Causal prediction for medical decision making:

Methods and practice

Estimation for causal prediction

Karla Diaz-Ordaz,

Deparment of Statistical Science

University College London

[Day 3, morning]

Recap prediction "under intervention" models

- Counterfactual predictions are risk estimates under possible (hypothetical) treatments
- if the training data are observational, we must do something to control for the confounding in the A-Y relationship.
- We assume that L is a sufficient adjustment set, i.e.:

$$Y^1 \perp A|L$$

• The estimand of interest (prediction under a hypothetical intervention a) is a function of patients' characteristics X^* (predictive of the outcome, can belong L or P

$$\mu_1(X^*) = E[Y^1|X^*]$$

• We distinguish the variables we want to condition on for the prediction estimand X^* and variables we need to incorporate to control for confounding L.

Confounding-adjustment and predictor sets

- Recall, $\mu_1(X^*) = E[Y^1|X^*]$ and $Y^1 \perp A|L$
- They are three distinct settings
 - a. $L \subseteq X^*$: the adjustment set L is equal or contained in the set of predictors X^* OR
 - b. there are variables we need to adjust for, which we don't want in our prediction models, i.e. $L \not\subset X^*$, equiv. there are variables L not in X^* (i.e. $L \setminus X^*$ non-empty)
 - because clinically actionable (clinically meaningful)
 - or fairness concerns (e.g. do not want a causal prediction model that varies by ethnicity)
 - c. Restricted covariate availability at runtime only the subset X^* is available at runtime (e.g pragmatic to only input a few variables, $L \setminus X^*$ is expensive to collect): if we're not careful, it leads to (runtime) confounding

runtime: time of model deployment, when new (causal) predictions are obtained in the population of interest

Constructing estimators for $E[Y^1|X^*]$

- we want to develop a good prediction model for $E[Y^1|X^*]$
- in other words, we want an estimator $\mu_1(X^*)$ which is unbiased

Challenges:

- there is confounding
- we need to estimate $E[Y^1|X^*]$ without bias even when there is covariate "restrictions" at deployment (runtime confounding)
- model training can only be done on the observed treated, yet predictions must be good for the whole population (out-of sample)

Setting a: Developing a prediction model for $E[Y^1|X^*]$ when $L \subseteq X^*$

Estimators when $L \subseteq X^*$

• Under the identifying assumptions, if $Y^a \perp A | L$, we can write

$$\mu_1(X^*) = E[Y^1|X^*] = E[Y|A = 1, L, X^* \setminus L]$$

where I wrote $X^* = L \cup X^* \setminus L$ explicitly. Recall $X^* \setminus L \subset P$

This suggest the following estimation strategy

Outcome regression

1. Develop a model for the outcome dependent on L, and all other variables in X^{st} using the treated

$$Q_1(X^*) = E[Y|A = 1, L, X^* \setminus L]$$

- e.g for continuous outcome Y: $Q_1(X^*) = \beta_0 + \beta_1 L_1 + \beta_2 L_2 + \cdots + \beta_p P_1 + \cdots$
- Assumes model is correct
- extrapolation is an issue

Dickerman, Dahabreh, Cantos, et al. Predicting counterfactual risks under hypothetical treatment strategies: an application to HIV. *European Journal of Epidemiology* 2022. https://doi.org/10.1007/s10654-022-00855-8

Example: outcome regression

- Consider the CVD risk prediction tool for type 1 diabetes, hypothetical statins intervention
- *Y* =LDL cholesterol at the post-treatment
- predictors X^* = sex, age, and baseline LDL
- sufficient adjustment set: Suppose L =baseline LDL

outcome regression

- 1. Develop a model for the outcome on the treated $Q_1(X^*) = \beta_0 + \beta_1 age + \beta_2 sex + \beta_3 ldl_base | A = 1$
- Under the assumption that

$$ldl_post^a \perp Obs_Statin \mid ldl_base$$

this is a valid causal prediction model

2. use this to predict the desired conditional potential outcomes for all at deployment

Example continued

- Now, suppose we learn that the level of physical activity (motion) is a confounder, and therefore must be included in the adjustment set, i.e. L= baseline LDL and motion
- we do not want to include "motion" in the final causal prediction model, which only depends on baseline LDL, age and sex

Now we are in that setting where $L \not\subset X^*$, as motion is in L but not in X^* We need to modify our outcome modelling approach:

G-computation

Setting b: Developing a prediction model for $E[Y^1|X^*]$ when $L \not\subset X^*$

G-computation when $L \not\subset X^*$

- If $Y^a \perp A|L$ holds, but L not all in X^* (ie, there are vars in $L\backslash X^*$), we have $E[Y^1|X^*] = E[E[Y|A=1,X^*,L\backslash X^*]|X^*]$
- if we have access to all $L \setminus X^*$ at deployment, we can use the following strategy

G-computation

- 1. Model the outcome dependent on confounders and predictors of interest $Q_1(L, X^*) = E[Y|A = 1, L\backslash X^*, X^*]$
- 2. use this to predict the conditional potential outcomes for all at deployment, $\widehat{Q_1}(X^* = x, L \setminus X^* = l)$
- 3. Marginalise over $L \setminus X^*$ (integrated the unwanted $L \setminus X^*$ out).
- The causal prediction of interest (for simplicity, assuming $L \setminus X^*$ is discrete)

$$\widehat{\mu_1}(X^*) = \sum_l \widehat{Q_1}(X^* = x, L \setminus X^* = l) \widehat{\Pr}(L \setminus X^* = l)$$

• In general, (i.e. if $L \setminus X^*$ contains continuous variables), marginalizing over $L \setminus X^*$ would be difficult, and numerical techniques may be necessary

Example continued

- Y = LDL cholesterol at the post-treatment as the outcome
- predictors X^* = sex, age, baseline LDL
- L =baseline LDL and motion
- $L \not\subset X^*$, as motion is in L but not in X^* : $L \setminus X^* = motion$

G-computation

1. Develop a model for the outcome on the treated

$$Q_1(L, X^*) = \beta_0 + \beta_1 age + \beta_2 sex + \beta_3 ldl_{base} + \beta_4 motion | A = 1$$

- 2. use $\widehat{Q_1}(L\backslash X^*, X^*)$ to predict the expected conditional potential outcomes for deployment set, conditional on levels of motion
- 3. average these predictions over $L \setminus X^* = motion$. As motion is binary, this is:

$$\widehat{\mu_1}(X^*) = \widehat{Q_1}(X^*, motion = 1) \frac{\#(motion = 1)}{n} + \widehat{Q_1}(X^*, motion = 0) \frac{\#(motion = 0)}{n}$$

Challenges when L only measured in the training set

- G-computation requires all the variables in the adjustment set are available at time of deployment
- Suppose only a subset $Z \subset L$ is available at runtime,

$$E[Y | A = 1, Z]$$
 is not $E[Y^1 | Z]$

- so, a G-computation $Q_1(Z,X^*)=E_Z\left\{E[Y|A=1,Z,X^*]|X^*\right\}$ does not target the right counterfactual quantity
- runtime confounding: if we don't have access to all \boldsymbol{L} at runtime (deployment), and we can't do an unconfounded G-computation
- The amount of bias will depend on how much residual confounding there is (after adjusting only for ${\cal Z}$)

Setting c: Developing a causal prediction model for $E[Y^1|X^*]$ when $L \not\subset X^*$ only measured in the training set

Plug-in estimator $L \not\subset X^*$ only measured in train set

- Recall $E[E[Y|A=1,X^*,L\backslash X^*]|X^*]$, this motivates the following strategy
 - 1. Model the outcome dependent on confounders and predictors of interest $Q_1(L,X^*)=E[Y|A=1,L\backslash X^*,X^*]$
 - 2. use this to predict $\widehat{Q}_1(L\backslash X^*, X^*)$ still for the training data
 - 3. Run $m_1^{PL}(X^*)$ a second-stage model (the outer expectation) with $\widehat{Q}_1(L\backslash X^*, X^*)$ as the dependent variable, on X^*
 - 4. use the trained $\widehat{m}_1^{PL}(X^*)$ this to predict the desired conditional potential outcomes $\widehat{\mu_1}(X_i^*)$ for all at deployment

This strategy needs an extra model $m_1^{PL}(X^*)$ (assumed to be correct)

- This can also be applied when $L \not\subset X^*$ is available at runtime.
- **Technical:** We use different splits of the train data to learn $Q_1(L\backslash X^*, X^*)$ and $m_1^{PL}(X^*)$ to avoid potential overfitting

Coston, A., Kennedy, E. H., & Chouldechova, A. (2020). Counterfactual Predictions under Runtime Confounding. In Advances in Neural Information Processing Systems (Vol. 33, pp. 4150–4162) (Algorithm 2)

Example continued

- Y = LDL cholesterol at the post-treatment as the outcome
- predictors X^* = sex, age, baseline LDL
- L = baseline LDL and $motion \not\subset X^*$,

Plug-in G-computation

- 1. Develop a model for the outcome on the treated $Q_1(L,X^*) = \beta_0 + \beta_1 age + \beta_2 sex + \beta_3 ldl_{base} + \beta_4 motion | A = 1$
- 2. use $\widehat{Q_1}(L, X^*)$ to predict the pseudo-outcomes for training set
- 3. Regress $m_1^{PL}(X^*) := \widehat{Q}_1(L, X^*) \sim X^*$ on the train set
- 4. using this 2nd-stage model $\widehat{m}_1^{PL}(X^*)$, obtain causal predictions in the deployment

- G-computation assumes the conditional outcome model is correctly specified and needs a marginalisation step requiring all the de-confounders be available at runtime
- The plug-in estimator, requires two models which need to be correctly specified
- **Example continued:** let's see how two different strategies compare, with a cond. outcome model with and without interactions with *motion*
- First two columns **G-comp**, last two **plug-in estimator**

y1.marg.motion	y1.marg.motion2	pred.y1	pred.y1.2 [‡]
2.488437409	2.488032056	2.308159512	2.61069846
0.956757842	1.058869509	0.972578094	1.21641988
-0.889658032	-0.645756188	-1.017793501	-0.62230145
0.961395656	1.021194662	0.793766824	1.03946839
3.225442113	3.101144584	3.257955054	3.28501181
1.113290077	1.235906662	1.066240478	1.40111523
-0.657655985	-0.413190462	-0.810126582	-0.37498305
0.745415395	0.863156418	0.465490215	0.86102739
-0.733692058	-0.505436918	-0.841197269	-0.47023660

Developing a causal prediction model for $E[Y^1|X^*]$ based on IPW (all cases!)

IPW strategy to develop a $\mu_1(X^*)$

• If $Y^a \perp A|L$, regardless of whether $L \subseteq X^*$ or $L \not\subset X^*$, or where L is available, we can use an IPW identification strategy

$$\mu_1(X^*) = E[Y^1|X^*] = E\left[\frac{A}{Pr(A=1|L)}Y|X^*\right]$$

- This suggest the following
- 1. specify a model $\pi(L)$ for Pr(A=1|L) (propensity score) in the train data
- 2. obtain weights $\frac{1}{\widehat{\pi}(L)}$ in the training data
- 3. develop a weighted model $m_1^{ipw}(X^*)$ on the treated in the train data
- 4. Using the trained model $\widehat{m}_1^{ipw}(X^*)$, obtain causal predictions $\widehat{\mu_1}(X_i^*)$ in the deployment
- assumes positivity 0 < P(A = 1 | L = l) < 1, for all l.
- relies on the PS being correctly specified

Example continued — IPW

 $Y = \mathsf{LDL}$ cholesterol at the post-treatment as the outcome predictors $X^* = \mathsf{sex}$, age, baseline LDL $L = \mathsf{baseline}$ LDL and motion

```
#IPW
ps.model<-glm(statin~ LDL_base+motion,
    data=datatrain, family=binomial())
ps<-predict(ps.model, type = "response",newdata=datatrain)
w<-1/ps

mody1.w<-lm(LDL_fup~age+sex_male+LDL_base, data=datatrain, weights = w)
print(summary(mody1.w))
pred.y1.ipw<-predict(mody1.w, newdata=deployment)</pre>
```

Technical: we could use stabilised IPW, to improve issues of large weights: Stabilised weights work by multiplying the standard IPW weights by the overall (marginal) probability of the treatment.

Developing a causal prediction model for $E[Y^1|X^*]$ using machine learning

Constructing machine learning estimators

- we want a model $m_1(X^*)$ that can be used at deployment without access to all of L and doesn't suffer from runtime confounding bias
- Plug-in and IPW estimators
 - They assume either their models are correctly specified
- we would like to attenuate dependence on model misspecification
- Naïve use of data-adaptive estimation for these conditional expectations leads to plug-in bias

Debiased Machine Learning estimators

• ideally our estimator $m_1(X^st)$ must minimise (feasible) counterfactual mean square error

$$E[\{Y^1 - \mu_1(X^*)\}^2]$$

Challenges:

- $E[Y^1|X^*]$ may be an infinite-dimensional "parameter"
- want to use machine learning /data-adaptive estimation, without plug-in bias
- dealing with runtime confounding
- **Technical:** well-developed theory for de-biasing plug-in estimators (via efficient influence functions) only applies to pathwise differentiable parameters we need the theory of "orthogonal loss functions"

Orthogonal loss functions: DR learner

• double robust (DR) m^{DR} estimator of the (empirical) counterfactual prediction error is that one that minimises

$$\frac{1}{n} \sum_{i=1}^{n} \left[\frac{A}{\pi(L)} \{ Y - Q_1(L, X^*) \} + \{ Q_1(L, X^*) - m_1^{DR}(X^*) \} \right]^2 + \Lambda(m_1^{DR})$$

where $Q_1(L,X^*)=E[Y|A=1,L,X^*]$ is the outcome model, $\pi(L)$ the PS, and $\Lambda(m_1^{DR})$ is a penalization term needed to avoid overly complex m^{DR}

- made feasible by estimating nuisance models $\widehat{\pi}(L)$ and $\widehat{Q_1}(L,X)$
- using standard ML algorithms, we can find $\widehat{m_1}^{DR}(X^*)$ by "regressing"

pseudo-
outcome(AIPW)
$$\frac{A}{\widehat{\pi}(L)} \{ Y - \widehat{Q}_1(L, X^*) \} + \widehat{Q}_1(L, X^*) \text{ on } X^*$$

- causal predictions $\widehat{\mu_1}(X_i^*)$ for i in deployment obtained using trained model $\widehat{m_1}^{DR}$
- **Technical:** needs cross-fitting— split the data, use one part to estimate nuisance models and another to run the regression m_1^{DR} of the pseudo-outcome on predictors (then swap and aggregate)

DR learner

- 1. Initial step : Nuisance training, using one part of training data $D_{\rm 1}$
 - a. Train 'propensity score' estimates $\widehat{\pi}(L)$
 - b. learn the conditional outcome model \widehat{Q}_1 (L, X^*) in the treated
- 2. Using the other part of the training data, D_2 construct the pseudo-outcome $\psi = \frac{A}{\widehat{\pi}(L)} \{ Y \widehat{Q}_1(L, X^*) \} + \widehat{Q}_1(L, X^*)$
- 3. On D_2 , "regress" ψ on the predictors of interest X^* using an ML algorithm m_1 of choice to obtain the trained model $\widehat{m_1}^1(X^*)$
- 4. Cross-fitting (reverse roles of D_1 and D_2), and get the trained model $\widehat{m_1}^2$
- 5. Get fitted values $\widehat{m_1}^v(X_i^*)$ on every i person in the deployment set for each trained model in fold v. The final prediction is the average of these

$$\widehat{\mu_1}^{DR}(X_i^*) = \frac{1}{\#folds} \sum_{v-folds} \widehat{m_1}^{v}(X_i^*)$$

Note: It can result on predictions outside of the natural range of the outcome due to weights used in the pseudo-outcome!

Example continued — DR-learner code

```
### DR learner
folds=2
m.model<-list(folds)</pre>
#Cross-fitting index
N<-dim(datatrain)[1]
split <- floor(N / folds)</pre>
if (N %% folds != 0) {
  s <- c(rep(1:folds, split), 1:(N - split * folds))</pre>
}else{s <- c(rep(1:folds, split))}</pre>
for (k in 1:folds){
  dt_k<-datatrain[s!=k,]</pre>
  dtk<-datatrain[s==k,]
  Q.model=ranger(LDL_fup~age+sex_male+LDL_base+motion, data=dt_k[dt_k$statin==1,])
  ps.model= ranger(statin~ LDL_base+motion, data=dt_k)
  Q=predict(Q.model, data= dtk, type = "response")$predictions
  P=predict(ps.model,data= dtk, type = "response")$predictions
  w=1/P
  dtk$ypseudo = w*(dtk$LDL_fup-Q)+Q
  #pseudo-outcome regression
  m.model[[k]]<-ranger(ypseudo~ age+sex_male+LDL_base, data=dtk)</pre>
m1.f1<-predict(m.model[[1]], data= deployment, type = "response")$predictions
m1.f2 < -predict(m.model \lceil \lceil 2 \rceil \rceil), data= deployment, type = "response")$predictions
pred.y1.dr.CF < -(m1.f1+m1.f2)/2
```

Example continued — comparison

Comparison of Predicted LDL Cholesterol under treatment by statins

Uncertainty quantification

- We want prediction intervals for counterfactual predictions, without assuming the model is correct
- We can use **conformal inference:** uses a model's past experience to determine precise levels of confidence in new predictions
- **Technical:** Standard Col: assuming exchangeability, the distribution of the residuals in the training

$$r_i = |Y_i - \widehat{m}(Z_i)|$$

approximates the distribution of the residuals for the deployment population

- 95% prediction intervals are defined by the 95-th centile of the r distribution
- Technical: with confounding, to regain exchangeability
 - re-weight the residuals by IPW
 - or doubly-robust Lei & Candès https://academic.oup.com/jrsssb/article/83/5/911/7056131

Summary

- Prediction models under hypothetical interventions need to control for confounding
- in high-dimensional confounding settings, , "outcome regression" and G-computation can be problematic due to extrapolation
- in addition, is runtime confounding settings, "outcome regression" and G-computation cannot remove the confounding
- IPW is intuitive, easy to implement and works well in both high-dim adjustment set and runtime confounding
- Neither strategy is not robust to mis-specification of the models involved

Summary and final remarks

- using ML may result directly into plug-in G-comp or IPW leads to plug-in bias
- orthogonal-loss estimators are the soluion, ie DR learner
- DR-learner has limitations, the transformed pseudo -outcome may result on predictions outside the space
- Vansteelandt & Morzywolek have developed a so called "imputation" learner which avoid this (this is a targeted learning (in infinite dims) approach https://arxiv.org/abs/2311.09423)
- There is a close relation with causal inference methods for estimating conditional average treatment effects (CATE) R-learner, Causal forests, DR-learner in longitudinal settings (https://arxiv.org/pdf/2306.16297)
- **But** for prediction under interventions we are interested in absolute risks, not just risk differences