Design of Wind Energy Systems

Lecture 07 Wind Turbine Control

Prof. Dr. M. Kühn Bernd Kuhnle

ForWind - Wind Energy Systems

Topics

- Regulations Strategies
- PID Controller
- Implementation in the turbine's operation
- Advanced Control
- Safety System
- Supervisory Control

No reproduction, publication or dissemination of this material is authorized, except with written consent of the author.

Oldenburg, May 2016

Prof. Dr. Martin Kühn

Why turbine control?

For an optimal turbine operation:

- Maximal power conversion according to Betz
- Optimal inflow conditions at the blade sections

[Fotolia.com]

In case of unlimited turbine operation:	Ω↑ ~ v
---	--------

- ightharpoonup Increase of centrifugal forces $\sim \Omega^2$
- ightharpoonup Increase of thrust force $\sim \Omega^2$
- ightharpoonup Increase of torque moment $\sim \Omega^2$
- ightharpoonup Increase of power $ightharpoonup \Omega^3$

[machinery.co.uk]

[NSW]

Basic wind turbine control strategies encompass:

- Constant Tip Speed Ratio (TSR) control
- Constant rotor speed control
- Below/Above rated wind speed control
- Variable-speed pitch-torque control

$$C_{P} = \frac{P_{E}}{0.5\rho\pi R^{2}V^{3}} = f(\beta, \lambda, Re, M)$$
$$\lambda = \frac{\Omega R}{V}$$

Constant rotor speed, $\Omega = const = \Omega^*$,

Constant rotor speed, $\Omega = const = \Omega^*$,

Power-wind speed curve

Region above rated speed: $V > V_R$, $P_E = P_R$, $\Omega = \Omega^*$, $T_G = T_R = \frac{P_R}{\Omega^*}$

$$C_P = C_P^* \left(\frac{\lambda}{\lambda^*}\right)^3$$

$$\lambda = \frac{\Omega^* R}{V}$$

Variable-speed wind turbine with pitch/torque control

PID Controllers

The design of a proper control action for wind turbines is generally carried out by employing standard feedback control theory and so-called PID controllers.

- P-Term: Output, which is proportional to actual error.
- I-Term: Output, which is proportional to the magnitude and duration of the error.
- D-Term: Determines the slope of the error over time and predicts the upcoming behavior.

[Figure: wikipedia]

Example of influence of PID values

- Reaction of a system for a step response
- Here: varying proportional term

[Figure: wikipedia]

PID Controllers

PID Controllers

Torque and pitch demands are usually generated in isolation within two different regions of pertinence:

Generator torque below rated wind speed

$$T = \frac{P}{\Omega} = \frac{1}{2} \rho \pi R^2 C_P^* \frac{V^3}{\Omega}$$
$$= \frac{1}{2} \rho \pi R^3 \frac{C_P^*}{\lambda^{*3}} \Omega^2$$
$$= K_{opt} \Omega^2$$

Collective pitch angle above rated wind speed determined by a PI(D) controller in order to keep rotor speed / electrical power at rated level

Typical torque-speed curve for torque control

Common control concepts:

- 1. Steered guidance of a prescribed characteristics (e.g. A-B-C-D-E)
- 2. "controlled characteristics" offer advantages:

PID Controllers

The pitch activity can be modelled with a PI controller in the following way:

Region above rated speed: $V > V_R$, $P_E = P_R$, $\Omega = \Omega^*$, $T_G = T_R = \frac{P_R}{\Omega^*}$

$$C_P = C_P^* \left(\frac{\lambda}{\lambda^*}\right)^3$$

$$\lambda = \frac{\Omega^* R}{V}$$

Further wind turbine control objectives may include:

- Fatigue load reduction in case of turbulent inflow,
- Mitigation of loads deriving from sudden wind gusts,
- By-passing particular resonant frequencies of the system,
- Reducing pitch actuator duty cycle.

Generally, these additional goals should be achieved together with

- Maximizing energy capture, and
- Limiting power to the rated value.

Control adjustment to avoid resonances

Solution:

- Speed range is split into two regions about the natural frequency.
- Each region constrained by vertical speed-torque ramp.
- PI torque control tracks vertical ramps.

Motivation: avoid operation at the intersection of nP harmonics and tower natural frequency.

Innovative control concepts

LiDAR feedforward control [SWE Stuttgart]

Active smart blades (flaps)
[TU Delft]

Boundary layer control [TU Delft]

Passive control e.g. bend-twist coupling

2-bladed rotor, downwind, advanced controls

[2-B Energy]

Advanced Control

Load reduction potential individual pitch control:

- fatigue at least 10 to 30%
- extreme loads: not yet, possible on longer term

Challenges

- reliable, robust sensor concepts
- system approach
- reliable control algorithms
- reliable pitch actuators

Fig. Vestas

Variable airfoil geometry (smart blades)

"Advanced Stall"? Aeroelastic tailoring

Individual pitch

Tower feedback control (individual pitch)

Tower feedback control (collective pitch)

Tower vibration damper

Peak shaver

Collective pitch

© Risø

wind monitoring (LiDAR = gust forecasting by laser)

condition monitoring = damage monitoring

- load monitoring = stress monitoring
 - avoidance of over-loading
 - control based on actual real-time load effect
- robust, optical sensors (e.g. fibre bragg)

individual blade pitch control

iDAR

Individual Pitch Control

Reduction of blade and hub loads by individual pitch control (OPC)

Pitch actuators and local actuators

[P. Caseitz, Regelung drehzahlvariabler Windenergieanlagen mit aerodynamisch aktiven Elementen - Smart Blades, BMU-Strategiegespräch 2012]

Supervisory Control

Main tasks:

- Operational managing and monitoring
- Diagnostics, safety
- Communication, reporting and data logging

Operational states:

- Idling
- Start-up
- Normal power production
- Normal shut-down
- Emergency shut-down

Main input data:

- Wind speed
- Rotor speed
- Blade pitch
- Electrical power
- Accelerations
- **...**

But, also

- Stresses, strains (blades, tower)
- Position, speed
- Lubricants properties and levels
- Icing conditions, humidity, ...

Supervisory Control

Supervisory Control Logic

An exemplary monitoring logic may be sketched as follows:

Design principles of the safety system

"fail-safe"

i.e. in the event of failure, fails in a way that will cause no harm or at least a minimum of harm

redundant

i.e. at least two indipendent and redundant systems required, eached designed to bring the system back to a safe operational condition (Remark: "Fail-safe" not necessary means redundant!)

"Low-level"

i.e. robust, as simple as possible, hard wired, direct impact

Autonomous system

i.e. watch dog function, triggers once system o.k. signal is interupted

Safety loop

i.e. triggered by any of many sensors in a connection in series

Braking systems: Examples

- regulations: primary and secondary braking system
- fail-safe-operation (voltage off ⇒ brake on)
- triggering by safety loop

Stall:

- -primary: airbrakes or blade tip brakes (or hydraulic brake at low speed shaft)
- secondary: hydraulic brake at high speed shaft

<u>Typical active-stall turbine:</u>

- primary : collective pitch control
- secondary: hydraulic brake at high speed shaft

Pitch-controlled turbine (example with electro-mech.pitch system):

- primary & secondary: single-blade pitching (autonomous battery-equipped for each blade, blades pitched independently)
- support: hydraulic brake at high speed shaft

Conclusions

- Turbine control
 - is necessary to achieve optimal energy yield
 - is needed to limit loads
- PID controllers are state-of-the practice in wind energy
- Operational control can, besides power, also optimise loads
- Supervisory control ensure safe operation of the turbine

