Esercizi 2-categorie

Secondo foglio: cofini, estensioni di Kan, limiti pesati

• Dimostrare che ogni volta che esiste una aggiunzione parametrica

$$\mathcal{A}(F_A(X),Y) \cong \mathcal{B}(X,G_A(Y))$$

per due funtori $F: \mathcal{A} \times \mathcal{X} \to \mathcal{B}, G: \mathcal{B} \times \mathcal{A}^{\mathrm{op}} \to \mathcal{B}$, allora l'unità $\eta: 1 \Rightarrow$ G_AF_A è un cuneo in A, e la counità un cocuneo. Sono anche universali?

• Dimostrare che l'insieme delle trasformazioni naturali $F \Rightarrow G$ è l'equalizzatore

$$\operatorname{Nat}(F,G) \longrightarrow \prod_{C \in \mathcal{C}} \mathcal{D}(FC,GC) \xrightarrow{\alpha} \prod_{f:C \to C'} \mathcal{D}(FC,GC')$$

per opportune mappe α, β .

- Mostrare che il limite di $F: \mathcal{A} \to \mathbf{Set}$ pesato da $G: \mathcal{A} \to \mathbf{Set}$ è l'insieme delle trasformazioni naturali $F \Rightarrow G$.
- Dimostrare il teorema di Brouwer (per assurdo, se esiste una retrazione del disco sulla sfera...).
- Dimostrare che $\operatorname{Lan}_{GG'}\cong\operatorname{Lan}_{G}\circ\operatorname{Lan}_{G'}$ per due funtori componibili G',G.
- \bullet Se $\mathcal{C}=$ Vect è la categoria degli spazi vettoriali, mostrare che il funtore $V\mapsto \int^W W^*\otimes V\otimes W$ è la parte sugli oggetti di una monade su $\mathcal{C}.$
- L'oggetto comma di un diagramma $X \xrightarrow{f} Z \xleftarrow{g} Y$ di categorie è un oggetto $X \stackrel{p}{\leftarrow} (f/g) \stackrel{q}{\rightarrow} Y$ terminale con una trasformazione naturale $fp \Rightarrow gq$. Trovare un peso $W: \{0 \to 1 \leftarrow 2\} \to \mathbf{Cat}$ per cui $(f/g) \cong \lim^{W} F$, se $F \ni \mathbf{cat}$ il diagramma $X \xrightarrow{f} Z \xleftarrow{g} Y$.
- Mostrare che

$$\{W,F\}\cong \int_A \{WA,FA\} \hspace{1cm} W\odot F\cong \int^A WA\odot FA$$

- ullet Chi è il limite pesato di $F:\mathcal{A}\to\mathcal{B}$ lungo il funtore $W:\mathcal{A}\to\mathcal{V}$ che è costante in un oggetto $W \in \mathcal{V}$?
- Mostrare che dato un funtore $F: \mathcal{A} \to \mathbf{Set}$ esiste un'aggiunzione $\mathrm{Lan}_{u}F \dashv$ $\operatorname{Lan}_F y$ dove $y: \mathcal{A} \to [\mathcal{A}^{\operatorname{op}}, \mathbf{Set}]$ è l'embedding di Yoneda; mostrare se se F preserva i limiti finiti, lo stesso fa $\operatorname{Lan}_{u}F$. Il funtore $\operatorname{Lan}_{u}F$ si chiama realizzazione di F, e il funtore $\operatorname{Lan}_F y$ si chiama F-nervo.
- Se R è un anello commutativo, $M \otimes_R N$ è la cofine di una opportuna coppia di funtori \bar{M}, \bar{N} .
- Generalizzare l'aggiunzione tra realizzazione e F-nervo al caso di un funtore multilineare: dato $F: \mathcal{C}_1 \times \cdots \times \mathcal{C}_n \to \mathbf{Set}$, dove ogni \mathcal{C}_i è piccola, mostrare che esiste un'equivalenza di categorie

$$\mathbf{Cat}(\mathcal{C}_1 \times \cdots \times \mathcal{C}_n, \mathbf{Set}) \cong \mathsf{Mult}(\widehat{\mathcal{C}}_1 \times \cdots \times \widehat{\mathcal{C}}_n, \mathbf{Set})$$

dove $\mathsf{Mult}(_,_)$ è la categoriadei funtori cocontinui in ogni variabile una volta che tutte le altre sono state fissate (lo si dimostri per induzione, componendo successive estensioni di Kan). Data $\theta \in \mathsf{Cat}(\mathcal{C}_1 \times \cdots \times \mathcal{C}_n, \mathbf{Set})$, descrivere l'aggiunto destro di ciascun $\theta(c_1,\ldots,c_i^\circ,\ldots,c_n)\colon \widehat{\mathcal{C}}_i \to \mathbf{Set}\ (c_i^\circ \text{ significa che tutti gli oggetti } c_j \text{ sono fissi per } j \neq i \text{ e } c_i \in \mathcal{C}$ è libero di variare). Tutti questi funtori hanno un 'nervo vettoriale' $N\colon \mathbf{Set} \to \widehat{\mathcal{C}}_1 \times \cdots \times \widehat{\mathcal{C}}_n$.