Classical Mechanics

Joel A. Shapiro

November 17, 2010

Copyright C 1994-2010 by Joel A. Shapiro

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the author.

This is a preliminary version of the book, not to be considered a fully published edition.

The author welcomes corrections, comments, and criticism.

Contents

1	Par	ticle Kinematics	1
	1.1	Introduction	1
	1.2		3
		1.2.1 Motion in configuration space	3
			5
	1.3		9
		1.3.1 External and internal forces	9
			3
		1.3.3 Generalized Coordinates for Unconstrained Systems 1	6
		· · · · · · · · · · · · · · · · · · ·	7
	1.4		0
			1
			5
2	Tam	range's and Hamilton's Equations 3	۳
4	_	1	
	2.1	Ų Ų	6
	2.2	v v	9
		1 0 0	2
	2.3	Hamilton's Principle	4
		2.3.1 Examples of functional variation 4	6
	2.4	Conserved Quantities	8
		2.4.1 Ignorable Coordinates 4	8
		2.4.2 Energy Conservation	0
	2.5	Hamilton's Equations	2
	2.6		4
	2.7	Velocity-dependent forces	5

iv CONTENTS

3	Twc	o Body Central Forces	65
	3.1	Reduction to a one dimensional problem	65
		3.1.1 Reduction to a one-body problem	65
		3.1.2 Reduction to one dimension	67
	3.2	Integrating the motion	68
		3.2.1 The Kepler problem	70
		3.2.2 Nearly Circular Orbits	73
	3.3	The Laplace-Runge-Lenz Vector	76
	3.4	The virial theorem	77
	3.5	Rutherford Scattering	78
4	Rig	id Body Motion	85
	4.1	Configuration space for a rigid body	
		4.1.1 Orthogonal Transformations	87
		4.1.2 Groups	91
	4.2	Kinematics in a rotating coordinate system	93
	4.3	The moment of inertia tensor	97
		4.3.1 Motion about a fixed point	97
		4.3.2 More General Motion	96
	4.4	Dynamics	106
		4.4.1 Euler's Equations	
		4.4.2 Euler angles	112
		4.4.3 The symmetric top	
5	Sma	all Oscillations 1	23
	5.1	Small oscillations about stable equilibrium	123
		5.1.1 Molecular Vibrations	126
		5.1.2 An Alternative Approach	132
	5.2	Other interactions	133
		5.2.1 Forced Harmonic Oscillations	134
	5.3	String dynamics	136
	5.4	Field theory	
		5.4.1 Lagrangian density	
		5.4.2 Three dimensional continua	
6	Har	milton's Equations 1	55
	6.1	Legendre transforms	155
	6.2	Variations on phase curves	160

CONTENTS

	6.3	Canonical transformations
	6.4	Poisson Brackets
	6.5	Higher Differential Forms
	6.6	The natural symplectic 2-form
		6.6.1 Generating Functions
	6.7	Hamilton–Jacobi Theory
	6.8	Action-Angle Variables
7	Per	turbation Theory 201
	7.1	Integrable systems
	7.2	Canonical Perturbation Theory
		7.2.1 Time Dependent Perturbation Theory 212
	7.3	Adiabatic Invariants
		7.3.1 Introduction
		7.3.2 For a time-independent Hamiltonian 214
		7.3.3 Slow time variation in $H(q, p, t)$
		7.3.4 Systems with Many Degrees of Freedom 221
		7.3.5 Formal Perturbative Treatment
	7.4	Rapidly Varying Perturbations
8	Fiel	d Theory 233
	8.1	Lagrangian Mechanics for Fields
	8.2	Special Relativity
	8.3	Noether's Theorem
		8.3.1 Applications of Noether's Theorem
	8.4	Examples of Relativistic Fields
A	Apr	pendices 263
	A.1	ϵ_{ijk} and cross products
		A.1.1 Vector Operations: δ_{ij} and ϵ_{ijk}
	A.2	The gradient operator
		Gradient in Spherical Coordinates