Statistica - 13ª lezione

11 maggio 2021

Inferenza non parametrica

Supponiamo che

 X_1, X_2, \dots, X_n i.i.d. con $X_i \sim f$, f densità incognita

Inferenza non parametrica

Supponiamo che

$$X_1, X_2, \dots, X_n$$
 i.i.d. con $X_i \sim f$, f densità incognita

Vogliamo fare inferenza su tutta f (e non solo su un suo parmetro)

Inferenza non parametrica

Supponiamo che

$$X_1, X_2, \dots, X_n$$
 i.i.d. con $X_i \sim f$, f densità incognita

Vogliamo fare inferenza su tutta f (e non solo su un suo parmetro)

Ci sono due modi:

- metodi grafici
- test non parametrici

OSSERVAZIONE I: Se $X \sim N(\mu, \sigma^2)$, allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

OSSERVAZIONE I: Se $X \sim N(\mu, \sigma^2)$, allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

 $\Rightarrow \quad q_{\gamma}^{X} = \sigma z_{\gamma} + \mu \quad \text{per ogni} \quad \gamma$

OSSERVAZIONE I: Se $X \sim N(\mu, \sigma^2)$, allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

 $\Rightarrow \quad q_{\gamma}^{X} = \sigma z_{\gamma} + \mu \quad \text{per ogni} \quad \gamma$

OSSERVAZIONE II (più difficile): Se inoltre

$$X_1, X_2, \dots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2)$

OSSERVAZIONE I: Se $X \sim N(\mu, \sigma^2)$, allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

 $\Rightarrow \quad q_{\gamma}^{X} = \sigma z_{\gamma} + \mu \quad \text{per ogni} \quad \gamma$

OSSERVAZIONE II (più difficile): Se inoltre

$$X_1, X_2, \dots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2)$

allora i *quantili empirici*

$$\hat{Q}_{\gamma}^{X} := egin{cases} X_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\ rac{1}{2} \Big(X_{(n\gamma)} + X_{(n\gamma + 1)} \Big) & \text{se } n\gamma \in \mathbb{N} \end{cases}$$

OSSERVAZIONE I: Se $X \sim N(\mu, \sigma^2)$, allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

 $\Rightarrow \quad q_{\gamma}^{X} = \sigma z_{\gamma} + \mu \quad \text{per ogni} \quad \gamma$

OSSERVAZIONE II (più difficile): Se inoltre

$$X_1, X_2, \dots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2)$

allora i quantili empirici

$$\hat{Q}_{\gamma}^{X} := egin{cases} X_{(\lfloor n\gamma
floor + 1)} & ext{se } n\gamma
otin \mathbb{N} \ rac{1}{2} \Big(X_{(n\gamma)} + X_{(n\gamma + 1)} \Big) & ext{se } n\gamma \in \mathbb{N} \end{cases}$$

convergono in probabilità a q_{γ}^{X}

Normal gg-plot

OSSERVAZIONE I: Se $X \sim N(\mu, \sigma^2)$, allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

 $\Rightarrow \quad q_{\gamma}^{X} = \sigma Z_{\gamma} + \mu \quad \text{per ogni} \quad \gamma$

OSSERVAZIONE II (più difficile): Se inoltre

$$X_1, X_2, \dots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2)$

allora i *quantili empirici*

dalle tavole

$$\hat{Q}_{\gamma}^{X} := egin{cases} X_{(\lfloor n\gamma
floor + 1)} & ext{se } n\gamma
otin \mathbb{N} \ rac{1}{2} \Big(X_{(n\gamma)} + X_{(n\gamma + 1)} \Big) & ext{se } n\gamma \in \mathbb{N} \end{cases}$$

convergono in probabilità a q_{γ}^{X}

OSSERVAZIONE I: Se $X \sim N(\mu, \sigma^2)$, allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

 $\Rightarrow \quad q_{\gamma}^{X} = \sigma z_{\gamma} + \mu \quad \text{per ogni} \quad \gamma$

OSSERVAZIONE II (più difficile): Se inoltre

$$X_1, X_2, \dots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2)$

allora i quantili empirici

$$\widehat{Q}_{\gamma}^{X} = \begin{cases}
X_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\
\frac{1}{2} \left(X_{(n\gamma)} + X_{(n\gamma + 1)} \right) & \text{se } n\gamma \in \mathbb{N}
\end{cases}$$

convergono in probabilità a q_{γ}^{X}

dall'esperimento

OSSERVAZIONE I: Se $X \sim N(\mu, \sigma^2)$, allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

 $\Rightarrow \quad q_{\gamma}^{X} = \sigma z_{\gamma} + \mu \quad \text{per ogni} \quad \gamma$

OSSERVAZIONE II (più difficile): Se inoltre

$$X_1, X_2, \dots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2)$

allora i quantili empirici

$$\hat{Q}_{\gamma}^{X} := egin{cases} X_{(\lfloor n\gamma
floor + 1)} & ext{se } n\gamma
otin \mathbb{N} \ rac{1}{2} \Big(X_{(n\gamma)} + X_{(n\gamma + 1)} \Big) & ext{se } n\gamma \in \mathbb{N} \end{cases}$$

convergono in probabilità a q_{γ}^{X}

$$\Rightarrow$$
 \hat{q}_{γ}^{X} e z_{γ} si devono allineare!

Se
$$\gamma = \frac{k}{n}$$
 con $k = 1, 2, ..., n$:
$$\hat{q}_{\gamma}^{X} = \hat{q}_{\frac{k}{n}}^{X}$$

Se
$$\gamma=\frac{k}{n}$$
 con $k=1,2,\ldots,n$:
$$\hat{q}_{\gamma}^X = \hat{q}_{\frac{k}{n}}^X = \frac{1}{2}\big(x_{(k)}+x_{(k+1)}\big)$$

Se
$$\gamma=\frac{k}{n}$$
 con $k=1,2,\ldots,n$:
$$\hat{q}_{\gamma}^X = \hat{q}_{\frac{k}{n}}^X = \frac{1}{2}\big(x_{(k)}+x_{(k+1)}\big) \qquad \text{complicato!}$$

Se
$$\gamma=\frac{k}{n}$$
 con $k=1,2,\ldots,n$:
$$\hat{q}_{\gamma}^{X}=\hat{q}_{\frac{k}{n}}^{X}=\frac{1}{2}\big(x_{(k)}+x_{(k+1)}\big) \qquad \text{complicato!}$$
 Se invece $\gamma=\frac{k-0.5}{n}$ con $k=1,2,\ldots,n$:
$$\hat{q}_{\gamma}^{X}=\hat{q}_{\frac{k-0.5}{n}}^{X}$$

Se
$$\gamma=\frac{k}{n}$$
 con $k=1,2,\ldots,n$:
$$\hat{q}_{\gamma}^{X}=\hat{q}_{\frac{k}{n}}^{X}=\frac{1}{2}\big(x_{(k)}+x_{(k+1)}\big) \qquad \text{complicato!}$$
 Se invece $\gamma=\frac{k-0.5}{n}$ con $k=1,2,\ldots,n$:
$$\hat{q}_{\gamma}^{X}=\hat{q}_{\frac{k-0.5}{n}}^{X}=x_{(k)}$$

Se
$$\gamma=\frac{k}{n}$$
 con $k=1,2,\ldots,n$:
$$\hat{q}_{\gamma}^X=\hat{q}_{\frac{k}{n}}^X=\frac{1}{2}\big(x_{(k)}+x_{(k+1)}\big) \qquad \text{complicato!}$$
 Se invece $\gamma=\frac{k-0.5}{n}$ con $k=1,2,\ldots,n$:
$$\hat{q}_{\gamma}^X=\hat{q}_{\frac{k-0.5}{n}}^X=x_{(k)} \qquad \text{più semplice.} \ldots$$

Se
$$\gamma = \frac{k}{n}$$
 con $k = 1, 2, ..., n$:
$$\hat{q}_{\gamma}^{X} = \hat{q}_{\frac{k}{n}}^{X} = \frac{1}{2} (x_{(k)} + x_{(k+1)}) \qquad \text{complicato!}$$

Se invece
$$\gamma = \frac{k-0.5}{n}$$
 con $k = 1, 2, ..., n$:

$$\hat{q}_{\gamma}^{X} = \hat{q}_{\frac{k-0.5}{n}}^{X} = x_{(k)}$$
 più semplice...

NORMAL QQ-PLOT = grafico dei punti

$$\left(\hat{q}_{\frac{k-0.5}{n}}^X, Z_{\frac{k-0.5}{n}}\right)$$

con
$$k = 1, 2, ..., n$$

Se
$$\gamma = \frac{k}{n}$$
 con $k = 1, 2, ..., n$:
$$\hat{q}_{\gamma}^{X} = \hat{q}_{\frac{k}{n}}^{X} = \frac{1}{2} (x_{(k)} + x_{(k+1)}) \qquad \text{complicato!}$$

Se invece
$$\gamma = \frac{k-0.5}{n}$$
 con $k = 1, 2, ..., n$:

$$\hat{q}_{\gamma}^X = \hat{q}_{\frac{k-0.5}{n}}^X = x_{(k)}$$
 più semplice...

NORMAL QQ-PLOT = grafico dei punti

$$\left(\hat{q}_{\frac{k-0.5}{n}}^{X}, z_{\frac{k-0.5}{n}}\right) = \left(x_{(k)}, z_{\frac{k-0.5}{n}}\right) \quad \text{con } k = 1, 2, \dots, n$$

Se
$$\gamma = \frac{k}{n}$$
 con $k = 1, 2, ..., n$:
$$\hat{q}_{\gamma}^{X} = \hat{q}_{\frac{k}{n}}^{X} = \frac{1}{2} (x_{(k)} + x_{(k+1)}) \qquad \text{complicato!}$$

Se invece
$$\gamma = \frac{k-0.5}{n}$$
 con $k = 1, 2, ..., n$:

$$\hat{q}_{\gamma}^{X} = \hat{q}_{\frac{k-0.5}{n}}^{X} = x_{(k)}$$
 più semplice...

NORMAL QQ-PLOT = grafico dei punti

$$\left(\hat{q}_{\frac{k-0.5}{n}}^{X}, z_{\frac{k-0.5}{n}}\right) = \left(x_{(k)}, z_{\frac{k-0.5}{n}}\right) \quad \text{con } k = 1, 2, \dots, n$$

punti quasi allineati \Rightarrow è verosimile che $X_i \sim N(\mu, \sigma^2)$

Si può fare (con R) un test per le ipotesi

 H_0 : le X_i hanno densità normale vs. H_1 : H_0 è falsa

Si può fare (con R) un test per le ipotesi

 H_0 : le X_i hanno densità normale vs. H_1 : H_0 è falsa

p-value alto \Rightarrow non possiamo escludere X_i normali

Si può fare (con R) un test per le ipotesi

 H_0 : le X_i hanno densità normale vs. H_1 : H_0 è falsa

p-value alto \Rightarrow non possiamo escludere X_i normali

p-value basso \Rightarrow normalità delle X_i poco verosimile

Non posso rifiutare la gaussianità

Non posso rifiutare la gaussianità

Devo rifiutare la gaussianità

Programma

- Statistica descrittiva (riassumere molti dati attraverso poche caratteristiche essenziali)
- Probabilità
 (costruire un modello che preveda il risultato di un esperimento)
- Inferenza statistica (tarare i parametri del modello in base ai risultati dell'esperimento)
- Regressione lineare (riconoscere relazioni tra dati di tipo diverso)

Per n punti passa sempre un polinomio di grado n-1:

Per n punti passa sempre un polinomio di grado n-1:

Ma noi vogliamo la funzione più semplice possibile: la retta

$$y = a + bx$$

parametrizzata solo da (a, b).

Per n punti passa sempre un polinomio di grado n-1:

Ma noi vogliamo la funzione più semplice possibile: la retta

$$y = a + bx$$

parametrizzata solo da (a, b).

Come si capisce se la retta di parametri (a, b) approssima bene gli n punti?

Per n punti passa sempre un polinomio di grado n-1:

Ma noi vogliamo la funzione più semplice possibile: la retta

$$y = a + bx$$

parametrizzata solo da (a, b).

Come si capisce se la retta di parametri (a, b) approssima bene gli n punti?

Dobbiamo introdurre gli errori (o residui)

$$e_i := y_i - (a + bx_i)$$

e un funzionale di errore

$$L(a,b) := \sum_{i=1}^{n} (y_i - a - bx_i)^2 = \sum_{i=1}^{n} e_i^2$$

Per n punti passa sempre un polinomio di grado n-1:

Ma noi vogliamo la funzione più semplice possibile: la retta

$$y = a + bx$$

parametrizzata solo da (a, b).

Come si capisce se la retta di parametri (a, b) approssima bene gli n punti?

Dobbiamo introdurre gli errori (o residui)

$$e_i := y_i - (a + bx_i)$$

e un funzionale di errore

$$L(a,b) := \sum_{i=1}^{n} (y_i - a - bx_i)^2 = \sum_{i=1}^{n} e_i^2$$

Per n punti passa sempre un polinomio di grado n-1:

Ma noi vogliamo la funzione più semplice possibile: la retta

$$y = a + bx$$

parametrizzata solo da (a, b).

Come si capisce se la retta di parametri (a, b) approssima bene gli n punti?

Dobbiamo introdurre gli errori (o residui)

$$e_i := y_i - (a + bx_i)$$

e un funzionale di errore

$$L(a,b) := \sum_{i=1}^{n} (y_i - a - bx_i)^2 = \sum_{i=1}^{n} e_i^2$$

Per n punti passa sempre un polinomio di grado n-1:

Ma noi vogliamo la funzione più semplice possibile: la retta

$$y = a + bx$$

parametrizzata solo da (a, b).

Come si capisce se la retta di parametri (a, b) approssima bene gli n punti?

Dobbiamo introdurre gli errori (o residui)

$$e_i := y_i - (a + bx_i)$$

Perché si mette il quadrato?

e un funzionale di errore

$$L(a,b) := \sum_{i=1}^{n} (y_i - a - bx_i)^2 = \sum_{i=1}^{n} e_i^2$$

Col quadrato:

- $L(a,b) \geq 0 \ \forall (a,b)$
- $L(\infty) = +\infty$
- \exists ! punto di minimo (\hat{a}, \hat{b})

Senza quadrato:

- i residui si compensano

Col quadrato:

- $L(a, b) \ge 0 \ \forall (a, b)$
- $L(\infty) = +\infty$
- \exists ! punto di minimo (\hat{a}, \hat{b})

Senza quadrato: L(a,b) i residui si compensano minimo

 $y = \hat{a} + \hat{b}x$ è la retta dei minimi quadrati (LSL = least square line)

$$\frac{\partial L}{\partial a} = \frac{\partial}{\partial a} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

$$\frac{\partial L}{\partial a} = \frac{\partial}{\partial a} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$
$$= -2 \sum_{i=1}^{n} (y_i - a - bx_i)$$

Cerchiamo (\hat{a}, \hat{b}) ponendo $\nabla L(\hat{a}, \hat{b}) \equiv 0$:

$$\frac{\partial L}{\partial a} = \frac{\partial}{\partial a} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$
$$= -2 \sum_{i=1}^{n} (y_i - a - bx_i)$$
$$= -2(n\bar{y} - na - nb\bar{x})$$

dove

$$\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{y} := \frac{1}{n} \sum_{i=1}^{n} y_i.$$

Cerchiamo (\hat{a}, \hat{b}) ponendo $\nabla L(\hat{a}, \hat{b}) \equiv 0$:

$$\frac{\partial L}{\partial a} = \frac{\partial}{\partial a} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$
$$= -2 \sum_{i=1}^{n} (y_i - a - bx_i)$$
$$= -2(n\bar{y} - na - nb\bar{x})$$
$$\equiv 0$$

dove

$$\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{y} := \frac{1}{n} \sum_{i=1}^{n} y_i.$$

Cerchiamo (\hat{a}, \hat{b}) ponendo $\nabla L(\hat{a}, \hat{b}) \equiv 0$:

$$\frac{\partial L}{\partial a} = \frac{\partial}{\partial a} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

$$= -2 \sum_{i=1}^{n} (y_i - a - bx_i)$$

$$= -2 (n\bar{y} - na - nb\bar{x})$$

$$\equiv 0$$

$$\Rightarrow a = \bar{y} - b\bar{x}$$

$$\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{y} := \frac{1}{n} \sum_{i=1}^{n} y_i.$$

dove

$$\frac{\partial L}{\partial b} = \frac{\partial}{\partial b} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

$$\frac{\partial L}{\partial b} = \frac{\partial}{\partial b} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$
$$= -2 \sum_{i=1}^{n} x_i (y_i - a - bx_i)$$

$$\frac{\partial L}{\partial b} = \frac{\partial}{\partial b} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

$$= -2 \sum_{i=1}^{n} x_i (y_i - a - bx_i)$$

$$= -2 \left(\sum_{i=1}^{n} x_i y_i - na\bar{x} - b \sum_{i=1}^{n} x_i^2 \right)$$

$$\frac{\partial L}{\partial b} = \frac{\partial}{\partial b} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

$$= -2 \sum_{i=1}^{n} x_i (y_i - a - bx_i)$$

$$= -2 \left(\sum_{i=1}^{n} x_i y_i - na\bar{x} - b \sum_{i=1}^{n} x_i^2 \right)$$

$$= -2 \left(\sum_{i=1}^{n} x_i y_i - n\bar{x} (\bar{y} - b\bar{x}) - b \sum_{i=1}^{n} x_i^2 \right) \quad \text{con } a = \bar{y} - b\bar{x}$$

$$\frac{\partial L}{\partial b} = \frac{\partial}{\partial b} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

$$= -2 \sum_{i=1}^{n} x_i (y_i - a - bx_i)$$

$$= -2 \left(\sum_{i=1}^{n} x_i y_i - na\bar{x} - b \sum_{i=1}^{n} x_i^2 \right)$$

$$= -2 \left(\sum_{i=1}^{n} x_i y_i - n\bar{x} (\bar{y} - b\bar{x}) - b \sum_{i=1}^{n} x_i^2 \right) \quad \text{con } a = \bar{y} - b\bar{x}$$

$$\equiv 0$$

$$\frac{\partial L}{\partial b} = \frac{\partial}{\partial b} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

$$= -2 \sum_{i=1}^{n} x_i (y_i - a - bx_i)$$

$$= -2 \left(\sum_{i=1}^{n} x_i y_i - na\bar{x} - b \sum_{i=1}^{n} x_i^2 \right)$$

$$= -2 \left(\sum_{i=1}^{n} x_i y_i - n\bar{x} (\bar{y} - b\bar{x}) - b \sum_{i=1}^{n} x_i^2 \right) \quad \text{con } a = \bar{y} - b\bar{x}$$

$$\equiv 0$$

$$\Rightarrow \quad b = \frac{\sum x_i y_i - n\bar{x} \bar{y}}{\sum x_j^2 - n\bar{x}^2}$$

$$\frac{\partial L}{\partial b} = \frac{\partial}{\partial b} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

$$= -2 \sum_{i=1}^{n} x_i (y_i - a - bx_i)$$

$$= -2 \left(\sum_{i=1}^{n} x_i y_i - na\bar{x} - b \sum_{i=1}^{n} x_i^2 \right)$$

$$= -2 \left(\sum_{i=1}^{n} x_i y_i - n\bar{x} (\bar{y} - b\bar{x}) - b \sum_{i=1}^{n} x_i^2 \right) \quad \text{con } a = \bar{y} - b\bar{x}$$

$$\equiv 0$$

$$\Rightarrow b = \frac{\sum_{i=1}^{n} x_i y_i - n\bar{x} \bar{y}}{\sum_{i=1}^{n} x_i^2 - n\bar{x}^2} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Dai punti $(x_1, y_1), \dots, (x_n, y_n)$ distilliamo le 5 quantità

$$\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{y} := \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$s_{xx} := \sum_{i=1}^{n} (x_i - \bar{x})^2 \qquad s_{xy} := \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \qquad s_{yy} := \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Dai punti $(x_1, y_1), \dots, (x_n, y_n)$ distilliamo le 5 quantità

$$\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{y} := \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$s_{xx} := \sum_{i=1}^{n} (x_i - \bar{x})^2 \qquad s_{xy} := \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \qquad s_{yy} := \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Tutte le altre quantità della LSL sono funzioni di gueste. P. es.:

$$\hat{a} = \bar{y} - \frac{s_{xy}}{s_{xy}}\bar{x}$$
 $\hat{b} = \frac{s_{xy}}{s_{xy}}$ parametri della LSL

Dai punti $(x_1, y_1), \dots, (x_n, y_n)$ distilliamo le 5 quantità

$$\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{y} := \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$s_{xx} := \sum_{i=1}^{n} (x_i - \bar{x})^2 \qquad s_{xy} := \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \qquad s_{yy} := \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Tutte le altre quantità della LSL sono funzioni di queste. P. es.:

$$\hat{a} = \bar{y} - \frac{s_{xy}}{s_{xx}} \bar{x}$$
 $\hat{b} = \frac{s_{xy}}{s_{xx}}$ parametri della LSL $\hat{y}_i := \hat{a} + \hat{b}x_i = \bar{y} + \frac{s_{xy}}{s_{xx}}(x_i - \bar{x})$ output della LSL

Dai punti $(x_1, y_1), \dots, (x_n, y_n)$ distilliamo le 5 quantità

$$\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{y} := \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$s_{xx} := \sum_{i=1}^{n} (x_i - \bar{x})^2 \qquad s_{xy} := \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \qquad s_{yy} := \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Tutte le altre quantità della LSL sono funzioni di queste. P. es.:

$$\hat{a} = \bar{y} - \frac{s_{xy}}{s_{xx}} \bar{x}$$
 $\hat{b} = \frac{s_{xy}}{s_{xx}}$ parametri della LSL $\hat{y}_i := \hat{a} + \hat{b}x_i = \bar{y} + \frac{s_{xy}}{s_{xx}}(x_i - \bar{x})$ output della LSL $\hat{e}_i := y_i - \hat{y}_i = (y_i - \bar{y}) - \frac{s_{xy}}{s_{xx}}(x_i - \bar{x})$ residui della LSL