LABORATORIUM SYSTEMÓW WBUDOWANYCH I MIKROPROCESORÓW

Blok 2: Czujniki mikromechaniczne- wersja zdalna

Protokół wykonania ćwiczenia

Temat: Zapoznanie się z ideą pomiaru przyspieszenia za pomocą scalonego akcelerometru.

Data	6.05.2021	Godzina	14:30		
	Nazwisko i Imię	Numer indeksu	Grupa dziekańska		
	Maciej Adryan	175854	III		

AD. 3:

Akcelerometr MEMS składa się z zamocowanej na sprężystych elementach masie swobodnej oraz zintegrowanych kondensatorów. Przy zmianie położenia układu masa swobodna poruszając się oddziałowuje na elementy sprężyste zmieniając odległości pomiędzy zintegorwaną z nią okładziną a okładzinami kondensatorów co powoduje zmianę ich pojemności co zostaje odczytane przez dedykowany, zintegrowany układ. Danymi wyjściowymi z czujnika są najczęściej wartości napięcia, która zostaje przetłumaczona na interesujące dane przez zintegrowany układ elektroniczny.

AD. 5:

Wartości	Położenie czujnika względem powierzchni Ziemi							
przyspieszenia	Α	В	С	D	Е	F		
X_Accl (g)	0.00 ±0.02	0.00 ±0.02	0.00 ±0.02	0.00 ±0.02	1.00 ±0.02	-1.00 ±0.02		
Y_Accl (g)	0.00 ±0.02	0.00 ±0.02	1.00 ±0.02	-1.00 ±0.02	0.00 ±0.02	0.00 ±0.02		
Z_Accl (g)	-1.00 ±0.02	1.00 ±0.02	0.00 ±0.02	0.00 ±0.02	0.00 ±0.02	0.00 ±0.02		

Wnioski

- 1. Dlaczego dla każdej orientacji czujnika z tabeli 1 otrzymujemy podobny zestaw wyników różniący się zaledwie znakiem jednej składowej x, y lub z?
 - a. Ponieważ ich położenie w zadanych osiach jest jednakowe, różnią się one jednak wektorem normalnym, dokonujemy jedynie zmiany zwrotu względem zadanej osi.
- 2. Dlaczego wielkości mierzone przyjmują takie a nie inne wartości?
 - a. ponieważ wartości te są składowymi wektora przyspieszenia i są one znormalizowane do wektorów jednostkowych.
- 3. W jakich jednostkach i co mierzą akcelerometry mikro-mechaniczne w czasie spoczynku w ww. orientacjach względem powierzchni ziemi
 - a. Mierzą one siłę przyciągania ziemskiego wywieraną na masę swobodną w trzech płaszczyznach. Wyrażane są w jednostkach [g] czyli jako wielokrotności wartości przyciągania ziemskiego $\, {\rm g} \approx 9.8 {\rm m/s}^2 \,$
- 4. Dlaczego mimo zmiany orientacji czujnika wokół osi Z (kąt yaw) przy zerowych kątach roll i pitch nie zmieniają się rejestrowane wielkości mierzone. Czy zatem możliwy jest pomiar kąta yaw za pomocą akcelerometru?
 - a. Ruch rotacyjny w przypadku pozycji neutralnej nie może zostać wykryty ponieważ kąt przy osi Z ma ten sam kierunek i zwrot co siła przyciągania ziemskiego. Pomiar kąta yaw za pomocą instrumentu nie jest możliwy.

AD.6:

Kąt [°]	0	30	60	90	120	150	180	210	240	270	300	330	360
X_Accl (g)	0	0	0	0	0	0	0	0	0	0	0	0	0
Y_Accl (g)	0	0.5	0.85	1	0.85	0.5	0	-0.5	-0.85	-1	-0.85	-0.5	0
Z_Accl (g)	-1	-0.85	-0.5	0	0.5	0.85	1	0.85	0.5	0	-0.5	-0.85	-1

 $(\pm 0.02$ dla każdej wartości)

Wniosek:

Otrzymane funkcje przypominają funkcje trygonometryczne na przestrzeni 2π — Y_Acc(g) reprezentuje funkcję $\sin(x)$ a Z_Acc(g) reprezentuje funkcję $\cos(x)$ gdzie g jest odpowiednikiem x. Składowa x nie zmienia się ponieważ położenie jej płaszczyzny względem położenia ziemi nie zmieniało się podczas obracania.

AD.7. Zaproponowana metoda określania kąta pochylenia:

Wzorując się na wzorze podanym w instrukcji laboratoryjnej można napisać poniższy kod, jednak po analizie i napisaniu programu można zauważyć, iż nie została podana informacja co zrobić w przypadku gdy g_z = 0. Ponadto zdecydowana większość wyników nie zgadza się z przewidywanymi.

W pliku .cpp zawarłem swoją propozycję otrzymania prawidłowych wyników dla kąta pochylenia (ROLL) oraz porównanie działania mojego wzoru oraz wzoru z instrukcji. Serdecznie proszę o weryfikację mojej hipotezy.

```
oczekiwany: 0.0000
                             moj wzor: 0.0000
                                                            instrukcja: -nan(ind)
oczekiwany: 30.0000
                             moj wzor: 30.4655
                                                            instrukcja: 149.5345
oczekiwany: 60.0000
                             moj wzor: 59.5345
                                                            instrukcja: 120.4655
oczekiwany: 90.0000
                                                            instrukcja: -nan(ind)
                             moj wzor: 90.0000
oczekiwany: 120.0000
                             moj wzor: 120.4655
                                                            instrukcja: 59.5345
oczekiwany: 150.0000
                             moj wzor: 149.5345
                                                            instrukcja: 30.4655
oczekiwany: 180.0000
                             moj wzor: 180.0000
                                                            instrukcja: 0.0000
oczekiwany: 210.0000
                             moj wzor: 200.8553
                                                            instrukcja: -20.8553
oczekiwany: 240.0000
                             moj wzor: 239.5345
                                                            instrukcja: -59.5345
                                                            instrukcja: -nan(ind)
oczekiwany: 270.0000
                             moj wzor: 270.0000
oczekiwany: 300.0000
                             moj wzor: 300.4655
                                                            instrukcja: -120.4655
oczekiwany: 330.0000
                                                            instrukcja: -149.5345
                             moj wzor: 329.5345
double calculateRoll(X_Accl(g), Y_Accl(g), Z_Accl(g)):
//Przypisanie wartości odczytanych z czujnika.
g_x = X_Accl(g);
g_v = Y_Accl(g);
g_z = Z_Accl(g);
//Obliczenie inicjalnej wersji składowej <u>roll</u>za pomocą wzoru (2) z wykorzystaniem wszystkich trzech składowych.
\beta_2 = \arctan(g_v / \operatorname{sqrt}(g_x^2 + g_z^2));
//Przelicznie otrzymanej wartości na zakres kąta pełnego w zależności od jego aktualnej wartości.
if (g_z > 0)
return \beta_2;
else if (g_z < 0 \&\& \beta_2 > 0)
return 180° - β<sub>2</sub>;
else if (g_z < 0 \&\& \beta_2 < 0)
return -180° - β<sub>2</sub>;
else //Jesli podano złe dane
throw "Wrong data provided!";
}
}
```

Model czujnika	ADIS 16300		
Adres rejestru osi X	0x0A	Zakres pomiarowy	±3 g measurement range
Adres rejestru osi Y	0x0C	Czułość czujnika	6 * 10 ⁻⁴ g
Adres rejestru osi Z	0x0E	Liczba bitów danych	14-bit