KomAn - Opgavesæt A

Tim Sehested Poulsen - tpw705

Opgave 1

a)

Det ses rimelig hurtigt på figuren at billedkurven går i gennem punktet 1 præcist da kurven skærer x-aksen. Samtidig ligner det at kurver går mod punktet 0, men det kan ikke ses på figuren om den faktisk rammer punktet, og hvis man ved at e^z ikke har nogle 0 punkter så kan man konkludere at den ikke rammer punktet 0.

b)

Jeg kan ved brug af sætning 1.18 [1] konkludere at

$$\begin{split} f(z) - 1 &= 0 \\ \iff e^{-z^2/2} &= 1 \\ \iff \frac{-z^2}{2} &= 2\pi i k, \text{ for } k \in \mathbb{Z} \\ \iff z^2 &= -4\pi i k, \text{ for } k \in \mathbb{Z} \end{split}$$

Det kan let ses at $|-4\pi ik| = 4\pi |k|$ og

$$\arg(-4\pi i k) = \begin{cases} \frac{3\pi}{2} & k > 0\\ \frac{\pi}{2} & k < 0\\ 0 & k = 0 \end{cases}$$

Da må vi kunne konkludere at

$$z = \begin{cases} \pm \sqrt{4\pi k} \cdot \left(\cos(\frac{3\pi}{4}) + i\sin(\frac{3\pi}{4})\right) & \text{hvis } k > 0\\ \pm \sqrt{4\pi k} \cdot \left(\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4})\right) & \text{hvis } k < 0\\ 0 & \text{hvis } k = 0 \end{cases}$$

Hvilket udgør samtlige nulpunkter til f(z) - 1.

c)

Betragter vi funktionen $g(z)=-z^2/2$, vil vi kunne observere at for ethvert punkt $(a+ib)\in\mathbb{C}$ med $a,b\in\mathbb{R}$ at

$$g(z) = a + ib$$

$$\iff -z^2/2 = a + ib$$

$$\iff z^2 = -2(a + ib)$$

Antag at r = |a + ib|, så har ved brug af løsningen til opgave S.1.(f) fra supplerende opgaver har vi at

$$z = \begin{cases} \pm \left(\sqrt{r+a} + i\sqrt{r-a}\right) & \text{hvis b} > 0\\ \pm \left(\sqrt{r+a} - i\sqrt{r-a}\right) & \text{hvis b} < 0 \end{cases}$$

1

I begge disse tilfælde vil der være 2 løsninger, men det vil også være sådan at vi i begge har at en af løsningerne har $\mathcal{R}(z) < 0$ hvilket så udelukkes. Altså er der kun 1 løsning til $\frac{-z^2}{2} = a + ib$ så længe den reelle del skal være positiv. Da må vi kunne konkludere at g(z) er injektiv på det højre halvplan. Kigger vi så på normen $\left|\frac{-z^2}{2}\right|$ for $z \in \Omega_{\sqrt{2\pi}}$ ser vi

$$\left|\frac{-z^2}{2}\right| = \frac{1}{2}|z^2| \le \frac{1}{2}\sqrt{2\pi^2} = \pi$$

Specielt må det betyde at $|\mathcal{C}(g(z))| \leq \pi$ for $z \in \Omega_{\sqrt{2\pi}}$. Kigger vi så på $g(z_1) = a + ib$ og $g(z_2) = c + id$ for $z_1, z_2 \in \Omega_{\sqrt{2\pi}}$ hvorom det gælder at $a, b, c, d \in \mathbb{R}$ og vi antager at $f(z_1) = f(z_2)$ vil vi se at

$$e^{g(z_1)} = e^{g(z_2)} \iff e^a e^{ib} = e^c e^{id}$$

Hvor vi herfra kan konkludere at $|f(z_1)| = e^a = |f(z_2)| = e^c$ og kan derfor fjerne dem på begge sider af ligheden. Til slut kan vi så løse følgende med brug af sætning 1.18

$$e^{ib-id} = 1 \iff i(b-d) = 2\pi ip \iff b = 2\pi p + d$$

for alle $p \in \mathbb{Z}$. Men da vi lige har kunne konkludere at $|\mathcal{C}(g(z_1))|, |\mathcal{C}(g(z_2))| \leq \pi$ må $b, d \leq \pi$ og vi har da kun tilbage at p = 0 er en løsning og derfor er b = d og vi kan så konkludere at $f(z_1) = f(z_2)$ giver at $g(z_1) = g(z_2)$ som vi lige har vist er injektiv altså er $z_1 = z_2$ og f er injektiv.

Opgave 2

a)

Starter vi med at observere den geometriske række og differentierer den 2 gange får vi at

$$\left(\sum_{n=0}^{\infty} z^n\right)'' = \left(\frac{1}{1-z}\right)''$$

$$\left(\sum_{n=0}^{\infty} (n+1)z^n\right)' = \left(\frac{1}{(1-z)^2}\right)'$$

$$\sum_{n=0}^{\infty} (n+2)(n+1)z^n = \frac{2}{(1-z)^3}$$

Hvor denne række vil have samme konvergensradius per 4.23 i [2], hvilket er $\rho_f = 1$ da den geometriske række har konvergensradius 1. Jeg kan nu multiplicere med z^2 og bevare konvergensradius ifølge 4.15 i [2]. Jeg får at

$$\sum_{n=2}^{\infty} n(n-1)z^n = \frac{2z^2}{(1-z)^3}$$

$$\implies \sum_{n=0}^{\infty} n(n-1)z^n = \frac{2z^2}{(1-z)^3}$$

Hvor implikationen kommer fra at de første 2 led er 0. Altså har vi vist det ønskede.

b)

Jeg definerer først mængden $A = \{k! | k \in \mathbb{N}\}$. Jeg kan dernæst betragte følgen $a_0 := 0$ og dernæst $a_n := 1_A(n)$ for $n \in \mathbb{N}$. Da vil det være sådan at

$$\sum_{n=1}^{\infty} z^{n!} = \sum_{n=0}^{\infty} a_n z^n$$

Kigger vi på mængden $T_h = \{t \geq 0 | \{|a_n|t^n\}_{n \in \mathbb{N}_0}$ er en begrænset følge $\}$. Da a_n kun antager værdierne 1 og 0 kan vi se at $a_n t^n \leq t^n$, hvilket udgør en konvergent følge så længe $t \leq 1$. Ligeledes vil følgen $\{a_n t^n\}_{n \in \mathbb{N}_0}$ divergere for t > 1 så derfor må sup $T_h = 1$. Derfra kan vi konkludere at h(z) har konvergensradius $\rho_h = 1$. Vi bemærker også at $\lim_{n \to \infty} \sqrt[n]{|a_n|} n$ ikke eksisterer da a_n enten er 1 eller 0 og $\sqrt[n]{1} = 1$ og $\sqrt[n]{0} = 0$ giver at følgen divergerer da den skifter mellem 0 og 1.

Opgave 3

a)

Jeg vil først vise at f er injektiv. Antag at $f(z_1) = f(z_2)$ så har vi altså at

$$\frac{z_1 + 2}{z_1 - i} = \frac{z_2 + 2}{z_2 - i}$$

$$\iff (z_1 + 2)(z_2 - i) = (z_2 + 2)(z_1 - i)$$

$$\iff z_1 z_2 - i z_1 + 2 z_2 - 2i = z_2 z_1 - i z_2 + 2 z_1 - 2i$$

$$\iff -i z_1 + 2 z_2 = -i z_2 + 2 z_1$$

$$\iff z_2(2 + i) = z_1(2 + i)$$

$$\iff z_2 = z_1$$

Altså er f injektiv. Vi kan se at f er surjektiv ved at se at for et arbitrært $w \in \mathbb{C}$ kan vi løse ligningen f(z) = w og få at

$$\frac{z+2}{z-i} = w$$

$$\iff z+2 = wz - wi$$

$$\iff z(1-w) = -2 - wi$$

$$\iff z = \frac{-2 - wi}{1 - w}$$

Hvilket altid er veldefineret da $w \neq 1$ per definition af f. Altså er f surjektiv og injektiv, og den inverse til f er givet ved

$$f^{-1}(w) = \frac{-2 - wi}{1 - w}$$

b)

For begge kurver kan vi observere at $\gamma_1(0) = \gamma_2(0) = 0$ og da vil $f(\gamma_1(0)) = f(\gamma_2(0)) = \frac{2}{-i} = 2i$. Altså skærer de 2 billedkurver hinanden i punktet 2i. Da f er sammensat af z + 2 og z - i hvilket begge er holomorfe funktioner og per 1.3 i [1] må f også være holomorf da den er defineret for $z \in \mathbb{C} \setminus \{i\}$. Eftersom γ_1 og γ_2 er differentiable kurver med afledte $\gamma'_1(t) = 1$ og $\gamma'_2(t) = i$ for alle $t \in \mathbb{R}$ kan vi se at kurvernes skæringsvinkel for t = 0 er vinklem mellm $\gamma'_1(0)$ og $\gamma'_2(0)$ som er $\frac{\pi}{2}$. Fra s. 16 i [1] har vi da givet at skæringsvinklen mellem billedkurverne er den samme som for kurverne selv, altså er skæringsvinklen mellem billedkurverne også $\frac{\pi}{2}$.

Referencer

- $\left[1\right]$ Christian Berg, Complex Analysis. Lecture Notes, 2016, ISBN 9788770786195,
- [2] Analyse 1 af Matthias Christiandl, 4. udgave ved Søren Eilers og Henrik Schlichtkrull