Analysis Problem Sheet 01

Exercise 1

Zeige: Das Gleichungssystem besitzt eine Lösung (x,y,z,u,v) der Form $g:V\to W, (x,y,z)\mapsto (u,v)$ mit g(2,0,1)=(1,0), offene Umgebungen $V\subset\mathbb{R}^3$ und $W\subset\mathbb{R}^2$.

Proof. Schreibe das Gleichungssystem in der Form

$$f(x, y, z, u, v) = \begin{pmatrix} xe^y + uz + \cos v - 4 \\ u\cos y + x^2v + yz^2 - 1 \end{pmatrix}.$$

Dann suchen wir Umgebungen V,W und $g:V\to W$, sodass $f^{-1}(\{0\})=\{(\alpha,\beta)\in\mathbb{R}^3\times\mathbb{R}^2:g(\alpha)=\beta\}$. Wir verwenden das Theorem über *implizite Funktionen*.

1. f besitzt bei (2, 0, 1, 1, 0) eine Nullstelle. Das rechnet man nach

$$f(2,0,1,1,0) = \begin{pmatrix} 2+1+1-4\\ 1+(-1) \end{pmatrix} = \mathbf{0}.$$

2. f ist stetig differenzierbar nach (u, v):

$$\frac{\partial f}{\partial (u,v)}(x,y,z,u,v) = \begin{pmatrix} z & -\sin(v) \\ \cos(y) & x^2 \end{pmatrix}$$

Wir sehen, dass $\frac{\partial f}{\partial (u,v)}(2,0,1,1,0)=\begin{pmatrix} 1 & 0\\ 1 & 4 \end{pmatrix}$. Die Ableitung ist also an der

Stelle (2,0,1,1,0) nicht singulär, denn die Determinante beträgt 4.

Nach Satz über implizite Funktionen gibt es offene Umgebungen $(2,0,1) \in V$ und $(1,0) \in W$ und eine stetig differenzierbare Funktion $g:V \to W, (x,y,z) \mapsto (u,v)$ mit f(x,y,z,g(x,y,z)) = 0 für alle $(x,y,z,u,v) \in V \times W$. Außerdem gilt: g(2,0,1) = (1,0).

Suche: Das erste Taylor Polynom von g mit Entwicklungspunkt $\mathbf{a}=(2,0,1)$. Sei $\mathbf{x}\in\mathbb{V}$.

$$T_1g(\mathbf{x}, \mathbf{a}) = g(\mathbf{a}) + D_{\mathbf{a}}g(\mathbf{x} - \mathbf{a}).$$

Wir wissen, dass $g(\mathbf{a}) = g(2,0,1) = (1,0)$. Als nächstes berechne $D_{\mathbf{a}}g$:

$$\begin{split} D_{\mathbf{a}}g &= -(\frac{\partial f}{\partial(u,v)}(\mathbf{a},g(\mathbf{a})))^{-1} \frac{\partial f}{\partial(x,y,z)}(\mathbf{a},g(\mathbf{a})) \\ &= -(\frac{\partial f}{\partial(u,v)}(2,0,1,1,0))^{-1} \frac{\partial f}{\partial(x,y,z)}(2,0,1,1,0) \\ &= -\begin{pmatrix} 1 & 0 \\ 1 & 4 \end{pmatrix}^{-1} \begin{pmatrix} e^y & xe^y & z \\ 2xv & -u\sin(y) + z^2 & 2zy \end{pmatrix} \Big|_{\mathbf{x}=(2,0,1,1,0)} \\ &= -\frac{1}{4} \begin{pmatrix} 4 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \end{pmatrix} \\ &= -\frac{1}{4} \begin{pmatrix} 4 & 8 & 4 \\ -1 & -1 & -1 \end{pmatrix} \end{split}$$

Berechne nun $D_{\mathbf{a}}g(\mathbf{a})=-\frac{1}{4}\begin{pmatrix}4&8&4\\-1&-1&-1\end{pmatrix}\begin{pmatrix}2\\0\\1\end{pmatrix}=\begin{pmatrix}-3\\\frac{3}{4}\end{pmatrix}$. Das Taylorpolynom lautet dann für $\mathbf{x}=(x,y,z)\in V$:

 $T_1 g(\mathbf{x}, \mathbf{a}) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \begin{pmatrix} -3 \\ \frac{3}{4} \end{pmatrix} - \frac{1}{4} \begin{pmatrix} 4 & 8 & 4 \\ -1 & -1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ $= \begin{pmatrix} 4 \\ -\frac{3}{4} \end{pmatrix} + \begin{pmatrix} -1 & -2 & -1 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

$$= \begin{pmatrix} 4 - x - 2y - z \\ \frac{1}{4}(-3 + x + y + z) \end{pmatrix}$$

1

Exercise 2

Zeige: Nullstellen eines Polynoms hängen von einer stetig differenzierbaren Funktion f ab

Proof. Sei $F: \mathbb{R}^{n+1} \times \mathbb{R} \to \mathbb{R}, (\mathbf{a}, x) = \sum_{i=0}^{n} a_i x^i$. Sie ist stetig differenzierbar:

$$D_{(\mathbf{a},x)}f = \begin{pmatrix} x & x^2 & \dots & x^n & \sum_{i=1}^n a_i i x^{i-1} \end{pmatrix}, \quad \mathbf{a} \in \mathbb{R}^{n+1}, x \in \mathbb{R}.$$

Sei $\mathbf{a} \in \mathbb{R}^{n+1}$ beliebig und nehmen man an, dass es eine Nullstelle $x_0 \in \mathbb{R}$ gibt mit $F(\mathbf{a}, x_0) = 0$ und $\frac{\partial F}{\partial x}(\mathbf{a}, x_0) \neq 0$.

Nach Satz über implizite Funktionen gibt es eine Umgebung $U \subset \mathbb{R}^{n+1}$ mit $\mathbf{a} \in U$ und $V \subset \mathbb{R}$, sodass $F(\mathbf{a}, f(\mathbf{a})) = 0$ für alle $\mathbf{a} \in U$ für eine stetig differenzierbare Funktion $f: U \to V$.

Damit haben wir solch eine Funktion f gefunden.

Exercise 3

Zeige: Für p > 1 ist S_p eine Untermannigfaltigkeit.

Proof. Wir versuchen S_p als Lösungsmenge eines Gleichungssystems mit einer stetig differenzierbaren f darzustellen. Sei p > 1. Betrachte $f : \mathbb{R}^n \to \mathbb{R}, \mathbf{x} \mapsto \sum_{i=1}^n |x_i|^p - 1$. Es gilt

$$S_p = f^{-1}(\{0\}).$$

Als nächstes müssen wir zeigen, dass f stetig differenzierbar auf eine Umgebung $U_{\epsilon(a)}(a)$ für beliebige $a \in S_p$ und $\epsilon(a) > 0$. Dies zeigen wir, indem wir die folgende stärkere Aussage beweisen: f ist stetig differenzierbar auf ganz \mathbb{R}^n .

1. Sei $\mathbf{x} = (x_1, ..., x_n) \in \mathbb{R}^n$ mit $x_i \neq 0$ für alle i = 1, ..., n. Dann ist

$$D_{\mathbf{x}}f = p\left(x_1||x_1||^{p-2} \dots x_n||x_n||^{p-2}\right),$$

denn $D_x||x||=D_x\sqrt{x^2}=\frac{x}{||x||}$ und mit der Kettenregel ergibt sich $D_x||x||^p=p||x||^{p-1}\cdot\frac{x}{||x||}=px||x||^{p-2}$.

Wir sehen, dass f natürlich stetig ist und auch wohldefiniert ist für alle \mathbf{x} mit $x_i \neq 0$.

2. Sei $\mathbf{x}=(x_1,...,x_n)$ mit $x_i=0$ für alle $i\in I\subset\{1,...,n\}$, wobei I nicht leer ist. Die Frage ist, ob $D_{\mathbf{x}}f$ existiert. Die kritischen Stellen sind die $x_i=0$ mit $i\in I$. Untersuche also, ob der Grenzwert von $x||x||^{p-2}$ für $x\to 0$ existiert. Sei q=p-2 und es gilt q>-1 wegen p>1. Daher gilt

$$\lim_{x \to 0} x||x||^q = (\pm 1) \cdot \lim_{x \to 0} x^{1+q} = 0.$$

Der Grenzwert existiert also.

3. Zusammengefasst: Sei $\varphi(x)=\begin{cases} x||x||^{p-2} & \text{falls } x\neq 0 \\ 0 & \text{sonst} \end{cases}$. Dann ist für alle $\mathbf{x}\in\mathbb{R}^n$:

$$D_{\mathbf{x}}f = \begin{pmatrix} \varphi(x_1) & \dots & \varphi(x_n) \end{pmatrix}.$$

Die Ableitung existiert damit überall. Sie ist natürlich auch stetig; insbesondere um der Umgebung $\mathbf{x} = \mathbf{0}$, wie wir gezeigt haben.

Als nächstes zeigen wir, dass $D_{\mathbf{x}}f$ injektiv ist. Dafür muss $D_{\mathbf{x}}f \neq \mathbf{0}$ für alle $\mathbf{x} \in S_p$. Wir sehen, dass $D_{\mathbf{x}}f = \mathbf{0} \iff \mathbf{x} = \mathbf{0}$, aber $\mathbf{0} \notin S_p$. Somit ist S_p eine n-1-Untermannigfaltigkeit in \mathbb{R}^n , denn S_p kann als Lösungsmenge eines Gleichungssystem (mit einer Gleichung) dargestellt werden.

Zeige: Für p = 1 ist S_p keine Untermannigfaltigkeit.

Proof. sadsad

Exercise 4

Gegeben ist das folgende Minimierungsproblem

$$\begin{cases} \min f(x,y) \\ g(x,y) = 0 \end{cases}$$

mit $f(x,y) = \sqrt{x^2 + y^2}$ und $g(x,y) = x^2 + y^2 + xy - 1$. Da die Wurzelfunktion monoton ist, betrachten wir das einfachere Problem

$$\begin{cases} \min x^2 + y^2 \\ g(x, y) = 0 \end{cases}$$

Wir führen die Lagrangefunktion ein:

$$L(x, y, \lambda) = x^{2} + y^{2} + \lambda(x^{2} + y^{2} + xy - 1).$$

Diese leiten wir ab und erhalten das folgende Gleichungssystem:

$$\frac{\partial L}{\partial x} = 2x + \lambda(2x + y) = 0$$
$$\frac{\partial L}{\partial y} = 2y + \lambda(2y + x) = 0$$
$$\frac{\partial L}{\partial \lambda} = x^2 + y^2 + xy - 1 = 0$$

1. Fall: $y \neq -\frac{1}{2}x$ und $y \neq -2x$.

$$\frac{2x}{2x+y} + \lambda = 0$$
$$\frac{2y}{2y+x} + \lambda = 0$$
$$x^2 + y^2 + xy - 1 = 0$$

Subtraktion der ersten beiden Gleichungen ergeben

$$2x(2y + x) - 2y(2x + y) = 0$$

und somit

$$2x^2 - 2y^2 = 0 \implies x = \pm y.$$

1. Setzt man x = y, so ergibt sich:

$$3x^2 = 1 \implies x = \pm \frac{1}{\sqrt{3}}.$$

Daher $x=y=\frac{1}{\sqrt{3}}$ und $x=y=-\frac{1}{\sqrt{3}}$. Es gilt: $\lambda=-\frac{1}{\sqrt{6}}$ in beiden Fällen.

2. Für x=-y:

$$x^2 = 1 \implies x = \pm 1.$$

Daher x=1,y=-1 und x=-1,y=1. In beiden Fällen ist $\lambda=-\frac{1}{\sqrt{2}}$.

Die Lösungsmenge des Gleichungssystems lautet demnach

$$x = \frac{1}{\sqrt{3}}, y = \frac{1}{\sqrt{3}}, \lambda = -\frac{1}{\sqrt{6}}$$

$$x = -\frac{1}{\sqrt{3}}, y = -\frac{1}{\sqrt{3}}, \lambda = -\frac{1}{\sqrt{6}}$$

$$x = 1, y = -1, \lambda = -\frac{1}{\sqrt{2}}$$

$$x = -1, y = 1, \lambda = -\frac{1}{\sqrt{2}}$$

2. Fall: $y=-\frac{1}{2}x$. Wir setzten das in die zweite Gleichung ein und erhalten2y=0, sodass x=y=0. Die Nebenbedingung ist nicht erfüllt.

3. Fall: y=-2x. Wir setzten das in die zweite Gleichung ein und erhalten2x=0, sodass x=y=0. Die Nebenbedingung ist nicht erfüllt.

Art der Extrema: Wir untersuchen die geänderte Hesse-Matrix $H(\lambda, x, y)$.

$$H(\lambda, x, y) = \begin{pmatrix} 0 & 2x + y & 2y + x \\ 2x + y & 2 + 2\lambda & \lambda \\ 2y + x & \lambda & 2 + 2\lambda \end{pmatrix}$$

Wir setzen die kritischen Punkte ein:

$$H(-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}) = \begin{pmatrix} 0 & 3\sqrt{3} & 3\sqrt{3} \\ 3\sqrt{3} & \frac{6-\sqrt{6}}{3} & -\frac{1}{\sqrt{6}} \\ 3\sqrt{3} & -\frac{1}{\sqrt{6}} & \frac{6-\sqrt{6}}{3} \end{pmatrix}$$