Large time behaviour of finite state mean-field interacting particle systems

Sarath A Y Joint work with Rajesh Sundaresan

ECE Department, Indian Institute of Science

12 July 2020

- N particles.
- ▶ State of the *n*th particle at time *t* is $X_n^N(t) \in \mathcal{Z}$.

- N particles.
- ▶ State of the *n*th particle at time *t* is $X_n^N(t) \in \mathcal{Z}$.
- ▶ Certain allowed transitions: specified by a directed graph $(\mathcal{Z}, \mathcal{E})$.

- N particles.
- ▶ State of the *n*th particle at time *t* is $X_n^N(t) \in \mathcal{Z}$.
- ▶ Certain allowed transitions: specified by a directed graph $(\mathcal{Z}, \mathcal{E})$.
- Empirical measure at time t

$$\mu_N(t) = \frac{1}{N} \sum_{n=1}^N \delta_{X_n^N(t)} \in M_1(\mathcal{Z}).$$

- N particles.
- ▶ State of the *n*th particle at time *t* is $X_n^N(t) \in \mathcal{Z}$.
- ▶ Certain allowed transitions: specified by a directed graph $(\mathcal{Z}, \mathcal{E})$.
- Empirical measure at time t

$$\mu_N(t) = \frac{1}{N} \sum_{n=1}^N \delta_{X_n^N(t)} \in M_1(\mathcal{Z}).$$

- ► For each $(z, z') \in \mathcal{E}$, we have a function $\lambda_{z,z'} : M_1(\mathcal{Z}) \to [0, +\infty)$.
- Particle transitions: at time t, a $z \to z'$ transition occurs at rate $\lambda_{z,z'}(\mu_N(t))$. Mean-field interaction.

- N particles.
- ▶ State of the *n*th particle at time *t* is $X_n^N(t) \in \mathcal{Z}$.
- ▶ Certain allowed transitions: specified by a directed graph $(\mathcal{Z}, \mathcal{E})$.
- Empirical measure at time t

$$\mu_N(t) = \frac{1}{N} \sum_{n=1}^N \delta_{X_n^N(t)} \in M_1(\mathcal{Z}).$$

- ► For each $(z, z') \in \mathcal{E}$, we have a function $\lambda_{z,z'} : M_1(\mathcal{Z}) \to [0, +\infty)$.
- Particle transitions: at time t, a $z \to z'$ transition occurs at rate $\lambda_{z,z'}(\mu_N(t))$. Mean-field interaction.
- ▶ $\{(X_n^N(t), 1 \le n \le N), t \ge 0\}$ is a Markov process on \mathbb{Z}^N .

The empirical measure process μ_N

• $\{\mu_N(t), t \geq 0\}$ is also a Markov process on $M_1(\mathcal{Z})$ with infinitesimal generator

$$L^{N}f(\xi) = \sum_{(z,z')\in\mathcal{E}} N\xi(z)\lambda_{z,z'}(\xi) \left[f\left(\xi + \frac{\delta_{z'}}{N} - \frac{\delta_{z}}{N}\right) - f(\xi) \right].$$

The empirical measure process μ_N

• $\{\mu_N(t), t \geq 0\}$ is also a Markov process on $M_1(\mathcal{Z})$ with infinitesimal generator

$$L^{N}f(\xi) = \sum_{(z,z')\in\mathcal{E}} N\xi(z)\lambda_{z,z'}(\xi) \left[f\left(\xi + \frac{\delta_{z'}}{N} - \frac{\delta_{z}}{N}\right) - f(\xi) \right].$$

Typical behaviour of μ_N (mean-field limit): Let $\mu_N(0) \to \nu$ weakly as $N \to \infty$. Then $\{\mu_N(t), t \ge 0\}$ is "close to" the solution to the McKean-Vlasov equation:

$$\dot{\mu}(t) = \Lambda^*(\mu(t))\mu(t), \, \mu(0) = \nu.$$

The empirical measure process μ_N

• $\{\mu_N(t), t \geq 0\}$ is also a Markov process on $M_1(\mathcal{Z})$ with infinitesimal generator

$$L^{N}f(\xi) = \sum_{(z,z')\in\mathcal{E}} N\xi(z)\lambda_{z,z'}(\xi) \left[f\left(\xi + \frac{\delta_{z'}}{N} - \frac{\delta_{z}}{N}\right) - f(\xi) \right].$$

Typical behaviour of μ_N (mean-field limit): Let $\mu_N(0) \to \nu$ weakly as $N \to \infty$. Then $\{\mu_N(t), t \ge 0\}$ is "close to" the solution to the McKean-Vlasov equation:

$$\dot{\mu}(t) = \Lambda^*(\mu(t))\mu(t), \, \mu(0) = \nu.$$

Our interest: study of the large time behaviour of μ_N when the above ODE has multiple stable equilibria.

An Example: Interaction in WiFi networks

- ▶ *N* nodes accessing a common wireless medium.
- ▶ Interaction among nodes via the distributed MAC protocol.

An Example: Interaction in WiFi networks

- N nodes accessing a common wireless medium.
- Interaction among nodes via the distributed MAC protocol.
- ▶ State $X_n^N(t)$ represents aggressiveness of packet transmission.

Figure: Set of allowed transitions in WiFi example

- State evolution:
 - Becomes less aggressive after a collision.
 - Moves to the most aggressive state after a successful packet transmission.

A sample path of μ_N in WiFi example

Figure: Evolution of states in a WiFi network under the MAC protocol

▶ Multiple stable regions in the system. Transition between two stable region occur over large time durations.

A sample path of μ_N in WiFi example

Figure: Evolution of states in a WiFi network under the MAC protocol

- Multiple stable regions in the system. Transition between two stable region occur over large time durations.
- Goals:
 - ▶ Study large time behaviour of μ_N
 - \blacktriangleright Mixing time of μ_N
 - \triangleright Control μ_N to a desired equilibrium

Large deviations

- ▶ S: a metric space. $\{X_N\}_{N\geq 1}$ is a sequence of S-valued random variables.
- ▶ Roughly, $P(X_N \in A) \sim \exp\{-NI_A\}$ where $I_A = \inf_{x \in A} I(x)$.

Large deviations

- ▶ S: a metric space. $\{X_N\}_{N\geq 1}$ is a sequence of S-valued random variables.
- ▶ Roughly, $P(X_N \in A) \sim \exp\{-NI_A\}$ where $I_A = \inf_{x \in A} I(x)$.
- ► Consider μ_N as a trajectory-valued random variable

Large deviations

- ▶ S: a metric space. $\{X_N\}_{N\geq 1}$ is a sequence of S-valued random variables.
- ▶ Roughly, $P(X_N \in A) \sim \exp\{-NI_A\}$ where $I_A = \inf_{x \in A} I(x)$.
- ► Consider μ_N as a trajectory-valued random variable
- We want probability of deviations of μ_N from its typical trajectory

- $ightharpoonup au_n$: hitting time of μ_N in a given neighbourhood of K_i 's.
- ▶ Hitting time chain: $Z_n^N = \mu_N(\tau_n), n \ge 1.$

- $ightharpoonup au_n$: hitting time of μ_N in a given neighbourhood of K_i 's.
- ▶ Hitting time chain: $Z_n^N = \mu_N(\tau_n), n \ge 1.$
- $lackbox{Freidlin-Wentzell quasipotential $\tilde{V}:M_1(\mathcal{Z}) imes M_1(\mathcal{Z}) o \mathbb{R}_+$.}$
 - $ightharpoonup \tilde{V}(K_i, K_j)$: cost to go from K_i to K_j .

- $ightharpoonup au_n$: hitting time of μ_N in a given neighbourhood of K_i 's.
- ▶ Hitting time chain: $Z_n^N = \mu_N(\tau_n), n \ge 1.$
- lacksquare Freidlin-Wentzell quasipotential $ilde{V}:M_1(\mathcal{Z}) imes M_1(\mathcal{Z}) o \mathbb{R}_+.$
 - $ightharpoonup \tilde{V}(K_i, K_i)$: cost to go from K_i to K_i .
- ▶ One-step transition probability of Z^N : $P(K_i, K_i) \sim \exp\{-N\tilde{V}(K_i, K_i)\}.$

An entropy function

- $W(\xi) = \min_{1 \leq i \leq l} (W(K_i) + V(K_i, \xi)) \min_{1 \leq i \leq l} W_i.$
- ▶ Stationary distribution scales like $\wp_N(\xi) \sim \exp\{-NW(\xi)\}$.
- Under stationarity, we find μ_N to be in a neighbourhood of the set of minimisers of W, with very high probability.

Consider
$$\tilde{V} = \begin{pmatrix} 0 & 4 & 9 & 13 & 12 \\ 7 & 0 & 5 & 10 & 11 \\ 6 & 8 & 0 & 17 & 15 \\ 3 & 6 & 8 & 0 & 2 \\ 5 & 7 & 10 & 3 & 0 \end{pmatrix}$$

$$(K_1)$$

$$\left(K_{4}\right)$$

$$\left(K_{3}\right)$$

$$\left(K_{5}\right)$$

Consider
$$\tilde{V} = \begin{pmatrix} 0 & 4 & 9 & 13 & 12 \\ 7 & 0 & 5 & 10 & 11 \\ 6 & 8 & 0 & 17 & 15 \\ 3 & 6 & 8 & 0 & 2 \\ 5 & 7 & 10 & 3 & 0 \end{pmatrix}$$

Consider
$$\tilde{V} = \begin{pmatrix} 0 & 4 & 9 & 13 & 12 \\ 7 & 0 & 5 & 10 & 11 \\ 6 & 8 & 0 & 17 & 15 \\ 3 & 6 & 8 & 0 & 2 \\ 5 & 7 & 10 & 3 & 0 \end{pmatrix}$$

Consider
$$\tilde{V} = \begin{pmatrix} 0 & 4 & 9 & 13 & 12 \\ 7 & 0 & 5 & 10 & 11 \\ 6 & 8 & 0 & 17 & 15 \\ 3 & 6 & 8 & 0 & 2 \\ 5 & 7 & 10 & 3 & 0 \end{pmatrix}$$

Consider
$$\tilde{V} = \begin{pmatrix} 0 & 4 & 9 & 13 & 12 \\ 7 & 0 & 5 & 10 & 11 \\ 6 & 8 & 0 & 17 & 15 \\ 3 & 6 & 8 & 0 & 2 \\ 5 & 7 & 10 & 3 & 0 \end{pmatrix}$$

Consider
$$\tilde{V} = \begin{pmatrix} 0 & 4 & 9 & 13 & 12 \\ 7 & 0 & 5 & 10 & 11 \\ 6 & 8 & 0 & 17 & 15 \\ 3 & 6 & 8 & 0 & 2 \\ 5 & 7 & 10 & 3 & 0 \end{pmatrix}$$

Consider
$$\tilde{V} = \begin{pmatrix} 0 & 4 & 9 & 13 & 12 \\ 7 & 0 & 5 & 10 & 11 \\ 6 & 8 & 0 & 17 & 15 \\ 3 & 6 & 8 & 0 & 2 \\ 5 & 7 & 10 & 3 & 0 \end{pmatrix}$$

Consider
$$\tilde{V} = \begin{pmatrix} 0 & 4 & 9 & 13 & 12 \\ 7 & 0 & 5 & 10 & 11 \\ 6 & 8 & 0 & 17 & 15 \\ 3 & 6 & 8 & 0 & 2 \\ 5 & 7 & 10 & 3 & 0 \end{pmatrix}$$

Consider
$$\tilde{V} = \begin{pmatrix} 0 & 4 & 9 & 13 & 12 \\ 7 & 0 & 5 & 10 & 11 \\ 6 & 8 & 0 & 17 & 15 \\ 3 & 6 & 8 & 0 & 2 \\ 5 & 7 & 10 & 3 & 0 \end{pmatrix}$$

Large time behaviour

▶ Cycles are "very stable" subsets of $M_1(\mathcal{Z})$.

Theorem

Let π_1^k, π_2^k be k-cycles, $\pi_1^k \neq \pi_2^k$, and $K_i \in \pi_1^k$. Let $W = L \setminus \pi_1^k$. Given $\varepsilon > 0$, there exist $\rho > 0$ and $N_0 \ge 1$ such that for all $\rho_1 \le \rho$, $\nu \in \gamma_i \cap M_1^N(\mathcal{Z})$ and $N \ge N_0$, we have

$$\begin{split} \exp\{-N(\tilde{V}(\pi_1^k, \pi_2^k) - \tilde{V}(\pi_1^k) + \varepsilon)\} &\leq P_{\nu}(\mu_N(\hat{\tau}_W) \in \gamma_{\pi_2^k}) \\ &\leq \exp\{-N(\tilde{V}(\pi_1^k, \pi_2^k) - \tilde{V}(\pi_1^k) - \varepsilon)\} \end{split}$$

- Lower bound: construct a specific path.
- ▶ Upper bound: Use strong Markov property and the uniform LDP of μ_N .

Mixing of $\mu_{\it N}$

- ▶ Recall that $\wp_N(\xi) \sim \exp\{-NW(\xi)\}$.
- ▶ Suppose that $W(K_3) = \min_{i \neq 3} W(K_i)$.
- \blacktriangleright μ_N mixes well if it reaches a neighbourhood of K_3 .

Mixing of μ_N

- ▶ Recall that $\wp_N(\xi) \sim \exp\{-NW(\xi)\}$.
- ▶ Suppose that $W(K_3) = \min_{i \neq 3} W(K_i)$.
- \blacktriangleright μ_N mixes well if it reaches a neighbourhood of K_3 .

Mixing of $\mu_{\it N}$

- ▶ Recall that $\wp_N(\xi) \sim \exp\{-NW(\xi)\}$.
- ▶ Suppose that $W(K_3) = \min_{i \neq 3} W(K_i)$.
- \blacktriangleright μ_N mixes well if it reaches a neighbourhood of K_3 .

Mixing of μ_N

- ▶ Recall that $\wp_N(\xi) \sim \exp\{-NW(\xi)\}$.
- ▶ Suppose that $W(K_3) = \min_{i \neq 3} W(K_i)$.
- \blacktriangleright μ_N mixes well if it reaches a neighbourhood of K_3 .

Mixing of $\mu_{\it N}$

- ▶ Recall that $\wp_N(\xi) \sim \exp\{-NW(\xi)\}$.
- ▶ Suppose that $W(K_3) = \min_{i \neq 3} W(K_i)$.
- \blacktriangleright μ_N mixes well if it reaches a neighbourhood of K_3 .

Mixing of μ_N

Define

$$\begin{split} \Lambda &= \min \{ \tilde{V}(g) : g \in G(i), i \in L \} \\ &- \min \{ \tilde{V}(g) : g \in G(i,j), i, j \in L, i \neq j \}. \end{split}$$

Theorem

Given $\delta>0$, there exist $\varepsilon>0$ and $N_0\geq 1$ such that for all $\nu\in M_1^N(\mathcal{Z})$ and $N\geq N_0$

$$|E_{\nu}(f(\mu_{N}(T))) - \langle f, \wp_{N} \rangle| \leq ||f||_{\infty} \exp\{-\exp(N\varepsilon)\},$$

where $T = \exp\{N(\Lambda + \delta)\}$ and $f \in B(M_1(\mathcal{Z}))$.

Proof via the estimates of large time behaviour.

Asymptotics of the second eigenvalue

▶ If μ_N is reversible (i.e. L^N is self-adjoint in $L^2(\wp_N)$), spectral decomposition of L^N tells us that

$$E_{\nu}f(\mu_{N}(t)) = \langle f, \wp_{N} \rangle + \sum_{k>2} e^{-t\lambda_{k}^{N}} (f, u_{k}^{N}) u_{k}^{N}(\nu),$$

▶ Mixing time of μ_N is governed by λ_2^N .

Theorem

$$\lim_{N\to\infty}\frac{1}{N}\log\lambda_2^N=-\Lambda.$$

- Fix c > 0. Start with $N_0 = \min\{n \in \mathbb{N} : \exp\{nc\} 2 \ge 0\}$ particles.
- Let $t_{N_0} = 0$. Add a particle at times $t_N = \exp\{Nc\} 2$, $N > N_0$, with a certain state.
- $ightharpoonup \bar{\mu}$: the resulting process.

- Fix c > 0. Start with $N_0 = \min\{n \in \mathbb{N} : \exp\{nc\} 2 \ge 0\}$ particles.
- Let $t_{N_0} = 0$. Add a particle at times $t_N = \exp\{Nc\} 2$, $N > N_0$, with a certain state.
- $ightharpoonup \bar{\mu}$: the resulting process.
- ▶ Small c: particles are added too frequently; $\bar{\mu}$ could get trapped in a local minimum of the entropy function depending on $\bar{\mu}(0)$.

- Fix c > 0. Start with $N_0 = \min\{n \in \mathbb{N} : \exp\{nc\} 2 \ge 0\}$ particles.
- Let $t_{N_0} = 0$. Add a particle at times $t_N = \exp\{Nc\} 2$, $N > N_0$, with a certain state.
- $ightharpoonup \bar{\mu}$: the resulting process.
- Small c: particles are added too frequently; $\bar{\mu}$ could get trapped in a local minimum of the entropy function depending on $\bar{\mu}(0)$.
- ▶ Large c: sufficient time for exploration, $\bar{\mu}$ converges to a global minimum of the entropy function.

- Fix c > 0. Start with $N_0 = \min\{n \in \mathbb{N} : \exp\{nc\} 2 \ge 0\}$ particles.
- Let $t_{N_0} = 0$. Add a particle at times $t_N = \exp\{Nc\} 2$, $N > N_0$, with a certain state.
- $ightharpoonup \bar{\mu}$: the resulting process.
- ▶ Small c: particles are added too frequently; $\bar{\mu}$ could get trapped in a local minimum of the entropy function depending on $\bar{\mu}(0)$.
- ▶ Large c: sufficient time for exploration, $\bar{\mu}$ converges to a global minimum of the entropy function.

Theorem

For $c > c^*$ and any $\rho_1 > 0$,

$$P_{0,
u}(\bar{\mu}(t)\in\gamma_{i_0})\to 1$$

as $t \to \infty$, uniformly for all $\nu \in M_1^{N_0}(\mathcal{Z})$.

Conclusion

- Study of large time behaviour of finite state mean-field interacting particle systems
 - Exit time estimates. Decomposition into cycles.
 - ▶ Convergence of μ_N to its invariant measure.
- ► Scaling of $\lambda_2^N \sim \exp\{-N\Lambda\}$ when μ_N is reversible.
- Convergence of a controlled process to the global minimum of a certain entropy functional.

Reference: arXiv:1909.03805

Thank You