COMPETING RISKS

Dr. Aric LaBarr
Institute for Advanced Analytics

INTRODUCTION THROUGH EXAMPLES

Medical Example

- Cancer researcher finds a medicine that cures cancer.
- Run a medical study where you follow 100 patients for 5 years after giving them cancer cure to see how many die.
- In year 4, 7 of these patients travel together to Iceland and die in a volcano accident.
- The other 93 patients made it to the end of five years without passing away.

Medical Example

- Cancer researcher finds a medicine that cures cancer.
- Run a medical study where you follow 100 patients for 5 years after giving them cancer cure to see how many die.
- In year 4, 7 of these patients travel together to Iceland and die in a volcano accident.
- The other 93 patients made it to the end of five years without passing away.

WHAT IS THE MORTALITY RATE?

Medical Example

- Cancer researcher finds a medicine that cures cancer.
- Run a medical study where you follow 100 patients for 5 years after giving them cancer cure to see how many die.
- In year 4, 7 of these patients travel together to Iceland and die in a volcano accident.
- The other 93 patients made it to the end of five years without passing away.

WHAT IS THE MORTALITY RATE?

DOES 7% FEEL RIGHT?

Customer Example

- Observe customers over the past year to try and analyze voluntary churn.
- Of the 1000 customers in the data set, 240 left voluntarily, while 60 left involuntarily.

WHAT IS THE CUSTOMER CHURN RATE?

Customer Example

- Observe customers over the past year to try and analyze voluntary churn.
- Of the 1000 customers in the data set, 240 left voluntarily, while 60 left involuntarily.

WHAT IS THE CUSTOMER CHURN RATE?

DOES 30% FEEL RIGHT?

Fixed vs. Random Censoring

- **Fixed censoring** censoring only occurs at the end of the study ($C_i = c$ is known in advance).
 - Recidivism data: Not arrested in 52 weeks is censored by design because that is when study ended.
- Random censoring $-C_i$ may vary between subjects for reasons beyond the investigator's control.
 - Recidivism data: No arrest within first 30 weeks, but lose contact with subject for whatever reason.
 - Recidivism data: Study done only for one year, but people can have delayed entry into the study (as they were released).

COMPETING RISKS

Multiple Event Types

- All of the models used so far have been for studying the time until one event occurs.
- All of the models used so far can be extended to studying multiple events or multiple types of events.

Competing Risks

- Examples:
 - Death from cancer in medical study vs. other causes of death.
 - Leaving job due to retirement, injury, or being fired.
 - Pump failure due to jamming, flooding, motor failure, or surge.
- In all of the above cases there are multiple, mutually exclusive causes of failure.
- These are examples of a competing risks problem, where each subject can experience only one of several possible events.

Independence Again...

- Assume T_i and C_i are independent subjects censored at time t were randomly selected to be censored from all subjects still in the risk set at t.
- **IF** this is true, then fixed vs. random censoring is mathematically equivalent.
- What does independence "mean" here?
 - In competing risks, independence implies that a censored observation and an uncensored observation have the same risk of the event, regardless of the reason for censoring.

Independence Again...

Example:

 By treating other failure types as censored, we're essentially implying once a pump fails due to jamming, we still don't know when it would fail due to flooding – we assume that the event types are independent.

NO TEST FOR THIS!

- Decide independent or not based on context of problem.
- In other words, are observations with a high risk of one event equally likely to experience the other events?

ESTIMATION

World Leaders Data Set

- Compiled by Bienen and van de Walle in 1991.
- Primary leaders of all countries between 1960 and 1987.
- Number of years the leader was in power and the manner they lost power.

World Leaders Data Set

- Manner how the leader reached power (0: constitutional, 1: non-constitutional)
- Start year of entry to power
- Military background of leader (1: military, 0: civilian)
- Age age at time of entry
- Conflict level of ethnic conflict (1: medium/high, 0:low)
- LogInc log of GNP per capita
- Growth avg. annual growth rate of GNP
- Pop population in millions
- Land land area in 1000 km²
- Literacy literacy rate (unknown year)
- Region 0: Middle East, 1: Africa, 2: Asia, 3: Latin America

Review

- Two major functions in survival analysis:
- Survival Function probability of surviving beyond time t:

$$S(t) = P(T > t) = 1 - F(t)$$

Hazard Function – conditional failure rate in an interval:

$$h(t) = \lim_{\Delta t \to 0} \frac{P(t < T < t + \Delta t \mid T > t)}{\Delta t}$$

Cause-Specific Hazard Function

- When there are multiple event types, the hazard function contains two variables – T and J.
- The cause/type specific hazard function is as follows:

$$h_{i,j}(t) = \lim_{\Delta t \to 0} \frac{P(t \le T_i < t + \Delta t, J_i = j \mid T_i \ge t)}{\Delta t}$$

$$h_i(t) = \sum_{i} h_{i,j}(t)$$

The interpretation stays the same, just type specific.

Cause-Specific Hazard Function

- When there are multiple event types, the hazard function contains two variables – T and J.
- The cause/type specific hazard function is as follows:

$$h_{i,j}(t) = \lim_{\Delta t \to 0} \frac{P(t \le T_i < t + \Delta t) J_i = j}{\Delta t} T_i \ge t$$

$$h_i(t) = \sum_{i} h_{i,j}(t)$$

The interpretation stays the same, just type specific.

Cumulative Incidence Function

 The cumulative incidence function (CIF) is the unconditional probability that event type k occurs by time t:

$$F_k(t) = P(T \le t, K = k)$$

 The probability of any event by time t is just the sum of the individual CIF's:

$$F(t) = \sum_{k} F_k(t)$$

Overall Survival

Survival Function – probability of surviving beyond time t:

$$S(t) = P(T > t) = 1 - F(t) = 1 - \sum_{k} F_k(t)$$

 The overall survival function is still unconditional, since survival means surviving all of the risks, so there's no such thing as a cause/type specific survival.

Estimating the CIF

 We can estimate the CIF's nonparametrically using the nonparametric estimates of the survival and hazard functions:

$$\widehat{F}_k(t) = \sum_{t_m \le t} \widehat{h}_k(t_m) \widehat{S}(t_{m-1})$$

The LIFETEST Procedure

Failed Event: lost=Constitutional

Summary of Failure Outcomes					
Failed Events	Competing Events	Censored	Total		
165	192	115	472		

Cumulative Incidence Function Estimates						
years	Cumulative Incidence	Standard Error	95% Confidence Interval			
0	0	0				
0	0.0932	0.0134	0.0691	0.1215		
1	0.1407	0.0161	0.1110	0.1739		
2	0.1744	0.0176	0.1414	0.2103		
3	0.2161	0.0193	0.1796	0.2550		
4	0.2738	0.0211	0.2332	0.3159		

Cumulative Incidence Function

With 95% Confidence Limits


```
lcon data <- finegray(Surv(years, lost) ~ .,</pre>
                       data = leaders, etype = "Constitutional")
lnat data <- finegray(Surv(years, lost) ~ .,</pre>
                       data = leaders, etype = "Natural")
lnon data <- finegray(Surv(years, lost) ~ .,</pre>
                       data = leaders, etype = "Non-Constitutional")
lcon <- survfit(Surv(fgstart, fgstop, fgstatus) ~ 1,</pre>
                 data = lcon data, weight = fgwt)
lnat <- survfit(Surv(fgstart, fgstop, fgstatus) ~ 1,</pre>
                 data = lnat data, weight = fgwt)
lnon <- survfit(Surv(fgstart, fgstop, fgstatus) ~ 1,</pre>
                 data = lnon data, weight = fgwt)
```


CAUSE-SPECIFIC HAZARD MODEL

Modeling Type-Specific Events

 Type-Specific events can be modeled with both proportional hazard models ...

$$\log h_k(t) = \log h_{0,k}(t) + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k}$$

• ... and accelerated failure time (AFT) models :

$$\log T_{i,k} = \beta_0 + \beta_1 x_{i,1} + \dots + \sigma e_i$$

Cox Regression Competing Risks

- Typical modeling approach for competing risks is to use separate Cox regression models for each cause, treating all other events as censored.
- Essentially, modeling the effects of predictors on the cause-specific hazard:

$$\log h_k(t) = \log h_{0,k}(t) + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k}$$

Cox Competing Risks – SAS

Cox Competing Risks – SAS

The PHREG Procedure

Model Information				
Data Set SURVIVAL.LEADERS				
Dependent Variable years				
Censoring Variable lost				
Censoring Value(s)	013			
Ties Handling	EFRON			

Number of Observations Read	472
Number of Observations Used	438

Class Level Information							
Class	Value	Design Variables					
region	0	1 0 0					
	1	0	1	0			
	2	0	0	1			
	3	0	0	0			

Cox Competing Risks – SAS

Summary of the Number of Event and Censored Values					
Total	Event	Censored	Percent		
IOtal	LVeiit	Celisored	Censored		
438	27	411	93.84		

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics				
Criterion	Without Covariates	With Covariates		
-2 LOG L	257.293	224.870		
AIC	257.293	250.870		
SBC	257.293	267.716		

Testing Global Null Hypothesis: BETA=0							
Test Chi-Square DF Pr > ChiSq							
Likelihood Ratio	32.4225	13	0.0021				
Score	33.2088	13	0.0016				
Wald	29.4735	13	0.0056				

Type 3 Tests					
Effect	DF	Wald Chi-Square	Pr > ChiSq		
manner	1	0.3192	0.5721		
start	1	2.5463	0.1106		
military	1	0.2422	0.6226		
age	1	16.1192	<.0001		
conflict	1	0.3055	0.5805		
loginc	1	1.5105	0.2191		
growth	1	1.0712	0.3007		
рор	1	0.8676	0.3516		
land	1	0.0497	0.8237		
literacy	1	0.4876	0.4850		
region	3	4.7021	0.1950		

Cox Competing Risks – SAS

Parameter		DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio	Label
manner		1	0.37473	0.66325	0.3192	0.5721	1.455	
start		1	-0.05403	0.03386	2.5463	0.1106	0.947	
military		1	-0.36461	0.74091	0.2422	0.6226	0.694	
age		1	0.07386	0.01840	16.1192	<.0001	1.077	
conflict		1	-0.26085	0.47196	0.3055	0.5805	0.770	
loginc		1	0.32854	0.26732	1.5105	0.2191	1.389	
growth		1	0.08816	0.08518	1.0712	0.3007	1.092	
рор		1	0.00199	0.00214	0.8676	0.3516	1.002	
land		1	-0.0000397	0.0001781	0.0497	0.8237	1.000	
literacy		1	-0.00880	0.01260	0.4876	0.4850	0.991	
region	0	1	-0.65910	0.78519	0.7046	0.4012	0.517	region 0
region	1	1	-1.30176	0.80525	2.6134	0.1060	0.272	region 1
region	2	1	-1.43672	0.76049	3.5691	0.0589	0.238	region 2

Cox Competing Risks – R

Cox Competing Risks – R

```
## Call:
## coxph(formula = Surv(years, lost == "Natural") ~ manner + start +
      military + age + conflict + loginc + growth + pop + land +
##
      literacy + factor(region), data = leaders)
##
##
##
    n= 438, number of events= 27
     (34 observations deleted due to missingness)
##
##
                      coef exp(coef) se(coef) z Pr(>|z|)
##
## manner
            3.747e-01 1.455e+00 6.633e-01 0.565 0.572
              -5.403e-02 9.474e-01 3.386e-02 -1.596 0.111
## start
## military -3.646e-01 6.945e-01 7.409e-01 -0.492 0.623
## age
             7.386e-02 1.077e+00 1.840e-02 4.015 5.95e-05 ***
## conflict -2.609e-01 7.704e-01 4.720e-01 -0.553 0.580
## loginc
          3.285e-01 1.389e+00 2.673e-01 1.229 0.219
## growth 8.817e-02 1.092e+00 8.518e-02 1.035
                                                      0.301
             1.991e-03 1.002e+00 2.138e-03 0.931
                                                      0.352
## pop
                                                      0.824
## land
         -3.969e-05 1.000e+00 1.781e-04 -0.223
## literacy -8.796e-03 9.912e-01 1.260e-02 -0.698 0.485
## factor(region)1 -6.427e-01 5.259e-01 8.360e-01 -0.769
                                                      0.442
## factor(region)2 -7.776e-01 4.595e-01 9.031e-01 -0.861
                                                       0.389
## factor(region)3 6.591e-01 1.933e+00 7.852e-01 0.839
                                                       0.401
## ---
                 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

Cox Competing Risks – R

```
##
                  exp(coef) exp(-coef) lower .95 upper .95
                     1.4546
                               0.6875
                                        0.39644
                                                   5.337
## manner
                                       0.88657
                    0.9474
                               1.0555
                                                   1.012
## start
## military
                    0.6945
                               1.4400
                                       0.16255
                                                   2.967
## age
                     1.0767
                               0.9288
                                        1.03853
                                                   1.116
## conflict
                    0.7704
                               1.2980
                                       0.30548
                                                   1.943
                               0.7200
                                       0.82251
## loginc
                    1.3889
                                                   2.345
## growth
                    1.0922
                               0.9156
                                       0.92423
                                                   1.291
                    1.0020
                               0.9980
                                       0.99780
                                                   1.006
## pop
## land
                    1.0000
                               1.0000
                                       0.99961
                                                   1.000
## literacy
                    0.9912
                               1.0088
                                       0.96707
                                                   1.016
## factor(region)1
                 0.5259
                               1.9015
                                       0.10217
                                                   2,707
## factor(region)2
                    0.4595
                               2.1763
                                       0.07827
                                                   2,698
## factor(region)3
                     1.9330
                               0.5173
                                        0.41484
                                                   9.007
##
## Concordance= 0.819 (se = 0.046)
## Likelihood ratio test= 32.42 on 13 df,
                                           p=0.002
## Wald test
                      = 29.47 on 13 df,
                                          p=0.006
## Score (logrank) test = 33.21 on 13 df,
                                           p=0.002
```

AFT Models with Competing Risks

- Accelerated Failure Time models have a similar structure to Cox regression models when dealing with competing risks.
- With AFT Models, distributions need to be evaluated for all types of failure!

CONDITIONAL PROCESSES

Independent Events?

- The competing risks approach presumes that each event type has its own hazard that governs **both** the occurrence and timing of events of that type.
- They are assumed to be independent processes acting in parallel with each other.
- Example:
 - Death due to natural causes vs. forcible removal from power.

Independent Events?

- In a business setting, this independence assumption rarely seems reasonable.
- Example:
 - Consider the event to be buying a personal computer.
 - Two types:
 - Mac
 - PC
 - These aren't two independent processes where we see what happens first.
- One process governs when you will buy a computer, while another process determines choice of computer.

Conditional Processes

- What if independence DOES NOT seem reasonable?
- Conditional processes occur when these events are NOT independent of each other – conditional on each other.
- Two Common Approaches:
 - Two-Stage Modeling
 - Fine-Gray Model

Conditional Processes

- What if independence DOES NOT seem reasonable?
- Conditional processes occur when these events are NOT independent of each other – conditional on each other.
- Two Common Approaches:
 - Two-Stage Modeling
 - 2. Fine-Gray Model

Two-Stage Modeling

- Two-Stage modeling is when you model each of the stages (time and event) separately.
 - Survival analysis when will any event occur.
 - 2. Classification model what type of event occurs.
- Example:
 - Survival Analysis on buying a computer.
 - Logistic regression on which type of computer to buy.

