Line Sampling for Direct Illumination

Niels Billen Philip Dutré

24 June 2016

KU Leuven University

$$L_{\text{direct}}(X \to \Theta) = \int_{A} L(y \to x) f_{r}(x, \overrightarrow{yx} \leftrightarrow \Theta) G(x, y) V(x, y) dA$$

$$L_{\text{direct}}\left(X \to \Theta\right) = \int_{A} \underbrace{L\left(y \to x\right)}_{\text{emission}} f_{r}\left(x, \overrightarrow{yx} \leftrightarrow \Theta\right) G\left(x, y\right) V\left(x, y\right) dA$$

$$L_{\mathrm{direct}}\left(X \to \Theta\right) = \int_{A} L\left(y \to X\right) \underbrace{f_{r}\left(X, \overrightarrow{yX} \leftrightarrow \Theta\right)}_{\text{reflection}} G\left(X, y\right) V\left(X, y\right) \mathrm{d}A$$

$$L_{\mathrm{direct}}\left(X \to \Theta\right) = \int_{A} L\left(y \to X\right) f_{r}\left(X, \overrightarrow{yX} \leftrightarrow \Theta\right) \underbrace{G\left(X, y\right)}_{\text{form factor}} V\left(X, y\right) \mathrm{d}A$$

$$L_{\text{direct}}(X \to \Theta) = \int_{A} L(y \to x) f_{r}(x, \overrightarrow{yx} \leftrightarrow \Theta) G(x, y) \underbrace{V(x, y)}_{\text{visibility}} dA$$

- Analytical evaluation:
 - exact analytical evaluation
 - difficult visibility evaluation

- Analytical evaluation:
 - exact analytical evaluation
 - difficult visibility evaluation

- Analytical evaluation:
 - exact analytical evaluation
 - difficult visibility evaluation

- · Analytical evaluation:
 - exact analytical evaluation
 - difficult visibility evaluation

- Stochastic evaluation:
 - (quasi) random point sampling

- · Analytical evaluation:
 - exact analytical evaluation
 - · difficult visibility evaluation

- Stochastic evaluation:
 - (quasi) random point sampling

- · Analytical evaluation:
 - exact analytical evaluation
 - · difficult visibility evaluation

- Stochastic evaluation:
 - · (quasi) random point sampling

- · Analytical evaluation:
 - exact analytical evaluation
 - · difficult visibility evaluation

- Stochastic evaluation:
 - (quasi) random point sampling

- · Analytical evaluation:
 - exact analytical evaluation
 - · difficult visibility evaluation

- Stochastic evaluation:
 - (quasi) random point sampling

- · Analytical evaluation:
 - exact analytical evaluation
 - · difficult visibility evaluation
- Line sampling:
 - part analytical part stochastic evaluation
- · Stochastic evaluation:
 - · (quasi) random point sampling

- · Analytical evaluation:
 - exact analytical evaluation
 - · difficult visibility evaluation
- Line sampling:
 - part analytical part stochastic evaluation
- · Stochastic evaluation:
 - · (quasi) random point sampling

- · Analytical evaluation:
 - exact analytical evaluation
 - · difficult visibility evaluation
- Line sampling:
 - part analytical part stochastic evaluation
- · Stochastic evaluation:
 - · (quasi) random point sampling

- · Analytical evaluation:
 - exact analytical evaluation
 - difficult visibility evaluation
- Line sampling:
 - part analytical part stochastic evaluation
- · Stochastic evaluation:
 - · (quasi) random point sampling

- · Analytical evaluation:
 - exact analytical evaluation
 - difficult visibility evaluation
- Line sampling:
 - part analytical part stochastic evaluation
- · Stochastic evaluation:
 - · (quasi) random point sampling

How to generate the line samples?

• choose a random direction \vec{l}

- · choose a random direction \vec{l}
- project light source onto \vec{l}

- choose a random direction \vec{l}
- project light source onto \vec{l}
- line segment parameterized by $u \in [a, b]$

- choose a random direction \vec{l}
- project light source onto \vec{l}
- line segment parameterized by $u \in [a, b]$

- choose a random direction \vec{l}
- project light source onto \vec{l}
- line segment parameterized by $u \in [a, b]$

- choose a random direction \vec{l}
- project light source onto \vec{l}
- line segment parameterized by $u \in [a, b]$

- choose a random direction \vec{l}
- project light source onto \vec{l}
- line segment parameterized by $u \in [a, b]$

- choose a random direction \vec{l}
- project light source onto \vec{l}
- line segment parameterized by $u \in [a, b]$

- choose a random direction \vec{l}
- project light source onto \vec{l}
- line segment parameterized by $u \in [a, b]$

- choose a random direction \vec{l}
- project light source onto \vec{l}
- line segment parameterized by $u \in [a, b]$

- choose a random direction \vec{l}
- project light source onto \vec{l}
- line segment parameterized by $u \in [a, b]$

- choose a random direction \vec{l}
- project light source onto \vec{l}
- line segment parameterized by $u \in [a, b]$

- choose a random direction \vec{l}
- project light source onto \vec{l}
- line segment parameterized by $u \in [a, b]$

- choose a random direction \vec{l}
- project light source onto \vec{l}
- line segment parameterized by $u \in [a, b]$

- choose a random direction \vec{l}
- project light source onto \vec{l}
- line segment parameterized by $u \in [a, b]$

- choose a random direction \vec{l}
- project light source onto \vec{l}
- line segment parameterized by $u \in [a, b]$

- choose a random direction \vec{l}
- project light source onto \vec{l}
- line segment parameterized by $u \in [a, b]$

- choose a random direction \vec{l}
- project light source onto \vec{l}
- line segment parameterized by $u \in [a, b]$

$$L_{\text{direct}}(...) = \int_{A} L(...) f_{\text{r}}(...) G(...) V(...) dA$$

- · choose a random direction \vec{l}
- project light source onto \vec{l}
- line segment parameterized by $u \in [a, b]$

$$L_{\text{direct}}(...) = \int_{A} L(...) f_{r}(...) G(...) V(...) dA$$
$$= \int_{a}^{b} \int_{0}^{l(u)} L(...) f_{r}(...) G(...) V(...) dl du$$

- · choose a random direction \vec{l}
- project light source onto \vec{l}
- line segment parameterized by $u \in [a, b]$

$$L_{\text{direct}}(...) = \int_{A} L(...) f_{r}(...) G(...) V(...) dA$$

$$= \int_{a}^{b} \underbrace{\int_{0}^{l(u)} L(...) f_{r}(...) G(...) V(...) dl}_{\text{analytical evaluation}} du$$

- · choose a random direction \vec{l}
- project light source onto \vec{l}
- line segment parameterized by $u \in [a, b]$

$$L_{\text{direct}}(...) = \int_{A} L(...) f_{r}(...) G(...) V(...) dA$$
$$= \int_{a}^{b} \int_{0}^{l(u)} L(...) f_{r}(...) G(...) V(...) dl du$$

- · choose a random direction \vec{l}
- project light source onto \vec{l}
- line segment parameterized by $u \in [a, b]$

$$L_{\text{direct}}(...) = \int_{A} L(...) f_{r}(...) G(...) V(...) dA$$

$$= \int_{a}^{b} \int_{0}^{l(u)} L(...) f_{r}(...) G(...) V(...) dldu$$

$$= \int_{a}^{b} L_{\text{line}}(...) du$$

- · choose a random direction \vec{l}
- project light source onto \vec{l}
- line segment parameterized by $u \in [a, b]$

$$L_{\text{direct}}(...) = \int_{A} L(...) f_{r}(...) G(...) V(...) dA$$

$$= \int_{a}^{b} \int_{0}^{l(u)} L(...) f_{r}(...) G(...) V(...) dldu$$

$$= \underbrace{\int_{a}^{b} L_{\text{line}}(...) du}_{\text{stochastic evaluation}}$$

Contribution of a line sample:

$$L_{\text{line}}(\ldots) = \int_0^l L_{\text{light}}(\ldots) f_{\text{r}}(\ldots) G(\ldots) V(\ldots) dt$$

Contribution of a line sample:

$$L_{\text{line}}(\ldots) = \int_0^l L_{\text{light}}(\ldots) f_r(\ldots) G(\ldots) V(\ldots) dt$$
$$= L_{\text{light}} \int_0^l f_r(\ldots) G(\ldots) V(\ldots) dt$$

assume diffuse light source

Contribution of a line sample:

$$\begin{split} L_{\text{line}}(\ldots) &= \int_0^l L_{\text{light}}(\ldots) f_{\text{r}}(\ldots) G(\ldots) V(\ldots) \, \text{d}t \\ &= L_{\text{light}} \int_0^l f_{\text{r}}(\ldots) G(\ldots) V(\ldots) \, \text{d}t \quad \text{assume diffuse light source} \\ &= L_{\text{light}} \int_0^l f_{\text{r}}(\ldots) G(\ldots) \, \text{d}t \quad \text{assume visible line sample} \end{split}$$

Z

Contribution of a line sample:

$$L_{\text{line}}(\ldots) = \int_0^l L_{\text{light}}(\ldots) f_r(\ldots) G(\ldots) V(\ldots) dt$$

$$= L_{\text{light}} \int_0^l f_r(\ldots) G(\ldots) V(\ldots) dt$$

$$= L_{\text{light}} \underbrace{\int_0^l f_r(\ldots) G(\ldots) dt}$$

analytically integrable

assume diffuse light source

assume visible line sample

Contribution of a line sample:

$$\begin{split} L_{line}(\ldots) &= \int_0^l L_{light}(\ldots) f_r(\ldots) G(\ldots) V(\ldots) \, \mathrm{d}t \\ &= L_{light} \int_0^l f_r(\ldots) G(\ldots) V(\ldots) \, \mathrm{d}t \qquad \text{assume diffuse light source} \\ &= L_{light} \underbrace{\int_0^l f_r(\ldots) G(\ldots) \, \mathrm{d}t}_{\text{analytically integrable}} \qquad \text{assume visible line sample} \end{split}$$

Materials:

Z

Contribution of a line sample:

$$\begin{split} L_{line}(\ldots) &= \int_0^l L_{light}(\ldots) f_r(\ldots) G(\ldots) V(\ldots) \, \mathrm{d}t \\ &= L_{light} \int_0^l f_r(\ldots) G(\ldots) V(\ldots) \, \mathrm{d}t \qquad \text{assume diffuse light source} \\ &= L_{light} \underbrace{\int_0^l f_r(\ldots) G(\ldots) \, \mathrm{d}t}_{\text{analytically integrable}} \qquad \text{assume visible line sample} \end{split}$$

Materials:

- · Diffuse BRDF
- · Phong BRDF

Diffuse material

Diffuse BRDF:

$$f_{\rm r}\left(x,\overrightarrow{yx}\leftrightarrow\Theta\right)=\frac{k_{\rm d}}{\pi}$$

Diffuse material

Diffuse BRDF:

$$f_{\rm r}\left(x,\overrightarrow{yx}\leftrightarrow\Theta\right)=\frac{k_{\rm d}}{\pi}$$

Line sample contribution (extension of [Nishita et al., 1985]):

$$L_{\text{line}}(...) = L_{\text{light}} \frac{k_{d}}{\pi} \int_{0}^{l} G(...) dt$$

.

Diffuse material

Diffuse BRDF:

$$f_{\rm r}\left(x,\overrightarrow{yx}\leftrightarrow\Theta\right)=\frac{R_{\rm d}}{\pi}$$

Line sample contribution (extension of [Nishita et al., 1985]):

$$L_{\text{line}}(...) = L_{\text{light}} \frac{k_{d}}{\pi} \int_{0}^{l} G(...) dt$$

$$= L_{\text{light}} \frac{k_{d}}{2\pi} \left(\frac{(A - BD)}{(C - D^{2})^{\frac{3}{2}}} \left(\tan^{-1} \left(\frac{D}{\sqrt{C - D^{2}}} \right) - \tan^{-1} \left(\frac{D + l}{\sqrt{C - D^{2}}} \right) \right) \right)$$

$$- L_{\text{light}} \frac{k_{d}}{2\pi} \frac{lF(BC(C + l)) + A(C - Dl - 2D^{2})}{C(C - D^{2})(l^{2} + 2Dl + C)}$$

Ę

Phong BRDF:

$$f_{r}(x, \overrightarrow{yx} \leftrightarrow \Theta) = k_{s} \frac{(n+2)(\overrightarrow{yx} \cdot \overrightarrow{R})}{2\pi}$$

Phong BRDF:

$$f_{r}(x, \overrightarrow{yx} \leftrightarrow \Theta) = k_{s} \frac{(n+2)(\overrightarrow{yx} \cdot \overrightarrow{R})}{2\pi}$$

Line sample contribution (extension of [Poulin and Amanatides, 1991]):

$$L_{\text{line}}(...) = L_{\text{light}} k_{\text{S}} \frac{n+2}{2\pi} \int_{0}^{l} G(...) \left(\overrightarrow{yx} \cdot \overrightarrow{R} \right) dt$$

6

Phong BRDF:

$$f_{r}(x, \overrightarrow{yx} \leftrightarrow \Theta) = k_{s} \frac{(n+2)(\overrightarrow{yx} \cdot \overrightarrow{R})}{2\pi}$$

Line sample contribution (extension of [Poulin and Amanatides, 1991]):

$$\begin{split} L_{\text{line}}(...) &= L_{\text{light}} k_{\text{S}} \frac{n+2}{2\pi} \int_{0}^{l} G(...) \left(\overrightarrow{yx} \cdot \overrightarrow{R} \right) \mathrm{d}t \\ &= L_{\text{light}} k_{\text{S}} \frac{n+2}{2\pi} \frac{\sin \left(\varphi_{\overrightarrow{N_{x}}} \right) \sin \left(\varphi_{\overrightarrow{N_{y}}} \right)}{\overrightarrow{L_{\text{o}_{x}}} \sin \left(\Theta_{\text{L}} \right) - \overrightarrow{L_{\text{o}_{y}}} \sin \left(\Theta_{\text{L}} \right)}. \\ &\int_{\theta_{\text{min}}}^{\theta_{\text{max}}} \cos \left(\theta - \theta_{\overrightarrow{N_{x}}} \right) \cos \left(\theta - \theta_{\overrightarrow{N_{y}}} \right) \cos \left(\theta - \theta_{\overrightarrow{R}} \right)^{n} \mathrm{d}\theta \end{split}$$

6

Phong BRDF:

$$f_{r}(x, \overrightarrow{yx} \leftrightarrow \Theta) = k_{s} \frac{(n+2)(\overrightarrow{yx} \cdot \overrightarrow{R})}{2\pi}$$

Line sample contribution (extension of [Poulin and Amanatides, 1991]):

$$L_{\text{line}}(...) = L_{\text{light}} k_{\text{S}} \frac{n+2}{2\pi} \int_{0}^{l} G(...) \left(\overrightarrow{y} \overrightarrow{x} \cdot \overrightarrow{R} \right) dt$$

$$= L_{\text{light}} k_{\text{S}} \frac{n+2}{2\pi} \frac{\sin \left(\varphi_{\overrightarrow{N_{x}}} \right) \sin \left(\varphi_{\overrightarrow{N_{y}}} \right)}{\overrightarrow{L_{\text{o}_{x}}} \sin \left(\Theta_{\text{L}} \right) - \overrightarrow{L_{\text{o}_{y}}} \sin \left(\Theta_{\text{L}} \right)}.$$

$$\underbrace{\int_{\theta_{\text{min}}}^{\theta_{\text{max}}} \cos \left(\theta - \theta_{\overrightarrow{N_{x}}} \right) \cos \left(\theta - \theta_{\overrightarrow{N_{y}}} \right) \cos \left(\theta - \theta_{\overrightarrow{R}} \right)^{n} d\theta}_{\text{integral over the angle spanned by the line sample}}$$

integral over the angle spanned by the line sample

Line sample contribution:

$$L_{\rm line}\left(...\right) = \int_{\theta_{\rm min}}^{\theta_{\rm max}} \cos\left(\theta - \theta_{\overrightarrow{N_{\rm x}}}\right) \cos\left(\theta - \theta_{\overrightarrow{N_{\rm y}}}\right) \cos\left(\theta - \theta_{\overrightarrow{R}}\right)^n \mathrm{d}\theta$$

Line sample contribution:

$$\begin{split} L_{\text{line}}\left(\ldots\right) &= \int_{\theta_{\text{min}}}^{\theta_{\text{max}}} \cos\left(\theta - \theta_{\overrightarrow{N_{\mathbf{x}}}}\right) \cos\left(\theta - \theta_{\overrightarrow{N_{\mathbf{y}}}}\right) \cos\left(\theta - \theta_{\overrightarrow{R}}\right)^{n} \, \mathrm{d}\theta \\ &= -\cos\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{x}}}}\right) \sin\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{y}}}}\right) \int_{\theta_{\text{min}} - \theta_{\overrightarrow{R}}}^{\theta_{\text{max}} - \theta_{\overrightarrow{R}}} \cos\left(u\right)^{n+1} \sin\left(u\right) \, \mathrm{d}u \\ &- \sin\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{x}}}}\right) \cos\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{y}}}}\right) \int_{\theta_{\text{min}} - \theta_{\overrightarrow{R}}}^{\theta_{\text{max}} - \theta_{\overrightarrow{R}}} \cos\left(u\right)^{n+1} \sin\left(u\right) \, \mathrm{d}u \\ &+ \cos\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{x}}}}\right) \cos\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{y}}}}\right) \int_{\theta_{\text{min}} - \theta_{\overrightarrow{R}}}^{\theta_{\text{max}} - \theta_{\overrightarrow{R}}} \cos\left(u\right)^{n+2} \, \mathrm{d}u \\ &+ \sin\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{x}}}}\right) \sin\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{y}}}}\right) \int_{\theta_{\text{min}} - \theta_{\overrightarrow{R}}}^{\theta_{\text{max}} - \theta_{\overrightarrow{R}}} \cos\left(u\right)^{n} \sin\left(u\right)^{2} \, \mathrm{d}u \end{split}$$

7

Line sample contribution:

$$\begin{split} L_{\text{line}}\left(\ldots\right) &= \int_{\theta_{\text{min}}}^{\theta_{\text{max}}} \cos\left(\theta - \theta_{\overrightarrow{N_{\mathbf{x}}}}\right) \cos\left(\theta - \theta_{\overrightarrow{N_{\mathbf{y}}}}\right) \cos\left(\theta - \theta_{\overrightarrow{R}}\right)^{n} \, \mathrm{d}\theta \\ &= -\cos\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{x}}}}\right) \sin\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{y}}}}\right) \int_{\theta_{\text{min}} - \theta_{\overrightarrow{R}}}^{\theta_{\text{max}} - \theta_{\overrightarrow{R}}} \cos\left(u\right)^{n+1} \sin\left(u\right) \, \mathrm{d}u \\ &- \sin\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{x}}}}\right) \cos\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{y}}}}\right) \int_{\theta_{\text{min}} - \theta_{\overrightarrow{R}}}^{\theta_{\text{max}} - \theta_{\overrightarrow{R}}} \cos\left(u\right)^{n+1} \sin\left(u\right) \, \mathrm{d}u \\ &+ \cos\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{x}}}}\right) \cos\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{y}}}}\right) \int_{\theta_{\text{min}} - \theta_{\overrightarrow{R}}}^{\theta_{\text{max}} - \theta_{\overrightarrow{R}}} \cos\left(u\right)^{n+2} \, \mathrm{d}u \\ &+ \sin\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{x}}}}\right) \sin\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{y}}}}\right) \int_{\theta_{\text{min}} - \theta_{\overrightarrow{R}}}^{\theta_{\text{max}} - \theta_{\overrightarrow{R}}} \cos\left(u\right)^{n} \sin\left(u\right)^{2} \, \mathrm{d}u \end{split}$$

Integral identities:

$$\int \cos(\theta) \sin(\theta) d\theta = \frac{-\cos(\theta)^{n+1}}{n+1}$$

7

Line sample contribution:

$$L_{\text{line}}(...) = \int_{\theta_{\text{min}}}^{\theta_{\text{max}}} \cos\left(\theta - \theta_{\overrightarrow{N_{\mathbf{x}}}}\right) \cos\left(\theta - \theta_{\overrightarrow{N_{\mathbf{y}}}}\right) \cos\left(\theta - \theta_{\overrightarrow{R}}\right)^{n} d\theta$$

$$= -\cos\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{x}}}}\right) \sin\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{y}}}}\right) \int_{\theta_{\text{min}} - \theta_{\overrightarrow{R}}}^{\theta_{\text{max}} - \theta_{\overrightarrow{R}}} \cos(u)^{n+1} \sin(u) du$$

$$-\sin\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{x}}}}\right) \cos\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{y}}}}\right) \int_{\theta_{\text{min}} - \theta_{\overrightarrow{R}}}^{\theta_{\text{max}} - \theta_{\overrightarrow{R}}} \cos(u)^{n+1} \sin(u) du$$

$$+\cos\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{x}}}}\right) \cos\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{y}}}}\right) \int_{\theta_{\text{min}} - \theta_{\overrightarrow{R}}}^{\theta_{\text{max}} - \theta_{\overrightarrow{R}}} \cos(u)^{n+2} du$$

$$+\sin\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{x}}}}\right) \sin\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{y}}}}\right) \int_{\theta_{\text{min}} - \theta_{\overrightarrow{R}}}^{\theta_{\text{max}}} \cos(u)^{n} \sin(u)^{2} du$$

Integral identities:

$$\int \cos(\theta) \sin(\theta) d\theta = \frac{-\cos(\theta)^{n+1}}{n+1} \qquad \int \cos(\theta)^n d\theta = \frac{\cos(\theta)^{n-1} \sin(\theta)}{n} + \frac{n-1}{n} \int \cos(\theta)^{n-2} d\theta$$

Line sample contribution:

$$L_{\text{line}}(...) = \int_{\theta_{\text{min}}}^{\theta_{\text{max}}} \cos\left(\theta - \theta_{\overrightarrow{N_{\mathbf{x}}}}\right) \cos\left(\theta - \theta_{\overrightarrow{N_{\mathbf{y}}}}\right) \cos\left(\theta - \theta_{\overrightarrow{R}}\right)^{n} d\theta$$

$$= -\cos\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{x}}}}\right) \sin\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{y}}}}\right) \int_{\theta_{\text{min}} - \theta_{\overrightarrow{R}}}^{\theta_{\text{max}} - \theta_{\overrightarrow{R}}} \cos(u)^{n+1} \sin(u) du$$

$$-\sin\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{x}}}}\right) \cos\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{y}}}}\right) \int_{\theta_{\text{min}} - \theta_{\overrightarrow{R}}}^{\theta_{\text{max}} - \theta_{\overrightarrow{R}}} \cos(u)^{n+1} \sin(u) du$$

$$+\cos\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{x}}}}\right) \cos\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{y}}}}\right) \int_{\theta_{\text{min}} - \theta_{\overrightarrow{R}}}^{\theta_{\text{max}} - \theta_{\overrightarrow{R}}} \cos(u)^{n+2} du$$

$$+\sin\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{x}}}}\right) \sin\left(\theta_{\overrightarrow{R}} - \theta_{\overrightarrow{N_{\mathbf{y}}}}\right) \int_{\theta_{\text{min}} - \theta_{\overrightarrow{R}}}^{\theta_{\text{max}} - \theta_{\overrightarrow{R}}} \cos(u)^{n} \sin(u)^{2} du$$

Integral identities:

$$\int \cos(\theta) \sin(\theta) d\theta = \frac{-\cos(\theta)^{n+1}}{n+1} \qquad \int \cos(\theta)^n d\theta = \frac{\cos(\theta)^{n-1} \sin(\theta)}{n} + \frac{n-1}{n} \int \cos(\theta)^{n-2} d\theta$$

Difference

Line sampling

Point sampling

Line sampling

Point sampling

Line sampling

Point sampling

Line sample contribution is correlated to its **length**

Line sample contribution is correlated to its length

Line sample contribution is correlated to its length

Solution: importance sampling with the pdf $\simeq l$.

Uniform sampling

Importance sampling

Solution: importance sampling with the pdf $\simeq l$.

Uniform sampling

Importance sampling

Solution: importance sampling with the pdf $\simeq l$.

Uniform sampling

Importance sampling

 Use acceleration structure to find occluders overlapping the shadow triangle.

- Use acceleration structure to find occluders overlapping the shadow triangle.
- Find intersection between occluders and shadow triangle.

- Use acceleration structure to find occluders overlapping the shadow triangle.
- Find intersection between occluders and shadow triangle.
- Back projection on line sample.

- Use acceleration structure to find occluders overlapping the shadow triangle.
- Find intersection between occluders and shadow triangle.
- Back projection on line sample.

- Use acceleration structure to find occluders overlapping the shadow triangle.
- Find intersection between occluders and shadow triangle.
- Back projection on line sample.

What do we have so far:

• generate importance sampled line samples

What do we have so far:

- generate importance sampled line samples
- determine the visible parts of the line sample

What do we have so far:

- generate importance sampled line samples
- determine the visible parts of the line sample
- evaluate shading of diffuse and Phong materials

Results

Sponza

Sponza

Sponza

Monte Carlo — convergence

 Convergence of Monte Carlo with independent samples:

$$MSE = \mathcal{O}(N^{-1})$$

Random sampling

 Convergence of Monte Carlo with independent samples:

$$MSE = \mathcal{O}\left(N^{-1}\right)$$

- Convergence of Monte Carlo with stratified samples: [Mitchell, 1996]
 - · function with bounded first derivative:

$$MSE = \mathcal{O}\left(N^{-1-2/d}\right)$$

Stratified sampling

 Convergence of Monte Carlo with independent samples:

$$MSE = \mathcal{O}\left(N^{-1}\right)$$

- Convergence of Monte Carlo with stratified samples: [Mitchell, 1996]
 - · function with bounded first derivative:

$$MSE = \mathcal{O}\left(N^{-1-2/d}\right)$$

• piecewise continuous function:

$$MSE = \mathcal{O}\left(N^{-1-1/d}\right)$$

Stratified sampling

$$L_{\text{direct}}(...) = \int_{a}^{b} L_{\text{line}}(...) du$$

Stratified sampling

$$L_{\text{direct}}(...) = \int_{a}^{b} L_{\text{line}}(...) du$$

Random sampling

Stratified sampling

$$L_{\text{direct}}(...) = \int_{a}^{b} L_{\text{line}}(...) du$$

Random sampling

Stratified sampling

$$L_{\text{direct}}(...) = \int_{a}^{b} L_{\text{line}}(...) du$$

Random sampling

Stratified sampling

$$L_{\text{direct}}(...) = \int_{a}^{b} L_{\text{line}}(...) du$$

Random sampling

Stratified sampling

$$L_{\text{direct}}(...) = \int_{a}^{b} L_{\text{line}}(...) du$$

Random sampling

Stratified sampling

$$L_{\text{direct}}(...) = \int_{a}^{b} L_{\text{line}}(...) du$$

Random sampling

Stratified sampling

$$L_{\text{direct}}(...) = \int_{a}^{b} L_{\text{line}}(...) du$$

Random sampling

Stratified sampling

$$L_{\text{direct}}(...) = \int_{a}^{b} L_{\text{line}}(...) du$$

Random sampling

Stratified sampling

$$L_{\text{direct}}(...) = \int_{a}^{b} L_{\text{line}}(...) du$$

Random sampling

Stratified sampling

$$L_{\text{direct}}(...) = \int_{a}^{b} L_{\text{line}}(...) du$$

Stratified sampling

$$L_{\text{direct}}(...) = \int_{a}^{b} L_{\text{line}}(...) du$$

Random sampling

Stratified sampling

$$L_{\text{direct}}(...) = \int_{a}^{b} L_{\text{line}}(...) du$$

Stratified sampling

Point sampling

Line sampling

Point sampling

 function with bounded first derivative:

$$MSE = \mathcal{O}\left(N^{-2}\right)$$

Line sampling

 function with bounded first derivative:

$$MSE = \mathcal{O}\left(N^{-3}\right)$$

Point sampling

 function with bounded first derivative:

$$MSE = \mathcal{O}\left(N^{-2}\right)$$

· piecewise continuous function:

$$MSE = \mathcal{O}\left(N^{-1.5}\right)$$

Line sampling

function with bounded first derivative:

$$MSE = \mathcal{O}\left(N^{-3}\right)$$

piecewise continuous function:

$$MSE = \mathcal{O}\left(N^{-2}\right)$$

Sponza — stratified sampling

Sponza — stratified sampling

Sponza — stratified sampling

Sponza — small area light

Cornell Box with triangles – non-stratified sampling

Cornell Box with triangles — stratified sampling

Cornell Box with triangles — stratified sampling

Eurographics Logo – non-stratified sampling

Eurographics Logo — stratified sampling

Eurographics Logo — stratified sampling

Conclusion

- · Line sampling for direct illumination
 - · unbiased images
 - higher order of convergence
- Future work
 - more material models
 - · optimize visibility evaluation
 - · alternative methods for line sampling

References I

- Mitchell, D. P. (1996).

 Consequences of stratified sampling in graphics.

 In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '96, pages 277–280. Association for Computing Machinery.
- Nishita, T., Okamura, I., and Nakamae, E. (1985). Shading models for point and linear sources. *ACM Transactions on Graphics*, 4(2):124–146.
- Poulin, P. and Amanatides, J. (1991).

 Shading and shadowing with linear light sources.

 Computers & Graphics, 15(2):259–265.

Visibility evaluation

Line sampling — direction

Fixed direction

Stratified direction