幾何数理工学ノート

テンソル: テンソルの定義

平井広志

東京大学工学部 計数工学科 数理情報工学コース 東京大学大学院 情報理工学系研究科 数理情報学専攻

hirai@mist.i.u-tokyo.ac.jp

協力:池田基樹(数理情報学専攻 D1)

テンソルの考え方は物理現象や法則のモデリングに用いられる. また, 多様体論への準備でもあり, 4年科目「応用空間論」にも用いられる.

9 テンソル

9.1 ベクトル空間(復習)

定義 9.1 (ベクトル空間). V が体 \mathbb{K} (ここでは \mathbb{Q} , \mathbb{R} , \mathbb{C} を想定している)上のベクトル空間とは, $u,v\in V$, $\alpha,\beta\in\mathbb{K}$ に対し,和 $u+v\in\mathbb{K}$ とスカラー倍 $\alpha u\in\mathbb{K}$ が定まっており,V は + を積とするアーベル群(単位元は 0, v の逆元は -v)で,スカラー倍は

- 1. $(\alpha + \beta)v = \alpha u + \beta v$,
- 2. $\alpha(u+v) = \alpha u + \alpha v$,
- 3. $(\alpha\beta)v = \alpha(\beta v)$,
- 4. 1v = v (1 は \mathbb{K} の単位元)

を満たすことをいう.

例 9.1. \mathbb{R}^n は \mathbb{R} 上のベクトル空間. \mathbb{C}^n は \mathbb{C} 上のベクトル空間であるが, \mathbb{R} 上のベクトル空間でもある.

定義 9.2 (基底). $B \subseteq V$ が基底 (basis)

$$\stackrel{\mathrm{def}}{\Longleftrightarrow}$$
 任意の $v\in V$ を $v=\sum_{u\in B}\alpha_u u$ $(\alpha_u\in\mathbb{K})$ と一意に表すことができる \iff 任意の $v\in V$ を $v=\sum_{u\in B}\alpha_u u$ $(\alpha_u\in\mathbb{K})$ と表せて,任意の有限部分集合 $B'\subseteq B$ が一次独立.

ここで、 $\alpha_u \neq 0$ となる u の個数は有限とする.

補題 9.3. 基底は存在する.

証明にはツォルンの補題を用いる.

演習 9.1. 証明せよ.

定義 9.4 (次元). n 個の元からなる基底が存在するとき (n は基底の取り方によらない), V は n 次元といい, $\dim V = n$ とかく. このとき $V \simeq \mathbb{K}^n$ である. 有限個からなる基底が存在しないとき V は無限次元といい, $\dim V = \infty$ とかく.

例 9.2.
$$\mathbb{R}^n$$
 は (\mathbb{R} 上のベクトル空間として) n 次元.
$$\begin{pmatrix} 1 \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$
 が \vdots

基底.

例 9.3. \mathbb{R} 係数の多項式の集合は \mathbb{R} -ベクトル空間であり、 $\mathbb{R}[x]$ で表す. これは $1, x, x^2, x^3, \dots$ は $\mathbb{R}[x]$ の基底(多項式はこの中から有限個選んで表すことができ る) で、 $\mathbb{R}[x]$ は無限次元.

注意 9.5. [0,1] 上で 2 乗可積分な関数のなす集合は ℝ-ベクトル空間であり, $L^2[0,1]$ で表す.このとき任意の $f \in L^2[0,1]$ は $f(x) = \sum_{k=1}^{\infty} \alpha_k \sin 2\pi kx + 1$ $\sum_{k=0}^{\infty} \beta_k \cos 2\pi kx$ と一意に書けるが、 $\sin 2\pi kx$ $(k=1,2,\ldots)$ 、 $\cos 2\pi kx$ $(k=1,2,\ldots)$ $0,1,2,\ldots$) は上の意味での基底 *1 ではないことに注意する.

9.2 双対空間

V は、体 \mathbb{K} 上の n 次元ベクトル空間と仮定する. V の双対空間の概念を導入 する.

定義 9.6. $f: V \to \mathbb{K}$ が線形 (汎関数) $\stackrel{\text{def}}{\Longleftrightarrow} f(\alpha u + \beta v) = \alpha f(u) + \beta f(v)$ ($\forall u, v \in$ $V, \alpha, \beta \in \mathbb{K}$).

定義 9.7 (双対空間). V 上の線形汎関数全体の集合 $V^* := \{f : V \to \mathbb{K}, 線形 \}$ を

^{*1} 代数基底,ハメル基底という用語を使うことがある

V の双対空間という. V^* には足し算 (f+g)(v):=f(v)+g(v) と α 倍 $(\alpha f)(v):=$ $\alpha f(v)$ が定義され, V^* 自体も $\mathbb K$ 上のベクトル空間になる. V^* の単位元はゼロ写像になる.

直感的には、V は n 次元のタテベクトル空間に、 V^* は n 次元のヨコベクトル空間に対応する。すなわち、 $v \in V$ 、 $f \in V^*$ に対して

$$f(v) = \begin{pmatrix} f_1 & f_2 & \cdots & f_n \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}.$$

注意 9.8. この V と V^* の間にある「内積」 $(v,f)\mapsto f(v)$ をペアリングと呼ぶことがある.

定義 9.9 (双対基底). e_1,e_2,\ldots,e_n を V の基底とする. $e^1,e^2,\ldots,e^n:V\to\mathbb{K}$ を以下の関数として定義する $(\delta_i^j$ はクロネッカーのデルタと呼ばれる):

e_i に対しては

$$e^{j}(e_{i}) := \delta_{i}^{j} := \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$

• $v = \sum_{i=1}^{n} \alpha^{i} e_{i} \in V$ に対しては

$$e^{j}(v) = \sum_{i=1}^{n} \alpha^{i} e^{j}(e_{i}) = \alpha^{j}.$$

補題 **9.10.** $e^j \in V^*$.

命題 **9.11.** e^1, e^2, \ldots, e^n は V^* の基底.

証明. $\sum_i \beta_i e^i = 0$ (ゼロ写像)ならば、両辺に e_i を作用させると

$$0 = \sum_{i} \beta_i e^i(e_j) = \sum_{i} \beta_i \delta^i_j = \beta_j \quad (\forall j)$$

を得るから、 e^1, \ldots, e^n は一次独立である.

任意の $f\in V^*$ について, $f=\sum_i f(e_i)e^i$ が成り立つ. 実際,任意の $v=\sum_i \alpha^i e_i$ に対して

$$\sum_{i} f(e_i)e^i(v) = \sum_{i} \sum_{j} f(e_i)\alpha^j e^i(e_j) = \sum_{i} \sum_{j} f(e_i)\alpha^j \delta^i_j = \sum_{i} \alpha^i f(e_i) = f(v)$$

系 9.12. dim V = n なら dim $V^* = n$.

命題 9.13. $V^{**} \simeq V$ (カノニカルな同型).

証明. $v\in V$ は $f\in V^*$ を $f(v)\in\mathbb{K}$ に写す写像 $v:V^*\to\mathbb{K}$ と見なせる. $u,v\in V$ は $u\neq v$ なら写像 $V^*\to\mathbb{K}$ としても異なる. $f,g\in V^*,\ \alpha,\beta\in\mathbb{K}$ とすると

$$v(\alpha f + \beta g) = (\alpha f + \beta g)(v) = \alpha f(v) + \beta g(v) = \alpha v(f) + \beta v(g)$$

となるから、これは線形写像である.よって V は V^{**} の部分ベクトル空間であり、 $\dim V = \dim V^* = \dim V^{**} = n$ より $V = V^{**}$.

問題 9.1. 無限次元ベクトル空間では $V = V^{**}$ とならない. これを調べよ.

U,V を(有限次元)ベクトル空間とする.線形写像 $A:U\to V$ は U と V の基底を用いることで行列として表示できることを復習する. $e_1,e_2,\ldots,e_n\in U$ を U の基底, $e^1,e^2,\ldots,e^n\in U^*$ を U の双対基底, $f_1,f_2,\ldots,f_m\in V$ を V の基底, $f^1,f^2,\ldots,f^m\in V^*$ を V の双対基底とする. $A^i_j:=f^i(A(e_j))$ とおくと $A(e_j)=\sum_{k=1}^m A^k_j f_k$ となる(両辺に f^i を作用させると確かめられる). $x=\sum_{j=1}^n \alpha^j e_j$ とおくと $A(x)=\sum_{j=1}^n \alpha^j A(e_j)=\sum_{j=1}^m \sum_{i=1}^m f_i A^i_j \alpha^j$ であるから,行列表示すると

$$\begin{bmatrix} e_1 & e_2 & \cdots & e_n \end{bmatrix} \begin{bmatrix} \alpha^1 \\ \alpha^2 \\ \vdots \\ \alpha^n \end{bmatrix} \longmapsto \begin{bmatrix} f_1 & f_2 & \cdots & f_m \end{bmatrix} {}_i \begin{bmatrix} j \\ A^i_j \end{bmatrix} \begin{bmatrix} \alpha^1 \\ \alpha^2 \\ \vdots \\ \alpha^n \end{bmatrix}$$

となる. そこで, $U \simeq \mathbb{K}^n$, $V \simeq \mathbb{K}^m$ と見なしたときは

$$U \simeq \mathbb{K}^n \ni \begin{bmatrix} \alpha^1 \\ \alpha^2 \\ \vdots \\ \alpha^n \end{bmatrix} \longmapsto \begin{bmatrix} A_j^i \\ A_j^i \end{bmatrix} \begin{bmatrix} \alpha^1 \\ \alpha^2 \\ \vdots \\ \alpha^n \end{bmatrix} \in \mathbb{K}^m \simeq V$$

と書ける. この行列 (a_i^i) を基底 $(e_i),(f_i)$ に関する A の行列表示という.

A の転置写像(双対写像,随伴写像) $A^*:V^*\to U^*$ を

$$A^*(g) := g \circ A$$

で定義する. なお, $A:U\to V,\ g:V\to \mathbb{K}$ であるから $g\circ A:U\to \mathbb{K}$ で, $A,\ g$ そ

れぞれの線形性から

$$g \circ A(\alpha x + \beta y) = g(\alpha Ax + \beta Ay) = \alpha g \circ A(x) + \beta g \circ A(y) \quad (x, y \in U, \ \alpha, \beta \in \mathbb{K})$$

となり、 $g\circ A\in U^*$ が確かめられる。 $A:U\to V$ と $A^*:V^*\to U^*$ は写像の向きが逆方向になっていることに注意する:

$$U \xrightarrow{A} V$$

$$U^* \xleftarrow{A^*} V^*$$

例 9.4. $U\subseteq V$ で $i:U\to V$ を包含写像とすると, $i^*:V^*\to U^*$ は, $f:V\to\mathbb{R}$ の定義域を U に制限する制限写像になる.

 A^* を基底 $(e^i), (f^j)$ で行列表示すると,

$$(A^*)_i^j = (f^j \circ A)(e_i) = f^j(A(e_i)) = A_i^j$$

となる. つまり A^* の行列表示は A の行列表示の転置である. (ここで A^{*j}_i において j が列インデックス,i が行インデックスであることに注意する.) また, $g \in V^*$ を横ベクトル $(g_1\,g_2\,\cdots\,g_m)$ とみると, A^* は

$$(g_1 g_2 \cdots g_m) \longmapsto (g_1 g_2 \cdots g_m) \left[A_j^i \right]$$

と A の行列表示を右から掛けることに対応する.

9.2.1 ℝ係数のホモロジーとコホモロジー

K を単体的複体, $C_k=C_k(K,\mathbb{R})$ を k-チェインの定義で形式的結合の係数を \mathbb{Z} から \mathbb{R} に変えたものとすると,これは c_k 次元の \mathbb{R} 上のベクトル空間になる.境界作用素 $\partial_k:C_k\to C_{k-1}$ は \mathbb{Z} 係数のときと同様に定義され, $\partial_k\circ\partial_{k+1}=0$ を満たし,チェイン複体が得られる:

$$\cdots \xrightarrow{\partial_{k+2}} C_{k+1} \xrightarrow{\partial_{k+1}} C_k \xrightarrow{\partial_k} C_{k-1} \xrightarrow{\partial_{k-1}} \cdots$$

 \mathbb{R} 係数ホモロジー $H_k=H_k(K,\mathbb{R})$ は $H_k=\operatorname{Ker}\partial_k/\operatorname{Im}\partial_{k+1}$ と定義される. C_{k+1},C_k,C_{k-1} の基底を取り替えることで, $\partial_{k+1},\partial_k$ の行列表現 $[\partial_{k+1}],[\partial_k]$ を

$$\left[\begin{array}{cc} \partial_{k+1} \end{array}\right] = \left[\begin{array}{cc} I_{r_{k+1}} & O \\ O & O \end{array}\right], \quad \left[\begin{array}{cc} \partial_{k} \end{array}\right] = \left[\begin{array}{cc} O & O \\ O & I_{r_{k}} \end{array}\right]$$

とできる.ここで, r_k は ∂_k のランクである.したがって, $H_k=\mathbb{R}^{c_k-r_k}/\mathbb{R}^{r_{k+1}}=\mathbb{R}^{c_k-r_k-r_{k+1}}$ となる. \mathbb{Z} 係数のときとの違いは,ねじれ成分がなくなって,自由アーベル群の部分が \mathbb{Z} から \mathbb{R} にかわったことである.

さて, C_k の双対空間 C_k^* を C^k で表す. C^k の元をコチェインという.コ境界作用素 $\delta_k:=\partial_{k+1}^*:C^k\to C^{k+1}$ が定義される.これは $\delta_k\circ\delta_{k-1}=0$ を満たすので,コチェイン複体

$$\cdots \xleftarrow{\delta_{k+1}} C^{k+1} \xleftarrow{\delta_k} C^k \xleftarrow{\delta_{k-1}} C^{k-1} \xleftarrow{\delta_{k-2}} \cdots$$

を得る. \mathbb{R} 係数コホモロジー群 $H^k=H^k(K,\mathbb{R})$ は $H^k=\operatorname{Ker}\delta_k/\operatorname{Im}\delta_{k-1}$ と定

義される.うえの基底のもとで, δ_{k-1},δ_k の行列表現 $[\delta_{k-1}],[\delta_k]$ は,それぞれ $[\partial_k],[\partial_{k+1}]$ の転置行列となって

$$\left[\begin{array}{cc} \delta_{k-1} \end{array} \right] = \left[\begin{array}{cc} O & O \\ O & I_{r_k} \end{array} \right], \quad \left[\begin{array}{cc} \delta_k \end{array} \right] = \left[\begin{array}{cc} I_{r_{k+1}} & O \\ O & O \end{array} \right]$$

となる.したがって \mathbb{R} 係数コホモロジー群 $H^k=\mathbb{R}^{c_k-r_{k+1}}/\mathbb{R}^{r_k}=\mathbb{R}^{c_k-r_{k+1}-r_k}$ となり, $H_k\simeq H^k$ である.

この事実は, C_k と C^k の間のペアリング $(\cdot,\cdot):C_k\times C^k\to\mathbb{R}, (x,f):=f(x)$ を考えることで抽象的に証明できる.まず,次に注意する:

$$(\partial_{k+1}y, f) = (y, \delta_k f) \quad (y \in C^{k+1}, f \in C_k)$$

$$\tag{1}$$

これは、 δ_k が ∂_{k+1} の転置行列であることからもわかる。すると、 $\operatorname{Im} \delta_{k-1}$ の直交空間 $(\operatorname{Im} \delta_{k-1})^{\perp} = \{x \in C_k \mid (x,f) = 0 \quad (\forall f \in \operatorname{Im} \delta_{k-1})\} = \{x \in C_k \mid (\partial_k x,g) = 0 \quad (\forall g \in C^k)\}$ は、 $\operatorname{Ker} \partial_k$ に等しく、同様に、 $\operatorname{Im} \partial_{k+1}$ の直交空間は、 $\operatorname{Ker} \delta_k$ となる。特に、 $\operatorname{dim} \operatorname{Im} \delta_{k-1} = c_n - \operatorname{dim} \operatorname{Ker} \delta_k$ と $\operatorname{dim} \operatorname{Im} \delta_{k+1} = c_n - \operatorname{dim} \operatorname{Ker} \delta_k$ が成り立つ。したがって、 $\operatorname{dim} H^k = \operatorname{dim} \operatorname{Ker} \delta_k - \operatorname{dim} \operatorname{Im} \delta_{k-1} = c_n - \operatorname{dim} \operatorname{Im} \delta_{k+1} - c_n + \operatorname{dim} \operatorname{Ker} \delta_k = \operatorname{dim} H_k$ となる.

また,関係式 (1) によって, C_k と C^k の間のペアリングは, H_k と H^k の間のペアリング

$$([x],[f]) \mapsto f(x)$$

を誘導することがわかる. Well-definedness を確かめてみると: $x - x' = \partial_{k+1} y$ な

ら $f(x) - f(x') = f(x - x') = f(\partial_{k+1}y) = (\delta_k f)(y) = 0$ なので、 $f \in \text{Ker } \delta_k$ に注意する、 $f - f' = \delta_{k-1}g$ の場合も同様、

さらに、このペアリングは、非退化である。すなわち H_k の直交空間は 0 のみで、 H^k の直交空間も 0 しかない。したがって、 H^k は、 H_k の双対空間といってよいだろう。

注意 9.14. \mathbb{Z} 係数のコホモロジーも同様に定義されるが、一般に、(\mathbb{Z} 係数の)ホモロジーとは、同型にはならない、

問題 9.2. これについて調べよ.

9.3 テンソル

U, V, W を体 \mathbb{K} 上の有限次元のベクトル空間とする.

定義 9.15 (双線形写像). $\Phi: U \times V \to W$ が双線形写像 (W が $\mathbb K$ のときは双線形形式という) とは、

$$\Phi(\alpha u + \alpha' u', v) = \alpha \Phi(u, v) + \alpha' \Phi(u', v),
\Phi(u, \beta v + \beta' v) = \beta \Phi(u, v) + \beta' \Phi(u, v')$$

$$(u, u' \in U, v, v' \in V, \alpha, \alpha', \beta, \beta' \in \mathbb{K})$$

が成り立つことをいう.

例 9.5. $U=\mathbb{R}^n,\ V=\mathbb{R}^m,\ A\in\mathbb{R}^{n\times m}$ (行列)とすると、 $(x,y)\mapsto x^{\top}Ay$ は双線形.

図 1: 多重線形写像のイメージ

U の基底を e_1, e_2, \ldots, e_n , V の基底を f_1, f_2, \ldots, e_m とすると

$$\Phi\left(\sum_{i} \alpha^{i} e_{i}, \sum_{j} \beta^{j} f_{j}\right) = \sum_{i} \sum_{j} \alpha^{i} \beta^{j} \Phi(e_{i}, f_{j})$$

となる. $\Phi(e_i, f_j)$ を i, j 成分とする行列を考えると上の例になる.

定義 9.16 (多重線形写像). V_1,V_2,\ldots,V_k,W を $\mathbb K$ 上のベクトル空間とする.

 $\Phi: V_1 imes V_2 imes \cdots imes V_k o W$ が多重線形写像とは,各 V_i で線形

$$\Phi(x_1,x_2,\ldots,\alpha x_i+\alpha'x_i',\ldots,x_k)=\alpha\Phi(x_1,x_2,\ldots,x_i,\ldots,x_k)+\alpha'\Phi(x_1,x_2,\ldots,x_i',\ldots,x_k)$$

となることをいう.

例 9.6. $V_1=\mathbb{R}^n,\ V_2=\mathbb{R}^m,\ V_3=\mathbb{R}^l$ とし, $\Phi:V_1\times V_2\times V_3\to\mathbb{R}$ を

$$\Phi(x, y, z) := \sum_{i, j, k} \Phi_{ijk} x_i y_j z_k$$

とすると、 Φ は多重線形写像. 写像のイメージを図 1 に示す.

注意 9.17.

- ベクトル $\sim (a_i)$: インデックスが 1 つの数の組 $\cdots 1$ 次元配列
- 行列 $\sim (a_{ij})$: インデックスが 2 つの数の組 $\cdots 2$ 次元配列
- 多重線形写像・テンソル $\sim (a_{ijk\cdots})$: インデックスが k 個の数の組 $\cdots k$ 次元 配列

9.3.1 テンソル積の定義 1

U,V を体 \mathbb{K} 上の有限次元ベクトル空間とする

定義 9.18 $(U \ \ \, V \ \, o$ テンソル積 $U \otimes V)$. $U \ \ \, V \ \, o$ テンソル積 $U \otimes V$ は、ベクトル空間

$$U \otimes V := \{ \Phi : U^* \times V^* \to \mathbb{K}, \ \mathbb{Z} \otimes \mathbb{K} \}.$$

ここで、双線形写像全体は $(\alpha\Phi+\beta\Psi)(x,y):=\alpha\Phi(x,y)+\beta\Psi(x,y)$ でベクトル空間になることに注意する。また、 $U\otimes V$ と $(U^*\times V^*)^*$ の違いにも注意する(どちらかがどちらかに含まれるとも限らない)。

 $u \in U, v \in V$ のテンソル積 $u \otimes v \in U \otimes V$ は

$$u \otimes v(f,q) := u(f) \cdot v(q) \quad (f \in U^*, \ q \in V^*)$$

と定義される. ここで $U=U^{**}$ であり, u(f)=f(u) に注意する. また, · は $\mathbb K$ に

おける積である. $u \otimes v$ の双線形性は

$$u \otimes v(\alpha f + \alpha' f', g) = u(\alpha f + \alpha' f') \cdot v(g)$$
$$= (\alpha u(f) + \alpha' u(f')) \cdot v(g)$$
$$= \alpha u \otimes v(f, g) + \alpha' u \otimes v(f', g')$$

と確かめられる.

直感的には、u は n 次の縦ベクトル、v は m 次の縦ベクトルとみたとき、 $u\otimes v$ は、ランク 1 行列

$$u \otimes v = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \begin{bmatrix} v_1 & v_2 & \cdots & v_m \end{bmatrix}$$

を表していると考えることができる。このとき

$$u \otimes v(f,g) = \begin{bmatrix} f_1 & f_2 & \cdots & f_n \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \begin{bmatrix} v_1 & v_2 & \cdots & v_m \end{bmatrix} \begin{bmatrix} g_1 \\ g_2 \\ \vdots \\ g_m \end{bmatrix} \in \mathbb{K}$$

と見ることができる.特に, $U\otimes V$ は $n\times m$ 行列のなすベクトル空間と見なせる. 下の命題 9.22 も参照のこと.

命題 9.19. e_1, e_2, \ldots, e_n を U の基底, f_1, f_2, \ldots, f_m を V の基底とする.このとき $e_i \otimes f_j$ $(i=1,2,\ldots,n,\ j=1,2,\ldots,m)$ は $U\otimes V$ の基底.

直感的には,
$$e_i=$$
 $\begin{bmatrix}0\\\vdots\\1\\i\end{pmatrix}$ i , $f_j=$ $\begin{bmatrix}1\\j\\i\end{bmatrix}$, $e_i\otimes f_j=$ i $\begin{bmatrix}1\\1\\i\end{bmatrix}$ (行列空

間の基底)のように対応している.

証明、 e^1,e^2,\ldots,e^n を U の双対基底、 f^1,f^2,\ldots,f^m を V の双対基底とすると、 $e_i\otimes f_j$ は

$$e_i \otimes f_j(e^{\nu}, f^{\mu}) = e_i(e^{\nu}) \cdot f_j(f^{\mu}) = \delta_i^{\nu} \cdot \delta_j^{\mu} = \begin{cases} 1 & \text{if } (i, j) = (\nu, \mu), \\ 0 & \text{otherwise} \end{cases}$$

なる双線形写像 $U^* \times V^* \to \mathbb{K}$ である.まず $e_i \otimes f_j$ $(i=1,\dots,n,\ j=1,\dots,m)$ の一次独立性を示す. $\sum_{i,j} \alpha^{ij} e_i \otimes f_j = 0$ と仮定する.これを (e^{ν},f^{μ}) に作用させると,

$$0 = \sum_{i,j} \alpha^{ij} e_i \otimes f_j(e^{\nu}, f^{\mu}) = \alpha^{\nu\mu} \quad (\nu = 1, \dots, n, \ \mu = 1, \dots, m)$$

を得る.よって $e_i\otimes f_j$ $(i=1,\ldots,n,\ j=1,\ldots,m)$ は一次独立である.次に, $\Phi:U^*\times V^*\to\mathbb{K}$ が双線形写像なら $\Phi=\sum_{i,j}\Phi(e^i,f^j)e_i\otimes f_j$ と書けることを示

す. これは,

$$\sum_{i,j} \Phi(e^i, f^j) e_i \otimes f_j \left(\sum_{\nu} \alpha_{\nu} e^{\nu}, \sum_{\mu} \beta_{\mu} f^{\mu} \right)$$

$$= \sum_{i,j} \Phi(e^i, f^j) \alpha_i \beta_j$$

$$= \Phi \left(\sum_i \alpha_i e^i, \sum_j \beta_j f^j \right)$$

から従う.

系 9.20. dim $U \otimes V = \dim U \times \dim V$.

定義 9.21. 同様にして,k個のK上のベクトル空間 V_1,\ldots,V_k に対してテンソル積

$$V_1 \otimes V_2 \otimes \cdots \otimes V_k = \{\Phi : V_1^* \times V_2^* \times \cdots \times V_k^* \to \mathbb{K}, \ \text{\emptyset $\equiv $\$ $i $} \}$$

が定義される. このとき

$$\stackrel{1}{e}_{i_1} \otimes \stackrel{2}{e}_{i_2} \otimes \cdots \otimes \stackrel{k}{e}_{i_k}$$
 $(i_1, i_2, \ldots, i_k$ はインデックス)

は基底.

命題 9.22. $\operatorname{Hom}(U,V)$ を U から V への線形写像全体とする.このとき $U^*\otimes V\simeq \operatorname{Hom}(U,V)$ (カノニカルな同型).

証明. $\varphi \in \operatorname{Hom}(U,V)$ をとると、双線形写像 $\Phi: U \times V^* \to \mathbb{K}$ が

$$\Phi(u, v) = v(\varphi(u))$$

が定義される. 逆に、双線形写像 $\Phi: U \times V^* \to \mathbb{K}$ をとると、 $\varphi: U \to V = V^{**}$ が

$$\varphi(u) = \Phi(u, \cdot) : V^* \to \mathbb{K}$$

が定義される.

例 9.7 (行列積をテンソルとみる). A,B を \mathbb{K} 上の n 次正方行列とする. 行列積 ullet は

$$(A \bullet B)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

と定義される. Mat を n 次正方行列全体の集合とすると, n^2 次元ベクトル空間 $(\simeq \mathbb{K}^{n \times n})$ と見なせる. そこで, 行列積 \bullet は $\mathrm{Mat} \times \mathrm{Mat} \to \mathrm{Mat}$ の双線形写像である. 一方, \bullet は多重線形写像 $\mathrm{Mat} \times \mathrm{Mat} \times \mathrm{Mat}^* \to \mathbb{K}$ とも見ることができる.

つまり ullet \in $\mathrm{Mat}^* \otimes \mathrm{Mat}^* \otimes \mathrm{Mat}$ で、基底 $e_{ij} = \ _i \left[\begin{array}{c} \\ 1 \end{array} \right]$ に対する双対基底 e^{ij}

を用いると $ullet = \sum_{i,j,k} e^{ik} \otimes e^{kj} \otimes e_{ij}$ と書ける. 実際,

$$\bullet(A, B, e^{i'j'}) = \sum_{i,j,k} e^{ik} \otimes e^{kj} \otimes e_{ij}(A, B, e^{i'j'})$$

$$= \sum_{i,j,k} e^{ik}(A) \cdot e^{kj}(B) \cdot e_{ij}(e^{i'j'})$$

$$= \sum_{k} A_{i'k} B_{kj'}$$

であり、 $A \bullet B$ の i'j' 成分が出る.

注意 9.23. 実は,行列積テンソル $\sum_{i,j,k}e^{ik}\otimes e^{kj}\otimes e_{ij}$ の「テンソル分解」と行列積の計算複雑度には深い関係がある. $O(n^3)$ より速い行列積アルゴリズム(例:

Strassen のアルゴリズム)は、このテンソルの低ランク分解によって設計される.

問題 9.3. これを調べよ.

TODO: テンソル分解について紹介する.

9.3.2 テンソル積の定義 2

U,V を体 \mathbb{K} 上の有限次元ベクトル空間とする. U と V のテンソル積 $U\otimes V$ は, $u_i\otimes v_i$ と書かれる元の形式的結合

$$U\otimes V:=\Bigl\{\sum_{\text{fight}}\alpha_iu_i\otimes v_i\mid u_i\in U,\ v_i\in V,\ \alpha_i\in\mathbb{K}\Bigr\}\Bigr/\sim$$

で定義される. ただし同値関係 ~ は

$$(u+u') \otimes v \sim u \otimes v + u' \otimes v,$$

 $u \otimes (v+v') \sim u \otimes v + u \otimes v',$
 $\alpha(u \otimes v) \sim (\alpha u) \otimes v \sim u \otimes (\alpha v)$

で定義される. **TODO:** 商空間を用いた書き方. これは前の定義によるテンソル 積と同型になる. U と V の基底をそれぞれ $(e_i)_i$, $(f_j)_j$ としたとき, テンソル積 $U\otimes V$ の基底は $(e_i\otimes f_j)_{ij}$ になる.

問題 9.4. ちゃんと定式化せよ.

9.3.3 テンソル積の定義 3

定理 9.24. 以下を満たすベクトル空間 T と双線形写像 $t:U\times V\to T$ が同型を除いて一意に存在する.

• 任意のベクトル空間 W と双線形写像 $f:U\times V\to W$ に対し、 $f=g\circ t$ となる線形写像 $g:T\to W$ が唯一存在する.

ここで「同型を除いて」とは、条件を満たす異なる t',T' に対して同型写像 $g:T\to T'$ で $t'=g\circ t$ なるものが一意に存在することを意味する.

証明. 存在性: T として上の $U\otimes V$ をとる. $t: U\times V\to U\otimes V$ は $(u,v)\stackrel{t}{\longmapsto} u\otimes v$ で定義する. W と f が与えられたときに,g として $\sum_i \alpha_i u_i\otimes v_i\stackrel{g}{\longmapsto} \sum_i \alpha_i f(u_i,v_i)$ ととればよい(well-defined).

一意性:条件を満たす異なるt',T'があったとすると,

から $t' = g \circ t$ と $t = g' \circ t'$ を得るので, $t' = g \circ g' \circ t'$ となる. 一方,

$$U \times V \xrightarrow{t'} T'$$

$$\downarrow \text{id } \exists \exists -2$$

$$T'$$

で id の一意性から $g\circ g'=$ id となる.同様に $g'\circ g=$ id を得るので,g,g' は同型 写像で $t'=g\circ t$.

定義 9.25. 上の定理で存在の保証される T を U と V のテンソル積といい, $U\otimes V$ と書く. u と v のテンソル積は $u\otimes v:=t(u,v)$ で定義する.

9.3.4 線形写像のテンソル積,行列のクロネッカー積

線形写像のテンソル積は次のように定義される. U,U',V,V' を \mathbb{K} 上のベクトル空間とし, $\varphi:U\to U',\; \psi:V\to V'$ を線形写像とする. このとき, $\varphi\otimes\psi:U\otimes V\to U'\otimes V'$ は

$$\begin{cases} \varphi \otimes \psi(u \otimes v) := \varphi(u) \otimes \psi(v), \\ \varphi \otimes \psi\left(\sum_{i} \alpha_{i} u_{i} \otimes v_{i}\right) := \sum_{i} \alpha_{i} \varphi \otimes \psi(u_{i} \otimes v_{i}) \end{cases}$$

と定義する.

補題 9.26. これは well-defined.

証明 (スケッチ) . $\varphi \otimes \psi((u+u') \otimes v) \sim \varphi \otimes \psi(u \otimes v + u' \otimes v)$ は.

$$\varphi \otimes \psi((u+u') \otimes v) \stackrel{\text{def}}{=} \varphi(u+u') \otimes \psi(v) = (\varphi(u) + \varphi(u')) \otimes \psi(v),$$
$$\varphi \otimes \psi(u \otimes v + u' \otimes v) \stackrel{\text{def}}{=} \varphi \otimes \psi(u \otimes v) + \varphi \otimes \psi(u' \otimes v) \stackrel{\text{def}}{=} \varphi(u) \otimes \psi(v) + \varphi(u') \otimes \psi(v)$$

から従う. 他も同様に示せる.

 $arphi\otimes\psi$ の行列表示を考える。 e_1,e_2,\ldots,e_n を U の基底, f_1,f_2,\ldots,f_m を V の基底, $e'_1,e'_2,\ldots,e'_{n'}$ を U' の基底, $f'_1,f'_2,\ldots,f'_{m'}$ を V' の基底。A を arphi の行列表示,すなわち A_{ij} を $arphi(e_j)$ を e'_k たちで表したときの e'_i の係数とし,B を ψ の行列表示とする。すると,

$$\varphi \otimes \psi(e_i \otimes f_j) = \varphi(e_i) \otimes \psi(f_j)$$

$$= \left(\sum_k A_{ki} e_k'\right) \otimes \left(\sum_l B_{lj} f_l'\right)$$

$$= \sum_{k,l} A_{ki} B_{lj} e_k' \otimes f_l'$$

となるから、 $\varphi \otimes \psi$ の行列表示は

となる. これを行列 A, B のクロネッカー積といい, $A \otimes B$ などと書かれる.

例 9.8.
$$A,B$$
 が 2×2 行列 $A=\begin{pmatrix}A_{11}&A_{12}\\&&\\A_{21}&A_{22}\end{pmatrix}$ $B=\begin{pmatrix}B_{11}&B_{12}\\&&\\B_{21}&B_{22}\end{pmatrix}$ のときは

$$A \otimes B = \begin{bmatrix} A_{11}B & A_{12}B \\ A_{21}B & A_{22}B \end{bmatrix} = \begin{bmatrix} A_{11}B_{11} & A_{11}B_{12} & A_{12}B_{11} & A_{12}B_{12} \\ A_{11}B_{21} & A_{11}B_{22} & A_{12}B_{21} & A_{12}B_{22} \\ \hline A_{21}B_{11} & A_{21}B_{12} & A_{22}B_{11} & A_{22}B_{12} \\ A_{21}B_{21} & A_{21}B_{22} & A_{22}B_{21} & A_{22}B_{22} \end{bmatrix}.$$

9.3.5 テンソル積の定義 4

TODO: 基底の変換に対する変化で定義するやり方を書く. 擬ベクトルなども紹介.

9.4 量子計算

テンソル積・クロネッカー積の使用例として,量子計算を紹介する.量子計算では, 1 個の量子ビットの状態は $\alpha \, |0\rangle + \beta \, |1\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \in \mathbb{C}^2$ によって表される.こ

こで
$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 は \mathbb{C}^2 の基底で, $\alpha, \beta \in \mathbb{C}$ は $|\alpha|^2 + |\beta|^2 = 1$ を満た

すものとする.この量子ビットを「観測」すると,確率 $|\alpha|^2$ で 0 が出力され,確率 $|\beta|^2$ で 1 が出力される. $|0\rangle$, $|1\rangle$ の双対基底を $\langle 0|$, $\langle 1|$ で表す.

N 個の量子ビットの状態は

$$\sum_{i_1,i_2,\dots,i_N\in\{0,1\}} \alpha_{i_1i_2\cdots i_N} |i_1\rangle \otimes |i_2\rangle \otimes \cdots \otimes |i_N\rangle \in \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2 = \mathbb{C}^{2^N},$$

$$\sum_{i_1,i_2,\dots,i_N\in\{0,1\}} |\alpha_{i_1i_2\cdots i_N}|^2 = 1$$

で表される. $|i_1\rangle\otimes|i_2\rangle\otimes\cdots\otimes|i_N\rangle$ を $|i_1i_2\cdots i_N\rangle$ と略記する. この量子ビットの観測により、確率 $|\alpha_{i_1i_2\cdots i_N}|^2$ で $i_1i_2\cdots i_n$ が出力される.

例 9.9. N=2 の場合の量子ビットは

$$\alpha_{00} |00\rangle + \alpha_{10} |10\rangle + \alpha_{01} |01\rangle + \alpha_{11} |11\rangle$$
.

古典計算では、計算はブール関数 $\{0,1\}^n \to \{0,1\}$ を表現する論理回路(例えば図 2)で表される.量子回路は図 3 のように、入力として N-量子ビットを受け取り、N-量子ビットを出力するユニタリー行列 $U:\mathbb{C}^{2^N} \to \mathbb{C}^{2^N}$ のことである.(ユニタリー性よりノルム $\sum_{i_1,i_2,...,i_N \in \{0,1\}} |\alpha_{i_1i_2...i_N}|^2 = 1$ を保存する.)

典型的には、U は図 4 のように基本的な(小さな)量子回路の合成で表される.

図 4: 量子回路の合成.

図 5: 小さな量子回路.

なお、図のような量子回路の意味は、量子ビット $|\psi\rangle$ に対して

$$|\psi\rangle = \sum \alpha_j |\psi_j'\rangle \otimes |\psi_j''\rangle \mapsto \sum \alpha_j U |\psi_j'\rangle \otimes |\psi_j''\rangle$$

と作用する回路である.ここで, $|\psi_j'
angle$ は $i_1i_2\cdots i_k$ ビットに対応し, $|\psi_j''
angle$ はそれ以外に対応する.つまりこの回路は $U\otimes I$ を意味する.

基本的な量子回路を以下に挙げる.

1. アダマール演算(図
$$6$$
). 行列 $H=\dfrac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix}$ で書かれる. すなわち

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \quad H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle).$$

2. パウリ
$$X$$
 (図 7). 行列 $X=\begin{pmatrix}0&1\\&\\1&0\end{pmatrix}$ で書かれる. すなわち

$$H|0\rangle = |1\rangle$$
, $H|1\rangle = |0\rangle$.

これは古典回路の NOT に対応している.

3. パウリ
$$Z$$
 (図 8). 行列 $Z = \begin{pmatrix} 1 & 0 \\ & & \\ 0 & -1 \end{pmatrix}$ で書かれる. すなわち

$$H|0\rangle = |0\rangle$$
, $H|1\rangle = -|1\rangle$.

$$4.~Z(heta)$$
(図 9).行列 $Z=egin{pmatrix} 1&0\ &\ 0&e^{i heta} \end{pmatrix}$ で書かれる.

5. CNOT (図 10). 制御ビットとターゲットビットの 2 ビットを入力にとり、 制御ビットが 1 のときターゲットビットを反転し、制御ビットが 0 のときは そのまま出力する. 行列で表すと

となる. クロネッカー積を用いて表すと

$$\left|0\right\rangle \left\langle 0\right| \otimes I + \left|1\right\rangle \left\langle 1\right| \otimes X = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

6. 制御 U (図 11). 制御ビットが 1 のときに U を作用させ、制御ビットが 0 のときはそのまま出力する、クロネッカー積を用いて

$$|0\rangle \langle 0| \otimes I + |1\rangle \langle 1| \otimes U = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \otimes I + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \otimes U = \begin{bmatrix} I & O \\ O & O \end{bmatrix} + \begin{bmatrix} O & O \\ O & U \end{bmatrix}$$

で表される.

例 9.10. 図 12 は各ビットにアダマール演算を作用させる回路であり, N $H\otimes H\otimes \cdots\otimes H$ で表される. この回路に $|0\cdots 0\rangle$ を作用させると

$$\begin{split} H\otimes H\otimes \cdots \otimes H &|0\cdots 0\rangle = H &|0\rangle \otimes H &|0\rangle \otimes \cdots \otimes H &|0\rangle \\ &= \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes \cdots \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \\ &= \frac{1}{2^{N/2}} \sum_{i_1,i_2,\cdots,i_N \in \{0,1\}} |i_1i_2\cdots i_N\rangle \end{split}$$

となる. すなわち、全ての状態が等確率 $1/2^N$ で観測される.

図 12: 量子回路の例。

例 9.11 (アダマールテスト). 図 13 の量子回路をアダマールテストとよぶ. U は ユニタリーである. この回路に $|0\rangle\otimes|\psi\rangle$ を入力する. ここで, $|\psi\rangle$ は U の固有ベクトルとする. つまり $U|\psi\rangle=e^{i\lambda}|\psi\rangle$ である. すると, 1 つ目のアダマール回路で

$$|0\rangle \otimes |\psi\rangle \mapsto \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes |\psi\rangle$$

と写され, Uによって

$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes |\psi\rangle \mapsto \frac{1}{\sqrt{2}}(|0\rangle \otimes |\psi\rangle + e^{i\lambda} |1\rangle \otimes |\psi\rangle)$$

と写され、2つ目のアダマール回路によって

$$\frac{1}{\sqrt{2}}(|0\rangle \otimes |\psi\rangle + e^{i\lambda} |1\rangle \otimes |\psi\rangle) \mapsto \frac{1}{2}((|0\rangle + |1\rangle) \otimes |\psi\rangle + e^{i\lambda}(|0\rangle - |1\rangle) \otimes |\psi\rangle)$$

$$= \frac{1 + e^{i\lambda}}{2} |0\rangle \otimes |\psi\rangle + \frac{1 - e^{i\lambda}}{2} |1\rangle \otimes |\psi\rangle$$

と写される. そこで出力の1番目のビットを測定すると, 0が出る確率は

$$\left| \frac{1 + e^{i\lambda}}{2} \right|^2 = \frac{1 + \cos \lambda}{2},$$

図 13: アダマールテスト.

1が出る確率は

$$\left| \frac{1 - e^{i\lambda}}{2} \right|^2 = \frac{1 - \cos \lambda}{2}$$

となる. よって, アダマールテストによって $2^N \times 2^N$ サイズの行列の固有値の位相 λ を行列演算なしで推定することができる.