北京交通大学 2022-2023 学年暑期学期

计算机与信息技术学院 硕士研究生《智能计算数学基础》试题 出题教师:《智能计算数学基础》课程组

班级:	姓名:	学号:	上课教师:	
注意: 1. 试卷共 50	道题,每题 2 分,满分 100 分] 。2. 题目排序与难度无关。	3. 判断题请回答"是"或"否"。	
1。计算序列极限	$: \lim_{n \to +\infty} \left(\frac{n^2 + n + 1}{n \log n} \right) \circ$			
答案:	$\lim_{x \to 0} \frac{\sin(x^3)}{x^2} \circ$			
	$f(x,y) = x^3 - y^2 + 2x$			••••
				••••
	在 \mathbb{R}^n 上的Lipschitz函数→ \mathbb{R} 为Lipschitz函数,若存		$-f(y)\ _2 \le K\ x-y\ _2$ 対任何 $x,y \in \mathbb{R}^n$ 都成立	立。
	$f(x,y) = 2x^2 + y^2$ 在约		$\mathbb{Q} x-y \leq 2$ 下的极大值。	
答案: 6。计算平面点集	$\{x \in \mathbb{R}^2 : \ x\ _{\infty} \le 1\} $	 的面积。		
	$f(r) - \frac{1}{2}r^tPr + a^tr + \dots$		阵,其中 $P \in \mathbb{S}^n_{++}, \ q \in \mathbb{R}^n, \ r \in \mathbb{R}$ 。	
1。 互开一八团级	$J(x) = \frac{1}{2}x + \frac{1}{2}x + \frac{1}{4}x + $	7 HJ/M/X/HIICSSIGH/LJF		
答案 :				
8。判断题:对于	任何 $P \in \mathbb{S}_{++}^n$,二次函	i数 $f(x) = x^t P x$ 在约束	\mathbb{E} 条件 $ x _2 \le 1$ 下有唯一的极小值点。	
答 室.				
9。求出下述优化	问题的极小值 $\left\{egin{array}{ll} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array} ight.$	nize $f(x, y, z) = 3x^2$ - ct to $x + y - z = 1$	$+y^2-z^2+yz$	••••

答案:
10。设 $f(A) = \ X - AY\ ^2$,其中 A 、 X 和 Y 分别是维度为 $n \times m$ 、 $n \times k$ 和 $m \times k$ 的矩阵,计算 $Df(A)$ 。
答案 :
答案: $11. $
答案:
答案: $12. $
答案 :
13。设 W 是三维欧氏空间中由 $(1,1,1)$ 和 $(1,0,2)$ 所生成的二维子空间,计算向量 $(1,-1,0)$ 在 W 上的投影向量。
答案 :
14。对于实矩阵 $A_{m\times n}$ 和 $B_{n\times m}$,若存在非零向量 α 以及 $c\neq 0$ 满足 $AB\alpha=c\alpha$,请写出矩阵 BA 的特征值为 c 的一个特征向量。
答案 :
15 。计算向量 $(1,-2,3)$ 的 ℓ_1 范数。
答案:
答案: $16. 给定矩阵 A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & -1 & 3 \end{bmatrix}, 计算函数 f(x) = \frac{\ Ax\ _2}{\ x\ _2} 的最大值.$
答案:
17。判断题:假设矩阵 A 的行向量线性无关,请问 AA^t 是否是可逆方阵?
答案:
18 。利用奇异值分解计算矩阵 $\begin{bmatrix} 1 & 2 \\ 2 & -1 \\ 1 & 3 \end{bmatrix}$ 的rank 1 逼近。
答案:
19。请用简洁的语言解释大数定理。

答案:
答案:
答案:
答案: $23. 已知随机变量w=\frac{1}{100}\sum_{i=1}^{10000}z_i, 其中z_i是相互独立的均匀分布随机变量,z_i\sim \mathcal{U}(-1,1).。请写出随机变量w的近似概率密度函数。$
答案: $24. $
答案: $25。接上题,定义2个向量,y=[y_1,y_2]^t和x=[x_1,x_2]^t,计算似然函数p(y x)。$
答案: 26 。接上题,当满足什么条件时,最大似然函数等价于最小距离 $\ y-x\ ^2$ 。
答案:
答案:
答案:
答案: 30 。判断题: 信源发出消息 x ,信宿收到消息 y ,则公式 $I(x;y) = I(x) - I(y x)$ 是否正确?

答案:
31。已知两个信源分别为 $\binom{X}{P} = \binom{a_1 a_2}{0.5 0.5}$ 和 $\binom{Y}{Q} = \binom{b_1 b_2 b_3 b_4}{0.25 0.25 0.25 0.25}$,则在信源 烟 $H(X)$ 和 $H(Y)$ 中,较大的是 $H(Y)$,其值为多少bit/符号?
答案: $32。 联合熵公式 H(XY) = H(X) + H(Y)成立的条件是什么?$
答案:
答案: $34。判断题: 假设p和q是同一概率空间上的两种分布,则D(p\ q) = D(q\ p)。$
答案:
答案: 36。判断题: 不完全信息博弈中的不确定性比不完美信息博弈中的不确定性要低。
答案: 37。判断题: 如下图的博弈矩阵中,策略组合(E,E)是一个纳什均衡解。
Player 2 $E S$ Player 1 $S 3, -1 0, 0$
答案:
答案:
59。刊剧起: 在一个元天凹忆的个元天信息

40。一个正则型博弈可以等价转化为一个带有__?__的不完美信息扩展型博弈。请问"?"指的是什么?

B MAX MIN A MAX 6 4 3 5 2 6 9 1 1 2 1 10 8 20
答案:
答案:
答案: 44。判断题: NP-complete问题一定是NP-hard问题。
答案: 45。判断题: 如果P⊆NP,则P=NP。
答案:
答案 :

答案:

41。判断题:下图的博弈树中,A处可以进行 α - β 剪枝。