

프로젝트 개요

프로젝트 설명

✓ 이번 프로젝트는 시그모이드 함수를 활성함수로 하여 2계층 인공 신경망을 설계한 후 0,1,2의 MNIST 데이터들을 분류 하는 프로젝트입니다.

✓ 시그모이드 함수

: 하나의 연속된 입력값을 0과 1사이의 값으로 변환하는 함수로, 이진 분류에서의 클래스 확률을 표현하거나 하나의 뉴런에서 활성화 여부를 타나내는데 적합합니다.

✓ 2계층 인공 신경망

: 입력층과 출력층 사이에 은닉층이 추가된 2입력 3계층 분류 시스템으로 계층이 추가되면서 속성 공간 분할성능이 향상된 신경망입니다.

✓ MNIST 데이터

: 손으로 쓴 글자들로 이루어진 대형 데이터베이스이며, 다양한 화성 처리 시스템을 트레이닝 하거나 기계 학습 분야의 트레이닝 및 테스트에 널리 사용됩니다.

프로젝트 개요

프로젝트 방향(모델 설계 과정 - 외부루프)

- 1. 입력 데이터 후보 10개 중 5개를 택한다.
- 2. 초기 매개변수 및 학습률을 설정한다.
- 3. 은닉층 노드의 개수(L)를 선택한다.
- 4. One-Hot Encoding을 통해 출력 변수를 가공한다. (y_q (q = 0,1,2)를 만든다.)
- 5. 위의 옵션을 토대로 2계층 인공 신경망을 만든 후 epoch만큼 훈련시킨다.

모델 훈련 과정 (내부루프)

6. 최종 정확도 및 MSE를 확인 후 다른 데이터 후보 5개를 재선택 한다.

7. 최종 결과를 비교한 후 결론을 도출한다.

프로젝트 개요

프로젝트 방향(모델 훈련 과정 - 내부 루프)

- 1. (n=0)번째 데이터를 현재 매개변수 값을 바탕으로 예측값 \hat{y}_{an} 을 구한다.
- 2. 예측 오차 e_{qn} 을 구한다.
- 3. 출력층 매개변수에 대한 기울기 $\frac{\partial}{\partial w_{lq}} \in MSE$ 를 계산한다.
- 4. 은닉층 매개변수에 대한 기울기 $\frac{\partial}{\partial v_{lq}} \in MSE$ 를 계산한다.
- 5. n 번째 매개변수를 업데이트 한다.
- 6. n 번째 데이터의 MSE 를 계산한다.
- 7. 다음 데이터(n = n+1)로 넘어간다.

9. 위에서 구한 모든 데이터 MSE 값의 평균을 계산해 최종 MSE값을 구한다.

해결과정

- 매개변수 및 학습률 초기값을 결정하는 단계입니다.
- Epoch를 400번 실행 시키면서 100의 배수 마다 정확도와 MSE를 나타낸 그래프로 아래에 위치한 파란선은 MSE, 위에 위치한 파란 선은 정확도입니다.
- 매개변수와 학습률 초기값에 따라서 최종 정확도와 MSE 값이 달라짐을 확인하였습니다.

초기값(매개변수, 학습률)이 좋은 예

해결과정

프로그램 구조 결정하기

 은닉층 노드가 많아질 수록 정확도가 높아지는 장점이 있지만, 계산량이 많아져서 복잡해지고, 과적합의 문제가 생길 수 있으므로 적절한 은닉층의 개수를 찾는 것이 중요합니다.

그 결과,

6개의 입력층 노드(5개 입력노드 + 1개 더미노드)
5개의 은닉층 노드(4개 은닉노드 + 1개 더미노드)
3개의 출력층 노드로 구성된 2계층 인공신경망구조를 선택하였습니다.

해결과정

최종 모델로 선택

- 입력 후보 10개 중 5개를 택하는데 가장 잘 훈련되는 조합을 찾는 과정입니다.
- 매개변수는 랜덤값으로 10번 돌려서 가장 학습이 잘된 매개변수, 학습률은 0.0001, epoch는 400번씩 훈련하여 모델을 성능을 측정하였습니다.
- 초기 매개변수 값에 따라 정확도가 달라질 수도 있지만, 실습 결과를 통해 추론해본 바로는 클래스 마다 각각의 값 차이가 많이 날수록 즉, '클래스 마다의 특징이 두드러지는 입력 후보를 사용할 수록 MSE값이 감소된다' 라는 결론이 나왔습니다.

입력 종류	1,3,4,7,10	2,3,4,7,10	2,4,6,7,9	2,4,6,9,10
매개변수	Random값	Random값	Random값	Random값
Learning rate	0.0001	0.0001	0.0001	0.0001
Epoch	400	400	400	400
정확도	74.8%	67.8667%	89.25%	89.4667%
MSE	0.366562	0.420763	0.198916	0.178346

결과

- 입력 속성

- 2. 가로축 Projection => 확률밀도함수로 변환 => 분산
- 4. 세로축 Projection => 확률밀도함수로 변환 => 분산
- 6. Diagonal 원소 배열 추출 => 확률밀도함수로 변환 => 분산
- 9. Anti-Diagonal 원소 배열 추출 => 확률밀도함수로 변환 => 분산
- 10. Anti-Diagonal 원소 배열 추출 => 0의 개수

- 프로젝트 결과

위에서 선택한 옵션들을 바탕으로 2계층 인공신경망 모델을 학습시킨 결과 최종 정확도는 89.4667%, 최종 MSE는 0.178346의 좋은 결과가 나왔습니다.

따라서 우리는 모델이 잘 훈련되었다고 볼 수 있고, 이를 통해서 훈련되지 않은 다른 0,1,2의 MNIST 데이터들을 모델에 적용시켜도 분류할 수 있을 것입니다.

- 은닉층 개수

5개

- Epoch와 학습률

Epoch = 400 / 학습률 = 0.0001

분석

2계층 인공신경망 모델에 영향을 주는 조건은 무엇일까?

1. 초기 매개변수와 학습률

- 홀드아웃, K겹 교차검증과 같이 훈련데이터와 검증데이터를 통하여 모델을 검증해 좋은 매개변수와 학습률을 찾습니다.
- 값들을 변경시키며 수 없이 많은 테스트 결과를 바탕으로 좋은 매개변수와 학습률을 찾습니다.

2. 2계층 인공 신경망 구조 중 은닉층 노드의 개수

 은닉층 노드의 개수가 많아지면 정확도는 높아질 수 있지만, 과적합의 문제가 생겨 훈련데이터에서의 정확도만 올라갈 수 있습니다. 따라서 너무 많지도 않고, 너무 적지도 않은 적절한 개수를 선택하여야 합니다.

3. 2계층 인공 신경망 구조 중 입력 속성의 특징

- 입력속성을 통해 인공 신경망 모델의 매개변수가 결정됩니다. 따라서 분류가 잘 되는 입력속성을 선택하여야 합니다.

즉, 각 클래스마다 특징이 뚜렷하게 나타나 입력 속성 데이터를 통해 클래스 분류가 잘 될 경우 MSE값이 작은 정확한 모델을 얻을 수 있습니다.

결론

2계층 인공신경망은 선형분할 뿐만 아니라 비선형 분할도 가능하여 유용한 구조 입니다. 하지만, 단순히 2계층 인공신경망 모델을 만들고, 훈련 시켰을 때 항상 학습이 잘 되어 분류가 잘 되는 것은 아닙니다.

'epoch 및 학습 반복 횟수가 과도할 때 혹은 적을 때 과적합 및 과소적합이 생기는 문제', '매개변수 및 학습률 초기화 선택을 잘못 하였을 경우 제대로 분류가 되지 않는 문제', '입력 데이터의 속성 값이 출력 클래스마다 비슷한 값이 나와 제대로 분류가 되지 않는 문제' 등 여러가지 문제가 발생할 수 있습니다.

이를 해결하기 위해서는 '위의 조건 값들을 변경시키며 수 많은 테스트 결과를 바탕으로 좋은 초깃값을 얻는 방법', '홀드 아웃, k겹 교차검증 과 같이 분류데이터와 훈련데이터를 나누어 모델을 검증하여 얻는 방법' 등이 존재 합니다.

위의 방법을 사용하여 모든 문제를 해결 하였을 때 우리는 분류가 잘 되는 최상의 모델을 얻을 수 있습니다.