Efficient Evidence Accumulation Clustering for large datasets / big data

Diogo Alexandre Oliveira Silva $_{\text{ALFAL}}$ / $_{\text{ENGEL}}$

Academia da Força Aérea / Instituto Superior Técnico

November, 2015

Contents

- 1 Introduction
 - Clustering
 - EAC
 - Goals
- 2 Proposed solution
 - Overview
 - Production
 - Combination
 - Recovery
- 3 Results
 - Validation
 - GPU K-Means
 - Big study
- 4 Conclusion

"The goal of data clustering, also known as cluster analysis, is to discover the natural grouping(s) of a set of patterns, points, or objects." 1

¹A. K. Jain, "Data clustering: 50 years beyond K-means," Pattern Recognition Letters, vol. 31

Introduction

What is clustering?

Source: A. N. L. Fred and A. K. Jain, "Combining multiple clusterings using evidence accumulation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27

Evidence Accumulation Clustering

- State-of-the-art
- Robust
- Ensemble method

EAC: Production

EAC: Combination

EAC: Recovery

Goals

- Devise strategies to reduce computation and memory complexities of EAC.
- Validation of Big Data EAC on real data.
- Application of Evidence Accumulation Clustering to Big Data.
- Application of EAC to real-world large datasets.

Proposed solution: overview

Proposed solution: final

Optimizing production of ensemble

- K-Means is simple and has been used with EAC before with success.
- K-Means:
 - labelling: find the closest centroid to each data pattern
 - update: new centroids are the mean of the assigned patterns
- lacktriangle Number of clusters from interval $[K_{min}, K_{max}]$
- Optimization through parallelization in GPU.

GPGPU K-Means

- CUDA GPGPU
 - Hundreds of processors
 - Single instruction multiple thread approach
 - Shared memory between threads

GPU K-Means

■ GPU

- Hundreds of processors
- Single instruction multiple thread approach
- Shared memory between threads

■ Parallel K-Means

- 1 Host sends data and centroids to GPU
- 2 GPU threads compute the closest centroid to data patterns.
- 3 The label and distance are stored and transfered to host.
- 4 Host computes new centroids and sends them back to host.
- 5 Repeat steps 2-4 until stopping criteria is met.

Optimizing combination

- Biggest challenge: $O(n^2)$ memory complexity
 - $200\,000$ dataset $\longrightarrow 149$ GB
 - 1000000 dataset $\longrightarrow 3725$ GB
- Co-association matrix is:
 - symmetric (49.5% reduction)
 - \blacksquare sparse (association density as low as 1%)

■ exploiting sparsity

Optimizing combination

- Library solutions are either very slow or occupy too much memory
- Lack of literature on fast building
- Compromise between speed and memory:

EAC CSR

Optimizing combination

Optimizing final clustering

- Single-Link (SL) has been used before with success
- SL is a hierarchical agglomerative algorithm
- SL works on a pair-wise proximity matrix between all patterns
- SL is equivalent to a Minimum Spanning Tree (MST)
- Disk based MST variant to address very large co-association matrices

Validation

dataset	Difference between accuracies of implementations True number of clusters Lifetime criteria		
breast_cancer	4.948755e-06	2.825769e-06	
ionosphere	1.652422e-06	1.452991e-06	
iris	3.333333e-06	3.333333e-06	
isolet	1.038861e-07	4.084904e-07	
optdigits	3.795449e-06	1.480513e-06	
pima	3.333333e-06	3.333333e-06	
pima_norm	4.166667e-07	4.166667e-07	
wine_norm	1.123596e-07	1.910112e-06	

Speed-up over original version

dataset	Production	Combination	Recovery
breast_cancer ionosphere iris isolet optdigits pima pima_norm	50.43974 21.86286 19.76525 7.010007 17.30209 50.65624 54.25415	7.544247 11.30883 14.49562 6.183124 10.2096 141.4828 132.8632	15.83316 19.97219 28.50479 206.2837 53.02636 13.93502 14.355
wine_norm	22.92404	14.56994	25.27709

GPU K-Means

GPU K-Means

K_{min} rules

Rule	K _{min}	K _{max}
sqrt 2sqrt	$\frac{\sqrt{n}}{2}$ \sqrt{n}	$\frac{\sqrt{n}}{2\sqrt{n}}$
sk=sqrt2 sk=300	$sk = \frac{\sqrt{n}}{2}$ $sk = 300$	$1.3K_{min}$ $1.3K_{min}$

 \overline{n} - the number of samples sk - the samples per cluster

K_{min} evolution

Production time

Combination time per rule

Single-Linkage times per rule

Combination time per matrix format

Single-Linkage times per matrix format

Total time: main memory

Total time: disk

Association density

Memory "density"

Conclusions

- Lessons learned: time vs. memory efficiency
- GPU is a valuable and widely widely available resource for data processing
- EAC was successfully scaled:
 - GPU K-Means
 - Efficient sparse matrix building
 - MST equivalence with SL
 - Disk-based algorithms
- Contributions:
 - Widen the range of EAC's applicability
 - New of way of building sparse matrix
 - lacktriangle New K_{min} rules for sparsity optimizations
- Plenty of possible extensions
- Selected parts of this work was compiled and submitted as a conference article