IF440: Artificial Intelligence

Topic 03: Propositional Logic

Moeljono Widjaja, Ph.D. Arrival Dwi Sentosa, B.Sc., M.T.

> Universitas Multimedia Nusantara Jl. Scientia Boulevard, Gading Serpong Tangerang, Banten-15811 Indonesia

Even Semester \$2022/2023 M U L T I M E D I A N U S A N T A R A

Widjaja - Sentosa UMN IF440 Even Semester - 2022/2023

Capaian Pembelajaran Mingguan Mata Kuliah (Sub-CPMK):

Sub-CPMK-03 - Mahasiswa dapat menjelaskan konsep dasar dari model kecerdasan buatan berbasis representasi pengetahuan dan logika proposisi serta mengidentifikasi ketepatgunaan model logika proposisi untuk suatu permasalahan – (C2):

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 2/60

Review

- Types of agents
- Search agents

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 3/60

- 1 Concept of Knowledge representation
- 2 How can knowledge be represented?
- 3 Logic
- 4 Propositional logic
 - Proof by Enumeration
 - Proof by Deduction
 - Proof by Resolution
- 5 Horn Clauses

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 4/60 00000

Concept of Knowledge representation

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 5/60

Introduction

- Success in solving problems with Al depends naturally on our ability to:
 - Represent the knowledge about the world.
 - Reason with the knowledge to obtain meaningful answers.

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 6 / 60

Knowledge Representation

- Knowledge representation (KR) is the study of
 - how knowledge and facts about the world can be represented, and
 - what kinds of reasoning can be done with that knowledge.

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 7 / 60

Knowledge-Based Agents

- Knowledge base (KB): a set of sentences that describe the world and its behavior in some formal (representational) language.
- Inference engine: a set of procedures that use the representational language to infer new facts from known ones or answer a variety of KB queries. Inferences typically require search.

MULTIMEDIA NUSANTARA

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 8 / 60

Knowledge Representation Language

- Key aspects of knowledge representation languages:
 - Syntax: describes how sentences are formed in the language.
 - Semantics: describes the meaning of sentences, what is it the sentence refers to in the real world.

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 9/60

How can knowledge be represented?

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 10 / 60

How can knowledge be represented?

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 11/60

How can knowledge be represented?

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 12 / 60

Logic

UNIVERSITAS MULTIMEDIA NUSANTARA

Widjaja - Sentosa UMN IF440 Even Semester - 2022/2023 13 / 60

LOGIC

- Language for expressing reasoning steps.
- Syntax: The atomic symbols of the logical language, and the rules for constructing well-formed, non-atomic expressions (symbol structures) of the logic.
- Semantics: Define the truth of a sentence. NUSANTARA

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 14 / 60

Propositional logic

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 15 / 60

Proposition

- - that is true or false
 - whose negation makes sense
 - that can be believed or not
 - whose negation can be believed or not
- Examples:
 - Propositions:
 - Betty is the driver of the car.
 - Barack Obama is sitting down or standing up.
 - If Opus is a penguin, then Opus doesn't fly.
 - Non-Propositions:
 - Barack Obama
 - how to ride a bicycle
 - If the fire alarm rings, leave the building

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 16 / 60

SENTENCES vs. PROPOSITIONS

- A sentence is an expression of a (written) language that begins with a capital letter and ends with a period, question mark, or exclamation point.
- Some sentences do not contain a proposition: "Hi!", "Why?", "Pass the salt!"
- Some sentences do not express a proposition, but contain one: "Is Betty driving the car?"
- Some sentences contain more than one proposition: If Opus is a penguin, then Opus doesn't fly.

UNIVERSITAS MULTIMEDIA NUSANTARA

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 17 / 60

PROPOSITIONAL LOGIC

- Syntax and Semantic
 - $\neg P$ is true if P is false (**negation**).
 - $P \land Q$ is true iff both P and Q are true (conjunction).
 - \blacksquare $P \lor Q$ is true iff either P or Q are true (**disjunction**).
 - $P \implies Q$ is true unless P is true and Q is false (**implication**).
 - \blacksquare P \iff Q is true iff P and Q are both true or both false (**biconditional**).

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 18 / 60

```
Sentence \rightarrow AtomicSentence \mid ComplexSentence
AtomicSentence \rightarrow True \mid False \mid P \mid Q \mid R \mid \dots
ComplexSentence \rightarrow (Sentence) \mid [Sentence] \mid \neg Sentence
\mid Sentence \wedge Sentence
\mid Sentence \vee Sentence
\mid Sentence \Rightarrow Sentence
\mid Sentence \Leftrightarrow Sentence
\mid Sentence \Leftrightarrow Sentence
Operator Precedence : \neg, \land, \lor, \Rightarrow, \Leftrightarrow
```

Figure 7.7 A BNF (Backus-Naur Form) grammar of sentences in propositional logic, along with operator precedences, from highest to lowest.

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 19 / 60

2

3

- Adjacent rooms are connected (horizontally or vertically)
- Lurking in the cave is the Wumpus
- Agent can smell the Wumpus (stench)
- Agent feels a breeze if pit nearby
- Agent can shoot ONE arrow at (and kill) the Wumpus (scream)
- Some rooms contain pits that will trap agent
 - One room contains a pot of gold (glitter)
 - When agent walks into a wall, it will perceive a **bump**

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 20 / 60

PFAS:

UNIVERSITAS MULTIMEDIA

- Performance measure: +1000 for walk out w/ gold; -1000 for dying; -1 for each action; -10 for arrow
- Environment: a 4x4 grid. Agent starts at [1,1]; gold and pits randomly distributed.
- Actuators: agent can move forward, backward, left, or right.
- Sensors: [Stench, Breeze, Glitter, Bump, Scream]

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 21 / 60

■ Step 1

1,4	2,4	3,4	4,4	[
1,3	2,3	3,3	4,3	
1,2 OK	2,2	3,2	4,2	
1,1 A	2,1	3,1	4,1	
OK	ОК			
(a)				

= Glitter, Gold OK = Safe square = Pit= Stench = Visited = Wumpus

= Agent = Breeze

1,4	2,4	3,4	4,4		
1,3	2,3	3,3	4,3		
1,2	2,2 P?	3,2	4,2		
ок					
1,1	2,1 A	3,1 P?	4,1		
V	В				
OK	ок				
(b)					

[None, None, None, None, None]

[None, Breeze, None, None, None]

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 22 / 60

1,4	2,4	3,4	4,4	
^{1,3} w!	2,3	3,3	4,3	
1,2A S OK	2,2 OK	3,2	4,2	
1,1	2,1 B	3,1 P!	4,1	
v	v			
ок	ок			
(a)				

A	= Agent
В	= Breeze
G	= Glitter, Gold
OK	= Safe square
P	= Pit
S	= Stench
v	= Visited
W	= Wumpus

,	1,4	2,4 P?	3,4	4,4
	^{1,3} w!	2,3 A S G B	3,3 _{P?}	4,3
	1,2 s V OK	2,2 V OK	3,2	4,2
	1,1 V OK	2,1 B V OK	3,1 P!	4,1
		(1	b)	

[Stench, None, None, None, None]

[Stench, Breeze, Glitter, None, None]

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 23 / 60

- \blacksquare $P_{x,y}$ is true if there is a pit in [x,y]
- $W_{x,y}$ is true if there is a Wumpus in [x,y]
- \blacksquare $B_{x,y}$ is true if the agent perceives a breeze in [x,y]
- $S_{x,y}$ is true if the agent perceives a stench in [x,y]
- Example:
 - a square is breezy if a neighbouring square has a pit,
 - $B_{1,1} \iff (P_{1,2} \vee P_{2,1})$, where $B_{1,1}$ means that there is a breeze in [1,1].

UNIVERSITAS MULTIMEDIA NUSANTARA

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 24 / 60

Starting state

2,4	3,4	4,4
2,3	3,3	4,3
2,2	3,2	4,2
2.1	3.1	4,1
_, '	0,1	1 ,,,
OK		
	2,4 2,3 2,2 2,1 OK	2,3 3,3 2,2 3,2 2,1 3,1

_	
A	= Agent

$$P = Pit$$

$$W = Wumpus$$

[None, None, None, None, None]

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 25 / 60

PROPOSITIONAL LOGIC

- Sentences: suffice to derive $\neg P_1$ 2.
 - There is no pit in [1,1]: $R_1 : \neg P_{1,1}$
 - A square is breezy if and only if there is a pit in a neighboring square:

$$R_2: B_{1,1} \iff (P_{1,2} \vee P_{2,1})$$

$$R_3: B_{2,1} \iff (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

■ After visiting [1,1], [1,2], [2,1]. The breeze percepts for the first two squares visited in the specific world the agent is in:

$$R_4: \neg B_{1,1}$$

 $R_5: B_{2,1}$

 \blacksquare KB = $R_1 \land R_2 \land R_3 \land R_4 \land R_5$

NUSANTARA

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 26 / 60

Proof by Enumeration

A	= Agent
В	= Breeze
G	= Glitter, Gold
OK	= Safe square
P	= Pit
\mathbf{S}	= Stench
V	= Visited
\mathbf{W}	= Wumpus

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

NUSANTARA

- 7 relevant symbols: $B_{1,1}, B_{2,1}, P_{1,1}, P_{1,2}, P_{2,1}, P_{2,2}, P_{3,1}$.
- $2^7 = 128$ models.

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 27 / 60

Proof by Enumeration

Inference procedure: enumerate all models -> time consuming

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false false	false false	$false \\ false$	false false	false false	$false \\ false$	false true	true true	true $true$	$true \\ false$	true $true$	false false	false false
: false	: true	: false	: false	: false	: false	: false	: true	\vdots $true$: false	\vdots $true$: true	: false
false false false	true true true	false false false	false false false	false false false	false true true	true false true	true true true	true true true	true true true	true true true	true true true	$\begin{array}{c} \underline{true} \\ \underline{true} \\ \underline{true} \end{array}$
false : true	true : true	false : true	false : true	true : true	false : true	false : true	true : false	false : true	false : true	true : false	true : true	false : false

Figure 7.9 A truth table constructed for the knowledge base given in the text. KB is true if R_1 through R_5 are true, which occurs in just 3 of the 128 rows (the ones underlined in the right-hand column). In all 3 rows, $P_{1,2}$ is false, so there is no pit in [1,2]. On the other hand, there might (or might not) be a pit in [2,2].

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 28 / 60

Concept of Knowledge representation How can knowledge be represented?

PROPOSITIONAL THEOREM PROVING

$$\begin{array}{ll} (\alpha \wedge \beta) \equiv (\beta \wedge \alpha) & \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) & \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) & \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) & \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha & \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) & \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) & \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) & \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) & \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) & \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) & \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) & \text{distributivity of } \vee \text{ over } \wedge \\ \end{array}$$

Figure 7.11 Standard logical equivalences. The symbols α , β , and γ stand for arbitrary sentences of propositional logic.

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 29 / 60

PROPOSITIONAL THEOREM PROVING

- Inference and Proofs:
 - Inference rules is applied to derive a proof a chain of conclusions that leads to goal.
 - Modus Ponens:

$$\alpha \Rightarrow \beta,$$
 if (WumpusAhead \land WumpusAlive) \Rightarrow Shoot
$$\underline{\alpha}$$
 (WumpusAhead \land WumpusAlive) Shoot

■ AND-elimination: from a conjunction, any of the conjuncts can be inferred.

$$\frac{\alpha \wedge \beta}{\beta}$$
 (WumpusAhead \wedge WumpusAlive) WumpusAlive

Logical equivalence as inference rules: VERSITAS

$$\frac{\alpha \| \iff \bot \beta \top \bot}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)} \text{ M and } \underbrace{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}_{\alpha \Rightarrow \beta} \text{ A } A \xrightarrow{\alpha} \Rightarrow \beta$$

Widjaja - Sentosa UMN IF440 Even Semester - 2022/2023 30 / 60

PROOF BY DEDUCTION

- **Example: Wumpus World.** Start with the knowledge base containing R_1 through R_5 and show how to prove $\neg P_{1,2}$ (there is no pit in [1,2]).
 - Apply biconditional elimination to R₂ $R_6: (B_{1,1} \implies (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \implies B_{1,1})$
 - 2 And-elimination to R_6
 - $R_7: ((P_{1,2} \vee P_{2,1}) \implies B_{1,1})$
 - 3 Logical equivalence for contra-positives gives $R_8: (\neg B_{1,1} \implies \neg (P_{1,2} \vee P_{2,1}))$
 - Modus ponens with R_8 and the precept R_4
 - $R_9: \neg (P_{1,2} \vee P_{2,1})$
 - 5 De Morgan's Rules $R_{10}: \neg P_{1,2} \wedge \neg P_{2,1}$

Conclusion: neither [1,2] nor [2,1] contains a pit, S

MULTIMEDIA NUSANTARA

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 31 / 60

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 32 / 60

Proof by Resolution

■ Wumpus World. The agent returns from [2,1] to [1,1] and then goes to [1,2], where it perceives a stench, but no breeze.

= Breeze

= Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited W = Wumpus

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2 P?	3,2	4,2
ок			
1,1 V OK	2,1 A B OK	3,1 P?	4,1
		7 0 0	C 11 1

	1,4	2,4	3,4	4,4
	1,3 W!	2,3	3,3	4,3
	1,2 S OK	2,2 OK	3,2	4,2
T	1,1 V OK	2,1 B V OK	3,1 P!	4,1

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 33 / 60

$$R_{11}: \neg B_{1,2}$$

 $R_{12}: B_{1,2} \iff (P_{1,1} \lor P_{2,2} \lor P_{1,3})$

Derive the absence of pits in [2,2] and [1,3].

$$R_{13}: \neg P_{2,2}$$

 $R_{14}: \neg P_{1,3}$

- Biconditional elimination to R_3 followed by Modus Ponens with R_5 , to obtain the fact that there is a pit in [1,1], [2,2], or [3,1]. $R_{15}: P_{1,1} \vee P_{2,2} \vee P_{3,1}$
- \blacksquare ¬ $P_{2,2}$ in R_{13} resolves with the literal $P_{2,2}$ in R_{15} to give the **resolvent**. $R_{16}: P_{1,1} \vee P_{3,1}$
- The literal $\neg P_{1,1}$ in R_1 resolves with the literal $P_{1,1}$ in R_{16} . $R_{17}:P_{3.1}$ NUSANTARA

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 34 / 60

Horn Clauses

UNIVERSITAS MULTIMEDIA NUSANTARA

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 35 / 60

PROPOSITIONAL THEOREM PROVING

Horn Clauses:

A disjunction of literals of which at most one is positive.

Ex.: $(\neg P_{1,2} \lor \neg P_{2,1} \lor B_{1,1}), (\neg P_{1,2} \lor \neg P_{2,1} \lor \neg B_{1,1})$

■ Definite Clauses:

Restricted inference algorithm.

A disjunction of literals of which exactly one is positive.

Ex.: $(\neg P_{1,2} \lor \neg P_{2,1} \lor B_{1,1})$

UNIVERSITAS MULTIMEDIA NUSANTARA

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 36 / 60

PROPOSITIONAL THEOREM PROVING

- Every definite clause can be re-written as an implications. Proposition symbol (fact)
 Conjunction of symbols (body or premise) \Longrightarrow symbol (head) $(\neg P_{1,2} \lor \neg P_{2,1} \lor B_{1,1}) \equiv (P_{1,2} \land P_{2,1}) \Longrightarrow B_{1,1}$
- Inference with Horn clauses can be done through the forward-chaining and backward-chaining: natural and easy for humans to follow.

UNIVERSITAS MULTIMEDIA NUSANTARA

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 37 / 60

REASONING WITH HORN CLAUSES

Forward Chaining

- For each new piece of data, generate all new facts, until the desired fact is generated.
- Data-directed reasoning reasoning in which the focus of attention starts with the known data.
- E.g. decision support system, medical diagnosis system.

Backward Chaining

- To prove the goal, find a clause that contains the goal as its head, and prove the body recursively.
- Backtrack when you chose the wrong clause
- Goal-directed reasoning.
- E.g. Computer forensic investigation.

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 38 / 60

- Fire any rule whose premises are satisfied in the KB.
- Add its conclusion to the KB until the guery is found.
- Ex.: Given A and B are true, prove that Q is true.

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 39 / 60 Counting how many literals in each premise.

AВ

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 40 / 60 Counting how many literals in each premise.

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 41 / 60

Counting how many literals in each premise.

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 42 / 60

 $\begin{array}{l} P \Rightarrow Q \\ L \wedge M \Rightarrow P \\ B \wedge L \Rightarrow M \\ A \wedge P \Rightarrow L \\ A \wedge B \Rightarrow L \\ B \end{array}$

Counting how many literals in each premise.

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 43 / 60

 $P \Rightarrow Q$ $L \wedge M \Rightarrow P$ $B \wedge L \Rightarrow M$ $A \wedge P \Rightarrow L$ $A \wedge B \Rightarrow L$ AB

Counting how many literals in each premise.

UMN IF440 Even Semester - 2022/2023 44 / 60

 $P \Rightarrow Q$ $L \wedge M \Rightarrow P$ $B \wedge L \Rightarrow M$ $A \wedge P \Rightarrow L$ $A \wedge B \Rightarrow L$ A

B

Counting how many literals in each premise.

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 45 / 60 Counting how many literals in each premise.

 $P \Rightarrow Q$

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 46 / 60

Counting how many literals in each premise.

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 47 / 60

- Idea: work backwards from the query *q*:
 - To prove q by B.C.,
 - Check if q is known already, or
 - Prove by BC all premises of some rule concluding q.

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 48 / 60

 $P \Rightarrow Q$ $L \wedge M \Rightarrow P$ $B \wedge L \ \Rightarrow \ M$ $A \wedge P \Rightarrow L$ $A \wedge B \Rightarrow L$

В

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 49 / 60

 $P \Rightarrow Q$ $L \wedge M \Rightarrow P$ $B \wedge L \Rightarrow M$ $A \wedge P \Rightarrow L$ $A \wedge B \Rightarrow L$ AВ

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 50 / 60

 $P \Rightarrow Q$ $L \wedge M \Rightarrow P$ $B \wedge L \Rightarrow M$ $A \wedge P \Rightarrow L$ $A \wedge B \Rightarrow L$ AВ

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 51 / 60

 $P \Rightarrow Q$

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 52 / 60

 $P \Rightarrow Q$ $L \wedge M \Rightarrow P$ $B \wedge L \ \Rightarrow \ M$ $A \wedge P \Rightarrow L$ $A \wedge B \Rightarrow L$ AB

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 53 / 60

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 54 / 60

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 55 / 60

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 56 / 60

 $P \Rightarrow Q$ $L \wedge M \Rightarrow P$ $B \wedge L \Rightarrow M$ $A \wedge P \Rightarrow L$ $A \wedge B \Rightarrow L$ AВ

BACKWARD CHAINING

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 57 / 60

 $P \Rightarrow Q$ $L \wedge M \Rightarrow P$ $B \wedge L \Rightarrow M$ $A \wedge P \Rightarrow L$ $A \wedge B \Rightarrow L$ A

В

Widjaja - Sentosa **UMN** IF440 Even Semester - 2022/2023 58 / 60

Next Week

- First-Order Logic
- Syntax of FOL
- Quantifiers
- Assertions & Queries
- Inference in FOL

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 59 / 60

Visi dan Misi

Visi

Menjadi Program Studi Strata Satu Informatika **unggulan** yang menghasilkan lulusan **berwawasan internasional** yang **kompeten** di bidang Ilmu Komputer (*Computer Science*), **berjiwa wirausaha** dan **berbudi pekerti luhur**.

Misi

- Menyelenggarakan pembelajaran dengan teknologi dan kurikulum terbaik serta didukung tenaga pengajar profesional.
- Melaksanakan kegiatan penelitian di bidang Informatika untuk memajukan ilmu dan teknologi Informatika.
- Melaksanakan kegiatan pengabdian kepada masyarakat berbasis ilmu dan teknologi Informatika dalam rangka mengamalkan ilmu dan teknologi Informatika.

 Widjaja - Sentosa
 UMN
 IF440
 Even Semester - 2022/2023
 60 / 60