BALKAN OLYMPIAD IN INFORMATICS

Udine, 27 September 2025

popswap ● UK

PopSwap (popswap)

Для заданого цілого числа $N,\,S_N$ — це множина всіх перестановок (0,...,N-1). Крім того, E_N — це множина всіх впорядкованих пар $(p,q),\,$ де:

- p та q є елементами S_N ;
- p та q можна отримати один з одного, помінявши місцями два сусідні елементи.

Зверніть увагу, що якщо $(p,q) \in E_N$, то й $(q,p) \in E_N$.

Ваша мета — позначити кожен елемент S_N унікальним натуральним числом з $[0,2^{60})$, тобто побудувати ін'єктивну функцію $\mathcal L$ (названу маркуванням) з S_N у множину натуральних чисел менших за 2^{60} .

Якість маркування вимірюється двома параметрами, які слід мінімізувати:

- величина $M(\mathcal{L})$, що визначається як найменше натуральне число k, таке що $2^k > \mathcal{L}(p)$ для всіх елементів p з S_N .
- близькість, що визначається так:

$$C(\mathcal{L}) = \sum_{(u,v) \in E_N} \operatorname{popcount}(\mathcal{L}(u) \oplus \mathcal{L}(v)).$$

де \oplus — це побітове виключне AБO (XOR), а popcount(x) — кількість одиниць у двійковому поданні x.

Ваше завдання — знайти маркування \mathcal{L} , яке дає малі значення як $M(\mathcal{L})$, так і $C(\mathcal{L})$. Оптимальне рішення не вимагається.

Реалізація

Ця задача має лише вихідні дані. Ви повинні надіслати окремий вихідний файл для кожного вхідного файлу. Вхідні та вихідні файли мають відповідати такому формату.

Формат вхідних даних

Вхідні дані складаються з одного рядка, що містить ціле число N та номер файлу вхідних даних G.

Формат вихідних даних

Вихідні дані повинні складатися з N! рядків, i-й з яких містить мітку i-ї перестановки у лексикографічному порядку.²

Оцінювання

У цій задачі рівно 2 тестові випадки: input000.txt та input001.txt, в обох N=10.

Оцінка вашого розв'язку для кожного тесту визначається як $S_M(\mathcal{L}) \times S_C(\mathcal{L})$, де $S_C(\mathcal{L})$ та $S_M(\mathcal{L})$ є функціями вашого вихідного маркування \mathcal{L} .

- $S_C(\mathcal{L}) = \left(\min(1, 36\cdot 10^6/C(\mathcal{L}))\right)^2$ для кожного тесту.
- $S_M(\mathcal{L})$ різний для кожного тесту, згідно з наведеними таблицями. Між вказаними значеннями в таблицях S_M змінюється лінійно.

рорѕмар Сторінка 1 з 2

¹Ін'єктивна функція— це функція, яка для різних вхідних значень повертає різні вихідні значення.

 $^{^2\}Phi$ ормально, для двох перестановок $p\neq q$, ми кажемо, що p лексикографічно менший за q тоді й лише тоді, коли $p_k < q_k$, де k — це найменший індекс, такий що $p_k \neq q_k$.

Неправильні вихідні дані завжди отримують 0 балів.

input(input000.txt	
$M(\mathcal{L})$	$S_M(\mathcal{L})$	
> 60	0	
60	6	
≤ 25	60	

_input(input001.txt		
$M(\mathcal{L})$	$S_M(\mathcal{L})$		
> 25	0		
25	0		
≤ 22	40		

Оцінка задачі — це сума оцінок за кожен тестовий випадок.

Приклади вводу/виводу

input	output
3 -1	32
	16
	8
	4
	2
	1

Пояснення

Зверніть увагу, що **перший приклад** не є офіційним тестом, оскільки $N \neq 10$ та $G \notin \{0,1\}$. Приклад виходу представляє таке маркування:

$$\mathcal{L}(p) = \begin{cases} 32 \text{ if } p = (0, 1, 2) \\ 16 \text{ if } p = (0, 2, 1) \\ 8 \text{ if } p = (1, 0, 2) \\ 4 \text{ if } p = (1, 2, 0) \\ 2 \text{ if } p = (2, 0, 1) \\ 1 \text{ if } p = (2, 1, 0) \end{cases}$$

Оскільки $2^5 \not > 32$, але $2^6 > 32$, величина маркування дорівнює $M(\mathcal{L}) = 6$. Оскільки існує $3! \cdot (3-1) = 12$ елементів у E_3 і оскільки рорсоunt $(\mathcal{L}(p), \mathcal{L}(q)) = 2$ для всіх $p,q \in S_N$, близькість маркування дорівнює $C(\mathcal{L}) = 12 \cdot 2 = 24$.

рорѕwар Сторінка 2 з 2