Independence Properties of Directed Probabilistic Graphical Models

November 12, 2020

Table of contents

- 1. Motivation
- 2. Directed Probabilistic Graphical Models
- 3. Independence in Canonical Graphs
- 4. Independence in Directed PGM's

Introductory Question

Claim: Buying margarine is unethical.

Introductory Question

Claim: Buying margarine is unethical.

Argument:

Introductory Question

Claim: Buying margarine is unethical.

Argument:

Q: What are the problems with this argument?

Marginal vs. Conditional Independence

The "third variable" problem

 ${\rm divorces} \perp \!\!\! \perp {\rm margarine} \mid {\rm time}$

Marginal vs. Conditional Independence

Common parent

 $Z \not\perp\!\!\!\perp X$

Common parent

$$Z \perp \!\!\! \perp X \mid Y$$

Consider a Bayesian Hidden Markov Model

 $You \ may \ see \ statements \ like: \ \textit{The future is independent of the past given the current hidden state}.$

Consider a Bayesian Hidden Markov Model

You may see statements like: The future is independent of the past given the current hidden state.

How can we know this?

Consider a Bayesian Hidden Markov Model

You may see statements like: The future is independent of the past given the current hidden state.

- How can we know this?
- More generally: How can we easily answer queries about (conditional or marginal) independence ?

Consider a Bayesian Hidden Markov Model

You may see statements like: The future is independent of the past given the current hidden state.

- How can we know this?
- More generally: How can we easily answer queries about (conditional or marginal) independence ?

Joint Distribution

Notating transition matrix π , emissions parameters θ . hidden states X, and observations Y, and suppressing hyperparameters, we have

$$p(\pi, \theta, X, Y) = \underbrace{p(\pi) p(\theta)}_{\text{prior}} \quad \underbrace{p(X_0) \prod_{t=1}^{T} p_{\pi}(X_t \mid X_{t-1}) \ p_{\theta}(Y_t \mid X_t)}_{\text{(complete data) likelihood}}$$

5

Consider a Bayesian Hidden Markov Model

You may see statements like: The future is independent of the past given the current hidden state.

- How can we know this?
- More generally: How can we easily answer queries about (conditional or marginal) independence ?

Joint Distribution

Notating transition matrix π , emissions parameters θ . hidden states X, and observations Y, and suppressing hyperparameters, we have

$$p(\pi, \theta, X, Y) = \underbrace{p(\pi) p(\theta)}_{\text{prior}} \quad \underbrace{p(X_0) \prod_{t=1}^{T} p_{\pi}(X_t \mid X_{t-1}) p_{\theta}(Y_t \mid X_t)}_{\text{(complete data) likelihood}}$$

Representation as a probabilistic graphical model

Directed Probabilistic Graphical

Models

Joint distributions

The starting point for a directed probabilistic graphical model is a particular factorization of a joint density:

$$p(X_1,...,X_n) = \prod_{i=1}^n p(X_i \mid \pi_i)$$
 (2.1)

where the conditioning set π_i is referred to as the parents of variable i.

(In the intro example, who are the parents of margarine?

Joint distributions

The starting point for a directed probabilistic graphical model is a particular factorization of a joint density:

$$p(X_1,...,X_n) = \prod_{i=1}^n p(X_i \mid \pi_i)$$
 (2.1)

where the conditioning set π_i is referred to as the parents of variable i.

(In the intro example, who are the parents of margarine? In the HMM example, who are the parents of the hidden state x_t ? Of the observation y_t ?)

Joint distributions

The starting point for a directed probabilistic graphical model is a particular factorization of a joint density:

$$p(X_1,...,X_n) = \prod_{i=1}^n p(X_i \mid \pi_i)$$
 (2.1)

where the conditioning set π_i is referred to as the parents of variable i.

(In the intro example, who are the parents of margarine? In the HMM example, who are the parents of the hidden state x_t ? Of the observation y_t ?)

(2.1) simplifies the factorizations which are *always* true, by the chain rule of probability:

$$p(X_1,...,X_n) = \prod_{i=1}^n p(X_i \mid X_1,..,X_{i-1})$$

6

Once we have specified our desired factorization via (2.1), we can identify it with a directed acyclic graph (DAG) $\mathcal{G}=(E,V)$ by:

identifying each random variable with a node

Once we have specified our desired factorization via (2.1), we can identify it with a directed acyclic graph (DAG) $\mathcal{G}=(E,V)$ by:

- identifying each random variable with a node
- drawing a directed arc from A to B if A is a parent of B

Once we have specified our desired factorization via (2.1), we can identify it with a directed acyclic graph (DAG) $\mathcal{G} = (E, V)$ by:

- identifying each random variable with a node
- drawing a directed arc from A to B if A is a parent of B

We call this representation a directed probabilistic graphical model (or a Bayesian network) .

Once we have specified our desired factorization via (2.1), we can identify it with a directed acyclic graph (DAG) $\mathcal{G} = (E, V)$ by:

- identifying each random variable with a node
- drawing a directed arc from A to B if A is a parent of B

We call this representation a directed probabilistic graphical model (or a Bayesian network).

Example

For example, the directed acyclic graph (DAG) below

corresponds to the factorization (Any guesses?)

Once we have specified our desired factorization via (2.1), we can identify it with a directed acyclic graph (DAG) $\mathcal{G} = (E, V)$ by:

- identifying each random variable with a node
- drawing a directed arc from A to B if A is a parent of B

We call this representation a directed probabilistic graphical model (or a Bayesian network).

Example

For example, the directed acyclic graph (DAG) below

corresponds to the factorization (Any guesses?)

$$p(X) = p(X_1) p(X_2 \mid X_1) p(X_3 \mid X_1) p(X_4 \mid X_2) p(X_5 \mid X_3) p(X_6 \mid X_5, X_2)$$

Exercise

Prove that $X \perp\!\!\!\perp Y \mid Z$ for the common parent structure.

Common parent

Independence in Canonical

Graphs

Three canonical graphs

Three canonical graphs

Three canonical graphs: Marginal Independence

Three canonical graphs: Conditional Independence

Three canonical graphs: Take Home

Knowing Y decouples X and Z

Knowing Y couples X and Z

Competing explanations

v-structure

The independence properties of the v-structure is commonly understood through a competing explanations paradigm.

Suppose your house has a twitchy burglar alarm that is also sometimes triggered by earthquakes.

Let

 $X = \{\text{your house got robbed}\}\$

 $Z = \{$ an earthquake occurred nearby $\}$

 $Y = \{ \mathsf{your} \; \mathsf{burglar} \; \mathsf{alarm} \; \mathsf{goes} \; \mathsf{off} \}$

Then it is (perhaps) intuitive that

$$Z \perp \!\!\! \perp X$$

 $Z \perp \!\!\! \perp X \mid Y$

Relevance to real models

v-structure

Common parent

In real models ...

■ the v-structure shows up with independent priors. (So imagine X and Z are model parameters given independent priors and Y is an observation.) Then the parameters are independent when generating data (i.e. in the prior), but they become dependent when doing inference (i.e. in the posterior).

Relevance to real models

v-structure

Common parent

In real models ...

- the v-structure shows up with independent priors. (So imagine X and Z are model parameters given independent priors and Y is an observation.) Then the parameters are independent when generating data (i.e. in the prior), but they become dependent when doing inference (i.e. in the posterior).
- the common parent structure shows up with conditional i.i.d data models. (So imagine Y is a parameter and X and Z are two observations.) The observations are conditionally independent, but integrating out the random parameter induces dependencies in the observations. (Imagine ollecting observations from a normal distribution with unknown μ, Σ.)

Independence in Directed PGM's

d-separation

If variables X and Z are d-separated given a set of variables E Then X and Z are conditionally independent given the set E

Definition #2:

Variables X and Z are d-separated given a set of evidence variables E iff there does not exist a path in the undirected ancestral moral graph with E removed.

- 1. Ancestral graph: keep only X, Z, E and their ancestors
- 2. Moral graph: add undirected edge between all pairs of each node's parents
- 3. Undirected graph: convert all directed edges to undirected
- 4. Givens Removed: delete any nodes in E

Image Credit: Matt Gormley (CMU).

Worksheet for practice

Revisiting the HMM statement

The future is independent of the past given the current state

Is this true?

1.
$$Y_2 \perp \!\!\! \perp Y_1 \mid X_2$$
 ? (Try it.)

The future is independent of the past given the current state

1.
$$Y_2 \perp \!\!\!\perp Y_1 \mid X_2$$
 ? (Try it.) X

The future is independent of the past given the current state

- 1. $Y_2 \perp \!\!\!\perp Y_1 \mid X_2$? (Try it.) X
- 2. $Y_2 \perp \!\!\!\perp Y_1 \mid X_2, \theta, \pi$?

The future is independent of the past given the current state

- 1. $Y_2 \perp \!\!\!\perp Y_1 \mid X_2$? (Try it.) X
- 2. $Y_2 \perp \!\!\!\perp Y_1 \mid X_2, \theta, \pi$? \checkmark

The future is independent of the past given the current state

- 1. $Y_2 \perp \!\!\! \perp Y_1 \mid X_2$? (Try it.) X
- 2. $Y_2 \perp \!\!\!\perp Y_1 \mid X_2, \theta, \pi$? \checkmark
- 3. (In fact, $Y_2 \perp \!\!\!\perp Y_1 \mid X_2, \theta$)

Fundamental property of Bayes networks

Let us generalize this finding. An oft-stated fact is:

A node is independent of its non-descendants given its parents.

Q How can we know this?

Fundamental property of Bayes networks

Let us generalize this finding. An oft-stated fact is:

A node is independent of its non-descendants given its parents.

Q How can we know this?

This can easily be proven via d-separation.

- The first step ("ancestral graph") will remove all of X's children.
- The fourth step ("remove givens") will remove X's parents.
- Thus, X will be disconnected from the rest of the graph.

Markov blankets

Markov Blanket

Def: the **co-parents** of a node are the parents of its children

Def: the **Markov Blanket** of a node is the set containing the node's parents, children, and co-parents.

Thm: a node is conditionally independent of every other node in the graph given its Markov blanket

Image Credit: Matt Gormley (CMU).

Markov blankets

Markov Blanket

Def: the **co-parents** of a node are the parents of its children

Def: the **Markov Blanket** of a node is the set containing the node's parents, children, and co-parents.

Thm: a node is conditionally independent of every other node in the graph given its Markov blanket

Image Credit: Matt Gormley (CMU).

Markov blankets

Markov Blanket

Def: the **co-parents** of a node are the parents of its children

Def: the **Markov Blanket** of a node is the set containing the node's parents, children, and co-parents.

Thm: a node is conditionally independent of every other node in the graph given its Markov blanket

Markov Blankets: Why co-parents?

Why is it not sufficient for the Markov Blanket to only include the parents and children of X_i ?

Markov Blankets: Why co-parents?

Why is it not sufficient for the Markov Blanket to only include the parents and children of X_i ?

The phenomenon of explaining away means that the observations of child nodes will not block paths to the co-parents.

Markov Blankets: Why co-parents?

Why is it not sufficient for the Markov Blanket to only include the parents and children of X_i ?

The phenomenon of explaining away means that the observations of child nodes will not block paths to the co-parents.

This is why step 2 of the d-separation algorithm ("moralization") connects parents.

In the previous graph, the transformed graph would still have paths from X_6 to, for example, X_8 (and to X_{11}).

Proof of Markov Blanket statement

Let us consider the conditional distribution of some variable X_i given the factorization in (2.1):

$$p(X_i \mid X_{-i}) = \frac{p(X_1, ..., X_n)}{\int p(X_1, ..., X_n) dX_i}$$
$$= \frac{\prod_{k=1}^n p(X_k \mid \pi_k)}{\int \prod_{k=1}^n p(X_k \mid \pi_k) dX_i}$$

All terms will cancel in the numerator and denominator except for terms of the form

- 1. $p(X_i \mid \pi_i)$, i.e. terms where *i* is the node itself
- 2. $\{p(X_k \mid \pi_k) : i \in \pi_k\}$, i.e. terms where *i* is one of the parents.

Terms of type (1) will depend on X_i 's parents, and terms of type (2) will depend on X_i 's children and co-parents.