Optimization for Data Science

Introduction into supervised learning

Robert M. Gower &

Alexandre Gramfort

Core Info

• Where: Telecom ParisTech

• Location : B312

• **ECTS** : 5 ECTS

• **Volume** : 40h

- When: 12 weeks (including one week break for holidays + one week for exam)
- Online: All teaching materials on moodle: http://datascience-x-master-paris-saclay.fr/education/
- Students upload their projects / reports via moodle too.
- All students **must** be registered on moodle.

Who am I?

Robert M. Gower

- Assistant Prof at Telecom
- robert.gower@telecom-paristech.fr
- https://perso.telecom-paristech.fr/rgower/
- Research topics: Stochastic algorithms for optimization, numerical linear algebra, quasi-Newton methods and automatic differentiation (backpropagation).

An Introduction to Supervised Learning

References classes today

Chapter 2

Pages 67 to 79

Understanding Machine Learning: From Theory to Algorithms

Convex Optimization

Yes

Yes

No

Yes

x: Input/Feature

y: Output/Target

Find mapping h that assigns the "correct" target to each input

$$h: x \in \mathbf{R}^d$$
 \longrightarrow $y \in \mathbf{R}$

y = -1 means no/false

Example: Linear Regression for

Height

Male = 0Female = 1

Labelled data	$x \in \mathbf{R}^2, y \in \mathbf{R}_+$
---------------	--

$x_1^1 \{$	Sex	0
x_{2}^{1} {	Age	30
y^1 {	Height	1,72 cm

	x_1^n {	Sex	1
• • •	x_2^n {	Age	70
	y^n {	Height	1,52 cm

Example: Linear Regression for

Height

Male = 0 Female = 1

Labelled data	$x \in \mathbf{R}^2, y \in \mathbf{R}_+$
---------------	--

$x_{1}^{1} \{$	Sex	0
x_{2}^{1} {	Age	30
y^1 {	Height	1,72 cm

Example Hypothesis: Linear Model

$$h_w(x_1, x_2) = w_0 + x_1 w_1 + x_2 w_2 \stackrel{x_0 = 1}{=} \langle w, x \rangle$$

Example: Linear Regression for

Height

Male = 0 Female = 1

Labelled data	$x \in \mathbf{R}^2, y \in \mathbf{R}_+$
---------------	--

$x_1^1 \{$	Sex	0
x_{2}^{1} {	Age	30
y^1 {	Height	1,72 cm

	▼ ·	
$x_1^n \{ $	Sex	1
$x_2^n \left\{ \right.$	∖ ge	70
$y^n \{$	Height	1,52 cm

Example Hypothesis: Linear Model

$$h_w(x_1, x_2) = w_0 + x_1 w_1 + x_2 w_2 \stackrel{x_0 = 1}{=} \langle w, x \rangle$$

Example Training Problem:

$$\min_{w \in \mathbf{R}^3} \frac{1}{n} \sum_{i=1}^{n} \left(h_w(x_1^i, x_2^i) - y^i \right)^2$$

Linear Regression for Height

Linear Regression for Height

$$\min_{w \in \mathbf{R}^3} \frac{1}{n} \sum_{i=1} \left(h_w(x_1^i, x_2^i) - y^i \right)^2$$

Linear Regression for Height

Parametrizing the Hypothesis

Linear:

$$h_w(x) = \sum_{i=0}^{a} w_i x_i$$

Polinomial:

$$h_w(x) = \sum_{i,j=0}^{a} w_{ij} x_i x_j$$

Neural Net:

exe:

$$v_1 = sign(w_{11}x_1 + w_{12}x_2)$$

$$v_4 = 1/(1 + exp(w_{41}x_1 + w_{42}x_2))$$

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2$$
 Why a Squared Loss?

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2$$
 Why a Squared Loss?

Let
$$y_h := h_w(x)$$

Loss Functions

$$\ell: \mathbf{R} \times \mathbf{R} \to \mathbf{R}_+ \ (y_h, y) \to \ell(y_h, y)$$

The Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^{n} \ell\left(h_w(x^i), y^i\right)$$

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2$$
 Why a Squared Loss?

Let
$$y_h := h_w(x)$$

Loss Functions

$$\ell: \mathbf{R} \times \mathbf{R} \to \mathbf{R}_+$$
 $(y_h, y) \to \ell(y_h, y)$

Typically a convex function

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^{n} \ell\left(h_w(x^i), y^i\right)$$

Choosing the Loss Function

Let
$$y_h := h_w(x)$$

Quadratic Loss
$$\ell(y_h, y) = (y_h - y)^2$$

$$\ell(y_h, y) = \begin{cases} 0 & \text{if } y_h = y \\ 1 & \text{if } y_h \neq y \end{cases}$$

$$\ell(y_h, y) = \max\{0, 1 - y_h y\}$$

Choosing the Loss Function

Let
$$y_h := h_w(x)$$

Quadratic Loss $\ell(y_h, y) = (y_h - y)^2$

y=1 in all

figures

Binary Loss

$$\ell(y_h, y) = \begin{cases} 0 & \text{if } y_h = y \\ 1 & \text{if } y_h \neq y \end{cases}$$

Hinge Loss

$$\ell(y_h, y) = \max\{0, 1 - y_h y\}$$

Choosing the Loss Function

Let
$$y_h := h_w(x)$$

Quadratic Loss
$$\ell(y_h, y) = (y_h - y)^2$$

y=1 in all

figures

Binary Loss

$$\ell(y_h, y) = \begin{cases} 0 & \text{if } y_h = y \\ 1 & \text{if } y_h \neq y \end{cases}$$

Hinge Loss

$$\ell(y_h, y) = \max\{0, 1 - y_h y\}$$

EXE: Plot the binary and hinge loss function in when y=-1

Is a notion of Loss enough?

What happens when we do not have enough data?

The Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right)$$

Is a notion of Loss enough?

What happens when we do not have enough data?

Fitting 1st order polynomial
$$h_w = \langle w, x \rangle$$
 $w^* = \arg\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2$

$$h_w = w_0 + w_1 x + w_2 x^2$$

$$w^* = \arg\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n (h_w(x^i) - y^i)^2$$

Fitting 3rd order polynomial
$$h_w = \sum_{i=0}^3 w_i x^i$$

$$w^* = \arg\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2$$

Fitting 9th order polynomial
$$h_w = \sum_{i=0}^9 w_i x^i$$

$$w^* = \arg\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2$$

Regularization

Regularizor Functions

$$\begin{array}{cccc} R: & \mathbf{R}^d & \to & \mathbf{R}_+ \\ & w & \to & R(w) \end{array}$$

General Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^{n} \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

Regularizor Functions

$$\begin{array}{cccc} R: & \mathbf{R}^d & \to & \mathbf{R}_+ \\ & w & \to & R(w) \end{array}$$

General Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

Goodness of fit, fidelity term ...etc

Regularizor Functions

$$\begin{array}{cccc} R: & \mathbf{R}^d & \to & \mathbf{R}_+ \\ & w & \to & R(w) \end{array}$$

General Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

Goodness of fit, fidelity term ...etc

Penlizes complexity

Regularizor Functions

$$R: \mathbf{R}^d \to \mathbf{R}_+$$
 $w \to R(w)$

Controls tradeoff between fit and complexity

General Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

Goodness of fit, fidelity term ...etc

Penlizes complexity

Regularizor Functions

$$R: \mathbf{R}^d \to \mathbf{R}_+$$
 $w \to R(w)$

Controls tradeoff between fit and complexity

General Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

Goodness of fit, fidelity term ...etc Penlizes complexity

Exe:

$$R(w) = ||w||_2^2$$
, $||w||_1$, $||w||_p$, other norms ...

$$||w||_{1}$$
,

$$||w||_p$$

Overfitting and Model Complexity

Fitting kth order polynomial

$$h_w = \sum_{i=0}^k w_i x^i$$

$$w^* = \arg\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n (h_w(x^i) - y^i)^2 + \lambda ||w||_1$$

Overfitting and Model Complexity

Exe: Ridge Regression

Linear hypothesis

$$h_w(x) = \langle w, x \rangle$$

L2 regularizor

$$R(w) = ||w||_2^2$$

L2 loss

$$\ell(y_h, y) = (y_h - y)^2$$

Ridge Regression

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n (y^i - \langle w, x^i \rangle)^2 + \lambda ||w||_2^2$$

Exe: Support Vector Machines

Linear hypothesis

$$h_w(x) = \langle w, x \rangle$$

L2 regularizor

$$R(w) = ||w||_2^2$$

Hinge loss

$$\ell(y_h, y) = \max\{0, 1 - y_h y\}$$

SVM with soft margin

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y^i \langle w, x^i \rangle\} + \lambda ||w||_2^2$$

Exe: Logistic Regression

Linear hypothesis

$$h_w(x) = \langle w, x \rangle$$

L2 regularizor

$$R(w) = ||w||_2^2$$

Logistic loss

$$\ell(y_h, y) = \ln(1 + e^{-yy_h})$$

Logistic Regression

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y^i \langle w, x^i \rangle}) + \lambda ||w||_2^2$$

(1) Get the labeled data: $(x^1, y^1), \dots, (x^n, y^n)$

- (1) Get the labeled data: $(x^1, y^1), \dots, (x^n, y^n)$
- (2) Choose a parametrization for hypothesis: $h_w(x)$

- (1) Get the labeled data: $(x^1, y^1), \dots, (x^n, y^n)$
- (2) Choose a parametrization for hypothesis: $h_w(x)$
- (3) Choose a loss function: $\ell(h_w(x), y) \ge 0$

- (1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$
- (2) Choose a parametrization for hypothesis: $h_w(x)$
- (3) Choose a loss function: $\ell(h_w(x), y) \ge 0$
- (4) Solve the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

- (1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$
- (2) Choose a parametrization for hypothesis: $h_w(x)$
- (3) Choose a loss function: $\ell(h_w(x), y) \geq 0$
- (4) Solve the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

(5) Test and cross-validate. If fail, go back a few steps

- (1) Get the labeled data: $(x^1, y^1), \dots, (x^n, y^n)$
- (2) Choose a parametrization for hypothesis: $h_w(x)$
- (3) Choose a loss function: $\ell(h_w(x), y) \ge 0$
- (4) Solve the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

(5) Test and cross-validate. If fail, go back a few steps

The Statistical Learning Problem: The hard truth

Do we really care if the loss $\ell(h_w(x^i), y^i)$ is small on the **known** labelled data paris (x^i, y^i) ? **Nope**

We really want to have a small loss on new unlabelled Observations!

Assume data sampled $(x, y) \sim \mathcal{D}$ where \mathcal{D} is an unknown distribution

The Statistical Learning Problem: The hard truth

The statistical learning problem:

Minimize the expected loss over an *unknown* expectation

$$\min_{w \in \mathbf{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell \left(h_w(x), y \right) \right]$$

Variance of sample mean:

$$\left| \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[\ell \left(h_w(x), y \right) \right] - \frac{1}{n} \sum_{i=1}^n \ell \left(h_w(x_i), y_i \right) \right| = O\left(\frac{1}{n}\right)$$