ANALYSIS-I

Chaitanya G K

Indian Statistical Institute, Bangalore

We know that finite sums $\sum_{k=1}^{n} a_k = a_1 + a_2 + \cdots + a_n$ of real numbers are well-defined due to the associativity of addition.

- We know that finite sums $\sum_{k=1}^{n} a_k = a_1 + a_2 + \cdots + a_n$ of real numbers are well-defined due to the associativity of addition.
- Now, it is natural to ask: What is the meaning of $\sum_{n=1}^{\infty} a_n$ when $\{a_n\}_{n\in\mathbb{N}}$ is a real sequence?

- We know that finite sums $\sum_{k=1}^{n} a_k = a_1 + a_2 + \cdots + a_n$ of real numbers are well-defined due to the associativity of addition.
- Now, it is natural to ask: What is the meaning of $\sum_{n=1}^{\infty} a_n$ when $\{a_n\}_{n\in\mathbb{N}}$ is a real sequence?
- ▶ For example, consider $\sum_{n=1}^{\infty} a_n$ with $a_n = (-1)^{n+1}, \forall n \in \mathbb{N}$,

i.e., consider the sum $1-1+1-1+\cdots$.

- We know that finite sums $\sum_{k=1}^{n} a_k = a_1 + a_2 + \cdots + a_n$ of real numbers are well-defined due to the associativity of addition.
- Now, it is natural to ask: What is the meaning of $\sum_{n=1}^{\infty} a_n$ when $\{a_n\}_{n\in\mathbb{N}}$ is a real sequence?
- ▶ For example, consider $\sum_{n=1}^{\infty} a_n$ with $a_n = (-1)^{n+1}, \forall n \in \mathbb{N}$,

i.e., consider the sum
$$1-1+1-1+\cdots$$
 .

$$1-1+1-1+\cdots = (1-1)+(1-1)+\cdots$$

= $0+0+\cdots = 0$
 $1-1+1-1+\cdots = 1+(-1+1)+(-1+1)+\cdots$
= $1+0+0+\cdots = 1$

- We know that finite sums $\sum_{k=1}^{n} a_k = a_1 + a_2 + \cdots + a_n$ of real numbers are well-defined due to the associativity of addition.
- Now, it is natural to ask: What is the meaning of $\sum_{n=1}^{\infty} a_n$ when $\{a_n\}_{n\in\mathbb{N}}$ is a real sequence?
- ▶ For example, consider $\sum_{n=1}^{\infty} a_n$ with $a_n = (-1)^{n+1}, \forall n \in \mathbb{N}$,

i.e., consider the sum
$$1-1+1-1+\cdots$$
.

$$1-1+1-1+\cdots = (1-1)+(1-1)+\cdots$$

$$= 0+0+\cdots = 0$$

$$1-1+1-1+\cdots = 1+(-1+1)+(-1+1)+\cdots$$

$$= 1+0+0+\cdots = 1$$

This absurdity shows that we should give a 'sensible meaning' to $\sum_{n=1}^{\infty} a_n$.

▶ Definition 1: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers.

An expression of the form $\sum_{n=1}^{\infty} a_n$ is called an infinite series.

▶ Definition 1: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers.

An expression of the form $\sum_{n=1}^{\infty} a_n$ is called an infinite series.

For each $n \in \mathbb{N}$, the finite sum $s_n = \sum_{k=1}^n a_k$ is called the n^{th} partial sum of $\sum_{n=1}^{\infty} a_n$.

▶ Definition 1: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers.

An expression of the form $\sum_{n=1}^{\infty} a_n$ is called an infinite series.

For each $n \in \mathbb{N}$, the finite sum $s_n = \sum_{k=1}^n a_k$ is called the n^{th} partial sum of $\sum_{n=1}^{\infty} a_n$.

The infinite series $\sum_{n=1}^{\infty} a_n$ is said to be convergent if $\{s_n\}_{n\in\mathbb{N}}$ is convergent.

In such a case, the limit $s:=\lim_{n\to\infty}s_n$ is called the sum of the series, and we denote this fact by the symbol $\sum_{n=1}^{\infty}a_n=s$.

▶ Definition 1: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers.

An expression of the form $\sum_{n=1}^{\infty} a_n$ is called an infinite series.

For each $n \in \mathbb{N}$, the finite sum $s_n = \sum_{k=1}^n a_k$ is called the n^{th} partial sum of $\sum_{n=1}^{\infty} a_n$.

The infinite series $\sum_{n=1}^{\infty} a_n$ is said to be convergent if $\{s_n\}_{n\in\mathbb{N}}$ is convergent.

In such a case, the limit $s:=\lim_{n\to\infty}s_n$ is called the sum of the series, and we denote this fact by the symbol $\sum_{n=1}^{\infty}a_n=s$.

The infinite series $\sum_{n=1}^{\infty} a_n$ is said to be divergent if $\{s_n\}_{n\in\mathbb{N}}$ is divergent.

► Example 1. Consider the infinite series $\sum_{n=1}^{\infty} a_n$, where $a_n = c, \forall n \in \mathbb{N}$.

► Example 1. Consider the infinite series $\sum_{n=1}^{\infty} a_n$, where $a_n = c, \forall n \in \mathbb{N}$.

Then $\sum_{n=1}^{\infty} a_n$ is convergent $\iff c = 0$.

► Example 1. Consider the infinite series $\sum_{n=1}^{\infty} a_n$, where $a_n = c, \forall n \in \mathbb{N}$.

Then
$$\sum_{n=1}^{\infty} a_n$$
 is convergent $\iff c = 0$.
(In fact, $\{s_n\}_{n \in \mathbb{N}} = \{nc\}_{n \in \mathbb{N}}$ is convergent $\iff c = 0$)

► Example 1. Consider the infinite series $\sum_{n=1}^{\infty} a_n$, where $a_n = c, \forall n \in \mathbb{N}$.

Then $\sum_{n=1}^{\infty} a_n$ is convergent $\iff c=0$. (In fact, $\{s_n\}_{n\in\mathbb{N}}=\{nc\}_{n\in\mathbb{N}}$ is convergent $\iff c=0$)

Example 2 (Geometric series).

$$1 + r + r^2 + \dots = \frac{1}{1 - r}$$
 for $|r| < 1$.

► Example 1. Consider the infinite series $\sum_{n=1}^{\infty} a_n$, where $a_n = c, \forall n \in \mathbb{N}$.

Then $\sum_{n=1}^{\infty} a_n$ is convergent $\iff c=0$. (In fact, $\{s_n\}_{n\in\mathbb{N}}=\{nc\}_{n\in\mathbb{N}}$ is convergent $\iff c=0$)

Example 2 (Geometric series).

$$1 + r + r^2 + \dots = \frac{1}{1 - r}$$
 for $|r| < 1$.

(In fact,
$$s_n=1+r+r^2+\cdots+r^{n-1}=\frac{1-r^n}{1-r} o \frac{1}{1-r}$$
 for $|r|<1$)

Example 1. Consider the infinite series $\sum_{n=1}^{\infty} a_n$, where $a_n = c, \forall n \in \mathbb{N}$.

Then $\sum_{n=1}^{\infty} a_n$ is convergent $\iff c=0$. (In fact, $\{s_n\}_{n\in\mathbb{N}}=\{nc\}_{n\in\mathbb{N}}$ is convergent $\iff c=0$)

Example 2 (Geometric series).

$$1 + r + r^2 + \dots = \frac{1}{1 - r}$$
 for $|r| < 1$.

(In fact,
$$s_n=1+r+r^2+\cdots+r^{n-1}=rac{1-r^n}{1-r}
ightarrowrac{1}{1-r}$$
 for $|r|<1$)

Example 3 (Harmonic series).

$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 is divergent, as $\left\{\sum_{k=1}^{n} \frac{1}{k}\right\}_{n \in \mathbb{N}}$ is not bounded above.

The infinite series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

The infinite series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

Proof: Let $\{s_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

The infinite series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

Proof: Let $\{s_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}\frac{1}{n^2}$. Look at the subsequence $\{s_{2^n-1}\}_{n\in\mathbb{N}}$.

The infinite series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

Proof: Let $\{s_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Look at the subsequence $\{s_{2^n-1}\}_{n\in\mathbb{N}}$.

$$s_{2^1-1} = 1$$

The infinite series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

Proof: Let $\{s_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}\frac{1}{n^2}$. Look at the subsequence $\{s_{2^n-1}\}_{n\in\mathbb{N}}$.

$$egin{array}{lcl} s_{2^1-1} &=& 1 \ s_{2^2-1} &=& 1+\left(rac{1}{2^2}+rac{1}{3^2}
ight) \leq 1+\left(rac{2}{2^2}
ight) = 1+rac{1}{2} \end{array}$$

The infinite series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

Proof: Let $\{s_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}\frac{1}{n^2}$. Look at the subsequence $\{s_{2^n-1}\}_{n\in\mathbb{N}}$.

$$\begin{array}{rcl} s_{2^{1}-1} & = & 1 \\ s_{2^{2}-1} & = & 1 + \left(\frac{1}{2^{2}} + \frac{1}{3^{2}}\right) \leq 1 + \left(\frac{2}{2^{2}}\right) = 1 + \frac{1}{2} \\ s_{2^{3}-1} & = & 1 + \left(\frac{1}{2^{2}} + \frac{1}{3^{2}}\right) + \left(\frac{1}{4^{2}} + \frac{1}{5^{2}} + \frac{1}{6^{2}} + \frac{1}{7^{2}}\right) \end{array}$$

The infinite series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

Proof: Let $\{s_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Look at the subsequence $\{s_{2^n-1}\}_{n\in\mathbb{N}}$.

$$\begin{split} s_{2^1-1} &=& 1 \\ s_{2^2-1} &=& 1 + \left(\frac{1}{2^2} + \frac{1}{3^2}\right) \le 1 + \left(\frac{2}{2^2}\right) = 1 + \frac{1}{2} \\ s_{2^3-1} &=& 1 + \left(\frac{1}{2^2} + \frac{1}{3^2}\right) + \left(\frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2}\right) \\ &\leq& 1 + \frac{1}{2} + \left(\frac{4}{4^2}\right) = 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 \end{split}$$

The infinite series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

Proof: Let $\{s_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Look at the subsequence $\{s_{2^n-1}\}_{n\in\mathbb{N}}$.

$$\begin{array}{rcl} s_{2^{1}-1} & = & 1 \\ s_{2^{2}-1} & = & 1 + \left(\frac{1}{2^{2}} + \frac{1}{3^{2}}\right) \leq 1 + \left(\frac{2}{2^{2}}\right) = 1 + \frac{1}{2} \\ s_{2^{3}-1} & = & 1 + \left(\frac{1}{2^{2}} + \frac{1}{3^{2}}\right) + \left(\frac{1}{4^{2}} + \frac{1}{5^{2}} + \frac{1}{6^{2}} + \frac{1}{7^{2}}\right) \\ & \leq & 1 + \frac{1}{2} + \left(\frac{4}{4^{2}}\right) = 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^{2} \\ & \vdots \end{array}$$

$$s_{2^{n}-1} \leq 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^{2} + \cdots + \left(\frac{1}{2}\right)^{n-1} =: t_{n}, \forall n \in \mathbb{N},$$

where $\{t_n\}_{n\in\mathbb{N}}$ is the sequence of partial sums of $\sum_{n=1}^{\infty}(\frac{1}{2})^{n-1}$.

 $\implies s_{2^n-1} \leq t_n \leq 2, \ \forall n \in \mathbb{N}.$

$$\implies s_{2^n-1} \le t_n \le 2, \ \forall n \in \mathbb{N}.$$

$$\implies s_n \leq 2, \ \forall n \in \mathbb{N} \ \text{(why?)}.$$

$$\implies s_{2^n-1} \leq t_n \leq 2, \ \forall n \in \mathbb{N}.$$

$$\implies s_n \leq 2, \ \forall n \in \mathbb{N} \ (why?).$$

$$\implies s_{2^n-1} \le t_n \le 2, \ \forall n \in \mathbb{N}.$$

$$\implies s_n \leq 2, \ \forall n \in \mathbb{N} \ (why?).$$

Hence
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 is convergent.

$$\implies s_{2^n-1} \leq t_n \leq 2, \ \forall n \in \mathbb{N}.$$

$$\implies s_n \leq 2, \ \forall n \in \mathbb{N} \ (why?).$$

Hence
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 is convergent.

Note: In fact, it can be proved that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ (see Basel problem).

$$\implies s_{2^n-1} \leq t_n \leq 2, \ \forall n \in \mathbb{N}.$$

$$\implies s_n \leq 2, \ \forall n \in \mathbb{N} \ (why?).$$

Hence
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 is convergent.

- Note: In fact, it can be proved that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ (see Basel problem).
- ▶ Exercise: Prove that the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent for all $p \in \mathbb{N} \setminus \{1\}$.

$$\implies s_{2^n-1} \leq t_n \leq 2, \ \forall n \in \mathbb{N}.$$

$$\implies s_n \leq 2, \ \forall n \in \mathbb{N} \ (why?).$$

Hence
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 is convergent.

- Note: In fact, it can be proved that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ (see Basel problem).
- ▶ Exercise: Prove that the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent for all $p \in \mathbb{N} \setminus \{1\}$.
- ▶ Theorem 1 (Cauchy criterion). An infinite series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if for every $\epsilon > 0$ there exists $K \in \mathbb{N}$ such that

$$|a_{n+1}+a_{n+2}+\cdots+a_m|<\epsilon, \ \forall m>n\geq K.$$

► Theorem 2 (n^{th} term test). If a series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

Theorem 3. Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be convergent series with sums x and y, respectively. Then

- (i) $\sum_{n=1}^{\infty} (a_n + b_n) = x + y$;
- (ii) $\sum_{n=1}^{\infty} (ca_n) = cx$ for all $c \in \mathbb{R}$.

Theorem 3. Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be convergent series with sums x and y, respectively. Then

- (i) $\sum_{n=1}^{\infty} (a_n + b_n) = x + y$;
- (ii) $\sum_{n=1}^{\infty} (ca_n) = cx$ for all $c \in \mathbb{R}$.

Sketch of the proof:

(i) Let $\{s_n\}_{n\in\mathbb{N}}$ and $\{t_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}a_n$ and $\sum_{n=1}^{\infty}b_n$, respectively.

Theorem 3. Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be convergent series with sums x and y, respectively. Then

- (i) $\sum_{n=1}^{\infty} (a_n + b_n) = x + y$;
- (ii) $\sum_{n=1}^{\infty} (ca_n) = cx$ for all $c \in \mathbb{R}$.

Sketch of the proof:

(i) Let $\{s_n\}_{n\in\mathbb{N}}$ and $\{t_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}a_n$ and $\sum_{n=1}^{\infty}b_n$, respectively.

Similarly, let $\{u_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}(a_n+b_n)$.

Theorem 3. Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be convergent series with sums x and y, respectively. Then

- (i) $\sum_{n=1}^{\infty} (a_n + b_n) = x + y$;
- (ii) $\sum_{n=1}^{\infty} (ca_n) = cx$ for all $c \in \mathbb{R}$.

Sketch of the proof:

(i) Let $\{s_n\}_{n\in\mathbb{N}}$ and $\{t_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$, respectively.

Similarly, let $\{u_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}(a_n+b_n)$.

Then

$$u_n = \sum_{k=1}^n (a_k + b_k) = \sum_{k=1}^n a_k + \sum_{k=1}^n b_k = s_n + t_n \to x + y \text{ as } n \to \infty.$$

Theorem 3. Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be convergent series with sums x and y, respectively. Then

- (i) $\sum_{n=1}^{\infty} (a_n + b_n) = x + y$;
- (ii) $\sum_{n=1}^{\infty} (ca_n) = cx$ for all $c \in \mathbb{R}$.

Sketch of the proof:

(i) Let $\{s_n\}_{n\in\mathbb{N}}$ and $\{t_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}a_n$ and $\sum_{n=1}^{\infty}b_n$, respectively.

Similarly, let $\{u_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}(a_n+b_n)$.

Then

$$u_n = \sum_{k=1}^n (a_k + b_k) = \sum_{k=1}^n a_k + \sum_{k=1}^n b_k = s_n + t_n \to x + y \text{ as } n \to \infty.$$

(ii) Similar

Now it is natural to ask: Does the 'product' of two convergent series is convergent?

- Now it is natural to ask: Does the 'product' of two convergent series is convergent?
- ▶ Recall that given two convergent sequences $\{a_n\}_{n\in\mathbb{N}}$ and $\{a_b\}_{n\in\mathbb{N}}$, we defined their product as the sequence $\{a_nb_n\}_{n\in\mathbb{N}}$ and the product converges to the product $(\lim_{n\to\infty}a_n)\cdot(\lim_{n\to\infty}b_n)$.

- Now it is natural to ask: Does the 'product' of two convergent series is convergent?
- ▶ Recall that given two convergent sequences $\{a_n\}_{n\in\mathbb{N}}$ and $\{a_b\}_{n\in\mathbb{N}}$, we defined their product as the sequence $\{a_nb_n\}_{n\in\mathbb{N}}$ and the product converges to the product $(\lim_{n\to\infty}a_n)\cdot(\lim_{n\to\infty}b_n)$.
- So, given two series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$, one may think of defining their product as $\sum_{n=1}^{\infty} c_n$, where $c_n = a_n b_n$.

- Now it is natural to ask: Does the 'product' of two convergent series is convergent?
- ▶ Recall that given two convergent sequences $\{a_n\}_{n\in\mathbb{N}}$ and $\{a_b\}_{n\in\mathbb{N}}$, we defined their product as the sequence $\{a_nb_n\}_{n\in\mathbb{N}}$ and the product converges to the product $(\lim_{n\to\infty}a_n)\cdot(\lim_{n\to\infty}b_n)$.
- So, given two series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$, one may think of defining their product as $\sum_{n=1}^{\infty} c_n$, where $c_n = a_n b_n$.
- ▶ But, this is not a good definition.

- Now it is natural to ask: Does the 'product' of two convergent series is convergent?
- ▶ Recall that given two convergent sequences $\{a_n\}_{n\in\mathbb{N}}$ and $\{a_b\}_{n\in\mathbb{N}}$, we defined their product as the sequence $\{a_nb_n\}_{n\in\mathbb{N}}$ and the product converges to the product $(\lim_{n\to\infty}a_n)\cdot(\lim_{n\to\infty}b_n)$.
- So, given two series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$, one may think of defining their product as $\sum_{n=1}^{\infty} c_n$, where $c_n = a_n b_n$.
- ▶ But, this is not a good definition.
- In fact, even for n = 2, the equality $(a_1 + a_2)(b_1 + b_2) = a_1b_1 + a_2b_2$ is not true in general.

- Now it is natural to ask: Does the 'product' of two convergent series is convergent?
- ▶ Recall that given two convergent sequences $\{a_n\}_{n\in\mathbb{N}}$ and $\{a_b\}_{n\in\mathbb{N}}$, we defined their product as the sequence $\{a_nb_n\}_{n\in\mathbb{N}}$ and the product converges to the product $(\lim_{n\to\infty}a_n)\cdot(\lim_{n\to\infty}b_n)$.
- So, given two series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$, one may think of defining their product as $\sum_{n=1}^{\infty} c_n$, where $c_n = a_n b_n$.
- ▶ But, this is not a good definition.
- In fact, even for n = 2, the equality $(a_1 + a_2)(b_1 + b_2) = a_1b_1 + a_2b_2$ is not true in general.
- Recall that we have used distributivity while computing $(a_1 + a_2)(b_1 + b_2)$

- Now it is natural to ask: Does the 'product' of two convergent series is convergent?
- ▶ Recall that given two convergent sequences $\{a_n\}_{n\in\mathbb{N}}$ and $\{a_b\}_{n\in\mathbb{N}}$, we defined their product as the sequence $\{a_nb_n\}_{n\in\mathbb{N}}$ and the product converges to the product $(\lim_{n\to\infty}a_n)\cdot(\lim_{n\to\infty}b_n)$.
- So, given two series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$, one may think of defining their product as $\sum_{n=1}^{\infty} c_n$, where $c_n = a_n b_n$.
- But, this is not a good definition.
- In fact, even for n = 2, the equality $(a_1 + a_2)(b_1 + b_2) = a_1b_1 + a_2b_2$ is not true in general.
- Recall that we have used distributivity while computing $(a_1 + a_2)(b_1 + b_2)$
- ► Indeed $(a_1 + a_2)(b_1 + b_2) = a_1b_1 + a_1b_2 + a_2b_1 + a_2b_2$

► Can we use distributivity for an infinite sum?

- ► Can we use distributivity for an infinite sum?
- ▶ If we look at two polynomials

$$P(X) = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n$$

and

$$Q(X) = b_0 + b_1 X + b_2 X^2 + \dots + b_m X^m,$$

then their product is a polynomial

$$c_0 + c_1 X + c_2 X^2 + \cdots + c_{n+m} X^{n+m}$$
,

where $c_0 = a_0b_0$, $c_1 = a_0b_1 + a_1b_0$, $c_2 = a_0b_2 + a_1b_1 + a_2b_0$, and in general

$$c_n = a_0b_n + a_1n_{n-1} + a_2b_{n-2} + \cdots + a_{n-1}b_1 + a_nb_0 = \sum_{k=0}^{n} a_kb_{n-k}.$$

- ► Can we use distributivity for an infinite sum?
- ► If we look at two polynomials

$$P(X) = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n$$

and

$$Q(X) = b_0 + b_1 X + b_2 X^2 + \dots + b_m X^m,$$

then their product is a polynomial

$$c_0 + c_1 X + c_2 X^2 + \cdots + c_{n+m} X^{n+m}$$
,

where $c_0 = a_0b_0$, $c_1 = a_0b_1 + a_1b_0$, $c_2 = a_0b_2 + a_1b_1 + a_2b_0$, and in general

$$c_n = a_0b_n + a_1n_{n-1} + a_2b_{n-2} + \cdots + a_{n-1}b_1 + a_nb_0 = \sum_{k=0}^n a_kb_{n-k}.$$

► This suggests the following definition.

▶ Definition 2. Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their Cauchy product is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^{n} a_k b_{n-k}$.

- ▶ Definition 2. Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their Cauchy product is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^{n} a_k b_{n-k}$.
- ▶ Remark: In spite of this intuitive idea, in general, the Cauchy product of two convergent series need not be convergent.

- ▶ Definition 2. Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their Cauchy product is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^{n} a_k b_{n-k}$.
- ▶ Remark: In spite of this intuitive idea, in general, the Cauchy product of two convergent series need not be convergent.

Example 5.

Consider the series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, where

$$a_n = b_n = \frac{(-1)^n}{\sqrt{n+1}}, \quad \forall n \in \mathbb{N} \cup \{0\}.$$

- ▶ Definition 2. Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their Cauchy product is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^{n} a_k b_{n-k}$.
- ▶ Remark: In spite of this intuitive idea, in general, the Cauchy product of two convergent series need not be convergent.

Example 5.

Consider the series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, where

$$a_n = b_n = \frac{(-1)^n}{\sqrt{n+1}}, \quad \forall n \in \mathbb{N} \cup \{0\}.$$

Then $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ are convergent by the following result.

(Result: The series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$, where $\{a_n\}_{n \in \mathbb{N}}$ is a decreasing sequence of positive reals, is convergent if and only if $\lim_{n \to \infty} a_n = 0$.)

$$c_n = \sum_{k=0}^n a_k b_{n-k} = (-1)^n \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}}.$$

We have

$$c_n = \sum_{k=0}^n a_k b_{n-k} = (-1)^n \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}}.$$

For $0 \le k \le n$,

$$(k+1)(n-k+1) = \left(\frac{n}{2}+1\right)^2 - \left(\frac{n}{2}-k\right)^2 \le \left(\frac{n}{2}+1\right)^2.$$

We have

$$c_n = \sum_{k=0}^n a_k b_{n-k} = (-1)^n \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}}.$$

For $0 \le k \le n$,

$$(k+1)(n-k+1) = \left(\frac{n}{2}+1\right)^2 - \left(\frac{n}{2}-k\right)^2 \le \left(\frac{n}{2}+1\right)^2.$$

$$\implies \frac{1}{\sqrt{(k+1)(n-k+1)}} \ge \frac{2}{n+2}$$
, for all $0 \le k \le n$

We have

$$c_n = \sum_{k=0}^n a_k b_{n-k} = (-1)^n \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}}.$$

For $0 \le k \le n$,

$$(k+1)(n-k+1) = \left(\frac{n}{2}+1\right)^2 - \left(\frac{n}{2}-k\right)^2 \le \left(\frac{n}{2}+1\right)^2.$$

$$\implies \frac{1}{\sqrt{(k+1)(n-k+1)}} \ge \frac{2}{n+2}, \text{ for all } 0 \le k \le n$$

$$\implies |c_n| = \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}} \ge \frac{2(n+1)}{n+2} = \frac{2(1+\frac{1}{n})}{1+\frac{2}{n}} \to 2.$$

We have

$$c_n = \sum_{k=0}^n a_k b_{n-k} = (-1)^n \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}}.$$

For $0 \le k \le n$,

$$(k+1)(n-k+1) = \left(\frac{n}{2}+1\right)^2 - \left(\frac{n}{2}-k\right)^2 \le \left(\frac{n}{2}+1\right)^2.$$

$$\implies \frac{1}{\sqrt{(k+1)(n-k+1)}} \ge \frac{2}{n+2}, \text{ for all } 0 \le k \le n$$

$$\implies |c_n| = \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}} \ge \frac{2(n+1)}{n+2} = \frac{2(1+\frac{1}{n})}{1+\frac{2}{n}} \to 2.$$

Therefore, it follows that $\sum_{n=0}^{\infty} c_n$ is not convergent.

We have

$$c_n = \sum_{k=0}^n a_k b_{n-k} = (-1)^n \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}}.$$

For $0 \le k \le n$,

$$(k+1)(n-k+1) = \left(\frac{n}{2}+1\right)^2 - \left(\frac{n}{2}-k\right)^2 \le \left(\frac{n}{2}+1\right)^2.$$

$$\implies \frac{1}{\sqrt{(k+1)(n-k+1)}} \ge \frac{2}{n+2}, \text{ for all } 0 \le k \le n$$

$$\implies |c_n| = \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}} \ge \frac{2(n+1)}{n+2} = \frac{2(1+\frac{1}{n})}{1+\frac{2}{n}} \to 2.$$

Therefore, it follows that $\sum_{n=0}^{\infty} c_n$ is not convergent.

However, things are not that bad. We will revisit this and see when can we assure that the Cauchy product of two series is convergent.

Tests for convergence of series

▶ *n*th term test–already seen.

Tests for convergence of series

- ▶ *n*th term test–already seen.
- ▶ Theorem 4. Let $\sum_{n=1}^{\infty} a_n$ be a series of non-negative real numbers. Then it is convergent if and only if its sequence of partial sums $\{s_n\}_{n\in\mathbb{N}}$ is bounded above. In this case

$$\sum_{n=1}^{\infty} a_n = \sup\{s_n : n \in \mathbb{N}\}.$$

Tests for convergence of series

- ▶ *n*th term test–already seen.
- ▶ Theorem 4. Let $\sum_{n=1}^{\infty} a_n$ be a series of non-negative real numbers. Then it is convergent if and only if its sequence of partial sums $\{s_n\}_{n\in\mathbb{N}}$ is bounded above. In this case

$$\sum_{n=1}^{\infty} a_n = \sup\{s_n : n \in \mathbb{N}\}.$$

Proof: Exercise

$$0 \le a_n \le b_n, \ \forall n \ge N.$$

- (i) If $\sum_{n=1}^{\infty} b_n$ is convergent, then so is $\sum_{n=1}^{\infty} a_n$. (ii) If $\sum_{n=1}^{\infty} a_n$ is divergent, then so is $\sum_{n=1}^{\infty} b_n$.

$$0 \le a_n \le b_n, \ \forall n \ge N.$$

- (i) If $\sum_{n=1}^{\infty} b_n$ is convergent, then so is $\sum_{n=1}^{\infty} a_n$. (ii) If $\sum_{n=1}^{\infty} a_n$ is divergent, then so is $\sum_{n=1}^{\infty} b_n$.
- Proof: (i) Let $\epsilon > 0$ be arbitrary.

$$0 \leq a_n \leq b_n, \ \forall n \geq N.$$

- (i) If $\sum_{n=1}^{\infty} b_n$ is convergent, then so is $\sum_{n=1}^{\infty} a_n$.
- (ii) If $\sum_{n=1}^{\infty} a_n$ is divergent, then so is $\sum_{n=1}^{\infty} b_n$.

Proof: (i) Let $\epsilon > 0$ be arbitrary. Since $\sum_{n=1}^{\infty} b_n$ is convergent, by Cauchy criterion, for the ϵ there exists $K \in \mathbb{N}$ such that

$$|b_{n+1}+b_{n+2}+\cdots+b_m|<\epsilon, \ \forall m>n\geq K.$$

$$0 \le a_n \le b_n, \ \forall n \ge N.$$

- (i) If $\sum_{n=1}^{\infty} b_n$ is convergent, then so is $\sum_{n=1}^{\infty} a_n$.
- (ii) If $\sum_{n=1}^{\infty} a_n$ is divergent, then so is $\sum_{n=1}^{\infty} b_n$.

Proof: (i) Let $\epsilon > 0$ be arbitrary. Since $\sum_{n=1}^{\infty} b_n$ is convergent, by Cauchy criterion, for the ϵ there exists $K \in \mathbb{N}$ such that

$$|b_{n+1}+b_{n+2}+\cdots+b_m|<\epsilon, \ \forall m>n\geq K.$$

Then

$$0 \leq a_{n+1} + a_{n+2} + \cdots + a_m \leq b_{n+1} + b_{n+2} + \cdots + b_m < \epsilon, \ \forall m > n \geq M,$$

where $M := \max\{N, K\}$.

$$0 \le a_n \le b_n, \ \forall n \ge N.$$

- (i) If $\sum_{n=1}^{\infty} b_n$ is convergent, then so is $\sum_{n=1}^{\infty} a_n$.
- (ii) If $\sum_{n=1}^{\infty} a_n$ is divergent, then so is $\sum_{n=1}^{\infty} b_n$.

Proof: (i) Let $\epsilon > 0$ be arbitrary. Since $\sum_{n=1}^{\infty} b_n$ is convergent, by Cauchy criterion, for the ϵ there exists $K \in \mathbb{N}$ such that

$$|b_{n+1}+b_{n+2}+\cdots+b_m|<\epsilon, \ \forall m>n\geq K.$$

Then

$$0 \leq a_{n+1} + a_{n+2} + \cdots + a_m \leq b_{n+1} + b_{n+2} + \cdots + b_m < \epsilon, \ \forall m > n \geq M,$$

where $M := \max\{N, K\}$. Since $\epsilon > 0$ is arbitrary, again by Cauchy criterion, it follows that $\sum_{n=1}^{\infty} a_n$ is convergent.

$$0 \le a_n \le b_n, \ \forall n \ge N.$$

- (i) If $\sum_{n=1}^{\infty} b_n$ is convergent, then so is $\sum_{n=1}^{\infty} a_n$.
- (ii) If $\sum_{n=1}^{\infty} a_n$ is divergent, then so is $\sum_{n=1}^{\infty} b_n$.

Proof: (i) Let $\epsilon > 0$ be arbitrary. Since $\sum_{n=1}^{\infty} b_n$ is convergent, by Cauchy criterion, for the ϵ there exists $K \in \mathbb{N}$ such that

$$|b_{n+1}+b_{n+2}+\cdots+b_m|<\epsilon, \ \forall m>n\geq K.$$

Then

$$0 \leq a_{n+1} + a_{n+2} + \cdots + a_m \leq b_{n+1} + b_{n+2} + \cdots + b_m < \epsilon, \ \forall m > n \geq M,$$

where $M := \max\{N, K\}$. Since $\epsilon > 0$ is arbitrary, again by Cauchy criterion, it follows that $\sum_{n=1}^{\infty} a_n$ is convergent.

Example 6. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

$$0 \leq \frac{1}{n(n+1)} \leq \frac{1}{n^2}, \quad \forall n \geq 1$$

and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

$$0\leq \frac{1}{n(n+1)}\leq \frac{1}{n^2}, \ \forall n\geq 1$$

and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

Alternative proof: Let $\{s_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

$$0\leq \frac{1}{n(n+1)}\leq \frac{1}{n^2}, \ \forall n\geq 1$$

and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

Alternative proof: Let $\{s_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}\frac{1}{n(n+1)}$. Then

$$s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{n+1}, \ \forall n \in \mathbb{N}.$$

$$0\leq \frac{1}{n(n+1)}\leq \frac{1}{n^2}, \ \forall n\geq 1$$

and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

Alternative proof: Let $\{s_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}\frac{1}{n(n+1)}$. Then

$$\begin{split} s_n &= \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{n+1}, \ \forall n \in \mathbb{N}. \\ &\implies \lim_{n \to \infty} s_n = 1. \end{split}$$

$$0\leq \frac{1}{n(n+1)}\leq \frac{1}{n^2}, \ \forall n\geq 1$$

and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

Alternative proof: Let $\{s_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$. Then

$$s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{n+1}, \ \forall n \in \mathbb{N}.$$

$$\implies \lim_{n\to\infty} s_n = 1$$

$$\Longrightarrow \lim_{n\to\infty} s_n = 1.$$

Therefore $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$

Exercise: A series $\sum_{k=1}^{\infty} b_n$ is said to be a telescoping series if there exists a sequence $\{a_n\}_{n\in\mathbb{N}}$ such that $b_n=a_{n+1}-a_n$ for all $n\in\mathbb{N}$. Show that $\sum_{n=1}^{\infty} b_n$ is convergent if and only if $\lim_{n\to\infty} a_n$ exists. In such a case, find the sum.

- Exercise: A series $\sum_{k=1}^{\infty} b_n$ is said to be a telescoping series if there exists a sequence $\{a_n\}_{n\in\mathbb{N}}$ such that $b_n=a_{n+1}-a_n$ for all $n\in\mathbb{N}$. Show that $\sum_{n=1}^{\infty} b_n$ is convergent if and only if $\lim_{n\to\infty} a_n$ exists. In such a case, find the sum.
- **Example** 7. Consider the series $\sum_{n=1}^{\infty} \frac{1}{n!}$.

- Exercise: A series $\sum_{k=1}^{\infty} b_n$ is said to be a telescoping series if there exists a sequence $\{a_n\}_{n\in\mathbb{N}}$ such that $b_n=a_{n+1}-a_n$ for all $n\in\mathbb{N}$. Show that $\sum_{n=1}^{\infty} b_n$ is convergent if and only if $\lim_{n\to\infty} a_n$ exists. In such a case, find the sum.
- Example 7. Consider the series $\sum_{n=1}^{\infty} \frac{1}{n!}$. The series is convergent by result (i) of the comparison test. In fact, we have

$$0 \leq \frac{1}{n!} \leq \frac{1}{n^2}, \quad \forall n \geq 4$$

and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

- Exercise: A series $\sum_{k=1}^{\infty} b_n$ is said to be a telescoping series if there exists a sequence $\{a_n\}_{n\in\mathbb{N}}$ such that $b_n=a_{n+1}-a_n$ for all $n\in\mathbb{N}$. Show that $\sum_{n=1}^{\infty} b_n$ is convergent if and only if $\lim_{n\to\infty} a_n$ exists. In such a case, find the sum.
- Example 7. Consider the series $\sum_{n=1}^{\infty} \frac{1}{n!}$. The series is convergent by result (i) of the comparison test. In fact, we have

$$0 \leq \frac{1}{n!} \leq \frac{1}{n^2}, \quad \forall n \geq 4$$

and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

Note: It can be proved that $\sum_{n=1}^{\infty} \frac{1}{n!} = e$ (Euler number).

- Exercise: A series $\sum_{k=1}^{\infty} b_n$ is said to be a telescoping series if there exists a sequence $\{a_n\}_{n\in\mathbb{N}}$ such that $b_n=a_{n+1}-a_n$ for all $n\in\mathbb{N}$. Show that $\sum_{n=1}^{\infty} b_n$ is convergent if and only if $\lim_{n\to\infty} a_n$ exists. In such a case, find the sum.
- Example 7. Consider the series $\sum_{n=1}^{\infty} \frac{1}{n!}$. The series is convergent by result (i) of the comparison test. In fact, we have

$$0 \le \frac{1}{n!} \le \frac{1}{n^2}, \quad \forall n \ge 4$$

and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

Note: It can be proved that $\sum_{n=1}^{\infty} \frac{1}{n!} = e$ (Euler number).

Exercise: Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.

- ▶ Theorem 6 (Limit comparison test): Let $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ be strictly positive sequences.
 - (i) If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ and c > 0, then $\sum_{n=1}^{\infty} b_n$ is convergent if and only if $\sum_{n=1}^{\infty} a_n$ is convergent.

- ▶ Theorem 6 (Limit comparison test): Let $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ be strictly positive sequences.
 - (i) If $\lim_{n\to\infty}\frac{a_n}{b_n}=c$ and c>0, then $\sum_{n=1}^\infty b_n$ is convergent if and only if $\sum_{n=1}^\infty a_n$ is convergent.
 - (ii) If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum_{n=1}^{\infty} b_n$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.

- ▶ Theorem 6 (Limit comparison test): Let $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ be strictly positive sequences.
 - (i) If $\lim_{n\to\infty}\frac{a_n}{b_n}=c$ and c>0, then $\sum_{n=1}^\infty b_n$ is convergent if and only if $\sum_{n=1}^\infty a_n$ is convergent.
 - (ii) If $\lim_{n\to\infty} \frac{\overline{a_n}}{b_n} = 0$ and $\sum_{n=1}^{\infty} \overline{b_n}$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
 - (iii) If $\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$ and $\sum_{n=1}^\infty b_n$ is divergent, then $\sum_{n=1}^\infty a_n$ is divergent.

- ▶ Theorem 6 (Limit comparison test): Let $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ be strictly positive sequences.
 - (i) If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ and c > 0, then $\sum_{n=1}^{\infty} b_n$ is convergent if and only if $\sum_{n=1}^{\infty} a_n$ is convergent.
 - (ii) If $\lim_{n\to\infty} \frac{\overline{a_n}}{b_n} = 0$ and $\sum_{n=1}^{\infty} b_n$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
 - (iii) If $\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$ and $\sum_{n=1}^\infty b_n$ is divergent, then $\sum_{n=1}^\infty a_n$ is divergent.
 - Proof: (i) Since c > 0, there exists $K \in \mathbb{N}$ such that

$$\left|\frac{a_n}{b_n}-c\right|<\frac{c}{2},\ \forall n\geq K.$$

- ▶ Theorem 6 (Limit comparison test): Let $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ be strictly positive sequences.
 - (i) If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ and c > 0, then $\sum_{n=1}^{\infty} b_n$ is convergent if and only if $\sum_{n=1}^{\infty} a_n$ is convergent.
 - (ii) If $\lim_{n\to\infty} \frac{\overline{a_n}}{b_n} = 0$ and $\sum_{n=1}^{\infty} b_n$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
 - (iii) If $\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$ and $\sum_{n=1}^\infty b_n$ is divergent, then $\sum_{n=1}^\infty a_n$ is divergent.
 - Proof: (i) Since c > 0, there exists $K \in \mathbb{N}$ such that

$$\left|\frac{a_n}{b_n}-c\right|<\frac{c}{2},\ \forall n\geq K.$$

$$\implies -\frac{c}{2} < \frac{a_n}{b_n} - c < \frac{c}{2}, \ \forall n \ge K.$$

- ▶ Theorem 6 (Limit comparison test): Let $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ be strictly positive sequences.
 - (i) If $\lim_{n\to\infty}\frac{a_n}{b_n}=c$ and c>0, then $\sum_{n=1}^\infty b_n$ is convergent if and only if $\sum_{n=1}^\infty a_n$ is convergent.
 - (ii) If $\lim_{n\to\infty} \frac{\overline{a_n}}{b_n} = 0$ and $\sum_{n=1}^{\infty} b_n$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
 - (iii) If $\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$ and $\sum_{n=1}^\infty b_n$ is divergent, then $\sum_{n=1}^\infty a_n$ is divergent.
 - Proof: (i) Since c > 0, there exists $K \in \mathbb{N}$ such that

$$\left|\frac{a_n}{b_n}-c\right|<\frac{c}{2},\ \forall n\geq K.$$

$$\implies -\frac{c}{2} < \frac{a_n}{b_n} - c < \frac{c}{2}, \ \forall n \geq K.$$

$$\implies \left(\frac{c}{2}\right)b_n < a_n < \left(\frac{3c}{2}\right)b_n, \ \forall n \geq K.$$

- ▶ Theorem 6 (Limit comparison test): Let $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ be strictly positive sequences.
 - (i) If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ and c > 0, then $\sum_{n=1}^{\infty} b_n$ is convergent if and only if $\sum_{n=1}^{\infty} a_n$ is convergent.
 - (ii) If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum_{n=1}^{\infty} b_n$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
 - (iii) If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum_{n=1}^{\infty} b_n$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.
 - Proof: (i) Since c > 0, there exists $K \in \mathbb{N}$ such that

$$\left|\frac{a_n}{b_n}-c\right|<\frac{c}{2},\ \forall n\geq K.$$

$$\implies -\frac{c}{2} < \frac{a_n}{b_n} - c < \frac{c}{2}, \ \forall n \ge K.$$

$$\implies \left(\frac{c}{2}\right)b_n < a_n < \left(\frac{3c}{2}\right)b_n, \ \forall n \geq K.$$

Therefore, by comparison test, the result follows.

$$0<\frac{a_n}{b_n}<1,\ \forall n\geq K.$$

$$0<\frac{a_n}{b_n}<1, \ \forall n\geq K.$$

$$\implies$$
 0 < a_n < b_n , $\forall n \geq K$.

$$0<rac{a_n}{b_n}<1, \ \forall n\geq K.$$

$$\implies$$
 0 < a_n < b_n , $\forall n \geq K$.

Therefore, again by comparison test, the result follows.

$$0<rac{a_n}{b_n}<1, \ \forall n\geq K.$$

$$\implies$$
 0 < a_n < b_n , $\forall n \geq K$.

Therefore, again by comparison test, the result follows. (iii) Similar

$$0<rac{a_n}{b_n}<1, \ \forall n\geq K.$$

$$\implies$$
 0 < a_n < b_n , $\forall n \geq K$.

Therefore, again by comparison test, the result follows.

Example 8. Test the convergence of the following series.

(i)
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2+2n+1}$$
 (ii) $\sum_{n=1}^{\infty} \frac{1}{2^n-1}$

$$0<\frac{a_n}{b_n}<1, \ \forall n\geq K.$$

$$\implies$$
 0 < a_n < b_n , $\forall n \geq K$.

Therefore, again by comparison test, the result follows. (iii) Similar

Example 8. Test the convergence of the following series.

(i)
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2+2n+1}$$
 (ii) $\sum_{n=1}^{\infty} \frac{1}{2^n-1}$

Solution: (i) Let $a_n = \frac{2n+1}{n^2+2n+1}$ and $b_n = \frac{1}{n}$ for all $n \in \mathbb{N}$.

$$0<\frac{a_n}{b_n}<1, \ \forall n\geq K.$$

$$\implies$$
 0 < a_n < b_n , $\forall n \geq K$.

Therefore, again by comparison test, the result follows.

Example 8. Test the convergence of the following series.

(i)
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2+2n+1}$$
 (ii) $\sum_{n=1}^{\infty} \frac{1}{2^n-1}$

Solution: (i) Let $a_n = \frac{2n+1}{n^2+2n+1}$ and $b_n = \frac{1}{n}$ for all $n \in \mathbb{N}$. Then

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{2n^2 + n}{n^2 + 2n + 1} = 2.$$

$$0<\frac{a_n}{b_n}<1, \ \forall n\geq K.$$

$$\implies$$
 0 < a_n < b_n , $\forall n \geq K$.

Therefore, again by comparison test, the result follows. (iii) Similar

Example 8. Test the convergence of the following series.

(i)
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2+2n+1}$$
 (ii) $\sum_{n=1}^{\infty} \frac{1}{2^n-1}$

Solution: (i) Let $a_n = \frac{2n+1}{n^2+2n+1}$ and $b_n = \frac{1}{n}$ for all $n \in \mathbb{N}$. Then

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2n^2 + n}{n^2 + 2n + 1} = 2.$$

Since $\sum_{n=1}^{\infty} b_n$ is divergent, by result (i) of Limit comparison test, it follows that $\sum_{n=1}^{\infty} a_n$ is divergent.

$$0<\frac{a_n}{b_n}<1, \ \forall n\geq K.$$

$$\implies$$
 0 < a_n < b_n , $\forall n \geq K$.

Therefore, again by comparison test, the result follows. (iii) Similar

Example 8. Test the convergence of the following series.

(i)
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2+2n+1}$$
 (ii) $\sum_{n=1}^{\infty} \frac{1}{2^n-1}$

Solution: (i) Let $a_n = \frac{2n+1}{n^2+2n+1}$ and $b_n = \frac{1}{n}$ for all $n \in \mathbb{N}$. Then

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2n^2 + n}{n^2 + 2n + 1} = 2.$$

Since $\sum_{n=1}^{\infty} b_n$ is divergent, by result (i) of Limit comparison test, it follows that $\sum_{n=1}^{\infty} a_n$ is divergent.(ii) Exercise. (Hint: Compare with $\{\frac{1}{2^n}\}_{n\in\mathbb{N}}$).