Stéphane Crépey, Financial Modeling: A Backward Stochastic Differential Equations Perspective - Notes

Lee Wei Xuan

November 29, 2024

Exercise 1.3.11

Follows from Exercise 1.3.12

Exercise 1.3.12

$$\begin{split} &\mathbb{1}_{\{\min(\nu,\theta)=n\}} = \mathbb{1}_{\{\nu=n\}} \cdot \mathbb{1}_{\{\theta \geq n\}} + \mathbb{1}_{\{\theta=n\}} \cdot \mathbb{1}_{\{\nu > n\}}. \\ &\mathbb{1}_{\{\max(\nu,\theta)=n\}} = \mathbb{1}_{\{\nu=n\}} \cdot \mathbb{1}_{\{\theta \leq n\}} + \mathbb{1}_{\{\theta=n\}} \cdot \mathbb{1}_{\{\nu < n\}}. \end{split}$$

Exercise 1.3.18

No. Let $X_n \equiv 1$ for all n, then $S_n = n$. Fix $\epsilon_0 = 1/2$. Given $\delta > 0$, there exists $n_0 \in \mathbb{N}$ such that $n_0 \delta \geq 1$. Pick $A \in \Omega$ (Maybe not always possible?) such that $\delta/2 \leq \mathbb{P}(A) < \delta$ and we have $\mathbb{E}(|S_n|\mathbb{1}_A) = n\mathbb{P}(A) \geq n\delta/2 \geq 1/2 = \epsilon_0$.