ZADANIA Z ALGEBRY I LOGIKI

Zestaw 3^1

1. Niech $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Narysować tabelkę i graf relacji

$$\{(a,b) \in X^2 : a-b \in \{-1,0,1\}\}.$$

Jakie własności ma ta relacja?

2. Weźmy zbiór $D_{12}=\{d\in\mathbb{N}:\ d|12\}$. Wyznaczyć tabelkę i narysować graf relacji R w zbiorze D_{12} :

$$xRy \iff x|y.$$

3. W zbiorze $X = \{z \in \mathbb{Z} : -4 \le z \le 4\}$ dana jest relacja

$$xRy \iff |x| + |y| > 5.$$

Narysować tabelkę i graf tej relacji.

- **4.** Narysować grafy relacji $AR_1B \iff |A| = |B|$ i $AR_2B \iff |A| < |B|$ w zbiorze $X = \mathcal{P}(\{1, 2, 3, 4\})$. Narysować grafy relacji $R_1 \cap R_2$ i $R_1 \cup R_2$.
- 5. Zbadać jakie własności mają poniższe relacje w zbiorze X:
 - (a) $X = \mathbb{Z}, xRy \iff 3|x-y,$
 - (b) $X = \mathbb{N}$, $xRy \iff 2|x+y$,
 - (c) $X = \mathbb{R}, xRy \iff x^2 = y^2,$
 - (d) $X = \mathbb{R}$, $xRy \iff |x| + |y| = 3$,
 - (e) $X = \mathbb{R}, xRy \iff |x| + |y| \neq 3,$
 - (f) $X = \mathbb{R}, xRy \iff |x| < |y|,$
 - (g) $X = \mathcal{P}(T)$, $ARB \iff |A| < |B|$ (T jest dowolnym zbiorem),
 - (h) $X = \mathbb{R}^2$, $(x_1, y_1)R(x_2, y_2) \iff y_1 = y_2$,
 - (i) $X = \{0, 1\}^2$, $(x_1, y_1)R(x_2, y_2) \iff x_1 \le x_2 \land y_1 \le y_2$.
- **6.** Relacje binarne w zbiorze \mathbb{R} są podzbiorami zbioru \mathbb{R}^2 , a więc mają swoje obrazki na płaszczyźnie kartezjańskiej. Jaki jest sens geometryczny zwrotności, symetryczności, antysymetryczności?
- 7. Niech R_1 , R_2 będą relacjami w zbiorze X.

 $^{^1 \}rm Większość zadań pochodzi ze zbioru W. Marek, J.Onyszkiewicz "Elementy logiki matematycznej i teorii mnogości w zadaniach", PWN, Warszawa 1991.$

- (a) Czy jeśli R_1 i R_2 są zwrotne to $R_1 \cap R_2$ jest zwrotna?
- (b) Czy jeśli R_1 i R_2 są zwrotne to $R_1 \cup R_2$ jest zwrotna?
- (c) Czy jeśli R_1 i R_2 są symetryczne to $R_1 \cap R_2$ jest symetryczna?
- (d) Czy jeśli R_1 i R_2 są symetryczne to $R_1 \cup R_2$ jest symetryczna?
- (e) Czy jeśli R_1 i R_2 są symetryczne to $R_1 \cap R_2$ jest antysymetryczna?
- (f) Czy jeśli R_1 i R_2 są antysymetryczne to $R_1 \cup R_2$ jest antysymetryczna?
- (g) Czy jeśli R_1 i R_2 są przechodnie to $R_1 \cap R_2$ jest przechodnia?
- (h) Czy jeśli R_1 i R_2 są przechodnie to $R_1 \cup R_2$ jest przechodnia?
- 8. Jakie własności relacji zachowuje działanie $R_1 \setminus R_2$?
- **9.** Jeśli dane są grafy relacji R_1 i R_2 to jak wyglądają grafy relacji $R_1 \cap R_2$ i $R_1 \cup R_2$?
- **10.** Sprawdzić, która z poniższych relacji jest relacją równoważności (jeśli jest wyznaczyć jej klasy abstrakcji):
 - (a) $X = \mathbb{Z}, xRy \iff 3|x-y,$
 - (b) $X = \mathbb{N}, xRy \iff 2|x+y,$
 - (c) $X = \mathbb{R}, xRy \iff x^2 = y^2,$
 - (d) $X = \mathbb{R}, xRy \iff |x| = |y|,$
 - (e) $X = \mathbb{R}, xRy \iff |x| \neq |y|,$
 - (f) $X = \mathbb{R}, xRy \iff x y \in \mathbb{Q},$
 - (g) $X = \mathcal{P}(\{1, 2, 3, 4\}), ARB \iff |A| = |B|,$
 - (h) $X = \mathbb{R}^2$, $(x_1, y_1)R(x_2, y_2) \iff y_1 = y_2$,
 - (i) $X = \mathbb{R}^2$, $(x_1, y_1)R(x_2, y_2) \iff x_1^2 + y_1^2 = x_2^2 + y_2^2$,
 - (j) $X = \{0, 1\}^2$, $(x_1, y_1)R(x_2, y_2) \iff x_1 \le x_2 \land y_1 \le y_2$.
- 11. Ile jest relacji równoważności w zbiorze trójelementowym, a ile w czteroelementowym?
- 12. Niech n będzie liczbą naturalną. Definiujemy relację zbiorze \mathbb{Z} :

$$a \equiv b \mod n \iff n|a-b.$$

Udowodnić, że jest to relacja równoważności. Wyznaczyć klasy abstrakcji i pokazać, że spełnione są następujące własności:

 $\begin{aligned} a+c &\equiv b+d \text{ mod } n, \\ a\cdot c &\equiv b\cdot d \text{ mod } n, \\ \forall_{k\in\mathbb{N}} \ a^k &\equiv b^k \text{ mod } n. \end{aligned}$