Higher Several Variable Calculus Math2111 UNSW

$Hussain\ Nawaz \\ hussain.nwz 000@gmail.com$

2022T1

Contents

	Curves and Surfaces			
1.1	Curves	2		
	Analysis			
	Assumed			
2.2	Limits	3		
2.3	Metrics	3		
2.4	Limits of Sequences	3		

1 Curves and Surfaces

1.1 Curves

Curves A curve in \mathbb{R}^n is a vector function

$$\mathbf{c}: I \to \mathbb{R}^n,$$

where I is an interval in \mathbb{R} .

Forms / Notations Curves may be defined in the following ways:

- Parametrically by $c(t) = (x_1(t), x_2(t), \dots, x_n(t))$
- ullet Cartesian by eliminating the t variable to get y in terms of x
- Implicitly As F(x,y) = 0.

2 Analysis

2.1 Assumed

Assumed Concepts from Real Single-Variable Calculus

- limits
- continuity
- differentiability
- integrability

Assumed Theorems

- Min/ Max Theorem
- Intermediate Value Theorem
- Mean Value Theorem

2.2 Limits

Recall that $\lim_{x\to a} f(x) = L$ requires that for all $\epsilon > 0$, there exists a $\delta > 0$ such that if $|x-a| < \delta$ then

$$|f(x) - L| < \delta.$$

2.3 Metrics

We have metrics (distance functions) as

$$m: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

satisfying the following 3 axioms.

- Positive Definite such that for all $x, y \in \mathbb{R}^n$, m(x, y) > 0 and, $m(x, y) = 0 \Leftrightarrow x = y$.
- Symmetric m(x, y) = m(y, x).z
- Triangle Inequality such that for all $x, y, z \in \mathbb{R}^n$, $m(x, y) + m(y, z) \leq m(x, z)$.

Euclidian Distance We allow the Euclidian distance to be defined as

$$d_n(x,y) := ||x - y|| = \sqrt{\sum_{i=1}^n (x_i - y_y)^2}$$

We often allow d to be d_2 .

2.4 Limits of Sequences

//soontm