TEAM 1 (REX): Milestone 2

Preston Ching, Marcel Hedman, Nam Luu, Owen Schafer

Agenda

Problem Statement

Motivation, Scope of Work, Lit Review

Baseline Model

Non-Submarket and Submarket Approaches

Diving into the Data

Data Sources and Integration

04

Developed Model

Submarket Hierarchical Approach

Problem -01 Problem – Statement

Motivation, Scope of Work

Motivation

Industry Opportunity

\$9.6 trillion real estate market has limited technology disruption.

Price Indices

The NAR and Zillow only provide price indices which are noisy metrics due to spreads and approvals.

Non-Granular

Current solutions only provide granularity at the state or city level.

Scope of Work

Proposed Model Challenges Success Metrics Our aim is to predict **demand** No clear definition of Benchmark against and supply by building a demand and supply non-Bayesian Bayesian submarkets target variables baseline models **hierarchical model** in the (with and without Fixing or varying the Denver Market submarkets) number of submarkets Accuracy and AUC on testing sets

Literature Review

01	Fall 2020 IACS Project		Motivates measures of demand and supply Top-down approach (macroeconomic / census)
02	Hedonic Valuation with Submarkets	:	Motivates use of latent variable submarkets Bottom-up approach but still a price index
03	Our Model: Hedonic Demand and Supply	•	Assumes measures of demand and supply are functions of the homes' attributes

Diving Into the Data

Data Sources and Integration

Datasets

Data Processing

Imbalanced dataset

Baseline 13 Model

Non-Submarket and Submarket

What We are Predicting

GOAL

DETAIL

Demand

Predicted probabilities of house being sold given that it was listed in a time period

Evaluated using accuracy and ROC-AUC

Overview of Models Developed

1

Non-submarket baseline

Parametric and non-parametric approaches

Overview of Models Developed

1

Non-submarket baseline

Parametric and non-parametric approaches

2

Submarket baseline

Naively assigning to submarkets by feature similarity

Overview of Models Developed

1

Non-submarket baseline

Parametric and non-parametric approaches

2

Submarket baseline

Naively assigning to submarkets by feature similarity 3

Developed models

Bayesian approaches

Non-submarket Baseline

Incorporate new dataset from REX

3 layers fully-connected network

Low ROC-AUC

	Test accuracy	ROC-AUC
Logistic Regression	0.71	0.54
Random Forest	0.71	0.5
Neural Network	0.81	0.51

Submarket Baseline

5 distinct clusters from K-means

5 distinct models in line with **hedonic** assumptions

	Test accuracy	ROC-AUC
Logistic Regression	0.72	0.55
Neural Network	0.68	0.58

Weighted average across submarkets

O4 Developed Model

Submarket Hierarchical Approach

Model Hierarchy

Submarket Latent Variable

Model learns submarket classification and fit to observed data simultaneously

Identifies optimal submarket classification for most accurate prediction

Developed Model

Same dataset as baseline models

Bayesian and frequentist hierarchy implementations

Similar accuracies and ROC-AUC to baselines

	Test accuracy	ROC-AUC
pymc3	0.72	0.54
EM	0.73	0.57

Next Steps

01	Summarize Lessons Learned	 Imbalanced dataset is a barrier to accurate prediction Hedonic assumption may not hold
02	Augment data with macro features	 Known from past work to predict supply and demand well Allows submarkets to weight each macro factor differently
03	Handle Imbalance	Simulate new data for less class imbalance

Q&A

Acknowledgements:

- Zona Kostic
- Will Fried
- Chris Tanner

Developed Model

Developed Model

Baseline Model

Days on Market

We modelled discretized DOM as a demand proxy

Non-time series approach

Time interval

Predicted probabilities of house being sold given that it was listed in a time period

In-line with developed model approach

