Exploratory Analysis with R

Alex Sanchez, Miriam Mota and Santiago Perez-Hoyos

Statistics and Bioinformatics Unit. Vall d'Hebron Institut de Recerca

Outline: Exploratory Analysis with R

- Descriptive Statistics
 - Numerical summaries
 - Graphical exploration

^{*}Based on this Course:* [BIMS 8382, University of Virginia School of Medicine (USA)] (https://bioconnector.github.io/workshops/index.html).

What packages we will use today?

Please be sure you have the following packages installed:

- dplyr subletting, sorting, transforming variables, grouping
- ggplot2 system for creating graphics
- readxl reading .xls files

```
# install.packages("dplyr", dependencies = TRUE)
# install.packages("ggplot2", dependencies = TRUE)
# install.packages("readxl", dependencies = TRUE)

library(dplyr)
library(ggplot2)
library(readxl)
```

The Data Science Approach in R

Program

Section 1

Getting started

Getting started (I)

Load the dataset diabetes:

```
diab <- read_excel("datasets/diabetes_mod.xls")</pre>
```

② Check if we have loaded it correctly:

```
## # A tibble: 4 x 8
    numpacie mort tempsviu edat bmi edatdiag tabac
                                                    sbp
      <dbl> <chr>
##
                  <db1> <db1> <db1>
                                  <dbl> <chr>>
                                                  <dbl>
         1 Vivo
                 12.4 44 34.2
                                     41 No fumador 132
## 1
         2 Vivo 12.4 49 32.6
                                   48 Fumador
                                                    130
## 2
                 9.6 49 22
                                   35 Fumador
         3 Vivo
                                                    108
## 3
                   7.2 47 37.9
       4 Vivo
                                  45 No fumador 128
## 4
```

diab[1:4, 1:8]

Getting started (II): functions to check a dataframe:

- Content
 - head(): shows the first few rows
 - tail(): shows the last few rows
- Size
 - dim(): returns the number of rows and the number of columns
 - nrow(): returns the number of rows
 - ncol(): returns the number of columns
- Summary
 - colnames() or names(): returns the column names
 - glimpse(): returns a glimpse of your data: structure, class, length and content of each column

Getting started (III)

head(diab)

```
## # A tibble: 6 x 11
    numpacie mort tempsviu edat bmi edatdiag tabac
                                                                dbp ecg
                                                           sbp
                                                                          chd
       <dbl> <chr>
                     <dbl> <dbl> <dbl>
                                          <dbl> <chr>
                                                         <dbl> <dbl> <chr> <chr>
## 1
           1 Vivo
                      12.4
                                  34.2
                                            41 No fumad~
                                                           132
                                                                 96 Norm~ No
## 2
           2 Vivo
                      12.4
                                  32.6
                                          48 Fumador
                                                           130 72 Norm~ No
           3 Vivo
                      9.6
                                          35 Fumador
                                                          108 58 Norm~ Si
           4 Vivo
                      7.2
                                  37.9
                                          45 No fumad~
                                                           128 76 Fron~ Si
## 4
                      14.1
                                 42.2
                                                           142
## 5
           5 Vivo
                            43
                                          42 Fumador
                                                                 80 Norm~ No
## 6
           6 Vivo
                      14.1
                                  33.1
                                           44 No fumad~
                                                           156
                                                                 94 Norm~ No
```

Getting started (IV)

```
dim(diab)
## [1] 149 11
nrow(diab)
## [1] 149
colnames(diab)
##
    [1] "numpacie" "mort"
                               "tempsviu" "edat"
                                                     "bmi"
                                                                 "edatdiag"
    [7] "tabac" "sbp"
                               "dbp"
                                         "ecg"
                                                     "chd"
##
```

Getting started (IV)

glimpse(diab)

```
## Rows: 149
## Columns: 11
## $ numpacie <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18~
## $ mort
                                            <chr> "Vivo", 
## $ tempsviu <dbl> 12.4, 12.4, 9.6, 7.2, 14.1, 14.1, 12.4, 14.2, 12.4, 14.5, 12.~
## $ edat
                                            <dbl> 44, 49, 49, 47, 43, 47, 50, 36, 50, 49, 50, 54, 42, 44, 40, 4~
## $ bmi
                                           <dbl> 34.2, 32.6, 22.0, 37.9, 42.2, 33.1, 36.5, 38.5, 41.5, 34.1, 3~
## $ edatdiag <dbl> 41, 48, 35, 45, 42, 44, 48, NA, 47, 45, 48, 43, 36, 43, 26, 4~
                                         <chr> "No fumador", "Fumador", "Fumador", "No fumador", "Fumador", ~
## $ tabac
## $ sbp
                                         <dbl> 132, 130, 108, 128, 142, 156, 140, 144, 134, 102, 142, 128, 1
## $ dbp
                                         <dbl> 96, 72, 58, 76, 80, 94, 86, 88, 78, 68, 84, 74, 86, 58, 98, 6
                                         <chr> "Normal". "Normal". "Frontera". "Normal". "Normal". "Normal"."
## $ ecg
                                         <chr> "No", "No", "Si", "Si", "No", "No", "Si", "No", "Si", "No", "~
## $ chd
```

Variables and data types

- Data managed in R is stored as variables
- Variables can be of distinct types:
 - Numerical
 - numeric (13.7)
 - int (3)
 - Character
 - "R is cute"
 - Factors
 - A,B,C,D
 - WT, Mut
 - Logical
 - TRUE/FALSE

Exercise I

- Load the osteoporosis dataset
- Proceed similarly as to what we have done above and obtain information on
 - How many variables and observations
 - How are them (What are their types)

More about factors

- Each data type is what it seems to be, but factors require more explanation.
- Factors are intended to describe categories such as "sex", "blood group", but also "risk" or "stage".
- Factors are useful to describe groups without having to use numeric codes.
- Factors may be created while reading the file or later using the factor and as.factor commands.

Create factor while reading

 Import the diabetes dataset from the diabetes.csv file using the Rstudio dialog.

Check variable type

```
diabetes <- read.csv("datasets/diabetes.csv", stringsAsFactors=TRUE)
class(diabetes$mort)

## [1] "factor"

sapply(diabetes, class)

## numpacie mort tempsviu edat bmi edatdiag tabac

## "integer" "factor" "numeric" "integer" "numeric" "integer" "factor" "i

## dbp ecg chd

## "integer" "factor" "factor"</pre>
```

Repeat

 Re-read the file from excel or without setting the "stringsAsFactors" to TRUE

Creating factors directly

Use factor or as.factor

```
diabetes <- read.csv("datasets/diabetes.csv", stringsAsFactors=FALSE)
class(diabetes$mort)
## [1] "character"
diabetes$mort <- as.factor(diabetes$mort)</pre>
class(diabetes$mort)
## [1] "factor"
levels(diabetes$mort)
## [1] "Muerto" "Vivo"
```

Warning! by default alphabetic order is used when creating factor levels.

```
vitalStatus <- factor(diabetes$mort, levels=c("Vivo", "Muerto"))
class(vitalStatus)</pre>
```

```
## [1] "factor"
```

Change the levels of a factor

- When humans fill the database... many errors can happen :(
 - An answer like "YES", could be entered like:

```
"YES", "yes", "Yes", "Yeah "
```

- All this possible answers will become differents levels for the same factor variable
- This may be solved using recode_factor:

```
diab$mort <- recode_factor(diab$mort, "Muerto" = "muerto")
levels(diab$mort)</pre>
```

```
## [1] "muerto" "Vivo"
```

Changing characters (chr) to factors (Factor)

An alternative way to turn characters into factors is the mutate_if function:

```
library(dplyr)
diab <- diabetes %>% mutate_if(is.character, as.factor)
glimpse(diab)
```

```
## Rows: 149
## Columns: 11
## $ numpacie <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18~
## $ mort
              <fct> Vivo. V-
## $ tempsviu <dbl> 12.4, 12.4, 9.6, 7.2, 14.1, 14.1, 12.4, 14.2, 12.4, 14.5, 12.~
             <int> 44, 49, 49, 47, 43, 47, 50, 36, 50, 49, 50, 54, 42, 44, 40, 4~
## $ edat.
## $ bmi
              <dbl> 34.2, 32.6, 22.0, 37.9, 42.2, 33.1, 36.5, 38.5, 41.5, 34.1, 3~
## $ edatdiag <int> 41, 48, 35, 45, 42, 44, 48, 33, 47, 45, 48, 43, 36, 43, 26, 4~
## $ tabac
             <fct> No fumador, Fumador, Fumador, No fumador, Fumador, No fumador~
             <int> 132, 130, 108, 128, 142, 156, 140, 144, 134, 102, 142, 128, 1
## $ sbp
## $ dbp
             <int> 96, 72, 58, 76, 80, 94, 86, 88, 78, 68, 84, 74, 86, 58, 98, 6
             <fct> Normal, Normal, Normal, Frontera, Normal, Normal, Frontera, N~
## $ ecg
## $ chd
             <fct> No, No, Si, Si, No, No, Si, No, No, No, No, No, No, No, No, Sa
```

Section 2

Exploratory Data Analysis: Numerical summaries

Numerical Summaries (I)

• There are many functions to provide numerical summaries

```
#Mean, median and rana
mean(diab$edat)
## [1] 52.16779
median(diab$edat)
## [1] 50
sd(diab$edat)
## [1] 11.77285
var(diab$edat)
## [1] 138.6
range(diab$edat)
```

[1] 31 86

Numerical Summaries (II)

A general summary of all variables is provided by distinct functions

```
summary(diab[, 2:11])
                    tempsviu
                                      edat.
                                                      bmi
                                                                    edatdiag
        mort
   Muerto: 25
                Min.
                        : 0.00
                                 Min.
                                        :31.00
                                                 Min.
                                                        :18.20
                                                                 Min.
                                                                        :26.00
    Vivo :124
                 1st Qu.: 7.30
                                 1st Qu.:43.00
                                                 1st Qu.:26.60
                                                                 1st Qu.:38.00
                Median :11.60
                                 Median:50.00
                                                 Median :31.20
                                                               Median :45.00
##
                                        :52.17
                                                        :31.78
                                                                        :45.99
                 Mean
                        :10.52
                                 Mean
                                                 Mean
                                                                 Mean
                 3rd Qu.:13.90
                                 3rd Qu.:60.00
                                                 3rd Qu.:35.20
                                                                 3rd Qu.:53.00
##
##
                 Max.
                        :16.90
                                 Max.
                                        :86.00
                                                 Max.
                                                        :59.70
                                                                 Max.
                                                                        :81.00
                         sbp
          tabac
                                         dbp
                                                                    chd
                                                           ecg
    Ex fumador:41
                    Min.
                          : 98.0
                                    Min.
                                           : 58.00
                                                     Anormal: 11
                                                                  No:99
    Fumador
            :51
                   1st Qu.:124.0
                                   1st Qu.: 74.00
                                                   Frontera: 27
                                                                    Si:50
    No fumador:57
                   Median :138.0
                                   Median: 80.00
                                                     Normal :111
                           :139.1
                                           : 90.04
##
                    Mean
                                    Mean
                    3rd Qu.:152.0
                                    3rd Qu.: 88.00
##
##
                    Max.
                           :222.0
                                           :862.00
                                    Max.
```

Improving the summary function

- There are many packages to do descriptive statistics.
- See Dabbling with data
- Give a try, for instance to the skimr or summarytools packages.

More complete descriptions (I)

library(summarytools)
dfSummary(diabetes)

```
## Data Frame Summary
  ## diabetes
  ## Dimensions: 149 x 11
  ## Duplicates: 1
  ##
     ______
  ## No Variable Stats / Values Freqs (% of Valid) Graph
                                                                         Valid Missing
  ## 1
         numpacie Mean (sd): 75 (43.2) 148 distinct values ::::::
                                                                                  149
         [integer] min < med < max:
                                                               : : : : : : (100.0%)
                                                                                           (0.0%)
                    1 < 75 < 149
  ##
  ##
                     IQR (CV): 74 (0.6)
  ##
  ##
  ## 2
                    1. Muerto
                                            25 (16.8%)
                                                                                  149
         mort
                                                               III
  ##
         [factor]
                     2. Vivo
                                           124 (83.2%)
                                                               TTTTTTTTTTTTTTTT
                                                                                  (100.0%)
                                                                                           (0.0%)
  ##
  ## 3
         tempsviu
                     Mean (sd): 10.5 (4.1) 84 distinct values
                                                                                  149
         [numeric]
  ##
                     min < med < max:
                                                                                 (100.0%)
                                                                                           (0.0%)
                     0 < 11.6 < 16.9
  ##
                     TOR (CV): 6.6 (0.4)
                                                                   . : :::
  ##
  ##
         edat
                    Mean (sd): 52.2 (11.8) 45 distinct values
                                                                                  149
  ##
         fintegerl
                     min < med < max:
                                                                                  (100.0%)
                                                                                           (0.0%)
  ##
                     31 < 50 < 86
                     TOR (CV): 17 (0.2)
  ##
  ##
                                                               . . . . . . . . . .
  ##
                     Mean (sd): 31.8 (6.8)
  ## 5
         bmi
                                            105 distinct values
                                                                  Statistics and Bioinformatics Unit. Vall d'
Alex Sanchez, Miriam Mota and Santiago P
                                      Exploratory Analysis with R
                                                                  23 / 35
```

Grouped summeries

If we want to group the descriptive summaries by other variables we can use group_by function:

```
diab %>%
 group by(tabac, ecg) %>%
 summarize(mean(edat))
## 'summarise()' has grouped output by 'tabac'. You can override using the
## '.groups' argument.
## # A tibble: 9 x 3
## # Groups: tabac [3]
    tabac
          ecg
                        'mean(edat)'
    <fct>
           <fct>
                               <db1>
## 1 Ex fumador Anormal
                              68.5
## 2 Ex fumador Frontera
                               59.8
## 3 Ex fumador Normal
                               51.1
## 4 Fumador Anormal
                                58
## 5 Fumador Frontera
                                44.8
## 6 Fumador Normal
                               44.7
## 7 No fumador Anormal
                              66.5
## 8 No fumador Frontera
                                53.8
```

56.0

9 No fumador Normal

Handling missing data

- What happens if we have missing data in our dataset?
- The file diabetes_mod.xls contains some missings

```
diabetes_mod <- read_excel("datasets/diabetes_mod.xls")
diab <- diabetes_mod %>% mutate_if(is.character, as.factor)
mean(diab$sbp)
```

[1] NA

diab\$sbp

NA indicates *missing data* in the variable

Let's look the sbp variable:

```
## [1] 132 130 108 128 142 156 140 144 134 102 142 128 156 102 146 120 142 144 ## [19] NA 134 130 122 132 150 134 142 124 102 134 118 192 122 122 112 142 152 ## [37] 112 118 152 136 134 130 108 126 132 144 126 128 NA 128 142 132 148 170 ## [55] 140 138 112 140 138 130 178 158 168 146 128 132 154 154 122 144 178 162 ## [73] 142 120 124 174 142 160 122 162 132 116 152 144 98 138 138 138 145 156 176 ## [91] 118 172 182 144 142 154 122 222 150 142 128 122 162 172 132 112 138 128 ## [109] 132 120 140 140 172 136 152 126 104 142 128 122 122 122 122 168 162 NA ## [127] 126 180 132 150 166 154 122 120 120 144 134 148 170 160 154 124 130 156 ## [145] 162 132 120 160 146
```

Numerical Summaries (VII)

How to work with missing data:

```
?mean
 ## starting httpd help server ... done
mean(diab$sbp, na.rm = TRUE)
 ## [1] 139.2603
 is.na(diab$sbp)[1:50]
                      [1] FALSE FALSE
  ## [13] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
 ## [25] FALSE FALS
  ## [37] FALSE FALSE
  ## [49] TRUE FALSE
 sum(is.na(diab$sbp))
 ## [1] 3
 sum(is.na(diab$dbp))
 ## [1] 0
```

See also: Remove Rows with NA in R Data Frame

EXERCISE

- With the diab dataset
 - Show only the rows from 35 to 98 and columns 5, 7, and from 9 to 11
 - Change the level of the variable tabac, from No Fumador to No_Fumador
 - Display the unique values for the variable bmi. Count how many exist.
- Display the mean of edatdiag, grouped by ecg

Section 3

Exploratory Data Analysis (EDA): Graphical summaries

Exploratory Data Analysis (EDA): Graphical summaries

- We could dedicate one whole course to Data Visualization (at least see our "Statistical Pill on Data Visualization")
- Here we will only see the most common approaches to visualize data:
 - Histograms
 - Barplots
 - Piecharts
 - Boxplots
 - Scatterplots

R graphics engines

- R is very powerful and flexible at doing graphics.
- This comes at a price: Complex graphics (that we do not show here) may require sonme extra effort.
- Much work has been done to simplify this
 - There exist graphical tools that allow for the interactive construction of plots.
 - There exist new approaches to plotting that try to be more intuitive than "traditional" ones.
- ggplot is one of such approaches.

Histograms

- We will use histograms to plot the frequencies of each range of values in continuous variables.
- These plots provide an approximation to the distribution of the variables being represented.

```
library(ggplot2)
ggplot(data=diab, aes(x=edat))+ geom_histogram()
```


Boxplot. A one-dimensional histogram

```
ggplot(data=diab, aes(y=edat))+
  geom_boxplot()
```


Plots for categorical variables. Barplots

- Some simple principles
 - Use pie charts only with categorical variables in nominal scale
 - Use barplots for any categorical variable
 - Never use 3D-plots

```
ggplot(data=diab, aes(x=mort))+
  geom_bar()
```


EXERCISE

- Using the osteoporosis.csv dataset
- Read the osteoporosis.csv data set into R so that character variables are automatically converted into factors.
- Load the dataset and check if it is correctly loaded
- Make a numerical summary of the dataset.
- Calculate the mean and standard deviation of imc grouped by clasific
- Plot the distribution of edat

EXERCISE

- With the variables in the osteoporosis dataset
- Try to represent the different variables using the most appropriate plot for each of them.