Título del Informe

Román

Fecha de entrega: 23 de diciembre de 2024

Cliente: Nombre del cliente o entidad

Número de Informe:

Ubicación: Dirección o localización del proyecto

Índice

Cálculo de la Transmitancia Térmica (U)	1
Capas de la fachada	2
Resultado Final	2

Cálculo de la Transmitancia Térmica (U)

La transmitancia térmica de una fachada típica (también conocida como coeficiente de transferencia de calor o valor U) se puede calcular utilizando la siguiente fórmula general:

$$U = \frac{1}{R_{\text{total}}}$$

Donde R_{total} es la resistencia térmica total de la fachada, obtenida como la suma de las resistencias térmicas de todas las capas:

$$R_{\text{total}} = R_1 + R_2 + \dots + R_n$$

Cada resistencia térmica R para una capa se calcula con la fórmula:

$$R = \frac{e}{\lambda}$$

Donde: - e: Espesor de la capa (en metros).

• λ : Conductividad térmica de la capa (en $W/m \cdot K$).

Para las capas donde se proporciona directamente R, simplemente se utiliza ese valor.

Capas de la fachada

Capa	e (mm)	$\lambda \; (W/m \cdot K)$	$R (m^2 \cdot K/W)$
Ladrillo Obra Vista	140	0.87	$R = \frac{0.14}{0.87} = 0.161$
Cámara de aire	10	-	R = 0.15
Poliestireno extruido	30	0.033	$R = \frac{0.03}{0.033} = 0.909$
Barrera de vapor	10	0.19	$R = \frac{8.81}{0.19} = 0.053$
Ladrillo Perforado	40	0.87	$R = \frac{8.04}{0.87} = 0.046$
Mortero	10	1.4	$R = \frac{8.81}{1.4} = 0.007$
Cerámica	10	0.8	$R = \frac{0.03}{0.033} = 0.909$ $R = \frac{0.01}{0.01} = 0.053$ $R = \frac{0.04}{0.81} = 0.046$ $R = \frac{0.01}{0.81} = 0.007$ $R = \frac{0.01}{0.8} = 0.013$

Resultado Final

Sumamos todas las resistencias térmicas:

$$R_{\rm total} = 0.161 + 0.15 + 0.909 + 0.053 + 0.046 + 0.007 + 0.013 = 1.338 \, m^2 \cdot K/W$$

Finalmente, calculamos la transmitancia térmica:

$$U = \frac{1}{R_{\rm total}} = \frac{1}{1.338} = 0.747 \, W/m^2 \cdot K$$

Por lo tanto, la transmitancia térmica de la fachada es:

$$U = 0.747 \, W/m^2 \cdot K$$