SC1015 Mini Project

IMDB Top 2000 Movies Dataset

Chin Wei Hao U2322704F Chin Hui Qi, Cheryl U2321555A Christopher Lim Wai Ming U2322618D

Lab Group FCE2, Team 2

Table of contents

01

02

03

Our Motivation

You can describe the topic of the section here

Exploratory Data Analysis

You can describe the topic of the section here

Data Preparation

You can describe the topic of the section here

04

Machine Learning

You can describe the topic of the section here

05

Outcome

You can describe the topic of the section here

O1 Introduction

IMDB Rating

Practical Motivation

Objective:

Determine the influence of various factors (such as Metascore, Votes, Duration, Gross value) on the IMDb ratings of the top 2000 movies.

Primary Data Points in our dataset: Duration, IMDb ratings, Gross Value, Metascore, Votes Other Data Points in our dataset: Name of movie, Release Year, Genre, Director, Cast O2
Exploratory Data
Analysis

Initial Data Insights

	lata.head()										
	Movie Name	Release Year	Duration	IMDB Rating	Metascore	Votes	Genre	Director	Cast	Gross	
0	The Godfather	1972	175	9.2	100.0	2,002,655	Crime, Drama	Francis Ford Coppola	Marlon Brando	\$134.97M	
1	The Godfather Part II	1974	202	9.0	90.0	1,358,608	Crime, Drama	Francis Ford Coppola	Al Pacino	\$57.30M	
2	Ordinary People	1980	124	7.7	86.0	56,476	Drama	Robert Redford	Donald Sutherland	\$54.80M	
3	Lawrence of Arabia	1962	218	8.3	100.0	313,044	Adventure, Biography, Drama	David Lean	Peter O'Toole	\$44.82M	
4	Straw Dogs	1971	113	7.4	73.0	64,331	Crime, Drama, Thriller	Sam Peckinpah	Dustin Hoffman	NaN	

loaded the top 2000 IMDb movies dataset from a CSV file into a DataFrame and displayed the first five records.

Preliminary exploration

```
[3]: df = pd.DataFrame(data)
    df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2000 entries, 0 to 1999
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Movie Name	2000 non-null	object
1	Release Year	2000 non-null	object
2	Duration	2000 non-null	int64
3	IMDB Rating	2000 non-null	float64
4	Metascore	1919 non-null	float64
5	Votes	2000 non-null	object
6	Genre	2000 non-null	object
7	Director	2000 non-null	object
8	Cast	2000 non-null	object
9	Gross	1903 non-null	object
100	C7 / - 1		

dtypes: float64(2), int64(1), object(7)

memory usage: 156.4+ KB

Text(0.5, 1.0, 'Top 15 Genres')

bar chart illustrating the top 15 movie genres or genre combinations from a dataset, ranked by their frequency of occurrence, with the genre comedy, drama and romance being most common.

boxplots to rep the distribution of IMDb ratings, Metascores, number of votes, gross revenue, and duration for a set of movies, indicating variability and outliers within these data points.

O3
Data preparation
& cleaning

Data Preparation

```
[3]: # Remove all commas convert object to float for Votes
data['Votes'] = data['Votes'].str.replace(',', ')
data['Votes'] = data['Votes'].str.replace(',', ')

# Remove $ sign and M symbol and convert to float for Gross
data['Gross'] = data['Gross'].str.-replace('s', '')
data['Gross'] = data['Gross'].str.-replace('M', '')
data['Gross'] = data['Gross'].str.veplace('M', '')
data['Gross'] = data['Gross'].str.vepla
```

	Movie Name	Release Year	Duration	IMDB Rating	Metascore	Votes	Genre	Director	Cast	Gross
0	The Godfather	1972.0	175	9.2	100.0	2002655.0	Crime, Drama	Francis Ford Coppola	Marlon Brando	134970000.0
1	The Godfather Part II	1974.0	202	9.0	90.0	1358608.0	Crime, Drama	Francis Ford Coppola	Al Pacino	57300000.0
2	Ordinary People	1980.0	124	7.7	86.0	56476.0	Drama	Robert Redford	Donald Sutherland	54800000.0
3	Lawrence of Arabia	1962.0	218	8.3	100.0	313044.0	Adventure, Biography, Drama	David Lean	Peter O'Toole	44820000.0
4	Straw Dogs	1971.0	113	7.4	73.0	64331.0	Crime, Drama, Thriller	Sam Peckinpah	Dustin Hoffman	NaN
			***				***	-	-	
1995	The Young Victoria	2009.0	105	7.2	64.0	66235.0	Biography, Drama, History	Jean-Marc Vallée	Emily Blunt	11000000.0
1996	Tooth Fairy	NaN	101	5.0	36.0	49527.0	Comedy, Family, Fantasy	Michael Lembeck	Dwayne Johnson	60020000.0
1997	The Informant!	2009.0	108	6.5	66.0	67318.0	Biography, Comedy, Crime	Steven Soderbergh	Matt Damon	33310000.0
1998	Youth in Revolt	2009.0	90	6.4	63.0	75956.0	Comedy, Drama, Romance	Miguel Arteta	Michael Cera	15280000.0
1999	Quarantine	2008.0	89	6.0	53.0	77075.0	Horror, Sci-Fi, Thriller	John Erick Dowdle	Jennifer Carpenter	31690000.0

2000 rows × 10 columns

Keep	Remove			
 Duration, IMDb ratings Gross Value Metascore Votes Release Year 	 Name of movie Genre Director Cast 			

Cleaning data

[6]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2000 entries, 0 to 1999
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Movie Name	2000 non-null	object
1	Release Year	1921 non-null	float64
2	Duration	2000 non-null	int64
3	IMDB Rating	2000 non-null	float64
4	Metascore	1919 non-null	float64
5	Votes	2000 non-null	float64
6	Genre	2000 non-null	object
7	Director	2000 non-null	object
8	Cast	2000 non-null	object
9	Gross	1903 non-null	float64
	es: float64(5) ry usage: 156.	, int64(1), obje 4+ KB	ct(4)

Analysis of data

Analysis of data

Heatmap

strong positive correlation between imdb ratings and metascore of 0.76, a moderate positive correlation between votes and IMDb ratings, and a weaker positive correlation between gross revenue and IMDb ratings.

O4 Machine Learning

Regression, Decision Tree, Random Forest

Regression

IMDB Rating vs Metascore

IMDB Rating vs Votes

5 True values of the Response Variable (Train)

strongest positive correlation between imdb ratings and metascore

Much weaker and nearly linear correlation with other factors such as votes and duration

IMDB Rating vs Gross

Intercept of Regression Coefficients of Regression

: b = [6.97735058] : a = [[-1.8426805e-09]]

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Train Dataset : 0.008315503020466797 : 0.814371021646203

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Test Dataset : 0.004015663672795378 : 0.8098473878865355

IMDB Rating vs Duration

Intercept of Regression : b = [6.4246543] : a = [[2.631455e-06]] Coefficients of Regression

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Root Mean Squared Error (RMSE) : 0.8631824808673789

Train Dataset : 0.09849251217694732 : 0.7450839952763629

Goodness of Fit of Model Test Dataset Explained Variance (R^2) : 0.06118727426560344 Mean Squared Error (MSE) : 0.8499283539214618 Root Mean Squared Error (RMSE) : 0.9219155893689301

IMDB Rating vs Duration+Gross+Votes+MetaScore

Decision Tree

Limitations

- Even though it maintained a consistently low true positive rate, it also had a rather high false positive rate.
 - Likely due to the nature of our dataset we chose
 - Resulting in class imbalance
 - a majority of the movies are all "hits" rather than "flops"
 - less popular movies are underrepresented in our dataset
- Hence, the decision tree is likely to be biased towards predicting the majority class, which is already
 made up of all the hit movies of all time with mostly high ratings, resulting in much more false
 positives.
- Hence our data becomes rather skewed, making it difficult to mitigate despite data cleaning.

IMDB Rating vs Votes

Goodness of Fit of Model Train Dataset

Classification Accuracy : 0.8421828908554573

TPR for train : 0.9946761313220941 FPR for train : 0.9082969432314411

Goodness of Fit of Model Test Dataset

Classification Accuracy : 0.8259587020648967

TPR for train : 0.9755244755244755 FPR for train : 0.9811320754716981

IMDB Rating vs Metascore

Goodness of Fit of Model Train Dataset
Classification Accuracy : 0.883480825958702

TPR for train : 0.9654561558901683 FPR for train : 0.5242290748898678

Goodness of Fit of Model Test Dataset Classification Accuracy : 0.887905604719764

TPR for train : 0.9471830985915493 FPR for train : 0.418181818181818181

IMDB Rating vs Gross

Goodness of Fit of Model Train Dataset

Classification Accuracy : 0.8366261398176292

TPR for train : 0.9899175068744271 FPR for train : 0.9066666666666666

Goodness of Fit of Model Test Dataset

Classification Accuracy : 0.8333333333333334

TPR for train : 0.9856115107913669 FPR for train : 0.9807692307692307

IMDB Rating vs Duration

Goodness of Fit of Model Train Dataset

Classification Accuracy : 0.8320668693009119

TPR for train : 0.9990850869167429 FPR for train : 0.9865470852017937

Goodness of Fit of Model Test Dataset

Classification Accuracy : 0.8333333333333333

TPR for train : 0.9963768115942029

FPR for train : 1.0

IMDB Rating vs Duration+Gross+Votes+MetaScore

Goodness of Fit of Model Train Dataset
Classification Accuracy : 0.9354103343465046

TPR for train : 0.9762773722627737 FPR for train : 0.2681818181818182

Goodness of Fit of Model Test Dataset

Classification Accuracy : 0.84848484848485

TPR for train : 0.9304029304029304 FPR for train : 0.543859649122807

Visualizing alpha

0.90		1,1	1		- 1	- e- mea	an_accurac
0.89					-1		
0.88	H						
0.87			I				
0.86							
0.85							
0.84	0.000	0.000	0.004	0.000	0.000	0.040	0.040
	0.000	0.002	0.004	0.006 alpha	0.008	0.010	0.012
		alpha	mean	_accuracy	s	td	
	61	0.004362		0.88526	0.0118	57	

55	0.002228	0.877662	0.015077
56	0.002293	0.877662	0.015077
57	0.002453	0.880709	0.016333
58	0.002486	0.881470	0.015380
59	0.003018	0.884509	0.016335
60	0.003096	0.884509	0.016335
61	0.004362	0.885260	0.011857
62	0.004383	0.885260	0.011857
63	0.008712	0.878416	0.013840

It helps control the size of a tree by selectively removing nodes based on a cost complexity parameter called ccp_alpha, which determines the trade off between tree complexity and accuracy.

Cost Complexity Pruning

Metascore <= 39.5 gini = 0.278 samples = 1316 value = [220, 1096] lass = Higher than 6

Votes <= 140184.0 aini = 0.424samples = 180 value = [125, 55] class = Lower than 6

Metascore <= 54.5 qini = 0.153samples = 1136 value = [95, 1041] lass = Higher than 6

Duration <= 129.0 gini = 0.33samples = 139 value = [110, 29] class = Lower than 6

gini = 0.464samples = 41 value = [15, 26] class = Higher than 6 class = Higher than 6

gini = 0.337samples = 349 value = [75, 274]

gini = 0.05 samples = 787 value = [20, 767] class = Higher than 6

Gross <= 32830000.0 aini = 0.302samples = 135 value = [110, 25] class = Lower than 6

gini = 0.0samples = 4value = [0, 4] ss = Higher than 6

Votes <= 71568.0 gini = 0.434 samples = 66 value = [45, 21] class = Lower than 6

gini = 0.109 samples = 69 value = [65, 4] class = Lower than 6

gini = 0.219samples = 40 value = [35, 5] lass = Lower than 6

aini = 0.473samples = 26 value = [10, 16] class = Higher than 6

Although pruning is designed to prevent overfitting by excluding noise and outliers, our specific application of alpha pruning slightly reduced accuracy in predicting IMDb ratings.

The pruning may have removed nodes that contained relevant information for our dataset.

A balance must be struck to maintain sufficient model complexity to capture important patterns while avoiding the pitfalls of overfitting.

Cost Complexity Pruning

Goodness of Fit of Model Train Dataset
Classification Accuracy : 0.9019756838905775

TPR for train : 0.9917883211678832 FPR for train : 0.545454545454545454

Goodness of Fit of Model Test Dataset
Classification Accuracy : 0.8515151515151516

Classification Accuracy : 0.85 TPR for train : 0.978021978021978 FPR for train : 0.7543859649122807

Random Forest

Mean Squared Error: 0.2891176221590909

R-squared: 0.6898316378080778

Feature importance bar chart: shows which features our model relies on the most to predict the imdb ratings metascore played the largest role in determining IMDB ratings

Actual vs predicted plot generally shows a positive linear relationship between the actual and predicted imdb ratings,

The residual plot also shows the residuals randomly scatter around the zero line, suggesting that our model does not have much systematic error over the range of predicted imdb ratings.

Data Insights/Conclusion

- 1. All in all, we found that Metascore has the highest correlation with IMDB Ratings
- 2. Dataset is skewed towards higher IMDB Ratings due to nature of our dataset.
- 3. Model created using Decision tree has a high False Positive Rate
- 4. Model for Logistic Regression created using this data can only predict IMDB rating above 6 due to the dataset constraints.
- 5. Multivariate linear regression produced the most accurate results in predicting the ratings of the movie as compared to using univariate regression, with Metascore being the most important variable.