```
In [1]: import pandas as pd
import numpy as np

import seaborn as sn
import matplotlib.pyplot as plt
%matplotlib inline
```

## **Extracting Data**

```
In [2]: p = pd.read_csv("Placement_Data_Full_Class.csv")
p_copy = pd.read_csv("Placement_Data_Full_Class.csv")
```

## **Examining the dataset**

```
In [3]: p.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 215 entries, 0 to 214
        Data columns (total 15 columns):
             Column
                             Non-Null Count Dtype
             sl no
                             215 non-null
                                             int64
             gender
                                             object
                             215 non-null
                             215 non-null
                                             float64
             ssc p
         3
             ssc b
                             215 non-null
                                             object
             hsc p
                             215 non-null
                                             float64
             hsc b
                             215 non-null
                                             object
             hsc_s
                             215 non-null
                                             object
             degree p
                             215 non-null
                                             float64
             degree t
                             215 non-null
                                             object
             workex
                             215 non-null
                                             object
         10 etest p
                             215 non-null
                                             float64
         11 specialisation 215 non-null
                                             object
         12 mba p
                             215 non-null
                                             float64
                                             object
         13 status
                             215 non-null
         14 salary
                             148 non-null
                                             float64
        dtypes: float64(6), int64(1), object(8)
        memory usage: 25.3+ KB
```

## **Checking for missing data**

```
In [4]: p.isnull().sum()
Out[4]: sl_no
                           0
        gender
                            0
        ssc_p
        ssc_b
        hsc_p
        hsc_b
        hsc_s
        degree_p
        degree_t
        workex
        etest p
        specialisation
                           0
        mba_p
        status
                           0
        salary
                          67
        dtype: int64
```

## **Data Cleaning**

**Handling Missing Values** 

```
In [5]: p['salary'].fillna(value=0, inplace=True)
        p.isnull().sum()
Out[5]: sl no
        gender
        ssc p
        ssc b
                           0
        hsc p
        hsc b
        hsc s
        degree p
        degree t
        workex
        etest p
        specialisation
        mba_p
        status
        salary
        dtype: int64
```

We have successfully removed all null values.

### **Dropping Unwanted Features**

```
In [6]: p.drop(['sl_no','ssc_b','hsc_b'], axis = 1,inplace=True)
```

We have dropped serial number as we have index as default and we have dropped the boards of school education as we believe it doesn't matter for recruitment

## **Data Visualization**

#### **Count Plots**

```
In [7]: fig, axs = plt.subplots(ncols=3,figsize=(20,5))
    sn.countplot(p['gender'], ax = axs[0])
    sn.countplot(p['hsc_s'], ax = axs[1])
    sn.countplot(p['degree_t'], ax = axs[2])
    fig, axs = plt.subplots(ncols=3,figsize=(20,5))
    sn.countplot(p['workex'], ax = axs[0])
    sn.countplot(p['specialisation'], ax = axs[1])
    sn.countplot(p['status'], ax = axs[2])
```

Out[7]: <matplotlib.axes.\_subplots.AxesSubplot at 0x250977f9d48>





### **Dist Plots**

```
In [8]: fig, axs = plt.subplots(ncols=5,figsize=(25,5))
    sn.distplot(p['degree_p'], ax= axs[0], color = 'g')
    sn.distplot(p['hsc_p'], ax= axs[1])
    sn.distplot(p['ssc_p'], ax= axs[2], color = 'b')
    sn.distplot(p['etest_p'], ax= axs[3], color = 'r')
    sn.distplot(p['mba_p'], ax= axs[4], color = 'c')
```

Out[8]: <matplotlib.axes. subplots.AxesSubplot at 0x25097981ac8>



## **Hist Plot**

```
In [9]: plt.figure(figsize=(8,6))
    plt.hist(p['salary'], bins = 10)
    plt.xlabel("Salary")
    plt.show()
```



# **Feature Engineering**

```
In [10]: #gender
         gen = [1 if x=='M' else 0 for x in p['gender']]
         p['gender']=gen
         #hsc s
         hsc A = [1 if x=='Arts' else 0 for x in p['hsc s']]
         p['hsc s Arts']=hsc A
         hsc C = [1 if x=='Commerce' else 0 for x in p['hsc s']]
         p['hsc s Com']=hsc C
         hsc S = [1 if x=='Science' else 0 for x in p['hsc s']]
         p['hsc s Sci']=hsc S
         #dearee t
         deg Sci = [1 if x=='Sci&Tech' else 0 for x in p['degree t']]
         p['deg t Sci']=deg Sci
         deg Comm = [1 if x=='Comm&Mgmt' else 0 for x in p['degree t']]
         p['deg t Comm']=deg Comm
         deg Others = [1 if x=='Others' else 0 for x in p['degree_t']]
         p['deg t Others']=deg Others
         #specialisation
         spec = [1 if x=='Mkt&HR' else 0 for x in p['specialisation']]
         p['specialisation']=spec
         #status
         status = [1 if x=='Placed' else 0 for x in p['status']]
         p['status'] = status
         #workex
         WorkEx = [1 if x=='Yes' else 0 for x in p['workex']]
         p['workex'] = WorkEx
```

We derive numerical values from object values as it will be better for training the model

```
In [11]: p = p.drop(axis=1, columns=['hsc_s', 'degree_t'])
```

We drop the rest of the unwanted features as we have alrady derived features from these features. Let us have a look at the data now.

```
In [12]: p
Out[12]:
                  gender ssc_p
                                         degree_p
                                                    workex etest_p specialisation mba_p
                                                                                            status
                                                                                                       salary hsc_s_Arts hsc_s_Com hsc_s_Sci deg_t_Sci de
                                  hsc_p
                           67.00
               0
                                   91.00
                                              58.00
                                                          0
                                                                55.0
                                                                                      58.80
                                                                                                 1 270000.0
                                                                                                                        0
                                                                                                                                                0
                           79.33
                                   78.33
                                                                                      66.28
                                                                                                  1 200000.0
                                                                                                                        0
                                             77.48
                                                                86.5
                                                                                                                                                0
               2
                           65.00
                                   68.00
                                              64.00
                                                                75.0
                                                                                 0
                                                                                      57.80
                                                                                                  1 250000.0
                                                                                                                                                            0
                                                                                                                        1
               3
                       1
                           56.00
                                   52.00
                                              52.00
                                                                66.0
                                                                                      59.43
                                                                                                          0.0
                                                                                                                        0
                                                                                                                                                1
                                                                                                                                                           1
                           85.80
                                  73.60
                                              73.30
                                                                96.8
                                                                                      55.50
                                                                                                  1 425000.0
                                                                                                                        0
                                                                                                                                                0
                                                                                                                                                            0
                                                                                                                                                0
                           80.60
                                                                                                                        0
             210
                                   82.00
                                             77.60
                                                                91.0
                                                                                      74.49
                                                                                                  1 400000.0
                                                                                                                                                            0
             211
                           58.00
                                   60.00
                                             72.00
                                                                                      53.62
                                                                                                  1 275000.0
                                                                                                                        0
                                                                74.0
             212
                           67.00
                                  67.00
                                              73.00
                                                                59.0
                                                                                      69.72
                                                                                                  1 295000.0
                                                                                                                        0
                                                                                                                                                0
                                                                                                                                                            0
                                                                                                                        0
                                                                                                                                                0
             213
                           74.00
                                   66.00
                                              58.00
                                                                70.0
                                                                                      60.23
                                                                                                  1 204000.0
                                                                                                                                                            0
```

215 rows × 16 columns

62.00

58.00

53.00

214

## **Assigning Independent and Dependent Variables**

89.0

```
In [13]: X = p[['gender','ssc_p', 'hsc_p', 'hsc_p', 'workex','etest_p','mba_p','hsc_s_Arts','hsc_s_Com','hsc_s_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_t_Sci','deg_
```

60.22

0

0.0

0

0

1

0

Here X conatains all independent variables and y contains the dependent variable.

## **Train & Test Split**

```
In [14]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.25,random_state=0)
```

## **Machine Learning Models**

### **Logistic Regression**

#### **Accuracy**

```
In [16]: logreg.score(X_test, y_test)
Out[16]: 0.83333333333334
```

### **Confusion Matrix and Classification Report**

#### Classification Report:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.79      | 0.65   | 0.71     | 17      |
| 1            | 0.85      | 0.92   | 0.88     | 37      |
| accuracy     |           |        | 0.83     | 54      |
| macro avg    | 0.82      | 0.78   | 0.80     | 54      |
| weighted avg | 0.83      | 0.83   | 0.83     | 54      |

```
In [18]: sn.heatmap(confusion_matrix, annot=True)
```

Out[18]: <matplotlib.axes.\_subplots.AxesSubplot at 0x25097f875c8>



**KNN Classification** 

```
In [19]: from sklearn.neighbors import KNeighborsClassifier
         from sklearn.metrics import confusion matrix, classification report
         from sklearn.model selection import GridSearchCV
         import math
         knn = KNeighborsClassifier(n neighbors=-1)
         #Hyper Parameters Set
         params = {'n neighbors':[math.floor(math.sqrt(X train.shape[0])), math.ceil(math.sqrt(X train.shape[0]))],
                    'leaf size':[1,2,3,5], 'p':[1,2],
                   'weights':['uniform', 'distance'],
                    'algorithm':['auto', 'ball tree','kd tree','brute'],
                   'n jobs':[-1]}
         #Making model with hyper parameters sets
         knn = GridSearchCV(knn, param grid=params, n jobs=1)
         knn.fit(X train,y train)
         #knn.fit(X train, v train)
         y pred=knn.predict(X test)
```

#### **Accuracy**

```
In [20]: knn.score(X_test,y_test)
Out[20]: 0.777777777778
```

#### **Confusion Matrix and Classification Report**

Confusion Matrix:

[[ 8 9] [ 3 34]]

Classification Report:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.73      | 0.47   | 0.57     | 17      |
| 1            | 0.79      | 0.92   | 0.85     | 37      |
| accuracy     |           |        | 0.78     | 54      |
| macro avg    | 0.76      | 0.69   | 0.71     | 54      |
| weighted avg | 0.77      | 0.78   | 0.76     | 54      |

In [22]: sn.heatmap(confusion\_matrix, annot=True)

Out[22]: <matplotlib.axes.\_subplots.AxesSubplot at 0x25098494848>



### **Random Forest Classification**

```
In [23]: from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import confusion_matrix, classification_report
    from sklearn import metrics

clf=RandomForestClassifier(n_estimators=20)
    clf.fit(X_train,y_train)
    y_pred=clf.predict(X_test)
```

#### **Accuracy**

```
In [24]: metrics.accuracy_score(y_test,y_pred)
```

Out[24]: 0.7777777777778

### **Confusion Matrix and Classification Report**

```
In [25]: from sklearn.metrics import confusion_matrix
    confusion_matrix = confusion_matrix(y_test, y_pred)
    print("Confusion Matrix:\n",confusion_matrix,"\n")
    from sklearn.metrics import classification_report
    print("Classification Report:\n",classification_report(y_test, y_pred))
```

Confusion Matrix:

[[10 7] [ 5 32]]

Classification Report:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.67      | 0.59   | 0.62     | 17      |
| 1            | 0.82      | 0.86   | 0.84     | 37      |
| accuracy     |           |        | 0.78     | 54      |
| macro avg    | 0.74      | 0.73   | 0.73     | 54      |
| weighted avg | 0.77      | 0.78   | 0.77     | 54      |

In [26]: sn.heatmap(confusion\_matrix, annot=True)

Out[26]: <matplotlib.axes.\_subplots.AxesSubplot at 0x25098731508>



## **Comparing Accuracy of 3 models**

We see the best model is **Logistic Regression** with **83%** accuracy, followed by **KNN Classification** with **78%** accuracy and **Random Forest Classifier** with **74%** accuracy.

## **Logistic Regression from Scratch**

In [27]: from random import seed
 from random import randrange
 from csv import reader
 from math import exp

### **Writing Functions**

```
In [28]: # Load a CSV file
         def load csv(filename):
             dataset = list()
             with open(filename, 'r') as file:
                 csv reader = reader(file)
                 for row in csv reader:
                      if not row:
                          continue
                     dataset.append(row)
             return dataset
         # Convert string column to float
         def str column to float(dataset, column):
             for row in dataset:
                 row[column] = float(row[column].strip())
         # Find the min and max values for each column
         def dataset minmax(dataset):
             minmax = list()
             for i in range(len(dataset[0])):
                 col values = [row[i] for row in dataset]
                 value min = min(col values)
                 value max = max(col values)
                 minmax.append([value min, value max])
             return minmax
         # Rescale dataset columns to the range 0-1
         def normalize dataset(dataset, minmax):
             for row in dataset:
                 for i in range(len(row)):
                      row[i] = (row[i] - minmax[i][0]) / (minmax[i][1] - minmax[i][0])
         # Split a dataset into k folds
         def cross validation split(dataset, n folds):
             dataset split = list()
             dataset copy = list(dataset)
             fold_size = int(len(dataset) / n_folds)
             for i in range(n folds):
                 fold = list()
                 while len(fold) < fold_size:</pre>
                     index = randrange(len(dataset copy))
```

```
fold.append(dataset copy.pop(index))
        dataset split.append(fold)
    return dataset split
# Calculate accuracy percentage
def accuracy metric(actual, predicted):
    correct = 0
    for i in range(len(actual)):
        if actual[i] == predicted[i]:
            correct += 1
    return correct / float(len(actual)) * 100.0
# Evaluate an algorithm using a cross validation split
def evaluate algorithm(dataset, algorithm, n folds, *args):
    folds = cross validation split(dataset, n folds)
    scores = list()
    for fold in folds:
        train set = list(folds)
        train set.remove(fold)
        train set = sum(train set, [])
        test set = list()
        for row in fold:
            row copy = list(row)
            test set.append(row copy)
            row copy[-1] = None
        predicted = algorithm(train set, test set, *args)
        actual = [row[-1] for row in fold]
        accuracy = accuracy metric(actual, predicted)
        scores.append(accuracy)
    return scores
# Make a prediction with coefficients
def predict(row, coefficients):
   yhat = coefficients[0]
    for i in range(len(row)-1):
        yhat += coefficients[i + 1] * row[i]
    return 1.0 / (1.0 + exp(-yhat))
# Estimate logistic regression coefficients using stochastic gradient descent
def coefficients sgd(train, 1 rate, n epoch):
    coef = [0.0 for i in range(len(train[0]))]
    for epoch in range(n epoch):
```

```
for row in train:
            yhat = predict(row, coef)
            error = row[-1] - yhat
            coef[0] = coef[0] + l_rate * error * yhat * (1.0 - yhat)
            for i in range(len(row)-1):
                coef[i + 1] = coef[i + 1] + 1 rate * error * yhat * (1.0 - yhat) * row[i]
    return coef
# Linear Regression Algorithm With Stochastic Gradient Descent
def logistic regression(train, test, 1 rate, n epoch):
    predictions = list()
    coef = coefficients_sgd(train, l_rate, n_epoch)
    for row in test:
        yhat = predict(row, coef)
        yhat = round(yhat)
        predictions.append(yhat)
    return(predictions)
```

#### Making a new CSV file of the customised DataSet

```
In [29]: p.to_csv("Placement_Data_Full_Class_LR.csv",header=False)
```

#### **Load and Prepare Data**

```
In [30]: dataset = load_csv("Placement_Data_Full_Class_LR.csv")
    for i in range(len(dataset[0])):
        str_column_to_float(dataset, i)
```

#### **Normalization**

```
In [31]: minmax = dataset_minmax(dataset)
normalize_dataset(dataset, minmax)
```

### **Evaluate Algorithm**

```
In [32]: n_folds = 5
l_rate = 0.1
n_epoch = 100
scores = evaluate_algorithm(dataset, logistic_regression, n_folds, l_rate, n_epoch)
print('Scores: %s' % scores)
print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores))))

Scores: [97.67441860465115, 100.0, 100.0, 97.67441860465115, 100.0]
Mean Accuracy: 99.070%
```

### **Deleting the New File**

```
In [33]: import os
    os.remove("Placement_Data_Full_Class_LR.csv")
```

## **Questions**

1. To get placed with highest Salary Which Degree should be Opted?

In [34]: p\_copy

Out[34]:

|     | sl_no | gender | ssc_p | ssc_b   | hsc_p | hsc_b   | hsc_s    | degree_p | degree_t  | workex | etest_p | specialisation | mba_p | status        | salary   |
|-----|-------|--------|-------|---------|-------|---------|----------|----------|-----------|--------|---------|----------------|-------|---------------|----------|
| 0   | 1     | М      | 67.00 | Others  | 91.00 | Others  | Commerce | 58.00    | Sci&Tech  | No     | 55.0    | Mkt&HR         | 58.80 | Placed        | 270000.0 |
| 1   | 2     | М      | 79.33 | Central | 78.33 | Others  | Science  | 77.48    | Sci&Tech  | Yes    | 86.5    | Mkt&Fin        | 66.28 | Placed        | 200000.0 |
| 2   | 3     | М      | 65.00 | Central | 68.00 | Central | Arts     | 64.00    | Comm&Mgmt | No     | 75.0    | Mkt&Fin        | 57.80 | Placed        | 250000.0 |
| 3   | 4     | M      | 56.00 | Central | 52.00 | Central | Science  | 52.00    | Sci&Tech  | No     | 66.0    | Mkt&HR         | 59.43 | Not<br>Placed | NaN      |
| 4   | 5     | М      | 85.80 | Central | 73.60 | Central | Commerce | 73.30    | Comm&Mgmt | No     | 96.8    | Mkt&Fin        | 55.50 | Placed        | 425000.0 |
|     |       |        |       |         |       |         |          |          |           |        |         |                |       |               |          |
| 210 | 211   | М      | 80.60 | Others  | 82.00 | Others  | Commerce | 77.60    | Comm&Mgmt | No     | 91.0    | Mkt&Fin        | 74.49 | Placed        | 400000.0 |
| 211 | 212   | М      | 58.00 | Others  | 60.00 | Others  | Science  | 72.00    | Sci&Tech  | No     | 74.0    | Mkt&Fin        | 53.62 | Placed        | 275000.0 |
| 212 | 213   | М      | 67.00 | Others  | 67.00 | Others  | Commerce | 73.00    | Comm&Mgmt | Yes    | 59.0    | Mkt&Fin        | 69.72 | Placed        | 295000.0 |
| 213 | 214   | F      | 74.00 | Others  | 66.00 | Others  | Commerce | 58.00    | Comm&Mgmt | No     | 70.0    | Mkt&HR         | 60.23 | Placed        | 204000.0 |
| 214 | 215   | М      | 62.00 | Central | 58.00 | Others  | Science  | 53.00    | Comm&Mgmt | No     | 89.0    | Mkt&HR         | 60.22 | Not<br>Placed | NaN      |

215 rows × 15 columns

```
In [35]: status_record = p_copy.status.groupby([p_copy.degree_t])
    status_record.value_counts()
```

```
Out[35]: degree_t
```

```
degree_t status
Comm&Mgmt Placed 102
Not Placed 43
Others Not Placed 6
Placed 5
Sci&Tech Placed 41
Not Placed 18
```

Name: status, dtype: int64

```
In [36]: sn.lmplot(x ='degree_t', y ='salary', fit_reg = False, hue = 'status', data = p_copy)
```

Out[36]: <seaborn.axisgrid.FacetGrid at 0x250987d3d08>



```
In [37]: #countplot for above observation
sn.violinplot(x="degree_t", y="salary", data=p_copy, hue='status')
```

Out[37]: <matplotlib.axes.\_subplots.AxesSubplot at 0x25098804b88>



From the above plot, we can say that Commerce and Management people are placed with highest salary of all. So most people opt for it.

### 2. people with which degree and specialisation are more likely to be placed?

```
In [38]: status_record_2 = p_copy.status.groupby([p_copy.degree_t,p_copy.specialisation])
    status_record_2.value_counts()
    #placed =1 not placed=0 MKT&HR =1 Mkt&Fin =0
```

| Out[38]: | degree_t  | specialisation | status     |    |
|----------|-----------|----------------|------------|----|
|          | Comm&Mgmt | Mkt&Fin        | Placed     | 68 |
|          |           |                | Not Placed | 18 |
|          |           | Mkt&HR         | Placed     | 34 |
|          |           |                | Not Placed | 25 |
|          | Others    | Mkt&Fin        | Not Placed | 2  |
|          |           |                | Placed     | 2  |
|          |           | Mkt&HR         | Not Placed | 4  |
|          |           |                | Placed     | 3  |
|          | Sci&Tech  | Mkt&Fin        | Placed     | 25 |
|          |           |                | Not Placed | 5  |
|          |           | Mkt&HR         | Placed     | 16 |
|          |           |                | Not Placed | 13 |

Name: status, dtype: int64

```
In [39]: #prob 1 is of people placed, who have degree in comm&magmt and specialisation in Mkt&Fin
         prob 1=68/(68+18)
         print("probabability of people placed, who have a degree in comm&mgmt and specialisation in Mkt&Fin", prob 1)
         #prob 2 is of people placed, who have degree in comm&mgmt and specialisation in Mkt&HR
         prob 2=34/(34+25)
         print("probabability of people placed, who have a degree in comm&mgmt and specialisation in Mkt&HR", prob 2)
         #prob 3 is of people placed , who have degree in others and specialisation in Mkt&fin
         prob 3=2/(2+2)
         print("probabability of people placed, who have a degree in others and specialisation in Mkt&Fin", prob 3)
         #prob 4 is of people placed, who have degree in others and specialisation in Mkt&HR
         prob 4=3/(3+4)
         print("probabability of people placed, who have a degree in others and specialisation in Mkt&HR", prob 4)
         #prob 5 is of people placed , who have degree in Sci&Tech and specialisation in Mkt&Fin
         prob 5=25/(25+5)
         print("probabability of people placed, who have a degree in Sci&Tech and specialisation in Mkt&Fin", prob 5)
         #prob 6 is of people placed, who have degree in Sci&Tech and specialisation in Mkt&HR
         prob 6=16/(16+13)
         print("probabability of people placed, who have a degree in Sci&Tech and specialisation in Mkt&HR", prob 6)
```

probabability of people placed, who have a degree in comm&mgmt and specialisation in Mkt&Fin 0.7906976744186046 probabability of people placed, who have a degree in comm&mgmt and specialisation in Mkt&Fin 0.576271186440678 probabability of people placed, who have a degree in others and specialisation in Mkt&Fin 0.5 probabability of people placed, who have a degree in others and specialisation in Mkt&HR 0.42857142857142855 probabability of people placed, who have a degree in Sci&Tech and specialisation in Mkt&Fin 0.833333333333333334 probabability of people placed, who have a degree in Sci&Tech and specialisation in Mkt&HR 0.5517241379310345

```
In [40]: max(prob_1,prob_2,prob_3,prob_4,prob_5,prob_6)
```

Out[40]: 0.83333333333333334

Therefore, the people with a degree in Sci&Tech and specialisation in Mkt&Fin are most probably placed.

```
In [41]: sn.catplot(x="degree_t", y="salary", hue="specialisation", kind="swarm", data=p_copy)
#Mkt&HR is 1 and Mkt&Fin is 0
```

D:\anaconda3\lib\site-packages\seaborn\categorical.py:1326: RuntimeWarning: invalid value encountered in less off\_low = points < low\_gutter

D:\anaconda3\lib\site-packages\seaborn\categorical.py:1330: RuntimeWarning: invalid value encountered in greater off\_high = points > high\_gutter

Out[41]: <seaborn.axisgrid.FacetGrid at 0x25095ac3608>



According to this dataset, we can see that the highest salary is of the person, who has a degree in Comm&Mgmt and specialisation in Mkt&Fin.

Among people who are not placed, most of them have a specialisation in Mkt&HR.