1

Assignment 18

Jayati Dutta

Abstract

This is a simple document explaining about the properties of linear operator T on the vector space V especially the characteristic values and characteristic vectors.

Download all and latex-tikz codes from

svn co https://github.com/gadepall/school/trunk/ncert/geometry/figs

1 Problem

Let **V** be the space of $n \times n$ matrices over F. Let **A** be a fixed $n \times n$ matrix over F. Let **T** be the linear operator 'left multiplication by **A**' on **V**. Is it true that **A** and **T** have the same characteristic values?

2 Solution

Given	V is the space of $n \times n$ matrices over F
	A is a fixed $n \times n$ matrix over F
	T be the linear operator on V such that $T(B) = AB$
To prove	A and T have the same characteristic values
Theorem	Let λ be a characteristic value of \mathbf{T} and $\lambda \in F$ and \mathbf{v} is the corresponding characteristic vector, then if \mathbf{T} is a linear operator on a finite dimensional space \mathbf{V} , it must be $\det(T - \lambda I) = 0$ and for $(\mathbf{T} - \lambda \mathbf{I})\mathbf{v} = 0$, $\mathbf{v} \neq 0$
Proof	As per the problem statement, $\mathbf{T}\mathbf{v} = \lambda\mathbf{v}$ or, $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$, as $\mathbf{T}\mathbf{v} = \mathbf{A}\mathbf{v}$ or, $(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = 0$ From here 2 cases can be arrived.
Case 1:	$\det ((\mathbf{A} - \lambda \mathbf{I})) = 0, \text{ where } \mathbf{v} \neq 0$ $\implies \lambda \text{ is characteristic value of } \mathbf{A}.$
Case 2:	$\det ((\mathbf{A} - \lambda \mathbf{I})) \neq 0$ $\implies (\mathbf{A} - \lambda \mathbf{I}) \text{ is invertible and } \mathbf{v} = 0$

	so, for $(\mathbf{T} - \lambda \mathbf{I})\mathbf{v} = 0$ and
	$(\mathbf{T} - \lambda \mathbf{I}) \neq 0$
	\implies v is not a charcteristic vector of T
	which is a contradiction. So, case 2 is not possible.
Conclusion	So, from the above 2 cases and from the theorem,
	it can be concluded that A and T have the same
	characteristic values

TABLE 0: Solution summary