2D: Dинамика и Dеревья отрезков ДТЮ, Санкт-Петербург, 19 марта 2014

Содержание

Pa	азминка		2
1	Задача А.	Сумма [2 секунд, 256 mb]	2
2	Задача В.	Range Variation Query [2 секунд, 256 mb]	3
3	Задача С.	Сумма [2 секунд, 256 mb]	4
4	Задача D.	RMQ [1 секунд, 256 mb]	5
За	ідачи		6
5	Задача Е.	Знакочередование [2 секунд, 256 mb]	6
6	Задача F.	Прямоугольники [2 секунд, 256 mb]	7
7	Задача G .	K-инверсии [2 секунд, 256 mb]	8
8	Задача Н.	RMQ. RMQ Наоборот (*) [3 секунд, 256 mb]	9
9	Задача I.	Наибольшая общая возрастающая [500 секунд, 256 mb]	10

Разминка

1 Задача А. Сумма [2 секунд, 256 mb]

Имя входного файла: sum.in Имя выходного файла: sum.out

Дан массив из N элементов, нужно научиться находить сумму чисел на отрезке.

Формат входных данных

Первая строка входного файла содержит два целых числа N и K — число чисел в массиве и количество запросов. ($1 \le N \le 100\,000$), ($0 \le K \le 100\,000$). Следующие K строк содержат запросы

- 1. А і х присвоить *i*-му элементу массива значение x ($1 \le i \le n, 0 \le x \le 10^9$)
- 2. Q l r найти сумму чисел в массиве на позициях от l до r. $(1 \le l \le r \le n)$

Изначально в массиве живут нули.

Формат выходных данных

На каждый запрос вида Q 1 г нужно вывести единственное число — сумму на отрезке.

sum.in	sum.out
5 9	0
A 2 2	2
A 3 1	1
A 4 2	2
Q 1 1	0
Q 2 2	5
Q 3 3	
Q 4 4	
Q 5 5	
Q 1 5	

2 Задача В. Range Variation Query [2 секунд, 256 mb]

Имя входного файла: rvq.in Имя выходного файла: rvq.out

В начальный момент времени последовательность a_n задана следующей формулой: $a_n = n^2 \mod 12345 + n^3 \mod 23456$.

Требуется много раз отвечать на запросы следующего вида:

- найти разность между максимальным и минимальным значениями среди элементов $a_i, a_{i+1}, \ldots, a_j;$
- присвоить элементу a_i значение j.

Формат входных данных

Первая строка входного файла содержит натуральное число k — количество запросов ($1 \le k \le 100\,000$). Следующие k строк содержат запросы, по одному на строке. Запрос номер i описывается двумя целыми числами x_i, y_i .

Если $x_i > 0$, то требуется найти разность между максимальным и минимальным значениями среди элементов a_{x_i}, \ldots, a_{y_i} . При этом $1 \leqslant x_i \leqslant y_i \leqslant 100\,000$.

Если $x_i < 0$, то требуется присвоить элементу $a_{|x_i|}$ значение y_i . В этом случае $-100\,000 \leqslant x_i \leqslant -1$ и $|y_i| \leqslant 100\,000$.

Формат выходных данных

Для каждого запроса первого типа в выходной файл требуется вывести одну строку, содержащую разность между максимальным и минимальным значениями на соответствующем отрезке.

rvq.in	rvq.out
7	34
1 3	68
2 4	250
2 4 -2 -100	234
1 5	1
8 9	
8 9 -3 -101	
2 3	

Задача С. Сумма [2 секунд, 256 mb]

Имя входного файла: sum.in Имя выходного файла: sum.out

Дан массив из N элементов, нужно научиться находить сумму чисел на отрезке.

Формат входных данных

Первая строка входного файла содержит два целых числа N и K — число чисел в массиве и количество запросов. ($1 \le N \le 100\,000$), ($0 \le K \le 100\,000$). Следующие K строк содержат запросы:

- 1. А l r x присвоить элементам массива с позициями от l до r значение x ($1 \le l \le r \le N$, $0 \le x \le 10^9$)
- 2. Q l r найти сумму чисел в массиве на позициях от l до r. $(1\leqslant l\leqslant r\leqslant N)$

Изначально массив заполнен нулями.

Формат выходных данных

На каждый запрос вида Q 1 r нужно вывести единственное число — сумму на отрезке.

sum.in	sum.out
5 9	3
A 2 3 2	2
A 3 5 1	3
A 4 5 2	4
Q 1 3	2
Q 2 2	7
Q 3 4	
Q 4 5	
Q 5 5	
Q 1 5	

4 Задача D. RMQ [1 секунд, 256 mb]

Имя входного файла: stdin Имя выходного файла: stdout

Дан массив a[1..n]. Требуется написать программу, обрабатывающую два типа запросов.

- Запрос "max l r". Требуется найти максимум в массиве **a** от l-ой ячейки до r-ой включительно.
- Запрос "add $l\ r\ v$ ". Требуется прибавить значение v к каждой ячейке массива a от l-ой до r-ой включительно.

Формат входных данных

Первая строка содержит два целых числа n и q $(1 \le n, q \le 10^5)$ – длина массива и число запросов соответственно. Второая строка содержит n целых чисел a_1, \ldots, a_n $(|a_i| \le 10^5)$, задающих соответствующие значения массива. Следующие q строк содержат запросы.

В зависимости от типа запрос может иметь вид либо "max l r", либо "add l r v". При этом $1 \le l \le r \le 10^5, \ |v| \le 10^5.$

Формат выходных данных

Для каждого запроса вида " $\max l\ r$ " требуется в отдельной строке выдать значение соответствующего максимума.

stdin	stdout
5 3	3
1 2 3 4 -5	7
max 1 3	
add 1 2 5	
max 1 3	

Задачи

5 Задача Е. Знакочередование [2 секунд, 256 mb]

Имя входного файла: signchange.in Имя выходного файла: signchange.out

Реализуйте структуру данных из n элементов $a_1, a_2 \dots a_n$, поддерживающую следующие операции:

- присвоить элементу a_i значение j;
- найти знакочередующуюся сумму на отрезке от l до r включительно $(a_l a_{l+1} + a_{l+2} \ldots \pm a_r).$

Формат входных данных

В первой строке входного файла содержится натуральное число n ($1 \le n \le 10^5$) — длина массива. Во второй строке записаны начальные значения элементов (неотрицательные целые числа, не превосходящие 10^4).

В третьей строке находится натуральное число $m\ (1\leqslant m\leqslant 10^5)$ — количество операций. В последующих m строках записаны операции:

- операция первого типа задается тремя числами 0 і ј $(1 \leqslant i \leqslant n, \, 1 \leqslant j \leqslant 10^4).$
- операция второго типа задается тремя числами 1 1 r $(1 \le l \le r \le n)$.

Формат выходных данных

Для каждой операции второго типа выведите на отдельной строке соответствующую знакочередующуюся сумму.

signchange.in	signchange.out
3	-1
1 2 3	2
5	-1
1 1 2	3
1 1 3	
1 2 3	
0 2 1	
1 1 3	

6 Задача F. Прямоугольники [2 секунд, 256 mb]

Имя входного файла: rects.in Имя выходного файла: rects.out

На плоскости задано n прямоугольников, никакие два из которых не имеют общих точек. В каждом прямоугольнике записано целое число.

Скажем, что прямоугольник B лежит $\partial anbwe$ прямоугольника A, если левый верхний угол прямоугольника B лежит строго ниже и правее правого нижнего угла прямоугольника A.

Последовательность прямоугольников R_1, R_2, \ldots, R_k назовем *цепью*, если для всех i прямоугольник R_i лежит дальше прямоугольника R_{i-1} . Весом цепи назовем сумму чисел, записанных во входящих в нее прямоугольниках.

Требуется найти цепь прямоугольников с максимальным весом.

Формат входных данных

Первая строка входного файла содержит число n — количество прямоугольников (1 $\leq n \leq 100\,000$).

Пусть ось x направлена слева направо, а ось y — снизу вверх. Следующие n строк содержат по пять целых чисел — координаты $x_{i,1}, y_{i,1}$ левого нижнего, $x_{i,2}, y_{i,2}$ правого верхнего углов прямоугольника и a_i — число, записанное в прямоугольнике. Координаты не превышают 10^9 по абсолютной величине. Числа, записанные в прямоугольниках, положительные и не превышают 10^9 . Ни один прямоугольник не лежит внутри другого.

Формат выходных данных

В первой строке выходного файла выведите одно число — максимальный возможный вес цепи прямоугольников. Во второй строке выведите через пробелы номера прямоугольников, образующих такую цепь, в порядке цепи. Если оптимальных решений несколько, разрешается вывести любое из них.

rects.in	rects.out
4	10
1 1 2 2 6	3 2
3 1 4 2 5	
0 3 1 4 5	
5 1 6 2 4	

7 Задача G. K-инверсии [2 секунд, 256 mb]

Имя входного файла: kinverse.in Имя выходного файла: kinverse.out

Пусть дана перестановка a_1, a_2, \ldots, a_n . Назовем k-инверсией набор чисел i_1, i_2, \ldots, i_k таких, что $1 \leqslant i_1 < i_2 < \ldots < i_k \leqslant n$ и $a_{i_1} > a_{i_2} > \ldots > a_{i_k}$. Ваша задача — подсчитать количество различных k-инверсий в заданной перестановке.

Формат входных данных

В первой строке входного файла находятся число n — длина перестановки $(1\leqslant n\leqslant 20\,000),$ и число k $(2\leqslant k\leqslant 10).$ Во второй строке n чисел — сама перестановка.

Формат выходных данных

В выходной файл выведите единственное число — количество k-инверсий в заданной перестановке по модулю 10^9 .

kinverse.in	kinverse.out
3 2	2
3 1 2	
5 3	10
5 4 3 2 1	

8 Задача Н. RMQ. RMQ Наоборот (*) [3 секунд, 256 mb]

Имя входного файла: rmq.in Имя выходного файла: rmq.out

Рассмотрим массив a[1..n]. Пусть Q(i,j) — ответ на запрос о нахождении минимума среди чисел $a[i], \ldots, a[j]$. Вам даны несколько запросов и ответы на них. Восстановите исходный массив.

Формат входных данных

Первая строка входного файла содержит число n — размер массива, и m — число запросов $(1 \le n, m \le 100\,000)$. Следующие m строк содержат по три целых числа i, j и q, означающих, что $Q(i,j) = q \ (1 \le i \le j \le n, \ -2^{31} \le q \le 2^{31} - 1)$.

Формат выходных данных

Если искомого массива не существует, выведите строку «inconsistent».

В противном случае в первую строку выходного файла выведите «consistent». Во вторую строку выходного файла выведите элементы массива. Элементами массива должны быть целые числа в интервале от -2^{31} до $2^{31}-1$ включительно. Если решений несколько, выведите любое.

rmq.in	rmq.out
3 2	consistent
1 2 1	1 2 3
2 3 2	
3 3	inconsistent
1 2 1	
1 1 2	
2 3 2	

9 Задача І. Наибольшая общая возрастающая [500 секунд, 256 mb]

Имя входного файла: lcis.in Имя выходного файла: lcis.out

Даны две последовательности чисел — a и b. Нужно найти наибольшую общую возрастающую подпоследовательность. Более формально: такие $1 \leqslant i_1 < i_2 < \cdots < i_k \leqslant a.n$ и $1 \leqslant j_1 < j_2 \cdots < j_k \leqslant b.n$, что $\forall t: a_{i_t} = b_{j_t}, a_{i_t} < a_{i_{t+1}}$ и k максимально.

Формат входных данных

На первой строке целые числа n и m от 1 до $3\,000$ — длины последовательностей. Вторая строка содержит n целых чисел, задающих первую последовательность. Третья строка содержит m целых чисел, задающих вторуя последовательность. Все элементы последовательностей — целые неотрицательные числа, не превосходящие 10^9 .

Формат выходных данных

Выведите одно целое число — длину наибольшей общей возрастающей подпоследовательности.

Система оценки

Подзадача 1 (50 баллов) $n \leqslant 400$. Подзадача 2 (50 баллов) $n \leqslant 3000$.

lcis.in	lcis.out
6 5	2
1 2 1 2 1 3	
2 1 3 2 1	