This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ÁRE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

DEUTSCHE DEMOKRATISCHE REPUBLIK

PATENTSCHRIFT (19) DD (11) 266 539 A1 (12) Wirtschaftspatent

4(51) B 60 L 15/20

Erteilt gemäß § 17 Absatz 1 Patentgesetz

AMT FÜR ERFINDUNGS- UND PATENTWESEN

In der vom Anmelder eingereichten Fassung veröffentlicht

(21)	WP B 60 L / 310 760 6	(22)	18.12.87	(44)	05.04.89
(71)	Zentrales Forschungsinstitut des Verkehrswesens, Zentrum für Prozeßautomatisierung, Markgrafendamm 24, Berlin, 1017, DD				
(72)	Gohlisch, Gunnar, DiplMath.; König, Frank, DiplIng., DD				
(54)	Verfahren zur energieoptimalen Steuerung von spurgebundenen elektrisch angetriebenen Fahrzeug n mit Nutzbremse				

(55) Elektrischer Antrieb, spurgebundenes Fahrzeug, Nutzbremse, Fahrzeit, energieoptimale Steuerung, Antriebswirkungsgrad, Rückspeisungswirkungsgrad, 🚓 Planhalt, Bewegungsphasen, Beharrungsgeschwindigkeit, Beharrungslänge, Bremseinsatzpunkt (57) Für spurgebundene, elektrisch angetriebene Fahrzeuge mit Nutzbremse ist eine maximale Einsparung an Elektroenergie durch Ermittlung einer energisoptimalen Steuerung zu vorgegebener Fahrzeit zwischen zwei Planhalten zu erzielen. Die energieoptimale Steuerung wird eindeutig beschrieben durch die zeitliche Absoige der Bewegungsphasen Anfahrt mit maximaler Zugkraft, Beharrungsfahrt, Auslauf, Bremsen mit maximal zulässiger Bremskraft und die Angabe der vom Wirkungsgrad der Antriebsphase und vom Wirkungsgrad der Energierückspeisung abhängigen Größen Behaltungsgeschwindigkeit, Beharrungslänge und Bremseinsatzpunkt. Das erfindungsgemäße Verfahren realisiert eine Senkung des Gesamtverbrauchs an Elektroenergie für die Zugfahrt. Fig. 3

ISSN 0433-6461

BNSDOCID: <DD

Seiten

Patentansprüche:

Verfahren zur energieoptimalen Steuerung von spurgebundenen, elektrisch angetriebenen Fahrzeugen mit Nutzbremse, dadurch gekennzeichnet, daß nacheinander die Bewegungsphasen Anfahrt mit maximaler Zugkraft, Beharrungsfahrt mit v = const., Auslauf und Bremsen mit maximal zulässiger Bremskraft ausgeführt werden und die eine derartige Fahrweise eindeutig festlegenden Größen Beharrungsgeschwindigkeit (V_{BEH}), Lär ge der Beharrungsfahrt (S_{BEH}) und Bremseinsatzpunkt (S_{BR}) in Abhängigkeit von der Fahrzeit, dem Wirkungsgrad des Antriebs und dem Wirkungsgrad der Rückspeisung bestimmt werden und als Steuerbefehle, die zu energieoptimaler Fahrweise führen, einer Steuereinrichtung zur Weiterverarbeitung übermittelt werden.

Hierzu 2 Seiten Zeichnungen

Anwendungsgebiet der Erfindung

Die Erfindung betrifft ein Verfahren zur Unterstützung einer energiesparenden Fahrweise bei der Elektrotraktion mit elektrischen Triebfahrzeugen, bei denon die Nutzbremsung angewendet wird.

Charakteristik des bekannten Standes der Technik

Bekanntlich (DD B 60 L 16/20, WP-Nr. 129761) wurden die beim Nahverkehr für eine energiesparende Fahrweise erforderlichen Umschaltungen bei großen Fahrzeitreserven von Beschleunigungen im Auslauf geschwindigkeitsabhängig, bei kleinen Fahrzeitreserven von Beharrungsfahrt in Auslauf wegabhängig sowie der jeweils zugehörige Bremseinsatzpunkt unter der Voraussetzung der Fahrpianeinhaltung wegabhängig vorausberechnet und vorprogrammiert, so daß bei Einhaltung der Schaltvorschrift nicht vermeidbare, jedoch hinreichend kleine Abweichungen des Fahrverlaufes ausgeglichen worden. Diese Umschaltungen sind vor bzw. zum Zeitpunkt des Fahrbeginns von der Steuereinrichtung bereitzusteilen, wobei bei vorgegebenen konstanten Aufenthaltszeiten je Bahnhof eine ortsabhängige (zeitfeste Programmauswahl) und bei variablen Aufenthaltszeiten eine zeit- und ortsabhängige Programmauswahl (zeitvariable Programmauswahl) zu realisieren ist. Die Reihenfolge der Schalthandlungen ist von den im Nahverkehr bekannten energiesparenden Fahrweisen abhängig, so daß die vier Steuerregime

- Anfahrt
- ggf. Beharrungsfahrt entlang der Höchstgeschwindigkeit
- Auslauf
- Bremsen

notwendigerweise nacheinander abzugrbeiten sind.

Über eine Logikschaltung erfolgt die Unterscheidung zwischen geschwindigkeite- oder wegabhängiger Umschaltung in das Fahrregime Auslauf. Die entweder über den Zwischenspeicher oder direkt durch die Speicheranordnung bereitgestellte Information (In Form einer Vorgabe der Beharrungsgeschwindigkeit V_{BEH} bzw. des Beharrungsweges S_{BEH} und des Bremseinsatzpunktes S_{BR}) über das aktuell zu realisierende Fahrregime kann sowohl über eine digitule Anzeigeeinrichtung an den Triebfahrzeugführer ausgegeben und dieser realisiert die eigentliche Zugfahrt, als auch unmittelbar an eine selbsttätige Steuereinrichtung übergeben werden, so daß dieser mit Hilfe der Anzeige im wesentlichen nur eine Kontrollfunktion ausübt. Der Nachteil des beschriebenen Verfahrens besteht darin, daß die veränderten energetischen Bedingung. Ibei Anwendung der Nutzbremsung (Möglichkeit der Rückspeisung elektrischer Energie an das Netz während des Bremsvorganges) nicht berücksichtigt werden und dieses Verfahren somit nicht in der Lage ist, für elektrische Triebfahrzeuge mit Nutzbremse eine energiooptimale Fahrweise zu bestimmen.

An anderer Stelle (DE B60 L 7/12, Nr.3428118 A1) wird eine Nutzbremse für einen Gleichstrom-Fahrmotor schaltungstechnisch beschrieben, bei der der Anker, eine Drossel, ein Netz-Thyristorsteller und eine Parallelschaltung aus einem Kondensator und einem lösbaren Thyristorsteller in Serie an das Netz anschaltbar sind. Im oberen Drehzahlbereich, in dem die erzeugte Motorspannung größer oder gleich der Netzspannung ist, werden der Ankerstrom-Thyristorsteller und der Netz-Thyristorsteller wechselweise gegensinnig geöffnet und geschlossen. Dabei kann die gesamte kinetische Energie des Fahrzeuges weitgehend verlustfrei an das Netz zurückgespeist werden.

Der Nachteil besteht darin, daß auf die Möglichkeit einer weiteren Einsparung von elektrischer Energie mittels Anwendung einer energiesparenden Fahrweise nicht eingegangen wird. Weiterhin liefert die Anwendung der Optimierungstheorie auf die Betrieb sabläufe von modernen Schnelibahnen (nach K.H.Kraft und E. Schnieder: "Optimale Trajektorien im spurgebundenen Schnelivrrkehr", Regelungstechnik 1981, H.4, S.,11–119) optimale Trajektorien für planmäßigen und gestörten Betrieb. Für zeit ptimale und energieoptimale Fahrweisen werden mit Hilfe des Maximumprinzips und unter Beachtung beschränkter Steuer- und Zustandsgrößen die zugehörigen Algorithmen entwickelt. Aus der Berücksichtigung verschiedener Bremssysteme geht hervor, welche Energieersparnis unter welchen Bedingungen durch eine ideale Nutzbremsung erreicht wird. Für nichtplanmäßige Betriebsfälle mit veränderlichen Zielkoordinaten liefert die Optimierungstheorie nach Euler-Lagrange günstige Fahrverläufe, di sich durch ein adaptives Regelsystern verwirklichen lassen.

Der Nachteil dieses Verfahrens besteht in einer unzulässigen idealisierung von fahrzeugtechnischen Parametern, in deren Ergebnis Fahrweisen (Trajaktorien) ermittelt werden, die sich in der Praxis als nicht energieoptinie weisen.

Ziel der Erfindung

Ziel der Erfindung ist es, bei vorgegebener Fahrzeit zwischen zwei Planhalt in eine energio ptimale Fahrweise zu ermitteln und damit eine Einsparung an elektrischer Energie zu ermöglichen.

Darlegung des Wesens der Erfindung

Die Ursache eines h\u00f6heren Energieverbrauchs bei bisher bekannten technischen L\u00f6sungen besteht in der unberechtigten idealisierung des Fahrzeugsystems, in dem sowohl der Energieverbrauch in der Antriebsphase als auch die R\u00fcckspeisung w\u00e4hrend der Bremsphase in der Zeiteinheit als nur von der Kraft und der Geschwindigkeit abh\u00e4ngig angeschen werden:

$$E = \int_{O}^{T} F(t) V(t) dt$$

Das zu lösende Problem besteht darin, unter Borücksichtigung der Wirkungsgradverhältnisse während des Antriebs und bei der Rückspelsung eine Steuerung zu realisieren, die zur Einsparung von Elektroenergie führt. Erfindungsgemäß wird bei Beachten der Abhängigkeit des Gesamtenergieverbrauchs vom Antriebswirkungsgrad η_{AN} und des Rückspelsungswirkungsgrades η_{Rück} in der Form

$$E = \frac{1}{2} \int_{0}^{T} \left[\left(\frac{1}{\eta_{AN}} - \eta_{ROCK} \right) : F(t) : + \left(\frac{1}{\eta_{AN}} + \eta_{ROCK} \right) F(t) \right] V(t) dt$$

ein energieoptimales Fahrregime in der zeitlichen Abfolge der Bewegungsphasen

- → Anfahrt mit maximaler Zugkraft
- → Beharrungsfahrt mit V = const.
- → Auslauf
- → Bremsen mit maximai zulässiger Bremskraft

mit von ŋan und ŋaock abhängigen Umschaltprodukten zwischen den Phasen für eine Fahrt zwischen zwei Planhalten ermittelt. Die Umschaltpunkte sind gemäß den technischen Zustandsgrößen des Prozesses der Zugfahrt durch Weg und Geschwindigkeit charakterisiert und neben den Wirkungsgradverhältnissen von der vorgegebenen Fahrzeit zwischen den Planhalten funktional abhängig. Sie werden durch Darstellung des Zugmodeils unter Berücksichtigung fahrdynamischer Gesetzmäßigkeiten für jeden Abschnitt mit konstanter zulässiger Höchstgeschwindigkeit ermittelt und sind als Sollwerte für eine energieoptimale Zugsteuerung zu verwenden. Die Steuerung des Fahrzeugs erfolgt durch Impulse, die auf der Basis des Vergleichs dieser Sollwerte mit den al. uellen Istzuständen entstehen.

Ausführungsbeispiele

Die Erfindung soll nachstehend an einem Beispiel näher erläutert werden. Die zugehörige Zeichnung zeigt in

- Fig. 1: Weg-Geschwindigkeits-Diagramm von Zugfahrten mit unterschiedlichen Auslauflängen
- Fig. 2: Länge des Auslaufweges als Funktion des Produktes von Antriebs- und Rückspelsungswirkungsgrad
- Fig. 3: Blockschaltbild des Verfahrens der energieoptimalen Steuerung von Fahrzeugen mit Nutzbremse

Eine Fahrweise, die zeitlich aufeinanderfolgend die Bewegungsphasen

- → Anfahrt
- → Boharrungsfahrt
- → Ausiauf
- → Bremsen

realisiert, ist bei vorgegebener Fahrzeit eindeutig durch die Größengeschwindigkeit der Beharrungsfahrt V_{REH}, Wegpunkt S_{BEH} des Übergangs von der Phase Beharrung zur Phase Auslauf (Beharrungslänge) und Bremseinsatzpunkt S_{BR} bestimmt. Figur 1 zeigt das Weg-Geschwindigkeits-Diagramm derartiger Fahrten. Die Trajektorien A, B und C führen alle auf die gleiche, durch den Fahrplan vorgegebene Fahrzeit, sind darüber hinaus aber durch unterschiedliche Beharrungsgeschwindigkeiten V_{BEH}, Länge der Beharrungsfahrt S_{BEH} und daraus resultierend unterschiedliche Auslauflingen AL und Bremseinsatzpunkte S_{BR} gekennzeichnet. Den Zusammenhang zwischen Auslauflänge AL bei energieoptimaler Fahrt und dem Produkt aus Antriebswirkungsgrad und Rückspeisungswirkungsgrad η_{AN} · r_{ROCK} zeigt Figur 2.

Das der Erfindung zugrund i liegende Verfahren gestattet die Be stimmung der funktionalen Beziehungen V_{BEH}(t_i, τ_{AN}, η_{ROCK}), S_{BEH}(t_i, τ_{AN}, η_{ROCK}) und S_{BR}(t_i, τ_{AN}, η_{ROCK}) und somit die Festlegung der optimalen Auslauflänge AL für jeden Abschnitt mit konstanter zulässiger Höchstgeschwindigkeit V_{mex}. Die zu berücksichtigende Fanrzeit t^{*}, wird nach bekannten Verfahren zur Ermittlung energieoptimaler Teilfahrzeiten bei Vorliegen mehrerer, verschiedener Höchstgeschwindigkeitsbegrenzung in bzw. zur Modifikation von Fahrzeiten zwecks Heranführen eines Zuges an die vorgegebene Fahrplanlage festgelegt. Auf dieser Grundlag werden abschnittsweise die optimale Beharrungsgeschwindigkeit V_{BEH}, die optimale Beharrungslänge S_{BEH} und der Bremseinsatzpunkt S_{BR} bestimmt und stehen gemäß Figur 3 als Steuerbefehle zur Verfügung, die entweder durch eine automatische Zugsteuerung verarbeit it werden oder durch den Triebfahrzeugführt werden.

Dio realisierte Stouerung führt zu energie ptimaler Fahrweise und einer damit verbundenen Senkung des Bedarfs an elektrischer Energie für die Zugfahrt.

THIS PAGE BLANK (USPTO)