A Survey on Navier–Stokes Equations

Nguyen Quan Ba Hong*

February 25, 2022

Abstract

A personal survey on Navier-Stokes equations (NSEs), especially its regularity and turbulence models.

Keywords. Navier–Stokes equations.

Contents

1	Incompressible NSEs	1
	1.1 Various concepts of solutions to NSEs	1
	1.1.1 Smooth solutions of NSEs]
2	Compressible NSEs	2
R	eferences	-

Quick notes

1. The 4 formulations appearing in the Clay Millennium Prize formulation Fefferman, 2006 of NSEs.

1 Incompressible NSEs

1.1 Various concepts of solutions to NSEs

To describe various formulations for NSEs, we must first define properly the concept of a solution to NSEs, including, e.g., periodic solutions, finite energy solutions, H^1 solutions, and smooth solutions, etc.

1.1.1 Smooth solutions of NSEs

"Note that even within the category of smooth solutions, there is some choice in what decay hypotheses to place on the initial data and solution; for instance, one can require that the initial velocity \mathbf{u}_0 be Schwartz class, or merely smooth with finite energy. Intermediate between these two will be data which is smooth and in H^1 ." – Tao, 2013

Recall Tao, 2013, Def. 1.1:

Definition 1.1 (Smooth solutions to NSEs). A smooth set of data for NSEs up to time T is a triplet $(\mathbf{u}_0, \mathbf{f}, T)$, where $0 < T < \infty$ is a time, the initial velocity vector field $\mathbf{u}_0 : \mathbb{R}^3 \to \mathbb{R}^3$ and the forcing term $\mathbf{f} : [0, T] \times \mathbb{R}^3 \to \mathbb{R}^3$ are assumed to be smooth on \mathbb{R}^3 and $[0, T] \times \mathbb{R}^3$, respectively, (thus, \mathbf{u}_0 is infinitely differentiable in space, and \mathbf{f} is infinitely differentiable in space, and \mathbf{u}_0 is furthermore required to be divergence-free:

$$\nabla \cdot \mathbf{u}_0 = 0, \ in \ \mathbb{R}^3. \tag{1.1}$$

If f = 0, we say that the data is homogeneous.

The total energy $E(\mathbf{u}_0, \mathbf{f}, T)$ of a smooth set of data $(\mathbf{u}_0, \mathbf{f}, T)$ is defined by the quantity

$$E(\mathbf{u}_0, \mathbf{f}, T) := \frac{1}{2} \left(\|\mathbf{u}_0\|_{L^2_{\mathbf{x}}(\mathbb{R}^3)} + \|\mathbf{f}\|_{L^1_t L^2_{\mathbf{x}}([0, T] \times \mathbb{R}^3)} \right)^2,$$
 (iiNS/E)

Email. nguyenquanbahong@gmail.com.

^{*}Independent Researcher, Ben Tre City, Vietnam.

Sect. 2 References

and $(\mathbf{u}_0, \mathbf{f}, T)$ is said to have finite energy if $E(\mathbf{u}_0, \mathbf{f}, T) < \infty$. We define the H^1 norm $\mathcal{H}^1(\mathbf{u}_0, \mathbf{f}, T)$ of the data to be the quantity

$$\mathcal{H}^{1}(\mathbf{u}_{0}, \mathbf{f}, T) := \|\mathbf{u}_{0}\|_{H_{\pi}^{1}(\mathbb{R}^{3})} + \|\mathbf{f}\|_{L_{\tau}^{\infty} H_{\pi}^{1}(\mathbb{R}^{3})} < \infty, \tag{iiNS/H^{1}}$$

and say that $(\mathbf{u}_0, \mathbf{f}, T)$ is H^1 if $\mathcal{H}^1(\mathbf{u}_0, \mathbf{f}, T) < \infty$; note that the H^1 regularity is essentially 1 derivative higher than the energy regularity, which is at the level of L^2 , and instead matches the regularity of the initial enstrophy $\frac{1}{2} \int_{\mathbb{R}^3} \|\boldsymbol{\omega}_0(t, \mathbf{x})\|^2 d\mathbf{x}$, where $\omega_0 := \nabla \times \mathbf{u}_0$ is the initial vorticity. We say that a smooth set of data $(\mathbf{u}_0, \mathbf{f}, T)$ is Schwartz if, for all integers $\alpha, m, k \geq 0$, one has

$$\sup_{\mathbf{x} \in \mathbb{R}^3} (1 + \|\mathbf{x}\|)^k \|\nabla_{\mathbf{x}}^{\alpha} \mathbf{u}_0(\mathbf{x})\| < \infty \text{ and } \sup_{(t, \mathbf{x}) \in [0, T] \times \mathbb{R}^3} (1 + \|\mathbf{x}\|)^k \|\nabla_{\mathbf{x}}^{\alpha} \partial_t^m \mathbf{f}(\mathbf{x})\| < \infty.$$
 (1.2)

Thus, e.g., the Schwartz property implies H^1 , which in turn implies finite energy. We also say that $(\mathbf{u}_0, \mathbf{f}, T)$ is periodic with some period L > 0 if one has $\mathbf{u}_0(\mathbf{x} + L\mathbf{k}) = \mathbf{u}_0(\mathbf{x})$ and $\mathbf{f}(t, \mathbf{x} + L\mathbf{k}) = \mathbf{f}(t, \mathbf{x})$ for all $t \in [0, T]$, $\mathbf{x} \in \mathbb{R}^3$, and $\mathbf{k} \in \mathbb{Z}^3$. Of course, periodicity is incompatible with the Schwartz, H^1 , or finite energy properties, unless the data is zero. To emphasize the periodicity, we will sometimes write a periodic set of data $(\mathbf{u}_0, \mathbf{f}, T)$ as $(\mathbf{u}_0, \mathbf{f}, T, L)$.

A smooth solution to the NSEs, or a smooth solution, is a quintuplet $(\mathbf{u}, p, \mathbf{u}_0, \mathbf{f}, T)$, where $(\mathbf{u}_0, \mathbf{f}, T)$ is a smooth set of data, and the velocity vector field $\mathbf{u} : [0, T] \times \mathbb{R}^3 \to \mathbb{R}^3$ and pressure field $p : [0, T] \times \mathbb{R}^3 \to \mathbb{R}$ are smooth functions on $[0, T] \times \mathbb{R}^3$ that obey the NSE:¹

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u} = \Delta \mathbf{u} - \nabla p + \mathbf{f},\tag{1.3}$$

and the incompressibility property

$$\nabla \cdot \mathbf{u} = 0, \tag{1.4}$$

on all of $[0,T] \times \mathbb{R}^{32}$, and also the initial condition

$$\mathbf{u}(0, \mathbf{x}) = \mathbf{u}_0(\mathbf{x}), \ \forall \mathbf{x} \in \mathbb{R}^3. \tag{1.5}$$

We say that a smooth solution $(\mathbf{u}, p, \mathbf{u}_0, \mathbf{f}, T)$ has finite energy if the associated data $(\mathbf{u}_0, \mathbf{f}, t)$ has finite energy, and in addition one has

$$\|\mathbf{u}\|_{L^{\infty}_{t}L^{2}_{x}([0,T]\times\mathbb{R}^{3})} < \infty. \tag{1.6}$$

2 Compressible NSEs

References

[TT's blog] Terence Tao's blog/Navier-Stokes equations.

• Terence Tao. Localisation and compactness properties of the Navier-Stokes global regularity problem. Aug 4, 2011.

[Wikipedia] Wikipedia.org

• Wikipedia/viscosity.

References

Fefferman, Charles L. (2006). "Existence and smoothness of the Navier-Stokes equation". In: *The millennium prize problems*. Clay Math. Inst., Cambridge, MA, pp. 57–67.

Tao, Terence (2013). "Localisation and compactness properties of the Navier-Stokes global regularity problem". In: Anal. PDE 6.1, pp. 25–107. ISSN: 2157-5045. DOI: 10.2140/apde.2013.6.25. URL: https://doi.org/10.2140/apde.2013.6.25.

¹NQBH: Why no viscosity ν ? Any major differences in their mathematical analysis, especially the case $\nu = \nu(t, \mathbf{x}, \mathbf{u}, p)$ in turbulence models?

²NQBH: NSEs on the whole domain, hence useless for shape and topology optimizations, but useful for applying harmonic and Fourier analysis.