- Inequalities on (Aprilled nations (1))

 [anything Schwartz Inequality If X and Y near finite variances then $E(XY) \leq JE(X^2) ((Y^2)^2)$ $E(XY) \leq JE(X^2) ((Y^2)^2)$ $E(XY) \leq JE(X^2) ((Y^2)^2)$ $E(XY) \geq g(X^2) = iE$ concert then $E(XY) \leq g(X^2) = iE$ concert then $E(XY) \leq g(X^2)$
- 3") Hossidings Lemma Let (Ω, f, P) a probability triple and suppose that χ is a k-valued \mathbb{R}^{V} such that $\mathbb{P}(\chi \in La, k1) = 1$, for act. Then for all $a \in \mathbb{R}$: $\mathbb{E}\left[e^{2(\chi C(\chi))}\right] \leq e \chi p\left(\frac{2^{\chi}(k-a)^{2}}{2}\right)$
- 4*) Estimating p in Bernoulli: Let $X_1 = X_1 = X_1 = 0$ bernoulli (p) Then for $\alpha \in \{0,1\}$ we have for $\delta = \frac{1}{2} \cdot \sqrt{\frac{1}{2} \ln \left(\frac{\pi}{\alpha}\right)^{-1}} = P\left(X_1 \delta \leq p \leq X_1 + \delta\right) \geq 1 \alpha$
- Computing multiple intervals for RVs which are not necessarily configuration to quite easy using the union bound. Sippose we have an acquaince at RVP $Z_i = (X_{i1}, X_{i2}, \dots X_{im})$. $Z_{im} = (X_{im}, X_{im})$ where for each i the sequence Z_i is find but Z_i and Z_j are not necessarily independent. Assume that each of them satisfies $P(|\frac{1}{h}, \frac{1}{h}, X_{ij}) F(X_{ij})| \ge E \le C_i$ for every i and i some number C_i . Then $P(|\frac{1}{h}, \frac{1}{h}, X_{ij}) F(X_{ij})| \ge E$ for some $E(|\frac{1}{h}, \frac{1}{h}, X_{ij}) F(X_{ij})| \le E$ for all $E(|\frac{1}{h}, \frac{1}{h}, X_{ij}) F(X_{ij})| \le E$
 - This means that in appears to the legislathering and the increase of 5 with respect to me is

 This is equivalent to Bonterron: contition in multiple testing.
- Det #9) A R valued RV X is said to be sub-Gaussian with pursumeter of if
- Det 10) A R solved RV X is said to be sub-exponential unto parameter 2 if the sub-expo

5) Let (se, F.P) be a probability typle and let x1 . Xn = F to be IR - valued sub- on RVS with carameter & of then his any iso we got Xx = 1 2 Xi $P(\chi_n - E(\chi_n) \ge E) \le e^{-\frac{\gamma_E}{2F^2}}$ (a) for the sub-Experiential covering get a mounter bond bound for the touts . The recessor is because He bound on E unly holds for small or , the resulting estimate that differentiates between small and big the can ice is the estimate below that by large the tool is exponential (etc) of this is the reason is called sub-exponential Let (II, F. P) be a probability triple and let X1 Xn " F be 12- valued sub expansion hal RYS with parameter 2 then for any 270 we get for $\overline{X}_n = \frac{1}{4} + \frac{1}{4} \times 2$ $P(\overline{X}_n - E(\overline{X}_n) > E) \leq e^{\frac{1}{23^2}} \vee e^{-e(\underline{x}_n) \cdot x}$ The Following Properties hold 1) Let X be a sub- Gaussian RV with parameter a then ax is sub- Gaussian will parameter Ha 2) Let X be a sub-Exponential Rx with parameter 2 her aX is sub-exponential with parameter late 3) A sub-baussian RV X with purameter A is sub-transated with parameter A DA bumbled RY X e P (XE Eq. 63) = 1 Hen X is sub - Gavasian with garameter (6-a)/2 Specifically in Bernalli RV is sub-baytslan with parameter 1/2 5) If A is son- Gurssian with parameter A thin Z = X2 is the exponential with parameter 822 6) If X, 9 is independent and not boursun with parameters of the X+4 is sub-Gaussian parameter VELLET Distributed 100- experientin Ed- barringn Passen distributed in the - Expanse which Boursian 425 Yes For Small & behave be so usub-busting ide Bernsull 405 Yes the quadratic form of its MEF Winnell #1 Un tryon Yes Yes large & MGF grown tratter - most win - baussi Borreley 100 Yes behavior in more examinated on the sub-ca Caronenhal Yes 1115 Xr Yes No: (121) Hud and Yes. No Lating No Mex Part by No No Longins with No No

```
Exercise 2 Suppose Y RV with moun ELY1 50 and Varcy) = 21 Use Chelyshev 1.
                                                                                             to had the upper bound on the probability that Y devotes from its mean by mare than to
P(|X-50| > 10) \le \frac{25}{10^2} = \frac{25}{100} = 0.25 The prob that X deviates from its mean is
Cherrise 3 You tost a four com 100 times. Let X number of Leady observed. Use Har Heding's megal
to bound the probability that the number of heads deviates from its expected unlike by more than in
Each cuin ton is Bernaulli RV Lie 10,1] with P(Xi=1) =05 (heads) and P(Xi=0)=05 (heads)
The expected number of heads in E[X]=100 of 50
we wont to bound 19 (x-rol > 10) (et 4=0, b=1, n=100, t=10
P(1x-50| =10) ∈ 2. exp( =2.10 / 100(1-0)2) = 2 exp(-2) = 2. 0,135 = 0.27 The probability that
the number of Leads demates from 500 by more than to not must over
Fx 4 Let At X2 ... Xn - independent Bernwilli FVD where Xi I with probability of 0,6 and Xi 0
with probability u.4 Define Sy= X++ X2+ + Xn as the sum of their variables for n=100 use Chernet
Kound in had the upper bound in the probability that is exceeds 70
experted sum E[Sn]=100 0,6 = 60 t=deviation=70-60=10 , \delta=\frac{t}{t(Sn)}=\frac{10}{60}
P(Sn > (1++) 60) = exp(-(+) 60) = exp(-07672)
The prove that the room exceeds to 1 at most 0.464
Exs. Consider a sequence of independent RVS XIXI. In where east X is bounded such that
XIE [-1, 1) and has variance of = 0.25 the bornitein & inequality to bound the probability
that the num 5 = Exi leventes hum the mean by of least 2
P(S-E(S)ZE) < exp( -11/2)
                                       White they come is I
C1 = 2 5 62 = 5 0,23 =1 25
P(5-\epsilon(5)242) \le \exp\left(\frac{-2^2/2}{4.25+9/3}\right) = \exp\left(\frac{-2}{1.92}\right) = \exp\left(-1.04\right) \approx 0.353
The prob that the sum denutes from in ocean by at Court 2 is 0.353
6) Mill's Inoquality: Let Z ~ N (o. 1). Then P(12) > t) < \\ \frac{2}{17} \frac{e^{-t^2/2}}{t}
withit his Normal Random Variables
```

(3 b) tubin	Mean			
But House at 0		Varionce		N.
Bernsulli (1)	**************************************			
Binsminl (n,p)		7 (1-p)		
(powers (p)	1/0	(1-p)/22		0
Paisson (a)		1		+
Uniform (a, b)	(a+b)/2	(6-4)2/12		10
Normal (4.02)		6		7
(Aponential (6)	2	6		
Gamma (9.6)	26	a 6 2		
Beta (a, 6)	a (a + e)	a e / ((a + e	(a + l + l)	
t v	0 1 1 1 1	William Co.	(11 />2)	
λ.	b	20		
Markovis E(X) Chelyslevis: E(X) Chernoff Bound: P(D=E(Sn7= Z E(X)	= $\frac{1}{2}$ = $$	Var(X) = $n p(1-p)^2 = 0$ by $5^2 EL$		2 (1.6.6.
which of the following P(2-EE23DE) <	will expanentially	while wheate	e for same L. Co. Cy. Cy	

Let X1.X2 Xn. be lid with mean f = ELXI and 5° = EL(Xi-p)" I The employed at there RVs is given: Sn = 1 = (Xi-Xi)2 where Xn = 1 = Xi cample mean the variance of the want to bound the probability that the engineed romance demand Sh - 1 = Xi - (+ = Xi) = Mn - X , Mn = + = Xi second morning of the sample -> We usually use Chernoff's inequality when we are dealing with sums of independent random variables we need to bound the probability of large devictions of these sums humbler - 4 LV X is sub-baussian if its tails drowy at least my food as the links at a baussian distribu X is sub-Gaussian if there exists a constant 170 such that for all t 70 P(|X-E[X]) > t) = 2 exp (- ===)

```
- Intration Inequalities.
War large Inequality: Let XEL (P) mon-negative R-valued RV
                           P(x > E) < E(x) for any too
  Frost let At = [ (, roo) : TA(xx) + IA= (x) = 1
                                                         AE = & X >ES
                                                          Losee of authorizes with when he was
                             and carried house than who led AL
                                                           XI w) is us becase &
   XIEUX JALIX) indicator bucken that equals 4 when X > & and 0 ornersise
          JAZ (X)
  for set AE we enow: X ? E => XIA, (X) > EIAE (X) X is not benefit by replace
   [[x] > E[E]Az(x)] since E. wonstant we can fuctor it not ut the expression:
  EEXJ > LE L JAL (X) ]
                             The expect - tion of an endicator function is the probability
1) the mi Az : E(x) 7 & P(x 7 6) E) P(x 2 6) E (x)
@ Webyster's Inequality For many RV X and any E20
P(|x|>2) = E[(x))
 using nurnous inequality = prixize) = E(IXI) apply the inequality for X =
   P(+X+) < E(X+)
                               P(IXIDE) = P(X DE ) - were the recent moment of A 120
                                                        gives more unto about the spread out
For Chebyster's Inequality we have attiteriation how the mean i
 P(1x-E(x11) = P((x2-E(x1)2 > E2) wring moreous largentity
   P((x-\epsilon(x))^{\epsilon}\geq \epsilon^{2})\leq \frac{G(x-\epsilon(x))^{\epsilon})}{-\sqrt{\alpha}}=\sqrt{\alpha}\epsilon(x)
I.I.D: ( Independent : when RVs and the attorne of the one docume affect the attorne
 of another - P(x, EA and x x EB) = P(X, EA) P(X x EB)
```

2) ladentically distributed. RV follow the same probability distribution. P(X150)=P(X25)