Pre-informe

1) Resudua el circuito de la figura y encuentre los valores de potencias, Ps, Pt, Pz, y Ps. Registre los resultadas obtenidos en la tabla.

$$\begin{cases} i_1 = 0.2857 \text{ [A]} \\ i_2 = i_1 - i_3 = 0.2286 \text{ [A]} \\ i_3 = 0.0571 \text{ [A]} \end{cases}$$

£,	R [m]	[A] [V [v]	P[w]
R	500	0.2857	142.8571	40.8163
		0.2286	57.1429	13.0612
		0.0571	57.1429	3.2653

Ps = 200 (0.2857) = 57.1429 [w]

2) Reelice le simulación del circuito y encuentre los valores de VI, V2, V3, S1, Iz, e I3. Calcula las potencias y registra los resultados obtenidos.

	ILAI	VIVI	P[w]
R	0.286	143	40.298
			13.0759
L3	0.0571	57.1	3.26041

3) En el circuito de la figura, considere que la resistencia variable RI puede verier desde Osu heste 1ksu. Grafique P. vs. R.

$$R_{L} = \frac{V}{R_{1} + R_{L}} = \frac{100}{250 + R_{L}} [M]$$

$$P_{L} = \int_{1}^{2} R_{L} = \frac{100^{2} R_{L}}{(250 + R_{L})^{2}} [W]$$

RL	Iı	٩
Ø	0.400	0.000
50	0.333	5.556
100	0.286	8.163
150	0.250	9.375
200	0.727	9.877
250	0.200	10.000
300	0.182	9.917
350	0.167	9.722
400	0.154	9.467
450	0.143	9,184

RL	IL	PL
500	0.133	8.889
550	0.125	8.594
600	0.118	8.304
650	0.111	8.025
700	0.105	7.756
750	0.100	7.500
800	0.095	7.256
850	0.091	7.025
900	0.087	6.805
950	0.083	6.597
1000	0.080	6.400

PRÁCTICA 5	MARTES	14:47 Hora	3E Grupo	14 105 124 Fecha	7 / 24 Gestion	
CABALLERO BO		CARLOS	100	AROD nbre(s)		VoBa Docente Laboratorio

		$R_1 = 500 \Omega$		R ₂ =	= 250 Ω	R ₃ = 1 kΩ		
	V.	V ₁	l ₁	V ₂	l ₂	V ₃	l ₃	
TEÓRICO	200 V	142.86	0.286	67.14	0.229	57.14	0.0571	
SIMULACIÓN	200 V	143	0.286	57.1	0.229	57.1	0.0571	
Ps=Vsx1= 57.14		P1 = V1×11 = 40.82		$P_2 = V_2 \times I_2 = 13.06$		$P_3 = V_3 \times I_3 = 3.26$		

Tabla 5.1.

	$(500\Omega) R_1 = 521$		(250Ω) R ₂ =	257	$(1K\Omega) R_3 = 1046$		
. V _s	V ₁	14	V ₂	l ₂	V ₂	l ₂	
187	135.6	0.76	53	0.21	53	50.6	
Ps=Vs×1= 48.62	P ₁ = V ₁ ×I ₁ = 35.256		P2 = V2×12 = 17.13		$P_3 = V_3 \times I_3 = 26.82$		
P _s (Vatímetro)	P. (Vatímetro)		P₂ (Vatímetro)		P _a (Vatímetro)		
62	44		14		3		

Tabla 5.2.

$(250 \Omega) R_1 = 257$											
N°	1	2	3	H-10 4	5	6	7	1.8	9	10	11
Va	100.1	99.7	99.5	99.2	100.5	100.2	100	99.8	99.7	926	99.5
V.	74.8	71.1	65.8	60.4	55.8	50.3	46.5	42.4	38.7}	36.0	33.2
L.	0.10	0.11	0.13	0.16	0.18	0.20	0.21	0.73	0.24	0.25	0.27
THE WAY	G1-F0	G1-F10	G1-F20	G1-F30	G1-F40	G1-F50	G1-F60	G1-F70	G1-F80	G1-F90	G1-F100
$R_L = V_L/I_L$	न्पष्ठ	646.36	506.15	377.50	310.00	251.50	221,43	184.35	161.25	144.00	122.96
P, = 1,2 × R,	2,57	3.11	य.उप	6.58	8.33	10.28	11.33	1359	14,80	16.06	18.73
$P_{L} = V_{L} \times I_{L}$	7.48	7.82	8.65	9,66	10.04	10.06	9.76	9.75	9.29	9,0	8.96
P,+P,	10.05	10.93	12.91	16.24	13.37	20.34	26.7	23.35	24.1	25.06	27.7

Tabla 5.3.