Ex 1 Soit $(x,y) \in \mathbb{R}^2_+$. Montrons que $\frac{x}{y+1} = \frac{y}{x+1} \Rightarrow x = y$.

Supposons donc que $\frac{x}{y+1} = \frac{y}{x+1}$: alors $x^2 + x = y^2 + y$, soit $x^2 - y^2 = y - x$. Ainsi

$$(x-y)(x+y) = y - x$$

Si $y \neq x$, alors on peut simplifier par x-y, ce qui donne x+y=-1, impossible puisque $x \geqslant 0$ et $y \geqslant 0$. On en déduit que x=y, CQFD.

- **Ex 2** Soit $m \in \mathbb{R}$ et $f: x \mapsto mx + 1$. Montrons que f garde un signe constant si et seulement si m = 0.
 - \leftarrow Supposons m = 0. Alors $\forall x \in \mathbb{R}, f(x) = 1$. f est donc de signe constant sur \mathbb{R}
 - Inversement, montrons que si f garde un signe constant sur \mathbb{R} , alors m=0On démontre la contraposée, plus pratique : si $m \neq 0$, alors f n'est pas de signe constant. On suppose donc $m \neq 0$. Alors

$$f(0) = 1 > 0$$
 et $f(-\frac{1}{m} - m) = -1 - m^2 + 1 = -m^2 < 0$

f prend donc deux valeurs de signes opposés, elle n'est donc pas de signe constant, CQFD.

- **Ex 3** Soit $(a,b) \in \mathbb{R}^2$, et $f: x \mapsto ax + b$. Montrons que f est la fonction nulle si et seulement si a = b = 0.
 - \sqsubseteq Supposons a=b=0. Alors $\forall x\in\mathbb{R},\ f\left(x\right)=0:f$ est la fonction nulle.
 - Inversement, supposons que $\forall x \in \mathbb{R}, \ f(x) = 0$. Alors en particulier f(0) = 0, soit b = 0. Mais alors $\forall x \in \mathbb{R}, \ f(x) = ax = 0$. En particulier f(1) = a = 0. Au total a = b = 0, CQFD.
- **Ex 4** Soit $n \in \mathbb{N}$. Montrons que n est pair $\iff n^2$ est pair.
 - \implies Supposons n pair : alors $\exists k \in \mathbb{N} / n = 2k$. Donc $n^2 = 4k^2 = 2(2k)$ est pair, CQFD/2.
 - Inversement, montrons que n^2 est pair $\Rightarrow n$ est pair, ou plutôt sa contraposée : n est impair $\Rightarrow n^2$ est impair : Supposons donc n impair : $\exists k \in \mathbb{N} \ / \ n = 2k+1$. Alors $n^2 = 4k^2 + 4k + 1 = 2\left(2k^2 + 2k\right) + 1$: n^2 est impair, CQFD.

Raisonnements par l'absurde et par contraposée

Ex 5 Montrons que $\sqrt{2}$ est irrationnel :

Supposons par l'absurde que $\sqrt{2}$ soit rationnel : alors on put l'écrire sous la forme d'une fraction irréductible

$$\sqrt{2} = \frac{p}{q}$$

où p et q sont des entiers naturels non nuls (et premiers entre eux). En élevant au carré, il vient $p^2=2q^2$. On en déduit que p^2 est pair, donc que p est pair (cf. exercice précédent). Donc il existe $k\in\mathbb{N}$ / p=2k. Mais alors $p^2=2q^2$ s'écrit $4k^2=2q^2$, soit $q^2=2k^2$: donc q^2 est pair, et le mêe argument donne q pair, ce qui contredit l'irréductibilité de la fraction (p et q ne peuvent être simultanément pairs). Cela établit notre résultat.

Ex 6 Soit $x \in \mathbb{R}_+$. On suppose que $\forall \varepsilon > 0, \ x \leqslant \varepsilon$. Montrons que x = 0.

Supposons par l'absurde que x soit non nul, c'est-à-dire x>0. Posons

$$\varepsilon = \frac{x}{2} > 0$$

Alors $x > \varepsilon$, ce qui contredit l'hypothèse : $\forall \varepsilon > 0, \ x \leqslant \varepsilon$. Le résultat est donc démontré.

Ex 7 Soient a et b deux réels. On suppose que $a \in \mathbb{Q}^*$ et $b \notin \mathbb{Q}$. Montrons que ab est irrationnel.

Supposons par l'absurde que x = ab soit rationnel. Alors, comme $a \neq 0$, on a $b = \frac{x}{a}$.

Mais le quotient de deux rationnels est rationnel (le quotient de deux fractions est une fraction). Il vient $b \in \mathbb{Q}$ contradiction. D'où $ab \notin \mathbb{Q}$, CQFD.

PCSI 1 Thiers 2019/2020

Ex 8 Supposons que x est irrationnel et positif, et montrons que \sqrt{x} est irrationnel.

Supposons **par l'absurde** que $y = \sqrt{x}$ soit rationnel. Alors $y^2 = x$ est rationnel (carré d'un nombre rationnel). C'est une contradiction, qui prouve l'irrationalité de \sqrt{x} .

Ex 9 Principe des tiroirs: montrons que si l'on range n+1 pulls dans n tiroirs distincts, alors il y a au moins un tiroir contenant au moins 2 pulls:

Par l'absurde, si ce n'était pas le cas, tous les tiroirs contiendraient au plus un pull. Le nombre total de pulls serait alors majoré par $\underbrace{1+1+\cdots+1}_{}=n$, ce qui est contradictoire, d'où le principe des tiroirs.

Ex 10 Soit $n \in \mathbb{N}^*$. On se donne n+1 réels x_0, x_1, \ldots, x_n de [0,1] vérifiant $0 \le x_0 \le x_1 \le \cdots \le x_n \le 1$.

On veut démontrer la propriété P suivante : "deux de ces réels sont distants de moins de 1/n".

a) P s'écrit symboliquement : $\exists (i,j) \in \llbracket [0,n \rrbracket]^2 / i < j$ et $x_j - x_i \leqslant \frac{1}{n}$ Mais comme la plus petite distance entre les points x_0, x_1, \ldots, x_n est nécessairement atteinte entre deux **consécutifs** d'entre eux, P est équivalente à :

$$\exists i \in [[1, n]] / x_i - x_{i-1} \leqslant \frac{1}{n}$$

La négation de cette assertion est alors

$$\forall i \in [[1, n]], x_i - x_{i-1} > \frac{1}{n}$$

b) **Par l'absurde** si la propriété P était fausse, on aurait donc $\forall i \in [1, n]$, $x_i - x_{i-1} > \frac{1}{n}$, c'est à dire

$$\begin{cases} x_1 - x_0 > 1/n \\ x_2 - x_1 > 1/n \\ \vdots \\ x_n - x_{n-1} > 1/n \end{cases}$$

En sommant toutes ces inégalités il vient

$$\sum_{i=1}^{n} (x_i - x_{i-1}) > \sum_{i=1}^{n} \frac{1}{n}$$

soit après télescopage

$$x_n - x_0 > \frac{n}{n} = 1$$

Ce qui contredit le fait que x_0 et x_n sont dans l'intervalle [0,1] (donc distants d'au plus 1)

c) <u>Autre démonstration</u>: considérons les n intervalles $I_1 = \left[0, \frac{1}{n}\right[, I_2 = \left[\frac{1}{n}, \frac{2}{n}\right[, \dots, I_n = \left[\frac{n-1}{n}, 1\right].$

Ces n intervalles partitionnent l'intervalle [0,1]. D'après le principe des tiroirs (exercice précédent), parmi les n+1 réels x_0,\ldots,x_n de [0,1], deux au moins sont dans le même intervalle I_k pour un k de $[\![1,n]\!]$. Ces deux-là sont alors nécessairement distants de moins de 1/n, CQFD.

Raisonnement par analyse et synthèse

Ex 11 Montrons que toute fonction $f : \mathbb{R} \to \mathbb{R}$ s'écrit de manière unique f = g + h, où g est une fonction paire et h une fonction impaire.

On fixe $f: \mathbb{R} \to \mathbb{R}$. Si \mathcal{P} et \mathcal{I} sont les ensembles des fonctions paires et des fonctions impaires définies sur \mathbb{R} , alors on cherche un couple unique $(g,h) \in \mathcal{P} \times \mathcal{I}$ tel que f = g + h.

(i) Analyse: supposons avoir $(q, h) \in \mathcal{P} \times \mathcal{I}$ tel que f = q + h. Alors

$$\forall x \in \mathbb{R}, \ f(x) = g(x) + h(x) \quad (\heartsuit)$$

En substituant -x à x, on a aussi

$$\forall x \in \mathbb{R}, \ f(-x) = g(-x) + h(-x) = g(x) - h(x) \quad (\diamondsuit)$$

En combinant (\heartsuit) et (\diamondsuit) il vient

$$\forall x \in \mathbb{R}, \begin{cases} g(x) = \frac{f(x) + f(-x)}{2} \\ h(x) = \frac{f(x) - f(-x)}{2} \end{cases}$$

Remarque : cette analyse démontre l'unicité d'un éventuel couple (g,h), en aucun cas son existence.

(ii) Synthèse : posons, pour tout réel x :

$$\begin{cases} g(x) = \frac{f(x) + f(-x)}{2} \\ h(x) = \frac{f(x) - f(-x)}{2} \end{cases}$$

Alors:

- * $\forall x \in \mathbb{R}, \ g(x) + h(x) = f(x)$
- * g est paire: en effet, $\forall x \in \mathbb{R}, \ g\left(-x\right) = \frac{f(-x) + f(x)}{2} = g\left(x\right)$
- * h est impaire : en effet, $\forall x \in \mathbb{R}, \ h\left(-x\right) = \frac{f(-x) f(x)}{2} = -h\left(x\right)$

 $\ensuremath{\textit{Remarque}}$: cette synthèse démontre l'existence d'un couple (g,h) .

(iii) Conclusion : le couple $(g,h) \in \mathcal{P} \times \mathcal{I}$ existe et il est unique, CQFD.

Ex 12 Trouvons toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que $\forall (x,y) \in \mathbb{R}^2, \ f(x) f(y) = f(xy) + x + y$ (*)

(i) Analyse: supposons que $f: \mathbb{R} \to \mathbb{R}$ vérifie (*): alors avec le couple (x,y) = (0,0):

$$f(0)^2 = f(0)$$

Il s'ensuit que $f(0) \in \{0,1\}$. Mais si f(0) = 0, alors pour tout $x \in \mathbb{R}$, (*) donne

$$f(x) f(0) = f(0) + x$$
 soit $x = 0$ contradiction

On en déduit donc que f(0) = 1. Mais alors, (*) appliqué à (x, 0) donne

$$\forall x \in \mathbb{R}, \ f(x) f(0) = f(0) + x$$

soit

$$\forall x \in \mathbb{R}, \ f(x) = x + 1$$

unique fonction possible vérifiant (*).

(ii) Synthèse : soit $f: x \mapsto x + 1$. f est définie sur \mathbb{R} et

$$\forall (x,y) \in \mathbb{R}^2, \ f(x) f(y) = (x+1) (y+1) = xy + 1 + x + y = f(xy) + x + y$$

f vérifie donc bien la relation (*).

(iii) Conclusion: I'unique fonction vérifiant (*) est $f: x \mapsto x+1$

Raisonnement par récurrence

Ex 13 Montrons que $H(n): 10^n + 1$ est multiple de 9 est héréditaire.

Soit $n \in \mathbb{N}$. Supposons H(n) vraie. Alors $\exists k \in \mathbb{N} / 10^n + 1 = 9k$. Donc

$$10^{n+1} + 1 = 10 \times 10^n + 1 = 10(9k-1) + 1 = 9 \times 10k - 9 = 9(10k-1)$$

Ainsi 10^{n+1} est multiple de 9, et H(n+1) est vraie, ce qui prouve l'hérédité de H(n). Néanmoins H(n) n'est vraie pour aucun entier $n \ge 0$: en effet $\forall n \in \mathbb{N}^*$,

$$10^{n} + 1 = (10^{n} - 1) + 2 = 9 \sum_{k=0}^{n-1} 10^{k} + 2$$

donc si $10^n + 1$ était multiple de 9, alors 2 le serait aussi, contradiction. H(0) est clairement fausse aussi.

Ex 14 Montrons que $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ |\sin(nx)| \le n |\sin(x)| : P(n)$

- (i) La proposition P(0) est évidemment vraie $(\forall x \in \mathbb{R}, |\sin 0| \le 0. |\sin x|)$
- (ii) Soit $n \in \mathbb{N}$: supposons P(n) vraie, et montrons P(n+1) (i.e. $\forall x \in \mathbb{R}$, $|\sin(n+1)x| \le (n+1)|\sin x|$) Pour tout réel x, on a, grâce aux formules d'addition :

$$\begin{split} |\sin{(n+1)\,x}| &= |\sin{nx}\cos{x} + \cos{nx}\sin{x}| \\ &\leqslant |\sin{nx}\cos{x}| + |\cos{nx}\sin{x}| \quad \text{(inégalité triangulaire)} \\ &\leqslant |\sin{nx}| |\cos{x}| + |\cos{nx}| |\sin{x}| \\ &\leqslant |\sin{nx}| + |\sin{x}| \quad \text{(car } \forall x \in \mathbb{R}, \; |\cos{x}| \leqslant 1 \text{ et } |\cos{nx}| \leqslant 1) \\ &\leqslant n |\sin{x}| + |\sin{x}| \quad \text{(par hypothèse de récurrence)} \\ &\leqslant (n+1) |\sin{x}| \quad \text{CQFD.} \end{split}$$

(iii) Le principe de récurrence permet d'affirmer que P(n) est vraie pour tout entier $n \in \mathbb{N}$.

Ex 15 Montrons que $\forall n \in \mathbb{N}^*, \ \forall (x_1, \dots, x_n) \in]0, 1[^n, \prod_{k=1}^n (1-x_k) \geqslant 1 - \sum_{k=1}^n x_k : H(n).$

- (i) La proposition H(1) est évidemment vraie $(\forall x_1 \in]0,1[\ ,\ 1-x_1\geqslant 1-x_1)$
- (ii) Soit $n \in \mathbb{N}^*$: supposons H(n) vraie, et montrons H(n+1).

Si
$$(x_1, \ldots, x_{n+1}) \in]0,1[^{n+1}, alors :$$

$$\prod_{k=1}^{n+1} (1-x_k) = (1-x_{n+1}) \prod_{k=1}^{n} (1-x_k) \overset{H(n) \text{ et } 1-x_{n+1}>0}{\geqslant} (1-x_{n+1}) \left(1-\sum_{k=1}^{n} x_k\right)$$

En développant

$$\prod_{k=1}^{n+1} (1 - x_k) \ge 1 - \sum_{k=1}^{n} x_k - x_{n+1} + x_{n+1} \sum_{k=1}^{n} x_k$$

Or $x_{n+1} \sum_{k=1}^{n} x_k \geqslant 0$ puisque chaque x_k est positif : il s'ensuit

$$\prod_{k=1}^{n+1} \left(1-x_k\right) \geqslant 1 - \sum_{k=1}^{n} x_k - x_{n+1} = 1 - \sum_{k=1}^{n+1} x_k \quad \text{CQFD}.$$

(iii) Le principe de récurrence permet d'affirmer que H(n) est vraie pour tout entier $n \in \mathbb{N}^*$.

Ex 16 Soit (u_n) la suite définie par :

$$\begin{cases} u_0 = 2, \ u_1 = 3 \\ \forall n \in \mathbb{N}, \ u_{n+2} = 3u_{n+1} - 2u_n \end{cases}$$

 $\left\{\begin{array}{l} u_0=2\;,\;u_1=3\\ \forall n\in\mathbb{N}\;,\;u_{n+2}=3u_{n+1}-2u_n \end{array}\right.$ On calcule $u_2=5,\;u_3=9,\;u_4=17.$ On conjecture : $\forall n\in\mathbb{N},\;u_n=2^n+1:H\left(n\right).$

- (i) H(0) et H(1) sont vraies.
- (ii) Soit $n \in \mathbb{N}$. Supposons H(n) et H(n+1), et montrons H(n+2). On a

$$\begin{array}{rcl} u_{n+2} & = & 3u_{n+1} - 2u_n \\ & = & 3\left(2^{n+1} + 1\right) - 2\left(2^n + 1\right) & \text{d'après } H\left(n\right) \text{ et } H\left(n+1\right) \\ & = & \left(3 - 1\right)2^{n+1} + 1 \\ & = & 2^{n+2} + 1 \quad \text{COFD.} \end{array}$$

(iii) Par principe de récurrence double, on a ainsi $\forall n \in \mathbb{N}, \ u_n = 2^n + 1$

Ex 17 On considère la suite $(a_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} a_0 = a_1 = 1 \\ \forall n \geqslant 1, \ a_{n+1} = a_n + \frac{2}{n+1} a_{n-1} \end{cases}$$

Montrons que $\forall n \in \mathbb{N}^*, 1 \leqslant a_n \leqslant n^2 : H(n)$.

- (i) H(1) et H(2) sont vraies puisque $1 \le a_1 \le 1^2$ et $a_2 = 2 \le 2^2$.
- (ii) Soit $n \ge 2$. Supposons H(n-1) et H(n), et montrons H(n+1). On a donc

$$\begin{cases} 1 \leqslant a_{n-1} \leqslant (n-1)^2 \\ 1 \leqslant a_n \leqslant n^2 \end{cases} \Rightarrow \begin{cases} \frac{2}{n+1} \leqslant \frac{2}{n+1} a_{n-1} \leqslant \frac{2}{n+1} (n-1)^2 \leqslant \frac{2n^2}{n} = 2n \end{cases}$$

Par somme

$$2 \leqslant a_n + \frac{2}{n+1} a_{n-1} \leqslant n^2 + 2n$$

A fortiori

$$1 \leqslant a_{n+1} \leqslant n^2 + 2n + 1 = (n+1)^2$$
 CQFD.

(iii) Par principe de récurrence double, on a ainsi $\forall n \in \mathbb{N}^*, \ 1 \leqslant a_n \leqslant n^2$

Ex 18 Suite de Fibonacci: soit (u_n) définie par $\left\{ \begin{array}{l} u_0=u_1=1 \\ \forall n\in\mathbb{N},\ u_{n+2}=u_{n+1}+u_n \end{array} \right.$

a) Soit $n \in \mathbb{N}^*$, on a par définition de la suite (u_n) : $\forall k \in \mathbb{N}, \ u_{2k-2} + u_{2k-1} = u_{2k}$

$$\sum_{k=1}^{n} u_{2k-1} = \sum_{k=1}^{n} (u_{2k} - u_{2(k-1)})$$

$$= u_{2n} - u_{0} \text{ #télescopage}$$

ainsi

$$\sum_{k=1}^{n} u_{2k-1} = u_{2n} - 1$$

b) De même on a $\forall k \in \mathbb{N}, \; u_k = u_{k+2} - u_{k+1}, \, \mathrm{donc \; pour } \, n \in \mathbb{N}:$

$$\sum_{k=0}^{n} u_k = \sum_{k=0}^{n} (u_{k+2} - u_{k+1})$$

$$= u_{n+2} - u_1 \quad \text{#t\'elescopage}$$

Soit

$$\sum_{k=0}^{n} u_k = u_{n+2} - 1$$

- c) On pose $\Phi > \Psi$ les racines de l'équation $x^2 x 1 = 0$, soit $\Phi = \frac{\sqrt{5}+1}{2}$ et $\psi = \frac{-\sqrt{5}+1}{2}$. Remarquons que $\Phi + \psi = 1$ et $\Phi - \psi = \sqrt{5}$. Montrons que $\forall n \in \mathbb{N}, \ u_n = \frac{5+\sqrt{5}}{10}\Phi^n + \frac{5-\sqrt{5}}{10}\Psi^n : H(n)$
 - i. H(0) et H(1) sont vraies, car

$$\frac{5+\sqrt{5}}{10}\Phi^0 + \frac{5-\sqrt{5}}{10}\Psi^0 = \frac{5+\sqrt{5}}{10} + \frac{5-\sqrt{5}}{10} = 1 = u_0$$

$$\frac{5+\sqrt{5}}{10}\Phi^1 + \frac{5-\sqrt{5}}{10}\Psi^1 = \frac{5}{10}(\Phi+\psi) + \frac{\sqrt{5}}{10}(\Phi-\Psi) = \frac{5}{10} + \frac{5}{10} = 1 = u_1$$

ii. Soit $n \in \mathbb{N}$. On suppose H(n) et H(n+1). Montrons H(n+2):

$$u_{n+2} = u_{n+1} + u_n$$

$$= \left(\frac{5 + \sqrt{5}}{10}\Phi^{n+1} + \frac{5 - \sqrt{5}}{10}\Psi^{n+1}\right) + \left(\frac{5 + \sqrt{5}}{10}\Phi^n + \frac{5 - \sqrt{5}}{10}\Psi^n\right)$$

$$= \frac{5 + \sqrt{5}}{10}(\Phi + 1)\Phi^n + \frac{5 - \sqrt{5}}{10}(\Psi + 1)\Psi^n$$

Or par définition de Φ et Ψ , on $\Phi + 1 = \Phi^2$ et $\Psi + 1 = \Psi^2$. On en déduit

$$u_{n+2} = \frac{5+\sqrt{5}}{10}\Phi^{n+2} + \frac{5-\sqrt{5}}{10}\Psi^{n+2} \quad \text{CQFD}.$$

iii. Le principe de récurrence (à deux pas) permet d'affirmer que H(n) est vraie pour tout entier $n \in \mathbb{N}$.

Ex 19 Soit $x \in \mathbb{R}^*$ tel que $x + \frac{1}{x} \in \mathbb{Z}$. Montrons que pour tout $n \in \mathbb{Z}$, $x^n + \frac{1}{x^n} \in \mathbb{Z} : H(n)$.

- (i) La proposition H(0) vraie puisque $x^0 + \frac{1}{x^0} = 2 \in \mathbb{Z}$ et H(1) aussi par hypothèse.
- (ii) Soit $n \in \mathbb{N}^*$: supposons H(n-1) et H(n), et montrons H(n+1):

$$\left(x^{n} + \frac{1}{x^{n}}\right)\left(x + \frac{1}{x}\right) = x^{n+1} + \frac{1}{x^{n+1}} + x^{n-1} + \frac{1}{x^{n-1}}$$

D'où

$$x^{n+1} + \frac{1}{x^{n+1}} = \left(x^n + \frac{1}{x^n}\right)\left(x + \frac{1}{x}\right) - \left(x^{n-1} + \frac{1}{x^{n-1}}\right)$$

 $x^{n+1}+\frac{1}{x^{n+1}}=\left(x^n+\frac{1}{x^n}\right)\left(x+\frac{1}{x}\right)-\left(x^{n-1}+\frac{1}{x^{n-1}}\right)$ Or $H\left(n\right)$ et $H\left(n-1\right)$ permettent d'affirmer que $x^n+\frac{1}{x^n}\in\mathbb{Z}$ et $x^{n-1}+\frac{1}{x^{n-1}}\in\mathbb{Z}$, et par hypothèse $x+\frac{1}{x}\in\mathbb{Z}$. Il s'ensuit par somme et produit que :

$$x^{n+1} + \frac{1}{x^{n+1}} \in \mathbb{Z} \quad \text{CQFD.}$$

- (iii) Le principe de récurrence (à deux pas) permet d'affirmer que H(n) est vraie pour tout entier $n \in \mathbb{N}$.
- (iv) Si $n \in \mathbb{Z}_-$, alors $-n \in \mathbb{N}$ donc $x^{-n} + \frac{1}{x^{-n}} \in \mathbb{Z}$, i.e. $x^n + \frac{1}{x^n} \in \mathbb{Z}$. H(n) est vraie pour tout $n \in \mathbb{Z}$, CQFD.

Ex 20 On définit la suite $(u_n)_{n\geqslant 0}$ par : $u_0>0$ et $\forall n\in\mathbb{N},\ u_{n+1}=\ln{(1+u_0\times\cdots\times u_n)}$.

On considère le prédicat $H(n): u_n$ existe et $u_n > 0$.

- (i) La proposition H(0) vraie par hypothèse.
- (ii) Soit $n \in \mathbb{N}$: supposons $H(0), \ldots, H(n)$ vraies, et montrons H(n+1).

Puisque $u_0 > 0, \dots, u_n > 0$, on a par produit $u_0 \times \dots \times u_n > 0$, d'où $1 + u_0 \times \dots \times u_n > 1$. On en déduit que u_{n+1} existe et $u_{n+1} = \ln(1 + u_0 \times \cdots \times u_n) > 0$, CQFD.

(iii) Le principe de récurrence forte permet d'affirmer que H(n) est vraie pour tout entier $n \in \mathbb{N}$, c'est-à-dire que la suite $(u_n)_{n\geq 0}$ est bien définie et strictement positive.

- **Ex 21** Démontrons que tout entier $n \in \mathbb{N}^*$ peut s'écrire de façon unique sous la forme $n = 2^p (2q + 1)$ où $(p, q) \in \mathbb{N}^2$.
 - a) Existence: posons $P(n): \exists (p,q) \in \mathbb{N}^2 / n = 2^p (2q+1)$.
 - i. P(1) est vraie puisque $1 = 2^0 (2 \times 0 + 1)$
 - ii. Soit $n \in \mathbb{N}^*$. Supposons que $\forall k \in [1, n-1], P(k)$ soit vraie, et montrons P(n):
 - Si n est impair, $\exists k \in \mathbb{N}^* / n = 2k + 1 = 2^0 (2k + 1)$ d'où P(n) avec (p, q) = (0, k).
 - Si n est pair, $\exists k \in \mathbb{N}^* / n = 2k$. Or $k \in [1, n-1]$, donc P(k) est vraie:

$$\exists (p', q') \in \mathbb{N}^2 / k = 2^{p'} (2q' + 1)$$

Il s'ensuit

$$n = 2^{p'+1} \left(2q' + 1 \right)$$

D'où
$$P\left(n\right)$$
 avec $\left(p,q\right)=\left(p'+1,q'\right)$.

Dans les deux cas P(n) est vraie.

- iii. Par principe de récurrence forte, on a $\forall n \in \mathbb{N}^*$, P(n) est vraie.
- b) Unicité : soient $n \in \mathbb{N}^*$, et $(p,q,p',q') \in \mathbb{N}^2$ tels que $n=2^p \left(2q+1\right)=2^{p'} \left(2q'+1\right)$. (*)

Si par exemple p > p', alors $(*) \Rightarrow 2^{p-p'}(2q+1) = (2q'+1)$, qui est contradictoire car le membre de gauche est pair tandis que celui de droite est impair.

On en déduit que p = p'. Mais alors (*) se simplifie en 2q + 1 = 2q' + 1, soit q = q'.

Finalement (p,q) = (p',q') d'où l'unicité.

Ex 22 Démontrons que tout entier $n \ge 1$ peut s'écrire comme somme de puissances de 2 toutes distinctes.

Pour
$$n \in \mathbb{N}^*$$
, posons $P(n) : \exists p \in \mathbb{N}^*$, $\exists (k_1, \dots, k_p) \in \mathbb{N}^p / k_1 < \dots < k_p \text{ et } n = \sum_{i=1}^p 2^{k_i}$.

- (i) P(1) est vraie avec p=1 et $k_1=0$ puisque $1=2^0$.
- (ii) Soit $n \in \mathbb{N}^*$. Supposons que $\forall k \in \llbracket 1, n-1 \rrbracket$, P(k) soit vraie, et montrons P(n):
 - * Si n est pair, $\exists k \in \mathbb{N}^* \ / \ n = 2\ell. \text{Or} \ \ell \in [\![1,n-1]\!]$, donc $P\left(k\right)$ est vraie :

$$\exists p' \in \mathbb{N}^*, \ \exists \left(k'_1, \dots, k'_{p'}\right) \in \mathbb{N}^p \ / \ k'_1 < \dots < k'_{p'} \ \text{et} \ \ell = \sum_{i=1}^{p'} 2^{k'_i}$$

Mais alors

$$n = 2\ell = \sum_{i=1}^{p'} 2^{k'_i + 1}$$

Donc P(n) est vraie avec p = p', et $\forall i \in [1, p]$, $k_i = k_i' + 1$ (on a bien $k_1 < \cdots < k_p$).

* Si n est impair, on applique P(n-1), vraie par hypothèse :

$$\exists p' \in \mathbb{N}^*, \ \exists \left(k'_1, \dots, k'_{p'}\right) \in \mathbb{N}^p \ / \ k'_1 < \dots < k'_{p'} \ \text{et} \ n-1 = \sum_{i=1}^{p'} 2^{k'_i}$$

On peut alors écrire

$$n = 1 + \sum_{i=1}^{p'} 2^{k'_i} = 2^0 + \sum_{i=1}^{p'} 2^{k'_i} = \sum_{i=1}^{p} 2^{k_i}$$

avec

$$p = p' + 1, \ k_1 = 0 \text{ et } \forall i \in [2, p], \ k_i = k'_{i-1}$$

Remarquons que $k_1' > 0$, car sinon, $n - 1 = 1 + \sum_{i=2}^{p'} 2^{k_i'}$ serait impair.

On a donc bien $k_1 < \cdots < k_p$, et P(n) est vraie.

Dans les deux cas P(n) est vraie.

(iii) Par principe de récurrence forte, on a $\forall n \in \mathbb{N}^*$, P(n) est vraie.

Ex 23 Soit A une partie de \mathbb{N}^* possédant les trois propriétés suivantes :

$$\left\{ \begin{array}{l} \text{(i) } 1 \in A \\ \text{(ii) } \forall n \in \mathbb{N}^*, \ n \in A \Rightarrow 2n \in A \\ \text{(iii) } \forall n \in \mathbb{N}^*, \ n+1 \in A \Rightarrow n \in A \end{array} \right.$$

Montrons que $A = \mathbb{N}^*$.

L'inclusion $A \subset \mathbb{N}^*$ étant vraie par hypothèse, il s'agit de montrer $\mathbb{N}^* \subset A$:

a) Première méthode : par l'absurde, s'il existait un entier $n \in \mathbb{N}^*$ qui ne soit pas dans A.

Choisissons le plus petit entier $n \in \mathbb{N}^*$ tel que $n \notin A$. Alors $n \geqslant 2$ puisque $1 \in A$ d'après (i).

- * Si n est pair, alors, comme $\frac{n}{2} \in \mathbb{N}^*$, la contraposée de (ii) donne : $\frac{n}{2} \notin A$.

 Mais $\frac{n}{2} < n$ (puisque n > 0) : on a donc un entier non nul strictement inférieur à n qui n'est pas dans A, ce qui contredit de même la minimalité de n.
- * Si n est impair, alors la contraposée de (iii) donne $n+1 \notin A$.

Mais n+1 est pair, et la contraposée de (ii) donne : $\frac{n+1}{2} \notin A$ puisque $\frac{n+1}{2} \in \mathbb{N}^*$.

Mais $\frac{n+1}{2} < n$ (puisque n > 1), on a donc encore un entier non nul strictement inférieur à n qui n'est pas dans A, ce qui contredit la minimalité de n.

Dans les deux cas on tombe sur une contradiction, qui démontre notre résultat.

- b) Deuxième méthode: montrons par récurrence forte que $\forall n \in \mathbb{N}^*, n \in A : H(n)$.
 - * H(1) est vraie d'après (i).
 - * Soit $n \ge 2$. Supposons que $\forall k \in [1, n-1] \ H(k)$ est vraie et montrons H(n).
 - · $1^{\text{er}} \cos : n \text{ est pair. } \exists k \in \mathbb{N}^* / n = 2k. \text{ Or } k = \frac{n}{2} \in [1, n-1] : \text{en effet}$

$$n\geqslant 2\Rightarrow \frac{n}{2}\geqslant 1\quad {\rm et}\quad \frac{n}{2}< n\Longleftrightarrow n>0$$
 vrai

Ainsi H(k) est vraie, i.e. $k \in A$. Il s'ensuit d'après (ii) que $n = 2k \in A$.

· $2^{\text{ème}} \text{ cas}$: n est impair (donc $n \ge 3$). $\exists k \in \mathbb{N}^* / n = 2k - 1$. Or $k = \frac{n+1}{2} \in [[1, n-1]]$: en effet

$$n\geqslant 3\Rightarrow \frac{n+1}{2}\geqslant 2 \quad \text{et} \quad \frac{n+1}{2}< n \Longleftrightarrow n>1 \text{ vrai}$$

Ainsi H(k) est vraie, i.e. $k \in A$. Il s'ensuit d'après (ii) que $2k \in A$, et d'après (iii) : $n = 2k - 1 \in A$.

Dans les deux cas $n \in A$, d'où H(n).

* Par principe de récurrence, $\forall n \in \mathbb{N}^*, \ n \in A$.