

Université Abdelmalek ESSAADI (UAE) Ecole Nationale des Sciences Appliquées Al Hoceima, Maroc

AP1: Analyse 2

Professeur A. MOUSSAID Année Universitaire 2019/2020

$\frac{\text{Devoir Libre 2}}{\text{A Rendre le }15/07/2020}$

PROBLÈME 1

Soit
$$f_n(x) = \frac{\sin nx}{n^x}$$
, $n \ge 1$, $x \in [0, +\infty[$

- 1. Montrer que $\sum_{n=1}^{+\infty} f_n(x)$ converge simplement dans $[0, +\infty[$.
- 2. posons $f(x) = \sum_{n=1}^{+\infty} \frac{\sin nx}{n^x}$ pour tout $x \in [0, +\infty[$.
 - a) Etudier la convergence uniforme de $\sum_{n=1}^{+\infty} f_n(x)$ dans $[\pi; +\infty[$.
 - b) -Soit $a \in]0; \pi[$, Montrer que $\sum_{n=1}^{+\infty} f_n(x)$ converge uniformement dans $[a, \pi]$.
- 3. Montrer que f est continue dans $]0, +\infty[$.
- 4. a) -Montrer que $\sum_{n=1}^{+\infty} \frac{\cos nx}{n^{x-1}}$ converge uniformement dans $[b, +\infty[$ pour tout b > 1.
 - b) -Montrer que $\sum_{n=1}^{+\infty} f_n^{'}$ converge uniformement dans $[b, +\infty[$ pour tout b > 1.
 - c) En déduire que f est dérivable dans $]1, +\infty[$.

Bon Courage