4.5. Nonlinear systems of DE.

(Ex)
$$(y_1' = y_2 + y_1' = y_1 - \frac{1}{2}y_1') = y_1 - \frac{1}{2}y_1' = 0$$

(1) Equilibrium solutions! Let $y_1' = 0 & y_2' = 0$
 $y_2 = 0 & y_1 - \frac{1}{2}y_1' = 0 : y_1(1 - \frac{1}{2}y_1) = 0$
 $y_1 = 0$ or $1 - \frac{1}{2}y_1 = 0 : y_1 = 2$
 $(0,0), (2,0): Critical points$
 $y_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, y_1 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$

Want classification of critical points and their stabilities.

A classify critical point & stabilities.

A Linearization.

1.
$$(0, 0)$$
: Analyze solution curves around $(0, 0)$.

 $(4, 42) \approx (0, 0)$: $|41| \approx 0$, $|42| \approx 0$
 $|41| > |41|^2$, $|42| > 42$

0.1 0.01

0.01 0.0001: Drop "- $\frac{1}{2}$ 41,"

$$= \begin{cases} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{cases}$$
inequized system.

$$\det(A - \lambda I) = (-\lambda)^{2} - 1 = \lambda^{2} - 1 = 0 : \lambda = 1, -1.$$

$$(0, 0) : \text{ a unstable saddle point.}$$

$$(2, 0) : (\frac{1}{4}, \frac{1}{4}) \approx (\frac{1}{4}, \frac{1}{4}) - \operatorname{coordinate system.}$$

$$(\frac{1}{4}) \approx \frac{1}{4} : \text{ We cannot } = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4} \cdot \frac{1}{4}$$

2. a center

2. a center

3. Does linearization predict solution curves exact? No not exactly

(Quick way).

Use Jacobian matrix.

$$\begin{aligned}
(y_1' &= f_1(y_1, y_2) \\
(y_2' &= f_2(y_1, y_2) \\
(x_2' &= f_1 \\
(y_2' &= y_1 - \frac{1}{2}y_1^2 \\
(x_2' &= y_1 - \frac{1}{2}y_1^$$

$$J(2,0) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \lambda = \hat{z}, -\hat{z}.$$
(Ex) $y'' - 9y + y^3 = 0$?
(idea) Use a system of DE.
(i) Let $y_1 = y$ & $y_2 = y'$
($y'_1 = y_2$
($y'_2 = y''_3 = 9y - y''_3 = 9y_1 - y''_3$.
($y''_1 = y_2$
($y''_2 = y''_3 = 9y_1 - y''_3$).

(2) Crifical points! Let
$$4'_1 = 0 & 4'_2 = 0$$
 $4'_2 = 0 & 94'_1 - 4'_1 = 4'_1 (9 - 4'_1) = 0^2$
 $4'_1 = 0$, $9 - 4'_1 = 0$: $4'_1 = 3'_2 - 3$

(0, 0), (3, 0), (-3, 0)

(3) $J = \begin{bmatrix} 0 & 1 \\ 9 - 34'_1 & 0 \end{bmatrix}$

a linearized point $\begin{bmatrix} 0 & 1 \\ 9 & 0 \end{bmatrix}$: $Y = \begin{bmatrix} 0 & 1 \\ 9 & 0 \end{bmatrix}$?

(0, 0): $J(0, 0) = \begin{bmatrix} 0 & 1 \\ 9 & 0 \end{bmatrix}$: $Y = \begin{bmatrix} 0 & 1 \\ 9 & 0 \end{bmatrix}$?

(0, 0): a unstable saddle point.

$$(3,0)$$
: $J(3,0) = \begin{bmatrix} 0 & 1 \\ 9-3.9 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -18 & 0 \end{bmatrix}$
 $(-\lambda)^2 + 18 = 0 : \lambda = \pm \sqrt{18}z^2$
 $(3,0)$: a stable center.
 $(-3,0)$: $J(-3,0) = \begin{bmatrix} 0 & 1 \\ -18 & 0 \end{bmatrix} : \lambda = \pm \sqrt{18}z^2$
 $(-3,0)$: a stable center.

4.6 Nonhomogeneous systems of DE.

$$y'=Ay+g(t)$$

(Ex) $y'=\begin{bmatrix}1\\3\\-1\end{bmatrix}y+\begin{bmatrix}1\\2\end{bmatrix}e^{3t}$?
(idea) $y''-4y=e^{3t}$
(i) Solve $y''-4y=0$: $r+4=0$
 $f(t)=(re^{3t}+(re^{3t}-re^$

1. Solve
$$y = \begin{bmatrix} 1 \\ 3 - 1 \end{bmatrix} y \rightarrow y_{c}(t)$$

2) Find $\{ y_{p}(t) : A \text{ general solution} \}$

$$y(t) = y_{c}(t) + y_{p}(t) : A \text{ general solution}$$

$$det (A - \lambda I) = (1 - \lambda)(1 - \lambda) - 3 = 0$$

$$\lambda^{2} - 4 = 0 \quad \lambda = 2, -2$$

$$y_{c}(t) = C_{1} \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{2t} + C_{2} \begin{bmatrix} 1 \\ -3 \end{bmatrix} e^{-2t}$$

(2)
$$y_p(t) = ?$$

(idea) $\frac{d}{dt}$ (polynomial) = a polynomial

 $\frac{d}{dt} e^{at} = a e^{at}, \frac{d}{dt} Sin(kt) = k Cos(kt)$
 $\frac{d}{dt} Cos(kt) = -k Sin(kt)$

Set $y_p(t) = Ve^{3t}$