I		
u = 0.500000 - 0.866025I		
a = 0.500000 + 0.866025I	-0.82247 + 5.69375I	2.00000 - 7.46410I
b = 0.943461 - 1.008110I		
u = 0.500000 - 0.866025I		
a = 0.500000 + 0.866025I	-0.82247 - 1.63398I	2.00000 + 0.53590I
b = 0.155223 - 0.553018I		
u = 0.500000 - 0.866025I		
a = 0.500000 + 0.866025I	-0.82247 + 5.69375I	2.00000 - 7.46410I
b = -0.94346 - 2.45599I		
u = 0.500000 - 0.866025I		
a = 0.500000 + 0.866025I	-0.82247 - 1.63398I	2.00000 + 0.53590I
b = -0.15522 - 2.91108I		

III.
$$I_3^u = \langle b^3 + 6b^2u + 3b^2 - 9b - 6u - 3, \ a - u - 1, \ u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} b + 2u + 1 \\ b \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -b^{2}u + 2bu + 4b + 3u \\ -b^{2}u - b^{2} - 2bu + b + 2u + 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u + 1 \\ b + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} b + 2u + 1 \\ b + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -b^{2} - 4bu - 2b + u + 3 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $2b^2u + 2b^2 + 4bu 4b 10u 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_8	$(u^2 - u + 1)^3$
c_2, c_3	$(u^2 + u + 1)^3$
<i>C</i> ₅	$(u+1)^6$
$c_7, c_{10}, c_{11} \\ c_{12}$	u^6
<i>c</i> ₉	$(u-1)^6$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_4, c_6, c_8	$(y^2+y+1)^3$		
c_{5}, c_{9}	$(y-1)^6$		
c_7, c_{10}, c_{11} c_{12}	y^6		

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0.500000 + 0.866025I	1.64493 + 2.02988I	6.00000 - 3.46410I
b = -1.73205I		
u = -0.500000 + 0.866025I		
a = 0.500000 + 0.866025I	1.64493 + 2.02988I	6.00000 - 3.46410I
b = -1.73205I		
u = -0.500000 + 0.866025I		
a = 0.500000 + 0.866025I	1.64493 + 2.02988I	6.00000 - 3.46410I
b = -1.73205I		
u = -0.500000 - 0.866025I		
a = 0.500000 - 0.866025I	1.64493 - 2.02988I	6.00000 + 3.46410I
b = 1.73205I		
u = -0.500000 - 0.866025I		
a = 0.500000 - 0.866025I	1.64493 - 2.02988I	6.00000 + 3.46410I
b = 1.73205I		
u = -0.500000 - 0.866025I		
a = 0.500000 - 0.866025I	1.64493 - 2.02988I	6.00000 + 3.46410I
b = 1.73205I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 - u + 1)^7)(u^{40} + 56u^{39} + \dots + 84u + 1)$
c_2	$((u^2 + u + 1)^7)(u^{40} - 8u^{39} + \dots - 28u + 1)$
c_3	$((u^{2}-u+1)^{4})(u^{2}+u+1)^{3}(u^{40}+2u^{39}+\cdots-2u+1)$
<i>C</i> ₄	$((u^2 - u + 1)^7)(u^{40} - 8u^{39} + \dots - 28u + 1)$
<i>C</i> 5	$((u-1)^8)(u+1)^6(u^{40}-3u^{39}+\cdots+43u+13)$
<i>c</i> ₆	$(u^{2} - u + 1)^{3}(u^{8} - 4u^{7} + 12u^{6} - 16u^{5} + 15u^{4} + 8u^{3} - 4u^{2} + 1)$ $\cdot (u^{40} + 4u^{39} + \dots + 18344u + 4339)$
c_7, c_{11}	$u^{6}(u^{4} + 2u^{2} + 2)^{2}(u^{40} - u^{39} + \dots - 12u + 4)$
C ₈	$(u^{2} - u + 1)^{3}(u^{8} + 4u^{7} + 12u^{6} + 16u^{5} + 15u^{4} - 8u^{3} - 4u^{2} + 1)$ $\cdot (u^{40} - 44u^{38} + \dots - 2449090u + 232661)$
<i>c</i> ₉	$((u-1)^6)(u+1)^8(u^{40}-3u^{39}+\cdots+43u+13)$
c_{10}	$u^{6}(u^{4} - 2u^{2} + 2)^{2}(u^{40} + u^{39} + \dots - 36u + 4)$
c_{12}	$u^{6}(u^{2} + 2u + 2)^{4}(u^{40} + 25u^{39} + \dots + 80u + 16)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^2 + y + 1)^7)(y^{40} - 136y^{39} + \dots + 23220y + 1)$
c_2,c_4	$((y^2 + y + 1)^7)(y^{40} + 56y^{39} + \dots + 84y + 1)$
c_3	$((y^2 + y + 1)^7)(y^{40} + 8y^{39} + \dots + 28y + 1)$
c_5,c_9	$((y-1)^{14})(y^{40} - 5y^{39} + \dots + 2779y + 169)$
<i>c</i> ₆	$(y^{2} + y + 1)^{3}$ $\cdot (y^{8} + 8y^{7} + 46y^{6} + 160y^{5} + 387y^{4} - 160y^{3} + 46y^{2} - 8y + 1)$ $\cdot (y^{40} + 40y^{39} + \dots - 166465604y + 18826921)$
c_7, c_{11}	$y^{6}(y^{2} + 2y + 2)^{4}(y^{40} + 25y^{39} + \dots + 80y + 16)$
c_8	$(y^{2} + y + 1)^{3}$ $\cdot (y^{8} + 8y^{7} + 46y^{6} + 160y^{5} + 387y^{4} - 160y^{3} + 46y^{2} - 8y + 1)$ $\cdot (y^{40} - 88y^{39} + \dots - 1066872899128y + 54131140921)$
c_{10}	$y^{6}(y^{2} - 2y + 2)^{4}(y^{40} - 55y^{39} + \dots - 112y + 16)$
c_{12}	$y^{6}(y^{2}+4)^{4}(y^{40}-15y^{39}+\cdots-2816y+256)$