Conjuntos Medibles Sigma Álgebras Medida Nuevamente Resumen

MA0505 - Análisis I

Lección XIII: La Medida de Lebesgue I

Pedro Méndez¹

¹Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021

Agenda

- Conjuntos Medibles
- Sigma Álgebras
- Medida Nuevamente

Cerrados

Lema

Sea
$$G \subseteq \mathbb{R}^d$$
 abierto, entonces $G = \bigcup_{k=1}^{\infty} I_k$ con $I_k = \begin{bmatrix} a_1^k, b_1^k \end{bmatrix} \times \ldots \times \begin{bmatrix} a_d^k, b_d^k \end{bmatrix} \ y \ I_k^o \cap I_\ell^o = \emptyset \ para \ k \neq \ell.$

La prueba de este lema es un ejercicio.

Teorema

Sea $F \subseteq \mathbb{R}^d$ un cerrado, entonces F es medible.

Prueba del Teorema

Si asumimos adicionalmente que F es compacto, entonces dado $\varepsilon > 0$ existe un G abierto que satisface:

$$m_e(G) \leqslant m_e(F) + \frac{\varepsilon}{2}.$$

Note que $G \setminus F$ es abierto. Luego existen $\{I_k\}_{k=1}^{\infty}$ cubos cerrados tales que

$$G \setminus F = \bigcup_{k=1}^{\infty} I_k$$
.

Como F y $\bigcup_{k=1}^{\ell} I_k$ son cerrados disjuntos y F es compacto, entonces $d\left(F,\bigcup_{k=1}^{\ell} I_k\right) > 0$ y así

$$m_{e}(G) \geqslant m_{e}\left(F \cup \bigcup_{k=1}^{\ell} I_{k}\right) = m_{e}\left(F\right) + m_{e}\left(\bigcup_{k=1}^{\ell} I_{k}\right).$$

Terminamos la Prueba

De esta manera

$$\begin{split} & m_{e}\left(\bigcup_{k=1}^{\ell}I_{k}\right)\leqslant m_{e}(G)-m_{e}(F)\leqslant\frac{\varepsilon}{2}\\ \Rightarrow &\forall \ell\geqslant 1\left(\sum_{k=1}^{\ell}m_{e}(I_{k})\leqslant\frac{\varepsilon}{2}\right)\\ \Rightarrow &\sum_{k=1}^{\infty}m_{e}(I_{k})\leqslant\frac{\varepsilon}{2}\Rightarrow m_{e}(G\setminus F)<\varepsilon. \end{split}$$

Y finalmente si F no es compacto, podemos tomar $F = \bigcup F_k$ con $F_k = F \cap \overline{B(0,k)}$ que sí es compacto. De esta manera, F es medible.

Complementos

Teorema

El complemento de un conjunto medible es medible.

Sea *E* medible, dado $k \ge 1$, existe G_k un abierto tal que

$$E\subseteq G_k, \quad m_e(G_k\setminus E)<rac{1}{k}.$$

Note que $E \subseteq \bigcap_{k=1}^{\infty} G_k$ y que G_k^c es cerrado para $k \geqslant 1$. Así $H = \bigcup_{k=1}^{\infty} G_k^c$ es medible con

$$H = \left(\bigcap_{k=1}^{\infty} G_k\right)^c = \bigcup_{k=1}^{\infty} G_k^c \subseteq E^c.$$

Terminamos la Prueba

Ahora vale

$$E^c \setminus H \subseteq E^c \setminus G_k^c = G_k \setminus E$$
.

Es decir, para $k \ge 1$ tenemos $m_e(E^c \setminus H) \setminus \frac{1}{k}$. Concluimos que $Z = E^c \setminus H$ tiene medida exterior cero y entonces podemos expresar

$$E^c = Z \cup H$$

de manera que E^c es medible.

Extraemos un Resultado

Si $\{E_k\}_{k=1}^{\infty}$ es una colección de medibles, entonces

- (I) $\bigcup_{k=1}^{\infty} E_k$ es medible.
- (II) $\bigcup_{k=1}^{\infty} E_k^c$ es medible.

Entonces tenemos que

$$\bigcap_{k=1}^{\infty} E_k = \left(\bigcup_{k=1}^{\infty} E_k^c\right)^c$$

es medible también.

Además $E_1 \setminus E_2 = E_1 \cap E_2^c$ es medible.

Definición

Sea Ω un conjunto, una σ -álgebra $\mathcal F$ es un subconjunto de 2^Ω que satisface

- (I) Si $E \in \mathcal{F}$, entonces $E^c \in \mathcal{F}$.
- (II) $\Omega \in \mathcal{F}$.
- (III) Si $\{F_k\}_{k=1}^{\infty} \subseteq F$ entonces $\bigcup_{k=1}^{\infty} F_k \in \mathcal{F}$.

Lema

Sea \mathcal{F} una σ -álgebra y $\{E_k\}_{k=1}^{\infty} \subseteq \mathcal{F}$. Entonces

- (I) $\bigcap_{k=1}^{\infty} E_k \in \mathcal{F}$.
- (II) $E_1 \setminus E_2 \in \mathcal{F}$.
- (III) $\emptyset \in \mathcal{F}$.

La prueba de este lema es un ejercicio.

El Conjunto de los Medibles

Sea $\mathcal{M} = \{ E \subseteq \mathbb{R}^d : E \text{ medible } \}$. Los resultados anteriores se resumen en el siguiente lema.

Lema

 \mathcal{M} es una σ -álgebra.

Sea $S \subseteq 2^{\Omega}$, la σ -álgebra generada por S es

$$\sigma(\mathcal{S}) = \bigcap_{\substack{\mathcal{F} \text{ } \sigma-\text{\'alg.} \\ \mathcal{S} \subseteq \mathcal{F}}} \mathcal{F}$$

y de esto se desprende que $\sigma(\mathcal{S})$ es la σ -álgebra más pequeña que contiene a $\mathcal{S}.$

Borelianos

Definición

 \mathcal{B} la σ -álgebra Boreliana, es la σ -álgebra generada por los abiertos de \mathbb{R}^d .

Al ser \mathcal{B} una σ -álgebra, \mathcal{B} contiene a los cerrados, G_{δ} , F_{σ} y además $\mathcal{B} \subseteq \mathcal{M}$.

Los medibles se pueden definir en términos de cerrados.

Lema

Sea $E \subseteq \mathbb{R}^d$, entonces E es medible si y sólo si dado $\varepsilon > 0$, existe un $F \subseteq E$ cerrado que satisface

$$m_e(E \setminus F) < \varepsilon$$
.

Sabemos que E es medible si y sólo si E^c es medible. Dado $\varepsilon>0$, existe G abierto tal que

$$E^c \subseteq G$$
, $m_e(G \setminus E^c) < \varepsilon$.

Entonces $G^c = F \subseteq E$ y

$$m_e(E \setminus F) = m_e(E \cap G) = m_e(G \setminus E^c) < \varepsilon.$$

Es un ejercicio terminar la prueba.

Con el resultado anterior en mano procedemos a probar este:

Teorema

Sea $\{E_k\}_{k=1}^{\infty}$ una colección contable de conjuntos disjuntos y medibles. Entonces

$$m\left(\bigcup_{k=1}^{\infty}E_{k}\right)=\sum_{k=1}^{\infty}m(E_{k}).$$

Prueba del Teorema

Comenzamos por asumir E_k es acotado.

- Sabemos que existe $F_k \subseteq E_k$ cerrado tal que $m(E_k \setminus F_k) < \frac{\varepsilon}{2^k}$.
- Dado que F_k es compacto, para $k \ge 1$ y $F_k \cap F_\ell = \emptyset$ se tiene que

$$m\left(\bigcup_{i=1}^m F_i\right) = \sum_{i=1}^m m(F_i).$$

Entonces

$$\sum_{i=1}^{m} m(F_i) \leqslant m\left(\bigcup_{i=1}^{\infty} E_i\right) \Rightarrow \sum_{i=1}^{\infty} m(F_i) \leqslant m\left(\bigcup_{i=1}^{\infty} E_i\right).$$

Terminamos la Prueba

Ahora

$$m(E_k) = m(F_k \cup E_k \setminus F_k) \leqslant m(F_k) + m(E_k \setminus F_k) \leqslant m(F_k) + \frac{\varepsilon}{2^k}.$$

Luego

$$\sum_{i=1}^{\infty} m(E_i) - \frac{\varepsilon}{2^i} \leqslant m\left(\bigcup_{i=1}^{\infty} E_i\right)$$

y por tanto

$$\sum_{i=1}^{\infty} m(E_i) \leqslant m\left(\bigcup_{i=1}^{\infty} E_i\right) + \varepsilon.$$

El resto de la prueba es un ejercicio

Sea $I^k = I_1^k \times ... \times I_d^k$ donde I_i^k es un intervalo. Si vale que $(I^k)^o \cap (I^l)^o = \emptyset$, tenemos que:

$$m\left(\bigcup_{k=1}^{\infty}(I^k)^o\right)=\sum_{k=1}^{\infty}m((I_k)^o)=\sum_{k=1}^{\infty}m(I^k).$$

Así tenemos que

$$\sum_{k=1}^{\infty} m(I^k) \leqslant m\left(\bigcup_{k=1}^{\infty} I^k\right) \Rightarrow \sum_{k=1}^{\infty} m(I^k) = m\left(\bigcup_{k=1}^{\infty} I^k\right).$$

Sean E_1 , E_2 medibles con $E_1 \subseteq E_2$. Tenemos que

$$m(E_2) = m(E_1 \cup E_2 \setminus E_1) = m(E_1) + m(E_2 \setminus E_1).$$

Si ocurre que $m(E_1) < \infty$, entonces

$$m(E_2 \setminus E_1) = m(E_2) - m(E_1).$$

Por otro lado si $\{E_i\}_{i=1}^{\infty}$ es una sucesión de medibles tales que $E_i \subseteq E_{i+1}$, tenemos que

$$\bigcup_{i=1}^{\infty} E_i = \bigcup_{i=1}^{\infty} E_i \setminus E_{i-1}$$

donde asumimos $E_0 = \emptyset$.

De esto tenemos que

$$m\left(\bigcup_{i=1}^{\infty} E_{i}\right) = \sum_{i=1}^{\infty} m(E_{i} \setminus E_{i-1})$$
$$= \lim_{n \to \infty} \sum_{k=1}^{n} m(E_{i}) - m(E_{i-1}) = \lim_{n \to \infty} m(E_{n})$$

siempre que $m(E_n) < \infty$ para $k \ge 1$. Note que la identidad es cierta si $m(E_k) = \infty$ para algún k.

Si asumimos ahora que $E_i \supseteq E_{i+1}$ para $i \geqslant 1$ y $m(E_1) < \infty$, entonces

$$E_1 = \bigcup_{i=1}^{\infty} E_i = \left(\bigcup_{i=1}^{\infty} E_i \setminus E_{i+1}\right) \cup E$$

con $E = \bigcap_{i=1}^{\infty} E_i$. Entonces

$$m(E_1) = \sum_{i=1}^{\infty} m(E_i \setminus E_{i+1}) + m(E).$$

Como $\sum_{i=1}^{\infty} m(E_i) - m(E_{i+1}) = \lim_{n \to \infty} m(E_1) - m(E_n)$, concluimos que

$$m(E_1) = \lim_{n \to \infty} (m(E_1) - m(E_n)) + m \left(\bigcap_{i=1}^{\infty} E_i\right)$$
$$\Rightarrow m \left(\bigcap_{i=1}^{\infty} E_i\right) = \lim_{n \to \infty} m(E_n).$$

En este caso sí es necesario asumir que $m(E_1) < \infty$.

Considere ahora $E_k = [-k, k]^c$. Entonces

$$E_{k+1} \subseteq E_k, \ m(E_k) = \infty, \ \bigcap_{k=1}^{\infty} E_k = \emptyset.$$

Teorema

Sea $\{E_k\}_{k=1}^{\infty}$ una sucesión de conjuntos medibles:

(I) Si $E_i \subseteq E_{i+1}$, $1 \leqslant i$, entonces

$$m\left(\bigcup_{i=1}^{\infty}E_i\right)=\lim_{k\to\infty}m(E_k).$$

(II) Si $E_{i+1} \subseteq E_i$ y existe $i_0 \geqslant 1$ tal que $m(E_{i_0}) < \infty$, entonces

$$m\left(\bigcap_{i=1}^{\infty}E_{i}\right)=\lim_{i\to\infty}m(E_{i}).$$

990

Una Generalización

El resultado previo se puede generalizar. Dados $E_k \subseteq \mathbb{R}^d$, no necesariamente medibles, que satisface $E_k \subseteq E_{k+1}$ para $k \geqslant 1$, tomemos G_k G_δ 's tales que

$$E_k \subseteq G_k$$
, $m_e(E_k) = m(G_k)$.

No podemos deducir que $G_k \subseteq G_{k+1}$, entonces tome $V_k = \bigcap_{j=k}^{\infty} G_j$ y así $V_k \subseteq V_{k+1}$.

Como $E_k \subseteq E_{k+\ell} \subseteq G_{k+\ell}$, tenemos que $E_k \subseteq V_k$. Y además

$$m_e(E_k) \leqslant m_e(V_k) = m(V_k)$$

y
$$m(V_k) \leqslant m(G_k) = m_e(E_k)$$
. Es decir $m_e(E_k) = m(V_k)$.

Finalmente

$$m_e(E_k) \leqslant m_e\left(\bigcup_{k=1}^{\infty} E_k\right) \leqslant m_e\left(\bigcup_{k=1}^{\infty} V_k\right)$$

 $\leqslant \lim_{k \to \infty} m(V_k) = \lim_{k \to \infty} m_e(E_k).$

Con esto tenemos el teorema

Teorema

Si
$$E_k \subseteq E_{k+1} \subseteq \mathbb{R}^d$$
, entonces

$$m_e\left(\bigcup_{k=1}^{\infty} E_k\right) = \lim_{k\to\infty} m_e(E_k).$$

Resumen

- El lema 1 sobre la caracterización de abiertos.
- Los teoremas 1 y 2 sobre cerrados y complementos medibles.
- La definición 1 y el lema 2 sobre σ-álgebras.
- Por el lema 3, el conjunto de medibles es una σ -álgebra.
- La definición 2 de la σ -álgebra Boreliana.
- La caracterización 4 de medibles por cerrados.
- El teorema 3 sobre medidas de conjuntos disjuntos.
- El teorema 5.

Ejercicios

- Lista 13
 - El lema 1 sobre la caracterización de abiertos.
 - El lema 2 sobre quienes están dentro de una σ-álgebra.
 - Terminar la prueba del lema 4.
 - Terminar la prueba del teorema 3.

Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.RojasNotas MA0505.2018.