COMP 250

Lecture 30

graphs

Nov. 19, 2018

Example

Definition

A directed graph is a set of vertices

$$V = \{v_i : i \in 1, ..., n\}$$

and set of ordered pairs of these vertices called edges.

$$E = \{ (v_i, v_j) : i, j \in 1, ..., n \}$$

Examples (Directed)

Vertices

Edges

airports

web pages

Java objects

methods in program (compile time)

Examples (Directed)

<u>Vertices</u> <u>Edges</u>

airports flights

web pages links (URLs)

Java objects references

methods in program method A calls B (compile time) (compile time)

Definition

A undirected graph is a set of vertices

$$V = \{v_i : i \in 1, ..., n\}$$

and set of unordered pairs, again called edges.

$$E = \{ \{v_i, v_j\} : i, j \in 1, ..., n \}$$

Examples (Undirected)

<u>Vertices</u> <u>Edges</u>

Facebook users friends

events(to be scheduled) conflicts (someone

needs to attend both)

road intersections roads (two way)

We will deal with directed graphs only.

Terminology: "in degree"

<u>v</u>	<u>in degree</u>
a	1
b	2
С	2
d	0
е	1
f	3
g	0
h	1

Terminology: "out degree"

<u>V</u>	<u>out degree</u>
a	1
b	1
С	1
d	2
e	2
f	2
g	1
h	0

Example: web pages

In degree: How many web pages link to some web page (e.g. to f) ?

Out degree: How many web pages does some web page link to (e.g. from f)?

Terminology: path

A path is a sequence of edges such that end vertex of one edge is the start vertex of the next edge. No vertex may be repeated except first and last.

Examples

- acfeb
- dac
- febf

•

Weighted Graph

Graph algorithms in COMP 251

Given a graph, what is the shortest (weighted) path between two vertices?

Terminology: cycle

A cycle is a path such that the last vertex is the same as the first vertex.

Examples

- febf
- efe
- fbf
- •

"Travelling Salesman" COMP 360 (Hamiltonian circuit)

Find the shortest cycle that visits all vertices once. (except first & last)

This is an example of a hard problem (called NP complete).

Directed Acyclic Graph

no cycles

There are three paths from a to d.

Used to capture dependencies.

e.g. a implies b, or a must happen before b can happen, etc.

Graph ADT

- addVertex(), addEdge()
- removeVertex(), removeEdge()
- getVertex(), getEdge()

- containsVertex(), containsEdge()
- numVertices(), numEdges()

• ...

How to implement a Graph class?

 Graphs are a generalization of trees, but a graph does not have a root vertex.

 Outgoing edges from a vertex in a graph are like children of a vertex in a tree. Incoming edges are like parent(s).

1. Adjacency List (for edges)

(generalization of children for graphs)

Here each adjacency list is sorted, but that is not always possible (or necessary).

How to implement a Graph class in Java?

How to implement a Graph class in Java?

```
class Graph<T> {
                            // this would be a weighted graph
  class Vertex<T> {
     ArrayList<Edge>
                         adjList; //
                                     end vertex of an edge (start is 'this' vertex)
                         element;
     boolean
                        visited;
  class Edge {
    Vertex
                    endVertex;
    double
                    weight;
```

How to access vertices?

We can have a string name (key) for each vertex. e.g. YUL for Trudeau airport, LAX for Los Angeles, ...

HashMap< String, Vertex<T> > vertexMap;

We could also just have a list of vertices.

How to access vertices?

```
We can have a string name (key) for each vertex.
e.g. YUL for Trudeau airport, LAX for Los Angeles, ...
class Graph<T> {
     HashMap< String, Vertex<T> > vertexMap;
    class Vertex<T> { ...}
    class Edge<T> { ...}
```

How to implement a Graph class in Java?

How many objects?

2. Adjacency Matrix

Assume we have a list of vertex names i.e. a unique mapping from vertex names to 0, 1,, n-1 (not a hashmap).

boolean adjMatrix[6][6]

2. Adjacency Matrix

boolean adjMatrix[6][6]

Suppose a graph has *n* vertices.

We say:

- the graph is *dense* if number of edges is close to n^2 .
- the graph is *sparse* if number of edges is close to n.

(These are not formal definitions.)

Adjacency list versus an adjacency matrix? When would you use one versus the other?

<u>V</u>	<u>v.adjList</u>	abcdef
а	С	
b	f	a 0 0 1 0 0 0
C	f	b 0 0 0 0 0 1
d	a, c	c 000001
е	b, f	d 1 0 1 0 0 0
f	b, e	e 0 1 0 0 0 1
g	h	f 0 1 0 0 1 0
h		

Would you use an *adjacency list* or *adjacency matrix* for each of the following?

• The graph is sparse e.g. 10,000 vertices and 20,000 edges and we want to use as little space as possible.

- The graph is sparse e.g. 10,000 vertices and 20,000 edges and we want to use as little space as possible.
- The graph is dense e.g. 10,000 vertices and 20,000,000 edges, and we want to use as little space as possible.

- The graph is sparse e.g. 10,000 vertices and 20,000 edges and we want to use as little space as possible.
- The graph is dense e.g. 10,000 vertices and 20,000,000 edges, and we want to use as little space as possible.
- Answer the query areAdjacent() as quickly as possible, no matter how much space you use.

- The graph is sparse e.g. 10,000 vertices and 20,000 edges and we want to use as little space as possible.
- The graph is dense e.g. 10,000 vertices and 20,000,000 edges, and we want to use as little space as possible.
- Answer the query areAdjacent() as quickly as possible, no matter how much space you use.
- Perform operation insertVertex(v).

- The graph is sparse e.g. 10,000 vertices and 20,000 edges and we want to use as little space as possible.
- The graph is dense e.g. 10,000 vertices and 20,000,000 edges, and we want to use as little space as possible.
- Answer the query areAdjacent() as quickly as possible, no matter how much space you use.
- Perform operation insertVertex(v).
- Perform operation removeVertex(v).

Next lecture

- Recursive graph traversal
 - depth first

- Non-recursive graph traversal
 - depth first
 - breadth first