第十二次习题课

方法提要、习题讲解和内容扩充

助教:邓先涛

2023年12月4日

重点知识提要

重点知识提要

- ► Galois 扩张: 有限可分的正规扩张.
- ▶ 有限域的结构:有限域的子域刻画;有限域上的多项式性质.
- ▶ 多项式的 Galois 群的计算: 了解三次多项式和四次多项式 Galois 群的分类准则.

有限域及其上的多项式

一些基本事实

- ▶ 有限域中的元素个数: 设 n 为正整数,存在 n 元有限域的充分必要条件是 n 为素数方幂.
- ▶ 有限域存在唯一性:任给素数方幂 p^m ,同构意义下存在唯一一个 p^m 元有限域,记作 \mathbb{F}_{p^m} .
- ▶ 有限域的子域: 设 p 为素数, \mathbb{F}_{p^m} 是 \mathbb{F}_{p^n} 的子域当且仅当 $m \mid n$.
- ▶ 有限域的本原元:设 p 为素数,存在 $\alpha \in \mathbb{F}_{p^m}$ 使得 $\mathbb{F}_{p^m}^{\times} = <\alpha>$,因此 $\mathbb{F}_{p^m} = \mathbb{F}_p(\alpha)$.
- ▶ 有限域的不可约多项式:设 q 为素数方幂,任给正整数 m, \mathbb{F}_q 上存在 m 次不可约多项式.
- ▶ 有限域的 Galois 扩张: $Gal(\mathbb{F}_{q^m}/\mathbb{F}_q)$ 中的元素为 $\sigma_i: \alpha \to \alpha^{q^i} (i=0,1,\cdots,m-1)$.

第七章第 21 题 (i)

构造一个 9 个元素的域,并给出加法和乘法表

多项式环中的极大理想

- ▶ 9 个元素的域的素域是 \mathbb{F}_3 , 利用多项式环的性质,构造 $\mathbb{F}_9 = \mathbb{F}_3[x]/(x^2+1)$.
- ▶ 加法运算规则: ax + b + cx + d = (a + c)x + (b + d); 乘法运算规则: (ax + b)(cx + d) = (ad + bc)x + bd - ac.
- ▶ 逐项进行加法和乘法,得到加法表或乘法表.

证明

+	0	1	2	x	x+1	x+2	2x	2x + 1	2x+2
0	0	1	2	x	x+1	x+2	2x	2x + 1	2x+2
1	1	2	0	x+1	x+2	x	2x+1	2x+2	2x
2	2	0	1	x+2	x	x+1	2x+2	2x	2x + 1
x	x	x+1	x+2	2x	2x+1	2x+2	0	1	2
x+1	x+1	x+2	x	2x+1	2x+2	2x	1	2	0
x+2	x+2	x	x+1	2x+2	2x	2x+1	2	0	1
2x	2x	2x+1	2x+2	0	1	2	x	x+1	x+2
2x+1	2x+1	2x+2	2x	1	2	0	x+1	x+2	x
2x+2	2x+2	2x	2x+1	2	0	1	x+2	x	x+1

表: Fo 的加法表

总结

加法表乘法表一般是计算机运算的预处理的步骤,以存储空间换取运算时间的手段.

第五章第 22 题第 1、2 问

 $\{u, v\}$ 分素数, $\{u, v\}$ 元有限域, $\{u\}$ $\{u\}$ 的、 $x^{p^n} - x \mid x^{p^m} - x$ 当且仅当 $n \mid m$.

单扩张元素次数等干扩张次数

- ▶ 设 $\alpha \in \overline{\mathbb{F}_p}$ 为f(x)的根,则 $\mathbb{F}_p(\alpha) = \mathbb{F}_{p^n}$.
- ▶ 若 $n \mid m$, 则 \mathbb{F}_{n^n} 为 \mathbb{F}_{n^m} 的子域,因此 α 为 $x^{p^m} x$ 的根. f(x) 不可约,推出 $f(x) \mid x^{p^m} x$.
- ▶ 若 $f(x) \mid x^{p^m} x$, 则 $\alpha \in \mathbb{F}_{p^m}$, 因此 \mathbb{F}_{p^n} 为 \mathbb{F}_{p^m} 的子域,推出 $n \mid m$.
- ▶ 注意到 $x^{p^n} x$ 的所有根恰好是 \mathbb{F}_{n^n} 中的元素全体,因此命题等价于第 3 个基本事实.

第五章第 22 题第 3、4 问

设 p 为素数, \mathbb{F}_p 为 p 元有限域, $P_n(x)$ 为 \mathbb{F}_p 上 n 次首一不可约多项式全体的乘积, 则 $x^{p^n} - x = \prod_{d|n} P_d(x)$, 且 $P_n(x) = \prod_{d|n} (x^{p^d} - x)^{\mu(n/d)}$, 其中 μ 是莫比乌斯函数.

莫比乌斯反演公式: 设 f(n) 和 g(n) 是数论函数, 若 $f(n) = \prod_{d|n} g(d)$, 则 $g(n) = \prod_{d|n} f(d) \mu(n/d)$.

- ▶ 令 $F_n(x) = \prod_{d|n} P_d(x)$, 则 $F_n(x)$ 没有重根,且 $P_d(x) \mid x^{p^n} x$ 推出 $F_n(x) \mid x^{p^n} x$.
- ▶ 任给 $x^{p^n} x$ 根 α , $\mathbb{F}_p(\alpha)$ 是 \mathbb{F}_{p^n} 的子域, α 次数整除 n, 有 $F_n(\alpha) = 0$, 推出 $x^{p^n} x \mid F_n(x)$.
- ▶ 注意到 $\prod_{d|n} (x^{p^d} x)^{\mu(n/d)} = \prod_{d|n} \left(\prod_{d'|d} P_{d'}(x)\right)^{\mu(n/d)} = \prod_{d'|n} P_{d'}(x)^{\sum_{d''|\frac{n}{d'}} \mu(d'')}$
- $ightharpoonup \sum_{d|n} \mu(d) = [1/n]$,其中 [·] 为下取整. 立刻得到 $\prod_{d'|n} P_{d'}(x)^{\sum_{d''|\frac{n}{d'}} \mu(d'')} = P_n(x)$.

设 p 为素数, \mathbb{F}_p 为 p 元有限域, N_n 为 \mathbb{F}_p 上全体 n 次首一不可约多项式的数目,则

$$N_n = \frac{1}{n} \sum_{d|n} \mu(n/d) p^d.$$

N_n 与 P_n 的次数之间的联系

证明

- ▶ 注意到 $P_n(x)$ 为全体 n 次首一不可约多项式的乘积,因此 $N_n = \deg(P_n(x))/n$.
- ▶ $P_n(x) = \prod_{d|n} (x^{p^d} x)^{\mu(n/d)}$, 表面 $\deg(P_n(x)) = \sum_{d|n} \mu(n/d) p^d$, 因此结论成立.

思维拓展

上述命题可否推至一般的 \mathbb{F}_q ,这其中有无异同?证明 $\frac{p^n}{n} - \frac{p(p^{n/2}-1)}{n(p-1)} \le N_n \le \frac{p^n-p}{n}$,并探究等号成立的条件.

第五章第 24 题

证明有限域中的每一个元素可表为两个元素的平凡和.

鸽笼原理和二次互反律的应用

思维拓展

上述命题表明 $x^2+y^2=a$ 对一切 $a\in\mathbb{F}_q$ 总是有解. 记 $N(a)=|\{(x,y)\in\mathbb{F}_q^2|x^2+y^2=a\}|$,可以得到 $N(a)\neq 0$,试计算 N(a).

- ▶ 若特征为 2,则 $z = z^{2^m} = (z^{2^{m-1}})^2 + 0$ 显然成立;若特征为奇素数,则 \mathbb{F}_q 中的非零平方元个数为 $\frac{q-1}{2}$.
- ▶ 若 $-1 = \alpha^2$ 是平方元,则 $z = \left(\frac{z+1}{2}\right)^2 + \left(\alpha \frac{z-1}{2}\right)^2$ 可以表为平方和.
- ► 若 $-1 = \alpha^2$ 不是平方元,固定 x 的选择,则 $x^2 + y^2$ 有 $\frac{q+1}{2}$ 个不同的取值,全都非零.
- ▶ 存在非平方元可以写作 $x^2 + y^2$, 于是 $z^2(x^2 + y^2)$ 给出了所有的非平方元.

多项式分裂域

设 f(x) 是 \mathbb{F}_q 上的 6 次首一多项式,则 f(x) 的分裂域有几种可能的情况?

整数分拆和有限域与其子域的关系

思维拓展

设 F(n) 为 n 次首一多项式的可能的分裂域的种数,你能写出 F(n) 的表达式吗?

- ▶ 设 $f(x) = f_1(x)f_2(x)\cdots f_m(x)$ 为不可约分解,则分裂域由其不可约因式完全决定,而不可约因式的分裂域由其次数完全决定.
- ▶ 设 $n = n_1 + \cdots + n_t$ 为不可约次数的情况,则相应的扩张次数为 n_1, \cdots, n_t 的最小公倍数,因此用 6 种可能的分裂域。

三项不可约多项式

设 $f(x) = x^{2n} + x^n + 1 \in \mathbb{F}_2[x]$, 证明: f(x) 不可约当且仅当存在非负整数 k 使得 $n = 3^k$.

简单的数论和多项式整除的关系

思维拓展

设 $f(x) = x^{4n} + x^n + 1 \in \mathbb{F}_2[x]$, 则 f(x) 不可约当 且仅当存在非负整数 k 和 m 使得 $n = 3^k \cdot 5^m$.

- ▶ 若 $n = 3^k$, 则 $3^{k+1} \mid 4^{3^k} 1 = 2^{2n} 1$,
- ▶ 推出 $x^{3n} 1 \mid x^{2^{2n}} x$, 因此 $f(x) \mid x^{2^{2n}} x$.
- ▶ 设 η 为 f(x) 的根,则 $\mathbb{F}_2(\eta)$ 为 $\mathbb{F}_{2^{2n}}$ 子域,并且满足 $\mathbb{F}_{2^2} \subset \mathbb{F}_2(\eta) = \mathbb{F}_{2^{2\cdot 3^t}}(t \leq k)$.
- ▶ $gcd(3^{k+1}, 2^{2 \cdot 3^t} 1) = 3^{t+1}$,若 t < k,则 $\eta^n = 1$,即 $f(\eta) \neq 0$ 矛盾. $\mathbb{F}_2(\eta) = \mathbb{F}_{2^{2 \cdot 3^t}}$.
- ▶ 若 $n = h \cdot p$ 使得 $p \neq 3$ 为素数,只需要去证明 $g(x) = x^{2p} + x^{p} + 1$ 可约即可.
- ▶ 若 g(x) 不可约,则 $g(x) \mid x^{2^{2p}-1} 1$,因此 $g(x) \mid \gcd(x^{3p} 1, x^{2^{2p}-1} 1) = x^3 1$ 矛盾.

三项不可约多项式

设 $b \in \mathbb{F}_p$, 证明: $f(x) = x^p - x - b$ 在 \mathbb{F}_{p^n} 不可约当且仅当 $p \nmid n$.

有限域中元素的运算

思维拓展

设 q 是素数方幂, $b\in\mathbb{F}_q$ 和 $1\neq a\in\mathbb{F}_q$,则 $f(x)=x^q-ax-b$ 在 \mathbb{F}_q 上可约.

- **>** 设 α 为 f(x) 的根, $\alpha^{p^2} = (\alpha + b)^p = \alpha + 2b$. 以此类推, $\alpha^{p^m} = \alpha + mb$.
- ▶ 若 $p \nmid n$, 则 $\alpha^{p^{nn}} = \alpha + nmb$, 因此 m = p 是使得 $\alpha^{p^{mn}} = \alpha$ 成立的最小的正整数.
- ▶ 推出 $\mathbb{F}_{p^n}(\alpha) = \mathbb{F}_{p^{pn}}$, 因此不可约.
- ▶ 若 $p \mid n$, 则 $\alpha^{p^n} = \alpha$, 推出 $\alpha \in \mathbb{F}_{p^n}$, 因此 f(x) 在 \mathbb{F}_{p^n} 上完全分裂.

多项式的 Galois 群

多项式的 Galois 群的必要性

设 K/F 是有限 Galois 扩张,则 K 是 F 上一个不可约多项式 m(x) 的分裂域.

有限可分扩张是单代数扩张

总结

域扩张的 Galois 群 Gal(K/F) 就是多项式 m(x) 的 Galois 群. 所谓多项式的 Galois 群就是就是 多项式的分裂域的 Galois 群.

- ▶ 有限 Galois 扩张是有限正规可分扩张,因此是单扩张。
- ▶ 存在 α 使得 $K = F(\alpha)$.
- 由于 K/F 是正规扩张, 因此 α 的共轭元均 在 K 中. 这表明 K/F 是 α 极小多项式 m(x) 的分裂域.

三次多项式的 Galois 群

- ▶ 三次多项式的统一形式:设域 F 特征不是 3,三次多项式均可化作 $x^3 + px + q \in F[x]$.
- ▶ n 次多项式 Galois 群结构: n 次多项式的 Galois 群均可以看作根的置换群,即 S_n 的子群.
- ▶ 三次多项式 Galois 群: 设 F 特征不是 2 和 3, $f(x) = x^3 + px + q$, 判别式 $D(f) = -(4p^3 + 27q^2)$.

$$\operatorname{Gal}(f(x)/F) = egin{cases} 1, & f(x) &$$

第八章第 16 题第 2 问

分别计算 $f(x) = x^3 - x - 1$ 在 \mathbb{Q} 和 $\mathbb{Q}(\sqrt{-23})$ 上的 Galois 群.

三次多项式的 Galois 群的分类

思维拓展

对特征 2 和 3 的情况进行类似分类,给出其上 三次和四次多项式 Galois 群的结构.

- ▶ 判断是否可约:通过试根法得 f(x) 在 \mathbb{Q} 上不可约,因此也在 \mathbb{Q} 的二次扩张上不可约.
- ▶ 计算判别式: 计算得到 D(f) = -23, 在 ℚ 上不可开方, 但是在 $\mathbb{Q}(\sqrt{-23})$ 上可开方.
- ▶ 得到结论: $Gal(f(x)/\mathbb{Q}) = S_3$, 且 $Gal(f(x)/\mathbb{Q}(\sqrt{-23})) = A_3$.

判别式的计算

设 f(x) 是 n 次多项式, $\alpha_1, \dots, \alpha_n$ 为全部 n 个根,定义 $D(f) = \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j)^2$ 为 f 的判别式.将 D(f) 表示为 f 的系数的多元多项式.

对称多项式基本定理

例子计算

设 $f(x) = x^3 + ax^2 + b$, 计算 D(f).

- $ightharpoonup D(f) = ua^6 + va^3b + wb^2.$
- ▶ 取 (1,1,-1/2) 和 (1,2,-2/3) 进行计算.

- ▶ 注意到 D(f) 是关于 n 个根的齐次对称多元 多项式,因此可以由 n 个根的初等对称多 项式进行表示.
- ト 设 $f(x) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$,设 $\sigma_i(\alpha_1, \dots, \alpha_n) = \sum_{1 \leq k_1 < \dots < k_i \leq n} \alpha_{k_1} \dots \alpha_{k_i}$ 为初等对称多项式,则 $\sigma_i(\alpha_1, \dots, \alpha_n) = (-1)^i a_i$
- ▶ 将 D(f) 可待定系数地表为 $a_i(1 \le i \le n)$ 的 多元多项式,再通过解方程得到结果.

四次多项式的 Galois 群

- ▶ 四次多项式的统一形式: 设域 F 特征不是 2 和 3,四次多项式均可化作 $x^4 + px^2 + qx + r$.
- ▶ 四次多项式的预解式: 设 f(x) 不可约,否则可以化作 3 次或 2 的情况,此时令 $\alpha_1, \dots, \alpha_4$ 为全 部不同根. 预解式为 $g(x) = (x \alpha)(x \beta)(x \gamma) = x^3 2px^2 + (p^2 4r)x + q^2$, 其中

$$\alpha = (\alpha_1 + \alpha_2)(\alpha_3 + \alpha_4), \beta = (\alpha_1 + \alpha_3)(\alpha_2 + \alpha_4), \gamma = (\alpha_1 + \alpha_4)(\alpha_2 + \alpha_3).$$

四次多项式的 Galois 群

四次多项式 Galois 群:设 F 特征不是 2, f(x) 四次不可约多项式, g(x) 为预解式, K/F 为预解 式 g(x) 的分裂域. 记 K_4 为克莱因四元数群, C_4 为 4 阶循环群, D_4 为 4 元二面体群.

$$\operatorname{Gal}(f(x)/F) = egin{cases} K_4, & g(x)$$
在 F 中完全分裂 $C_4, & g(x)$ 在 F 中有且仅有一个根且 $f(x)$ 在 K 上可约 $D_4, & g(x)$ 在 F 中有且仅有一个根且 $f(x)$ 在 K 上不可约 $A_4, & g(x)$ 在 F 中不可约且 $D(g) \in F^2$ $S_4, & g(x)$ 在 F 中不可约且 $D(g) \notin F^2$

第八章第 18 题

设 F 的特征不为 2, $f(x) = x^4 + ax^2 + b \in F[x]$ 不可约, G 为 f(x) 的 Galois 群. 通过讨论 a 和 b 的取 值. 决定 G 的所有可能情况.

四次多项式 Galois 群的结构

情况 1: $b \in F$ 的一个平方数

- ▶ 首先计算预解式 $g(x) = x^3 2ax^2 + (a^2 4b)x = x((x-a)^2 4b)$
- ▶ 根据四次多项式 Galois 群的结构, $G \cong K_4 = <(12)(34),(13)(24) > \subset S_4.$

第八章第 18 题情况 2

b 不是 F 的平方数, $b(a^2-4b)$ 是 F 的平方数.

四次多项式 Galois 群的结构和分裂域结构

情况 2 证明

- ▶ g(x) 在 F 上的分裂域 K 是 F 上的二次扩张,取 $t \in \overline{F}$ 使得 $t^2 = b$,则 K = F(t).
- $f(x) = \left(x^2 + \frac{a}{2}\right)^2 \frac{a^2 4b}{4} = \frac{1}{b} \left[\left(tx^2 + \frac{ta}{2}\right)^2 \frac{b(a^2 4b)}{4} \right].$
- ▶ 若 $b(a^2-4b)$ 是 F 的平方数,则 f(x) 在 K=F(t) 上可约.
- ▶ 根据四次多项式 Galois 群的结构, $G \cong C_4 = <(1234) > \subset S_4$.

第八章第 18 题情况 3

b 不是 F 的平方数, $b(a^2 - 4b)$ 不是 F 的平方数.

四次多项式 Galois 群的结构和扩域中的元素表达

- ▶ 反设 f(x) 在 K 上可约,则由 f(x) 在 F 上不可约,可写作 $f(x) = (x^2 + a_1x + b_1)(x^2 + a_2x + b_2)$.
- ▶ 展开得到 $a_1 + a_2 = 0$ 且 $a_1b_2 + a_2b_1 = 0$, $b_1b_2 = b$, $a_1a_2 + b_1 + b_2 = a$.
- ▶ 若 $a_1 = 0$, 则 $b_1 b_2 = m + nt \notin F$, 推出 $b_1 b_2 = nt(n \neq 0)$, 因此 $b(a^2 4b) = n^2b^2$ 矛盾.
- ▶ $\ddot{a}_1 \neq 0$, 则 $b_1 b_2 = 0$, 推出 $b = b_1^2$ 和 $a = 2b_1 a_1^2$.
- ▶ 注意到 $K = F(t) = F(b_1)$, 设 $a_1 = m + nb_1$, 则 $a = 2b_1 m^2 bn^2 2nmb_1$.
- ▶ 因此 nm = 1 且 $m^2 + bn^2 + a = 0$, 这表明 f(m) = 0 矛盾. 因此 f(x) 在 K 上不可约,有 $G \cong D_4$.

问题补充和方法扩张

问题 1

任给 n 阶 Abel 群 G, 能否找到域扩张 L/\mathbb{Q} 使得 $Gal(L/\mathbb{Q}) = G$? 任给一个 S_n 的子群 H 呢?

简要说明

- ▶ 注意到 Abel 扩张可以嵌入到分圆扩张中, 因此利用分圆扩张的性质即可得到.
- ▶ 目前仍然是一个开放问题,被称为 Galois 逆问题.

问题 2

首一无重根的整系数多项式 f(x) 在 \mathbb{Q} 上的群和在 \mathbb{F}_p 上的群有什么联系?

简要说明

- ightharpoonup 首一无重根的整系数多项式 f(x) 在 \mathbb{F}_p 上的群是它在 \mathbb{Q} 上的群的子群.
- ▶ 如果 f(x) 在 ℚ 上的群 $(S_n$ 的子群) 没有 $\deg(f)$ 的轮换,则 f(x) 在每一个 \mathbb{F}_p 上均可约. 反过来 也成立.