Answer for Homework 3

P426, 10:

 $G = \mathbb{Z}_4 = \{[0], [1], [2], [3]\}$ and obviously H is a nonempty subset of G.

$$[0]H = \{[0], [2]\},\$$

$$[1]H = \{[1], [3]\},\$$

$$[2]H = \{[2], [0]\},$$
and

$$[3]H = \{[3], [1]\}.$$

P431, 6:

First prove that $\langle S, + \rangle$ is an **Abelian** by showing the **closure**, *association*, **identity** (0), **inverse** ($-a-b\sqrt{5}$) and *commutation*.

Then, show that $\langle S-\{0\}\rangle$, *> is a *commutative* monoid with closure, association and identity (1) and *commutation*.

Finally, * is distributive on + and therefore < S, +, * is a *commutative* ring with identity (1).

1.

(1) $\{p_1, p_4, p_5\}$, $\{p_2, p_3, p_6\}$, $\{p_3, p_6, p_2\}$, $\{p_4, p_5, p_1\}$, $\{p_5, p_1, p_4\}$, $\{p_6, p_2, p_3\}$.

 $(2) \{p_1\}, \{p_2\}, \{p_3\}, \{p_4\}, \{p_5\}, \{p_6\}.$

2.

- (1) It is a ring but not a field since there is no identity in <A- $\{0\}$, >.
- (2) It is not a **ring** since + in not **closed** on **A**.
- (3) It is a field. Obviously <A, +> is an Abelian, and to show that <A-
- $\{0\}$, > is an Abelian, the following properties need to be proved.

Since **A** is a subset of \mathbb{R} , the *commutative law* and *associative law* are satisfied on the normal multiplication.

For any $x=a+b\sqrt{5}$ and $y=c+d\sqrt{5}$ in **A-**{0}, $x \cdot y = (a+b\sqrt{5}) \cdot (c+d\sqrt{5}) = (ac+5bd) + (ad+bc)\sqrt{5}$.

Since 1 is in \mathbf{A} -{0} and for any x in \mathbf{A} -{0}, $x \cdot 1 = 1 \cdot x = x$, 1 is the **identity** of \mathbf{A} -{0}.

Since for any $x=a+b\sqrt{5}$ in **A-{0}**, $x \cdot \frac{1}{a+b\sqrt{5}} = \frac{a-b\sqrt{5}}{a^2-5b^2} \cdot x = 1 = x \cdot \frac{a-b\sqrt{5}}{a^2-5b^2}$, the **inverse** of x is $\frac{a}{a^2-5b^2} + \frac{b}{5b^2-a^2}\sqrt{5}$.

In conclusion, $\langle A, +, \cdot \rangle$ is a **field**.

3.

$$(a+b)^2 = (a+b)*(a+b) = (a+b)*a + (a+b)*b = a*a + b*a + a*b + b*b = a^2 + a*b + b*a + b^2.$$

4.

- (1) (a+a) = (a+a)*(a+a) = (a+a)*a + (a+a)*a = a*a + a*a + a*a + a*a + a*a = a*a + a*a + a*a + a*a = a*a + a*a + a*a + a*a + a*a = a*a + a*a + a*a + a*a + a*a = a*a + a*a +
- a + a + a + a. Add $(a^{-1} + a^{-1})$ to both sides and the result will be a + a = e.
- (2) For any a and b in G, (a+b) = (a+b)*(a+b) = a + a*b + b*a + b.

Therefore, a*b = b*a and <A, +, *> is a *commutative* ring.