PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-267340

(43)Date of publication of application: 29.09.2000

(51)Int.CI.

G03G 9/08

(21)Application number: 11-069878

(71)Applicant : RICOH CO LTD

(22)Date of filing:

16.03.1999

(72)Inventor: HIGUCHI HIROTO

(54) ELECTROSTATIC CHARGE IMAGE DEVELOPING TONER

PROBLEM TO BE SOLVED: To provide the good electrostatic latent image developing toner being high in image quality and a few of partial dropouts of a transferred image.

SOLUTION: This toner is used for an image forming method using a system of bringing a transfer means to a part of an charge holder through a transfer sheet and forming a toner image by electrostatic transfer of a toner image on the surface of the transfer sheet, and the toner is manufactured by a pulverization method and it comprises a binder resin and a releasing agent and fine P#志一 inorganic particles as a fluidity donor. The toner particles have average particle diameter of 4-7 µm and the particles having a particle diameter ≤5 µm amount to 60-80 number %, and the toner agglomeration degree is ≤ 18%, and when the toner has average particle diameter M in the range of 2 to M+2 (µm), the following expression is satisfied; average circular shape degree (SP1)=sum of circular shape degree of each circular shape degree

5般子の円像度の料 全0. 944 平時円基連(9で1)

トナーと同じは職争もの円の両長 トナーを対象を

divided by the total number of particles ≤0.944, where the circular shape degree is the peripheral length of the circle having an area same as the toner particle divided by the toner peripheral length.

LEGAL STATUS

[Date of request for examination]

10.06.2003

[Date of sending the examiner's decision of

16.03.2005

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

No. 7044 2/2 へージ

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国物許庁 (JP)

(12) 公開特許公報(A)

(11)特許出屬公開發号

特開2000-267340

(P2000-267340A)

(43)公開日 平成12年9月29日(2000.9.29)

(51) Int.CL'

識別配号

FΙ

ラーマコード(参考)

G03G 9/08

G03G 9/08

375

2H005

365 374

審査請求 京請求 商求項の数5 OL (全 9 頁)

(21)出願番号

特顧平11-69978

(71)出廢人 000008747

株式会社リコー

(22)出節日 平成11年3月16日(1999.3.16) 京京都大田区中原公1丁目3番6号

(72) 発明者 樋口 婦人

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(74)代理人 100105681

介理士 武井 秀彦

アターム(参考) 2H005 AA06 AA08 AA15 AB04 CA14

CA26 CB07 CB13 EA05 EA07

EA10 FO03

(54)【発明の名称】 静電荷現像用トナー

(57)【要約】

【課題】 高画質かつトナーの転写抜け(虫喰い)が少 ない良好な静電遊像現像用トナーを提供すること。

【解決手段】 静電商保持体の一部に転写材を介して転 写手段を当接させて、転写材の表面にトナー像を静電転 写するシステムを設けた画像形成方法に用いられる粉砕 法によって製造された少なくとも結着樹脂、離型剤及び 流動性付与剤として無機微粒子を有するトナーにおい * *で、酸トナーの体積平均粒径M(μm)が4~7μmを 満足し、5 mm以下の粒径を有するトナー粒子が60~ 80個数%含有し、トナー凝集度が18%以下であり、 体積平均粒径Mのトナーが、2<トナー体積平均粒径< M+2 (μm) の範囲内にあるとき、下記一般式で表わ される値を満たすことを特徴とする静電筒現像用トナ

【数1】

各粒子の円形度の和

平均円形度 (SF1) = ≥0.944 全粒子数

トナーと同じ面積をもつ円の周長

円形度=

トナー周囲長

(2)

【特許請求の範囲】

【請求項1】 静電商保持体の一部に転写材を介して転 写手段を当接させて、転写付の表面にトナー像を辞電転 写するシステムを設けた画像形成方法に用いられる粉砕 法によって製造された少なくとも結着樹脂、離型剤及び 流動性付与剤として無機微粒子を有するトナーにおい

1

て. 該トナーの体積平均粒径M (μm) が4~7μmを*

*満足し、5 mm以下の粒径を有するトナー粒子が60~ 80個数%含有し、トナー凝集度が18%以下であり、 体積平均粒径Mのトナーが、2<トナー体積平均粒径< M+2 (μm) の範囲内にあるとき、下配一般式で表わ される値を満たすことを特徴とする静電荷現像用トナ

【数1】

各粒子の円形皮の和

平均円形度 (SF1) = ≥0.944

全粒子数

トナーと同じ面積をもつ円の周長

円形度=

トナー・四四品

【請求項2】 該無機微粒子のBET比表面積が170 mi/g以上である疎水化処理されたシリカ微粉末より なることを特徴とする請求項1に記載の静電荷現像用ト

【請求項3】 該無機微粒子がヘキサメチレンジシラサ ンにより表面を疎水化処理された微粉末よりなることを 20 特徴とする請求項1又は2に記載の詩電商現像用トナ

【請求項4】 該無機微粒子が導水性シリカ微粉末と導 水性酸化チタン微粉末の混合物であることを特徴とする 請求項1乃至3のうち何れか1に記載の静電荷現像用ト

【請求項5】 該無機微粒子の含有量がトナー100重 置部に対してり、3~3重量部であることを特徴とする 請求項1乃至4のうち何れか1に記載の静電荷現像用ト

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電子写真法、静電 印刷法等に用いられる電子写真画像形成装置及び電子写 真用トナーに関する。

[0002]

【従来の技術】近年、電子写真現像方法に用いられるト ナーは、画像品質への要求が高くなってきている。デジ タル画像信号を用いている画像形成装置は、感光体上に 微小なドットの潜像を形成し、現像することにより画像 40 れている。 を形成している。このとき、トナーの粒子径が大きけれ ば潜像ドットからはみ出してしまい。潜像に対して忠実 にドットが形成されず良質な画像が得られない。この間 題を解決するためには、5 μm以下の粒子のトナーが高 品質な画像を形成するために必須の成分であり、これを 使いこなすための技術が開示されている。

【0003】特許第2759516号では、トナー粒子 の凝集度と粒径分布の範囲を規定することにより小粒径 トナーを使用しているが、5 μ m以下の磁性トナーが4

なかった。また、特許第2769849号では、5μm 以下の粒子が60個数%以上のトナーについて、トナー 粒子の体積変勁係数をシャープな分布にすることによ り、良質な画像を得る方法であって、シャープな分布の トナーを作るうえでの生産性の問題を有していた。

【0004】また、乾式トナーは、紛砕法により製造さ れている場合、形状が角ばっており不定形であるため重 合トナーのような球形のトナーと比べると感光体との接 点が多く存在し感光体より離れにくいため、前途の転写 工程において現像されたトナーの全ては転写されず、感 光体上に残り、経済性の点からも好ましくない。

【0005】また、静電荷保持体から転写材へトナーを 転写する機構としては、環境上の配慮からオゾンの発生 を低減させるために、オゾン発生量の多いコロナ放電を 用いた非接触式転写装置から、静電荷保持体の一部に転 30 写材を介して転写手段を当接させて、転写の表面にトナ 一像を静電転写する接触式転写装置の採用が多くなって きている。この接触転写方式は、転写材と静電荷保持体 との密着性がとりやすく、質のよい転写像が得られやす い。しかし、当接圧が加えられた場合、静電商保持体上 のトナー像にも圧力が加わり、トナーの凝集が発生す る。その結果、静電前保持体との付着力は大きくなり密 者の強固な部分は転写材上に転写されない現象が超こ る。この現象は、ライン画像で一般に顕著に見られ、中 心部の転写されない「中核け現象」と呼ばれ、問題視さ

【0006】特に、高回翼のために小粒径化されている トナーでは、転写不良が大きな問題となっている。一般 にこの中抜け現象を改良するには、トナーと静電荷像保 **特体との間の付着力を弱めてやればよく、簡単にはトナ** 一添加剤として一般に使用されているシリカ等の添加剤 を多量の添加し、トナーの流動性を大きくすることで改 良が可能である。しかし、この方法では、多量の添加剤 により感光体を損傷する等の問題があるため、添加可能 な量にも限度があり、また、シリカ等を充分な量使用す ① 個数%以下であり、画像の鮮明さの点で充分とは含え。50 ると帯電性に思影響を及ばすという問題もある。すなわ

(3)

ち、帯電性に関しては、帯電量、帯電の速度、帯電量分 布。トナー混合性及び環境安定性等の要求を満足するこ とが求められるが、シリカ等を使用した場合には、帯電 の速度、帯電量分布、トナー混合性及び環境安定性に悪 影響を及ぼし、場合によっては画像チリ等の現象も見ら

【0007】また、特に近年コンピューター等の画像出 力に用いられるプリンター等の画像においては、複写機 画像よりも経時使用で安定した高濃度のものが求められ ており、トナー添加剤シリカを十分に添加したようなト 10 ナーの使用においては、シリカ自体の絶縁性が非常に高 いため、チャージアップされ易く、Q/Mが異常に上昇 し画像濃度が低下する等の問題があった。

[0008]

【発明が解決しよとする課題】本発明は、高回翼かつト ナーの転写抜け(虫喰い)が少ない良好な静電潜像現像 用トナーを提供することである。

* [00009]

【課題を解決するための手段】本発明者は鋭意検討を韋 ねた結果、上記課題は本発明の(1)「静電荷保持体の 一部に転写材を介して転写手段を当接させて、転写材の 表面にトナー像を静電転写するシステムを設けた画像形 成方法に用いられる粉砕法によって製造された少なくと も結着樹脂、能型剤及び流動性付与剤として無機微粒子 を有するトナーにおいて、酸トナーの体積平均粒径M (µm)が4~7µmを満足し、且つ5µm以下の粒径 を有するトナー粒子が60~80個数%含有し、トナー 経集度が18%以下であり、体積平均粒径Mのトナー が、2<トナー体積平均粒径<M+2(μm)の範囲内 にあるとき、下記一般式で表わされる値を満たすととを 特徴とする静電荷現像用トナー。

[0010] 【数2】

各粒子の円形度の和

平均円形度(SF1)= ≥0.944

全粒子数

トナーと同じ面積をもつ円の周長

円形度=

トナー周囲長

(2)「該無機微粒子のBET比表面積が170m1/ g以上である疎水化処理されたシリカ微粉末よりなるこ とを特徴とする前記 (1)項に記載の辞電荷現像用トナ ー」、(3)「該無機做粒子がヘキサメチレンジシラサ ンにより表面を疎水化処理された微粉末よりなることを 用トナー」、(4)「該無機機粒子が疎水性シリカ機粉 末と疎水性酸化チタン微粉末の混合物であることを特徴 とする前記(1)乃至(3)項のうち何れか1に記載の 静電荷現像用トナー」、(5)「該無機微粒子の含有量 がトナー100重量部に対して0.3~3重量部である ことを特徴とする前記(1)乃至(4)項のうち何れか 1 に記載の静電荷現像用トナー」によって達成されるこ とを見い出した。

【①①11】本発明者の検討によると、ドット再現性の よい画像を得るためには、5 μm以下の小粒径トナーの 46 段に残ったトナー宣費) + (下段に残ったトナー重 寄与率が非常に高いことが判明した。トナー粒子が60 個数%以下の場合は、鮮明な画像が得られなかった。8 0個数%を超えると、トナー粒子相互の凝集状態が生じ 易く、本来の粒径以上のトナー塊となるため、流動性が 悪化し、覚れた固質となり、解像性を低下させ、虫喰い 転写不良の発生が起こる欠点を有していた。ここで、ト ナー体育平均位径、体育分布の標準偏差、変動係数、5 μm以下の個數%の測定は種々の方法によって測定可能 であるが、本発明では米国コールター・エレクトロニク ス社製のコールターカウンターTAIIを用いた。

【0012】また、経集度が18%を超える場合は、ト ナー流動性が悪く、虫喰い転写不良の多い画像となり間 題となった。トナー凝集度は穏々の方法によって測定さ れるが、本発明における凝集度は以下の方法を用いて測 定を行なった。即ち、ふるい上にトナーを就せ振動を与 特徴とする前記(1)又は(2)項に記載の鈴電荷現像 30 え、みるい上に残ったトナーの意置から経集度を求める 方法である。具体的には、トナーの測定はホソカワミク ロン株式会社製パウダーテスターPT-N型を用いた。 ふるいの目開きが75μm (上段). 45μm (中 段) 22 µm (下段) の組み合せを用い、上段のふる いにトナー2gを受せ、振帽1mmで、30秒間振動さ せた後、各ふるいに残留したトナーの重量を測定して次 の数式で計算し、下記式を用いて凝泉度を求めた。 [0013]

> 【数3】 {5×(上段に残ったトナー重量)+3×(中 置) } × 1 ()

【()() 1.4】体積平均粒径 (M)のトナーが、2<トナ ーの体積平均粒径<M+2(μm)の範囲内にあると き、次に示す式を満たす場合に、静電荷保持体から転写 材へのトナーの虫喰い転写不良が少なく、本発明の方法 を問題なく成立させることが可能であることを見い出し 14.

[0015]

【数4】

50

特開2000-267340

各粒子の円形段の和

≥0.944

全粒子数

トナーと同じ面積をもつ円の周長

円形度=

平均円形度 (SF1) =

トナー周囲長

【10.0 1.6】 ことで平均円形度 (SF1) はトナー表面 の滑らかさを表わす形状指数で、トナー表面が滑らかで る。この形状指数がり、944以上のときは、トナー表 面が十分に滑らかなため、像支持体との接点が減少し、 静電荷保持体から転写材へのトナーの虫喰い転写不良が 減少し、5 μ m以下の粒径のトナーであっても良好な画 像が得られることが判明した。このことは、本プロセス において、トナー円形度=0.944が静電荷保持体か ち転写材への虫喰い転写不良の分極点になっていると考 えられる。なお、前記形状指数の測定は、東亜医用電子 株式会社製FPIA-1000フロー式粒子像分析装置 を用いた画像解析により求められる。

【①①17】また、該無機微粒子のBET法で測定した 窒素吸者による比表面積が170m1/g以上である場 合に、流動性に優れた良質な回像が得られることを見い 出した。170m~/8より小さい場合は、流動性付与 が十分でなく、虫喰い転写不良が発生しやすくなり、帯 電が不十分でなく非画像部への地肌汚れが発生した。こ れば、シリカの場合によりはっきりしていた。

【0018】また、該無機改粒子がヘキサメチレンジシ ラサンにより表面を導水化処理されたシリカ微紛末を含 有することにより、帯電性に優れ、かぶりの少ないトナ ーを提供できることを見い出した。また、該無機貸粒子 が疎水性シリカ微粉末と疎水性チタン微粉末の混合物で あることにより、シリカのみの経時使用で見られる帯電 置のQ/Mが上昇に伴う画像濃度の低下をチタンと併用 することにより、チタンがシリカよりも抵抗が低いの で、シリカによりチャージアップした電荷を逃がす役目 をするため、帯電がより安定化することが判明した。こ こで、チタンのみの単独使用では、十分な流動性が得ら れないことが判明した。また、該無機改粒子の含有量が トナー100重量部に対して、0.3~3重量部である 40 場合、鮮明な画像が得られることを見い出した。無機微 粒子の添加量がり、3重量部より少ない場合、帯電が十 分でなく非国像部への地頭汚れが発生した。3重量部よ り多い場合は、トナー転写チリが多く、鮮明な画像が得 **られなくなった。**

【0019】次に、本発明のトナーに用いられる材料に ついて詳細に説明する。本発明においてバインダーとし て用いるポリエステル樹脂は、アルコールとカルボン酸 との稿章台によって得られるが、用いられるアルコール とはポリエチレングリコール、ジエチレングリコール、

トリエチレングリコール。1、2-プロピレングリコー ル、1、3 - プロピレングリコール、1、4 - ブタンジ 円 (球) 形に近いほど 1. 00に近い値になるものであ 10 オール、ネオペンチルグリコール、1. 4 - ブタンジオ ール等のジオール類、1、4-ビス(ヒドロキシメチ ル) シクロヘキサン、ビスフェノールA、水素添加ビス フェノールA、ポリオキシエチレン化ビスフェノール A.ポリオキシプロピレン化ビスフェノールA等のエー テル化ビスフェノール類、これらを炭素数3~22の飽 和もしくは不飽和の炭化水素基で置換した2価のアルコ ール単体、その他の2 価のアルコール単体を挙げること ができる。

> 【0020】また、ポリエステル樹脂を得るために用い 20 られるカルボン酸としては、例えばマレイン酸、フマー ル酸、メザコン酸、シトラコン酸、イタコン酸、グルタ コン酸、フタル酸、イソフタル酸、テレフタル酸、シク ロヘキサンジカルボン酸、コハク酸、アジピン酸、セバ チン酸、マロン酸、これらを炭素数3~22の飽和もし くは不飽和の炭化水煮基で置換した2 偏の有機酸単量 体、とれらの酸無水物、低級アルキルエステルとリノレ イン酸の2 登体。その他の2 価の有機酸単置体を挙げる ことができる。

> 【0021】バインダー樹脂として用いるポリエステル 30 樹脂を得るためには、以上の2 官能性単量体のみによる **重合体のみでなく、3官能以上の多官能性単置体による** 成分を含有する重合体を用いることも好適である。かか る多官能性単量体である3個以上の多価アルコール単置 体としては、例えばソルビトール、1、2,3、6-ヘ キサンテトロール、1,4-サルビタン、ペンタエリス リトール、ジベンタエリスリトール。トリベンタエリス リトール、蔗麵。1,2、4-ブタントリオール。1. 2. 5-ペンタントリオール、グリセロール、2-メチ ルプロパントリオール、2 - メチル-1,2,4-ブタ ントリオール、トリメチロールエタン、トリメチロール プロパン、1、3、5 - トリヒドロキシメチルベンゼ ン、その他を挙げることができる。

> 【0022】また、3価以上の多価カルボン酸単量体と しては、例えば1,2,4-ベンゼントリカルボン酸、 1、2、5-ベンゼントリカルボン酸、1、2、4-シ クロヘキサントリカルボン酸、2,5、7-ナフタレン トリカルボン酸、1、2、4--ナフタレントリカルボ ン酸、1,2、4-ブタントリカルボン酸、1,2,5 - ヘキサントリカルボン酸、1,3-ジカルボキシルー 50 2-メチル-2-メチレンカルボキシプロパン、テトラ

(メチレンカルボキシル) メタン、1、2、7、8-オ クタンテトラカルボン酸。エンボール3畳体酸。これら の酸無水物、その他を挙げることができる。

【0023】本発明に使用されるポリエステルと共に用 いられる結者樹脂としては、公知のものが全て使用でき る。例えば、ポリスチレン、ポリーカークロロスチレ ン、ポリビニルトルエン等のスチレン及びその置換体の 単重合体:ステレン-p-クロロスチレン共重合体、ス チレンープロピレン共産合体、スチレンーピニルトルエ ン共重合体、スチレンービニルナフタリン共重合体、ス 10 チレンーアクリル酸メチル共食合体。スチレンーアクリ ル酸エチル共重合体、スチレンーアクリル酸プチル共重 台体、スチレン-アクリル酸オクチル共重台体、スチレ ンーメタクリル酸メチル共重合体、スチレンーメダクリ ル酸エチル共重合体、スチレンーメタクリル酸プチル共 重合体、スチレンーαークロルメタクリル酸メチル共産 台体、スチレン-アクリロニトリル共重合体、スチレン - ビニルメチルエーテル共重合体、スチレン - ビニルエ チルエーテル共重合体、スチレン-ビニルメチルケトン イソプレン共重合体、スチレン-アクリロニトリル-イ ンデン共宣合体、スチレン・マレイン酸共宣合体、スチ レンテマレイン酸エステル共産台体等のスチレン系共重 台体が挙げられる。

【0024】また、下記の樹脂を混合して使用すること もできる。ポリメチルメタクリレート、ポリプチルメタ クリレート、ポリ塩化ビニル、ポリ酢酸ビニル、ポリエ チレン、ポリプロピレン、ポリエステル、ポリウレタ ン、ポリアミド、エポキシ樹脂、ポリピニルブチラー ン樹脂、フェノール樹脂、脂肪族又は脂環族炭化水素樹 脂、芳香族系石油樹脂、塩素化パラフィン、パラフィン ワックス等が挙げられる。

【0025】また、特に圧力定者用に好適な結着樹脂と しては以下のものを挙げることができ、混合して使用で きる。ポリオレフィン(低分子置ポリエチレン、低分子 置ポリプロピレン、酸化ポリエチレン、ポリ4 弟化エチ レン等)、エポキシ樹脂、ポリエステル樹脂、スチレン ブタジェン共重合体(モノマー比5~30:95~7 ①)、オレフィン共重合体(エチレンーアクリル酸共重 40 モン、ベリリウム、ビスマス、カドミウム、カルシウ 合体、エチレン-アクリル酸エステル共重合体、エチレ ンーメタクリル酸共産合体、エチレンーメタクリル酸エ ステル共宣合体、エチレンー塩化ビニル共宣合体、エチ レン-酢酸ビニル共宜合体、アイオノマー樹脂)、ボリ ビニルピロリドン、メチルビニルエーテルー無水マレイ ン酸共卓合体、マレイン酸変性フェノール樹脂、フェノ ール変性テルベン樹脂等が挙げられる。

【0026】また、本発明のトナーに含有される帯電制 御剤としては、従来公知のものが全て使用できる。正常 **電副御剤としては、エグロシン、塩甚性染料、塩基性染 50 ーボンブラック、アリニンブラック、ファーネスブラッ**

料のレーキ顔料、四級アンモニウム塩化合物等々が挙げ られ、負帯電調御剤としては、モノアゾ染料の金属塩、 サリチル酸、ナフトエ酸、ダイカルボン酸の金属館体等 々が挙げられる。本極性副御剤の使用量は、バインダー 樹脂の種類、必要に応じて使用される添加剤の有無、分 飲方法を含めたトナー製造方法によって決定されるもの で、一歳的に限定されるものではないが、バインダー樹 暦100重置部に対して0.01~8重置部、好ましく は0.1~2重量部の範囲で用いられる。0.01重量 部未満では、環境変動時における帯電量Q/Mの変動に 対し、その効果が小さく、7重量部を超えると低温定者 性が劣る結果となる。

【0027】本発明においてトナーに使用される態型剤 としては公知のものが全て使用できるが、特に顕遊離腦 肪酸型カルナウバワックス、モンタンワックス及び酸化 ライスワックスを単独又は組み合わせて使用することが できる。カルナウバワックスとしては、微結晶のものが よく、敵価が5以下であり、トナーバインダー中に分散 したときの粒子径が 1 μ m以下の粒径であるものが好ま 共重合体、スチレンーブタジエン共重合体、スチレンー 20 しい。モンタンワックスについては、一般に鉱物より精 製されたモンタン系ワックスを指し、カルナウバワック ス同様、微結晶であり、酸価が5~14であることが好 ましい。酸化ライスワックスは米ぬかワックスを空気酸 化したものであり、その酸価は10~30が好ましい。 各ワックスの酸価が各々の範囲未満であった場合。低温 定着温度が上昇し、低温定着化が不十分となる。逆に酸 価が基々の範囲を越えた場合、コールドオフセット温度 が上昇し低温定着化が不十分となる。ワックスの添加量 としては、バインダー樹脂100量量部に対して1~1 ル、ポリアクリル酸樹脂、ロジン、変性ロジン、テルベ 30 5重量部、好ましくは3~10重量部の範囲で用いられ る。1 重量部未満ではその能型効果が薄く、所望の効果 が得られにくい。また、15重量部を越えた場合はキャ リアへのスペントが顕著になる等の問題が生じた。

【0028】さらに、本発明のトナーは磁性材料を含有 させ、磁性トナーとしても使用し得る。本発明の磁性ト ナー中に含まれる磁性材料としては、マグネタイト、ヘ マタイト、フェライト等の酸価鉄、鉄、コバルト、ニッ ケルのような金属あるいはこれら金属のアルミニウム、 コバルト、銅、鉛、マグネシウム、スズ、亜鉛、アンチ ム、マンガン、セレン、チタン、タングステン、バナジ ウムのような金属の合金及びその混合物等が挙げられ る。これらの強磁性体は平均粒径が0. 1~2μμ程度 のものが好ましく、トナー中に含有させる量としては、 樹脂成分100重量部に対し約20~200重量部、特 に好ましくは樹脂成分100重量部に対し約40~15 ()重量部である。

【0029】着色剤としては、トナー用として公知のも のが全て使用できる。黒色の者色剤としては、例えばカ ク ランプブラック等が使用できる。シアンの着色剤と しては、例えばフタロシアニンブルー、メチレンブル ー、ピクトリアブルー、メチルバイオレット、アニリン ブルー、ウルトラマリンブルー等が使用できる。 マゼン タの着色剤としては、例えばローダミン6 Gレーキ、ジ メチルキナクリドン、ウオッチングレッド、ローズベン ガル、ローダミンB、アリザリンレーキ等が使用でき る。イエローの着色剤としては、例えばクロムイエロ ー」ベンジジンイエロー」ハンザイエロー、ナフトール ートラジン等が使用できる。

【①030】また、本発明のトナーは必要に応じて添加 物を混合してもよい。添加物としては、例えばテフロ ン、ステアリン酸亜鉛のごとき滑剤あるいは酸化セリウ ム、炭化ケイ素等の研磨剤、酸化アルミニウム等の流動 性付与剤、ケーキング防止剤、あるいは例えばカーボン ブラック、酸化スズ等の導電性付与剤、あるいは低分子 置ポリオレフィン等の定着動剤等がある。

【0031】また、本発明で用いられる韓水性シリカ粒 剤」シリコーンワニス、シリコーンオイル、有機ケイ素 化合物、また、官能基を有するこれらの物質等の疎水化 処理剤とては、例えばヘキサメチルジシラザン、ヘキサ **メチレンジシラザン、トリメチルシラン、トリメチルク** ロルシラン、トリメチルエトキシシラン、ジメチルジク ロルシラン、メチルトリクロルシラン、ベンジルジメチ ルクロルシラン。クロルメチルジメチルクロルシラン。 ジクロロジメチルシラン、トリオルガノシリルメルカブ タン、トリメチルシリルメルカプタン、ビニルジメチル アセトキシシラン、ジメチルエトキンシラン、ジメチル 30 い。 ジメトキシシラン、ジフェニルジエトキシシラン、アミ ノプロピルトリメトキシシラン、ジプロピルアミノプロ ピルトリメトキンシラン、ジブチルアミノプロビルトリ メトキシシラン、ジブチルアミノプロビルメチルジメト キシシラン、トリストキシシリルーケープロピルフェニ ルアミン等がある。シリコーンオイルとしては、メチル シリコーンオイル、ジメチルシリコーンオイル、フェニ ルメチルシリコーンオイル、クロルフェニルメチルシリ コーンオイル、アルキル変性シリコーンオイル、脂肪酸 変性シリコーンオイル、アミノ変性シリコーンオイル、 ポリオキシアルキル変性シリコーンオイル等がある。こ れらは1種あるいは2種以上の混合物で用いられる。以 上のような処理においては、単一の処理あるいは種々の 処理を併用してもよい。

【0032】また、本発明で用いられる韓水性チタン粒 子は公知のものが全て使用できる。表面処理剤として は、メチルハイドロジェンポリシロキサン、ジメチルポ リシロキサン、メチルフェニルポリシロキサン等の各種 のシリコーンオイル、メチルトリメトキシシラン、エチ

オクチルトリメトキシシラン、デシルトリメトキシシラ ン、オクタデンルトリメトキシシラン、ジメチルジメト キシシラン、オクチルトリエトキシシラン、n-オクタ デンルジメチル (3-トリメトキシンリル) プロビル) アンモニウムクロライド等の各種のアルキルシラントリ フルオロメチルエチルトリメトキシシラン、ヘプタデカ フルオロデシルトリメトキシシラン等の各種のフルオロ アルキルシラン、特にビニルトリメトキシシラン、アー アミノプロピルトリメトキシシラン等のシランカップリ イエロー、モリブデンイエロー、キノリンイエロー、タ 10 ング剤に代表されるシラン系、チタン系、アルミ系、ア ルミナージルコニア系等の各金属系カップリング剤のい ずれの処理剤も使用可能であり、これらの2種以上を渡 台して用いることができる。

> 【①①33】更に、本発明に使用し得るキャリアとして は、公知のものがすべて使用可能であり、例えば鉄粉、 フェライト粉、ニッケル紛のごとき磁性を有する紛体、 ガラスピーズ等及びこれらの表面を樹脂等で処理したも の等が挙げられる。

【①①34】本発明におけるキャリアにコーティングし 子は公知のものが全て使用できる。シランカップリング 26 得る樹脂粉末としては、スチレンーアクリル共重合体、 シリコーン樹脂、マレイン樹脂、フッ素系樹脂、ポリエ ステル樹脂、エポキシ樹脂等がある。スチレンーアクリ ル共重合体の場合は、30~90重量%のスチレン分を 有するものが好ましい。この場合スチレン分が30%未 満だと現像特性が低く、90重量%を超えるとコーティ ング膜が硬くなって剥離しやすくなり、キャリアの寿命 が短くなるからである。また、本発明におけるキャリア の樹脂コーティングは、上記樹脂の他に接着付与剤、硬 (化剤、潤滑剤、導電剤、帯電制御剤等を含有してもよ

> 【①①35】また、本発明は核体粒子表面に導電性微粉 末とシランカップリング剤を含有したシリコーン樹脂で 彼覆することにより、従来のシリコーン樹脂彼覆キャリ アの有している利点を同様に維持し、キャリアに導電性 を付与することによりキャリアへの電荷の蓄積現象と彼 寝暑の剝がれ・導電性微紛末の脱離を効果的に抑止する ものである。

【0036】本発明において、シリコーン樹脂で被覆す るキャリア核体粒子としては、従来より公知のものでよ 40 く、例えば鉄、コバルト、ニッケル等の強磁性金属:マ グネタイト、ヘマタイト、フェライト等の合金や化台 物:ガラスビーズ等が挙げられる。これら核体粒子の平 均粒径は通常10~1000 μm、好ましくは30~5 00 µmである。なお、シリコーン樹脂の使用量として は、通常キャリア核体粒子に対して1~10重量%であ

【0037】また、本発明で用いられるシリコーン樹脂 としては従来より知られるいずれのシリコーン樹脂であ ってもよく、例えば市販品として入手できる信越シリコ ルトリメトキシシラン、ヘキシルトリメトキシシラン、 50 ーン社製のKR261、KR271、KR272、KR

275, KR280, KR282, KR285, KR2 51. KR155, KR220, KR201, KR20 4. KR205. KR206, SA-4, ES100 1. ES1001N, ES1002T. KR3093や 亰レンリコーン社製のSR2100、SR2101、S R2107, SR2110, SR2108, SR210 9. SR2115, SR2400, SR2410. SR 2411、SH805、SH806A、SH840等が 用いられる。シリコーン樹脂圏の形成法としては、従来 手段でシリコーン樹脂を塗布すればよい。彼夏暑組成物 はシリコーン樹脂溶液中に導電性微舒末とシランカップ リング剤を添加して適宜のミキサーで分散して調製され

11

【0038】彼覆圏中に分散される導電性微粉末は0. 01~5.0μm程度の粒径のものが好ましく。シリコ ーン樹脂100重量部に対して0.01~30重量部添 加されることが好ましく、さらには0.1~20重量部 が好ましい。導電性微粉末としては、従来より公知のカー *スプラック、サーマルブラックが挙げられる。 【0039】シランカップリング剤としては

[0040] [(t1] X-Si-(OR),

なる式で表わされる化合物(ここでXは有機質と反応す る官能基で、Rは加水分解可能な基である)を用いるこ とができる。正帯電性用キャリアとしてはアミノ墓を有 するアミノシランカップリング剤が挙げられ、負帯電性 用キャリアとしてはエポキン基を有するエポキシシラン と同様、キャリア核体粒子の衰面に噴霧法、浸漬法等の 10 カップリング剤が挙げられる。シランカップリング剤の 含有量としては、シリコーン樹脂100煮量部に対して 0. 1~10重量部、好ましくは0. 2~5重量部添加 するのがよい.

12

[0041]

【実能例】以下、本発明を実施例により具体的に説明す るが、本発明はこれに限定されるものではない。なお、 部数はすべて重量部である。先ず、シリコーン樹脂を彼 穏暑に有するキャリアの製造例を示す。 これらは、公知 の手段により行なうことができる。

ーポンプラックでよく、コンタクトプラック、ファーネ※29 【0042】

[キャリア粒子の製造例]

シリコーン樹脂溶液 (KR251、信越シリコーン社製) 100部 1部 アミノシランカップリング剤 4部 カーボンブラック(#44、三菱化成工業社製) 100部

上記処方をホモミキサーで分散して被覆層形成波を顕製 した。この彼覆層形成液をマグネタイト核体粒子 (III) 1000重量部の表面に流動性床型塗布装置を用いて被※

※程層を形成しキャリアAを得た。

【0043】次に、トナーの製造例を示す。これらは公 知の手段により行なうことができる。

[トナー製造例1]

ポリエステル樹脂(重量平均分子量30万) 70部 スチレンーメチルメタアクリレート共産合体 30部 カーボンブラック(三菱カーボン社製#44) の部 酸化ライスワックス(酸価10) 6部 4部 含金属アゾ染料

上記組成の混合物をヘンシェルミキサー中で十分撹拌泥 合した後、ロールミルで130~140℃の温度で約3 0分間加熱溶融し、室温まで冷却後、得られた混練物を 微観式粉砕機で紡砕し、エルボージェット分級機により 分級し、表1に示した粒径分布を持ったトナーを得た。 【0044】 [添加剤混合] 前記トナー100部に対 し、添加剤を所定量添加し、ヘンシェルミキサーで撹拌 混合後、メッシュを通して大粒径の粒子を削除し最終ト ナーを得た。

[現像剤製造]前記トナー2.5部に対し、キャリアA 97. 5部とをボールミルで混合し、現像剤を得た。 【0045】各トナー評価内容に関しては以下に示すよ うに行なった。辞電商保持体の一部に転写材を介して転 写手段を当接させて、転写村の表面にトナー像を静電転 写するシステムを有する(株)リコー製液写機MF-2 00を用いて、各トナーについて画像品質評価を行なっ 50 判断基準により5段階で評価を行なった。

た。表1に各現像剤中の内容を示す。また、表2に回像 評価結果を示す。

【0046】〔評価方法及び評価基準〕

<虫喰い評価>官製はがき上に文字チャート (「機械」 の羅列、1行19文字、10ポイント、明朝)のコピー 40 を行ない、各行の転写抜け(虫喰い)文字の個数を数え て、その転写抜け(虫喰い)文字の個数の程度を、以下 の判断基準により5段階で評価を行なった。

②:大変良い

〇:良い

□:普通

△: 思い

×:大変悪い

【①①47】<園質>圃質(細線再現性)の評価は、初 期と10万枚後のコピー画像上の細線再現性を、以下の

(8)

特闘2000-267340

14

◎:大変良い○:良い

□: 普通 △: 悪い

×:大変無い 【①048】<画像濃度>全面黒ベタ原稿をA4サイズ で出力し、その画像濃度を以下の判断基準により5段階 で評価を行なった。

13

②: 大変良い

〇:良い

□:普通 △:思い

×:大変悪い

【0049】 <地肌汚れ>地肌汚れ評価は、初期と10 万枚後の非画像部の付着しているトナー濃度を、以下の

判断基準により5段階で評価を行なった。

* ②: 大変良い 〇: 良い □: 普通

> △: 思い ×: 大変悪い

【0050】<転写チリ>転写チリ評価は、初期と10 万枚後のコピー画像上のトナーのチリ個数の程度を、以下の判断基準により5段階で評価を行なった。

⊚:大変良い

10 〇:良い

□: 普通 △: 思い

×:大変悪い

【0051】 【表1】

			,				
	推案	快遊处舊痢		BETERE	# 1	棒边量	
				(m²/z)	(w (%)	
突毙例1	シリカ	ジクロロジメデ	ルシラン	180		0. 7	
英差例 2	シリカ	ジクロロジメチ	ルシラン	180	4	0. 7	
海難何8	シリカ	ヘペチメチレン	シシラサン	2 2 6		0.7	
实监例4	シリカ	ヘキサメチレン	シシラサン	215		1. 6	
实施例 5		ヘキチメチレン メヴルトリメト		218/9	1.	6/0. 8	
北极朔1		ジクロロジメチ		680		D. 1	
上數例 2	シリカ	ヘキサメチレン	シシラサン	215		1. 8	
之数的 B	シリカ	ヘキサメチレン	シシラテン	215). T	
北歐何4	シリカ	99 a a 9 x 4	ルシラン	180		0. 7	
北款何5	シリカ	ヘキサメチレン	シシテサン	215		D. 8	
比较例6	ンタナ	ヘキテメテレン	シシラサン	218		5. C	
			4				
	多級平均拉	医体理分布の	製船存款	ちェエ以下の		平均円形制	
	(#E)	(FB) 基本型(FB)	(%)	国は外	(%)		
大坡何1	6.54	1. 889	30. 2	58. C	16.0	0. 946	
发施例 2	6. 8 6	1. 860	28. 2	61.6.	14. 9	0. 946	
突纵例 B	5. 59	1.957	29.7	52. 6	12.8	0. 945	
火差例4	5 4 6	1. 649	30. 2	78.1	12.8	G. 951	
英德例5	8. 5 5	8.081	31.0	62.0	11.0	0. 9.50	
比較例 1	8.37	1. 886	29.3	54.9	17.6	0. 847	
比较例3	\$. 50	1. 595	29.0	81.0	17. B	D. § 50	
比較例3	6. 58	2. 161	88. 1	60. 8	10. 1	0. 961	
比較何 4	6.18	1. 770	28.6	61. 9	24. 0	0. 941	
七 歌 5 1 5	5. 59	1. 964	29.8	61.8	29. 7	J. 947	
七数割 6	5. 57	1. 879	28.5	62.0	4. 5	0. 946	

[0052]

50 【表2】

特闘2000-267340

15

	এক্তা ক্রাছ	西女	等級級組	绝融污化	記載チリ
実施 例 1	0	0	0	0	¢
奥准例 2	6	0	0	⊗	0
\$2091 3	•	9	0	€	0
実施例4	6	0	0	0	C
突游倒 5	•	0	6	•	0
法收例 1	0	×	Δ	6	0
比較例 2	×	0	Δ	ے	Δ
地較何 る	×	×	0	Δ	0
比较例4	×	ے	0	Δ	0
比較的 3	×	×	×	×	0
比較何多	0	×	×	•	×
	1				

[0053]

ナーを現像剤中で使用することによって、高回貿且つト 【発明の効果】以上、詳細且つ具体的な韻明より明らか ナーの転写抜け(虫喰い)が少ない。良好な静電遊像現

なように、本発明の特定の位径と経氣度と形状をもつト 20 像用トナーを提供することができる。