Transformer

Long Sequences: Transformer-XL

Learning goals

- Understand the limitations for long sequences
- Understand the Segment Recurrence mechanism
- Understand relative positional encodings

LIMITATION OF THE TRANSFORMER

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2) \cdot d$	(O(1))	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)
not cool		cool	

Source: Vaswani et al. (2017)

Advantage:

- Every token can directly attend to each other token
- Cf. RNN: At worst *n* sequential operations (last to first token)

Severe Limitation:

- Every token attends to each other token (incl. itself)
 - \rightarrow We need to calculate n^2 attention weights
- Computational complexity of Transformer scales quadratically with the sequence length
 - → Longer sequences are disproportionally expensive

TRANSFORMER-XL

Key facts:

- Objective: Autoregressive Language Modeling task
- Transformer decoder model
- Addresses long sequences
- Assumption: No infinite memory & compute; limited resources
- (Possible) Solution Vanilla Transformer:
 - Split corpus into shorter segments
 - Limited contextual information
- Solution Transformer-XL:
 - Segment-level recurrence mechanism
 - Able to model longer-term dependencies

TRANSFORMER-XL

Figure 1: Illustration of the vanilla model with a segment length 4.

Source: Dai et al. (2019)

- Contextual information limited to segments
- Does not respect semantic or syntactic boundaries

TRANSFORMER-XL

Figure 2: Illustration of the Transformer-XL model with a segment length 4.

Source: Dai et al. (2019)

- Caches hidden states from the previous segment
- Contextual information flows across segments

SEGMENT RECURRENCE

- Let $s_{\tau} = [x_{\tau,1}, \dots, x_{\tau,L}]$ and $s_{\tau+1} = [x_{\tau+1,1}, \dots, x_{\tau+1,L}]$ be two consecutive segments of length L.
- Let $h_{\tau}^n \in \mathbb{R}^{L \times d}$ denote the *n*-th layer hidden states for s_{τ} .
- Using segment recurrence, the *n*-th layer hidden states for the following segment $s_{\tau+1}$ are computed as follows:

$$\tilde{h}_{\tau+1}^{n-1} = Concat[SG(h_{\tau}^{n-1}), h_{\tau+1}^{n-1}]$$

$$q_{\tau+1}^n = h_{\tau+1}^{n-1} W_q^\mathsf{T}; \quad k_{\tau+1}^n = \tilde{h}_{\tau+1}^{n-1} W_k^\mathsf{T}; \quad v_{\tau+1}^n = \tilde{h}_{\tau+1}^{n-1} W_v^\mathsf{T}$$

$$h_{\tau+1}^{n} = \textit{Trafo}(q_{\tau+1}^{n}, k_{\tau+1}^{n}, v_{\tau+1}^{n}),$$

where $SG(\cdot)$ stands for "'stop-gradient"'.

RELATIVE POSITIONAL ENCODINGS

Problem:

- Absolute positional encodings (PE) would assign the same embedding to words in similar positions in both segments
- No positional difference between $x_{\tau,j}$ and $x_{\tau+1,j}$

Solution:

- Inject information about the relative distance between a query vector and the respective key vectors directly into the Attention mechanism
- Comment: Using relative PEs utterly necessary here, but also applicable independently of the segment recurrence

RELATIVE POSITIONAL ENCODINGS

$$\begin{split} \mathbf{A}_{i,j}^{abs} &= \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{E}_{x_j}}_{(a)} + \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{U}_j}_{(b)} \\ &+ \underbrace{\mathbf{U}_i^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{E}_{x_j}}_{(c)} + \underbrace{\mathbf{U}_i^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{U}_j}_{(d)}. \end{split}$$

$$\mathbf{A}_{i,j}^{\text{rel}} = \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_{k,E} \mathbf{E}_{x_j}}_{(a)} + \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_{k,R} \mathbf{R}_{i-j}}_{(b)}.$$

$$+ \underbrace{u^{\top} \mathbf{W}_{k,E} \mathbf{E}_{x_j}}_{(c)} + \underbrace{v^{\top} \mathbf{W}_{k,R} \mathbf{R}_{i-j}}_{(d)}.$$

RELATIVE POSITIONAL ENCODINGS

Solution:

- Replace all absolute PEs with relative ones (fixed + sinusoidal)
 - $\rightarrow \mathbf{R}_{i-i}$ instead of \mathbf{U}_i in (b) and (d)
- Replace all positional query vectors with single trainable embeddings
 - $\rightarrow u$ and v instead of $\mathbf{U}_{i}^{\top}\mathbf{W}_{a}^{\top}$ in (c) and (d)
- Use separate weight matrices for linearly projecting E
 - \rightarrow **W**_{k,E} and **W**_{k,R} instead of **W**_k