Leonardo Carrico

CSCI/MATH 240

Lab 4

Exercise 1

1. The code for the Trapezoidal Rule is inside the lib.py python file.

Exercise 2

1. The code for the Simpson's Rule is inside the lib.py python file.

Exercise 3

1. For the Integral: $\int_0^{10} e^{-x^2} dx$

n	4	8	16	32	64
Trapezoidal	1.25482613537 5289	0.88942827806 26929	0.886226925471 621	0.886226925452 7579	0.886226925452757 8
Simpson's	0.83976818047 72389	0.76762899229 18275	0.885159807941 2636	0.886226925446 4703	0.886226925452758

2. For the Integral: $\int_0^2 \cos(\pi(1+x^2))dx$

n	4	8	16	32	64
Trapezoidal	-0.707106781	-0.3535533905	-0.3505543413	-0.35046132321	-0.3504563670303
	1865526	9327506	715142	21879	6487
Simpson's	-0.942809041	-0.2357022603	-0.3495546582	-0.35043031715	-0.3504547149697
	5820701	9551598	9759397	907924	574

Trapezoidal and Simpson's Rule for: cos(3.14159265358979*x**2 + 3.14159265358979)

3. For the Integral: $\int_0^2 \sqrt{x} e^x dx$

n	4	8	16	32	64
Trapezoidal	1.25008785189	1.25161212516	1.253684398752	1.254809099916	1.255306233958038
	26526	39316	8026	3364	3
Simpson's	1.24595665168	1.25212021625	1.254375156615	1.255184000304	1.255471945305272
	55227	43579	7595	1808	3

Trapezoidal and Simpson's Rule for: x**0.5*exp(x)

Exercise 4

The formula written was a bit difficult to understand due to what I believe are typos, and my understanding is that the length of the curve is equal to: $\int_a^b \sqrt{1 + f'(x)^2} dx$. With n = 50, we get the following values:

- 1. With f(x) as $sin(\pi x)$ where $0 \le x \le 5$, $\int_a^b \sqrt{1 + f'(x)^2} dx \cong 11.524133760288862$ 2. With f(x) as e^x where $0 \le x \le 2$, $\int_a^b \sqrt{1 + f'(x)^2} dx \cong 6.789533205034732$ 3. With f(x) as e^{x^2} where $0 \le x \le 2$, $\int_a^b \sqrt{1 + f'(x)^2} dx \cong 54.16529789515147$

Exercise 5

Below are the numerical derivatives at the indicated points with the backward, forward, and centered formula, all with h = 0.05.

Values from Each Numerical Derivative

	Backward	Center	Forward
e^x at $x = 0$	0.9754115099857197	1.000416718753101	1.0254219275204823
$tan^{-1}(x^2 - x + 1)$ at $x = 1$	0.48645974400530534	0.4989597374948951	0.5114597309844848
$tan^{-1}(100x^2 - 199x + 100) \text{ at } x = 0$	-1.8131977440150426	0.3904264995515372	2.594050743118117

Errors from Each Numerical Derivative

	Backward	Center	Forward
e^x at $x = 0$	0.024588490014280318	0.0004167187531010086	0.025421927520482335
$tan^{-1}(x^2 - x + 1)$ at $x = 1$	0.013540255994694661	0.0010402625051049164	0.011459730984484828
$tan^{-1}(100x^2 - 199x + 100)$ at	2.3131977440150426	0.10957350044846281	2.094050743118117
x = 0			

From this we notice that the lowest errors are all from using the Center Numerical Derivative. Thus, we can determine that center will typically be most resourceful at getting us the most accurate value.

Exercise 6

For calculating the number of points necessary for the accuracy of 10^{-6} , I created the functions called simpsonError and trapRuleError. They respectively give us the values for n: 24 and 816.

Finally, I get the calculated values for $\int_{1}^{3} x \ln(x) dx$ as:

Simpson's: 2.9437555358624157 Trapezoidal: 2.943755848981364

Exercise 8

For this problem, I found that the area of the function $2\sqrt{1-x^2}$ returns to us the approx. value of π . I created the monteCarlo function, which is stored inside of the lib.py file, to calculate our approximation. We get a value of: 3.1417083194143074.