SECTION 5: POWER FLOW

ESE 470 – Energy Distribution Systems

² Introduction

K. Webb ESE 470

3

Nodal Analysis

Consider the following circuit

- Three voltage sources
- Generic branch impedances
 - Could be any combination of R, L, and C
- Three unknown node voltages
 - $\blacksquare V_1, V_2, \text{ and } V_3$
- Would like to analyze the circuit
 - Determine unknown node voltages
- One possible analysis technique is nodal analysis

Nodal analysis

- Systematic application of KCL at each unknown node
- Apply Ohm's law to express branch currents in terms of node voltages
- Sum currents at each unknown node
- We'll sum currents leaving each node and set equal to zero
- \square At node V_1 , we have

$$\frac{V_1 - V_{S1}}{Z_{S1}} + \frac{V_1 - V_2}{Z_1} = 0$$

- Every current term includes division by an impedance
 - Easier to work with *admittances* instead

Now our first nodal equation becomes

$$(V_1 - V_{s1})Y_{s1} + (V_1 - V_2)Y_1 = 0$$

where

$$Y_{S1} = 1/Z_{S1}$$
 and $Y_1 = 1/Z_1$

 Rearranging to place all unknown node voltages on the left and all source terms on the right

$$(Y_{s1} + Y_1)V_1 - Y_1V_2 = Y_{s1}V_{s1}$$

 $\, \, \Box \,$ Applying KCL at node V_2

$$(V_2 - V_1)Y_1 + V_2Y_2 + (V_2 - V_{52})Y_{52} + (V_2 - V_3)Y_3 = 0$$

K. Webb

Rearranging

$$-Y_1V_1 + (Y_1 + Y_2 + Y_{s2} + Y_3)V_2 - Y_3V_3 = Y_{s2}V_{s2}$$

$$(V_3 - V_2)Y_3 + (V_3 - V_{s3})Y_{s3} = 0$$
$$-Y_3V_2 + (Y_3 + Y_{s3})V_3 = Y_{s3}V_{s3}$$

 Note that the source terms are the Norton equivalent current sources (short-circuit currents) associated with each voltage source

7

Putting the nodal equations into matrix form

$$\begin{bmatrix} (Y_{s1} + Y1) & -Y_1 & 0 \\ -Y_1 & (Y_1 + Y_2 + Y_{s2} + Y_3) & -Y_3 \\ 0 & -Y_3 & (Y_3 + Y_{s3}) \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} Y_{s1}V_{s1} \\ Y_{s2}V_{s2} \\ Y_{s3}V_{s3} \end{bmatrix}$$

or

$$YV = I$$

where

- **Y** is the $N \times N$ admittance matrix
- I is an $N \times 1$ vector of known source currents
- V is an $N \times 1$ vector of unknown node voltages
- This is a system of N (here, three) linear equations with N unknowns
- We can solve for the vector of unknown voltages as

$$V = Y^{-1}I$$

The Admittance Matrix, Y

 \square Take a closer look at the form of the admittance matrix, Y

$$\begin{bmatrix} (Y_{s1} + Y1) & -Y_1 & 0 \\ -Y_1 & (Y_1 + Y_2 + Y_{s2} + Y_3) & -Y_3 \\ 0 & -Y_3 & (Y_3 + Y_{s3}) \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} \\ Y_{21} & Y_{22} & Y_{23} \\ Y_{31} & Y_{32} & Y_{33} \end{bmatrix}$$

- \Box The elements of Y are
 - lacktriangle Diagonal elements, Y_{kk} :
 - \blacksquare $Y_{kk} = \text{sum of all admittances connected to node } k$
 - Self admittance or driving-point admittance
 - Off-diagonal elements, Y_{kn} ($k \neq n$):
 - $Y_{kn} = -(\text{total admittance between nodes } k \text{ and } n)$
 - Mutual admittance or transfer admittance
- $\ \square$ Note that, because the network is reciprocal, $m{Y}$ is symmetric

- Nodal analysis allows us to solve for unknown voltages given circuit admittances and current (Norton equivalent) inputs
 - An application of *Ohm's law*

$$YV = I$$

- A linear equation
- Simple, algebraic solution
- For power-flow analysis, things get a bit more complicated

K. Webb

10 Power-Flow Analysis

K. Webb **ESE 470**

The Power-Flow Problem

- A typical power system is not entirely unlike the simple circuit we just looked at
 - Sources are generators
 - Nodes are the system buses
 - Buses are interconnected by impedances of *transmission* lines and *transformers*
- □ Inputs and outputs now include *power* (P and Q)
 - System equations are now nonlinear
 - \blacksquare Can't simply solve YV = I
 - Must employ *numerical*, *iterative* solution methods
- Power system analysis to determine bus voltages and power flows is called power-flow analysis or load-flow analysis

System One-Line Diagram

Consider the one-line diagram for a simple power system

- System includes:
 - Generators
 - Buses
 - Transformers
 - Treated as equivalent circuit impedances in per-unit
 - Transmission lines
 - Equivalent circuit impedances
 - Loads

Bus Variables

- The buses are the system nodes
- oxdot Four variables associated with each bus, k
 - $lue{}$ Voltage magnitude, V_k
 - $lue{}$ Voltage phase angle, δ_k
 - \blacksquare **Real power** delivered to the bus, P_k
 - \blacksquare **Reactive power** delivered to the bus, Q_k

K. Webb ESE 470

Bus Power

Net power delivered to bus k is the difference between power flowing from generators to bus k and power flowing from bus k to loads

$$P_k = P_{Gk} - P_{Lk}$$
$$Q_k = Q_{Gk} - Q_{Lk}$$

- Even though we've introduced power flow into the analysis, we can still write nodal equations for the system
- op Voltage and current related by the **bus admittance matrix**, $m{Y}_{bus}$

$$\mathbf{I} = \mathbf{Y}_{bus}\mathbf{V}$$

- lacktriangle lacktriangle lacktriangle Y_{bus} contains the bus mutual and self admittances associated with transmission lines and transformers
- $lue{}$ For an N bus system, $lue{}$ is an $N \times 1$ vector of bus voltages
- I is an $N \times 1$ vector of source currents flowing into each bus
 - From generators and loads

Types of Buses

- There are four variables associated with each bus
 - $\mathbf{D} V_k = |V_k|$
 - \bullet $\delta_k = \angle V_k$
 - \square P_k
 - \square Q_k
- Two variables are inputs to the power-flow problem
 - Known
- Two are outputs
 - To be calculated
- Buses are categorized into three types depending on which quantities are inputs and which are outputs
 - **□** Slack bus (swing bus)
 - **□** Load bus (PQ bus)
 - **■** Voltage-controlled bus (PV bus)

Bus Types

□ Slack bus (swing bus):

- Reference bus
- Typically bus 1
- lacktriangle Inputs are voltage magnitude, V_1 , and phase angle, δ_1
 - Typically 1.0∠0°
- \blacksquare Power, P_1 and Q_1 , is computed

Load bus (PQ bus):

- Buses to which only loads are connected
- \blacksquare Real power, P_k , and reactive power, Q_k , are the knowns
- $lue{}$ V_k and δ_k are calculated
- Majority of power system buses are load buses

K. Webb ESE 470

Bus Types

□ Voltage-controlled bus (PV bus):

- Buses connected to generators
- Buses with shunt reactive compensation
- lacktriangle Real power, P_k , and voltage magnitude, V_k , are known inputs
- Reactive power, Q_k , and voltage phase angle, δ_k , are calculated

K. Webb ESE 470

18

Solving the Power-Flow Problem

- □ The power-flow solution involves determining:
 - $lacksquare V_k$, δ_k , P_k , and Q_k
- □ There are *N* buses
 - Each with two unknown quantities
- \Box There are 2N unknown quantities in total
 - \blacksquare Need 2*N* equations
- \square N of these equations are the nodal equations

$$I = YV \tag{1}$$

 $\ \square$ The other N equations are the power-balance equations

$$S_k = P_k + jQ_k = V_k I_k^* \tag{2}$$

 \Box From (1), the nodal equation for the k^{th} bus is

$$I_k = \sum_{n=1}^N Y_{kn} V_n \tag{3}$$

□ Substituting (3) into (2) gives

$$P_k + jQ_k = V_k (\sum_{n=1}^N Y_{kn} V_n)^*$$
 (4)

 The bus voltages in (3) and (4) are phasors, which we can represent as

$$V_n = V_n e^{j\delta_n}$$
 and $V_k = V_k e^{j\delta_k}$ (5)

The admittances can also be written in polar form

$$Y_{kn} = |Y_{kn}|e^{j\theta_{kn}} \tag{6}$$

Using (5) and (6) in (4) gives

$$P_k + jQ_k = V_k e^{j\delta_k} \left(\sum_{n=1}^N |Y_{kn}| e^{j\theta_{kn}} V_n e^{j\delta_n} \right)^*$$

$$P_k + jQ_k = V_k \sum_{n=1}^N |Y_{kn}| V_n e^{j(\delta_k - \delta_n - \theta_{kn})}$$
(7)

□ In Cartesian form, (7) becomes

$$P_{k} + jQ_{k} = V_{k} \sum_{n=1}^{N} |Y_{kn}| V_{n} \left[\cos(\delta_{k} - \delta_{n} - \theta_{kn}) + j \sin(\delta_{k} - \delta_{n} - \theta_{kn}) \right]$$

$$(8)$$

 \square From (8), active power is

$$P_k = V_k \sum_{n=1}^N |Y_{kn}| V_n \cos(\delta_k - \delta_n - \theta_{kn})$$
 (9)

And, reactive power is

$$Q_k = V_k \sum_{n=1}^N |Y_{kn}| V_n \sin(\delta_k - \delta_n - \theta_{kn})$$
 (10)

K. Webb

$$P_k = V_k \sum_{n=1}^N |Y_{kn}| V_n \cos(\delta_k - \delta_n - \theta_{kn})$$
(9)

$$Q_k = V_k \sum_{n=1}^N |Y_{kn}| V_n \sin(\delta_k - \delta_n - \theta_{kn})$$
(10)

- Solving the power-flow problem amounts to finding a solution to a system of nonlinear equations, (9) and (10)
- Must be solved using *numerical*, *iterative* algorithms
 - Typically Newton-Raphson
- In practice, commercial software packages are available for power-flow analysis
 - E.g. PowerWorld, CYME, ETAP
- We'll now learn to solve the power-flow problem
 - Numerical, iterative algorithm
 - Newton-Raphson

- First, we'll introduce a variety of numerical algorithms for solving equations and systems of equations
 - Linear system of equations
 - Direct solution
 - Gaussian elimination
 - Iterative solution
 - Jacobi
 - Gauss-Seidel
 - Nonlinear equations
 - Iterative solution
 - Newton-Raphson
 - Nonlinear system of equations
 - Iterative solution
 - Newton-Raphson

Linear Systems of Equations – Direct Solution

K. Webb

Solving Linear Systems of Equations

Gaussian elimination

- Direct (i.e. non-iterative) solution
- Two parts to the algorithm:
 - Forward elimination
 - Back substitution

K. Webb ESE 470

Gaussian Elimination

Consider a system of equations

$$-4x_1 + 7x_3 = -5$$

$$2x_1 - 3x_2 + 5x_3 = -12$$

$$x_2 - 3x_3 = 3$$

□ This can be expressed in matrix form:

$$\begin{bmatrix} -4 & 0 & 7 \\ 2 & -3 & 5 \\ 0 & 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -5 \\ -12 \\ 3 \end{bmatrix}$$

In general

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{y}$$

□ For a system of three equations with three unknowns:

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Gaussian Elimination

 We'll use a 3×3 system as an example to develop the Gaussian elimination algorithm

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

First, create the augmented system matrix

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & \vdots & y_1 \\ A_{21} & A_{22} & A_{23} & \vdots & y_2 \\ A_{31} & A_{32} & A_{33} & \vdots & y_3 \end{bmatrix}$$

- Each row represents and equation
 - \blacksquare *N* rows for *N* equations
- Row operations do not affect the system
 - Multiply a row by a constant
 - Add or subtract rows from one another and replace row with the result

Gaussian Elimination – Forward Elimination

- Perform row operations to reduce the augmented matrix to upper triangular
 - Only zeros below the main diagonal
 - Eliminate x_i from the $(i + 1)^{st}$ through the N^{th} equations for i = 1 ... N
 - **□** Forward elimination
- □ After forward elimination, we have

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & \vdots & y_1 \\ 0 & A'_{22} & A'_{23} & \vdots & y'_2 \\ 0 & 0 & A'_{33} & \vdots & y'_3 \end{bmatrix}$$

■ Where the *prime* notation (e.g. A'_{22}) indicates that the value has been changed from its original value

28

Gaussian Elimination – Back Substitution

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & \vdots & y_1 \\ 0 & A'_{22} & A'_{23} & \vdots & y'_2 \\ 0 & 0 & A'_{33} & \vdots & y'_3 \end{bmatrix}$$

□ The last row represents an equation with only a single unknown

$$A'_{33} \cdot x_3 = y'_3$$

 \blacksquare Solve for x_3

$$x_3 = \frac{y_3'}{A_{33}'}$$

The second-to-last row represents an equation with two unknowns

$$A'_{22} \cdot x_2 + A'_{23} \cdot x_3 = y'_2$$

- Substitute in newly-found value of x_3
- \blacksquare Solve for x_2
- \square Substitute values for x_2 and x_3 into the first-row equation
 - lacktriangle Solve for x_1
- This process is back substitution

Gaussian elimination

- Gaussian elimination summary
 - Create the augmented system matrix
 - Forward elimination
 - Reduce to an upper-triangular matrix
 - Back substitution
 - Starting with x_N , solve for x_i for $i = N \dots 1$
- A direct solution algorithm
 - $lue{}$ Exact value for each x_i arrived at with a single execution of the algorithm
- Alternatively, we can use an iterative algorithm
 - The *Jacobi method*

Linear Systems of Equations – Iterative Solution – Jacobi Method

K. Webb

Jacobi Method

 \Box Consider a system of N linear equations

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{y}$$

$$\begin{bmatrix} A_{1,1} & \cdots & A_{1,N} \\ \vdots & \ddots & \vdots \\ A_{N,1} & \cdots & A_{N,N} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$$

 \Box The k^{th} equation (k^{th} row) is

$$A_{k,1}x_1 + A_{k,2}x_2 + \dots + A_{k,k}x_k + \dots + A_{k,N}x_N = y_k \tag{11}$$

 \square Solve (11) for x_k

$$x_{k} = \frac{1}{A_{k,k}} \left[y_{k} - (A_{k,1}x_{1} + A_{k,2}x_{2} + \dots + A_{k,k-1}x_{k-1} + \dots + A_{k,N}x_{N}) \right]$$

$$+ A_{k,k+1}x_{k+1} + \dots + A_{k,N}x_{N})$$
(12)

K. Webb

Jacobi Method

Simplify (12) using summing notation

$$x_k = \frac{1}{A_{k,k}} \left[y_k - \sum_{n=1}^{k-1} A_{k,n} x_n - \sum_{n=k+1}^{N} A_{k,n} x_n \right], \qquad k = 1 \dots N$$
 (13)

- \square An equation for x_k
 - $lue{}$ But, of course, we don't yet know all other x_n values
- □ Use (13) as an *iterative expression*

$$x_{k,i+1} = \frac{1}{A_{k,k}} \left[y_k - \sum_{n=1}^{k-1} A_{k,n} x_{n,i} - \sum_{n=k+1}^{N} A_{k,n} x_{n,i} \right], \qquad k = 1 \dots N$$
 (14)

- The *i* subscript indicates iteration number
 - $x_{k,i+1}$ is the updated value from the current iteration
 - lacksquare $x_{n.i}$ is a value from the previous iteration

Jacobi Method

$$x_{k,i+1} = \frac{1}{A_{k,k}} \left[y_k - \sum_{n=1}^{k-1} A_{k,n} x_{n,i} - \sum_{n=k+1}^{N} A_{k,n} x_{n,i} \right], \qquad k = 1 \dots N$$
 (14)

- ${\scriptscriptstyle \square}$ Start with an *initial guess* for all unknowns, ${f x}_0$
- Iterate until adequate convergence is achieved
 - Until a specified stopping criterion is satisfied
 - Convergence is not guaranteed

Convergence

- $\ \square$ An approximation of ${f x}$ is refined on each iteration
- - Assume we've converged to the right answer when **x** changes very little from iteration to iteration
- On each iteration, calculate a relative error quantity

$$\varepsilon_i = \max\left(\left|\frac{x_{k,i+1} - x_{k,i}}{x_{k,i}}\right|\right), \qquad k = 1 \dots N$$

Iterate until

$$\varepsilon_i \leq \varepsilon_s$$

where ε_s is a chosen **stopping** criterion

Jacobi Method – Matrix Form

□ The Jacobi method iterative formula, (14), can be rewritten in matrix form:

$$\mathbf{x}_{i+1} = \mathbf{M}\mathbf{x}_i + \mathbf{D}^{-1}\mathbf{y} \tag{15}$$

where **D** is the diagonal elements of **A**

$$\mathbf{D} = \begin{bmatrix} A_{1,1} & 0 & \cdots & 0 \\ 0 & A_{2,2} & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & A_{N,N} \end{bmatrix}$$

and

$$\mathbf{M} = \mathbf{D}^{-1}(\mathbf{D} - \mathbf{A}) \tag{16}$$

Recall that the inverse of a diagonal matrix is given by inverting each diagonal element

$$\mathbf{D}^{-1} = \begin{bmatrix} 1/A_{1,1} & 0 & \cdots & 0 \\ 0 & 1/A_{2,2} & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & 1/A_{NN} \end{bmatrix}$$

Jacobi Method – Example

Consider the following system of equations

$$-4x_1 + 7x_3 = -5$$

$$2x_1 - 3x_2 + 5x_3 = -12$$

$$x_2 - 3x_3 = 3$$

□ In matrix form:

$$\begin{bmatrix} -4 & 0 & 7 \\ 2 & -3 & 5 \\ 0 & 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -5 \\ -12 \\ 3 \end{bmatrix}$$

Solve using the Jacobi method

37

Jacobi Method – Example

The iteration formula is

$$\mathbf{x}_{i+1} = \mathbf{M}\mathbf{x}_i + \mathbf{D}^{-1}\mathbf{y}$$

where

$$\mathbf{D} = \begin{bmatrix} -4 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$

$$\mathbf{D} = \begin{bmatrix} -4 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3 \end{bmatrix} \qquad \mathbf{D}^{-1} = \begin{bmatrix} -0.25 & 0 & 0 \\ 0 & -0.333 & 0 \\ 0 & 0 & -0.333 \end{bmatrix}$$

$$\mathbf{M} = \mathbf{D}^{-1}(\mathbf{D} - \mathbf{A}) = \begin{bmatrix} 0 & 0 & 1.75 \\ 0.667 & 0 & 1.667 \\ 0 & 0.333 & 0 \end{bmatrix}$$

- To begin iteration, we need a starting point
 - Initial guess for unknown values, x
 - Often, we have some idea of the answer
 - Here, arbitrarily choose

$$\mathbf{x}_0 = [10 \ 25 \ 10]^T$$

38

Jacobi Method – Example

At each iteration, calculate

$$\mathbf{x}_{i+1} = \mathbf{M}\mathbf{x}_i + \mathbf{D}^{-1}\mathbf{y}$$

$$\begin{bmatrix} x_{1,i+1} \\ x_{2,i+1} \\ x_{3,i+1} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1.75 \\ 0.667 & 0 & 1.667 \\ 0 & 0.333 & 0 \end{bmatrix} \begin{bmatrix} x_{1,i} \\ x_{2,i} \\ x_{3,i} \end{bmatrix} + \begin{bmatrix} 1.25 \\ 4 \\ -1 \end{bmatrix}$$

 \Box For i=1:

$$\mathbf{x}_1 = \begin{bmatrix} x_{1,1} \\ x_{2,1} \\ x_{3,1} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1.75 \\ 0.667 & 0 & 1.667 \\ 0 & 0.333 & 0 \end{bmatrix} \begin{bmatrix} 10 \\ 25 \\ 10 \end{bmatrix} + \begin{bmatrix} 1.25 \\ 4 \\ -1 \end{bmatrix}$$

$$\mathbf{x}_1 = [18.75 \quad 27.33 \quad 7.33]^T$$

□ The relative error is

$$\varepsilon_1 = \max\left(\left|\frac{x_{k,1} - x_{k,0}}{x_{k,0}}\right|\right) = 0.875$$

 \Box For i=2:

$$\mathbf{x}_{2} = \begin{bmatrix} x_{1,2} \\ x_{2,2} \\ x_{3,2} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1.75 \\ 0.667 & 0 & 1.667 \\ 0 & 0.333 & 0 \end{bmatrix} \begin{bmatrix} 18.75 \\ 27.33 \\ 7.33 \end{bmatrix} + \begin{bmatrix} 1.25 \\ 4 \\ -1 \end{bmatrix}$$
$$\mathbf{x}_{2} = \begin{bmatrix} 14.08 & 28.72 & 8.11 \end{bmatrix}^{T}$$

The relative error is

$$\varepsilon_2 = \max\left(\left|\frac{x_{k,2} - x_{k,1}}{x_{k,1}}\right|\right) = 0.249$$

 Continue to iterate until relative error falls below a specified stopping condition

- Automate with computer code, e.g. MATLAB
- Setup the system of equations

```
% coefficient matrix
A = [-4,0,7;2,-3,5;0,1,-3];
% vector of knowns
y = [-5;-12;3];
```

Initialize matrices and parameters for iteration

```
reltol = 1e-6;
eps = 1;

max_iter = 600;
iter = 0;

% initial guess for x
x = [10;25;10];

D = diag(diag(A));
invD = inv(D);

M = invD*(D - A);
```

- Loop to continue iteration as long as:
 - Stopping criterion is not satisfied
 - Maximum number of iterations is not exceeded

- On each iteration
 - Use previous x values to update x
 - Calculate relative error
 - Increment the number of iterations

 \square Set $\varepsilon_s=1 imes10^{-6}$ and iterate:

i	\mathbf{x}_{i}	$arepsilon_i$
0	$[10 \ 25 \ 10]^T$	-
1	$[18.75 27.33 7.33]^T$	0.875
2	$[14.08 28.72 8.11]^T$	0.249
3	$[15.44 26.91 8.57]^T$	0.097
4	$[16.25 28.59 7.97]^T$	0.071
5	$[15.20 28.12 8.53]^T$	0.070
6	$[16.18 28.35 8.37]^T$	0.065
:	:	:
371	$[20.50 36.00 11.00]^T$	0.995×10 ⁻⁶

Convergence achieved in 371 iterations

Linear Systems of Equations – Iterative Solution – Gauss-Seidel

Gauss-Seidel Method

The iterative formula for the Jacobi method is

$$x_{k,i+1} = \frac{1}{A_{k,k}} \left[y_k - \sum_{n=1}^{k-1} A_{k,n} x_{n,i} - \sum_{n=k+1}^{N} A_{k,n} x_{n,i} \right], \qquad k = 1 \dots N$$
 (14)

- □ Note that only old values of x_n (i.e. $x_{n,i}$) are used to update the value of x_k
- $\ \square$ Assume the $x_{k,i+1}$ values are determined in order of increasing k
 - When updating $x_{k,i+1}$, all $x_{n,i+1}$ values are already known for n < k
 - \blacksquare We can use those updated values to calculate $x_{k,i+1}$
 - The Gauss-Seidel method

Gauss-Seidel Method

- $\ \square$ Now use the x_n values already updated on the current iteration to update x_k
 - That is, $x_{n,i+1}$ for n < k
- Gauss-Seidel iterative formula

$$x_{k,i+1} = \frac{1}{A_{k,k}} \left[y_k - \sum_{n=1}^{k-1} A_{k,n} x_{n,i+1} - \sum_{n=k+1}^{N} A_{k,n} x_{n,i} \right], \qquad k = 1 \dots N$$
 (17)

- Note that only the first summation has changed
 - For already updated x values
 - $\blacksquare x_n$ for n < k
 - lacktriangle Number of already-updated values used depends on k

Gauss-Seidel – Matrix Form

 In matrix form the iterative formula is the same as for the Jacobi method

$$\mathbf{x}_{i+1} = \mathbf{M}\mathbf{x}_i + \mathbf{D}^{-1}\mathbf{y} \tag{15}$$

where, again

$$\mathbf{M} = \mathbf{D}^{-1}(\mathbf{D} - \mathbf{A}) \tag{16}$$

but now **D** is the lower triangular part of **A**

$$\mathbf{D} = \begin{bmatrix} A_{1,1} & 0 & \cdots & 0 \\ A_{2,1} & A_{2,2} & 0 & \vdots \\ \vdots & \vdots & \ddots & 0 \\ A_{N,1} & A_{N,2} & \cdots & A_{N,N} \end{bmatrix}$$

 Otherwise, the algorithm and computer code is identical to that of the Jacobi method

Gauss-Seidel – Example

Apply Gauss-Seidel to our previous example

$$\mathbf{x}_0 = [10 \ 25 \ 10]^T$$

$$\epsilon_s = 1 \times 10^{-6}$$

i	\mathbf{x}_{i}	$arepsilon_i$
0	$[10 \ 25 \ 10]^T$	-
1	$[18.75 33.17 10.06]^T$	0.875
2	$[18.85 33.32 10.11]^T$	0.005
3	$[18.94 33.47 10.16]^T$	0.005
4	$[19.03 33.61 10.20]^T$	0.005
:	:	:
151	$[20.50 36.00 11.00]^T$	0.995×10 ⁻⁶

- Convergence achieved in 151 iterations
 - Compared to 371 for the Jacobi method

Nonlinear Equations

Nonlinear Equations

- Solution methods we've seen so far work only for linear equations
- Now, we introduce an iterative method for solving a single nonlinear equation
 - Newton-Raphson method
- Next, we'll apply the Newton-Raphson method to a system of nonlinear equations
- Finally, we'll use Newton-Raphson to solve the power-flow problem

Newton-Raphson Method

Want to solve

$$y = f(x)$$

where f(x) is a nonlinear function

- \Box That is, we want to find x, given a known nonlinear function, f, and a known output, y
- □ Newton-Raphson method
 - **B** Based on a *first-order Taylor series approximation* to f(x)
 - The *nonlinear* f(x) is approximated as *linear* to update our approximation to the solution, x, on each iteration

Taylor Series Approximation

- □ Taylor series approximation
 - **□** Given:
 - \blacksquare A function, f(x)
 - Value of the function at some value of x, $f(x_0)$
 - Approximate:
 - \blacksquare Value of the function at some other value of x
- First-order Taylor series approximation
 - \blacksquare Approximate f(x) using only its first derivative
 - $\blacksquare f(x)$ approximated as linear constant slope

$$y = f(x) \approx f(x_0) + \frac{df}{dx}\Big|_{x=x_0} (x - x_0) = \hat{y}$$

First-Order Taylor Series Approximation

 \Box Approximate value of the function at x

$$f(x) \approx \hat{y} = f(x_0) + f'(x_0)(x - x_0)$$

Newton-Raphson Method

First order Taylor series approximation is

$$y \approx f(x_0) + f'(x_0)(x - x_0)$$

Letting this be an equality and rearranging gives an *iterative formula* for updating an approximation to x

$$y = f(x_i) + f'(x_i)(x_{i+1} - x_i)$$

$$f'(x_i)(x_{i+1} - x_i) = y - f(x_i)$$

$$x_{i+1} = x_i + \frac{1}{f'(x_i)}[y - f(x_i)]$$
(18)

- \Box Initialize with a best guess at x, x_0
- Iterate (18) until
 - A stopping criterion is satisfied, or
 - The maximum number of iterations is reached

First-Order Taylor Series Approximation

$$x_{i+1} = x_i + \frac{1}{f'(x_i)} [y - f(x_i)]$$

- Now using the Taylor series approximation in a different way
 - Not approximating the value of y = f(x) at x, but, instead
 - Approximating the value of x where f(x) = y

Newton-Raphson – Example

Consider the following nonlinear equation

$$y = f(x) = x^3 + 10 = 20$$

- Apply Newton-Raphson to solve
 - Find x, such that y = f(x) = 20
- The derivative function is

$$f'(x) = 3x^2$$

 \Box Initial guess for x

$$x_0 = 1$$

oxdot Iterate using the formula given by (18)

Newton-Raphson – Example

\Box $\underline{i} = \underline{1}$:

$$x_1 = x_0 + f'(x_0)^{-1}[y - f(x_0)]$$

$$x_1 = 1 + [3 \cdot 1^2]^{-1} [20 - (1^3 + 10)]$$

$$x_1 = 4$$

$$\varepsilon_1 = \left| \frac{x_1 - x_0}{x_0} \right|$$

$$\varepsilon_1 = \left| \frac{4-1}{1} \right| = 3$$

$$x_1 = 4, \ \varepsilon_1 = 3$$

E 7

Newton-Raphson – Example

\Box $\underline{i} = 2$:

$$x_2 = x_1 + f'(x_1)^{-1}[y - f(x_1)]$$

$$x_2 = 4 + [3 \cdot 4^2]^{-1} [20 - (4^3 + 10)]$$

$$x_2 = 2.875$$

$$\varepsilon_2 = \left| \frac{x_2 - x_1}{x_1} \right|$$

$$\varepsilon_2 = \left| \frac{2.875 - 4}{4} \right|$$

$$\varepsilon_2 = 0.281$$

$$x_2 = 2.875$$
, $\varepsilon_2 = 0.281$

Newton-Raphson – Example

\Box $\underline{i} = 3$:

$$x_3 = x_2 + f'(x_2)^{-1}[y - f(x_2)]$$

$$x_3 = 2.875 + [3 \cdot 2.875^2]^{-1}[20 - (2.875^3 + 10)]$$

$$x_3 = 2.32$$

$$\varepsilon_3 = \left| \frac{x_3 - x_2}{x_2} \right|$$

$$\varepsilon_3 = \left| \frac{2.32 - 2.875}{2.875} \right|$$

$$\varepsilon_3 = 0.193$$

$$x_3 = 2.32$$
, $\varepsilon_3 = 0.193$

Newton-Raphson – Example

 \Box $\underline{i} = 4$:

$$x_4 = 2.166$$
, $\varepsilon_4 = 0.066$

 \Box $\underline{i} = \underline{5}$:

$$x_5 = 2.155$$
, $\varepsilon_5 = 0.005$

□ i = 6:

$$x_6 = 2.154$$
, $\varepsilon_6 = 28.4 \times 10^{-6}$

 $\Box i = 7$:

$$x_7 = 2.154$$
, $\varepsilon_7 = 0.808 \times 10^{-9}$

- Convergence achieved very quickly
- Next, we'll see how to apply Newton-Raphson to a system of nonlinear equations

Example Problems

Perform three iterations toward the solution of the following system of equations using the *Jacobi* method. Let $\mathbf{x}_0 = [0, 0]^T$.

$$2x_1 + x_2 = 12$$

$$2x_1 + 3x_2 = 5$$

K. Webb

61

Perform three iterations toward the solution of the following system of equations using the *Gauss-Seidel* method. Let $\mathbf{x}_0 = [0, 0]^T$.

$$2x_1 + x_2 = 12$$

$$2x_1 + 3x_2 = 5$$

Perform three iterations toward the solution of the following equation using the Newton-Raphson method. Let $\mathbf{x}_0 = 0$.

$$f(x) = \cos(x) + 3x = 10$$

Nonlinear Systems of Equations

Nonlinear Systems of Equations

- Now, consider a system of nonlinear equations
 - Can be represented as a vector of *N* functions
 - Each is a function of an N-vector of unknown variables

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} = \mathbf{f}(\mathbf{x}) = \begin{bmatrix} f_1(x_1, x_2, \dots, x_N) \\ f_2(x_1, x_2, \dots, x_N) \\ \vdots \\ f_N(x_1, x_2, \dots, x_N) \end{bmatrix}$$

We can again approximate this function using a first-order Taylor series

$$y = f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$
 (19)

- Note that all variables are N-vectors
 - **f** is an *N*-vector of known, nonlinear functions
 - x is an N-vector of unknown values this is what we want to solve for
 - **y** is an *N*-vector of known values
 - **x**₀ is an N-vector of x values for which $f(x_0)$ is known

Newton-Raphson Method

Equation (19) is the basis for our Newton-Raphson iterative formula
 Again, let it be an equality and solve for x

$$y - f(x_0) = f'(x_0)(x - x_0)$$

 $[f'(x_0)]^{-1}[y - f(x_0)] = x - x_0$
 $x = x_0 + [f'(x_0)]^{-1}[y - f(x_0)]$

This last expression can be used as an iterative formula

$$\mathbf{x}_{i+1} = \mathbf{x}_i + [\mathbf{f}'(\mathbf{x}_i)]^{-1}[\mathbf{y} - \mathbf{f}(\mathbf{x}_i)]$$

□ The derivative term on the right-hand side of (20) is an $N \times N$ matrix □ The *Jacobian* matrix, **J**

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \mathbf{J}_i^{-1}[\mathbf{y} - \mathbf{f}(\mathbf{x}_i)]$$
 (20)

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \mathbf{J}_i^{-1} [\mathbf{y} - \mathbf{f}(\mathbf{x}_i)]$$
 (20)

🗆 Jacobian matrix

- \square $N \times N$ matrix of partial derivatives for f(x)
- \blacksquare Evaluated at the current value of \mathbf{x} , \mathbf{x}_i

$$\mathbf{J}_{i} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{N}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{N}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{N}}{\partial x_{1}} & \frac{\partial f_{N}}{\partial x_{2}} & \cdots & \frac{\partial f_{N}}{\partial x_{N}} \end{bmatrix}_{\mathbf{x} = \mathbf{x}_{i}}$$

Newton-Raphson Method

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \mathbf{J}_i^{-1}[\mathbf{y} - \mathbf{f}(\mathbf{x}_i)]$$
 (20)

- We could iterate (20) until convergence or a maximum number of iterations is reached
 - Requires inversion of the Jacobian matrix
 - Computationally expensive and error prone
- Instead, go back to the Taylor series approximation

$$y = f(x_i) + J_i(x_{i+1} - x_i)$$

 $y - f(x_i) = J_i(x_{i+1} - x_i)$ (21)

- Left side of (21) represents a difference between the known and approximated outputs
- \blacksquare Right side represents an increment of the approximation for \mathbf{x}

$$\Delta \mathbf{y}_i = \mathbf{J}_i \Delta \mathbf{x}_i \tag{22}$$

Newton-Raphson Method

$$\Delta \mathbf{y}_i = \mathbf{J}_i \Delta \mathbf{x}_i \tag{22}$$

- On each iteration:
 - lacktriangle Compute $\Delta \mathbf{y}_i$ and \mathbf{J}_i
 - \blacksquare Solve for $\Delta \mathbf{x}_i$ using **Gaussian elimination**
 - Matrix inversion not required
 - Computationally robust
 - Update x

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \Delta \mathbf{x}_i \tag{23}$$

Newton-Raphson – Example

 Apply Newton-Raphson to solve the following system of nonlinear equations

$$\mathbf{f}(\mathbf{x}) = \mathbf{y}$$

$$\begin{bmatrix} x_1^2 + 3x_2 \\ x_1 x_2 \end{bmatrix} = \begin{bmatrix} 21 \\ 12 \end{bmatrix}$$

- Initial condition: $\mathbf{x}_0 = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$
- Stopping criterion: $\varepsilon_S = 1 \times 10^{-6}$
- Jacobian matrix

$$\mathbf{J}_{i} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} \end{bmatrix}_{\mathbf{x} = \mathbf{x}_{i}} = \begin{bmatrix} 2x_{1,i} & 3 \\ x_{2,i} & x_{1,i} \end{bmatrix}$$

Newton-Raphson – Example

$$\Delta \mathbf{y}_i = \mathbf{J}_i \Delta \mathbf{x}_i \tag{22}$$

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \Delta \mathbf{x}_i \tag{23}$$

Adjusting the indexing, we can equivalently write (22) and (23) as:

$$\Delta \mathbf{y}_{i-1} = \mathbf{J}_{i-1} \Delta \mathbf{x}_{i-1} \tag{22}$$

$$\mathbf{x}_i = \mathbf{x}_{i-1} + \Delta \mathbf{x}_{i-1} \tag{23}$$

- \Box For iteration i:
 - lacktriangle Compute $\Delta \mathbf{y}_{i-1}$ and \mathbf{J}_{i-1}
 - Solve (22) for $\Delta \mathbf{x}_{i-1}$
 - Update x using (23)

Newton-Raphson – Example

 \Box $\underline{i} = \underline{1}$:

$$\Delta y_0 = \mathbf{y} - \mathbf{f}(\mathbf{x}_0) = \begin{bmatrix} 21\\12 \end{bmatrix} - \begin{bmatrix} 7\\2 \end{bmatrix} = \begin{bmatrix} 14\\10 \end{bmatrix}$$

$$\mathbf{J}_0 = \begin{bmatrix} 2x_{1,0} & 3\\x_{2,0} & x_{1,0} \end{bmatrix} = \begin{bmatrix} 2 & 3\\2 & 1 \end{bmatrix}$$

$$\Delta \mathbf{x}_0 = \begin{bmatrix} 4\\2 \end{bmatrix}$$

$$\mathbf{x}_1 = \mathbf{x}_0 + \Delta \mathbf{x}_0 = \begin{bmatrix} 1\\2 \end{bmatrix} + \begin{bmatrix} 4\\2 \end{bmatrix} = \begin{bmatrix} 5\\4 \end{bmatrix}$$

$$\varepsilon_1 = \max\left(\left|\frac{x_{k,1} - x_{k,0}}{x_{k,0}}\right|\right), \qquad k = 1 \dots N$$

$$x_1 = \begin{bmatrix} 5\\4 \end{bmatrix}, \quad \varepsilon_1 = 4$$

Newton-Raphson – Example

 \Box $\underline{i} = 2$:

$$\Delta y_1 = \mathbf{y} - \mathbf{f}(\mathbf{x}_1) = \begin{bmatrix} 21\\12 \end{bmatrix} - \begin{bmatrix} 37\\20 \end{bmatrix} = \begin{bmatrix} -16\\-8 \end{bmatrix}$$

$$\mathbf{J}_1 = \begin{bmatrix} 2x_{1,1} & 3\\x_{2,1} & x_{1,1} \end{bmatrix} = \begin{bmatrix} 10 & 3\\4 & 5 \end{bmatrix}$$

$$\Delta \mathbf{x}_1 = \begin{bmatrix} -1.474\\-0.421 \end{bmatrix}$$

$$\mathbf{x}_2 = \mathbf{x}_1 + \Delta \mathbf{x}_1 = \begin{bmatrix} 5\\4 \end{bmatrix} + \begin{bmatrix} -1.474\\-0.421 \end{bmatrix} = \begin{bmatrix} 3.526\\3.579 \end{bmatrix}$$

$$\varepsilon_2 = \max\left(\left| \frac{x_{k,2} - x_{k,1}}{x_{k,1}} \right| \right), \quad k = 1 \dots N$$

$$x_2 = \begin{bmatrix} 3.526\\3.579 \end{bmatrix}, \quad \varepsilon_2 = 0.295$$

Newton-Raphson – Example

$$\Box$$
 $\underline{i} = 3$:

$$\Delta y_2 = \mathbf{y} - \mathbf{f}(\mathbf{x}_2) = \begin{bmatrix} 21\\12 \end{bmatrix} - \begin{bmatrix} 23.172\\12.621 \end{bmatrix} = \begin{bmatrix} -2.172\\-0.621 \end{bmatrix}$$

$$\mathbf{J}_2 = \begin{bmatrix} 2x_{1,2} & 3\\x_{2,2} & x_{1,2} \end{bmatrix} = \begin{bmatrix} 7.053 & 3\\3.579 & 3.526 \end{bmatrix}$$

$$\Delta \mathbf{x}_2 = \begin{bmatrix} -0.410\\0.240 \end{bmatrix}$$

$$\mathbf{x}_3 = \mathbf{x}_2 + \Delta \mathbf{x}_2 = \begin{bmatrix} 3.526\\3.579 \end{bmatrix} + \begin{bmatrix} -0.410\\0.240 \end{bmatrix} = \begin{bmatrix} 3.116\\3.819 \end{bmatrix}$$

$$\varepsilon_3 = \max\left(\left| \frac{x_{k,3} - x_{k,2}}{x_{k,2}} \right| \right), \quad k = 1 \dots N$$

$$x_3 = \begin{bmatrix} 3.116\\3.819 \end{bmatrix}, \quad \varepsilon_3 = 0.116$$

Newton-Raphson – Example

 \Box $\underline{i} = 7$:

$$\Delta y_6 = \mathbf{y} - \mathbf{f}(\mathbf{x}_6) = \begin{bmatrix} 21\\12 \end{bmatrix} - \begin{bmatrix} 21.000\\12.000 \end{bmatrix} = \begin{bmatrix} -0.527 \times 10^{-7}\\0.926 \times 10^{-7} \end{bmatrix}$$

$$\mathbf{J}_6 = \begin{bmatrix} 2x_{1,6} & 3\\x_{2,6} & x_{1,6} \end{bmatrix} = \begin{bmatrix} 6.000 & 3\\4.000 & 3.000 \end{bmatrix}$$

$$\Delta \mathbf{x}_6 = \begin{bmatrix} -0.073 \times 10^{-6}\\0.128 \times 10^{-6} \end{bmatrix}$$

$$\mathbf{x}_7 = \mathbf{x}_6 + \Delta \mathbf{x}_6 = \begin{bmatrix} 3.000\\4.000 \end{bmatrix} + \begin{bmatrix} -0.073 \times 10^{-6}\\0.128 \times 10^{-6} \end{bmatrix} = \begin{bmatrix} 3.000\\4.000 \end{bmatrix}$$

$$\varepsilon_7 = \max\left(\left|\frac{x_{k,7} - x_{k,6}}{x_{k,6}}\right|\right), \quad k = 1 \dots N$$

$$x_7 = \begin{bmatrix} 3.000\\4.000 \end{bmatrix}, \quad \varepsilon_7 = 31.9 \times 10^{-9}$$

Newton-Raphson – MATLAB Code

Define the system of equations

```
f = @(x) [x(1)^2 + 3*x(2); x(1)*x(2)];

y = [21;12];
```

□ Initialize x

```
x0 = [1;2];
x = x0;
```

Set up solution parameters

```
reltol = 1e-6;
max_iter = 1000;
eps = 1;
iter = 0;
```

K. Webb ESE 470

Newton-Raphson – MATLAB Code

Iterate:

- lacksquare Compute $\Delta \mathbf{y}_{i-1}$ and \mathbf{J}_{i-1}
- Solve for $\Delta \mathbf{x}_{i-1}$
- Update **x**

```
while(iter < max_iter) && (eps > reltol)
    iter = iter + 1;

J = [2*x(1), 3; x(2), x(1)];
x_old = x;

% calculate output error term
Dy = y - f(x_old);

% use Gaussian elimination to solve for increment to x
Dx = J\Dy;
x = x_old + Dx;

eps = max(abs((x - x_old)./x_old));
end
```

K. Webb ESE 470

Example Problems

K. Webb **ESE 470** Perform three iterations toward the solution of the following system of equations using the Newton-Raphson method. Let $\mathbf{x}_0 = [1, 1]^T$.

$$10x_1^2 + x_2 = 20$$
$$e^{x_1} - x_2 = 10$$

87 K. Webb ESE 470

Power-Flow Solution – Overview

- □ Consider an *N*-bus power-flow problem
 - 1 slack bus
 - \blacksquare n_{PV} PV buses
 - \blacksquare n_{PO} PQ buses

$$N = n_{PV} + n_{PQ} + 1$$

- Each bus has two unknown quantities
 - Two of V_k , δ_k , P_k , and Q_k
- $\ \square$ For the N-R power-flow problem, V_k and δ_k are the unknown quantities
 - These are the inputs to the nonlinear system of equations the P_k and Q_k equations of (9) and (10)
 - Finding unknown V_k and δ_k values allows us to determine unknown P_k and Q_k values

The nonlinear system of equations is

$$y = f(x)$$

- □ The *unknowns* , **x**, are *bus voltages*
 - Unknown phase angles from PV and PQ buses
 - Unknown magnitudes from PQ bus

$$\mathbf{x} = \begin{bmatrix} \boldsymbol{\delta}_{2} \\ \vdots \\ \boldsymbol{\delta}_{n_{PV} + n_{PQ} + 1} \\ \vdots \\ \boldsymbol{V}_{n_{PV} + n_{PQ} + 1} \end{bmatrix} \xrightarrow{n_{PV} + n_{PQ}}$$

$$\begin{bmatrix} \boldsymbol{\delta}_{2} \\ \vdots \\ \boldsymbol{V}_{n_{PV} + n_{PQ} + 1} \end{bmatrix} \xrightarrow{n_{PQ}}$$

$$\begin{bmatrix} \boldsymbol{\delta}_{2} \\ \vdots \\ \boldsymbol{V}_{n_{PV} + n_{PQ} + 1} \end{bmatrix} \xrightarrow{n_{PQ}}$$

$$\begin{bmatrix} \boldsymbol{\delta}_{2} \\ \vdots \\ \boldsymbol{V}_{n_{PV} + n_{PQ} + 1} \end{bmatrix} \xrightarrow{n_{PQ}}$$

$$\begin{bmatrix} \boldsymbol{\delta}_{2} \\ \vdots \\ \boldsymbol{V}_{n_{PV} + n_{PQ} + 1} \end{bmatrix} \xrightarrow{n_{PQ}}$$

$$\begin{bmatrix} \boldsymbol{\delta}_{2} \\ \vdots \\ \boldsymbol{V}_{n_{PV} + n_{PQ} + 1} \end{bmatrix} \xrightarrow{n_{PQ}}$$

$$y = f(x)$$

- \square The *knowns*, **y**, are *bus powers*
 - Known real power from PV and PQ buses
 - Known reactive power from PQ bus

$$\mathbf{y} = \begin{bmatrix} \mathbf{P} \\ \mathbf{Q} \end{bmatrix} = \begin{bmatrix} P_2 \\ \vdots \\ P_{n_{PV} + n_{PQ} + 1} \\ - - - - - - \\ Q_{n_{PV} + 2} \\ \vdots \\ Q_{n_{PV} + n_{PQ} + 1} \end{bmatrix} \begin{bmatrix} n_{PV} + n_{PQ} \\ n_{PV} + n_{PQ} \end{bmatrix}$$
(25)

$$y = f(x)$$

- $\hfill\Box$ The system of equations , f , consists of the nonlinear functions for P and Q
 - lue Nonlinear functions of f V and $f \delta$

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} \mathbf{P}(\mathbf{x}) \\ \mathbf{Q}(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} P_2(\mathbf{x}) \\ \vdots \\ Q_{n_{PV}+2}(\mathbf{x}) \\ \vdots \\ Q_{n_{PQ}+2}(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} P_2(\mathbf{x}) \\ \vdots \\ Q_{n_{PV}+2}(\mathbf{x}) \\ \vdots \\ \vdots \end{bmatrix}$$
(26)

 \square $P_k(\mathbf{x})$ and $Q_k(\mathbf{x})$ are given by

$$P_k = V_k \sum_{n=1}^{N} |Y_{kn}| V_n \cos(\delta_k - \delta_n - \theta_{kn})$$
(9)

$$Q_k = V_k \sum_{n=1}^N |Y_{kn}| V_n \sin(\delta_k - \delta_n - \theta_{kn})$$
 (10)

Admittance matrix terms are

$$Y_{kn} = |Y_{kn}| \angle \theta_{kn}$$

The iterative N-R formula is

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \Delta \mathbf{x}_i$$

■ The increment term, Δx_i , is computed through Gaussian elimination of

$$\Delta \mathbf{y}_i = \mathbf{J}_i \Delta \mathbf{x}_i$$

- \blacksquare The Jacobian, J_i , is computed on each iteration
- The *power mismatch* vector is

$$\Delta \mathbf{y}_i = \mathbf{y} - \mathbf{f}(\mathbf{x}_i)$$

- y is the vector of known powers, as given in (25)
- $f(x_i)$ are the P and Q equations given by (9) and (10)

Power-Flow Solution – Procedure

- The following procedure shows how to set up and solve the power-flow problem using the N-R algorithm
- 1. Order and number buses
 - Slack bus is #1
 - Group all PV buses together next
 - Group all PQ buses together last
- 2. Generate the bus admittance matrix, Y
 - And magnitude, Y = |Y|, and angle, $\theta = \angle Y$, matrices

3. Initialize *known* quantities

lacksquare Slack bus: V_1 and δ_1

 \blacksquare PV buses: V_k and P_k

 \blacksquare PQ buses: P_k and Q_k

Output vector:

$$\mathbf{y} = \begin{bmatrix} \mathbf{P} \\ \mathbf{Q} \end{bmatrix}$$

4. Initialize unknown quantities

$$\mathbf{x}_{o} = \begin{bmatrix} \mathbf{\delta}_{0} \\ \mathbf{V}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ --- \\ 1.0 \\ \vdots \\ 1.0 \end{bmatrix} - - \begin{bmatrix} n_{PV} + n_{PQ} \\ n_{PQ} \\ n_{PQ} \end{bmatrix}$$
(24)

- 5. Set up Newton-Raphson parameters
 - Tolerance for convergence, reltol
 - Maximum # of iterations, max_iter
 - Initialize relative error: $\varepsilon_0 > reltol$, e.g. $\varepsilon_0 = 10$
 - \blacksquare Initialize iteration counter: i=0
- 6. while $(\varepsilon > reltol)$ && $(i < max_iter)$
 - Update **bus voltage phasor vector**, V_i , using magnitude and phase values from x_i and from knowns
 - Calculate the current injected into each bus, a vector of phasors

$$\mathbf{I}_i = \mathbf{Y} \cdot \mathbf{V}_i$$

- 6. while $(\varepsilon > reltol)$ && $(i < max_iter) cont'd$
 - Calculate complex, real, and reactive power injected into each bus
 - This can be done using V_i and I_i vectors and element-by-element multiplication (the .* operator in MATLAB)

$$\mathbf{S}_{k,i} = \mathbf{V}_{k,i} \cdot \mathbf{I}_{k,i}^*$$

$$P_{k,i} = Re\{\mathbf{S}_{k,i}\}$$

$$Q_{k,i} = Im\{\mathbf{S}_{k,i}\}$$

- Create $f(x_i)$ from P_i and Q_i vectors
- lacktriangle Calculate **power mismatch**, $\Delta \mathbf{y}_i$

$$\Delta \mathbf{y}_i = \mathbf{y} - \mathbf{f}(\mathbf{x}_i)$$

lacktriangle Compute the Jacobian, lacktriangle using voltage magnitudes and phase angles from lacktriangle

- 6. while $(\varepsilon > reltol)$ && $(i < max_iter) cont'd$
 - $lue{}$ Solve for $\Delta \mathbf{x}_i$ using Gaussian elimination

$$\Delta \mathbf{y}_i = \mathbf{J}_i \Delta \mathbf{x}_i$$

- Use the mldivide (\, backslash) operator in MATLAB: $\Delta \mathbf{x}_i = \mathbf{J}_i \setminus \Delta \mathbf{y}_i$
- Update x

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \Delta \mathbf{x}_i$$

Check for convergence using power mismatch

$$\varepsilon_{i+1} = \max \left| \frac{y_k - f_k(\mathbf{x})}{y_k} \right|$$

Update the number of iterations

$$i = i + 1$$

The Jacobian matrix has four quadrants of varying dimension depending on the number of different types of buses:

- $\ \square$ Jacobian elements are partial derivatives of (9) and (10) with respect to δ or V
- Formulas for the Jacobian elements:
 - $\blacksquare n \neq k$

$$\mathbf{J}1_{kn} = \frac{\partial P_k}{\partial \delta_n} = V_k Y_{kn} V_n \sin(\delta_k - \delta_n - \theta_{kn}) \tag{27}$$

$$\mathbf{J}2_{kn} = \frac{\partial P_k}{\partial V_n} = V_k Y_{kn} \cos(\delta_k - \delta_n - \theta_{kn})$$
 (28)

$$\mathbf{J}3_{kn} = \frac{\partial Q_k}{\partial \delta_n} = -V_k Y_{kn} V_n \cos(\delta_k - \delta_n - \theta_{kn}) \tag{29}$$

$$\mathbf{J}4_{kn} = \frac{\partial Q_k}{\partial V_n} = V_k Y_{kn} \sin(\delta_k - \delta_n - \theta_{kn}) \tag{30}$$

- Formulas for the Jacobian elements, cont'd:
 - n = k

$$\mathbf{J}1_{kk} = \frac{\partial P_k}{\partial \delta_k} = -V_k \sum_{\substack{n=1\\n\neq k}}^N Y_{kn} V_n \sin(\delta_k - \delta_n - \theta_{kn})$$
(31)

$$\mathbf{J}2_{kk} = \frac{\partial P_k}{\partial V_k} = V_k Y_{kk} \cos(\theta_{kk}) + \sum_{n=1}^{N} Y_{kn} V_n \cos(\delta_k - \delta_n - \theta_{kn})$$
 (32)

$$\mathbf{J}3_{kk} = \frac{\partial Q_k}{\partial \delta_k} = V_k \sum_{\substack{n=1\\n\neq k}}^N Y_{kn} V_n \cos(\delta_k - \delta_n - \theta_{kn})$$
(33)

$$\mathbf{J}4_{kk} = \frac{\partial Q_k}{\partial V_k} = -V_k Y_{kk} \sin(\theta_{kk}) + \sum_{n=1}^{N} Y_{kn} V_n \sin(\delta_k - \delta_n - \theta_{kn})$$
 (34)

Power-Flow Solution – Example

K. Webb **ESE 470**

Power-Flow Solution – Buses

 Determine all bus voltages and power flows for the following threebus power system

- \square Three buses, $n_{PV}=1$, $n_{PQ}=1$, ordered PV first, then PQ:
 - Bus 1: slack bus
 - lacksquare V_1 and δ_1 are known, find P_1 and Q_1
 - Bus 2: PV bus
 - lacksquare P_2 and V_2 are known, find δ_2 and Q_2
 - Bus 3: PQ bus
 - lacksquare P_3 and Q_3 are known, find V_3 and δ_3

Power-Flow Solution – Admittance Matrix

Per-unit, per-length impedance of all transmission lines:

$$z = (31.1 + j316) \times 10^{-6} pu/km$$

Admittance of each line:

$$Y_{12} = Y_{23} = \frac{1}{z \cdot 150 \text{ km}} = 2.06 - j20.9 \text{ pu}$$

$$Y_{13} = \frac{1}{z \cdot 200 \text{ km}} = 1.54 - j15.7 \text{ pu}$$

109

Power-Flow Solution – Admittance Matrix

□ The admittance matrix (see p. 8):

$$\mathbf{Y} = \begin{bmatrix} Y_{11} & -Y_{12} & -Y_{13} \\ -Y_{21} & Y_{22} & -Y_{23} \\ -Y_{31} & -Y_{32} & Y_{33} \end{bmatrix} = \begin{bmatrix} 3.6 - j36.6 & -2.06 + j20.9 & -1.5 + j15.7 \\ -2.06 + j20.9 & 4.1 - j41.8 & -2.06 + j20.9 \\ -1.5 + j15.7 & -2.06 + j20.9 & 3.6 - j36.6 \end{bmatrix}$$

Admittance magnitude and angle matrices:

$$Y = |\mathbf{Y}| = \begin{bmatrix} 36.8 & 21.0 & 15.8 \\ 21.0 & 42.0 & 21.0 \\ 15.8 & 21.0 & 36.8 \end{bmatrix}, \qquad \mathbf{\theta} = \begin{bmatrix} -84.4^{\circ} & 95.6^{\circ} & 95.6^{\circ} \\ 95.6^{\circ} & -84.4^{\circ} & 95.6^{\circ} \\ 95.6^{\circ} & 95.6^{\circ} & -84.4^{\circ} \end{bmatrix}$$

Power-Flow Solution – Initialize Knowns

Known quantities

■ Slack bus: $V_1 = 1.0 \ pu$, $\delta_1 = 0^\circ$

■ PV bus: $V_2 = 1.05 pu$, $P_2 = 2.0 pu$

■ PQ bus: $P_3 = -5.0 \ pu$, $Q_3 = -1.0 \ pu$

Output vector

$$\mathbf{y} = \begin{bmatrix} \mathbf{P} \\ \mathbf{Q} \end{bmatrix} = \begin{bmatrix} P_2 \\ P_3 \\ Q_3 \end{bmatrix} = \begin{bmatrix} 2.0 \\ -5.0 \\ -1.0 \end{bmatrix}$$

Power-Flow Solution – Initialize Unknowns

The vector of unknown quantities to be solved for is

$$\mathbf{x} = \begin{bmatrix} \mathbf{\delta} \\ \mathbf{V} \end{bmatrix} = \begin{bmatrix} \delta_2 \\ \delta_3 \\ V_3 \end{bmatrix}$$

□ Initialize all unknown bus voltage phasors to $V_k = 1.0 \angle 0^\circ pu$

$$\mathbf{x}_0 = \begin{bmatrix} \mathbf{\delta}_0 \\ \mathbf{V}_0 \end{bmatrix} = \begin{bmatrix} \delta_{2,0} \\ \delta_{3,0} \\ V_{3,0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1.0 \end{bmatrix}$$

□ The complete vector of bus voltage phasors – partly known, partly unknown – is

$$\mathbf{V} = \begin{bmatrix} V_1 \angle \delta_1 \\ V_2 \angle \delta_2 \\ V_3 \angle \delta_3 \end{bmatrix} = \begin{bmatrix} 1.0 \angle 0^{\circ} \\ 1.05 \angle \delta_{2,0} \\ V_{3,0} \angle \delta_{3,0} \end{bmatrix} = \begin{bmatrix} 1.0 \angle 0^{\circ} \\ 1.05 \angle 0^{\circ} \\ 1.0 \angle 0^{\circ} \end{bmatrix}$$

Power-Flow Solution – Jacobian Matrix

The Jacobian matrix for this system is

$$\mathbf{J} = \begin{bmatrix} \frac{\partial P_2}{\partial \delta_2} & \frac{\partial P_2}{\partial \delta_3} & \frac{\partial P_2}{\partial V_3} \\ \frac{\partial P_3}{\partial \delta_2} & \frac{\partial P_3}{\partial \delta_3} & \frac{\partial P_3}{\partial V_3} \\ \frac{\partial Q_3}{\partial \delta_2} & \frac{\partial Q_3}{\partial \delta_3} & \frac{\partial Q_3}{\partial V_3} \end{bmatrix}$$

□ This matrix will be computed on each iteration using the current approximation to the vector of unknowns, \mathbf{x}_i

Power-Flow Solution – Set Up and Iterate

- Set up N-R iteration parameters
 - **□** *reltol* = 1e-6
 - **■** *max_iter* = 1e3
 - $\mathbf{E}_0 = \mathbf{10}$
 - $\Box i = 0$
- Iteratively update the approximation to the vector of unknowns as long as
 - Stopping criterion is not satisfied

$$\varepsilon_i > \varepsilon_s$$

Maximum number of iterations is not exceeded

$$i \leq max_iter$$

114

- \Box $\underline{i} = 0$:
 - Vector of bus voltage phasors

$$\mathbf{V}_{0} = \begin{bmatrix} V_{1} \angle \delta_{1} \\ V_{2} \angle \delta_{2,0} \\ V_{3,0} \angle \delta_{3,0} \end{bmatrix} = \begin{bmatrix} 1.0 \angle 0^{\circ} \\ 1.05 \angle 0^{\circ} \\ 1.0 \angle 0^{\circ} \end{bmatrix}$$

Current injected into each bus

$$\mathbf{I}_0 = \mathbf{Y} \cdot \mathbf{V}_0$$

$$\mathbf{I}_0 = \begin{bmatrix} 3.6 - j36.6 & -2.1 + j20.9 & -1.5 + j15.7 \\ -2.1 + j20.9 & 4.1 - j41.8 & -2.1 + j20.9 \\ -1.5 + j15.7 & -2.1 + j20.9 & 3.6 - j36.6 \end{bmatrix} \begin{bmatrix} 1.0 \angle 0^{\circ} \\ 1.05 \angle 0^{\circ} \\ 1.0 \angle 0^{\circ} \end{bmatrix}$$

$$\mathbf{I}_0 = \begin{bmatrix} 1.05 \angle 95.6^{\circ} \\ 2.10 \angle -84.4^{\circ} \\ 1.05 \angle 95.6^{\circ} \end{bmatrix}$$

115

Power-Flow Solution — Iterate

\Box $\underline{i} = 0$:

Complex power injected into each bus

$$\mathbf{S}_{0} = \mathbf{V}_{0} \cdot * \mathbf{I}_{0}^{*}$$

$$\mathbf{S}_{0} = \begin{bmatrix} 1.0 \angle 0^{\circ} \\ 1.05 \angle 0^{\circ} \\ 1.0 \angle 0^{\circ} \end{bmatrix} \cdot * \begin{bmatrix} 1.05 \angle 95.6^{\circ} \\ 2.10 \angle -84.4^{\circ} \\ 1.05 \angle 95.6^{\circ} \end{bmatrix}^{*}$$

$$\mathbf{S}_{0} = \begin{bmatrix} -0.103 - j1.045 \\ 0.216 + j2.195 \\ -0.103 - j1.045 \end{bmatrix}$$

Real and reactive power

$$\mathbf{P}_0 = \begin{bmatrix} -0.103 \\ 0.216 \\ -0.103 \end{bmatrix}, \qquad \mathbf{Q}_0 = \begin{bmatrix} -1.045 \\ 2.195 \\ -1.045 \end{bmatrix}$$

116

$$\Box$$
 $\underline{i} = 0$:

Power mismatch

$$\Delta \mathbf{y}_0 = \mathbf{y} - \mathbf{f}(\mathbf{x}_0)$$

$$\Delta \mathbf{y}_0 = \begin{bmatrix} 2.0 \\ -5.0 \\ -1.0 \end{bmatrix} - \begin{bmatrix} 0.216 \\ -0.103 \\ -1.045 \end{bmatrix} = \begin{bmatrix} 1.784 \\ -4.897 \\ 0.045 \end{bmatrix}$$

Next, compute the Jacobian matrix

$$\mathbf{J}_{0} = \begin{bmatrix} \frac{\partial P_{2}}{\partial \delta_{2}} & \frac{\partial P_{2}}{\partial \delta_{3}} & \frac{\partial P_{2}}{\partial V_{3}} \\ \frac{\partial P_{3}}{\partial \delta_{2}} & \frac{\partial P_{3}}{\partial \delta_{3}} & \frac{\partial P_{3}}{\partial V_{3}} \\ \frac{\partial Q_{3}}{\partial \delta_{2}} & \frac{\partial Q_{3}}{\partial \delta_{3}} & \frac{\partial Q_{3}}{\partial V_{3}} \end{bmatrix}_{\mathbf{x} = \mathbf{x}_{0}}$$

117

\Box $\underline{i} = 0$:

■ Elements of the Jacobian matrix are computed using V and δ values from \mathbf{V}_0 and Y and θ values from \mathbf{Y} :

$$V_0 = \begin{bmatrix} 1.0\\1.05\\1.0 \end{bmatrix}$$

$$\delta_0 = \begin{bmatrix} 0^{\circ} \\ 0^{\circ} \\ 0^{\circ} \end{bmatrix}$$

$$Y = \begin{bmatrix} 36.8 & 21.0 & 15.8 \\ 21.0 & 42.0 & 21.0 \\ 15.8 & 21.0 & 36.8 \end{bmatrix}$$

$$\theta = \begin{bmatrix} -84.4^{\circ} & 95.6^{\circ} & 95.6^{\circ} \\ 95.6^{\circ} & -84.4^{\circ} & 95.6^{\circ} \\ 95.6^{\circ} & 95.6^{\circ} & -84.4^{\circ} \end{bmatrix}$$

$\Box i = 0$:

■ Jacobian, J1

$$\begin{split} \frac{\partial P_2}{\partial \delta_2} &= -V_2 (Y_{21} V_1 \sin(\delta_2 - \delta_1 - \theta_{21}) + Y_{23} V_3 \sin(\delta_2 - \delta_3 - \theta_{23})) \\ \frac{\partial P_3}{\partial \delta_3} &= -V_3 (Y_{31} V_1 \sin(\delta_3 - \delta_1 - \theta_{31}) + Y_{32} V_2 \sin(\delta_3 - \delta_2 - \theta_{32})) \\ \frac{\partial P_2}{\partial \delta_3} &= V_2 Y_{23} V_3 \sin(\delta_2 - \delta_3 - \theta_{23}) \\ \frac{\partial P_3}{\partial \delta_2} &= V_3 Y_{32} V_2 \sin(\delta_3 - \delta_2 - \theta_{32}) \end{split}$$

\Box $\underline{i} = 0$:

□ Jacobian, J2

$$\frac{\partial P_2}{\partial V_3} = V_2 Y_{23} \cos(\delta_2 - \delta_3 - \theta_{23})$$

$$\frac{\partial P_3}{\partial V_3} = 2 \cdot V_3 Y_{33} \cos(\theta_{33}) + Y_{31} V_1 \cos(\delta_3 - \delta_1 - \theta_{31}) + Y_{32} V_2 \cos(\delta_3 - \delta_2 - \theta_{32})$$

□ Jacobian, **J**3

$$\frac{\partial Q_3}{\partial \delta_2} = -V_3 Y_{32} V_2 \cos(\delta_3 - \delta_2 - \theta_{32})$$

$$\frac{\partial Q_3}{\partial \delta_3} = V_3 (Y_{31} V_1 \cos(\delta_3 - \delta_1 - \theta_{31}) + Y_{32} V_2 \cos(\delta_3 - \delta_2 - \theta_{32}))$$

 $\Box i = 0$:

■ Jacobian, J4

$$\frac{\partial Q_3}{\partial V_3} = V_3 Y_{33} \cos(\theta_{33}) + Y_{31} V_1 \cos(\delta_3 - \delta_1 - \theta_{31}) + Y_{32} V_2 \cos(\delta_3 - \delta_2 - \theta_{32})$$

 $lue{lue}$ Evaluating the Jacobian expressions using V and δ values from \mathbf{V}_0 and Y and θ values from \mathbf{Y}_0 , gives

$$\mathbf{J}_0 = \begin{bmatrix} 43.89 & -21.95 & -2.160 \\ -21.95 & 37.62 & 3.497 \\ 2.160 & -3.702 & 35.53 \end{bmatrix}$$

\Box $\underline{i} = 0$:

 \blacksquare Use Gaussian elimination to solve for $\Delta \mathbf{x}_0$

$$\Delta \mathbf{y}_0 = \mathbf{J}_0 \Delta \mathbf{x}_0 = \begin{bmatrix} 43.89 & -21.95 & -2.160 \\ -21.95 & 37.62 & 3.497 \\ 2.160 & -3.702 & 35.53 \end{bmatrix} \begin{bmatrix} \Delta x_{1,0} \\ \Delta x_{2,0} \\ \Delta x_{3,0} \end{bmatrix} = \begin{bmatrix} 1.784 \\ -4.897 \\ 0.045 \end{bmatrix}$$

$$\Delta \mathbf{x}_0 = \begin{bmatrix} -0.0345 \\ -0.1492 \\ -0.0122 \end{bmatrix}$$

Update the vector of unknowns, x

$$\mathbf{x}_1 = \mathbf{x}_0 + \Delta \mathbf{x}_0 = \begin{bmatrix} 0 \\ 0 \\ 1.0 \end{bmatrix} + \begin{bmatrix} -0.0345 \\ -0.1492 \\ -0.0122 \end{bmatrix} = \begin{bmatrix} -0.0345 \\ -0.1492 \\ 0.9878 \end{bmatrix}$$

122

Power-Flow Solution – Iterate

- \Box $\underline{i} = 0$:
 - Use power mismatch to check for convergence

$$\varepsilon_0 = \max \left| \frac{y_k - f_k(x)}{y_k} \right| = 0.9794$$

- \blacksquare Move on to the next iteration, i=1
 - \blacksquare Create V_1 using x_1 values
 - Calculate I₁
 - \blacksquare Calculate S_1 , P_1 , Q_1
 - \blacksquare Create $\mathbf{f}(\mathbf{x}_1)$ from \mathbf{P}_1 and \mathbf{Q}_1
 - Calculate Δy_1 , J_1 , Δx_1
 - \blacksquare Update \mathbf{x} to \mathbf{x}_2
 - Check for convergence
 - **...**

Power-Flow Solution

Convergence is achieved after four iterations

$$\mathbf{V}_4 = \begin{bmatrix} 1.0 \angle 0^{\circ} \\ 1.1 \angle -2.1^{\circ} \\ 0.97 \angle -8.8^{\circ} \end{bmatrix}, \qquad \mathbf{S}_4 = \begin{bmatrix} 3.08 - j0.82 \\ 2.0 + j2.67 \\ -5.0 - j1.0 \end{bmatrix}$$

$$\varepsilon_4 = 0.41 \times 10^{-6}$$

Example Problems

K. Webb **ESE 470**

For the power system shown, determine

- a) The type of each bus
- b) The first row of the admittance matrix, **Y**
- c) The vector of unknowns, **x**
- d) The vector of knowns, **y**
- e) The Jacobian matrix, **J**, in symbolic form

125 K. Webb ESE 470