TTIC 31230, Fundamentals of Deep Learning

David McAllester, Autumn 2022

Implicit Regularization

Implicit Regularization

Any stochastic learning algorithm, such as SGD, determines a stochastic mapping from training data to models.

The algorithm, especially with early stopping, can implicitly incorporate a preference or bias for models.

Implicit Regularization in Linear Regression

Linear regression (minimizing the L_2 loss of a linear predictor) where we have more parameters than data points has many solutions.

But SGD converges to the minimum norm solution (L_2 -regularized solution) without the need for explicit regularization.

Implicit Regularization in Linear Regression

For linear regression SGD maintains the invariant that Φ is a linear combination of the (small number of) training vectors.

Any zero-loss (squared loss) solution can be projected on the span of training vectors to give a smaller (or no larger) norm solution.

It can be shown that when the training vectors are linearly independent any zero loss solution in the span of the training vectors is a least-norm solution.

Implict Priors

Let A be any algorithm mapping a training set Train to a probability density $p(\Phi|\text{Train})$.

For example, the algorithm might be SGD where we add a small amount of noise to the final parameter vector so that $p(\Phi|\text{Train})$ is a smooth density.

But in general we can consider any leaning algorithm that produces a smooth density $p(\Phi|\text{Train})$.

Implicit Priors

Drawing Train from Pop^N and Φ from $P(\Phi|\operatorname{Train})$ defines a joint distribution on Train and Φ . We can take the marginal distribution on Φ to be a prior distribution (independent of any training data).

$$p(\Phi) = E_{\text{(Train} \sim \text{Pop}^N)} p(\Phi \mid \text{Train})$$

It can be shown that the implicit prior $p(\Phi)$ is an optimal prior for the PAC-Bayesian generalization guarantees applied to the algorithm defining $p(\Phi|\text{Train})$

A PAC-Bayes Analysis of Implicit Regularization

$$\mathcal{L}(\text{Train}) = E_{\langle x, y \rangle \sim \text{Pop}, \Phi \sim p(\Phi|\text{Train})} \mathcal{L}(\Phi, x, y)$$

$$\hat{\mathcal{L}}(\text{Train}) = E_{\langle x, y \rangle \sim \text{Train}, \Phi \sim p(\Phi|\text{Train})} \mathcal{L}(\Phi, x, y)$$

A PAC-Bayes Analysis of Implicit Regularization

With probability at least $1 - \delta$ over the draw of Train we have

$$\mathcal{L}(\text{Train}) \leq \frac{10}{9} \left(\hat{\mathcal{L}}(\text{Train}) + \frac{5L_{\text{max}}}{N_{\text{Train}}} \left(KL(p(\Phi|\text{Train}), p(\Phi)) \right) + \ln \frac{1}{\delta} \right)$$

$$= \frac{10}{9} \left(\hat{\mathcal{L}}(\text{Train}) + \frac{5L_{\text{max}}}{N_{\text{Train}}} \left(I(\Phi, \text{Train}) + \ln \frac{1}{\delta} \right) \right)$$

There is no obvious way to calculate this guarantee.

However, it can be shown that $p(\Phi)$ is the optimal PAC-Bayeisan prior for given algorithm run on training data data drawn from Pop^N.

\mathbf{END}