Shusen Wang

Policy Function Approximation

Policy Function $\pi(a|s)$

- Policy function $\pi(a|s)$ is a probability density function (PDF).
- It takes state s as input.
- It output the probabilities for all the actions, e.g.,

$$\pi(\text{left}|s) = 0.2,$$
 $\pi(\text{right}|s) = 0.1,$
 $\pi(\text{up}|s) = 0.7.$

• The agent performs an action α random drawn from the distribution.

Policy Network $\pi(a|s,\theta)$

Policy network: Use a neural net to approximate $\pi(a|s)$.

- Use policy network $\pi(a|s; \theta)$ to approximate $\pi(a|s)$.
- θ : trainable parameters of the neural net.

Policy Network $\pi(a|s,\theta)$

Policy network: Use a neural net to approximate $\pi(a|s)$.

- Use policy network $\pi(a|s; \theta)$ to approximate $\pi(a|s)$.
- θ : trainable parameters of the neural net.

Policy Network $\pi(a|s,\theta)$

- $\sum_{a \in \mathcal{A}} \pi(a|s; \theta) = 1.$
- Here, $\mathcal{A} = \{\text{"left", "right", "up"}\}\$ is the set all actions.
- That is why we use softmax activation.

State-Value Function Approximation

Action-Value Function

Definition: Discounted return.

```
• U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \cdots
```

- The return depends on actions $A_t, A_{t+1}, A_{t+2}, \cdots$ and states $S_t, S_{t+1}, S_{t+2}, \cdots$
- Actions are random: $\mathbb{P}[A = a \mid S = s] = \pi(a \mid s)$. (Policy function.) States are random: $\mathbb{P}[S' = s' \mid S = s, A = a] = p(s' \mid s, a)$. (State transition.)

Action-Value Function

Definition: Discounted return.

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \cdots$$

Definition: Action-value function.

•
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = \mathbf{a}_t\right].$$

The expectation is taken w.r.t.

actions
$$A_{t+1}, A_{t+2}, A_{t+3}, \cdots$$

and states $S_{t+1}, S_{t+2}, S_{t+3}, \cdots$

State-Value Function

Definition: Discounted return.

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \cdots$$

Definition: Action-value function.

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right].$$

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{\stackrel{A}{t}}[Q_{\pi}(s_t, A)]$$

Integrate out action $A \sim \pi(\cdot | s_t)$.

State-Value Function

Definition: Discounted return.

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \cdots$$

Definition: Action-value function.

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right].$$

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{\mathbf{A}} \left[Q_{\pi}(s_t, \mathbf{A}) \right] = \sum_{\mathbf{a}} \pi(\mathbf{a}|s_t) \cdot Q_{\pi}(s_t, \mathbf{a}).$$

Integrate out action $A \sim \pi(\cdot | s_t)$.

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{\mathbf{A}}\left[Q_{\pi}(s_t, \mathbf{A})\right] = \sum_{\mathbf{a}} \pi(\mathbf{a}|s_t) \cdot Q_{\pi}(s_t, \mathbf{a}).$$

Definition: State-value function.

• $V_{\pi}(s_t) = \mathbb{E}_{\mathbf{A}}\left[Q_{\pi}(s_t, \mathbf{A})\right] = \sum_{\mathbf{a}} \pi(\mathbf{a}|s_t) \cdot Q_{\pi}(s_t, \mathbf{a}).$

Approximate state-value function.

• Approximate policy function $\pi(a|s_t)$ by policy network $\pi(a|s_t; \theta)$

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_A \left[Q_{\pi}(s_t, A) \right] = \sum_a \pi(a|s_t) \cdot Q_{\pi}(s_t, a).$$

Approximate state-value function.

- Approximate policy function $\pi(\mathbf{a}|s_t)$ by policy network $\pi(\mathbf{a}|s_t;\mathbf{\theta})$
- Approximate value function $V_{\pi}(s_t)$ by:

$$V(s_t; \mathbf{\theta}) = \sum_{\mathbf{a}} \pi(\mathbf{a}|s_t; \mathbf{\theta}) \cdot Q_{\pi}(s_t, \mathbf{a}).$$

Definition: Approximate state-value function.

• $V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$

Policy-based learning: Learn θ that maximizes $J(\theta) = \mathbb{E}_S[V(S; \theta)]$.

Definition: Approximate state-value function.

• $V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$

Policy-based learning: Learn θ that maximizes $J(\theta) = \mathbb{E}_{S}[V(S; \theta)]$.

How to improve θ ? Policy gradient ascent!

• Observe state s.

• Update policy by:
$$\mathbf{\theta} \leftarrow \mathbf{\theta} + \beta \cdot \frac{\partial V(s; \mathbf{\theta})}{\partial \mathbf{\theta}}$$

Policy gradient

Reference

1. Sutton and others: Policy gradient methods for reinforcement learning with function approximation. In NIPS, 2000.

Definition: Approximate state-value function.

• $V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$

•
$$\frac{\partial V(s;\theta)}{\partial \theta}$$

Definition: Approximate state-value function.

•
$$V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$$

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

$$\bullet \frac{\partial V(s; \theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s; \theta) \cdot Q_{\pi}(s, a)}{\partial \theta}$$

Push the differentiation into the summation.

Definition: Approximate state-value function.

• $V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

$$\bullet \frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta) \cdot Q_{\pi}(s,a)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

Pretend Q_{π} is independent of $\boldsymbol{\theta}$.

(It may not be true.)

Definition: Approximate state-value function.

• $V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$

$$\bullet \frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta) \cdot Q_{\pi}(s,a)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s;\theta) \cdot \frac{\partial \log \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

Definition: Approximate state-value function.

• $V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$

$$\bullet \frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta) \cdot Q_{\pi}(s,a)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s;\theta) \frac{\partial \log \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

• Chain rule:
$$\frac{\partial \log[\pi(\theta)]}{\partial \theta} = \frac{1}{\pi(\theta)} \cdot \frac{\partial \pi(\theta)}{\partial \theta}$$
.

Definition: Approximate state-value function.

• $V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$

• Chain rule:
$$\frac{\partial \log[\pi(\theta)]}{\partial \theta} = \frac{1}{\pi(\theta)} \cdot \frac{\partial \pi(\theta)}{\partial \theta}$$
.
• $\mathbf{\pi}(\theta) \cdot \frac{\partial \log[\pi(\theta)]}{\partial \theta} = \pi(\theta) \cdot \frac{1}{\pi(\theta)} \cdot \frac{\partial \pi(\theta)}{\partial \theta}$

Definition: Approximate state-value function.

• $V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$

• Chain rule:
$$\frac{\partial \log[\pi(\theta)]}{\partial \theta} = \frac{1}{\pi(\theta)} \cdot \frac{\partial \pi(\theta)}{\partial \theta}$$
.
• $\Rightarrow \pi(\theta) \cdot \frac{\partial \log[\pi(\theta)]}{\partial \theta} = \pi(\theta) \cdot \frac{1}{\pi(\theta)} \cdot \frac{\partial \pi(\theta)}{\partial \theta} = \frac{\partial \pi(\theta)}{\partial \theta}$.

Definition: Approximate state-value function.

•
$$V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$$

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

$$\bullet \frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta) \cdot Q_{\pi}(s,a)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s;\theta) \cdot \underbrace{\frac{\partial \log \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)}_{\partial \theta} \cdot Q_{\pi}(s,a)$$

$$= \mathbb{E}_{A} \left[\underbrace{\frac{\partial \log \pi(A|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,A)}_{\partial \theta} \cdot Q_{\pi}(s,A) \right].$$

The expectation is taken w.r.t. the random variable $A \sim \pi(\cdot | s; \theta)$.

Definition: Approximate state-value function.

• $V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

$$\bullet \frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta) \cdot Q_{\pi}(s,a)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)
= \sum_{a} \pi(a|s;\theta) \cdot \frac{\partial \log \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)
= \mathbb{E}_{A} \left[\frac{\partial \log \pi(A|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,A) \right].$$

Note: This derivation is over-simplified and not rigorous.

Two forms of policy gradient:

• Form 1:
$$\frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$
.

• Form 2:
$$\frac{\partial V(s;\theta)}{\partial \theta} = \mathbb{E}_{A \sim \pi(\cdot|s;\theta)} \left[\frac{\partial \log \pi(A|s,\theta)}{\partial \theta} \cdot Q_{\pi}(s,A) \right].$$

Calculate Policy Gradient for Discrete Actions

If the actions are discrete, e.g., action space $A = \{\text{"left"}, \text{"right"}, \text{"up"}\}, \dots$

Use Form 1:
$$\frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a).$$

Calculate Policy Gradient for Discrete Actions

If the actions are discrete, e.g., action space $A = \{\text{"left"}, \text{"right"}, \text{"up"}\}, \dots$

Use Form 1:
$$\frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a).$$

- 1. Calculate $\mathbf{f}(\boldsymbol{a}, \boldsymbol{\theta}) = \frac{\partial \pi(\boldsymbol{a}|s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot Q_{\pi}(s, \boldsymbol{a})$, for every action $\boldsymbol{a} \in \mathcal{A}$.
- 2. Policy gradient: $\frac{\partial V(s;\theta)}{\partial \theta} = \mathbf{f}(\text{"left"}, \theta) + \mathbf{f}(\text{"right"}, \theta) + \mathbf{f}(\text{"up"}, \theta)$.

This approach does not work for continuous actions.

Calculate Policy Gradient for Continuous Actions

If the actions are continuous, e.g., action space $\mathcal{A} = [0, 1], ...$

Use Form 2:
$$\frac{\partial V(s;\theta)}{\partial \theta} = \mathbb{E}_{A \sim \pi(\cdot | s;\theta)} \left[\frac{\partial \log \pi(A|s,\theta)}{\partial \theta} \cdot Q_{\pi}(s,A) \right].$$

Calculate Policy Gradient for Continuous Actions

If the actions are continuous, e.g., action space $\mathcal{A} = [0, 1], ...$

Use Form 2:
$$\frac{\partial V(s;\theta)}{\partial \theta} = \mathbb{E}_{A \sim \pi(\cdot|s;\theta)} \left[\frac{\partial \log \pi(A|s,\theta)}{\partial \theta} \cdot Q_{\pi}(s,A) \right].$$

- 1. Randomly sample an action \hat{a} according to the PDF $\pi(\cdot | s; \theta)$.
- 2. Calculate $\mathbf{g}(\hat{\mathbf{a}}, \mathbf{\theta}) = \frac{\partial \log \pi(\hat{\mathbf{a}}|s;\mathbf{\theta})}{\partial \mathbf{\theta}} \cdot Q_{\pi}(s, \hat{\mathbf{a}}).$
- Obviously, $\mathbb{E}_{A}[\mathbf{g}(A, \mathbf{\theta})] = \frac{\partial V(s; \mathbf{\theta})}{\partial \mathbf{\theta}}$.
- $\mathbf{g}(\hat{a}, \boldsymbol{\theta})$ is an unbiased estimate of $\frac{\partial V(s; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$.

Calculate Policy Gradient for Continuous Actions

If the actions are continuous, e.g., action space $\mathcal{A} = [0, 1], ...$

Use Form 2:
$$\frac{\partial V(s;\theta)}{\partial \theta} = \mathbb{E}_{A \sim \pi(\cdot|s;\theta)} \left[\frac{\partial \log \pi(A|s,\theta)}{\partial \theta} \cdot Q_{\pi}(s,A) \right].$$

- 1. Randomly sample an action \hat{a} according to the PDF $\pi(\cdot | s; \theta)$.
- 2. Calculate $\mathbf{g}(\hat{\mathbf{a}}, \mathbf{\theta}) = \frac{\partial \log \pi(\hat{\mathbf{a}}|s;\mathbf{\theta})}{\partial \mathbf{\theta}} \cdot Q_{\pi}(s, \hat{\mathbf{a}}).$
- 3. Use $\mathbf{g}(\hat{a}, \boldsymbol{\theta})$ as an approximation to the policy gradient $\frac{\partial V(s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$.

This approach also works for discrete actions.

- 1. Observe the state s_t .
- 2. Randomly sample action a_t according to $\pi(\cdot | s_t; \theta_t)$.

- 1. Observe the state s_t .
- 2. Randomly sample action a_t according to $\pi(\cdot | s_t; \theta_t)$.
- 3. Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate).
- 4. Differentiate policy network: $\mathbf{d}_{\theta,t} = \frac{\partial \log \pi(\mathbf{a}_t|s_t,\theta)}{\partial \theta} \big|_{\theta=\theta_t}$.

- 1. Observe the state s_t .
- 2. Randomly sample action a_t according to $\pi(\cdot | s_t; \theta_t)$.
- 3. Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate).
- 4. Differentiate policy network: $\mathbf{d}_{\theta,t} = \frac{\partial \log \pi(\mathbf{a}_t|s_t,\theta)}{\partial \theta} \big|_{\theta=\theta_t}$.
- 5. (Approximate) policy gradient: $\mathbf{g}(\mathbf{a}_t, \mathbf{\theta}_t) \approx q_t \cdot \mathbf{d}_{\theta,t}$.
- 6. Update policy network: $\mathbf{\theta}_{t+1} = \mathbf{\theta}_t + \beta \cdot \mathbf{g}(\mathbf{a}_t, \mathbf{\theta}_t)$.

- 1. Observe the state s_t .
- 2. Randomly sample action a_t according to $\pi(\cdot | s_t; \theta_t)$.
- 3. Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate). How?
- 4. Differentiate policy network: $\mathbf{d}_{\theta,t} = \frac{\partial \log \pi(a_t|s_t,\theta)}{\partial \theta} |_{\theta=\theta_t}$.
- 5. (Approximate) policy gradient: $\mathbf{g}(\mathbf{a}_t, \mathbf{\theta}_t) \approx q_t \cdot \mathbf{d}_{\theta,t}$.
- 6. Update policy network: $\mathbf{\theta}_{t+1} = \mathbf{\theta}_t + \beta \cdot \tilde{\mathbf{g}}(\mathbf{\theta}_t)$.

- - Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate). How?

Option 1: REINFORCE.

Play the game to the end and generate the trajectory:

$$S_1, a_1, r_1, S_2, a_2, r_2, \cdots, S_T, a_T, r_T.$$

- Compute the discounted return $u_t = \sum_{k=t}^T \gamma^{k-t} r_k$, for all t.
- Since $Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t]$, we can use u_t to approximate $Q_{\pi}(s_t, a_t)$.
- \rightarrow Use $q_t = u_t$.

- - Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate). How?

Option 2: Approximate Q_{π} using a neural network.

This leads to the actor-critic method.

Summary

Policy-Based Method

- If a good policy function $\pi(a|s)$ is known, the agent can be controlled by the policy: randomly sample $a_t \sim \pi(\cdot|s_t)$.
- Approximate policy function $\pi(a|s)$ by policy network $\pi(a|s;\theta)$.
- Learn the policy network by policy gradient.
- Policy gradient algorithm learn θ that maximizes $\mathbb{E}_{S}[V(S; \theta)]$.

Thank you!