Lógica

Prof. Dr. Rafael Teixeira Sousa

UFMT

Outline

- Lógica proposicional
- Inferência Lógica
- · Lógica de primeira ordem
- Lógica Fuzzy

Questão

• Se $X_1 + X_2 = 10$ e $X_1 - X_2 = 4$, qual é o valor de X_1 ?

Contexto histórico

- Lógica e Busca foram dominantes em IA até 90
 - · Vantagem:
 - Expressividade
 - Problemas:
 - · Determinística. Não lida com incertezas
 - · Baseada em regras. Não permite ajuste com base em dados

Linguagem Natural

- Exemplo 1:
 - · Um real é melhor que um centavo
 - · Um centavo é melhor do que nada
 - · Logo, um **real** é melhor do que **nada**
- Exemplo 2:
 - Um **real** é melhor do que **nada**
 - · Nada é melhor do que a paz mundial
 - · Logo, um **real** é melhor do que a **paz mundial**?

Linguagem

- · Uma linguagem é um mecanismo de expressão
- Linguagem Natural:
 - Português: Dois divide números pares
 - Inglês: Two divides even numbers
- · Linguagem de programação:
 - Python: $def \ even(x)$: $return \ x \% \ 2 == 0$
 - C++: bool even(int x) { return x % 2 == 0; }
- · Linguagem lógica:
 - Lógica de primera ordem: $\forall x$. Even $(x) \rightarrow \text{Divides}(x, 2)$

Objetivos da linguagem lógica

• Representar conhecimento sobre o mundo

• Raciocinar com o conhecimento

Exercício

- Qual dos argumentos é valido?
 - 1. Se neva, então faz frio. Está nevando. Logo, está fazendo frio.
 - 2. Se chove, então a rua fica molhada. A rua está molhada. Logo, choveu.

Exercício

- Qual dos argumentos é valido?
 - 1. Se neva, então faz frio. Está nevando. Logo, está fazendo frio.
 - 2. Se chove, então a rua fica molhada. A rua está molhada. Logo, choveu.
- 1. Nevar \rightarrow Frio
 - · Se Nevar é verdadeiro, logo, está Frio
- 2. Chove \rightarrow Molhado

Ingredientes de uma lógica: Sintaxe

- · Define um conjunto válido de fórmulas
- Símbolos:
 - Proposições: a, b, c, ...
 - Conectivos: \neg , \land , \lor , \rightarrow
- Fórmulas (f):
 - Se α e β são fórmulas, então:
 - ¬ α
 - $\alpha \wedge \beta$
 - α V β
 - $\alpha \rightarrow \beta$

Ingredientes de uma lógica: Semântica

- Define o significado das sentenças
- Interpretação: Associação entre proposições e valores-verdade (V ou F)

р	q	¬р	p ^ q	p v q	$p \rightarrow q$
F	F	V	F	F	V
F	V	V	F	V	V
V	F	F	F	V	F
V	V	F	V	V	V

- Tipos de fórmula:
 - Válida (tautológica): é verdadeira em toda interpretação
 - Satisfatível (contingente): é verdadeira em alguma interpretação
 - Insatisfatível (contraditória): é verdadeira em nenhuma interpretação

Sintaxe vs Semântica

- · Sintaxe: o que são expressões válidas?
- Semântica: o que as expressões significam?

- Diferente sintaxe, mesma semântica:
 - $2 + 3 \Leftrightarrow 3 + 2$
- Mesma sintaxe, diferente semânticas (1 vs 1,5):
 - 3/2 (Python 2.7) \Leftrightarrow 3/2 (Python 3)

Lógicas

- Proposicional
- Primeira ordem
- Segunda ordem

Exemplo – Lógica Proposicional

- Está chovendo
- · Se está chovendo, então a rua está molhada
- · Se a rua está molhada, então a rua está escorregadia

Vocabulário

- · c: "está chovendo"
- · m: "a rua está molhada"
- e: "a rua está escorregadia"

Formalização

•
$$KB = \{c, c \rightarrow m, m \rightarrow e\}$$

Base de conhecimento (KB – Knowledge Base)

- Conjunto de fórmulas
 - $\Delta = \{c, c \rightarrow m, m \rightarrow e\}$

- · Aumentar as fórmulas aumentas as restrições
- Criamos novas fórmulas a partir do conhecimento prévio e de regras de inferência lógica

Inferência lógica - Prova por dedução

- Exemplo:
 - Está chovendo (c)
 - Se está chovendo, então a rua está molhada $(c \rightarrow m)$
 - · Logo, está molhado (m)

$$\frac{c, c \rightarrow m}{m} \qquad \frac{(premissa)}{(conclusão)}$$

- Regra de inferência: Modus ponens
 - · Para qualquer símbolos *p* e *q*:

$$\frac{p, \ p \to q}{q}$$

Inferência lógica - Prova por dedução

- Uma regra de inferência é definida como:
 - Se f_1, \dots, f_k, g são fórmulas, então:

$$\frac{f_1, \dots, f_k}{g}$$

 Se as premissas são verdadeiras (estão na KB), então a conclusão também é verdadeira e pode ser incluída na KB.

Algoritmo de inferência

- Input: Um conjunto de regras (fórmulas)
- · Repita até não haver mudança na KB:
 - Escolha um conjunto de fórmulas $f_1, ..., f_k \in KB$
 - Se existe uma regra $\frac{f_1,...,f_k}{g}$:
 - Adicione g a KB
- KB prova/deriva f (KB $\vdash f$) se, e somente se, f for adicionada a KB

Exemplo

- Vocabulário
 - · c: "está chovendo"
 - · m: "a rua está molhada"
 - e: "a rua está escorregadia"
- Ponto inicial:
 - $KB = \{c, c \rightarrow m, m \rightarrow e\}$
- Aplicando modus ponens para $c \in c \to m$:
 - $KB = \{c, c \rightarrow m, m \rightarrow e, m\}$
- Aplicando modus ponens para $m \in m \to e$:
 - $KB = \{c, c \rightarrow m, m \rightarrow e, m, e\}$
- Não podemos derivar fórmulas como: $\neg m \in c \rightarrow e$

Corretude e completude

"Juro pela minha honra dizer toda a verdade e só a verdade"

- · Corretude: "só a verdade"
 - Que todas as inferências sejam com base nas **premissas verdadeiras** e conforme a semântica e sintaxe
- · Completude: "toda a verdade"
 - · Que sejam exploradas todas as inferências

Corretude: Exemplo

$$\frac{c, \quad c \to m}{m}$$

• Correto?

Corretude

$$\frac{c, \quad c \to m}{m}$$

• Correto? Sim

$$\frac{m, \quad c \to m}{c}$$

• Correto?

Corretude

$$\frac{c, \quad c \to m}{m}$$

• Correto? Sim

$$\frac{m, \quad c \to m}{c}$$

· Correto? Não

Completude

- Vocabulário
 - · c: "está chovendo"
 - · m: "a rua está molhada"
 - n: "está nevando"
- Formalização
 - $KB = \{c, c \lor n \to m\}$
 - f = m
 - Regras: $\left\{\frac{f, f \to g}{g}\right\}$ (Modus ponens)
- Semanticamente m é verdadeiro, mas sintaticamente não, pois não possuímos uma regra de inferência capaz de provar m
- Modus ponens é incompleto

Corrigindo Completude

- Alternativa 1:
 - Restringir as fórmulas
 - Lógica proposicional ⇒ Lógica proposicional com apenas clausulas de Horn
- Alternativa 2:
 - Usar outras regras de inferência

Rules of Inference (Table 1.3.1- Page 39)

Modus Ponens		Modus Tollens		Disjunctive Syllogism		
$p \rightarrow q$		$p \rightarrow q$		$\mathbf{p} \vee \mathbf{q}$	$\mathbf{p} \vee \mathbf{q}$	
p		~ q		~q	~p	
∴q		∴~ p		∴ p	∴ q	
Disjunctive Addition		Conjunctive Simplification		Rule of Contradiction		
p	q	p ^ q	p ^ q	$\sim p \rightarrow c$		
$\therefore \mathbf{p} \vee \mathbf{q}$	$\therefore \mathbf{p} \vee \mathbf{q}$	∴ p	∴ q	∴p		
Hypothetical Syllogism		Conjunctive Addition		Dilemma		
$p \rightarrow q$		p		$p \lor q$		
$q \rightarrow r$		q		$p \rightarrow r$		
∴p→r		∴ p ^ q		$q \rightarrow r$		
				∴r		

Cláusulas de Horn

· Cláusulas apenas nos formatos:

$$(p_1 \land \cdots \land p_k \to q)$$
$$(p_1 \land \cdots \land p_k \to falso)$$

Cláusulas de Horn

Cláusulas apenas nos formatos:

$$(p_1 \land \cdots \land p_k \to q)$$
$$(p_1 \land \cdots \land p_k \to falso)$$

Modus ponens com cláusulas de Horn pode ser definido como:

$$\frac{(p_1 \land \cdots \land p_k \to q) \to q}{q}$$

Supondo que a KB contenha somente cláusulas de Horn, então todas as fórmulas podem ser derivadas com o uso consecutivo de Modus ponens

Limitações da lógica proposicional

- · Alice e Enzo sabem matemática
 - AliceSabeMatemática ∧ EnzoSabeMatemática
- Todos estudantes sabem matemática
 - AliceéEstudante → AliceSabeMatemática
 - EnzoéEstudante → EnzoSabeMatemática
 - ...
- Todo inteiro par maior que 2 é a soma de dois primos
 - ???

Limitações da lógica proposicional

- Alice e Enzo sabem matemática
 - · AliceSabeMatemática ^ EnzoSabeMatemática
- Todos estudantes sabem matemática
 - AliceéEstudante → AliceSabeMatemática
 - EnzoéEstudante → EnzoSabeMatemática

• ...

- Todo inteiro par maior que 2 é a soma de dois primos
 - ???
- Falta:
 - Objetos e predicados: AliceSabeMatemática possui estrutura interna (Alice, Sabe, Matemática)
 - · Quantificadores e variáveis: "Todos" é um quantificador

Exemplo

sist_especialista.py

Lógica de Primeira Ordem

· Alice e Enzo sabem matemática

 $Sabe(alice, Matemática) \land Sabe(enzo, Matemática)$

Todos estudantes sabem matemática

 $\forall x \ Estudante(x) \rightarrow Sabe(x, Matemática)$

Sintaxe

- Termos:
 - Constantes (Matemática)
 - Variáveis (x)
 - Funções (Soma(3, x))
- Fórmulas:
 - Fórmula atómica (Sabe(x, Matemática))
 - Conectivo ($Estudante(x) \rightarrow Sabe(x, Matemática)$)
 - Quantificador $(\forall x \ Estudante(x) \rightarrow Sabe(x, Matemática))$

Quantificadores

- Quantificador universal (∀)
 - Conjunção: $\forall x P(x)$ é como $P(A) \land P(B) \land \cdots$
- Quantificador existencial (∃)
 - Disjunção: $\exists x \ P(x) \ \text{\'e} \ \text{como} \ P(A) \ \lor P(B) \ \lor \cdots$

- Propriedades:
 - $\neg \forall x P(x)$ equivalente a $\exists x \neg P(x)$
 - $\forall x \exists y \ Sabe(x, y)$ bem differente de $\exists y \forall x \ Sabe(x, y)$

Quantificadores em linguagem natural

- Todo estudante sabe matemática
 - $\forall x \ Estudante(x) \rightarrow Sabe(x, Matemática)$
- · Alguns estudantes sabem matemática
 - $\exists x \ Estudante(x) \land Sabe(x, Matemática)$
- Todo inteiro par maior que 2 é a soma de dois primos
 - ?

Quantificadores em linguagem natural

- Todo estudante sabe matemática
 - $\forall x \ Estudante(x) \rightarrow Sabe(x, Matemática)$
- Alguns estudantes sabem matemática
 - $\exists x \ Estudante(x) \land Sabe(x, Matemática)$
- Todo inteiro par maior que 2 é a soma de dois primos
 - $\forall x \ InteiroPar(x) \land MaiorQue(x, 2) \rightarrow \exists y \exists z \ Igual(x, Soma(y, z)) \land Primo(y) \land Primo(z)$

Resumo

- Lógica
 - · Representar conhecimento e relações para inferir conclusões lógicas
 - · Primeira abordagem de IA a ter uso prático
- Lógica Proposicional
 - · Abordagem simples e direta
 - · Pode ser completa com restrição a cláusulas de Horn
 - · Difícil representação
- · Lógica de primeira ordem
 - Introduz sintaxe aprimorada
- · Lógica de segunda ordem
 - Introduz conjuntos
- Ordem superior

LISP

- John McCarthy 1958
- Família de linguagens voltadas a expressões matemáticas e símbolos

Lógica Fuzzy

- Exemplo:
 - · Homens de meia idade
 - Lógica clássica
 - Se $40 \le idade \le 55 \rightarrow$ Homem de meia idade
 - Lógica Fuzzy

Idade	35	40	45	50	55
Grau de pertinência	0,0	0,5	1,0	0,5	0,0

- Funções de pertinência
 - Valor $\mu_{x} \in [0,1]$

Fuzzificação

Funções de pertinência

- Triangular
- Gaussiana
- Trapezoidal

Aplicações

- Sistemas especialistas
- Demonstrações matemáticas
- Detecção de fraudes

• Exemplo: ar_fuzzy.py