Radio-Interferometric Measurement Equation

Introductory Radio Interferometry Course

Centre for Radio Astronomy Techniques and Technologies (RATT)
Rhodes University

Modhurita Mitra

Radio-Interferometric Measurement Equation (RIME)

- Compact, intuitive, matrix-based way of representing propagation effects in radio interferometry.
- Useful for calibration (solving for and correcting these propagation effects).

Introduction

 e'_x , e'_y : Components of electric field vector in reference frame of sky, at the observer

 v_a , v_b : Voltages measured by antenna feed (linearly or circularly polarized)

red)

Propagation effects

Antenna

Can be represented as vectors:

$$\boldsymbol{e} = \begin{pmatrix} e_x \\ e_y \end{pmatrix}$$

$$oldsymbol{e}' = egin{pmatrix} e_{x}' \ e_{y}' \end{pmatrix}$$

$$\boldsymbol{v} = \begin{pmatrix} v_a \\ v_b \end{pmatrix}$$

 $e_{x_i} e_y$: Components of electric field vector in reference frame of sky, at the source

Source

Propagation effects absent

Amplitude and direction of electric vector remain unchanged during propagation

No propagation effects

Antenna

Propagation effects present

Amplitude and direction of electric vector change during propagation

Antenna

Propagation effects

Propagation effects

Inear transformation matrix,

Linear transformation

Voltage vector
$$v = Je$$
 Electric field vector

$$\begin{pmatrix} v_a \\ v_b \end{pmatrix} = \begin{pmatrix} j_{11} & j_{12} \\ j_{21} & j_{22} \end{pmatrix} \begin{pmatrix} e_x \\ e_y \end{pmatrix}$$

Correlation

Visibility

Visibility

• The correlator computes the visibility, V_{pq} , on the baseline pq:

Correlation

Voltages:
$$m{v}_p = m{J}_p m{e}$$
 , $m{v}_q = m{J}_q m{e}$

Visibility: $m{V}_{pq} = 2\langle m{v}_p m{v}_q^H
angle$
 $= 2\langle m{J}_p m{e} m{e}^H m{J}_q^H
angle$
 $= 2\langle m{J}_p (m{e} m{e}^H) m{J}_q^H
angle$
 $= m{J}_p \langle 2m{e} m{e}^H
angle m{J}_q^H$

Coherency, or Brightness

$$\mathbf{V}_{pq} = \mathbf{J}_{p} \langle 2\mathbf{e}\mathbf{e}^{H} \rangle \mathbf{J}_{q}^{H}$$

By definition, the coherency, or brightness, B, is given by:

$$\mathbf{B} = \langle 2\mathbf{e}\mathbf{e}^{H} \rangle = \begin{pmatrix} I + Q & U + iV \\ U - iV & I - Q \end{pmatrix}$$

 $\langle ee^H \rangle$ is the coherence of the electromagnetic field with itself, and is described by the Stokes parameters I, Q, U, V

$$\mathbf{V}_{pq} = \mathbf{J}_p \, \mathbf{B} \, \mathbf{J}_q^H$$

Radio-Interferometric Measurement Equation (RIME)

Visibility Brightness
$$\mathbf{V}_{pq} = \mathbf{J}_{p} \ \mathbf{B} \ \mathbf{J}_{q}^{H}$$
 Jones matrices

$$\begin{pmatrix} v_{aa} & v_{ab} \\ v_{ba} & v_{bb} \end{pmatrix} = \begin{pmatrix} j_{11a} & j_{12a} \\ j_{21a} & j_{22a} \end{pmatrix} \begin{pmatrix} I + Q & U + iV \\ U - iV & I - Q \end{pmatrix} \begin{pmatrix} j_{11b}^* & j_{21b}^* \\ j_{12b}^* & j_{22b}^* \end{pmatrix}$$

The Jones matrix for an antenna is a product of several component Jones matrices, corresponding to different corrupting effects along the signal path

Example:

Jones chain:

$$J=J_n \ J_{n-1} \ \cdots \ J_2 \ J_1$$

Later in signal path Earlier in signal path

Antenna
$$p$$
: $J_p = J_{pn} J_{p(n-1)} \cdots J_{p2} J_{p1}$

Antenna q : $J_q = J_{qn} J_{q(n-1)} \cdots J_{q2} J_{q1}$

Visibility Brightness

 $V_{pq} = J_p B J_q^H$

Jones matrices

 $V_{pq} = J_{pn} J_{p(n-1)} \cdots J_{p2} J_{p1} B J_{q1}^H J_{q2}^H \cdots J_{q(n-1)}^H J_{qn}^H$

 $\mathbf{V}_{pa} = J_{pn} (J_{p(n-1)} (\cdots (J_{p2} (J_{p1} \mathbf{B} J_{q1}^{H}) J_{q2}^{H}) \cdots) J_{q(n-1)}^{H}) J_{qn}^{H}$

Direction-independent and direction-dependent effects

Propagation effects can be of two kinds:

- Direction-independent effects
- Direction-dependent effects

These effects can be represented by different Jones matrices:

Direction-independent effects

Antenna

Direction-dependent effects

Direction-independent and direction-dependent effects

$$\mathbf{V}_{pq} = \mathbf{J}_p \; \mathbf{B} \; \mathbf{J}_q^H$$
 $\mathbf{V}_{pq} = \mathbf{G}_p (\mathbf{E}_p \mathbf{B} \mathbf{E}_q^H) \mathbf{G}_q^H$

Direction-independent and direction-dependent effects

Example:

Explicit RIME and phenomenological RIME

Explicit RIME:

$$J=B$$
 G D E P T — Useful for understanding the component corrupting effects along the propagation path

Phenomenological RIME:

$$oldsymbol{J} = oldsymbol{G} \, oldsymbol{E}$$
 Useful for calibration, as these matrices are easier to solve for

Polarization

 Polarization of an electromagnetic wave describes the direction of oscillation of the electric field.

(From https://commons.wikimedia.org/wiki/File:Electromagnetic wave.png, author: User:P.wormer)

• The plane of polarization is perpendicular to the direction of propagation of the wave.

Polarization

- Light can be:
 - Unpolarized
 - Polarized
 - Partially polarized

Unpolarized light

- Electric vector oscillates in random directions in the plane of polarization.
- Most naturally-occurring radiation is unpolarized.
- Also called incoherent radiation.
- Example: Thermal radiation.

Polarized light

- Electric vector oscillates in a well-defined manner.
- Also called coherent radiation.
- Example: Light from a laser.

Partially polarized light

- Electric vector oscillates randomly, but there is more power in a preferred polarization mode.
- Partially polarized light can be expressed as a superposition of its polarized and unpolarized parts:

Eractional polarization is defined as the ratio

 Fractional polarization is defined as the ratio of the power in the polarized component to the total power:

$$p = \frac{P}{I}$$

Polarization

• Polarized electromagnetic radiation can be:

Linearly polarized

Circularly polarized

Elliptically polarized

Antenna feeds

An antenna contains feeds, which detect and measure specific polarized components of an electromagnetic wave:

 Antenna with orthogonal linearly polarized feeds: x-polarized feed

y-polarized feed

Antenna with orthogonal circularly polarized feeds:

Right-circularly polarized (RCP) feed

Left-circularly polarized (LCP) feed

Antenna feeds

Linearly polarized wave, measured by linearly polarized feeds:

x component

y component

Combination of x and y components

Antenna feeds

Linearly polarized wave, measured by circularly polarized feeds:

RCP component

LCP component

Combination of RCP and LCP components

Structure of Jones matrices

Most Jones matrices have a simple form:

•
$$J_{\text{rotation}} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

•
$$J_{\text{leakage}} = \begin{bmatrix} 1 & D_X \\ D_Y & 1 \end{bmatrix}$$

•
$$J_{\text{gain}} = \begin{bmatrix} G_X & 0 \\ 0 & G_Y \end{bmatrix}$$

(in a linearly polarized basis)

Structure of Jones matrices

- The structure of individual Jones matrices depends on the antenna feed polarization basis, but the RIME is valid independent of the polarization basis.
- For example,

•
$$J_{\text{rotation}} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 in a lin

in a linearly polarized basis

•
$$J_{\text{rotation}} = \begin{bmatrix} e^{j\theta} & 0 \\ 0 & e^{-j\theta} \end{bmatrix}$$

in a circularly polarized basis

Rotation matrices

•
$$J_{\text{rotation}} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Examples:

Parallactic angle feed rotation:

Parallactic angle
$$P = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$

Ionospheric Faraday rotation:

$$T = \begin{bmatrix} \cos \chi & -\sin \chi \\ \sin \chi & \cos \chi \end{bmatrix}$$
Faraday rotation angle

Leakage matrices

•
$$J_{\text{leakage}} = \begin{bmatrix} 1 & D_X \\ D_Y & 1 \end{bmatrix}$$

Examples:

Polarization leakage: $D = \begin{bmatrix} 1 & d_x \\ d_y & 1 \end{bmatrix}$

Polarization leakage terms

Gain matrices

•
$$J_{\text{gain}} = \begin{bmatrix} G_X & 0 \\ 0 & G_Y \end{bmatrix}$$

Examples:

Instrumental gain:
$$G = \begin{bmatrix} g_x & 0 \\ 0 & g_y \end{bmatrix} = \begin{bmatrix} a_x e^{j\phi_x} & 0 \\ 0 & a_y e^{j\phi_y} \end{bmatrix}$$

Bandpass gain:
$$\mathbf{B} = \begin{bmatrix} B_{x} & 0 \\ 0 & B_{y} \end{bmatrix} = \begin{bmatrix} b_{x}(v)e^{j\psi_{x}(v)} & 0 \\ 0 & b_{y}(v)e^{j\psi_{y}(v)} \end{bmatrix}$$

Order of Jones matrices in Jones chain

$$J = J_n J_{n-1} \cdots J_2 J_1$$

- Order of matrices in the Jones chain is important, because matrix multiplication is not commutative, in general.
- However, specific kinds of matrices do commute scalar matrices commute with all kinds of matrices, rotation matrices with each other, diagonal matrices with each other.

References

- Thompson, A. R., Moran, J. M., and Swenson, Jr., G. W. (2001), Interferometry and Synthesis in Radio Astronomy, 2nd Edition
- G. B. Taylor, C. L. Carilli, & R. A. Perley, editors (1999), Synthesis
 Imaging in Radio Astronomy II, volume 180 of Astronomical Society of
 the Pacific Conference Series
- 14th Synthesis Imaging Workshop <u>lecture slides</u> (2014), National Radio Astronomy Observatory, Socorro, New Mexico, USA
- Oleg Smirnov's <u>RIME lecture</u> from *3GC3 Workshop and Interferometry School* (2013), Port Alfred, South Africa

References (continued)

- Smirnov, O. M. (2011). Revisiting the radio interferometer measurement equation. I. A full-sky Jones formalism. Astronomy & Astrophysics, Volume 527, A106
- Smirnov, O. M. (2011). Revisiting the radio interferometer measurement equation. II. Calibration and direction-dependent effects. Astronomy & Astrophysics, Volume 527, A107
- Smirnov, O. M. (2011). Revisiting the radio interferometer measurement equation. III. Addressing direction-dependent effects in 21 cm WSRT observations of 3C 147. Astronomy & Astrophysics, Volume 527, A108

References (continued)

- Hamaker, J. P., Bregman, J. D., and Sault, R. J. (1996). Understanding radio polarimetry. I. Mathematical foundations. A&AS, 117, 137–147
- Sault, R. J., Hamaker, J. P., and Bregman, J. D. (1996). Understanding radio polarimetry. II. Instrumental calibration of an interferometer array. A&AS, 117, 149–159
- Hamaker, J. P. and Bregman, J. D. (1996). *Understanding radio polarimetry. III. Interpreting the IAU/IEEE definitions of the Stokes parameters*. A&AS, 117, 161–165
- Hamaker, J. P. (2000). *Understanding radio polarimetry. IV. The full-coherency analogue of scalar self-calibration: Self-alignment, dynamic range and polarimetric fidelity*. A&AS, 143, 515–534