Bruder Györgyi és Láng Csabáné

KOMPLEX SZÁMOK

Példák és feladatok

Szerkesztette Láng Csabáné

Lektorálta Burcsi Péter

© Bruder Györgyi és Láng Csabáné, 2008

ELTE IK Budapest 2008-11-26 2. javított kiadás

Ez a példatár a Láng Csabáné: Példák és feladatok I., Komplex számok című, az ELTE Eötvös Kiadónál megjelent könyvnek $T_{\rm E}X$ -be átírt és javított vátozata

Tartalomjegyzék

0.	Előszó	3			
1.	Bevezetés				
2 .	Példák				
	2.1. Algebrai alak	11			
	2.2. Trigonometrikus alak, Moivre-azonosság	14			
	2.3. Négyzetgyökvonás algebrai alakkal, másodfokú komplex együtthatós egyenletek				
	2.4. <i>n</i> -edik gyök meghatározása trigonometrikus alakkal, egységgyökök				
	2.5. Komplex számok geometriai megfeleltetése				
	2.6. Szögfüggvények és a komplex számok				
	2.7. Komplex együtthatós egyenletek				
	2.8. Gyökök és együtthatók				
	2.9. Egyéb példák				
	2.10. Binomiális együtthatók és komplex számok	00			
3.	Feladatok	72			
	3.1. Algebrai alak	72			
	3.2. Trigonometrikus alak, Moivre-azonosság	73			
	3.3. Négyzetgyökvonás algebrai alakkal, másodfokú komplex együtthatós egyen-				
	letek	75			
	3.4. n-edik gyök meghatározása trigonometrikus alakkal, egységgyökök	76			
	3.5. Komplex számok geometriai megfeleltetése				
	3.6. Szögfüggvények és a komplex számok				
	3.7. Komplex együtthatós egyenletek				
	3.8. Gyökök és együtthatók				
4.	Feladatok megoldással	82			
	4.1. Algebrai alak	82			
	4.2. Trigonometrikus alak, Moivre-azonosság	87			
	4.3. Négyzetgyökvonás algebrai alakkal, másodfokú komplex együtthatós egyen-				
	letek	102			
	4.4. n-edik gyök meghatározása trigonometrikus alakkal, egységgyökök	111			
	4.5. Komplex számok geometriai megfeleltetése	118			
	4.6. Szögfüggvények és a komplex számok				
	4.7. Komplex együtthatós egyenletek				
	4.8. Gyökök és együtthatók				
	A12 1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1=			
Э.	Ajánlott irodalom	147			

0. Előszó

Akiknek ez a könyv készült

Elsősorban az ELTE TTK, illetve – átszervezési okok miatt 2003 őszétől – az ELTE Informatikai Kar programozó és programtervező matematikus, valamint informatika tanár szakos hallgatói számára készült ez a példatár.

Ajánlom azonban másoknak is, akik a komplex számokkal való számolásban jártasságot szeretnének szerezni. Ezt megkönnyítheti az, hogy a példák mind részletesen ki vannak dolgozva, és igen sok bevezető jellegű példa – "ujjgyakorlat" – is szerepel a könyvben.

A könyv szerkezete, technikai tudnivalók

A Bevezetés fejezetben azok a tudnivalók – definíciók, tételek – szerepelnek röviden összefoglalva, amelyekre a példák megoldása közben szükség lehet. A komplex számok részletes felépítése megtalálható többek között a szerző Bevezető fejezetek a matematikába I. című könyvében, illetve Reiman István Matematika című könyvében.

A teljes anyag lényegében két részre tagolódik. A *Példák* fejezetben minden egyes példa után következik a részletes megoldása. Úgy gondolom, hogy ennek a fejezetnek az anyagát végigkövetve kialakulhat egy átfogó kép a komplex számokról. Ha valaki ezeket az ismereteit mélyíteni kívánja, akkor a *Feladatok* fejezet példáihoz nyúlhat. Ezeknek a megoldásai a *Feladatok megoldással* fejezetben találhatók.

A példák megoldásában – ha van rá lehetőség – a szögek radiánban, π többszöröseként szerepelnek. Természetesen fokban is ki lehet fejezni ezeket a szögeket, amire ebben a könyvben is akad példa.

Köszönetnyilvánítás

A feladatok túlnyomórészt más könyvekből, példatárakból, mások által összeállított feladatsorokból származnak. Azok a források, amelyekről tudomásom van, szerepelnek az Ajánlott irodalom fejezetben.

A feladatok egy részére – amelyek Perkins&Perkins könyvéből, illetve a Nemzetközi Érettségi egyik feladatsorából származnak – Bruder Györgyi hívta fel a figyelmemet, akinek hálás vagyok a munkájáért, nélküle szegényesebb lett volna ez a könyv.

Megköszönöm Bui Minh Phong segítségét is, akitől a komplex számok kombinatorikai alkalmazását megvalósító példák származnak.

Köszönöm a lektorok segítségét, akik aprólékos munkával igyekeztek kiszűrni a hibákat. Tanácsaikat igyekeztem messzemenően figyelembe venni.

A könyvben található hibákra, hiányosságokra vonatkozó észrevételeket köszönettel fogadom.

Budapest, 2003. július

0. Előszó

Előszó a 2. kiadáshoz

A 2. kiadás a *Láng Csabáné: Példák és feladatok I., Komplex számok* című, az ELTE Eötvös Kiadónál megjelent könyvnek T_EX-be átírt és javított vátozata.

Akiknek a könyvet ajánlom

Időközben új szakok indultak, így most az ELTE Informatikai Kar programtervező informatikus szak hallgatói számára is hasznos lehet ez a példatár.

Köszönetnyilvánítás

Köszönöm Burcsi Péter lektor segítségét, valamint Imrényi Katalin munkáját, aki az anyag TEX-be való átírásában nagyon nagy segítségemre volt.

Igen nagy segítséget jelentett Kovács Sándor munkája, aki az anyagot rendkívül lelkiismeretesen átnézte, és hasznos megjegyzéseivel lehetővé tette, hogy a hibák, hiányosságok száma jelentősen csökkenjen a digitális könyvben.

Budapest, 2008. november

Láng Csabáné zslang@compalg.inf.elte.hu ELTE Informatikai Kar Komputeralgebra Tanszék 1117 Budapest, Pázmány Péter sétány 1/C.

1. Bevezetés

A könyvben $\mathbb{N} = \{1, 2, 3, \ldots\}$ a természetes számokat, \mathbb{R} pedig a valós számokat jelöli.

Komplex számok. A valós számokból álló rendezett számpárok halmazát, ha abban a műveleteket az alábbi módon értelmezzük, komplex számoknak nevezzük, és a \mathbb{C} szimbólummal jelöljük: tetszőleges $(a,b),(c,d)\in\mathbb{C}$ esetén legyen

$$(a, b) + (c, d) = (a + c, b + d)$$
 és $(a, b) \cdot (c, d) = (ac - bd, ad + bc)$.

Az (a,b) és a (c,d) komplex szám tehát pontosan akkor egyenlő, ha a=c és b=d.

Algebrai alak. A z komplex szám algebrai alakja z=a+bi, ahol $a,b\in\mathbb{R}$ és i a (0,1) komplex számot jelöli. z valós része $\mathrm{Re}(z)=a,z$ képzetes (imaginárius) része $\mathrm{Im}(z)=b$. Két komplex szám egyenlő, ha valós és képzetes részük is egyenlő. Algebrai alakban írva a műveletek definíciója:

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

$$(a+bi)\cdot(c+di) = (ac-bd) + (ad+bc)i$$

A szorzási szabályt alkalmazva azt kapjuk, hogy $i^2 = -1$.

Gauss-féle számsík. A komplex számok geometriai realizációja az úgynevezett Gauss-féle számsík. Ha a síkon derékszögű koordinátarenszert vezetünk be, akkor a komplex számok e sík pontjaiként ábrázolhatók: a z = a + bi komplex szám képe az a abszcisszájú, b ordinátájú pont (1.1. ábra).

1.1. ábra.

A vízszintes tengelyt valós tengelynek, a függőlegeset képzetes vagy imaginárius tengelynek nevezzük. A z=a+bi komplex szám felfogható az origóból a P pontba mutató vektorként is. Komplex számok összegének megfelelő vektor a tagoknak megfelelő vektorok összege (1.4.ábra).

6 1. Bevezetés

Trigonometrikus alak. A számsíkon a P pontnak megfelelő komplex szám nem csupán a és b koordinátáival azonosítható, hanem megadható az OP vektor r hosszával és a vektor valós tengellyel bezárt α szögével is (1.2. ábra). (Az óramutató járásával ellentétes irányítású szöget pozitív szögként értelmezzük.)

1.2. ábra.

r a komplex szám abszolút értéke vagy modulusa (|z|-kel is jelöljük), φ a szöge (arcusa illetve argumentuma). Nyilván $r \geq 0$ minden $z \in \mathbb{C}$ esetén.

Amint az 1.2. ábráról leolvasható: $a = r \cos \varphi$ és $b = r \sin \varphi$, és így $z = r(\cos \alpha + i \sin \alpha)$, ami a z komplex szám trigonometrikus alakja.

A 0 komplex szám esetén r=0, φ pedig tetszőleges. A trigonometrikus alak a $z\neq 0$ esetben sem egyértelmű, hiszen az egymástól 2π egész számú többszörösével eltérő argumentumok ugyanazt a P pontot azonosítják, s így ugyanazt a komplex számot jelentik.

Két komplex szám, $z = r(\cos \varphi + i \sin \varphi)$ és $z_1 = r_1(\cos \varphi_1 + i \sin \varphi_1)$ $r \neq 0$ esetén akkor és csak akkor egyenlő, ha $r = r_1$ és $\varphi - \varphi_1 = 2k\pi$ $(k \in \mathbb{Z})$. z fő argumentuma φ , ha $0 \leq \varphi < 2\pi$, illetve $0 \leq \varphi < 360^{\circ}$.

Algebrai alakból a trigonometrikus alak meghatározása.

Ha z=0, akkor r=0, φ tetszőleges. Ha a és b adottak, és $z\neq 0$, akkor a trigonometrikus alak meghatározása a következőképpen történhet:

$$r=\sqrt{a^2+b^2},$$
 és φ az a szög, amelyre $\cos\varphi=rac{a}{r}$ és $\sin\varphi=rac{b}{r}.$

 φ meghatározásához jelölje φ_1 a $\cos \varphi = \frac{a}{r}$ egyenlet 0 és π közé eső egyetlen megoldását, 0, illetve π is megengedett. Ha $b \geq 0$, akkor $\varphi = \varphi_1$, ha pedig b < 0, akkor $\varphi = 2\pi - \varphi_1$.

Exponenciális alak. Az 1 abszolút értékű, φ argumentumú komplex számot $e^{i\varphi}$ -vel jelölhetjük, ahol e a természetes logaritmus alapszáma. Az r abszolút értékű, φ argumentumu komplex szám trigonometrikus és exponenciális alakja közötti kapcsolat: $r(\cos\varphi+i\sin\varphi)=re^{i\varphi}$.

Komplex konjugált. A z=a+bi szám (komplex) konjugáltjának nevezzük a $\overline{z}=a-bi$ számot.

A Gauss-számsíkon egy komplex szám és a konjugáltjának megfelelő pontok egymásnak a valós tengelyre vonatkozó tükörképei (1.3. ábra). Legyen z_1 és $z_2 \in \mathbb{C}$. Ekkor

$$\overline{\overline{z}}_1 = z_1, \quad \overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2, \quad \overline{z_1 \cdot z_2} = \overline{z}_1 \cdot \overline{z}_2,$$

1. Bevezetés

1.3. ábra.

1.4. ábra.

tehát a konjugálás és az alapműveletek felcserélhetőek.

Az abszolút érték képzése és az alapműveletek kapcsolatára a következő igaz:

$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$
 és $|z_1 + z_2| \le |z_1| + |z_2|$.

 $\rm Az$ utóbbi a háromszög-egyenlőtlenséggel is igazolható (1.4. ábra).

Ha
$$z = a + bi = r(\cos \varphi + i \sin \varphi)$$
, akkor $z \cdot \overline{z} = a^2 + b^2 = r^2 = |z|^2$.

Moivre-azonosság. Legyen $z_1 = r_1(\cos \alpha + i \sin \alpha)$ és $z_2 = r_2(\cos \beta + i \sin \beta)$. A szorzatuk

$$z_1 \cdot z_2 = r_1 \cdot r_2 \left(\cos(\alpha + \beta) + i \sin(\alpha + \beta) \right).$$

Komplex számok szorzása esetén az abszolút értékek összeszorzódnak, az argumentumok pedig összeadódnak.

Hatványozásra a következő igaz. Ha $n \in \mathbb{N}$, akkor $z_1^n = r_1^n(\cos n\alpha + i\sin n\alpha)$.

Számítsuk ki a $z = r(\cos \varphi + i \sin \varphi) \neq 0$ szám reciprokát.

$$\frac{1}{z} = \frac{1}{r} (\cos \varphi - i \sin \varphi) = \frac{1}{r} (\cos(-\varphi) + i \sin(-\varphi))$$

Az eredmény abszolút értéke a z komplex szám abszolút értékének reciproka, argumentuma az eredeti argumentum (-1)-szerese.

8 1. Bevezetés

Az osztást a szorzás és a reciprok felhasználásával a következőképpen végezhetjük:

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left(\cos(\alpha - \beta) + i \sin(\alpha - \beta) \right), \text{ ha } z_2 \neq 0$$

Gyökvonás. $z \in \mathbb{C}$, $n \in \mathbb{N}$ esetén a $w \in \mathbb{C}$ számot a z szám n-edik gyökének nevezzük, ha $w^n = z$.

Legyen $z\in\mathbb{C},n\in\mathbb{N}.$ A z=0 szám egyetlen n-edik gyöke 0. Ha $z\neq0$ és $z=r(\cos\varphi+i\sin\varphi),$ akkor z-nek n különböző n-edik gyöke van, melyek trigonometrikus alakja

 $w_k = \sqrt[n]{r} \left(\cos \frac{\varphi + k2\pi}{n} + i \sin \frac{\varphi + k2\pi}{n} \right), \quad 0 \le k \le n - 1.$

Valamely $z \neq 0$ komplex szám n-edik gyökei a számsíkon ábrázolva n oldalú szabályos sokszög csúcsai. A csúcsoknak az origótól való távolsága $\sqrt[n]{r}$, az egyik csúcsnak a valós tengellyel bezárt szöge $\frac{\varphi}{r}$.

 $n \in \mathbb{N} \setminus \{1\}$ esetén a $z \in \mathbb{C}$ szám n-edik gyökeinek összege 0.

Egységgyök, primitív n-edik egységgyök.

Az 1 komplex szám n-edik gyökeit n-edik egységgyököknek nevezzük $(n \in \mathbb{N})$.

Legyen $n \in \mathbb{N}$ rögzített. Mivel $1 = 1 \cdot (\cos 0 + i \sin 0)$, az n-edik egységgyökök trigonometrikus alakja

$$\varepsilon_k = \cos\left(k\frac{2\pi}{n}\right) + i\sin\left(k\frac{2\pi}{n}\right), \quad 0 \le k \le n - 1.$$

 $z \in \mathbb{C} \setminus 0$, $n \in \mathbb{N}$ és $w^n = z$ esetén z többi n-edik gyöke $w\varepsilon_k$ $(1 \le k \le n-1)$, ahol ε_k n-edik egységgyök.

Primitív n-edik egységgyök az az n-edik egységgyök, amelynek különböző természetes szám kitevőjű hatványai előállítják az összes n-edik egységgyököt.

Például a negyedik egységgyökök $(1,\ i,\ -1,\ -i)$ közül az i különböző hatványai előállítják a többi negyedik egységgyököt, -1 hatványai között azonban csak az 1 és -1 ismétlődik. A negyedik egységgyökök közül i és -i primitív negyedik egységgyökök, míg az 1 és -1 nem azok. Tetszőleges n-re primitív n-edik egységgyök az $\varepsilon_1 = \cos\frac{2\pi}{n} + i\sin\frac{2\pi}{n}$, mert

$$\varepsilon_1^k = \cos\left(k\frac{2\pi}{n}\right) + i\sin\left(k\frac{2\pi}{n}\right) = \varepsilon_k, \quad 0 \le k \le n-1$$

 ε_k pontosan akkor lesz primitív n-edik egységgyök, ha k és n relatív prímek, tehát nincs 1-nél nagyobb közös osztójuk.

Megállapodás. $\sqrt{z} = a + bi$, ha $(a + bi)^2 = z$ és a > 0 vagy a = 0 és $b \ge 0$. Ezek szerint a \sqrt{z} a két gyök közül azt jelöli, amelyik az 1.5. ábrán megjelölt tartományba esik. A másikat (az ellentettjét) $(-\sqrt{z})$ -vel jelöljük.

Bizonyos azonosságok alkalmazásánál óvatosnak kell lennünk. Nézzük a következő – nyilvánvalóan hibás – átalakítást:

$$-1 = i^2 = \sqrt{-1}\sqrt{-1} = \sqrt{(-1)(-1)} = \sqrt{1} = 1$$
!

A nyilvánvaló hibát az okozza, hogy a $\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}$ azonosság nem alkalmazható feltétel nélkül.

 \sqrt{z} -t nem lehet oly módon definiálni \mathbb{C} -n, hogy ez az azonosság korlátlanul fennálljon.

1. Bevezetés 9

Másodfokú egyenletek megoldása.

Legyen $x, a, b, c \in \mathbb{C}, a \neq 0$ és $ax^2 + bx + c = 0$, Ekkor

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

A komplex együtthatós másodfokú egyenletek megoldhatóak, és a megoldás képlete hasonló a valós esetből ismert képlethez.

Binomiális együtthatók, binomiális tétel.

Legyen k és n nemnegatív egész szám, $k \leq n$, és

$$0! = 1,$$
 $n! = 1 \cdot 2 \cdot \dots \cdot n,$ $\binom{n}{k} = \frac{n!}{k!(n-k)!}.$

Ha n < k, akkor legyen $\binom{n}{k} = 0$. Könnyen látható, hogy $\binom{n}{0} = \frac{n!}{0!n!} = 1$, $\binom{n}{n} = \frac{n!}{n!0!} = 1$, $\binom{n}{k} = \binom{n}{n-k}$. Binomiális tétel: Legyen n természetes szám, x,y tetszőleges komplex számok. Ekkor

$$(x+y)^n = \binom{n}{0} y^n + \binom{n}{1} x y^{n-1} + \dots + \binom{n}{k} x^k y^{n-k} + \dots + \binom{n}{n} x^n.$$

Ha a binomiális tételbe az x = y = 1 értékeket helyettesítjük, akkor az

$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = \sum_{k=0}^{n} C_n^k = 2^n$$

azonosságot kapjuk, míg az x = -1 és y = 1 helyettesítéssel az

$$\binom{n}{0} - \binom{n}{1} + \ldots + (-1)^n \binom{n}{n} = 0$$

eredményre jutunk.

Gyöktényezős alak, Vieta-formulák, valós együtthatós egyenletek komplex gyökei.

Legyen $n \in \mathbb{N}$, $a_k \in \mathbb{C}$, $(k = 0, 1, \ldots, n)$, $a_n \neq 0$.

Az $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ komplex együtthatós polinomnak a komplex számok körében n nem feltétlenül különböző gyöke van, c_1, c_2, \ldots, c_n . Ekkor f(x) gyöktényezős alakja $a_n(x-c_1)\cdot(x-c_2)\cdot\ldots\cdot(x-c_n)$.

1. Bevezetés

Ha ebben az alakban elvégezzük a beszorzásokat, akkor az

$$f(x) = a_n(x^n - (c_1 + c_2 + \dots + c_n)x^{n-1} + (c_1 \cdot c_2 + c_1 \cdot c_3 + \dots + c_{n-1} \cdot c_n)x^{n-2} + \dots + (-1)^n(c_1 \cdot c_2 \cdot \dots \cdot c_n)$$

alakhoz jutunk. Ebből a gyökök és együtthatók közötti alábbi összefüggéseket, az úgynevezett Vieta-formulákat kapjuk:

$$\frac{a_{n-1}}{a_n} = -(c_1 + c_2 + \dots + c_n), \quad \frac{a_{n-2}}{a_n} = (c_1 \cdot c_2 + c_1 \cdot c_3 + \dots + c_{n-1} \cdot c_n), \dots$$

$$\frac{a_0}{a_n} = (-1)^n (c_1 \cdot c_2 \cdot \ldots \cdot c_n).$$

Ha valamely valós együtthatós polinomnak gyöke a ckomplex szám, akkor \overline{c} is gyöke.

Nevezetes szögek szögfüggvényei.

Az alábbi tréfás táblázat segíthet memorizálni a nevezetes szögek szögfüggvényeit.

sin		cos
0°	$\frac{\sqrt{0}}{2} = 0$	90°
30°	$\frac{\sqrt{1}}{2} = \frac{1}{2}$	60°
45°	$\frac{\sqrt{2}}{2}$	45°
60°	$\frac{\sqrt{3}}{2}$	30°
90°	$\frac{\sqrt{4}}{2} = 1$	0°

2. Példák

2.1. Algebrai alak

2.1-1. Fejezzük ki algebrai alakban a következő számokat:

a.
$$(3+i)(2+3i)$$
 b. $(1-2i)(5+i)$ **c.** $(2-5i)^2$ **d.** $(1-i)^3$

b.
$$(1-2i)(5+i)$$

c.
$$(2-5i)^2$$

d.
$$(1-i)^3$$

Megoldás. Az algebrai alakban megadott komplex számok összeadására és szorzására vonatkozó összefüggéseket alkalmazzuk.

a.
$$(3+i)(2+3i) = (6-3) + (9+2)i = 3+11i$$

b.
$$(1-2i)(5+i) = 7-9i$$

c.
$$(2-5i)^2 = -21-20i$$

c.
$$(2-5i)^2 = -21 - 20i$$

d. $(1-i)^3 = 1 - 3i - 3 + i = -2 - 2i$

2.1-2. Írjuk a lehető legegyszerűbb alakban a következő kifejezéseket:

a.
$$i^3$$

1.
$$\frac{1}{i^2}$$

e.
$$\frac{1}{i}$$

a.
$$i^3$$
 b. i^5 **c.** i^8 **d.** $\frac{1}{i^2}$ **e.** $\frac{1}{i}$ **f.** $\frac{1}{i^3}$

Megoldás. Támaszkodunk arra, hogy $i^2 = -1$

a.
$$i^3 = -i$$

b.
$$i^5 = i$$

c.
$$i^8 = 1$$

a.
$$i^3 = -i$$
 b. $i^5 = i$ **c.** $i^8 = 1$ **d.** $\frac{1}{i^2} = -1$ **e.** $\frac{1}{i} = -i$ **f.** $\frac{1}{i^3} = i$

e.
$$\frac{1}{i} = -i$$

f.
$$\frac{1}{i^3} = i$$

2.1-3. Számítsuk ki i^n értékét, ha n egész szám.

 $\mathbf{Megoldás}$. Legyen először n természetes szám. Nézzük n alakját a 4-gyel való oszthatóságot figyelve (k természetes szám), és felhasználva, hogy $i^2 = -1$, megkapjuk az alábbi táblázat második oszlopában látható értékeket. Ha n=0, akkor $i^n=1$. Ha nnegatív szám, akkor nézzük a következő átalakítást: Legyen $n=-s,\ s\in\mathbb{N}.$ Ekkor

$$i^n=i^{-s}=\frac{1}{i^s}=\frac{(-i)^s}{i^s\cdot(-i)^s}=(-i)^s=(-1)^si^s$$
. Ezt figyelembe véve kapjuk a harmadik

oszlopot.

n	i^n , ha $n \in \mathbb{N}$	i^n , ha $-n \in \mathbb{N}$
4k+1	i	-i
4k+2	-1	-1
4k+3	-i	i
4k	1	1

12

2.1-4. Adjuk meg a következő komplex számok konjugáltját:

a.
$$3 + 5i$$

b.
$$4 - 7i$$

d.
$$-4$$

b.
$$4-7i$$
 c. $3i$ **d.** -4 **e.** $-1+i$

Megoldás.

a.
$$\overline{3+5i} = 3-5i$$

b.
$$\overline{4-7i} = 4+7i$$

c.
$$3i = -3i$$

d.
$$\overline{-4} = -4$$

e.
$$\overline{-1+i} = -1-i$$

2.1-5. A következő számokat fejezzük ki algebrai alakban:

a.
$$\frac{3+4i}{1-2i}$$

b.
$$\frac{\sqrt{3} - i}{\sqrt{3} + i}$$

c.
$$\frac{1}{(1+i)^2}$$

a.
$$\frac{3+4i}{1-2i}$$
 b. $\frac{\sqrt{3}-i}{\sqrt{3}+i}$ c. $\frac{1}{(1+i)^2}$ d. $\frac{1}{(2-i)(1+2i)}$

Megoldás. A nevezőből úgy tüntethetjük el az i-t, hogy a nevező konjugáltjával bővítünk.

a.
$$\frac{3+4i}{1-2i} = \frac{(3+4i)(1+2i)}{(1-2i)(1+2i)} = \frac{-5+10i}{1+4} = -1+2i$$

b.
$$\frac{\sqrt{3}-i}{\sqrt{3}+i} = \frac{2-2\sqrt{3}i}{4} = \frac{1-\sqrt{3}i}{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}i$$

$$\mathbf{c.} \quad \frac{1}{(1+i)^2} = \frac{-2i}{4} = -\frac{1}{2}i$$

d.
$$\frac{1}{(2-i)(1+2i)} = \frac{1}{4+3i} = \frac{4-3i}{25} = \frac{4}{25} - \frac{3}{25}i$$

2.1-6. Fejezzük ki a következő számokat algebrai alakban:

a.
$$\frac{1}{2+3i} + \frac{1}{2-3i}$$
 b. $\frac{1}{3+i} - \frac{1}{1+7i}$

b.
$$\frac{1}{3+i} - \frac{1}{1+7i}$$

Megoldás.

$$\mathbf{a.} \ \frac{1}{2+3i} + \frac{1}{2-3i} = \frac{4}{13}$$

b.
$$\frac{1}{3+i} - \frac{1}{1+7i} = \frac{-2+6i}{-4+22i} = \frac{-1+3i}{-2+11i} = \frac{35+5i}{125} = \frac{7+i}{25} = \frac{7}{25} + \frac{1}{25}i$$

2.1-7. Keressük meg az $\frac{1}{(1-2i)^2}$ komplex szám valós és képzetes részét.

2.1. Algebrai alak

13

Megoldás.

$$z = \frac{1}{(1-2i)^2} = \frac{(1+2i)^2}{((1-2i)(1+2i))^2} = \frac{1-4+4i}{25} = -\frac{3}{25} + \frac{4}{25}i.$$
Amiből $\operatorname{Re}(z) = -\frac{3}{25}, \quad \operatorname{Im}(z) = \frac{4}{25}.$

2.1-8. Adjuk meg az a és b valós számok értékét, ha:

a.
$$(a+bi)(2-i) = a+3i$$
 b. $(a+i)(1+bi) = 3b+ai$

Megoldás. Támaszkodunk arra a tényre, hogy az algebrai alak egyértelmű. A kifejezés bal oldalát is algebrai alakban adjuk meg, s a bal oldal valós része egyenlő a jobb oldal valós részével, hasonlóan a képzetes részek is megegyeznek a bal és a jobb oldalon. Ebből két valós együtthatós egyenletből álló egyenletrendszert kapunk, amit megoldunk.

a.
$$(a+bi)(2-i) = a+3i$$
, $2a-ai+2bi+b = a+3i$, $2a+b+(2b-a)i = a+3i$.

A következő két valós együtthatós egyenletet kapjuk

$$2a + b = a$$
 és $2b - a = 3$.

A megoldás b = 1, a = -1.

b.
$$(a+i)(1+bi) = 3b+ai$$
, $a+abi+i-b = 3b+ai$, $a-b+(1+ab)i = 3b+ai$.

Ebből a következő két valós együtthatós egyenletet kapjuk a - b = 3b és 1 + ab = a.

Amiből
$$a = 4b$$
 és $1 + 4b^2 = 4b$. $4b^2 - 4b + 1 = 0$, $b = \frac{4}{8} = \frac{1}{2}$, $a = 2$.

2.1-9. Legyen

$$\frac{5}{x+yi} + \frac{2}{1+3i} = 1,$$

ahol x és y valós számok. Adjuk meg x és y értékét. Megoldás.

$$\frac{5}{x+yi} + \frac{2}{1+3i} = 1$$

$$5(1+3i) + 2(x+yi) = (x+yi)(1+3i)$$

$$5 + 15i + 2x + 2yi = x + 3xi + yi - 3y$$

Amiből a következő valós együtthatós egyenletrendszer adódik:

$$5 + 2x = x - 3y$$
 és $15 + 2y = 3x + y$.

A megoldás x = 4, y = -3.

2.1-10. Számítsuk ki a következő kifejezés értékét:

$$(1+2i)^6$$

14 2. Példák

Megoldás. A binomiális tétel alkalmazásával:

$$(1+2i)^6 = \binom{6}{0}1 + \binom{6}{1}2i + \binom{6}{2}4 \cdot i^2 + \binom{6}{3}8 \cdot i^3 + \binom{6}{4}16 \cdot i^4 + \binom{6}{5}32 \cdot i^5 + \binom{6}{6}64 \cdot i^6$$

$$= 1 + 6 \cdot 2i + 15 \cdot 4 \cdot (-1) + 20 \cdot 8 \cdot (-i) + 15 \cdot 16 + 6 \cdot 32i + 1 \cdot 64 \cdot (-1) =$$

$$= 1 - 60 + 240 - 64 + i(12 - 160 + 192) = 117 + 44i$$

2.2. Trigonometrikus alak, Moivre-azonosság

Az 1-3. feladatokban szereplő komplex számoknak adjuk meg az abszolút értékét és a fő argumentumát. A fő argumentumot radiánban, π többszöröseként fejezzük ki. (φ fő argumentum, ha $0 \le \varphi < 2\pi$). Adjuk meg a számokat trigonometrikus alakban is.

2.2-1.

a.
$$\sqrt{3} + i$$
 b. $1 - i$ **c.** $4i$ **d.** -3

b.
$$1 - i$$

$$\mathbf{d} \cdot - \mathbf{i}$$

Megoldás.

a.
$$z=\sqrt{3}+i=a+bi,$$
 $|z|=r=\sqrt{a^2+b^2}=\sqrt{\left(\sqrt{3}\right)^2+1^2}=\sqrt{4}=2$ Az argumentum kiszámítása érdekében a

$$\cos \varphi = \frac{a}{r} = \frac{\sqrt{3}}{2}$$
 és a $\sin \varphi = \frac{b}{r} = \frac{1}{2}$

összefüggéseknek megfelelő szöget keresünk. $\cos \varphi = \frac{\sqrt{3}}{2}$ 0 és π közé eső megoldása legyen φ_1 . $\varphi_1 = \frac{\pi}{6}$.

Általában, ha $\sin \varphi \geq 0$, akkor $\varphi = \varphi_1$, ha pedig $\sin \varphi < 0$, akkor $\varphi = 2\pi - \varphi_1$. Esetünkben $\varphi = \varphi_1 = \frac{\pi}{6}$. z trigonometrikus alakja ezek szerint:

$$z = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right).$$

b.
$$z = 1 - i$$
, $|z| = r = \sqrt{2}$, $\cos \varphi = \frac{\sqrt{2}}{2}$, $\sin \varphi = -\frac{\sqrt{2}}{2}$.

 $\cos\varphi = \frac{\sqrt{2}}{2} \quad 0 \text{ \'es } \pi \text{ k\"oz\'e es\~o} \text{ megold\'es\'at jel\"olje } \varphi_1. \quad \varphi_1 = \frac{\pi}{4}. \quad \sin\varphi < 0, \text{ ez\'ert}$ $\varphi = 2\pi - \varphi_1 = 2\pi - \frac{\pi}{4} = \frac{7\pi}{4}. \text{ A trigonometrikus alak:}$

$$z = \sqrt{2} \left(\cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4} \right)$$

c.
$$z = 4i$$
, $|z| = r = 4$, $\cos \varphi = 0$, $\sin \varphi = 1$.

 $\cos\varphi=0\quad 0 \text{ \'es π k\"oz\'e es\~o} \text{ megold\'asa} \quad \varphi_1=\frac{\pi}{2}. \sin\varphi>0, \text{ ez\'ert } \varphi=\varphi_1=\frac{\pi}{2}.$

z trigonometrikus alakja:

$$z = 4\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$

 $\begin{aligned} \mathbf{d.} & z = -3, & |z| = r = 3, & \cos\varphi = -1, & \sin\varphi = 0.\\ \cos\varphi = -1 & 0 \text{ \'es } \pi \text{ k\"oz\'e es\'o megold\'asa } \varphi_1 = \pi. & \sin\varphi \geq 0, \text{ ez\'ert } \varphi = \varphi_1 = \pi.\\ z \text{ trigonometrikus alakja:} & z = 3(\cos\pi + i\sin\pi). \end{aligned}$

2.2-2. a.
$$\frac{10}{\sqrt{3}-i}$$
 b. $\frac{2+3i}{5+i}$

Megoldás. Először algebrai alakra hozzuk a számokat.

a.
$$z = \frac{10}{\sqrt{3} - i} = \frac{10(\sqrt{3} + i)}{4} = \frac{5}{2}\sqrt{3} + \frac{5}{2}i,$$

 $|z| = r = \frac{5}{2}\sqrt{4} = 5, \qquad \cos\varphi = \frac{\sqrt{3}}{2}, \qquad \sin\varphi = \frac{1}{2}.$

 $\cos \varphi = \frac{\sqrt{3}}{2}$ 0 és π közé eső megoldása $\varphi_1 = \frac{\pi}{6}$. $\sin \varphi > 0$, ezért $\varphi = \varphi_1 = \frac{\pi}{6}$.

z trigonometrikus alakja: $z = 5\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$.

b.
$$z = \frac{2+3i}{5+i} = \frac{(2+3i)(5-i)}{25+1} = \frac{13+13i}{26} = \frac{1}{2} + \frac{1}{2}i, \qquad |z| = r = \frac{\sqrt{2}}{2},$$

$$\cos\varphi = \frac{\sqrt{2}}{2}, \qquad \sin\varphi = \frac{\sqrt{2}}{2}, \qquad \varphi = \frac{\pi}{4}, \qquad z = \frac{\sqrt{2}}{2} \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right).$$

2.2-3. a.
$$\cos \frac{2\pi}{3} - i \sin \frac{2\pi}{3}$$
 b. $-2 \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right)$

Megoldás.

a.
$$z = \cos \frac{2\pi}{3} - i \sin \frac{2\pi}{3}$$
, $|z| = r = 1$, $\cos \varphi = \cos \frac{2\pi}{3} = -\frac{1}{2}$, $\sin \varphi = -\sin \frac{2\pi}{3} = -\frac{\sqrt{3}}{2}$, $\varphi_1 = \frac{2\pi}{3}$, $\varphi = 2\pi - \frac{2\pi}{3} = \frac{4\pi}{3}$.

16

z trigonometrikus alakja: $z = \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$

$$\mathbf{b.} \quad z = -2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right), \qquad |z| = r = 2, \qquad \cos\varphi = -\cos\frac{\pi}{4} = -\frac{\sqrt{2}}{2},$$
$$\sin\varphi = -\sin\frac{\pi}{4} = -\frac{\sqrt{2}}{2}, \qquad \varphi_1 = \frac{3\pi}{4}, \qquad \varphi = 2\pi - \frac{3\pi}{4} = \frac{5\pi}{4}.$$
$$z \text{ trigonometrikus alakja: } z = 2\left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right)$$

2.2-4. Az alábbi feladatban szereplő komplex számoknak adjuk meg az abszolút értékét (modulusát) és a fő argumentumát. A fő argumentumot radiánban, 3 tizedesjegy pontossággal fejezzük ki. Adjuk meg a számok trigonometrikus alakjának egy közelítő értékét is.

a.
$$3-4i$$

b.
$$-2+i$$

c.
$$-1 - 3i$$

d.
$$5 - 3$$

Megoldás.

Ebben a feladatban függvénytáblázat, vagy számológép segítségével keressük meg az argumentumok közelítő értékét.

2.2-5. Hozzuk trigonometrikus alakra a következő komplex számokat:

a.
$$\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

a.
$$\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
 b. $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$ **c.** $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$ **d.** $\frac{1}{2} - \frac{\sqrt{3}}{2}i$

c.
$$-\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

d.
$$\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

Megoldás.

|z| mindegyik esetben 1.

a.
$$\frac{1}{2} + \frac{\sqrt{3}}{2}i = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$$

a.
$$\frac{1}{2} + \frac{\sqrt{3}}{2}i = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$$
 b. $-\frac{1}{2} + \frac{\sqrt{3}}{2}i = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}$

c.
$$-\frac{1}{2} - \frac{\sqrt{3}}{2}i = \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}$$
 d. $\frac{1}{2} - \frac{\sqrt{3}}{2}i = \cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}$

d.
$$\frac{1}{2} - \frac{\sqrt{3}}{2}i = \cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}$$

2.2-6. Adjuk meg trigonometrikus alakban a következő komplex számokat:

a. $\cos \varphi - i \sin \varphi$

b. $-\cos\varphi + i\sin\varphi$ **c.** $-\cos\varphi - i\sin\varphi$

Megoldás.

Mindegyik szám abszolút értéke 1.

a. $z = \cos \varphi - i \sin \varphi$. Olyan α szög az argumentum, amelyre $\cos \alpha = \cos \varphi$ és $\sin \alpha = -\sin \varphi$.

A Gauss-számsíkban α a φ -nek az x tengelyre való tükörképe, tehát $\alpha = 2\pi - \varphi$ és $z = \cos(2\pi - \varphi) + i\sin(2\pi - \varphi)$

b. $z = -\cos\varphi + i\sin\varphi$. Olyan α szög az argumentum, amelyre $\cos\alpha = -\cos\varphi$ és $\sin \alpha = \sin \varphi$.

A Gauss-számsíkban α a φ -nek az y tengelyre való tükörképe, tehát $\alpha = \pi - \varphi$ és $z = \cos(\pi - \varphi) + i\sin(\pi - \varphi).$

c. $z = -\cos\varphi - i\sin\varphi$. Olyan α szög az argumentum, amelyre $\cos\alpha = -\cos\varphi$ és $\sin \alpha = -\sin \varphi$.

A Gauss-számsíkban α a φ -nek az origóra való tükörképe, tehát $\alpha = \pi + \varphi$ $z = \cos(\pi + \varphi) + i\sin(\pi + \varphi).$

2.2-7. Egyszerűsítsük a következő kifejezéseket.

a.
$$\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) \cdot \left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$$

$$\mathbf{b.} \quad \left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right)^2$$

$$\mathbf{c.} \quad \frac{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}{\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}}$$

Megoldás.

A Moivre-azonosságot és következményeit használjuk fel.

$$\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) \cdot \left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right) = \cos\left(\frac{\pi}{4} + \frac{3\pi}{4}\right) + i\sin\left(\frac{\pi}{4} + \frac{3\pi}{4}\right)$$

$$= \cos(\pi) + i\sin(\pi)$$

$$= -1$$

b.

$$\left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right)^2 = \cos\frac{5\pi \cdot 2}{12} + i\sin\frac{5\pi \cdot 2}{12}$$
$$= \cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}$$
$$= -\frac{\sqrt{3}}{2} + \frac{1}{2}i$$

c.

 $2. \ P\'eld\'ak$

$$\frac{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}{\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}} = \cos\left(\frac{\pi}{3} - \frac{5\pi}{6}\right) + i\sin\left(\frac{\pi}{3} - \frac{5\pi}{6}\right)$$
$$= \cos\frac{-\pi}{2} + i\sin\frac{-\pi}{2}$$
$$= -i$$

2.2-8. Végezzük el a kijelölt műveleteket trigonometrikus alak felhasználásával.

$$\frac{(1+i)^9}{(1-i)^7}$$

Megoldás. A számláló és a nevező trigonometrikus alakja:

$$1 + i = \sqrt{2} \left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right) = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$$

$$1 - i = \sqrt{2} \left(\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2} \right) = \sqrt{2} \left(\cos \left(-\frac{\pi}{4} \right) + i \sin \left(-\frac{\pi}{4} \right) \right)$$

$$\frac{(1+i)^9}{(1-i)^7} = \frac{\sqrt{2}^9 \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)^9}{\sqrt{2}^7 \left(\cos \left(-\frac{\pi}{4} \right) + i \sin \left(-\frac{\pi}{4} \right) \right)^7}$$

$$= \sqrt{2}^2 \left(\cos \left(\frac{9\pi}{4} + \frac{7\pi}{4} \right) + i \sin \left(\frac{9\pi}{4} + \frac{7\pi}{4} \right) \right)$$

$$= 2(\cos 4\pi + i \sin 4\pi)$$

$$= 2$$

2.2-9. Legyen $z=r(\cos\theta+i\sin\theta),\ r>0,\ 0<\theta<\frac{\pi}{2}.$ Adjuk meg az alábbi számokat trigonometrikus alakban, r és θ segítségével kifejezve.

$$a. -z$$

$$\mathbf{b}$$
. iz

c.
$$z^2$$

$$\mathbf{d.} \ \frac{z}{\overline{z}}$$

Megoldás.

a.

$$-z = (-1)z = (\cos \pi + i \sin \pi) \cdot r(\cos \theta + i \sin \theta)$$
$$= r(\cos(\pi + \theta) + i \sin(\pi + \theta))$$

b.

$$iz = \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right) \cdot r(\cos\theta + i\sin\theta)$$
$$= r\left(\cos\left(\frac{\pi}{2} + \theta\right) + i\sin\left(\frac{\pi}{2} + \theta\right)\right)$$

c.

$$z^{2} = r^{2}(\cos 2\theta + i \sin 2\theta)$$

$$\frac{z}{\overline{z}} = \frac{z^{2}}{z \cdot \overline{z}} = \frac{z^{2}}{|z|^{2}}$$

$$= \cos 2\theta + i \sin 2\theta$$

A kapott argumentumok mindegyik esetben 0 és 2π között vannak, s így fő argumentumok.

2.2-10. Mivel egyenlő $(1 + \cos \alpha + i \sin \alpha)^n$, ha $n \in \mathbb{N}$. Megoldás.

Áttérünk fél szögekre és felhasználjuk a következő összefüggéseket:

$$1 = \cos^2 \frac{\alpha}{2} + \sin^2 \frac{\alpha}{2}, \qquad \cos \alpha = \cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2}, \qquad \sin \alpha = 2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}.$$

$$(1 + \cos \alpha + i \sin \alpha)^n = \left(\cos^2 \frac{\alpha}{2} + \sin^2 \frac{\alpha}{2} + \cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2} + 2i \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}\right)^n$$

$$= \left(2 \cos \frac{\alpha}{2} \left(\cos \frac{\alpha}{2} + i \sin \frac{\alpha}{2}\right)\right)^n$$

$$= 2^n \cos^n \frac{\alpha}{2} \left(\cos \frac{n\alpha}{2} + i \sin \frac{n\alpha}{2}\right)$$

Hanpáros, akkor $\cos^n\frac{\alpha}{2}>0,$ s így az előbbi alak egyúttal trigonometrikus alak is.

Ha n páratlan, de $\cos \frac{\alpha}{2} > 0$, akkor szintén trigonometrikus alakot kaptunk.

Ha n páratlan, és $\cos \frac{\alpha}{2} < 0$, akkor a trigonometrikus alakban az abszolút érték:

$$2^n \left| \cos^n \frac{\alpha}{2} \right|$$
, az argumentum pedig: $\varphi = \frac{n\alpha}{2} + \pi$.

2.2-11. Számítsuk ki $\left(1-\frac{\sqrt{3}-i}{2}\right)^{24}$ értékét trigonometrikus alak felhasználásával.

Megoldás. Áttérünk fél szögekre és felhasználjuk az előző feladatban látott összefüggéseket:

$$\begin{split} 1 - \frac{\sqrt{3}}{2} + i\frac{1}{2} &= 1 + \left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right) \\ &= \cos^2\frac{5\pi}{12} + \sin^2\frac{5\pi}{12} + \cos^2\frac{5\pi}{12} - \sin^2\frac{5\pi}{12} + 2i\cos\frac{5\pi}{12}\sin\frac{5\pi}{12} \\ &= 2\cos\frac{5\pi}{12}\left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right). \end{split}$$

Ebből

2. P'eld'ak

$$\left(1 - \frac{\sqrt{3} - i}{2}\right)^{24} = 2^{24} \cos^{24} \frac{5\pi}{12} \left(\cos \frac{5\pi \cdot 24}{12} + i \sin \frac{5\pi \cdot 24}{12}\right)$$

$$= 2^{24} \cos^{24} \frac{5\pi}{12}.$$
Mivel $\frac{5\pi}{12} = 75^{\circ} = 45^{\circ} + 30^{\circ} = \frac{\pi}{4} + \frac{\pi}{6}$ és
$$\cos \left(\frac{\pi}{4} + \frac{\pi}{6}\right) = \cos \frac{\pi}{4} \cos \frac{\pi}{6} - \sin \frac{\pi}{4} \sin \frac{\pi}{6}$$

$$= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2}$$

$$= \frac{\sqrt{2}}{4} \left(\sqrt{3} - 1\right),$$

ezért

$$2^{24}\cos^{24}\frac{5\pi}{12} = 2^{24}\frac{2^{12}}{4^{24}}\left(\sqrt{3}-1\right)^{24}$$
$$= \frac{1}{2^{12}}\left(4-2\sqrt{3}\right)^{12}\left(2-\sqrt{3}\right)^{12}.$$

2.2-12. Számítsuk ki a z értékét trigonometrikus alak felhasználásával:

$$z = \frac{(-1+i\sqrt{3})^{15}}{(1-i)^{20}} + \frac{(-1-i\sqrt{3})^{15}}{(1+i)^{20}}$$

Megoldás.

$$-1 + i\sqrt{3} = 2\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$$
$$1 - i = \sqrt{2}\left(\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right) = \sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)$$

Ebből az első tag:

$$\frac{2^{15} \left(\cos \frac{2\pi}{3} \cdot 15 + i \sin \frac{2\pi}{3} \cdot 15\right)}{\sqrt{2}^{20} \left(\cos \frac{7\pi}{4} \cdot 20 + i \sin \frac{7\pi}{4} \cdot 20\right)} = \frac{2^{15} \left(\cos 10\pi + i \sin 10\pi\right)}{\sqrt{2}^{20} \left(\cos 35\pi + i \sin 35\pi\right)}$$

$$= 2^{5} \left(\cos \left(10\pi - 35\pi\right) + i \sin \left(10\pi - 35\pi\right)\right)$$

$$= 2^{5} \left(\cos \left(-25\pi\right) + i \sin \left(-25\pi\right)\right)$$

$$= 2^{5} \left(\cos \pi + i \sin \pi\right) = 2^{5} (-1)$$

$$= -32.$$

A második tag az elsőnek komplex konjugáltja, az értéke -32 konjugáltja, ami szintén -32. Így a végeredmény $2 \cdot (-32) = -64$.

2.3. Négyzetgyökvonás algebrai alakkal, másodfokú komplex együtthatós egyenletek

2.3-1. Adjuk meg a -7-24i komplex szám négyzetgyökeit algebrai alakban. Megoldás.

 $-7 - 24i = (a+bi)^2, -7 - 24i = a^2 - b^2 + 2abi.$ Ebből $a^2 - b^2 = -7$ és 2ab = -24.

A második egyenletből $a = \frac{-12}{b}$, amit az első egyenletbe helyettesítve

$$144/b^2 - b^2 = -7$$
, $144 - b^4 = -7b^2$, $b^4 - 7b^2 - 144 = 0$.

Ezt az egyenletet b^2 -re megoldva: $b_{1,2}^2=\frac{7\pm\sqrt{49+576}}{2}=\frac{7\pm25}{2}$, amiből az egyik

gyök $b^2=-9$, esetünkben nem megoldás, mert b valós szám. A másik gyök $b^2=16$. Ebből b=4 és a=-3, illetve b=-4 és a=3. A keresett komplex számok tehát -3+4i és 3-4i.

2.3-2. Vonjunk négyzetgyököt az alábbi számokból:

a. 3 - 4i

b. 2*i*

c. 8 + 6i

Megoldás.

a.
$$3-4i=(a+bi)^2$$
, $3-4i=a^2-b^2+2abi$. Ebből $a^2-b^2=3$ és $2ab=-4$.

A második egyenletből $b=-\frac{2}{a}$, amit az első egyenletbe helyettesítve

$$a^2 - \frac{4}{a^2} - 3 = 0,$$
 $a^4 - 3a^2 - 4 = 0.$

Ezt az egyenletet a^2 -re megoldva: $a_{1,2}^2=\frac{3\pm\sqrt{9+16}}{2}=\frac{3\pm5}{2}$, amiből az egyik gyök

 $a^2=-1$ nem megoldás, mert a valós szám. A másik gyök $a^2=4$. Ebből a=2 és b=-1, illetve a=-2 és b=1. A keresett komplex számok tehát 2-i és -2+i.

b. $2i=a^2-b^2+2abi$. Ebből $a^2=b^2$ és 2ab=2. $b=\frac{1}{a}$, amit az első egyenletbe

behelyettesítve $a^2 = \frac{1}{a^2}$, $a^4 = 1$. Amiből $a^2 = -1$ nem megoldás. $a^2 = 1$ -ből a = 1 és

b=1, illetve a=-1 és b=-1. A keresett komplex számok tehát 1+i és -1-i.

 $2. \ P\'eld\'ak$

c.
$$8 + 6i = a^2 - b^2 + 2abi$$
. Ebből $a^2 - b^2 = 8$ és $2ab = 6$.

A második egyenletből $b=\frac{3}{a},$ amit az első egyenletbe helyettesítve

$$a^2 - \frac{9}{a^2} - 8 = 0,$$
 $a^4 - 8a^2 - 9 = 0.$

Ezt az egyenletet a^2 -re megoldva: $a_{1,2}^2=\frac{8\pm\sqrt{64+36}}{2}=\frac{8\pm10}{2}$. Ebből az egyik gyök $a^2=-1$ nem megoldás, a másik gyök $a^2=9$. Ez alapján a=3 és b=1, illetve a=-3 és b=-1. A keresett komplex számok tehát 3+i és -3-i.

$2.3\mbox{-}3.$ Oldjuk meg a következő másodfokú egyenletet. A gyököket algebrai alakban adjuk meg.

$$z^2 + 2z + 5 = 0$$

Megoldás. Alkalmazzuk a másodfokú egyenlet megoldóképletét:

$$z_{1,2}^2 = \frac{-2 \pm \sqrt{4 - 20}}{2} = \frac{-2 \pm \sqrt{-16}}{2} = \frac{-2 \pm 4i}{2} = -1 \pm 2i.$$

A gyökök: -1 + 2i és -1 - 2i.

2.3-4. Oldjuk meg a következő egyenletet:

$$(2+i)x^2 - (5-i)x + (2-2i) = 0$$

Megoldás. Alkalmazzuk a másodfokú egyenlet megoldóképletét.

$$x_{1,2} = \frac{5 - i \pm \sqrt{(5 - i)^2 - 4(2 - 2i)(2 + i)}}{2(2 + i)}$$

Számoljuk ki a diszkriminánst.

$$(5-i)^2 - 4(2-2i)(2+i) = 25 - 1 - 10i - 4(4+2i-4i+2)$$

= 24 - 10i - 16 - 8i + 16i - 8
= -2i

A-2i számból az 1. példánál látott módszerrel gyököt vonunk.

 $a^2-b^2=0$ és 2ab=-2. Ebből $ab=1, \quad a=-\frac{1}{b},$ amit az első egyenletbe behelyet-

tesítve:

$$\frac{1}{b^2} - b^2 = 0, b^4 = 1.$$

Amiből $b^2 = 1$, tehát b = 1 és a = -1 illetve b = -1 és a = 1.

A gyökök -1 + i és 1 - i.

Ezt a két értéket visszahelyettesítjük a megoldóképletbe. Ebből

$$\frac{5-i+(-1+i)}{2(2+i)} = \frac{5-i-1+i}{4+2i}$$

$$= \frac{4}{4+2i}$$

$$= \frac{2}{2+i}$$

$$= \frac{2(2-i)}{5}$$

$$= \frac{4-2i}{5}$$

és

$$\frac{5 - i - (-1 + i)}{2(2 + i)} = \frac{5 - i + 1 - i}{4 + 2i}$$

$$= \frac{6 - 2i}{4 + 2i}$$

$$= \frac{3 - i}{2 + i}$$

$$= \frac{(3 - i)(2 - i)}{5}$$

$$= \frac{6 - 1 - 3i - 2i}{5}$$

$$= \frac{5 - 5i}{5} = 1 - i$$

A 2.1. ábrán láthatjuk a -2i és két négyzetgyökének a helyzetét egymáshoz képest a Gauss-féle számsíkon. \blacksquare

 $2. \ P\'eld\'ak$

2.3-5. Oldjuk meg a következő egyenletet:

$$x^2 - (3 - 2i)x + (5 - 5i) = 0$$

Megoldás. Alkalmazzuk a másodfokú egyenlet megoldóképletét.

$$x_{1,2} = \frac{3 - 2i \pm \sqrt{(3 - 2i)^2 - 4(5 - 5i)}}{2}$$

Számoljuk ki a diszkriminánst:

$$(3-2i)^2 - 4(5-5i) = 9 - 4 - 12i - 20 + 20i = -15 + 8i$$

Kiszámítjuk -15 + 8i négyzetgyökeit.

$$a^2-b^2=-15$$
 és $2ab=8$. Ebből $a=\frac{4}{b}$, amit az első egyenletbe beírva $\frac{16}{b^2}-b^2=-15$.

Amiből $b^4 - 15b^2 - 16 = 0$.

$$b_{1,2}^2 = \frac{15 \pm \sqrt{225 + 64}}{2} = \frac{15 \pm \sqrt{289}}{2} = \frac{15 \pm 17}{2}$$

A $b^2=-1$ nem megoldás, $b^2=16$ alapján pedig $b_1=4$ és $a_1=1$ illetve $b_2=-4$ és $a_2=-1$.

-15 + 8i négyzetgyökei 1 + 4i és -1 - 4i.

Visszahelyettesítjük a megoldóképletbe: $x_{1,2} = \frac{3 - 2i \pm (1 + 4i)}{2}$.

Ebből a megoldás 2 + i és 1 - 3i.

2.3-6. Bontsuk elsőfokú tényezők szorzatára a következő kifejezéseket:

a. $x^2 + 25$.

b. $9x^2 + 4$,

c. $x^2 + 2x + 5$

Megoldás.

a. Az $x^2 + 25 = 0$ egyenlet gyökei 5i és -5i. Így a kívánt felbontás, az egyenlet gyöktényezős alakja: (x - 5i)(x + 5i).

b. A
$$9x^2+4=0$$
 egyenlet gyökei $\frac{2}{3}i$ és $-\frac{2}{3}i$. A felbontás $\left(x-\frac{2}{3}i\right)\cdot\left(x+\frac{2}{3}i\right)$.

c. Oldjuk meg az $x^2 + 2x + 5 = 0$ egyenletet.

$$x_{1,2} = \frac{-2 \pm \sqrt{4 - 20}}{2} = -1 \pm 2i.$$

A felbontás
$$(x - (-1 + 2i))(x - (-1 - 2i)) = (x + 1 - 2i)(x + 1 + 2i)$$
.

2.4. *n*-edik gyök meghatározása trigonometrikus alakkal, egységgyökök

2.4-1. Számoljuk ki a $z=-16\cdot\sqrt{3}+16i$ szám ötödik gyökeit. Megoldás. Írjuk fel z-t trigonometrikus alakban.

$$z = 16(-\sqrt{3} + i) = 32\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = 32\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$$

Tudjuk, hogy a $z = r(\cos \varphi + i \sin \varphi)$ komplex szám n-edik gyökei:

$$w_k = \sqrt[n]{r} \left(\cos \frac{\varphi + k2\pi}{n} + i \sin \frac{\varphi + k2\pi}{n} \right), \ 0 \le k \le n - 1.$$

Ebből esetünkben a gyökök (lásd a 2.2. ábrát):

$$w_0 = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) = 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = \sqrt{3} + i.$$

2.2. ábra.

A következő gyök argumentuma:

$$\frac{\pi}{6} + \frac{2\pi}{5} = \frac{17\pi}{30},$$

így

$$w_1 = 2\left(\cos\frac{17\pi}{30} + i\sin\frac{17\pi}{30}\right).$$

 $2. \ P\'eld\'ak$

A többi gyök argumentuma $\frac{2\pi}{5}$ -tel több a megelőzőénél, ezek szerint

$$w_2 = 2\left(\cos\frac{29\pi}{30} + i\sin\frac{29\pi}{30}\right), \quad w_3 = 2\left(\cos\frac{41\pi}{30} + i\sin\frac{41\pi}{30}\right),$$
$$w_4 = 2\left(\cos\frac{53\pi}{30} + i\sin\frac{53\pi}{30}\right).$$

2.4-2. Vonjunk harmadik gyököt 1-ből.

Megoldás. A harmadik egységgyököket keressük.

1 trigonometrikus alakja: $1 = \cos 0 + i \sin 0$. A gyökök (2.3. ábra):

$$\varepsilon_k = \cos\left(k\frac{2\pi}{3}\right) + i\sin\left(k\frac{2\pi}{3}\right), \quad 0 \le k \le 2.$$

2.3. ábra.

$$k = 0:$$
 $\varepsilon_0 = \cos 0 + i \sin 0 = 1,$
 $k = 1:$ $\varepsilon_1 = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} = -\frac{1}{2} + i \frac{\sqrt{3}}{2},$
 $k = 2:$ $\varepsilon_2 = \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3} = -\frac{1}{2} - i \frac{\sqrt{3}}{2}.$

 ε_1 és ε_2 primitív harmadik egységgyökök is, hiszen $\varepsilon_1^2=\varepsilon_2,\,\varepsilon_2^2=\varepsilon_1$ és mindkettő harmadik hatványa 1.

2.4-3. Vonjunk harmadik gyököt a 2+2i számból trigonometrikus alak felhasználásával. A gyököket adjuk meg algebrai alakban is. Megoldás.

$$2 + 2i = \sqrt{8} \left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right) = \sqrt{8} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$$
. Mivel $\sqrt[3]{\sqrt{8}} = \sqrt{\sqrt[3]{8}} = \sqrt{2}$, így

a gyökök (2.4. ábra):

$$k = 0: \quad w_0 = \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right),$$

$$k = 1: \quad w_1 = \sqrt{2} \left(\cos \left(\frac{\pi}{12} + \frac{2\pi}{3} \right) + i \sin \left(\frac{\pi}{12} + \frac{2\pi}{3} \right) \right)$$

$$= \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right) = \sqrt{2} \left(-\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right)$$

$$= -1 + i,$$

$$k = 2: \quad w_2 = \sqrt{2} \left(\cos \left(\frac{\pi}{12} + \frac{4\pi}{3} \right) + i \sin \left(\frac{\pi}{12} + \frac{4\pi}{3} \right) \right)$$

$$= \sqrt{2} \left(\cos \frac{17\pi}{12} + i \sin \frac{17\pi}{12} \right).$$

2.4. ábra.

A k=1 értékhez tartozó gyököt, w_1 -t könnyen meg lehet adni algebrai alakban, $w_1=-1+i$. A w_2 és w_0 algebrai alakját a harmadik egységgyökökkel való szorzással állíthatjuk elő w_1 -ből.

Harmadik egységgyökökkel szorozva (a harmadik egységgyököket lásd az előző példában):

$$w_{2} = (-1+i)\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) = (-1+i)\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$$

$$= \frac{1-\sqrt{3}}{2} + i\frac{-1-\sqrt{3}}{2}$$

$$w_{0} = (-1+i)\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right) = (-1+i)\left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)$$

$$= \frac{1+\sqrt{3}}{2} + i\frac{-1+\sqrt{3}}{2}$$

28 2. $Peld\acute{a}k$

Számításaink melléktermékeként megkaphatjuk például $\cos \frac{17\pi}{12}$ pontos értékét w_2 algebrai és trigonometrikus alakjának összehasonlításából. A két alakban a valós részek egyenlőek:

$$\sqrt{2}\cos\frac{17\pi}{12} = \frac{1-\sqrt{3}}{2},$$

ebből

$$\cos\frac{17\pi}{12} = \frac{\sqrt{2}}{4}\left(1 - \sqrt{3}\right) = \frac{\sqrt{2}}{4} - \frac{\sqrt{2}}{4}\sqrt{3}.$$

2.4-4. Oldjuk meg az $x^4 - (7+3i)(5-2i)^{-1} = 0$ egyenletet. Megoldás.

$$\frac{7+3i}{5-2i} = \frac{(7+3i)(5+2i)}{29} = 1+i,$$

így az $x^4=1+i$ megoldására van szükségünk, tehát 1+i negyedik gyökeit keressük. Áttérünk trigonometrikus alakra:

$$1 + i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right).$$

A gyökök:

$$w_0 = \sqrt[8]{2} \left(\cos \frac{\pi}{16} + i \sin \frac{\pi}{16} \right), \qquad w_1 = \sqrt[8]{2} \left(\cos \frac{9\pi}{16} + i \sin \frac{9\pi}{16} \right),$$

$$w_2 = \sqrt[8]{2} \left(\cos \frac{17\pi}{16} + i \sin \frac{17\pi}{16} \right), \quad w_3 = \sqrt[8]{2} \left(\cos \frac{25\pi}{16} + i \sin \frac{25\pi}{16} \right).$$

2.4-5. Vonjunk harmadik gyököt i-ből. Megoldás.

A trigonometrikus alak $i = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$.

A gyökök (2.5. ábra):

$$w_k = \cos\left(\frac{\pi}{6} + \frac{2k\pi}{3}\right) + i\sin\left(\frac{\pi}{6} + \frac{2k\pi}{3}\right), \quad 0 \le k \le 2.$$

$$w_0 = \cos\frac{\pi}{6} + i\sin\frac{\pi}{6} = \frac{\sqrt{3}}{2} + \frac{1}{2}i,$$

$$w_1 = \cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6} = -\frac{\sqrt{3}}{2} + \frac{1}{2}i,$$

$$w_2 = \cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2} = -i.$$

2.5. ábra.

2.4-6. Számítsuk ki $\frac{1-i}{\sqrt{3}+i}$ hatodik gyökeit.

Megoldás.

Mivel

$$1 - i = \sqrt{2} \left(\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2} \right) = \sqrt{2} \left(\cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4} \right)$$

és

$$\sqrt{3} + i = 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right),$$

ezért

$$\frac{1-i}{\sqrt{3}+i} = \frac{1}{\sqrt{2}} \left(\cos \frac{19\pi}{12} + i \sin \frac{19\pi}{12} \right).$$

A gyökök:

$$w_k = \frac{1}{\sqrt[12]{2}} \left(\cos \frac{19\pi + k24\pi}{72} + i \sin \frac{19\pi + k24\pi}{72} \right), \quad 0 \le k \le 5.$$

2.4-7. Vonjunk negyedik gyököt a $\frac{-4}{(2+i)^3}$ számból a trigonometrikus alak felhasználásával:

 $2. \ P\'eld\'ak$

Megoldás. Most a szögek közelítő értékét fokban adjuk meg. Legyen $z = \frac{-4}{(2+i)^3}$.

$$\frac{-4}{(2+i)^3} = \frac{-4(2-i)^3}{(2+i)^3(2-i)^3} = \frac{-4(2-i)^3}{(4+1)^3} = \frac{-4}{(5)^3}(2-i)^3$$
 (1)

Írjuk fel (2-i)-t trigonometrikus alakban.

$$2 - i = \sqrt{5} \left(\frac{2}{\sqrt{5}} - \frac{1}{\sqrt{5}} i \right) = 2.236(0.8942 - 0.4472i)$$
 (2)

(2)-t felírjuk $r(\cos\varphi+i\sin\varphi)$ alakban. A $\cos\varphi_1=0.8942$ egyenlet 0 és π közé eső megoldása 26.56°. Mivel $\sin\varphi$ negatív, $\varphi=2\pi-\varphi_1=360^\circ-26.56^\circ=333.44^\circ$. Ezek szerint

$$2 - i = 2.236(\cos 333.44^{\circ} + i \sin 333.44^{\circ}).$$

Felhasználva, hogy $-4 = 4(\cos 180^{\circ} + i \sin 180^{\circ})$, (1) az alábbiak szerint alakul:

$$z = \frac{-4}{125} \cdot 2.236^{3} (\cos 333.44^{\circ} + i \sin 333.44^{\circ})^{3}$$

$$= \frac{4}{125} (\cos 180^{\circ} + i \sin 180^{\circ}) 2.236^{3} (\cos 333.44^{\circ} + i \sin 333.44^{\circ})^{3}$$

$$= 0.3577 (\cos 180^{\circ} + i \sin 180^{\circ}) (\cos 1000.32^{\circ} + i \sin 1000.32^{\circ})$$

$$= 0.3577 (\cos 100.32^{\circ} + i \sin 100.32^{\circ})$$

z negyedik gyökei:

$$0.7734(\cos(25.08^{\circ} + k \cdot 90^{\circ}) + i\sin(25.08^{\circ} + k \cdot 90^{\circ})), \quad k = 0, 1, 2, 3.$$

2.4-8. Adjuk össze a harmadik egységgyököket.

Megoldás. Láttuk a 2. feladatban, hogy a harmadik egységgyökök:

$$\begin{array}{rcl} \varepsilon_0 & = & 1 \\ \varepsilon_1 & = & \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} = -\frac{1}{2} + i\frac{\sqrt{3}}{2} \\ \varepsilon_2 & = & \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3} = -\frac{1}{2} - i\frac{\sqrt{3}}{2} \end{array}$$

Ha ezt a három számot összeadjuk, akkor 0-t kapunk.

2.4-9. Legyen $n \in \mathbb{N} \setminus \{1\}$. Lássuk be, hogy tetszőleges z komplex szám n-edik gyökeinek összege zérus. Megoldás.

1. Megoldás.

Ábrázoljuk a számsíkon a z szám n-edik gyökeit. A gyököknek megfelelő vektorok eredőjét keressük. Ha a vektorokat $\frac{2\pi}{n}$ -nel elforgatjuk, mindegyik a következőbe megy át, eredőjük tehát helyben marad. Az egyetlen olyan vektor, amelyik megegyezik 2π -nél kisebb szöggel történő elforgatottjával, a nullvektor. A gyökök összege tehát 0.

2. Megoldás.

Tudjuk, hogy az n-edik gyökök felírhatóak $w_1 \cdot \varepsilon_k$ alakban, ahol w_1 az egyik n-edik gyöke z-nek, ε_k pedig n-edik egységgyök.

$$w_1 + w_2 + w_3 + \ldots + w_n = w_1(1 + \varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \ldots + \varepsilon_{n-1}) =$$

Írjuk fel az n-edik egységgyököket ε_1 hatványaiként, felhasználva, hogy $\varepsilon_1 \neq 1$, valamint alkalmazva a mértani sorozat összegképletét:

$$= w_1(1 + \varepsilon_1 + \varepsilon_1^2 + \varepsilon_1^3 + \dots + \varepsilon_1^{n-1}) = w_1 \frac{\varepsilon_1^n - 1}{\varepsilon_1 - 1},$$

és $\varepsilon_1^n = 1$ miatt ez 0 lesz.

2.4-10. Jelöljön ε n -edik egységgyököt. Számítsuk ki az alábbi összegeket:

a.
$$1 + \varepsilon + \varepsilon^2 + \ldots + \varepsilon^{n-1}$$

b. $1 + 2\varepsilon + 3\varepsilon^2 + \ldots + n\varepsilon^{n-1}$

$$h 1 + 2\varepsilon + 3\varepsilon^2 + n\varepsilon^{n-1}$$

Megoldás.

a. Ha $\varepsilon = 1$, akkor az összeg n. Ha $\varepsilon \neq 1$, akkor akkor az összeg

$$\frac{\varepsilon^n - 1}{\varepsilon - 1} = 0,$$

mert $\varepsilon^n = 1$.

b. Legyen a keresett összeg S. Ha $\varepsilon=1$ akkor a számtani sorozat összegképlete alapján $S = \frac{1+n}{2}n$.

Ha pedig $\varepsilon \neq 1$, akkor a következő átalakítást végezzük el:

$$-\varepsilon \cdot S = -\varepsilon - 2\varepsilon^2 - 3\varepsilon^3 - \dots - (n-1)\varepsilon^{n-1} - n\varepsilon^n$$

és

$$S - \varepsilon \cdot S = 1 + \varepsilon + \varepsilon^2 + \dots + \varepsilon^{n-1} - n\varepsilon^n,$$

$$S - \varepsilon \cdot S = 0 - n.$$

amiből

$$S = \frac{-n}{1 - \varepsilon} = \frac{n}{\varepsilon - 1}.$$

 $2. \ P\'eld\'ak$

2.4-11. Vonjunk hatodik gyököt 1-ből. Keressük meg a primitív hatodik egységgyököket.

2.6. ábra.

Megoldás.

Először a hatodik egységgyököket írjuk fel. (Lásd a 2.6. ábrát.) Mivel $1 = \cos 0 + i \sin 0$, ezért

$$\varepsilon_{k} = \cos \frac{k2\pi}{6} + i \sin \frac{k2\pi}{6}, \quad k = 0, \dots, 5.$$

$$\varepsilon_{0} = \cos 0 + i \sin 0 = 1$$

$$\varepsilon_{1} = \cos \frac{2\pi}{6} + i \sin \frac{2\pi}{6} = \frac{1}{2} + i \frac{\sqrt{3}}{2}$$

$$\varepsilon_{2} = \cos \frac{4\pi}{6} + i \sin \frac{4\pi}{6} = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$$

$$\varepsilon_{3} = \cos \frac{6\pi}{6} + i \sin \frac{6\pi}{6} = -1$$

$$\varepsilon_{4} = \cos \frac{8\pi}{6} + i \sin \frac{8\pi}{6} = -\frac{1}{2} - i \frac{\sqrt{3}}{2}$$

$$\varepsilon_{5} = \cos \frac{10\pi}{6} + i \sin \frac{10\pi}{6} = \frac{1}{2} - i \frac{\sqrt{3}}{2}$$

Ezek közül a primitív hatodik egységgyökök ε_1 és ε_5 . Némi számolással meggyőződhetünk róla, hogy pontosan ezek azok a hatodik gyökök közül, amelyek különböző természetes kitevőjű hatványaikként előállítják az összeset.

2.4-12. Legyen

$$\varepsilon_k = \cos\left(k\frac{2\pi}{n}\right) + i\sin\left(k\frac{2\pi}{n}\right), \quad 0 \le k < n.$$

Lássuk be, hogy ε_k pontosan akkor primitív n-edik egységgyök, ha n-nél alacsonyabb természetes kitevőjű hatványa nem 1. Megoldás.

Nyilván ε_k n-edik hatványa 1, s így n-edik egységgyökkel van dolgunk.

a. Először belátjuk, hogy ha ε_k n-nél alacsonyabb természetes kitevőjű hatványa nem 1, akkor primitív n-edik egységgyök. Készítsük el ε_k i-edik hatványait, ahol $1 \leq i \leq n-1$. Két különböző kitevőjű hatvány nem lehet azonos. Ha ugyanis $\varepsilon_k^u = \varepsilon_k^v$, $1 \leq u < v \leq n-1$ lenne, akkor $\varepsilon_k^{v-u} = 1$ is teljesülne, ami a feltétel miatt nem lehet.

Látjuk tehát, hogy ha ε_k n-nél alacsonyabb természetes kitevőjű hatványa nem 1, akkor ezek a hatványok mind különbözőek. Ehhez hozzávéve az n-edik hatványt (ami 1), n számú különböző hatványt kapunk, s így ε_k hatványaiként az összes n-edik gyök előáll, tehát ε_k primitív n-edik egységgyök.

b. Fordítva legyen $\varepsilon_k^i=1,\ 1\leq i\leq n-1$, és tegyük fel, hogy i a legkisebb ilyen természetes szám. Vegyünk egy j>i számot, és osszuk el i-vel maradékosan. Tehát $j=i\cdot s+r$, ahol $0\leq r< i$. Ekkor $\varepsilon_k^j=\varepsilon_k^{i\cdot s+r}=(\varepsilon_k^i)^s\varepsilon_k^r=\varepsilon_k^r$, vagyis ε_k -nak legfeljebb i különböző hatványa lehet, a további hatványok mind megegyeznek valamelyik korábbival. ε_k nem lehet primitív n-edik egységgyök.

2.4-13. Legyen ε_k n-edik komplex egységgyök,

$$\varepsilon_k = \cos\left(k\frac{2\pi}{n}\right) + i\sin\left(k\frac{2\pi}{n}\right), \quad 0 \le k < n.$$

Lássuk be, hogy ε_k pontosan akkor primitív n-edik egységgyök, ha (k,n)=1. Megoldás.

Tudjuk, hogy
$$\varepsilon_k = \cos\left(k\frac{2\pi}{n}\right) + i\sin\left(k\frac{2\pi}{n}\right) = \varepsilon_1^k$$
. Támaszkodunk az előző feladatra.

Nézzük meg, hogy $\varepsilon_k \;\; u$ -adik hatványa u < n esetén előállítja-e az 1-et.

Legyen $(\varepsilon_1^k)^u = \varepsilon_1^{ku} = 1$. $k \cdot u$ -t osszuk el n-nel maradékosan.

$$k \cdot u = n \cdot s + r, \quad 0 \le r \le n - 1,$$

 $1 = \varepsilon_1^{ku} = (\varepsilon_1^n)^s \cdot \varepsilon_1^r = \varepsilon_1^r,$

amiből r = 0, s így $k \cdot u = n \cdot s$, vagyis $n | k \cdot u$.

Ha (k, n) = 1, akkor n|u, tehát u lehető legkisebb értéke n. Ebből következik, hogy ε_k primitív n-edik egységgyök.

Ha pedig (k,n)=d>1, akkor $(\varepsilon_1^k)^{\frac{n}{d}}=(\varepsilon_1^n)^{\frac{k}{d}}=1$, ε_k -nak n-nél kisebb hatványa előállítja 1-et, s így ε_k nem primitív n-edik egységgyök.

2.5. Komplex számok geometriai megfeleltetése

2.5-1. Bizonyítsuk be a komplex számok segítségével, hogy egy paralelogramma átlóinak négyzetösszege egyenlő az oldalak négyzetösszegével.

 $2. \ P\'eld\'ak$

Megoldás. Ábrázoljuk a paralelogrammát a Gauss-számsíkban úgy, hogy egyik csúcsa az origóban legyen. Jelölje a és b a paralelogramma két szomszédos oldalának megfelelő vektorokat, illetve ezen vektoroknak megfelelő komplex számokat. Ekkor a két átló a+b és a-b lesz. (Lásd a 2.7. ábrát.)

2.7. ábra.

A feladat állítása szerint

$$|a + b|^2 + |a - b|^2 = 2|a|^2 + 2|b|^2$$
.

A bizonyítás során felhasználjuk, hogy

$$|a|^2 = a \cdot \overline{a}.$$

$$|a+b|^2 + |a-b|^2 = (a+b)\overline{(a+b)} + (a-b)\overline{(a-b)}$$

$$= (a+b)(\overline{a}+\overline{b}) + (a-b)(\overline{a}-\overline{b})$$

$$= a\overline{a} + b\overline{a} + a\overline{b} + b\overline{b} + a\overline{a} - b\overline{a} - a\overline{b} + b\overline{b}$$

$$= 2(a\overline{a} + b\overline{b})$$

$$= 2|a|^2 + 2|b|^2$$

2.5-2. Ábrázoljuk a z=2+i komplex számot a Gauss-számsíkon vektorral. Adjuk meg algebrai alakban és ábrázoljuk ugyanezen az ábrán a

$$-z$$
, \overline{z} , $-\overline{z}$, iz és $-iz$

számokat is. Figyeljük meg, hogy az egyes vektorok milyen kapcsolatban vannak egymással. Megoldás.

2.8. ábra.

$$-z = -2 - i$$
, $\overline{z} = 2 - i$, $-\overline{z} = -2 + i$, $iz = -1 + 2i$, $-iz = 1 - 2i$.

-z a z origóra való tükörképe, \overline{z} a z-ből a valós tengelyre való tükrözéssel, iz pedig a z $\pi/2$ szöggel való elforgatásával keletkezik. (Lásd a 2.8. ábrát.)

2.5-3. Mi a geometriai jelentése a következőknek:

a.
$$|z_1 - z_2|$$
,

b. i-vel való szorzás,

c.
$$\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
-vel való szorzás,

d.
$$\cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$$
 -nel való szorzás.

Megoldás.

a. A z_1 és a z_2 komplex számoknak megfelelő pontok távolsága.

b. Ha i-vel szorzunk egy tetszőleges z komplex számot, akkor – a Moivre-azonosság szerint – a szorzat abszolút értéke z abszolút értékével egyezik meg, mert i abszolút értéke 1. Az argumentumok pedig összeadódnak, s mivel i argumentuma 90°, ezért z 90°-kal pozitív irányba történő forgatása felel meg a szorzatnak.

c. 60°-kal pozitív irányba történő forgatás.

d.
$$\frac{2\pi}{n}$$
 szöggel pozitív irányba történő forgatás.

2.5-4. A Gauss számsíkon jelölje az origót O, egy négyzet középpontja W, csúcsai pedig az óramutató járásával ellenkező irányban O, R, S, T. A pontok által reprezentált komplex számok o, w, r, s, t. Adjuk meg w és i segítségével

2. Példák

kifejezve az r, s, t számokat.

2.9. ábra.

Megoldás. (Lásd a 2.9. ábrát.)

$$r = w - iw,$$
 $s = 2w,$ $t = w + iw.$

2.5-5. A Gauss-számsíkon egy négyzet középpontja a 3+2i, a négyzet egyik csúcsa az 5+7i pontban van. Adjuk meg a többi három csúcsot reprezentáló komplex számokat. Megoldás.

2.10. ábra.

A négyzet középpontját reprezentáló komplex szám w=3+2i, az adott csúcsnak megfelelő komplex szám a=5+7i, a többi csúcsnak az óramutató járásával ellenkező

irányban a b, c, d komplex számok feleljenek meg. (Lásd a 2.10. ábrát.)

$$c = a + 2(w - a)$$

$$= 5 + 7i + 2(-2 - 5i)$$

$$= 1 - 3i$$

$$b = w + i(a - w)$$

$$= 3 + 2i + i(2 + 5i)$$

$$= -2 + 4i$$

$$d = w + i(w - a)$$

$$= 3 + 2i + i(-2 - 5i)$$

$$= 8$$

2.5-6. Hol helyezkednek el a síkon azok a pontok, amelyeknek megfelelő komplex számokra az alábbi teljesül?

a.
$$|z| = 2 \text{Re}(z)$$

b.
$$\left| \frac{z - 3i}{z + i} \right| \ge 1$$
 c. $z = \frac{1}{\overline{z}}$

c.
$$z = \frac{1}{2}$$

d.
$$z = -\frac{1}{z}$$
 e. $|z| = iz$

e.
$$|z| = iz$$

Megoldás.

a. Legyen z = a + bi. Ezt beírva az egyenletbe

$$\sqrt{a^2 + b^2} = 2a,$$

amiből leolvasható, hogy $a \ge 0$.

2.11. ábra.

Négyzetre emeléssel:

$$a^2 + b^2 = 4a^2.$$

Ebből $b^2 = 3a^2$, $b = \pm \sqrt{3}a$. A megoldás

$$y = \sqrt{3}x$$
 és $y = -\sqrt{3}x$, ha $x \ge 0$.

(Lásd a 2.11. ábrát.)

b.
$$\left| \frac{z - 3i}{z + i} \right| \ge 1$$
, $z \ne -i$. Ebből

$$|z - 3i| \ge |z + i|.$$

Emeljük négyzetre:

$$|z - 3i|^2 \ge |z + i|^2.$$

2.12. ábra.

Alkalmazzuk a $z\overline{z} = |z|^2$ összefüggést:

$$(z-3i)(\overline{z-3i}) \ge (z+i)(\overline{z+i}),$$

átalakítással:

$$(z - 3i)(\overline{z} + 3i) \ge (z + i)(\overline{z} - i)$$

$$z\overline{z} - 3i\overline{z} + 3iz + 9 \ge z\overline{z} + i\overline{z} - iz + 1$$

$$8 \ge 4i\overline{z} - 4iz$$

$$8 \ge 4i(\overline{z} - z)$$

Legyen z = a + bi. Ekkor

$$8 \ge 4i(-2bi) = 8b$$
,

amiből a megoldás

$$1 \ge b, \quad z \ne -i.$$

A megoldás a 2.12. ábrán látható lukas félsík.

- c. $z\overline{z}$, = 1 vagyis $|z|^2$ = 1. Az origó középpontú egységsugarú körvonal pontjai adják a megoldást. (Lásd a 2.13. ábrát.)
- d. $z\overline{z} = -1 = |z|^2$. Nincs az egyenletnek megfelelő komplex szám, mert komplex szám abszolút értéke, és a négyzete is nemnegatív (valós szám).
- e. Legyen z=a+bi. Ebből $\sqrt{a^2+b^2}=i(a+bi)=-b+ai$, amiből a=0 és |b|=-b, tehát $b\leq 0$.

2.13. ábra.

2.14. ábra.

A megoldás a képzetes tengely negatív része. (Lásd a 2.14. ábrát.)

2.5-7. A z=x+yi komplex számnak a Gauss számsíkon feleltessük meg a Z pontot. Tudjuk, hogy a

$$\frac{z-2i}{z+4}$$

komplex szám valós része zérus. Bizonyítsuk be, hogy Z mértani helye egy körön van rajta. Keressük meg a kör középpontját, és mutassuk meg, hogy a sugara $\sqrt{5}$.

Megoldás.

$$z = x + yi$$
 és $\operatorname{Re} \frac{z - 2i}{z + 4} = 0.$

 $z \neq -4$, mert a nevező nem lehet 0.

$$\operatorname{Re} \frac{x + (y - 2)i}{x + 4 + yi} = \operatorname{Re} \frac{(x + (y - 2)i)(x + 4 - yi)}{(x + 4 + yi)(x + 4 - yi)} =$$

$$= \operatorname{Re} \frac{x^2 + 4x - xyi + (y - 2)xi + (y - 2)4i + y^2 - 2y}{(x + 4)^2 + y^2} = 0$$

amiből

$$x^2 + 4x + y^2 - 2y = 0.$$

40 2. Példák

A kör egyenlete

$$(x+2)^2 + (y-1)^2 = 5.$$

A kör középpontja (-2, 1), sugara $\sqrt{5}$. A mértani helyben nem szerepel a kör (-4, 0)koordinátájú pontja.

2.5-8. Jelöljük A, B, C, D-vel a Gauss-számsík azon pontjait, amelyek a következő komplex számoknak felelnek meg.

$$z_A = 8 - i$$
, $z_B = 3 + 11i$, $z_C = -9 + 6i$, $z_D = -4 - 6i$.

Bizonyítsuk be, hogy az A, B, C, D pontok valamely négyzetnek a csúcsai. **Megoldás.** Az ABCD négyszög oldalainak megfelelő komplex számok:

$$\begin{split} z_{AB} &= z_A - z_B = 5 - 12i, & z_{BC} &= z_B - z_C = 12 + 5i, \\ z_{CD} &= z_C - z_D = -5 + 12i, & z_{DA} &= z_D - z_A = -12 - 5i. \end{split}$$

Nézzük meg sorban ezeknek a komplex számoknak az i-szeresét.

$$z_{AB} \cdot i = 12 + 5i = z_{BC},$$
 $z_{BC} \cdot i = -5 + 12i = z_{CD},$ $z_{CD} \cdot i = -12 - 5i = z_{DA},$ $z_{DA} \cdot i = 5 - 12i = z_{AB}.$

A négyszög bármelyik oldala az előző oldal i-szerese, tehát az oldalnak megfelelő vektor az előzőnek 90°-kal való elforgatottja. Mivel a négyszög oldalai egyenlő hosszúak, és a szomszédosak egymással derékszöget zárnak be, valóban négyzetről van szó. (Lásd a 2.15. ábrát.)

2.5-9. Adjuk meg |z+4| legkisebb értékét, ha

a.
$$Re(z) = 5$$
,

b.
$$Im(z) = 3$$
,

c.
$$|z| = 1$$

a. Re(z) = 5, **b.** Im(z) = 3, **c.**
$$|z| = 1$$
, **d.** arg(z) = $\frac{\pi}{4}$.

Megoldás.

|z+4| geometriai megfelelője a z-nek megfelelő pont és a (-4, 0) pont távolsága.

a. Az 5 valós részű komplex számoknak megfelelő pontok az x=5 egyenesen vannak. A feladatban az a kérdés, hogy az egyenes melyik pontja van a (-4, 0) ponthoz legközelebb, más szóval a (-4, 0) pont és az x=5 egyenes távolsága a kérdés. z=5 esetén kapjuk a keresett értéket, ami |5+4|=9.

b. A (-4, 0) pont, és az y = 3 egyenes távolságát keressük. z = -4 + 3i esetén kapjuk a keresett értéket, ami |-4 + 3i + 4| = 3.

c. Az origó középpontú 1 sugarú körnek a (-4, 0) ponthoz legközelebbi pontja a (-1, 0) pont. A keresett érték |-1+4|=3.

d. A komplex számsík azon z pontjainak mértani helye, amelyre $arg(z) = \pi/4$ teljesül, nem más, mint az y = x ($x \ge 0$) egyenletű félegyenes. Ennek a félegyenesnek a (-4, 0) ponthoz legközelebb eső pontja a (0, 0), így a keresett minimum |0+4| = 4.

2.5-10. Tegyük fel, hogy a z komplex szám értéke a |z-7|=3 feltételnek eleget téve változik. Keressük meg |z-i| legkisebb és legnagyobb értékét. Megoldás.

A |z-7|=3 feltételnek megfelelő pontok egy körön vannak. A kör középpontját (7, 0)-t és az *i*-nek megfelelő pontot, (0, 1)-t összekötő egyenesnek a körrel való két metszéspontja szolgáltatja a legkisebb és legnagyobb értéket.

2.16. ábra.

A kör egyenlete (2.16. ábra):

$$(x-7)^2 + y^2 = 9.$$

A középpont távolsága a (0, 1) ponttól

$$\sqrt{7^2 + 1^2} = \sqrt{50}.$$

A minimumot megkapjuk, ha ebből levonjuk a sugár nagyságát, a maximumot akkor kapjuk, ha hozzáadjuk a sugár nagyságát. Így

$$\min|z - i| = \sqrt{50} - 3, \quad \max|z - i| = \sqrt{50} + 3.$$

2.5-11. Tegyük fel, hogy z és w a következő feltételeknek eleget tevő komplex számok: |w-12|=7 és |z-5i|=4. Keressük meg |w-z| legnagyobb és legkisebb értékét.

Megoldás. A feltételek két kört határoznak meg, melyek diszjunktak. A keresett pontok a két kör középpontjait, a (12, 0) és (0, 5) pontokat összekötő egyeneseken vannak. A körök középpontjainak távolsága:

$$|O_1, O_2| = \sqrt{5^2 + 12^2} = 13.$$

Az egymáshoz két legközelebbi pont távolságát megkapjuk, ha ebből kivonjuk a két sugár nagyságát:

$$|A_1, B_1| = 13 - 7 - 4 = 2.$$

Az egymástól két legtávolabbi pont távolságát megkapjuk, ha $|O_1, O_2|$ -hez hozzáadjuk a két sugár nagyságát:

$$|A_2, B_2| = 13 + 7 + 4 = 24.$$

2.6. Szögfüggvények és a komplex számok

2.6-1. Adjuk meg $\cos(3\theta)$ -t $\cos\theta$ -val, $\sin(3\theta)$ -t $\sin\theta$ -val és $\tan(3\theta)$ -t $\tan\theta$ -val kifejezve.

Megoldás. Induljunk ki a következő összefüggésből:

$$\cos(3\theta) + i\sin(3\theta) = (\cos\theta + i\sin\theta)^3.$$

Alakítsuk a jobb oldalt:

$$(\cos \theta + i \sin \theta)^3 = \cos^3 \theta + 3\cos^2 \theta \sin \theta i - 3\cos \theta \sin^2 \theta - \sin^3 \theta i.$$

A két oldal valós részeinek egyenlőségéből, valamint a

$$\sin^2\theta = 1 - \cos^2\theta$$

azonosságra támaszkodva:

$$\cos(3\theta) = \cos^3 \theta - 3\cos\theta \sin^2 \theta = 4\cos^3 - 3\cos\theta.$$

A két oldal képzetes részeinek egyenlőségéből, valamint a

$$\cos^2\theta = 1 - \sin^2\theta$$

azonosságra támaszkodva:

$$\sin(3\theta) = 3\cos^2\theta\sin\theta - \sin^3\theta = 3\sin\theta - 4\sin^3\theta.$$

Végül, ha $\operatorname{tg} \theta \neq \pm \frac{1}{3}$, akkor

$$tg(3\theta) = \frac{\sin(3\theta)}{\cos(3\theta)} = \frac{3\cos^2\theta\sin\theta - \sin^3\theta}{\cos^3\theta - 3\cos\theta\sin^2\theta} = \frac{3tg\theta - tg^3\theta}{1 - 3tg^2\theta}.$$

2.6-2.

a. A $\cos(5\theta) + i\sin(5\theta) = (\cos\theta + i\sin\theta)^5$ összefüggés felhasználásával bizonyítsuk be, hogy

$$\cos(5\theta) = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta.$$

b. Ebből számológép felhasználása nélkül bizonyítsuk be, hogy

$$\cos 18^{\circ} = \frac{1}{4}\sqrt{10 + 2\sqrt{5}},$$

és keressünk hasonló kifejezést $\cos 54^\circ$ számára. Megoldás.

a.

$$\cos(5\theta) = \operatorname{Re}(\cos\theta + i\sin\theta)^{5}$$

$$= \binom{5}{0}\cos^{5}\theta + i^{2}\binom{5}{2}\cos^{3}\theta \cdot \sin^{2}\theta + i^{4}\binom{5}{4}\cos\theta \cdot \sin^{4}\theta$$

$$= \cos^{5}\theta - 10\cos^{3}\theta(1 - \cos^{2}\theta) + 5\cos\theta(1 - \cos^{2}\theta)^{2}$$

$$= 16\cos^{5}\theta - 20\cos^{3}\theta + 5\cos\theta$$

b. Vezessük be az $x = \cos 18^{\circ}$ jelölést. Mivel

$$\cos(5 \cdot 18^{\circ}) = \cos(90^{\circ}) = 0,$$

ezért a

$$16x^5 - 20x^3 + 5x = 0,$$

vagyis az

$$x(16x^4 - 20x^2 + 5) = 0$$

egyenlet megoldását kell megkeresnünk. Egyik gyök a nulla, ami nekünk nem megoldásunk. Vizsgáljuk a

$$16x^4 - 20x^2 + 5 = 0$$

egyenletet. Ezt az x^2 -ben másodfokú egyenletet oldjuk meg x^2 -re.

$$x^{2} = \frac{20 \pm \sqrt{400 - 320}}{32} = \frac{20 \pm \sqrt{80}}{32} = \frac{10 \pm 2\sqrt{5}}{16}.$$

Mivel a keresett érték pozitív, így a

$$\sqrt{\frac{10 + 2\sqrt{5}}{16}} \qquad \text{illetve a} \qquad \sqrt{\frac{10 - 2\sqrt{5}}{16}}$$

 $2. \ P\'eld\'ak$

értékek jöhetnek szóba x számára. A második kisebb, mint $\cos(30^{\circ})$, így a keresett megoldás

$$\cos 18^{\circ} = \frac{1}{4}\sqrt{10 + 2\sqrt{5}}.$$

 $\cos 54^{\circ}$ számításakor ugyanarra az egyenletre jutunk, mint az előbb, mivel $\cos(5\cdot 54^{\circ}) = \cos(270^{\circ}) = 0$. Így a most keresett érték az előbb talált második gyök:

$$\cos 54^{\circ} = \frac{1}{4}\sqrt{10 - 2\sqrt{5}}.$$

2.6-3. Legyen $z_1 = 1 + \sqrt{3}i$, $z_2 = 2i$. Számítsuk ki mindkét szám abszolút értékét és fő argumentumát. A Gauss-számsík segítségével mutassuk meg, hogy

$$\arg(z_1 + z_2) = \frac{5\pi}{12}.$$

Ebből kiindulva lássuk be, hogy

$$tg\frac{5\pi}{12} = 2 + \sqrt{3}.$$

Megoldás.

$$\begin{split} z_1 &= 1 + \sqrt{3}i = 2\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right), \\ z_2 &= 2i = 2\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right), \\ z_1 + z_2 &= 1 + (2 + \sqrt{3})i. \end{split}$$

A 2.17. ábráról leolvasható, hogy z_1+z_2 egy olyan paralelogramma átlója, amelyiknek a két oldalát az azonos abszolút értékű z_1 és z_2 alkotja, s így a paralelogramma rombusz, a rombusz átlói pedig felezik az oldalak által bezárt szögeket. Ebből

$$\arg(z_1 + z_2) = \frac{\pi}{3} + \frac{1}{2} \left(\frac{\pi}{2} - \frac{\pi}{3} \right) = \frac{1}{2} \left(\frac{\pi}{2} + \frac{\pi}{3} \right)$$

$$= \frac{5\pi}{12}$$

$$z_1 + z_2 = 1 + (2 + \sqrt{3})i$$

$$= 2\sqrt{2 + \sqrt{3}} \left(\frac{1}{2\sqrt{2 + \sqrt{3}}} + \frac{2 + \sqrt{3}}{2\sqrt{2 + \sqrt{3}}}i \right)$$

Ezek alapján

$$\operatorname{tg} \frac{5\pi}{12} = \operatorname{tg}(\operatorname{arc}(z_1 + z_2)) = \frac{\sin(\operatorname{arc}(z_1 + z_2))}{\cos(\operatorname{arc}(z_1 + z_2))} = 2 + \sqrt{3}.$$

2.17. ábra.

2.6-4. Mutassuk meg, hogy

$$\sin(x) + \sin(2x) + \ldots + \sin(nx) = \frac{\sin\left(\frac{n+1}{2}x\right)\sin\frac{nx}{2}}{\sin\frac{x}{2}},$$

ahol x olyan valós szám, amelyre $\sin \frac{x}{2} \neq 0$ teljesül.

Megoldás. Legyen

$$z = \cos\frac{x}{2} + i\sin\frac{x}{2} \ .$$

Tekintsük a következő mértani sorozatot:

$$z^2 + z^4 + \dots + z^{2n} \tag{1}$$

Mivel $z^2 \neq 0, \ z^2 \neq 1,$ a $q=z^2$ kvócienssel alkalmazhatjuk a mértani sorozat összegképletét:

$$z^{2} + z^{4} + \dots + z^{2n} = q + q^{2} + \dots + q^{n}$$

$$= q(1 + q + \dots + q^{n-1}) = q \cdot \frac{q^{n} - 1}{q - 1}$$

$$= z^{2} \cdot \frac{z^{2n} - 1}{z^{2} - 1} = z^{2} \cdot \frac{z^{n}}{z} \cdot \frac{z^{n} - \frac{1}{z^{n}}}{z - \frac{1}{z}}$$

$$= z^{n+1} \cdot \frac{z^{n} - \frac{1}{z^{n}}}{z - \frac{1}{z}}.$$
(2)

A továbbiakban felhasználjuk, hogy

$$z^n = \cos\frac{nx}{2} + i\sin\frac{nx}{2} ,$$

valamint

$$\frac{1}{z} = \cos\frac{x}{2} - i\sin\frac{x}{2} \,,$$

s ebből

$$\frac{1}{z^n} = \cos\frac{nx}{2} - i\sin\frac{nx}{2} \ .$$

A (2) képlet a következőképpen alakul:

$$z^{n+1} \frac{2i\sin\frac{nx}{2}}{2i\sin\frac{x}{2}} = \left(\cos\left(\frac{n+1}{2}x\right) + i\sin\left(\frac{n+1}{2}x\right)\right) \frac{\sin\frac{nx}{2}}{\sin\frac{x}{2}}.$$
 (3)

(1) képzetes része

$$\sin(x) + \sin(2x) + \ldots + \sin(nx),$$

(3) képzetes része

$$\frac{\sin\left(\frac{n+1}{2}x\right)\sin\frac{nx}{2}}{\sin\frac{x}{2}},$$

ezek egyenlőek, így az állításban szereplő egyenlőséghez jutunk.

2.6-5. Bizonyítsuk be, hogy

$$\cos^{2}(x) + \cos^{2}(2x) + \ldots + \cos^{2}(nx) = \frac{n}{2} + \frac{\cos((n+1)x)\sin x}{2\sin x},$$

ahol x olyan valós szám, amelyre $\sin x \neq 0$ teljesül. Megoldás. Legyen

$$A = \cos^2(x) + \cos^2(2x) + \ldots + \cos^2(nx).$$

Felhasználjuk a következő azonosságot:

$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1.$$

amiből

$$\cos^2 x = \frac{\cos 2x + 1}{2} \ .$$

Ennek segítségével a bal oldalt alakítva:

$$A = \frac{\cos(2x)}{2} + \frac{1}{2} + \frac{\cos(4x)}{2} + \frac{1}{2} + \dots + \frac{\cos(2nx)}{2} + \frac{1}{2}.$$

Legyen

$$B = \cos(2x) + \cos(4x) + \ldots + \cos(2nx),$$

ekkor nyilván

$$A = \frac{B}{2} + \frac{n}{2} \,. \tag{4}$$

Ha $z = \cos x + i \sin x$, akkor $z^2 \neq 0$, $z^2 \neq 1$.

A továbbiakban felhasználjuk, hogy

$$z^n = \cos(nx) + i\sin(nx),$$

valamint

$$\frac{1}{z} = \cos x - i \sin x,$$

s ebből

$$\frac{1}{z^n} = \cos(nx) - i\sin(nx).$$

Bértékének kiszámítására tekintsük a következő, z^2 kvóciensű mértani sorozatot:

$$z^{2} + z^{4} + \ldots + z^{2n} = z^{2} \frac{z^{2n} - 1}{z^{2} - 1}$$

$$= z^{2} \frac{z^{n}}{z} \frac{z^{n} - \frac{1}{z^{n}}}{z - \frac{1}{z}}$$

$$= z^{n+1} \frac{z^{n} - \frac{1}{z^{n}}}{z - \frac{1}{z}}$$

$$= z^{n+1} \frac{2i \sin nx}{2i \sin x}$$

$$= (\cos((n+1)x) + i \sin((n+1)x)) \frac{\sin nx}{\sin x}.$$

A bal oldal valós része

$$\cos(2x) + \cos(4x) + \ldots + \cos(2nx),$$

ami B. Ez egyenlő a jobb oldal valós részével, vagyis

$$B = \cos(2x) + \cos(4x) + \dots + \cos(2nx) = \cos((n+1)x) \frac{\sin nx}{\sin x}$$
.

Ezt (4)-be helyettesítve:

$$\cos^{2}(x) + \cos^{2}(2x) + \ldots + \cos^{2}(nx) = \frac{\cos((n+1)x) \cdot \sin nx}{\sin x} \cdot \frac{1}{2} + \frac{n}{2} ,$$

amit be kellett látnunk.

2.7. Komplex együtthatós egyenletek

2.7-1. Oldjuk meg a következő egyenletet a komplex számok halmazán:

$$|z| - z = 1 + 2i$$

Megoldás. Legyen

$$z = a + bi$$
.

Ekkor az egyenlet így alakul:

$$\sqrt{a^2 + b^2} = a + bi + 1 + 2i = a + 1 + (b + 2)i.$$

Ebből

$$b + 2 = 0$$
,

amiből b = -2.

Másrészt

$$\sqrt{a^2 + 4} = a + 1,$$

amiből leolvasható, hogy

$$a + 1 > 0$$
.

Négyzetre emeléssel:

$$a^2 + 4 = a^2 + 2a + 1,$$

ebből

$$2a = 3, \qquad a = \frac{3}{2}.$$

A megoldás:

$$z = \frac{3}{2} - 2i.$$

2.7-2. Oldjuk meg a komplex számok halmazán a

$$z^2 - \overline{z} = 0$$

egyenletet.

Megoldás.

1. Megoldás: Használjuk fel z algebrai alakját. Legyen

$$z = a + bi$$
.

Ekkor

$$z^{2} = (a+bi)^{2}$$

$$= a^{2} - b^{2} + 2abi,$$

$$\overline{z} = a - bi.$$

Ezeket a feltételi egyenletbe írva az alábbi egyenletrendszert kapjuk.

$$a^2 - b^2 - a = 0$$
 és $2ab + b = 0$.

A második egyenlet

$$b(2a+1) = 0$$

alakra hozható, amiből azt kapjuk, hogy

$$b = 0$$
, vagy $2a + 1 = 0$.

Helyettesítsük b = 0-t az első egyenletbe.

$$a^2 - a = 0,$$

vagyis

$$a(a-1) = 0,$$

s ebből

$$a = 0,$$
 vagy $a = 1.$

2a + 1 = 0 esetén $a = -\frac{1}{2}$. Helyettesítsük ezt az első egyenletbe.

$$b^2 = \frac{3}{4},$$

amiből

$$b = \pm \frac{\sqrt{3}}{2}.$$

Összefoglalva eredményeinket, az egyenlet megoldásai:

$$\begin{array}{ll} a=0, & b=0, & z=0; \\ a=1, & b=0, & z=1; \\ a=-\frac{1}{2}, & b=\frac{\sqrt{3}}{2}, & z=-\frac{1}{2}+i\frac{\sqrt{3}}{2}; \\ a=-\frac{1}{2}, & b=-\frac{\sqrt{3}}{2}, & z=-\frac{1}{2}-i\frac{\sqrt{3}}{2}. \end{array}$$

2. Megoldás: Most z trigonometrikus alakjával dolgozunk. A

$$z^2 - \overline{z} = 0$$

egyenlet mindkét oldalához hozzáadjuk \overline{z} -at:

$$z^2 = \overline{z}$$
,

mindkét oldalt megszorozzuk z-vel:

$$z^3 = z\overline{z} = |z|^2 \tag{1}$$

Legyen $z = r(\cos \varphi + i \sin \varphi)$. Ezt helyettesítsük be (1)-be.

$$r^3(\cos(3\varphi) + i\sin(3\varphi)) = r^2$$

a. Ha r = 0, akkor z = 0.

b. Ha $r \neq 0$, akkor osztunk r^2 -tel.

$$r(\cos(3\varphi) + i\sin(3\varphi)) = 1,$$

amiből r=1.

Behelyettesítés után kapjuk, hogy

$$\cos(3\varphi) + i\sin(3\varphi) = 1,$$

vagyis

$$(\cos \varphi + i \sin \varphi)^3 = 1.$$

Ennek az egyenletnek a megoldásai a harmadik egységgyökök:

1,
$$-\frac{1}{2} + i\frac{\sqrt{3}}{2}$$
, $-\frac{1}{2} - i\frac{\sqrt{3}}{2}$.

A megoldás tehát

$$0, \qquad 1, \qquad -\frac{1}{2} + i\frac{\sqrt{3}}{2}, \qquad -\frac{1}{2} - i\frac{\sqrt{3}}{2}.$$

2.7-3. Vizsgáljuk meg, milyen z komplex számok elégítik ki a következő egyenletet:

$$\overline{z} = z^3$$

Megoldás. Szorozzuk be az egyenletet z-vel

$$\overline{z} \cdot z = z^4$$
,

ebből

$$|z|^2 = z^4.$$

Legyen

$$z = r(\cos\varphi + i\sin\varphi).$$

Ezt beírva egyenletünkbe

$$r^2 = r^4(\cos(4\varphi) + i\sin(4\varphi)).$$

r=0kielégíti az egyenletet, s így az egyik megoldás $z_0=0.$ Ha $r\neq 0,$ akkor r^2 -tel oszthatunk:

$$1 = r^2(\cos(4\varphi) + i\sin(4\varphi)).$$

Bal oldalon 1 áll, s így a jobb oldal 1 trigonometrikus alakja, amiből

$$r^2 = 1$$
.

r nem negatív, tehát r = 1. Így,

$$1 = \cos(4\varphi) + i\sin(4\varphi)$$

megoldását kell keresnünk, ami a négy negyedik egységgyök.

$$z_k = \cos\frac{2k\pi}{4} + i\sin\frac{2k\pi}{4}, \quad 0 \le k \le 3.$$

A teljes megoldás:

$$z_0 = 0,$$
 $z_1 = 1,$ $z_2 = i,$ $z_3 = -1,$ $z_4 = -i.$

2.7-4. Igazoljuk, hogy ha a z komplex szám nem nulla, és

$$z + \frac{1}{z} = 2\cos\theta,$$

akkor

$$z^m + \frac{1}{z^m} = 2\cos(m\theta), \quad (m \in \mathbb{N}).$$

Megoldás.

$$z + \frac{1}{z} = 2\cos\theta.$$

Szorozzuk meg mindkét oldalt z-vel:

$$z^2 + 1 = 2z\cos\theta$$
.

rendezve:

$$z^2 - 2z\cos\theta + 1 = 0.$$

Oldjuk meg ezt a z-ben másodfokú egyenletet:

$$z_{1,2} = \frac{2\cos\theta \pm \sqrt{4\cos^2\theta - 4}}{2} = \frac{2\cos\theta \pm 2i\sin\theta}{2} = \cos\theta \pm i\sin\theta.$$

Ez alapján

$$z^m = \cos(m\theta) \pm i\sin(m\theta),$$

és

$$\frac{1}{z^m} = \left(\frac{1}{z}\right)^m = \left(\frac{1}{\cos\theta \pm i\sin\theta}\right)^m = (\cos\theta \pm i\sin\theta)^m = \cos m\theta \pm i\sin m\theta.$$

Amiből valóban

$$z^m + \frac{1}{z^m} = 2\cos(m\theta).$$

2.7-5. Bizonyítsuk be, hogy ha $\varepsilon \neq 1$ harmadik egységgyök, akkor

$$(a+b+c)(a+b\varepsilon+c\varepsilon^2)(a+b\varepsilon^2+c\varepsilon) = a^3+b^3+c^3-3abc$$

Megoldás.

$$(a+b+c)(a+b\varepsilon+c\varepsilon^2)(a+b\varepsilon^2+c\varepsilon)=$$

$$=(a+b+c)(a^2+ab\varepsilon^2+ac\varepsilon+ab\varepsilon+b^2\varepsilon^3+bc\varepsilon^2+ac\varepsilon^2+bc\varepsilon^4+c^2\varepsilon^3)=$$
Mivel ε harmadik egységgyök, ezért $\varepsilon^3=1$:
$$=(a+b+c)(a^2+b^2+c^2+ab(\varepsilon+\varepsilon^2)+ac(\varepsilon+\varepsilon^2)+bc(\varepsilon+\varepsilon^2))=$$

$$\varepsilon\neq 1 \text{ harmadik egységgyök, s így } 1+\varepsilon+\varepsilon^2=0, \text{ amit felhasználva:}$$

$$=a^3+ab^2+ac^2-a^2b-a^2c-abc+a^2b+b^3+bc^2+$$

$$-ab^2-abc-b^2c+a^2c+b^2c+c^3-abc-ac^2-bc^2=a^3+b^3+c^3-3abc$$

2.7-6. Legyen

$$a = 2^{\frac{3}{4}} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right),$$

$$b = 2(\cos 45^{\circ} - i \sin 45^{\circ}),$$

$$c = -2\sqrt{2} \left(\cos \frac{-\pi}{3} + i \sin \frac{-\pi}{3} \right).$$

Oldjuk meg az alábbi egyenletet a komplex számok halmazán és az eredményt adjuk meg trigonometrikus alakban.

$$a^6 - \overline{b}^5 - cz^3 = 0$$

Megoldás. Mivel $c \neq 0$, a kiindulási egyenlet rendezésével azt kapjuk, hogy

$$z^3 = \frac{a^6 - \overline{b}^5}{c}$$
.

A számlálóban levő művelet algebrai alakot kíván, a tört értékéből való harmadik gyökvonás viszont trigonometrikus alakot. Ezt szem előtt tartva egyrészt

$$a^{6} = \left(2^{\frac{3}{4}} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right)\right)^{6}$$

$$= 2^{\frac{9}{2}} \left(\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2}\right)$$

$$= 2^{4} \sqrt{2}(-i)$$

$$= -16 \sqrt{2}i,$$

másrészt

$$\bar{b} = 2(\cos 45^{\circ} + i \sin 45^{\circ})$$

$$= 2\left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right),$$

és ebből

$$\bar{b}^{5} = 2^{5} \left(\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right)$$
$$= 2^{5} \left(-\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2} \right)$$
$$= -16\sqrt{2} - 16\sqrt{2}i.$$

Így

$$a^6 - \overline{b}^5 = 16\sqrt{2}.$$

Felhasználva azt, hogy

$$-1 = (\cos \pi + i \sin \pi),$$

$$c = -2\sqrt{2} \left(\cos \frac{-\pi}{3} + i \sin \frac{-\pi}{3} \right)$$
$$= 2\sqrt{2} (\cos \pi + i \sin \pi) \left(\cos \frac{-\pi}{3} + i \sin \frac{-\pi}{3} \right)$$
$$= 2\sqrt{2} \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right).$$

Behelyettesítve a törtbe:

$$\frac{a^6 - \overline{b}^5}{c} = \frac{16\sqrt{2}}{2\sqrt{2}\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)}$$
$$= 8\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right).$$

Ebből harmadik gyököt vonva:

$$z_k = 2\left(\cos\left(\frac{4\pi}{9} + \frac{k2\pi}{3}\right) + i\sin\left(\frac{4\pi}{9} + \frac{k2\pi}{3}\right)\right), \quad k = 0, 1, 2.$$

Ezek szerint a keresett gyökök:

$$z_0 = 2\left(\cos\frac{4\pi}{9} + i\sin\frac{4\pi}{9}\right) = 2(\cos 80^\circ + i\sin 80^\circ)$$

$$z_1 = 2\left(\cos\frac{10\pi}{9} + i\sin\frac{10\pi}{9}\right) = 2(\cos 200^\circ + i\sin 200^\circ)$$

$$z_2 = 2\left(\cos\frac{16\pi}{9} + i\sin\frac{16\pi}{9}\right) = 2(\cos 320^\circ + i\sin 320^\circ)$$

2.7-7. Oldjuk meg az alábbi egyenletet a komplex számok halmazán és az eredményt adjuk meg trigonometrikus alakban.

$$(\cos 225^{\circ} - i\sin 225^{\circ})z^{5} + 32i - 0.5\left(\frac{4}{i-1}\right)^{4}(\overline{i-1}) = 0$$

Megoldás. Mivel $\cos 225^{\circ} - i \sin 225^{\circ} \neq 0$, ezért

$$z^{5} = \frac{0.5\left(\frac{4}{i-1}\right)^{4}(\overline{i-1}) - 32i}{\cos 225^{\circ} - i\sin 225^{\circ}}$$

Először a számlálót alakítjuk át.

$$\left(\frac{4}{i-1}\right)^4 = \left(\frac{4(-i-1)}{2}\right)^4 = (-2(i+1))^4 = -2^6 =$$

Felhasználjuk, hogy $(i+1)^2=2i, \ \ (i+1)^4=-2^2, \ \ (\overline{i-1})=-i-1.$ Így a számláló:

$$= 0.5 \left(\frac{4}{i-1}\right)^4 (\overline{i-1}) - 32i = 0.5(-2^6)(-i-1) - 32i = 32i + 32 - 32i = 32.$$

A nevezőt alakítva

$$\frac{1}{\cos 225^{\circ} - i \sin 225^{\circ}} = (\cos 225^{\circ} + i \sin 225^{\circ}) \left(\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4}\right).$$

Ezek alapján a tört:

$$z^5 = 32\left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right).$$

A gyökvonást elvégezve:

$$z_k = 2\left(\cos\left(\frac{\pi}{4} + \frac{k2\pi}{5}\right) + i\sin\left(\frac{\pi}{4} + \frac{k2\pi}{5}\right)\right)$$
$$= 2\left(\cos\frac{(5+8k)\pi}{20} + i\sin\frac{(5+8k)\pi}{20}\right), \quad k = 0, 1, 2, 3, 4.$$

Ebből:

$$z_{0} = 2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = 2\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = \sqrt{2} + i\sqrt{2},$$

$$z_{1} = 2\left(\cos\frac{13\pi}{20} + i\sin\frac{13\pi}{20}\right),$$

$$z_{2} = 2\left(\cos\frac{21\pi}{20} + i\sin\frac{21\pi}{20}\right),$$

$$z_{3} = 2\left(\cos\frac{29\pi}{20} + i\sin\frac{29\pi}{20}\right),$$

$$z_{4} = 2\left(\cos\frac{37\pi}{20} + i\sin\frac{37\pi}{20}\right).$$

2.8. Gyökök és együtthatók

2.8-1. Keressük meg a $z^3+z+10=0$ egyenlet összes valós gyökét, ha tudjuk, hogy az egyik gyök $z_1=1-2i$.

Megoldás. Valós együtthatós egyenletről van szó, s így a másik gyök

$$z_2 = \overline{z_1} = 1 + 2i$$
.

Legyen a harmadik gyök z₃. A gyökök és együtthatók közötti összefüggés alapján:

$$z_1 + z_2 + z_3 = 0$$
,

amiből
$$z_3 = -2$$
.

2.8-2. Mutassuk meg, hogy a $z^4 + z^3 + z - 1 = 0$ egyenlet egyik gyöke $z_1 = i$. Adjuk meg a többi három gyököt.

Megoldás. Helyettesítsük be i - t az egyenletbe.

$$i^4 + i^3 + i - 1 = 1 - i + i - 1 = 0.$$

Tehát $z_1 = i$ gyöke az egyenletnek. Az egyenlet valós együtthatós, így a másik gyök

$$z_2 = \overline{z_1} = -i$$
.

Legyen a többi két gyök z_3 és z_4 . A gyökök és együtthatók közötti összefüggésekre támaszkodva:

$$z_1 + z_2 + z_3 + z_4 = -1$$

és

$$z_1 z_2 z_3 z_4 = -1.$$

Ebből

$$z_3 + z_4 = -1$$

és

$$z_3 z_4 = -1.$$

Mivel 0 nem gyök, ezért

$$z_4 = -\frac{1}{z_3},$$

amit beírva az első egyenletbe

$$z_3 - \frac{1}{z_3} = -1,$$
 $z_3^2 + z_3 - 1 = 0.$

Ebből

$$z_3 = \frac{-1 + \sqrt{5}}{2}$$

és

$$z_4 = \frac{-1 - \sqrt{5}}{2}.$$

Az egyenlet gyökei tehát:

$$i, -i, \frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}.$$

2.8-3. Mutassuk meg, hogy a $z^4-2z^3-z^2+2z+10=0$ egyenletnek gyöke a $z_1=-1+i$. Adjuk meg a többi három gyököt is.

Megoldás. Behelyettesítve látjuk, hogy

$$z_1 = -1 + i$$

gyöke az egyenletnek. Az egyenlet valós együtthatós, így egy másik gyök

$$z_2 = \overline{z_1} = -1 - i.$$

Legyen a többi két gyök z_3 és z_4 . A gyökök és együtthatók közötti összefüggésekre támaszkodva:

$$z_1 + z_2 + z_3 + z_4 = 2$$
 és $z_1 z_2 z_3 z_4 = 10$.

Ebből

$$z_3 + z_4 = 4$$
 és $z_3 z_4 = 5$.

Mivel 0 nem gyök, ezért az utóbbi egyenletből

$$z_4 = \frac{5}{z_3},$$

amit beírva az előzőbe

$$z_3 + \frac{5}{z_3} - 4 = 0$$

$$z_3^2 - 4z_3 + 5 = 0,$$
 $z_3 = \frac{4 \pm \sqrt{16 - 20}}{2} = \frac{4 \pm 2i}{2} = 2 \pm i$

Az egyenlet gyökei tehát:

$$-1+i$$
, $-1-i$, $2+i$, $2-i$.

2.8-4. Tudjuk, hogy a $z^2 + (1-i)z - 4 + 7i = 0$ egyenlet egyik gyöke $z_1 = 2 - i$. Keressük meg a másik gyököt.

Megoldás. Vigyázzunk, nem valós együtthatós egyenletről van szó, s így a másik gyök nem $\overline{z_1}$. Legyen a másik gyök z_2 . A gyökök és együtthatók közötti összefüggések alapján:

$$z_1 + z_2 = -(1 - i) = -1 + i$$
 és $z_1 z_2 = -4 + 7i$.

Az első összefüggésbe helyettesítsük be z_1 adott értékét.

$$2 - i + z_2 = -1 + i,$$
 $z_2 = -3 + 2i.$

 z_2 értékét az eredeti egyenletbe visszahelyettesítve meggyőződhetünk arról, hogy valóban gyök.

2.8-5. Tegyük fel hogy a $z^3 - 2z + k = 0$ egyenlet egyik gyöke $z_1 = 1 + i$. Adjuk meg a másik két gyököt és a k valós konstans értékét.

Megoldás. Az egyenlet valós együtthatós, s így a másik gyök

$$z_2 = \overline{z_1} = 1 - i$$
.

Legyen a harmadik gyök z_3 . A gyökök és együtthatók közötti összefüggések szerint:

$$z_1 + z_2 + z_3 = 0,$$
 $1 + i + 1 - i + z_3 = 0,$

amiből

$$z_3 = -2$$
.

Másrészt

$$z_1 z_2 z_3 = -k,$$

és így

$$k=4$$
.

2.8-6. Tudjuk, hogy a $z^3 + pz^2 + qz + 13 = 0$ egyenlet egyik gyöke $z_1 = 2 - 3i$. Adjuk meg a többi gyököt, valamint a p és q valós konstansok értékét. Megoldás. Az egyenlet valós együtthatós, így a másik gyök

$$z_2 = \overline{z_1} = 2 + 3i.$$

Legyen a harmadik gyök z_3 . A gyökök és együtthatók közötti összefüggésekre támaszkodva:

$$z_1 z_2 z_3 = -13, \qquad 13 z_3 = -13, \qquad z_3 = -1.$$

Másrészt

$$z_1 + z_2 + z_3 = -p$$
, és $z_1 z_2 + z_1 z_3 + z_2 z_3 = q$.

Ebből p=-3 és

$$q = (2-3i)(2+3i) + (2-3i)(-1) + (2+3i)(-1)$$

= 13-4
= 9.

2.8-7. Keressük meg az a és b valós számok értékét, ha z^3-3z^2+az+b osztható z-i -vel.

Megoldás. A feltétel miatt z - i szerepel

$$z^3 - 3z^2 + az + b = 0$$

gyöktényezős alakjában, s így i gyöke a harmadfokú egyenletnek. Ha tehát az egyenletbe i-t behelyettesítjük, akkor nullát kapunk.

$$i^3 - 3i^2 + ai + b = 0$$

$$-i + 3 + ai + b = 0$$
,

amiből

$$3 + b = 0$$
 és $i(a - 1) = 0$.

A megoldás

$$b=-3$$
 és $a=1$.

2.9. Egyéb példák

2.9-1. Bizonyítsuk be, hogy ha két természetes szám mindegyike előállítható két négyzetszám összegeként, akkor a szorzatuk is előállítható ilyen alakban. Igaz-e az állítás megfordítása?

Megoldás. Négyzetszámként a 0-t is megengedjük. Például

$$2 = 1 + 1,$$
 $2 + 2 = 4 + 0$

Legyen

$$n = a^2 + b^2$$
 és $m = x^2 + y^2$.

Ekkor n és m tekinthető egy-egy komplex szám abszolút érték négyzeteként:

$$n = |a + bi|^2$$
, $m = |x + yi|^2$.

Ebből:

$$n \cdot m = |a+bi|^2 \cdot |x+yi|^2$$

$$= |(a+bi)(x+yi)|^2$$

$$= |ax-by+(ay+bx)i|^2$$

$$= (ax-by)^2 + (ay+bx)^2.$$

Az állítás megfordítása nem igaz, például

$$18 = 3^2 + 3^2, 18 = 3 \cdot 6,$$

de sem 3, sem 6 nem állítható elő két négyzetszám összegeként.

2.9-2. Bizonyítsuk be a következő állítást: Legyen $z\in\mathbb{C},\ n\in\mathbb{N}.$ A z=0 szám egyetlen n-edik gyöke 0. Ha

$$z \neq 0$$
 és $z = r(\cos \varphi + i \sin \varphi),$

akkor z-nek n különböző n-edik gyöke van, melyek

$$w_k = \sqrt[n]{r} \left(\cos \frac{\varphi + k2\pi}{n} + i \sin \frac{\varphi + k2\pi}{n} \right), \quad 0 \le k \le n - 1.$$

Megoldás. Legyen

$$w = \rho(\cos\psi + i\sin\psi)$$

a z szám n-edik gyöke. Mivel $w^n = z$, ezért

$$\varrho^{n}(\cos(n\psi) + i\sin(n\psi)) = r(\cos\varphi + i\sin\varphi). \tag{1}$$

Ha z=0, akkor r=0, s így (1)-ből

$$\varrho = 0$$
 és $w = 0$.

 $2. \ P\'eld\'ak$

Ha $z \neq 0$, s ezért $r \neq 0$, akkor (1) alapján

$$\varrho^n = r \tag{2}$$

és

$$n\psi - \varphi = k2\pi, \qquad (k \in \mathbb{Z}).$$
 (3)

(2)-ből

$$\rho = \sqrt[n]{r}$$

ami a nem negatív valós számokon értelmezett gyökvonás alapján egyértelmű. (3) -ból pedig

$$n\psi = \varphi + 2k\pi,$$

s így

$$\psi = \frac{\varphi}{n} + \frac{2k\pi}{n}, \quad (k \in \mathbb{Z}).$$

Ha $0 \le k \le n-1$, akkor n különböző értéket kapunk ψ -re és így w-re is. Ha k valamely ezektől különböző egész szám, akkor ψ ezen értékek valamelyikétől 2π egész számú többszörösével különbözik, s így a w_k számok valamelyikével megegyezik. Ezek szerint minden nullától különböző komplex számnak n különböző n-edik gyöke van.

2.9-3. Mutassuk meg, hogy ha $z \in \mathbb{C} \setminus 0$, $n \in \mathbb{N}$ és $w_1^n = z$, akkor z többi n-edik gyöke $w_1 \varepsilon_k$ $(1 \le k \le n - 1)$, ahol ε_k n-edik egységgyök. Megoldás. Felhasználva, hogy $\varepsilon_k^n = 1$, azt kapjuk, hogy

$$(w_1 \varepsilon_k)^n = w_1^n \cdot \varepsilon_k^n = w_1^n = z,$$

ezért $w_1 \varepsilon_k z$ n-edik gyöke. Másrészt az n-edik egységgyökökkel szorozva w_1 -et, csupa különböző n-edik gyököt kapunk, mert

$$w_1 \varepsilon_k = w_1 \varepsilon_s$$

esetén $w_1 \neq 0$ miatt

$$\varepsilon_k = \varepsilon_s$$
.

Mivel z-nek n különböző n-edik gyöke van, az állításban megadott módon megkapjuk az összeset.

2.9-4. Szerkesszük meg két adott komplex szám szorzatának megfelelő vektort a Gauss-számsíkon.

Megoldás. Legyen P a z_1 -nek, Q a z_2 -nek, E pedig az 1 számnak megfelelő pont a koordinátarendszerben. Feltesszük, hogy a 2.18. ábrának megfelelő helyzetűek a vektoraink. Szerkesszünk az OQ szakasz fölé az OEP háromszöghöz hasonló háromszöget, és az új csúcsot jelöljük R-rel.

 z_1 argumentumát jelölje α , z_2 argumentumát pedig β . Az R pont által meghatározott komplex szám argumentuma $\alpha + \beta$, abszolút értékére pedig a következő igaz. Mivel a két háromszög hasonló, ezért

$$\overline{OP}: \overline{OE} = \overline{OR}: \overline{OQ}.$$

2.9. Egyéb példák 61

2.18. ábra.

Ebből $\overline{OE}=1$ -et felhasználva

$$\overline{OR} = \overline{OP} \cdot \overline{OQ} = |z_1| \cdot |z_2| = |z_1 \cdot z_2|.$$

Tehát az R pontnak megfelelő komplex szám z_1 és z_2 szorzata.

2.9-5. Szerkesszük meg valamely $z \neq 0$ komplex szám reciprokának megfelelő vektort a Gauss-számsíkon.

Megoldás. Ha |z|=1, akkor az $\frac{1}{z}$ -nek megfelelő komplex szám nyilván \overline{z} , vagyis a valós tengelyre való tükörképet kell megszerkesztenünk. Legyen most |z|>1, és $z=r(\cos\alpha+i\sin\alpha)$.

2.19. ábra.

Szerkesszük meg az O középpontú egységnyi sugarú kört (2.19. ábra). A z komplex számnak megfelelő pont legyen P, P-ből a körhöz húzott egyik érintő érintési pontja E.

Az OEP derékszögű háromszög E-ből induló magasságvonalának talppontját jelöljük T-vel. Az OTE háromszög hasonló az OEP háromszöghöz, ezért

$$\overline{OT}: \overline{OE} = \overline{OE}: \overline{OP},$$

s ebből

$$\overline{OP} \cdot \overline{OT} = \overline{OE}^2 = 1,$$

amiből

$$\overline{OT} = \frac{1}{\overline{OP}} = \frac{1}{r}.$$

A T pontot a valós tengelyre tükrözve kapjuk S-et. Az ennek megfelelő komplex szám abszolút értéke $\frac{1}{r}$, argumentuma $-\alpha$, tehát megkaptuk z reciprokát. Az 1-nél kisebb abszolút értékű komplex számok reciprokának szerkesztése hasonló meggondolás alapján végezhető.

2.9-6. Bizonyítsuk be, hogy szabályos háromszög síkjában fekvő tetszőleges, a csúcsoktól különböző P pontot a csúcsokkal összekötő szakaszokból háromszög szerkeszthető oly módon, hogy ezek a szakaszok a háromszög oldalai lesznek. Megoldás.

2.20. ábra.

Legyen a háromszög három csúcsa P_1, P_2, P_3 (2.20. ábra). Az állítás szerint érvényes a $\overline{P_1P}$, $\overline{P_2P}$, $\overline{P_3P}$ szakaszokra a háromszög-egyenlőtlenség. Lássuk be például, hogy

$$\overline{P_1P} \le \overline{P_2P} + \overline{P_3P}$$

fennáll. Jelölje z, z_1 , z_2 és z_3 sorban azokat a komplex számokat, amelyeknek megfelelő vektorok az origóból a P, P_1 , P_2 és P_3 pontokba mutatnak. Ezek segítségével az előző egyenlet így fogalmazható meg:

$$|z - z_1| \le |z - z_2| + |z - z_3|.$$

2.9. Egyéb példák 63

Tekintsük a következő kifejezést:

$$(z-z_1)(z_2-z_3)+(z-z_2)(z_3-z_1)+(z-z_3)(z_1-z_2).$$

Ha elvégezzük a kijelölt műveleteket, láthatjuk, hogy a kifejezés értéke 0. Ebből

$$(z-z_1)(z_2-z_3)=-(z-z_2)(z_3-z_1)-(z-z_3)(z_1-z_2).$$

Mindkét oldal abszolút értékét véve:

$$|(z-z_1)(z_2-z_3)| = |(z-z_2)(z_3-z_1) + (z-z_3)(z_1-z_2)|.$$

Alkalmazzuk az összeg illetve a szorzat abszolút értékére vonatkozó ismereteinket.

$$|(z-z_1)(z_2-z_3)| \le |(z-z_2)(z_3-z_1)| + |(z-z_3)(z_1-z_2)|$$

$$|z - z_1| \cdot |z_2 - z_3| \le |z - z_2| \cdot |z_3 - z_1| + |z - z_3| \cdot |z_1 - z_2|$$

Mivel $|z_2-z_3|,\ |z_3-z_1|,\ |z_1-z_2|$ egy szabályos háromszög egy-egy oldalának hossza, ezért

$$|z_2 - z_3| = |z_3 - z_1| = |z_1 - z_2| \neq 0.$$

Ezzel az értékkel egyszerűsítve:

$$|z - z_1| \le |z - z_2| + |z - z_3|,$$

ami a bizonyítandó volt.

2.9-7.

- a. Az 1-től különböző harmadik egységgyököknek megfelelő pontokat kössük össze az 1-nek megfelelő ponttal, és számítsuk ki az így keletkező szakaszok hosszának a szorzatát.
- b. Végezzük el ugyanezt a negyedik egységgyökökkel. Megoldás.
 - ${\bf a.~A}~-\frac{1}{2}+i\frac{\sqrt{3}}{2}$ pontból az 1-be mutató vektornak megfelelő komplex szám

$$1 - \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 1 + \frac{1}{2} - i\frac{\sqrt{3}}{2},$$

a $-\frac{1}{2}-i\frac{\sqrt{3}}{2}$ pontból az 1-be mutató vektornak megfelelő komplex szám pedig

$$1 + \frac{1}{2} + i\frac{\sqrt{3}}{2}.$$

 $2. \ P\'eld\'ak$

2.21. ábra.

$$\left| \left(1 + \frac{1}{2} - i \frac{\sqrt{3}}{2} \right) \right| \cdot \left| \left(1 + \frac{1}{2} + i \frac{\sqrt{3}}{2} \right) \right| = \left| \left(\frac{3}{2} - i \frac{\sqrt{3}}{2} \right) \left(\frac{3}{2} + i \frac{\sqrt{3}}{2} \right) \right|$$

$$= \left| \frac{9}{4} + \frac{3}{4} \right|$$

$$= \left| \frac{12}{4} \right|$$

$$= 3$$

b. A negyedik egységgyökök esetén is kössük össze az 1-nek megfelelő pontot a többivel, és az így kapott szakaszok hosszát szorozzuk össze. (Lásd a 2.22. ábrát.)

$$|1 - i| \cdot |1 - (-1)| \cdot |1 - (-i)| = \sqrt{2} \cdot 2 \cdot \sqrt{2} = 4$$

2.22. ábra.

lesz az eredmény.

2.9-8. Írjunk az egység sugarú körbe egy szabályos n szöget. Bizonyítsuk be,

2.9. Egyéb példák 65

hogy egy tetszőleges csúcsot a többi csúccsal összekötő szakaszok hosszának a szorzata n-nel egyenlő.

Megoldás. Legyen ε egy primitív n-edik egységgyök. Ekkor az

$$1, \varepsilon, \varepsilon^2, \ldots, \varepsilon^{n-1}$$

számoknak megfelelő pontok az egységkörbe írt szabályos n oldalú sokszög csúcsai. Kössük össze a többi csúcsot az 1-nek megfelelő ponttal. Az összekötő vektorok az

$$1-\varepsilon$$
, $1-\varepsilon^2$, ..., $1-\varepsilon^{n-1}$

komplex számoknak felelnek meg. Az állítás így fogalmazható meg a segítségükkel:

$$|1 - \varepsilon| \cdot |1 - \varepsilon^2| \cdot \ldots \cdot |1 - \varepsilon^{n-1}| = n,$$

ami így is írható:

$$|(1 - \varepsilon)(1 - \varepsilon^2)\dots(1 - \varepsilon^{n-1})| = n. \tag{1}$$

Tudjuk, hogy az

$$1, \varepsilon, \varepsilon^2, \ldots, \varepsilon^{n-1}$$

számok kielégítik a

$$z^n - 1 = 0$$

egyenletet. Másrészt

$$z^{n} - 1 = (z - 1)(z^{n-1} + z^{n-2} + \dots + z + 1) = 0.$$

Mivel a z-1 tényezőnek csupán az 1 szám gyöke, a második tényezőnek, az

$$f(z) = z^{n-1} + z^{n-2} + \ldots + z + 1 \tag{2}$$

polinomnak a gyökei

$$\varepsilon, \ \varepsilon^2, \ \ldots, \ \varepsilon^{n-1}.$$

Ezért f(z) gyöktényezős alakja a következő:

$$f(z) = (z - \varepsilon)(z - \varepsilon^2) \dots (z - \varepsilon^{n-1}). \tag{3}$$

Ebből

$$f(1) = (1 - \varepsilon)(1 - \varepsilon^2) \dots (1 - \varepsilon^{n-1}),$$

másrészt (2)-ből azt kapjuk, hogy

$$f(1) = n$$
.

Az (1)-ben a bal oldalon szereplő kifejezés tehát n abszolút értéke, ami szintén n.

2.10. Binomiális együtthatók és komplex számok

Az alábbi példákban n pozitív egész számot, k,m pedig nem negatív egész számokat jelölnek.

2.10-1. Adjuk meg a következő kifejezések értékét zárt alakban.

a.

$$\binom{n}{0} - \binom{n}{2} + \binom{n}{4} - \binom{n}{6} + \binom{n}{8} - \ldots + (-1)^{\frac{k}{2}} \binom{n}{k},$$

ahol k az a legnagyobb páros egész szám, melyre $k \leq n$,

b.

$$\binom{n}{1} - \binom{n}{3} + \binom{n}{5} - \binom{n}{7} + \binom{n}{9} - \dots + (-1)^{\frac{k-1}{2}} \binom{n}{k},$$

ahol k az a legnagyobb páratlan egész szám, melyre $k \leq n$.

Megoldás. Tekintsük az $(1+i)^n$ kifejezést és végezzük el a hatványozást kétféleképpen. Egyrészt

$$(1+i)^{n} = \binom{n}{0} + \binom{n}{1}i - \binom{n}{2} - \binom{n}{3}i + \binom{n}{4} + \binom{n}{5}i - \binom{n}{6} - \binom{n}{7}i + \binom{n}{8}i - \binom{n}{9}i - \binom{n}{10}i + \dots + \binom{n}{n}i^{n},$$

másrészt

$$(1+i)^n = \left(\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)\right)^n = \sqrt{2}^n\left(\cos\frac{n\pi}{4} + i\sin\frac{n\pi}{4}\right).$$

a. A kétféle előállításban a valós részek megegyeznek, így

$$\binom{n}{0} - \binom{n}{2} + \binom{n}{4} - \binom{n}{6} + \binom{n}{8} - \dots \pm \binom{n}{k} = \sqrt{2}^n \cos \frac{n\pi}{4}.$$

b. A kétféle előállításban a képzetes részek megegyezése miatt

$$\binom{n}{1} - \binom{n}{3} + \binom{n}{5} - \binom{n}{7} + \binom{n}{9} - \dots \pm \binom{n}{k} = \sqrt{2}^n \sin \frac{n\pi}{4}.$$

2.10-2. Adjuk meg a következő kifejezések értékét zárt alakban.

a.

$$A = \binom{n}{0} + \binom{n}{4} + \binom{n}{8} + \ldots + \binom{n}{k},$$

ahol k az a legnagyobb 4-gyel osztható egész szám, melyre $k \leq n$,

b.

$$B = \binom{n}{1} + \binom{n}{5} + \binom{n}{9} + \ldots + \binom{n}{k},$$

ahol k az a legnagyobb 4m+1 alakú egész szám, melyre $k \leq n$.

c.

$$C = \binom{n}{2} + \binom{n}{6} + \binom{n}{10} + \ldots + \binom{n}{k},$$

ahol k az a legnagyobb 4m+2 alakú egész szám, melyre $k \leq n$,

 $\mathbf{d}.$

$$D = \binom{n}{3} + \binom{n}{7} + \binom{n}{9} + \binom{n}{11} + \dots + \binom{n}{k},$$

ahol k az a legnagyobb 4m+3 alakú egész szám, melyre $k \le n$. Megoldás. Egyrészt

$$(1+i)^n = \sum_{k=0}^n \binom{n}{k} i^k = (A-C) + (B-D)i,$$

másrészt

$$(1+i)^n = (\sqrt{2}(\cos\frac{\pi}{4} + i\sin\pi 4))^n = \sqrt{2}^n(\cos\frac{n\pi}{4} + i\sin\frac{n\pi}{4}).$$

Ezekből

$$A - C = \sqrt{2}^n \cos \frac{n\pi}{4}, \qquad B - D = \sqrt{2}^n \sin \frac{n\pi}{4}.$$
 (1)

Ugyanakkor

$$A + C = B + D = 2^{n-1} (2)$$

Ez utóbbi a binomiális egyenletből könnyen adódik:

$$(x+y)^n = \binom{n}{0} y^n + \binom{n}{1} x y^{n-1} + \dots + \binom{n}{k} x^k y^{n-k} + \dots + \binom{n}{n} x^n,$$

amiből az x=1 és y=-1 helyettesítést elvégezve

$$0 = (1-1)^n = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n},$$

ebből pedig

$$\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots = \frac{1}{2}2^n = 2^{n-1}.$$

(1) és (2) összehasonlításával

$$A = \frac{1}{2} \left(2^{n-1} + \sqrt{2}^n \cos \frac{n\pi}{4} \right), \qquad B = \frac{1}{2} \left(2^{n-1} + \sqrt{2}^n \sin \frac{n\pi}{4} \right),$$

$$C = \frac{1}{2} \left(2^{n-1} - \sqrt{2}^n \cos \frac{n\pi}{4} \right), \qquad D = \frac{1}{2} \left(2^{n-1} - \sqrt{2}^n \sin \frac{n\pi}{4} \right).$$

2.10-3.

a. Legyen

$$\varepsilon = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}.$$

Lássuk be, hogy $1 + \varepsilon^k + \varepsilon^{2k}$ értéke 3, ha $3 \mid k$, illetve 0, ha $3 \nmid k$.

b. Adjuk meg a következő kifejezés értékét zárt alakban:

$$\binom{n}{0} + \binom{n}{3} + \binom{n}{6} + \ldots + \binom{n}{k},$$

ahol k az a legnagyobb 3-mal osztható egész szám, melyre $k \leq n$. Megoldás.

 $\mathbf{\tilde{a}}.$ Ha $3\mid k,$ akkor $\varepsilon^k=1$ és $\varepsilon^{2k}=1,$ hiszen ε harmadik egységgyök. Így ebben az esetben

$$1 + \varepsilon^k + \varepsilon^{2k} = 3.$$

Ha pedig $3 \nmid k$, akkor $\varepsilon^k \neq 1$ és a mértani sorozat összegképletét alkalmazva

$$1 + \varepsilon^k + \varepsilon^{2k} = \frac{\varepsilon^{3k} - 1}{\varepsilon^k - 1}.$$

Mivel $\varepsilon^{3k} = 1$, a számláló értéke 0 lesz.

b. Legyen

$$\binom{n}{0} + \binom{n}{3} + \binom{n}{6} + \ldots + \binom{n}{k} = S.$$

Tekintsük a következő átalakítást:

$$(1+1)^n + (1+\varepsilon)^n + (1+\varepsilon^2)^n = \sum_{k=0}^n \binom{n}{k} (1+\varepsilon^k + \varepsilon^{2k}).$$

Az a.-ban kapott eredmény miatt ennek a kifejezésnek az értéke éppen

$$3\left(\binom{n}{0} + \binom{n}{3} + \binom{n}{6} + \ldots + \binom{n}{k}\right). \tag{1}$$

Ugyanakkor

$$(1+1)^{n} + (1+\varepsilon)^{n} + (1+\varepsilon^{2})^{n} =$$

$$= 2^{n} + \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^{n} + \left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)^{n}$$

$$= 2^{n} + \cos\frac{n\pi}{3} + i\sin\frac{n\pi}{3} + \cos\frac{n\pi}{3} - i\sin\frac{n\pi}{3}$$

$$= 2^{n} + 2\cos\frac{n\pi}{2}$$
(2)

Közben felhasználtuk azt, hogy

$$1 + \varepsilon = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$$
, és $1 + \varepsilon^2 = \cos\frac{\pi}{3} - i\sin\frac{\pi}{3}$.

(1) és (2) összevetésével

$$\binom{n}{0} + \binom{n}{3} + \binom{n}{6} + \ldots + \binom{n}{k} = \frac{1}{3} \left(2^n + 2 \cos \frac{n\pi}{3} \right)$$

2.10-4.

a. Legyen

$$\varepsilon = \cos\frac{2\pi}{m} + i\sin\frac{2\pi}{m}$$

Lássuk be, hogy

$$1 + \varepsilon^k + \varepsilon^{2k} + \ldots + \varepsilon^{(m-1)k} = m, \quad \mathbf{ha} \ m \mid k,$$

= 0, \quad \mathbf{ha} \ m \div k.

b. Legyen

$$T = \binom{n}{0} + \binom{n}{m} + \binom{n}{2m} + \ldots + \binom{n}{k},$$

ahol k az a legnagyobb m-mel osztható egész szám, melyre $k \leq n$. Lássuk be, hogy

$$(1+1)^n + (1+\varepsilon)^n + \ldots + (1+\varepsilon^{m-1})^n = mT,$$

és ennek segítségével keressünk zárt formulát T számára. Megoldás.

a. Ham|k,akkor $\varepsilon^k=1,$ mert ε^- m-edik egységgyök. Így ebben az esetben

$$1 + \varepsilon^k + \varepsilon^{2k} + \ldots + \varepsilon^{(m-1)k} = m.$$

Ha pedig $m \nmid k$, akkor a mértani sorozat összegképletét alkalmazva

$$1 + \varepsilon^k + \varepsilon^{2k} + \ldots + \varepsilon^{(m-1)k} = \frac{\varepsilon^{mk} - 1}{\varepsilon^k - 1}.$$

A számláló értéke 0 lesz, mert $\varepsilon^{mk} = 1$.

b.

$$(1+1)^n + (1+\varepsilon)^n + \ldots + (1+\varepsilon^{m-1})^n =$$

$$= \sum_{k=0}^{n} {n \choose k} \left(1 + \varepsilon^k + \varepsilon^{2k} + \ldots + \varepsilon^{(m-1)k} \right).$$

Az a. pontban kapott eredmény miatt ennek a kifejezésnek az értéke éppen

$$m\left(\binom{n}{0} + \binom{n}{m} + \binom{n}{2m} + \ldots + \binom{n}{k}\right).$$
 (1)

Felhasználjuk, hogy

$$(1 + \cos \alpha + i \sin \alpha)^n = \left(2\cos\frac{\alpha}{2}\right)^n \left(\cos\frac{na}{2} + i \sin\frac{na}{2}\right).$$

(Lásd a 2.2.10 példát.)

$$(1+1)^n = 2^n,$$

$$(1+\varepsilon)^n = \left(1+\cos\frac{2\pi}{m}+i\sin\frac{2\pi}{m}\right)^n$$

$$= \left(2\cos\frac{\pi}{m}\right)^n \left(\cos\frac{n\pi}{m}+i\sin\frac{n\pi}{m}\right),$$

$$(1+\varepsilon^2)^n = \left(1+\cos\frac{4\pi}{m}+i\sin\frac{4\pi}{m}\right)^n$$

$$= \left(2\cos\frac{2\pi}{m}\right)^n \left(\cos\frac{2n\pi}{m}+i\sin\frac{2n\pi}{m}\right).$$
...

Ezeket az egyenleteket összeadjuk:

$$(1+1)^n + (1+\varepsilon)^n + \dots + (1+\varepsilon^{m-1})^n =$$

$$= 2^n \sum_{k=0}^{m-1} \left(\cos\frac{k\pi}{m}\right)^n \cos\frac{nk\pi}{m}.$$
(2)

(1) és (2) alapján végül a következő eredményt kapjuk:

$$\binom{n}{0} + \binom{n}{m} + \binom{n}{2m} + \ldots + \binom{n}{k} = \frac{2^n}{m} \sum_{k=0}^{m-1} \left(\cos\frac{k\pi}{m}\right)^n \cos\frac{nk\pi}{m}.$$

2.10-5. Legyen $a,b,\varphi\in\mathbb{R}$ és $a+bi=r(\cos\varphi+i\sin\varphi),$ ahol $r=\sqrt{a^2+b^2}.$ Igazoljuk, hogy

a.

$$A = \binom{n}{0}a^{n} + \binom{n}{4}a^{n-4}b^{4} + \dots + \binom{n}{4k}a^{n-4k}b^{4k} + \dots =$$
$$= \frac{(a+b)^{n} + (a-b)^{n}}{4} + \frac{1}{2}r^{n}\cos(n\varphi),$$

b.

$$B = \binom{n}{1}a^{n-1}b + \binom{n}{5}a^{n-5}b^5 + \dots + \binom{n}{4k+1}a^{n-4k-1}b^{4k+1} + \dots =$$

$$=\frac{(a+b)^n-(a-b)^n}{4}+\frac{1}{2}r^n\sin(n\varphi),$$

c.

$$C = \binom{n}{2} a^{n-2} b^2 + \binom{n}{6} a^{n-6} b^6 + \dots + \binom{n}{4k+2} a^{n-4k-2} b^{4k+2} + \dots =$$

$$= \frac{(a+b)^n + (a-b)^n}{4} - \frac{1}{2} r^n \cos(n\varphi),$$

d.

$$D = \binom{n}{3}a^{n-3}b^3 + \binom{n}{7}a^{n-7}b^7 + \dots + \binom{n}{4k+3}a^{n-4k-3}b^{4k+3} + \dots =$$

$$= \frac{(a+b)^n - (a-b)^n}{4} - \frac{1}{2}r^n\sin(n\varphi).$$

Megoldás. A binomiális tétel alkalmazásával:

$$(a+bi)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} (bi)^k = (A-C) + (B-D)i, \tag{1}$$

$$(a+b)^n = A + B + C + D, (2)$$

$$(a-b)^n = A - B + C - D. (3)$$

Másrészt

$$(a+bi)^n = r^n(\cos(n\varphi) + i\sin(n\varphi)). \tag{4}$$

(1) és (4) alapján

$$A - C = r^n \cos(n\varphi),\tag{5}$$

valamint

$$B - D = r^n \sin(n\varphi). \tag{6}$$

(2) és (3) összeadásával, illetve kivonásával kapjuk, hogy

$$A + C = \frac{(a+b)^n + (a-b)^n}{2},\tag{7}$$

$$B + D = \frac{(a+b)^n - (a-b)^n}{2}.$$
 (8)

Ha (5)-öt és (7)-et összeadjuk, megkapjuk az a.-beli összefüggést, ha (7)-ből kivonjuk (5)-öt, c.-hez jutunk. (6) és (8) összeadásával kapjuk b.-t, végül (8)-ból (6)-ot kivonva d.-hez jutunk.

3. Feladatok

3.1. Algebrai alak

3.1-1. Fejezzük ki algebrai alakban a következő számokat:

a.
$$(2-i)(3-2i)$$

b.
$$(3-4i)(3+4i)$$

$$\frac{2i}{3+i}$$

d.
$$\frac{3-2i}{1-i}$$

e.
$$3+4i+\frac{25}{3+4i}$$

- 3.1-2.
 - a. Mutassuk meg, hogy ha z tetszőleges komplex szám, akkor $\text{Re}(z) \leq |z|$.
 - **b.** Lássuk be, hogy z_1 és z_2 tetszőleges komplex számok esetén

$$|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2\operatorname{Re}(z_1 \cdot \overline{z_2}).$$

3.1-3. Határozzuk meg az x és y valós számokat úgy, hogy az

$$(1+2i)x + (3-5i)y = 1-3i$$

egyenlőség teljesüljön.

3.1-4. Oldjuk meg az alábbi egyenletet x-re és y-ra, ha x és y valós számok. A megoldást racionális számokként, tört alakban adjuk meg.

a.
$$\frac{1}{x-iy} = \frac{5+12i}{4+6i}$$
 b. $\frac{-i}{x-iy} = \frac{4+7i}{5-3i}$

$$\mathbf{b.} \ \frac{-i}{x - iy} = \frac{4 + 7i}{5 - 3i}$$

- **3.1-5.** Tegyük fel, hogy 1+i gyöke a $z^2+(a+2i)z+5+bi=0$ egyenletnek, ahol a,bvalós számok. Határozzuk meg a és b értékét.
- **3.1-6.** Számítsuk ki az $(1+2i)^5 (1-2i)^5$ kifejezés értékét.
- **3.1-7.** Adjuk meg egyszerűbb alakban:

a.
$$\frac{i+3}{2i-1} + \frac{5+3i}{3-i}$$

b.
$$i^{2003}$$

- **3.1-8.** Legyen $z_1 = 3 + 4i$ és $z_2 = -2 + 5i$. Számítsuk ki $\frac{z_1}{z_2}$ értékének algebrai alakját.
- **3.1-9.** Legyen z = 1 2i. Adjuk meg z^3 értékét algebrai alakban.
- 3.1-10. Adjuk meg a z és w komplex számok értékét algebrai alakban, ha

$$(1+i)z - wi + i = zi + (1-i)w - 3i = 6$$

3.1-11. A w és z komplex számok között a következő kapcsolat áll fenn:

$$w = \frac{az+b}{z+c}$$
, ahol $a, b, c \in \mathbb{R}$.

- **a.** Tegyük fel, hogy ha z=-3i, akkor w=3i, és ha z=1+4i, akkor w=1-4i. Mutassuk meg, hogy ekkor b = 9 és keressük meg a és c értékét.
- b. Az a. pontban kapott a, b és c értékeket felhasználva mutassuk meg, hogy ha Re(z) = 4, akkor Re(w) = 4 is fennáll.
- **3.1-12.** Adjuk meg algebrai alakban a (6+5i)(7+2i) és (6-5i)(7-2i) komplex számokat, majd ennek segítségével írjuk fel $32^2 + 47^2$ prímtényezőit.
- **3.1-13.** Legyen $z=(p+i)^4$, ahol p valós szám. Adjuk meg p összes lehetséges értékét,
 - **a.** z valós
- **b.** z valós számszorosa i-nek.

3.2. Trigonometrikus alak, Moivre-azonosság

Az 1-2. feladatokban szereplő komplex számoknak adjuk meg az abszolút értékét és a fő argumentumát. A fő argumentumot radiánban π többszöröseként fejezzük ki. Adjuk meg a számokat trigonometrikus alakban is.

3.2-1.

3.2-2.

a.
$$\sqrt{3} - 36$$

a.
$$\sqrt{3} - 3i$$
 b. 8 **c.** $-2 - 2i$ **d.** $-i$ **e.** -8 **f.** $-\sqrt{3} - i$ **g.** $-5i$

c.
$$-2 - 2i$$

a.
$$\frac{1}{1+\sqrt{3}i}$$
 b. $\frac{7-i}{-4-3i}$

b.
$$\frac{7-i}{-4-3}$$

3.2-3. Adjuk meg a $w,\ z,\ w\cdot z,\ \frac{w}{z}$ komplex számokat trigonometrikus alakban.

a.
$$w = 10i$$
.

$$z = 1 + \sqrt{3}i$$

a.
$$w = 10i$$
, $z = 1 + \sqrt{3}i$.
b. $w = -2\sqrt{3} + 2i$, $z = 1 - i$.

$$z = 1 - i$$

3.2-4. Írjuk fel trigonometrikus alakban:

- **a.** $\sin \varphi + i \cos \varphi$
- c. $\cos 30^{\circ} + i \sin 60^{\circ}$

b.
$$1 - \sqrt{3}i$$

d. $z = -\sin\frac{\pi}{8} - i\cos\frac{\pi}{8}$

- ${\bf 3.2-5.}$ Keressük meg a z=7-24i komplex szám abszolút értékét és argumentumát. Az argumentumot radiánban három tizedesjegy pontossággal fejezzük ki.
- **3.2-6.** A z komplex szám abszolút értéke 10, argumentuma $\arctan(0.75)$. Mekkora z imaginárius része.
- **3.2-7.** Keressük meg a $\frac{11+7i}{3+5i}$ komplex szám abszolút értékét és az argumentumához

74 3. Feladatok

legközelebbi fokot.

3.2-8. Keressük meg az $\frac{(1+\sqrt{3}i)(\sqrt{3}+i)}{(1+i)^2}$ komplex szám abszolút értékét és argumentumát.

3.2-9. Egyszerűsítsük a következő kifejezéseket:

a.
$$\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) \cdot \left(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12}\right)$$
b.
$$\left(\cos\frac{2\pi}{9} + i\sin\frac{2\pi}{9}\right)^{3}$$
c.
$$\frac{\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^{2}}{\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}}$$

3.2-10. Hozzuk a lehető legegyszerűbb alakra az alábbi komplex számokat. Adjuk meg végül algebrai alakban.

a.
$$\left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)^{10}$$
 b. $\left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right)^{12}$ c. $\left(\cos\frac{\pi}{9} + i\sin\frac{\pi}{9}\right)^{-3}$ d. $\left(\cos\frac{-\pi}{6} + i\sin\frac{-\pi}{6}\right)^{-4}$ e. $\frac{\left(\cos\frac{2\pi}{7} - i\sin\frac{2\pi}{7}\right)^3}{\left(\cos\frac{2\pi}{7} + i\sin\frac{2\pi}{7}\right)^4}$ f. $\frac{\left(\cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}\right)^8}{\left(\cos\frac{3\pi}{5} - i\sin\frac{3\pi}{5}\right)^3}$

- **3.2-11.** Adjuk meg $(\sqrt{3}+i)$ -t trigonometrikus alakban. Ennek segítségével fejezzük ki algebrai alakban a $(\sqrt{3}+i)^{10}$ és $\frac{1}{(\sqrt{3}+i)^7}$ számokat.
- **3.2-12.** Adjuk meg (-1+i)-t trigonometrikus alakban. Ennek segítségével mutassuk meg, hogy $(-1+i)^{16}$ valós és $\frac{1}{(-1+i)^6}$ képzetes, s adjuk meg az értéküket is.
- **3.2-13.** Számítsuk ki az $\frac{(1-i\sqrt{3})(\cos\varphi+i\sin\varphi)}{2(1-i)(\cos\varphi-i\sin\varphi)} \text{ kifejezés értékét, ha } \varphi \text{ valós szám.}.$
- **3.2-14.** Számítsuk ki a következő kifejezések értékét trigonometrikus alak felhasználásával, végül adjuk meg algebrai alakban :

a.
$$\frac{\left(1+i\sqrt{3}\right)^{15}}{(1+i)^{10}}$$
 b. $\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$ **c.** $(1+i)^{52}$ **d.** $\left(\frac{1-i}{1+i\sqrt{3}}\right)^{20}$

3.2-15. Számítsuk ki
$$\left(1 + \frac{\sqrt{3}}{2} - \frac{i}{2}\right)^{12} + \left(1 + \frac{\sqrt{3}}{2} + \frac{i}{2}\right)^{12}$$
 értékét.

- **3.2-16.** Egyszerűsítsük az $(1+\omega)^n$ kifejezést, ha $\omega=\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}$.
- **3.2-17.** Mennyi az $\frac{(1+i)^n}{2(1-i)^{n-3}}$ kifejezés értéke, ha n>3 egész szám.
- **3.2-18.** Számítsuk ki a $\left(-\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)^n+\left(-\frac{1}{2}-i\frac{\sqrt{3}}{2}\right)^n$ kifejezés értékét, ha n természetes szám.
- **3.2-19.** Legyen n természetes szám. Igazoljuk, hogy

a.
$$(\sqrt{3}-i)^n = 2^n \left(\cos \frac{n\pi}{6} - i \sin \frac{n\pi}{6}\right)$$

b.
$$(1+i)^n = 2^{\frac{n}{2}} \left(\cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4} \right)$$

- **3.2-20.** Legyen $z=\frac{2}{1+\cos 2\theta-i\sin 2\theta}$, ahol $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$. Számítsuk ki z abszolút értékét és argumentumát θ -val kifejezve.
- **3.2-21.** Legyen $z=\cos\theta+i\sin\theta,\ 0<\theta<\pi.$ Számítsuk ki az alábbi számok abszolút értékét és fő argumentumát.

a.
$$1 - z$$

b.
$$z - 1$$

a.
$$1-z$$
 b. $z-1$ **c.** $\frac{1}{1-z}$ **d.** $\frac{z}{z-1}$

$$\mathbf{d.} \ \frac{z}{z-1}$$

3.3. Négyzetgyökvonás algebrai alakkal, másodfokú komplex együtthatós egyenletek

3.3-1. Vonjunk négyzetgyököt a következő számokból:

a.
$$-3-4i$$
 b. $5+12i$ **c.** $21-20i$

b.
$$5 + 12i$$

$$\mathbf{c} \cdot 21 - 20$$

d.
$$-11 + 60i$$
 e. $\frac{3}{2+2i}$ **f.** $\frac{3}{2} + 2i$

e.
$$\frac{3}{2+2i}$$

f.
$$\frac{3}{2} + 2i$$

3.3-2. Adjuk meg az alábbi számok négyzetgyökét és ábrázoljuk a Gauss-számsíkon.

$$a. -1$$

$$b. -2$$

c.
$$3 + 4i$$

d.
$$15 + 8i$$

3.3-3. Oldjuk meg a következő egyenleteket:

a.
$$x^2 - 2x + 2 = 0$$

b.
$$x^2 - 6x + 10 = 0$$

c.
$$x^2 - 4x + 13 = 0$$

d.
$$4x^2 - 4x + 5 = 0$$

e.
$$2x^2 + 3x + 2 = 0$$

f.
$$x^2 - x + 1 = 0$$

3.3-4. Bontsuk elsőfokú tényezők szorzatára a következő kifejezéseket:

a.
$$x^2 + 1$$

b.
$$x^2 + 6x + 13$$

a.
$$x^2 + 1$$
 b. $x^2 + 6x + 13$ **c.** $4x^2 - 12x + 25$

3.3-5.

Oldjuk meg a következő egyenleteket:

3. Feladatok 76

a.
$$z^2 - (1+2i)z + i - 1 = 0$$

b.
$$x^2 + (2+i)x - 1 - 5i = 0$$

c.
$$x^2 - (2+i)x - 1 + 7i = 0$$

d.
$$3x^2 - (8+4i)x + 4 + 6i = 0$$

e.
$$x^2 - (8-3i)x + 11 - 27i = 0$$

f. $x^2 + (-8+3i)x + 11 + 3i = 0$

f.
$$x^2 + (-8 + 3i)x + 11 + 3i = 0$$

g.
$$(15+6i)x^2 - (32+36i)x + 8 + 38i = 0$$
 h. $(9+18i)x^2 + (30-80i)x - 39 + 52i = 0$

h.
$$(9+18i)x^2 + (30-80i)x - 39 + 52i = 0$$

3.4. n-edik gyök meghatározása trigonometrikus alakkal, egységgyökök

Az 1-7. feladatokban a gyökvonást trigonometrikus alak felhasználásával végezzük el.

- **3.4-1.** Vonjunk negyedik gyököt a $2 i\sqrt{12}$ számból.
- **3.4-2.** Vonjunk ötödik gyököt az 1 i számból.
- **3.4-3.** Vonjunk hatodik gyököt az i számból.
- **3.4-4.** Vonjunk hatodik gyököt az $\frac{1-i}{1+i\sqrt{3}}$ számból.
- **3.4-5.** Vonjunk nyolcadik gyököt az $\frac{1+i}{\sqrt{3}-i}$ számból.
- **3.4-6.** Vonjunk hetedik gyököt a következő számból.

$$\frac{3 - 3\sqrt{3}i}{-2 + 2i}$$

- **3.4-7.** Számítsuk ki 10 10i harmadik gyökeit a trigonometrikus alak segítségével, és adjuk meg a gyököket algebrai alakban is.
- **3.4-8.** Oldjuk meg a $z^4 + 16 = 0$ egyenletet a komplex számok halmazán és a gyököket fejezzük ki trigonometrikus és algebrai alakban is.
- **3.4-9.** ω az 1-től különböző harmadik egységgyököt jelöl. Mutassuk meg, hogy $\overline{\omega}=\omega^2$.
- **3.4-10.** Fejezzük ki a $z^3 \alpha^3 = 0$ egyenlet gyökeit α és ω segítségével, ha $\omega \neq 1$ komplex harmadik egységgyök. Ennek segítségével adjuk meg az alábbi egyenletek gyökeit algebrai alakban.

a.
$$z^3 - 27 = 0$$
 b. $z^3 + 8 = 0$ **c.** $z^3 - i^3 = 0$

b.
$$z^3 + 8 = 0$$

c.
$$z^3 - i^3 = 0$$

3.4-11. Adjuk meg a következő egyenletek gyökeit algebrai alakban.

a.
$$z^3 - 8 = 0$$

b.
$$z^3 + 1 = 0$$

a.
$$z^3 - 8 = 0$$
 b. $z^3 + 1 = 0$ **c.** $(z+1)^3 = 1$

3.4-12. Számítsuk ki a következő kifejezések értékét, ha ω az 1-től különböző harmadik egységgyök. **a.** $\omega + \omega^3 + \omega^5$ **b.** $\frac{1}{\omega^2 + \omega^4}$ **c.** $\frac{\omega^2}{\omega^2 + \omega^3}$

a.
$$\omega + \omega^3 + \omega^5$$

b.
$$\frac{1}{\omega^2 + \omega^4}$$

c.
$$\frac{\omega^2}{\omega + \omega^3}$$

3.4-13. ω az 1-től különböző harmadik egységgyököt jelöl. Írjuk fel ω -val kifejezve az alábbi kifejezések konjugáltját.

a.
$$1+\omega$$

b.
$$1 - \omega^2$$

a.
$$1 + \omega$$
 b. $1 - \omega^2$ **c.** $3 + 4\omega + 5\omega^2$

3.4-14. Tegyük fel, hogy $z \cdot w$ egységgyök és $w^2 + zi = 0$. Bizonyítsuk be, hogy z és wmindketten egységgyökök.

3.4-15.

- **a.** Számítsuk ki az *n*-edik egységgyökök szorzatát.
- **b.** Számítsuk ki az *n*-edik egységgyökök négyzetösszegét.

3.4-16.

- a. Bizonyítsuk be, hogy két egységgyök szorzata is egységgyök.
- **b.** Mikor lesz két egységgyök összege egységgyök?

3.5. Komplex számok geometriai megfeleltetése

3.5-1. Hol helyezkednek el a síkon azok a pontok, amelyeknek megfelelő komplex számokra

a.
$$\text{Re}(z) + \text{Im}(z) = 1$$

a.
$$Re(z) + Im(z) = 1$$
 b. $|z + i| = |z - 1|$ **c.** $|z - 1 + i| = 1$

c.
$$|z-1+i|=1$$

d.
$$arg(z) = \frac{\pi}{4}$$

d.
$$arg(z) = \frac{\pi}{4}$$
 e. $\left| \frac{z-i}{z-1} \right| = 1$ **f.** $|iz - \overline{z}| = |z|$

$$\mathbf{f}.\ |iz - \overline{z}| = |z|$$

3.5-2. Hol helyezkednek el a síkon azok a pontok, amelyeknek megfelelő z komplex számokra

$$\operatorname{Im}(\overline{z^2 - \overline{z}}) = 2 - \operatorname{Im} z$$

3.5-3. Adjuk meg a Gauss-számsíkon a z = x + yi pontok mértani helyének egyenletét x és y segítségével kifejezve, ha

$$|z|^2 + 3\operatorname{Re}(z^2) = 4$$

3.5-4. Ábrázoljuk a Gauss-számsíkon azt a tartományt, amelyben az alábbi két egyenlőtlenségnek egyszerre eleget tevő pontok helyezkednek el.

$$\frac{\pi}{4} < \arg z < \frac{2\pi}{3}$$
 és $2 < |z| < 4$.

Vizsgáljuk meg, hogy ha u=2+3i és v=3-2i, akkor az $\frac{1}{4}uv$ pont vajon ebben a tartományban van-e.

3.5-5. A w és z komplex számok között a $w=\frac{z-6i}{z+8}$ kapcsolat áll fenn. A komplex

78 3. Feladatok

számsíkon feleltessük meg a w-nek a W pontot, z-nek pedig a Z pontot.

a. Tegyük fel, hogy w valós része 0. Mutassuk meg, hogy Z egy körön helyezkedik el, és adjuk meg ennek a körnek a középpontját és a sugarát.

b. Tegyük fel, hogy w imaginárius része 0. Mutassuk meg, hogy Z egy egyenesen helyezkedik el, és adjuk meg ennek az egyenesnek az egyenletét.

3.5-6. Határozzuk meg annak a szabályos hatszögnek a csúcsait a Gauss-számsíkban, amelynek középpontja a $z_0=3-2i$, és egyik csúcsa a $z_1=5+i$ komplex számnak felel meg.

3.5-7. Milyen a z_1 és z_2 komplex számoknak megfelelő vektorok egymáshoz viszonyított helyzete, ha $\text{Im}(z_1\overline{z_2}) = 0$.

3.5-8. A z = x + yi komplex szám kielégíti a következő egyenletet:

$$z\overline{z} - (3+i)z - (3-i)\overline{z} + k = 0,$$

ahol $k \in \mathbb{R}$. z-nek a Gauss számsíkon feleltessük meg a Z pontot.

a. Mutassuk meg, hogy ha k < 10, akkor a Z pontok mértani helye egy kör. Adjuk meg ennek a körnek a középpontját és a sugarát, és indokoljuk meg, hogy miért van szükség a k < 10 feltételre.

b. Legyen k = 6. Mekkora az origóból a körhöz húzott érintő hossza?

3.5-9. Tekintsük azoknak a z=x+yi pontoknak a halmazát a komplex számsíkon, amelyek kielégítik az $\arg(z-2)-\arg(z+2i)=\frac{\pi}{2}$ egyenletet. Legyen $\alpha=\arg(z-2)$ és $\beta=\arg(z+2i)$.

Lássuk be, hogy $\cos \alpha \cos \beta + \sin \alpha \sin \beta = 0$ és ebből az egyenletet $\cos \alpha \cos \beta$ -val osztva, majd az argumentumokat x és y segítségével kifejezve mutassuk meg, hogy a z pontok mértani helye az $(x-1)^2 + (y+1)^2 = 2$ egyenletű körön van rajta.

 ${\bf 3.5\text{-}10.}$ Legyen z_1 és z_2 két nem nulla komplex szám, melyekre

$$|z_1 + z_2| = |z_1 - z_2|.$$

A Gauss-számsíkban ábrázoljuk a z_1 , z_2 , z_1+z_2 és z_1-z_2 számokat vektorral. Ennek segítségével, vagy másként állapítsuk meg $\arg\left(\frac{z_1}{z_2}\right)$ lehetséges értékeit.

3.5-11.

a. A $z=\frac{1+i}{3-2i}$ komplex számot fejezzük ki algebrai alakban, majd adjuk meg az argumentumát radiánban 3 tizedesjegy pontossággal. Adjuk meg z^2 argumentumát (szintén 3 tizedesjegy pontossággal), és $|z^2|$ pontos értékét.

b. A Gauss-számsíkban jelölje az origót O, a z nem nulla komplex számot P, $\frac{1}{z}$ -t pedig Q. Lássuk be, hogy O, P, Q egy egyenesbe esnek. Az OP : OQ hányados értékét fejezzük ki |z| segítségével.

3.5-12. Legyen $z=1+\sqrt{2}i$. Fejezzük ki algebrai alakban a

$$p = z + \frac{1}{z}$$
 és a $q = z - \frac{1}{z}$

komplex számokat. A Gauss-számsíkon P és Q jelöljék a p illetve q számoknak megfelelő pontokat. O az origó, M legyen PQ felezőpontja, G pedig OM-nek az a pontja, amelyre

$$OG = \frac{2}{3} \cdot OM.$$

Lássuk be, hogy a PGQ szög derékszög.

3.5-13. Tegyük fel, hogy $z_1 \neq z_2$. Bizonyítsuk be, hogy $\frac{z_1 + z_2}{z_1 - z_2}$ akkor és csak akkor képzetes, ha $|z_1| = |z_2|$.

3.6. Szögfüggvények és a komplex számok

Az alábbi példákban n pozitív egész számot jelöl.

- **3.6-1.** Adjuk meg az alábbi kifejezéseket $\cos x$ és $\sin x$ segítségével kifejezve:
 - \mathbf{a} , $\sin 6x$
- **b.** $\sin 7x$
- $\mathbf{c.} \cos 8x$
- **3.6-2.** Legyen $\alpha = \frac{\pi}{11}$. Határozzuk meg az alábbi összeg értékét.

$$\cos \alpha + \cos 3\alpha + \cos 5\alpha + \cos 7\alpha + \cos 9\alpha$$

3.6-3. Bizonyítsuk be, hogy

$$\sin^2 x + \sin^2 2x + \dots + \sin^2 nx = \frac{n}{2} - \frac{\cos((n+1)x) \cdot \sin nx}{2\sin x},$$

ahol x olyan valós szám, amelyre $\sin x \neq 0$.

3.6-4. Bizonyítsuk be, hogy ha α olyan valós szám, amelyre sin $\frac{\alpha}{2} \neq 0$, akkor

$$\cos \varphi + \cos(\varphi + \alpha) + \cos(\varphi + 2\alpha) + \dots + \cos(\varphi + n\alpha) = \frac{\cos\left(\varphi + \frac{n\alpha}{2}\right) \cdot \sin\frac{(n+1)\alpha}{2}}{\sin\frac{\alpha}{2}}$$

b.

$$\sin \varphi + \sin(\varphi + \alpha) + \sin(\varphi + 2\alpha) + \dots + \sin(\varphi + n\alpha) = \frac{\sin\left(\varphi + \frac{n\alpha}{2}\right) \cdot \sin\frac{(n+1)\alpha}{2}}{\sin\frac{\alpha}{2}}$$

3.6-5. Számítsuk ki a következő kifejezés értékét:

$$\cos\alpha + \binom{n}{1}\cos2\alpha + \binom{n}{2}\cos3\alpha + \dots + \binom{n}{n-1}\cos n\alpha + \cos(n+1)\alpha.$$

3.6-6. Bizonyítsuk be, hogy

$$\cos\frac{2\pi}{2n+1} + \cos\frac{4\pi}{2n+1} + \cos\frac{6\pi}{2n+1} + \ldots + \cos\frac{2n\pi}{2n+1} = -\frac{1}{2}.$$

3.6-7. Bizonyítsuk be, hogy ha n pozitív egész szám, és θ olyan valós szám, amelyre $\sin\frac{\theta}{2}=\frac{1}{2n},\;$ akkor

$$\cos\frac{\theta}{2} + \cos\frac{3\theta}{2} + \dots + \cos\frac{2n-1}{2}\theta = n \cdot \sin(n\theta).$$

3.7. Komplex együtthatós egyenletek

3.7-1. Mely komplex számok elégítik ki az alábbi egyenleteket?

a. $\overline{z} = z^4$ **b.** $\overline{z} = z^8$

- 3.7-2. Mely komplex számok egyeznek meg konjugáltjuk 5. hatványával?
- **3.7-3.** Tegyük fel, hogy z^{100} nem valós szám, de $z^{100} + \frac{1}{z^{100}}$ valós szám. Bizonyítsuk be, hogy ekkor $z + \frac{1}{z}$ is valós szám.
- **3.7-4.** Tudjuk, hogy $1 + z + z^2 = 0$. Mennyi $z^{65} + \frac{1}{\sim 65}$ értéke?
- 3.7-5. Hány olyan komplex számpár van, ahol az elemek egymás köbgyökei?
- **3.7-6.** Legyen $z_1 = 2(\cos 330^{\circ} i \sin 330^{\circ}), \ z_2 = -8\left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}\right), \ z_3 = \sqrt{3} i \sin 330^{\circ}$ és $z_4 = 4(\cos 240^\circ + i\sin 240^\circ)$. Oldjuk meg az alábbi egyenletet a komplex számok halmazán és a végeredményt adjuk meg trigonometrikus alakban:

$$z^4 z_1^2 + z_2 z_3 = z_4^3$$

3.7-7. Legyen $z_1 = 1 + 2i$. Adjuk meg azoknak a z_2 komplex számoknak a halmazát, amelyekre:

a. $|z_1 + z_2| = |z_1| + |z_2|$ **b.** $|z_1 + z_2| = |z_1| - |z_2|$ **c.** $|z_1 + z_2| = |z_2| - |z_1|$

3.8. Gyökök és együtthatók

3.8-1. Keressük meg a megfelelő valós p és q értékeket, ha az $x^2 + px + q = 0$ egyenlet egyik gyöke:

a. 2 + i

- **b.** -1+3i **c.** 4i **d.** 3-5i
- **3.8-2.** Tudjuk, hogy a $z^3 3z^2 8z + 30 = 0$ egyenlet egyik gyöke $z_1 = 3 + i$. Adjuk meg a többi gyököt.
- **3.8-3.** Tudjuk, hogy a $4z^3 3z^2 + 16z 12 = 0$ egyenlet egyik gyöke $z_1 = 2i$. Keressük meg a másik két gyököt.
- **3.8-4.** Számítsuk ki a $z^3 i = 0$ egyenlet gyökeinek a szorzatát.
- **3.8-5.** Tudjuk, hogy a $2z^3 3z^2 + 2z + 2 = 0$ egyenlet egyik gyöke $z_1 = 1 + i$. Oldjuk meg az egyenletet.

3.8-6. Tudjuk, hogy a $z^4-4z^3+12z^2+4z-13=0$ egyenlet egyik gyöke $z_1=2+3i$. Számítsuk ki a többi három gyök értékét.

3.8-7. Adjuk meg a $z^3+6z=20$ egyenlet megoldásait algebrai alakban. (Felhasználhatjuk, hogy az egyenlet egyik gyöke $z_1=2$.)

 ${\bf 3.8-8.}$ A $z^2+pz+q=0$ egyenlet gyöke
i1+iés 4+3i. Adjuk meg a p,~qkomplex számok értékét.

 ${\bf 3.8-9.}\ 1, \omega, \omega^2$ jelölik a harmadik egységgyököket. Keressük meg azt az egyenletet, amelynek gyökei

$$\frac{1}{3}$$
, $\frac{1}{2+\omega}$ és $\frac{1}{2+\omega^2}$.

4. Feladatok megoldással

4.1. Algebrai alak

4.1-1. Fejezzük ki algebrai alakban a következő számokat:

a.
$$(2-i)(3-2i)$$

b.
$$(3-4i)(3+4i)$$

$$\frac{2i}{3+i}$$

d.
$$\frac{3-2i}{1-i}$$

e.
$$3+4i+\frac{25}{3+4i}$$

Megoldás.

a.
$$(2-i)(3-2i) = 4-7i$$

b.
$$(3-4i)(3+4i) = 25$$

c.
$$\frac{2i}{3+i} = \frac{2i(3-i)}{10} = \frac{2+6i}{10} = \frac{1}{5} + \frac{3}{5}i$$

d.
$$\frac{3-2i}{1-i} = \frac{5+i}{2} = \frac{5}{2} + \frac{1}{2}i$$

e.
$$3+4i+\frac{25}{3+4i}=3+4i+\frac{25(3-4i)}{25}=6$$

4.1-2.

a. Mutassuk meg, hogy haztetszőleges komplex szám, akkor $\mathrm{Re}(z) \leq |z|.$

 ${\bf b.}$ Lássuk be, hogy z_1 és z_2 tetszőleges komplex számok esetén

$$|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2\operatorname{Re}(z_1 \cdot \overline{z_2}).$$

Megoldás.

a. Legyen z = a + bi. Ekkor

$$Re(z) = a,$$
 $|z| = \sqrt{a^2 + b^2},$ $\sqrt{a^2 + b^2} \ge \sqrt{a^2} = |a| \ge a,$

ami igazolja, hogy $\text{Re}(z) \leq |z|$.

b.

$$|z_{1} + z_{2}|^{2} = (z_{1} + z_{2})(\overline{z_{1}} + \overline{z_{2}})$$

$$= (z_{1} + z_{2})(\overline{z_{1}} + \overline{z_{2}})$$

$$= z_{1} \cdot \overline{z_{1}} + z_{1} \cdot \overline{z_{2}} + z_{2} \cdot \overline{z_{2}} + \overline{z_{1}} \cdot z_{2}$$

$$= |z_{1}|^{2} + |z_{2}|^{2} + z_{1} \cdot \overline{z_{2}} + \overline{z_{1}} \cdot \overline{z_{2}}$$

$$= |z_{1}|^{2} + |z_{2}|^{2} + 2\operatorname{Re}(z_{1} \cdot \overline{z_{2}})$$

4.1-3. Határozzuk meg az x és y valós számokat úgy, hogy az

$$(1+2i)x + (3-5i)y = 1-3i$$

egyenlőség teljesüljön.

Megoldás. A két oldal valós része megegyezik, ugyanígy a képzetes részek is. Ebből x + 3y = 1 és 2x - 5y = -3. A kapott valós egyenletrendszert megoldjuk.

$$y = \frac{5}{11}, \qquad x = -\frac{4}{11}.$$

4.1-4. Oldjuk meg az alábbi egyenletet x-re és y-ra, ha x és y valós számok. A megoldást racionális számokként, tört alakban adjuk meg.

a.
$$\frac{1}{x-iy} = \frac{5+12i}{4+6i}$$
 b. $\frac{-i}{x-iy} = \frac{4+7i}{5-3i}$

b.
$$\frac{-i}{x-iy} = \frac{4+7i}{5-3i}$$

Megoldás.

a.

$$\frac{1}{x - iy} = \frac{5 + 12i}{4 + 6i},$$

$$x - iy = \frac{4 + 6i}{5 + 12i}$$

$$= \frac{(4 + 6i)(5 - 12i)}{25 + 144}$$

$$= \frac{20 - 48i + 30i + 72}{169}$$

$$= \frac{92 - 18i}{169}.$$

$$x = \frac{92}{169},$$

$$y = \frac{18}{169}.$$

84

b.

$$\frac{-i}{x - iy} = \frac{4 + 7i}{5 - 3i},$$

$$\frac{x - iy}{-i} = \frac{5 - 3i}{4 + 7i},$$

$$ix + y = \frac{(5 - 3i)(4 - 7i)}{16 + 49}$$

$$= \frac{20 - 35i - 12i - 21}{65}$$

$$= \frac{-1 - 47i}{65}.$$

$$x = \frac{-47}{65},$$

$$y = \frac{-1}{65}.$$

4.1-5. Tegyük fel, hogy 1+i gyöke a $z^2+(a+2i)z+5+bi=0$ egyenletnek, ahol a,b valós számok. Határozzuk meg a és b értékét.

Megoldás. Helyettesítsük be az 1 + i gyököt az egyenletbe.

$$(1+i)^2 + (a+2i)(1+i) + 5 + bi = 0,$$

$$2i + a + ai + 2i - 2 + 5 + bi = 0.$$

A bal oldalon a valós és a képzetes rész is 0, így a+3=0 és a+b+4=0.

A megoldás: a = -3, b = -1.

4.1-6. Számítsuk ki az $(1+2i)^5 - (1-2i)^5$ kifejezés értékét. **Megoldás.**

$$(1+2i)^5 = {5 \choose 0}1 + {5 \choose 1}2i + {5 \choose 2}(2i)^2 + {5 \choose 3}(2i)^3 + {5 \choose 4}(2i)^4 + {5 \choose 5}(2i)^5$$

$$= 1+5 \cdot 2i + 10 \cdot 4(-1) + 10 \cdot 8(-i) + 5 \cdot 16 + 32i$$

$$= 1-40+80+i(10-80+32)$$

$$= 41-38i$$

Mivel

$$(1-2i)^5 = (\overline{1+2i})^5 = \overline{(1+2i)^5}$$
,

ezért

$$(1+2i)^5 - (1-2i)^5 = (41-38i) - (41+38i) = -76i.$$

4.1-7. Adjuk meg egyszerűbb alakban:

a.
$$\frac{i+3}{2i-1} + \frac{5+3i}{3-i}$$
 b. i^{2003}

85

Megoldás.

a.

$$\frac{i+3}{2i-1} + \frac{5+3i}{3-i} = \frac{(i+3)(-2i-1)}{1+4} + \frac{(5+3i)(3+i)}{9+1}$$

$$= -\frac{1}{5}(-2+6i+i+3) + \frac{1}{10}(15+9i+5i-3)$$

$$= -\frac{1}{5}(1+7i) + \frac{1}{10}(12+14i) = \frac{-1-7i+6+7i}{5}$$

$$= 1$$

b.

$$i^{2003} = i^3$$
$$= -i$$

4.1-8. Legyen $z_1=3+4i$ és $z_2=-2+5i$. Számítsuk ki $\frac{z_1}{z_2}$ értékének algebrai alakját.

Megoldás. Bővítsük a törtet a nevező konjugáltjával.

$$\frac{z_1}{z_2} = \frac{3+4i}{-2+5i}$$

$$= \frac{(3+4i)(-2-5i)}{(-2+5i)(-2-5i)}$$

$$= \frac{(3+4i)(-2-5i)}{(-2)^2+(5)^2}$$

$$= \frac{14}{29} - \frac{23}{29}i$$

4.1-9. Legyen z=1-2i. Adjuk meg z^3 értékét algebrai alakban. **Megoldás.**

$$z^{3} = (1-2i)^{3}$$

$$= 1-3 \cdot 1^{2} \cdot 2i + 3 \cdot 1 \cdot (2i)^{2} - (2i)^{3}$$

$$= 1-6i-12+8i$$

$$= -11+2i.$$

4.1-10. Adjuk meg a z és w komplex számok értékét algebrai alakban, ha

$$(1+i)z - wi + i = zi + (1-i)w - 3i = 6$$

Megoldás. Az első egyenlőség szerint

$$z + zi - wi + i = zi + w - wi - 3i,$$

$$z - w = -4i,$$

$$w = z + 4i.$$

Ezt beírva az első egyenletbe:

$$z + zi - i(z + 4i) + i = 6.$$

Ebből a megoldás

$$z = 2 - i$$
, $w = 2 + 3i$.

4.1-11. A w és z komplex számok között a következő kapcsolat áll fenn:

$$w = \frac{az+b}{z+c}$$
, ahol $a, b, c \in \mathbb{R}$.

a. Tegyük fel, hogy ha z = -3i, akkor w = 3i, és ha z = 1 + 4i, akkor w = 1 - 4i. Mutassuk meg, hogy ekkor b = 9 és keressük meg a és c értékét.

b. Az a. pontban kapott $a,\ b$ és c értékeket felhasználva mutassuk meg, hogy ha Re(z)=4, akkor Re(w)=4 is fennáll.

Megoldás.

a. Helyettesítsük be a z=-3i és w=3i értékeket. $3i=\frac{a(-3i)+b}{-3i+c}$. Ebből

9+3ci=-3ai+b,s így b=9,valamint a=-c. Most behelyettesítjük a z=1+4i és w=1-4i értékeket.

$$1 - 4i = \frac{a(1+4i) + b}{1+4i+c}.$$

Amiből

$$1 + 16 + c(1 - 4i) = a(1 + 4i) + b.$$

Felhasználjuk, hogy b = 9 és a = -c.

$$17 + c - 4ci = -c - 4ci + 9$$
, $2c = -8$, $c = -4$

és így a=4.

b. Felhasználjuk, hogy a=4, b=9, és Re(z)=4. Vezessük be a következő jelölést: Im(z)=y. A $w=\frac{az+b}{z+c}$ kifejezésbe ezeket beírjuk és vesszük mindkét oldal valós részét:

$$\operatorname{Re}(w) = \operatorname{Re} \frac{4(4+yi)+9}{4+yi-4} = \operatorname{Re} \frac{16+4yi+9}{yi} = \operatorname{Re} \frac{25i-4y}{-y} = 4.$$

4.1-12. Adjuk meg algebrai alakban a (6+5i)(7+2i) és (6-5i)(7-2i) komplex számokat, majd ennek segítségével írjuk fel $32^2 + 47^2$ prímtényezőit. Megoldás.

$$(6+5i)(7+2i) = 32+47i,$$

$$(6-5i)(7-2i) = 32-47i,$$

$$32^2+47^2 = (32+47i)(32-47i)$$

$$= (6+5i)(7+2i)(6-5i)(7-2i)$$

$$= (6+5i)(6-5i)(7+2i)(7-2i)$$

$$= (36+25)(49+4) = 61 \cdot 53.$$

A prímtényezők 53 és 61.

4.1-13. Legyen $z=(p+i)^4$, ahol p valós szám. Adjuk meg p összes lehetséges értékét,

a. z valós

b. z valós számszorosa i-nek.

Megoldás.

$$z = (p+i)^{4}$$

$$= {\binom{4}{0}}p^{4} + {\binom{4}{1}}p^{3}i + {\binom{4}{2}}p^{2}i^{2} + {\binom{4}{3}}pi^{3} + {\binom{4}{4}}i^{4}$$

$$= p^{4} + 4p^{3}i - 6p^{2} - 4pi + 1$$

a. Ha z valós, akkor, $4p^3 - 4p = 0$, amiből, $p(p^2 - 1) = 0$, s így p lehetséges értékei

b. Ha z valós számszorosa i-nek, akkor $p^4-6p^2+1=0$. Ezt az egyenletet megoldjuk p^2 -re. Legyen $x = p^2$, $x^2 - 6x + 1 = 0$,

$$x_{1,2} = \frac{6 \pm \sqrt{36 - 4}}{2} = \frac{6 \pm 4\sqrt{2}}{2} = 3 \pm 2\sqrt{2} = (1 \pm \sqrt{2})^2.$$

p lehetséges értékei $1+\sqrt{2}$, $1-\sqrt{2}$, $-1-\sqrt{2}$, $-1+\sqrt{2}$.

4.2. Trigonometrikus alak, Moivre-azonosság

Az 1-2. feladatokban szereplő komplex számoknak adjuk meg az abszolút értékét és a fő argumentumát. A fő argumentumot radiánban π többszöröseként fejezzük ki. Adjuk meg a számokat trigonometrikus alakban is.

$$4.2 - 1.$$

a.
$$\sqrt{3} - 3i$$

a.
$$\sqrt{3} - 3i$$
 b. 8 **c.** $-2 - 2i$ **d.** $-i$ **e.** -8 **f.** $-\sqrt{3} - i$ **g.** $-5i$

c.
$$-2-2i$$

$$\mathbf{d.} - i$$

e.
$$-8$$

f.
$$-\sqrt{3}-i$$

$$\mathbf{g}_{\bullet} - 5i$$

a.
$$z = \sqrt{3} - 3i = a + bi$$
,

$$|z| = r = \sqrt{a^2 + b^2} = \sqrt{(\sqrt{3})^2 + 3^2} = \sqrt{12} = 2\sqrt{3},$$

$$\cos \varphi = \frac{1}{2}, \qquad \sin \varphi = -\frac{\sqrt{3}}{2}, \qquad \varphi_1 = \frac{\pi}{3}, \qquad \varphi = 2\pi - \frac{\pi}{3} = \frac{5\pi}{3}.$$

ztrigonometrikus alakja: $z=2\sqrt{3}\left(\cos\frac{5\pi}{3}+i\sin\frac{5\pi}{3}\right).$

b. z = 8, |z| = r = 8, $\cos \varphi = 1$, $\sin \varphi = 0$, $\varphi_1 = 0$, $\varphi = 0$.

z trigonometrikus alakja: $z = 8(\cos 0 + i \sin 0)$.

c.
$$z = -2 - 2i$$
, $|z| = r = \sqrt{8} = 2\sqrt{2}$,

$$\cos \varphi = -\frac{\sqrt{2}}{2}, \qquad \sin \varphi = -\frac{\sqrt{2}}{2}, \qquad \varphi_1 = \frac{3\pi}{4}, \qquad \varphi = 2\pi - \frac{3\pi}{4} = \frac{5\pi}{4}.$$

z trigonometrikus alakja: $z=2\sqrt{2}\left(\cos{rac{5\pi}{4}}+i\sin{rac{5\pi}{4}}
ight)$.

d.
$$z = -i$$
, $|z| = r = 1$,

$$\cos \varphi = 0, \qquad \sin \varphi = -1, \qquad \varphi_1 = \frac{\pi}{2}, \qquad \varphi = 2\pi - \frac{\pi}{2} = \frac{3\pi}{2},$$

ztrigonometrikus alakja: $z=\cos\frac{3\pi}{2}+i\sin\frac{3\pi}{2}.$

e.
$$z=-8$$
, $|z|=8$, $\varphi=\pi$. Ebből $z=8(\cos\pi+i\sin\pi)$.

f.
$$z = -\sqrt{3} - i$$
, $|z| = 2$,

$$\cos \varphi = -\frac{\sqrt{3}}{2}, \quad \sin \varphi = -\frac{1}{2}, \quad \varphi_1 = \frac{5\pi}{6}, \quad \varphi = 2\pi - \frac{5\pi}{6} = \frac{7\pi}{6}.$$

$$z = 2\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right).$$

g.
$$z = -5i$$
, $|z| = 5$, $\varphi = \frac{3\pi}{2}$, $z = 5\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right)$.

$$4.2 - 2.$$

a.
$$\frac{1}{1+\sqrt{3}i}$$

b.
$$\frac{7-i}{-4-3i}$$

a.
$$\frac{1}{1+\sqrt{3}i} = \frac{1-\sqrt{3}i}{4} = \frac{1}{4} - \frac{\sqrt{3}}{4}i.$$

$$|z|=r=rac{1}{2},\quad \cos \varphi=rac{1}{2},\quad \sin \varphi=rac{-\sqrt{3}}{2},\quad arphi_1=rac{\pi}{3},\quad arphi=rac{5\pi}{3},$$

$$z = \frac{1}{2} \left(\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3} \right).$$

b.
$$z = \frac{7-i}{-4-3i} = \frac{(7-i)(-4+3i)}{16+9} = \frac{-25+25i}{25} = -1+i.$$

$$|z| = r = \sqrt{2}, \qquad \cos \varphi = -\frac{\sqrt{2}}{2}, \qquad \sin \varphi = \frac{\sqrt{2}}{2}, \qquad \varphi = \frac{3\pi}{4}.$$

$$z = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4}\right).$$

4.2-3. Adjuk meg a $w,\ z,\ w\cdot z,\ \frac{w}{z}$ komplex számokat trigonometrikus alakban.

a.
$$w = 10i,$$
 $z = 1 + \sqrt{3}i.$
b. $w = -2\sqrt{3} + 2i,$ $z = 1 - i.$

b.
$$w = -2\sqrt{3} + 2i$$
, $z = 1 - i$

Megoldás.

a.

$$\begin{split} w &= 10i = 10 \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right), \\ z &= 1 + \sqrt{3}i = 2\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right), \\ w \cdot z &= 20 \left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right), \\ \frac{w}{z} &= 5 \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right). \end{split}$$

$$\begin{array}{lll} w & = & -2\sqrt{3} + 2i = 4\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = 4\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right),\\ z & = & 1 - i = \sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right),\\ w \cdot z & = & 4\sqrt{2}\left(\cos\frac{31\pi}{12} + i\sin\frac{31\pi}{12}\right) = 4\sqrt{2}\left(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12}\right),\\ \frac{w}{z} & = & 2\sqrt{2}\left(\cos\frac{-11\pi}{12} + i\sin\frac{-11\pi}{12}\right) = 2\sqrt{2}\left(\cos\frac{13\pi}{12} + i\sin\frac{13\pi}{12}\right). \end{array}$$

4.2-4. Írjuk fel trigonometrikus alakban:

a.
$$\sin \varphi + i \cos \varphi$$

b.
$$1 - \sqrt{3}i$$

$$\mathbf{c.} \, \cos 30^{\circ} + i \sin 60^{\circ}$$

b.
$$1 - \sqrt{3}i$$

d. $z = -\sin\frac{\pi}{8} - i\cos\frac{\pi}{8}$

a.
$$\sin \varphi + i \cos \varphi = \cos \left(\frac{\pi}{2} - \varphi\right) + i \sin \left(\frac{\pi}{2} - \varphi\right)$$
.

b.
$$1 - \sqrt{3}i = 2\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = 2\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right).$$

$$\cos 30^{\circ} + i \sin 60^{\circ} = \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2}i$$

$$= \frac{\sqrt{3}}{\sqrt{2}} \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)$$

$$= \sqrt{\frac{3}{2}} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right).$$

 $\mathbf{d}.$

$$\sin \frac{\pi}{8} = \cos \left(\frac{\pi}{2} - \frac{\pi}{8}\right) = \cos \frac{3\pi}{8},$$

$$\cos \frac{\pi}{8} = \sin \left(\frac{\pi}{2} - \frac{\pi}{8}\right) = \sin \frac{3\pi}{8},$$

$$z = -\sin \frac{\pi}{8} - i \cos \frac{\pi}{8}$$

$$= (-1) \left(\cos \frac{3\pi}{8} + i \sin \frac{3\pi}{8}\right)$$

$$= (\cos \pi + i \sin \pi) \left(\cos \frac{3\pi}{8} + i \sin \frac{3\pi}{8}\right)$$

$$= \cos \frac{11\pi}{8} + i \sin \frac{11\pi}{8}.$$

4.2-5. Keressük meg a z=7-24i komplex szám abszolút értékét és argumentumát. Az argumentumot radiánban három tizedesjegy pontossággal fejezzük ki.

Megoldás.

z abszolút értéke $r = \sqrt{7^2 + 24^2} = \sqrt{49 + 576} = \sqrt{625} = 25$. z argumentuma, φ a következő egyenletekből számítható ki:

$$\cos \varphi = \frac{7}{25}, \qquad \qquad \sin \varphi = -\frac{24}{25}.$$

 $\tan \varphi = -\frac{24}{7} = -3.4286$, és φ a negyedik síknegyedbe esik, így

$$\varphi = 4.966$$
.

4.2-6. A z komplex szám abszolút értéke 10, argumentuma $\arctan(0.75)$. Mekkora z imaginárius része.

Megoldás. Legyen $z=a+bi=r(\cos\varphi+i\sin\varphi)$. A feladatban r=10 és $\arg(z)=1$

$$\arctan\left(\frac{3}{4}\right)$$
. Ez alapján $\sqrt{a^2+b^2}=10$, illetve $\frac{b}{a}=\frac{3}{4}$. Átalakítással: $a^2+b^2=100$,

illetve
$$b=\frac{3}{4}a$$
. b értékét az első egyenletbe beírva: $a^2+\frac{9}{16}a^2=100$, amiből

$$16a^2 + 9a^2 = 1600$$
, $25a^2 = 1600$, $a^2 = 64$.

Ennek megoldása az a=8 és b=6. A másodfokú egyenlet másik megoldása (a=-8) és b=-6 nem felel meg a feltételeinknek, mert a $-\frac{\pi}{2}<\arg(z)<\frac{\pi}{2}$ kikötést nem elégíti ki. Így $\mathrm{Im}(z)=6$.

4.2-7. Keressük meg a $\frac{11+7i}{3+5i}$ komplex szám abszolút értékét és az argumentumához legközelebbi fokot.

Megoldás.

$$z = \frac{11+7i}{3+5i}$$

$$= \frac{(11+7i)(3-5i)}{9+25}$$

$$= \frac{33-55i+21i+35}{34}$$

$$= \frac{68-34i}{34} = 2-i.$$

Ebből $|z| = \sqrt{5}$. $\tan \varphi = -\frac{1}{2}$, és φ a negyedik síknegyedbe esik, ezért

$$\varphi = 333.04^{\circ} \sim 333^{\circ}$$

4.2-8. Keressük meg az $\frac{(1+\sqrt{3}i)(\sqrt{3}+i)}{(1+i)^2}$ komplex szám abszolút értékét és argumentumát.

Megoldás.

$$z = \frac{(1+\sqrt{3}i)(\sqrt{3}+i)}{(1+i)^2}$$

$$= \frac{\sqrt{3}+i+3i-\sqrt{3}}{2i}$$

$$= \frac{4i}{2i}$$

$$= 2,$$

$$|z| = 2,$$

$$\operatorname{rg}(z) = 0.$$

4.2-9. Egyszerűsítsük a következő kifejezéseket:

a.
$$\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) \cdot \left(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12}\right)$$

b.
$$\left(\cos\frac{2\pi}{9} + i\sin\frac{2\pi}{9}\right)^3$$

c.
$$\frac{\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^2}{\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}}$$

Megoldás.

a.
$$\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) \cdot \left(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12}\right) = \cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4} = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$$

b.
$$\left(\cos\frac{2\pi}{9} + i\sin\frac{2\pi}{9}\right)^3 = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
.

c.
$$\frac{\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^2}{\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}} = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} = \frac{1}{2} + \frac{\sqrt{3}}{2}i.$$

4.2-10. Hozzuk a lehető legegyszerűbb alakra az alábbi komplex számokat. Adjuk meg végül algebrai alakban

$$\mathbf{a.} \left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)^{10}$$

b.
$$\left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right)^{12}$$

$$\mathbf{c.} \left(\cos\frac{\pi}{9} + i\sin\frac{\pi}{9}\right)^{-3}$$

$$\mathbf{d.} \left(\cos \frac{-\pi}{6} + i \sin \frac{-\pi}{6} \right)^{-4}$$

e.
$$\frac{\left(\cos\frac{2\pi}{7} - i\sin\frac{2\pi}{7}\right)^3}{\left(\cos\frac{2\pi}{7} + i\sin\frac{2\pi}{7}\right)^4}$$
f.
$$\frac{\left(\cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}\right)^8}{\left(\cos\frac{3\pi}{5} - i\sin\frac{3\pi}{5}\right)^3}$$

f.
$$\frac{\left(\cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}\right)^8}{\left(\cos\frac{3\pi}{5} - i\sin\frac{3\pi}{5}\right)^3}$$

a.
$$\left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)^{10} = \cos 2\pi + i\sin 2\pi = 1.$$

b.
$$\left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right)^{12} = \cos\frac{12\pi}{8} + i\sin\frac{12\pi}{8}$$

= $\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}$
= $-i$.

c.
$$\left(\cos\frac{\pi}{9} + i\sin\frac{\pi}{9}\right)^{-3} = \cos\frac{-\pi}{3} + i\sin\frac{-\pi}{3} = \frac{1}{2} - i\frac{\sqrt{3}}{2}$$

d.
$$\left(\cos\frac{-\pi}{6} + i\sin\frac{-\pi}{6}\right)^{-4} = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$
.

e.
$$\frac{\left(\cos\frac{2\pi}{7} - i\sin\frac{2\pi}{7}\right)^{3}}{\left(\cos\frac{2\pi}{7} + i\sin\frac{2\pi}{7}\right)^{4}} = \frac{\left(\cos\left(-\frac{2\pi}{7}\right) + i\sin\left(-\frac{2\pi}{7}\right)\right)^{3}}{\left(\cos\frac{2\pi}{7} + i\sin\frac{2\pi}{7}\right)^{4}}$$

$$= \cos\left(-\frac{6\pi}{7} - \frac{8\pi}{7}\right) + i\sin\left(-\frac{6\pi}{7} - \frac{8\pi}{7}\right)$$

$$= \cos\left(-\frac{14\pi}{7}\right) + i\sin\left(-\frac{14\pi}{7}\right)$$

$$= \cos\left(-2\pi\right) + i\sin\left(-2\pi\right)$$

$$= 1.$$
f.
$$\frac{\left(\cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}\right)^{8}}{\left(\cos\frac{3\pi}{5} - i\sin\frac{3\pi}{5}\right)^{3}} = \frac{\left(\cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}\right)^{8}}{\left(\cos\left(-\frac{3\pi}{5}\right) + i\sin\left(-\frac{3\pi}{5}\right)\right)^{3}}$$

$$= \cos\left(\frac{16\pi}{5} + \frac{9\pi}{5}\right) + i\sin\left(\frac{16\pi}{5} + \frac{9\pi}{5}\right)$$

$$= \cos 5\pi + i\sin \pi$$

$$= \cos \pi + i\sin \pi$$

$$= -1.$$

4.2-11. Adjuk meg $(\sqrt{3}+i)$ -t trigonometrikus alakban. Ennek segítségével fejezzük ki algebrai alakban a $(\sqrt{3}+i)^{10}$ és $\frac{1}{(\sqrt{3}+i)^7}$ számokat.

$$\sqrt{3} + i = 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right).$$

$$(\sqrt{3} + i)^{10} = 2^{10}\left(\cos\frac{10\pi}{6} + i\sin\frac{10\pi}{6}\right)$$

$$= 2^{10}\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right)$$

$$= 1024\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)$$

$$= 512 - 512\sqrt{3}i.$$

$$\frac{1}{(\sqrt{3}+i)^7} = \frac{1}{2^7} \left(\cos \frac{-7\pi}{6} + i \sin \frac{-7\pi}{6} \right)$$

$$= \frac{1}{2^7} \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right)$$

$$= \frac{1}{128} \left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i \right)$$

$$= -\frac{\sqrt{3}}{256} + \frac{1}{256}i.$$

4.2-12. Adjuk meg (-1+i)-t trigonometrikus alakban. Ennek segítségével mutassuk meg, hogy $(-1+i)^{16}$ valós és $\frac{1}{(-1+i)^6}$ képzetes, s adjuk meg az értéküket is.

Megoldás.

$$(-1+i) = \sqrt{2} \left(-\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} \right)$$

$$= \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right),$$

$$(-1+i)^{16} = 2^8 \left(\cos 12\pi + i \sin 12\pi \right)$$

$$= 2^8$$

$$= 256,$$

$$\frac{1}{(-1+i)^6} = \frac{1}{(\sqrt{2})^6} \left(\cos \frac{-9\pi}{2} + i \sin \frac{-9\pi}{2} \right)$$

$$= \frac{1}{2^3} \left(\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} \right)$$

$$= -\frac{1}{8}i.$$

4.2-13. Számítsuk ki az $\frac{(1-i\sqrt{3})(\cos\varphi+i\sin\varphi)}{2(1-i)(\cos\varphi-i\sin\varphi)}$ kifejezés értékét, ha φ valós szám.

$$1 - i\sqrt{3} = 2\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right),$$
$$1 - i = \sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right),$$

$$\frac{(1-i\sqrt{3})(\cos\varphi+i\sin\varphi)}{2(1-i)(\cos\varphi-i\sin\varphi)} = \frac{2\left(\cos\frac{5\pi}{3}+i\sin\frac{5\pi}{3}\right)(\cos\varphi+i\sin\varphi)}{2\sqrt{2}\left(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\right)(\cos(-\varphi)+i\sin(-\varphi))}$$
$$= \frac{\sqrt{2}}{2}\left(\cos\left(2\varphi-\frac{\pi}{12}\right)+i\sin\left(2\varphi-\frac{\pi}{12}\right)\right).$$

4.2-14. Számítsuk ki a következő kifejezések értékét trigonometrikus alak felhasználásával, végül adjuk meg algebrai alakban :

a.
$$\frac{\left(1+i\sqrt{3}\right)^{15}}{(1+i)^{10}}$$
 b. $\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$ c. $(1+i)^{52}$ d. $\left(\frac{1-i}{1+i\sqrt{3}}\right)^{20}$

Megoldás.

a.

$$1 + i\sqrt{3} = 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$$

$$= 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right),$$

$$1 + i = \sqrt{2}\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)$$

$$= \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right),$$

$$\frac{(1 + i\sqrt{3})^{15}}{(1 + i)^{10}} = \frac{2^{15}\left(\cos\frac{15\pi}{3} + i\sin\frac{15\pi}{3}\right)}{\left(\sqrt{2}\right)^{10}\left(\cos\frac{10\pi}{4} + i\sin\frac{10\pi}{4}\right)}$$

$$= 2^{10}\frac{\cos 5\pi + i\sin 5\pi}{\cos\frac{5\pi}{2} + i\sin\frac{5\pi}{2}}$$

$$= 2^{10}\frac{\cos \pi + i\sin\pi}{\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}}$$

$$= 2^{10}\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$

$$= 2^{10} \cdot i.$$

b.

$$1 + i\sqrt{3} = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right),$$

$$1 - i = \sqrt{2}\left(\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right)$$

$$= \sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)$$

$$= \sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right),$$

$$\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20} = \left(\frac{2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)}{\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)}\right)^{20}$$

$$= 2^{10}\left(\cos\left(\frac{\pi}{3} + \frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{3} + \frac{\pi}{4}\right)\right)^{20}$$

$$= 2^{10}\left(\cos\frac{35\pi}{3} + i\sin\frac{35\pi}{3}\right)$$

$$= 2^{10}\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right)$$

$$= 2^{10}\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)$$

$$= 512 - 512\sqrt{3}i.$$

c.

$$(1+i)^{52} = \left(\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)\right)^{52}$$
$$= 2^{26}(\cos 13\pi + i\sin 13\pi)$$
$$= 2^{26}(\cos\pi + i\sin\pi)$$
$$= -2^{26}$$

 $\mathbf{d}.$

$$\left(\frac{1-i}{1+i\sqrt{3}}\right)^{20} = \left(\frac{\sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)}{2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)}\right)^{20}$$

$$= \left(\frac{1}{\sqrt{2}}\left(\cos\left(\frac{7\pi}{4} - \frac{\pi}{3}\right) + i\sin\left(\frac{7\pi}{4} - \frac{\pi}{3}\right)\right)\right)^{20}$$

$$= \left(\frac{1}{\sqrt{2}}\left(\cos\frac{17\pi}{12} + i\sin\frac{17\pi}{12}\right)\right)^{20}$$

$$= \frac{1}{2^{10}}\left(\cos\left(\frac{17\pi}{12} \cdot 20\right) + i\sin\left(\frac{17\pi}{12} \cdot 20\right)\right)$$

$$= \frac{1}{2^{10}}\left(\cos\frac{85\pi}{3} + i\sin\frac{85\pi}{3}\right)$$

$$= \frac{1}{2^{10}}\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$

$$= \frac{1}{2^{10}}\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)$$

$$= \frac{1}{2048} + \frac{\sqrt{3}}{2048}i.$$

4.2-15. Számítsuk ki
$$\left(1 + \frac{\sqrt{3}}{2} - \frac{i}{2}\right)^{12} + \left(1 + \frac{\sqrt{3}}{2} + \frac{i}{2}\right)^{12}$$
 értékét.

Megoldás.
$$\frac{\sqrt{3}}{2} - \frac{i}{2} = \cos \frac{11\pi}{6} + i \sin \frac{11\pi}{6}$$
. Legyen $A = 1 + \frac{\sqrt{3}}{2} - \frac{i}{2}$.

$$\text{Ekkor } 1+\frac{\sqrt{3}}{2}-\frac{i}{2}=\overline{A}. \quad A=1+\cos\frac{11\pi}{6}+i\sin\frac{11\pi}{6}.$$

Áttérünk fél szögekre és alkalmazzuk az $1 = \cos^2 \frac{11\pi}{12} + i \sin^2 \frac{11\pi}{12}$ azonosságot.

$$\begin{split} A &= \cos^2\frac{11\pi}{12} + \sin^2\frac{11\pi}{12} + \cos^2\frac{11\pi}{12} - \sin^2\frac{11\pi}{12} + i \cdot 2 \cdot \sin\frac{11\pi}{12}\cos\frac{11\pi}{12} \\ &= 2\cos\frac{11\pi}{12} \left(\cos\frac{11\pi}{12} + i\sin\frac{11\pi}{12}\right), \end{split}$$

$$A^{12} = 2^{12} \cos^{12} \frac{11\pi}{6} (\cos 11\pi + i \sin 11\pi)$$

$$= 2^{12} \cos^{12} \frac{11\pi}{12} \cdot (-1),$$

$$\overline{A}^{12} = \overline{A}^{12}$$

$$= -2^{12} \cos^{12} \frac{11\pi}{12}.$$

A keresett érték:
$$A^{12} + \overline{A}^{12} = -2^{13} \cos^{12} \frac{11\pi}{12} = -2^{13} \cos^{12} \frac{\pi}{12}$$
.

4.2-16. Egyszerűsítsük az
$$(1+\omega)^n$$
 kifejezést, ha $\omega=\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}$.

Megoldás.

1. Megoldás: Áttérünk fél szögekre:

$$(1+\omega)^{n} = \left(\cos^{2}\frac{\pi}{3} + \sin^{2}\frac{\pi}{3} + \cos^{2}\frac{\pi}{3} - \sin^{2}\frac{\pi}{3} + 2i\cos\frac{\pi}{3}\sin\frac{\pi}{3}\right)^{n}$$

$$= 2^{n}\cos^{n}\frac{\pi}{3}\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^{n}$$

$$= \frac{2^{n}}{2^{n}}\left(\cos\frac{n\pi}{3} + i\sin\frac{n\pi}{3}\right)$$

$$= \cos\frac{n\pi}{3} + i\sin\frac{n\pi}{3}.$$

2. Megoldás:

$$(1+\omega)^n = \left(1+\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\right)^n$$

$$= \left(1-\frac{1}{2}+\frac{\sqrt{3}}{2}i\right)^n$$

$$= \left(\frac{1}{2}+\frac{\sqrt{3}}{2}i\right)^n$$

$$= \left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)^n$$

$$= \cos\frac{n\pi}{3}+i\sin\frac{n\pi}{3}.$$

4.2-17. Mennyi az $\frac{(1+i)^n}{2(1-i)^{n-3}}$ kifejezés értéke, ha n>3 egész szám.

Megoldás.

1. Megoldás.

$$\frac{(1+i)^n}{2(1-i)^{n-3}} = \frac{(1+i)^n}{2(1-i)^{n-3}} \cdot \frac{(1+i)^{n-3}}{(1+i)^{n-3}}$$

$$= \frac{(1+i)^{2n-3}}{2 \cdot 2^{n-3}}$$

$$= \frac{(1+i)^{2n-3}}{2^{n-2}}$$

$$= \sqrt{2} \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)^{2n-3}$$

$$= \sqrt{2} \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^{2n-3}.$$

nértékétől függően a következő számokat kapjuk. (
 $k=1,\ 2,\ \ldots$):

$$\begin{array}{|c|c|c|c|} \hline n = 4k & -1-i \\ \hline 4k+1 & 1-i \\ \hline 4k+2 & 1+i \\ \hline 4k+3 & -1+i \\ \hline \end{array}$$

2. Megoldás.

$$(1+i)^3 = 1+3i+3i^2+i^3$$

= 1+3i-3-i
= -2+2i,

$$\frac{1+i}{1-i} = \frac{(1+i)^2}{2}$$
$$= \frac{2i}{2}$$
$$= i.$$

Ezeket felhasználva:

$$\frac{(1+i)^n}{2(1-i)^{n-3}} = \frac{(1+i)^3}{2} \left(\frac{1+i}{1-i}\right)^{n-3}$$
$$= \frac{-2+2i}{2}i^{n-3}$$
$$= (-1+i)i^{n-3}.$$

4.2-18. Számítsuk ki a $\left(-\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)^n+\left(-\frac{1}{2}-i\frac{\sqrt{3}}{2}\right)^n$ kifejezés értékét, ha n természetes szám.

Megoldás. $\varepsilon_1=-\frac{1}{2}+i\frac{\sqrt{3}}{2}$ és $\varepsilon_2=-\frac{1}{2}-i\frac{\sqrt{3}}{2}$ harmadik egységgyökök, tehát $\varepsilon_1^3=1, \qquad \varepsilon_2^3=1, \qquad \varepsilon_1^2=\varepsilon_2.$

$$\text{A keresett \'ert\'ek } A = \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^n + \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^n = \varepsilon_1^n + \varepsilon_2^n.$$

n értékétől függően a következő eredményre jutunk:

n = 3k			A=2
n = 3k + 1	$\varepsilon_1^n = \varepsilon_1$	$\varepsilon_2^n = \varepsilon_2$	$A = 2\left(-\frac{1}{2}\right) = -1$
n = 3k + 2	$\varepsilon_1^n = \varepsilon_2$	$\varepsilon_2^n = \varepsilon_1$	$A = 2\left(-\frac{1}{2}\right) = -1$

4.2-19. Legyen n természetes szám. Igazoljuk, hogy

a.
$$(\sqrt{3} - i)^n = 2^n \left(\cos \frac{n\pi}{6} - i \sin \frac{n\pi}{6}\right)$$

b. $(1+i)^n = 2^{\frac{n}{2}} \left(\cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4}\right)$

$$\mathbf{a.} \ \, (\sqrt{3}-i) = 2 \left(\frac{\sqrt{3}}{2} - \frac{1}{2}i \right) = 2 \left(\cos \frac{-\pi}{6} + i \sin \frac{-\pi}{6} \right),$$

$$(\sqrt{3}-i)^n = 2^n \left(\cos \left(n \frac{-\pi}{6} \right) + i \sin \left(n \frac{-\pi}{6} \right) \right) = 2^n \left(\cos \frac{n\pi}{6} - i \sin \frac{n\pi}{6} \right).$$

Az utolsó lépésben támaszkodtunk arra, hogy a koszinusz függvény páros, a szinusz függvény pedig páratlan.

b.
$$(1+i)^n = \left(\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)\right)^n = 2^{\frac{n}{2}}\left(\cos\frac{n\pi}{4} + i\sin\frac{n\pi}{4}\right).$$

4.2-20. Legyen $z=\frac{2}{1+\cos 2\theta-i\sin 2\theta}$, ahol $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$. Számítsuk ki z abszolút értékét és argumentumát θ -val kifejezve.

Megoldás. Először z nevezőjének keressük meg a trigonometrikus alakját.

$$z_1 = 1 + \cos 2\theta - i \sin 2\theta$$

$$= \cos^2 \theta + \sin^2 \theta + \cos^2 \theta - \sin^2 \theta - 2i \cos \theta \cdot \sin \theta$$

$$= 2\cos^2 \theta - 2i \cos \theta \sin \theta$$

$$= 2\cos \theta (\cos \theta - i \sin \theta)$$

$$= 2\cos \theta (\cos(-\theta) + i \sin(-\theta)).$$

Mivel $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$, ezért $\cos \theta > 0$, az előbbi kifejezés tehát z_1 trigonometrikus alakja.

$$z = \frac{2}{2\cos\theta(\cos\theta - i\sin\theta)}$$
$$= \frac{\cos\theta + i\sin\theta}{\cos\theta(\cos^2\theta + \sin^2\theta)}$$
$$= \frac{\cos\theta + i\sin\theta}{\cos\theta}$$
$$= \frac{1}{\cos\theta}(\cos\theta + i\sin\theta).$$

4.2-21. Legyen $z=\cos\theta+i\sin\theta,\ 0<\theta<\pi.$ Számítsuk ki az alábbi számok abszolút értékét és fő argumentumát.

a.
$$1-z$$
 b. $z-1$ **c.** $\frac{1}{1-z}$ **d.** $\frac{z}{z-1}$

Megoldás.

a.

1. Megoldás.

$$z = \cos \theta + i \sin \theta,$$

$$-z = \cos(\theta + \pi) + i \sin(\theta + \pi)$$

$$= \cos(\theta - \pi) + i \sin(\theta - \pi),$$

$$1 - z = 1 + \cos(\theta - \pi) + i \sin(\theta - \pi).$$

Térjünk át az argumentumok fél szögeire (φ) , és 1-et fejezzük ki $\cos^2 \varphi + \sin^2 \varphi$ alakban.

$$\begin{aligned} 1-z &=& \cos^2\frac{\theta-\pi}{2} + \sin^2\frac{\theta-\pi}{2} + \cos^2\frac{\theta-\pi}{2} - \sin^2\frac{\theta-\pi}{2} + 2i\frac{\theta-\pi}{2}\sin\frac{\theta-\pi}{2} \\ &=& 2\cos^2\frac{\theta-\pi}{2} + 2i\cos\frac{\theta-\pi}{2} + \sin\frac{\theta-\pi}{2} \\ &=& 2\cos\frac{\theta-\pi}{2} \left(\cos\frac{\theta-\pi}{2} + i\sin\frac{\theta-\pi}{2}\right) \\ &=& 2\sin\frac{\theta}{2} \left(\cos\frac{\theta-\pi}{2} + i\sin\frac{\theta-\pi}{2}\right). \end{aligned}$$

A feltétel miatt $2\sin\frac{\theta}{2}>0, \quad \frac{-\pi}{2}<\frac{\theta-\pi}{2}<0.$ Ebből

$$|1-z| = 2\sin\frac{\theta}{2}$$
, $\arg(1-z) = \frac{\theta-\pi}{2} + 2\pi = \frac{\theta+3\pi}{2}$.

2. Megoldás. Ábrázoljuk a Gauss-számsíkon a z, 1, 1-z számoknak megfelelő vektorokat, 1-z a z végpontjától az 1 végpontja felé mutasson. A kapott háromszög egyenlő szárú, mivel |z|=1. arg(1-z) leolvasható a kapott ábráról.

b.

1. Megoldás.

$$\begin{split} z-1 &= \cos\theta + i\sin\theta - 1 \\ &= \cos^2\frac{\theta}{2} - \sin^2\frac{\theta}{2} + 2i\cos\frac{\theta}{2}\sin\frac{\theta}{2} - \left(\cos^2\frac{\theta}{2} + \sin^2\frac{\theta}{2}\right) \\ &= -2\sin^2\frac{\theta}{2} + 2i\cos\frac{\theta}{2}\sin\frac{\theta}{2} \\ &= 2\sin\frac{\theta}{2}\left(-\sin\frac{\theta}{2} + i\cos\frac{\theta}{2}\right). \\ \text{Mivel } -\sin\frac{\theta}{2} + i\cos\frac{\theta}{2} = i\left(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}\right) = \cos\frac{\theta + \pi}{2} + i\sin\frac{\theta + \pi}{2}, \\ \text{ez\'ert } z - 1 &= 2\sin\frac{\theta}{2}\left(\cos\frac{\theta + \pi}{2} + i\sin\frac{\theta + \pi}{2}\right). \\ \text{Ebb\'ol } |z - 1| &= 2\sin\frac{\theta}{2}, \qquad \arg(z - 1) = \frac{\theta + \pi}{2}. \end{split}$$

2. Megoldás. Az a. megoldásában leírt második módszer itt is alkalmazható.

$$\begin{split} \frac{1}{1-z} &= \frac{1}{2\sin\frac{\theta}{2}\left(\cos\frac{\theta-\pi}{2} + i\sin\frac{\theta-\pi}{2}\right)} \\ &= \frac{1}{2\sin\frac{\theta}{2}}\left(\cos\frac{\pi-\theta}{2} + i\sin\frac{\pi-\theta}{2}\right). \end{split}$$
 Ebből
$$\left|\frac{1}{1-z}\right| = \frac{1}{2\sin\frac{\theta}{2}}, \quad \arg\left(\frac{1}{1-z}\right) = \frac{\pi-\theta}{2}. \end{split}$$

$$\frac{z}{z-1} = \frac{\cos\theta + i\sin\theta}{2\sin\frac{\theta}{2}\left(\cos\frac{\theta+\pi}{2} + i\sin\frac{\theta+\pi}{2}\right)}$$
$$= \frac{1}{2\sin\frac{\theta}{2}}\left(\cos\frac{\theta-\pi}{2} + i\sin\frac{\theta-\pi}{2}\right).$$

$$\mbox{A feltétel miatt} \quad \frac{1}{2\sin\frac{\theta}{2}} > 0, \qquad -\frac{\pi}{2} < \frac{\theta - \pi}{2} < 0.$$

Ezért
$$\left|\frac{z}{z-1}\right| = \frac{1}{2\sin\frac{\theta}{2}}, \quad \arg\left(\frac{z}{z-1}\right) = \frac{\theta-\pi}{2} + 2\pi = \frac{\theta+3\pi}{2}.$$

4.3. Négyzetgyökvonás algebrai alakkal, másodfokú komplex együtthatós egyenletek

4.3-1. Vonjunk négyzetgyököt a következő számokból:

a.
$$-3-4i$$

b.
$$5 + 12i$$

c.
$$21 - 20$$

a.
$$-3-4i$$
 b. $5+12i$ **c.** $21-20i$ **d.** $-11+60i$ **e.** $\frac{3}{2+2i}$ **f.** $\frac{3}{2}+2i$

e.
$$\frac{3}{2+2i}$$

f.
$$\frac{3}{2} + 2a$$

Megoldás.

A keresett szám legyen z = a + bi.

A keresett szám legyen
$$z = a + bi$$
.
a. $-3 - 4i = (a + bi)^2$, $-3 - 4i = a^2 - b^2 + 2abi$.

Ebből $a^2 - b^2 = -3$, és 2ab = -4. A második egyenletből $b = \frac{-2}{a}$, amit az első

egyenletbe helyettesítve $a^2 - \frac{4}{a^2} + 3 = 0$, $a^4 + 3a^2 - 4 = 0$.

Ezt az egyenletet a^2 -re megoldva:

$$a^2 = \frac{-3 \pm \sqrt{9 + 16}}{2} = \frac{-3 \pm 5}{2},$$

amiből az egyik gyök $a^2 = -4$, nem megoldás, mert a valós szám. A másik gyök $a^2 = 1$. Ebből a=1 és b=-2, illetve a=-1 és b=2. A keresett komplex számok tehát 1-2iés -1 + 2i. (Lásd a 4.1. ábrát.)

b.
$$5+12i=(a+bi)^2$$
, $5+12i=a^2-b^2+2abi$. Ebből $a^2-b^2=5$ és $2ab=12$. A

második egyenletből $b = \frac{6}{a}$, amit az első egyenletbe helyettesítve

$$a^2 - \frac{36}{a^2} - 5 = 0,$$
 $a^4 - 5a^2 - 36 = 0.$

4.1. ábra.

Az egyenletet a^2 -re megoldva

$$a^2 = \frac{5 \pm \sqrt{25 + 144}}{2} = \frac{5 \pm 13}{2},$$

amiből az egyik gyök $a^2=-4$, nem megoldás, mert a valós szám. A másik gyök $a^2=9$. Ebből a=3 és b=2, illetve a=-3 és b=-2. A keresett komplex számok tehát 3+2iés -3 - 2i.

c. $21 - 20i = a^2 - b^2 + 2abi$. Ebből $21 = a^2 - b^2$ és -20 = 2ab. A második egyenletből $a = \frac{-10}{b}$, amit az elsőbe helyettesítve $21 = \frac{100}{b^2} - b^2$.

4.2. ábra.

Rendezzük:

$$21b^2 = 100 - b^4,$$
 $b^4 + 21b^2 - 100 = 0.$
$$b^2 = \frac{-21 \pm \sqrt{21^2 + 400}}{2} = \frac{-21 \pm 29}{2}.$$

Ebből $b^2=4$, b=2, a=-5, illetve b=-2, a=5.

A gyökök:
$$-5 + 2i$$
 és $5 - 2i$.
d. $-11 + 60i = a^2 - b^2 + 2abi$. $-11 = a^2 - b^2$, $60 = 2ab$.

$$a = \frac{30}{b}$$
, $-11 = \frac{900}{b^2} - b^2$, $-11b^2 = 900 - b^4$, $b^4 - 11b^2 - 900 = 0$.

$$b^2 = \frac{11 \pm \sqrt{121 + 3600}}{2} = \frac{11 \pm 61}{2}.$$

Megoldása 36 és -25. Az utóbbi nem lehet valós szám négyzete. Az előbbiből: $b^2 =$ 36, b=6, a=5, valamint b=-6, a=-5. A gyökök 5+6i és -5-6i. (Lásd a 4.2. ábrát.)

e.

1. Megoldás.

$$\sqrt{\frac{3}{2+2i}} = \sqrt{\frac{3(2-2i)}{8}} = \sqrt{\frac{3(1-i)}{4}}.$$

Számítsuk ki
$$1-i$$
négyzetgyökét.
$$1-i=a^2-b^2+2abi. \qquad a^2-b^2=1, \qquad 2ab=-1.$$

$$a = -\frac{1}{2b}$$
, $\frac{1}{4b^2} - b^2 = 1$, $4b^4 + 4b^2 - 1 = 0$,

$$b^2 = \frac{-4 \pm \sqrt{16 + 16}}{8} = \frac{-4 \pm 4\sqrt{2}}{2} = \frac{-1 \pm \sqrt{2}}{2}.$$

Ebből csak a $b^2 = \frac{\sqrt{2} - 1}{2}$ felel meg esetünkben.

$$b = \sqrt{\frac{\sqrt{2} - 1}{2}} \quad \text{ és } \quad a = -\frac{1}{2\sqrt{\frac{\sqrt{2} - 1}{2}}} = -\frac{\sqrt{\frac{\sqrt{2} + 1}{2}}}{2\sqrt{\frac{\sqrt{2} - 1}{2}}\sqrt{\frac{\sqrt{2} + 1}{2}}} = \sqrt{\frac{\sqrt{2} + 1}{2}},$$

illetve
$$b = -\sqrt{\frac{\sqrt{2}-1}{2}}$$
 és $a = \sqrt{\frac{\sqrt{2}+1}{2}}$.

Ezeket még meg kell szoroznunk $\sqrt{\frac{3}{4}}$ -gyel, s így az eredeti kifejezés gyökei:

$$\frac{1}{4}\sqrt{6\sqrt{2}+6} - \frac{1}{4}\sqrt{6\sqrt{2}-6}\,i \quad \text{és} \quad -\frac{1}{4}\sqrt{6\sqrt{2}+6} + \frac{1}{4}\sqrt{6\sqrt{2}-6}\,i.$$

2. Megoldás.

$$\frac{3}{2+2i} = \frac{3(2-2i)}{8}$$

$$= \frac{3(1-i)}{4}$$

$$= \frac{3\sqrt{2}}{4} \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\right)$$

$$= \frac{3\sqrt{2}}{4} \left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)$$

A gyökök trigonometrikus alakban:

$$\frac{\sqrt{3\sqrt{2}}}{2}\left(\cos\frac{7\pi}{8} + i\sin\frac{7\pi}{8}\right) \qquad \text{és} \qquad \frac{\sqrt{3\sqrt{2}}}{2}\left(\cos\frac{15\pi}{8} + i\sin\frac{15\pi}{8}\right).$$

f.
$$\frac{3}{2} + 2i = a^2 - b^2 + 2abi$$
. Ebből $\frac{3}{2} = a^2 - b^2$ és $2 = 2ab$. $a = \frac{1}{b}$, ezt az első

egyenletbe helyettesítve $\frac{3}{2} = \frac{1}{h^2} - b^2$, amit alakítva

$$3b^2 = 2 - 2b^4, 2b^4 + 3b^2 - 2 = 0.$$

$$b^2 = \frac{-3 \pm \sqrt{9 + 16}}{4} = \frac{-3 \pm 5}{4}.$$

$$b^2=rac{1}{2},\quad b=\sqrt{rac{1}{2}},\quad a=\sqrt{2},\quad ext{illetve} \qquad b=-\sqrt{rac{1}{2}},\quad a=-\sqrt{2},$$
 A gyökök $\sqrt{2}+\sqrt{rac{1}{2}}i$ és $-\sqrt{2}-\sqrt{rac{1}{2}}i.$

4.3-2. Adjuk meg az alábbi számok négyzetgyökét és ábrázoljuk a Gauss-számsíkon.

Megoldás. A keresett négyzetgyököt jelölje z = a + bi.

 \vec{a} . $-1 = (a+bi)^2$, $-1 = a^2 - b^2 + 2abi$. Ebből $a^2 - b^2 = -1$ és 2ab = 0. A második egyenletből a=0, vagy b=0. Az a=0 értéket az első egyenletbe helyettesítve $-b^2 = -1$, amiből b = 1, vagy b = -1. A b = 0 értéket az első egyenletbe helyettesítve $a^2 = -1$, ami ellentmondás, hiszen a valós szám. A keresett komplex számok tehát i és -i.

 $\mathbf{b} \cdot -2i = (a+bi)^2, -2i = a^2 - b^2 + 2abi$. Ebből $a^2 - b^2 = 0$ és 2ab = -2, amiből ab = -1. Az első egyenletből a = b, vagy a = -b. Az a = b kifejezést a második egyenletbe helyettesítve $a^2 = -1$, ami ellentmondás. Az a = -b kifejezést a második egyenletbe helyettesítve $a^2 = 1$, amiből a = 1, vagy a = -1. A keresett komplex számok 1-i és -1+i.

c. $3+4i=(a+bi)^2$, $3+4i=a^2-b^2+2abi$. Ebből $a^2-b^2=3$ és 2ab=4. A második egyenletből $a=\frac{2}{h}$, amit az első egyenletbe helyettesítve $\frac{4}{h^2}-b^2=3$, $b^4+3b^2-4=0$. Ezt az egyenletet b^2 -re megoldva:

$$b^2 = \frac{-3 \pm \sqrt{9 + 16}}{2} = \frac{-3 \pm 5}{2},$$

amiből az egyik gyök $b^2 = -4$, esetünkben nem megoldás, a másik gyök $b^2 = 1$. Ebből b=1 és a=2, illetve b=-1 és a=-2. A megoldás 2+i és -2-i.

d.
$$15 + 8i = (a + bi)^2$$
, $15 + 8i = a^2 - b^2 + 2abi$. Ebből $a^2 - b^2 = 15$ és $2ab = 8$.

A második egyenletből $a = \frac{4}{h}$, amit az első egyenletbe helyettesítve

$$\frac{16}{b^2} - b^2 = 15, \qquad b^4 + 15b^2 - 16 = 0,$$

$$b^2 = \frac{-15 \pm \sqrt{225 + 64}}{2} = \frac{-15 \pm 17}{2}.$$

Az egyik gyök $b^2 = -16$, nem megoldás, a másik gyök $b^2 = 1$. Ebből b = 1 és a = 4, illetve b=-1 és a=-4. A keresett komplex számok tehát 4+i és -4-i.

4.3-3. Oldjuk meg a következő egyenleteket: . Oldjuk meg a következő egyenleteket: **a.** $x^2 - 2x + 2 = 0$ **b.** $x^2 - 6x + 10 = 0$ **c.** $x^2 - 4x + 13 = 0$ **d.** $4x^2 - 4x + 5 = 0$ **e.** $2x^2 + 3x + 2 = 0$ **f.** $x^2 - x + 1 = 0$

a.
$$x^2 - 2x + 2 = 0$$

$$x^2 - 6x + 10 = 0$$

$$x^2 - 4x + 13 - 0$$

d.
$$4x^2 - 4x + 5 = 0$$

e.
$$2x^2 + 3x + 2 = 0$$

f.
$$x^2 - x + 1 = 0$$

Megoldás.

a.
$$x^2 - 2x + 2 = 0$$
, $x = \frac{2 \pm \sqrt{4 - 8}}{2} = \frac{2 \pm 2i}{2} = 1 \pm i$.

b.
$$x^2 - 6x + 10 = 0$$
, $x = \frac{6 \pm \sqrt{36 - 40}}{2} = \frac{6 \pm 2i}{2} = 3 \pm i$.

c.
$$x^2 - 4x + 13 = 0$$
, $x = \frac{4 \pm \sqrt{16 - 52}}{2} = \frac{4 \pm 6i}{2} = 2 \pm 3i$.

d.
$$4x^2 - 4x + 5 = 0$$
, $x = \frac{4 \pm \sqrt{16 - 80}}{8} = \frac{4 \pm 8i}{8} = \frac{1}{2} \pm i$.

e.
$$2x^2 + 3x + 2 = 0$$
, $x = \frac{-3 \pm \sqrt{9 - 16}}{4} = \frac{-3 \pm \sqrt{7}i}{4} = \frac{-3}{4} \pm \frac{\sqrt{7}}{4}i$.

f.
$$x^2 - x + 1 = 0$$
 $x = \frac{1 \pm \sqrt{1 - 4}}{2} = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i$.

4.3-4. Bontsuk elsőfokú tényezők szorzatára a következő kifejezéseket:

a.
$$x^2 + 1$$

b.
$$x^2 + 6x + 13$$

b.
$$x^2 + 6x + 13$$
 c. $4x^2 - 12x + 25$

Megoldás.

a. Az $x^2 + 1 = 0$ egyenlet gyökei i és -i. Így a kívánt felbontás (x - i)(x + i).

b. Oldjuk meg az $x^2 + 6x + 13 = 0$ egyenletet.

$$x = \frac{-6 \pm \sqrt{36 - 52}}{2} = -3 \pm 2i.$$

A felbontás (x - (-3 + 2i))(x - (-3 - 2i)) = (x + 3 - 2i)(x + 3 + 2i)

c. Oldjuk meg a $4x^2 - 12x + 25 = 0$ egyenletet.

$$x = \frac{12 \pm \sqrt{144 - 400}}{8} = \frac{12 \pm 16i}{8} = \frac{3}{2} \pm 2i.$$

A felbontás
$$\left(x-\frac{3}{2}-2i\right)\left(x-\frac{3}{2}+2i\right)$$

4.3-5.

Oldjuk meg a következő egyenleteket:

a.
$$z^2 - (1+2i)z + i - 1 = 0$$

b.
$$x^2 + (2+i)x - 1 - 5i = 0$$

c.
$$x^2 - (2+i)x - 1 + 7i = 0$$

d.
$$3x^2 - (8+4i)x + 4 + 6i = 0$$

e.
$$x^2 - (8 - 3i)x + 11 - 27i = 0$$

f.
$$x^2 + (-8 + 3i)x + 11 + 3i = 0$$

g.
$$(15+6i)x^2-(32+36i)x+8+38i=0$$

g.
$$(15+6i)x^2 - (32+36i)x + 8 + 38i = 0$$
 h. $(9+18i)x^2 + (30-80i)x - 39 + 52i = 0$

Megoldás.

a.
$$z = \frac{1 + 2i \pm \sqrt{(1+2i)^2 - 4(i-1)}}{2} = \frac{1 + 2i \pm 1}{2}$$
.

A diszkrimináns $(1+2i)^2 - 4(i-1) = 1 - 4 + 4i - 4i + 4 = 1$. A két gyök 1+i és i.

b.
$$x^2 + (2+i)x - 1 - 5i = 0$$
.

Alkalmazzuk a másodfokú egyenlet megoldóképletét.

$$x = \frac{-2 - i \pm \sqrt{(2+i)^2 + 4(1+5i)}}{2}.$$

Számoljuk ki a diszkriminánst:

$$(2+i)^{2} + 4(1+5i) = 4-1+4i+4+20i = 7+24i.$$

Kiszámítjuk 7+24i négyzetgyökeit. $a^2-b^2=7$ és 2ab=24. Ebből $a=\frac{12}{b}$, amit

az első egyenletbe beírva $\frac{144}{b^2} - b^2 = 7$, $7b^2 = 144 - b^4$. Amiből $b^4 + 7b^2 - 144 = 0$.

$$b^2 = \frac{-7 \pm \sqrt{49 + 4 \cdot 144}}{2} = \frac{-7 \pm 25}{2}.$$

A $b^2=-16$ nem megoldás, $b^2=9$ alapján pedig b=3 és a=4, illetve b=-3 és a=-4. 7+24i négyzetgyökei 4+3i és -4-3i.

Visszahelyettesítjük a megoldóképletbe: $x = \frac{-2 - i \pm (4 + 3i)}{2}$.

Ebből a megoldás 1 + i és -3 - 2i. **c.** $x^2 - (2 + i)x - 1 + 7i = 0$,

$$x = \frac{2 + i \pm \sqrt{(2+i)^2 - 4(-1+7i)}}{2}.$$

A diszkrimináns: $(2+i)^2 - 4(-1+7i) = 7-24i$. Kiszámítjuk 7-24i négyzetgyökeit.

 $a^2-b^2=7$ és 2ab=-24. Ebből $a=-\frac{12}{b}$, amit az első egyenletbe beírva

 $\frac{144}{b^2} - b^2 = 7. \text{ Amib\'ol } b^4 + 7b^2 - 144 = 0,$

$$b^2 = \frac{-7 \pm \sqrt{49 + 576}}{2} = \frac{-7 \pm \sqrt{625}}{2} = \frac{-7 \pm 25}{2}.$$

A $b^2=-16$ nem megoldás, $b^2=9$ alapján pedig b=3 és a=-4, illetve b=-3 és a=4. 7-24i négyzetgyökei 4-3i és -4+3i.

$$x = \frac{2 + i \pm (4 - 3i)}{2}.$$

A megoldás 3 - i és -1 + 2i.

d. $3x^2 - (8+4i)x + 4 + 6i = 0$. A másodfokú egyenlet megoldóképletébe beírva az együtthatókat:

$$x = \frac{8 + 4i \pm \sqrt{(-8 - 4i)^2 - 4 \cdot 3(4 + 6i)}}{2 \cdot 3}.$$

Számoljuk ki a diszkriminánst: $(-8-4i)^2 - 4 \cdot 3(4+6i) = -8i$. Kiszámítjuk -8i négyzetgyökeit.

 $a^2-b^2=0$ és 2ab=-8. Ebből $a=\frac{-4}{b}$, amit az első egyenletbe beírva $\frac{16}{b^2}=b^2$.

Amiből $b^4=16,\ b=2,\ a=-2,$ illetve $b=-2,\ a=2.$ -8i négyzetgyökei 2-2i és -2+2i.

Visszahelyettesítjük a megoldóképletbe: $x = \frac{8 + 4i \pm (2 - 2i)}{6}$.

Ebből a megoldás $\frac{5}{3} + \frac{1}{3}$ és 1 + i.

e.
$$x^2 - (8 - 3i)x + 11 - 27i = 0$$
.

A másodfokú egyenlet megoldóképlete alapján:

$$x = \frac{8 - 3i \pm \sqrt{(-8 + 3i)^2 - 4(11 - 27i)}}{2}.$$

A diszkrimináns: $(-8+3i)^2 - 4(11-27i) = 11+60i$.

Kiszámítjuk 11 + 60i négyzetgyökeit.

$$a^2 - b^2 = 11$$
 és $2ab = 60$. Ebből $a = \frac{30}{b}$, amit az első egyenletbe beírva

$$\frac{900}{b^2} - b^2 = 11. \text{ Amib\'ol } b^4 + 11b^2 - 900 = 0,$$

$$b^2 = \frac{-11 \pm \sqrt{121 + 3600}}{2} = \frac{-11 \pm 61}{2}.$$

A $b^2=-36$ nem megoldás, $b^2=25$ alapján pedig b=5, a=6, illetve b=-5, a=-6. 11+60i négyzetgyökei 6+5i és -6-5i.

Visszahelyettesítjük a megoldóképletbe: $x = \frac{8 - 3i \pm (6 + 5i)}{2}$.

A megoldás 7+i és 1-4i.

f.
$$x^2 + (-8+3i)x + 11 + 3i = 0.$$

$$x = \frac{8 - 3i \pm \sqrt{(-8 + 3i)^2 - 4(11 + 3i)}}{2}.$$

A diszkrimináns: $(-8+3i)^2 - 4(11+3i) = 11-60i$.

Kiszámítjuk 11 - 60i négyzetgyökeit.

$$a^2 - b^2 = 11$$
 és $2ab = -60$. Ebből $a = \frac{-30}{b}$, amit az első egyenletbe beírva

$$\frac{900}{b^2} - b^2 = 11. \text{ Amiből } b^4 + 11b^2 - 900 = 0,$$

$$b^2 = \frac{-11 \pm \sqrt{121 + 3600}}{2} = \frac{-11 \pm 61}{2}.$$

 $b^2=-36$ nem megoldás, $b^2=25$ alapján pedig $b=5,\ a=-6$ illetve $\ b=-5,\ a=6.$

$$11 - 60i$$
 négyzetgyökei $6 - 5i$ és $-6 + 5i$. $x = \frac{8 - 3i \pm (6 - 5i)}{2}$.

A megoldás 7 - 4i és 1 + i.

g.
$$(15+6i)x^2 - (32+36i)x + 8 + 38i = 0.$$

$$x = \frac{32 + 36i \pm \sqrt{(-32 - 36i)^2 - 4(15 + 6i)(8 + 38i)}}{2(15 + 6i)}.$$

A diszkrimináns: $(-32 - 36i)^2 - 4(15 + 6i)(8 + 38i) = 160 - 168i$. Kiszámítjuk 160 - 168i négyzetgyökeit.

 $a^2 - b^2 = 160$ és 2ab = -168. Ebből $a = \frac{-84}{b}$, amit az első egyenletbe beírva

$$\frac{84^2}{b^2} - b^2 = 160. \text{ Amiből } b^4 + 160b^2 - 84^2 = 0,$$

$$b^2 = \frac{-160 \pm \sqrt{160^2 + 4 \cdot 7056}}{2} = \frac{-160 \pm 232}{2}.$$

A $b^2 = -196$ nem megoldás, $b^2 = 36$ alapján pedig b = 6, a = -14, illetve b = -6, a = 14. 160 - 168i négyzetgyőkei 14 - 6i és -14 + 6i.

$$x = \frac{32 + 36i \pm (14 - 6i)}{2(15 + 6i)}.$$

A megoldás $\frac{5}{3} + \frac{1}{3}i$ és 1 + i.

h.
$$(9+18i)x^2 + (30-80i)x - 39 + 52i = 0.$$

$$x = \frac{-30 + 80i \pm \sqrt{(30 - 80i)^2 - 4(9 + 18i)(-39 + 52i)}}{2(9 + 18i)}.$$

A diszkrimináns: $(30-80i)^2-4(9+18i)(-39+52i)=-352-3864i$. Kiszámítjuk -352-3864i négyzetgyökeit.

$$a^2-b^2=-352$$
 és $2ab=-3864$. Ebből $a=\frac{-1932}{b}$, amit az első egyenletbe

beírva $\frac{1932^2}{b^2} - b^2 = -352$. Amiből $b^4 - 352b^2 - 1932^2 = 0$,

$$b^2 = \frac{352 \pm \sqrt{352^2 + 4 \cdot 1932^2}}{2} = \frac{352 \pm 3880}{2}.$$

A $b^2=-1764$ nem megoldás, $b^2=2116$ alapján pedig $b=46,\ a=-42$ és $b=-46,\ a=42.$ -352-3864i négyzetgyökei 42-46i és -42+46i.

$$x = \frac{-30 + 80i \pm (42 - 46i)}{2(9 + 18i)}.$$

A megoldás
$$\frac{8}{9} + \frac{1}{9}i$$
 és $2 + 3i$.

4.4. n-edik gyök meghatározása trigonometrikus alakkal, egységgyökök

Az 1-7. feladatokban a gyökvonást trigonometrikus alak felhasználásával végezzük el. 4.4-1. Vonjunk negyedik gyököt a $2 - i\sqrt{12}$ számból.

Megoldás.
$$2 - i\sqrt{12} = 2\left(1 - i\sqrt{3}\right) = 4\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = 4\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right).$$

A negyedik gyökök:

$$\sqrt{2}\left(\cos\left(\frac{5\pi}{12} + \frac{k2\pi}{4}\right) + i\sin\left(\frac{5\pi}{12} + \frac{k2\pi}{4}\right)\right), \text{ ahol } 0 \le k \le 3.$$

$$w_0 = \sqrt{2} \left(\cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \right), \quad w_1 = \sqrt{2} \left(\cos \frac{11\pi}{12} + i \sin \frac{11\pi}{12} \right),$$

$$w_2 = \sqrt{2} \left(\cos \frac{17\pi}{12} + i \sin \frac{17\pi}{12} \right), \quad w_3 = \sqrt{2} \left(\cos \frac{23\pi}{12} + i \sin \frac{23\pi}{12} \right).$$

4.4-2. Vonjunk ötödik gyököt az 1 - i számból.

Megoldás.
$$1 - i = \sqrt{2} \left(\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2} \right) = \sqrt{2} \left(\cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4} \right).$$

A gyökök:

$$\sqrt[10]{2} \left(\cos \left(\frac{7\pi}{20} + \frac{k2\pi}{5} \right) + i \sin \left(\frac{7\pi}{20} + \frac{k2\pi}{5} \right) \right), \text{ ahol } 0 \le k \le 4.$$

$$\begin{array}{lclcl} w_0 & = & \sqrt[10]{2} \left(\cos \frac{7\pi}{20} + i \sin \frac{7\pi}{20} \right), & w_1 & = & \sqrt[10]{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right), \\ w_2 & = & \sqrt[10]{2} \left(\cos \frac{23\pi}{20} + i \sin \frac{23\pi}{20} \right), & w_3 & = & \sqrt[10]{2} \left(\cos \frac{31\pi}{20} + i \sin \frac{31\pi}{20} \right), \\ w_4 & = & \sqrt[10]{2} \left(\cos \frac{39\pi}{20} + i \sin \frac{39\pi}{20} \right). \end{array}$$

4.4-3. Vonjunk hatodik gyököt az i számból.

Megoldás.
$$i = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$$
.

A gyökök:

$$\cos\left(\frac{\pi}{12} + \frac{k2\pi}{6}\right) + i\sin\left(\frac{\pi}{12} + \frac{k2\pi}{6}\right), \text{ ahol } 0 \le k \le 5.$$

$$w_0 = \cos\frac{\pi}{12} + i\sin\frac{\pi}{12}, \qquad w_1 = \cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12},$$

$$w_2 = \cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}, \qquad w_3 = \cos\frac{13\pi}{12} + i\sin\frac{13\pi}{12},$$

$$w_4 = \cos\frac{17\pi}{12} + i\sin\frac{17\pi}{12}, \qquad w_5 = \cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}.$$

4.4-4. Vonjunk hatodik gyököt az $\frac{1-i}{1+i\sqrt{3}}$ számból.

Megoldás.

$$1 - i = \sqrt{2} \left(\cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4} \right), \quad 1 + i \sqrt{3} = 2 \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right),$$
$$\frac{1 - i}{1 + i \sqrt{3}} = \frac{\sqrt{2} \left(\cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4} \right)}{2 \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)} = \frac{\sqrt{2}}{2} \left(\cos \frac{17\pi}{12} + i \sin \frac{17\pi}{12} \right).$$

A gyökök:

$$\begin{split} w_k &= \frac{1}{\sqrt[12]{2}} \left(\cos \left(\frac{17\pi}{72} + \frac{k2\pi}{6} \right) + i \sin \left(\frac{17\pi}{72} + \frac{k2\pi}{6} \right) \right) = \\ &= \frac{1}{\sqrt[12]{2}} \left(\cos \left(\frac{17\pi + 24k\pi}{72} \right) + i \sin \left(\frac{17\pi + 24k\pi}{72} \right) \right), \quad 0 \le k \le 5. \\ w_0 &= \frac{1}{\sqrt[12]{2}} \left(\cos \frac{17\pi}{72} + i \sin \frac{17\pi}{72} \right), \quad w_1 &= \frac{1}{\sqrt[12]{2}} \left(\cos \frac{41\pi}{72} + i \sin \frac{41\pi}{72} \right), \\ w_2 &= \frac{1}{\sqrt[12]{2}} \left(\cos \frac{65\pi}{72} + i \sin \frac{65\pi}{72} \right), \quad w_3 &= \frac{1}{\sqrt[12]{2}} \left(\cos \frac{89\pi}{72} + i \sin \frac{89\pi}{72} \right), \\ w_4 &= \frac{1}{\sqrt[12]{2}} \left(\cos \frac{113\pi}{72} + i \sin \frac{113\pi}{72} \right), \quad w_5 &= \frac{1}{\sqrt[12]{2}} \left(\cos \frac{137\pi}{72} + i \sin \frac{137\pi}{72} \right). \end{split}$$

4.4-5. Vonjunk nyolcadik gyököt az $\frac{1+i}{\sqrt{3}-i}$ számból.

Megoldás.

$$1 + i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right),$$

$$\sqrt{3} - i = 2 \left(\frac{\sqrt{3}}{2} - i \frac{1}{2} \right) = 2 \left(\cos \frac{11\pi}{6} + i \sin \frac{11\pi}{6} \right),$$

$$\frac{1+i}{\sqrt{3}-i} = \frac{\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)}{2 \left(\cos \frac{11\pi}{6} + i \sin \frac{11\pi}{6} \right)} = \frac{1}{\sqrt{2}} \left(\cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \right).$$

A gyökök:

$$\begin{split} &\frac{1}{\sqrt[16]{2}}\left(\cos\left(\frac{5\pi}{96}+\frac{k2\pi}{8}\right)+i\sin\left(\frac{5\pi}{96}+\frac{k2\pi}{8}\right)\right), \qquad 0 \leq k \leq 7. \\ &w_0 &= &\frac{1}{\sqrt[16]{2}}\left(\cos\frac{5\pi}{96}+i\sin\frac{5\pi}{96}\right), \qquad w_1 &= &\frac{1}{\sqrt[16]{2}}\left(\cos\frac{29\pi}{96}+i\sin\frac{29\pi}{96}\right), \\ &w_2 &= &\frac{1}{\sqrt[16]{2}}\left(\cos\frac{53\pi}{96}+i\sin\frac{53\pi}{96}\right), \qquad w_3 &= &\frac{1}{\sqrt[16]{2}}\left(\cos\frac{77\pi}{96}+i\sin\frac{77\pi}{96}\right), \\ &w_4 &= &\frac{1}{\sqrt[16]{2}}\left(\cos\frac{101\pi}{96}+i\sin\frac{101\pi}{96}\right), \quad w_5 &= &\frac{1}{\sqrt[16]{2}}\left(\cos\frac{125\pi}{96}+i\sin\frac{125\pi}{96}\right). \\ &w_6 &= &\frac{1}{\sqrt[16]{2}}\left(\cos\frac{149\pi}{96}+i\sin\frac{149\pi}{96}\right), \quad w_7 &= &\frac{1}{\sqrt[16]{2}}\left(\cos\frac{173\pi}{96}+i\sin\frac{173\pi}{96}\right). \end{split}$$

4.4-6. Vonjunk hetedik gyököt a következő számból.

$$\frac{3 - 3\sqrt{3}i}{-2 + 2i}$$

Megoldás.

$$3 - 3\sqrt{3}i = 6\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = 6\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right),$$

$$-2 + 2i = 2\sqrt{2}\left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) = 2\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right),$$

$$\frac{3 - 3\sqrt{3}i}{-2 + 2i} = \frac{6\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right)}{2\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)} = \frac{3}{\sqrt{2}}\left(\cos\frac{11\pi}{12} + i\sin\frac{11\pi}{12}\right).$$

A gyökök:

$$\sqrt[7]{\frac{3}{\sqrt{2}}} \left(\cos \left(\frac{11\pi}{84} + \frac{k2\pi}{7} \right) + i \sin \left(\frac{11\pi}{84} + \frac{k2\pi}{7} \right) \right), \qquad 0 \le k \le 6.$$

A gyökök argumentumai rendre:

$$\frac{11\pi}{84}$$
, $\frac{5\pi}{12}$, $\frac{59\pi}{84}$, $\frac{83\pi}{84}$, $\frac{107\pi}{84}$, $\frac{131\pi}{84}$, $\frac{155\pi}{84}$.

4.4-7. Számítsuk ki 10 - 10i harmadik gyökeit a trigonometrikus alak segítségével, és adjuk meg a gyököket algebrai alakban is. **Megoldás.**

$$10 - 10i = 10\sqrt{2} \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i \right) = 10\sqrt{2} \left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4} \right),$$

$$\sqrt[6]{200} = \sqrt[6]{8} \cdot \sqrt[6]{25} = \sqrt{2} \cdot \sqrt[3]{5}$$

A gyökök:

$$\sqrt{2} \cdot \sqrt[3]{5} \left(\cos \left(\frac{7\pi}{12} + \frac{k2\pi}{3} \right) + i \sin \left(\frac{7\pi}{12} + \frac{k2\pi}{3} \right) \right), \quad 0 \le k \le 2.$$

$$w_0 = \sqrt{2} \cdot \sqrt[3]{5} \left(\cos \frac{7\pi}{12} + i \sin \frac{7\pi}{12} \right),$$

$$w_1 = \sqrt{2} \cdot \sqrt[3]{5} \left(\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right)$$

$$= \sqrt{2} \cdot \sqrt[3]{5} \left(-\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2} \right)$$

$$= \sqrt{2} \cdot \sqrt[3]{5} \frac{\sqrt{2}}{2} (-1 - i)$$

$$= \sqrt[3]{5} (-1 - i),$$

$$w_2 = \sqrt{2} \cdot \sqrt[3]{5} \left(\cos \frac{23\pi}{12} + i \sin \frac{23\pi}{12} \right).$$

 w_2 -t és w_0 -at megkapjuk, ha w_1 -et a megfelelő harmadik egységgyökkel szorozzuk. Mivel

$$w_2 = (-1 - i)\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) = (-1 - i)\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = \frac{1 + \sqrt{3}}{2} + i\frac{1 - \sqrt{3}}{2}$$

és

$$w_0 = (-1 - i)\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right) = (-1 - i)\left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = \frac{1 - \sqrt{3}}{2} + i\frac{1 + \sqrt{3}}{2}$$

ezért a többi két gyök algebrai alakja

$$w_2 = \frac{\sqrt[3]{5}}{2} \left(1 + \sqrt{3} + i(1 - \sqrt{3}) \right), \qquad w_0 = \frac{\sqrt[3]{5}}{2} \left(1 - \sqrt{3} + i(1 + \sqrt{3}) \right),$$

4.4-8. Oldjuk meg a $z^4 + 16 = 0$ egyenletet a komplex számok halmazán és a gyököket fejezzük ki trigonometrikus és algebrai alakban is.

Megoldás. Az adott egyenletből $z^4 = -16$, tehát -16-ból kell negyedik gyököt vonnunk.

$$-16 = 16(\cos \pi + i \sin \pi).$$

$$z_k = \sqrt[4]{16} \left(\cos \left(\frac{\pi}{4} + \frac{k2\pi}{4} \right) + i \sin \left(\frac{\pi}{4} + \frac{k2\pi}{4} \right) \right)$$
$$= 2 \left(\cos \frac{(2k+1)\pi}{4} + i \sin \frac{(2k+1)\pi}{4} \right), \qquad 0 \le k \le 3.$$

Ebből:

$$z_{0} = 2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = 2\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = \sqrt{2} + i\sqrt{2},$$

$$z_{1} = 2\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right) = 2\left(-\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = -\sqrt{2} + i\sqrt{2},$$

$$z_{2} = 2\left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right) = 2\left(-\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right) = -\sqrt{2} - i\sqrt{2},$$

$$z_{3} = 2\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right) = 2\left(\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right) = \sqrt{2} - i\sqrt{2}.$$

4.4-9. ω az 1-től különböző harmadik egységgyököt jelöl. Mutassuk meg, hogy $\overline{\omega} = \omega^2$. **Megoldás.** $\overline{\omega} \cdot \omega = |\omega|^2 = 1$, másrészt $\omega \cdot \omega^2 = 1$. Ezek alapján $\overline{\omega} \cdot \omega = \omega \cdot \omega^2$, amiből $\overline{\omega} = \omega^2$.

4.4-10. Fejezzük ki a $z^3-\alpha^3=0$ egyenlet gyökeit α és ω segítségével, ha $\omega\neq 1$ komplex harmadik egységgyök. Ennek segítségével adjuk meg az alábbi egyenletek gyökeit algebrai alakban.

a.
$$z^3 - 27 = 0$$
 b. $z^3 + 8 = 0$ **c.** $z^3 - i^3 = 0$

Megoldás. $z^3 - \alpha^3 = 0$, $z_1 = \alpha$, $z_2 = \alpha \omega$, $z_3 = \alpha \omega^2$. Az alábbiakban legyen $\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$, ekkor $\omega^2 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$.

a.
$$z^3 - 27 = 0$$
, $z_1 = 3$, $z_2 = 3\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = -\frac{3}{2} + \frac{3\sqrt{3}}{2}i$, $z_3 = 3\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = -\frac{3}{2} - \frac{3\sqrt{3}}{2}i$.

b.
$$z^3 + 8 = 0$$
, $z_1 = -2$, $z_2 = -2\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = 1 - \sqrt{3}i$,

$$z_3 = -2\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = 1 + \sqrt{3}i.$$

c.
$$z^3 - i^3 = 0$$
, $z_1 = i$, $z_2 = -\frac{\sqrt{3}}{2} - \frac{1}{2}i$, $z_3 = \frac{\sqrt{3}}{2} - \frac{1}{2}i$.

4.4-11. Adjuk meg a következő egyenletek gyökeit algebrai alakban.

a.
$$z^3 - 8 = 0$$

b.
$$z^3 + 1 = 0$$

a.
$$z^3 - 8 = 0$$
 b. $z^3 + 1 = 0$ **c.** $(z+1)^3 = 1$

Megoldás.

a.
$$z^3 - 8 = 0$$
, $z_1 = 2$, $z_2 = 2\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = -1 + \sqrt{3}i$, $z_3 = 2\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = -1 - \sqrt{3}i$.

b.
$$z^3 + 1 = 0$$
, $z_1 = -1$, $z_2 = -1\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = \frac{1}{2} - \frac{\sqrt{3}}{2}i$, $z_3 = -1\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = \frac{1}{2} + \frac{\sqrt{3}}{2}i$.

c.
$$(z+1)^3 = 1$$
, $z_1 = 0$, $z_2 = \omega - 1 = -\frac{3}{2} + \frac{\sqrt{3}}{2}i$,
$$z_3 = \omega^2 - 1 = -\frac{3}{2} - \frac{\sqrt{3}}{2}i$$
.

4.4-12. Számítsuk ki a következő kifejezések értékét, ha ω az 1-től különböző harmadik egységgyök.

$$\mathbf{a.}\ \omega + \omega^3 + \omega^5$$

a.
$$\omega + \omega^3 + \omega^5$$
 b. $\frac{1}{\omega^2 + \omega^4}$ **c.** $\frac{\omega^2}{\omega + \omega^3}$

c.
$$\frac{\omega^2}{\omega + \omega^3}$$

Megoldás.

1. Megoldás. $\omega + \omega^3 + \omega^5 = \omega + 1 + \omega^2 = 0$, mert az n-edik $(n \neq 1)$ egységgyökök összege 0.

2. Meg oldás.
$$z=1+\omega+\omega^2, \quad z\omega=\omega+\omega^2+\omega^3=1+\omega+\omega^2=z,$$
 $z-z\omega=0, \quad z(1-\omega)=0, \text{ amiből } z=0, \text{ vagy } \omega=1.$

b.
$$\frac{1}{\omega^2 + \omega^4} = \frac{1}{\omega^2 + \omega} = -1.$$

$$\mathbf{c.} \quad \frac{\omega^2}{\omega + \omega^3} = \frac{\omega^2}{\omega + 1} = \frac{\omega^2}{-\omega^2} = -1.$$

4.4-13. ω az 1-től különböző harmadik egységgyököt jelöl. Írjuk fel ω -val kifejezve az alábbi kifejezések konjugáltját.

a.
$$1 + a$$

b.
$$1 - \omega^2$$

a.
$$1 + \omega$$
 b. $1 - \omega^2$ **c.** $3 + 4\omega + 5\omega^2$

Megoldás.

a.
$$\overline{1+\omega}=1+\overline{\omega}=1+\omega^2=-\omega$$
.

b.
$$\overline{1 - \omega^2} = 1 - \overline{\omega}^2 = 1 - \omega$$
.

a.
$$\overline{3 + 4\omega + 5\omega^2} = 3 + 4\overline{\omega} + 5\overline{\omega}^2 =$$

= $3 + 4\omega^2 + 5\omega = 3(1 + \omega^2 + \omega) + \omega^2 + 2\omega = -1 + \omega$.

(A megoldás során felhasználtuk, hogy $1 + \omega + \omega^2 = 0$)

4.4-14. Tegyük fel, hogy $z \cdot w$ egységgyök és $w^2 + zi = 0$. Bizonyítsuk be, hogy z és wmindketten egységgyökök.

Megoldás.

Legyen zw n-edik egységgyök. $w^2 = -zi$. Ezt az egyenletet szorozzuk be wi-vel: $w^3i=zw$. Emeljük 4n-edik hatványra. $w^{12n}i^{4n}=(zw)^{4n}=1$, mert $(zw)^n=1$. Mivel $i^4=1$, így $w^{12n}=1$. Ez utóbbi azt jelenti, hogy w egységgyök. Másrészt $w^{12n}=(-zi)^{6n}=z^{6n}(-i)^{6n}=z^{6n}((-i)^6)^n=z^{6n}(-1)^n=1$.

Másrészt
$$w^{12n} = (-zi)^{6n} = z^{6n}(-i)^{6n} = z^{6n}((-i)^6)^n = z^{6n}(-1)^n = 1$$

Ebből $z^{12n} = 1$, tehát z is egységgyök.

4.4-15.

- **a.** Számítsuk ki az n-edik egységgyökök szorzatát.
- **b.** Számítsuk ki az *n*-edik egységgyökök négyzetösszegét.

Megoldás.

1. Megoldás. Az n-edik egységgyökök felírhatóak ε_1 hatványaiként.

$$1 \cdot \varepsilon_1 \cdot \varepsilon_2 \cdot \ldots \cdot \varepsilon_{n-1} = 1 \cdot \varepsilon_1 \cdot \varepsilon_1^2 \cdot \ldots \cdot \varepsilon_1^{n-1} = \varepsilon_1^{\frac{n}{2}(n-1)}$$

Han páratlan, akkor $\frac{n-1}{2}$ egész, $\left(\varepsilon_{1}^{n}\right)^{\frac{n-1}{2}}=1.$

Ha pedig n páros, akkor $\left(\varepsilon_1^{\frac{n}{2}}\right)^{n-1} = (-1)^{n-1} = -1.$

2. Megoldás.

$$1+z+z^2+\ldots+z^{n-1}=(z-\varepsilon_1)\cdot(z-\varepsilon_2)\cdot\ldots\cdot(z-\varepsilon_1)^{n-1},$$

a gyökök és együtthatók közötti összefüggésekből az állandó tag

$$1 = (-1)^{n-1} \varepsilon_1 \cdot \varepsilon_1^2 \cdot \ldots \cdot \varepsilon_1^{n-1}.$$

Tehát páros n esetén a szorzat -1, páratlan n esetén pedig 1.

b.

$$\varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_3^2 + \ldots + \varepsilon_n^2 = \varepsilon_1^2 + \varepsilon_1^{2\cdot 2} + \varepsilon_1^{3\cdot 2} + \ldots + \varepsilon_1^{2\cdot n} =$$

$$=\varepsilon_1^2(1+\varepsilon_1^2+\varepsilon_1^4+\ldots+\varepsilon_1^{2n-2})=\varepsilon_1^2\frac{\left(\varepsilon_1^2\right)^n-1}{\varepsilon_1^2-1}=0,$$

mivel $\varepsilon_1 \neq 1$ és $\varepsilon_1^n = 1$.

4.4-16.

- a. Bizonyítsuk be, hogy két egységgyök szorzata is egységgyök.
- b. Mikor lesz két egységgyök összege egységgyök?

Megoldás.

4.3. ábra.

a. Legyen z n-edik, w pedig k -adik egységgyök.

$$z^{n} = 1$$
, $w^{k} = 1$, $(z \cdot w)^{nk} = (z^{n})^{k} \cdot (w^{k})^{n} = 1$.

Ebből kiolvashatjuk, hogy zw nk-adik egységgyök.

b. Az összegük abszolút értéke is 1 kell, hogy legyen.

A 4.3. ábrából leolvasható, hogy a bezárt szög $\gamma=120^\circ$ vagy -120° , tehát $z=w\varepsilon$, ahol $\varepsilon\neq 1$ harmadik egységgyök. Belátjuk, hogy ha ez teljesül, valóban egységgyök az összeg. Legyen z n-edik, w pedig k-adik egységgyök. $z+w=w\varepsilon+w=w(\varepsilon+1)$. Mivel

$$\varepsilon = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}, \qquad \varepsilon + 1 = \frac{1}{2} \pm \frac{\sqrt{3}}{2} = \cos\frac{\pi}{3} \pm i\sin\frac{\pi}{3},$$

így $\varepsilon+1$ hatodik egységgyök. Vegyük $w(\varepsilon+1)$ 6k-adikhatványát.

$$(w^k)^6 \cdot ((\varepsilon+1)^6)^k = 1 \cdot 1 = 1$$
, tehát $z+w$ is egységgyök.

4.5. Komplex számok geometriai megfeleltetése

 ${\bf 4.5\text{-}1.}$ Hol helyezkednek el a síkon azok a pontok, amelyeknek megfelelő komplex számokra

a.
$$Re(z) + Im(z) = 1$$
 b. $|z + i| = |z - 1|$ **c.** $|z - 1 + i| = 1$

b.
$$|z+i| = |z-1|$$

c.
$$|z - 1 + i| = 1$$

$$\mathbf{d.} \ \arg(z) = \frac{\pi}{4}$$

d.
$$\arg(z) = \frac{\pi}{4}$$
 e. $\left| \frac{z-i}{z-1} \right| = 1$ **f.** $|iz - \overline{z}| = |z|$

$$\mathbf{f}.\ |iz - \overline{z}| = |z|$$

Megoldás.

a. Legyen z = a + bi, ekkor Re(z) = a, Im(z) = b. Az a + b = 1 egyenletet kielégítő értékeket keressük. (Lásd a 4.4. ábrát.)

4.4. ábra.

A Gauss-számsíkban az x + y = 1 egyenes pontjai adják a megoldást, ez az egyenes a valós tengelyt az (1, 0) a képzetes tengelyt a (0, i) pontban metszi.

b. Legyen z = x + yi. Ezt behelyettesítjük a |z + i| = |z - 1| egyenletbe és mindkét oldalt négyzetre emeljük.

 $x^{2} + (y+1)^{2} = (x-1)^{2} + y^{2}$, amiből 2y = -2x, tehát y = -x. Az y = -x egyenes pontjai adják a megoldást. (Lásd a 4.5. ábrát.)

c. Legyen z = x + yi. Ezt behelyettesítve és négyzetre emelve

$$(x-1)^2 + (y+1)^2 = 1.$$

A mértani hely kör, középpontja az (1, -1) pont, sugara r = 1. (Lásd a 4.6. ábrát.)

d. Legyen $z = x + yi = r(\cos \varphi + i \sin \varphi)$, ahol $\varphi = \frac{\pi}{4}$.

$$z = r\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) = x + yi, \qquad x = r\frac{\sqrt{2}}{2}, \qquad y = r\frac{\sqrt{2}}{2}.$$

y=xés $x\geq 0.$ A mértani hely az $y=x,\ x\geq 0$ félegyenes. (Lásd a 4.7. ábrát.)

Megjegyz'es. Hax=0,akkor z=0argumentumáról van szó, ami – mint tudjuk – tetszőleges értéket felvehet, így tekinthető $\frac{\pi}{4}$ -nek is.

e. $\left|\frac{z-i}{z-1}\right|=1$, ahol $z\neq 1$. |z-i|=|z-1|, $|z-i|^2=|z-1|^2$. Helyettesítsük be a z=x+yi kifejezést.

$$x^{2} + (y-1)^{2} = (x-1)^{2} + y^{2}.$$

Ebből y=x. A mértani hely az y=x egyenes kivéve az $(1,\ 1)$ pontot. (Lásd a 4.8. ábrát.)

f.

1. Megoldás. Az $|iz-\overline{z}|=|z|$ egyenletet négyzetre emeljük és alkalmazzuk a $z\overline{z}=|z|^2$ összefüggést:

$$(iz - \overline{z})(\overline{iz - \overline{z}}) = z\overline{z},$$

$$(iz - \overline{z})(-i\overline{z} - z) = z\overline{z},$$

$$z\overline{z} - iz^2 + i\overline{z}^2 + z\overline{z} = z\overline{z},$$

$$z\overline{z} - iz^2 + i\overline{z}^2 = 0,$$

$$z\overline{z} = i(z^2 - \overline{z}^2).$$

Legyen $z = r(\cos \varphi + i \sin \varphi)$, behelyettesítés után $r^2 = -2r^2 \sin 2\varphi$. r = 0 megoldás.

Ha
$$r \neq 0$$
, akkor $\sin 2\varphi = \frac{-1}{2}$, amiből
$$2\varphi = \frac{11\pi}{6} + k2\pi, \qquad \varphi = \frac{11\pi}{12} + k\pi = 165^\circ + k180^\circ \quad \text{\'es}$$

$$2\varphi = \frac{7\pi}{6} + k2\pi, \qquad \varphi = \frac{7\pi}{12} + k\pi = 105^{\circ} + k180^{\circ}. \quad \text{A teljes megoldást a } 165^{\circ}\text{-os}$$

és 105°-os irányszögű egyenesek adják. (Lásd a 4.9. ábrát.)

2. Megoldás. Most legyen z = a + bi. Beírjuk az egyenletbe:

$$|ai - b - a + bi| = |a + bi|,$$

 $|-(a+b) + (a+b)i| = |a+bi|,$
 $\sqrt{(-a-b)^2 + (a+b)^2} = \sqrt{a^2 + b^2},$

amit négyzetre emelve: $2(a+b)^2 = a^2 + b^2$, rendezve $a^2 + b^2 + 4ab = 0$.

$$b = \frac{-4a \pm \sqrt{16a^2 - 4a^2}}{2} = \frac{-4a \pm 2a\sqrt{3}}{2} = -2a \pm a\sqrt{3},$$

 $z = a + a(-2 \pm \sqrt{3})i$. A megoldást a következő egyenesek adják:

$$y = (-2 + \sqrt{3})x$$
, és $y = (-2 - \sqrt{3})x$.

3. Megoldás. z = 0 nyilvánvalóan jó. Legyen $z \neq 0$, mondjuk $z = r(\cos \varphi + i \sin \varphi), r > 0$. Mivel $|iz| = |\overline{z}| = |z|$, így z pontosan akkor megoldás, ha az iz és \overline{z} egymással bezárt szöge $\pm 60^{\circ} + k360^{\circ}$, azaz mivel

$$iz = r(\cos(\varphi + 90^{\circ}) + i\sin(\varphi + 90^{\circ})),$$
$$\overline{z} = r(\cos(-\varphi) + i\sin(-\varphi),$$

ezért

$$\varphi + 90^{\circ} - (-\varphi) = \pm 60^{\circ} + k360^{\circ}, \quad (k = 0, \pm 1, \pm 2, \ldots),$$

rendezve:

$$2\varphi = -90^{\circ} \pm 60^{\circ} + k360^{\circ},$$

 $\varphi = -45^{\circ} \pm 30^{\circ} + k180^{\circ},$
 $\varphi_1 = -15^{\circ} + k180^{\circ},$ $\varphi_2 = -75^{\circ} + k180^{\circ}.$

Ez két origón átmenő egyenest ad, de mindkettőből elvéve az origót. A teljes megoldás az origón átmenő, -15° -os és -75° -os egyenes pontjainak összessége (most már az origóval együtt).

4.5-2. Hol helyezkednek el a síkon azok a pontok, amelyeknek megfelelő z komplex számokra

$$\operatorname{Im}(\overline{z^2 - \overline{z}}) = 2 - \operatorname{Im} z$$

Megoldás. Legyen z = a + bi. Ekkor

$$z^2 = a^2 - b^2 + 2abi$$

és

$$z^{2} - \overline{z} = a^{2} - b^{2} + 2abi - a + bi,$$

továbbá

$$(\overline{z^2 - \overline{z}}) = a^2 - b^2 - a - 2abi - bi.$$

Ebből

$$\operatorname{Im}(\overline{z^2 - \overline{z}}) = -2ab - b,$$

tehát -2ab - b = 2 - b. Ezt rendezve -ab = 1, amiből $b = \frac{-1}{a}$.

Az
$$y = \frac{-1}{x}$$
 hiperbola pontjai adják a megoldást.

4.5-3. Adjuk meg a Gauss-számsíkon a z = x + yi pontok mértani helyének egyenletét x és y segítségével kifejezve, ha

$$|z|^2 + 3\operatorname{Re}(z^2) = 4$$

Megoldás. z = x + yi-t behelyettesítjük a $|z|^2 + 3\text{Re}(z^2) = 4$ egyenletbe.

$$x^2 + y^2 + 3\operatorname{Re}(x^2 - y^2 + 2xyi) = 4,$$

tehát

$$x^2 + y^2 + 3x^2 - 3y^2 = 4.$$

Ebből

$$4x^2 - 2y^2 = 4$$
, $2x^2 - y^2 = 2$.

A $2x^2 - y^2 = 2$ egyenletű görbe pontjai adják a megoldást.

4.5-4. Ábrázoljuk a Gauss-számsíkon azt a tartományt, amelyben az alábbi két egyenlőtlenségnek egyszerre eleget tevő pontok helyezkednek el.

$$\frac{\pi}{4} < \arg z < \frac{2\pi}{3}$$
 és $2 < |z| < 4$.

Vizsgáljuk meg, hogy ha u=2+3i és v=3-2i, akkor az $\frac{1}{4}uv$ pont vajon ebben a tartományban van-e.

Megoldás.

$$z = \frac{1}{4}uv = \frac{1}{4}(2+3i)(3-2i) = \frac{1}{4}(6-4i+9i+6) = \frac{1}{4}(12+5i) = 3+\frac{5}{4}i,$$
$$|z| = \sqrt{9+\frac{25}{16}} = \sqrt{\frac{144+25}{16}} = \sqrt{\frac{169}{16}} = \frac{13}{4} = 3.25.$$

Legyen $\arg(z)=\varphi$. Ekkor $\tan\varphi=\frac{5}{12}$, $\varphi=22.62^\circ$. $\arg(z)$ nem tesz eleget a

feltételnek, így $\frac{1}{4}uv$ nincs az adott tartományban. (Lásd a 4.10. ábrát.)

4.5-5. A w és z komplex számok között a $w=\frac{z-6i}{z+8}$ kapcsolat áll fenn. A komplex számsíkon feleltessük meg a w-nek a W pontot, z-nek pedig a Z pontot.

a. Tegyük fel, hogy w valós része 0. Mutassuk meg, hogy Z egy körön helyezkedik el, és adjuk meg ennek a körnek a középpontját és a sugarát.

 ${\bf b.}$ Tegyük fel, hogy w imaginárius része 0. Mutassuk meg, hogy Z egy egyenesen helyezkedik el, és adjuk meg ennek az egyenesnek az egyenletét.

Megoldás. Legyen z = x + yi. Ekkor

$$w = \frac{x + yi - 6i}{x + yi + 8} = \frac{x + yi - 6i}{x + yi + 8} \cdot \frac{x + 8 - yi}{x + 8 - yi} =$$

4.10. ábra.

$$=\frac{x^2+8x-xyi+xyi+8yi+y^2-6xi-48i-6y}{(x+8)^2+y^2}.$$

a. Ha w valós része 0, akkor

$$x^2 + 8x + y^2 - 6y = 0,$$

amiből

$$(x+4)^2 + (y-3)^2 = 16 + 9 = 5^2$$

valóban kör egyenlete. A kör középpontja (-4, 3), sugara 5.

- **b.** Ha w imaginárius része 0, akkor 8y-6x-48=0, amiből 4y-3x-24=0 valóban egyenes egyenlete.
- **4.5-6.** Határozzuk meg annak a szabályos hatszögnek a csúcsait a Gauss-számsíkban, amelynek középpontja a $z_0=3-2i$, és egyik csúcsa a $z_1=5+i$ komplex számnak felel meg.

Megoldás. Legyen $v = z_1 - z_0 = 2 + 3i$, ε_i ($0 \le i \le 5$) jelöljék a hatodik egységgyököket. A hatszög középpontjából két szomszédos csúcsba húzott vektor 60° -os szöget zár be, a megfelelő egyik komplex számból a másikat úgy kapjuk, hogy hatodik egységgyökökkel

szorzunk. A többi csúcsnak megfelelő komplex szám:

$$z_{2} = z_{0} + v\varepsilon_{1} = 3 - 2i + (2 + 3i) \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$$

$$= 4 - 3\frac{\sqrt{3}}{2} + i\left(-\frac{1}{2} + \sqrt{3}\right) = 1.402 + 1.232i,$$

$$z_{3} = z_{0} + v\varepsilon_{2} = 3 - 2i + (2 + 3i) \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$$

$$= 2 - 3\frac{\sqrt{3}}{2} + i\left(\sqrt{3} - 3\frac{1}{2}\right) = -0.598 - 1.768i,$$

$$z_{4} = z_{0} + v\varepsilon_{3} = 3 - 2i + (2 + 3i)(-1) = 1 - 5i,$$

$$z_{5} = z_{0} + v\varepsilon_{4} = 3 - 2i + (2 + 3i) \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)$$

$$= 2 + 3\frac{\sqrt{3}}{2} - i\left(\sqrt{3} + 3\frac{1}{2}\right) = 4.598 - 5.232i,$$

$$z_{6} = z_{0} + v\varepsilon_{5} = 3 - 2i + (2 + 3i) \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)$$

$$= 4 + 3\frac{\sqrt{3}}{2} - i\left(\frac{1}{2} + \sqrt{3}\right) = 6.598 - 2.232i.$$

4.5-7. Milyen a z_1 és z_2 komplex számoknak megfelelő vektorok egymáshoz viszonyított helyzete, ha $\text{Im}(z_1\overline{z_2})=0$.

Megoldás.

1. Megoldás. z_1 és z_2 algebrai alakját használjuk fel. Legyen

$$z_1 = a + bi, \qquad z_2 = c + di.$$

Ekkor

$$z_1\overline{z_2} = (a+bi)(c-di) = ac+bd+i(-ad+bc).$$

A feltétel szerint

$$\operatorname{Im}(z_1\overline{z_2}) = -ad + bc = 0,$$

amiből

$$ad = bc. (1)$$

Ez többféleképpen valósulhat meg.

- a. Lehet, hogy $z_1 = 0$, vagy $z_2 = 0$, esetleg mindkettő.
 - b. Tegyük fel most, hogy $z_1 \neq 0$ és $z_2 \neq 0$.
- b1. Ebben az esetben lehet, hogy (1) mindkét oldalán 0 áll. Ekkor a=0 és c=0 esetén z_1 és z_2 képzetes számok. d=0 és b=0 esetén z_1 és z_2 valós számok.

b
2. Ha (1) két oldalán nem áll 0, akkor oszthatunk b-vel és d-vel. Az $\frac{a}{b} = \frac{c}{d}$ össze-

függés azt jelenti, hogy a z_1 és z_2 komplex számoknak megfelelő vektorok párhuzamosak. A megoldás tehát az, hogy z_1 és z_2 legalább egyike nulla, illetve a z_1 és z_2 komplex számoknak megfelelő vektorok párhuzamosak, ami a b1. és b2. esetnek felel meg. Mivel a 0 komplex szám szöge tetszőleges, az a. eset is tekinthető úgy, mint a b. eset része.

2. Megoldás. Most z_1 és z_2 trigonometrikus alakjával dolgozunk. Legyen

$$z_1 = r_1(\cos \alpha + i \sin \alpha), \qquad z_2 = r_2(\cos \beta + i \sin \beta).$$

Ebből

$$\overline{z_2} = r_2(\cos \beta - i \sin \beta) = r_2(\cos(-\beta) + i \sin(-\beta)).$$

A Moivre-azonosság felhasználásával:

$$z_1\overline{z_2} = r_1r_2(\cos(\alpha - \beta) + i\sin(\alpha - \beta))$$

és így

$$\operatorname{Im}(z_1\overline{z_2}) = r_1 r_2 \sin(\alpha - \beta). \tag{2}$$

A (2) kifejezés akkor és csak akkor 0, ha legalább egyik tényezője 0.

a.
$$r_1 = 0$$
 vagy $r_2 = 0$, amiből következik, hogy $z_1 = 0$, vagy $z_2 = 0$.

b. A $\sin(\alpha - \beta) = 0$ egyenletből $\alpha - \beta = k\pi$ $(k \in \mathbb{Z})$. A megfelelő komplex számok argumentumait 0 és 2π közé eső alakban fejezzük ki: $\alpha - \beta = 0$ vagy $\alpha - \beta = \pi$. Ebből $\alpha = \beta$ vagy $\alpha = \beta + \pi$, tehát a z_1 és z_2 komplex számoknak megfelelő vektorok párhuzamosak.

4.5-8. A z = x + yi komplex szám kielégíti a következő egyenletet:

$$z\overline{z} - (3+i)z - (3-i)\overline{z} + k = 0,$$

ahol $k \in \mathbb{R}$. z-nek a Gauss számsíkon feleltessük meg a Z pontot.

- a. Mutassuk meg, hogy ha k < 10, akkor a Z pontok mértani helye egy kör. Adjuk meg ennek a körnek a középpontját és a sugarát, és indokoljuk meg, hogy miért van szükség a k < 10 feltételre.
- **b.** Legyen k=6. Mekkora az origóból a körhöz húzott érintő hossza? **Megoldás.**

$$z\overline{z} - (3+i)z - (3-i)\overline{z} + k = 0,$$

$$x^2 + y^2 - 3x - 3yi - xi + y - 3x + 3yi + xi + y + k = 0,$$

$$x^2 + y^2 - 6x + 2y + k = 0,$$

$$(x-3)^2 + (y+1)^2 = 10 - k.$$

- a. A kapott egyenlet valóban kör egyenlete. A kör középpontja (3, -1), sugara $\sqrt{10-k}$. Mivel a sugár pozitív, így k < 10 kell legyen.
- **b.** Most k=6, így a kör sugara r=2. Jelölje a keresett érintő szakasz hosszát t, az origóból a kör középpontjához húzott szakasz hosszát pedig a. Ekkor

$$a = \sqrt{3^2 + 1^2} = \sqrt{10}$$
 és $t^2 = a^2 - r^2$, amiből $t^2 = 10 - 4$, és így $t = \sqrt{6}$.

4.5-9. Tekintsük azoknak a z=x+yi pontoknak a halmazát a komplex számsíkon, amelyek kielégítik az $\arg(z-2)-\arg(z+2i)=\frac{\pi}{2}$ egyenletet. Legyen $\alpha=\arg(z-2)$ és $\beta=\arg(z+2i)$.

Lássuk be, hogy $\cos \alpha \cos \beta + \sin \alpha \sin \beta = 0$ és ebből az egyenletet $\cos \alpha \cos \beta$ -val osztva, majd az argumentumokat x és y segítségével kifejezve mutassuk meg, hogy a z pontok mértani helye az $(x-1)^2 + (y+1)^2 = 2$ egyenletű körön van rajta. **Megoldás.**

$$z=x+yi, \ \arg(z-2)-\arg(z+2i)=\frac{\pi}{2}, \ \alpha=\arg(z-2), \ \beta=\arg(z+2i).$$

Ebből $\alpha-\beta=\frac{\pi}{2},$ és így $\cos(\alpha-\beta)=0,$ tehát

$$\cos \alpha \cos \beta + \sin \alpha \sin \beta = 0.$$

Mivel $\cos \alpha \cos \beta \neq 0$, ezért $1 + \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta} = 0$, $1 + \tan \alpha \cdot \tan \beta = 0$. Másrészt $\tan \alpha = \frac{y}{x-2}$ és $\tan \beta = \frac{y+2}{x}$. Így

$$1 + \frac{y}{x-2} \cdot \frac{y+2}{x} = 0,$$

$$(x-3)x + y(y+2) = 0,$$

$$x^2 - 2x + y^2 + 2y = 0,$$

$$(x-1)^2 + (y+1)^2 = 2$$

a keresett kör egyenlete.

4.5-10. Legyen z_1 és z_2 két nem nulla komplex szám, melyekre

$$|z_1 + z_2| = |z_1 - z_2|.$$

A Gauss-számsíkban ábrázoljuk a z_1 , z_2 , z_1+z_2 és z_1-z_2 számokat vektorral. Ennek segítségével, vagy másként állapítsuk meg $\arg\left(\frac{z_1}{z_2}\right)$ lehetséges értékeit.

Megoldás. Ábrázoljuk először az origóból induló vektorokkal a z_1 és a z_2 számokat. Szerkesszük meg azt a paralelogrammát, amelynek ez a két vektor alkotja egy-egy oldalát. A paralelogramma egyik átlóját a $z_1 + z_2$, másikat a $z_1 - z_2$ számnak megfelelő vektor képezi. A feltétel miatt a paralelogramma átlói egyenlő hosszúságúak, tehát téglalapról van szó, melynek a szögei derékszögek. A z_1 és z_2 számoknak megfelelő vektorok

derékszöget zárnak be. Ezért
$$\arg\left(\frac{z_1}{z_2}\right) = \frac{\pi}{2}$$
, vagy $\arg\left(\frac{z_1}{z_2}\right) = -\frac{\pi}{2}$.

4.5-11.

a. A $z = \frac{1+i}{3-2i}$ komplex számot fejezzük ki algebrai alakban, majd adjuk meg az argumentumát radiánban 3 tizedesjegy pontossággal. Adjuk meg z^2 argumentumát (szintén 3 tizedesjegy pontossággal), és $|z^2|$ pontos értékét.

b. A Gauss-számsíkban jelölje az origót O, a z nem nulla komplex számot P, $\frac{1}{z}$ -t pedig Q. Lássuk be, hogy O, P, Q egy egyenesbe esnek. Az OP : OQ hányados értékét fejezzük ki |z| segítségével.

Megoldás.

a.

$$z = \frac{1+i}{3-2i} = \frac{(1+i)(3+2i)}{9+4} = \frac{1+5i}{13},$$

$$|z| = \frac{\sqrt{26}}{13} = \frac{\sqrt{2}}{\sqrt{13}},$$

$$z = \frac{\sqrt{26}}{13} \left(\frac{1}{\sqrt{26}} + 5\frac{1}{\sqrt{26}}i\right).$$

Legyen $\varphi = \arg(z)$. Ekkor

$$\cos \varphi = \frac{1}{\sqrt{26}} = 0.1961, \quad \sin \varphi = \frac{5}{\sqrt{26}} = 0.9806, \quad \varphi = 1.374,$$

$$|z^2| = \frac{2}{13}, \quad \arg(z^2) = 2 \cdot \arg(z) = 2.748.$$

b. $\arg\left(\frac{1}{z}\right) = -\arg(-z) = \arg(z)$ miatt a z és az $\frac{1}{z}$ komplex számok egymás valós

konstansszorosai, a megfelelő vektorok szintén, így az $O,\ P,\ Q$ pontok egy egyenesbe esnek.

$$\frac{1}{\overline{z}} = \frac{z}{|z|^2}.$$

Ebből

$$OP: OQ = |z|: \frac{|z|}{|z|^2} = |z^2|.$$

4.5-12. Legyen $z=1+\sqrt{2}i$. Fejezzük ki algebrai alakban a

$$p = z + \frac{1}{z}$$
 és a $q = z - \frac{1}{z}$

komplex számokat. A Gauss-számsíkon P és Q jelöljék a p illetve q számoknak megfelelő pontokat. O az origó, M legyen PQ felezőpontja, G pedig OM-nek az a pontja, amelyre

$$OG = \frac{2}{3} \cdot OM.$$

Lássuk be, hogy a PGQ szög derékszög. **Megoldás.**

$$z = 1 + \sqrt{2}i,$$

$$\frac{1}{z} = \frac{1}{1 + \sqrt{2}i} = \frac{1 - \sqrt{2}i}{1 + 2} = \frac{1}{3} - \frac{\sqrt{2}}{3}i,$$

$$p = z + \frac{1}{z} = \frac{4}{3} + \frac{2\sqrt{2}}{3}i,$$

$$q = z - \frac{1}{z} = \frac{2}{3} + 4\frac{\sqrt{2}}{3}i.$$

Az M pontnak megfelelő komplex szám $z_M=\frac{p+q}{2}=1+\sqrt{2}i$. Mivel $OG=\frac{2}{3}\cdot OM$, ezért a G pontnak megfelelő komplex szám

$$z_G = \frac{2}{3} \cdot z_M = \frac{2}{3} \left(1 + \sqrt{2}i \right) = \frac{2}{3} + \frac{2\sqrt{2}}{3}i.$$

A G és P pontokat összekötő szakasznak megfelelő komplex szám

$$z_{GP} = p - z_G = \frac{4}{3} + \frac{2\sqrt{2}}{3}i - \frac{2}{3} - \frac{2\sqrt{2}}{3}i = \frac{2}{3}.$$

A G és Q pontokat összekötő szakasznak megfelelő komplex szám pedig

$$z_{GQ} = q - z_G = \frac{2}{3} + \frac{4\sqrt{2}}{3}i - \frac{2}{3} - \frac{2\sqrt{2}}{3}i = \frac{2\sqrt{2}}{3}i.$$

 z_{GQ} a z_{Gp} -ből egy valós számmal ($\sqrt{2}$ -vel) és i-vel való szorzással származtatható, ezért a megfelelő szakaszok egymásra merőlegesek. (A $\sqrt{2}$ -vel való szorzásnak a feladat szempontjából nincs jelentősége.)

4.5-13. Tegyük fel, hogy $z_1 \neq z_2$. Bizonyítsuk be, hogy $\frac{z_1 + z_2}{z_1 - z_2}$ akkor és csak akkor képzetes, ha $|z_1| = |z_2|$. **Megoldás.**

a. Tegyük fel először, hogy $\frac{z_1+z_2}{z_1-z_2}$ képzetes, tehát $\frac{z_1+z_2}{z_1-z_2}=A\cdot i$, ahol A valós szám. Ebből

$$z_1 + z_2 = A \cdot i(z_1 - z_2),$$

$$z_2(1 + Ai) = -z_1(1 - Ai),$$

$$|z_2(1 + Ai)| = |-z_1(1 - Ai)|,$$

$$|z_2| \cdot |(1 + Ai)| = |z_1| \cdot |(1 - Ai)|.$$
(1)

De mivel 1-Ai és 1+Ai az 1 és Ai oldalú téglalap átlói, így egyenlő nagyságúak,

$$|1 - Ai| = |1 + Ai|$$
. $|1 - Ai| \neq 0$,

(1)-ből $|z_1| = |z_2|$.

b. 1. Megoldás. Most tegyük fel, hogy $|z_1|=|z_2|$, ekkor $z_2=z_1\varepsilon$, ahol $|\varepsilon|=1$. Ebből

$$\frac{z_1 + z_1 \varepsilon}{z_1 - z_1 \varepsilon} = \frac{z_1 (1 + \varepsilon)}{z_1 (1 - \varepsilon)} = \frac{1 + \varepsilon}{1 - \varepsilon}.$$

$$\frac{1+\varepsilon}{1-\varepsilon} = Ai$$

valamilyen A valós számmal. Ez utóbbi azért igaz, mert $1+\varepsilon$ és $1-\varepsilon$ egy olyan rombusz átlói, amelyiknek oldalai az 1 és ε , a rombusz átlói pedig merőlegesek egymásra.

b. 2. Megoldás. Legyen ε trigonometrikus alakja $\varepsilon = \cos \varphi + i \sin \varphi$. Ekkor $\overline{\varepsilon} = \cos \varphi - i \sin \varphi$. Az 1. Megoldásban kapott törtet alakítjuk:

$$\frac{1+\varepsilon}{1-\varepsilon} = \frac{(1+\varepsilon)\overline{(1-\varepsilon)}}{(1-\varepsilon)\overline{(1-\varepsilon)}} = \frac{(1+\varepsilon)(1-\overline{\varepsilon})}{(1-\varepsilon)(1-\overline{\varepsilon})} = \frac{\varepsilon-\overline{\varepsilon}}{2-\varepsilon-\overline{\varepsilon}}$$
$$= \frac{2i\sin\varphi}{2-2\cos\varphi} = i\frac{\sin\varphi}{1-\cos\varphi} = Ai,$$

ahol $A = \frac{\sin \varphi}{1 - \cos \varphi}$ valamilyen valós szám.

4.6. Szögfüggvények és a komplex számok

Az alábbi példákban n pozitív egész számot jelöl.

4.6-1. Adjuk meg az alábbi kifejezéseket $\cos x$ és $\sin x$ segítségével kifejezve:

- **a.** $\sin 6x$
- **b.** $\sin 7x$
- **c.** cos 83

Megoldás.

a. $\sin 6x = 6\cos^5 x \sin x - 20\cos^3 x \sin^3 x + 6\cos x \sin^5 x$.

b. $\sin 7x = 7\cos^6 x \sin x - 35\cos^4 x \sin^3 x + 21\cos^2 x \sin^5 x - \sin^7 x$.

c. $\cos 8x = \cos^8 x - 28\cos^6 x\sin^2 x + 70\cos^4 x\sin^4 x - 28\cos^2 x\sin^6 x + \sin^8 x$.

4.6-2. Legyen $\alpha = \frac{\pi}{11}$. Határozzuk meg az alábbi összeg értékét.

$$\cos \alpha + \cos 3\alpha + \cos 5\alpha + \cos 7\alpha + \cos 9\alpha$$

Megoldás. Legyen $z = \cos \alpha + i \sin \alpha$. Ekkor $z^5 = \cos 5\alpha + i \sin 5\alpha$. Tekintsük a következő mértani sorozatot:

$$z + z^3 + z^5 + z^7 + z^9 = z \cdot \frac{(z^2)^5 - 1}{z^2 - 1}$$

$$= z \cdot \frac{z^{10} - 1}{z^2 - 1}$$

$$= z \cdot \frac{z^5}{z} \cdot \frac{z^5 - \frac{1}{z^5}}{z - \frac{1}{z}}$$

$$= z^5 \cdot \frac{\sin 5\alpha}{\sin \alpha}$$

$$= (\cos 5\alpha + i \sin 5\alpha) \cdot \frac{\sin 5\alpha}{\sin \alpha}$$

Ennek valós részét keressük, így

$$\cos \alpha + \cos 3\alpha + \cos 5\alpha + \cos 7\alpha + \cos 9\alpha = \frac{\cos 5\alpha \cdot \sin 5\alpha}{\sin \alpha}$$

$$= \frac{1}{2} \cdot \frac{\sin 10\alpha}{\sin \alpha}$$

$$= \frac{1}{2} \cdot \frac{\sin \frac{10\pi}{11}}{\sin \frac{\pi}{11}}$$

$$= \frac{1}{2}.$$

4.6-3. Bizonyítsuk be, hogy

$$\sin^2 x + \sin^2 2x + \dots + \sin^2 nx = \frac{n}{2} - \frac{\cos((n+1)x) \cdot \sin nx}{2\sin x},$$

ahol x olyan valós szám, amelyre $\sin x \neq 0$.

Megoldás.

$$\cos 2x = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x,$$

amiből

$$\sin^2 x = \frac{1 - \cos 2x}{2}.$$

Jelölje A az igazolandó összefüggés bal oldalát.

$$A = \sin^2 x + \sin^2 2x + \dots + \sin^2 nx.$$

Számoljuk ki először a következő kifejezés értékét:

$$\cos 2x + \cos 4x + \dots + \cos 2nx$$
.

Legyen ezért $z = \cos x + i \sin x$, és vegyük a következő mértani sorozatot:

$$z^{2} + z^{4} + \dots + z^{2n} = z^{2} \cdot \frac{z^{2n} - 1}{z^{2} - 1}$$

$$= \frac{z^{2} \cdot z^{n}}{z} \cdot \frac{z^{n} - \frac{1}{z^{n}}}{z - \frac{1}{z}}$$

$$= z^{n+1} \cdot \frac{\sin nx}{\sin x}$$

$$= (\cos((n+1)x) + i\sin((n+1)x)) \cdot \frac{\sin nx}{\sin x}.$$

Ebből

$$A = \frac{n}{2} - \frac{\cos((n+1)x) \cdot \sin nx}{2\sin x}.$$

4.6-4. Bizonyítsuk be, hogy ha α olyan valós szám, amelyre $\sin\frac{\alpha}{2}\neq 0,$ akkor **a.**

$$\cos\varphi + \cos(\varphi + \alpha) + \cos(\varphi + 2\alpha) + \dots + \cos(\varphi + n\alpha) = \frac{\cos\left(\varphi + \frac{n\alpha}{2}\right) \cdot \sin\frac{(n+1)\alpha}{2}}{\sin\frac{\alpha}{2}}$$

b.

$$\sin \varphi + \sin(\varphi + \alpha) + \sin(\varphi + 2\alpha) + \dots + \sin(\varphi + n\alpha) = \frac{\sin(\varphi + \frac{n\alpha}{2}) \cdot \sin(\frac{(n+1)\alpha}{2})}{\sin\frac{\alpha}{2}}$$

Megoldás.

a. Legyen $z_1 = \cos \varphi + i \sin \varphi$, és $z = \cos \frac{\alpha}{2} + i \sin \frac{\alpha}{2}$. $z^2 \neq 0$ és $z^2 \neq 1$. Nézzük a következő z^2 kvóciensű mértani sorozatot:

$$z_1 + z_1 z^2 + z_1 z^4 + \dots + z_1 z^{2n} = z_1 \cdot \frac{z^{2(n+1)} - 1}{z^2 - 1}$$

$$= z_1 \cdot \frac{z^{n+1}}{z} \cdot \frac{z^{n+1} - \frac{1}{z^{n+1}}}{z - \frac{1}{z}}$$

$$= z_1 \cdot z^n \cdot \frac{\sin \frac{(n+1)\alpha}{2}}{\sin \frac{\alpha}{2}}$$

$$= \left(\cos \left(\varphi + \frac{n\alpha}{2}\right) + i\sin \left(\varphi + \frac{n\alpha}{2}\right)\right) \cdot \frac{\sin \frac{(n+1)}{2}\alpha}{\sin \frac{\alpha}{2}}.$$

Ebből a keresett összefüggés a kiindulási és a végső egyenletek valós részeinek azonosságából adódik:

$$\cos \varphi + \cos(\varphi + \alpha) + \cos(\varphi + 2\alpha) + \dots + \cos(\varphi + n\alpha) = \frac{\cos\left(\varphi + \frac{n\alpha}{2}\right) \cdot \sin\frac{(n+1)\alpha}{2}}{\sin\frac{\alpha}{2}}$$

b. Az előző átalakítást elvégezve, most a képzetes részek egyenlőségét használjuk fel, s így:

$$\sin \varphi + \sin(\varphi + \alpha) + \sin(\varphi + 2\alpha) + \dots + \sin(\varphi + n\alpha) = \frac{\sin(\varphi + \frac{n\alpha}{2}) \cdot \sin\frac{(n+1)\alpha}{2}}{\sin\frac{\alpha}{2}}.$$

4.6-5. Számítsuk ki a következő kifejezés értékét:

$$\cos \alpha + \binom{n}{1} \cos 2\alpha + \binom{n}{2} \cos 3\alpha + \dots + \binom{n}{n-1} \cos n\alpha + \cos(n+1)\alpha.$$

Megoldás. Legyen $z = \cos \alpha + i \sin \alpha$, és nézzük a következő kifejezést:

$$\binom{n}{0}z + \binom{n}{1}z^2 + \binom{n}{2}z^3 + \dots + \binom{n}{n-1}z^n + \binom{n}{n}z^{n+1} =$$

$$= z\left(\binom{n}{0} + \binom{n}{1}z + \binom{n}{2}z^2 + \dots + \binom{n}{n-1}z^{n-1} + \binom{n}{n}z^n\right) =$$

$$= z(1+z)^n.$$

Támaszkodtunk a binomiális tételre. Most végezzük el a következő átalakítást:

$$\begin{aligned} 1+z &= 1+\cos\alpha + i\sin\alpha \\ &= \cos^2\frac{\alpha}{2} + \sin^2\frac{\alpha}{2} + \cos^2\frac{\alpha}{2} - \sin^2\frac{\alpha}{2} + 2i\cos\frac{\alpha}{2}\sin\frac{\alpha}{2} \\ &= 2\cos\frac{\alpha}{2}\left(\cos\frac{\alpha}{2} + i\sin\frac{\alpha}{2}\right). \end{aligned}$$

Ezek segítségével

$$z(1+z)^n = z \cdot \left(2\cos\frac{\alpha}{2} \cdot \left(\cos\frac{\alpha}{2} + i\sin\frac{\alpha}{2}\right)\right)^n$$

$$= z \cdot 2^n \cos^n\frac{\alpha}{2} \cdot \left(\cos\frac{n\alpha}{2} + i\sin\frac{n\alpha}{2}\right)$$

$$= (\cos\alpha + i\sin\alpha)2^n \cdot \cos^n\frac{\alpha}{2} \cdot \left(\cos\frac{n\alpha}{2} + i\sin\frac{n\alpha}{2}\right)$$

$$= 2^n \left(\cos\frac{(n+2)\alpha}{2} + i\sin\frac{(n+2)\alpha}{2}\right) \cdot \cos^n\frac{\alpha}{2}.$$

Ennek a valós részét keressük, így

$$\cos \alpha + \binom{n}{1} \cos 2\alpha + \binom{n}{2} \cos 3\alpha + \dots + \binom{n}{n-1} \cos \alpha + \cos(n+1)\alpha =$$

$$= 2^n \cos \frac{(n+2)\alpha}{2} \cdot \cos^n \frac{\alpha}{2}.$$

4.6-6. Bizonyítsuk be, hogy

$$\cos\frac{2\pi}{2n+1} + \cos\frac{4\pi}{2n+1} + \cos\frac{6\pi}{2n+1} + \dots + \cos\frac{2n\pi}{2n+1} = -\frac{1}{2}.$$

Megoldás. Legyen $z=\cos\frac{\pi}{2n+1}+i\sin\frac{\pi}{2n+1}$. Nézzük a következő mértani sorozatot:

$$z^{2} + z^{4} + z^{6} + \dots + z^{2n} = z^{2} \cdot \frac{z^{2n} - 1}{z^{2} - 1}$$

$$= z^{2} \cdot \frac{z^{n}}{z} \cdot \frac{z^{n} - \frac{1}{z^{n}}}{z - \frac{1}{z}}$$

$$= z^{n+1} \cdot \frac{\sin \frac{n\pi}{2n+1}}{\sin \frac{\pi}{2n+1}}$$

$$= \left(\cos \frac{(n+1)\pi}{2n+1} + i \sin \frac{(n+1)\pi}{2n+1}\right) \cdot \frac{\sin \frac{n\pi}{2n+1}}{\sin \frac{\pi}{2n+1}}.$$

A keresett érték ennek valós része, jelölje A. Az átalakítás során felhasználjuk, hogy, mivel

$$\sin(\alpha+\beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta, \quad \text{\'es} \quad \sin(\alpha-\beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta,$$

ezért

$$\cos \alpha \sin \beta = \frac{\sin(\alpha + \beta) - \sin(\alpha - \beta)}{2}.$$

Ebből

$$A = \cos\frac{(n+1)\pi}{2n+1} \cdot \sin\frac{n\pi}{2n+1} \cdot \frac{1}{\sin\frac{\pi}{2n+1}} = \left(\sin\frac{2n+1}{2n+1}\pi - \sin\frac{\pi}{2n+1}\right) \cdot \frac{1}{2\sin\frac{\pi}{2n+1}} = -\frac{1}{2}.$$

4.6-7. Bizonyítsuk be, hogy ha n pozitív egész szám, és θ olyan valós szám, amelyre $\sin\frac{\theta}{2}=\frac{1}{2n},\,$ akkor

$$\cos\frac{\theta}{2} + \cos\frac{3\theta}{2} + \dots + \cos\frac{2n-1}{2}\theta = n \cdot \sin(n\theta).$$

Megoldás. Legyen $z = \cos \frac{\theta}{2} + i \sin \frac{\theta}{2}$, és tekintsük a következő mértani sorozatot:

$$z + z^3 + z^5 + \dots + z^{2n-1} = z \cdot \frac{z^{2n} - 1}{z^2 - 1}$$

$$= z \cdot \frac{z^n}{z} \cdot \frac{z^n - \frac{1}{z^n}}{z - \frac{1}{z}}$$

$$= z^n \cdot \frac{\sin \frac{n\theta}{2}}{\sin \frac{\theta}{2}}$$

$$= \left(\cos \frac{n\theta}{2} + i \sin \frac{n\theta}{2}\right) \cdot \sin \frac{n\theta}{2} \cdot (2n).$$

A valós részek egyenlősége miatt:

$$\cos\frac{\theta}{2} + \cos\frac{3\theta}{2} + \dots + \cos\frac{2n-1}{2}\theta = 2n \cdot \cos\frac{n\theta}{2} \cdot \sin\frac{n\theta}{2} = n \cdot \sin(n\theta).$$

4.7. Komplex együtthatós egyenletek

4.7-1. Mely komplex számok elégítik ki az alábbi egyenleteket?

a.
$$\overline{z} = z^4$$

b.
$$\overline{z}=z^8$$

Megoldás.

a. Szorozzuk be az egyenletet z-vel:

$$z\overline{z}=z^5$$
,

amiből

$$|z|^2 = z^5.$$

Legyen

$$z = r(\cos\varphi + i\sin\varphi).$$

Ezt behelyettesítve az egyenletbe

$$r^2 = r^5(\cos\varphi + i\sin\varphi)^5. \tag{1}$$

r=0 megoldás, így $z_0=0$. Ha $r\neq 0$, akkor (1)-et r^2 -tel osztva

$$1 = r^3(\cos\varphi + i\sin\varphi)^5.$$

Ebből r=1, így $1=(\cos\varphi+i\sin\varphi)^5$, amiből $\cos\varphi+i\sin\varphi$ ötödik egységgyök. A megoldások:

$$z_0 = 0$$
, $z_k = \cos\frac{k2\pi}{5} + i\sin\frac{k2\pi}{5}$, $1 \le k \le 5$.

b. Ha beszorozzuk az egyenletet z-vel, az a. példához hasonlóan belátható, hogy a megoldás 0 és a kilencedik egységgyökök.

4.7-2. Mely komplex számok egyeznek meg konjugáltjuk 5. hatványával? **Megoldás.** A $z=(\overline{z})^5$ egyenletet beszorozzuk z^5 -nel.

$$z^6 = (z\overline{z})^5 = (|z|^2)^5. (1)$$

Legyen $z = r(\cos \varphi + i \sin \varphi)$. Ezt (1)-be helyettesítjük.

$$r^6(\cos 6\varphi + i\sin 6\varphi) = r^{10}.$$

 $r=0,\;$ s így $z_0=0\;$ nyilván megoldás. Ha $r\neq 0,\;$ akkor $r^6\text{-nal}$ osztva

$$\cos 6\varphi + i\sin 6\varphi = r^4,$$

amiből r=1, s így

$$\cos 6\varphi + i\sin 6\varphi = 1,$$

$$(\cos \varphi + i \sin \varphi)^6 = 1.$$

Ennek az egyenletnek – s így az eredetinek is – megoldását adják a hatodik egységgyökök. A teljes megoldás:

$$z_0 = 0,$$
 $z_1 = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3},$ $z_2 = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3},$ $z_3 = \cos\pi + i\sin\pi,$ $z_4 = \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3},$ $z_5 = \cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3},$ $z_6 = 1.$

4.7-3. Tegyük fel, hogy z^{100} nem valós szám, de $z^{100}+\frac{1}{z^{100}}$ valós szám. Bizonyítsuk be, hogy ekkor $z+\frac{1}{z}$ is valós szám.

Megoldás. Legyen $z = r(\cos \varphi + i \sin \varphi)$. Ekkor

$$z^{100} = r^{100}(\cos 100\varphi + i\sin 100\varphi).$$

$$\begin{split} z^{100} + \frac{1}{z^{100}} &= r^{100} (\cos 100\varphi + i \sin 100\varphi) + \frac{1}{r^{100}} (\cos 100\varphi - i \sin 100\varphi) = \\ &= \cos 100\varphi \left(r^{100} + \frac{1}{r^{100}} \right) + i \sin 100\varphi \left(r^{100} - \frac{1}{r^{100}} \right). \end{split}$$

137

Mivel az előbbi kifejezés valós, ezért

$$r^{100} = \frac{1}{r^{100}}, \qquad r^{200} = 1, \qquad r = 1.$$

Tehát $z = \cos \varphi + i \sin \varphi$. Ebből

$$z + \frac{1}{z} = \cos \varphi + i \sin \varphi + \cos \varphi - i \sin \varphi = 2 \cos \varphi,$$

tehát $z + \frac{1}{z}$ valós szám.

4.7-4. Tudjuk, hogy $1 + z + z^2 = 0$. Mennyi $z^{65} + \frac{1}{z^{65}}$ értéke?

Megoldás. $1+z+z^2=0$, szorozzuk be z-vel és rendezzük.

$$z + z^2 + z^3 = 0$$
, $z^3 = -z - z^2 = 1$,

tehát z harmadik egységgyök.

$$z^{65} = z^{63+2} = (z^3)^{21} z^2 = z^2,$$

$$\frac{1}{z} = \overline{z} = z^2,$$

így

$$\frac{1}{z^{65}} = \frac{1}{z^2} = z^4 = z^3 \cdot z = z.$$

Ezt felhasználva

$$z^{65} + \frac{1}{z^{65}} = z^2 + z = -1.$$

4.7-5. Hány olyan komplex számpár van, ahol az elemek egymás köbgyökei?

Megoldás. Jelölje őket x és y. $x^3 = y$, valamint $y^3 = x$, ezekből $y^3 = x = x^9$. x = 0 és y = 0 megoldás. Ha $x \neq 0$, akkor $x^8 = 1$, tehát x nyolcadik egységgyök, párja pedig a köbe. A nyolcadik egységgyökök:

$$x_{1} = \cos \frac{2\pi}{8} + i \sin \frac{2\pi}{8} = \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2},$$

$$x_{2} = \cos \frac{4\pi}{8} + i \sin \frac{4\pi}{8} = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = i,$$

$$x_{3} = \cos \frac{6\pi}{8} + i \sin \frac{6\pi}{8} = \cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} = -\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2},$$

$$x_{4} = \cos \frac{8\pi}{8} + i \sin \frac{8\pi}{8} = \cos \pi + i \sin \pi = -1,$$

$$x_{5} = \cos \frac{10\pi}{8} + i \sin \frac{10\pi}{8} = \cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} = -\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2},$$

$$x_{6} = \cos \frac{12\pi}{8} + i \sin \frac{12\pi}{8} = \cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} = -i,$$

$$x_{7} = \cos \frac{14\pi}{8} + i \sin \frac{14\pi}{8} = \cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4} = \frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2},$$

$$x_{8} = \cos \frac{16\pi}{8} + i \sin \frac{16\pi}{8} = \cos 2\pi + i \sin 2\pi = 1.$$

A megfelelő komplex számpárok:

$$(x_1, x_3) = \left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right), \qquad (x_2, x_6) = (i, -i),$$

$$(x_5, x_7) = \left(-\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right), \qquad (x_4, x_4) = (-1, -1),$$

$$(x_8, x_8) = (1, 1), \qquad (0, 0).$$

4.7-6. Legyen $a=2(\cos 330^\circ-i\sin 330^\circ),\ b=-8\left(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\right),\ c=\sqrt{3}-i$ és $d=4(\cos 240^\circ+i\sin 240^\circ).$ Oldjuk meg az alábbi egyenletet a komplex számok halmazán és a végeredményt adjuk meg trigonometrikus alakban:

$$z^4a^2 + bc = d^3$$

Megoldás. A kiindulási egyenletből rendezéssel:

$$z^4 = \frac{d^3 - bc}{a^2}.$$

Először a tört értékét számítjuk ki.

$$d^{3} = 4^{3}(\cos 240^{\circ} + i \sin 240^{\circ})^{3}$$

$$= 4^{3}\left(\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}\right)^{3}$$

$$= 4^{3}(\cos 4\pi + i \sin 4\pi)$$

$$= 64,$$

$$b = -8\left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}\right),$$

$$c = \sqrt{3} - i$$

$$= 2\left(\frac{\sqrt{3}}{2} - i\frac{1}{2}\right)$$

$$= 2\left(\cos(-30^{\circ}) + i \sin(-30^{\circ})\right),$$

$$= 2\left(\cos \frac{11\pi}{6} + i \sin \frac{11\pi}{6}\right),$$

$$bc = -16\left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}\right)\left(\cos \frac{11\pi}{6} + i \sin \frac{11\pi}{6}\right)$$

$$= -16(\cos 2\pi + i \sin 2\pi)$$

$$= -16,$$

$$a^{2} = (2(\cos 330^{\circ} - i \sin 330^{\circ}))^{2}$$

$$= (2(\cos 30^{\circ} + i \sin 30^{\circ}))^{2}$$

$$= (2(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}))^{2}$$

$$= 4\left(\cos \frac{2\pi}{6} + i \sin \frac{2\pi}{6}\right)$$

$$= 4\left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}\right).$$

Ezeket felhasználva:

$$\frac{d^3 - bc}{a^2} = \frac{64 + 16}{4\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)} = 20\left(\cos\frac{-\pi}{3} + i\sin\frac{-\pi}{3}\right) = 20\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right).$$

Tehát

$$z^4 = 20\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right).$$

Végezzük el a gyökvonást.

$$z_k = \sqrt[4]{20} \left(\cos \left(\frac{5\pi}{12} + \frac{k2\pi}{4} \right) + i \sin \left(\frac{5\pi}{12} + \frac{k2\pi}{4} \right) \right) =$$

$$= \sqrt[4]{20} \left(\cos \frac{(6k+5)\pi}{12} + i \sin \frac{(6k+5)\pi}{12} \right), \quad k = 0, 1, 2, 3.$$

Ebből:

$$z_{0} = \sqrt[4]{20} \left(\cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \right), \qquad z_{1} = \sqrt[4]{20} \left(\cos \frac{11\pi}{12} + i \sin \frac{11\pi}{12} \right),$$

$$z_{2} = \sqrt[4]{20} \left(\cos \frac{17\pi}{12} + i \sin \frac{17\pi}{12} \right), \qquad z_{3} = \sqrt[4]{20} \left(\cos \frac{23\pi}{12} + i \sin \frac{23\pi}{12} \right).$$

4.7-7. Legyen $z_1 = 1 + 2i$. Adjuk meg azoknak a z_2 komplex számoknak a halmazát, amelyekre:

a.
$$|z_1 + z_2| = |z_1| + |z_2|$$
 b. $|z_1 + z_2| = |z_1| - |z_2|$ c. $|z_1 + z_2| = |z_2| - |z_1|$ Megoldás.

a. $|z_1 + z_2| = |z_1| + |z_2|$. Legyen $z_2 = x + yi$. Ekkor

$$\sqrt{(x+1)^2 + (y+2)^2} = \sqrt{x^2 + y^2} + \sqrt{1^2 + 2^2}$$

$$\sqrt{x^2 + 2x + 1 + y^2 + 4y + 4} = \sqrt{x^2 + y^2} + \sqrt{5}$$

Ebből négyzetre emeléssel ekvivalens egyenletet kapunk, mivel a gyökjelek alatti kifejezések értéke minden x, y valós szám esetén pozitív.

$$x^{2} + 2x + 1 + y^{2} + 4y + 4 = x^{2} + y^{2} + 5 + 2\sqrt{5(x^{2} + y^{2})}$$
.

Rendezve az egyenletet:

$$x + 2y = \sqrt{5(x^2 + y^2)}. (1)$$

Az egyenletet csak olyan x, y valós számpárok elégíthetnek ki, amelyekre

$$x + 2y \ge 0. (2)$$

Emeljük (1)-et négyzetre:

$$x^2 + 4y^2 + 4xy = 5(x^2 + y^2).$$

Ebből

$$4x^2 + y^2 - 4xy = 0.$$

Hay=0,akkor x=0,ami megoldása az eredeti egyenletnek is. Ha $y\neq 0,$ akkor

$$4\frac{x^2}{u^2} - 4\frac{x}{u} + 1 = 0.$$

Ezt az egyenletet $\frac{x}{y}$ -ra megoldva:

$$\frac{x}{y} = \frac{4 \pm \sqrt{16 - 16}}{8} = \frac{1}{2},$$

vagyis y = 2x. Ezt összevetjük a (2) egyenlettel:

$$x + 2y \ge 0$$
, vagyis $5x \ge 0$, $x \ge 0$.

A keresett komplex számok tehát

$$z_2 = x + 2xi$$
 alakúak, ha $x \ge 0$,

vagy másként megfogalmazva

$$z_2 = x \cdot z_1$$
, ha $x \ge 0$,

ami geometriai szemléletünkkel is összhangban van.

b. $|z_1+z_2|=|z_1|-|z_2|$. Legyen $z_2=x+yi$. Az egyenlet bal oldala nem negatív, így a jobb oldal sem lehet negatív, s így $|z_2| \le |z_1| = \sqrt{5}$, amiből $x^2+y^2 \le 5$. Másrészt

$$\sqrt{(x+1)^2 + (y+2)^2} = \sqrt{5} - \sqrt{x^2 + y^2}$$

$$\sqrt{x^2 + 2x + 1 + y^2 + 4y + 4} = \sqrt{5} - \sqrt{x^2 + y^2}.$$

Ebből négyzetre emeléssel a következőt kapjuk.

$$x^{2} + 2x + 1 + y^{2} + 4y + 4 = x^{2} + y^{2} + 5 - 2\sqrt{5(x^{2} + y^{2})}$$

amiből

$$x + 2y = -\sqrt{5(x^2 + y^2)}. (3)$$

Az egyenletet csak azok az x, y valós számpárok elégítik ki, amelyekre

$$x + 2y < 0. (4)$$

Emeljük (3)-at négyzetre:

$$x^2 + 4y^2 + 4xy = 5(x^2 + y^2).$$

Ebből

$$4x^2 + y^2 - 4xy = 0.$$

Ha $y=0,\;$ akkor $x=0,\;$ ami megoldása az eredeti egyenletnek is. Ha $y\neq 0,\;$ akkor

$$4\frac{x^2}{y^2} - 4\frac{x}{y} + 1 = 0.$$

Ezt az egyenletet $\frac{x}{y}$ -ra megoldva:

$$\frac{x}{y} = \frac{4 \pm \sqrt{16 - 16}}{8} = \frac{1}{2},$$

vagyis y = 2x. Ezt összevetve a (4) egyenlettel:

$$x + 2y \le 0$$
, vagyis $5x \le 0$, $x \le 0$.

Tudjuk még, hogy $x^2+y^2\leq 5$, ebből $x^2\leq 1$. A keresett komplex számok tehát $z_2=x+2xi\quad \text{alakúak, ha}\quad -1\leq x\leq 0,$

vagy másként megfogalmazva

$$z_2 = x \cdot z_1$$
, ahol $-1 \le x \le 0$.

c. $|z_1+z_2|=|z_2|-|z_1|$. Legyen $z_2=x+yi$. Az egyenlet bal oldala nem negatív, így a jobb oldal sem lehet negatív, s így $|z_2|\geq |z_1|=\sqrt{5}$, amiből $x^2+y^2\geq 5$. Másrészt

$$\sqrt{(x+1)^2 + (y+2)^2} = \sqrt{x^2 + y^2} - \sqrt{5}$$

$$\sqrt{x^2 + 2x + 1 + y^2 + 4y + 4} = \sqrt{x^2 + y^2} - \sqrt{5}$$

Négyzetre emelünk:

$$x^{2} + 2x + 1 + y^{2} + 4y + 4 = x^{2} + y^{2} + 5 - 2\sqrt{5(x^{2} + y^{2})},$$

ebből

$$x + 2y = -\sqrt{5(x^2 + y^2)}. (5)$$

Az egyenletet csak azok az x, y valós számpárok elégítik ki, amelyekre

$$x + 2y \le 0. (6)$$

Emeljük (5)-öt négyzetre:

$$x^2 + 4y^2 + 4xy = 5(x^2 + y^2).$$

Ebből

$$4x^2 + y^2 - 4xy = 0.$$

Ha $y=0,\;$ akkor $x=0,\;$ ami megoldása az eredeti egyenletnek is. Ha $y\neq 0,\;$ akkor

$$4\frac{x^2}{y^2} - 4\frac{x}{y} + 1 = 0.$$

 $\frac{x}{y}$ -ra megoldjuk az egyenletet:

$$\frac{x}{y} = \frac{4 \pm \sqrt{16 - 16}}{8} = \frac{1}{2},$$

vagyis y = 2x. Ezt összevetve a (6) egyenlettel:

$$x + 2y \le 0$$
, vagyis $5x \le 0$, $x \le 0$.

Tudjuk még, hogy $x^2+y^2\geq 5$, ebből $x^2\geq 1$. A keresett komplex számok tehát

$$z_2 = x + 2xi$$
 alakúak, ha $x \le -1$,

más szóval

$$z_2 = x \cdot z_1$$
, ahol $x \leq -1$.

4.8. Gyökök és együtthatók

4.8-1. Keressük meg a megfelelő valós p és q értékeket, ha az $x^2 + px + q = 0$ egyenlet egyik gyöke:

a.
$$2 + i$$

b.
$$-1+3i$$
 c. $4i$ **d.** $3-5i$

d.
$$3-5a$$

Megoldás.

a. 1. Megoldás. z₁ értékét behelyettesítve az adott egyenletbe megkapjuk a megoldást.

$$x^{2} + px + q = 0,$$

$$(2+i)^{2} + p(2+i) + q = 0,$$

$$4 - 1 + 4i + 2p + pi + q = 0.$$

Amiből 3 + 2p + q = 0 és 4 + p = 0. Így p = -4 és q = 5.

2. Megoldás.

Legyen az adott gyök z_1 . Az adott egyenlet valós együtthatós, így a másik gyök

$$z_2 = \overline{z_1} = 2 - i.$$

Másrészt a gyökök és együtthatók közötti összefüggések miatt:

$$z_1 + z_2 = -p,$$
 $z_1 \cdot z_2 = q.$

Ebből p = -4, q = 5.

b.
$$z_2 = \overline{z_1} = -1 + 3i$$
, $z_1 + z_2 = -p$, $z_1 \cdot z_2 = q$, $p = 2$, $q = 10$.

c.
$$z_2 = \overline{z_1} = -4i$$
, $z_1 + z_2 = -p$, $z_1 \cdot z_2 = q$, $p = 0$, $q = 16$.
c. $z_2 = \overline{z_1} = 3 - 5i$, $z_1 + z_2 = -p$, $z_1 \cdot z_2 = q$, $p = -6$, $q = 34$.

c.
$$z_2 = \overline{z_1} = 3 - 5i$$
, $z_1 + z_2 = -p$, $z_1 \cdot z_2 = q$, $p = -6$, $q = 34$.

4.8-2. Tudjuk, hogy a $z^3 - 3z^2 - 8z + 30 = 0$ egyenlet egyik gyöke $z_1 = 3 + i$. Adjuk meg a többi gyököt.

Megoldás. Valós együtthatós egyenletről van szó, s így a másik gyök $z_2 = \overline{z_1} = 3 - i$. Legyen a harmadik gyök z_3 . A gyökök és együtthatók közötti összefüggésre támaszkodva:

$$z_1 + z_2 + z_3 = 3,$$
 $3 + i + 3 - i + z_3 = 3,$

amiből $z_3 = -3$.

4.8-3. Tudjuk, hogy a $4z^3 - 3z^2 + 16z - 12 = 0$ egyenlet egyik gyöke $z_1 = 2i$. Keressük meg a másik két gyököt.

Megoldás. Valós együtthatós egyenletről van szó, s így a másik gyök $z_2 = \overline{z_1} = -2i$. Legyen a harmadik gyök z₃. A gyökök és együtthatók közötti összefüggés alapján:

$$z_1 + z_2 + z_3 = \frac{3}{4}$$
, amiből $z_3 = \frac{3}{4}$.

4.8-4. Számítsuk ki a $z^3 - i = 0$ egyenlet gyökeinek a szorzatát.

Megoldás.

1. Megoldás. A kiindulási egyenletet rendezve adódik, hogy $z_3 = i$, s így i-ből kell harmadik gyököt vonnunk.

$$i = \cos 90^{\circ} + i \sin 90^{\circ} = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$$

felhasználásával a gyökök:

$$z_k = \cos\left(\frac{\pi}{6} + \frac{k2\pi}{3}\right) + i\sin\left(\frac{\pi}{6} + \frac{k2\pi}{3}\right) = \cos\frac{(1+4k)\pi}{6} + i\sin\frac{(1+4k)\pi}{6}, \quad k = 0, 1, 2.$$

A három gyök szorzata:

$$z_0 \cdot z_1 \cdot z_2 = \cos \frac{15\pi}{6} + i \sin \frac{15\pi}{6} = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = i.$$

2.Megoldás. Most a gyökök és együtthatók közötti összefüggésre támaszkodunk. A legalább elsőfokú komplex együtthatós polinomok mindegyike felbontható elsőfokú tényezők szorzatára. Legyenek a gyökök z_0, z_1, z_2 . Ekkor

$$z^{3} - i = (z - z_{0})(z - z_{1})(z - z_{2}) = z^{3} - z^{2}(z_{0} + z_{1} + z_{2}) + z(z_{0}z_{1} + z_{0}z_{2} + z_{1}z_{2}) - z_{0}z_{1}z_{2}.$$

Ebből a gyökök szorzata:

$$z_0 z_1 z_2 = i$$
.

Megjegyzés. Az előbbi egyenletből azt is megkapjuk, hogy

$$z_0 + z_1 + z_2 = 0$$
 és $z_0 z_1 + z_0 z_2 + z_1 z_2 = 0$.

4.8-5. Tudjuk, hogy a $2z^3 - 3z^2 + 2z + 2 = 0$ egyenlet egyik gyöke $z_1 = 1 + i$. Oldjuk meg az egyenletet.

Megoldás. Valós együtthatós egyenletről van szó, s így a másik gyök $z_2 = \overline{z_1} = 1 - i$. Legyen a harmadik gyök z_3 . A gyökök és együtthatók közötti összefüggésre támaszkodva:

$$z_1 + z_2 + z_3 = \frac{3}{2}$$
, $1 + i + 1 - i + z_3 = \frac{3}{2}$,

amiből
$$z_3 = -\frac{1}{2}$$
.

4.8-6. Tudjuk, hogy a $z^4 - 4z^3 + 12z^2 + 4z - 13 = 0$ egyenlet egyik gyöke $z_1 = 2 + 3i$. Számítsuk ki a többi három gyök értékét.

Megoldás. Mivel az egyenlet valós együtthatós, ezért $z_2 = \overline{z_1} = 2 - 3i$. Legyen a másik két gyök z_3 és z_4 . A gyökök és együtthatók közötti összefüggések alapján:

$$z_1 + z_2 + z_3 + z_4 = 4$$
 és $z_1 z_2 z_3 z_4 = -13$.

 z_1 és z_2 értékét behelyettesítve: $z_3 + z_4 = 0$ és $z_3 z_4 = -1$.

Az első egyenletből $z_3 = -z_4$, a másodikból pedig látszik, hogy z_3 és z_4 nem egymás konjugáltjai, következésképpen valós számok. Legyen $z_3 = a$ és $z_4 = c$. Ekkor c = -a és ac = -1. Ebből adódik, hogy az egyik gyök 1, a másik -1.

Az egyenlet gyökei tehát: 1, -1, 2+3i, 2-3i.

4.8-7. Adjuk meg a $z^3 + 6z = 20$ egyenlet megoldásait algebrai alakban. (Felhasználhatjuk, hogy az egyenlet egyik gyöke $z_1 = 2$.)

Megoldás. Az egyenlet egyik gyöke $z_1 = 2$. A másik két gyök legyen z_2 és z_3 . A gyökök és együtthatók közötti összefüggések szerint:

$$z_1 + z_2 + z_3 = 0$$
 és $z_1 z_2 z_3 = 20$.

Ebből, felhasználva, hogy $z_1 = 2$,

$$z_2 + z_3 = -2$$
, $z_2 z_3 = 10$, $z_3 = -z_2 - 2$, $z_2 (-z_2 - 2) = 10$, $(z_2)^2 + 2z_2 + 10 = 0$,

$$z_2 = \frac{-2 \pm \sqrt{4 - 40}}{2} = -1 \pm 3i$$

Az egyenlet gyökei: 2, 1+3i, 1-3i.

4.8-8. A $z^2 + pz + q = 0$ egyenlet gyökei 1+i és 4+3i. Adjuk meg a $p,\ q$ komplex számok értékét.

Megoldás. A gyökök és együtthatók közötti összefüggést használjuk fel.

$$(1+i) + (4+3i) = -p$$
 és $(1+i)(4+3i) = q$.

Ebből p = -5 - 4i, q = 1 + 7i.

4.8-9.1, ω,ω^2 jelölik a harmadik egységgyököket. Keressük meg azt az egyenletet, amelynek gyökei

$$\frac{1}{3}$$
, $\frac{1}{2+\omega}$ és $\frac{1}{2+\omega^2}$.

Megoldás. A keresett egyenlet legyen $ax^3 + bx^2 + cx + d = 0$. Legyen a = 1. Ebből

$$-d = \frac{1}{3} \cdot \frac{1}{2+\omega} \cdot \frac{1}{2+\omega^2} = \frac{1}{3} \cdot \frac{1}{4+2\omega+2\omega^2+\omega^3} = \frac{1}{3} \cdot \frac{1}{5+2\omega+2\omega^2} = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9}.$$

(Közben támaszkodtunk arra, hogy $1 + \omega + \omega^2 = 0$.)

$$-b = \frac{1}{3} + \frac{1}{2+\omega} + \frac{1}{2+\omega^2} = \frac{(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega)(2+\omega^2) + 6 + 3\omega^2 + 6 + 3\omega}{9} = \frac{(2+\omega)(2+\omega)(2+\omega)(2+\omega^2) + 6 + 2\omega}{9} = \frac{(2+\omega)(2+\omega)(2+\omega^2)(2+\omega^2)}{9} = \frac{(2+\omega)(2+\omega)(2+\omega^2)}{9} = \frac{(2+\omega)(2+\omega^2)}{9} = \frac{(2+\omega)(2+\omega)(2+$$

$$\frac{3+6+3\omega^2+6+3\omega}{9} = \frac{15+3\omega^2+3\omega}{9} = \frac{12}{9} = \frac{4}{3}.$$

A közös nevezőre hozás közben keletkezett nevező értéke 9, valamint

$$(2+\omega)(2+\omega^2) = 3,$$

ami a $\,-d\,$ számítása közben keletkezett részleteredmény.

$$c = \frac{1}{3} \cdot \frac{1}{2+\omega} + \frac{1}{3} \cdot \frac{1}{2+\omega^2} + \frac{1}{2+\omega} \cdot \frac{1}{2+\omega^2} = \frac{2+\omega^2+2+\omega+3}{9} = \frac{6}{9} = \frac{2}{3}.$$

Az egyenlet

$$x^3 - \frac{4}{3}x^2 + \frac{2}{3}x - \frac{1}{9} = 0,$$

illetve

$$9x^3 - 12x^2 + 6x - 1 = 0.$$

5. Ajánlott irodalom

Bagyinszkiné Orosz Anna – Csörgő Piroska – Gyapjas Ferenc:

Példatár a bevezető fejezetek a matematikába c. tárgyhoz

Tankönyvkiadó, Budapest, 1983.

Fried Ervin: Algebra a speciális matematikai osztályok számára

Tankönyvkiadó, Budapest, 1985.

Fried Ervin: Klasszikus és lineáris algebra

Egyetemi tankönyv. Tankönyvkiadó, Budapest, 1991.

Fuchs László: Bevezetés az algebrába és a számelméletbe I.

Egyetemi jegyzet. Tankönyvkiadó, Budapest, 1964. (J3 - 383)

Gyapjas Ferenc: Matematika példatár

Egyetemi jegyzet ELTE TTK, 1964

Hajnal Imre, dr. Nemetz Tibor, dr. Pintér Lajos: Matematika, Gimnázium III. osztály (fakultatív B változat)

Tankönyvkiadó, Budapest, 1982 (13331/B)

Láng Csabáné: Bevezető fejezetek a matematikába I.

ELTE Budapest, 1997.

Matematika a matematikai osztályok számára II. kötet V. fejezet

Tankönyvkiadó, Budapest, 1975. 10220/K

 $\label{eq:matter} \text{Martin \'es Patricia Perkins: } \textit{Advanced mathematics: A Pure Course Unwin Hyman Ltd.}$

London, 1987

Reiman István: Matematika

Műszaki Könyvkiadó, Budapest, 1992

Szendrei Ágnes: Diszkrét matematika. Logika, algebra, kombinatorika

Szeged, Polygon, 1997