

Universidad de Granada

Doble Grado en Ingeniería Informática y Matemáticas

ÁLGEBRA III

Autor: Jesús Muñoz Velasco

Índice general

Introducción

Comenzaremos la introducción al contenido de esta asignatura recordando brevemente el concepto de cuerpo¹. Lo primero que sabemos es que un cuerpo es un tipo de anillo conmutativo. Un anillo² es un conjunto no vacío, A que tiene definidas dos aplicaciones binarias y dos elementos especiales, $(A, +, 0, \cdot, 1)$. Con (+, 0) tenemos que A es un grupo aditivo y con $(\cdot, 1)$ tenemos que A es un monoide, es decir, que cuenta con una aplicación asociativa con elemento neutro 1. Además estas 2 operaciones tienen que guardar una cierta compatibilidad (axiomas), que llamamos leyes distributivas y que son los siguientes:

- •) $a \cdot (b+c) = a \cdot b + a \cdot c$
- •) $(b+c) \cdot a = b \cdot a + c \cdot a$, $\forall a, b \in A$

Con esto habremos completado la definición de anillo. La conmutatividad hace referencia a la siguiente propiedad:

$$a \cdot b = b \cdot a \ \forall a, b \in A$$

Veamos ahora qué tiene que suceder para que a este anillo conmutativo lo llamemos cuerpo. Para ello, es equivalente decir que $A \setminus \{0\}$ es un grupo y que $\forall a \in A \setminus \{0\}$ existe un $a^{-1} \in A \setminus \{0\}$ tal que $a \cdot a^{-1} = 1$ (lo cual implica claramente $0 \neq 1$).

Ejemplo.

- •) Los racionales, Q.
- •) Los reales, \mathbb{R} .
- •) Los complejos, \mathcal{C} .
- •) $\mathbb{Z}_p \text{ con } p \text{ primo.}$

Notación. Denotaremos el producto de 2 elementos por yuxtaposición³, es decir, $a \cdot b = ab$

Recordaremos ahora los conceptos de subanillo y subcuerpo. Para ello consideramos A un anillo y un subconjunto $B \subseteq A$ tal que $1 \in B$. Si además tenemos que (B, +) es un subgrupo de (A, +) y que para todo $a, b \in B$ se tiene que $ab \in B$, entonces diremos que B es un subanillo de A.

¹ field en inglés

 $^{^2}ring$ en inglés

³Las matemáticas son el arte de ser ambiguo siendo preciso en cada instante (Torrecillas, 18-9-2025)

Álgebra III Índice general

Ejemplo.

- •) \mathbb{Z} es subanillo de \mathbb{Q} .
- •) \mathbb{Q} es subanillo de \mathbb{R} .
- •) \mathbb{R} es subanillo de \mathbb{C}

Definición 0.1 (Homomorfismo de anillos). Dados A y B dos anillos, un **homomorfismo** $f: A \to B$ es una aplicación que verifica para todo $a, b \in A$ las siguientes propiedades:

- •) f(1) = 1
- •) f(a+b) = f(a) + f(b)
- $\bullet) \ f(ab) = f(a)f(b)$

Definición 0.2 (Característica de un anillo). Dado A un anillo, existe un único homomorfismo de anillos⁴ $\chi : \mathbb{Z} \to A$. Entonces ker χ es un ideal de \mathbb{Z} y por tanto será principal, es decir, que ker $\chi = n\mathbb{Z}$ para cierto $n \in \mathbb{N}$. Dicho n es el número al que llamaremos **característica** de A y la notaremos como n = car(A).

Definición 0.3 (Subanillo). Si K es un cuerpo, entonces un subcuerpo de K es un subanillo F de K tal que F es un cuerpo.

Observación. Sea K un cuerpo y Γ un conjunto no vacío de subcuerpos de K. Entonces $\bigcap_{F\in\Gamma}F$ es un subcuerpo de K.

Definición 0.4 (Subcuerpo primo). Sea K un cuerpo y tomamos $S \subset K$ un subconjunto y consideramos

$$\Gamma = \{ \text{ subcuerpos de } K \text{ que contienen a } S \}$$

En Γ podemos tomar la intersección, $\bigcap_{F \in \Gamma} F$ que es el subgrupo más pequeño que contiene a S. Para $S = \emptyset$ obtengo el menor subcuerpo de K y a este subcuerpo lo llamaremos **subcuerpo primo** de K.

⁴se prueba fácilmente por inducción

 $^{^5}$ El propio K está en este conjunto