SEMESTER VI

MICROWAVE ENGINEERING

Module	Content	No. of Lectures
1	Introduction: RF and microwave spectrum, historical background, application of RF and Microwave Impedance Matching–Unknown impedance measurement using shift in minima technique and impedance matching using single and double stub matching.	8
2	Microwave waveguides and components: Rectangular waveguide and circular waveguide, mode structure, cutoff frequency, wall current, attenuation; microwave cavities — rectangular cavity resonator, Q factor power divider, scattering matrix and transmission matrix, attenuator, phase shifter, directional coupler, Bethe hole coupler, magic tee, hybrid ring, circulator, isolator, Ferrite Devices	10
3	Planar structures: Strip line, microstrip line, coplanar structure Microwave Tubes: Limitations of conventional tubes, Multicavity Klystron, Reflex Klystron, Magnetron, Travelling Wave Tube, Backward Wave Oscillator Semiconductor Microwave Devices — Tunnel diode, Gunn diode and their waveguide mounts	10
4	Avalanche diodes: IMPATT, TRAPATT, Microwave bipolar transistor, heterojunction bipolar transistor. Microwave field effect transistor: JFET, MOSFET, MESFET Applications of microwave: Industrial Applications of microwave.	8
5	Microwave Measurement: VSWR measurement, power measurement, impedance measurement, frequency Measurement Equivalent RF circuit parameters Low pass filter, high pass filter, band pass filter, RF amplifier.	6

Text Books/References books:

- 1. Golio M, Golio J (2008) The RF and Microwave Handbook. CRC Press.
- 2. Pozar DM (2005) Microwave Engineering. John Wiley & Sons.
- **3.** Hong JS, Lancaster MJ (2001) Microstrip Filters for RF/Microwave Applications. John Wiley & Sons.

List of experiments:

- 1. To measure the frequency and wavelength using slotted line section and frequency meter.
- 2. To measure the Isolation and Insertion loss of Isolator and Circulator.
- 3. To study E-plane, H-plane and Magic Tee.
- 4. To measure Coupling Factor, Directivity and Isolation of directional coupler.
- 5. To measure VSWR and Reflection coefficient of different loads.
- 6. To study the characteristics of Klystron and Gunn diode.

- 7. Simulation of Transmission line: Waveguide and Coaxial line.
- 8. Simulation of directional coupler.
- 9. Simulation of E-plane and H-plane Tee.
- 10.Study of micro strip line and LPF using HFSS Software.
- 11. Study of BPF using HFSS Software.

VLSI DESIGN

Module	Content	No. of Lectures
1	Introduction: Review of MOSFET characteristics, scaling and small-geometry effects, and MOSFET capacitances. MOS resistor, MOS current source, current mirror circuits. MOS voltage source, linear voltage and current converters.	6
2	CMOS operational amplifier (OPAMP) design: Differential amplifier, level shifter, source follower, output stage voltage and power amplifiers. Cascode OP-AMP. Compensation techniques. Analog Filters: Switched capacitor (SC) fundamentals, first order SC circuits, second-order SC circuits and cascade design. Analog to digital and digital to analog converters, speed of conversion and over sampling issues. VLSI Interconnects: Distributed RC model, transmission line model. Future inter connect technologies.	14
3	Digital VLSI Circuit Design: MOS inverters, CMOS inverter, state characteristics, switching characteristics, power dissipation issues. CMOS logic gates: NAND, NOR, XOR, CMOS logic design of half and full adders. CMOS transmission gates, pseudo-nMOS, domino logic gates.	9
4	Sequential MOS Logic Circuits: The SR latch circuit, clocked latch and flip-flop, CMOS D-latch and edge-triggered circuits, Schmitt trigger circuit, Comparator. Dynamic Logic Circuits: Pass transistor logic, synchronous dynamic circuit techniques.	8
5	Semiconductor Memories: ROM circuits, SRAM circuits, DRAM circuits, drivers and buffers, Buffer scaling and design issues	5

Text Books/Reference books: