

Vorlesung 12 - Boolesche Algebren, Kommutative Gruppen

Diskrete Strukturen (WS 2024-25)

Łukasz Grabowski

Mathematisches Institut

- Ein Verband (M, \preceq) heißt Boolesche Algebra gdw. er distributiv und komplemetiert ist, und zusätzlich $\bot \neq \top$.
- Beispiel: $(P(X), \subseteq)$, $X \neq \emptyset$.

Satz. Sei $(M,\sqcap,\sqcup,\cdot^*,\bot,\top)$ eine algebraische Struktur des Typs (0,2,1,2), so dass

- □ und □ assoziativ, kommutativ, distributiv und absorptiv sind, und
- Die operation \cdot^* jedes Element $x \in M$ auf sein Komplement abbildet, d.H.

$$x \sqcap x^* = \bot$$
 und $x \sqcup x^* = \top$.

Dann ist (M, \preceq) , mit $x \preceq y$ gdw. $x = x \sqcap y$, eine Boolesche Algebra.

- Wir wenden uns nun zu dem wichtigsten Ergebnis über endliche Boolesche Algebren: Jede endliche Boolesche Algebra ist isomorph zu $\mathcal{P}(A)$, wo A ist eine endliche Menge.
- Ein Element $x \in M \setminus \{\bot\}$ ist ein Atom gdw. für alle $y \in M$ mit $y \preceq x$ gilt $y \in \{\bot, x\}$
- Atome sind also die direkten Nachbarn des kleinsten Elements \bot im Hasse-Diagramm, und die minimalen Elemente in $M \setminus \{\bot\}$.
- Beispiel. Die Boolesche Algebra der Wahrheitswerte hat nur das Atom 1.

• Beispiel. Die Potenzmenge von $M=\{1,\,2,\,3\}\,$ hat die Atome $\{1\}$, $\{2\}$ und $\{3\}$.

Satz. Sei (M, \prec) eine endliche Boolesche Algebra.

- Für jedes $m \in M$ und jedes Atom $a \in M$, gilt $a \wedge m \in \{\bot, a\}$
- Für alle Atome $a,b\in M$ mit $a\neq b$, gilt $a\wedge b=\bot$
- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.

Beweis.

- Wir haben $a \wedge m \leq a$. Da a Atom ist, gilt $a \wedge m \in \{\bot, a\}$.
- Wenn a und b Atome sind, dann folgt $a \wedge b \leq a$ und $a \wedge b \leq b$.
- Also $a \wedge b \in \{\bot, a\}$ und $a \wedge b \in \{\bot, b\}$. Wegen $a \neq b$ gilt $a \wedge b = \bot$.

Noch zu beweisen:

- Für jedes $m \in M \setminus \{\bot\}$ existiert ein Atom $a \in M$ mit $a \preceq m$.
- Da M is endlich, finden wir eine Kette

$$m = m_0 > m_1 > m_2 > m_3 > \cdots$$

mit der Eigenschaft dass die einzige Elemente $x \in M$ mit $m_i \ge x \ge m_{i+1}$ sind m_i und m_{i+1} .

Da M ist endlich, die Kette muss mit \bot terminieren, und das letzte Element anders als \bot ist ein Atom mit der gewischten Eigenschaft.

sei A die Menge von Atomen von M. Dann sind (M,\leq) und $(\mathcal{P}(A),\subseteq)$ isomorph. Der Isomorphismus schickt $m\in M$ auf die Menge $A_m\subset A$ von Atomen a mit $a\leq m$.

Satz. (Isomorphiesatz von Stone) Sei (M, <) eine endliche Boolesche Algebra und

Beweis.

- Wir müssen zeigen, dass die Abbildung $m\mapsto A_m$ eine ordnungserhaltende Bijektion ist.
 - ▶ Die Ordnungserhaltung ist klar: wenn $m \le n$, dann liegen alle Atome, die unter m liegen, auch unter n, also $A_m \subseteq A_n$.
- Für die Injektivität reicht es zu zeigen, dass $m=\sup A_m$. Wir zeigen dies zunächst für $m:=\top$. Offensichtlich ist A_\top die Menge aller Atome.
 - Sei $s:=\sup A_{\top}$. Wenn $s\neq \top$ dann $s^c\neq \bot$, also es existiert ein Atom $a\leq s^c$. Aber dann $a\leq s\wedge s^c$, was ein Widerspruch ist.

 $m = \top \wedge m = (a_1 \vee \ldots \vee a_k) \wedge m = (a_1 \wedge m) \vee \ldots (a_k \wedge m).$

ightharpoonup Seien a_1, \ldots, a_k alle Atome von M. Wir haben

• Zeigen wir jetzt für beliebige m, dass $m = \sup A_m$.

- ▶ Jedes element $a_i \wedge m$ ist entweder \bot (wenn a_i ist nicht unten m), oder a_i (wenn a_i ist unten m).
- ▶ Also $(a_1 \land m) \lor \dots (a_k \land m)$ ist genau gleich dem Infimum der Atome, die unter m
- liegen. \bullet Für die Surjektivität reicht es zu zeigen, dass, wenn X eine Menge von Atomen ist,
 - dann für $m:=\sup X$ gilt $A_m=X$.

 Offensichtlich gilt $X\subseteq A_m$. Nehmen wir an, dass es existiert $a\in A_m\setminus X$. Wir haben $m=\sup X=\sup A_m$. Insbesondere $\sup X>a$.
 - ► Es folgt $a = \sup X \wedge a = (x_1 \wedge a) \vee (x_2 \wedge a) \vee \ldots \vee (x_l \wedge a)$. Aber $x_i \wedge a \in \{\bot, x_i\}$.
 - Da $a \notin X$, es folgt $x_i \wedge a = \bot$, und deswegen $a = \bot$. Das ist ein Widerspruch.

Satz. (Isomorphiesatz von Stone) Sei (M, \leq) eine endliche Boolesche Algebra und sei A die Menge von Atomen von M. Dann sind (M, \leq) und $(\mathcal{P}(A), \subseteq)$ isomorph.

- · Gilt dieser Satz für unendliche Boolsche Algebren?
- Nein. Sei $M \neq \emptyset$ eine unendliche Menge und

$$E := \big\{ X \in \mathcal{P}(M) \mid X \text{ endlich} \big\} \cup \big\{ X \in \mathcal{P}(M) \mid M \setminus X \text{ endlich} \big\}$$

- ▶ E ist eine Boolsche unter-Algebra von $\mathcal{P}(M)$, da die Operationen \vee, \wedge , und Komplement die Elemente von E erhalten.
- \blacktriangleright Wenn M abzählabr ist, dann ist auch E abzählbar.
- Aber $\mathcal{P}(X)$ kann nicht abzählbar sein. Es folgt dass E kann nicht isomorph zu $\mathcal{P}(X)$ sein.

Satz. (Isomorphiesatz von Stone) Sei (M, \leq) eine endliche Boolesche Algebra und sei A die Menge von Atomen von M. Dann sind (M, \leq) und $(\mathcal{P}(A), \subseteq)$ isomorph.

- Dieser Satz vermittelt uns ein gutes konzeptionelles Verständnis der Aussagenlogik.
- Er motiviert auch die grundlegenden Definitionen der Wahrscheinlichkeitstheorie: In der Wahrscheinlichkeitstheorie beginnen wir mit einer Menge X von atomaren Ereignissen und jedes der Ereignisse x hat eine Wahrscheinlichkeit p_x .

- Kommutative Gruppen sind eine Abstraktion von $(\mathbb{Z}, +)$. \blacktriangleright Wir haben ein spezielles Element 0 mit der Eigenschaft x+0=x für alle $x\in\mathbb{Z}$.
 - Für iedes $x \in \mathbb{Z}$ können wir ein Element y finden, so dass x + y = 0 ("additive Inverse von x").
 - Für alle x, y haben wir x + y = y + x.
- Eine algebraische Struktur (M, \oplus, \cdot^*, e) des Typs (0, 1, 1, 1) ist eine kommutative oder auch Abelsche Gruppe gdw. für alle $x, y, z \in M$ gilt:

auch Abelsche Gruppe gdw. für alle
$$x,y,z\in M$$
 gilt:

- $\rightarrow x \oplus (y \oplus z) = (x \oplus y) \oplus z$. (Assoziativität)
- (Kommutativität) $\rightarrow x \oplus y = y \oplus x$.

- (neutrales Element) $ightharpoonup e \oplus x = x$.

(inverse Elemente) $x \oplus x^* = e$

Diskrete Strukturen | Kommutative Gruppen

13 / 19

Beispiele von kommutativen Gruppen.

- $(\mathbb{Z}, +, (-\cdot), 0)$,
 - \blacktriangleright Auch $(\mathbb{Q},+,(-\cdot),0)$, $(\mathbb{R},+,(-\cdot),0)$,
- $(\mathbb{Q}\setminus\{0\},\cdot,\cdot^{-1},1)$
 - ightharpoonup Auch $\left(\mathbb{R}\setminus\{0\},\cdot,\cdot^{-1},1\right)$
- $(\mathbb{N},+,(-\cdot),0)$ ist keine kommutative Gruppe, denn es gibt kein $n\in\mathbb{N}$, so dass 1+n=0).
 - $lackbox{}(\mathbb{Q},\cdot,\cdot^{-1},1)$ ist auch keine kommutative Gruppe, denn es gibt kein $q\in\mathbb{Q}$, so dass $0\cdot q=1$).

Wir schreiben am meistens $(\mathbb{Q},+)$, $(\mathbb{R},+)$, etc. da die inverse Operation und 0 sind eindeutig bestimmt.

- D.H. wir können die kommutative Gruppen auch wie folgt definieren. (M,+) ist eine kommutative Gruppe, gdw.

• Kein Problem mit der Wohldefiniertheit im vierten Punkt: Die ersten drei implizieren,

- $\qquad \qquad \textbf{ für alle } x,y,z \in M \ \ \textbf{gilt } (x+y)+z=x+(y+z)$
 - $\qquad \qquad \textbf{für alle } x,y \in M \ \ \textbf{gilt } x+y=y+x$
 - ightharpoonup es gibt $0 \in M$, so dass für alle $x \in M$ gilt x + 0 = x
 - ▶ für alle $x \in M$ gibt es y so dass x + y = 0.
- dass 0 eindeutig ist: 0 = 0 + 0' = 0'.
- Die inverse ist auch eindeutig: Wenn 0 = x + y = x + z dann z = 0 + z = (y + x) + z = y + (x + z) = y.

Wir werden häufig das folgende Lemma verwenden.

Lemma. Sei (M, +) eine kommutative Gruppe und $x, y \in M$. Dann existiert genau ein $z \in M$, so dass x + z = y.

Beweis. Wir definieren z := (-x) + y. Dann

$$x + z = x + ((-x) + y) = (x + (-x)) + y = 0 + y = y.$$

Für eindeutigkeit, wenn x+z=x+z' dann auch (-x)+(x+z)=(-x)+(x+z'), aber mit Assoziativität es folgt z=z'.

- Im Beweiss haben wir auch die folgende Eigenschaft gesehen: in jeder kommutativen Gruppe wenn wir Elemente $m, x, y \in M$ mit m+x=m+y haben, dann gilt x=y. Wir werden häufig die Notation x-y für x+(-y) benutzen.
- Üblicherweise wird die Kardinalität einer Gruppe als Ordnung der Gruppe bezeichnet.

Wenn wir zwei Gruppen $(A, +_A)$ und $(B, +_B)$ haben, können wir auch das karthesische Produkt $A \times B$ als eine Gruppe betrachten. Die Operation ist $(a_1,b_1)+(a_2,b_2):=(a_1+Aa_2,b_1+Bb_2).$

• Beispiele: $(\mathbb{R}^2,+)$, $(\mathbb{R}^n,+)$, $(\mathbb{R} \ times\mathbb{Z},+)$

Die Gruppen der Residuen modulo n

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.
- Jede endliche okmmutative Gruppe ist isomorph zu einem kartesischen Produkt von Gruppen der Form $\mathbb{Z}/n\mathbb{Z}$.
 - ightharpoonup Z.B. $\mathbb{Z}/5 \times \mathbb{Z}/5 \times \mathbb{Z}/25 \times \mathbb{Z}/7$.
 - ▶ Dies ist ein sehr wichtiger Satz, der normalerweise in einem Kurs über lineare Algebra bewiesen wird. Wir werden ihn in diesem Kurs nicht beweisen.

Isomorphismen und Homomoprhismen

- Ein Isomorphismus von Gruppen (M,+) und (N,+) ist eine Bijektion $\varphi \colon M \to N$, so dass $\varphi(a+b) = \varphi(a) + \varphi(b)$ für alle $a,b \in M$ gilt.
 - ▶ Daraus folgt, dass $\varphi(0_M) = 0_N$, $\varphi(-x) = -\varphi(x)$ für alle $x \in M$.
- Führen wir nun einen weiteren nützlichen Begriff ein: Gruppenhomomoprhismus: Ein Homomorphismus von (M,+) zu (N,+) ist eine Funktion $\varphi\colon M\to N$, so dass für alle $a,b\in M$ gilt $\varphi(a+b)=\varphi(a)+\varphi(b)$ und außerdem $\varphi(0_M)=0_N$ un d $\varphi(-x)=-\varphi(x)$ für alle $x\in M$.
- Die Eigenschaften $\varphi(0_M)=0_N$ und $\varphi(-x)=-\varphi(x)$ müssen wir nicht verlangen, sie folgen automatisch aus $\varphi(a+b)=\varphi(a)+\varphi(b)$.

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT!

Łukasz Grabowski

Mathematisches Institut

grabowski@math.uni-leipzig.de