Week 2: Rough Sets, Information System, Decision Table

CS286: Topics in Intelligent Systems

Katarzyna Tarnowska Ph.D.

The Department of Computer Science College of Science San Jose State University

8/26/2020

- Historical outline
 - Uncertainty
 - Logic
 - Zdzislaw Pawlak
- 2 Rough Set Theory
 - Background
 - Current Applications
 - Information System
- Decision Table
 - Example
 - Knowledge Representation
 - Activity

Readings

- Required: Tarnowska17 Chapter 4.1.1 (Informations Systems) - 4.1.2 (Decision Tables)
- Additional reading (optional)
 - Lech Polkowski: "Zdzislaw Pawlak as I saw Him and Remember Him Now" in Thriving Rough Sets, Chapter 2, Springer, 2017.
 - 2 Lech Polkowski: "Rough Sets, Rough Mereology and Uncertainty" in Thriving Rough Sets, Chapter 4, Springer, 2017.
 - Safael Bello and Rafael Falcon: "Rough Sets in Machine Learning: A Review" in Thriving Rough Sets, Chapter 5, Springer, 2017.

- Historical outline
 - Uncertainty
 - Logic
 - Zdzislaw Pawlak
- 2 Rough Set Theory
 - Background
 - Current Applications
 - Information System
- 3 Decision Table
 - Example
 - Knowledge Representation
 - Activity

- Mistorical outline
 - Uncertainty
 - Logic
 - Zdzislaw Pawlak
- 2 Rough Set Theory
 - Background
 - Current Applications
 - Information System
- 3 Decision Table
 - Example
 - Knowledge Representation
 - Activity

The Phenomenon of Uncertainty

Uncertainty

Inability to choose one optimal object in the given context from a set of more than one optional objects. (Polkowski, 2017)

Examples:

The Uncertainty Principle of Heisenberg (nature)

The precise values of position and energy of an electron cannot be known simultaneously

Goedel's incompleteness theorem (human-thinking)

There can be formulated statements formally correct about which one cannot decide whether they are true or false

Uncertainty in everyday life

The omnipresence of uncertainty in all venues of life:

- Making decisions at crossroads
- Investing on stock market
- Forecasting a political issue
- ... When will coronavirus pandemic end???

Graded discussion

Discussion post: Uncertainty in everyday life (2 points)

- Describe in two sentences one situation within the last week when you dealt with uncertainty in decision-making
- Reply to at least one post that describes the same/similar experience as you had in the past.

- 1 Historical outline
 - Uncertainty
 - Logic
 - Zdzislaw Pawlak
- Rough Set Theory
 - Background
 - Current Applications
 - Information System
- 3 Decision Table
 - Example
 - Knowledge Representation
 - Activity

Logical systems to represent reasoning schemes with uncertainty

- Up to beginning of 20th century dealt solely with definite binary-valued statements, either true or false
- Jan Lukasiewicz in 1917 introduced 3-valued logic, with the value of 2 for statements uncertain (labelled as 'don't know')
- Lotfi Asker Zadeh introduced the concept of fuzzy set
 - $\mu_A(x)$ in (0,1) is a **fuzzy membership function** that indicates the degree of uncertainty whether x is in A

- Historical outline
 - Uncertainty
 - Logic
 - Zdzislaw Pawlak
- 2 Rough Set Theory
 - Background
 - Current Applications
 - Information System
- 3 Decision Table
 - Example
 - Knowledge Representation
 - Activity

Zdzislaw Pawlak - my scientific grandfather

Zdzislaw Pawlak -PhD advisor of:

Zbigniw Ras - PhD advisor of:

Katarzyna Tarnowska (me)

- An enginner by education (graduated from Warsaw University of Technology, Department of Electrical Engineering)
- "... but by intellectual composition he was close to theory in particular to mathematics and logic" (Polkowski, 2017) - more in Reading 1 (Slide 3)

- Historical outline
 - Uncertainty
 - Logic
 - Zdzislaw Pawlak
- 2 Rough Set Theory
 - Background
 - Current Applications
 - Information System
- 3 Decision Table
 - Example
 - Knowledge Representation
 - Activity

- Historical outline
 - Uncertainty
 - Logic
 - Zdzislaw Pawlak
- 2 Rough Set Theory
 - Background
 - Current Applications
 - Information System
- 3 Decision Table
 - Example
 - Knowledge Representation
 - Activity

The Pawlak Approach to Uncertainty

- Pawlak approached knowledge as ability to classify given objects into given categories
- *Uncertain knowledge* meant inability to classify certain objects into categories in a deterministic way.
- The notion of knowledge was a set of objects along with a partition of this set into categories, so-called approximation space.
- A specific implementation of this idea was using the notions of an information system and a decision system.

- Historical outline
 - Uncertainty
 - Logic
 - Zdzislaw Pawlak
- 2 Rough Set Theory
 - Background
 - Current Applications
 - Information System
- 3 Decision Table
 - Example
 - Knowledge Representation
 - Activity

Rough Sets in Machine Learning

Machine Learning

Image Recognition

Expert Systems

Graded discussion

Discussion post: Roungh Set Theory in Machine Learning

- Read or skim "Rough Sets in Machine Learning: A Review" by R.Bello and R.Falcon (see Slide 3 Reading 3)
- Discuss one chosen implementation of rough sets in machine learning and explain why you think it is important (in around 100 words).

- Historical outline
 - Uncertainty
 - Logic
 - Zdzislaw Pawlak
- 2 Rough Set Theory
 - Background
 - Current Applications
 - Information System
- 3 Decision Table
 - Example
 - Knowledge Representation
 - Activity

Definition

An **Information System** is a tuple $S=(X,A,V,\rho)$ where X is a finite set of **objects**, A is a finite set of **attributes**, $V=U_{a\in A}V_a$ where V_a is the set of values of attribute a (called the domain of a) and $|V_a|>1$, ρ is a function mapping objects and attributes to values, $\rho:X\times A\to V$.

A special case of Information Systems is called a *Decision Table*.

Definition

A **Decision System** (U, A, V, ρ, d) is augmented by an additional attribute, the **decision** d. The other attributes are called **conditions**.

- Historical outline
 - Uncertainty
 - Logic
 - Zdzislaw Pawlak
- 2 Rough Set Theory
 - Background
 - Current Applications
 - Information System
- 3 Decision Table
 - Example
 - Knowledge Representation
 - Activity

- Historical outline
 - Uncertainty
 - Logic
 - Zdzislaw Pawlak
- 2 Rough Set Theory
 - Background
 - Current Applications
 - Information System
- 3 Decision Table
 - Example
 - Knowledge Representation
 - Activity

Decision Table - Example

Example

A decision table with 8 **objects** describing patients with 3 **attributes**: *Headache*, *Muscle pain*, and *Temperature*. A **decision** is a binary attribute *Flu* specifying if a patient has a flu or not.

U	Headache	Muscle pain	Temp.	Flu
$\overline{p1}$	Yes	Yes	Normal	No
p2	Yes	Yes	$_{ m High}$	Yes
p3	Yes	Yes	Very-high	Yes
p4	No	Yes	Normal	No
p5	No	No	$_{ m High}$	No
p6	No	Yes	Very-high	Yes
p7	No	Yes	High	Yes
p8	No	No	Very-high	No

Graded Lab

Lab 2 activity: describing a decision table

Working with the dataset you chosen in Lab 1 answer the following questions:

- How many objects does the decision table describe?
- What does the object represent? (i.e. patient, log entry)
- How many attributes describe the objects?
- What are the conditional and what attribute(s) is the decision?

Decision Table - Practical Setting

In practical settings, **decision tables** are created from ordinary tables, datasets or database, by specifying conditions and decisions.

- Conditional attributes are characteristics that are easily available, for example measurements, parameters, personal data, etc.
- Decision is a feature related to not commonly known knowledge, for example given by an expert (i.e. physician) or based on later observations (i.e. stock exchange rating).

A sample dataset interpreted as a *decision table* with a *binary* **decision attribute** "Sick", specifying —whether a person is sick or not:

Patient	Age	Sex	Chol.	Resting ECG	Heart rate	Sick
p_1	53	M	203	hyp	155	yes
p_2	60	M	185	hyp	155	yes
p_3	40	M	199	norm	178	no
p_4	46	F	243	norm	144	no
p_5	62	F	294	norm	162	no
p_6	43	M	177	hyp	120	yes
p_7	76	F	197	abnorm	116	no
p_8	62	M	267	norm	99	yes
p_9	57	M	274	norm	88	yes
p_{10}	72	М	200	abnorm	100	no

- Historical outline
 - Uncertainty
 - Logic
 - Zdzislaw Pawlak
- 2 Rough Set Theory
 - Background
 - Current Applications
 - Information System
- Oecision Table
 - Example
 - Knowledge Representation
 - Activity

Decision Table as Knowledge Representation

- Decision table (DT) represents knowledge and allows to simulate decision-making processes.
- Knowledge in a DT is represented by associating or identifying decision values with certain values of conditional attributes.
- Decision is known only for the objects from the training table.
- The goal is to use it for establishing a decision for new objects, based on their attributes.

- Historical outline
 - Uncertainty
 - Logic
 - Zdzislaw Pawlak
- 2 Rough Set Theory
 - Background
 - Current Applications
 - Information System
- 3 Decision Table
 - Example
 - Knowledge Representation
 - Activity

Graded Lab

Lab 2 activity: knowledge representation

Working with the dataset you chosen in Lab 1 answer the following questions:

- What knowledge is represented by the chosen decision table?
- Who is the expert involved? (i.e. physician)
- What decision-making process does it simulate? (i.e. diagnosis, treatment)

Self-check

Try to answer the following questions:

- What are the reasoning schemes to incorporate uncertainty?
- What is the Pawlak's approach to uncertainty in rough set theory?
- Solution
 List three current influences of rough set theory in machine learning.
- What is a Decision Table? Give one example and explain concepts of object, attributes, conditions, and decisions.
- 6 How is decision table used to represent knowledge?

