Умножение в дополнительном коде (с ручной коррекцией)

Михаил Шихов m.m.shihov@gmail.com

Лекция по дисциплине «информатика» (17 марта 2017 г.)

Содержание

- 📵 Обоснование корректности
 - Точка зрения на дополнительный код
 - Нужна коррекция
- Коррекция вовремя
 - Технические ограничения
 - Примеры

Точка зрения на дополнительный код

С помощью дополнительного кода в n-разрядной сетке можно представить целые числа из отрезка

$$X \in [-2^{n-1}, +(2^{n-1}-1)].$$

В этом случае:

ДК
$$(X)=egin{cases} |X|, & ext{если } X\geq 0, \ 2^n-|X|, & ext{если } X<0. \end{cases}$$

Масштабированный дополнительный код

Если выполнить масштабирование с масштабом $M=2^n$:

$$X = x \cdot 2^n$$
.

Тогда:

ДК
$$(X)=egin{cases} |x|\cdot 2^n, & ext{если } X\geq 0, \ (1-|x|)\cdot 2^n, & ext{если } X<0. \end{cases}$$

Для дробных представлений x справедливо:

ДК
$$(x) = \begin{cases} |x|, & \text{если } x \ge 0, \\ 1 - |x|, & \text{если } x < 0. \end{cases}$$
 (1)

Дополнительный код — положительное число?!

Согласно формуле (1) дополнительный код после масштабирования можно рассматривать как

положительное дробное число.

Так как
$$X\in[-2^{n-1},+(2^{n-1}-1)]$$
, то $x\in[-2^{-1},\leq+(2^{-1}-2^{-n})]$, следовательно

$$(1-|x|)>0.$$

Поэтому основной цикл умножения масштабированных представлений дополнительных кодов

нужно выполнять по правилам перемножения беззнаковых чисел.

Пусть

$$A = a \cdot 2^n,$$

$$B = b \cdot 2^n,$$

далее выполняются операции с дробными a, b.

Коррекция псевдопроизведения ДК $(a)\cdot$ ДК(b)

- Оба сомножителя положительны. Поправок не требуется.
- Один из сомножителей отрицателен. Пусть $a<0,\ b\geq0,\$ тогда правильный код результата: ДК(ab)=(1-|ab|). Псевдопроизведение:

ДК
$$(a) \cdot$$
 ДК $(b) = (1 - |a|) \cdot |b| = |b| - |a| \cdot |b|$.

Нужна поправка: $(1-|b|)= \operatorname{ДK}(-b)$.

• Оба сомножителя отрицательны. Правильный код результата: ДK(ab) = |ab|. Псевдопроизведение:

ДК
$$(a) \cdot$$
 ДК $(b) = (1 - |a|)(1 - |b|) = 1 - |a| - |b| + |ab|$

Прибавив поправку (|a|+|b|), получим (1+|ab|), который, вследствие переноса единицы в целую часть, эквивалентен правильному |ab|.

Резюме: $ДK(ab) = \dots$

- $a \ge 0, b \ge 0$: $\mathsf{LK}(ab) = \mathsf{LK}(a) \cdot \mathsf{LK}(b)$.
- $a \ge 0, b < 0$: $\mathsf{LK}(ab) = \mathsf{LK}(a) \cdot \mathsf{LK}(b) + \mathsf{LK}(-a)$.
- $a < 0, b \ge 0$: $\coprod K(ab) = \coprod K(a) \cdot \coprod K(b) + \coprod K(-b)$.
- a < 0, b < 0: $\coprod K(ab) = \coprod K(a) \cdot \coprod K(b) + \coprod K(-a) + \coprod K(-b)$.

Упрощенное правило ручной коррекции

Достаточно проверить знак каждого аргумента и, если этот аргумент отрицателен, то из псевдопроизведения вычитается парный отрицательному аргумент:

- 1: if a < 0 then
- 2: $CY\Pi := CY\Pi b$;
- 3: end if
- 4: if b < 0 then
- 5: $CY\Pi := CY\Pi a$:
- 6: end if

Основные способы умножения

Коррекции подлежит *старшая* половина 2n разрядного псевдопроизведения^a.

^а n-разрядные множимое и множитель вычитаются из *старшей* половины псевдопроизведения

I-й способ: технические ограничения

Особенности І-го способа

- СЧП сдвигается вправо;
- Множимое прибавляется к старшей половине СЧП;
- Множимое не сдвигается.
- Коррекция выполняется только в конце цикла умножения. В противном случае все поправки «уедут» в младшие разряды СЧП.
- Исходное значение множителя нужно сохранять.

Так как в цикле умножения к СЧП прибавляется половина множимого, а при коррекции нужно вычесть *целое* множимое, то можно изменить алгоритм: в цикле прибавлять к СЧП *целое* множимое (при этом СЧП в конце цикла окажется *вдвое больше* правильного результата) и сдвинуть всю СЧП перед корреркцией.

II-й способ: технические ограничения

Особенности II-го способа

- СЧП не сдвигается;
- Множимое заносится в младшую часть 2n-разрадного регистра.
- Множимое сдвигается влево;
- Поправка множителем может выполняться как в начале (проще всего), так и в конце цикла умножения. В конце цикла сложнее нужно сохранять множитель.
- Поправка множимым без дополнительных затрат выполняется в конце цикла, когда после серии сдвигов множимое выходит в старшую часть 2*n*-разрядного регистра.

III-й способ: технические ограничения

Особенности III-го способа

- СЧП сдвигается влево;
- Множимое прибавляется к младшей половине 2n-разрядной СЧП.
- Множимое сдвигается влево;
- Поправка множителем выполняется либо к младшей части СЧП в начале цикла умножения, либо в конце цикла — к старшей части (при этом множитель нужно сохранять).
- Поправка множимым без дополнительных затрат выполняется в начале цикла умножения. В конце цикла, после серии сдвигов СЧП, она станет правильной.

IV-й способ: технические ограничения

Особенности IV-го способа

- СЧП не сдвигается;
- Множимое заносится в старшую часть 2*n*-разрадного регистра.
- Множимое сдвигается вправо;
- Поправка множителем к старшей половине СЧП может выполняеться либо в начале цикла умножения, либо в конце (позаботившись о спасении исходного значения множителя от «сдвиговой» смерти).
- Поправка множимим без дополнительных затрат выполняется до цикла умножения. После поправки выполняется сдвиг регистра множимого и цикл выполняется как обычно.

Операнды для примеров

В качестве примера будем перемножать числа 9 и 11 с различными комбинациями знаков.

Выбрав масштаб $M=2^5$, получим следующие представления:

I-способ: $-9 \cdot 11$. ДК(-99) = ,11100 11101

мн-ль $ ightarrow$	СЧП →	прим.	
,1011 <u>1</u>	,00000 00000	+мн-е/2; сдвиг	
	,.0101 1		
	,00101 10000		
1011	_ ,.0010 11000	1 /2	
, .101 <u>1</u>	,.0101 1	+мн-е/2; сдвиг	
	,01000 01000		
,10 <u>1</u>	_ ,.0100 00100	+мн-е/2; сдвиг	
	,.0101 1	тмн-е/2, сдвиг 	
	,01001 10100		
, 1 <u>0</u>	,.0100 11010	сдвиг	
	,010 01101	L /2. Dec. =2	
, <u>1</u>	<u>,.0101 1</u>	+мн-е/2; Рез-т? 	
	,00111 11101		
	,00111 11101	+ UK (11) UK () D	
	⁺ ,10101	+ДK(-11)=ДK(-мн-е); Рез-т!	
	,11100 11101		

І-способ (модиф.): $-9 \cdot -11$. ДК(99) = ,00011 00011

мн-ль $ ightarrow$	СЧП →	прим.	
,1011 <u>1</u>	_ 0,00000 00000	+мн-е; сдвиг	
,1011=	<u>.,10101</u>	тмп-е, сдвиг	
	0,10101 00000		
1011	,01010 10000	+мн-е; сдвиг	
,.101 <u>1</u>	<u>, 10101</u>	тмн-е, сдвиг	
	0,11111 10000		
,10 <u>1</u>	,01111 11000	+мн-е; сдвиг	
,=	.,10101	тип с, сдви	
	1,00100 11000		
,1 <u>0</u>	.,10010 01100	сдвиг	
, <u>1</u>	,.1001 00110	+мн-е; сдвиг;	
	.,10101	тип с, сдвиг,	
	0,11110 00110		
	.,01111 00011	Рез-т?	
	,01111 00011	L DK(11) = DK(MU a):	
	,01011	+ДК(11)=ДК(-мн-е);	
	0,11010 00011		
	_ 0,11010 00011	+ДК(9)=ДК(-мн-ль); Рез-т!	
		тди(э)—ди(-мн-ль), гез-1:	
	1.00011 00011		

II-способ: $-9 \cdot -11$. ДК(99) = ,00011 00011

мн-ль $ ightarrow$	мн-е ←	СЧП	прим.
,10111		,00000 00000	+ДК(9)=ДК(-мн-ль);
		,01001 00000	
,1011 <u>1</u>	, 10101	+ ,01001 00000 + , 10101	+мн-е; сдвиг
		,01001 10101	
,.101 <u>1</u>	,1 0101.	+ ,01001 10101 + ,1 0101.	+мн-е; сдвиг
		,01010 11111	
,10 <u>1</u>	,10 101	+ ,01010 11111 + ,10 101	+мн-е; сдвиг
		,01101 10011	
, 1 <u>0</u>	,101 01		сдвиг
, <u>1</u>	,.1010 1	+ ,01101 10011 + ,.1010 1	+мн-е; Рез-т?
		,11000 00011	
	,10101	+ ,11000 00011 + ,01011 ,00011 00011	+ДК(11)=ДК(-мн-е); Рез-т!

III-способ: $-11 \cdot -9$. ДК(99) = ,00011 00011

мн-ль ←	СЧП ←	прим.	
	,00000 00000	+ДК(9)=ДК(-мн-е);	
	, 01001		
	,00000 01001		
	,00000 01001	L DK(11) DK().	
	, 01011	+ДK(11)=ДK(-мн-ль);	
	,00000 10100		
	,00001 0100.	сдвиг	
, <u>1</u> 0101	,00001 0100.	1	
	, 10111	+мн-е; сдвиг	
	,00001 11111		
<u>,0</u> 101.	,00011 1111.	сдвиг	
101	,00111 111	1	
, <u>1</u> 01 ⁴	, 10111	+мн-е; сдвиг 	
	,01000 10011		
, <u>0</u> 1	,10001 0011.	сдвиг	
	,00010 011	Рез-т!	
, <u>1</u>	, 10111	Fe3-1!	
	,00011 00011		

V-способ:: $-11 \cdot -9$. ДК(99) = ,00011 00011

мн-ль ←	мн-е →	СЧП	прим.
10101		,00000 00000	. 01/(11) 01//
,10101		⁺ ,01011 +Д	+ДK(11)=ДK(-мн-ль);
		,01011 00000	
	,10111	,01011 00000	+ДК(9)=ДК(-мн-е);сдвиг
		,01001	
		,10100 00000	
, <u>1</u> 0101 ,.10	1011 1	,10100 00000	
	,.1011 1	,.1011 1	+мн-е; сдвиг;
		,11111 10000	
<u>,0</u> 101.	,101 11		сдвиг
	10 111	,11111 10000	
, <u>1</u> 01	,10 111	⁺ ,10 111	+мн-е; сдвиг
		,00010 01100	
<u>,</u> 01	,1 0111.		сдвиг
	10111	,00010 01100	+мн-е; Рез-т
, <u>1</u>	, 10111	, 10111	
		,00011 00011	

Какая разрядность результата должна получиться, если дополнительные коды операндов занимают n бит?

Перемножить числа:

- 26 и −13 І-м способом;
- 2 −26 и 13 II-м способом;
- −26 и −13 III-м способом;
- \bullet -13 и -26 IV-м способом.

Обосновать выбор масштаба.

Прорешать одним из методов «краевые» случаи в *п*-разрядной сетке:

- $-2^n \cdot -2^n$;
- $-2^n \cdot x$, где x > 0;
- $(2^n-1)\cdot(2^n-1)$.

Модифицируйте схему умножения первым способом с учетом работы в ДК (можно использовать условный блок «получение ДК» и мультиплексор):

Советы самоучке

Рекомендуется почитать разделы посвященные работе с битами в [1].

Библиография I

Г. Уоррен-мл. Алгоритмические трюки для программистов / Г. Уоррен-мл. —

2 изд. —

М.: Издательский дом «Вильямс», 2014. —

512 c.