

Pear project: Solving respiration—diffusion system using FEM simulation

Corentin Bonte, Jules Verbeke & Pieter Vanslambrouck

Planning

Milestones: Matlab prototype, C++ implementation, test suite Generally, we followed our planning closely

					F	ebr	uary	y															M	larch	1										
Person in charge	Task	7/ 1	18/ 19	9/ 20)/ 21/	22/	23/	24/	25/ 26	27	/ 28/	01/	02/0	<mark>3/</mark> 04	/ 05/	06/ 0	07/ 0	09/	10/ 1	11/ 1	2/ 13	3/ 14	15/	16/	17/ 1	8/ 19	20.	/ 21/	22/ 2	23/ 24	25.	26/	27/ 28	<mark>29/</mark> 30	0/
						Α																													
All	FEM basics		- -	- -	-	_	_																												
Pieter	Mastering maths of assignment -	20 2		_	-	_	_			=				20.																					
Jules	Matlab prototype									-	-		- -	-	-		- B																		
Corentin	Initial tests												-	-	-		- -																		
Pleter	C++ implementation with linear Ru and Rv														_			_			-	_	_												
Jules	C++ implementation with general Ru and Rv																_	_				_	_		_		_	_	_						
Corentin	Final tests suite																						-			-0.5-	_	_		_ C					
All	Presentation																														-			X	
																						L													1
	Milestones																																		
A discuss your planning in session 3 (22/2) .	/																																
B Working matlab prototype C Compiled C++ solution			,																																
			,																																
D C++ Test Suite + Pipeline			,																																
	X Presentation																																		

Tools & libraries

Tools:

- Git, GitLab (merge requests, issues, test pipeline etc.)
- Matlab, C++, Python
- VS code, GDB, pdb
- Profiling: valgrind & kcachegrind

Libraries:

- Matlab: MESH2D library
- C++: Eigen (Sparse matrix algebra)

Theory

Respiration-diffusion system:

$$\begin{cases} \nabla \cdot \left(r \begin{pmatrix} \sigma_{u,r} & 0 \\ 0 & \sigma_{u,z} \end{pmatrix} \nabla C_u(r,z) \right) &= r R_u(C_u(r,z), C_v(r,z)) \\ \nabla \cdot \left(r \begin{pmatrix} \sigma_{v,r} & 0 \\ 0 & \sigma_{v,z} \end{pmatrix} \nabla C_v(r,z) \right) &= -r R_v(C_u(r,z), C_v(r,z)) \end{cases}$$

Chapeau basis function

Weak formulation:

$$\int_{\Omega} \vec{q}_{u}(r,z) \cdot \nabla \varphi(r,z) \, d\Omega + \int_{\Omega} r \, R_{u}(C_{u}, C_{v}) \, \varphi(r,z) \, d\Omega + \int_{\Gamma} r \, \varrho_{u} \, C_{u}^{*}(r,z) \, \varphi(r,z) \, d\Gamma = 0$$

$$\int_{\Omega} \vec{q}_{v}(r,z) \cdot \nabla \varphi(r,z) \, d\Omega - \int_{\Omega} r \, R_{v}(C_{u}, C_{v}) \, \varphi(r,z) \, d\Omega + \int_{\Gamma} r \, \varrho_{v} \, C_{v}^{*}(r,z) \, \varphi(r,z) \, d\Gamma = 0.$$

$$\begin{pmatrix} K_{u} & 0 \\ 0 & K_{v} \end{pmatrix} \begin{pmatrix} \mathbf{c}_{u} \\ \mathbf{c}_{v} \end{pmatrix} - \begin{pmatrix} \mathbf{f}_{u} \\ \mathbf{f}_{v} \end{pmatrix} + \begin{pmatrix} \mathbf{H}_{u}(\mathbf{c}_{u}, \mathbf{c}_{v}) \\ \mathbf{H}_{v}(\mathbf{c}_{u}, \mathbf{c}_{v}) \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

Coordinate transformation to compute integrals:

Theory: initial guess

Linear approximations of respiration functions:

$$egin{aligned} R_u(C_u,C_v) &= rac{V_{mu}C_u}{(K_{mu}+C_u)(1+rac{C_v}{K_{mv}})} pprox rac{V_{mu}}{K_{mu}}C_u \ R_v(C_u,C_v) &= r_q R_u(C_u,C_v) + rac{V_{mfv}}{1+rac{C_u}{K_{mfu}}} pprox r_q rac{V_{mu}}{K_{mu}}C_u + V_{mfv} \end{aligned}$$

$$\begin{pmatrix} K_u & 0 \\ 0 & K_v \end{pmatrix} \begin{pmatrix} \mathbf{c}_u \\ \mathbf{c}_v \end{pmatrix} - \begin{pmatrix} \mathbf{f}_u \\ \mathbf{f}_v \end{pmatrix} + \begin{pmatrix} \mathbf{H}_u(\mathbf{c}_u, \mathbf{c}_v) \\ \mathbf{H}_v(\mathbf{c}_u, \mathbf{c}_v) \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

Theory: Newton iterations

Recall, weak formulation leads to non-linear matrix equation:

$$\begin{pmatrix} K_u & 0 \\ 0 & K_v \end{pmatrix} \begin{pmatrix} \mathbf{c}_u \\ \mathbf{c}_v \end{pmatrix} - \begin{pmatrix} \mathbf{f}_u \\ \mathbf{f}_v \end{pmatrix} + \begin{pmatrix} \mathbf{H}_u(\mathbf{c}_u, \mathbf{c}_v) \\ \mathbf{H}_v(\mathbf{c}_u, \mathbf{c}_v) \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

Newton Iteration: Linearization

$$egin{aligned} egin{pmatrix} H_u(c_u,c_v) \ H_v(c_u,c_v) \end{pmatrix} &pprox egin{pmatrix} H_u(c_u^k,c_v^k) \ H_v(c_u^k,c_v^k) \end{pmatrix} + J egin{pmatrix} \Delta c_u \ \Delta c_v \end{pmatrix} \ & \iint_{T_{
m st}} g(\xi,\eta) \ \mathrm{d}\xi \mathrm{d}\eta = -rac{27}{96} \cdot g \left(rac{1}{3},rac{1}{3}
ight) + rac{25}{96} \left[g \left(rac{1}{5},rac{1}{5}
ight) + g \left(rac{3}{5},rac{1}{5}
ight)
ight] \end{pmatrix} \end{pmatrix} \ & ext{With } J = egin{pmatrix} J_1 & J_2 \ J_3 & J_4 \end{pmatrix} = egin{pmatrix} rac{\delta H_u}{\delta c_u} & rac{\delta H_u}{\delta c_v} \ rac{\delta H_v}{\delta c_v} \end{pmatrix} \end{aligned}$$

Jacobian was determined **analytically** and subsequently approximated using **quadrature** integration rules on standard triangle using **coordinate transformations**.

Theory: Newton iterations

Recall, weak formulation leads to non-linear matrix equation:

$$\begin{pmatrix} K_u & 0 \\ 0 & K_v \end{pmatrix} \begin{pmatrix} \mathbf{c}_u \\ \mathbf{c}_v \end{pmatrix} - \begin{pmatrix} \mathbf{f}_u \\ \mathbf{f}_v \end{pmatrix} + \begin{pmatrix} \mathbf{H}_u(\mathbf{c}_u, \mathbf{c}_v) \\ \mathbf{H}_v(\mathbf{c}_u, \mathbf{c}_v) \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

Newton Iteration: Linearization

$$egin{aligned} egin{pmatrix} H_u(c_u,c_v) \ H_v(c_u,c_v) \end{pmatrix} &pprox egin{pmatrix} H_u(c_u^k,c_v^k) \ H_v(c_u^k,c_v^k) \end{pmatrix} + J egin{pmatrix} \Delta c_u \ \Delta c_v \end{pmatrix} \end{aligned}$$
 With $J = egin{pmatrix} J_1 & J_2 \ J_3 & J_4 \end{pmatrix} = egin{pmatrix} rac{\delta H_u}{\delta c_v} & rac{\delta H_u}{\delta c_v} \ rac{\delta H_v}{\delta c_v} & rac{\delta H_v}{\delta c_v} \end{pmatrix}$

Convergence: almost quadratic

Jacobian was determined **analytically** and subsequently approximated using **quadrature** integration rules on standard triangle using **coordinate transformations**.

Testing

Matlab: verification of order of quadrature rules

Automatic Gitlab C++ test pipeline

Observed ill-conditioned matrix equations for:

- Newton iterations for rough meshes
- Manufactured solutions initial guess

Status	Pipeline	Triggerer	Stages
	Small change in theory file #204174		⊘ •
 passed 00:01:28 54 minutes ago	Bugfix in constants #204109 % main ← fb6d649f	(⊘ ⊙
★ failed ♦ 00:00:38 1 hour ago	Remove meshes that don't converge fo #204095 \$9 main> f5873506		(x) (w)

Method of manufactured solutions

Choose analytical solution for Cu and Cv

$$\begin{cases} \nabla \cdot \left(r \begin{pmatrix} \sigma_{u,r} & 0 \\ 0 & \sigma_{u,z} \end{pmatrix} \nabla C_u(r,z) \right) &= r R_u(C_u(r,z), C_v(r,z)) & + \mathsf{Qu(r,z)} \\ \nabla \cdot \left(r \begin{pmatrix} \sigma_{v,r} & 0 \\ 0 & \sigma_{v,z} \end{pmatrix} \nabla C_v(r,z) \right) &= -r R_v(C_u(r,z), C_v(r,z)) & + \mathsf{Qv(r,z)} \end{cases}$$

Boundary conditions: enforced by proposed solution Change contributions of integrals for both initial guess and Newton iterations:

Qu, Qv, boundary conditions

$$\begin{pmatrix} K_u & 0 \\ 0 & K_v \end{pmatrix} \begin{pmatrix} \mathbf{c}_u \\ \mathbf{c}_v \end{pmatrix} - \begin{pmatrix} \mathbf{f}_u \\ \mathbf{f}_v \end{pmatrix} + \begin{pmatrix} \mathbf{H}_u(\mathbf{c}_u, \mathbf{c}_v) \\ \mathbf{H}_v(\mathbf{c}_u, \mathbf{c}_v) \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

Cu = $0.05+0.05*\sin(10r) + z^2$ Cv = $2+3*r^2 + \sin(15z)$

Testing: Manufactured Solutions

Testing: boundary conditions

Execution time

Uniform mesh edge length	Matlab Timing (s)	C++ Timing (s)
3 mm	$2.230 \ (\sigma^2 = 0.0035)$	$0.0307 \ (\sigma^2 = 1.84e-6)$
2 mm	$5.126 \ (\sigma^2 = 0.022)$	$0.0826 \ (\sigma^2 = 1.35e-5)$
1 mm	22.951 ($\sigma^2 = 0.639$)	$0.471 \ (\sigma^2 = 4.63e-5)$
0.5 mm	145.576 ($\sigma^2 = 52.63$)	$2.978 \ (\sigma^2 = 0.00106)$

^{*}Timings done with 'precooling' option and 10 newton iterations, averaged over 20 runs

Solving sparse system is bottleneck for finer meshes

