Course: Cell Physiology-PHYS-115

Cell Membrane Transport Processes Active Transport (Part-I)

Learning Objectives:

- ❖ Define "Active Transport" and list its different types.
- ❖ Describe the sources of energy of active transport.
- ❖ Explain the mechanism of Na⁺ K⁺ pump.
- ❖ List the important functions of Na⁺ K⁺ pump.

Active Membrane Transport:

- * Whenever a cell uses energy to move solutes across the membrane, the process is referred to as *active*. Substances moved actively across the plasma membrane are usually unable to pass in the necessary direction by passive transport processes.
- The substance may be too large to pass through the channels, incapable of dissolving in the lipid bilayer, or unable to move down its concentration gradient.
- * There are two major means of active membrane transport:
 - > Active transport.
 - > Vesicular transport.

Active Membrane Transport – **Active Transport**:

- ❖ Materials may be moved against its concentration gradient by this means. Movement of the material must be coupled with an energy-yielding reaction.
- ❖ It is unidirectional, and is actually independent of concentration gradient, although it is set up in the first place because of an unfavorable gradient.
- Active transport can be *simple* (one substance is pumped by one system), or *coupled* (two substances are transported simultaneously by the same system).
- Coupled transport may be:
 - > Contransport or symport = both substances move in the same direction.
 - > Countertransport or antiport = substances moving opposite ways.

Active Membrane Transport – **Active Transport**:

- * The energy to power active transport can come from:
 - > Splitting of ATP may be coupled to the transport (*Primary* active transport).
 - Exergonic (passive, facilitated) movement of one molecule may be used to power endergonic (active) movement of another *(secondary active transport)*. Transport may be also driven indirectly by energy stored in ionic gradients created by primary active transport pumps. *(this will be discussed with the cellular functions facilitated by Na⁺ K⁺ pump in part-II lecture)*.
- **Secondary active transport systems are all coupled systems.**

Sodium-Potassium Pump (Na+ - K+ Pump):

- In *primary active transport*, hydrolysis of ATP results in the phosphorylation of the transport protein. This step causes the protein to change its shape in such a manner that it "pumps" the bound solute across the membrane.
- The most investigated example of a *primary active transport system* is *the sodium-potassium pump*, for which the carrier, or "pump," is an enzyme called $Na^+ K^+$ *ATPase*.
- ❖ In the body, the concentration of K^+ inside the cell is some 10 times higher than that outside, and the reverse is true of Na^+ . These ionic concentration differences are essential for excitable cells like muscle and nerve cells to function normally and for all body cells to maintain their normal fluid volume.
- ❖ Because Na⁺ and K⁺ leak slowly but continuously through leakage channels in the plasma membrane along their concentration gradient (and cross more rapidly in stimulated muscle and nerve cells), *the Na⁺- K⁺ pump operates almost continuously as an antiporter.*
- ❖ It simultaneously drives Na⁺ out of the cell against a steep concentration gradient and pumps K⁺ back in.

Mnemonics to remember!

Na-K pump: Pumps K in and Na out

Mechanism of Na^+ - K^+ Pump: (the next slide image shows the mechanism in details)

- ❖ The pump is an *allosteric protein*, meaning that *it has two configurations*:
 - \triangleright The two configurations are referred to as $\mathbf{E_1}$ and $\mathbf{E_2}$.
 - \triangleright **E**₁ opens to the cytoplasmic side, and has a *high affinity for Na*⁺.
 - \triangleright E₂ opens to the outside of the cell, and has a *high affinity for K*⁺.
- **Step-1:** 3 Na⁺ are bound to inside of membrane, with pump in E_1 configuration.
- \bullet Step-2: Step-1 triggers the enzyme to split ATP, which provides the energy to change the configuration to E_2 . the enzyme itself may be phosphorylated.
- ❖ Step-3: Bound Na⁺ are released to extracellular environment.
- **Step-4:** 2 K^+ are bound to outside of membrane, with pump in E_2 configuration.
- ❖ Step-5: Step-4 triggers dephosphorylation of the enzyme, which provides the energy to move the K⁺ to inside the membrane.
- **♦ Step-6:** K⁺ are released into cytoplasm, allowing enzyme to change back to E₁ configuration.

Primary active transport is the process in which solutes are moved across cell membranes against electrochemical gradients using energy supplied directly by ATP. The action of the Na+-K+ pump is an important example of primary active transport.

Na⁺ - K⁺ Pump - Functions:

- ❖ Electrochemical: The cell is like a battery, and its charge is maintained by the Na⁺ K⁺ Pump. It maintains a voltage within cells of -20 to -200 milvolts:
 - ➤ Every cell maintain some —ve voltage within the cell, necessary for life.
 - ➤ Nerve & muscle cells use this electrochemical energy for conduction impulses.
 - The charge is maintained by anions predominating within the cell.
- **❖ Biochemical:** K⁺ ions have many functions inside the cell, e.g. ribosomes function & enzyme activation of many enzymes. Sodium inhibits these processes.

Na⁺ - K⁺ Pump - Functions:

- ❖ Osmotic: Distribution of Na⁺ & K⁺ ions is a major factor in determining osmotic pressure across the cell membrane:
 - This is essential in maintaining cell size and shape.
 - > Determine blood pressure.
 - ➤ The kidneys retain water in the body, by pumping Na⁺ back into the blood, out of the provisional urine in the kidney tubules.

Energy source for other transport:

- ➤ Na⁺ K⁺ Pump sets up concentration gradients of these ions, across the membrane.
- ➤ If passive ion channels are opened, Na⁺ can diffuse passively back into the cell and K⁺ can likewise move out the cell.
- These movements are exergonic, i.e. energy is released by these movements and can be used to power the movement of other ions, or nutrients.