1. Поняття функції Дірака, слабка збіжність

Озн. Узагальнена дельта-функція Дірака, функція яка задовольняє умові: $\forall \varphi \in D(R^1) \int\limits_{-\infty}^{+\infty} \delta(x) \varphi(x) dx = \varphi(0)$

Під похідною порядку α узагальненої функції f(x) ми розуміємо лінійний неперервний функціонал значення якого обчислюються за формулою

$$(-1)^{|\alpha|}\int\limits_{-\infty}^{+\infty}f(x)\cdot D^{\alpha}\varphi(x)dx=\int\limits_{-\infty}^{+\infty}D^{\alpha}f(x)\cdot \varphi(x)dx$$
 , де $\varphi(x)\in D(R^n)$, $f(x)\in L_1^{loc}(R^n)$, a

$$D^{\alpha}f = \frac{\partial^{\alpha_1\alpha_2...\alpha_n}f(x)}{\partial x^{\alpha_1}\partial x^{\alpha_2}...\partial x^{\alpha_n}}, |\alpha| = \alpha_1 + \alpha_2 + ... + \alpha_n$$

Таким чином δ - функцію Дірака можна визначити, як слабку границю послідовності функції $f_{\varepsilon}(x)$ на множині $D(R^1)$, що збігається до числа $\varphi(0)$.

Послідовність лінійних функціоналів $I_n(x)$ слабко збігається, якщо для будь-якого $x \in X$ числова послідовність $I_n(x)$ має границю (скінченна).

2. Узагальнені функції, визначення, приклади, сингулярні та регулярні узагальнені функції.

Озн. Під узагальненою ф-єю f будемо розуміти довільний лінійний неперервний функціонал $< f, \varphi>$, який визначений для будь-якої функції $\varphi(x) \in D(R^n)$.

Під регулярною узагальненою ф-єю f , будемо розуміти лін.непер. функціонал $\int\limits_{-\infty}^{+\infty} f(x) \cdot \varphi(x) dx$ заданий на множині пробних функцій $D(R^n)$, де $f(x) \in L_1^{loc}(R^n)$

 $L_1^{loc}(R^n)$ -клас локально інтегрованих функцій, тобто $orall K \subset R^n, \exists \int\limits_K |f(x)| dx$, де K-компакт.

Усі інші функції, які не можна представити у вигляді $\int\limits_{-\infty}^{+\infty} f(x) \cdot \varphi(x) dx$ наз. сингулярними.

3. Диференціювання узагальнених функцій, приклади обчислення похідних.

Розглянемо узагальнену функцію $P_{\overline{(x-a)^2}}$, яка співпадає на усій числовій прямій з функцією $\frac{1}{\overline{(x-a)^2}}$ за винятком точки a і визначає лінійний неперервний функціонал, який діє за правилом

$$< P \frac{1}{\left(x-a\right)^{2}}, \psi > = V.p. \int_{-\infty}^{\infty} \frac{\psi(x) - \psi(a)}{x-a} dx = \lim_{\varepsilon \to 0} \left(\int_{-\infty}^{a-\varepsilon} \frac{\psi(x) - \psi(a)}{x-a} dx + \int_{a+\varepsilon}^{\infty} ... dx \right)$$

Покажемо, що $\left(P\frac{1}{x-a}\right)' = -P\frac{1}{\left(x-a\right)^2}$ з точки зору узагальнених функцій.

Дійсно

$$\left\langle \left(P\frac{1}{x-a}\right)', \psi \right\rangle = -\left\langle \left(P\frac{1}{x-a}\right), \psi' \right\rangle = -\lim_{\varepsilon \to 0} \left(\int_{-\infty}^{a-\varepsilon} \frac{\psi'(x)}{x-a} dx + \int_{a+\varepsilon}^{\infty} \frac{\psi'(x)}{x-a} dx \right) =$$

$$-\lim_{\varepsilon \to 0} \left(\int_{-\infty}^{a-\varepsilon} \frac{d\left(\psi(x) - \psi(a)\right)}{x-a} + \int_{a+\varepsilon}^{\infty} \frac{d\left(\psi(x) - \psi(a)\right)}{x-a} \right) =$$

$$-\lim_{\varepsilon \to 0} \left(\frac{\left(\psi(x) - \psi(a)\right)}{x-a}\right|_{-\infty}^{a-\varepsilon} + \frac{\left(\psi(x) - \psi(a)\right)}{x-a}\right|_{a+\varepsilon}^{\infty} + \int_{-\infty}^{a-\varepsilon} \frac{\left(\psi(x) - \psi(a)\right)}{\left(x-a\right)^{2}} + \int_{a+\varepsilon}^{\infty} \frac{\left(\psi(x) - \psi(a)\right)}{\left(x-a\right)^{2}} dx - \lim_{\varepsilon \to 0} \left(\frac{\left(\psi(x) - \psi(a)\right)}{\left(x-a\right)^{2}} dx + \int_{a+\varepsilon}^{\infty} \frac{\left(\psi(x) - \psi(a)\right)}{\left(x-a\right)^{2}} dx - \lim_{\varepsilon \to 0} \left(\frac{\psi(a-\varepsilon) - \psi(a)}{-\varepsilon} - \frac{\psi(a+\varepsilon) - \psi(a)}{\varepsilon}\right) =$$

$$-V.p. \int_{-\infty}^{\infty} \frac{\left(\psi(x) - \psi(a)\right)}{\left(x-a\right)^{2}} dx = -\left\langle P\frac{1}{\left(x-a\right)^{2}}, \psi \right\rangle$$

4. Поверхнева функція Дірака.

Узагальненням точкової функції Дірака є так звана поверхнева функція Дірака, яку можна визначити як лінійний неперервний функціонал $<\delta_{S}, \varphi>= \iint_{S} \varphi(x) dx$ Ця узагальнена функція може бути

інтерпретована як щільність розподілу зарядів на поверхні $\, S \, . \,$ Потенціал електростатичного поля можна записати у вигляді

$$W(x) = <\mu(y)\delta_{_{S}}(y), \frac{1}{4\pi|x-y|}> = \iiint_{R_{_{3}}}\mu(y)\delta_{_{S}}(y)\frac{1}{4\pi|x-y|}dy =$$
 $= \iint_{S} \frac{\mu(y)dy}{4\pi|x-y|}.$ Легко бачити, що $W(x)$ представляє

собою потенціал електростатичного поля, утворений зарядженою поверхнею S і називається потенціалом простого шару.

5. Використання узагальнених функцій для моделювання зосереджених факторів і розподілів. Приклад 1 Знайти $\theta'(x)$, де $\theta(x) = \begin{cases} 1, & x > 0 \\ 0, & x < 0 \end{cases}$ - функція Хевісайда.

Розглянемо наступні рівності:

$$<\theta', \varphi> = -\int\limits_{-\infty}^{\infty} \theta(x) \varphi'(x) dx = -\int\limits_{0}^{\infty} \varphi'(x) dx = \varphi(0) = <\delta, \varphi>$$
 . Таким чином можна записати $\theta'(x) = \delta(x)$.

Приклад 2 Знайти $\delta^{\scriptscriptstyle{(2)}}(x)$

$$<\delta^{(2)}, \phi> = <\delta, \phi^{(2)}> = \phi^{(2)}(0).$$

Приклад 3. f(x) - кусково неперервно диференційована функція, яка має в деякій точці \boldsymbol{x}_0 розрив першого роду.

$$\langle f', \varphi \rangle = -\int_{-\infty}^{\infty} f(x)\varphi'(x)dx = -\int_{-\infty}^{x_0} f(x)\varphi'(x)dx - \int_{x_0}^{\infty} f(x)\varphi'(x)dx =$$

$$-f(x_0 - 0)\varphi(x_0) + f(x_0 + 0)\varphi(x_0) + \int_{-\infty}^{x_0} f'(x)\varphi(x)dx + \int_{x_0}^{\infty} f'(x)\varphi(x)dx =$$

$$\varphi(x_0)[f(x_0)] + \int_{-\infty}^{\infty_0} f(x)\varphi'(x)dx = \int_{-\infty}^{\infty} ([f(x_0)]\delta(x - x_0) + \{f'(x)\})\varphi(x)dx$$

Де $[f(x_0)] = f(x_0 + 0) - f(x_0 - 0)$. $\{f'(x)\}$ - локально інтегрована функція, яка співпадає з звичайною похідною функції f(x) в усіх точках де вона існує.

Таким чином для функції, яка має скінчену кількість точок розриву першого роду має місце така формула обчислення похідної:

$$f'(x) = \{f'(x)\} + \sum_{i} [f(x_i)] \delta(x - x_i)$$

6. Поняття носія та порядку узагальнених функцій.

$$\omega_{\varepsilon}(x) = \begin{cases} C_{\varepsilon} e^{-\frac{\varepsilon^{2}}{\varepsilon^{2} - |x|^{2}}}, & |x| \leq \varepsilon \\ 0, & |x| > \varepsilon \end{cases}$$

Означення. Будемо говорити, що узагальнена функція f має порядок сингулярності (або просто порядок) $\leq j$, якщо

$$f = \sum_{|\alpha| \le j} D^{\alpha} g_{\alpha}, \ g_{\alpha} \in L^{1}_{loc}(\Omega)$$
 (1).

Якщо число j у формулі (1) неможливо зменшити, то говорять що порядок узагальненої функції f дорівнює j.

7. Згортка та регуляризація узагальнених функцій

Нехай f(x),g(x) дві локально інтегровані функції в R^n . При цьому функція $h(x)=\iiint\limits_{\mathbb{R}^n} \left|g(y)f(x-y)\right|dy$ буде теж локально інтегрована в R^n .

Згорткою f * g цих функцій будемо називати функцію $(f * g)(x) = \iiint_{R^n} f(y)g(x-y)dy = \iiint_{R^n} g(y)f(x-y)dy = (g * f)(x)$

Функцію $f_{\varepsilon}(x) = (f * \omega_{\varepsilon})(x)$ будемо називати регуляризацією узагальненої функції f .

8. Визначення фундаментального розвязку основних диференціальних операторів

Узагальнені функції $q(x), \varepsilon(x,t), \theta(x,t)$ - назив. фундамент. розв'язками опер. Гельмгольца, теплопровідності та хвильового відповідно, якщо вони задовольняють диф. рівняння

(I), (II), (III) Відповідно :
$$Aq(x) = -\delta(x)$$
 $x \in \mathbb{R}^n$ (I)
$$L\varepsilon(x,t) = -\delta(x) \cdot \delta(t) \qquad x \in \mathbb{R}^n, t \in \mathbb{R}^n \text{ (II)}$$

$$H\theta(x,t) = -\delta(x) \cdot \delta(t) \qquad x \in \mathbb{R}^n, t \in \mathbb{R}^n \text{ (III)}$$

де відновідно оператори $Au = (\Delta + k^2)u$ - еліптичний опер.(опер. Гельмгольца)

$$Lu=(a^2\Delta-\frac{\partial}{\partial t})u$$
 - опер. теплопровідності $Hu=(a^2\Delta-\frac{\partial^2}{\partial t^2})u$ - хвильовий опер.

Відповідні р-ння (I), (II), (III) треба розглядати у сенсі узагальнених ф-й, а саме:

$$\int_{-\infty}^{+\infty} q(x)(\Delta + k^{2})\varphi(x)d = -\varphi(0) \qquad \forall \varphi \in D(R^{n})$$

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \varepsilon(x,t)(a^{2}\Delta - \frac{\partial}{\partial t})\varphi(x,t)dxdt = -\varphi(0,0) \qquad \forall \varphi \in D(R^{n+1})$$

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \theta(x,t)(a^{2}\Delta - \frac{\partial^{2}}{\partial t^{2}})\varphi(x,t)dxdt = -\varphi(0,0) \qquad \forall \varphi \in D(R^{n+1})$$

9. Визначення функції Гріна основних крайових задач для еліптичного рівняння

представлення розвязку

Оператор Гельмгольца – еліптичний тип рівняння

$$\begin{cases} \Delta U + K^2 U = -F(x), x \in \Omega \\ l_i U \mid_{x \in S} = f(x) \end{cases}$$

 $l_1U = U$ - гранична задача Діріхле

$$l_2 U = rac{\partial U}{\partial n}$$
 - гранична задача Неймана

$$l_3U=rac{\partial U}{\partial n}+lpha U$$
 - гранична задача Ньютона

ОЗН.Функцією Гріна рівняння Гельмгольца наз. узагальнена функція $G_i(x,\xi)$, яка задовольняє граничній задачі: $\Delta_x G_i(x,\xi) + K^2 G_i(x,\xi) = -\delta(x-\xi), x,\xi \in \Omega$ $l_i G_i(x,\xi) \mid_{x \in S} = 0, \ i = 1,2,3$ -номери крайової задачі.

1) Гранична задача Діріхле i=1 , $G_{\rm I}(x,\xi)|_{x\in S}=0$, $U|_{S}=f$

Розвязок :
$$U(x) = -\int_S \frac{\partial G_1(x,\xi)}{\partial n_\xi} f(\xi) dS + \int_\Omega G_1(x,\xi) F(\xi) d\Omega$$

2) Гранична задача Неймона i=2,
$$\frac{\partial G_2(x,\xi)}{\partial n_{\xi}}|_{x\in S}=0$$
 , $\frac{\partial U}{\partial n}|_{S}=f$

Розвязок :
$$U(x) = \int\limits_S G_2(x,\xi) f(\xi) dS + \int\limits_\Omega G_2(x,\xi) F(\xi) d\Omega$$

3) Гранична задача Ньютона i=3,
$$(\frac{\partial G_3(x,\xi)}{\partial n_\xi} + \alpha G_3(x,\xi))|_{x\in S} = 0$$
 , $(\frac{\partial U}{\partial n} + \alpha U)|_S = f$

Розвязок :
$$U(x) = \int\limits_S G_3(x,\xi) f(\xi) dS + \int\limits_\Omega G_3(x,\xi) F(\xi) d\Omega$$

$$G_i(x,\xi)=q(x-\xi)+g_i(x,\xi)$$
 - функція Гріна, $q(x-\xi)$ - фундам. розв., $g_i(x,\xi)$ - регулярна функція

$$\begin{cases} (\Delta_x + K^2) g_i(x, \xi) = 0, x, \xi \in \Omega \\ l_i g_i(x, \xi) \big|_{x \in S} = -l_i q(x - \xi) \big|_{x \in S} \end{cases}$$

10. Визначення ф-ї Гріна основних граничних задач для параболічного рння. Представлення розв'язку

Параболічними є рівняння теплопровідності

$$\begin{cases} Lu = (a^2\Delta - \frac{\partial}{\partial t})u = -F(x,t) \\ l_iu\big|_{x \in S} = f_i(x,t) & x \in \Omega, t > 0 \text{ - Ochoвна гранична задача для} \\ u\big|_{t = 0} = u_0(x) & \end{cases}$$

опер.теплопровідності

$$\left|l_1 u\right|_S = \left|u\right|_S$$
 - гранична задача Діріхле

$$l_2 u\big|_S = \frac{\partial u}{\partial n}\Big|_S$$
 - гранична задача Неймана $l_3 u\big|_S = \frac{\partial u}{\partial n} + \alpha(x,t)u\big|_S$ - гранична задача Ньютона

Функцією Гріна $E_i(x,\xi,t- au)$ називають функцію, що задовольняє такі рівняння:

$$\begin{cases} a^{2} \Delta_{x} E_{i}(x, \xi, t - \tau) - \frac{\partial E_{i}(x, \xi, t - \tau)}{\partial t} = -\delta(x - \xi)\delta(t - \tau), & x, \xi \in \Omega \quad t - \tau > 0 \\ l_{i} E_{i}(x, \xi, t - \tau)\Big|_{x \in S} = 0, & t - \tau > 0 \\ E_{i}(x, \xi, t - \tau)\Big|_{t - \tau \to 0+} = 0, & x, \xi \in \Omega \end{cases}$$

Розв'язок записується у наступному вигляді

$$U(x,t) = \int_{0}^{t} \int_{\Omega} E_{i}(x,\xi,t-\tau) F(\xi,\tau) d\Omega_{\xi} d\tau + \int_{\Omega} E_{i}(x,\xi,t) U_{0}(\xi) d\Omega_{\xi} + \int_{\Omega} e^{it} \int_{0}^{t} \int_{S} \frac{\partial E_{i}(x,\xi,t-\tau)}{\partial n_{\xi}} f(\xi) dS_{\xi} d\tau, \quad i = 1$$

$$+ \begin{cases} a^{2} \int_{0}^{t} \int_{S} E_{i}(x,\xi,t-\tau) f(\xi) dS_{\xi} d\tau, & i = 2 \\ a^{2} \int_{0}^{t} \int_{S} E_{i}(x,\xi,t-\tau) f(\xi) dS_{\xi} d\tau, & i = 3 \end{cases}$$

Властивість ф-ї Гріна для парабол. опер. $E_i(x,\xi,t) = E_i(\xi,x,t)$

11. Визначення ф-ї Гріна основних крайових задач для гіперболічного р-ння. Представлення розв'язку.

Хвильовий оператор є прикладом гіперболічного рівняння.

$$\begin{cases} a^2\Delta u - \frac{\partial^2 u}{\partial t^2} = -F\left(x,t\right), & x \in \Omega, t > 0 \\ l_i u\big|_{x \in S} = -f\left(x,t\right), & \partial e \, l_1 u = u, l_2 u = \frac{\partial u}{\partial n}, l_3 u = \frac{\partial u}{\partial n} + \alpha u, & i = \overline{1,3} - \text{номер крайової задачі} \\ u\big|_{t = 0} = u_0\left(x\right), & \left.\frac{\partial u}{\partial t}\right|_{t = 0} = u_1\left(x\right) \end{cases}$$

Основна гранична задача для хвильового опер.

Функцією Гріна $\theta_i(x,\xi,t-\tau)$ називають функцію, що задовольняє 1-шу, 2-гу або 3-тю граничну задачу відповідно, та задовольняє рівнянню

$$\begin{cases} H\theta_{i}(x,\xi,t-\tau) = a^{2}\Delta_{\xi}\theta_{i}(x,\xi,t-\tau) - \frac{\partial^{2}\theta_{i}(x,\xi,t-\tau)}{\partial t^{2}} = -\delta(x-\xi)\delta(t-\tau) \\ l_{i}\theta_{i}(x,\xi,t-\tau)\big|_{x\in\mathcal{S}} = 0, \quad \forall t-\tau > 0 \\ \theta_{i}(x,\xi,t-\tau)\big|_{t-\tau\leq 0} = 0, \quad \forall x,\xi\in\Omega \\ \frac{\partial\theta_{i}(x,\xi,t-\tau)}{\partial t}\bigg|_{t-\tau\leq 0} = 0 \end{cases}$$

Інтегральне представлення розв'язку:

$$\begin{split} &u\left(x,t\right) = \int\limits_{0}^{t} \int\limits_{\Omega} w_{i}\left(x,\xi,t-\tau\right) F\left(\xi,\tau\right) d\Omega_{\xi} d\tau + \int\limits_{\Omega} w_{i}\left(x,\xi,t\right) u_{1}\left(\xi\right) d\Omega_{\xi} - \\ &- \int\limits_{\Omega} \frac{\partial w_{i}\left(x,\xi,t-\tau\right)}{\partial \tau} \bigg|_{\tau=0} u_{0}\left(\xi\right) d\Omega_{\xi} + \\ &+ \begin{cases} -a^{2} \int\limits_{0}^{t} \int\limits_{S} \frac{\partial w_{i}\left(x,\xi,t-\tau\right)}{\partial n_{\xi}} f\left(\xi,\tau\right) dS_{\xi} d\tau, & i=1, \\ a^{2} \int\limits_{0}^{t} \int\limits_{S} w_{i}\left(x,\xi,t-\tau\right) f\left(\xi,\tau\right) dS_{\xi} d\tau, & i=2,3 \end{cases} \end{split}$$

Вона є симетричною і по аргументам x, ξ так і по $t-\tau$

$$\theta_i(x,\xi,t-\tau) = \theta_i(\xi,x,t-\tau)$$
$$\theta_i(x,\xi,t-\tau) = \theta_i(\xi,x,\tau-t)$$

12. Задача Коші для рівняння теплопровідності, представлення розв'язку задачі Коші

Рівняння теплопровідності має наступний вигляд:

$$\begin{cases} a^2 \Delta u(x,t) - \frac{\partial u(x,t)}{\partial t} = -F(x,t), & x \in \mathbb{R}^N, t > 0 \\ u(x,0) = u_0(x), & x \in \mathbb{R}^N - no \text{чатков} i \text{ умов} u \end{cases}$$

Розв'язок задачі Коші для рівняння теплопровідності має наступний вигляд:

$$u(x,t) = \int_{0}^{t} \int_{R^{N}} \varepsilon(x-\xi,t-\tau) F(\xi,\tau) d\xi d\tau + \int_{R^{N}} \varepsilon(x-\xi,t) u_{0}(\xi) d\xi$$

13. Задача Коші для рівняння коливання струни, представлення розвязку задачі Коші.

$$\begin{cases} a^2 \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial t^2} = -F(x,t) \\ u(x,0) = \varphi(x), & -\text{ задача Коші для рівняння коливання струни.} \\ u_t|_{t=0} = \psi(x) \\ t>0, -\infty < x < +\infty \end{cases}$$

Таким чином остаточно можемо записати формулу Даламбера, яка дає розв'язок задачі Коші для рівняння коливання струни.

$$u(x,t) = \frac{u_0(x-at) + u_0(x+at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} v_0(\xi) d\xi + \frac{1}{2a} \int_{0}^{t} \int_{x-a(t-\tau)}^{x+a(t-\tau)} F(\xi,\tau) d\xi d\tau$$

14. Задача Коші для рівняння коливання мембрани, представлення розв'язку, формула Пуассона.

Будемо розглядати задачу Коші для двовимірного або тривимірного хвильового рівняння:

$$a^{2}\Delta u(x,t) - u_{tt}(x,t) = -F(x,t), t > 0, x \in \mathbb{R}^{n}, n = 2,3$$

 $u(x,0) = u_{0}(x), u_{t}(x,0) = v_{0}(x)$

Зводячи усі три інтеграли в одну формулу отримаємо формулу Пуассона, яка дає розв'язок задачі Коші коливання мембрани

$$u(x,t) = \frac{1}{2a\pi} \int_{0}^{t} \iint_{|\xi-x| < a(t-\tau)} \frac{F(\xi,\tau)d\xi d\tau}{\sqrt{a^{2}(t-\tau)^{2} - \left|\xi-x\right|^{2}}} + \frac{\partial}{\partial t} \iint_{|\xi-x| < at} \frac{u_{0}(\xi)d\xi}{2a\pi\sqrt{a^{2}t^{2} - \left|\xi-x\right|^{2}}} \left(\frac{1}{2a\pi} \iint_{|\xi-x| < at} \frac{v_{0}(\xi)d\xi}{\sqrt{a^{2}t^{2} - \left|x-\xi\right|^{2}}}, \ t > 0, \ x \in \mathbb{R}^{2}\right)$$

15. Фундаментальні розв'язки рівнянь Лапласа й Гельмгольца.

Для рівняння Лапласа $\Delta q_0(x) = -\delta(x)$ фундаментальним розвязком є $q_0(x) = \frac{1}{4\pi|x|}, x \in R^3$, $\forall m: q_0(x) = \frac{1}{\sigma_n|x|^{m-2}}, x \in R^m$, $\partial e \, \sigma_{\rm n} - n$ лоща поверхні $\, {\rm n} - s$ имірної сфери

Для рівняння Гельмгольца $(\Delta + k^2)q_k(x) = -\delta(x)$ фундаментальним розвязком є $q_k(x) = \frac{\exp\left\{\pm ik|x|\right\}}{4\pi|x|}, x \in R^3$ тобто $(\Delta + k^2)q_k(x) = 0, x \neq 0$.

16. Фундаментальний розвязок рівняння теплопровідності.

Для оператора теплопровідності $\left(a^2\Delta - \frac{\partial}{\partial t}\right)\varepsilon\left(x,t\right) = -\delta\left(x\right)\delta\left(t\right); \ x,t \in R^3 \times R^1$ фундаментальним розвязком є $\varepsilon(x,t) = \frac{\chi(t)}{\left(2a\sqrt{\pi t}\right)^n} \exp\left\{\frac{-\left|x\right|^2}{4a^2t}\right\}$, де $\chi(t) = \begin{cases}1,t>0\\0,t<0\end{cases}$

17. Фундаментальний розвязок хвильового оператора для $\mathit{R}^{\scriptscriptstyle 1}$ та $\mathit{R}^{\scriptscriptstyle 2}$

Означення 6 Функцію $\Theta_i(x,\xi,t-\tau)$ будемо називати функцією Гріна першої, другої або третьої граничної задачі хвильового рівняння в області Ω з границею S і t>0, якщо вона може бути представлена у вигляді $\Theta_i(x,\xi,t-\tau)=\psi(x-\xi,t-\tau)+\theta_i(x,\xi,t-\tau)$, де перший доданок є фундаментальним розв'язком хвильового оператора, а другий є розв'язком наступної граничної задачі

$$a^{2} \Delta_{x} \theta_{i}(x, \xi, t - \tau) - \frac{\partial \theta_{i}(x, \xi, t - \tau)}{\partial t} = 0, \quad x, \xi \in \Omega, t, \tau > 0$$

$$\theta_{i}(x, \xi, t - \tau) \Big|_{t - \tau \le 0} = 0, \frac{\partial \theta_{i}(x, \xi, t - \tau)}{\partial t} \Big|_{t - \tau \le 0} = 0,$$

$$l_{i} \theta_{i}(x, \xi, t - \tau) \Big|_{x \in S} = -l_{i} \psi(x, \xi, t - \tau) \Big|_{x \in S}, \quad i = 1, 2, 3$$

18. Визначення гармонічної функції

ОЗН. Функція u(x) — гармонічна функція в відкритій області Ω , якщо $u \in C^2(\Omega)$ і задовольняє в кожній точці області Ω рівняння Лапласа $\Delta u = 0$.

Функція u(x) — гармонічна в точці x, якщо вона гармонічна в деякому околі цієї точки.

Функція u(x) — гармонічна в деякій замкненій області, якщо вона є гармонічною в ширшій відкритій області.

19. Регулярність на нескінченності, перетворення Кельвіна

Регулярними на нескінченності називаються функції, для яких виконується наступні 2 теореми :

Теорема: Якщо розмірність простору n=3, а ф-я u(x) — гармонічна в нескінченно віддаленій точці, то при $|x| \to \infty$ ф-я прямує до 0 як $\frac{1}{|x|}$ або

$$u(x) = O(\frac{1}{|x|}), \qquad \frac{\partial u}{\partial x_i} = O(\frac{1}{|x|^2}).$$

Теорема: Якщо розмірність простору n=2, а ф-я u(x) — гармонічна в нескінченно віддаленій точці, то при $|x| \to \infty$ ф-я $u(x) = O(1), a \frac{\partial u}{\partial x_i} = O(\frac{1}{|x|^2})$

Нехай функція u гармонічна за межами кулі $U(0,\mathbf{R})$, тоді функцію

$$v(y) = \left(\frac{R}{|y|}\right)^{n-2} u \left(\frac{R^2}{|y|^2} y\right)$$
 (5.15)

(в (5.15) використовується перетворення аргументу обернених радіус векторів $x = \frac{R^2}{|y|^2} y$ або обернене $y = \frac{R^2}{|x|^2} x$) будемо називати перетворенням

Кельвіна гармонічної функції u(x) n - вимірному евклідовому просторі.

20. Оператор Лапласа в циліндричній та сферичній системах координат.

Загальний вигляд оператора Лапласа в криволінійних координатах має вигляд:

$$\Delta u = \frac{1}{H_1 H_2 H_3} \left[\frac{\partial}{\partial q_1} \left(\frac{H_2 H_3}{H_1} \frac{\partial u}{\partial q_1} \right) + \frac{\partial}{\partial q_2} \left(\frac{H_1 H_3}{H_2} \frac{\partial u}{\partial q_2} \right) + \frac{\partial}{\partial q_3} \left(\frac{H_2 H_1}{H_3} \frac{\partial u}{\partial q_3} \right) \right]$$
(5.10)

Де
$$\begin{cases} \boldsymbol{H}_{1}^{2} = \left(\frac{\partial \varphi_{1}}{\partial \boldsymbol{q}_{1}}\right)^{2} + \left(\frac{\partial \varphi_{2}}{\partial \boldsymbol{q}_{1}}\right)^{2} + \left(\frac{\partial \varphi_{3}}{\partial \boldsymbol{q}_{1}}\right)^{2} \\ + \left(\frac{\partial \varphi_{3}}{\partial \boldsymbol{q}_{2}}\right)^{2} + \left(\frac{\partial \varphi_{3}}{\partial \boldsymbol{q}_{2}}\right)^{2} + \left(\frac{\partial \varphi_{3}}{\partial \boldsymbol{q}_{2}}\right)^{2} \\ + \left(\frac{\partial \varphi_{3}}{\partial \boldsymbol{q}_{2}}\right)^{2} + \left(\frac{\partial \varphi_{3}}{\partial \boldsymbol{q}_{2}}\right)^{2} + \left(\frac{\partial \varphi_{3}}{\partial \boldsymbol{q}_{3}}\right)^{2} \end{cases}$$

$$(5.11)$$

<u>Для сферичної системи координат</u> $q_1 = r, q_2 = \theta, q_3 = \phi$, Формули (5.9) мають вигляд $x = r \sin \theta \cos \phi, x = r \sin \theta \sin \phi, z = r \cos \theta, H_1 = 1, H_2 = r, H_3 = r \sin \theta$

Таким чином оператор Лапласа у сферичній системі координат матиме вигляд.

$$\Delta_{r,\varphi,\theta} u = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial u}{\partial r}) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial u}{\partial \theta}) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \varphi^2}$$
 (5.12)

Для циліндричної системи координат $q_1 = \rho, q_2 = \varphi, q_3 = z,$

Формули (5.9), (5.11) мають вигляд $x = \rho \cos \varphi$, $x = \rho \sin \varphi$, z = z

$$H_1 = 1, H_2 = \rho, H_3 = 1.$$

Оператор Лапласа в циліндричній системі координат має вигляд:

$$\Delta_{\rho,\varphi,z} \boldsymbol{u} = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \boldsymbol{u}}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 \boldsymbol{u}}{\partial \varphi^2} + \frac{\partial^2 \boldsymbol{u}}{\partial z^2}$$

21. Інтегральне представлення функцій класу та гармонічних функцій.

Для отримання інтегрального представлення функцій класу $C^2(\Omega)$ будемо використовувати другу формулу Гріна для оператора Лапласа.

$$\iiint_{\Omega} \left[v(x) \Delta u(x) - u(x) \Delta v(x) \right] dx = \iint_{S} \left[v(x) \frac{\partial u(x)}{\partial n} - u(x) \frac{\partial v(x)}{\partial n} \right] dS \tag{1}$$

В якості функції $\pmb{u}(\xi)$ оберемо довільну функцію $\pmb{C}^2(\Omega)$, а у якості \pmb{v} , фундаментальний розв'язок оператора Лапласа для тривимірного евклідового простору $\frac{1}{4\pi|x-\xi|}$

В результаті підстановки цих величин в (1) отримаємо

$$\iiint\limits_{\Omega} \left[\frac{1}{4\pi \left| x - \xi \right|} \Delta u(\xi) + u(\xi) \delta(x - \xi) \right] d\xi = \iint\limits_{S} \left[\frac{1}{4\pi \left| x - \xi \right|} \frac{\partial u(\xi)}{\partial n} - u(\xi) \frac{\partial}{\partial n} \frac{1}{4\pi \left| x - \xi \right|} \right] dS_{\xi}$$

Після обчислення другого доданку в лівій частині можемо записати формулу інтегрального представлення функцій класу ${m C}^2(\Omega)$.

$$u(x) = -\iiint_{\Omega} \frac{1}{4\pi |x - \xi|} \Delta u(\xi) d\xi + \iiint_{S} \left[\frac{1}{4\pi |x - \xi|} \frac{\partial u(\xi)}{\partial n} - u(\xi) \frac{\partial}{\partial n} \frac{1}{4\pi |x - \xi|} \right] dS_{\xi}$$
 (2)

У випадку коли функція u є гармонічною в області Ω то формула (2) прийме вигляд:

$$u(x) = \iint_{S} \left[\frac{1}{4\pi |x - \xi|} \frac{\partial u(\xi)}{\partial n} - u(\xi) \frac{\partial}{\partial n} \frac{1}{4\pi |x - \xi|} \right] dS_{\xi}$$
 (3)

3 формули (3) та (1) можна отримати деякі властивості гармонічних функцій:

Властивість 1 Гармонічна в області Ω функція u(x) має в кожній внутрішній точці області Ω неперервні похідні будь — якого порядку. Дійсно, оскільки $x \in \Omega$, $\xi \in S$, $x \neq \xi$, то для обчислення будь — якої похідної необхідно диференціювати підінтегральну функцію, яка має похідні будь - якого порядку:

$$\frac{\partial^{k_1+k_2+k_3} \mathcal{U}(x)}{\partial x_1^{k_1} \partial x_2^{k_2} \partial x_3^{k_3}} = \iint_{\mathcal{S}} \left[\frac{\partial^{k_1+k_2+k_3}}{\partial x_1^{k_1} \partial x_2^{k_2} \partial x_3^{k_3}} \frac{1}{4\pi |x-\xi|} \frac{\partial u(\xi)}{\partial n} - u(\xi) \frac{\partial^{k_1+k_2+k_3}}{\partial x_1^{k_1} \partial x_2^{k_2} \partial x_3^{k_3}} \frac{\partial}{\partial n_{\varepsilon}} \frac{1}{4\pi |x-\xi|} \right] dS_{\varepsilon}$$

Властивість 2 Якщо u(x) гармонічна функція в скінченій області Ω с границею S то має місце співвідношення $\iint_S \frac{\partial u}{\partial n} dS = 0$ (4)

Дійсно, у формулі (1) оберемо $v(x) \equiv 1$, тоді інтеграл в лівій частині і другий інтеграл правої частини перетворюється в нуль. В результаті чого отримаємо рівність (4).

22. Теорема про середнє значення гармонічної функції.

Теорема Нехай u(x) — гармонічна в кулі $U_{R}(\xi)$ та неперервна в замиканні цієї кулі. Тоді

$$u(\xi) = \frac{1}{\int dS} \int_{S_R(\xi)} u(x) dS_x = \frac{1}{4\pi R^2} \int_{S_R(\xi)} u(x) dS_x.$$

23. Принцип максимуму гармонічної функції, наслідки з нього.

Принцип. Якщо гармонічна в деякій зв'язній області Ω функція u(x), що є неперервною в замиканні цієї області, у внутрішній точці області набуває екстремального значення (max aбо min), то ця функція є тотожною константою.

Наслідки.

- 1. u(x)— гармонічна функція, що не дорівнює тотожно константі не досягає всередині скінченої області екстремального значення.
- 2. Неперервна в $\overline{\Omega}$ та гармонічна в Ω функція досягає екстремального значення на границі $S(\Omega)$.
- 3. Теорема Харнака. Нехай $\{u_{\scriptscriptstyle N}\}$ послідовність неперервних в $\overline{\Omega}$ та гармонічних в Ω функцій. Тоді, якщо послідовність $u_{\scriptscriptstyle N}$ рівном. збіг. на поверхні S, то $u_{\scriptscriptstyle N}$ рівном. збіг. в $\overline{\Omega}$ і існує u : $u=\lim_{N\to\infty}u_{\scriptscriptstyle N}$ гармонічна, $\forall\overline{\Omega'}\subset\Omega$ похідні будьякого порядку $u_{\scriptscriptstyle N}$ рівномірно збігаються до похідної u відповідного порядку.
- 4. Для неперервної в $\overline{\Omega}$ та гармонічної в Ω функції и виконується $|u(x)| \leq \max_{x \in S} |u(x)|$.
- 5. Нехай u(x), v(x) функції, гармонічні в області Ω , неперервні в $\overline{\Omega}$, $u(x) \le v(x), x \in S$ тоді $u(x) \le v(x), x \in \Omega$.

24. Теорема единості гармонічної функції з граничними умовами 1-го, 2-го роду

Теорема .Нехай u(x) - гармонічна функція, що приймає задані значення на S, тоді така функція єдина.

Нехай u(x) - регулярна на ∞ \mathbb{I} функція, що приймає задані значення на S , тоді така функція єдина.

Теорема. Нехай в області Ω існує функція u, що є заданою також на $\Omega^{\setminus} \mathbb{R}$ і регулярна на ∞ . Нехай також ця функція приймає на S задані значення своєї нормальної похідної. Тоді така функція визначається з точністю до адитивної константи, а в $\Omega^{\setminus} \mathbb{R}$ ця функція єдина.

25. Теорема єдиності гармонійної функції із граничними умовами третього роду.

Теор .Нехай u(x) - гармонічна функція, що приймає задані значення на S , тоді така функція єдина.

Нехай u(x) - регулярна на ∞ функція, що приймає задані значення на S , тоді така функція єдина.

Теорема. Нехай в області Ω існує функція u, що є заданою також на Ω і регулярна на ∞ . Нехай також ця функція приймає на S задані

значення своєї нормальної похідної. Тоді така функція визначається з точністю до адитивної константи, а в Ω \2 ця функція єдина.

26. Рівняння для функцій Бесселя дійсного аргументу, функції Бесселя першого та другого роду дійсного аргументу.

 $x^2y'' + xy' + (x^2 - v^2)y = 0$. v ϵ числовий параметр. рівняння називають рівнянням Бесселя порядку v. Першого роду $J_{-v}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{\Gamma(k-v+1)k!} \left(\frac{x}{2}\right)^{2k-v}$

Відмітимо, що визначення функції $J_{-\nu}(x)$ є коректною лише для не цілих значень параметру ν , оскільки визначення a_0 за формулою $a_0=\frac{1}{2^{\nu}\Gamma(\nu+1)}$ при $\nu=-n$ не має змісту, оскільки $\Gamma(0)=\Gamma(-1)=....\Gamma(-n)=\infty$.

$$N_n(x) = -\frac{1}{\pi} \sum_{k=0}^{n-1} \frac{(n-k-1)!}{k!} \left(\frac{x}{2}\right)^{2k-n} + \frac{2}{\pi} J_n(x) \ln \frac{x}{2} -$$
 Другого роду
$$\frac{1}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^k \left(\frac{x}{2}\right)^{2k+n}}{k!(k+n)!} \left[\Psi(k+n+1) + \Psi(k+1)\right]$$

дуже часто функцію Бесселя другого роду $N_{\nu}(x)$ називають функцією Вебера.

27. Властивості функцій Бесселя першого та другого роду дійсного аргументу.

• Важливою властивістю функцій Бесселя є асимптотичний характер поведінки цих функцій на нескінченості.

$$J_{\nu}(x) = \sqrt{\frac{2}{\pi x}}\cos(x - \frac{\nu\pi}{2} - \frac{\pi}{4}) + O\left(\frac{1}{x^{3/2}}\right), x \to \infty$$

$$N_{\nu}(x) = \sqrt{\frac{2}{\pi x}} \sin(x - \frac{\nu \pi}{2} - \frac{\pi}{4}) + O\left(\frac{1}{x^{3/2}}\right), x \to \infty$$

Останні формули свідчать про те, що функції Бесселя як першого так і другого роду мають злічену кількість нулів, тобто рівняння $J_{\nu}(x) = 0$ $N_{\nu}(x) = 0$ мають злічену кількість коренів, які для великих значень аргументу x асимптотично прямують до нулів тригонометричних функцій

$$\cos(x-\frac{v\pi}{2}-\frac{\pi}{4})=0,\ \sin(x-\frac{v\pi}{2}-\frac{\pi}{4})=0$$
. A самі функції Бесселя ведуть себе як $O\!\left(\frac{1}{\sqrt{x}}\right)\!,\ x\!\to\!\infty$

• Важливою властивістю функцій Бесселя першого та другого роду є рекурентні формули, яким задовольняють функції Бесселя

$$\frac{d}{dx}J_{\nu}(x) + \frac{v}{x}J_{\nu}(x) = J_{\nu-1}(x) \qquad \frac{d}{dx}J_{\nu}(x) - \frac{v}{x}J_{\nu}(x) = -J_{\nu+1}(x)$$

$$\frac{d}{dx}N_{\nu}(x) + \frac{v}{x}N_{\nu}(x) = N_{\nu-1}(x) \qquad \frac{d}{dx}N_{\nu}(x) - \frac{v}{x}N_{\nu}(x) = -N_{\nu+1}(x)$$

Виключаючи з двох співвідношень похідну, можна зв'язати між собою функції Бесселя трьох сусідніх порядків.

• Аналіз формул функцій Бесселя дійсного аргументу першого та другого роду показує, що при $x \to 0$ $J_n(x) \approx \frac{1}{n!} \left(\frac{x}{2}\right)^n, \ n = 0,1,2...$

$$N_n(x) \approx -\frac{(n-1)!}{\pi} \left(\frac{x}{2}\right)^{-n} \to \infty, \ N_0(x) = \frac{2}{\pi} \ln \frac{x}{2} \to \infty, \ x \to 0$$

28. Рівняння для функцій Бесселя уявного аргументу, функції Бесселя першого та другого роду уявного аргументу

Рівняння Бесселя уявного аргументу порядку $v: x^2y'' + xy' - (x^2 + v^2)y = 0$.

Першого роду уявного аргументу:
$$I_{\nu}(x) = \frac{J_{\nu}(ix)}{i^{\nu}} = \sum_{k=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{2k+\nu}}{k!\Gamma(k+\nu+1)}, \quad 0 < x < \infty$$

Функція $K_{\nu}(x)$ називають функцією другого роду уявного аргументу, або функцією Макдональда вона має наступний вигляд:

$$K_n(x) = -I_n(x)\ln\frac{x}{2} + \frac{1}{2}\sum_{k=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{n+2k}}{k!(k+n)!} \left\{ \Psi(k+1) + \Psi(k+n+1) \right\} + \frac{1}{2}\sum_{k=0}^{n-1} \frac{(-1)^k (n-k-1)!}{k!} \left(\frac{2}{x}\right)^{n-2k}$$

29. Властивості функцій Бесселя першого та другого роду уявного аргументу

• рекурентні співвідношення для функцій Бесселя уявного аргументу першого та другого роду:

$$\frac{d}{dx}I_{\nu}(x) - \frac{v}{x}I_{\nu}(x) = J_{\nu+1}(x) \qquad \frac{d}{dx}I_{\nu}(x) + \frac{v}{x}J_{\nu}(x) = J_{\nu-1}(x)$$

$$\frac{d}{dx}K_{\nu}(x) + \frac{v}{x}K_{\nu}(x) = -K_{\nu-1}(x) \quad \frac{d}{dx}K_{\nu}(x) - \frac{v}{x}K_{\nu}(x) = -K_{\nu+1}(x)$$

• Відмітимо також характер поведінки функцій Бесселя уявного аргументу при x = 0 та $x \to \infty$.

Виходячи з формул функції Бесселя уявного аргументу першого роду та другого роду можна зробити висновок, що $I_{\nu}(x) = O(x^{\nu}), x \to 0$

$$K_{\nu}(x) = O(x^{-\nu}), \nu > 0, K_{0}(x) = O(\ln(x)), x \to 0$$

$$I_{\nu}(x) \approx \sqrt{\frac{1}{2\pi x}} e^{x}$$
 $K_{\nu}(x) \approx \sqrt{\frac{\pi}{2x}} e^{-x}$ $x \to \infty$

30. Методи побудови функції Гріна для оператора Лапласа, на прикладі задачі Дірихле для півпростору.

Задача Дірихле для півпростору Розглянемо граничну задачу:

$$\Delta U(P) = -F(P), \ P \in \Omega = \{x, y, z, z > 0, -\infty < x, y < \infty\}$$

$$U(P)|_{P \in S} = f(P), \ S = \{x, y, z, z = 0, -\infty < x, y < \infty\}$$

Для знаходження розв'язку цієї задачі побудуємо функцію Гріна першої граничної задачі оператора Лапласа у півпросторі z>0.

В довільній точці P_0 верхнього півпростору розташуємо одиничний точковий заряд, потенціал якого обчислюється $\frac{1}{4\pi|P-P_0|}$, в нижньому півпросторі z<0, розташуємо компенсуючи заряди, так що би в кожній точці поверхні (площині z=0) сумарний потенціал електростатичного поля дорівнював нулю.

Користуючись принципом суперпозиції електростатичних полів, легко зрозуміти, що компенсація потенціалу заряду в точці P_0 відбудеться у випадку,

коли компенсуючий заряд розташувати дзеркально існуючому відносно площини $z\!=\!0$, а величину заряду обрати одиничну зі знаком мінус.

В результаті отримаємо сумарний потенціал електростатичного поля

$$\Pi(P) = \frac{1}{4\pi |P - P_0|} - \frac{1}{4\pi |P - \overline{P_0}|} = \frac{1}{4\pi \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}} - \frac{1}{4\pi \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z + z_0)^2}}$$
(1)

Легко перевірити, що $\prod_{p \in \mathcal{S}} = \frac{1}{4\pi\sqrt{(x-x_0)^2+(y-y_0)^2+(z_0)^2}} - \frac{1}{4\pi\sqrt{(x-x_0)^2+(y-y_0)^2+(z_0)^2}} \equiv 0$

Таким чином побудована функція (1) представляє собою функцію Гріна 31. Методи побудови функції Гріна для оператора Лапласа, на

прикладі задачі Неймана для півпростору.

Будемо розглядати граничну задачу

$$\Delta U(P) = -F(P), \ P \in \Omega = \{x, y, z, z > 0, -\infty < x, y < \infty\}$$
$$-\frac{\partial U(P)}{\partial z}\bigg|_{P \in S} = f(P), \ S = \{x, y, z, z = 0, -\infty < x, y < \infty\}$$

Для розв'язання цієї задачі побудуємо функцію Гріна другої граничної задачі оператора Лапласа для півпростору.

Для випадку умови другого роду тобто коли на площині z=0 виконується умова $\left.\frac{\partial G_2(P,P_0)}{\partial n_P}\right|_{P\in S}=0\,,\,$ її можна інтерпретувати як рівність нулю потоку електростатичного поля крізь площину $z=0\,.$

Це означає, що поле внутрішнього одиничного заряду треба компенсувати

полем зовнішніх зарядів. Це можна зробити, якщо дзеркально одиничному позитивному заряду в точці P_0 розташувати заряд додатного знаку в симетричній точці $\overline{P_0}$. Таким чином сумарний потенціал двох зарядів, а значить і функцію Гріна можна записати у вигляді:

$$\Pi = \frac{1}{4\pi |P - P_0|} + \frac{1}{4\pi |P - \overline{P_0}|} = \frac{1}{4\pi \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}} + \frac{1}{4\pi \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z + z_0)^2}} = G_2(P, P_0)$$

Перевіримо, що побудована функція Гріна задовольняє граничній умові

$$\frac{\partial G_2(P, P_0)}{\partial n_P}\Big|_{P \in S} = -\frac{\partial}{\partial z} \frac{1}{4\pi} \left[\frac{1}{4\pi \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}} + \frac{1}{4\pi \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z + z_0)^2}} \right]_{z=0} = \frac{1}{4\pi} \left[\frac{z - z_0}{4\pi ((x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2)^{\frac{3}{2}}} + \frac{z + z_0}{4\pi ((x - x_0)^2 + (y - y_0)^2 + (z + z_0)^2)^{\frac{3}{2}}} \right]_{z=0} = 0$$

32. Методи побудови функції Гріна для оператора Лапласа, на прикладі задачі Дірихле для кулі.

Будемо розглядати граничну задачу

$$\begin{cases} \Delta U(P) = 0, \ |P| < R \\ U(P)|_{|P|=R} = f(P) \end{cases}$$

Побудуємо функцію Гріна першої граничної задачі оператора Лапласа для кулі. Введемо позначення $|{\bf OP}_0| = {\bf r}_0$, $|{\bf OP}_0| = {\bf r}_0$

$$r = |P - P_0|, \ r = |P - P_0|$$

На довільному проміні, який проходить через центр кулі точку О розмістимо всередині кулі у точці P_0 одиничний точковий додатній заряд. Розглянемо точку P_0 симетричну точці P_0 відносно сфери.

Це означає, що обидві точки лежать на одному проміні, а їх відстані від центру сфери задовольняють співвідношенню $r_0 r_0 = R^2$. В P_0 точці розмістимо

від'ємний заряд величини e, яку оберемо виходячи з властивостей функції Гріна.Запишемо потенціал електростатичного поля від суми заряді

$$\Pi(\mathbf{P}) = \frac{1}{4\pi \mathbf{r}} - \frac{\mathbf{e}}{4\pi \mathbf{r}} \tag{1}$$

Обчислимо величину e використовуючи теорему косинусів

$$\Pi(P) = \frac{1}{4\pi} \left[\frac{1}{\left(\rho^2 + r_0^2 - 2\rho r_0 \cos \gamma\right)^{0.5}} - \frac{e}{\left(\rho^2 + \frac{R^4}{r_0^2} - 2\rho \frac{R^2}{r_0} \cos \gamma\right)^{0.5}} \right]_{\rho = R} =$$

$$= \frac{1}{4\pi} \left[\frac{1}{\left(R^2 + r_0^2 - 2Rr_0\cos\gamma\right)^{0.5}} - \frac{e}{\left(R^2 + \frac{R^4}{r_0^2} - 2R\frac{R^2}{r_0}\cos\gamma\right)^{0.5}} \right] = \frac{1}{4\pi} \left[\frac{1 - e\frac{r_0}{R}}{\left(R^2 + r_0^2 - 2Rr_0\cos\gamma\right)^{0.5}} \right] = 0$$

Остання рівність буде вірною, якщо $e = R/r_0$.

Таким чином функцію Гріна задачі Дірихле для кулі можна записати у вигляді (1) при знайденому значенні величини зовнішнього заряду:

$$G_1(P, P_0) = \frac{1}{4\pi} \left[\left(\rho^2 + r_0^2 - 2\rho r_0 \cos \gamma \right)^{-0.5} - \left(R^2 + \frac{\rho^2 r_0^2}{R^2} - 2\rho r_0 \cos \gamma \right)^{-0.5} \right]$$

Для знаходження формули інтегрального представлення обчислимо

$$\frac{\partial G_1(P, P_0)}{\partial n_P} \bigg|_{P \in S} = \frac{\partial G_1(P, P_0)}{\partial \rho} \bigg|_{\rho=R} = \frac{1}{4\pi} \left[-\frac{\rho - r_0 \cos \gamma}{\left(\rho^2 + r_0^2 - 2\rho r_0 \cos \gamma\right)^{\frac{3}{2}}} + \frac{\rho r_0^2}{R^2} - r_0 \cos \gamma \right]$$

$$1 \qquad R^2 - r_0^2$$

$$+\frac{\frac{\rho r_0^2}{R^2} - r_0 \cos \gamma}{\left(\frac{\rho^2 r_0^2}{R^2} + r_0^2 - 2Rr_0 \cos \gamma\right)^{\frac{3}{2}}}\right|_{\rho=R} = -\frac{1}{4\pi R} \frac{R^2 - r_0^2}{\left(R^2 + r_0^2 - 2Rr_0 \cos \gamma\right)^{\frac{3}{2}}}$$

Для запису остаточної формули треба ввести сферичну систему координат. Запишемо через сферичні кути

$$\cos \gamma = \frac{\left(\frac{\textit{ULM}}{\textit{OP},\textit{OP}_0}\right)}{\rho r_0} = \cos \theta \cos \theta_0 + \sin \theta \sin \theta_0 \cos(\varphi - \varphi_0)$$

Тут ho, ϕ, θ - сферичні координати точки $extbf{\emph{P}}$, а $extbf{\emph{r}}_{_0}, \phi_{_0}, \theta_{_0}$ - сферичні координати точки $extbf{\emph{P}}_{_0}$.

Використовуючи формулу $u(x)=\iiint_{\Omega}G_1^k(x,\xi)F(\xi)d\xi-\iint_{\mathcal{S}}\left(\frac{\partial G_1^k(x,\xi)}{\partial n_{\xi}}f(\xi)\right)dS_{\xi}$ запишемо розв'язок задачі Дірихле:

$$U(r_0, \varphi_0, \theta_0) = \frac{R}{4\pi} \int_0^{2\pi} \int_0^{\pi} \frac{\left(R^2 - r_0^2\right) \sin\theta f(\varphi, \theta) d\theta d\varphi}{\left(R^2 + r_0^2 - 2Rr_0 \cos\gamma\right)^{\frac{3}{2}}}$$
(2)

Формула (2) дає розв'язок задачі Дірихле для рівняння Лапласа і називається формулою Пуассона для кулі.

33. Функція Гріна першої та другої граничної задачі рівняння теплопровідності для півпрямої.

Ми покажемо, як за допомогою функції Гріна можна знайти розв'язок першої та другої граничних задач рівняння теплопровідності для напівпрямої x>0.

Нехай ми розглядаємо граничні задачі :

$$a^{2} \frac{\partial^{2} u(x,t)}{\partial x^{2}} - \frac{\partial u(x,t)}{\partial t} = -f(x,t), \ t > 0, x > 0$$

$$u(0,t) = \varphi(t), \ u(x,0) = u_{0}(x)$$

$$(1)$$

$$a^{2} \frac{\partial^{2} u(x,t)}{\partial x^{2}} - \frac{\partial u(x,t)}{\partial t} = -f(x,t), \ t > 0, x > 0$$

$$\frac{\partial u(0,t)}{\partial x} = \varphi(t), \ u(x,0) = u_{0}(x)$$
(2)

Для побудови функції Гріна використаємо фундаментальний розв'язок оператора теплопровідності в одновимірному евклідовому просторі. Як

відомо від має вигляд:
$$\varepsilon(x,t) = \frac{\theta(t)}{2a\sqrt{\pi t}}e^{\frac{|x|^2}{2a^2t}}$$

Оскільки при побудові функції Гріна використовується фізична інтерпретація фундаментального розв'язку, то з'ясуємо її знайшовши розв'язок наступної задачі:

В нескінченому стрижні з теплоізольованою боковою поверхнею і нульовою початковою температурою в початковий момент часу t=0 в точці x=0 миттєво виділилося Q одиниць тепла. Необхідно визначити температуру стрижня в довільний момент часу в довільній його точці.

Розв'язання.

Запишемо математичну постановку задачі.

Розповсюдження тепла у однорідному стрижні задається рівнянням теплопровідності з постійними коефіцієнтами:

$$a^2 \frac{\partial^2 u(x,t)}{\partial x^2} - \frac{\partial u(x,t)}{\partial t} = -\frac{f(x,t)}{c\rho S}, \ t > 0, -\infty < x < \infty$$
, де $a^2 = \frac{k}{c\rho}$, $f(x,t)$ - потужність

теплових джерел. За умовою задачі теплове джерело є таким, що виділяє миттєво Q одиниць тепла \boldsymbol{s} точці $\boldsymbol{x}=0$ \boldsymbol{s} початковий момент часу, тому функція $f(x,t)=Q\delta(t)\delta(x)$. Тобто сумарна кількість тепла дорівнює

$$\int_{-\infty-\infty}^{\infty} Q \delta(t) \delta(x) dx dt = Q$$

Оскільки до моменту дії теплових джерел початкова температура дорівнювала нулю, то початкова умова повинна мати вигляд: $\boldsymbol{u}(\boldsymbol{x},0) = 0$.

Таким чином ми маємо задачу Коші для рівняння теплопровідності з однорідною початковою умовою.

Розв'язок такої задачі (температуру стрижня в точці x в момент часу t) можна записати за формулою:

$$u(x,t) = \int_{0}^{t} \iiint_{R_{u}} F(\xi,\tau)\varepsilon(x-\xi,t-\tau)d\xi d\tau + \iiint_{R_{u}} \varepsilon(x-\xi,t)u_{0}(\xi)d\xi$$

Використовуючи її для цієї задачі будемо мати:

$$u(x,t) = \int_{0-\infty}^{t} \int_{-\infty}^{\infty} \frac{Q}{c\rho S} \delta(\tau) \delta(\xi) \varepsilon(x - \xi, t - \tau) d\xi d\tau = \frac{Q}{c\rho S} \varepsilon(x,t) = \frac{Q}{c\rho S} \frac{1}{2a\sqrt{\pi t}} e^{-\frac{|x|^2}{2a^2t}}$$

Таким чином, фундаментальний розв'язок оператора теплопровідності представляє собою функцію, що моделює температуру стрижня в точці x в момент часу t за рахунок дії миттєвого точкового джерела інтенсивності $\mathbf{Q} = \mathbf{c} \rho \mathbf{S}$ яке діє в початковий момент часу в точці x = 0.

Для побудови функції Гріна граничних задач (1), (2) на півпрямій використаємо метод відображення теплових джерел.

Якщо на прямій розташувати в довільній точці $\,\xi\,$ миттєве точкове джерело, яке діє в момент часу $\,\tau\,$ інтенсивності $\,c\rho S\,$, а симетричній точці $\,-\,\xi\,$ миттєве точкове джерело, яке діє в момент часу $\,\tau\,$ і має інтенсивність $\,-\,c\rho S\,$, то з фізичних міркувань можна очікувати , що в точці $\,x=0\,$, яка лежить посередині між точками $\,x=\xi\,$ та $\,x=-\xi\,$, вплив теплових джерел дає нульову температуру. Дійсно, виходячи з фізичного змісту фундаментального розв'язку, отримаємо, що температура від дії двох точкових джерел дорівнює

$$E_{1}(x,\xi,t-\tau) = \frac{\theta(t-\tau)}{2a\sqrt{\pi(t-\tau)}}e^{-\frac{|x-\xi|^{2}}{2a^{2}(t-\tau)}} - \frac{\theta(t-\tau)}{2a\sqrt{\pi(t-\tau)}}e^{-\frac{|x+\xi|^{2}}{2a^{2}(t-\tau)}}$$

Легко перевірити, що $E_1(0,\xi,t- au)=0$, $E_1(x,\xi,t- au)\Big|_{t- au<0}=0$, а другий додаток $\frac{\theta(t- au)}{2a\sqrt{\pi(t- au)}}e^{-\frac{|x+\xi|^2}{2a^2(t- au)}}$ задовольняє однорідному рівнянню теплопровідності при x>0, t- au>0. Таким чином $E_1(x,\xi,t- au)$ є функція Гріна першої граничної задачі рівняння теплопровідності для півпрямої.

Якщо на прямій розташувати в довільній точці $\,\xi\,$ миттєве точкове джерело, яке діє в момент часу $\,\tau\,$ інтенсивності $\,c\rho S$, а симетричній точці $\,-\,\xi\,$ миттєве точкове джерело, яке діє в момент часу $\,\tau\,$ і має інтенсивність $\,c\rho S$, то з фізичних міркувань можна очікувати , що в точці $\,x=0$, яка лежить посередині між точками $\,x=\xi\,$ та $\,x=-\xi\,$, тепловий потік буде дорівнювати нулю.

Запишемо температуру в цьому випадку

$$E_{2}(x,\xi,t-\tau) = \frac{\theta(t-\tau)}{2a\sqrt{\pi(t-\tau)}}e^{-\frac{|x-\xi|^{2}}{2a^{2}(t-\tau)}} + \frac{\theta(t-\tau)}{2a\sqrt{\pi(t-\tau)}}e^{-\frac{|x+\xi|^{2}}{2a^{2}(t-\tau)}}$$

Легко перевірити, що
$$\left. \frac{\partial E_2(x,\xi,t)}{\partial x} \right|_{x=0} = -\frac{\theta(t-\tau)}{2a^3\sqrt{\pi}t^{\frac{3}{2}}} \left[\xi e^{-\frac{\xi^2}{2a^2t}} - \xi e^{-\frac{\xi^2}{2a^2t}} \right] = 0$$
,

Таким чином $E_2(x,\xi,t- au)$ є функцією Гріна другої граничної задачі рівняння теплопровідності для пів прямої.

Для запису розв'язку граничних задач (1), (2) будемо використовувати

$$u(x,t) = \int_{0}^{t} \iiint_{\Omega} E_{1}(x,\xi,t-\tau)F(\xi,\tau)d\xi d\tau + \iiint_{\Omega} E_{1}(x,\xi,t)u_{0}(\xi)d\xi - a^{2} \int_{0}^{t} \iint_{S} \left(\frac{\partial E_{1}(x,\xi,t-\tau)}{\partial n_{\xi}}f(\xi,\tau)\right)dS_{\xi}d\tau$$

$$u(x,t) = \int\limits_0^t \iiint\limits_\Omega E_i(x,\xi,t-\tau) F(\xi,\tau) d\xi d\tau + \iiint\limits_\Omega E_i(x,\xi,t) u_0 d\xi + \\ + a^2 \int\limits_0^t \iint\limits_S \left(E_i(x,\xi,t-\tau) \, f(\xi,\tau) \right) dS_\xi d\tau, \ i=2,3$$

, які треба записати для випадку пів прямої

Для першої граничної задачі будемо мати:

$$\begin{split} u(x,t) &= \int\limits_0^t \int\limits_0^\infty E_1(x,\xi,t-\tau) f(\xi,\tau) d\xi d\tau + \int\limits_0^\infty E_1(x,\xi,t) u_0(\xi) d\xi + \\ &+ a^2 \int\limits_0^t \left(\frac{\partial E_1(x,\xi,t-\tau)}{\partial \xi} \bigg|_{\xi=0} \varphi_0(\tau) \right) d\tau \end{split}$$

Для другої граничної задачі отримаємо

$$\begin{split} u(x,t) &= \int_{0}^{t} \int_{0}^{\infty} E_{2}(x,\xi,t-\tau) f(\xi,\tau) d\xi d\tau + \int_{0}^{\infty} E_{2}(x,\xi,t) u_{0}(\xi) d\xi - \\ &- a^{2} \int_{0}^{t} \left(E_{2}(x,0,t-\tau) \varphi(\tau) \right) d\xi d\tau, \end{split}$$

Продемонстрований метод це лише один з прийомів, який використовується для побудови функції Гріна. Метод відображення дозволяє будувати функції Гріна для одновимірного хвильового рівняння.

34. Джерела виникнення рівняння Гельмгольца.

$$\Delta u + k^2 u = -f(x) \qquad x \in \Omega$$

Приклад 1.Коливання струни чи мембрани.

Розгл. рівн. $\frac{\partial^2 u}{\partial t}=a^2\Delta u+F(x,t)$ де $F(x,t)=F_0(x)e^{iwt}$ -періодична з частотою ω і амплітудою $F_0(x)$.

Якщо шукать періодичні збурення $u(x,t) = v(x)e^{iwt}$ з тіею ж частотою і невідомою амплітудою v(x), то для v(x) отримаемо стаціонарне рівняння

$$a^2 e^{iwt} \Delta v - v(x)(iw)^2 e^{iwt} = -F_0(x)e^{iwt}$$

$$\Delta v + rac{w^2}{a^2}v = -rac{F_0(x)}{a^2}$$
 - рівняння Гельмгольца. $k^2 = rac{w^2}{a^2}$

Граничні умови : $v|_{S} = 0$ - У випадку закріпленого краю.

у випадку нестаціонарної задачі:

 $v|_{S} = f(x)e^{iwt}$ - край зміщується за періодичним законом.

35. Приклади неєдиності розв'язку внутрішньої граничних задач рівняння Гельмгольца, природа неєдиності.

Приклад 1.

$$\begin{cases}
\Delta u + 2u = f(x, y) \\
u|_{X=0} = u|_{X=\pi} = u|_{y=0} = u|_{y=\pi} = 0
\end{cases}$$

$$0 < x < \pi$$

$$0 < y < \pi$$

Знайдемо розв'язок однорідного рівняння:

$$\begin{cases} \Delta u + 2u = 0 \\ u_0 \mid_S = 0 \end{cases} \Rightarrow u_0 = \sin(x)\sin(y). \qquad \mathbf{u} = \overline{u} + \mathbf{c} u_0$$

 \bar{u} -деякий розв'язок задачі (1).

Тобто неєдиність очевидна.

Розглянемо рівняння Гельмгольца:

$$\begin{cases} \Delta u + k^2 u = 0 \\ u\mid_{S_\pi(0)} = 0, k \neq 0 \end{cases}; x \in R^3 \setminus U_\pi(0) \Longrightarrow u(x) = \frac{Sin(k|X|)}{4\pi|X|} \text{,де} \\ \mid X \mid = \sqrt{X_1^2 + X_2^2 + X_3^2} \\ u(x) = O(\frac{1}{\mid X \mid}) \quad \text{при} \quad \mid X \mid \to +\infty \end{cases}$$

Для рівняння Гельмгольца умови регулярності на нескінченності трансформуються в умови Зоммерфельда:

$$U(x) = O(\frac{1}{|x|}), \frac{\partial u}{\partial |x|} - iku(x) = O(\frac{1}{|x|}), |x| \to \infty$$

У випадку, коли тіло випромінюе хвилі, тобто хвилі йдуть від тіла.

$$U(x) = O(\frac{1}{\mid x \mid}), \frac{\partial u}{\partial \mid x \mid} + iku(x) = O(\frac{1}{\mid x \mid}), \mid x \mid \rightarrow \infty$$

у випадку, коли тіло поглинае хвилі, тобто хвилі йдуть до тіла.

36. Приклади неєдиності розв'язку зовнішньої граничних задач рівняння Гельмгольца, природа неєдиності, умови Зомерфельда.

умови Зомерфельда:

$$u(x) = O(|x|^{-1}), \qquad \frac{\partial u(x)}{\partial |x|} - iku(x) = o(|x|^{-1}), |x| \to \infty$$
 (1)

$$u(x) = O(|x|^{-1}) \qquad \frac{\partial u(x)}{\partial |x|} + iku(x) = o(|x|^{-1}), |x| \to \infty$$
 (2)

Умова (1) відповідає хвилям, що уходять на нескінченість, (2) - хвилям, що приходять з нескінченості. Саме умови (1) і (2) забезпечують єдність розв'язку зовнішніх граничних задач для рівняння Гельмгольца.

У випадку рівняння Гельмгольца на площині Умови Зомерфельда мають вигляд:

$$u(x) = O(|x|^{-0.5}),$$

$$\frac{\partial u(x)}{\partial |x|} - iku(x) = o(|x|^{-0.5}), |x| \to \infty$$

$$u(x) = O(|x|^{-0.5}),$$

$$\frac{\partial u(x)}{\partial |x|} + iku(x) = o(|x|^{-0.5}), |x| \to \infty$$

37. Визначення потенціалів для оператора Лапласа та Гельмгольца.

Запишемо потенціали для оператору Лапласа для якого $q_0(x) = \frac{1}{4\pi \mid x \mid}$ фундаментальний розв'язок.

$$\begin{split} &\varPhi_0(x)=\int\limits_{\Omega} \rho(y)q_0(x-y)dy\text{- потенціал об'єму}\\ &V_0(x)=\int\limits_{S} \mu(y)q_0(x-y)dS_y\text{--потенціал простого шару}\\ &W_0(x)=\int\limits_{S} \sigma(y)\frac{\partial}{\partial n_y}q_0(x-y)dS_y\text{--потенціал подвійного шару} \end{split}$$

Запишемо вигляд потенціалів для рівняння Гельмгольца, для якого

$$q_k(x) = \frac{e^{\pm ik|x|}}{4\pi|x|}$$

$$\varPhi_k^\pm(x) = \int\limits_{\Omega} \rho(y) q_k(x-y) dy \text{- потенціал об'єму}$$

$$V_k^\pm(x) = \int\limits_{S} \mu(y) q_k(x-y) dS_y \text{-потенціал простого шару}$$

$$W_k^\pm(x) = \int\limits_{S} \sigma(y) \frac{\partial}{\partial n_y} q_k(x-y) dS_y \text{-потенціал подвійного шару}$$

38. Регулярність на нескінченності

Регулярними на нескінченності називаються функції, для яких виконується наступні 2 теореми : Теорема: Якщо розмірність простору n=3, а ф-я u(x) — гармонічна в нескінченно віддаленій точці, то при $|x| \to \infty$ ф-я прямує до 0 як $\frac{1}{|x|}$ або $u(x) = O(\frac{1}{|x|})$, $\frac{\partial u}{\partial x_i} = O(\frac{1}{|x|^2})$.

Теорема: Якщо розмірність простору n=2, а ф-я u(x) — гармонічна в нескінченно віддаленій точці, то при $|x| \to \infty$ ф-я $u(x) = O(1), a \frac{\partial u}{\partial x_i} = O(\frac{1}{|x|^2})$

39. Теорема про властивості перших похідних потенціалу об'єму

Теорема. Якщо щільність ρ вимірювана і обмежена функція на множині Ω , то потенціал об'єму

40. Теорема про другі похідні потенціалу об'єму

41. Поняття поверхні Ляпунова, теорема про існування сфери Ляпунова

Озн. $S \subset R^3$ наз. поверхнею Ляпунова, якщо воно задовольняє 2-м умовам: 1) В кожній точці $x \in S$ \exists цілком визначена нормаль n_x 2) $\forall x,y \in S$ має місце: кут $\theta \leq ar^\alpha$, де $\alpha,a>0$ - числа, θ - кут між векторами n_x,n_y , r- відстань між точками х і у.

Теорема (про існування сфери Ляпунова) $S \in \mathbb{R}^3$

Нехай S - замкнена поверхня Ляпунова, тоді $\exists d = const > 0$, що якщо довільну т. х на S прийняти за центр сфери радіуса d, то \forall пряма, що паралельна нормалі до т. х перетинає поверхню S в середині сфери лише один раз. d-радіус сфери Ляпунова.

42. Локальна система коорд. на поверхні Ляпунова, оцінка cos(n(y),y-x)

Нехай є частина поверхні s ,виберемо будь-яку точку х (ценрт нової сист.коорд.) на s і розглянемо $s': s' = s \cap s_d(x)$; Причому $\xi_1 = n_x$, а ξ_2, ξ_3 - розташовані в дотичній площині до s .В цій сист. коорд.існує $f \in C^1$,що s' можна записати $\xi_3 = f(\xi_1, \xi_2)$. Звідси $\Rightarrow f(0,0) = 0$, і $f_{\xi_1}(0,0) = 0$, $f_{\xi_2}(0,0) = 0$; $\left|\frac{\partial f}{\partial \xi_i}\right| \leq \sqrt{3a} r^{\alpha} \ \left|\xi_3\right| \leq \frac{2^{\alpha} \sqrt{3}}{\alpha+1} r^{\alpha+1} = a r^{\alpha+1}$.

Оцінка
$$\cos(\mathsf{n}(\mathsf{y}),\mathsf{y-x}): \cos(\overset{\mathsf{o}}{n}_{\mathsf{y}},\overset{\mathsf{o}}{y-x}) \leq cr^{\alpha}$$
 , де $c = (2a + \frac{r^{\alpha} \cdot a \cdot \sqrt{3}}{\alpha+1})$

43. Тілесний кут бачення поверхні з точки, лема про обчислення тілесного кута.

Нехай Σ - поверхня, що розглядається; Σ та точка х утворюють конус. Візьмемо х за центр кулі $\sigma_{_R}(x) = S_{_R}(x) \cap K$, причому виберемо радіус так, щоб куля не перетиналась з Σ . $|\sigma_{_R}(x)|$ -площа частини сфери, що розглядається.

Введемо до розгляду додатку величину $\omega_{\scriptscriptstyle x}(\Sigma) = \frac{\left|\sigma_{\scriptscriptstyle R}(x)\right|}{R^2}$, якщо

 $\cos(\stackrel{\mathsf{O}}{n_y}, \overrightarrow{y-x}) > 0, \forall y \in \Sigma,$ то визначення коректне, інакше $\Sigma = \overset{n}{\underset{i=1}{\mathbf{Y}}} \xi_i$.

$$sign(\cos(\stackrel{\mathbf{r}}{n_y},\stackrel{\mathbf{u.u.u.}}{y-x}))\mid_{y\in\Sigma i}=\alpha_i=const$$
 , тоді $\omega_{_{\!x}}(\Sigma)=\sum_{_{i=1}}^{^n}\left|\omega_{_{\!x}}(\Sigma_{_i})\right|\cdot\alpha_{_i}$.

Якщо поверхня гладка і х знаходиться на поверхні, то ми спостерігаємо під кутом 2π .

Лема. Нехай $\mathit{S}\,$ - поверхня Ляпунова, тоді значення тілесного кута під яким ця поверхня спостерігається з т. х обчислюється за формулою :

$$\omega_{x}(S) = -\int_{S} \frac{\partial}{\partial n_{y}} \frac{1}{|x - y|} dS_{y}.$$

44. Потенціал подвійного шару на поверхні Ляпунова, властивості прямого значення потенціалу подвійного шару.

Теорема Нехай S - замкненм поверхня Ляпунова, $\sigma(y)$ обмежена та вимірна по поверхні функція. Тоді потенціал подвійного шару $W_{\pm}^{(k)}(x) = \int_{S} \sigma(y) \frac{\partial}{\partial n_{y}} \frac{e^{\pm ik|x-y|}}{4\pi|x-y|} dS_{y} \text{ має в кожній точці поверхні } S \text{ цілком визначене скінченне значення, яке неперервно змінюється на поверхні } S.$

ОЗН. Прямим значенням потенціалу подвійного шару називається його значення в точках поверхні S .

45. Інтергал Гауса, його значення в різних точках простору.

Інтегралом Гауса будемо називати потенціал подвійного шару оператора Лапласа з щільністю $\sigma(y)=1$, тобто $W_0(x)=\int_{\mathcal{S}}\frac{\partial}{\partial n_y}\frac{1}{4\pi|x-y|}dS_y$

Лема Якщо S , замкнена поверхня Ляпунова що обмежує область Ω то інтеграл Гауса визначається наступною формулою:

$$W_{0}(x) = \begin{cases} -1, & x \in \Omega \\ -0.5, & x \in S \\ 0, & x \in \Omega' \end{cases}$$

Доведення. Розглянемо випадок коли $x\in\Omega'$. В цьому випадку функція $\frac{1}{4\pi|x-y|}$ - гармонічна в області Ω по аргументу x оскільки $y\in S$ то $x\neq y$.

Згідно до властивості гармонічної функції маємо
$$\iint_{S} \frac{\partial}{\partial n_{y}} \frac{1}{4\pi |x-y|} dS_{y} = 0$$

Для випадку, коли $x\in\Omega$ розглянемо область $\Omega_\varepsilon=\Omega/U(x,\varepsilon)$. Функція $\frac{1}{4\pi|x-y|}$ буде гармонічною в області Ω_ε і для неї має місце співвідношення $\iint_s \frac{\partial}{\partial \pmb{n}_y} \frac{1}{4\pi|x-y|} d\pmb{S}_y + \iint_{S(x,\varepsilon)} \frac{\partial}{\partial \pmb{n}_y} \frac{1}{4\pi|x-y|} d\pmb{S}_y = 0$. Обчислимо значення $\lim_{\varepsilon\to 0} \iint_{S(x,\varepsilon)} \frac{\partial}{\partial \pmb{n}_y} \frac{1}{4\pi|x-y|} d\pmb{S}_y = -\lim_{\varepsilon\to 0} \iint_{S(x,\varepsilon)} \frac{\cos(\pmb{n}_y,y-x)}{4\pi|x-y|^2} d\pmb{S}_y = -\lim_{\varepsilon\to 0} \frac{1}{4\pi\varepsilon^2} (-1) \iint_{S(x,\varepsilon)} d\pmb{S}_y = 1$

Випадок $x \in S$ можна дослідити, якщо розглянути область

$$S_{_{\scriptscriptstyle 1}}(x,\epsilon)$$
 $\Omega_{_{\scriptscriptstyle E}}^{^{\scriptscriptstyle 1}}=\Omega/(\Omega\cap U(x,\epsilon))$ у якій функція $\dfrac{1}{4\pi|x-y|}$ - гармонічна і записати інтеграл по замкненій поверхні

 $S^{\scriptscriptstyle 1}_{\scriptscriptstyle \epsilon}$ яка обмежує область $\Omega^{\scriptscriptstyle 1}_{\scriptscriptstyle \epsilon}$ та спрямувати $\, \epsilon \,$ до нуля.

Аналізуючи інтеграл Гауса легко бачити, що навіть у найпростішому випадку постійної щільності потенціал подвійного шару при переході через поверхню S має розрив. Наступна теорема вивчає поведінку потенціалу подвійного шару при підході до поверхні S з середини та ззовні області.

46. Теорема про граничні значення потенціалу подвійного шару.

Теорема. Нехай S - замкнена поверхня Ляпунова, σ - неперервна на поверхні щільність потенціалу подвійного шару. Тоді $W_{+}^{(k)} \subset C(S) \cap C(\overline{\Omega}) \cap C(\overline{\Omega}')$, і його граничні значення при підході до поверхні S зсередини і ззовні задов. Співвідношенням $W_{\pm i}^{(k)}(x_0) = -\frac{\sigma(x_0)}{2} + \overline{W_{\pm}^{(k)}(x_0)}$ і $W_{\pm e}^{(k)}(x_0) = \frac{\sigma(x_0)}{2} + \overline{W_{\pm}^{(k)}(x_0)}$, $x_0 \in S$, $\overline{W_{\pm}^{(k)}(x_0)}$ пряме значення потенціалу подвійного шару.

Інтегральні рівняння для внутрішньої задачі Дірихле та зовнішньої задачі Неймана рівняння Лапласа. Теореми існування розв'язку.

Інтегральні рівняння для внурішньї задачі Діріхле і зовнішньої задачі Неймана. Теореми існування розв'язку.

$$D_i: f(x) = -\frac{\sigma(x)}{2} + \int_S \sigma(y) \frac{\partial}{\partial n_y} \frac{1}{4\pi |x-y|} dS_y, \qquad N_e: f(x) = -\frac{\mu(x)}{2} + \int_S \mu(y) \frac{\partial}{\partial n_x} \frac{1}{4\pi |x-y|} dS_y, \quad S = -\frac{\mu(x)}{2} + \int_S \mu(y) \frac{\partial}{\partial n_y} \frac{1}{4\pi |x-y|} dS_y, \quad S = -\frac{\mu(x)}{2} + \int_S \mu(y) \frac{\partial}{\partial n_y} \frac{1}{4\pi |x-y|} dS_y, \quad S = -\frac{\mu(x)}{2} + \int_S \mu(y) \frac{\partial}{\partial n_y} \frac{1}{4\pi |x-y|} dS_y, \quad S = -\frac{\mu(x)}{2} + \int_S \mu(y) \frac{\partial}{\partial n_y} \frac{1}{4\pi |x-y|} dS_y.$$

- інтегральні рівняння для внутрішньої задачі Діріхлє та зовнішньої задачі Неймана.

Теорема (∃ та єдиності розв'язку внутрішньої задачі Діріхлє та зовнішньої задачі Неймана.)

Нехай S - замкнена поверхня Ляпунова, тоді внутрішня задача Діріхлє $\Delta u = 0, x \in \Omega, u|_{S} = f$ і зовнішня задача Неймана $\Delta u = 0, x \in \Omega', \frac{\partial}{\partial n}|_{S} = f$ мають єдині розв'язки для довільної неперервної функції f, і ці розв'язки можуть бути знайдені у вигляді потенціалу подвійного шару і простого шару відповідно. При цьому умова регулярності на ∞ для зовнішньої задачі Неймана виконується.

Інтегральні рівняння для зовнішньої задачі Діріхлє та внутрішньої задачі Неймана рівняння Лапласа. Теореми існування розв'язку.

Інтегральні рівняння для зовнішньої задачі Діріхлє і внутрішньої задачі Неймана. Теореми існування розв'язків.

$$D_e: f(x) = \frac{\sigma(x)}{2} + \int_S \sigma(x) \frac{\partial}{\partial n_y} \frac{1}{4\pi |x-y|} dS_y, \text{ i } N_i: \frac{\mu(x)}{2} + \int_S \mu(y) \frac{\partial}{\partial n_x} \frac{1}{4\pi |x-y|} dS_y, x \in S$$

- інтегральні рівняння для зовнішньої задачі Діріхлє та внутрішньої задачі Неймана.

ТЕОРЕМА.(Про існування розв'язку внутр. задачі Неймана)Нехай S-замкнена поверхня Ляпунова , а f(x)- неперервна функція на S розв'язок внутрішньої задачі Неймана існує при умові що $\int\limits_S f(x) dx = 0$.а сам цей

розв'язок при цьому знаходиться з точністю до адитивної константи і може бути знайдений у вигляді потенціалу простого шару.

$$f(x) = \int_{S} \mu(y) \frac{1}{4\pi |x - y|} dS_y, x \in S$$

ТЕОРЕМА. (Про існування розв'язку зовнішньої задачі Діріхлє) Нехай S-замкнена поверхня Ляпунова , а f(x)- неперервна функція на S, де f фігурує в умові $u|_S=f$. Тоді зовнішня задача Діріхлє $\Delta u=0, x\in\Omega', \ u|_S=f$ має єдиний розв'язок в Ω' регулярний на нескінченності і цей розв'язок може бути знайдений у вигляді суми потенціалу подвійного шару та потенціалу Роберу.

$$u(x) = \int_{S} \sigma(x) \frac{\partial}{\partial n_{y}} \frac{1}{4\pi |x - y|} dS_{y} + \frac{1}{|x|} \int_{S} \sigma(y) dS_{y}.$$

49. Граничні інтегральні рівняння для крайової задачі з граничними умовами третього роду.

Розглянемо граничну задачу третього роду $\Delta u=0, x\in\Omega, \Delta u=0, x\in\Omega'$, $\left(\frac{\partial u}{\partial n}+\alpha(x)u\right)|_S=f(x)$ - гранична умова. Знайдемо розв'язок у вигляді потенціалу

простого шару $u(x) = \int_{S} \mu(x) \frac{1}{4\pi |x-y|} dS_y$ і його граничне значення при підході до

$$S: \ f(x) = \pm \frac{\mu(x)}{2} + \int_{S} \mu(y) \left[\alpha(x) \frac{1}{4\pi |x-y|} + \frac{\partial}{\partial n_x} \frac{1}{4\pi |x-y|} \right] dS_y$$
 , «+»- береться для

внутрішньої з. Ньютона а «-» для зовнішньої. Для поставленої задачі існує єдиний розв'язок в області Ω , що обмежена поверхнею Ляпунова S при умові, що $\alpha(x)$ та f(x) - неперервні на S.

50. Інтегральні рівняння для першої граничної задачі рівняння Гельмгольца.

$$\begin{cases} \Delta u = 0, x \in \Omega \ (x \in \Omega'); \\ u \Big|_{s} = f(x). \end{cases} \qquad \begin{cases} \Delta u = 0, x \in \Omega \ (x \in \Omega'); \\ \frac{\partial u}{\partial n} \Big|_{s} = f(x). \end{cases}$$

$$- N$$

$$D_{i,e} : u(x) = \int_{s} \sigma(y) \frac{\partial}{\partial n_{y}} \frac{e^{-ik|x-y|}}{4\pi|x-y|} dS_{y}.$$

$$N_{i,e} : u(x) = \int_{s} \mu(y) \frac{e^{ik|x-y|}}{4\pi|x-y|} dS_{y}. D_{i} : f(x) = -\frac{\sigma(x)}{2} + \int_{s} \sigma(y) \frac{\partial}{\partial n_{y}} \frac{e^{ik|x-y|}}{4\pi|x-y|} dS_{y}$$

$$D_{e} : f(x) = \frac{\sigma(x)}{2} + \int_{s} \sigma(y) \frac{\partial}{\partial n_{y}} \frac{e^{ik|x-y|}}{4\pi|x-y|} dS_{y} N_{i} : f(x) = \frac{\mu(x)}{2} + \int_{s} \mu(y) \frac{e^{-ik|x-y|}}{4\pi|x-y|} dS_{y}$$

$$N_{e} : f(x) = -\frac{\mu(x)}{2} + \int_{s} \mu(y) \frac{e^{-ik|x-y|}}{4\pi|x-y|} dS_{y}$$

51. Теорема про існування розв'язку граничних задач для рівняння Гельмгольца.

Запишемо
$$\Delta^2 u + k^2 u = 0, x \in \Omega;$$
 $\Delta^2 u + k^2 u = 0, x \in \Omega';$ $u \Big|_{S} = 0; \frac{\partial}{\partial n} u \Big|_{S} = 0.$

Теорема Нехай S— пов. Ляпунова , а k^2 — не є власним значенням внутрішньої задачі Діріхле та Неймана для рівняння Лапласа. Тоді гранична задача Діріхле та Неймана внутрішня та зовнішня для однорідного рівняння Гельмгольца має єдиний розв'язок і розв'язки знаходяться у вигляді потенціалу простого та подвійного шару відповідно.

54. Визначення основних теплових потенціалів.

Фундаментальний розв'язок рівняння теплопровідності :

$$\varepsilon_n(x,t) = \frac{1}{(2a\sqrt{\pi t})^n} e^{-\frac{|x|}{4a^2t}}.$$

Потенціал об'єму : $U(x,t) = \int_{t_0}^{t_1} \int_{\Omega} \mu(y,t) \varepsilon(x-y,t-\tau) dy d\tau$.

Потенціал простого шару : $V(x,t) = \int_{t_0}^{t_1} \int_{S} \mu(y,t) \varepsilon(x-y,t-\tau) dS_y d\tau$.

Потенціал подвійного шару : $W(x,t) = \int\limits_{t_0}^{t_1} \int\limits_{S} \mu(y,t) \frac{\partial}{\partial n_y} \varepsilon(x-y,t-\tau) dS_y d\tau$.

55. Теорема про граничні значення теплового потенціалу подвійного шару.

Теорема Нехай S — замкнена поверхня Ляпунова, σ - неперервна на боковій поверхні S. Тоді тепловий потенціал подвійного шару при підході до т.

 (x^*,t^*) вздовж нормалі просторово-часового циліндра має неперервні граничні значення зсередини і ззовні, що обчислюються за формулами:

$$W_{i}\!\left(\!x^{*},t^{*}\right)\!=\!-\frac{\sigma\!\left(\!x^{*},t^{*}\right)}{2}\!+\!\overline{W\!\left(\!x^{*},t^{*}\right)}\,\mathsf{Ta}\;\;W_{e}\!\left(\!x^{*},t^{*}\right)\!=\!\frac{\sigma\!\left(\!x^{*},t^{*}\right)}{2}\!+\!\overline{W\!\left(\!x^{*},t^{*}\right)},\;\;x^{*}\in S,\,t^{*}>t$$

56. Теорема про граничні значення нормальної похідної теплового потенціалу простого шару.

Теорема: Нехай S - замкнена поверхня Ляпунова, μ неперервна на S щільність. Тоді, потенціал простого шару має на S граничні значення "правильної" нормальної похідної зсередини і ззовні, які обчислюються за формулами:

$$\frac{\partial V_{\pm}^{(k)}\left(x_{0}\right)}{\partial n_{i}} = \frac{\mu\left(x_{0}\right)}{2} + \frac{\overline{\partial V_{\pm}^{(k)}\left(x_{0}\right)}}{\partial n} \quad \text{i} \qquad \frac{\partial V_{\pm}^{(k)}\left(x_{0}\right)}{\partial n_{e}} = -\frac{\mu\left(x_{0}\right)}{2} + \frac{\overline{\partial V_{\pm}^{(k)}\left(x_{0}\right)}}{\partial n} \quad \text{, } x_{0} \in S$$

("правильна" — означає, що прямування до т. x_0 відбувається вздовж нормалі до т. x_0).

57. Інтегральні рівняння для основних граничних задач рівняння теплопровідності.

Розглянемо $\left(a^2\Delta - \frac{\partial}{\partial t}\right)u\left(x,t\right) = 0, x \in \Omega, t > t_0, \left(x \in \Omega', t > t_0\right)$ однорідне рівняння теплопровідності з однорідною початковою умовою $u|_{t=t_0} = 0$

Та умовою Діріхле $u|_{s} = f(x,t)$

Або умовою Непмана $\frac{\partial u}{\partial n}|_{s} = f(x,t)$

V(x,t)— тепловий потенціал простого шару, W(x,t)— тепловий потенціал подвійного шару :

Розвязок задачі Діріхле шукаємо у вигляді потенціалу простого шару : $D_{i,c}u(x,t)=\int\limits_{-\infty}^{t}\int\limits_{c}\frac{\partial \varepsilon \left(x-y,t-\tau\right)\mu \left(y,\tau\right)}{\partial n_{v}}dS_{y}d\tau$

а задачі Немана шукаємо у вигляді потенціалу простого шару :

$$N_{i,c}u(x,t) = \int_{t_0}^{t} \int_{s} \varepsilon(x-y,t-\tau)\sigma(y,\tau)dS_yd\tau$$

Ці розвязки задовольняють рівняння і початкові умови потрібно перевірити граничні :

$$\begin{pmatrix} D_{i} \\ D_{e} \end{pmatrix} f(x,t) = \begin{pmatrix} - \\ + \end{pmatrix} \frac{\mu(x,t)}{2} + \int_{t_{0}}^{t} \int_{S} \frac{\partial \varepsilon(x-y,t-\tau)\mu(y,\tau)}{\partial n_{y}} dS_{y} d\tau$$

$$\binom{N_i}{N_e} \qquad f(x,t) = \binom{-}{+} \frac{\sigma(x,t)}{2} + \int_{t_0}^t \int_{S} \frac{\partial \varepsilon(x-y,t-\tau)}{\partial n_x} \sigma(y,\tau) dS_y d\tau$$

Ми маємо чотири рівняння, які відповідають чотирьом основним граничним задачам : внутрішнім і зовнішнім задачам Діріхле і Немана

58. Лінійні неперервні функціонали, теорема Риса-Фишера, слабка збіжність у гільбертовому просторі.

Нехай M і N - лінійні множини. Оператор L, що перетворює елементи множини M в елементи множини N, називається <u>лінійним</u>, якщо для будь - яких елементів f і g із M і комплексних чисел λ,μ справедлива рівність $L(\lambda f + \mu g) = \lambda L f + \mu L g$.

Частинним випадком лінійних операторів є лінійні функціонали. Якщо лінійний оператор l перетворює множину елементів M в множину комплексних чисел lf, $f \in M$, то l <u>є лінійним функціоналом</u> на множині M. Значення функціонала l на елементі f - комплексне число lf - будемо позначати через (l,f). Таким чином, неперервність лінійного функціоналу l означає: якщо $f_k \to 0, k \to \infty, eM$, то послідовність комплексних чисел $(l,f_k), k \to \infty$ прямує до 0.

Послідовність $l_1, l_2....$ лінійних функціоналів на M слабко збігається до функціоналу l на M , якщо вона збіжна до l на кожному елементі f із M , тобто $(l_k, f) \to (l, f), k \to \infty$

Теорема Фішера-Рісса. Якщо $f \in H^*$, то існує єдиний елемент $y(f) \in H$, такий що f(x) = (x,y) для довільного $x \in H$, та $\|f\|_{H^*} = \|y\|_H$. Де H^* -гільбертовий простір

61. Перша теорема Фредгольма для операторного рівняння із цілком неперервним оператором.

Теорема 1 Якщо однорідне p-ня $u - \lambda Au = 0$ має лише тривіальний розв'язок, то неоднорідне p-ня $u - \lambda Au = f$ має єдиний розв'язок при $\forall f \in H$ (Оператор A -цілком неперервний, якщо він довільну обмежену множину переводить у компактну).

62. Друга теорема Фредгольма для операторного рівняння із цілком неперервним оператором.

Теорема 2 Однорідне рівняння $u - \lambda Au = 0$ і спряжене до нього $v - \overline{\lambda} A^* v = 0$ може мати нетривіальні розв'язки не більш ніж на зліченій множині значень параметру λ , які можна пронумерувати у порядку зростання їх модулів. Ці значення називаються характеристичними числами, а відповідні розв'язки власними функціями. Кожне власне число має скінченну кратність.

63. Третя теорема Фредгольма для операторного рівняння із цілком неперервним оператором.

Теорема 3 Р-ня $u-\lambda Au=f$ при $\lambda=\lambda_k$ (λ_k - деяке хар. число) має розв'язок тоді і тільки тоді, коли вільний член f ортогональний до всіх розв'язків спряженого однорідного рівняння $\nu-\overline{\lambda}A^*\nu=0$. У цьому випадку розв'язок не єдиний і

представляється у вигляді $u=u_0+\sum_{j=1}^{q_k}c_ju_{k+1}$, де u_0 — деякий розв'язок неоднорідного рівняння $u_0-\lambda_kAu_0=f$, а $u_{k,j}$ — власні функції, що відповідають λ_k , q_k —їх кратність.

64. Спосіб введення простору $W_2^k(\Omega)$, збіжність в просторі $W_2^k(\Omega)$. Гільбертовий простір $W_2^k(\Omega) = C^\infty(\Omega) \, \mathrm{U}\{u\}_{W_2^k(\Omega)}^{\phi y n \partial}$ з скалярним добутком $(u,v)_{W_2^k(\Omega)} = \sum_{|\alpha| \le k} \int_{\Omega} D^\alpha u(x) D^\alpha v(x) dx$, де $\{u\}_{W_2^k(\Omega)}^{\phi y n \partial}$ — границі усіх фундаментальних за нормою $W_2^k(\Omega)$ послідовностей , $D^\alpha u(x)$ — оператор диференціювання

65. Спосіб визначення похідних у просторі $W_2^k(\Omega)$.

Візьмемо довільний елемент $u \in C^{\infty}(\Omega), \ D^{\alpha}u \in C^{\infty}(\Omega), \ |\alpha| < k$. Нехай $u \in \{u\}_{W_{2}^{k}(\Omega)}^{dyu\partial}$, тоді $\exists \{u_{n}\}: u_{n} \xrightarrow{W_{2}^{k}(\Omega)} \to u$, причому $\forall n \ u_{n} \in C^{\infty}(\Omega)$, тому існують границі похідних $D^{\alpha}u_{n} \xrightarrow{L_{2}(\Omega)} \to v^{\alpha}$. Поставимо у відповідність u елемент v^{α} , який претендує на узагальнену похідну. v^{α} задовольняє $\int\limits_{\Omega} D^{\alpha}u_{n}(x)v(x)dx = (-1)^{|\alpha|}\int\limits_{\Omega} u_{\alpha}(x)D^{\alpha}v(x)dx$ перейдемо до границі: $\int\limits_{\Omega} v^{\alpha}(x)v(x)dx = (-1)^{|\alpha|}\int\limits_{\Omega} u(x)D^{\alpha}v(x)dx$. Отже, можемо сказати. що $D^{\alpha}u \approx v^{\alpha}$. Таким чином ми ввели поняття узагальненої похідної.

66. Нерівність Пуанкаре - Фрідріхса, теорема Релліха. Нерівність Пуанкаре-Фрідріхса

$$\forall u \in \overset{0}{W_{2}^{1}}(\Omega), \, \partial e \, \Omega \in R^{n}. \, \dim \Omega \neq \infty \quad \int\limits_{\Omega} u^{2}(x) dx \leq C_{\Omega}^{2} \int\limits_{\Omega} \sum_{i=1}^{n} u_{x_{i}}^{2} dx$$
 або $\left\| u \right\|_{L_{2}(\Omega)}^{2} \leq C_{\Omega}^{2} \left\| u_{x} \right\|_{L_{2}(\Omega)}^{2} \, m o o m o \, h o p m a \, \left\| u_{x} \right\|_{L_{2}(\Omega)}^{2} = \int\limits_{\Omega} \sum_{i=1}^{n} u_{x_{i}}^{2} dx$

Теорема Релліха : \forall обмежена множина елементів простору $\overset{_0}{W}_2^1(\Omega)$ є компакт в просторі $L_2(\Omega)$.

67. Еквівалентність норм у просторі W21(?) (норма введена через квадратичну форму).

Теорема (про еквівалентність норм у просторі $W_2^1(\Omega)$) Якщо матриця P(x) додатньо визначена, тобто для кожного комплексного вектора $\xi = (\xi_1, ... \xi_n) \ \text{і для усіх } x \in \overline{\Omega} \ \sum_{i=1}^n p_{i,j} \xi_i \overline{\xi}_j \geq \gamma \|\xi\|^2 \ \text{з постійною } \gamma > 0 \ \text{, функція}$

 $a(x) \geq 0, x \in \overline{\Omega}, \ \sigma(x) \geq 0, \ x \in S$ та або $a(x) \not\equiv 0$, або $\sigma(x) \not\equiv 0$, то білінійна форма (1.19) визначає в $W_2^1(\Omega)$ скалярний добуток еквівалентний скалярному добутку $(f,g)_{W_2^1(\Omega)} = \int\limits_{\Omega} \left[\left(\nabla f, \nabla \overline{g} \right) + f \overline{g} \right] dx$. Це фактично означає, що існують такі константи $C_1 > 0, C_2 > 0$, що має місце нерівність $C_2^2 \left\| f \right\|_{W_2^1(\Omega)}^2 \leq W(f,f) \leq C_1^2 \left\| f \right\|_{W_2^1(\Omega)}^2$. Таким чином, ця теорема дозволяє ввести норму у просторі $W_2^1(\Omega)$ $\|f\|_{W_2^1(\Omega)}^2 = W(f,f)$ еквівалентну звичайній нормі в цьому просторі.

68. Узагальнений розв'язок задачі Дірихле для еліптичного рівняння, теорема єдиничності узагальненого розв'язку задачі Дірихле.

$$Lu = div(p(x)grad(u)) + a(x)u = f(x) + \sum_{i=1}^{n} \frac{\partial f_i(x)}{\partial x_i}$$
(1)

$$x \in \Omega, f, \overrightarrow{f} \in L_2(\Omega), \sum_{i,j=1}^n \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial u}{\partial x_j} \right), a_{ij} = a_{ji}$$
 (2)

$$a_1 \le a(x) \le a_2$$
 $a, p \in L_2(\Omega)$ $v \le p(x) \le \mu$ $\mu, v > 0$ (3)

Умови:

Діріхле: $u|_{S} = \Phi(x) \ o\partial Hop. \ u|_{S} = 0$

Неймана: $\frac{\partial u}{\partial n}|_{s} = p(x)\frac{\partial u}{\partial n}|_{s} = \Phi(x)$

Ньютона: $p \frac{\partial u}{\partial n} + \sigma(x)u \Big|_{S} = \Phi(x)$

Узагальнений розвязок задачі Діріхле (1)-(3) в $\overset{_0}{W}_2^1(\Omega)$ називається $\forall u \in \overset{_0}{W}_2^1(\Omega)$ який задовольняє інтегральній тотожності

$$L(u,\xi) = \int_{\Omega} \left(p(x) \sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}} \frac{\partial \eta}{\partial x_{i}} - a(x) u \eta \right) dx = \int_{\Omega} \left(-\eta(x) f(x) + \sum_{i=1}^{n} f_{i}(x) \frac{\partial \eta}{\partial x_{i}} \right) dx \quad \partial n \quad \forall \, \eta \in \overset{0}{W}_{2}^{1}(\Omega)$$

Теорема. Задача Діріхле (1)-(3) при викон. умови $a_1 \le a(x) \le a_2$, $v \le p(x) \le \mu$ може мати в $\stackrel{_0}{W}_2^1(\Omega)$ не більше ніж 1 узаг. розв. при умові що $\delta_1 = v - C_\Omega^2 a_2$.

69. Теорема існування узагальненого розв'язку задачі Дірихле для еліптичного рівняння.

Теорема: Якщо задача Діріхле $div(p(x)\cdot grad(u))+a(x)u=f(x)+\sum_{i=1}^n\frac{\partial f_i(x)}{\partial x_i}$ $u\mid_s=0$ при обмеженнях $a_2\leq a(x)\leq a_1$, $v\leq p(x)\leq \mu$ має не більше одного узагальненого розвязку з простору $\overset{0}{W}_2^1(\Omega)$, то вона дійсно має розвязок з цього простору $\forall f,\bar{f}\in L_2(\Omega)$.

71. Теорема про розкладання функцій класу W21(?) по системі узагальнених власних функцій еліптичного оператора.

Теорема: Спектральна задача $Lu = div(\rho(x)grad\ u) + au = \lambda u\ , u\ |_{S} = 0$ (на власні значення) має злічену к-ть власних чисел і функцій. Кожне власне число є дійсним і відємним за винятком перших декількох. Точка накопичення власних чисел — нескінченно віддалена точка .Власні функ. утворюють базис в $W_2^1(\Omega)$ і в $L_2(\Omega)$, який є ортогональним в $L_2(\Omega)$, та ортонормованим в $W_2^1(\Omega)$. Будьяка функ. з $W_2^1(\Omega)$ і $L_2(\Omega)$ розкладається в ряд Фурє за власними функ.

$$\{u_k\}_{k=1}^x F = \sum_k \frac{[F, u_k]}{[u_k, u_k]} u_k = \sum_k \frac{(F, u_k)_{L_2(\Omega)}}{(u_k, u_k)_{L_2(\Omega)}} u_k$$
де — [] норма в $W_2^1(\Omega)$

72. Поняття слідів функцій клас W21(?).

- 1) $u\in C^{\infty}(\Omega)$. $To\partial i \quad u\big|_{\Omega}\to u\big|_{S}$ відповідає досить гладка,неперервна на досить гладкій поверхні (Ліпшиць непер.) функ $u\big|_{S}\in L_{2}(S)$.
- 2) $u \notin C^{\infty}(\Omega)$. Тоді u є границею фунд. Послідовності $u_k \to u$, $u_k \in C^{\infty}(\Omega)$.I аналогічно $u_k \Big|_{\Omega} \to u_k \Big|_{S} \ ma \ u \Big|_{S} = \lim_{k \to \infty} u_k \Big|_{S} \ y$ розумінні норми ($\lim_{k \ p \to \infty} \Big\| u_k \Big|_{S} u_p \Big|_{S} \Big\|_{L_2(\Omega)} = 0)$

73. Теорема про існування узагальненого розв'язку другої та третьої крайової задачі для еліптичного рівняння.

Друга і третя граничні задачі $Lu=div(p(x)gradu)+a(x)u=\lambda u+f(x), \ x\in\Omega$, $\frac{\partial u}{\partial N}+\sigma(x)u\Big|_{\mathbb{S}}=0$ мають єдиний розв'язок в $W_2^1(\Omega)$ для будь — якого вільного члена $f\in L_2(\Omega)$ та для усіх дійсних значень параметру λ окрім не більш ніж зліченої множини дійсних значень $\lambda=\lambda_k, \ k=1,\infty$, які називаються спектром граничної задачі $Lu=div(p(x)gradu)+a(x)u=\lambda u+f(x), \ x\in\Omega$, $\frac{\partial u}{\partial N}+\sigma(x)u\Big|_{\mathbb{S}}=0$.

Кожне спектральне значення має скінчену кратність, усі власні числа від'ємні за винятком декількох перших і єдиною точкою накопичення власних чисел є $-\infty$. При умові, коли параметр $\lambda=\lambda_k$ розв'язок граничної задачі існує тоді і лише тоді, коли вільний член f ортогональний усім розв'язкам однорідної задачі при $\lambda=\lambda_k$, тобто $\int\limits_{\Omega}f(x)v_{k+j}(x)dx=0$, $\int\limits_{0}^{\infty}\overline{0,r_{k}-1}$, де r_k - кратність власного числа λ_k . В цьому випадку розв'язок неєдиний і визначається з точність до лінійної оболонки $\sum_{i=0}^{n-1}c_{i}v_{k+j}$.

74. Задача на власні значення для еліптичного рівняння з граничними умовами третього роду, розкладання в ряд Фур'є по власним функціям граничної задачі третього роду.

Розглянемо однорідну задачу Дірихле

$$Lu = div(p(x)gradu) + a(x)u = \lambda u$$
, $u|_{s} = 0$

Узагальненими розв'язками цієї задачі з простору $W_2^1(\Omega)$ є елемент $\mathbf{u} \in \mathbf{W}_2^1(\Omega)$, який задовольняє інтегральній тотожності

$$L(u, \overline{\eta}) := \int_{\Omega} \left(\sum_{i=1}^{n} p(x) u_{x_i} \overline{\eta_{x_i}} - a(x) u \overline{\eta} \right) dx = -\lambda \int_{\Omega} u \overline{\eta} dx, \ \forall \eta \in \overset{0}{W}_{2}^{1}(\Omega).$$

Для дослідження задачі Дірихле на власні значення введемо скалярний добуток $(u,v)_4=\int\limits_{\Omega} \left(\sum_{i=1}^n p(x)u_{x_i}\overline{\eta_{x_i}}+(\lambda_0-a(x))u\overline{\eta}\right)\!dx$ (1).

Для того щоб (1) представляв собою скалярний добуток, необхідно обрати $\lambda_0>0$ достатньо великим, наприклад таким, щоб $\lambda_0>a_2$.

Єдиною точкою накопичення може бути $\mu=0$. Відповідні власні функції v_k , які задовольняють операторне рівняння $Bv_k=\mu_kv_k$ є дійсні і ортогональними, тобто $\left(v_k,v_l\right)_4=0,\,k\neq l$ (2).

При $\mu=0$ рівняння $Bu=\mu u,\quad \mu=(\lambda-\lambda_0)^{-1}$ (3) має лише тривіальний розв'язок. Таким чином власні функції $\{v_k\}$ складають базис в просторі $\overset{0}{W}_2^1(\Omega)$, а враховуючи, що $\overset{0}{W}_2^1(\Omega)$ є нескінченновимірний простір, то кількість елементів базису є злічена множина.

Будь який елемент $F\in \overset{_0}W^{_1}_2(\Omega)$ розкладається в ряд Фур'є по елементах базису $\{v_k\},\, k=\overline{1,\infty}$, тобто має місце представлення

$$F(x) = \sum_{k=1}^{\infty} \frac{(F, v_k)_4}{(v_k, v_k)_4} v_k(x)$$
 (4).

Ряд (4) збігається в нормі простору $\overset{_{0}}{W}_{2}^{1}(\Omega)$. Нагадаємо, що збіжність ряду в просторі $\overset{_{0}}{W}_{2}^{1}(\Omega)$ означає збіжність в $L_{2}(\Omega)$ самого ряду (4), а також рядів отриманих шляхом однократного диференціювання по x_{i} , i=1..n .

Зауважимо,

що крім ортогональності по введеній нормі (2), власні функції $\{v_k\}, k=\overline{1,\infty}$ також є ортогональними у просторі $L_2(\Omega)$. Дійсно, з $(u,\eta)_4=(\lambda_0-\lambda)(u,\eta)$ та (3) випливає $\mu_k(v_k,v_l)_4=\left(Bv_k,v_l\right)_4=-(v_k,v_l)=0, k\neq l$

Для власних функцій $\{v_k\}, k=\overline{1,\infty}$ можна обрати нормування так що $(v_k,v_l)=\delta_{k,l}=-(\lambda_k-\lambda_0)^{-1}(v_k,v_l)_4$

В цьому випадку з урахуванням $(u,\eta)_4 = (\lambda - \lambda_0)(Bu,\eta)_4$ ряд (4) можна записати у вигляді:

$$F(x) = \sum_{k=1}^{\infty} (F, v_k) v_k(x)$$

Будемо вивчати граничну задачу:

$$Lu = div(p(x)gradu) + a(x)u = \lambda u + f(x), x \in \Omega \qquad \frac{\partial u}{\partial N} + \sigma(x)u \bigg|_{S} = 0$$

3 обмеженнями $v \le p(x) \le \mu$, $v, \mu > 0$, $\mathbf{u}\big|_{\mathbb{S}} = \phi(\mathbf{x})$ та додатковою умовою на функцію $\sigma = \sigma(x)\big|_{\mathbf{x} \in \mathbb{S}} \quad |\sigma(x)| \le \mu_3$.

Або третьої (другої при $\sigma = 0$) граничної задачі:

$$\begin{cases} div(p\nabla v) - qv = \lambda v, \ x \in \Omega \\ \frac{\partial v}{\partial n} + \sigma v \bigg|_{S} = 0 \end{cases}$$

У випадку третьої (другої) граничної задачі $v \in W^1_2(\Omega)$ і задовольняє інтегральні тотожності

$$\int_{\Omega} \left(p \nabla v \nabla \eta + q v \eta \right) dx + \int_{S} p \sigma v \eta dS + \lambda \int_{\Omega} v \eta dx = 0, \ \forall \ \eta \in W_{2}^{1}(\Omega)$$

При цьому число λ є відповідним власним числом задачі.

75. Узагальнений розв'язок граничних задач хвильового рівняння, теорема єдиності розв'язку граничних задач хвильового рівняння.

Нехай Ω - деяка обмежена область у евклідовому просторі R^n , $x=(x_1,...x_n)$ - точка цього простору. У просторі $R^{n+1}=R^n \times \{-\infty < t < \infty\}$ розглянемо обмежений просторово — часовий циліндр $Z(\Omega,T)=\{x\in\Omega,0< t< T\}$. Позначимо

через $\Gamma(S,T) = \{x \in S, 0 < t < T\}$ - бокову поверхню циліндру, а через $D_{\tau} = \{x \in \Omega, t = \tau\}$ - переріз циліндру $Z(\Omega,T)$ площиною $t = \tau$.

У циліндрі $Z(\Omega,T)$ при T>0 розглянемо гіперболічне рівняння:

$$\Theta u \equiv u_{tt} - div(p(x)gradu) + q(x)u = f(x,t)$$
 (1)
 де $p(x) \in C^1(\overline{\Omega}), \ q(x) \in C(\overline{\Omega}), \ p(x) \ge p_0 = const > 0, q(x) \ge 0.$

Означення 1. Функція $u(x,t) \in C^2(Z(\Omega,T)) \cap C^1(\overline{Z(\Omega,T)} \cup \overline{D_0})$, яка задовольняє у $Z(\Omega,T)$ рівняння (1), на D_0 початковим умовам:

$$u\big|_{t=0} = \varphi(x)$$
 (2) $u_t\big|_{t=0} = \psi(x)$ (3), на $\Gamma(S,T)$ одній з граничних умов

$$u\big|_{\Gamma(S,T)} = \chi(x,t)$$
 (4) $\left(\frac{\partial u}{\partial n} + \sigma u\right)\big|_{\Gamma(S,T)} = \chi(x,t)$ (5), ∂e $\sigma \in C(\Gamma(S,t))$

класичним розв'язком першої при умові (4) або третьої при умові (5) граничної задачі для хвильового рівняння (1).

Означення 2. Функція $u \in W_2^1(Z(\Omega,T))$ будемо називати узагальненим розв'язком в $Z(\Omega,T)$ першої граничної задачі (1) — (3), $u\big|_{\Gamma(S,T)} = 0$ (6), якщо вона задовольняє початковій умові (2), граничній умові (6) та тотожності $\int_{Z(\Omega,T-\delta)} \Big(p\big(gradu,gradv\big) + quv - u_t v_t\Big) dxdt = \int_{D_0} \psi v dx + \int_{Z(\Omega,T-\delta)} fv dxdt \qquad \qquad \tag{7}$

для усіх $v(x,t) \in W_2^1(Z(\Omega,T-\delta))$ при $\delta = 0$ для будь-якої $v \in W_2^1(Z(\Omega,T))$ для якої має місце умова (6) та умова $v|_{D_n} = 0$ (8).

Означення 3 Функція $u \in W_2^1(Z(\Omega,T))$ будемо називати узагальненим розв'язком в $Z(\Omega,T)$ третьої (другої) граничної задачі (1) — (3), $\left. \left(\frac{\partial u}{\partial n} + \sigma u \right) \right|_{\Gamma(S,T)} = 0, \quad \mbox{(9)}$ якщо вона задовольняє початковій умові (2) та

$$\int\limits_{Z(\Omega,T-\delta)} \Big(p \Big(gradu,gradv\Big) + quv - u_{_t}v_{_t}\Big) dxdt + \int\limits_{\Gamma(S,T-\delta)} p\sigma uvdSdt = \\ momoжностi \int\limits_{D_0} \psi v dx + \int\limits_{Z(\Omega,T-\delta)} fvdxdt$$

при $\delta=0$ для будь-якої $v\in W^1_2(Z(\Omega,T))$ для якої має місце умова (8).

Теорема 1. Гранична задача (1)-(3), (6) та (1)-(3), (9) не може мати більш одного узагальненого розв'язку.

76. Метод побудови узагальненого розв'язку граничних задач хвильового рівняння, теорема існування розв'язку.

Для встановлення факту існування узагальненого розв'язку скористаємось методом Фур'є, згідно з яким розв'язок граничної задачі для гіперболічного рівняння будемо шукати у вигляді ряду Фур'є по системі власних функцій відповідної граничної задачі для еліптичного рівняння.

Нехай v(x) - узагальнена власна функція першої граничної задачі :

$$div(p\nabla v) - qv = \lambda v, \ x \in \Omega$$
$$v|_{S} = 0$$

Або третьої (другої при $\sigma = 0$) граничної задачі.

$$\left. \frac{\partial v}{\partial n} + \sigma v \right|_{x} = 0$$

Якщо в якості початкових функцій в умовах $u\big|_{t=0}=\varphi(x)$ (1)та $u_t\big|_{t=0}=\psi(x)$ (2)та вільного члена рівняння $\Theta u\equiv u_{tt}-div(p(x)gradu)+q(x)u=f(x,t)$ (3)узяти часткові суми рядів Фур'є $\sum_{k=1}^N \varphi_k v_k(x), \ \sum_{k=1}^N \psi_k v_k(x), \ \sum_{k=1}^N f_k(t)v_k(x),$ то узагальненим розв'язком відповідної граничної задачі буде функція

$$S_N(x,t) = \sum_{k=1}^N u_k(x,t) = \sum_{k=1}^N U_k(t) v_k(x)$$
 , яка задовольняє інтегральній тотожності
$$\int\limits_{Z(\Omega,T)} \Big(p\Big(\nabla u, \nabla v \Big) + q u v - u_t v_t \Big) dx dt = \int\limits_{D_0} \psi v dx + \int\limits_{Z(\Omega,T)} f v dx dt$$

для першої граничної задачі,

$$\int_{Z(\Omega,T)} \left(p(\nabla u, \nabla v) + quv - u_t v_t \right) dxdt + \int_{\Gamma(S,T)} p\sigma uvdSdt =$$

$$= \int_{D_0} \psi v dx + \int_{Z(\Omega,T)} fv dxdt$$

або для третьої (другої) граничної задачі. При певних припущеннях можна очікувати, що розв'язок граничних задач (1)-(3), $u\big|_{\Gamma(S,T)}=0$ та (1)-(3), $\left(\frac{\partial u}{\partial n}+\sigma u\right)\Big|_{\Gamma(S,T)}=0$ можна представити у вигляді ряду Фур'є $u(x,t)=\sum_{k=1}^{\infty}U_k(t)v_k(x)$

Теорема. Нехай $f \in L_2 \big(Z(\Omega,T) \big)$, $\psi \in L_2(\Omega)$, а функція $\varphi \in W_2^1(\Omega)$ у випадку першої граничної задачі (1) - (3), $u \big|_{\Gamma(S,T)} = 0$ або $\varphi \in W_2^1(\Omega)$ у випадку третьої (другої) граничної задачі (1)-(3), $\left(\frac{\partial u}{\partial n} + \sigma u \right) \big|_{\Gamma(S,T)} = 0$. Тоді узагальнений розв'язок u(x,t) відповідної граничної задачі існує і зображується збіжним у просторі $W_2^1(\Omega)$ рядом $u \big|_{t=0} = \varphi_k v_k(x), \ u_t \big|_{t=0} = \psi_k v_k(x)$. При цьому має місце нерівність $\|u\|_{W_2^1(Z(\Omega,T))} \leq C \Big(\|\varphi\|_{W_2^1(\Omega)} + \|\psi\|_{L_2(\Omega)} + \|f\|_{L_2(Z(\Omega,T))} \Big)$, в якому додатна константа C не залежить від φ, ψ, f .

77. Узагальнений розв'язок граничних задач рівняння теплопровідності, теорема єдиності розв'язку граничних задач о рівняння теплопровідності.

Означення 1. Функція $u \in W_2^1(Z(\Omega,T))$ будемо називати узагальненим розв'язком в $Z(\Omega,T)$ першої граничної задачі $Lu \equiv u_t - div(p(x)\nabla u) + q(x)u = f(x,t)$ (1), $u\big|_{t=0} = \varphi(x)$ (2), $u\big|_{\Gamma(S,T)} = 0$ (3), якщо вона задовольняє граничній умові $u\big|_{\Gamma(S,T)} = \chi(x,t)$ та тотожності $\int\limits_{Z(\Omega,T)} \Big(p\big(\nabla u,\nabla v\big) + quv - uv_t\Big) dxdt = \int\limits_{D_0} \varphi v dx + \int\limits_{Z(\Omega,T)} fv dxdt$

для будь-якої $v\in W^1_2(Z(\Omega,T))$ для якої має місце умова $v\big|_{\Gamma(S,T)}=0$ та умова $v\big|_{D_r}=0$.

Означення 2 Функція $u \in W_2^1(Z(\Omega,T))$ будемо називати узагальненим розв'язком в $Z(\Omega,T)$ третьої (другої) граничної задачі (1),(2), $\left(\frac{\partial u}{\partial n} + \sigma u\right)\Big|_{\Gamma(S,T)} = 0$ (4), якщо вона задовольняє інтегральні тотожності

$$\int\limits_{Z(\Omega,T)} \Big(p\Big(\nabla u,\nabla v\Big) + quv - uv_t\Big) dxdt + \int\limits_{\Gamma(S,T)} p\frac{\partial u}{\partial n} v dSdt = \int\limits_{D_0} \varphi v dx + \int\limits_{Z(\Omega,T)} f v dxdt$$

для будь-якої $v\in W^1_2(Z(\Omega,T))$ для якої має місце умова $vig|_{\Gamma(S,T)}=0$ та умова $vig|_{D_r}=0$.

Теорема. Перша гранична задача (1),(2), (3) та третя (друга) гранична задача (1),(2), (4) не може мати більш одного узагальненого розв'язку.

78. Метод побудови узагальненого розв'язку граничних задач рівняння теплопровідності, теорема існування розв'язку.

Для доведення факту існування узагальненого розв'язку граничних задач параболічного рівняння скористаємось методом Фур'є. Розв'язок граничної задачі будемо шукати у вигляді ряду Фур'є по системі власних функцій відповідної еліптичної граничної задачі.

Нехай v(x) - узагальнена власна функція першої граничної задачі : $\begin{cases} div(p\nabla v) - qv = \lambda v, \ x \in \Omega \\ v\big|_s = 0 \end{cases}$

Або третьої (другої при $\sigma = 0$) граничної задачі:

$$\begin{cases} div(p\nabla v) - qv = \lambda v, \ x \in \Omega \\ \frac{\partial v}{\partial n} + \sigma v \bigg|_{S} = 0 \end{cases}$$

Якщо в якості початкових функцій в умовах $u\big|_{t=0}=\varphi(x)$ та вільного члена рівняння $Lu\equiv u_t-div(p(x)\nabla u)+q(x)u=f(x,t)$ узяти часткові суми рядів Фур'є $\sum_{k=1}^N \varphi_k v_k(x), \ \sum_{k=1}^N f_k(t)v_k(x)$, то узагальненим розв'язком відповідної граничної задачі буде функція $S_N(x,t)=\sum_{k=1}^N u_k(x,t)=\sum_{k=1}^N U_k(t)v_k(x)$, яка задовольняє інтегральній тотожності $\int\limits_{\Omega} \Big(p\nabla v\nabla \eta+qv\eta\Big)dx+\lambda\int\limits_{\Omega} v\eta dx=0,\ \forall\,\eta\in W_2^1(\Omega)$ для першої граничної задачі, або $\int\limits_{\Omega} \Big(p\nabla v\nabla \eta+qv\eta\Big)dx+\int\limits_{S} p\sigma v\eta dS+\lambda\int\limits_{\Omega} v\eta dx=0,\ \forall\,\eta\in W_2^1(\Omega)$ для третьої (другої) граничної задачі.

Теорема. Нехай $f\in L_2ig(Z(\Omega,T)ig)$, а функція $\varphi\in L_2(\Omega)$ для першої граничної задачі $Lu\equiv u_t-div(p(x)\nabla u)+q(x)u=f(x,t)$ де $p(x)\in C^1(\overline{\Omega}),\ q(x)\in C(\overline{\Omega}),\ p(x)\geq p_0=const>0, q(x)\geq 0$. (1)

$$uig|_{t=0}=arphi(x)$$
 (2) $uig|_{\Gamma(S,T)}=0$, або $arphi\in W_2^1(\Omega)$ для третьої (другої) граничної задачі (1)-(2), $\left(rac{\partial u}{\partial n}+\sigma u
ight)ig|_{\Gamma(S,T)}=0$, тоді узагальнений розв'язок $u(x,t)$ відповідної

граничної задачі існує і зображується збіжним у просторі $W_2^1(\Omega)$ рядом $u(x,t)=\sum_{k=1}^\infty U_k(t)v_k(x)$. При цьому має місце нерівність

$$\|u\|_{W_2^1(Z(\Omega,T))} \le C(\|\varphi\|_{L_2(\Omega)} + \|f\|_{L_2(Z(\Omega,T))}),$$

в якому додатна константа C не залежить від φ, f .

79. Метод Бубнова — Гальоркіна побудови розв'язку граничної задачі гіперболічного рівняння.

Для дослідження більш загальної граничної задачі для рівняння гіперболічного типу можна застосувати метод Гальоркина, який одночасно може бути використаний і для знаходження наближеного розв'язку відповідної граничної задачі.

Розглянемо граничну задачу Діріхле для гіперболічного рівняння:

$$\Theta u = u_{tt} - div(p(x,t)gradu) + q(x,t)u = f(x,t)$$
 (1)

$$u|_{t=0} = \varphi(x)$$
 $u_t|_{t=0} = \psi(x)$ $u|_{\Gamma(S,T)} = 0$ (2)

Як і раніше будемо припускати, що $f(x,t) \in L_2(Z(\Omega,T)), \psi(x) \in L_2(\Omega),$ $\varphi \in W_2^1(\Omega).$

Нехай $v_1(x),v_2(x),.....$ - довільна система функцій з простору $C^2\left(\overline{\Omega}\right)$ така, що задовольняє граничні умові $v_i\big|_S=0,\ k=1,2...$, лінійно незалежна і повна в просторі $W_2^0\left(\Omega\right)$. Тобто лінійний многовид натягнутий на цю систему функцій є усюди щільним в $W_2^0\left(\Omega\right)$. Для скінченого вимірного простору $V_m\in L_2\left(\Omega\right)$

натягнутого на систему функцій $v_1(x), v_2(x), \dots$ отримаємо задачу, яка буде результатом ортогонального проектування задачі (1) — (2) на підпростір V_m .

Будемо шукати функцію
$$w_m(x,t) = \sum_{k=1}^m c_k(t) v_k(x)$$

 $c_k(t), k = 1, 2...$ - невідомі функції.

Зрозуміло, що при підстановці функції $w_{_{m}}(x,t)$ в рівняння (1) для будь – яких функцій $c_{_{k}}(t),\,k=1,2..$, рівняння не буде виконуватись, тобто

$$w_{mtt} - div(p(x,t)gradw_m) + q(x,t)w_m - f(x,t) = r_m(x,t),$$

де $r_m(x,t)$ - нев'язка рівняння на елементах многовиду V_m . Згідно до методу Гальоркіна будемо вимагати, щоб нев'язка $r_m(x,t)$ була ортогональна многовиду V_m . Для цього необхідно і достатньо виконання рівностей:

$$\int_{\Omega} (w_{mtt} - div(p(x,t)gradw_{m}) + q(x,t)w_{m} - f(x,t))v_{k}dx = 0, \ k = 1,2...$$

Останні рівності зводяться до системи звичайних диференціальних рівнянь відносно $c_k(t),\,k=1,2...$

$$\sum_{s=1}^{m} c_{s}(t) \int_{\Omega} v_{s}(x) v_{k}(x) dx - c_{s}(t) \int_{\Omega} \left(div(p(x,t)gradv_{s}) - q(x,t)v_{s} \right) v_{k} dx = \int_{\Omega} f v_{k} dx$$