Musterlösung des vierten Analysis I Übungstests

22. Jänner 2016

Gruppe A

Beispiel 1

Wo ist die Funktion $f: \mathbb{R} \to \mathbb{R}$:

$$f(x) = \begin{cases} e^x + a & x \le 0\\ \sin(\frac{\pi}{2}x) & 0 < x < 1\\ bx & x \ge 1 \end{cases}$$

in Abhängigkeit der reellen Parameter a, b stetig? Was ist die größte Teilemenge von \mathbb{R} auf die die Funktion

$$g: \mathbb{R} \setminus \{\pm 1\} \to \mathbb{R}, \quad g(x) = \frac{x^2 + x}{x^2 - 1}$$

stetig fortgesetzt werden kann? Wie und warum.

Lösung: Die Funktion f ist bei x_0 genau dann stetig, wenn

$$\lim_{x \to x_0 -} f(x) = f(x_0) = \lim_{x \to x_0 +} f(x). \tag{1}$$

Zuerst werden die Punkte im inneren der jeweiligen Definitionsbereiche überprüft

- Für $x_0 < 0$ gilt sicherlich (1), da es eine offene Kugel $U_{\delta}(x_0)$ gibt, die ganz im Definitionsbereich enthalten ist und $x \mapsto e^x + a$ als Zusammensetzung stetiger Funktionen stetig ist. Die Aussage gilt unabhängig von a und b.
- Analog zeigt man, dass f bei $0 < x_0 < 1$ stetig ist.
- \bullet Auch für $x_0 > 1$ lässt sich dieses Argument anwenden.

Das heißt
$$f$$
ist bei $x \in \mathbb{R} \backslash \{0,1\}$ unabhängig von a und b stetig

Die einzigen kritischen Punkte bleiben 0 und 1. Daher wird die notwendige und hinreichende Bedingung (1) überprüft.

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} e^{x} + a$$

$$= e^{0} + a$$

$$= 1 + a$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \sin(\frac{\pi}{2}x)$$

$$= \sin(\frac{\pi}{2}0) = \sin(0)$$

Außerdem liest man der Definition ab, dass f(0) = 1 + a. Daher ist Bedingung (1) genau dann erfüllt, wenn a = -1 gilt.

Das heißt f ist bei 0 genau dann stetig, wenn a=-1.

Das ganze noch einmal für den kritischen Punkt 1.

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \sin\left(\frac{\pi}{2}x\right) \qquad \qquad \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} bx$$

$$= \sin\left(\frac{\pi}{2}1\right) = \sin\left(\frac{\pi}{2}\right) \qquad \qquad = b \cdot 1$$

$$= 1 \qquad \qquad = b$$

Man sieht wieder einfach, dass f(1) = b. Deswegen muss b = 1 gelten, um die Bedingung (1) zu erfüllen.

Das heißt
$$f$$
 ist bei 1 genau dann stetig, wenn $b = 1$.

Da die Nullstellen des Nenners von $\frac{x^2+x}{x^2-1}$ genau ± 1 sind, ist g überall sonst stetig als Zusammensetzung stetiger Funkionen. Die Funktion g kann genau dann bei x_0 stetig fortgesetzt werden, wenn $\lim_{x\to x_0} g(x)$ existiert. Um das für ± 1 zu überprüfen wird g(x) zu nächst umgeformt

$$g(x) = \frac{x^2 + x}{x^2 - 1} = \frac{x(x+1)}{(x-1)(x+1)} = \frac{x}{x-1} = \frac{1}{1 - \frac{1}{x}}$$

Laut den Rechenregeln für konvergente Netze gilt

$$\lim_{x \to -1} g(x) = \lim_{x \to -1} \frac{1}{1 - \frac{1}{x}} = \frac{1}{\lim_{x \to -1} (1 - \frac{1}{x})} = \frac{1}{1 - \frac{1}{\lim_{x \to -1} x}} = \frac{1}{2}$$

Das heißt
$$g$$
 kann mit bei -1 stetig fortgesetzt werden mit $g(-1) = \frac{1}{2}$.

Nachdem $\lim_{x\to 1} 1 - \frac{1}{x} = 0$ gilt sicherlich, dass $\lim_{x\to 1} \frac{1}{1-\frac{1}{x}}$ unbeschränkt sein muss. Daraus folgt, dass der Grenzwert $\lim_{x\to 1} g(x)$ nicht existiert.

Das heißt g kann bei 1 **NICHT** stetig fortgesetzt werden.

Beispiel 2

Ist die Teilmenge $\{z \in \mathbb{C} : \text{Im}(z) \cdot \text{Re}(z) < 0\} \cup \{1\}$ von \mathbb{C} offen, abgeschlossen oder kompakt?

Lösung:

 \bullet offen: Die Menge M ist genau dann offen wenn

$$\forall x \in M : \exists \epsilon > 0 \text{ mit } U_{\epsilon}(x) \subseteq M$$

Mit x=1 und $\epsilon>0$ beliebig gilt: $(1-\frac{\epsilon}{2})\in U_{\epsilon}(1)$ aber $\operatorname{Re}(1-\frac{\epsilon}{2})\operatorname{Im}(1-\frac{\epsilon}{2})=0$, also gilt $x\not\in M$ und $U_{\epsilon}(1)\not\subseteq M$. Da ϵ beliebig war gilt

$$\exists x \in M : \forall \epsilon > 0 \text{ gilt: } U_{\epsilon}(x) \not\subseteq M$$

Die Menge M ist **NICHT** offen.

 \bullet abgeschlossen: Die Menge Mist genau dann abgeschlossen wenn jeder Häufungspunkt von M in M enthalten ist.

Ein Punkt $z\in\mathbb{C}$ ist genau dann ein Häufungspunkt wenn es eine Folge $(z_n)_{n\in\mathbb{N}}$ von Punkten in M gibt mit $\lim_{n\to\infty}z_n=z$.

Mit $z_n = \frac{1}{n} - \frac{i}{n}$ gilt:

$$\operatorname{Re}(z_n)\operatorname{Im}(z_n) = -\frac{1}{n^2} < 0, \quad \forall n \in \mathbb{N},$$

also $z_n \in M, \forall n \in \mathbb{N}.$

Weiters gilt $\lim_{n\to\infty} z_n=0$. Das heißt 0 ist Häufungspunkt von M, wegen $\text{Re}(0)\,\text{Im}(0)=0$ ist $0\not\in M$. Also gilt

 $\exists\, z: z$ ist Häufungspunkt von $M \wedge z \not\in M.$

In anderen Worten

Die Menge M ist **NICHT** abgeschlossen.

• kompakt: Im metrischen Raum (\mathbb{C}, d_2) gilt

 $M \subseteq \mathbb{C}$ kompakt $\Rightarrow M$ abgeschlossen

Da ${\cal M}$ nicht abgeschlossen ist gilt demnach

Die Menge M ist **NICHT** kompakt.