Question 1.

a) The python file for this problem has been attached in the folder with the name "iqb.py".

b)

1	SGFRKMAFPSGKVEGCMVQVTCGTTTLNGLWLDDTVYCPRHVICTAEDML HHHHHHHHHHHSSSSSSSSSSSSSSSSSHSSHHHSSSSSS	50
51	NPNYEDLLIRKSNHSFLVQAGNVQLRVIGHSMQNCLLRLKVDTSNPKTPK H HHHSSSHHHHSSSSSSSSSSSSSSSSSSSSSSSSSS	100
101	YKFVRIQPGQTFSVLACYNGSPSGVYQCAMRPNHTIKGSFLNGSCGSVGF SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	150

Question 2.

a) The outputs received from the website given in the assignment have been attached below. The code for showing the regions differing has been attached in the folder with the name "iqb.py" and the result has been printed.

4/20/22, 12:56 AM	Stride
-------------------	--------

REM				Se	condary str	ucture summ	nary		~~~~
REM					-		-		~~~~
CHN	/home/pi	roi/st	tride	/tmp/t	mpDOZsOapdb	A			~~~~
REM		J							~~~~
REM									~~~~
SEQ	1 SGI	FRKMAI	FPSGK	VECCMV	QVTCGTTTLNG	T.WT.DDTVYCPE	RHVTCTAEDMI.	50	~~~~
STR	TT				EEEETTEEEE			30	~~~~
REM							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		~~~~
REM									~~~~
SEQ	51 NP	NVEDT.	TDVC	NUCET	'QAGNVQLRVIG	· UCMONCTIDIA	· · ·	100	~~~~
STR	JI NEI	НННН			EETTEEE EEE			100	~~~~
REM		ппппп	ınıı	GGG EE	BEITEEE EEE	66661166666	3E 1111		
REM									~~~~
	101 27	ETTD TO	•	CUT ACU	·	· MDDNUMTVCCE	T NCCCCCUCE	150	~~~~
SEQ	101 YK				NGSPSGVYQCA TTEEEEEEEEE		TTTTTTTEE	150	~~~
STR		1".	LIEEE	CEEEEE	TTEEEEEEEE	ETTTT B	TTTTTTTEE		~~~~
REM									
REM									~~~~
REM	3 3 h - ** - *		ann	1.0		15.			~~~~
LOC	AlphaHe		SER	10		15 A			~~~~
LOC	AlphaHe.		ALA	46		50 A			~~~~
LOC	AlphaHe.		TYR	54		60 A			~~~~
LOC	310Heli:		ARG	40		43 A			~~~~
LOC	310Heli:	x	ASN	63	A SER	65 A			~~~~
LOC	Strand		MET	17	A CYS	22 A			~~~~
LOC	Strand		THR	25		32 A			~~~~
LOC	Strand		THR	35	A PRO	39 A			~~~~
LOC	Strand		LEU	67	A ALA	70 A			~~~~
LOC	Strand		VAL	73	A LEU	75 A			~~~~
LOC	Strand		VAL	77	A GLN	83 A			~~~~
LOC	Strand		LEU	86	A VAL	91 A			~~~~
LOC	Strand		GLN	110	A TYR	118 A			~~~~
LOC	Strand		SER	121	A MET	130 A			~~~~
LOC	Strand		VAL	148	A GLY	149 A			~~~~
LOC	TurnVII	I	SER	1	A ARG	4 A			~~~~
LOC	TurnII'		CYS	22	A THR	25 A			~~~~
LOC	TurnII'		LEU	32	A THR	35 A			~~~~
LOC	TurnIV		GLN	69	A ASN	72 A			~~~~
LOC	TurnII'		ALA	70		73 A			~~~~
LOC	TurnII'		GLN	83		86 A			~~~~
LOC	TurnI		ASN	95		98 A			~~~~
LOC	TurnII		GLN	107		110 A			~~~~
LOC	TurnIV		CYS	117		120 A			~~~~
LOC	TurnI'		TYR	118		121 A			~~~~
LOC	TurnI		ARG	131		134 A			~~~~
LOC	TurnII		LEU	141		144 A			~~~~
LOC	TurnII		SER	144		147 A			~~~~
REM	141111		DLIC			11, 11			~~~~
REM			r	o+2ile	d secondary	structure	accionment.		~~~~
REM			L	есатте	d secondary	scructure	assignment.		~~~~
REM	Res	iduo	- 1	1 6	tructure	-Phi-	-Psi-	-Area-	~~~~
ASG	SER A	1	1	T T	Turn	360.00	114.46	109.8	~~~~
ASG	GLY A	2	2	T			-24.47	91.7	~~~~
			3		Turn				~~~~
ASG	PHE A	3		T	Turn		102.86	188.2	~~~~
ASG	ARG A	4	4	T	Turn		140.92	191.0	~~~~
ASG	LYS A	5	5	C	Coil		131.66	170.8	~~~~
ASG	MET A	6	6	C	Coil		132.19	153.1	~~~~
ASG	ALA A	7	7	C	Coil		157.94	30.3	~~~~
ASG	PHE A	8	8	С	Coil		154.78	125.1	~~~~
ASG	PRO A	9	9	С	Coil		136.28	118.6	~~~~
ASG	SER A	10	10	H	AlphaHelix		-3.80	19.8	~~~~
ASG	GLY A	11	11	H	AlphaHelix		-49.99	47.8	~~~~
ASG	LYS A	12	12	H	AlphaHelix		-30.20	159.4	~~~~
ASG	VAL A	13	13	H	AlphaHelix		-32.57	20.3	~~~~
ASG	GLU A	14	14	H	AlphaHelix	-54.10	-44.48	86.0	~~~~

4/20/22, 1	12:56 AM						Stride		
ASG	GLY A	. 15	15	H	AlphaHelix	-69.19	2.02	22.7	~~~~
ASG	CYS A		16	C	Coil	-109.81	-5.96	3.0	~~~~
ASG	MET A		17	E	Strand	-84.95	128.58	12.3	~~~~
ASG	VAL A		18	E	Strand	-134.93	172.17	0.8	~~~~
ASG	GLN A		19	E	Strand	-110.69	136.01	34.1	~~~~
ASG	VAL A	20	20	E	Strand	-125.60	127.49	0.0	~~~~
ASG	THR A	. 21	21	\mathbf{E}	Strand	-123.98	145.70	25.1	~~~~
ASG	CYS A	. 22	22	E	Strand	-149.99	97.50	7.2	~~~~
ASG	GLY A		23	т	Turn	75.22	-133.71	70.0	~~~~
ASG	THR A		24	T	Turn	-80.97	-8.44	150.1	~~~~
ASG			25	E			125.22	37.4	~~~~
	THR A				Strand	-92.80			
ASG	THR A		26	E	Strand	-132.11	130.84	38.5	~~~~
ASG	LEU A		27	E	Strand	-149.46	-178.11	2.6	~~~~
ASG	ASN A		28	E	Strand	-87.11	148.00	0.0	~~~~
ASG	GLY A	29	29	E	Strand	-132.42	158.90	0.0	~~~~
ASG	LEU A	30	30	E	Strand	-114.57	116.16	27.4	~~~~
ASG	TRP A	31	31	E	Strand	-101.53	109.24	20.8	~~~~
ASG	LEU A		32	E	Strand	-124.86	123.68	7.1	~~~~
ASG	ASP A		33	T	Turn	57.67	-128.67	67.9	~~~~
				т					~~~~
ASG	ASP A		34		Turn	-106.96	32.98	65.5	
ASG	THR A		35	E	Strand	-132.36	136.75	5.6	~~~~
ASG	VAL A		36	E	Strand	-116.13	122.15	0.0	~~~~
ASG	TYR A	37	37	\mathbf{E}	Strand	-103.50	138.77	23.5	~~~~
ASG	CYS A	. 38	38	\mathbf{E}	Strand	-158.15	162.74	3.1	~~~~
ASG	PRO A	. 39	39	E	Strand	-59.39	136.76	24.1	~~~~
ASG	ARG A	40	40	G	310Helix	-68.53	-17.27	47.7	~~~~
ASG	HIS A		41	G	310Helix	-69.70	-0.49	61.7	~~~~
ASG	VAL A		42	G	310Helix	-65.49	-22.40	0.0	~~~~
									~~~~
ASG	ILE A		43	G	310Helix	-85.59	-2.95	5.5	
ASG	CYS A		44	С	Coil	-97.82	146.40	4.9	~~~~
ASG	THR A		45	С	Coil	-94.56	165.80	71.3	~~~~
ASG	ALA A	46	46	H	AlphaHelix	-52.03	-34.54	95.4	~~~~
ASG	GLU A	47	47	H	AlphaHelix	-76.97	-40.93	172.7	~~~~
ASG	ASP A	48	48	H	AlphaHelix	-56.19	-34.39	48.2	~~~~
ASG	MET A		49	H	AlphaHelix	-60.25	-29.59	69.8	~~~~
ASG	LEU A		50	Н	AlphaHelix	-57.38	-42.81	150.1	~~~~
ASG	ASN A		51	C	Coil	-158.91	82.16	143.8	~~~~
ASG	PRO A		52	C	Coil	-83.92	145.30	38.8	~~~~
ASG	ASN A		53	С	Coil	-118.03	82.97	88.3	~~~~
ASG	TYR A	54	54	H	AlphaHelix	-51.78	-47.45	30.0	~~~~
ASG	GLU A	55	55	H	AlphaHelix	-55.27	-41.07	106.1	~~~~
ASG	ASP A	56	56	H	AlphaHelix	-74.64	-39.13	100.2	~~~~
ASG	LEU A	57	57	H	AlphaHelix	-67.69	-35.40	30.4	~~~~
ASG	LEU A		58	Н	AlphaHelix	-69.82	-38.22	17.3	~~~~
ASG	ILE A		59	н	AlphaHelix	-53.22	-37.93	136.6	
	ARG A		60	H	AlphaHelix		-4.57		~~~~
ASG					-	-73.47		81.0	~~~
ASG	LYS A		61	С	Coil	-100.59	162.43	58.6	~~~~
ASG	SER A		62	С	Coil	-140.04	166.91	49.8	~~~~
ASG	ASN A	63	63	G	310Helix	-52.49	-43.61	54.1	~~~~
ASG	HIS A	64	64	G	310Helix	-68.45	-3.09	164.3	~~~~
ASG	SER A	65	65	G	310Helix	-83.64	-12.88	35.2	~~~~
ASG	PHE A		66	С	Coil	-109.76	125.90	8.3	~~~~
ASG	LEU A		67	E	Strand	-108.63	103.79	72.9	~~~~
ASG	VAL A		68	E	Strand	-102.20	124.42	0.2	~~~~
ASG	GLN A		69	E	Strand	-127.78	121.72	52.4	~~~~
ASG	ALA A		70	E	Strand	-105.45	98.67	19.3	~~~~
ASG	GLY A		71	T	Turn	76.37	-110.38	61.9	~~~~
ASG	ASN A	72	72	T	Turn	-111.47	-7.39	156.4	~~~~
ASG	VAL A	73	73	E	Strand	-95.54	127.00	91.4	~~~~
ASG	GLN A	74	74	E	Strand	-82.66	135.96	130.8	~~~~
ASG	LEU A		75	E	Strand	-103.23	150.98	15.4	~~~~
ASG	ARG A		76	C	Coil	-97.85	116.27	45.1	~~~~
ASG	VAL A			E	Strand	-82.10	121.12	17.5	
			77						~~~~
ASG	ILE A		78	E	Strand	-110.07	17.80	98.1	~~~~
ASG	GLY A	. 79	79	E	Strand	172.56	149.48	17.5	~~~~

4/20/22	12:56 AM						Stride		
ASG	HIS A	80	80	E	Strand	-145.03	136.63	57.4	~~~~
ASG	SER A	81	81	E	Strand	-149.47	161.93	56.3	~~~~
ASG	MET A	82	82	E	Strand	-106.62	134.81	55.4	~~~~
ASG	GLN A	83	83	E	Strand	-127.80	94.16	67.6	~~~~
ASG	ASN A	84	84	T	Turn	56.33	-125.01	143.6	~~~~
ASG	CYS A	85	85	T	Turn	-90.68	11.45	83.0	~~~~
ASG	LEU A	86	86	E	Strand	-109.49	151.90	65.5	~~~~
ASG	LEU A	87	87	E	Strand	-102.71	126.56	1.0	~~~~
ASG	ARG A	88	88	E	Strand	-105.21	110.04	60.0	~~~~
ASG	LEU A	89	89	E	Strand	-103.64	117.22	0.0	~~~~
ASG	LYS A	90	90	E	Strand	-82.61	128.77	73.2	~~~~
ASG	VAL A	91	91	E	Strand	-115.86	159.65	1.2	~~~~
ASG	ASP A	92 93	92 93	C C	Coil Coil	-80.48	-4.92	92.1	~~~
ASG ASG	THR A SER A	94	94	C	Coil	-125.19 -86.88	133.62 135.00	60.7 67.7	~~~~
ASG	ASN A	95	95	Т	Turn	-66.16	113.31	8.3	~~~~
ASG	PRO A	96	96	T	Turn	-67.53	-13.15	114.9	~~~~
ASG	LYS A	97	97	T	Turn	-104.37	13.14	149.9	~~~~
ASG	THR A	98	98	T	Turn	-58.69	121.82	34.3	~~~~
ASG	PRO A	99	99	С	Coil	-87.71	177.68	30.5	~~~~
ASG	LYS A	100	100	C	Coil	-73.59	135.57	194.6	~~~~
ASG	TYR A	101	101	С	Coil	-154.71	167.37	90.1	~~~~
ASG	LYS A	102	102	С	Coil	-144.06	157.18	176.2	~~~~
ASG	PHE A	103	103	С	Coil	-107.57	124.53	122.2	~~~~
ASG	VAL A	104	104	С	Coil	-131.02	143.85	123.3	~~~~
ASG	ARG A	105	105	С	Coil	-103.66	117.09	234.2	~~~~
ASG	ILE A	106	106	С	Coil	-84.67	166.23	55.7	~~~~
ASG	GLN A	107	107	T	Turn	-100.92	159.50	134.2	~~~~
ASG	PRO A	108	108	T	Turn	-56.74	140.84	67.4	~~~~
ASG	GLY A	109	109	T	Turn	93.56	-19.53	48.3	~~~~
ASG ASG	GLN A THR A	110 111	110 111	E E	Strand Strand	-76.11 -108.98	154.70 164.60	81.2 87.8	~~~~
ASG	PHE A	112	112	E	Strand	-167.18	163.20	30.1	~~~~
ASG	SER A	113	113	E	Strand	-97.97	146.50	0.0	~~~~
ASG	VAL A	114	114	E	Strand	-120.67	127.71	9.4	~~~~
ASG	LEU A	115	115	E	Strand	-95.39	95.44	2.8	~~~~
ASG	ALA A	116	116	E	Strand	-72.02	125.83	1.6	~~~~
ASG	CYS A	117	117	E	Strand	-127.77	155.39	0.0	~~~~
ASG	TYR A	118	118	E	Strand	-135.70	124.91	47.9	~~~~
ASG	ASN A	119	119	T	Turn	56.35	32.54	92.8	~~~~
ASG	GLY A	120	120	T	Turn	92.49	-2.33	12.4	~~~~
ASG	SER A	121	121	E	Strand	-122.63	136.18	71.5	~~~~
ASG	PRO A	122	122	E	Strand	-57.25	133.58	54.5	~~~~
ASG	SER A	123	123	E	Strand	-108.11	-48.70	84.5	~~~~
ASG	GLY A	124	124	E	Strand	-165.80	172.38	25.9	~~~~
ASG	VAL A	125	125	E	Strand	-121.41	131.37	60.9	~~~~
ASG	TYR A	126	126	Е	Strand	-123.98	148.08	130.7	~~~~
ASG ASG	GLN A	127 128	127 128	E E	Strand	-104.92 -149.43	132.16	40.9	~~~~
ASG	CYS A ALA A	129	129	E	Strand Strand	-149.43	-177.06 153.35	23.9 27.4	~~~~
ASG	MET A	130	130	E	Strand	-81.39	115.36	28.6	~~~~
ASG	ARG A	131	131	T	Turn	-64.58	158.19	97.6	~~~~
ASG	PRO A	132	132	T	Turn	-59.97	-28.93	88.5	~~~~
ASG	ASN A	133	133	T	Turn	-88.15	19.32	104.9	~~~~
ASG	HIS A	134	134	Т	Turn	67.39	20.78	133.7	~~~~
ASG	THR A	135	135	С	Coil	-112.69	174.51	68.2	~~~~
ASG	ILE A	136	136	В	Bridge	-125.25	136.87	67.6	~~~~
ASG	LYS A	137	137	С	Coil	-94.70	141.63	153.1	~~~~
ASG	GLY A	138	138	С	Coil	155.94	-149.95	61.9	~~~~
ASG	SER A	139	139	С	Coil	-150.13	109.45	108.1	~~~~
ASG	PHE A	140	140	С	Coil	-110.48	136.19	107.1	~~~~
ASG	LEU A	141	141	T	Turn	-94.95	168.97	118.0	~~~~
ASG	ASN A	142	142	T	Turn	-59.75	117.64	162.4	~~~~
ASG	GLY A	143	143	Т	Turn	106.67	-2.04	14.5	~~~~
ASG	SER A	144	144	Т	Turn	-82.06	-15.64	7.2	~~~~

		556 AM Stride				2:56 AM	4/20/22, 1		
~~~~	53.3	144.97	-54.64	Turn	T	145	145	CYS A	ASG
~~~~	16.9	-18.52	98.38	Turn	T	146	146	GLY A	ASG
~~~~	23.9	148.70	-64.46	Turn	T	147	147	SER A	ASG
~~~~	36.2	157.71	-114.56	Strand	E	148	148	VAL A	ASG
~~~~	40.3	146.66	-108.29	Strand	E	149	149	GLY A	ASG
~~~~	72.3	360.00	-158.18	Coil	С	150	150	PHE A	ASG





Residue Information: (point on a residue in the Ramachandran map to get the detailed assignment information)

Residue name

Chain

Pdb residue

Ordinal

residue #

Chain

Pdb residue #

Code

Structure

Phi angle

Psi angle

Solvent

accessible area

The areas of allowed favourable (orange) and unfavourable but allowed areas are assigned according to Lovell et al: Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins 2003;50(3):437-50.

links to other protein structure servers for novel structure: <u>SCOP</u> - <u>CATH</u> - <u>PDBSum</u> - <u>MSD</u>

- b) Reasoning for the differences observed:
  - i) We can clearly identify that the sequences are different at a lot of positions, this can be because of the fact that the website is predicting for single nucleotides as well, whereas we on the other hand are using a string with minimum length of 5, hence ignoring small sequences and giving us a different output.
  - ii) The website is giving the final outputs based on a lot of criterias unlike our code which gives an output only with 'H', 'S' and ' '(blank) hence only checking these cases whereas the website's output has many letters indicating that they have inculcated more criterias to create the final sequence and thus have a higher accuracy than ours.
  - iii) It can be seen at various indices where our code is outputting blank spaces, there are some letters in the website's output.
  - iv) Our output is returning Hs and Ss at places where the website's output returns letters meaning that the few conditions that we checked have been overlapped by conditions of greater importance which we've not checked.