SciDA: Scientific Dynamic Assessor of LLMs

Data Collection Workflow

Olympiads

University Textbooks

Private & **Original Problems**

Data Collection

Olympiads Award-Winning Students

Abandoned Data

Data Filtering

Problem Segmentation Team

Filter Criteria

Numerical Calculation Problem

Answer Determined by Variables

Sufficient Difficulty

Selected Data

For Further **Processing**

Data Annotation

Specialized Annotation Team

Annotation Process

Annotate variables:

Enclosing them within "\\$" symbols

Functionalize problems:

Covert them into python code

Disciplines

1. Mathmatics

2. Physics

- a. Mechanics b. Optics c. Astrophysics
- d. Electrodynamics e. Quantum Mechanics
- f. Thermodynamics and Statistical Physics

3.Chemistry

- a. Physical Chemistry b. Analytical Chemistry
- c. Inorganic chemistry d. Organic Chemistry

4. Biology

1. Variable parameters

 X_i range: (a_i, b_i)

The parameters are allowed to vary In certain range

Problem Paradigm

 $[\mathbf{x}]$

Answer: $Y = F(X_1, X_2, ..., X_I)$

2. Numerical Answer

The answer can be

b. calculated in numerical form

Dynamic Random Initialization

Source

1. Olympiads

2. University Textbooks

3. Private & Original Problems

Vision

Mitigate data contamination **Toward truthful** assessments

