

This four bit magnitude comparator performs comparison of straight binary and straight BCD (8-4-2-1) codes. Three fully decoded decisions about two 4-bit words (A, B) are made and are externally available at three outputs. This device is fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The A > B, A < B, and A = B outputs of a stage handling less-significant bits. The stage handling the least- significant bits must have a high-level voltage applied to the $A \beta B$ input. The cascading path is implemented with only a two-gate-level delay to reduce overall comparison times for long words.

Pin Arrangement

Function Table

	Inp	uts		Ca	scading Inp	uts	Outputs			
A ₃ , B ₃	A ₂ , B ₂	A ₁ , B ₁	A_0, B_0	A > B	A < B	A = B	A > B	A < B	A = B	
$A_3 > B_3$	Х	Х	Χ	Χ	Х	Х	Н	L	L	
A ₃ < B ₃	Х	Х	Χ	Χ	Х	Х	L	Н	L	
$A_3 = B_3$	$A_2 > B_2$	Х	Χ	Χ	Х	Х	Н	L	L	
$A_3 = B_3$	$A_2 < B_2$	Х	Х	Χ	Х	Χ	L	Н	L	
$A_3 = B_3$	$A_2 = B_2$	$A_1 > B_1$	Χ	Χ	Х	Х	Н	L	L	
$A_3 = B_3$	$A_2 = B_2$	$A_1 < B_1$	Χ	Χ	Х	Х	L	Н	L	
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 > B_0$	Χ	Х	Х	Н	L	L	
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 < B_0$	Χ	Х	Х	L	Н	L	
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	Н	L	L	Н	L	L	
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	L	Н	L	L	Н	L	
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	Χ	Х	Н	Ĺ	L	Н	
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	Н	Н	L	L	L	L	
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	L	L	L	Н	Н	L	

H; high level, L; low level, X; irrelevant

Block Diagram

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply voltage	V_{CC}	7	V
Input voltage	V_{IN}	7	V
Power dissipation	P_{T}	400	mW
Storage temperature	Tstg	-65 to +150	°C

Note: Voltage value, unless otherwise noted, are with respect to network ground terminal.

Recommended Operating Conditions

Item	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	4.75	5.00	5.25	V
Output current	I _{OH}	_	_	-400	μΑ
Output current	I _{OL}	_	_	8	mA
Operating temperature	Topr	-20	25	75	°C

Electrical Characteristics

 $(Ta = -20 \text{ to } +75 \text{ }^{\circ}\text{C})$

	Item	Symbol	min.	typ.*	max.	Unit	Condition			
Input volta	Input voltage		2.0	_	_	V				
Input volta			_	_	0.8	V				
		V _{OH}	2.7	1		V	$V_{CC} = 4.75 \text{ V}, V_{IH} = 2 \text{ V}, V_{IL} = 0.8 \text{ V},$ $I_{OH} = -400 \mu\text{A}$			
Output vol	lage	V_{OL}		_	0.4	V	$I_{OL} = 4 \text{ mA}$ $V_{CC} = 4.75 \text{ V}, V_{IH} = 2 \text{ V},$			
		V OL	_	_	0.5	V	$I_{OL} = 8 \text{ mA}$ $V_{IL} = 0.8 \text{ V}$			
	A < B, A > B inputs	Ī			20	μΑ	V _{CC} = 5.25 V, V _I = 2.7 V			
	Other inputs		_	_	60					
Input current	A < B, A > B inputs	I _{IL}	_	_	-0.4	mA	V _{CC} = 5.25 V, V _I = 0.4 V			
Current	Other inputs		_	_	-1.2					
	A < B, A > B inputs		_	_	0.1	mA	V _{CC} = 5.25 V, V _I = 7 V			
	Other inputs		_	_	0.3					
Short-circuit output current		I _{OS}	-20	_	-100	mA	V _{CC} = 5.25 V			
Supply current**		Icc		10.4	20	mA	V _{CC} = 5.25 V			
Input clam	p voltage	V _{IK}	_	_	-1.5	V	$V_{CC} = 4.75 \text{ V}, I_{IN} = -18 \text{ mA}$			

Note: * $V_{CC} = 5 \text{ V}$, $Ta = 25^{\circ}C$

Switching Characteristics

 $(V_{CC} = 5 \text{ V}, \text{ Ta} = 25^{\circ}\text{C})$

Item	Symbol	Inputs	Outputs	Number of gate levels	min.	typ.	max.	Unit	Condition
				1	_	14	_		$C_L = 15 \text{ pF},$ $R_L = 2 \text{ k}\Omega$
		Any A or	A < B, A > B	2	_	19	_		
	t _{PLH}	B data input		3	_	24	36	ns	
			A = B	4	_	27	45		
		Any A or B data input	A < B, A > B	1	1	11			
	t _{PHL}			2	1	15			
Propagation	IPHL			3	1	20	30		
delay time			A = B	4	1	23	45		
	t _{PHL}	A < B or	A > B	1	1	14	22		
	t _{PHL}	A = B	A > B	1		11	17		
	t _{PLH}	A = B	A = B	2		13	20		
	t _{PHL}	A = D	A = D	2		13	26		
	t _{PLH}	A > B or	A < B	1		14	22		
	t _{PHL}	A = B	7 ()	1	_	11	17		

^{**} I_{CC} is measured with outputs open, A = B grounded, and all other inputs at 4.5 V.

Testing Method

Test Circuit

Notes: 1. C_L includes probe and jig capacitance.

2. All diodes are 1S2074(H).

Waveform

Note: Input pulse; $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, PRR = 1 MHz, duty cycle = 50%

Testing Table

Item					Inp	outs					Output waveforms				
Item	A ₃	B ₃	A ₂	B ₂	A ₁	B ₁	A_0	B ₀	A > B	A = B	A < B	A > B	A = B	A < B	
	IN	4.5 v	4.5 v	GND	GND	GND	GND	GND	GND	GND	GND	Α	_	В	
	4.5 v	IN	GND	4.5 v	GND	GND	GND	GND	GND	GND	GND	В		Α	
	GND	GND	IN	4.5 v	4.5 v	GND	GND	GND	GND	GND	GND	Α		В	
-	GND	GND	4.5 v	IN	GND	4.5 v	GND	GND	GND	GND	GND	В		Α	
	GND	GND	GND	GND	IN	4.5 v	4.5 v	GND	GND	GND	GND	Α	_	В	
	GND	GND	GND	GND	4.5 v	IN	GND	4.5 v	GND	GND	GND	В		Α	
t _{PLH}	GND	GND	GND	GND	GND	GND	IN	4.5 v	4.5 v	GND	GND	Α		В	
t _{PHL}	GND	GND	GND	GND	GND	GND	4.5 v	IN	GND	GND	4.5 v	В		Α	
	GND	GND	GND	GND	GND	GND	IN	4.5 v	GND	4.5 v	GND	_	Α	В	
	GND	GND	GND	GND	GND	GND	4.5 v	IN	GND	4.5 v	GND	В	Α	_	
	GND	GND	GND	GND	GND	GND	GND	GND	IN	GND	GND	_		В	
	GND	GND	GND	GND	GND	GND	GND	GND	GND	IN	GND	В	Α	В	
	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	IN	В	_	_	

Package Dimensions

DIP

