Contents

Worksheet 7: Parallel Processing

1

External Links 3

Worksheet 7: Parallel Processing

Jared Dyreson

CPSC-240 09 @ 11:30 - 13:20 (TR)

May 2, 2019

- 1. Mutex: a mutual exclusion object is a program object that is created so that multiple program threads can take turns sharing the same resource, such as access to a file
- 2. Deadlock: a situation where two programs sharing the same resource are effectively preventing each other from accessing the resource, resulting in both programs to cease functionality
- 3. Race Condition: the system's substantive behavior is dependent on the sequence or timing of other uncontrollable events
- 4. Lock contention: a condition where one thread is waiting for lock/object that is currently being held by another thread. Therefore, this waiting thread cannot use that object until the other thread has unlocked that particular object
- 5. Moore's Law: the principle that the speed and capability of computers can be expected to double every two years, because of the increase of transistors on a given chip
- 6. Two approaches to parallel processing
 - Multiple processors working in tandem with each other to conquer a task
 - Lock and Unlocking processes through the use of mutexes and semaphores
- 7. All the threads will have their own stack as it would would possibly create a race condition and break program flow. However, all the threads share memory with the heap, as it is meant to be dynamically allocated.

1

Figure 1: Thread memory

- 8. The mutex/semaphore protect the current process running so another process does not interrupt it prematurely
- 9. Atomic Operation: program operations that run completely independently of any other processes
- 10. Since a thread will get its own set of general purpose registers, it is accessing them through the CPU cache which contains "second class" registers and are blazing fast.

External Links

How threads get their own registers