A SMART TRASH BIN WITH SHORTEST PATH FINDE USING IoT AND ROUTE OPTIMIZATION

Project description

Monitoring garbage bin levels using JoT-based ultrasonic sensors and ESPS2 microcontroller

Sending real-time bin status and facation data to the cloud

Optimizing garbage collection routes using Python based shortest path algorithms (like Dilkstra's or Ar)

Objective

Improve urban waste collection efficiency using sensor data snart smart algorithms

Minimizic fuel consumption and human effort by optimizing routes

Methodology

The process ince-in tvo key p•hases Hardwate Integration

Using ESPS2 with ultrasonic sensors to detect bin fill levels. A sotuch used to indicute bin type with GPS&MUz module using GPS&MU3 module

Route Optimization & Visualization A Python script on Blynk app.

Results

- Efficient bin monitoring and timely collection based on realtime data
- Optimized collection routrs significantly reduce travel distance
- Visual data monitoring through Blynk app enhances system accessibility

Challenges

- Ensuring consistent internet connectivity for real-time data franemission
- Iptegrating acourate GPS data with route optinization algorithms
- Managing power efficiency and durability in ouidoor bin environments

Conclusion

This smart waste management solution integrates JoT and algorithmic intelligence to transform how-urban waste collection. By providing real-time bun status updates and compleling the most efficient collection route. enhances operational efficiency and supports sustainable urban living

References

- User Project Documentation, 1023
- Ardymo. & ESPS2 Documentation
- Whilorio's Algorithm, for Route Optimizztions. Usengrotizans