Data Science for Geosciences Classification

Filière SICOM, 3A

Classification problem

Variable terminology

- \blacktriangleright observed data referred to as input variables, predictors or features \leftarrow usually denoted as X
- ▶ data to predict referred to as output variables, or $responses \leftarrow$ usually denoted as Y

Type of prediction problem : regression vs classification

Depending on the type of the *output* variables

- ▶ when Y are quantitative data (continuous variables, e.g. electrical load curve values) ← regression
- ▶ when Y are categorical data (discrete qualitative variables, e.g. handwritten digits $Y \in \{0, ..., 9\}$) \leftarrow classification

Classification outline

- Model based approaches for classification
 - ▶ Linear/Quadratic Discriminant Analysis
- ▶ Black box approaches for classification
 - ightharpoonup K nearest neighbors?
 - ► Support Vector Machine
- ► Clustering?
 - \triangleright K means?
 - EM algorithm?

Generative models

Two kinds of approaches based on a model:

- 1. Discriminative approaches : direct learning of p(Y|X), e.g. Regression, logistic regression
- 2. Generative models: learning of the joint distribution p(X,Y)

$$p(X,Y) = \underbrace{p(X|Y)}_{\text{likelihood}} \underbrace{\Pr(Y)}_{\text{prior}},$$

e.g. linear/quadratic discriminant analysis, Naïve Bayes

Bayes classifier

 $Y \in \mathcal{Y} \leftarrow \text{discrete domain}$

Definition

The Bayes classification rule f^* is defined as

$$f^*(x) = \arg\max_{k \in \mathcal{Y}} \Pr(Y = k | X = x).$$

The associated misclassification error rate $\mathcal{E}[f^*] = \Pr(f^*(x) \neq Y)$ is referred to as the Bayesian error rate

Theorem

The Bayes classification rule f^* is optimal in the misclassification rate sense: for any rule f, $\mathcal{E}[f] \geq \mathcal{E}[f^*]$.

Remarks

- $f^*(X) \equiv maximum \ a \ posteriori \ (MAP) \ estimate$
- ▶ In real-word applications, the distribution of (X, Y) is unknown \Rightarrow no analytical expression of $f^*(X)$. But useful reference on academic examples.

Discriminant functions

For both model based approaches, Bayes classifier is defined as

$$f^*(x) = \arg\max_{k \in \mathcal{Y}} \Pr(Y = k | X = x)$$

- equivalent to consider a set of functions $\delta_k(x)$, for $k \in \mathcal{Y}$, derived from a monotone transformation of posterior probability $\Pr(Y = k | X = x)$
- ▶ decision boundary between classes k and l is then defined as the set $\{x \in \mathcal{X} : \delta_k(x) = \delta_l(x)\}$

Definition

- $\delta_k(x)$ are called the discriminant functions of each class k
 - x is predicted in the k_0 class such that $k_0 = \arg \max_{k \in \mathcal{Y}} \delta_k(x)$

Generative models: Estimation problem

Assumptions

- ▶ classification problem with K classes : $Y \in \mathcal{Y} = \{1, ..., K\},$
- ightharpoonup input variables : $X \in \mathbb{R}^p$

Bayes rule:

$$\Pr\left(Y=k|X=x\right) = \frac{p(x|Y=k)\Pr\left(Y=k\right)}{p(x)} = \frac{p(x|Y=k)\Pr\left(Y=k\right)}{\sum_{j=1}^{K}p(x|Y=j)\Pr\left(Y=j\right)}.$$

In practice, the following quantities are unknown:

- densities of each class $p_k(x) \equiv p(x|Y=k)$
- weights, or prior probabilities, of each class $\pi_k \equiv \Pr(Y = k)$

Estimation problem

These quantities must be learned on a training set:

learning problem \Leftrightarrow estimation problem in a parametric or not way

Quadratic Discriminant Analysis (QDA)

Supervised classification assumptions

- $X \in \mathbb{R}^p, Y \in \mathcal{Y} = \{1, \dots, K\},\$
- ▶ sized *n* training set $(X_1, Y_1), \ldots (X_n, Y_n)$

QDA Assumptions

The input variables X, given a class Y=k, are distributed according to a parametric and Gaussian distribution :

$$X|Y = k \sim \mathcal{N}(\mu_k, \Sigma_k) \Leftrightarrow p_k(x) = \frac{1}{(2\pi)^{p/2} |\Sigma_k|^{1/2}} e^{-\frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k)}$$

The Gaussian parameters are, for each class k = 1, ..., K

- mean vectors $\mu_k \in \mathbb{R}^p$,
- \triangleright covariance matrices $\Sigma_k \in \mathbb{R}^{p \times p}$,
- set of parameters $\theta_k \equiv \{\mu_k, \Sigma_k\}$, plus the weights π_k , for $k = 1, \dots, K$.

Example

Mixture of K = 3 Gaussians

- $Y \in \{1, 2, 3\}$
- $X \in \mathbb{R}^2$

Example

Mixture of K = 3 Gaussians

- $Y \in \{1, 2, 3\}$
- $X \in \mathbb{R}^2$

95% theoretical confidence regions

QDA parameter estimation

Log-likelihood

For the training set,

$$\ell\left(\theta_{1},\ldots,\theta_{K},\pi_{1},\ldots,\pi_{K-1}\right) = \log p\left((x_{1},y_{1}),\ldots,(x_{n},y_{n})\right),$$

$$= \sum_{i=1}^{n} \log p\left((x_{i},y_{i})\right), \quad \leftarrow \text{ i.i.d. training set,}$$

$$= \sum_{i=1}^{n} \log \left[p\left(x_{i}|y_{i}\right) \operatorname{Pr}\left(y_{i}\right)\right],$$

$$= \sum_{i=1}^{n} \log \left[\pi_{y_{i}} \ p_{y_{i}}\left(x_{i};\theta_{y_{i}}\right)\right].$$

Rk: $\pi_K = 1 - \sum_{i=1}^{K-1} \pi_i$ is not a parameter

QDA parameter estimation (Cont'd)

Notations

- ▶ $n_k = \#\{y_i = k\}$ is the number of training samples in class k,
- $ightharpoonup \sum_{y_i=k}$ is the sum over all the indices i of the training samples in class k

(Unbiased) Maximum likelihood estimators (MLE)

- $\widehat{\pi}_k = \frac{n_k}{n}, \leftarrow \text{sample proportion}$
- $\widehat{\mu}_k = \frac{\sum_{y_i = k} x_i}{n_k}, \quad \leftarrow \text{ sample mean}$
- $\widehat{\Sigma}_k = \frac{1}{n_k 1} \sum_{y_i = k} (x_i \widehat{\mu}_k) (x_i \widehat{\mu}_k)^T, \quad \leftarrow \text{sample covariance}$

 ${\rm Rk}:\frac{1}{n_k-1}$ is a bias correction factor for the covariance MLE (otherwise $\frac{1}{n_k})$

QDA decision rule

The classification rule becomes

$$f(x) = \arg\max_{k \in \mathcal{Y}} \Pr(Y = k | X = x, , \widehat{\theta}, \widehat{\pi}),$$

=
$$\arg\max_{k \in \mathcal{Y}} \underbrace{\log \Pr(Y = k | X = x, \widehat{\theta}, \widehat{\pi})}_{\delta_k(x)},$$

where

$$\delta_k(x) = -\frac{1}{2} \log \left| \widehat{\Sigma}_k \right| - \frac{1}{2} (x - \widehat{\mu}_k)^T \widehat{\Sigma}_k^{-1} (x - \widehat{\mu}_k) + \log \widehat{\pi}_k + \text{Lest},$$

is the discriminant function

Remarks

- 1. different rule than the Bayes classifier as θ replaced by $\widehat{\theta}$ (and π replaced by $\widehat{\pi}$)
- 2. when $n \gg p$, $\widehat{\theta} \to \theta$ (and $\widehat{\pi} \to \pi$): convergence to the optimal classifier if the Gaussian model is correct...

QDA decision boundary

The boundary between two classes k and l is described by the equation

$$\delta_k(x) = \delta_l(x) \Leftrightarrow C_{k,l} + L_{k,l}^T x + x^T Q_{k,l}^T x = 0, \quad \leftarrow \text{quadratic equation}$$

where

$$C_{k,l} = -\frac{1}{2} \log \frac{|\widehat{\Sigma}_k|}{|\widehat{\Sigma}_l|} + \log \frac{\widehat{\pi}_k}{\widehat{\pi}_l} - \frac{1}{2} \widehat{\mu}_k^T \widehat{\Sigma}_k^{-1} \widehat{\mu}_k + \frac{1}{2} \widehat{\mu}_l^T \widehat{\Sigma}_l^{-1} \widehat{\mu}_l, \quad \leftarrow \text{scalar}$$

$$L_{k,l} = \widehat{\Sigma}_k^{-1} \widehat{\mu}_k - \widehat{\Sigma}_l^{-1} \widehat{\mu}_l, \quad \leftarrow \text{vector in } \mathbb{R}^p$$

$$Q_{k,l} = \frac{1}{2} \left(-\widehat{\Sigma}_k^{-1} + \widehat{\Sigma}_l^{-1} \right), \quad \leftarrow \text{matrix in } \mathbb{R}^{p \times p}$$

Representation Quadratic discriminant analysis

QDA example

Mixture of K = 3 Gaussians

▶ Estimation of the parameters $\hat{\mu}_k$, $\hat{\Sigma}_k$ and $\hat{\pi}_k$, for k = 1, 2, 3

95% estimated confidence regions

QDA example (Cont'd)

Mixture of K = 3 Gaussians

- ▶ Classification rule : $\arg \max_{k=1,2,3} \delta_k(x)$
- Quadratic boundaries $\{x; \delta_k(x) = \delta_l(x)\}$

LDA principle

LDA Assumptions

Additional simplifying assumption w.r.t. QDA: all the class covariance matrices are identical ("homoscedasticity"), i.e. $\Sigma_k = \Sigma$, for $k = 1, \dots, K$

(Unbiased) Maximum likelihood estimators (MLE)

- ightharpoonup $\widehat{\pi}_k$ and $\widehat{\mu}_k$ are unchanged,
- $\widehat{\Sigma} = \frac{1}{n-K} \sum_{k=1}^{K} \sum_{y_i = k} (x_i \widehat{\mu}_k) (x_i \widehat{\mu}_k)^T, \quad \leftarrow \text{pooled covariance}$

 ${\rm Rk}:\frac{1}{n-K}$ is a bias correction factor for the covariance MLE (otherwise $\frac{1}{n})$

LDA discriminant function

$$\delta_k(x) = -\frac{1}{2} \log \left| \widehat{\Sigma} \right| - \frac{1}{2} (x - \widehat{\mu}_k)^T \widehat{\Sigma}^{-1} (x - \widehat{\mu}_k) + \log \widehat{\pi}_k + \mathcal{L}st,$$

LDA decision boundary

The boundary between two classes k and l reduces to the equation

$$\delta_k(x) = \delta_l(x) \Leftrightarrow C_{k,l} + L_{k,l}^T x = 0, \quad \leftarrow \text{linear equation}$$

where

$$C_{k,l} = \log \frac{\widehat{\pi}_k}{\widehat{\pi}_l} - \frac{1}{2} \widehat{\mu}_k^T \widehat{\Sigma}^{-1} \widehat{\mu}_k + \frac{1}{2} \widehat{\mu}_l^T \widehat{\Sigma}^{-1} \widehat{\mu}_l, \quad \leftarrow \text{scalar}$$

$$L_{k,l} = \widehat{\Sigma}^{-1} \left(\widehat{\mu}_k - \widehat{\mu}_l \right), \quad \leftarrow \text{vector in } \mathbb{R}^p$$

$$ightharpoonup Q_{k,l} = 0,$$

□ Linear discriminant analysis

Linear Discriminant Analysis (LDA)

Mixture of K = 3 Gaussians

• Estimation of the parameters $\hat{\mu}_k$, $\hat{\pi}_k$, for k = 1, 2, 3, and $\hat{\Sigma}$

95% estimated confidence regions

Linear Discriminant Analysis (LDA)

Mixture of K = 3 Gaussians

- ▶ Classification rule : $\arg \max_{k=1,2,3} \delta_k(x)$
- ▶ linear boundaries $\{x; \delta_k(x) = \delta_l(x)\}$

Complexity of discriminant analysis methods

Effective number of parameters

- ▶ LDA : $(K-1) \times (p+1) = O(Kp)$
- ▶ QDA: $(K-1) \times \left(\frac{p(p+3)}{2} + 1\right) = O(Kp^2)$

Remarks

- ▶ in high dimension, i.e. $p \approx n$ or p > n, LDA is more stable than QDA which is more prone to overfitting,
- both methods appear however to be robust on a large number of real-word datasets
- ▶ LDA can be viewed in some cases as a least squares regression method
- ▶ LDA performs a dimension reduction to a subspace of dimension $\leq K 1$ generated by the vectors $z_k = \Sigma^{-1} \hat{\mu}_k \leftarrow$ dimension reduction from p to K 1!

Conclusions

Generative models

- ▶ learning/estimation of $p(X, Y) = p(X|Y) \Pr(Y)$,
- derivation of Pr(Y|X) from Bayes rule,

Different assumptions on the class densities $p_k(x) = p(X = x|Y = k)$

- ▶ QDA/LDA : Gaussian parametric model
- performs well on many real-word datasets
- \square LDA is especially useful when n is small

Perspectives

Black box approaches : direct learning of the prediction rule f

Support Vector Machine (SVM)

Theory elaborated in the early 1990's (Vapnik $et\ al$) based on the idea of 'maximum margin'

- ▶ deterministic criterion learned on the training set ← supervised classification
- general, i.e. model free, linear classification rule
- classification rule is linear in a transformed space of higher (possible infinite) dimension than the original input feature/predictor space

Linear discrimination and Separating hyperplane

Binary classification problem

- $X \in \mathbb{R}^p$
- $Y \in \{-1,1\} \leftarrow 2 \text{ classes}$
- ▶ Training set (x_i, y_i) , for i = 1, ..., n

Defining a linear discriminant function $h(x) \Leftrightarrow$ defining a separating hyperplane $\mathcal H$ with equation

$$\boldsymbol{x}^T\boldsymbol{\beta} + \beta_0 = 0,$$

- ▶ $\beta \in \mathbb{R}^p$ is the normal vector (vector normal to the hyperplane \mathcal{H}),
- ▶ $\beta_0 \in \mathbb{R}$ is the intercept/offset (regression or geometrical interpretation)
- \mathcal{H} is an affine subspace of codimension 1
- $h(x) \equiv \boldsymbol{x}^T \boldsymbol{\beta} + \beta_0$ is the associated (linear) discriminant function

Separating hyperplane and prediction rule

For a given separating hyperplane \mathcal{H} with equation

$$\boldsymbol{x}^T\boldsymbol{\beta} + \beta_0 = 0,$$

the prediction rule can be expressed as

- $\hat{y} = +1$, if $h(x) = x^T \beta + \beta_0 \ge 0$,
- $\hat{y} = -1$, otherwise,

or in an equivalent way:

$$\widehat{y} \equiv G(\boldsymbol{x}) = \operatorname{sign}\left[\boldsymbol{x}^T \boldsymbol{\beta} + \beta_0\right]$$

Rk: \boldsymbol{x} is in class $y \in \{-1, 1\}$: prediction $G(\boldsymbol{x})$ is correct iff $y(\boldsymbol{x}^T\boldsymbol{\beta} + \beta_0) \geq 0$

Separating Hyperplane: separable case

Linear separability assumption: $\exists \boldsymbol{\beta} \in \mathbb{R}^p$ and $\beta_0 \in \mathbb{R}$ s.t. the hyperplane $\boldsymbol{x}^T \boldsymbol{\beta} + \beta_0 = 0$ perfectly separates the two classes on the training set:

$$y_k\left(x_k^T\boldsymbol{\beta} + \beta_0\right) \ge 0, \quad \text{for } k = 1, \dots, n,$$

Separable case (p = 2 example)2.5 г 2 1.5 0.5 ×× -0.5 -1 -1.5 -2 × -2.5 -3 -2 -1 0 Χ,

Pb: infinitely many possible perfect separating hyperplanes $x^T \beta + \beta_0 = 0$

Find the 'optimal' separating hyperplane

Maximum margin separating hyperplane (separable case)

Distance of a point x_k to an hyperplane \mathcal{H} s.t. $x^T \boldsymbol{\beta} + \beta_0 = 0$,

$$d(x_k, \mathcal{H}) \equiv \min_{\boldsymbol{x}} \left\{ \|\boldsymbol{x} - \boldsymbol{x}_k\| : \boldsymbol{x}^T \boldsymbol{\beta} + \beta_0 = 0 \right\}$$

Maximum margin principle

We are interested in the 'optimal' perfect separating hyperplane maximizing the distance M>0, called the margin, between the samples of each class and the separating hyperplane

 \Rightarrow Find $\boldsymbol{\beta} \in \mathbb{R}^p$ and $\beta_0 \in \mathbb{R}$ s.t. the margin

$$M = \min_{1 \le k \le n} \left\{ d(x_k, \mathcal{H}) \right\}$$

is maximized

Signed distance

From the orthogonality principle,

$$d(x_0, \mathcal{H}) = \|\boldsymbol{x}_0 - \widehat{\boldsymbol{x}}_0\|,$$

where $\hat{\boldsymbol{x}}_0$ is the orthogonal projection of \boldsymbol{x}_0 on \mathcal{H}

$$\Rightarrow x_0 - \hat{x}_0$$
 and β are collinear,

$$\Rightarrow x_0 - \hat{x}_0 = \underbrace{\langle x_0 - \hat{x}_0, \boldsymbol{\beta}^* \rangle}_{\text{signed distance}} \boldsymbol{\beta}^*, \text{ where } \boldsymbol{\beta}^* = \frac{\boldsymbol{\beta}}{\|\boldsymbol{\beta}\|},$$

$$\Rightarrow \text{ signed distance } = (\boldsymbol{x}_0 - \widehat{\boldsymbol{x}}_0)^T \, \frac{\boldsymbol{\beta}}{\|\boldsymbol{\beta}\|} = \frac{\boldsymbol{x}_0^T \boldsymbol{\beta} - \widehat{\boldsymbol{x}}_0^T \boldsymbol{\beta}}{\|\boldsymbol{\beta}\|} = \frac{\boldsymbol{x}_0^T \boldsymbol{\beta} + \beta_0}{\|\boldsymbol{\beta}\|},$$

Remarks

- $|\langle \boldsymbol{x}_0 \widehat{\boldsymbol{x}}_0, \boldsymbol{\beta}^* \rangle| = ||\boldsymbol{x}_0 \widehat{\boldsymbol{x}}_0|| = d(\boldsymbol{x}_0, \mathcal{H}) \leftarrow \text{"signed distance"}$
- ▶ for any perfect separating hyperplane $y_k \langle \boldsymbol{x}_k \hat{\boldsymbol{x}}_k, \boldsymbol{\beta}^* \rangle = \frac{1}{\|\boldsymbol{\beta}\|} y_k (\boldsymbol{x}_k^T \boldsymbol{\beta} + \beta_0) \geq 0$, for k = 1, ..., n,

Canonical separating hyperplane

For any perfect separating hyperplane, for k = 1, ..., n

$$y_k \langle \boldsymbol{x}_k - \widehat{\boldsymbol{x}}_k, \boldsymbol{\beta}^* \rangle = d(x_k, \mathcal{H})$$

Hence, the margin reads

$$M \equiv \min_{1 \le k \le n} \left\{ d(x_k, \mathcal{H}) \right\} = \frac{1}{\|\boldsymbol{\beta}\|} \min_{1 \le k \le n} \left\{ y_k(\boldsymbol{x}_k^T \boldsymbol{\beta} + \beta_0) \right\}$$

Remarks

- ightharpoonup The bound M is reached (min of a countable set),
- lacktriangleright the samples at the margin are denoted as $oldsymbol{x}_{ ext{margin}}$

Canonical expression of the separating hyperplane

 $\boldsymbol{\beta}$ and β_0 are normalized s.t.

$$y_{\text{margin}}(\boldsymbol{x}_{\text{margin}}^T\boldsymbol{\beta} + \beta_0) = 1$$
, thus $M = \frac{1}{\|\boldsymbol{\beta}\|}$

Primal problem (separable case)

Canonical hyperplane expression:

$$\begin{array}{lll} \text{maximizing the margin } M = \frac{1}{\|\beta\|} & \Leftrightarrow & \text{minimizing} & \|\beta\| \\ & \Leftrightarrow & \text{minimizing} & \frac{1}{2}\|\beta\|^2 \end{array}$$

Primal optimization problem

$$\begin{cases} \min_{\boldsymbol{\beta}, \beta_0} & \frac{1}{2} \|\boldsymbol{\beta}\|^2, \\ \text{subject to} & y_k \left(\boldsymbol{x}_k^T \boldsymbol{\beta} + \beta_0\right) \ge 1, \text{ for } 1 \le k \le n. \end{cases}$$

- ▶ quadratic criterion + linear inequality constraints
- convex optimization problem

Lagrangian (separable case)

Convex constraints of positivity \Rightarrow introduction of the Lagrange multipliers Lagrangian

$$L(\boldsymbol{\beta}, \beta_0, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{\beta}\|^2 - \sum_{i=1}^n \alpha_i \underbrace{\left[y_i(\boldsymbol{x}_i^T \boldsymbol{\beta} + \beta_0) - 1 \right]}_{\geq 0},$$

where α_i are the Lagrange multipliers

First order Kuhn-Tucker necessary conditions

Setting the partial derivatives w.r.t. $\boldsymbol{\beta}$ and β_0 to zero yields

$$\begin{cases} \widehat{\boldsymbol{\beta}} &= \sum_{i=1}^{n} \alpha_i y_i \boldsymbol{x}_i, \\ 0 &= \sum_{i=1}^{n} \alpha_i y_i, \end{cases}$$

▶ plugging these expression in the Lagrangian yields the dual expression

Dual problem (separable case)

Dual optimization problem

$$\begin{cases} \max_{\boldsymbol{\alpha}} & \widetilde{L}(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^T \boldsymbol{x}_j, \\ \text{subject to} & \alpha_i \geq 0 \text{ and } \sum_{i=1}^{n} \alpha_i y_i = 0. \end{cases}$$

- simple convex optimization problem for which standard numerical procedure are available
- \square calculation of the optimum multipliers $\widehat{\alpha}_i$

Support vectors and maximum margin hyperplane (separable case)

Complementary slackness Kuhn-Tucker necessary conditions

$$\widehat{\alpha}_i[y_ih(\boldsymbol{x}_i)-1]=0 \quad \Rightarrow \quad \widehat{\alpha}_i=0 \text{ as } y_ih(\boldsymbol{x}_i)>1$$

- ▶ since $\hat{\boldsymbol{\beta}} = \sum_{i=1}^{n} \hat{\alpha}_i y_i \boldsymbol{x}_i$, $\hat{\boldsymbol{\beta}}$ depends only on the points at the margin ← support vectors
- \hat{eta}_0 can be derived from the complementary slackness expression for any of support vectors $\boldsymbol{x}_{\mathrm{margin}}$

$$y_{\text{margin}}h(\boldsymbol{x}_{\text{margin}}) - 1 = 0 \Rightarrow \widehat{\boldsymbol{\beta}}^T \boldsymbol{x}_{\text{margin}} + \widehat{\beta}_0 = y_{\text{margin}},$$

$$\Rightarrow \widehat{\beta}_0 = -\widehat{\boldsymbol{\beta}}^T \boldsymbol{x}_{\text{margin}} + y_{\text{margin}}$$

the only inputs used to construct the maximum margin hyperplane are the support vectors and the discriminant function reads

$$h(\boldsymbol{x}) = \sum_{i=1}^{n} \widehat{\alpha}_{i} y_{i} (\boldsymbol{x} - \boldsymbol{x}_{\text{margin}})^{T} \boldsymbol{x}_{i} + y_{\text{margin}}$$

Maximum margin separating hyperplane (separable case)

Separable case

Maximizing the $margin\ M$ between the separating hyperplane and the training data :

Nonseparable case

- ▶ in general, overlap of the 2 classes
- ${\color{red} \,}^{\color{red} \,}$ No hyperplane that perfectly separates the training data

Maximum margin separating hyperplane (nonseparable case)

Solution for the nonseparable case

Considering a *soft-margin* that allows wrong classifications

▶ introduction of slack variables $\xi_i \geq 0$ s.t.

$$y_i(\boldsymbol{x}_i^T\boldsymbol{\beta} + \beta_0) \ge (1 - \xi_i)$$

Support vectors include now the wrong classified points, and the points inside the margins $(\xi_i > 0)$

Primal problem : adding a penalty in the criterion

$$\begin{cases} \min_{\boldsymbol{\beta}, \beta_0, \xi} & \frac{1}{2} ||\boldsymbol{\beta}||^2 + C \sum_{i=1}^n \xi_i, \\ \text{subject to} & y_i(\boldsymbol{x}_i^T \boldsymbol{\beta} + \beta_0) \ge 1 - \xi_i, \end{cases}$$

where C > 0 is the "cost" parameter

Cost parameter (nonseparable case)

Criterion to be minimized :
$$\frac{1}{2}||\boldsymbol{\beta}||^2 + C\sum_{i=1}^n \xi_i$$
,

Influence of the cost parameter C > 0

C drives the margin size, thus the number of support vectors

- $ightharpoonup C \gg 0$: \sim underfitting (small margin, less support vectors)
- $C \to 0^+$: \sim overfitting (large margin, more support vectors)
- $ightharpoonup C o +\infty$: converges to the separable case

Choosing the cost parameter C > 0

- ightharpoonup the optimal C can be estimated by cross validation
- \square performance might not be very sensitive to choices of C (because of the rigidity of a linear boundary)
- \square usually $C \approx 1$ yields a good trade-off

Dual problem (nonseparable case)

Introducing the Lagrangian and substituting the first order KT conditions w.r.t. β , β_0 , ξ yields the dual expression

Dual optimization problem

$$\begin{cases} \max_{\boldsymbol{\alpha}} & \widetilde{L}(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^T \boldsymbol{x}_j, \\ \text{subject to} & 0 \leq \alpha_i \leq \boldsymbol{C} \text{ and } \sum_{i=1}^{n} \alpha_i y_i = 0. \end{cases}$$

- only difference w.r.t the separable case : $\alpha_i \leq C$ constraint!
- simple convex optimization problem for which standard numerical procedure are available

Optimal separating hyperplane

Example (nonseparable case)

 $\xi_i^* \equiv M\xi_i \leftarrow \text{distance}$ between a support vector and the margin

Linear discrimination: SVM vs LDA

Linear discrimination

- ▶ Linear Discriminant Analysis (LDA) : Gaussian generative model
- ▶ SVM : criterion optimization (maximizing the margin)

Linear discrimination: SVM vs LDA (Cont'd)

Adding one atypical data

SVM property

- ▶ Nonsensitive to atypical points (outliers) far from the margin
- sparse method (information \equiv support vectors)

Nonlinear discrimination in the input space

Transformed space \mathcal{F}

- ightharpoonup Choice of a transformed space $\mathcal F$ (expansion space) where the linear separation assumption is more relevant
- ▶ Nonlinear expansion map $\phi : \mathbb{R}^p \to \mathcal{F}, \, \boldsymbol{x} \mapsto \phi(\boldsymbol{x}) \leftarrow \text{enlarged features}$

Nonlinear discrimination in the input space

$$X \in \mathbb{R}^2, \ \phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)^T$$

Linear separation in the feature space $\mathcal{F} \Rightarrow$ Nonlinear separation in the input space

Kernel trick

The SVM solution depends only on the inner product between the input features $\phi(\mathbf{x})$ and the support vectors $\phi(\mathbf{x}_{margin})$

Kernel trick

Use of a kernel function k associated with an expansion/feature map ϕ :

$$k: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$$

 $(\boldsymbol{x}, \boldsymbol{x}') \mapsto k(\boldsymbol{x}, \boldsymbol{x}') \equiv \langle \phi(\boldsymbol{x}), \phi(\boldsymbol{x}') \rangle$

and the separating hyperplane reads $h(\mathbf{x}) = \sum_{i=1}^{n} \widehat{\alpha}_i y_i k(\mathbf{x}_i, \mathbf{x}) + \widehat{\beta}_0$

Advantages

- ightharpoonup computations are performed in the original input space : less expansive than in a high dimensional transformed space $\mathcal F$
- explicit representations of the feature map ϕ and enlarged feature space \mathcal{F} are not necessary, the only expression of k is required!
- \square possibility of complex transformations in possible infinite space \mathcal{F}
- standard trick in machine learning not limited to SVM (kernel-PCA, gaussian process, kernel ridge regression, spectral clustering . . .)

Choosing the Kernel function

Mercer theorem

 $k(\cdot,\cdot)$ should be a symmetric positive (semi-) definite function

Usual kernel functions

- ▶ Linear kernel ($\mathcal{F} \equiv \mathbb{R}^p$): $k(x, x') = x^T x'$
- ▶ Polynomial kernel (dimension of \mathcal{F} increases with the order d)

$$k(x, x') = (x^T x')^d$$
 or $(x^T x' + 1)^d$

 \triangleright Gaussian radial function (\mathcal{F} with infinite dimension)

$$k(x, x') = \exp(-\gamma ||x - x'||^2)$$

 \triangleright Neural net kernel (\mathcal{F} with infinite dimension)

$$k(x, x') = \tanh\left(\kappa_1 x^T x' + \kappa_2\right)$$

optimal kernel parameters can be estimated by cross validation

Linear kernel

Linear kernel

Polynomial kernel (d=4)

Gaussian radial kernel ($\gamma = 1$)

Multiclass SVM

 $Y \in \{1, \dots, K\} \leftarrow K \text{ classes}$

Standard approach : direct generalization by using multiple binary SVMs

OVA: one-versus-all strategy

- ► K classifiers between one class (+1 label) versus all the other classes (-1 label)
- signs classifier with the highest confidence value (e.g. the maximum distance to the separator hyperplane) assigns the class

OVO: one-versus-one strategy

- $\binom{K}{2} = K(K-1)/2$ classifiers between every pair of classes
- majority vote rule: the class with the most votes determines the instance classification

Which to choose? if K is not too large, choose OVO

SVM vs Logistic regression (LR)

- When classes are nearly separable, SVM does better than LR. So does LDA.
- ▶ When not, LR (with ridge penalty) and SVM are very similar
- ▶ If one wants to estimate probabilities for each class, LR is the natural choice
- ▶ For non linear boudaries, kernel SVMs are popular. Can use kernels with LR and LDA as well, but computations are more expansive.

Conclusions

SVM

- ightharpoonup maximum margin learning criterion \leftarrow model free
- classification algorithm nonlinear in the original input space by performing an implicit linear classification in a higher dimensional space
- sparse solutions characterized by the support vectors
- ▶ popular algorithms, with a large literature