Push Down Automaton (PDA)

Like ε-NFA but also operates a stack. Action in one step includes

- 1) Consumption of a symbol from input (may be ε)
- 2) Change of state
- 3) Pop and push on the stack

A PDA is a 7-tuple $P=(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ where

Q = finite set of states

 Σ = alphabet

Γ= stack alphabet

 $\delta: Q \times \Sigma_e \times \Gamma \rightarrow P(Q \times \Gamma^*)$ non-deterministic

q₀ € Q start state

 $Z_0 \in \Gamma$ bottom of stack symbol

F - a subset of Q : set of final states

If $\delta(q,a,\beta)$ contains (p,u) then the PDA in state q with top of stack β while consuming a $\in \Sigma_e$ can change state to p, pop β and then push $u \in \Gamma^*$. Because of non-determinism there can be zero or more such actions. Configuation of PDA P is given by (p,w',γ) where p = current stack, w' =remaining input and γ = current stack contents. If $(p,u) \in \delta(q,a,\beta)$ then the configuration $(q,aw',\beta\gamma)$ yields in one step $(p,w',u\gamma)$. We indicate this by $(q,aw',\beta\gamma) \rightarrow (p,w',u\gamma)$. If $c_1=c_2$ or $c_1 = c_1' \rightarrow c_2' \rightarrow \rightarrow c_k' = c_2$ we say that c_1 yields c_2 ($c_1 \rightarrow * c_2$). Starting configuration is (q_0, w, Z_0) where w = input string. We associate two languages with PDA P.

Language accepted by P using final state : $L(P) = \{ w \in \Sigma^* \mid (q_0, w, Z_0) \rightarrow^* (q_f, \epsilon, \gamma) \} \text{ for some } q_f \in F \text{ and any } \gamma \in \Gamma^*$

and language accepted by P using empty stack $N(P)=\{w\in \Sigma^* \mid (q_0,w,Z_0) \rightarrow^* (q,\epsilon,\epsilon)\}$ for any $q\in Q$.

We now state four theorems and their corollaries about these languages without proof.

Theorem 1 : If $L=N(P_N)$ for some PDA P_N then we can construct a PDA P such that L=L(P).

Theorem 2 : If L = L(P) for some PDA P then we can construct a PDA P_N such that $L = N(P_N)$.

Theorem 3 : Given a CFG G, we can construct a PDA P_N such that $N(P_N) = L(G)$.

Corollary 3.1 : Given a CFG G, we can construct a PDA P such that L(P) = L(G).

Theorem 4 : Given a PDA P_N , we can construct a CFG G such that $L(G) = N(P_N)$.

Corollary 4.1 : Given a PDA P, we can construct a CFG G such that L(G) = L(P).

Design of a PDA : We can use transition diagrams. A transition with label a, β /u means a $\in \Sigma_e$ will be consumed from input, β is the top of the stack which will be popped and after that $u \in \Sigma^*$ will be pushed. If $\beta = X$, it will mean any symbol of Γ .

Design a PDA P such that L = L(P) for $L = \{ww^R \mid w \in \{0,1\}^*\}$, the language of even-length palindromes.

$$\Sigma = \{0,1\}, \Gamma = \{0, 1, Z_0\}$$

Computation with 1001

HW Design PDA P s.t. L(P) ie the language accepted by P using final states is

- a) Palindromes of odd length
- b) All palindromes