This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: / / 102 29 249.3

Anmeldetag: 28. Juni 2002

Anmelder/Inhaber: Carl Zeiss Semiconductor Manufacturing

Technologies AG, Oberkochen/DE

Bezeichnung: Refraktives Projektionsobjektiv mit einer Taille

Priorität: 01. März 2002 US 60/360845

13. Mai 2002 DE 102 21 243.0

IPC: G 02 B und G 03 F

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 4. Juli 2003

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Fausi

Zusammenfassung:

Fig. 2

Refraktives Projektionsobjektiv für die Mikrolithographie mit einer Linsenanordnung bei dem alle Linsen aus einem Material bestehen und das eine bildseitige numerische Apertur (NA) von größer 0,7 aufweist, wobei das die Linsenanordnung (21) transmittierende Lichtbündel (23) im Bereich vor einer in der Linsenanordnung (21) angeordneten Systemblende (19) auf der Länge gleich dem größten Lichtbündeldurchmesser (25) oder des maximalen Linsendurmessers in der Linsenanordnung (21) größer als 85 % des größten Lichtbündeldurchmessers (25) oder des maximalen Linsendurchmessers ist.

Beschreibung:

Refraktives Projektionsobjektiv mit einer Taille

Die Erfindung betrifft eine Projektionsbelichtungsanlage mit einem refraktiven Projektionsobjektiv, ein refraktives Projektionsobjektiv selbst sowie ein Verfahren zur Herstellung mikrostrukturierter Bauteile bei dem eine Projektionsbelichtungsanlage mit einem refraktiven Projektionsobjektiv verwendet wird. Bei diesem refraktiven Projektionsobjektiv bestehen alle Linsen aus einem Material, wobei das Projektionsobjektiv eine bildseitige numerische Apertur von größer 0,7 aufweist.

Aus der DE 198 18 444 A1 sind refraktive Projektionsobjektive, die für eine Belichtungswellenlänge von 248,4 nm ausgelegt sind, bekannt, wobei die Linsen der Projektionsobjektive aus einem Material bestehen, das bei der Belichtungswellenlänge eine Brechzahl von 1,50839, wie Quarzglas, aufweist.

Weiterhin ist es aus dieser Schrift bereits bekannt, dass auftretende Bildfehler durch den gezielten Einsatz von Asphären korrigiert werden können. So ist es aus dieser Schrift entnehmbar, dass insbesondere durch vorsehen einer Asphäre in der ersten Linsengruppe, bei der es sich um eine Linsengruppe positiver Brechkraft handelt, auftretende Verzeichnung korrigiert werden kann. Weiterhin ist es aus dieser Schrift bekannt, dass durch vorsehen einer Asphäre in der zweiten Linsengruppe, die negative Brechkraft aufweist und durch die eine erste Taille gebildet wird, auftretende Eintrittspupillenaberrationen korrigiert werden können. Weiterhin ist es bekannt, dass durch vorsehen einer asphärischen Linsenoberfläche in der dritten Linsengruppe austretendes Koma minimiert werden kann, wobei die dritte Linsengruppe positive Brechkraft aufweist und zwischen den zwei Taillen, zweite und vierte Linsengruppe angeordnet ist. Ebenfalls kann durch vorsehen einer Asphäre in der sechsten Linsengruppe, die positive Brechkraft aufweist und direkt vor dem Wafer angeordnet ist, ebenfalls das Auftreten von Koma minimiert werden. Durch vorsehen einer Asphäre in der fünften Linsengruppe, die positive Brechkraft aufweist, können insbesondere mit hoher numerische Apertur zusammenhängende Aberrationen, insbesondere sphärische Aberration, korrigiert werden. Eine derartige Korrektur ist auch durch vorsehen einer Asphäre in der vierten Linsengruppe möglich, sofern die Asphäre nahe an der Bildebene angeordnet ist.

Aus der US 5,668,672 ist es bekannt, dass chromatische Aberrationen durch den Einsatz von Quarzglas kombiniert mit einem Fluoridmaterial als Linsenmaterial korrigiert werden können. Weiterhin ist aus der DE 199 39 038 A1 ein refraktives Projektionsobjektiv bekannt, bei dem chromatische Aberrationen durch die Kombination von zwei oder mehr Sorten von Fluoridkristallen korrigiert wird. Weiterhin weist das in Figur 11 gezeigte Projektionsobjektiv, das für die Wellenlänge 157nm ausgelegt ist, mehrere Asphären auf. Für diese Wellenlänge sind insbesondere als Linsenmaterialien Kalziumfluorid und Lithiumfluorid vorgesehen.

Weiterhin ist es aus der US 09/694878 bekannt, insbesondere für die Farbfehlerkorrektur bei einem für die Wellenlänge 193 nm ausgelegten Objektiv einzelne Linsen aus Calciumfluorid für die Korrektur von Abbildungsfehler vorzusehen, wobei die Mehrzahl der Linsen aus Quarzglas besteht. Die numerische Apertur des in Figur 1 gezeigten Projektionsobjektives beträgt 0,7. Dieses refraktive Projektionsobjektiv umfasst eine negative Linsengruppe, durch die eine ausgeprägte Taille bereitgestellt wird, die mit G2 bezeichnet ist.

Aus der US 09/44063, EP 1006387, ist ein Projektionsobjektiv bekannt, das eine Linsenanordnung, die ebenfalls für die Wellenlänge von 193nm ausgelegtes ist. Diese Linsenanordnung weist eine numerische Apertur von 0,7 auf. Bei dieser Linsenanordnung ist wiederum eine Materialmischung von Quarzglas und Calciumfluorid vorgesehen. Weiterhin weisen die aus dieser Schrift bekannten Projektionsobjektive mindestens zwei Linsengruppen mit negativer Brechkraft auf, durch die jeweils deutlich eine Taille ausgebildet wird.

Aus der EP 1.139 138 A1 sind refaktive Linsenanordnungen bekannt, wobei die eingesetzten Linsen aus den Materialien Calciumfluorid und Quarzglas bestehen. Es ist ein Ausführungsbeispiel gezeigt, bei dem alle Linsen aus Calciumfluorid bestehen, wobei dieses Objektiv für eine Belichtungswellenlänge von 157nm ausgelegt ist. Die weiteren gezeigt Linsenanordnungen sind für die Belichtungswellenlänge von 193nm ausgelegt. Alle gezeigten Linsenanordnungen weisen eine Mehrzahl von Asphären auf.

Der Einsatz beispielsweise von Calciumfluorid bei einer für die Belichtungswellenlänge von 193nm ausgelegten Linsenanordnung ist mit dem Nachteil verbunden, dass dieses Material zum einen schwerer verfügbar ist wie Quarzglas und zum anderen auch wesentlich teurer ist.

Der Erfindung liegt die Aufgabe zugrunde, refraktive Linsenanordnungen bzw. eine Projektionsbelichtungsanlage für Mikrolithographie mit einem refraktiven Projektionsobjektiv mit einer hohen numerischen Apertur und guten optische Eigenschaften bereitzustellen.

Weiterhin lag der Erfindung die Aufgabe zugrunde, refraktive Linsenanordnungen für die Mikrolithographie zu schaffen, die sich bei hoher numerischer Apertur durch geringe Farblängsfehler auszeichnen.

Weiterhin lag der Erfindung die Aufgabe zugrunde refraktive Linsenanordnungen bereitzustellen, dessen Herstellkosten reduziert sind.

Die der Erfindung zu Grunde liegenden Aufgaben wurde durch die im Patentanspruch 1 gegebenen Merkmale gelöst. Durch die Maßnahme, dass alle Linsen aus einem Material bestehen, konnten die Herstellkosten reduziert werden, da schon allein dadurch, dass unterschiedlichste Materialien beschafft werden müssen, höhere Kosten verursacht werden, vermieden wurde.

Weiterhin ist es Aufgabe der Erfindung, ein rein refraktives Objektiv aus nur einem Linsenmaterial anzugeben, dass als Mikrolithographie-Projektionsobjektiv mit großer bildseitiger numerischer Apertur und großem Bildfeld bezüglich auftretender Farbfehler eine gute Korrektur aufweist. Da die Farbfehler mit zunehmender Bandbreite des Beleuchtungslichtes zunehmen, wurde es erst durch den Einsatz eines in bezug auf die Farbfehler, insbesondere Farblängsfehler, besonders gut korrigierten Objektives möglich, die Anforderungen an eine Einengung der Bandbreite des Beleuchtungslichtes zu reduzieren, ohne das eine Verschlechterung der Bildqualität akzeptiert werden musste.

Das Objektiv soll besonders für die Wellenlängen 157 Nanometer und 193 Nanometer geeignet sein. Überraschend wurde gefunden, dass auch unter den komplexen Randbedingungen eines hochwertigen Mikrolithographie-Projektionsobjektives Maßnahmen hinsichtlich der Anordnung und Ausbildung der Linsen möglich sind, die für ein Linsenmaterial mit gegebener Dispersion eine deutliche Senkung der chromatischen Längsaberration ergeben, so hat es sich als vorteilhaft herausgestellt, positive Brechkraft zum Bild hin zu verschieben, um den Farblängsfehler klein zu

halten. Negative Linsen mit kleinem Bündelquerschnitt müssen objektseitig fern der Systemblende angeordnet sein.

Die für eine derartige Linsenanordnung notwendige hochwertige Petzval-Korrektur erfordert die Ausbildung von Taillen mit negativer Brechkraft. Durch die Maßnahme negative Linsen mit kleinem Büschelquerschnitt objektseitig, fern der Systemblende anzuordnen, kann der Farblängsfehler klein gehalten werden. Es hat sich weiterhin als vorteilhaft herausgestellt, positive Brechkraft zum Bild hin zu verschieben.

Die Anordnung von aus einer Positivlinse und einer Negativlinse bestehenden Dubletts nach der ersten Taille mit großem Linsendurchmesser von mindestens 85 % des maximalen Linsendurchmessers bzw. Lichtbüscheldurchmessers, geben eine optimale Korrekturmöglichkeit bezüglich aller aperturbehafteter außeraxialer Bildfehler ohne eine Erzeugung von Farblängsfehlern.

Gerade der Bereich vor der Systemblende und der Blendenbereich selbst ist prädestiniert für das entstehen von Farblängsfehlern. Aufgrund dieser Problematik hat sich als vorteilhaft herausgestellt, in dem Bereich vor und um die Systemblende herum Dubletts anzuordnen, bei denen jeweils eine Positivlinse vorgesehen ist, der ein nahestehender Partner umgekehrter Brechkraft bei ähnlichen Lichtbüscheldurchmesser zugeordnet ist. Es hat sich insbesondere als vorteilhaft herausgestellt Dubletts vorzusehen, die eine Gesamtbrechkraft aufweisen, die kleiner ist als 20% der Brechkraft zwischen Blende und Wafer beträgt. Die äußere Form der Dubletts gleicht einem dicken durchgebogenen Meniskus, der eine relativ geringe Brechkraft ausweist.

Es hat sich als vorteilhaft herausgestellt einen Rest einer zweiten Taille durch zwei aufeinanderfolgende negativ Linsen, die zwischen zwei positiv Linsen angeordnet sind vorzusehen. Aufgrund des großen Linsendurchmessers dieser Negativlinsen wird der Lichtbündeldurchmesser in dieser zweiten Taille nur geringfügig, insbesondere weniger als 10%, ausgehend von dem maximalen Linsendurchmesser vor dieser Taille eingeschnürt, was sich vorteilhaft auf den Farblängsfehler auswirkt. Der Farblängsfehler wird auch mit chromatischer Längsaberration bezeichnet.

Durch den Einsatz von Asphären in einer Eröffnungslinsengruppe, die aus Negativlinsen besteht, wird eine Entspannung der Möglichkeiten der Petzvalkorrektur, insbesondere der Bildschalenkorrektur, erreicht. Weitere vorteilhafte Maßnahmen sind in weiteren Ansprüchen beschrieben.

Anhand der folgenden Ausführungsbeispiele wird die Erfindung näher beschrieben. Diese Beispiele sind nicht einschränkend zu verstehen. Es zeigt:

- Figur 1: Projektionsbelichtungsanlage für die Mikrolithographie;
- Figur 2: Refraktives Projektionsobjektiv für die Mikrolithographie für die Belichtungswellenlänge 193nm, dass bei einer Baulänge von 1340,7 mm eine numerische Apertur von 0,8 aufweist;
- Figur 3: Projektionsobjektiv für die Wellenlänge 193nm, dass bei einer Baulänge von 1344 mm eine numerische Apertur von 0,85 aufweist;
- Figur 4: Projektionsobjektiv für die Belichtungswellenlänge 157nm, dass bei einer Baulänge von 1390 mm eine numerische Apertur von 0,85 aufweist;
- Figur 5: Projektionsobjektiv für die Wellenlänge 157 nm mit einer Baulänge von 1300 mm;
- Figur 6: Projektionsobjektiv für die Wellenlänge 193 nm mit einer Baulänge von 1200 mm

Anhand von Figur 1 wird zunächst der prinzipielle Aufbau einer Projektionsbelichtungsanlage 1, die ein refraktives Projektionsobjektiv 5 umfasst, beschrieben. Die Projektionsbelichtungsanlage 1 weist eine Belichtungseinrichtung 3 auf, die mit einer Einrichtung zur Einengung der Bandbreite versehen ist. Das Projektionsobjektiv 5 umfasst eine Linsenanordnung 21 mit einer Systemblende 19, wobei durch die Linsenanordnung 21 eine optische Achse 7 definiert wird. Zwischen Belichtungseinrichtung 3 und Projektionsobjektiv 5 ist eine Maske 9 angeordnet, die mittels eines Maskenhalters 11 im Strahlengang gehalten wird. Solche in der Mikrolithographie verwendeten Masken 9 weisen eine Mikrometer- bis Nanometerstruktur auf, die mittels des Projektionsobjektives 5 bis zu einem Faktor von 10, insbesondere um den Faktor 4, verkleinert auf eine Bildebene 13 abgebildet werden. In der Bildebene 13 wird ein durch einen Substrathalter 17 positioniertes Substrat bzw. ein Wafer 15 gehalten. Die noch auflösbaren minimalen Strukturen hängen von der Wellenlänge des für die Belichtung verwendeten Lichtes sowie von

der numerischen Apertur des Projektionsobjektives 5 sowie von dem K Faktor der Belichtungseinrichtung 3 ab. Eine maximal erreichbare Auflösung der Projektionsbelichtungsanlage 1 nimmt mit abnehmender Wellenlänge des durch die Belichtungseinrichtung 3 bereitgestellten Lichtbüschels 23, durch den das Muster der Maske 9 mittels des Projektionsobjektives 5 auf den Wafer 15 abgebildet wird, zu.

Anhand der Figuren 2-6 wird der Aufbau verschiedener Linsenanordnungen 21 der Projektionsobjektiven 5, die für die Wellenlängen 193nm und 157,6 nm ausgelegt sind, beschrieben.

Die in Figur 2 dargestellte refraktive Linsenanordnung 21 ist für die Belichtungswellenlänge von 193 Nanometer ausgelegt und weist eine bildseitige numerische Apertur von 0,8 auf. Diese Linsenanordnung 21 umfasst 31 Linsen, von denen 9 mindestens eine asphärische Linsenoberfläche aufweisen. Solche Linsen werden auch mit Asphäre bezeichnet. Die Baulänge von Objektebene 0 zu Bildebene 0' beträgt 1340,7 mm.

Diese Linsenanordnung 21 ist in drei Linsengruppen LG1 bis LG3 unterteilbar. Die erste Linsengruppe LG1 weist positive Brechkraft auf und umfasst die Linsen mit den Flächen 2-15. Diese Linsengruppe ist wiederum unterteilbar in eine Eröffnungsgruppe EG1, die negative Brechkraft aufweist und die ersten drei Linsen umfasst. Die ersten beiden objektseitig angeordneten Linsen sind auf der dem Objekt zugewandten Seite mit einer Asphäre versehen, die auf einer konvexen Linsenoberfläche angeordnet ist. Diese ersten beiden Linsen weisen eine Durchbiegung zum Objekt hin auf.

Durch die auf die Eingangsgruppe EG1 folgenden Linsen wird ein Bauch gebildet. Diese dicken Positivlinsen haben einen positiven Effekt in Bezug auf die Petzvalsumme. Die letzte Linse der Linsengruppe LG1 ist auf der waferseitig angeordneten Linsenoberfläche asphärisiert. Diese dicken Positivlinsen liefern zusätzlich einen gunstigen Beitrag in Bezug auf die Komakorrektur.

Die zweite Linsengruppe LG2 umfasst die Linsen mit den Linsenoberflächen 16-21. Die erste und die letzte Linsenoberfläche dieser Linsengruppe ist jeweils asphärisiert. Diese Linsengruppe weist negative Brechkraft auf und es wird durch diese Linsengruppe eine deutlich ausgeprägt

Taille gebildet. Damit liefert diese Linsengruppe einen besonders wertvollen Beitrag zur Korrektur der sagitalen sphärischen Bildfehler höherer Ordnung. Gleichzeitig liefert die negative Gruppe den Hauptbeitrag zur Petzvalkorrektur, insbesondere zur Bildschalenebnung.

Auf die zweite Linsengruppe folgt die dritte Linsengruppe LG3, die durch die Linsen mit den Linsenoberflächen 22-64 gebildet wird. Diese Linsengruppe LG3 fällt durch ihre langgestreckte röhrenförmige Erscheinung auf. Durch einen langgestreckten Bereich vor der Systemblende 19, der einen Lichtbüscheldurchmesser bzw. einen Linsendurchmesser aufweist, der mindestens 85 % des maximalen Linsendurchmessers bzw. maximalen Linsenbüscheldurchmessers beträgt, geprägt. Durch die Ausbildung eines derartigen Bereichs konnten unter Verwendung eines einzigen Linsenmaterials gute optische Eigenschaften, insbesondere im Bezug auf eine chromatische Längsaberration, erreicht werden. Gerade dieser Bereich vor der Systemblende 19 und der Bereich der Systemblende 19 selbst, ist für die Entstehung chromatischer Längsaberration besonders empfindlich. In diesem Ausführungsbeispiel sind vier Dubletts bestehend aus jeweils einer Positivlinse und einer Negativlinse vor der Systemblende 19 angeordnet. Ein weiteres Dublett bestehend aus einer Positivlinse gefolgt von einer Negativlinse ist nach der Systemblende 19 angeordnet. Durch eine auf diese Dubletts folgende dicke Positivlinse wird ein Grossteil der Brechkraft des Projektionsobjektives bereitgestellt. Ein Endbereich der dritten Linsengruppe LG3, der mit UG3d bezeichnet ist und die Linsen mit den Flächen 31-54 umfasst, wirkt sich vorteilhaft auf die negative Verzeichnung aus. Die Ausbildung dieses Endbereiches UG3d trägt auch zur Bereitstellung einer sehr hohen numerischen Apertur von 0,8 wesentlich bei und zwar durch kleine Einzelbeiträge zur sphärischen Aberration und Komazahl.

Eine schwach ausgebildete Taille durch zwei aufeinanderfolgende negativ Linsen, die vor der Systemblende angeordnet sind, sind mit UG3b bezeichnet. Durch die Linsen mit den Linsenoberflächen 22-29, mit UG3A bezeichnet, wird eine positive Untergruppe gebildet, die "entartet" einen Bauch darstellt.

Durch das in Figur 2 beschriebene Projektionsobjektiv ist eine Fläche 10,5x26 mm belichtbar, wobei die Struktur des Objektives um den Faktor 4 verkleinert auf den Wafer abgebildet werden.

TABELLE 1

-	٠		_	•	
M	1	л	٠,	1	a

1W.	14/14					
127	D A PATONY			BRECHZAHL	1/2 FREIER	
F	L. RADIEN	DICKEN	GLAESER	193.304nm	DURCHMESSER	
0	0.000000000	24.114319875	N2	1.00000330	56,000'	
1	0.000000000	3.482434220	N2	1.00000320	56.080	
2		AS 11.54085204		1.00000320 1.56028895	61.002	
3	149.559792284	8.045820053	0 310271L N2		62.455	
4	283.335388909A			1.00000320	63.745	
5	227.471174739	35.446688452		1.56028895	65.015	
6	-122.782367295	38.508940817		1.00000320	66.284	
7	-255.078934826	0.874570041		1.56028895	68.210	
8	-888.725542480	30.171005105	N2	1.00000320	89.183	
9	-191.846579966			1.56028895	95.735	
10	640.397878968	41.049504805		1.00000320	98.735	
11	-250.387321692			1.56028895	108.485	
	667.678997977	0.675200957	N2	1.00000320	109.147	
13	-1125.45541699	44:017612594		—1:56028895 ——	105.073	-
14			N2	1.00000320	100.899	
	192.876693777		SIO2HL	1.56028895	93.072	
15		AS 32.60499711		1.00000320	76.483	
16		AS 17.08450254			70.652	
17	335.138365959	,	N2	1.00000320	66.301	
18	-192.572424355		SIO2HL	1.56028895	65.926	
19	418.847934941	26.888457292	N2	1.00000320	68.374	
20	-140.483410076		SIO2HL	1.56028895	69.129	
21		AS 16.19391117		1.00000320	77.669	
22	-188.260511338		SIO2HL	1.56028895	79.453	
23	-123.558724879		N2	1.00000320	84.227	
24	-224.101808279		SIO2HL	1.56028895	89.392	
25	-158.235875230		N2	.1.00000320	97.007	
26	-244.923106839	26.771118597	SIOZHIL	1.56028895	99.234	
27	-435.595962845	19.019537360	N2	1.00000320	108.190	
28	254.503542501	103.741855324	SIOSHL	1.56028895	125.704	
29	-370.013146990	0.898100644	N2	1.00000320	123,190	
30		AS 11.574873540		1.56028895	119.614	
31	346.341133415	40.118210584	N2	1.00000320	114.229	
32	-378.937108427	11.574873540	SIO2HL	1.56028895	114.195	
33	532.696677413	4.927372582	N2	1.00000320	118,682	
34	439.556363278	74.374706500	SIO2HL	1.56028895	121.399	
35	-502.601956332	0.675200957	N2	1.00000320	124.801	
36		AS 14.799644077		1.56028895	124.414	•
37	1476.224552423	4.677319062	N2	1.00000320	124.271	
38	2177.900420777		SIO2HL	1.56028895	124.349	
39	384.316107261	1.595817333	N2	1.00000320	124.241	
40	312.429605405	51.750696421	SIO2HL	1.56028895	125.681	
41	-432.173779349	17.813396316	N2 .	1.00000320	125.439	
42	-249.375527898	11.574873540	SIO2HL	1.56028895	124.719	
43	-1589.233069199	14.468591925	N2	1.00000320	127.374	
44	0.000000000	-4.822863975	N2	1.00000320	125.296	
45	321.301154865	57.691242734	SIO2HL	1.56028895	131.351	
46	-1054.206205699.	AS 14.95179815	7 N2	1.00000320	130.208	
47	-589.044474927		SIO2HL	1.56028895	128.575	
48	274.036317071	8.139476302	N2	1.00000320	128.119	
49	321.225611416	124.977354157	SIO2HL	1.56028895	129.264	
50	-395.919230783	1.969428424	N2	1.00000320	131.721	
51	820.198727366	26.845651259	SIO2HL	1.56028895	126.931	

52	-973.939543882	0.694000123	N2	1.00000320	125.647
53	139.833041863	36.229940671	SIO2HL	1.56028895	107.077
54	. 242.551698933	0.867355440	N2	1.00000320	102.010
55	131.386059685	29.928967379	SIO2HL	1.56028895	91.857
56	235.274124558	0.675200957	N2	1.00000320	85.440
57	157.034314790	26.536117143	SIO2HL	1.56028895	79.168
58	231.201718823	9.219970606	N2	1.00000320	66.512
59	470.035875032	11.197726405	SIO2HL	1.56028895	61.464
60	236.045204498	0.675200957	N2	1.00000320	52.281
61	134.300351512	8.120819966	SIO2HL	1.56028895	48.003
62	63.666959363	10.716266548	N2 .	1.00000320	38.339
63	108.784923745	21.847901284	SIO2HL	1.56028895	35.245
64	693.402002382	8.681155155	N2	1.00000320	24,992
65	0.000000000	0.000000000	N2	1.00000320	14.020
66	0.000000000	0.000000000	•	1.00000000	14.020

ASPHAERISCHE KONSTANTEN

FLAECHE NR:-2

- C0 0.0000
- C1 2.14106637e-007
- -1.51669986e-011 C2
- 2.64769647e-015
- C4 -3.99036396e-019
- C5 2.47505843e-023
- C6 -3.15802350e-028
- C7 3.03036722e-032
- C8 0.00000000e+000
- 0.00000000e+000 C9

FLAECHE NR. 4

- C0 0.0000
- C1 8.34485767e-008
- C2 6.40722335e-012
- -1.82542397e-015 C3
- 2.34304470e-019 C5 -8.26711198e-024
- C6 -7.65863767e-028
- **C**7 6.41110903e-032
- C8 0.00000000c+000
- C9 0.00000000c+000

FLAECHE NR. 15

- C0 0.0000
- Cl -2.63006449e-008
- C2 -2.79471341e-012
- C3 -2.67096228e-016
- C4 -1.35138372e-020 C5 -4.40665654e-024
- C6 5.04322571e-028
- -7.87867135e-032 Ç7
- **C**8 0.00000000e+000
- C9 0.00000000e+000

- C0 0.0000
- 3.25803022e-009 Cl
- C2 -6.94860276e-013
- C3 -1.78049294e-016
- C4 -6.94438259e-021
- C5 6.12556670e-024
- C6 -1.48556644e-027
- C7 1.00088938c-031
- C8 0.00000000e+000
- C9 0.00000000e+000

FLAECHE NR. 21

- C0 0:0000
- CI 4.82674733e-008
- C2 1.36227355e-012
- C3 -9.54833030e-017
- C4 9.501430786-022
- ·C5 5.69193655e-025
- C6 -3.40684947e-029
- C7 2.94651178e-033 C8 0.00000000e+000
- C9 0.00000000e+000

FLAECHE NR. 30

- Ç0 0.0000
- -1.45094804e-009 CI
- 5.04456796e-013 C2
- C3 -5.09450648e-018
- -1.99406773e-022 C4
- C5 -1.14064975e-026
- C6 5.78307927e-031 C7 -1.43630501e-035
- C8 0.00000000e+000
- 0.00000000e+000

FLAECHE NR. 36

- C0 0.0000
- C1 -1.43259985e-008
- C2 -3.56045780e-013
- C3 -7.68193084e-018
- C4 -1.87091119e-022 C5
- -1.28218449e-026 C6 3.62372568e-031
- -2.39455297c-035 Ç7
- 0.0000000c+000 C8
- 0.00000000e+000

- C0 0.0000
- -7.44300951e-010 Ç1
- C2 -1.00597848c-013
- C3 -1.16300854e-017
- C4 3.24986044e-023

NUM912

- C5 5.82666461e-027
- C6 -4.12661445e-031
- 6.25538499e-036 C7
- C8 0.00000000e+000
- 0.00000000e+000

FLAECHE NR. 47

- 0.0000 C₀
- Cl -7.10390913e-009
- C2 1.80939707e-014
- -1.34383300e-017
- C4 -1.50233953e-023
- C5 7.80860338c-027
- -4.98388772e-031
- **C**7 9.26846573e-036
- $\mathbb{C}8$ 0.00000000e+000
- 0.00000000e+000

Anhand von Figur 3 wird eine rein refraktive Linsenanordnung 21, die für die Belichtungswellenlänge von 157,6 nm ausgelegt ist, näher beschrieben. Die Baulänge dieses Linsenanordnung 21 beträgt 1344,0 mm gemessen von Objektebene 0 zu Bildebene 0'. Es ist ein Feld von 10,5x26 mm² belichtbar. Auch diese Linsenanordnung 21 weist wiederum in eine Eingangsgruppe EG1 auf, die durch die ersten objektseitig angeordneten, eine negative Brechkraft aufweisenden Linsen gebildet wird. Mit den darauffolgenden Linsen mit den Flächen 8-15 wird die Linsengruppe LG1 gebildet. Wiederum ist die letzte Linsenfläche 15 dieser Linsengruppe waferseitig asphärisiert.

Durch die darauffolgenden Linsen mit den Flächen 16-21 wird eine dritte Linsengruppe LG2 gebildet. Diese dritte Linsengruppe LG2 weist insgesamt negative Brechkraft auf und es wird durch diese Linsengruppe eine deutlich ausgeprägte Taille 29 gebildet. An diese Linsengruppe schließt sich eine vierte Linsengruppe LG3 an, die eine langgestreckte röhrenförmige Gestalt aufweist. In dieser vierten Linsengruppe ist eine Systemblende 19 angeordnet. Diese Linsengruppe LG3 weist auf der der dritten Linsengruppe LG2 zugewandten Seite eine Untergruppe UG3a auf, die geringe positive Brechkraft aufweist. Darauf folgt eine schwach ausgebildete Taille UG3b, die durch zwei negative Linsen gebildet wird, die einen großen Durchmesser, mindestens 85 % des maximalen Durchmesser, aufweisen. Durch diese beiden aufeinanderfolgenden negativ Linsen wird eine schwache Taille UG3b gebildet. Diese Negativlinsen sind Teil der Dubletts D1 und D2. Weiterhin sind noch zwei weitere Dubletts, mit D3 und D4 bezeichnet, vor der Systemblende 19 angeordnet. Mit D5 ist ein weiteres Dublett

bezeichnet, dass eine Doppelsphäre durch die Asphären auf den Linsenoberflächen 46 und 47 aufweist. Der Endbereich mit UG3d bezeichnet, umfasst eine Mehrzahl von dünnen Linsen, durch die das aufgeweitete Lichtbündel 23 auf den Wafer bzw. auf die Bildebene fokussiert wird.

Die in Figur 3 gezeigte Linsenanordnung 21 ist ebenfalls für die Wellenlänge 193 nm ausgelegt und weist eine Baulänge von 1344 mm auf. Das mit dieser Linsenanordnung 21 belichtbare Feld beträgt 10,5x26 mm². Die numerische Apertur beträgt 0,85. Mit diesem Objektiv wird das Objekt 9 um den Faktor 4 verkleinert auf die Bildebene 13 abgebildet. Die genauen Linsendaten sind der Tabelle 2 zu entnehmen.

TABELLE 2

M1	634a				.:	
FL.	RADIEN	DICKEN	GLAESER	BRECHZ 193.304nm		FREIER MESSER
٥	0.000000000	24.172413800	N2	1.00000320	56.080	•
1.	0.000000000	15.006569837	N2	1.00000320	61.282	
2	599.473674706AS	17.471359581	SIO2HL	1.56028895		•
. 3	142.945533106	15.594383723	N2	1.00000320	67.351	
~ 4	520.792476125AS	15.866311924	SIO2HL	1.56028895		
5	458.213670894	35.531230748	N2	1.00000320	72.731	
6	-130.942246277	29.261434955	SIO2HL	1.56028895	75.090	
7	-522.434408367	1.046065674	N2 ·	1.00000320	96.747	
	-6686.031621900	34.314309045	SIO2HL	1.56028895	103.359	
9	-218.186494807	0.676827586	N2	1.00000320	106.388	
10	706.363261168	45.122462397	SIO2HL	1.56028895	119.094	
11	-278.472163674	0.676827586		1.00000320	120.155	
12	959.514633579	36.082624687	SIO2HL	1.56028895	118.383	1
13	-896.787607317	4.587825747		1.00000320	116,762	
14	.158.750812726	85.801121037	SIO2HL	1.56028895	106.229	
15	300.475102689AS		N2	1.00000320	83.117	
16	-175.884377464A	6.768275864	SIO2HL	1.56028895	72,476	
17	320.319576676	27.446116916	N2 ·	1.00000320	68.293	
18	-146.443321423	9.668965520	SIO2HL	1.56028895	67.974	
19	339.454879151	28.665475857	N2	1.00000320	,72.279	
20	-161.977156970	10.635862072	SIO2HL	1.56028895	73.414	•
21	-238.647909042AS	15.370621050	N2 .	1.00000320	79.551	
22	-150.311235300	27.766876031	SIO2HL	1.56028895	81.604	
23	-155.362800581	0.676827586	N2	1.00000320	92.928	
24	428.765583246	34.936111184	SIO2HL	1.56028895	101.383	
25	-220.472579824	0.676827586	N2	1.00000320	108.198	
26	-438.752339375	25.651183289	SIO2HL	1.56028895	111.993	
27	-486.537649387	16.665277911		1.00000320	118.679	
28	286.503340486	84.567562777	SIO2HL	1.56028895	136.363	
29	-370.847311034	7.492580442		.00000320	135.394	
30	-366.945132944A\$		SIO2HL	1.56028895	132.013	
31		32.431277232		.00000320	128.108	
32	•	11.602758624	SIO2HL	1.56028895	128.110	
33	537.388094819	2.743298664	N2 1.	00000320 1	31.720	

```
34
      408.077824696 42,484571757
                                    SIO2HL
                                               1.56028895
                                                            134.394
 35
     -717.357209302
                      0.676827586
                                    N2
                                            1.00000320
                                                         134.718
 36
      583.086197224A$ 6.768275864
                                     SIO2HL
                                               1.56028895
                                                            133.965
 37
      269.271701042
                      7.352686536
                                    N2
                                            1.00000320
                                                         133.550
 38
      281.248185100
                     35.203322187
                                    SIOZIIL
                                              1.56028895
                                                            136.018
39
      472.606393970
                      3.186212988
                                    N2
                                           1.00000320
                                                         135:918
 40
      363.576248488
                     54.546183651
                                    SIO2HL
                                              1.56028895
                                                            137.633
     -468.746315410 23.108875520
41
                                    N2
                                            1.00000320
                                                         137.324
42
     -251.383937308 11.602758624
                                    SIO2HL
                                              1.56028895
                                                            136.437
    -1073.133309030 33.841379320
43
                                    N2
                                            1.00000320
                                                         140.158
     0.000000000 -24.172413800
300.919916537 63.201252893
44
                                    N2
                                            1.00000320
45
                                    SIO2HL
                                              1.56028895
                                                            150.411
     -982.360166014AS11.220067842
                                    N2
                                            1.00000320
                                                         149.618
     -644.040642268A$11.602758624
                                    SIO2HL
                                               1.56028895
                                                           148.330
     251.499390884
                     13.548863209
                                    N2
                                            1.00000320
                                                         144.384
49
     295.116548681
                     83.834389825
                                    SIO2HL
                                                            147.231
                                              1.56028895
50
     -592.936469041
                      0.676827586
                                    N2
                                           1:00000320
                                                         147.243
51
     463.737108447
                     36.976613477
                                               1.56028895
                                                            141.167
     1426 895647680 - 0.695672042 -
                                         1:00000320 139.475
                                   -N2-
53
     140.559527472
                     39.416922789
                                    SIO2HL
                                              1.56028895
                                                           113.157
     220.743893827
                      0.878083956
                                   · N2
                                            1.00000320
                                                         106.607
     135.149194981 30.341942424
                                   SIO2HL
                                              1.56028895
                                                            96.272
56
     227.528619088
                     0.689419669
                                   N2
                                           1.00000320
                                                        89.300
57
     157.276474717
                    26.304510971
                                   SIO2HL
                                              1.56028895
                                                           82.536
58
     236.864111032
                     8.994847659
                                   N2
                                          1.00000320
                                                         70,218
59
     366.476934349
                    10.551547532
                                   SIO2HL
                                             1.56028895
                                                            63.779
60
     98.334230915
                    0.676870172
                                  N2
                                          1.00000320
                                                        49.220
61
     98.324175829
                    8.007759247
                                  SIO2HL
                                            1.56028895
                                                          48.802
б2
     76.949074769
                    8.603791096
                                  N2
                                         1.00000320
                                                       42.525
63
     99.077661785
                    24.844220969
                                  SIO2HL 1.56028895
                                                          39.131
64
     511.945903814
                     8.702068968
                                  N2
                                          1.00000320
                                                        26.963
65
      0.000000000
                      0.000000000
                                           1.00000320
                                                         14.020
      0.000000000
                                        1.00000000
                    0.000000000
```

ASPHAERISCHE KONSTANTEN

FLAECHE NR. 2

- C0 0.0000
- Cl 1.28169760e-007
- C2 -7.84396436e-012
- C3 4.40001122e-016
- C4 -7.79882973e-021
- C5 -1.30623440e-023
- C6 2.14846923e-027
- C7 -1.41595024e-031
- C8 0.00000000e+000
- C9 0.00000000e+000

- CO 0.0000
- C1 8.23267830c-008
- C2 2.76986901c-012
- C3 -1.95568740e-016
- C4 -7.24098423e-021
- C5 1.06376091e-023
- C6 -1.43486056e-027

- **C7** 1.06511374c-031
- 0.00000000e+000 C8
- C9 0.000000000e+000

FLAECHE NR. 15

- CO 0.0000
- CI -7.43129292c-009
- C2 -2.93262230e-012
- -2.03722650e-016 C3
- C4 -1.22563860e-020
- C5 5.965200896-025
- C6 -1.46602552e-028
- **C7** 1.53867443e-032
- C8 0.00000000e+000
- C9 0.00000000e+000

FLAECHE NR. 16

- CO: 0.0000
- -3.79251645e-008 Cl
- C2 3.22483445e-012
- C3 1.95986817e-016
- C4 2.59408631e-020
- C5 -1.79899203e-024
- C6 -1.09069425e-029
- C7 3.19439367e-033
- C8 0.00000000e+000
- C9 0.00000000e+000

FLAECHE NR. 21

- C0 0.0000
- C1 -1.34732963e-008
- 2.75857068e-012 C2
- C3 1.90481938e-016
- C4 2.08472207e-020
- C5 -6.19866674e-025
- 2.52896158e-028 C6
- C7 -1.80211827e-032 C8 0.00000000e+000
- 0.00000000e+000

FLAECHE NR. 30

- C0 0.0000
- C1 -2.23816289e-009
- C2 6.79079206e-013
- C3 -2.77226923e-018 C4 -1.25547219e-022
- C5 -1.58964362e-026
- C6 6.91621100e-031
- C7 -9.74826154e-036
- C8 0.00000000e+000
- 0.00000000e+000

- C0 0.0000
- Çl -1.48722851e-008
- C2 -3.21783489e-013
- C3 -1.94353769e-018
- C4 -1.66369859e-022 C5
- 8.53060454e-028
- C6 -4.40031159e-032
- C7 -1.13839635e-036 C8
- 0.00000000e+000 0.00000000e+000

FLAECHE NR. 46

- C0 0.0000
- -1.29322449e-009 C1
- C2 -7.13114740e-014
- C3 -9.86341305e-018
- C4 7.04573131e-023
- **C**5 6:79406884e=027
- C6 -5.13273315e-031
- **C7** 8.48667932e-036 C8 0.00000000e+000
- 0.00000000e+000

- C0 0.0000
- C1 -6.45902286e-009
- C2 -2.38977080e-014
- C3 -1.08609626e-017
- 2.89713800e-023 C4
- C5 1.03658811e-026
- -6.18950334e-031
- **C7** 1.10366044e-035
- C8 0.00000000e+000 C9 0.00000000e+000
- Die in Figur 4 dargestellte Linsenanordnung ist für die Belichtungswellenlänge 157 nm ausgelegt. Die Baulänge beträgt 1390,0 mm gemessen von Objektebene 0 zu Bildebene 0'. Mit dieser Linsenanordnung 21ist ein Feld von 10,5 mmx26mm belichtbar. Der makroskopische Aufbau dieser Linsenanordnung unterscheidet sich nur unwesentlich von dem in Figur 3 dargestelltenLinsenanordnung, so dass hier auf eine detaillierte Beschreibung verzichtet wird. Die genauen Linsendaten sind der Tabelle 3 zu entnehmen.

TABELLE 3

M1640a

	•			BRECHZAHL	1/2 EDETED
FL	. RADIEN	DICKEN	GLAESER	157.629nm	DURCHMESSER
					- ONCH MESSER
0	0.000000000	25.000000000	N2V157	1.0003142	9 59.000
1	0.000000000	15.339378260	N2V157	1.000314	
2	598.34247197	8AS 18.724519	350 CAF2V	157 1.559290	
3	48.181482862	16.45482963	5 N2V157		
4	564.226137144	AS 16.592649	095 CAF2V		
5	465.19718824	5 36.8424635	22 N2V157	1.00031429	76.403
6	-136.83695487	8 30.2760889	45 CAF2V		
7	-551.74595164	2 1.15908982		1.00031429	101.430
8	-9088.97156313	0 35.6146986	76 CAF2V		
9	-226.95682333	0.7000000	00 N2V157	1.00031429	111.475
10	723.67900395	9 46.7403009	24 CAF2V	157 1.5592903	
1.1	-289.61423856	0.7000000	02 N2V157		
12	910.15358138				
13	-966.46068423	4 6.34468209			122.517
14	165.16781309	1 88.6452514			
15	311.69093916	1AS 44.560755	800 N2V1		
16	-181.95305854	9AS 7.000000	001 CAF2V		
17	324.24643859				
18	-151.82577498	5 10.0000000			
19	355.94669425				
20	-167.03429548	5 11.0000000	00 CAF2V	57 1.5592903	
21	-246.22506899	7AS 15.900879	213 N2V1		
22	-155.08879967	2 28.7745912		57 1.5592903	
23	-160.06508972			1.00031429	96.655
24	-441.81105272				
25	-228.522063653	2 0.70000000		1.00031429	112.577
26	-454.13639777	26.5663666			
27	-500.119500379				123.439
28	296.713551807	87.96367757	78 CAF2V1		
29	-382.314123004			1.00031429	140.780
30	-376.638593815	AS 12.000000	000 CAF2X		
31	607.216067418			1.00031429	133.150
32	-570.164044613		00 CAF2VI		
33	564.533373593	2.816684919		1.00031429	136.871
34	427.721752683		3 CAF2VI	57 1.55929035	
35	-732.675269060		0 N2V157	1.00031429	139.914
36	602.910545189				
37	279.908546327		4 N2V157	1.00031429	138.631
38.	292.067625915		4 CAF2V1:	57 1.55929035	141.194
39	486.808587823	3.734684777		1.00031429	141.087
40	374.488854583	56.69281643	4 CAF2V1.		
41	487.437697890		6 N2V157	1.00031429	142.631
42	260.866697273		0 CAF2V1:	57 1.55929035	
43	-1117.259721160	35.00000000	00 N2V157		145.541
44	0.000000000	-25.000000000	N2V157	1.00031429	148.094
45	311.002273193	.65.57823015	0 CAF2V15		
46	-1023.554315350	A\$ 11.481377	894 N2V15		
47 .	-672.576714992				
48	259.883468261			1.00031429	151.262
49	305.263739591	86.78133419		7 · 1.55929035	154.398
50	-617.755257115	- 0.70000000	N2V157	1.00031429	154. 565

51	476.256251891	38.263167655	CAF2V157 1.55929035 148.49
52	-1486.494799770	0.719489630	
53	145:476122811	40.782858325	CAF2V157 1.55929035 119.019
54	229.665054801	0.933275871	N2V157 1.00031429 113.051
55	140.220419138	31.392645646	CAF2V157 1.55929035 101.740
56	234.824506571	0.723640009	N2V157 1.00031429 95.088
57	162.332837065	27.214899096	CAF2V157 1.55929035 87.541
58	244.278333665	9.299918126	N2V157 1.00031429 74.726
59	376.868342950	10.929551626	CAF2V157 1.55929035 67.902
. 60	101.455739030	0.715773254	N2V157 1.00031429 51.847
61	101.162965635	8.299519050	CAF2V157 1.55929035 51.361
62	79.43787067 <i>5</i>	8.884307252	N2V157 1.00031429 44.619
63	102.534993850	25.750482491	CAF2V157 1.55929035 41.066
64	527.160854703	9.000000000	N2V157 1.00031429 28.053
65	0.000000000	0.000000000	N2V157 1.00031429 14.750
66	0.000000000	0.000000000	1.00000000 14.750

ASPHAERISCHE KONSTANTEN

FLAECHE NR. 2

C0 0.0000 C1 1.13998854e-007 C2 -6.36178693e-012 C3 3.23659752e-016 C4 -5.32444727e-021 C5 -8.32495109e-024 C6 1.27324768e-027 C7 -7.83910573e-032

0.00000000e+000 0.00000000e+000

FLAECHE NR. 4

· ¢8

C8

C0 0.0000 CI 7.54224753e-008 C2 2.18650725c-012 C3 -I.43119795e-016 C4 -4.77106422e-021 C5 6.81749068e-024 C6 -8.54589429e-028 5.97164385e-032 **C**7

0.00000000e+000 0.00000000e+000

- FLAECHE NR. 15
- C0 0.0000 -6.96085201e-009 C1 C2 -2.46245992e-012 C3 -1.57870389e-016 C4 -8.75762750e-021 C5 3.86817665e-025 C6 -9.00885871e-029 CŻ. 8.78630596e-033 C8 0.00000000e+000 0.000000000c+000

FLAECHE NR. 16

12:20

- C0 0.0000
- CI -3.45865856e-008
- C2 2.71322951e-012
- C3 1.50235080e-016
- C4 1.89751309e-020
- C5 -1.30006219e-024
- C6 6.16358831e-030
- C7 1.17159428e-033 C8 0.00000000e+000 0.00000000e+000
- C9 0.000000000e+000

FLAECHE NR. 21

- C0 0.0000
- Ç1 -1.29712266e-008
- C2 2.27339781e-012
- C3 -1.44782825e-016-
- C4 1.49868277e-020
- -4.08871955e-025 C5 C6 1.55577307e-028
- C7
- -1.00785028e-032 C8 0.00000000e+000
- C9 0.00000000e+000

FLAECHE NR. 30

- C0 0.0000
- -2.06288424e-009 Cl
- C2 5.71589058e-013
- C3 -2.21154944e-018
- C4 -8.89810821e-023
- C5 -1.08068385e-026
- C6 4.36847400e-031
- C7 -5.73712694e-036 C8 0.00000000e+000
- C9 0.00000000e+000

FLAECHE NR. 36

- 0.0000
- Cl -1.34482120e-008
- C2 -2.70871166e-013
- C3 -1.46625867e-018
- C4 -1.23067852e-022
- C5 6.79261614e-028
- C6 -3.16281062e-032 C7: -5.79252063e-037
- C8 0.00000000e+000
- 0.00000000e+000 C9

- C0 0.0000
- C1 -1.19258053e-009
- -6.06323614e-014 C2
- C3 -7.79480128e-018

pat_ml641a.txt

TABELLE 4

M1	6	4	3.	-

12:20

	T	÷ ,			•
FLAE	CHE RADIEN	DECEMBLE	61 25 65 5	BRECHZAHL .	1/2 FREIER
	COLD TOTAL	DICKEN	GLAESER .	157.629nm	Durchmesser
0	0.00000000	23 26202025			
ĭ	0.00000000	23.762838750	N2V157	1.00031429	56.080
2	514.707276562AS	14.246137526	N2V157	1.00031429	61.246 ·
3	138.212721202	13.981815236	CAF2V157	1.55929035	65.688
. 4		15.579876293	N2V157	1.00031429	66.951
5	534.824781243AS	12.739496641	CAF2V157	1.55929035	69.622
6	389.864179126	33.913726677	N2V157	1.00031429	71.684
7	-131,473719619	28.107831970	CAF2V157	1.55929035	73.586
8	-471.981433648	1.069906657	N2V157	1.00031429	93.899
. 8	0.000000000	34.308184523	CAF2V157	1.55929035	101.225
	-228.280123150	0.704684075	N2V157	1.00031429	104.724
10	796.724829345	43.758159816	CAF2V157	1.55929035	116.173
11	-266.360310650	0.745094303	N2V157	1.00031429	117.347
12	1081.261439844	23.811542913	CAF2V157	1.55929035	115969
13	-712.390784368	9.916731254	N2V157	1.00031429	115:443
14	158.258040233	80.929657183	CAF2V157	1.55929035	103.853
15	328.916333526AS	43.637981348	N2V157	1.00031429	83,021
16	-163.783184213AS	8.000000000	CAF2V1.57	1.55929035	71.477
17	294.432712383	27.405950067	N2V157	1.00031429	67.256
18	~144.330554051	8.234758928	CAF2V157	1.55929035	67.032
19	397.835892386	28.266532844	N2V157	1.00031429	71.373
20	-161.553948900	10.395325272	CAF2V157	1.55929035	72.890
21	-258.614401773AS	15.068965479	N2V157	1.00031429	79.201
22	-148.191144865	27.281969779	CAF2V157	1.55929035	80.726
23	-153.092043553	0.711404699	N2V157	1.00031429	91.935
24	-429.848987135	34.313214826	CAF2V157-	1.55929035	100.5B0
25	-222.509319222	0.755186371	N2V157	1.00031429	107.422
26	-446,042338354	25.134410060	CAF2V157	1.55929035	111.325 .
27	-476.016743713	16.168036298	N2V157	1.00031429	117.862
28	290.945720195	91.150270987	CAF2V157	1.55929035	135.561
29	-352.999009021	7.239891532	N2V157	1.00031429	134.606
30	-333,990335846As	10.794904262	CAF2V157	1.55929035	. 131.837
31	686.418617658	67.606049576	N2V157	1.00031429	128.953
32	484.704981071AS	20.247999550	CAF2V157	1.55929035	129.012
33	272.256910986	8.301324639	N2V157	1.00031429	129.690
34	283.424612963	21.444612905	CAF2V157	1.55929035	132.593
35	441.096441131	7.286378331	N2V157	1.00031429	132.611
36.	. 341.080821148	56.120769051	CAF2V157	1,55929035	135.413
37	-467.022730717	23.483002796	N2V157	1.00031429	135.092
38	-251.271987102	10.033317804	CAF2V157	1.55929035	133.934
39	-1127.860216547	34.039044392	N2V157	1.00031429	137.435
40		-23.762838750	N2V157 '	1.00031429	140.287
41	297.718439650	63.279096400	CAF2V157	1.55929035	148.476
42	-917.492707769AS	10.913617063	N2V157	1,00031429	147.745
43	-614.308568323AS	11.278985347	CAF2V157	1.55929035	146.599
44	248.499662987	14.012163218	N2V157	1.00031429	143.454
4.5	293.420324051	77.421679876	CAF2V157	1.55929035	146.721
46	-577.615924152	0.827697085	N2V157	1.00031429	146.976
47	428.803478030	30.627735627	CAF2V157	1.55929035	141.309
48	-1538.689777020	0.709093944	N2V157	1.00031429	139.590
49	138.430254604	39.259717130	CAF2V157	1.55929035	113.344
50	220.629434605	0.852226738	N2V157	1.00031429	107.642
51	134.960023432 .	29.998458517	CAF2V157	1.55929035	97.026
52	215.500125113	0.702119104	N2V157	1.00031429	89.828
53	, 149.475551465	25.893987130	CAF2V157	1.55929035	82.702
54	231.671140781	0.808791935	N2V157	1.00031429	71.084
55	350.283305716	10.4005B0673	CAF2V157	1-55929035	64.558
56	145.109553410	0:700000000	N2V157	1.00031429	52.531
57 ·	141.455177019	8.001279379	CAF2V157	1.55929035	51.711
58	73.955966022	8.329441414	N2V157	1.00031429	42.090
59	96.168359436	24.494556608	CAF2V157	1.55929035	38,879
60	459.800275735	8.554621950	N2V157	1.00031429	26.571
61 .	0.00000000		N2V157		14.020

Seite 1 20

- C4 5.18508440e-023 4.67224846e-027 C5
- -3.31365069e-031 C6
- **C**7 5.12625482e-036
- C8 0.000000000+000
- 0.00000000e+000

FLAECHE NR. 47

- C0 0.0000
- -5.81614530e-009 Cl
- C2 -2.06494325e-014
- C3 -8.58899622c-018
- C4 2.06606063e-023
- C5 7.14078196e-027
- Ċ6 -3.99032238e-031
- **C7** 6.64567245e-036
- 0.00000000e+000
- -0:00000000e+000

Die in Figur 5 dargestellt Linsenanordnung 21 ist ebenfalls für die Wellenlänge 157,6 nm ausgelegt. Dieses Linsenanordnung 21 unterscheidet sich maßgeblich dadurch, dass nur 3 Dubletts D1, D2 und D4 vor der Systemblende 19 angeordnet sind. Das in den vorhergehenden Figuren mit D3 zeichnete Dublett ist entfallen. Die beiden aufeinanderfolgenden Negativlinsen, durch die die zweite schwach ausgeprägte Taille gebildet wird, sind beabstandet voneinander angeordnet. Durch diese geänderte Anordnung und die Einsparung des Dublets D3 wird erreicht, dass das Linsenvolumen sinkt.

Die genauen Linsendaten sind der nachfolgenden Tabelle 4 zu entnehmen.

Tabelle 4

m1641a

```
pat_m1641a.txt
```

ASPHAERISCHE RONSTANTEN

12:20

FLAECHE NR.

```
K 0.0000
C1 1.40076890e-007
C2 -9.37770559e-012
C3 5.50812946e-016
C4 6.20589318e-021
C5 -2.37140019e-023
```

C6 3.95180787e-027 C7 -2.60792832e-031 C8 0.00000000e+000

C9 0.00000000e+000

FLAECHE NR.

```
    K
    0.0000

    C1
    9.46620092e-008

    C2
    3.31455802e-012

    C3
    -2.39290707e-016

    C4
    -1.71234783e-020

    C5
    1.74026756e-023

    C6
    -2.43020107e-027

    C7
    1.77431459e-031

    C8
    0.0000000e+000

    C9
    0.00000000e+000
```

FLAECHE NR. 15

```
K 0.0000
C1 -1.23543805e-008
C2 -3.08782621e-012
C3 -2.03630284e-016
C4 -8.16153110e-021
C5 1.74407091e-025
C6 -5.09307070e-029
C7 1.00885745e-032
C8 0.00000000e+000
C9 0.00000000e+000
```

FLAECHE NR. 16

```
0.0000
       -4.62416977e-008
C1
        5.09342413e-012
1.93873885e-016
C2
C3
C4
        2.75889868e-020
Ç5
       -1.64807233e-024
C6
       -1.89286552e-028
C7
        1.58124115e-032
C8
        0.00000000e+000
C9
        0.00000000e+000
```

FLAECHE NR. 21

```
K
       0.0000
Cl
      -2.13191934e-008
C2
       3.39572B04e-012
C3
       1.70428863e-016
C4
       2.27977453e-020
C5
C6
      -9.4721B587e-025
       2.65529506e-028
C7
      -2.14888777e-032
C8
       0.0000000c+000
C9
       0.00000000e+000
```

FLAECHE NR. : 30

Saite 2/

D25

pat_ml641a.txt

```
K 0.0000
C1 -2.44196650e-009
C2 6.83785083e-013
C3 -4.77483094e-018
C4 -4.35836087e-023
C5 -1.74046992e-026
C6 6.83065300e-031
C7 -9.01251572e-036
C8 0.00000000e+000
C9 0.00000000e+000
```

FLAECHE NR. 32

```
K 0.0000
C1 -1.53715814e-008
C2 -3.53812954e-013
C3 -8.52862214e-019
C4 -2.84552357e-022
C5 3.34667441e-027
C6 -1.70981345e-031
C7 8.06815620e-038
C8 0.0000000e+000
C9 0.0000000e+000
```

FLAECHE NR. 42

K	0.0000
Cl	-1.38703825e-009
C2 '	-7.42014625e-014
C3	-1.11669633e-017
C4	7.72614773e-023
C5	8.16034068e-027
C6	-6.36127613e-031
C7	1.09104108e-035
C8	0.00000000e+000
C9	0.000000000+000

```
K 0.0000
C1 -6.81804423e-009
C2 -3.12076075e-014
C3 -1.22481799e-017
C4 2.99026626e-023
C5 1.23468742e-026
C6 -7.60144642e-031
C7 1.42018134e-035
C8 0.0000000e+000
C9 0.00000000e+000
```

Die in Figur 6 dargestellte Linsenanordnung 21ist für die Wellenlänge 193 Nanometer ausgelegt. Das belichtbare Feld beträgt 10,5 mm x 26 mm. Die Baulange von Objektebene 0'- Bildebene 0' beträgt 1200 mm. Die für die Herstellung erforderliche Materialmenge an Quarzglas beträgt lediglich 103 kg. Auch bei diesem Ausführungsbeispiel, genauso wie dem in Figur 5 gezeigten Ausführungsbeispiel, sind insgesamt nur 4 Dubletts vorgesehen. Auch bei diesem Ausführungsbeispiel ist auf das Dublett, dass in den Figuren 2-4 mit D3 bezeichnet worden ist, entfallen. Die genauen Linsendaten sind der nachfolgenden Tabelle 5 zu entnehmen.

Tabelle 5

M1656a

28/06/2002

					•
	· .	•		BRECHZAH	L 1/2 FREIER FLAECHE
Fl.	RADIEN	DICKEN	GLAES	ER 193.304 nn	d DURCHMESSER

0	0.000000000	22.812325200	N2	1.00000320	56.080
1	0.000000000	10.339145912	N2	1.00000320	61.040
2	1344.886802290	AS 15.88197116	69 IO2HL	1.56028895	63.970
3	232.178777938	15.628670502	N2	1.00000320	66.074
4	-537.599235732	AS 10.25125614	4 SIO2H	IL 1.56028895	67.146
5	357.600737011	39.221339825	N2	1.00000320	71.765
6	-107.956923549	18.404856395	SIO2H	L 1.56028895	73.446
7.	-243.717356229	0.700350683	N2 .	1.00000320	92.692
8	0.000000000	41.961272197	SIO2HL	1.56028895	108.723
9	-202.822623296	0.701099003	N2 ·	1.00000320	112.352
.10	908.396780928	46.105755859	SIO2H	L 1.56028895	127.495
11	-324.403526021	0.700000000	N2	1.00000320	129.122
12	272.374319621	70.961916034	SIO2H	L 1.56028895	129.626
13	-861,339949580	0.801352132	N2	1.00000320	124.293
14	189.599720148	87.814706985	SIO2HI	L 1.56028895	107.193
15	235.651582170	AS 33.93934801	0. N2	1.00000320	73.553
				•	

16	-167.950781585 23.127229402 SIO2HL	1.56028895	71.043
17	418.275060837AS 29.676213557 N2	1.00000320	66.843
. 18	-122.074492458 12.991654582 SIO2HL	1.56028895	65.012
19	225.914585773 27.597144000 N2	1.00000320	69.278
20	-207.944504375 9.625251661 SIO2HL	1.56028895	70.891
21	-222.237071915AS 12.259114879 N2	1.00000320	74.459
22	-143.306961785 25.742020969 SIO2HL	1.56028895	75.779
23	-171.350364563 0.700000000 N2	1.00000320	87.359
24	-584.950465544 30.430256525 SIO2HL	1.56028895	94.810
25	-322.926323860 0.700000000 N2	1.00000320	102.056
-26	-2074:519592980-18:436325366-SIO2HL	1.56028895	106.932
27	-454.899324547 0.700000000 N2	1.00000320	108.765
28	311.973161398 60.379264795 SIO2HL	1.56028895	116.799
29	-244.157709436 4.226375511 N2	1.00000320	116.691
30	-226.802865587AS 8.000000000 SIO2HL	1.56028895	115.226
31	581.003793889AS 33.843695716 N2	1.00000320	113.965
32	433.165006354AS 8.000000000 SIO2HL	1.56028895	117.646
33	220.638014434 6.160147896 N2	1.00000320	117.478
34	235.847612538 38.094085109 SIO2HL	1.56028895	119.548
35	2922.562377140 10.091385703 N2	1.00000320	119.635
36	828.603251335 34.242333007 SIO2HL	1.56028895	120.292
-37	-421.523524573 19.499093440 N2	1.00000320	120.075
38	-227.399216829 8.000000000 SIO2HL	1.56028895	119.391
39	-713.133778093 32.677482617 N2	1.00000320	122.273
40	0.000000000 -22.812325200 N2	1.00000320	124.721
41	477.077275979 54.887245264 SIO2HL	1.56028895	128.109
42	-302.959408554AS 9.015123458 N2	1.00000320	128.235
43	-259.248633314AS 8.000000000 SIO2HL	1.56028895	127.331
44	257.367927097 9.018964995 N2	1.00000320	132.095
45	301.442153248 62.427272391 SIO2HL	1.56028895	134.626
46	-415.709868667 0.700000000 N2	1.00000320	135.476
47	247.440229366AS 47.657128386 SIO2HL	1.56028895	133.887

48	-288949.44519500	0.70000000	0 N2	1.00000320	131.978
49	151.825283163	37.348129556	SIO2HL	1.56028895	112.363
50	293.987758399	0.700000000	N2	1.00000320	107.532
51	140.326981621	28.581518950	SIO2HL	1.56028895	94.765
52	219.719357959	0.700000000	N2	1.00000320	86.981
53	142.826791834	24.808199570	SIO2HL	1.56028895	79.406
54	283.110177788	7.914740800	N2	1.00000320	70.515
55	510.756323891	. 9.591341155	SIO2HL	1.56028895	64.645
56	266.825722219	0.722333492	N2	1.00000320	55.512
57	215.942664188	8.000000000	SIO2HL	1.56028895	53.165
-58-	72:787640467	7.718712927	N2	1.00000320	41.272
59	93.765259707	24.684737028	SIO2HL .	1.56028895	38.377
60	469.355888001	8.212437072	N2	1.00000320	26.099
61	0.000000000	0.000000000	N2	1.00000320	14.020
62	0.0000000000	0.000000000	1.00	000000 14.0	20

ASPHAERISCHE KONSTANTEN

FLAECHE NR. 2

- C0 0.0000
- Cl 1.52757338e-007
- C2 -1.39394902e-011
- C3 7.41376692e-016
- C4 -3.46945761e-019
- C5 8.95992656e-023
- C6 -1.64136955e-026
- C7 1.18641735e-030
- C8 0.0000000e+000
- C9 0.00000000e+000

D29

- C0 0.0000
- C1 4.00562871e-008
- C2 4.60196624e-012
- C3 -3.47640954e-016
- C4 1.69507580e-019
- C5 -3.89922208e-023
- C6 7.79027536e-027
- C7 -5.53241761e-031
- C8 0.00000000e+000
- C9---0:00000000e+000

FLAECHE NR. 15

- C0 0.0000
- C1 5.47524591e-008
- C2 5.05793043e-013
- . C3 3.05008775e-017
- C4 -1.98253574e-021
- C5 7.84443491e-025
- C6 -1.27239733e-028
- C7 6.73733553e-033
- C8 0.00000000e+000
- C9 · 0.00000000e+000

- CO 0.0000
- C1 -9:99718876e-008
- C2 -8.52059462e-012
- C3 -5.86845398e-016
- C4 -6.64124324e-020

- C5 -4.60657771e-024
- C6 -5.51712065e-028
- C7 0.00000000e+000
- C8 0.00000000e+000
- C9 0.00000000e+000

FLAECHE NR. 21

- C0 0.0000
- C1---1:77390890e-008
- C2 1.86160395e-012
- C3 2.57697930e-016
- C4 2.73779514e-020
- C5 4.36917581e-024
- C6 -1.21030389e-028
- C7 7.05508252e-032
- C8 0.00000000e+000
- C9 . 0.00000000e+000

- C0 .0.0000
- C1 -2.92222111e-009
- C2 6.98720386e-013
- C3 9.60282132e-018
- C4 4.51192034e-022
- C5 -8.63764902e-026
- C6 2.79307913e-030
- C7 -4.28143587e-035
- C8 0.00000000e+000
- C9 0.00000000e+000

NUM912

FLAECHE NR. 31

- CO ~0.0000
- C1 3.79088573e-009
- C2 1.54225743e-013
- C3 2.58122902e-018
- C4 7.06529922e-022
- C5 -4.65550297e-026
- C6 1.02837481e-030
- C7 2.54076903e-036
- C8 0.00000000e+000
- C9 0.00000000e+000

FLAECHE NR. 32

- C0 0.0000
- C1 -1.43835369e-008
- C2 9.53138635e-014
- C3 -7.72742465e-019
- C4 -5.55446815e-023
- C5 1.85136302e-026
- C6 -1.44110574e-030
- C7 3.72591227e-035
- C8 0.00000000e+000
- C9 0.00000000e+000

- C0 0.0000
- C1 -1.46322720e-009
- C2 -7.32982723e-014

- C3 -4.12559846e-018
- C4 1.10568402e-022
- C5 8.54286956e-027
- C6 -8.34588063e-031
- C7 1.97309537e-035
- C8 0.00000000e+000
- C9 0.00000000e+000

FLAECHE NR. 43

- CO 0.0000
- C1 -6.88182408e-009
- C2 1.49845458e-014
- C3 -3.68264031e-018
- C4 1.78132275e-022
- C5 6.62312346e-027
- C6 -8.68541514e-031
- C7 2.32817966e-035
- C8 0.00000000e+000
- C9 0.00000000e+000

FLAECHE NR. 47

- C0 0.0000
- C1 1.62217387e-009
- C2 -6.74169300e-014
- C3 1.20108340e-018
- C4 1.21664354e-023
- C5 -1.11444071e-027
- .C6 1.08479154e-031
- C7 -2.93513997e-036
- C8 0.00000000e+000

26 29

C9 0.00000000e+000

Die asphärischen Linsenoberflächen werden durch die Gleichung:

$$P(h) = \frac{h^2 / R}{1 + \sqrt{1 - (1 + C_0) \frac{h^2}{R^2}}} + C_1 h^4 + C_2 h^6 + \dots$$

beschrieben, wobei P(h) die Pfeilhöhe als Funktion des Radius h, also der Abstand von einer ebenen Fläche ist, die durch den Flächenscheitel geht und senkrecht zur optischen Achse orientiert ist. C_1 bis C_n sind die in den Tabellen angegebenen asphärischen Konstanten und C0 ist die konische Konstante. R ist der in den Tabellen angegebene Scheitelradius.

Bei der Frage nach dem für die Belichtung im Resist noch erträglichen Kontrastabfall, zeigt sich, dass der Kontrastabfall durch den Farblängsfehler eines Lithographieobjektives deutlich beeinflusst wird. Um die Bandbreite eines Systems über verschiedene Aperturen, Wellenlängen, Materialien und Strukturbreiten zu ermitteln, werden folgende maximale Zerstreuungskreise, die durch den Farblängsfehler induziert werden, vorgeschlagen:

Durchmesser des Zerstreuungskreises < 2,2 x Strukturbreite und vorzugsweise

Durchmesser des Zerstreuungskreises < 2,0 x Strukturbreite

Der chromatisch induzierte Zerstreuungskreis soll bei maximaler Apertur und bei einem $\Delta\lambda$ von der Hälfte der Lichtquellenbandbreite zur mittleren Arbeitswellenlänge ermittelt werden.

In der nachfolgenden Tabelle wurde die Bandbreite eines Systems für folgendes Verhältnis ermittelt:

Durchmesser des Chromatischen Zerstreuungskreises = 2,1 * Strukturbreite, dies ergibt einen Kontrastabfall von etwa 6,5% des polychromatischen Systems zum monochromatischen System für Gitterstrukturen.

P35

Die Strukturbreite wurde nach der folgenden Formel bestimmt:

Strukturbreite =
$$\frac{\lambda * K_1}{NA}$$
.

Dabei wurde ein K₁ von 0,32 gewählt. Der K₁ Wert variiert sinnvoller Weise zwischen 0,27 und 0,35. Die Kennziffer KCHL kann den Vergleich zwischen unterschiedlichen refraktiven Lithographiedesigns herstellen bezüglich der Erzeugung des chromatischen Längsfehlers unter den Bedingungen Bildfeld, Bandbreite der Lichtquelle und Materialdispersion der verwendeten Linsen. Besteht das Objektiv nur aus einem Material wird nur diese eine Materialdispersion benutzt. Besteht das Objektiv aus mehreren Materialien erhält jede Linse ein synthetisches Ersatzmaterial mit einer Brechzahl wie bisher, aber einer einheitlichen wählbaren Dispersion zur Errechnung des Ersatz CHL.

$$KCHL = \frac{CHL[nm]}{\Delta \lambda [nm] * (\frac{\Delta n}{n-1}) * y \max[nm]}$$

CHL ist der chromatische Längsfehler

Δλ ist das Bandbreitenintervall

Y'max ist der maximale Bildfelddurchmesser.

Vorteilhafterweise gibt man die numerischen Werte für CHL, Δλ und Y'max alle in nm ein, für Δλ wählt man beispielsweise einen Wert von 1nm. Um den Stand der Technik zu dokumentieren wurden aus der WO 01/50171 A1 die Beispiel m 1159a repräsentiert einen ganz typischen KCHL Wert von 6,07 der nur in ganz engen Grenzen von allen refraktiven Lithographieobjektiven variiert. Ein so hoher KCHL Wert von 6,64 für das Bespiel mit Bezeichnung m 1450a ist als Ausnahme nach oben gezeigt.

Werte deutlich unter 6,0 werden erstmalig mit den in hier gezeigten Ausführungsbeispielen erreicht. Insbesondere im Beispiel m 1656a wurde ein extrem kleiner KCHL bewiesen. (KCHL = 4,71) Dieser ermöglicht es erstmalig für 193 nm und etwa 70nm Strukturbreite nur SiO2 als Linsenmaterial einzusetzen. Der völlige Verzicht auf CaF₂ bei 70nm Strukturen und das Reduzieren des CaF₂ Volumen für noch kleinere Strukturen ist enormer wirtschaftlicher Vorteil. Die Objektiv hier gezeigter Bauart besitzen:

Einen KCHL Wert von < 5,3 vorzugsweise

einen KCHL Wert von < 5,0 und ganz bevorzugt einen

KCHL Wert von < 4,8

Bezugszeichenliste:

- 1 Projektionsbelichtungsanlage
- 3 Beleuchtungseinrichtung
- 5 Projektionsobjektiv
- 7 optische Achse
- 9 Maske
- 11 Maskenhalter
- 13 Bildebene
- 15 Wafer
- 17-Substrathalter
- 19 Systemblende.
- 21 Linsenanordnung
- 23 Lichtbündel
- 25 größter Lichtbündeldurchmesser
- 27 Lichtbündeldurchmesser
- 29 erste Taille

Patentanpsrüche

- 1. Refraktives Projektionsobjektiv für die Mikrolithographie mit einer Linsenanordnung bei dem alle Linsen aus einem Material bestehen und das eine bildseitige numerische Apertur (NA) von größer 0,7 aufweist, dadurch gekennzeichnet, dass das die Linsenanordnung (21) transmittierende Lichtbündel (23) im Bereich vor einer in der Linsenanordnung (21) angeordneten Systemblende (19) auf der Länge gleich dem größten Lichtbündeldurchmesser (25) oder des maximalen Linsendurmessers in der Linsenanordnung (21) größer als 85 % des größten Lichtbündeldurchmessers (25) oder des maximalen Linsendurchmessers ist.
- Refraktives Projektionsobjektiv für die Mikrolithographie für eine Belichtungswellenlänge von kleiner 300nm und vorzugsweise einer numerischen Apertur von mindestens 0,8, dadurch gekennzeichnet, dass alle Linsen aus einem Material bestehen und der Kennwert KCHL kleiner oder gleich 5,5, vorzugsweise kleiner oder gleich 5,0 und besonders bevorzugt 4,8 beträgt, wobei für den Kennwert KCHL gilt

$$KCHL = \frac{CHL[nm]}{\Delta \lambda [nm]^* (\frac{\Delta n}{n-1})^* y \max[nm]}$$

CHL ist der chromatische Längsfehler

Δλ ist das Bandbreitenintervall

Y'max ist der maximale Bildfelddurchmesser.

- Refraktives Projektionsobjektiv nach Anspruch 1 oder 2, das eine zwischen zwei Bäuchen angeordnete erste Taille aufweist, dadurch gekennzeichnet, dass nach dieser ersten Taille (29) mindestens 4 Dubletts (D1-D5), bestehend aus einer Negativlinse und einer Positivlinse, angeordnet sind.
- 4. Refraktives Projektionsobjektiv nach mindestens einem der vorangegangenen Ansprüche, das eine zweite Taille aufweist, dadurch gekennzeichnet, dass die zweite Taille (UG3b)

durch zwei aufeinanderfolgende Negativlinsen gebildet wird, die zwischen zwei Positivlinsen angeordnet sind, wobei die Positivlinsen jeweils auf der der jeweiligen Negativlinse der Taille (UG3b) zugewandten Seite eine konvexe Linsenoberfläche aufweisen.

- 5. Refraktives Projektionsobjektiv nach Anspruch 4, dadurch gekennzeichnet, dass in der zweite Taille (UG3b) der Lichtbündeldurchmesser (23) bzw. der Linsendurchmesser in der zweiten Taille mindestens 85 % des maximalen Linsendurchmessers bzw. Lichtbündeldurchmessers (25) beträgt.
- Refraktives Projektionsobjektiv nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass nach der ersten Taille (LG2) vier Dupletts (D1, D3, D4, D5) angeordnet sind, die aus einer Positivlinse, auf die direkt eine Negativlinse folgt, bestehen.
- Refraktives Projektionsobjektiv nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Abstand zwischen den zueinander gewandten Linsenoberflächen der Dupletts (D1-D5) kleiner als 10 % des gemittelten Linsendurchmessers des jeweiligen Dupletts ist.
- 8. Refraktives Projektionsobjektiv nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die zueinander gewandten Linsenoberflächen von mindestens drei Dupletts einen Anstand aufweisen, der kleiner als 10 mm ist.
- 9. Refraktives Projektionsobjektiv nach mindestens einem der vorangegangen Ansprüche, dadurch gekennzeichnet, dass die ersten beiden Linsen der Linsenanordnung (21) negative Brechkraft aufweisen und zum Objekt hin durchgebogen sind.
- 10. Projektionsobjektiv, dass in drei Linsengruppen unterteilbar ist, wobei durch eine erste Linsengruppe, die positive Brechkraft aufweist, ein erster Bauch gebildet wird und durch eine zweite sich anschließende Linsengruppe, die negative Brechkraft aufweist, eine Taille gebildet wird, wobei auf diese zweite Linsengruppe eine lang gestreckte hintere

Linsengruppe folgt, in der die Systemblende 19 angeordnet ist und die sich über 60 % der Länge des Projektionsobjektives erstreckt.

- 11. Refraktives Projektionsobjektiv nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die erste Taille (29) aus drei Negativlinsen besteht.
- 12. Refraktives Projektionsobjektiv nach mindestens einem der vorangegangen Ansprüche, dadurch gekennzeichnet, dass die ersten drei aufeinander folgenden Linsen (EG1) negative Brechkraft aufweisen.
- 13. Projektionsbelichtungsanlage der Mikolithographie, dadurch gekennzeichnet, dass die Projektionsbelichtungsanlage (1) ein Projektionsobjektiv (5) mit einer Linsenanordnung (21) nach mindestens einem der vorangegangen Ansprüche umfaßt.
- 14. Verfahren zur Herstellung mikrostrukturierter Bauteile, bei dem ein mit einer lichtempfindlichen Schicht versehenes Substrat (15) mittels einer Maske (9) und einer Projektionsbelichtungsanlage (1) mit einer Linsenanordnung (21) nach mindestens einem der vorangegangenen Ansprüche durch ultraviolettes Laserlicht belichtet wird und gegebenenfalls nach Entwicklung der Lichtempfindlichen Schicht entsprechend einem auf der Maske (9) enthaltenem Muster strukturiert wird.

1/6

FIG.1

12:20

