Stanford University Department of Electrical Engineering Qualifying Examination Winter 2008-09 Professor Joseph M. Kahn

Consider the following system.

The signal x(t) is bandlimited to $|\omega| \le \omega_m$. It is multiplied by p(t), the periodic signal shown. The product, y(t), is passed through the ideal lowpass filter $H(j\omega)$, which has cutoff frequency W and gain G.

Since p(t) is periodic with period T_0 and fundamental frequency $\omega_0 = 2\pi/T_0$, it can be represented as a Fourier series:

$$p(t) = \sum_{n=\infty}^{\infty} P_n e^{jn\omega_0 t}.$$

- Without explicitly calculating the P_n , find an expression for $Y(j\omega)$, the Fourier transform of y(t), in terms of $X(j\omega)$ and the P_n .
- State the conditions on ω_m , W and G such that z(t) = x(t). Be as specific as possible, replacing variables by specific numbers when possible.