Question 1: Totally

a. Rice Theorem does not apply.

Suppose we have two Turing Machines M_1 , M_2 with M_1 rejects all strings and M_2 loops on all strings, then $L(M_1) = L(M_2)$.

 M_1 will halt on all input, while M_2 does not halt on any input

Thus this is not a property of language and Rice's theorem does not apply.

b.

First we show there exist function f from H to TOT, f = "on input $\langle M, x \rangle$:

- 1. compute/construct a TM \hat{M} such that $\langle M, x \rangle \in H \iff \langle \hat{M} \rangle \in TOT$:
 - $\hat{M} =$ " on input y:
 - 1. Ignore y for now
 - 2. Simulate M on x;
 - 1. If M halts on x, \hat{M} accepts y;
 - 2. If M does not halt on x, send \hat{M} into a loop state."
- 2. Return $\langle \hat{M} \rangle$. "

We claim that M halts on x if and only if \hat{M} halts on all input

$$\begin{split} \langle M,x\rangle \in H &\Rightarrow M \text{ accepts } x \\ &\Rightarrow M \text{ halts on x} \\ &\Rightarrow \hat{M} \text{ accepts all input y} \\ &\Rightarrow \langle \hat{M}\rangle \in \mathsf{TOT} \end{split} \qquad \begin{cases} \langle M,x\rangle \not\in \mathsf{A}_{TM} \Rightarrow M \text{ does not accept } x \\ &\Rightarrow M \text{ does not halt on input } x \\ &\Rightarrow \hat{M} \text{ loops on all input } y \\ &\Rightarrow \langle \hat{M}\rangle \not\in \mathsf{TOT} \end{cases}$$

Thus, we have shown that $H \leq_m TOT$.

Question 2: Not Totally

 $\overline{TOT} = \{\langle M \rangle \mid M \text{ is a TM and } M \text{ doesn't halt on some inputs} \}.$ First we show there exist function f from H to \overline{TOT} , $f = \text{``on input } \langle M, x \rangle$:

- 1. compute/construct a TM \hat{M} such that $\langle M, x \rangle \in H \iff \langle \hat{M} \rangle \in \overline{TOT}$:
 - $\hat{M} =$ " on input y:
 - 1. Ignore y for now
 - 2. Simulate M on x;
 - 1. If M halts on x, send \hat{M} into a loop state;
 - 2. If M does not halt on x, \hat{M} accepts y."
- 2. Return $\langle \hat{M} \rangle$. "

We claim that $\langle M, x \rangle \in H$ if and only if $\langle \hat{M} \rangle \in \overline{TOT}$

$$\langle M, x \rangle \in H \Rightarrow M \text{ accepts } x \\ \Rightarrow M \text{ halts on x} \\ \Rightarrow \hat{M} \text{ loop on all input y} \\ \Rightarrow \langle \hat{M} \rangle \in \overline{\mathsf{TOT}}$$

$$\langle M, x \rangle \not\in \mathsf{A}_{TM} \Rightarrow M \text{ does not accept } x \\ \Rightarrow M \text{ does not halt on x} \\ \Rightarrow \hat{M} \text{ accept all input } y \\ \Rightarrow \langle \hat{M} \rangle \in \overline{\mathsf{TOT}}$$

$$\Rightarrow \langle \hat{M} \rangle \not\in \overline{\mathsf{TOT}} .$$

Thus, we have shown that $H \leq_m \overline{TOT}$.

Question 3: Differences

a. $A \setminus A'$ is decidable.

Since A, A' are decidable, there exists M_1, M_2 such that $L(M_1) = A, L(M_2) = A'$.

Construct M_3 in the following way:

 M_3 on input x:

Simulate M_2 on x,

if M_2 accepts x, then reject;

If M_2 rejects x, then simulate M_1 on x, if M_1 accepts x, then accept, if M_1 rejects x, then reject

By construction $L(M_3) = A \setminus A'$ Since M_1, M_2 are decidable, we are guaranteed that M_1, M_2 will halt. So M_3 will halt. So $A \setminus A'$ is decidable.

b. $A \setminus B$ is not even recognisable.

We will show it by contradiction:

Let M_1 be a Turing machine that decides A.

For the sake of contradiction, suppose we have M_3 that recognise $A \setminus B$.

Then construct M_2 in the following way

 M_2 on input x:

Simulate M_1 on x, if reject, then reject.

If M_1 accept x, then simulate M_3 on x, if M_3 accept x, accept x.

By construction M_2 will accept \overline{B} .

Since both B and \overline{B} are recognisable, we know that B is decidable (Contradiction)

Therefore, our original assumption $(A \setminus B \text{ is recognisable})$ is False

c. $B \setminus A$ is recognisable but not decidable.

Given A, B there exists M_1, M_2 such that $L(M_1) = A, L(M_2) = B'$.

Construct M_3 in the following way

 M_3 on input x:

Simulate M_2 on x,

if M_2 rejects x, then reject;

If M_2 accepts x, then simulate M_1 on x, if M_1 accepts x, then reject, if M_1 rejects x, then accept

By construction $L(M_3) = B \setminus A$ Since B is s recognisable but not decidable, It might loop when we simulate M_2 on x.So M_3 may not halt and $B \setminus A$ is recognisable but not decidable.