4,40

(a)
$$\beta = \alpha$$
 $\Rightarrow I_{B_1} = 0$ $I_{B_2} = 0$
 $V_1 = V_5 = 0$
 $V_2 = 0.7V$ $V_3 = -0.7V$
 $I_{C_1} = I_{E_1} = \frac{10 - 0.7}{4.7K} = 1.48 \text{ mA}$
 $I_{C_2} = I_{E_2} = \frac{-0.7 - (-10V)}{4.7K / 4.7K} = 3.45 \text{ mA}$
 $V_4 = 10V - 4.7K \cdot I_{C_2} = 0.7V$

(b) B=100

①
$$10 - 4.7k(\beta+1) I_{B_1} - 0.7 - 47K \cdot I_{B_1} = 0$$

$$\Rightarrow I_{B_1} = 0.0178 \text{ mA} \qquad I_{C_1} = \beta I_{B_1} = 1.78 \text{ mA} \qquad I_{E_1} = 1.798 \text{ mA}$$

$$\Rightarrow I_{B_2} = 0.0178 \text{ mA} \qquad I_{C_2} = 1.52 \text{ mA} \qquad I_{E_2} = 1.535 \text{ mA}$$

$$\Rightarrow I_{B_2} = 0.0152 \text{ mA} \qquad I_{C_2} = 1.52 \text{ mA} \qquad I_{E_2} = 1.535 \text{ mA}$$

$$\Rightarrow V_3 = -10 + \frac{4.7k}{2} (I_{C_1} + (\beta+1)I_{B_2}) = -2.2V$$

$$V_2 = 10 - 4.7k I_{E_1} = 1.54V \qquad V_4 = 10 - 4.7k \cdot I_{C_2} = 2.88V$$

(a) using the exponential characteristic

$$i_C = I_C \cdot e^{V_{be}/V_T}$$

Thus

 $i_C = I_C - I_C = I_C \cdot e^{V_{be}/V_T} - I_C$
 $\Rightarrow \frac{i_C}{I_C} = e^{V_{be}/V_T} - I_C$

(b) Using small-signal approximation
$$i_c = g_m V_{be}$$

$$= \frac{I_c}{V_T} \cdot V_{be}$$

$$\Rightarrow \frac{\gamma_c}{I_c} = \frac{V_{be}}{V_T}$$

Vbe (mV)	ic/Ic exponential	sic/Ic small-signal Approx.	% error
+1	+0.041	+ 0.040	-2
-1	- 0.039	- 0.040	+2
+2	+0.083	+ 0.080	-4
-2	-0.077	_ 0.0 80	+4
+5	+ 0, 221	+ 0.200	-9.5
-7	- 6.181	-0,200	+ 10.3
+8	+ 0.377	+ 0.320	-15.2
- %	- 0,274	-0.32ê	+16.8
+10	+ 0,492	+0.400	-18.7
-10	- 0,330	-0,400	+21.3
+12	+ 0.616	+0.480	-22.
-12	- 638	-0.480	+25.0
	+1 -1 +2 -2 +5 -5 +8 -8 +10 -10 +12	Vbe (mV) exponential +1 $+0.041$ -1 -0.039 +2 $+0.083$ -2 -0.077 +5 $+0.221$ -5 -0.181 +8 $+0.377$ -8 -0.274 +10 $+0.492$ -10 -0.330 +12 $+0.616$	Vbe (mV) exponential small-signal Approx. +1

For signal of ±5mV, the error introduced by small signal approximation is 10%. The error increases to 20% for signal of ±10mV

1 Bias calculation (DC Analysis)

3

$$I_E = I = Im A$$

P hig value ⇒ Ic ≈IE = 1mA

$$g_{m} = \frac{Ic}{V_{T}} = \frac{ImA}{25mV} = \frac{40mA/V}{}$$

small-signal equivalent Circuit (2)

$$\frac{V_c}{V_i} = \frac{1 - g_m V_{be} \cdot 2KR}{-V_{be}} = g_m \cdot 2KR = 80 V/V$$

464

Bias calculation

Large $\beta \Rightarrow I_B \%0$ $I_C\%I_E$

$$V_E = V_B - 0.7V = 6.8V$$

$$\Rightarrow I_E = \frac{V_E}{RE} = \frac{6.8V}{6.8KR} = 1 \text{ mA} = I_C$$

@ Equivalent small- signal circuit (T-model)

since Vi=Vb, using voltage - divider rule, we have

$$V_{01} = \frac{R_E}{R_E + V_p} \cdot V_b = \frac{R_E}{R_E + V_e} \cdot V_i$$

Also
$$i'e = \frac{V_b}{V_{e} + R_E} = \frac{V_{i'}}{V_{e} + R_E}$$

$$V_{02} = - \lambda i e R_c = - \frac{\lambda R_c V_i}{V_e + R_E}$$

$$= > \frac{V_{02}}{V_{i}} = - \frac{\alpha R_{c}}{r_{e+R_{E}}}$$

For $r_e = \frac{V_T}{I_E} = 25 R$, $R_E = 6.8 KR$, $R_C = 4.3 KR$ and $R_C = 1$

We have
$$\frac{V_{01}}{V_{2}} = 0.996 \text{ V/V}$$
 $\frac{V_{02}}{V_{1}} = 0.63 \text{ V/V}$