CS2323: Computer Architecture, Autumn 2023

Homework-1: RISC-V Assembly

- 1. Write an assembly instruction to achieve the given functionality, defined using C-language syntax (only 1 instruction to be used). Explain in brief. [6 marks]
 - a. x8 = x5 5
 - b. x5 = x3 * 8
 - c. x19 += x10
 - d. ++x15
 - e. x9 = x15/4
 - f. x12 = 24
- 2. Consider an array M consisting of 8 byte integers. The base address of M is stored in register x5. Write the assembly code that achieves each operation given below. [1+1+1+2+2 marks]
 - a. M[12] = M[20] + 100
 - b. M[20] ++
 - c. swap M[5] and M[12]
 - d. Make the first 32-bits (from MSB side) of M[4] as 0
 - e. Swap the most significant 32-bits of M[2] with its least significant 32-bits
- 3. Write the following decimal numbers in their 2's complement representation, using 8-bits. Show your calculations. [4 marks]
 - a. +23
 - b. -1
 - c. +255
 - d. -128
- 4. Write the equivalent decimal number for given numbers in 2's complement format. Show your calculations. [3 marks]
 - a. 11010100
 - b. 00101011
 - c. 11111110

Submission instructions:

- 1. Create a pdf file (write and scan) for the questions asked above. Be to the point without too much of explanation. Ensure that the scan/picture is readable.
- 2. The submission should be entirely your work
- The pdf file should be named YOUR ROLLNUM.pdf (e.g., CSYYBTECHXXXXX.pdf)
- 4. Submit the pdf file
- 5. Deadline: 23-Sep-2023, 11.59 pm

Solutions:

1. a) $x8 = x5 - 5 \Rightarrow$

This instruction can be seen as adding -5 to x5 and updating that to the value of x8. So, the assembly instruction would be,

b)
$$x5 = x3 * 8 \Rightarrow$$

This instruction can be seen as multiplying 8 to x3 and updating that to the value of x5. Multiplying 8 to x3 would mean shifting the bits in x3 to the left 3 times.

So, the assembly instruction would be,

c) $x19 += x10 \Rightarrow$

This instruction is adding x10 to x19. So, the assembly instruction would be,

d) ++x15 ⇒

This instruction means adding 1 to x15 So , the assembly instruction would be,

e) $x9 = x15/4 \Rightarrow$

This instruction can be seen as dividing x15 by 4 and updating that to the value of x9. Dividing x15 by 4 would mean shifting the bits in x15 to the right 2 times.

So, the assembly instruction would be,

f) $x12 = 24 \Rightarrow$

This instruction can be seen as adding 24 to x0 and updating the value of x12. So, the assembly instruction would be,

2.

The register x5 should be used as given in the solution. Using any other register numbers at other places may be okay. There is a possibility of other correct answers in a few cases.

a)
$$M[12] = M[20] + 100$$

ld x6 160(x5) addi x6 x6 100 sd x6 96(x5)

b) M[20] ++

Id x6 160(x5) addi x6 x6 1 sd x6 160(x5) c) swap M[5] and M[12]

(the ordering might be different in different submissions, so it may be okay)

```
Id x6 40(x5)
Id x7 96(x5)
sd x6 96(x5)
sd x7 40(x5)
```

d) Make the first 32-bits (from MSB side) of M[4] as 0

```
sw x0 36(x5)
```

e) Swap the most significant 32-bits of M[2] with its least significant 32-bits

solution-1:

lw x6 16(x5) lw x7 20(x5) sw x6 20(x5) sw x7 16(x5)

Solution-2:

```
ld x6 16(x5) //load M[2] in x6
addi x7, x6, x0 //copy x6 to x7
slli x7, x7, 32 //The lower bits of x7 are now in MSB position
srli x6, x6, x6, 32 //the upper bits of x6 are in LSB position
ori x6, x6, x7 //logical or of x6 and x7
sd x6, 16(x5)
```

3.

a) $23 = 2^4 + 2^2 + 2^1 + 2^0$

Which means the binary representation in 8 bits is 00010111 As the given number is positive, it is the 2's complement itself.

b) $1 = 2^0$

Which means the binary representation in 8 bits is 00000001 Since the given number is negative, we have to invert it and one. So, the 2's complement representation is 111111110 + 1 = 111111111.

c) $255 = 2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0$ 8-bit 2's complement can support -128 to +127 only. The given number exceeds the supported range.

d) $128 = 2^7$

Which means the binary representation in 8 bits is 10000000 Since the given number is negative, we have to invert it and one.

So , the 2's complement representation is 011111111 + 1 = 100000000.

4.

- a) $11010100 = -1*2^7 + 1*2^6 + 0*2^5 + 1*2^4 + 0*2^3 + 1*2^2 + 0*2^1 + 0*2^0 = -44$
- **b)** $00101011 = 0*2^7 + 0*2^6 + 1*2^5 + 0*2^4 + 1*2^3 + 0*2^2 + 1*2^1 + 1*2^0 = 43$
- c) $11111110 = 1*2^7 + 1*2^6 + 1*2^5 + 1*2^4 + 1*2^3 + 1*2^2 + 1*2^1 + 0*2^0 = -2$