1.Luanching

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# Dataset

df = pd.read_csv("general_data.csv")
```

In [2]:

```
df.head()
```

Out[2]:

	Age	Attrition	BusinessTravel	Department	DistanceFromHome	Education	Educa
0	51	No	Travel_Rarely	Sales	6	2	Life
1	31	Yes	Travel_Frequently	Research & Development	10	1	Life
2	32	No	Travel_Frequently	Research & Development	17	4	
3	38	No	Non-Travel	Research & Development	2	5	Life
4	32	No	Travel_Rarely	Research & Development	10	1	
4							•

In [5]:

```
# Columns in our dataset

df.columns
```

Out[5]:

2.Data Treatment

In [8]:

df.isnull().sum()	
Out[8]:	
Age	0
Attrition	0
BusinessTravel	0
Department	0
DistanceFromHome	0
Education	0
EducationField	0
EmployeeCount	0
EmployeeID	0
Gender	0
JobLevel	0
JobRole	0
MaritalStatus	0
MonthlyIncome	0
NumCompaniesWorked	19
Over18	0
PercentSalaryHike	0
StandardHours	0
StockOptionLevel	0
TotalWorkingYears	9
TrainingTimesLastYear	0
YearsAtCompany	0
YearsSinceLastPromotion	
YearsWithCurrManager	0
dtype: int64	
In [136]:	

df.dropna().head()

Out[136]:

	Age	Attrition	BusinessTravel	Department	DistanceFromHome	Education	Educa
0	51	No	Travel_Rarely	Sales	6	2	Life
1	31	Yes	Travel_Frequently	Research & Development	10	1	Life
2	32	No	Travel_Frequently	Research & Development	17	4	
3	38	No	Non-Travel	Research & Development	2	5	Life
4	32	No	Travel_Rarely	Research & Development	10	1	
4							+

In [13]:

```
print("Duplicates In dataset :", df.duplicated().sum())
```

Duplicates In dataset : 0

3. Univariate Analysis

```
In [18]:
```

```
df1 = df[df.columns].describe()
df1
```

Out[18]:

	Age	DistanceFromHome	Education	EmployeeCount	EmployeeID	
count	4410.000000	4410.000000	4410.000000	4410.0	4410.000000	44
mean	36.923810	9.192517	2.912925	1.0	2205.500000	
std	9.133301	8.105026	1.023933	0.0	1273.201673	
min	18.000000	1.000000	1.000000	1.0	1.000000	
25%	30.000000	2.000000	2.000000	1.0	1103.250000	
50%	36.000000	7.000000	3.000000	1.0	2205.500000	
75%	43.000000	14.000000	4.000000	1.0	3307.750000	
max	60.000000	29.000000	5.000000	1.0	4410.000000	
4						•

In [105]:

```
mean=df[['Age', 'DistanceFromHome','MonthlyIncome','TotalWorkingYears',
    'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].mean()
mean
```

Out[105]:

Age	36.923810
DistanceFromHome	9.192517
MonthlyIncome	65029.312925
TotalWorkingYears	11.279936
YearsAtCompany	7.008163
YearsSinceLastPromotion	2.187755
YearsWithCurrManager	4.123129
dtype: float64	

In [104]:

Out[104]:

Age	36.0
DistanceFromHome	7.0
MonthlyIncome	49190.0
TotalWorkingYears	10.0
YearsAtCompany	5.0
YearsSinceLastPromotion	1.0
YearsWithCurrManager	3.0

dtype: float64

In [124]:

Out[124]:

	0
Age	35.0
DistanceFromHome	2.0
MonthlyIncome	23420.0
TotalWorkingYears	10.0
YearsAtCompany	5.0
YearsSinceLastPromotion	0.0
YearsWithCurrManager	2.0

In [111]:

Out[111]:

8.341719e+01
6.569144e+01
2.215480e+09
6.056298e+01
3.751728e+01
1.037935e+01
1.272582e+01

In [112]:

Out[112]:

Age	9.133301
DistanceFromHome	8.105026
MonthlyIncome	47068.888559
TotalWorkingYears	7.782222
YearsAtCompany	6.125135
YearsSinceLastPromotion	3.221699
YearsWithCurrManager	3.567327
dtype: float64	

71

In [113]:

Out[113]:

 Age
 0.413005

 DistanceFromHome
 0.957466

 MonthlyIncome
 1.368884

 TotalWorkingYears
 1.116832

 YearsAtCompany
 1.763328

 YearsSinceLastPromotion
 1.982939

 YearsWithCurrManager
 0.832884

dtype: float64

In [114]:

Out[114]:

Age -0.405951
DistanceFromHome -0.227045
MonthlyIncome 1.000232
TotalWorkingYears 0.912936
YearsAtCompany 3.923864
YearsSinceLastPromotion 3.601761
YearsWithCurrManager 0.167949

dtype: float64

Inference from the Above analysis:

- Mean Age Forms a near Normal Distribution with 13 Years of IQR
- All the above Variables show +Ve Skewness : Age & Distance from Home (Lipokurtic)

In [127]:

40

30

20

Age is Normally Distributed without any Outliers

In [129]:

MontlyIncome is Right Skewed With Several Outliers

In []: