Quiz 8

Due May 31 at 11:59pm **Points** 8 **Questions** 8

Available May 22 at 11:59pm - May 31 at 11:59pm 9 days

Time Limit 15 Minutes

Instructions

Note: responses and correct answers will be shown after the due date.

This quiz was locked May 31 at 11:59pm.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	11 minutes	7 out of 8

(!) Correct answers are no longer available.

Score for this quiz: **7** out of 8 Submitted May 25 at 9:12pm This attempt took 11 minutes.

Question 1	1 / 1 pts
You are using a polynomial time 2-approximation algorithm to fir for the metric traveling salesman problem. Which of the followir statements is true.	
The tour T is never optimal for any instance of the problem.	
The cost of tour T is at most twice the cost of the optimal tour.	
All of the above	
The cost of tour T is always 2 times the cost of the optimal tour.	

The ratio of the cost of the optimal tour divided by the cost of tour T is 2.

Which of the following graph algorithms is used to create a polynomial-time 2-approximation algorithm for the metric traveling salesman problem? DFS Shortest Path MST None of the above BFS

An approximation algorithm with an approximation ratio of 2 is always twice as fast as an exact algorithm for solving the problem.

True

False

Question 4 1 / 1 pts

○ True	
False	
Question 5	1 / 1 pts
The greedy method can be a good tecl approximation algorithm.	hnique to use when designing an
True	
○ False	
Question 6	1 / 1 pts
Approximation algorithms are used to sproblems.	solve NP-complete decision
O True	
False	
False	

A 2-approximation algorithm for the minimum vertex cover problem can return		
vertex covers that are at most twice the size of the optimal vertex cover.		
 vertex covers that are at most half the size of the optimal vertex cover. 		
vertex covers that are at least twice the size of the optimal vertex cover.		

Incorrect

Question 8	0 / 1 pts
Assuming P \neq NP, which one is true?	
Metric traveling salesman problem has a constar approximation algorithm.	nt factor polynomial-time
General case traveling salesman problem has a polynomial-time approximation algorithm.	constant factor
None of the above.	

Quiz Score: 7 out of 8