Regular Languages

- 1. Draw out *DFA*s (not *NFA*s) for each of the following languages. For some of these, a small hint is provided. Your goal is to construct a *DFA* with as few states as possible (just like how we prefer to write succinct code when possible). For all of these, let $\Sigma = \{a, b\}$
 - $\{w \mid w \text{ does not contain the substring } ab\}$ (*Hint: Draw out the DFA for a simpler language that DOES contain ab and then try to change that machine slightly.)
 - $\{w \mid w \text{ contains neither the substrings ab nor ba}\}$
 - $\{w \mid w \notin a^*b^*\}$
 - $\{w \mid w \neq a \land w \neq b\}$
 - $\{w \mid w \text{ does not contain a pair of a's that are separated by an odd number of characters}\}$ (*Hint: This one should have exactly 5 states)
- 2. Prove that regular languages are closed under *intersection*. Do this by starting with *DFA*s for two regular languages A and B, and describe how to construct a new *DFA* for $A \cap B$
- 3. Prove that regular languages are closed under *complement*. Do this by starting with a *DFA* for a regular language A, and describe how to construct a new *DFA* for \bar{A} .
- 4. For any string $w = w_1 w_2, ..., w_n$, let w^R be the reverse of string w (i.e., $w^R = w_n, ..., w_2, w_1$). Prove that if a language A is regular, then the language $A^R = \{w^R \mid w \in A\}$ is also regular.
- 5. Use the pumping lemma to show that the following languages are not regular.
 - $A = \{0^n 1^n 2^n \mid n \ge 0\}$
 - $\bullet \ B = \{www \mid w \in \{a,b\}^*\}$
- 6. Find and describe the error that exists in the following proof. The proof attempts to show that 0*1* is not regular, when in fact it is:

Assume, for sake of contradiction, that 0^*1^* is regular. We select an element from this language that is greater than the pumping length p. We select 0^p1^p . In class, when proving that 0^n1^n was not regular, we showed that 0^p1^p cannot be pumped. Therefore, 0^*1^* is not regular.