PHYSICS

Chapter 19 4th

SECONDARY

CIRCUITO ELÉCTRICO SIMPLE

CIRCUITO ELECTRICO (CE)

Es una conexión cerrada que se hace por medio de alambres metálicos entre una fuente de energía eléctrica (de voltaje) con elementos que consumen dicha energía.

CIRCUITO ELECTRICO SIMPLE

Es aquel circuito donde la intensidad de corriente eléctrica "l" se mantiene constante en todo el circuito cerrado.

FUENTE DE VOLTAJE

Es aquel dispositivo que transforma algún tipo de energía para suministrar una diferencia de potencial para generar una corriente eléctrica.

Transforman la energía química en eléctrica

Tener en cuenta:

LEYES DE KIRCHHOFF

PRIMERA LEY: Ley de NODOS

Se basa en el principio de conservación de la cantidad de carga eléctrica y establece que en todo nodo la suma de corrientes que llegan es igual a la suma de corrientes que salen.

PHYSICS

P.1: Se muestra una porción de un circuito con mayor resistores, determine la intensidad de corriente eléctrica I.

RESOLUCION:

Usando la primera ley de Kirchhoff:

$$\sum_{\substack{I \text{ (entran = } \\ al \ nodo) }} \sum_{\substack{I \text{ (salen} \\ del \ nodo)}}$$

$$6 A + I + 4 A = 15 A$$

$$I + 10 A = 15 A$$

$$\therefore I = 5 A$$

LEYES DE KIRCHHOFF

SEGUNDA LEY: ley de MALLAS

Se basa en el principio de conservación de la energía y establece que en todo circuito cerrado (malla); la suma de voltajes de la fuente ($\Sigma \epsilon$) es igual a la suma de voltajes de los resistores (ΣIR).

Observación:

En la malla simple, el sentido de la corriente eléctrica lo determinará la fuente de mayor voltaje a partir de su polo positivo (+). (En la mayoría de mallas simples)

P.2: Se muestra un circuito eléctrico formado por una fuente resistores y dos conectados como se Determine muestra. la intensidad de la corriente eléctrica que circula en el circuito eléctrico.

RESOLUCION:

Se deduce que la corriente eléctrica en el circuito tiene sentido horario.

Usando la segunda ley de Kirchhoff:

$$\sum \varepsilon = \sum I. R$$

$$13 \text{ V} = \text{I} (9 \Omega + 4 \Omega)$$

$$13 \text{ V} = \text{I} (13 \Omega)$$

$$\therefore \text{I} = \text{I} \text{ A}$$

HELICO | PRACTICE

P.3: Un Amperímetro ideal es aquel donde la resistencia eléctrica interna es nula, en el circuito eléctrico mostrado se muestra un Amperímetro ideal, determine su lectura.

Si el amperímetro es ideal; entonces se comportará como un simple alambre ideal:

RESOLUCION:

Recuerda:

En la malla simple, el sentido de la corriente eléctrica lo determinará la fuente de mayor voltaje.

Usando la segunda ley de Kirchhoff:

$$\sum \varepsilon = \sum I.R$$

$$30 \text{ V} + (-20 \text{ V}) = \text{I} (2 \Omega + 2 \Omega)$$

10
$$V=I(4\Omega)$$

$$I = 2, 5 A$$

Observación:

En la " ϵ "; vamos a considerar el signo de la siguiente manera.

En el tramo A→B será +ε

En el tramo $A \rightarrow B$ será $-\varepsilon$

P.4: Se muestra un circuito eléctrico donde circula una intensidad de corriente I , para que dicha corriente eléctrica I sea 2 A de cual es el valor de la resistencia eléctrica R.

Recuerda:

En la malla simple, el sentido de la corriente eléctrica lo determinará la fuente de mayor voltaje.

Usando la segunda ley de Kirchhoff:

$$\Sigma \varepsilon = \Sigma I.R$$

$$100 \text{ V} + (-60 \text{ V}) = (2 \text{ A})(3 \Omega + 9 \Omega + \text{R})$$

$$40 \text{ V} = (2 \text{ A})(12 \Omega + \text{R})$$

$$\vdots$$

$$20 \Omega = 12 \Omega + \text{R}$$

$$\vdots \text{ R} = 8 \Omega$$

HELICO | PRACTICE

P.5: Determine la intensidad de corriente que circula por el resistor de 1 Ω de acuerdo con el esquema mostrado. Considere fuentes ideales.

HELICO | PRACTICE

P.6: Se muestra una batería la cual entrega una diferencial de potencial 60 V, y dos focos con la misma resistencia eléctrica 20 Ω conectados como se muestra en el gráfico.

Escriba verdadero (V) y falso (F) según corresponda.

- □ La intensidad de la corriente eléctrica que circula por el foco 1 es 3 A. (V)
- □ La intensidad de la corriente eléctrica que circula por el foco 2 es 4 A. (**F**)
- □ La intensidad de corriente eléctrica suministrada por la batería es 6 A. (♥)

$$\Sigma \varepsilon = \Sigma I.R$$

$$60 V = I (10 \Omega)$$

$$6 A = I$$
Corriente generada por la batería.

Recuerda:

Para resistores conectados en paralelo que tienen igual valor, tendrán el mismo valor de corriente eléctrica.

P.7: Un circuito eléctrico simple es un arreglo de partes. Son partes del circuito solo aquellos que se encuentran en el camino de los electrones: los aislantes, los resistores, interruptores y fuentes de energía. El tablero de montaje, el portalámparas y soportes, no son partes del circuito. Cada parte del circuito tiene una función específica y se le identifica con un nombre que va de acuerdo con su función:

La fuente (fem) que proporciona energía a los electrones libres en todas las partes del circuito, se llama la fuente o abastecedor.

Indique los nombres de las partes mostradas en el arreglo mostrado y el tipo de conexión que tienen los focos.

Resolución:

