

Time Series Analysis & Forecasting Using R

2. Time series graphics

Outline

- 1 Workshop data
- 2 Time plots
- 3 Lab Session 3
- 4 Seasonal plots
- 5 Lab Session 4
- 6 Seasonal or cyclic?
- 7 Lag plots and autocorrelation
- 8 Lab Session 4
- 9 White noise
- 10 Lab Session 5

Outline

- 1 Workshop data
- 2 Time plots
- 3 Lab Session 3
- 4 Seasonal plots
- 5 Lab Session 4
- 6 Seasonal or cyclic?
- 7 Lag plots and autocorrelation
- 8 Lab Session 4
- 9 White noise
- 10 Lab Session !

Workshop data

https://workshop.nectric.com.au/tidyfc2024/labs.zip

Download this ZIP to access all the tidied data.

Open the project by double-clicking 'tidyfc-exercises.Rproj'.

i Alternatively...

usethis::use_course("https://workshop.nectric.com.au/tidyfc2024/labs.zip")

Outline

- Workshop data
- 2 3 4 Time plots
- Seasonal plots
- Lab Session 4 Seasonal or cyclic?
- Lag plots and autocorrelation
- 8 Lab Session 4
- White noise

Time plots are the simplest and most common visualisation for time series data (you've certainly seen these before!).

For this we put time on the x-axis and plot the measurements on the y-axis. We can make this plot easily with ggplot2, or with the data |> autoplot(y) helper function.

When working with many time series it's easy to over plot. Filter or aggregate the data before plotting.

Recall the internet vacancies dataset

```
librarv(readxl)
anzsco_categories <- read_excel("data/Internet Vacancies, ANZSCO2 Occupations, State
  filter(Level == 2) |>
 distinct(ANZSCO CODE, Title)
read_excel("data/Internet Vacancies, ANZSCO2 Occupations, States and Territories - A
  # Tidy into a long form
 pivot_longer(matches("\\d{5}"), names_to = "month", values_to = "vacancies") |>
 mutate(month = yearmonth(as.Date(as.integer(month), origin = "1900-01-01"))) |>
 # Remove aggregates
 filter(Level == 3, State != "AUST") |>
  # Add level 2 category information
 mutate(ANZSCO CODE CAT = substr(ANZSCO CODE, 1, 1)) |>
 left_join(anzsco_categories, by = c("ANZSCO_CODE_CAT" = "ANZSCO CODE"), suffix = c
  select(ANZSCO_CODE, Title_CAT, Title, State, month, vacancies) |>
  # Convert to a tsibble
 as tsibble(
    key = c(Title CAT, Title, State).
   index = month
  ) -> internet_vacancies
```

```
internet_vacancies |>
  filter(Title == "Education Professionals") |>
  autoplot(vacancies)
```


Time plots help show the main changes in the data over time.

Here we can look for:

- Trend
- Seasonality
- Cycles
- Outliers

Time plots help show the main changes in the data over time.

Here we can look for:

- Trend
- Seasonality
- Cycles
- Outliers

i Story of time

Discuss overall patterns across time and highlight specific points in time which are interesting.

```
internet_vacancies |>
  filter(Title == "Education Professionals") |>
  autoplot(vacancies) +
  scale_y_log10()
```


Outline

- Workshop data Time plots
- 2 Lab Session 3
- Seasonal plots
- Lab Session 4
- Seasonal or cyclic? Lag plots and autocorrelation
- 8 Lab Session 4
- White noise

Lab Session 3

- 1 Create time plots of the total school students and staff.

 Hint: You'll need to aggregate the data first.
- 2 Create time plots of the total students and staff by state.
 - Use ggplot2 to create a time plot from scratch, complete with labels.
 - i Finished early?

Try combining the student and staff datasets to create a time plot which directly compares the number of students and staff.

Outline

- Workshop data Time plots
- 23
- 4 5 Seasonal plots
- Lab Session 4
- Seasonal or cyclic?
- Lag plots and autocorrelation
- 8 Lab Session 4
- White noise

```
payroll_education <- readabs::read_payrolls("subindustry_jobs") |>
  filter(industry_division == "P-Education & training") |>
  transmute(Industry = industry_subdivision, Week = yearweek(date), Jobs = value) |>
  as_tsibble(index = Week, key = Industry)
payroll_education |>
  autoplot(Jobs)
```


i Ups and downs (peaks and troughs)

When is the seasonal maximum and minimum?

- Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: gg_season()

```
payroll_education |>
  gg_season(Jobs)
```


Quarterly Australian Beer Production

```
beer <- aus_production |>
  select(Quarter, Beer) |>
  filter(year(Quarter) >= 1992)
beer |> autoplot(Beer)
```


Quarterly Australian Beer Production

beer |> gg_season(Beer, labels = "right")

vic_elec

```
# A tsibble: 52,608 x 5 [30m] <Australia/Melbourne>
  Time
                      Demand Temperature Date Holiday
  <dttm>
                       <dbl>
                                   <dbl> <date> <lgl>
                                    21.4 2012-01-01 TRUE
 1 2012-01-01 00:00:00 4383.
                             21.0 2012-01-01 TRUE
 2 2012-01-01 00:30:00 4263.
 3 2012-01-01 01:00:00
                       4049.
                                    20.7 2012-01-01 TRUE
 4 2012-01-01 01:30:00
                       3878.
                                    20.6 2012-01-01 TRUE
 5 2012-01-01 02:00:00
                       4036.
                                    20.4 2012-01-01 TRUE
 6 2012-01-01 02:30:00
                                    20.2 2012-01-01 TRUE
                       3866.
 7 2012-01-01 03:00:00
                       3694.
                                    20.1 2012-01-01 TRUE
 8 2012-01-01 03:30:00
                       3562.
                                    19.6 2012-01-01 TRUE
 9 2012-01-01 04:00:00
                       3433.
                                    19.1 2012-01-01 TRUE
10 2012-01-01 04:30:00
                                 19.0 2012-01-01 TRUE
                       3359.
# i 52,598 more rows
```

vic_elec |> gg_season(Demand)

vic_elec |> gg_season(Demand, period = "week")


```
vic_elec |> gg_season(Demand, period = "day")
```


Seasonal subseries plots

- Data for each season collected together in time plot as separate time series.
- Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
- In R: gg_subseries()

Quarterly Australian Beer Production

beer |> gg_subseries(Beer)

Calendar plots

```
library(sugrrants)
vic_elec |>
  filter(year(Date) == 2014) |>
 mutate(Hour = hour(Time)) |>
 frame_calendar(x = Hour, y = Demand, date = Date, nrow = 4) |>
  ggplot(aes(x = .Hour, y = .Demand, group = Date)) +
 geom_line() -> p1
prettify(p1,
 size = 3,
  label.padding = unit(0.15, "lines")
```

- frame_calendar() makes a compact calendar plot
- facet_calendar() provides an easier ggplot2 integration.

Calendar plots

Outline

- Workshop data Time plots
- Seasonal plots
- 2 3 4 5 Lab Session 4
- Seasonal or cyclic?
- Lag plots and autocorrelation
- 8 Lab Session 4
- White noise

Lab Session 4

Look at the monthly labour force of 15-24 year olds by State/Territory and educational attendance.

Data is sourced from the ABS 6202.0 Table 16.

The code to prepare this data is in student_labour.R.

- Use autoplot(), gg_season() and gg_subseries() to
 explore the data.
 - Look at different aggregations of the data, for example total persons by attendance.
- What do you learn?

Outline

- Workshop data Time plots
- Seasonal plots
- 5 Lab Session 4
- 6 7 Seasonal or cyclic?
- Lag plots and autocorrelation
- 8 Lab Session 4
- White noise

Trend pattern exists when there is a long-term increase or decrease in the data.

Seasonal pattern exists when a series is influenced by seasonal factors (e.g., the quarter of the year, the month, or day of the week).

Cyclic pattern exists when data exhibit rises and falls that are *not of fixed period* (duration usually of at least 2 years).

Time series components

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

```
aus_production |>
  filter(year(Quarter) >= 1980) |>
  autoplot(Electricity) +
  labs(y = "GWh", title = "Australian electricity production")
```



```
us_employment |>
  filter(Title == "Retail Trade", year(Month) >= 1980) |>
  autoplot(Employed / 1e3) +
  labs(title = "Retail employment, USA", y = "Million people")
```


Time series patterns

```
gafa_stock |>
  filter(Symbol == "AMZN", year(Date) >= 2018) |>
  autoplot(Close) +
  labs(title = "Amazon closing stock price", x = "Day", y = "$")
```


Time series patterns

Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

The timing of peaks and troughs is predictable with seasonal data, but unpredictable in the long term with cyclic data.

Outline

- 1 Workshop data2 Time plots
- 3 Lab Session
- 4 Seasonal plots
- 5 Lab Session 4
- 6 Seasonal or cyclic?
- 7 Lag plots and autocorrelation
- 8 Lab Session 4
- 9 White noise
- 10 Lab Session

Example: Beer production

```
new_production <- aus_production |>
  filter(year(Quarter) >= 1992)
new_production
```

```
# A tsibble: 74 x 7 [10]
            Beer Tobacco Bricks Cement Electricity
                                                        Gas
                                                <dbl> <dbl>
     <atr> <dbl>
                    <dbl>
                           <dbl>
                                   <dbl>
1 1992 01
                     5777
                                    1289
                                                38332
                                                         117
             443
                              383
2 1992 02
             410
                     5853
                              404
                                    1501
                                                39774
                                                         151
3 1992 03
             420
                     6416
                              446
                                    1539
                                                42246
                                                         175
4 1992 04
             532
                     5825
                              420
                                    1568
                                                38498
                                                         129
5 1993 01
                                    1450
                                                39460
                                                         116
             433
                     5724
                              394
6 1993 Q2
                     6036
                              462
                                    1668
                                                41356
                                                         149
             421
7 1993 03
             410
                     6570
                              475
                                    1648
                                                42949
                                                         163
8 1993 04
             512
                     5675
                              443
                                    1863
                                                         138
                                                40974
9 1994 01
             449
                     5311
                              421
                                    1468
                                                40162
                                                         127
10 1994 02
                     5717
                              475
                                    1755
                                                41199
                                                         159
             381
# i 64 more rows
```

Example: Beer production

new_production |> gg_lag(Beer)

Example: Beer production

new_production |> gg_lag(Beer, geom = "point")

Lagged scatterplots

- Each graph shows y_t plotted against y_{t-k} for different values of k.
- The autocorrelations are the correlations associated with these scatterplots.
- ACF (autocorrelation function):
 - $ightharpoonup r_1 = Correlation(y_t, y_{t-1})$
 - $ightharpoonup r_2 = Correlation(y_t, y_{t-2})$
 - $ightharpoonup r_3 = Correlation(y_t, y_{t-3})$
 - etc.
- If there is **seasonality**, the ACF at the seasonal lag (e.g., 12 for monthly data) will be **large and positive**.

Autocorrelation

Results for first 9 lags for beer data:

```
new production |> ACF(Beer, lag max = 9)
# A tsibble: 9 x 2 [1Q]
       lag acf
  <cf_lag> <dbl>
       10 -0.102
       20 -0.657
       30 -0.0603
4
       40 0.869
5
       50 -0.0892
6
       60 -0.635
        70 -0.0542
8
       80 0.832
        90 -0.108
```

Autocorrelation

Results for first 9 lags for beer data:

```
new_production |>
  ACF(Beer, lag_max = 9) |>
  autoplot()
```


ACF

```
new_production |>
  ACF(Beer) |>
  autoplot()
```


Australian student enrolments

```
students <- readxl::read_excel("data/schools/Table 42b Number of Full-time and Part-
# Group by Year and all the character variables
group_by(Year, across(where(is.character), identity)) |>
# Add up the duplicate rows
summarise(across(ends_with("count"), sum), .groups = "drop") |>
# Convert to a tsibble
as_tsibble(
    key = where(is.character),
    index = Year
)
```

Australian student enrolments

```
students |> autoplot(Count) +
  labs(y = "Student Count", title = "Australian students") +
  scale_y_log10()
```


Australian holidays

```
students |> ACF(Count)
```

```
# A tsibble: 96 x 3 [1Y]
# Key: State [8]
  State lag acf
  <chr> <cf_lag> <dbl>
1 ACT
             1Y 0.875
2 ACT
             2Y 0.727
3 ACT
             3Y 0.555
4 ACT
             4Y 0.377
5 ACT
             5Y 0.207
6 ACT
              6Y 0.0415
7 ACT
             7Y -0.104
8 ACT
             8Y -0.226
9 ACT
              9Y -0.324
10 ACT
             10Y -0.392
# i 86 more rows
```

Australian holidays

```
students |> ACF(Count) |> autoplot()
```


Trend and seasonality in ACF plots

- When data have a trend, the autocorrelations for small lags tend to be large and positive.
- When data are seasonal, the autocorrelations will be larger at the seasonal lags (i.e., at multiples of the seasonal frequency)
- When data are trended and seasonal, you see a combination of these effects.

Youth labour force

```
student_labour |>
summarise(persons = sum(persons)) |>
autoplot(persons)
```


US retail trade employment

```
student_labour |>
summarise(persons = sum(persons)) |>
ACF(persons, lag_max = 48) |>
autoplot()
```


In-school staff

```
staff total <- staff |>
  summarise(`In-School Staff Count` = sum(`In-School Staff Count`))
staff_total
# A tsibble: 18 x 2 [1Y]
   Year `In-School Staff Count`
   <dbl>
                           <dbl>
1 2006
                           398003
2 2007
                           409678
   2008
                           415541
   2009
                           425166
   2010
                           429933
   2011
                           441631
   2012
                           440313
   2013
                           448711
   2014
                           454615
10
   2015
                           466867
   2016
                           480077
11
```

Google stock price

```
staff_total |> autoplot(`In-School Staff Count`)
```


Google stock price

```
staff_total |>
   ACF(`In-School Staff Count`, lag_max = 100) |>
   autoplot()
```


56

Outline

- 1 Workshop data2 Time plots
- 3 Lab Session
- 4 Seasonal plots
- 5 Lab Session 4
- 6 Seasonal or cyclic?
- 7 Lag plots and autocorrelation
- 8 Lab Session 4
- 9 White noise
- 10 Lab Session

Lab Session 4

Explore the ACF() of the following time series:

- Education payroll (payroll_education)
- Total full-time students (students)
- Total working students aged 15-24 in ACT
 (student_labour)

Can you spot any seasonality, cyclicity and trend? What do you learn about the series?

Which is which?

Outline

- 1 Workshop data2 Time plots
- 3 Lab Session
- 4 Seasonal plots
- 5 Lab Session 4
- 6 Seasonal or cyclic?
- 7 Lag plots and autocorrelation
- 8 Lab Session 4
- 9 White noise
- 10 Lab Session 5

```
wn <- tsibble(t = seq(36), y = rnorm(36), index = t)
wn |> autoplot(y)
```



```
wn <- tsibble(t = seq(36), y = rnorm(36), index = t)
wn |> autoplot(y)
```


wn |> ACF(v)

r_1	r_2	<i>r</i> ₃	r ₄	<i>r</i> ₅	<i>r</i> ₆	r ₇	r ₈	r 9	r ₁₀
-0.244	0.046	0.030	-0.118	-0.029	-0.056	-0.022	0.185	-0.013	0.133

- Sample autocorrelations for white noise series.
- Expect each autocorrelation to be close to zero.
- Blue lines show 95% critical values.


```
pigs |>
  ACF(Count) |>
  autoplot()
```


Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows significant autocorrelation for lag 2 and 12.
- Indicate some slight seasonality.

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows significant autocorrelation for lag 2 and 12.
- Indicate some slight seasonality.

These show the series is **not** a **white noise series**.

Outline

- 1 Workshop data2 Time plots
- 3 Lab Session
- 4 Seasonal plots
- 5 Lab Session 4
- 6 Seasonal or cyclic?
- 7 Lag plots and autocorrelation
- 8 Lab Session 4
- 9 White noise
- 10 Lab Session 5

Lab Session 5

Plot the difference in ACT student enrolments, it can be done as follows:

```
students |>
  filter(`State/Territory` == "ACT") |>
  summarise(total = sum(`All Full-time and Part-time Student count`)) |>
  autoplot(difference(total))
```

Does diff look like white noise? Hint: Check the ACF