

Boghosian

Motivation

confidence intervals

Summar

Interval Estimation

Motivation and Background

Bruce M. Boghosian

Department of Mathematics
Tufts University

©2022, all rights reserved

1 Motivation

Calculating confidence intervals

Motivation

Bruce M. Boghosian

Motivation

Calculatin confidence intervals

Summa

- Point estimates (MLE or MM) yield a single result.
- There is no indication of how accurate that result is.
- Need way to quantify the level of uncertainty in the result.
- This is done by constructing a *confidence interval*.
- A confidence interval is an interval in which the parameter has a high probability of being found.
- For example, 95% confidence interval for parameter p is an interval surrounding estimate, constructed such that actual p is in the interval with 95% probability (confidence).

Interval estimation from last time

Bruce M. Boghosian

Motivatio

Calculating confidence intervals

- Suppose you have n measurements of experimental data, X_1, \ldots, X_n .
- Nou have a priori knowledge that the data has variance $v_0 = \sigma_0^2$, but you do not know the mean μ .
- MLE for mean is the sample mean, $\mu_e = \overline{X} = \frac{1}{n} \sum_{j=1}^n x_j$.
- By CLT, $Z = \frac{\mu_e \mu}{\sigma_0 / \sqrt{n}}$ distributed like N(0,1) for large n.
- Think of the unknown μ as a random variable above, even though it is not capitalized.)

Calculation of confidence intervals

Bruce M. Boghosian

Motivation

Calculating confidence intervals

- We know $Z = \frac{\mu_e \mu}{\sigma_0 / \sqrt{n}}$ is distributed like standard normal.
- Solution to

$$\int_{-z}^{+z} dx \, \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) = 0.95$$

is
$$z = 1.9599...$$

Symmetric confidence interval

Bruce M. Boghosian

Motivation

confidence intervals

Summar

- With 95% confidence, $Z \in [-z, +z]$ where z = 1.9599...
- Hence with 95% confidence, we have

$$\begin{aligned} -z &\leq \ \frac{\mu_e - \mu}{\sigma_0 / \sqrt{n}} \leq +z \\ -z \frac{\sigma_0}{\sqrt{n}} &\leq \mu_e - \mu \leq +z \frac{\sigma_0}{\sqrt{n}} \\ \mu_e - z \frac{\sigma_0}{\sqrt{n}} &\leq \mu \leq \mu_e + z \frac{\sigma_0}{\sqrt{n}} \end{aligned}$$

• Confidence interval is then (where z = 1.9599...)

$$\mu \in \left[\mu_e - z \frac{\sigma_0}{\sqrt{n}}, \mu_e + z \frac{\sigma_0}{\sqrt{n}}\right]$$
 with 95% confidence

Bruce M. Boghosian

Motivation

Calculating confidence intervals

Summar

■ For the above calculation, we needed to solve

Prob
$$(|Z| \le z) = \int_{-z}^{+z} dx \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) = 1 - \alpha$$

for z when $\alpha = 0.05$. This could equivalently be written

$$\operatorname{Prob}\left(Z \geq z\right) = \int_{+z}^{\infty} dx \, \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) = \frac{\alpha}{2}.$$

- We refer to the solution of the above for z as $z_{\alpha/2}$.
- For $\alpha = 0.05$, we know $z_{\alpha/2} = z_{0.025} = 1.9599...$
- Confidence interval is more generally written

$$\mu \in \left[\mu_e - z_{\alpha/2} \frac{\sigma_0}{\sqrt{n}}, \mu_e + z_{\alpha/2} \frac{\sigma_0}{\sqrt{n}}\right]$$
 with $100(1-\alpha)\%$ confidence

Tufts Z tables (from Larsen & Marx)

1860	Table A.1 Cumulative Areas under the Standard Normal Distribution										
				/							
				/							
Z	0	1	2	3	4	5	6	7	- 8	9	
-3.	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.001	
-2.9	0.0019	0.0018	0.0017	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.001	
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.001	
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.002	
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.003	
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.004	
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.006	
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.008	
-2.2	0.0139	0.0136	0.0132	0.0129	0.0126	0.0122	0.0119	0.0116	0.0113	0.011	
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.014	
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.018	
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0238	0.023	
-1.8	0.0359	0.0352	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0300	0.029	
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.036	
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.045	
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0570	0.055	
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0722	0.0708	0.0694	0.068	
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.082	
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985	
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170	
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379	
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.161	
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.186	
-0.7	0.2420	0.2389	0.2358	0.2327	0.2297	0.2266	0.2236	0.2206	0.2177	0.214	
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.245	
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.277	
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.312	
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.348	
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.385	
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.424	
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.464	

Tufts Z tables (from Larsen & Marx)

z	0	1	2	3	4	5	6	7	8	9
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0,5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9278	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9430	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9648	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9700	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9762	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9874	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0,9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Tufts Summary

- Defined confidence intervals for normally distributed data.
- We demonstrated the calculation of confidence intervals.
- We defined z_{α} .
- We learned how to read the z tables in Appendix A.1.