Overview

- Adder
- Ripple Carry Adder
- Subtraction
- Adder/Subtractor

Binary addition by hand

- You can add two binary numbers one column at a time starting from the right, just like you add two decimal numbers.
- But remember it's binary. For example, 1 + 1 = 10 and you have to carry!

Adder

- Design an Adder for 1-bit numbers?
- 1. Specification:
 - 2 inputs (X, Y)
 - 2 outputs (C,S)

Adder

- Design an Adder for 1-bit numbers?
- 1. Specification:
 - 2 inputs (X,Y)
 - 2 outputs (C,S)
- 2. Formulation:

X	Υ	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Adder

- Design an Adder for 1-bit numbers?
- 1. Specification:
 - 2 inputs (X,Y)
 - 2 outputs (C,S)
- 2. Formulation:

X	Υ	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

3. Circuit

Full Adder

- A combinational circuit that adds 3 input bits to generate a Sum bit and a Carry bit
- A truth table and sum of minterm equations for C and S are shown below.

$$C(X,Y,Z) = \Sigma m(3,5,6,7)$$

 $S(X,Y,Z) = \Sigma m(1,2,4,7)$

Full Adder

 A combinational circuit that adds 3 input bits to generate a Sum bit and a Carry bit

X	Y	Z	С	S	S = X'Y'Z + X'YZ' + XY'Z'
0	0	0	0	0	+XYZ
0	0	1	0	1	$= X \oplus Y \oplus Z$
0	1	0	0	1	C = X'YZ + XY'Z + XYZ' + XYZ
0	1	1	1	0	=(X'Y + XY'). Z + XY (Z' + Z)
1	0	0	0	1	$=(X \oplus Y)Z + XY$
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	
			•		

Full Adder = 2 Half Adders

Manipulating the Equations:

$$S = (X \oplus Y) \oplus Z$$
$$C = (X \oplus Y)Z + XY$$

Full Adder = 2 Half Adders

Manipulating the Equations:

$$S = (X \oplus Y) \oplus Z$$
$$C = (X \oplus Y)Z + XY$$

Bigger Adders

- How to build an adder for n-bit numbers?
 - Example: 4-Bit Adder
 - Inputs?
 - Outputs?
 - What is the size of the truth table?
 - How many functions to optimize?

Bigger Adders

- How to build an adder for n-bit numbers?
 - Example: 4-Bit Adder
 - Inputs ? 9 inputs
 - Outputs ? 5 outputs
 - What is the size of the truth table? 512 rows!
 - How many functions to optimize? 5 functions

Ripple Carry Adder

- To add n-bit numbers:
- Use n Full-Adders
- The carries propagates as in addition by hand
- Use Z in the circuit as a C_{in}

1 0 0 0

0 1 0 1

0110

1011

Ripple Carry Adder

- To add n-bit numbers:
 - Use n Full-Adders
 - The carries propagates as in addition by hand

This adder is called a 4-bit ripple carry adder

Subtraction (2's Complement)

• How to build a subtractor using 2's complement?

Subtraction (2's Complement)

• How to build a subtractor using 2's complement?

Src: Mano's Book

$$S = A + (-B)$$

Adder/Subtractor

• How to build a circuit that performs both addition and subtraction?

Adder/Subtractor

Using full adders and XOR we can build an Adder/Subtractor!