Internship Program Report

By

SABINKAR INDRANI 18481A0277

In association with

Contents

Introduction
Program organizer
Courtesy3
Program details
Internship program3
3 rd May2021: Introduction to EPC Industry
4 th May2021: Engineering documentation for EPC projects
5 th May2021: Engineering documentation for commands and formulae
7 th May2021: Engineering documentation for Electrical system design
10 th May2021: Engineering documentation for Typical diagrams
11th May2021: Classification of Transformers and Generators
12 th May2021: Classification of Switch gare construction and power factor improvement10
17 th May2021: Detailing about UPS system and Bus ducts
18th May2021: Detailing about Motor Starters and Sizing of motors
19 th May2021: Describing about Earthing system and Lighting Protection
20 th May2021: Lighting or illumination systems and calculations
21th May2021: Lighting or illumination systems using DIALUX software
24 th May2021: Cabling and their calculations and types
25 th May2021: Cabling calculations and Cable gland selection
28 th May2021: Load calculations and Transformer sizing calculations
29th May2021: DG set calculations
2nd june2021: Caluculations of Earthing and Lighting protection20
5th june 2021: Cable sizing and cable tray sizing calculations
Conclusion
Feedback:

Introduction

Internship program arranged by GUDLAVALLERU ENGINEERING COLLEGE in association with Smart Internz, Hyderabad for the benefit of 3rd year EEE batch 2018-2022 on Electrical Detailed design Engineering for Oil& Gas, Power and Utility industrial sectors.

Program organiser

Smart Bridge, Hyderabad.

Pioneer in organizing Internships, knowledge workshops, debates, hackathons, Technical sessions and Industrial Automation projects.

Courtesy

Dr. Sri B. Dasu – HOD – EEE, GEC

Dr.G.Srinivasa Rao-Coordinator

Mr. Ramesh V - Mentor

Mr. Vinay Kumar - System Support

Mr. Harikanth – Softwar/Technical Support

Program details

Smart Internz program schedule: 4 weeks starting from 3rd May 2021

Daily schedule time shall be 4PM to 6.30PM

Mode of Classes: Online through ZOOM

Presenter: Mr. Ramesh V

Internship program

We have been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

3rd May2021: Introduction to EPC Industry

1	EPC Industry &	EPC Industry	Introduction
	Electrical Detailed	Engineering	Types of Engineering
	Engineering	Procurement	Engineering role in procurement
		Construction	Engineering role during construction

Topic details:

On this we have learnt about Engineering phases, Engineering deliverables (drawings & documents) list, Design Engineer role at various phases of project.

4th May 2021: Engineering documentation for EPC projects

2	Electrical Design	Engineering Deliverables list	Sequence of deliverables
	Documentation	Detailed Engineering work flow	Detailed engineering process
		Document transmission	Document submission and info
			exchange
		Deliverables types	Different types of deliverables

Topic details:

SEQUENCE OF DELIVERABLES

On this day we have gone through Deliverable list of details and work flow in electrical detaling.

This topic has given a detailed information of deliverables and its parts.And also gone through electrical information inflow and out flow in a neat manner which gives us an idea regarding electrical terminologies and abbreviations.

5^{th} May 2021: Engineering documentation for commands and formulae

3	Electrical Design	Ms word commands
	Documentation	Ms excel formulae
		Auto cad basic commands

Topic details:

MS Word, Excel and Auto cad COMMANDS.

Word Shortcut Keys

Command Name	Keys	
All Caps	Ctrl+Shift+A	
Apply List Bullet	Ctrl+Shift+L	
Auto Format	Alt+Ctrl+K	
Auto Text	F3	
Bold	Ctrl+B	
Cancel	ESC	
Center Para	Ctrl+E	
Change Case	Shift+F3	
Clear	Del	
Close or Exit	Alt+F4	
Copy	Ctrl+C	
Create Auto Text	Alt+F3	
Cut	Ctrl+X	
Double Underline	Ctrl+Shift+D	
Find	Ctrl+F	
Help	FI	
Hyperlink	Ctrl+K	
Indent	Ctrl+M	
Italic	Ctrl+I	
Justify Para	Ctrl+J	
Merge Field	Alt+Shift+F	
New Document	Ctrl+N	
Open	Ctrl+O	
Outline	Alt+Ctrl+O	
Overtype	Insert	
Page	Alt+Ctrl+P	
Page Break	Ctrl+Return	
Paste	Ctrl+V	
Paste Format	Ctrl+Shift+V	-
Print	Ctrl+P	
Print Preview	Ctrl+F2	
Redo	Alt+Shift+Backspace	
Redo or Repeat	Ctrl+Y	
Save	Ctrl+S	
Select All	Ctrl+A	
Small Caps	Ctrl+Shift+K	
Style	Ctrl+Shift+S	
Subscript	Ctrl+=	
Superscript	Ctrl+Shift+=	
Task Pane	Ctrl+F1	
Time Field	Alt+Shift+T	

Underline	Ctrl+U	
Undo	Ctrl+Z	
Update Fields	F9	
Word Count List	Ctrl+Shift+G	

Function Keys	
F1	Get Help or visit Microsoft Office Online.
F2	Move text or graphics.
F3	Insert an AutoText (AutoText: A storage location for text or graphics you want to use again, such as a standard contract clause or a long distribution list. Each selection of text or graphics is recorded as an AutoText entry and is assigned a unique name.) entry (after Microsoft Word displays the entry).
F4	Repeat the last action.
F5	Choose the Go To command (Edit menu).
F6	Go to the next pane or frame.
F7	Choose the Spelling command (Tools menu).
F8	Extend a selection.
F9	Update selected fields.
F10	Activate the menu bar.
F11	Go to the next field,
F12	Choose the Save As command (File menu).

In this session we learnt the basic fields of engineering such as MS WORD COMMANDS,MS EXCEL FORMULAE AND BASIC AUTOCAD PRINCIPLES. From these commands we have drawn powerplant sketches .

7th May2021: Engineering documentation for Electrical system design

4 Electrical system Overall plant description design for a small small project Sequence of approach Approach to detailed design

Topic details: Overall plant description, approach to detailed design.

Here we observed that how to do a project and Sequence of approach, Approach to detail design and Overall plant distribution system.

10th May2021: Engineering documentation for Typical diagrams

5 Electrical system
design for typical diagrams
Load lists shedule Power flow diagram
Typical schematic diagram

Topic details: Typical diagrams and Load calculations.

We conclude here how to do load calculations and Typical diagrams and internal structure and also about the power flow diagram.

11th May2021: Classification of Transformers and Generators

6 Classification of
Transformers and Generators
Generators

Classification of
Different types of Transformers
Different types of Generators

Topic Details: Classification of Transformers and Generators.

1 Ph. Pad mounted 3 Ph Pole mounted Commercial/ 3 Ph Oil filled (ONAN) Distribution Residential lighting Residential/ street lighting type for industrial & commercial.

415V Diesel generator sets for standby / 240V 1 ph diesel generator set for lighting and& small power only Emergency power supply.

Transformer shall include a primary disconnect on the incoming power source. The disconnect means shall be either a breaker or a load break primary switch that is fused. Transformers are sized to carry the peak running load of all busses connected to them. In addition, feeders to and from power transformers shall be rated to carry full current at the maximum rating.

The packaged combination of a diesel engine, an alternator and various ancillary devices such as base, canopy, sound attenuation, control systems, circuit breakers, jacket water heaters, starting systems etc., is referred to as a Diesel Generating Set or a DG Set in short.

12th May2021: Classification of Switchgears construction and power factor improvement

7	Classification of
	Switchgears
	construction and
	power factor
	improvement

Different types of Switchgears Assembles

Power factor improvement

Topic details: Classification of Switchgear construction Feaetures.

Switchgear includes switching & protecting devices like fuses, switches, CTs, VTs, relays, circuit breakers, etc. This device allows operating devices like electrical equipment, generators, distributors, transmission lines, etc.

Power factor defined as the ratio of real power to volt-amperes and is the cosine of the phase angle between the voltage and current in an AC circuit.

17th May2021: Detailing about UPS system and Busducts.

8	Detailing about		
	UPS system and	Uninterruptible power supply	Busduts of the system
	Busducts	system	

Topic details: Power distribution of UPS system and Busducts.

UPS systems are designed to provide continuous power to a load, even with an interruption or loss of utility supply power. UPS generally involves a balance of cost Vs need.

Busducts are classified into various types depending on its application via phase separated Busducts, segregated phase busducts, non-segregated phase busducts.

18th May2021: Detailing about Motor Starters and Sizing of motors.

9	Detailing about	Motor starters and drives	Sizing and selection of motors
	Motor Starters and		
	Sizing of motors		

Topic details: Detailing about Motor Starter and Sizing of motors and their selection.

The principal function of a motor starter is to start and stop the respective motor connected with specially designed electromechanical switches which are similar in some ways to relays. The main difference between a relay and a starter is that a starter has overload protection for the motor that is missing in a relay.

Different types of motor starters are as follows:

- Direct-On-Line Starter
- Rotor Resistance Starter
- Stator Resistance Starter
- Auto Transformer Starter
- Star Delta Starter

- Starting method soft starter, Auto transformer, Star/Delta
- Speed variation Constant speed, variable speed for VFD
 - Frame Size 56 to 280
- Insulation class & Temp rise A, E, B, F & H
- Protection Protection based on voltage & KW rating
- Cable entry, size & termination Cable sizing based on staring/running voltage drop and short circuit current Vibration monitoring based on KW rating.

19th May2021: Describing about Earthing system and Lighting Protection.

10	Describing about Earthing systemand Lighting	Plant Earthing system	Lighting Protection materials
•	Protection.		

Topic details: Describing about Earthing system and Lighting Protection.

The purpose of earthing is to prevent damage to people and prevent or limit plant damage. Various earthing systems are provided with each earthing system is isolated from the other.

Lightning protection required for high rise structures and important buildings against lightning currents during thunder storms. Primarily Lightning protection system calculations are done based on soil resistivity, conductor material, coverage structure / Building to determine whether lightning protection is required or not.

20th May2021: Lighting or illumination systems and calculations.

Calculations	systems and Calculations		
--------------	-----------------------------	--	--

Topic details: Lighting or Illumination systems and Calculations.

All outdoor lighting fittings shall be connected with armoured PVC cable of suitable no. of cores and size. Necessary type and no. of junction boxes shall be provided for branch connections. Indoor light fittings shall be connected with FRLS PVC wires laid in cable trunks or conduits.

Inputs required: Equipment and cable routing layouts, lighting calculations, Design basis for type of light fittings to be used, required lux levels

Lighting calculations software: Dialux, Chalmlite, Calculux, Relux, Luxicon, CG Lux

Applicable Standards: IS 6665: Code of practice for industrial lighting, IS 3646: Code of practice for interior illumination, IEC 60598: Luminaires, IEC 62493: Assessment of lighting equipment related to human exposure to electromagnetic field

Deliverables: Indoor Lighting layouts, socket outlet layouts, Street lighting and area lighting layouts. BOQ.

Types of light fittings: Industrial, flame proof type (EX d), increased safety type (Ex e).

21th May2021: Lighting or illumination systems using DIALUX software.

12 Lighting or Illumination using DIALUX software

Lighting or illumination systems

Operation of dialux software

Topic details: Lighting or Illumination Calculations using DIALUX software.

Here we are using this Dialux evo 5.9.2 software windows to construct the power plant and we can perform the operation from this software.

We have the indoor calculations and outdoor calculations too.

Indoor calculation

outdoor calculations

24th May2021: Cabling and their calculations and types.

Cabling and their types and claculations

Cabling calculations

Types of cabling materials

Topic details: Cabling and their types and claculations.

Electrical cables must be properly supported to relieve mechanical stresses on the conductors, and protected from harsh conditions such as abrasion which might degrade the insulation.

Cables generally laid in the cable trays above ground, direct buried underground and in metallic or PVC conduits. Derating factors may be applicable for each type of cable laying conditions.

Cable trays shall be generally loaded 60 to 70% leaving space for future use. Underground cabling shall be done in concrete cable trenches with cable trays in paved areas and directly buried with mandatory gap of 300mm between different systems of cables.

25th May2021: Cabling calculations and Cable gland selection.

14	Cabling		
	claculations and cable gland	Cabling calculations	Cable gland selection
	Selection		

Topic details: Cable sizing calculation and cable gland selection.

Inputs required: Load List, Design basis, Electrical equipment layout, cable schedule, vendor catalogues for cable tray.

Cable tray sizing shall be performed for each branch of cable tray routing up to the load point.

Results shall be checked with specified limits mentioned in design basis.

Cable gland:

Cable Gland Selection Table

Refer to illustration at the top of the page.

Cable Gland Size	(Alternat	Entry Threads "C" te Metric Thread hs Available)	Cable Bedding Diameter "A"	Overall Cable Diameter "B"	Armou	r Range	Across Flats "D"	Across Corners "D"	Protrusion Length "F"
Size	Metric	Thread Length (Metric) "E"	Max	Max	Min	Max	Max	Max	Length F
20516	M20	10.0	8.7	13.2	0.8	1.25	24.0	26.4	35.2
205	M20	10.0	11.7	15.9	0.8	1.25	24.0	26.4	32.2
20	M20	10.0	14.0	20.9	0.8	1.25	30.5	33.6	30.6
25	M25	10.0	20.0	26.2	1.25	1.6	36.0	39.6	36.4
32	M32	10.0	26.3	33.9	1.6	2.0	46.0	50.6	32.6
40	M40	15.0	32.2	40.4	1.6	2.0	55.0	60.5	36.6
505	M50	15.0	38.2	46.7	2.0	2.5	60.0	66.0	39.6
50	M50	15.0	44.1	53.1	2.0	2.5	70.1	77.1	39.1
635	M63	15.0	50.0	59.4	2.0	2.5	75.0	82.5	52.0
63	M63	15.0	56.0	65.9	2.0	2.5	80.0	88.0	49.8
755	M75	15.0	62.0	72.1	2.0	2.5	90.0	99.0	63.7
75	M75	15.0	68.0	78.5	2.5	3.0	100.0	110.0	57.3
90	M90	24.0	80.0	90.4	3.15	4.0	114.3	125.7	66.6

28 th May 2021: Load calculations and Transformer sizing calculations

Load calculations and TR calculations

Load calculations

TR calculations

Topic details:

List of electrical load calculations.

	200		of the same field			200	mary!	age of	-200	202 32 36	555 SW 5	77	Efficiency	7/22	kW=[A]/[D]		Consumed	Load	kvar = kw	н тап ф
il.	Equipment No.		Equipment Description			Breaker Rating	Breaker Type	Breaker No. of Poles	ELCB Rating	Absorbed Load	Motor/Load Rating	Load Factor (A)/(B)	at Load Factor [C]	Power Factor at Load Factor (C)	Continu	ous	Intermi	ttent	Stand	ьу
-1									mA	[A]	(B)	(C)	[D] decimal	-	kW	EVAR	LW.	L EVAR	I/W	LEVA
-						- ^	_	_	ma	KW.	KW	decimal	decimal	005Ф	KW	EVAH	KW	EVAH	HOW.	EVAL
-	PU2315	Silica filter feed pump	1						-	12.47	15.00	0.83	0.85	0.73	14.67	13.74				
		Absorbesnt/Neutral oil pump (W.	E			-				3.62		0.77	0.85	0.73	4.3	4.0				
	PU2314 -B	Absorbeant/Neutral oil pump (5)					77.77.77	77.77		3.11	3.70	0.84	0.85	0.73		cooniida			3.7	3
	PU2305	Feed Pump (Seperator)	m					***************************************		12.58	15.00	0.84	0.85	0.73	14.8	13.9			oomoomoomoatada	
		MIXER (W)								12.68	15.00	0.85	0.85	0.73	14.9	14.0		1		1
	MX 2308	MIXER (S)								12.68	15.00	0.85	0.85	0.73					14.9	14
ា	BW2313	Blower						-		5.45	7.50	0.73	0.85	0.73	6.4	6.0		1		
	Rotary valve	TK 2313B (I)								0.53	0.75	0.71	0.85	0.73	······································		0.6	0.6		
	SC2314	Screw conveyor (II)					-	a continue de la cont	7	1.23	1.50	0.82	0.85	0.73			1,45	1.35		
,	AG 2324A	Citric acid tan agitator (W)								0.91	1.10	0.83	0.85	0.73	1.07	1.00				
	AG 2324B	Citric acid tank agitator (S)						100000000		0.91	1.10	0.83	0.85	0.73		AAN AAN AA			1.1	1
	AG 2305	Citric oil rection vessol agitator						100000		3.34	3.70	0.90	0.85	0.73	3.93	3.68				
	AG 2309	Lye oil reaction vessel agitator								1.21	150	0.81	0.85	0.73	1.42	1.33		4		*****************
	AG 2310	Lye oil reaction vessel agitator	Element Comment							1.21	1.50	0.81	0.85	0.73	1.42	1.33				
I	AG 2314	Spap Adsorbant Tank Agitator						No.		2.12	3.00	0.71	0.85	0.73	2.49	2.34				
											1/2.5									
711					······································												imoumoni			
						-			-											·······
	Maximum of norm (Est. H/SE + U/SF)	nal running plant load :		66.0	kW		61.8	kVAR		sqrt	kW"+kVAR")=	90.4	kVA	TOTAL	65.40	61.23	2.07	1.94	19.65	18.35
1	Peak Load:			68.0	kW		63.7	kVAR		sqrt	kw"+kvAR")=	93.1	kVA	kVA	89.51	,	2.6	14	26.9	1
	(Est HXE + yXF +	2KG)																		
	Assumptions																			
	1) Load factor, Eff	ficiency and Power factor.																		
_		Load Rating (kW)				Effic	lency		Powerfa	otor										
-1		<= 20 > 20 - <= 45				0.			0.73											
-		> 45 - < 150				0.	93		0.70											
-		>= 150				0.	0.4		0.91											

TR sizing calculations:

29th May2021: DG set calculations.

16 DG set Calculations

Topic details:

Transformer and DG set calculations, types, sizing or selections

DG SIZING CALCULATIONS											
	Design Data										
	Rated Volatge	415	KV								
	Power factor (CosØ)	0.73	Avg								
	Efficiency	0.85	Avg								
	Total operating load on DG set in kVA at 0.73 power factor	78.6									
	Largest motor to start in the sequence - load in KW	15	KW								
	Running kVA of last motor (CosØ= 0.91)	24	KVA								
	Starting current ratio of motor	6	(Considering starting method as Soft starter								
	Starting KVA of the largest motor	145	KVA								
	(Running kVA of last motor X Starting current ratio of motor)										
	Base load of DG set in KVA	54	KVA								
	(Total operating load in kVA – Running kVA of last motor)										
Α	Continous operation under load -P1 Lapacity or Dia Set based on continuous operation under load P1	54	KVA								
в	Transient Voltage dip during starting of Last motor P2										
	Total momentary load in KVA	199	KVA								
	(Starting KVA of the last motor+Base load of DG set in KVA										
	Subtransient Reactance of Generator (Xd**)	7.91%	(Assumed)								
	Transient Reactance of Generator (Xd²)	10.065%	(Assumed)								
	xd"=(Xd"+Xd')/2 Page I	0.089875									
	Transient Voltage Dip	15%	(Max)								
	Transient Voltage dip during Soft starter starting of Last motor P2 = Total momentary load in KVA x Xd''' x (1-Transient Voltage (Transient Voltage Dip)	102	KVA								
C	Overload capacity P3										
	Capacity of DG set required considering overload capacity										
	Total momentary load in KVA	199	KVA								
	overcurrent capacity of DG (K)	150%									
	(Ref: IS/IEC 60034-1, Clause 9.3.2)										
	Capacity of DG set required considering overload capacity (P3) = <u>Total momentary load in KVA</u> overcurrent capacity of DG (K)	133	KVA								
	Considering the last uplus assessed D4 D2 and D2										
	Considering the last value amongst P1, P2 and P3 Continous operation under load -P1	54	KVA								
	Transient Voltage dip during Soft starter starting of Last motor	102	KVA								
	P2										
	Overload capacity P3	133	KVA								
	Considering the last value amongst P1, P2 and P3	133	KVA								

ROLL NO: 18481A0277

2nd june2021: Caluculations of Earthing and Lighting protection.

17 Calculation of
Earthing and
Lighting protection
calculations

Earthing calculations

Lighting protection calculation

Topic details:

Calculation of Earthing and Lighting protection calculations

Earthing calculations:

	1	
Maximum line-to-ground fault in kA for 1 sec	12	
Earthing material (Earth rod & earth strip)	GI	
Depth of earth flat burrial in meter	0.5	
Average depth / length of Earth rod in meters	4.0	
Soil resistivity Ω-meter	15	
Ambient temperature in deg C	50	
Plot dimensions (earth grid) L × B in meters	70	130
Number of earth rods in nos.	6	
Earth electrode sizing:		
Ac - Required conductor cross section in sq.mm		
$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{\tau_c x \alpha_r x \rho_r}\right]} x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]$		
αr - Thermal co-efficient of resistivity, at 20 oC	0.0032	
pr - Resistivity of ground conductor at 20 oC	20.10	
Ta - Ambient Temperature is *C	50	
I _{I-a} - RMS fault current in kA = 50 KA	11	
te - Short circuit current duration sec	- 11	
Thermal capacity factor, TCAP Jf(cm3.oC)	3.93	
	419	
Tm - Maximum allowable temperature for copper conductor, in oC K0 - Factor at oC	293	
The data taken from IEEE 80-2000. Clause 11.3. Table-1 for clad steel rod:	293	
11 = Ac.5	0.123	
Ac - Required conductor cross section in sq.mm	90	
Ac - Required conductor cross section in sq.mm Earth rod dia in mm	11	
Earth rod dia (including 25% corrosion allowance) in mm	13	
Eart 100 dia (including 25% corrosion allowance) in mm	13	

5 th june 2021: Cable sizing and cable tray sizing calculations.

Cable sizing and cable tray sizing Cable sizing calculations Cable tray calculation calculations

Topic details: Cable sizing and cable tray sizing calculations for LV cables and MV/HV cables.

S.NO.	Description	Equipment No.	Description	Consumed Load KW	Load Rating KW	Voltage (V)	No. of ph			Load P.F. Running	SIN Ф Running	Motor P.F Staring	SIN Ø Staring	Туре	No. of Runs	No. of Cores	Size (mm2)	Current Rating (A)	Derating factor k1	Derating factor k2	Derating factor k3	Derating factor	Overal Deratin factor
3	LV MCC	PU235	Silica filter feed pump	10.84	5.00	415	3	18.9	113.11	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
4	LV MCC	PU 2314-A	Absorbest/Riestral oil pump (VI)	3.5	3.70	415	3	5.5	32.87	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882
5	LV MCC	PU 2314 - B	Absorbest/Netral oil pump (S)	230	3.00	415	3	4.7	28.17	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882
6	LV MCC	PU2305	Feed Pump (Superator)	10.54	11.00	415	3	19.0	114.15	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
7	LV MCC	MX2305	MDER (V)	11.03	5.00	415	3	19.2	115.09	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
8	LV MCC	MX 2008	MDER(S)	100		415	3	19.2	115.09	0.8	0.6	0.8	0.5	2	1	4.0	10	66	0.98	0.9	1	1	0.882
9	LV MCC	BV2010	Bloom	434	5.50	415	3	8.2	49.46	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
10	LV MCC	Rotan valve	TK 20108 (II	0.46	0.55	415	3	0.8	4.80	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
11	LV MCC	SC23W	Series convenes (II)	107	150	415	3	1.9	11.16	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
12	LV MCC	AG 2024A	Citric acid tan agitator (W)	0.79	130	415	3	1.4	8.24	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882
13	LV MCC	AG 20248	Citric acid task agitator (S)	0.79	130	415	3	1.4	8.24	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
14	LV MCC	AG 2305	Citric oil rection recool solutor	230	3.70	415	3	5.0	30.26	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
15	LV MCC	AG 2309	Lee oil reaction record agitator	1.05	150	415	3	1.8	10.96	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882
16	LV MCC	AG 2010	Lyc oil reaction record agitator	1.05	150	415	3	1.8	10.96	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882
17 18	LV MCC	AG 2314	Scop Adsorbant Task Agitator	184	220	415	3	32	19.20	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882
19							11														4		

Cable Tray calculations:

	4 DI E 0								
	ABLES	1 1 7 4				T. C.			
CAB	LE TRAY: FROM	LT-4		TO	L	.T-5			
Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable (mm)	Sum of Cable OD (mm)	(Kg/Mt)	Total Weight of Cable (Kg/Mt)	Remarks
	LV MCC	4	6	+ ! - !	18	18	3.95	0.7	<u> </u>
	PU2315- VFD	4	6	1	18	18	0.37	0.7	\$I
	PU2315- VFD	5	1.5	1 1	15	15	3.95	0.4	
	LVMCC	4	2.5	1	16	16	0.37	0.5	
	LVMCC	5	1.5	1	15	15	3.95	0.4	
	LV MCC	4	2.5	1	16	16	0.37	0.5	
	PU 2314 -B- VFD	4	2.5	1 1	16	16	0.9	0.5	
8	PU 2314 -B- VFD	5	1.5	1 1	15	15	0.9	0.4	
9	LV MCC	4	6	1	18	18	2.9	0.7	
10	PU2305- VFD	4	6	1	18	18	1.2	0.7	
11	PU2305- VFD	5	1.5	1	15	15	1.2	0.4	
12	LV MCC	4	6	1	18	18	12	0.7	
13	LVMCC	5	1.5	1	15	15	1.45	0.4	
14	LVMCC	4	10	1	18	18	2	0.9	
15	LVMCC	5	1.5	1	15	15	2.4	0.4	
16	LVMCC	4	6	1	18	18	2.4	0.7	
17	BW2313- VFD	4	6	1 1	18	18	0.85	0.7	
18	BW2313- VFD	5	1.5	1 1	15	15	0.85	0.4	
19	LV MCC	4	6	1 1	18	18	0.85	0.7	
20	LV MCC	5	1.5	1 1	15	15	1	0.4	
21	LV MCC	4	6	1 1	18	18	0.85	0.7	
	Total	-		21		348	33.91	11.9	
Calc	ulation					Result	00.01	11.0	
								0.11	
	mum Cable Diameter:		18	mm			able Tray width:	O.K	
	sider Spare Capacity of Cable Tr	ay:	30%				able Tray Depth:	O.K	
Dista	nce between each Cable:		0	mm		Selectrd C	able Tray Weight:	O.K	Including Spare Capacity
Calc	ulated Width of Cable Tray:		452	mm		Selected C	able Tray Size:	O.K	Including Spare Capacity
	ulated Area of Cable Tray:		8143	Sq.mm					
Vo o	f Layer of Cables in Cable Tray:		2			Required C	able Tray Size:	300 x 50	mm
	cted No of Cable Tray:		1	Nos.			os of Cable Tray: (No
	cted Cable Tray Width:		300	mm			able Tray Weight:	150.00	Kg/Meter/Tray
	cted Cable Tray Depth:		50	mm		Type of Ca	ble Tray:	Ladder	
Sele	cted Cable Tray Weight Capacity		150	Kg/Mete	эг				
	of Cable Tray:		Ladder			Cable Tray	Width Area Remar	25%	
Total	Area of Cable Tray:		15000	Sq.mm		Cable Tray	Area Remaning:	46%	

Conclusion:

We have been taught many aspects of engineering activities during the EPC stages for all electrical and related other disciplines also.

Feedback:

Smart Bridge

They conduct summer internships, work shops, debates, hackthons, technical sessions.

Method of conducting program

Online virtual program with presentation slides and explanation on the topic and practical usage of topic and with some examples.

Program highlights

It is for the detailed design of any industrial sectors.

Material

The material was good.

Benefits

It has been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

ASSIGNMENT - 1 ELECTRICAL LOAD CALCULATIONS LV MCC

												kW=[A]/[D]		ConsumedL	oad	kVAR=kWxt	anφ	
SI. No.	Equipment No.	EquipmentDescription	Breaker Rating	Breaker Type	Breaker No. ofPol	ELCB Rating	Absorbed Load	Motor/Load Rating	Load Factor [A] /[B]	Efficiency atLoadct Fa or[C]	Power Factor atLoadFa	Continue	ous	Interm	ittent	Stand-	by	Remarks
					es		[A]	[B]	[C]	[D]	ctor[C]							
			Α			mA	kW	kW	decimal	decimal	cosφ	kW	kVAR	kW	kVAR	kW	kVAR	
	PU2315	Silicafilterfeedpump					57.98		0.77		0.82	62.34	43.52					
	PU2314-A	Absorbesnt/Neutraloilpump(W)					16.84	22.00	0.77		0.78	18.5	14.8					
	PU2314-B	Absorbesnt/Neutraloilpump(S)					14.49		0.78		0.78					15.9	12.8	
	PU2305	FeedPump(Seperator)					58.56		0.78		0.82	63.0						
	MX2305	MIXER(W)					59.01	75.00	0.79		0.82	63.5	44.3					
	MX2308	MIXER(S)					59.01	75.00	0.79		0.82		_			63.5	44.3	
7	BW2313	Blower					25.33		0.84		0.78	27.8	22.3					
8	Rotaryvalve	TK2313B(I)					2.46		0.66		0.73			2.9				
	SC2314	Screwconveyor(I)					5.69		0.76		0.73			6.69	6.27			
	AG2324A	Citric acidtanagitator(W)					4.27	5.50	0.78		0.73	5.02	4.70					
11	AG2324B	Citricacidtankagitator(S)					4.27	5.50	0.78	0.85	0.73					5.0	4.7	
12	AG2305	Citricoilrectionvessolagitator					15.54	22.00	0.71	0.91	0.78	17.08	13.70					
13	AG2309	Lyeoilreactionvesselagitator					5.65	7.50	0.75	0.85	0.73	6.65	6.22					
14	AG2310	Lyeoilreactionvesselagitator					5.65	7.50	0.75	0.85	0.73	6.65	6.22					
15	AG2314	SoapAdsorbantTankAgitator					9.89	11.00	0.90	0.85	0.73	11.64	10.89					
	Maximumofnorma (Est.x%E+y%F)	alrunningplantload: 285.0kW		213.4	kVAR		sqrt(k	kW²+kVAR²)=	356.0	kVA	TOTAL	282.13	210.68	9.59	8.98	84.40	61.77	
	PeakLoad:	293.5kW		219.5	kVAR		sqrt(k	(W²+kVAR²)=	366.5	kVA	kVA	352.1	2	13.1	13	104.5	9	
	(Est.x%E+y%F+z	%G)																
	Assumptions 1) cadfactor Efficiency	iencyandPowerfactor.																
	i jedadiacidi,EIIIC	LoadRating(kW)	Effic	ciency		Powerfac	ctor											
		<=20		85		0.73												
		>20- <=45		91		0.78												
		>45- <150		93		0.82												
		>=150		94		0.91												
						0.01												
	2)Coincidencefac	torsx=1.0,y=0.3,andz=0.1consideredforcontnious,intermittentandsta	ndbyload.															

ASSIGNMENT - 2 **Calculation for Transformer Capacity Example of calculation for Transformer Capacity Calculation for consumed load** Consumed loads used for this example are as follows: kW kVar kVA a. Continuous load 282.13 210.7 352.11 --- (i) b. Intermittent load / Diversity Factor 9.59 9.0 13.14 --- (ii) 104.59 c. Stand-by load required as consumed load 84.40 61.8 --- (iii) Max. Consumed load = ((i) + 30% (ii) + 10% (iii)) = 293.4 219.6 Future expansion load (20% capacity) 11.8 16.19 11.1 Total Load = Calculation for 3.3kV / 0.433 kV transformer capacity 366.5 kVA Max. Consumed load Spare capacity 73.3 kVA Required capacity 439.8 kVA Transformer rated capacity 500 kVA 1.3 Voltage regulation check During starting or reacceleration of max. capacity motor (3400 kW), while all the other loads running, the voltage regulation is as follows: $P_T = 500 \text{ KVA}$ (%Z)= 4 & Ratio X/R = Hence, %R == 2.219 % 3.33 % %X = $P_{M} = \frac{75 \text{ KW having (K = } 6 \text{ & C = } 1 \text{ & } \cos \theta = \frac{0.82 \text{ & } \text{Eff.h}}{2.00 \text{ & } \cos \theta = \frac{0.82 \text{ & } \cos \theta = \frac$ P_s = 590.087 KVA Cos θ_S = 0.25 ,Corresponding to Angle θ_s = 75.5225 Degrees for which Sin q_s = 260.65 KVA & PB in KW is = 213.733 & P_B in Kvar = 190.56 \ Cos θ_B = 0.820 Cos θ_{B} = 0.85 ,Corresponding to Angle θ_{s} = 34.9152 Degrees, for which Sin θ_s = P_CP 361.255 KW P_{CQ} 761.909 KVAR = 843.214 KVA = Cos θ_C = = 0.42843 , where as Sin $\theta_{\rm C}$ = Voltage Regulation e

Result: During starting of max. capacity motor, while all other loads are running, the voltage regulation at Transformer secondary terminals

1.4 Selection of rated capacity

500 kVA transformer selected.

Assignment - 3

	Assignment - 3		
	DG SIZING CALCULATIONS		
	Design Data		
F	Rated Volatge	415	KV
F	Power factor (CosØ)	0.76	Avg
E	Efficiency	0.88	Avg
1	Total operating load on DG set in kVA at 0.73 power factor	350.0	
L	argest motor to start in the sequence - load in KW	75	KW
F	Running kVA of last motor (CosØ= 0.91)	112	KVA
9	Starting current ratio of motor	6	(Considering starting method as Soft starter)
	Starting KVA of the largest motor	673	KVA
	Running kVA of last motor X Starting current ratio of motor)		
		238	KVA
	Base load of DG set in KVA Total operating load in kVA – Running kVA of last motor)	230	KVA
,	, ,		
Α (Continous operation under load -P1		
(Capacity of DG set based on continuous operation under load P1	238	KVA
В 1	Fransient Voltage dip during starting of Last motor P2		
1	Total momentary load in KVA	911	KVA
(Starting KVA of the last motor+Base load of DG set in KVA		
9	Subtransient Reactance of Generator (Xd''')	7.91%	(Assumed)
1	Fransient Reactance of Generator (Xd')	10.065%	(Assumed)
>	(d'''' = (Xd'' + Xd')/2	0.089875	
	Transient Voltage Dip	15%	(Max)
	Fransient Voltage dip during Soft starter starting of Last motor	464	
F	P2 = Total momentary load in KVA x Xd ^{III} x <u>(1-Transient Voltage Dip)</u> (Transient Voltage Dip)		KVA
c c	Overload capacity P3		
(Capacity of DG set required considering overload capacity		
1	Total momentary load in KVA	911	KVA
	overcurrent capacity of DG (K)	150%	
	Ref: IS/IEC 60034-1, Clause 9.3.2)		
(Capacity of DG set required considering overload capacity		
	P3) = <u>Total momentary load in KVA</u>	607	KVA
	overcurrent capacity of DG (K)		
(Considering the last value amongst P1, P2 and P3		
(Continous operation under load -P1	238	KVA
_		464	KVA
	Fransient Voltage dip during Soft starter starting of Last motor P2 Overload capacity P3	607	KVA
	Considering the last value amongst P1, P2 and P3	607	KVA
ŀ	Hence, Existing Generator 133 KVA is adequate to cater the loads as per re-		
S	scheduled loads		
1	NOTE:VOLTAGE DIP CONSIDERED - 15%		

Assignment - 4

Lightning Calculations

	13		
Location	Bhopal		
Building	Concrete, Industrial		
Type of Building	Flat Roofs (a)		
Building Length (L)	15		
Building breadth (W)	6		
Building Height (H)	6		
Risk Factor Calculation			
1 Collection Area (A _c)			
A_c		=	(L*W) + (2*L*H) + (2*W*H)
			455.04
2 Probability of Being Struck (P)			
Р		=	A _c * N _g * 10 ⁻⁶
			0.001274112
3 Overall weighing factor			
a) Use of structure (A)		=	1.2
b) Type of construction (B)		=	0.4
c) Contents or consequential effects (C)		=	0.8
d) Degree of isolation (D)		=	1.0
e) Type of country (E)		=	0.3
Wo - Overall weighing factor		=	A * B * C * D * E
		=	0.115
4 Overall Risk Factor	P	o =	P * Wo
	P	o =	0.000146778

As per clause no. 9.7 of BS- 6651, suggested acceptable risk factor (Po) has been taken as 10^{-5} Since Po > Pa lightning protection required.

5 Air Terminations

Perimeter of the building	= =	2(L+W) 42	Mts.
6 Down Conductors			
Perimeter of building	=	42	Mts.
No. of down conductors based on perimeter	=	2	Nos.

Hence 2 nos. of Down conductors have been selected.

Size of Down conductor = 20 X 2.5 mm Galvanized Steel Strip

(As per BS6651, lightning currents have very short duration, therefore thermal factors are of little consequence in deciding the cross-section of the conductor. The minimum size of Down conductors - 20mm X 2.5 mm Galvanized Steel Strip)

Assignment – 5 Earthing calculations

			90 81 000					****
					Table	1-Material	ronstants	
	13		Drorription	Material conductivity	o,fadar 2' K ta	E, at FC	Fusing* temperature	6240 6.36,0
Maximum line-to-ground fault in kA for 1 sec	12			(%)	(8/YC)	9.0	ro On	denom
Earthing material (Earth rod & earth strip)	GI		Cleper.					
Depth of earth flat burrial in meter	0.5		unnealed	100.0	0.00018	234	100	172
Average depth I length of Earth rod in meters	4.0		soft-drawn	_				-
Soil resistivity Ω-meter	7.5		Copper, commercial	97.0	0.000.01	36	2004	128
Ambient temperature in deg C	50		bal-davo	91.0	4960-81	344	- 100	1.4
Plot dimensions (earth grid) L × B in meters	70	130	Creen-clad			-		
Number of earth rods in nos.	6		sted wire	41.0	0.00078	348	1984	4.40
Earth electrode sizing:			Coppor-clad saed wire	36.0	0.00178	36	1084	536
Ac - Required conductor cross section in sq.mm			0					
			Capper-clad saed rod [®]	31.0	0.00778	36	1984	142
$I_{lg} = A_c x \sqrt{\frac{TCAPx10^{-4}}{\tau_c x \alpha_c x \rho_c}} x I_m \left[\frac{K_0 + T_m}{K_0 + T_a} \right]$			Aluminum, BC grade	61.0	0.00443	23	67	186
			Alominum, SRES alloy	53.5	0.001:33	20	672	3.22
or - Thermal co-efficient of resistivity, at 20 oC	0.003		Alaminum,					
pr - Resistivity of ground conductor at 20 oC	20.10		625 alley	52.5	0.00147	26	401	3.28
Ta - Ambient Temperature is 'C	50		Aluminum-chd	_				
I _{r-q} - RMS fault current in kA = 50 KA	12		sted wire	30.5	0.00148	28	457	1.40
to - Short circuit ourrent duration sec	1		Seed, 1620	36.8	0.00160	605	1500	12.00
Thermal capacity factor, TCAP JI(cm3.oC)	3.93			-				
Tm - Maximum allowable temperature for copper conductor, in o	419		Stainless-clid sted red [®]	9.8	0.00149	605	1400	17.50
K0 - Factor at oC	293		Zacound					
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad	steelrod	t	State counted stated and	8.6	0.00120	291	429	29.10
12 = Ac*	0.123		Society and					
Ac - Required conductor cross section in sq.mm	98		394	2.4	0.00130	749	1400	7000
Earth rod dia in mm	11		Your ACTM car	dards.				
Earth rod dia (including 25% corrosion allowance) in mm	14		*Copper-clad state *Shankro-clad sta	I rody based on It. of rod based on It	254 mm (fl.818) 506 mm (9.100	in) engger flick hat No. 304 sta	ners. inless sted thicks	move No.
Earth flat sizing:								
Ac - Required conductor cross section in sq.mm								
$I_{1g} = A_{c}x\sqrt{\left[\frac{TCAPx10^{-4}}{\tau_{c}x\alpha_{r}x\rho_{r}}\right]}xI_{n}\left[\frac{K_{0} + T_{m}}{K_{0} + T_{n}}\right]$								
ar - Thermal co-efficient of resistivity, at 20 oC	0.003							
pr - Resistivity of ground conductor at 20 oC	20.10							
Ta - Ambient Temperature is 'C	50							
I _{I-a} - RMS fault current in kA = 50 KA	14							
to - Short circuit current duration sec	- 1							
Thermal capacity factor, TCAP JI[cm3.oC]	3.93							
Tm - Maximum allowable temperature for copper conductor, in c								
K0 - Factor at oC	293			_			_	

19 Independent som man product	
Earli Ratasein m	2
Earth Hat area (including 29% corrosion allowance) in min	5
Selected flat size V*TN in somm	20
N. Niludeau	
Ay-Gildreistana	
Gild resistance can be calculated using Eq. 52 of EEEE 80	
[, ,] ,]	
$\mathbb{E}_{g^{*}g}\left[\frac{1}{L} + \frac{1}{\sqrt{0 \text{ s.i.}}} \left[+ \frac{1}{1 + b \sqrt{0 \text{ s.i.}}} \right] \right]$	
- 10 IT 1+1 10 IT	
p-Sol resistivity in C-meter:	25
L-Total buildingh of ground conductor in mater	400
h-Depholbulainneter	15
A-Gidavoinsy meter	900
Ay -Girlmsistanor	0.64
Ar-Eath Electrode resistance	
Gild resistance can be calculated using Eq. 95 of EEEE 80	
$\left[\frac{1}{2}, \frac{1}{1 \pm 1 \pm 4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right]$	
	15
$\left[\frac{1}{2} \frac{1}{161144} \frac{1}{4} \left[\left[\frac{41}{3} \right] \cdot \left[\frac{1}{3} \frac{1}{3} \right] \left[\frac{1}{3} \cdot \left[\frac{1}{3} \right] \right] \right]$	7.5 6
$ \frac{1}{\ \mathbf{x}_t - \frac{\mathbf{y}}{2 + 2 + 2 + 2} \left[\left\ \mathbf{x}_t \left[\frac{4 + 2 \frac{1}{3}}{3} \right] - 1, \frac{2 + 2 \frac{1}{3} + 2 \frac{1}{3}}{\left\ \mathbf{x}_t - \mathbf{x}_t^2 \right\ } \right] \right] $ \Rightarrow Solvedonia) in Context. S.W.	108
$ \frac{1}{1+1+\frac{1}{4}} \left[1 \left[\frac{1+\frac{1}{4}}{\frac{1}{4}} \right] + \frac{1+\frac{1}{4}\frac{1}{4}}{\frac{1}{4}} \left[\frac{1}{4}, -\frac{1}{4} \right] $ $ 0 \cdot Scientising a Consex, SSK $ $ 0 \cdot Scientising a Consex, SSK $	6
-	6
	6
$\begin{cases} \frac{1}{n} \frac{1}{1 \pm i \pm \frac{1}{n} + \frac{1}{n} + \frac{1 \pm i \pm \frac{1}{n} + \frac{1}{n} + \frac{1}{n} - \frac{1}{n}}{\frac{1}{n} - \frac{1}{n} - \frac{1}{n}} \\ 0 \cdot \frac{1}{n} \cdot \frac{1}{n} \cdot \frac{1}{n} - \frac{1}{n} \cdot \frac{1}{n} - \frac{1}{n} \cdot \frac{1}{n} - \frac{1}{n} - \frac{1}{n} - \frac{1}{n} - \frac{1}{n} \cdot \frac{1}{n} - \frac{1}{n}$	6 4 0000 1 900
$\begin{cases} \frac{1}{n} \cdot \frac{1}{2 + 1 + 1 + 1} \left[\frac{1 + \frac{1}{n}}{n} \right] + \frac{1 + \frac{1}{n} \cdot \frac{1}{n} \cdot \frac{1}{n} \cdot \frac{1}{n} - \frac{1}{n} \\ - \frac{1}{n} \cdot \frac{1}{n} \cdot \frac{1}{n} \cdot \frac{1}{n} \cdot \frac{1}{n} - \frac{1}{n} - \frac{1}{n} \cdot \frac{1}{n} - \frac{1}{n} $	6 4 0000 1 900
$\begin{cases} \frac{1}{n} \frac{1}{1 \pm i \pm \frac{1}{n} + \frac{1}{n} + \frac{1 \pm i \pm \frac{1}{n} + \frac{1}{n} + \frac{1}{n} - \frac{1}{n}}{\frac{1}{n} - \frac{1}{n} - \frac{1}{n}} \\ 0 \cdot \frac{1}{n} \cdot \frac{1}{n} \cdot \frac{1}{n} - \frac{1}{n} \cdot \frac{1}{n} - \frac{1}{n} \cdot \frac{1}{n} - \frac{1}{n} - \frac{1}{n} - \frac{1}{n} - \frac{1}{n} \cdot \frac{1}{n} - \frac{1}{n}$	6 4 0000 1 900
Per 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 4 0000 1 900
Por \$\frac{1}{2\ldots \ldots \	6 4 000 1 500 2373
Per 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 4 000 1 500 2373
Por \$\frac{1}{2\ldots \cdot \ldots \l	6 4 000 1 500 2373
Por \$\frac{1}{2\ldots \cdot \ldots \l	6 4 000 1 500 2373
Por \$\frac{1}{212.11.11.11.11.11.11.11.11.11.11.11.11.1	6 4 000 1 500 2373
Por \$\frac{1}{2\ldots \cdot \ldots \l	6 4 000 1 500 2373
Por \$\frac{1}{212.11.11.11.11.11.11.11.11.11.11.11.11.1	6 4 000 1 500 2373
$\frac{1}{R^{2}}\frac{1}{1111111}\left[\frac{1}{4}\left[\frac{1}{2}\right],\frac{1}{2}\frac{111_{1}}{11}\left[\frac{1}{R^{2}}\right]\right]$ $\Rightarrow \frac{1}{R^{2}}\frac{1}{111111}\left[\frac{1}{R^{2}}\left[\frac{1}{R^{2}}\right]\right]$ $\Rightarrow \frac{1}{R^{2}}\frac{1}{R^{2}}\frac{1}{R^{2}}\frac{1}{R^{2}}\left[\frac{1}{R^{2}}\right]$ $\Rightarrow \frac{1}{R^{2}}\frac{1}{R^{2}}\frac{1}{R^{2}}\frac{1}{R^{2}}\left[\frac{1}{R^{2}}\right]$ $\Rightarrow \frac{1}{R^{2}}\frac{1}{R^{2}}\frac{1}{R^{2}}\frac{1}{R^{2}}\frac{1}{R^{2}}$ $\Rightarrow \frac{1}{R^{2}}\frac{1}{R^{2}}\frac{1}{R^{2}}\frac{1}{R^{2}}\frac{1}{R^{2}}$ $\Rightarrow \frac{1}{R^{2}}\frac{1}{R^{2}}\frac{1}{R^{2}}\frac{1}{R^{2}}$ $\Rightarrow \frac{1}{R^{2}}\frac{1}{R^{2}}\frac{1}{R^{2}}\frac{1}{R^{2}}\frac{1}{R^{2}}$ $\Rightarrow \frac{1}{R^{2}}\frac{1}{R^{2}}\frac{1}{R^{2}}\frac{1}{R^{2}}\frac{1}{R^{2}}\frac{1}{R^{2}}\frac{1}{R^{2}}$ $\Rightarrow \frac{1}{R^{2}}\frac{1}{R^{2$	6 4 000 1 500 2373
The Table 1 of the Ta	6 4 000 000 00 000 000 000 000 000 000 0
The Tartist of Tartist	6 4 000 000 00 000 000 000 000 000 000 0

Earth flat area in mm	12	
Earth flat area (including 25% corrosion allowance) in mm	15	
Selected flat size W * Thk in sq mm	20	
Fig Grid resistance Grid resistance can be calculated using Eq. 52 of IEEE 80		
$R_g = \rho \left\{ \frac{1}{L} + \frac{1}{\sqrt{20 \times A}} \left[1 + \frac{1}{1 + h \sqrt{20 / A}} \right] \right\}$		
p - Soil resistivity in Ω-meter=	7.5	
L - Total buried length of ground conductor in meter	400	
h - Depth of burial in meter	0.5	
A - Grid area in sq. meter	9100	
<i>Fig</i> → Grid resistance	0.054	
Grid resistance can be calculated using Eq. 55 of IEEE 80 $R_r = \frac{\rho}{2 \times \pi \times n_r \times L_r} \left\{ I_n \left[\frac{4 \times L_r}{b} \right] - 1 + \frac{2 \times k_1 \times L_r}{\sqrt{A}} \left(\sqrt{n_r} - 1 \right)^2 \right\}$		
p - Soil resistivity in Ω-meter, 16.96	7.5	
n - No of earth electrodes	6	
Zz - Length of earth electrode in meter	4	
♪ - Diameter of earth electrode in meter	0.020	
k/ - co-efficient	1	
A - Area of grid in square metre	9100	
/₹/r - Earth Electrode resistance	2.973	
Grounding system resistance Grounding system resistance can be calculated using equation 5	3 of IEE	E 80
$R_{s} = \frac{R_{g} \times R_{2} - R_{m}^{2}}{R_{g} + R_{2} - 2R_{m}}$		
R_{\bullet} - Mutual ground resistance between the group of ground conductors, R_{\bullet} and group of electrodes, R_{\bullet} in Ω . Neglected R_{\bullet} , since this is for homogenous soil		
Rs - Total earthing system resistance		
	us manage. If if	r wali
The calculated resistance grounding system is less than the allow	rable 11	

Assignment – 6 Cable sizing

Description	Consum ed Level EV	Loss Butis	Voltage (V)	'le	Fell Load Corre	Motor Starti Al Care	P.F. Pleanin	SIN # Flunain	Motor P.F Staring	SIN 6 Sturi	Tgpe	Mo. of Hotely	No. of Core	The (mm.)	Current Stating (A)	Decetor factor k1 v	Deceting factor 82 w	Deceting factor 83 w	Deceting factor 8.6 v	Owned Denoting factor	Decade d Core	Cebbo Length (b) =
curitorisedoung			46	17	101.1	604,50	-0	1.6	99	1.5	- 2	- 1	4.0	- 60	- 11	0.00	13	1	1	9990	101.6	95
if new party			48	1	361	25.71	- 6.1	1.5	0.8	4.5	- 2	- 1	4.0	K	16	9.86	1.9	1	- 1	9.860	75.0	16
entrenderndern objere	11		40	1	35.2	BID	8.0	1.6	0.0	1.1	- :	- 1	4.0	N	III.	0.90	1.3	1	1	0.862	79.0	-
in And Task pump			46	1	90	88.04	U	1.5	99	15	1	1	4.0	- 60	111	0.00	13	1	1	986	101.4	15
g-Olipung			48	13	162.6	(83)	- 6.1	1.5	9.8	4.5	- 2	- 1	4.0	90	- 11	9.86	1.5	1	- 1	9.862	198.6	- 75
riner purp Standing			40	3	162.6	6813	U	1.6	0.0	1.1	- 1	- 1	4.0	90	10	0.96	1.3	1	1	0.862	758.6	100
Viingle: Péneing Pung			46	Į,	883	294.39	- 01	1.5	09	1.5	- 2	1	4.1	- 5	6	939	13	1	1	1990	75.0	100
stoneps hash pump	14		46	13	4.0	2697	- 61	15	9.6	13	- 2	- 1	4.0	ı.	38	9.96	13	1	1	9.862	30.5	00
nd Pump(Tegerator)	14		40	1	13	10.07	E.I	1.6	0.0	1.1	- 1	- 1	4.0	- 1	- 11	0.96	1.3	1	1	0.862	10.0	78
gylitodi Purry			46	Į,	14	00.55	- 0	1,3	09	15	-	-	4.1	+	- 51	0.90	13	1	1	1993	153	-11
WI .			46	13	T4	00.55	- 61	15	98	4.5	- 2	- 1	4.0	- 6	- 51	9.96	13	1	1	9.862	150	- 75
iri	11		40	3	311	10.11	U	1.6	0.8	1.1	- 1	- 1	4.1	N	III.	0.90	13	1	1	0.862	79.0	100
P# P.2			46	ľ	20	59.36	u	13	00	15	1	_	41		51	190	10	1	1	3990	(6)	15
				Ε																		
				ŧ																		
		F		ŧ	H																	
				F																		
				H																		
				F																		
				F																		
ana ta Matemata N																						
Plating factor for variation in a	Hypourchamp	endere																				
Plating factor for depth of high	4																					
-Flating factor for specing bets		,																				
Plating factor for variation in 6	wand winty	n orde	108																			
ning Voltage Drop - Thi, Shartin																						
PE 1.4 Conductor, ILPE how																						
PE 2 Co Combutos, SLPE ho	slated, forecas	H,FK	nin it	ruhe	d																	
n Sandrine - Ris																						

Assignment 7 Cable tray sizing

LTCA	BLES								
CABLE	TRAY:FROM	LT-4		TO	L	T-5			
Sr. No.	CableRoute(From-To)	Type&CableSize	Size ofCab le(mm 2)	No. ofCab	OverallDia meter ofeach Cable(mm)	Sum of CableOD (mm)	Self Weight ofCable(K g/Mt)	Total Weight ofCable(Kg /Mt)	Remarks
1	PU2315	4	50	1	26	26	2.3	2.3	
2	PU2314A	4	16	1	21	21	1	1	
3	PU2324	4	16	1	21	21	1	1	
4	PU2305	4	50	1	26	26	2.3	2.3	
5	MX2305	4	50	1	26	26	2.3	2.3	
6	MX2308	4	50	1	26	26	2.3	2.3	
7	BW2313	4	16	1	21	21	1	1	
8	SC2314	4	4	1	17	17	0.6	0.6	
9	AG2324A	4	6	1	18	18	0.7	0.7	
10	AG2305	4	6	1	18	18	0.7	0.7	
11	AG2309	4	6	1	18	18	0.7	0.7	
12	AG2310	16	1	21	21	1	1		
13	AG2314	4	6	1	18	18	0.7	0.7	
Total Calculation MaximumCableDiameter: ConsiderSpareCapacityofCableTray: DistancebetweeneachCable: CalculatedWidthofCableTray: CalculatedAreaofCableTray: NoofLayerofCablesinCableTray: SelectedNoofCableTray:			26 30% 0 360 9363 2	mm mm mm Sq.mm	I	Result SelectedCableTi SelectedCableTi SelectedCableTi SelectedCableTi RequiredCableTi RequiredCableTi	rayDepth: ayWeight: raySize: raySize:	16.6 O.K O.K O.K O.K 300x100	IncludingSpareCapacity IncludingSpareCapacity mm
Selecte Selecte Selecte Typeof	dCableTrayWidth: dCableTrayDepth: dCableTrayWeightCapacity: CableTray: eaofCableTray:		300 100 90 Ladder 30000	mm mm Kg/Meter		RequiredCableT TypeofCableTra CableTrayWidth CableTrayAreaR	rayWeight: y: AreaRemaning	90.00 Ladder 40% 69%	Kg/Meter/Tray