ReverCSP: Time-travelling in CSP computations

<u>Carlos Galindo</u>¹ Naoki Nishida² Josep Silva¹ Salvador Tamarit¹

Departamento de Sistemas Informàticos y Computación Universitat Politècnica de València, Spain

> ² Graduate School of Informatics Nagoya University, Japan

12th International Conference on Reversible Computation July 9th, 2020

Motivation

- Communicating Sequential Processes (CSP): a formal language to describe concurrency.
- Uses: security, livelock analysis, deadlock analysis...
- Debugging CSP: errors cannot be easily reproduced, have to be logged/traced.

CSP Syntax

```
Proc ::= Q
                    (process call)
x 	o Proc
                   (prefixing)
 c?u \rightarrow Proc (input)
 c!u \rightarrow Proc (output)
 Proc_1 \sqcap Proc_2 (internal choice)
 Proc_1 \square Proc_2 (external choice)
 Proc_1 \mid \mid Proc_2 (interleaving)
 Proc_1 \mid\mid Proc_2 (synchronized parallelism)
        {x}
 Proc_1; Proc_2
                    (sequential composition)
 Proc \ X
                    (hiding)
 Proc[f]
                    (renaming)
 SKIP
                    (skip)
 STOP
                    (stop)
```

CSP Syntax

```
Proc ::= Q
                     (process call)
x \rightarrow Proc
                    (prefixing)
 Proc_1 \sqcap Proc_2 (internal choice)
  Proc_1 \mid\mid Proc_2 (synchronized parallelism)
        {x}
 SKIP
                     (skip)
  STOP
                     (stop)
```

3/12

Example

$$\begin{aligned} \text{MAIN} &= \mathbb{Q} \ \mid \mid \ P \\ & \{a\} \end{aligned}$$

$$\mathbb{Q} = a \rightarrow b \rightarrow \text{SKIP}$$

$$P = R \ \mid \mid \ a \rightarrow \big(b \rightarrow \text{SKIP} \sqcap \mathbb{Q}\big)$$

$$R = a \rightarrow \text{SKIP}$$

- Possible traces: $\{\langle \rangle, \langle a \rangle, \langle ab \rangle, \langle abb \rangle\}$
- (abb): bb can be emitted on Q and then P or vice-versa.
- CSP debugging tools: traces \rightarrow tracks \rightarrow R-tracks

CSP Tracks

Example

reverCSP

CSP R-tracks

Example

$$ext{MAIN} = \mathbf{Q} \hspace{0.2cm} || \hspace{0.2cm} P \hspace{0.2cm} \\ ext{\{a\}} \hspace{0.2cm} \mathbf{Q} = \mathbf{a} o \mathbf{b} o \mathbf{SKIP} \hspace{0.2cm} \\ ext{P} = \mathbf{R} \hspace{0.2cm} || \hspace{0.2cm} \mathbf{a} o \left(\mathbf{b} o \mathbf{SKIP} \sqcap \mathbf{Q} \right) \hspace{0.2cm} \\ ext{\{a\}} \hspace{0.2cm} \mathbf{R} = \mathbf{a} o \mathbf{SKIP} \hspace{0.2cm}$$

6/12

CSP Reversibility with R-tracks

Deterministic reversibility

Replay the original execution, forwards or backwards.

At any state, there is at most one possible execution step in each direction.

Causal-consistent reversibility

Explore any and all executions consistently.

Forward Only possible if all causes of a step have been executed.

Backward Only possible if all *consequences* of a step have been reversed.

CSP Reversibility with R-tracks

Deterministic reversibility

Replay the original execution, forwards or backwards.

At any state, there is at most one possible execution step in each direction.

Causal-consistent reversibility

Explore any and all executions consistently.

Forward Only possible if all *causes* of a step have been executed.

Backward Only possible if all *consequences* of a step have been reversed.

Example

$$\begin{aligned} \text{MAIN} &= \mathbb{Q} & \mid\mid & P \\ & \{a\} & \\ \mathbb{Q} &= a \to b \to \text{SKIP} \\ P &= R & \mid\mid & a \to \left(b \to \text{SKIP} \sqcap \mathbb{Q}\right) \\ & \{a\} & \\ R &= a \to \text{SKIP} & \end{aligned}$$

System demo

Architecture

Empirical evaluation

Table: Size of the tracks generated with a given runtime

Benchmark	Runtime (ms)	#Nodes	#Edges	Memory Size (KBytes)
ABP.csp	[2208.16 2209.25 2210.34]	[1505.61 1506.17 1506.73]	[1303.10 1303.63 1304.17]	[172.98 173.05 173.11]
ATM.csp	[630.17 690.18 750.19]	[364.09 405.64 447.19]	[300.74 334.67 368.61]	[_{42.61} 47.56 _{52.51}]
Buses.csp	[126.40 127.19 127.97]	[22.00 22.00 22.00]	[18.00 18.00 18.00]	[_{2.43} 2.43 _{2.43}]
CPU.csp	[189.97 190.74 191.51]	[87.43 87.76 88.09]	[71.23 71.50 71.77]	[9.59 9.63 9.67]
Disk.csp	[209.07 210.10 211.13]	[148.50 148.74 148.98]	[123.59 123.78 123.78]	[_{16.72} 16.74 _{16.77}]
Loop.csp	[2133.02 2133.99 2134.96]	[1537.53 1538.34 1539.14]	[1230.05 1230.69 1231.35]	[_{191.42} 191.53 _{191.63}]
Oven.csp	[238.64 241.92 245.20]	[157.16 163.37 169.59]	[162.68 169.33 175.98]	[20.03 20.86 21.69]
ProdCons.csp	[2134.59 2135.43 2136.27]	[1535.43 1536.09 1536.75]	[1228.08 1228.61 1229.15]	[189.44 189.53 189.61]
ReadWrite.csp	[2148.76 2149.71 2150.65]	[1475.85 1476.56 1477.28]	[1252.47 1253.34 1254.22]	[_{171.57} 171.66 _{171.76}]
Traffic.csp	[165.34 166.35 167.36]	[_{61.18} 64.37 _{67.56}]	[47.73 50.13 52.53]	[6.44 6.79 _{70.30}]
Average	[_{1018.41} 1025.49 _{1019.76}]	[689.478 694.90 700.33]	[573.77 578.37 582.98]	[115.59 116.72 117.85]

Memory usage: < 144KB/s

[symmetric 99% confidence intervals]

Source code: https://github.com/tamarit/reverCSP (with benchmarks)

Conclusions

- R-tracks as the extension of tracks with timestamps.
- R-tracks enable reversibility
- Choice between deterministic and causally consistent steps.
- For debugging: track the cause of a bug and easily explore alternative execution paths.
- Backed by formal semantics and proof.
- Freely available online.

https://github.com/tamarit/reverCSP