(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 4 January 2001 (04.01.2001)

PCT

(10) International Publication Number WO 01/00333 A1

(51) International Patent Classification7:

- - -

(21) International Application Number: PCT/BE00/00068

(22) International Filing Date:

21 June 2000 (21.06.2000)

(25) Filing Language:

English

B07C 5/342

(26) Publication Language:

English

(30) Priority Data: 9900446

28 June 1999 (28.06.1999) BI

- (71) Applicant (for all designated States except US):
 BARCO ELBICON, NAAMLOZE VENNOOTSCHAP
 [BE/BE]; Industrieterrein Nieuwland, B-3200 Aarschot
 (BE).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): CALCOEN, Johan [BE/BE]; Bunsingstraat 14, B-3012 Leuven (BE). CUYPERS, Jan [BE/BE]; Square Vergote 36, B-1030 Brussel (BE). DEBAES, Nathalie [BE/BE]; Tiensestraat

2, B-3200 Aarschot (BE). JANSSENS, Carlo [BE/BE]; Lakeman 47, B-1840 Londerzeel (BE).

- (74) Agent: DONNE, Eddy; Bureau M.F.J. Bockstael nv., Arenbergstraat 13, B-2000 Antwerpen (BE).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

With international search report.

[Continued on next page]

(54) Title: METHOD AND DEVICE FOR SORTING PRODUCTS

(57) Abstract: Method for sorting products, characterised in that it at least consists in conveying the products (1-2) to be sorted in the shape of a product stream (4), extending in the width (B), over a specific path (3); in scanning the products (1-2) to be sorted over the width (B) of said product stream (4), by casting light (6) onto the products (1-2) on the one hand, at least in a specific spectrum which is selected such that certain products (1) of the products to be selected will emit light (7), and by observing this light (7) in a specific range of the spectrum in which the emitted light (7) is cast on the other hand; in making a selection between the scanned products (1-2) as a function of the observed light (7); and in automatically separating the products (1-2) from the above-mentioned product stream (4) as a function of said selection.

WO 01/00333 A1

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

MEDICID- MAD DIDDARRE 1 -

Method and device for sorting products.

The present invention concerns a method and a device for sorting products.

It is meant in particular for removing certain products 10 from a product stream.

In particular, it aims a method and a device which is very suitable to be applied in the food industry, for example for sorting out non-food products from certain foods, in particular leaves, branches and pieces of waste such as wood, plastic, stones, etc.

However, the products to be sorted can also be foods of different quality, whereby a quality selection is made by means of the sorting. The method can also be used to separate good and bad products.

It is known from the international patent application WO 96/00621 to illuminate the products to be sorted with a light beam and to subsequently carry out a selection on the basis of the light which is collected by means of reflection, fluorescence or such. The collected light is treated in a spectroscopic analysis device which delivers an output signal for the selection as a function of the analysis. As use is made of a spectral analysis, whereby the entire spectrum has to be analysed every time, this system is very expensive since it requires a spectroscopic analysis device.

A method is known from the international patent application WO 97/42489 to determine the ripeness of seeds by means of the fluorescence of the chlorophyll in the seeds, after they have been illuminated. The described method makes it possible to shine light through the seeds one after the other, but it does not offer a practical embodiment for the treatment of large amounts at once. Moreover, the described method only leads to a selection among seeds, but it does not go in the direction of selecting strange products from foodstuff or such.

A method for sorting particles is known from the patent application GB 2.292.455, whereby the particles to be sorted are irradiated with a laser and the obtained 'Raman scattering' is used as a sorting criterion. As exposed in GB 2.292.455, normal Raman scattering is disadvantageous in that the signal obtained by means of 'scattering' is disturbed too much by the 'emission' obtained by means of fluorescence, and thus becomes difficult to detect. That is why it is suggested in GB 2.292.455 to make use of a stimulated Raman signal. However, this technique is in turn disadvantageous in that a high energy supply is necessary, requiring expensive equipment.

In general, the invention aims a method and a device which make it possible to carry out a very efficient and reliable selection in a large product stream, such that the sorting can be applied at an industrial level for the treatment of large quantities of products.

30

15

20

In particular, according to a number of preferred embodiments, it aims a method and a device whereby the use of expensive spectrographical analysis equipment is excluded, and whereby large quantities can be treated.

HEDOCID: AND

010033381 1 -

To this aim, the invention in the first place concerns a method for sorting products, characterised in that it at least consists in conveying the products to be sorted in the shape of a product stream, extending in the width, over a specific path; in scanning the products to be sorted over the width of said product stream, by casting light onto the products on the one hand, at least in a specific spectrum which is selected such that certain products of products to be selected will emit light, and by observing this light in a specific range of the spectrum in which the emitted light is cast on the other hand; in making a selection between the scanned products as a function of the in automatically separating the and observed light; products from the above-mentioned product stream as a function of said selection.

By making use of a wide product stream which is scanned over the width on the one hand, and by making use of emitted light on the other hand, it is possible to make a particularly fast and efficient selection with great certainty and with a minimum of faults, such as opposed to for example the above-mentioned known systems, as well as the systems which are available on the market, whereby the selection is exclusively made on the basis of reflected light, in particular by means of colour recognition.

By making use of a spontaneous `emission', by which is mainly implied 'fluorescence' as will be further explained, the effect which is felt as being disadvantageous according an . essential used as will be 2.292.455, to GB characteristic according to the invention to carry out the selection. This effect is particularly useful when sorting specific foods, whereby Raman scattering does not offer an efficient solution.

30

25

Preferably, in order to observe the light which is emitted by the products concerned, use is made of an optical filtering, in particular by means of an optically adjusted filter, for example a band-pass filter. This allows for an almost instant evaluation and selection of the scanned products, as opposed to the relatively complicated and expensive spectral analysis which is applied in the method described in WO 96/00621.

The selection is preferably made on the basis of a certain intensity value of the emitted light or of a signal corresponding to it being either exceeded or just not exceeded. As use is made of the emission in a specific spectrum, there is a very clear distinction between signals which are related to a light-emitting product and signal which are related to a non-light-emitting product, which makes it possible to make a very efficient distinction by simply verifying whether the signals either or not exceed a certain value.

20

25

30

In particular, the light is preferably cast from such a part of the spectrum that light is emitted by the products concerned in another part of the spectrum. This makes it easy to make a distinction between the emitted light and possibly directly reflected light by means of an optical band-pass filter or such.

According to the most practical embodiment according to the invention, use is made of the fluorescence qualities for the emission, in particular the fact that the scanned products either or not fluoresce.

More in particular, the method will be used for sorting chlorophyll-containing foods, in particular for the selection of strange products from foods.

The invention is particularly useful for separating waste from for example peas, especially for separating strange products therefrom such as stones, pieces of wood, plastic and such.

In the case where the method is applied for separating waste from products containing chlorophyll, such as for example peas, light is preferably emitted during the scanning having a wavelength in the order of magnitude of 640 to 680 nanometer, whereas other light is preferably excluded. Thus is obtained that only the foods containing chlorophyll, in this case the peas, start to emit light in the spectrum to be observed as a result of fluorescence. This wavelength selection can also be used for other foods containing chlorophyll, such as beans, lettuce, sprouts, etc.

In order to observe the emitted light, observations are preferably exclusively made in the wavelength range of 690 to 740 nanometer, preferably by means of optical filtering, and in particular in a range which has a value in the order of magnitude of some 715 nanometer. In this range, the emission can be optimally observed.

25

30

35

According to another application of the invention, use is made for the emission of the light-emitting quality of certain organisms such as bacteria, fungi and such, which can be found on certain products, whereby a selection is made between the products on the basis of said emission.

A practical application thereof according to the invention consists in sorting foods which are affected by fungi from non-affected foods, in particular in sorting nuts or figs which are affected by aflatoxins. Preferably, there will

be an excitation with deep blue UV light (340 to 400 nm). The observed emitted light will then be green. Preferably, measurements will only be carried out in the wavelength range of 440 to 550 nm in this case.

5

According to a major variant of the invention, use is made of a background which will emit light when it is being illuminated, in particular which will fluoresce, such that the light being cast will also produce an emission effect in those places where it is not cast on a product. This offers the advantage that it becomes possible to make a simple selection between light-emitting and non-light-emitting products without any special measures being required to prevent that those places where there is no product and which are observed during the scanning are regarded as places where strange products to be removed are found.

Use is preferably made here of an emitting background of a surface extending in the width of the product stream which is spherical on the side where the light is cast upon. The spherical shape promotes a very precise emission.

Practically, the above-mentioned background will consist of a cylindrical roller.

According to a special embodiment, instead of using a background which emits light after light has thus been cast upon it, use can also be made of a background which constantly emits light, preferably of a wavelength which is ideal in relation to the selection to be made.

As for the emitting background, a background is preferably provided which emits light having a wavelength of the same

order of magnitude as the light which is emitted by the products to be treated.

In order to be able to obtain high emission values with a minimum of energy, and consequently to be able to make observations with great certainty, the scanning according to the invention is preferably carried out by means of a laser, in particular by making a laser beam move diagonally over the product stream in a systematic manner.

10

According to a very advantageous embodiment, a scanning system with a moving mirror, preferably a rotating polygon mirror or another optical element is used, and the emitted light is returned via the same mirror or the same optical element.

Instead of making use of a laser, the scanning can also take place in another way, for example by means of a fixed light band or a series of light points, directed onto the products which pass by over the width of the product stream, whereby at least the emitted light is observed by means of a camera, and whereby the selection is made on the basis of the evaluation of camera images.

25 In order to make the products move in the shape of a product stream with a certain width along the place where they are scanned, use can be made of different techniques. A practical technique consists in bringing the products in a single plane on the place where they are to be scanned, via a table, belt or such, either or not provided with longitudinal ducts or grooves.

Further, the products preferably fall down freely and the products to be separated are moved apart by means of nozzles which are erected over the width of the product

5

10

15

20

25

30

35

stream and which are individually activated as a function of the observations made, whereby for example the products to be removed from the global product stream are blown away and are collected in a recipient.

In order to further optimise the method, the products to be sorted can be scanned from two sides, situated opposite to the product stream. This makes it possible to make a right selection with more certainty, which is particularly important when there is a possibility that products show different qualities on the front and on the back side.

It should be noted that the method of the invention can possibly be combined with another scanning process, for example with a colour sorting by means of the reflected light. In the latter case, different laser beams can be used, namely at least one laser beam to realise the abovementioned emission in a different spectrum, and at least one laser beam for sorting for example on the basis of the normal light reflection. Practically, the different laser beams can then be simultaneously guided along the same light path according to the invention, possibly slightly shifted in relation to one another. As a result, only one polygon mirror or another optical element will be required to move the laser beams over the product stream.

Apart from the above-mentioned method, the invention also concerns a device for sorting products according to the method, characterised in that it at least consists of the combination of means for conveying the products to be sorted in the shape of a product stream extending in the width over a certain path; means for scanning the products to be sorted over the width of said product stream, consisting of means to cast light on the products on the one hand, at least in a specific spectrum which is selected

such that specific products to be sorted will emit light, and of means to observe this light in a specific range of the spectrum in which the cast light is emitted, on the other hand; means to make a selection between the scanned products as a function of the observed light; and means to automatically separate the products from the abovementioned product stream as a function of said selection.

In order to better explain the characteristics of the invention, the following preferred embodiments are described as an example only without being limitative in any way, with reference to the accompanying drawings, in which:

15 figure 1 schematically illustrates the method according to the invention;

figure 2 represents an example of a signal which is obtained during the scanning of the products concerned;

20 figure 3 represents a device according to the invention in perspective;

figure 4 schematically represents the device of figure 3:

figure 5 represents a section according to line V-V in figure 4;

figure 6 schematically represents a section according to line VI-VI in figure 5;

figure 7 schematically represents a variant of a device according to the invention.

30

25

10

Figure 1 schematically represents how the products 1-2 to be sorted are conveyed over a certain path 3 in the shape of a product stream 4 which extends in the width, in particular a certain width B. The products 1-2 are hereby schematically represented as good products 1, for example

peas or other products containing chlorophyll, and the products 2 to be removed, for example strange elements such as stones, pieces of wood and plastic.

According to the invention, the product stream 4 is scanned by casting light 6 on the products 1-2 with the help of appropriate means 5 on the one hand, at least in a specific spectrum which is selected such that specific products to be sorted, in this case the products 1, emit light 7, whereas the other products 2 don't, and by observing the light 7 with the help of appropriate means 8 in a specific range of the spectrum in which the emitted light 7 is emitted on the other hand.

The means 5 hereby consist of a light source 9, preferably a laser which emits the light 6 in the shape of a ray of light, namely a laser beam 10, as well as means to systematically turn the laser beam 10 over an angle A which are not represented here, such that the product stream is scanned over the width B, in particular on the place of the line part L.

The means 8 consist of an optical filter 11 on the one hand which mainly exclusively lets the light 7 through from the spectrum range in which the emission takes place, and of a detection device 12 to observe said light 7 on the other hand.

Further, figure 1 schematically represents means 13, such as an electronic processing unit, to make a selection between the scanned products 1-2 as a function of the observed light 7, also as a function of the place on the line part L where said light 7 came from.

In order to automatically separate the products 1 and 2, means 14 are provided which in this case consist of nozzles 15 which can be individually activated and which are controlled by means of a valve unit 16 which is not further described here, as a function of the signals 17 coming from the above-mentioned processing unit. The means 14 also comprise a partition 18.

It is clear that the necessary means are further provided to separate the cast light 6 and the emitted light 7 in an appropriate manner, for example by means of a semitransparent mirror 19, as is schematically represented.

Finally, another element 20 is represented in figure 1 having a surface 21 which forms an emitting background. As explained in the introduction, it preferably consists of a cylindrical roller.

The method according to the invention consists in that
light 6 is cast having at least such a wavelength that one
of either products 1-2, when it is irradiated by the light
6, spontaneously starts to cast or emit light at another
wavelength than that of the light 6 with which it is
irradiated.

25

In the case where the products 1 consist of peas or other products containing chlorophyll, in particular foods, light 6 from the spectrum of 690 to 740 nanometer will be cast.

As a result thereof is obtained that when the laser beam 10 hits a product 1, in particular a pea, light 7 is emitted. The same occurs when the laser beam 10 hits no product 1 or 2 whatsoever, whereby in this case light having practically the same wavelength is emitted due to the fluorescence of the surface 21.

If, however, the laser beam 10 hits a product 2, such as a stone or such, there will be no fluorescence, and hence no light 7 will be emitted.

5

By moving the laser beam 10 at a sufficiently high speed over the width B, for example at 12,000 cycles per minute, all products 1-2, which fall down freely in the given example, can be scanned without any problems.

10

As a result, light 7 is observed which, after being transformed, results in an electric signal E, such as represented for example in the diagram of figure 2, whereby this signal is measured out as a function of the abovementioned width B. The parts 22 of the signal progress are hereby the result of the emission occurring with a product 1, in particular a pea, whereas the parts 23 are the result of the emission at the surface 21. The parts 24 indicate that products 2 are present which cause no emission.

20

25

30

15

Subsequently, in the means 13 forming the processing unit, an automatic selection is carried out to detect the places where the products 2 pass, on the basis of the abovementioned signal progress. As explained in the introduction, this is preferably done on the basis of a certain value of the above-mentioned signal being either or not exceeded, in particular by checking when the signal goes beneath a certain limit value W in the case of figure 2. It is clear that, each time the signal goes beneath said value W, this means that a product 2 is being observed.

In order to efficiently remove the products 2, one or several nozzles 15 are activated, on the place where the product 2 is found, so that each such product 2 is blown

out of the product stream 4, in particular behind the partition 18. As they are blown away, it may happen that a number of products 1 are also removed from the product stream 4, but since the quantity of products 2 usually is very small in relation to the quantity of products 1, also the good products 1 which are blown out of the product stream 4 will be limited in number.

Figures 3 to 6 hereafter represent a possible practical construction of a device 25 for realising the abovementioned method in further detail.

Figure 3 shows the device 25 as a whole. This device 25 is equipped with two optical units 26 and 27 which, as is schematically represented in figures 4 and 5, make it possible for the products 1-2 to be scanned on either side. Every unit 26, 27 respectively, has a construction as is schematically represented in figure 1, as well as in figure 6 which will be described hereafter.

20

25

15

In order to carry the products 1-2 in the shape of a product stream 4 with a certain width but with a small thickness past the place where they are scanned, a device 25 is equipped with means 28 in the shape of a vibrating table 29, from where the products 1-2 are vibrated downward over the edge 30 of this vibrating table 29. Via a sliding surface 31 they are guided into a zone 32, where they fall down freely and where they are also scanned, as mentioned above.

30

The products 1 which have been let through are guided further via a discharge chute 33, whereas the removed products 2 are collected in a recipient 34 or such.

10

15

20

25

30

It is clear that, according to a variant, instead of a vibrating table 29, use can also be made of a conveyor belt or such. Also longitudinal ducts or grooves can be provided in the vibrating table to obtain different parallel rows of products 1-2 falling down, whereby for example each row passes exactly one nozzle 15.

Figure 6 further schematically represents how the cast light 6 and the emitted light 7 which is caught again by means of a moving mirror 35, in particular a rotating polygon mirror, can be moved over the width B of the product stream 4.

Figure 7 represents a part of a special embodiment of a device 25 according to the invention. The means for conveying the products 1-2 to be sorted in the shape of a product stream 4 over a certain path hereby mainly consist of a drum 36 which is provided with inlets 37 on its surface against which the products 1-2 are sucked, by creating a vacuum in an appropriate manner. The means for automatically making a separation as a function of the selection in this case consist of means which are not represented, in particular valves or such, which make it possible to selectively control the inlets 37 concerned, in particular to close or to open them.

The working is then mainly as follows: the product stream 4 is for example brought into contact with the surface of the drum 36 via a feed chute 38. Thanks to the suction force on the inlets 37, products 1-2 are sucked onto the surface of the drum 36, as a result of which the product stream 4 so to say continues on the surface of this drum 36.

Then, the products 1-2 are scanned by means of an optical unit 39, analogous to that of the preceding embodiment.

10

15

20

25

30

The surface of the drum 36 may hereby either or not consist of a light-emitting material, with the same purpose as the surface 21 of the above-mentioned element 20.

By providing two ducts 40 and 41 for the separate discharge of the products 1-2 and by interrupting the sucking action on the respective inlets 37 as a function of the data obtained by means of the scanning, it is possible to carry out a separation. Above the duct 41, the inlets 37 holding products 2 are closed, such that the sucking action is interrupted and that these products 2 fall in the duct 41. Above the duct 40, the suction action of all inlets 37 is interrupted, such that all the products 1 there come loose of the drum 36.

It should be noted that, as opposed to what is schematically represented in figures 1 and 4 to 7, the width B is in reality a considerable number of times the diameter of the product 1-2. In reality, this width will usually be in the order of magnitude of 0.3 to 1 meter, but of course it can also deviate therefrom. Further, the product stream 4 in reality consists of a quantity of products 1-2 spread out over almost the entire surface of the path 3.

The invention is by no means limited to the above-described embodiments represented in the accompanying drawings; on the contrary, such a method and device can be made in all sorts of variants while still remaining within the scope of the invention.

Claims_

1. Method for sorting products, characterised in that it at least consists in conveying the products (1-2) to be sorted in the shape of a product stream (4) extending in the width (B) over a specific path (3); in scanning the products (1-2) to be sorted over the width (B) of said product stream (4) by casting light (6) onto the products (1-2) on the one hand, at least in a specific spectrum which is selected of the products to be such that certain products (1) selected will emit light (7), and by observing this light (7) in a specific range of the spectrum in which the emitted light (7) is cast on the other hand; in making a 15 selection between the scanned products (1-2) as a function of the observed light (7); and in automatically separating the products (1-2) from the above-mentioned product stream (4) as a function of said selection.

20

25

30

- 2. Method according to claim 1, characterised in that in order to observe the light (7) which is emitted by the products (1) concerned, use is made of an optical filtering, in particular by means of an optically adjusted filter (11).
- 3. Method according to claim 1 or 2, characterised in that the selection is made on the basis of a certain intensity value (W) of the emitted light (7) or of a signal (E) corresponding to it being exceeded.
- 4. Method according to any of the preceding claims, characterised in that light (6) is cast from such a part of the spectrum that light (7) from another part of the spectrum will be emitted at the products concerned.

- 5. Method according to claim 4, characterised in that use is made of the fluorescence qualities for the emission, in particular the fact that the scanned products (1-2) either or not fluoresce.
- 6. Method according to any of the preceding claims, characterised in that it is used for sorting chlorophyll-containing foods, in particular for the selection of non-food products (2) from the foods.
- 7. Method according to claim 6, characterised in that it is used for selecting waste from peas.
- 15 8. Method according to any of the preceding claims, characterised in that light (6) is preferably emitted during the scanning having a wavelength in the order of magnitude of 640 to 680 nanometer.
- 9. Method according to any of the preceding claims, characterised in that when the emitted light (7) is observed, this is done in the spectrum range of 690 to 740 nanometer, in particular in a range which has a value in the order of magnitude of some 715 nanometer.
 - 10. Method according to any of claims 1 to 4, characterised in that, for the emission of the light (7) by the products (1), use is made of the light-emitting quality of certain organisms such as bacteria, fungi and such, whereby a selection is made among the products (1-2) on the basis of said emission.
 - 11. Method according to claim 10, characterised in that it is used for sorting foods which are affected by fungi from

10

15

WICHOUGH -WICH

010033341 I >

non-affected foods, in particular for sorting nuts which are affected by aflatoxins.

12. Method according to any of the preceding claims, characterised in that use is made of a background which will emit light when it is being illuminated, in particular which will fluoresce, such that the cast light (6) will also produce an emission effect in those places where it is not cast on a product (1-2).

13. Method according to claim 12, characterised in that, for the emitting background, use is made of a surface (21) extending in the width of the product stream (4) which is spherical on the side where the light (6) is cast upon.

- 14. Method according to claim 13, characterised in that the background consists of an element (20) in the shape of a cylindrical roller.
- 20 15. Method according to any of claims 1 to 11, characterised in that use is made of a background which constantly emits light.
- 16. Method according to any of claims 12 to 14, characterised in that an emitting background is provided for which emits light having a wavelength of the same order of magnitude as the light (7) which is emitted by the products (1) to be treated.
- 30 17. Method according to any of the preceding claims, characterised in that the scanning takes place by means of a laser.
- 18. Method according to claim 17, characterised in that the scanning is carried out by making a laser beam (10) move

diagonally over the product stream (4) in a systematic manner.

- 19. Method according to claim 18, characterised in that use is made of a scanning system with a moving mirror (35), preferably a rotating polygon mirror, and in that the emitted light (7) is returned via the same mirror (35).
- 20. Method according to any of claims 1 to 17, characterised in that the scanning takes place by means of a fixed light band or a series of light points directed onto the products (1-2) which pass by over the width of the product stream (4), whereby at least the emitted light (7) is observed by means of a camera.
 - 21. Method according to any of the preceding claims, characterised in that the products (1-2) are brought in a single plane on the place where they are to be scanned, via a table, in particular a vibrating table (29), belt or such, either or not provided with longitudinal ducts or grooves.
 - 22. Method according to any of the preceding claims, characterised in that the products (1-2) fall down freely and in that the products (1-2) to be separated are moved apart by means of nozzles (15) which are erected over the width (B) of the product stream and which are activated individually or in groups as a function of the observations made.
 - 23. Method according to any of the preceding claims, characterised in that the products (1-2) to be sorted are scanned from two sides, situated opposite to the product stream (4).

30

15

PCT/BE00/00068

24. Method according to any of the preceding claims, characterised in that it is combined with a colour sorting whereby the sorting is done on the basis of light reflection.

5

WO 01/00333

25. Method according to claim 24, characterised in that different laser beams are used and in that the different laser beams are simultaneously guided along the same light path, possibly slightly shifted in relation to one another.

10

15

20

- 26. Device for sorting products according to the method of any of the preceding claims, characterised in that it at least consists of the combination of means (28) conveying the products (1-2) to be sorted in the shape of a product stream (4) extending in the width (B) over a certain path (3); means for scanning the products (1-2) to be sorted over the width (B) of said product stream (4), consisting of means (5) to cast light (6) on the products (1-2) on the one hand, at least in a specific spectrum which is selected such that specific products (1) to be sorted will emit light (7), and of means (8) to observe this light in a specific range of the spectrum in which the emitted light (7) is cast on the other hand; means (13) to make a selection between the scanned products (1-2) as a function of the observed light (7); and means (14) to automatically separate the products (1-2) from the abovementioned product stream (4) as a function of selection.
- 30 27. Device according to claim 26, characterised in that the means (5) for casting light (6) on the products (1-2) consist of a laser generating a laser beam (10), as well as optical means which make this laser beam (10) move in the width over the product stream (4).

- 28. Device according to claim 26 or 27, characterised in that the means (8) for observing light (7) in the spectrum in which the emitted light (7) is cast, consist of optical means which collect the emitted light (7) and guide it to the means (13) for carrying out the selection, whereby these optical means at least comprise an optically adjusted filter (11).
- 29. Device according to any of claims 26 to 28, characterised in that the means (28) for conveying the products (1-2) to be sorted in the shape of a product stream (4) extending in the width (B) over a certain path (3)mainly consist of a vibrating table (29) upon which the products (1-2) are placed and are subsequently vibrated away over the edge (30) thereof.
- 30. Device according to any of claims 26 to 29, characterised in that the means (14) for automatically separating the products (1-2) from the above-mentioned product stream (4) as a function of the selection consist of a series of nozzles (15) which are activated as a function of the selection made and the separation to be realised.
- 25 31. Device according to any of claims 26 to 28, characterised in that the means (28) for conveying the products (1-2) to be sorted in the shape of a product stream (4) extending in the width (B) over a certain path (3) mainly consist of a drum (36) which is provided with inlets (37) on its surface against which the products (1-2) are sucked, and in that the means for automatically making a separation as a function of the selection consist of means which make it possible to selectively control the inlets (37) concerned.

- 32. Device according to any of claims 26 to 31, characterised in that the means for scanning the products (1-2) to be sorted over the width (B) of the product stream (4) contain one or several elements (20) forming a lightemitting background.
 - 33. Device according to claim 32, characterised in that the above-mentioned elements (20) consist of a cylindrical roller with a fluorescent surface (21).

PICDOCID: 1910 0100333¥1 1

Fig.3

NECOCIO: -NO 010033341 1 -

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 B07C5/342

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 B07C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ, WPI Data

Category *	Creation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	GB 2 292 455 A (DE BEERS IND DIAMOND) 21 February 1996 (1996-02-21)	1-4,17, 26,28,30
Y	cited in the application the whole document	5-9
Y	WO 97 42489 A (CPRO DLO ;JALINK HENDRIK (NL)) 13 November 1997 (1997-11-13)	5-9
	cited in the application page 7, line 29 -page 8, line 28; claims; figures	
A	US 4 866 283 A (HILL JR RALPH H) 12 September 1989 (1989-09-12)	1,2,4,5, 10,11, 22,26,28
	the whole document	*
	-/	
	*	

Y Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: A* document defining the general state of the art which is not considered to be of particular relevance.	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
which is cited to establish the publication date of another citation or other special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or other means	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
P document published prior to the international filing date but later than the priority date claimed	"&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
4 October 2000	11/10/2000
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Gélébart, Y

		101788 00	
C.(Continua	ntion) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to daim No.
Α	PATENT ABSTRACTS OF JAPAN vol. 010, no. 111 (P-451), 25 April 1986 (1986-04-25) & JP 60 242324 A (NOMURA SANGYO KK), 2 December 1985 (1985-12-02) abstract		15,16,32
A	US 5 848 706 A (HARRIS ROBERT JOHN) 15 December 1998 (1998-12-15) column 1, line 8 - line 36		12-16, 32,33
A	EP 0 345 949 A (GERSAN ETS) 13 December 1989 (1989-12-13)		
A	WO 96 00621 A (INST CHEMO UND BIOSENSORIK MUE ;HUTH FEHRE THOMAS (DE); FELDHOFF R) 11 January 1996 (1996-01-11) cited in the application		
l			
	·		

INTERNATIONAL SEARCH REPORT

on patent family members

Intern lication No PCT/BE 00/00068

Ť
•
•
•
,
٠

Patent document cited in search report		Publication date		atent family nember(s)	Publication date
EP 0345949	A		GB GB GB GB GB JP JP JP	2219078 A,B 2219079 A,B 2219080 A,B 2219081 A,B 2219082 A,B 2251305 A,B 2251306 A,B 2085749 A 2071144 A 2071136 A 2098656 A	29-11-1989 29-11-1989 29-11-1989 29-11-1989 29-11-1989 01-07-1992 01-07-1992 27-03-1990 09-03-1990 11-04-1990
WO 9600621	Α	11-01-1996	DE EP	9421343 U 0767709 A	07-09-1995 16-04-1997