

Ma2201/CS2022 Quiz 0011

Foundations of C.S.

3 OI U.S.	Spring, 2021
PRINT NAME:	
\mathcal{SIGN} :	

1. (6 pts) Let $L \subseteq \{a,b,c\}^*$ be the language defined recursively by

BASIS: $\lambda \in L$

RECURSIVE STEP: If $w \in L$ then awb and $w^2 \in L$.

CLOSURE: Every element in L can be generated from the basis after a finite number of applications of the recursive step.

Prove *carefully* by induction that every element in L has even length.

♣ The result we want to prove here is simple, and some might say obvious. The task at hand is to prove it carefully by induction.

Proof: We will prove it by induction on the number, k, of rules applied in generating an element of the recursively defined set.

Base Case: k = 0. After no rule applications, the element of L is in the basis of the recursively defined set, so it must be λ , and the length of λ is zero, which is even.

Inductive Step: Let $k \geq 0$ be given and suppose that every element constructed after k applications of the recursive step is of even length. Suppose u has been constructed by k+1 rule applications. So u has been constructed by applying a rule to w and w has been constructed by k rule applications, and consequently w has even length by the inductive hypothesis. There are two cases. Either u = awb or $u = w^2$. If u = awb, then length(u) = length(w) + 2, which is even. On the other hand, if u = ww, then length(u) = 2length(u), which is also even. So, in either case, u has even length.

Therefore, the result is true for all $k \geq 0$ by induction.

Here is another proof, equally valid.

Proof: According to the recursive construction, $L = \bigcup_{N=0}^{\infty} L_N$. We will show that every element of L_N has even length by induction on N.

For N = 0, $L_0 = \{\lambda\}$ and $length(\lambda) = 0$, which is even.

Suppose, for a given $N \geq 0$ that L_N consists only of even length elements. Every element u of L_{N+1} is either an element of L_N , hence has even length; or u = awb or u = ww for some $w \in L_N$. By the inductive hypothesis, length(w) = 2m, $m \in \mathbb{N}$. So length(u) = 2m + 2, or length(u) = 4m, both of which are even, so every element of L_{N+1} has even length.

Therefore, the result is true for all $k \ge 0$ by induction.

2. (4 pts) Let p_k be statement for $k \in \mathbb{N}$. Suppose that for all k that $p_k \Rightarrow p_{2k}$. Suppose that p_8 is true and p_{800} is false. For each of the following, label it T if it $must$ be true, F if it $must$ be false, and X if it cannot be determined from the given information.
$__p_{1600}.$
$__p_{25}.$
$__p_{24}.$
$\underline{\hspace{1cm}} p_{16}.$
\clubsuit Here is what we know for sure is true. p_8 , which allows us to conclude sequentially
$p_{16}, p_{32}, p_{64}, p_{128}$
and, by induction, the same for all larger powers of two. That is all we can conclude from p_8 , and we are left in the dark about p_1 , p_2 and p_4 . We are also given that p_{800} is false, but that doesn't contradict what we already have since 800 is not a power of 2. We can't help but notice that $800 = 25 \cdot 2^5$, so none of
$p_{25}, p_{50}, p_{100}, p_{200}, p_{400}$
could be true, since any would imply p_{800} by induction. With that we can fill in the questions X_{1000}
$\underline{F}_{p_{25}}$.

 X_p_{24} .

 T_p_{16} .