Homework 8

Jim Zieleman

October 26, 2020

- 1. Let $f: X \to Y$ be a function.
 - (a) Prove that $f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)$ for every $U \subseteq Y$.

$$\begin{array}{l} f^{-1}(Y\backslash (U)) = \{x\in X\mid f(x)\in Y\backslash U\}\\ X\backslash f^{-1}(U) = X\backslash \{x\in X\mid f(x)\in U\} = \{x\in X\mid f(x)\in Y\backslash U\} \end{array}$$

$$f^{-1}(Y \backslash U) = \{ x \in X \mid f(x) \in Y \backslash U \} = X \backslash f^{-1}(U).$$

(b) Prove that $f: X \setminus Y$ is continuous if and only if f-1(C) is closed in X for every set C that is closed in Y.

Let $C \subseteq Y$ be closed. Then $Y \backslash C \subseteq Y$ is open.

So $f^{-1}(Y \setminus C) \subseteq X$ is open.

And by part (a) $X \setminus f^{-1}(C) \subseteq X$ is open.

Then $f^{-1}(C) \subseteq X$ is closed.

Let $C \subseteq Y$ be open. Then $Y \setminus C \subseteq Y$ is closed.

So $f^{-1}(Y \setminus C) \subseteq X$ is closed.

And by part (a) $X \setminus f^{-1}(C) \subseteq X$ is closed.

Then $f^{-1}(C) \subseteq X$ is open.

Then $f: X \to Y$.

2. Suppose $D \subseteq R$ is dense, and let $f, g : R \to R$ be continuous functions. Assume that f(x) = g(x) for all $x \in D$. Prove that f = g (that is, prove f(x) = g(x) for all $x \in R$).

Let $f, g: R \to R$ be continuous s.t f(x) = g(x) for all $x \in D$.

Since $D \subseteq R$ is dense by the definition of dense $\bar{D} = R$.

To show that f(x) = g(x) for all $x \in D$ it suffices to prove that f(x) = g(x) for all $x \in D'$ where D' is the limit point of D.

If $x \in D'$ then there is a sequence $x_n \in D$ s.t $\lim_{n \to \infty} = x$.

Therefore since f and g are continuous $f(x) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(x_n) = g(x)$. So f(x) = g(x).

- 3. Decide whether each set is connected. If it is disconnected, write it as the union of two nonempty separated sets A and B. Prove at least two of your answers.
 - (a) R is connected.
 - (b) $(0,1) \cup (1,2)$ is disconnected

Proof:

Let
$$A = (0,1)$$
 and $B = (1,2)$
So $E = A \cup B = (0,1) \cup (1,2)$

$$A \cap \bar{B} = (0,1) \cup [1,2] = \emptyset$$

$$\bar{A} \cap B = [0,1] \cup (1,2) = \emptyset$$

So $(0,1) \cup (1,2)$ is disconnected.

(c) Z is disconnected

Proof:

Let
$$A = (-\infty, .5)$$
 and $B = (.5, \infty)$.
 $Z = A \cup B = (-\infty, .5) \cup (.5, \infty)$

$$A \cap \bar{B} = (-\infty, .5) \cup [.5, \infty) = \emptyset$$

$$\bar{A} \cap B = (-\infty, .5] \cup (.5, \infty) = \emptyset$$

So Z is disconnected.

- (d) [1,5) is connected
- (e) $[0,1] \cap Q$ is disconnected

4. Let $E \subseteq R$, and assume there are $x, y \in E$ with x < y. Suppose that there exists some $z \in E$ such that x < z < y. Prove that E is not connected.

Let
$$A = (-\infty, z)$$
 and $B = (z, \infty)$.
 $E = A \cup B = (-\infty, z) \cup (z, \infty)$

$$\begin{array}{l} A\cap \bar{B}=(-\infty,z)\cup [z,\infty)=\emptyset\\ \bar{A}\cap B=(-\infty,z]\cup (z,\infty)=\emptyset \end{array}$$

So E is not connected.

8. Consider the function $h:[0,\infty)\to [0,\infty)$ defined by $h(x)=x^2$. Prove that h is surjective. Hint: Use the Intermediate Value Theorem.

Definition: let $f:A\to B$ be a function then f is said to be onto if for every $y\in B$, there exists $x\in A$ such that f(x)=y.

Let h(x) = y then $x^2 = y$ then $x = \sqrt{y}$ so $x = \sqrt{y}$

Since $-\sqrt{y}$ not possible $x \in [0, \infty)$

Now, $h(x) = h(\sqrt{y}) = (\sqrt{y})^2 = y$

Then we have shown that for all $x \in [0, \infty)$, h(x) is sent to some y. So h(x) is surjective.