Worksheet 7.3	
pH and $K_{\rm w}$	

NAME: CLASS:

INTRODUCTION

pH is used as a measure of the acidity or basicity of a solution, and is calculated using the following formula:

$$pH = -log_{10}[H_3O^+]$$

Transposing this formula gives the formula:

$$[H_3O^+] = 10^{-pH}$$

It is found that in aqueous solutions at 25°C:

$$[H_3O^+][OH^-] = 1 \times 10^{-14}$$

Using this information we are able to calculate the pH of both acidic and basic solutions at 25°C.

No.	Question		Answer		
1	Complete the table below by placing either an =, > or < symbol in the third column. (The first row has been completed as an example.) All statements refer to solutions at 25°C.				
	In acidic solutions	[H ₃ O	+]	>	[OH ⁻]
	In basic solutions	[H ₃ O	+]		1 x 10 ⁻⁷ mol L ⁻¹
	In neutral solutions	[OH	-]		1 x 10 ⁻⁷ mol L ⁻¹
	In acidic solutions	[H ₃ O	+]		1 x 10 ⁻⁷ mol L ⁻¹
	In basic solutions	[H ₃ O ⁺]			[OH ⁻]
	In acidic solutions	[OH ⁻]			1 x 10 ⁻⁷ mol L ⁻¹
	In basic solutions	[OH ⁻]			1 x 10 ⁻⁷ mol L ⁻¹
2	Explain why, in pure w molar concentrations of OH ⁻ are equal.				

Worksheet 7.3	
pH and K _w	

3	Rain from clean air at 25°C has a pH of approximately 6, but acid rain may have a pH as low as 3. a With the aid of equations, explain why normal rainwater is acidic. b How many times more acidic is acid rain with a pH of 3 than normal rainwater with a pH of 6?	
4	 a Calculate the pH of: i a 0.50 mol L⁻¹ HNO₃ solution ii a 0.050 mol L⁻¹ Ba(OH)₂ solution. b Give two reasons why two acid solutions of equal concentration could have different pH values. 	

Water undergoes self-ionisation according to the equation:

$$H_2O(1) + H_2O(1) \rightleftharpoons H_3O^+(aq) + OH^-(aq); \qquad \Delta H = +57 \text{ kJ}$$

As this is an equilibrium reaction, the equilibrium constant for the reaction will be temperature dependent, and hence the $[H_3O^+]$ of pure water will be temperature dependent. This, in turn, means that the pH of pure water will be temperature dependent, so it is possible for a neutral solution to have a pH other than 7! The following questions consider this concept.

No.	Question	Answer
5	Write the equilibrium law expression for the self-ionisation of water.	
6	Given that the density of water is 1.0 g mL^{-1} , determine the molar concentration ([H ₂ O]) of water.	

Worksheet 7.3	
pH and K _w	

The change in pH of water with temperature is shown in the graph below. Use this graph to answer question 8.

question **8**.

<<Insert Figure 7.3>>

7.6

7.5

7.4

7.3

7.2

7.1

pH 7.0

6.9

6.8

6.7

6.6

6.5

6.4

6.3

6.2

0 10 20 30 temperature (°C)

20

40

50

No.	Question	Answer
8	Determine: a the [H ₃ O ⁺] in pure water at 45°C b the [OH ⁻] in pure water at 35°C c K_w for pure water at 18°C.	