w203_lab2_q4_SH Shan He 10/19/2017

4e

1. Create a function that draws n of X_i , Y_i , and D_i

```
set.seed(15) #set seed for reproducible results

f <- function(n) {
    X <- runif(n,-1,1)
    Y <- runif(n,-1,1)
    D = 0

    for (i in c(1:n)){
        D[i] = ifelse( (X[i])^2 + (Y[i])^2 < 1, 1, 0)
    }

    return(D)
}</pre>
```

2. Draw D_i 's for 100 X_i and Y_i

```
D_{100} = f(100)
```

3. Compute \overline{D}

```
#sample mean
mean(D_100)
```

```
## [1] 0.78
```

The mean of Di's from a sample of 100 X_i 's and Y_i 's is 0.78, which is close to the $E(D_i)$, $\frac{\pi}{4}$ or 0.79 as calculated in part a.

4f

1. Replicate Experiments and Plot Sample Means

```
draws <- replicate(10000, mean(f(100)))
hist(draws, breaks = 50, xlab = "Sample Mean", main = "Histogram of Sample Means")</pre>
```

Histogram of Sample Means

4g

Standard Deviation of Sample Means, or Standard Error of \overline{D}

sd(draws)

[1] 0.04111142

With n=100, from part c, we'd expect the standard error to be 0.041 which is very close to what we have here.

4h

Compute Fraction of \overline{D} that are larger than $\frac{3}{4}$

sum(draws > 3/4)/10000

[1] 0.7803

The value calculated from part d is 0.806, which is close to the simulated result