Dij Ketrols Algorithm - single source shortest path with +ve edge wts.

(1) There are N cities in a country, you are living in city-1.

Find minimum disfance to reach every other Lity from city-1.

d[i]- minimum distance to reach in-city stortly from source.

0[5/1] = 0.

Relaxing an edge.

x-y edge is never used

i. x-z-y is better option.

minimum edge wt. storttry Jam souru.

bscudo-code

VI, dist[i] = Integer. MAX-VALUE;

min. Heap < pair > heap;

heap.insout ({0, src });

f wt ?

T.C- O(Elog F + N)] S.C- O(E)

while (heap-cize() >0) {

Pair rp = heap. lx hord min();

If (aist (rp.v) == Integer. mpk_value) {

dist (rp.v] = rp. wt;

dist (rp.v] = heap. value) {

for (nbr: Adj (rp.val) {

dist (nbr) == Integer. max-value) {

heap. insut(d[p.v]+wt, nbr);

}

Of How to find shortest path to all nodes from a single source if -ve weights are present.

Is it always passible to find shortest path? No

Bellman ford

Minimum distance can be found by updating/relaxing all the edges (N-1) times, irrespective of the order in which the edges one selected.

N nodu.

(N-1) edge in any path. stortly from src.

$$\begin{cases}
f(a(u) + \omega(u,v) < d(v)) \\
f(v) = d(u) + \omega(u,v)
\end{cases}$$

pseudo-code.

pseudo-code.

Hi,
$$d[i] = \varpi$$
, $p[i] = .1$
 $d[src] = 0$, $p[src] = src$
 $for(i = 1 ; i z = N.1 ; i++)$

balan stop = true

 $for(u,v)$ in edge)

 $f(u,v)$ in edge)

 $f(v) = d[u] + \omega(u,v)$
 $f(v) = d[u] + \omega(u,v)$
 $f(v) = u;$
 $f(v) = u;$

Of find shortest distance from every node to every other node.

Floyd horshalls Algorithm

LAII pair shirtest path.

is shortest distance blu ACB is due to direct edge? No.

intermediate node.

idea. - consider every rude as intermediate mode and try to relax the edges with large weight.

	٥	1	2	3
D	O	9	-4	©
•	6	0	Ø	2
2	~	5	D	00
3	0	B	1	0
3				

Adjauncy matrix

intermediate node - 0

$$d(17(0) + d(0)(2) \le d(17(2)$$

 $6 + (-4) \le \infty$
 $d(17(0) \Rightarrow d(0)(2) \le d(17(3)$
 $6 \Rightarrow \infty \le 2$

intermediate node -> 1

intermediate node - 2

intermediate node - 3.

	D	•	2	3
D	0	9	-4	11
•	6	0	2	2
6	11	-	D	Ŧ
2		3	1	0
3	8	6 0	1	

	٥	1	2	3
D	0	1	-4	3
1	6	0	2	2
2	11	5	0	7
3	12	6	1	D
ح				

A pseudo-code.

$$for(k=0; k < N; k++) = \begin{cases} for(i=0; i < N; i++) = \\ for(j=0; j < N; j++) = \\ for(j=0; j++) = \\ for($$

```
Revision.
                                                                                                Do it topic wise
                                       { Rivisi the Clan notes. }

S try out some already?

Close questions.

Always try new questions?
 Stock n'aum
Heaps
Strings.
Recursion
D.P
Craph (Coogle, microsoft, Amazon)
```