22: MAP

Jerry Cain May 17, 2021

Maximum a Posteriori Estimator

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

Maximum What parameter θ

maximizes the likelihood Likelihood

of our observed data **Estimator**

 $(X_1, X_2, ..., X_n)$? (MLE)

$$L(\theta) = f(X_1, X_2, ..., X_n | \theta)$$
$$= \prod_{i=1}^{n} f(X_i | \theta)$$

 $\theta_{MLE} = \underset{\theta}{\operatorname{arg max}} f(X_1, X_2, ..., X_n | \theta)$

Observations:

- MLE determines θ value that maximizes the probability of observing the sample.
- If we're estimating θ , couldn't we just maximize the probability of θ ?

Today: Bayesian estimation using the Bayesian definition of probability!

Maximum A Posteriori (MAP) Estimator

Not Review! New!

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

Maximum Likelihood Estimator (MLE)

What parameter θ maximizes the likelihood of our observed data $(X_1, X_2, ..., X_n)$?

$$L(\theta) = f(X_1, X_2, ..., X_n | \theta)$$

$$= \prod_{i=1}^{n} f(X_i | \theta)$$

$$= \arg \max f(X_1, X_2, ..., X_n | \theta)$$

$$\theta_{MLE} = \arg \max_{\theta} f(X_1, X_2, ..., X_n | \theta)$$
likelihood of data

Maximum a Posteriori (MAP)

Estimator

Given the sample data

 $(X_1, X_2, ..., X_n),$

what is the most probable

parameter θ ?

$$\theta_{MAP} = \underset{\theta}{\text{arg max }} f(\theta|X_1, X_2, \dots, X_n)$$

$$\underset{\text{of } \theta}{\text{posterior distribution}}$$

Maximum A Posteriori (MAP) Estimator

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

<u>def</u> The Maximum a Posteriori (MAP) Estimator of θ is the value of θ that maximizes the **posterior** distribution of θ .

$$\theta_{MAP} = \arg\max_{\theta} f(\theta | X_1, X_2, \dots, X_n)$$

Intuition with Bayes' Theorem:

After seeing data, posterior belief of θ

posterior $P(\theta|\mathsf{data})$ $L(\theta)$, probability of data given parameter θ

likelihood prior

 $P(\text{data}|\theta)P(\theta)$

Before seeing data, prior belief of θ

Solving for θ_{MAP}

- Observe data: $X_1, X_2, ..., X_n$, all i.i.d.
- Let likelihood be same as MLE: $f(X_1, X_2, ..., X_n | \theta) = \prod f(X_i | \theta)$
- Let the prior distribution of θ be $g(\theta)$.

$$\theta_{MAP} = \arg\max_{\theta} f(\theta|X_1, X_2, ..., X_n) = \arg\max_{\theta} \frac{f(X_1, X_2, ..., X_n|\theta)g(\theta)}{h(X_1, X_2, ..., X_n)}$$
 (Bayes' Theorem)
$$= \arg\max_{\theta} \frac{g(\theta) \prod_{i=1}^n f(X_i|\theta)}{h(X_1, X_2, ..., X_n)}$$
 (independence)

$$= \arg\max_{\theta} g(\theta) \prod_{i=1}^{n} f(X_i | \theta) \qquad (1/h(X_1, X_2, ..., X_n) \text{ is a positive constant w.r.t. } \theta)$$

$$= \arg \max_{\theta} \left(\log g(\theta) + \sum_{i=1}^{n} \log f(X_i | \theta) \right)$$

θ_{MAP} : Interpretation 1

- Observe data: $X_1, X_2, ..., X_n$, all i.i.d.
- Let likelihood be same as MLE: $f(X_1, X_2, ..., X_n | \theta) = \prod f(X_i | \theta)$
- Let the prior distribution of θ be $g(\theta)$.

$$\theta_{MAP} = \arg\max_{\theta} f(\theta|X_1, X_2, ..., X_n) = \arg\max_{\theta} \frac{f(X_1, X_2, ..., X_n|\theta)g(\theta)}{h(X_1, X_2, ..., X_n)} \qquad \text{(Bayes' Theorem)}$$

$$= \arg\max_{\theta} \frac{g(\theta) \prod_{i=1}^n f(X_i|\theta)}{h(X_1, X_2, ..., X_n)} \qquad \text{(independence)}$$

$$= \arg\max_{\theta} g(\theta) \prod_{i=1}^n f(X_i|\theta) \qquad \text{(1/h(X_1, X_2, ..., X_n) is a positive constant w.r.t. } \theta)$$

$$= \arg\max_{\theta} \left(\log g(\theta) + \sum_{i=1}^n \log f(X_i|\theta) \right) \qquad \theta_{MAP} \text{ maximizes} \\ \log \text{ prior + log-likelihood}$$

θ_{MAP} : Interpretation 2

- Observe data: $X_1, X_2, ..., X_n$, all i.i.d.
- Let likelihood be same as MLE: $f(X_1, X_2, ..., X_n | \theta) = \prod f(X_i | \theta)$
- Let the prior distribution of θ be $g(\theta)$.

$$\theta_{MAP} = \arg\max_{\theta} f(\theta|X_1, X_2, ..., X_n) = \arg\max_{\theta} f(\theta|X_1, X_2, ..., X_n) = \arg\max_{\theta} f(\theta|X_1, X_2, ..., X_n)$$
 The mode of the posterior distribution of θ

(Bayes' Theorem)

$$= \arg\max_{\theta} \frac{g(\theta) \prod_{i=1}^{n} f(X_i | \theta)}{h(X_1, X_2, \dots, X_n)}$$

(independence)

$$= \arg \max_{\theta} g(\theta) \prod_{i=1}^{n} f(X_i | \theta)$$

 $(1/h(X_1,X_2,\ldots,X_n)$ is a positive constant w.r.t. $\theta)$

$$= \arg \max_{\theta} \left(\log g(\theta) + \sum_{i=1}^{n} \log f(X_i | \theta) \right) \quad \begin{cases} \theta_{MAP} \text{ maximizes} \\ \log \text{ prior + log-likelihood} \end{cases}$$

Mode: A statistic of a random variable

The **mode** of a random variable *X* is defined as:

$$\underset{\mathsf{PMF}}{\mathsf{p}(x)} \operatorname{arg\,max} p(x) \qquad \underset{\mathsf{x}}{\mathsf{arg\,max}} f(x) \qquad \underset{\mathsf{x}}{\mathsf{(X\,continuous,}} \\ \operatorname{\mathsf{PDF}} f(x))$$

- Intuitively: The value of X that is "most likely".
- Note that some distributions may not have a unique mode (e.g., Uniform distribution, or Bernoulli(0.5))

$$\theta_{MAP} = \arg \max_{\theta} f(\theta | X_1, X_2, ..., X_n)$$

 θ_{MAP} is the most likely θ given the data $X_1, X_2, ..., X_n$.

Bernoulli MAP: Choosing a prior

How does MAP work? (for Bernoulli)

Observe data

Choose model

Choose prior on θ

Find
$$\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} f(\theta | X_1, X_2, ..., X_n)$$

n heads, m tails

Bernoulli(p)

(some $g(\theta)$)

maximize

log prior + log-likelihood

$$\log g(\theta) + \sum_{i=1}^{n} \log f(X_i|\theta)$$

- Differentiate, set to 0
- Solve

MAP depends on what $g(\theta)$ we choose.

MAP for Bernoulli

- Flip a coin 8 times. Observe n=7 heads and m=1 tail.
- Choose a prior on θ . What is θ_{MAP} ?

Suppose we pick a prior $\theta \sim \mathcal{N}(0.5, 1^2)$. $g(\theta) = \frac{1}{\sqrt{2\pi}} e^{-(p-0.5)^2/2}$

1. Determine log prior + log likelihood

$$\log g(\theta) + \log f(X_1, X_2, ..., X_n | \theta)$$

$$= \log \left(\frac{1}{\sqrt{2\pi}} e^{-(p-0.5)^2/2} \right) + \log \left(\binom{n+m}{n} p^n (1-p)^m \right)$$

$$= -\log(\sqrt{2\pi}) - (p-0.5)^2/2 + \log \binom{n+m}{n} + n \log p + m \log(1-p)$$

- 2. Differentiate w.r.t. (each) θ , set to 0

 $-(p-0.5) + \frac{n}{p} - \frac{m}{1-p} = 0$ We should choose a prior that's easier to deal with. This one is hard!

3. Solve resulting equations

cubic equations nope not doing it

A better approach: Use conjugate distributions

Observe data

Choose model

Choose prior on θ

Find
$$\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} f(\theta | X_1, X_2, ..., X_n)$$

n heads, m tails

Bernoulli(p)

(some $g(\theta)$)

maximize log prior + log-likelihood

$$\log g(\theta) + \sum_{i=1}^{n} \log f(X_i | \theta)$$

Differentiate, set to 0

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021

(choose conjugate distribution)

Up next: Conjugate priors are great for MAP!

Bernoulli MAP: Conjugate prior

Beta is a conjugate distribution for Bernoulli, meaning:

- Prior and posterior parametric forms are the same
- Practically, conjugate means easy update: Add numbers of "successes" and "failures" seen to Beta parameters.
- You can set the prior to reflect how fair/biased you think the experiment is a priori.

Prior Beta
$$(a = n_{imag} + 1, b = m_{imag} + 1)$$

Experiment Observe n successes and m failures

Posterior Beta
$$(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$$

Mode of Beta
$$(a,b)$$
: $\frac{a-1}{a+b-2}$

Beta parameters a, b are called hyperparameters. Interpret Beta(a, b): a + b - 2 trials, of which a-1 are successes

How does MAP work? (for Bernoulli)

Observe data

Choose model

Choose prior on θ

Find
$$\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} f(\theta | X_1, X_2, ..., X_n)$$

n heads, m tails

Bernoulli(p)

maximize log prior + log-likelihood

$$\log g(\theta) + \sum_{i=1}^{n} \log f(X_i | \theta)$$

Differentiate, set to 0

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021

Solve

(choose conjugate distribution)

Mode of posterior distribution of θ

(posterior is also conjugate)

Conjugate strategy: MAP for Bernoulli

- Flip a coin 8 times. Observe n=7 heads and m=1 tail.
- Choose a prior on θ . What is θ_{MAP} ?
- Choose a prior

Suppose we pick a prior $\theta \sim \text{Beta}(a, b)$.

Determine posterior

Because Beta is a conjugate distribution for Bernoulli, the posterior distribution is $\theta | D \sim \text{Beta}(a + n, b + m)$

Compute MAP

$$\theta_{MAP} = \frac{a+n-1}{a+n+b+m-2} \quad \text{(mode of Beta}(a+n,b+m))$$

MAP in practice

- Flip a coin 8 times. Observe n=7 heads and m=1 tail.
- What is the MAP estimator of the Bernoulli parameter p, if we assume a prior on p of Beta(2,2)?

MAP in practice

- Flip a coin 8 times. Observe n=7 heads and m=1 tail.
- What is the MAP estimator of the Bernoulli parameter p, if we assume a prior on p of Beta(2,2)?
- Choose a prior

 $\theta \sim \text{Beta}(2,2)$.

Before flipping the coin, we imagined 2 trials: 1 imaginary head, 1 imaginary tail.

Determine posterior

Posterior distribution of θ given observed data is Beta(9, 3)

Compute MAP

$$\theta_{MAP} = \frac{8}{10}$$

After the coin, we saw 10 trials: 8 heads (imaginary and real), 2 tails (imaginary and real).

Proving the mode of Beta

Observe data

Choose model

Choose prior on θ

Find
$$\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} f(\theta | X_1, X_2, ..., X_n)$$

These are equivalent interpretations of θ_{MAP} . We'll use this equivalence to prove the mode of Beta. n heads, m tails

Bernoulli(p)

(some $g(\theta)$)

maximize

log prior + log-likelihood

$$\log g(\theta) + \sum_{i=1}^{n} \log f(X_i|\theta)$$

- Differentiate, set to 0
- Solve

(choose conjugate) Beta(a, b)

Mode of posterior distribution of θ

(posterior is also conjugate)

From first principles: MAP for Bernoulli, conjugate prior

- Flip a coin 8 times. Observe n=7 heads and m=1 tail.
- Choose a prior on θ . What is θ_{MAP} ?

Suppose we pick a prior
$$\theta \sim \text{Beta}(a, b)$$
. $g(\theta = p) = \frac{1}{\beta} p^{a-1} (1-p)^{b-1}$ normalizing constant, β

1. Determine log prior + log likelihood

$$\log g(\theta) + \log f(X_1, X_2, ..., X_n | \theta) = \log \left(\frac{1}{\beta} p^{a-1} (1-p)^{b-1} \right) + \log \left(\binom{n+m}{n} p^n (1-p)^m \right)$$

$$= \log \frac{1}{\beta} + (a-1) \log(p) + (b-1) \log(1-p) + \log \binom{n+m}{n} + n \log p + m \log(1-p)$$

- 2. Differentiate w.r.t. (each) θ , $\frac{a-1}{p} + \frac{n}{p} \frac{b-1}{1-p} \frac{m}{1-p} = 0$ set to 0
- 3. Solve (next slide)

From first principles: MAP for Bernoulli, conjugate prior

- Flip a coin 8 times. Observe n=7 heads and m=1 tail.
- Choose a prior θ . What is θ_{MAP} ?

Suppose we pick a prior $\theta \sim \text{Beta}(a, b)$. $g(\theta) = \frac{1}{\beta} p^{a-1} (1-p)^{b-1}$

normalizing constant, β

3. Solve for
$$p$$

$$\frac{a-1}{p} + \frac{n}{p} - \frac{b-1}{1-p} - \frac{m}{1-p} = 0 \quad \text{(from previous slide)}$$

$$\Rightarrow \frac{a+n-1}{p} - \frac{b+m-1}{1-p} = 0$$

$$\Rightarrow (a+n-1) - (a+n-1)p = (b+m-1)p$$

$$\Rightarrow p(a+n+b+m-2) = a+n-1$$

$$\theta_{MAP} = \frac{a+n-1}{a+n+b+m-2}$$

If we choose a conjugate prior, we avoid calculus with MAP: just report mode of posterior.

The mode of the posterior,

Beta(a + n, b + m)!

Conjugate distributions

Conjugate distributions

MAP estimator:

$$\theta_{MAP} = \arg \max_{\theta} f(\theta | X_1, X_2, ..., X_n)$$

The mode of the posterior distribution of heta

Distribution parameter	Conjugate distribution
Bernoulli p	Beta
Binomial p	Beta
Multinomial p_i	Dirichlet
Poisson λ	Gamma
Exponential λ	Gamma
Normal μ	Normal
Normal σ^2	Inverse Gamma

Don't need to know Inverse Gamma... but it will know you ©

CS109: We'll only focus on MAP for Bernoulli/Binomial p, Multinomial p_i , and Poisson λ .

Multinomial is Multiple times the fun

Dirichlet $(a_1, a_2, ..., a_m)$ is a conjugate for Multinomial.

Generalizes Beta in the same way Multinomial generalizes Binomial:

$$f(x_1, x_2, ..., x_m) = \frac{1}{B(a_1, a_2, ..., a_m)} \prod_{i=1}^m x_i^{a_i - 1}$$

 $Dirichlet(a_1, a_2, ..., a_m)$ **Prior**

Saw $(\sum_{i=1}^{m} a_i) - m$ imaginary trials, with $a_i - 1$ of outcome i

Experiment Observe $n_1 + n_2 + \cdots + n_m$ new trials, with n_i of outcome i

Dirichlet $(a_1 + n_1, a_2 + n_2, ..., a_m + n_m)$ **Posterior**

MAP:
$$p_i = \frac{a_i + n_i - 1}{\left(\sum_{i=1}^m a_i\right) + \left(\sum_{i=1}^m n_i\right) - m}$$

Good times with Gamma

Gamma(α, β) is a conjugate for Poisson.

- Also conjugate for Exponential, but we won't delve into that
- Mode of gamma: $(\alpha 1)/\beta$

Prior

$$\theta \sim \text{Gamma}(\alpha, \beta) = \frac{\beta^{\alpha} x^{\alpha - 1} e^{-\beta x}}{\Gamma(\alpha)}$$

Saw $\alpha-1$ total imaginary events during β prior time periods

Experiment Observe n events during next k time periods

Posterior $(\theta | n \text{ events in } k \text{ periods}) \sim \text{Gamma}(\alpha + n, \beta + k)$

MAP:
$$\theta_{MAP} = \frac{a+n-1}{\beta+k}$$

MAP for Poisson

Let λ be the average # of successes in a time period.

1. What does it mean to have a prior of $\theta \sim \text{Gamma}(11,5)$?

Observe 10 imaginary events in 5 time periods, i.e., observe at Poisson rate = 2

Now perform the experiment and see 11 events in next 2 time periods.

- 2. Given your prior, what is the posterior distribution?
- 3. What is θ_{MAP} ?

MAP for Poisson

 $Gamma(\alpha, \beta)$ is conjugate for Poisson

Let λ be the average # of successes in a time period.

 What does it mean to have a prior of θ ~Gamma(11,5)?

Observe 10 imaginary events in 5 time periods, i.e., observe at Poisson rate = 2

Now perform the experiment and see 11 events in next 2 time periods.

2. Given your prior, what is the posterior distribution?

 $(\theta | n \text{ events in } k \text{ periods}) \sim \text{Gamma}(22,7)$

What is θ_{MAP} ?

 $\theta_{MAP} = 3$, the updated Poisson rate

Choosing hyperparameters for conjugate prior

Where'd you get them priors?

- Let θ be the probability a coin turns up heads.
- Model θ with 2 different priors:
 - Prior 1: Beta(3,8): 2 imaginary heads, 7 imaginary tails $\frac{2}{9}$
 - Prior 2: Beta(7,4): 6 imaginary heads, $\frac{6}{9}$ 3 imaginary tails

Now flip 100 coins and get 58 heads and 42 tails.

- 1. What are the two posterior distributions?
- 2. What are the modes of the two posterior distributions?

Where'd you get them priors?

- Let θ be the probability a coin turns up heads.
- Model θ with 2 different priors:
 - Prior 1: Beta(3,8): 2 imaginary heads, $\frac{2}{9}$ 7 imaginary tails
 - Prior 2: Beta(7,4): 6 imaginary heads, $\frac{6}{9}$ 3 imaginary tails

Now flip 100 coins and get 58 heads and 42 tails.

Posterior 1: Beta(61,50) mode: $\frac{60}{109}$

Posterior 2: Beta(65,46) mode: $\frac{64}{109}$

Provided we collect enough data, posteriors will converge to the true value and choice of priors will matter less and less.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 202

Laplace smoothing

MAP with Laplace smoothing: a prior which represents k imagined observations of each outcome.

- Categorical data (i.e., Multinomial, Bernoulli/Binomial)
- Also known as additive smoothing

Imagine k = 1 of each outcome Laplace estimate

(follows from Laplace's "law of succession")

Example: Laplace estimate for coin probabilities from aforementioned

experiment (100 coins: 58 heads, 42 tails)

heads
$$\frac{59}{102}$$
 tails $\frac{43}{102}$

Laplace smoothing:

Easy to implement/remember

Back to our happy Laplace

Consider our previous 6-sided die.

- Roll the dice n = 12 times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

Recall
$$\theta_{MLE}$$
: $p_1 = 3/12, p_2 = 2/12, p_3 = 0/12,$

$$p_4 = 3/12, p_5 = 1/12, p_6 = 3/12$$

What are your Laplace estimates for each roll outcome?

Back to our happy Laplace

Consider our previous 6-sided die.

- Roll the dice n = 12 times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

Recall
$$\theta_{MLE}$$
: $p_1 = 3/12, p_2 = 2/12, p_3 = 0/12, p_4 = 3/12, p_5 = 1/12, p_6 = 3/12$

What are your Laplace estimates for each roll outcome?

$$p_i = \frac{X_i + 1}{n + m}$$

$$p_1 = 4/18, p_2 = 3/18, p_3 = 1/18,$$
 \checkmark $p_4 = 4/18, p_5 = 2/18, p_6 = 4/18$

Laplace smoothing:

- Easy to implement/remember
- Avoids estimating a parameter of 0