

Professora: Aline de Oliveira

Contagem, 2020

LIGAÇÕES QUÍMICAS

Combinação de átomos

Substâncias químicas distintas

As forças que mantêm os átomos unidos são fundamentalmente de natureza elétrica e são denominadas **ligações químicas**.

Por que os gases nobres apresentam-se como átomos isolados e estáveis (pouco reativos) em condições ambientes?

Apresentam 8 elétrons no último nível eletrônico (ou 2 no caso Hélio).

LIGAÇÕES QUÍMICAS

TEORIA DO OCTETO

Um átomo adquire estabilidade quando possui 8 elétrons na camada mais externa (ou 2 elétrons, quando possui apenas a camada K).

Os átomos tendem a **ganhar, perder ou compartilhar** elétrons até que estejam circundados por oito elétrons de valência.

Átomo	Espécie estável
H: 1s ¹	Doa, recebe ou compartilha um elétron.
C: [He] 2s ² 2p ²	Doa, recebe ou compartilha quatro elétrons.
Na: [Ne] 3s ¹	Doa um elétron.
Cl: [Ne] 3s ² 3p ⁵	Recebe ou compartilha um elétron.
0: [He] 2s ² 2p ⁴	Recebe ou compartilha dois elétrons.

Os átomos tendem a **ganhar, perder ou compartilhar** elétrons com seus átomos vizinhos para alcançar a configuração eletrônica de um gás nobre.

LIGAÇÃO IÔNICA

É a união entre átomos, depois que um átomo transfere definitivamente um, dois ou mais elétrons a outro átomo.

NaCl

CátionÂnion

Número total de cargas positivas = número total de cargas negativas

Cátion C^{x+} e Ânion $A^{y-} \rightarrow C_v A_x$

É a união entre átomos estabelecida pelo compartilhamento de pares de elétrons entre os átomos.

Exemplo: ligação covalente.

Para simplificar, o **par de elétrons compartilhados** é muitas vezes representado por uma única **linha** (traço).

$$H-H$$

$$\stackrel{\circ}{\mathbb{F}}-\stackrel{\circ}{\mathbb{F}}: H-\stackrel{\circ}{\mathbb{O}}-H : \mathbb{N} \equiv \mathbb{N}$$

Pares isolados: pares de elétrons de valência que não estão envolvidos na formação de ligações covalentes.

A ligação covalente geralmente ocorre **entre átomos com eletronegatividades iguais ou semelhantes** (principalmente ametais e hidrogênio).

Estruturas de Lewis

- 1. Represente os símbolos dos elementos e disponha em volta os pontos que representam os elétrons de valência;
- 2. Ligue os átomos, por meio do compartilhamento de elétrons, até que todos completem o octeto. Se preciso utilize também as ligações duplas e triplas.

$$A \equiv A \rightarrow Ligação tripla$$

Exemplos

ubstância

Fórmula química

Fórmula de Lewis

Fórmula Estrutural plana

HF

 CO_2

H⊙F:

H-F

Uma ligação

simples

Gás fluorídrico

O = C = O

Gás carbônico

08080

Duas ligações duplas

Gás fluorídrico N_2

 $N \equiv N$ Uma ligação simples

Exercício

Represente a fórmula química de Lewis e a fórmula estrutural plana para os seguintes compostos covalentes:

HONOH

Exercício

Represente a fórmula química de Lewis e a fórmula estrutural plana para os seguintes compostos covalentes:

(e) CH_2O H: $1s^1$ C: [He] $2s^2 2p^2$ O: [He] $2s^2 2p^4$ H_{©C} 00 .O. H, C, H

(f) CO C: [He] 2s² 2p² O: [He] 2s² 2p⁴

:C**=**0:

(g) HCN $H: 1s^1$ C: [He] $2s^2 2p^2$ N: [He] $2s^2 2p^3$

 $H \circ C \otimes N$:

 $H - C \equiv N$

(h) C_2H_2 H: $1s^1$ C: [He] $2s^2 2p^2$

 $H \circ C \cong C \circ H$ $H - C \equiv C - H$

Hidrogênio: um caso especial

O hidrogênio pode formar compostos iônicos e moleculares.

Compostos iônicos $Na^{+} + H^{-} \rightarrow NaH$ $Mg^{2+} + 2H^{-} \rightarrow MgH_{2}$

Caso particular de ligação covalente

O par de elétrons compartilhado entre os átomos pode ser cedido por apenas um dos átomo da ligação.

Exemplos:

$$H = \stackrel{..}{N} - H + H^{+} \longrightarrow \begin{bmatrix} H \\ H - \stackrel{..}{N} - H \\ H \end{bmatrix}^{+}$$

$$amônia \qquad \text{ion amônio}$$