Algorytmy grafowe 07: Generowanie drzew rozpiętych.

A Zadania na rozgrzewkę przed egzaminem/kolokwium zaliczeniowym - nie obowiązkowe

Zadanie A.1. (Dla cierpliwych) Zanalizuj działanie algorytmu znajdującego wszystkie drzewa rozpięte w cyklu długości cztery z listą krawędzi jak poniżej:

$$(1,2)$$
 $(1,4)$ $(2,3)$ $(3,4)$.

Wypisz zmiany etykiet, kolejne rozpatrywane krawędzie, co z nimi robisz (dodana/usunięta/nic), jakie kraw. są aktualnie dodane

kraw.	działanie	1	2	3	4	aktualnie dodane				

Zadanie A.2. Na pewnym etapie działania algorytmu znajdującego wszystkie drzewa rozpięte grafu na czternastu wierzchołkach etykiety wierzchołków wynosiły:

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}	v_{11}	v_{12}	v_{13}	v_{14}
$\mathbf{r}(\cdot)$	1	1	1	1	5	6	1	1	1	6	5	5	5	5
$\mathbf{p}(\cdot)$	_	3	1	3	_	_	8	1	8	6	5	11	5	13

Narysuj las wyznaczony przez te etykiety. Jakie będą się zmieniały etykiety wierzchołków (i krawędzie lasu) przy badaniu czterech następnych na liście krawędzi (zakończ działanie algorytmu dopiero w momencie gdy był(a) byś zmuszon(a) y do rozpatrywania następnej, która nie jest już podana, krawędzi :

$$(v_3, v_{12}), (v_7, v_{14}), (v_6, v_7), (v_7, v_{10})$$
?

Wypisz też kolejne rozpatrywane krawędzie i co z nimi robisz (dodana/usunięta/nic).

Przykładowe rozwiązania na końcu pliku.

B Program do napisania

Proszę o przesłanie

- do nocy ze środy na czwartek (22/23 kwietnia);
- w mailu o tytule **AGR04** (WAZNE: Nie będę czytała tych maili, więc z istotnymi sprawami proszę się zgłaszać w osobnych mailach.)
- plików o zindywidualizowanej nazwie **04NazwiskoImie.py** albo **04NazwiskoImie.txt** (jeśli .py nie chce się wysłać) albo skompresowane o nazwie **04NazwiskoImie** (ale TYLKO jeśli piszą Państwo w kilku plikach) albo **04NazwiskoImieNieDziala.*** (jeśli podjęli Państwo próbę zrobienia, ale nie działa);
- na adres: kryba@amu.edu.pl.
- Proszę:
 - nazwisko pierwsze, bez polskich znaków;
 - nie wysyłać niekompletnych programów bez dopisku NieDziala;
 - jak wysyłają Państwo nową, poprawioną wersję, to dodać numer wersji np. 02 na końcu nazwy.
- Proszę o wpisanie w programie 'graph07.txt' a nie odwołania do pliku, które Państwo wykorzystywali.
- Proszę nie wysyłać mi pliku tekstowego z grafem.

Zadanie B.1. (Zadanie do wysłania) W pliku *graph07.txt* zapisana jest macierz wag pewnego grafu (wagi CAŁKOWI-TOLICZBOWE). Napisz program, który wykorzystując algorytm Prima znajduje minimalne drzewo rozpięte wczytanego grafu. W wyjściu mają się znaleźć:

- kolejno wypisane rozpatrywane wierzchołki (zaczynając działanie od wierzchołka 1) a za nimi
- kolejno wypisane stany etykiet po rozpatrzeniu wierzchołka;
- krawędzie i waga znalezionego drzewa.

Zadanie B.2. (Dla ciekawskich - proszę nie wysyłać) W pliku *paths.txt* zapisana jest macierz wag pewnego grafu (wagi DODATNIE CAŁKOWITOLICZBOWE). Zmodyfikuj poprzedni program tak, aby znajdował najkrótsze ścieżki z wierzchołka 1 z wykorzystaniem algorytmu Dijkstry (W zasadniczej części algorytmu wcale dużo nie trzeba zrobić. Zależy od implementacji, ale może się okazać, że tylko jedna linijkę.) W wyjściu mają się znajdować kolejno:

- kolejno wypisane rozpatrywane wierzchołki (zaczynajac działanie od wierzchołka 1) a za nimi
- kolejno wypisane stany etykiet po rozpatrzeniu wierzchołka;
- wypisane znalezione najkrótsze ścieżki z ich wagami. (W tym punkcie trzeba więcej zmienić, ale można skorzystać z przerobionego kodu z algorytmu Floyda-Warshalla - odczytywanie ścieżek działa analogicznie.)

```
B1
PRZYKŁADOWE WEJŚCIE:
- 9 - 3 - - 6
9 - 13 - - 15 8
- 13 - 14 4 17 -
3 - 14 - - - 1
- - 4 - - 11 -
- 15 17 - 11 - -
68-1---
PRZYKŁADOWE WYJŚCIE:
Rozwazany wierzcholek: 1
[None, 0] [1, 9] [None, inf] [1, 3] [None, inf] [None, inf] [1, 6]
Rozwazany wierzcholek: 4
[None, 0] [1, 9] [4, 14] [1, 3] [None, inf] [None, inf] [4, 1]
Rozwazany wierzcholek: 7
[None, 0] [7,8] [4,14] [1,3] [None, inf] [None, inf] [4,1]
```

Rozwazany wierzcholek: 2 [None, 0] [7, 8] [2, 13] [1, 3] [None, inf] [2, 15] [4, 1]

Rozwazany wierzcholek: 3

[None, 0] [7, 8] [2, 13] [1, 3] [3, 4] [2, 15] [4, 1]

Rozwazany wierzcholek: 5

[None, 0] [7, 8] [2, 13] [1, 3] [3, 4] [5, 11] [4, 1]

Rozwazany wierzcholek: 6

Krawedzie drzewa: (2, 7), (3, 2), (4, 1), (5, 3), (6, 5), (7, 4),

Waga drzewa: 40

B2

PRZYKŁADOWE WEJŚĆIE:

```
- 6 - - - 8 2 -
6 - - - 2 - 3 -
- - - 4 - 5 - 3
--4--5--
- 2 - - - 6 -
8 - 5 5 - - - 9
23--6---
--3--9--
```

PRZYKŁADOWE WYJŚCIE:

Rozpatrywamy wierzcholek: 1 (0,None) (6,1) (inf,None) (inf,None) (inf,None) (8,1) (2,1) (inf,None) Rozpatrywamy wierzcholek: 7 (0,None) (5,7) (inf,None) (inf,None) (8,7) (8,1) (2,1) (inf,None) Rozpatrywamy wierzcholek: 2 (0,None) (5,7) (inf,None) (inf,None) (7,2) (8,1) (2,1) (inf,None) Rozpatrywamy wierzcholek: 5 (0,None) (5,7) (inf,None) (inf,None) (7,2) (8,1) (2,1) (inf,None) Rozpatrywamy wierzcholek: 6 (0, None) (5,7) (13,6) (13,6) (7,2) (8,1) (2,1) (17,6)Rozpatrywamy wierzcholek: 3 (0,None) (5,7) (13,6) (13,6) (7,2) (8,1) (2,1) (16,3)Rozpatrywamy wierzcholek: 4 (0,None) (5,7) (13,6) (13,6) (7,2) (8,1) (2,1) (16,3)Najkrotsza sciezka z 1 do:

 $\begin{array}{c} 1:1 \ , \ dlugosc: \ 0 \\ 2:1 \ 7 \ 2 \ , \ dlugosc: \ 5 \\ 3:1 \ 6 \ 3 \ , \ dlugosc: \ 13 \\ 4:1 \ 6 \ 4 \ , \ dlugosc: \ 13 \\ 5:1 \ 7 \ 2 \ 5 \ , \ dlugosc: \ 7 \\ 6:1 \ 6 \ , \ dlugosc: \ 8 \\ 7:1 \ 7 \ , \ dlugosc: \ 2 \\ 8:1 \ 6 \ 3 \ 8 \ , \ dlugosc: \ 16 \end{array}$

Rozwiązania z części A:

A1	Ü					
kraw.	działanie	1	2	3	4	aktualnie dodane
_	(r,p)	1,-	2,-	3,-	4,-	
(1,2)	dodajemy	1,-	1,1	3,-	4,-	(1,2)
(1,4)	dodajemy	1,-	1,1	3,-	1,1	(1,2)(1,4)
(2,3)	dodajemy	1,-	1,1	1,2	1,1	(1,2)(1,4)(2,3)
		Tera	az zapi	sujemy	drzew	TO
(2,3)	usuwamy	1,-	1,1	3,-	1,1	(1,2)(1,4)
(3,4)	dodajemy	1,-	1,1	1,4	1,1	(1,2)(1,4)(3,4)
			az zapi			
	(3,4) by 1	a ostat	nia na	liście,	więc u	suwamy dwie
(3,4)	usuwamy	1,-	1,1	3,-	1,1	(1,2)(1,4)
(1,4)	usuwamy	1,-	1,1	3,-	4,-	(1,2)
						ıniętej na liście
(2,3)	dodajemy					
(3,4)	dodajemy	1,-	1,1	1,2	1,3	(1,2)(2,3)(3,4)
			az zapi			
						suwamy dwie
(3,4)	usuwamy					(1,2)(2,3)
(2,3)	usuwamy	1,-	1,1	3,-	4,-	(1,2)
						miętej na liście
(3,4)	dodajemy					
	(3,4) by 1					suwamy dwie
(3,4)	usuwamy		1,1	3,-	4,-	(1,2)
(1,2)	usuwamy		2,-		4,-	
	Po usunięc	iu bier	zemy k	olejną	po usu	iniętej na liście
(1,4)	dodajemy	1,-	2,-	3,-	1,1	(1,4)
(2,3)	dodajemy	1,-	2,-	2,2	1,1	(1,4)(2,3)
(3,4)	dodajemy					(1,4)(2,3)(3,4)
			az zapi			
						suwamy dwie
(3,4)	usuwamy					
(2,3)	usuwamy	1,-	2,-	3,-	1,1	(1,4)
						miętej na liście
(3,4)	dodajemy			1,4		(1,4)(3,4)
						suwamy dwie
(3,4)	usuwamy		2,-	3,-	1,1	(1,4)
(1,4)	usuwamy			3,-	4,-	
	Po usunięc	iu bier				miętej na liście
(2,3)				NIEC,	Tree(1)=END

Uzyskane drzewa (w kolejności)

$\mathbf{A2}$															
kraw.	działanie	1	2	3	4	5	6	7	8	9	10	11	12	13	14
_	(r,p)	1,-	1,3	1,1	1,3	5,-	6,-	1,8	1,1	1,8	6,6	5,5	5,11	5,5	5,13
(3,12)	dodana	1,-	1,3	1,1	1,3	1,11	6,-	1,8	1,1	1,8	6,6	1,12	1,3	1,5	1,13
(7,14)	nic	1,-	1,3	1,1	1,3	1,11	6,-	1,8	1,1	1,8	6,6	1,12	1,3	1,5	1,13
(6,7)	dodana	1,-	1,3	1,1	1,3	1,11	1,7	1,8	1,1	1,8	1,6	1,12	1,3	1,5	1,13
					Tera	zapisi	ujemy	drzewo)						
(6,7)	usuwana	1,-	1,3	1,1	1,3	1,11	6,-	1,8	1,1	1,8	6,6	1,12	1,3	1,5	1,13
(7,10)	dodana	1,-	1,3	1,1	1,3	1,11	1,10	1,8	1,1	1,8	1,7	1,12	1,3	1,5	1,13
Teraz zapisujemy drzewo															
(7,10)	usuwana	1,-	1,3	1,1	1,3	1,11	10,10	1,8	1,1	1,8	10,-	1,12	1,3	1,5	1,13
	Teraz byśmy sięgnęli po kolejną (po v_7v_{10}) kraw. z listy														

