Машинное обучение • Основные алгоритмы

Сегодня

- разбезрем основные алгоритмы
- ответим на вопрос "какой признак самый важный?"
- визуализируем построенное алгоритмы

Метод ближайших соседей

Метод ближайших соседей / KNN

- классификация:
 - \circ берем k соседей и смотрим, какой класс встречается чаще
- регрессия:
 - берем и вычисляем среднее (можно средневзвешенное) значение для нового объекта

Расстояние

• Что значит ближайшие?

Близкие по метрике Минковского:

$$ho(x,y) = \left(\sum_{i=0}^d |x_i-y_i|^p
ight)^{1/p}$$

- $oldsymbol{\cdot}$ при p=2 это евклидово расстояние
- $oldsymbol{\cdot}$ при p=1 Манхэттенская метрика
- \cdot при $p=\infty$ метрика Чебышева (наибольшее из всех расстояний)

Метод ближайших соседей: проблема

Если целевой объект расположен далеко, алгоритм все равно классифицирует объект. Можно использовать радиальный вариант.

Радиальный NN / RadiusNN

Но такой радиус сложно подобрать.

KNN: гиперпараметры

- число соседей / радиус
- метрика
- способ вычисления весов объектов

Decision Tree

• Классификация: игра состоится?

Day	Weather	Temperature	Humidity	Wind	Play?
1	Sunny	Hot	High	Weak	No
2	Cloudy	Hot	High	Weak	Yes
3	Sunny	Mild	Normal	Strong	Yes
4	Cloudy	Mild	High	Strong	Yes
5	Rainy	Mild	High	Strong	No
6	Rainy	Cool	Normal	Strong	No
7	Rainy	Mild	High	Weak	Yes
8	Sunny	Hot	High	Strong	No
9	Cloudy	Hot	Normal	Weak	Yes
10	Rainy	Mild	High	Strong	No

Какой признак самый информативный?

Тот, при использовании которого для классификации, мы получаем наиболее "чистые" подмножества объектов выборки:

- Признак Windy имеет два значения: Weak и Strong
 - ∘ Для Windy=Weak: Play=Yes Зобъекта, Play=No 1объект
 - ∘ Для Windy=Strong: Play=Yes 2 объекта, Play=No 4 объекта
- Признак Humidity имеет два значения: High и Normal:
 - ∘ Для Humidity=Normal: Play=Yes 2 объекта, Play=No 1 объект
 - ∘ Для Humidity=High: Play=Yes 3 объекта, Play=No 4 объект

Оценки гомогенности для разбиений

Как измерить гомогенность выборки в полученных разбиениях?

• Коэффициент Джини / Gini impurity:

$$G=1-\Sigma_i p_i^2$$

• Энтропия разбиения:

$$H = -\Sigma p_i \log_2 p_i$$

 p_i – частота объектов класса i в разбиении

Исходное множество

Разбиение	Entropy
Исходное	$-(0.5\log_2 0.5 + 0.5\log_2 0.5) = 1$
Windy=Weak	$-(0.25\log_2 0.25 + 0.75\log_2 0.75) = 0.81$
Windy=Strong	$-(0.33\log_2 0.33 + 0.66\log_2 0.66) = 0.92$

Information gain

$$IG = S_0 - \sum_{i=1}^q rac{N_i}{N} S_i,$$

- q число листьев (обычно 2),
- N_i число объектов, попавших в i-ое разбиение,
- ullet N общее число в родительской веришне объектов,
- S_0 impurity metric (gini или entropy) для исходного разбиения,
- S_i *impurity metric* для i-го разбиения.

Для разбиения, построоенного по признаку Windy:

$$IG = 1 - 0.4 \times 0.81 - 0.6 \times 0.92 = 0.12$$

Важность признаков • Feature importances

Суммарный (а в sklearn и нормированный) показатель уменьшения гетерогенности выборки используется для оценки важности признаков: если признак выбирался часто и сильно уменьшал энтропию или коэффициент Джини, то он является информативным.

Параметры решающих деревьев

- Критерий ветвления: criterion: gini, entropy
- Максимальная глубина: max_depth
- Минимальное число объектов в листе: min_samples_leaf
- Минимальное значение уменьшения гетерогенности для осуществления деления: min_impurity_decrease

sklearn.tree: https://scikit-learn.org/stable/modules/tree.html

Итоги

- деревья мощный алгоритм
- но склонен к переобучению
- может выступать в качестве составного блока для более сложных концепций об этом завтра
- у обученного дерева есть атрибут: model.feature_importances_
- может использоваться для задач регрессии:
 - CART: classification and regression trees
 - !! A Step By Step Regression Tree Example