

GTU Electronics Engineering

ELEC 331 Electronic Circuits 2

Fall Semester

Instructor: Assist. Prof. Önder Şuvak

HW 8 Questions and Answers

Updated November 17, 2017 - 12:59

Assigned:

Due:

Answers Out:

Late Due:

Contents

itle Page	1
Contents	1
uestion 1	2
Question	2
Solution	3
Question 2	7
Question	7
Solution	8
Question 3	14
Question	14
Solution	15
Question 4	19
Question	19
Solution	20
Question 5	27
Question	27
Solution	
Question 6	31
Question	31
Solution	

Voltage Series Feedback on a Voltage Amplifier

Rashid 10.13

10.13 The feedback amplifier in Fig. P10.13 has $A_1 = 50$, $A_2 = 60$, $R_8 = 500 \Omega$, $R_1 = 15 \text{ k}\Omega$, $R_2 = 1.5 \text{ k}\Omega$, $R_3 = 250 \Omega$, $R_4 = 1.5 \text{ k}\Omega$, $R_5 = 250 \Omega$, $R_6 = 2 \text{ k}\Omega$, $R_L = 4.7 \text{ k}\Omega$, $R_F = 500 \Omega$, $C_1 = C_2 = C_3 = 0.1 \mu\text{F}$, and $v_s = 100 \text{ mV}$. Determine (a) the input resistance $R_{\text{if}} = v_s/i_s$, (b) the output resistance R_{of} , and (c) the overall voltage gain $A_f = v_o/v_s$. Assume C_1 , C_2 , and C_3 are shorted at the operating frequency.

FIGURE P10.13

Notes: None.

Additional Tasks: Analyze this circuit as a voltage amplifier with voltage series feedback. Numerical values of the required quantities should be computed as the last task.

Necessary Knowledge and Skills: Modeling a given circuit as a voltage amplifier, input/output impedance and gain calculations, feedback network modeling, idealizing the feedback network by carrying its impedance loads into the non-feedback amplifier, remodeling the non-feedback amplifier, analyzing the feedback amplifier (non-feedback amplifier and the feedback network combined) to compute the input/output impedances and gain.

$$\frac{|\mathcal{K}_{1}|| \beta (\beta=0) \text{ ond one light } \forall \mathcal{H}_{1}, \beta l}{(\text{one pute } \frac{V_{1}}{V_{\infty}} / \frac{V_{2}}{V_{\infty}} / \frac{V_{2}}{Z_{1}} (\frac{V_{2}}{K_{2}})^{\frac{1}{2}} = 0}$$

$$(KVL) + V_{\infty} - V_{1} - \mathcal{H}_{1} V_{1} - (\mathcal{H}_{3} + \mathcal{H}_{4})^{\frac{1}{2}} = 0$$

$$(KVL) + V_{\infty} - V_{1} - \frac{1}{N_{N}} \mathcal{H}_{N} = 0$$

$$(KCL) = \frac{1}{N_{1}} = \frac{1}{N_{2}} + \frac{1}{N_{N}}$$

$$V_{1} = \frac{1}{N_{1}} \mathcal{H}_{2}$$

$$V_{2} = \frac{1}{N_{2}} \mathcal{H}_{3}$$

$$V_{2} = \frac{1}{N_{1}} \mathcal{H}_{1} + \frac{1}{N_{2}} \mathcal{H}_{2} + \frac{1}{N_{2}} \mathcal{H}_{N}$$

$$V_{2} = \frac{1}{N_{1}} \mathcal{H}_{N} + \frac{1}{N_{2}} \mathcal{H}_{N}}{\mathbb{H}_{N}} = \frac{1}{N_{1}} \mathcal{H}_{1} + \frac{1}{N_{2}} \mathcal{H}_{N}}{\mathbb{H}_{N}}$$

$$V_{1} = \frac{1}{N_{1}} \mathcal{H}_{N} + \frac{1}{N_{2}} \mathcal{H}_{N}}{\mathbb{H}_{N}} = \frac{1}{N_{1}} \mathcal{H}_{N} + \frac{1}{N_{2}} \mathcal{H}_{N}}{\mathbb{H}_{N}}$$

$$V_{2} = \frac{1}{N_{1}} \mathcal{H}_{N} + \frac{1}{N_{2}} \mathcal{H}_{N}}{\mathbb{H}_{N}}$$

$$V_{3} = \frac{1}{N_{1}} \mathcal{H}_{N} + \frac{1}{N_{2}} \mathcal{H}_{N}}{\mathbb{H}_{N}}$$

Note that
$$\frac{V_1}{V_z} = \frac{z_1 R_2}{V_z} = R_2 \left(\frac{V_z}{V_{1}}\right)^{\frac{1}{2}}$$

$$\frac{V_1}{V_z} = \frac{z_1 R_2}{V_z} = \frac{R_2}{V_z} \left[\frac{V_1}{V_z}\right]^{\frac{1}{2}}$$

$$\frac{V_2}{V_z} = \frac{R_4 z_2}{V_z} = \frac{R_4}{V_z} \left[\frac{V_1}{R_2} - \frac{V_2 - V_1}{R_x}\right]$$

$$= \frac{R_4}{V_x} \left[\frac{V_1}{R_2/R_x} - \frac{V_2}{R_x}\right]$$

$$= \frac{R_4}{R_2/R_x} \frac{V_1}{V_2} - \frac{R_4}{R_x} < 0$$

$$\frac{V_2}{R_2/R_x} = \frac{R_4}{V_2} \left[\frac{V_1}{R_2/R_x} - \frac{R_4}{R_2}\right]$$

$$\frac{V_2}{V_2} = \frac{R_4}{R_2} \left[\frac{V_1}{R_2/R_x} - \frac{R_4}{R_2}\right]$$

$$\frac{V_2}{V_2} = \frac{R_4}{R_2} \left[\frac{V_1}{R_2/R_x} - \frac{R_4}{R_2}\right]$$

$$\frac{V_2}{V_2} = \frac{R_4}{R_2} \left[\frac{V_1}{R_2} - \frac{V_2}{R_2}\right]$$

$$\frac{V_2}{R_2} = \frac{R_4}{R_2} \left[\frac{V_1}{R_2} - \frac{V_2}{R_2}\right]$$

$$\frac{V_2}{$$

rout, VA, FR= R5// RY//RL

Now opply feedback theory to compute:

$$V_{in,f} = (1+\beta H_{VH}, Pl) r_{in,VH,Pl}$$

Hobysic of the feedback omplifier

Now analyze the whole crant: Refer to (**) and above

$$\frac{V_0}{V_J} = \frac{r_{in,p}/|R_i|}{r_{in,p}/|R_i| + R_J} \frac{A_p}{A_p}$$

Voltage-Series Feedback in the Emitter-Follower Stage

Rashid 10.18

10.18 The emitter follower in Fig. P10.18 has $R_{\rm B}=75~{\rm k}\Omega$, $R_{\rm E}=750~\Omega$, $R_{\rm L}=10~{\rm k}\Omega$, and $R_{\rm S}=250~\Omega$. The transistor parameters are $h_{\rm fe}=150$, $r_{\pi}=250~\Omega$, and $r_{\rm o}=\infty$. Draw a block diagram of the feedback mechanism. Use the techniques of feedback analysis to calculate (a) the input resistance $R_{\rm if}$, (b) the output resistance $R_{\rm of}$, and (c) the closed-loop voltage gain $A_{\rm f}$.

FIGURE P10.18

Notes: None.

Additional Tasks: None.

Necessary Knowledge and Skills: Voltage amplifiers and non-idealities modeling, gain and input/output impedance calculations, voltage-series feedback, feedback network analysis, feedback-loaded voltage amplifier analysis, effects of voltage-series feedback.

• Analyze the feedback network

Roylind 10.18

Contin-

The state of the feedback network

$$\frac{7}{4}$$
 $\frac{7}{4}$
 $\frac{7}{4$

Compute the parameters of the feedback complifier (or amplifier with feedback)

We use the properties of (Note that)

Voltage-series feedback

$$\frac{\partial M}{\partial t} = \frac{\partial M}{\partial t}$$

· Now analyte the whole un.

$$\frac{1}{\text{Treolited}} = \frac{r_{in,p}/|R_B|}{r_{in,p}/|R_B| + R_S} \cdot \frac{1}{\text{Hp}}$$

Voltage-Series Feedback on a Voltage Amplifier

Rashid 10.19

10.19 Use the techniques of feedback analysis to calculate the input resistance $R_{\rm if}$, the output resistance $R_{\rm of}$, and the closed-loop voltage gain $A_{\rm f}$ of the amplifier in Fig. P10.19. The transistor parameters are $h_{\rm fe} = h_{\rm fe1} = h_{\rm fe2} = 10$, $r_{\pi 1} = r_{\pi 2} = 250 \ \Omega$, $r_{\rm o} = 1.5 \ {\rm k}\Omega$, and $r_{\mu} = \infty$.

FIGURE P10.19

Notes: None.

Additional Tasks: None.

Necessary Knowledge and Skills: Voltage amplifiers and non-idealities modeling, gain and input/output impedance calculations, voltage-series feedback, feedback network analysis, feedback-loaded voltage amplifier analysis, effects of voltage-series feedback.

In the schematics of
$$(*)$$
:

Set $\beta = 0$

$$V_{in,VH}, \beta = \frac{\sqrt{3}}{\sqrt{5}} \Big|_{x_0 = 0}$$

$$(which means = 0)$$

$$= \sqrt{TT} \left(\frac{1+g_{ML}R_{N}}{R_{N}} \right) \Big|_{x_0 = 0}$$

$$= \sqrt{TT} \left(\frac{1+g_{ML}R_{N}}{R_{N}} \right) \Big|_{x_0 = 0}$$

$$= \sqrt{TT} \left(\frac{1+g_{ML}R_{N}}{R_{N}} \right) \Big|_{x_0 = 0} \Big|_{x_0 = 0}$$

$$= \sqrt{TT} \left(\frac{1+g_{ML}R_{N}}{R_{N}} \right) \Big|_{x_0 = 0} \Big|_{x_0 = 0}$$

Anolysis of the feedback amplifier Rayhold

(VA), fl + the adoquired
feedback network)

First & see the results on 1303

$$\Rightarrow \beta = \frac{Rs}{R_3 + R_F}$$

$$\Rightarrow A_F = \frac{Avar, fl}{1 + \beta Avar, fl}$$

$$Vin, f = Vin, var, fl (1 + \beta Avar, fl)$$

$$Vout, f = \frac{rout, var, fl}{1 + \beta Avar, fl}$$

Voltage-Series Feedback on a Voltage Amplifier

Rashid 10.22

10.22 The MOS amplifier shown in Fig. P10.22 is biased to have the following small-signal MOS parameters: $g_{m1}=1.2~\text{mA/V}, r_{o1}=25~\text{k}\Omega, g_{m2}=1.6~\text{mA/V}, \text{ and } r_{o1}=25~\text{k}\Omega.$ If $R_{D1}=1.5~\text{k}\Omega$, then $R_{D2}=1~\text{k}\Omega$, $R_{SR}=500~\Omega, R_F=5~\text{k}\Omega$, and $C_F=20~\text{pF}.$ Determine (a) the voltage gain without feedback $A=v_o/v_s$, (b) the voltage gain with feedback A_f , and (c) the feedback capacitor C_F to limit the high frequency $f_H=50~\text{kHz}.$

FIGURE P10.22

Notes: None.

Additional Tasks: None.

Necessary Knowledge and Skills: Voltage amplifiers and non-idealities modeling, gain and input/output impedance calculations, voltage-series feedback, feedback network analysis, feedback-loaded voltage amplifier analysis, effects of voltage-series feedback, design equation for high-frequency cut-off involving the feedback capacitor, effect of feedback on high-frequency cut-off.

The voltage-series feedback network consists

of the following evant:

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} \end{bmatrix} = \begin{bmatrix} Z_{X} & Z_{X} \\ R_{JR} & Z_{X} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} \end{bmatrix} = \begin{bmatrix} Z_{X} & Z_{X} \\ R_{J} & Z_{X} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} \end{bmatrix} = \begin{bmatrix} Z_{X} & Z_{X} \\ R_{J} & Z_{X} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} \end{bmatrix} = \begin{bmatrix} Z_{X} & Z_{X} \\ R_{F} & R_{F} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{F} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{F} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{F} \\ R_{F} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{JR} \\ R_{JR} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{JR} \\ R_{JR} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{JR} \\ R_{JR} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{JR} \\ R_{JR} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{JR} \\ R_{JR} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{JR} \\ R_{JR} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{JR} \\ R_{JR} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{JR} \\ R_{JR} & R_{JR} \end{bmatrix}$$

$$Z_{X} = \begin{bmatrix} R_{JR} & R_{JR}$$

Mote that
$$T_1$$
 and T_2 may not be comparable.

Note that T_1 and T_2 may not be comparable.

Check: In the computations for OCTC > 1.5kn

 $R_1 = \frac{1}{K} \frac{1}{$

Now analyze the high-frequency curoff
of the feedback amplifier

(Not easy since
$$\beta(y)$$
 depends on the from

$$\frac{10.22}{\text{contin}}$$

$$\frac{10.22}{\text{contin}}$$

(Not easy since $\beta(y)$ depends on the from

$$\frac{1}{1 + \frac{jw}{wh}}$$

$$\frac{1}{1+\beta} \frac{1}{\beta} \frac{$$

Therefore
$$\frac{W_{2}}{H_{VP,fe}} = \frac{Wp}{(11)(0.15)} = \frac{Wp}{1.6\%}$$

Numerical value for $W_{H} \implies Jee pg3$

$$W_{H} \stackrel{\sim}{=} \frac{1}{C_{F}(5K)} = \frac{1}{C_{F}(1.45K)}$$

$$W_{p} = \frac{1}{C_{F}(5K)} = \frac{1}{0.5K}$$

$$W_{p} = \frac{1}{C_{F}(0.45K)} = \frac{1}{C_{F}(0.45K)}$$

$$W_{p} = \frac{1}{C_{F}(0.45K)} = \frac{1}{C_{F}(0.45K)}$$

$$W_{p} = \frac{1}{C_{F}(0.45K)} = \frac{1}{C_{F}(0.45K)}$$

$$W_{p} = \frac{1}{C_{F}(0.45K)} = \frac{1}{C_{F}(0.45K)} = \frac{1}{C_{F}(0.45K)}$$

$$W_{p} = \frac{1}{C_{F}(0.45K)} = \frac{1}{C_{F}(0.45K)} = \frac{1}{C_{F}(0.45K)}$$

$$W_{p} = \frac{1}{C_{F}(0.45K)} = \frac{1}{C$$

Current-Series Feedback on the CE Stage

Rashid 10.26

10.26 Use the techniques of feedback analysis to determine the input and output resistance of the CE transistor amplifier in Fig. P10.26. The circuit parameters are $R_{\rm s}=500~\Omega$, $R_{\rm E}=250~\Omega$, $R_{\rm 2}=15~{\rm k}\Omega$, $R_{\rm 1}=5~{\rm k}\Omega$, $R_{\rm C}=5~{\rm k}\Omega$, and $R_{\rm L}=10~{\rm k}\Omega$. The π -model parameters are $r_{\rm 0}=25~{\rm k}\Omega$, $h_{\rm fe}=150$, $r_{\pi}=250~\Omega$, $g_{\rm m}=0.3876~{\rm A/V}$, and $r_{\mu}=\infty$.

FIGURE P10.26

Notes: None.

Additional Tasks: None.

Necessary Knowledge and Skills: Modeling the CE stage as a transconductance amplifier, currentseries feedback network modeling in a practical amplifier, gain and i/o impedance computations, feedback-loaded TCA analysis, effect of feedback on gain and i/o impedances. Schematics of the omplifier (identifying the feedback network)

Rashid 10.26

See the related document on how to model

The related document on how

Then the feedback-loaded TCA (TCA, Fe) and the adeptized feedback network schemotics is as follows.

The resistances have been pointed out in (***).

Calculation of the numerical values — exercise.

Current-Series Feedback on a TCA

Rashid 10.28

10.28 The AC equivalent circuit of a feedback amplifier is shown in Fig. P10.28. The circuit values are R_{C1} = 2.5 k Ω , $R_{\rm C2} = 5$ k Ω , $R_{\rm C3} = 1.5$ k Ω , $R_{\rm E1} = 100$ Ω , $R_{\rm E2} = 100$ Ω , $R_{\rm F} = 750$ Ω , and $R_{\rm S} = 0$. The transistor parameters are $h_{\rm fe} = 100$, $r_{\pi} = 2.5$ k Ω , $r_{\rm o} = 25$ k Ω , and $r_{\mu} = \infty$. Use the techniques of feedback analysis to calculate (a) the input resistance $R_{\rm if}$, (b) the output resistance $R_{\rm of}$, and (c) the closed-loop voltage

FIGURE P10.28

Notes: None.

Additional Tasks: None.

Necessary Knowledge and Skills: Modeling the CE stage as a transconductance amplifier, currentseries feedback network modeling in a practical amplifier, gain and i/o impedance computations, feedback-loaded TCA analysis, effect of feedback on gain and i/o impedances.

Blank Page