Ingegneria del Software A. A. 2017-2018

Esame di teoria 18 gennaio 2018

Completare ogni affermazione, nel	caso di prodotti (sistemi) software	generici e customizzati:
caratteristica	prodotto generico	prodotto customizzato
Lo scopo del prodotto è	soddisfare richieste di mercato, generare profitti per l'azienda	soddisfare il committente
I requisiti sono definiti in base a	andamento del mercato	richieste del committente
Il prodotto è venduto a	al pubblico	esclusivamente al committente

NOME COGNOME

Per ogni attività indicare la fase del processo software in cui l'attività avviene:

attività	fase del processo software
definizione dell'architettura del sistema	progettazione
correzione di difetti emersi dopo la consegna del sistema	manutenzione
definizione dei requisiti funzionali	specifica
controllo del soddisfacimento dei requisiti prima della consegna	collaudo
integrazione dei componenti implementati	collaudo
scrittura del codice	implementazione
definizione dei requisiti non funzionali	specifica
ricerca di difetti nel sistema prima della consegna	collaudo
definizione del controllo e del comportamento dei componenti	progettazione
aggiunta di nuovi requisiti dopo la consegna del sistema	manutenzione

Per ogni attività indicare la fase del processo di specifica in cui l'attività avviene:

attività	fase del processo di specifica
classificazione dei requisiti	analisi dei requisiti
modellazione dei requisiti	analisi dei requisiti
assegnazione di priorità ai requisiti	analisi dei requisiti
valutazione della possibilità di realizzare il sistema	studio di fattibilità
studio del dominio applicativo del sistema	deduzione dei requisiti
dialogo con gli stakeholder per scoprire i requisiti	deduzione dei requisiti
valutazione della effettiva utilità del sistema	studio di fattibilità
controllo della completezza, della coerenza e della precisione del documento dei requisiti	validazione dei requisiti

Completare ogni affermazione, nel caso di requisiti utente e nel caso di requisiti di sistema:

caratteristica	requisito	requisito
	utente	di sistema
è il risultato della fase di	deduzione dei requisiti	analisi dei requisiti
la descrizione del requisito sarà letta da	stakeholder finanziari, clienti, personale non del settore	sviluppatori del sistema, personale tecnico
il requisito è descritto in linguaggio	naturale e poco tecnico	preciso e tecnico
il grado di dettaglio è	basso, espresso in linguaggio naturale	elevato, non devono esserci ambiguità

Cosa si intende rispettivamente per completezza, coerenza e precisione dei requisiti?
Completezza: tutti i requisiti richiesti dal committente devono essere documentat
Coerenza: la specifica dei requisiti non deve contenere definizioni tra loro contradditorie
Precisione: l'interpretazione di una definizione di requisito deve essere non ambigua

Rappresentare la seguente formula con un modello data-flow: $\sqrt{|x-y|} + y = z$

Nella fase di collaudo, cosa si intende rispettivamente per verifica e per validazione?

Verifica: controllare che il prodotto implementato realizzi ogni servizio in maniera corretta, senza malfunzionamenti

Validazione: controllare che il prodotto implementato soddisfi i requisiti del committente

Indicare per ogni caratteristica se essa riguarda ispezione, black box e/o white box testing:

caratteristica		black	white
		box	box
richiede la definizione preliminare di una check-list	×	0	0
richiede la lettura del codice, ma non l'esecuzione	×	0	0
richiede espressamente l'esecuzione del codice	0	×	×
i test case sono scelti solo in base ai possibili dati di input e output	0	×	0
i test case sono scelti in base alla struttura del codice	0	0	X
si può fare uso di flow-graph per definire i test-case	0	0	X
si può fare uso di partizioni di equivalenza per definire i test-case	0	×	0

Data la funzione che prende in ingresso due valori interi e restituisce la stringa "pari" se tali valori sono uguali, "primo" se il primo è il maggiore, "secondo" se il secondo è maggiore,

- a) definire l'insieme dei possibili dati di input
- b) definire l'insieme dei possibili dati di output
- c) per ogni dato di output definire una partizione di equivalenza dei dati di input
- d) per ogni partizione di equivalenza, definire un test-case
- a. Tutti i valori int
- b. "pari", "primo", "secondo"
 c. x1=x2, x1>x2, x1<x2</pre>
- d. Per "pari": (1,1)
 Per "primo": (3,1) Per "secondo": (3,5)

Segue il codice della funzione max:

```
/ int max(int a, int b) {
2 if (a!= b)
3 if (a>b)
4 c=1;
5 else
6 c=2;
else
7 c=0;
return c; }
```


- a) Disegnare il flow-graph corrispondente al programma (a fianco del codice).
- b) Indicare un metodo per stabilire il numero di cammini indipedenti ed applicarlo al flow-graph.
- c) Individuare i cammini indipendenti all'interno del flow-graph.
- d) Per ogni cammino ottenuto definire un test-case che determini tale cammino.

```
b. CC = #archi - #nodi + 2 = 3
CC = #regioni = 3
CC = #nodi_predicato + 1 = 3
c. Cammini indipendenti:
1. 1,2,3,4,9
2. 1,2,3,5,6,9
3. 1,2,7,8,9
d. Cammino 1: Input:(4,2) Output:1
Cammino 2: Input:(2,3) Output:2
Cammino 3: Input:(3,3) Output:0
```

Per ogni caratteristica, indicare se riguarda il concetto di versione e/o di release del sistema:

Caratteristica	versione	release
Può essere identificata tramite attributi	夂	0
Viene sempre distribuita agli utenti	0	×
E' un'istanza del sistema che differisce dalle altre per qualche aspetto	×	0
Può essere identificata numericamente	×	¥

Per ogni caratteristica, indicare se riguarda il concetto di milestone e/o deliverable:

Caratteristica	milestone	deliverable
E' un punto di controllo per valutare l'avanzamento del progetto	×	0
Determina la presentazione di risultati al committente	0	\forall
E' la terminazione di un insieme di task	×	×

All'interno di un processo software sono stati individuati i task T1, T2, T3, T4, T5, T6. Tali task hanno le seguenti durate e dipendenze:

Haiii.	io ic segue.	nn duraic c dip	chachze. \leq 3
Task	Durata	Dipendenze	ITAL TA
T1	2gg	-	
T2	5gg	-	5
T3	3gg	-	1/1/13/0 -3/T2 > T6
T4	3gg	T1	
T5	3gg	T3	3
T6	4gg	T2, T4	
T7	4gg	T2, T5	

In base alle dipendenze tra task, disegnare l'activity network (a fianco della tabella).

In base all'activity network, indicare tutti i task che da ultimare per consentire l'inizio di T7: 2,3,5
In base alla durata dei task, individuare il cammino critico nell'activity network: 3,5,7
In base al cammino critico, determinare la durata del progetto: 10 giorni
Qual è il ritardo massimo consentito a T1 in modo da non alterare la durata del progetto, assumendo che gli altri task rispettino i tempi previsti? 1 giorno

Spiegare il motivo:		

dato che il cammino critico dura 10 giorni, e la durata del

Associare ogni caratteristica ai modelli di processo iterativi in cui è presente:

Caratteristica	sviluppo	sviluppo
	evolutivo	incrementale
ogni versione del prodotto può realizzare un insieme di nuovi requisiti	×	\triangleright
si stabilisce all'inizio quali sono i requisiti realizzati da ciascuna versione	0	×
la versione corrente del sistema si può considerare un prototipo evolutivo	×	0
il committente può valutare release intermedie del prodotto	X	0
la fase di progettazione avviene una sola volta, all'inizio del processo	0	\gg
all'inizio del processo si stabilisce il numero di versioni del prodotto	0	\nearrow

Per ogni caratteristica, indicare se riguarda la versione I e/o II del modello di processo a spirale:

Caratteristica	spirale	spirale
	ver. I	ver. II
ogni loop nella spirale corrisponde ad una release del sistema	0	0
il sistema è consegnato una sola volta, alla fine del processo	0	0
si considerano anche alcune attività di gestione	0	0
ogni loop nella spirale corrisponde alla realizzazione di un task del processo	0	0