The negative log-likelihood loss and cross-validation with censored data

Anders Munch

PhD Student, Section of Biostatistics University of Copenhagen

June 13, 2022

Outline

Problem setting: Model and hyperparamter selection for survival model

The least false model in the presence of censoring

Hold-out samples and survival model estimators

Selecting a model from a collection of candidate models

Let $\mathcal P$ denote a collection of probability measures on the sample space $\mathcal O$. Let $\mathcal V$ denote a parameter space and $L\colon \mathcal V\times \mathcal O\to \mathbb R_+$ a loss function. Consider

$$u(P) := \operatorname*{argmin}_{ ilde{
u} \in \mathcal{V}} P[L(ilde{
u}, \cdot)], \quad \text{where} \quad P[f] := \int_{\mathcal{O}} f(o) P(\mathrm{d}o).$$

We approximate P with the empirical measure $\hat{\mathbb{P}}_n$, as $\hat{\mathbb{P}}_n[L(\tilde{\nu},\cdot)] \approx P[L(\tilde{\nu},\cdot)]$.

Maximum likelihood estimator (MLE)

For $\mathcal V$ a collection of densities and $L(\nu,O):=-\log(\nu(O)),\ \nu(\hat{\mathbb P}_n)$ is the MLE.

Hyper-parameter selection

For estimation in high-dimensional settings we often introduce a regularization parameter ν (e.g., LASSO, kernel smoothing). Each choice of ν gives us an estimator, say \hat{f}_{ν} , and we select the optimal choice of ν using cross-validation,

$$\underset{\nu \in \mathcal{V}}{\operatorname{argmin}} \, \hat{\mathbb{P}}_n[L(\hat{f}_{\nu}, \cdot)], \quad \text{where} \quad \hat{\mathbb{P}}_n \perp \hat{f}_{\nu}.$$

Also useful for combining models [Breiman, 1996, van der Laan et al., 2007].

Survival data

 $O=(\tilde{\mathcal{T}},\Delta,X)\sim P\in\mathcal{P}$ Oberved data with $\mathcal{O}=\mathbb{R}_+ imes\{0,1\} imes\mathbb{R}^p$. $(\mathcal{T},X)\sim Q\in\mathcal{Q}$ The distribution Q (or a feature of it) is of interest.

Assuming coarsening at random [Gill et al., 1997] we can write

$$\mathcal{P} = \{ P_{Q,G} : Q \in \mathcal{Q}, G \in \mathcal{G} \},$$

where $\mathcal G$ denotes a collection of conditional distributions for the censoring mechanism. Assuming also non-informative censoring the likelihood factorises as $\ell(P_{\mathcal Q,\mathcal G},\mathcal O)=\ell_{\mathcal F}(\mathcal Q,\mathcal O)\cdot\ell_{\mathcal C}(\mathcal G,\mathcal O)$, with

$$\ell_F(Q, O) := q(\tilde{T} \mid X)^{\Delta} \bar{Q}(\tilde{T} \mid X)^{1-\Delta} m(X),$$

where q and \bar{Q} are the conditional density and survivor function, respectively, and m the marginal distribution of X.

Natural to use $-\log \ell_{\it F}$ as loss function, or only the first part

$$- \left\{ \Delta \log q(\tilde{T} \mid X) - (1 - \Delta) \log \bar{Q}(\tilde{T} \mid X) \right\}.$$

Kullback-Leibler divergence for factorizing likelihoods

Maximum likelihood estimation is closely connected to minimizing the Kullback-Leibler divergence,

$$D_{\mathrm{KL}}\big(P_1 \,||\, P_2\big) := P_1 \bigg[\log \frac{\rho_1}{\rho_2} \bigg], \quad \text{where} \quad P_1 = \rho_1 \cdot \mu, P_2 = \rho_2 \cdot \mu.$$

By Jensen's inequality $D_{\mathrm{KL}} \geq 0$ and equals 0 when $P_1 = P_2$. Under regulartity condtions, the limit of the MLE under the model $\mathcal{P}_* \subset \mathcal{P}$, when $O \sim P_0$, is the minimizer of

$$P \longmapsto D_{\mathrm{KL}}(P_0 \mid\mid P)$$
, with $P \in \mathcal{P}_*$.

If $P_0 \notin \mathcal{P}_*$ the minimizer is referred to as the *least false model*.

If the likelihood for the model $P_{\nu,\gamma}$ factorises with respect to the parameters ν and γ and we do MLE for the partial likelihood for ν , when $O \sim P_{\nu_0,\gamma_0}$, the limit is the minimizer of

$$u \longmapsto D_{\mathrm{KL}}(P_{\nu_{\mathbf{0}},\gamma_{\mathbf{0}}} || P_{\nu,\gamma_{\mathbf{0}}}), \quad \text{with} \quad \nu \in \mathcal{V}.$$

For any value $\gamma \in \Gamma$ we have that $D_{\mathrm{KL}}(P_{\nu_0,\gamma} || P_{\nu_0,\gamma}) = 0$, so ν_0 is optimal for any γ . However, if $\nu_0 \notin \mathcal{V}$ the minimizer might depend on the value of γ .

Least false model depends on the censoring distribution

A special case of this is the survival setting. Consider the simple case with no covariates so and loss function is $-\log\ell_F$.

Ranking models according to their average loss with respect to this loss function is equivalent to ranking them according to $D_{\mathrm{KL}}(P_{Q_0,G} \mid\mid P_{Q,G})$ when $O \sim P_{Q_0,G}$.

Let $Q_0,Q\in\mathcal{Q}$ with $Q_0\neq Q$ and $G\in\mathcal{G}$ be given. Then (under regularity conditions) we can find $\tilde{Q}\in\mathcal{Q}$ and $\tilde{G}\in\mathcal{G}$ such that

$$D_{\mathrm{KL}}(P_{Q_{\mathbf{0}},G} \mid\mid P_{Q,G}) < D_{\mathrm{KL}}(P_{Q_{\mathbf{0}},G} \mid\mid P_{\tilde{Q},G}),$$

and

$$D_{\mathrm{KL}}(P_{Q_{\mathbf{0}},\tilde{G}} \mid\mid P_{Q,\tilde{G}}) > D_{\mathrm{KL}}(P_{Q_{\mathbf{0}},\tilde{G}} \mid\mid P_{\tilde{Q},\tilde{G}}).$$

Proof.

Construct \tilde{Q} such that it performs better than Q_1 on [0,t] but worse on (t,∞) . Construct \tilde{G} such that observations on (t,∞) are less likely than under G. \square

A simple example

Consider four candidate models indexed by α ,

$$Q_{\alpha} = \text{Exp}(\alpha)$$
, with $\alpha \in \{1.3, 1.5, 1.8, 2\}$,

and let

$$Q_0 = \mathsf{Weibull}(2,0.5), \quad \mathsf{and} \quad \mathit{G}_\gamma = \mathsf{Weibull}(2,\gamma).$$

A simple example

Consider four candidate models indexed by α ,

$$Q_{\alpha} = \text{Exp}(\alpha)$$
, with $\alpha \in \{1.3, 1.5, 1.8, 2\}$,

and let

$$Q_0 = \mathsf{Weibull}(2,0.5), \quad \mathsf{and} \quad G_\gamma = \mathsf{Weibull}(2,\gamma).$$

A simple example

Consider four candidate models indexed by α ,

$$Q_{\alpha} = \text{Exp}(\alpha)$$
, with $\alpha \in \{1.3, 1.5, 1.8, 2\}$,

and let

$$Q_0 = \mathsf{Weibull}(2,0.5), \quad \mathsf{and} \quad \mathit{G}_\gamma = \mathsf{Weibull}(2,\gamma).$$

Breaker

Survival curve estimators evaluated on hold-out samples

[sort of: ignores this and proceeding anyway...]

Modeling the censoring

An (infinite?) loop

References

- L. Breiman. Stacked regressions. Machine learning, 24(1):49-64, 1996.
- R. D. Gill, M. J. Laan, and J. M. Robins. Coarsening at random: Characterizations, conjectures, counter-examples. In *Proceedings of the First Seattle Symposium in Biostatistics*, pages 255–294. Springer, 1997.
- M. J. van der Laan, E. C. Polley, and A. E. Hubbard. Super learner. Statistical applications in genetics and molecular biology, 6(1), 2007.