Workshop 1: Complexity Notation

Workshop 1 will take place in week 2. You should prepare solutions, but you don't have to hand them in and they won't get marked.

Exercise 1 Complexity Notation

Solve Exercise 10 and 11 in the book of Mehlhorn/Sanders (Chapter 2.1).

Exercise 2 Complexity Notation

Is it true that if $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$, then $h(n) = \Theta(f(n))$?

Exercise 3 Complexity Notation

Is it true that if f(n) = O(g(n)) and g(n) = O(h(n)), then $h(n) = \Omega(f(n))$?

Exercise 4 Complexity Notation

Is it true that a $\Theta(n^2)$ algorithm always takes longer to run than a $\Theta(logn)$ algorithm?

Exercise 5 Complexity Notation

For each pair of functions given below, point out the asymptotic relationships that apply: f = O(g), f = O(g), f = O(g).

- $f(n) = \sqrt{n}$ and g(n) = log(n)
- f(n) = 1 and g(n) = 2
- $f(n) = 1000 \cdot 2^n$ and $g(n) = 3^n$
- $f(n) = 4^{n+4}$ and $g(n) = 2^{2n+2}$
- f(n) = 5nlog(n) and g(n) = nlog(5n)
- f(n) = n! and g(n) = (n+1)!

Exercise 6 Complexity Notation

Prove that $n^k = o(c^n)$ for any integer k and any c > 1.