Untitled Tata iles 2023-06-01 Libraries **DATA** fraud <- read.csv("D:/Downloads/base examen écrit.csv")</pre> Preprocessing Adding age, hour, day columns because they tend to have influence on the fraud fraud <- fraud %>% mutate_if(is.character,as.factor)%>% mutate(year_b = str_split(dob, "-", simplify = TRUE)[,1], year_p = str_split(trans_date_trans_time," ", simplify = TRUE)[,1], year_p = str_split(year_p,"-",simplify = TRUE)[,1], age = as.integer(year_p) - as.integer(year_b), hour = hour(trans_date_trans_time), day = wday(trans_date_trans_time)) %>% select(-c(1, dob, year_b, year_p, trans_num)) ## Warning: There were 2 warnings in `mutate()`. ## The first warning was: ## i In argument: `hour = hour(trans_date_trans_time)`. ## Caused by warning: ## ! tz(): Don't know how to compute timezone for object of class factor; returning "UTC". ## i Run `dplyr::last_dplyr_warnings()` to see the 1 remaining warning. fraud\$is_fraud <- as.factor(fraud\$is_fraud)</pre> Some coordinates tend to have more fraud occurrence fraud %>% ggplot(aes(merch_long,merch_lat,color = is_fraud))+geom_point() 60 -€} 50 merch_lat is_fraud • 0 20 --150 -125 -100 merch_long Highest state in terms of fraud occurrence fraud %>% group_by(state) %>% count(is_fraud) %>% filter(is_fraud == 1) %>% arrange(-n) %>% head(3) ## # A tibble: 3 × 3 ## # Groups: state [3] ## state is_fraud n ## <fct> <fct> <int> ## 1 CA 1 262 ## 2 MO 1 ## 3 NE 1 216 CA <- rbind(fraud %>% filter(state == "CA"&is_fraud == 1), fraud %>% filter(state == "CA"&is_fraud == 0) %>% slice (1:500)) mapview(CA, xcol = "merch_long", ycol = "merch_lat", crs = 4269, grid = FALSE, zcol = "is_fraud") data - is_fraud Cheyenne• DENVER-300 km Leaflet | © OpenStreetMap contributors © CARTO Some hours have more cases of frauds more than others fraud %>% group_by(hour) %>% count(is_fraud) %>% ggplot(aes(as.character(hour),n,fill=is_fraud)) + geom_col(position=position_dodge()) + xlab("hours") + ggtitle ("Hours and fraud") Hours and fraud 15000 -10000 is_fraud 5000 0 1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 3 4 5 6 7 8 9 hours some categories tend to have more cases for fraud fraud %>% group_by(category) %>% count(is_fraud) %>% ggplot(aes(n,category,fill=is_fraud)) + geom_col(position=position_dodge()) + ggtitle("Fraud and categories") + scale_fill_manual(values=c('#999999','red')) Fraud and categories travel shopping_pos shopping_net personal_care misc_pos misc_net is_fraud category kids_pets home health_fitness grocery_pos grocery_net gas_transport food_dining entertainment -10000 30000 20000 some ages tend to have more cases for fraud fraud %>% group_by(age) %>% count(is_fraud) %>% filter(is_fraud == 1) %>% mutate(age = as.character(cut(age, seq(10, 100, 10)))) %>% group_by(age) %>% summarize(sums = sum(n)) %>% as.data.frame() %>% ggplot(aes(age, sums)) + ggtitle("Ages and fraud") + geom_col(color="red", fill="white") + ylab("Number of frauds") Ages and fraud 300 -Number of frauds 100 -(10,20] (20,30] (30,40] (40,50](50,60] (60,70] (70,80] (80,90] (90,100] Unbalanced data The data is highly unbalanced 99% non fraud fraud %>% count(is_fraud) %>% mutate(n=paste(round(n*100/nrow(fraud),2),"%")) ## is_fraud ## 1 0 99.48 % ## 2 1 0.52 % fraud %>% count(is_fraud) %>% ggplot(aes(x="",n,fill=is_fraud)) + geom_bar(stat = "identity",width = 0.5) + coord ggtitle("Percentage of every class") + scale_fill_manual(values=c("#9933FF", "#33FFFF")) Percentage of every class 0e+00 3e+05 is_fraud 1e+05 2e+05 Converting the GPS coordinates to distance (new column) df <- data.frame(fraud %>% select(long,lat,merch_long,merch_lat)) distances_km <- numeric(nrow(df))</pre> for (i in 1:nrow(df)) { lon1 <- df\$long[i]</pre> lat1 <- df\$lat[i]</pre> lon2 <- df\$merch_long[i]</pre> lat2 <- df\$merch_lat[i]</pre> $distances_km[i] \leftarrow distGeo(c(lon1, lat1), c(lon2, lat2)) / 1000$ fraud\$distance_km <- distances_km</pre> rm(distances_km,lon1,lat1,lon2,lat2,i,df) Categorical columns . name of merchant has so many unique values and we can't one hot code it (693 new columns), label encoding also isn't a choice . so i preffered dropping it and it also don't tend to have that much importance . . same for the city . . category could be one hot encoded and has influence on the fraud as represented above. . job might have some importance on the fraud so i tried to frequency-encode it (replace the values by the frequency) uniques <- fraud %>% summarise(merchant = length(unique(merchant)), category = length(unique(category)), job = length(unique(job)), city = length(unique(city))) %>% t() %>% as.data.frame() uniques V1 ## merchant 693 ## category 14 163 ## job ## city city and state columns dropped because they have the same info and they are hard to encode so i chose to use city pop instead fraud <- fraud %>% select(-c(long,merch_long,merch_lat,lat,merchant,city,state)) **Splitting** set.seed(123) data_split <initial_split(fraud,strata = is_fraud) train <- training(data_split)</pre> test <- testing(data_split)</pre> #cross validation object fraud_folds <- vfold_cv(train, v = 3, strata = is_fraud)</pre> Recipe i tried 3 different recipes to tune the model and choose both the best recipe and best hyperparameters #basic recipe recipe_plain <recipe(is_fraud ~ ., data = train) %>% step_normalize(all_numeric_predictors()) %>% step_mutate(job, count = n()) %>% step_integer(job)%>% step_rm(count)%>% step_dummy(all_nominal_predictors()) #rebalancing using smote smote <- recipe_plain %>% step_smote(is_fraud,over_ratio = 0.85) %>% step_sample(size = nrow(train)) #rebalancing using random undersampling rus <- recipe_plain %>% step_downsample(is_fraud) Metric set metric <- metric_set(sens, precision,yardstick::spec, j_index, f_meas)</pre> Model Spec i chose the lightgbm model because it was the best model set.seed(123) lightgbm_spec <boost_tree(mtry = tune(),trees = tune(), tree_depth = tune(), learn_rate = tune(), $min_n = tune(),$ loss_reduction = tune() set_engine(engine = "lightgbm") %>% set_mode(mode = "classification") Workflow wf_set_tune <workflow_set(list(plain = recipe_plain, smote = smote,rus = rus), list(lightgmb = lightgbm_spec) Tune tune the hyperparameters of the model and evaluate the model accross different recipes (simple, smote, rus) set.seed(123) tune_results <-</pre> workflow_map(wf_set_tune, "tune_grid", resamples = fraud_folds, grid = 6, metrics = metric, verbose = TRUE ## i 1 of 3 tuning: plain_lightgmb ## i Creating pre-processing data to finalize unknown parameter: mtry ## **✓** 1 of 3 tuning: plain_lightgmb (2m 40.9s) ## i 2 of 3 tuning: smote_lightgmb ## i Creating pre-processing data to finalize unknown parameter: mtry smote_lightgmb (4m 13.2s) ## **✓** 2 of 3 tuning: ## i 3 of 3 tuning: rus_lightgmb ## i Creating pre-processing data to finalize unknown parameter: mtry ## **✓** 3 of 3 tuning: rus_lightgmb (1m 35.2s) Ranking the tuning results by j-index on validation sets the balanced data ranks better . both rebalancing methods increased the j_index smote 0.82 rus 0.91 . the under sampling did a better job rank_results(tune_results, rank_metric = "j_index") ## # A tibble: 90 × 9 wflow_id .config n preprocessor model rank .metric mean std_err <chr> <chr> <dbl> <dbl> <int> <chr> <chr> <chr> <int> ## 1 rus_lightgmb Preprocess... f_meas 0.977 1.03e-3 3 recipe boos... ## 2 rus_lightgmb Preprocess... j_index 0.914 4.22e-3 3 recipe boos... ## 3 rus_lightgmb Preprocess... precis... 1.00 2.83e-5 3 recipe boos... ## 4 rus_lightgmb Preprocess... sens 0.956 1.97e-3 3 recipe boos... ## 5 rus_lightgmb Preprocess... spec 0.958 5.26e-3 3 recipe boos... ## 6 rus_lightgmb Preprocess... f_meas 0.966 1.05e-3 3 recipe boos... ## 7 rus_lightgmb Preprocess... j_index 0.874 1.25e-2 3 recipe boos... ## 8 rus_lightgmb Preprocess... precis... 1.00 5.61e-5 3 recipe boos... ## 9 rus_lightgmb Preprocess... sens 0.935 1.92e-3 3 recipe boos... ## 10 rus_lightgmb Preprocess... spec 0.939 1.06e-2 3 recipe boos... ## # i 80 more rows Selecting best model results_down_gmb <- tune_results %>% extract_workflow_set_result("rus_lightgmb") autoplot(tune_results, rank_metric = "j_index", select_best = TRUE) + ggtitle("Performance des différents modèles")

Selecting best model

results_down_gmb <- tune_results %>%
 extract_workflow_set_result("rus_lightgmb")

autoplot(tune_results, rank_metric = "j_index", select_best = TRUE) +
 ggtitle("Performance des différents modèles")

Performance des différents modèles

1.000.990.980.970.980.97-

precision

model

boost_tree

preprocessor

recipe

0.9988 -0.75 -0.980 -0.70 -0.9984 -0.975 -1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 Workflow Rank autoplot(results_down_gmb, metric = c("accuracy", "j_index")) + ggtitle("Perfomance des différents hyperparamètres de LightGBM") Perfomance des différents hyperparamètres de LightGBM # Randomly Selected Predictors # Trees Learning Rate (log-10) 0.92 0.88 -0.84 -0.80 -0.76 -index 0.92 -Minimal Node Size Minimum Loss Reduction (log-10) Tree Depth 0.88 -0.84 -

0.9996 -

0.9992 -

0.96 -

f_meas

j_index

0.90 -

0.85

0.80 -

Metric 1.000

0.995 -

0.990 -

0.985 -

0.80 -

0.76 -

Finalizing workflow

best_hyperparameters <- tune_results %>%

higher j-index for both test(0.919) and validation (0.913)

collect_predictions() %>%

validation_results %>%

rbind(validation_results %>% collect_metrics() %>% select(-.config),

accuracy(truth = is_fraud, estimate = .pred_class))

extract_workflow_set_result("rus_lightgmb") %>%
select_best(metric = "j_index")

validation_results <- tune_results %>%
extract_workflow("rus_lightgmb") %>%
finalize_workflow(best_hyperparameters) %>%
last_fit(data_split, metrics = metric)

Performance on test data

as we can see we get we got stable metrics and stability between test and validation:
high accuracy 0.96 it was 0.998 which could lead to over fit

A tibble: 6 × 3 .estimator .estimate .metric ## <chr> <chr> <dbl> ## 1 sens binary ## 2 precision binary 1.00 0.958 ## 3 spec binary ## 4 j_index binary 0.920 ## 5 f_meas 0.981 binary ## 6 accuracy binary 0.962

5 f_meas binary 0.981
6 accuracy binary 0.962

Confusion matrix

validation_results %>% collect_predictions() %>% conf_mat(truth = is_fraud, estimate = .pred_class)

Truth
Bradiction 0 1

Truth
Prediction 0 1
0 81261 18
1 3214 409

The matrix indicates that the models focuses more on catching fraudulent transactions rather than getting non fraud as non fraud and that might be useful as one fraud predicted as fraud is more important than predicting non frauds as fraud ... one single fraudulent transaction could cause much more lost than loosing a non fraudulent customer