CMPE 212 Principles of Digital Design

Lecture 15

Designing With Digital Components

March 20, 2016

www.csee.umbc.edu/~younis/CMPE212/CMPE212.htm

Lecture's Overview

Previous Lecture:

→ The Quine-McCluskey algorithm (successive reduction, table of choices, Coverage process)

→ Petrick's algorithm (Coverage expression, prime implicants selection)

☐ This Lecture

- → Modular Combinational Logic
- → Examples of medium scale integration components
- → Designing with digital components
- → Binary adders

Modular Design

- ☐ *Top-down* modular design is the most popular methodology
- ☐ A function is initially specified at a high level of abstraction and then decomposed into lower-level modules
- Decomposition enables reuse of sub-functions and available modules (adder, comparators, etc.). After implementation, the modules are integrated from the bottom-up.

Digital Components

- □ High level digital circuit designs are normally created using collections of logic gates referred to as components, rather than using individual logic gates.
- ☐ Levels of integration (numbers of gates) in an integrated circuit(IC) can roughly be considered as:
 - Small scale integration (SSI): 10-100 gates.
 - ➤ Medium scale integration (MSI): 100 to 1000 gates.
 - ➤ Large scale integration (LSI): 1000-10,000 logic gates.
 - ➤ Very large scale integration (VLSI): 10,000-upward logic gates.
- ☐ These levels are approximate, but the distinctions are useful in comparing the relative complexity of circuits.
- ☐ Examine some of the popular digital modules that are available as MSI components, e.g., 74XX series.

Decoder

 \square An *n*-to-2^{*n*} decoder is a multiple-output circuit, with each corresponding to a specific combination of the inputs (exactly one of its output is high at a time, i.e., can be viewed as minterm generator)

Enable = 1						
A	В	D_0 D_1 D_2 D_3				
0	0	1 0 0 0				
0	1	0 1 0 0				
1	0	0 0 1 0				
1	1	0 0 0 1				

	Enable = 0					
$A B \qquad D_0 \ D_1 \ D_2 \ D_3$						
0	0	0	0	0	0	
0	1	0	0	0	0	
1	0	0	0	0	0	
1	1	0	0	0	0	

Examples:

- 1.decoding memory address lines in order to access a word
- 2. Seven segment display

$$D_0 = \overline{A} \, \overline{B} \qquad D_1 = \overline{A}$$

$$D_2 = \overline{A} \, \overline{B} \qquad D_3 = \overline{A}$$

Gate-Level Implementation of Decoder

☐ The "Enable" line allows all output to be set to zero in case it is not appropriate to pick any

Dual-tree Decoder

Building Large Decoders Using Small Ones

Using of 2-to-4 decoder modules as building blocks to realize 3-to-8 and 4-to-16 decoders

Decoder Implementation of Majority Function

Note that the enable input is not always present (we use it when discussing decoders for memory devices)

Encoder

☐ An encoder translates a set of inputs into a binary encoding (can be thought of as the converse of a decoder)

thought of as the converse of a decoder)

☐ Inputs are mutually exclusive, i.e., only one of them is active at a particular time

Mohamed Younis

	Inp	Outp	outs		
Α	В	C	D	F₁	F_2
0 0 0 0 0 0 0			0	d 0 0 d 1 d d	d 0 1 d d d d 1
0	0	0	1	0	0
0	0	0 0 1 1	0	0	1
0	0	1	1	d	d
0	1	0	0	1	0
0	0 0 0 0 1 1 1	0	0 1 0	d	d
0	1	1	0	d	d
0	1	1	1	d	d
1	0	0	0	1	1
1	0	0	1	d d	d
1	0	1	0	d	d
1	0	1	1	d	d
1	1	0	0	d	d
1 1 1 1 1 1	0 0 0 1 1 1	0	1 0 1 0 1	d d d d	d d d d d d
1	1	0 1 1	0	d	d
1	1	1	1	d	d

An example Encoder

Priority Encoder

- ☐ An encoder translates a set of inputs into a binary bit pattern
- ☐ A priority encoder imposes an order on the inputs.
- ☐ Useful for connecting interrupts lines (I/O devices)

$$F_0 = \overline{A_0} \overline{A_1} A_3 + \overline{A_0} \overline{A_1} A_2$$

 $F_1 = \overline{A_0} \overline{A_2} A_3 + \overline{A_0} \overline{A_1}$

^{*} Slide is courtesy of M. Murdocca and V. Heuring

Mohamed Younis

 $F_0 F_I$ A_0 A_1 A_2 A_3

AND-OR Implementation of Priority Encoder

Mohamed Younis

Multiplexer

- ☐ It is a component that connects multiple inputs to a single output
- ☐ Control lines are used to select one of the input lines to be accessible from the output line (resembles a multi-setting switch)
- □ Also called "date selector" and is categorized by the number of channels, i.e., n-to-1 line multiplexer

A B	F
0 0 0 1 1 0 1 1	$D_0 \\ D_1 \\ D_2 \\ D_3$

$$F = \overline{A} \overline{B} D_0 + \overline{A} B D_1 + A \overline{B} D_2 + A B D_3$$

AND-OR Implementation of MUX

* Slide is courtesy of M. Murdocca and V. Heuring

MUX-based Implementation of Switching Functions

☐ Principle: Use the selection inputs to select minterms.

Α	В	С	F	
0	0	0	1	D ₀ =1
0	0	1	0	D ₁ =0
0	1	0	1	D ₂ =1
0	1	1	1	D ₃ =1
1	0	0	0	D ₄ =0
1	0	1	1	D ₅ =1
1	1	0	0	D ₆ =0
1	1	1	0	D ₇ =0

Implementation of 3-Var Functions using 8-to-1 multiplexers

☐ Principle: Use the 3 MUX control inputs to select (one at a time)

the 8 data inputs.

			_
A	В	C	M
0 0 0	0 0 1	0 1 0	0 0 0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Example: Implementation of Majority function

- Available MSI multiplexers include 74151A (8-1 MUX), 74150 (16-1 MUX), 74153 and74157 multi-bit multiplexers, etc.
- Like decoders, hierarchical set of small multiplexers can be used to realize large ones

^{*} Slide is (partially)courtesy of M. Murdocca and V. Heuring

Multiplexers as Building Blocks

16-to-1 MUX realized with tree-type network of 4-to-1 multiplexers

4-to-1 MUX Implements 3-Var Function

- ☐ Principle: Use the A and B inputs to select a pair of minterms.
- ☐ The value applied to the MUX data input is selected from $\{0, 1, C, \overline{C}\}$ to achieve the desired behavior of the minterm pair.

* Slide is courtesy of M. Murdocca and V. Heuring

Demultiplexer

□ DEMUX is the converse of a MUX (send its single data input to a selected one of its output)

☐ Example application: a call request button for an elevator to the

closest elevator car

$$F_0 = DAB$$

$$F_1 = DAB$$

$$= DAB \qquad F_3 = DAB$$

 $F_2 = DAB$

D	A	В	F_0 F_1 F_2 F_3
0 0 0 1 1	0 0 1 1 0 0	0 1 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
1	1	0 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Gate-Level Implementation of DEMUX

Ripple-Carry Addition

Example:

A 1-Bit Full Adder

	Inputs		Outp	outs
а	b	CarryIn	CarryOut	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$CarryOut = (b.CarryIn) + (a.CarryIn) + (a.b) + (a.b.CarryIn)$$

= $(b.CarryIn) + (a.CarryIn) + (a.b)$

$$Sum = (a.\overline{b}.\overline{CarryIn}) + (\overline{a}.b.\overline{CarryIn}) + (\overline{a}.\overline{b}.CarryIn) + (a.b.CarryIn)$$

$$= \overline{CarryIn}(a.\overline{b} + \overline{a}.b) + CarryIn(\overline{a}.\overline{b} + a.b)$$

$$= \overline{CarryIn}(a \oplus b) + CarryIn(\overline{a} \oplus b)$$

$$= CarryIn \oplus (a \oplus b)$$

A single bit adder has 3 inputs, two operands and a carry-in and generates a sum bit and a carry-out to passed to the next 1-bit adder

Full Adder Circuit

Four-Bit Ripple-Carry Adder

- □ Two binary numbers A and B are added from right to left, creating a sum and a carry at the outputs of each full adder for each bit position.
- ☐ Four full adders connected in a ripple-carry chain form a four-bit adder.

Constructing Larger Adders

□ A 16-bit adder can be made up of a cascade of four 4-bit ripple-carry adders

Full Subtractor

☐ Truth table and schematic symbol for a ripple-borrow subtractor:

a_i	b_i	bor_i	$diff_i$	bor_{i+1}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Ripple-Borrow Subtractor

- ☐ A ripple-borrow subtractor composed of a cascade of full subtractors
- ☐ Two binary numbers A and B are subtracted from right to left, creating a difference and a borrow at the outputs of each full subtractor for each bit

Combined Adder/Subtractor

□ A single ripple-carry adder can perform both addition and subtraction, by forming the two's complement negative for B when subtracting.
 (Note that +1 is added at c₀ for two's complement.)

* Slide is courtesy of M. Murdocca and V. Heuring

Comparators

□ A comparator checks the magnitude of two binary numbers and determines if they are equal or which one is larger.

$$F_1 = \overline{A_1}B_1 + \overline{A_0}\,\overline{A_1}B_0 + \overline{A_0}B_0B_1$$

$$F_2 = \overline{A_0} \, \overline{A_1} \, \overline{B_0} \, \overline{B_1} + A_0 \overline{A_1} \, B_0 \overline{B_1} + \overline{A_0} \, A_1 \overline{B_0} B_1 + A_0 A_1 B_0 B_1$$

$$F_3 = A_1 \overline{B_1} + A_0 \overline{B_0} \, \overline{B_1} + A_0 A_1 \overline{B_0}$$

	In	outs	0	utpu	ts	
A	$A \mid A$	B_0	B ₁	vert $ vert$ $ vert$ $ vert$ $ vert$ $ vert$	F_2	F_3
0	0	0	0	0	1	0 0 0 0 1 0 0 1 1 0 0
0 0 0 0 0	0 0	0 0 1	1		0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	0	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0 0 1 1 1	1	1	1	1 1 0 0 0 1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	0 1 1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1			1
1	1	1	0	0 0	0	1
1	1	1	1	0	1	0

Magnitude

Comparator

F₁, A<B

F₂, A=B

Conclusion

Summary

- → Modular Combinational Logic
- → Examples of medium scale integration components (Multiplexers, Decoders, Encoders, etc.)
- → Designing with digital components (Tree-type arrangements, implementing switching functions)
- → Binary ripple-carry adders
- Next Lecture
 - → Programmable logic devices

Reading assignment: Sections 4.1 – 4.6 in the textbook Mohamed Younis