

지능형 디지털 트윈 연합 핵심기술 개발 사업

연합트윈 서비스용 3차원 모델 단순경량화 알고리즘 명세서 ((3세부) 지능형 디지털 트윈 연합 지원 개방형 서비스 플랫폼 및 저작도구 기술 개발)

목차

1. 모듈 개요	3
1.1. 개발 모듈 개요	3
1.2. 개발 모듈 정의	3
1.3. 적용 범위 식별	3
1) 입력 데이터	3
2) 출력 데이터	4
1.4. 모듈 사용 과정	4
1) 데이터 입력 단계	5
2) 단순경량화 단계	7
2. 모듈 개념 설계	11
2.1. 모듈 요구사항 분석	11
2.2. 모듈 유즈케이스 분석	13
2.3. 모듈 개발 환경	13
3. 모듈 기본 설계	14
3.1. 모듈 GUI 설계	14
3.2. 모듈 사용 시나리오	15
4. 단순경량화 실험	18
4.1. 실험 대상	18
4.2. 실험 결과	20

1. 모듈 개요

1.1. 개발 모듈 개요

• 중립 형식의 플랜트 및 건축물 3D CAD 모델을 대상으로 메쉬 기반의 단순경량화를 지원하는 중립 3D CAD 모델 단순화 모듈

모듈 명	3D 메쉬 최적 경량화 모듈
	3D mesh optimal lightweighting module
장비 약어	MOLM
버전 번호	Version 1.00

1.2. 개발 모듈 정의

- C++ 프로그래밍 언어 기반 stand-alone 형식의 모듈
- 중립 조립구조, 보조 정보, 3D 형상(메쉬)을 입력 데이터로 사용함. 개발 모듈은 입력 데이터에 포함된 조립 정보와 파트 별 타입 속성 정보를 활용하여 메쉬 기반의 단순경량화 기능을 수행함

1.3. 적용 범위 식별

- 1) 입력 데이터
- 3D CAD 데이터 (플랜트 시설물, 건축물)
 - ✓ 포맷: FBX (.fbx)
- 조립구조 정보
 - ✓ 포맷: XML (.xml)
- 보조 정보

- ✓ 포맷: XML (.xml)
- 2) 출력 데이터
- 3D CAD 조립품/단품 데이터
 - ✓ 포맷: FBX (.fbx)

1.4. 모듈 사용 과정

- 중립 3D CAD 데이터 단순화는 크게 데이터 입력, 단순경량화, 데이터 출력의 3 단계로 구성됨
- 조립체 모델 (Case 1)을 입력할 경우, 조립구조 파일과 보조 파일을 함께 입력한 후 시스템에서 조립구조 파일에 포함된 조립품/단품 형상 파일의 경로를 통해 3D 형상 정보를 로딩함. 단품 모델 (Case 2)을 입력할 경우, 단품 형상 파일만 입력함

Case 1) 조립체 모델

[중립 3D CAD 데이터 단순화 절차]

1) 데이터 입력 단계

[데이터 입력 절차]

○ 조립 구조 입력 (XML)

✓ 중립 조립 구조 파일을 입력함. 조립구조 파일에는 카테고리 정보, 좌표 및 속성 정보, 3D 형상 파일(.fbx) 경로가 포함되어 있음

○ 보조 정보 입력 (XML)

✓ 보조 정보 파일을 입력함. 보조 정보 파일에는 속성 보조 정보, 코드 보조 정보, 카테고리 보조 정보가 포함되어 있음

○ 형상 정보 입력 (FBX)

- ✓ 조립구조를 포함한 조립체 모델 입력 시에는 조립 구조 파일을 입력한 후 사용자가 트리상에서 입력하고자 하는 조립품 혹은 단품을 선택함
- ✓ 파일 형식은 Autodesk 사에서 제공하는 중립 메쉬 형식인 FBX 를 사용하였음

[입력 데이터 구성]

2) 단순경량화 단계

[단순경량화 절차]

[조립 구조 정보]

○ 파트 타입 분류 기능 구현

✓ 중립 조립 구조 xml 파일에 포함된 컴포넌트 간의 관계와 카테고리 정보를 통해 조립 구조 정보를 로딩함. 이후 파트들의 속성 정보를 로딩하여 타입 정보를 가져오는 기능을 구현함

○ 경계 엣지 및 면 인식 기능 구현

✓ 메쉬의 삼각형 집합을 엣지(edge), 면(face)으로 구분하여 식별하는 기능을 구현함. 면 분류 기능을 수행하지 않으면, 아래 그림의 (A)와 같이 단순히 삼각형들의 집합으로 인식됨. 면 분류 기능을 수행하면 아래 그림의 (B)와 같이 면과 면 사이의 경계를 boundary edge 로 구분하여 삼각형들의 집합을 면으로 인식할 수 있음

[경계 엣지 및 면 인식 방법]

✓ 면 분류 기능 구현을 위해, 먼저 삼각형들의 집합으로부터 boundary edge 를 식별하는 알고리즘을 구현함. 이후, 면 사이의 엣지를 통해 각도(θ)를 계산하고, 이 각도가 180 도에 가까우면 같은 면으로 취급하였음

○ 면 분류 기능 구현

✓ 앞서 설명한 경계 엣지 및 면 인식 기능을 활용하여, 파트 별로 바운더리 엣지의 구성을 저장한 후 엣지의 종류와 구성 개수에 따라 면을 분류하였음. 면의 종류는 아래와 같으며, 면의 종류는 이후 단순경량화 기능에서 면을 구성하는 삼각형들을 최소한의 삼각형들의 집합으로 재생성하기 위해 사용됨

Surface type	Boundary edge 구성	식별 면	
	4 Lines	Rectangle	
	1 Circle	Circle	
	2 Lines, 1 Circle	Partial circle	
	2 Circles	Ring	
	2 Arc, 2 Lines 2Arc	Partial ring	
Plane	2 L-curves, 4 Lines	T n/ana	
	6elements, (n) Lines, (n) Edge	T plane	
	2 U-curves, 2 Lines	U-plane	
	2 L-curves, 2 Lines	1	
	6 Lines	L-plane	
		Undefined	
	2 Circles (1 Line), Closed surface	Cylinder	
Surface	2 Arcs, 2 Lines	Partial cylinder	
	2 U-curves, 2 Lines	U-surface	
	2 L-curves, 2 Lines	L-surface	
		Undefined	

[경계 엣지 구성에 따라 식별되는 면의 종류]

○ 컴포넌트 노드 목록 로딩

 ✓ 조립체 모델에 포함된 컴포넌트 노드를 로딩함. 컴포넌트는 조립체 모델 최하위레벨에 해당하는 파트를 의미하며, 조립 구조 데이터에 각 파트들에 대한 속성 정보가 포함되어 있음

단순경량화 수행

 ✓ 각 컴포넌트(파트)들의 타입 정보에 대한 단순경량화 기능이 존재하는지 확인함. 입력된 파트 타입에 대한 단순경량화 기능이 존재할 경우에는 파트 타입에 최적화된 단순경량화 기능을 실행함. 입력된 파트 타입에 대한 단순경량화 기능이 존재하지 않을

경우에는 면 종류와 구성 엣지의 개수 등으로 파트의 타입을 자체적으로 식별하여 단순경량화를 수행함

○ 메쉬 최적화 알고리즘

✓ 고려대 시스템에서의 메쉬 최적화는 파트 타입 별로 최적화 된 메쉬를 생성할 수 있는 단순경량화 기능을 의미함. 경계 엣지 및 면 인식 기능을 통해 메쉬 집합으로부터 면을 인식하고, 파트 타입과 면의 종류를 고려하여 메쉬 최적화를 수행함

<면 타입 대상 단순경량화 예시>

<파트 타입 기반 단순경량화 예시>

3) 출력 단계

○ 조립품/단품 형상 추출

✓ 단순경량화 단계에서 생성된 3D 형상 정보(조립품 또는 단품) 를 출력함

2. 모듈 개념 설계

2.1. 모듈 요구사항 분석

가) 인터페이스 요구사항

요구사항 식별자	요구사항 이름	비고
NMCS-IR-001	[FBX 파일 경로 입력]	
	FBX 파일의 경로를 시스템에	
	입력	
NMCS-IR-002	[보조 파일 경로 입력]	
	보조 파일의 경로를 시스템에	
	입력	
NMCS-IR-003	[조립 구조 파일 경로 입력]	
	조립 구조 파일의 경로를	
	시스템에 입력	
NMCS-IR-004	[출력 경로 입력]	
	입력 모델의 단순경량화 결과를	
	출력할 경로를 입력	

NMCS-IR-005	[단순경량화 모델 출력]	
	단순경량화 결과를 출력 경로에 생성	

나) 기능 요구사항

요구사항 식별자	요구사항 이름	비고
NMCS-FR-001	[3D CAD 조립품/단품 데이터 로딩] 메쉬 형식의 조립품/단품	
	데이터를 로딩	
NMCS-FR-002	[조립 구조 로딩] 조립체 모델의 조립 정보, 속성, 3D 형상 파일 경로 등을 로딩	
NMCS-FR-003	[보조 정보 로딩]	
NMCS-FR-004	[단순경량화 수행]조립구조와보조정보를기반으로3D형상의단순경량화를 수행	
NMCS-FR-005	[결과 파일 저장] 단순경량화된 3D 형상을 FBX 형식으로 저장	

다) 환경 및 컴퓨터 지원 요구사항

12

요구사항 식별자	요구사항 이름	비고
NMCS-ECRR- 001	[모듈 개발 하드웨어 환경] 개발 대상 모듈은 미리 정의된 Hardware 환경에서 구동이 되어야 한다.	Intel 플랫폼 적용
NMCS-ECRR- 002	[모듈 개발 소프트웨어 환경] 개발 대상 모듈의 미리 정의된 환경에 하에서 구현을 한다. 개발에 필요한 외부 도구 및 API를 사용한다.	MS Windows 환경에서 개발

2.2. 모듈 유즈케이스 분석

[모듈 유즈케이스]

2.3. 모듈 개발 환경

컴퓨터 하드웨어 환경		
구분 운용환경		
중앙제어장치(CPU)	Intel Core i7	

13

중앙기억장치(RAM)	32 GB	
HDD	2TB	
SSD	1TB	
VGA	GTX 1650 SUPER	
모듈 개발 도구 및 환경		
구분	운용 환경	
IDE	Microsoft Visual Studio 2019	
GUI	MFC	
개발언어	C++	

3. 모듈 기본 설계

3.1. 모듈 GUI 설계

○ 화면 설명 및 사용자 기능 (메뉴) 구성

- ✓ 파일 입력 및 저장 기능 플랜트 3D CAD 모델(조립 구조 정보, 보조 정보, 3D 형상)을 입력하고 단순경량화 결과물(3D 형상)을 생성하는 기능을 제공함
- ✓ 플랜트 3D CAD 모델의 조립 구조 정보를 가시화하는 기능을 제공함
- ✓ 플랜트 3D CAD 모델의 3D 형상을 가시화 하는 기능으로, 메쉬 가시화 옵션으로 3D 형상을 구성하는 삼각형들을 가시화할 수 있음
- ✓ 단순경량화 수행 시 모델링 방법, 시스템 종류 및 단순경량화 기능 선택 기능을 제공함

[모듈 UI]

3.2. 모듈 사용 시나리오

- 1) 조립 구조(xml) 입력: 중립 조립 구조 파일을 입력함. 조립구조 파일에는 카테고리 정보, 좌표 및 속성 정보, 3D 형상 파일(.fbx) 경로가 포함되어 있음
- 2) 보조 정보(xml) 입력: 보조 정보 파일을 입력함. 보조 정보 파일에는 속성 보조 정보, 코드 보조 정보, 카테고리 보조 정보가 포함되어 있음

[조립 구조 입력]

3) 서브 어셈블리 혹은 파트 선택: 사용자가 조립 구조 정보에서 입력할 대상 (서브 어셈블리 혹은 파트)을 선택함

[서브 어셈블리 혹은 파트 선택]

4) 단순경량화 옵션 선택: 단순경량화 옵션을 선택할 수 있음. 1) 모델링 방법:

조립 구조 정보가 없을 경우, 파트를 선택하여 단순경량화 가능. 2) 시스템 종류: 입력 시스템 종류에 따라 다른 단순경량화 기능이 수행됨. 3) 기능선택: 단순경량화 기능들 중 원하는 기능들만 수행할 수 있음

[단순경량화 옵션 선택]

5) 단순경량화 수행: 단순경량화 기능을 수행함

[단순경량화 수행]

6) 파일 저장: FBX 포맷으로 단순경량화 결과를 저장함

[파일 저장]

4. 단순경량화 실험

4.1. 실험 대상

○ 테스트케이스 1 - 플랜트 3D CAD 모델

[3D 형상 - 플랜트 3D CAD 모델]

○ 테스트케이스 2 - 건축물 3D CAD 모델

[3D 형상 - 건축물 3D CAD 모델]

4.2. 실험 결과

○ 테스트케이스 1

- ✓ 단순경량화 전 삼각망 개수: 748,727 (100%)
- ✓ 단순경량화 후 삼각망 개수: 561,530 (74%)

[테스트케이스 1 - 플랜트 3D CAD 모델 단순경량화 결과(전/후)]

○ 테스트케이스 2

- ✓ 단순경량화 전 삼각망 개수: 85,280 (100%)
- ✓ 단순경량화 후 삼각망 개수: 79,147 (93%)

[테스트케이스 2 - 건축물 모델(학교 건물) 단순경량화 결과(전/후)]