COMSM0007: Cryptography B 2014-2015

Lecture 3: February 3

Lecturer: Bogdan Warinschi Scribes: Dominic Moylett

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

3.1 Security of the Lamport One-Time Signature Scheme

For simplicity, the Lamport one-time signature scheme for a one-way function (OWF) f will be denoted π_f .

Theorem 3.1 If f is a OWF then π_f is a secure one-time signature scheme.

We will show this by reduction: given an adversary \mathcal{A} against π_f , there exists an adversary \mathcal{B} against f. We will prove this in three parts.

3.1.1 Security Under Two Assumptions

First, we will assume the following:

- 1. The adversary A is passive, so it cannot make any signature queries.
- 2. The first bit of the forged message returned by A is 0.

Lemma 3.2 Given an adversary A against π_f and under the above assumptions, there exists an adversary B against f.

Proof: Our adversary against π_f looks like the following black box:

Figure 3.1: The first adversary against π_f

Because the first bit of the forged message $m_1^* = 0$, the start of the forged signature σ_1^* is a preimage of Y_{10} . From this, we can construct an adversary \mathcal{B} for f. 3-2 Lecture 3: February 3

3.1.1.1 A Poor First Attempt

$$\begin{aligned} & \textbf{input } Y = f(x) \\ & \mathcal{A} \leftarrow \begin{pmatrix} YYY...Y \\ YYY...Y \end{pmatrix} \\ & \mathcal{A} \rightarrow (0m_2^*...m_l^*, \sigma_1^*\sigma_2^*...\sigma_l^*) \\ & \textbf{output } \sigma_1^* \end{aligned}$$

This is not guaranteed to work, as the verification key passed to \mathcal{A} is meant to appear random. While it might be possible for all components of the verification key to match, it is very unlikely.

3.1.1.2 An Improved Adversary

$$\begin{split} & \text{input } Y = f(x) \\ & (SK, VK) \leftarrow Kg(n) = \left(\begin{pmatrix} X_{10} ... X_{l0} \\ X_{11} ... X_{l1} \end{pmatrix}, \begin{pmatrix} Y_{10} Y_{20} ... Y_{l0} \\ Y_{11} Y_{21} ... Y_{l1} \end{pmatrix} \right) \\ & \mathcal{A} \leftarrow \begin{pmatrix} YY_{20} ... Y_{l0} \\ Y_{11} Y_{21} ... Y_{l1} \end{pmatrix} \\ & \mathcal{A} \rightarrow (0m_2^* ... m_l^*, \sigma_1^* \sigma_2^* ... \sigma_l^*) \\ & \text{output } \sigma_1^* \end{split}$$

Because $m_1^* = 0$ by assumption, σ_1^* is guaranteed to be a preimage of Y as long as \mathcal{A} can forge a signature.

$$\operatorname{Prob}[\mathcal{B} \text{ breaks } f] = \operatorname{Prob}[\mathcal{A} \text{ breaks } \pi_f]$$

3.1.2 Removing Assumption 2

Lemma 3.3 Given a passive adversary A against π_f , there exists an adversary B against f.

Proof: We now know that for $b = m_1^*$, σ_1^* is a preimage of Y_1b computed by \mathcal{A} . But we don't know what value b is, so we pick one at random. Note that $\bar{b} = (1 - b) \mod 2$ is the binary inverse of b.

$$\begin{split} & \textbf{input} \ Y = f(x) \\ & (SK, VK) \leftarrow Kg(n) = \left(\begin{pmatrix} X_{10} ... X_{l0} \\ X_{11} ... X_{l1} \end{pmatrix}, \begin{pmatrix} Y_{10} Y_{20} ... Y_{l0} \\ Y_{11} Y_{21} ... Y_{l1} \end{pmatrix} \right) \\ & b \overset{\$}{\leftarrow} \left\{ 0, 1 \right\} \\ & Y'_{1b} \leftarrow Y \\ & Y'_{1\bar{b}} \leftarrow Y_{1\bar{b}} \\ & VK' \leftarrow \begin{pmatrix} Y'_{10} Y_{20} ... Y_{l0} \\ Y'_{11} Y_{21} ... Y_{l1} \end{pmatrix} \\ & \mathcal{A} \leftarrow VK' \\ & \mathcal{A} \rightarrow (m_1^* ... m_l^*, \sigma_1^* ... \sigma_l^*) \\ & \textbf{if} \quad m_1^* \neq b \ \textbf{then abort} \\ & \textbf{output} \ \sigma_1^* \end{split}$$

Lecture 3: February 3

If \mathcal{A} has succeeded and $m_1^* = b$ then σ_1^* is a preimage of Y and \mathcal{B} is therefore successful.

$$\text{Prob}[\mathcal{B} \text{ breaks } f] = \frac{1}{2} \text{Prob}[\mathcal{A} \text{ breaks } \pi_f]$$

If $\operatorname{Prob}[A \text{ breaks } \pi_f]$ is non-negligible then $\operatorname{Prob}[B \text{ breaks } f]$ is also non-negligible.

3.1.3 Removing Assumption 1

To complete our proof of Theorem 3.1, we need to allow \mathcal{A} to make one signature query. Note that if \mathcal{A} can make more than one query, \mathcal{A} can query the messages 0^l and 1^l to recover the complete key, regardless of f.

Proof: Our final adversary A against π_f is this black box:

Figure 3.2: The final adversary against π_f

Recall from the definition of EUF-CMA¹ that the message forged by the adversary cannot match the message queried. This means that there is an index i^* such that $m_{i^*} \neq m_{i^*}^*$, so σ_{i^*} is a preimage computed by \mathcal{A} . The only problem is that we do not know which index i^* is, so we just pick one at random.

Our final adversary \mathcal{B} against f is as follows:

$$\begin{aligned} & \textbf{input } Y = f(x) \\ & (SK, VK) \leftarrow Kg(n) = \left(\begin{pmatrix} X_{10} ... X_{l0} \\ X_{11} ... X_{l1} \end{pmatrix}, \begin{pmatrix} Y_{10} ... Y_{l0} \\ Y_{11} ... Y_{l1} \end{pmatrix} \right) \\ & i^* \overset{\$}{\leftarrow} \{1, ..., l\} \\ & b \overset{\$}{\leftarrow} \{0, 1\} \\ & \textbf{for } i \in \{1, ..., l\} \\ & Y'_{i0} \leftarrow Y_{i0} \\ & Y'_{i1} \leftarrow Y_{i1} \\ & Y'_{i*b} \leftarrow Y \\ & VK' \leftarrow \begin{pmatrix} Y'_{10} ... Y'_{l0} \\ Y'_{11} ... Y'_{l1} \end{pmatrix} \\ & \mathcal{A} \leftarrow VK' \\ & \mathcal{A} \rightarrow (m_1 ... m_l) \end{aligned}$$

¹See Lecture 2 notes.

3-4 Lecture 3: February 3

$$\begin{array}{l} \textbf{if} \ m_{i^*} = b \ \textbf{then abort} \\ \mathcal{A} \leftarrow (X_{1m_1}...X_{lm_l}) \\ \mathcal{A} \rightarrow (m_1^*...m_l^*, \sigma_1^*...\sigma_l^*) \\ \textbf{if} \ m_{i^*}^* \neq b \ \textbf{then abort} \\ \textbf{output} \ \sigma_{i^*}^* \end{array}$$

 \mathcal{B} still has access to the signing key and can thus answer a signature query. This is true unless $m_{i^*}^* = b$; as $Y_{i^*b} = Y$, a signature in this case would require \mathcal{B} computing a preimage of Y.

As long as these three conditions hold:

- 1. \mathcal{A} breaks π_f ,
- 2. $m_{i^*} \neq m_{i^*}^*$,
- 3. and $m_{i^*}^* = b$,

then σ_{i^*} is a preimage of Y. So in order for \mathcal{B} to succeed, \mathcal{A} needs to succeed and we need to select a suitable part of the verification key to set to Y. There are 2l locations and at least one satisfies the conditions above.

$$\text{Prob}[\mathcal{B} \text{ breaks } f] \geq \frac{1}{2l} \text{Prob}[\mathcal{A} \text{ breaks } \pi_f]$$

If \mathcal{A} succeeds with non-negligible probability then so does \mathcal{B} and thus our proof is complete.

²Note that if conditions 2 and 3 hold, then $m_{i^*} \neq b$ and thus both abort cases are avoided.