Same de 29/04/2021

Capacité 4 Déterminer le sens de variation d'une suite géométrique, voir exo 3 p.17

Un lac de montagne est alimenté par une rivière et régulé par un barrage, situé en aval, d'une hauteur de 10 m. On mesure le niveau de l'eau chaque jour à midi. Le 1er janvier 2018, à midi, le niveau du lac était de 6,05 m.

Entre deux mesures successives, le niveau d'eau du lac évolue de la façon suivante :

- d'abord une augmentation de 6 % (apport de la rivière);
- ensuite une baisse de 15 cm (écoulement à travers le barrage).
- On modélise l'évolution du niveau d'eau du lac par une suite (un), le terme un représentant le niveau d'eau du lac à midi, en cm, n jours après le $1^{
 m er}$ janvier 2018. Ainsi le niveau d'eau du lac, en cm, le 1^{er} janvier 2018 est donné par $u_0 = 605$.

 - **b.** Démontrer que, pour tout $n \in \mathbb{N}$, $u_{n+1} = 1,06u_n 15$.
- **2.** On pose, pour tout $n \in \mathbb{N}$, $v_n = u_n 250$.
 - **a.** Démontrer que la suite (v_n) est géométrique de raison 1,06.
 - **b.** Exprimer v_n en fonction de n, pour tout $n \in \mathbb{N}$ et en déduire que, $u_n = 355 \times 1,06^n + 250$.
 - c. Déterminer le sens de variation de la suite (u_n).
 - d. Que peut-on dire des valeurs de u_n lorsque n devient très grand? Le modèle est-il réaliste?
 - e. Lorsque le niveau du lac dépasse 10 m, l'équipe d'entretien doit agrandir l'ouverture des vannes du barrage.
 - Compléter la fonction seuil() ci-dessous afin qu'elle retourne le nombre de jours au bout duquel la première date d'intervention des techniciens sera nécessaire.

Page 5/11

http://frederic-junier.org/

Suites Partie 2

Première

Algorithme de seuil

Python

```
def seuil(s):
   n = 0
   u = 605
   while ....:
       n = n + 1
   return n
```

2) a) Pour tout entier m>0: Month = 1,06 Mm - 15 On ansidère la suite vin=vin-250 Démontrons que (vin) est géannêtrique 15mt = 1:00 Mm - 15 - 250 15mt = 1:00 Mm - 15 - 250 15mt = 1:00 Mm - 15 - 250 $N_{min} = 1,06 u_m - 265$ on fortoniso $N_{min} = 1,06 \left(u_m - \frac{265}{1,06} \right)$ $N_{min} = 1,06 \left(u_m - 250 \right) = 1,06 N_m$ La suite (vontest danc géomètrique de 1,66. Pour demain finie cette capacité (

+ Activité 1 du cours.

2) b) (vm) est géomé trique de raison 1,66

donc pour tout entier n>0: $\sqrt{m} = \sqrt{2} \times 1,06$ Gr vm = Mm - 250 dong No = Mo - 250

donc No - 605 - 250 = 355 On en décluit que v= 355 x 1,06 mis que em = Nn + 250 Mn= 250 + 355 × 1,06 c) Pour ébudier le sens de variation de luns on va déterminer le signe de la déflérence: bour tout entier n > 0: n+1 Matri- Mn = 250+355X1,66 - (250+355×1,66^r) $y_{m+1} - y_{m+1} = \frac{355 \times 1,66}{255 \times 1,06} - \frac{355 \times 1,06}{255 \times 1,06}$ M_{M+1}-M_m= 355 (1,06^{m+1}-1,06) MM-1-Mm= 355x 1,06 mx (1,06-1) Mmts-Mm= 355×1,66m×0,06 den c Mmts - Um > 0 donc la suite (un) est croissanté

Remarque: La suite (Nn) est geomètreque de premier terné No > 0 el-de raison 1,06 > 1 D'après une propriété du cours, (Nn) est croissante. Donc pour tout entier m>0: M_{m+1} danc Non-250 / Non-250 done Mm+1>Mm danc la suite (un) est craissante. d) un= 1,66 x 355 +250 brarg sesse n' meder slaver brarg sesse n' meder elberg a (nu) etime el eng tib no, pour limite + 00. Che modèle n'est per réalists.

- **d.** Que peut-on dire des valeurs de u_n lorsque n devient très grand? Le modèle est-il réaliste?
- e. Lorsque le niveau du lac dépasse 10 m, l'équipe d'entretien doit agrandir l'ouverture des vannes du barrage.

Compléter la fonction seuil () ci-dessous afin qu'elle retourne le nombre de jours au bout duquel la première date d'intervention des techniciens sera nécessaire.

Page 5/11

http://frederic-junier.org/

Suites Partie 2

Première

Algorithme de seuil

```
Fonction seuil(4):

n ← 0

u ← 605

Tant que 从 ∠.1600

u ← 1,66x → 15

n ← n + 1

Retourne n
```

Python

```
def seuil(♠):

n = 0

u = 605

while M = 1000

u = 1.66 ** M + 1

return n
```

seriel() rensoie le plus patit entier n bel que um > 10 métius Un = 355 x 1,06 + 250 formulo directe (Mm+n = 1,06 mm + 15 formulo de récursante Mo-605 cm

Question 1:

La suite définie par $u_n = 0.8n$ est

arithmétique de raison 0,8

géométrique de raison 0,8

ni arithmétique, ni géométrique

ルm= leo+ ス×M avec uo= 0 el r= 98

Question 2:

La suite définie par $u_n = 0.8^n$ est

arithmétique de raison 0,8

géométrique de raison 0,8

ni arithmétique, ni géométrique

Je reviens

	Question 3:	
	La suite définie par $u_n = e^{3+n}$ est	
	ni arithmétique, ni géométrique	
	arithmétique	
	géométrique	
	Je reviens	
	In=e==exe=Moxq mc (un) géométrique e raijon q=e et Mo=er	
	lm=e=exe=Moxq	
	7	
<u>d</u>	nc (un) geométrique	
<u>)</u>	e raison q = e et Mo= es	
	Question 4:	
	La suite définie par u _n = e ⁻²ⁿ est	
	arithmétique	
	géométrique	
	ni arithmétique, ni géométrique	
	Je reviens	
	-5W	
	M= M3× d = 6	
	$\left(\frac{-2}{2}\right)^{M}$	•
	$\mathcal{A}_{m} = (e) \qquad (e) = e$	
	7	
	(Un) géométrique de raison e^2	
	'	

	Question 5 : Q5	
	Une suite $ig(u_nig)$ est croissante à partir du rang 0 si	
	\square $u_0 \leqslant u_1$	
	\swarrow pour tout entier $n_{\geqslant}0$ on a $u_{n+1}{\geqslant}u_n$	
		~>1, M _{m-1} ≤ M~
	\square pour tout entier $n_{\geqslant}0$ on a $u_0{\leqslant}u_n$	(=> 4~>0, U_
•	Jeceviens	•
Long M	exemple n= (-1) n+1 = { on sin toil n= (-1) entier n > 0,	<u>.</u>
Pa	en tout entier n > 0,	re Cun
(0		0 2/4//
	Rque:	
ſ	Di (un) croissante à joutin	O oner W
	Si (un) voissante à rentir	>0, u _ Jua.
	V A> D (A) is	mplique B)
,	, II ,	indoctore D
	a réciproque (B => F	1) ex faces.
	•	V

Cours, adiretel 1.

₼ Activité 1

Dans un pays de population constante égale à 120 millions, les habitants vivent soit en zone rurale, soit en ville. Les mouvements de population peuvent être modélisés de la façon suivante :

10% Mm

- en 2010, la population compte 90 millions de ruraux et 30 millions de citadins;
- chaque année, 10 % des ruraux émigrent à la ville;
- chaque année, 5% des citadins émigrent en zone rurale.

Pour tout entier naturel n, on note:

Ruraux 1

- u_n la population en zone rurale, en l'année 2010 + n, exprimée en millions d'habitants;
- ν_n la population en ville, en l'année 2010 + n, exprimée en millions d'habitants.

On a donc $u_0 = 90$ et $v_0 = 30$.

1. Traduire le fait que la population totale est constante par une relation liant u_n et v_n . $\mathcal{L}_n + \mathcal{L}_n = \mathcal{L}_n + \mathcal{L}_n = \mathcal{$

On utilise un tableur pour visualiser l'évolution des suites (u_n) et (v_n).

Quelles formules peut-on saisir dans les cellules B3 et C3 qui, recopiées vers le bas, permettent d'obtenir la feuille de calcul ci-dessous?

	A	В	С
1	n	Population en zone rurale	Population en ville
2	0	90	30
3	1	82,5	37,5
4	2	76,125	43,875

		***	***
59	57	40,005	79,995
60	58	40,004	79,996
61	59	40,003	79,997
62	60	40,003	79,997
63	61	40,002	79,998

- 3. Quelle conjecture peut-on faire concernant l'évolution à long terme de cette population?
- Démontrer que pour tout entier naturel n, u_{n+1} = 0,85u_n + 6.
- **5.** On considère la suite (w_n) , définie par : $w_n = u_n 40$, pour tout entier naturel n.
 - a. Démontrer que (w_n) est une suite géométrique de raison 0,85.
 - **b.** En déduire l'expression de w_n puis de u_n en fonction de n.
 - c. Déterminer l'expression de v_n en fonction de n.
- 6. Valider ou invalider la conjecture effectuée à la question 3.

On a don: Nn - 80 - 50 X0,85 et- Mm = 50×0,85 + 40 your tout entier n >0

2.2 Limite finie

🙉 Définition 2

• Une suite (u_n) converge vers un réel ℓ si les termes u_n deviennent aussi proches que l'on veut de ℓ dès que n est assez grand.

 $\lim_{n\to+\infty}u_n=\ell$ et on dit que (u_n) a pour limite ℓ . On note

 Plus formellement, une suite (un) converge vers un réel ℓ si pour tout réel a > 0, il existe seuil na à partir duquel la distance entre u_n et ℓ devient inférieure à a.

Avec des quantificateurs, on formule ainsi : pour tout réel a > 0, il existe un entier n_a , tel que pour tout entier $n \ge n_a$, $|u_n - \ell| < a$.

 On donne ci-dessous trois représentations graphiques de suites de limite finie, qui convergent toutes vers 1.

Pour chacune des suites définies ci-dessous, conjecturer avec le mode suite de la calculatrice ou avec une fonction écrite en Python, si elle possède une limite finie.

1.
$$\forall$$
 n ∈ \mathbb{N} , $u_n = 4 - 0, 5^n$

2.
$$\forall n \in \mathbb{N}, \ \nu_n = 4 + 10 \times (-0,5)^n$$

3.
$$u_0 = 10$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = -0.5u_n + 1$

4.
$$u_0 = 100000$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = -0.5u_n + 1$

5.
$$u_0 = 0.0001$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = 2u_n + 1$

6.
$$u_0 = 10$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = \sqrt{2u_n}$

7.
$$u_0 = 0.8$$
 et $\forall n \in \mathbb{N}, u_{n+1} = 2u_n(1 - u_n)$

8.
$$u_0 = 0.8$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = 0.5 u_n (1 - u_n)$

9.
$$u_0 = 0.8$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = 2.5 u_n (1 - u_n)$

10.
$$u_0 = 0.8$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = 3.5 u_n (1 - u_n)$

Emulation Nummorks

Simulabais avec la cabulatrice

1) un= 4-050

On pout Conjecturer que lim un=4

2) Non=4+10×(-05) lim Non=4

31 No=10 Mm+1=-0,5 Mm+1

lim un = 2

Mo= 100000 Mm+1=-0,5Mn+1

lim en = 2 n->+0 3 Si on note l'alimite et

la suite (un), en passan

a la limite dans untre-05,4m+1

on a: l= -0,5l+1