Projet 4 : Anticipez les besoins en consommation électrique de bâtiments

Lancelot Leclerco

15 décembre 2021

Sommaire

- 1. Introduction
- 2. Nettoyage du jeu de données
- 3. Étapes des modélisations
- 4. Modélisation des émissions de carbone
- 5. Modélisation de la consommation énergétique
- 6. Conclusion

Introduction

Introduction

Problématique

- Objectif de la ville de Seattle : atteindre la neutralité en émissions de carbone
- La ville s'intéresse aux émissions des batiments non destinés à l'habitation
- Pour cela des relevés de consommation ont été réalisés mais ils sont couteux à obtenir
- Est-il possible de prédire les émissions et de la consommation d'énergie pour des batiments pour lesquels les relevés n'ont pas été réalisé à partir des relevés déjà obtenus

Jeu de données et modélisation

- Base de données issue de l'initiative de la ville de Seattle de proposer ses données en accès libre (Open Data)
- Données concernant les batiments de la ville, caractérise :
 - le type,
 - la surface.
 - le nombre d'étages,
 - la consomation énergétique,
 - les émissions de carbone.
 - -
- Données des années 2015 et 2016

- Objectif : trouver le modèle le plus performant
- Test de modèles de différents type :
 - Linéaires :
 - Ridge
 Lasso
 - Lasso
 - ElasticNet
 - Plus proches voisins :
 - KNeighborsRegressor
 - Ensemblistes:
 - RandomForestRegressor
 - AdaBoostRegressor
 - GradientBoostingRegressor
- GridSearch afin de trouver les paramètres optimaux pour chacuns de ces modèles

Nettoyage du jeu de données

Nettoyage du jeu de données

Nettoyage du jeu de données : Correction et selection des données

- Nettoyage des valeurs négative pour la surface des batiments/parkings, la consommation et les émissions
- Correction du nombre de d'étages aberrant pour certains batiments
- Lorsque le nombre de batiment est nul on remplace par 1

- Suppression des batiments d'habitation
- Suppression des variables ayant moins de 50% de données
- Suppressions des variables étant des relevés afin de voir si notre modèle peut s'en passer

Nettoyage du jeu de données : Selections des variables

Élimination récursive des variables (RFE) et matrice de corrélation

Variables pertinentes pour les émissions

Variables pertinentes pour la consommation

- Selection des variables les plus pertinentes par elimination recursive des variables (RFE)
- Réduction efficace pour les émissions
- Pas de réel changement de RMSE pour la consommation

Nettoyage du jeu de données : Selections des variables Élimination récursive des variables (RFE) et matrice de corrélation

Variables pertinentes pour les émissions

- Observation des résultats de RFE par les matrices de corrélation
- Les variables les plus corrélées sont communes aux deux sélection
- Conservation de 6 variables jugées pertinentes

Variables pertinentes pour la consommation

Nettoyage du jeu de données : Selections des variables Analyse en composantes principales (PCA)

- Le graphique de la variance expliquée cumulée nous montre que 99% de la matrice est exliquée avec 5 variables
- Les quatres variables les plus corrélées se retrouvent sur l'axe F1
- L'EnergyStar score semble avoir une certaine importance car il explique une grande partie de l'axe F3

Étapes des modélisations

Étapes des modélisations

Étapes des modélisations

Afin de comparer les différents modèles

- Split commun à chaque modèle (varie selon la variable modélisée)
- Pour chaque modèle (boucle) :
 - GridSearch des meilleurs paramètres avec validation croisée
 - Création d'un pipeline : scaling et fit du modèle
 - Scaling par RobustScaler car plus résistant aux valeurs aberrantes selon la documentation

- La boucle retourne :
 - Le(s) meilleur(s) paramètre(s) (gridsearch)
 - La RMSE en fonction du paramètre le plus évolutif (validation croisée)
 - La figure de la variable étudiée vs ses prédictions
 - Le R², la RMSE, la MAE (mean absolute error) et le temps de calcul du modèle

Modélisation émissions

Modélisation émissions

Modèle Ridge

Variable non modifiée

Visualisation des données de TotalGHGEmissions prédites par le modèle Ridge()

⇐				
paramètre	Ridge()			
alpha	5094.14			
<u></u>				

paramètre	Ridge()
alpha	6428.07
	=

- Modèle de régression linéaire introduisant un coefficient cherchant à minimiser l'erreur quadratique

\Leftarrow				
R²	RMSE	MAE	MAE%	FitTime(s)
0.24	423.80	150.95	5.72	0.01
_				

				\Rightarrow
R ²	RMSE	MAE	MAE%	FitTime(s)
0.16	487.86	135.35	2.12	0.02

Modèle Lasso

Variable non modifiée

Visualisation des données de TotalGHGEmissions prédites par le modèle Lasso()

\Leftarrow	
paramètre	Lasso()
alpha	178.86
₩	

paramètre	Lasso()
alpha	0.34

- Similaire à la regression ridge
- Coefficient est réduit à zéro pour les variables peu corrélées
- Peut être utilisé pour la sélection de feature

\leftarrow				
R²	RMSE	MAE	MAE%	FitTime(s)
0.26	417.95	150.97	5.52	0.02
_				

R²	RMSE	MAE	MAE%	FitTime(s)
0.12	490.73	136.13	2.25	0.02

Modèle ElasticNet

Variable non modifiée

Visualisation des données de TotalGHGEmissions prédites par le modèle ElasticNet()

ElasticNet()
174.75
1.00

	_
paramètre	ElasticNet()
alpha	1.29
11_ratio	0.10

 Combine les coefficients des regressions ridge et lasso

<u>←</u>				
R²	RMSE	MAE	MAE%	FitTime(s)
0.26	417.53	150.73	5.48	0.01

				\Rightarrow
R²	RMSE	MAE	MAE%	FitTime(s)
0.16	487.75	134.58	2.13	0.02

Modèle kNeighborsRegressor

Variable non modifiée

Visualisation des données de TotalGHGEmissions prédites par le modèle KNeighborsRegressor()

paramètre	KNeighborsRegressor()
n_neighbors	1

 Prédiction par interpolation avec les plus proches voisins dans le jeu de données

\Leftarrow				
R ²	RMSE	MAE	MAE%	FitTime(s)
0.26	418.44	119.52	1.99	0.02

				\Rightarrow
R²	RMSE	MAE	MAE%	FitTime(s)
0.52	401.17	73.27	0.75	0.02

Modèle RandomForestRegressor

Variable non modifiée

Visualisation des données de TotalGHGEmissions
prédites par le modèle RandomForestRegressor()
predices par le modere nandonn orestnegressory

	_
paramètre	RandomForestRegressor()
n_estimators	464
max_features	sqrt

- Classification des valeurs à partir d'arbre de décision aléatoire
- Prédiction à partir de ces classifieurs

<u>←</u>					ı
R²	RMSE	MAE	MAE%	FitTime(s)	
0.42	371.52	89.73	1.44	11.48	
_					-

				=
R²	RMSE	MAE	MAE%	FitTime(s)
0.68	381.25	85.76	0.72	3.01

Variable au log

TotalGHGEmissions pred

Modèle AdaBoostRegressor

Variable non modifiée

Visualisation des données de TotalGHGEmissions prédites par le modèle AdaBoostRegressor()

AdaBoostRegressor() paramètre 19 n estimators loss square \equiv

paramètre	AdaBoostRegressor()
n_estimators loss	15 linear
	_

- Même principe que les forêts aléatoires
- Utilisation d'apprenants faibles (légèrement plus performants que la prediction aléatoire similaire à de petits arbre de décision)
- Les prédictions des apprenants sont combinées avec un coefficient de poids
- À chaque itération le poids des mauvaises prédictions est augmenté ce qui pousse le modèle à se concentrer dessus

Modèle GradientBoostingRegressor

Variable non modifiée

Visualisation des données de TotalGHGEmissions prédites par le modèle GradientRoostingRegressor()

n estimators

- Similaire à AdaBoostRegressor
- Prend en compte une fonction objectif (loss fonction) plus complexe afin d'améliorer l'optimisation

R2 RMSE MAE MAE% FitTime(s) 0.47 355.84 74.99 1.34 10.37

				\Rightarrow
R²	RMSE	MAE	MAE%	FitTime(s)
0.63	340.24	71.60	0.80	55.91

Comparaison des résultats selon que la variable est au log ou non

- RandomForestRegressor, AdaBoostRegressor et GradientBoostingRegressor ont des erreur moins importantes et un R² plus grand quelque soit la variable modélisée
- KNeighborsRegressor est plus performant avec la variable au log
- Modèles linéaire : Ridge, Lasso et ElasticNet moins efficaces avec la variable au log
- Temps de modélisation de RandomForestRegressor et GradientBoostingRegressor plus importants que les autres
- Temps de modélisation de RandomForestRegressor avec la variable au log moindre qu'avec la variable non modifiée

Influence de l'EnergyStar score sur la prédiction des Émissions

- GradientBoostingRegressor avec la variable au log (RMSE la plus petite)
- L'EnergyStar score améliore la RMSE
- Amélioration des autres mesures d'erreur et de corrélation

Modélisation consommation

Modélisation consommation

RMSE

17660078.37

 R^2

0.33

Modèle Ridge

Variable non modifiée

\Leftarrow	
paramètre	Ridge()
alpha	102.35
₩	

FitTime(s)

0.01

MAE%

1.85

Variable au log

5153567.28

MAE

RMSE

17499302.40

 R^2

0.34

Modèle Lasso

Variable non modifiée

_	
paramètre	Lasso(
alpha	1000.00
$\overline{\leftarrow}$	

FitTime(s)

0.04

MAE%

1.88

Variable au log

MAE

5269886.33

Modèle ElasticNet

Variable non modifiée

₩	
paramètre	ElasticNet()
alpha I1_ratio	0.09 0.46
₩	

aloha

				=
R²	RMSE	MAE	MAE%	FitTime(s)
0.30	20734563.65	5593976.90	1.41	0.02

Variable au log

aloha

Modèle kNeighborsRegressor

Variable non modifiée

pour len for

n_neighbors

Visualisation des données de SiteEnergyUse prédites par le modèle KNeighborsRegressor()

R²	RMSE	MAE	MAE%	FitTime(s)
0.15	19891776.59	4958197.14	1.14	0.02

←				\Rightarrow
R²	RMSE	MAE	MAE%	FitTime(s)
0.75	15125790.61	2521110.46	0.55	0.01

Modèle RandomForestRegressor

Variable non modifiée

RMSE du modèle RandomForestRegressor pour la variable SiteEnergyUse avec le paramètre max features=log2 en fonction de l'hyperparamètre n estimators - ScoresSolitO

₩	
paramètre	RandomForestRegressor()
n_estimators max_features	10 log2
_	

paramètre	RandomForestRegressor()
n_estimators max_features	464 sqrt

←				
R²	RMSE	MAE	MAE%	FitTime(s)
0.43	16255496.44	3079266.36	0.85	0.09
←				
 R ²	RMSE	MAE	MAE%	FitTime(s)
0.80	16533804.87	2771107.51	0.51	2.72

Variable au log

RMSE du modèle RandomForestRegressor pour la variable SiteEnergyLise log avec le paramètre max features=sort

Visualisation des données de SiteEnergyUse log prédites par le modèle RandomForestRegressor() vs les données test

Modèle AdaBoostRegressor

Variable non modifiée

<u>←</u>		
paramètre	AdaBoostRegressor()	
n_estimators loss	3 linear	

Variable au log

SiteEnergyUse pred

n estimators

Visualisation des données de SiteEnergyUse

prédites par le modèle AdaBoostRegressor()

R²	RMSE	MAE	MAE%	FitTime(s)
0.28	18239692.73	5482794.58	2.41	0.05
=				
R ²	RMSE	MAE	MAE%	FitTime(s)

SiteEnergyUse pred

Modèle GradientBoostingRegressor

Variable non modifiée

=	
paramètre	GradientBoostingRegressor()
n_estimators	1000
loss	huber

Variable au log

n estimators

=				
R²	RMSE	MAE	MAE%	FitTime(s)
0.43	16292946.43	2980171.79	0.90	7.99
=				
				=

				=
R²	RMSE	MAE	MAE%	FitTime(s)
0.83	15038028.44	2135408.64	0.39	107.33

n estimators

Comparaison des résultats selon que la variable est au log ou non

- RMSE KNeighborsRegressor, RandomForestRegressor, AdaBoostRegressor et GradientBoostingRegressor inférieures avec la variable au log
- RMSE de RandomForestRegressor et GradientBoostingRegressor légèrement inférieures quelque soit la variable
- MAE de RandomForestRegressor et GradientBoostingRegressor plus significativement inférieures quelque soit la variable
- Temps de modélisation plus important pour GradientBoostingRegressor

Conclusion

Conclusion

Conclusion: Meilleurs modèles

- GradientBoostingRegressor est le modèle le plus performant dans les deux cas
- Cependant plus gourmant en ressources/temps de calcul
- Peut-être plus difficile à utiliser sur des jeu de données plus importants
- RandomForestRegressor semble être un bon compromis entre performance et temps de calcul
- KNeighborsRegressor semble aussi bien se défendre

Conclusion

- Découverte des différents modèles et de leur fonctionnement
- Obtention avec certains modèles d'une estimation avec moins de 1% d'écart à la moyenne absolue
- Si de nouveaux batiments ont été construits il peut être intéressant de rentrer leurs caractéristiques dans notre base de donnée et voir si on peut prédire leurs émissions et consommation quitte à faire des mesures pour estimer si ces prédictions sont bonnes