Problem

Step-by-step solution

Step 1 of 2
The class L: L is the class of languages that are decidable in logarithmic space on a deterministic truing machine.
That is $L = SPACE(\log n)$
Given that
'A' be the language of property nested parenthesis.
For example, $((\))_{and} (((\)))_{etc are in A. But not})$ (.
Comment
Step 2 of 2
We have to show that A is in L.
That means, we have to construct deterministic Turing machine (DTM) that decides A in logarithmic space.
Let <i>M</i> be the <i>DTM</i> that decides <i>A</i> in logarithmic space.
The construction of <i>M</i> is as follows:
M = "On input w :
Where <i>w</i> is a sequence of parenthesis.
1. Starting at the first character of w, move right across w.
2. when left parenthesis '(' is encountered, add 1 to the work – tape and move right.
3. when right parenthesis ')' is encounter and the work tape is blank, then reject.
Otherwise subtract 1 from the work – tape and move right.
4. When the end is reached, accept if the work tape is blank, reject if the work tape in not blank."
Clearly, the only space used by this algorithm is for the counter on the work tape.
\cdot If this counter is in binary, then the most space used by the algorithm is $O(\ln k)$
Where k is the number of (s) .
• Since the number of (s) is less than or equal to n (the size of tape), this places the language A in L .
Thus we proved that $A \in L$
Comment