Graphs

What is a graph?

- A graph is a finite set of nodes with edges between nodes
- Formally, a graph G is a structure (V,E) consisting of
 - a set V of nodes (vertices)
 - a set E of edges: each edge connects two nodes
- Each node represents an item
- Each edge represents the relationship between two items

114/08/28

2

Examples of graphs

Molecular Structure

Computer Network

Other examples: electrical and communication networks, airline routes, flow chart, graphs for planning projects

Formal Definition of graph

- The set of nodes is denoted as V
- For any nodes u and v, if u and v are connected by an edge, such edge is denoted as (u, v)

- The set of edges is denoted as E
- A graph G is defined as a pair (V, E)

Adjacent

 Two nodes u and v are said to be adjacent if (u, v) ∈ E

114/08/28 5

Path and simple path

• A path from v_1 to v_k is a sequence of nodes $v_1, v_2, ..., v_k$ that are connected by edges $(v_1, v_2), (v_2, v_3), ..., (v_{k-1}, v_k)$

 A path is called a simple path if every node appears at most once.

 $- v_{2} v_{3} v_{4} v_{2} v_{1}$ is a path

- v_{2} , v_{3} , v_{4} , v_{5} is a path, also it is a simple path

Cycle and simple cycle

- A cycle is a path that begins and ends at the same node
- A simple cycle is a cycle if every node appears at most once, except for the first and the last nodes

V₂, V₃, V₄, V₅, V₃, V₂ is a cycle
V₂, V₃, V₄, V₂ is a cycle, it is also a simple cycle

Connected graph

 A graph G is connected if there exists path between every pair of distinct nodes; otherwise, it is disconnected

This is a connected graph because there exists path between every pair of nodes

Example of disconnected graph

This is a disconnected graph because there does not exist path between some pair of nodes, says, v_1 and v_7

Complete graph

 A graph is complete if each pair of distinct nodes has an edge

Complete graph with 4 nodes

Weighted graph

 If each edge in G is assigned a weight, it is called a weighted graph

Directed graph (digraph)

- All previous graphs are undirected graph
- If each edge in E has a direction, it is called a directed edge
- A directed graph is a graph where every edges is a directed edge

Implementing Graph

- Adjacency matrix
 - Represent a graph using a two-dimensional array
- Adjacency list
 - Represent a graph using n linked lists where n is the number of vertices

Graph Representation

- For graphs to be computationally useful, they have to be conveniently represented in programs
- There are two computer representations of graphs:
 - Adjacency matrix representation
 - Adjacency lists representation

CS 103

Adjacency Matrix Representation

- In this representation, each graph of n nodes is represented by an n x n matrix A, that is, a two-dimensional array A
- The nodes are (re)-labeled 1,2,...,n
- A[i][j] = 1 if (i,j) is an edge
- A[i][j] = 0 if (i,j) is not an edge

CS 103

Adjacency matrix for directed graph

Matrix[i][j] = 1 if $(v_i, v_j) \in E$ 0 if $(v_i, v_j) \notin E$

1 2 3 4 5

 V_1 V_2 V_3 V_4 V_5

0

2 v₂
3 v₃
4 v₄
5 v₅

0

 0
 0
 0
 1
 0

 0
 1
 0
 1
 0

 0
 0
 0
 0
 0

 0
 0
 1
 1
 0

114/08/28

0

Adjacency matrix for weighted undirected graph

Matrix[i][j] = w(v_i, v_j) if (v_i, v_j)∈E or (v_j, v_i)∈E ∞ otherwise

Adjacency Lists Representation

- A graph of n nodes is represented by a one-dimensional array L of linked lists, where
 - L[i] is the linked list containing all the nodes adjacent from node i.
 - The nodes in the list L[i] are in no particular order

CS 103

Adjacency list for directed graph

Adjacency list for weighted undirected graph

Pros and Cons

- Adjacency matrix
 - Allows us to determine whether there is an edge from node i to node j in O(1) time
- Adjacency list
 - Allows us to find all nodes adjacent to a given node j efficiently
 - If the graph is sparse, adjacency list requires less space

Problems related to Graph

- Graph Traversal
- Topological Sort
- Spanning Tree
- Minimum Spanning Tree
- Shortest Path

Graph Traversal Techniques

- The previous connectivity problem, as well as many other graph problems, can be solved using graph traversal techniques
- There are two standard graph traversal techniques:
 - Depth-First Search (DFS)
 - Breadth-First Search (BFS)

CS 103 23

Two basic traversal algorithms

- Two basic graph traversal algorithms:
 - Depth-first-search (DFS)
 - After visit node v, DFS strategy proceeds along a path from v as deeply into the graph as possible before backing up
 - Breadth-first-search (BFS)
 - After visit node v, BFS strategy visits every node adjacent to v before visiting any other nodes

Depth-First Search

- DFS follows the following rules:
 - 1. Select an unvisited node x, visit it, and treat as the current node
 - 2. Find an unvisited neighbor of the current node, visit it, and make it the new current node;
 - 3. If the current node has no unvisited neighbors, backtrack to the its parent, and make that parent the new current node;
 - 4. Repeat steps 3 and 4 until no more nodes can be visited.
 - 5. If there are still unvisited nodes, repeat from step 1.

CS 103 25

Depth-first search (DFS)

- DFS strategy looks similar to pre-order. From a given node v, it first visits itself. Then, recursively visit its unvisited neighbours one by one.
- DFS can be defined recursively as follows.

Algorithm dfs(v)

```
print v; // you can do other things!
mark v as visited;
for (each unvisited node u adjacent to v)
    dfs(u);
```

DFS example

Start from v₃

114/08/28 27

Non-recursive version of DFS algorithm

```
Algorithm dfs(v)
s.createStack();
s.push(v);
mark v as visited;
while (!s.isEmpty()) {
   let x be the node on the top of the stack s;
   if (no unvisited nodes are adjacent to x)
           s.pop(); // blacktrack
   else {
           select an unvisited node u adjacent to x;
           s.push(u);
           mark u as visited;
```

114/08/28 28

Non-recursive DFS example

visit	stack
V_3	V_3
V ₂	V ₃ , V ₂
V ₁	V ₃ , V ₂ , V ₁
backtrack	V_3, V_2
V ₄	V ₃ , V ₂ , V ₄
V_5	V_3, V_2, V_4, V_5
backtrack	V ₃ , V ₂ , V ₄
backtrack	V_3, V_2
backtrack	V_3
backtrack	empty
	V ₃ V ₂ V ₁ backtrack V ₄ V ₅ backtrack backtrack

Breadth-First Search

- BFS follows the following rules:
 - 1. Select an unvisited node x, visit it, have it be the root in a BFS tree being formed. Its level is called the current level.
 - 2. From each node z in the current level, in the order in which the level nodes were visited, visit all the unvisited neighbors of z. The newly visited nodes from this level form a new level that becomes the next current level.
 - 3. Repeat step 2 until no more nodes can be visited.
 - 4. If there are still unvisited nodes, repeat from Step 1.

CS 103 30

Breadth-first search (BFS)

- BFS strategy looks similar to level-order. From a given node v, it first visits itself. Then, it visits every node adjacent to v before visiting any other nodes.
 - 1. Visit v
 - 2. Visit all v's neigbours
 - 3. Visit all v's neighbours' neighbours
 - **–** ...
- Similar to level-order, BFS is based on a queue.

Algorithm for BFS

```
Algorithm bfs(v)
q.createQueue();
q.enqueue(v);
mark v as visited;
while(!q.isEmpty()) {
  w = q.dequeue();
  for (each unvisited node u adjacent to w) {
         q.enqueue(u);
         mark u as visited;
```

BFS example

 Start from v₅ Visit Queue (front to back) V_5 V_5 empty V_3 V_3 V_4 V_3, V_4 V_4 V_2 V_4, V_2 V_2 empty V_1 V_1 114/08/28 33 empty

Topological order

Consider the prerequisite structure for courses:

- Each node x represents a course x
- (x, y) represents that course x is a prerequisite to course y
- Note that this graph should be a directed graph without cycles (called a directed acyclic graph).
- A linear order to take all 5 courses while satisfying all prerequisites is called a topological order.
- E.g.
 - a, c, b, e, d
 - c, a, b, e, d

Topological sort

Arranging all nodes in the graph in a topological order

```
Algorithm topSort
```

```
n = | V|;
for i = 1 to n {
    select a node v that has no successor;
    aList.add(1, v);
    delete node v and its edges from the graph;
}
return aList;
```

Example

- 3. Both b and c have no successor!
 Choose c!
- 4. Only b has no successor! Choose b!

5. Choose a!
The topological order is a,b,c,e,d

Topological sort algorithm 2

This algorithm is based on DFS

```
Algorithm topSort2
s.createStack();
for (all nodes v in the graph) {
    if (v has no predecessors) {
              s.push(v);
              mark v as visited;
while (!s.isEmpty()) {
    let x be the node on the top of the stack s;
   if (no unvisited nodes are adjacent to x) { // i.e. x has no unvisited successor
              aList.add(1, x);
              s.pop(); // blacktrack
   } else {
              select an unvisited node u adjacent to x;
              s.push(u);
              mark u as visited;
return aList;
```

Spanning Tree

 Given a connected undirected graph G, a spanning tree of G is a subgraph of G that contains all of G's nodes and enough of its edges to form a tree.

DFS spanning tree

 Generate the spanning tree edge during the DFS traversal.

Algorithm dfsSpanningTree(v)

```
mark v as visited;
for (each unvisited node u adjacent to v) {
    mark the edge from u to v;
    dfsSpanningTree(u);
}
```

• Similar to DFS, the spanning tree edges can be generated based on BFS traversal.

Example of generating spanning tree based on DFS

Minimum Spanning Tree

- Consider a connected undirected graph where
 - Each node x represents a country x
 - Each edge (x, y) has a number which measures the cost of placing telephone line between country x and country y
- Problem: connecting all countries while minimizing the total cost
- Solution: find a spanning tree with minimum total weight, that is, minimum spanning tree

Formal definition of minimum spanning tree

- Given a connected undirected graph G.
- Let T be a spanning tree of G.
- $cost(T) = \sum_{e \in T} weight(e)$
- The minimum spanning tree is a spanning tree T which minimizes cost(T)

Prim's algorithm (I)

Start from v_5 , find the minimum edge attach to v_5

Find the minimum edge attach to v_2 , v_3 , v_4 and v_5

Find the minimum edge attach to v_3 and v_5

Find the minimum edge attach to v_2 , v_3 and v_5

114/08/28

43

Prim's algorithm (II)

Algorithm Prim Algorithm(v)

- Mark node v as visited and include it in the minimum spanning tree;
- while (there are unvisited nodes) {
 - find the minimum edge (v, u) between a visited node v and an unvisited node u;
 - mark u as visited;
 - add both v and (v, u) to the minimum spanning tree;

}

Shortest path

- Consider a weighted directed graph
 - Each node x represents a city x
 - Each edge (x, y) has a number which represent the cost of traveling from city x to city y
- Problem: find the minimum cost to travel from city x to city y
- Solution: find the shortest path from x to y

Formal definition of shortest path

- Given a weighted directed graph G.
- Let P be a path of G from x to y.
- $cost(P) = \sum_{e \in P} weight(e)$
- The shortest path is a path P which minimizes cost(P)

Dijkstra's algorithm

- Consider a graph G, each edge (u, v) has a weight w(u, v) > 0.
- Suppose we want to find the shortest path starting from v₁ to any node v_i
- Let VS be a subset of nodes in G
- Let cost[v_i] be the weight of the shortest path from v₁ to v_i that passes through nodes in VS only.

	V	VS	cost[v ₁]	cost[v ₂]	cost[v ₃]	cost[v ₄]	cost[v ₅]
1		[V ₁]	0	5	∞	∞	8

	V	VS	cost[v ₁]	cost[v ₂]	cost[v ₃]	cost[v ₄]	cost[v ₅]
1		[V ₁]	0	5	∞	∞	∞
2	V ₂	$[V_1, V_2]$	0	5	∞	9	∞

	V	VS	cost[v ₁]	cost[v ₂]	cost[v ₃]	cost[v ₄]	cost[v ₅]
1		[V ₁]	0	5	∞	∞	8
2	V ₂	$[V_1, V_2]$	0	5	∞	9	∞
3	V ₄	$[V_1,V_2,V_4]$	0	5	12	9	17

50

	V	VS	cost[v ₁]	cost[v ₂]	cost[v ₃]	cost[v ₄]	cost[v ₅]
1		[V ₁]	0	5	∞	∞	∞
2	V ₂	$[V_1, V_2]$	0	5	∞	9	∞
3	V ₄	$[V_1,V_2,V_4]$	0	5	12	9	17
4	V ₃	$[V_1, V_2, V_4, V_3]$	0	5	12	9	16
5	V ₅	$[v_1, v_2, v_4, v_3, v_5]$	0	5	12	9	16

51

Dijkstra's algorithm

Algorithm shortestPath()

```
n = number of nodes in the graph;
for i = 1 to n
    cost[v_i] = w(v_1, v_i);
VS = \{ v_1 \};
for step = 2 to n {
    find the smallest cost[v<sub>i</sub>] s.t. v<sub>i</sub> is not in VS;
    include v<sub>i</sub> to VS;
    for (all nodes v<sub>i</sub> not in VS) {
              if (cost[v_i] > cost[v_i] + w(v_i, v_i))
                         cost[v_i] = cost[v_i] + w(v_i, v_i);
```

Summary

- Graphs can be used to represent many real-life problems.
- There are numerous important graph algorithms.
- We have studied some basic concepts and algorithms.
 - Graph Traversal
 - Topological Sort
 - Spanning Tree
 - Minimum Spanning Tree
 - Shortest Path