保密★启用前

2020-2021 学年第一学期期末考试 《工科数学分析基础 1》 A 卷

考生注意事项

- 1. 答题前,考生须在试题册指定位置上填写考生学号和考生姓名。
- 2. 在<u>答题卡</u>指定位置上填写考试科目、考生姓名和考生学号,并涂写考生 学号信息。

特别提醒 由于<u>答题卡</u>上学号只设了九位空格,所以请 <u>2020 级学生</u>在 答题卡上填涂学号时,去掉最前面的"20".例如,如果学号为 20201234567,则填涂 201234567。其它年级的同学填涂完整的学号。

- 3. 第一题的答案必须涂写在答题卡相应题号的选项上,其它题的答案必须 书写在答题卡指定位置的边框区域内。超出答题区域书写的答案无效: 在草稿纸、试题册上答题无效。
- 4. 填(书)写部分必须使用黑色字迹签字笔书写,字迹工整、笔迹清楚;涂写部分必须使用 2B 铅笔填涂。
- 5. 考试结束,将答题卡和试题册按规定交回。

(以下信息考生必须认真填写)

考生学号						
考生姓名						

一、选择题 每小题 3 项是符合题目要求的,			项中,只有一个选
1、点 x = 0 是函数 f((A) 可去间断点. (C) 无穷间断点.	$1+e^{\overline{x}}$) (B) 跳跃间断点 (D) 振荡间断点.	
	上极限不存在.	. f ′(0) 存在,则函数 g (B)有跳跃间断点 x (D)有可去间断点 x	c=0.
	(B) $(1+x)e^x$	(C) xe^{2x} .	(D) 1.
4、函数 $f(x) = \cos \frac{1}{x}$ 在 (A) (0,1).		不一致连续? () (C) [2,3].	(D) $(3, +\infty)$.
5、设函数 $y = y(x)$ 由 (A) ln2 - 1.		y 所确定,则	
6、设 $\begin{cases} x = f'(t) \\ y = tf'(t) - f(t) \end{cases}$ (A) $f''(t) + tf'''(t)$.		阶连续导数,且 $f''(t)$ (C) $\frac{t}{f''(t)}$.	
7、设函数 $f(x) = xe^x$ (A) 2019.		(C) 2021 .	(D) 0 .
8、设周期为4的函数	f(x) 在 (-∞,+°	∞) 内可导,且 $\lim_{x\to 0} \frac{f^{(1)}}{x}$	$\frac{-f(1-x)}{2x} = -1$,则曲
线 $y = f(x)$ 在点 $(5, f(x))$ 1.	(5)) 处的斜率为 (B) -1.		(D) -2.
9、函数 $f(x) = \int_0^x \frac{2t-t}{t^2-t}$	_		
(A) $\ln \frac{3}{4}$.		(C) 0 .	(D) ln3.

 $10、定积分 \int_0^{\pi} 2e^x \sin x \, dx = ()$

(A)
$$-e^{\pi} + 1$$

(A)
$$-e^{\pi} + 1$$
. (B) $-e^{\pi} - 1$. (C) $e^{\pi} + 1$.

(C)
$$e^{\pi} + 1$$

(D)
$$e^{\pi} - 1$$
.

 $11、定积分 \int_{\pi}^{2\pi} \sin^4 x \, \mathrm{d}x = ()$

(A)
$$\frac{\pi}{2}$$
.

(A)
$$\frac{\pi}{2}$$
. (B) $\frac{3\pi}{8}$.

(C)
$$\frac{\pi}{4}$$
.

(D)
$$\frac{\pi}{8}$$
.

12、定积分 $\int_0^4 \frac{x}{\sqrt{2x+1}} dx = ($)

(A)
$$\frac{5}{3}$$
.

(A)
$$\frac{5}{3}$$
. (C) 5.

(D)
$$\frac{20}{3}$$
.

13、心形线 $r = 1 + \cos\theta$ (极坐标系下的方程) 所围平面图形的面积为()

$$(A) \frac{3\pi}{8}.$$

(B)
$$\frac{3\pi}{4}$$
.

(B)
$$\frac{3\pi}{4}$$
. (C) $\frac{3\pi}{2}$.

(D)
$$3\pi$$
.

14、函数 $f(x) = \ln x - \frac{x}{e} + 1$ 在 (0, +∞) 内的零点个数为 (

- (A) 0.
- (B) 1.
- (C) 2.
- (D) 3.

15、微分方程 $\frac{dy}{dx} = \cos x \cdot \csc y$ 的通解为(

- (A) $\sin x + \cos y = c$.
- (B) $\sin x \cos y = c$.
- (C) $\cos x \sin y = c$.
- (D) $\cos x + \sin y = c$.

二、(15 分) 求解微分方程初值问题 $\begin{cases} \frac{dy}{dx} = \frac{2xy}{2x^2+y^2} \\ y(0) = 1 \end{cases}$

三、(15 分) 求极限 $\lim_{x\to 0} \frac{\ln{(1+x^2)-\ln{(1+\sin^2x)}}}{(e^x-1)\sin^3x}$.

四、(15分)设函数f(x)在[$-\pi$, π]上连续.

(1) 证明: $\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx.$

(2) 当 $f(x) = \frac{x}{1+\cos^2 x} + \int_{-\pi}^{\pi} f(x) \sin x dx$ 时,利用 (1) 的结论求 f(x).

五、(10 分) 设函数f(x)在[0,1]上二阶可导,且 $|f''(x)| \le 1$. 已知f(x)在(0,1)内 取到最大值 $\frac{1}{4}$.证明: $|f(0)| + |f(1)| \le 1$.