Analog Electronic Circuits Lab (EC2.103, Spring 2024)

Instructor: Prof. Abhishek Srivastava, CVEST

Instructions:

- 1. Systematically record all your observations in the lab book (mandatory)
- 2. Save results in USB or take pictures
- 3. Make meaningful tables to summarize your findings and show it to the instructor(s) during the lab session only
- 4. Bring your calculators and DMM (if available)
- 5. Handle equipment carefully and report in case of any incidence
- 6. Enjoy your time in lab and strengthen your understanding about circuits

Experiment-5 BJT Amplifier

In this lab, a single stage Common Emitter (CE) voltage amplifier studied in lecture (shown in Fig. 1) will be characterized with DC, AC and transient measurements. Some equations are given

Figure 1: Single stage common emitter voltage amplifier

below for the DC analysis of the circuit.

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC} \tag{1}$$

$$V_E = V_B - V_{BE} \tag{2}$$

$$V_C = V_{CC} - I_C R_C \tag{3}$$

$$I_E = \frac{V_E}{R_E} \tag{4}$$

$$I_C = \frac{\beta}{\beta + 1} I_E \tag{5}$$

$$I_B = \frac{I_E}{\beta + 1} \tag{6}$$

1. DC analysis

The resistors R_1 and R_2 are 5.6 k Ω and 1 k Ω , respectively, $R_L=1$ k Ω and $V_{CC}=12$ V. Using DC signal analysis, find the values of R_C and R_E to obtain a collector current of 1.5 mA and mid-band voltage gain of 5.

(Hint: gain = $g_m R_o$ and $g_m = \frac{I_{CQ}}{V_T}$, you may use $V_{BE} = 0.7 \text{ V}$ and $\beta = 150$)

2. Transient response and total harmonic distortion (THD)

- (a) Connect the circuit as shown in Fig. 1 using transistor and resistor values obtained from previous DC analysis.
- (b) Apply a Sine wave of amplitude 25 mV and frequency 1 kHz as input and use $R_L = 1 K\Omega$.
- (c) Measure the amplitude of output voltage (V_o) and calculate the voltage gain, A_v of the amplifier.
- (d) As shown in Table 1, measure and report amplitude of fundamental component (V_1) 2^{nd} to 5^{th} harmonics for different amplitude (V_{in}) of input signal. Report for $V_{in} = \{2 \text{ mV}, 10 \text{ mV}, 20 \text{ mV}, 50 \text{ mV}, 100 \text{ mV}, 500 \text{ mV}, 1 \text{ V}\}$ and calculate corresponding THD. (Hint: $THD = \frac{\sqrt{V_2^2 + V_3^2 + V_4^2 + V_5^2}}{V_1}$, use FFT to measure harmonics)

V_{in}	V_1	$Harmonic\ 2\ (V_2)$	$Harmonic\ 3\ (V_3)$	$Harmonic 4 (V_4)$	$Harmonic\ 5\ (V_5)$	THD

Table 1

3. Frequency response

(a) For $R_L = 1~K\Omega$ and $V_{in} = 10~mV$, vary the frequency of input signal $f_{in} = \{10~Hz, 50~Hz, 100~Hz, 500~Hz, 1~kHz, 10~kHz, 100~kHz, 1~MHz, 10~MHz, 20~MHz\}$. Report parameters shown in Table 2 and find the -3 dB frequencies f_L and f_H . Are you able to find both f_L and f_H with the equipment available in this lab? (Hint: The highest frequency from the function generator might be less than the upper -3 dB frequency (f_H) of the amplifier.)

f_{in}	V_{in}	V_o	$A_v = \frac{V_o}{V_{in}}$	A_v (in dB)

Table 2

- (b) Use analysis option in DSO and plot the frequency response and verify the results $(A_v, f_L \text{ and } f_H)$ with the previous part (3(a)).
- (c) Verify the measured values of f_L and f_H with hand calculations. (Hint: f_L arises due to coupling cap at base and collector, f_H due to parasitic capacitor. $f = \frac{1}{2\pi RC}$)
- (d) Use a capacitor load $C_L = 440 \ pF$ in place of R_L and repeat the previous experiment to report A_v , f_L and f_H from the frequency response option of the DSO. Give table and plot. Do you clearly observe f_H now? What is the reason? Which node sets f_H ? Verify the measured value of f_H with the calculated value.

2