

Rapport BE : Testing for homogeneity of a Poisson process

by Maxime Baba, Mathilde Fererra, and Felix Foucher de Brandois

Formation ModIA - INSA, 5^{th} year 2024-2025

Contents

1	Introduction	į
2	Brouillon	•

List of Figures

1 Introduction

2 Brouillon

Soit $(N_t)_t$ un processus de Poisson inhomogène de taux $\lambda(t)$, $t \in \mathbb{R}$.

On observe ce processus sur un intervalle $[0, T^*], T^* > 0$.

Soit $n = N_{T^*}$ le nombre d'événements observés.

Soit $0 < T_1 < T_2 < \ldots < T_n < T^*$ les instants des événements observés.

Test de Laplace :

On teste l'hypothèse $H_0: \lambda(t) = \lambda_0$ pour tout $t \in [0, T^*]$.

contre

 $H_1: \lambda \text{ croissante sur } [0, T^*].$

Stat de test :

$$L = \sum_{i=1}^{n} \frac{T_i}{T^*}$$

Conditional distribution:

Let N be a homogeneous Poisson process with rate $\lambda > 0$ and fix t > 0. Let $n \in \mathbb{N}^*$. Given that $N_t = n$, the n first arrival times (T_1, \ldots, T_n) have the same distribution as the order statistic corresponding to n independent random variables uniformly distributed on the interval [0, t], that is:

$$(T_1, T_2, \dots, T_n)|N_t = n \stackrel{d}{=} (U_{(1)}, U_{(2)}, \dots, U_{(n)})$$
 where U_1, \dots, U_n i.i.d $\sim U([0, t])$

Sous H_0 , les variables aléatoires $\frac{T_i}{T^*}$ sont i.i.d et ont la même distribution que la statistique d'ordre correspondant à n variables aléatoires uniformément distribuées sur [0,1].

Donc sous H_0 , $L \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0,1)$ (théorème de la limite centrale).

H0 :
$$\beta = 0$$
 contre H1 : $\beta > 0$
pour $\lambda(t) = \alpha e^{\beta t}$,