| ECE 35, Winter 2019 |      | Last name                 |  |
|---------------------|------|---------------------------|--|
| Quiz 2              |      | First + middle<br>name(s) |  |
|                     | / 12 | PID                       |  |

## Instructions:

- Read each problem completely and thoroughly before beginning.
- All calculations need to be done on these sheets.
- Write your answers in the answer boxes for each question. Make sure you list units!
- Answers without supporting calculations will receive zero credit.

(1) You  $\underline{\text{must use nodal analysis}}$  to solve this problem. Find the value of voltage  $v_a$  and of mesh current  $i_1$ . (6 points)



|          | $(i_1)$                  | 2 Ω                                        |       |
|----------|--------------------------|--------------------------------------------|-------|
| 10 V (†) | $4\frac{V}{A} \cdot i_a$ | $\begin{cases} 1 \Omega & 1 A \end{cases}$ | $v_a$ |
| L        | $2\Omega$ $i_a$          |                                            | ] -   |

| (2) (a) | For figure (a) below, find the value of $k$ such that the Thevenin |
|---------|--------------------------------------------------------------------|
|         | equivalent resistance between $a$ and $b$ is equal to 2 $\Omega$ . |
|         | (3 points)                                                         |



(b) Someone chose a value of k that resulted in a Thevenin equivalent resistance of 1  $\Omega$  between a and b for part (a). With this same value of k, what load resistance  $R_L$  should be attached between c and d, in figure (b), to get the maximum power dissipated in this  $R_L$ ? (3 points)





