Хабр КАК СТАТЬ АВТОРОМ

Редактирование статьи

he_projectile Никогда не публиковалось

Ещё один PID-контроллер. Теория

В сегодняшней статье расскажу, как на стенде измеряется угол, чем обеспечивается защита от дурака, и как мне помог ChatGPT.

Итак, рабочая часть стенда представляет собой луч: неуравновешенную балку с мотором и датчиком. Когда луч находится в исходном состоянии — висит вертикально вниз. Тяга пропеллера создаёт момент силы, вращающий луч против часовой стрелки. Примем это направление за положительное, ограниченное углом 170°. В этом диапазоне сила тяжести всегда вращает луч в отрицательном направлении.

Измерение угла

Первостепенная задача — измерение угла отклонения луча от исходной позиции. Затем нужно проверить, что луч вращается в вертикальной плоскости для предотвращения включения стенда в неправильном положении или выключения мотора при заваливании. Первую задачу можно решить при помощи энкодера на оси, а вторую — административно. Но у квадрокоптера нет энкодеров, а аварийные ситуации случаются произвольно. Поэтому буду использовать инерциальный датчик МРU6050 в модуле GY-521.

В одной из статей я описал способ определения ориентации инерциального датчика. Ориентация представляется в виде матрицы 3 imes 3, в которой столбцы соответствуют осям датчика, а строки — проекциям на север, запад и вертикаль. Казалось бы, достаточно прикрепить датчик к балке, посмотреть направление оси запомнить направление $\overrightarrow{\eta'}$, после поворота посчитать угол между прежним и текущим направлением. Но такой вариант доступен только при полной уверенности в том, что ось датчика 📝 параллельна оси луча, а я не стану гарантировать это.

Рисунок 1. Поворот датчика вокруг оси

Поэтому надо обобщить обе операции для случайного закрепления датчика. Как и раньше, алгоритм прототипируется в матлабе. МК обрабатывает данные датчика, вычисляет матрицу и отправляет её компьютеру по USB-CDC в виде массива из 9 байт. При запуске стенда луч неподвижнен. Программа запоминает изначальную ориентацию датчика (M_1). Матрица вращается вокруг вектора \overrightarrow{a} , и получается матрица M_2 . Этот вектор и является осью вращения, надо вычислить его. Что мы знаем об \overrightarrow{a} ? Его проекции на M_1 и M_2 одинаковы, при этом матрицы связаны матрицей перехода:

$$M_{tr} = M_2 \cdot M_1^{-1} \qquad (1)$$

То есть, при применении к \overrightarrow{a} линейного оператора M_{tr} снова выходит \overrightarrow{a} . Получается, что \overrightarrow{a} является собственным вектором для матрицы перехода. Так как размерность матрицы 3, то и собственных векторов тоже 3. Как выбрать нужный? Сперва надо посчитать собственные числа M_{tr} . Собственное число - это скаляр, который растягивает собственный вектор. При повороте не происходит растяжения вектора-оси, или же происходит растяжение с коэффициентом 1. Значит, нужно выбрать вектор, для которого $\lambda=1$.

У этого решения есть несколько нюансов. Во-первых, погрешности измерений, расчётов и неровность механики приводят к тому, что M_{tr} не в полной мере является ортогональной матрицей, и $\lambda \neq 1$. Поэтому приходится выбирать число, наиболее близкое к 1. Во-вторых, вычисление собственных чисел матрицы — трудоёмкая задача как для МК, так и для программиста.

Прежде чем кинуться в написание сишных функций, я обратился за советом к ChatGPT и не пожалел.

Совет 1. Транспонировать матрицу вместо вычисления обратной. Для ортогональной матрицы, к которой относится моя матрица ориентации, $M^{-1}=M^T$. Транспонировать матрицу проще, и это снизит нагрузку на работу МК.

Совет 2. Использовать след матрицы поворота для вычисления угла.

$$tr(M_{tr}) = M_{tr(11)} + M_{tr(22)} + M_{tr(33)} = 1 + 2cos(\psi)$$
 (2)

$$\psi = acosigg(rac{tr(M_{tr})-1}{2}igg), \qquad (3)$$

где ψ - угол поворота матрицы поворота.

Из-за погрешностей измерений и вычислений значение $tr(M_{tr})$ может выходить за границы [-1; 1], что вызовет ошибку вычисления арккосинуса, поэтому необходимо проверять это условие и обрезать лишнее. Кто-то скажет, что это заметание проблемы под ковёр, и я соглашусь. Но так как в МК сложно реализовать перехват исключений, то я решил проверять ортогональность и матрицы ориентации отдельно. Данный метод возвращает θ при $0 \le \theta < \pi$ и $2\pi - \theta$ при $\pi \le \theta < 2\pi$, однако это не проблема для моего стенда, так как отклонение луча ограничено.

Совет 3. Извлекать ось вращения из антисмимметричной части матрицы поворота.

Таким образом, вычисления угла и оси стали быстрыми и непринуждёнными. При запуске стенда необходимо перевести луч из нижнего положения в положение повыше. Из полученных данных будет вычислен вектор оси. Угол между осью и вертикалью

должен иметь значение, близкое к $\pi/2$. Сильное отклонение приведёт к переходу стенда в аварийное состояние и отключению мотора до перезапуска программы.

Расчёт параметров модели

Прежде чем угробить стенд жёсткими режимами работы, хотелось бы поиграть в математическое моделирование. Может быть, я получу полезный практический опыт или даже готовые коэффициенты PID. Для этого составлю уравнение динамики стенда, напишу PID-реулатор для управления тягой, абстрагируюсь от задержки измерения угла и изменения тяги, инерции пропеллера.С

Рисунок 2. Схема действующих сил

Сила тяжести, действующая на луч и приложенная к центру масс луча, создаёт момент, равный

$$\overrightarrow{M_g} = \overrightarrow{l_g} imes m \overrightarrow{g}$$
 или $M_g = m \cdot g \cdot l_g \cdot sin(heta - arphi),$ (5)

где m — масса луча, l_g — расстояние от оси O до центра масс луча, heta — угол отклонения луча, arphi — угол между лучом и вектором до центра масс.

Так как отклонение луча ограничено механически 170°, направление момента не меняется.

Уравнение статики для этой системы выглядит так:

$$\overrightarrow{M_g}+\overrightarrow{M_t}=0$$
или $0=F_T\cdot l_T-m\cdot g\cdot l_m\cdot sin(heta-arphi),$ (6)

где l_T — расстояние между осью луча и осью пропеллера, F_T — сила тяги пропеллера.

При дисбалансе сил возникает угловое ускорение:

$$\ddot{\theta} = \frac{F_T \cdot l_T - m \cdot g \cdot l_m \cdot sin(\theta - \varphi)}{J},$$
 (7)

где J - момент инерции луча.

Необходимо добавить сопротивления среды. К ним можно отнести силу трения покоя в подшипнике, силу сухого трения подшипника, силу вязкого сопротивления смазки и силу сопротивления воздуха. Силу сухого трения и трения покоя я исключу, так как хорошо смазал подшипники. Включим оставшиеся силы и получим уравнение динамики системы:

$$\ddot{\theta} = \frac{F_T \cdot l_T - m \cdot g \cdot l_m \cdot sin(\theta - \varphi) - k_v \dot{\theta} - k_a \dot{\theta}^2 \cdot sign(\dot{\theta})}{J}, \quad (8)$$

где k_v - коэффициент вязкого сопротивления смазки, k_a - коэффициент сопротивления воздуха.

Момент инерции и расстояние до центра масс вычислены в САПРе. Для этого я взвесил каждую деталь и прописал массу в физические свойства модели. Несмотря на то, что равномерность распределения массы по объёму является большим допущением для деталей, напечатанных на FDM-принтере, результат оказался впечатляюще удовлетворительным.

 k_v и k_a - эмпирические коэффициенты. Я получил их значения экспериментально.

Для этого закрепил мачту горизонтально, отвёл луч на произвольные 39 $^{\circ}$, отпустил и позволил ему свободно колебаться под действием силы тяжести и получил функцию затухающих колебаний в табличном виде $\theta_{exp}(t)$. При этом дифференциальное уравнение обретает вид:

$$\left\{ egin{aligned} \ddot{ heta} &= rac{-m \cdot g \cdot l_m \cdot sin(heta - arphi) - k_v \dot{ heta} - k_a \dot{ heta}^2 \cdot sign(\dot{ heta})}{J} \ heta(0) &= -39^\circ \ \dot{ heta} &= 0 \end{aligned}
ight.
ight.$$

Затем написал MATLAB-скрипт, численно решающий приведённое уравнение с такими же начальными условиями, как у $\, heta_{exp}(t) \,$. Обозначу вычисленные данные как $\, heta_{sim}(t) \,$. Оба графика представлены на рисунке 3.

Рисунок 3. Это фиаско

Как можно увидеть, частоты значительно различаются, примерно в два раза. Она зависит от параметров \boldsymbol{l}_m и \boldsymbol{J} . Подобрав ручками \boldsymbol{J} , я понял, что увеличение его вдвое исправляет проблему. После проверки масс всех деталей, я вспомнил, что САПР указывает момент инерции относительно центра масс. Чтобы пересчитать значения \boldsymbol{J} для вращения вокруг \boldsymbol{O} , нужно применить теорему Гюйгенса-Штейнера:

$$J = J_C + m \cdot l_m^2, \qquad (10)$$

где J_C - момент инерции, рассчитанный САПРом.

Отклонение частоты уменьшилось до 3%, что видно на рисунке 4.

Рисунок 4. Графики отлично накладываются

Теперь можно подобрать k_v и k_a . Так как диффур исчерпывающий, можно надеяться, что при правильном выборе k_v и k_a графики совпадут. Хорошо бы сделать подбор автоматическим и оптимальным по времени. Сперва нужно выбрать критерий совпадения графиков. Сумма квадратов невязок отлично подходит на роль меры.

$$RSS(k_{v},k_{a}) = \sum_{i=0}^{N} (heta_{sim}(t_{i},k_{v},k_{a}) - heta_{exp}(t_{i}))^{2}$$
 (11)

Но вот незадача. Временные метки у $\theta_{exp}(t)$ и $\theta_{sim}(t)$ различаются, выбирать пары значений θ с одинаковым аргументом не получится. К тому же, частоты незначительно различаются, на шестнадцатом периоде колебания сдвинуты на $\pi/2$, поэтому RSS будет меняться хаотично при переборе коэффициентов. Однако известно, что k_v и k_a характеризуют форму огибающей и практически не влияют на период колебаний. Значит, достаточно сравнивать огибающие этих графиков. Для этого из $\theta_{exp}(t)$ и $\theta_{sim}(t)$ выделяются пики, обозначенные $\gamma_{exp}(t)$ и $\gamma_{sim}(t)$. Затем надо интерполировать $\gamma_{sim}(t)$ сплайом, подставить временные метки из $\theta_{exp}(t)$ и получить соответствующие значения $\gamma_{simInt}(t)$. Теперь можно сравнить огибающие. Таким образом, вычисление k_v и k_a сводится к минимизации функции RSS:

$$RSS(k_v,k_a) = \sum_{i=0}^{N} (\gamma_{simInt}(t_i,k_v,k_a) - \gamma_{exp}(t_i))^2
ightarrow \min_{k_a,k_v \in R^2} \qquad (12)$$

Я воспользовался готовой функцией fmincon из пакета Optimization Toolboxt. С начальным приближением $k_v=0, k_a=0$ решение заняло 16 итераций. Результат можно видеть на рисунке 4, а полученные значения в таблице ниже.

J	кг • м ²	5,52e-3
m	КГ	0,181
l_m	М	0,139
ψ	град	1,71
k_v	попугаи	1,85e-3
k_a	попугаи	1,06e-3

Симуляция PID-регулятора

Наконец, можно приступить к моделированию PID-регулятора. Ограничу задачу достижением и поддержанием угла луча, но в будущем попробую также регулировать скорость вращения луча.

Итак, формула PID-регулятора:

$$\begin{cases} u(t) = K_P \cdot e_{rr}(t) + K_I \cdot \int_0^t e_{rr}(\tau) d\tau - K_D \cdot \frac{de_{rr}(t)}{dt} \\ e_{rr}(t) = \theta_{set} - \theta(t) \end{cases} , \qquad (13)$$

где $heta_{set}$ - установочное значение, к которому стремится heta(t) , $e_{rr}(t)$ - ошибка регулирования, u(t) - управляющее воздействие, стремящееся уменьшить ошибку. $K_P,\,K_I,\,K_D$ - коэффициенты при пропорциональной, интегральной и дифференциальной составляющих регулятора соответственно.

Значения коэффициентов и определяют работу регулятора, их и предстоит подобрать. Сперва необходимо врезать в диффур PID-регулятор.

Редактирование статьи / Хабр
$$egin{align*} \ddot{ heta}(t) &= rac{F_{max} \cdot u(t) \cdot l_T - m \cdot g \cdot l_m \cdot sin(heta(t) - arphi) - k_v \dot{ heta}(t) - k_a \dot{ heta}^2(t) \cdot sign(\dot{ heta}(t))}{J} \ u(t) \in [0, \ 1] \ \dot{ heta}(0) &= 0 \ heta(0) &= heta_0 \end{pmatrix}, \tag{14}$$

где F_{max} - максимальная тяга, которую может выдать мотор. $heta_0$ - начальный угол.

Регулятор управляет тягой, которая может быть только положительной и имеет ограничение сверху. Поэтому удобно ограничить также управляющий параметр u(t)=[0;1] . Для решения диффура необходимо принять начальные условия $\dot{ heta}(0)$ и $\, heta(0)$. Регулятор начинает работу при неподвижном опущенном луче, поэтому они равны нулю.

Это дифференциальное уравнение не решается аналитически. Хорошо, что МАТLAB может решить его численно. Скрипт выглядит так:

```
1 % Параметры
2 l_m = norm([138.760 - 4.145])/1000*1; % Расстояние до центра масс, м
3 m = 0.181;
                % Масса, кг
4 psi = atan2(-4.145, 138.760); % Угол между балкой и вектором до центра масс, ра
J = 2036.662 / 10^6 + m*l_m^2; % Момент инерции, кг*м^2
6 g = 9.81; \% M/c^2
7 kv = 0.0001850; % Сопротивление смазки, попугаи
8 ka = 0.0001058; % Сопротивление воздуха, попугаи
9 1_Т = 0.254; % Плечо пропеллера, м
10 F_T=10; % Максимальная тяга пропеллера, Н
11 alpha = deg2rad(90); % Цель
12
13 % Начальные условия
14 00 = deg2rad(0); % Начальный угол
15 omega0 = 0;
                 % Начальная угловая скорость
16 integral0 = 0;
17 Y0 = [00; omega0; integral0];
19 % Время моделирования
20 \text{ tspan} = [0 \ 10];
21
22 % Решение диффура
23 [t, Y] = ode45(@(t, Y) pendulumODE(t, Y, 1_m, m, g, J, psi, kv, ka, F_T, 1_T, a]
  Y0);
24
25 % Графики
26 figure(1); % Создаю график с номером 1 / Обращаюсь к графику 1
27 clf(figure(1)) % Чищу график 1
28
29 plot(t, rad2deg(Y(:,1)), 'r', 'LineWidth', 1.5);
```

```
30 xlabel('Время, с');
31 ylabel('Наклон луча, град)');
32 title('Динамика угла');
33 ylim([0 120])
34 grid on;
35
36 yline(rad2deg(alpha))
37
38 function dYdt = pendulumODE(t, Y, 1, m, g, J, psi, kv, ka, F_T, l_T, alpha, Kp,
       if Y(1) >= 0.99*pi
39
40
          Y(2) = 0;
           Y(1) = 0.99*pi;
41
42
      end
     0 = Y(1);
43
                        % Угол <mark>О</mark>
      omega = Y(2); % Угловая скорость dO/dt
44
45
      e = (alpha-0);
46
47
      d_integral=e;
48
49
      if Y(3)>10
50
          Y(3) = 10;
51
      end
52
      if Y(3) < -10
53
          Y(3) = -10;
54
       end
55
      integral = Y(3);
56
57
       U = Kp*e+Ki*integral-Kd*omega+Ks*sin(alpha);
58
59
       if U>1
60
           U = 1;
61
62
      if U < 0.001
63
           U = 0.001;
64
      end
65
       F = F T*U;
66
       domegadt = (F*1 T-m*g*1*sin(0-psi)-kv*omega*t-ka*omega^2*sign(omega)*t)/J;
67
68
69
       dYdt = [omega; domegadt; d_integral]; % Возвращаем вектор производных
70 and
```

Функция ode45 (строка 23) решает диффур итерациями, поэтому на каждом шаге можно выполнять математические операции над переменными, сравнивать и менять их значения. Это позволяет встроить в диффур различные проверки. Например, на строках 59-64 реализовано ограничение управляющего параметра.

Пора перейти к подбору коэффициентов. Для этого надо выбрать критерии качества процесса регулирования. Их много, но меня интересуют следующие три:

- Время переходного процесса (Т _{ПП}). Это время, за которое регулируемое значение входит в полосу шириной 2 ∆ и больше не выходит из неё. Желаемое значение - 0.
- Перерегулирование ($\dfrac{ heta_{max} heta_{33}}{ heta_{33}}$). Желаемое значение 0.
- Ошибка регулирования ($\dfrac{ heta_{\infty} heta_{33}}{ heta_{33}}$). Желаемое значение 0.

Рисунок 5. Основные критерии качества процесса регулирования

Необходимо подобрать коэффициенты регулятора так, чтобы все три параметра были минимальны. Это непростая задача, ведь добиться идеального переходного процесса нереально. А значит, мне придётся подумать и отдать приоритет одним характеристикам, установив ограничения для других. Но я не знаю, как сравнивать величины, имеющие разные размерности, так почему бы не воспользоваться хорошим методом дважды. Я буду минимизировать отличие моего переходного процесса от идеального.

Идеальный переходный процесс представляет собой ступенчатую функцию:

$$heta_{ideal}(t) = egin{cases} 0, & t < 0 \ heta_{33}, & t \geq 0 \end{cases}$$

Регулирование начинается при t=0, значит меня интересует только $heta_{ideal} = heta_{33}$.Тогда функция меры приобретает следующий вид:

$$err(P,I,D) = \int_{0}^{\infty} \left| heta_{ideal}(t) - heta(t,P,I,D)
ight| \, dt,$$

где $\, heta(t) \,$ - результат симуляции, P, I, D - коэффициенты PID-регулятора. Это называется интегральной оценкой качества переходного процесса.

Таким образом, минимизируя err(P,I,D), можно получить приемлемый результат, который будет протестирован в следующей части.

Рисунок 6. Приемлемый процесс регулирования

Нажмите "/" для вызова меню

Далее к настройкам

ХАБР ИЩЕТ АВТОРОВ

Мы ищем авторов в контент-студию — помогать компаниям делать крутые статьи для техноблогов и мегапроекты.

Хотите писать не только на Хабр, но и для Хабра? Давайте познакомимся!

О РЕДАКТОРЕ

Редактор публикаций может работать в режимах WYSIWYG и Markdown.

Переключение осуществляется с помощью иконки в правом верхнем углу.

Подробнее о работе редактора можно узнать в этом разделе.

ПАМЯТКА АВТОРУ

Соблюдайте правила сайта

Следуйте советам и заботливо оформляйте публикации

Используйте хаб «Я пиарюсь» для рекламных публикаций

Загружайте картинки меньше 8МБ для тела публикации и меньше 1МБ для обложки публикации

Ваш аккаунт	Разделы	Информация	Услуги		
Профиль	Статьи	Устройство сайта	Корпоративный блог		
Трекер	Новости	Для авторов	Медийная реклама		
Диалоги	Хабы	Для компаний	Нативные проекты		
Настройки	Компании	Документы	Образовательные		
ППА	Авторы	Соглашение	программы		
	Песочница	Конфиденциальность	Стартапам		
	K		+		
Настройка языка					
Техническая поддержка					

© 2006–2025, Habr