Teoria Grafów - część analityczna

Bartłomiej Łaciak

Graf który miałem do przeanalizowania wyraża się listą sąsiedztwa:

```
[12, 2, 8, 11, 4, 7],
[1, 12, 9, 8, 11],
[12, 9, 8, 11, 4],
[5, 7, 12, 1, 3],
[4, 6, 9, 11],
[5, 12],
[9, 4, 1],
[11, 1, 3, 2, 12],
[10, 3, 7, 5, 2, 11],
[9, 12],
[8, 12, 1, 3, 5, 9, 2],
[10, 3, 1, 11, 2, 4, 6, 8],
]
(zmieniłem wartości wierzchołków tak, żeby indeksować od 1)
```

Zadanie 1 - Szkic Grafu

Zadanie 2 - Macierz Incydencji

Kolumny reprezentują krawędzie, natomiast wiersze wierzchołki.

Zadanie 3 i 4 - Hamiltonowskość, Eulerowskość

Graf jest hamiltonowski, a cykl Hamiltona to:

Tablica, która przyporządkowuje wierzchołkowi jego stopień:

1	2	3	4	5	6	7	8	9	10	11	12
6	5	5	5	4	2	3	5	6	2	7	8

Jak widać w grafie jest 6 wierzchołków nieparzystego stopnia, zatem graf nie jest eulerowski, ani półeulerowski.

Zadanie 5 i 6 - Kolorowanie Grafu

W grafie można wyznaczyć podgraf składający się z wierzchołków {1, 2, 8, 11, 12}, który jest grafem K5.

Liczba chromatyczna grafu ma własność

• $\chi(G)\geqslant \omega,$ gdzie ω jest rozmiarem maksymalnej kliki grafu G,

Zatem jest ona równa co najmniej 5.

Jak się okazuje, da się pokolorować wierzchołki grafu 5 kolorami, czyli liczba chromatyczna wynosi 5.

(4)

7

5

6

Indeks chromatyczny musi być równy co najmniej maksymalnemu stopniowi wierzchołka w grafie, w tym grafie maksymalny stopień ma wierzchołek 12, a jego stopień to 8.

Po analizie faktycznie da się pokolorować krawędzie 8 kolorami:

	1	2	3	4	5	6	7	8	9	10	11	12
1	0	1	0	1	0	0	1	1	0	0	1	1
2	1	0	0	0	0	0	0	1	1	0	1	1
3	0	0	0	1	0	0	0	1	1	0	1	1
4	1	0	1	0	1	0	1	0	0	0	0	1
5	0	0	0	1	0	1	0	0	1	0	1	0
6	0	0	0	0	1	0	0	0	0	0	0	1
7	1	0	0	1	0	0	0	0	1	0	0	0
8	1	1	1	0	0	0	0	0	0	0	1	1
9	0	1	1	0	1	0	1	0	0	1	1	0
10	0	0	0	0	0	0	0	0	1	0	0	1
11	1	1	1	0	1	0	0	1	1	0	0	1
12	1	1	1	1	0	1	0	1	0	1	1	0

Macierz sąsiedztwa z zaznaczonymi kolorami krawędzi, jak widać z żadnego wierzchołka nie wychodzą 2 krawędzie o jednym kolorze. Indeks chromatyczny grafu wynosi 8.

Zadanie 7 - Minimalne drzewo rozpinające

Przyporządkowałem każdej krawędzi w grafie losową wagę od 1 do 9.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
7	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0
8	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
9	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	1	1	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
11	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	1	0	1
12	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	1
	6	7	3	1	8	6	6	1	6	3	2	2	6	5	8	7	1	9	1	8	6	5	1	9	1	7	5	4	8

Macierz incydencji z zaznaczonymi wagami poszczególnych krawędzi.

Używając algorytmu Prima, wyznaczyłem minimalne drzewo rozpinające takiego grafu.

Krawędzie wyznaczające to drzewo, to (zgodnie z ich indeksami w macierzy): $\{4, 25, 12, 1, 17, 23, 28, 22, 19, 27\}$

Zadanie 8 - Planarność Grafu

Jak już pokazałem w zadaniu 5, jednym z podgrafów grafu jest graf K5.

Zgodnie z Twierdzeniem Kuratowskiego, graf zawierający podgraf, będący grafem K, nie jest planarny i nie da się go w tej postaci przedstawić.