Name: Phạm Nguyễn Hải Anh

ID: 21520586

Class: IT007.ANTN

OPERATING SYSTEM LAB X'S REPORT

SUMMARY

Task		Status	Page
SJT		Hoàn thành	5
	SRTF	Hoàn thành	9
			4
			7
•••	•••		
	•••		

*Note: Export file to **PDF** and name the file by following format:

Student ID_LABx.pdf

Trước khi bắt đầu, các giải thuật bên dưới đều có chung 3 luồng, chỉ khác nhau ở tham số của đoạn code hàm thuc_thi. Soucre code lưu ở <u>Lab4 - Google Drive</u> Luồng 1:

Luồng 2:

Luồng 3:

Thuc_thi(Tiến trình p):

1. SJF:

Thuật toán này nhìn có vẻ đúng, nhưng thật chất nó có trưng dụng. Vì thế em đã thay thế nó bằng 1 kiểu khác:

Tính đúng đắn:

Input theo format PID - AT - BT:

Thời gian t = 0:

Ready queue chỉ có process pid 1 nên pid 1 là tiến trình có thời gian thực thi nhỏ nhất. Chạy pid 1.

Process pid 1 chạy tới t=13, kiểm tra trong hàng đợi thấy còn tiến trình:

Ready queue có process pid 2, process pid 3, process pid 4, process pid 5. Pid 3 có thời gian thực thi nhỏ nhất, chạy pid 3.

Chạy tới t=13+4=17:

Ready queue có process pid 2, process pid 4, process pid 5. Pid 2 có thời gian thực thi nhỏ nhất, chạy pid 2.

Chạy tới t=17+9=26:

Ready queue có process pid 4, process pid 5. Pid 5 có thời gian thực thi nhỏ nhất, chạy pid 5.

Chạy tới t=26+10=36:

Ready queue có process pid 4 nên Pid 4 có thời gian thực thi nhỏ nhất, chạy pid 4.

Chạy tới t=36+18=54:

Ready queue không còn tiến trình nên kết thúc chương trình.

Code chính:

```
void non_preemptive_sjf(int n)
    int upper_range = 0;
    int tm = min(INT_MAX, ar[upper_range + 1].at);
         for (; upper_range <= n;) {
             upper_range++;
             if (ar[upper_range].at > tm || upper_range > n) {
                 upper_range--;
             update(1, 1, n, upper_range,
                 ar[upper_range].id, ar[upper_range].bt);
        util1 res = query(1, 1, n, 1, upper_range);
        // Checking if the process has already been executed if (res.bt1 != INT_MAX) \P
             int index = mp[res.p_id];
             ar[index].ct = tm;
ar[index].tat = ar[index].ct - ar[index].at;
             ar[index].wt = ar[index].tat - ar[index].bt;
             // Update the process burst time with infinity when the process is executed update(1, 1, n, index, INT_MAX, INT_MAX);
             tm = ar[upper_range + 1].at;
```

Thực thi:

Test case 1:

Input theo format PID - AT - BT:

1 0 13 2 4 9 3 6 4 4 7 18

5 12 10

☑ D:\Move\UIT\HK4\HDH\Thuc × + ∨					
ProcessId	Arrival Time	Burst Time	Finish Time	Turnaround Time	Waiting Time
1	0	13	13	13	0
2	4	9	26	22	13
3	6	4	17	11	7
4	7	18	54	47	29
5	12	10	36	24	14
ATT: 23.4					
AWT: 12.6					

Test case 2:

Input theo format PID - AT - BT:

- 1 0 12 2 4 10 3 6 4 4 7 18
- 5 12 10

ProcessId	Arrival Time	Burst Time	Finish Time	Turnaround Time	Waiting Time
1	0	12	12	12	0
2	4	10	36	32	22
3	6	4	16	10	6
4	7	18	54	47	29
5	12	10	26	14	4
ATT: 23					
AWT: 12.2					
	12	10	26	14	4

Test case 3:

Input theo format PID - AT - BT:

- ProcessId	Arrival Time	Burst Time	Finish Time	Turnaround Time	Waiting Time
1	0	4	4	4	0
2	4	8	12	8	Θ
3	6	4	16	10	6
4	7	18	44	37	19
5	12	10	26	14	4
ATT: 14.6					
AWT: 5.8					

2. SRTF:

Tính đúng đắn:

Input theo format PID - AT - BT:

Tại t=0:

Ready queue chỉ có mỗi process pid=2, nên process này có thời gian thực thi còn lại nhỏ nhất. Chạy pid 2.

Tai t=1:

Ready_queue có process pid=2, process pid=1. Thời gian thực thi còn lại của pid=2 là 1, của pid=1 là 3 nên process này có thời gian thực thi còn lại nhỏ nhất. Chạy pid 2.

Tại t=2:

Ready_queue chỉ có process pid=1 nên process này có thời gian thực thi còn lại nhỏ nhất. Chạy pid 1.

Tai t=3:

Ready_queue chỉ có process pid=1 nên process này có thời gian thực thi còn lại nhỏ nhất. Chạy pid 1.

Tai t=4:

Ready_queue có process pid=1, process pid=3. Thời gian thực thi còn lại của pid=3 và pid=1 là 1 nên process pid=1 vẫn chạy.

Tai t=5:

Ready_queue có process pid=3, process pid=5. Thời gian thực thi còn lại của pid=3 là 1, của pid=5 là 3 nên process pid=3 có thời gian thực thi còn lại nhỏ nhất. Chạy pid 3.

Tai t=6:

Ready_queue có process pid=4, process pid=5. Thời gian thực thi còn lại của pid=4 là 2, của pid=5 là 3 nên process pid=4 có thời gian thực thi còn lại nhỏ nhất. Chạy pid 4.

Tai t=7:

Ready_queue có process pid=4, process pid=5. Thời gian thực thi còn lại của pid=4 là 1, của pid=5 là 3 nên process pid=4 có thời gian thực thi còn lại nhỏ nhất. Chạy pid 4.

Còn lại là chương trình sẽ chạy process pid=5.

Code chính:

```
159
160 ☐ PCB* find_shortest_remaining_time() {
          int min_time = 9999999;
161
162
          PCB* result = new PCB;
163 🖨
          for (PCB* p = ready_queue.pHead; p != NULL; p = p->pNext) {
164 🖨
              if (p->remaining_time < min_time) {</pre>
                  min time = p->remaining time;
165
166
                  result = p;
167
168
169
          return result;
170 L }
171
172 □ void* short_scheduler(void *message) {
173 🛱
          while (1) {
174 🖨
              if (ready queue.pHead != NULL) {
175
                  execute(find_shortest_remaining_time());
176
177
178 }
180 □ void* long scheduler(void *message) {
181 🖨
          while (1) {
182 草
              for (PCB *p = new_queue.pHead; p != NULL; p = p->pNext) {
                  if (p->arrival_time == system_time) {
183 🖨
184
                      add_task(ready_queue, create_task(p->pID, p->arrival_time, p->burst_time));
185
                      add_task(statistics_list, create_task(p->pID, p->arrival_time, p->burst_time));
186
                      remove_task(new_queue, p);
187
188
189
190 [ }
```

Thuc thi: Input theo format PID - AT - BT:

Test case1:

```
1 1 3
2 0 2
3 4 1
4 6 4
5 5 5
```

```
Grant diagram:
2
2
1
1
1
3
4
4
4
4
5
5
5
5
5
                                           finnish_time
pID
        arrival_time
                          burst_time
2
                          2
                                            2
                          3
                                           5
1
        1
3
        4
                          1
                                           6
5
        5
                          5
                                           15
        6
                          4
                                            10
avg_wait_time: 1.4
avg_turnaround_time: 4.4
```

Test case 2:

```
1 1 3
2 0 2
3 4 1
4 6 2
5 5 3
```

```
Grant diagram:
2
1
1
3
4
5
5
pID
         arrival_time
                           burst_time
                                              finnish_time
2
1
3
5
                                              2
5
                            2
         1
                            3
         4
                            1
                                              6
         5
                                              11
                            3
4
         6
                            2
                                              8
avg_wait_time: 1
avg_turnaround_time: 3.2
```

Test case 3:

```
Grant diagram:
2
2
1
1
1
5 5 5 4 4 3 3 3
3
          arrival_time
pID
                               burst_time
                                                    finnish_time
2
                                                    2
                               2
1
                               3
                                                    5
          1
3
          4
                               4
                                                    14
5
          5
                               3
                                                    8
4
          6
                               2
                                                    10
avg_wait_time: 1.8
avg_turnaround_time: 4.6
```