EJERCICIOS HEBB

									Q	Q	0	
12.	ν.	l v	1 h	1 4	+	∠w,	ΔW_2	1 Db	WA	Wz	16	
	^1	1/2	1	1	-1	-1	-1	-1	-1	-1	-1	
1	1	1	1	1	,	-1 1 -4	-1	1	0	-2	0	
	1	-1	1			_1	;				, [
	-1	1	1	^			,	1	-1	-11	1	
*	-11	-/1	1	-1	-1	2	1	-1	0	0 1	u ,	

Remerdo: y=t en las redes de Hebb

Ajuste de pesos: W: (nuevo) = Wi (anterior) + Xiy (i=1,..., n) atributos

b (nuevo) = b (anterior) + y

número de entradas

[2.] Minksy y Papert (1788) demostraron que malquier red de una capa solo puede resolver problemas que son separables

Una red de Hebb es una red de una capa, por lo que pruede a comprobarlo para la función NOR:

resolver problemas linealmente separables.

En	este	e	jercicio	vamos	a	compi	0	o r	0	
1	Ι.	11	1 7=t	∆W1	1 DW2	Db	WA	WZ	b	
1×1	X2	Ь	1-0			-1	-1	-1	-1	
1	1	1	-1	-1	-1	,	-2	٥	-2	
1	-1	1	-1	-1	1	-1		-1		
-1	1	1	-1	7	-1	-1	-2			
-1	-1	1	1	-()	-{	1	-2	1 - 2	1 -	1

 $\Rightarrow X_2 = \frac{-W_1}{W_2} X_1 - \frac{b}{W_2} \Rightarrow$

$$\Rightarrow X_2 = -X_1 - 1$$

١,	5.	,										0	0	0	0	0	
	X	X2	Xδ	Χų	b	y=t	Δw,	ΔW_2	AWs	∆ W4	ΔЪ	WA	$W_{\mathbf{Z}}$	W3	Wy	b	
	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	-1	4	-1	-1	1	1	-1	4	- 1	-1	1	Q	2	0	0	2	
	1	1	1	-1	1	-1	-1	-1	-1	(-1	- 1	1	-1	1	1	
	1	-1	-1	1	1	-1	-1	4	4	-1	- (-2	2	Q	Q	0	

Entouces:

Si
$$-2X_1 + 2X_2 > 0 \longrightarrow clase 1$$

Si $-2X_1 + 2X_2 < 0 \longrightarrow clase -1$

$$(1,1,1,1) \longrightarrow -2+2=0 \longrightarrow \text{clase 1}$$

$$(-1,1,-1,-1) \longrightarrow 2+2=4 \longrightarrow \text{clase 1}$$

$$(1,1,1,-1) \longrightarrow -2+2=0 \longrightarrow \text{clase 1}$$

$$(1,-1,-1,1) \longrightarrow -2-2=-4 \longrightarrow \text{clase -1}$$