CSE380 Canned Project Report

Kevin Song
December 9, 2016

Targets

My canned project was started five minutes before midnight on Wednesday, when it became apparent that my planned project no longer had any life in it. Consequently, there are several pieces missing from this project. In short, there are two major missing components: tests and timing.

- Tests: I do not have any unit or regression tests for the code, nor do I have coverage tests with lcov/gcov. In essence, the make test and make coverage rules that were supposed to be implemented are not.
- Timing: I do not have timers for performance-critical code, or any code, for that matter. I am linking GRVY at the moment, but adding timers is another layer of complexity that I'm just not ready for. Consequently, there are no timers in the code, and thus no performance results, aside from "completes fast enough most of the time."

However, everything else is functioning. I have an input file which takes in configuration options (documented in the README.md and in comments). I have the option to run in verification mode for the simple ODE, debug mode for (slightly) more verbose outputs, three RK methods and Euler's method.

Simple ODE

The simple ODE I chose was $\frac{dx}{dt} = m \sin(t) + nt^3/2$, with fixed parameters m = 4 and n = 2. A plot of the solution path with h = 100 is presented in Figure 1.

An improved solution with h = 10 is found in Figure 2.

An example with h = 10 using the RK4 method is in Figure 3.

Finally, the convergence analysis is presented in Figure 4. Note that Euler's method converges as it should, linearly with h. The Runge-Kutta method has an interesting time of things, as it initially converges as the step size decreases. However, once h reaches 1, the error starts increasing again. I suspect this is due to roundoff error. Regressing on the three points where the error decreases shows a third-order trend, which is a bit too low for RK4. Most likely this is because there are not enough points to get an accurate estimate of the error.

Charged Particle

Figure 1: Solution Trajectory with Euler's Method, h = 100

Figure 2: Solution Trajectory with Euler's Method, $h=10\,$

Figure 3: Solution Trajectory with Euler's Method, h=10

Figure 4: Convergence Analysis on Log-Log scale, with slopes shown