Warm Up

Any more Fall 2023 schedule questions?

Matrix Chain Multiplication

Top, Down Solution

Mem = nxn $Best(1, n) = min \prec$ Def Best(i,i): if mem[i][j] >= 0: return mem[i][j] if I == j: mem[i][j] = 0return 0 minimum = infinity $_{\nearrow}$ for x from i to j-1: $\times \nearrow$ 1 left = Best(i,x), '. mem[i][j] = minimum 🕹 return minimum 4

 $Best(2,n) + r_1r_2c_n$ $Best(1,2) + Best(3,n) + r_1r_3c_n$ $Best(1,3) + Best(4,n) + r_1r_4c_n$ $Best(1,4) + Best(5,n) + r_1r_5c_n$... $Best(1,n-1) + r_1r_nc_n$

tou big is the mensey?

Backtrack to find the best order

"remember" which choice of k was the minimum at each cell

Matrix Chaining

Storing and Recovering Optimal Solution Buck trunking

- Maintain table Choice[i,j] in addition to Best table
 - Choice[i,j] = \underline{k} means the best "split" was right after \underline{M}_k
 - Work backwards from value for whole problem, Choice[1,n]
 - Note: Choice[i,i+1] = i because there are just 2 matrices
- From our example: $\frac{1}{3}$ $\frac{1}$
 - We then need Choice[1,3] = 1. So $[(M_1) (M_2 M_3)]$
 - Also need Choice[4,6] = 5. So $[(M_4 M_5) M_6]$
 - Overall: $[(M_1) (M_2 M_3)] [(M_4 M_5) M_6]$

Currency Exchange

1 Dollar = 0.8783121137 Euro

Currency code ▲ ▼	Currency name ▲ ▼	Units per USD	USD per Unit		
USD	US Dollar	1.0000000000	1.0000000000		
EUR	Euro	0.8783121137	1.1385474303		
GBP	British Pound	0.6956087704	1.4375896950		
INR	Indian Rupee	66.1909310706	0.0151078098		
AUD	Australian Dollar	1.3050318080	0.7662648480		
CAD	Canadian Dollar	1.2997506294	0.7693783541		
SGD	Singapore Dollar	1.3478961522	0.7418969172		
CHF	Swiss Franc 1 Dollar = 3.87 Ringgit	0.9590451582	1.0427037678		
MYR	Malaysian Ringgit	3.8700000000	0.2583979328		
JPY	Japanese Yen	112.5375383115	0.0088859239		
CNY	Chinese Yuan Renminbi	6.4492409303	0.1550570076		
NZD	New Zealand Dollar	1.4480018872	0.6906068347		
ТНВ	Thai Baht	35.1005319022	0.0284895968		
HUF	Hungarian Forint	275.7012427385	0.0036271146		
AED	Emirati Dirham	3.6730000000	0.2722570106		
HKD	Hong Kong Dollar	7.7563973683 0.128925834			
MXN	Mexican Peso	17.3168505322 0.057747221			
ZAR	South African Rand	14.7201431400	0.0679341220		

A-bi-raye

Currency Exchange

1 Dollar	F(0.8783121137 E	Euro
----------	------------------	------

Currency code ▲ ▼	Currency name ▲▼	Units per EUR	EUR per Unit	Currency code ▲ ▼	Currency name ▲ ▼	Units per AED	AED per Unit
USD	US Dollar	1.1386632306	0.8782227907	USD	US Dollar	0.2722570106	3.6730000000
EUR	Euro	1.000000000	1.0000000000	EUR	Euro	0.2391289974	4.1818433177
GBP	British Pound	0.7921136388	1.2624451227	GBP	British Pound	0.1893997890	5.2798369266
INR	Indian Rupee	75.3658843112	0.0132686030	INR	Indian Rupee	18.0207422309	0.0554916100
AUD	Australian Dollar	1.4859561878	0.6729673514	AUD	Australian Dollar	0.3552996418	2.8145257760
CAD	Canadian Dollar	1.4796754127	0.6758238945	CAD	Canadian Dollar	0.3538334124	2.8261887234
SGD	Singapore Dollar	1.5347639238	0.6515660060	SGD	Singapore Dollar	0.3669652245	2.7250538559
CHF	Swiss Franc	1.0917416715	0.9159676012	CHF	Swiss Franc	0.2610686193	3.8304105746
MYR	Malaysian Ringgit	4.4140052400	0.2265516114	MYR	Malaysian Ringgit	1.0548325619	0.9480177576
JPY	Japanese Yen	128.1388820287	0.0078040325	JPY	Japanese Yen	30.6399242607	0.0326371564
CNY	Chinese Yuan Renminbi	7.3411003512	0.1362193612	CNY	Chinese Yuan Renminbi	1.7555154332	0.5696332719
NZD	New Zealand Dollar	1.6484648003	0.6066250246	NZD	New Zealand Dollar	0.3941937299	2.5368237088
ТНВ	Thai Baht	39.9627318192	0.0250233143	THB	Thai Baht	9.5553789460	0.1046530970
HUF	Hungarian Forint	313.9042436792	0.0031856849	HUF	Hungarian Forint	75.0637936939	0.0133220019
AED	Emirati Dirham	4.1823100458	0.2391023117	AED	Emirati Dirham	1.0000000000	1.0000000000

1 Euro = 4.1823100458 Dirham

1 Dirham= 1.0548325619 Ringgit

1 Dollar= 0.8783121137 * 4.1823100458 * 1.0548325619 Ringgit = 3.87479406049 Ringgit

Directly: ,1 Dollar = 3.87 Ringgit

Currency Exchange

1 Dollar = 3.87479406049 Ringgit

Currency code ▲ ▼	Currency name ▲ ▼	Units per USD	USD per Unit
USD	US Dollar	1.0000000000	1.0000000000
EUR	Euro	0.8783121137	1.1385474303
GBP	British Pound	0.6956087704	1.4375896950
INR	Indian Rupee	66.1909310706	0.0151078098
AUD	Australian Dollar	1.3050318080	0.7662648480
CAD	Canadian Dollar	1.2997506294	0.7693783541
SGD	Singapore Pollar	1 3478961522	0.7418969172
CHF	Swiss Fra 1 Ringgit = 0.2583979328	3 Dollar ₄₅₁₅₈₂	1.0427037678
MYR	Malaysian Ringgit	3.8700000000	0.2583979328
JPY	Japanese Yen	112.5375383115	0.0088859239
CNY	Chinese Yuan Renminbi	6.4492409303	0.1550570076
NZD 1 D	ollar = 3.87479406049 * 0.258397	79328 Dollar	0.6906068347
THB	= 1.00123877526 Dollar		0.0284895968
HUF	Hungarian For Free Money!	275.7012427385	0.0036271146
AED	Emirati Dirha	3.6730000000	0.2722570106
HKD	Hong Kong Dollar	7.7563973683	0.1289258341
MXN	Mexican Peso	17.3168505322	0.0577472213
ZAR	South African Rand	14.7201431400	0.0679341220

16 106 muncy /

Best Currency Exchange

Best way to transfer USD to MYR:

Given a graph of currencies (edges are exchange rates) find the shortest path by product of edge weights

Best Currency Exchange

Best way to transfer USD to MYR:

Given a graph of currencies (edges are exchange rates) find the shortest path by product of edge weights

$$\min_{p} \prod_{e \in p} \frac{1}{w(e)}$$

Take log of edge weights to make summation

Best Currency Exchange

Best way to transfer USD to MYR:

Given a graph of currencies (edges are exchange rates) find the shortest path by product of edge weights

Problem with negative edges

$$w(C, F, D, C) = -1$$

Weight if we take the cycle 0 times: 31 Weight if we take the cycle 1 time: 30 Weight if we take the cycle 2 times: 29

There is no shortest path from A to I!

What we need: an algorithm that finds the shortest path in graphs with negative edge weights (if one exists)

Note

Any simple path has at most V-1 edges

Pigeonhole Principle!

More than V-1 edges means some node appears twice (i.e., there is a cycle)

If there is a shortest path of more than V-1 edges, there is a negative weight cycle

15, 25, w

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem is the (optimal) solutions to a smaller one plus one "decision",
- Idea:
 - 1. Identify the substructure of the problem /
 - What are the options for the "last thing" done? What subproblem comes from each?
 - 2. Save the solution to each subproblem in memory
 - 3. Select an order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

Bellman-Ford

Idea: Use Dynamic Programming!

$$Short(i, v) = \frac{\text{weight of the shortest path from } s}{\text{to } v \text{ using at most } i \text{ edges}}$$

A path of i-1 edges from s to some node x, then edge (x, v)

Two options:

OR

A path from s to v of at most i-1 edges

Bellman Ford

Bellman Ford

Bellman Ford

 $Short(i, v) = \begin{cases} weight of the shortest path from \\ s to v using at most i edges \end{cases}$

$$Short(i, v) = \min \begin{cases} \min_{x} (Short(i - 1, x) + w(x, v)) \\ Short(i - 1, v) \end{cases}$$

v =	: A	В	С	D	E	F	G	Н	<u> </u>
0	8	8	8	8	0	8	8	8	∞
1	8	8	8	7	0	8	5	5	∞
2	18	8	4	7	0	4	5	5	7
									
→ 4									
									
→ 6									
$\begin{array}{c} \rightarrow 6 \\ \rightarrow 7 \\ \rightarrow 8 \end{array}$									
8									

Shortos + simple

putts
25

Bellman Ford

$$Short(i, v) = \begin{cases} weight of the shortest path from \\ s to v using at most i edges \end{cases}$$

$$Short(i, v) = \min \begin{cases} \min_{x} (Short(i - 1, x) + w(x, v)) \\ Short(i - 1, v) \end{cases}$$

v =	= A	В	С	D	Е	F	G	Н	I
0	00	∞	∞	∞	0	∞	∞	∞	∞
1	00	8	∞	7	0	∞	5	5	00
2	18	8	4	7	0	4	5	5	7
3	-8	8	4	7	0	4	3	5	7
4									
5									
6									
7									
8									

Bellman Ford

Bellman Ford: Negative Cycles

$$Short(i, v) = \begin{cases} weight of the shortest path from \\ s to v using at most i edges \end{cases}$$

Short(i, v) = s to v using at most i edges
$$Short(i, v) = \min \begin{cases} \min(Short(i-1, x) + w(x, v)) \\ x \\ Short(i-1, v) \end{cases}$$

<i>i</i>	v =	Α	В	С	D	E	F	G	Н	I	
	0	∞	∞	∞	∞	0	∞	∞	∞	00]^
	1	8	8	∞	7	0	∞	5	∞	8	
	2			4	7	0	4				
	3			4	7	0	4				
	4			4	7	0	4				
	5			3	7	0	4				
_	6			3	6	0	4				
	7			3	6	0	3				
	8			12	6	0	3				
7	9				5						

If we computed row |V|, values change

There is a negative weight cycle!

Bellman Ford Top Down DP

```
Memory = (n+1)x(n) 2-d array of NULL
Def Bellman Ford(graph, s, t):
           Memory[0][s] = 0
           return Short(length(graph),t)
Def Short(graph, i, v):
           if Memory[i][j] != NULL:
                       return Memory[i][j]
           if i==0:
                        Memory[i][j] = infinity
                       return infinity
           best = infinity
           for x from 0 to length(graph):
                       new path = Short(graph, i-1, x) + graph.weight(x,v)
                       best = min(best, new path)
           answer = min(best, Short(i-1,v))
           Memory[i][j] = answer
           return answer
```

Bellman Ford Bottom-up and Run Time

```
Intialize array Short[V][V]
Initialize Short[0][v] = \infty for each vertex
Initialize Short[0][s] = 0
For i = 1, ..., V - 1: V times
     for each e = (x, v) \in E:

E times
     Short[i][v] = min{
                 Short[i-1][x] + w(x,v),
                 Short[i-1][v]
                                                    \Theta(V^2 + EV)
```

Why Use Bellman-Ford?

• Dijkstra's:

- only works for positive edge weights
- Run Time: $\Theta(E \log V)$
- Not good for dynamic graphs (where edge weights are variable)
 - Must recalculate "from scratch"

• Bellman-Ford:

- Works for negative edge weights
- Run Time: $\Theta(E \cdot V)$
- More efficient for dynamic graphs
 - $\Theta(E)$ time to recalculate

Each node will update its neighbors if edge weight changes

Bellman Ford

 $Short(i, v) = \frac{\text{weight of the shortest path from}}{s \text{ to } v \text{ using at most } i \text{ edges}}$

$$Short(i, v) = \min \begin{cases} \min_{x} (Short(i - 1, x) + w(x, v)) \\ Short(i - 1, v) \end{cases}$$

v = v	A	В	С	D	E	F	G	Н	I
0	∞	∞	∞	∞	0	∞	∞	∞	00
1	000	5	∞	7	0	∞	5	5	∞
2	18	8	4	7	0	4	5	5	7
3	-8	8	4	7	0	4	3	5	7
4	-8	8	4	7	0	4	3	5	7
5	-8	8	4	7	0	4	3	5	7
6	-8	8	4	7	0	4	3	5	7
7	-8	8	4	7	0	4	3	5	7
8	-8	8	4	7	0	4	3	5	7

Each node will update its neighbors if edge weight changes

Bellman Ford

$$Short(i, v) = \frac{\text{weight of the shortest path from}}{s \text{ to } v \text{ using at most } i \text{ edges}}$$

$$Short(i, v) = \min \begin{cases} \min_{x} (Short(i - 1, x) + w(x, v)) \\ Short(i - 1, v) \end{cases}$$

v = v	A	В	С	D	E	F	G	Н	I
0	∞	∞	∞	∞	0	∞	∞	∞	00
1	∞	5	∞	7	0	000	5	5	∞
2	15	5	1	7	0	4	5	5	7
3	-8	5	1	7	0	4	3	5	7
4	-8	5	1	7	0	4	3	5	7
5	-8	5	1	7	0	4	3	5	7
6	-8	5	1	7	0	4	3	5	7
7	-8	5	1	7	0	4	3	5	7
8	-8	5	1	7	0	4	3	5	7

Each node will update its neighbors if edge weight changes

Bellman Ford

$$Short(i, v) = \begin{cases} weight of the shortest path from \\ s to v using at most i edges \end{cases}$$

$$Short(i, v) = \min \begin{cases} \min_{x} (Short(i - 1, x) + w(x, v)) \\ Short(i - 1, v) \end{cases}$$

¿	v =	Α	В	С	D	Е	F	G	Н	I
	0	00	∞	8	8	0	000	8	8	00
	1	00	5	8	7	0	8	5	5	00
	2	15	5	1	7	0	4	5	5	7
	3	-11	5	1	4	0	4	3	5	7
	4	-11	5	1	4	0	4	3	5	7
	5	-11	5	1	4	0	4	3	5	7
	6	-11	5	1	4	0	4	3	5	7
	7	-11	5	1	4	0	4	3	5	7
	8	-11	5	1	4	0	4	3	5	7

All-Pairs Shortest Path

Find the quickest way to get from each place to every other place

Given a graph G = (V, E) for each start node $s \in V$ and destination node $v \in V$ find the least-weight path from $s \to v$

All-Pairs Shortest Path

- Can clearly be found in $O(V^2 \cdot E)$
 - Run Bellman-Ford with each node being the start

```
for each s \in V: V times
BellmanFord(s) \quad o(V \cdot E)
```

Floyd-Warshall

Finds all-pairs shortest paths in $\Theta(V^3)$

Uses Dynamic Programming

$$Short(i,j,k) = \begin{cases} \text{the length of the shortest path from node } i \text{ to} \\ \text{node } j \text{ using only intermediate nodes } 1, ..., k \end{cases}$$

- 1. Fix the ordering of nodes
- 2. Short(i, j, k) is the length using only the first k nodes in that list

Two options: Shortest path from i to j includes k

OR

Shortest path from i to j excludes k

$$Short(i, j, k) = \min \begin{cases} Short(i, k, k - 1) + Short(k, j, k - 1) \\ Short(i, j, k - 1) \end{cases}$$
Node at position k

k-1 is the index (first k-1 nodes can be used)

Floyd-Warshall Top-Down

Shortest Paths Review

- Single Source Shortest Paths
 - Dijkstra's Algorithm $\Theta(E \log V)$
 - No negative edge weights
 - Bellman-Ford $\Theta(EV)$
 - First Dynamic Programming Algorithm
 - Allows negative edge weights (finds negative weight cycles)
 - Update memory in $\Theta(E)$ time on edge weight updates
- All Pairs Shortest Paths
 - Floyd-Warshall $\Theta(V^3)$
 - Allows negative edge weights