HIGH DIMENSIONAL STATISTICS

LECTURE 1: MOTIVATION FOR THE COURSE

Msc programme in Mathematics and Statistics
University of Helsinki
Matti Pirinen

"HIGH DIMENSIONAL", WHAT IS IT AND WHY BOTHER?

Each row is a gene ($\sim 10^4$) and each column a cancer patient ($\sim 10^3$)

Red/blue colors represent gene expression levels

- I.Are different subtypes of cancer different in gene expression?
- 2. Can we tell from gene expression Which subtype patient has?
- 3. Can we choose treatment based on gene expression levels?

From: "Integrated genomic and molecular characterization of cervical cancer." Nature 543.

"HIGH DIMENSIONAL", WHAT IS IT AND WHY BOTHER?

UK Biobank releases brain Images of 100,000 participants

- I. How brain activity changes between rest and tasks?
- 2. Can we tell from brain activity what is the context of the individual?
- 3. What are the statistical associations between brain activity patterns and 1000s of measured congnitive, behavioral, lifestyle or genetic variables?

"HIGH DIMENSIONAL", WHAT IS IT AND WHY BOTHER?

- Examples of ongoing data explosion
 - Life sciences with high-throughput technologies e.g. genomics, metabolomics
 - Physics and engineering e.g. CERN, astronomy, robotics, sensors
 - Humanities by digitalization e.g. libraries of historical texts
 - Internet e.g. images, videos, sound, text, social media
- Working definition: High Dimensional (HD) data set X has a lot of observations (n x p is large)
 - n units (or samples) as rows of X (e.g. individuals $n \sim 10^5$)
 - p variables (or features) as columns of X (e.g. genetic variants $p\sim 10^6$)
 - often HD means that "p >> n is large", but more general definition for us is "n x p is large"
- Unprecedented potential for new knowledge

STATISTICS AND MACHINE LEARNING

- Methods we will consider have (some of) following properties
 - Role of the variables is interpretable in fitted model
 - Simple and complete description in terms of a probability model
 - Conceptually straightforward quantification of uncertainty of parameters and predictions (although not always easy to compute in HDs)
- Our methods are instances of statistical learning subset of machine learning (ML) methods
 - ML has also powerful methods for prediction that are more of "black boxes" and are given by algorithms rather than by probability models
 - Deep learning, random forests etc.
- In modern data science we should know all types of learning methods
 - But in this course we will concentrate on statistical learning

EXCELLENT BOOKS AVAILABLE ONLINE

- Shorthand: ISL
- Very easy to read
- Thorough examples in R
- Little maths
- Excellent book to get intuition behind the concepts and models
- Also video lectures of chapters available

- Shorthand: ESL
- Comprehensive collection of methods
- Mathematical descriptions included

http://www-bcf.usc.edu/~gareth/ISL/

https://web.stanford.edu/~hastie/ElemStatLearn/

CONTENTS

- Weeks I-2: Large-scale inference, i.e., what are the statistical ideas and measures used when we carry out thousands of tests/comparisons simultaneously
- Weeks 3-5: Regression with a large numbers of predictors, variable selection
- Weeks 6-7: Dimension reduction
- Week 7: Summary
- Exam

PASSING THE COURSE

- 6 sets of exercises to be returned through Moodle area "High Dimensional Statistics 2019"
 - Half of the exercise points needed to pass
 - Computer exercises to be done with R (preferably R Markdown)
 - Exercise sessions Tuesdays 10.15-12.00, btw 5.11 ... 10.12
- Exam ?.12, 3hrs, with paper and pencil
- Lectures on Tuesdays 12.15 14.00 and Thursdays 10.15-12.00.
- Course material in Moodle

EXAMPLE FROM GENOMICS

- Which genetic variants are **associated** with cardiovascular disease (CVD), #I cause of death in western world? (weeks I-2)
- Which genetic variants are causal for CVD? (weeks 3-5)
- How can we best predict genetic risk for CVD? (weeks 3-5)
- How can we visualize and extract the main structure of very highdimensional genetic data in just a few dimensions? (weeks 6-7)

GENOME-DISEASE ASSOCIATION STUDY

- Collect 10,000s of cases (individuals with the disease) and controls (individuals from the general population who do not have the disease)
- Genotype everyone in 1,000,000s of genomic positions
- Do a statistical test at each position to see whether genotype distributions are different between cases and controls

WHICH VARIANTS ARE INTERESTING?

measures are P-value

controls

do inference?

In Fig. what kind of

Each variant is tested

between cases and

for statistical difference

Millions of tests, how to

FDR 5%

EAF Effect allele frequency OR Odds ratio

SNP Name of the variant

Nelson et al. Nat Genetics 2017

WHICH VARIANTS ARE CAUSAL (NOT JUST ASSOCIATED)?

- Variants physically near each other are highly correlated and show similar effect sizes / P-values
- Which one(s) of them is truly driving the signal and which are just passengers?
- We need to analyze them jointly, which becomes a HD regression problem

WHICH VARIANTS ARE CAUSAL (NOT JUST ASSOCIATED)?

PREDICTION MODEL

Accurate Genomic Prediction Of Human Height

Louis Lello¹, Steven G. Avery¹, Laurent Tellier^{1,3,5}, Ana I. Vazquez², Gustavo de los Campos^{2,4}, and Stephen D.H. Hsu^{1,3} bioRxiv, Sep 18 2017

- Start with 650,000 genetic variants and 420,000 individuals with height measurements
- Use LASSO method for building the predictive model (same method we will look at next weeks)

IDENTIFYING RELEVANT VARIANTS

• About 20,000 variants are identified by LASSO and each with its effect size will be used in predicting the height of a new test individual

TESTING THE PREDICTOR

Predictor has correlation of 0.64 with actual height, that is, it explains about 40% (=0.64²) of variation of height in **the test sample**.

PREDICTION FROM GENOME

- Who is in high risk of getting disease and how can we lower that risk?
- What is the prognosis of the disease and how does that affect treatment?
- Which medication is suitable for a particular individual?
- Predict visible / measurable characteristics from DNA, e.g., for forensic purposes
- Predicting other characteristic of an individual from DNA?
 - Needs also ethical considerations

DIMENSION REDUCTION

- From genotypes ($10^3 \times 10^6$) to pairwise covariances ($10^3 \times 10^3$) to first 2 principal components (2×10^3)
- Reduction is of order 10⁵ and main structure is not only preserved but has also become more easily visible