第5章 多维随机向量

前面讨论了一维随机变量的概率分布,然而很多在实际问题中,随机现象可能需要两种或两种以上的随机因素来描述,仅仅用一个随机变量是不够的,需要多个随机变量.例如,为了考察某地区儿童的身体素质时,可以同时考虑他们的身高、体重、肺活量、视力等,此时至少需要四个随机变量来描述.这些随机变量之间可能存在某些关联,因此分别对每个随机变量单独进行研究是不够的,需要将其看作一个整体来研究,即多维随机向量.

定义 5.1 设 $X_1 = X_1(\omega), X_2 = X_2(\omega), \cdots, X_n = X_n(\omega)$ 是定义在同一样本空间 Ω 上的 n 个随机变量, 由它们构成的向量 (X_1, X_2, \cdots, X_n) 称为 n 维随机向量, 或称 n 维随机变量.

一维随机变量可以看作多维随机变量的一种特殊情况,本章主要讨论二维随机向量及其分布,同理可讨论二维以上的随机向量.

5.1 二维联合分布函数

类似于一维随机变量, 我们用分布函数来研究二维随机向量的概率特性.

定义 5.2 设 (X,Y) 为二维随机向量, 对任意实数 x 和 y,

$$F(x, y) = P(X \leqslant x, Y \leqslant y)$$

称为二维随机向量 (X,Y) 的 **分布函数**, 或称随机变量 X 和 Y 的 **联合分布函数** (joint cumulative probability distribution function).

图 5.1 随机向量 (X,Y) 的分布函数 F(x,y) 和概率 $P(x_1 < X \le x_2, y_1 < Y \le y_2)$

若将 (X,Y) 看作平面上随机点的坐标,则分布函数 F(x,y) 的值表示随机向量 (X,Y) 落入以 (x,y) 为顶点的左下方无穷区域的概率,如图 5.1(a) 所示. 再根据图 5.1(b) 可知,随机向量 (X,Y) 落

入矩形区域 $\{(x,y): x_1 < x \leq x_2, y_1 < y \leq y_2\}$ 的概率

$$P(x_1 < X \le x_2, y_1 < Y \le y_2) = F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1)$$
.

二维随机向量 (X,Y) 的分布函数 F(x,y) 具有以下性质:

- 1) 分布函数 F(x,y) 对每个变量都是单调不减的, 即对任意固定的实数 y, 当 $x_1 > x_2$ 时有 $F(x_1,y) \ge F(x_2,y)$; 对任意固定的实数 x, 当 $y_1 > y_2$ 时有 $F(x,y_1) \ge F(x,y_2)$.
- 2) 对任意实数 x 和 y, 分布函数 $F(x,y) \in [0,1]$, 而且

$$F(+\infty, +\infty) = 1,$$
 $F(-\infty, y) = F(x, -\infty) = F(-\infty, -\infty) = 0.$

3) 分布函数 F(x,y) 关于每个变量右连续, 即

$$F(x,y) = F(x+0,y)$$
 π $F(x,y) = F(x,y+0)$.

4) 对任意实数 $x_1 < x_2$ 和 $y_1 < y_2$ 有

$$F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1) \ge 0$$
.

任何的分布函数 F(x,y) 都满足上述四条性质, 前三条性质与一维随机变量类似, 第四条性质根据图 5.1(b) 直接可证. 反之, 任何满足上面四条性质的二元函数 F(x,y) 都可看成某二维随机向量的分布函数.

值得说明的是, 当二元函数 F(x,y) 仅仅满足前面的三条性质时, 并不一定能成为某二维随机向量的分布函数, 例如

$$F(x,y) = \begin{cases} 1 & x+y \geqslant 0, \\ 0 & x+y < 0. \end{cases}$$

很容易验证 F(x,y) 仅仅满足前面的三条性质, 但因为

$$F(1,1) - F(1,-1) - F(-1,1) + F(-1,-1) = -1$$
,

如图 5.2(a) 所示, 不满足第四条性质因此不构成一个分布函数.

根据随机向量 (X,Y) 的联合分布函数 F(x,y), 还可以研究每个随机变量的统计特征, 即将 X 和 Y 看做单独的随机变量, 通过联合分布函数 F(x,y) 来研究随机变量 X 和 Y 的分布函数 $F_X(x)$ 和 $F_Y(y)$, 即边缘分布函数.

定义 5.3 设二维随机向量 (X,Y) 的联合分布函数为 F(x,y), 称

$$F_X(x) = P(X \leqslant x) = P(X \leqslant x, y < +\infty) = F(x, +\infty) = \lim_{y \to +\infty} F(x, y)$$
,

5.1 二维联合分布函数 103

图 5.2 分布函数第四条性质的反例和边缘分布

为 (X,Y) 关于随机变量 X 的 **边缘分布函数** (marginal distribution function). 类似地定义 (X,Y) 关于随机变量 Y 的边缘分布函数

$$F_Y(y) = P(Y \leqslant y) = P(Y \leqslant y, x < +\infty) = F(+\infty, y) = \lim_{x \to +\infty} F(x, y) .$$

边缘分布函数 $F_X(x_0)$ 和 $F_Y(y_0)$ 所表示的概率分别如图 5.2(b) 和 5.2(c). 下面看一个例子.

例 5.1 设二维随机向量 (X,Y) 的分布函数为

$$F(x,y) = A(B + \arctan \frac{x}{2})(C + \arctan \frac{y}{3})$$
 $(x, y \in \mathbb{R})$.

求随机变量 X 与 Y 的边缘分布函数, 以及概率 P(Y > 3).

解 对任意 $x \in (-\infty, +\infty)$ 和 $y \in (-\infty, +\infty)$, 根据分布函数的性质有

$$1 = F(+\infty, +\infty) = A(B + \frac{\pi}{2})(C + \frac{\pi}{2}) ,$$

$$0 = F(x, -\infty) = A(B + \arctan\frac{x}{2})(C - \frac{\pi}{2}) ,$$

$$0 = F(-\infty, y) = A(B - \frac{\pi}{2})(C + \arctan\frac{y}{3}) .$$

求解上述方程可得

$$C = \frac{\pi}{2}, \quad B = \frac{\pi}{2}, \quad A = \frac{1}{\pi^2}.$$

从而得到 $F(x,y) = (\pi/2 + \arctan x/2)(\pi/2 + \arctan y/3)/\pi^2$, 进一步得到

$$F_X(x) = \lim_{y \to \infty} \frac{1}{\pi^2} (\frac{\pi}{2} + \arctan \frac{x}{2}) (\frac{\pi}{2} + \arctan \frac{y}{3}) = \frac{1}{\pi} (\frac{\pi}{2} + \arctan \frac{x}{2}),$$

同理可得

$$F_Y(y) = \frac{1}{\pi} \left(\frac{\pi}{2} + \arctan \frac{y}{3} \right) .$$

最后得到

$$P(Y > 3) = 1 - P(Y \le 3) = 1 - F_Y(3) = 1 - \left(\frac{1}{2} + \frac{1}{\pi}\arctan 1\right) = \frac{1}{4}.$$

104 第 5 章 多维随机向量

5.2 二维离散型随机向量

定义 5.4 若二维随机向量 (X,Y) 的取值是有限个或无限可列的,则称 (X,Y) 为 **二维离散型 随机向量**. 设离散型随机向量 (X,Y) 所有可能的取值为 (x_i,y_i) $(i,j=1,2,\cdots)$,则称

$$p_{ij} = P(X = x_i, Y = y_j)$$

为二维随机向量 (X,Y) 的 **联合分布列**, 简称 **分布列**.

二维随机向量分布列具有下列性质:

通过随机向量 (X,Y) 的联合分布列 p_{ij} , 还可以研究每个随机变量的统计特征, 例如随机变量 X 的 **边缘分布列** 为

$$P(X = x_i) = \sum_{j=1}^{\infty} P(X = x_i, Y = y_j) = \sum_{j=1}^{\infty} p_{ij} = p_{i.} ,$$

以及随机变量 Y 的 边缘分布列 为

$$P(Y = y_j) = \sum_{i=1}^{\infty} P(X = x_i, Y = y_j) = \sum_{i=1}^{\infty} p_{ij} = p_{.j}$$
.

二维随机向量的联合分布列和边缘分布列可通过表 5.1 来进行表示.

Y $p_{i\cdot} = \sum_{j} p_{ij}$ X p_{1i} p_{11} p_{12} p_1 . p_{21} p_{2j} x_i p_{i1} p_{i2} p_{ij} p_i . $p_{\cdot j} = \sum_{i} p_{ij}$ $p_{\cdot 1}$ $p_{\cdot j}$

表 5.1 二维随机向量的概率分布表

根据二维随机变量 (X,Y) 的联合分布列 p_{ij} , 可以得到它们的联合分布函数

$$F(x,y) = \sum_{x_i \leqslant x, y_j \leqslant y} p_{ij} ,$$

5.2 二维离散型随机向量 105

和边缘分布函数

$$F_X(x) = \sum_{x_i \leqslant x} p_{i\cdot} = \sum_{x_i \leqslant x} \sum_{j=1}^{+\infty} p_{ij}$$
 $\forall x \in F_Y(y) = \sum_{y_j \leqslant y} p_{\cdot j} = \sum_{y_j \leqslant y} \sum_{i=1}^{+\infty} p_{ij}$.

例 5.2 假设某地区有 15% 的家庭没小孩, 20% 的家庭有一个小孩, 35% 的家庭有两个小孩, 30% 的家庭有三个小孩, 且假设每个小孩为男孩或女孩是相互独立且等可能的. 随机选择一个家庭, 用随机变量 X, Y 分别表示该家庭中男孩和女孩的个数, 求 $P(X \ge 1)$, $P(Y \le 2)$ 和 $P(X \le Y)$.

解 根据题意有 X,Y 的所有可能取值为 $\{0,1,2,3\}$, 进一步有联合分布列

$$P(X = i, Y = j) = P($$
选择的家庭有 $i + j$ 个小孩, 其中 i 个男孩和 j 个女孩)

- = P(选择的家庭有i+j个小孩)P(i个男孩和j个女孩|选择的家庭有i+j个小孩)
- $= \binom{i+j}{i} \frac{1}{2^{i+j}} P(选择的家庭有 i + j \wedge 小孩) ,$

由此可得联合分布列和边缘分布列为

Y X	0	1	2	3	p_i .
0	0.1500	0.1000	0.0875	0.0375	0.3750
1	0.1000	0.175	0.1125	0	0.3875
2	0.0875	0.1125	0	0	0.2000
3	0.0375	0	0	0	0.0375
$p_{\cdot j}$	0.3750	0.3875	0.2000	0.0375	1

最后得到

$$P(X \ge 1) = 0.625, \quad P(Y \le 2) = 0.9625, \quad P(X \le Y) = 0.6625$$
.

最后介绍一种常用的多维离散分布: 多项分布, 它本质上是二项分布的推广, 可用于机器学习中多分类问题. 假设试验 E 有 n 种可能的结果 A_1, A_2, \cdots, A_n , 每种结果发生的概率 $p_i = P(A_i)$, 则有 $p_1 + p_2 + \cdots + p_n = 1$.

将试验 E 独立重复地进行 m 次,用 X_1, X_2, \dots, X_n 分别表示事件 A_1, A_2, \dots, A_n 发生的次数,则每个随机变量 X_i 的取值为 $\{0, 1, 2, \dots, m\}$ 且满足 $X_1 + X_2 + \dots + X_n = m$,则随机向量 (X_1, X_2, \dots, X_n) 服从多项分布,其严格的定义如下:

定义 5.5 若 n 维随机向量 (X_1, X_2, \dots, X_n) 的分布列为

$$P(X_1 = k_1, X_2 = k_2, \cdots, X_n = k_n) = \binom{m}{k_1, k_2, \cdots, k_n} p_1^{k_1} p_2^{k_2} \cdots p_n^{k_n},$$

其中 k_1, k_2, \dots, k_n 是非负的整数且满足 $k_1 + k_2 + \dots + k_n = m$, 则称随机向量 (X_1, X_2, \dots, X_n) 服从参数为 m, p_1, p_2, \dots, p_n 的 **多项分布** (multinomial distribution), 记为 $(X_1, X_2, \dots, X_n) \sim M(m, p_1, p_2, \dots, p_n)$.

很容易验证 $P(X_1 = k_1, X_2 = k_2, \dots, X_n = k_n) \ge 0$ 以及

$$\sum_{k_i \geqslant 0, k_1 + k_2 + \dots + k_n = m} P(X_1 = k_1, X_2 = k_2, \dots, X_n = k_n)$$

$$= \sum_{k_i \geqslant 0, k_1 + k_2 + \dots + k_n = m} {m \choose k_1, k_2, \dots, k_n} p_1^{k_1} p_2^{k_2} \cdots p_n^{k_n} = (p_1 + p_2 + \dots + p_n)^m = 1.$$

当 n=2 时多项分布简化为二项分布.

引理 5.1 若多维随机向量 $(X_1, X_2, \dots, X_n) \sim M(m, p_1, p_2, \dots, p_n)$, 则每个随机变量 X_i 的边缘分布是二项分布 $B(m, p_i)$.

根据 X_i 的实际含义, 考虑事件 A_i 发生或不发生的伯努利试验, 则有 $X_i \sim (m, p_i)$. 另一种方法是通过多项分布的定义直接计算, 我们将其作为一个作业题.

5.3 二维连续型随机变量

定义 5.6 设二维随机向量的分布函数为 F(x,y), 如果存在二元非负可积函数 f(x,y) 使得对任意实数对 (x,y) 有

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv,$$

则称 (X,Y) 为 二维连续型随机向量, 称 f(x,y) 为二维随机向量 (X,Y) 的 密度函数, 或称随机变量 X 和 Y 的 联合概率密度函数.

根据定义可知概率密度函数 f(x,y) 满足如下性质:

- 1) 非负性: 对任意实数 x 和 y 有 $f(x,y) \ge 0$.
- 2) 规范性: $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = 1$. 任何满足上述两条性质的二元函数 f(x,y) 可以成为某随机向量 (X,Y) 的联合密度函数.
- 3) 若G为平面上的一个区域,则点(X,Y)落入G的概率为

$$P((X,Y) \in G) = \iint_{(x,y)\in G} f(x,y)dxdy ,$$

在几何上可以看作是以 G 为底面, z = f(x, y) 为顶面的柱体体积.