Data Structures for Disjoint Sets

Application:
Connected Components
Minimum Spanning Tree

Dr. Md. Abul Kashem Mia, Professor, CSE Dept and Pro-Vice Chancellor, UIU

Disjoint Sets

- Some applications require maintaining a collection of disjoint sets.
- A Disjoint Set S is a collection of sets S_1,S_n where $\forall_{i \neq j} S_i \cap S_j = \phi$
- Each set has a representative which is a member of the set (usually the minimum if the elements are comparable)

Dr. Md. Abul Kashem Mia, Professor, CSE Dept and Pro-Vice Chancellor, UIU

Disjoint Set Operations

- Make-Set(x) Creates a new set S_x where x is it's only element (and therefore it is the representative of the set). O(1) time.
- Union(x, y) Replaces S_x , S_y by $S_x \cup S_y$. One of the elements of $S_x \cup S_y$ becomes the representative of the new set.

 $O(\log n)$ time.

• Find(x) – Returns the representative of the set containing $x = O(\log n)$ time.

Dr. Md. Abul Kashem Mia, Professor, CSE Dept and Pro-Vice Chancellor, UIU

Analyzing Operations

- We usually analyze a sequence of *m* operations, of which n of them are Make_Set operations, and *m* is the total of Make Set, Find, and Union operations.
- Each union operations decreases the number of sets in the data structure, so there can not be more than *n*-1 Union operations.

Applications

- Equivalence Relations (e.g Connected Components)
- Minimum Spanning Trees

Dr. Md. Abul Kashem Mia, Professor, CSE Dept and Pro-Vice Chancellor, UIU