Data Science Bootcamp

Machine Learning non supervisé

Cas d'usage du ML non supervisé

- Réduction de dimensions → Compression de données
- Clustering → Diviser les données en groupes cohérents

Classification vs. Clustering

KMeans

L'algorithme KMeans

L'algorithme **KMeans** sépare les données en groupe de variance égale, en minimisant un critère appelé inertie (**inertia**) ou distance-intra-cluster (**wcss: within- cluster sum-of-squares**)

Source: Sklearn

KMeans Algorithm

Principe

Etape 1 – Initialisation de K clusters

Etape 2 - Calcul des centroïdes

Etape 3 – Assignation des points au centroïde le plus proche

Etape 2 – Calcul des centroïdes

Etape 3 – Assignation des points au centroïde le plus proche

Etape 2 – Calcul des centroïdes

Etape 3 – Assignation des points au centroïde le plus proche

Etape 4 – Convergence : les clusters ne changeront plus

Comment choisir K, le nombre de clusters?

Deux méthodes complémentaires

- Elbow → See if data points within a cluster are close from the centroid
- Silhouette > See if clusters are far from each other

Elbow

 $WCSS = D(+, \square) + D(+, \square) + D(+, \square)$

Où D() est la distance euclidienne entre chaque point et le centroïde de son cluster.

Elbow - WCSS pour K=1

Elbow - WCSS pour K=3

Elbow - WCSS pour K=4

WCSS = D(
$$\clubsuit$$
, \blacksquare) + D(\clubsuit , \blacksquare) + D(\clubsuit , \blacksquare)

Où D() est la distance euclidienne entre chaque point et le centroïde de son cluster.

Elbow – Tracer WCSS en fonction de K

Silhouette

$$\frac{b^i - a^i}{max(a^i, b^i)}$$

Où

a → distance moyenne entre le point i et tous les points du même cluster b → distance moyenne entre le point i et tous les points du cluster le plus proche

Silhouette

- Proche de 0 → Clusters très proches les uns des autres
- Proche de 1 → Clusters très éloignés les uns des autres

DBSCAN

Une approche différente

Algorithme basé sur la notion de densité

- DBSCAN crée des clusters correspondant à des zones à forte densité de points
- Pas besoin de choisir le nombre de clusters K :
 DBSCAN le fait automatiquement

Gestion des outliers : les points isolés sont rejetés

- Minimum Sample ⇒ Nombre minimal d'observations voisines pour qu'un point soit considéré « core »
- Epsilon ⇒ Rayon dans lequel on considère qu'un point est « voisin »

Example - Define min_sample & eps

Example - Take observation & define core samples

Example - Fast Forward

Example - Define outliers

Example - Define outliers

Example - Define outliers

Comment choisir min_sample & eps?

- Low eps & Low min_sample → High outliers sensitivity
- High eps & High min_sample → Low outliers sensitivity

- Low eps & High min_sample → High density clusters
- High eps & Low min_sample → Low density clusters
- Low eps & Low min_sample → High outliers sensitivity
- High eps & High min_sample → Low outliers sensitivity

Data ScienceBootcamp

Questions

