

Imperialist Competitive Algorithm

Bienvenue à la session d'enrichissement sur les méta-heuristiques

- 1. ANALOGIE HISTORIQUE ET PRINCIPE
- 2. FONCTIONNEMENT DE L'ALGORITHME
- 3. IMPACT DES DIFFÉRENTS PARAMÈTRES
- 4. APPLICATION CONCRETÈS
- 5. PERFORMANCES
- 6. AMÉLIORATION POSSIBLES
- 7. DÉMONSTRATION

ANALOGIE HISTORIQUE ET PRINCIPE

Guide imagée pour coloniser en quelques étapes

Étape 1 : Établir votre dominance

Étape 2 : Développer ses colonies

Étape 3 : Garder ses colonies sous contrôle

Quelques définitions

Empire

Ensemble de solutions

Composé d'un impérialiste et de ses colonies

Impérialiste

Solution

Le pays d'un empire avec le meilleur score

Colonie

Solution

Les pays d'un empire qui ne sont pas impérialiste

2 FONCTIONNEMENT DE L'ALGORITHME

Y'a quand même un vrai projet derrière

EMPIRES

Initialisation et formation des empires

Empires:

Affectation des impérialistes parmi les pays

Empires:

Partage des colonies

Impérialistes	Puissance	Colonies
*	50%	
*	30%	
3,5	20%	
*	0%	igo, igo, igo, igo, igo, igo, igo, igo,

ASSIMILATION

Convergence des colonies vers leurs impérialistes

 β : Taux d'assimilation (direction) $x \in [0, \beta \times d]$

 β : Taux d'assimilation (direction)

 $x \in [0, \beta \times d]$

φ : Taux d'assimilation (déviation)

 $\theta \in [-\phi, +\phi]$

φ: Taux d'assimilation (déviation)

 $\theta \in [-\phi, +\phi]$

RÉVOLUTIONS

Divergences des colonies envers leurs impérialistes

Révolutions:Divergence de certaines colonies

Pr : Taux de révolutions

Révolutions:Divergence de certaines colonies

Ps : Ampleur des révolutions

 $r \in [0, Ps]$

Révolutions:Divergence de certaines colonies

Ps : Ampleur des révolutions

 $r \in [0, Ps]$

COUP D'ÉTATS

Remplacement des impérialistes

Coup d'états:

Remplacement des impérialistes

Coup d'états:

Remplacement des impérialistes

Coût de ses colonies

CONQUÊTES

Récupération des colonies de l'empire le plus faible

Calcul du coût global de l'empire

ξ: Influence des colonies

Calcul du coût global de l'empire

Coût impérialiste

700

1000

800

Calcul du coût global de l'empire

Calcul de l'influence des empires

Calcul de l'influence des empires

EFFONDREMENTS

Suppression des impérialistes sans colonies

Effondrement:Suppression des impérialistes sans colonies

Impérialistes	Colonies	Effondrement
*		X
*		X
*		X
*		

Effondrement:Suppression des impérialistes sans colonies

Impérialistes Effondrement Colonies X X الآمر X X 10 X

Sujet éliminé par le critère d'effondrement

Cordialement, la direction

BOUCLER

Uncaught Error: Maximum call stack size exceeded

Paramètres: Résumé de l'ICA

Inspiration	Période colonialiste
Nombre de paramètres	Moins de 10 (Np, Ni, β, φ, Pr, Ps, ξ)
Type de métaheuristique	Amélioration
Nombre de solutions par itération	Population de pays (solutions)
Exploitation	Assimilation Effondrements Coup d'états
Diversification	Révolutions Conquêtes

3 IMPACT DES DIFFÉRENTS PARAMÈTRES

C'est vraiment de la science la méthode empirique ??

Paramètres: Valeurs courantes

Empires

Np: Nombre de pays

problème

Ni: Nombre d'impérialistes

 $Ni \approx 10-13\% \text{ de}$

Nc: Nombre de colonies

Assimilation

β: Taux Assim. (direction)

φ: Taux Assim. (déviation)

Révolutions

Pr: Taux de révolutions

Ps: Ampleur des révolutions

φ ≈ π/4 Dépends du problème

Coup d'états

Conquêtes

ξ: Influence des colonies

Effondrements

4 APPLICATION CONCRETES

La suite l'est un peu moins...

Applications dans l'ingénierie

Industrial

Scheduling
Assembly Line Balancing
Facility Layout
Supply Chain Management

Mechanical

Composite Materials
Heat Transfer

Civil

Design of Skeletal Structures

Electrical

Designing PID controller

Petroleum

Prediction Oil Flow Rate

Computer

Data Clustering
Image Processing

Source: A survey on the Imperialist Competitive Algorithm metaheuristic: Implementation in engineering domain and directions for future research. 2014. Seyedmohsen Hosseini, Abdullah Al Khaled

5PERFORMANCES

Ou pourquoi notre algo c'est le plus beau

Performances: Avantages et inconvénients

Général

- + Bon taux de convergence
- + Flexible, robuste et scalable
- + Combinable avec d'autres méta-heuristiques
- + Temps de calcul
- Pas de convergence théorique
- Beaucoup de paramètres
- Risque de convergence prématurée

Solutions

- + Aucune dépendance sur les solutions initiales
- + Ne reste pas piégé dans un optimum local
- + Recherche dans le voisinage

Variables

- + Continue et discrètes
- + Capable de gérer beaucoup de variables

- Prévu principalement pour les variables continues

Performances: Rosenbrock

	HS	GA	ICA
Average	201565	1766467	20761
Best	58634	602588	20752
Variance	5026920423	485809094885	24

$$\sum_{i=1}^{n-1} 100 (x_{i+1} - x_i^2)^2 + (x_i - 1)^2$$

$$Optimum: 0$$

Performances: Griewank

	HS	GA	ICA -
Average	15.74	39.29	2.38
Best	8.51	20.09	1.27
Variance	7.83	63.33	0.68

$$\frac{1}{4000} \sum_{i=1}^{n} x_i^2 - \prod_{i=1}^{n} \cos(\frac{x_i}{\sqrt{i}}) + 1$$

Optimum: 0

Source: A novel hybrid meta-heuristic technique applied to the well known benchmark optimization problems. 2016 Amir-Reza Abtahi, Afsane Bijari.

Performances: Rastrigin

	HS P	GA	ICA
Average	73	148	159
Best	52	100	88
Variance	72	333	889

$$\sum_{i=1}^{n} x_i^2 - 10\cos(2\pi x_i) + 10$$

$$Optimum: 0$$

6 AMÉLIORATION POSSIBLES FUTURES RECHERCHES

Trucages possibles
Fully Magouilles

Améliorations notables

Hybridation

• Combinaison avec d'autres méta-heuristiques comme le GA ou le PSO

Nouv. Mécaniques

- Cités indépendantes influencées par tous les impérialistes
- Assimilation "Crossover" entre l'impérialiste et une de ses colonies

Performances

- Parallélisation de l'algorithme
- Réglages des paramètres

DÉMONSTRATION

On vous jure, c'est un vrai algorithme

MERCI! Des questions ?

En vrai, on ne pensait pas revenir sur cette slide.

