

A silver halide color photographic/light-sensitive material for movie, comprising a support having thereon at yellow color-forming light-sensitive silver least one halide emulsion layer, at least one cyan color-forming light-sensitive silver halide emulsion layer, at least one light-sensitive magenta color-forming silver emulsion layer, and at least one light-insensitive noncolor forming hydrophilic col/oid layer, wherein at least silver halide emulsion color-forming cyan contains at least one cyan dye-forming coupler selected from the compounds represented by the following formula [C-1] and at least one light-insensitive non-color forming hydrophilic colloid layer is positioned between the support and a light-sensitive/silver halide emulsion layer most adjacent to the support:

$$\begin{array}{c|c}
R^1 & R^2 \\
N & NH \\
Z = Z^b
\end{array}$$

wherein Z^a and Z^b each represents $-C(R^3)=$ or -N=, provided that either one of Z^a and Z^b is -N= and another is $-C(R^3)=$, R^1 and R^2 each represents an electron attractive group having a Hammett's substituent constant σ_p value of 0.20 or more, provided that the sum of σ_p values of R^1 and R^2 is 0.65 or

more, R³ represents hydrogen atom or a substituent, X represents hydrogen atom or a group capable of splitting off upon coupling reaction with an oxidation product of an aromatic primary amine color developing agent, and the group represented by R¹, R², R³ or X may assume a divalent group and combine with a divalent or greater polymer or a polymer chain to form a homopolymer or a copolymer.

A silver halide color photographic light-sensitive material for movie, comprising a transparent support having thereon at least three kinds of light-sensitive hydrophilic colloid layers each containing any one of yellow, magenta and cyan dye-forming couplers and containing silver halide emulsion grains different from each other in the color sensitivity, and at least one light-insensitive hydrophilic colloid layer, wherein any one layer contains at least one compound represented by formula [XI], at least one light-insensitive hydrophilic colloid layer contains a solid fine particle dispersion of a dye represented by formula [I], and said silver halide color photographic light-sensitive material has a film pH of from 4.6 to 6.4:

$$\begin{bmatrix} R_2 & R_3 & L_1 + L_2 = L_3 \end{pmatrix}_{m} & R_6 & R_5 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

wherein R_1 and R_4 each independently represents hydrogen

atom, an aliphatic group, an aromatic group, a heterocyclic group, $-NR_7R_8$, $-NR_7CONR_7R_8$, $-NR_8COR_9$ or $-NR_8SO_2R_9$, R_2 and R_5 each independently represents hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, a sulfo group, $-NR_7R_8$, $-NR_8COR_9$, $-NR_8SO_2R_9$, $-NR_7CONR_7R_8$, $-CO_2R_7$, $-CONR_7R_8$, $-COR_9$, $-SO_2R_9$ or $-SO_2NR_7R_8$, R_3 and R_6 each independently represents $-OR_7$, $-CO_2R_7$, $-COR_9$, $-CONR_7R_8$, $-NR_7R_8$, $-NR_8COR_9$, $-NR_8SO_2R_9$, $-NR_7CONR_7R_8$, $-SO_2R_9$, $-SO_2NR_7R_8$ or a cyano group (wherein R_7 and R_8 each independently represents hydrogen atom, an aliphatic group or an aromatic group, R_9 represents an aliphatic group or an aromatic group, R_9 and R_9 or R_9 and R_9 may be combined with each other to form a 5-or 6-membered ring), L_1 , L_2 and L_3 each independently represents a methine group, R_9 represents a methine group, R_9 represents a n-valence cation, and R_9 represents 1, 2 or 3:

$$D-(X)_{y} \qquad [I]$$

wherein D represents a compound residue having a chromophore, X represents a dissociative hydrogen atom or a group having a dissociative hydrogen atom, and y represents an integer of from 1 to 7.