Modern Algebra HW 10

Michael Nameika

November 2022

Section 23 Problems

2. Find q(x) and r(x) as described by the division algorithm so that f(x) = g(x)q(x) + r(x) with r(x) = 0 or of degree less than degree of g(x).

$$f(x) = x^6 + 3x^5 + 4x^2 - 3x + 2$$
 and $g(x) = 3x^2 + 2x - 3$ in $\mathbb{Z}_7[x]$.

To find q(x) and r(x), we will proceed by using long division. Notice

$$5x^{4} + 5x^{2} - x$$

$$3x^{2} + 2x - 3)x^{6} + 3x^{5} + 0x^{4} + 0x^{3} + 4x^{2} - 3x + 2$$

$$-(x^{6} + 3x^{5} - x^{4})$$

$$x^{4} + 0x^{3} + 4x^{2} - 3x + 2$$

$$-(x^{4} + 3x^{3} - x^{2})$$

$$-3x^{3} + 5x^{2} - 3x + 2$$

$$-(-3x^{3} - 2x^{2} + 3x)$$

$$-6x + 2$$

So

$$x^{6} + 3x^{5} + 4x^{2} - 3x + 2 = g(x)q(x) + r(x)$$

where $g(x) = 3x^2 + 2x - 3$, $q(x) = 5x^4 + 5x^2 - x$, and r(x) = -6x + 2.

12. Is $x^3 + 2x + 3$ an irreducible polynomial of $\mathbb{Z}_5[x]$? Why? Express it as a product of irreducible polynomials of $\mathbb{Z}_5[x]$.

Let $f(x) = x^3 + 2x + 3$ and let us begin by checking whether each element of \mathbb{Z}_5 gives us f(x) = 0:

$$f(0) = 3$$

 $f(1) = 1$
 $f(2) = 0$
 $f(3) = 1$
 $f(4) = 3$

From this, we can see that (x-2) is a factor of f(x). Let us find the quotient of f(x) under division by (x-2) by means of long division:

$$x^{2} + 2x + 1$$

$$x - 2)x^{3} + 0x^{2} + 2x + 3$$

$$-(x^{3} - 2x^{2})$$

$$2x^{2} + 2x + 3$$

$$-(2x^{2} - 4x)$$

$$x + 3$$

$$-(x - 2)$$

$$0$$

So f(x) factors to $(x-2)(x^2+2x+1)$. Now let $g(x)=x^2+2x+1$. Notice that $x^2+2x+1=(x+1)^2$, so our factorization for f(x) is:

$$f(x) = (x-2)(x+1)^2$$

16. Demonstrate that $x^3 + 3x^2 - 8$ is irreducible over \mathbb{Q} .

Notice that the coefficients for $x^3 + 3x^2 - 8$ are (in order of descending power): 1, 3, 0, -8. Further notice that $1 \not\equiv 0 \mod 3$, $3 \equiv 0 \mod 3$, $0 \equiv 0 \mod 3$, and $-8 \not\equiv 0 \mod 3^2$. Then by the Eisenstein Criterion, we have that $x^3 + 3x^2 - 8$ is irreducible over \mathbb{Q} .

17. Demonstrate that $x^4 - 22x^2 + 1$ is irreducible over \mathbb{Q} .

Notice that the only zeros of this function in \mathbb{Z} must be $x = \pm 1$. Testing these values for $f(x) = x^4 - 22x^2 + 1$, we find

$$f(1) = 1 - 22 + 1 = -20$$
$$f(-1) = 1 - 22 + 1 = -20$$

Then f(x) is irreducible in \mathbb{Z} , and so by theorem 23.11, we have that f(x) is irreducible over \mathbb{Q} .

28. Find all irreducible polynomials of degree 3 in $\mathbb{Z}_2[x]$.

Let us begin by listing all the degree 3 polynomials in $\mathbb{Z}_2[x]$:

$$x^{3}$$
 $x^{3} + 1$
 $x^{3} + x$
 $x^{3} + x + 1$
 $x^{3} + x^{2}$
 $x^{3} + x^{2} + 1$
 $x^{3} + x^{2} + x$
 $x^{3} + x^{2} + x + 1$

Immediately, we can see that x^3 , $x^3 + x$, $x^3 + x^2$, $x^3 + x^2 + x$ are reducible (factor out an x!). Upon further inspection, we can see $x^3 + 1$ and $x^3 + x^2 + x + 1$ have factors of x - 1 and are thus irreducible. So the

irreducible polynomials of degree 3 in \mathbb{Z}_2 are

$$x^3 + x^2 + 1$$
$$x^3 + x + 1$$

$$x^3 + x + 1$$