Question

Consider a quantum system made of one qubit. The system is in the initial state $|\psi\rangle = |1\rangle$. The quantum gate Pauli Y is applied on $|\psi\rangle$. Can you describe the action of this gate on the system? Can you give a graphical representation of the circuit? What is the final state of the system?

Answer 1

The Pauli Y gate is represented by the following matrix:

$$Y = [[0, -i],$$
 $[i, 0]]$

When applied to a single-qubit state, this gate performs a rotation around the y-axis of the Bloch sphere, mapping the initial state $|1\rangle$ to the state $|0\rangle$ and vice versa. Mathematically, we can represent this as follows:

$$Y|1\rangle = [[0, -i], [i, 0]]|1\rangle = [i, 0] = i|0\rangle$$

Thus, the action of the Pauli Y gate on the initial state $|1\rangle$ is to rotate it to the state $|0\rangle$, up to a global phase of i. The final state of the system is therefore:

$$|\psi\rangle = Y|1\rangle = i|0\rangle$$

A graphical representation of this circuit can be given by the following diagram:

$$|1\rangle$$
 ---- $i|0\rangle$

Here, the state $|1\rangle$ is input into the Y gate, which outputs the state $|10\rangle$. Note that the global phase of i does not affect any observable quantities, so this final state is equivalent to the state $|0\rangle$ up to an overall phase factor.

In terms of the Bloch sphere representation, the Pauli Y gate rotates the qubit state by 180 degrees around the y-axis, reflecting it across the x-z plane.

Answer 2

The Pauli Y gate is a single-qubit gate that corresponds to a rotation around the Y-axis of the Bloch sphere by 180 degrees. The matrix representation of the Pauli Y gate is:

$$Y = [[0, -i], [i, 0]]$$

Applying the Pauli Y gate to the initial state |1| gives:

$$Y|1\rangle = [[0, -i],$$

 $[i, 0]]|1\rangle$
 $= [[-i],$
 $[0]]$
 $= -i|0\rangle$

Therefore, the final state of the system is -il0>. Geometrically, the Pauli Y gate corresponds to a reflection of the state vector about the Y-axis of the Bloch sphere. The circuit representation of applying the Pauli Y gate to the initial state |1> is:

Here, the gate Y is applied to the qubit in the initial state $|1\rangle$. The final state of the system is the output of this gate, which is $-i|0\rangle$.

Answer 3

The Pauli Y gate is one of the basic quantum gates, which acts on a single qubit. It is represented by the following matrix:

$$Y = [[0, -i], [i, 0]]$$

where 'i' represents the imaginary unit.

The action of the Pauli Y gate on the initial state $|\psi\rangle = |1\rangle$ can be calculated by multiplying the matrix representation of the gate with the vector representation of the state. In this case:

$$Y * |1\rangle = [[0, -i], [i, 0]] * [[0], [1]] = [[-i], [0]]$$

So, the final state of the system after applying the Pauli Y gate is $|-i\rangle$, which can also be expressed as $-i|0\rangle$.

Graphical representation of the circuit:

$$|1\rangle$$
 ----- $|Y$ ----- $|-i\rangle$

In the circuit diagram, the qubit starts in the state $|1\rangle$, then the Pauli Y gate is applied, and the final state is $|-i\rangle$.

Note: In quantum mechanics, we often represent the states as unit vectors, but for simplicity, I have used the Dirac notation to represent the states as kets (e.g., $|1\rangle$, $|-i\rangle$).