CS:1010 DISCRETE STRUCTURES

PRACTICE QUESTIONS LECTURE 1

Instructions

- Try these questions before class. Do not submit!
- (1) Let p and q be the propositionsp: It is below freezing.q:It is snowing.

Write these propositions using p and q and logical connectives.

- (a) It is below freezing and snowing.
- (b) It is below freezing but not snowing.
- (c) If it is below freezing it is also snowing.
- (d) Either it is below freezing or it is snowing, but it is not snowing if it is below freezing.
- (e) That it is below freezing is necessary and sufficient for it to be snowing.
- (2) Write each of these statements in the form "if p, then q" in English.
 - (a) It is necessary to wash the boss's car to get promoted.
 - (b) Winds from the south imply a spring thaw.
- (3) How many rows appear in a truth table for each of these compound propositions?
 - (a) $p \to \neg p$
 - (b) $p \vee \neg r$) $\wedge (q \vee \neg s)$
 - (c) $q \lor p \lor \neg s \lor \neg r \lor \neg t \lor u$
- (4) S.T. $(p \lor q) \land (q \to r) \to (p \to r)$ is a tautology.
- (5) S.T. $(p \to q) \to r$ and $p \to (q \to r)$ is not logically equivalent.
- (6) The dual of a compound proposition that contains only logical operators \land, \lor, \neg is the compound proposition obtained by replacing each \lor by \land, \land by \lor, T by F and F by T. The dual of s is denoted as s^* .
 - (a) Find the dual of $p \wedge \neg q \wedge \neg r$.
 - (b) S.T. $(s^*)^* = s$.

- (c) When is $s^* = s$?
- (7) Determine whether this compound proposition is satisfiable. $(p \to q) \land (p \to \neg q) \land (\neg p \to q) \land (\neg p \to \neg q)$

November 22, 2020; Dept of CSE, IIT Hyderabad