

风华高科

广东风华高新科技股份有限公司

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

一、概述

电容器及介质种类:

高频类: 此类介质材料的电容器为 类电容器,包括通用型高频 COG、COH 电容器和温度补偿型高频 HG、LG、PH、RH、SH、TH、UJ、SL 电容器。其中 COG、COH 电容器电性能最稳定,几乎不随温度、电压和时间的变化而变化,适用于低损耗,稳定性要求高的高频电路,HG、LG、PH、RH、SH、TH、UJ、SL 电容器容量随温度变化而相应变化,适用于低损耗、温度补偿型电路中。

X7R、X5R:此类介质材料的电容器为 类电容器,具有较高的介电常数,容量比 类电容器高,具有较稳定的温度特性,适用于容量范围广,稳定性要求不高的电路中,如隔直、耦合、旁路、鉴频等电路中。

Y5V:此类介质材料的电容器为 类电容器,是所有电容器中介电常数最大的电容器,但其容量稳定性较差,对温度、电压等条件较敏感,适用于要求大容量,温度变化不大的电路中。

Z5U:此类介质材料的电容器为 类电容器,其温度特性介于 X7R 和 Y5V 之间,容量稳定性较差,对温度、电压等条件较敏感,适用于要求大容量,使用温度范围接近于室温的旁路,耦合等,低直流偏压的电路中。

SUMMARY

Types of Dielectric Material and Capacitor

HIGH FREQUENCY TYPE: The capacitor of this kind dielectric material is considered as Class capacitor, including high frequency COG、COH capacitor and temperature compensating capacitor such as HG, LG, PH, RH,SH, TH, UJ, SL. The electrical properties of COG、COH capacitor are the most stable one and change invariablly with temperature, voltage and time. They are suited for applications where low-losses and high-stability are required, HG, LG, PH, RH, SH, TH, UJ, SL capacitor's capacitance changes with temperature. They are suited for applications where low-losses and temperature compensating circuits.

X7R, X5R : X7R, X5R material is a kind of material has high dielectric constant. The capacitor made of this kind material is considered as Class — capacitor whose capacitance is higher than that of class — . These capacitors are classified as having a semi-stable temperature characteristic and used over a wide temperature range, such in these kinds of circuits, DC-blocking, decoupling, bypassing, frequency discriminating etc.

Y5V: The capacitor made of this kind of material is the highest dielectric constant of all ceramic capacitors. They are used over a moderate temperature range in application where high capacitance is required because of its unstable temperature coefficient, but where moderate losses and capacitance changes can be tolerated. Its capacitance and dissipation factors are sensible to measuring conditions, such as temperature and voltage, etc.

Z5U: The capacitor made of this kind of material is considered as Class capacitor, whose temperature characteristic is between that of X7R and Y5V. The capacitance of this kind of capacitor is unstable and sensible to temperature and voltage. Ideally suited for bypassing and decoupling application circuits operating with low DC bias in the environment approaches to room temperature.

第 1 页

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

二、尺寸及结构 DIMENSIONS AND STRUCTURE

尺寸 DIMENSIONS

型号	† Type	尺寸 Dimensions (mm)				
英制表示 British expression	公制表示 Metric expression	L	W	Т	WB	
0201	0603	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	0.15 ± 0.10	
0402	1005	1.00 ± 0.05	0.50 ± 0.05	0.50 ± 0.05	0.25 ± 0.10	
0603	1608	1.60 ± 0.10	0.80 ± 0.10	0.80 ± 0.10	0.30 ± 0.10	
0805	2012	2.00 ± 0.20	1.25 ± 0.20	0.55 0.80 ± 0.20 1.00 ± 0.20 1.25 ± 0.20	0.50 ± 0.20	
1206	3216	3.20 ± 0.30	1.60 ± 0.30	0.80 ± 0.20 1.00 ± 0.20 1.25 ± 0.20 1.60 ± 0.30	0.60 ± 0.30	
1210	3225	3.20 ± 0.30	2.50 ± 0.30	2.80	0.60 ± 0.30	
1808	4520	4.50 ± 0.40	2.00 ± 0.20	2.20	0.60 ± 0.30	
1812	4532	4.50 ± 0.40	3.20 ± 0.30	3.50	0.60 ± 0.30	
2220	5750	5.70 ± 0.40	5.00 ± 0.40	3.50	0.60 ± 0.30	
2225	5763	5.70 ± 0.50	6.30 ± 0.50	6.20	0.60 ± 0.30	
3012	7632	7.60 ± 0.50	3.20 ± 0.30	8.10	0.60 ± 0.30	
3035	7690	7.60 ± 0.50	9.00 ± 0.50	8.10	0.60 ± 0.30	

备注:可根据客户的特殊要求设计符合客户需求的产品。

Note: We can design according to customer special requirements

结构 STRUCTURE

序号	名称					
NO	Name					
	陶瓷介质					
	Ceramic dielectric					
	内电极					
	Inner electrode					
	外电极					
	Substrate electrode					
	镍层					
	Nickel Layer					
	锡层					
	Tin Layer					

第 2 页 共 25 页

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

三、型号规格表示方法 HOW TO ORDER

<u>0805</u> <u>CG</u> <u>101</u> <u>J</u> <u>500</u> <u>N</u> <u>T</u>

说明 NOTES:

尺寸 DIMENSIONS

	/\ J DI	TVIET (DICT	12								
尺寸规格 SizeCode	0201	0402	0603	0805	1206	1210	1808	1812	2220	2225	3035
长×宽 (L×W) inch	0.02×0.01	0.04×0.02	0.06×0.03	0.08×0.05	0.12×0.06	0.12×0.10	0.18×0.08	0.18×0.12	0.22×0.20	022×025	030×035
长×宽 (L×W) mm	0.60×030	1.00×0.50	1.60×0.80	200×125	320×1.60	320×250	450×2.00	450×320	5.70×5.00	5.70×630	7.60×9.00

介质种类 DIELECTRIC STYLE

介质楼	CG	СН	HG	LG	PH	RH	SH	TH	īΠ	SL	v	В	Е	F
(Dielectric Code)	Cu	CII	ПО	В	ГΠ	MI	SIT	Ш	03	SL	Λ	ь	Ľ	Г
介质株料	COG	СОН	HG	LG	PH	RH	SH	TH	UJ	SL	X5R	X7R	Z5U	Y5V
(Dielectric)	COG	СОН	ПG	Ш	РП	КП	SH	ΙП	OJ	SL	ASK	A/K	230	131

标称容量 NOMINAL CAPACITANCE

		, , 1
表示方式	实际值	
(Express Method)	(Actual Value)	
0R5	0.5	注:头两位数字为有效数字,第三位数字为 0
1R0	1.0	的个数; R 为小数点。 Note: the first two digits are significant; third digit
102	10×10^2	denotes number of zeros; R=decimal point.
224	22×10^4	

容量误差 CAPACITANCE TOLERANCE

代码 (Code)	В	С	D	F	G	J	K	M	S	Z
误差	±	±	± 0.5pF	± 1.0%	± 2.0%	± 5.0%	± 10%	± 20%	+50%	+80%
(Tolerance)	0.10pF	0.25pF	± 0.5pr	± 1.0/0	± 2.070	± 3.070	± 10/0	± 2070	-20%	-20%

备注:B、C、D 级误差适用于容量 10pF 的产品.

Note: These capacitance tolerance B, C, D are just applicable the capacitance that equals to or less than 10pF.

第 3 页

共 25 页

单位(unit): pF

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

额定电压 RATED VOLTAGE

单位(unit): V

页

表示方式	实际值	
(Express Method)	(Actual Value)	。 · 注:3. 亚位数字头左边数字。第二位数字头 8. 的 6.数。
6R3	6.3	注:头两位数字为有效数字,第三位数字为0的个数;
500	50×10^{0}	R 为小数点。
201	20×10^{1}	Note: the first two digits are significant; third digit
102	10×10^2	denotes number of zeros; R=decimal point.

端头材料 TERMINAL MATERIAL STYLES

端头类别 (Termination Styles)	表示方式 (Express Method)
纯银端头 (Silver Solderable Termination)	S
纯铜端头 (Copper Solderable Termination)	С
三层电镀端头 (Nickel Barrier Termination)	N

包装方式 PACKAGE STYLES

В	Т
散包装 (Bulk Bag)	编带包装(Taping Package)

四、温度系数/特性 Temperature Coefficient /Characteristics

介质种类 Dielectric	参考温度点 Reference Temperature Point	标称温度系数 Temperature Coefficient	工作温度范围 Operation Temperature Range
COG	20°C	0±30 ppm/	-55 ~ 125
СОН	20°C	0±60 ppm/	-55 ~ 125
HG	20°C	-33±30 ppm/	-25 ~ 85
LG	20°C	-75±30 ppm/	-25 ~ 85
PH	20°C	-150± 60 ppm/	-25 ~ 85
RH	20°C	-220± 60 ppm/	-25 ~ 85
SH	20°C	-330± 60 ppm/	-25 ~ 85
TH	20°C	-470± 60 ppm/	-25 ~ 85
UJ	20°C	-750± 120 ppm/	-25 ~ 85
SL	20°C	-1000 ~ +140 ppm/	-25 ~ 85
X7R	20°C	±15%	-55 ~ 125
X5R	20°C	±15%	-55 ~ 85
Z5U	20°C	-56% ~ +22%	10 ~ 85
Y5V	20°C	-80% ~ +30%	-25 ~ 85

备注: 类电容器标称温度系数和允许偏差是采用温度在 20℃ 和 85℃ 之间的电容量变化来确定的,而 类电容器标称温度系数是按照工作范围之间的电容量相对 20℃ 的电容量变化来确定的。

Note: Nominal temperature coefficient and allowed tolerance of class — are decided by the changing of the capacitance between 20°C and 85°C . Nominal temperature coefficient of class — are decided by the temperature of 20°C .

第 4 页 共 25

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

五、容量范围及其电压 Capacitance Range and Operating Voltage

尺寸规格	额定电压		容量范围 Capacitance				
Size Code	Rated Voltage	COG(NPO)(PF)	X7R(PF)	X5R(uF)	Y5V (Z5U)(PF)		
	6.3V			0.015 uF ~ 1uF	10,000 ~ 100,000		
	10V		100 ~ 10,000	0.015 uF ~ 0.1 uF	10,000 ~ 100,000		
0201	16V		100 ~ 10,000		10,000		
	25V		100 ~ 10,000				
	50V	0.5 ~ 100					
	4V			0.1uF~4.7uF			
	6.3V		100 ~ 100,000	0.1uF~4.7uF	1,000 ~ 1,000,000		
0402	10V		100 ~ 100,000	0.1uF~2.2uF	1,000 ~ 1,000,000		
0402	16V		100 ~ 100,000	0.1uF~1 uF	1,000 ~ 220,000		
	25V		100 ~ 100,000	0.1uF	1,000 ~ 220,000		
	50V	0.1 ~ 1,000	100 ~ 47,000	0.047uF	1,000 ~ 100,000		
	4V		150 ~ 470,000	0.47uF ~ 10uF			
	6.3V		150 ~ 470,000	0.47uF ~ 10uF	1,000 ~ 10,000,000		
0603	10V		150 ~ 470,000	0.47uF ~ 10uF	1,000 ~ 10,000,000		
0003	16V		150 ~ 470,000	0.47uF ~ 4.7uF	1,000 ~ 2,200,000		
	25V		150 ~ 470,000	0.47uF ~ 2.2uF	1,000 ~ 2,200,000		
	50V	0.1 ~ 3,300	150 ~ 470,000		1,000 ~ 1,000,000		
	4V		150 ~ 1,000,000	1uF ~ 22uF			
	6.3V		150 ~ 1,000,000	1uF ~ 22uF	1,000 ~ 22,000,000		
0805	10V		150 ~ 1,000,000	1uF ~ 22uF	1,000 ~ 22,000,000		
0803	16V		150 ~ 1,000,000	1uF ~ 10uF	1,000 ~ 10,000,000		
	25V		150 ~ 1,000,000	1uF ~ 4.7uF	1,000 ~ 4,700,000		
	50V	0.3 ~ 22,000	150 ~ 1,000,000		1,000 ~ 2,200,000		
	4V		200 ~ 2,200,000	2.2uF ~100uF			
	6.3V		200 ~ 2,200,000	2.2uF ~ 47uF	1,000 ~ 47,000,000		
1206	10V		200 ~ 2,200,000	2.2uF ~ 22uF	1,000 ~ 22,000,000		
1206	16V		200 ~ 2,200,000	2.2uF ~ 10uF	1,000 ~ 22,000,000		
	25V		200 ~ 2,200,000	2.2uF ~ 10uF	1,000 ~ 10,000,000		
	50V	0.3 ~ 100,000	200 ~ 2,200,000	2.2uF	1,000 ~ 4,700,000		

第 5 页

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

尺寸规格	额定电压			■ Capacitance	
Size Code	Rated Voltage	COG(NPO)(PF)	X7R(PF)	X5R(uF)	Y5V (Z5U)(PF)
	6.3V			47uF ~ 100uF	4,700 ~ 100,000,000
	10V			4.7uF ~ 47uF	4,700 ~ 47,000,000
1210	16V		220 ~ 4,700,000	4.7uF ~ 22uF	4,700 ~ 22,000,000
	25V		220 ~ 4,700,000	4.7uF ~ 10uF	4,700 ~ 10,000,000
	50V	10 ~ 100,000	220 ~ 4,700,000		4,700 ~ 4,700,000
	6.3V		220 ~ 4,700,000	4.7uF ~ 100uF	
	10V		220 ~ 4,700,000	4.7uF ~ 47uF	
1808	16V		220 ~ 4,700,000	4.7uF ~ 22uF	
	25V		220 ~ 4,700,000	4.7uF ~ 10uF	
	50V	10 ~ 100,000	220 ~ 4,700,000		
	6.3V			10uF ~ 100uF	10,000 ~ 100,000,000
	10V			10uF ~ 47uF	10,000 ~ 100,000,000
1812	16V		470 ~ 4,700,000	4.7uF ~ 22uF	10,000 ~ 22,000,000
	25V		470 ~ 4,700,000	4.7uF ~ 10uF	10,000 ~ 10,000,000
	50V	10 ~ 100,000	470 ~ 4,700,000		10,000 ~ 10,000,000

备注:可根据客户的特殊要求设计符合客户需求的产品。

Note: We can design according to customer special requirements.

第 6 页

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

六、高 Q 值 COG 电容器 Hi-Q COG MLCC

应用:

适合于射频 RF 电路及要求 Hi-Q、低 ESR、高频率响应的微波电路中。

CQ、CG 电容器说明:

下述 Q 值标准是相对通用客户而制定的,对要求更高 Q 值产品的客户,可专门设计和生产。使用频率在 1MHz~2.4GHz 之间,对要求更高频率产品的客户,可根据客户的要求另外专门设计。 CQ 比 CG 相对可应用频率略高.请客户依需选定。

Application:

Hi-Q COG capacitors are ideally suited for RF and microwave application requiring high Q, low ESR, and high resonant frequency_o

Note for CQ and CG:

The following Q value is just confirmed by general customer. If there is a higher requirement for Q value requirements, we can design and produce according to the special requirements_o

For the customer whose requirements for frequency is between 1MHz and 2.4GHz or higher frequency, we can design it according to their requirements_o

The frequency of CQ is a little higher than that of CG. Please choose them according to your requirements_o

CQ 电容器的容量值及其 Q 值 CQ Capacitance value and Q value

容量	300MHz F	时的Q值	容量	300MHz	时的Q值	容量	300MHz时的Q值	
Capacitance	Q value at	300MHz	Capacitance	Q value a	t 300MHz	Capacitance	Q value a	t300MHz
(pF)	0805	0603	(pF)	0805	0603	(pF)	0805	0603
4.7	1000	800	12	400	320	30	150	120
5.2	900	720	13	375	300	33	140	112
5.6	850	680	14	350	280	36	130	104
6.2	800	640	15	325	260	39	120	96
6.8	700	560	16	300	240	43	110	88
7.5	650	520	18	250	200	47	100	80
8.2	575	460	20	225	180	56	80	80
9.1	525	420	22	215	172	62	80	80
10	500	400	24	200	160	68	80	80
11	450	360	27	175	140	82	80	80

第 7 页

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

七、中高压电容器 HIGH VOLTAGE MLCC

中高压多层片状陶瓷电容器是在多层片状陶瓷电容器的工艺技术、设备基础上,通过采用特殊工艺制作的一种具有良好高压可靠性的产品,该产品适合于表面贴装,适合于多种直流高压线路,可以有效的改善电子线路的性能。

应用范围

模拟或数字调制解调器。

局域网/广域网接口界面。

日光灯启动辉器照明电路。

倍压电器。

直流变送器。

背光源驱动电路。

Middle & high voltage MLCC is a kind of special design, special technology MLCC that bases on the technology of general MLCC. This kind of MLCC has stable high voltage reliability and suitable to SMT. Middle & high MLCC is widely applicable for many direct high voltage circuits in which it can improve the performance of the circuit.

APPLICATIONS

Analog & Digital Modems

LAN/WAN Interface

Lighting Ballast Circuits

Voltage Multipliers

DC-DC Converters

Back-lighting Inverters

容量范围及其电压

单位/unit: pF

	·			+ 122/ dill.c. pr
尺寸规格	工作电压		容量范围 Capacitano	ce
Size Code	Rated Voltage	NPO	X7R	Y5V
	100V	0.5 ~ 1,000	150 ~ 100,000	2,200 ~ 100,000
0603	200V	0.5 ~ 470	150 ~ 10,000	
	250V	0.5 ~ 470	150 ~ 10,000	
	100V	0.5 ~ 3,300	150 ~ 100,000	10,000 ~ 100,000
	200V	0.1 ~ 1,500	150 ~ 22,000	10,000 ~ 47,000
0005	250V	0.1 ~ 1,500	150 ~ 22,000	10,000 ~ 47,000
0805	500V	0.1 ~ 470	150 ~ 10,000	
	630V	0.1 ~ 470	150 ~ 10,000	
	1000V	0.1 ~ 100		
	100V	0.5 ~ 3,300	150 ~ 470,000	15,000 ~ 470,000
	200V	0.1 ~ 2,700	150 ~ 220,000	10,000 ~ 220,000
	250V	0.1 ~ 2,700	150 ~ 220,000	10,000 ~ 220,000
1206	500V	0.1 ~ 1,500	150 ~ 33,000	
	630V	0.1 ~ 1,500	150 ~ 33,000	
	1000V	0.1 ~ 1,000	150 ~ 10,000	
	2000V	0.1 ~ 270	150 ~ 2,700	

第 8 页

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

容量范围及其电压

量范围及其	电 丛			单位/unit: pF
尺寸规格	工作电压		容量范围 Capacitano	e
Size Code	Rated Voltage	NPO	X7R	Y5V
	100V	1.0 ~ 6,800	150 ~ 1,000,000	15,000 ~ 1,000,000
	200V	1.0 ~ 3,300	150 ~ 220,000	15,000 ~ 470,000
	250V	1.0 ~ 3,300	150 ~ 220,000	15,000 ~ 470,000
	500V	1.0 ~ 2,200	150 ~ 68,000	
1210	630V	1.0 ~ 2,200	150 ~ 68,000	
	1000V	1.0 ~ 1,000	150 ~ 22,000	
	2000V	1.0 ~ 470	150 ~ 10,000	
	3000V		150 ~ 680	
	4000V		150 ~ 680	
	100V	2.0 ~ 4,700	220 ~ 2,200,000	150,000 ~ 1,000,00
	200V	2.0 ~ 3,900	220 ~ 220,000	10,000 ~ 390,000
	250V	2.0 ~ 3,900	220 ~ 220,000	10,000 ~ 390,000
	500V	2.0 ~ 2,700	220 ~ 68,000	
1000	630V	2.0 ~ 2,700	220 ~ 68,000	
1808	1000V	2.0 ~ 1,000	150 ~ 22,000	
	2000V	2.0 ~ 470	150 ~ 10,000	
	3000V	2.0 ~ 330	150 ~ 4,700	
	4000V	2.0 ~ 33	150 ~ 2,200	
	5000V	2.0 ~ 33		
	100V	3.0 ~ 10,000	270 ~ 1,000,000	150,000 ~ 2,200,00
	200V	3.0 ~ 6,800	270 ~ 560,000	100,000 ~ 470,000
	250V	3.0 ~ 6,800	270 ~ 560,000	100,000 ~ 470,000
	500V	3.0 ~ 4,700	270 ~ 150,000	
1012	630V	3.0 ~ 4,700	270 ~ 150,000	
1812	1000V	3.0 ~ 1,200	270 ~ 56,000	
	2000V	3.0 ~ 1,000	270 ~ 12,000	
	3000V	3.0 ~ 560	270 ~ 4,700	
	4000V	3.0 ~ 220	270 ~ 3,300	
	5000V	3.0 ~ 68		
	100V	3.0 ~ 22,000	12,000 ~ 1,200,000	150,000 ~ 2,200,00
	200V	3.0 ~ 8,200	12,000 ~ 1,000,000	100,000 ~ 470,000
	250V	3.0 ~ 8,200	12,000 ~ 1,000,000	100,000 ~ 470,000
	500V	3.0 ~ 5,600	1,000 ~ 470,000	
1025	630V	3.0 ~ 5,600	1,000 ~ 470,000	
1825	1000V	3.0 ~ 1,800	1,000 ~ 100,000	
	2000V	3.0 ~ 1,000	1,000 ~ 22,000	
	3000V	3.0 ~ 680	1,000 ~ 10,000	
	4000V	3.0 ~ 470	1,000 ~ 6,800	
	5000V	3.0 ~ 82		

第 9 页

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

尺寸规格	工作电压		容量范围 Capacitano	ee
Size Code	Rated Voltage	NPO	X7R	Y5V
	100V	5.0 ~ 27,000	22,000 ~ 1,200,000	150,000 ~ 1,500,000
	200V	5.0 ~ 12,000	22,000 ~ 1,000,000	100,000 ~ 1,000,000
	250V	5.0 ~ 12,000	22,000 ~ 1,000,000	100,000 ~ 1,000,000
	500V	5.0 ~ 6,800	1,500 ~ 470,000	
2220	630V	5.0 ~ 6,800	1,500 ~ 470,000	
	1000V	5.0 ~ 3,900	1,500 ~ 100,000	
	2000V	5.0 ~ 1,000	1,500 ~ 33,000	
	3000V	5.0 ~ 680	1,500 ~ 10,000	
	4000V	5.0 ~ 560	1,500 ~ 6,800	
	5000V	5.0 ~ 120		
	100V	5.0 ~ 27,000	2,200 ~ 2,200,000	250,000 ~ 3,300,000
	200V	5.0 ~ 12,000	2,200 ~ 1,200,000	220,000 ~ 2,200,000
	250V	5.0 ~ 12,000	2,200 ~ 1,200,000	220,000 ~ 2,200,000
	500V	5.0 ~ 6,800	2,200 ~ 470,000	
2225	630V	5.0 ~ 6,800	2,200 ~ 470,000	
2225	1000V	5.0 ~ 3,900	2,200 ~ 100,000	
	2000V	5.0 ~ 1,000	2,200 ~ 47,000	
	3000V	5.0 ~ 680	2,200 ~ 15,000	
	4000V	5.0 ~ 560	2,200 ~ 6,800	
	5000V	5.0 ~ 120		
	100V	5.0 ~ 27,000	150 ~ 3,300,000	15,000 ~ 1,500,000
	200V	5.0 ~ 12,000	150 ~ 2,200,000	15,000 ~ 1,000,000
	250V	5.0 ~ 12,000	150 ~ 1,200,000	
	500V	5.0 ~ 6,800	150 ~ 220,000	
3012	630V	5.0 ~ 6,800	150 ~ 150,000	
	1000V	5.0 ~ 3,900	150 ~ 47,000	
	2000V	5.0 ~ 1,000	150 ~ 33,000	
	3000V	5.0 ~ 1,000	150~10,000	
	4000V	5.0 ~ 1,000	150~8,200	
	100V	5.0 ~ 27,000	47,000 ~ 4,700,000	10,000 ~ 2,200,000
	200V	5.0 ~ 12,000	47,000 ~ 2,200,000	10,000 ~ 2,200,000
	250V	5.0 ~ 12,000	47,000 ~ 2,200,000	10,000 ~ 2,200,000
3035	500V	5.0 ~ 6,800	5,600 ~ 1,000,000	
	630V	5.0 ~ 6,800	5,600 ~ 470,000	
	1000V	5.0 ~ 3,900	5,600 ~ 56,000	
	2000V	5.0 ~ 1,000	5,600 ~ 47,000	

备注:可根据客户的特殊要求设计符合客户需求的产品。

Note: We can design according to customer special requirements.

第 10 页

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

中高压电容器介质耐电强度的测试方法:

Measurement method of dielectric withstanding voltage for high voltage MLCC

额定电压范围	耐电性能的测试方法
Rated voltage range	Measuring Method
100V Vr < 500V	施加额定电压的 200%, 5 秒, 最大电流不超过 50mA
100V Vr < 500V	Force 200% Rated voltage for 5 second. Maxcurrent should not exceed 50 mA.
500V Vr 1000V	施加额定电压的 150%, 5 秒, 最大电流不超过 50mA
300 V VI 1000 V	Force 150%Rated voltage for 5 second. Maxcurrent should not exceed 50 mA.
1000V < Vr 2000V	施加额定电压的 120%, 5 秒, 最大电流不超过 50mA
1000 V \ VI 2000 V	Force 120%Rated voltage for 5 seconds. Maxcurrent should not exceed 50 mA.
2000V < Vr 5000V	施加额定电压的 120%, 5 秒, 最大电流不超过 10mA
2000 V \ VI 3000 V	Force 120% Rated voltage for 5 seconds. Maxcurrent should not exceed 10 mA.

八、可靠性测试 Reliability Test

项目		技术规格		测试方法				
Item	Tecl	nnical Specification	Te	st Method and Remarks	3			
	类 Class	应符合指定的误差%别 Should be within the	标称容量 Capacitance	测试频率 Measuring Frequency	测试电压 Measuring Voltage			
	Class	specified tolerance.	1000pF	1MHZ ± 10%	$1.0 \pm 0.2 \text{Vrms}$			
			> 1000 pF	1KHZ ± 10%	1.0 ± 0.2 VIIIIS			
容量 Capacitance	类 Class	应符合指定的误差级 别 Should be within the specified tolerance.	测试温度: 25 ±3 Test Temprature: 25 ±3 C 10μF:测试频率: 1KHZ±10% 测试电压: 1.0±0.2Vrms Test Frequency: 1KHZ±10% Test Voltage: 1.0±0.2Vrms C>10μF X7R、X5R、Y5V:测试频率: 120±24 HZ 测试电压:0.5±0.1Vrms Test Frequency: 120±24 HZ Test Voltage: 0.5±0.1Vrms Z5U:测试频率:1±0.1KHZ 测试电压:0.5±0.05Vrms Test Frequency: 1±0.1KHZ					
损耗角正切	类	DF	Test Voltage: 0 标称容量 Capacitance	测试频率 Measuring Frequency	测试电压 Measuring Voltage			
(DF, tan)		0.56%	Cr < 5 pF	1MHZ ± 10%				
Dissipation Factor	Class	$1.5[(150/\text{Cr})+7] \times 10^{-4}$	5pF Cr < 50 pF	1MHZ ± 10%	1.0 . 0.2 Varas -			
Factor		0.15%	50pF Cr 1000 pF	1MHZ ± 10%	1.0 ± 0.2 Vrms			
		0.15%	> 1000 pF	1KHZ ± 10%				

第 11 页

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

项目				技术规	 !格			测 试 方 法
Item			Tech	nical Spe	cification			Test Method and Remarks
			50V	25V	16V	10V	6.3V	C 10μF 测试频率: 1KHZ ± 10%
		X7R/ X5R		35% (C < 0.47µF)	35% (C < 0.47μF)	35% (C < 0.15µF)	5.0% (C < 0.15µF)	测试电压: 1.0±0.2Vrms Test Frequency: 1KHZ±10% Test Voltage: 1.0±0.2Vrms
损耗角正切 (DF, tan) Dissipation	类 Class		2.5%	10.0% (C 0.47µF)	10.0% (C 0.47µF)	10.0% (C 0.15µF)	100% (C 0.15µF)	C > 10μF X7R、X5R、Y5V 测试频率: 120 ± 24 HZ 测试电压:0.5 ± 0.1Vrms
Factor			25	5V	16V	10V	6.3V	Test Frequency: 120±24HZ Test Voltage: 0.5±0.1Vrms Z5U:测试频
		Y5V Z5U	7.0% (C < 1 9.0% (C 1	.0μF)	15%	15%	15%	率:1±0.1KHZ 测试电压:0.5±0.05Vrms Test Frequency: 1±0.1KHZ Test Voltage: 0.5±0.05Vrms
	类 Class			50000N C _R 50			测试电压:额定电压(最高 500V) 测试时间: 60 ± 5 秒 测试湿度: 75%	
绝缘电阻 (IR) Insulation	类	X7R/ X5R			10000M C _R > 100S			测试温度: 25 ±3 测试充放电电流: 50mA Measuring Voltage: Rated Voltage (Max 500V)
Resistance	Class	Y5V Z5U		ŕ	4000M C _R > 100S	(Duration: $60 \pm 5s$ Test Humidity: 75% Test Temprature: 25 ± 5 Test Current: 50mA
介质种电镀 (DWV) Dielectric Withstanding Voltage	Test Temprature Test Current: 测量电压: 类:300% 额电压 时间:1~5 50mA (这部分说明: Measuring Vo Class :300% Class :250% Duration: 1~ Charge/ Disch (This metho					类:300% 额定电压 类:250% 额定电压 电压时间:1~5 秒 充/放电电流:不应超过50mA (这部分说明不包括中高压 MLCC) Measuring Voltage: Class :300% Rated voltage Class :250% Rated voltage Duration:1~5s Charge/ Discharge Current: 50mA max.		
	第	1 2	页					共 25 页

FENGHUA

第 13 页

Fenghua Advanced Technology (Holding) CO., LTD

Test Method and Remarks 特电容在 80-120 的温度下預熱 10-30 秒。 Preheating conditions:80 to 120 :10-30s. 有記率は、Sokkrability Preheating conditions:80 to 120 : 10-30s. 有記率は、Sokkrability Preheating conditions:80 to 120 : 10-20s. Preheating conditions:80 to 120 : 10-30s. 有記率は、Sokkrability Preheating conditions:80 to 120 : 10-20s.	项目			技术规				测 试	方 法		
上锡率应大于 95%	Item		Techni	cal Sp	ecification			Test Method	and Remarks		
PR型性 Soldarability At least 95% of the terminal electrode is covered by new solder. Visual Appearance: No visible damage. IIII NPO 至 SL XTR		上锡泽	率应大于 95%	,)							
At least 95% of the terminal electrode is covered by new solder. Visual Appearance: No visible damage. DRO SSL XTR/ NNOtoSL XSR Y5V, Z5U Lem Ntichever is larger to initial value. DF Same to initial value. DF Same to initial value. Phyzer x50 x											
Solktrability by new solder. Solktrability by new solder. Visual Appearance: No visible damage. Soldtr Temperature: 235 ± 5 Duration: 2 ± 0.5s Soldtr Temperature: 245 ± 5 Duration: 2 ± 0.5s Soldtr Temperature: 245 ± 5 Duration: 2 ± 0.5s Soldtr Temperature: 245 ± 5 Duration: 2 ± 0.5s Soldtr Temperature: 245 ± 5 Duration: 2 ± 0.5s Soldtr Temperature: 245 ± 5 Duration: 2 ± 0.5s Soldtr Temperature: 245 ± 5 Duration: 2 ± 0.5s Soldtr Temperature: 245 ± 5 Duration: 2 ± 0.5s Soldtr Temperature: 245 ± 5 Duration: 2 ± 0.5s Soldtr Temperature: 245 ± 5 Duration: 10 ± 1 s Soldtr Temperature: 265 ± 5 Duration: 10 ± 1 s Soldtr Temperature: 265 ± 5 Duration: 10 ± 1 s Soldtr Temperature: 265 ± 5 Duration: 10 ± 1 s Clean the capacitor with solvent and examine it with a 10 X(min.) microscope. Recovery Time: 24 ± 2h Recovery Condition: Room temperature Imm	可焊性				1 . 1 4	1- :	1				
Visual Appearance: No visible damage. Sokkr Temperature: 245 ± 5 Duration: 2 ± 0.58	Solderability			termi	nai electroc	ie is cove	rea				
Duration: 2±05s Duration: 2±05s Duration: 2±05s Duration: 2±05s		by nev	w solder.								
頂目 NPO 至 SL XSR		Visual	Appearance:	No vi	sible dama	ge.		-	-		
Resistance to Sokkering Heat Same to initial value.			- -					Duration: 2 ± 0.5s	Duration: 2 ± 0.5s		
# 0.5% 或 ± 0.5% 或 ± 0.5F , 現家女值						Y5V、Z	5U	将电容在 100~200 的温	B度下预热 10±2 分钟.		
Resistance to Soldering Heat DF		Item			X5R						
Resistance to Sokkring Heat DF Same to initial value. IR Same to initial value. 外观: 无可见损伤 上锡率: 95% Appearance: No visible damage.At least 95% of the terminal electrode is covered by new solder. 抗弯曲路度 Resistance to Flexure of Substrate (Bending Strength) C/C ±10% C/C ±10% Twickever is larger Full									去 10 位队 L 66 日坐在京		
Resistance to Soldering Heat DF Same to initial value. IR 同初始标准 Same to initial value. 外观:无可见损伤上锡率: 95% Appearance: No visible damage.At least 95% of the terminal electrode is covered by new solder. 抗弯曲路度 Resistance to Flexure of Substrate (Bending Strength) C/C ±10% DF Same to initial value.		Technical Specification	, 在 10 倍以上的显微镜低 								
Resistance to Soldering Heat DF Soldering Heat DF Same to initial value. IR 同初始标准 Same to initial value. 外观:无可见损伤上锡率: 95% Appearance: No visible damage.At least 95% of the terminal electrode is covered by new solder. 抗弯曲路度 Resistance to Flexure of Substrate (Bending Strength) C/C ± 10% Preheating conditions: 100 to 200 ; 10 ± 2nin. Solder Temperature: 265 ± 5 Duration: 10 ± 1s Clean the capacitor with solvent and examine it with a 10X(min.) microscope. Recovery Time: 24 ± 2h Recovery condition: Room temperature ixi验基板: Al₂O₃ 或 PCB 弯曲深度: 1mm 施压速度: 0.5mm/sec. 单位: mm 应在弯曲状态下进行测量。 T=10 Warp: Imm Speed: 0.5mm/sec. Unit: mm The measurement should be made with the board in	耐料多热	C/C				reification Test Method and Remarks 将电容在 80~120 的温度下预热 10~30 秒. Preheating conditions:80 to 120 ; 10~30s. 有部幹料:(SnPb:6337) 透霧圖度 235±5 透射可引 2±0.5s Sokder Temperature: 235±5 Duration: 2±0.5s Sokder Temperature: 245±5 Duration: 2±0.5s F电容在 100~200 的温度下预热 10±2分钟. 浸锡温度: 265±5 浸锡时间: 10±1s 然后取出溶剂清洗干净,在 10 倍以上的显微镜底下观察。 放置时间: 24±2小时 放置条件:室温 Preheating conditions: 100 to 200 ; 10±2min. Solder Temperature: 265±5 Duration: 10±1s Clean the capacitor with solvent and examine it with a 10X(min.) microscope. Recovery Time: 24±2h Recovery condition: Room temperature 试验基板: Al ₂ O ₃ 或PCB 弯曲深度: Imm 施压速度: 0.5mm/sec. 单位: mm 应在弯曲状态下进行测量。 T=10 T=10 Warp: Imm Speed: 0.5mm/sec. Unit: mm The measurement should be made with the board in					
Soldering Heat DF Same to initial value. 同初始标准 Same to initial value. 外观:无可见损伤 上锡率: 95% Appearance: No visible damage.At least 95% of the terminal electrode is covered by new solder. 抗弯曲路度 Resistance to Flexure of Substrate (Bending Strength) C/C ± 10% Solder Temperature: 265 ± 5 Duration: 10 ± 1s Clean the capacitor with solvent and examine it with a 10X(min.) microscope. Recovery Time: 24 ± 2h Recovery condition: Room temperature 试验基板: Al ₂ O ₃ 或 PCB 弯曲深度: Imm 施压速度: 0.5mm/sec. 单位: mm 应在弯曲状态下进行测量。 T=10 Appearance: No visible damage. C/C ± 10% Warp: Imm Speed: 0.5mm/sec. Unit: mm The measurement should be made with the board in	Resistance to										
IR		DF			110			•			
IR Same to initial value. 外观: 无可见损伤 上锡率: 95% Appearance:No visible damage.At least 95% of the terminal electrode is covered by new solder.	Soldering rical		同初始标准								
外观:无可见损伤 上锡率: 95% Appearance:No visible damage.At least 95% of the terminal electrode is covered by new solder. 大空出版		IR			ue.			-	olvent and examine it with		
Appearance: No visible damage.At least 95% of the terminal electrode is covered by new solder. Recovery condition: Room temperature 试验基板: Al ₂ O ₃ 或 PCB 弯曲深度: 1mm 施压速度: 0.5mm/sec. 单位: mm 应在弯曲状态下进行测量。 外观: 无可见损伤. Appearance: No visible damage. 外观: 无可见损伤. Appearance: No visible damage. 小观: 无可见损伤. Appearance: No visible damage. 「T=10 Warp: Imm Speed: 0.5mm/sec. Unit: mm The measurement should be made with the board in		外观	· :无可见损伤	上锡	率: 959	%		•			
the terminal electrode is covered by new solder. 试验基板:Al ₂ O ₃ 或 PCB 弯曲深度:Imm 施压速度:0.5mm/sec. 单位:mm 应在弯曲状态下进行测量。 外观:无可见损伤. Appearance: No visible damage. Strength) T=10 Warp: Imm Speed: 0.5mm/sec. Unit: mm The measurement should be made with the board in		Appea	arance: No vi	sible o	lamage.At	least 95%	of	•			
第曲深度:1mm 施压速度:0.5mm/sec. 単位:mm 应在弯曲状态下进行测量。 外观:无可见损伤。 Appearance: No visible damage. (Bending Strength) C/C ±10% 写曲深度:1mm 施压速度:0.5mm/sec. 単位:mm 立在弯曲状态下进行测量。 Value of Substrate (Bending Strength) T=10 Value of Substrate Value of Sub		the ter	minal electro	de is c	overed by	new solde	er.	Recovery condition. Room	rtemperature		
施压速度:0.5mm/sec. 单位:mm 应在弯曲状态下进行测量。 外观:无可见损伤. Appearance: No visible damage. (Bending Strength) C/C ±10% 施压速度:0.5mm/sec. 单位:mm 应在弯曲状态下进行测量。 T=10 45 ± 2 45 ± 2 Test Board: Al ₂ O ₃ or PCB Warp: 1mm Speed: 0.5mm/sec. Unit: mm The measurement should be made with the board in											
第位:mm 应在弯曲状态下进行测量。 外观:无可见损伤. Appearance: No visible damage. (Bending Strength) Test Board: Al ₂ O ₃ or PCB Warp: 1mm Speed: 0.5mm/sec. Unit: mm The measurement should be made with the board in											
が知:无可见损伤。 Resistance to Flexure of Substrate (Bending Strength) C/C ± 10% D/C が まりが、 D/C が表示して、 Unit: mm The measurement should be made with the board in		外观: 无可见 At least 95% or by new solder. Visual Appearance NPC Item Item									
外观:无可见损伤. Appearance: No visible damage. Strength) 外观:无可见损伤. Appearance: No visible damage. T=10 45 ± 2 45 ± 2 Test Board: Al ₂ O ₃ or PCB Warp: 1mm Speed: 0.5mm/sec. Unit: mm The measurement should be made with the board in						将电容在 80~120 的温度下预热 10~30 秒. Preheating conditions:80 to 120 ;10~30s. 有铅料:(Sn/Po:6337)	∃				
Resistance to Flexure of Substrate (Bending Strength) Appearance: No visible damage. Appearance: No visible damage. $45 \pm 2 45 \pm 2$ Test Board: Al ₂ O ₃ or PCB Warp: 1mm Speed: 0.5mm/sec. Unit: mm The measurement should be made with the board in	抗空曲温度	外观	:无可见损伤	i.							
of Substrate (Bending Strength) Test Board: Al_2O_3 or PCB Warp: 1mm Speed: 0.5 mm/sec. Unit: mm The measurement should be made with the board in					amage.				-		
(Bending Strength) Strength) Test Board: Al_2O_3 or PCB Warp: 1mm Speed: 0.5 mm/sec. Unit: mm The measurement should be made with the board in	to Flexure								1		
Strength) Test Board: Al_2O_3 or PCB Warp: 1mm Speed: 0.5 mm/sec. Unit: mm The measurement should be made with the board in	of Substrate								<u> </u>		
Strength)	(Bending							45 ± 2	45 ± 2		
Warp: 1mm Speed: 0.5mm/sec. Unit: mm The measurement should be made with the board in	Strength)										
C/C ± 10% Unit: mm The measurement should be made with the board in								Warp: 1mm			
The measurement should be made with the board in											
			C/C	± 10%							
the bending position.							有部幹 : (Sn/Pb: 63/37)				
							存储料:(SnPb:6337)				

FENGHUA

第 14 页

Fenghua Advanced Technology (Holding) CO., LTD

Test Method and Remarks Machine Machine	项目	技术规格	测 试 方 法
Termination No visible damage.	Item	Technical Specification	Test Method and Remarks
Application	Adhesion	No visible damage.	**
業: ±2%或±1pF, 取两者之中较大者 类: B,X: ±10% E,F: ±30% C/C Class : ±2% or ±1pF, whichever is larger. Class : B,X: ±10% E,F: ±30% DF 2 倍初始标准 Not more than twice of initial value. ※ Resistance DF 2 倍初始标准 Not more than twice of initial value. ※ Ri 2500M 或 Ri C _R 25S 取两者之中较小者. Class : Ri 2500M 或 Ri C _R 25S whichever is smaller. ※ Ri 1000M 或 Ri C _R 25S 取两者之中较小者. Class : Ri 1000M 或 Ri C _R 25S 取两者之中较小者. Class : Ri 1000M 或 Ri C _R 25S 取两者之中较小者. Class : Ri 1000M 或 Ri C _R 25S whichever is smaller. ※ Recovery conditions : Room temperature Recovery Time : 24h (Class1) or 48h (Class2) 外观: 无损伤	Temperature	类: ±1%或±1pF, 取两者中最大者 类: B,X: ±10% E,F: ±20% Class: ±1% or ±1pF, whichever is larger. Class: B,X: ±10%	初始测量 循环次数:5次,一个循环分以下4步: 阶段 温度() 时间(分钟) 第1步 下限温度(\(\frac{NPO/XTR: -55}{\frac{NPO/XTR: +125}{\frac{NPO/XTR: -125}{\frac{NPO/XTR: -55}{\frac{NPO/XTR: -55}{\frac{NPO/XTR: -55}{\frac{NPO/XTR: -55}{\frac{NPO/XTR: -55}{\frac{NPO/XTR: -125}{\frac{NPO/XTR: -125}{\frac{NPO/XTR: -125}{\frac{NPO/XTR: -125}{\frac{NPO/XTR: +125}{\frac{NPO/XTR: +125}{NPO/XTR
Appearance: No visible damage.	Moisture	取两者之中较大者	湿度:90~95%RH 时间:500 小时 放置条件:室温 放置时间:24 小时(类);48 小时(类) Temperature:40±2 Humidity:90~95%RH Duration:500h Recovery conditions:Room temperature

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

项目		技术规格	测 试 方 法
Item		Technical Specification	Test Method and Remarks
	C/C	类: ±2%或±1pF 取两者之中较大者 类: B,X: ±20% E,F: ±30% Class: ±2% or ±1pF, whichever is larger. Class: B,X: ±20% E,F: ±30%	低压产品(100V) 电压:1.5 倍额定工作电压 时间:1000 小时 温度:125 (NPO、X7R) 85 (X5R、Y5V) 充电电流:不应超过50mA
寿命试验	DF	2 倍初始标准 Not more than twice of initial value.	│ 放置条件:室温 │ 放置时间:24 小时 (类), 或 48 小时 (类), ├ Low-Voltage (100V)
Life Test	DF Class Class DF 2 Not Class IR Class IR Class IR Class Whice PM: 无损抗 Visual Appear	类:Ri 4000M 或Ri C _R 40S 取两者 之中较小者. Class : Ri 4000M 或Ri C _R 40S whichever is smaller. 类:Ri 2000M 或Ri C _R 50S 取两者 之中较小者. Class : Ri 2000M 或Ri C _R 50S whichever is smaller.	Applied Voltage: 1.5 × Rated Voltage Duration: 1000h Temperature: 125 (NPO, X7R) 85 (X5R, Y5V) Charge/ Discharge Current: 50mA max. Recovery Conditions: Room Temperature Recovery Time: 24h (Class 1), or 48h (Class2)
中高玉产品		Appearance: No visible damage. 类: ±2%或±1pF 取两者之中较大者 类: B,X: ±20% E,F: ±30% Class: ±2% or ±1pF, whichever is larger. Class: B,X: ±20% E,F: ±30%	中高压产品: 100V 额定电压 < 500V: 2 倍工作电压 500V 额定电压 1000V: 1.5 倍工作电压 额定电压 > 1000V: 1.2 倍工作电压 时间: 1000 小时 充电电流: 不应超过 50mA 温度:125 (NPO X7R);85 (X5R、Y5V)
寿命:恐 Middle	DF	2 倍初始标准 Not more than twice of initial value.	│ 放置条件:室温 │ 放置时间:24 小时 (类) , 或 48 小时 (类) , ├ Applied Voltage:
&high voltage Life Test	IR -	类:Ri 4000M 或 Ri C _R 40S 取两者之中较小者。 Class : Ri 4000M 或 Ri C _R 40S whichever is smaller. 类:Ri 2000M 或 Ri C _R 50S 取两者之中较小者。 Class : Ri 2000M 或 Ri C _R 50S whichever is smaller.	100V Rated Voltage < 500V: 2 Multiple 500V Rated Voltage 1000V: 1.5 Multiple > 1000V Rated Voltage: 1.2 Multiple Duration: 1000h Charge/ Discharge Current: 50mA max. Temperature: 125 (NPO X7R);85 (X5R, Y5V) Recovery Conditions: Room Temperature
÷ 4刀 。		无损伤 Appearance: No visible damage.	Recovery Time: 24h (Class 1), or 48h (Class2)

注解:

专门预处理 (仅对2类电容器):

将电容器放在上限类别温度或按详细规范中可能规定的更高温度下经 1h 后,接着在试验的标准大气条件下恢复 $24 \pm 1h$ 。

Note: Pretreatment (only for class2 capacitor)

Pretreatment (only for class2 capacitor) is a method to treat the capacitor before measurement. First, place the capacitor in the up-category temperature or other specified higher temperature environment for 1hour. Then recovery the capacitor at standard pressure conditions for $24 \pm 1 \text{hours}_{\circ}$

第 15 页

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

九、包装 PACKAGE 纸带卷盘结构 PAPER TAPING

0402 纸带编带尺寸大小

Dimensions of paper taping for 0402 type

代号 Code	W1	L1	D	С	В	P1	P2	P0	d	t
0201	0.37±	0.67±	8.00±	3.50±	1.75±	2.00±	2.00±	4.00±	1.50	0.80
0201	0.10	0.10	0.10	0.05	0.10	0.05	0.05	0.10	-0/+0.10	Below
0402	0.65±	1.15±	8.00±	3.50±	1.75±	2.00±	2.00±	4.00±	1.50	0.80
0402	0.10	0.10	0.10	0.05	0.10	0.05	0.05	0.10	-0/+0.10	Below

适合'0603,0805,1206'常规尺寸产品的纸带尺寸

Dimensions of paper taping for 0603 , 0805 , 1206 types.

第 16 页

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

纸带运行方向

-0/+0.10

Max

									Unit	: mm
代号Code 纸带规格 paper size	A	В	С	D	Е	F	G	Н	J	Т
0603	1.10	1.90	8.00	3.50	1.75	4.00	2.00	4.00	1.50	1.10
0603	±0.10	±0.10	±0.10	±0.05	±0.10	±0.10	±0.10	±0.10	-0/+0.10	Max
0005	1.45	2.30	8.0	3.50	1.75	4.00	2.00	4.00	1.50	1.10
0805	±0.15	±0.15	±0.15	±0.05	±0.10	±0.10	±0.10	±0.10	-0/+0.10	Max
1206	1.80	3.40	8.00	3.50	1.75	4.00	2.00	4.00	1.50	1.10

 ± 0.10

±0.10

±0.10

 ± 0.10

注意:表示此处对尺寸的要求非常精确。

 ± 0.20

 ± 0.20

1206

Note: The place with "*" means where needs exactly dimensions.

 ± 0.20

 ± 0.05

塑胶卷盘结构 **EMBOSSED TAPING**

塑胶带尺寸结构(适合'0805~1812'型产品)

Dimensions of embossed taping for 0805~1812 type

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

塑胶带传送方向

代号 Code 规格 Tape size	A	В	С	D*	E	F	G*	Н	J	Т
	1.55	2.35	8.00	3.50	1.75	4.00	2.00	4.00	1.50	1.50
0805	± 0.20	± 0.20	± 0.20	± 0.05	± 0.10	± 0.10	± 0.10	± 0.10	-0/+0.10	Max
120 5	1.95	3.60	8.00	3.50	1.75	4.00	2.00	4.00	1.50	1.85
1206	± 0.20	± 0.20	± 0.20	± 0.05	± 0.10	± 0.10	± 0.10	± 0.1	-0/+0.10	Max
1210	2.70	3.42	8.00	3.50	1.75	4.00	2.00	4.00	1.55	3.2
1210	± 0.10	± 0.10	± 0.10	± 0.05	± 0.10	± 0.10	± 0.05	± 0.10	-0/+0.10	Max
1808	2.20	4.95	12.00	5.50	1.75	4.00	2.00	4.00	1.50	3.0
	± 0.10	± 0.10	± 0.10	± 0.05	± 0.10	± 0.10	± 0.05	± 0.10	-0/+0.10	Max
1012	3.66	4.95	12.00	5.50	1.75	8.00	2.00	4.00	1.55	4.0
1812	± 0.10	± 0.10	± 0.10	± 0.05	± 0.10	± 0.10	± 0.05	± 0.10	-0/+0.10	Max

备注:*表示此处对尺寸的要求非常精确。

Note: The place with "*" means where needs exactly dimensions.

传送带的前后结构 Structure of leader part and end part of the carrier paper

第 18 页

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

卷盘尺寸 Reel Dimensions

(unit: mm)

尺寸代码 (CODE)

	` ,						
卷盘型号	A	В	С	D	Е	F	G
7 REEL	178 ± 2.0	3.0	13±0.5	21 ± 0.8	50 或更大 50 ormore	10.0 ± 1.5	12max
13 REEL	330 ± 2.0	3.0	13±0.5	21 ± 0.8	50 或更大 50 ormore	10.0 ± 1.5	12max

关于卷带的说明

Taping specification

面胶剥离强度 Top tape peeling strength

(a)纸带 Paper Taping

Cover tape peeling direction 面胶剥离方向

(b) 塑料胶盘 Embossed Taping

Cover tape peeling direction 面胶剥离方向

标准:0.1N<剥离强度<0.7N

Standard: 0.1N < peeling strength < 0.7N

在剥离时,纸带不能有纸碎,也不能粘在底、面胶上。

No paper dirty remains on the scotch when peeling, and sticks to top and bottom tape.

第 19 页

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

塑料盒散包装 Bulk Case Package

单位 (unit):mm

Symbol	A	В	Т	С	D	Е
Dimension	6.80 ± 0.10	8.80 ± 1.00	12.00 ± 0.10	15.00+0.10/-0	2.00+0/-0.10	4.70 ± 0.10
Symbol	F	W	G	Н	L	I
Dimension	31.50+0.20/-0	36.00+0/-0.20	19.00 ± 0.35	7.00 ± 0.35	110.00 ± 0.70	5.00 ± 0.35

包装数量 Packing Quantity

尺寸	包装形式和数量 (PACKAGE STYLE & QUANTITY) unit: pcs						
(SIZE)	纸带卷盘 (PT)	胶带卷盘(ET)	塑料盒散装(BC)	一般散装(BP)			
0201	15000		20000	5000			
0402	10000		20000	5000			
0603	4000		15000	5000			
0805	4000	3000	10000	5000			
1206	4000	T 1.35mm 3000	5000	5000			
1206	4000	T > 1.35mm 2000	5000				
1210		T 1.80mm 2000		2000			
1210		T > 1.80mm 1000					
1410		2000					
1808		2000		2000			
1012		T 1.85mm 1000		2000			
1812		T > 1.85mm 500					
1825、2220、							
2025、2225、		500		500			
3035							

注意:包装的形式和数量可根据客户的要求来定。

Note: We can choose packing style and quantity can be according to the customer's requirement.

第 20 页 共 25 页

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

外包装 Outer packing

小包装 The first package

Quantity: 10 reels 数量: 10 卷

大包装 The second package

Quantity: 6 cases

数量:6盒

十、储存方法 **Storage Methods**

确保芯片可焊性良好的贮存期限为6个月(在包装好已交付的情况下)。

The guaranteed period for solderability is 6 months (Under deliver package condition).

储存条件/Storage conditions:

储存温度/Temperature 5~40

储存相对湿度/Relative Humidity 20~70%

十一、使用前的注意事项 **Precautions For Use**

多层片式瓷介电容器(MLCC)在短路或开路的电路中都有可能失效,在超出本承认书或相关说明书中所述使 用频率的恶劣工作环境,或外界机械力超压作用下,电容芯片都有可能着火、燃烧甚至爆炸,所以在使用的时候,首先 应考虑按本承认书的有关说明来进行,如有不明之处,请联系我们技术部、品管部或生产部.

The Multi-layer Ceramic Capacitors (MLCC) may fail in a short circuit modern in an open circuit mode when subjected to severe conditions of electrical environment and / or mechanical stress beyond the specified "rating" and specified "conditions" in the specification, which will result in burn out, flaming or glowing in the worst case. Following "precautions for "safety" and Application Notes shall be taken in your major consideration. If you have a question about the precautions for handling, please contact our engineering section or factory.

1. 焊接的条件与相关图表 **Soldering Profile**

为避免因温度的突然变化而引起的芯片开裂或局部爆炸的现象发生,请按有关温度曲线图表来进行.(请参考 附页中的图表)

To avoid the crack problem by sudden temperature change, follow the temperature profile in the adjacent graph (refer to the graph in the enclosure page).

> 第 21 页

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

2. 手工焊接 **Manual Soldering**

手工焊接很容易因为芯片局部受热不均而引起瓷体微裂或局部爆炸的现象,在焊接时,如果操作者不小 心,会使烙铁头直接同电容芯片的瓷体部分接触,这样很容易使电容芯片因热冲击而受损或出现其他意外,因 此,使用电烙铁手工焊接时应仔细操作,并对电烙铁的尖端的选择和尖端温度控制应多加小心.

Manual soldering can pose a great risk of creating thermal cracks in capacitors. The hot soldering iron tip comes into direct contact with the end terminations, and operator's careless may cause the tip of the soldering iron to come into direct contact with the ceramic body of the capacitor. Therefore the soldering iron must be handled carefully, and pay much attention to the selection of the soldering iron tip and temperature contact of the tip.

3. 适量的焊料 Optimum Solder Amount for Reflow Soldering

这样会因端头压力过大而 可能引起芯片受损

Cracks tend to occur due to large stress.

焊料太少 Not enough solder

固定力量不足,可能会引起 电容芯片与线路接触不良

Weak holding force may cause bad connection between the capacitor and PCB.

4. 推荐焊料用量 Recommended Soldering amounts

4.1 回流焊接的最佳焊料用量

The optimal solder fillet amounts for re-flow soldering

4.2 波峰焊接的最佳焊料用量

The optimal solder fillet amounts for wave soldering

4.3使用烙铁返修时的最佳焊料量

The optimal solder fillet amounts for reworking by using soldering iron

第 22 页

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

十二、推荐焊接方式 Recommended Soldering Method

规格尺寸	温度特性		容量范围	焊接方式
Size	Temperature Characteristics	RatedVoltage	Capacitance	Soldering Method
	NPO	/		R
0201	X7R/X5R	/		R
	Y5V	/		R
	NPO	/		R
0402	X7R/X5R	/		R
	Y5V	/		R
	NPO	/		R/W
	Wan Wan	,	C 1uf	R
0603	X7R/X5R	/	C < 1uf	R/W
	VEV	,	C 1uf	R
	Y5V	/	C < 1uf	R/W
	NPO	/	/	R/W
	Wan Wan	,	C 4.7uf	R
0805	X7R/X5R	/	C < 4.7uf	R/W
	N/CN/	,	C 1uf	R
	Y5V	/	C < 1uf	R/W
	NPO	/	/	R/W
	Wan Wan	,	C 10uf	R
1206	X7R/X5R	/	C < 10uf	R/W
	Y/CY/	,	C 10uf	R
	Y5V	/	C < 10uf	R/W
	NPO	/	/	R
1210	X7R/X5R	/	/	R
	Y5V	/	/	R

焊接方式 Soldering method: R—回流焊 Reflow Solering

W—波峰焊 Wave Soldering

第 23 页

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

十三、推荐焊接温度曲线图 The temperature profile for soldering

回流焊接(Re-flow soldering)

	Pb-Sn 焊接	无铅焊接		
	Pb-Sn soldering	Lead-free soldering		
尖峰温度 Peak temperature	230 ~ 250	240 ~ 260		

在预热时,请将焊接温度与芯片表面温度之间的温差维持在 T 150 。

While in preheating, please keep the temperature difference between soldering temperature and surface temperature of chips as: T 150 .

波峰焊接(Wave soldering)

Temperature

	Pb-Sn 焊接	无铅焊接		
	Pb-Sn soldering	Lead-free soldering		
尖峰温度 Peak temperature	230 ~ 260	240 ~ 270		

在预热时,请将焊接温度与芯片表面温度之间的温差维持在T 150 。

While in preheating, please keep the temperature difference between soldering temperature and surface temperature of chips as: T 150 .

第 24 页	共 25 页

FENGHUA

Fenghua Advanced Technology (Holding) CO., LTD

手工焊接 (Hand soldering) Temperature

条件 Conditions:

预热 Preheating	烙铁头温度 Temperature of soldering iron head	烙铁炉率 Power of soldering iron	烙铁上直径 Diameter of soldering iron head	焊 要寸间 Soldering time	锡膏量 Solder paste amount	限制条件 Restricted conditions
130	最高300 Highest temperature:300	最大20W 20Watthe highest	建议1mm 1mm recommended	最长3s 3s at the longest	1/2 芯片厚度 1/2 chip thickness	请勿使用烙铁头直接接触陶 瓷元件 Please avoid the derect contact between soldering iron head and ceramic components

以最新版本的内容为准 ..