Applied Type Theory

Лекция 2: λ -исчисление, редукции и рекурсия

Воронов Михаил Сергеевич

ВМК МГУ

Осень 2025

План лекции

1 Нормальные формы и стратегии редукции

2 Чёрч-Россер и конфлюэнтность

Пеподвижные точки и рекурсия: комбинаторы Y и Z

План лекции

1 Нормальные формы и стратегии редукции

2 Чёрч-Россер и конфлюэнтность

Пеподвижные точки и рекурсия: комбинаторы Y и Z

Нормальная форма: определения и интуиция

Определение (Нормальная форма (NF))

Терм находится в NF, если в нём нет ни одного β -редекса.

Интуиция

Нормальная форма — это «результат вычисления» терма; если она существует, вычисление можно считать завершённым.

- Критерий завершения: достижение NF означает, что редуцировать больше нечего.
- Уникальность результата: в конфлюэнтных системах NF единственна, порядок редукций не важен.
- Выбор стратегии: знание о NF позволяет говорить о нормализующих стратегиях (normal order).
- Доказательства терминации: свойства SN/WN и наличие NF центральны для типизированных систем.

Вопрос: у всех ли термов есть NF?

- Как вы думаете, любой ли терм $M \in \Lambda$ можно довести до NF?
- Если нет приведите идею контрпримера, что может привести к бесконечной редукции?

Не все термы имеют NF: контрпримеры

- $\Omega \equiv (\lambda x. xx)(\lambda x. xx)$ бесконечное самоприменение
- ullet Ω / головной редекс снова ведёт к Ω
- Для многих «строгих» F терм YF не имеет NF из-за бесконечной редукции, в нестрогих контекстах возможны частные случаи, где значение достигается
- $(\lambda x. x x x)(\lambda x. x x x)$ терм, синтаксический размер которого увеличивается при редукции

Общий принцип

Если в терме есть «самоприменение» или циклическая зависимость, редукция может не завершиться.

Сильная нормализация (SN) и сходимость

Определение (Сильная нормализация)

Терм M сильно нормализуем (SN), если не существует бесконечной β -редукции $M=M_0 \to_\beta M_1 \to_\beta M_2 \to_\beta \cdots$.

Замечания

- (эквивалентное определение) SN \Rightarrow любая стратегия редукции завершается (возможны разные длины, но нет бесконечных цепочек).
- В нетипизированном λ -исчислении термы могут He иметь SN (напр., Ω).
- В просто типизированном λ_{\to} все термы SN. Это пролог к следующей лекции (прогресс/сохранение, терминация).

Слабая нормализация (WN)

Определение (Слабая нормализация)

Терм M слабо нормализуем (WN), если существует конечная β -редукция $M woheadrightarrow_{\beta} N$, где N — NF.

Замечания

- Для WN достаточно существования хотя бы одной завершающейся последовательности, другие стратегии могут зациклиться.
- SN \subseteq WN, но не наоборот: $(\lambda x.1)\Omega$ WN, но не SN.

Головная редукция и головные контексты

Определение (Головной контекст)

Головные контексты заданы грамматикой: $H ::= [] \mid H M$.

Определение (Слабая головная редукция)

 $M \to_h N$, если $M \equiv H[(\lambda x. P) \ Q]$ и $N \equiv H[P[x := Q]]$ для некоторого головного контекста H. Редукция не заходит под λ и не спускается в аргументы.

Определение (Сильная головная редукция)

Для полной (сильной) головной редукции разрешают спуск под внешние λ :

 $H ::= [] | HM | \lambda x. H.$

Примеры: головная редукция

Пример

Пример редукции вдоль головного пути (используем контекст $H = [\,]\,y)$:

$$((\lambda x. xx) (\lambda z. z)) y \rightarrow_h ((\lambda z. z) (\lambda z. z)) y$$
$$\rightarrow_h (\lambda z. z) y$$
$$\rightarrow_h y$$

ullet Под λ : в слабой head-редукции не заходим под абстракцию.

$$\lambda x. ((\lambda y. y y)(\lambda y. y y)) \rightarrow_h (\text{head-шаг отсутствует})$$

• Редекс только в аргументе: не спускаемся в аргументы до свёртки головы.

$$x((\lambda z. zz)(\lambda z. zz))$$
 \rightarrow_h (нет головного редекса)

Контраст: если головной редекс есть, редуцируем только его, игнорируя редексы внутри аргументов до свёртки головы.

Нормальные формы: определения и интуиция

Определение (Головная нормальная форма (HNF))

Имеет вид $\lambda x_1 \dots x_n$. у $M_1 \dots M_k$ (где у — переменная). Нет редексов на *головной оси*. **Интуиция:** известна «голова» терма и внешние абстракции; редексы могут оставаться в аргументах.

Определение (Слабая головная НФ (WHNF))

Либо λ -абстракция λx . M, либо y $M_1 \dots M_k$ после удаления внешних λ -связок; по головному пути β -редексов нет. **Интуиция:** вычислено ровно столько, чтобы узнать форму значения (что стоит «в голове»); внутри аргументов и в λ -блоке редукция не происходит.

Иерархия

 $NF \subseteq HNF \subseteq WHNF$, но не наоборот.

HNF vs WHNF?

- WHNF: достаточно, чтобы исходный терм был $\lambda x. M$ или имел вид $y M_1 \dots M_k$; внутрь аргументов не заходим.
- **HNF**: снимаем все внешние λ и требуем, чтобы в голове стояла *переменная* y, т.е. форма $\lambda x_1 \dots x_n$. $y M_1 \dots M_k$.

Зачем это нужно?

- В ленивых ЯП достаточно WHNF для сопоставления с образцом; знать «что в голове» уже довольно.
- HNF сильнее: гарантирует отсутствие редексов на головном пути, полезно в теоремах о стандартизации и нормализации.

Примеры классификации

Терм	NF	HNF	WHNF
$I \equiv \lambda x. x$	√	✓	√
SKK (до редукции)	×	×	×
x (1 y)	×	✓	√
$\lambda x. y (I x)$	×	✓	√

Оговорка

В таблице S,K понимаются как макро-развёртывания в λ -термы, поэтому SKK до редукции не является ни HNF, ни WHNF.

Классификация термов

Классифицируйте термы по типам нормальных форм (NF/HNF/WHNF):

- $\mathbf{0} \times (Iy)$
- $(\lambda x. x)((\lambda y. y) t)$
- (λx. M) N

Классификация термов: ответы

- \bigcirc x(Iy) HNF/WHNF, не NF (редекс внутри Iy).
- ② $\lambda x. y(Ix)$ HNF/WHNF, не NF (редекс внутри Ix).
- ③ $(\lambda x. x)((\lambda y. y)t)$ не HNF/WHNF (головной β -редекс); редуцируется к $((\lambda y. y)t) \rightarrow_{\beta} t$, после чего WHNF/HNF зависят от t.
- lacktriangle ($\lambda x. M$) N не HNF/WHNF (головной eta-редекс); форма после шага зависит от M, N.

Стратегии редукции: определения

Определение (Normal order)

Всегда редуцируем самый левый внешний редекс.

Определение (Call-by-name)

Как normal order, но без редукций под λ .

Определение (Call-by-value)

Сначала вычисляем аргументы до значений (λ -абстракций), затем выполняем β -шаг.

Определение (Call-by-need)

Call-by-name с мемоизацией значений (ленивость с разделением результатов).

Типы вызовов: пример square

$$square(n) \equiv n * n$$

Замечание

Пример со square иллюстрирует поведение CBN/CBV/need с «операциями» как чёрными ящиками (δ -редукции), а не чистую β -редукцию.

Ключевые отличия в стратегиях редукции

Стратегия	Под λ	Арг-ты до знач.	Мемоизация	Свойства
Normal order	да	нет	нет	Нормализующая (если есть NF)
Call-by-name (CBN)	нет	нет	нет	Ленивость без сохранения
Call-by-value (CBV)	нет	да	нет	Строгая; зацикливает Y
Call-by-need	нет	нет	да	Ленивость с разделением (Haskell)

Нормальный порядок — нормализующая стратегия для eta: $(\lambda x.\,1)\,\Omega$

Normal order

$$(\lambda x. 1) \Omega \rightarrow_{\beta} 1$$

Внешний левейший редекс сворачивается, аргумент не вычисляется.

Call-by-value (Applicative)

$$(\lambda x.\,1)\,\Omega$$
 требует вычислить Ω $\Omega o_eta \; \Omega \; o_eta \; \cdots \; ($ зацикливание $)$

Сначала вычисляется аргумент до значения, получаем бесконечную редукцию.

Вывод

Normal order — нормализующая стратегия: если NF существует, она будет найдена, а аппликативная стратегия может зациклиться.

Какая стратегия сойдётся?

- **1** $(\lambda x. 1) \Omega.$
- $(\lambda f. f I) (\lambda y. \Omega).$

Какая стратегия сойдётся?

- **③** $(\lambda x. 1) \Omega$ сойдётся при CBN/normal order, нет при CBV.
- ② $(\lambda f.f I)(\lambda y.\Omega)$ не сойдётся ни при одной стратегии: $(\lambda f.f I)(\lambda y.\Omega)$ $\rightarrow_{\beta} (\lambda y.\Omega)I$ $\rightarrow_{\beta} \Omega$.
- $(\lambda x. xx)(\lambda x. xx)$ не сойдётся ни при одной стратегии.

План лекции

1 Нормальные формы и стратегии редукции

2 Чёрч-Россер и конфлюэнтность

Пеподвижные точки и рекурсия: комбинаторы Y и Z

Теорема Чёрча-Россера (конфлюэнтность)

Теорема

Если $M woheadrightarrow_{eta} N$ и $M woheadrightarrow_{eta} L$, то существует $K \in \Lambda$ такое, что

$$N \rightarrow_{\beta} K$$
 $u L \rightarrow_{\beta} K$.

Идея доказательства: параллельная редукция \Rightarrow_{β} и «ромб»

Определение. Параллельная редукция \Rightarrow_{eta} задаётся индукцией:

$$\lambda x.M \Rightarrow_{\beta} \lambda x.N$$
 если $M \Rightarrow_{\beta} N$ $M_1 M_2 \Rightarrow_{\beta} N_1 N_2$ если $M_i \Rightarrow_{\beta} N_i$ $(\lambda x.M) N \Rightarrow_{\beta} M'[x:=N']$ если $M \Rightarrow_{\beta} M', N \Rightarrow_{\beta} N'$ (подстановка без захвата; при необход

Лемма (ромб для \Rightarrow_{β})

 $x \Rightarrow_{\beta} x$

Если $M\Rightarrow_{\beta} N$ и $M\Rightarrow_{\beta} L$, то существует K такое, что $N\Rightarrow_{\beta} K$ и $L\Rightarrow_{\beta} K$.

Связь с \rightarrow_{β} : каждый шаг моделируется параллельным; далее переносим «ромб» на $\twoheadrightarrow_{\beta}$.

Существование общего редукта

Лемма о существовании общего редукта

Для любых $M_1,M_2\in \Lambda$, если $M_1=_\beta M_2$, то существует общий редукт L такой, что $M_1 \twoheadrightarrow_\beta L$ и $M_2 \twoheadrightarrow_\beta L$.

Доказательство.

Доказательство индукцией по способам генерации эквивалентности; возникшие «ромбы» спрямляются с помощью теоремы Чёрча—Россера. $\hfill \Box$

Редуцируемость к нормальной форме

Лемма о редуцируемости к β -NF

Если терм $M \in \Lambda$ имеет N в качестве β -NF, то M можно свести к ней: $M \twoheadrightarrow_{\beta} N$.

Доказательство.

Пусть $M=_{\beta}N$, где N находится в β -NF. По лемме о существовании общего редукта существует терм L такой, что $M \twoheadrightarrow_{\beta} L$ и $N \twoheadrightarrow_{\beta} L$. Так как в N отсутствуют редексы, имеем $N \equiv L$. Следовательно, $M \twoheadrightarrow_{\beta} N$.

Единственность нормальной формы

Следствие

Если NF терма M существует, то она единственна (с точностью до lpha-эквивалентности).

Доказательство.

От противного: пусть M имеет N_1 и N_2 в качестве β -NF. Тогда $N_1=_{\beta}M=_{\beta}N_2$. По теореме Чёрча—Россера существует $L\in \Lambda$ такое, что $N_1 \twoheadrightarrow_{\beta} L$ и $N_2 \twoheadrightarrow_{\beta} L$. По лемме о редуцируемости к β -NF получаем $N_1\equiv L\equiv N_2$.

Общий редукт и редуцируемость к NF

- Семантически безопасные переписывания: замена подтермов на β -эквивалентные сохраняет результат нормализации (сходимость к общему редукту).
- Корректность оптимизаций: β -свёртки/раскрытия и inlining не меняют NF, если она существует.
- Эквивалентность программ: если $M =_{\beta} N$, при нормализации они сходятся к одному результату; полезно для тестов/рефакторинга.
- Инструменты: тактики переписывания в Coq/Agda по β -равенству безопасны для смысла термов.

Теорема о стандартизации

Теорема

Если $M \to_{\beta}^* N$, то существует стандартная (leftmost-outermost) редукция из M в N.

Идея.

Перестановками коммутирующих шагов двигаем внешние левейшие свёртки вперёд. Индукция по длине редукции и структуре терма.

29 / 44

Почему важна стандартизация?

- Движок переписываний: достаточно реализовать leftmost-outermost шаги, чтобы не терять достижимость целевого терма.
- **Нормализуемость normal order:** если есть NF, стратегия её найдёт практическая база для «ленивых» интерпретаторов.
- **Детерминированные эвристики:** при доказательствах/оптимизациях можно фиксировать порядок свёрток без риска «пропустить» NF.
- Отладка и трассировка: стандартные редукции дают воспроизводимые траектории, полезно для объяснимости.

Нормальный порядок — нормализующая стратегия для eta

Теорема

Если у терма M существует NF, то стратегия нормального порядка её найдёт.

Идея.

Следует из теоремы о стандартизации. Нормальный порядок не вычисляет аргументы преждевременно, сохраняя сходимость к NF.

Ещё следствия Чёрча–Россера

- Продолжимость до NF: если $M woheadrightarrow_{\beta} N$ и N NF, то *любая* цепочка редукций от M может быть продолжена до N.
- HNF/WHNF: в общем случае HNF и WHNF не обязаны быть уникальными; уникальна именно полная β -нормальная форма (если существует).

План лекции

1 Нормальные формы и стратегии редукции

2 Чёрч-Россер и конфлюэнтность

3 Неподвижные точки и рекурсия: комбинаторы Y и Z

Неподвижная точка функции

Определение

Терм X называется неподвижной точкой терма F, если $FX =_{\beta} X$.

Интуиция

В обычном анализе это точка пересечения графиков y=f(x) и y=x. В λ -исчислении неподвижные точки позволяют определять рекурсию без явного именования.

Теорема о неподвижной точке

Теорема

Для любого терма $F \in \Lambda$ существует неподвижная точка:

$$\forall F \in \Lambda \ \exists X \in \Lambda : F X =_{\beta} X$$

Доказательство.

Возьмём $W \equiv \lambda x$. F(xx) и $X \equiv WW$. Тогда

$$X \equiv W W \rightarrow_{\beta} F(W W) = F X.$$

- Ключевая идея: самоприменение создаёт «петлю» рекурсии.
- Следствие: в λ -исчислении любая рекурсия выражается *анонимно*.

Равномерная теорема о неподвижной точке

Теорема

Существует терм $Y \in \Lambda$ такой, что для любого $F \in \Lambda$ YF — неподвижная точка F:

$$\exists Y \in \Lambda \ \forall F \in \Lambda : \ F(YF) =_{\beta} YF$$

Доказательство.

Пусть $Y \equiv \lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$. Тогда при любом F:

$$YF \rightarrow_{\beta} F((\lambda x. F(xx))(\lambda x. F(xx))) \equiv F(YF).$$

Комбинатор Карри Y

Определение (Комбинатор Карри Y)

$$Y \equiv \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$$

Основное свойство

$$YF \rightarrow_{\beta} F(YF)$$
 u $YF =_{\beta} F(YF)$

Важный нюанс

Редукция $YF \to_{\beta} F(YF)$ однонаправленна. Обратное верно лишь как эквивалентность $=_{\beta}$. При CBV Y зацикливается, поэтому используют Z.

CBV-совместимый вариант: Z-комбинатор

При стратегии CBV простое раскрытие комбинатора Y приводит к зацикливанию. Требуется модифицированный вариант:

$$Z \equiv \lambda f. (\lambda x. f (\lambda v. x x v)) (\lambda x. f (\lambda v. x x v))$$

Ключевое свойство (CBV)

При CBV: $ZF \rightarrow_{\beta} F(\lambda v. ZFv)$ (с точностью до α -экв.).

Шаги CBV.

$$ZF = (\lambda f. (\lambda x. F(\lambda v. x x v)) (\lambda x. F(\lambda v. x x v))) F$$

$$\rightarrow_{\beta} (\lambda x. F(\lambda v. x x v)) (\lambda x. F(\lambda v. x x v))$$

$$\rightarrow_{\beta} F(\lambda v. (\lambda x. F(\lambda v. x x v)) (\lambda x. F(\lambda v. x x v)) v)$$

$$= F(\lambda v. ZF v).$$

Почему Y зацикливает при CBV

При CBV аргумент редуцируется до значения перед подстановкой. В терме YF внутренняя структура заставляет вычислять самоприменение до подстановки:

$$Y \equiv \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$$

Применяя CBV к YF, нужно сначала привести к значению аргумент ($\lambda x. F(xx)$), что ведёт к бесконечному раскрытию самоприменения. Поэтому используют Z.

Как писать рекурсию через Y

Цель: определить факториал

$$fac \equiv \lambda n$$
. if (iszero n) 1 (mult n (fac (pred n)))

Решение через Y

① Заменяем рекурсивное имя fac на параметр f:

$$F \equiv \lambda f. \lambda n. \text{ if (iszero } n) \text{ 1 (mult } n \text{ (} f \text{ (pred } n)\text{))}$$

Демонстрация: редукции *fac* 3

Пример

$$fac \ 3 \equiv (YF) \ 3$$
 (1)
 $\rightarrow_{\beta} F(YF) \ 3$ (2)
 $\equiv (\lambda n. \text{ if (iszero } n) \ 1 \ (\text{mult } n \ ((YF) \ (\text{pred } n)))) \ 3$ (3)
 $\rightarrow_{\beta} \text{ if (iszero } 3) \ 1 \ (\text{mult } 3 \ ((YF) \ (\text{pred } 3)))$ (4)
 $\rightarrow_{\beta} \text{ mult } 3 \ ((YF) \ 2) \ (\text{рекурсивный вызов})$ (5)

Ключевое наблюдение

Комбинатор Y раскрывается однократно, далее рекурсия происходит через параметр f.

Вопрос: *YF* и направленность редукции

Почему $YF \not\twoheadrightarrow_{\beta} F(YF) \twoheadrightarrow_{\beta} YF$ в обе стороны, несмотря на то что $YF =_{\beta} F(YF)$? Приведите идею, объясняющую асимметрию направленной редукции.

Термовые уравнения

Схема β -редукции $(\lambda x.\ M)\ N \to_{\beta} M[x:=N]$ позволяет решать простые уравнения на термы. Например, найти F такое, что $F\ M\ N\ L=M\ L\ (N\ L)$ для всех M,N,L:

- $FMN = \lambda I.MI(NI)$
- $FM = \lambda nI.MI(nI)$
- $F = \lambda m n l. m l (n l)$

Ограничение

Такой метод не работает для pекурсивных уравнений вида X = F X. Здесь требуется комбинатор неподвижной точки.

Решение рекурсивных уравнений через комбинатор Y

Цель: решить уравнение на терм X = F X.

Идея

Полагаем $X \equiv Y F$, где $Y \equiv \lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$. Тогда

$$Y F \rightarrow_{\beta} F((\lambda x. F(x x))(\lambda x. F(x x))) \equiv F(Y F),$$

то есть $F(YF) =_{\beta} YF$, и X действительно неподвижная точка F.

Шаблон

Для рекурсивной функции строим $F \equiv \lambda f \dots f \dots$ и полагаем n name $\equiv Y F \dots$

При CBV используется Z-комбинатор.