





- Le gain nécessaire pour l'entretien des oscillations est A<sub>u</sub> = 3.
- Cependant, pour le réglage automatique de l'amplitude des oscillations il faut asservir le gain entre deux valeurs A<sub>u1</sub>> 3 et A<sub>u2</sub>< 3</li>
- Legain de l'amplificateur avant la conduction des diodes:  $A_{\rm al} = 1 + \frac{R_2}{R_1} = 3.13 \text{ ce qui est suffisant pour le démarrage des oscillations}$
- Legain de l'amplificateur après la conduction des diodes:  $A_{a2} = 1 + \frac{R_2 / / R_4}{R_1 / / R_3} = 2.52 \text{ ce qui est suffisant pour l'atténuation des oscillations}$
- La tension au point B lorsque la diode  $D_1$  est bloquée:  $v_B = V_{CC} \frac{R_4}{R_3 + R_4} + v_2 \frac{R_3}{R_3 + R_4}$ 
  - La non linéarité du circuit proposé apparaît lorsque  $v_1$ - $v_B \approx U_j$  au point  $v_2$ =  $A_{ul}v_1$
  - $v_1 V_{CC} \frac{R_4}{R_3 + R_4} A_{u1}v_1 \frac{R_3}{R_3 + R_4} = U_j$   $v_1 = \frac{R_4(V_{cc} + U_J) + R_3U_J}{R_3(1 - A_{u1}) + R_4} \approx -2 \ V(avec \ U_j \approx 0.6V)$  $et \ v_{2,critique} = 3.1 \ v_1 \approx 6.2V$

1





## TP6-4 Oscillateur à limitation d'amplitude par résistance à coefficient de température négatif( $R_{\rm NTC}$ )



$$A_u \approx (1 + \frac{R_{CTN}}{R_1}).$$



On remarque que  $R_{NTC}$  pour des faibles amplitudes  $(1V/0.2mA=5k\Omega)$  donne un gain  $A_u>3$ . Cependant, quand l'amplitude augmente,  $R_{NTC}$  diminue ce qui donne un gain  $A_u<3$ . Pour obtenir  $A_u=3$ , valeur nécessaire pour un oscillateur à pont de Wien, il faut que  $R_{NTC}\approx 4.4~k\Omega$ .

OM Varial





©M. Kayal