TP 6 : Modélisation d'un carrefour

Cours de modélisation numérique

31 mars 2023

1 Feu rouge automatique

Le modèle de feu rouge automatique vu en cours peut se spécifier de la manière suivante :

1.1 État

- État du feu (rouge ou vert) : représenté par un booléen.
- Compteur de voitures (V) en attente : représenté par un entier.

1.1.1 État initial

- Feu rouge.
- V = 0.

1.2 Constantes

- T_c : délai de changement rouge \to vert, après l'arrivée d'une première voiture au feu rouge.
- T_p : temps pour qu'une voiture passe.

1.3 Événements et actions

1.3.1 VOITURE(t)

```
Une\ voiture\ arrive:
```

- 1. si(V=0 et feu rouge) insérer R2G($t+T_c$)
- $2. \ \mathrm{si(} \ \mathrm{feu} \ \mathrm{vert} \ \mathrm{)} \ \mathrm{passe} \ \mathrm{sinon} \ V = V + 1$

1.3.2 R2G(t)

Le feu passe au vert :

- $1.\ \mathtt{feu} := \mathtt{vert}$
- 2. insérer G2R($t+V imes T_p$)
- 3. V := 0

1.3.3 G2R(t)

Le feu passe au rouge :

1. feu := rouge

2 Exercices

2.1 Modélisation d'un carrefour avec deux feux

Après avoir lu et vous être assurés d'avoir bien compris l'exemple ci-dessus, vous devrez modéliser un carrefour avec deux feux automatiques. Les contraintes sont les suivantes :

- Il y a deux feux (A et B)
- Les voitures peuvent arriver soit au feu A, soit au feu B.
- Les deux feux ne doivent **jamais** être verts en même temps.
- Lorsqu'un feu passe au rouge, l'autre peut instantanément passer au vert.
- Lorsqu'un feu passe au vert, il doit le rester pour un temps au moins égal à $V \times T_p$, où V est le nombre de voitures en attente au feu rouge et T_p le temps moyen nécessaire à faire passer une voiture.

Si plus de voitures arrivent au feu A, celui-ci devrait être vert plus souvent que le rouge. (Conséquence) Vous devez implémenter ce modèle en Python. Pour cela :

- 1. Téléchargez le fichier carrefour.py qui est un début d'implémentation de l'exemple vu au cours, pour un seul feu. Lisez le code et assurez-vous d'avoir tout compris.
- 2. Complétez les fonctions manquantes dans le code.
- 3. Ensuite, modifiez le fichier fourni pour implémenter le modèle discuté ici, à deux feux.
- 4. Finalement, vous devez afficher un graphe de la quantité de voitures en attente pour chaque feu, en fonction du temps. Faites varier les paramètres T_c et T_p , ainsi que l'arrivée des voitures aux feux. Vous pouvez aussi y représenter les évènements discrets du passage de feu rouge \rightarrow vert et vice-versa.

2.2 Condition de passage plus réaliste

Dans l'exemple précédent, on considère que lorsque le feu passe au vert, toutes les voitures passent en même temps. Cela est certainement réaliste pour des *piétons* mais pas pour des voitures qui passent une à la fois. Dans cet exercice, il vous faudra améliorer le modèle de carrefour à deux feux quant au passage des véhicules en attente au feu rouge.

Le problème est modifié de la manière suivante :

- Il faut en moyenne T_p pour qu'une voiture passe le feu.
- Le feu ne reste vert qu'un temps fixe : T_v .
- Le feu doit rester rouge durant un délai fixe égal à T_r .

Implémentez cette deuxième version du modèle, et représentez les mêmes graphes que précédemment, en faisant varier T_v et T_r . Pour cela, choisissez une liste d'arrivée de voitures donnée, ainsi qu'un T_p qui donnent lieu à des graphes pertinents ($T_c = T_v + T_r$ n'est plus nécessaire dans ce cas de figure).