Natural history of a copy number variant in mouse

Andrew P Morgan

28th International Mammalian Genome Conference Bar Harbor, Maine

26 October 2014

Motivation

Why study copy-number variation?

- impacts medically-relevant phenotypes
- important driver of genome evolution

Why study this locus (chr2: 77.9 Mbp)?

- controls own segregation in cis (O-1)
- selective sweeps in lab and in nature (P-14)

Evidence for a CNV on mouse chr2

Evidence for a CNV on mouse chr2

The R2d repeat unit

R2d = "responder to (meiotic) drive"

The R2d1/R2d2 locus

Evolutionary questions

- When was *R2d* duplicated?
- How have *R2d* sequences diverged?
- Has gene conversion occured between *R2d* copies?
- When did *R2d2* expansion allele(s) arise?

Phylogenetic context

Chevret P et al. (2005) Biol J Linnean Soc

Didion JP et al. (2013) Mamm Genome

Multi-string Burrows-Wheeler transform (msBWT) offers

- compression
- fast sequence searches

Multi-string Burrows-Wheeler transform (msBWT) offers

- compression
- fast sequence searches

Holt JM, McMillan L (2014) Bioinformatics, epub 25 Aug 2014.

Query sequence: CTGGCCTGTCCACAGTGTC

CTGGCCTGTCCACAGTGTC
agagcatgagcctcatttatcatgcctt ctggcctgtccacagtgtc taa
agcatgagcctcatttatcatgcctt ctggcctgtccacagtgtc taa <mark>c</mark> a
gcatgagcctcatttatcatgcctt ctgcctgtccacagtgtc taa <mark>c</mark> at
catgagcctcatttatcatgcctt ctggcctgtccacagtgtc taa <mark>c</mark> ata
-AGCCTCATTTATCATGCCTT CTGGCCTGTCCACAGTGTC TAA <mark>C</mark> ATAGTAC
gcctcatttatcatgcctt ctggcctgtccacagtgtc taa <mark>c</mark> atagtact
TATCATGCCTT CTGGCCTGTCCACAGTGTC TAA <mark>C</mark> ATAGTACTAGATACAC
CATGCCTT CTGGCCTGTCCACAGTGTC TAA T ATAGTACTAGATACACAAT
-ATGCCTT CTGGCCTGTCCACAGTGTC TAA T ATAGTACTAGATACACAATG
TGCCTT CTGGCCTGTCCACAGTGTC TAA T ATAGTACTAGATACACAATGC

--agagcatgagcctcatttatcatgcctt**ctggcctgtccacagtgtc**taa**y**atagtactagatacacaatgc-

We assembled 13.3 kbp of sequence in 8 intervals within R2d

Query sequence: CTGGCCTGTCCACAGTGTC

CTGGCCTGTCCACAGTGTC
AGAGCATGAGCCTCATTTATCATGCCTT CTGGCCTGTCCACAGTGTC TAA
AGCATGAGCCTCATTTATCATGCCTT CTGGCCTGTCCACAGTGTC TAA <mark>C</mark> A
gcatgagcctcatttatcatgcctt ctggcctgtccacagtgtc taa <mark>c</mark> at
CATGAGCCTCATTTATCATGCCTT CTGGCCTGTCCACAGTGTC TAA <mark>C</mark> ATA
agcctcatttatcatgcctt ctggcctgtccacagtgtc taa <mark>c</mark> atagtac
GCCTCATTTATCATGCCTT CTGGCCTGTCCACAGTGTC TAA <mark>C</mark> ATAGTACT
CATTTATCATGCCTT CTGGCCTGTCCACAGTGTC TAACATAGTACTAGAT
TATCATGCCTT CTGGCCTGTCCACAGTGTC TAA <mark>C</mark> ATAGTACTAGATACAC
TATCATGCCTTCTGGCCTGTCCACAGTGTCTAATATAGTACTAGATACAC
CATGCCTT CTGGCCTGTCCACAGTGTC TAA <mark>T</mark> ATAGTACTAGATACACAAT
ATGCCTTCTGGCCTGTCCACAGTGTCTAATATAGTACTAGATACACAATG
TGCCTTCTGGCCTGTCCACAGTGTCTAATATAGTACTAGATACACAATGC
TGCCTTCTGGCCTGTCCACAGTGTCTAATATAGTACTAGATACACAATGC
*

--AGAGCATGAGCCTCATTTATCATGCCTT**CTGGCCTGTCCACAGTGTC**TAA**Y**ATAGTACTAGATACACAATGC--

We assembled 13.3 kbp of sequence in 8 intervals within R2d.

Query sequence: CTGGCCTGTCCACAGTGTC

CTGGCCTGTCCACAGTGTC
AGAGCATGAGCCTCATTTATCATGCCTT CTGGCCTGTCCACAGTGTC TAA
agcatgagcctcatttatcatgcctt ctggcctgtccacagtgtc taa <mark>c</mark> a
gcatgagcctcatttatcatgcctt ctggcctgtccacagtgtc taa <mark>c</mark> at
CATGAGCCTCATTTATCATGCCTT CTGGCCTGTCCACAGTGTC TAACATA
AGCCTCATTTATCATGCCTT CTGGCCTGTCCACAGTGTC TAA <mark>C</mark> ATAGTAC
gcctcatttatcatgcctt ctgcctgtccacagtgtc taa <mark>c</mark> atagtact
CATTTATCATGCCTT CTGGCCTGTCCACAGTGTC TAA <mark>C</mark> ATAGTACTAGAT
TATCATGCCTT CTGGCCTGTCCACAGTGTC TAA <mark>C</mark> ATAGTACTAGATACAC
TATCATGCCTT CTGGCCTGTCCACAGTGTC TAATATAGTACTAGATACAC
CATGCCTT CTGGCCTGTCCACAGTGTC TAA <mark>T</mark> ATAGTACTAGATACACAAT
ATGCCTT CTGGCCTGTCCACAGTGTC TAA T ATAGTACTAGATACACAATG
TGCCTT CTGGCCTGTCCACAGTGTC TAA <mark>T</mark> ATAGTACTAGATACACAATGC
TGCCTT CTGGCCTGTCCACAGTGTC TAA <mark>T</mark> ATAGTACTAGATACACAATGC
*

--AGAGCATGAGCCTCATTTATCATGCCTT**CTGGCCTGTCCACAGTGTC**TAAYATAGTACTAGATACACAATGC-

We assembled 13.3 kbp of sequence in 8 intervals within R2d.

Duplication and divergence

Duplication and divergence

Duplication and divergence

R2d2 expansion alleles are of recent European origin

Classical laboratory mice:

- ALS/LtJ, ALR/LtJ, CHMU/LeJ, NU/J
- ICR, CD-1 stocks

Wild-derived strains:

WSA/EiJ, WSB/EiJ, DDO

Strains with Robertsonian karyotypes:

ZALENDE/EiJ, RBA/DnJ, RBB/DnJ, RBF/DnJ

R2d2 expansion alleles are of recent European origin

Classical laboratory mice:

- ALS/LtJ, ALR/LtJ, CHMU/LeJ, NU/J
- ICR, CD-1 stocks

Wild-derived strains:

WSA/EiJ, WSB/EiJ, DDO

Strains with Robertsonian karyotypes:

ZALENDE/EiJ, RBA/DnJ, RBB/DnJ, RBF/DnJ

R2d2 expansion alleles are of recent European origin

Classical laboratory mice:

- ALS/LtJ, ALR/LtJ, CHMU/LeJ, NU/J
- ICR, CD-1 stocks

Wild-derived strains:

WSA/EiJ, WSB/EiJ, DDO

Strains with Robertsonian karyotypes:

ZALENDE/EiJ, RBA/DnJ, RBB/DnJ, RBF/DnJ

R2d2 expansion alleles have single origin \sim 5-10 kya in *M. m. domesticus*.

Frequent germline de novo CNVs at R2d2

population	n	new alleles	generations
Diversity Outbred	125	6	≤ 3?
ALS/LtJ strain	8	1	≤ 5?
$WSB/EiJ \times PWK/PhJ^*$	45	1	1

Mutation rate \sim 0.01/generation makes $\it R2d2$ among hottest CNV hotspots reported in mouse.

Frequent germline de novo CNVs at R2d2

population	n	new alleles	generations
Diversity Outbred	125	6	≤ 3?
ALS/LtJ strain	8	1	≤ 5?
$WSB/EiJ \times PWK/PhJ^*$	45	1	1

Mutation rate $\sim 0.01/{\rm generation}$ makes $\it R2d2$ among hottest CNV hotspots reported in mouse.

Implications

Evolution of genome structure in recent past:

- phylogenetic discordance within M. musculus
- interspecific introgression into *M. spretus*
- sweeps in favor of an unstable allele

 $\sim 5\%$ of mouse genome has similar signature.

Molecular biology of mutational processes:

- inter-locus gene conversion
- segmental duplication/deletion

Acknowledgments

Dept of Genetics

Rachel McMullan Amelia Clayshulte John Didion Tim Bell Fernando Pardo-Manuel de Villena

Dept of Computer Science

J Matthew Holt Leonard McMillan

Funding

P50 GM076468 F30 MH103925

Data

Sanger Center/Wellcome Trust The Jackson Lab

Wild mice

Jeremy Searle, Francois Bonhomme, Pierre Boursot, Janice Britton-Davidian, Ricardo Castiglia, Eva Giagia-Athan-asopolou, Sofia Gabriel, Silvia Garagna, Sofia Grize, Isla Gündüz, Bettina Harr, Heidi Hauffe, Jeremy Herman, Leon Kontrimavicius, Anna Lindholm, Maria de Luz Mathias, George Mistainas, Jaroslav Pialek, Priscilla Tucker, Jacint Ventura and Jan Wojcik.

Supplementary material

Signature of paralogous variation

Absence of recombination between R2d1, R2d2

Olfactory receptor cluster distal to R2d2

