D - 50 - 2012

파열판의 크기 산정 및 설치 등에 관한 기술지침

2012. 7.

한국산업안전보건공단

안전보건기술지침의 개요

○ 제안자 : 김 기 영 ○ 개정자 : 이 수 희

- ㅇ 제정 경과
 - 2009년 9월 화학안전분야 제정위원회 심의
 - 2009년 11월 총괄제정위원회 심의
 - 2012년 7월 총괄 제정위원회 심의(개정,법규개정조항 반영)
- 관련규격 및 자료
 - ISO 4126-6
 - API 521
- ㅇ 관련법규, 규칙, 고시 등

「산업안전보건법」 제27조 (기술상의 지침 및 작업환경의 표준) 「산업안전보건기준에 관한 규칙」 제261조 (안전밸브 등의 설치)

ㅇ 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2012년 7월 18일

제 정 자 : 한국산업안전보건공단 이사장

D - 50 - 2012

파열판의 크기 산정 및 설치 등에 관한 기술지침

1. 목적

이 기준은 「산업안전보건법」제27조 및「산업안전보건기준에 관한 규칙」제261조에 따라 화학설비 및 그 부속설비에 설치하는 파열판의 크기 산정 및 설치 등에 관한 기술기준을 정하는데 있다.

2. 적용범위

- (1) 이 기준은 화학설비 및 그 부속설비(이하 "용기"라 한다)를 과압 및 과진공으로 부터 보호하기 위하여 용기에 설치하는 파열판으로써 다음과 같이 설치되는 경우에 적용한다.
 - (가) 파열판의 토출측이 직접 대기로 방출되는 경우
 - (나) 파열판이 용기 노즐로부터 연결 배관지름의 8배 이내에 설치되는 경우
 - (다) 파열판의 토출면적이 인입 배관면적의 50% 이상인 경우
 - (라) 단상 흐름인 경우
 - (마) 파열판 토출 측 배관의 길이가 토출배관 지름의 5배 이내인 경우
 - (바) 파열판 인입 및 토출 측 배관의 공칭지름이 파열판의 공칭지름 이상인 경우

3. 정의

- (1) 이 기준에서 사용하는 용어의 뜻은 다음과 같다.
- (가) "파열판(Rupture/bursting disc)"이란 입구측의 압력이 설정 압력에 도달하면 판이 파열하면서 유체가 분출하도록 용기 등에 설치된 얇은 판으로 된 안전장치를 말한다.

D - 50 - 2012

- (나) "파열압력(Bursting pressure)"이란 파열판이 파열시의 파열판 전·후단에 걸리는 차압을 말하며, 명판에 표시된 압력을 말한다.
- (다) "분출압력(Relieving pressure)"이란 압력설비로부터 파열판이 파열되어 분출되는 조건에서의 최대압력을 말한다.
- (라) "설계압력(Design pressure)"이란 용기 등의 최소 허용두께 또는 용기의 여러 부분의 물리적인 특성을 결정하기 위하여 설계 시에 사용하는 압력을 말한다.
- (마) "최고허용압력(Maximum allowable working pressure)"이란 용기의 제작에 사용한 재질의 두께(부식여유 제외)를 기준으로 산출된 용기 상부에서의 허용 가능한 최고 압력을 말한다.
- (바) "배압(Back pressure)"이란 배출물 처리설비 등으로부터 파열판의 토출에 걸리는 압력을 말한다.
- (사) "호칭압력(Pressure rating)"이란 플랜지의 압력등급을 나타내기 위하여 사용하는 수치를 말한다.
- (아). "임계흐름(Critical flow)"이란 파열판 토출 측에서의 유체 속도가 음속보다 큰 경우를 말하며, 임계흐름압력(P_{ch} Critical flow pressure)이 배압 이상인 경우에 해당한다.
- (자). "아임계흐름(Subcritical flow)"이란 파열판 토출 측에서의 유체속도가 음속 보다 작은 경우를 말하며, 임계흐름압력(P_{cs} Critical flow pressure)이 배압 미만인 경우에 해당한다.
- (차). "배출용량(Relieving capacity)"이란 각각의 소요 분출량 중 가장 큰 소요 분출 량을 말한다.
- (카). "성능허용오차(Performance tolerance)"란 파열압력의 최대 허용치와 파열압력의 최소 허용치와의 범위(<그림 1>참조)를 말한다.
- (타) "파열압력의 최대 허용치(Maximum limit of bursting pressure)"란 최대로 허용되는 파열팎의 파열압력을 말한다.
- (파). "파열압력의 최소 허용치(Minimum limit of bursting pressure)"란 최소로 허용되는 파열판의 파열압력을 말한다.
- (하). "운전비(Operating ratio)"란 운전압력과 파열압력의 최소 허용치와의 비를 말한다.

D - 50 - 2012

(2) 그 밖에 용어의 뜻은 이 지침에서 규정하는 경우를 제외하고는 「산업안전 보건법」, 같은 법 시행령, 같은 법 시행규칙 및 「산업안전기준에 관한 규칙」 에서 정하는 바에 따른다.

4. 파열판 크기의 산정

- 4.1 파열판 크기의 계산 시에 필요한 자료는 다음과 같다.
 - (1) 분출용량

KOSHA GUIDE (안전밸브 설계 및 설치 등에 관한 지침) 또는 이와 같은 수준이상의 기준에 따라 산출한다.

- (2) 분출압력
- (3) 분출온도
- (4) 취급유체의 특성
- (5) 취급유체의 비중 및 분자량
- 4.2 필요한 파열판 크기(분출면적)의 계산
- 4.2.1 압축성 유체
 - (1) 임계흐름 여부 결정
 - (가) 임계흐름

D - 50 - 2012

$$\frac{P_b}{P_o} \le \left(\frac{2}{k+1}\right)^{\frac{k}{k-1}}$$
 이면 임계흐름으로 간주

여기서, P_b : 배압(bar abs)

 P_o : 배출압력(bar abs)

k : 열용량계수

(나) 아임계흐름

$$\frac{P_b}{P_a} > \left(\frac{2}{k+1}\right)^{\frac{k}{k-1}}$$
 이면 아임계흐름으로 간주

- (2) 파열판에서 흐름이 임계흐름(Critical flow)인 경우
- (가) 가스 또는 증기

필요한 파열판의 크기(분출면적)는 식(1)을 이용하여 계산한다.

 $\cdots \cdots (1)$

여기서.

 A_o : 파열판의 분출면적(\mathbb{m}^2)

W: 분출용량(kg/h)

 $C : 3.948\sqrt{k\left(\frac{2}{k+1}\right)^{(k+1)/(k-1)}}$

k: 열용량계수

α: 분출계수(<표 1> 참조)

 P_o : 분출압력(bar abs)

*T*_o: 분출온도(K)

 v_0 : 유체의 비체적(Specific volume, m³/kg)

D - 50 - 2012

 Z_o : 분출온도 및 압력에서의 압축계수(<그림 2> 참조)

M: 유체의 분자량(kg/kmol)

<표 1> 분출계수

파열판 설치 노즐의 모양	분출계수(α)
0,2 <i>D</i> max.	0.68
	0.73
R ≥0,25 D	0.80

(나) 수증기

- ① 포화수증기(Dry saturated steam)또는 과열수증기(Superheated steam)의 경 우에는 식(1)을 이용하여 계산한다.
- ② 습한 수증기의 경우에는 식(1)을 이용하여 계산하여 얻은 수치에 수증기의 건조도(Dryness)의 제곱근을 곱한 값으로 한다. 다만, 수증기의 건조도는 0.9 이상이어야 한다.
- (3) 파열판에서 흐름이 아임계흐름(Subcritical flow)인 경우 필요한 파열판의 크기(분 출면적)는 식(2)을 이용하여 계산한다.

D - 50 - 2012

여기서.

 A_o : 파열판의 분출면적($m m^2$)

W∶ 분출용량(kg/h)

 $C : 3.948\sqrt{k(\frac{2}{k+1})^{(k+1)/(k-1)}}$

k: 열용량계수

 α : 분출계수(<표 1>의 값에 (P_b/P_o) 를 곱한 값)

 P_o : 분출압력(bar abs)

T₀: 분출온도(K)

 v_0 : 유체의 비체적(Specific volume, m³/kg)

 Z_o : 분출온도 및 압력에서의 압축계수(<그림 2> 참조)

M: 유체의 분자량(kg/kmol)

$$K_b$$
:
$$\sqrt{\frac{\left(\frac{2k}{k-1}\right)\!\left(\left(\frac{P_b}{P_o}\right)^{2/k}\!-\!\left(\frac{P_b}{P_o}\right)^{(k+1)/k}\!\right)}{k\!\left(\frac{2}{k+1}\right)^{(k+1)/(k-1)}}}$$

 P_b : 배압(bar abs)

4.2.2 비 압축성 유체인 경우

필요한 파열판의 크기(분출면적)는 식(3)을 이용하여 계산한다.

····· (3) 여기서.

 A_o : 파열판의 분출면적(m_i^2)

D - 50 - 2012

W: 분출용량(kg/h)

α: 분출계수(0.62)

 K_{ν} : 점도보정계수

(유체의 점도가 20 ℃의 물의 점도 이하인 경우; K_{ν} = 1,

유체의 점도가 20 ℃의 물의 점도를 초과하는 경우; <그림 3>참조)

ρ: 유체의 비중(kg/m³)

 P_o : 분출압력(bar abs)

 P_b : 배압(bar abs)

<그림 3>에서 점도보정계수를 구하는데 필요한 레이놀드 수는 식(4)을 이용하여 구한다.

$$Re = 0.3134 \frac{W}{\mu \sqrt{A_o}} \cdots$$

(4)

여기서,

Re: 레이놀드 수(Reynolds number)

и : 유체의 점도(Pa·s)

4.3 파열판 플랜지 크기의 선정

파열판 플랜지는 앞에서 계산하여 얻은 필요한 파열판 분출면적보다 큰 면적을 갖는 크기로 선정한다. 또한, 파열판의 분출면적은 파열판 인입측 배관 면적의 50 %이상. 100 % 이하로 한다.

5. 파열판 설치 배관의 크기, 재질 등

5.1 설치 배관의 크기

파열판의 인입측 및 토출측 배관의 크기는 파열판 플랜지의 공칭 지름 이상이어야 한다.

D - 50 - 2012

5.2 파열판의 재질

사용재질은 취급하는 유체에 대하여 내식성 및 내마모성이 있는 것으로 선정하여야 하며, 상세한 사항은 사용자 또는 제작자의 기준에 따른다.

5.3 파열판 지지용 플랜지의 최고사용압력

파열판 지지(Rupture disc holder)용 플랜지의 호칭압력 및 재질별 최고 사용압력은 KOSHA GUIDE (플랜지 및 가스킷 등의 접합부에 관한 기술지침) 또는 이와 같은 수준 이상의 기준에서 정하는 바에 따른다.

6. 파열판 설치기준

- (1) 파열판을 설치하여야 하는 기준은 안전보건규칙 제262조(파열판의 설치)에 따르며, 상세한 사항은 다음과 같다.
 - (가) 반응폭주 등 급격한 압력상승의 우려가 있는 경우
 - (나) 독성물질의 누출로 인하여 주위 작업환경을 오염시킬 우려가 있는 경우
 - (다) 운전 중 안전밸브에 물질이 점착되어 안전밸브의 기능을 저하시킬 우려가 있는 경우
 - (라) 유체의 부식성이 강하여 안전밸브 재질의 선정에 문제가 있는 경우
- (2) 반응기, 저장탱크 등과 같이 대량의 독성물질이 지속적으로 외부로 유출될 수 있는 구조로 된 경우에는 파열판과 안전밸브를 직렬로 설치하고, 파열판과 안전밸브 사이에는 경보장치를 설치하여야 한다.
- (3) 파열판을 안전밸브 전단에 설치하는 경우에는 파열판과 안전밸브의 사이에 필요하지 않는 압력이 형성되지 않는 구조로 한다.

D - 50 - 2012

- (4) 파열파을 안전밸브 후단에 설치하는 경우에는 다음과 같이 설치한다.
- (가) 파열판과 토출배관은 안전밸브의 성능에 영향을 주지 않도록 설치.
- (나) 안전밸브와 파열판의 사이에는 필요하지 않은 압력이 형성되지 않는 구조로 설치
- (다) 파열시의 온도에서 파열판의 파열압력의 최대 허용치와 토출측에 걸리는 압력의 합은 다음 수치를 초과하지 않도록 설치
 - ① 안전밸브의 배압 제한치
 - ② 안전밸브와 파열판 사이 배관의 설계압력
 - ③ 관련 기준에서 허용하는 압력
- (5) 파열판과 파열판을 직렬로 설치하는 경우에는 다음과 같이 설치한다.
- (가) 두 파열판 사이는 파열판의 기능을 발휘할 수 있도록 충분한 간격을 유지
- (나) 파열판과 파열판 사이에는 필요하지 않은 압력이 형성되지 않는 구조로 설치

7. 파열판의 성능허용오차

- (1) 파열판의 성능허용오차에 영향을 주는 인자는 다음과 같다.
- (가) 파열판의 형태
- (나) 파열판의 재질
- (다) 제조 방법
- (2) 파열판의 형태 별 성능허용오차는 <표 2>와 같다.

8. 파열압력의 최대 허용치 및 최소 허용치

8.1 파열압력의 최대 허용치

파열압력의 최대 허용치는 설계압력 또는 최고허용압력의 110 %를 초과하지 않도록 한다.

8.2 파열압력의 최소 허용치

파열압력의 최소 허용치는 <표 2>의 최대 운전비 이하가 되도록 결정한다.

<표 2> 파열판의 성능허용오차 및 최대 운전비

파열판의 형태 (P. bar	파열압력		최대
	$(P_s, barg)$	성능허용오차	운전비
일반 단순 돔형(Conventional simple domed),	$P_s < 0.5$	± 50 %	
일반 스롯트 돔형(Conventional slotted domed) 및			
일반 칼자국낸 단순 돔형(Conventional scored	$0.5 \le P_s < 1.5$	± 30 % ~ ± 15 %	0.8
simple domed)	1.5≤P _s	± 10 %	
칼날이 있는 일반 단순 돔형(Conventional simple	$P_s < 2.0$	± 0.1 bar	
	$\frac{1_{s} < 2.0}{2.0 \le P_{s}}$	± 5 %	0.7
domed with knife blades)	$P_s < 3$	± 0.15 bar	
칼자국낸 역 돔형(Reverse domed scored)	$3 \leq P_s$	± 0.13 bar ± 5 %	0.9
	$P_s < 1$	± 15 %	
흠이 있도록 설계된 역 돔형(Reverse domed	$1 \le P_s \le 2$	± 10 %	0.9
having slip or tear-away design)	$2 \le P_s$	± 5 %	0.5
칼날이 있는 역 돔형(Reverse domed with knife	$P_s < 1$	± 0.15 bar	0.9
	$1 \le P_s \le 3$	± 15 %	
blades)	$3 \le P_s$	± 5 %	
전단 기능 역 돔형(Reverse domed that functions	$P_s < 3$	± 0.15 bar	0.0
by shearing)	$3 \le P_s$	± 5 %	0.9
혼합/다층 구조 역 돔형(Reverse domed composite	$P_{s} < 0.5$	± 15 %	
	$0.5 \le P_s < 3$	± 10 %	0.9
or multilayered)	$3 \le P_s$	± 5 %	
그라파이트로 된 부품 교체형, 그라파이트 모노불록형	$P_{s} < 0.5$	± 25 % 이하	0.8
(Graphite replaceable element, graphite monobloc)	0.5≤P _s	± 10 %	0.0
스롯트 선이 있는 평판형(Flat slotted lined)	$P_{s} < 0.5$	± 50 %	0.5
	$0.5 \le P_s \le 1.5$		
	1.5≤P _s	± 10 %	

주) 1. 성능허용오차의 % 수치는 파열압력의 %임

- 2. 일반 단순 돔형의 최대 운전비는 0.7임
- 3. 운전비 = (운전압력 배압)/파열압력의 최소 허용치 (단위는 bar abs 임)

파열압력의 최대 허용치

<그림 1> 파열판의 파열압력 관계 챠트

주) 1. 파열압력의 최대 허용치는 보호하고자 하는 용기의 설계압력 또는 최대허용압력의 110 %를 초과하여서는 아니 된다.

<그림 3> 점도 보정계수