Biosensors

B. Tech.

Course No.: EEL 3050

L-T-P [C]: 3-0-2 [4]

Prof. AJAY AGARWAL

ELECTRICAL ENGINEERING

IIT JODHPUR

Surface-Enhanced Raman Spectroscopy or Surface-Enhanced Raman Scattering (SERS)

- a surface-sensitive technique that enhances Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures
- the enhancement factor can be as much as 10¹⁰ to 10¹¹,
- the technique may detect single molecules

SERS

- The exact mechanism of the enhancement effect of SERS is still a matter of debate
- There are two primary theories and while their mechanisms differ substantially, distinguishing them experimentally
- the electromagnetic theory proposes the excitation of localized surface plasmons, while
- the chemical theory proposes the formation of charge-transfer complexes. It is based on resonance Raman spectroscopy, in which the frequency coincidence (or resonance) of the incident photon energy & electron transition greatly enhances Raman scattering intensity.

3. Nano-structure array for Surface Enhanced Sensors and Actuators A: Physical Raman Spectroscopy

Sensors and Actuators A: Physical Volume 139, Issues 1–2, 12 September 2007, Pages 36-

Volume 139, Issues 1–2, 12 September 2007, Pages 36-41

R.Z. Tan ^a, A. Agarwal ^a $\stackrel{\triangleright}{\sim}$ N. Balasubramanian ^a, D.L. Kwong ^a, Y. Jiang ^b, E. Widjaja ^b, M. Garland ^b

Suitable for trace level detection of:

- Biological warfare,
- Bio-markers,
- Explosives, etc.

SERS substrates

Bio-sample analysis on SERS substrate

1.5mm x 0.5mm

Raman Mapping of SERS substrate for Rhodamine B (10 μM, 785 nm) at 620 cm-1

FESEM images of Si SERS substrate surface (a to b)

Bio-sample analysis of breast cancer tissue cells

Cross-sectional view

DNA detection

C. Fang, Ajay Agarwal, et al., Biosensors and Bioelectronics, 24 (2008) 216–221

Differentiation of Raman fingerprints of three different Corona virus Spike Protein (SARS-CoV-2, SARS-CoV, MERS-CoV) by PCA & SVM

			Princip	al Co	ompone	ent An	alysis	
PC2	20 -		-)				
	15 -		•					
	10 -							
	5 -							
	0 -							
	-5 -						00	9
	-10 -					•	MERS	090
	-15 -	•				•	S1_Spike SARS1	_protein
		-	10	Ó	PC1	0	20	30

Wavenumber cm ⁻¹	Peak assignment			
883	CH2 protein assignment			
937	Side chain vibration of Proline			
1176	C-H bending tryrosine			
1327	Amide III			

Raman spectra, taken using SERS active substrates, of COVID-19 patients' and normal subjects' saliva

Varsha K, ..., **Ajay Agarwal**, S Singh, Kaustabh K Maiti, A non-invasive ultrasensitive diagnostic ..., Journal of Photochemistry and Photobiology B: Biology, 2022, 112545.

Nanosensor for the Classification of Organic Honey

• Indian Honey market is valued at INR 2330 Crores (2022) and expected to reach INR 3880 Crores by 2028 (8.4 % CAGR).

Specifications of nanosensor

- Plasmonic feature size: 20nm –
 200nm
- Enhancement factor: 10⁶ –10⁹
- Limit of detection: ppm/ ppb
- Target AI algorithms for integration: CNN, SVM or EA

S. Singh, A. Agarwal, et al., "Rapid Detection of Paraquat Pesticide in Honey using SERS-Based Portable Nanosensing Platform," in IEEE Sensors Letters, vol. 7, no. 10, pp. 1-4, Oct. **2023**, Art no. 6006804

Initial results:

- FESEM images of Si SERS substrate after
 (a)Ag NP deposition on planar Si surface
 (b)porous Si fabrication by chemical etching
 (c)Ag NP deposition on porous Si
 (d)SERS behavior of nano-sensor with Rhodamine B (RhB) at 03 spots compared with bulk RhB on planar Si

K-means Algorithm for Honey Classification

- □ Asymmetric Partial Least Squares method was used for Spectra smoothing
- □ K-means clustering model was used for auto-classification of the four honey types using Raman Spectroscopy
- ☐ The accuracy can be improved by using other deep learning models such as convolutional neural networks etc.

Questions?