Report By: Yao Xinchen Lab Partner: Rebecca Rauschmayer, Total: /40 Liu Shiyu Lab TA: Junjie Gao Section: AB2 Question 1. /15 Theoretical/Experimental Results /5 $M_p = (MaxValue - SteadyState)/SteadyState * 100$ M_p Theory M_p Expmt t_r Theory t_r Expmt t_s Theory t_s Expmt ζ % % (s) (s) (s) (s) 2.0 0.00 0.00 8.20 8.02 11.14 11.60 1.5 0.00 0.00 5.85 5.80 8.30 8.32 1.0 0.000.10 3.35 3.32 5.00 4.76 0.8 1.77 2.50 2.54 3.38 1.52 3.68 0.7 2.28 3.02 5.62 2.16 4.86 4.60 0.5 16.30 17.24 1.62 2.04 6.28 5.32 0.3 37.23 40.37 1.30 1.88 10.14 10.62 0.2 70.56 52.66 1.21 1.86 15.08 17.46 Table 1: Theoretical/Experimental Results Attach one sample plot from your StepResponseMetrics file that shows how you obtained the experimental results for one of the values of ζ . Comparison of Theoretical vs. Experimental Results /5 Hint: Does it look like the theoretical equations on page 11 of the lab manual match the experimental values? Put Discussion Here *Yes, they match.* Discussion of variation with ζ of M_p, t_s, t_r /5 Put Discussion Here When ζ decreases, Mp increases, tr decreases, and ts first decreases and then increases. Question 2. /15 Effect of ζ on Pole Locations (Derive Equation and Explain) /5

Put Discussion of ζ 's Effect Here. Include the equation of the two pole locations in terms of ζ (you may assume $\omega_n = 1$). Include either a sketch/graph of the pole locations as ζ increases, or a description of what this graph would look like.

$$s_{1,2} = -\zeta \pm j\sqrt{1-\zeta^2}$$

systems?

As ζ increases, the poles go more left on the left half of the unit circle, and then go left on the x axis.

Effect of Pole Locations on M_p , t_s , t_r for an Underdamped System /5
Hint: An underdamped system has ζ As ζ increases, the poles do which makes M_p , t_s , t_r do (Double Hint: moving the poles causes two different effects on t_s)
An underdamped system has ζ less than 1. As ζ increases, the poles go left on the left half of unit circle, which makes Mp smaller, to smaller and tr greater
Effect of Pole Locations on M_p , t_s , t_r for an Overdamped/Critically Damped System/5
Hint: An over-damped system has ζ A critically damped system has ζ As ζ increases, the poles do which makes M_p , t_s , t_r do
An overdamped system has ζ greater than 1. As ζ increases, the poles go left on the x axis, which makes Mp be zero, ts greater and tr greater
Question 3/10
Investigate the effects of approximating an overdamped 2^{nd} order system with a 1^{st} order system. The approximation will be done by using a transfer function with only the pole that is closer to the origin, p_{min} .
$H_1(s) = \frac{p_1 p_2}{(s + p_1)(s + p_2)} \implies H_2(s) = \frac{p_{\min}}{s + p_{\min}}$
The response speed would be underestimated. The settling time would be overestimated. The rise time would be underestimated. And the overshoot would be overestimated.
Similarities/Differences on Overdamped 2 nd -Order system to a 1 st -Order System with the less negative of the 2 nd -Order's poles/6 Plot the step responses for the 2 nd order systems and their 1 st order approximations for
$\zeta = 1.5$, $\zeta = 5$, and $\zeta = 40$. Assume $\omega_n = 1$. How are the step responses of the 1^{st} order

The 1st approximations' step responses have a similar shape as the original ones'. But they rise faster.

approximations similar to and different from the step responses of the original 2nd order

Effect of magnitude of ζ on the accuracy of the approximations ____/4

How does ζ affect the accuracy of the 1st order approximations?

The greater ζ is, the higher the accuracy is.

Attachments (3)

- Plots obtained during lab
- Sample response with relevant points for calculating M_p , t_s and t_r marked
- Step Responses comparing 2nd order systems and 1st order approximations

Plots obtained during lab:

Sample response with relevant points for calculating M_p, t_s and t_r marked:

```
∠ ECE 486

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ▷ □ …
                          EXPLORER
                                                                                                                                               Ð
                      ∨ ECE 486
                                                                                                                                               Lab1 > 4 lab1plot.m
 Q
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            The state of the s
                                                                                                                                                                          for i = 1:length(ys)
  zeta = zetas(i);
  yn = ys{i};
  t = yn(:,1);
  y = yn(:,2);
                                              = controllerlab0.mdl
 60
 ☆>

◆ LabReport0.m

맒

♠ StepResponseMetrics.m

    ↓ lab1.m
    ↓ lab1plot.m

                                            → lab1report.m U

= lab1template.docx
Lab2
                                          .gitignore

≡ ECE486_lab_manual.pdf
                                                                                                                                                                       if zeta < 0.69
                                                                                                                                                                                                          ts = -0.5 / (zeta * omega) * log((1 - zeta^2) / 400);
                                                                                                                                                                                                         ts = (6.6 * zeta - 1.6) / omega;
                                                                                                                                                                                          fprintf("zeta=%.1f: M_p=%.2f%%, t_r=%.2fs, t_s=%.2fs\n", zeta, mp, tr, ts);
(8)
> OUTLINE > TIMELINE
```


Step Responses comparing 2^{nd} order systems and 1^{st} order

