Pós-graduação em Estatística Aplicada

Avaliação de Estatística Básica I e II

Aluno: Felipe Neres Silva Bezerra

- 1. Um empreendimento imobiliário consistiu da construção de dois edifícios residenciais, com apartamentos de 1 dormitório e área útil de 53*m*2. Em uma primeira fase, foi construído apenas um edifício, denominado "Bloco A". Para a conclusão do Bloco B, houve uma troca de empreiteiras. Suspeita-se que seus apartamentos foram construídos com metragem diferente daquela especificada na escritura. O arquivo areas.xlsx contêm as seguintes variáveis, obtidas por peritos de uma firma independente:
 - Id: identificação da observação no arquivo.
 - Bloco: bloco a que pertence o apartamento
 - Andar: andar onde o apartamento está situado
 - Final: número identificando a posição do apto no andar
 - Sala: área da sala em *m*2.
 - Cozinha: área da cozinha em *m*2.
 - Banheiro: área do banheiro em m2.
 - Dorm: área do banheiro em *m*2.
 - Rachad: ocorrência de rachaduras no apto: 0 não, 1 sim
 - Infiltr: ocorrências de infiltrações no apto: 0 não, 1 sim
 - a) Explore o arquivo de dados. Qual o número total de apartamentos no empreendimento? Quantos apartamentos existem por prédio? E por andar?
 R: 152 apartamentos, 76 por bloco, 8 por andar (4 em cada andar de cada bloco).
 - b) Construa gráficos adequados para as variáveis quantitativas contínuas e analise suas distribuições.

Histograma para o Tamanho do Banheiro (em m²)

Histograma para o Tamanho da Cozinha (em m²)

Histograma para o Tamanho do Dormitório (em m²)

Histograma para o Tamanho da Sala (em m²)

Com exceção do histograma para o tamanho das salas, as distribuições se assemelham à distribuição normal.

c) Construa gráficos do tipo box-plot para comparar os blocos quanto às áreas dos cômodos.

Tamanho dos Banheiros em cada Bloco

Tamanho das Cozinhas em cada Bloco

Tamanho dos Dormitórios em cada Bloco

Tamanho das Salas em cada Bloco

d) Calcule a área útil para cada apartamento. Armazene esta informação em uma variável denominada Total. Para cada bloco, determine medidas de posição e de

dispersão para essa variável. Construa também o gráfico do tipo box-plot. Comente os resultados obtidos.

Medidas de posição de dispersão para a variável "Total".	Bloco A	Bloco B
Média	53,42236842	48,40657895
Mediana	53,2	48,55
Moda	54,1	47,5
Desvio Absoluto	1,445775623	1,272022161
Variância	3,139092982	2,36515614
Desvio Padrão	1,771748566	1,537906415

Área Útil em cada Bloco

Os dados estão razoavelmente concentrados próximos da mediana, que coincide encontra-se também próxima da média em ambos os blocos.

- e) Baseando-se nos itens anteriores, você diria que existem diferenças nas áreas dos apartamentos dos blocos A e B? Em caso positivo, quais cômodos apresentam o problema?
 - R: As medidas de posição mediana e média da área útil dos apartamentos do bloco A encontram-se próximas do que é especificado na escritura, de 53m²; ademais, os dados parecem mais concentrados em torno desse valor. Já no bloco B, as mesmas medidas apontam para apartamentos com área útil de cerca de 48m² a 49m², abaixo do especificado.
- f) Explore descritivamente os dados referentes a problemas estruturais (rachaduras e infiltrações). Com a informação contida na variável Andar, divida os apartamentos

em três categorias dependendo do andar onde se encontra: baixo, médio e alto. Estude a ocorrência de rachaduras e infiltrações para cada categoria.

Rachadura Infiltração

Média: 0,4407895 Média: 0,2894737

Desvio Padrão: 0,498123 Desvio Padrão: 0,4550173

Rachadura em andares baixos Infiltração em andares baixos

Média: 0,25 Média: 0,1458333

Desvio Padrão: 0,437595 Desvio Padrão: 0,356674

Rachadura em andares médios Infiltração em andares altos

Média: 0,75 Média: 0,5

Desvio Padrão: 0,437595 Desvio Padrão: 0,5045250

Rachadura em andares altos Infiltração em andares médios

Média: 0,3392857 Média: 0,1875

Desvio Padrão: 0,4777518 Desvio Padrão: 0,3944428

Ocorrência de rachaduras			Ocorrência de infiltrações				
	Baixo	Médi	o Alto		Baixo	Médio	Alto
0	36	12	37	0	41	39	28
1	12	36	19	1	7	9	28

2. Estatísticas dos últimos anos do departamento estadual de estradas são apresentadas na tabela a seguir, contendo o número de acidentes incluindo vítimas fatais e as condições do principal motorista envolvido, sóbrio ou alcoolizado.

Motorista\ Vítimas Fatais	Não	Sim	TOTAL
Sóbrio	1228	275	1503
Alcoolizado	2393	762	3155
TOTAL	3621	1037	4658

a) Qual a probabilidade de uma vítima fatal em um acidente qualquer?

$$\mathbb{P}(Vitima\ Fatais = Sim) = 1037/4658 = 22,26\%$$

b) Qual a probabilidade de uma vítima fatal se o motorista estava sóbrio? E se estivesse alcoolizado?

$$\mathbb{P}(V \text{itima Fatais} = S \text{im} | Motorista = S \text{óbrio}) = 275/1503 = 18,3\%$$

 $\mathbb{P}(V \text{itima Fatais} = S \text{im} | Motorista = Alcoolizado) = 762/3155 = 24,15\%$

c) Você diria que o fato do motorista estar ou não alcoolizado interfere na ocorrência de vítimas fatais?

R: Embora os dados apurados na amostra apontem que motoristas alcoolizados causam mais acidentes, não é possível afirmar o mesmo sobre a população sem que haja inferência dos dados.

3. As pacientes diagnosticadas com câncer de mama precocemente têm 80% de probabilidade de serem completamente curadas. Para um grupo de 12 pacientes nessas condições, calcule a probabilidade:

a) Oito ficarem completamente curadas.

$$\mathbb{P}(X=8) = {12 \choose 8} 0.8^8 (1-0.8)^{12-8} = \frac{12!}{8!(12-8)!} 0.8^8 (1-0.8)^4 = 13.28756\%$$

b) Serem curadas de 7 a 9 pacientes.

$$\mathbb{P}(7 \le X \le 9) = \mathbb{P}(X = 7) + \mathbb{P}(X = 8) + \mathbb{P}(X = 9) = 42,2249\%$$

c) No mínimo 10 completamente curadas.

$$\mathbb{P}(10 \le X) = \mathbb{P}(X = 10) + \mathbb{P}(X = 11) + \mathbb{P}(X = 12) = 55,83457\%$$

- 4. A vida média útil de uma lavadora de pratos automática segue distribuição normal com média de 1,5 anos e desvio-padrão de 0,3 anos.
 - a) Qual a probabilidade de uma máquina precisar de conserto antes de expirar o período de garantia de um ano?

$$\mathbb{P}(X < 1) = 48,5\%$$

b) Se são vendidas 12.000 unidades, quantas esperamos que necessitarão de conserto antes do término da garantia?

$$\mathbb{P}(x < 1.5) = 50\%$$

$$\mathbb{P}(X = x) = 6000 \text{ unidades}$$