

周银香

浙江财经大学 数据科学学院

综合评价合成方法: 概述

对于给定的权数,有以下评价合成模型:

综合评价合成方法: 幂平均合成法

最基本的综合评价合成方法可称为"幂平均合成法"

综合评价合成方法: 算术平均合成法

1.算术平均合成法

• 也称加法合成,是采用加权算术平均数的形式对各指标的评价值进行综合

• 计算公式
$$y = \sum_{i=1}^{p} y_i \cdot w_i$$

- ◆ 加法合成更适合于各项指标间相互独立的评价项目;
- ◆ 可以实现各指标评价值之间的等量补偿、"取长补短"。

综合评价合成方法:几何平均合成法

2.几何平均合成法

- 也称乘法合成,是采用加权几何平均数的形式对各指标的评
 - 价值进行综合

• 计算公式

$$y = \sqrt[\sum_{i=1}^{p} w_i] \prod_{i=1}^{p} y_i^{w_i} = \prod_{i=1}^{p} y_i^{w_i}$$

- ◆ 适用于各评价指标间具有关联的场合,这是由乘积运算的性质所决定的;
- ◆ 要求单项评价值都为正数;
- ◆ 由于几何平均数易受极小值的影响,因此该方法更突出评价值较小的指标影响;
- ◆ 若在评价中有意"严惩落后指标",鼓励各项指标均衡发展,则应选择该方法。

综合评价合成方法: 平方平均合成法

3.平方平均合成法

• 采用加权平方平均数的形式对各指标的评价值进行综合

$$y = \sqrt{\sum_{i=1}^{p} y_i^2 \cdot w_i}$$

- ◆ 适用于单项评价值都为非负数的情况;
- ◆ 平方平均数易受极大值影响,因此该方法会更突出评价值较大的指标作用;
- ◆ 若在评价中有意"奖励先进指标",则适合选用平方平均法。可以说,这 是一种"激励型的平均"。

综合评价合成方法: 算术平均法的案例计算

【例1】根据表1的评价值,用算术平均合成法计算六城市生态投入的综合评价值

表1 六城市生态投入指标评价值

	资源消耗			污染排放					
城市	人均建成区 面积(m² /人)	人均消费 标准煤 (tce/人)	人均 供水量 (t/人)	人均化学 需氧量 排放量 (kg/人)	人均氨氮 排放量 (kg/人)	人均二氧化 硫排放量 (kg/人)	人均氮 氧化物 排放量 (kg/人)	人均工业 固体废弃 物产生量 (t/人)	人均生 活垃圾 清运量 (t/人)
均值	56.61	4.13	87.44	7.57	1.22	8.59	7.34	0.69	0.27
重庆	0.73	0.62	0.43	1.17	1.07	2.05	1.08	1.49	0.78
上海	1.14	1.11	1.50	1.03	1.39	0.90	1.39	1.14	1.15
北京	1.14	0.77	0.97	0.54	0.53	0.43	0.50	0.68	1.26
成都	0.74	1.19	0.74	1.03	0.76	0.45	0.45	0.45	1.11
天津	0.86	1.30	0.61	0.95	1.03	1.61	2.03	1.65	0.52
广州	1.40	1.02	1.75	1.29	1.19	0.56	0.54	0.55	1.22

综合评价合成方法: 算术平均法的案例计算

分析: 各指标的权重分配宜采用等权分配

- 赋予两项一级指标同样大小的权重,即均为1/2;
- 在资源消耗中的评价中,土地、能源和水的消耗3项二级 指标赋予同样的权重,即均为1/3;
- 在污染排放的评价中,6项二级指标也赋予同样的权重,即均为1/6。

综合评价合成方法: 算术平均法的案例计算

• 以重庆为例, 计算过程为:

资源消耗:
$$y'_{\text{重庆}} = 0.73 \times \frac{1}{3} + 0.62 \times \frac{1}{3} + 0.43 \times \frac{1}{3} = 0.59$$

污染排放:
$$y''_{\text{重庆}} = 1.17 \times \frac{1}{6} + 1.07 \times \frac{1}{6} + 2.05 \times \frac{1}{6} + 1.08 \times \frac{1}{6} + 1.49 \times \frac{1}{6} + 0.78 \times \frac{1}{6} = 1.27$$

综合评价:
$$y_{\text{重庆}} = 0.59 \times \frac{1}{2} + 1.27 \times \frac{1}{2} = 0.93$$

综合评价合成方法: 算术平均法的案例计算

六城市的综合评价值计算结果:

表2 六城市生态投入综合评价结果

城市	资源消耗	排名	污染排放	排名	生态投入	排名
重庆	0.59	6	1.27	2	0.93	4
上海	1.25	2	1.17	3	1.21	1
北京	0.96	3	\bigcirc 0.66	6	0.81	5
成都	0.89	5	0.71	5	0.80	6
天津	0.92	4	$\bigcirc 1.30\bigcirc$	1	1.11	3
广州(1.39	1	0.89	4	1.14	2

从生态投入的整体评价结果来看,

成都、北京和**重庆的维修资龄解释。**成都、北京和**重庆的维修资龄解释。**一种相对较低;

天津、广州和上海的综合评价值较大,其生态投入水平在六城市中相对较高。

综合评价合成方法: 几何平均法的案例计算

【例2】根据表3中的评价值,用<u>几何平均合成法</u>计算六城市人类 发展水平的综合评价值

表3 六城市人类发展指标评价值

城市	人均GDP	人均预期寿命	教育程度	人均教育年限	预期教育年限	
重庆	0.74	0.89	0.64	0.53	0.74	
上海	0.85	0.96	0.75	0.71	0.79	
北京	0.85	0.95	0.79	0.77	0.80	
成都	0.80	0.90	0.69	0.65	0.73	
天津	0.86	0.94	0.74	0.68	0.79	
广州	0.89	0.94	0.78	0.70	0.86	

综合评价合成方法:几何平均法的案例计算

- ◆分析:根据联合国开发计划署人类发展指数的计算方法,对收入、预期寿命和教育程度各赋予1/3的权重,采用几何平均法进行综合。
- ◆以重庆为例, 计算过程为:

$$y_{\text{fift}} = (0.74 \times 0.89 \times 0.64)^{\frac{1}{3}} = 0.75$$

> 其他城市的综合评价值以及按评价值由高至低进行排名的结果为:

综合评价合成方法: 几何平均法的案例计算

表4 六城市人类发展水平综合评价结果

城市	综合评价值	排名	
重庆	0.75	6	
上海	0.85	3	
北京	0.86	2	
成都	0.79	5	
天津	0.84	4	
广州	0.87	1	

由评价结果可知,成都和重庆 的综合评价值居于后两位,说 明这两个城市在人类发展方面 的综合水平相对较低;

水平相对较高,且差距非常小。

其余四个城市人类发展的综合

谢 谢

日期: 2019/05/15