咕咕模拟赛

(请选手务必仔细阅读本页内容)

一、题目概况

中文题目名称	最小公倍数	白兔迷宫	算数	染色球
英文题目名称	lcm	rabbit	calc	color
可执行文件名	lcm	rabbit	calc	color
输入文件名	lcm.in	rabbit.in	calc.in	color.in
输出文件名	lcm.out	rabbit.out	calc.out	color.out
提交文件名	lcm.cpp	rabbit.cpp	calc.cpp	color.cpp
每个测试点时限	4秒	1秒	2秒	3秒
测试点数目	20	20	20	20
每个测试点分值	5	5	5	5
内存限制	512MB	512MB	512MB	1024MB
题目类型	传统题	传统题	传统题	传统题

二、编译命令

题目 名称	lcm	rabbit	calc	color
对于 C++语 言	-o lcm lcm.cpp -lm - std=c++14 -O2 -Wl,- -stack=2147483647	-o rabbit rabbit.cpp - lm -std=c++14 -O2 - Wl, stack=2147483647	-o calc calc.cpp -lm -std=c++14 -O2 - Wl, stack=2147483647	-o color color.cpp - lm -std=c++14 -O2 - Wl, stack=2147483647

三、注意事项

- 1. 文件夹名、文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++中函数main()的返回值类型必须是int,程序正常结束时的返回值必须是0。
- 3. 统一评测时采用的机器配置为: windows下lemon评测。
- 4. 请尽力优化,会收获更多的部分得分。
- 5. AK 了不要大声喧哗,没AK也不要。

最小公倍数(lcm)

题目描述

```
令 (1+\sqrt{2})^n=e(n)+\sqrt{2}f(n),其中 e(n),f(n) 都是整数,显然有 (1-\sqrt{2})^n=e(n)-\sqrt{2}f(n)。令 g(n)=\mathrm{lcm}(f(1),f(2),\ldots,f(n))。
```

给定两个正整数 n,p,其中 p 是质数,并且保证 $f(1),f(2),\ldots,f(n)$ 在模 p 意义下均不为 0,请计 算 $\sum\limits_{i=1}^n i\times g(i)$ 模 p 的值。

输入格式

第一行包含一个正整数 T, 表示有 T 组数据。

接下来是测试数据。每组测试数据只占一行,包含两个正整数 n 和 p。

输出格式

对于每组测试数据,输出一行一个非负整数,表示这组数据的答案。

样例

样例1输入

```
5
1 233
2 233
3 233
4 233
5 233
```

样例1输出

```
1
5
35
42
121
```

数据范围

对于所有数据,满足: $1 \leq T \leq 210$, $1 \leq n \leq 10^6$, $2 \leq p \leq 10^9 + 7$, $\sum n \leq 3 \times 10^6$ 。

测试点编号	特殊限制
$1\sim 6$	$n \leq 20$
$7\sim 10$	$n \leq 100$
$11\sim14$	p=998244353
$15\sim 20$	无

白兔迷宫(rabbit)

题目描述

白兔进入了一个迷宫。迷宫是一个 n 个点 m 条边的有向图,图上可能有重边和自环。节点从 1 到 n 编号,起点为 S ,终点为 T 。保证从任意一个点出发都存在一条路径到达 T 。

迷宫的每条边上有一个怪物,怪物有01两类。白兔有一个积分,初始为0。每当白兔经过一条边:

- 若这条边上是一个1类怪物,白兔会将它击杀获得1的积分,并走到这条边的终点;
- 若这条边上是一个 0 类怪物,白兔会被其打晕。怪物不会把白兔打死,但是会清空白兔之前获得的 所有积分,然后把白兔放在这条边的终点。

经过一条边后这条边上的怪物会刷新,所以白兔多次经过一条边会多次触发怪物的效果。

由于白兔不知道迷宫的结构,所以白兔决定随机游走,即从S出发,每次从当前点独立等概率随机一条出边移动,触发对应边上怪物的效果并到达这条边的终点。当白兔第一次走到T时,游走就结束了。

给出这张图的结构以及每条边上怪物的类型,定义 X 表示游走完成时的积分对应的随机变量,白兔想让你帮他回答两个问题:

- 1. *X* 的期望是多少;
- 2. X 的方差是多少。

由于白兔不喜欢实数,你只需要输出其对 998244353 取模的结果。在题设条件下,容易发现答案一定 是有理数,且将答案化为既约分数形式后分母不为 998244353 的倍数。

输入格式

从标准输入读入数据。

输入的第一行包含四个整数 n, m, S, T,表示迷宫的点数、边数、起点、终点。

接下来 m 行,每行三个整数 x, y, o,表示一条 x 到 y 的有向边以及这条边上的怪物类型。

输出格式

输出到标准输出。

输出一行两个整数,第一个整数表示积分的期望,第二个整数表示积分的方差。

样例

样例1输入

2 2 1 2

1 1 1

1 2 1

样例1输出

2 2

样例1解释

从 1 号点出发有一个自环和一条通往 2 号点的边。每条边都有 o=1,因此积分就等于随机游走的步数。

对于 x>0,最终积分为 x 当且仅当白兔先在 1 号点走 x-1 次自环,第 x 次走到 2 号点,因此积分为 x 的概率为 2^{-x} 。故期望为:

$$\sum\limits_{x=1}^{+\infty}x2^{-x}=2$$

方差为:

$$\sum_{x=1}^{+\infty} (x-2)^2 2^{-x} = 2$$

数据范围

对于全部数据,满足 $2 \leq n \leq 100$, $1 \leq m \leq n^2$, $1 \leq S, T, x, y \leq n$, $S \neq T$, $o \in \{0,1\}$ 。

测试点编号	约束
$1\sim 2$	o = 0
$3\sim 8$	o = 1
$9\sim11$	x < y
$12\sim14$	$x \leq y$
$15\sim 20$	无特殊限制

评测方式

对于每个测试点,你每正确回答一个问题,可以获得该测试点 50% 的分数。

提示

记
$$P_x$$
 为 $X=x$ 的概率,则 X 的期望为 $\mathbb{E}(x)=\sum\limits_{x=0}^{+\infty}xP_x$, X 的方差为 $\mathrm{Var}(X)=\mathbb{E}((X-\mathbb{E}(X))^2)=\sum\limits_{x=0}^{+\infty}(x-\mathbb{E}(X))^2P_x$ 。

算数(calc)

题目描述

今天,生活在 14 进制世界的小 Q 学习了一种判断给定的大数是否是 9 的倍数的方法。我们以 $(1BB40)_{14}=(70812)_{10}$ 作为例子描述该方法,下面设 b=14,p=9,下面的方法中所有的运算在 b 进制下进行。

- 1. 从低位往高位,将每个连续的 k=2 位划分为一段。例子中, $(1BB40)_b$ 被划分为 $1\mid BB\mid 40$ 三段。
- 2. 从低位往高位从 0 开始给每一段编号。例子中,第 0 段为 40,第 1 段为 BB,第 2 段为 1。

- 3. 对于第 i 段计算出值 b_i : 设第 i 段在 b 进制下的值为 a_i , 如果 i 为奇数则 b_i 为满足 $(a_i+b_i)\equiv 0\pmod p$ 的最小非负整数 b_i , 如果 i 为偶数则 b_i 为满足 $(a_i-b_i)\equiv 0\pmod p$ 的最小非负整数 b_i 。例子中有 $b_0=2$, $b_1=6$, $b_2=1$ 。
- 4. 将 b_i 按照**下标大的在低位,下标小的在高位**的顺序顺次拼接,形成一个 b 进制数并输出。例子中输出结果为 $(261)_b = (477)_{10}$ 。容易验证 477 和 70812 都是 p 的倍数。

可以证明上述方法输入和输出的数要么同时是 p 的倍数,要么同时不是 p 的倍数。而且数字的位数变少了,所以多做几次就可以得到一个很小的数,然后就可以简单地判断了。

小 Q 深深地被这个算法吸引了,所以他想给出一个 b,p 不同于 14,9 时的通用方法。但是他发现,当上面的方法中 b,p 的取值变化时,k 不一定等于 2: 有时会是 1, 有时会大于 2, 有时甚至不存在满足条件的 k。所以对于给定的 b,p,小 Q 想知道在 b 进制下上述方法的第一步中**正整数** k 的最小值,使得无论输入如何,输入和对应的输出要么同时是 p 的倍数,要么同时不是 p 的倍数,或者报告这样的 k 不存在。

注意 p 不一定是质数。

输入格式

测试点有多组测试数据,保证同一测试点下的 p **相同**。输入的第一行包含两个正整数 T, p,分别表示该组测试点的测试数据组数与方法的 p 参数。

接下来 T 行每行输入一行一个整数 b 表示每组测试数据的进制。保证 $2 \le p < b \le 10 \times p$ 。

输入中的所有数字按照十进制给出。

输出格式

对于每组数据输出一行,若不存在合法的 k 输出 -1 ,否则输出最小的满足条件的**正整数** k。

样例

样例1输入

2 9

14

16

样例1输出

2

-1

数据范围

对于所有数据,满足: $1 \le T \le 10^5$, $2 \le p \le 10^{15}$ 。

测试点编号	特殊性质
$1\sim 3$	$p \leq 3$, $T \leq 10$
$4\sim 6$	$p \leq 10$, $T \leq 10$
$7\sim 9$	$p \leq 100$, $T \leq 100$

测试点编号	特殊性质
$10\sim12$	$p \leq 10^4$, $T \leq 100$
$13\sim15$	$p \leq 10^6$, $T \leq 10^3$
$16\sim17$	$p \leq 10^{12}$, $T \leq 10^3$
$18\sim 20$	无

染色球(color)

题目描述

有 N 个球,每个球编号为 1 到 N。最初,第 i 个球被涂上颜色 A_i 。

颜色用 1 到 N 之间的整数表示。

你需要重复以下操作,直到所有球的颜色都相同为止:

• N 个球的所有子集(包括空集)共有 2^N 个,从中等概率随机选择一个集合。设选中的集合包含 的球的编号按升序为 X_1,X_2,\ldots,X_K 。然后,从 $1,2,\ldots,N$ 中选取 K 个不同的数,得到一个 排列,等概率随机选择一个排列 $P=(P_1,P_2,\ldots,P_K)$ 。接下来,对于每个 $1\leq i\leq K$,将球 X_i 的颜色改为 P_i 。

请计算使所有球颜色相同所需操作次数的期望值,结果对998244353取模。

这里,从 $(1,2,\ldots,N)$ 中选取 K 个不同的数得到的排列,指的是由 K 个 1 到 N 之间互不相同的整 数构成的序列。

输入格式。

第一行输入一个数N。

第二行输入 N 个数 $A_1, A_2 \ldots A_N$ 。

输出格式

输出一个数,表示答案。

样例

样例1输入

2

1 2

样例1输出

样例1解释

每次选择大小为 1 的集合,并且操作会一直持续,直到将未选球的颜色改为与之相同。该概率为 $\frac{2}{4} imes \frac{1}{2} = \frac{1}{4}$,因此期望操作次数为 4。

样例2输入

3 1 1 1

样例2输出

0

样例3输入

10 3 1 4 1 5 9 2 6 5 3

样例3输出

900221128

数据范围

对于所有数据: $2 \leq N \leq 2000$, $1 \leq A_i \leq N$ 。

测试点编号	特殊性质
$1\sim 3$	$N \leq 3$
$4\sim 6$	$N \leq 5$
$7\sim 10$	$N \leq 10$
$11\sim15$	$N \leq 100$
$16\sim20$	无