Package 'lsmnsd'

February 9, 2016

Title Classify movement strategies using a latent-state model and NSD

Version 0.0.0.9000

Description

This package provides a series of functions to analyse animal movement strategies using a latentstate model and net squared displacement.

References: Bastille-Rousseau, G., Potts, J., Yackulic, C., Frair, J., Elling-

ton, E.H., Blake, S. (In review) Characterizing movement strategies of

Galapagos giant tortoises using a Bayesian mixture distribution model and net squared displacement. Movement Ecology

Depends R (>= 3.2.3)

License GPL (>=3)

LazyData true

RoxygenNote 5.0.1

Imports R2jags

R topics documented:

ootNSD	2
reaks	3
hristian	3
hristian_rjags	3
assify	4
ustNSD	4
olVars	5
ist_fct	6
mnsd	6
lode	7
SD_fct	7
ot.boot.clust	8
ot.mov.clust	8
rint.mov.clust	9
nge01	9
run	10
mple.clust	10
ımmary.boot.clust	11
ımmary.clust.classify	11
ımmary.mov.clust	12

2 bootNSD

switch.matrix									 									
t.plot									 									
time.spent									 									
waic									 									
Zelfa									 									
Zelfa_rjags .									 									

15

bootNSD

Index

Iterative latent-state model of NSD

Description

Bootstrap latent-state model by changing starting locations

Usage

```
bootNSD(x, y, day, interval = 30, by = 5, n.iter = 20000, ...)
```

Arguments

x, y, time, information on locations and time (continuous)
 interval Amount of variation in time to be tested
 by Time step between each iteration (number of iterations is a function of the interval and time step)
 n.iter number of total iterations per chain (including burn in; default: 5000)

Value

A boot.clust object

```
data(Christian)
#May results in low convergence given low number of iterations
boot1<-bootNSD(Christian$x[1:300], Christian$y[1:300], Christian$Time[1:300], interval=20, by=5, n.iter=1000
summary(boot1)
plot(boot1)</pre>
```

breaks 3

breaks

Calculating transitions among clusters

Description

Calculating pattern of transitions among clusters

Usage

```
breaks(object)
```

Arguments

object

an object of class "mov.clust" or "rjags"

Examples

```
data(Zelfa_rjags)
breaks(Zelfa_rjags)
```

Christian

Christian - daily spatial locations

Description

A dataset containing the x, y locations (UTM), and time of Christian, a male giant tortoise inhabiting Alcedo volcano on Isabela Island, Galapagos.

Usage

Christian

Format

A data frame with 1536 rows and 3 variables (x, y, time)

Christian_rjags

Latent-state model applied to Christian

Description

The output of clustNSD function applied to Christian.

Usage

```
Christian_rjags
```

Format

```
A "rjags" object
```

4 clustNSD

classify

Classify movement strategies

Description

Extract information to classify movement strategies

Usage

```
classify(object, grph = F, ...)
```

Arguments

object an object of class "mov.clust" or "rjags"

grph Produce a graph of classification (Default = F)

Value

A clust.classify object

Examples

```
data(Christian_rjags)
summary(classify(Christian_rjags))
data(Zelfa_rjags)
summary(classify(Zelfa_rjags))
```

clustNSD

Latent-state model of NSD

Description

Perform latent-state model to characterize movement patterns based on NSD

Usage

```
clustNSD(data, WAIC = FALSE, n.iter = 5000, n.chains = 3,
    n.burnin = floor(n.iter/2), n.thin = max(1, floor((n.iter -
    n.burnin)/1000)), simplify = FALSE, sigma1.max = 0.1, sigma2.max = 0.1,
    sigma1.min = 0.001, sigma2.min = 0.001, mu1.max = 0.5, mu2.max = 1,
    mu1.min = 0, mu2.min = 0, ...)
```

colVars 5

Arguments

data	a maxtrix with x,y, and time columns
WAIC	save log-likelihood of every iteration to allow calculations of WAIC, default=FALSE
n.iter	number of total iterations per chain (including burn in; default: 5000)
n.chains	number of Markov chains (default: 3)
n.burnin	length of burn in, i.e. number of iterations to discard at the beginning. Default is n.iter/2, that is, discarding the first half of the simulations. If n.burnin is 0, jags() will run 100 iterations for adaption.
n.thin	thinning rate. Must be a positive integer. Set n.thin > 1 to save memory and computation time if n.iter is large. Default is $\max(1, \text{floor(n.chains * (n.iter-n.burnin) / 1000)})$ which will only thin if there are at least 2000 simulations.
simplify	Convert output to mov.clust object. Default=FALSE. See simple.clust for details
sigma1.max	Upper limit of uniform prior for SD of first normal distribution (Default=0.1)
sigma2.max	Upper limit of uniform prior for SD of second normal distribution (Default=0.1)
sigma1.min	Lower limit of uniform prior for SD of first normal distribution (Default=0.001)
sigma2.min	Lower limit of uniform prior for SD of second normal distribution (Default=0.001)
mu1.max	Upper limit of uniform prior for mean of first normal distribution (Default=0.5)
mu2.max	Upper limit of uniform prior for difference between mean of first and second normal distribution (Default=1)
mu1.min	Lower limit of uniform prior for mean of first normal distribution (Default=0.001)
mu2.min	Lower limit of uniform prior for difference between mean of first and second normal distribution (Default=0)

Value

A rjags or mov.clust object

Examples

```
data(Christian)
nsd1<-NSD_fct(Christian$x, Christian$y)
Christian_rjags<-clustNSD(cbind(range01(nsd1), Christian$Time), n.iter=10000, WAIC=T, simplify=F)
summary(simple.clust(Christian_rjags))
data(Zelfa)
nsd2<-NSD_fct(Zelfa$x, Zelfa$y)
Zelfa_rjags<-clustNSD(cbind(range01(nsd2), Zelfa$Time), n.iter=10000, WAIC=F, simplify=F)
summary(simple.clust(Zelfa_rjags))</pre>
```

colVars	Posterior variances	
---------	---------------------	--

Description

This function calculates posterior variances from simulation. Based on script initially written by Andrew Gelman

6 Ismnsd

Usage

```
colVars(a)
```

Arguments

а

A matrix

Examples

```
mat<-matrix(rnorm(20), nrow=10, ncol=2)</pre>
```

 $Dist_fct$

Calculate euclidean distance

Description

This function calculates euclidean distance between spatial locations

Usage

```
Dist_fct(x, y)
```

Arguments

х, у

Spatial locations

Examples

```
data(Christian)
hist(Dist_fct(Christian$x, Christian$y))
```

1smnsd

lsmnsd: A package for classifying animal movement strategies based on a latent-space model and net squared displacement.

Description

The lsmnsd package provides four categories of important functions: clustNSD, simple.clust, classify, bootNSD.

Mode 7

Mode Mode

Description

This function finds the mode of a vector

Usage

Mode(x)

Arguments

Х

A vector

Examples

```
v<-c(1,2,2,3,4,4,4,5,6)
Mode(v)
```

 NSD_fct

Calculate NSD

Description

This function calculates NSD from a time-series of spatial locations

Usage

```
NSD_fct(x, y)
```

Arguments

х, у

Spatial locations

```
data(Christian)
ts.plot(NSD_fct(Christian$x, Christian$y))
```

8 plot.mov.clust

plot.boot.clust

Plotting boot.clust object

Description

```
plot method for class "boot.clust"
```

Usage

```
## S3 method for class 'boot.clust'
plot(object)
```

Arguments

object

an object of class "boot.clust"

Examples

```
#plot(boot1)
```

plot.mov.clust

Plot mov.clust object

Description

```
plotting method for class "mov.clust"
```

Usage

```
## S3 method for class 'mov.clust'
plot(object)
```

Arguments

object

an object of class "mov.clust"

```
data(Zelfa_rjags)
plot(simple.clust(Zelfa_rjags))
```

print.mov.clust 9

print.mov.clust

Print mov.clust object

Description

```
printing method for class "mov.clust"
```

Usage

```
## S3 method for class 'mov.clust'
print(object)
```

Arguments

object

an object of class "mov.clust"

Examples

```
data(Zelfa_rjags)
simple.clust(Zelfa_rjags)
```

range01

Range standardisation (0,1)

Description

This function standardises a vector between 0 and 1

Usage

```
range01(x)
```

Arguments

Х

A vector

```
v<-c(1,2,2,3,4,4,5,6) range01(v)
```

10 simple.clust

rerun

Rerun clustNSD

Description

This function uses the autojags function to rerun the function clustNSD to facilitate convergence

Usage

```
rerun(rjags, n.update = 3, inc.fact = 1)
```

Arguments

rjags Output from clustNSD

n. update the max number of updates, default =3

inc.fact Factor by which the number of iterations will be increased, default=1 (no in-

crease)

Examples

```
# DO NOT RUN - TAKES A LONG TIME
#data(Christian_rjags)
#rerun(Christian_rjags, n.update=2, inc.fact=1)
```

simple.clust

Convert to mov.clust class

Description

This function simplifies an rjags output from clustNSD to a mov.clust object

Usage

```
simple.clust(out)
```

Arguments

out

Output of clustNSD function

Value

A mov.clust object

```
data(Christian_rjags)
summary(simple.clust(Christian_rjags))
plot(simple.clust(Christian_rjags))
data(Zelfa_rjags)
summary(simple.clust(Zelfa_rjags))
plot(simple.clust(Zelfa_rjags))
```

summary.boot.clust 11

summary.boot.clust

Summarizing boot.clust object

Description

```
summary method for class "boot.clust"
```

Usage

```
## S3 method for class 'boot.clust'
summary(object)
```

Arguments

```
object an object of class "boot.clust"
```

Examples

```
summary(boot1)
```

```
summary.clust.classify
```

Summarizing clust.classify object

Description

```
summary method for class "clust.classify"
```

Usage

```
## S3 method for class 'clust.classify'
summary(object)
```

Arguments

```
object an object of class "clust.classify"
```

```
data(Christian_rjags)
summary(classify(Christian_rjags))
```

switch.matrix

summary.mov.clust

Summarizing mov.clust object

Description

```
summary method for class "mov.clust"
```

Usage

```
## S3 method for class 'mov.clust'
summary(object)
```

Arguments

object

an object of class "mov.clust"

Examples

```
data(Christian_rjags)
summary(simple.clust(Christian_rjags))
```

switch.matrix

Switching probabilties matrix

Description

Extract matrix of switching probabilities

Usage

```
switch.matrix(object)
```

Arguments

object

an object of class "mov.clust" or "rjags"

```
data(Zelfa_rjags)
switch.matrix(Zelfa_rjags)
```

t.plot

t.plot

Diagnostics plots

Description

This function uses the traceplot to display a plot of iterations vs. sampled values for each variable in the chain with a separate plot per variable.

Usage

```
## S3 method for class 'plot'
t(out)
```

Arguments

out

Output from clustNSD

Examples

```
data(Christian_rjags)
t.plot(Christian_rjags)
```

time.spent

Calculating time-spent in cluster

Description

Calculating pattern of time spent in each cluster

Usage

```
## S3 method for class 'spent'
time(object)
```

Arguments

object

an object of class "mov.clust" or "rjags"

```
data(Zelfa_rjags)
time.spent(Zelfa_rjags)
```

14 Zelfa_rjags

waic

WAIC calculation

Description

This function calculates WAIC from clustNSD output. Based on script initially written by Andrew Gelman

Usage

```
waic(jagsfit)
```

Arguments

jagsfit

Output of a clustNSD call

Examples

```
data(Christian_rjags)
waic(Christian_rjags)
```

Zelfa

Zelfa - daily spatial locations

Description

A dataset containing the x, y locations (UTM), and time of Zelfa, a female giant tortoise inhabiting Espanola Island, Galapagos.

Usage

Zelfa

Format

A data frame with 1537 rows and 3 variables (x, y, time)

Zelfa_rjags

Latent-state model applied to Zelfa

Description

The output of clustNSD function applied to Zelfa.

Usage

Zelfa_rjags

Format

A "rjags" object

Index

*Topic boot.clust	*Topic rerun
bootNSD, 2	rerun, 10
plot.boot.clust, 8	*Topic simple.clust
summary.boot.clust, 11	plot.mov.clust, 8
*Topic bootNSD	print.mov.clust,9
bootNSD, 2	simple.clust, 10
plot.boot.clust, 8	summary.mov.clust, 12
summary.boot.clust, 11	*Topic standardisation
*Topic classify	range01, 9
breaks, 3	*Topic t.plot
classify, 4	t.plot, 13
summary.clust.classify, 11	*Topic traceplot
switch.matrix, 12	t.plot, 13
time.spent, 13	*Topic waic
*Topic clust.classify	colVars, 5
breaks, 3	waic, 14
classify, 4	
summary.clust.classify, 11	bootNSD, 2
switch.matrix, 12	breaks, 3
time.spent, 13	
*Topic clustNSD	Christian, 3
bootNSD, 2	Christian_rjags, 3
clustNSD, 4	classify, 4
*Topic datasets	clustNSD, 4
Christian, 3	colVars, 5
Christian_rjags, 3	Dist fot 6
Zelfa, 14	Dist_fct, 6
Zelfa_rjags, 14	1smnsd, 6
*Topic distance	lsmnsd-package (lsmnsd), 6
Dist_fct, 6	romina package (romina), o
*Topic mode	Mode, 7
Mode, 7	
*Topic mov.clust	NSD_fct, 7
classify, 4	
clustNSD, 4	plot.boot.clust,8
plot.mov.clust, 8	plot.mov.clust, 8
print.mov.clust, 9	print.mov.clust,9
simple.clust, 10	01.0
summary.mov.clust, 12	range01, 9
*Topic nsd	rerun, 10
NSD_fct, 7	simple.clust, 10
*Topic range	summary.boot.clust, 11
range01, 9	summary.clust.classify, 11
i aligevi, 🤊	Summar y. CIUST. CIASSITY, II

16 INDEX

```
summary.mov.clust, 12
switch.matrix, 12

t.plot, 13
time.spent, 13

waic, 14

Zelfa, 14
Zelfa_rjags, 14
```