

BANDTEC – DIGITAL SCHOOL CURSO DE TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

NOME DOS AUTORES

KAIO RAPHAEL ZANIBONI

01211076

AMANDA FRUTEIRO DE LIMA

01211002

LUIZ FELIPE EKSTEIN

01211088

FERNANDA CHIMENEZ LEME

01211039

MATHEUS VIECK DAS DORES

01211101

JONAS FLORÊNCIO SILVA

01211069

WISOY APLICAÇÃO WEB DE CONTROLE INTELIGENTE DE IRRIGAÇÃO DE SOJA (SIMULADOR DE ARDUINO)

SÃO PAULO 2021 SUMÁRIO

1	VISÃO DO PROJETO	5
1.1	APRESENTAÇÃO DO GRUPO	5
1.2	CONTEXTO	5
1.3	PROBLEMA / JUSTIFICATIVA DO PROJETO	6
1.4	OBJETIVO DA SOLUÇÃO	6
1.5	DIAGRAMA DA SOLUÇÃO	7
2	PLANEJAMENTO DO PROJETO	9
2.1	3	
2.2	PROCESSO E FERRAMENTA DE GESTÃO DE PROJETOS	11
2.3	GESTÃO DOS RISCOS DO PROJETO	12
2.4	PRODUCT BACKLOG E REQUISITOS	12
2.5	SPRINTS / SPRINT BACKLOG	14
3	DESENVOLVIMENTO DO PROJETO	17
3.1	SOLUÇÃO TÉCNICA – AQUISIÇÃO DE DADOS ARDUINO/SIMULADO	DR 17
3.2	SOLUÇÃO TÉCNICA - APLICAÇÃO	17
3.3	BANCO DE DADOS	18
3.4	PROTÓTIPO DAS TELAS, LÓGICA E USABILIDADE	20
3.5	MÉTRICAS	30
4	IMPLANTAÇÃO DO PROJETO	
4.1	MANUAL DE INSTALAÇÃO DA SOLUÇÃO	34
4.2		
5	CONCLUSÕES	38
5.1	RESULTADOS	38
5.2		
5.3	CONSIDERAÇÕES FINAIS SOBRE A EVOLUÇÃO DA SOLUÇÃO	38
RE	FERÊNCIAS	30

1 VISÃO DO PROJETO

1.1 APRESENTAÇÃO DO GRUPO

Grupo: WiSoy

Integrantes: Kaio Raphael Zaniboni, Amanda Fruteiro de Lima, Jonas Florêncio Silva, Fernanda Chimenez Leme, Luiz Felipe Ekstein e Matheus Vieck das Dores.

A WiSoy tem como objetivo disponibilizar serviços de TI, utilizando uma Aplicação Web via API que simula a plataforma de prototipagem eletrônica de hardware livre e de placa única (Arduíno) para facilitar processos do agronegócio no ramo de Soja, disponilizando um serviço adequado e eficiente para nossos clientes.

1.2 **CONTEXTO**

Há uma grande demanda populacional de soja. A soja é a principal cultura do agronegócio brasileiro (óleo utilizado na formulação de margarinas, maioneses, molhos, *shoyu*, etc.)

O Brasil possuí 34,4% da produção mundial de soja com 124,8 milhões de toneladas produzidas em 2020, os Estados Unidos possuem 32,3% da produção mundial de soja com 96,6 milhões de toneladas produzidas em 2020 e a Argentina fecha o top 3, detendo 15,6% da produção mundial de soja com 49,6 milhões de toneladas.

1.3 PROBLEMA / JUSTIFICATIVA DO PROJETO

Níveis de umidade menor ou maior do que o ideal, irrigação em excesso e tempo gasto para cobertura da área total de produção e menor produtividade resulta em necessidade de expansão. O estresse ou inibição hídrica pode ocasionar problemas fisiológicos graves que ocasionam queda prematura de folhas e conseqüente redução de produtividade da soja.

1.4 OBJETIVO DA SOLUÇÃO

Medir a umidade do solo e apresentar os dados ao usuário via aplicação web para uma rápida tomada de decisão. Com objetivo de facilitar o agronegócio do usuário cliente que necessita de um controle de umidade das suas plantações de soja e que seja possível capturar de forma eficiente os dados de germinação, vegetação e enchimento e afloração de grãos, utilizando tecnologia de qualidade e com preço acessível.

1.5 **DIAGRAMA DA SOLUÇÃO**

Diante do Diagrama de Solução exposto acima e de forma simplificada, o cliente visualiza que haverá ganho em sua produtividade e economizará dinheiro utilizando a aplicação web WiSoy.

Resta perceptível que os dados do usuário serão armazenados em uma página na internet e que poderá acessar em tempo real a qualquer momento do dia, monitorando o *status* e métricas de umidade de suas plantações.

2 PLANEJAMENTO DO PROJETO

2.1 **DEFINIÇÃO DA EQUIPE DO PROJETO**

As atribuições entre os integrantes do grupo foram rotativas, todos desempenharam as funções de Scrum Master, Product Owner, Desenvolvedor e outros papéis de TI semanalmente.

- i. Kaio Raphael Zaniboni
- ii. Fernanda Chimenez Leme
- iii. Amanda Fruteiro de Lima
- iv. Matheus Vieck das Dores
- v. Luiz Felipe Ekstein
- vi. Jonas Florêncio Silva

As funções das partes de *front-end e back-end*. foram realizadas por todos os integrantes para que todos pudessem desenvolver habilidades e praticassem os conteúdos absorvidos nas aulas.

Complementando, utilizamos a extensão Visual Studio Live Share para que todos colaborassem no desenvolvimento dos códidos e projetos no Visual Studio Code.

Elencamos abaixo as escalas de rotatividade do grupo entre as Sprints 2 e 3:

	MARÇO	
Nome	Nome2	Data
Fernanda	Matheus Vieck	18/03/2021
Fernanda	Matheus Vieck	22/03/2021
Fernanda	Matheus Vieck	23/03/2021
Fernanda	Matheus Vieck	25/03/2021
Fernanda	Matheus Vieck	28/03/2021
Fernanda	Matheus Vieck	30/03/2021
Scrum Master	Product Owner	

	ABRIL	
Nome	Nome2	Data
Jonas	Amanda	01/04/2021
Jonas	Amanda	03/04/2021
Jonas	Amanda	06/04/2021
Jonas	Amanda	08/04/2021
Jonas	Amanda	09/04/2021
Jonas	Amanda	10/04/2021
Scrum Master	Product Owner	

	MAIO	
Nome	Nome2	Data
Amanda	Kaio	01/05/2021
Amanda	Kaio	02/05/2021
Amanda	Kaio	05/05/2021
Amanda	Kaio	06/05/2021
Amanda	Kaio	17/05/2021
Scrum Master	Product Owner	

	JUNHO	
Nome	Nome2	Data
Luiz Felipe	Fernanda	03/06/2021
Luiz Felipe	Fernanda	07/06/2021
Luiz Felipe	Fernanda	08/06/2021
Luiz Felipe	Fernanda	09/06/2021
Luiz Felipe	Fernanda	10/06/2021
Luiz Felipe	Fernanda	11/06/2021
Jonas	Matheus	12/06/2021
Jonas	Matheus	13/06/2021
Kaio	Amanda	14/06/2021
Kaio	Amanda	15/06/2021
Scrum Master	Product Owner	

2.2 PROCESSO E FERRAMENTA DE GESTÃO DE PROJETOS

O Planner Microsoft oferece às equipes uma experiência de gerenciamento de tarefas intuitivas, colaborativas e visual para a realização do trabalho em equipe. O uso dessa ferrramenta é bastante indicada por equipes para metodologias ágeis. Utilizamos esta ferramenta para gerenciar os nossos projetos, nos permitindo trabalhar em equipe de forma mais organizada e focada.

2.3 GESTÃO DOS RISCOS DO PROJETO

A gestão dos riscos nos permitiu agir de forma preventiva em casos de imprevistos ou incidentes durante os trajetos dos projetos conforme tabela abaixo.

ID	Descrição dos Riscos	Probabilidade - Baixa -Média -Alta	Impacto - Baixo -Médio -Alto	Fator de Risco	Ação -Evitar -Mitigar - Eliminar	Como?
1	Falta de comunicação	1	3	3	Mitigar	Estabelecer padrão de conversas e feedback durante todo o projeto.
2	Problemas técnicos no projeto	2	3	6	Mitigar	Revisar e Monitorar integralmente todos os elementos do projeto
3	Falta de Comprometimento	1	2	2	Eliminar	Exigir a dedicação de todos os membros do grupo dando feedback ao professor para eliminar possiveis impasses
4	Perda de Arquivos	1	3	3	Eliminar	Criando Backups nas máquinas locais e um repositório em nuvem que possua todo o projeto
5	Escopo do projeto mal interpretado	1	2	2	Mitigar	Realizando entregas semanais para a validação do projeto
6	Turn-over de um integrante da equipe	1	3	3	Aceitar	Repasse de atividades, tarefas ou responsabilidades para os demais integrantes do grupo

PRODUCT BACKLOG e requisitos

Requisitos	Classificação	Fibonacci	Ordem de execução
Simular o Arduino na aplicação	Essencial	5	1
web;	L33CHOIAI	3	'
Captação dos dados;	Essencial	5	2
Arduino funcionando e			
recebendo os dados dentro da	Essencial	5	3
aplicação web;			
Utilizar os sensores;	Essencial	3	4
Realizar uma aplicação web que			
gere os valores e gráficos relativo	Facencial	13	F
à umidade do solo e utilização de	Essencial		5
água;			
Sistema de login e cadastro de	Essencial		6
usuário,	ESSELICIAL	5	O
O banco de dados armazenando	Essencial		7
informações sobre os sensores.	ESSELICIAL	5	,
Uso de ferramentas para gestão			
de projetos (Microsoft Project/	Importante	3	8
Planner);			
Documentação do projeto;	Importante	3	9
Desenvolver o conhecimento			
básico de Git para aplicação do	Importante	3	10
grupo;			

Cada tarefa adquirida no Product Backlog foi delegada e distribuída entre os integrantes do grupo.

2.4 SPRINTS / SPRINT BACKLOG

Execução	Sprints
01	Criação do Banco de dados e html e css site geral
Atividade 1	Fazer a modelagem do banco de dados;
Atividade 2	Fazer o script da tabela usuário;
Atividade 3	Implantar a tabela no banco;
Atividade 4	Criar o HTML e CSS das páginas gerais do site;
Atividade 5	Testes;
Atividade 6	Correções de eventuais bugs.
02	Criação da tela de Login e Cadastro
Atividade 1	Criar o HTML e CSS das páginas de cadastro e login;
Atividade 2	Testes;
Atividade 3	Correção de eventuais bugs.
03	Gerenciando a Aplicação – Simulador Arduíno
Atividade 1	Configurar a API de simulação do Arduino para captação
	dos valores de umidade do solo;
Atividade 2	Realizar a leitura da umidade via node js;
Atividade 3	Transferir os valores de umidade para a Aplicação Web;
Atividade 4	Configuração do gráfico;
Atividade 5	Impedir que usuário não logado acesse ao DashBoard;
Atividade 6	Testes;
Atividade 7	Correção de eventuais bugs.
04	DashBoard
Atividade 1	Criar o HTML e o CSS da página de Dashboard;
Atividade 2	Testes,
Atividade 3	Correção de eventuais bugs.
05	Analytics e Banco de Dados
Atividade 1	Realizar a modelagem do banco de dados;
Atividade 2	Implantar o script das tabelas;
Atividade 3	Criação do script para inserção dos valores de umidade
	no banco de dados;

Atividade 4	Criar o HTML e CSS da área de Analytics;	
Atividade 5	Testes,	
Atividade 7	Correção de eventuais bugs.	
06	Gerenciando a Aplicação e transferindo dados gerais	
	para o Azure/Conexão Site com BD	
Atividade 1	Adaptação do Login no Portal Azure;	
Atividade 2	Configurando a API dev e prod (Local Workbench e em	
	Produção no Azure);	
Atividade 3	Inserção dos valores de umidade via Node.JS;	
Atividade 4	Representação gráfica no Dashboard;	
Atividade 5	Testes,	
Atividade 6	Correção de eventuais bugs.	

3 DESENVOLVIMENTO DO PROJETO

3.1 SOLUÇÃO TÉCNICA – AQUISIÇÃO DE DADOS ARDUINO/SIMULADOR

O diagrama disposto acima relaciona-se aos processos diante de uma perspectiva de alto nível (HLD – High Level Design), consistindo na demonstração de ferramentas específicas da solução da Aplicação Web.

3.2 SOLUÇÃO TÉCNICA - APLICAÇÃO

O diagrama de processos disposto acima tem como objetivo explorar o fluxo de autenticações no processo da aplicação web, com especificidade no momento de interação com os dados armazenados na nuvem, dados estes que foram gerados através do Arduíno.

3.3 BANCO DE DADOS

O banco de dados amazenará os dados de umidade, pertinentes ao processo de acesso do usuário na tela de Dashboard da aplicação web. O banco de dados abarca dados limitados de umidade coletados para fins de operação de análise.

Modelagem Lógica:

3.4 PROTÓTIPO DAS TELAS, LÓGICA E USABILIDADE

Apresentar as telas construídas e sua lógica de navegação

1.index.html

Index/home: É a tela onde o usuário cliente visualiza o logo da Wisoy, a sua funcionalidade e solução, quem é a empresa, possui navegação para outras páginas de interesse e possibilidade de registro para receber Newsletter da Wisoy.

2.sobre.html

Sobre: É a tela onde consta a missão, visão e valores da WiSoy e as fotos dos membros da equipe.

3.portfólio.html

Portfólio: A tela contém um breve resumo da funcionalidade da solução através de um HLD (High Level Design), um diagrama da arquitetura fornecendo uma visão geral da solução completa e o simulador financeiro relacionado à solução para os cálculos de ganho utilizando a Aplicação Web para o usuário.

4.contato.html

Contato: A tela de Contato é extremamente importante para a solução. É a partir dela que um potencial cliente poderá se cadastrar e receber conteúdos exclusivos da WiSoy e futuramente se tornar um usuário, poderá também visualizar nossos contatos e plataforma de suporte para informar se há algum erro em sua aplicação ou sensor.

5.cadastro.html

Cadastro: Diante da aquisição da solução WiSoy, o usuário será capaz de acessar a Aplicação Web com seu respectivo e-mail e senha criados. Há algumas restrições para realização do cadastro: o usuário deverá digitar caracteres especiais, caracteres maiúsculos e minúsculos.

6.login.html

Login: é a tela em que o usuário deverá ter contato com a WiSoy para acessar os dados privados relacionados aos seus respectivos sensores alocados em sua(s) fazenda(s). Ao clicar em "Login", a aplicação faz uma requisição de seleção de registro no banco de dados onde há a senha e o e-mail digitados. Se o login não conferir com algum registro armazenado no banco de dados WiSoy, haverá um aviso de "Login incorreto". Se conferir, direcionará para a página de Dashboard.

7.login_adm.html

Login Administrador: o usuário registrado e armazenado no banco de dados WiSoy como sendo Administrador da empresa, poderá incluir usuários secundários (mais de

um colaborador, se necessário) para acessar o monitoramento na Dashboard através de uma chave de autenticação gerada e novo login com senha e e-mail.

8.senha.html

Recuperação de Senha: Através dessa tela, o usuário poderá recuperar a sua senha em caso de perda ou esquecimento, utilizando caracteres minúsculos e maiúsculos e caracteres especiais.

9.Dashboard

OLÁ, AMANDA	de Lima			^
FRUTEIRO DE LIMA				
TEMPO REAL				
RELATÓRIOS	Cada	strar novo usuário		I.
G R Á F I C O S	Nome:	Digite aqui o usuário		
COLABOLADORES	E-mail Senha:	nome@example.com		
TABELA	Confirme a senha:			
COMPARATIVA		Criar usuário		
SAIR				
				v

NÍVEL DE UMIDADE - ANÁLISE COMPARATIVA 📊 Nível de Nível Nível de Nível de Nível de **Emergência FASE** Alerta Ideal de Alerta **Emergência** Minímo **Mínimo** Irrigação Máximo Máximo Germinação 50% 51 - 54% 55 - 80% 81 - 84% 85% Vegetação 1,9% 2,4% 2,5 - 3,5% 3,6 - 4% 4,1% 7% 6% 8% Q% 10% **FASE** Alerta ldeal de Alerta **Emergência Emergência** Minímo **Mínimo** Irrigação Máximo Máximo Germinação 50% 51 - 54% 55 - 80% 81 - 84% 85% 2,4% 1,9% Vegetação 2,5 - 3,5% 3,6 - 4% 4,1% 6% 7% 8% 9% 10% Enchimento

Dashboard: As telas do DashBoard contêm uma barra de navegação vertical (sidebar) à esquerda. A visualização principal do usuário contém dados de analytics, gráfico dinâmico com os registros do banco de dados alocado em nuvem em tempo real relacionado a umidade do solo, relatório de registros semanal e mensal para tomada de decisão e cadastro de colaboradores.

3.5 **MÉTRICAS**

Os estágios podem ser divididos em Fase vegetativa, floração, enchimento de grãos e maturação.

A Wisoy irá aprimorar o cultivo em todas as fases, principalmente nas fases que necessitam de um abundante sistema de irrigação e verificação da umidade em solo, sendo as mais importantes para a definição da qualidade e melhor proveito da genética do grão da soja, o que irá proporcionar que a safra chegue nas condições ideais para a colheita.

Os teores ideais de umidade para cada fase de desenvolvimento podem ser observados abaixo:

Fase de germinação					
Emergência	Alerta	Ideal	Alerta	Emergência	
50%	51-54%	55-80%	81-84%	85%	

Fase vegetativa					
Emergência	Alerta	Ideal	Alerta	Emergência	
1,9%	2,4%	2,5-3,5%	3,6-4,0%	4,1%	

Fase de enchimento dos grãos e floração				
Emergência	Alerta	Ideal	Alerta	Emergência
6%	7%	8%	9%	10%

4 IMPLANTAÇÃO DO PROJETO

4.1 MANUAL DE INSTALAÇÃO DA SOLUÇÃO

A aplicação web WiSoy foi desenvolvida para facilitar a tomada de decisão dos clientes produtores de Soja e proporciona completa leitura e medição de umidade do solo em tempo real.

Instruções Gerais e usabilidade da Aplicação Web:

- a. O usuário deve acessar o site da WiSoy;
- **b**. O Usuário deve se cadastrar no site na navegação "Cadastro" e imputar os dados pessoais solicitados para se logar.
- **c**. Após o usuário realizar o cadastro, ele será redirecioando à página de login para imputar os seus dados e será direcionado à página de visualização dos dados captados pelos sensores na plantação através dos gráficos para tomada de decisão.

4.2 PROCESSO DE ATENDIMENTO E SUPORTE

O diagrama de processo de atendimento e suporte tem como objetivo auxiliar o usuário nas tomadas de decisões em casos de incidentes de causas conhecidas ou não.

Canais de atendimento:

jira@wisoy.atlassian.net

O diagrama criado pelo grupo a primeiro momento é genérico para quaisquer problemas.

Inputamos alguns incidentes na plataforma de Help Desk para fins de testes, foram inclusos alguns incidentes passíveis de resolução.

Caso a solução técnica pare de funcionar e o sistema de atendimento seja contatado, serão tomadas as seguintes ações:

Problemas no Login?

- Verificar se os dados inputados pelo usuário estão corretos;
- Tentativa de recuperação de senha ou e-mail,
- Envio de novo login ao usuário.

Problemas no Sensor?

- Um técnico da WiSoy será encaminhado à residência do cliente para fins de resolução do problema técnico;
- O técnico verificará as entradas do sensor;
- O técnico verificará se as luzes estão piscando normalmente;
- O técnico verificará se os fios estão conectados corretamente.

5 CONCLUSÕES

5.1 **RESULTADOS**

Ao final do projeto e Sprints, o grupo cumpriu com os requisitos levantados e sempre documentados.

5.2 PROCESSO DE APRENDIZADO COM O PROJETO

Aprendemos a trabalhar em equipe e aprimoramos tanto a formação técnica quanto a *soft skills* e independência no processo de pesquisas.

O grupo sempre prezou pela qualidade na entrega dos projetos e sempre obtivemos harmoniosidade em relatividade à horários, sempre nos reunimos com embasamento em agendas planejadas para aventar ideias e aprimorar os projetos e sempre estivemos abertos a mudanças no escopo mediante planejamento e organização.

5.3 CONSIDERAÇÕES FINAIS SOBRE A EVOLUÇÃO DA SOLUÇÃO

O grupo teve uma visão frutífera das entregas dos serviços e projetos e orgulho na entrega final e seus resultados. Foram meses de dedicação, confiança, eficiência e aprendizados diários e sempre reforçando os laços de união em grupo. Para as versões futuras do projeto WiSoy, projetríamos e desenvolveríamos uma solução doméstica que utilizaria sensores Arduino de luminosidade e temperatura que abarcaria outros tipos de plantas.

REFERÊNCIAS

A Saga da Soja no Brasil e no Mundo: https://www.agrolink.com.br/colunistas/coluna/a-saga-da-soja-no-brasil-e-no-mundo 400724.html;

Managing Soybean Harvest Timing, Moisture to Improve Yield: https://cropwatch.unl.edu/managing-soybean-harvest-timing-moisture-improve-yield;

Brasil terá produção recorde de Soja e Milho na Safra 2020/2021 prevê Conab: https://revistagloborural.globo.com/Noticias/Agricultura/noticia/2020/08/brasil-tera-producao-recorde-de-soja-e-milho-na-safra-20202021-preve-conab.html;

Diferença no percentual de umidade na mesma colheita de soja: https://cropwatch.unl.edu/managing-soybean-harvest-timing-moistureimprove-yield;

Tamanho médio da plantação de soja no Mato Grosso: https://ocj.com/2020/02/how-big-are-soybean-farms-in-brazil/;

O valor da saca de soja: https://www.melhorcambio.com/soja-hoje#:~:text=0%20valor%20da%20saca%20da,em%20R%24%20162%2C36;

Automação da irrigação no mundo e sua demanda de mercado: https://www.globenewswire.com/newsrelease/2020/04/27/2022172/0/en/The-irrigation-automation-market-isprojected-to-grow-at-a-CAGR-of-18-5-from-2020-to-2025;