Exercise sheet n°1 Electrostatics

Exercise 1

Let's consider two pointlike charges both with charge $q=2\mu$ C. These are located at points A and B along y-axis separated from point O by distance a=3 cm. A charge $+Q=4\mu$ C is at point M on x-axis such that OM=x.

- 1- Sketch the net force \vec{F}_e of all electrostatic forces acting on Q.
- 2- Determine as function of x the intensity of \vec{F}_{e} .

Exercise 2

Four pointlike charges (with q > 0) are located at points A, B, C and D. These points are corners of a rectangle of length a, width b and center O such that angle (ABO) = 30° .

1- Express the norms of the electric vector fields $\vec{E}_A(B)$, $\vec{E}_D(B)$ and $\vec{E}_C(B)$ which are generated at B respectively by charges q_A , q_D et q_C . Write their expression in terms of k, q and a. Draw them by respecting the scale.

- 2- Write the norm of the total electrostatic field $\vec{E}(B)$ which is created at B as function of k, q and a. Sketch $\vec{E}(B)$.
- 3- Write the norm of the total electrostatic field $\vec{E}(O)$ which is created at O as function of k, q and a. Sketch $\vec{E}(O)$.
- 4- Compute the electrostatic potential V(O) created at O in terms of k, q and a.

Exercise 3: Millikan's experience

Between two horizontal metallic plaques, which are separated by d = 1.5 cm, of a capacitor one generates a potential difference $\Delta V = 3$ kV. It can be noticed that some negatively charged oil droplets are in equilibrium between the plaques.

Given data: $\Delta V = E.d$, such that E is the capacitor electric field.

- 1- What are the plaque polarities?
- 2- What is the charge of one oil droplet? Compare this value with the electron charge.

Given data:

- volumic mass of oil: $\rho = 900 \text{ kg/m}^3$
- droplet diameter: $D = 4 \mu m$
- intensity of Earth's gravitational field: $g = 10 \text{ m/s}^2$