Context Free Grammars

Shakir Ullah Shah

Example

S→aSa | aBa B→bB | b

First production builds equal number of a's on both sides and recursion is terminated by S→aBa

Recursion of $B \rightarrow bB$ may add any number of b's and terminates with $B \rightarrow b$

$$L(G) = \{a_nb_ma_n n > 0, m > 0\}$$

Example

```
Consider the following CFG \Sigma = \{a, b\}
S \rightarrow aXb | bXa | \Lambda
X \rightarrow aX | bX | \Lambda
```

The above CFG generates the language of strings, defined over $\Sigma = \{a,b\}$, beginning and ending in different letters OR including Λ as well.

Examples

A grammar that generates the language consisting of even-length string over {a, b}

$$S \rightarrow aO \mid bO \mid \Lambda$$

$$O \rightarrow aS \mid bS$$

G1: $S \rightarrow AB$

A→aA | a

 $B \rightarrow bB \mid \Lambda$

And

G2: $S \rightarrow aS \mid aB$

 $B \rightarrow bB \mid \Lambda$

Both generates **a**+**b***

Even-Even

Devise a grammar that generates strings with even number of a's and even number of b's

We can use the strategy of previous example i.e. non-terminal represents the current states of the derived string

The non-terminals with interpretations are:

Non-Terminal Interpetation

S <u>Even</u> a's and <u>Even</u> b's

A Even a's and Odd b's

B Odd a's and Even b's

C Odd a's and Odd b's

Even-Even contd.

The grammar will be

$$S \rightarrow aB \mid bA \mid \Lambda$$

$$A \rightarrow aC \mid bS$$

$$B \rightarrow aS \mid bC$$

$$C \rightarrow aA \mid bB$$

When S is present, the derived string satisfies the Even-Even condition as $S \rightarrow \Lambda$

Construct a CFG over {a, b} generating all strings that do not contain abc?

Remarks

We have seen that some regular languages can be generated by CFGs, and some non-regular languages can also be generated by CFGs.

ALL regular languages can be generated by CFGs.

There is some non-regular language that cannot be generated by any CFG.

Thus, the set of languages generated by CFGs is properly **larger** than the set of regular languages, but properly **smaller** than the set of all possible languages.

Parse Tree

We can use a tree diagram to show that derivation process:

We start with the starting symbol S. Every time we use a production to replace a nonterminal by a string, we draw downward lines from the nonterminal to EACH character in the string.

1. $S \rightarrow Sa$	$S \Rightarrow Sa$	(Rule 1)	S
2. $S \rightarrow aS$	\Rightarrow aSa	(Rule 2)	Sa
3. $S \rightarrow \Lambda$	\Rightarrow aaSa	(Rule 2)	a S
	\Rightarrow aa S aa	(Rule 1)	a S
	⇒ aa∧aa	(Rule 3)	S a
	= aaaa		

Tree diagrams are also called syntax trees, parse trees, generation trees, production trees, or derivation trees.

1.
$$S \rightarrow \Lambda$$

2. $S \rightarrow bA$
3. $S \rightarrow aB$
4. $A \rightarrow a$

5.
$$A \rightarrow aS$$

6. $A \rightarrow bAA$
7. $B \rightarrow b$

8.
$$B \rightarrow bS$$

9.
$$B \rightarrow aBB$$

 $S \Rightarrow bA$ (Rule 2)

 \Rightarrow baS (Rule 5)

 \Rightarrow baaB (Rule 3)

 \Rightarrow baaaBB (Rule 9)

 \Rightarrow baaaBb (Rule 7)

 \Rightarrow baaabSb (Rule 8)

 \Rightarrow baaabbAb (Rule 2)

 \Rightarrow baaabbab (Rule 4)

Ambiguity

A CFG is called ambiguous if there is one word it generates which has two different parse trees.

If a CFG is not ambiguous, it is called unambiguous.

Ambiguity

$$S \rightarrow aS \mid Sa \mid \Lambda$$

- 1. $S \rightarrow aS$
- 2. $S \rightarrow \Lambda$

Arithmetic Expressions

$$S \rightarrow A$$

$$A \rightarrow integer \mid A + A \mid A - A \mid A * A \mid A / A \mid (A)$$

4 + 2*3

Ambiguity- example

The following CFG defines the language of all non-null strings of a's:

 $S \rightarrow aS \mid Sa \mid a$

The word a³ can be generated by 4

differer

Ambiguity- example

Consider the language generated by the following CFG:

$$S \rightarrow AB$$

$$A \rightarrow a$$

$$B \rightarrow b$$

There are two derivations of the word ab:

$$S => AB => aB => ab$$

or $S => AB => Ab => ab$

However, These two derivations correspond to the same syntax tree:

The word ab is therefore not ambiguous. In general, when all the possible derivation trees are the same for a given word, then the word is unambiguous.

FAST National University of Computer and Emerging Sciences, Peshawar

Derivation

Leftmost derivation

If at each step in a derivation a production is applied to leftmost variable, then derivation is said to be leftmost

Rightmost derivation

If at each step in a derivation a production is applied to rightmost variable, then derivation is said to be rightmost

$$4 + 2*3$$

$$S \rightarrow E$$
 $E \rightarrow T + E \mid T - E \mid T$
 $T \rightarrow F * T \mid F / T \mid F$
 $F \rightarrow integer \mid (E)$

Leftmost Derivation

$$S \Rightarrow E$$

$$\Rightarrow T + E$$

$$\Rightarrow F + E$$

$$\Rightarrow 4 + E$$

$$\Rightarrow 4 + F*T$$

$$\Rightarrow 4 + 2*T$$

$$\Rightarrow 4 + 2*F$$

$$\Rightarrow 4 + 2*S$$

$$4 + 2*3$$

$$S \rightarrow E$$

$$E \rightarrow T + E \mid T - E \mid T$$

$$T \rightarrow F * T \mid F / T \mid F$$

$$F \rightarrow integer \mid (E)$$

$$\mathbf{Rightmost Derivation}$$

$$\Rightarrow T + F*T$$

$$\Rightarrow T + F*F$$

$$\Rightarrow T + F*S$$

$$\Rightarrow T + F*S$$