Chapter 16. A Finite Dimensional Approximation to 12 M a connected Riemann Manifold, prq is two point N=O(M; P.9) piecewise Com paths from P to 2 Def topology: Let P denote the topological metric on M by Riemann metric (L(r)= fa (dr dr) dt → ds infL) V path W. . WZESZ, arc-lengths Si(t), Szct) Def $d(\omega_1, \omega_2) = \max_{t \in [0,1]} P(\omega_1(t), \omega_2(t)) + \left(\int_0^1 \left(\frac{ds_1}{at} - \frac{ds_2}{at}\right)^2 dt\right)^{\frac{2}{2}}$ 12-P q. Ea(w) :. I induces a topology on SZ: (wn) -> w iff wn(t) -> w(t) uniformly and dsn L2 ds Given (>0, Si=E'([0, c]) CS (E=E0:SI->R) Int sc: = E ([0, ()) Now: find topology of sic by constructing a finite dim approximation Chouse 0=to<t1(...<tk=1, let \$\sum(to,--,tk)\$ be paths: cw:[0,1]=m 5.1. W(1) = P, W(1) = 9, W| [ti, titi] is a geodesic ti=0, -; k-1. Def. Dito, ..., tk) - 2 ns (to, --, tk): Int Dito, --, tk) - Int Sin Site, ... tk) Lemma 16-1, let M be a complete Riemannian manifold, C>0, $\Omega^{c} \neq \emptyset$, then for all sufficiently fine subdivisions $(t_0, \cdot \cdot, t_k)$ of [0,1], set $Int \Omega$ $(t_0, \cdot \cdot, t_k)^{c}$ can be given the structure of a smooth finite dim manifold.

Pf: let $S: \{x \in M: P(x, p) \in JC \} \Rightarrow \forall w \in SC^c, :L^2 \leq E \leq C$ $:w \in SCM$ M is complete $\Rightarrow S$ is compact.

Cor 10.11: Y cpt set KCM, IS>0, s.t. V two points of K with distance < S are joined by a unique geodesic of length < S depends differentiably on end points

: 32>0, s-1. x,yes, P(x,y) < 2, 7! geodesic from x to y of length < 2, and depends differentiably on x,y.

Chouse (to, ti, ..., ti) of [0,1] s.t. $t_i - t_{i-1} < \frac{\epsilon^2}{c}$, then \forall broken geodesic $\omega \in \Omega(t_0, ..., t_K)^c$

$$\left(L_{t_{i-1}}^{t_i} \omega \right)^2 = \left(t_i - t_{i-1} \right) \left(E_{t_{i-1}}^{t_i} \omega \right) \leq \left(t_i - t_{i-1} \right) \left(E \omega \right)$$

$$\leq \left(t_i - t_{i-1} \right) c < \epsilon^2$$

 $P \leq 2 \Rightarrow geodesic W|_{\Sigma t_{i-1}, t_{i}}$ is unique, differentiably by end points

The broken geodesic w is uniquely determined by (k-1)-tupk $w(t_1), \dots, w(t_{k-1}) \in M \times M \times \dots \times M$

:. $W \rightarrow (W(t_1), --, W(t_{|C-1}))$ defines a homeomorphism between Int $SZ(t_0, --, t_K)^c$ and an open set of Mx - -M

Take over the Structure of Mr. XM, Ints (to, ..., two get its smooth structure, it is a smooth manifold of (K-1) dimm

6

圃

Let Int $SL(t_0, -; t_1c)^c$ be B, $E': B \rightarrow R$ denote the restriction of C B of energy fun $E: JL \rightarrow R$.

Thm 16.2. E': B-7R is smooth; for each a < c, $B^a = E' Lo, a = is$ cpt, and is a deformation retract of S^a ; The critical points of E' are precisely the same as the critical points of E in $Int SC^c — unbroken geodesics from <math>P toq$ and length c < c; The index/nullity of Hessian E'_{xx} at such critical point (geodesic named Y) = index/nullity of E_{xx} at Y

Thus, the finite dim model $B(= M \times ... \times M)$ gives a faithful model for the infinite dim path space Int SL^{c} Pf: $E'(w) = \sum_{i=1}^{K} \frac{P(w(t_{i-1}), w(t_{i}))^{2}}{t_{i} - t_{i-1}}$ is smooth

For acc, $B^{\alpha} \cong \{(P_{i,1}, -; P_{ik-1}) \in S \times \cdots \times S, S : t : \sum_{i=1}^{K} \frac{P(P_{i-1}, P_{i})^{2}}{t_{i} - t_{i-1}} \leq \alpha \} P^{-P_{i}}, P_{i} = \emptyset$ It is a closed subset of cpt set, hence cpt.

Then, define the retraction $r: Int \mathfrak{N}^c \to B$ $r(\omega)$ denote the unique geodesic in B s.t. $r(\omega)|_{[t:-t:]}$ is geodesic of length $< \epsilon$, from $\omega(t:-1)$ to $\omega(t:-1)$

[ti-1, ti] is geolesic of lemin 2 , from W(li-1) to W(li)

 $P(P, w(t))^{2} \leq (Lw)^{2} \leq Ew \leq C \Rightarrow w \leq S$ $P(w(t_{i-1}), w(t_{i}))^{2} \leq (t_{i} - t_{i-1}) (E_{t_{i-1}} w) \leq \frac{E^{2}}{C} \cdot C = E^{2} \Rightarrow By \text{ (or 10.11)},$ $qeodesics exists, unique, L \leq E$

; Y(w) is well-defined, E(Y(w)) < E(W) < C

- Def: rn: Ints2 = Ints2 For ti-1 & n st; let { ru (w) | co, ti-1] = r(w) | co, ti-1] ru(w) (ti-1, u) = minimal geodesic from w(ti+) to w(u) | rn(w) | [u, 1] = w | [u, 1] .. to is id map ri=Y Yn(w) is continuous : . B is a deformation retract of Int 52° · LE(rn(w)) E(w) : HWEDQ rn(w) EDQ .. Ba is also a deformation retract of sea Every geodesic is a broken geodesic, so crifical point of E in Int Sc is critical point of B. For critical point of B, it is unbroken geodesic, hence critical

point of Int SC

At critical point: geodesic Y. Tr13 Let Z: (-2, E) -> B Z(0)= x Vn, Z(n) is a broken geodesic. $(\cdot, \bar{\alpha})$ is a variation, $W(t) = \frac{\partial \bar{\alpha}}{\partial n}(0,t)$ is a variation vector

field along y.

By lemma 14.5, with is Jacobi field on [ti-1, ti] W(t) is a broken Jacobi field.

- SW(+)7 = Tx SL(to, -, tr) Space of broken Jacobi fields along x
- ← By lemma 15.4 (Index/nullity of Exx = index/nullity of Exx
- restricted to $T_Y SL(t_0, -, t_n)$ of broken Jacobi field)
 index/nullity of E_{xx} at Y = index/nullity of E'_{xx} at Y

1/4

Thm 16.3. Let M be a complete Riemannian manifold and let $P, Q \in M$ be two points which are not conjugate along any geodesic of $L \in \mathcal{F}a$. Then Ω^a has the homotopy type of a finite CW-complex, with one cell of dim \mathcal{A} for each geodesic in Ω^a at which E_{xx} has index \mathcal{A} .

Pf: Thm 3.3: If f is a differentiable fun on M with no degenerate critical point, and if each Ma is cpt, then M has homotopy type of a CW-complex, with one cell of dim A for each critical point of index A.

By thm 16.2. E' is smooth, E' ([o,a]) is cpt.

Since p, q are not conjugate => Ex has o-nullity at

critical point.

By lemma 15.4. Exx and Exx has index/nullity =>

Ex only has non-degenerate critical points.

i. Thm 3.3 => B^{α} has homotopy type of a CW-complex, i. Thm 3.3 => B^{α} has homotopy type of a CW-complex, i. (ell of dim Λ (=) critical point of E' of index Λ (=) geodesic at which $E \times K$ has index Λ .

By thm 16.2. B^{α} is a deformation retract of Σ^{α} .

In this homotopy type of a CW complex, cell of dim Λ (=> geodesic, E_{xx} has index Λ . Λ^{α} CW complex

Thm 16.3 => 52 a contains only finite geodesics

