Market Volatility Transmission

Dan Wang

Advisor: Dr. Ionut Florescu

Stevens Institute of Technology

February 16, 2020

Motivation

What is Volatility Transmission?

Volatility transmission captures the linkage between two or more economic variables, it measures the magnitude of the volatility impacted by externalities of economic activity.

Why do we want to investigate volatility transmission?

- Integration among global markets has been increasing during recent twenty years. (Cetorelli and Goldberg, 2011; Bekaert et al., 2014)
- 2 Understanding the nature of volatility transmission would benefit to investors and policy makers.

BEKK-GARCH Model

Engle and Kroner (1995) and Engle (2002) propose the BEKK-GARCH model and its decomposition:

$$R_t = \Omega + \Theta(L)R_{t-1} + \epsilon_t, \epsilon_t = z_t H_t^{0.5}$$

where the R_t is a $N \times K$ vector of assets return at time t, $\Theta(L)$ is the lag polynomial matrix, The H_t is the corresponding $K \times K$ conditional co-variance matrix, it also can be given below:

$$H_t = M'M + A'e_{t-1}e'_{t-1}A + B'H_{t-1}B$$

where M is a $K \times K$ triangular matrix. A and B are $K \times K$ coefficient matrices that capture the exogenous innovation on volatility and past conditional variances, respectively.

For three variables system,

$$M = \begin{bmatrix} \omega_{11} & \omega_{12} & \omega_{13} \\ 0 & \omega_{22} & \omega_{23} \\ 0 & 0 & \omega_{33} \end{bmatrix} A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

Under the framework of Diebold and Yilmaz (2012), we have measurement of total volatility transmission(TVT), volatility transmitter(VT), and volatility receiver(VR).

$$TVT = \frac{\sum_{i,j\neq i}^{K} b_{i,j}^{2}}{\sum_{i,j}^{K} b_{i,j}^{2}} \cdot 100$$

$$VT(n) = \frac{\sum_{i=n,j\neq i}^{K} b_{i,j}^{2}}{\sum_{i=n,j}^{K} b_{i,j}^{2}} \cdot 100$$

$$VR(n) = \frac{\sum_{j=n,j\neq i}^{K} b_{i,j}^{2}}{\sum_{j=n,j\neq i}^{K} b_{i,j}^{2}} \cdot 100$$

$$B = \begin{bmatrix} 0.9509 & 0.0340 & -0.0242 \\ -0.0259 & 0.9472 & -0.0295 \\ 0.0169 & -0.0081 & 0.9884 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.9509 & 0.0340 & -0.0242 \\ -0.0259 & 0.9472 & -0.0295 \\ 0.0169 & -0.0081 & 0.9884 \end{bmatrix}$$

Data Description

Data

- 1 Countries: US Canada Germany UK France

 Japan Hong Kong and India UK-1 US-1 Hong Kong UK US
- Period: January 4,2013-January 4,2017
- 3 Data frequency: 15 minutes, hourly, daily
- 4 Resource: Thomson Reuters

Sample result for total volatility transmission

The total volatility transmission table is calculated from Jan to March, 2017.

Table: Total Volatility Transmission, %

	AS	EU	NA	NO
D	0.02172	0.00190	0.05622	0.75371
Н	0.15475	0.37071	0.00468	0.12324
М	0.16551	0.91207	2.82536	0.09902

The greatest value in the same group has been highlighted.

For three variables system, with the notation we have:

$$h_{11,t} = b_{11}^2 h_{11,t-1} + b_{21}^2 h_{22,t-1} + b_{31}^2 h_{31,t-1} + b_{11} b_{21} h_{21,t-1} + \\ b_{11} b_{21} h_{12,t-1} + b_{11} b_{31} h_{31,t-1} + b_{11} b_{31} h_{13,t-1} + b_{21} b_{31} h_{32,t-1} + b_{21} b_{31} h_{23,t-1} + \\ h_{22,t} = b_{12}^2 h_{11,t-1} + b_{22}^2 h_{22,t-1} + b_{32}^2 h_{33,t-1} + b_{12} b_{22} h_{12,t-1} + \\ b_{12} b_{22} h_{21,t-1} + b_{12} b_{32} h_{31,t-1} + b_{12} b_{32} h_{13,t-1} + b_{22} b_{32} h_{23,t-1} + b_{22} b_{32} h_{32,t-1} + \\ h_{33,t} = b_{13}^2 h_{11,t-1} + b_{23}^2 h_{22,t-1} + b_{33}^2 h_{33,t-1} + b_{13} b_{23} h_{21,t-1} + \\ h_{13} b_{23} h_{12,t-1} + b_{13} b_{33} h_{31,t-1} + b_{13} b_{33} h_{31,t-1} + b_{23} b_{33} h_{32,t-1} + b_{23} b_{33} h_{32,t-1} + \\ Self_i = \frac{b_{i,i}^2}{\left(\sum_{i,j} |b_{i,j}|\right)^2} \\ direct_i = \frac{\sum_{i,j\neq i} b_{j,i}^2}{\left(\sum_{i,j} |b_{j,i}|\right)^2} \\ cross - market_i = \frac{\sum_{i,j\neq i} 2|b_{j,i}||b_{k,i}|}{\left(\sum_{i,j} |b_{i,j}|\right)^2}$$

Volatility Components

Table: Volatility components in Asian Market

		HK	Japan	India
D	self	95.1743%	97.9237%	98.5194%
	direct	0.0505%	0.0082%	0.0039%
	cross	4.7752%	2.0682%	1.4767%
Н	self	87.5301%	93.0948%	91.7509%
	direct	0.2181%	0.1039%	0.0960%
	cross	12.2518%	6.8014%	8.1532%
М	self	90.2398%	95.3608%	89.5780%
	direct	0.2452%	0.0453%	0.1580%
	cross	9.5150%	4.5939%	10.2640%

Cross market effect in in Asian countries

0.02424

0.02120

0.02118

Average on cross effect

Cross market effect in in North American countries 0.5 US President Selection US government shutdown 0.4 0.3 US CA 0.2 0.1 0.0 US Canada 0.09641 Average on cross effect 0.09774

4 □ →

Cross maket effect in global market

Thank You

- Bekaert, G., M. Ehrmann, M. Fratzscher, and A. Mehl (2014). The global crisis and equity market contagion. *The Journal of Finance* 69(6), 2597–2649.
- Cetorelli, N. and L. S. Goldberg (2011). Global banks and international shock transmission: Evidence from the crisis. *IMF Economic Review* 59(1), 41–76.
- Diebold, F. X. and K. Yilmaz (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. *International Journal of Forecasting* 28(1), 57–66.
- Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. *Journal of Business & Economic Statistics* 20(3), 339–350.
- Engle, R. F. and K. F. Kroner (1995). Multivariate simultaneous generalized arch. *Econometric theory* 11(1), 122–150.

Appendix

Appendix

