THEOREM BASED ON ASYMPTOTIC NOTATION

Theorem: If f(n) = O(g(n)) and f(n) = O(g(n)), then f(n) = O(g(n)).

Proof: If f(n) = O(g(n)), then there exists c_1 such that: $f(n) \le c_1(g(n))$

Moreover, $f(n) = \Omega(g(n))$, therefore there exists c_2 such that:

$$f(n) \ge c_2 g(n)$$

Combining the above two result it may be stated that $c_1 \times g(n) \leq f(n) \leq c_2 \times g(n)$

The above theorem can be understood with the help of the following example . Let $f(n)=c_1x^n+c_2x^{n-1}+\cdots+c_nx^0$ then:

$$f(n) = O(x^n)$$

also,

$$f(n) = \Omega(g(n))$$

therefore,

$$f(n) = \Theta(g(n)).$$

The above theorem is only possible when $\Omega\big(g(n)\big)$ exists i.e. $c_1g(n) \leq f(n)$ and $f(n) \leq c_2g(n)$. Hence it stands like: $c_1g(n) \leq f(n) \leq c_2g(n)$, here $c_1g(n) \leq f(n) = \Omega\big(g(n)\big)$ and $f(n) \leq c_2g(n) = 0\big(g(n)\big)$. Hence there exists: $c_1g(n) \leq f(n) \leq c_2g(n) = 0\big(g(n)\big)$.
