§ 10. Электрический ток

В этом разделе используются данные таблиц 3, 15, 16 и 17 из приложения. В задачах 10.48, 10.126 дан авторский вариант решения.

10.1. Ток I в проводнике меняется со временем t по уравнению I=4+2t, где I — в амперах и t — в секундах. Какое количество электричества q проходит через поперечное сечение проводника за время от $t_1=2$ с до $t_2=6$ с? При каком постоянном токе I_0 через поперечное сечение проводника за то же время проходит такое же количество электричества?

Решение:

По определению сила тока $I = \frac{dq}{dt}$, отсюда dq = Idt;

$$q = \int_{t_1}^{t_2} Idt; \quad q = \int_{t_1}^{t_2} (4+2t)dt = 4t\Big|_{t_1}^{t_2} + t^2\Big|_{t_1}^{t_2}; \quad q = 4(t_2-t_1)+t_2^2-t_1^2;$$

q = 48 Кл. При постоянном токе $I_0 = \frac{q}{t}$, где $t = t_2 - t_1 = 4$ с.

Подставляя числовые значения, получим $I_0 = 12 \text{ A}$.

10.2. Ламповый реостат состоит из пяти электрических лампочек сопротивлением $r=350\,\mathrm{Om}$, включенных параллельно. Найти сопротивление R реостата, когда: а) горят все лампочки; 6) вывинчиваются одна, две, три, четыре лампочки.

Решение:

а) Если лампочки включены параллельно, то их общее сопротивление R находится по формуле $\frac{1}{R} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_2}$

$$+\frac{1}{r_3}+\frac{1}{r_4}+\frac{1}{r_5}$$
. Т. к. сопротивления всех лампочек одина-

ковы и равны
$$r$$
, то $\frac{1}{R} = \frac{5}{r}$, откуда $R = \frac{r}{5}$; $R = 70 \, \text{O}_{\text{M}}$.

б) Если выкрутить одну лампочку, то $R = \frac{r}{4} = 87.5 \, \text{Ом};$ две

лампочки —
$$R = \frac{r}{3} = 116.7 \,\text{Om};$$
 три лампочки —

 $R = \frac{r}{2} = 175 \,\text{Om}$; четыре лампочки — $R = r = 350 \,\text{Om}$.

10.3. Сколько витков нихромовой проволоки днаметром $d=1\,\mathrm{MM}$ надо навить на фарфоровый цилиндр радпусом $a=2.5\,\mathrm{cm}$, чтобы получить печь сопротивлением $R=40\,\mathrm{OM}$?

Решение:

Сопротивление проводника можно рассчитать по формуле $R=\rho\frac{l}{S}$ — (1), где ρ — удельное сопротивление (для нихрома $\rho=100\,\mathrm{MkOM\cdot M}$), l — длина проводника, S — площадь его поперечного сечения. Длина одного вытка равна $2\pi a$, тогда длина всей проволоки $l=N\cdot 2\pi a$ — (2), где N — количество витков. Площадь поперечного сечения $S=\pi\frac{d^2}{4}$ — (3). Подставив (3) и (2) в (1), получим $R=\rho\frac{8Na}{d^2}$, откуда $N=\frac{Rd^2}{8\alpha a}$; N=200.

10.4. Катушка из медной проволоки имеет сопротивление $R = 10.8 \, \text{Ом}$. Масса медной проволоки $m = 3.41 \, \text{кг}$. Какой длины l и какого диаметра d проволока намотана на катушке?

Решение:

Сопротивление катушки $R = \rho \frac{l}{S}$ — (1), где ρ — удельное сопротивление меди, l — длина проволоки, S — площадь ее поперечного сечения. Масса проволоки $m = V \rho_{\rm M}$, где 92

объем проволоки,
$$\rho_{\rm M}$$
 — плотность меди. Поскольку $S \cdot l$, то $m = Sl\rho_{\rm M}$, откуда $l = \frac{m}{S\rho_{\rm M}}$ — (2). Подставив (2) в (1), получим $R = \rho \frac{m}{S^2 \rho_{\rm M}}$, отсюда $S = \sqrt{\frac{\rho m}{R \rho_{\rm M}}}$ — (3). С другой стороны, $S = \pi \frac{d^2}{4}$ — (4), т. е. $\pi \frac{d^2}{4} = \sqrt{\frac{\rho m}{R \rho_{\rm M}}}$, откуда $d = \sqrt{\frac{16 \, \rho m}{\pi^2 R \rho_{\rm M}}}$; $d = 1 \, {\rm MM}$. Подставив (4) в (2), получим

$$l = \frac{4m}{\pi d^2 \rho_{\rm M}}$$
; $l = 505 \,\rm M$.

10.5. Найти сопротивление R железного стержня диаметром d=1см, если масса стержня m=1 кг.

Решение:

Сопротивление стержня можно определить по формуле $R = \rho \frac{l}{S}$, где ρ — удельное сопротивление железа, l — длина стержня, S — площадь его поперечного сечения. Длина стержня $l = \frac{4m}{\pi d^2 \rho_{\pi}}$ (см. задачу 10.4), где ρ_{π} — плотность железа. Площадь поперечного сечения $S = \pi \frac{d^2}{4}$, тогда $R = \rho \frac{16m}{\pi^2 d^4 \rho}$; R = 1.8 мОм.

10.6. Медная и алюминиевая проволоки имеют одинаковую **длину** l и одинаковое сопротивление R. Во сколько раз медная **проволока** тяжелее алюминиевой?

Решение:

10.7. Вольфрамовая нить электрической лампочки при $t_i = 20^{\circ}$ С имеет сопротивление $R_i = 35,8$ Ом. Какова будет температура t_2 нити лампочки, если при включении в сеть напряжением U = 120 В по нити идет ток I = 0,33 А? Температурный коэффициент сопротивления вольфрама $\alpha = 4,6\cdot 10^{-3}$ К⁻¹.

Решение:

Зависимость сопротивления нити от температуры выражается соотношением $R_1 = R_0 (1 + \alpha T_1)$, где R_0 — сопротивление нити при температуре $t_0 = 0^{\circ}$ С. Отсюда $R_0 = \frac{R_1}{1 + \alpha T_1} = 32,8\,\mathrm{Om}$. По закону Ома $I = \frac{U}{R_2}$, откуда $R_2 = \frac{U}{I} = 364\,\mathrm{Om}$. Поскольку $R_2 = R_0 (1 + \alpha T_2)$.

10.8. Реостат из железной проволоки, амперметр и генератор последовательно. При $t_0=0^\circ$ С сопротивление реостата $R_0=120\,\mathrm{Om}$, сопротивление амперметра $R_{A0}=20\,\mathrm{Om}$. Амперметр показывает ток $I_0=22\,\mathrm{mA}$. Какой ток I будет показывать амперметр, если реостат нагреется на $\Delta T=50\,\mathrm{K}$? Температурный коэффициент сопротивления железа $\alpha=6\cdot10^{-3}\,\mathrm{K}^{-1}$.

Решение:

Запишем закон Ома для первоначального состояния цепи: $I_0 = \frac{U}{R_0 + R_{A0}} - (1).$ После того как реостат нагрелся, его сопротивление R_0 изменилось и стало равным R. Амперстал показывать ток $I = \frac{U}{R + R_{A0}}$ — (2). Сопротив-

 $R + R_{A0}$

ление реостата можно найти по формуле $R = \rho \frac{l}{S}$ — (3). **Улельное** сопротивление ρ зависит от температуры

Селующим образом: $\rho = \rho_0 (1 + \alpha \Delta T)$ — (4). В перво-

жанальном состоянии $R_0 = \rho_0 \frac{l}{S}$, откуда $\frac{l}{S} = \frac{R_0}{\rho_0}$ — (5).

Подставив (4) и (5) в (3), получим $R = R_0(1 + \alpha \Delta T)$ — (6).

 $U=I_0(R_0+R_{A0})$ — (7). Подставляя (6) и (7)

. Найдем $I = \frac{I_0 \left(R_0 + R_{A0} \right)}{R_0 \left(1 + \alpha \Delta T \right) + R_{A0}}$; I = 17.5 MA.

10.9. Обмотка катушки из медной проволоки при $t_1 = 14^{\circ}$ С имеет сопротивление $R_1 = 10$ Ом. После пропускания тока сопротивление обмотки стало равным $R_2 = 12.2$ Ом. До какой температуры нагрелась обмотка? Температурный коэффициент сопротивления меди $\alpha = 4.15 \cdot 10^{-3} \text{ K}^{-1}$.

Решение:

Сопротивление катушки до нагревания $R_1 = \rho_1 \frac{l}{S} = \rho_0 \left(1 + \alpha t_1\right) \frac{l}{S}$ — (1). Сопротивление катушки после нагревания $R_2 = \rho_2 \frac{l}{S} = \rho_0 \left(1 + \alpha t_2\right) \frac{l}{S}$ — (2). Разделив (2) на (1), получим $\frac{R_2}{R_1} = \frac{1 + \alpha t_2}{1 + \alpha t_1}$, откуда $1 + \alpha t_2 = \frac{R_2}{R_1} \left(1 + \alpha t_1\right)$; $t_2 = \frac{R_2}{R_1} \left(\frac{1}{\alpha} + t_1\right) - \frac{1}{\alpha}$; $t_2 \approx 70^{\circ}$ С.

10.10. Найти падение потенциала U на медном проводе длиной l = 500 м и диаметром d = 2 мм, если ток в нем l = 2 А.

Решение:

Ток, текущий по участку однородного проводника, подчиняется закону Ома $I=\frac{U}{R}$, где U — падение потенциала на этом участке, R — сопротивление участка. Сопротивление провода $R=\rho\frac{l}{S}$, где ρ — удельное сопротивление меди, l — длина провода, S — площадь его поперечного сечения. Т. к. $S=\pi\frac{d^2}{4}$, то $R=\rho\frac{4l}{\pi d^2}$. Из закона Ома $U=IR=I\rho\frac{4l}{\pi d^2}$. Подставив числовые значения, найдем $U=5.4\,\mathrm{B}$.

10.11. Найти надения потенциала U в сопротив ещия $R_1 = 4$ Ом, $R_2 = 2$ Ом и $R_3 = 4$ Ом, если амперметр показывает ток $I_1 = 3$ А. Найти токи I_2 и I_3 в сопротивлениях R_2 и R_3 .

Решение:

По закону Ома
$$I_1 = \frac{U_1}{R_1}$$
, откуда $I_2 = I_1R_1 = 12$ Ом. Полное сопротивление цепи $R = R_1 + R_{23}$, где $R_3 = \frac{1}{R_{23}} = \frac{1}{R_2} + \frac{1}{R_3}$; $R_{23} = \frac{R_2R_3}{R_2 + R_3} = \frac{1}{R_2} + \frac{1}{R_3}$

 $\frac{8}{6}$ Ом. Падение потенциала на всем участке цепи $U=U_1+U_{23}$. При параллельном сопротивлении все сопротивления находятся под одной разностью потенциала, спедовательно, $U_{23}=U_2=U_3$. Согласно закону Ома $U=I_1R=I_1(R_1+R_{23})$, тогда $U_2=U_3=U-U_1$; $U_2=U_3=I_1(R_1+R_{23})-U_1=4$ В. Сопротивление $I_1=I_2=I_3=I_1(R_1+R_2)$ соединены последовательно, спедовательно, токи, текущие через них, равны $I_1=I_{23}$, где $I_2=I_2+I_3$, т. е. $I_1=I_2+I_3$. По закону Ома $I_2=\frac{U_2}{R_2}=2$ А, тогда $I_3=I_1-I_2=1$ А.

10.12. Элемент, имсющий э.д.с. $\varepsilon = 1,1$ В и внутреннее сопротивление r = 1 Ом, замкнут на внешнее сопротивление R = 9 Ом. Найти ток I в цени, падение потенциала U во внешней цени и падение потенциала U_r внутри элемента. С каким к.п.д. η работает элемент?

Решение:

Согласно закону Ома для замкнутой цепи $I = \frac{\mathcal{E}}{R+r}$; $I = 0,11\,\mathrm{A}$. Согласно закону Ома для однородного участка. цепи $I = \frac{U}{R}$, откуда $U = IR = 0,99\,\mathrm{B}$. Кроме того, $I = \frac{U_r}{r}$, откуда $U_r=l\cdot r=0.11\,\mathrm{B}$. К.п.д. источника тока равен отношению мощности P_1 , выделяемой внешним участком цепи (полезной мощности), к полной мощности P, развиваемой источником: $\eta=\frac{P_1}{P}$, где $P_1=I^2R$; $P=\varepsilon I$. Тогда к.н.д. источника $\eta=\frac{IR}{\varepsilon}$; $\eta=0.9$.

10.13. Построить график зависимости падения потенциала U во внешней цепи от внешнего сопротивления R для цепи предыдущей задачи. Сопротивление R взять в пределах $0 \le R \le 10$ Ом через каждые 2 Ом.

Решение:

Имеем U=IR, где согласно закону Ома для замкнутой цепи $I=\frac{\varepsilon}{R+r}$. Тогда $U=\frac{\varepsilon}{R+r}R=\frac{1,1}{1+R}R$. Для заданного интервала значений R составим таблицу и построим график. На графике видно, что кривая асимптотически приближается к прямой $U=\varepsilon=1,1$ В.

R, OM	0,00	2,00	4,00	6,00	8,00	10.00
U, B	0,00	0,73	0.88	0,94	0,98	1.00

10.14. Элемент с э.д.с. $\varepsilon = 2\,\mathrm{B}$ имеет внутреннее сопротивление $r = 0.5\,\mathrm{Om}$. Найти падение потенциала U_r внутри элемента при токе в цепи $I = 0.25\,\mathrm{A}$. Каково внешнее сопротивление цепи R при этих условиях?

Решение:

Падение потенциала внутри элемента $U_r = I \cdot r = 0,125 \, \mathrm{B}$ (см. задачу 10.12). Согласно закону Ома для замкнутой цепи сила тока $I = \frac{\varepsilon}{R+r}$, откуда $R = \frac{\varepsilon}{I} - r$; $R = 7,5 \, \mathrm{Om}$.

10.15. Элемент с э.д.с. $\varepsilon = 1,6$ В имеет внутреннее сопротивление r = 0,5 Ом. Найти к.п.д. η элемента при токе в цепи t = 2,4 А.

Решение:

Кп.д. элемента $\eta = \frac{IR}{\varepsilon}$ (см. задачу 10.12). По закону Ома для замкнутой цепи $I = \frac{\varepsilon}{R+r}$, откуда $R = \frac{\varepsilon - I \cdot r}{I}$. Тогда $\eta = \frac{\varepsilon - Ir}{\varepsilon} = 25\%$.

10.16. Э.д.с. элемента $\varepsilon = 6\,\mathrm{B}$. При внешнем сопротивлении $R = 1.1\,\mathrm{Om}$ ток в цепи $I = 3\,\mathrm{A}$. Найти падение потенциала U_r внутри элемента и его сопротивление r.

Решенне:

Согласно второму закону Кирхгоффа $U_r+IR=\varepsilon$, откуда $U_r=\varepsilon-IR$; $U_r=\varepsilon-IR=2,7$ В. По закону Ома для участка **чепи** $I=\frac{U_r}{r}$, откуда $r=IU_r=0,9$ Ом.

10.17. Какую долю э.д.с. элемента ε составляет разность потенциалов U на его зажимах, если сопротивление элемента r в

n раз меньше внешнего сопротивления R ? Задачу решить для: a) n = 0.1; б) n = 1; в) n = 10.

Решение:

Согласно закону Ома сила тока
$$I = \frac{U}{R} = \frac{\varepsilon}{R+r}$$
. По условию $R = nr$, тогда $\frac{U}{nr} = \frac{\varepsilon}{r(n+1)}$. Отсюда $\frac{U}{\varepsilon} = \frac{n}{n+1}$.

a) $\frac{U}{\varepsilon} = 9.1\%$; б) $\frac{U}{\varepsilon} = 50\%$; в) $\frac{U}{\varepsilon} = 91\%$.

10.18. Элемент, сопротивление и амперметр соединены последовательно. Элемент имеет э.д.с. $\varepsilon = 2\,\mathrm{B}$ и внутреннее сопротивление $r = 0.4\,\mathrm{Om}$. Амперметр показывает ток $I = 1\,\mathrm{A}$. С каким к.п.д. η работает элемент?

Решение:

К.п.д. элемента
$$\eta = \frac{\varepsilon - I_r}{\varepsilon}$$
 (см. задачу 10.15), $\eta = 80\%$.

10.19. Имеются два одинаковых элемента с э.д.с. $\varepsilon = 2 \, \mathrm{B}$ и внутренним сопротивлением $r = 0.3 \, \mathrm{Om}$. Как надо соединить эти элементы (последовательно или параллельно), чтобы получить больший ток, если внешнее сопротивление: а) $R = 0.2 \, \mathrm{Om}$: б) $R = 16 \, \mathrm{Om}$? Найти ток I в каждом из этих случаев.

Решение:

Согласно закону Ома для замкнутой цепи сила тока $I=\frac{\mathcal{E}}{R+r}$. При последовательном соединении элементов их эквивалентное сопротивление равно 2r, а суммарная э.д.с. равна 2ε . Тогда $I_1=\frac{2\varepsilon}{R+2r}$. При параллельном соединении их эквивалентное сопротивление равно 0.5r, а 100

тисловые данные, получим: a) $I_1 = \frac{\mathcal{E}}{R+0.5r}$. Подставляя **б**. Тогда $I_2 = \frac{\mathcal{E}}{R+0.5r}$. Подставляя **б**. $I_1 = 5$ A, $I_2 = 5.7$ A; **б**. $I_1 = 0.24$ A, $I_2 = 0.124$ A. Т. е. при маленьком внешнем сопротивлении элементы выгоднее соединять параллельно, а при большом — последовательно.

10.20. Считая сопротивление вольтметра $R_{\rm I}$ бесконечно **большим**, определяют сопротивление R по показаниям амперметра и вольтметра. Найти относительную погрешность $\frac{\Delta R}{R}$ найденного сопротивления, если в действительности сопротивление вольтметра равно $R_{\rm I}$. Задачу решить для $R_{\rm I}=1000\,{\rm OM}$ и сопротивления: а) $R=10\,{\rm OM}$; б) $R=100\,{\rm OM}$; в) $R=1000\,{\rm OM}$.

Решение:

У Общее сопротивление резистора и вольт-**МОЖНО** найти по формуле $R_{ob} = \frac{RR_V}{R + R_V}$. А **Тогда** $\Delta R = R - R_{ob} = R \left(1 - \frac{R_V}{R + R_V} \right)$, а сле-

довательно,
$$\frac{\Delta R}{R} = 1 - \frac{R_V}{R + R_V}$$
. а) Если

$$R = 10 \text{ OM}$$
, то $\frac{\Delta R}{R} = 0.01 = 1\%$. б) Если $R = 100 \text{ OM}$, то $\frac{\Delta R}{R} = 0.1 = 10\%$. в) Если $R = 1000 \text{ OM}$, то $\frac{\Delta R}{R} = 0.5 = 50\%$.

10.21. Считая сопротивление амперметра R_A бесконечно малым, определяют сопротивление R по показаниям амперметра и вольтметра. Найти относительную погрешность $\frac{\Delta R}{R}$ найденного

сопротивления, если в действительности сопротивление $a_{M1:32p}$, метра равно R_A . Решить задачу для $R_A = 0.2 \,\text{OM}$ и сопротивления: $a_{M1:32p}$, ления: $a_{M1:32p}$, $R_{M1:32p}$ ления: $a_{M1:32p}$, $R_{M1:32p}$ ления: $a_{M1:32p}$, $R_{M1:32p}$ ления: $a_{M1:32p}$ ления:

Решение:

Общее сопротивление резистора и амперметра, т. к. они соединены последовательно, можно найти по формуле $R_{\rm ob}=R+R_A$. Тогда $\Delta R=\left|R-R_{\rm ob}\right|=R_A$, а следовательно, $\frac{\Delta R}{R}=\frac{R_A}{R}$. а) Если

$$R = 1 \text{ OM}$$
, to $\frac{\Delta R}{R} = 0.2 = 20 \%$. 6) Eq. M

$$R = 10 \,\mathrm{Om}$$
, то $\frac{\Delta R}{R} = 0.02 = 2 \,\%$. в) Если $R = 100 \,\mathrm{Om}$, то $\frac{\Delta R}{R} = 0.002 = 0.2 \,\%$.

10.22. Два параллельно соединенных элемента с одинаковыми э.д.с. $\varepsilon_1 = \varepsilon_2 = 2 \, \mathrm{B}$ и внутренними сопротивлениями $r_1 = 1 \, \mathrm{Om}$ и $r_2 = 1,5 \, \mathrm{Om}$ замкнуты на внешнее сопротивление $R = 1,4 \, \mathrm{Om}$. Найти ток I в каждом из элементов и во всей цепи.

Решепие:

При параллельном соединении источников тока с одинаковыми э.д.с. общее внутреннее сопротивление $r=\frac{r_1r_2}{r_1+r_2}=0.6\,\mathrm{Om}$, а общая э.д.с. $\varepsilon=\varepsilon_1=\varepsilon_2=2\,\mathrm{B}$. По закону Ома для полной цепи ток через сопротивление $R\colon I=\frac{\varepsilon}{R+r}=1\,\mathrm{A}$. Со-

гласно первому закону Кирхгоффа $I = I_1 + I_2$ — (1), где I_1 и I_2 — соответственно токи через первый и второй 102

менты, и т. к. элементы соединены параллельно, то $= r_2 I_2$ — (2). Решая совместно уравнения (1) и (2), иходим, что $I_1 = \frac{Ir_1}{r_1 + r_2} = 0.4$ А и $I_2 = \frac{Ir_2}{r_1 + r_2} = 0.6$ А.

10.23. Два последовательно соединенных элемента с одинаковыми э.д.с. $\varepsilon_1 = \varepsilon_2 = 2\,\mathrm{B}$ и внутренними сопротивлениями $r_2 = 1.5\,\mathrm{Om}$ замкнуты на внешнее сопротивление $r_3 = 0.5\,\mathrm{Om}$. Найти разность потенциалов $r_4 = 0.5\,\mathrm{Om}$ на зажимах каждого элемента.

Решение:

огласно закону Ома для замкнутой цепи при послеповательном соединении элементов сила тока в цепи равна

 $\frac{2\varepsilon}{R+r_1+r_2}$ = 1,33 A. Разность потенциалов на зажимах

первого элемента $U_1 = \varepsilon - Ir_1 = 0,66 \, \mathrm{B}$. Разность потенпиалов на зажимах второго элемента $U_2 = \varepsilon - Ir_2 = 0$.

10.24. Батарея с э.д.с. $\varepsilon = 20\,\mathrm{B}$, амперметр и реостаты с сопротивлениями R_1 и R_2 соединены последовательно. При выведенном реостате R_1 амперметр показывает ток $I=8\,\mathrm{A}$, при выведенном реостате R_1 — ток $I=5\,\mathrm{A}$. Найти сопротивления R_1 и R_2 реостатов и падения потенциала U_1 и U_2 на них, когда реостат R_1 полностью включен.

Решение:

Задачу решаем в предположении равенства нулю внутреннего сопротивления э.д.с. и сопротивления амперметра. По закону Ома для всей цепи при выведенном реостате R_1 ток

$$I_1 = \frac{\varepsilon}{R_2}$$
 — (1), а при введенном реостате $R_1 = TO_K$

$$I_2 = \frac{\varepsilon}{R_1 + R_2}$$
 — (2). Решая совместно уравнения (1) и (2),

находим
$$R_2=\frac{\mathcal{E}}{I_1}=2,5$$
 Ом; $R_1=\frac{\mathcal{E}}{I_1}-R_2=1,5$ Ом. По закону

Ома для участка цепи падение потенциалов на реостатах $U_1 = I_2 R_1 = 7.5 \text{ B}; U_2 = I_2 R_2 = 12.5 \text{ B}.$

10.25. Элемент, амперметр и некоторое сопротивление соединены последовательно. Если взять сопротивление из медной проволоки длиной $l = 100 \,\mathrm{m}$ и поперечным сечением $S = 2 \,\mathrm{mm}^2$, то амперметр показывает ток $I_1 = 1,43$ A. Если же взять сопротивление из алюминиевой проволоки длиной $l = 57.3 \,\mathrm{m}$ и поперечным сечением $S = 1 \text{ мм}^2$, то амперметр показывает ток $I_2 = 1$ A. Сопротивление амперметра $R_A = 0.05$ Ом. Найти э.д.с. ε элемента и его внутреннее сопротивление r .

Решение:

По закону Ома для полной цепи
$$I = \frac{\varepsilon}{r + R_A + R}, \quad \text{где} \quad \text{сопротивление}$$

$$R = \rho \frac{l}{S}, \quad \rho \quad \text{удельное} \quad \text{сопротивление}$$

$$R = \rho \frac{l}{S}, \ \rho$$
 — удельное сопротивление

материала проволоки. Тогда для медной алюминиевой проволоки соответственно имеем $I_1 = \frac{\varepsilon}{r + R_4 + \rho_1 l_1 / S_1} - (1) \text{ if } I_2 = \frac{\varepsilon}{r + R_4 + \rho_2 l_2 / S_2} - (2).$

Решая совместно уравнения (1) и (2), получим выражение внутреннего сопротивления источника тока ДЛЯ

$$(R_A + \rho_2 l_2 / S_2) - I_2 (R_A + \rho_1 l_1 / S_1) = 0,5$$
 Ом. Из (1) э.д.с.

источника тока
$$\varepsilon = I_1 \left(r + R_A + \rho_1 \frac{I_1}{S_1} \right) = 2 \text{ B}.$$

10.26. Напряжение на зажимах элемента в замкнутой цепи U=21В, сопротивления $R_1=5$ Ом, $R_2=6$ Ом и $R_3=3$ Ом. Какон ток I показывает амперметр?

решение:

Согласно первому правилу Кирхгоффа $I_1 = I_2 + I_3$ — (1), где I_1 , I_2 и I_3 в соответственно токи через сопротивления R_1 , R_2 и R_3 . Т. к. элемент и сопротивления R_1 и R_3 соединены последовательно, то $U = U_1 + U_2$, и т. к. по закону Ома для участка цепи $U = I_1R_1$ и $U_2 = I_2R_2$, то $U = I_1R_1 + I_2R_2$ — (2). Т. к. сопротивления R_2 и R_3 соединены параллельно, то $U_2 = U_3$, или т. к. по закону Ома для участка цепи $U_3 = I_3R_3$, то $I_2R_2 = I_3R_3$ — (3). Амперметр покажет ток через сопротивление R_3 . Выражая из уравнений (2) и (3) соответственно токи I_1 , I_2 и подставляя их в уравнение (1), окончательно получаем $I_3 = \frac{UR_2}{R_1R_1 + R_3R_2 + R_1R_2} = 0.2$ А.

10.27. Сопротивления $R_2 = 20 \, \mathrm{OM}$ и $R_3 = 15 \, \mathrm{OM}$. Через сопротивление R_2 течет ток $I_2 = 0.3 \, \mathrm{A}$. Амперметр показывает ток $I = 0.8 \, \mathrm{A}$. Найти сопротивление R_1 .

Решение:

При параллельном соединении со противлений ток, текущий эквивалентное сопротивление $R_{\rm la}$ равен сумме токов, текущих чере, $R_1, R_2, R_3. I = I_1 + I_2 + I_3. \Pi_{\text{PM 3TO}_{N}}$ все сопротивления находятся по

одной разностью потенциалов, т. е. $U = U_1 = U_2 = U_3$, С закону Ома $U=I_2R_2$. Сила тока $I_3=\frac{U}{R}$ $=\frac{I_2R_2}{R_2}=0.4$ A, тогда $I_1=I-I_2-I_3$; $I_1=0.1$ A. Искомов сопротивление $R_1 = \frac{U}{I_1} = 60 \text{ Ом.}$

10.28. Э.д.с. батареи $\varepsilon = 100 \, \text{B}$, сопротивления $R_1 = R_3 = R$ $=40~{
m Om},~R_2=80~{
m Om}$ и $R_4=34~{
m Om}.$ Найти ток I_2 , текущий чере сопротивление R_2 , и падение потенциала U_2 на нем.

Решение:

Для параллельного участка цеп $I_{123} = I_1 + I_2 + I_3$; $U_{123} = U_1 + U_2 + U_3 + U_3$. Ток, текущий через сопротив ление R_u и эквивалентное сопро тивление R_{123} , $I = I_4 = I_{123}$; $I = \frac{b}{R}$

Найдем сопротивление параллельного $\frac{1}{R_{123}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{16} \,\text{Ом}^{-1}$, следовательно, $R_{123} = 16 \,\text{Ом}$ Полное сопротивление цепи $R = R_{123} + R_4 = 50 \, \text{Om}$. Тог 16

I=2 A. Напряжение на зажимах источника $U=arepsilon-I\cdot I\cdot I^{rac{R^2}{2}}$ т. к. $r \to 0$, то $U = \varepsilon$. Падение напряжения 106

влении
$$R_4$$
: $U_4 = IR_4 = 68\,\mathrm{B}$, но $U = U_{123} + U_4$, справительно, $U_{123} = U_2 = U - U_4$; $U_2 = 32\,\mathrm{B}$. Тогда $U_4 = 0.4\,\mathrm{A}$.

16.29. Э.д.с. батарен $\varepsilon = 120\,\mathrm{B}$, сопротивления $R_3 = 20\,\mathrm{Om}$ и $R_1 = 20\,\mathrm{Om}$. Падение потенциала на сопротивлении R_1 равно $U_1 = 40\,\mathrm{B}$. Амперметр показывает ток $I = 2\,\mathrm{A}$. Найти сопротивление R_2 .

Решение:

Пателие напряжения на паралделяюм участке цепи $U_{23} = \varepsilon U_4$ — (1), где $U_4 = IR_4 = 50 \, \mathrm{B}$ — Сумма токов, протекающих через сопретивления R_2 и R_3 , равна току, который показывает амперметр.

 $U_{23}=I$ — (3). Из (1) и (2) найдем $U_{23}=30\,\mathrm{B}$, тогда по

Ома
$$I_3 = \frac{U_{23}}{R_3} = 1.5 \text{ A}$$
, а $I_2 = I - I_3 = 0.5 \text{ A}$. Также по

закону Ома
$$I_2=\frac{U_{23}}{R_2}$$
 , откуда $R_2=\frac{U_{23}}{I_2}=60$ Ом.

10.30. Батарея с э.д.с. $\varepsilon = 10\,\mathrm{B}$ и внутренним сопротивлением имеет к.п.д. $\eta = 0.8$ (см. рисунок к задаче 10.29). Панения потенциала на сопротивлениях R_1 и R_4 равны $U_1 = 4\,\mathrm{B}$ и $U_2 = 2\,\mathrm{B}$. Какой ток I показывает амперметр? Найти падение потициала U_2 на сопротивлении R_2 .

Решенис:

По закону Ома для замкнутой цепи ток, текущий _{через} амперметр, равен $I = \frac{\varepsilon}{R + r}$ — (1). Полное сопротивление цепи R найдем из соотношения $\eta = \frac{R}{R + r}$, откуда $R = \frac{r\eta}{1-n} = 4$ Ом. Тогда из (1) ток I = 2 А. Согласно второму закону Кирхгоффа $U_1 + 2U_2 + U_4 = \varepsilon$, отсюда $U_2 = \frac{\varepsilon - U_1 - U_4}{2} = 2 \text{ B}.$

10.31. Э.д.с. батареи $\varepsilon = 100 \, \text{B}$, сопротивления $R_1 = 100 \, \text{O}_{\text{M}}$. $R_{2} = 200 \, \text{Om}$ и $R_{3} = 300 \, \text{Om}$, сопротивление вольтметра $R_{\rm P}=2\,{\rm KOM}$. Какую разность потенциалов U показывает амперметр?

Решение:

По закону Ома для замкнутой цепи ток, текущий через сопротивление R_1 и через эквивалентное сопротивление R_2 параллельного участка цепи R', равен $I = \frac{\varepsilon}{R \perp r}$ или, поскольку внутренним

сопротивлением источника r мы пренебрегаем, $I = \frac{\mathcal{E}}{R}$ (1). Полное сопротивление цспи $R = R_1 + R'$ — (2). Эквивалентное сопротивление R' найдем из соотношения $\frac{1}{R'} = \frac{1}{R_{i'}} + \frac{1}{R_2 + R_2}$; $R' = \frac{R_{i'}(R_2 + R_3)}{R_2 + R_3 + R_{i'}} = 400$ Om. Total (2) получим R = 500 Ом. Из (1) найдем I = 0.2 А. Сум $^{\text{м}}$ токов, текущих через вольтметр и сопротивления R_2 и R_5 108

рана току
$$I$$
; $I=I_V+I_{23}$, где $I_V=\frac{U}{R_{\Gamma}}$; $I_{23}=\frac{U}{R_2+R_3}$. Т. е.
$$I=\frac{U}{R_V}+\frac{U}{R_2+R_3}=\frac{U(R_2+R_3+R_{\Gamma})}{R_{\Gamma}(R_2+R_3)}\quad \text{или}\quad I=\frac{U}{R'} \ . \ \ \text{Отсюда}$$
 $U=IR'=80\ \text{B}.$

10.32. Сопротивления $R_1 = R_2 = R_3 = 200 \,\mathrm{Om}$ (см. рисунок к запаче 10.31), сопротивление вольтметра $R_{\rm P} = 1\,{\rm кOm}$. Вольтметр подазывает разность потенциалов $U=100\,\mathrm{B}$. Найти э.д.с. ε батареи.

Решение: па закону Ома для замкнутой цепи ток, текущий через сопротивление R_i и через эквивалентное сопротивление паратлельного участка цепи R', $I = \frac{\mathcal{E}}{R + r}$ или, поскольку внутренним сопротивлением источника г мы пренебренем, $I = \frac{\varepsilon}{R}$ — (1). Сумма токов, текущих через вольтметр **в сопротив**ления R_2 и R_3 , равна току I. $I = I_1 + I_{23}$, где $I_{23} = \frac{U}{R_2 + R_3}$. Отсюда $I = \frac{U}{R_1 + R_2} + \frac{U}{R_2 + R_3} = 0.35 \,\mathrm{A}$. **Полное** сопротивление цепи $R = R_1 + R'$. Эквивалентное **сопротивление** R' найдем из соотношения: $\frac{1}{R'} = \frac{1}{R}$ + $\frac{1}{R_2+R_2}$; $R'=\frac{R_V(R_2+R_3)}{R_2+R_2+R_3}$. Тогда $R=R_1+\frac{R_V(R_2+R_3)}{R_2+R_2+R_3}$; R=485 Ом. Из (1) найдем ε = IR . Подставляя числовые данные, получим $\varepsilon = 170 \text{ B}.$

10.33. Найти показания амперметра и вольтметра в схемах, осраженных на рисунках. Э.д.с. батарен ε = 110 B, сопротивления $R_1 = 400 \, \text{Om}$ и $R_2 = 600 \, \text{Om}$, сопротивление вольтметра $R_{\rm L} = 1 \, \text{kOm}$.

Решение:

Будем считать внутреннее сопротивление э.д.с. равным нулю.

а) Т. к. R_1 и R_2 соединены последовательно, то $R_{12} = R_1 + R_2 = 1$ кОм. Вольтметр подключен параллельно R_{12} , поэтому сопротивление всей $R = \frac{R_{\rm f} \cdot R_{\rm 12}}{R_{\rm tr} + R_{\rm re}} = 500 \, \text{Om.}$ Амперметр пока-

жет ток во всей цепи, который по закону Ома $I = \frac{\mathcal{E}}{R} = 0.22 \text{ A}$, а вольтметр покажет падение напряжения на сопротивлении R_{12} , а т. к. $R_{12}=R_{l'}$, то ток через R_{12} равен $I_{12} = \frac{I}{2} = 0.11 \,\mathrm{A}$, тогда по закону Ома для участка цепи $U = I_1, R_{12} = 110 B.$

б) Т. к. сопротивление R_2 и вольтметр R_1 соединены параллельно, то их общее сопротивление $R' = \frac{R_2 R_{l'}}{R_2 + R_{l'}} = 375 \, \mathrm{OM}$. Общее сопротивление всей цепи

 $R = R_i + R' = 775 \,\text{Om}$. Показание амперметра $I = \frac{\varepsilon}{R} = 0,142 \,\mathrm{A}$. По первому закону Кирхгоффа

 $I=I_2+I_V$, где I_2 и I_V соответственно токи через R_2 н вольтметр, и, кроме того, $I_2R_2 = I_1 R_V$, тогда $I_2 = \frac{IR_1}{R_2 + R_2} = 0,089 \text{ A}$. Показание вольтметра $U = I_2 R_2 = 0.089 \text{ A}$ = 53.2 B.

в) Т. к. оба сопротивления и вольтметр соединены параллельно, то $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_{l'}}$, откуда сопротивление всей цепи

$$R = \frac{R_1 R_2 R_{1'}}{R_2 R_{V} + R_1 R_{V} + R_1 R_2} = 193,6 \,\mathrm{Om}.$$

Показание амперметра $I = \frac{\varepsilon}{R} = 0.57$ A.

Показание вольтметра $U = IR = 110 \, \mathrm{B}$. г) Т. к. сопротивление $R_{\rm i}$ и вольтметр соединены параллельно, то их общее сопротивление $R' = \frac{R_{\rm i} R_V}{R_{\rm i} + R_V} = 285,7 \, \mathrm{OM}$.

по первому закону Кирхгоффа $I = I_1 + I_V$, а также $I_1R_1 = I_VR_V$, тогда ток, который покажет амперметр, $I_1 = \frac{IR_V}{R_1 + R_2} = 0,088 \, \mathrm{A}.$

10.34. Амперметр с сопротивлением $R_A = 0.16$ Ом зашунтован сопротивлением R = 0.04 Ом. Амперметр показывает ток $I_0 = 8$ А. Найти ток I в цепи.

Решение:

Шунтирующее сопротивление подключается параллельно амперметру, следовательно, ток в цепи $I=I_0+I_{\rm m}$. Падения напряжения на сопротивлениях амперметра и шунта одинаковы, поэтому $I_0R_A=I_{\rm m}R$; $I_{\rm m}=I_0\frac{R_A}{R}$. Тогда

 $I = I_0 + I_0 \frac{R_A}{R} = I_0 \left(1 + \frac{R_A}{R} \right)$. Подставляя числовые данные, получим I = 40 A.

10.35. Имеется предназначенный для измерения токов до $I=10~\mathrm{A}$ амперметр с сопротивлением $R_A=0.18~\mathrm{Om}$, шкала которого разделена на 100 делений. Какое сопротивление R надо взять и как его включить, чтобы этим амперметром можно было измерять ток до $I_0=100~\mathrm{A}$? Как изменится при этом цена деления амперметра?

Решение:

Если необходимо измерить силу тока в n раз большую, чем можно измерить данным амперметром, т. е. $\frac{I_0}{I}=n=10$, то следует параллельно подключить шунт с сопротивлением $R_{\rm m}=\frac{R_A}{n-1}$. Таким образом, $R_{\rm m}=0.02$ Ом. Цена деления без шунта равна 0,1 A, с шунтом 1 A.

10.36. Имеется предназначенный для измерения разности потенциалов до $U=30\,\mathrm{B}$ вольтметр с сопротивлением $R_{\mathrm{F}}=2\,\mathrm{KOM}$, шкала которого разделена на 150 делений. Какое сопротивление R надо взять и как его включить, чтобы этим вольтметром можно было измерять разности потенциалов до $U_0=75\,\mathrm{B}$? Как изменится при этом цена деления вольтметра?

Решение:

Если необходимо измерить напряжение в n раз большее, чем то, которое может измерить данный вольтметр, т. е. $n=\frac{U_0}{U}$, то необходимо последовательно подключить

добавочное сопротивление $R = R_V(n-1)$. Т. к. n = 2.5, то R = 3 кОм. Цена деления вольтметра без добавочного сопротивления была 0,2 B, с сопротивлением стала 0,5 B.

10.37. Имеется предназначенный для измерения токов до $I=15\,\mathrm{mA}$ амперметр с сопротивлением $R_A=5\,\mathrm{Om}$. Какое сопротивление R надо взять и как его включить, чтобы этим прибором можно было измерять: а) ток до $I_0=150\,\mathrm{mA}$; б) разность потенциалов до $U_0=150\,\mathrm{B}$?

Решение:

- а) Добавочное сопротивление $R=\frac{R_A}{n-1}$, где $n=\frac{I_0}{I}=10$ (см. задачу 10.35), нужно подключить параллельно. $R=0.56\,\mathrm{Om}$. б) Надо последовательно подключить добавочное сопротивление $R=R_A(n-1)$, где $n=\frac{U_0}{U}$ (см. задачу 10.36). Т. к. $U=IR_A$, то $n=\frac{U_0}{IR_A}=2000$. Отсюда $R=9995\,\mathrm{Om}$.
- 10.38. Имеется 120-вольтовая электрическая лампочка мощностью $P=40~\mathrm{Bt}$. Какое добавочное сопротивление R надо включить последовательно с лампочкой, чтобы она давала нормальный накал при напряжении в сети $U_0=220~\mathrm{B}$? Какую длину I нихромовой проволоки диаметром $d=0.3~\mathrm{MM}$ надо взять, чтобы получить такое сопротивление?

Решение:

При последовательном соединении $U_0=U_1+U_2$, где U_1 падение напряжения на лампочке, U_2 падение напряжения на добавочном сопротивлении. По условию $U_1=120\,\mathrm{B}$, тогда $U_2=U_0-U_1=100\,\mathrm{B}$. Мощность лампочки $P=I^2R_1=100\,\mathrm{B}$

113

$$=\frac{U_{\rm l}^2}{R_{\rm l}}$$
, отсюда сопротивление лампочки $R_{\rm l}=\frac{U_{\rm l}^2}{P}=360\,{
m Cm},$

ток
$$I = \sqrt{\frac{P}{R_{\rm i}}} = 0.33 \, {\rm A}$$
. Тогда добавочное сопротивление

$$R_2 = \frac{U_2}{I} = 303 \, \mathrm{Om}$$
. Длину нихромовой нити, имеющей та-

кое сопротивление, можно найти по формуле $R_2 = \rho \frac{l}{S}$, от-

куда $l = \frac{R_2 S}{\rho} = \frac{R_2 \pi d^2}{4 \, \rho}$. Подставляя числовые данные, получим l = 21,2 м.

10.39. Имеется три 110-вольтовых электрических лампочки, мощности которых $P_1=P_2=40\,\mathrm{Br}$ и $P_3=80\,\mathrm{Br}$. Как надо включить эти лампочки, чтобы они давали нормальный накал при напряжении в сети $U_0=220\,\mathrm{B}$? Начертить схему. Найти токи I_1 , I_2 и I_3 , текущие через лампочки при нормальном накале.

Решение:

При параллельном включении двух лампочек мощностью по 40 Вт получается «потребитель», рассчитанный на то же напряжение и мощность, а следовательно, имеющий такое же сопротивление, что и 80-ваттная лампочка. Схема соединения лампочек

изображена на рисунке. Падение напряжения на лампочках 1 и 2 равно падению напряжения на лампочке 3 и равно

$$U = \frac{U_0}{2}$$
. Тогда $I_3 = \frac{P_3}{U} = 0.73$ А и $I_1 = I_2 = \frac{P_1}{U} = 0.365$ А.