Worksheet 1: SMP

Rin Meng 51940633 Kevin Zhang 10811057 Mika Panagsagan 29679552

January 14, 2025

1 Build intuition through examples.

From this point onwards, we will read $\mathbf{Prefers}(x,y)$ as x prefers y over some other option.

- 1. Small and trivial instances of the problem, consider these instances:
 - (a) Only one student s and one employer e:
 - Students: s_1
 - Employers: e_1
 - Preferences:
 - A. Prefers (s_1, e_1)
 - B. Prefers (e_1, s_1)
 - Triviality: Only one student and one employer, so there is only one match.
 - (b) Equal preferences for all students and employers:
 - i. Students: s_1, s_2
 - ii. Employers: e_1, e_2
 - iii. Preferences:
 - A. Prefers $(s_1, e_1 \vee e_2)$
 - B. **Prefers** $(s_2, e_1 \vee e_2)$
 - C. Prefers $(e_1, s_1 \vee s_2)$

- D. **Prefers** $(e_2, s_1 \vee s_2)$
- iv. Triviality: All students and employers have indifferent preferences, so there are multiple stable matchings.
- (c) Perfectly matched preferences between students and employers:
 - i. Students: s_1, s_2
 - ii. Employers: e_1, e_2
 - iii. Preferences:
 - A. Prefers (s_1, e_1)
 - B. **Prefers** (s_2, e_2)
 - C. Prefers (e_1, s_1)
 - D. Prefers (e_2, s_2)
 - iv. Triviality: All are perfectly matched, therefore there is only one stable matching.
- 2. Potential solutions to these instances:
 - (a) Only one student s and one employer e:
 - The only stable matching is (s_1, e_1) .
 - This solution is trivial but is optimal as well.
 - (b) Equal preferences for all students and employers:
 - There are multiple stable matchings: $(s_1, e_1), (s_2, e_2)$ and $(s_1, e_2), (s_2, e_1)$.
 - This solution is optimal, but not unique.
 - (c) Perfectly matched preferences between students and employers:
 - The only stable matching is $(s_1, e_1), (s_2, e_2)$.
 - This solution is optimal and unique.

There are many ways to conclude if a solution is better. When we consider fairness and satisfaction, we may value **Instance** \mathbf{b} more than others. However, when we consider uniqueness and optimality, we may value **Instance** \mathbf{c} more than others.

2 Developing a Formal Problem Specification

1. Notation for describing the problem instance.

- (a) Let $S = \{s_1, s_2, \dots, s_n\}$ be the set of students.
- (b) Let $E = \{e_1, e_2, \dots, e_n\}$ be the set of employers.
- (c) Student's preference list $P(s_i)$, which is a ranked list of employers from most preferred to least preferred.
- (d) Employer's preference list $P(e_j)$, which is a ranked list of students from most preferred to least preferred.
- (e) A matching is a bijection $M: S \to E$, or a set of pairs $M = \{(s, e)\}$ where s and e are matched uniquely.
- (f) A blocking pair (s_i, e_j) is a pair of student-employer that prefer each other over their current match.
 - i. s_i prefers e_i over $M(s_i)$.
 - ii. e_i prefers s_i over $M(e_i)$.

2. Notation for describing a potential solution

- (a) A set of potential matches $M = \{(s_1, e_1), (s_2, e_2)\}$ of student-employer pairs.
- (b) Valid if and only if every student and employer is assigned exactly one (uniqueness).

3. Good solutions

(a) Optimality

- i. A solution is student-optimal if it provides the best possible match for every student.
- ii. A solution is employer-optimal if it provides the best possible match for every employer.

(b) Uniqueness

- i. If a unique stable matching exists, it is the only correct solution.
- ii. If multiple stable matchings exist, we will pick the one that maximizes a criterion (e.g., student happiness, fairness).

(c) Stability

i. No blocking pairs exist in the matching.

- ii. A matching M is stable if there exists no student-employer pair (s_i, e_j) such that
 - A. s_i prefers e_j over $M(s_i)$, the employer currently matched with s_i .
 - B. e_j prefers s_i over $M(e_j)$, the student currently matched with e_j .

3 Identify similar problems. What are the similarities?

- 1. Marriage Problem (Stable Marriage Problem), where each men has their own primary choice, each women has their own primary choice, and each person has a preference list.
- 2. Admission-Student problem, where each student has their own primary choice for colleges, and each college has their own primary choice for students, each party also has a preference list.

4 Evaluate simple algorithmic approaches, such as brute force.

- 1. Brute force algorithm
 - (a) Each student has a preference list of employers, and each employer has a preference list of students.
 - (b) Employer-optimal choice: For all employers $E = e_1, e_2, \ldots, e_n$ we will access their preference list $P(e_i)$, add all the match to another list M. looping through all of the students $S = s_1, s_2, \ldots, s_n$ and checking each of their own preference list $P(s_i)$ add all the match to another list M.
 - (c) Student-optimal choice: For all students $S = s_1, s_2, \ldots, s_n$ we will access their preference list $P(s_i)$, and match it by looping through all of the employers $E = e_1, e_2, \ldots, e_n$ and checking each of their own preference list $P(e_i)$, add all the match to another list M.

- 2. (a) Bound by the time t(n) we can say that our worst-case scenario of our brute force algorithm is O(n!).
 - The number of ways to match n employers and n students is n!.
 - For each employer, we must check each student's preference list and for each student, we must check each employer's preference list, and that is $O(n^2)$.
 - This results in a worst-case time complexity of $O(n! \cdot n^2)$.
 - Since n! grows faster than n^2 , we can simplify this to O(n!).
 - (b) Each potential solution is a perfect matching between n employers and n students, therefore the total number of potential solutions is n!.
 - (c) Overall worst-case running time of the brute force will always be O(n!).
 - We generate n! potential solutions.
 - For each solution, we spend $O(n^2)$ time to check if it is stable.
 - Since generating a solution takes negligible time, compared to checking it, the dominant term is

$$O(n! \cdot n^2) = O(n^2)$$

- Since n! grows faster than n^2 , we can simplify this to O(n!).

Therefore, the brute force algorithm has a factorial time complexity of O(n!), which is extremely inefficient for large n.

5 Design a better algorithm.

We can do this by using the Gale-Shapley algorithm.

- 1. Input
 - (a) Two preference lists, one for students and one for employers.
 - (b) The number of students and employers, n.
- 2. Steps:

- (a) Initialization: Create an empty list of matched pairs. All applicants are initially unmatched, and all employers are initially unmatched.
- (b) Proposal Phase: Each unmatched applicant proposes to the first employer on their preference list who has not already rejected them.
- (c) Employer's response:
 - i. Each employer receives proposals and considers them:
 - If they are unmatched, they accept the proposal.
 - If they are already matched but prefer the new applicant over their current match, they reject the current match and accept the new proposal.
 - If they prefer their current match, they reject the new proposal.
- (d) Repeat: Applicants who have been rejected by all employers or who haven't yet been matched will propose to the next employer on their list.
- (e) Termination: The algorithm terminates when no applicants are left to propose or when everyone is matched. At this point, we have a stable matching.

3. Time complexity:

- (a) Time per proposal, each student proposes to at most n employers, and each employer receives at most n proposals, so the time per proposal is O(n).
- (b) Total time complexity, since there are n students and n employers, the total time complexity is $O(n^2)$.

4. Walkthrough:

- (a) Let n = 3, S be the student set, and E be the employer set, M be the matching set, and P be the preference list.
- (b) $S = \{s_1, s_2, s_3\}$ and $E = \{e_1, e_2, e_3\}, M = \emptyset$.
- (c) $P(s_1) = \{e_1, e_2, e_3\}, P(s_2) = \{e_2, e_1, e_3\}, P(s_3) = \{e_3, e_2, e_1\}.$
- (d) $P(e_1) = \{s_1, s_2, s_3\}, P(e_2) = \{s_2, s_3, s_1\}, P(e_3) = \{s_3, s_1, s_2\}.$

- i. s_1 proposes to e_1 , e_1 accepts.
- ii. s_2 proposes to e_2 , e_2 accepts.
- iii. s_3 proposes to e_3 , e_3 accepts.
- (e) Terminate: we the most stable matching, which priotiizes the students.

$$M = \{(s_1, e_1), (s_2, e_2), (s_3, e_3)\}$$

5. Challenges:

- (a) Let n = 3, S be the student set, and E be the employer set, M be the matching set, and P be the preference list.
- (b) $S = \{s_1, s_2, s_3\}$ and $E = \{e_1, e_2, e_3\}, M = \emptyset$.
- (c) $P(s_1) = \{e_2, e_3\}, P(s_2) = \{e_1, e_3\}, P(s_3) = \{e_2, e_1\}.$
- (d) $P(e_1) = \{s_1, s_2, s_3\}, P(e_2) = \{s_2, s_3, s_1\}, P(e_3) = \{s_3, s_1, s_2\}.$
 - i. s_1 proposes to e_2 , e_2 accepts.
 - ii. s_2 proposes to e_1 , e_1 accepts.
 - iii. s_3 proposes to e_2 , e_2 accepts.

$$M = \{(s_1, e_2), (s_2, e_1), (s_3, e_2)\}$$

- iv. Now we have to go to the employer's preference list, since there are two primary choice for student s_1 and s_3 , we have to reject one of them.
- v. e_1 stays the same, goes with s_2 .
- vi. e_3 rejects s_1 and accepts s_2 .
- vii. e_2 rejects s_2 and accepts s_3 .

$$M = \{(s_1, e_2), (s_2, e_1), (s_3, e_3)\}$$