Área de una Región entre dos Curvas

Profesor: Dr. Ing. Carlos C. SCIOLI

Ejercicios para la Sección 5.1 del Larson (pag. 245):

Cálculo del área entre dos curvas e integración respecto de eje y (pág. 257

y 312):

Pág. 257: 27 al 36

En los ejercícios 31-36, encuentre el área de la región limitada por las gráficas de las ecuaciones.

31. $y = 3x^2 + 1$, x = 0, x = 2, y = 032. $y = 1 + \sqrt[3]{x}$, x = 0, x = 8, y = 0

51.
$$y - 3x^2 + 1$$
, $x - 0$, $x - 2$, $y - 0$
12. $y = 1 + \frac{3}{2}x$, $x = 0$, $x = 8$, $y = 0$
3. $y - x^3 + x$, $x = 2$, $y = 0$
4. $y - x^2 + 3x$, $y = 0$

x = 2, y = 0

Pág. 312:

1 al 7 /// 9 al 23 /// 25 – 26 /// 35 – 36 -

37

15 al 38 /// 40 - 41 ///55 al 60 /// 65

12 CAPÍTULO 5

Aplicaciones de la integración

Ejercicios de la sección 5.1

En los ejercicios 1-4, dé la integral definida con la que se encuentra el área de la región

1. $f(x) = x^2 - 6x$ g(x) = 0

3.
$$f(x) = 3(x^3 - x)$$

 $g(x) = 0$

En los ejercicios 5-8, el integrando de la integral definida es la diferencia de dos funciones. Trace la gráfica de cada función y sombree la región que representa la integral.

5.
$$\int_0^4 \left[(x+t) - \frac{x}{2} \right] dx$$

$$6. \int_2^3 \left[\left(\frac{x^3}{3} - x \right) - \frac{x}{3} \right] dx$$

7.
$$\int_{-\pi/3}^{\pi/3} (2 - \sec x) \, dx$$

8.
$$\int_{-\pi/4}^{\pi/4} (\sec^2 x - \cos x) dx$$

En los ejercicios 9 y 10, encuentre el área de la región mediante integración (a) respecto a x y (b) respecto a y.

9.
$$x = 4 - y^2$$

 $x = y - 2$

a as ventios impi

Para pensar En los ejercicios 11 y 12, diga cuál de los valores se aproxima mejor al área de la región limitada por las gráficas de f y g. (Decida con base en un dibujo de la región sin realizar cálculos.)

11.
$$f(x) = x + 1$$
, $g(x) = (x - 1)^2$
(a) -2 (b) 2 (c) 10 (d) 4 (e)

12.
$$f(x) = 2 - \frac{1}{2}x$$
, $g(x) = 2 - \sqrt{x}$
(a) 1 (b) 6 (c) -3 (d) 3 (e) 4

En los ejercicios 13–26, trace la región limitada por las gráficas de las funciones algebraicas y encuentre el área de la región.

13.
$$y = \frac{1}{2}x^3 + 2$$
, $y = x + 1$, $x = 0$, $x = 2$

14.
$$y = -\frac{3}{8}x(x-8)$$
, $y = 10 - \frac{1}{2}x$, $x = 2$, $x = 8$

15.
$$f(x) = x^2 - 4x$$
, $g(x) = 0$

16.
$$f(x) = -x^2 + 4x + 1$$
, $g(x) = x + 1$

17.
$$y = x$$
, $y = 2 - x$, $y = 0$

18.
$$y = \frac{1}{x^2}$$
, $y = 0$, $x = 1$, $x = 5$

19.
$$f(x) = \sqrt{3x} + 1$$
, $g(x) = x + 1$

20.
$$f(x) = \sqrt[3]{x-1}$$
, $g(x) = x-1$

21.
$$f(y) = y^2$$
, $g(y) = y + 2$
22. $f(y) = y(2 - y)$, $g(y) = -y$

23.
$$f(y) = y^2 + 1$$
, $g(y) = 0$, $y = -1$, $y = 2$

24.
$$f(y) = \frac{y}{\sqrt{16 - y^2}}$$
, $g(y) = 0$, $y = 3$

5.
$$f(x) = \frac{10}{x}$$
, $x = 0$, $y = 2$, $y = 10$

26.
$$g(x) = \frac{4}{2-x}$$
, $y = 4$, $x = 0$

En los ejercicios 27-34, (a) use una aplicación gráfica para representar la región limitada por las gráficas de las ecuaciones, (b) encuentre el área de la región y (c) use las capacidades de integración de una aplicación gráfica para comprobar los resultados.

27.
$$f(x) = x(x^2 - 3x + 3), g(x) = x^2$$

28.
$$y = x^4 - 2x^2$$
, $y = 2x^2$

29.
$$f(x) = x^4 - 4x^2$$
, $g(x) = x^2 - 4$

30.
$$f(x) = x^4 - 4x^2$$
, $g(x) = x^3 - 4x$

31.
$$f(x) = 1/(1 + x^2)$$
, $g(x) = \frac{1}{2}x^2$
32. $f(x) = 6x/(x^2 + 1)$, $y = 0$, $0 \le x \le 3$

33.
$$y = \sqrt{1 + x^3}, y = \frac{1}{2}x + 2, x = 0$$

34.
$$y = x \sqrt{\frac{4-x}{4+x}}, y = 0, x =$$

Ejercicio 34: (Pag. 257) encuentre el área de la región limitada por las gráficas de las ecuaciones

$$f(x) = -x^2 + 3x \qquad y = 0$$

donde corta el eje de las x?

$$Area = \int_0^3 f(x) \, dx = \int_0^3 -x^2 + 3x \, dx = -\frac{1}{3}x^3 + \frac{3}{2}x^2 \Big|_0^3 = \left(-\frac{1}{3}3^3 + \frac{3}{2}3^2 \right) - 0 = 0$$

$$\text{Area} = \left(-\frac{1}{3}3^3 + \frac{3}{2}3^2\right) - 0 = \left(-\frac{27}{3} + \frac{27}{2}\right) = -9 + \frac{27}{2}$$

Ejercicio 4: (Pag. 312) Dé la integral definida para determinar el área sombreada

$$f(x) = (x-1)^2$$
$$g(x) = x - 1$$

Definir donde la f esta por arriba de g y en que intervalo esta por debajo

$$\text{Area} = \int_0^1 f(x) - g(x) \, dx = \int_1^2 g(x) - f(x) \, dx$$

$$Area = \int_0^1 (x-1)^2 - (x-1) \, dx = \int_1^2 (x-1) - (x-1)^2 \, dx$$

<u>Ejercicio 36:</u> (Pag. 312)

$$f(x) = \sin x$$
$$g(x) = \cos 2x$$

$$Area = \int_{-\pi/2}^{\pi/6} g(x) - f(x) \, dx = \int_{-\pi/2}^{\pi/61} \cos 2x - \sin x \, dx$$

$$Area = \int_{-\pi/2}^{\pi/6} \cos 2x - \sin x \, dx = \frac{1}{2} \sin 2x + \cos x \Big|_{-\pi/2}^{\pi/6}$$

$$\text{Area} = \frac{1}{2} \sin 2 \frac{\pi}{6} + \cos \frac{\pi}{6} - \left(\frac{1}{2} \sin 2 \frac{-\pi}{2} + \cos \frac{-\pi}{2} \right)$$

Área de una Región entre dos Curvas

Profesor: Dr. Ing. Carlos C. SCIOLI