Wydział Informatyki i Telekomunikacji, rok I Logika dla informatyków

Zadania – lista 3

1. Niech $R \subseteq X \times X$ będzie relacją binarną na zbiorze X oraz niech $A, B \subseteq X$. Zbadać prawdziwość zależności

$$R(A \cap B) \subseteq R(A) \cap R(B)$$

gdzie
$$R(Z) = \{(a,b) \in R: a, b \in Z\}$$
 dla $Z \subseteq X$.

- 2. Niech S, T będą relacjami binarnymi na X. Wskaż, które własności są prawdziwe:
 - a) $dom(S \cup T) = dom(S) \cup dom(T)$
 - b) $dom(S \cup T) \subseteq dom(S) \cup dom(T)$
 - c) $dom(S \cap T) \subseteq dom(S) \cap dom(T)$
- 3. Sprawdzić, czy przechodnie są wszystkie relacje binarne $R \subseteq X^2$ określone na zbiorze X spełniającym warunek:
 - a) card(X) = 1
 - b) card(X) = 2
 - c) card(X) = 3
- 4. Niech $R_1 \subseteq X^2$, relację $R_2 \subseteq X^2$, gdzie $R_1 \subseteq R_2$ nazywamy rozszerzeniem relacji R_1 . Zbadać, czy każdą relację $R \subseteq X^2$ można rozszerzyć do relacji
 - a) symetrycznej,
 - b) przeciwsymetrycznej,
 - c) zwrotnej,
 - d) przeciwzwrotnej,
 - e) przechodniej,
 - f) spójnej.
- 5. Dla podanych niżej zbiorów X i binarnych relacji R na X sprawdzić, czy R jest relacją równoważności:
 - a) X jest zbiorem liczb całkowitych; $\langle x,y \rangle \in R$ wtedy i tylko wtedy, gdy x+y jest liczbą parzystą.
 - b) X jest zbiorem liczb rzeczywistych; $\langle x,y \rangle \in R$ wtedy i tylko wtedy, gdy $|x-y| \le 2$.
 - c) X jest zbiorem punktów na płaszczyźnie; $\langle \langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle \rangle \in R$ wtedy i tylko wtedy, gdy $x_1 = y_2$.
- 6. Sprawdzić czy suma mnogościowa i przekrój dwóch relacji równoważności na zbiorze *X* są także relacjami równoważności. Odpowiedź uzasadnić.
- 7. Ile różnych relacji równoważności można zdefiniować na zbiorze 4-elementowym?
- 8. Udowodnić, że na zbiorze [0,2] (jest to zbiór wszystkich liczb rzeczywistych nie mniejszych niż 0 i nie większych niż 2) nie istnieje taka relacja równoważności, której klasami abstrakcji byłyby zbiory: [0,1], [1,4/3] i [1,2].
- 9. Niech R będzie relacją równoważności na zbiorze A. Udowodnić następujące własności:
 - 1. $\bigcup_{a \in A} [a]_R = A$
 - 2. Jeżeli $(a,b) \in R$, to $[a]_R = [b]_R$, i na odwrót
 - 3. Jeżeli $[a]_R \neq [b]_R$, to $[a]_R \cap [b]_R = \emptyset$