

# pgRouting Manual

Release v2.5.0-dev

# pgRouting Contributors

Contents

 $pgRouting\ extends\ the\ PostGIS^1/PostgreSQL^2\ geospatial\ database\ to\ provide\ geospatial\ routing\ and\ other\ network\ analysis\ functionality.$ 

This is the manual for pgRouting v2.5.0-dev.



The pgRouting Manual is licensed under a Creative Commons Attribution-Share Alike 3.0 License<sup>3</sup>. Feel free to use this material any way you like, but we ask that you attribute credit to the pgRouting Project and wherever possible, a link back to http://pgrouting.org. For other licenses used in pgRouting see the *License* page.

Contents 1

<sup>&</sup>lt;sup>1</sup>http://postgis.net

<sup>&</sup>lt;sup>2</sup>http://postgresql.org

<sup>&</sup>lt;sup>3</sup>http://creativecommons.org/licenses/by-sa/3.0/

2 Contents

# General

# 1.1 Introduction

pgRouting is an extension of PostGIS<sup>1</sup> and PostgreSQL<sup>2</sup> geospatial database and adds routing and other network analysis functionality. A predecessor of pgRouting – pgDijkstra, written by Sylvain Pasche from Camptocamp<sup>3</sup>, was later extended by Orkney<sup>4</sup> and renamed to pgRouting. The project is now supported and maintained by Georepublic<sup>5</sup>, iMaptools<sup>6</sup> and a broad user community.

pgRouting is an OSGeo Labs<sup>7</sup> project of the OSGeo Foundation<sup>8</sup> and included on OSGeo Live<sup>9</sup>.

#### 1.1.1 License

The following licenses can be found in pgRouting:

| License                     |                                                                            |
|-----------------------------|----------------------------------------------------------------------------|
| GNU General Public          | Most features of pgRouting are available under GNU General Public          |
| License, version 2          | License, version 2 <sup>10</sup> .                                         |
| Boost Software License -    | Some Boost extensions are available under Boost Software License - Version |
| Version 1.0                 | $1.0^{11}$ .                                                               |
| MIT-X License               | Some code contributed by iMaptools.com is available under MIT-X license.   |
| Creative Commons            | The pgRouting Manual is licensed under a Creative Commons                  |
| Attribution-Share Alike 3.0 | Attribution-Share Alike 3.0 License <sup>12</sup> .                        |
| License                     |                                                                            |

In general license information should be included in the header of each source file.

<sup>1</sup>http://postgis.net

<sup>&</sup>lt;sup>2</sup>http://postgresql.org

<sup>&</sup>lt;sup>3</sup>http://camptocamp.com

<sup>4</sup>http://www.orkney.co.jp

<sup>&</sup>lt;sup>5</sup>http://georepublic.info

<sup>6</sup>http://imaptools.com/

<sup>&</sup>lt;sup>7</sup>http://wiki.osgeo.org/wiki/OSGeo\_Labs

<sup>&</sup>lt;sup>8</sup>http://osgeo.org

<sup>9</sup>http://live.osgeo.org/

<sup>10</sup> http://www.gnu.org/licenses/gpl-2.0.html

<sup>11</sup> http://www.boost.org/LICENSE\_1\_0.txt

<sup>&</sup>lt;sup>12</sup>http://creativecommons.org/licenses/by-sa/3.0/

#### 1.1.2 Contributors

#### **This Release Contributors**

#### Individuals (in alphabetical order)

Virginia Vergara

And all the people that give us a little of their time making comments, finding issues, making pull requests etc.

#### **Corporate Sponsors (in alphabetical order)**

These are corporate entities that have contributed developer time, hosting, or direct monetary funding to the pgRouting project:

- Georepublic<sup>13</sup>
- Google Summer of Code<sup>14</sup>
- iMaptools<sup>15</sup>
- Paragon Corporation<sup>16</sup>

#### **Contributors Past & Present:**

#### Individuals (in alphabetical order)

Akio Takubo, Andrea Nardelli, Anton Patrushev, Ashraf Hossain, Christian Gonzalez, Daniel Kastl, Dave Potts, David Techer, Denis Rykov, Ema Miyawaki, Florian Thurkow, Frederic Junod, Gerald Fenoy, Jay Mahadeokar, Jinfu Leng, Kai Behncke, Kishore Kumar, Ko Nagase, Manikata Kondeti, Mario Basa, Martin Wiesenhaan, Maxim Dubinin, Mohamed Zia, Mukul Priya, Razequl Islam, Regina Obe, Rohith Reddy, Sarthak Agarwal, Stephen Woodbridge, Sylvain Housseman, Sylvain Pasche, Virginia Vergara

#### **Corporate Sponsors (in alphabetical order)**

These are corporate entities that have contributed developer time, hosting, or direct monetary funding to the pgRouting project:

- Camptocamp
- CSIS (University of Tokyo)
- Georepublic
- Google Summer of Code
- iMaptools
- Orkney
- Paragon Corporation

<sup>13</sup> https://georepublic.info/en/

<sup>14</sup>https://developers.google.com/open-source/gsoc/

<sup>15</sup> http://imaptools.com

<sup>16</sup>http://www.paragoncorporation.com/

#### 1.1.3 More Information

- The latest software, documentation and news items are available at the pgRouting web site http://pgrouting.org.
- PostgreSQL database server at the PostgreSQL main site http://www.postgresql.org.
- PostGIS extension at the PostGIS project web site http://postgis.net.
- Boost C++ source libraries at http://www.boost.org.
- Computational Geometry Algorithms Library (CGAL) at http://www.cgal.org.
- The Migration guide can be found at https://github.com/pgRouting/pgrouting/wiki/Migration-Guide.

## 1.2 Installation

#### **Table of Contents**

- Short Version
- Get the sources
- Enabling and upgrading in the database
- Dependencies
- Configuring
- Building
- Testing

Instructions for downloading and installing binaries for different Operative systems instructions and additional notes and corrections not included in this documentation can be found in Installation wiki<sup>17</sup>

To use pgRouting postGIS needs to be installed, please read the information about installation in this Install Guide<sup>18</sup>

#### 1.2.1 Short Version

#### Extracting the tar ball

```
tar xvfz pgrouting-2.4.0.tar.gz cd pgrouting-2.4.0
```

To compile assuming you have all the dependencies in your search path:

```
mkdir build
cd build
cmake ..
make
sudo make install
```

Once pgRouting is installed, it needs to be enabled in each individual database you want to use it in.

```
createdb routing
psql routing -c 'CREATE EXTENSION postGIS'
psql routing -c 'CREATE EXTENSION pgRouting'
```

1.2. Installation 5

 $<sup>^{17}</sup>https://github.com/pgRouting/pgrouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting/wiki/Notes-on-Download\%2C-Installation-and-building-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRouting-pgRout$ 

<sup>&</sup>lt;sup>18</sup>http://www.postgis.us/presentations/postgis\_install\_guide\_22.html

#### 1.2.2 Get the sources

The pgRouting latest release can be found in https://github.com/pgRouting/pgrouting/releases/latest

#### wget

To download this release:

```
wget -O pgrouting-v2.4.0.tar.gz https://github.com/pgRouting/pgrouting/archive/v2.4.0.tar.gz
```

Goto Short Version to the extract and compile instructions.

### git

To download the repository

```
git clone git://github.com/pgRouting/pgrouting.git
cd pgrouting
git checkout |release|
```

Goto *Short Version* to the compile instructions (there is no tar ball).

# 1.2.3 Enabling and upgrading in the database

#### **Enabling the database**

pgRouting is an extension and depends on postGIS. Enabling postGIS before enabling pgRouting in the database

```
CREATE EXTENSION postgis;
CREATE EXTENSION pgrouting;
```

#### Upgrading the database

To upgrade pgRouting in the database to version 2.4.0 use the following command:

```
ALTER EXTENSION pgrouting UPDATE TO "2.4.0";
```

More information can be found in https://www.postgresql.org/docs/current/static/sql-createextension.html

### 1.2.4 Dependencies

#### **Compilation Dependencies**

To be able to compile pgRouting, make sure that the following dependencies are met:

- C and C++0x compilers \* g++ version >= 4.8
- Postgresql version >= 9.1
- PostGIS version >= 2.0
- The Boost Graph Library (BGL). Version >= 1.46
- CMake >= 2.8.8
- CGAL >= 4.2

#### optional dependencies

For user's documentation

- Sphinx >= 1.1
- Latex

For developer's documentation

• Doxygen >= 1.7

For testing

- pgtap
- pg\_prove

#### **Example: Installing dependencies on linux**

Installing the compilation dependencies

```
sudo apt-get install
    cmake \
    g++ \
    postgresql-9.3 \
    postgresql-server-dev-9.3 \
    libboost-graph-dev \
    libcgal-dev
```

#### Installing the optional dependencies

```
sudo apt-get install -y python-sphinx \
    texlive \
    doxygen \
    libtap-parser-sourcehandler-pgtap-perl \
    postgresq1-9.3-pgtap
```

### 1.2.5 Configuring

pgRouting uses the cmake system to do the configuration.

The build directory is different from the source directory

Create the build directory

```
$ mkdir build
```

#### Configurable variables

To see the variables that can be configured

```
$ cd build
$ cmake -L ..
```

### **Configuring The Documentation**

Most of the effort of the documentation has being on the HTML files. Some variables for the documentation:

1.2. Installation 7

| Variable    | Default  | Comment                                                        |
|-------------|----------|----------------------------------------------------------------|
| WITH_DOC    | BOOL=OFF | C                                                              |
| BUILD_HTML  | BOOL=ON  | If ON, turn on/off building HTML for user's documentation      |
| BUILD_DOXY  | BOOL=ON  | If ON, turn on/off building HTML for developer's documentation |
| BUILD_LATEX | BOOL=OFF | If ON, turn on/off building PDF                                |
| BUILD_MAN   | BOOL=OFF | If ON, turn on/off building MAN pages                          |
| DOC_USE     | BOOL=OFF | If ON, use sphinx-bootstrap for HTML pages of the users        |
| BOOTSTRAP   |          | documentation                                                  |

Configuring with documentation

```
$ cmake -DWITH_DOC=ON ..
```

Note: Most of the effort of the documentation has being on the html files.

# 1.2.6 Building

Using make to build the code and the documentation

The following instructions start from path/to/pgrouting/build

```
$ make  # build the code but not the documentation
$ make doc  # build only the documentation
$ make all doc  # build both the code and the documentation
```

We have tested on several platforms, For installing or reinstalling all the steps are needed.

**Warning:** The sql signatures are configured and build in the cmake command.

#### **MinGW on Windows**

```
$ mkdir build
$ cd build
$ cmake -G"MSYS Makefiles" ..
$ make
$ make install
```

#### Linux

The following instructions start from path/to/pgrouting

```
mkdir build
cd build
cmake ..
make
sudo make install
```

When the configuration changes:

```
rm -rf build
```

and start the build process as mentioned above.

# 1.2.7 Testing

Currently there is no make test and testing is done as follows

The following instructions start from path/to/pgrouting/

```
tools/testers/algorithm-tester.pl
createdb -U <user> ___pgr___test___
sh ./tools/testers/pg_prove_tests.sh <user>
dropdb -U <user> ___pgr___test___
```

#### 1.2.8 See Also

#### Indices and tables

- genindex
- search

# 1.3 Support

pgRouting community support is available through the pgRouting website<sup>19</sup>, documentation<sup>20</sup>, tutorials, mailing lists and others. If you're looking for *commercial support*, find below a list of companies providing pgRouting development and consulting services.

# 1.3.1 Reporting Problems

Bugs are reported and managed in an issue tracker<sup>21</sup>. Please follow these steps:

- 1. Search the tickets to see if your problem has already been reported. If so, add any extra context you might have found, or at least indicate that you too are having the problem. This will help us prioritize common issues.
- 2. If your problem is unreported, create a new issue<sup>22</sup> for it.
- 3. In your report include explicit instructions to replicate your issue. The best tickets include the exact SQL necessary to replicate a problem.
- 4. If you can test older versions of PostGIS for your problem, please do. On your ticket, note the earliest version the problem appears.
- For the versions where you can replicate the problem, note the operating system and version of pgRouting, PostGIS and PostgreSQL.
- 6. It is recommended to use the following wrapper on the problem to pin point the step that is causing the problem.

```
SET client_min_messages TO debug;
    <your code>
SET client_min_messages TO notice;
```

# 1.3.2 Mailing List and GIS StackExchange

There are two mailing lists for pgRouting hosted on OSGeo mailing list server:

- User mailing list: http://lists.osgeo.org/mailman/listinfo/pgrouting-users
- Developer mailing list: http://lists.osgeo.org/mailman/listinfo/pgrouting-dev

1.3. Support 9

<sup>19</sup>http://pgrouting.org/support.html

<sup>&</sup>lt;sup>20</sup>http://docs.pgrouting.org

<sup>&</sup>lt;sup>21</sup>https://github.com/pgrouting/pgrouting/issues

<sup>&</sup>lt;sup>22</sup>https://github.com/pgRouting/pgrouting/issues/new

For general questions and topics about how to use pgRouting, please write to the user mailing list.

You can also ask at GIS StackExchange<sup>23</sup> and tag the question with pgrouting. Find all questions tagged with pgrouting under http://gis.stackexchange.com/questions/tagged/pgrouting or subscribe to the pgRouting questions feed<sup>24</sup>.

# 1.3.3 Commercial Support

For users who require professional support, development and consulting services, consider contacting any of the following organizations, which have significantly contributed to the development of pgRouting:

| Company             | Offices in          | Website                           |
|---------------------|---------------------|-----------------------------------|
| Georepublic         | Germany, Japan      | https://georepublic.info          |
| iMaptools           | United States       | http://imaptools.com              |
| Paragon Corporation | United States       | http://www.paragoncorporation.com |
| Camptocamp          | Switzerland, France | http://www.camptocamp.com         |

• Sample Data that is used in the examples of this manual.

# 1.4 Sample Data

The documentation provides very simple example queries based on a small sample network. To be able to execute the sample queries, run the following SQL commands to create a table with a small network data set.

#### Create table

```
CREATE TABLE edge_table (
   id BIGSERIAL,
   dir character varying,
    source BIGINT,
   target BIGINT,
   cost FLOAT,
   reverse_cost FLOAT,
   capacity BIGINT,
   reverse_capacity BIGINT,
   category_id INTEGER,
   reverse_category_id INTEGER,
   x1 FLOAT,
   y1 FLOAT,
    x2 FLOAT,
    y2 FLOAT,
    the_geom geometry
);
```

#### Insert data

```
INSERT INTO edge_table (
   category_id, reverse_category_id,
   cost, reverse_cost,
   capacity, reverse_capacity,
    x1, y1,
   x2, y2) VALUES
                                  0,
                                         2, 1),
(3, 1,
        1, 1, 80, 130,
                             2,
(3, 2,
         -1, 1,
                 -1, 100,
                                  1,
                                         3, 1),
```

<sup>&</sup>lt;sup>23</sup>http://gis.stackexchange.com/

<sup>&</sup>lt;sup>24</sup>http://gis.stackexchange.com/feeds/tag?tagnames=pgrouting&sort=newest

```
(2, 1,
      -1, 1, -1, 130,
                                   4, 1),
                          3, 1,
       1, 1, 100, 50,
                         2, 1,
(2, 4,
                                   2, 2),
       1, -1, 130, -1,
                         3, 1,
(1, 4,
                                   3, 2),
       1, 1, 50, 100,
                             2,
(4, 2,
                         Ο,
                                   1, 2),
(4, 1,
        1, 1, 50, 130,
                                   2, 2),
                         1,
                              2,
(2, 1,
       1, 1, 100, 130,
                         2,
                             2, 3, 2),
        1, 1, 130, 80,
                         3,
(1, 3,
                             2, 4, 2),
       1, 1, 130, 50,
                         2,
                             2, 2, 3),
(1, 4,
       1, -1, 130, -1,
                             2, 3, 3),
(1, 2,
                         3,
        1, -1, 100, -1,
(2, 3,
                         2,
                              3, 3, 3),
        1, -1, 100, -1,
                         3,
(2, 4,
                              3,
                                    4, 3),
        1, 1, 80, 130,
(3, 1,
                         2,
                             3, 2, 4),
        1, 1, 80, 50,
1, 1, 80, 80,
(3, 4,
                         4,
                             2,
                                    4, 3),
(3, 3,
                          4,
                               1,
                                    4, 2),
                          4, 1, 4, \(\alpha\),
0.5, 3.5, 1.99999999999,3.5),
        1, 1, 130, 100,
(1, 2,
(4, 1,
        1, 1,
               50, 130,
                          3.5, 2.3, 3.5,4);
UPDATE edge_table SET the_geom = st_makeline(st_point(x1,y1),st_point(x2,y2)),
dir = CASE WHEN (cost>0 AND reverse_cost>0) THEN 'B' -- both ways
         WHEN (cost>0 AND reverse_cost<0) THEN 'FT' -- direction of the LINESSTRING
          WHEN (cost<0 AND reverse_cost>0) THEN 'TF' -- reverse direction of the LINESTRING
         ELSE '' END;
                                                  -- unknown
```

#### **Topology**

• Before you test a routing function use this query to create a topology (fills the source and target columns).

```
SELECT pgr_createTopology('edge_table',0.001);
```

#### **Points of interest**

- When points outside of the graph.
- Used with the withPoints Family of functions functions.

```
CREATE TABLE pointsOfInterest (
   pid BIGSERIAL,
   x FLOAT,
   y FLOAT,
    edge_id BIGINT,
    side CHAR,
    fraction FLOAT,
    the_geom geometry,
    newPoint geometry
);
INSERT INTO pointsOfInterest (x, y, edge_id, side, fraction) VALUES
(1.8, 0.4, 1, 'l', 0.4),
(4.2, 2.4, 15, 'r', 0.4),
(2.6, 3.2, 12, '1', 0.6),
           6, 'r', 0.3),
(0.3, 1.8,
            5, '1', 0.8),
(2.9, 1.8,
            4, 'b', 0.7);
(2.2, 1.7,
UPDATE pointsOfInterest SET the_geom = st_makePoint(x,y);
UPDATE pointsOfInterest
    SET newPoint = ST_LineInterpolatePoint(e.the_geom, fraction)
```

1.4. Sample Data 11

```
FROM edge_table AS e WHERE edge_id = id;
```

#### Restrictions

• Used with the pgr\_trsp - Turn Restriction Shortest Path (TRSP) functions.

```
CREATE TABLE restrictions (
    rid BIGINT NOT NULL,
    to_cost FLOAT,
    target_id BIGINT,
    from_edge BIGINT,
    via_path TEXT
);

INSERT INTO restrictions (rid, to_cost, target_id, from_edge, via_path) VALUES
(1, 100, 7, 4, NULL),
(1, 100, 11, 8, NULL),
(1, 100, 10, 7, NULL),
(2, 4, 8, 3, 5),
(3, 100, 9, 16, NULL);
```

#### **Categories**

• Used with the Flow - Family of functions functions.

```
/*
CREATE TABLE categories (
    category_id INTEGER,
    category text,
    capacity BIGINT
);

INSERT INTO categories VALUES
(1, 'Category 1', 130),
(2, 'Category 2', 100),
(3, 'Category 3', 80),
(4, 'Category 4', 50);
*/
```

#### Vertex table

• Used in some deprecated signatures or deprecated functions.

```
-- TODO check if this table is still used

CREATE TABLE vertex_table (
    id SERIAL,
    x FLOAT,
    y FLOAT
);

INSERT INTO vertex_table VALUES
(1,2,0), (2,2,1), (3,3,1), (4,4,1), (5,0,2), (6,1,2), (7,2,2),
(8,3,2), (9,4,2), (10,2,3), (11,3,3), (12,4,3), (13,2,4);
```

# **1.4.1 Images**

- Red arrows correspond when cost > 0 in the edge table.
- Blue arrows correspond when reverse\_cost > 0 in the edge table.
- Points are outside the graph.
- Click on the graph to enlarge.

Note: On all graphs,

#### Network for queries marked as directed and cost and reverse\_cost columns are used:

When working with city networks, this is recommended for point of view of vehicles.



Fig. 1.1: Graph 1: Directed, with cost and reverse cost

1.4. Sample Data

#### Network for queries marked as undirected and cost and reverse\_cost columns are used:

When working with city networks, this is recommended for point of view of pedestrians.



Fig. 1.2: Graph 2: Undirected, with cost and reverse cost

Network for queries marked as directed and only cost column is used:



Fig. 1.3: Graph 3: Directed, with cost

Network for queries marked as undirected and only cost column is used:



Fig. 1.4: Graph 4: Undirected, with cost

14 Chapter 1. General

#### pickup & delivery Data

#### Vehicles table

```
CREATE TABLE vehicles (
   id BIGSERIAL PRIMARY KEY,
   start_node_id BIGINT,
   start_x FLOAT,
   start_y FLOAT,
   start_open FLOAT,
   start_close FLOAT,
   number integer,
   capacity FLOAT
);

INSERT INTO vehicles
(start_node_id, start_x, start_y, start_open, start_close, number, capacity) VALUES
( 6,  3,  2,  0,  50,  2,  50);
```

#### Orders table

```
CREATE TABLE orders (
  id BIGSERIAL PRIMARY KEY,
   demand FLOAT,
   -- the pickups
   p_node_id BIGINT,
   p_x FLOAT,
   p_y FLOAT,
   p_open FLOAT,
   p_close FLOAT,
   p_service FLOAT,
   -- the deliveries
   d_node_id BIGINT,
   d_x FLOAT,
   d_y FLOAT,
   d_open FLOAT,
   d_close FLOAT,
   d_service FLOAT
);
INSERT INTO orders
(demand,
   p_node_id, p_x, p_y, p_open, p_close, p_service,
d_node_id, d_x, d_y, d_open, d_close, d_service) VALUES
(10,
                                                       3,
                                         10,
            3,
                 3, 1,
                               2,
                1,
                     2,
                              6,
                                         15,
                                                       3),
            8,
(20,
            9, 4, 2,
                              4,
                                         15,
                                                        2,
           4,
                4, 1,
                              6,
                                         20,
                                                       3),
(30,
           5, 2, 2,
                              2,
                                         10,
                                                       3,
                3, 3,
           11,
                              3,
                                         20,
                                                        3);
```

1.4. Sample Data 15

16 Chapter 1. General

# **Pgrouting Concepts**

# 2.1 pgRouting Concepts

#### **Contents**

- pgRouting Concepts
  - Getting Started
    - \* Create a routing Database
    - \* Load Data
    - \* Build a Routing Topology
    - \* Check the Routing Topology
    - \* Compute a Path
  - Inner Queries
    - \* Description of the edges\_sql query for dijkstra like functions
    - \* Description of the edges\_sql query (id is not necessary)
    - \* Description of the parameters of the signatures
    - \* Description of the edges\_sql query for astar like functions
    - \* Description of the edges\_sql query for Max-flow like functions
    - \* Description of the Points SQL query
  - Return columns & values
    - \* Description of the return values for a path
    - \* Description of the return values for a Cost function
    - \* Description of the Return Values
  - Advanced Topics
    - \* Routing Topology
    - \* Graph Analytics
    - \* Analyze a Graph
    - \* Analyze One Way Streets
      - · Example
  - Performance Tips
    - \* For the Routing functions
    - \* For the topology functions:
  - How to contribute

# 2.1.1 Getting Started

This is a simple guide to walk you through the steps of getting started with pgRouting. In this guide we will cover:

- Create a routing Database
- Load Data
- Build a Routing Topology
- Check the Routing Topology
- · Compute a Path

#### **Create a routing Database**

The first thing we need to do is create a database and load pgrouting in the database. Typically you will create a database for each project. Once you have a database to work in, your can load your data and build your application in that database. This makes it easy to move your project later if you want to to say a production server.

For Postgresql 9.2 and later versions

```
createdb mydatabase
psql mydatabase -c "create extension postgis"
psql mydatabase -c "create extension pgrouting"
```

#### **Load Data**

How you load your data will depend in what form it comes it. There are various OpenSource tools that can help you, like:

#### osm2pgrouting

• this is a tool for loading OSM data into postgresql with pgRouting requirements

#### shp2pgsql

• this is the postgresql shapefile loader

#### ogr2ogr

• this is a vector data conversion utility

#### osm2pgsql

• this is a tool for loading OSM data into postgresql

So these tools and probably others will allow you to read vector data so that you may then load that data into your database as a table of some kind. At this point you need to know a little about your data structure and content. One easy way to browse your new data table is with pgAdmin3 or phpPgAdmin.

#### **Build a Routing Topology**

Next we need to build a topology for our street data. What this means is that for any given edge in your street data the ends of that edge will be connected to a unique node and to other edges that are also connected to that same unique node. Once all the edges are connected to nodes we have a graph that can be used for routing with pgrouting. We provide a tool that will help with this:

**Note:** this step is not needed if data is loaded with osm2pgrouting

```
select pgr_createTopology('myroads', 0.000001);
```

• pgr\_createTopology

#### **Check the Routing Topology**

There are lots of possible sources for errors in a graph. The data that you started with may not have been designed with routing in mind. A graph has some very specific requirements. One is that it is *NODED*, this means that except for some very specific use cases, each road segment starts and ends at a node and that in general is does not cross another road segment that it should be connected to.

There can be other errors like the direction of a one-way street being entered in the wrong direction. We do not have tools to search for all possible errors but we have some basic tools that might help.

- pgr\_analyzeGraph
- pgr\_analyzeOneway
- pgr\_nodeNetwork

#### Compute a Path

Once you have all the preparation work done above, computing a route is fairly easy. We have a lot of different algorithms that can work with your prepared road network. The general form of a route query is:

```
select pgr_dijkstra(`SELECT * FROM myroads', 1, 2)
```

As you can see this is fairly straight forward and you can look and the specific algorithms for the details of the signatures and how to use them. These results have information like edge id and/or the node id along with the cost or geometry for the step in the path from *start* to *end*. Using the ids you can join these result back to your edge table to get more information about each step in the path.

• pgr\_dijkstra

#### 2.1.2 Inner Queries

- Description of the edges\_sql query for dijkstra like functions
- *Description of the edges\_sql query (id is not necessary)*
- Description of the parameters of the signatures
- Description of the edges\_sql query for astar like functions
- Description of the edges\_sql query for Max-flow like functions
- Description of the Points SQL query

There are several kinds of valid inner queries and also the columns returned are depending of the function. Which kind of inner query will depend on the function(s) requirements. To simplify variety of types, ANY-INTEGER and ANY-NUMERICAL is used.

Where:

```
ANY-INTEGER SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT
```

### Description of the edges\_sql query for dijkstra like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Type          | Default | Description                  |
|--------------|---------------|---------|------------------------------|
| id           | ANY-INTEGER   |         | Identifier of the edge.      |
| source       | ANY-INTEGER   |         | Identifier of the first end  |
|              |               |         | point vertex of the edge.    |
| target       | ANY-INTEGER   |         | Identifier of the second end |
|              |               |         | point vertex of the edge.    |
| cost         | ANY-NUMERICAL |         | Weight of the edge           |
|              |               |         | (source, target)             |
|              |               |         | • When negative:             |
|              |               |         | edge (source, target)        |
|              |               |         | does not exist, there-       |
|              |               |         | fore it's not part of        |
|              |               |         | the graph.                   |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target,  |
|              |               |         | source),                     |
|              |               |         | • When negative:             |
|              |               |         | edge (target, source)        |
|              |               |         | does not exist, there-       |
|              |               |         | fore it's not part of        |
|              |               |         | the graph.                   |
|              |               |         |                              |

#### Where:

**ANY-INTEGER** SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

# Description of the edges\_sql query (id is not necessary)

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Туре          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |

# Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

# **Description of the parameters of the signatures**

| Parameter      | Туре               | Default | Description                                                                                                                                                                                                                                                                                                                                                                            |
|----------------|--------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| edges_sql      | TEXT               |         | SQL query as described above.                                                                                                                                                                                                                                                                                                                                                          |
| via_vertices   | ARRAY[ANY-INTEGER] |         | Array of ordered vertices identifiers that are going to be visited.                                                                                                                                                                                                                                                                                                                    |
| directed       | BOOLEAN            | true    | <ul> <li>When true Graph is considered Directed</li> <li>When false the graph is considered as Undirected.</li> </ul>                                                                                                                                                                                                                                                                  |
| strict         | BOOLEAN            | false   | <ul> <li>When false ignores missing paths returning all paths found</li> <li>When true if a path is missing stops and returns EMPTY SET</li> </ul>                                                                                                                                                                                                                                     |
| U_turn_on_edge | BOOLEAN            | true    | <ul> <li>When true departing from a visited vertex will not try to avoid using the edge used to reach it. In other words, U turn using the edge with same id is allowed.</li> <li>When false when a departing from a visited vertex tries to avoid using the edge used to reach it. In other words, U turn using the edge with same id is used when no other path is found.</li> </ul> |

# Description of the edges\_sql query for astar like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Type          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id           | ANY-INTEGER   |         | Identifier of the edge.                                                                                                            |
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |
| x1           | ANY-NUMERICAL |         | X coordinate of source vertex.                                                                                                     |
| y1           | ANY-NUMERICAL |         | Y coordinate of <i>source</i> vertex.                                                                                              |
| x2           | ANY-NUMERICAL |         | X coordinate of <i>target</i> vertex.                                                                                              |
| y2           | ANY-NUMERICAL |         | Y coordinate of <i>target</i> vertex.                                                                                              |

### Where:

**ANY-INTEGER** SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

# Description of the edges\_sql query for Max-flow like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column           | Type        | Default | Description                  |
|------------------|-------------|---------|------------------------------|
| id               | ANY-INTEGER |         | Identifier of the edge.      |
| source           | ANY-INTEGER |         | Identifier of the first end  |
|                  |             |         | point vertex of the edge.    |
| target           | ANY-INTEGER |         | Identifier of the second end |
|                  |             |         | point vertex of the edge.    |
| capacity         | ANY-INTEGER |         | Weight of the edge           |
|                  |             |         | (source, target)             |
|                  |             |         | • When negative:             |
|                  |             |         | edge (source, target)        |
|                  |             |         | does not exist, there-       |
|                  |             |         | fore it's not part of        |
|                  |             |         | the graph.                   |
| reverse_capacity | ANY-INTEGER | -1      | Weight of the edge (target,  |
|                  |             |         | source),                     |
|                  |             |         | • When negative:             |
|                  |             |         | edge (target, source)        |
|                  |             |         | does not exist, there-       |
|                  |             |         | fore it's not part of        |
|                  |             |         | the graph.                   |
|                  |             |         |                              |

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

# **Description of the Points SQL query**

points\_sql an SQL query, which should return a set of rows with the following columns:

| Column   | Туре          | Description                                                                                                                                                                                                                                  |
|----------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pid      | ANY-INTEGER   | <ul> <li>(optional) Identifier of the point.</li> <li>• If column present, it can not be NULL.</li> <li>• If column not present, a sequential identifier will be given automatically.</li> </ul>                                             |
| edge_id  | ANY-INTEGER   | Identifier of the "closest" edge to the point.                                                                                                                                                                                               |
| fraction | ANY-NUMERICAL | Value in <0,1> that indicates the relative postition from the first end point of the edge.                                                                                                                                                   |
| side     | CHAR          | <ul> <li>(optional) Value in ['b', 'r', 'l', NULL] indicating if the point is:</li> <li>• In the right, left of the edge or</li> <li>• If it doesn't matter with 'b' or NULL.</li> <li>• If column not present 'b' is considered.</li> </ul> |

Where:

ANY-INTEGER smallint, int, bigint

ANY-NUMERICAL smallint, int, bigint, real, float

### 2.1.3 Return columns & values

- Description of the return values for a path
- Description of the return values for a Cost function
- Description of the Return Values

There are several kinds of columns returned are depending of the function.

# Description of the return values for a path

Returns set of (seq, path\_seq [, start\_vid] [, end\_vid], node, edge, cost, agg\_cost)

| Col-  | Type  | Description                                                                                  |
|-------|-------|----------------------------------------------------------------------------------------------|
| umn   |       |                                                                                              |
| seq   | INT   | Sequential value starting from 1.                                                            |
| path  | INT   | Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for |
| id    |       | the same start_vid to end_vid combination.                                                   |
| path  | INT   | Relative position in the path. Has value 1 for the beginning of a path.                      |
| seq   |       |                                                                                              |
| start | BIGIN | TIdentifier of the starting vertex. Used when multiple starting vetrices are in the query.   |
| vid   |       |                                                                                              |
| end   | BIGIN | TIdentifier of the ending vertex. Used when multiple ending vertices are in the query.       |
| vid   |       |                                                                                              |
| node  | BIGIN | TIdentifier of the node in the path from start_vid to end_vid.                               |
| edge  | BIGIN | TIdentifier of the edge used to go from node to the next node in the path sequence1 for      |
|       |       | the last node of the path.                                                                   |
| cost  | FLOAT | Cost to traverse from node using edge to the next node in the path sequence.                 |
| agg   | FLOAT | Aggregate cost from start_v to node.                                                         |
| cost  |       |                                                                                              |

## Description of the return values for a Cost function

Returns set of (start\_vid, end\_vid, agg\_cost)

| Column    | Туре   | Description                                                                               |
|-----------|--------|-------------------------------------------------------------------------------------------|
| start_vid | BIGINT | Identifier of the starting vertex. Used when multiple starting vetrices are in the query. |
| end_vid   | BIGINT | Identifier of the ending vertex. Used when multiple ending vertices are in the query.     |
| agg_cost  | FLOAT  | Aggregate cost from start_vid to end_vid.                                                 |

### **Description of the Return Values**

| Column            | Туре   | Description                                                      |  |
|-------------------|--------|------------------------------------------------------------------|--|
| seq               | INT    | Sequential value starting from 1.                                |  |
| edge_id           | BIGINT | Identifier of the edge in the original query(edges_sql).         |  |
| source            | BIGINT | Identifier of the first end point vertex of the edge.            |  |
| target            | BIGINT | Identifier of the second end point vertex of the edge.           |  |
| flow              | BIGINT | Flow through the edge in the direction (source, target).         |  |
| residual_capacity | BIGINT | Residual capacity of the edge in the direction (source, target). |  |

# 2.1.4 Advanced Topics

- Routing Topology
- Graph Analytics
- Analyze a Graph
- Analyze One Way Streets
  - Example

#### **Routing Topology**

#### Overview

Typically when GIS files are loaded into the data database for use with pgRouting they do not have topology information associated with them. To create a useful topology the data needs to be "noded". This means that where two or more roads form an intersection there it needs to be a node at the intersection and all the road segments need to be broken at the intersection, assuming that you can navigate from any of these segments to any other segment via that intersection.

You can use the *graph analysis functions* to help you see where you might have topology problems in your data. If you need to node your data, we also have a function  $pgr\_nodeNetwork()$  that might work for you. This function splits ALL crossing segments and nodes them. There are some cases where this might NOT be the right thing to do.

For example, when you have an overpass and underpass intersection, you do not want these noded, but pgr\_nodeNetwork does not know that is the case and will node them which is not good because then the router will be able to turn off the overpass onto the underpass like it was a flat 2D intersection. To deal with this problem some data sets use z-levels at these types of intersections and other data might not node these intersection which would be ok.

For those cases where topology needs to be added the following functions may be useful. One way to prep the data for pgRouting is to add the following columns to your table and then populate them as appropriate. This example makes a lot of assumption like that you original data tables already has certain columns in it like one\_way, fcc, and possibly others and that they contain specific data values. This is only to give you an idea of what you can do with your data.

```
ALTER TABLE edge_table

ADD COLUMN source integer,

ADD COLUMN target integer,

ADD COLUMN cost_len double precision,

ADD COLUMN cost_time double precision,

ADD COLUMN rcost_len double precision,

ADD COLUMN rcost_time double precision,

ADD COLUMN x1 double precision,

ADD COLUMN x1 double precision,

ADD COLUMN y2 double precision,

ADD COLUMN x2 double precision,

ADD COLUMN y2 double precision,

ADD COLUMN to_cost double precision,

ADD COLUMN to_cost double precision,

ADD COLUMN rule text,

ADD COLUMN isolated integer;

SELECT pgr_createTopology('edge_table', 0.000001, 'the_geom', 'id');
```

The function  $pgr\_createTopology()$  will create the <code>vertices\_tmp</code> table and populate the <code>source</code> and <code>target</code> columns. The following example populated the remaining columns. In this example, the <code>fcc</code> column contains feature class code and the <code>CASE</code> statements converts it to an average speed.

```
rcost_len = st_length_spheroid(the_geom, 'SPHEROID["WGS84",6378137,298.25728]'),
 len_km = st_length_spheroid(the_geom, 'SPHEROID["WGS84",6378137,298.25728]')/1000.$,
 len_miles = st_length_spheroid(the_geom, 'SPHEROID["WGS84",6378137,298.25728]')
              / 1000.0 * 0.6213712,
 speed_mph = CASE WHEN fcc='A10' THEN 65
                   WHEN fcc='A15' THEN 65
                   WHEN fcc='A20' THEN 55
                   WHEN fcc='A25' THEN 55
                   WHEN fcc='A30' THEN 45
                   WHEN fcc='A35' THEN 45
                   WHEN fcc='A40' THEN 35
                   WHEN fcc='A45' THEN 35
                   WHEN fcc='A50' THEN 25
                   WHEN fcc='A60' THEN 25
                   WHEN fcc='A61' THEN 25
                   WHEN fcc='A62' THEN 25
                   WHEN fcc='A64' THEN 25
                   WHEN fcc='A70' THEN 15
                   WHEN fcc='A69' THEN 10
                   ELSE null END,
 speed\_kmh = CASE WHEN fcc='A10' THEN 104
                   WHEN fcc='A15' THEN 104
                   WHEN fcc='A20' THEN 88
                   WHEN fcc='A25' THEN 88
                   WHEN fcc='A30' THEN 72
                   WHEN fcc='A35' THEN 72
                   WHEN fcc='A40' THEN 56
                  WHEN fcc='A45' THEN 56
                  WHEN fcc='A50' THEN 40
                   WHEN fcc='A60' THEN 50
                   WHEN fcc='A61' THEN 40
                   WHEN fcc='A62' THEN 40
                   WHEN fcc='A64' THEN 40
                   WHEN fcc='A70' THEN 25
                   WHEN fcc='A69' THEN 15
                   ELSE null END;
-- UPDATE the cost information based on oneway streets
UPDATE edge_table SET
   cost_time = CASE
       WHEN one_way='TF' THEN 10000.0
       ELSE cost_len/1000.0/speed_kmh::numeric*3600.0
   rcost_time = CASE
       WHEN one way='FT' THEN 10000.0
       ELSE cost_len/1000.0/speed_kmh::numeric*3600.0
-- clean up the database because we have updated a lot of records
VACUUM ANALYZE VERBOSE edge_table;
```

Now your database should be ready to use any (most?) of the pgRouting algorithms.

#### **Graph Analytics**

#### Overview

It is common to find problems with graphs that have not been constructed fully noded or in graphs with z-levels at intersection that have been entered incorrectly. An other problem is one way streets that have been entered in the

wrong direction. We can not detect errors with respect to "ground" truth, but we can look for inconsistencies and some anomalies in a graph and report them for additional inspections.

We do not current have any visualization tools for these problems, but I have used mapserver to render the graph and highlight potential problem areas. Someone familiar with graphviz might contribute tools for generating images with that.

#### Analyze a Graph

With *pgr\_analyzeGraph* the graph can be checked for errors. For example for table "mytab" that has "mytab\_vertices\_pgr" as the vertices table:

```
SELECT pgr_analyzeGraph('mytab', 0.000002);
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE:
                    ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                          Isolated segments: 158
NOTICE:
                                  Dead ends: 20028
NOTICE: Potential gaps found near dead ends: 527
NOTICE:
                  Intersections detected: 2560
NOTICE:
                            Ring geometries: 0
pgr_analyzeGraph
  OK
(1 row)
```

In the vertices table "mytab\_vertices\_pgr":

- Deadends are identified by cnt=1
- Potencial gap problems are identified with chk=1.

```
SELECT count(*) as deadends FROM mytab_vertices_pgr WHERE cnt = 1;
deadends
-----
20028
(1 row)

SELECT count(*) as gaps FROM mytab_vertices_pgr WHERE chk = 1;
gaps
----
527
(1 row)
```

For isolated road segments, for example, a segment where both ends are deadends. you can find these with the following query:

```
SELECT *
    FROM mytab a, mytab_vertices_pgr b, mytab_vertices_pgr c
    WHERE a.source=b.id AND b.cnt=1 AND a.target=c.id AND c.cnt=1;
```

If you want to visualize these on a graphic image, then you can use something like mapserver to render the edges and the vertices and style based on ont or if they are isolated, etc. You can also do this with a tool like graphviz, or geoserver or other similar tools.

#### **Analyze One Way Streets**

pgr\_analyzeOneway analyzes one way streets in a graph and identifies any flipped segments. Basically if you count the edges coming into a node and the edges exiting a node the number has to be greater than one.

This query will add two columns to the vertices\_tmp table ein int and eout int and populate it with the appropriate counts. After running this on a graph you can identify nodes with potential problems with the following query.

The rules are defined as an array of text strings that if match the col value would be counted as true for the source or target in or out condition.

#### **Example**

Lets assume we have a table "st" of edges and a column "one\_way" that might have values like:

- 'FT' oneway from the source to the target node.
- 'TF' oneway from the target to the source node.
- 'B' two way street.
- " empty field, assume twoway.
- <NULL> NULL field, use two\_way\_if\_null flag.

Then we could form the following query to analyze the oneway streets for errors.

```
SELECT pgr_analyzeOneway('mytab',

ARRAY['', 'B', 'TF'],

ARRAY['', 'B', 'FT'],

ARRAY['', 'B', 'TF'],

ARRAY['', 'B', 'TF'],

);

-- now we can see the problem nodes

SELECT * FROM mytab_vertices_pgr WHERE ein=0 OR eout=0;

-- and the problem edges connected to those nodes

SELECT gid FROM mytab a, mytab_vertices_pgr b WHERE a.source=b.id AND ein=0 OR eout=0

UNION

SELECT gid FROM mytab a, mytab_vertices_pgr b WHERE a.target=b.id AND ein=0 OR eout=0;
```

Typically these problems are generated by a break in the network, the one way direction set wrong, maybe an error related to z-levels or a network that is not properly noded.

The above tools do not detect all network issues, but they will identify some common problems. There are other problems that are hard to detect because they are more global in nature like multiple disconnected networks. Think of an island with a road network that is not connected to the mainland network because the bridge or ferry routes are missing.

### 2.1.5 Performance Tips

- For the Routing functions
- For the topology functions:

#### For the Routing functions

To get faster results bound your queries to the area of interest of routing to have, for example, no more than one million rows.

Use an inner query SQL that does not include some edges in the routing function

```
SELECT id, source, target from edge_table WHERE
id < 17 and
the_geom && (select st_buffer(the_geom,1) as myarea FROM edge_table where id = 5)
```

Integrating the inner query to the pgRouting function:

#### For the topology functions:

When "you know" that you are going to remove a set of edges from the edges table, and without those edges you are going to use a routing function you can do the following:

Analize the new topology based on the actual topology:

```
pgr_analyzegraph('edge_table',rows_where:='id < 17');
```

Or create a new topology if the change is permanent:

```
pgr_createTopology('edge_table',rows_where:='id < 17');
pgr_analyzegraph('edge_table',rows_where:='id < 17');</pre>
```

#### 2.1.6 How to contribute

#### Wiki

- Edit an existing pgRouting Wiki<sup>1</sup> page.
- Or create a new Wiki page
  - Create a page on the pgRouting Wiki<sup>2</sup>
  - Give the title an appropriate name
- Example<sup>3</sup>

### Adding Functionaity to pgRouting

Consult the developer's documentation<sup>4</sup>

#### Indices and tables

- genindex
- search

#### Reference

pgr\_version - to get pgRouting's version information.

<sup>&</sup>lt;sup>1</sup>https://github.com/pgRouting/pgrouting/wiki

<sup>&</sup>lt;sup>2</sup>https://github.com/pgRouting/pgrouting/wiki

<sup>&</sup>lt;sup>3</sup>https://github.com/pgRouting/pgrouting/wiki/How-to:-Handle-parallel-edges-(KSP)

<sup>&</sup>lt;sup>4</sup>http://docs.pgrouting.org/doxy/2.4/index.html

# 2.2 pgr\_version

### 2.2.1 Name

pgr\_version — Query for pgRouting version information.

# 2.2.2 Synopsis

Returns a table with pgRouting version information.

```
table() pgr_version();
```

# 2.2.3 Description

Returns a table with:

| Column  | Туре    | Description                   |
|---------|---------|-------------------------------|
| version | varchar | pgRouting version             |
| tag     | varchar | Git tag of pgRouting build    |
| hash    | varchar | Git hash of pgRouting build   |
| branch  | varchar | Git branch of pgRouting build |
| boost   | varchar | Boost version                 |

#### History

• New in version 2.0.0

# 2.2.4 Examples

• Query for full version string

```
SELECT version FROM pgr_version();

version
-----
2.5.0
(1 row)
```

• Query for version and boost attribute

# **Data Types**

- pgr\_costResult[] A set of records to describe a path result with cost attribute.
- pgr\_costResult3[] A set of records to describe a path result with cost attribute.
- pgr\_geomResult A set of records to describe a path result with geometry attribute.

# 3.1 pgRouting Data Types

The following are commonly used data types for some of the pgRouting functions.

- pgr\_costResult[] A set of records to describe a path result with cost attribute.
- pgr\_costResult3[] A set of records to describe a path result with cost attribute.
- pgr\_geomResult A set of records to describe a path result with geometry attribute.

# 3.1.1 pgr\_costResult[]

#### Name

pgr\_costResult[] — A set of records to describe a path result with cost attribute.

#### **Description**

```
CREATE TYPE pgr_costResult AS
(
    seq integer,
    id1 integer,
    id2 integer,
    cost float8
);
```

seq sequential ID indicating the path order

id1 generic name, to be specified by the function, typically the node id

id2 generic name, to be specified by the function, typically the edge id

cost cost attribute

# 3.1.2 pgr\_costResult3[] - Multiple Path Results with Cost

#### Name

pgr\_costResult3[] — A set of records to describe a path result with cost attribute.

### **Description**

```
CREATE TYPE pgr_costResult3 AS
(
    seq integer,
    id1 integer,
    id2 integer,
    id3 integer,
    cost float8
);
```

seq sequential ID indicating the path order

id1 generic name, to be specified by the function, typically the path id

id2 generic name, to be specified by the function, typically the node id

id3 generic name, to be specified by the function, typically the edge id

cost cost attribute

#### History

- New in version 2.0.0
- Replaces path\_result

#### See Also

• Introduction

# 3.1.3 pgr\_geomResult[]

### Name

pgr\_geomResult[] — A set of records to describe a path result with geometry attribute.

#### **Description**

```
CREATE TYPE pgr_geomResult AS
(
    seq integer,
    id1 integer,
    id2 integer,
    geom geometry
);
```

seq sequential ID indicating the path order

id1 generic name, to be specified by the function

id2 generic name, to be specified by the function

# **geom** geometry attribute

# History

- New in version 2.0.0
- Replaces geoms

# See Also

• Introduction

# **Topology Functions**

- pgr\_createTopology to create a topology based on the geometry.
- pgr\_createVerticesTable to reconstruct the vertices table based on the source and target information.
- pgr\_analyzeGraph to analyze the edges and vertices of the edge table.
- pgr\_analyzeOneway to analyze directionality of the edges.
- pgr\_nodeNetwork -to create nodes to a not noded edge table.

# 4.1 Topology - Family of Functions

The pgRouting's topology of a network, represented with an edge table with source and target attributes and a vertices table associated with it. Depending on the algorithm, you can create a topology or just reconstruct the vertices table, You can analyze the topology, We also provide a function to node an unoded network.

- pgr\_createTopology to create a topology based on the geometry.
- pgr\_createVerticesTable to reconstruct the vertices table based on the source and target information.
- pgr\_analyzeGraph to analyze the edges and vertices of the edge table.
- pgr\_analyzeOneway to analyze directionality of the edges.
- pgr\_nodeNetwork -to create nodes to a not noded edge table.

# 4.1.1 pgr\_createTopology

# Name

pgr\_createTopology — Builds a network topology based on the geometry information.

# **Synopsis**

The function returns:

- OK after the network topology has been built and the vertices table created.
- FAIL when the network topology was not built due to an error.

## **Description**

#### **Parameters**

The topology creation function accepts the following parameters:

edge\_table text Network table name. (may contain the schema name AS well)

tolerance float8 Snapping tolerance of disconnected edges. (in projection unit)

the\_geom text Geometry column name of the network table. Default value is the\_geom.

id text Primary key column name of the network table. Default value is id.

source text Source column name of the network table. Default value is source.

target text Target column name of the network table. Default value is target.

rows\_where text Condition to SELECT a subset or rows. Default value is true to indicate all rows that where source or target have a null value, otherwise the condition is used.

clean boolean Clean any previous topology. Default value is false.

# Warning: The edge\_table will be affected

- The source column values will change.
- The target column values will change.
- An index will be created, if it doesn't exists, to speed up the process to the following columns:
  - id
  - the\_geom
  - source
  - target

## The function returns:

- OK after the network topology has been built.
  - Creates a vertices table: <edge\_table>\_vertices\_pgr.
  - Fills id and the geom columns of the vertices table.
  - Fills the source and target columns of the edge table referencing the id of the vertices table.
- FAIL when the network topology was not built due to an error:
  - A required column of the Network table is not found or is not of the appropriate type.
  - The condition is not well formed.
  - The names of source, target or id are the same.
  - The SRID of the geometry could not be determined.

#### The Vertices Table

The vertices table is a requirement of the pgr\_analyzeGraph and the pgr\_analyzeOneway functions.

The structure of the vertices table is:

- id bigint Identifier of the vertex.
- cnt integer Number of vertices in the edge\_table that reference this vertex. See pgr\_analyze-Graph.
- **chk** integer Indicator that the vertex might have a problem. See *pgr\_analyzeGraph*.
- **ein** integer Number of vertices in the edge\_table that reference this vertex AS incoming. See pgr\_analyzeOneway.

**eout** integer Number of vertices in the edge\_table that reference this vertex AS outgoing. See *pgr\_analyzeOneway*.

the\_geom geometry Point geometry of the vertex.

## **History**

• Renamed in version 2.0.0

### Usage when the edge table's columns MATCH the default values:

#### The simplest way to use pgr\_createTopology is:

## When the arguments are given in the order described in the parameters:

We get the same result AS the simplest way to use the function.

# Warning:

An error would occur when the arguments are not given in the appropriate order:

In this example, the column id of the table ege\_table is passed to the function as the geometry column, and the geometry column the\_geom is passed to the function as the id column.

## When using the named notation

Parameters defined with a default value can be omitted, as long as the value matches the default And The order of the parameters would not matter.

```
SELECT pgr_createTopology('edge_table', 0.001,
    source:='source', id:='id', target:='target', the_geom:='the_geom');
pgr_createtopology
-----OK
(1 row)
```

```
SELECT pgr_createTopology('edge_table', 0.001, source:='source');
pgr_createtopology
-----
OK
(1 row)
```

#### Selecting rows using rows where parameter

Selecting rows based on the id.

```
SELECT pgr_createTopology('edge_table', 0.001, rows_where:='id < 10');
pgr_createtopology
-----OK
(1 row)</pre>
```

Selecting the rows where the geometry is near the geometry of row with id = 5.

```
SELECT pgr_createTopology('edge_table', 0.001,
    rows_where:='the_geom && (SELECT st_buffer(the_geom, 0.05) FROM edge_table WHERE
pgr_createtopology
OK
(1 row)
```

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

```
CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5, 2.5) AS other_geom);

SELECT 1

SELECT pgr_createTopology('edge_table', 0.001,
    rows_where:='the_geom && (SELECT st_buffer(other_geom, 1) FROM otherTable WHERE gid=100)');

pgr_createtopology
------
OK
(1 row)
```

# Usage when the edge table's columns DO NOT MATCH the default values:

For the following table

```
CREATE TABLE mytable AS (SELECT id AS gid, the_geom AS mygeom, source AS src , target AS tgt FROM SELECT 18
```

#### Using positional notation:

The arguments need to be given in the order described in the parameters.

Note that this example uses clean flag. So it recreates the whole vertices table.

```
SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt', clean := pgr_createtopology
-----OK
(1 row)
```

## Warning:

An error would occur when the arguments are not given in the appropiriate order:

In this example, the column gid of the table mytable is passed to the function AS the geometry column, and the geometry column mygeom is passed to the function AS the id column.

#### When using the named notation

In this scenario omitting a parameter would create an error because the default values for the column names do not match the column names of the table. The order of the parameters do not matter:

SELECT pgr\_createTopology('mytable', 0.001, the\_geom:='mygeom', id:='gid', source:=|src', target

## Selecting rows using rows\_where parameter

#### Based on id:

```
SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt', rows_whete:='gid < 10
pgr_createtopology
OK
(1 row)
SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='r
pgr_createtopology
OK
(1 row)
SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt',
   rows_where:='mygeom && (SELECT st_buffer(mygeom, 1) FROM mytable WHERE gid=5)');
pgr_createtopology
OK
(1 row)
SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='n
   rows_where:='mygeom && (SELECT st_buffer(mygeom, 1) FROM mytable WHERE gid=5)');
pgr_createtopology
(1 row)
```

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

```
SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt',
    rows_where:='mygeom && (SELECT st_buffer(other_geom, 1) FROM otherTable WHERE gid=100)');

pgr_createtopology
------
OK
(1 row)

SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='srows_where:='mygeom && (SELECT st_buffer(other_geom, 1) FROM otherTable WHERE gid=100)');

pgr_createtopology
```

```
OK
(1 row)
```

# **Examples with full output**

This example start a clean topology, with 5 edges, and then its incremented to the rest of the edges.

```
SELECT pgr_createTopology('edge_table', 0.001, rows_where:='id < 6', clean := true);</pre>
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', rows_where
NOTICE: Performing checks, please wait .....
NOTICE: Creating Topology, Please wait...
NOTICE: ----> TOPOLOGY CREATED FOR 5 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
pgr_createtopology
OK
(1 row)
SELECT pgr_createTopology('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target|, rows_where
NOTICE: Performing checks, please wait .....
NOTICE: Creating Topology, Please wait...
        ----> TOPOLOGY CREATED FOR 13 edges
NOTICE:
NOTICE:
        Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
       _____
NOTICE:
pgr_createtopology
OK
(1 row)
```

The example uses the Sample Data network.

# See Also

- Routing Topology for an overview of a topology for routing algorithms.
- pgr\_createVerticesTable to reconstruct the vertices table based on the source and target information.
- pgr\_analyzeGraph to analyze the edges and vertices of the edge table.

#### Indices and tables

- genindex
- · search

# 4.1.2 pgr\_createVerticesTable

#### Name

pgr\_createVerticesTable — Reconstructs the vertices table based on the source and target information.

## **Synopsis**

The function returns:

- OK after the vertices table has been reconstructed.
- FAIL when the vertices table was not reconstructed due to an error.

```
pgr_createVerticesTable(edge_table, the_geom, source, target, rows_where)
RETURNS VARCHAR
```

# **Description**

#### **Parameters**

The reconstruction of the vertices table function accepts the following parameters:

```
edge_table text Network table name. (may contain the schema name as well)
```

the\_geom text Geometry column name of the network table. Default value is the\_geom.

source text Source column name of the network table. Default value is source.

target text Target column name of the network table. Default value is target.

rows\_where text Condition to SELECT a subset or rows. Default value is true to indicate all rows.

Warning: The edge\_table will be affected

- An index will be created, if it doesn't exists, to speed up the process to the following columns:
  - the\_geom
  - source
  - target

## The function returns:

- OK after the vertices table has been reconstructed.
  - Creates a vertices table: <edge\_table>\_vertices\_pgr.
  - Fills id and the\_geom columns of the vertices table based on the source and target columns of the edge table.
- FAIL when the vertices table was not reconstructed due to an error.
  - A required column of the Network table is not found or is not of the appropriate type.
  - The condition is not well formed.
  - The names of source, target are the same.
  - The SRID of the geometry could not be determined.

#### The Vertices Table

The vertices table is a requierment of the pgr\_analyzeGraph and the pgr\_analyzeOneway functions.

The structure of the vertices table is:

```
id bigint Identifier of the vertex.
```

cnt integer Number of vertices in the edge\_table that reference this vertex. See pgr\_analyze-Graph.

**chk** integer Indicator that the vertex might have a problem. See *pgr\_analyzeGraph*.

**ein** integer Number of vertices in the edge\_table that reference this vertex as incoming. See pgr\_analyzeOneway.

**eout** integer Number of vertices in the edge\_table that reference this vertex as outgoing. See *pgr\_analyzeOneway*.

the\_geom geometry Point geometry of the vertex.

#### History

• Renamed in version 2.0.0

# Usage when the edge table's columns MATCH the default values:

The simplest way to use pgr\_createVerticesTable is:

```
SELECT pgr_createVerticesTable('edge_table');
```

#### When the arguments are given in the order described in the parameters:

```
SELECT pgr_createVerticesTable('edge_table','the_geom','source','target');
```

We get the same result as the simplest way to use the function.

#### Warning:

An error would occur when the arguments are not given in the appropriate order: In this example, the column source column source of the table mytable is passed to the function as the geometry column, and the geometry column the geometry column is passed to the function as the source column.

SELECT

pgr\_createVerticesTable('edge\_table','source','the\_geom','target');

#### When using the named notation

The order of the parameters do not matter:

```
SELECT pgr_createVerticesTable('edge_table', the_geom:='the_geom', source:='source', target:='targe'

SELECT pgr_createVerticesTable('edge_table', source:='source', target:='target', the_geom:='the_geom'

SELECT pgr_createVerticesTable('edge_table', source:='source', target:='target', the_geom:='the_geom'
```

Parameters defined with a default value can be omitted, as long as the value matches the default:

```
SELECT pgr_createVerticesTable('edge_table', source:='source');
```

#### Selecting rows using rows\_where parameter

Selecting rows based on the id.

```
SELECT pgr_createVerticesTable('edge_table',rows_where:='id < 10');</pre>
```

Selecting the rows where the geometry is near the geometry of row with id = 5.

```
SELECT pgr_createVerticesTable('edge_table',rows_where:='the_geom && (select st_buffer(the_geom,
```

Selecting the rows where the geometry is near the geometry of the row with gid = 100 of the table other table.

```
DROP TABLE IF EXISTS otherTable;

CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5,2.5) AS other_geom);

SELECT pgr_createVerticesTable('edge_table',rows_where:='the_geom && (select st_buffer(othergeom));
```

## Usage when the edge table's columns DO NOT MATCH the default values:

For the following table

```
DROP TABLE IF EXISTS mytable;
CREATE TABLE mytable AS (SELECT id AS gid, the geom AS mygeom, source AS src , target AS tgt FROM e
```

#### Using positional notation:

The arguments need to be given in the order described in the parameters:

```
SELECT pgr_createVerticesTable('mytable','mygeom','src','tgt');
```

#### Warning:

An error would occur when the arguments are not given in the appropriate order: In this example, the column src of the table mytable is passed to the function as the geometry column, and the geometry column mygeom is passed to the function as the source column.

```
SELECT pgr_createVerticesTable('mytable','src','mygeom','tgt');
```

#### When using the named notation

The order of the parameters do not matter:

```
SELECT pgr_createVerticesTable('mytable', the_geom:='mygeom', source:='src', target:='tgt');
SELECT pgr_createVerticesTable('mytable', source:='src', target:='tgt', the_geom:='mygeom');
```

In this scenario omitting a parameter would create an error because the default values for the column names do not match the column names of the table.

# Selecting rows using rows\_where parameter

Selecting rows based on the gid.

```
SELECT pgr_createVerticesTable('mytable', 'mygeom', 'src', 'tgt', rows_where:='gid < 10');

SELECT pgr_createVerticesTable('mytable', source:='src', target:='tgt', the_geom:='mygeom', rows_where:
```

Selecting the rows where the geometry is near the geometry of row with gid = 5.

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

```
SELECT pgr_createVerticesTable('mytable', source:='src', target:='tgt', the_geom:='mygeom', rows_where:='the_geom && (SELECT st_buffer(othergeom, 0.5) FROM otherT
```

#### **Examples**

```
SELECT pgr_createVerticesTable('edge_table');
    NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edge_table','the_geom','source','target','true')
NOTICE: Performing checks, pelase wait .....
NOTICE: Populating public.edge_table_vertices_pgr, please wait...
                   VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE:
         ---->
NOTICE:
                                               FOR 18 EDGES
         Edges with NULL geometry, source or target: 0
NOTICE:
NOTICE:
                                    Edges processed: 18
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE:
    pgr_createVerticesTable
    OK
    (1 row)
```

The example uses the Sample Data network.

#### See Also

- Routing Topology for an overview of a topology for routing algorithms.
- pgr\_createTopology to create a topology based on the geometry.
- pgr\_analyzeGraph to analyze the edges and vertices of the edge table.
- pgr\_analyzeOneway to analyze directionality of the edges.

# 4.1.3 pgr\_analyzeGraph

# **Name**

# **Synopsis**

The function returns:

- OK after the analysis has finished.
- FAIL when the analysis was not completed due to an error.

# **Description**

# **Prerequisites**

The edge table to be analyzed must contain a source column and a target column filled with id's of the vertices of the segments and the corresponding vertices table <edge\_table>\_vertices\_pgr that stores the vertices information.

- Use *pgr\_createVerticesTable* to create the vertices table.
- Use pgr\_createTopology to create the topology and the vertices table.

#### **Parameters**

The analyze graph function accepts the following parameters:

```
edge_table text Network table name. (may contain the schema name as well)
```

tolerance float8 Snapping tolerance of disconnected edges. (in projection unit)

the\_geom text Geometry column name of the network table. Default value is the\_geom.

id text Primary key column name of the network table. Default value is id.

source text Source column name of the network table. Default value is source.

target text Target column name of the network table. Default value is target.

rows\_where text Condition to select a subset or rows. Default value is true to indicate all rows.

The function returns:

- OK after the analysis has finished.
  - Uses the vertices table: <edge\_table>\_vertices\_pgr.
  - Fills completely the cnt and chk columns of the vertices table.
  - Returns the analysis of the section of the network defined by rows\_where
- FAIL when the analysis was not completed due to an error.
  - The vertices table is not found.
  - A required column of the Network table is not found or is not of the appropriate type.
  - The condition is not well formed.
  - The names of source, target or id are the same.
  - The SRID of the geometry could not be determined.

## The Vertices Table

The vertices table can be created with pgr\_createVerticesTable or pgr\_createTopology

The structure of the vertices table is:

id bigint Identifier of the vertex.

**cnt** integer Number of vertices in the edge\_table that reference this vertex.

**chk** integer Indicator that the vertex might have a problem.

**ein** integer Number of vertices in the edge\_table that reference this vertex as incoming. See pgr\_analyzeOneway.

**eout** integer Number of vertices in the edge\_table that reference this vertex as outgoing. See pgr\_analyzeOneway.

the\_geom geometry Point geometry of the vertex.

## History

• New in version 2.0.0

## Usage when the edge table's columns MATCH the default values:

The simplest way to use pgr\_analyzeGraph is:

```
SELECT pgr_createTopology('edge_table',0.001);
SELECT pgr_analyzeGraph('edge_table',0.001);
```

When the arguments are given in the order described in the parameters:

```
SELECT pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target');
```

We get the same result as the simplest way to use the function.

#### Warning:

An error would occur when the arguments are not given in the appropriate order: In this example, the column id of the table mytable is passed to the function as the geometry column, and the geometry column the geometry to the function as the id column.

SELECT

pgr\_analyzeGraph('edge\_table',0.001,'id','the\_geom','source','target');

ERROR: Can not determine the srid of the geometry "id" in table public.edge\_table

#### When using the named notation

The order of the parameters do not matter:

```
SELECT pgr_analyzeGraph('edge_table', 0.001, the_geom:='the_geom', id:='id', source:='source', target

SELECT pgr_analyzeGraph('edge_table', 0.001, source:='source', id:='id', target:='target', the_geom:=
```

Parameters defined with a default value can be omitted, as long as the value matches the default:

```
SELECT pgr_analyzeGraph('edge_table',0.001,source:='source');
```

# Selecting rows using rows where parameter

Selecting rows based on the id. Displays the analysis a the section of the network.

```
SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='id < 10');</pre>
```

Selecting the rows where the geometry is near the geometry of row with id = 5.

```
SELECT pgr_analyzeGraph('edge_table', 0.001, rows_where:='the_geom && (SELECT st_buffer(the_geom, 0
```

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

```
DROP TABLE IF EXISTS otherTable;

CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5,2.5) AS other_geom);

SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='the_geom && (SELECT st_buffer(other_geom
```

#### Usage when the edge table's columns DO NOT MATCH the default values:

For the following table

```
DROP TABLE IF EXISTS mytable;
CREATE TABLE mytable AS (SELECT id AS gid, source AS src ,target AS tgt , the_geom AS mygeom FROM
SELECT pgr_createTopology('mytable',0.001,'mygeom','gid','src','tgt');
```

#### Using positional notation:

The arguments need to be given in the order described in the parameters:

```
SELECT pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt');
```

#### Warning:

An error would occur when the arguments are not given in the appropriate order: In this example, the column gid of the table mytable is passed to the function as the geometry column, and the geometry column mygeom is passed to the function as the id column.

```
SELECT pgr_analyzeGraph('mytable',0.001,'gid','mygeom','src','tgt');
```

ERROR: Can not determine the srid of the geometry "gid" in table public.mytable

# When using the named notation

The order of the parameters do not matter:

```
SELECT pgr_analyzeGraph('mytable', 0.001, the_geom:='mygeom', id:='gid', source:='src', target:='tgt'
SELECT pgr_analyzeGraph('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='mygeom'
```

In this scenario omitting a parameter would create an error because the default values for the column names do not match the column names of the table.

## Selecting rows using rows\_where parameter

Selecting rows based on the id.

```
SELECT pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt',rows_where:='gid < 10');</pre>
SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:='gid',target:='tgt',the_geom:='mygeom'
```

Selecting the rows WHERE the geometry is near the geometry of row with id = 5.

Selecting the rows WHERE the geometry is near the place='myhouse' of the table othertable. (note the use of quote\_literal)

```
DROP TABLE IF EXISTS otherTable;

CREATE TABLE otherTable AS (SELECT 'myhouse'::text AS place, st_point(2.5,2.5) AS other_geom);

SELECT pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt',

rows_where:='mygeom && (SELECT st_buffer(other_geom,1) FROM otherTable WHERE place='||que
```

```
SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:='gid',target:='tgt',the_geom:='mygeom' rows_where:='mygeom && (SELECT st_buffer(other_geom,1) FROM otherTable WHERE place='||quo
```

### **Examples**

```
SELECT pgr_createTopology('edge_table',0.001);
SELECT pgr_analyzeGraph('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','true')
```

```
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE:
                    ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                         Isolated segments: 2
NOTICE:
                                 Dead ends: 7
NOTICE: Potential gaps {\it found} near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE:
                           Ring geometries: 0
pgr_analyzeGraph
(1 row)
SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='id < 10');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', 'id < 10')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE:
                    ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                         Isolated segments: 0
NOTICE:
                                  Dead ends: 4
NOTICE: Potential gaps found near dead ends: 0
NOTICE:
                     Intersections detected: 0
NOTICE:
                           Ring geometries: 0
pgr_analyzeGraph
OK
(1 row)
SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='id >= 10');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', 'id >= 10')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE:
                    ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                          Isolated segments: 2
NOTICE:
                                  Dead ends: 8
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE:
                           Ring geometries: 0
pgr_analyzeGraph
OK
(1 row)
-- Simulate removal of edges
SELECT pgr_createTopology('edge_table', 0.001,rows_where:='id <17');</pre>
SELECT pgr_analyzeGraph('edge_table', 0.001);
```

```
NOTICE: PROCESSING:
   NOTICE: pgr_analyzeGraph('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', 'true')
   NOTICE: Performing checks, pelase wait...
   NOTICE: Analyzing for dead ends. Please wait...
   NOTICE: Analyzing for gaps. Please wait...
   NOTICE: Analyzing for isolated edges. Please wait...
   NOTICE: Analyzing for ring geometries. Please wait...
   NOTICE: Analyzing for intersections. Please wait...
   NOTICE:
                        ANALYSIS RESULTS FOR SELECTED EDGES:
   NOTICE:
                               Isolated segments: 0
   NOTICE:
                                       Dead ends: 3
   NOTICE: Potential gaps found near dead ends: 0
   NOTICE:
            Intersections detected: 0
   NOTICE:
                                 Ring geometries: 0
    pgr_analyzeGraph
    OK
    (1 row)
SELECT pgr_createTopology('edge_table', 0.001, rows_where:='id <17');</pre>
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', 'id <17')
NOTICE: Performing checks, pelase wait .....
NOTICE: Creating Topology, Please wait...
NOTICE: ----> TOPOLOGY CREATED FOR 16 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pdr
NOTICE: ----
    pgr_analyzeGraph
    OK
    (1 row)
SELECT pgr_analyzeGraph('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','true')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE:
                     ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                           Isolated segments: 0
NOTICE:
                                   Dead ends: 3
NOTICE: Potential gaps found near dead ends: 0
NOTICE:
                     Intersections detected: 0
NOTICE:
                            Ring geometries: 0
    pgr_analyzeGraph
     OK
    (1 row)
```

The examples use the Sample Data network.

# See Also

- Routing Topology for an overview of a topology for routing algorithms.
- pgr\_analyzeOneway to analyze directionality of the edges.

- pgr\_createVerticesTable to reconstruct the vertices table based on the source and target information.
- pgr\_nodeNetwork to create nodes to a not noded edge table.

# 4.1.4 pgr\_analyzeOneway

#### Name

pgr\_analyzeOneway — Analyzes oneway Sstreets and identifies flipped segments.

# **Synopsis**

This function analyzes oneway streets in a graph and identifies any flipped segments.

# **Description**

The analyses of one way segments is pretty simple but can be a powerful tools to identifying some the potential problems created by setting the direction of a segment the wrong way. A node is a *source* if it has edges the exit from that node and no edges enter that node. Conversely, a node is a *sink* if all edges enter the node but none exit that node. For a *source* type node it is logically impossible to exist because no vehicle can exit the node if no vehicle and enter the node. Likewise, if you had a *sink* node you would have an infinite number of vehicle piling up on this node because you can enter it but not leave it.

So why do we care if the are not feasible? Well if the direction of an edge was reversed by mistake we could generate exactly these conditions. Think about a divided highway and on the north bound lane one segment got entered wrong or maybe a sequence of multiple segments got entered wrong or maybe this happened on a round-about. The result would be potentially a *source* and/or a *sink* node.

So by counting the number of edges entering and exiting each node we can identify both *source* and *sink* nodes so that you can look at those areas of your network to make repairs and/or report the problem back to your data vendor.

#### **Prerequisites**

The edge table to be analyzed must contain a source column and a target column filled with id's of the vertices of the segments and the corresponding vertices table <edge table> vertices pgr that stores the vertices information.

- Use *pgr\_createVerticesTable* to create the vertices table.
- Use *pgr\_createTopology* to create the topology and the vertices table.

#### **Parameters**

```
edge_table text Network table name. (may contain the schema name as well)
s_in_rules text[] source node in rules
s_out_rules text[] source node out rules
t_in_rules text[] target node in rules
t_out_rules text[] target node out rules
```

```
oneway text oneway column name name of the network table. Default value is oneway.
```

source text Source column name of the network table. Default value is source.

target text Target column name of the network table. Default value is target.

two\_way\_if\_null boolean flag to treat oneway NULL values as bi-directional. Default value is true.

**Note:** It is strongly recommended to use the named notation. See *pgr\_createVerticesTable* or *pgr\_createTopology* for examples.

The function returns:

- OK after the analysis has finished.
  - Uses the vertices table: <edge\_table>\_vertices\_pgr.
  - Fills completely the ein and eout columns of the vertices table.
- FAIL when the analysis was not completed due to an error.
  - The vertices table is not found.
  - A required column of the Network table is not found or is not of the appropriate type.
  - The names of source, target or oneway are the same.

The rules are defined as an array of text strings that if match the oneway value would be counted as true for the source or target in or out condition.

#### The Vertices Table

The vertices table can be created with pgr\_createVerticesTable or pgr\_createTopology

The structure of the vertices table is:

```
id bigint Identifier of the vertex.
```

cnt integer Number of vertices in the edge\_table that reference this vertex. See pgr\_analyzeG-graph.

**chk** integer Indicator that the vertex might have a problem. See *pgr\_analyzeGraph*.

ein integer Number of vertices in the edge table that reference this vertex as incoming.

**eout** integer Number of vertices in the edge\_table that reference this vertex as outgoing.

the\_geom geometry Point geometry of the vertex.

### **History**

• New in version 2.0.0

#### **Examples**

```
SELECT pgr_analyzeOneway('edge_table',

ARRAY['', 'B', 'TF'],

ARRAY['', 'B', 'FT'],

ARRAY['', 'B', 'FT'],

ARRAY['', 'B', 'TF'],

oneway:='dir');

NOTICE: PROCESSING:

NOTICE: pgr_analyzeGraph('edge_table','{"",B,TF}','{"",B,FT}','{"",B,FT}','dir','sou

NOTICE: Analyzing graph for one way street errors.
```

```
NOTICE: Analysis 25% complete ...
NOTICE: Analysis 50% complete ...
NOTICE: Analysis 75% complete ...
NOTICE: Analysis 100% complete ...
NOTICE: Found 0 potential problems in directionality

pgr_analyzeoneway
------
OK
(1 row)
```

The queries use the Sample Data network.

#### See Also

- Routing Topology for an overview of a topology for routing algorithms.
- Graph Analytics for an overview of the analysis of a graph.
- pgr\_analyzeGraph to analyze the edges and vertices of the edge table.
- pgr\_createVerticesTable to reconstruct the vertices table based on the source and target information.

# 4.1.5 pgr\_nodeNetwork

# Name

pgr\_nodeNetwork - Nodes an network edge table.

**Author** Nicolas Ribot

**Copyright** Nicolas Ribot, The source code is released under the MIT-X license.

## **Synopsis**

The function reads edges from a not "noded" network table and writes the "noded" edges into a new table.

```
pgr_nodenetwork(edge_table, tolerance, id, text the_geom, table_ending, rows_where, outall)
RETURNS TEXT
```

#### **Description**

A common problem associated with bringing GIS data into pgRouting is the fact that the data is often not "noded" correctly. This will create invalid topologies, which will result in routes that are incorrect.

What we mean by "noded" is that at every intersection in the road network all the edges will be broken into separate road segments. There are cases like an over-pass and under-pass intersection where you can not traverse from the over-pass to the under-pass, but this function does not have the ability to detect and accommodate those situations.

This function reads the edge\_table table, that has a primary key column id and geometry column named the\_geom and intersect all the segments in it against all the other segments and then creates a table edge\_table\_noded. It uses the tolerance for deciding that multiple nodes within the tolerance are considered the same node.

#### Parameters

```
edge_table text Network table name. (may contain the schema name as well)
```

tolerance float8 tolerance for coincident points (in projection unit)dd

```
id text Primary key column name of the network table. Default value is id.
the_geom text Geometry column name of the network table. Default value is the_geom.
table_ending text Suffix for the new table's. Default value is noded.
The output table will have for edge_table_noded
```

```
id bigint Unique identifier for the table
old_id bigint Identifier of the edge in original table
sub_id integer Segment number of the original edge
source integer Empty source column to be used with pgr_createTopology function
target integer Empty target column to be used with pgr_createTopology function
the geom geometry Geometry column of the noded network
```

#### **History**

• New in version 2.0.0

## **Example**

Let's create the topology for the data in Sample Data

Now we can analyze the network.

```
SELECT pgr_analyzegraph('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','true')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...

NOTICE: Analyzing for gaps. Please wait...

NOTICE: Analyzing for isolated edges. Please wait...

NOTICE: Analyzing for ring geometries. Please wait...

NOTICE: Analyzing for intersections. Please wait...
                             ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
NOTICE.
                                      Isolated segments: 2
NOTICE:
                                                 Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
                          Intersections detected: 1
NOTICE:
NOTICE:
                                        Ring geometries: 0
pgr_analyzegraph
OK
(1 row)
```

The analysis tell us that the network has a gap and an intersection. We try to fix the problem using:

```
SELECT pgr_nodeNetwork('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_nodeNetwork('edge_table',0.001,'the_geom','id','noded')
NOTICE: Performing checks, pelase wait .....
NOTICE: Processing, pelase wait .....
NOTICE: Split Edges: 3
NOTICE:
         Untouched Edges: 15
NOTICE:
         Total original Edges: 18
       Edges generated: 6
NOTICE:
NOTICE:
         Untouched Edges: 15
         Total New segments: 21
NOTICE:
NOTICE:
         New Table: public.edge_table_noded
NOTICE: ----
pgr_nodenetwork
OK
(1 row)
```

Inspecting the generated table, we can see that edges 13,14 and 18 has been segmented

```
SELECT old_id, sub_id FROM edge_table_noded ORDER BY old_id, sub_id;
old_id | sub_id
     1
1
      1
3
      1
      5
6
            1
7
            1
8
      1
9
      1
10
             1
11
      1
12
      1
13
             1
       13
       14
14
15
             1
16
             1
17
             1
18
             1
18
             2.
(21 rows)
```

We can create the topology of the new network

# Now let's analyze the new topology

```
SELECT pgr_analyzegraph('edge_table_noded', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table_noded', 0.001, 'the_geom', 'id', 'source', 'target', 'true')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing {f for} gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait... NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE:
                       ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                              Isolated segments: 0
NOTICE:
                                       Dead ends: 6
NOTICE: Potential gaps \boldsymbol{found} near dead ends: 0
NOTICE:
                        Intersections detected: 0
NOTICE:
                                Ring geometries: 0
pgr_createtopology
(1 row)
```

#### **Images**

# **Before Image**



# After Image



# **Comparing the results**

Comparing with the Analysis in the original edge\_table, we see that.

|                   | Before                                                                                                                                                           | After                                                                                                                                   |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Table name        | edge_table                                                                                                                                                       | edge_table_noded                                                                                                                        |
| Fields            | All original fields                                                                                                                                              | Has only basic fields to do a topology analysis                                                                                         |
| Dead ends         | • Edges with 1 dead end: 1,6,24 • Edges with 2 dead ends 17,18 Edge 17's right node is a dead end because there is no other edge sharing that same node. (cnt=1) | Edges with 1 dead end: 1-1,6-1,14-2, 18-1 17-1 18-2                                                                                     |
| Isolated segments | two isolated segments: 17 and 18 both they have 2 dead ends                                                                                                      | No Isolated segments  • Edge 17 now shares a node with edges 14-1 and 14-2  • Edges 18-1 and 18-2 share a node with edges 13-1 and 13-2 |
| Gaps              | There is a gap between edge 17 and 14 because edge 14 is near to the right node of edge 17                                                                       | Edge 14 was segmented Now edges:<br>14-1 14-2 17 share the same node<br>The tolerance value was taken in ac-<br>count                   |
| Intersections     | Edges 13 and 18 were intersecting                                                                                                                                | Edges were segmented, So, now in the interection's point there is a node and the following edges share it: 13-1 13-2 18-1 18-2          |

Now, we are going to include the segments 13-1, 13-2 14-1, 14-2, 18-1 and 18-2 into our edge-table, copying the data for dir,cost,and reverse cost with tho following steps:

- Add a column old\_id into edge\_table, this column is going to keep track the id of the original edge
- Insert only the segmented edges, that is, the ones whose max(sub\_id) >1

We recreate the topology:

To get the same analysis results as the topology of edge\_table\_noded, we do the following query:

```
SELECT pgr_analyzegraph('edge_table', 0.001,rows_where:='id not in (select old_id from edge_table
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table', 0.001, 'the_geom', 'id', 'source', 'target',
                             'id not in (select old_id from edge_table where old_id is not null)')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE:
                      ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                            Isolated segments: 0
NOTICE:
                                     Dead ends: 6
NOTICE: Potential gaps found near dead ends: 0
NOTICE.
                     Intersections detected: 0
NOTICE:
                              Ring geometries: 0
pgr_createtopology
ΟK
(1 row)
```

To get the same analysis results as the original edge\_table, we do the following query:

```
SELECT pgr_analyzegraph('edge_table', 0.001,rows_where:='old_id is null')

NOTICE: PROCESSING:

NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','old_id is null')

NOTICE: Performing checks, pelase wait...

NOTICE: Analyzing for dead ends. Please wait...
```

```
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
                   ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
NOTICE:
                         Isolated segments: 2
NOTICE:
                                 Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE:
         Intersections detected: 1
NOTICE:
                           Ring geometries: 0
pgr_createtopology
OK
(1 row)
```

Or we can analyze everything because, maybe edge 18 is an overpass, edge 14 is an under pass and there is also a street level juction, and the same happens with edges 17 and 13.

```
SELECT pgr_analyzegraph('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', 'true')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait... NOTICE: Analyzing for intersections. Please wait...
NOTICE:
                      ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:
                             Isolated segments: 0
NOTICE:
                                     Dead ends: 3
NOTICE: Potential gaps found near dead ends: 0
NOTICE:
            Intersections detected: 5
NOTICE:
                              Ring geometries: 0
pgr_createtopology
OK
(1 row)
```

## See Also

Routing Topology for an overview of a topology for routing algorithms.  $pgr\_analyzeOneway$  to analyze directionality of the edges.  $pgr\_createTopology$  to create a topology based on the geometry.  $pgr\_analyzeGraph$  to analyze the edges and vertices of the edge table.

# **Routing functions**

# **5.1 Routing Functions**

All Pairs - Family of Functions

- pgr\_floydWarshall Floyd-Warshall's Algorithm
- pgr\_johnson- Johnson's Algorithm

pgr\_aStar - Shortest Path A\*

pgr\_bdAstar - Bi-directional A\* Shortest Path

pgr\_bdDijkstra - Bi-directional Dijkstra Shortest Path

Dijkstra - Family of functions

- pgr\_dijkstra Dijkstra's algorithm for the shortest paths.
- pgr\_dijkstraCost Get the aggregate cost of the shortest paths.
- pgr\_dijkstraCostMatrix proposed Use pgr\_dijkstra to create a costs matrix.
- pgr\_drivingDistance Use pgr\_dijkstra to calculate catchament information.
- pgr\_KSP Use Yen algorithm with pgr\_dijkstra to get the K shortest paths.
- pgr\_dijkstraVia Proposed Get a route of a seuence of vertices.

pgr\_KSP - K-Shortest Path

pgr\_trsp - Turn Restriction Shortest Path (TRSP)

Traveling Sales Person - Family of functions

- pgr\_TSP When input is given as matrix cell information.
- pgr\_eucledianTSP When input are coordinates.

Driving Distance - Category

- pgr\_drivingDistance Driving Distance based on pgr\_dijkstra
- pgr\_withPointsDD Proposed Driving Distance based on pgr\_withPoints
- Post pocessing
  - pgr\_alphaShape Alpha shape computation
  - pgr\_pointsAsPolygon Polygon around set of points

# 5.1.1 All Pairs - Family of Functions

The following functions work an all vertices pair combinations

# pgr\_floydWarshall

## **Synopsis**

pgr\_floydWarshall - Returns the sum of the costs of the shortest path for each pair of nodes in the graph using Floyd-Warshall algorithm.



Fig. 5.1: Boost Graph Inside

# Availability: 2.0.0

• Renamed on 2.2.0, previous name pgr\_apspWarshall

The Floyd-Warshall algorithm, also known as Floyd's algorithm, is a good choice to calculate the sum of the costs of the shortest path for each pair of nodes in the graph, for *dense graphs*. We make use of the Boost's implementation which runs in  $\Theta(V^3)$  time,

#### Characteristics

# The main Characteristics are:

- It does not return a path.
- Returns the sum of the costs of the shortest path for each pair of nodes in the graph.
- Process is done only on edges with positive costs.
- Boost returns a V x V matrix, where the infinity values. Represent the distance between vertices for which there is no path.
  - We return only the non infinity values in form of a set of (start\_vid, end\_vid, agg\_cost).
- Let be the case the values returned are stored in a table, so the unique index would be the pair: (start\_-vid, end\_vid).
- For the undirected graph, the results are symmetric.
  - The  $agg\_cost$  of (u, v) is the same as for (v, u).
- When  $start\_vid = end\_vid$ , the  $agg\_cost = 0$ .
- Recommended, use a bounding box of no more than 3500 edges.

# **Signature Summary**

```
pgr_floydWarshall(edges_sql)
pgr floydWarshall(edges_sql, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

# **Signatures**

### **Minimal Signature**

```
pgr_floydWarshall(edges_sql)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

# **Example 1** On a directed graph.

# **Complete Signature**

```
pgr_floydWarshall(edges_sql, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

## Example 2 On an undirected graph.

```
SELECT * FROM pgr_floydWarshall(
   'SELECT id, source, target, cost FROM edge_table where id < 5',
   false
);
start_vid | end_vid | agg_cost
            2 |
       1 |
               5 |
       1 |
                         2
               1 |
                         1
       2 |
               5 I
                         1
       2 |
       5 |
               1 |
                         2
       5 |
               2 |
                        1
(6 rows)
```

# **Description of the Signatures**

# Description of the edges\_sql query (id is not necessary)

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Type          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |

# Where:

**ANY-INTEGER** SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

# **Description of the parameters of the signatures** Receives (edges\_sql, directed)

| Parame-   | Type    | Description                                                                            |
|-----------|---------|----------------------------------------------------------------------------------------|
| ter       |         |                                                                                        |
| edges_sql | TEXT    | SQL query as described above.                                                          |
| directed  | BOOLEAN | (optional) Default is true (is directed). When set to false the graph is considered as |
|           |         | Undirected                                                                             |

# **Description of the return values** Returns set of (start\_vid, end\_vid, agg\_cost)

| Column    | Type   | Description                           |  |
|-----------|--------|---------------------------------------|--|
| start_vid | BIGINT | Identifier of the starting vertex.    |  |
| end_vid   | BIGINT | Identifier of the ending vertex.      |  |
| agg_cost  | FLOAT  | Total cost from start_vid to end_vid. |  |

# History

• Re-design of pgr\_apspWarshall in Version 2.2.0

### See Also

- pgr\_johnson
- Boost floyd-Warshall<sup>2</sup> algorithm
- Queries uses the Sample Data network.

<sup>&</sup>lt;sup>2</sup>http://www.boost.org/libs/graph/doc/floyd\_warshall\_shortest.html

#### Indices and tables

- genindex
- · search

# pgr\_johnson

## **Synopsis**

pgr\_johnson - Returns the sum of the costs of the shortest path for each pair of nodes in the graph using Floyd-Warshall algorithm.



Fig. 5.2: Boost Graph Inside

## Availability: 2.0.0

• Renamed on 2.2.0, previous name pgr\_apspJohnson

The Johnson algorithm, is a good choice to calculate the sum of the costs of the shortest path for each pair of nodes in the graph, for *sparse graphs*. It usees the Boost's implementation which runs in  $O(VE \log V)$  time,

#### **Characteristics**

#### The main Characteristics are:

- It does not return a path.
- Returns the sum of the costs of the shortest path for each pair of nodes in the graph.
- Process is done only on edges with positive costs.
- Boost returns a  $V \times V$  matrix, where the infinity values. Represent the distance between vertices for which there is no path.
  - We return only the non infinity values in form of a set of (start\_vid, end\_vid, agg\_cost).
- Let be the case the values returned are stored in a table, so the unique index would be the pair: (start\_-vid, end\_vid).
- For the undirected graph, the results are symmetric.
  - The  $agg\_cost$  of (u, v) is the same as for (v, u).
- When  $start\_vid = end\_vid$ , the  $agg\_cost = 0$ .

#### **Signature Summary**

```
pgr_johnson(edges_sql)
pgr johnson(edges_sql, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

#### **Signatures**

# **Minimal Signature**

```
pgr_johnson(edges_sql)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

# **Example 1** On a directed graph.

# **Complete Signature**

```
pgr_johnson(edges_sql, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

## **Example 2** On an undirected graph.

```
SELECT * FROM pgr_johnson(
   'SELECT source, target, cost FROM edge_table WHERE id < 5
      ORDER BY id',
  false
);
start_vid | end_vid | agg_cost
-----
      1
                     2
                      1
                     1
      5 |
5 |
             1 |
                      2
             2 |
(6 rows)
```

# **Description of the Signatures**

# Description of the edges\_sql query (id is not necessary)

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Туре          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |

# Where:

**ANY-INTEGER** SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

# Description of the parameters of the signatures Receives (edges\_sql, directed)

| Parame-   | Туре    | Description                                                                            |
|-----------|---------|----------------------------------------------------------------------------------------|
| ter       |         |                                                                                        |
| edges_sql | TEXT    | SQL query as described above.                                                          |
| directed  | BOOLEAN | (optional) Default is true (is directed). When set to false the graph is considered as |
|           |         | Undirected                                                                             |

# **Description of the return values** Returns set of (start\_vid, end\_vid, agg\_cost)

| Column    | Type   | Description                           |
|-----------|--------|---------------------------------------|
| start_vid | BIGINT | Identifier of the starting vertex.    |
| end_vid   | BIGINT | Identifier of the ending vertex.      |
| agg_cost  | FLOAT  | Total cost from start_vid to end_vid. |

# History

• Re-design of pgr\_apspJohnson in Version 2.2.0

# See Also

- pgr\_floydWarshall
- Boost Johnson<sup>4</sup> algorithm implementation.
- Queries uses the Sample Data network.

<sup>&</sup>lt;sup>4</sup>http://www.boost.org/libs/graph/doc/johnson\_all\_pairs\_shortest.html

#### Indices and tables

- genindex
- · search

#### **Performance**

# The following tests:

- non server computer
- with AMD 64 CPU
- 4G memory
- · trusty
- posgreSQL version 9.3

#### Data

# The following data was used

```
BBOX="-122.8,45.4,-122.5,45.6" wget --progress=dot:mega -O "sampledata.osm" "http://www.overpass-api.de/api/xapi?*[bbox=][@meta]
```

#### Data processing was done with osm2pgrouting-alpha

```
createdb portland
psql -c "create extension postgis" portland
psql -c "create extension pgrouting" portland
osm2pgrouting -f sampledata.osm -d portland -s 0
```

#### Results

#### Test One

This test is not with a bounding box The density of the passed graph is extremely low. For each <SIZE> 30 tests were executed to get the average The tested query is:

```
SELECT count(*) FROM pgr_floydWarshall(
    'SELECT gid as id, source, target, cost, reverse_cost FROM ways where id <= <SIZE>');

SELECT count(*) FROM pgr_johnson(
    'SELECT gid as id, source, target, cost, reverse_cost FROM ways where id <= <SIZE>');
```

The results of this tests are presented as:

**SIZE** is the number of edges given as input.

**EDGES** is the total number of records in the query.

**DENSITY** is the density of the data  $\frac{E}{V \times (V-1)}$ .

**OUT ROWS** is the number of records returned by the queries.

**Floyd-Warshall** is the average execution time in seconds of pgr\_floydWarshall.

**Johnson** is the average execution time in seconds of pgr\_johnson.

| SIZE  | EDGES | DENSITY | OUT ROWS | Floyd-Warshall | Johnson |
|-------|-------|---------|----------|----------------|---------|
| 500   | 500   | 0.18E-7 | 1346     | 0.14           | 0.13    |
| 1000  | 1000  | 0.36E-7 | 2655     | 0.23           | 0.18    |
| 1500  | 1500  | 0.55E-7 | 4110     | 0.37           | 0.34    |
| 2000  | 2000  | 0.73E-7 | 5676     | 0.56           | 0.37    |
| 2500  | 2500  | 0.89E-7 | 7177     | 0.84           | 0.51    |
| 3000  | 3000  | 1.07E-7 | 8778     | 1.28           | 0.68    |
| 3500  | 3500  | 1.24E-7 | 10526    | 2.08           | 0.95    |
| 4000  | 4000  | 1.41E-7 | 12484    | 3.16           | 1.24    |
| 4500  | 4500  | 1.58E-7 | 14354    | 4.49           | 1.47    |
| 5000  | 5000  | 1.76E-7 | 16503    | 6.05           | 1.78    |
| 5500  | 5500  | 1.93E-7 | 18623    | 7.53           | 2.03    |
| 6000  | 6000  | 2.11E-7 | 20710    | 8.47           | 2.37    |
| 6500  | 6500  | 2.28E-7 | 22752    | 9.99           | 2.68    |
| 7000  | 7000  | 2.46E-7 | 24687    | 11.82          | 3.12    |
| 7500  | 7500  | 2.64E-7 | 26861    | 13.94          | 3.60    |
| 8000  | 8000  | 2.83E-7 | 29050    | 15.61          | 4.09    |
| 8500  | 8500  | 3.01E-7 | 31693    | 17.43          | 4.63    |
| 9000  | 9000  | 3.17E-7 | 33879    | 19.19          | 5.34    |
| 9500  | 9500  | 3.35E-7 | 36287    | 20.77          | 6.24    |
| 10000 | 10000 | 3.52E-7 | 38491    | 23.26          | 6.51    |

Test Two

This test is with a bounding box The density of the passed graph higher than of the Test One. For each <SIZE> 30 tests were executed to get the average The tested edge query is:

```
WITH

buffer AS (SELECT ST_Buffer(ST_Centroid(ST_Extent(the_geom)), SIZE) AS geom FROM ways),

bbox AS (SELECT ST_Envelope(ST_Extent(geom)) as box from buffer)

SELECT gid as id, source, target, cost, reverse_cost FROM ways where the_geom && (SELECT box from
```

#### The tested queries

```
SELECT count(*) FROM pgr_floydWarshall(<edge query>)
SELECT count(*) FROM pgr_johnson(<edge query>)
```

The results of this tests are presented as:

**SIZE** is the size of the bounding box.

**EDGES** is the total number of records in the query.

**DENSITY** is the density of the data  $\frac{E}{V \times (V-1)}$ .

**OUT ROWS** is the number of records returned by the queries.

 $\textbf{Floyd-Warshall} \ \ \text{is the average execution time in seconds of } pgr\_floydWarshall.$ 

**Johnson** is the average execution time in seconds of pgr\_johnson.

| SIZE  | EDGES | DENSITY | OUT ROWS | Floyd-Warshall | Johnson |
|-------|-------|---------|----------|----------------|---------|
| 0.001 | 44    | 0.0608  | 1197     | 0.10           | 0.10    |
| 0.002 | 99    | 0.0251  | 4330     | 0.10           | 0.10    |
| 0.003 | 223   | 0.0122  | 18849    | 0.12           | 0.12    |
| 0.004 | 358   | 0.0085  | 71834    | 0.16           | 0.16    |
| 0.005 | 470   | 0.0070  | 116290   | 0.22           | 0.19    |
| 0.006 | 639   | 0.0055  | 207030   | 0.37           | 0.27    |
| 0.007 | 843   | 0.0043  | 346930   | 0.64           | 0.38    |
| 0.008 | 996   | 0.0037  | 469936   | 0.90           | 0.49    |
| 0.009 | 1146  | 0.0032  | 613135   | 1.26           | 0.62    |
| 0.010 | 1360  | 0.0027  | 849304   | 1.87           | 0.82    |
| 0.011 | 1573  | 0.0024  | 1147101  | 2.65           | 1.04    |
| 0.012 | 1789  | 0.0021  | 1483629  | 3.72           | 1.35    |
| 0.013 | 1975  | 0.0019  | 1846897  | 4.86           | 1.68    |
| 0.014 | 2281  | 0.0017  | 2438298  | 7.08           | 2.28    |
| 0.015 | 2588  | 0.0015  | 3156007  | 10.28          | 2.80    |
| 0.016 | 2958  | 0.0013  | 4090618  | 14.67          | 3.76    |
| 0.017 | 3247  | 0.0012  | 4868919  | 18.12          | 4.48    |

#### See Also

- pgr\_johnson
- pgr\_floydWarshall
- Boost floyd-Warshall<sup>5</sup> algorithm

#### Indices and tables

- genindex
- · search

## 5.1.2 pgr\_bdAstar

#### Name

 $pgr\_bdAstar$  — Returns the shortest path using  $A^*$  algorithm.



Fig. 5.3: Boost Graph Inside

## Availability:

- pgr\_bdAstar(one to one) 2.0.0, Signature change on 2.5.0
- pgr\_bdAstar(other signatures) 2.5.0

<sup>&</sup>lt;sup>5</sup>http://www.boost.org/libs/graph/doc/floyd\_warshall\_shortest.html

### **Signature Summary**

```
pgr_bdAstar(edges_sql, start_vid, end_vid)
pgr_bdAstar(edges_sql, start_vid, end_vid, directed [, heuristic, factor, epsilon])
RETURNS SET OF (seq, path_seq , node, edge, cost, agg_cost)
    OR EMPTY SET
```

#### Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
  - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might change.
  - Signature might change.
  - Functionality might change.
  - pgTap tests might be missing.
  - Might need c/c++ coding.
  - May lack documentation.
  - Documentation if any might need to be rewritten.
  - Documentation examples might need to be automatically generated.
  - Might need a lot of feedback from the comunity.
  - Might depend on a proposed function of pgRouting
  - Might depend on a deprecated function of pgRouting

```
pgr_bdAstar(edges_sql, start_vid, end_vids [, directed, heuristic, factor, epsilon])
pgr_bdAstar(edges_sql, start_vids, end_vid [, directed, heuristic, factor, epsilon])
pgr_bdAstar(edges_sql, start_vids, end_vids [, directed, heuristic, factor, epsilon])

RETURNS SET OF (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)
OR EMPTY SET
```

Using these signatures, will load once the graph and perform several one to one pgr\_bdAstar

- The result is the union of the results of the one to one *pgr\_bdAStar*.
- The extra start vid and/or end vid in the result is used to distinguish to which path it belongs.

#### **Avaliability**

- pgr\_bdAstar(one to one) 2.0, signature change on 2.5
- pgr\_bdAstar(other signatures) 2.5

#### **Signatures**

#### **Minimal Signature**

```
pgr_bdAstar(edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
```

## This usage finds the shortest path from the start\_vid to the end\_vid

- · on a directed graph
- with **heuristic**'s value 5
- with factor's value 1
- with epsilon's value 1

Example Using the defaults

```
SELECT * FROM pgr_bdAstar(
   'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
  FROM edge_table',
  2, 3
);
seq | path_seq | node | edge | cost | agg_cost
_____
 1 |
         1 | 2 | 4 | 1 |
         2 | 5 | 8 | 1 |
  2 |
                                 1
                    9 | 1 |
         3 | 6 |
  3 |
                                 2
         4 | 9 | 16 | 1 |
                                 3
 4 |
  5 |
         5 | 4 | 3 |
                         1 |
                                 4
         6 |
              3 | -1 |
                         0 |
 6 I
(6 rows)
```

#### pgr\_bdAstar One to One

```
pgr_bdAstar(edges_sql, start_vid, end_vid, directed [, heuristic, factor, epsilon])
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
```

This usage finds the shortest path from the start\_vid to the end\_vid allowing the user to choose

- heuristic.
- and/or factor
- and/or epsilon.

**Note:** In the One to One signature, because of the deprecated signature existence, it is compulsory to indicate if the graph is **directed** or **undirected**.

## **Example** Directed using Heuristic 2

```
SELECT * FROM pgr_bdAstar(
   'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
   FROM edge_table',
   2, 3,
   true, heuristic := 2
);
seq | path_seq | node | edge | cost | agg_cost
          1 | 2 | 4 | 1 |
  2 |
          2 | 5 | 8 | 1 |
                                     1
  3 |
          3 | 6 |
                      9 | 1 |
           4 | 9 | 16 | 1 |
                                      3
  4 |
  5 |
           5 | 4 | 3 | 1 |
                                      4
          6 | 3 | -1 | 0 |
  6 |
(6 rows)
```

#### pgr\_bdAstar One to many

```
pgr_bdAstar(edges_sql, start_vid, end_vids [, directed, heuristic, factor, epsilon])
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This usage finds the shortest path from the start\_vid to each end\_vid in end\_vids allowing the user to choose

• if the graph is directed or undirected

- and/or heuristic.
- · and/or factor
- · and/or epsilon.

#### **Example** Directed using Heuristic 3 and a factor of 3.5

```
SELECT * FROM pgr_bdAstar(
   'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
   FROM edge_table',
   2, ARRAY[3, 11],
   heuristic := 3, factor := 3.5
);
seq | path_seq | end_vid | node | edge | cost | agg_cost
  1 | 3 | 2 | 4 | 1 | 0
          2 |
                   3 | 5 | 8 |
  2 |
                                   1 |
  3 |
          3 |
                   3 | 6 | 9 |
                                   1 |
  4 |
          4 |
                   3 | 9 | 16 | 1 |
                                              3
          5 |
  5 |
                   3 | 4 | 3 | 1 |
                   3 | 3 | -1 | 0 |
  6 |
          6 |
                 3 | 3 | -1 | 0 | 11 | 2 | 4 | 1 |
                                              0
  7 |
          1 |
          2 | 11 | 5 | 8 |
3 | 11 | 6 | 11 |
4 | 11 | 11 | -1 |
  8 |
                                              1
                              8 | 1 |
  9 |
                        6 | 11 | 1 |
                                              2
 10 I
                                    0 1
(10 rows)
```

#### pgr\_bdAstar Many to One

```
pgr_bdAstar(edges_sql, start_vids, end_vid [, directed, heuristic, factor, epsilon])
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This usage finds the shortest path from each start\_vid in start\_vids to the end\_vid allowing the user to choose

- if the graph is **directed** or **undirected**
- and/or heuristic,
- and/or factor
- and/or epsilon.

#### Example Undirected graph with Heuristic 4

```
SELECT * FROM pgr_bdAstar(
   'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
   FROM edge_table',
   ARRAY[2, 7], 3,
   false, heuristic := 4
);
seq | path_seq | start_vid | node | edge | cost | agg_cost
                          2 | 2 |
           1 |
                                       1 |
  1 |
                     2 |
           2 |
                      2 |
                             3 | -1 |
                                         0 |
  2 |
                            7 |
            1 |
                      7 |
                                   6 |
                                         1 |
  3 |
                            8 |
           2 |
                      7 |
                                   7 |
  4 |
                                         1 |
                     7 |
                           5 |
                                  4 |
                                        1 |
           3 |
  5 |
                      7 |
                           2 |
                                  2 |
                                        1 |
           4 |
                                                   3
  6 |
                           3 |
                      7 |
                                        0 |
           5 |
                                 -1 |
  7 |
                                                   4
(7 rows)
```

#### pgr bdAstar Many to Many

```
pgr_bdAstar(edges_sql, start_vids, end_vids [, directed, heuristic, factor, epsilon])
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This usage finds the shortest path from each start\_vid in start\_vids to each end\_vid in end\_vids allowing the use

- if the graph is directed or undirected
- and/or heuristic.
- · and/or factor
- and/or epsilon.

**Example** Directed graph with a factor of 0.5

```
SELECT * FROM pgr_bdAstar(
   'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
   FROM edge_table',
   ARRAY[2, 7], ARRAY[3, 11],
   factor := 0.5
);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
                   2 | 3 | 2 | 4 | 1 |
2 | 3 | 5 | 8 | 1 |
2 | 3 | 6 | 9 | 1 |
2 | 3 | 9 | 16 | 1 |
           1 | 2 |
2 | 2 |
3 | 2 |
  1 |
2 |
                                   4 |
                                        3 |
                                              1 |
                                   3 |
                                             0 |
                                        -1 |
                                  2 |
                                        4 |
                                              1 |
                                 5 |
                                        8 |
                                              1 |
                                                        1
                           11 | 6 |
                                       11 |
                                             1 I
                           11 | 11 |
                                        -1 I
                                             0 1
                                  7 I
                                        6 |
                                              1 |
                            3 | 8 |
                                        7 | 1 |
                            3 | 5 |
                                        8 | 1 |
                            3 | 6 |
                                        9 | 1 |
                            3 | 9 | 16 | 1 |
                            3 | 4 | 3 | 1 |
                                                       5
                             3 | 3 |
                                        -1 | 0 |
                                                       6
                                   7 | 6 | 1 |
                                                       0
                           11 |
                                        7 | 1 |
                            11 | 8 |
                                                        1
                                  5 |
                                        10 |
                                              1 |
                                                        2
                            11 |
                                  10 | 12 |
                                               1 |
                                                        3
                            11 | 11 | -1 |
```

#### **Description of the Signatures**

## Description of the edges\_sql query for astar like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Туре          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id           | ANY-INTEGER   |         | Identifier of the edge.                                                                                                            |
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |
| x1           | ANY-NUMERICAL |         | X coordinate of <i>source</i> vertex.                                                                                              |
| y1           | ANY-NUMERICAL |         | Y coordinate of <i>source</i> vertex.                                                                                              |
| x2           | ANY-NUMERICAL |         | X coordinate of <i>target</i> vertex.                                                                                              |
| y2           | ANY-NUMERICAL |         | Y coordinate of <i>target</i> vertex.                                                                                              |

## Where:

**ANY-INTEGER** SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

## Description of the parameters of the signatures

| Parameter  | Type               | Description                                                                                                                                                                                                                                                                                                                                                   |  |  |
|------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| edges_sql  | TEXT               | Edges SQL query as described above.                                                                                                                                                                                                                                                                                                                           |  |  |
|            |                    | 1000                                                                                                                                                                                                                                                                                                                                                          |  |  |
| start_vid  | ANY-INTEGER        | Starting vertex identifier.                                                                                                                                                                                                                                                                                                                                   |  |  |
| start_vids | ARRAY[ANY-INTEGER] | Starting vertices identifierers.                                                                                                                                                                                                                                                                                                                              |  |  |
| end_vid    | ANY-INTEGER        | Ending vertex identifier.                                                                                                                                                                                                                                                                                                                                     |  |  |
| end_vids   | ARRAY[ANY-INTEGER] | Ending vertices identifiers.                                                                                                                                                                                                                                                                                                                                  |  |  |
| directed   | BOOLEAN            | <ul> <li>Optional.</li> <li>When false the graph is considered as Undirected.</li> <li>Default is true which considers the graph as Directed.</li> </ul>                                                                                                                                                                                                      |  |  |
| heuristic  | INTEGER            | <ul> <li>(optional). Heuristic number. Current valid values 0~5. Default 5</li> <li>• 0: h(v) = 0 (Use this value to compare with pgr_dijkstra)</li> <li>• 1: h(v) abs(max(dx, dy))</li> <li>• 2: h(v) abs(min(dx, dy))</li> <li>• 3: h(v) = dx * dx + dy * dy</li> <li>• 4: h(v) = sqrt(dx * dx + dy * dy)</li> <li>• 5: h(v) = abs(dx) + abs(dy)</li> </ul> |  |  |
| factor     | FLOAT              | (optional). For units manipulation. $factor > 0$ . Default 1. see <i>Factor</i>                                                                                                                                                                                                                                                                               |  |  |
| epsilon    | FLOAT              | (optional). For less restricted results. $epsilon >= 1$ . Default 1.                                                                                                                                                                                                                                                                                          |  |  |

## Description of the return values for a path

Returns set of (seq, path\_seq [, start\_vid] [, end\_vid], node, edge, cost, agg\_cost)

| Col-  | Type  | Description                                                                                  |
|-------|-------|----------------------------------------------------------------------------------------------|
| umn   |       |                                                                                              |
| seq   | INT   | Sequential value starting from 1.                                                            |
| path  | INT   | Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for |
| id    |       | the same start_vid to end_vid combination.                                                   |
| path  | INT   | Relative position in the path. Has value 1 for the beginning of a path.                      |
| seq   |       |                                                                                              |
| start | BIGIN | TIdentifier of the starting vertex. Used when multiple starting vetrices are in the query.   |
| vid   |       |                                                                                              |
| end   | BIGIN | TIdentifier of the ending vertex. Used when multiple ending vertices are in the query.       |
| vid   |       |                                                                                              |
| node  | BIGIN | T <b>Identifier of the node in the path from</b> start_vid <b>to</b> end_vid.                |
| edge  | BIGIN | TIdentifier of the edge used to go from node to the next node in the path sequence1 for      |
|       |       | the last node of the path.                                                                   |
| cost  | FLOAT | Cost to traverse from node using edge to the next node in the path sequence.                 |
| agg   | FLOAT | Aggregate cost from start_v to node.                                                         |
| cost  |       |                                                                                              |

#### See Also

- Bidirectional A\* Family of functions
- Sample Data network.
- http://www.boost.org/libs/graph/doc/astar\_search.html
- http://en.wikipedia.org/wiki/A\*\_search\_algorithm

#### Indices and tables

- genindex
- · search

## 5.1.3 pgr\_bdDijkstra

pgr\_bdDijkstra — Returns the shortest path(s) using Bidirectional Dijkstra algorithm.



Fig. 5.4: Boost Graph Inside

#### Availability:

- pgr\_bdDijkstra(one to one) 2.0.0, Signature changed 2.4.0
- pgr\_bdDijkstra(other signatures) 2.5.0

#### **Signature Summary**

```
pgr_bdDijkstra(edges_sql, start_vid, end_vid)
pgr_bdDijkstra(edges_sql, start_vid, end_vid, directed)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET
```

#### **Warning:** Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
  - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might change.
  - Signature might change.
  - Functionality might change.
  - pgTap tests might be missing.
  - Might need c/c++ coding.
  - May lack documentation.
  - Documentation if any might need to be rewritten.
  - Documentation examples might need to be automatically generated.
  - Might need a lot of feedback from the comunity.
  - Might depend on a proposed function of pgRouting
  - Might depend on a deprecated function of pgRouting

```
pgr_bdDijkstra(edges_sql, start_vid, end_vids, directed)
pgr_bdDijkstra(edges_sql, start_vids, end_vid, directed)
pgr_bdDijkstra(edges_sql, start_vids, end_vids, directed)

RETURNS SET OF (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)
OR EMPTY SET
```

#### **Signatures**

#### Minimal signature

```
pgr_bdDijkstra(edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

The minimal signature is for a directed graph from one start vid to one end vid:

#### **Example**

```
SELECT * FROM pgr_bdDijkstra(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    2, 3
);
seq | path_seq | node | edge | cost | agg_cost

    1 |
    2 |
    4 |
    1 |

    2 |
    5 |
    8 |
    1 |

                                               Ω
  1 |
   2 |
                                               1
  3 |
             3 | 6 |
                           9 |
                                   1 |
                                               2
  4 |
             4 | 9 | 16 | 1 |
                                               3
                                   1 |
  5 |
             5 | 4 | 3 |
                                               4
  6 |
             6 |
                    3 | -1 |
                                   0 |
(6 rows)
```

#### pgr\_bdDijkstra One to One

```
pgr_bdDijkstra(edges_sql, start_vid, end_vid, directed)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from one start\_vid to one end\_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

#### pgr bdDijkstra One to many

```
pgr_bdDijkstra(edges_sql, start_vid, end_vids, directed)
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from one start vid to each end vid in end vids:

- on a directed graph when directed flag is missing or is set to true.
- on an **undirected** graph when directed flag is set to false.

Using this signature, will load once the graph and perform a one to one *pgr\_dijkstra* where the starting vertex is fixed, and stop when all end\_vids are reached.

- The result is equivalent to the union of the results of the one to one pgr\_dijkstra.
- The extra end\_vid in the result is used to distinguish to which path it belongs.

#### **Example**

```
SELECT * FROM pgr_bdDijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, ARRAY[3, 11]);
seq | path_seq | end_vid | node | edge | cost | agg_cost
           1 |
                          2 | 4 |
  1 1
                    3 |
                                     1 |
                                                 Ω
  2 |
           2 |
                    3 | 5 | 8 | 1 |
                                                 1
                                 9 |
                    3 |
                          6 |
  3 |
           3 |
                                       1 |
           4 |
                    3 |
  4 |
                           9 |
                                16 |
                                       1 |
  5 |
           5 |
                    3 |
                                3 |
                           4 |
                                       1 |
           6 |
                    3 |
                           3 |
                                -1 |
                                       0 |
  6 |
  7 |
           1 |
                    11 |
                           2 |
                                 4 |
                                       1 |
                                                 0
           2 |
                                8 |
  8 |
                   11 |
                           5 I
                                       1 |
                                                 1
           3 |
  9 |
                   11 |
                          6 |
                                11 |
                                       1 |
 10 |
           4 |
                   11 |
                          11 |
                                -1 I
                                       0 |
(10 rows)
```

### pgr\_bdDijkstra Many to One

```
pgr_bdDijkstra(edges_sql, start_vids, end_vid, directed)
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from each start\_vid in start\_vids to one end\_vid:

- on a directed graph when directed flag is missing or is set to true.
- $\bullet$  on an undirected graph when  $\mbox{\tt directed}$  flag is set to false.

Using this signature, will load once the graph and perform several one to one *pgr\_dijkstra* where the ending vertex is fixed.

- The result is the union of the results of the one to one pgr\_dijkstra.
- The extra start\_vid in the result is used to distinguish to which path it belongs.

```
SELECT * FROM pgr_bdDijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[2, 7], 3);
seq | path_seq | start_vid | node | edge | cost | agg_cost
  1 |
                                             Ω
  1 |
          1 |
                   2 |
                          2 |
                              4 |
           2 |
                                   1 |
                    2 |
  2 |
                          5 |
                               8 |
                                              1
                    2 |
                               9 |
  3 I
           3 1
                          6 |
                                    1 I
```

| 4         | 4 | 2 | 9 | 16 | 1 | 3 |  |
|-----------|---|---|---|----|---|---|--|
| 5         | 5 | 2 | 4 | 3  | 1 | 4 |  |
| 6         | 6 | 2 | 3 | -1 | 0 | 5 |  |
| 7         | 1 | 7 | 7 | 6  | 1 | 0 |  |
| 8         | 2 | 7 | 8 | 7  | 1 | 1 |  |
| 9         | 3 | 7 | 5 | 8  | 1 | 2 |  |
| 10        | 4 | 7 | 6 | 9  | 1 | 3 |  |
| 11        | 5 | 7 | 9 | 16 | 1 | 4 |  |
| 12        | 6 | 7 | 4 | 3  | 1 | 5 |  |
| 13        | 7 | 7 | 3 | -1 | 0 | 6 |  |
| (13 rows) |   |   |   |    |   |   |  |
|           |   |   |   |    |   |   |  |

#### pgr\_bdDijkstra Many to Many

```
pgr_bdDijkstra(edges_sql, start_vids, end_vids, directed)
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from each start\_vid in start\_vids to each end\_vid in end\_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to Many *pgr\_dijkstra* for all start\_vids.

- The result is the union of the results of the one to one *pgr\_dijkstra*.
- The extra start\_vid in the result is used to distinguish to which path it belongs.

The extra start\_vid and end\_vid in the result is used to distinguish to which path it belongs.

| SELECT     | SELECT * FROM pgr_bdDijkstra(                                    |           |         |      |      |      |          |  |
|------------|------------------------------------------------------------------|-----------|---------|------|------|------|----------|--|
| <b>'</b> S | 'SELECT id, source, target, cost, reverse_cost FROM edge_table', |           |         |      |      |      |          |  |
| AR         | ARRAY[2, 7], ARRAY[3, 11]);                                      |           |         |      |      |      |          |  |
| seq        | path_seq                                                         | start_vid | end_vid | node | edge | cost | agg_cost |  |
| +          |                                                                  | ++        |         |      |      | ++   |          |  |
| 1          | _                                                                |           |         | 2    |      |      |          |  |
| 2          | 2                                                                |           | 3       | •    | •    |      |          |  |
| 3          | 3                                                                | 2         |         |      |      | 1    |          |  |
| 4          | 4                                                                | 2         |         |      | 16   |      |          |  |
| 5          | 5                                                                | 2         |         | •    |      | 1    |          |  |
| 6          | 6                                                                | 2         |         |      | -1   |      | 5        |  |
| 7          | 1                                                                | 2         | 11      | •    | 4    | 1    | 0        |  |
| 8          | 2                                                                | 2         | 11      | •    | 8    | 1    | 1        |  |
| 9          | 3                                                                | 2         | 11      |      | 11   | 1    | 2        |  |
| 10         | 4                                                                | 2         | 11      | 11   | -1   | 0    | 3        |  |
| 11         | 1                                                                | 7         | 3       | 1 7  | 6    | 1    | 0        |  |
| 12         | 2                                                                | 7         | 3       | 8    | 1 7  | 1    | 1        |  |
| 13         | 3                                                                | 7         | 3       | 1 5  | 8    | 1    | 2        |  |
| 14         | 4                                                                | 7         | 3       | 6    | 9    | 1    | 3        |  |
| 15         | 5                                                                | 7         | 3       | 9    | 16   | 1    | 4        |  |
| 16         | 6                                                                | 7         | 3       | •    | 3    | 1    | 5        |  |
| 17         | 7                                                                | 7         | 3       | •    | -1   | 0    | 6        |  |
| 18         | 1                                                                | 7         | 11      | •    |      | 1    | 0        |  |
| 19         | 2                                                                | 7         | 11      |      | 7    | 1    | 1        |  |
| 20         | 3                                                                | 7         |         | •    | 1 10 |      | 2        |  |
| 21         | 4                                                                | 7         | 11      | 10   |      |      | 3        |  |
| 22         |                                                                  | 7         | 11      | 11   | -1   | 0    | 4        |  |
| (22 ro     | ws)                                                              |           |         |      |      |      |          |  |
|            |                                                                  |           |         |      |      |      |          |  |

## **Description of the Signatures**

## Description of the edges\_sql query for dijkstra like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Type          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id           | ANY-INTEGER   |         | Identifier of the edge.                                                                                                            |
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |

#### Where:

**ANY-INTEGER** SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

## Description of the parameters of the signatures

| Column     | Туре          | Default | Description                                                                                                           |
|------------|---------------|---------|-----------------------------------------------------------------------------------------------------------------------|
| sql        | TEXT          |         | SQL query as described above.                                                                                         |
| start_vid  | BIGINT        |         | Identifier of the starting vertex of the path.                                                                        |
| start_vids | ARRAY[BIGINT] |         | Array of identifiers of starting vertices.                                                                            |
| end_vid    | BIGINT        |         | Identifier of the ending vertex of the path.                                                                          |
| end_vids   | ARRAY[BIGINT] |         | Array of identifiers of ending vertices.                                                                              |
| directed   | BOOLEAN       | true    | <ul> <li>When true Graph is considered Directed</li> <li>When false the graph is considered as Undirected.</li> </ul> |

#### Description of the return values for a path

Returns set of (seq, path\_seq [, start\_vid] [, end\_vid], node, edge, cost, agg\_cost)

| Col-  | Type  | Description                                                                                  |
|-------|-------|----------------------------------------------------------------------------------------------|
| umn   |       |                                                                                              |
| seq   | INT   | Sequential value starting from 1.                                                            |
| path  | INT   | Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for |
| id    |       | the same start_vid to end_vid combination.                                                   |
| path  | INT   | Relative position in the path. Has value 1 for the beginning of a path.                      |
| seq   |       |                                                                                              |
| start | BIGIN | TIdentifier of the starting vertex. Used when multiple starting vetrices are in the query.   |
| vid   |       |                                                                                              |
| end   | BIGIN | TIdentifier of the ending vertex. Used when multiple ending vertices are in the query.       |
| vid   |       |                                                                                              |
| node  | BIGIN | TIdentifier of the node in the path from start_vid to end_vid.                               |
| edge  | BIGIN | TIdentifier of the edge used to go from node to the next node in the path sequence1 for      |
|       |       | the last node of the path.                                                                   |
| cost  | FLOAT | Cost to traverse from node using edge to the next node in the path sequence.                 |
| agg   | FLOAT | Aggregate cost from start_v to node.                                                         |
| cost  |       |                                                                                              |

#### See Also

- The queries use the Sample Data network.
- Bidirectional Dijkstra Family of functions
- http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf
- https://en.wikipedia.org/wiki/Bidirectional\_search

#### Indices and tables

- genindex
- search

## 5.1.4 Dijkstra - Family of functions

- pgr\_dijkstra Dijkstra's algorithm for the shortest paths.
- *pgr\_dijkstraCost* Get the aggregate cost of the shortest paths.
- pgr\_dijkstraCostMatrix proposed Use pgr\_dijkstra to create a costs matrix.
- pgr\_drivingDistance Use pgr\_dijkstra to calculate catchament information.
- pgr\_KSP Use Yen algorithm with pgr\_dijkstra to get the K shortest paths.
- pgr\_dijkstraVia Proposed Get a route of a seuence of vertices.

#### pgr\_dijkstra

 $\verb|pgr_dijkstra| - Returns the shortest path(s) using Dijkstra algorithm. In particular, the Dijkstra algorithm implemented by Boost. Graph.$ 



Fig. 5.5: Boost Graph Inside

#### **Availability**

- pgr\_dijkstra(one to one) 2.0.0, signature change 2.1.0
- pgr\_dijkstra(other signatures) 2.1.0

#### **Synopsis**

Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956. It is a graph search algorithm that solves the shortest path problem for a graph with non-negative edge path costs, producing a shortest path from a starting vertex (start\_vid) to an ending vertex (end\_vid). This implementation can be used with a directed graph and an undirected graph.

#### Characteristics

## The main Characteristics are:

- Process is done only on edges with positive costs.
- Values are returned when there is a path.
  - When the starting vertex and ending vertex are the same, there is no path.
    - \* The  $agg\_cost$  the non included values (v, v) is 0
  - When the starting vertex and ending vertex are the different and there is no path:
    - \* The  $agg\_cost$  the non included values (u, v) is  $\infty$
- For optimization purposes, any duplicated value in the start\_vids or end\_vids are ignored.
- The returned values are ordered:
  - start\_vid ascending
  - end\_vid ascending
- Running time:  $O(|start\_vids| * (V \log V + E))$

#### **Signature Summary**

```
pgr_dijkstra(edges_sql, start_vid, end_vid)
pgr_dijkstra(edges_sql, start_vid, end_vid, directed:=true)
pgr_dijkstra(edges_sql, start_vid, end_vids, directed:=true)
pgr_dijkstra(edges_sql, start_vids, end_vid, directed:=true)
pgr_dijkstra(edges_sql, start_vids, end_vids, directed:=true)
pgr_dijkstra(edges_sql, start_vids, end_vids, directed:=true)
RETURNS SET OF (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)
OR EMPTY SET
```

#### **Signatures**

#### Minimal signature

```
pgr_dijkstra(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

The minimal signature is for a directed graph from one start\_vid to one end\_vid.

#### **Example**

```
SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edge_table',
);
seq | path_seq | node | edge | cost | agg_cost
1 |
         1 | 2 | 4 | 1 |
        2 | 5 | 8 | 1 |
  2 |
                                1
                   9 | 1 |
  3 |
         3 | 6 |
 4 |
                        1 |
         4 | 9 | 16 |
                                3
 5 |
         5 | 4 | 3 |
                        1 |
                                4
        6 | 3 | -1 | 0 |
 6 |
(6 rows)
```

#### pgr\_dijkstra One to One

#### This signature finds the shortest path from one start\_vid to one end\_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

#### **Example**

#### pgr\_dijkstra One to many

#### This signature finds the shortest path from one start\_vid to each end\_vid in end\_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform a one to one *pgr\_dijkstra* where the starting vertex is fixed, and stop when all end\_vids are reached.

- The result is equivalent to the union of the results of the one to one pgr\_dijkstra.
- The extra end\_vid in the result is used to distinguish to which path it belongs.

#### **Example**

```
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost FROM edge_table',
    2, ARRAY[3,5],
    FALSE
);
seq | path_seq | end_vid | node | edge | cost | agg_cost
              1 |
   1 |
                         3 |
                                  2 | 4 | 1 |
             2 | 3 | 5 | 8 | 1 |
3 | 3 | 6 | 5 | 1 |
   2 |
                                                              1
   3 |

    4 |
    3 |
    3 |
    -1 |

    1 |
    5 |
    2 |
    4 |

    2 |
    5 |
    5 |
    -1 |

                                                             3
   4 |
                         3 | 3 | -1 | 0 |
  5 |
                        5 | 2 | 4 | 1 |
                                                              0
                                               0 1
   6 |
(6 rows)
```

#### pgr\_dijkstra Many to One

#### This signature finds the shortest path from each start\_vid in start\_vids to one end\_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to one  $pgr\_dijkstra$  where the ending vertex is fixed.

- The result is the union of the results of the one to one *pgr\_dijkstra*.
- The extra start\_vid in the result is used to distinguish to which path it belongs.

#### **Example**

```
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[2,11], 5
);
seq | path_seq | start_vid | node | edge | cost | agg_cost
____+
          1 | 2 | 2 | 4 | 1 |
2 | 2 | 5 | -1 | 0 |
1 | 11 | 11 | 13 | 1 |
2 | 11 | 12 | 15 | 1 |
3 | 11 | 9 | 9 | 1 |
  1 |
  2. 1
                                                      1
  3 |
  4 |
  5 |
            4 |
                      11 | 6 | 8 |
  6 |
                                           1 |
  7 |
           5 |
                      11 | 5 | -1 |
                                            0 |
(7 rows)
```

#### pgr\_dijkstra Many to Many

```
pgr_dijkstra(TEXT edges_sql, ARRAY[ANY_INTEGER] start_vids, ARRAY[ANY_INTEGER] end_vids,
    BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) or EMPTY SET
```

This signature finds the shortest path from each start\_vid in start\_vids to each end\_vid in end\_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to Many pgr\_dijkstra for all start\_vids.

- The result is the union of the results of the one to one pgr\_dijkstra.
- The extra start\_vid in the result is used to distinguish to which path it belongs.

The extra start\_vid and end\_vid in the result is used to distinguish to which path it belongs.

#### **Example**

```
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[2,11], ARRAY[3,5],
   FALSE
);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
  1 |
          1 | 2 | 3 | 2 | 2 | 1 |
          2 | 2 |
1 | 2 |
2 | 2 |
1 | 11 |
2 | 11 |
  2 |
                             3 | 3 | -1 | 0 |
  3 |
                             5 | 2 |
                                         4 | 1 |
  4 |
                             5 | 5 |
                                         -1 |
                                                0 |
                                                         1
                             3 | 11 | 11 |
  5 |
                                              1 |
                                                         0
                             3 | 6 |
                                         5 |
  6 |
                                                1 |
                                                         1
                                   3 |
                             3 |
                                         -1 |
                                                0 |
  7 |
           3 |
                   11 |
                                                         2
  8 |
                    11 |
                             5 | 11 |
                                         11 |
                                                         0
           1 |
                                                1 |
  9 |
           2 |
                    11 |
                              5 | 6 |
                                         8 |
                                                1 |
                                                         1
                             5 |
 10 |
          3 |
                     11 |
                                    5 |
                                         -1 |
                                                0 |
(10 rows)
```

## **Description of the Signatures**

#### Description of the edges\_sql query for dijkstra like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Туре          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id           | ANY-INTEGER   |         | Identifier of the edge.                                                                                                            |
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

| Column     | Туре          | Default |
|------------|---------------|---------|
| sql        | TEXT          |         |
| start_vid  | BIGINT        |         |
| start_vids | ARRAY[BIGINT] |         |
| end_vid    | BIGINT        |         |
| end_vids   | ARRAY[BIGINT] |         |
| directed   | BOOLEAN       | true    |

 $\label{lem:condition} \textbf{Description of the parameters of the signatures}$ 

Description of the return values for a path Returns set of (seq, path\_seq [, start\_vid] [, end\_vid], node, edge, cost, agg\_cost)

| Col-  | Type  | Description                                                                                  |
|-------|-------|----------------------------------------------------------------------------------------------|
| umn   |       |                                                                                              |
| seq   | INT   | Sequential value starting from 1.                                                            |
| path  | INT   | Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for |
| id    |       | the same start_vid to end_vid combination.                                                   |
| path  | INT   | Relative position in the path. Has value 1 for the beginning of a path.                      |
| seq   |       |                                                                                              |
| start | BIGIN | TIdentifier of the starting vertex. Used when multiple starting vetrices are in the query.   |
| vid   |       |                                                                                              |
| end   | BIGIN | TIdentifier of the ending vertex. Used when multiple ending vertices are in the query.       |
| vid   |       |                                                                                              |
| node  | BIGIN | TIdentifier of the node in the path from start_vid to end_vid.                               |
| edge  | BIGIN | TIdentifier of the edge used to go from node to the next node in the path sequence1 for      |
|       |       | the last node of the path.                                                                   |
| cost  | FLOAT | Cost to traverse from node using edge to the next node in the path sequence.                 |
| agg   | FLOAT | Aggregate cost from start_v to node.                                                         |
| cost  |       |                                                                                              |

## **Additional Examples**

The examples of this section are based on the Sample Data network.

The examples include combinations from starting vertices 2 and 11 to ending vertices 3 and 5 in a directed and undirected graph with and with out reverse\_cost.

**Examples for queries marked as directed with cost and reverse\_cost columns** The examples in this section use the following *Graph 1: Directed, with cost and reverse cost* 

```
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, 3
);
seq | path_seq | node | edge | cost | agg_cost
  ---+----+----+-----+-----+-----+------
      1 | 2 | 4 | 1 |
2 | 5 | 8 | 1 |
3 | 6 | 9 | 1 |
4 | 9 | 16 | 1 |
5 | 4 | 3 | 1 |
  1 |
  2 |
                                            1
  3 |
  4 |
                   4 |
            5 |
  5 |
                        -1 |
                  3 |
  6 |
            6 |
                               0 |
(6 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, 5
);
seq | path_seq | node | edge | cost | agg_cost
----+-----
 1 | 2 | 4 | 1 | 0
  2 |
            2 | 5 | -1 | 0 |
(2 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, ARRAY[3,5]
) ;
seq | path_seq | end_vid | node | edge | cost | agg_cost
                      3 | 2 | 4 | 1 |
3 | 5 | 8 | 1 |
             1 |
             2 |
  2 |
                                                     1
```

```
3 | 6 | 9 | 1 |
3 | 9 | 16 | 1 |
3 | 4 | 3 | 1 |
          3 |
  4 |
            4 |
                                                       3
            5 |
  5 I
                       3 | 3 |
  6 I
            6 |
                                     -1 I
                                           0 |
  7 |
             1 |
                       5 | 2 | 4 |
                                           1 |
  8 |
             2 |
                      5 | 5 | -1 |
                                           0 1
(8 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
);
seq | path_seq | node | edge | cost | agg_cost
_____

    1
    1
    1
    1
    1
    1
    1
    0

    2
    1
    2
    1
    1
    1
    1
    1
    1

    3
    1
    3
    9
    1
    1
    1
    1
    2

    4
    1
    4
    4
    3
    1
    1
    3

    5
    1
    5
    3
    -1
    0
    1
    4

(5 rows)
SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   11, 5
);
seq | path_seq | node | edge | cost | agg_cost
1 | 1 | 11 | 13 | 1 | 0
            2 | 12 | 15 | 1 |
  2 |
            3 | 9 | 9 | 1 |
  3 I
  4 |
            4 | 6 | 8 | 1 |
  5 |
            5 | 5 | -1 | 0 |
(5 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[2,11], 5
);
seq | path_seq | start_vid | node | edge | cost | agg_cost
1 | 2 | 2 | 4 | 1 |

2 | 2 | 5 | -1 | 0 |

1 | 11 | 11 | 13 | 1 |

2 | 11 | 12 | 15 | 1 |

3 | 11 | 9 | 9 | 1 |

4 | 11 | 6 | 8 | 1 |

5 | 11 | 5 | -1 | 0 |
  1 |
                                                          1
  2 |
  3 |
                                                          1
  4 |
  5 |
  6 |
 7 1
(7 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[2, 11], ARRAY[3,5]
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
_____

    1 |
    1 |
    2 |
    3 |
    2 |
    4 |
    1 |

    2 |
    2 |
    3 |
    5 |
    8 |
    1 |

                                                                     1
                        2 |
  3 |
             3 |
                                   3 | 6 |
                                                  9 | 1 |
                      2 |
2 |
2 |
2 |
2 |
2 |
             4 |
  4 |
                                   3 |
                                           9 | 16 | 1 |
             5 |
                                    3 |
                                                 3 | 1 | -1 | 0 |
  5 |
                                           4 |
                                    3 |
             6 |
                                           3 |
  6 |
                                  5 | 2 ,
                                                 4 | 1 , 0 |
                                          2 |
             1 |
  7 |
                                                                     0
                                                -1 |
  8 |
              2 |
                                                                     1
```

| 9         | 1 | 11 | 3 | 11 | 13 | 1 | 0 |  |
|-----------|---|----|---|----|----|---|---|--|
| 10        | 2 | 11 | 3 | 12 | 15 | 1 | 1 |  |
| 11        | 3 | 11 | 3 | 9  | 16 | 1 | 2 |  |
| 12        | 4 | 11 | 3 | 4  | 3  | 1 | 3 |  |
| 13        | 5 | 11 | 3 | 3  | -1 | 0 | 4 |  |
| 14        | 1 | 11 | 5 | 11 | 13 | 1 | 0 |  |
| 15        | 2 | 11 | 5 | 12 | 15 | 1 | 1 |  |
| 16        | 3 | 11 | 5 | 9  | 9  | 1 | 2 |  |
| 17        | 4 | 11 | 5 | 6  | 8  | 1 | 3 |  |
| 18        | 5 | 11 | 5 | 5  | -1 | 0 | 4 |  |
| (18 rows) |   |    |   |    |    |   |   |  |
|           |   |    |   |    |    |   |   |  |

**Examples for queries marked as undirected with cost and reverse\_cost columns** The examples in this section use the following *Graph 2: Undirected, with cost and reverse cost* 

```
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    2, 3,
   FALSE
);
seq | path_seq | node | edge | cost | agg_cost
----+-----
 1 | 1 | 2 | 2 | 1 | 0
2 | 2 | 3 | -1 | 0 | 1
(2 rows)
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    2, 5,
   FALSE
);
seq | path_seq | node | edge | cost | agg_cost
----+-----
       1 | 2 | 4 | 1 | 0
  1 |
             2 | 5 | -1 | 0 |
  2 |
                                               1
(2 rows)
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    11, 3,
   FALSE
);
seq | path_seq | node | edge | cost | agg_cost

      1 |
      1 |
      11 |
      11 |
      1 |
      0

      2 |
      2 |
      6 |
      5 |
      1 |
      1

             3 | 3 | -1 | 0 |
  3 |
(3 rows)
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    11, 5,
   FALSE
);
seq | path_seq | node | edge | cost | agg_cost
----+-----

    1 |
    1 |
    11 |
    11 |
    1 |
    0

    2 |
    2 |
    6 |
    8 |
    1 |
    1

    3 |
    3 |
    5 |
    -1 |
    0 |
    2

(3 rows)
```

```
SELECT * FROM pgr_dijkstra(
     'SELECT id, source, target, cost, reverse_cost FROM edge_table',
     ARRAY[2,11], 5,
    FALSE
);
seq | path_seq | start_vid | node | edge | cost | agg_cost
_____

    1 |
    1 |
    2 |
    2 |
    4 |
    1 |
    0

    2 |
    2 |
    5 |
    -1 |
    0 |
    1

                          2 | 5 | -1 | 0 |
11 | 11 | 12 | 1 |
11 | 5 | 1 | 1 |
   3 |
                1 |
                                                                             0
   4 |
                 2 |
                                                                             1
   5 I
                 3 |
                                11 | 5 | -1 | 0 |
(5 rows)
SELECT * FROM pgr_dijkstra(
     'SELECT id, source, target, cost, reverse_cost FROM edge_table',
     2, ARRAY[3,5],
    FALSE
);
seq | path_seq | end_vid | node | edge | cost | agg_cost
_____
              1 | 3 | 2 | 2 | 1 |
2 | 3 | 3 | -1 | 0 |
1 | 5 | 2 | 4 | 1 |
2 | 5 | 5 | -1 | 0 |
  1 |
   2 |
   3 |
   4 |
(4 rows)
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
     ARRAY[2, 11], ARRAY[3,5],
     FALSE
);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

      1 |
      1 |
      2 |
      3 |
      2 |

      2 |
      2 |
      3 |
      3 |
      3 |

      3 |
      1 |
      2 |
      5 |
      2 |

      4 |
      2 |
      2 |
      5 |
      5 |
      5 |

      5 |
      1 |
      11 |
      3 |
      11 |
      11 |

      6 |
      2 |
      11 |
      3 |
      3 |
      3 |

      7 |
      3 |
      11 |
      3 |
      3 |
      3 |

      8 |
      1 |
      11 |
      5 |
      6 |

      9 |
      2 |
      11 |
      5 |
      6 |

                                                                2 | 1 |
                                                3 | 2 |
3 | 3 |
5 | 2 |
                                                                 -1 |
                                                                            0 |
                                                                 4 |
-1 |
                                                                            1 |
                                                                            0 |
                                                                         1 |
1 |
                                                                 11 |
                                                                  5 |
                                                                                           1
                                                                  -1 |
                                                                           0 |
                                                                11 |
                                                                          1 |
                                                                                          0
  9 |
                                              5 | 6 | 8 |
                                                                          1 |
                                                                                           1
 10 |
                 3 | 11 | 5 | 5 | -1 | 0 |
(10 rows)
```

# **Examples for queries marked as directed with cost column** The examples in this section use the following *Graph 3: Directed, with cost*

```
seq | path_seq | node | edge | cost | agg_cost
_____
  1 | 1 | 2 | 4 | 1 | 0
2 | 2 | 5 | -1 | 0 | 1
  2 |
                 5 | -1 | 0 |
            2 |
(2 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
seq | path_seq | node | edge | cost | agg_cost
____+
(0 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
);
seq | path_seq | node | edge | cost | agg_cost
----+----+----
(0 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   ARRAY[2,11], 5
);
seq | path_seq | start_vid | node | edge | cost | agg_cost

      1 |
      1 |
      2 |
      2 |
      4 |
      1 |
      0

      2 |
      2 |
      5 |
      -1 |
      0 |
      1

(2 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   2, ARRAY[3,5]
);
seq | path_seq | end_vid | node | edge | cost | agg_cost
      1 | 5 | 2 | 4 | 1 | 0
2 | 5 | 5 | -1 | 0 | 1
  1 |
  2 |
(2 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   ARRAY[2, 11], ARRAY[3,5]
) ;
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
 1 | 1 | 2 | 5 | 2 | 4 | 1 | 0
2 | 2 | 5 | 5 | -1 | 0 | 1
            2 |
                       2 |
                                 5 | 5 | -1 | 0 |
  2 |
(2 rows)
```

## **Examples for queries marked as undirected with cost column** The examples in this section use the following *Graph 4: Undirected, with cost*

```
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost FROM edge_table',
    2, 3,
    FALSE
);
seq | path_seq | node | edge | cost | agg_cost
```

```
----+-----
 1 | 2 | 4 | 1 | 0
2 | 2 | 5 | 8 | 1 | 1
3 | 3 | 6 | 5 | 1 | 2
           4 | 3 | -1 | 0 |
  4 |
(4 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   2, 5,
   FALSE
);
seq | path_seq | node | edge | cost | agg_cost
_____
 1 | 1 | 2 | 4 | 1 | 0
2 | 2 | 5 | -1 | 0 | 1
(2 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   11, 3,
   FALSE
) ;
seq | path_seq | node | edge | cost | agg_cost
----+-----
  1 | 1 | 11 | 11 | 0
           2 | 6 | 5 | 1 |
3 | 3 | -1 | 0 |
                                         1
 2 |
  3 |
(3 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   11, 5,
   FALSE
) ;
seq | path_seq | node | edge | cost | agg_cost
_____
 1 | 1 | 11 | 1 | 0
           2 | 6 | 8 | 1 |
                                          1
 2 |
           3 | 5 | -1 | 0 |
 3 |
(3 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   ARRAY[2,11], 5,
   FALSE
);
seq | path_seq | start_vid | node | edge | cost | agg_cost

    1 |
    1 |
    2 |
    2 |
    4 |
    1 |
    0

    2 |
    2 |
    2 |
    5 |
    -1 |
    0 |
    1

    3 |
    1 |
    11 |
    11 |
    12 |
    1 |
    0

    4 |
    2 |
    11 |
    10 |
    10 |
    1 |
    1

    5 |
    3 |
    11 |
    5 |
    -1 |
    0 |
    2

(5 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost FROM edge_table',
   2, ARRAY[3,5],
   FALSE
);
seq | path_seq | end_vid | node | edge | cost | agg_cost
```

```
2 | 4 | 1 |
5 | 8 | 1 |
6 | 5 | 1 |
                                          3 |
                         1 |
      1 |
                                                            5 |
     2 |
                          2 |
                                               3 |
                                                                                                                1
                                                          6 |
                                                                         5 |
                         3 |
     3 |
                                              3 |
                          4 |
     4 |
                                               3 | 3 | -1 |
                                                                                       0 1
      5 |
                          1 |
                                               5 | 2 | 4 |
                                                                                       1 |
                          2 |
                                              5 | 5 | -1 |
      6 |
                                                                                         0 |
(6 rows)
SELECT * FROM pgr_dijkstra(
       'SELECT id, source, target, cost FROM edge_table',
       ARRAY[2, 11], ARRAY[3,5],
       FALSE
);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

      1 |
      2 |
      3 |
      2 |
      4 |
      1 |

      2 |
      2 |
      3 |
      5 |
      8 |
      1 |

      3 |
      2 |
      3 |
      6 |
      5 |
      1 |

      4 |
      2 |
      3 |
      3 |
      -1 |
      0 |

      1 |
      2 |
      5 |
      2 |
      4 |
      1 |

      2 |
      2 |
      5 |
      5 |
      -1 |
      0 |

      1 |
      11 |
      3 |
      11 |
      11 |
      1 |

      2 |
      11 |
      3 |
      6 |
      5 |
      1 |

      3 |
      11 |
      3 |
      3 |
      -1 |
      0 |

      1 |
      11 |
      5 |
      11 |
      11 |
      1 |

      2 |
      11 |
      5 |
      6 |
      8 |
      1 |

      3 |
      11 |
      5 |
      6 |
      8 |
      1 |

     1 |
     2 |
                                                                                                                                            1
      3 |
      4 |
      5 I
      6 |
                                                                                                                                           1
                                                                                                                                         0
     7 |
    8 |
                                                                                                                                          1
     9 |
   10 |
  11 |
12 |
                                                                                                                                          1
                         3 |
                                                11 |
                                                                       5 | 5 | -1 | 0 |
(12 rows)
```

#### **Equvalences between signatures**

Examples For queries marked as directed with cost and reverse\_cost columns

The examples in this section use the following:

• Graph 1: Directed, with cost and reverse cost

```
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, 3,
   TRUE
seq | path_seq | node | edge | cost | agg_cost
_____

      1 |
      1 |
      2 |
      4 |
      1 |
      0

      2 |
      5 |
      8 |
      1 |
      1

  3 |
            3 | 6 |
                         9 | 1 |
            4 | 9 | 16 | 1 |
5 | 4 | 3 | 1 |
6 | 3 | -1 | 0 |
  4 |
                                           3
  5 |
                                           4
  6 |
(6 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
);
seq | path_seq | node | edge | cost | agg_cost
----+----
 1 |
         1 | 2 | 4 | 1 | 0
  2 |
           2 | 5 | 8 | 1 |
                                          1
                         9 | 1 |
  3 |
           3 | 6 |
  4 |
         4 | 9 | 16 | 1 |
```

```
5 |
                           4 |
                                     3 |
                                                1 |
                         3 | -1 |
   6 |
                                            0 |
                   6 |
(6 rows)
SELECT * FROM pgr_dijkstra(
     'SELECT id, source, target, cost, reverse_cost FROM edge_table',
     2, ARRAY[3],
     TRUE
);
seq | path_seq | end_vid | node | edge | cost | agg_cost
____+

      1 |
      1 |
      3 |
      2 |
      4 |
      1 |
      0

      2 |
      2 |
      3 |
      5 |
      8 |
      1 |
      1

   3 |
                 3 |

    3 | 6 | 9 | 1 |

    4 | 3 | 9 | 16 | 1 |

    5 | 3 | 4 | 3 | 1 |

    6 | 3 | 3 | -1 | 0 |

                               3 | 6 |
                                                  9 | 1 |
   4 |
   5 |
   6 |
(6 rows)
SELECT * FROM pgr_dijkstra(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
     2, ARRAY[3]
);
seq | path_seq | end_vid | node | edge | cost | agg_cost
____+

    1 |
    1 |
    3 |
    2 |
    4 |
    1 |
    0

    2 |
    2 |
    3 |
    5 |
    8 |
    1 |
    1

    3 |
    3 |
    6 |
    9 |
    1 |
    2

    4 |
    4 |
    3 |
    9 |
    16 |
    1 |
    3

    5 |
    5 |
    3 |
    4 |
    3 |
    1 |
    4

    6 |
    6 |
    3 |
    3 |
    -1 |
    0 |
    5

(6 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
     ARRAY[2], ARRAY[3],
     TRUE
);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
2 | 3 | 2 |
2 | 3 | 5 |
2 | 3 | 6 |
2 | 3 | 9 |
          1 |
                                                                 4 | 1 |
   1 |
                                                                  4 .
8 | 1 .
1 |
                 2 |
   2 |
                                                                                             1
                                                                  9 |
                 3 |
   3 |
                                                                          1 |
                 4 |
                                                                 16 |
   4 |
                 5 |
                                 2 |
                                               3 |
                                                                          1 |
                                                        4 |
                                                                 3 |
   5 I
                 6 | 2 | 3 | 3 | -1 | 0 |
   6 I
(6 rows)
SELECT * FROM pgr dijkstra(
     'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    ARRAY[2], ARRAY[3]
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
____+

      1 |
      1 |
      2 |
      3 |
      2 |
      4 |
      1 |

      2 |
      2 |
      3 |
      5 |
      8 |
      1 |

      3 |
      3 |
      2 |
      3 |
      6 |
      9 |
      1 |

      4 |
      4 |
      2 |
      3 |
      9 |
      16 |
      1 |

      5 |
      5 |
      2 |
      3 |
      4 |
      3 |
      1 |

      6 |
      6 |
      2 |
      3 |
      3 |
      -1 |
      0 |

                                                                                            3
                                                                                            4
(6 rows)
```

Examples For queries marked as undirected with cost and reverse\_cost columns

The examples in this section use the following:

• Graph 2: Undirected, with cost and reverse cost

```
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, 3,
  FALSE
);
seq | path_seq | node | edge | cost | agg_cost
        1 | 2 | 2 | 1 | 0
          2 | 3 | -1 | 0 |
 2 |
(2 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   2, ARRAY[3],
   FALSE
);
seq | path_seq | end_vid | node | edge | cost | agg_cost
       1 | 3 | 2 | 2 | 1 | 0
2 | 3 | 3 | -1 | 0 | 1
 2 |
(2 rows)
SELECT * FROM pgr_dijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
  ARRAY[2], 3,
  FALSE
);
seq | path_seq | start_vid | node | edge | cost | agg_cost
 1 | 2 | 2 | 2 | 1 | 0
          2 |
                    2 | 3 | -1 | 0 |
  2 |
(2 rows)
SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[2], ARRAY[3],
  FALSE
);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
0
1
     2 |
               2 | 2 |
                         3 | 2 | 2 | 1 |
3 | 3 | -1 | 0 |
 1 |
 2 |
(2 rows)
```

#### See Also

- http://en.wikipedia.org/wiki/Dijkstra%27s\_algorithm
- The queries use the Sample Data network.

#### Indices and tables

- · genindex
- · search

## pgr\_dijkstraCost

#### **Synopsis**

pgr\_dijkstraCost

Using Dijkstra algorithm implemented by Boost.Graph, and extract only the aggregate cost of the shortest path(s) found, for the combination of vertices given.



Fig. 5.6: Boost Graph Inside

## **Availability**

• pgr\_dijkstraCost(all signatures) 2.2.0

The pgr\_dijkstraCost algorithm, is a good choice to calculate the sum of the costs of the shortest path for a subset of pairs of nodes of the graph. We make use of the Boost's implementation of dijkstra which runs in  $O(V \log V + E)$  time.

#### Characteristics

#### The main Characteristics are:

- It does not return a path.
- Returns the sum of the costs of the shortest path for pair combination of nodes in the graph.
- Process is done only on edges with positive costs.
- Values are returned when there is a path.
  - The returned values are in the form of a set of (start vid, end vid, agg cost).
  - When the starting vertex and ending vertex are the same, there is no path.
    - \* The  $agg\_cost$  int the non included values (v, v) is 0
  - When the starting vertex and ending vertex are the different and there is no path.
    - \* The  $agg\_cost$  in the non included values (u, v) is  $\infty$
- Let be the case the values returned are stored in a table, so the unique index would be the pair: (start\_-vid, end\_vid).
- For undirected graphs, the results are symmetric.
  - The  $agg\_cost$  of (u, v) is the same as for (v, u).
- Any duplicated value in the *start\_vids* or *end\_vids* is ignored.
- The returned values are ordered:
  - start\_vid ascending
  - end\_vid ascending
- Running time:  $O(|start\_vids| * (V \log V + E))$

#### **Signature Summary**

```
pgr_dijkstraCost(edges_sql, start_vid, end_vid);
pgr_dijkstraCost(edges_sql, start_vid, end_vid, directed);
pgr_dijkstraCost(edges_sql, start_vids, end_vid, directed);
pgr_dijkstraCost(edges_sql, start_vid, end_vids, directed);
pgr_dijkstraCost(edges_sql, start_vids, end_vids, directed);

RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

#### **Signatures**

Minimal signature The minimal signature is for a directed graph from one start\_vid to one end\_vid:

```
pgr_dijkstraCost(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

#### **Example**

#### pgr\_dijkstraCost One to One

This signature performs a Dijkstra from one start\_vid to one end\_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

```
pgr_dijkstraCost(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid,

BOOLEAN directed:=true);

RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

#### **Example**

#### pgr dijkstraCost One to Many

```
pgr_dijkstraCost(TEXT edges_sql, BIGINT start_vid, array[ANY_INTEGER] end_vids,
BOOLEAN directed:=true);
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

#### This signature performs a Dijkstra from one start\_vid to each end\_vid in end\_vids:

• on a directed graph when directed flag is missing or is set to true.

• on an undirected graph when directed flag is set to false.

#### **Example**

#### pgr\_dijkstraCost Many to One

```
pgr_dijkstraCost(TEXT edges_sql, array[ANY_INTEGER] start_vids, BIGINT end_vid,

BOOLEAN directed:=true);

RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

#### This signature performs a Dijkstra from each start\_vid in start\_vids to one end\_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

#### Example

#### pgr\_dijkstraCost Many to Many

```
pgr_dijkstraCost(TEXT edges_sql, array[ANY_INTEGER] start_vids, array[ANY_INTEGER] end_vids,
BOOLEAN directed:=true);
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET
```

#### This signature performs a Dijkstra from each start\_vid in start\_vids to each end\_vid in end\_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an **undirected** graph when directed flag is set to false.

## **Description of the Signatures**

## Description of the edges\_sql query for dijkstra like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Туре          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id           | ANY-INTEGER   |         | Identifier of the edge.                                                                                                            |
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

| Column     | Type          | Default |
|------------|---------------|---------|
| sql        | TEXT          |         |
| start_vid  | BIGINT        |         |
| start_vids | ARRAY[BIGINT] |         |
| end_vid    | BIGINT        |         |
| end_vids   | ARRAY[BIGINT] |         |
| directed   | BOOLEAN       | true    |

Description of the parameters of the signatures

**Description of the return values for a Cost function** Returns set of (start\_vid, end\_vid, agg\_-cost)

| Column                                                                                          | Туре   | Description                                                                               |
|-------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------|
| start_vid                                                                                       | BIGINT | Identifier of the starting vertex. Used when multiple starting vetrices are in the query. |
| end_vid BIGINT Identifier of the ending vertex. Used when multiple ending vertices are in the q |        | Identifier of the ending vertex. Used when multiple ending vertices are in the query.     |
| agg_cost                                                                                        | FLOAT  | Aggregate cost from start_vid to end_vid.                                                 |

#### **Additional Examples**

 $\textbf{Example 1} \ \ \textbf{Demonstration of repeated values are ignored, and result is sorted.}$ 

```
SELECT * FROM pgr_dijkstraCost(
       'select id, source, target, cost, reverse_cost from edge_table',
          ARRAY[5, 3, 4, 3, 3, 4], ARRAY[3, 5, 3, 4]);
start_vid | end_vid | agg_cost
-----
       3 | 4 |
3 | 5 |
                          2
       4 |
               3 |
                         1
               5 |
       4 |
                         3
               3 |
       5 I
                          4
       5 I
                4 |
(6 rows)
```

**Example 2** Making *start\_vids* the same as *end\_vids* 

```
SELECT * FROM pgr_dijkstraCost(
      'select id, source, target, cost, reverse_cost from edge_table',
         ARRAY[5, 3, 4], ARRAY[5, 3, 4]);
start_vid | end_vid | agg_cost
-----
       3 |
              4 |
       3 |
               5 |
                         2
       4 |
               3 |
                        1
       4 |
               5 |
                        3
       5 |
               3 |
       5 I
               4 |
(6 rows)
```

#### See Also

- http://en.wikipedia.org/wiki/Dijkstra%27s\_algorithm
- Sample Data network.

#### Indices and tables

- genindex
- search

#### pgr\_dijkstraCostMatrix - proposed

## Name

pgr\_dijkstraCostMatrix - Calculates the a cost matrix using pgr\_dijktras.

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
  - The functions make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might not change. (But still can)
  - Signature might not change. (But still can)
  - Functionality might not change. (But still can)
  - pgTap tests have being done. But might need more.
  - Documentation might need refinement.



Fig. 5.7: Boost Graph Inside

#### Availability: 2.3.0

#### **Synopsis**

Using Dijkstra algorithm, calculate and return a cost matrix.

#### **Signature Summary**

```
pgr_dijkstraCostMatrix(edges_sql, start_vids)
pgr_dijkstraCostMatrix(edges_sql, start_vids, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

#### **Signatures**

## **Minimal Signature**

#### The minimal signature:

• Is for a **directed** graph.

```
pgr_dijkstraCostMatrix(edges_sql, start_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

#### **Example** Cost matrix for vertices 1, 2, 3, and 4.

```
SELECT * FROM pgr_dijkstraCostMatrix(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)
) ;
start_vid | end_vid | agg_cost
         1 |
                   2 |
                              1
         1 |
                   3 |
         1 |
                   4 |
                              5
         2 |
                   1 |
                              1
         2 |
                   3 |
                              5
         2 |
                              4
                   4 |
         3 |
                   1 |
```

```
3 | 2 | 1

3 | 4 | 3

4 | 1 | 3

4 | 2 | 2

4 | 3 | 1

(12 rows)
```

### **Complete Signature**

```
pgr_dijkstraCostMatrix(edges_sql, start_vids, directed:=true)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

**Example** Cost matrix for an undirected graph for vertices 1, 2, 3, and 4.

This example returns a symmetric cost matrix.

```
SELECT * FROM pgr_dijkstraCostMatrix(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
    false
) ;
start_vid | end_vid | agg_cost
        1 |
            2 |
                            1
        1 |
                 3 |
                             2
        1 |
                 4 |
                            3
                 1 |
        2 |
                            1
        2 |
                 3 |
                            1
        2 |
                 4 |
        3 |
                 1 |
                 2 |
        3 |
                            1
        3 |
                 4 |
                            1
        4 |
                 1 |
                            3
        4 |
                 2 |
                            2
        4 |
                  3 |
(12 rows)
```

## **Description of the Signatures**

#### Description of the edges\_sql query for dijkstra like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Type          | Default                                         | Description                                                                                                                        |
|---------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| ANY-INTEGER   |                                                 | Identifier of the edge.                                                                                                            |
| ANY-INTEGER   |                                                 | Identifier of the first end                                                                                                        |
|               |                                                 | point vertex of the edge.                                                                                                          |
| ANY-INTEGER   |                                                 | Identifier of the second end                                                                                                       |
|               |                                                 | point vertex of the edge.                                                                                                          |
| ANY-NUMERICAL |                                                 | Weight of the edge (source, target)                                                                                                |
|               |                                                 | • When negative:                                                                                                                   |
|               |                                                 | edge (source, target)                                                                                                              |
|               |                                                 | does not exist, there-                                                                                                             |
|               |                                                 | fore it's not part of                                                                                                              |
|               |                                                 | the graph.                                                                                                                         |
| ANY-NUMERICAL | -1                                              | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |
|               | ANY-INTEGER ANY-INTEGER ANY-INTEGER ANY-INTEGER | ANY-INTEGER ANY-INTEGER ANY-INTEGER ANY-NUMERICAL                                                                                  |

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

## **Description of the parameters of the signatures**

| - 1 | D-     | <b>T</b>      | Daniel Saltan                                |
|-----|--------|---------------|----------------------------------------------|
|     | Pa-    | Туре          | Description                                  |
|     | rame-  |               |                                              |
|     | ter    |               |                                              |
|     |        |               |                                              |
|     | edges  | TEXT          | Edges SQL query as described above.          |
|     | sql    |               |                                              |
|     | start  | ARRAY[ANY-INT | EAFRy of identifiers of the vertices.        |
|     | vids   |               | -                                            |
|     | di-    | BOOLEAN       | (optional). When false the graph is consider |
|     | rected |               | true which considers the graph as Directed.  |

**Description of the return values for a Cost function** Returns set of (start\_vid, end\_vid, agg\_-cost)

| Column    | Type   | Description                                                                               |
|-----------|--------|-------------------------------------------------------------------------------------------|
| start_vid | BIGINT | Identifier of the starting vertex. Used when multiple starting vetrices are in the query. |
| end_vid   | BIGINT | Identifier of the ending vertex. Used when multiple ending vertices are in the query.     |
| agg_cost  | FLOAT  | Aggregate cost from start_vid to end_vid.                                                 |

#### **Examples**

#### **Example** Use with tsp

```
SELECT * FROM pgr_TSP(
   $$
   SELECT * FROM pgr_dijkstraCostMatrix(
        'SELECT id, source, target, cost, reverse_cost FROM edge_table',
        (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
        false
   )</pre>
```

```
randomize := false
);
seq | node | cost | agg_cost
  1 | 1 | 1 |
      2 |
            1 |
                        1
  3 | 3 |
             1 |
                        2
              3 |
                        3
  4 |
        4 |
  5 |
        1 |
              0 |
(5 rows)
```

## See Also

- Dijkstra Family of functions
- Cost Matrix Category
- Traveling Sales Person Family of functions
- The queries use the Sample Data network.

## Indices and tables

- genindex
- search

# pgr\_drivingDistance

## Name

pgr\_drivingDistance - Returns the driving distance from a start node.



Fig. 5.8: Boost Graph Inside

# **Availability**

- pgr\_drivingDistance(single vertex) 2.0.0, signature change 2.1.0
- pgr\_drivingDistance(multiple vertices) 2.1.0

# **Synopsis**

Using Dijkstra algorithm, extracts all the nodes that have costs less than or equal to the value distance. The edges extracted will conform the corresponding spanning tree.

## **Signature Summary**

```
pgr_drivingDistance(edges_sql, start_vid, distance)
pgr_drivingDistance(edges_sql, start_vid, distance, directed)
pgr_drivingDistance(edges_sql, start_vids, distance, directed, equicost)

RETURNS SET OF (seq, [start_vid,] node, edge, cost, agg_cost)
```

## **Signatures**

#### **Minimal Use**

```
pgr_drivingDistance(edges_sql, start_vid, distance)
RETURNS SET OF (seq, node, edge, cost, agg_cost)
```

# **Driving Distance From A Single Starting Vertex**

```
pgr_drivingDistance(edges_sql, start_vid, distance, directed)
RETURNS SET OF (seq, node, edge, cost, agg_cost)
```

## **Driving Distance From Multiple Starting Vertices**

```
pgr_drivingDistance(edges_sql, start_vids, distance, directed, equicost)
RETURNS SET OF (seq, start_vid, node, edge, cost, agg_cost)
```

#### **Description of the Signatures**

# Description of the edges\_sql query for dijkstra like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Туре          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id           | ANY-INTEGER   |         | Identifier of the edge.                                                                                                            |
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |

# Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

| Col-   | Туре              | Description                                             |
|--------|-------------------|---------------------------------------------------------|
| umn    |                   |                                                         |
| edges_ | - TEXT            | SQL query as described above.                           |
| sql    |                   |                                                         |
| start  | BIGINT            | Identifier of the starting vertex.                      |
| vid    |                   |                                                         |
| start  | ARRAY[ANY-        | I ATTEGRET Identifiers of starting vertices.            |
| vids   |                   |                                                         |
| dis-   | FLOAT             | Upper limit for the inclusion of the node in the result |
| tance  |                   |                                                         |
| di-    | BOOLEAN           | (optional). When false the graph is considered as       |
| rected |                   | which considers the graph as Directed.                  |
| equico | <b>st</b> BOOLEAN | (optional). When true the node will only appear in      |
|        |                   | Default is false which resembles several calls usin     |
|        |                   | signatures. Tie brakes are arbitrarely.                 |

# Description of the parameters of the signatures

**Description of the return values** Returns set of (seq [, start\_v], node, edge, cost, agg\_cost)

| Column    | Туре    | Description                                                                      |  |
|-----------|---------|----------------------------------------------------------------------------------|--|
| seq       | INTEGER | Sequential value starting from 1.                                                |  |
| start_vid | INTEGER | Identifier of the starting vertex.                                               |  |
| node      | BIGINT  | Identifier of the node in the path within the limits from start_vid.             |  |
| edge      | BIGINT  | Identifier of the edge used to arrive to node. 0 when the node is the start_vid. |  |
| cost      | FLOAT   | Cost to traverse edge.                                                           |  |
| agg_cost  | FLOAT   | Aggregate cost from start_vid to node.                                           |  |

## **Additional Examples**

**Examples for queries marked as directed with cost and reverse\_cost columns** The examples in this section use the following *Graph 1: Directed, with cost and reverse cost* 

```
SELECT * FROM pgr_drivingDistance(
        'SELECT id, source, target, cost, reverse_cost FROM edge_table',
        2, 3
     );
seq | node | edge | cost | agg_cost

    1 |
    2 |
    -1 |
    0 |
    0

    2 |
    1 |
    1 |
    1 |
    1

    3 |
    5 |
    4 |
    1 |
    1

    4 |
    6 |
    8 |
    1 |
    2

                        1 |
         6 |
                8 |
   4 |
         8 |
                 7 |
                        1 |
   5 |
                                     2
               10 |
                        1 |
                                    2
       10 |
   6 |
                 6 |
                        1 |
         7 |
                                    3
   7 |
         9 |
   8 |
                 9 |
                        1 |
                                    3
  9 |
       11 |
               12 |
                        1 |
                                     3
 10 | 13 | 14 |
                        1 |
(10 rows)
SELECT * FROM pgr_drivingDistance(
        'SELECT id, source, target, cost, reverse_cost FROM edge_table',
        13, 3
      ) ;
seq | node | edge | cost | agg_cost
----+-----
   1 | 13 | -1 | 0 | 0
                                    1
   2 | 10 | 14 | 1 |
               10 | 1 |
```

```
11 |
           12 | 1 |
  5 I
      2 |
                 1 |
            4 |
                          3
                         3
      6 |
            8 |
                1 |
  6 |
      8 |
            7 |
  7 |
                 1 |
                          3
  8 | 12 | 13 | 1 |
(8 rows)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost, reverse_cost FROM edge_table',
     array[2,13], 3
    );
seq | from_v | node | edge | cost | agg_cost
_____
  1 | 2 | 2 | -1 | 0 | 2 | 1 | 1 | 1 |
                                 1
  3 |
        2 | 5 | 4 | 1 |
        2 | 6 | 8 | 1 |
2 | 8 | 7 | 1 |
  4 |
  5 |
             10 | 10 |
  6 |
        2 |
                         1 |
             7 |
  7 |
        2 |
            9 |
                   6 |
                         1 |
                   9 |
                        1 |
        2 |
  8 |
                  12 |
             11 |
                        1 |
  9 |
        2 |
 10 |
        2 |
            13 | 14 |
                        1 |
                  -1 |
 11 |
       13 |
            13 |
                        0 |
 12 I
       13 | 10 | 14 |
                        1 |
                                 1
 13 |
       13 |
             5 | 10 |
                        1 |
       13 | 11 | 12 |
 14 |
                        1 |
       13 | 2 | 4 | 1 |
 15 I
       13 |
             6 | 8 | 1 |
 16 |
 17 |
       13 |
             8 |
                   7 | 1 |
 18 | 13 | 12 | 13 | 1 |
(18 rows)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost, reverse_cost FROM edge_table',
     array[2,13], 3, equicost:=true
    );
     seq | from_v | node | edge | cost | agg_cost
----+----+----+----+----+
                 -1 | 0 |
1 | 1 |
  1 |
                                 1
  2 |
            1 .
5 | 4 .
1 8 |
  3 |
  4 |
             8 |
                   7 | 1 |
        2 |
  5 |
                  6 | 1 |
  6 |
       2 |
             7 |
  7 |
             9 | 9 | 1 |
        2 |
       13 | 13 | -1 |
 8 |
                       0 1
 9 |
       13 | 10 | 14 | 1 |
                                 1
 10 |
       13 | 11 | 12 |
                        1 |
       13 | 12 | 13 |
 11 |
(11 rows)
```

**Examples for queries marked as undirected with cost and reverse\_cost columns** The examples in this section use the following *Graph 2: Undirected, with cost and reverse cost* 

```
2 | -1 | 0 |
  1 |
  2 |
                 1 |
                           1
       1 |
            1 |
                          1
       3 |
                 1 |
  3 |
            2 |
      5 I
                           1
  4 |
            4 |
                 1 |
  5 |
      4 |
            3 |
                  1 |
  6 |
     6 |
            8 | 1 |
  7 |
            7 | 1 |
      8 |
 8 | 10 | 10 | 1 |
 9 | 7 |
            6 | 1 |
 10 | 9 | 16 | 1 |
 11 | 11 | 12 | 1 |
 12 | 13 | 14 |
                  1 |
(12 rows)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost, reverse_cost FROM edge_table',
      13, 3, false
    );
seq | node | edge | cost | agg_cost
----+-----
           -1 | 0 |
14 | 1 |
     13 |
                 1 |
                          1
  2 | 10 |
       5 | 10 | 1 |
  3 |
           12 |
                  1 |
  4 | 11 |
      2 |
  5 |
            4 |
                  1 |
  6 | 6 |
            8 |
                 1 |
  7 | 8 |
            7 | 1 |
  8 | 12 | 13 | 1 |
(8 rows)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost, reverse_cost FROM edge_table',
      array[2,13], 3, false
    );
seq | from_v | node | edge | cost | agg_cost
1 | 2 | 2 | -1 |
                        0 | 0
        2 | 1 | 1 | 1 |
2 | 3 | 2 | 1 |
2 | 5 | 4 | 1 |
                                  1
  2 |
  3 |
  4 |
                   3 |
              4 |
                         1 |
  5 I
         2 |
                   8 |
                        1 |
              6 |
        2 |
  6 |
             8 |
                   7 |
                         1 |
  7 |
        2 |
                        1 |
        2 |
             10 | 10 |
  8 I
            7 | 6 | 9 | 16 |
                         1 |
        2 |
 9 1
 10 I
        2 |
                         1 |
 11 I
        2 |
            11 | 12 |
                         1 |
 12 |
        2 | 13 | 14 |
                         1 |
       13 | 13 | -1 |
 13 |
                         0 |
       13 | 10 | 14 |
 14 |
                         1 |
                         1 |
 15 I
       13 | 5 | 10 |
 16 |
       13 | 11 | 12 | 1 |
       13 | 2 | 4 |
 17 |
                         1 |
       13 | 6 | 8 | 1 |
 18 I
 19 |
       13 |
              8 |
                   7 | 1 |
 20 |
        13 | 12 | 13 |
                         1 |
(20 rows)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost, reverse_cost FROM edge_table',
      array[2,13], 3, false, equicost:=true
seq | from_v | node | edge | cost | agg_cost
```

```
1 | 2 | 2 | -1 | 0 |
                            1
 2 |
      2 | 1 | 1 | 1 |
      2 | 3 | 2 | 1 |
 3 |
                            1
 4 |
       2 | 5 | 4 |
                     1 |
 5 |
      2 |
           4 | 3 | 1 |
       2 | 6 | 8 | 1 |
 6 |
            8 |
                7 |
6 |
 7 |
       2 |
                     1 |
           7 |
                     1 |
 8 |
       2 |
                     1 |
       2 |
 9 |
            9 | 16 |
           13 |
10 |
      13 |
 10 |
                -1 |
                     0 |
      13 | 10 .

13 | 11 |

11 |
 11 |
                14 |
                     1 |
 12 |
                12 |
                     1 |
 13 |
      13 | 12 | 13 |
                     1 |
(13 rows)
```

# **Examples for queries marked as directed with cost column** The examples in this section use the following *Graph 3: Directed, with cost*

```
SELECT * FROM pgr_drivingDistance(
        'SELECT id, source, target, cost FROM edge_table',
        2, 3
     );
seq | node | edge | cost | agg_cost
  ---+----

    1 |
    2 |
    -1 |
    0 |
    0

    2 |
    5 |
    4 |
    1 |
    1

    3 |
    6 |
    8 |
    1 |
    2

    4 |
    10 |
    10 |
    1 |
    2

                       1 |
  5 |
        9 |
                9 |
              11 |
       11 |
                     1 |
  6 |
                       1 |
  7 | 13 | 14 |
(7 rows)
SELECT * FROM pgr_drivingDistance(
        'SELECT id, source, target, cost FROM edge_table',
       13, 3
seq | node | edge | cost | agg_cost
 1 | 13 | -1 | 0 | 0
(1 row)
SELECT * FROM pgr_drivingDistance(
       'SELECT id, source, target, cost FROM edge_table',
       array[2,13], 3
     );
 seq | from_v | node | edge | cost | agg_cost
----+----+-----
                2 | -1 |
5 | 4 |
6 | 8 |
                               0 |
1 |
                                       0
1
           2 |
          2 |
   2 |
                  6 |
                                1 |
           2 |
   3 |
                       10 |
                                1 |
           2 |
                 10 |
   4 |
                  9 |
                         9 |
                                1 |
  5 I
           2 |
           2 |
                11 | 11 |
                                1 |
   6 I
   7 |
           2 | 13 | 14 | 1 |
  8 |
         13 | 13 | -1 | 0 |
(8 rows)
SELECT * FROM pgr_drivingDistance(
       'SELECT id, source, target, cost FROM edge_table',
```

```
array[2,13], 3, equicost:=true
   );
seq | from_v | node | edge | cost | agg_cost
1 | 2 | 2 | -1 | 0 |
      2 | 5 | 4 | 1 |
                              1
            6 | 8 | 1 |
 3 |
       2 |
       2 | 10 | 10 | 1 |
 4 |
 5 |
       2 | 9 | 9 | 1 |
       2 | 11 | 11 | 1 |
 6 |
      13 | 13 | -1 |
                      0 |
 7 |
(7 rows)
```

# **Examples for queries marked as undirected with cost column** The examples in this section use the following *Graph 4: Undirected, with cost*

```
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost FROM edge_table',
      2, 3, false
    );
seq | node | edge | cost | agg_cost
----+-----
  1 | 2 | -1 | 0 |
  2 | 1 | 1 | 1 |
  3 | 5 | 4 | 1 |
                           1
  4 | 6 | 8 | 1 |
  5 | 8 |
            7 | 1 |
  6 | 10 | 10 | 1 |
  7 | 3 | 5 |
8 | 7 | 6 |
9 | 9 | 9 |
                  1 |
            6 | 9 |
                  1 |
                   1 |
  9 |
 10 |
      11 | 12 |
                   1 |
 11 | 13 |
           14 |
                   1 |
(11 rows)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost FROM edge_table',
      13, 3, false
    ) ;
seq | node | edge | cost | agg_cost
 1 | 13 | -1 | 0 | 0
  2 | 10 | 14 | 1 |
  3 | 5 | 10 | 1 |
  4 | 11 | 12 | 1 |
  5 | 2 | 4 | 1 |
  6 | 6 | 8 | 1 |
                           3
                           3
  7 | 8 |
            7 | 1 |
  8 | 12 | 13 |
                  1 |
(8 rows)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost FROM edge_table',
      array[2,13], 3, false
    );
seq | from_v | node | edge | cost | agg_cost
_____
     2 | 2 | -1 | 0 | 0
2 | 1 | 1 | 1 | 1
2 | 5 | 4 | 1 | 1
  1 |
  2 |
  3 1
  4 |
        2 | 6 | 8 | 1 |
```

```
2 |
                          1 |
              10 |
                   10 |
                                  2
  6 |
         2 |
                          1 |
  7 |
         2 |
              3 |
                   5 I
                          1 |
                   6 |
  8 |
         2 |
              7 |
                         1 |
                                  3
  9 |
        2 |
              9 |
                   9 |
                         1 |
        2 |
            11 |
 10 |
                  12 |
                         1 |
        2 |
            13 | 14 |
                                  3
 11 |
                         1 |
 12 |
       13 | 13 |
                   -1 |
                         0 |
 13 |
        13 | 10 | 14 |
                         1 |
                                  1
 14 |
        13 |
             5 | 10 |
                         1 |
        13 | 11 | 12 |
 15 |
                         1 |
                                  3
        13 | 2 | 4 |
                         1 |
 16 I
        13 |
             6 | 8 |
                         1 |
 17 |
        13 |
              8 |
                   7 |
                         1 |
                                  3
 18 |
 19 |
        13 | 12 | 13 |
                         1 |
(19 rows)
SELECT * FROM pgr_drivingDistance(
      'SELECT id, source, target, cost FROM edge_table',
      array[2,13], 3, false, equicost:=true
seq | from_v | node | edge | cost | agg_cost
_____
        2 |
                                 0
  1 |
              2 |
                  -1 |
                         0 |
       2 |
            1 | 1 |
                        1 |
                                 1
  2 |
             5 | 4 |
  3 |
        2 |
                         1 |
                                 1
        2 |
             6 | 8 |
  4 |
                         1 |
        2 |
             8 |
                   7 I
  5 I
                        1 |
        2 |
              3 | 5 | 1 |
  6 |
  7 |
        2 |
             7 | 6 | 1 |
  8 |
        2 |
              9 | 9 | 1 |
       13 | 13 | -1 |
  9 |
                         0 |
                                  0
 10 |
       13 | 10 | 14 |
                         1 |
                                  1
                   12 |
 11 |
        13 | 11 |
                          1 |
                                  2
        13 |
                          1 |
                                  3
            12 |
                   13 I
 12 |
(12 rows)
```

#### See Also

- pgr\_alphaShape Alpha shape computation
- pgr\_pointsAsPolygon Polygon around set of points
- Sample Data network.

## Indices and tables

- genindex
- · search

# pgr KSP

## Name

 $pgr_KSP$  — Returns the "K" shortest paths.



Fig. 5.9: Boost Graph Inside

# Availability: 2.0.0

• Signature change 2.1.0

# **Synopsis**

The K shortest path routing algorithm based on Yen's algorithm. "K" is the number of shortest paths desired.

# **Signature Summary**

```
pgr_KSP(edges_sql, start_vid, end_vid, K);
pgr_KSP(edges_sql, start_vid, end_vid, k, directed, heap_paths)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

## **Signatures**

# **Minimal Signature**

```
pgr_ksp(edges_sql, start_vid, end_vid, K);
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

# **Complete Signature**

```
pgr_KSP(edges_sql, start_vid, end_vid, k, directed, heap_paths)

RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

# **Description of the Signatures**

# Description of the edges\_sql query for dijkstra like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Туре          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id           | ANY-INTEGER   |         | Identifier of the edge.                                                                                                            |
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

|                                                 | start_   | DIGINI | identifier of the startif |
|-------------------------------------------------|----------|--------|---------------------------|
|                                                 | vid      |        |                           |
| Description of the parameters of the signatures | end_vid  | BIGINT | Identifier of the endin   |
|                                                 | k        | INTEGE | RThe desiered number      |
|                                                 | directed | BOOLEA | N(optional). When fal     |

| sql      |                                                             |                                                            |  |
|----------|-------------------------------------------------------------|------------------------------------------------------------|--|
| start    | BIGINT                                                      | Identifier of the starting vertex.                         |  |
| vid      |                                                             |                                                            |  |
| end_vid  | BIGINT                                                      | Identifier of the ending vertex.                           |  |
| k        | INTEGE                                                      | RThe desiered number of paths.                             |  |
| directed | BOOLEAN(optional). When false the graph is considered as Un |                                                            |  |
|          |                                                             | which considers the graph as Directed.                     |  |
| heap     | BOOLEA                                                      | N(optional). When true returns all the paths stored in the |  |
| paths    |                                                             | false which only returns k pahts.                          |  |

SQL query as described above.

Description

Roughly, if the shortest path has N edges, the heap will contain about than N  $\,\star\,\,$  k paths for small value of k and k  $\,>\,$  1.

Column

edges\_-

Type

TEXT

| Col- | Type   | Description                                                                                     |  |
|------|--------|-------------------------------------------------------------------------------------------------|--|
| umn  |        |                                                                                                 |  |
| seq  | INTEGE | R Sequential value starting from 1.                                                             |  |
| path | INTEGE | Relative position in the path of node and edge. Has value 1 for the beginning of a path.        |  |
| seq  |        |                                                                                                 |  |
| path | BIGINT | Path identifier. The ordering of the paths For two paths i, j if $i < j$ then $agg\_cost(i) <=$ |  |
| id   |        | agg_cost(j).                                                                                    |  |
| node | BIGINT | Identifier of the node in the path.                                                             |  |
| edge | BIGINT | Identifier of the edge used to go from node to the next node in the path sequence1              |  |
|      |        | for the last node of the route.                                                                 |  |
| cost | FLOAT  | Cost to traverse from node using edge to the next node in the path sequence.                    |  |
| agg  | FLOAT  | Aggregate cost from start_vid to node.                                                          |  |
| cost |        |                                                                                                 |  |

**Warning:** During the transition to 3.0, because pgr\_ksp version 2.0 doesn't have defined a directed flag nor a heap\_path flag, when pgr\_ksp is used with only one flag version 2.0 signature will be used.

## **Additional Examples**

**Examples to handle the one flag to choose signatures** The examples in this section use the following *Graph* 1: Directed, with cost and reverse cost

```
SELECT * FROM pgr_KSP(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
     2, 12, 2,
     directed:=true
  );
seq | path_id | path_seq | node | edge | cost | agg_cost
____+
               1 | 2 | 4 | 1 |
2 | 5 | 8 | 1 |
3 | 6 | 9 | 1 |
      1 |
1 |
  1 |
  2 |
          1 |
  3 |
 1 | 1 | 6 | 2 | 7 | 2 | 8 | 2 | 9 |
                    4 | 9 | 15 | 1 |
                    5 | 12 | -1 | 0 |
                    1 |
                          2 | 4 | 1 |
                    2 | 5 | 8 | 1 |
                    3 | 6 | 11 | 1 |
  9 |
          2 |
                    4 | 11 | 13 | 1 |
 10 |
          2 |
                   5 | 12 | -1 |
                                       0 |
(10 rows)
SELECT * FROM pgr_KSP(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
     2, 12, 2
  ) ;
seq | path_id | path_seq | node | edge | cost | agg_cost

    1 |
    1 |
    2 |
    4 |
    1 |

    1 |
    2 |
    5 |
    8 |
    1 |

    1 |
    3 |
    6 |
    9 |
    1 |

  1 | 1 |
2 | 1 |
                                 9 |
  3 |
 1 |
                         9 |
                                15 |
                    4 |
                                      0 |
                    5 | 12 | -1 |
                                       1 |
                    1 |
                          2 | 4 |
                                                  0
                          5 |
                                 8 |
                                       1 |
                    2 |
                                                  1
          2 |
                    3 I
                          6 | 11 |
                                       1 |
                                                  2
                    4 | 11 | 13 |
          2 |
                                       1 |
          2 | 5 | 12 |
                                 -1 |
                                       0 |
(10 rows)
```

**Examples for queries marked as directed with cost and reverse\_cost columns** The examples in this section use the following *Graph 1: Directed, with cost and reverse cost* 

```
SELECT * FROM pgr_KSP(
         'SELECT id, source, target, cost, reverse_cost FROM edge_table',
           2, 12, 2
      );
 seq | path_id | path_seq | node | edge | cost | agg_cost
1 | 1 | 1 | 2 | 4 | 1 | 0
2 | 1 | 3 | 6 | 9 | 1 | 2
4 | 1 | 4 | 9 | 15 | 1 | 3
5 | 1 | 5 | 12 | -1 | 0 | 4
6 | 2 | 1 | 2 | 5 | 8 | 1 | 1
8 | 2 | 3 | 6 | 11 | 1 | 2
9 | 2 | 4 | 11 | 13 | 1 | 3
10 | 2 | 5 | 12 | -1 | 0 | 4
(10 rows)
 ______
SELECT * FROM pgr_KSP(
          'SELECT id, source, target, cost, reverse_cost FROM edge_table',
           2, 12, 2, heap_paths:=true
  seq | path_id | path_seq | node | edge | cost | agg_cost
 ____+

      1 |
      1 |
      2 |
      4 |
      1 |
      0

      2 |
      1 |
      2 |
      5 |
      8 |
      1 |
      1

     2 | 1 | 3 |
  3 | 1 | 1 | 3 | 6 | 9 | 4 | 1 | 1 | 4 | 9 | 15 | 5 | 12 | -1 | 6 | 7 | 7 | 2 | 2 | 5 | 8 | 8 | 8 | 2 | 3 | 6 | 11 | 13 | 10 | 2 | 5 | 12 | -1 | 11 | 13 | 12 | 4 | 11 | 13 | 12 | 14 | 3 | 3 | 3 | 10 | 12 | 14 | 15 | 3 | 5 | 12 | -1 | 15 rows)
                                          3 | 6 |
                                                                     9 | 1 |
                                                       9 | 15 | 1 |
                                          5 | 12 | -1 | 0 |
                                          1 | 2 | 4 | 1 |
2 | 5 | 8 | 1 |
3 | 6 | 11 | 1 |
                                                                                                       0
                                                                             1 | 0 |
                                                                              0 .
1 |
1 |
                                                                                                       0
                                                                                                       1
                                                                                 1 |
                                                                               1 |
                                                                               0 |
 (15 rows)
SELECT * FROM pgr_KSP(
         'SELECT id, source, target, cost, reverse_cost FROM edge_table',
           2, 12, 2, true, true
     );
  seq | path_id | path_seq | node | edge | cost | agg_cost

      1 | 1 | 1 | 1 | 2 | 4 | 1 | 0

      2 | 1 | 1 | 2 | 5 | 8 | 1 | 1

      3 | 1 | 3 | 6 | 9 | 1 | 2

      4 | 1 | 1 | 4 | 9 | 15 | 1 | 3

      5 | 1 | 5 | 12 | -1 | 0 | 4

      6 | 2 | 1 | 2 | 4 | 1 | 0

      7 | 2 | 2 | 5 | 8 | 1 | 1

      8 | 2 | 3 | 6 | 11 | 1 | 1 | 2

      9 | 2 | 4 | 11 | 13 | 1 | 3

      10 | 2 | 5 | 12 | -1 | 0 | 4

      11 | 3 | 1 | 1 | 1 | 1 | 1 | 1

      10 | 2 | 5 | 12 | -1 | 0 | 4

      11 | 3 | 1 | 2 | 4 | 1 | 0

      12 | 3 | 2 | 5 | 10 | 1 | 1

      13 | 3 | 10 | 12 | 1 | 2

 ______
```

```
14 | 3 | 4 | 11 | 13 | 1 | 3
15 | 3 | 5 | 12 | -1 | 0 | 4
(15 rows)
```

**Examples for queries marked as undirected with cost and reverse\_cost columns** The examples in this section use the following *Graph 2: Undirected, with cost and reverse cost* 

```
SELECT * FROM pgr_KSP(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
     2, 12, 2, directed:=false
  );
seq | path_id | path_seq | node | edge | cost | agg_cost
          1 | 2 |
1 | 2 | 3 |
1 | 3 | 4 |
                                2 |
3 |
                                      1 |
1 |
1 |
  1 |
  2 |
                            3 |
          1 |
                     3 |
  3 |
                                  16 |
                                         1 |
                           9 |
          1 |
  4 |
                     4 |
                                  15 I
                                         1 |
          1 |
                     5 I
                          12 |
  5 |
                                 -1 |
                                        0 |
          2 |
                                        1 |
                     1 |
                           2 |
                                  4 |
  6 |
                     2 |
  7 |
          2 |
                           5 I
                                 8 |
                                        1 |
                                                  1
          2 |
  8 |
                     3 |
                           6 |
                                        1 |
                                11 |
 9 |
10 |
          2 |
                    4 | 11 |
                                       1 |
                                 13 |
          2 |
                    5 | 12 |
                                  -1 |
                                        0 |
(10 rows)
SELECT * FROM pgr_KSP(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
     2, 12, 2, false, true
  );
seq | path_id | path_seq | node | edge | cost | agg_cost
____+
  1 | 1 | 2 | 2 | 1 |
  2 |
          1 |
                     2 | 3 |
                                  3 | 1 |
                                                   1
  3 |
                     3 |
                           4 |
                                  16 | 1 |
           1 |
          1 |
  4 |
                     4 |
                           9 |
                                  15 |
                                         1 |

    4 |
    1 |

    5 |
    1 |

    6 |
    2 |

    7 |
    2 |

    8 |
    2 |

    9 |
    2 |

    10 |
    2 |

    11 |
    3 |

    12 |
    3 |

    13 |
    3 |

                     5 | 12 |
                                 -1 |
                                         0 |
                     1 | 2 |
2 | 5 |
                                  4 |
                                         1 |
                                  8 |
                     2 |
                                        1 |
                                                   1
                     3 |
                           6 |
                                        1 |
                                 11 |
                         11 |
                     4 |
                                 13 I
                                        1 |
                     5 | 12 |
                                 -1 |
                                        0 |
                     1 |
                                  4 |
                           2 |
                                        1 |
                                                  0
                    2 | 5 |
                                 10 |
                                        1 |
                                                  1
                     3 | 10 |
                                12 I
                                        1 |
 14 |
          3 |
                     4 | 11 |
                                13 I
                                        1 |
                                                  3
                                        0 |
          3 |
                    5 | 12 |
                                 -1 |
 15 |
 16 |
          4 |
                    1 | 2 |
                                  4 |
                                        1 |
 17 I
          4 |
                    2 | 5 | 10 |
                                        1 |
 18 |
          4 |
                     3 | 10 | 12 |
                                        1 |
          4 |
                     4 | 11 | 11 |
                                        1 |
                                                  3
 19 |
 20 |
           4 |
                    5 | 6 |
                                  9 |
                                        1 |
                                                   4
 21 |
           4 |
                     6 |
                           9 |
                                  15 I
                                        1 |
                                                   5
 22 |
           4 |
                     7 | 12 |
                                  -1 |
                                         0 |
(22 rows)
```

**Examples for queries marked as directed with cost column** The examples in this section use the following *Graph 3: Directed, with cost* 

```
SELECT * FROM pgr_KSP(
         'SELECT id, source, target, cost FROM edge_table',
seq | path_id | path_seq | node | edge | cost | agg_cost
SELECT * FROM pgr_KSP(
     'SELECT id, source, target, cost FROM edge_table',
 seq | path_id | path_seq | node | edge | cost | agg_cost

    1 |
    1 |
    1 |
    2 |
    4 |
    1 |

    2 |
    1 |
    2 |
    5 |
    8 |
    1 |

    3 |
    1 |
    3 |
    6 |
    9 |
    1 |

    4 |
    1 |
    4 |
    9 |
    15 |
    1 |

                                                                             1 |
                    1 |
                                                                15 |
                                         4 | 9 |
5 | 12 |
                1 |
1 |
2 |
2 |
2 |
                                                                             0 |
                                                                  -1 |
    5 I
                                                                             1 |
                                         1 |
                                                      2 | 4 |
    6 |
                                         2 | 5 | 8 |
    7 |
                                                                             1 |
                                         3 | 6 | 11 |
                                                                             1 |
   8 |
                                    4 | 11 | 13 | 1 |
  9 |
                    2 |
                     2 |
                                        5 | 12 | -1 | 0 |
(10 rows)
SELECT * FROM pgr_KSP(
       'SELECT id, source, target, cost FROM edge_table',
         2, 12, 2, heap_paths:=true
 seq | path_id | path_seq | node | edge | cost | agg_cost

        1 | 1 | 1 | 2 | 4 | 1 |

        2 | 1 | 2 | 5 | 8 | 1 |

        3 | 1 | 3 | 6 | 9 | 1 |

        4 | 1 | 5 | 12 | -1 | 0 |

        6 | 2 | 1 | 2 | 4 | 1 |

        7 | 2 | 2 | 5 | 8 | 1 |

        8 | 2 | 1 | 1 | 2 | 4 | 1 |

        9 | 2 | 5 | 8 | 1 |

        1 | 2 | 4 | 1 |

        1 | 2 | 4 | 1 |

        2 | 3 | 6 | 11 | 1 |

        1 | 1 | 2 | 4 | 1 |

        2 | 3 | 6 | 11 | 1 |

        1 | 1 | 1 | 1 |

        2 | 3 | 6 | 11 | 1 |

        3 | 6 | 11 | 1 |

        4 | 11 | 13 | 1 |

        5 | 12 | -1 | 0 |

        11 | 3 | 1 | 2 | 4 | 1 |

        12 | 5 | 10 | 1 |

        13 | 3 | 3 | 10 | 12 | 1 |

        14 | 3 | 4 | 11 | 13 | 1 |

____+
                                                                                                    1
                    3 |
                                        4 | 11 | 13 | 1 |
  14 |
  15 |
                     3 | 5 | 12 | -1 | 0 |
(15 rows)
SELECT * FROM pgr_KSP(
    'SELECT id, source, target, cost FROM edge_table',
          2, 12, 2, true, true
    );
 seq | path_id | path_seq | node | edge | cost | agg_cost

    1 |
    1 |
    1 |
    2 |
    4 |
    1 |

    2 |
    1 |
    2 |
    5 |
    8 |
    1 |

    3 |
    1 |
    3 |
    6 |
    9 |
    1 |

    4 |
    1 |
    4 |
    9 |
    15 |
    1 |

    5 |
    1 |
    5 |
    12 |
    -1 |
    0 |

    6 |
    2 |
    1 |
    2 |
    4 |
    1 |

                                                                             1 |
1 |
0 |
1 |
                                         4 | 9 |
5 | 12 |
1 | 2 |
                   2 | 2 |
                                        1 | 2 | 4 |
2 | 5 | 8 |
     6 |
                                                                               1 |
     7 |
                                                                                                    1
                     2 |
                                         3 | 6 | 11 |
                                                                             1 |
     8 |
```

```
2 | 4 | 11 |
2 | 5 | 12 |
3 | 1 | 2 |
                              13 | 1 |
                                    0 |
 10 |
                              -1 |
                                              4
                  1 | 2 | 2 | 5 |
                              4 |
                                    1 |
 11 |
                                              0
 12 |
         3 |
                              10 |
                                    1 |
                                               1
                   3 | 10 |
13 |
         3 |
                             12 |
                                    1 |
         3 |
                   4 | 11 |
14 |
                             13 |
                                    1 |
                                              3
15 |
         3 |
                  5 | 12 |
                              -1 |
                                    0 |
(15 rows)
```

**Examples for queries marked as undirected with cost column** The examples in this section use the following *Graph 4: Undirected, with cost* 

```
SELECT * FROM pgr_KSP(
       'SELECT id, source, target, cost FROM edge_table',
        2, 12, 2, directed:=false
   );
 seq | path_id | path_seq | node | edge | cost | agg_cost
____+
          1 | 1 | 2 | 4 | 1 |
1 | 2 | 5 | 8 | 1 |
   1 |
    2 |
               1 |
                               3 | 6 |
                                                  9 | 1 |
    3 |
               1 |
                               4 | 9 | 15 | 1 |
    4 |

      4 |
      1 |
      3 |
      0 |

      5 |
      1 |
      5 |
      12 |
      -1 |
      0 |

      6 |
      2 |
      1 |
      2 |
      4 |
      1 |

      7 |
      2 |
      2 |
      5 |
      8 |
      1 |

      8 |
      2 |
      3 |
      6 |
      11 |
      1 |

      9 |
      2 |
      4 |
      11 |
      13 |
      1 |

      10 |
      2 |
      5 |
      12 |
      -1 |
      0 |

  9 |
10 |
(10 rows)
SELECT * FROM pgr_KSP(
      'SELECT id, source, target, cost FROM edge_table',
        2, 12, 2, directed:=false, heap_paths:=true
   );
 seq | path_id | path_seq | node | edge | cost | agg_cost
                       1 | 2 | 4 | 1 |
2 | 5 | 8 | 1 |
3 | 6 | 9 | 1 |
               1 |
    1 |
               1 |
    2 |
                                                                            1
               1 |
                              3 | 6 | 4 | 9 |
                                                  9 |
                                                           1 |
    3 |

    3 |
    1 |

    4 |
    1 |

    5 |
    1 |

    6 |
    2 |

    7 |
    2 |

    8 |
    2 |

    9 |
    2 |

                                                           1 |
                                                15 |
                            5 | 12 |
                                                          0 |
                                                  -1 |
                              1 | 2 | 4 | 2 | 5 | 8 |
                                                           1 |
                                                                           0
                                                           1 |
                                                                           1
                               3 | 6 | 11 |
                                                           1 |
                              4 | 11 | 13 |
                                                           1 |
                            5 | 12 | -1 | 1 | 2 | 4 |
                                                           0 |
  10 |
              2 |
  11 |
               3 |
                                                           1 |
  12 |
               3 |
                              2 | 5 | 10 |
                                                           1 |
                                                                           1
               3 |
                               3 | 10 | 12 |
  13 |
                                                          1 |
  14 |
               3 |
                              4 | 11 | 13 |
                                                          1 |
                                                                           3
               3 |
                               5 | 12 |
                                                            0 |
  15 |
                                                  -1 |
(15 rows)
```

#### See Also

- http://en.wikipedia.org/wiki/K\_shortest\_path\_routing
- Sample Data network.

#### Indices and tables

- genindex
- · search

# pgr\_dijkstraVia - Proposed

#### Name

pgr\_dijkstraVia — Using dijkstra algorithm, it finds the route that goes through a list of vertices.



Fig. 5.10: Boost Graph Inside

#### Availability: 2.2.0

# **Synopsis**

Given a list of vertices and a graph, this function is equivalent to finding the shortest path between  $vertex_i$  and  $vertex_{i+1}$  for all  $i < size\_of(vertex_via)$ .

The paths represents the sections of the route.

**Note:** This is a proposed function

# **Signatrue Summary**

```
pgr_dijkstraVia(edges_sql, via_vertices)
pgr_dijkstraVia(edges_sql, via_vertices, directed, strict, U_turn_on_edge)

RETURNS SET OF (seq, path_pid, path_seq, start_vid, end_vid,
node, edge, cost, agg_cost, route_agg_cost) or EMPTY SET
```

## **Signatures**

# **Minimal Signature**

```
pgr_dijkstraVia(edges_sql, via_vertices)
RETURNS SET OF (seq, path_pid, path_seq, start_vid, end_vid,
node, edge, cost, agg_cost, route_agg_cost) or EMPTY SET
```

## **Example** Find the route that visits the vertices 1 3 9 in that order

| 2         | 1 | 2 | 1 | 3 | 2 | 4  | 1 | 1 |
|-----------|---|---|---|---|---|----|---|---|
| 3         | 1 | 3 | 1 | 3 | 5 | 8  | 1 | 2 |
| 4         | 1 | 4 | 1 | 3 | 6 | 9  | 1 | 3 |
| 5         | 1 | 5 | 1 | 3 | 9 | 16 | 1 | 4 |
| 6         | 1 | 6 | 1 | 3 | 4 | 3  | 1 | 5 |
| 7         | 1 | 7 | 1 | 3 | 3 | -1 | 0 | 6 |
| 8         | 2 | 1 | 3 | 9 | 3 | 5  | 1 | 0 |
| 9         | 2 | 2 | 3 | 9 | 6 | 9  | 1 | 1 |
| 10        | 2 | 3 | 3 | 9 | 9 | -2 | 0 | 2 |
| (10 rows) |   |   |   |   |   |    |   |   |
|           |   |   |   |   |   |    |   |   |

# **Complete Signature**

```
pgr_dijkstraVia(edges_sql, via_vertices, directed, strict, U_turn_on_edge)
RETURNS SET OF (seq, path_pid, path_seq, start_vid, end_vid,
node, edge, cost, agg_cost, route_agg_cost) or EMPTY SET
```

# **Example** Find the route that visits the vertices 1 3 9 in that order on an undirected graph, avoiding U-turns when possible

```
SELECT * FROM pgr_dijkstraVia(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
  ARRAY[1, 3, 9], false, strict:=true, U_turn_on_edge:=false
);
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
1 |
                                      2 |
                          1 |
                                                           0 |
  1 |
        1 |
                                   3 |
                                            1 |
                                                   1 |
               1 |
2 |
                                3 |
3 |
        1 |
                         1 |
                                                          1 |
                                            2 |
                                                  1 |
  2 |
                                                                         1
                 3 |
        1 |
                                        3 |
                                                           2 |
  3 |
                          1 |
                                  3 I
                                            -1 |
                                                                         2
                                                  0 |
                 1 |
                          3 |
                                            5 |
                                                                         2
  4 |
        2 |
                                  9 |
                                        3 |
                                                  1 |
                                                           0 1
                          3 |
                                        6 |
                                                                         3
  5 I
         2 |
                 2 |
                                  9 1
                                            9 I
                                                   1 |
                                                            1 I
                 3 |
                          3 |
                                   9 |
  6 I
         2 |
                                        9 |
                                             -2 I
                                                   0 |
                                                            2 |
(6 rows)
```

## **Description of the Signature**

# Description of the edges\_sql query for dijkstra like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Туре          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id           | ANY-INTEGER   |         | Identifier of the edge.                                                                                                            |
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |

# Where:

**ANY-INTEGER** SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

| Parameter      | Туре               | Default |
|----------------|--------------------|---------|
| edges_sql      | TEXT               |         |
| via_vertices   | ARRAY[ANY-INTEGER] |         |
| directed       | BOOLEAN            | true    |
| strict         | BOOLEAN            | false   |
| U_turn_on_edge | BOOLEAN            | true    |
|                |                    |         |
|                |                    |         |
|                |                    |         |

| Param-   | Туре       | Description                                           |
|----------|------------|-------------------------------------------------------|
| eter     |            |                                                       |
| edges    | TEXT       | SQL query as described above.                         |
| sql      |            |                                                       |
| via      | ARRAY[ANY- | IAITEGERIETICES identifiers                           |
| vertices |            |                                                       |
| di-      | BOOLEAN    | (optional) Default is true (is directed). When set to |
| rected   |            | as Undirected                                         |
| strict   | BOOLEAN    | (optional) ignores if a subsection of the route is m  |
|          |            | found Default is true (is directed). When set to fal  |
|          |            | Undirected                                            |
| U        | BOOLEAN    | (optional) Default is true (is directed). When set to |
| turn     |            | as Undirected                                         |
| on       |            |                                                       |
| edge     |            |                                                       |

# **Description of the parameters of the signatures**

**Description of the return values** Returns set of (start\_vid, end\_vid, agg\_cost)

| Column    | Туре  | Description                                                                                  |  |  |
|-----------|-------|----------------------------------------------------------------------------------------------|--|--|
| seq       | BIGIN | TSequential value starting from 1.                                                           |  |  |
| path_pid  | BIGIN | BIGIN TIdentifier of the path.                                                               |  |  |
| path_seq  | BIGIN | TSequential value starting from 1 for the path.                                              |  |  |
| start_vid | BIGIN | Tidentifier of the starting vertex of the path.                                              |  |  |
| end_vid   | BIGIN | IGIN TIdentifier of the ending vertex of the path.                                           |  |  |
| node      | BIGIN | GIN Tidentifier of the node in the path from start_vid to end_vid.                           |  |  |
| edge      | BIGIN | BIGIN Identifier of the edge used to go from node to the next node in the path sequence1 for |  |  |
|           |       | the last node of the path2 for the last node of the route.                                   |  |  |
| cost      | FLOAT | FLOAT Cost to traverse from node using edge to the next node in the route sequence.          |  |  |
| agg_cost  | FLOAT | FLOAT Total cost from start_vid to end_vid of the path.                                      |  |  |
| route     | FLOAT | Total cost from start_vid of path_pid = 1 to end_vid of the current                          |  |  |
| agg_cost  |       | path_pid.                                                                                    |  |  |

## **Examples**

**Example 1** Find the route that visits the vertices 1 5 3 9 4 in that order

```
SELECT * FROM pgr_dijkstraVia(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
   ARRAY[1, 5, 3, 9, 4]
);
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
1 |
  1 |
              1 |
                          1 | 5 |
                                      1 |
                                            1 |
                                                   1 |
                                                       0 |
        1 |
                                            4 |
                 2 |
                          1 |
                                   5 |
                                        2 |
                                                                         1
  2 |
                                                   1 |
                                                            1 |
                          1 |
                                  5 I
        1 |
                                       5 I
                                             -1 |
                                                           2 |
                 3 |
                                                                         2
  3 |
                                                   0 |
                                  3 |
  4 |
        2 |
                                        5 |
                                            8 |
                 1 |
                          5 |
                                                   1 |
                                                                         2
                                                           0 |
                                            9 |
  5 |
        2 |
                                  3 |
                                       6 |
                                                            1 |
                                                                         3
                 2 |
                          5 |
                                                   1 |
                           5 |
        2 |
                                                                         4
  6 I
                 3 I
                                  3 I
                                        9 |
                                            16 I
                                                   1 |
                                                            2 |
  7 |
                 4 |
                           5 I
                                   3 |
                                                                         5
         2 |
                                        4 |
                                            3 I
                                                   1 |
                                                            3 |
  8 |
         2 |
                 5 I
                          5 |
                                  3 |
                                        3 | -1 |
                                                   0 |
                                                            4 |
  9 |
         3 |
                 1 |
                          3 |
                                   9 |
                                        3 | 5 |
                                                   1 |
                                                            0 |
                                                                         6
                                                                         7
 10 |
         3 |
                 2 |
                           3 |
                                   9 |
                                        6 | 9 |
                                                   1 |
                                                            1 |
                           3 |
                                                                         8
 11 |
         3 |
                 3 |
                                   9 |
                                        9 | -1 |
                                                   0 |
                                                            2 |
                           9 |
                                        9 | 16 |
                                                                         8
         4 |
                                                            0 |
 12 |
                 1 |
                                   4 |
                                                   1 |
                           9 |
          4 |
 13 |
                  2 |
                                   4 |
                                         4 |
                                             -2 |
                                                   0 |
                                                            1 |
(13 rows)
```

**Example 2** What's the aggregate cost of the third path?

# **Example 3** What's the route's aggregate cost of the route at the end of the third path?

# **Example 4** How are the nodes visited in the route?

```
SELECT row_number() over () as node_seq, node
FROM pgr_dijkstraVia(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
   ARRAY[1, 5, 3, 9, 4]
WHERE edge <> -1 ORDER BY seq;
node_seq | node
      1 | 1
       2 | 2
       3 |
       4 |
       5 |
             9
       6 |
             4
       7 |
             3
       8 |
             6
       9 |
              9
      10 I
(10 rows)
```

# **Example 5** What are the aggregate costs of the route when the visited vertices are reached?

**Example 6** show the route's seq and aggregate cost and a status of "passes in front" or "visits" node

9

#### See Also

- http://en.wikipedia.org/wiki/Dijkstra%27s\_algorithm
- Sample Data network.

#### Indices and tables

- genindex
- · search

# The problem definition (Advanced documentation)

```
Given the following query:
```

```
\begin{split} & \text{pgr\_dijkstra}(sql, start_{vid}, end_{vid}, directed) \\ & \text{where } sql = \{(id_i, source_i, target_i, cost_i, reverse\_cost_i)\} \\ & \text{and} \end{split}
```

- $source = \bigcup source_i$ ,
- $target = \bigcup target_i$ ,

The graphs are defined as follows:

# **Directed graph**

The weighted directed graph,  $G_d(V, E)$ , is definied by:

- ullet the set of vertices V
  - $V = source \cup target \cup start_{vid} \cup end_{vid}$
- ullet the set of edges E

$$-E = \begin{cases} & \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} \\ & \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} \\ & \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} \\ & \{(target_i, source_i, reverse\_cost_i) \text{ when } reverse\_cost_i >= 0)\} \end{cases}$$
 if  $reverse\_cost \neq$ 

# **Undirected graph**

The weighted undirected graph,  $G_u(V, E)$ , is definied by:

- the set of vertices V
  - $V = source \cup target \cup start_vvid \cup end_{vid}$
- $\bullet$  the set of edges E

$$\begin{cases} \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} \\ \{(target_i, source_i, cost_i) \text{ when } cost >= 0\} \\ \text{if } reverse\_cost = \end{cases}$$

$$\begin{cases} \{(source_i, target_i, cost_i) \text{ when } cost >= 0\} \\ \{(target_i, source_i, cost_i) \text{ when } cost >= 0\} \\ \{(target_i, source_i, cost_i) \text{ when } cost >= 0\} \\ \{(target_i, source_i, reverse\_cost_i) \text{ when } reverse\_cost_i >= 0)\} \\ \{(source_i, target_i, reverse\_cost_i) \text{ when } reverse\_cost_i >= 0)\} \\ \text{if } reverse\_cost \neq \end{cases}$$

## The problem

Given:

- $start_{vid} \in V$  a starting vertex
- $end_{vid} \in V$  an ending ver

• 
$$G(V, E) = \begin{cases} G_d(V, E) & \text{if } directed = true \\ G_u(V, E) & \text{if } directed = false \end{cases}$$

Then:

Then: 
$$\text{pgr\_dijkstra}(sql, start_{vid}, end_{vid}, directed) = \begin{cases} \text{shortest path } \pmb{\pi} \text{ between } start_{vid} \text{and } end_{vid} & \text{ if } \exists \pmb{\pi} \\ & \text{ otherwise} \end{cases}$$

 $\boldsymbol{\pi} = \{(path\_seq_i, node_i, edge_i, cost_i, agg\_cost_i)\}$ 

where:

- $path\_seq_i = i$
- $path\_seq_{|\pi|} = |\pi|$
- $node_i \in V$
- $node_1 = start_{vid}$

$$\begin{aligned} & \cdot \; node_{|\pi|} = star t_{vid} \\ & \cdot \; node_{|\pi|} = end_{vid} \\ & \cdot \; \forall i \neq |\pi|, \quad (node_i, node_{i+1}, cost_i) \in E \\ & \cdot \; edge_i = \begin{cases} id_{(node_i, node_{i+1}, cost_i)} & \text{when } i \neq |\pi| \\ -1 & \text{when } i = |\pi| \end{cases}$$

•  $cost_i = cost_{(node_i, node_{i+1})}$ 

• 
$$agg\_cost_i = \begin{cases} 0 & \text{when } i = 1 \\ \sum_{k=1}^{i} cost_{(node_{k-1}, node_k)} & \text{when } i \neq 1 \end{cases}$$

In other words: The algorithm returns a the shortest path between  $start_{vid}$  and  $end_{vid}$ , if it exists, in terms of a sequence of

- path\_seq indicates the relative position in the path of the node or edge.
- cost is the cost of the edge to be used to go to the next node.
- $agg\_cost$  is the cost from the  $start_{vid}$  up to the node.

If there is no path, the resulting set is empty.

# 5.1.5 pgr trsp - Turn Restriction Shortest Path (TRSP)

#### Name

pgr\_trsp — Returns the shortest path with support for turn restrictions.

# **Synopsis**

The turn restricted shorthest path (TRSP) is a shortest path algorithm that can optionally take into account complicated turn restrictions like those found in real world navigable road networks. Performance wise it is nearly as fast as the  $A^*$  search but has many additional features like it works with edges rather than the nodes of the network. Returns a set of  $pgr\_costResult$  (seq, id1, id2, cost) rows, that make up a path.

# **Description**

The Turn Restricted Shortest Path algorithm (TRSP) is similar to the shooting star in that you can specify turn restrictions.

The TRSP setup is mostly the same as *Dijkstra shortest path* with the addition of an optional turn restriction table. This provides an easy way of adding turn restrictions to a road network by placing them in a separate table.

sql a SQL query, which should return a set of rows with the following columns:

```
SELECT id, source, target, cost, [,reverse_cost] FROM edge_table
```

id int4 identifier of the edge

source int4 identifier of the source vertex

target int 4 identifier of the target vertex

**cost** float8 value, of the edge traversal cost. A negative cost will prevent the edge from being inserted in the graph.

reverse\_cost (optional) the cost for the reverse traversal of the edge. This is only
 used when the directed and has\_rcost parameters are true (see the above
 remark about negative costs).

source int4 NODE id of the start point
target int4 NODE id of the end point
directed true if the graph is directed

has\_rcost if true, the reverse\_cost column of the SQL generated set of rows will be used for the cost of the traversal of the edge in the opposite direction.

**restrict\_sql** (optional) a SQL query, which should return a set of rows with the following columns:

```
SELECT to_cost, target_id, via_path FROM restrictions
```

to\_cost float 8 turn restriction cost
target\_id int 4 target id

via\_path text comma separated list of edges in the reverse order of rule

Another variant of TRSP allows to specify **EDGE id** of source and target together with a fraction to interpolate the position:

source\_edge int4 EDGE id of the start edge
source\_pos float8 fraction of 1 defines the position on the start edge
target\_edge int4 EDGE id of the end edge
target\_pos float8 fraction of 1 defines the position on the end edge

Returns set of *pgr\_costResult[]*:

seq row sequence
id1 node ID
id2 edge ID (-1 for the last row)
cost cost to traverse from id1 using id2

# **History**

• New in version 2.0.0

# **Support for Vias**

Warning: The Support for Vias functions are prototypes. Not all corner cases are being considered.

We also have support for vias where you can say generate a from A to B to C, etc. We support both methods above only you pass an array of vertices or and array of edges and percentage position along the edge in two arrays.

sql a SQL query, which should return a set of rows with the following columns:

```
SELECT id, source, target, cost, [,reverse_cost] FROM edge_table
```

id int4 identifier of the edge

source int 4 identifier of the source vertex

target int 4 identifier of the target vertex

**cost** float8 value, of the edge traversal cost. A negative cost will prevent the edge from being inserted in the graph.

**reverse\_cost** (optional) the cost for the reverse traversal of the edge. This is only used when the directed and has\_rcost parameters are true (see the above remark about negative costs).

vids int4[] An ordered array of NODE id the path will go through from start to end.

directed true if the graph is directed

**has\_rcost** if true, the reverse\_cost column of the SQL generated set of rows will be used for the cost of the traversal of the edge in the opposite direction.

restrict\_sql (optional) a SQL query, which should return a set of rows with the following columns:

```
SELECT to_cost, target_id, via_path FROM restrictions
```

to cost float8 turn restriction cost

target\_id int4 target id

via\_path text commar separated list of edges in the reverse order of rule

Another variant of TRSP allows to specify **EDGE id** together with a fraction to interpolate the position:

eids int 4 An ordered array of EDGE id that the path has to traverse

pcts float8 An array of fractional positions along the respective edges in eids, where 0.0 is the start of the edge and 1.0 is the end of the eadge.

Returns set of *pgr\_costResult[]*:

```
seq row sequence
id1 route ID
id2 node ID
id3 edge ID (-1 for the last row)
cost cost to traverse from id2 using id3
```

# **History**

• Via Support prototypes new in version 2.1.0

# **Examples**

## Without turn restrictions

```
SELECT * FROM pgr_trsp(
        'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table'
       7, 12, false, false
   );
seq | id1 | id2 | cost
        7 |
            6 |
  0 |
        8 |
             7 |
  1 |
       5 | 8 |
  2. 1
                     1
  3 | 6 |
            9 |
                     1
  4 |
       9 | 15 |
                     1
  5 | 12 | -1 |
(6 rows)
```

#### With turn restrictions

Then a query with turn restrictions is created as:

```
SELECT * FROM pgr_trsp(
       'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table'
       2, 7, false, false,
       'SELECT to_cost, target_id::int4,
       from_edge || coalesce('','' || via_path, '''') AS via_path
       FROM restrictions'
   );
seq | id1 | id2 | cost
----+----+----+----
      2 |
            4 |
  0 1
  1 |
       5 | 10 |
                    1
  2 | 10 |
            12 |
  3 | 11 | 11 |
  4 |
       6 |
             8 |
      5 |
             7 |
  5 |
                    1
            6 |
                   1
  6 | 8 |
  7 |
       7 | -1 |
                   0
(8 rows)
SELECT * FROM pgr_trsp(
       'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table'
       7, 11, false, false,
       'SELECT to_cost, target_id::int4,
       from_edge || coalesce('','' || via_path, '''') AS via_path
       FROM restrictions'
   );
seq | id1 | id2 | cost
----+----
  0 | 7 | 6 |
                    1
  1 | 8 | 7 |
                    1
  2 | 5 | 8 |
                    1
            9 |
  3 |
       6 |
                    1
  4 |
       9 |
            15 |
       12 | 13 |
  5 |
  6 |
      11 | -1 |
(7 rows)
```

An example query using vertex ids and via points:

```
SELECT * FROM pgr_trspViaVertices(
       'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table'
       ARRAY[2,7,11]::INTEGER[],
       false, false,
       'SELECT to_cost, target_id::int4, from_edge ||
       coalesce('',''||via_path,'''') AS via_path FROM restrictions');
seq | id1 | id2 | id3 | cost
  1 | 1 | 2 | 4 | 1
  2 | 1 | 5 | 10 |
  3 | 1 | 10 | 12 |
  4 | 1 | 11 | 11 |
  5 |
      1 | 6 | 8 |
                         1
       1 | 5 | 7 |
                         1
  6 |
       1 | 8 | 6 |
  7 |
                         1
             7 |
       2 |
  8 1
                  6 1
                         1
             8 |
  9 |
       2 |
                  7 |
                         1
 10 |
       2 | 5 |
                  8 |
                         1
 11 |
       2 |
             6 |
                  9 |
 12 |
             9 | 15 |
        2 |
```

```
13 | 2 | 12 | 13 | 1
14 | 2 | 11 | -1 | 0
(14 rows)
```

An example query using edge ids and vias:

```
SELECT * FROM pgr_trspViaEdges(
       'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost,
       reverse_cost FROM edge_table',
       ARRAY[2,7,11]::INTEGER[],
       ARRAY[0.5, 0.5, 0.5]::FLOAT[],
       true,
       'SELECT to_cost, target_id::int4, FROM_edge ||
       coalesce('',''||via_path,'''') AS via_path FROM restrictions');
seq | id1 | id2 | id3 | cost
       1 | -1 | 2 | 0.5
      1 | 2 | 4 | 1
  2 |
  3 |
       1 | 5 | 8 |
             6 |
                  9 |
  4 |
        1 |
             9 | 16 |
  5 |
        1 |
             4 |
  6 |
        1 |
                   3 |
  7 |
        1 |
             3 |
                   5 I
  8 |
        1 |
             6 |
                  8 |
                  7 |
             5 I
  9 |
        1 |
 10 |
        2 |
             5 I
                  8 |
 11 |
        2 |
            6 |
                  9 |
            9 | 16 |
 12 |
       2 |
                  3 |
 13 I
      2 |
            4 |
                          1
            3 | 5 |
 14 |
      2 |
 15 |
        2 | 6 | 11 |
(15 rows)
```

The queries use the Sample Data network.

## See Also

• pgr\_costResult[]

# 5.1.6 Traveling Sales Person - Family of functions

- $pgr\_TSP$  When input is given as matrix cell information.
- *pgr\_eucledianTSP* When input are coordinates.

# pgr\_TSP

# Name

• pgr\_TSP - Returns a route that visits all the nodes exactly once.

# Availability: 2.0.0

• Signature changed 2.3.0

### **Synopsis**

The travelling salesman problem (TSP) or travelling salesperson problem asks the following question:

• Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

This implementation uses simulated annealing to return the approximate solution when the input is given in the form of matrix cell contents. The matrix information must be symmetrical.

## **Signature Summary**

```
pgr_TSP(matrix_cell_sql)
pgr_TSP(matrix_cell_sql,
    start_id, end_id,
    max_processing_time,
    tries_per_temperature, max_changes_per_temperature, max_consecutive_non_changes,
    initial_temperature, final_temperature, cooling_factor,
    randomize,
RETURNS SETOF (seq, node, cost, agg_cost)
```

## **Signatures**

#### **Basic Use**

```
pgr_TSP(matrix_cell_sql)
RETURNS SETOF (seq, node, cost, agg_cost)
```

#### **Example**

Because the documentation examples are auto generated and tested for non changing results, and the default is to have random execution, the example is wrapping the actual call.

# **Complete Signature**

```
pgr_TSP(matrix_cell_sql,
    start_id, end_id,
    max_processing_time,
    tries_per_temperature, max_changes_per_temperature, max_consecutive_non_changes,
    initial_temperature, final_temperature, cooling_factor,
    randomize,
RETURNS SETOF (seq, node, cost, agg_cost)
```

## **Example:**

```
SELECT * FROM pgr_TSP(
   SELECT * FROM pgr_dijkstraCostMatrix(
       'SELECT id, source, target, cost, reverse_cost FROM edge_table',
       (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 14),
      directed := false
   $$,
   start_id := 7,
   randomize := false
);
seq | node | cost | agg_cost
  1 | 7 | 1 | 0
  2 | 8 | 1 |
  3 | 5 | 1 |
  4 | 2 | 1 |
                       3
  5 | 1 | 2 |
                       4
  6 | 3 | 1 |
                        7
  7 | 4 | 1 |
       9 |
  8 |
             1 |
                       8
  9 | 12 | 1 |
                       9
 10 | 11 | 1 |
                       10
       10 |
 11 |
              1 |
                       11
 12 | 13 |
           3 |
              3 |
                      15
 13 | 6 |
14 | 7 |
             0 |
                      18
(14 rows)
```

## **Description of the Signatures**

# **Description of the Matrix Cell SQL query**

| Column    | Type   | Description                              |
|-----------|--------|------------------------------------------|
| start_vid | BIGINT | Identifier of the starting vertex.       |
| end_vid   | BIGINT | Identifier of the ending vertex.         |
| agg_cost  | FLOAT  | Cost for going from start_vid to end_vid |

# Can be Used with:

- pgr\_dijkstraCostMatrix proposed
- pgr\_withPointsCostMatrix proposed
- pgr\_floydWarshall
- pgr\_johnson

To generate a symmetric matrix

• directed := false.

If using directed := true, the resulting non symmetric matrix must be converted to symmetric by fixing the non symmetric values according to your application needs.

```
Description Of the Control parameters

The control parameters are optional, and have a default value.

Parameter Type Default Description
```

```
_____
  _____
                                                                     =========
                                                 ``BIGINT``
                                                                      `0`
                                                                      ,0,
                                                                                        The greedy part of the implementation
**start_vid**
                                                ``BIGINT``
                                                                                         Last visiting vertex before returning
**end_vid**
                                                ``FLOAT``
                                                                     `+infinity` Stop the annealing processing when the
**max_processing_time**
**max_processing_time**

**tries_per_temperature**

'INTEGER'

'500'

**max_changes_per_temperature**

'INTEGER'

'60'

**max_consecutive_non_changes**

'INTEGER'

'100'

**aximum number of times a neighbor(s)

**max_consecutive_non_changes**

'INTEGER'

'100'

**aximum number of consecutive times the solution i

**initial_temperature**

'FLOAT'

'100'

Starting temperature.

**final_temperature**

'FLOAT'

'0.1'

Ending temperature.

**cooling_factor**

'Value between between 0 and 1 (not inc
                                                ``BOOLEAN`` `true`
**randomize**
                                                                                          Choose the random seed
                                                                                           - true: Use current time as seed
                                                                                           - false: Use `1` as seed. Using this v
```

#### **Examples**

Example Using with points of interest.

To generate a symmetric matrix:

- the **side** information of pointsOfInterset is ignored by not including it in the query
- and directed := false

```
3 | 3 | 1.6 | 2

4 | -1 | 1.3 | 3.6

5 | -6 | 0.3 | 4.9

6 | 5 | 0 | 5.2

(6 rows)
```

The queries use the Sample Data network.

## See Also

- Traveling Sales Person Family of functions
- http://en.wikipedia.org/wiki/Traveling\_salesman\_problem
- http://en.wikipedia.org/wiki/Simulated\_annealing

# pgr\_eucledianTSP

#### Name

pgr\_eucledianTSP - Returns a route that visits all the coordinates pairs exactly once.

## Availability: 2.3.0

# **Synopsis**

The travelling salesman problem (TSP) or travelling salesperson problem asks the following question:

• Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

This implementation uses simulated annealing to return the approximate solution when the input is given in the form of coordinates.

# **Signature Summary**

```
pgr_eucledianTSP(coordinates_sql)
pgr_eucledianTSP(coordinates_sql,
    start_id, end_id,
    max_processing_time,
    tries_per_temperature, max_changes_per_temperature, max_consecutive_non_changes,
    initial_temperature, final_temperature, cooling_factor,
    randomize,
RETURNS SETOF (seq, node, cost, agg_cost)
```

## **Signatures**

# **Minimal Signature**

```
pgr_eucledianTSP(coordinates_sql)
RETURNS SETOF (seq, node, cost, agg_cost)
```

# Example

Because the documentation examples are auto generated and tested for non changing results, and the default is to have random execution, the example is wrapping the actual call.

# **Complete Signature**

```
pgr_eucledianTSP(coordinates_sql,
    start_id, end_id,
    max_processing_time,
    tries_per_temperature, max_changes_per_temperature, max_consecutive_non_changes,
    initial_temperature, final_temperature, cooling_factor,
    randomize,
RETURNS SETOF (seq, node, cost, agg_cost)
```

## **Example:**

```
SELECT* from pgr_eucledianTSP(
   SELECT id, st_X(the_geom) AS x, st_Y(the_geom) AS y FROM edge_table_vertices_pgr
   tries_per_temperature := 3,
   cooling_factor := 0.5,
   randomize := false
);
seq | node |
                 cost
                         | agg_cost
  1 |
       1 | 1.4142135623731 |
        3 |
                          1 | 1.4142135623731
  2 |
                          1 | 2.41421356237309
  3 |
        9 | 0.58309518948453 | 3.41421356237309
  4 |
      16 | 0.58309518948453 | 3.99730875185762
  5 I
  6 |
       6 |
                          1 | 4.58040394134215
  7 |
       5 |
                          1 | 5.58040394134215
  8 |
        8 1
                         1 | 6.58040394134215
       7 | 1.58113883008419 | 7.58040394134215
  9 |
 10 | 14 | 1.49999999999 | 9.16154277142634
                        0.5 | 10.6615427714253
 11 | 15 |
 12 | 13 |
                        1.5 | 11.1615427714253
 13 | 17 | 1.11803398874989 | 12.6615427714253
                         1 | 13.7795767601752
 14 | 12 |
                          1 | 14.7795767601752
 15 | 11 |
 16 | 10 |
                         2 | 15.7795767601752
                          1 | 17.7795767601752
 17 | 2 |
        1 |
 18 |
                         0 | 18.7795767601752
(18 rows)
```

# **Description of the Signatures**

# Description of the coordinates SQL query

| Column | Туре   | Description                              |
|--------|--------|------------------------------------------|
| id     | BIGINT | Identifier of the coordinate. (optional) |
| X      | FLOAT  | X value of the coordinate.               |
| y      | FLOAT  | Y value of the coordinate.               |

When the value of id is not given then the coordinates will receive an id starting from 1, in the order given.

```
Description Of the Control parameters
The control parameters are optional, and have a default value.
Default
Parameter
                                   Type
                                                                Description
______ ____
                                   ``BIGINT``
                                                  ,0,
**start_vid**
                                                                The greedy part of the implementation
                                   ``BIGINT``
``FLOAT``
**max_processing_time** '`FLOAT`` '+infinity` Stop the annealing processing when the 
**tries_per_temperature** 'INTEGER` '500' Maximum number of times a neighbor(s)

**max_changes_per_temperature** 'INTEGER` '60' Maximum number of times the solution i

**max_consecutive_non_changes** 'INTEGER` '100' Maximum number of consecutive times the 
**initial_temperature** 'FLOAT` '100' Starting temperature.

**final_temperature** 'FLOAT` '0.1' Ending temperature.

**cooling_factor** 'FLOAT` '0.9' Value between 0 and 1 (not inc.)
**end_vid**
                                                                Last visiting vertex before returning
                                   ``BOOLEAN`` `true`
**randomize**
                                                                 Choose the random seed
                                                                  - true: Use current time as seed
                                                                  - false: Use `1` as seed. Using this v
______ _______
```

# **Examples**

# **Example** Skipping the Simulated Annealing & showing some process information

```
SET client_min_messages TO DEBUG1;
SET
SELECT* from pgr_eucledianTSP(
    $$
    SELECT id, st_X(the_geom) AS x, st_Y(the_geom) AS y FROM edge_table_vertices_pgr
```

```
$$,
   tries_per_temperature := 0,
   randomize := false
);
DEBUG: pgr_eucledianTSP Processing Information
Initializing tsp class ---> tsp.greedyInitial ---> tsp.annealing ---> OK
Cycle(100)
                total changes =0 0 were because delta energy < 0
Total swaps: 3
Total slides: 0
Total reverses: 0
Times best tour changed: 4
Best cost reached = 18.7796
seq | node | cost |
                                 agg_cost
       1 | 1.4142135623731 |
                 1 | 1.4142135623731
        3 |
  2 |
        4 |
                          1 | 2.41421356237309
        9 | 0.58309518948453 | 3.41421356237309
  4 |
       16 | 0.58309518948453 | 3.99730875185762
  5 |
                          1 | 4.58040394134215
  6 |
        6 |
  7 |
        5 I
                          1 | 5.58040394134215
                          1 | 6.58040394134215
  8 1
        8 I
  9 |
        7 | 1.58113883008419 | 7.58040394134215
 10 |
       14 | 1.499999999999 | 9.16154277142634
 12 | 13 |
                       0.5 | 10.6615427714253
                       1.5 | 11.1615427714253
 13 | 17 | 1.11803398874989 | 12.6615427714253
 14 | 12 |
                         1 | 13.7795767601752
 15 | 11 |
                         1 | 14.7795767601752
 16 | 10 |
                         2 | 15.7795767601752
                          1 | 17.7795767601752
 17 | 2 |
 18 |
        1 |
                         0 | 18.7795767601752
(18 rows)
```

The queries use the Sample Data network.

## **History**

• New in version 2.3.0

# See Also

- Traveling Sales Person Family of functions
- http://en.wikipedia.org/wiki/Traveling\_salesman\_problem
- http://en.wikipedia.org/wiki/Simulated annealing

# **General Information**

# Origin

The traveling sales person problem was studied in the 18th century by mathematicians Sir William Rowam Hamilton and Thomas Penyngton Kirkman.

A discussion about the work of Hamilton & Kirkman can be found in the book Graph Theory (Biggs et al. 1976).

• ISBN-13: 978-0198539162

• ISBN-10: 0198539169

It is believed that the general form of the TSP have been first studied by Kalr Menger in Vienna and Harvard. The problem was later promoted by Hassler, Whitney & Merrill at Princeton. A detailed description about the connection between Menger & Whitney, and the development of the TSP can be found in On the history of combinatorial optimization (till 1960)<sup>14</sup>

#### **Problem Definition**

Given a collection of cities and travel cost between each pair, find the cheapest way for visiting all of the cities and returning to the starting point.

#### Characteristics

- The travel costs are symmetric:
  - traveling costs from city A to city B are just as much as traveling from B to A.
- This problem is an NP-hard optimization problem.
- To calculate the number of different tours through n cities:
  - Given a starting city,
  - There are n-1 choices for the second city,
  - And n-2 choices for the third city, etc.
  - Multiplying these together we get (n-1)! = (n-1)(n-2)..1.
  - Now since our travel costs do not depend on the direction we take around the tour:
    - \* this number by 2
    - \*(n-1)!/2.

# **TSP & Simulated Annealing**

The simulated annealing algorithm was originally inspired from the process of annealing in metal work.

Annealing involves heating and cooling a material to alter its physical properties due to the changes in its internal structure. As the metal cools its new structure becomes fixed, consequently causing the metal to retain its newly obtained properties. [C001]

#### **Pseudocode**

Given an initial solution, the simulated annealing process, will start with a high temperature and gradually cool down until the desired temperature is reached.

For each temperature, a neighbouring new solution **snew** is calculated. The higher the temperature the higher the probability of accepting the new solution as a possible bester solution.

Once the desired temperature is reached, the best solution found is returned

```
Solution ← initial_solution;

temperature ← initial_temperature;
while (temperature > final_temperature) {

   do tries_per_temperature times {
      snew ← neighbour(solution);
   }
}
```

<sup>14</sup>http://www.cwi.nl/ lex/files/histco.ps

#### pgRouting Implementation

pgRouting's implementation adds some extra parameters to allow some exit controls within the simulated annealing process.

To cool down faster to the next temperature:

- max\_changes\_per\_temperature: limits the number of changes in the solution per temperature
- max\_consecutive\_non\_changes: limits the number of consecutive non changes per temperature

This is done by doing some book keeping on the times **solution**  $\leftarrow$  **snew**; is executed.

- max\_changes\_per\_temperature: Increases by one when solution changes
- max\_consecutive\_non\_changes: Reset to 0 when solution changes, and increased each try

Additionally to stop the algorithm at a higher temperature than the desired one:

- max\_processing\_time: limits the time the simulated annealing is performed.
- book keeping is done to see if there was a change in **solution** on the last temperature

Note that, if no change was found in the first **max\_consecutive\_non\_changes** tries, then the simulated annealing will stop.

```
Solution ← initial_solution;
temperature ← initial_temperature;
while (temperature > final_temperature) {
    do tries_per_temperature times {
        snew ← neighbour(solution);
        If P(E(solution), E(snew), T) random(0, 1)
            solution \leftarrow snew;
        when max_changes_per_temperature is reached
            or max_consecutive_non_changes is reached
            BREAK:
    }
    temperature ← temperature * cooling factor;
    when no changes were done in the current temperature
       or max_processing_time has being reached
        BREAK;
}
Output: the best solution
```

### **Choosing parameters**

There is no exact rule on how the parameters have to be chose, it will depend on the special characteristics of the problem.

• Your computational time is crucial, then put your time limit to max\_processing\_time.

- Make the **tries\_per\_temperture** depending on the number of cities, for example:
  - Useful to estimate the time it takes to do one cycle: use 1
    - \* this will help to set a reasonable max\_processing\_time
  - -n\*(n-1)
  - **-** 500 \* n
- For a faster decreasing the temperature set **cooling\_factor** to a smaller number, and set to a higher number for a slower decrease.
- When for the same given data the same results are needed, set **randomize** to *false*.
  - When estimating how long it takes to do one cycle: use false

A recommendation is to play with the values and see what fits to the particular data.

# **Description Of the Control parameters**

The control parameters are optional, and have a default value.

| Parameter                        | Type    | Default   | Description                                                                                                                                                                                               |
|----------------------------------|---------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| start_vid                        | BIGINT  | 0         | The greedy part of the implementation will use this identifier.                                                                                                                                           |
| end_vid                          | BIGINT  | 0         | Last visiting vertex before returning to start_vid.                                                                                                                                                       |
| max_processing_time              | FLOAT   | +infinity | Stop the annealing processing when the value is reached.                                                                                                                                                  |
| tries_per_temperature            | INTEGER | 500       | Maximum number of times a neighbor(s) is searched in each temperature.                                                                                                                                    |
| max_changes_per_tem-<br>perature | INTEGER | 60        | Maximum number of times the solution is changed in each temperature.                                                                                                                                      |
| max_consecutive_non<br>changes   | INTEGER | 100       | Maximum number of consecutive times the solution is not changed in each temperature.                                                                                                                      |
| initial_temperature              | FLOAT   | 100       | Starting temperature.                                                                                                                                                                                     |
| final_temperature                | FLOAT   | 0.1       | Ending temperature.                                                                                                                                                                                       |
| cooling_factor                   | FLOAT   | 0.9       | Value between between 0 and 1 (not including) used to calculate the next temperature.                                                                                                                     |
| randomize                        | BOOLEAN | true      | <ul> <li>Choose the random seed</li> <li>true: Use current time as seed</li> <li>false: Use <i>I</i> as seed. Using this value will get the same results with the same data in each execution.</li> </ul> |

### Description of the return columns

Returns set of (seq, node, cost, agg\_cost)

| Column   | Туре    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| seq      | INTEGER | Row sequence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| node     | BIGINT  | Identifier of the node/coordinate/point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| cost     | FLOAT   | Cost to traverse from the current node ito the note ito ito the note ito ito the note ito |
| agg_cost | FLOAT   | Aggregate cost from the node at seq = 1 to the  • 0 for the first row in the path sequence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

### See Also

#### References

- http://en.wikipedia.org/wiki/Traveling\_salesman\_problem
- http://en.wikipedia.org/wiki/Simulated\_annealing

### Indices and tables

- genindex
- search

# 5.1.7 Driving Distance - Category

- pgr\_drivingDistance Driving Distance based on pgr\_dijkstra
- pgr\_withPointsDD Proposed Driving Distance based on pgr\_withPoints
- Post pocessing
  - pgr\_alphaShape Alpha shape computation
  - pgr\_pointsAsPolygon Polygon around set of points

# pgr\_alphaShape

### Name

pgr\_alphaShape — Core function for alpha shape computation.

# **Synopsis**

Returns a table with (x, y) rows that describe the vertices of an alpha shape.

```
table() pgr_alphaShape(text sql [, float8 alpha]);
```

### **Description**

sql text a SQL query, which should return a set of rows with the following columns:

```
SELECT id, x, y FROM vertex_table
```

- id int4 identifier of the vertex
- x float8 x-coordinate
- y float8 y-coordinate

**alpha** (optional) float8 alpha value. If specified alpha value equals 0 (default), then optimal alpha value is used. For more information, see CGAL - 2D Alpha Shapes<sup>15</sup>.

Returns a vertex record for each row:

- x x-coordinate
- y y-coordinate

If a result includes multiple outer/inner rings, return those with separator row (x=NULL and y=NULL).

# History

- Renamed in version 2.0.0
- Added alpha argument with default 0 (use optimal value) in version 2.1.0
- Supported to return multiple outer/inner ring coordinates with separator row (x=NULL and y=NULL) in version 2.1.0

### **Examples**

PgRouting's alpha shape implementation has no way to control the order of the output points, so the actual output might different for the same input data. The first query, has the output ordered, he second query shows an example usage:

### Example: the (ordered) results

```
SELECT * FROM pgr_alphaShape(
    'SELECT id::integer, ST_X(the_geom)::float AS x, ST_Y(the_geom)::float AS y
    FROM edge_table_vertices_pgr') ORDER BY x, y;
       У
    -+-
   0 |
         2
 0.5 | 3.5
   2 |
         0
   2 |
 3.5 |
   4 |
        1
   4 |
   4 |
(8 rows)
```

 $<sup>^{15}</sup> http://doc.cgal.org/latest/Alpha\_shapes\_2/group\_PkgAlphaShape2.html$ 

### Example: calculating the area

Steps:

- Calculates the alpha shape the ORDER BY clause is not used.
- · constructs a polygon
- and computes the area

The queries use the Sample Data network.

#### See Also

- pgr\_drivingDistance Driving Distance
- pgr\_pointsAsPolygon Polygon around set of points

# pgr\_pointsAsPolygon

# Name

pgr\_pointsAsPolygon — Draws an alpha shape around given set of points.

# **Synopsis**

Returns the alpha shape as (multi)polygon geometry.

```
geometry pgr_pointsAsPolygon(text sql [, float8 alpha]);
```

# **Description**

sql text a SQL query, which should return a set of rows with the following columns:

```
SELECT id, x, y FROM vertex_result;

id int4 identifier of the vertex

x float8 x-coordinate

y float8 y-coordinate
```

alpha (optional) float 8 alpha value. If specified alpha value equals 0 (default), then optimal alpha value is used. For more information, see CGAL - 2D Alpha Shapes 16.

Returns a (multi)polygon geometry (with holes).

### **History**

- Renamed in version 2.0.0
- Added alpha argument with default 0 (use optimal value) in version 2.1.0
- Supported to return a (multi)polygon geometry (with holes) in version 2.1.0

### **Examples**

In the following query there is no way to control which point in the polygon is the first in the list, so you may get similar but different results than the following which are also correct.

```
SELECT ST_AsText(pgr_pointsAsPolygon('SELECT id::integer, ST_X(the_geom)::float AS x, ST_Y(the_ge
       FROM edge_table_vertices_pgr'));
                     st_astext
POLYGON((2 4,3.5 4,4 3,4 2,4 1,2 0,0 2,0.5 3.5,2 4))
```

The query use the Sample Data network.

#### See Also

- pgr\_drivingDistance Driving Distance
- pgr\_alphaShape Alpha shape computation

All Pairs - Family of Functions

- pgr\_floydWarshall Floyd-Warshall's Algorithm
- pgr johnson- Johnson's Algorithm

pgr aStar - Shortest Path A\*

pgr bdAstar - Bi-directional A\* Shortest Path

pgr\_bdDijkstra - Bi-directional Dijkstra Shortest Path

Dijkstra - Family of functions

- pgr\_dijkstra Dijkstra's algorithm for the shortest paths.
- pgr\_dijkstraCost Get the aggregate cost of the shortest paths.
- pgr\_dijkstraCostMatrix proposed Use pgr\_dijkstra to create a costs matrix.
- pgr\_drivingDistance Use pgr\_dijkstra to calculate catchament information.
- pgr\_KSP Use Yen algorithm with pgr\_dijkstra to get the K shortest paths.
- pgr\_dijkstraVia Proposed Get a route of a seuence of vertices.

pgr KSP - K-Shortest Path

pgr\_trsp - Turn Restriction Shortest Path (TRSP)

Traveling Sales Person - Family of functions

<sup>&</sup>lt;sup>16</sup>http://doc.cgal.org/latest/Alpha\_shapes\_2/group\_\_PkgAlphaShape2.html

- *pgr\_TSP* When input is given as matrix cell information.
- *pgr\_eucledianTSP* When input are coordinates.

# Driving Distance - Category

- pgr\_drivingDistance Driving Distance based on pgr\_dijkstra
- pgr\_withPointsDD Proposed Driving Distance based on pgr\_withPoints
- Post pocessing
  - pgr\_alphaShape Alpha shape computation
  - pgr\_pointsAsPolygon Polygon around set of points

# Available Functions but not official pgRouting functions

- Stable proposed Functions
- Experimental and Proposed functions

# 6.1 Stable proposed Functions

**Warning:** Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
  - The functions make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might not change. (But still can)
  - Signature might not change. (But still can)
  - Functionality might not change. (But still can)
  - pgTap tests have being done. But might need more.
  - Documentation might need refinement.

As part of the Dijkstra - Family of functions

- pgr dijkstraCostMatrix proposed Use pgr dijkstra to calculate a cost matrix.
- pgr\_dijkstraVia Proposed Use pgr\_dijkstra to make a route via vertices.

### **Families**

aStar - Family of functions

- pgr\_aStar A\* algorithm for the shortest path.
- *pgr\_aStarCost proposed* Get the aggregate cost of the shortest paths.
- pgr\_aStarCostMatrix proposed Get the cost matrix of the shortest paths.

Bidirectional  $A^*$  - Family of functions

- pgr\_bdAstar Bidirectional A\* algorithm for obtaining paths.
- pgr\_bdAstarCost Proposed Bidirectional A\* algorithm to calculate the cost of the paths.
- pgr\_bdAstarCostMatrix proposed Bidirectional A\* algorithm to calculate a cost matrix of paths.

Bidirectional Dijkstra - Family of functions

- pgr\_bdDijkstra Bidirectional Dijkstra algorithm for the shortest paths.
- pgr\_bdDijkstraCost Proposed Bidirectional Dijkstra to calculate the cost of the shortest paths

• pgr\_bdDijkstraCostMatrix - proposed - Bidirectional Dijkstra algorithm to create a matrix of costs of the shortest paths.

## Flow - Family of functions

- pgr\_maxFlow Proposed Only the Max flow calculation using Push and Relabel algorithm.
- pgr\_boykovKolmogorov Proposed Boykov and Kolmogorov with details of flow on edges.
- pgr\_edmondsKarp Proposed Edmonds and Karp algorithm with details of flow on edges.
- pgr\_pushRelabel Proposed Push and relabel algorithm with details of flow on edges.
- Applications
  - pgr\_edgeDisjointPaths Proposed Calculates edge disjoint paths between two groups of vertices.
  - pgr\_maxCardinalityMatch Proposed Calculates a maximum cardinality matching in a graph.

# withPoints - Family of functions

- pgr\_withPoints Proposed Route from/to points anywhere on the graph.
- pgr\_withPointsCost Proposed Costs of the shortest paths.
- *pgr\_withPointsCostMatrix proposed* Costs of the shortest paths.
- pgr\_withPointsKSP Proposed K shortest paths.
- pgr\_withPointsDD Proposed Driving distance.

### categories

#### Cost - Category

- pgr\_aStarCost proposed
- pgr\_bdAstarCost Proposed
- pgr\_bdDijkstraCost Proposed
- pgr\_dijkstraCost
- pgr\_withPointsCost Proposed

# Cost Matrix - Category

- pgr\_aStarCostMatrix proposed
- pgr bdAstarCostMatrix proposed
- pgr\_bdDijkstraCostMatrix proposed
- pgr\_dijkstraCostMatrix proposed
- pgr\_withPointsCostMatrix proposed

# KSP Category

- pgr\_KSP Driving Distance based on pgr\_dijkstra
- pgr\_withPointsKSP Proposed Driving Distance based on pgr\_dijkstra

# 6.1.1 aStar - Family of functions

The A\* (pronounced "A Star") algorithm is based on Dijkstra's algorithm with a heuristic that allow it to solve most shortest path problems by evaluation only a sub-set of the overall graph.

- pgr\_aStar A\* algorithm for the shortest path.
- *pgr\_aStarCost proposed* Get the aggregate cost of the shortest paths.

• pgr\_aStarCostMatrix - proposed - Get the cost matrix of the shortest paths.

# pgr\_aStar

#### Name

pgr\_aStar — Returns the shortest path using A\* algorithm.



Fig. 6.1: Boost Graph Inside

### Availability:

- pgr\_astar(one to one) 2.0.0, Signature changed 2.3.0
- pgr\_astar(other signatures) 2.4.0

#### Characteristics

The main Characteristics are:

- Process is done only on edges with positive costs.
- Vertices of the graph are:
  - positive when it belongs to the edges\_sql
- Values are returned when there is a path.
  - When the starting vertex and ending vertex are the same, there is no path.
    - \* The agg\_cost the non included values (v, v) is 0
  - When the starting vertex and ending vertex are the different and there is no path:
    - \* The agg\_cost the non included values (u, v) is  $\infty$
- When (x,y) coordinates for the same vertex identifier differ:
  - A random selection of the vertex's (x,y) coordinates is used.
- Running time:  $O((E+V) * \log V)$

# **Signature Summary**

```
pgr_aStar(edges_sql, start_vid, end_vid)
pgr_aStar(edges_sql, start_vid, end_vid, directed, heuristic, factor, epsilon)
```

**Warning:** Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
  - The functions make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might not change. (But still can)
  - Signature might not change. (But still can)
  - Functionality might not change. (But still can)
  - pgTap tests have being done. But might need more.
  - Documentation might need refinement.

```
pgr_aStar(edges_sql, start_vid, end_vids, directed, heuristic, factor, epsilon) -- proposed pgr_aStar(edges_sql, starts_vid, end_vid, directed, heuristic, factor, epsilon) -- proposed pgr_aStar(edges_sql, starts_vid, end_vids, directed, heuristic, factor, epsilon) -- proposed RETURNS SET OF (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost) OR EMPTY SET
```

#### **Signatures**

### **Minimal Signature**

```
pgr_aStar(edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
```

#### **Example** Using the defaults

```
SELECT * FROM pgr_astar(
   'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
   2, 12);
seq | path_seq | node | edge | cost | agg_cost
                 2 | 4 | 1 |
5 | 10 | 1 |
  1 |
           1 |
            2 |
                        10 |
  2 |
                                           1
                               1 |
                 10 |
            3 |
                        12 |
  3 |
                                           2
                               1 |
            4 |
                       13 |
                 11 |
  4 |
                                           3
           5 I
                 12 |
                       -1 |
                               0 |
  5 I
(5 rows)
```

# One to One

```
pgr_aStar(edges_sql, start_vid, end_vid, directed, heuristic, factor, epsilon)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
```

### **Example** Undirected using Heuristic 2

```
SELECT * FROM pgr_astar(
    'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
    2, 12,
    directed := false, heuristic := 2);
seq | path_seq | node | edge | cost | agg_cost
                   2 | 2 | 1 |
3 | 3 | 1 |
4 | 16 | 1 |
9 | 15 | 1 |
   1 |
            1 |
              2 |
   2 |
              3 | 4 , 9 |
   3 |
   4 |
                                                 3
                                   0 |
                   12 |
              5 |
                            -1 |
   5 |
(5 rows)
```

### One to many

```
pgr_aStar(edges_sql, start_vid, end_vids, directed, heuristic, factor, epsilon) -- Proposed RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost) or EMPTY SET
```

### This signature finds the shortest path from one start\_vid to each end\_vid in end\_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform a one to one *pgr\_astar* where the starting vertex is fixed, and stop when all end vids are reached.

- The result is equivalent to the union of the results of the one to one *pgr\_astar*.
- The extra end\_vid in the result is used to distinguish to which path it belongs.

# Example

```
_____
SELECT * FROM pgr_astar(
   'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
   2, ARRAY[3, 12], heuristic := 2);
seq | path_seq | end_vid | node | edge | cost | agg_cost
       1 |
               3 | 2 | 4 |
                                    1 |
  1 |
                               8 |
                         5 |
  2 |
           2 |
                    3 |
                                      1 |
                                                1
                               9 |
           3 |
  3 |
                    3 |
                         6 |
                                      1 |
                                                2
                   3 |
                         9 |
                               16 |
                                     1 |
           4 |
  4 |
                         4 |
  5 |
          5 |
                   3 |
                               3 |
                                     1 |
                         3 |
                   3 |
  6 |
          6 |
                               -1 I
                                     0 |
                         2 |
  7 |
          1 |
                 12 I
                               4 |
                                     1 I
                                               Ω
                                     1 |
  8 |
          2 |
                  12 |
                         5 I
                               10 I
                                               1
          3 |
  9 |
                  12 | 10 |
                               12 |
                                     1 |
          4 |
 10 |
                  12 | 11 |
                               13 |
                                     1 |
           5 |
 11 |
                  12 | 12 |
                               -1 I
(11 rows)
```

### Many to One

```
pgr_aStar(edges_sql, starts_vid, end_vid, directed, heuristic, factor, epsilon) -- Proposed RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost) or EMPTY SET
```

### This signature finds the shortest path from each start\_vid in start\_vids to one end\_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to one *pgr\_aStar* where the ending vertex is fixed.

- The result is the union of the results of the one to one *pgr\_aStar*.
- The extra start\_vid in the result is used to distinguish to which path it belongs.

# **Example**

```
SELECT * FROM pgr_astar(
   'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
   ARRAY[7, 2], 12, heuristic := 0);
seq | path_seq | start_vid | node | edge | cost | agg_cost
                             2 | 4 | 1 | 5 | 10 | 1 |
                     2 |
  1 1
          1 |
                                                        0
                        2 |
            2 |
  2 |
                                                        1
                        2 | 2 |
            3 |
                               10 |
  3 |
                                     12 |
                                             1 |
                                                        2.
             4 |
                                     13 |
                                             1 |
                                                        3
   4 |
                              11 I
   5 |
             5 |
                        2 |
                              12 |
                                     -1 |
                                             0 |
```

| 6         | 1 | 7 | 7  | 6  | 1 | 0 |
|-----------|---|---|----|----|---|---|
| 7         | 2 | 7 | 8  | 7  | 1 | 1 |
| 8         | 3 | 7 | 5  | 10 | 1 | 2 |
| 9         | 4 | 7 | 10 | 12 | 1 | 3 |
| 10        | 5 | 7 | 11 | 13 | 1 | 4 |
| 11        | 6 | 7 | 12 | -1 | 0 | 5 |
| (11 rows) |   |   |    |    |   |   |
|           |   |   |    |    |   |   |

# Many to Many

```
pgr_aStar(edges_sql, starts_vid, end_vids, directed, heuristic, factor, epsilon) -- Proposed RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) or EMPTY SET
```

# This signature finds the shortest path from each start\_vid in start\_vids to each end\_vid in end\_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to Many *pgr\_dijkstra* for all start\_vids.

- The result is the union of the results of the one to one *pgr\_dijkstra*.
- The extra start\_vid in the result is used to distinguish to which path it belongs.

The extra start\_vid and end\_vid in the result is used to distinguish to which path it belongs.

## **Example**

| SELECT                                                                           | SELECT * FROM pgr_astar( |              |           |         |            |      |          |  |
|----------------------------------------------------------------------------------|--------------------------|--------------|-----------|---------|------------|------|----------|--|
| 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table', |                          |              |           |         | ٠,         |      |          |  |
| AI                                                                               | RRAY[7, 2],              | ARRAY[3, 12] | , heurist | ic := 2 | ) <b>;</b> |      |          |  |
| seq                                                                              | path_seq                 | start_vid    | end_vid   | node    | edge       | cost | agg_cost |  |
|                                                                                  | +                        | ++           |           | +       | +          | +    | +        |  |
| 1                                                                                | 1                        | 2            | 3         | 2       | 4          | 1    | 0        |  |
| 2                                                                                | 2                        | 2            | 3         | 1 5     | 8          | 1    | 1        |  |
| 3                                                                                | ] 3                      | 2            | 3         | 1 6     | 9          | 1    | 2        |  |
| 4                                                                                | 4                        | 2            | 3         | 9       | 16         | 1    | 3        |  |
| 5                                                                                | 1 5                      | 2            | 3         | 4       | 3          | 1    | 4        |  |
| 6                                                                                | 1 6                      | 2            | 3         | 3       | -1         | 1 0  | 5        |  |
| 7                                                                                | 1                        | 7            | 3         | 1 7     | 6          | 1    | 0        |  |
| 8                                                                                | 2                        | 7            | 3         | 8       | 1 7        | 1    | 1        |  |
| 9                                                                                | ] 3                      | 7            | 3         | 1 5     | 8          | 1    | 2        |  |
| 10                                                                               | 4                        | 7            | 3         | 6       | 9          | 1    | 3        |  |
| 11                                                                               | 1 5                      | 7            | 3         | 9       | 16         | 1    | 4        |  |
| 12                                                                               | 1 6                      | 7            | 3         | 4       | 3          | 1    | 5        |  |
| 13                                                                               | 1 7                      | 7            | 3         | 3       | -1         | 1 0  | 1 6      |  |
| 14                                                                               | 1                        | 2            | 12        | 2       | 4          | 1    | 0        |  |
| 15                                                                               | 2                        | 2            | 12        | 5       | 10         | 1    | 1        |  |
| 16                                                                               | 3                        | 2            | 12        | 10      | 12         | 1    | 2        |  |
| 17                                                                               | 4                        | 2            | 12        | 11      | 13         | 1    | 3        |  |
| 18                                                                               | 1 5                      | 2            | 12        | 12      | -1         | 1 0  | 4        |  |
| 19                                                                               | 1                        | 7            | 12        | 7       | 6          | 1    | 0        |  |
| 20                                                                               | 2                        | 7            | 12        | 8       | 7          | 1    | 1        |  |
| 21                                                                               | 3                        | 7            | 12        | 1 5     | 10         | 1    | 2        |  |
| 22                                                                               | 4                        | 7            | 12        | 10      | 12         | 1    | ] 3      |  |
| 23                                                                               | 1 5                      | 7            | 12        | 11      |            | 1    | 4        |  |
| 24                                                                               | 1 6                      | 7            | 12        | 12      | -1         | 1 0  | 5        |  |
| (24 rd                                                                           | ows)                     |              |           |         |            |      |          |  |
|                                                                                  |                          |              |           |         |            |      |          |  |

# **Description of the Signatures**

# Description of the edges\_sql query for astar like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Туре                                    | Default | Description                   |
|--------------|-----------------------------------------|---------|-------------------------------|
| id           | ANY-INTEGER                             |         | Identifier of the edge.       |
| source       | ANY-INTEGER                             |         | Identifier of the first end   |
|              |                                         |         | point vertex of the edge.     |
| target       | ANY-INTEGER                             |         | Identifier of the second end  |
|              |                                         |         | point vertex of the edge.     |
| cost         | ANY-NUMERICAL                           |         | Weight of the edge            |
|              |                                         |         | (source, target)              |
|              |                                         |         | • When negative:              |
|              |                                         |         | edge (source, target)         |
|              |                                         |         | does not exist, there-        |
|              |                                         |         | fore it's not part of         |
|              |                                         |         | the graph.                    |
|              |                                         |         |                               |
| reverse_cost | ANY-NUMERICAL                           | -1      | Weight of the edge (target,   |
|              |                                         |         | source),                      |
|              |                                         |         | • When negative:              |
|              |                                         |         | edge (target, source)         |
|              |                                         |         | does not exist, there-        |
|              |                                         |         | fore it's not part of         |
|              |                                         |         | the graph.                    |
| x1           | ANY-NUMERICAL                           |         | X coordinate of source        |
|              |                                         |         | vertex.                       |
| y1           | ANY-NUMERICAL                           |         | Y coordinate of <i>source</i> |
| J -          | 11111 110111111111111111111111111111111 |         | vertex.                       |
| x2           | ANY-NUMERICAL                           |         | X coordinate of target ver-   |
|              |                                         |         | tex.                          |
| y2           | ANY-NUMERICAL                           |         | Y coordinate of target ver-   |
|              |                                         |         | tex.                          |

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signatures

| Parameter | Туре        |
|-----------|-------------|
| edges_sql | TEXT        |
| start_vid | ANY-INTEGER |
| end_vid   | ANY-INTEGER |
| directed  | BOOLEAN     |
|           |             |
|           |             |
| heuristic | INTEGER     |
|           |             |
|           |             |
|           |             |
|           |             |
| factor    | FLOAT       |
| epsilon   | FLOAT       |

Description of the return values for a path Returns set of (seq, path\_seq [, start\_vid] [, end\_vid], node, edge, cost, agg\_cost)

| Col-  | Type  | Description                                                                                  |
|-------|-------|----------------------------------------------------------------------------------------------|
| umn   |       |                                                                                              |
| seq   | INT   | Sequential value starting from 1.                                                            |
| path  | INT   | Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for |
| id    |       | the same start_vid to end_vid combination.                                                   |
| path  | INT   | Relative position in the path. Has value 1 for the beginning of a path.                      |
| seq   |       |                                                                                              |
| start | BIGIN | TIdentifier of the starting vertex. Used when multiple starting vetrices are in the query.   |
| vid   |       |                                                                                              |
| end   | BIGIN | TIdentifier of the ending vertex. Used when multiple ending vertices are in the query.       |
| vid   |       |                                                                                              |
| node  | BIGIN | TIdentifier of the node in the path from start_vid to end_vid.                               |
| edge  | BIGIN | TIdentifier of the edge used to go from node to the next node in the path sequence1 for      |
|       |       | the last node of the path.                                                                   |
| cost  | FLOAT | Cost to traverse from node using edge to the next node in the path sequence.                 |
| agg   | FLOAT | Aggregate cost from start_v to node.                                                         |
| cost  |       |                                                                                              |

### See Also

- aStar Family of functions
- Sample Data
- http://www.boost.org/libs/graph/doc/astar\_search.html

• http://en.wikipedia.org/wiki/A\*\_search\_algorithm

#### Indices and tables

- genindex
- search

### pgr\_aStarCost - proposed

#### Name

pgr\_aStarCost — Returns the aggregate cost shortest path using aStar - Family of functions algorithm.



Fig. 6.2: Boost Graph Inside

# Availability: 2.4.0

### **Signature Summary**

**Warning:** Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
  - The functions make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might not change. (But still can)
  - Signature might not change. (But still can)
  - Functionality might not change. (But still can)
  - pgTap tests have being done. But might need more.
  - Documentation might need refinement.

```
pgr_aStarCost(edges_sql, start_vid, end_vid) -- Proposed
pgr_aStarCost(edges_sql, start_vid, end_vid, directed, heuristic, factor, epsilon) -- Proposed
pgr_aStarCost(edges_sql, start_vid, end_vids, directed, heuristic, factor, epsilon) -- Proposed
pgr_aStarCost(edges_sql, starts_vid, end_vid, directed, heuristic, factor, epsilon) -- Proposed
pgr_aStarCost(edges_sql, starts_vid, end_vids, directed, heuristic, factor, epsilon) -- Proposed

RETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET
```

# **Signatures**

## **Minimal Signature**

```
pgr_aStarCost(edges_sql, start_vid, end_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET
```

## **Example** Using the defaults

### One to One

```
pgr_aStarCost(edges_sql, start_vid, end_vid, directed, heuristic, factor, epsilon)
RETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET
```

### **Example** Setting a Heuristic

### One to many

```
pgr_aStarCost(edges_sql, start_vid, end_vids, directed, heuristic, factor, epsilon) +- Proposed RETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET
```

# This signature finds a path from one start\_vid to each end\_vid in end\_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform a one to one *pgr\_astar* where the starting vertex is fixed, and stop when all end\_vids are reached.

- The result is equivalent to the union of the results of the one to one *pgr\_astar*.
- The extra end\_vid column in the result is used to distinguish to which path it belongs.

# **Example**

## Many to One

```
pgr_aStarCost(edges_sql, starts_vid, end_vid, directed, heuristic, factor, epsilon) -- Proposed RETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET
```

### This signature finds the shortest path from each start\_vid in start\_vids to one end\_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an **undirected** graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to one *pgr\_aStar* where the ending vertex is fixed.

- The result is the union of the results of the one to one *pgr\_aStar*.
- The extra start\_vid column in the result is used to distinguish to which path it belongs.

#### **Example**

# Many to Many

```
pgr_aStarCost(edges_sql, starts_vid, end_vids, directed, heuristic, factor, epsilon) -- Proposed RETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET
```

This signature finds the shortest path from each start\_vid in start\_vids to each end\_vid in end\_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to Many pgr\_dijkstra for all start\_vids.

- The result is the union of the results of the one to one *pgr\_dijkstra*.
- The extra start\_vid in the result is used to distinguish to which path it belongs.

The extra start\_vid and end\_vid in the result is used to distinguish to which path it belongs.

### Example

# **Description of the Signatures**

### Description of the edges\_sql query for astar like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Type          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id           | ANY-INTEGER   |         | Identifier of the edge.                                                                                                            |
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |
| x1           | ANY-NUMERICAL |         | X coordinate of source vertex.                                                                                                     |
| y1           | ANY-NUMERICAL |         | Y coordinate of <i>source</i> vertex.                                                                                              |
| x2           | ANY-NUMERICAL |         | X coordinate of <i>target</i> vertex.                                                                                              |
| y2           | ANY-NUMERICAL |         | Y coordinate of <i>target</i> vertex.                                                                                              |

# Where:

**ANY-INTEGER** SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

| Parameter | Туре        |  |
|-----------|-------------|--|
| edges_sql | TEXT        |  |
| start_vid | ANY-INTEGER |  |
| end_vid   | ANY-INTEGER |  |
| directed  | BOOLEAN     |  |
|           |             |  |
|           |             |  |
|           |             |  |
| heuristic | INTEGER     |  |
|           |             |  |
|           |             |  |
|           |             |  |
|           |             |  |
| factor    | FLOAT       |  |
| epsilon   | FLOAT       |  |

Description of the parameters of the signatures

**Description of the return values for a Cost function** Returns set of (start\_vid, end\_vid, agg\_-cost)

| Column    | Type   | Description                                                                               |
|-----------|--------|-------------------------------------------------------------------------------------------|
| start_vid | BIGINT | Identifier of the starting vertex. Used when multiple starting vetrices are in the query. |
| end_vid   | BIGINT | Identifier of the ending vertex. Used when multiple ending vertices are in the query.     |
| agg_cost  | FLOAT  | Aggregate cost from start_vid to end_vid.                                                 |

### See Also

- aStar Family of functions.
- Sample Data network.
- http://www.boost.org/libs/graph/doc/astar\_search.html
- http://en.wikipedia.org/wiki/A\*\_search\_algorithm

# pgr\_aStarCostMatrix - proposed

### Name

pgr\_aStarCostMatrix - Calculates the a cost matrix using pgr\_aStar.

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
  - The functions make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might not change. (But still can)
  - Signature might not change. (But still can)
  - Functionality might not change. (But still can)
  - pgTap tests have being done. But might need more.
  - Documentation might need refinement.



Fig. 6.3: Boost Graph Inside

### Availability: 2.4.0

## **Synopsis**

Using aStar algorithm, calculate and return a cost matrix.

## **Signature Summary**

```
pgr_aStarCostMatrix(edges_sql, vids)
pgr_aStarCostMatrix(edges_sql, vids, directed, heuristic, factor, epsilon)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

#### **Signatures**

# **Minimal Signature**

### The minimal signature:

• Is for a **directed** graph.

```
pgr_aStarCostMatrix(edges_sql, vids)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

## **Example** Cost matrix for vertices 1, 2, 3, and 4.

```
SELECT * FROM pgr_aStarCostMatrix(
    'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
    (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)
) ;
start_vid | end_vid | agg_cost
         2 |
                   1 |
                               1
         3 |
                   1 |
                               2
         4 |
                   1 |
                               3
                   2 |
         1 |
                               1
                   2 |
                               1
         3 |
                   2 |
                               2
         4 |
                   3 |
         1 |
```

```
2 | 3 | 5

4 | 3 | 1

1 | 4 | 5

2 | 4 | 4

3 | 4 | 3

(12 rows)
```

# **Complete Signature**

```
pgr_aStarCostMatrix(edges_sql, vids, directed, heuristic, factor, epsilon)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

**Example** Cost matrix for an undirected graph for vertices 1, 2, 3, and 4.

This example returns a symmetric cost matrix.

```
SELECT * FROM pgr_aStarCostMatrix(
   'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
   (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
   directed := false, heuristic := 2
);
start_vid | end_vid | agg_cost
        2 |
             1 |
                            1
                 1 |
        3 |
                             2
        4 |
                 1 |
                            3
        1 |
                 2 |
                            1
                 2 |
        3 |
                            1
                 2 |
        4 |
                 3 |
        1 |
                            2
                 3 |
        2 |
                            1
        4 |
                 3 |
                            1
        1 |
                 4 |
                            3
        2 |
                 4 |
                            2
        3 |
                  4 |
(12 rows)
```

# **Description of the Signatures**

## Description of the edges\_sql query for astar like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Туре          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id           | ANY-INTEGER   |         | Identifier of the edge.                                                                                                            |
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |
| x1           | ANY-NUMERICAL |         | X coordinate of <i>source</i> vertex.                                                                                              |
| y1           | ANY-NUMERICAL |         | Y coordinate of <i>source</i> vertex.                                                                                              |
| x2           | ANY-NUMERICAL |         | X coordinate of <i>target</i> vertex.                                                                                              |
| y2           | ANY-NUMERICAL |         | Y coordinate of <i>target</i> vertex.                                                                                              |

# Where:

**ANY-INTEGER** SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

| Parameter | Туре               |
|-----------|--------------------|
| edges_sql | TEXT               |
| vids      | ARRAY[ANY-INTEGER] |
| directed  | BOOLEAN            |
| heuristic | INTEGER            |
| factor    | FLOAT              |
| epsilon   | FLOAT              |

# $\label{lem:condition} \textbf{Description of the parameters of the signatures}$

**Description of the return values for a Cost function** Returns set of (start\_vid, end\_vid, agg\_-cost)

| Column    | Type   | Description                                                                              |  |  |
|-----------|--------|------------------------------------------------------------------------------------------|--|--|
| start_vid | BIGINT | dentifier of the starting vertex. Used when multiple starting vetrices are in the query. |  |  |
| end_vid   | BIGINT | Identifier of the ending vertex. Used when multiple ending vertices are in the query.    |  |  |
| agg_cost  | FLOAT  | Aggregate cost from start_vid to end_vid.                                                |  |  |

# **Examples**

### Example Use with tsp

```
SELECT * FROM pgr_TSP(
   $$
   SELECT * FROM pgr_aStarCostMatrix(
       'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
       (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
       directed:= false, heuristic := 2
   $$,
   randomize := false
seq | node | cost | agg_cost
----+----
  1 |
        1 |
                          0
              1 |
  2 |
         2 |
             1 |
                          1
  3 |
         3 |
              1 |
                          2
  4 |
         4 |
                3 |
                          3
  5 |
         1 |
```

(5 rows)

### See Also

- aStar Family of functions
- Cost Matrix Category
- Traveling Sales Person Family of functions
- The queries use the *Sample Data* network.

#### Indices and tables

- genindex
- search

## The problem definition (Advanced documentation)

The A\* (pronounced "A Star") algorithm is based on Dijkstra's algorithm with a heuristic, that is an estimation of the remaining cost from the vertex to the goal, that allows to solve most shortest path problems by evaluation only a sub-set of the overall graph. Running time:  $O((E+V)*\log V)$ 

#### Heuristic

Currently the heuristic functions available are:

- 0: h(v) = 0 (Use this value to compare with pgr\_dijkstra)
- 1:  $h(v) = abs(max(\Delta x, \Delta y))$
- 2:  $h(v) = abs(min(\Delta x, \Delta y))$
- 3:  $h(v) = \Delta x * \Delta x + \Delta y * \Delta y$
- 4:  $h(v) = sqrt(\Delta x * \Delta x + \Delta y * \Delta y)$
- 5:  $h(v) = abs(\Delta x) + abs(\Delta y)$

where  $\Delta x = x_1 - x_0$  and  $\Delta y = y_1 - y_0$ 

# **Factor**

# **Analysis 1**

Working with cost/reverse\_cost as length in degrees, x/y in lat/lon: Factor = 1 (no need to change units)

### **Analysis 2**

Working with cost/reverse\_cost as length in meters, x/y in lat/lon: Factor = would depend on the location of the points:

| latitude | conversion                        | Factor |
|----------|-----------------------------------|--------|
| 45       | 1 longitude degree is 78846.81 m  | 78846  |
| 0        | 1 longitude degree is 111319.46 m | 111319 |

### **Analysis 3**

Working with cost/reverse\_cost as time in seconds, x/y in lat/lon: Factor: would depend on the location of the points and on the average speed say 25m/s is the speed.

| latitude | conversion                                  | Factor |
|----------|---------------------------------------------|--------|
| 45       | 1 longitude degree is (78846.81m)/(25m/s)   | 3153 s |
| 0        | 1 longitude degree is (111319.46 m)/(25m/s) | 4452 s |

#### See Also

- pgr\_aStar
- pgr\_aStarCost proposed
- pgr\_aStarCostMatrix proposed
- http://www.boost.org/libs/graph/doc/astar\_search.html
- http://en.wikipedia.org/wiki/A\*\_search\_algorithm

### Indices and tables

- genindex
- · search

# 6.1.2 Bidirectional A\* - Family of functions

- pgr\_bdAstar Bidirectional A\* algorithm for obtaining paths.
- pgr\_bdAstarCost Proposed Bidirectional A\* algorithm to calculate the cost of the paths.
- pgr\_bdAstarCostMatrix proposed Bidirectional A\* algorithm to calculate a cost matrix of paths.

## pgr\_bdAstarCost - Proposed

### Name

 $pgr\_bdAstarCost$  — Returns the shortest path using A\* algorithm.



Fig. 6.4: Boost Graph Inside

#### Availability: 2.5.0

### Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
  - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might change.
  - Signature might change.
  - Functionality might change.
  - pgTap tests might be missing.
  - Might need c/c++ coding.
  - May lack documentation.
  - Documentation if any might need to be rewritten.
  - Documentation examples might need to be automatically generated.
  - Might need a lot of feedback from the comunity.
  - Might depend on a proposed function of pgRouting
  - Might depend on a deprecated function of pgRouting

### **Signature Summary**

```
pgr_bdAstarCost(edges_sql, start_vid, end_vid)
pgr_bdAstarCost(edges_sql, start_vid, end_vid [, directed , heuristic, factor, epsilon])
pgr_bdAstarCost(edges_sql, start_vid, end_vids [, directed, heuristic, factor, epsilon])
pgr_bdAstarCost(edges_sql, start_vids, end_vid [, directed, heuristic, factor, epsilon])
pgr_bdAstarCost(edges_sql, start_vids, end_vids [, directed, heuristic, factor, epsilon])

RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET
```

Using these signatures, will load once the graph and perform several one to one pgr\_bdAstarCost

- The result is the union of the results of the one to one pgr\_bdAstarCost.
- The extra start\_vid and/or end\_vid in the result is used to distinguish to which path it belongs.

#### **Signatures**

### **Minimal Signature**

```
pgr_bdAstarCost(edges_sql, start_vid, end_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

### This usage finds the shortest path from the start\_vid to the end\_vid

- · on a directed graph
- with **heuristic**'s value 5
- with factor's value 1
- with **epsilon**'s value 1

### **Example** Using the defaults

```
2 | 3 | 5
(1 row)
```

### pgr\_bdAstarCost One to One

```
pgr_bdAstarCost(edges_sql, start_vid, end_vid [, directed, heuristic, factor, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

This usage finds the shortest path from the start\_vid to each end\_vid in end\_vids allowing the user to choose

- if the graph is directed or undirected
- · heuristic.
- · and/or factor
- and/or epsilon.

**Note:** In the One to One signature, because of the deprecated signature existence, it is compulsory to indicate if the graph is **directed** or **undirected**.

#### **Example** Directed using Heuristic 2

#### pgr\_bdAstarCost One to many

```
pgr_bdAstarCost(edges_sql, start_vid, end_vids [, directed, heuristic, factor, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

This usage finds the shortest path from the start\_vid to each end\_vid in end\_vids allowing the user to choose

- if the graph is directed or undirected
- and/or heuristic.
- and/or factor
- and/or epsilon.

### **Example** Directed using Heuristic 3 and a factor of 3.5

```
(2 rows)
```

## pgr\_bdAstarCost Many to One

```
pgr_bdAstarCost(edges_sql, start_vids, end_vid [, directed, heuristic, factor, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

This usage finds the shortest path from each start vid in start vids to the end vid allowing the user to choose

- if the graph is **directed** or **undirected**
- and/or heuristic,
- · and/or factor
- · and/or epsilon.

### Example Undirected graph with Heuristic 4

# pgr\_bdAstarCost Many to Many

```
pgr_bdAstarCost(edges_sql, start_vids, end_vids [, directed, heuristic, factor, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

This usage finds the shortest path from each start\_vid in start\_vids to each end\_vid in end\_vids allowing the use

- if the graph is directed or undirected
- and/or heuristic,
- and/or factor
- and/or epsilon.

# **Example** Directed graph with a factor of 0.5

```
SELECT * FROM pgr_bdAstarCost(
   'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
   FROM edge_table',
   ARRAY[2, 7], ARRAY[3, 11],
   factor := 0.5
);
start_vid | end_vid | agg_cost
                3 |
        2 |
                             5
                            3
        2 |
                11 |
                 3 |
        7 |
                            6
                11 |
        7 |
(4 rows)
```

# **Description of the Signatures**

# Description of the edges\_sql query for astar like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Туре          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id           | ANY-INTEGER   |         | Identifier of the edge.                                                                                                            |
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |
| x1           | ANY-NUMERICAL |         | X coordinate of <i>source</i> vertex.                                                                                              |
| y1           | ANY-NUMERICAL |         | Y coordinate of <i>source</i> vertex.                                                                                              |
| x2           | ANY-NUMERICAL |         | X coordinate of <i>target</i> vertex.                                                                                              |
| y2           | ANY-NUMERICAL |         | Y coordinate of <i>target</i> vertex.                                                                                              |

Where:

**ANY-INTEGER** SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

| Parameter  | Type               |
|------------|--------------------|
| edges_sql  | TEXT               |
|            |                    |
| start_vid  | ANY-INTEGER        |
| start_vids | ARRAY[ANY-INTEGER] |
| end_vid    | ANY-INTEGER        |
| end_vids   | ARRAY[ANY-INTEGER] |
| directed   | BOOLEAN            |
|            |                    |
|            |                    |
|            |                    |
|            |                    |
|            |                    |
|            |                    |
|            |                    |
| heuristic  | TNEEDOED           |
| neurisuc   | INTEGER            |
|            |                    |
|            |                    |
|            |                    |
|            |                    |
|            |                    |
|            |                    |
|            |                    |
|            |                    |
|            |                    |
| Factor     | DI ONE             |
| factor     | FLOAT              |
| 2          | 77.02              |
| epsilon    | FLOAT              |

 $\label{lem:condition} \textbf{Description of the parameters of the signatures}$ 

Description of the return values for a Cost function Returns set of ( $start\_vid$ , end\_vid, agg\_-cost)

| Column    | Туре   | Description                                                                               |  |
|-----------|--------|-------------------------------------------------------------------------------------------|--|
| start_vid | BIGINT | Identifier of the starting vertex. Used when multiple starting vetrices are in the query. |  |
| end_vid   | BIGINT | Identifier of the ending vertex. Used when multiple ending vertices are in the query.     |  |
| agg_cost  | FLOAT  | Aggregate cost from start_vid to end_vid.                                                 |  |

## See Also

- Bidirectional A\* Family of functions
- Sample Data network.
- Migration Guide<sup>5</sup>
- http://www.boost.org/libs/graph/doc/astar\_search.html
- http://en.wikipedia.org/wiki/A\*\_search\_algorithm

## Indices and tables

- genindex
- search

 $<sup>^5</sup> https://github.com/cvvergara/pgrouting/wiki/Migration-Guide\#pgr\_bdastar$ 

# pgr\_bdAstarCostMatrix - proposed

#### Name

pgr\_bdAstarCostMatrix - Calculates the a cost matrix using pgr\_bdAstar.



Fig. 6.5: Boost Graph Inside

# Availability: 2.5.0

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
  - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might change.
  - Signature might change.
  - Functionality might change.
  - pgTap tests might be missing.
  - Might need c/c++ coding.
  - May lack documentation.
  - Documentation if any might need to be rewritten.
  - Documentation examples might need to be automatically generated.
  - Might need a lot of feedback from the comunity.
  - Might depend on a proposed function of pgRouting
  - Might depend on a deprecated function of pgRouting

# **Synopsis**

Using Dijkstra algorithm, calculate and return a cost matrix.

## **Signature Summary**

```
pgr_bdAstarCostMatrix(edges_sql, start_vids)
pgr_bdAstarCostMatrix(edges_sql, start_vids, [, directed , heuristic, factor, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET
```

# **Signatures**

### **Minimal Signature**

```
pgr_bdAstarCostMatrix(edges_sql, start_vids)
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET
```

This usage calculates the cost from the each start\_vid in start\_vids to each start\_vid in start\_vids

- on a directed graph
- with **heuristic**'s value 5
- with factor's value 1
- with epsilon's value 1

**Example** Cost matrix for vertices 1, 2, 3, and 4.

```
SELECT * FROM pgr_bdAstarCostMatrix(
   'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
   (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)
);
start_vid | end_vid | agg_cost
----+----
       1 |
            3 |
                2 |
       1 |
                          6
               4 |
                         5
       1 |
       2 |
               1 |
                         1
       2 |
               3 |
                         5
       2 |
               4 |
                          4
               1 |
       3 |
                         2
       3 |
               2 |
       3 |
               4 |
                         3
       4 |
               1 |
                         3
       4 |
               2 |
                          2
               3 |
        4 |
                         1
(12 rows)
```

### **Complete Signature**

```
pgr_bdAstarCostMatrix(edges_sql, start_vids, [, directed , heuristic, factor, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET
```

This usage calculates the cost from the each start\_vid in start\_vids to each start\_vid in start\_vids allowing the

- if the graph is directed or undirected
- heuristic,
- · and/or factor
- and/or epsilon.

**Example** Cost matrix for an undirected graph for vertices 1, 2, 3, and 4.

This example returns a symmetric cost matrix.

```
SELECT * FROM pgr_bdAstarCostMatrix(
   'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
    (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
   false
);
start_vid | end_vid | agg_cost
        1 |
                2 |
        1 |
                3 |
                           2
        1 |
                 4 |
        2 |
                1 |
                           1
        2 |
                3 |
                           1
                           2
        2 |
                 4 |
                            2
        3 |
                 1 |
        3 |
                 2 |
                            1
```

|     | 3     | 4 | 1 |
|-----|-------|---|---|
|     | 4     | 1 | 3 |
|     | 4     | 2 | 2 |
|     | 4     | 3 | 1 |
| (12 | rows) |   |   |
|     | 10%57 |   |   |

# **Description of the Signatures**

# Description of the edges\_sql query for astar like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Туре          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id           | ANY-INTEGER   |         | Identifier of the edge.                                                                                                            |
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |
| x1           | ANY-NUMERICAL |         | X coordinate of <i>source</i> vertex.                                                                                              |
| y1           | ANY-NUMERICAL |         | Y coordinate of <i>source</i> vertex.                                                                                              |
| x2           | ANY-NUMERICAL |         | X coordinate of <i>target</i> vertex.                                                                                              |
| y2           | ANY-NUMERICAL |         | Y coordinate of <i>target</i> vertex.                                                                                              |

# Where:

**ANY-INTEGER** SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

| Parameter  | Type               |
|------------|--------------------|
| edges_sql  | TEXT               |
|            |                    |
| start_vid  | ANY-INTEGER        |
| start_vids | ARRAY[ANY-INTEGER] |
| end_vid    | ANY-INTEGER        |
| end_vids   | ARRAY[ANY-INTEGER] |
| directed   | BOOLEAN            |
|            |                    |
|            |                    |
|            |                    |
|            |                    |
|            |                    |
|            |                    |
|            |                    |
| heuristic  | INTEGER            |
| neurisuc   | INIEGER            |
|            |                    |
|            |                    |
|            |                    |
|            |                    |
|            |                    |
|            |                    |
|            |                    |
|            |                    |
|            |                    |
| factor     | FLOAT              |
| iactor     | LHOITI             |
| epsilon    | FLOAT              |

# $Description \ of \ the \ parameters \ of \ the \ signatures$

**Description of the return values for a Cost function** Returns set of (start\_vid, end\_vid, agg\_-cost)

| Column    | Туре   | Description                                                                               |  |
|-----------|--------|-------------------------------------------------------------------------------------------|--|
| start_vid | BIGINT | Identifier of the starting vertex. Used when multiple starting vetrices are in the query. |  |
| end_vid   | BIGINT | Identifier of the ending vertex. Used when multiple ending vertices are in the query.     |  |
| agg_cost  | FLOAT  | Aggregate cost from start_vid to end_vid.                                                 |  |

## **Examples**

### **Example** Use with tsp

```
SELECT * FROM pgr_TSP(
    SELECT * FROM pgr_bdAstarCostMatrix(
        'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
        (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
    )
    $$,
   randomize := false
);
seq | node | cost | agg_cost
         1 |
                1 |
                            0
          2 |
                 1 |
   2 |
                            1
          3 |
                            2
   3 |
                 1 |
```

```
4 | 4 | 3 | 3
5 | 1 | 0 | 6
(5 rows)
```

### See Also

- Bidirectional A\* Family of functions
- Cost Matrix Category
- Traveling Sales Person Family of functions
- The queries use the *Sample Data* network.

### Indices and tables

- genindex
- search

# **Synopsis**

Based on A\* algorithm, the bidirectional search finds a shortest path from a starting vertex (start\_vid) to an ending vertex (end\_vid). It runs two simultaneous searches: one forward from the start\_vid, and one backward from the end\_vid, stopping when the two meet in the middle. This implementation can be used with a directed graph and an undirected graph.

### **Characteristics**

The main Characteristics are:

- Process is done only on edges with positive costs.
- Values are returned when there is a path.
- When the starting vertex and ending vertex are the same, there is no path.
  - The agg\_cost the non included values (v, v) is 0
- When the starting vertex and ending vertex are the different and there is no path:
  - − The  $agg\_cost$  the non included values (u, v) is  $\infty$
- Running time (worse case scenario):  $O((E+V) * \log V)$
- For large graphs where there is a path bewtween the starting vertex and ending vertex:
  - It is expected to terminate faster than pgr\_astar

# **Description of the Signatures**

# Description of the edges\_sql query for astar like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Туре          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id           | ANY-INTEGER   |         | Identifier of the edge.                                                                                                            |
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |
| x1           | ANY-NUMERICAL |         | X coordinate of <i>source</i> vertex.                                                                                              |
| y1           | ANY-NUMERICAL |         | Y coordinate of <i>source</i> vertex.                                                                                              |
| x2           | ANY-NUMERICAL |         | X coordinate of <i>target</i> vertex.                                                                                              |
| y2           | ANY-NUMERICAL |         | Y coordinate of <i>target</i> vertex.                                                                                              |

# Where:

**ANY-INTEGER** SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

# Description of the parameters of the signatures

| Parameter  | Type               | Description                                                                                                                                                                                                                                                                                                                                       |
|------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| edges_sql  | TEXT               | Edges SQL query as described                                                                                                                                                                                                                                                                                                                      |
|            |                    | above.                                                                                                                                                                                                                                                                                                                                            |
| start_vid  | ANY-INTEGER        | Starting vertex identifier.                                                                                                                                                                                                                                                                                                                       |
| start_vids | ARRAY[ANY-INTEGER] | Starting vertices identifierers.                                                                                                                                                                                                                                                                                                                  |
| end_vid    | ANY-INTEGER        | Ending vertex identifier.                                                                                                                                                                                                                                                                                                                         |
| end_vids   | ARRAY[ANY-INTEGER] | Ending vertices identifiers.                                                                                                                                                                                                                                                                                                                      |
| directed   | BOOLEAN            | <ul> <li>Optional.</li> <li>When false the graph is considered as Undirected.</li> <li>Default is true which considers the graph as Directed.</li> </ul>                                                                                                                                                                                          |
| heuristic  | INTEGER            | <ul> <li>(optional). Heuristic number. Current valid values 0~5. Default 5</li> <li>0: h(v) = 0 (Use this value to compare with pgr_dijkstra)</li> <li>1: h(v) abs(max(dx, dy))</li> <li>2: h(v) abs(min(dx, dy))</li> <li>3: h(v) = dx * dx + dy * dy</li> <li>4: h(v) = sqrt(dx * dx + dy * dy)</li> <li>5: h(v) = abs(dx) + abs(dy)</li> </ul> |
| factor     | FLOAT              | (optional). For units manipulation. $factor > 0$ . Default 1. see $Factor$                                                                                                                                                                                                                                                                        |
| epsilon    | FLOAT              | (optional). For less restricted results. $epsilon >= 1$ . Default 1.                                                                                                                                                                                                                                                                              |

# 6.1.3 Bidirectional Dijkstra - Family of functions

- pgr\_bdDijkstra Bidirectional Dijkstra algorithm for the shortest paths.
- pgr\_bdDijkstraCost Proposed Bidirectional Dijkstra to calculate the cost of the shortest paths
- pgr\_bdDijkstraCostMatrix proposed Bidirectional Dijkstra algorithm to create a matrix of costs of the shortest paths.

# pgr\_bdDijkstraCost - Proposed

 $\verb|pgr_bdDijkstraCost| - Returns the shortest path (s) 's cost using Bidirectional Dijkstra algorithm.$ 



Fig. 6.6: Boost Graph Inside

#### Availability: 2.5.0

### Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
  - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might change.
  - Signature might change.
  - Functionality might change.
  - pgTap tests might be missing.
  - Might need c/c++ coding.
  - May lack documentation.
  - Documentation if any might need to be rewritten.
  - Documentation examples might need to be automatically generated.
  - Might need a lot of feedback from the comunity.
  - Might depend on a proposed function of pgRouting
  - Might depend on a deprecated function of pgRouting

# **Signature Summary**

```
pgr_dijkstraCost(edges_sql, start_vid, end_vid)
pgr_bdDijkstraCost(edges_sql, start_vid, end_vid, directed)
pgr_bdDijkstraCost(edges_sql, start_vid, end_vids, directed)
pgr_bdDijkstraCost(edges_sql, start_vids, end_vid, directed)
pgr_bdDijkstraCost(edges_sql, start_vids, end_vids, directed)

RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET
```

### **Signatures**

# Minimal signature

```
pgr_bdDijkstraCost(edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

The minimal signature is for a directed graph from one start\_vid to one end\_vid:

# **Example**

### pgr\_bdDijkstraCost One to One

```
pgr_bdDijkstraCost(edges_sql, start_vid, end_vid, directed)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET
```

# This signature finds the shortest path from one start\_vid to one end\_vid:

• on a directed graph when directed flag is missing or is set to true.

• on an undirected graph when directed flag is set to false.

#### **Example**

# pgr\_bdDijkstraCost One to many

```
pgr_bdDijkstra(edges_sql, start_vid, end_vids, directed)
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost) or EMPTY SET
```

### This signature finds the shortest path from one start\_vid to each end\_vid in end\_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an **undirected** graph when directed flag is set to false.

Using this signature, will load once the graph and perform a one to one *pgr\_dijkstra* where the starting vertex is fixed, and stop when all end\_vids are reached.

- The result is equivalent to the union of the results of the one to one pgr\_dijkstra.
- The extra end\_vid in the result is used to distinguish to which path it belongs.

#### **Example**

### pgr\_bdDijkstraCost Many to One

```
pgr_bdDijkstra(edges_sql, start_vids, end_vid, directed)
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost) or EMPTY SET
```

### This signature finds the shortest path from each start\_vid in start\_vids to one end\_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to one  $pgr\_dijkstra$  where the ending vertex is fixed.

- The result is the union of the results of the one to one pgr dijkstra.
- The extra start\_vid in the result is used to distinguish to which path it belongs.

### **Example**

```
SELECT * FROM pgr_bdDijkstra(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[2, 7], 3);
seq | path_seq | start_vid | node | edge | cost | agg_cost
  1 | 1 |
                    2 |
                          2 | 4 | 1 |
                                                0
          2 |
                          5 | 8 | 1 |
  2 |
                    2 |
                                                1
          3 |
                    2 |
                          6 |
  3 |
                                9 |
                                      1 |
                                               2
                          9 | 16 |
           4 |
                    2 |
                                      1 |
                                                3
  4 |
                           4 |
  5 |
           5 |
                    2 |
                                3 |
                                      1 |
                                                4
           6 |
                     2 |
                           3 | -1 |
                                      0 |
                                                5
  6 |
  7 |
           1 |
                     7 |
                           7 |
                                 6 |
                                      1 |
                                                0
  8 |
           2 |
                     7 |
                           8 |
                                 7 |
                                      1 |
                                                1
           3 |
  9 |
                     7 |
                           5 |
                                 8 |
                                      1 |
                                                2
 10 |
           4 |
                     7 |
                           6 |
                                 9 |
                                      1 |
                                                3
 11 |
           5 I
                     7 |
                           9 |
                               16 |
                                      1 |
                     7 |
 12 |
           6 |
                           4 |
                                3 |
                                       1 |
                                                5
                          3 |
                     7 |
 13 |
           7 |
                                -1 |
                                      0 |
(13 rows)
```

# pgr\_bdDijkstraCost Many to Many

```
pgr_bdDijkstra(edges_sql, start_vids, end_vids, directed)
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) or EMPTY SET
```

# This signature finds the shortest path from each start\_vid in start\_vids to each end\_vid in end\_vids:

- on a **directed** graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to Many *pgr\_dijkstra* for all start\_vids.

- The result is the union of the results of the one to one pgr dijkstra.
- The extra start\_vid in the result is used to distinguish to which path it belongs.

The extra start\_vid and end\_vid in the result is used to distinguish to which path it belongs.

# Example

| ' S | SELECT * FROM pgr_bdDijkstra(     'SELECT id, source, target, cost, reverse_cost FROM edge_table',     ARRAY[2, 7], ARRAY[3, 11]); |           |         |     |    |          |     |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|-----|----|----------|-----|--|
| seq | path_seq                                                                                                                           | start_vid | end_vid |     | _  |          |     |  |
| 1   | <br>1                                                                                                                              | ++<br>  2 |         | •   | •  | +<br>  1 |     |  |
| 2   | 2                                                                                                                                  | 2         | 3       | 5   | 8  | 1        | 1   |  |
| 3   | 3                                                                                                                                  | 2         | 3       | 6   | 9  | 1        | 2   |  |
| 4   | 4                                                                                                                                  | 2         | 3       | 9   | 16 | 1        | 3   |  |
| 5   | 5                                                                                                                                  | 2         | 3       | 4   | 3  | 1        | 4   |  |
| 6   | 6                                                                                                                                  | 2         | 3       | 3   | -1 | 0        | 5   |  |
| 7   | 1                                                                                                                                  | 2         | 11      | 2   | 4  | 1        | 0   |  |
| 8   | 2                                                                                                                                  | 2         | 11      | 5   | 8  | 1        | 1   |  |
| 9   | 3                                                                                                                                  | 2         | 11      | 6   | 11 | 1        | 2   |  |
| 10  | 4                                                                                                                                  | 2         | 11      | 11  | -1 | 0        | 3   |  |
| 11  | 1                                                                                                                                  | 7         | 3       | 7   | 6  | 1        | 0   |  |
| 12  | 2                                                                                                                                  | 7         | 3       | 8   | 7  | 1        | 1   |  |
| 13  | 3                                                                                                                                  | 7         | 3       | 1 5 | 8  | 1        | 2   |  |
| 14  | 4                                                                                                                                  | 7         | 3       | 6   | 9  | 1        | 3   |  |
| 15  | 5                                                                                                                                  | 7         | 3       | 9   | 16 | 1        | 4   |  |
| 16  | 6                                                                                                                                  | 7         | 3       | 4   | 3  | 1        | 5   |  |
| 17  | 7                                                                                                                                  | 7         | 3       | 3   | -1 | 0        | 1 6 |  |

| 18        | 1 | 7 | 11 | 7  | 6  | 1 | 0 |  |
|-----------|---|---|----|----|----|---|---|--|
| 19        | 2 | 7 | 11 | 8  | 7  | 1 | 1 |  |
| 20        | 3 | 7 | 11 | 5  | 10 | 1 | 2 |  |
| 21        | 4 | 7 | 11 | 10 | 12 | 1 | 3 |  |
| 22        | 5 | 7 | 11 | 11 | -1 | 0 | 4 |  |
| (22 rows) |   |   |    |    |    |   |   |  |
|           |   |   |    |    |    |   |   |  |

# **Description of the Signatures**

# Description of the edges\_sql query for dijkstra like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Туре          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id           | ANY-INTEGER   |         | Identifier of the edge.                                                                                                            |
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |

### Where:

**ANY-INTEGER** SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

| Column     | Type          | Default |
|------------|---------------|---------|
| sql        | TEXT          |         |
| start_vid  | BIGINT        |         |
| start_vids | ARRAY[BIGINT] |         |
| end_vid    | BIGINT        |         |
| end_vids   | ARRAY[BIGINT] |         |
| directed   | BOOLEAN       | true    |

# Description of the parameters of the signatures

**Description of the return values for a Cost function** Returns set of (start\_vid, end\_vid, agg\_-cost)

| Column    | Type   | Description                                                                               |
|-----------|--------|-------------------------------------------------------------------------------------------|
| start_vid | BIGINT | Identifier of the starting vertex. Used when multiple starting vetrices are in the query. |
| end_vid   | BIGINT | Identifier of the ending vertex. Used when multiple ending vertices are in the query.     |
| agg_cost  | FLOAT  | Aggregate cost from start_vid to end_vid.                                                 |

# See Also

- The queries use the Sample Data network.
- pgr\_bdDijkstra
- $\bullet\ http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP\%20 shortest\%20 path\%20 algorithms.pdf$
- https://en.wikipedia.org/wiki/Bidirectional\_search

### Indices and tables

- genindex
- search

# pgr\_bdDijkstraCostMatrix - proposed

### Name

 $\verb|pgr_bdDijkstraCostMatrix-Calculates| the a cost matrix using $pgr_bdDijkstra. \\$ 



Fig. 6.7: Boost Graph Inside

### Availability: 2.5.0

### **Warning:** Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
  - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might change.
  - Signature might change.
  - Functionality might change.
  - pgTap tests might be missing.
  - Might need c/c++ coding.
  - May lack documentation.
  - Documentation if any might need to be rewritten.
  - Documentation examples might need to be automatically generated.
  - Might need a lot of feedback from the comunity.
  - Might depend on a proposed function of pgRouting
  - Might depend on a deprecated function of pgRouting

### **Synopsis**

Using Dijkstra algorithm, calculate and return a cost matrix.

### **Signature Summary**

```
pgr_bdDijkstraCostMatrix(edges_sql, start_vids)
pgr_bdDijkstraCostMatrix(edges_sql, start_vids, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

# **Signatures**

# **Minimal Signature**

### The minimal signature:

• Is for a directed graph.

```
pgr_bdDijkstraCostMatrix(edges_sql, start_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

# **Example** Cost matrix for vertices 1, 2, 3, and 4.

```
SELECT * FROM pgr_bdDijkstraCostMatrix(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)
);
start_vid | end_vid | agg_cost
-----
           2 | 3 |
        1 |
                          1
        1 |
                           6
                4 |
        1 |
                1 |
        2 |
                           1
                3 |
        2 |
                          5
        2 |
                4 |
                           4
                1 |
                           2
        3 |
                2 |
        3 |
                           1
                           3
        3 |
                 4 |
        4 |
                 1 |
```

```
4 | 2 | 2
4 | 3 | 1
(12 rows)
```

# **Complete Signature**

```
pgr_bdDijkstraCostMatrix(edges_sql, start_vids, directed:=true)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

**Example** Cost matrix for an undirected graph for vertices 1, 2, 3, and 4.

This example returns a symmetric cost matrix.

```
SELECT * FROM pgr_bdDijkstraCostMatrix(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
    (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
) ;
start_vid | end_vid | agg_cost
   -----
        1 |
                 2 |
                            1
        1 |
                 3 |
                            2
                 4 |
                            3
        1 |
                 1 |
                            1
        2 |
        2 |
                 3 |
                            1
        2 |
                 4 |
                            2
        3 |
                 1 |
                            2
                 2 |
        3 |
                            1
        3 |
                 4 |
                            1
        4 |
                 1 |
                            3
                 2 |
        4 |
                            2
        4 |
                 3 |
                            1
(12 rows)
```

# **Description of the Signatures**

# Description of the edges\_sql query for dijkstra like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Туре          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id           | ANY-INTEGER   |         | Identifier of the edge.                                                                                                            |
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

# **Description of the parameters of the signatures**

| Pa-    | Туре          | Description                                  |
|--------|---------------|----------------------------------------------|
| rame-  |               |                                              |
| ter    |               |                                              |
| edges  | TEXT          | Edges SQL query as described above.          |
| sql    |               |                                              |
| start  | ARRAY[ANY-INT | EAFRy of identifiers of the vertices.        |
| vids   |               |                                              |
| di-    | BOOLEAN       | (optional). When false the graph is consider |
| rected |               | true which considers the graph as Directed.  |

**Description of the return values for a Cost function** Returns set of (start\_vid, end\_vid, agg\_-cost)

| Column    | Type   | Description                                                                               |
|-----------|--------|-------------------------------------------------------------------------------------------|
| start_vid | BIGINT | Identifier of the starting vertex. Used when multiple starting vetrices are in the query. |
| end_vid   | BIGINT | Identifier of the ending vertex. Used when multiple ending vertices are in the query.     |
| agg_cost  | FLOAT  | Aggregate cost from start_vid to end_vid.                                                 |

# **Examples**

# Example Use with tsp

```
randomize := false
);
seq | node | cost | agg_cost
  1 | 1 | 1 |
  2 | 2 |
            1 |
                        1
  3 | 3 | 1 |
                        2
              3 |
  4 |
        4 |
                        3
  5 |
        1 |
              0 |
                        6
(5 rows)
```

### See Also

- Bidirectional Dijkstra Family of functions
- Cost Matrix Category
- Traveling Sales Person Family of functions
- The queries use the Sample Data network.

### Indices and tables

- genindex
- · search

# **Synopsis**

Based on Dijkstra's algorithm, the bidirectional search finds a shortest path a starting vertex (start\_vid) to an ending vertex (end\_vid). It runs two simultaneous searches: one forward from the source, and one backward from the target, stopping when the two meet in the middle. This implementation can be used with a directed graph and an undirected graph.

# Characteristics

The main Characteristics are:

- Process is done only on edges with positive costs.
- Values are returned when there is a path.
- When the starting vertex and ending vertex are the same, there is no path.
  - The  $agg\_cost$  the non included values (v, v) is 0
- When the starting vertex and ending vertex are the different and there is no path:
  - The  $agg\_cost$  the non included values (u, v) is  $\infty$
- Running time (worse case scenario):  $O((V \log V + E))$
- For large graphs where there is a path bewtween the starting vertex and ending vertex:
  - It is expected to terminate faster than pgr\_dijkstra

# 6.1.4 withPoints - Family of functions

When points are also given as input:

- pgr\_withPoints Proposed Route from/to points anywhere on the graph.
- pgr\_withPointsCost Proposed Costs of the shortest paths.
- pgr\_withPointsCostMatrix proposed Costs of the shortest paths.
- pgr\_withPointsKSP Proposed K shortest paths.
- pgr\_withPointsDD Proposed Driving distance.

# pgr\_withPoints - Proposed

#### Name

pgr\_withPoints - Returns the shortest path in a graph with additional temporary vertices.

**Warning:** Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
  - The functions make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might not change. (But still can)
  - Signature might not change. (But still can)
  - Functionality might not change. (But still can)
  - pgTap tests have being done. But might need more.
  - Documentation might need refinement.



Fig. 6.8: Boost Graph Inside

### Availability: 2.2.0

# **Synopsis**

Modify the graph to include points defined by points\_sql. Using Dijkstra algorithm, find the shortest path(s)

#### **Characteristics:**

The main Characteristics are:

- Process is done only on edges with positive costs.
- Vertices of the graph are:
  - positive when it belongs to the edges\_sql
  - **negative** when it belongs to the points\_sql
- Values are returned when there is a path.
  - When the starting vertex and ending vertex are the same, there is no path.

- The agg\_cost the non included values (v, v) is 0
- When the starting vertex and ending vertex are the different and there is no path:
- The agg\_cost the non included values (u, v) is  $\infty$
- For optimization purposes, any duplicated value in the start\_vids or end\_vids are ignored.
- The returned values are ordered:
  - start\_vid ascending
  - end\_vid ascending
- Running time:  $O(|start\_vids|(V \log V + E))$

# **Signature Summary**

```
pgr_withPoints(edges_sql, points_sql, start_vid, end_vid)
pgr_withPoints(edges_sql, points_sql, start_vid, end_vid, directed, driving_side, details)
pgr_withPoints(edges_sql, points_sql, start_vid, end_vids, directed, driving_side, details)
pgr_withPoints(edges_sql, points_sql, start_vids, end_vid, directed, driving_side, details)
pgr_withPoints(edges_sql, points_sql, start_vids, end_vids, directed, driving_side, details)
RETURNS SET OF (seq, path_seq, [start_vid,] [end_vid,] node, edge, cost, agg_cost)
```

#### **Signatures**

# Minimal Use

# The minimal signature:

- Is for a directed graph.
- ullet The driving side is set as ullet both. So arriving/departing to/from the point(s) can be in any direction.
- No **details** are given about distance of other points of points\_sql query.

```
pgr_withPoints(edges_sql, points_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
```

## **Example** From point 1 to point 3

```
SELECT * FROM pgr_withPoints(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
    'SELECT pid, edge_id, fraction, side from pointsOfInterest',
    -1, -3);
seq | path_seq | node | edge | cost | agg_cost
   1 |
             1 |
                   -1 |
                           1 | 0.6 |
                  2 |
5 |
                          4 | 1 | 1 | 10 | 1 |
             2 |
  2 |
                                           0.6
                         10 |
  3 |
             3 |
                                           1.6
                         12 | 0.6 |
             4 |
  4 |
                   10 |
                                            2.6
             5 I
                         -1 |
  5 |
                   -3 |
                                0 |
                                            3.2
(5 rows)
```

### One to One

#### **Example** From point 1 to vertex 3

```
SELECT * FROM pgr_withPoints(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, 3,
   details := true);
seq | path_seq | node | edge | cost | agg_cost
____+
           1 | -1 | 1 | 0.6 |
           2 | 2 | 4 | 0.7 |
  2 |
                                      0.6
           3 | -6 | 4 | 0.3 |
                                      1.3
  3 |
  4 |
           4 | 5 | 8 | 1 |
                                      1.6
           5 | 6 | 9 | 1 |
6 | 9 | 16 | 1 |
7 | 4 | 3 | 1 |
8 | 3 | -1 | 0 |
  5 |
                                      2.6
                                       3.6
  6 |
  7 |
                                       4.6
  8 |
(8 rows)
```

### One to Many

# **Example** From point 1 to point 3 and vertex 5

```
SELECT * FROM pgr_withPoints(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, ARRAY[-3, 5]);
seq | path_seq | end_pid | node | edge | cost | agg_cost
1 | -3 | -1 | 1 | 0.6 | 0
  1 |
                 -3 | 2 |
-3 | 5 |
                              4 | 1 | 1 | 10 | 1 |
  2 |
          2 |
                                             0.6
                                           1.6
  3 |
                  -3 |
          3 |
                              10 |
                  -3 | 10 |
           4 |
5 |
  4 |
                              12 | 0.6 |
                                             2.6
                 -3 | -3 |

-3 | -1 |
          5 |
                              5 |
               5 | -1 |
5 | 2 |
5 | 5 |
          1 |
  6 |
                              4 | 1 |
-1 | 0 |
                                            0.6
  7 |
          2 |
 8 |
          3 |
                                           1.6
(8 rows)
```

### Many to One

### **Example** From point 1 and vertex 2 to point 3

```
SELECT * FROM pgr_withPoints(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   ARRAY[-1,2], -3);
seq | path_seq | start_pid | node | edge | cost | agg_cost
 ____+___
                   -1 | -1 | 1 | 0.6 |
-1 | 2 | 4 | 1 |
-1 | 5 | 10 | 1 |
  1 |
            1 |
           2 |
                                                0.6
  2 |
           3 |
                     -1 |
                                                1.6
  3 |
                     -1 | 10 |
                                 12 | 0.6 |
                                                2.6
  4 |
           4 |
            5 I
                     -1 | -3 |
                                 -1 |
                                       0 |
  5 I
                                                3.2
            1 |
                      2 |
                           2 | 4 | 1 |
  6 1
                                                  0
```

| 7   2    | 2 | 2 | 5  | 10 | 1   | 1   |
|----------|---|---|----|----|-----|-----|
| 8   3    | 3 | 2 | 10 | 12 | 0.6 | 2   |
| 9   4    | 1 | 2 | -3 | -1 | 0   | 2.6 |
| (9 rows) |   |   |    |    |     |     |

#### Many to Many

# **Example** From point 1 and vertex 2 to point 3 and vertex 7

```
SELECT * FROM pgr_withPoints(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   ARRAY[-1,2], ARRAY[-3,7]);
seq | path_seq | start_pid | end_pid | node | edge | cost | agg_cost
                      -1 |
                               -3 | -1 | 1 | 0.6 |
  1 |
            1 |
                      -1 |
            2 |
                               -3 | 2 |
-3 | 5 |
                                            4 | 1 |
10 | 1 |
  2 |
                                                           0.6
                              -3 | 5 .
-3 | 5 .
-1 10 |
                                           10 |
  3 |
            3 |
                      -1 |
                                                           1.6
       4 |
5 |
1 |
2 |
3 |
4 |
5 |
1 |
2 |
3 |
4 |
1 |
2 |
3 |
4 |
1 |
2 |
3 |
4 |
                      -1 |
            4 |
                                           12 | 0.6 |
  4 |
                                                            2.6
           4 | 5 |
                      -1 |
                               -3 |
                                    -3 |
                                            -1 |
                                                 0 |
  5 I
                                                           3.2
                      -1 |
                                            1 | 0.6 |
  6 |
                               7 | -1 |
                                                            0
  7 |
                     -1 |
                               7 |
                                      2 |
                                            4 |
                                                 1 |
                                                          0.6
                               7 1 5 1
                                            7 1
  8 1
                     -1 I
                                                 1 |
                                                           1.6
                     -1 I
                               7 | 8 |
  9 |
                                            6 | 1 |
                                                           2.6
                    -1 |
2 |
2 |
2 |
2 |
                               7 |
                                      7 |
                                            -1 | 0 |
 10 |
                                                           3.6
 11 |
                               -3 | 2 |
                                            4 | 1 |
 12 |
                               -3 | 5 | 10 | 1 |
 13 |
                               -3 | 10 | 12 | 0.6 |
                                                            2
                                                           2.6
 14 |
                              -3 | -3 | -1 | 0 |
                      2 |
                               7 | 2 |
 15 |
                                            4 | 1 |
                                                            0
 16 |
                               7 | 5 |
                                            7 | 1 |
                      2 |
                                                             1
                      2 | 2 |
 17 |
                                7 | 8 |
                                            6 | 1 |
                                                             2.
 18 |
                               7 | 7 | -1 | 0 |
(18 rows)
```

# **Description of the Signatures**

# Description of the edges\_sql query for dijkstra like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Туре          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id           | ANY-INTEGER   |         | Identifier of the edge.                                                                                                            |
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |

# Where:

**ANY-INTEGER** SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

# Description of the Points SQL query

points\_sql an SQL query, which should return a set of rows with the following columns:

| Column   | Type          | Description                                                                                                                                                                                                                                  |
|----------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pid      | ANY-INTEGER   | <ul> <li>(optional) Identifier of the point.</li> <li>• If column present, it can not be NULL.</li> <li>• If column not present, a sequential identifier will be given automatically.</li> </ul>                                             |
| edge_id  | ANY-INTEGER   | Identifier of the "closest" edge to the point.                                                                                                                                                                                               |
| fraction | ANY-NUMERICAL | Value in <0,1> that indicates the relative postition from the first end point of the edge.                                                                                                                                                   |
| side     | CHAR          | <ul> <li>(optional) Value in ['b', 'r', 'l', NULL] indicating if the point is:</li> <li>• In the right, left of the edge or</li> <li>• If it doesn't matter with 'b' or NULL.</li> <li>• If column not present 'b' is considered.</li> </ul> |

### Where:

ANY-INTEGER smallint, int, bigint

ANY-NUMERICAL smallint, int, bigint, real, float

| Parameter    | Type               |
|--------------|--------------------|
| edges_sql    | TEXT               |
| points_sql   | TEXT               |
| start_vid    | ANY-INTEGER        |
| end_vid      | ANY-INTEGER        |
| start_vids   | ARRAY[ANY-INTEGER] |
| end_vids     | ARRAY[ANY-INTEGER] |
| directed     | BOOLEAN            |
| driving_side | CHAR               |
| details      | BOOLEAN            |

Description of the parameters of the signatures

**Description of the return values** Returns set of (seq, [path\_seq,] [start\_vid,] [end\_vid,] node, edge, cost, agg\_cost)

| Column    | Туре    | Description                                                                                                                                               |
|-----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| seq       | INTEGER | Row sequence.                                                                                                                                             |
| path_seq  | INTEGER | Path sequence that indicates the relative position on the path.                                                                                           |
| start_vid | BIGINT  | Identifier of the starting vertex. When negative: is a point's pid.                                                                                       |
| end_vid   | BIGINT  | Identifier of the ending vertex. When negative: is a point's pid.                                                                                         |
| node      | BIGINT  | Identifier of the node:  • A positive value indicates the node is a vertex of edges_sql.  • A negative value indicates the node is a point of points_sql. |
| edge      | BIGINT  | Identifier of the edge used to go from node to the  • -1 for the last row in the path sequence.                                                           |
| cost      | FLOAT   | Cost to traverse from node using edge to the ne  • 0 for the last row in the path sequence.                                                               |
| agg_cost  | FLOAT   | Aggregate cost from start_pid to node.  • 0 for the first row in the path sequence.                                                                       |

### **Examples**

**Example** Which path (if any) passes in front of point 6 or vertex 6 with **right** side driving topology.

```
SELECT ('(' || start_pid || ' => ' || end_pid ||') at ' || path_seq || 'th step:'):: TEXT AS path_
       CASE WHEN edge = -1 THEN ' visits'
          ELSE ' passes in front of'
       END as status,
       CASE WHEN node < 0 THEN 'Point'
           ELSE 'Vertex'
       END as is_a,
       abs(node) as id
   FROM pgr_withPoints(
       'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
       'SELECT pid, edge_id, fraction, side from pointsOfInterest',
       ARRAY[1,-1], ARRAY[-2,-3,-6,3,6],
       driving_side := 'r',
       details := true)
   WHERE node IN (-6,6);
       path_at | status | is_a | id
(-1 \Rightarrow -6) at 4th step: | visits | Point | 6
(-1 \Rightarrow -3) at 4th step: | passes in front of | Point | 6
 (-1 \Rightarrow -2) at 4th step: | passes in front of | Point | 6
```

```
(-1 => -2) at 6th step: | passes in front of | Vertex | 6
(-1 => 3) at 4th step: | passes in front of | Point | 6
(-1 => 3) at 6th step: | passes in front of | Vertex | 6
(-1 => 6) at 4th step: | passes in front of | Point | 6
(-1 => 6) at 6th step: | visits | Vertex | 6
(1 => -6) at 3th step: | visits | Point | 6
(1 => -3) at 3th step: | passes in front of | Point | 6
(1 => -2) at 3th step: | passes in front of | Point | 6
(1 => -2) at 5th step: | passes in front of | Vertex | 6
(1 => 3) at 3th step: | passes in front of | Vertex | 6
(1 => 3) at 5th step: | passes in front of | Vertex | 6
(1 => 6) at 3th step: | passes in front of | Vertex | 6
(1 => 6) at 5th step: | passes in front of | Point | 6
(1 => 6) at 5th step: | visits | Vertex | 6
(1 => 6) at 5th step: | visits | Vertex | 6
```

## **Example** Which path (if any) passes in front of point 6 or vertex 6 with **left** side driving topology.

```
SELECT ('(' || start_pid || ' => ' || end_pid ||') at ' || path_seq || 'th step:'):: TEXT AS path_
        CASE WHEN edge = -1 THEN ' visits'
            ELSE ' passes in front of'
        END as status,
        CASE WHEN node < 0 THEN 'Point'
            ELSE 'Vertex'
        END as is_a,
        abs(node) as id
    FROM pgr_withPoints(
        'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
         'SELECT pid, edge_id, fraction, side from pointsOfInterest',
        ARRAY[1,-1], ARRAY[-2,-3,-6,3,6],
        driving_side := 'l',
        details := true)
    WHERE node IN (-6,6);
        path_at | status | is_a | id
 (-1 \Rightarrow -6) at 3th step: | visits | Point | 6
 (-1 \Rightarrow -3) at 3th step: | passes in front of | Point | 6
 (-1 \Rightarrow -2) at 3th step: | passes in front of | Point | 6
 (-1 \Rightarrow -2) at 5th step: | passes in front of | Vertex | 6
 (-1 \Rightarrow 3) at 3th step: | passes in front of | Point | 6
 (-1 \Rightarrow 3) at 5th step: | passes in front of | Vertex | 6
 (-1 \Rightarrow 6) at 3th step: | passes in front of | Point | 6
 (-1 \Rightarrow 6) at 5th step: | visits | Vertex | 6
 (1 \Rightarrow -6) at 4th step: | visits
                                                  | Point | 6
 (1 => -3) at 4th step: \mid passes in front of \mid Point \mid 6
 (1 \Rightarrow -2) at 4th step: | passes in front of | Point
 (1 => -2) at 6th step: \mid passes in front of \mid Vertex \mid 6
 (1 => 3) at 4th step: | passes in front of | Point | 6
(1 => 3) at 6th step: | passes in front of | Vertex | 6
(1 => 6) at 4th step: | passes in front of | Point | 6
 (1 => 6) at 6th step: | visits
                                                   | Vertex | 6
(16 rows)
```

### **Example** Many to many example with a twist: on undirected graph and showing details.

```
SELECT * FROM pgr_withPoints(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
    'SELECT pid, edge_id, fraction, side from pointsOfInterest',
    ARRAY[-1,2], ARRAY[-3,7],
    directed := false,
    details := true);
seq | path_seq | start_pid | end_pid | node | edge | cost | agg_cost
```

|       | +    | +  | +  | +   | +  | +   | +   |
|-------|------|----|----|-----|----|-----|-----|
| 1     |      | -1 | -3 | -1  | 1  | 0.6 | 0   |
| 2     | 2    | -1 | -3 | 2   | 4  | 0.7 | 0.6 |
| 3     | 3    | -1 | -3 | -6  | 4  | 0.3 | 1.3 |
| 4     | 4    | -1 | -3 | 5   | 10 | 1   | 1.6 |
| 5     | 5    | -1 | -3 | 10  | 12 | 0.6 | 2.6 |
| 6     | 1 6  | -1 | -3 | -3  | -1 | 0   | 3.2 |
| 7     | 1    | -1 | 7  | -1  | 1  | 0.6 | 0   |
| 8     | 2    | -1 | 7  | 2   | 4  | 0.7 | 0.6 |
| 9     | 3    | -1 | 7  | -6  | 4  | 0.3 | 1.3 |
| 10    | 4    | -1 | 7  | 1 5 | 7  | 1   | 1.6 |
| 11    | 5    | -1 | 7  | 8   | 6  | 0.7 | 2.6 |
| 12    | 1 6  | -1 | 7  | -4  | 6  | 0.3 | 3.3 |
| 13    | 7    | -1 | 7  | 7   | -1 | 0   | 3.6 |
| 14    | 1    | 2  | -3 | 2   | 4  | 0.7 | 0   |
| 15    | 2    | 2  | -3 | -6  | 4  | 0.3 | 0.7 |
| 16    | 3    | 2  | -3 | 1 5 | 10 | 1   | 1   |
| 17    | 4    | 2  | -3 | 10  | 12 | 0.6 | 2   |
| 18    | 5    | 2  | -3 | -3  | -1 | 0   | 2.6 |
| 19    | 1    | 2  | 7  | 2   | 4  | 0.7 | 0   |
| 20    | 2    | 2  | 7  | -6  | 4  | 0.3 | 0.7 |
| 21    | 3    | 2  | 7  | 5   | 7  | 1   | 1   |
| 22    | 4    | 2  | 7  | 8   | 6  | 0.7 | 2   |
| 23    | 5    | 2  | 7  | -4  | 6  | 0.3 | 2.7 |
| 24    | 1 6  | 2  | 7  | 7   | -1 | 0   | ] 3 |
| (24 r | ows) |    |    |     |    |     |     |
|       |      |    |    |     |    |     |     |

The queries use the Sample Data network.

# History

• Proposed in version 2.2

# See Also

• withPoints - Family of functions

# Indices and tables

- genindex
- search

# pgr\_withPointsCost - Proposed

# Name

 $\verb|pgr_withPointsCost-Calculates| the shortest path and returns only the aggregate cost of the shortest path(s) found, for the combination of points given.$ 

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
  - The functions make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might not change. (But still can)
  - Signature might not change. (But still can)
  - Functionality might not change. (But still can)
  - pgTap tests have being done. But might need more.
  - Documentation might need refinement.



Fig. 6.9: Boost Graph Inside

Availability: 2.2.0

### **Synopsis**

Modify the graph to include points defined by points\_sql. Using Dijkstra algorithm, return only the aggregate cost of the shortest path(s) found.

# **Characteristics:**

# The main Characteristics are:

- It does not return a path.
- Returns the sum of the costs of the shortest path for pair combination of vertices in the modified graph.
- Vertices of the graph are:
  - positive when it belongs to the edges\_sql
  - **negative** when it belongs to the points sql
- Process is done only on edges with positive costs.
- Values are returned when there is a path.
  - The returned values are in the form of a set of (start\_vid, end\_vid, agg\_cost).
  - When the starting vertex and ending vertex are the same, there is no path.
    - \* The  $agg\_cost$  in the non included values (v, v) is 0
  - When the starting vertex and ending vertex are the different and there is no path.
    - \* The  $agg\_cost$  in the non included values (u, v) is  $\infty$
- If the values returned are stored in a table, the unique index would be the pair: (start\_vid, end\_vid).
- For undirected graphs, the results are symmetric.
  - The  $agg\_cost$  of (u, v) is the same as for (v, u).
- For optimization purposes, any duplicated value in the *start\_vids* or *end\_vids* is ignored.
- The returned values are ordered:
  - start\_vid ascending

- end\_vid ascending
- Running time:  $O(|start\_vids| * (V \log V + E))$

### **Signature Summary**

```
pgr_withPointsCost(edges_sql, points_sql, start_vid, end_vid, directed, driving_side)
pgr_withPointsCost(edges_sql, points_sql, start_vid, end_vids, directed, driving_side)
pgr_withPointsCost(edges_sql, points_sql, start_vids, end_vid, directed, driving_side)
pgr_withPointsCost(edges_sql, points_sql, start_vids, end_vids, directed, driving_side)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Note: There is no details flag, unlike the other members of the withPoints family of functions.

#### **Signatures**

#### **Minimal Use**

### The minimal signature:

- Is for a **directed** graph.
- The driving side is set as **b** both. So arriving/departing to/from the point(s) can be in any direction.

```
pgr_withPointsCost(edges_sql, points_sql, start_vid, end_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

#### Example

# One to One

### Example

### One to Many

#### Example

### Many to One

#### **Example**

### Many to Many

#### **Example**

# **Description of the Signatures**

Description of the edges\_sql query for dijkstra like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Туре          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id           | ANY-INTEGER   |         | Identifier of the edge.                                                                                                            |
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL SMALLINT, INTEGER, BIGINT, REAL, FLOAT

# **Description of the Points SQL query**

points\_sql an SQL query, which should return a set of rows with the following columns:

| Column   | Type          | Description                                                                                                                                                                                                                                  |
|----------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pid      | ANY-INTEGER   | <ul> <li>(optional) Identifier of the point.</li> <li>• If column present, it can not be NULL.</li> <li>• If column not present, a sequential identifier will be given automatically.</li> </ul>                                             |
| edge_id  | ANY-INTEGER   | Identifier of the "closest" edge to the point.                                                                                                                                                                                               |
| fraction | ANY-NUMERICAL | Value in <0,1> that indicates the relative position from the first end point of the edge.                                                                                                                                                    |
| side     | CHAR          | <ul> <li>(optional) Value in ['b', 'r', 'l', NULL] indicating if the point is:</li> <li>• In the right, left of the edge or</li> <li>• If it doesn't matter with 'b' or NULL.</li> <li>• If column not present 'b' is considered.</li> </ul> |

Where:

ANY-INTEGER smallint, int, bigint

ANY-NUMERICAL smallint, int, bigint, real, float

| Parameter    | Туре               |
|--------------|--------------------|
| edges_sql    | TEXT               |
| points_sql   | TEXT               |
| start_vid    | ANY-INTEGER        |
| end_vid      | ANY-INTEGER        |
| start_vids   | ARRAY[ANY-INTEGER] |
| end_vids     | ARRAY[ANY-INTEGER] |
| directed     | BOOLEAN            |
| driving_side | CHAR               |

# $\label{lem:continuous} \textbf{Description of the parameters of the signatures}$

# **Description of the return values** Returns set of (start\_vid, end\_vid, agg\_cost)

| Column    | Туре   | Description                                                         |
|-----------|--------|---------------------------------------------------------------------|
| start_vid | BIGINT | Identifier of the starting vertex. When negative: is a point's pid. |
| end_vid   | BIGINT | Identifier of the ending point. When negative: is a point's pid.    |
| agg_cost  | FLOAT  | Aggregate cost from start_vid to end_vid.                           |

# **Examples**

# **Example** With **right** side driving topology.

```
SELECT * FROM pgr_withPointsCost(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   ARRAY[-1,2], ARRAY[-3,7],
   driving_side := 'l');
start_pid | end_pid | agg_cost
  -----
                      3.2
       -1 |
               -3 |
       -1 |
               7 |
                        3.6
               -3 |
                        2.6
       2 |
        2 |
                7 |
(4 rows)
```

# **Example** With **left** side driving topology.

```
SELECT * FROM pgr_withPointsCost(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
    'SELECT pid, edge_id, fraction, side from pointsOfInterest',
```

# **Example** Does not matter driving side.

```
SELECT * FROM pgr_withPointsCost(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   ARRAY[-1,2], ARRAY[-3,7],
   driving_side := 'b');
start_pid | end_pid | agg_cost
       -1 | -3 |
                7 |
       -1 |
                         3.6
       2 |
                -3 |
                         2.6
              7 |
        2 |
                          3
(4 rows)
```

The queries use the Sample Data network.

### **History**

• Proposed in version 2.2

## See Also

• withPoints - Family of functions

### Indices and tables

- genindex
- · search

# pgr\_withPointsCostMatrix - proposed

### Name

pgr\_withPointsCostMatrix - Calculates the shortest path and returns only the aggregate cost of the shortest path(s) found, for the combination of points given.

**Warning:** Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
  - The functions make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might not change. (But still can)
  - Signature might not change. (But still can)
  - Functionality might not change. (But still can)
  - pgTap tests have being done. But might need more.
  - Documentation might need refinement.



Fig. 6.10: Boost Graph Inside

### Availability: 2.2.0

# **Signature Summary**

```
pgr_withPointsCostMatrix(edges_sql, points_sql, start_vids)
pgr_withPointsCostMatrix(edges_sql, points_sql, start_vids, directed, driving_side)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

Note: There is no details flag, unlike the other members of the withPoints family of functions.

### **Signatures**

### **Minimal Signature**

# The minimal signature:

- Is for a **directed** graph.
- The driving side is set as **b** both. So arriving/departing to/from the point(s) can be in any direction.

```
pgr_withPointsCostMatrix(edges_sql, points_sql, start_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)
```

# Example

```
SELECT * FROM pgr_withPointsCostMatrix(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction from pointsOfInterest',
   array[-1, 3, 6, -6]);
start_vid | end_vid | agg_cost
   ----+----
       -6 |
               -1 |
                        1.3
               3 |
       -6 |
                       4.3
       -6 |
               6 |
                        1.3
               -6 |
       -1 |
                         1.3
               3 |
                         5.6
       -1 |
       -1 |
                6 |
                         2.6
        3 |
                -6 |
                         1.7
        3 |
               -1 |
                         1.6
```

```
3 | 6 | 1
6 | -6 | 1.3
6 | -1 | 2.6
6 | 3 | 3
(12 rows)
```

# **Complete Signature**

### **Example** returning a symmetrical cost matrix

- Using the default side value on the points\_sql query
- Using an undirected graph
- Using the default **driving\_side** value

```
SELECT * FROM pgr_withPointsCostMatrix(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction from pointsOfInterest',
   array[-1, 3, 6, -6], directed := false);
start_vid | end_vid | agg_cost
       -6 |
                -1 | 1.3
       -6 |
               3 |
                        1.7
       -6 |
                6 |
                        1.3
                -6 I
       -1 |
                        1.3
                3 |
       -1 |
                         1.6
                6 |
                         2.6
       -1 |
        3 |
                -6 |
                         1.7
        3 |
                -1 |
                         1.6
        3 |
                6 |
                          1
                -6 |
                         1.3
        6 |
        6 |
                -1 |
                          2.6
        6 |
                3 |
(12 rows)
```

### **Description of the Signatures**

### Description of the edges\_sql query for dijkstra like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Туре          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id           | ANY-INTEGER   |         | Identifier of the edge.                                                                                                            |
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |

# Where:

**ANY-INTEGER** SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

# Description of the Points SQL query

points\_sql an SQL query, which should return a set of rows with the following columns:

| Column   | Type          | Description                                                                                                                                                                                                                                  |
|----------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pid      | ANY-INTEGER   | <ul> <li>(optional) Identifier of the point.</li> <li>• If column present, it can not be NULL.</li> <li>• If column not present, a sequential identifier will be given automatically.</li> </ul>                                             |
| edge_id  | ANY-INTEGER   | Identifier of the "closest" edge to the point.                                                                                                                                                                                               |
| fraction | ANY-NUMERICAL | Value in <0,1> that indicates the relative postition from the first end point of the edge.                                                                                                                                                   |
| side     | CHAR          | <ul> <li>(optional) Value in ['b', 'r', 'l', NULL] indicating if the point is:</li> <li>• In the right, left of the edge or</li> <li>• If it doesn't matter with 'b' or NULL.</li> <li>• If column not present 'b' is considered.</li> </ul> |

### Where:

ANY-INTEGER smallint, int, bigint

ANY-NUMERICAL smallint, int, bigint, real, float

| Parameter    | Type               |
|--------------|--------------------|
| edges_sql    | TEXT               |
| points_sql   | TEXT               |
| start_vids   | ARRAY[ANY-INTEGER] |
| directed     | BOOLEAN            |
| driving_side | CHAR               |

# Description of the parameters of the signatures

**Description of the return values for a Cost function** Returns set of (start\_vid, end\_vid, agg\_-cost)

| Column    | Туре   | Description                                                                               |
|-----------|--------|-------------------------------------------------------------------------------------------|
| start_vid | BIGINT | Identifier of the starting vertex. Used when multiple starting vetrices are in the query. |
| end_vid   | BIGINT | Identifier of the ending vertex. Used when multiple ending vertices are in the query.     |
| agg_cost  | FLOAT  | Aggregate cost from start_vid to end_vid.                                                 |

# **Examples**

# Example Use with tsp

```
SELECT * FROM pgr_TSP(
   $$
    SELECT * FROM pgr_withPointsCostMatrix(
        'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
        'SELECT pid, edge_id, fraction from pointsOfInterest',
       array[-1, 3, 6, -6], directed := false);
   randomize := false
);
seq | node | cost | agg_cost
                         0
        -6 | 1.3 |
  1 |
        -1 | 1.6 |
  2 |
                         1.3
        3 |
                         2.9
  3 |
              1 |
  4 |
        6 | 1.3 |
                         3.9
  5 |
        -6 I
              0 1
                         5.2
(5 rows)
```

### See Also

- withPoints Family of functions
- Cost Matrix Category

- Traveling Sales Person Family of functions
- sampledata network.

### Indices and tables

- genindex
- search

# pgr\_withPointsKSP - Proposed

#### Name

pgr\_withPointsKSP - Find the K shortest paths using Yen's algorithm.

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
  - The functions make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might not change. (But still can)
  - Signature might not change. (But still can)
  - Functionality might not change. (But still can)
  - pgTap tests have being done. But might need more.
  - Documentation might need refinement.



Fig. 6.11: Boost Graph Inside

# Availability: 2.2.0

# **Synopsis**

Modifies the graph to include the points defined in the points\_sql and using Yen algorithm, finds the K shortest paths.

#### **Signature Summary**

```
pgr_withPointsKSP(edges_sql, points_sql, start_pid, end_pid, K)
pgr_withPointsKSP(edges_sql, points_sql, start_pid, end_pid, K, directed, heap_paths, driving_sid
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)
```

### **Signatures**

# **Minimal Usage**

### The minimal usage:

• Is for a directed graph.

- The driving side is set as **b** both. So arriving/departing to/from the point(s) can be in any direction.
- No **details** are given about distance of other points of the query.
- No heap paths are returned.

```
pgr_withPointsKSP(edges_sql, points_sql, start_pid, end_pid, K)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)
```

### **Example**

```
SELECT * FROM pgr_withPointsKSP(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
  -1, -2, 2);
seq | path_id | path_seq | node | edge | cost | agg_cost
  1 | 1 | 1 | -1 | 1 | 0.6 | 0
  2. 1
        1 |
                 2 | 2 | 4 | 1 |
                                        0.6
                 3 | 5 | 8 | 1 |
  3 |
        1 |
                                       1.6
                4 | 6 |
                           9 | 1 |
  4 |
        1 |
                                       2.6
 5 |
6 |
        1 |
                5 | 9 | 15 | 0.4 |
       1 |
                6 | -2 | -1 | 0 |
                1 | -1 | 1 | 0.6 |
        2 |
  7 |
                                         0
        2 |
                                      0.6
                2 | 2 | 4 | 1 |
 8 |
 9 |
                 3 | 5 |
        2 |
                           8 | 1 |
                                       1.6
 10 |
        2 |
                 4 |
                      6 | 11 | 1 |
                                       2.6
 11 |
        2 |
                5 | 11 | 13 | 1 |
                                       3.6
 12 |
        2 |
                 6 | 12 | 15 | 0.6 |
                                        4.6
 13 I
        2 |
                 7 | -2 |
                           -1 | 0 |
                                        5.2
(13 rows)
```

### **Complete Signature** Finds the K shortest paths depending on the optional parameters setup.

# Example With details.

```
SELECT * FROM pgr_withPointsKSP(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, 6, 2, details := true);
seq | path_id | path_seq | node | edge | cost | agg_cost
  __+____
  1 | 1 | 1 | -1 | 1 | 0.6 | 0
                  2 | 2 | 4 | 0.7 | 0.6
3 | -6 | 4 | 0.3 | 1.3
  2 |
         1 |
  3 |
         1 |
  4 |
         1 |
                   4 | 5 |
                             8 | 1 |
                                           1.6
                   5 |
                                   0 |
  5 |
         1 |
                        6 | -1 |
                                          2.6
                             1 | 0.6 |
  6 |
         2 |
                  1 | -1 |
                                            0
                              4 | 0.7 |
                   2 |
  7 |
          2 |
                        2 |
                                          0.6
  8 |
          2 |
                   3 | -6 |
        2 .
2 |
                              4 | 0.3 |
                                           1.3
        2 | 2 | 2 |
                   4 |
                        5 I
                              10 |
  9 |
                                   1 |
                                           1.6
 10 |
                   5 | 10 |
                              12 |
                                  0.6 |
                                           2.6
                   5 ,
6 | -5 ,
11 |
 11 |
                              12 | 0.4 |
        2 |
                  7 |
 12 |
                             13 |
                                   1 |
                                           3.6
         2 |
                       12 |
                             15 | 0.6 |
 13 |
                  8 |
                                           4.6
 14 |
         2 |
                  9 |
                       -2 |
                            15 | 0.4 |
                                           5.2
         2 | 2 |
 15 |
                 10 |
                        9 |
                             9 |
                                  1 |
                                           5.6
                 11 | 6 | -1 |
                                   0 |
 16 I
                                           6.6
```

(16 rows)

# **Description of the Signatures**

# Description of the edges\_sql query for dijkstra like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Туре          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id           | ANY-INTEGER   |         | Identifier of the edge.                                                                                                            |
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |

# Where:

**ANY-INTEGER** SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

# **Description of the Points SQL query**

points\_sql an SQL query, which should return a set of rows with the following columns:

| Column   | Type          | Description                                                                                                                                                                                                                                  |
|----------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pid      | ANY-INTEGER   | <ul> <li>(optional) Identifier of the point.</li> <li>If column present, it can not be NULL.</li> <li>If column not present, a sequential identifier will be given automatically.</li> </ul>                                                 |
| edge_id  | ANY-INTEGER   | Identifier of the "closest" edge to the point.                                                                                                                                                                                               |
| fraction | ANY-NUMERICAL | Value in <0,1> that indicates the relative postition from the first end point of the edge.                                                                                                                                                   |
| side     | CHAR          | <ul> <li>(optional) Value in ['b', 'r', 'l', NULL] indicating if the point is:</li> <li>• In the right, left of the edge or</li> <li>• If it doesn't matter with 'b' or NULL.</li> <li>• If column not present 'b' is considered.</li> </ul> |

details

Where:

 $\boldsymbol{ANY\text{-}INTEGER} \ \ small int, int, bigint$ 

ANY-NUMERICAL smallint, int, bigint, real, float

| Parameter    | Туре        |
|--------------|-------------|
| edges_sql    | TEXT        |
| points_sql   | TEXT        |
| start_pid    | ANY-INTEGER |
| end_pid      | ANY-INTEGER |
| K            | INTEGER     |
| directed     | BOOLEAN     |
| heap_paths   | BOOLEAN     |
| driving_side | CHAR        |

BOOLEAN

 $\label{lem:condition} \textbf{Description of the parameters of the signatures}$ 

**Description of the return values** Returns set of (seq, path\_id, path\_seq, node, edge, cost, agg\_cost)

| Column   | Туре    | Description                                        |  |
|----------|---------|----------------------------------------------------|--|
| seq      | INTEGER | Row sequence.                                      |  |
| path_seq | INTEGER | Relative position in the path of node              |  |
|          |         | and edge. Has value 1 for the begin-               |  |
|          |         | ning of a path.                                    |  |
| path_id  | INTEGER | Path identifier. The ordering of the               |  |
|          |         | paths: For two paths i, j if $i < j$ then          |  |
|          |         | $agg\_cost(i) \le agg\_cost(j)$ .                  |  |
| node     | BIGINT  | Identifier of the node in the path.                |  |
|          |         | Negative values are the identifiers of             |  |
|          |         | a point.                                           |  |
| edge     | BIGINT  | Identifier of the edge used to go from node to the |  |
|          |         | • −1 for the last row in the path sequence.        |  |
| cost     | FLOAT   | Cost to traverse from node using edge to the ne    |  |
|          |         | • 0 for the last row in the path sequence.         |  |
| agg_cost | FLOAT   | Aggregate cost from start_pid to node.             |  |
|          |         | • 0 for the first row in the path sequence.        |  |
|          |         |                                                    |  |

# Examples

### **Example** Left side driving topology with details.

```
SELECT * FROM pgr_withPointsKSP(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, -2, 2,
   driving_side := 'l', details := true);
seq | path_id | path_seq | node | edge | cost | agg_cost
____+
  1 | 1 | 1 | -1 | 1 | 0.6 |
                  2 | 2 | 4 | 0.7 | 0.6
3 | -6 | 4 | 0.3 | 1.3
         1 |
  2 |
  3 |
         1 |
  4 |
         1 |
                  4 | 5 | 8 | 1 |
                                           1.6
  5 |
         1 |
                  5 | 6 |
                             9 | 1 |
                                           2.6
  6 |
                  6 |
         1 |
                       9 | 15 |
                                   1 |
                                           3.6
  7 |
          1 |
                  7 | 12 |
                             15 | 0.6 |
                                           4.6
        1 |
2 |
  8 |
                  8 |
                       -2 |
                             -1 |
                                  0 |
                                           5.2
                             1 | 0.6 |
  9 |
                  1 | -1 |
        2 | 2 | 2 |
                             4 |
 10 |
                  2 |
                        2 |
                                  0.7 |
                                           0.6
                             4 | 0.3 |
 11 |
                  3 |
                       -6 |
                                           1.3
                             8 |
                                  1 |
                       5 |
 12 |
                  4 |
                                           1.6
 13 |
         2 |
                  5 I
                       6 |
                            11 |
                                  1 |
                                          2.6
                                 1 |
 14 |
         2 |
                      11 |
                  6 |
                             13 |
                                          3.6
 15 |
                  7 |
         2 |
                      12 |
                             15 | 0.6 |
                                           4.6
 16 |
         2 |
                 8 | -2 |
                             -1 |
                                  0 |
                                           5.2
(16 rows)
```

#### **Example** Right side driving topology with heap paths and details.

```
SELECT * FROM pgr_withPointsKSP(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, -2, 2,
   heap_paths := true, driving_side := 'r', details := true);
seq | path_id | path_seq | node | edge | cost | agg_cost
____+
         1 |
               1 | -1 |
                               1 | 0.4 |
  1 1
         1 |
                  2 | 1 |
                                  1 |
  2 |
                              1 |
                                           0.4
         1 |
                       2 |
  3 |
                  3 |
                              4 | 0.7 |
                                           1.4
  4 |
         1 |
                   4 | -6 |
                              4 | 0.3 |
                                           2.1
                  5 | 5 |
                                  1 |
  5 I
         1 |
                              8 |
                                           2.4
         1 |
                   6 | 6 |
                              9 |
                                  1 |
  6 |
  7 |
         1 |
                   7 | 9 |
                              15 | 0.4 |
                                           4.4
  8 |
         1 |
                  8 | -2 |
                              -1 |
                                  0 |
                                            4.8
  9 |
          2 |
                  1 | -1 |
                              1 | 0.4 |
 10 |
          2 |
                  2 | 1 |
                              1 |
                                  1 |
                                            0.4
                              4 | 0.7 |
          2 |
                  3 |
 11 |
                        2 |
                                            1.4
          2 |
                   4 | -6 |
                              4 | 0.3 |
 12 |
                                            2.1
 13 |
          2 |
                  5 | 5 |
                              8 |
                                  1 |
                                            2.4
 14 |
                   6 |
          2 |
                        6 |
                              11 I
                                    1 |
                                            3.4
                                  1 |
 15 |
          2 |
                   7 | 11 |
                              13 I
                                            4.4
 16 |
          2 |
                   8 | 12 |
                              15 I
                                    1 |
                                            5.4
 17 |
          2 |
                   9 |
                        9 |
                              15 | 0.4 |
                                            6.4
          2 |
 18 I
                 10 |
                        -2 I
                              -1 |
                                   0 1
                                            6.8
         3 |
 19 |
                   1 |
                        -1 |
                              1 |
                                  0.4 |
         3 |
                        1 |
                              1 |
                   2 |
 20 |
                                   1 |
                                            0.4
 21 |
         3 |
                  3 |
                        2 |
                                  0.7 |
                              4 |
                                            1.4
         3 |
                  4 |
                       -6 I
                              4 | 0.3 |
 22 |
                                            2.1
         3 |
                        5 |
                                   1 |
 23 I
                  5 I
                              10 I
                                           2.4
 24 |
         3 |
                              12 | 0.6 |
                                           3.4
                  6 |
                       10 |
 25 I
         3 |
                  7 I
                        -3 I
                              12 | 0.4 |
 26 |
         3 |
                  8 | 11 |
                              13 I
                                   1 |
                                            4.4
         3 |
                  9 | 12 |
                              15 I
                                            5.4
 27 |
                                   1 |
         3 |
                  10 |
                        9 |
                              15 | 0.4 |
 28 |
                                            6.4
 29 |
          3 |
                  11 |
                        -2 |
                                     0 |
                              -1 |
                                            6.8
(29 rows)
```

The queries use the Sample Data network.

#### History

• Proposed in version 2.2

#### See Also

• withPoints - Family of functions

## Indices and tables

- · genindex
- search

#### pgr withPointsDD - Proposed

#### Name

pgr\_withPointsDD - Returns the driving distance from a starting point.

**Warning:** Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
  - The functions make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might not change. (But still can)
  - Signature might not change. (But still can)
  - Functionality might not change. (But still can)
  - pgTap tests have being done. But might need more.
  - Documentation might need refinement.



Fig. 6.12: Boost Graph Inside

Availability: 2.2.0

#### **Synopsis**

Modify the graph to include points and using Dijkstra algorithm, extracts all the nodes and points that have costs less than or equal to the value distance from the starting point. The edges extracted will conform the corresponding spanning tree.

#### **Signature Summary**

```
pgr_withPointsDD(edges_sql, points_sql, start_vid, distance)
pgr_withPointsDD(edges_sql, points_sql, start_vid, distance, directed, driving_side,
pgr_withPointsDD(edges_sql, points_sql, start_vids, distance, directed, driving_side,
pgr_withPointsDD(edges_sql, points_sql, start_vids, distance, directed, driving_side,
pgr_withPointsDD(edges_sql, points_sql, start_vids, distance, directed, driving_side,
pgr_withPointsDD(edges_sql, points_sql, start_vid, distance, directed, driving_side,
pgr_withPointsDD(edges_sql, points_sql, start_vid, distance, directed, driving_side,
pgr_withPointsDD(edges_sql, points_sql, start_vid, distance, directed, driving_side,
pgr_withPointsDD(edges_sql, points_sql, start_vids, distance, directed, driving_side, distance, directed, directed, directed, driving_side, distance, directed, directed, directed
```

## **Signatures**

#### **Minimal Use**

#### The minimal signature:

- Is for a directed graph.
- The driving side is set as **b** both. So arriving/departing to/from the point(s) can be in any direction.
- No details are given about distance of other points of the query.

```
pgr_withPointsDD(edges_sql, points_sql, start_vid, distance)
    directed:=true, driving_side:='b', details:=false)
RETURNS SET OF (seq, node, edge, cost, agg_cost)
```

## **Example**

```
SELECT * FROM pgr_withPointsDD(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, 3.8);
seq | node | edge | cost | agg_cost
  --+----+----+----+-----
  1 | -1 | -1 | 0 |
  2 | 1 | 1 | 0.4 | 0.4
3 | 2 | 1 | 0.6 | 0.6
  4 | 5 |
              4 | 0.3 |
                            1.6
  5 | 6 |
             8 | 1 |
                            2.6
       8 |
              7 | 1 |
  6 |
                            2.6
  7 | 10 | 10 |
                    1 |
                             2.6
            6 | 0.3 |
      7 |
9 |
  8 |
                             3.6
  9 1
              9 | 1 |
                             3.6
 10 |
      11 | 11 |
                     1 |
                             3.6
 11 |
       13 |
             14 |
                    1 |
                             3.6
(11 rows)
```

#### **Driving distance from a single point** Finds the driving distance depending on the optional parameters setup.

## **Example** Right side driving topology

```
SELECT * FROM pgr_withPointsDD(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, 3.8,
   driving_side := 'r',
   details := true);
seq | node | edge | cost | agg_cost
                    0 |
        -1 | -1 |
  1 1
      1 | 1 | 0.4 |
2 | 1 | 1 |
  2 |
                              0.4
                              1.4
               1 | 1 | 4 | 0.7 |
  3 |
  4 |
        -6 |
                               2.1
  5 I
        5 |
               4 | 0.3 |
                               2.4
        6 |
              8 | 1 |
  6 |
                               3.4
       8 |
               7 |
                     1 |
  7 |
                               3.4
                     1 |
       10 | 10 |
  8 |
                               3.4
(8 rows)
```

# **Driving distance from many starting points** Finds the driving distance depending on the optional parameters setup.

## **Description of the Signatures**

## Description of the edges\_sql query for dijkstra like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Туре          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id           | ANY-INTEGER   |         | Identifier of the edge.                                                                                                            |
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |

## Where:

**ANY-INTEGER** SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

# Description of the Points SQL query

points\_sql an SQL query, which should return a set of rows with the following columns:

| Column   | Type          | Description                                                                                                                                                                                                                                  |
|----------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pid      | ANY-INTEGER   | <ul> <li>(optional) Identifier of the point.</li> <li>• If column present, it can not be NULL.</li> <li>• If column not present, a sequential identifier will be given automatically.</li> </ul>                                             |
| edge_id  | ANY-INTEGER   | Identifier of the "closest" edge to the point.                                                                                                                                                                                               |
| fraction | ANY-NUMERICAL | Value in <0,1> that indicates the relative postition from the first end point of the edge.                                                                                                                                                   |
| side     | CHAR          | <ul> <li>(optional) Value in ['b', 'r', 'l', NULL] indicating if the point is:</li> <li>• In the right, left of the edge or</li> <li>• If it doesn't matter with 'b' or NULL.</li> <li>• If column not present 'b' is considered.</li> </ul> |

#### Where:

ANY-INTEGER smallint, int, bigint

ANY-NUMERICAL smallint, int, bigint, real, float

| Parameter    | Туре          |  |
|--------------|---------------|--|
| edges_sql    | TEXT          |  |
| points_sql   | TEXT          |  |
| start_vid    | ANY-INTEGER   |  |
| distance     | ANY-NUMERICAL |  |
| directed     | BOOLEAN       |  |
|              |               |  |
| driving_side | CHAR          |  |
|              |               |  |
|              |               |  |
|              |               |  |
|              |               |  |
|              |               |  |
|              |               |  |
|              |               |  |
| details      | BOOLEAN       |  |
|              |               |  |
|              |               |  |
|              |               |  |
|              |               |  |
| equicost     | BOOLEAN       |  |
|              |               |  |
|              |               |  |
|              |               |  |
|              |               |  |
|              |               |  |

# $\label{lem:parameters} \textbf{Description of the parameters of the signatures}$

Description of the return values Returns set of (seq, node, edge, cost, agg\_cost)

| Column   | Туре   | Description                                                                                                                  |  |  |
|----------|--------|------------------------------------------------------------------------------------------------------------------------------|--|--|
| seq      | INT    | row sequence.                                                                                                                |  |  |
| node     | BIGINT | Identifier of the node within the Distance from start_pid. If details =: true a negative value is the identifier of a point. |  |  |
| edge     | BIGINT | Identifier of the edge used to go from node to                                                                               |  |  |
|          |        | • -1 when start_vid = node.                                                                                                  |  |  |
| cost     | FLOAT  | Cost to traverse edge.  • 0 when start_vid = node.                                                                           |  |  |
| agg_cost | FLOAT  | Aggregate cost from start_vid to node.  • 0 when start_vid =                                                                 |  |  |
|          |        | node.                                                                                                                        |  |  |

#### Examples for queries marked as directed with cost and reverse\_cost columns

The examples in this section use the following Graph 1: Directed, with cost and reverse cost

## Example Left side driving topology

```
SELECT * FROM pgr_withPointsDD(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, 3.8,
   driving_side := 'l',
   details := true);
seq | node | edge | cost | agg_cost
       -1 |
            -1 | 0 | 0
  1 1
       2 | 1 | 0.6 |
-6 | 4 | 0.7 |
                   0.6 |
  2 |
                             0.6
  3 |
                            1.3
                            1.6
       5 |
             4 | 0.3 |
  4 |
             1 | 1 | 8 | 1 |
       1 |
                            1.6
  5 |
       6 |
  6 |
                            2.6
       8 |
              7 |
                    1 |
  7 |
                            2.6
  8 | 10 | 10 | 1 |
                            2.6
      -3 | 12 | 0.6 |
  9 |
                            3.2
 10 | -4 |
             6 | 0.7 |
                            3.3
 11 | 7 |
            6 | 0.3 |
                            3.6
 12 | 9 |
             9 | 1 |
                            3.6
 13 | 11 | 11 | 1 |
                            3.6
 14 | 13 | 14 | 1 |
                            3.6
(14 rows)
```

#### **Example** Does not matter driving side.

```
SELECT * FROM pgr_withPointsDD(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
   'SELECT pid, edge_id, fraction, side from pointsOfInterest',
   -1, 3.8,
   driving_side := 'b',
   details := true);
seq | node | edge | cost | agg_cost
----+-----
      -1 |
           -1 | 0 |
                         0
  1 |
           1 | 0.4 | 1 | 0.6 |
      1 |
                         0.4
  2 |
      2 |
                          0.6
  3 I
  4 | -6 |
            4 | 0.7 |
                          1.3
            4 | 0.3 |
  5 | 5 |
                          1.6
  6 | 6 |
            8 I 1 I
                          2.6
      8 |
             7 | 1 |
  7 |
                          2.6
  8 | 10 | 10 | 1 |
  9 | -3 | 12 | 0.6 |
 10 | -4 | 6 | 0.7 |
                          3.3
 11 | 7 | 6 | 0.3 |
                          3.6
       9 |
             9 | 1 |
 12 |
                          3.6
 13 | 11 | 11 | 1 |
                          3.6
 14 | 13 | 14 |
                  1 |
                           3.6
(14 rows)
```

The queries use the Sample Data network.

#### **History**

• Proposed in version 2.2

#### See Also

- pgr\_drivingDistance Driving distance using dijkstra.
- pgr\_alphaShape Alpha shape computation.
- pgr\_pointsAsPolygon Polygon around set of points.

#### Indices and tables

- genindex
- · search

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
  - The functions make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might not change. (But still can)
  - Signature might not change. (But still can)
  - Functionality might not change. (But still can)
  - pgTap tests have being done. But might need more.
  - Documentation might need refinement.

## **Images**

The squared vertices are the temporary vertices, The temporary vertices are added acording to the dirving side, The following images visually show the differences on how depending on the driving side the data is interpreted.

## Right driving side



## Left driving side



#### doesn't matter the driving side



## Introduction

This famly of functions was thought for routing vehicles, but might as well work for some other application that we can not think of.

The with points family of function give you the ability to route between arbitrary points located outside the original graph.

When given a point identified with a *pid* that its being mapped to and edge with an identifier *edge\_id*, with a *fraction* along that edge (from the source to the target of the edge) and some additional information about which *side* of the edge the point is on, then routing from arbitrary points more accurately reflect routing vehicles in road networks,

I talk about a family of functions because it includes different functionalities.

- pgr\_withPoints is pgr\_dijkstra based
- pgr\_withPointsCost is pgr\_dijkstraCost based
- pgr\_withPointsKSP is pgr\_ksp based
- pgr\_withPointsDD is pgr\_drivingDistance based

In all this functions we have to take care of as many aspects as possible:

- Must work for routing:
  - Cars (directed graph)
  - Pedestrians (undirected graph)
- Arriving at the point:
  - In either side of the street.
  - Compulsory arrival on the side of the street where the point is located.
- Countries with:
  - Right side driving
  - Left side driving
- Some points are:
  - Permanent, for example the set of points of clients stored in a table in the data base
  - Temporal, for example points given through a web application
- The numbering of the points are handled with negative sign.
  - Original point identifiers are to be positive.
  - Transformation to negative is done internally.
  - For results for involving vertices identifiers
    - \* positive sign is a vertex of the original grpah
    - \* negative sign is a point of the temporary points

The reason for doing this is to avoid confusion when there is a vertex with the same number as identifier as the points identifier.

## **Graph & edges**

- Let  $G_d(V, E)$  where V is the set of vertices and E is the set of edges be the original directed graph.
  - An edge of the original edges\_sql is (id, source, target, cost, reverse\_cost) will generate internally
    - \* (id, source, target, cost)
    - $*(id, target, source, reverse\_cost)$

## **Point Definition**

- A point is defined by the quadruplet: (pid, eid, fraction, side)
  - **ped** is the point identifier
  - eid is an edge id of the edges\_sql
  - **fraction** represents where the edge *eid* will be cut.
  - **side** Indicates the side of the edge where the point is located.

## **Creating Temporary Vertices in the Graph**

For edge (15, 9,12 10, 20), & lets insert point (2, 12, 0.3, r)

#### On a right hand side driving network

From first image above:

- We can arrive to the point only via vertex 9.
- It only afects the edge (15, 9,12, 10) so that edge is removed.
- Edge (15, 12,9, 20) is kept.
- Create new edges:
  - (15, 9,-1, 3) edge from vertex 9 to point 1 has cost 3
  - (15, -1,12, 7) edge from point 1 to vertex 12 has cost 7

## On a left hand side driving network

From second image above:

- We can arrive to the point only via vertex 12.
- It only afects the edge (15, 12,9 20) so that edge is removed.
- Edge (15, 9,12, 10) is kept.
- Create new edges:
  - (15, 12,-1, 14) edge from vertex 12 to point 1 has cost 14
  - (15, -1,9, 6) edge from point 1 to vertex 9 has cost 6

Remember that fraction is from vertex 9 to vertex 12

## When driving side does not matter

From third image above:

- We can arrive to the point either via vertex 12 or via vertex 9
- Edge (15, 12,9 20) is removed.
- Edge (15, 9,12, 10) is removed.
- Create new edges:
  - (15, 12,-1, 14) edge from vertex 12 to point 1 has cost 14
  - (15, -1,9, 6) edge from point 1 to vertex 9 has cost 6
  - (15, 9,-1, 3) edge from vertex 9 to point 1 has cost 3
  - (15, -1,12, 7) edge from point 1 to vertex 12 has cost 7

## 6.1.5 Cost - Category

- pgr\_aStarCost proposed
- pgr\_bdAstarCost Proposed
- pgr\_bdDijkstraCost Proposed

- pgr\_dijkstraCost
- pgr\_withPointsCost Proposed

**Warning:** Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
  - The functions make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might not change. (But still can)
  - Signature might not change. (But still can)
  - Functionality might not change. (But still can)
  - pgTap tests have being done. But might need more.
  - Documentation might need refinement.

#### **General Information**

#### Characteristics

The main Characteristics are:

- Each function works as part of the family it belongs to.
- It does not return a path.
- Returns the sum of the costs of the resulting path(s) for pair combination of nodes in the graph.
- Process is done only on edges with positive costs.
- Values are returned when there is a path.
  - The returned values are in the form of a set of (start\_vid, end\_vid, agg\_cost).
  - When the starting vertex and ending vertex are the same, there is no path.
    - \* The  $agg\_cost$  int the non included values (v, v) is 0.
  - When the starting vertex and ending vertex are the different and there is no path.
    - \* The  $agg\_cost$  in the non included values (u, v) is  $\infty$ .
- Let be the case the values returned are stored in a table, so the unique index would be the pair: (start\_vid, end\_vid).
- Depending on the function and its parameters, the results can be symmetric.
  - The  $agg\_cost$  of (u, v) is the same as for (v, u).
- Any duplicated value in the *start\_vids* or in *end\_vids* are ignored.
- The returned values are ordered:
  - start\_vid ascending
  - end\_vid ascending

## See Also

#### Indices and tables

- genindex
- · search

## 6.1.6 Cost Matrix - Category

- pgr\_aStarCostMatrix proposed
- pgr\_bdAstarCostMatrix proposed
- pgr\_bdDijkstraCostMatrix proposed
- pgr\_dijkstraCostMatrix proposed
- pgr\_withPointsCostMatrix proposed

Warning: Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
  - The functions make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might not change. (But still can)
  - Signature might not change. (But still can)
  - Functionality might not change. (But still can)
  - pgTap tests have being done. But might need more.
  - Documentation might need refinement.

#### **General Information**

#### **Synopsis**

Traveling Sales Person - Family of functions needs as input a symmetric cost matrix and no edge (u, v) must value  $\infty$ .

This collection of functions will return a cost matrix in form of a table.

#### Characteristics

The main Characteristics are:

- Can be used as input to pgr\_TSP.
  - **directly** when the resulting matrix is symmetric and there is no  $\infty$  value.
  - It will be the users responsibility to make the matrix symmetric.
    - \* By using geometric or harmonic average of the non symmetric values.
    - \* By using max or min the non symmetric values.
    - \* By setting the upper triangle to be the mirror image of the lower triangle.
    - \* By setting the lower triangle to be the mirror image of the upper triangle.
  - It is also the users responsibility to fix an  $\infty$  value.
- Each function works as part of the family it belongs to.
- It does not return a path.
- Returns the sum of the costs of the shortest path for pair combination of nodes in the graph.
- Process is done only on edges with positive costs.
- Values are returned when there is a path.
  - The returned values are in the form of a set of (start\_vid, end\_vid, agg\_cost).
  - When the starting vertex and ending vertex are the same, there is no path.
    - \* The  $agg\_cost$  int the non included values (v, v) is 0.

- When the starting vertex and ending vertex are the different and there is no path.
  - \* The agg\_cost in the non included values (u, v) is  $\infty$ .
- Let be the case the values returned are stored in a table, so the unique index would be the pair: (start\_vid, end\_vid).
- Depending on the function and its parameters, the results can be symmetric.
  - The agg cost of (u, v) is the same as for (v, u).
- Any duplicated value in the *start\_vids* are ignored.
- The returned values are ordered:
  - start vid ascending
  - end\_vid ascending
- Running time: approximately  $O(|start\_vids| * (V \log V + E))$

#### See Also

• pgr\_TSP

#### Indices and tables

- genindex
- · search

# 6.1.7 KSP Category

- pgr\_KSP Driving Distance based on pgr\_dijkstra
- pgr\_withPointsKSP Proposed Driving Distance based on pgr\_dijkstra

# 6.2 Experimental and Proposed functions

#### **Warning:** Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
  - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might change.
  - Signature might change.
  - Functionality might change.
  - pgTap tests might be missing.
  - Might need c/c++ coding.
  - May lack documentation.
  - Documentation if any might need to be rewritten.
  - Documentation examples might need to be automatically generated.
  - Might need a lot of feedback from the comunity.
  - Might depend on a proposed function of pgRouting
  - Might depend on a deprecated function of pgRouting

Contraction - Family of functions - Reduce network size using contraction techniques

• pgr\_contractGraph - Proposed - Reduce network size using contraction techniques

#### **Graph Analysis**

• pgr\_labelGraph - Proposed - Analyze / label subgraphs within a network

Vehicle Routing Functions Category

## Pickup and delivery problem

- pgr\_pickDeliver Proposed Pickup & Delivery using a Cost Matrix
- pgr\_pickDeliverEuclidean Proposed Pickup & Delivery with Euclidean distances

#### **Experimental functions**

• pgr\_vrpOneDepot - experimental - VRP One Depot

# 6.2.1 Contraction - Family of functions

## Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
  - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might change.
  - Signature might change.
  - Functionality might change.
  - pgTap tests might be missing.
  - Might need c/c++ coding.
  - May lack documentation.
  - Documentation if any might need to be rewritten.
  - Documentation examples might need to be automatically generated.
  - Might need a lot of feedback from the comunity.
  - Might depend on a proposed function of pgRouting
  - Might depend on a deprecated function of pgRouting

pgr\_contractGraph - Proposed

#### pgr contractGraph - Proposed

 $\verb"pgr_contractGraph" -- Performs graph contraction and returns the contracted vertices and edges.$ 



Fig. 6.13: Boost Graph Inside

#### Availability: 2.3.0

## Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
  - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might change.
  - Signature might change.
  - Functionality might change.
  - pgTap tests might be missing.
  - Might need c/c++ coding.
  - May lack documentation.
  - Documentation if any might need to be rewritten.
  - Documentation examples might need to be automatically generated.
  - Might need a lot of feedback from the comunity.
  - Might depend on a proposed function of pgRouting
  - Might depend on a deprecated function of pgRouting

## **Synopsis**

Contraction reduces the size of the graph by removing some of the vertices and edges and, for example, might add edges that represent a sequence of original edges decreasing the total time and space used in graph algorithms.

#### Characteristics

#### The main Characteristics are:

- Process is done only on edges with positive costs.
- There are two types of contraction methods used namely,
  - Dead End Contraction
  - Linear Contraction
- The values returned include the added edges and contracted vertices.
- The returned values are ordered as follows:
  - column id ascending when type = v
  - column id descending when type = e

## **Signature Summary:**

The pgr\_contractGraph function has the following signatures:

```
pgr_contractGraph(edges_sql, contraction_order)
pgr_contractGraph(edges_sql, contraction_order, max_cycles, forbidden_vertices, directed)

RETURNS SETOF (seq, type, id, contracted_vertices, source, target, cost)
```

## **Signatures**

#### Minimal signature

```
pgr_contractGraph(edges_sql, contraction_order)
```

#### **Example** Making a dead end contraction and a linear contraction.

```
SELECT * FROM pgr_contractGraph(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[1, 2]);
seq | type | id | contracted_vertices | source | target | cost
                                | 5 | {7,8}
                                        -1 |
  1 | v
                                                -1 I
                                                       -1
          | 17 | {16}
| 17 | {16}
| -1 | {1,2}
| -2 | {4}
        | 15 | {14}
                                        -1 |
                                                -1 |
  2 | v
                                                       -1
         | 17 | {16}
                                        -1 |
                                                -1 |
  3 | v
                                                       -1
                                        3 | 5 |
  4 | e
        | -2 | {4}
| -3 | {10,13}
                                        9 |
                                                3 |
                                   5 | e
                                        5 |
  6 | e
                                   11 |
                                   11 | 9 |
  7 | e
(7 rows)
```

#### **Complete signature**

pgr\_contractGraph(edges\_sql, contraction\_order, max\_cycles, forbidden\_vertices, directed)

# **Example** Making a dead end contraction and a linear contraction and vertex 2 is forbidden from contraction

```
SELECT * FROM pgr_contractGraph(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[1, 2], forbidden_vertices:=ARRAY[2]);
seq | type | id | contracted_vertices | source | target | cost
  1 I v
        | 2 | {1}
                                1
                                     -1 I
                                             -1 | -1
        | 5 | {7,8}
                                     -1 |
                                             -1 | -1
  2 | v
                               | 15 | {14}
  3 | v
                               -1 |
                                             -1 | -1
        | 15 | {14}
| 17 | {16}
| -1 | {4}
                                     -1 |
                                                  -1
  4 | v
                                             -1 I
                                | -1 | {4}
  5 I e
                                      9 |
                                              3 | 2
                                | -2 | {10,13}
                                      5 |
                                                   2
  6 | e
                               1
                                            11 |
  7 | e
        | -3 | {12}
                               11 |
                                              9 |
(7 rows)
```

## Description of the edges\_sql query for dijkstra like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Туре          | Default | Description                                                                                                                        |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id           | ANY-INTEGER   |         | Identifier of the edge.                                                                                                            |
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |

Where:

**ANY-INTEGER** SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

## Description of the parameters of the signatures

| Column             | Type               | Description                                                                                                                                 |
|--------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| edges_sql          | TEXT               | SQL query as described above.                                                                                                               |
| contraction_order  | ARRAY[ANY-INTEGER] | Ordered contraction operations.  • 1 = Dead end contraction  • 2 = Linear contraction                                                       |
| forbidden_vertices | ARRAY[ANY-INTEGER] | (optional). Identifiers of vertices forbidden from contraction. Default is an empty array.                                                  |
| max_cycles         | INTEGER            | (optional). Number of times the contraction operations on <i>contraction_order</i> will be performed. Default is 1.                         |
| directed           | BOOLEAN            | <ul> <li>When true the graph is considered as <i>Directed</i>.</li> <li>When false the graph is considered as <i>Undirected</i>.</li> </ul> |

## **Description of the return values**

RETURNS SETOF (seq, type, id, contracted\_vertices, source, target, cost)

The function returns a single row. The columns of the row are:

| Column              | Туре          | Description                                                                                                                                                                                                                                                              |
|---------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| seq                 | INTEGER       | Sequential value starting from 1.                                                                                                                                                                                                                                        |
| type                | TEXT          | Type of the <i>id</i> .  • 'v' when <i>id</i> is an identifier of a vertex.  • 'e' when <i>id</i> is an identifier of an edge.                                                                                                                                           |
| id                  | BIGINT        | Identifier of:  • the vertex when type =  'v'.  - The vertex belongs to the edge_table passed as a parameter.  • the edge when type =  'e'.  - The id is a decreasing sequence starting from -1.  - Representing a pseudo id as is not incorporated into the edge_table. |
| contracted_vertices | ARRAY[BIGINT] | Array of contracted vertex identifiers.                                                                                                                                                                                                                                  |
| source              | BIGINT        | Identifier of the source vertex of the current edge <i>id</i> . Valid values when $type = 'e'$ .                                                                                                                                                                         |
| target              | BIGINT        | Identifier of the target vertex of the current edge <i>id</i> . Valid values when $type = 'e'$ .                                                                                                                                                                         |
| cost                | FLOAT         | Weight of the edge ( <i>source</i> , <i>target</i> ). Valid values when <i>type</i> = 'e'.                                                                                                                                                                               |

## **Examples**

#### **Example** Only dead end contraction

## **Example** Only linear contraction

```
SELECT * FROM pgr_contractGraph(
    'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2]);
```

| 1 . 1.   |            | contracted_vertices |    |   | -        |   |
|----------|------------|---------------------|----|---|----------|---|
| 1   e    | -1<br>  -2 | {4}                 | 9  | İ | 3  <br>7 | 2 |
| 3   e    | -3<br>  -4 | [ 8}                | 7  | i |          | 2 |
| (4 rows) | -4         | {12}                | 11 | 1 | 9        | Ζ |

#### Indices and tables

- genindex
- · search

#### Introduction

In big graphs, like the road graphs, or electric networks, graph contraction can be used to speed up some graph algorithms. Contraction reduces the size of the graph by removing some of the vertices and edges and, for example, might add edges that represent a sequence of original edges decreasing the total time and space used in graph algorithms.

This implementation gives a flexible framework for adding contraction algorithms in the future, currently, it supports two algorithms:

- 1. Dead end contraction
- 2. Linear contraction

Allowing the user to:

- Forbid contraction on a set of nodes.
- Decide the order of the contraction algorithms and set the maximum number of times they are to be executed.

Note: UNDER DISCUSSION: Forbid contraction on a set of edges

#### **Dead end contraction**

In the algorithm, dead end contraction is represented by 1.

#### Dead end nodes

The definition of a dead end node is different for a directed and an undirected graph.

In case of a undirected graph, a node is considered a dead end node if

• The number of adjacent vertices is 1.

In case of an directed graph, a node is considered a dead end node if

- There are no outgoing edges and has at least one incoming edge.
- There is one incoming and one outgoing edge with the same identifier.

#### **Examples**

- The green node B represents a dead end node
- The node A is the only node connecting to B.
- Node A is part of the rest of the graph and has an unlimited number of incoming and outgoing edges.
- · Directed graph

## **Operation: Dead End Contraction**

The dead end contraction will stop until there are no more dead end nodes. For example from the following graph:

- Node A is connected to the rest of the graph by an unlimited number of edges.
- Node B is connected to the rest of the graph with one incoming edge.
- Node B is the only node connecting to C.
- The green node C represents a *Dead End* node

After contracting C, node B is now a *Dead End* node and is contracted:

Node B gets contracted

Nodes B and C belong to node A.

#### **Not Dead End nodes**

In this graph B is not a *dead end* node.

#### **Linear contraction**

In the algorithm, linear contraction is represented by 2.

#### Linear nodes

A node is considered a linear node if satisfies the following:

- The number of adjacent vertices are 2.
- Should have at least one incoming edge and one outgoing edge.

## **Examples**

- The green node B represents a linear node
- The nodes A and C are the only nodes connecting to B.
- Node A is part of the rest of the graph and has an unlimited number of incoming and outgoing edges.
- Node C is part of the rest of the graph and has an unlimited number of incoming and outgoing edges.
- · Directed graph

#### **Operation: Linear Contraction**

The linear contraction will stop until there are no more linear nodes. For example from the following graph:

- Node A is connected to the rest of the graph by an unlimited number of edges.
- Node B is connected to the rest of the graph with one incoming edge and one outgoing edge.
- Node C is connected to the rest of the graph with one incoming edge and one outgoing edge.
- Node D is connected to the rest of the graph by an unlimited number of edges.
- The green nodes B and C represents *Linear* nodes.

After contracting B, a new edge gets inserted between A and C which is represented by red color.

Node C is *linear node* and gets contracted.

Nodes B and C belong to edge connecting A and D which is represented by red color.

#### **Not Linear nodes**

In this graph B is not a *linear* node.

## The cycle

Contracting a graph, can be done with more than one operation. The order of the operations affect the resulting contracted graph, after applying one operation, the set of vertices that can be contracted by another operation changes.

This implementation, cycles max\_cycles times through operations\_order.

```
<input>
do max_cycles times {
   for (operation in operations_order)
      { do operation }
}
<output>
```

#### **Contracting Sample Data**

In this section, building and using a contracted graph will be shown by example.

- The Sample Data for an undirected graph is used
- a dead end operation first followed by a linear operation.

The original graph:



After doing a dead end contraction operation:



Doing a linear contraction operation to the graph above

234



There are five cases, in this documentation, which arise when calculating the shortest path between a given source and target. In this examples, pgr\_dijkstra is used.

- Case 1: Both source and target belong to the contracted graph.
- Case 2: Source belongs to a contracted graph, while target belongs to a edge subgraph.
- Case 3: Source belongs to a vertex subgraph, while target belongs to an edge subgraph.
- Case 4: Source belongs to a contracted graph, while target belongs to an vertex subgraph.
- Case 5: The path contains a new edge added by the contraction algorithm.

#### Construction of the graph in the database

## **Original Data**

The following query shows the original data involved in the contraction operation.

#### **Contraction Results**

```
| 17 | {16}
   3 | v
                                                                 -1
                                                -1 I
                                                          -1 I
                                                           5 |
                                                                  2
  4 | e
            |-1|\{1,2\}
                                         3 |
  5 | e
            | -2 | {4}
                                                 9 |
                                                          3 |
                                                                  2
                                         6 | e
            | -3 | \{10, 13\}
                                                 5 I
                                                          11 |
                                                                  2.
                                         7 | e
            | -4 | {12}
                                                11 |
                                                           9 |
(7 rows)
```

The above results do not represent the contracted graph. They represent the changes done to the graph after applying the contraction algorithm. We can see that vertices like 6 and 11 do not appear in the contraction results because they were not affected by the contraction algorithm.

#### step 1

Adding extra columns to the edge\_table and edge\_table\_vertices\_pgr tables:

| Column        | Description                                                                                    |
|---------------|------------------------------------------------------------------------------------------------|
| contracted    | The vertices set belonging to the vertex/edge                                                  |
| vertices      |                                                                                                |
| is_contracted | On a <i>vertex</i> table: when true the vertex is contracted, so is not part of the contracted |
|               | graph.                                                                                         |
| is_contracted | On an <i>edge</i> table: when true the edge was generated by the contraction algorithm.        |

#### Using the following queries:

```
ALTER TABLE edge_table ADD contracted_vertices BIGINT[];
ALTER TABLE
ALTER TABLE edge_table_vertices_pgr ADD contracted_vertices BIGINT[];
ALTER TABLE
ALTER TABLE
ALTER TABLE edge_table ADD is_contracted BOOLEAN DEFAULT false;
ALTER TABLE
ALTER TABLE
ALTER TABLE edge_table_vertices_pgr ADD is_contracted BOOLEAN DEFAULT false;
ALTER TABLE
SET client_min_messages TO NOTICE;
SET
```

#### step 2

For simplicity, in this documentation, store the results of the call to pgr\_contractGraph in a temporary table

```
SELECT * INTO contraction_results
FROM pgr_contractGraph(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   array[1,2], directed:=true);
SELECT 7
```

#### step 3

Update the *vertex* and *edge* tables using the results of the call to pgr\_contraction

• In *edge\_table\_vertices\_pgr.is\_contracted* indicate the vertices that are contracted.

```
UPDATE edge_table_vertices_pgr
SET is_contracted = true
WHERE id IN (SELECT unnest(contracted_vertices) FROM contraction_results);
UPDATE 10
```

• Add to *edge\_table\_vertices\_pgr.contracted\_vertices* the contracted vertices belonging to the vertices.

```
UPDATE edge_table_vertices_pgr
SET contracted_vertices = contraction_results.contracted_vertices
FROM contraction_results
WHERE type = 'v' AND edge_table_vertices_pgr.id = contraction_results.id;
UPDATE 3
```

• Insert the new edges generated by pgr\_contractGraph.

```
INSERT INTO edge_table(source, target, cost, reverse_cost, contracted_vertices, is_contracted)
SELECT source, target, cost, -1, contracted_vertices, true
FROM contraction_results
WHERE type = 'e';
INSERT 0 4
```

#### step 3.1

Verify visually the updates.

• On the *edge\_table\_vertices\_pgr* 

```
SELECT id, contracted_vertices, is_contracted
FROM edge_table_vertices_pgr
ORDER BY id;
id | contracted_vertices | is_contracted
_____
 1 |
                      | t
 2 |
                      | t
 3 |
                       | f
 4 |
                       Ιt
 5 | {7,8}
                       Ιf
 6 |
                       Ιf
 7 |
                       Ιt
 8 |
 9 |
                       | f
10 |
                       Ιt
11 |
                       | f
12 |
                       | t
13 |
                       | t
14 |
                       | t
15 | {14}
                      | f
                      Ιt
16 I
17 | {16}
                      | f
(17 rows)
```

• On the *edge\_table* 

```
SELECT id, source, target, cost, reverse_cost, contracted_vertices, is_contracted
FROM edge_table
ORDER BY id;
id | source | target | cost | reverse_cost | contracted_vertices | is_contracted
1 | 1 | 2 | 1 |
2 | 2 | 3 | -1 |
                                1 |
                                                    Ιf
                                1 |
                                                    | f
        3 |
               4 | -1 |
                                1 |
 3 |
                                                    | f
               5 |
        2 |
 4 |
                    1 |
                                 1 |
                    1 |
1 |
 5 |
        3 |
               6 |
                                -1 |
        7 |
 6 |
               8 |
                                 1 |
                    1 |
 7 |
        8 |
               5 |
                                1 |
                    1 |
        5 I
              6 |
                                1 |
 8 |
                                                    | f
              9 |
 9 |
                    1 |
                                1 |
        6 |
                                                    Ιf
             10 |
                                1 |
                                                    | f
10 |
        5 I
                    1 |
        6 | 11 |
11 |
                    1 |
                               -1 |
                                                    l f
```

```
10 | 11 | 1 |
11 | 12 | 1 |
10 | 13 | 1 |
                                         -1 |
12 |
                                                                    | f
13 |
         11 |
                                          -1 |
                                                                    | f
14 |
         10 |
                                          1 |
                                                                    Ιf
15 |
         9 |
                  12 |
                          1 |
                                          1 |
                                                                    Ιf
16 |
         4 |
                  9 |
                          1 |
                                          1 |
                                                                    Ιf
        4 | 9 | 1 |
14 | 15 | 1 |
16 | 17 | 1 |
17 |
                                          1 |
                                                                    | f
18 |
                                          1 |
                                                                    | f
                  5 | 2 |
19 |
         3 |
                                         -1 \mid \{1, 2\}
                                                                    Ιt
20 |
         9 |
                   3 | 2 |
                                         -1 \mid \{4\}
                                                                    Ιt
         5 | 11 | 2 |
11 | 9 | 2 |
21 |
                                         -1 \mid \{10, 13\}
                                                                    | t
22 |
                          2 |
                                          -1 \mid \{12\}
                                                                    | t
(22 rows)
```

• vertices that belong to the contracted graph are the non contracted vertices

```
SELECT id FROM edge_table_vertices_pgr
WHERE is_contracted = false
ORDER BY id;
id
----
3
5
6
9
11
15
17
(7 rows)
```

## case 1: Both source and target belong to the contracted graph.

Inspecting the contracted graph above, vertex 3 and vertex 11 are part of the contracted graph. In the following query:

- vertices\_in\_graph hold the vertices that belong to the contracted graph.
- when selecting the edges, only edges that have the source and the target in that set are the edges belonging to the contracted graph, that is done in the WHERE clause.

Visually, looking at the original graph, going from 3 to 11: 3 -> 6 -> 11, and in the contracted graph, it is also 3 -> 6 -> 11. The results, on the contracted graph match the results as if it was done on the original graph.

```
SELECT * FROM pgr_dijkstra(
   WITH
   vertices_in_graph AS (
      SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false)
   SELECT id, source, target, cost, reverse_cost
   FROM edge_table
   WHERE source IN (SELECT * FROM vertices in graph)
   AND target IN (SELECT * FROM vertices_in_graph)
   3, 11, false);
seq | path_seq | node | edge | cost | agg_cost
____+
          1 | 3 | 5 | 1 | 0
           2 | 6 | 11 | 1 |
                                      1
  2 |
           3 | 11 | -1 | 0 |
  3 |
(3 rows)
```

#### case 2: Source belongs to the contracted graph, while target belongs to a edge subgraph.

# Inspecting the contracted graph above, vertex 3 is part of the contracted graph and vertex 1 belongs to the contracted subgraph

- expand1 holds the contracted vertices of the edge where vertex 1 belongs. (belongs to edge 19).
- vertices\_in\_graph hold the vertices that belong to the contracted graph and also the contracted vertices of edge 19.
- when selecting the edges, only edges that have the source and the target in that set are the edges belonging to the contracted graph, that is done in the WHERE clause.

Visually, looking at the original graph, going from 3 to 1:  $3 \rightarrow 2 \rightarrow 1$ , and in the contracted graph, it is also  $3 \rightarrow 2 \rightarrow 1$ . The results, on the contracted graph match the results as if it was done on the original graph.

```
SELECT * FROM pgr_dijkstra(
   $$
   WTTH
   expand_edges AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_table),
   expand1 AS (SELECT contracted_vertices FROM edge_table
      WHERE id IN (SELECT id FROM expand_edges WHERE vertex = 1)),
   vertices_in_graph AS (
      SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false
      UNION
       SELECT unnest(contracted_vertices) FROM expand1)
   SELECT id, source, target, cost, reverse_cost
   FROM edge_table
   WHERE source IN (SELECT * FROM vertices_in_graph)
   AND target IN (SELECT * FROM vertices_in_graph)
   $$,
   3, 1, false);
seq | path_seq | node | edge | cost | agg_cost
  __+____
           1 |
                3 |
                      2 | 1 |
                                        0
  1 |
                             1 |
           2 |
                 2 |
                       1 |
  2 |
                                          1
           3 |
                 1 | -1 | 0 |
  3 |
(3 rows)
```

## case 3: Source belongs to a vertex subgraph, while target belongs to an edge subgraph.

Inspecting the contracted graph above, vertex 7 belongs to the contracted subgraph of vertex 5 and vertex 13 belongs to the contracted subgraph of edge 21. In the following query:

- expand7 holds the contracted vertices of vertex where vertex 7 belongs. (belongs to vertex 5)
- expand13 holds the contracted vertices of edge where vertex 13 belongs. (belongs to edge 21)
- vertices\_in\_graph hold the vertices that belong to the contracted graph, contracted vertices of vertex 5 and contracted vertices of edge 21.
- when selecting the edges, only edges that have the source and the target in that set are the edges belonging to the contracted graph, that is done in the WHERE clause.

Visually, looking at the original graph, going from 7 to 13: 7 -> 8 -> 5 -> 10 -> 13, and in the contracted graph, it is also 7 -> 8 -> 5 -> 10 -> 13. The results, on the contracted graph match the results as if it was done on the original graph.

```
SELECT * FROM pgr_dijkstra(
$$
WITH

expand_vertices AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_table_vertices.
```

```
expand7 AS (SELECT contracted_vertices FROM edge_table_vertices_pgr
      WHERE id IN (SELECT id FROM expand_vertices WHERE vertex = 7)),
   expand_edges AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_table),
   expand13 AS (SELECT contracted_vertices FROM edge_table
      WHERE id IN (SELECT id FROM expand_edges WHERE vertex = 13)),
   vertices_in_graph AS (
      SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false
      UNTON
      SELECT unnest (contracted_vertices) FROM expand13
      UNTON
      SELECT unnest (contracted_vertices) FROM expand7)
   SELECT id, source, target, cost, reverse_cost
   FROM edge_table
   WHERE source IN (SELECT * FROM vertices_in_graph)
   AND target IN (SELECT * FROM vertices_in_graph)
   $$,
   7, 13, false);
seq | path_seq | node | edge | cost | agg_cost
----+----+-----
  1 |
          1 | 7 |
                        6 | 1 |
           2 | 8 | 7 | 1 |
  2 |
                                         1
           3 | 5 | 10 | 1 |
  3 |
           4 | 10 | 14 | 1 |
  4 |
  5 |
          5 | 13 | -1 | 0 |
(5 rows)
```

## case 4: Source belongs to the contracted graph, while target belongs to an vertex subgraph.

Inspecting the contracted graph above, vertex 3 is part of the contracted graph and vertex 7 belongs to the contracted subgraph of vertex 5. In the following query:

- expand7 holds the contracted vertices of vertex where vertex 7 belongs. (belongs to vertex 5)
- vertices\_in\_graph hold the vertices that belong to the contracted graph and the contracted vertices of vertex
- when selecting the edges, only edges that have the source and the target in that set are the edges belonging to the contracted graph, that is done in the WHERE clause.

Visually, looking at the original graph, going from 3 to 7: 3 -> 2 -> 5 -> 8 -> 7, but in the contracted graph, it is 3 -> 5 -> 8 -> 7. The results, on the contracted graph do not match the results as if it was done on the original graph. This is because the path contains edge 19 which is added by the contraction algorithm.

#### case 5: The path contains an edge added by the contraction algorithm.

In the previous example we can see that the path from vertex 3 to vertex 7 contains an edge which is added by the contraction algorithm.

```
WITH
first_dijkstra AS (
    SELECT * FROM pgr_dijkstra(
       $$
       WITH
       expand_vertices AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_table_vert
       expand7 AS (SELECT contracted_vertices FROM edge_table_vertices_pgr
           WHERE id IN (SELECT id FROM expand_vertices WHERE vertex = 7)),
        vertices_in_graph AS (
           SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false
            UNTON
            SELECT unnest(contracted_vertices) FROM expand7)
        SELECT id, source, target, cost, reverse_cost
        FROM edge_table
        WHERE source IN (SELECT * FROM vertices_in_graph)
       AND target IN (SELECT * FROM vertices_in_graph)
        $$,
        3, 7, false))
SELECT edge, contracted_vertices
   FROM first_dijkstra JOIN edge_table
   ON (edge = id)
   WHERE is contracted = true;
edge | contracted_vertices
  19 | {1,2}
(1 row)
```

Inspecting the contracted graph above, edge 19 should be expanded. In the following query:

- first\_dijkstra holds the results of the dijkstra query.
- edges\_to\_expand holds the edges added by the contraction algorithm and included in the path.
- vertices\_in\_graph hold the vertices that belong to the contracted graph, vertices of the contracted solution and the contracted vertices of the edges added by the contraction algorithm and included in the contracted solution.
- when selecting the edges, only edges that have the source and the target in that set are the edges belonging to the contracted graph, that is done in the WHERE clause.

Visually, looking at the original graph, going from 3 to 7:  $3 \rightarrow 2 \rightarrow 5 \rightarrow 8 \rightarrow 7$ , and in the contracted graph, it is also  $3 \rightarrow 2 \rightarrow 5 \rightarrow 8 \rightarrow 7$ . The results, on the contracted graph match the results as if it was done on the original graph.

```
SELECT * FROM pgr_dijkstra($$
WITH
-- This returns the results from case 2
```

```
first_dijkstra AS (
       SELECT * FROM pgr_dijkstra(
           WITH
           expand_vertices AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_table_
           expand7 AS (SELECT contracted_vertices FROM edge_table_vertices_pgr
              WHERE id IN (SELECT id FROM expand_vertices WHERE vertex = 7)),
           vertices_in_graph AS (
               SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false
               SELECT unnest(contracted_vertices) FROM expand7)
           SELECT id, source, target, cost, reverse_cost
           FROM edge_table
           WHERE source IN (SELECT * FROM vertices_in_graph)
           AND target IN (SELECT * FROM vertices_in_graph)
           3, 7, false)),
   -- edges that need expansion and the vertices to be expanded.
   edges_to_expand AS (
       SELECT edge, contracted_vertices
       FROM first_dijkstra JOIN edge_table
       ON (edge = id)
       WHERE is_contracted = true),
   vertices_in_graph AS (
       -- the nodes of the contracted solution
       SELECT node FROM first_dijkstra
       UNION
       -- the nodes of the expanding sections
       SELECT unnest (contracted_vertices) FROM edges_to_expand)
   SELECT id, source, target, cost, reverse_cost
   FROM edge_table
   WHERE source IN (SELECT * FROM vertices_in_graph)
   AND target IN (SELECT * FROM vertices_in_graph)
   -- not including the expanded edges
   AND id NOT IN (SELECT edge FROM edges_to_expand)
   $$,
   3, 7, false);
seq | path_seq | node | edge | cost | agg_cost
  ---+----+----
          1 | 3 | 2 |
                              1 |
  1 1
                                          0
            2 |
                 2 |
                         4 |
                                1 |
  2 |
                                           1
            3 |
                         7 |
  3 |
                 5 |
                                1 |
  4 |
            4 |
                 8 |
                         6 |
                                1 |
                                           3
  5 |
            5 I
                  7 | -1 |
(5 rows)
```

#### See Also

- http://www.cs.cmu.edu/afs/cs/academic/class/15210-f12/www/lectures/lecture16.pdf
- http://algo2.iti.kit.edu/documents/routeplanning/geisberger\_dipl.pdf
- The queries use pgr\_contractGraph Proposed function and the Sample Data network.

#### Indices and tables

• genindex

· search

## 6.2.2 Flow - Family of functions

- pgr\_maxFlow Proposed Only the Max flow calculation using Push and Relabel algorithm.
- pgr\_boykovKolmogorov Proposed Boykov and Kolmogorov with details of flow on edges.
- pgr\_edmondsKarp Proposed Edmonds and Karp algorithm with details of flow on edges.
- pgr\_pushRelabel Proposed Push and relabel algorithm with details of flow on edges.
- · Applications
  - pgr\_edgeDisjointPaths Proposed Calculates edge disjoint paths between two groups of vertices.
  - pgr\_maxCardinalityMatch Proposed Calculates a maximum cardinality matching in a graph.

## Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
  - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might change.
  - Signature might change.
  - Functionality might change.
  - pgTap tests might be missing.
  - Might need c/c++ coding.
  - May lack documentation.
  - Documentation if any might need to be rewritten.
  - Documentation examples might need to be automatically generated.
  - Might need a lot of feedback from the comunity.
  - Might depend on a proposed function of pgRouting
  - Might depend on a deprecated function of pgRouting

#### pgr maxFlow - Proposed

## **Synopsis**

pgr\_maxFlow — Calculates the maximum flow in a directed graph from the source(s) to the targets(s) using the Push Relabel algorithm.



Fig. 6.14: Boost Graph Inside

#### Availability: 2.4.0

#### Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
  - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might change.
  - Signature might change.
  - Functionality might change.
  - pgTap tests might be missing.
  - Might need c/c++ coding.
  - May lack documentation.
  - Documentation if any might need to be rewritten.
  - Documentation examples might need to be automatically generated.
  - Might need a lot of feedback from the comunity.
  - Might depend on a proposed function of pgRouting
  - Might depend on a deprecated function of pgRouting

#### Characteristics

- The graph is directed.
- When the maximum flow is 0 then there is no flow and **0** is returned.
  - There is no flow when a **source** is the same as a **target**.
- Any duplicated value in the source(s) or target(s) are ignored.
- Uses the *pgr\_pushRelabel* algorithm.
- Running time:  $O(V^3)$

## **Signature Summary**

```
pgr_maxFlow(edges_sql, source, target)
pgr_maxFlow(edges_sql, sources, target)
pgr_maxFlow(edges_sql, source, targets)
pgr_maxFlow(edges_sql, sources, targets)
RETURNS BIGINT
```

#### **One to One** Calculates the maximum flow from the *source* to the *target*.

```
pgr_maxFlow(edges_sql, source, target)
RETURNS BIGINT
```

## Example

```
230
(1 row)
```

#### **One to Many** Calculates the maximum flow from the *source* to all of the *targets*.

```
pgr_maxFlow(edges_sql, source, targets)
RETURNS BIGINT
```

#### Example

#### **Many to One** Calculates the maximum flow from all the *sources* to the *target*.

```
pgr_maxFlow(edges_sql, sources, target)
RETURNS BIGINT
```

## **Example**

## Many to Many Calculates the maximum flow from all of the *sources* to all of the *targets*.

```
pgr_maxFlow(edges_sql, sources, targets)
RETURNS BIGINT
```

## Example

```
FROM edge_table'
, ARRAY[6, 8, 12], ARRAY[1, 3, 11]
);
pgr_maxflow
-----
360
(1 row)
```

## **Description of the Signatures**

## Description of the edges\_sql query for Max-flow like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column           | Type        | Default | Description                                                                                                                        |
|------------------|-------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id               | ANY-INTEGER |         | Identifier of the edge.                                                                                                            |
| source           | ANY-INTEGER |         | Identifier of the first end                                                                                                        |
|                  |             |         | point vertex of the edge.                                                                                                          |
| target           | ANY-INTEGER |         | Identifier of the second end                                                                                                       |
|                  |             |         | point vertex of the edge.                                                                                                          |
| capacity         | ANY-INTEGER |         | Weight of the edge                                                                                                                 |
|                  |             |         | (source, target)                                                                                                                   |
|                  |             |         | • When negative:                                                                                                                   |
|                  |             |         | edge (source, target)                                                                                                              |
|                  |             |         | does not exist, there-                                                                                                             |
|                  |             |         | fore it's not part of                                                                                                              |
|                  |             |         | the graph.                                                                                                                         |
| reverse_capacity | ANY-INTEGER | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |

Where:

## ANY-INTEGER SMALLINT, INTEGER, BIGINT

# Description of the Parameters of the Flow Signatures

| Column    | Туре          | Default | Description                 |
|-----------|---------------|---------|-----------------------------|
| edges_sql | TEXT          |         | The edges SQL query as      |
| source    | BIGINT        |         | Identifier of the starting  |
| sources   | ARRAY[BIGINT] |         | Array of identifiers of th  |
| target    | BIGINT        |         | Identifier of the ending    |
| targets   | ARRAY[BIGINT] |         | Array of identifiers of the |

Description of the return value

| Туре   | Description                                               |
|--------|-----------------------------------------------------------|
| BIGINT | Maximum flow possible from the source(s) to the target(s) |

## See Also

- Flow Family of functions
- http://www.boost.org/libs/graph/doc/push\_relabel\_max\_flow.html

• https://en.wikipedia.org/wiki/Push%E2%80%93relabel\_maximum\_flow\_algorithm

#### Indices and tables

- genindex
- search

#### pgr\_pushRelabel - Proposed

#### **Synopsis**

pgr\_pushRelabel — Calculates the flow on the graph edges that maximizes the flow from the sources to the targets using Push Relabel Algorithm.



Fig. 6.15: Boost Graph Inside

## Availability:

- Renamed 2.5.0, Previous name pgr\_maxFlowPushRelabel
- New in 2.3.0

## Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
  - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might change.
  - Signature might change.
  - Functionality might change.
  - pgTap tests might be missing.
  - Might need c/c++ coding.
  - May lack documentation.
  - Documentation if any might need to be rewritten.
  - Documentation examples might need to be automatically generated.
  - Might need a lot of feedback from the comunity.
  - Might depend on a proposed function of pgRouting
  - Might depend on a deprecated function of pgRouting

#### **Characteristics**

- The graph is **directed**.
- Process is done only on edges with positive capacities.
- When the maximum flow is 0 then there is no flow and **EMPTY SET** is returned.
  - There is no flow when a **source** is the same as a **target**.
- Any duplicated value in the source(s) or target(s) are ignored.

- Calculates the flow/residual capacity for each edge. In the output
  - Edges with zero flow are omitted.
- Creates a **super source** and edges to all the source(s), and a **super target** and the edges from all the targets(s).
- The maximum flow through the graph is guaranteed to be the value returned by  $pgr\_maxFlow$  when executed with the same parameters and can be calculated:
  - By aggregation of the outgoing flow from the sources
  - By aggregation of the incoming flow to the targets
- Running time:  $O(V^3)$

#### **Signature Summary**

```
pgr_pushRelabel(edges_sql, source, target) - Proposed
pgr_pushRelabel(edges_sql, sources, target) - Proposed
pgr_pushRelabel(edges_sql, source, targets) - Proposed
pgr_pushRelabel(edges_sql, sources, targets) - Proposed
pgr_pushRelabel(edges_sql, sources, targets) - Proposed
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

One to One Calculates the flow on the graph edges that maximizes the flow from the *source* to the *target*.

```
pgr_pushRelabel(edges_sql, source, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

#### Example

```
SELECT * FROM pgr_pushRelabel(
    'SELECT id,
            source.
            target,
            capacity,
            reverse_capacity
    FROM edge_table'
    , 6, 11
);
seq | edge | start_vid | end_vid | flow | residual_capacity
----+----+-----

    1 | 10 |
    5 |
    10 | 100 |

    2 | 8 |
    6 |
    5 | 100 |

    3 | 11 |
    6 |
    11 | 130 |

                                                               3.0
                                                               30
                                                                0
  4 | 12 |
                     10 |
                               11 | 100 |
(4 rows)
```

**One to Many** Calculates the flow on the graph edges that maximizes the flow from the *source* to all of the *targets*.

```
pgr_pushRelabel(edges_sql, source, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

#### Example

```
target,
           capacity,
          reverse_capacity
   FROM edge_table'
   , 6, ARRAY[11, 1, 13]
);
seq | edge | start_vid | end_vid | flow | residual_capacity
      1 | 2 | 1 | 130 |
2 | 3 | 2 | 80 |
                                                      0
  2 |
                                                      20
        3 |
                    4 |
                             3 | 80 |
  3 |
                                                      50
                   5 |
5 |
                            2 | 50 |
8 | 50 |
        4 |
  4 |
                                                      0
        7 |
  5 I
                                                      80
                                 80 |
                   5 | 10 |
6 | 5 |
6 | 9 |
  6 |
       10 |
                                                      50
                            5 | 130 |
  7 |
        8 |
                                                      0
                        9 | 80 |
11 | 130 |
8 | -
        9 |
                   6 |
                                                     50
  8 |
                   6 |
  9 |
      11 |
                                                      0
                   7 |
 10 |
                                                      0
        6 1
                   8 |
                            7 |
 11 | 6 |
                                 50 I
                                                     50
                  8 |
9 |
 12 | 7 |
13 | 16 |
                            5 | 50 |
                                                      0
                            4 | 80 |
                                                      0
                  10 | 11 | 80 |
 14 | 12 |
                                                      20
(14 rows)
```

# **Many to One** Calculates the flow on the graph edges that maximizes the flow from all of the *sources* to the *target*.

```
pgr_pushRelabel(edges_sql, sources, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

## **Example**

```
SELECT * FROM pgr_pushRelabel(
   'SELECT id,
         source,
         target,
         capacity,
         reverse_capacity
   FROM edge_table'
   , ARRAY[6, 8, 12], 11
);
seq | edge | start_vid | end_vid | flow | residual_capacity
  __+____
 1 | 10 | 5 | 10 | 100 |
 2 | 8 |
              6 | 5 | 100 |
6 | 11 | 130 |
10 | 11 | 100 |
                         5 | 100 |
                                               30
 3 | 11 |
                        11 | 130 |
                                                0
  4 | 12 |
                                                0
(4 rows)
```

# **Many to Many** Calculates the flow on the graph edges that maximizes the flow from all of the *sources* to all of the *targets*.

```
pgr_pushRelabel(edges_sql, sources, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

```
SELECT * FROM pgr_pushRelabel(
     'SELECT id,
                source,
                target,
                capacity,
                reverse_capacity
     FROM edge_table'
     , ARRAY[6, 8, 12], ARRAY[1, 3, 11]
);
seq | edge | start_vid | end_vid | flow | residual_capacity
____+
 1 | 1 | 2 | 1 | 50 |
2 | 3 | 4 | 3 | 80 |
3 | 4 | 5 | 2 | 50 |
4 | 10 | 5 | 10 | 100 |
5 | 8 | 6 | 5 | 130 |
6 | 9 | 6 | 9 | 30 |
7 | 11 | 6 | 11 | 130 |
8 | 7 | 8 | 5 | 20 |
9 | 16 | 9 | 4 | 80 |
10 | 12 | 10 | 11 | 100 |
11 | rows)
                                                                                 8.0
                                                                                50
                                                                                  0
                                                                                 30
                                                                               100
                                                                                  0
                                                                                30
                                                                                  0
                                                                                  0
                                                                                   0
(11 rows)
```

## **Description of the Signatures**

## Description of the edges\_sql query for Max-flow like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column           | Type        | Default | Description                                                                                                                        |
|------------------|-------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id               | ANY-INTEGER |         | Identifier of the edge.                                                                                                            |
| source           | ANY-INTEGER |         | Identifier of the first end                                                                                                        |
|                  |             |         | point vertex of the edge.                                                                                                          |
| target           | ANY-INTEGER |         | Identifier of the second end                                                                                                       |
|                  |             |         | point vertex of the edge.                                                                                                          |
| capacity         | ANY-INTEGER |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_capacity | ANY-INTEGER | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |

Where:

ANY-INTEGER SMALLINT, INTEGER, BIGINT

# **Description of the Parameters of the Flow Signatures**

| Column    | Туре          | Default | Description                |
|-----------|---------------|---------|----------------------------|
| edges_sql | TEXT          |         | The edges SQL query as     |
| source    | BIGINT        |         | Identifier of the starting |
| sources   | ARRAY[BIGINT] |         | Array of identifiers of th |
| target    | BIGINT        |         | Identifier of the ending v |
| targets   | ARRAY[BIGINT] |         | Array of identifiers of th |

# **Description of the Return Values**

| Column            | Туре   | Description                                                   |
|-------------------|--------|---------------------------------------------------------------|
| seq               | INT    | Sequential value starting from 1.                             |
| edge_id           | BIGINT | Identifier of the edge in the original query(edges_sql).      |
| source            | BIGINT | Identifier of the first end point vertex of the edge.         |
| target            | BIGINT | Identifier of the second end point vertex of the edge.        |
| flow              | BIGINT | Flow through the edge in the direction (source, target).      |
| residual_capacity | BIGINT | Residual capacity of the edge in the direction (source, targe |

## See Also

- Flow Family of functions, pgr\_boykovKolmogorov, pgr\_edmondsKarp
- http://www.boost.org/libs/graph/doc/push\_relabel\_max\_flow.html
- $\bullet\ https://en.wikipedia.org/wiki/Push\%E2\%80\%93relabel\_maximum\_flow\_algorithm$

## Indices and tables

- genindex
- · search

# pgr\_edmondsKarp - Proposed

## **Synopsis**

 $pgr\_edmondsKarp$  — Calculates the flow on the graph edges that maximizes the flow from the sources to the targets using Push Relabel Algorithm.



Fig. 6.16: Boost Graph Inside

## Availability:

- Renamed 2.5.0, Previous name pgr\_maxFlowEdmondsKarp
- New in 2.3.0

## Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
  - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might change.
  - Signature might change.
  - Functionality might change.
  - pgTap tests might be missing.
  - Might need c/c++ coding.
  - May lack documentation.
  - Documentation if any might need to be rewritten.
  - Documentation examples might need to be automatically generated.
  - Might need a lot of feedback from the comunity.
  - Might depend on a proposed function of pgRouting
  - Might depend on a deprecated function of pgRouting

#### Characteristics

- The graph is directed.
- Process is done only on edges with positive capacities.
- When the maximum flow is 0 then there is no flow and **EMPTY SET** is returned.
  - There is no flow when a **source** is the same as a **target**.
- Any duplicated value in the source(s) or target(s) are ignored.
- Calculates the flow/residual capacity for each edge. In the output
  - Edges with zero flow are omitted.
- Creates a **super source** and edges to all the source(s), and a **super target** and the edges from all the targets(s).
- The maximum flow through the graph is guaranteed to be the value returned by *pgr\_maxFlow* when executed with the same parameters and can be calculated:
  - By aggregation of the outgoing flow from the sources
  - By aggregation of the incoming flow to the targets
- Running time:  $O(V * E^2)$

# **Signature Summary**

```
pgr_edmondsKarp(edges_sql, source, target) - Proposed
pgr_edmondsKarp(edges_sql, sources, target) - Proposed
pgr_edmondsKarp(edges_sql, source, targets) - Proposed
pgr_edmondsKarp(edges_sql, sources, targets) - Proposed
pgr_edmondsKarp(edges_sql, sources, targets) - Proposed
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

# **One to One** Calculates the flow on the graph edges that maximizes the flow from the *source* to the *target*.

```
pgr_edmondsKarp(edges_sql, source, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

```
SELECT * FROM pgr_edmondsKarp(
    'SELECT id,
             source,
             target,
             capacity,
            reverse_capacity
    FROM edge_table'
    , 6, 11
) ;
seq | edge | start_vid | end_vid | flow | residual_capacity
____+

    1 | 10 | 5 | 10 | 100 |

    2 | 8 | 6 | 5 | 100 |

    3 | 11 | 6 | 11 | 130 |

    4 | 12 | 10 | 11 | 100 |

                                                                  30
                                                                 30
                                                                 0
         12 |
(4 rows)
```

**One to Many** Calculates the flow on the graph edges that maximizes the flow from the *source* to all of the *targets*.

```
pgr_edmondsKarp(edges_sql, source, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

## **Example**

```
SELECT * FROM pgr_edmondsKarp(
    'SELECT id,
            source,
            target,
            capacity,
            reverse_capacity
   FROM edge_table'
  , 6, ARRAY[1, 3, 11]
);
seq | edge | start_vid | end_vid | flow | residual_capacity
              2 | 1 | 50 |
4 | 3 | 80 |
5 | 2 | 50 |
        3 |
4 |
   2 |
                                                             50
                                      50 |
                     5 I
   3 |
                                                             0
                    5 |
6 |
6 |
                           10 |
5 |
9 |
                                      80 |
       10 |
                                                             50
   4 |
                                5 | 130 |
         8 |
                                                              0
   5 I
        9 |
                                                            50
                                      80 |
   6 I
                    6 | 11 | 130 |
9 | 4 | 80 |
10 | 11 | 80 |
   7 | 11 |
                                                             0
  8 | 16 |
                                                             0
  9 | 12 |
                                                             20
(9 rows)
```

**Many to One** Calculates the flow on the graph edges that maximizes the flow from all of the *sources* to the *target*.

```
pgr_edmondsKarp(edges_sql, sources, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

**Many to Many** Calculates the flow on the graph edges that maximizes the flow from all of the *sources* to all of the *targets*.

```
pgr_edmondsKarp(edges_sql, sources, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

## **Example**

```
SELECT * FROM pgr_edmondsKarp(
    'SELECT id,
            source,
           target,
           capacity,
           reverse_capacity
   FROM edge_table'
   , ARRAY[6, 8, 12], ARRAY[1, 3, 11]
);
seq | edge | start_vid | end_vid | flow | residual_capacity
       1 | 2 | 1 | 50 |
3 | 4 | 3 | 80 |
4 | 5 | 2 | 50 |
   1 |
                                                           80
   2 |
                                                           50
   3 |
                                                            0
                    5 | 10 | 100 |
6 | 5 | 130 |
6 | 9 | 80 |
       10 |
   4 |
                                                           30
                    6 |
6 |
   5 |
         8 |
                                                            0
        9 |
                          11 | 80 |
11 | 130 |
5 |
   6 |
                                                           50
                    6 |
   7 | 11 |
                                                            0
         7 |
                    8 |
                                                           30
  8 |
                     9 |
                               4 | 80 |
  9 | 16 |
                                                            0
                             11 | 100 |
 10 | 12 |
                    10 |
                                                           0
(10 rows)
```

## **Description of the Signatures**

## Description of the edges\_sql query for Max-flow like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column           | Туре        | Default | Description                                                                                                                        |
|------------------|-------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id               | ANY-INTEGER |         | Identifier of the edge.                                                                                                            |
| source           | ANY-INTEGER |         | Identifier of the first end point vertex of the edge.                                                                              |
| target           | ANY-INTEGER |         | Identifier of the second end point vertex of the edge.                                                                             |
| capacity         | ANY-INTEGER |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_capacity | ANY-INTEGER | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |

Where:

# ANY-INTEGER SMALLINT, INTEGER, BIGINT

# Description of the Parameters of the Flow Signatures

| Column    | Туре          | Default | Description                |
|-----------|---------------|---------|----------------------------|
| edges_sql | TEXT          |         | The edges SQL query as     |
| source    | BIGINT        |         | Identifier of the starting |
| sources   | ARRAY[BIGINT] |         | Array of identifiers of th |
| target    | BIGINT        |         | Identifier of the ending v |
| targets   | ARRAY[BIGINT] |         | Array of identifiers of th |

# **Description of the Return Values**

| Column            | Туре   | Description                                                   |
|-------------------|--------|---------------------------------------------------------------|
| seq               | INT    | Sequential value starting from 1.                             |
| edge_id           | BIGINT | Identifier of the edge in the original query(edges_sql).      |
| source            | BIGINT | Identifier of the first end point vertex of the edge.         |
| target            | BIGINT | Identifier of the second end point vertex of the edge.        |
| flow              | BIGINT | Flow through the edge in the direction (source, target).      |
| residual_capacity | BIGINT | Residual capacity of the edge in the direction (source, targe |

# See Also

- $\bullet \ \ Flow \ \ Family \ of functions, pgr\_boykov Kolmogorov, pgr\_Push Relabel$
- http://www.boost.org/libs/graph/doc/edmonds\_karp\_max\_flow.html
- https://en.wikipedia.org/wiki/Edmonds%E2%80%93Karp\_algorithm

# Indices and tables

- genindex
- search

## pgr boykovKolmogorov - Proposed

### **Synopsis**

pgr\_boykovKolmogorov — Calculates the flow on the graph edges that maximizes the flow from the sources to the targets using Boykov Kolmogorov algorithm.



Fig. 6.17: Boost Graph Inside

## Availability:

- Renamed 2.5.0, Previous name pgr\_maxFlowBoykovKolmogorov
- New in 2.3.0

#### Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
  - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might change.
  - Signature might change.
  - Functionality might change.
  - pgTap tests might be missing.
  - Might need c/c++ coding.
  - May lack documentation.
  - Documentation if any might need to be rewritten.
  - Documentation examples might need to be automatically generated.
  - Might need a lot of feedback from the comunity.
  - Might depend on a proposed function of pgRouting
  - Might depend on a deprecated function of pgRouting

#### **Characteristics**

- The graph is **directed**.
- Process is done only on edges with positive capacities.
- When the maximum flow is 0 then there is no flow and **EMPTY SET** is returned.
  - There is no flow when a **source** is the same as a **target**.
- Any duplicated value in the source(s) or target(s) are ignored.
- Calculates the flow/residual capacity for each edge. In the output
  - Edges with zero flow are omitted.
- Creates a **super source** and edges to all the source(s), and a **super target** and the edges from all the targets(s).
- The maximum flow through the graph is guaranteed to be the value returned by *pgr\_maxFlow* when executed with the same parameters and can be calculated:
  - By aggregation of the outgoing flow from the sources

- By aggregation of the incoming flow to the targets
- Running time: Polynomial

#### **Signature Summary**

```
pgr_boykovKolmogorov(edges_sql, source, target) - Proposed
pgr_boykovKolmogorov(edges_sql, sources, target) - Proposed
pgr_boykovKolmogorov(edges_sql, source, targets) - Proposed
pgr_boykovKolmogorov(edges_sql, sources, targets) - Proposed
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

One to One Calculates the flow on the graph edges that maximizes the flow from the *source* to the *target*.

```
pgr_boykovKolmogorov(edges_sql, source, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

#### Example

```
SELECT * FROM pgr_boykovKolmogorov(
     'SELECT id,
              source,
              target,
              capacity,
              reverse_capacity
    FROM edge_table'
    , 6, 11
);
seq | edge | start_vid | end_vid | flow | residual_capacity
____+

    1 | 10 |
    5 |
    10 | 100 |

    2 | 8 |
    6 |
    5 | 100 |

    3 | 11 |
    6 |
    11 | 130 |

    4 | 12 |
    10 |
    11 | 100 |

                                                                       30
                                                                        0
                                                                         0
(4 rows)
```

**One to Many** Calculates the flow on the graph edges that maximizes the flow from the *source* to all of the *targets*.

```
pgr_boykovKolmogorov(edges_sql, source, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

```
SELECT * FROM pgr_boykovKolmogorov(
  'SELECT id,
         source,
         target,
        capacity,
        reverse_capacity
  FROM edge_table'
  , 6, ARRAY[1, 3, 11]
);
seq | edge | start_vid | end_vid | flow | residual_capacity
1 |
       1 |
                2 |
                      1 | 50 |
                                            80
               4 |
       3 |
                      3 | 80 |
                                            50
  2 |
```

|    | 3    | 4  | 5  | - | 2  | 50  | 1 | 0  |
|----|------|----|----|---|----|-----|---|----|
|    | 4    | 10 | 5  | - | 10 | 80  |   | 50 |
|    | 5    | 8  | 6  |   | 5  | 130 |   | 0  |
|    | 6    | 9  | 6  |   | 9  | 80  |   | 50 |
|    | 7    | 11 | 6  |   | 11 | 130 |   | 0  |
|    | 8    | 16 | 9  |   | 4  | 80  |   | 0  |
|    | 9    | 12 | 10 |   | 11 | 80  |   | 20 |
| (9 | rows | )  |    |   |    |     |   |    |
|    |      |    |    |   |    |     |   |    |

# **Many to One** Calculates the flow on the graph edges that maximizes the flow from all of the *sources* to the *target*.

```
pgr_boykovKolmogorov(edges_sql, sources, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

#### **Example**

```
SELECT * FROM pgr_boykovKolmogorov(
     'SELECT id,
              source,
              target,
              capacity,
             reverse_capacity
    FROM edge_table'
    , ARRAY[6, 8, 12], 11
);
seq | edge | start_vid | end_vid | flow | residual_capacity
   1 | 10 | 5 | 10 | 100 |
2 | 8 | 6 | 5 | 100 |
3 | 11 | 6 | 11 | 130 |
4 | 12 | 10 | 11 | 100 |
                                                                     30
                                                                     30
                                                                      0
                                                                       0
(4 rows)
```

# **Many to Many** Calculates the flow on the graph edges that maximizes the flow from all of the *sources* to all of the *targets*.

```
pgr_boykovKolmogorov(edges_sql, sources, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET
```

```
SELECT * FROM pgr_boykovKolmogorov(
  'SELECT id,
         source,
         target,
         capacity,
        reverse_capacity
  FROM edge_table'
   , ARRAY[6, 8, 12], ARRAY[1, 3, 11]
);
seq | edge | start_vid | end_vid | flow | residual_capacity
1 | 3 |
           2 |
4 |
5 |
  1 |
      1 |
                            50 I
                                             80
                        3 | 80 |
      3 |
                                             50
  2 |
                       2 | 50 |
      4 |
  3 |
                                              0
                       10 | 100 |
                5 |
                                             30
  4 |
     10 |
                6 |
                        5 | 130 |
                                             0
  5 I
       8 I
```

| 6       | 9   | 6  | 9  | 80  | 50 |  |
|---------|-----|----|----|-----|----|--|
| 7       | 11  | 6  | 11 | 130 | 0  |  |
| 8       | 7   | 8  | 5  | 20  | 30 |  |
| 9       | 16  | 9  | 4  | 80  | 0  |  |
| 10      | 12  | 10 | 11 | 100 | 0  |  |
| (10 row | ıs) |    |    |     |    |  |
|         |     |    |    |     |    |  |

# **Description of the Signatures**

# Description of the edges\_sql query for Max-flow like functions

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column           | Туре        | Default | Description                                                                                                                        |
|------------------|-------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| id               | ANY-INTEGER |         | Identifier of the edge.                                                                                                            |
| source           | ANY-INTEGER |         | Identifier of the first end                                                                                                        |
|                  |             |         | point vertex of the edge.                                                                                                          |
| target           | ANY-INTEGER |         | Identifier of the second end                                                                                                       |
|                  |             |         | point vertex of the edge.                                                                                                          |
| capacity         | ANY-INTEGER |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |
| reverse_capacity | ANY-INTEGER | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |

Where:

# ANY-INTEGER SMALLINT, INTEGER, BIGINT

# **Description of the Parameters of the Flow Signatures**

| Column    | Туре          | Default | Description                |
|-----------|---------------|---------|----------------------------|
| edges_sql | TEXT          |         | The edges SQL query as     |
| source    | BIGINT        |         | Identifier of the starting |
| sources   | ARRAY[BIGINT] |         | Array of identifiers of th |
| target    | BIGINT        |         | Identifier of the ending v |
| targets   | ARRAY[BIGINT] |         | Array of identifiers of th |

# **Description of the Return Values**

| Column            | Type   | Description                                                   |
|-------------------|--------|---------------------------------------------------------------|
| seq               | INT    | Sequential value starting from 1.                             |
| edge_id           | BIGINT | Identifier of the edge in the original query(edges_sql).      |
| source            | BIGINT | Identifier of the first end point vertex of the edge.         |
| target            | BIGINT | Identifier of the second end point vertex of the edge.        |
| flow              | BIGINT | Flow through the edge in the direction (source, target).      |
| residual_capacity | BIGINT | Residual capacity of the edge in the direction (source, targe |

#### See Also

- Flow Family of functions, pgr\_pushRelabel, pgr\_EdmondsKarp
- http://www.boost.org/libs/graph/doc/boykov\_kolmogorov\_max\_flow.html

#### Indices and tables

- genindex
- · search

## pgr\_maxCardinalityMatch - Proposed

## **Synopsis**

 $\verb"pgr_maxCardinality Match--- Calculates a maximum cardinality matching in a graph.$ 

## Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
  - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might change.
  - Signature might change.
  - Functionality might change.
  - pgTap tests might be missing.
  - Might need c/c++ coding.
  - May lack documentation.
  - Documentation if any might need to be rewritten.
  - Documentation examples might need to be automatically generated.
  - Might need a lot of feedback from the comunity.
  - Might depend on a proposed function of pgRouting
  - Might depend on a deprecated function of pgRouting



Fig. 6.18: Boost Graph Inside

# **Availability:**

- Renamed 2.5.0, Previous name pgr\_maximumCardinalityMatching
- New in 2.3.0

# Characteristics

- A matching or independent edge set in a graph is a set of edges without common vertices.
- A maximum matching is a matching that contains the largest possible number of edges.
  - There may be many maximum matchings.

- Calculates **one** possible maximum cardinality matching in a graph.
- The graph can be directed or undirected.
- Running time:  $O(E * V * \alpha(E, V))$ 
  - $\alpha(E, V)$  is the inverse of the Ackermann function<sup>20</sup>.

### **Signature Summary**

```
pgr_MaximumCardinalityMatching(edges_sql) - Proposed
pgr_MaximumCardinalityMatching(edges_sql, directed) - Proposed

RETURNS SET OF (seq, edge_id, source, target)
OR EMPTY SET
```

#### **Minimal Use**

```
pgr_MaximumCardinalityMatching(edges_sql)
RETURNS SET OF (seq, edge_id, source, target) OR EMPTY SET
```

The minimal use calculates one possible maximum cardinality matching on a directed graph.

#### **Example**

```
SELECT * FROM pgr_maxCardinalityMatch(
   'SELECT id, source, target, cost AS going, reverse_cost AS coming FROM edge_table
);
seq | edge | source | target
      1 |
  1 |
              1 |
  2 |
      3 |
                4 |
  3 |
      9 |
               6 |
                7 |
  4 |
       6 |
  5 | 14 |
               10 |
                       13
  6 | 13 |
               11 |
                       12
  7 | 17 |
               14 |
                       15
  8 | 18 |
               16 |
                        17
(8 rows)
```

## Complete signature

```
pgr_MaximumCardinalityMatching(edges_sql, directed)
RETURNS SET OF (seq, edge_id, source, target) OR EMPTY SET
```

The complete signature calculates one possible maximum cardinality matching.

```
SELECT * FROM pgr_maxCardinalityMatch(
    'SELECT id, source, target, cost AS going, reverse_cost AS coming FROM edge_table',
    directed := false
);
seq | edge | source | target
                 1 |
         1 |
  1 |
         3 |
  2 |
                   3 |
                            4
         9 |
  3 |
                  6 |
                            9
                  7 |
         6 |
  4 1
                            8
   5 I
                 10 I
                           13
        14 I
   6 |
        13 |
                 11 |
```

<sup>&</sup>lt;sup>20</sup>https://en.wikipedia.org/wiki/Ackermann\_function

| 7   1    | 7   17 | 14 | 4 | 15 |
|----------|--------|----|---|----|
| 8   1    | 8   18 | 16 | 6 | 17 |
| (8 rows) | rows)  |    |   |    |

# **Description of the Signatures**

# Description of the SQL query

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column | Туре        | Description                                                             |  |
|--------|-------------|-------------------------------------------------------------------------|--|
| id     | ANY-INTEGER | Identifier of the edge.                                                 |  |
| source | ANY-INTEGER | Identifier of the first end point vertex of the edge.                   |  |
| target | ANY-INTEGER | Identifier of the second end point vertex of the edge.                  |  |
| going  | ANY-NUMERIC | A positive value represents the existence of the edge (source, target). |  |
| coming | ANY-NUMERIC | A positive value represents the existence of the edge (target, source). |  |

#### Where:

- ANY-INTEGER SMALLINT, INTEGER, BIGINT
- ANY-NUMERIC SMALLINT, INTEGER, BIGINT, REAL, DOUBLE PRECISION

# **Description of the parameters of the signatures**

| Column    | Туре    | Description                                        |
|-----------|---------|----------------------------------------------------|
| edges_sql | TEXT    | SQL query as described above.                      |
| directed  | BOOLEAN | (optional) Determines the type of the graph. Defau |

# **Description of the Result**

| Column | Туре   | Description                                              |  |
|--------|--------|----------------------------------------------------------|--|
| seq    | INT    | Sequential value starting from <b>1</b> .                |  |
| edge   | BIGINT | Identifier of the edge in the original query(edges_sql). |  |
| source | BIGINT | Identifier of the first end point of the edge.           |  |
| target | BIGINT | Identifier of the second end point of the edge.          |  |

## See Also

- Flow Family of functions
- http://www.boost.org/libs/graph/doc/maximum\_matching.html
- https://en.wikipedia.org/wiki/Matching\_%28graph\_theory%29
- https://en.wikipedia.org/wiki/Ackermann\_function

#### Indices and tables

- genindex
- search

## pgr\_edgeDisjointPaths - Proposed

## Name

pgr\_edgeDisjointPaths — Calculates edge disjoint paths between two groups of vertices.



Fig. 6.19: Boost Graph Inside

#### Availability: 2.3.0

#### **Warning:** Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
  - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might change.
  - Signature might change.
  - Functionality might change.
  - pgTap tests might be missing.
  - Might need c/c++ coding.
  - May lack documentation.
  - Documentation if any might need to be rewritten.
  - Documentation examples might need to be automatically generated.
  - Might need a lot of feedback from the comunity.
  - Might depend on a proposed function of pgRouting
  - Might depend on a deprecated function of pgRouting

## **Synopsis**

Calculates the edge disjoint paths between two groups of vertices. Utilizes underlying maximum flow algorithms to calculate the paths.

#### **Characteristics:**

## The main characterics are:

- Calculates the edge disjoint paths between any two groups of vertices.
- Returns EMPTY SET when source and destination are the same, or cannot be reached.
- The graph can be directed or undirected.
- One to many, many to one, many to many versions are also supported.
- Uses *pgr\_boykovKolmogorov Proposed* to calculate the paths.

# Signature Summary

```
pgr_edgeDisjointPaths(edges_sql, start_vid, end_vid)
pgr_edgeDisjointPaths(edges_sql, start_vid, end_vid, directed)
pgr_edgeDisjointPaths(edges_sql, start_vid, end_vids, directed)
pgr_edgeDisjointPaths(edges_sql, start_vids, end_vid, directed)
pgr_edgeDisjointPaths(edges_sql, start_vids, end_vids, directed)

RETURNS SET OF (seq, path_id, path_seq, [start_vid,] [end_vid,] node, edge, cost, agg_cost)
OR EMPTY SET
```

#### **Signatures**

#### Minimal use

```
pgr_edgeDisjointPaths(edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET
```

The minimal use is for a directed graph from one start\_vid to one end\_vid.

#### **Example**

```
SELECT * FROM pgr_edgeDisjointPaths(
  'SELECT id, source, target, cost, reverse_cost FROM edge_table',
);
seq | path_id | path_seq | node | edge | cost | agg_cost
1 | 3 | 2 | 1 |
  1 |
                                       0
        1 |
1 |
2 |
                      2 |
                 2 |
                          4 | 1 |
  2 |
                                        1
  3 |
                 3 |
                      5 |
                          -1 |
                                0 |
                1 |
                      3 |
                          5 |
                                1 |
  4 |
        2 |
                 2 |
 5 I
                      6 |
                           8 |
                                1 |
             3 |
                     5 |
        2 |
  6 |
                           -1 |
                               0 |
(6 rows)
```

#### One to One

This signature finds the set of dijoint paths from one start\_vid to one end\_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.

```
pgr_edgeDisjointPaths(edges_sql, start_vid, end_vid, directed)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET
```

```
SELECT * FROM pgr_edgeDisjointPaths(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   3, 5,
   directed := false
);
seq | path_id | path_seq | node | edge | cost | agg_cost
                 1 | 3 | 2 | 1 |
       1 |
                                 1 |
         1 |
                  2 | 2 | 4 |
  2 |
                  3 | 5 | -1 |
  3 |
         1 |
                                  0 |
                                           0
         2 |
                  1 | 3 |
                             3 | -1 |
  4 |
  5 |
         2 |
                  2 | 4 | 16 | 1 |
                                           -1
  6 |
        2 |
                  3 | 9 | 9 |
                                  1 |
                                           \cap
        2 |
                             8 |
                                  1 |
  7 |
                  4 | 6 |
                                            1
                       5 |
  8 |
         2 |
                  5 |
                            -1 |
                                   0 |
                                  1 |
  9 |
         3 |
                  1 | 3 |
                             5 I
                                           0
 10 |
                  2 |
                       6 |
         3 |
                            11 |
                                   1 |
                                            1
                  3 |
                      11 |
 11 |
          3 |
                             12 |
                                  -1 |
 12 |
          3 |
                  4 | 10 |
                             10 |
                                   1 |
 13 I
         3 |
                  5 I
                       5 I
                             -1 |
                                   0 |
(13 rows)
```

#### One to Many

This signature finds the sset of disjoint paths from the start\_vid to each one of the end\_vid in end\_vids:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.
- The result is equivalent to the union of the results of the one to one pgr\_edgeDisjointPaths.
- The extra end\_vid in the result is used to distinguish to which path it belongs.

```
pgr_edgeDisjointPaths(edges_sql, start_vid, end_vids, directed)
RETURNS SET OF (seq, path_id, path_seq, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET
```

#### **Example**

```
SELECT * FROM pgr_edgeDisjointPaths(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   3, ARRAY[4, 5, 10]
);
seq | path_id | path_seq | end_vid | node | edge | cost | agg_cost
                    1 |
  1 |
                             4 |
                                   3 | 5 |
                                               1 |
           1 1
                            4 |
                    2 |
                                   6 |
                                        9 |
  2 |
          1 |
                                               1 |
                                                         1
                    3 |
  3 |
          1 |
                             4 |
                                   9 | 16 |
                                               1 |
                    4 |
                                       -1 I
          1 |
  4 |
                             4 |
                                   4 |
                                               0 |
                                                         3
          2 |
                            5 |
                                        2 |
  5 |
                    1 |
                                   3 |
                                               1 |
                                                         0
                                        4 |
          2 |
                            5 |
  6 |
                    2 |
                                   2 |
                                               1 |
                                                         1
          2 |
                            5 |
                                   5 I
                    3 |
  7 |
                                       -1 |
                                               0 |
                                                         2.
          3 |
                            5 |
                                  3 |
                                        5 I
                   1 |
  8 |
                                                         Λ
                                               1 |
  9 |
          3 |
                    2 |
                                        8 |
                           5 I
                                  6 I
                                               1 1
                                                         1
          3 |
                    3 I
                            5 I
                                       -1 |
                                               0 |
 10 I
                                  5 I
                                                         2
 11 I
          4 |
                   1 |
                           10 I
                                  3 I
                                        2 |
                                               1 |
                                                         0
 12 |
          4 |
                   2 |
                           10 |
                                  2 |
                                        4 |
                                              1 |
                                                         1
                   3 |
 13 |
          4 |
                           10 |
                                  5 | 10 |
                                              1 |
          4 |
                   4 |
                           10 | 10 | -1 |
                                                         3
 14 |
                                               0 1
(14 rows)
```

# Many to One

This signature finds the set of disjoint paths from each one of the start\_vid in start\_vids to the end\_vid:

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.
- The result is equivalent to the union of the results of the one to one pgr\_edgeDisjointPaths.
- The extra start\_vid in the result is used to distinguish to which path it belongs.

```
pgr_edgeDisjointPaths(edges_sql, start_vids, end_vid, directed)

RETURNS SET OF (seq, path_id, path_seq, start_vid, node, edge, cost, agg_cost)

OR EMPTY SET
```

| 1         | 1 | 1 | 0 | 3 | 2  | 1 | 0 |  |
|-----------|---|---|---|---|----|---|---|--|
| 2         | 1 | 2 | 0 | 2 | 4  | 1 | 1 |  |
| 3         | 1 | 3 | 0 | 5 | -1 | 0 | 2 |  |
| 4         | 2 | 1 | 1 | 3 | 5  | 1 | 0 |  |
| 5         | 2 | 2 | 1 | 6 | 8  | 1 | 1 |  |
| 6         | 2 | 3 | 1 | 5 | -1 | 0 | 2 |  |
| 7         | 3 | 1 | 2 | 6 | 8  | 1 | 0 |  |
| 8         | 3 | 2 | 2 | 5 | -1 | 0 | 1 |  |
| 9         | 4 | 1 | 3 | 6 | 9  | 1 | 0 |  |
| 10        | 4 | 2 | 3 | 9 | 16 | 1 | 1 |  |
| 11        | 4 | 3 | 3 | 4 | 3  | 1 | 2 |  |
| 12        | 4 | 4 | 3 | 3 | 2  | 1 | 3 |  |
| 13        | 4 | 5 | 3 | 2 | 4  | 1 | 4 |  |
| 14        | 4 | 6 | 3 | 5 | -1 | 0 | 5 |  |
| (14 rows) |   |   |   |   |    |   |   |  |
|           |   |   |   |   |    |   |   |  |

## Many to Many

This signature finds the set of disjoint paths from each one of the start\_vid in start\_vids to each one of the end\_vid

- on a directed graph when directed flag is missing or is set to true.
- on an undirected graph when directed flag is set to false.
- The result is equivalent to the union of the results of the one to one *pgr\_edgeDisjointPaths*.
- The extra start\_vid and end\_vid in the result is used to distinguish to which path it belongs.

```
pgr_edgeDisjointPaths(edges_sql, start_vids, end_vids, directed)
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET
```

```
SELECT * FROM pgr_edgeDisjointPaths(
   'SELECT id, source, target, cost, reverse_cost FROM edge_table',
   ARRAY[3, 6], ARRAY[4, 5, 10]
);
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
____+__
  1 |
        1 | 1 | 0 | 4 | 3 | 5 | 1 |
                           0 |
  2 |
        1 |
                 2 |
                                  4 | 6 | 9 |
                                                   1 |
                                                             1
                 3 |
                           0 |
                                        9 | 16 |
         1 |
                                   4 |
                                                    1 |
                                                             2.
  3 |
                           0 |
  4 |
         1 |
                  4 |
                                   4 |
                                        4 | -1 |
                                                    0 |
                                                             3
  5 |
        2 |
                           1 |
                                   5 |
                                        3 | 2 |
                                                    1 |
                                                             0
                 1 |
                                              4 |
  6 |
         2 |
                  2 |
                           1 |
                                   5 |
                                        2 |
                                                    1 |
                                                             1
                  3 |
  7 |
         2 |
                           1 |
                                         5 |
                                   5 |
                                             -1 |
                                                    0 |
                           5 |

2 | 5 |

2 | 5 |

3 | 10 |

3 | 10 '

3 |
                                         3 |
                  1 |
         3 |
                                              5 |
  8 |
                                                    1 |
                                                             0
                  2 |
          3 |
                                         6 |
                                              8 |
  9 |
                                                    1 |
                                                             1
                  3 |
 10 |
         3 |
                                         5 I
                                              -1 |
                                                    0 |
                  1 |
 11 |
         4 |
                                         3 |
                                              2 |
                                                    1 |
                                                             0
                                              4 |
 12 |
         4 |
                  2 |
                                         2 |
                                                    1 |
                                                             1
                                         5 |
                                             10 |
 13 |
                  3 |
         4 |
                                                    1 |
                           3 |
                                  10 |
 14 |
         4 |
                  4 |
                                        10 |
                                             -1 |
                                                    0 |
         5 I
                 1 |
                                              9 |
 15 |
                           4 |
                                  4 |
                                        6 |
                                                             Ω
                                                    1 |
                                  4 |
         5 |
                  2 |
                           4 |
                                        9 |
                                             16 |
 16 I
                                                    1 1
                                                             1
 17 |
         5 |
                 3 |
                           4 |
                                  4 |
                                        4 |
                                            -1 |
                                                    0 |
 18 |
         6 |
                 1 |
                           5 I
                                  5 |
                                        6 |
                                             8 |
                                                    1 |
 19 |
         6 |
                  2 |
                           5 |
                                  5 |
                                        5 |
                                            -1 |
                                                    0 |
                                                             1
                                              9 |
 20 |
         7 |
                  1 |
                           6 |
                                   5 |
                                         6 |
                                                    1 |
                                                             0
 21 |
         7 |
                  2 |
                           6 |
                                   5 |
                                         9 | 16 |
                                                    1 |
                                                             1
 22 |
          7 |
                  3 |
                            6 |
                                   5 |
                                         4 | 3 |
                                                    1 |
                                                             2.
```

| 22 1      | 7 1 | 4 1 | C 1 | E 1 | 2 1 | 2 1 | 1 1 | 2 |
|-----------|-----|-----|-----|-----|-----|-----|-----|---|
| 23        | 7   | 4   | 6   | 5   | 3   | 2   | 1   | 3 |
| 24        | 7   | 5   | 6   | 5   | 2   | 4   | 1   | 4 |
| 25        | 7   | 6   | 6   | 5   | 5   | -1  | 0   | 5 |
| 26        | 8   | 1   | 7   | 10  | 6   | 8   | 1   | 0 |
| 27        | 8   | 2   | 7   | 10  | 5   | 10  | 1   | 1 |
| 28        | 8   | 3   | 7   | 10  | 10  | -1  | 0   | 2 |
| (28 rows) |     |     |     |     |     |     |     |   |
|           |     |     |     |     |     |     |     |   |

# **Description of the Signatures**

# $Description \ of \ the \ edges\_sql \ query \ for \ dijkstra \ like \ functions$

edges\_sql an SQL query, which should return a set of rows with the following columns:

| Column       | Туре          | Default | Description                                                                                                                        |  |
|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------|--|
| id           | ANY-INTEGER   |         | Identifier of the edge.                                                                                                            |  |
| source       | ANY-INTEGER   |         | Identifier of the first end point vertex of the edge.                                                                              |  |
| target       | ANY-INTEGER   |         | Identifier of the second end point vertex of the edge.                                                                             |  |
| cost         | ANY-NUMERICAL |         | Weight of the edge (source, target)  • When negative: edge (source, target) does not exist, therefore it's not part of the graph.  |  |
| reverse_cost | ANY-NUMERICAL | -1      | Weight of the edge (target, source),  • When negative: edge (target, source) does not exist, therefore it's not part of the graph. |  |

## Where:

**ANY-INTEGER** SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

| Column     | Туре          | Default |
|------------|---------------|---------|
| sql        | TEXT          |         |
| start_vid  | BIGINT        |         |
| start_vids | ARRAY[BIGINT] |         |
| end_vid    | BIGINT        |         |
| end_vids   | ARRAY[BIGINT] |         |
| directed   | BOOLEAN       | true    |

# **Description of the parameters of the signatures**

Description of the return values for a path Returns set of (seq, path\_seq [, start\_vid] [, end\_vid], node, edge, cost, agg\_cost)

| Col-  | Туре  | Description                                                                                  |
|-------|-------|----------------------------------------------------------------------------------------------|
| umn   |       |                                                                                              |
| seq   | INT   | Sequential value starting from 1.                                                            |
| path  | INT   | Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for |
| id    |       | the same start_vid to end_vid combination.                                                   |
| path  | INT   | Relative position in the path. Has value 1 for the beginning of a path.                      |
| seq   |       |                                                                                              |
| start | BIGIN | TIdentifier of the starting vertex. Used when multiple starting vetrices are in the query.   |
| vid   |       |                                                                                              |
| end   | BIGIN | TIdentifier of the ending vertex. Used when multiple ending vertices are in the query.       |
| vid   |       |                                                                                              |
| node  | BIGIN | TIdentifier of the node in the path from start_vid to end_vid.                               |
| edge  | BIGIN | TIdentifier of the edge used to go from node to the next node in the path sequence1 for      |
|       |       | the last node of the path.                                                                   |
| cost  | FLOAT | Cost to traverse from node using edge to the next node in the path sequence.                 |
| agg   | FLOAT | Aggregate cost from start_v to node.                                                         |
| cost  |       |                                                                                              |

# See Also

• Flow - Family of functions

# Indices and tables

- genindex
- search

## **Flow Functions General Information**

# Characteristics

• The graph is **directed**.

- Process is done only on edges with positive capacities.
- When the maximum flow is 0 then there is no flow and **EMPTY SET** is returned.
  - There is no flow when a **source** is the same as a **target**.
- Any duplicated value in the source(s) or target(s) are ignored.
- Calculates the flow/residual capacity for each edge. In the output
  - Edges with zero flow are omitted.
- Creates a **super source** and edges to all the source(s), and a **super target** and the edges from all the targets(s).
- The maximum flow through the graph is guaranteed to be the value returned by *pgr\_maxFlow* when executed with the same parameters and can be calculated:
  - By aggregation of the outgoing flow from the sources
  - By aggregation of the incoming flow to the targets

pgr\_maxFlow is the maximum Flow and that maximum is guaranteed to be the same on the functions pgr\_pushRelabel, pgr\_edmondsKarp, pgr\_boykovKolmogorov, but the actual flow through each edge may vary.

#### **Problem definition**

A flow network is a directed graph where each edge has a capacity and a flow. The flow through an edge must not exceed the capacity of the edge. Additionally, the incoming and outgoing flow of a node must be equal except the for source which only has outgoing flow, and the destination(sink) which only has incoming flow.

Maximum flow algorithms calculate the maximum flow through the graph and the flow of each edge.

The maximum flow through the graph is guaranteed to be the same with all implementations, but the actual flow through each edge may vary. Given the following query:

```
pgr_maxFlow \ (edges_sql, source\_vertex, sink\_vertex) where edges_sql = \{(id_i, source_i, target_i, capacity_i, reverse\_capacity_i)\}
```

# **Graph definition**

The weighted directed graph, G(V, E), is defined as:

- the set of vertices V
  - $source\_vertex \cup sink\_vertex \cup source_i \cup target_i$
- the set of edges E

$$-E = \begin{cases} & \{(source_i, target_i, capacity_i) \text{ when } capacity > 0\} \\ & \{(source_i, target_i, capacity_i) \text{ when } capacity > 0\} \\ & \{(source_i, target_i, capacity_i) \text{ when } capacity > 0\} \\ & \{(target_i, source_i, reverse\_capacity_i) \text{ when } reverse\_capacity_i > 0)\} \\ & \text{if } reverse\_capacity \neq \end{cases}$$

## **Maximum flow problem**

Given:

- *G*(*V*, *E*)
- $source\_vertex \in V$  the source vertex

•  $sink\_vertex \in V$  the sink vertex

Then:

```
\begin{split} pgr\_maxFlow(edges\_sql, source, sink) &= \mathbf{\Phi} \\ \mathbf{\Phi} &= (id_i, edge\_id_i, source_i, target_i, flow_i, residual\_capacity_i) \end{split}
```

#### Where:

 $\Phi$  is a subset of the original edges with their residual capacity and flow. The maximum flow through the graph can be obtained by aggregating on the source or sink and summing the flow from/to it. In particular:

- $id_i = i$
- $edge\_id = id_i$  in edges\_sql
- $residual\_capacity_i = capacity_i flow_i$

#### See Also

• https://en.wikipedia.org/wiki/Maximum\_flow\_problem

# 6.2.3 pgr\_labelGraph - Proposed

#### Name

pgr\_labelGraph — Locates and labels sub-networks within a network which are not topologically connected.

#### Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
  - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might change.
  - Signature might change.
  - Functionality might change.
  - pgTap tests might be missing.
  - Might need c/c++ coding.
  - May lack documentation.
  - Documentation if any might need to be rewritten.
  - Documentation examples might need to be automatically generated.
  - Might need a lot of feedback from the comunity.
  - Might depend on a proposed function of pgRouting
  - Might depend on a deprecated function of pgRouting

#### **Synopsis**

 $\label{thm:column.only} \textbf{Must be run after} \ \texttt{pgr\_createTopology()}. \ \textbf{No use of geometry column. Only id, source and target columns are required.}$ 

The function returns:

- OK when a column with provided name has been generated and populated successfully. All connected edges will have unique similar integer values. In case of rows\_where condition, non participating rows will have -1 integer values.
- FAIL when the processing cannot be finished due to some error. Notice will be thrown accordingly.
- rows\_where condition generated 0 rows when passed SQL condition has not been fulfilled by any row.

```
varchar pgr_labelGraph(text, text, text, text, text)
```

## **Description**

A network behind any routing query may consist of sub-networks completely isolated from each other. Possible reasons could be:

- An island with no bridge connecting to the mainland.
- An edge or mesh of edges failed to connect to other networks because of human negligence during data generation.
- The data is not properly noded.
- Topology creation failed to succeed.

pgr\_labelGraph() will create an integer column (with the name provided by the user) and will assign same integer values to all those edges in the network which are connected topologically. Thus better analysis regarding network structure is possible. In case of rows\_where condition, non participating rows will have -1 integer values.

Prerequisites: Must run pgr\_createTopology() in order to generate source and target columns. Primary key column id should also be there in the network table.

Function accepts the following parameters:

edge\_table text Network table name, with optional schema name.

id text Primary key column name of the network table. Default is id.

**source** text **Source** column name generated after pgr\_createTopology(). Default is source.

target text Target column name generated after pgr\_createTopology(). Default is
 target.

**subgraph** text Column name which will hold the integer labels for each sub-graph. Default is subgraph.

rows\_where text The SQL where condition. Default is true, means the processing will be done on the whole table.

# **Example Usage**

The sample data, has 3 subgraphs.

```
SET client_min_messages TO WARNING;
SET

SELECT pgr_labelGraph('edge_table', 'id', 'source', 'target', 'subgraph');
pgr_labelgraph
------
OK
(1 row)

SELECT DISTINCT subgraph FROM edge_table ORDER BY subgraph;
subgraph
------
1
2
3
(3 rows)
```

#### See Also

• pgr\_createTopology<sup>22</sup> to create the topology of a table based on its geometry and tolerance value.

# 6.2.4 Vehicle Routing Functions Category

#### **Contents**

- Vehicle Routing Functions Category
  - Introduction
    - \* Characteristics
  - Pick & Delivery
  - Parameters
    - \* Pick & deliver
  - Inner Queries
    - \* Pick & Deliver Orders SQL
    - \* Pick & Deliver Vehicles SQL
    - \* Pick & Deliver Matrix SQL
  - Results
    - \* Description of the result (TODO Disussion: Euclidean & Matrix)
    - \* Description of the result (TODO Disussion: Euclidean & Matrix)
  - Handling Parameters
    - \* Capacity and Demand Units Handling
    - \* Locations
    - \* Time Handling
    - \* Factor Handling
  - See Also

## Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
  - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might change.
  - Signature might change.
  - Functionality might change.
  - pgTap tests might be missing.
  - Might need c/c++ coding.
  - May lack documentation.
  - Documentation if any might need to be rewritten.
  - Documentation examples might need to be automatically generated.
  - Might need a lot of feedback from the comunity.
  - Might depend on a proposed function of pgRouting
  - Might depend on a deprecated function of pgRouting

### Pickup and delivery problem

- pgr\_pickDeliver Proposed Pickup & Delivery using a Cost Matrix
- pgr\_pickDeliverEuclidean Proposed Pickup & Delivery with Euclidean distances

## **Experimental functions**

• pgr\_vrpOneDepot - experimental - VRP One Depot

 $<sup>\</sup>overline{^{22}} https://github.com/Zia-/pgrouting/blob/develop/src/common/sql/pgrouting\_topology.sql$ 

## pgr pickDeliver - Proposed

Warning: Documentation is being updated

pgr\_pickDeliver - Pickup and delivery Vehicle Routing Problem

# **Availability**

• New as proposed in 2.5.0

**Warning:** Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
  - The functions make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might not change. (But still can)
  - Signature might not change. (But still can)
  - Functionality might not change. (But still can)
  - pgTap tests have being done. But might need more.
  - Documentation might need refinement.

#### **Synopsis**

Problem: Distribute and optimize the pickup-delivery pairs into a fleet of vehicles.

- Optimization problem is NP-hard.
- pickup and Delivery with time windows.
- All vehicles are equal.
  - Same Starting location.
  - Same Ending location which is the same as Starting location.
  - All vehicles travel at the same speed.
- A customer is for doing a pickup or doing a deliver.
  - has an open time.
  - has a closing time.
  - has a service time.
  - has an (x, y) location.
- There is a customer where to deliver a pickup.
  - travel time between customers is distance / speed
  - pickup and delivery pair is done with the same vehicle.
  - A pickup is done before the delivery.

#### Characteristics

- All trucks depart at time 0.
- No multiple time windows for a location.
- Less vehicle used is considered better.

- Less total duration is better.
- Less wait time is better.
- the algorithm will raise an exception when
  - If there is a pickup-deliver pair than violates time window
  - The speed, max\_cycles, ma\_capacity have illegal values
- Six different initial will be optimized the best solution found will be result

#### **Signature**

```
pgr_pickDeliver(orders_sql, vehicles_sql, matrix_sql [, factor, max_cycles, initial_sol])
RETURNS SET OF (seq, vehicle_number, vehicle_id, stop, order_id, stop_type, cargo,
travel_time, arrival_time, wait_time, service_time, departure_time)
```

#### **Parameters** The parameters are:

```
orders_sql, vehicles_sql, matrix_sql [, factor, max_cycles, initial_sol]
```

| Column       | Type    | Default | Description                                                                                                                                                                                                                                                                |
|--------------|---------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| orders_sql   | TEXT    |         | Pick & Deliver Orders SQL query contianing the orders to be processed.                                                                                                                                                                                                     |
| vehicles_sql | TEXT    |         | Pick & Deliver Vehicles SQL query containing the vehicles to be used.                                                                                                                                                                                                      |
| matrix_sql   | TEXT    |         | Pick & Deliver Matrix SQL query containing the distance or travel times.                                                                                                                                                                                                   |
| factor       | NUMERIC | 1       | Travel time multiplier. See Factor Handling                                                                                                                                                                                                                                |
| max_cycles   | INTEGER | 10      | Maximum number of cycles to perform on the optimization.                                                                                                                                                                                                                   |
| initial_sol  | INTEGER | 4       | Initial solution to be used.  • 1 One order per truck  • 2 Push front order.  • 3 Push back order.  • 4 Optimize insert.  • 5 Push back order that allows more orders to be inserted at the back  • 6 Push front order that allows more orders to be inserted at the front |

## **Pick & Deliver Orders SQL** A *SELECT* statement that returns the following columns:

```
id, demand
p_node_id, p_open, p_close, [p_service, ]
d_node_id, d_open, d_close, [d_service, ]
```

#### where:

| Col-       | Туре                              | De-   | Description                           |
|------------|-----------------------------------|-------|---------------------------------------|
| umn        |                                   | fault |                                       |
| id         | ANY-INTEGER (SMALLINT, INTEGER,   |       | Identifier of the pick-delivery order |
|            | BIGINT)                           |       | pair.                                 |
| de-        | ANY-NUMERICAL (SMALLINT, INTEGER, |       | Number of units in the order          |
| mand       | BIGINT, REAL, FLOAT)              |       |                                       |
| <b>p</b> - | ANY-NUMERICAL                     |       | The time, relative to 0, when the     |
| open       |                                   |       | pickup location opens.                |
| <b>p</b>   | ANY-NUMERICAL                     |       | The time, relative to 0, when the     |
| close      |                                   |       | pickup location closes.               |
| d_ser-     | ANY-NUMERICAL                     | 0     | The duration of the loading at the    |
| vice       |                                   |       | pickup location.                      |
| d          | ANY-NUMERICAL                     |       | The time, relative to 0, when the     |
| open       |                                   |       | delivery location opens.              |
| d          | ANY-NUMERICAL                     |       | The time, relative to 0, when the     |
| close      |                                   |       | delivery location closes.             |
| d_ser-     | ANY-NUMERICAL                     | 0     | The duration of the loading at the    |
| vice       |                                   |       | delivery location.                    |

For the non euclidean implementation, the starting and ending identifiers are needed:

| Column | Туре    | Description                                                                     |
|--------|---------|---------------------------------------------------------------------------------|
| p_node | ANY-    | The node identifier of the pickup, must match a node identifier in the matrix   |
| id     | INTEGER | table.                                                                          |
| d_node | ANY-    | The node identifier of the delivery, must match a node identifier in the matrix |
| id     | INTEGER | table.                                                                          |

# Pick & Deliver Vehicles SQL A SELECT statement that returns the following columns:

```
id, capacity
start_node_id, start_open, start_close [, start_service, ]
[ end_node_id, end_open, end_close, end_service ]
```

# where:

| Column      | Туре        | Default     | Description                                           |
|-------------|-------------|-------------|-------------------------------------------------------|
| id          | ANY-INTEGER |             | Identifier of the pick-delivery order pair.           |
| capacity    | ANY-        |             | Number of units in the order                          |
|             | NUMERICAL   |             |                                                       |
| speed       | ANY-        | 1           | Average speed of the vehicle.                         |
|             | NUMERICAL   |             |                                                       |
| start_open  | ANY-        |             | The time, relative to 0, when the starting location   |
|             | NUMERICAL   |             | opens.                                                |
| start_close | ANY-        |             | The time, relative to 0, when the starting location   |
|             | NUMERICAL   |             | closes.                                               |
| start       | ANY-        | 0           | The duration of the loading at the starting location. |
| service     | NUMERICAL   |             |                                                       |
| end_open    | ANY-        | start_open  | The time, relative to 0, when the ending location     |
|             | NUMERICAL   |             | opens.                                                |
| end_close   | ANY-        | start_close | The time, relative to 0, when the ending location     |
|             | NUMERICAL   |             | closes.                                               |
| end_service | ANY-        | start       | The duration of the loading at the ending location.   |
|             | NUMERICAL   | service     |                                                       |

For the non euclidean implementation, the starting and ending identifiers are needed:

| Column  | Туре    | Default | Description                                                     |
|---------|---------|---------|-----------------------------------------------------------------|
| start   | ANY-    |         | The node identifier of the starting location, must match a node |
| node_id | INTEGER |         | identifier in the matrix table.                                 |
| end     | ANY-    | start   | The node identifier of the ending location, must match a node   |
| node_id | INTEGER | node_id | identifier in the matrix table.                                 |

# **Pick & Deliver Matrix SQL** A *SELECT* statement that returns the following columns:

```
Warning: TODO
```

#### Where:

**ANY-INTEGER** SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

## **Example**

This example use the following data: TODO put link

```
SELECT * FROM pgr_pickDeliver(
       $$ SELECT * FROM orders ORDER BY id $$,
       $$ SELECT * FROM vehicles $$,
       $$ SELECT * from pgr_dijkstraCostMatrix(
               ' SELECT * FROM edge_table ', ARRAY[3, 4, 5, 8, 9, 11])
);
 seq | vehicle_seq | vehicle_id | stop_seq | stop_type | stop_id | order_id | cargo
                                                                                                                                                            travel_time

      1 |
      1 |
      1 |
      6 |

      1 |
      1 |
      2 |
      2 |
      5 |

      1 |
      1 |
      3 |
      3 |
      11 |

      1 |
      1 |
      4 |
      2 |
      9 |

      1 |
      1 |
      5 |
      3 |
      4 |

      1 |
      1 |
      6 |
      6 |
      6 |

      2 |
      1 |
      1 |
      1 |
      6 |

      2 |
      1 |
      2 |
      2 |
      3 |

      2 |
      1 |
      2 |
      2 |
      3 |

      2 |
      1 |
      3 |
      3 |
      8 |

      2 |
      1 |
      4 |
      6 |
      6 |

      -2 |
      0 |
      0 |
      -1 |
      -1 |

     1 |
                                                                                                                                    -1 |
                                                                                                                                                     0
                                                                                                                                                                                 0
                                                                                                                                   3 |
                                                                                                                                                     30
     2 |
                                                                                                                                                                                 1
                                                                                                                                      3 |
     3 |
                                                                                                                                                     0
                                                                                                                                                                                 2
     4 |
                                                                                                                                                                                 2
                                                                                                                                       2 |
                                                                                                                                                    20
                                                                                                                                                   0
     5 |
                                                                                                                                       2 |
                                                                                                                                                                                 1
                                                                                                                                      -1 |
                                                                                                                                                      0
     6 |
                                                                                                                                                                                 4
                                                                                                                                      -1 |
     7 |
                                                                                                                                                      0
                                                                                                                                                                                 0
     8 |
                                                                                                                                       1 |
                                                                                                                                                     10
                                                                                                                                                                                 5
     9 |
                                                                                                                                        1 |
                                                                                                                                                      0
                                                                                                                                                                                 3
                                                                                                                                                    0
   10 |
                                                                                                                                      -1 |
                                                                                                                                                                                 0
                                                                                                                                     -1 |
   11 |
                                                                                                                                                      -1
                                                                                                                                                                                18
(11 rows)
```

# See Also

- Vehicle Routing Functions Category
- The queries use the Sample Data network.

#### Indices and tables

- genindex
- · search

## pgr pickDeliverEuclidean - Proposed

Warning: Documentation is being updated

pgr\_pickDeliverEuclidean - Pickup and delivery Vehicle Routing Problem

## **Availability**

• New as proposed in 2.5.0

**Warning:** Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
  - The functions make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might not change. (But still can)
  - Signature might not change. (But still can)
  - Functionality might not change. (But still can)
  - pgTap tests have being done. But might need more.
  - Documentation might need refinement.

#### **Synopsis**

Problem: Distribute and optimize the pickup-delivery pairs into a fleet of vehicles.

- Optimization problem is NP-hard.
- Pickup and Delivery:
  - capacitated
  - with time windows.
- The vehicles
  - have (x, y) start and ending locations.
  - have a start and ending service times.
  - have opening and closing times for the start and ending locations.
- An order is for doing a pickup and a a deliver.
  - has (x, y) pickup and delivery locations.
  - has opening and closing times for the pickup and delivery locations.
  - has a pickup and deliver service times.
- There is a customer where to deliver a pickup.
  - travel time between customers is distance / speed
  - pickup and delivery pair is done with the same vehicle.
  - A pickup is done before the delivery.

#### **Characteristics**

- No multiple time windows for a location.
- Less vehicle used is considered better.

- Less total duration is better.
- Less wait time is better.
- Six different optional different initial solutions
  - the best solution found will be result

# **Signature**

# **Parameters** The parameters are:

```
orders_sql, vehicles_sql [,factor, max_cycles, initial_sol]
```

#### Where:

| Column       | Туре    | Default | Description                                                                                                                                                                                                                                                                           |
|--------------|---------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| orders_sql   | TEXT    |         | Pick & Deliver Orders SQL query containing the orders to be processed.                                                                                                                                                                                                                |
| vehicles_sql | TEXT    |         | Pick & Deliver Vehicles SQL query containing the vehicles to be used.                                                                                                                                                                                                                 |
| factor       | NUMERIC | 1       | (Optional) Travel time<br>multiplier. See Factor<br>Handling                                                                                                                                                                                                                          |
| max_cycles   | INTEGER | 10      | (Optional) Maximum number of cycles to perform on the optimization.                                                                                                                                                                                                                   |
| initial_sol  | INTEGER | 4       | (Optional) Initial solution to be used.  • 1 One order per truck  • 2 Push front order.  • 3 Push back order.  • 4 Optimize insert.  • 5 Push back order that allows more orders to be inserted at the back  • 6 Push front order that allows more orders to be inserted at the front |

## **Pick & Deliver Orders SQL** A *SELECT* statement that returns the following columns:

```
id, demand
p_x, p_y, p_open, p_close, [p_service, ]
d_x, d_y, d_open, d_close, [d_service, ]
```

Where:

| Column    | Туре          | Default | Description                                                 |
|-----------|---------------|---------|-------------------------------------------------------------|
| id        | ANY-INTEGER   |         | Identifier of the pick-delivery order pair.                 |
| demand    | ANY-NUMERICAL |         | Number of units in the order                                |
| p_open    | ANY-NUMERICAL |         | The time, relative to 0, when the pickup location opens.    |
| p_close   | ANY-NUMERICAL |         | The time, relative to 0, when the pickup location closes.   |
| d_service | ANY-NUMERICAL | 0       | The duration of the loading at the pickup location.         |
| d_open    | ANY-NUMERICAL |         | The time, relative to 0, when the delivery location opens.  |
| d_close   | ANY-NUMERICAL |         | The time, relative to 0, when the delivery location closes. |
| d_service | ANY-NUMERICAL | 0       | The duration of the loading at the delivery location.       |

For the euclidean implementation, pick up and delivery (x,y) locations are needed:

| Column     | Туре          | Description                      |
|------------|---------------|----------------------------------|
| p_x        | ANY-NUMERICAL | x value of the pick up location  |
| <b>p_y</b> | ANY-NUMERICAL | y value of the pick up location  |
| d_x        | ANY-NUMERICAL | x value of the delivery location |
| d_y        | ANY-NUMERICAL | y value of the delivery location |

## **Pick & Deliver Vehicles SQL** A *SELECT* statement that returns the following columns:

```
id, capacity
start_x, start_y, start_open, start_close [, start_service, ]
[ end_x, end_y, end_open, end_close, end_service ]
```

#### where:

| Column      | Туре        | Default     | Description                                           |
|-------------|-------------|-------------|-------------------------------------------------------|
| id          | ANY-INTEGER |             | Identifier of the pick-delivery order pair.           |
| capacity    | ANY-        |             | Number of units in the order                          |
|             | NUMERICAL   |             |                                                       |
| speed       | ANY-        | 1           | Average speed of the vehicle.                         |
|             | NUMERICAL   |             |                                                       |
| start_open  | ANY-        |             | The time, relative to 0, when the starting location   |
|             | NUMERICAL   |             | opens.                                                |
| start_close | ANY-        |             | The time, relative to 0, when the starting location   |
|             | NUMERICAL   |             | closes.                                               |
| start       | ANY-        | 0           | The duration of the loading at the starting location. |
| service     | NUMERICAL   |             |                                                       |
| end_open    | ANY-        | start_open  | The time, relative to 0, when the ending location     |
|             | NUMERICAL   |             | opens.                                                |
| end_close   | ANY-        | start_close | The time, relative to 0, when the ending location     |
|             | NUMERICAL   |             | closes.                                               |
| end_service | ANY-        | start       | The duration of the loading at the ending location.   |
|             | NUMERICAL   | service     |                                                       |

For the euclidean implementation, starting and ending (x, y) locations are needed:

| Column  | Type          | Default | Description                                         |
|---------|---------------|---------|-----------------------------------------------------|
| start_x | ANY-NUMERICAL |         | x value of the coordinate of the starting location. |
| start_y | ANY-NUMERICAL |         | y value of the coordinate of the starting location. |
| end_x   | ANY-NUMERICAL | start_x | x value of the coordinate of the ending location.   |
| end_y   | ANY-NUMERICAL | start_y | y value of the coordinate of the ending location.   |

# Description of the result (TODO Disussion: Euclidean & Matrix)

```
RETURNS SET OF

(seq, vehicle_seq, vehicle_id, stop_seq, stop_type,

travel_time, arrival_time, wait_time, service_time, departure_time)

UNION
(summary row)
```

| Column         | Туре    | Description                                                                                                                          |
|----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------|
| seq            | INTEGER | Sequential value starting from 1.                                                                                                    |
| vehicle_seq    | INTEGER | Sequential value starting from 1 for current vehicles. The $n_{th}$ vehicle in the solution.                                         |
| vehicle_id     | BIGINT  | Current vehicle identifier.                                                                                                          |
| stop_seq       | INTEGER | Sequential value starting from $1$ for the stops made by the current vehicle. The $m_{th}$ stop of the current vehicle.              |
| stop_type      | INTEGER | Kind of stop location the vehicle is at:  • 1: Starting location  • 2: Pickup location  • 3: Delivery location  • 6: Ending location |
| order_id       | BIGINT  | Pickup-Delivery order pair identifier.  • -1: When no order is involved on the current stop location.                                |
| cargo          | FLOAT   | Cargo units of the vehicle when leaving the stop.                                                                                    |
| travel_time    | FLOAT   | Travel time from previous stop seq to current stop_seq. • 0 When stop_type = 1                                                       |
| arrival_time   | FLOAT   | Previous departure_time plus current travel_time.                                                                                    |
| wait_time      | FLOAT   | Time spent waiting for current <i>location</i> to open.                                                                              |
| service_time   | FLOAT   | Service time at current <i>location</i> .                                                                                            |
| departure_time | FLOAT   | <pre>arrival_time + wait_time + service_time. • When stop_type = 6 has the total_time used for the current vehicle.</pre>            |

# **Summary Row**

Warning: TODO: Review the summary

| Column       | Type   | Description                                                                                         |
|--------------|--------|-----------------------------------------------------------------------------------------------------|
| seq          | INTE-  | Continues the Sequential value                                                                      |
|              | GER    |                                                                                                     |
| vehicle_seq  | INTE-  | -2 to indicate is a summary row                                                                     |
|              | GER    |                                                                                                     |
| vehicle_id   | BIGINT | Total Capacity Violations in the solution.                                                          |
| stop_seq     | INTE-  | Total Time Window Violations in the solution.                                                       |
|              | GER    |                                                                                                     |
| stop_type    | INTE-  | -1                                                                                                  |
|              | GER    |                                                                                                     |
| order_id     | BIGINT | -1                                                                                                  |
| cargo        | FLOAT  | -1                                                                                                  |
| travel_time  | FLOAT  | total_travel_time The sum of all the travel_time                                                    |
| arrival_time | FLOAT  | -1                                                                                                  |
| wait_time    | FLOAT  | total_waiting_time The sum of all the wait_time                                                     |
| service_time | FLOAT  | total_service_time The sum of all the service_time                                                  |
| departure    | FLOAT  | total_solution_time =                                                                               |
| time         |        | $\begin{tabular}{ll} total\_travel\_time + total\_wait\_time + total\_service\_time. \end{tabular}$ |

Where:

**ANY-INTEGER** SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

#### **Example**

This example use the following data: TODO put link

```
SELECT * FROM pgr_pickDeliverEuclidean(
  'SELECT * FROM orders ORDER BY id',
  'SELECT * from vehicles'
);
seq | vehicle_seq | vehicle_id | stop_seq | stop_type | order_id | cargo | travel_time
      1 |
  2 |
 3 |
  4 |
 5 |
 6 |
 7 |
 8 |
 9 |
 10 |
 11 |
(11 rows)
```

#### See Also

- Vehicle Routing Functions Category
- The queries use the Sample Data network.

#### Indices and tables

- genindex
- · search

# pgr\_vrpOneDepot - experimental

Warning: Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
  - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
  - Name might change.
  - Signature might change.
  - Functionality might change.
  - pgTap tests might be missing.
  - Might need c/c++ coding.
  - May lack documentation.
  - Documentation if any might need to be rewritten.
  - Documentation examples might need to be automatically generated.
  - Might need a lot of feedback from the comunity.
  - Might depend on a proposed function of pgRouting
  - Might depend on a deprecated function of pgRouting

## No documentation available

#### **Example:**

#### **Under discussion**

#### **Current Result**

```
BEGIN;
BEGIN
SET client_min_messages TO NOTICE;
SELECT * FROM pgr_vrpOneDepot(
   'SELECT * FROM vrp_orders',
   'SELECT * FROM vrp_vehicles',
   'SELECT * FROM vrp_distance',
oid | opos | vid | tarrival | tdepart
----+----+----+----
 -1 | 1 | 5 | 0 | 0
66 | 2 | 5 | 0 | 0
 25 | 3 | 5 |
                     0 |
 21 | 4 | 5 |
                     0 |
 84 | 5 | 5 |
                     0 |
 50 | 6 | 5 |
                     0 |
                              0
 49 | 7 | 5 |
                     0 |
                              0
 24 | 8 | 5 |
                     0 |
                              0
 22 |
       9 | 5 |
                     0 |
                               0
                     0 |
 20 | 10 | 5 |
                              0
                  0 |
11 |
30 '
 19 |
       11 | 5 |
                               0
       12 |
 66 |
             5 |
                              21
                    30 |
       13 |
             5 |
 84 |
 24 |
       14 |
             5 I
                     71 |
                              81
           5 |
                    83 |
 22 |
       15 |
                              93
           5 |
5 |
                     98 |
 20 |
       16 |
                             108
                   114 |
 19 |
       17 |
                             124
            5 |
 50 |
       18 |
                     131 |
                             141
 21 |
            5 |
       19 |
                     144 |
                             154
 25 |
             5 I
       20 I
                     158 I
                             168
 49 I
       21 |
             5 I
                     179 |
                             189
```

| -1  | 22  | 5  | 234 | 234 |  |
|-----|-----|----|-----|-----|--|
| -1  |     |    | 1 0 |     |  |
|     |     | 6  |     |     |  |
| 31  | 2   | 6  | 0   |     |  |
| 32  | 3   | 6  | 0   | 0   |  |
| 81  | 4   | 6  | 0   | 0   |  |
| 94  | 5   | 6  | . 0 |     |  |
|     |     |    |     |     |  |
| 93  | 6   | 6  | 0   |     |  |
| 35  | 7   | 6  | 0   | 0   |  |
| 33  | 8   | 6  | 0   | 0   |  |
| 28  | 9   | 6  | 0   | 0   |  |
|     |     |    |     |     |  |
| 27  |     | 6  | 0   |     |  |
| 93  |     | 6  | 15  |     |  |
| 32  | 12  | 6  | 61  | 71  |  |
| 28  | 13  | 6  | 78  |     |  |
| 31  | 14  |    | 97  |     |  |
|     |     |    |     |     |  |
| 35  | - 1 |    | 112 |     |  |
| 27  | 16  | 6  | 134 | 144 |  |
| 33  | 17  | 6  | 152 | 162 |  |
| 94  |     |    | 196 |     |  |
|     |     | 6  |     |     |  |
| 81  |     | 6  | 221 |     |  |
| -1  |     | -  | 238 |     |  |
| -1  |     | 3  | 0   |     |  |
| 16  |     |    | 0   |     |  |
|     |     |    |     |     |  |
| 14  |     | -  |     |     |  |
| 48  | 4   | 3  | 0   |     |  |
| 18  | 5   | 3  | 0   | 0   |  |
| 17  | 6   | 3  | 0   | 0   |  |
| 15  | 7   | 3  | 0   | 0   |  |
| 13  | 8   | 3  | 0   |     |  |
|     |     |    |     |     |  |
| 11  |     | 3  | 0   |     |  |
| 10  |     | 3  | 0   |     |  |
| 15  | 11  | 3  | 35  | 45  |  |
| 48  |     |    | 48  |     |  |
| 13  |     |    | 64  |     |  |
|     |     |    |     |     |  |
| 16  |     |    | 82  |     |  |
| 17  |     | 3  | 94  |     |  |
| 10  | 16  | 3  | 115 | 125 |  |
| 11  |     | 3  | 130 | 140 |  |
| 14  | 18  |    | 147 |     |  |
|     |     |    |     |     |  |
| 18  | - ' |    | 169 |     |  |
| -1  |     | 3  |     |     |  |
| -1  | 1   | 8  | 0   | 0   |  |
| 71  | 2   | 8  | 0   |     |  |
| 55  | 3   | 8  | 1 0 |     |  |
|     |     |    |     |     |  |
| 44  | 4   | 8  | 0   |     |  |
| 43  | 5   | 8  | 0   | 0   |  |
| 42  | 6   | 8  | 0   | 0   |  |
| 41  | 7   | 8  | 0   | 0   |  |
| 40  | 8   | 8  | 1 0 |     |  |
|     |     |    |     |     |  |
| 39  |     | 8  | 0   |     |  |
| 43  |     | 8  | 34  |     |  |
| 40  | 11  | 8  | 49  | 59  |  |
| 39  |     | 8  | 61  |     |  |
| 41  |     | 8  | 90  |     |  |
|     |     |    |     |     |  |
| 42  |     | 8  | 111 |     |  |
| 44  |     | 8  | 131 |     |  |
| 55  | 16  | 8  | 166 | 176 |  |
| 71  |     | 8  |     |     |  |
| -1  |     |    | 228 |     |  |
|     |     |    |     |     |  |
| -1  |     |    | 0   |     |  |
| 4   | 2   | 1  | 0   | 0   |  |
| 101 | 3   | 1  | 0   | 0   |  |
| 46  | 4   | 1  |     |     |  |
| 10  | 1 1 | т. | 1 0 | ·   |  |

| 5   | 5     | 1  | 0   | 0   |  |
|-----|-------|----|-----|-----|--|
| 3   | 6     |    | 1 0 |     |  |
|     |       |    |     |     |  |
| 46  | 7     |    | 38  |     |  |
| 3   | 8     | _  | 55  | •   |  |
| 2   | 9     | 1  | 96  | 96  |  |
| 4   | 10    | 1  | 135 |     |  |
| 2   | 11    |    | 148 |     |  |
|     |       |    |     |     |  |
| 5   | 12    |    | 165 |     |  |
| 101 | 13    | 1  | 192 |     |  |
| -1  | 14    | 1  | 222 | 222 |  |
| -1  | 1     |    |     |     |  |
| 92  |       |    |     |     |  |
|     | 2     |    |     |     |  |
| 52  | 3     |    |     |     |  |
| 57  | 4     | 13 | 0   | 0   |  |
| 85  | 5     | 13 | 0   | 0   |  |
| 68  | 6     |    | . 0 |     |  |
| 63  |       |    |     |     |  |
|     | 7     |    | 0   |     |  |
| 63  | 8     |    | 29  |     |  |
| 68  | 9     | 13 | 69  | 80  |  |
| 52  | 10    |    |     |     |  |
| 85  | 11    |    | 123 |     |  |
|     | 1 O . | 10 |     |     |  |
| 57  | 12    |    |     |     |  |
| 92  | 13    |    | 159 | 177 |  |
| -1  | 14    | 13 | 189 | 189 |  |
| -1  | 1     |    |     |     |  |
| 30  | 2     |    | 0   |     |  |
|     |       |    |     |     |  |
| 29  | 3     |    | 0   |     |  |
| 38  | 4     |    | 0   | 0   |  |
| 36  | 5     | 7  | 0   | 0   |  |
| 34  | 6     | 7  | 0   | 0   |  |
| 34  | 7     |    | 51  |     |  |
|     |       |    |     |     |  |
| 29  | 8     |    | 70  | •   |  |
| 30  | 9     |    | 85  |     |  |
| 38  | 10    | 7  | 149 | 159 |  |
| 36  | 11    | 7  | 162 | 172 |  |
| -1  | 12    |    | 217 |     |  |
| -1  |       |    |     |     |  |
|     | 1     |    | 0   |     |  |
| 89  | 2     |    | 0   |     |  |
| 47  | 3     | 2  | 0   | 0   |  |
| 61  | 4     | 2  | 0   | 0   |  |
| 9   | 5     |    |     |     |  |
|     |       |    |     |     |  |
| 8   | 6     |    |     |     |  |
| 89  | 7     |    |     |     |  |
| 8   | 8     |    | 96  | 106 |  |
| 9   | 9     | 2  | 111 | 121 |  |
| 47  | 10    |    |     |     |  |
| 61  | 11    |    |     |     |  |
|     |       |    |     |     |  |
| -1  | 12    |    |     |     |  |
| -1  | 1     |    | 0   | 0   |  |
| 97  | 2     | 14 | 0   | 0   |  |
| 64  | 3     |    |     |     |  |
| 51  | 4     |    |     |     |  |
|     |       |    |     |     |  |
| 96  | 5     |    |     |     |  |
| 77  | 6     |    | 0   | 0   |  |
| 96  | 7     | 14 | 21  | 44  |  |
| 64  | 8     |    |     |     |  |
| 77  |       |    |     |     |  |
|     | 9     |    |     |     |  |
| 51  | 10    |    |     |     |  |
| 97  | 11    | 14 | 154 | 164 |  |
| -1  | 12    |    |     |     |  |
| -1  | 1     |    |     |     |  |
|     |       |    |     |     |  |
| 67  | 2     |    |     |     |  |
| 73  | 3     | 15 | 0   | 0   |  |
|     |       |    |     |     |  |

| 95  |     |    |     | 0   |
|-----|-----|----|-----|-----|
| 82  |     |    | 0   | 0   |
| 72  |     |    | 0   | 0   |
| 73  |     |    | 27  | 40  |
| 72  |     |    | 50  | 75  |
| 82  |     |    | 91  | 101 |
| 95  | 10  | 15 | 114 | 124 |
| 67  |     |    | 144 | 154 |
| -1  |     |    | 167 | 167 |
| -1  |     |    |     | 0   |
| 78  |     |    | 0   | 0   |
| 26  |     |    |     | 0   |
| 87  |     |    | 0 1 | 0   |
| 23  |     |    | 0 1 | 0   |
|     |     |    |     |     |
| 87  |     |    | 32  | 97  |
| 23  |     |    |     | 128 |
| 78  |     |    |     | 160 |
| 26  |     |    |     | 182 |
| -1  |     |    |     | 227 |
| -1  |     |    | 0   | 0   |
| 60  |     | 4  | 0   | 0   |
| 59  |     | 4  | 0   | 0   |
| 100 |     |    | 0   | 0   |
| 54  |     |    | . 0 | 0   |
| 60  |     |    | 42  | 52  |
| 100 |     |    | 74  | 87  |
| 54  |     |    | 103 | 113 |
| 59  |     |    | 153 | 163 |
| -1  |     |    | 211 | 211 |
|     |     |    |     |     |
| -1  |     |    | 0   | 0   |
| 86  |     |    | 0   | 0   |
| 90  |     |    | 0   | 0   |
| 65  | 4   | 10 | 0   | 0   |
| 53  | 1 5 | 10 | 0   | 0   |
| 53  | 1 6 | 10 | 25  | 62  |
| 65  |     |    | 82  | 92  |
| 86  |     |    | 111 | 121 |
| 90  |     |    | 140 | 154 |
| -1  |     |    | 206 | 206 |
| -1  |     |    | 0   | 0   |
|     |     |    |     |     |
| 6   |     |    |     | 0   |
| 80  |     |    |     | 0   |
| 7   |     |    |     | 0   |
| 56  |     |    |     | 0   |
| 6   |     |    |     | 51  |
| 80  |     |    |     | 99  |
| 7   | 8   |    |     | 123 |
| 56  |     |    |     | 152 |
| -1  |     |    |     |     |
| -1  |     |    |     |     |
| 88  |     |    |     | 0   |
| 70  |     |    |     | 0   |
|     |     |    |     |     |
| 58  |     |    |     | 0   |
| 99  |     |    | 0   | 0   |
| 70  |     |    | 9   | 51  |
| 99  |     |    | 56  | 66  |
| 88  | 8   | 19 |     | 107 |
| 58  |     |    |     | 135 |
| -1  |     |    |     | 162 |
| -1  |     |    |     | 0   |
| 75  |     |    |     | 0   |
| 98  |     |    |     | 0   |
|     |     |    |     |     |
| 76  | 4   | 17 | 0   | 0   |

```
57 |
97 |
146 |
        5 | 17 |
       6 | 17 |
                           130
 98 |
                           156
 75 I
       7 | 17 |
       8 | 17 |
                           192
 -1 I
                  192 |
                   0 |
                           0
 -1 |
       1 | 16 |
       2 | 16 |
 69 |
                    0 |
       3 | 16 |
 79 |
                    0 |
       4 | 16 |
                    0 |
 74 I
 74 |
       5 | 16 |
                   39 |
                            87
 79 |
       6 | 16 |
                   94 |
                           104
                 136 |
164 |
       7 | 16 |
                           154
 69 |
 -1 | 8 | 16 |
                           164
       1 | 9 |
 -1 |
                   0 |
                           0
 62 |
       2 | 9 |
                     0 |
                            0
 37 |
       3 | 9 |
                     0 |
                            0
 45 |
       4 | 9 |
                     0 |
                             0
       5 | 9 | 6 | 9 |
 37 |
                    43 |
                            53
                   63 |
94 |
 45 |
                             74
       6 .
7 | 9 .
. 9 |
            9 |
 62 |
                 94 |
120 |
 -1 |
                            120
       1 | 18 |
                   0 |
 -1 |
                            0
        2 | 18 |
                             0
                     0 |
 91 I
       3 | 18 |
                            0
 12 |
                    0 |
 12 |
       4 | 18 |
                   34 |
                            69
                   99 |
 91 I
      5 | 18 |
                           109
      6 | 18 |
                  113 | 0 |
 -1 |
                           113
 -1 |
      1 | 20 |
                            0
                     0 |
 83 | 2 | 20 |
                            0
 83 | 3 | 20 |
                   15 |
                            52
 -1 | 4 | 20 |
                   67 |
                            67
                   -1 | 3712
 -1 | 0 | 0 |
(241 rows)
ROLLBACK:
ROLLBACK
```

## **Current Result**

```
BEGIN:
BEGIN
SET client_min_messages TO NOTICE;
SET
SELECT * FROM _pgr_vrpOneDepot(
       'SELECT * FROM vrp_orders',
        'SELECT * FROM vrp_vehicles',
        'SELECT src_id AS start_vid, dest_id AS end_vid, traveltime AS agg_cost FROM vrp_distance',
 seq | vehicle_seq | vehicle_id | stop_seq | stop_type | stop_id | order_id | cargo
                                                                                                                                                                         travel_time
____+__+____

      5 |
      1 |
      1 |
      1 |
      -1 |
      0

      5 |
      2 |
      2 |
      1 |
      66 |
      16

      5 |
      3 |
      2 |
      1 |
      25 |
      26

      5 |
      4 |
      2 |
      1 |
      21 |
      36

      5 |
      5 |
      2 |
      1 |
      84 |
      50

      5 |
      6 |
      2 |
      1 |
      49 |
      70

      5 |
      8 |
      2 |
      1 |
      24 |
      100

      5 |
      9 |
      2 |
      1 |
      22 |
      110

      5 |
      10 |
      2 |
      1 |
      20 |
      150

      5 |
      11 |
      2 |
      1 |
      19 |
      170

      5 |
      12 |
      3 |
      66 |
      66 |
      154

                              1 I
                                                                                                                                                                                            0
     1 1
                              1 |
     2 |
                                                                                                                                                                                             0
     3 I
                               1 |
                                                                                                                                                                                              0
     4 |
                               1 |
                                                                                                                                                                                              0
     5 |
                               1 |
     6 |
                               1 |
                               1 |
    7 |
                                                                                                                                                                                              0
    8 |
                              1 |
                                                                                                                                                                                              0
                                                                                                                                                                                             0
    9 |
                               1 |
   10 |
                               1 |
                                                                                                                                              20 | 150
                                                                                                                                                                                           0
   11 |
                               1 |
                                                                                                                                                                                              0
```

5 | 12 |

3 | 66 | 66 | 154

11.18034

12 I

1 |

|    |     |     |       |     |      |      |       | _         |
|----|-----|-----|-------|-----|------|------|-------|-----------|
| 13 | 1   | 1 5 | 13    | 3   | 84   | 84   | 140   | 9.219544  |
| 14 | 1   | 5   | 14    | ] 3 | 24   | 24   | 110   | 26.019224 |
| 15 | 1   | 5   | 15    | . 3 | 22   | 22   | 100   | 2         |
| 16 | 1   | 5   | 16    | ] 3 | 20   | 20   | 60    | 5.385165  |
| 17 | 1   | 5   | 17    | ] 3 | 1 19 | 1 19 | 40    | 5.385165  |
|    |     | 5   |       |     |      |      |       | 7.28011   |
| 18 | 1   | •   | 18    | 3   | 50   | 50   | 30    |           |
| 19 | 1   | 5   | 19    | ] 3 | 21   | 21   | 20    | 3         |
| 20 | 1   | 1 5 | 20    | ] 3 | 25   | 1 25 | 10    | 4         |
| 21 | 1   | 5   | 21    | ] 3 | 49   | 1 49 | 0     | 10.77033  |
| 22 | 1   | 5   | 22    | 1 6 | 1    | -1   | 0     | 45.044423 |
| 23 | 2   | 1 6 | 1     | 1   | 1    | -1   | 1 0   | 0         |
| 24 | 2   | 1 6 |       | 1 2 | 1    | 31   | 10    | 0         |
| 25 | 2   | 1 6 | ] 3   | 1 2 | 1 1  | 32   | 30    | 0         |
|    |     | •   |       |     |      |      |       |           |
| 26 | 2   | 6   | 4     | 2   | 1    | 81   | 43    | 0         |
| 27 | 2   | 1 6 | 1 5   | 2   | 1    | 94   | 46    | 0         |
| 28 | 2   | 6   | 1 6   | 2   | 1    | 93   | 60    | 0         |
| 29 | 2   | 1 6 | 1 7   | 2   | 1    | 35   | 90    | 0         |
| 30 | 2   | 6   | 8     | 2   | 1    | 33   | 100   | 0         |
| 31 | 2   | 1 6 | 9     | ] 2 | 1    | ] 28 | 120   | 0         |
| 32 | 2   | 1 6 | 10    | 1 2 | 1    | 27   | 150   | 0         |
| 33 | 2   | 1 6 | 11    | ] 3 | 93   | 93   | 136   | 14.764823 |
|    | ] 2 | 1 6 | 11 12 |     | 32   | 32   |       | 35.902646 |
| 34 |     | •   |       | 3   |      |      | 116   |           |
| 35 | 2   | 1 6 |       | 3   | 28   | 28   | 96    | 7         |
| 36 | 2   | 1 6 | 14    | ] 3 | 31   | 31   | 86    | 8.602325  |
| 37 | 2   | 1 6 | 15    | 3   | 35   | 35   | 56    | 5.830952  |
| 38 | 2   | 6   | 16    | ] 3 | 27   | 27   | 26    | 11.18034  |
| 39 | 2   | 6   | 17    | 3   | 33   | 33   | 16    | 8         |
| 40 | 2   | 1 6 | 18    | ] 3 | 94   | 94   | 13    | 34.058773 |
| 41 | 2   | 1 6 | 19    | ] 3 | 81   | 81   | 1 0   | 14.866069 |
| 42 | 2   | 1 6 | 20    | 1 6 | 1 1  | -1   | 1 0   | 7.615773  |
|    |     | •   | 20    |     |      |      |       |           |
| 43 | ] 3 | 3   |       |     | 1    | -1   | 0     | 0         |
| 44 | 3   | ] 3 | 2     | 1 2 | 1    | 16   | 20    | 0         |
| 45 | ] 3 | 3   | 3     | 2   | 1    | 14   | 30    | 0         |
| 46 | ] 3 | 3   | 4     | 2   | 1    | 48   | 40    | 0         |
| 47 | 3   | ] 3 | 5     | 2   | 1    | 18   | 60    | 0         |
| 48 | ] 3 | ] 3 | 6     | 2   | 1    | 17   | 80    | 0         |
| 49 | 3   | 3   | I 7   |     | i 1  | 15   | 90    | 0         |
| 50 | ] 3 | 3   | 8     | 2   | 1 1  | 13   | 1 110 | 0         |
| 51 | ] 3 | ] 3 |       | 1 2 | 1 1  |      |       | 0         |
|    |     |     | 9     |     |      | 11   | 140   |           |
| 52 | 3   | 3   | 10    | 1 2 | 1    | 10   | 160   | 0         |
| 53 |     |     | 11    |     |      | 15   |       | 35.355339 |
| 54 | 3   | 3   | 12    |     | 48   | 48   | 140   | 3         |
| 55 | ] 3 | 3   | 13    | ] 3 | 13   | 13   | 120   | 6         |
| 56 | 3   | 3   | 14    | 3   | 16   | 16   | 100   | 7.81025   |
| 57 | ] 3 | ] 3 | 15    |     | 17   | 17   |       | 2         |
| 58 | ] 3 | 3   | 16    |     | 10   |      | 60    | 11.18034  |
| 59 | ] 3 | 3   | 17    |     | 1 11 |      | 30    | 5         |
| 60 | ] 3 | ] 3 | 18    |     | 14   |      | 20    | 7.071068  |
|    |     |     |       |     |      |      |       |           |
| 61 | 3   | 3   | 19    |     | 18   | 18   | 0     | 11.18034  |
| 62 | ] 3 | 3   | 20    |     | 1    | -1   |       | 40.311289 |
| 63 | 4   | 8   | 1     |     | 1    | -1   |       | 0         |
| 64 | 4   | 8   | 2     | 2   | 1    | 71   | 23    | 0         |
| 65 | 4   | 8   | ] 3   | 2   | 1    | 55   | 39    | 0         |
| 66 | 4   | 8   | 4     |     | 1    | 44   | 59    | 0         |
| 67 | 4   | 8   | 5     |     | 1 1  | 43   | 69    | 0         |
| 68 | 4   | 8   | 1 6   |     | 1 1  | 43   | 89    | 0         |
|    |     |     |       |     |      |      |       |           |
| 69 | 4   | 8   | 7     |     | 1    | 41   |       | 0         |
| 70 | 4   | 8   | 8     |     | 1    |      | 129   | 0         |
| 71 | 4   | 8   | ) 9   |     | 1    | 39   | 159   | 0         |
| 72 | 4   | 8   | 10    | ] 3 | 43   | 1 43 | 149   | 33.54102  |
| 73 | 4   | 8   | 11    |     | 40   | 40   | 139   | 5         |
| 74 | 4   | 8   | 12    |     | 39   | 39   | 109   | 2         |
| 75 |     |     | 13    |     |      |      |       | 5.385165  |
| 13 | 1 4 | 1 0 | 1 12  | 3   | 1 41 | 1 41 | 1 13  | 7.202102  |

|     | 4   | 8  |     | ] 3 | 42  |      |      |
|-----|-----|----|-----|-----|-----|------|------|
| 77  | 4   | 8  | 15  | ] 3 | 44  | •    | 39   |
| 78  | 4   | 8  | 16  | ] 3 | 55  | •    | 23   |
| 79  | 4   | 8  | 17  | ] 3 | 71  | 71   | 1 0  |
| 80  | 4   | 8  | 18  | 1 6 | 1   | -1   | 0    |
| 81  | 1 5 | 1  | 1   | 1   | 1   | -1   | 0    |
| 82  | 5   | 1  | 2   | 2   | 1   |      | 10   |
| 83  | 5   | 1  | 3   | 2   | 1   |      | 13   |
| 84  | 1 5 | 1  | 4   | 2   | 1   | 1 46 | 23   |
| 85  | 5   | 1  | J 5 | 2   | 1   | J 5  | 63   |
| 86  | 5   | 1  | 1 6 | 2   | 1   | 3    | 93   |
| 87  | 1 5 | 1  | 1 7 | ] 3 | 46  |      | 83   |
| 88  | 5   | 1  | 8   | 3   | ] 3 | ] 3  | 53   |
| 89  | 5   | 1  | ) 9 | 2   | 1   | 2    | 73   |
| 90  | 5   | 1  | 10  | ] 3 | 4   | 4    | 63   |
| 91  | 1 5 | 1  | 11  | ] 3 | 2   | 1 2  | 43   |
| 92  | 1 5 | 1  | 12  | ] 3 | 5   | 5    | 3    |
| 93  | 1 5 | 1  | 13  | ] 3 | 101 | 101  | 0    |
| 94  | 1 5 | 1  | 14  | 1 6 | 1   | -1   |      |
| 95  | 1 6 | 13 | 1   | 1   | 1   | -1   | 0    |
| 96  | 1 6 | 13 | 1 2 | 2   | 1   | 92   | 13   |
| 97  | 1 6 | 13 | ] 3 | 2   | 1   | 52   | 32   |
| 98  | 1 6 | 13 | 4   | 2   | 1   | 57   | 51   |
| 99  | 1 6 | 13 | 5   | 2   | 1   |      | 1 69 |
| 100 | 1 6 | 13 | 6   | 2   | 1   |      | 78   |
| 101 | 1 6 | 13 | 1 7 | 2   | 1   | 63   | 81   |
| 102 | 1 6 | 13 | 8   | ] 3 | 63  | 63   | 78   |
| 103 | 1 6 | 13 | 1 9 | ] 3 | 68  | 68   | 69   |
| 104 | 1 6 | 13 | 10  | ] 3 | 52  | 52   | 50   |
| 105 | 1 6 | 13 | 11  | ] 3 | 85  | 85   | 32   |
| 106 | 1 6 | 13 | 12  | ] 3 | 57  | 57   | 13   |
| 107 | 1 6 | 13 | 13  | ] 3 | 92  | 92   | 0    |
| 108 | 1 6 | 13 | 14  | 1 6 | 1   | -1   | 1 0  |
| 109 | 7   | 7  | 1   | 1   | 1   | -1   | 0    |
| 110 | 7   | 7  | 1 2 | 2   | 1   | 30   | 10   |
|     | 7   | 7  | ] 3 | 2   | 1   |      | 20   |
| 112 | 7   | 7  | 4   | 2   | 1   |      | 30   |
| 113 | 7   | 7  | J 5 | 2   | 1   | 36   | 50   |
| 114 | 7   | 7  | 1 6 | 2   | 1   | 34   | 1 60 |
| 115 | 7   | 7  | 1 7 | 3   | 34  | 34   | 50   |
| 116 |     |    |     | 3   | 29  |      |      |
| 117 |     |    |     | 3   | 30  |      | 30   |
| 118 |     | 7  | 10  |     | 38  |      |      |
| 119 |     | 7  | 11  |     | 36  |      |      |
|     | 7   | 7  | 12  | [ 6 | 1   |      |      |
|     | 8   | 2  | 1   | 1   | 1   |      |      |
| 122 |     | 2  |     | 2   | 1   |      | 19   |
| 123 |     | 2  |     | 2   | 1   |      |      |
| 124 |     | 2  |     | 2   | 1   |      |      |
| 125 |     | 2  |     | 2   | 1   |      | 56   |
| 126 |     | 2  |     | 2   | 1   |      | 76   |
| 127 |     | 2  |     | 3   | 89  |      |      |
|     | 8   | 2  |     | 3   | 8   |      | 37   |
| 129 |     | 2  |     | 3   | 9   |      | 27   |
| 130 |     | 2  |     | ] 3 | 47  |      |      |
| 131 |     | 2  | 11  | ] 3 | 61  |      |      |
|     | 8   | 2  | 12  | 6   | 1   |      |      |
|     | 9   | 14 |     | 1   | 1   |      |      |
| 134 |     | 14 |     | 2   | 1   |      |      |
|     | 9   | 14 |     | 2   | 1   |      | 32   |
|     | 9   | 14 |     | 2   | 1   |      |      |
| 137 |     | 14 |     | 2   | 1   |      |      |
| 138 | 9   | 14 | 1 6 | 2   | 1   | 77   | 99   |

10.198039 10.440307

21.931712 19.646883

37.735925 7.28011 30.805844 39.357337

7.071068 17.029386 19.235384

29.154759 7.071068 23.769729 9.219544 9.219544 7.071068 12.041595

51.478151 8.602325 5.385165 53.235327 3.605551 44.204072

25

3

0 0 0

0

5 3

17.888544 19.235384

20.223748 26.925824

20.615528 19.235384 9.433981 25.942244 25.495098 15.524175

27.45906 10.198039 16.278821 12.806248 19.416488 13.038405

32.202484 21.023796 20.808652 12.165525 45.276926

42.426407 21.931712 16.155494 40.311289 47.169906

19.313208 18.439089 52.478567

40.311289 22.022716 13.892444 19.209373 14.142136

0 0 0

| 139 | 9   | 14                                    | 7        | 3                                     | 96  | 96  | 93 |
|-----|-----|---------------------------------------|----------|---------------------------------------|-----|-----|----|
| 140 | 9   | 14                                    | 8        | 3                                     | 64  | 64  | 87 |
| 141 | 9   | 14                                    | 9        | 3                                     | 77  | 77  | 56 |
| 142 | 9   | 14                                    | 10       | 3                                     | 51  | 51  | 26 |
| 143 | 9   | 14                                    | 11       | 3                                     | 97  | 97  | 0  |
| 144 | 9 I | 14                                    | 12       | 6                                     | 1   | -1  | 0  |
| 145 | 10  | 15                                    | 1        | 1                                     | 1   | -1  | 0  |
| 146 | 10  | 15                                    | 2        | 2                                     | 1   | 67  | 16 |
| 147 | 10  | 15                                    | 3        | 2                                     | 1   | 73  | 24 |
|     |     |                                       |          |                                       |     |     |    |
| 148 | 10  | 15                                    | 4        | 2                                     | 1   | 95  | 47 |
| 149 | 10  | 15                                    | 5        | 2                                     | 1   | 82  | 57 |
| 150 | 10  | 15                                    | 6        | 2                                     | 1   | 72  | 71 |
| 151 | 10  | 15                                    | 7        | 3                                     | 73  | 73  | 63 |
| 152 | 10  | 15                                    | 8        | 3                                     | 72  | 72  | 49 |
| 153 | 10  | 15                                    | 9        | 3                                     | 82  | 82  | 39 |
| 154 | 10  | 15                                    | 10       | 3                                     | 95  | 95  | 16 |
| 155 | 10  | 15                                    | 11       | 3                                     | 67  | 67  | 0  |
| 156 | 10  | 15                                    | 12       | 6                                     | 1   | -1  | 0  |
| 157 | 11  | 11                                    | 1        | 1                                     | 1   | -1  | 0  |
| 158 | 11  | 11                                    | 2        | 2                                     | 1   | 78  | 7  |
| 159 | 11  | 11                                    | 3        | 2                                     | 1   | 26  | 27 |
| 160 | 11  | 11                                    | 4        | 2                                     | 1   | 87  | 55 |
| 161 | 11  | 11                                    | 5        | 2                                     | 1   | 23  | 95 |
| 162 | 11  | 11                                    | 6        | 3                                     | 87  | 87  | 67 |
| 162 | 11  | 11                                    | 6  <br>7 | 3                                     | 23  | 23  | 27 |
|     |     |                                       |          |                                       |     |     |    |
| 164 | 11  | 11                                    | 8        | 3                                     | 78  | 78  | 20 |
| 165 | 11  | 11                                    | 9        | 3                                     | 26  | 26  | 0  |
| 166 | 11  | 11                                    | 10       | 6                                     | 1   | -1  | 0  |
| 167 | 12  | 4                                     | 1        | 1                                     | 1   | -1  | 0  |
| 168 | 12  | 4                                     | 2        | 2                                     | 1   | 60  | 19 |
| 169 | 12  | 4                                     | 3        | 2                                     | 1   | 59  | 39 |
| 170 | 12  | 4                                     | 4        | 2                                     | 1   | 100 | 54 |
| 171 | 12  | 4                                     | 5        | 2                                     | 1   | 54  | 59 |
| 172 | 12  | 4                                     | 6        | 3                                     | 60  | 60  | 40 |
| 173 | 12  | 4                                     | 7        | 3                                     | 100 | 100 | 25 |
| 174 | 12  | 4                                     | 8        | 3                                     | 54  | 54  | 20 |
| 175 | 12  | 4                                     | 9        | 3                                     | 59  | 59  | 0  |
| 176 | 12  | 4                                     | 10       | 6                                     | 1   | -1  | 0  |
| 177 | 13  | 10                                    | 1        | 1                                     | 1   | -1  | 0  |
| 178 | 13  | 10                                    | 2        | 2                                     | 1   | 86  | 2  |
| 179 | 13  | 10                                    | 3        | 2                                     | 1   | 90  | 27 |
| 180 | 13  | 10                                    | 4        | 2                                     | 1   | 65  | 44 |
| 181 | 13  | 10                                    | 5        | 2                                     | 1   | 53  | 47 |
| 182 | 13  | 10                                    | 6        | 3                                     | 53  | 53  | 44 |
| 183 | 13  | 10                                    | 7        | 3                                     | 65  | 65  | 27 |
| 184 | 13  | 10                                    | 8        | 3                                     | 86  | 86  | 25 |
| 185 | 13  | 10                                    | 9        | 3                                     | 90  | 90  | 0  |
| 186 | 13  | 10                                    | 10       | 6                                     | 1   | -1  | 0  |
|     |     |                                       |          | 1                                     |     |     |    |
| 187 | 14  | 12                                    | 1        |                                       | 1   |     | 0  |
| 188 | 14  | 12                                    | 2        | 2                                     | 1   | 6   | 20 |
| 189 | 14  | 12                                    | 3        | 2                                     | 1   | 80  | 50 |
| 190 | 14  | 12                                    | 4        | 2                                     | 1   | 7   | 70 |
| 191 | 14  | 12                                    | 5        | 2                                     | 1   | 56  | 86 |
| 192 | 14  | 12                                    | 6        | 3                                     | 6   | 6   | 66 |
| 193 | 14  | 12                                    | 7        | 3                                     | 80  | 80  | 36 |
| 194 | 14  | 12                                    | 8        | 3                                     | 7   | 7   | 16 |
| 195 | 14  | 12                                    | 9        | 3                                     | 56  | 56  | 0  |
| 196 | 14  | 12                                    | 10       | 6                                     | 1   | -1  | 0  |
| 197 | 15  | 19                                    | 1        | 1                                     | 1   | -1  | 0  |
| 198 | 15  | 19                                    | 2        | 2                                     | 1   | 88  | 13 |
| 199 | 15  | 19                                    | 3        | 2                                     | 1   | 70  | 40 |
| 200 | 15  | 19                                    | 4        | 2                                     | 1   | 58  | 63 |
| 201 | 15  | 19                                    | 5        | 2                                     | 1   | 99  | 72 |
|     | •   | · · · · · · · · · · · · · · · · · · · | <u> </u> | · · · · · · · · · · · · · · · · · · · | •   |     |    |

| 202        | 15 | 19 | 6  | 3  | 70 | 70   | 45 | 9.219544    |
|------------|----|----|----|----|----|------|----|-------------|
| 203        | 15 | 19 | 7  | 3  | 99 | 99   | 36 | 5           |
| 204        | 15 | 19 | 8  | 3  | 88 | 88   | 23 | 31.304952   |
| 205        | 15 | 19 | 9  | 3  | 58 | 58   | 0  | 18.027756   |
| 206        | 15 | 19 | 10 | 6  | 1  | -1   | 0  | 26.925824   |
| 207        | 16 | 17 | 1  | 1  | 1  | -1   | 0  | 0           |
| 208        | 16 | 17 | 2  | 2  | 1  | 75   | 8  | 0           |
| 209        | 16 | 17 | 3  | 2  | 1  | 98   | 43 | 0           |
| 210        | 16 | 17 | 4  | 2  | 1  | 76   | 59 | 0           |
| 211        | 16 | 17 | 5  | 3  | 76 | 76   | 43 | 57.008771   |
| 212        | 16 | 17 | 6  | 3  | 98 | 98   | 8  | 13.038405   |
| 213        | 16 | 17 | 7  | 3  | 75 | 75   | 0  | 16.124515   |
| 214        | 16 | 17 | 8  | 6  | 1  | -1   | 0  | 36.055513   |
| 215        | 17 | 16 | 1  | 1  | 1  | -1   | 0  | 0           |
| 216        | 17 | 16 | 2  | 2  | 1  | 69   | 21 | 0           |
| 217        | 17 | 16 | 3  | 2  | 1  | 79   | 48 | 0           |
| 218        | 17 | 16 | 4  | 2  | 1  | 74   | 53 | 0           |
| 219        | 17 | 16 | 5  | 3  | 74 | 74   | 48 | 39.293765   |
| 220        | 17 | 16 | 6  | 3  | 79 | 79   | 21 | 7.211103    |
| 221        | 17 | 16 | 7  | 3  | 69 | 69   | 0  | 32.249031   |
| 222        | 17 | 16 | 8  | 6  | 1  | -1   | 0  | 10          |
| 223        | 18 | 9  | 1  | 1  | 1  | -1   | 0  | 0           |
| 224        | 18 | 9  | 2  | 2  | 1  | 62   | 9  | C           |
| 225        | 18 | 9  | 3  | 2  | 1  | 37   | 49 | C           |
| 226        | 18 | 9  | 4  | 2  | 1  | 45   | 59 | C           |
| 227        | 18 | 9  | 5  | 3  | 37 | 37   | 19 | 43.011626   |
| 228        | 18 | 9  | 6  | 3  | 45 | 45   | 9  | 10.440307   |
| 229        | 18 | 9  | 7  | 3  | 62 | 62   | 0  | 19.723083   |
| 230        | 18 | 9  | 8  | 6  | 1  | -1   | 0  | 15.811388   |
| 231        | 19 | 18 | 1  | 1  | 1  | -1 i | 0  | C           |
| 232        | 19 | 18 | 2  | 2  | 1  | 91   | 6  | C           |
| 233        | 19 | 18 | 3  | 2  | 1  | 12   | 46 | 0           |
| 234        | 19 | 18 | 4  | 3  | 12 | 12   | 6  | 33.526109   |
| 235        | 19 | 18 | 5  | 3  | 91 | 91   | 0  | 29.832868   |
| 236        | 19 | 18 | 6  | 6  | 1  | -1   | 0  | 4.242641    |
| 237        | 20 | 20 | 1  | 1  | 1  | -1   | 0  | C           |
| 238        | 20 | 20 | 2  | 2  | 1  | 83   | 9  |             |
| 239        | 20 | 20 | 3  | 3  | 83 | 83   | 0  | 14.764823   |
| 240        | 20 | 20 | 4  | 6  | 1  | -1   | 0  | 14.764823   |
| 241        | -2 | 0  | 0  | -1 | -1 | -1   | -1 | 2304.305537 |
| (241 rows) | •  | •  | •  | •  | •  | •    | ļ  | ĺ           |
| (211 10)   |    |    |    |    |    |      | ļ  |             |
| ROLLBACK;  |    |    |    |    |    |      | ļ  |             |
| ROLLBACK   |    |    |    |    |    |      | ļ  |             |
|            |    |    |    |    |    |      |    |             |

## Data

```
drop table if exists vrp_orders cascade;
create table vrp_orders (
   id integer not null primary key,
   order_unit integer,
   open_time integer,
   close_time integer,
   service_time integer,
   x float8,
   y float8

);

copy vrp_orders (id, x, y, order_unit, open_time, close_time, service_time) from stdin;
1   40.000000   50.000000   0   0   240   0
```

| 2        | 25.000000              | 85.00000               | 20       | 145       | 175       | 10       |
|----------|------------------------|------------------------|----------|-----------|-----------|----------|
| 3        | 22.000000              | 75.000000              | 30       | 50        | 80        | 10       |
| 4        | 22.000000              | 85.000000              |          | 109       | 139       |          |
|          |                        |                        | 10<br>40 |           |           | 10       |
| 5        | 20.000000              | 80.000000<br>85.000000 | 20       | 141<br>41 | 171       | 10       |
| 7        |                        |                        |          |           | 71        | 10       |
|          | 18.000000              | 75.000000              | 20       | 95        | 125       | 10       |
| 8        | 15.000000              | 75.000000              | 20       | 79        | 109       | 10       |
| 9        | 15.000000              | 80.000000              | 10       | 91        | 121       | 10       |
| 10       | 10.000000              | 35.000000              | 20       | 91        | 121       | 10       |
| 11       | 10.000000              | 40.000000              | 30       | 119       | 149       | 10       |
| 12       | 8.000000               | 40.000000              | 40       | 59        | 89        | 10       |
| 13       | 8.000000               | 45.000000              | 20       | 64        | 94        | 10       |
| 14       | 5.000000               | 35.000000              | 10       | 142       | 172       | 10       |
| 15       | 5.000000               | 45.000000              | 10       | 35        | 65        | 10       |
| 16       | 2.000000               | 40.000000              | 20       | 58        | 88        | 10       |
| 17       | 0.000000               | 40.000000              | 20       | 72        | 102       | 10       |
| 18       | 0.000000               | 45.000000              | 20       | 149       | 179       | 10       |
| 19       | 44.000000              | 5.000000               | 20       | 87        | 117       | 10       |
| 20       | 42.000000              | 10.000000              | 40       | 72        | 102       | 10       |
| 21       | 42.000000              | 15.000000              | 10       | 122       | 152       | 10       |
| 22       | 40.000000              | 5.000000               | 10       | 67        | 97        | 10       |
| 23       | 40.000000              | 15.000000              | 40       | 92        | 122       | 10       |
| 24       | 38.000000              | 5.000000               | 30       | 65        | 95        | 10       |
| 25       | 38.000000              | 15.000000              | 10       | 148       | 178       | 10       |
| 26       | 35.000000              | 5.000000               | 20       | 154       | 184       | 10       |
| 27       | 95.000000              | 30.000000              | 30       | 115       | 145       | 10       |
| 28       | 95.000000              | 35.000000              | 20       | 62        | 92        | 10       |
| 29       | 92.000000              | 30.000000              | 10       | 62        | 92        | 10       |
| 30       | 90.000000              | 35.000000              | 10       | 67        | 97        | 10       |
| 31       | 88.000000              | 30.000000              | 10       | 74        | 104       | 10       |
| 32       | 88.000000              | 35.000000              | 20       | 61        | 91        | 10       |
| 33       | 87.000000              | 30.000000              | 10       | 131       | 161       | 10       |
| 34       | 85.000000              | 25.000000              | 10       | 51        | 81        | 10       |
| 35       | 85.000000              | 35.000000              | 30       | 111       | 141       | 10       |
| 36       | 67.000000              | 85.000000              | 20       | 139       | 169       | 10       |
| 37       | 65.000000              | 85.000000              | 40       | 43        | 73        | 10       |
| 38       | 65.000000              | 82.000000              | 10       | 124       | 154       | 10       |
| 39       | 62.000000              | 80.000000              | 30       | 75        | 105       | 10       |
| 40       | 60.000000              | 80.000000              | 10       | 37        | 67        | 10       |
| 41       | 60.000000              | 85.000000              | 30       | 85        | 115       | 10       |
| 42       | 58.000000              | 75.000000              | 20       | 92        | 122       | 10       |
| 43       | 55.000000              | 80.000000              | 10       | 33        | 63        | 10       |
| 44       | 55.000000              | 85.000000              | 20       | 128       | 158       | 10       |
| 45       | 55.000000              | 82.000000              | 10       | 64        | 94        | 10       |
| 46       | 20.000000              | 82.000000              | 10       | 37        | 67        | 10       |
| 47       | 18.000000              | 80.000000              | 10       | 113       | 143       | 10       |
| 48       | 2.000000<br>42.000000  | 45.000000              | 10       | 45        | 75        | 10       |
| 49       |                        | 5.000000               | 10       | 151       | 181       | 10       |
| 50       | 42.000000              | 12.000000              | 10       | 104       | 134       | 10       |
| 51       | 72.000000              | 35.000000              | 30       | 116       | 146       | 10       |
| 52       | 55.000000              | 20.000000              | 19       | 83        | 113       | 10       |
| 53       | 25.000000              | 30.000000              | 3<br>5   | 52        | 82        | 10       |
| 54       | 20.000000              | 50.000000              |          | 91        | 121       | 10       |
| 55       | 55.000000              | 60.000000              | 16<br>16 | 139       | 169       | 10       |
| 56       | 30.000000              | 60.000000              | 16       | 140       | 170       | 10       |
| 57       | 50.000000              | 35.000000              | 19       | 130       | 160       | 10       |
| 58       | 30.000000              | 25.000000              | 23       | 96        | 126       | 10       |
| 59       | 15.000000              | 10.000000              | 20       | 152       | 182<br>72 | 10       |
| 60       | 10.000000              | 20.000000              | 19<br>17 | 42<br>155 | 72        | 10       |
| 61       | 15.000000<br>45.000000 | 60.000000<br>65.000000 | 17       | 155<br>66 | 185<br>96 | 10<br>10 |
| 62<br>63 | 65.000000              | 35.000000              | 9<br>3   | 52        | 96<br>82  | 10       |
| 64       | 65.000000              | 20.000000              |          |           | 82<br>69  | 10       |
| 64       | 00.000000              | 20.000000              | 6        | 39        | ひタ        | Τ ()     |

```
65
         45.000000
                         30.000000
                                          17
                                                   53
                                                             83
                                                                       10
66
         35.000000
                         40.000000
                                          16
                                                   11
                                                             41
                                                                       10
67
         41.000000
                         37.000000
                                          16
                                                   133
                                                             163
                                                                        10
         64.000000
                         42.000000
                                          9
                                                   70
                                                                       10
         40.000000
                         60.000000
                                          21
                                                   144
                                                             174
                                                                         10
70
         31.000000
                         52.000000
                                          27
                                                   41
                                                             71
                                                                       10
71
         35.000000
                         69.000000
                                         23
                                                   180
                                                             210
                                                                         10
72
         65.000000
                         55.000000
                                                   65
                                                             95
                                         14
                                                                       1.0
                                                            60
         63.000000
                                                  30
73
                         65.000000
                                         8
                                                                      10
74
         2.000000
                        60.000000
                                         5
                                                  77
                                                           107
                                                                      1.0
75
                                         8
         20.000000
                         20.000000
                                                  141
                                                            171
                                                                       10
76
         5.000000
                        5.000000
                                                  74
                                                                      10
                                        16
                                                           104
77
         60.000000
                         12.000000
                                         31
                                                   75
                                                            105
                                                                       10
78
         23.000000
                         3.000000
                                         7
                                                  150
                                                            180
                                                                       10
79
         8.000000
                        56.000000
                                         27
                                                   90
                                                            120
                                                                       10
80
         6.000000
                         68.000000
                                         30
                                                   89
                                                            119
                                                                       10
81
         47.000000
                         47.000000
                                          13
                                                   192
                                                             222
                                                                        10
82
         49.000000
                         58.000000
                                          10
                                                   86
                                                             116
                                                                       10
                                                            72
83
                         43.000000
                                          9
                                                                      10
         27.000000
                                                   42
84
         37.000000
                         31.000000
                                          14
                                                   35
                                                             65
                                                                       10
8.5
         57.000000
                         29.000000
                                                   96
                                         18
                                                             126
                                                                       10
                         23.000000
                                                   87
86
         63,000000
                                          2.
                                                            117
                                                                       10
87
         21.000000
                         24.000000
                                          28
                                                  87
                                                            117
                                                                       10
         12.000000
                         24.000000
                                         13
                                                  90
                                                            120
                                                                       10
                                                   67
         24.000000
                         58.000000
                                         19
                                                             97
                                                                       10
90
         67.000000
                         5.000000
                                         25
                                                  144
                                                            174
                                                                       10
91
         37.000000
                         47.000000
                                         6
                                                 86
                                                            116
                                                                       10
                                                             197
92
         49.000000
                         42.000000
                                         13
                                                  167
                                                                        10
93
         53.000000
                         43.000000
                                         14
                                                   14
                                                             44
                                                                       10
                                         3
94
                         52.000000
         61.000000
                                                  178
                                                             208
                                                                       1.0
                                         23
95
         57.000000
                         48.000000
                                                   9.5
                                                             125
                                                                        1.0
96
                                                  34
         56.000000
                         37.000000
                                         6
                                                            64
                                                                      10
97
                         54.000000
                                         26
                                                   132
         55.000000
                                                             162
                                                                        10
98
         4.000000
                        18.000000
                                         35
                                                  120
                                                             150
                                                                        10
         26.000000
                         52.000000
                                                   46
                                                            76
                                                                      10
100
          26.000000
                          35.000000
                                          15
                                                   77
                                                              107
                                                                         10
101
          31.000000
                          67.000000
                                           3
                                                   180
                                                              210
                                                                         10
drop table if exists vrp_vehicles cascade;
create table vrp_vehicles (
   vehicle_id integer not null primary key,
   capacity integer,
   case_no integer
);
copy vrp_vehicles (vehicle_id, capacity, case_no) from stdin;
        200
                  5
                   5
        200
                   5
        200
3
                   5
        200
4
5
        200
                   5
6
        200
                   5
7
        200
                   5
8
        200
                   5
9
        200
10
         200
11
         200
12
         200
                    5
                    5
13
         200
                    5
14
         200
         200
                    5
15
         200
16
                    5
```

```
17
         200
                    5
18
         200
                    5
19
         200
                    5
                    5
20
         200
\.
drop table if exists vrp_distance cascade;
create table vrp_distance (
   src_id integer,
   dest_id integer,
   cost Float8,
    distance Float8,
    traveltime Float8
);
copy vrp_distance (src_id, dest_id, cost, distance, traveltime) from stdin;
        2
                 38.078866 38.078866
                                                   38.078866
1
        3
                 30.805844
                                  30.805844
                                                   30.805844
                 39.357337
                                  39.357337
                                                   39.357337
1
        4
                                  36.055513
                                                   36.055513
1
        5
                 36.055513
                 40.311289
                                  40.311289
                                                   40.311289
1
        6
                                                   33.301652
        7
                 33.301652
                                  33.301652
1
        8
                 35.355339
                                  35.355339
                                                   35.355339
1
1
        9
                 39.051248
                                  39.051248
                                                  39.051248
1
        10
                  33.541020
                                   33.541020
                                                   33.541020
                  31.622777
                                   31.622777
                                                   31.622777
1
        12
                  33.526109
                                   33.526109
                                                   33.526109
1
        13
                  32.388269
                                   32.388269
                                                   32.388269
1
        14
                  38.078866
                                   38.078866
                                                   38.078866
1
        15
                  35.355339
                                   35.355339
                                                   35.355339
        16
                  39.293765
                                   39.293765
                                                    39.293765
1
        17
1
                  41.231056
                                   41.231056
                                                    41.231056
        18
                  40.311289
1
                                   40.311289
                                                    40.311289
        19
                  45.177428
                                   45.177428
                                                    45.177428
1
1
        20
                  40.049969
                                   40.049969
                                                    40.049969
                                                    35.057096
        21
                  35.057096
                                   35.057096
        22
                  45.000000
                                   45.000000
                                                    45.000000
        23
                  35.000000
                                   35.000000
                                                    35.000000
1
        24
                  45.044423
                                   45.044423
                                                    45.044423
1
        25
                  35.057096
                                   35.057096
                                                    35.057096
1
        26
                  45.276926
                                   45.276926
                                                   45.276926
1
        27
                  58.523500
                                   58.523500
                                                   58.523500
1
        2.8
                  57.008771
                                   57.008771
                                                   57,008771
1
        29
                  55.713553
                                   55.713553
                                                   55.713553
1
        30
                  52.201533
                                   52.201533
                                                   52.201533
1
        31
                  52.000000
                                   52.000000
                                                   52.000000
        32
                                   50.289164
                                                   50.289164
                  50.289164
1
        33
                  51.078371
                                   51.078371
                                                    51.078371
1
        34
                  51.478151
                                   51.478151
                                                    51.478151
1
        35
                  47.434165
                                   47.434165
                                                    47.434165
                  44.204072
                                   44.204072
                                                    44.204072
1
        36
                  43.011626
                                   43.011626
                                                    43.011626
1
        37
                                                    40.607881
        38
                  40.607881
                                   40.607881
1
        39
                  37.202150
                                   37.202150
                                                    37.202150
1
1
        40
                  36.055513
                                   36.055513
                                                    36.055513
1
        41
                  40.311289
                                   40.311289
                                                    40.311289
                                                    30.805844
        42
                  30.805844
                                   30.805844
1
        43
                  33.541020
                                   33.541020
                                                    33.541020
1
        44
                  38.078866
                                   38.078866
                                                    38.078866
1
        45
                  35.341194
                                   35.341194
                                                    35.341194
                                   37.735925
                                                    37.735925
1
        46
                  37.735925
        47
                                                    37.202150
1
                  37.202150
                                   37.202150
        48
                  38.327536
                                   38.327536
                                                    38.327536
1
```

| 1 | 49  | 45.044423 | 45.044423 | 45.044423 |  |
|---|-----|-----------|-----------|-----------|--|
| 1 | 50  | 38.052595 | 38.052595 | 38.052595 |  |
|   |     |           |           |           |  |
| 1 | 51  | 35.341194 | 35.341194 | 35.341194 |  |
| 1 | 52  | 33.541020 | 33.541020 | 33.541020 |  |
| 1 | 53  | 25.000000 | 25.000000 | 25.000000 |  |
| 1 | 54  | 20.000000 | 20.000000 | 20.00000  |  |
| 1 | 55  | 18.027756 | 18.027756 | 18.027756 |  |
| 1 | 56  | 14.142136 | 14.142136 | 14.142136 |  |
|   |     |           |           |           |  |
| 1 | 57  | 18.027756 | 18.027756 | 18.027756 |  |
| 1 | 58  | 26.925824 | 26.925824 | 26.925824 |  |
| 1 | 59  | 47.169906 | 47.169906 | 47.169906 |  |
| 1 | 60  | 42.426407 | 42.426407 | 42.426407 |  |
| 1 | 61  | 26.925824 | 26.925824 | 26.925824 |  |
| 1 | 62  |           |           |           |  |
|   |     | 15.811388 | 15.811388 | 15.811388 |  |
| 1 | 63  | 29.154759 | 29.154759 | 29.154759 |  |
| 1 | 64  | 39.051248 | 39.051248 | 39.051248 |  |
| 1 | 65  | 20.615528 | 20.615528 | 20.615528 |  |
| 1 | 66  | 11.180340 | 11.180340 | 11.180340 |  |
| 1 | 67  | 13.038405 | 13.038405 | 13.038405 |  |
|   |     | 25.298221 |           |           |  |
| 1 | 68  |           | 25.298221 | 25.298221 |  |
| 1 | 69  | 10.000000 | 10.000000 | 10.000000 |  |
| 1 | 70  | 9.219544  | 9.219544  | 9.219544  |  |
| 1 | 71  | 19.646883 | 19.646883 | 19.646883 |  |
| 1 | 72  | 25.495098 | 25.495098 | 25.495098 |  |
| 1 | 73  | 27.459060 | 27.459060 | 27.459060 |  |
|   |     |           |           |           |  |
| 1 | 74  | 39.293765 | 39.293765 | 39.293765 |  |
| 1 | 75  | 36.055513 | 36.055513 | 36.055513 |  |
| 1 | 76  | 57.008771 | 57.008771 | 57.008771 |  |
| 1 | 77  | 42.941821 | 42.941821 | 42.941821 |  |
| 1 | 78  | 49.979996 | 49.979996 | 49.979996 |  |
| 1 | 79  | 32.557641 | 32.557641 | 32.557641 |  |
|   |     |           |           |           |  |
| 1 | 80  | 38.470768 | 38.470768 | 38.470768 |  |
| 1 | 81  | 7.615773  | 7.615773  | 7.615773  |  |
| 1 | 82  | 12.041595 | 12.041595 | 12.041595 |  |
| 1 | 83  | 14.764823 | 14.764823 | 14.764823 |  |
| 1 | 84  | 19.235384 | 19.235384 | 19.235384 |  |
| 1 | 85  | 27.018512 | 27.018512 | 27.018512 |  |
|   |     |           |           |           |  |
| 1 | 86  | 35.468296 | 35.468296 | 35.468296 |  |
| 1 | 87  | 32.202484 | 32.202484 | 32.202484 |  |
| 1 | 88  | 38.209946 | 38.209946 | 38.209946 |  |
| 1 | 89  | 17.888544 | 17.888544 | 17.888544 |  |
| 1 | 90  | 52.478567 | 52.478567 | 52.478567 |  |
| 1 | 91  | 4.242641  | 4.242641  | 4.242641  |  |
|   | 92  | 12.041595 | 12.041595 | 12.041595 |  |
| 1 |     |           |           |           |  |
| 1 | 93  | 14.764823 | 14.764823 | 14.764823 |  |
| 1 | 94  | 21.095023 | 21.095023 | 21.095023 |  |
| 1 | 95  | 17.117243 | 17.117243 | 17.117243 |  |
| 1 | 96  | 20.615528 | 20.615528 | 20.615528 |  |
| 1 | 97  | 15.524175 | 15.524175 | 15.524175 |  |
| 1 | 98  | 48.166378 | 48.166378 | 48.166378 |  |
|   |     |           |           |           |  |
| 1 | 99  | 14.142136 | 14.142136 | 14.142136 |  |
| 1 | 100 | 20.518285 | 20.518285 | 20.518285 |  |
| 1 | 101 | 19.235384 | 19.235384 | 19.235384 |  |
| 2 | 1   | 38.078866 | 38.078866 | 38.078866 |  |
| 2 | 3   | 10.440307 | 10.440307 | 10.440307 |  |
| 2 | 4   | 3.000000  | 3.000000  | 3.000000  |  |
|   |     |           |           |           |  |
| 2 | 5   | 7.071068  | 7.071068  | 7.071068  |  |
| 2 | 6   | 5.000000  | 5.000000  | 5.000000  |  |
| 2 | 7   | 12.206556 | 12.206556 | 12.206556 |  |
| 2 | 8   | 14.142136 | 14.142136 | 14.142136 |  |
| 2 | 9   | 11.180340 | 11.180340 | 11.180340 |  |
| 2 | 10  | 52.201533 | 52.201533 | 52.201533 |  |
|   |     |           |           |           |  |
| 2 | 11  | 47.434165 | 47.434165 | 47.434165 |  |
|   |     |           |           |           |  |

| 2 | 12 | 48.104054 | 48.104054 | 48.104054 |  |
|---|----|-----------|-----------|-----------|--|
| 2 | 13 | 43.462628 | 43.462628 | 43.462628 |  |
| 2 | 14 | 53.851648 | 53.851648 | 53.851648 |  |
|   |    |           |           |           |  |
| 2 | 15 | 44.721360 | 44.721360 | 44.721360 |  |
| 2 | 16 | 50.537115 | 50.537115 | 50.537115 |  |
| 2 | 17 | 51.478151 | 51.478151 | 51.478151 |  |
| 2 | 18 | 47.169906 | 47.169906 | 47.169906 |  |
| 2 | 19 | 82.225300 | 82.225300 | 82.225300 |  |
|   |    |           |           |           |  |
| 2 | 20 | 76.902536 | 76.902536 | 76.902536 |  |
| 2 | 21 | 72.034714 | 72.034714 | 72.034714 |  |
| 2 | 22 | 81.394103 | 81.394103 | 81.394103 |  |
| 2 | 23 | 71.589105 | 71.589105 | 71.589105 |  |
| 2 | 24 | 81.049368 | 81.049368 | 81.049368 |  |
|   |    |           |           |           |  |
| 2 | 25 | 71.196910 | 71.196910 | 71.196910 |  |
| 2 | 26 | 80.622577 | 80.622577 | 80.622577 |  |
| 2 | 27 | 89.022469 | 89.022469 | 89.022469 |  |
| 2 | 28 | 86.023253 | 86.023253 | 86.023253 |  |
| 2 | 29 | 86.683332 | 86.683332 | 86.683332 |  |
|   |    |           |           |           |  |
| 2 | 30 | 82.006097 | 82.006097 | 82.006097 |  |
| 2 | 31 | 83.630138 | 83.630138 | 83.630138 |  |
| 2 | 32 | 80.430094 | 80.430094 | 80.430094 |  |
| 2 | 33 | 82.879430 | 82.879430 | 82.879430 |  |
| 2 | 34 | 84.852814 | 84.852814 | 84.852814 |  |
| 2 | 35 | 78.102497 | 78.102497 | 78.102497 |  |
|   |    |           |           |           |  |
| 2 | 36 | 42.000000 | 42.000000 | 42.00000  |  |
| 2 | 37 | 40.00000  | 40.00000  | 40.00000  |  |
| 2 | 38 | 40.112342 | 40.112342 | 40.112342 |  |
| 2 | 39 | 37.336309 | 37.336309 | 37.336309 |  |
| 2 | 40 | 35.355339 | 35.355339 | 35.355339 |  |
|   |    |           |           |           |  |
| 2 | 41 | 35.000000 | 35.000000 | 35.000000 |  |
| 2 | 42 | 34.481879 | 34.481879 | 34.481879 |  |
| 2 | 43 | 30.413813 | 30.413813 | 30.413813 |  |
| 2 | 44 | 30.00000  | 30.000000 | 30.000000 |  |
| 2 | 45 | 30.149627 | 30.149627 | 30.149627 |  |
|   |    |           |           |           |  |
| 2 | 46 | 5.830952  | 5.830952  | 5.830952  |  |
| 2 | 47 | 8.602325  | 8.602325  | 8.602325  |  |
| 2 | 48 | 46.141088 | 46.141088 | 46.141088 |  |
| 2 | 49 | 81.786307 | 81.786307 | 81.786307 |  |
| 2 | 50 | 74.953319 | 74.953319 | 74.953319 |  |
| 2 | 51 | 68.622154 | 68.622154 | 68.622154 |  |
|   |    |           |           |           |  |
| 2 | 52 | 71.589105 | 71.589105 | 71.589105 |  |
| 2 | 53 | 55.000000 | 55.000000 | 55.000000 |  |
| 2 | 54 | 35.355339 | 35.355339 | 35.355339 |  |
| 2 | 55 | 39.051248 | 39.051248 | 39.051248 |  |
| 2 | 56 | 25.495098 | 25.495098 | 25.495098 |  |
| 2 | 57 | 55.901699 | 55.901699 | 55.901699 |  |
|   |    |           |           |           |  |
| 2 | 58 | 60.207973 | 60.207973 | 60.207973 |  |
| 2 | 59 | 75.663730 | 75.663730 | 75.663730 |  |
| 2 | 60 | 66.708320 | 66.708320 | 66.708320 |  |
| 2 | 61 | 26.925824 | 26.925824 | 26.925824 |  |
| 2 | 62 | 28.284271 | 28.284271 | 28.284271 |  |
|   |    |           |           |           |  |
| 2 | 63 | 64.031242 | 64.031242 | 64.031242 |  |
| 2 | 64 | 76.321688 | 76.321688 | 76.321688 |  |
| 2 | 65 | 58.523500 | 58.523500 | 58.523500 |  |
| 2 | 66 | 46.097722 | 46.097722 | 46.097722 |  |
| 2 | 67 | 50.596443 | 50.596443 | 50.596443 |  |
|   |    |           |           |           |  |
| 2 | 68 | 58.051701 | 58.051701 | 58.051701 |  |
| 2 | 69 | 29.154759 | 29.154759 | 29.154759 |  |
| 2 | 70 | 33.541020 | 33.541020 | 33.541020 |  |
| 2 | 71 | 18.867962 | 18.867962 | 18.867962 |  |
| 2 | 72 | 50.000000 | 50.000000 | 50.000000 |  |
| 2 | 73 | 42.941821 | 42.941821 | 42.941821 |  |
|   |    |           |           |           |  |
| 2 | 74 | 33.970576 | 33.970576 | 33.970576 |  |

| 2 | 75       | 65.192024 | 65.192024 | 65.192024 |
|---|----------|-----------|-----------|-----------|
| 2 | 76       | 82.462113 | 82.462113 | 82.462113 |
| 2 | 77       | 80.956779 | 80.956779 | 80.956779 |
| 2 | 78       | 82.024387 | 82.024387 | 82.024387 |
| 2 | 79       |           | 33.615473 |           |
|   |          | 33.615473 |           | 33.615473 |
| 2 | 80       | 25.495098 | 25.495098 | 25.495098 |
| 2 | 81       | 43.908997 | 43.908997 | 43.908997 |
| 2 | 82       | 36.124784 | 36.124784 | 36.124784 |
| 2 | 83       | 42.047592 | 42.047592 | 42.047592 |
| 2 | 84       | 55.317267 | 55.317267 | 55.317267 |
| 2 | 85       | 64.498062 | 64.498062 | 64.498062 |
| 2 | 86       | 72.718636 | 72.718636 | 72.718636 |
| 2 | 87       | 61.131007 | 61.131007 | 61.131007 |
| 2 | 88       | 62.369865 | 62.369865 | 62.369865 |
| 2 | 89       | 27.018512 | 27.018512 | 27.018512 |
| 2 | 90       | 90.354856 | 90.354856 | 90.354856 |
| 2 | 91       | 39.849718 | 39.849718 | 39.849718 |
| 2 | 92       | 49.244289 | 49.244289 | 49.244289 |
| 2 | 93       | 50.477718 | 50.477718 | 50.477718 |
| 2 | 94       | 48.836462 | 48.836462 | 48.836462 |
| 2 | 95       | 48.918299 | 48.918299 | 48.918299 |
| 2 | 95       | 57.140179 | 57.140179 | 57.140179 |
|   |          |           |           |           |
| 2 | 97       | 43.139309 | 43.139309 | 43.139309 |
| 2 | 98       | 70.213959 | 70.213959 | 70.213959 |
| 2 | 99       | 33.015148 | 33.015148 | 33.015148 |
| 2 | 100      | 50.009999 | 50.009999 | 50.009999 |
| 2 | 101      | 18.973666 | 18.973666 | 18.973666 |
| 3 | 1        | 30.805844 | 30.805844 | 30.805844 |
| 3 | 2        | 10.440307 | 10.440307 | 10.440307 |
| 3 | 4        | 10.000000 | 10.000000 | 10.000000 |
| 3 | 5        | 5.385165  | 5.385165  | 5.385165  |
| 3 | 6        | 10.198039 | 10.198039 | 10.198039 |
| 3 | 7        | 4.000000  | 4.000000  | 4.000000  |
| 3 | 8        | 7.000000  | 7.000000  | 7.000000  |
| 3 | 9        | 8.602325  | 8.602325  | 8.602325  |
| 3 | 10       | 41.761226 | 41.761226 | 41.761226 |
| 3 | 11       | 37.000000 | 37.000000 | 37.000000 |
| 3 | 12       | 37.696154 | 37.696154 | 37.696154 |
| 3 | 13       | 33.105891 | 33.105891 | 33.105891 |
| 3 | 14       | 43.462628 | 43.462628 | 43.462628 |
| 3 | 15       | 34.481879 | 34.481879 | 34.481879 |
| 3 | 16       | 40.311289 | 40.311289 | 40.311289 |
| 3 | 17       | 41.340053 | 41.340053 | 41.340053 |
| 3 | 18       | 37.202150 | 37.202150 | 37.202150 |
| 3 | 19       | 73.375745 | 73.375745 | 73.375745 |
| 3 | 20       | 68.007353 | 68.007353 | 68.007353 |
| 3 | 21       | 63.245553 | 63.245553 | 63.245553 |
| 3 | 22       | 72.277244 | 72.277244 | 72.277244 |
| 3 | 23       | 62.641839 | 62.641839 | 62.641839 |
| 3 | 24       | 71.805292 | 71.805292 | 71.805292 |
| 3 | 25       | 62.096699 | 62.096699 | 62.096699 |
| 3 | 26       | 71.196910 | 71.196910 | 71.196910 |
| 3 | 27       | 85.755466 | 85.755466 | 85.755466 |
| 3 | 28       | 83.240615 | 83.240615 | 83.240615 |
| 3 | 29       | 83.216585 | 83.216585 | 83.216585 |
| 3 | 30       | 78.892332 | 78.892332 | 78.892332 |
| 3 | 31       | 79.881162 | 79.881162 | 79.881162 |
| 3 | 32       | 77.175126 | 77.175126 | 77.175126 |
| 3 | 32       | 79.056942 | 79.056942 | 79.056942 |
| 3 | 34       | 80.430094 | 80.430094 | 80.430094 |
| 3 | 35       | 74.625733 | 74.625733 | 74.625733 |
| 3 | 35<br>36 | 46.097722 | 46.097722 | 46.097722 |
|   |          |           |           |           |
| 3 | 37       | 44.147480 | 44.147480 | 44.147480 |

| 3 | 38  | 43.566042 | 43.566042 | 43.566042 |
|---|-----|-----------|-----------|-----------|
| 3 | 39  | 40.311289 | 40.311289 | 40.311289 |
| 3 | 40  | 38.327536 | 38.327536 | 38.327536 |
| 3 | 41  | 39.293765 | 39.293765 | 39.293765 |
| 3 | 42  | 36.000000 | 36.000000 | 36.000000 |
| 3 | 43  | 33.376639 | 33.376639 | 33.376639 |
| 3 | 44  | 34.481879 | 34.481879 | 34.481879 |
| 3 | 45  | 33.734256 | 33.734256 | 33.734256 |
| 3 | 46  |           | 7.280110  | 7.280110  |
| 3 | 47  |           | 6.403124  | 6.403124  |
| 3 | 48  | 36.055513 | 36.055513 | 36.055513 |
|   |     |           |           |           |
| 3 | 49  | 72.801099 | 72.801099 | 72.801099 |
| 3 | 50  | 66.098411 | 66.098411 | 66.098411 |
| 3 | 51  | 64.031242 | 64.031242 | 64.031242 |
| 3 | 52  | 64.140471 | 64.140471 | 64.140471 |
| 3 | 53  | 45.099889 | 45.099889 | 45.099889 |
| 3 | 54  | 25.079872 | 25.079872 | 25.079872 |
| 3 | 55  | 36.249138 | 36.249138 | 36.249138 |
| 3 | 56  | 17.000000 | 17.000000 | 17.000000 |
| 3 | 57  | 48.826222 | 48.826222 | 48.826222 |
| 3 | 58  | 50.635956 | 50.635956 | 50.635956 |
| 3 | 59  | 65.375837 | 65.375837 | 65.375837 |
| 3 | 60  | 56.293872 | 56.293872 | 56.293872 |
| 3 | 61  | 16.552945 | 16.552945 | 16.552945 |
|   |     |           |           |           |
| 3 | 62  | 25.079872 | 25.079872 | 25.079872 |
| 3 | 63  | 58.728187 | 58.728187 | 58.728187 |
| 3 | 64  | 69.814039 | 69.814039 | 69.814039 |
| 3 | 65  | 50.537115 | 50.537115 | 50.537115 |
| 3 | 66  | 37.336309 | 37.336309 | 37.336309 |
| 3 | 67  | 42.485292 | 42.485292 | 42.485292 |
| 3 | 68  | 53.413481 | 53.413481 | 53.413481 |
| 3 | 69  | 23.430749 | 23.430749 | 23.430749 |
| 3 | 70  | 24.698178 | 24.698178 | 24.698178 |
| 3 | 71  | 14.317821 | 14.317821 | 14.317821 |
| 3 | 72  | 47.423623 | 47.423623 | 47.423623 |
| 3 | 73  | 42.201896 | 42.201896 | 42.201896 |
| 3 | 74  | 25.000000 | 25.000000 | 25.000000 |
| 3 | 75  | 55.036352 | 55.036352 | 55.036352 |
| 3 | 76  | 72.034714 | 72.034714 | 72.034714 |
|   |     |           |           |           |
| 3 | 77  | 73.573093 | 73.573093 | 73.573093 |
| 3 | 78  | 72.006944 | 72.006944 | 72.006944 |
| 3 | 79  | 23.600847 | 23.600847 | 23.600847 |
| 3 | 80  | 17.464249 | 17.464249 | 17.464249 |
| 3 | 81  | 37.536649 | 37.536649 | 37.536649 |
| 3 | 82  | 31.906112 | 31.906112 | 31.906112 |
| 3 | 83  | 32.388269 | 32.388269 | 32.388269 |
| 3 | 84  | 46.486557 | 46.486557 | 46.486557 |
| 3 | 85  | 57.801384 | 57.801384 | 57.801384 |
| 3 | 86  | 66.219333 | 66.219333 | 66.219333 |
| 3 | 87  | 51.009803 | 51.009803 | 51.009803 |
| 3 | 88  | 51.971146 | 51.971146 | 51.971146 |
| 3 | 89  | 17.117243 | 17.117243 | 17.117243 |
| 3 | 90  | 83.216585 | 83.216585 | 83.216585 |
| 3 | 91  | 31.764760 | 31.764760 | 31.764760 |
|   |     |           |           |           |
| 3 | 92  | 42.638011 | 42.638011 | 42.638011 |
| 3 | 93  | 44.553339 | 44.553339 | 44.553339 |
| 3 | 94  | 45.276926 | 45.276926 | 45.276926 |
| 3 | 95  | 44.204072 | 44.204072 | 44.204072 |
| 3 | 96  | 50.990195 | 50.990195 | 50.990195 |
| 3 | 97  | 39.115214 | 39.115214 | 39.115214 |
| 3 | 98  | 59.774577 | 59.774577 | 59.774577 |
| 3 | 99  | 23.345235 | 23.345235 | 23.345235 |
| 3 | 100 | 40.199502 | 40.199502 | 40.199502 |
|   |     |           |           |           |

| 3      | 101      | 12.041595 | 12.041595 | 12.041595 |  |
|--------|----------|-----------|-----------|-----------|--|
| 4      | 1        | 39.357337 | 39.357337 | 39.357337 |  |
| 1      | 2        | 3.000000  | 3.000000  | 3.000000  |  |
| 1      | 3        | 10.000000 | 10.000000 | 10.000000 |  |
| -<br>1 | 5        | 5.385165  | 5.385165  | 5.385165  |  |
| 1      | 6        | 2.000000  | 2.000000  | 2.000000  |  |
| 1      | 7        | 10.770330 | 10.770330 | 10.770330 |  |
| 1      | 8        | 12.206556 | 12.206556 | 12.206556 |  |
| 4      | 9        | 8.602325  | 8.602325  | 8.602325  |  |
| 4      | 10       | 51.419841 | 51.419841 | 51.419841 |  |
| 4      | 11       | 46.572524 | 46.572524 | 46.572524 |  |
| 4      | 12       | 47.127487 | 47.127487 | 47.127487 |  |
| 4      | 13       | 42.379240 | 42.379240 | 42.379240 |  |
| 4      | 14       | 52.810984 | 52.810984 | 52.810984 |  |
| 4      | 15       | 43.462628 | 43.462628 | 43.462628 |  |
|        |          |           |           |           |  |
| 4      | 16       | 49.244289 | 49.244289 | 49.244289 |  |
| 4      | 17       | 50.089919 | 50.089919 | 50.089919 |  |
| 4      | 18       | 45.650849 | 45.650849 | 45.650849 |  |
| 1      | 19       | 82.969874 | 82.969874 | 82.969874 |  |
| 1      | 20       | 77.620873 | 77.620873 | 77.620873 |  |
| 1      | 21       | 72.801099 | 72.801099 | 72.801099 |  |
| 4      | 22       | 82.000000 | 82.000000 | 82.000000 |  |
| 4      | 23       | 72.277244 | 72.277244 | 72.277244 |  |
| 1      | 24       | 81.584312 | 81.584312 | 81.584312 |  |
| 4      | 25       | 71.805292 | 71.805292 | 71.805292 |  |
| 4      | 26       | 81.049368 | 81.049368 | 81.049368 |  |
| 4      | 27       | 91.400219 | 91.400219 | 91.400219 |  |
| 4      | 28       | 88.481637 | 88.481637 | 88.481637 |  |
| 4      | 29       | 89.022469 | 89.022469 | 89.022469 |  |
| 4      | 30       | 84.403791 | 84.403791 | 84.403791 |  |
| 4      | 31       | 85.912746 | 85.912746 | 85.912746 |  |
| 4      | 32       | 82.800966 | 82.800966 | 82.800966 |  |
| 4      | 33       | 85.146932 | 85.146932 | 85.146932 |  |
| 4      | 34       | 87.000000 | 87.000000 | 87.000000 |  |
| 4      | 35       | 80.430094 | 80.430094 | 80.430094 |  |
| 4      | 36       | 45.000000 | 45.000000 | 45.000000 |  |
| 4      | 37       | 43.000000 | 43.000000 | 43.000000 |  |
| 4      | 38       | 43.104524 | 43.104524 | 43.104524 |  |
| 4      | 39       | 40.311289 | 40.311289 | 40.311289 |  |
| 4      | 40       | 38.327536 | 38.327536 | 38.327536 |  |
| 4      | 41       | 38.000000 | 38.000000 | 38.000000 |  |
| 4      | 42       | 37.363083 | 37.363083 | 37.363083 |  |
| 4      | 43       | 33.376639 | 33.376639 | 33.376639 |  |
| 4      | 44       | 33.000000 | 33.000000 | 33.000000 |  |
| 4      | 45       | 33.136083 | 33.136083 | 33.136083 |  |
| 4      | 46       | 3.605551  | 3.605551  | 3.605551  |  |
| 4      | 47       | 6.403124  | 6.403124  | 6.403124  |  |
| 4      | 48       | 44.721360 | 44.721360 | 44.721360 |  |
| 4      | 49       | 82.462113 | 82.462113 | 82.462113 |  |
| 4      | 50       | 75.690158 | 75.690158 | 75.690158 |  |
| 1      | 51       | 70.710678 | 70.710678 | 70.710678 |  |
| 4      | 52       | 72.897188 | 72.897188 | 72.897188 |  |
| 4      | 53       | 55.081757 | 55.081757 | 55.081757 |  |
| 1      | 54       | 35.057096 | 35.057096 | 35.057096 |  |
| 4      | 55       | 41.400483 | 41.400483 | 41.400483 |  |
|        | 56       | 26.248809 | 26.248809 | 26.248809 |  |
| 4<br>1 | 57       |           |           |           |  |
| 4      |          | 57.306195 | 57.306195 | 57.306195 |  |
| 4<br>1 | 58       | 60.530984 | 60.530984 | 60.530984 |  |
| 4      | 59<br>60 | 75.325958 | 75.325958 | 75.325958 |  |
| 4      | 60       | 66.098411 | 66.098411 | 66.098411 |  |
| 4      | 61       | 25.961510 | 25.961510 | 25.961510 |  |
| 4      | 62       | 30.479501 | 30.479501 | 30.479501 |  |
| 4      | 63       | 65.946948 | 65.946948 | 65.946948 |  |

| 4 | 64  | 77.935871     | 77.935871      | 77.935871 |  |
|---|-----|---------------|----------------|-----------|--|
| 4 | 65  | 59.615434     | 59.615434      | 59.615434 |  |
| 4 | 66  | 46.840154     | 46.840154      | 46.840154 |  |
| 4 | 67  | 51.623638     | 51.623638      | 51.623638 |  |
| 4 | 68  | 60.108236     | 60.108236      | 60.108236 |  |
| 4 | 69  | 30.805844     | 30.805844      | 30.805844 |  |
| 4 | 70  | 34.205263     | 34.205263      | 34.205263 |  |
| 4 | 71  | 20.615528     | 20.615528      | 20.615528 |  |
| 4 | 72  | 52.430907     | 52.430907      | 52.430907 |  |
| 4 | 73  | 45.617979     | 45.617979      | 45.617979 |  |
|   |     |               |                |           |  |
| 4 | 74  | 32.015621     | 32.015621      | 32.015621 |  |
| 4 | 75  | 65.030762     | 65.030762      | 65.030762 |  |
| 4 | 76  | 81.786307     | 81.786307      | 81.786307 |  |
| 4 | 77  | 82.298238     | 82.298238      | 82.298238 |  |
| 4 | 78  | 82.006097     | 82.006097      | 82.006097 |  |
| 4 | 79  | 32.202484     | 32.202484      | 32.202484 |  |
| 4 | 80  | 23.345235     | 23.345235      | 23.345235 |  |
| 4 | 81  | 45.486262     | 45.486262      | 45.486262 |  |
| 4 | 82  | 38.183766     | 38.183766      | 38.183766 |  |
| 4 | 83  | 42.296572     | 42.296572      | 42.296572 |  |
| 4 | 84  | 56.044625     | 56.044625      | 56.044625 |  |
| 4 | 85  | 66.037868     | 66.037868      | 66.037868 |  |
| 4 | 86  | 74.330344     | 74.330344      | 74.330344 |  |
| 4 | 87  | 61.008196     | 61.008196      | 61.008196 |  |
| 4 | 88  | 61.814238     | 61.814238      | 61.814238 |  |
| 4 | 89  | 27.073973     | 27.073973      | 27.073973 |  |
| 4 | 90  | 91.787799     | 91.787799      | 91.787799 |  |
| 4 | 91  | 40.853396     | 40.853396      | 40.853396 |  |
|   |     |               |                |           |  |
| 4 | 92  | 50.774009     | 50.774009      | 50.774009 |  |
| 4 | 93  | 52.201533     | 52.201533      | 52.201533 |  |
| 4 | 94  | 51.088159     | 51.088159      | 51.088159 |  |
| 4 | 95  | 50.931326     | 50.931326      | 50.931326 |  |
| 4 | 96  | 58.821765     | 58.821765      | 58.821765 |  |
| 4 | 97  | 45.276926     | 45.276926      | 45.276926 |  |
| 4 | 98  | 69.375788     | 69.375788      | 69.375788 |  |
| 4 | 99  | 33.241540     | 33.241540      | 33.241540 |  |
| 4 | 100 | 50.159745     | 50.159745      | 50.159745 |  |
| 4 | 101 | 20.124612     | 20.124612      | 20.124612 |  |
| 5 | 1   | 36.055513     | 36.055513      | 36.055513 |  |
| 5 | 2   | 7.071068      | 7.071068       | 7.071068  |  |
| 5 | 3   | 5.385165      | 5.385165       | 5.385165  |  |
| 5 | 4   | 5.385165      | 5.385165       | 5.385165  |  |
| 5 | 6   | 5.000000      | 5.000000       | 5.000000  |  |
| 5 | 7   | 5.385165      | 5.385165       | 5.385165  |  |
| 5 | 8   | 7.071068      | 7.071068       | 7.071068  |  |
| 5 | 9   | 5.000000      | 5.00000        | 5.000000  |  |
| 5 | 10  | 46.097722     | 46.097722      | 46.097722 |  |
| 5 | 11  | 41.231056     | 41.231056      | 41.231056 |  |
| 5 | 12  | 41.761226     | 41.761226      | 41.761226 |  |
| 5 | 13  | 37.000000     | 37.000000      | 37.000000 |  |
| 5 | 14  | 47.434165     | 47.434165      | 47.434165 |  |
| 5 | 15  | 38.078866     | 38.078866      | 38.078866 |  |
| 5 | 16  | 43.863424     | 43.863424      | 43.863424 |  |
| 5 | 17  | 44.721360     | 44.721360      | 44.721360 |  |
| 5 | 18  | 40.311289     | 40.311289      | 40.311289 |  |
| 5 | 19  | 78.746428     | 78.746428      | 78.746428 |  |
| 5 | 20  | 73.375745     | 73.375745      | 73.375745 |  |
| 5 | 21  | 68.622154     | 68.622154      | 68.622154 |  |
| 5 | 22  | 77.620873     | 77.620873      | 77.620873 |  |
| 5 | 23  | 68.007353     | 68.007353      | 68.007353 |  |
| 5 | 24  | 77.129761     | 77.129761      | 77.129761 |  |
| 5 | 25  | 67.446275     | 67.446275      | 67.446275 |  |
| 5 | 26  | 76.485293     | 76.485293      | 76.485293 |  |
| J | 20  | , 0 • 1002 90 | , 0 • 1002 ) 0 | 70.100230 |  |

| 5 | 27 | 90.138782 | 90.138782 | 90.138782 |  |
|---|----|-----------|-----------|-----------|--|
| 5 | 28 | 87.464278 | 87.464278 | 87.464278 |  |
|   |    |           |           |           |  |
| 5 | 29 | 87.658428 | 87.658428 | 87.658428 |  |
| 5 | 30 | 83.216585 | 83.216585 | 83.216585 |  |
| 5 | 31 | 84.403791 | 84.403791 | 84.403791 |  |
| 5 | 32 | 81.541401 | 81.541401 | 81.541401 |  |
| 5 | 33 | 83.600239 | 83.600239 | 83.600239 |  |
| 5 | 34 | 85.146932 | 85.146932 | 85.146932 |  |
|   |    |           |           |           |  |
| 5 | 35 | 79.056942 | 79.056942 | 79.056942 |  |
| 5 | 36 | 47.265209 | 47.265209 | 47.265209 |  |
| 5 | 37 | 45.276926 | 45.276926 | 45.276926 |  |
| 5 | 38 | 45.044423 | 45.044423 | 45.044423 |  |
| 5 | 39 | 42.000000 | 42.00000  | 42.000000 |  |
| 5 | 40 | 40.000000 | 40.000000 | 40.00000  |  |
|   |    |           |           |           |  |
| 5 | 41 | 40.311289 | 40.311289 | 40.311289 |  |
| 5 | 42 | 38.327536 | 38.327536 | 38.327536 |  |
| 5 | 43 | 35.000000 | 35.000000 | 35.000000 |  |
| 5 | 44 | 35.355339 | 35.355339 | 35.355339 |  |
| 5 | 45 | 35.057096 | 35.057096 | 35.057096 |  |
| 5 | 46 | 2.000000  |           | 2.000000  |  |
|   |    |           | 2.000000  |           |  |
| 5 | 47 | 2.000000  | 2.000000  | 2.000000  |  |
| 5 | 48 | 39.357337 | 39.357337 | 39.357337 |  |
| 5 | 49 | 78.160092 | 78.160092 | 78.160092 |  |
| 5 | 50 | 71.470274 | 71.470274 | 71.470274 |  |
| 5 | 51 | 68.767725 | 68.767725 | 68.767725 |  |
| 5 | 52 | 69.462220 |           |           |  |
|   |    |           | 69.462220 | 69.462220 |  |
| 5 | 53 | 50.249378 | 50.249378 | 50.249378 |  |
| 5 | 54 | 30.000000 | 30.000000 | 30.000000 |  |
| 5 | 55 | 40.311289 | 40.311289 | 40.311289 |  |
| 5 | 56 | 22.360680 | 22.360680 | 22.360680 |  |
| 5 | 57 | 54.083269 | 54.083269 | 54.083269 |  |
| 5 | 58 |           |           |           |  |
|   |    | 55.901699 | 55.901699 | 55.901699 |  |
| 5 | 59 | 70.178344 | 70.178344 | 70.178344 |  |
| 5 | 60 | 60.827625 | 60.827625 | 60.827625 |  |
| 5 | 61 | 20.615528 | 20.615528 | 20.615528 |  |
| 5 | 62 | 29.154759 | 29.154759 | 29.154759 |  |
| 5 | 63 | 63.639610 | 63.639610 | 63.639610 |  |
| 5 | 64 | 75.000000 | 75.000000 | 75.000000 |  |
|   |    |           |           |           |  |
| 5 | 65 | 55.901699 | 55.901699 | 55.901699 |  |
| 5 | 66 | 42.720019 | 42.720019 | 42.720019 |  |
| 5 | 67 | 47.853944 | 47.853944 | 47.853944 |  |
| 5 | 68 | 58.137767 | 58.137767 | 58.137767 |  |
| 5 | 69 | 28.284271 | 28.284271 | 28.284271 |  |
| 5 | 70 | 30.083218 | 30.083218 | 30.083218 |  |
| 5 | 71 | 18.601075 | 18.601075 | 18.601075 |  |
|   |    |           |           |           |  |
| 5 | 72 | 51.478151 | 51.478151 | 51.478151 |  |
| 5 | 73 | 45.541190 | 45.541190 | 45.541190 |  |
| 5 | 74 | 26.907248 | 26.907248 | 26.907248 |  |
| 5 | 75 | 60.000000 | 60.000000 | 60.000000 |  |
| 5 | 76 | 76.485293 | 76.485293 | 76.485293 |  |
| 5 | 77 | 78.892332 | 78.892332 | 78.892332 |  |
|   |    |           |           |           |  |
| 5 | 78 | 77.058419 | 77.058419 | 77.058419 |  |
| 5 | 79 | 26.832816 | 26.832816 | 26.832816 |  |
| 5 | 80 | 18.439089 | 18.439089 | 18.439089 |  |
| 5 | 81 | 42.638011 | 42.638011 | 42.638011 |  |
| 5 | 82 | 36.400549 | 36.400549 | 36.400549 |  |
| 5 | 83 | 37.656341 | 37.656341 | 37.656341 |  |
|   |    |           |           |           |  |
| 5 | 84 | 51.865210 | 51.865210 | 51.865210 |  |
| 5 | 85 | 63.007936 | 63.007936 | 63.007936 |  |
| 5 | 86 | 71.400280 | 71.400280 | 71.400280 |  |
| 5 | 87 | 56.008928 | 56.008928 | 56.008928 |  |
| 5 | 88 | 56.568542 | 56.568542 | 56.568542 |  |
| 5 | 89 | 22.360680 | 22.360680 | 22.360680 |  |
|   |    | 22.30000  | 22.333300 |           |  |

| 5      | 90  | 88.509886 | 88.509886 | 88.509886 |
|--------|-----|-----------|-----------|-----------|
| 5      | 91  | 37.121422 | 37.121422 | 37.121422 |
| 5      | 92  | 47.801674 | 47.801674 | 47.801674 |
| 5      | 93  | 49.578221 | 49.578221 | 49.578221 |
| 5      | 94  | 49.648766 | 49.648766 | 49.648766 |
| 5      | 95  | 48.918299 | 48.918299 | 48.918299 |
| 5      | 96  | 56.080300 | 56.080300 | 56.080300 |
| 5      | 97  | 43.600459 | 43.600459 | 43.600459 |
| 5      | 98  | 64.031242 | 64.031242 | 64.031242 |
| 5      | 99  | 28.635642 | 28.635642 | 28.635642 |
| 5      | 100 | 45.398238 | 45.398238 | 45.398238 |
| 5      | 101 | 17.029386 | 17.029386 | 17.029386 |
| 6      | 1   | 40.311289 | 40.311289 | 40.311289 |
| 6      | 2   | 5.000000  | 5.000000  | 5.000000  |
| 6      | 3   | 10.198039 | 10.198039 | 10.198039 |
| 6      | 4   | 2.00000   | 2.000000  | 2.000000  |
| 6      | 5   | 5.000000  | 5.000000  | 5.000000  |
| 6      | 7   | 10.198039 | 10.198039 | 10.198039 |
| 6      | 8   | 11.180340 | 11.180340 | 11.180340 |
| 6      | 9   | 7.071068  | 7.071068  | 7.071068  |
| 6      | 10  | 50.990195 | 50.990195 | 50.990195 |
| 6      | 11  | 46.097722 | 46.097722 | 46.097722 |
| 6      | 12  | 46.572524 | 46.572524 | 46.572524 |
| 6      | 13  | 41.761226 | 41.761226 | 41.761226 |
| 6      | 14  | 52.201533 | 52.201533 | 52.201533 |
| 6      | 15  | 42.720019 | 42.720019 | 42.720019 |
| 6      | 16  | 48.466483 | 48.466483 | 48.466483 |
| 6      | 17  | 49.244289 | 49.244289 | 49.244289 |
| 6      | 18  | 44.721360 | 44.721360 | 44.721360 |
| 6      | 19  | 83.522452 | 83.522452 | 83.522452 |
| 6      | 20  | 78.160092 | 78.160092 | 78.160092 |
| 6      | 21  | 73.375745 | 73.375745 | 73.375745 |
|        | 22  | 82.462113 | 82.462113 | 82.462113 |
| 6<br>6 | 23  |           |           |           |
| 6      |     | 72.801099 | 72.801099 | 72.801099 |
|        | 24  | 82.000000 | 82.000000 | 82.000000 |
| 6      | 25  | 72.277244 | 72.277244 | 72.277244 |
| 6      | 26  | 81.394103 | 81.394103 | 81.394103 |
| 6      | 27  | 93.005376 | 93.005376 | 93.005376 |
| 6      | 28  | 90.138782 | 90.138782 | 90.138782 |
| 6      | 29  | 90.603532 | 90.603532 | 90.603532 |
| 6      | 30  | 86.023253 | 86.023253 | 86.023253 |
| 6      | 31  | 87.458562 | 87.458562 | 87.458562 |
| 6      | 32  | 84.403791 | 84.403791 | 84.403791 |
| 6      | 33  | 86.683332 | 86.683332 | 86.683332 |
| 6      | 34  | 88.459030 | 88.459030 | 88.459030 |
| 6      | 35  | 82.006097 | 82.006097 | 82.006097 |
| 6      | 36  | 47.000000 | 47.000000 | 47.000000 |
| 6      | 37  | 45.000000 | 45.000000 | 45.000000 |
| 6      | 38  | 45.099889 | 45.099889 | 45.099889 |
| 6      | 39  | 42.296572 | 42.296572 | 42.296572 |
| 6      | 40  | 40.311289 | 40.311289 | 40.311289 |
| 6      | 41  | 40.000000 | 40.000000 | 40.00000  |
| 6      | 42  | 39.293765 | 39.293765 | 39.293765 |
| 6      | 43  | 35.355339 | 35.355339 | 35.355339 |
| 6      | 44  | 35.000000 | 35.000000 | 35.000000 |
| 6      | 45  | 35.128336 | 35.128336 | 35.128336 |
| 6      | 46  | 3.000000  | 3.000000  | 3.000000  |
| 6      | 47  | 5.385165  | 5.385165  | 5.385165  |
| 6      | 48  | 43.863424 | 43.863424 | 43.863424 |
| 6      | 49  | 82.969874 | 82.969874 | 82.969874 |
| 6      | 50  | 76.243032 | 76.243032 | 76.243032 |
| 6      | 51  | 72.138755 | 72.138755 | 72.138755 |
| 6      | 52  | 73.824115 | 73.824115 | 73.824115 |
| L      |     |           |           |           |

| 6 | 53  | 55.226805 | 55.226805   | 55.226805 |  |
|---|-----|-----------|-------------|-----------|--|
| 6 | 54  |           |             |           |  |
|   |     | 35.000000 | 35.00000    | 35.000000 |  |
| 6 | 55  | 43.011626 | 43.011626   | 43.011626 |  |
| 6 | 56  | 26.925824 | 26.925824   | 26.925824 |  |
| 6 | 57  | 58.309519 | 58.309519   | 58.309519 |  |
| 6 | 58  | 60.827625 | 60.827625   | 60.827625 |  |
| 6 | 59  | 75.166482 | 75.166482   | 75.166482 |  |
| 6 | 60  | 65.764732 | 65.764732   | 65.764732 |  |
|   |     |           |             |           |  |
| 6 | 61  | 25.495098 | 25.495098   | 25.495098 |  |
| 6 | 62  | 32.015621 | 32.015621   | 32.015621 |  |
| 6 | 63  | 67.268120 | 67.268120   | 67.268120 |  |
| 6 | 64  | 79.056942 | 79.056942   | 79.056942 |  |
| 6 | 65  | 60.415230 | 60.415230   | 60.415230 |  |
| 6 | 66  | 47.434165 | 47.434165   | 47.434165 |  |
| 6 | 67  |           |             |           |  |
|   |     | 52.392748 | 52.392748   | 52.392748 |  |
| 6 | 68  | 61.522354 | 61.522354   | 61.522354 |  |
| 6 | 69  | 32.015621 | 32.015621   | 32.015621 |  |
| 6 | 70  | 34.785054 | 34.785054   | 34.785054 |  |
| 6 | 71  | 21.931712 | 21.931712   | 21.931712 |  |
| 6 | 72  | 54.083269 | 54.083269   | 54.083269 |  |
| 6 | 73  | 47.423623 | 47.423623   | 47.423623 |  |
|   |     |           |             |           |  |
| 6 | 74  | 30.805844 | 30.805844   | 30.805844 |  |
| 6 | 75  | 65.000000 | 65.000000   | 65.000000 |  |
| 6 | 76  | 81.394103 | 81.394103   | 81.394103 |  |
| 6 | 77  | 83.240615 | 83.240615   | 83.240615 |  |
| 6 | 78  | 82.054860 | 82.054860   | 82.054860 |  |
| 6 | 79  | 31.384710 | 31.384710   | 31.384710 |  |
| 6 | 80  |           |             |           |  |
|   |     | 22.022716 | 22.022716   | 22.022716 |  |
| 6 | 81  | 46.615448 | 46.615448   | 46.615448 |  |
| 6 | 82  | 39.623226 | 39.623226   | 39.623226 |  |
| 6 | 83  | 42.579338 | 42.579338   | 42.579338 |  |
| 6 | 84  | 56.612719 | 56.612719   | 56.612719 |  |
| 6 | 85  | 67.119297 | 67.119297   | 67.119297 |  |
| 6 | 86  | 75.451971 | 75.451971   | 75.451971 |  |
|   |     |           |             |           |  |
| 6 | 87  | 61.008196 | 61.008196   | 61.008196 |  |
| 6 | 88  | 61.522354 | 61.522354   | 61.522354 |  |
| 6 | 89  | 27.294688 | 27.294688   | 27.294688 |  |
| 6 | 90  | 92.784697 | 92.784697   | 92.784697 |  |
| 6 | 91  | 41.629317 | 41.629317   | 41.629317 |  |
| 6 | 92  | 51.865210 | 51.865210   | 51.865210 |  |
| 6 | 93  | 53.413481 | 53.413481   | 53.413481 |  |
|   |     |           |             |           |  |
| 6 | 94  | 52.630789 | 52.630789   | 52.630789 |  |
| 6 | 95  | 52.325902 | 52.325902   | 52.325902 |  |
| 6 | 96  | 60.000000 | 60.000000   | 60.000000 |  |
| 6 | 97  | 46.754679 | 46.754679   | 46.754679 |  |
| 6 | 98  | 68.883960 | 68.883960   | 68.883960 |  |
| 6 | 99  | 33.541020 | 33.541020   | 33.541020 |  |
| 6 | 100 | 50.358713 | 50.358713   | 50.358713 |  |
| 6 | 101 | 21.095023 | 21.095023   | 21.095023 |  |
|   |     |           |             |           |  |
| 7 | 1   | 33.301652 | 33.301652   | 33.301652 |  |
| 7 | 2   | 12.206556 | 12.206556   | 12.206556 |  |
| 7 | 3   | 4.000000  | 4.000000    | 4.000000  |  |
| 7 | 4   | 10.770330 | 10.770330   | 10.770330 |  |
| 7 | 5   | 5.385165  | 5.385165    | 5.385165  |  |
| 7 | 6   | 10.198039 | 10.198039   | 10.198039 |  |
| 7 | 8   | 3.000000  | 3.000000    | 3.000000  |  |
|   |     |           |             |           |  |
| 7 | 9   | 5.830952  | 5.830952    | 5.830952  |  |
| 7 | 10  | 40.792156 | 40.792156   | 40.792156 |  |
| 7 | 11  | 35.902646 | 35.902646   | 35.902646 |  |
| 7 | 12  | 36.400549 | 36.400549   | 36.400549 |  |
| 7 | 13  | 31.622777 | 31.622777   | 31.622777 |  |
| 7 | 14  | 42.059482 | 42.059482   | 42.059482 |  |
| 7 | 15  | 32.695565 | 32.695565   | 32.695565 |  |
| ′ | 10  | J4.03J303 | JZ • 03JJ0J | JZ.09JJ0J |  |

| 7 | 16 | 38.483763 | 38.483763 | 38.483763 |  |
|---|----|-----------|-----------|-----------|--|
| 7 | 17 | 39.357337 | 39.357337 | 39.357337 |  |
| 7 | 18 | 34.985711 | 34.985711 | 34.985711 |  |
| 7 | 19 | 74.672619 | 74.672619 | 74.672619 |  |
| 7 | 20 | 69.289249 | 69.289249 | 69.289249 |  |
| 7 | 21 | 64.621978 | 64.621978 |           |  |
|   |    |           |           | 64.621978 |  |
| 7 | 22 | 73.375745 | 73.375745 | 73.375745 |  |
| 7 | 23 | 63.906181 | 63.906181 | 63.906181 |  |
| 7 | 24 | 72.801099 | 72.801099 | 72.801099 |  |
| 7 | 25 | 63.245553 | 63.245553 | 63.245553 |  |
| 7 | 26 | 72.034714 | 72.034714 | 72.034714 |  |
| 7 | 27 | 89.185201 | 89.185201 | 89.185201 |  |
| 7 | 28 | 86.769810 | 86.769810 | 86.769810 |  |
| 7 | 29 | 86.608314 | 86.608314 | 86.608314 |  |
| 7 | 30 | 82.365041 | 82.365041 | 82.365041 |  |
| 7 | 31 | 83.216585 | 83.216585 | 83.216585 |  |
| 7 | 32 | 80.622577 | 80.622577 | 80.622577 |  |
| 7 |    |           |           |           |  |
|   | 33 | 82.377181 | 82.377181 | 82.377181 |  |
| 7 | 34 | 83.600239 | 83.600239 | 83.600239 |  |
| 7 | 35 | 78.032045 | 78.032045 | 78.032045 |  |
| 7 | 36 | 50.009999 | 50.009999 | 50.009999 |  |
| 7 | 37 | 48.052055 | 48.052055 | 48.052055 |  |
| 7 | 38 | 47.518417 | 47.518417 | 47.518417 |  |
| 7 | 39 | 44.283180 | 44.283180 | 44.283180 |  |
| 7 | 40 | 42.296572 | 42.296572 | 42.296572 |  |
| 7 | 41 | 43.174066 | 43.174066 | 43.174066 |  |
| 7 | 42 | 40.000000 | 40.000000 | 40.000000 |  |
| 7 | 43 | 37.336309 | 37.336309 | 37.336309 |  |
| 7 | 44 | 38.327536 | 38.327536 | 38.327536 |  |
|   |    |           |           |           |  |
| 7 | 45 | 37.656341 | 37.656341 | 37.656341 |  |
| 7 | 46 | 7.280110  | 7.280110  | 7.280110  |  |
| 7 | 47 | 5.000000  | 5.000000  | 5.000000  |  |
| 7 | 48 | 34.000000 | 34.000000 | 34.000000 |  |
| 7 | 49 | 74.000000 | 74.000000 | 74.000000 |  |
| 7 | 50 | 67.416615 | 67.416615 | 67.416615 |  |
| 7 | 51 | 67.201190 | 67.201190 | 67.201190 |  |
| 7 | 52 | 66.287254 | 66.287254 | 66.287254 |  |
| 7 | 53 | 45.541190 | 45.541190 | 45.541190 |  |
| 7 | 54 | 25.079872 | 25.079872 | 25.079872 |  |
| 7 | 55 | 39.924930 | 39.924930 | 39.924930 |  |
| 7 | 56 | 19.209373 | 19.209373 | 19.209373 |  |
| 7 | 57 | 51.224994 | 51.224994 | 51.224994 |  |
| 7 | 58 | 51.419841 | 51.419841 | 51.419841 |  |
| 7 | 59 | 65.069194 | 65.069194 | 65.069194 |  |
| 7 | 60 | 55.578773 | 55.578773 | 55.578773 |  |
|   |    |           |           |           |  |
| 7 | 61 | 15.297059 | 15.297059 | 15.297059 |  |
| 7 | 62 | 28.792360 | 28.792360 | 28.792360 |  |
| 7 | 63 | 61.717096 | 61.717096 | 61.717096 |  |
| 7 | 64 | 72.346389 | 72.346389 | 72.346389 |  |
| 7 | 65 | 52.478567 | 52.478567 | 52.478567 |  |
| 7 | 66 | 38.910153 | 38.910153 | 38.910153 |  |
| 7 | 67 | 44.418465 | 44.418465 | 44.418465 |  |
| 7 | 68 | 56.612719 | 56.612719 | 56.612719 |  |
| 7 | 69 | 26.627054 | 26.627054 | 26.627054 |  |
| 7 | 70 | 26.419690 | 26.419690 | 26.419690 |  |
| 7 | 71 | 18.027756 | 18.027756 | 18.027756 |  |
| 7 | 72 | 51.078371 | 51.078371 | 51.078371 |  |
| 7 | 73 | 46.097722 | 46.097722 | 46.097722 |  |
| 7 | 74 | 21.931712 | 21.931712 | 21.931712 |  |
| 7 | 75 | 55.036352 | 55.036352 | 55.036352 |  |
|   |    |           |           |           |  |
| 7 | 76 | 71.196910 | 71.196910 | 71.196910 |  |
| 7 | 77 | 75.716577 | 75.716577 | 75.716577 |  |
| 7 | 78 | 72.173402 | 72.173402 | 72.173402 |  |

| 7 9 21,470911 21,470911 21,470911 7 80 13,382444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,3892444 13,389244 14,31264 13,389244 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 14,392162 1 |   |     |           |           |           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|-----------|-----------|-----------|--|
| 7         80         13,892444         13,892444         13,892444           7         81         40,311289         40,311289         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,355339         35,055339         35,355339         35,055339         35,055339         35,055339         35,055339         35,055339         35,055339         35,055339         35,055339         35,055339         35,055339         35,055339         35,055339         35,055339         35,055339         35,055339         35,055339         35,055339         35,055339         35,055339         35,055339         35,055339         35,055339         35,055339         35,055339         35,055339         35,055339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 | 79  | 21.470911 | 21.470911 | 21.470911 |  |
| 7         81         40.311289         40.311289         40.311289           7         82         35.55539         35.35539         35.35539         33.241540           7         84         47.927028         47.927028         47.927028           7         85         60.307545         60.307545         60.307545           86         66.767725         68.767725         68.767725         68.767725           7         87         51.088159         51.088159         51.088159           7         89         18.027756         18.027756         18.027756           8         51.331720         51.331720         51.331720           9         18.027756         18.027756         18.027756           90         85.445009         85.445009         85.445009           91         33.937849         33.837849         33.837849           93         47.423623         47.436263         47.23623           7         94         48.764741         48.764741         48.764741           8.764741         48.764741         48.764741         48.764741           98         53.740115         53.740115         53.740115           98         40.543095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |     |           |           |           |  |
| 7         82         35.355339         35.355339         35.355339         35.355339         37.41540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741540         33.741546         33.741546         33.741546         33.741546         33.741546         33.741546         33.741546         33.741546         33.741546         33.741546         33.741546         33.741546         33.741546         33.741546         33.741546         33.741546         34.741546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |           |           |           |  |
| 7         83         33,241540         33,241540         33,241540         33,241540         34,727028         47,927028         47,927028         47,927028         47,927028         47,927028         47,927028         47,927028         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,307545         60,4077556         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         45,276926         45,276926         45,276926         45,276926         45,276926         45,276926         45,276926         45,276926         47,23623         47,23623         47,23623         47,23623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |     |           |           |           |  |
| 7         84         47,927028         47,927028         47,927028           7         85         60,307545         60,307545         60,307545         60,307545           7         86         66,767725         68,767725         68,767725         7,000755           7         86         51,351728         51,088159         51,088159         51,088159           7         89         16,027756         18,027756         18,027756         18,027756           7         90         85,455889         65,465889         65,465889         36,458889           7         91         33,837849         33,837849         33,837849         33,837849         33,837849         33,837849         33,837849         33,837849         33,837849         33,837849         34,7423623         47,423623         47,423623         47,423623         47,423623         47,423623         47,423623         47,423623         47,423623         47,423623         47,434165         47,434165         47,434165         47,434165         53,740115         53,740115         53,740115         53,740115         53,740115         53,740115         54,8594122         58,694122         58,694122         58,694122         58,694122         58,694122         58,694122         58,694122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |     |           |           |           |  |
| 7         85         60.307545         60.307545         60.307545           7         86         68.767725         68.767725         76.76775           7         87         \$1.088159         \$1.088159         \$1.088159         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351728         \$1.351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 | 83  | 33.241540 | 33.241540 | 33.241540 |  |
| 7         86         68,767725         68,767725         68,767725         7         87         51,088159         51,088159         51,088159         51,088159         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,45889         51,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         33,35389         33,474414         43,45889         33,45899         54,45889         34,45849         47,434165         47,434165         47,434165         47,434165         47,434165         53,740115         53,740115         53,740115         53,740115         53,740115         53,740115         53,740115         53,740115 <td< th=""><th>7</th><th>84</th><th>47.927028</th><th>47.927028</th><th>47.927028</th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 | 84  | 47.927028 | 47.927028 | 47.927028 |  |
| 7         86         68,767725         68,767725         68,767725         7         87         51,088159         51,088159         51,088159         51,088159         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,351728         51,45889         51,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         53,45889         33,35389         33,474414         43,45889         33,45899         54,45889         34,45849         47,434165         47,434165         47,434165         47,434165         47,434165         53,740115         53,740115         53,740115         53,740115         53,740115         53,740115         53,740115         53,740115 <td< th=""><th>7</th><th>85</th><th>60.307545</th><th>60.307545</th><th>60.307545</th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 | 85  | 60.307545 | 60.307545 | 60.307545 |  |
| 7 88 51.088159 51.088159 51.088159 51.088159 7 88 51.351728 51.351728 51.351728 51.351728 7 99 18.027756 18.027756 18.027756 18.027756 7 91 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.837849 33.83784155 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.740115 33.7 | 7 | 8.6 | 68.767725 | 68.767725 | 68.767725 |  |
| 7         88         51,351728         51,351728         51,351728         61,351728           7         89         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         18,027756         41,02623         47,423623         47,423623         47,423623         47,434165         47,434165         47,434165         47,434165         47,434165         47,434165         47,434165         47,434165         47,434165         47,434165         47,434165         47,434165         47,434165         47,434165         47,434165         47,434165         47,434165         47,434165         47,434165         47,434165         47,434165         47,434165         47,434165         47,434165         47,434165         47,434165         47,25423         47,25423         47,25423         47,25423         47,25423         47,25423         47,25423         47,25424         47,25424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |     |           |           |           |  |
| 7         89         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027756         18.027751         18.02774         18.02774         18.02774         18.02774         18.02774         18.027756         18.02774         18.02757         18.02757         18.02757         18.02757         18.02757         18.02757         18.02757         18.02757         18.02757         18.02757         18.02757         18.02757         18.02757         18.02757         18.02757         18.02757         18.02757         18.02757         18.02757         18.02757         18.02757         18.02757         18.022777         18.022777         18.022777         18.022777         18.022777         18.022777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |     |           |           |           |  |
| 7 90 85.43589 85.44589 85.44589 33.837849 33.837849 37 991 33.837849 33.837849 33.837849 33.837849 37 992 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926 45.276926  |   |     |           |           |           |  |
| 7 91 33.837849 33.837849 33.837849 33.837869 7 92 45.276926 45.276926 45.276926 7 93 47.423623 47.423623 47.423623 7 94 48.764741 48.764741 49.764741 7 95 47.434165 47.434165 47.434165 7 96 53.740115 53.740115 53.740115 7 97 42.544095 42.544095 42.544095 8 58.694122 58.694122 58.694122 9 99 24.351591 24.351591 24.351591 7 100 40.792156 40.792156 40.792156 7 101 15.264338 15.264338 15.264338 1 35.355339 35.355339 8 2 14.142136 14.142136 14.142136 14.142136 8 3 7.00000 7.000000 7.000000 8 4 12.206556 12.206556 12.206556 8 5 7.071068 7.071068 7.071068 8 6 11.180340 11.180340 11.180340 8 7 3.000000 3.000000 3.000000 8 6 6 11.360340 41.142136 11.180340 11.180340 8 7 3.000000 3.000000 3.000000 8 9 5.000000 5.000000 5.000000 8 10 40.311289 40.311289 40.311289 8 11 35.355339 35.355339 35.355339 8 12 35.693137 35.693137 35.693137 35.693137 8 13 30.805844 30.805844 30.805844 30.805844 8 14 41.231056 41.231056 41.231056 8 15 31.622777 31.622777 31.622777 8 16 37.336309 37.336309 37.336309 8 17 38.078866 38.078866 38.078866 8 18 33.541020 33.541020 33.541020 8 19 75.769387 75.769387 75.769387 75.769387 8 20 70.384657 70.384657 70.384657 8 21 65.795137 65.795137 75.769387 8 22 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74.330344 74. |   |     |           |           |           |  |
| 7 92 45.276926 45.276926 45.276926 45.276926 7 93 47.423623 47.423623 47.423623 7 94 48.764741 48.764741 48.764741 7 95 47.434165 47.434165 47.434165 7 96 53.740115 53.740115 53.740115 7 97 42.544095 42.544095 42.544095 98 58.691122 58.694122 58.694122 7 99 24.351591 24.351591 24.351591 7 100 40.792156 40.792156 40.792156 7 101 15.264338 15.264338 15.264338 8 1 35.355339 35.355339 35.355339 8 2 14.142136 14.142136 14.142136 8 3 7.00000 7.00000 7.00000 7.00000 8 4 12.206556 12.206556 12.206556 8 5 7.071068 7.071068 7.071068 8 6 11.180340 11.180340 11.180340 8 7 3.00000 5.00000 5.00000 5.000000 8 9 5.00000 5.00000 5.00000 5.000000 8 10 40.311289 40.311289 40.311289 8 11 35.355339 35.355339 35.355339 8 12 35.693137 35.693137 35.693137 8 13 30.805844 30.805844 30.805844 8 14 41.231056 41.231056 41.231056 8 15 31.622777 31.622777 31.622777 8 16 37.336309 37.336309 37.336309 37.336309 8 17 38.078866 38.078866 38.078866 38.078866 8 18 33.541020 33.541020 33.541020 33.541020 58.2777 8 16 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 37.336309 3 |   |     |           |           |           |  |
| 7 93 47.423623 47.423623 47.423623 47.423623 47.423623 47.423623 47.423623 47.423623 47.434165 47.434165 47.434165 47.434165 47.434165 47.434165 57.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 53.740115 5 | 7 | 91  | 33.837849 | 33.837849 | 33.837849 |  |
| 7         94         48.764741         48.764741         48.764741         47.434165         47.434165         47.434165         47.434165         47.434165         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         40.73125         40.73125         40.73125         40.73126         40.73126         41.142136         41.142136         41.14136         41.142136         41.1413136         41.143136         41.143136         41.143136         41.143136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 | 92  | 45.276926 | 45.276926 | 45.276926 |  |
| 7         94         48.764741         48.764741         48.764741         47.434165         47.434165         47.434165         47.434165         47.434165         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         53.740115         40.73125         40.73125         40.73125         40.73126         40.73126         41.142136         41.142136         41.14136         41.142136         41.1413136         41.143136         41.143136         41.143136         41.143136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 | 93  | 47.423623 | 47.423623 | 47.423623 |  |
| 7         95         47.434165         47.434165         53.740115         53.740115         53.740115         53.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115         77.740115 <th></th> <th>9.4</th> <th>48 764741</th> <th>48 764741</th> <th>48 764741</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 9.4 | 48 764741 | 48 764741 | 48 764741 |  |
| 7 96 53.740115 53.740115 53.740115 7 97 42.544095 42.544095 42.544095 7 98 58.694122 58.694122 58.694122 7 99 24.351591 24.351591 24.351591 7 100 40.792156 40.792156 40.792156 7 101 15.264338 15.264338 15.264338 8 1 35.355339 35.355339 35.355339 8 2 14.142136 14.142136 14.142136 8 3 7.000000 7.000000 7.000000 8 4 12.206556 12.206556 12.206556 8 5 7.071068 7.071068 7.071068 8 6 11.180340 11.180340 11.180340 8 7 3.000000 3.000000 5.000000 8 6 11.180340 11.180340 11.180340 8 7 3.000000 5.000000 5.000000 8 9 5.000000 5.000000 5.000000 8 10 40.311289 40.311289 40.311289 8 11 35.355339 35.355339 35.355339 8 12 35.693137 35.693137 35.693137 8 13 30.805844 30.805844 30.805844 8 14 41.231056 41.231056 41.231056 8 15 31.622777 31.622777 31.622777 8 16 37.336309 37.336309 37.336309 37.336309 8 17 38.078866 38.078866 88.078866 8 18 33.541020 33.541020 33.541020 8 19 75.769387 75.769387 75.769387 9 75.769387 75.769387 75.769387 9 75.769387 75.769387 75.769387 9 75.769387 70.384657 70.384657 8 21 65.795137 65.795137 65.795137 8 22 74.330344 74.330344 74.330344 8 23 65.000000 65.000000 65.000000 8 24 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73.681748 73. |   |     |           |           |           |  |
| 77 98 58.694122 58.694122 58.694122 58.694122 7 99 24.351591 24.351591 24.351591 24.351591 7 100 40.792156 40.792156 40.792156 40.792156 40.792156 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 15.264338 17.3600000 7.000000 7.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.0000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.0000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.0000000000                                                                                                                                                                                                                                                                                                                                                                                        |   |     |           |           |           |  |
| 7         98         58.694122         58.694122         24.351591         24.351591         24.351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         72.4351591         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |     |           |           |           |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |     |           |           |           |  |
| 7         100         40.792156         40.792156         40.792156           7         101         15.264338         15.264338         15.264338           8         1         35.355339         35.355339         35.355339           8         2         14.142136         14.142136         14.142136           8         3         7.000000         7.000000         7.071068           8         4         12.206556         12.206556         12.206556           8         5         7.071068         7.071068         7.071068           8         6         11.180340         11.180340         11.180340           8         7         3.000000         3.000000         5.000000           8         9         5.000000         5.000000           8         10         40.311289         40.311289           8         11         35.355339         35.355339         35.355339           8         12         35.693137         35.693137         35.693137         35.693137           8         13         30.805844         30.805844         30.805844         30.805844           8         14         41.231056         41.231056         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |           |           |           |  |
| 7         101         15.264338         15.264338         15.264338           8         1         35.355339         35.355339         35.355339           8         2         14.142136         14.142136         14.142136           8         3         7.000000         7.000000         7.000000           8         4         12.206556         12.206556         12.206556           8         5         7.071068         7.071068         11.180340           8         7         3.00000         3.000000         3.000000           8         9         5.00000         5.00000         5.00000           8         10         40.311289         40.311289         40.311289           8         11         35.355339         35.355339         35.355339           8         12         35.693137         35.693137         35.693137           8         13         30.805844         30.805844         30.805844         30.805844           8         14         41.231056         41.231056         41.231056           8         15         31.622777         31.622777         31.622777           8         16         37.336309         37.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 | 99  | 24.351591 | 24.351591 | 24.351591 |  |
| 7         101         15.264338         15.264338         15.264338           8         1         35.355339         35.355339         35.355339           8         2         14.142136         14.142136         14.142136           8         3         7.000000         7.000000         7.000000           8         4         12.206556         12.206556         12.206556           8         5         7.071068         7.071068         11.180340           8         7         3.00000         3.000000         3.000000           8         9         5.00000         5.00000         5.00000           8         10         40.311289         40.311289         40.311289           8         11         35.355339         35.355339         35.355339           8         12         35.693137         35.693137         35.693137           8         13         30.805844         30.805844         30.805844         30.805844           8         14         41.231056         41.231056         41.231056           8         15         31.622777         31.622777         31.622777           8         16         37.336309         37.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 | 100 | 40.792156 | 40.792156 | 40.792156 |  |
| 8         1         35.355339         35.355339         35.355339         35.355339         3         3.555339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |     |           |           |           |  |
| 8         2         14.142136         14.142136         14.142136         7.000000           8         4         12.206556         12.206556         12.206556           8         5         7.071068         7.071068         7.071068           8         6         11.180340         11.180340         11.180340           8         7         3.000000         3.000000         3.000000           8         9         5.000000         5.000000         5.000000           8         10         40.311289         40.311289         40.311289           8         11         35.355339         35.355339         35.355339           8         12         35.693137         35.693137         35.693137           8         13         30.805844         30.805844         30.805844         30.805844         30.805844         31.622777         31.622777         31.622777         31.622777         31.622777         31.622777         31.622777         31.622777         31.622777         31.622777         31.622777         31.622777         31.622777         31.622777         31.622777         31.622777         31.622777         31.622777         7.70.384657         70.384657         70.384657         70.384657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |     |           |           |           |  |
| 8         3         7.000000         7.000000         7.000000           8         4         12.206556         12.206556         12.206556           8         5         7.071068         7.071068         7.071068           8         6         11.180340         11.180340         11.180340           8         7         3.000000         3.000000         5.000000           8         9         5.000000         5.000000           8         10         40.311289         40.311289         40.311289           8         11         35.355339         35.355339         35.355339           8         12         33.693137         35.693137         35.693137           8         13         30.805844         30.805844         30.805844           8         14         41.231056         41.231056           8         15         31.622777         31.622777         31.622777           8         16         37.336309         37.336309         37.336309           8         17         38.078866         38.078866         38.078866           8         18         33.541020         33.541020         33.541020           8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |           |           |           |  |
| 8         4         12.206556         12.206556         7.071068         7.071068         7.071068         7.071068         7.071068         8         6         11.180340         11.180340         11.180340         8         7         3.000000         3.000000         3.000000         3.000000         5.000000         5.000000         5.000000         5.000000         5.000000         5.000000         5.000000         6         9         5.000000         5.000000         5.000000         5.000000         5.000000         5.000000         6         3.012289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         40.311289         31.321289         50.311289         50.311289         50.311289         50.311289         50.311289         50.311289 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |     |           |           |           |  |
| 8         5         7.071068         7.071068         7.071068           8         6         11.180340         11.180340         11.180340           8         7         3.000000         3.000000         3.000000           8         9         5.000000         5.000000         5.000000           8         10         40.311289         40.311289         40.311289           8         11         35.355339         35.355339         35.55339           8         12         35.693137         35.693137         35.693137           8         13         30.805844         30.805844         30.805844         30.805844           8         14         41.231056         41.231056         41.231056           8         15         31.622777         31.622777         31.622777         31.622777           8         16         37.336309         37.336309         37.336309         37.336309           8         17         38.078866         38.078866         38.078866         38.078866           8         18         33.541020         33.541020         33.541020           8         19         75.769387         75.769387         75.769387         75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |     |           |           |           |  |
| 8       6       11.180340       11.180340       3.000000         8       7       3.000000       3.000000       3.000000         8       9       5.000000       5.000000         8       10       40.311289       40.311289       40.311289         8       11       35.355339       35.355339       35.355339         8       12       35.693137       35.693137       35.693137         8       13       30.805844       30.805844       30.805844       30.805844         8       14       41.231056       41.231056       41.231056         8       15       31.622777       31.622777       31.622777         8       16       37.336309       37.336309       37.336309         8       17       38.078866       38.078866       38.078866         8       18       33.541020       33.541020       33.541020         8       19       75.769387       75.769387       75.769387         8       21       65.795137       65.795137       65.795137       65.795137         8       22       74.330344       74.330344       74.330344       74.330344       74.330344       74.330344       74.33034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |     |           |           |           |  |
| 8         7         3.000000         3.000000         3.000000           8         9         5.000000         5.000000         5.000000           8         10         40.311289         40.311289         40.311289           8         11         35.355339         35.355339         35.355339           8         12         35.693137         35.693137         35.693137           8         13         30.805844         30.805844         30.805844           8         14         41.231056         41.231056         41.231056           8         15         31.622777         31.622777         31.622777           8         16         37.336309         37.336309         37.336309           8         17         38.078866         38.078866         38.078866           8         18         33.541020         33.541020         33.541020           8         19         75.769387         75.769387         75.769387           8         20         70.384657         70.384657         70.384657         70.384657           8         21         65.795137         65.795137         65.795137         62.975137           8         23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 | 5   | 7.071068  | 7.071068  | 7.071068  |  |
| 8         9         5.000000         5.000000         5.000000           8         10         40.311289         40.311289         40.311289           8         11         35.355339         35.355339         35.355339           8         12         35.693137         35.693137         35.693137           8         13         30.805844         30.805844         30.805844           8         14         41.231056         41.231056         41.231056           8         15         31.622777         31.622777         31.622777         31.622777         31.622777           8         16         37.336309         37.336309         37.336309         37.336309           8         17         38.078866         38.078866         38.078866         38.078866           8         18         33.541020         33.541020         33.541020           8         19         75.769387         75.769387         75.769387           8         20         70.384657         70.384657         70.384657           8         21         65.795137         65.795137         65.795137           8         22         74.330344         74.330344         74.330344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 | 6   | 11.180340 | 11.180340 | 11.180340 |  |
| 8       10       40.311289       40.311289       40.311289         8       11       35.355339       35.355339       35.355339         8       12       35.693137       35.693137       35.693137         8       13       30.805844       30.805844       30.805844         8       14       41.231056       41.231056       41.231056         8       15       31.622777       31.622777       31.622777         8       16       37.336309       37.336309       37.336309         8       17       38.078866       38.078866       38.078866         8       18       33.541020       33.541020       33.541020         8       19       75.769387       75.769387       75.769387         8       20       70.384657       70.384657       70.384657         8       21       65.795137       65.795137       65.795137         8       22       74.330344       74.330344       74.330344       74.330344         8       22       74.330344       74.330344       74.330344       74.330344       73.681748         8       24       73.681748       73.681748       73.681748       73.681748 <td< th=""><th>8</th><th>7</th><th>3.000000</th><th>3.000000</th><th>3.000000</th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 | 7   | 3.000000  | 3.000000  | 3.000000  |  |
| 8       10       40.311289       40.311289       40.311289         8       11       35.355339       35.355339       35.355339         8       12       35.693137       35.693137       35.693137         8       13       30.805844       30.805844       30.805844         8       14       41.231056       41.231056       41.231056         8       15       31.622777       31.622777       31.622777         8       16       37.336309       37.336309       37.336309         8       17       38.078866       38.078866       38.078866         8       18       33.541020       33.541020       33.541020         8       19       75.769387       75.769387       75.769387         8       20       70.384657       70.384657       70.384657         8       21       65.795137       65.795137       65.795137         8       22       74.330344       74.330344       74.330344       74.330344         8       22       74.330344       74.330344       74.330344       74.330344       73.681748         8       24       73.681748       73.681748       73.681748       73.681748 <td< th=""><th>8</th><th>9</th><th>5.000000</th><th>5.000000</th><th>5.000000</th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 | 9   | 5.000000  | 5.000000  | 5.000000  |  |
| 8       11       35.355339       35.355339       35.355339         8       12       35.693137       35.693137       35.693137         8       13       30.805844       30.805844       30.805844         8       14       41.231056       41.231056       41.231056         8       15       31.622777       31.622777       31.622777         8       16       37.336309       37.336309       37.336309         8       17       38.078866       38.078866       38.078866         8       18       33.541020       33.541020       33.541020         8       19       75.769387       75.769387       75.769387         8       20       70.384657       70.384657       70.384657         8       21       65.795137       65.795137       65.795137         8       22       74.330344       74.330344       74.330344       74.330344         8       23       65.000000       65.000000       65.000000         8       24       73.681748       73.681748       73.681748         8       25       64.257295       64.257295       64.257295         8       26       72.801099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 1.0 |           |           |           |  |
| 8       12       35.693137       35.693137       35.693137         8       13       30.805844       30.805844       30.805844         8       14       41.231056       41.231056       41.231056         8       15       31.622777       31.622777       31.622777         8       16       37.336309       37.336309       37.336309         8       17       38.078866       38.078866       38.078866         8       18       33.541020       33.541020       33.541020         8       19       75.769387       75.769387       75.769387         8       20       70.384657       70.384657       70.384657         8       21       65.795137       65.795137       65.795137         8       22       74.330344       74.330344       74.330344         8       23       65.00000       65.00000       65.00000         8       24       73.681748       73.681748       73.681748         8       25       64.257295       64.257295       64.257295         8       26       72.801099       72.801099       72.801099         8       27       91.787799       91.787799 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |     |           |           |           |  |
| 8       13       30.805844       30.805844       30.805844         8       14       41.231056       41.231056       41.231056         8       15       31.622777       31.622777       31.622777         8       16       37.336309       37.336309       37.336309         8       17       38.078866       38.078866       38.078866         8       18       33.541020       33.541020       33.541020         8       19       75.769387       75.769387       75.769387         8       20       70.384657       70.384657       70.384657         8       21       65.795137       65.795137       65.795137         8       22       74.330344       74.330344       74.330344       74.330344         8       23       65.000000       65.000000       65.000000         8       24       73.681748       73.681748       73.681748         8       25       64.257295       64.257295       64.257295         8       26       72.801099       72.801099       72.801099         8       27       91.787799       91.787799       91.787799         8       28       89.442719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |     |           |           |           |  |
| 8       14       41.231056       41.231056       41.231056         8       15       31.622777       31.622777       31.622777         8       16       37.336309       37.336309       37.336309         8       17       38.078866       38.078866       38.078866         8       18       33.541020       33.541020       33.541020         8       19       75.769387       75.769387       75.769387         8       20       70.384657       70.384657       70.384657         8       21       65.795137       65.795137       65.795137         8       22       74.330344       74.330344       74.330344       74.330344       74.330344       74.330344       74.330344       74.330344       74.330344       74.330344       74.330344       74.330344       74.330344       73.681748       73.681748       82.661748       73.681748       73.681748       73.681748       82.681748       73.681748       73.681748       82.281148       82.27295       64.257295       64.257295       64.257295       64.257295       64.257295       64.257295       64.257295       89.442719       89.442719       89.442719       89.442719       89.442719       89.185201       89.185201 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |     |           |           |           |  |
| 8       15       31.622777       31.622777       31.622777         8       16       37.336309       37.336309       37.336309         8       17       38.078866       38.078866       38.078866         8       18       33.541020       33.541020       33.541020         8       19       75.769387       75.769387       75.769387         8       20       70.384657       70.384657       70.384657         8       21       65.795137       65.795137       65.795137         8       22       74.330344       74.330344       74.330344       74.330344         8       23       65.000000       65.000000       65.000000         8       24       73.681748       73.681748       73.681748         8       25       64.257295       64.257295       64.257295         8       26       72.801099       72.801099       72.801099         8       27       91.787799       91.787799       91.787799         8       28       89.442719       89.442719       89.442719         8       29       89.185201       89.185201       89.185201         8       30       85.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |     |           |           |           |  |
| 8       16       37.336309       37.336309       37.336309         8       17       38.078866       38.078866       38.078866         8       18       33.541020       33.541020       33.541020         8       19       75.769387       75.769387       75.769387         8       20       70.384657       70.384657       70.384657         8       21       65.795137       65.795137       65.795137         8       22       74.330344       74.330344       74.330344         8       23       65.000000       65.000000       65.000000         8       24       73.681748       73.681748       73.681748         8       25       64.257295       64.257295       64.257295         8       26       72.801099       72.801099       72.801099         8       27       91.787799       91.787799       91.787799         8       28       89.442719       89.442719       89.442719         8       29       89.185201       89.185201       89.185201         8       30       85.000000       85.000000       85.000000         8       31       85.755466       85.755466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |     |           |           |           |  |
| 8       17       38.078866       38.078866       38.078866         8       18       33.541020       33.541020       33.541020         8       19       75.769387       75.769387       75.769387         8       20       70.384657       70.384657       70.384657         8       21       65.795137       65.795137       65.795137         8       22       74.330344       74.330344       74.330344         8       23       65.000000       65.000000       65.000000         8       24       73.681748       73.681748       73.681748         8       25       64.257295       64.257295       64.257295         8       26       72.801099       72.801099       72.801099         9       1.787799       91.787799       91.787799         8       29       89.185201       89.185201       89.185201         8       30       85.000000       85.000000       85.000000         8       31       85.755466       85.755466       85.755466         8       32       83.240615       83.240615       83.240615         8       33       84.905830       84.905830       84.905830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | 15  | 31.622777 | 31.622777 | 31.622777 |  |
| 8       18       33.541020       33.541020       33.541020         8       19       75.769387       75.769387       75.769387         8       20       70.384657       70.384657       70.384657         8       21       65.795137       65.795137       65.795137         8       22       74.330344       74.330344       74.330344         8       23       65.000000       65.000000       65.000000         8       24       73.681748       73.681748       73.681748         8       25       64.257295       64.257295       64.257295         8       26       72.801099       72.801099       72.801099         8       27       91.787799       91.787799       91.787799         8       29       89.185201       89.185201       89.185201         8       29       89.185201       89.185201       89.185201         8       30       85.000000       85.000000       85.000000         8       31       85.755466       85.755466       85.755466         8       32       83.240615       83.240615       83.240615         8       33       84.905830       84.905830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 | 16  | 37.336309 | 37.336309 | 37.336309 |  |
| 8       19       75.769387       75.769387       75.769387         8       20       70.384657       70.384657       70.384657         8       21       65.795137       65.795137       65.795137         8       22       74.330344       74.330344       74.330344         8       23       65.000000       65.000000       65.000000         8       24       73.681748       73.681748       73.681748         8       25       64.257295       64.257295       64.257295         8       26       72.801099       72.801099       72.801099         8       27       91.787799       91.787799       91.787799         8       28       89.442719       89.442719       89.442719         8       29       89.185201       89.185201       89.185201         8       30       85.000000       85.000000       85.000000         8       31       85.755466       85.755466       85.755466         8       32       83.240615       83.240615       83.240615         8       33       84.905830       84.905830       84.905830         8       34       86.023253       86.023253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 | 17  | 38.078866 | 38.078866 | 38.078866 |  |
| 8       19       75.769387       75.769387       75.769387         8       20       70.384657       70.384657       70.384657         8       21       65.795137       65.795137       65.795137         8       22       74.330344       74.330344       74.330344         8       23       65.000000       65.000000       65.000000         8       24       73.681748       73.681748       73.681748         8       25       64.257295       64.257295       64.257295         8       26       72.801099       72.801099       72.801099         8       27       91.787799       91.787799       91.787799         8       28       89.442719       89.442719       89.442719         8       29       89.185201       89.185201       89.185201         8       30       85.000000       85.000000       85.000000         8       31       85.755466       85.755466       85.755466         8       32       83.240615       83.240615       83.240615         8       33       84.905830       84.905830       84.905830         8       34       86.023253       86.023253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 | 18  | 33.541020 | 33.541020 | 33.541020 |  |
| 8       20       70.384657       70.384657       70.384657         8       21       65.795137       65.795137       65.795137         8       22       74.330344       74.330344       74.330344         8       23       65.000000       65.000000       65.000000         8       24       73.681748       73.681748       73.681748         8       25       64.257295       64.257295       64.257295         8       26       72.801099       72.801099       72.801099         8       27       91.787799       91.787799       91.787799         8       28       89.442719       89.442719       89.442719         8       29       89.185201       89.185201       89.185201         8       30       85.000000       85.000000       85.000000         8       31       85.755466       85.755466       85.755466         8       32       83.240615       83.240615       83.240615         8       33       84.905830       84.905830       84.905830         8       34       86.023253       86.023253       86.023253         8       35       80.622577       80.622577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 19  |           | 75.769387 | 75.769387 |  |
| 8       21       65.795137       65.795137       65.795137         8       22       74.330344       74.330344       74.330344         8       23       65.000000       65.000000       65.00000         8       24       73.681748       73.681748       73.681748         8       25       64.257295       64.257295       64.257295         8       26       72.801099       72.801099       72.801099         8       27       91.787799       91.787799       91.787799         8       28       89.442719       89.442719       89.442719         8       29       89.185201       89.185201       89.185201         8       30       85.00000       85.00000       85.00000         8       31       85.755466       85.755466       85.755466         8       32       83.240615       83.240615       83.240615         8       33       84.905830       84.905830       84.905830         8       34       86.023253       86.023253       86.023253         8       35       80.622577       80.622577       80.622577         8       36       52.952809       52.952809 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |     |           |           |           |  |
| 8       22       74.330344       74.330344       74.330344       74.330344         8       23       65.000000       65.000000       65.000000         8       24       73.681748       73.681748       73.681748         8       25       64.257295       64.257295       64.257295         8       26       72.801099       72.801099       72.801099         8       27       91.787799       91.787799       91.787799         8       28       89.442719       89.442719       89.48271         8       29       89.185201       89.185201       89.185201         8       30       85.000000       85.000000       85.000000         8       31       85.755466       85.755466       85.755466         8       32       83.240615       83.240615       83.240615         8       33       84.905830       84.905830       84.905830         8       34       86.023253       86.023253       86.023253         8       35       80.622577       80.622577       80.622577         8       36       52.952809       52.952809       52.952809         8       37       50.990195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |     |           |           |           |  |
| 8       23       65.000000       65.000000       65.000000         8       24       73.681748       73.681748       73.681748         8       25       64.257295       64.257295       64.257295         8       26       72.801099       72.801099       72.801099         8       27       91.787799       91.787799       91.787799         8       28       89.442719       89.442719       89.442719         8       29       89.185201       89.185201       89.185201         8       30       85.000000       85.000000       85.000000         8       31       85.755466       85.755466       85.755466         8       32       83.240615       83.240615       83.240615         8       33       84.905830       84.905830       84.905830         8       34       86.023253       86.023253       86.023253         8       35       80.622577       80.622577       80.622577         8       36       52.952809       52.952809       52.952809         8       37       50.990195       50.990195       50.990195         8       39       47.265209       47.265209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |     |           |           |           |  |
| 8       24       73.681748       73.681748       73.681748         8       25       64.257295       64.257295       64.257295         8       26       72.801099       72.801099       72.801099         8       27       91.787799       91.787799       91.787799         8       28       89.442719       89.442719       89.442719         8       29       89.185201       89.185201       89.185201         8       30       85.000000       85.000000       85.000000         8       31       85.755466       85.755466       85.755466         8       32       83.240615       83.240615       83.240615         8       33       84.905830       84.905830       84.905830         8       34       86.023253       86.023253       86.023253         8       35       80.622577       80.622577       80.622577         8       36       52.952809       52.952809       52.952809         8       37       50.990195       50.990195       50.990195         8       38       50.487622       50.487622       50.487622         8       39       47.265209       47.265209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |     |           |           |           |  |
| 8       25       64.257295       64.257295       64.257295         8       26       72.801099       72.801099       72.801099         8       27       91.787799       91.787799       91.787799         8       28       89.442719       89.442719       89.442719         8       29       89.185201       89.185201       89.185201         8       30       85.000000       85.000000       85.000000         8       31       85.755466       85.755466       85.755466         8       32       83.240615       83.240615       83.240615         8       33       84.905830       84.905830       84.905830         8       34       86.023253       86.023253       86.023253         8       35       80.622577       80.622577       80.622577         8       36       52.952809       52.952809       52.952809         8       37       50.990195       50.990195       50.990195         8       39       47.265209       47.265209       47.265209         8       40       45.276926       45.276926       45.276926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |     |           |           |           |  |
| 8       26       72.801099       72.801099       72.801099         8       27       91.787799       91.787799       91.787799         8       28       89.442719       89.442719       89.185201         8       29       89.185201       89.185201       89.185201         8       30       85.000000       85.000000       85.000000         8       31       85.755466       85.755466       85.755466         8       32       83.240615       83.240615       83.240615         8       33       84.905830       84.905830       84.905830         8       34       86.023253       86.023253       86.023253         8       35       80.622577       80.622577       80.622577         8       36       52.952809       52.952809       52.952809         8       37       50.990195       50.990195       50.990195         8       38       50.487622       50.487622       50.487622         8       39       47.265209       47.265209       47.265209         8       40       45.276926       45.276926       45.276926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |     |           |           |           |  |
| 8       27       91.787799       91.787799       91.787799         8       28       89.442719       89.442719       89.185201         8       29       89.185201       89.185201       89.185201         8       30       85.000000       85.000000       85.000000         8       31       85.755466       85.755466       85.755466         8       32       83.240615       83.240615       83.240615         8       33       84.905830       84.905830       84.905830         8       34       86.023253       86.023253       86.023253         8       35       80.622577       80.622577       80.622577         8       36       52.952809       52.952809       52.952809         8       37       50.990195       50.990195       50.990195         8       38       50.487622       50.487622       50.487622         8       39       47.265209       47.265209       47.265209         8       40       45.276926       45.276926       45.276926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |     |           |           |           |  |
| 8       28       89.442719       89.442719       89.185201         8       29       89.185201       89.185201       89.185201         8       30       85.000000       85.000000         8       31       85.755466       85.755466       85.755466         8       32       83.240615       83.240615       83.240615         8       33       84.905830       84.905830       84.905830         8       34       86.023253       86.023253       86.023253         8       35       80.622577       80.622577       80.622577         8       36       52.952809       52.952809       52.952809         8       37       50.990195       50.990195       50.990195         8       38       50.487622       50.487622       50.487622         8       39       47.265209       47.265209       47.265209         8       40       45.276926       45.276926       45.276926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 | 26  | 72.801099 | 72.801099 | 72.801099 |  |
| 8       28       89.442719       89.442719       89.442719         8       29       89.185201       89.185201       89.185201         8       30       85.000000       85.000000         8       31       85.755466       85.755466       85.755466         8       32       83.240615       83.240615       83.240615         8       33       84.905830       84.905830       84.905830         8       34       86.023253       86.023253       86.023253         8       35       80.622577       80.622577       80.622577         8       36       52.952809       52.952809       52.952809         8       37       50.990195       50.990195       50.990195         8       38       50.487622       50.487622       50.487622         8       39       47.265209       47.265209       47.265209         8       40       45.276926       45.276926       45.276926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 | 27  | 91.787799 | 91.787799 | 91.787799 |  |
| 8       29       89.185201       89.185201       89.185201         8       30       85.000000       85.000000         8       31       85.755466       85.755466       85.755466         8       32       83.240615       83.240615       83.240615         8       33       84.905830       84.905830       84.905830         8       34       86.023253       86.023253       86.023253         8       35       80.622577       80.622577       80.622577         8       36       52.952809       52.952809       52.952809         8       37       50.990195       50.990195       50.990195         8       38       50.487622       50.487622       50.487622         8       39       47.265209       47.265209       47.265209         8       40       45.276926       45.276926       45.276926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 | 28  | 89.442719 | 89.442719 | 89.442719 |  |
| 8       30       85.000000       85.000000         8       31       85.755466       85.755466         8       32       83.240615       83.240615         8       33       84.905830       84.905830         8       34       86.023253       86.023253         8       35       80.622577       80.622577         8       36       52.952809       52.952809         8       37       50.990195       50.990195         8       38       50.487622       50.487622         8       39       47.265209       47.265209         8       40       45.276926       45.276926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |     |           |           |           |  |
| 8       31       85.755466       85.755466       85.755466         8       32       83.240615       83.240615       83.240615         8       33       84.905830       84.905830       84.905830         8       34       86.023253       86.023253       86.023253         8       35       80.622577       80.622577       80.622577         8       36       52.952809       52.952809       52.952809         8       37       50.990195       50.990195       50.990195         8       38       50.487622       50.487622       50.487622         8       39       47.265209       47.265209       47.265209         8       40       45.276926       45.276926       45.276926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |     |           |           |           |  |
| 8       32       83.240615       83.240615       83.240615         8       33       84.905830       84.905830       84.905830         8       34       86.023253       86.023253       86.023253         8       35       80.622577       80.622577       80.622577         8       36       52.952809       52.952809       52.952809         8       37       50.990195       50.990195       50.990195         8       38       50.487622       50.487622       50.487622         8       39       47.265209       47.265209       47.265209         8       40       45.276926       45.276926       45.276926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |     |           |           |           |  |
| 8       33       84.905830       84.905830       84.905830         8       34       86.023253       86.023253       86.023253         8       35       80.622577       80.622577       80.622577         8       36       52.952809       52.952809       52.952809         8       37       50.990195       50.990195       50.990195         8       38       50.487622       50.487622       50.487622         8       39       47.265209       47.265209       47.265209         8       40       45.276926       45.276926       45.276926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |           |           |           |  |
| 8       34       86.023253       86.023253       86.023253         8       35       80.622577       80.622577       80.622577         8       36       52.952809       52.952809       52.952809         8       37       50.990195       50.990195       50.990195         8       38       50.487622       50.487622       50.487622         8       39       47.265209       47.265209       47.265209         8       40       45.276926       45.276926       45.276926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |     |           |           |           |  |
| 8       35       80.622577       80.622577       80.622577         8       36       52.952809       52.952809       52.952809         8       37       50.990195       50.990195       50.990195         8       38       50.487622       50.487622       50.487622         8       39       47.265209       47.265209       47.265209         8       40       45.276926       45.276926       45.276926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |     |           |           |           |  |
| 8       36       52.952809       52.952809       52.952809         8       37       50.990195       50.990195       50.990195         8       38       50.487622       50.487622       50.487622         8       39       47.265209       47.265209       47.265209         8       40       45.276926       45.276926       45.276926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 |     |           |           |           |  |
| 8       37       50.990195       50.990195       50.990195         8       38       50.487622       50.487622       50.487622         8       39       47.265209       47.265209       47.265209         8       40       45.276926       45.276926       45.276926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 | 35  | 80.622577 | 80.622577 | 80.622577 |  |
| 8       37       50.990195       50.990195       50.990195         8       38       50.487622       50.487622       50.487622         8       39       47.265209       47.265209       47.265209         8       40       45.276926       45.276926       45.276926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 | 36  | 52.952809 | 52.952809 | 52.952809 |  |
| 8       38       50.487622       50.487622       50.487622         8       39       47.265209       47.265209       47.265209         8       40       45.276926       45.276926       45.276926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |     |           | 50.990195 | 50.990195 |  |
| 8       39       47.265209       47.265209       47.265209         8       40       45.276926       45.276926       45.276926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |     |           |           |           |  |
| 8 40 45.276926 45.276926 45.276926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |     |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |           |           |           |  |
| 8 41 46.097722 46.097722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |     |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 | 4 1 | 46.09//22 | 46.09//22 | 46.09//22 |  |

| 8      | 42  | 43.000000 | 43.000000 | 43.000000 |  |
|--------|-----|-----------|-----------|-----------|--|
| 8      | 43  | 40.311289 | 40.311289 | 40.311289 |  |
| 8      | 44  | 41.231056 | 41.231056 | 41.231056 |  |
| 8      | 45  | 40.607881 | 40.607881 | 40.607881 |  |
| 3      | 46  | 8.602325  | 8.602325  | 8.602325  |  |
| 3      | 47  | 5.830952  | 5.830952  | 5.830952  |  |
| 3      | 48  | 32.695565 | 32.695565 | 32.695565 |  |
| 3      | 49  | 75.026662 | 75.026662 | 75.026662 |  |
| 3      | 50  | 68.541958 | 68.541958 | 68.541958 |  |
| 3      | 51  |           |           |           |  |
|        |     | 69.634761 | 69.634761 | 69.634761 |  |
| 3      | 52  | 68.007353 | 68.007353 | 68.007353 |  |
| 3      | 53  | 46.097722 | 46.097722 | 46.097722 |  |
| 3      | 54  | 25.495098 | 25.495098 | 25.495098 |  |
| }      | 55  | 42.720019 | 42.720019 | 42.720019 |  |
| 3      | 56  | 21.213203 | 21.213203 | 21.213203 |  |
| 3      | 57  | 53.150729 | 53.150729 | 53.150729 |  |
| }      | 58  | 52.201533 | 52.201533 | 52.201533 |  |
| 3      | 59  | 65.000000 | 65.000000 | 65.000000 |  |
| }      | 60  |           |           |           |  |
|        |     | 55.226805 | 55.226805 | 55.226805 |  |
| }      | 61  | 15.000000 | 15.000000 | 15.000000 |  |
|        | 62  | 31.622777 | 31.622777 | 31.622777 |  |
| 3      | 63  | 64.031242 | 64.031242 | 64.031242 |  |
| }      | 64  | 74.330344 | 74.330344 | 74.330344 |  |
| }      | 65  | 54.083269 | 54.083269 | 54.083269 |  |
| 3      | 66  | 40.311289 | 40.311289 | 40.311289 |  |
| }      | 67  | 46.043458 | 46.043458 | 46.043458 |  |
| }      | 68  | 59.076222 | 59.076222 | 59.076222 |  |
|        |     |           |           |           |  |
| 3      | 69  | 29.154759 | 29.154759 | 29.154759 |  |
| 3      | 70  | 28.017851 | 28.017851 | 28.017851 |  |
| 3      | 71  | 20.880613 | 20.880613 | 20.880613 |  |
| 3      | 72  | 53.851648 | 53.851648 | 53.851648 |  |
| 3      | 73  | 49.030603 | 49.030603 | 49.030603 |  |
| 3      | 74  | 19.849433 | 19.849433 | 19.849433 |  |
| 3      | 75  | 55.226805 | 55.226805 | 55.226805 |  |
| 3      | 76  | 70.710678 | 70.710678 | 70.710678 |  |
| 3      | 77  | 77.420927 | 77.420927 | 77.420927 |  |
| 3      | 78  | 72.443081 | 72.443081 | 72.443081 |  |
| 3      | 79  | 20.248457 | 20.248457 | 20.248457 |  |
|        |     |           |           |           |  |
| }      | 80  | 11.401754 | 11.401754 | 11.401754 |  |
| 3      | 81  | 42.520583 | 42.520583 | 42.520583 |  |
| 3      | 82  | 38.013156 | 38.013156 | 38.013156 |  |
| 3      | 83  | 34.176015 | 34.176015 | 34.176015 |  |
| 3      | 84  | 49.193496 | 49.193496 | 49.193496 |  |
| 3      | 85  | 62.289646 | 62.289646 | 62.289646 |  |
| 3      | 86  | 70.767224 | 70.767224 | 70.767224 |  |
| }      | 87  | 51.351728 | 51.351728 | 51.351728 |  |
| }      | 88  | 51.088159 | 51.088159 | 51.088159 |  |
|        | 89  | 19.235384 | 19.235384 |           |  |
| 3      |     |           |           | 19.235384 |  |
| }      | 90  | 87.200917 | 87.200917 | 87.200917 |  |
| 3      | 91  | 35.608988 | 35.608988 | 35.608988 |  |
| 3      | 92  | 47.381431 | 47.381431 | 47.381431 |  |
| 3      | 93  | 49.678969 | 49.678969 | 49.678969 |  |
| 3      | 94  | 51.429563 | 51.429563 | 51.429563 |  |
| }      | 95  | 49.929951 | 49.929951 | 49.929951 |  |
| }      | 96  | 55.901699 | 55.901699 | 55.901699 |  |
| }      | 97  | 45.177428 | 45.177428 | 45.177428 |  |
|        |     |           |           |           |  |
| 3      | 98  | 58.051701 | 58.051701 | 58.051701 |  |
| 3      | 99  | 25.495098 | 25.495098 | 25.495098 |  |
| 3      | 100 | 41.484937 | 41.484937 | 41.484937 |  |
| 3      | 101 | 17.888544 | 17.888544 | 17.888544 |  |
|        | 1   | 39.051248 | 39.051248 | 39.051248 |  |
| 9      | 1   | 33.031240 | 001210    |           |  |
| 9<br>9 | 2   | 11.180340 | 11.180340 | 11.180340 |  |

| 9 | 4        | 8.602325               | 8.602325  | 8.602325  |
|---|----------|------------------------|-----------|-----------|
| 9 | 5        | 5.000000               | 5.000000  | 5.000000  |
| 9 | 6        | 7.071068               | 7.071068  | 7.071068  |
| 9 | 7        | 5.830952               | 5.830952  | 5.830952  |
| 9 | 8        | 5.000000               | 5.000000  | 5.000000  |
| 9 | 10       | 45.276926              | 45.276926 | 45.276926 |
|   |          |                        |           |           |
| 9 | 11       | 40.311289              | 40.311289 | 40.311289 |
| 9 | 12       | 40.607881              | 40.607881 | 40.607881 |
| 9 | 13       | 35.693137              | 35.693137 | 35.693137 |
| 9 | 14       | 46.097722              | 46.097722 | 46.097722 |
| 9 | 15       | 36.400549              | 36.400549 | 36.400549 |
| 9 | 16       | 42.059482              | 42.059482 | 42.059482 |
| 9 | 17       | 42.720019              | 42.720019 | 42.720019 |
| 9 | 18       | 38.078866              | 38.078866 | 38.078866 |
| 9 | 19       | 80.411442              | 80.411442 | 80.411442 |
| 9 | 20       | 75.026662              | 75.026662 | 75.026662 |
| 9 | 21       | 70.384657              | 70.384657 | 70.384657 |
| 9 | 22       | 79.056942              | 79.056942 | 79.056942 |
| 9 | 23       | 69.641941              | 69.641941 | 69.641941 |
| 9 | 24       | 78.447435              | 78.447435 | 78.447435 |
| 9 | 25       | 68.949257              | 68.949257 | 68.949257 |
| 9 | 26       | 77.620873              | 77.620873 | 77.620873 |
| 9 | 26<br>27 | 94.339811              | 94.339811 | 94.339811 |
|   |          |                        |           | 91.787799 |
| 9 | 28       | 91.787799<br>91.809586 | 91.787799 |           |
| 9 | 29       |                        | 91.809586 | 91.809586 |
| 9 | 30       | 87.464278              | 87.464278 | 87.464278 |
| 9 | 31       | 88.481637              | 88.481637 | 88.481637 |
| 9 | 32       | 85.755466              | 85.755466 | 85.755466 |
| 9 | 33       | 87.658428              | 87.658428 | 87.658428 |
| 9 | 34       | 89.022469              | 89.022469 | 89.022469 |
| 9 | 35       | 83.216585              | 83.216585 | 83.216585 |
| 9 | 36       | 52.239832              | 52.239832 | 52.239832 |
| 9 | 37       | 50.249378              | 50.249378 | 50.249378 |
| 9 | 38       | 50.039984              | 50.039984 | 50.039984 |
| 9 | 39       | 47.000000              | 47.000000 | 47.000000 |
| 9 | 40       | 45.000000              | 45.000000 | 45.000000 |
| 9 | 41       | 45.276926              | 45.276926 | 45.276926 |
| 9 | 42       | 43.289722              | 43.289722 | 43.289722 |
| 9 | 43       | 40.000000              | 40.000000 | 40.000000 |
| 9 | 44       | 40.311289              | 40.311289 | 40.311289 |
| 9 | 45       | 40.049969              | 40.049969 | 40.049969 |
| 9 | 46       | 5.385165               | 5.385165  | 5.385165  |
| 9 | 47       | 3.000000               | 3.000000  | 3.000000  |
| 9 | 48       | 37.336309              | 37.336309 | 37.336309 |
| 9 | 49       | 79.711982              | 79.711982 | 79.711982 |
| 9 | 50       | 73.164199              | 73.164199 | 73.164199 |
| 9 | 51       | 72.622311              | 72.622311 | 72.622311 |
| 9 | 52       | 72.111026              | 72.111026 | 72.111026 |
| 9 | 53       | 50.990195              | 50.990195 | 50.990195 |
| 9 | 54       | 30.413813              | 30.413813 | 30.413813 |
| 9 | 55       | 44.721360              | 44.721360 | 44.721360 |
| 9 | 56       | 25.000000              | 25.000000 | 25.000000 |
| 9 | 57       | 57.008771              | 57.008771 | 57.008771 |
|   |          |                        |           |           |
| 9 | 58       | 57.008771              | 57.008771 | 57.008771 |
| 9 | 59<br>60 | 70.000000              | 70.000000 | 70.000000 |
| 9 | 60       | 60.207973              | 60.207973 | 60.207973 |
| 9 | 61       | 20.000000              | 20.000000 | 20.000000 |
| 9 | 62       | 33.541020              | 33.541020 | 33.541020 |
| 9 | 63       | 67.268120              | 67.268120 | 67.268120 |
| 9 | 64       | 78.102497              | 78.102497 | 78.102497 |
| 9 | 65       | 58.309519              | 58.309519 | 58.309519 |
| 9 | 66       | 44.721360              | 44.721360 | 44.721360 |
| 9 | 67       | 50.249378              | 50.249378 | 50.249378 |
|   |          |                        |           |           |

| 9  | 68  | 62.008064 | 62.008064 | 62.008064 |  |
|----|-----|-----------|-----------|-----------|--|
| 9  | 69  | 32.015621 | 32.015621 | 32.015621 |  |
| 9  | 70  | 32.249031 | 32.249031 | 32.249031 |  |
| 9  | 71  | 22.825424 | 22.825424 | 22.825424 |  |
| 9  | 72  | 55.901699 | 55.901699 | 55.901699 |  |
| 9  | 73  | 50.289164 | 50.289164 | 50.289164 |  |
| 9  | 74  |           |           |           |  |
|    |     | 23.853721 | 23.853721 | 23.853721 |  |
| 9  | 75  | 60.207973 | 60.207973 | 60.207973 |  |
| 9  | 76  | 75.663730 | 75.663730 | 75.663730 |  |
| 9  | 77  | 81.541401 | 81.541401 | 81.541401 |  |
| 9  | 78  | 77.414469 | 77.414469 | 77.414469 |  |
| 9  | 79  | 25.000000 | 25.000000 | 25.000000 |  |
| 9  | 80  | 15.000000 | 15.000000 | 15.000000 |  |
| 9  | 81  | 45.967380 | 45.967380 | 45.967380 |  |
| 9  | 82  | 40.496913 | 40.496913 | 40.496913 |  |
| 9  | 83  | 38.897301 | 38.897301 | 38.897301 |  |
| 9  | 84  | 53.712196 | 53.712196 | 53.712196 |  |
| 9  | 85  | 66.068147 | 66.068147 | 66.068147 |  |
| 9  | 86  | 74.518454 | 74.518454 | 74.518454 |  |
|    | 87  | 56.320511 | 56.320511 | 56.320511 |  |
| 9  |     |           |           |           |  |
| 9  | 88  | 56.080300 | 56.080300 | 56.080300 |  |
| 9  | 89  | 23.769729 | 23.769729 | 23.769729 |  |
| 9  | 90  | 91.263355 | 91.263355 | 91.263355 |  |
| 9  | 91  | 39.661064 | 39.661064 | 39.661064 |  |
| 9  | 92  | 50.990195 | 50.990195 | 50.990195 |  |
| 9  | 93  | 53.037722 | 53.037722 | 53.037722 |  |
| 9  | 94  | 53.851648 | 53.851648 | 53.851648 |  |
| 9  | 95  | 52.801515 | 52.801515 | 52.801515 |  |
| 9  | 96  | 59.413803 | 59.413803 | 59.413803 |  |
| 9  | 97  | 47.707442 | 47.707442 | 47.707442 |  |
| 9  | 98  | 62.968246 | 62.968246 | 62.968246 |  |
| 9  | 99  | 30.083218 | 30.083218 | 30.083218 |  |
| 9  | 100 | 46.324939 | 46.324939 | 46.324939 |  |
| 9  | 101 | 20.615528 | 20.615528 | 20.615528 |  |
| 10 | 1   | 33.541020 | 33.541020 | 33.541020 |  |
| 10 | 2   | 52.201533 | 52.201533 | 52.201533 |  |
| 10 | 3   | 41.761226 | 41.761226 | 41.761226 |  |
| 10 | 4   | 51.419841 | 51.419841 | 51.419841 |  |
| 10 | 5   | 46.097722 | 46.097722 | 46.097722 |  |
| 10 |     |           |           | 50.990195 |  |
|    | 6   | 50.990195 | 50.990195 |           |  |
| 10 | 7   | 40.792156 | 40.792156 | 40.792156 |  |
| 10 | 8   | 40.311289 | 40.311289 | 40.311289 |  |
| 10 | 9   | 45.276926 | 45.276926 | 45.276926 |  |
| 10 | 11  | 5.000000  | 5.000000  | 5.000000  |  |
| 10 | 12  | 5.385165  | 5.385165  | 5.385165  |  |
| 10 | 13  | 10.198039 | 10.198039 | 10.198039 |  |
| 10 | 14  | 5.000000  | 5.00000   | 5.000000  |  |
| 10 | 15  | 11.180340 | 11.180340 | 11.180340 |  |
| 10 | 16  | 9.433981  | 9.433981  | 9.433981  |  |
| 10 | 17  | 11.180340 | 11.180340 | 11.180340 |  |
| 10 | 18  | 14.142136 | 14.142136 | 14.142136 |  |
| 10 | 19  | 45.343136 | 45.343136 | 45.343136 |  |
| 10 | 20  | 40.607881 | 40.607881 | 40.607881 |  |
| 10 | 21  | 37.735925 | 37.735925 | 37.735925 |  |
| 10 | 22  | 42.426407 | 42.426407 | 42.426407 |  |
| 10 | 23  | 36.055513 | 36.055513 | 36.055513 |  |
| 10 | 24  | 41.036569 | 41.036569 | 41.036569 |  |
| 10 | 25  | 34.409301 | 34.409301 | 34.409301 |  |
|    |     |           |           |           |  |
| 10 | 26  | 39.051248 | 39.051248 | 39.051248 |  |
| 10 | 27  | 85.146932 | 85.146932 | 85.146932 |  |
| 10 | 28  | 85.000000 | 85.000000 | 85.000000 |  |
| 10 | 29  | 82.152298 | 82.152298 | 82.152298 |  |
| 10 | 30  | 80.000000 | 80.000000 | 80.000000 |  |

| _  |    |           |           |           |  |
|----|----|-----------|-----------|-----------|--|
| 10 | 31 | 78.160092 | 78.160092 | 78.160092 |  |
| 10 | 32 | 78.000000 | 78.000000 | 78.000000 |  |
| 10 | 33 | 77.162167 | 77.162167 | 77.162167 |  |
|    |    |           |           |           |  |
| 10 | 34 | 75.663730 | 75.663730 | 75.663730 |  |
| 10 | 35 | 75.000000 | 75.000000 | 75.000000 |  |
| 10 | 36 | 75.822160 | 75.822160 | 75.822160 |  |
| 10 | 37 | 74.330344 | 74.330344 | 74.330344 |  |
| 10 | 38 | 72.346389 | 72.346389 | 72.346389 |  |
|    |    |           |           |           |  |
| 10 | 39 | 68.767725 | 68.767725 | 68.767725 |  |
| 10 | 40 | 67.268120 | 67.268120 | 67.268120 |  |
| 10 | 41 | 70.710678 | 70.710678 | 70.710678 |  |
| 10 | 42 | 62.481997 | 62.481997 | 62.481997 |  |
| 10 | 43 | 63.639610 | 63.639610 | 63.639610 |  |
|    |    |           |           |           |  |
| 10 | 44 | 67.268120 | 67.268120 | 67.268120 |  |
| 10 | 45 | 65.069194 | 65.069194 | 65.069194 |  |
| 10 | 46 | 48.052055 | 48.052055 | 48.052055 |  |
| 10 | 47 | 45.705580 | 45.705580 | 45.705580 |  |
| 10 | 48 | 12.806248 | 12.806248 | 12.806248 |  |
|    |    |           |           |           |  |
| 10 | 49 | 43.863424 | 43.863424 | 43.863424 |  |
| 10 | 50 | 39.408121 | 39.408121 | 39.408121 |  |
| 10 | 51 | 62.000000 | 62.000000 | 62.000000 |  |
| 10 | 52 | 47.434165 | 47.434165 | 47.434165 |  |
| 10 | 53 | 15.811388 | 15.811388 | 15.811388 |  |
|    |    |           |           |           |  |
| 10 | 54 | 18.027756 | 18.027756 | 18.027756 |  |
| 10 | 55 | 51.478151 | 51.478151 | 51.478151 |  |
| 10 | 56 | 32.015621 | 32.015621 | 32.015621 |  |
| 10 | 57 | 40.000000 | 40.000000 | 40.00000  |  |
| 10 | 58 | 22.360680 | 22.360680 | 22.360680 |  |
|    |    |           |           |           |  |
| 10 | 59 | 25.495098 | 25.495098 | 25.495098 |  |
| 10 | 60 | 15.000000 | 15.000000 | 15.000000 |  |
| 10 | 61 | 25.495098 | 25.495098 | 25.495098 |  |
| 10 | 62 | 46.097722 | 46.097722 | 46.097722 |  |
| 10 | 63 | 55.000000 | 55.000000 | 55.000000 |  |
|    |    |           |           |           |  |
| 10 | 64 | 57.008771 | 57.008771 | 57.008771 |  |
| 10 | 65 | 35.355339 | 35.355339 | 35.355339 |  |
| 10 | 66 | 25.495098 | 25.495098 | 25.495098 |  |
| 10 | 67 | 31.064449 | 31.064449 | 31.064449 |  |
| 10 | 68 | 54.451814 | 54.451814 | 54.451814 |  |
|    |    |           |           |           |  |
| 10 | 69 | 39.051248 | 39.051248 | 39.051248 |  |
| 10 | 70 | 27.018512 | 27.018512 | 27.018512 |  |
| 10 | 71 | 42.201896 | 42.201896 | 42.201896 |  |
| 10 | 72 | 58.523500 | 58.523500 | 58.523500 |  |
| 10 | 73 | 60.901560 | 60.901560 | 60.901560 |  |
|    |    |           |           |           |  |
| 10 | 74 | 26.248809 | 26.248809 | 26.248809 |  |
| 10 | 75 | 18.027756 | 18.027756 | 18.027756 |  |
| 10 | 76 | 30.413813 | 30.413813 | 30.413813 |  |
| 10 | 77 | 55.036352 | 55.036352 | 55.036352 |  |
| 10 | 78 | 34.539832 | 34.539832 | 34.539832 |  |
| 10 | 79 | 21.095023 | 21.095023 | 21.095023 |  |
|    |    |           |           |           |  |
| 10 | 80 | 33.241540 | 33.241540 | 33.241540 |  |
| 10 | 81 | 38.897301 | 38.897301 | 38.897301 |  |
| 10 | 82 | 45.276926 | 45.276926 | 45.276926 |  |
| 10 | 83 | 18.788294 | 18.788294 | 18.788294 |  |
| 10 | 84 | 27.294688 | 27.294688 | 27.294688 |  |
|    |    |           |           |           |  |
| 10 | 85 | 47.381431 | 47.381431 | 47.381431 |  |
| 10 | 86 | 54.341513 | 54.341513 | 54.341513 |  |
| 10 | 87 | 15.556349 | 15.556349 | 15.556349 |  |
| 10 | 88 | 11.180340 | 11.180340 | 11.180340 |  |
| 10 | 89 | 26.925824 | 26.925824 | 26.925824 |  |
|    |    |           |           |           |  |
| 10 | 90 | 64.412732 | 64.412732 | 64.412732 |  |
| 10 | 91 | 29.546573 | 29.546573 | 29.546573 |  |
| 10 | 92 | 39.623226 | 39.623226 | 39.623226 |  |
| 10 | 93 | 43.737855 | 43.737855 | 43.737855 |  |
|    |    |           |           |           |  |

| 10 | 94  | 53.758720 | 53.758720 | 53.758720 |  |
|----|-----|-----------|-----------|-----------|--|
| 10 | 95  | 48.764741 | 48.764741 | 48.764741 |  |
| 10 | 96  | 46.043458 | 46.043458 | 46.043458 |  |
| 10 | 97  | 48.846699 | 48.846699 | 48.846699 |  |
| 10 | 98  | 18.027756 | 18.027756 | 18.027756 |  |
| 10 | 99  | 23.345235 | 23.345235 | 23.345235 |  |
| 10 | 100 | 16.000000 | 16.000000 | 16.000000 |  |
| 10 | 101 | 38.275318 | 38.275318 | 38.275318 |  |
|    |     |           |           |           |  |
| 11 | 1   | 31.622777 | 31.622777 | 31.622777 |  |
| 11 | 2   | 47.434165 | 47.434165 | 47.434165 |  |
| 11 | 3   | 37.000000 | 37.000000 | 37.000000 |  |
| 11 | 4   | 46.572524 | 46.572524 | 46.572524 |  |
| 11 | 5   | 41.231056 | 41.231056 | 41.231056 |  |
| 11 | 6   | 46.097722 | 46.097722 | 46.097722 |  |
| 11 | 7   | 35.902646 | 35.902646 | 35.902646 |  |
| 11 | 8   | 35.355339 | 35.355339 | 35.355339 |  |
| 11 | 9   | 40.311289 | 40.311289 | 40.311289 |  |
| 11 | 10  | 5.000000  | 5.000000  | 5.000000  |  |
| 11 | 12  | 2.000000  | 2.000000  | 2.000000  |  |
|    |     | 5.385165  | 5.385165  | 5.385165  |  |
| 11 | 13  |           |           |           |  |
| 11 | 14  | 7.071068  | 7.071068  | 7.071068  |  |
| 11 | 15  | 7.071068  | 7.071068  | 7.071068  |  |
| 11 | 16  | 8.000000  | 8.000000  | 8.000000  |  |
| 11 | 17  | 10.00000  | 10.000000 | 10.00000  |  |
| 11 | 18  | 11.180340 | 11.180340 | 11.180340 |  |
| 11 | 19  | 48.795492 | 48.795492 | 48.795492 |  |
| 11 | 20  | 43.863424 | 43.863424 | 43.863424 |  |
| 11 | 21  | 40.607881 | 40.607881 | 40.607881 |  |
| 11 | 22  | 46.097722 | 46.097722 | 46.097722 |  |
| 11 | 23  | 39.051248 | 39.051248 | 39.051248 |  |
| 11 | 24  | 44.821870 | 44.821870 | 44.821870 |  |
|    |     |           |           |           |  |
| 11 | 25  | 37.536649 | 37.536649 | 37.536649 |  |
| 11 | 26  | 43.011626 | 43.011626 | 43.011626 |  |
| 11 | 27  | 85.586214 | 85.586214 | 85.586214 |  |
| 11 | 28  | 85.146932 | 85.146932 | 85.146932 |  |
| 11 | 29  | 82.607506 | 82.607506 | 82.607506 |  |
| 11 | 30  | 80.156098 | 80.156098 | 80.156098 |  |
| 11 | 31  | 78.638413 | 78.638413 | 78.638413 |  |
| 11 | 32  | 78.160092 | 78.160092 | 78.160092 |  |
| 11 | 33  | 77.646635 | 77.646635 | 77.646635 |  |
| 11 | 34  | 76.485293 | 76.485293 | 76.485293 |  |
| 11 | 35  | 75.166482 | 75.166482 | 75.166482 |  |
| 11 |     | 72.622311 | 72.622311 | 72.622311 |  |
|    | 36  |           |           |           |  |
| 11 | 37  | 71.063352 | 71.063352 | 71.063352 |  |
| 11 | 38  | 69.202601 | 69.202601 | 69.202601 |  |
| 11 | 39  | 65.604878 | 65.604878 | 65.604878 |  |
| 11 | 40  | 64.031242 | 64.031242 | 64.031242 |  |
| 11 | 41  | 67.268120 | 67.268120 | 67.268120 |  |
| 11 | 42  | 59.405387 | 59.405387 | 59.405387 |  |
| 11 | 43  | 60.207973 | 60.207973 | 60.207973 |  |
| 11 | 44  | 63.639610 | 63.639610 | 63.639610 |  |
| 11 | 45  | 61.554854 | 61.554854 | 61.554854 |  |
| 11 | 46  | 43.174066 | 43.174066 | 43.174066 |  |
| 11 | 47  | 40.792156 | 40.792156 | 40.792156 |  |
| 11 | 48  | 9.433981  | 9.433981  | 9.433981  |  |
| 11 | 49  | 47.423623 | 47.423623 | 47.423623 |  |
|    |     |           |           |           |  |
| 11 | 50  | 42.520583 | 42.520583 | 42.520583 |  |
| 11 | 51  | 62.201286 | 62.201286 | 62.201286 |  |
| 11 | 52  | 49.244289 | 49.244289 | 49.244289 |  |
| 11 | 53  | 18.027756 | 18.027756 | 18.027756 |  |
| 11 | 54  | 14.142136 | 14.142136 | 14.142136 |  |
| 11 | 55  | 49.244289 | 49.244289 | 49.244289 |  |
| 11 | 56  | 28.284271 | 28.284271 | 28.284271 |  |
|    |     |           |           |           |  |

| 11 | 57  | 40.311289 | 40.311289 | 40.311289 |  |
|----|-----|-----------|-----------|-----------|--|
| 11 | 58  | 25.000000 | 25.000000 | 25.000000 |  |
|    |     |           |           |           |  |
| 11 | 59  | 30.413813 | 30.413813 | 30.413813 |  |
| 11 | 60  | 20.000000 | 20.000000 | 20.000000 |  |
| 11 | 61  | 20.615528 | 20.615528 | 20.615528 |  |
| 11 | 62  | 43.011626 | 43.011626 | 43.011626 |  |
| 11 | 63  | 55.226805 | 55.226805 | 55.226805 |  |
|    |     |           |           |           |  |
| 11 | 64  | 58.523500 | 58.523500 | 58.523500 |  |
| 11 | 65  | 36.400549 | 36.400549 | 36.400549 |  |
| 11 | 66  | 25.000000 | 25.000000 | 25.000000 |  |
| 11 | 67  | 31.144823 | 31.144823 | 31.144823 |  |
| 11 | 68  | 54.037024 | 54.037024 | 54.037024 |  |
| 11 | 69  | 36.055513 | 36.055513 | 36.055513 |  |
|    |     |           |           |           |  |
| 11 | 70  | 24.186773 | 24.186773 | 24.186773 |  |
| 11 | 71  | 38.288379 | 38.288379 | 38.288379 |  |
| 11 | 72  | 57.008771 | 57.008771 | 57.008771 |  |
| 11 | 73  | 58.600341 | 58.600341 | 58.600341 |  |
| 11 | 74  | 21.540659 | 21.540659 | 21.540659 |  |
|    |     |           |           |           |  |
| 11 | 75  | 22.360680 | 22.360680 | 22.360680 |  |
| 11 | 76  | 35.355339 | 35.355339 | 35.355339 |  |
| 11 | 77  | 57.306195 | 57.306195 | 57.306195 |  |
| 11 | 78  | 39.217343 | 39.217343 | 39.217343 |  |
| 11 | 79  | 16.124515 | 16.124515 | 16.124515 |  |
|    |     | 28.284271 |           |           |  |
| 11 | 80  |           | 28.284271 | 28.284271 |  |
| 11 | 81  | 37.656341 | 37.656341 | 37.656341 |  |
| 11 | 82  | 42.953463 | 42.953463 | 42.953463 |  |
| 11 | 83  | 17.262677 | 17.262677 | 17.262677 |  |
| 11 | 84  | 28.460499 | 28.460499 | 28.460499 |  |
| 11 | 85  | 48.270074 | 48.270074 | 48.270074 |  |
|    |     |           |           |           |  |
| 11 | 86  | 55.659680 | 55.659680 | 55.659680 |  |
| 11 | 87  | 19.416488 | 19.416488 | 19.416488 |  |
| 11 | 88  | 16.124515 | 16.124515 | 16.124515 |  |
| 11 | 89  | 22.803509 | 22.803509 | 22.803509 |  |
| 11 | 90  | 66.887966 | 66.887966 | 66.887966 |  |
|    |     |           |           |           |  |
| 11 | 91  | 27.892651 | 27.892651 | 27.892651 |  |
| 11 | 92  | 39.051248 | 39.051248 | 39.051248 |  |
| 11 | 93  | 43.104524 | 43.104524 | 43.104524 |  |
| 11 | 94  | 52.392748 | 52.392748 | 52.392748 |  |
| 11 | 95  | 47.675990 | 47.675990 | 47.675990 |  |
| 11 | 96  | 46.097722 | 46.097722 | 46.097722 |  |
|    |     |           |           |           |  |
| 11 | 97  | 47.127487 | 47.127487 | 47.127487 |  |
| 11 | 98  | 22.803509 | 22.803509 | 22.803509 |  |
| 11 | 99  | 20.00000  | 20.000000 | 20.000000 |  |
| 11 | 100 | 16.763055 | 16.763055 | 16.763055 |  |
| 11 | 101 | 34.205263 | 34.205263 | 34.205263 |  |
| 12 |     | 33.526109 | 33.526109 |           |  |
|    | 1   |           |           | 33.526109 |  |
| 12 | 2   | 48.104054 | 48.104054 | 48.104054 |  |
| 12 | 3   | 37.696154 | 37.696154 | 37.696154 |  |
| 12 | 4   | 47.127487 | 47.127487 | 47.127487 |  |
| 12 | 5   | 41.761226 | 41.761226 | 41.761226 |  |
| 12 | 6   | 46.572524 | 46.572524 | 46.572524 |  |
|    |     |           |           |           |  |
| 12 | 7   | 36.400549 | 36.400549 | 36.400549 |  |
| 12 | 8   | 35.693137 | 35.693137 | 35.693137 |  |
| 12 | 9   | 40.607881 | 40.607881 | 40.607881 |  |
| 12 | 10  | 5.385165  | 5.385165  | 5.385165  |  |
| 12 | 11  | 2.000000  | 2.000000  | 2.00000   |  |
| 12 | 13  | 5.000000  | 5.000000  | 5.000000  |  |
|    |     |           |           |           |  |
| 12 | 14  | 5.830952  | 5.830952  | 5.830952  |  |
| 12 | 15  | 5.830952  | 5.830952  | 5.830952  |  |
| 12 | 16  | 6.000000  | 6.000000  | 6.000000  |  |
| 12 | 17  | 8.000000  | 8.000000  | 8.000000  |  |
| 12 | 18  | 9.433981  | 9.433981  | 9.433981  |  |
| 12 |     | 50.209561 | 50.209561 |           |  |
| 12 | 19  | 30.209361 | 20.209301 | 50.209561 |  |

| 12 | 20 | 45.343136 | 45.343136 | 45.343136 |  |
|----|----|-----------|-----------|-----------|--|
| 12 | 21 | 42.201896 | 42.201896 | 42.201896 |  |
| 12 | 22 | 47.423623 | 47.423623 | 47.423623 |  |
| 12 | 23 | 40.607881 | 40.607881 | 40.607881 |  |
| 12 | 24 | 46.097722 | 46.097722 | 46.097722 |  |
| 12 | 25 |           |           |           |  |
|    |    | 39.051248 | 39.051248 | 39.051248 |  |
| 12 | 26 | 44.204072 | 44.204072 | 44.204072 |  |
| 12 | 27 | 87.572827 | 87.572827 | 87.572827 |  |
| 12 | 28 | 87.143560 | 87.143560 | 87.143560 |  |
| 12 | 29 | 84.593144 | 84.593144 | 84.593144 |  |
| 12 | 30 | 82.152298 | 82.152298 | 82.152298 |  |
| 12 | 31 | 80.622577 | 80.622577 | 80.622577 |  |
| 12 | 32 | 80.156098 | 80.156098 | 80.156098 |  |
| 12 | 33 | 79.630396 | 79.630396 | 79.630396 |  |
| 12 | 34 | 78.447435 | 78.447435 | 78.447435 |  |
|    |    |           |           |           |  |
| 12 | 35 | 77.162167 | 77.162167 | 77.162167 |  |
| 12 | 36 | 74.202426 | 74.202426 | 74.202426 |  |
| 12 | 37 | 72.622311 | 72.622311 | 72.622311 |  |
| 12 | 38 | 70.802542 | 70.802542 | 70.802542 |  |
| 12 | 39 | 67.201190 | 67.201190 | 67.201190 |  |
| 12 | 40 | 65.604878 | 65.604878 | 65.604878 |  |
| 12 | 41 | 68.767725 | 68.767725 | 68.767725 |  |
| 12 | 42 | 61.032778 | 61.032778 | 61.032778 |  |
| 12 | 43 | 61.717096 | 61.717096 | 61.717096 |  |
| 12 | 44 | 65.069194 | 65.069194 | 65.069194 |  |
|    |    |           |           |           |  |
| 12 | 45 | 63.031738 | 63.031738 | 63.031738 |  |
| 12 | 46 | 43.680659 | 43.680659 | 43.680659 |  |
| 12 | 47 | 41.231056 | 41.231056 | 41.231056 |  |
| 12 | 48 | 7.810250  | 7.810250  | 7.810250  |  |
| 12 | 49 | 48.795492 | 48.795492 | 48.795492 |  |
| 12 | 50 | 44.045431 | 44.045431 | 44.045431 |  |
| 12 | 51 | 64.195015 | 64.195015 | 64.195015 |  |
| 12 | 52 | 51.078371 | 51.078371 | 51.078371 |  |
| 12 | 53 | 19.723083 | 19.723083 | 19.723083 |  |
| 12 | 54 | 15.620499 | 15.620499 | 15.620499 |  |
| 12 |    |           | 51.078371 |           |  |
|    | 55 | 51.078371 |           | 51.078371 |  |
| 12 | 56 | 29.732137 | 29.732137 | 29.732137 |  |
| 12 | 57 | 42.296572 | 42.296572 | 42.296572 |  |
| 12 | 58 | 26.627054 | 26.627054 | 26.627054 |  |
| 12 | 59 | 30.805844 | 30.805844 | 30.805844 |  |
| 12 | 60 | 20.099751 | 20.099751 | 20.099751 |  |
| 12 | 61 | 21.189620 | 21.189620 | 21.189620 |  |
| 12 | 62 | 44.654227 | 44.654227 | 44.654227 |  |
| 12 | 63 | 57.218878 | 57.218878 | 57.218878 |  |
| 12 | 64 | 60.406953 | 60.406953 | 60.406953 |  |
| 12 | 65 | 38.327536 | 38.327536 | 38.327536 |  |
| 12 | 66 | 27.000000 | 27.000000 | 27.000000 |  |
|    |    |           |           |           |  |
| 12 | 67 | 33.136083 | 33.136083 | 33.136083 |  |
| 12 | 68 | 56.035703 | 56.035703 | 56.035703 |  |
| 12 | 69 | 37.735925 | 37.735925 | 37.735925 |  |
| 12 | 70 | 25.942244 | 25.942244 | 25.942244 |  |
| 12 | 71 | 39.623226 | 39.623226 | 39.623226 |  |
| 12 | 72 | 58.940648 | 58.940648 | 58.940648 |  |
| 12 | 73 | 60.415230 | 60.415230 | 60.415230 |  |
| 12 | 74 | 20.880613 | 20.880613 | 20.880613 |  |
| 12 | 75 | 23.323808 | 23.323808 | 23.323808 |  |
| 12 | 76 | 35.128336 | 35.128336 | 35.128336 |  |
|    |    |           |           |           |  |
| 12 | 77 | 59.059292 | 59.059292 | 59.059292 |  |
| 12 | 78 | 39.924930 | 39.924930 | 39.924930 |  |
| 12 | 79 | 16.000000 | 16.000000 | 16.000000 |  |
| 12 | 80 | 28.071338 | 28.071338 | 28.071338 |  |
| 12 | 81 | 39.623226 | 39.623226 | 39.623226 |  |
| 12 | 82 | 44.777226 | 44.777226 | 44.777226 |  |
|    |    |           |           |           |  |

| 12 | 83  | 19.235384 | 19.235384 | 19.235384              |
|----|-----|-----------|-----------|------------------------|
| 12 | 84  | 30.364453 | 30.364453 | 30.364453              |
| 12 | 85  | 50.219518 | 50.219518 | 50.219518              |
| 12 | 86  | 57.567352 | 57.567352 | 57.567352              |
| 12 | 87  | 20.615528 | 20.615528 | 20.615528              |
| 12 | 88  | 16.492423 | 16.492423 | 16.492423              |
| 12 | 89  | 24.083189 | 24.083189 | 24.083189              |
| 12 | 90  | 68.600292 | 68.600292 | 68.600292              |
| 12 | 91  | 29.832868 | 29.832868 | 29.832868              |
| 12 | 92  | 41.048752 | 41.048752 | 41.048752              |
| 12 | 93  | 45.099889 | 45.099889 | 45.099889              |
| 12 | 94  | 54.341513 | 54.341513 | 54.341513              |
| 12 | 95  | 49.648766 | 49.648766 | 49.648766              |
| 12 | 96  | 48.093659 | 48.093659 | 48.093659              |
| 12 | 97  | 49.040799 | 49.040799 | 49.040799              |
| 12 | 98  | 22.360680 | 22.360680 | 22.360680              |
| 12 | 99  | 21.633308 | 21.633308 | 21.633308              |
| 12 | 100 | 18.681542 | 18.681542 | 18.681542              |
| 12 | 101 | 35.468296 | 35.468296 | 35.468296              |
| 13 | 101 | 32.388269 | 32.388269 | 32.388269              |
| 13 | 2   | 43.462628 | 43.462628 | 43.462628              |
| 13 | 3   | 43.462628 | 43.462628 | 43.462628<br>33.105891 |
|    |     |           |           |                        |
| 13 | 4   | 42.379240 | 42.379240 | 42.379240              |
| 13 | 5   | 37.000000 | 37.000000 | 37.000000              |
| 13 | 6   | 41.761226 | 41.761226 | 41.761226<br>31.622777 |
| 13 | 7   | 31.622777 | 31.622777 |                        |
| 13 | 8   | 30.805844 | 30.805844 | 30.805844              |
| 13 | 9   | 35.693137 | 35.693137 | 35.693137              |
| 13 | 10  | 10.198039 | 10.198039 | 10.198039              |
| 13 | 11  | 5.385165  | 5.385165  | 5.385165               |
| 13 | 12  | 5.000000  | 5.000000  | 5.000000               |
| 13 | 14  | 10.440307 | 10.440307 | 10.440307              |
| 13 | 15  | 3.000000  | 3.000000  | 3.000000               |
| 13 | 16  | 7.810250  | 7.810250  | 7.810250               |
| 13 | 17  | 9.433981  | 9.433981  | 9.433981               |
| 13 | 18  | 8.000000  | 8.000000  | 8.000000               |
| 13 | 19  | 53.814496 | 53.814496 | 53.814496              |
| 13 | 20  | 48.795492 | 48.795492 | 48.795492              |
| 13 | 21  | 45.343136 | 45.343136 | 45.343136              |
| 13 | 22  | 51.224994 | 51.224994 | 51.224994              |
| 13 | 23  | 43.863424 | 43.863424 | 43.863424              |
| 13 | 24  | 50.000000 | 50.000000 | 50.000000              |
| 13 | 25  | 42.426407 | 42.426407 | 42.426407              |
| 13 | 26  | 48.259714 | 48.259714 | 48.259714              |
| 13 | 27  | 88.283634 | 88.283634 | 88.283634              |
| 13 | 28  | 87.572827 | 87.572827 | 87.572827              |
| 13 | 29  | 85.328776 | 85.328776 | 85.328776              |
| 13 | 30  | 82.607506 | 82.607506 | 82.607506              |
| 13 | 31  | 81.394103 | 81.394103 | 81.394103              |
| 13 | 32  | 80.622577 | 80.622577 | 80.622577              |
| 13 | 33  | 80.411442 | 80.411442 | 80.411442              |
| 13 | 34  | 79.555012 | 79.555012 | 79.555012              |
| 13 | 35  | 77.646635 | 77.646635 | 77.646635              |
| 13 | 36  | 71.281134 | 71.281134 | 71.281134              |
| 13 | 37  | 69.634761 | 69.634761 | 69.634761              |
| 13 | 38  | 67.955868 | 67.955868 | 67.955868              |
| 13 | 39  | 64.350602 | 64.350602 | 64.350602              |
| 13 | 40  | 62.681736 | 62.681736 | 62.681736              |
| 13 | 41  | 65.604878 | 65.604878 | 65.604878              |
| 13 | 42  | 58.309519 | 58.309519 | 58.309519              |
| 13 | 43  | 58.600341 | 58.600341 | 58.600341              |
| 13 | 44  | 61.717096 | 61.717096 | 61.717096              |
| 13 | 45  | 59.816386 | 59.816386 | 59.816386              |
| t  |     |           |           |                        |

| 13 | 46  | 38.897301 | 38.897301 | 38.897301 |  |
|----|-----|-----------|-----------|-----------|--|
| 13 | 47  | 36.400549 | 36.400549 | 36.400549 |  |
| 13 | 48  | 6.00000   | 6.000000  | 6.000000  |  |
| 13 | 49  | 52.497619 | 52.497619 | 52.497619 |  |
| 13 | 50  | 47.381431 | 47.381431 | 47.381431 |  |
| 13 | 51  | 64.776539 | 64.776539 | 64.776539 |  |
| 13 | 52  | 53.235327 | 53.235327 | 53.235327 |  |
| 13 | 53  | 22.671568 | 22.671568 | 22.671568 |  |
| 13 | 54  | 13.000000 | 13.000000 | 13.000000 |  |
| 13 | 55  | 49.335586 | 49.335586 | 49.335586 |  |
| 13 | 56  | 26.627054 | 26.627054 | 26.627054 |  |
|    |     |           | 43.174066 | 43.174066 |  |
| 13 | 57  | 43.174066 |           |           |  |
| 13 | 58  | 29.732137 | 29.732137 | 29.732137 |  |
| 13 | 59  | 35.693137 | 35.693137 | 35.693137 |  |
| 13 | 60  | 25.079872 | 25.079872 | 25.079872 |  |
| 13 | 61  | 16.552945 | 16.552945 | 16.552945 |  |
| 13 | 62  | 42.059482 | 42.059482 | 42.059482 |  |
| 13 | 63  | 57.870545 | 57.870545 | 57.870545 |  |
| 13 | 64  | 62.241465 | 62.241465 | 62.241465 |  |
| 13 | 65  | 39.924930 | 39.924930 | 39.924930 |  |
| 13 | 66  | 27.459060 | 27.459060 | 27.459060 |  |
| 13 | 67  | 33.955854 | 33.955854 | 33.955854 |  |
| 13 | 68  | 56.080300 | 56.080300 | 56.080300 |  |
| 13 | 69  | 35.341194 | 35.341194 | 35.341194 |  |
| 13 | 70  | 24.041631 | 24.041631 | 24.041631 |  |
| 13 | 71  | 36.124784 | 36.124784 | 36.124784 |  |
| 13 | 72  | 57.870545 | 57.870545 | 57.870545 |  |
| 13 | 73  | 58.523500 | 58.523500 | 58.523500 |  |
| 13 | 74  | 16.155494 | 16.155494 | 16.155494 |  |
| 13 | 74  | 27.730849 |           | 27.730849 |  |
|    |     |           | 27.730849 |           |  |
| 13 | 76  | 40.112342 | 40.112342 | 40.112342 |  |
| 13 | 77  | 61.587336 | 61.587336 | 61.587336 |  |
| 13 | 78  | 44.598206 | 44.598206 | 44.598206 |  |
| 13 | 79  | 11.000000 | 11.000000 | 11.000000 |  |
| 13 | 80  | 23.086793 | 23.086793 | 23.086793 |  |
| 13 | 81  | 39.051248 | 39.051248 | 39.051248 |  |
| 13 | 82  | 43.011626 | 43.011626 | 43.011626 |  |
| 13 | 83  | 19.104973 | 19.104973 | 19.104973 |  |
| 13 | 84  | 32.202484 | 32.202484 | 32.202484 |  |
| 13 | 85  | 51.546096 | 51.546096 | 51.546096 |  |
| 13 | 86  | 59.236813 | 59.236813 | 59.236813 |  |
| 13 | 87  | 24.698178 | 24.698178 | 24.698178 |  |
| 13 | 88  | 21.377558 | 21.377558 | 21.377558 |  |
| 13 | 89  | 20.615528 | 20.615528 | 20.615528 |  |
| 13 | 90  | 71.281134 | 71.281134 | 71.281134 |  |
| 13 | 91  | 29.068884 | 29.068884 | 29.068884 |  |
| 13 | 92  | 41.109610 | 41.109610 | 41.109610 |  |
| 13 | 93  | 45.044423 | 45.044423 | 45.044423 |  |
| 13 | 94  | 53.460266 | 53.460266 | 53.460266 |  |
| 13 | 95  | 49.091751 | 49.091751 | 49.091751 |  |
| 13 | 96  | 48.662100 | 48.662100 | 48.662100 |  |
| 13 | 97  | 47.853944 | 47.853944 | 47.853944 |  |
| 13 | 98  | 27.294688 | 27.294688 | 27.294688 |  |
| 13 | 99  | 19.313208 | 19.313208 | 19.313208 |  |
| 13 | 100 | 20.591260 | 20.591260 | 20.591260 |  |
| 13 | 101 | 31.827661 | 31.827661 | 31.827661 |  |
| 14 | 1   | 38.078866 | 38.078866 | 38.078866 |  |
| 14 |     | 53.851648 | 53.851648 | 53.851648 |  |
|    | 2   |           |           |           |  |
| 14 | 3   | 43.462628 | 43.462628 | 43.462628 |  |
| 14 | 4   | 52.810984 | 52.810984 | 52.810984 |  |
| 14 | 5   | 47.434165 | 47.434165 | 47.434165 |  |
| 14 | 6   | 52.201533 | 52.201533 | 52.201533 |  |
| 14 | 7   | 42.059482 | 42.059482 | 42.059482 |  |

| 14 | 8  | 41.231056 | 41.231056 | 41.231056 |  |
|----|----|-----------|-----------|-----------|--|
| 14 | 9  | 46.097722 | 46.097722 | 46.097722 |  |
| 14 | 10 | 5.000000  | 5.00000   | 5.000000  |  |
| 14 | 11 | 7.071068  | 7.071068  | 7.071068  |  |
| 14 | 12 | 5.830952  | 5.830952  | 5.830952  |  |
| 14 | 13 | 10.440307 | 10.440307 | 10.440307 |  |
| 14 | 15 | 10.000000 | 10.000000 | 10.000000 |  |
| 14 | 16 | 5.830952  | 5.830952  | 5.830952  |  |
| 14 | 17 | 7.071068  | 7.071068  | 7.071068  |  |
| 14 | 18 | 11.180340 | 11.180340 | 11.180340 |  |
| 14 | 19 | 49.203658 | 49.203658 | 49.203658 |  |
| 14 | 20 | 44.654227 | 44.654227 | 44.654227 |  |
| 14 | 21 | 42.059482 | 42.059482 | 42.059482 |  |
| 14 | 22 | 46.097722 | 46.097722 | 46.097722 |  |
| 14 | 23 | 40.311289 | 40.311289 | 40.311289 |  |
| 14 | 24 | 44.598206 | 44.598206 | 44.598206 |  |
| 14 | 25 | 38.587563 | 38.587563 | 38.587563 |  |
| 14 | 26 | 42.426407 | 42.426407 | 42.426407 |  |
| 14 | 27 | 90.138782 | 90.138782 | 90.138782 |  |
| 14 | 28 | 90.000000 | 90.000000 | 90.000000 |  |
| 14 | 29 | 87.143560 | 87.143560 | 87.143560 |  |
| 14 |    |           |           | 85.00000  |  |
|    | 30 | 85.000000 | 85.000000 |           |  |
| 14 | 31 | 83.150466 | 83.150466 | 83.150466 |  |
| 14 | 32 | 83.000000 | 83.00000  | 83.000000 |  |
| 14 | 33 | 82.152298 | 82.152298 | 82.152298 |  |
| 14 | 34 | 80.622577 | 80.622577 | 80.622577 |  |
| 14 | 35 | 80.000000 | 80.000000 | 80.00000  |  |
| 14 | 36 | 79.649231 | 79.649231 | 79.649231 |  |
| 14 | 37 | 78.102497 | 78.102497 | 78.102497 |  |
| 14 | 38 | 76.216796 | 76.216796 | 76.216796 |  |
| 14 | 39 | 72.622311 | 72.622311 | 72.622311 |  |
| 14 | 40 | 71.063352 | 71.063352 | 71.063352 |  |
| 14 | 41 | 74.330344 | 74.330344 | 74.330344 |  |
| 14 | 42 | 66.400301 | 66.400301 | 66.400301 |  |
| 14 | 43 | 67.268120 | 67.268120 | 67.268120 |  |
| 14 | 44 | 70.710678 | 70.710678 | 70.710678 |  |
| 14 | 45 | 68.622154 | 68.622154 | 68.622154 |  |
| 14 | 46 | 49.335586 | 49.335586 | 49.335586 |  |
| 14 | 47 | 46.840154 | 46.840154 | 46.840154 |  |
| 14 | 48 | 10.440307 | 10.440307 | 10.440307 |  |
| 14 | 49 | 47.634021 | 47.634021 | 47.634021 |  |
| 14 | 50 | 43.566042 | 43.566042 | 43.566042 |  |
| 14 | 51 | 67.000000 | 67.000000 | 67.000000 |  |
| 14 | 52 | 52.201533 | 52.201533 | 52.201533 |  |
| 14 | 53 | 20.615528 | 20.615528 | 20.615528 |  |
| 14 | 54 | 21.213203 | 21.213203 | 21.213203 |  |
| 14 | 55 | 55.901699 | 55.901699 | 55.901699 |  |
| 14 | 56 | 35.355339 | 35.355339 | 35.355339 |  |
| 14 | 57 | 45.000000 | 45.000000 | 45.000000 |  |
|    |    |           |           |           |  |
| 14 | 58 | 26.925824 | 26.925824 | 26.925824 |  |
| 14 | 59 | 26.925824 | 26.925824 | 26.925824 |  |
| 14 | 60 | 15.811388 | 15.811388 | 15.811388 |  |
| 14 | 61 | 26.925824 | 26.925824 | 26.925824 |  |
| 14 | 62 | 50.000000 | 50.000000 | 50.000000 |  |
| 14 | 63 | 60.000000 | 60.000000 | 60.000000 |  |
| 14 | 64 | 61.846584 | 61.846584 | 61.846584 |  |
| 14 | 65 | 40.311289 | 40.311289 | 40.311289 |  |
| 14 | 66 | 30.413813 | 30.413813 | 30.413813 |  |
| 14 | 67 | 36.055513 | 36.055513 | 36.055513 |  |
| 14 | 68 | 59.413803 | 59.413803 | 59.413803 |  |
| 14 | 69 | 43.011626 | 43.011626 | 43.011626 |  |
| 14 | 70 | 31.064449 | 31.064449 | 31.064449 |  |
| 14 | 71 | 45.343136 | 45.343136 | 45.343136 |  |
| L  |    |           |           |           |  |

| 14 | 72  | 63.245553 | 63.245553 | 63.245553 |  |
|----|-----|-----------|-----------|-----------|--|
| 14 | 73  | 65.299311 | 65.299311 | 65.299311 |  |
| 14 | 74  | 25.179357 | 25.179357 | 25.179357 |  |
| 14 | 75  | 21.213203 | 21.213203 | 21.213203 |  |
| 14 | 76  | 30.000000 | 30.000000 | 30.000000 |  |
| 14 | 77  | 59.615434 | 59.615434 | 59.615434 |  |
|    |     |           |           |           |  |
| 14 | 78  | 36.715120 | 36.715120 | 36.715120 |  |
| 14 | 79  | 21.213203 | 21.213203 | 21.213203 |  |
| 14 | 80  | 33.015148 | 33.015148 | 33.015148 |  |
| 14 | 81  | 43.680659 | 43.680659 | 43.680659 |  |
| 14 | 82  | 49.648766 | 49.648766 | 49.648766 |  |
| 14 | 83  | 23.409400 | 23.409400 | 23.409400 |  |
| 14 | 84  | 32.249031 | 32.249031 | 32.249031 |  |
| 14 | 85  | 52.345009 | 52.345009 | 52.345009 |  |
| 14 | 86  | 59.228372 | 59.228372 | 59.228372 |  |
| 14 | 87  | 19.416488 | 19.416488 | 19.416488 |  |
|    |     |           |           |           |  |
| 14 | 88  | 13.038405 | 13.038405 | 13.038405 |  |
| 14 | 89  | 29.832868 | 29.832868 | 29.832868 |  |
| 14 | 90  | 68.876701 | 68.876701 | 68.876701 |  |
| 14 | 91  | 34.176015 | 34.176015 | 34.176015 |  |
| 14 | 92  | 44.553339 | 44.553339 | 44.553339 |  |
| 14 | 93  | 48.662100 | 48.662100 | 48.662100 |  |
| 14 | 94  | 58.523500 | 58.523500 | 58.523500 |  |
| 14 | 95  | 53.600373 | 53.600373 | 53.600373 |  |
| 14 | 96  | 51.039201 | 51.039201 | 51.039201 |  |
| 14 | 97  | 53.488316 | 53.488316 | 53.488316 |  |
| 14 | 98  | 17.029386 | 17.029386 | 17.029386 |  |
| 14 | 99  | 27.018512 | 27.018512 | 27.018512 |  |
|    |     |           |           |           |  |
| 14 | 100 | 21.000000 | 21.000000 | 21.000000 |  |
| 14 | 101 | 41.231056 | 41.231056 | 41.231056 |  |
| 15 | 1   | 35.355339 | 35.355339 | 35.355339 |  |
| 15 | 2   | 44.721360 | 44.721360 | 44.721360 |  |
| 15 | 3   | 34.481879 | 34.481879 | 34.481879 |  |
| 15 | 4   | 43.462628 | 43.462628 | 43.462628 |  |
| 15 | 5   | 38.078866 | 38.078866 | 38.078866 |  |
| 15 | 6   | 42.720019 | 42.720019 | 42.720019 |  |
| 15 | 7   | 32.695565 | 32.695565 | 32.695565 |  |
| 15 | 8   | 31.622777 | 31.622777 | 31.622777 |  |
| 15 | 9   | 36.400549 | 36.400549 | 36.400549 |  |
| 15 |     | 11.180340 | 11.180340 | 11.180340 |  |
|    | 10  |           |           |           |  |
| 15 | 11  | 7.071068  | 7.071068  | 7.071068  |  |
| 15 | 12  | 5.830952  | 5.830952  | 5.830952  |  |
| 15 | 13  | 3.000000  | 3.000000  | 3.000000  |  |
| 15 | 14  | 10.000000 | 10.000000 | 10.000000 |  |
| 15 | 16  | 5.830952  | 5.830952  | 5.830952  |  |
| 15 | 17  | 7.071068  | 7.071068  | 7.071068  |  |
| 15 | 18  | 5.00000   | 5.000000  | 5.000000  |  |
| 15 | 19  | 55.865911 | 55.865911 | 55.865911 |  |
| 15 | 20  | 50.931326 | 50.931326 | 50.931326 |  |
| 15 | 21  | 47.634021 | 47.634021 | 47.634021 |  |
| 15 | 22  | 53.150729 | 53.150729 | 53.150729 |  |
| 15 | 23  | 46.097722 | 46.097722 | 46.097722 |  |
|    |     |           |           |           |  |
| 15 | 24  | 51.855569 | 51.855569 | 51.855569 |  |
| 15 | 25  | 44.598206 | 44.598206 | 44.598206 |  |
| 15 | 26  | 50.000000 | 50.000000 | 50.00000  |  |
| 15 | 27  | 91.241438 | 91.241438 | 91.241438 |  |
| 15 | 28  | 90.553851 | 90.553851 | 90.553851 |  |
| 15 | 29  | 88.283634 | 88.283634 | 88.283634 |  |
| 15 | 30  | 85.586214 | 85.586214 | 85.586214 |  |
| 15 | 31  | 84.344532 | 84.344532 | 84.344532 |  |
| 15 | 32  | 83.600239 | 83.600239 | 83.600239 |  |
| 15 | 33  | 83.360662 | 83.360662 | 83.360662 |  |
| 15 | 34  | 82.462113 | 82.462113 | 82.462113 |  |
| 10 | J 7 | 02.102110 | 02.102113 | 02.102113 |  |

| 15 | 35 | 80.622577 | 80.622577 | 80.622577 |  |
|----|----|-----------|-----------|-----------|--|
| 15 | 36 | 73.783467 | 73.783467 | 73.783467 |  |
| 15 | 37 | 72.111026 | 72.111026 | 72.111026 |  |
|    |    |           |           |           |  |
| 15 | 38 | 70.491134 | 70.491134 | 70.491134 |  |
| 15 | 39 | 66.887966 | 66.887966 | 66.887966 |  |
| 15 | 40 | 65.192024 | 65.192024 | 65.192024 |  |
| 15 | 41 | 68.007353 | 68.007353 | 68.007353 |  |
| 15 | 42 | 60.901560 | 60.901560 | 60.901560 |  |
| 15 | 43 | 61.032778 | 61.032778 | 61.032778 |  |
| 15 | 44 | 64.031242 | 64.031242 | 64.031242 |  |
| 15 | 45 | 62.201286 | 62.201286 | 62.201286 |  |
| 15 | 46 | 39.924930 | 39.924930 | 39.924930 |  |
|    |    |           |           |           |  |
| 15 | 47 | 37.336309 | 37.336309 | 37.336309 |  |
| 15 | 48 | 3.000000  | 3.000000  | 3.000000  |  |
| 15 | 49 | 54.488531 | 54.488531 | 54.488531 |  |
| 15 | 50 | 49.578221 | 49.578221 | 49.578221 |  |
| 15 | 51 | 67.742158 | 67.742158 | 67.742158 |  |
| 15 | 52 | 55.901699 | 55.901699 | 55.901699 |  |
| 15 | 53 | 25.000000 | 25.000000 | 25.000000 |  |
| 15 | 54 | 15.811388 | 15.811388 | 15.811388 |  |
| 15 | 55 | 52.201533 | 52.201533 | 52.201533 |  |
|    |    |           |           |           |  |
| 15 | 56 | 29.154759 | 29.154759 | 29.154759 |  |
| 15 | 57 | 46.097722 | 46.097722 | 46.097722 |  |
| 15 | 58 | 32.015621 | 32.015621 | 32.015621 |  |
| 15 | 59 | 36.400549 | 36.400549 | 36.400549 |  |
| 15 | 60 | 25.495098 | 25.495098 | 25.495098 |  |
| 15 | 61 | 18.027756 | 18.027756 | 18.027756 |  |
| 15 | 62 | 44.721360 | 44.721360 | 44.721360 |  |
| 15 | 63 | 60.827625 | 60.827625 | 60.827625 |  |
| 15 | 64 | 65.000000 | 65.000000 | 65.000000 |  |
|    |    |           |           |           |  |
| 15 | 65 | 42.720019 | 42.720019 | 42.720019 |  |
| 15 | 66 | 30.413813 | 30.413813 | 30.413813 |  |
| 15 | 67 | 36.878178 | 36.878178 | 36.878178 |  |
| 15 | 68 | 59.076222 | 59.076222 | 59.076222 |  |
| 15 | 69 | 38.078866 | 38.078866 | 38.078866 |  |
| 15 | 70 | 26.925824 | 26.925824 | 26.925824 |  |
| 15 | 71 | 38.418745 | 38.418745 | 38.418745 |  |
| 15 | 72 | 60.827625 | 60.827625 | 60.827625 |  |
| 15 | 73 | 61.351447 | 61.351447 | 61.351447 |  |
| 15 | 74 | 15.297059 | 15.297059 | 15.297059 |  |
|    |    |           |           |           |  |
| 15 | 75 | 29.154759 | 29.154759 | 29.154759 |  |
| 15 | 76 | 40.000000 | 40.00000  | 40.000000 |  |
| 15 | 77 | 64.140471 | 64.140471 | 64.140471 |  |
| 15 | 78 | 45.694639 | 45.694639 | 45.694639 |  |
| 15 | 79 | 11.401754 | 11.401754 | 11.401754 |  |
| 15 | 80 | 23.021729 | 23.021729 | 23.021729 |  |
| 15 | 81 | 42.047592 | 42.047592 | 42.047592 |  |
| 15 | 82 | 45.880279 | 45.880279 | 45.880279 |  |
| 15 | 83 | 22.090722 | 22.090722 | 22.090722 |  |
|    |    |           |           | 34.928498 |  |
| 15 | 84 | 34.928498 | 34.928498 |           |  |
| 15 | 85 | 54.405882 | 54.405882 | 54.405882 |  |
| 15 | 86 | 62.032250 | 62.032250 | 62.032250 |  |
| 15 | 87 | 26.400758 | 26.400758 | 26.400758 |  |
| 15 | 88 | 22.135944 | 22.135944 | 22.135944 |  |
| 15 | 89 | 23.021729 | 23.021729 | 23.021729 |  |
| 15 | 90 | 73.783467 | 73.783467 | 73.783467 |  |
| 15 | 91 | 32.062439 | 32.062439 | 32.062439 |  |
| 15 | 92 | 44.102154 | 44.102154 | 44.102154 |  |
| 15 |    | 48.041649 | 48.041649 | 48.041649 |  |
|    | 93 |           |           |           |  |
| 15 | 94 | 56.435804 | 56.435804 | 56.435804 |  |
| 15 | 95 | 52.086467 | 52.086467 | 52.086467 |  |
| 15 | 96 | 51.623638 | 51.623638 | 51.623638 |  |
| 15 | 97 | 50.803543 | 50.803543 | 50.803543 |  |
|    |    |           |           |           |  |

| 15       | 98       | 27.018512              | 27.018512              | 27.018512              |  |
|----------|----------|------------------------|------------------------|------------------------|--|
| 15       | 90       | 22.135944              | 22.135944              | 22.135944              |  |
| 15       | 100      | 23.259407              | 23.259407              | 23.259407              |  |
| 15       | 101      | 34.058773              | 34.058773              | 34.058773              |  |
| 16       | 1        | 39.293765              | 39.293765              | 39.293765              |  |
| 16       | 2        | 50.537115              | 50.537115              | 50.537115              |  |
| 16       | 3        | 40.311289              | 40.311289              | 40.311289              |  |
| 16       | 4        | 49.244289              | 49.244289              | 49.244289              |  |
| 16       | 5        | 43.863424              | 43.863424              | 43.863424              |  |
| 16       | 6        | 48.466483              | 48.466483              | 48.466483              |  |
| 16       | 7        | 38.483763              | 38.483763              | 38.483763              |  |
| 16       | 8        | 37.336309              | 37.336309              | 37.336309              |  |
| 16       | 9        | 42.059482              | 42.059482              | 42.059482              |  |
| 16       | 10       | 9.433981               | 9.433981               | 9.433981               |  |
| 16       | 11       | 8.000000               | 8.000000               | 8.000000               |  |
| 16       | 12       | 6.000000               | 6.000000               | 6.000000               |  |
| 16       | 13       | 7.810250               | 7.810250               | 7.810250               |  |
| 16       | 14       | 5.830952               | 5.830952               | 5.830952               |  |
| 16       | 15       | 5.830952               | 5.830952               | 5.830952               |  |
| 16       | 17       | 2.00000                | 2.000000               | 2.000000               |  |
| 16       | 18       | 5.385165               | 5.385165               | 5.385165               |  |
| 16       | 19       | 54.671748              | 54.671748              | 54.671748              |  |
| 16       | 20       | 50.000000              | 50.000000              | 50.000000              |  |
| 16       | 21       | 47.169906              | 47.169906              | 47.169906              |  |
| 16       | 22       | 51.662365              | 51.662365              | 51.662365              |  |
| 16       | 23       | 45.486262              | 45.486262              | 45.486262              |  |
| 16       | 24       | 50.209561              | 50.209561              | 50.209561              |  |
| 16       | 25       | 43.829214              | 43.829214              | 43.829214              |  |
| 16       | 26       | 48.104054              | 48.104054              | 48.104054              |  |
| 16       | 27       | 93.536089              | 93.536089              | 93.536089              |  |
| 16       | 28       | 93.134312              | 93.134312              | 93.134312              |  |
| 16       | 29       | 90.553851              | 90.553851              | 90.553851              |  |
| 16       | 30       | 88.141931              | 88.141931              | 88.141931              |  |
| 16       | 31       | 86.579443              | 86.579443              | 86.579443              |  |
| 16       | 32       | 86.145226              | 86.145226              | 86.145226              |  |
| 16       | 33       | 85.586214              | 85.586214              | 85.586214              |  |
| 16       | 34       | 84.344532              | 84.344532              | 84.344532              |  |
| 16       | 35       | 83.150466              | 83.150466              | 83.150466              |  |
| 16       | 36       | 79.056942              | 79.056942              | 79.056942              |  |
| 16       | 37       | 77.420927              | 77.420927              | 77.420927              |  |
| 16       | 38       | 75.716577              | 75.716577              | 75.716577              |  |
| 16       | 39       | 72.111026              | 72.111026              | 72.111026              |  |
| 16       | 40       | 70.455660              | 70.455660              | 70.455660              |  |
| 16       | 41       | 73.409809              | 73.409809              | 73.409809              |  |
| 16       | 42       | 66.037868              | 66.037868              | 66.037868              |  |
| 16       | 43       | 66.400301              | 66.400301              | 66.400301              |  |
| 16       | 44       | 69.526973<br>67.623960 | 69.526973              | 69.526973              |  |
| 16<br>16 | 45<br>46 | 45.694639              | 67.623960<br>45.694639 | 67.623960<br>45.694639 |  |
| 16       | 46<br>47 | 43.081318              | 43.081318              | 43.081318              |  |
| 16       | 4 /      | 5.00000                | 5.000000               | 5.00000                |  |
| 16       | 48       | 53.150729              | 53.150729              | 53.150729              |  |
| 16       | 50       | 48.826222              | 48.826222              | 48.826222              |  |
| 16       | 51       | 70.178344              | 70.178344              | 70.178344              |  |
| 16       | 52       | 56.648036              | 56.648036              | 56.648036              |  |
| 16       | 53       | 25.079872              | 25.079872              | 25.079872              |  |
| 16       | 54       | 20.591260              | 20.591260              | 20.591260              |  |
| 16       | 55       | 56.648036              | 56.648036              | 56.648036              |  |
| 16       | 56       | 34.409301              | 34.409301              | 34.409301              |  |
| 16       | 57       | 48.259714              | 48.259714              | 48.259714              |  |
| 16       | 58       | 31.764760              | 31.764760              | 31.764760              |  |
| 16       | 59       | 32.695565              | 32.695565              | 32.695565              |  |
| 16       | 60       | 21.540659              | 21.540659              | 21.540659              |  |
|          |          | 21.010009              | 21.010000              | 21.010009              |  |

| 16 | 61  | 23.853721 | 23.853721 | 23.853721 |  |
|----|-----|-----------|-----------|-----------|--|
| 16 | 62  | 49.739320 | 49.739320 | 49.739320 |  |
|    |     |           |           |           |  |
| 16 | 63  | 63.198101 | 63.198101 | 63.198101 |  |
| 16 | 64  | 66.098411 | 66.098411 | 66.098411 |  |
| 16 | 65  | 44.147480 | 44.147480 | 44.147480 |  |
| 16 | 66  | 33.000000 | 33.000000 | 33.000000 |  |
| 16 | 67  | 39.115214 | 39.115214 | 39.115214 |  |
| 16 | 68  | 62.032250 | 62.032250 | 62.032250 |  |
|    |     |           |           |           |  |
| 16 | 69  | 42.941821 | 42.941821 | 42.941821 |  |
| 16 | 70  | 31.384710 | 31.384710 | 31.384710 |  |
| 16 | 71  | 43.931765 | 43.931765 | 43.931765 |  |
| 16 | 72  | 64.761099 | 64.761099 | 64.761099 |  |
| 16 | 73  | 65.924199 | 65.924199 | 65.924199 |  |
|    |     |           |           |           |  |
| 16 | 74  | 20.000000 | 20.000000 | 20.000000 |  |
| 16 | 75  | 26.907248 | 26.907248 | 26.907248 |  |
| 16 | 76  | 35.128336 | 35.128336 | 35.128336 |  |
| 16 | 77  | 64.404969 | 64.404969 | 64.404969 |  |
| 16 | 78  | 42.544095 | 42.544095 | 42.544095 |  |
| 16 | 79  | 17.088007 | 17.088007 | 17.088007 |  |
|    |     |           |           |           |  |
| 16 | 80  | 28.284271 | 28.284271 | 28.284271 |  |
| 16 | 81  | 45.541190 | 45.541190 | 45.541190 |  |
| 16 | 82  | 50.328918 | 50.328918 | 50.328918 |  |
| 16 | 83  | 25.179357 | 25.179357 | 25.179357 |  |
| 16 | 84  | 36.138622 | 36.138622 | 36.138622 |  |
|    |     | 56.089215 |           | 56.089215 |  |
| 16 | 85  |           | 56.089215 |           |  |
| 16 | 86  | 63.324561 | 63.324561 | 63.324561 |  |
| 16 | 87  | 24.839485 | 24.839485 | 24.839485 |  |
| 16 | 88  | 18.867962 | 18.867962 | 18.867962 |  |
| 16 | 89  | 28.425341 | 28.425341 | 28.425341 |  |
| 16 | 90  | 73.824115 | 73.824115 | 73.824115 |  |
|    |     |           |           |           |  |
| 16 | 91  | 35.693137 | 35.693137 | 35.693137 |  |
| 16 | 92  | 47.042534 | 47.042534 | 47.042534 |  |
| 16 | 93  | 51.088159 | 51.088159 | 51.088159 |  |
| 16 | 94  | 60.207973 | 60.207973 | 60.207973 |  |
| 16 | 95  | 55.578773 | 55.578773 | 55.578773 |  |
| 16 | 96  | 54.083269 | 54.083269 | 54.083269 |  |
|    |     |           |           |           |  |
| 16 | 97  | 54.817880 | 54.817880 | 54.817880 |  |
| 16 | 98  | 22.090722 | 22.090722 | 22.090722 |  |
| 16 | 99  | 26.832816 | 26.832816 | 26.832816 |  |
| 16 | 100 | 24.515301 | 24.515301 | 24.515301 |  |
| 16 | 101 | 39.623226 | 39.623226 | 39.623226 |  |
| 17 |     | 41.231056 | 41.231056 | 41.231056 |  |
|    | 1   |           |           |           |  |
| 17 | 2   | 51.478151 | 51.478151 | 51.478151 |  |
| 17 | 3   | 41.340053 | 41.340053 | 41.340053 |  |
| 17 | 4   | 50.089919 | 50.089919 | 50.089919 |  |
| 17 | 5   | 44.721360 | 44.721360 | 44.721360 |  |
| 17 | 6   | 49.244289 | 49.244289 | 49.244289 |  |
| 17 | 7   | 39.357337 | 39.357337 | 39.357337 |  |
|    |     |           |           |           |  |
| 17 | 8   | 38.078866 | 38.078866 | 38.078866 |  |
| 17 | 9   | 42.720019 | 42.720019 | 42.720019 |  |
| 17 | 10  | 11.180340 | 11.180340 | 11.180340 |  |
| 17 | 11  | 10.000000 | 10.000000 | 10.000000 |  |
| 17 | 12  | 8.000000  | 8.000000  | 8.000000  |  |
| 17 |     | 9.433981  | 9.433981  | 9.433981  |  |
|    | 13  |           |           |           |  |
| 17 | 14  | 7.071068  | 7.071068  | 7.071068  |  |
| 17 | 15  | 7.071068  | 7.071068  | 7.071068  |  |
| 17 | 16  | 2.00000   | 2.000000  | 2.000000  |  |
| 17 | 18  | 5.00000   | 5.000000  | 5.000000  |  |
| 17 | 19  | 56.222771 | 56.222771 | 56.222771 |  |
|    |     |           |           |           |  |
| 17 | 20  | 51.613952 | 51.613952 | 51.613952 |  |
| 17 | 21  | 48.877398 | 48.877398 | 48.877398 |  |
| 17 | 22  | 53.150729 | 53.150729 | 53.150729 |  |
| 17 | 23  | 47.169906 | 47.169906 | 47.169906 |  |
|    |     |           |           |           |  |

| _  |        |           |          |           |
|----|--------|-----------|----------|-----------|
| 17 | 24 51. | 662365 5  | 1.662365 | 51.662365 |
| 17 | 25 45. | 486262 4  | 5.486262 | 45.486262 |
| 17 |        |           | 9.497475 | 49.497475 |
|    |        |           |          |           |
| 17 |        |           | 5.524866 | 95.524866 |
| 17 | 28 95. |           | 5.131488 | 95.131488 |
| 17 | 29 92. | 541882 9  | 2.541882 | 92.541882 |
| 17 | 30 90. | 138782 9  | 0.138782 | 90.138782 |
| 17 | 31 88. | 566359 8  | 3.566359 | 88.566359 |
| 17 |        |           | 3.141931 | 88.141931 |
|    |        |           |          |           |
| 17 |        |           | 7.572827 | 87.572827 |
| 17 | 34 86. | 313383 8  | 6.313383 | 86.313383 |
| 17 | 35 85. | 146932 8  | 5.146932 | 85.146932 |
| 17 | 36 80. | 709355 8  | 0.709355 | 80.709355 |
| 17 |        |           | 9.056942 | 79.056942 |
| 17 |        |           | 7.388630 | 77.388630 |
|    |        |           |          |           |
| 17 |        |           | 3.783467 | 73.783467 |
| 17 | 40 72. | 111026 7: | 2.111026 | 72.111026 |
| 17 | 41 75. | 000000 7  | 5.000000 | 75.000000 |
| 17 | 42 67. | 742158 6  | 7.742158 | 67.742158 |
| 17 |        |           | 3.007353 | 68.007353 |
| 17 |        |           | 1.063352 | 71.063352 |
|    |        |           |          |           |
| 17 |        |           | 9.202601 | 69.202601 |
| 17 | 46.46. | 518813 4  | 6.518813 | 46.518813 |
| 17 | 47 43. | 863424 4  | 3.863424 | 43.863424 |
| 17 | 48 5.3 | 85165 5.  | 385165   | 5.385165  |
| 17 |        |           | 4.671748 | 54.671748 |
| 17 |        |           | 0.477718 | 50.477718 |
|    |        |           |          |           |
| 17 |        |           | 2.173402 | 72.173402 |
| 17 | 52 58. | 523500 5  | 3.523500 | 58.523500 |
| 17 | 53 26. | 925824 2  | 6.925824 | 26.925824 |
| 17 | 54 22. | 360680 2: | 2.360680 | 22.360680 |
| 17 |        |           | 3.523500 | 58.523500 |
| 17 |        |           | 6.055513 | 36.055513 |
|    |        |           |          |           |
| 17 |        |           | 0.249378 | 50.249378 |
| 17 | 58 33. | 541020 3  | 3.541020 | 33.541020 |
| 17 | 59 33. | 541020 3  | 3.541020 | 33.541020 |
| 17 | 60 22. | 360680 2: | 2.360680 | 22.360680 |
| 17 | 61 25. | 000000 2  | 5.000000 | 25.000000 |
| 17 |        |           | 1.478151 | 51.478151 |
|    |        |           |          |           |
| 17 |        |           | 5.192024 | 65.192024 |
| 17 |        | 007353 6  | 3.007353 | 68.007353 |
| 17 | 65 46. | 097722 4  | 6.097722 | 46.097722 |
| 17 | 66 35. | 000000 3  | 5.000000 | 35.000000 |
| 17 | 67 41. | 109610 4  | 1.109610 | 41.109610 |
| 17 |        |           | 4.031242 | 64.031242 |
| 17 |        |           | 4.721360 | 44.721360 |
|    |        |           |          |           |
| 17 |        |           | 3.241540 | 33.241540 |
| 17 |        |           | 5.453273 | 45.453273 |
| 17 | 72 66. | 708320 6  | 6.708320 | 66.708320 |
| 17 | 73 67. | 779053 6  | 7.779053 | 67.779053 |
| 17 | 74 20. | 099751 2  | 0.099751 | 20.099751 |
| 17 |        |           | 3.284271 | 28.284271 |
| 17 |        |           | 5.355339 | 35.355339 |
|    |        |           |          |           |
| 17 |        |           | 6.211781 | 66.211781 |
| 17 | 78 43. | 566042 4  | 3.566042 | 43.566042 |
| 17 | 79 17. | 888544 1  | 7.888544 | 17.888544 |
| 17 |        | 635642 2  | 8.635642 | 28.635642 |
| 17 |        |           | 7.518417 | 47.518417 |
| 17 |        |           | 2.201533 |           |
|    |        |           |          | 52.201533 |
| 17 |        |           | 7.166155 | 27.166155 |
| 17 | 84 38. |           | 3.078866 | 38.078866 |
| 17 | 85 58. | 051701 5  | 3.051701 | 58.051701 |
| 17 | 86 65. | 253352 6  | 5.253352 | 65.253352 |
|    |        |           |          |           |

| 17 | 87  | 26.400758 | 26.400758 | 26.400758 |  |
|----|-----|-----------|-----------|-----------|--|
| 17 | 88  | 20.000000 | 20.000000 | 20.000000 |  |
| 17 | 89  | 30.000000 | 30.000000 | 30.000000 |  |
| 17 | 90  | 75.591005 | 75.591005 | 75.591005 |  |
| 17 | 91  | 37.656341 | 37.656341 | 37.656341 |  |
| 17 | 92  | 49.040799 | 49.040799 | 49.040799 |  |
| 17 | 93  | 53.084838 | 53.084838 | 53.084838 |  |
|    |     |           |           |           |  |
| 17 | 94  | 62.169124 | 62.169124 | 62.169124 |  |
| 17 | 95  | 57.558666 | 57.558666 | 57.558666 |  |
| 17 | 96  | 56.080300 | 56.080300 | 56.080300 |  |
| 17 | 97  | 56.753854 | 56.753854 | 56.753854 |  |
| 17 | 98  | 22.360680 | 22.360680 | 22.360680 |  |
| 17 | 99  | 28.635642 | 28.635642 | 28.635642 |  |
| 17 | 100 | 26.476405 | 26.476405 | 26.476405 |  |
| 17 | 101 | 41.109610 | 41.109610 | 41.109610 |  |
| 18 | 1   | 40.311289 | 40.311289 | 40.311289 |  |
| 18 | 2   | 47.169906 | 47.169906 | 47.169906 |  |
| 18 | 3   | 37.202150 | 37.202150 | 37.202150 |  |
| 18 | 4   | 45.650849 | 45.650849 | 45.650849 |  |
| 18 | 5   | 40.311289 | 40.311289 | 40.311289 |  |
| 18 | 6   | 44.721360 | 44.721360 | 44.721360 |  |
| 18 | 7   | 34.985711 | 34.985711 | 34.985711 |  |
| 18 | 8   | 33.541020 | 33.541020 | 33.541020 |  |
| 18 | 9   | 38.078866 | 38.078866 | 38.078866 |  |
| 18 | 10  | 14.142136 | 14.142136 | 14.142136 |  |
| 18 | 11  | 11.180340 | 11.180340 | 11.180340 |  |
| 18 | 12  | 9.433981  | 9.433981  | 9.433981  |  |
|    |     |           |           |           |  |
| 18 | 13  | 8.000000  | 8.000000  | 8.000000  |  |
| 18 | 14  | 11.180340 | 11.180340 | 11.180340 |  |
| 18 | 15  | 5.000000  | 5.000000  | 5.000000  |  |
| 18 | 16  | 5.385165  | 5.385165  | 5.385165  |  |
| 18 | 17  | 5.000000  | 5.000000  | 5.000000  |  |
| 18 | 19  | 59.464275 | 59.464275 | 59.464275 |  |
| 18 | 20  | 54.671748 | 54.671748 | 54.671748 |  |
| 18 | 21  | 51.613952 | 51.613952 | 51.613952 |  |
| 18 | 22  | 56.568542 | 56.568542 | 56.568542 |  |
| 18 | 23  | 50.00000  | 50.000000 | 50.000000 |  |
| 18 | 24  | 55.172457 | 55.172457 | 55.172457 |  |
| 18 | 25  | 48.414874 | 48.414874 | 48.414874 |  |
| 18 | 26  | 53.150729 | 53.150729 | 53.150729 |  |
| 18 | 27  | 96.176920 | 96.176920 | 96.176920 |  |
| 18 | 28  | 95.524866 | 95.524866 | 95.524866 |  |
| 18 | 29  | 93.214806 | 93.214806 | 93.214806 |  |
| 18 | 30  | 90.553851 | 90.553851 | 90.553851 |  |
| 18 | 31  | 89.269256 | 89.269256 | 89.269256 |  |
| 18 | 32  | 88.566359 | 88.566359 | 88.566359 |  |
| 18 | 33  | 88.283634 | 88.283634 | 88.283634 |  |
| 18 | 34  | 87.321246 | 87.321246 | 87.321246 |  |
| 18 | 35  | 85.586214 | 85.586214 | 85.586214 |  |
| 18 |     | 78.032045 | 78.032045 | 78.032045 |  |
|    | 36  |           |           |           |  |
| 18 | 37  | 76.321688 | 76.321688 | 76.321688 |  |
| 18 | 38  | 74.793048 | 74.793048 | 74.793048 |  |
| 18 | 39  | 71.196910 | 71.196910 | 71.196910 |  |
| 18 | 40  | 69.462220 | 69.462220 | 69.462220 |  |
| 18 | 41  | 72.111026 | 72.111026 | 72.111026 |  |
| 18 | 42  | 65.299311 | 65.299311 | 65.299311 |  |
| 18 | 43  | 65.192024 | 65.192024 | 65.192024 |  |
| 18 | 44  | 68.007353 | 68.007353 | 68.007353 |  |
| 18 | 45  | 66.287254 | 66.287254 | 66.287254 |  |
| 18 | 46  | 42.059482 | 42.059482 | 42.059482 |  |
| 18 | 47  | 39.357337 | 39.357337 | 39.357337 |  |
| 18 | 48  | 2.000000  | 2.000000  | 2.000000  |  |
| 18 | 49  | 58.000000 | 58.000000 | 58.000000 |  |
|    | -   |           |           |           |  |

| 18 | 50  | 53.413481 | 53.413481 | 53.413481 |  |
|----|-----|-----------|-----------|-----------|--|
| 18 | 51  | 72.691127 | 72.691127 | 72.691127 |  |
| 18 | 52  | 60.415230 | 60.415230 | 60.415230 |  |
| 18 | 53  | 29.154759 | 29.154759 | 29.154759 |  |
| 18 | 54  | 20.615528 | 20.615528 | 20.615528 |  |
| 18 | 55  | 57.008771 | 57.008771 | 57.008771 |  |
| 18 | 56  |           |           |           |  |
|    |     | 33.541020 | 33.541020 | 33.541020 |  |
| 18 | 57  | 50.990195 | 50.990195 | 50.990195 |  |
| 18 | 58  | 36.055513 | 36.055513 | 36.055513 |  |
| 18 | 59  | 38.078866 | 38.078866 | 38.078866 |  |
| 18 | 60  | 26.925824 | 26.925824 | 26.925824 |  |
| 18 | 61  | 21.213203 | 21.213203 | 21.213203 |  |
| 18 | 62  | 49.244289 | 49.244289 | 49.244289 |  |
| 18 | 63  | 65.764732 | 65.764732 | 65.764732 |  |
| 18 | 64  | 69.641941 | 69.641941 | 69.641941 |  |
| 18 | 65  | 47.434165 | 47.434165 | 47.434165 |  |
| 18 | 66  | 35.355339 | 35.355339 | 35.355339 |  |
| 18 | 67  | 41.773197 | 41.773197 | 41.773197 |  |
| 18 | 68  | 64.070274 | 64.070274 | 64.070274 |  |
|    |     |           |           |           |  |
| 18 | 69  | 42.720019 | 42.720019 | 42.720019 |  |
| 18 | 70  | 31.780497 | 31.780497 | 31.780497 |  |
| 18 | 71  | 42.438190 | 42.438190 | 42.438190 |  |
| 18 | 72  | 65.764732 | 65.764732 | 65.764732 |  |
| 18 | 73  | 66.098411 | 66.098411 | 66.098411 |  |
| 18 | 74  | 15.132746 | 15.132746 | 15.132746 |  |
| 18 | 75  | 32.015621 | 32.015621 | 32.015621 |  |
| 18 | 76  | 40.311289 | 40.311289 | 40.311289 |  |
| 18 | 77  | 68.476273 | 68.476273 | 68.476273 |  |
| 18 | 78  | 47.885280 | 47.885280 | 47.885280 |  |
| 18 | 79  | 13.601471 | 13.601471 | 13.601471 |  |
| 18 | 80  | 23.769729 | 23.769729 | 23.769729 |  |
|    |     |           |           |           |  |
| 18 | 81  | 47.042534 | 47.042534 | 47.042534 |  |
| 18 | 82  | 50.695167 | 50.695167 | 50.695167 |  |
| 18 | 83  | 27.073973 | 27.073973 | 27.073973 |  |
| 18 | 84  | 39.560081 | 39.560081 | 39.560081 |  |
| 18 | 85  | 59.203040 | 59.203040 | 59.203040 |  |
| 18 | 86  | 66.730802 | 66.730802 | 66.730802 |  |
| 18 | 87  | 29.698485 | 29.698485 | 29.698485 |  |
| 18 | 88  | 24.186773 | 24.186773 | 24.186773 |  |
| 18 | 89  | 27.294688 | 27.294688 | 27.294688 |  |
| 18 | 90  | 78.032045 | 78.032045 | 78.032045 |  |
| 18 | 91  | 37.054015 | 37.054015 | 37.054015 |  |
| 18 | 92  | 49.091751 | 49.091751 | 49.091751 |  |
| 18 | 93  | 53.037722 | 53.037722 | 53.037722 |  |
| 18 | 94  | 61.400326 | 61.400326 | 61.400326 |  |
| 18 | 95  | 57.078893 | 57.078893 | 57.078893 |  |
| 18 | 96  | 56.568542 | 56.568542 | 56.568542 |  |
|    |     |           |           |           |  |
| 18 | 97  | 55.731499 | 55.731499 | 55.731499 |  |
| 18 | 98  | 27.294688 | 27.294688 | 27.294688 |  |
| 18 | 99  | 26.925824 | 26.925824 | 26.925824 |  |
| 18 | 100 | 27.856777 | 27.856777 | 27.856777 |  |
| 18 | 101 | 38.013156 | 38.013156 | 38.013156 |  |
| 19 | 1   | 45.177428 | 45.177428 | 45.177428 |  |
| 19 | 2   | 82.225300 | 82.225300 | 82.225300 |  |
| 19 | 3   | 73.375745 | 73.375745 | 73.375745 |  |
| 19 | 4   | 82.969874 | 82.969874 | 82.969874 |  |
| 19 | 5   | 78.746428 | 78.746428 | 78.746428 |  |
| 19 | 6   | 83.522452 | 83.522452 | 83.522452 |  |
| 19 | 7   | 74.672619 | 74.672619 | 74.672619 |  |
| 19 | 8   | 75.769387 | 75.769387 | 75.769387 |  |
| 19 | 9   | 80.411442 | 80.411442 | 80.411442 |  |
| 19 | 10  | 45.343136 | 45.343136 | 45.343136 |  |
| 19 | 11  | 48.795492 | 48.795492 | 48.795492 |  |
| 13 | 11  | 40./30432 | 40./30432 | 40./30434 |  |

| 19 | 12  | 50.209561 | 50.209561 | 50.209561 |  |
|----|-----|-----------|-----------|-----------|--|
| 19 | 13  | 53.814496 | 53.814496 | 53.814496 |  |
| 19 | 14  | 49.203658 | 49.203658 | 49.203658 |  |
| 19 | 15  | 55.865911 | 55.865911 | 55.865911 |  |
| 19 | 16  | 54.671748 | 54.671748 | 54.671748 |  |
| 19 | 17  | 56.222771 | 56.222771 | 56.222771 |  |
| 19 | 18  | 59.464275 | 59.464275 | 59.464275 |  |
| 19 | 20  | 5.385165  | 5.385165  | 5.385165  |  |
| 19 | 21  | 10.198039 | 10.198039 | 10.198039 |  |
| 19 | 22  | 4.000000  | 4.000000  | 4.000000  |  |
| 19 | 23  | 10.770330 | 10.770330 | 10.770330 |  |
| 19 | 24  | 6.000000  | 6.000000  | 6.000000  |  |
| 19 | 25  | 11.661904 | 11.661904 | 11.661904 |  |
|    | 26  |           |           |           |  |
| 19 |     | 9.000000  | 9.000000  | 9.000000  |  |
| 19 | 27  | 56.797887 | 56.797887 | 56.797887 |  |
| 19 | 28  | 59.169249 | 59.169249 | 59.169249 |  |
| 19 | 29  | 54.120237 | 54.120237 | 54.120237 |  |
| 19 | 30  | 54.918121 | 54.918121 | 54.918121 |  |
| 19 | 31  | 50.606324 | 50.606324 | 50.606324 |  |
| 19 | 32  | 53.254108 | 53.254108 | 53.254108 |  |
| 19 | 33  | 49.739320 | 49.739320 | 49.739320 |  |
| 19 | 34  | 45.617979 | 45.617979 | 45.617979 |  |
| 19 | 35  | 50.803543 | 50.803543 | 50.803543 |  |
| 19 | 36  | 83.240615 | 83.240615 | 83.240615 |  |
| 19 | 37  | 82.710338 | 82.710338 | 82.710338 |  |
| 19 | 38  | 79.812280 | 79.812280 | 79.812280 |  |
| 19 | 39  | 77.129761 | 77.129761 | 77.129761 |  |
| 19 | 40  | 76.687678 | 76.687678 | 76.687678 |  |
| 19 | 41  | 81.584312 | 81.584312 | 81.584312 |  |
| 19 | 41  | 71.386273 | 71.386273 | 71.386273 |  |
| 19 |     |           |           |           |  |
|    | 43  | 75.802375 | 75.802375 | 75.802375 |  |
| 19 | 44  | 80.752709 | 80.752709 | 80.752709 |  |
| 19 | 45  | 77.781746 | 77.781746 | 77.781746 |  |
| 19 | 46  | 80.653580 | 80.653580 | 80.653580 |  |
| 19 | 47  | 79.378838 | 79.378838 | 79.378838 |  |
| 19 | 48  | 58.000000 | 58.000000 | 58.000000 |  |
| 19 | 49  | 2.000000  | 2.000000  | 2.000000  |  |
| 19 | 50  | 7.280110  | 7.280110  | 7.280110  |  |
| 19 | 51  | 41.036569 | 41.036569 | 41.036569 |  |
| 19 | 52  | 18.601075 | 18.601075 | 18.601075 |  |
| 19 | 53  | 31.400637 | 31.400637 | 31.400637 |  |
| 19 | 54  | 51.000000 | 51.000000 | 51.000000 |  |
| 19 | 55  | 56.089215 | 56.089215 | 56.089215 |  |
| 19 | 56  | 56.753854 | 56.753854 | 56.753854 |  |
| 19 | 57  | 30.594117 | 30.594117 | 30.594117 |  |
| 19 | 58  | 24.413111 | 24.413111 | 24.413111 |  |
| 19 | 59  | 29.427878 | 29.427878 | 29.427878 |  |
| 19 | 60  | 37.161808 | 37.161808 | 37.161808 |  |
|    |     | 62.177166 | 62.177166 |           |  |
| 19 | 61  |           |           | 62.177166 |  |
| 19 | 62  | 60.008333 | 60.008333 | 60.008333 |  |
| 19 | 63  | 36.619667 | 36.619667 | 36.619667 |  |
| 19 | 64  | 25.806976 | 25.806976 | 25.806976 |  |
| 19 | 65  | 25.019992 | 25.019992 | 25.019992 |  |
| 19 | 66  | 36.138622 | 36.138622 | 36.138622 |  |
| 19 | 67  | 32.140317 | 32.140317 | 32.140317 |  |
| 19 | 68  | 42.059482 | 42.059482 | 42.059482 |  |
| 19 | 69  | 55.145263 | 55.145263 | 55.145263 |  |
| 19 | 70  | 48.764741 | 48.764741 | 48.764741 |  |
| 19 | 71  | 64.629715 | 64.629715 | 64.629715 |  |
| 19 | 72  | 54.230987 | 54.230987 | 54.230987 |  |
| 19 | 73  | 62.936476 | 62.936476 | 62.936476 |  |
| 19 | 74  | 69.202601 | 69.202601 | 69.202601 |  |
| 19 | 75  | 28.301943 | 28.301943 | 28.301943 |  |
|    | 1 3 | ZU.JUIJ4J | ZU.JUIJ43 | ZU.JUIJ4J |  |

| 19 | 76  | 39.000000 | 39.000000 | 39.000000 |  |
|----|-----|-----------|-----------|-----------|--|
| 19 | 77  | 17.464249 | 17.464249 | 17.464249 |  |
| 19 | 78  | 21.095023 | 21.095023 | 21.095023 |  |
| 19 | 79  | 62.425956 | 62.425956 | 62.425956 |  |
| 19 | 80  | 73.573093 | 73.573093 | 73.573093 |  |
| 19 |     |           |           |           |  |
|    | 81  | 42.107007 | 42.107007 | 42.107007 |  |
| 19 | 82  | 53.235327 | 53.235327 | 53.235327 |  |
| 19 | 83  | 41.629317 | 41.629317 | 41.629317 |  |
| 19 | 84  | 26.925824 | 26.925824 | 26.925824 |  |
| 19 | 85  | 27.294688 | 27.294688 | 27.294688 |  |
| 19 | 86  | 26.172505 | 26.172505 | 26.172505 |  |
| 19 | 87  | 29.832868 | 29.832868 | 29.832868 |  |
| 19 | 88  | 37.215588 | 37.215588 | 37.215588 |  |
| 19 | 89  | 56.648036 | 56.648036 | 56.648036 |  |
| 19 | 90  | 23.000000 | 23.000000 | 23.000000 |  |
| 19 | 91  | 42.579338 | 42.579338 | 42.579338 |  |
| 19 | 92  | 37.336309 | 37.336309 | 37.336309 |  |
| 19 | 93  | 39.051248 | 39.051248 | 39.051248 |  |
| 19 | 94  | 49.979996 | 49.979996 | 49.979996 |  |
|    |     |           |           |           |  |
| 19 | 95  | 44.922155 | 44.922155 | 44.922155 |  |
| 19 | 96  | 34.176015 | 34.176015 | 34.176015 |  |
| 19 | 97  | 50.219518 | 50.219518 | 50.219518 |  |
| 19 | 98  | 42.059482 | 42.059482 | 42.059482 |  |
| 19 | 99  | 50.328918 | 50.328918 | 50.328918 |  |
| 19 | 100 | 34.985711 | 34.985711 | 34.985711 |  |
| 19 | 101 | 63.348244 | 63.348244 | 63.348244 |  |
| 20 | 1   | 40.049969 | 40.049969 | 40.049969 |  |
| 20 | 2   | 76.902536 | 76.902536 | 76.902536 |  |
| 20 | 3   | 68.007353 | 68.007353 | 68.007353 |  |
| 20 | 4   | 77.620873 | 77.620873 | 77.620873 |  |
| 20 | 5   | 73.375745 | 73.375745 | 73.375745 |  |
| 20 | 6   | 78.160092 | 78.160092 | 78.160092 |  |
|    |     |           |           |           |  |
| 20 | 7   | 69.289249 | 69.289249 | 69.289249 |  |
| 20 | 8   | 70.384657 | 70.384657 | 70.384657 |  |
| 20 | 9   | 75.026662 | 75.026662 | 75.026662 |  |
| 20 | 10  | 40.607881 | 40.607881 | 40.607881 |  |
| 20 | 11  | 43.863424 | 43.863424 | 43.863424 |  |
| 20 | 12  | 45.343136 | 45.343136 | 45.343136 |  |
| 20 | 13  | 48.795492 | 48.795492 | 48.795492 |  |
| 20 | 14  | 44.654227 | 44.654227 | 44.654227 |  |
| 20 | 15  | 50.931326 | 50.931326 | 50.931326 |  |
| 20 | 16  | 50.000000 | 50.000000 | 50.000000 |  |
| 20 | 17  | 51.613952 | 51.613952 | 51.613952 |  |
| 20 | 18  | 54.671748 | 54.671748 | 54.671748 |  |
| 20 | 19  | 5.385165  | 5.385165  | 5.385165  |  |
| 20 | 21  | 5.00000   | 5.000000  | 5.000000  |  |
| 20 | 22  | 5.385165  | 5.385165  | 5.385165  |  |
| 20 | 23  | 5.385165  | 5.385165  | 5.385165  |  |
|    |     |           |           |           |  |
| 20 | 24  | 6.403124  | 6.403124  | 6.403124  |  |
| 20 | 25  | 6.403124  | 6.403124  | 6.403124  |  |
| 20 | 26  | 8.602325  | 8.602325  | 8.602325  |  |
| 20 | 27  | 56.648036 | 56.648036 | 56.648036 |  |
| 20 | 28  | 58.600341 | 58.600341 | 58.600341 |  |
| 20 | 29  | 53.851648 | 53.851648 | 53.851648 |  |
| 20 | 30  | 54.120237 | 54.120237 | 54.120237 |  |
| 20 | 31  | 50.159745 | 50.159745 | 50.159745 |  |
| 20 | 32  | 52.354560 | 52.354560 | 52.354560 |  |
| 20 | 33  | 49.244289 | 49.244289 | 49.244289 |  |
| 20 | 34  | 45.541190 | 45.541190 | 45.541190 |  |
| 20 | 35  | 49.739320 | 49.739320 | 49.739320 |  |
| 20 | 36  | 79.056942 | 79.056942 | 79.056942 |  |
| 20 | 37  | 78.447435 | 78.447435 | 78.447435 |  |
| 20 | 38  | 75.584390 | 75.584390 | 75.584390 |  |
| 20 | ٥٥  | 13.304390 | 13.304330 | 13.304330 |  |

| 20 | 39  | 72.801099              | 72.801099 | 72.801099 |
|----|-----|------------------------|-----------|-----------|
| 20 | 40  | 72.277244              | 72.277244 | 72.277244 |
| 20 | 41  | 77.129761              | 77.129761 | 77.129761 |
| 20 | 42  | 66.940272              | 66.940272 | 66.940272 |
| 20 | 43  | 71.196910              | 71.196910 | 71.196910 |
| 20 | 44  | 76.118329              | 76.118329 | 76.118329 |
| 20 | 45  | 73.164199              | 73.164199 | 73.164199 |
| 20 | 46  | 75.286121              | 75.286121 | 75.286121 |
| 20 | 47  | 74.000000              | 74.000000 | 74.000000 |
| 20 | 48  | 53.150729              | 53.150729 | 53.150729 |
| 20 | 49  | 5.000000               | 5.000000  | 5.00000   |
| 20 | 50  | 2.000000               | 2.000000  | 2.000000  |
| 20 | 51  | 39.051248              | 39.051248 | 39.051248 |
| 20 | 52  | 16.401219              | 16.401219 | 16.401219 |
| 20 | 53  | 26.248809              | 26.248809 | 26.248809 |
| 20 | 54  | 45.650849              | 45.650849 | 45.650849 |
| 20 | 55  | 51.662365              | 51.662365 | 51.662365 |
| 20 | 56  | 51.419841              | 51.419841 | 51.419841 |
| 20 | 57  | 26.248809              | 26.248809 | 26.248809 |
|    |     |                        |           |           |
| 20 | 58  | 19.209373<br>27.000000 | 19.209373 | 19.209373 |
| 20 | 59  |                        | 27.000000 | 27.000000 |
| 20 | 60  | 33.526109              | 33.526109 | 33.526109 |
| 20 | 61  | 56.824291              | 56.824291 | 56.824291 |
| 20 | 62  | 55.081757              | 55.081757 | 55.081757 |
| 20 | 63  | 33.970576              | 33.970576 | 33.970576 |
| 20 | 64  | 25.079872              | 25.079872 | 25.079872 |
| 20 | 65  | 20.223748              | 20.223748 | 20.223748 |
| 20 | 66  | 30.805844              | 30.805844 | 30.805844 |
| 20 | 67  | 27.018512              | 27.018512 | 27.018512 |
| 20 | 68  | 38.832976              | 38.832976 | 38.832976 |
| 20 | 69  | 50.039984              | 50.039984 | 50.039984 |
| 20 | 70  | 43.416587              | 43.416587 | 43.416587 |
| 20 | 71  | 59.413803              | 59.413803 | 59.413803 |
| 20 | 72  | 50.537115              | 50.537115 | 50.537115 |
| 20 | 73  | 58.872744              | 58.872744 | 58.872744 |
| 20 | 74  | 64.031242              | 64.031242 | 64.031242 |
| 20 | 75  | 24.166092              | 24.166092 | 24.166092 |
| 20 | 76  | 37.336309              | 37.336309 | 37.336309 |
| 20 | 77  | 18.110770              | 18.110770 | 18.110770 |
| 20 | 78  | 20.248457              | 20.248457 | 20.248457 |
| 20 | 79  | 57.201399              | 57.201399 | 57.201399 |
| 20 | 80  | 68.264193              | 68.264193 | 68.264193 |
| 20 | 81  | 37.336309              | 37.336309 | 37.336309 |
| 20 | 82  | 48.507731              | 48.507731 | 48.507731 |
| 20 | 83  | 36.249138              | 36.249138 | 36.249138 |
| 20 | 84  | 21.587033              | 21.587033 | 21.587033 |
| 20 | 85  | 24.207437              | 24.207437 | 24.207437 |
| 20 | 86  | 24.698178              | 24.698178 | 24.698178 |
| 20 | 87  | 25.238859              | 25.238859 | 25.238859 |
| 20 | 88  | 33.105891              | 33.105891 | 33.105891 |
| 20 | 89  | 51.264022              | 51.264022 | 51.264022 |
| 20 | 90  | 25.495098              | 25.495098 | 25.495098 |
| 20 | 91  | 37.336309              | 37.336309 | 37.336309 |
| 20 | 92  | 32.756679              | 32.756679 | 32.756679 |
| 20 | 93  | 34.785054              | 34.785054 | 34.785054 |
| 20 | 94  | 46.097722              | 46.097722 | 46.097722 |
| 20 | 95  | 40.853396              | 40.853396 | 40.853396 |
| 20 | 96  | 30.413813              | 30.413813 | 30.413813 |
| 20 | 97  | 45.880279              | 45.880279 | 45.880279 |
| 20 | 98  | 38.832976              | 38.832976 | 38.832976 |
| 20 | 98  | 44.944410              | 44.944410 | 44.944410 |
| 20 | 100 | 29.681644              | 29.681644 | 29.681644 |
| 20 |     | 58.051701              | 58.051701 | 58.051701 |
| 20 | 101 | 20.031/01              | 20.031/01 | 20.031101 |

| 21 | 1  | 35.057096 | 35.057096 | 35.057096 |  |
|----|----|-----------|-----------|-----------|--|
| 21 | 2  | 72.034714 | 72.034714 | 72.034714 |  |
| 21 | 3  | 63.245553 | 63.245553 | 63.245553 |  |
| 21 | 4  | 72.801099 | 72.801099 | 72.801099 |  |
| 21 | 5  | 68.622154 | 68.622154 | 68.622154 |  |
| 21 | 6  | 73.375745 | 73.375745 | 73.375745 |  |
| 21 | 7  |           |           |           |  |
|    |    | 64.621978 | 64.621978 | 64.621978 |  |
| 21 | 8  | 65.795137 | 65.795137 | 65.795137 |  |
| 21 | 9  | 70.384657 | 70.384657 | 70.384657 |  |
| 21 | 10 | 37.735925 | 37.735925 | 37.735925 |  |
| 21 | 11 | 40.607881 | 40.607881 | 40.607881 |  |
| 21 | 12 | 42.201896 | 42.201896 | 42.201896 |  |
| 21 | 13 | 45.343136 | 45.343136 | 45.343136 |  |
| 21 | 14 | 42.059482 | 42.059482 | 42.059482 |  |
| 21 | 15 | 47.634021 | 47.634021 | 47.634021 |  |
| 21 | 16 | 47.169906 | 47.169906 | 47.169906 |  |
| 21 | 17 | 48.877398 | 48.877398 | 48.877398 |  |
| 21 | 18 | 51.613952 | 51.613952 | 51.613952 |  |
| 21 |    |           | 10.198039 |           |  |
|    | 19 | 10.198039 |           | 10.198039 |  |
| 21 | 20 | 5.00000   | 5.00000   | 5.000000  |  |
| 21 | 22 | 10.198039 | 10.198039 | 10.198039 |  |
| 21 | 23 | 2.000000  | 2.000000  | 2.000000  |  |
| 21 | 24 | 10.770330 | 10.770330 | 10.770330 |  |
| 21 | 25 | 4.000000  | 4.000000  | 4.000000  |  |
| 21 | 26 | 12.206556 | 12.206556 | 12.206556 |  |
| 21 | 27 | 55.081757 | 55.081757 | 55.081757 |  |
| 21 | 28 | 56.648036 | 56.648036 | 56.648036 |  |
| 21 | 29 | 52.201533 | 52.201533 | 52.201533 |  |
| 21 | 30 | 52.000000 | 52.000000 | 52.000000 |  |
| 21 | 31 | 48.383882 | 48.383882 | 48.383882 |  |
| 21 | 32 |           |           |           |  |
|    |    | 50.159745 | 50.159745 | 50.159745 |  |
| 21 | 33 | 47.434165 | 47.434165 | 47.434165 |  |
| 21 | 34 | 44.147480 | 44.147480 | 44.147480 |  |
| 21 | 35 | 47.423623 | 47.423623 | 47.423623 |  |
| 21 | 36 | 74.330344 | 74.330344 | 74.330344 |  |
| 21 | 37 | 73.681748 | 73.681748 | 73.681748 |  |
| 21 | 38 | 70.837843 | 70.837843 | 70.837843 |  |
| 21 | 39 | 68.007353 | 68.007353 | 68.007353 |  |
| 21 | 40 | 67.446275 | 67.446275 | 67.446275 |  |
| 21 | 41 | 72.277244 | 72.277244 | 72.277244 |  |
| 21 | 42 | 62.096699 | 62.096699 | 62.096699 |  |
| 21 | 43 | 66.287254 | 66.287254 | 66.287254 |  |
| 21 | 44 | 71.196910 | 71.196910 | 71.196910 |  |
| 21 | 45 | 68.249542 | 68.249542 | 68.249542 |  |
| 21 | 46 | 70.519501 | 70.519501 | 70.519501 |  |
| 21 | 47 | 69.289249 | 69.289249 | 69.289249 |  |
|    |    |           |           |           |  |
| 21 | 48 | 50.000000 | 50.000000 | 50.000000 |  |
| 21 | 49 | 10.000000 | 10.000000 | 10.000000 |  |
| 21 | 50 | 3.000000  | 3.000000  | 3.000000  |  |
| 21 | 51 | 36.055513 | 36.055513 | 36.055513 |  |
| 21 | 52 | 13.928388 | 13.928388 | 13.928388 |  |
| 21 | 53 | 22.671568 | 22.671568 | 22.671568 |  |
| 21 | 54 | 41.340053 | 41.340053 | 41.340053 |  |
| 21 | 55 | 46.840154 | 46.840154 | 46.840154 |  |
| 21 | 56 | 46.572524 | 46.572524 | 46.572524 |  |
| 21 | 57 | 21.540659 | 21.540659 | 21.540659 |  |
| 21 | 58 | 15.620499 | 15.620499 | 15.620499 |  |
| 21 | 59 | 27.459060 | 27.459060 | 27.459060 |  |
| 21 | 60 | 32.388269 | 32.388269 | 32.388269 |  |
| 21 | 61 | 52.478567 | 52.478567 | 52.478567 |  |
| 21 |    | 50.089919 | 50.089919 | 50.089919 |  |
| 21 | 62 |           | 30.479501 |           |  |
|    | 63 | 30.479501 |           | 30.479501 |  |
| 21 | 64 | 23.537205 | 23.537205 | 23.537205 |  |

| 21 | 65  | 15.297059 | 15.297059 | 15.297059 |
|----|-----|-----------|-----------|-----------|
| 21 | 66  | 25.961510 | 25.961510 | 25.961510 |
|    |     |           |           |           |
| 21 | 67  | 22.022716 | 22.022716 | 22.022716 |
| 21 | 68  | 34.828150 | 34.828150 | 34.828150 |
| 21 | 69  | 45.044423 | 45.044423 | 45.044423 |
| 21 | 70  | 38.600518 | 38.600518 | 38.600518 |
| 21 | 71  | 54.451814 | 54.451814 | 54.451814 |
| 21 | 72  | 46.141088 | 46.141088 | 46.141088 |
|    |     |           |           |           |
| 21 | 73  | 54.230987 | 54.230987 | 54.230987 |
| 21 | 74  | 60.207973 | 60.207973 | 60.207973 |
| 21 | 75  | 22.561028 | 22.561028 | 22.561028 |
| 21 | 76  | 38.327536 | 38.327536 | 38.327536 |
| 21 | 77  | 18.248288 | 18.248288 | 18.248288 |
| 21 | 78  | 22.472205 | 22.472205 | 22.472205 |
|    |     |           |           |           |
| 21 | 79  | 53.263496 | 53.263496 | 53.263496 |
| 21 | 80  | 64.070274 | 64.070274 | 64.070274 |
| 21 | 81  | 32.388269 | 32.388269 | 32.388269 |
| 21 | 82  | 43.566042 | 43.566042 | 43.566042 |
| 21 | 83  | 31.764760 | 31.764760 | 31.764760 |
| 21 | 84  | 16.763055 | 16.763055 | 16.763055 |
| 21 |     |           |           |           |
|    | 85  | 20.518285 | 20.518285 | 20.518285 |
| 21 | 86  | 22.472205 | 22.472205 | 22.472205 |
| 21 | 87  | 22.847319 | 22.847319 | 22.847319 |
| 21 | 88  | 31.320920 | 31.320920 | 31.320920 |
| 21 | 89  | 46.615448 | 46.615448 | 46.615448 |
| 21 | 90  | 26.925824 | 26.925824 | 26.925824 |
| 21 | 91  | 32.388269 | 32.388269 | 32.388269 |
|    |     |           |           |           |
| 21 | 92  | 27.892651 | 27.892651 | 27.892651 |
| 21 | 93  | 30.083218 | 30.083218 | 30.083218 |
| 21 | 94  | 41.593269 | 41.593269 | 41.593269 |
| 21 | 95  | 36.249138 | 36.249138 | 36.249138 |
| 21 | 96  | 26.076810 | 26.076810 | 26.076810 |
| 21 | 97  | 41.109610 | 41.109610 | 41.109610 |
| 21 | 98  | 38.118237 |           |           |
|    |     |           | 38.118237 | 38.118237 |
| 21 | 99  | 40.311289 | 40.311289 | 40.311289 |
| 21 | 100 | 25.612497 | 25.612497 | 25.612497 |
| 21 | 101 | 53.150729 | 53.150729 | 53.150729 |
| 22 | 1   | 45.000000 | 45.000000 | 45.000000 |
| 22 | 2   | 81.394103 | 81.394103 | 81.394103 |
| 22 | 3   | 72.277244 | 72.277244 | 72.277244 |
| 22 | 4   | 82.000000 | 82.000000 | 82.000000 |
|    |     |           |           |           |
| 22 | 5   | 77.620873 | 77.620873 | 77.620873 |
| 22 | 6   | 82.462113 | 82.462113 | 82.462113 |
| 22 | 7   | 73.375745 | 73.375745 | 73.375745 |
| 22 | 8   | 74.330344 | 74.330344 | 74.330344 |
| 22 | 9   | 79.056942 | 79.056942 | 79.056942 |
| 22 | 10  | 42.426407 | 42.426407 | 42.426407 |
| 22 | 11  | 46.097722 | 46.097722 | 46.097722 |
| 22 | 12  |           |           | 47.423623 |
|    |     | 47.423623 | 47.423623 |           |
| 22 | 13  | 51.224994 | 51.224994 | 51.224994 |
| 22 | 14  | 46.097722 | 46.097722 | 46.097722 |
| 22 | 15  | 53.150729 | 53.150729 | 53.150729 |
| 22 | 16  | 51.662365 | 51.662365 | 51.662365 |
| 22 | 17  | 53.150729 | 53.150729 | 53.150729 |
| 22 | 18  | 56.568542 | 56.568542 | 56.568542 |
| 22 | 19  | 4.000000  | 4.000000  | 4.000000  |
|    |     |           |           |           |
| 22 | 20  | 5.385165  | 5.385165  | 5.385165  |
| 22 | 21  | 10.198039 | 10.198039 | 10.198039 |
| 22 | 23  | 10.000000 | 10.000000 | 10.000000 |
| 22 | 24  | 2.000000  | 2.000000  | 2.000000  |
| 22 | 25  | 10.198039 | 10.198039 | 10.198039 |
| 22 | 26  | 5.000000  | 5.000000  | 5.000000  |
| 22 | 27  | 60.415230 | 60.415230 | 60.415230 |
| ~~ | ۷ ا | 00.410200 | 00.410200 | 00.110200 |

| 22 | 28 | 62.649820 | 62.649820 | 62.649820 |  |
|----|----|-----------|-----------|-----------|--|
| 22 | 29 | 57.697487 | 57.697487 | 57.697487 |  |
| 22 | 30 | 58.309519 | 58.309519 | 58.309519 |  |
|    |    |           |           |           |  |
| 22 | 31 | 54.120237 | 54.120237 | 54.120237 |  |
| 22 | 32 | 56.603887 | 56.603887 | 56.603887 |  |
| 22 | 33 | 53.235327 | 53.235327 | 53.235327 |  |
| 22 | 34 | 49.244289 | 49.244289 | 49.244289 |  |
| 22 | 35 | 54.083269 | 54.083269 | 54.083269 |  |
| 22 | 36 | 84.433406 | 84.433406 | 84.433406 |  |
|    |    |           |           |           |  |
| 22 | 37 | 83.815273 | 83.815273 | 83.815273 |  |
| 22 | 38 | 80.956779 | 80.956779 | 80.956779 |  |
| 22 | 39 | 78.160092 | 78.160092 | 78.160092 |  |
| 22 | 40 | 77.620873 | 77.620873 | 77.620873 |  |
| 22 | 41 | 82.462113 | 82.462113 | 82.462113 |  |
| 22 | 42 | 72.277244 | 72.277244 | 72.277244 |  |
|    |    |           |           |           |  |
| 22 | 43 | 76.485293 | 76.485293 | 76.485293 |  |
| 22 | 44 | 81.394103 | 81.394103 | 81.394103 |  |
| 22 | 45 | 78.447435 | 78.447435 | 78.447435 |  |
| 22 | 46 | 79.555012 | 79.555012 | 79.555012 |  |
| 22 | 47 | 78.160092 | 78.160092 | 78.160092 |  |
| 22 | 48 | 55.172457 | 55.172457 | 55.172457 |  |
|    |    |           |           |           |  |
| 22 | 49 | 2.000000  | 2.000000  | 2.000000  |  |
| 22 | 50 | 7.280110  | 7.280110  | 7.280110  |  |
| 22 | 51 | 43.863424 | 43.863424 | 43.863424 |  |
| 22 | 52 | 21.213203 | 21.213203 | 21.213203 |  |
| 22 | 53 | 29.154759 | 29.154759 | 29.154759 |  |
| 22 | 54 | 49.244289 | 49.244289 | 49.244289 |  |
| 22 | 55 | 57.008771 | 57.008771 | 57.008771 |  |
|    |    |           |           |           |  |
| 22 | 56 | 55.901699 | 55.901699 | 55.901699 |  |
| 22 | 57 | 31.622777 | 31.622777 | 31.622777 |  |
| 22 | 58 | 22.360680 | 22.360680 | 22.360680 |  |
| 22 | 59 | 25.495098 | 25.495098 | 25.495098 |  |
| 22 | 60 | 33.541020 | 33.541020 | 33.541020 |  |
| 22 | 61 | 60.415230 | 60.415230 | 60.415230 |  |
|    |    |           |           |           |  |
| 22 | 62 | 60.207973 | 60.207973 | 60.207973 |  |
| 22 | 63 | 39.051248 | 39.051248 | 39.051248 |  |
| 22 | 64 | 29.154759 | 29.154759 | 29.154759 |  |
| 22 | 65 | 25.495098 | 25.495098 | 25.495098 |  |
| 22 | 66 | 35.355339 | 35.355339 | 35.355339 |  |
| 22 | 67 | 32.015621 | 32.015621 | 32.015621 |  |
| 22 | 68 | 44.102154 | 44.102154 | 44.102154 |  |
|    |    |           |           |           |  |
| 22 | 69 | 55.000000 | 55.000000 | 55.000000 |  |
| 22 | 70 | 47.853944 | 47.853944 | 47.853944 |  |
| 22 | 71 | 64.195015 | 64.195015 | 64.195015 |  |
| 22 | 72 | 55.901699 | 55.901699 | 55.901699 |  |
| 22 | 73 | 64.257295 | 64.257295 | 64.257295 |  |
| 22 | 74 | 66.850580 | 66.850580 | 66.850580 |  |
| 22 | 75 | 25.000000 | 25.000000 | 25.000000 |  |
| 22 | 76 | 35.000000 | 35.000000 | 35.000000 |  |
|    |    |           |           |           |  |
| 22 | 77 | 21.189620 | 21.189620 | 21.189620 |  |
| 22 | 78 | 17.117243 | 17.117243 | 17.117243 |  |
| 22 | 79 | 60.207973 | 60.207973 | 60.207973 |  |
| 22 | 80 | 71.589105 | 71.589105 | 71.589105 |  |
| 22 | 81 | 42.579338 | 42.579338 | 42.579338 |  |
| 22 | 82 | 53.758720 | 53.758720 | 53.758720 |  |
| 22 | 83 | 40.162171 | 40.162171 | 40.162171 |  |
|    |    |           |           |           |  |
| 22 | 84 | 26.172505 | 26.172505 | 26.172505 |  |
| 22 | 85 | 29.410882 | 29.410882 | 29.410882 |  |
| 22 | 86 | 29.206164 | 29.206164 | 29.206164 |  |
| 22 | 87 | 26.870058 | 26.870058 | 26.870058 |  |
| 22 | 88 | 33.837849 | 33.837849 | 33.837849 |  |
| 22 | 89 | 55.362442 | 55.362442 | 55.362442 |  |
| 22 |    | 27.000000 | 27.000000 | 27.000000 |  |
| 22 | 90 | 27.000000 | 27.00000  | 27.00000  |  |

| 22 | 91  | 42.107007 | 42.107007 | 42.107007 |
|----|-----|-----------|-----------|-----------|
| 22 | 92  | 38.078866 | 38.078866 | 38.078866 |
| 22 | 93  | 40.162171 | 40.162171 | 40.162171 |
| 22 | 94  | 51.478151 | 51.478151 | 51.478151 |
| 22 | 95  | 46.238512 | 46.238512 | 46.238512 |
| 22 | 96  | 35.777088 | 35.777088 | 35.777088 |
| 22 | 97  | 51.244512 | 51.244512 | 51.244512 |
| 22 | 98  | 38.275318 | 38.275318 | 38.275318 |
| 22 | 99  | 49.040799 | 49.040799 | 49.040799 |
|    |     |           |           |           |
| 22 | 100 | 33.105891 | 33.105891 | 33.105891 |
| 22 | 101 | 62.649820 | 62.649820 | 62.649820 |
| 23 | 1   | 35.000000 | 35.000000 | 35.000000 |
| 23 | 2   | 71.589105 | 71.589105 | 71.589105 |
| 23 | 3   | 62.641839 | 62.641839 | 62.641839 |
| 23 | 4   | 72.277244 | 72.277244 | 72.277244 |
| 23 | 5   | 68.007353 | 68.007353 | 68.007353 |
| 23 | 6   | 72.801099 | 72.801099 | 72.801099 |
| 23 | 7   | 63.906181 | 63.906181 | 63.906181 |
| 23 | 8   | 65.000000 | 65.000000 | 65.000000 |
| 23 | 9   | 69.641941 | 69.641941 | 69.641941 |
| 23 | 10  | 36.055513 | 36.055513 | 36.055513 |
| 23 | 11  | 39.051248 | 39.051248 | 39.051248 |
| 23 | 12  | 40.607881 | 40.607881 | 40.607881 |
| 23 | 13  | 43.863424 | 43.863424 | 43.863424 |
| 23 | 14  | 40.311289 | 40.311289 | 40.311289 |
| 23 | 15  | 46.097722 | 46.097722 | 46.097722 |
| 23 | 16  | 45.486262 | 45.486262 | 45.486262 |
| 23 | 17  | 47.169906 | 47.169906 | 47.169906 |
|    |     |           |           |           |
| 23 | 18  | 50.000000 | 50.000000 | 50.000000 |
| 23 | 19  | 10.770330 | 10.770330 | 10.770330 |
| 23 | 20  | 5.385165  | 5.385165  | 5.385165  |
| 23 | 21  | 2.000000  | 2.000000  | 2.000000  |
| 23 | 22  | 10.000000 | 10.000000 | 10.000000 |
| 23 | 24  | 10.198039 | 10.198039 | 10.198039 |
| 23 | 25  | 2.000000  | 2.000000  | 2.000000  |
| 23 | 26  | 11.180340 | 11.180340 | 11.180340 |
| 23 | 27  | 57.008771 | 57.008771 | 57.008771 |
| 23 | 28  | 58.523500 | 58.523500 | 58.523500 |
| 23 | 29  | 54.120237 | 54.120237 | 54.120237 |
| 23 | 30  | 53.851648 | 53.851648 | 53.851648 |
| 23 | 31  | 50.289164 | 50.289164 | 50.289164 |
| 23 | 32  | 52.000000 | 52.000000 | 52.00000  |
| 23 | 33  | 49.335586 | 49.335586 | 49.335586 |
| 23 | 34  | 46.097722 | 46.097722 | 46.097722 |
| 23 | 35  | 49.244289 | 49.244289 | 49.244289 |
| 23 | 36  | 75.026662 | 75.026662 | 75.026662 |
| 23 | 37  | 74.330344 | 74.330344 | 74.330344 |
| 23 | 38  | 74.330344 | 74.330344 | 71.512237 |
|    |     |           |           |           |
| 23 | 39  | 68.622154 | 68.622154 | 68.622154 |
| 23 | 40  | 68.007353 | 68.007353 | 68.007353 |
| 23 | 41  | 72.801099 | 72.801099 | 72.801099 |
| 23 | 42  | 62.641839 | 62.641839 | 62.641839 |
| 23 | 43  | 66.708320 | 66.708320 | 66.708320 |
| 23 | 44  | 71.589105 | 71.589105 | 71.589105 |
| 23 | 45  | 68.658576 | 68.658576 | 68.658576 |
| 23 | 46  | 69.921384 | 69.921384 | 69.921384 |
| 23 | 47  | 68.622154 | 68.622154 | 68.622154 |
| 23 | 48  | 48.414874 | 48.414874 | 48.414874 |
| 23 | 49  | 10.198039 | 10.198039 | 10.198039 |
| 23 | 50  | 3.605551  | 3.605551  | 3.605551  |
| 23 | 51  | 37.735925 | 37.735925 | 37.735925 |
| 23 | 52  | 15.811388 | 15.811388 | 15.811388 |
| 23 | 53  | 21.213203 | 21.213203 | 21.213203 |
|    |     | 21.21.200 | 21.210200 | 21.01.00  |

| 23 | 54  | 40.311289 | 40.311289 | 40.311289 |  |
|----|-----|-----------|-----------|-----------|--|
| 23 | 55  | 47.434165 | 47.434165 | 47.434165 |  |
| 23 | 56  | 46.097722 | 46.097722 | 46.097722 |  |
| 23 | 57  | 22.360680 | 22.360680 | 22.360680 |  |
| 23 | 58  | 14.142136 | 14.142136 | 14.142136 |  |
| 23 |     | 25.495098 |           |           |  |
|    | 59  |           | 25.495098 | 25.495098 |  |
| 23 | 60  | 30.413813 | 30.413813 | 30.413813 |  |
| 23 | 61  | 51.478151 | 51.478151 | 51.478151 |  |
| 23 | 62  | 50.249378 | 50.249378 | 50.249378 |  |
| 23 | 63  | 32.015621 | 32.015621 | 32.015621 |  |
| 23 | 64  | 25.495098 | 25.495098 | 25.495098 |  |
| 23 | 65  | 15.811388 | 15.811388 | 15.811388 |  |
| 23 | 66  | 25.495098 | 25.495098 | 25.495098 |  |
| 23 | 67  | 22.022716 | 22.022716 | 22.022716 |  |
| 23 | 68  | 36.124784 | 36.124784 | 36.124784 |  |
|    |     |           |           |           |  |
| 23 | 69  | 45.000000 | 45.000000 | 45.000000 |  |
| 23 | 70  | 38.078866 | 38.078866 | 38.078866 |  |
| 23 | 71  | 54.230987 | 54.230987 | 54.230987 |  |
| 23 | 72  | 47.169906 | 47.169906 | 47.169906 |  |
| 23 | 73  | 55.036352 | 55.036352 | 55.036352 |  |
| 23 | 74  | 58.898217 | 58.898217 | 58.898217 |  |
| 23 | 75  | 20.615528 | 20.615528 | 20.615528 |  |
| 23 | 76  | 36.400549 | 36.400549 | 36.400549 |  |
| 23 | 77  | 20.223748 | 20.223748 | 20.223748 |  |
| 23 | 78  | 20.808652 | 20.808652 | 20.808652 |  |
| 23 |     | 52.009614 | 52.009614 | 52.009614 |  |
|    | 79  |           |           |           |  |
| 23 | 80  | 62.968246 | 62.968246 | 62.968246 |  |
| 23 | 81  | 32.756679 | 32.756679 | 32.756679 |  |
| 23 | 82  | 43.931765 | 43.931765 | 43.931765 |  |
| 23 | 83  | 30.870698 | 30.870698 | 30.870698 |  |
| 23 | 84  | 16.278821 | 16.278821 | 16.278821 |  |
| 23 | 85  | 22.022716 | 22.022716 | 22.022716 |  |
| 23 | 86  | 24.351591 | 24.351591 | 24.351591 |  |
| 23 | 87  | 21.023796 | 21.023796 | 21.023796 |  |
| 23 | 88  | 29.410882 | 29.410882 | 29.410882 |  |
| 23 | 89  | 45.880279 | 45.880279 | 45.880279 |  |
|    |     |           |           |           |  |
| 23 | 90  | 28.792360 | 28.792360 | 28.792360 |  |
| 23 | 91  | 32.140317 | 32.140317 | 32.140317 |  |
| 23 | 92  | 28.460499 | 28.460499 | 28.460499 |  |
| 23 | 93  | 30.870698 | 30.870698 | 30.870698 |  |
| 23 | 94  | 42.544095 | 42.544095 | 42.544095 |  |
| 23 | 95  | 37.121422 | 37.121422 | 37.121422 |  |
| 23 | 96  | 27.202941 | 27.202941 | 27.202941 |  |
| 23 | 97  | 41.785165 | 41.785165 | 41.785165 |  |
| 23 | 98  | 36.124784 | 36.124784 | 36.124784 |  |
| 23 | 99  | 39.560081 | 39.560081 | 39.560081 |  |
| 23 | 100 | 24.413111 | 24.413111 | 24.413111 |  |
| 23 | 101 | 52.773099 | 52.773099 | 52.773099 |  |
|    |     |           |           |           |  |
| 24 | 1   | 45.044423 | 45.044423 | 45.044423 |  |
| 24 | 2   | 81.049368 | 81.049368 | 81.049368 |  |
| 24 | 3   | 71.805292 | 71.805292 | 71.805292 |  |
| 24 | 4   | 81.584312 | 81.584312 | 81.584312 |  |
| 24 | 5   | 77.129761 | 77.129761 | 77.129761 |  |
| 24 | 6   | 82.00000  | 82.00000  | 82.000000 |  |
| 24 | 7   | 72.801099 | 72.801099 | 72.801099 |  |
| 24 | 8   | 73.681748 | 73.681748 | 73.681748 |  |
| 24 | 9   | 78.447435 | 78.447435 | 78.447435 |  |
| 24 | 10  | 41.036569 | 41.036569 | 41.036569 |  |
| 24 |     |           | 44.821870 | 44.821870 |  |
|    | 11  | 44.821870 |           |           |  |
| 24 | 12  | 46.097722 | 46.097722 | 46.097722 |  |
| 24 | 13  | 50.000000 | 50.000000 | 50.000000 |  |
| 24 | 14  | 44.598206 | 44.598206 | 44.598206 |  |
| 24 | 15  | 51.855569 | 51.855569 | 51.855569 |  |

| 24       | 16         | 50.209561 | 50.209561 | 50.209561 |  |
|----------|------------|-----------|-----------|-----------|--|
| 24       | 17         | 51.662365 | 51.662365 | 51.662365 |  |
| 24       | 18         | 55.172457 | 55.172457 | 55.172457 |  |
| 24       | 19         | 6.000000  | 6.000000  | 6.000000  |  |
| 24       | 20         | 6.403124  | 6.403124  | 6.403124  |  |
| 24       | 21         | 10.770330 | 10.770330 | 10.770330 |  |
| 24       | 22         | 2.000000  | 2.000000  | 2.000000  |  |
| 24       | 23         | 10.198039 | 10.198039 | 10.198039 |  |
| 24       | 25         | 10.000000 | 10.000000 | 10.000000 |  |
| 24       | 26         | 3.000000  | 3.000000  | 3.000000  |  |
| 24       | 27         | 62.241465 | 62.241465 | 62.241465 |  |
| 24       | 28         | 64.412732 | 64.412732 | 64.412732 |  |
| 24       | 29         | 59.506302 | 59.506302 | 59.506302 |  |
| 24       | 30         | 60.033324 | 60.033324 | 60.033324 |  |
| 24       | 31         | 55.901699 | 55.901699 | 55.901699 |  |
| 24       | 32         | 58.309519 | 58.309519 | 58.309519 |  |
| 24       | 33         | 55.009090 | 55.009090 | 55.009090 |  |
| 24       | 34         | 51.078371 | 51.078371 | 51.078371 |  |
| 24       | 35         | 55.758407 | 55.758407 | 55.758407 |  |
| 24       | 36         | 85.094066 | 85.094066 | 85.094066 |  |
| 24       | 37         | 84.433406 | 84.433406 | 84.433406 |  |
| 24       | 38         | 81.596569 | 81.596569 | 81.596569 |  |
| 24       | 30<br>39   | 78.746428 | 78.746428 | 78.746428 |  |
| 24<br>24 | 3 9<br>4 0 | 78.160092 | 78.160092 | 78.160092 |  |
|          |            |           |           |           |  |
| 24       | 41         | 82.969874 | 82.969874 | 82.969874 |  |
| 24       | 42         | 72.801099 | 72.801099 | 72.801099 |  |
| 24       | 43         | 76.902536 | 76.902536 | 76.902536 |  |
| 24       | 44         | 81.786307 | 81.786307 | 81.786307 |  |
| 24       | 45         | 78.854296 | 78.854296 | 78.854296 |  |
| 24       | 46         | 79.075913 | 79.075913 | 79.075913 |  |
| 24       | 47         | 77.620873 | 77.620873 | 77.620873 |  |
| 24       | 48         | 53.814496 | 53.814496 | 53.814496 |  |
| 24       | 49         | 4.000000  | 4.000000  | 4.000000  |  |
| 24       | 50         | 8.062258  | 8.062258  | 8.062258  |  |
| 24       | 51         | 45.343136 | 45.343136 | 45.343136 |  |
| 24       | 52         | 22.671568 | 22.671568 | 22.671568 |  |
| 24       | 53         | 28.178006 | 28.178006 | 28.178006 |  |
| 24       | 54         | 48.466483 | 48.466483 | 48.466483 |  |
| 24       | 55         | 57.567352 | 57.567352 | 57.567352 |  |
| 24       | 56         | 55.578773 | 55.578773 | 55.578773 |  |
| 24       | 57         | 32.310989 | 32.310989 | 32.310989 |  |
| 24       | 58         | 21.540659 | 21.540659 | 21.540659 |  |
| 24       | 59         | 23.537205 | 23.537205 | 23.537205 |  |
| 24       | 60         | 31.764760 | 31.764760 | 31.764760 |  |
| 24       | 61         | 59.615434 | 59.615434 | 59.615434 |  |
| 24       | 62         | 60.406953 | 60.406953 | 60.406953 |  |
| 24       | 63         | 40.360872 | 40.360872 | 40.360872 |  |
| 24       | 64         | 30.886890 | 30.886890 | 30.886890 |  |
| 24<br>24 | 65         | 25.961510 | 25.961510 | 25.961510 |  |
|          |            |           |           | 35.128336 |  |
| 24       | 66<br>67   | 35.128336 | 35.128336 |           |  |
| 24       | 67         | 32.140317 | 32.140317 | 32.140317 |  |
| 24       | 68         | 45.221676 | 45.221676 | 45.221676 |  |
| 24       | 69         | 55.036352 | 55.036352 | 55.036352 |  |
| 24       | 70         | 47.518417 | 47.518417 | 47.518417 |  |
| 24       | 71         | 64.070274 | 64.070274 | 64.070274 |  |
| 24       | 72         | 56.824291 | 56.824291 | 56.824291 |  |
| 24       | 73         | 65.000000 | 65.000000 | 65.000000 |  |
| 24       | 74         | 65.734314 | 65.734314 | 65.734314 |  |
| 24       | 75         | 23.430749 | 23.430749 | 23.430749 |  |
| 24       | 76         | 33.000000 | 33.000000 | 33.000000 |  |
| 24       | 77         | 23.086793 | 23.086793 | 23.086793 |  |
|          |            |           | 15 100746 | 45 400546 |  |
| 24       | 78         | 15.132746 | 15.132746 | 15.132746 |  |

| 24 | 80  | 70.661163 | 70.661163 | 70.661163 |  |
|----|-----|-----------|-----------|-----------|--|
| 24 | 81  | 42.953463 | 42.953463 | 42.953463 |  |
| 24 | 82  | 54.129474 | 54.129474 | 54.129474 |  |
| 24 | 83  | 39.560081 | 39.560081 | 39.560081 |  |
| 24 | 84  | 26.019224 | 26.019224 | 26.019224 |  |
| 24 | 85  | 30.610456 | 30.610456 | 30.610456 |  |
| 24 | 86  |           |           |           |  |
|    |     | 30.805844 | 30.805844 | 30.805844 |  |
| 24 | 87  | 25.495098 | 25.495098 | 25.495098 |  |
| 24 | 88  | 32.202484 | 32.202484 | 32.202484 |  |
| 24 | 89  | 54.817880 | 54.817880 | 54.817880 |  |
| 24 | 90  | 29.000000 | 29.000000 | 29.000000 |  |
| 24 | 91  | 42.011903 | 42.011903 | 42.011903 |  |
| 24 | 92  | 38.600518 | 38.600518 | 38.600518 |  |
| 24 | 93  | 40.853396 | 40.853396 | 40.853396 |  |
| 24 | 94  | 52.325902 | 52.325902 | 52.325902 |  |
| 24 | 95  | 47.010637 | 47.010637 | 47.010637 |  |
| 24 | 96  | 36.715120 | 36.715120 | 36.715120 |  |
| 24 |     | 51.865210 |           |           |  |
|    | 97  |           | 51.865210 | 51.865210 |  |
| 24 | 98  | 36.400549 | 36.400549 | 36.400549 |  |
| 24 | 99  | 48.507731 | 48.507731 | 48.507731 |  |
| 24 | 100 | 32.310989 | 32.310989 | 32.310989 |  |
| 24 | 101 | 62.393910 | 62.393910 | 62.393910 |  |
| 25 | 1   | 35.057096 | 35.057096 | 35.057096 |  |
| 25 | 2   | 71.196910 | 71.196910 | 71.196910 |  |
| 25 | 3   | 62.096699 | 62.096699 | 62.096699 |  |
| 25 | 4   | 71.805292 | 71.805292 | 71.805292 |  |
| 25 | 5   | 67.446275 | 67.446275 | 67.446275 |  |
| 25 | 6   | 72.277244 | 72.277244 | 72.277244 |  |
|    |     |           |           |           |  |
| 25 | 7   | 63.245553 | 63.245553 | 63.245553 |  |
| 25 | 8   | 64.257295 | 64.257295 | 64.257295 |  |
| 25 | 9   | 68.949257 | 68.949257 | 68.949257 |  |
| 25 | 10  | 34.409301 | 34.409301 | 34.409301 |  |
| 25 | 11  | 37.536649 | 37.536649 | 37.536649 |  |
| 25 | 12  | 39.051248 | 39.051248 | 39.051248 |  |
| 25 | 13  | 42.426407 | 42.426407 | 42.426407 |  |
| 25 | 14  | 38.587563 | 38.587563 | 38.587563 |  |
| 25 | 15  | 44.598206 | 44.598206 | 44.598206 |  |
| 25 | 16  | 43.829214 | 43.829214 | 43.829214 |  |
| 25 | 17  | 45.486262 | 45.486262 | 45.486262 |  |
|    |     |           |           |           |  |
| 25 | 18  | 48.414874 | 48.414874 | 48.414874 |  |
| 25 | 19  | 11.661904 | 11.661904 | 11.661904 |  |
| 25 | 20  | 6.403124  | 6.403124  | 6.403124  |  |
| 25 | 21  | 4.000000  | 4.000000  | 4.000000  |  |
| 25 | 22  | 10.198039 | 10.198039 | 10.198039 |  |
| 25 | 23  | 2.000000  | 2.000000  | 2.000000  |  |
| 25 | 24  | 10.000000 | 10.000000 | 10.000000 |  |
| 25 | 26  | 10.440307 | 10.440307 | 10.440307 |  |
| 25 | 27  | 58.940648 | 58.940648 | 58.940648 |  |
| 25 | 28  | 60.406953 | 60.406953 | 60.406953 |  |
| 25 | 29  | 56.044625 | 56.044625 | 56.044625 |  |
| 25 |     | 55.713553 |           |           |  |
|    | 30  |           | 55.713553 | 55.713553 |  |
| 25 | 31  | 52.201533 | 52.201533 | 52.201533 |  |
| 25 | 32  | 53.851648 | 53.851648 | 53.851648 |  |
| 25 | 33  | 51.244512 | 51.244512 | 51.244512 |  |
| 25 | 34  | 48.052055 | 48.052055 | 48.052055 |  |
| 25 | 35  | 51.078371 | 51.078371 | 51.078371 |  |
| 25 | 36  | 75.769387 | 75.769387 | 75.769387 |  |
| 25 | 37  | 75.026662 | 75.026662 | 75.026662 |  |
| 25 | 38  | 72.235725 | 72.235725 | 72.235725 |  |
| 25 | 39  | 69.289249 | 69.289249 | 69.289249 |  |
| 25 | 40  | 68.622154 | 68.622154 | 68.622154 |  |
| 25 | 41  | 73.375745 | 73.375745 | 73.375745 |  |
|    |     |           |           |           |  |
| 25 | 42  | 63.245553 | 63.245553 | 63.245553 |  |

| 25 | 43  | 67.186308 | 67.186308         | 67.186308 |
|----|-----|-----------|-------------------|-----------|
| 25 | 44  | 72.034714 | 72.034714         | 72.034714 |
| 25 | 45  | 69.123079 | 69.123079         | 69.123079 |
| 25 | 46  | 69.375788 | 69.375788         | 69.375788 |
| 25 | 47  | 68.007353 | 68.007353         | 68.007353 |
| 25 | 48  | 46.861498 | 46.861498         | 46.861498 |
| 25 |     |           |                   |           |
|    | 49  | 10.770330 | 10.770330         | 10.770330 |
| 25 | 50  | 5.00000   | 5.000000          | 5.000000  |
| 25 | 51  | 39.446166 | 39.446166         | 39.446166 |
| 25 | 52  | 17.720045 | 17.720045         | 17.720045 |
| 25 | 53  | 19.849433 | 19.849433         | 19.849433 |
| 25 | 54  | 39.357337 | 39.357337         | 39.357337 |
| 25 | 55  | 48.104054 | 48.104054         | 48.104054 |
| 25 | 56  | 45.705580 | 45.705580         | 45.705580 |
| 25 | 57  | 23.323808 | 23.323808         | 23.323808 |
| 25 | 58  | 12.806248 | 12.806248         | 12.806248 |
| 25 | 59  | 23.537205 | 23.537205         | 23.537205 |
| 25 | 60  | 28.442925 | 28.442925         | 28.442925 |
| 25 | 61  | 50.537115 | 50.537115         | 50.537115 |
| 25 | 62  | 50.487622 | 50.487622         | 50.487622 |
| 25 | 63  | 33.600595 | 33.600595         | 33.600595 |
| 25 | 64  | 27.459060 | 27.459060         | 27.459060 |
|    |     |           |                   |           |
| 25 | 65  | 16.552945 | 16.552945         | 16.552945 |
| 25 | 66  | 25.179357 | 25.179357         | 25.179357 |
| 25 | 67  | 22.203603 | 22.203603         | 22.203603 |
| 25 | 68  | 37.483330 | 37.483330         | 37.483330 |
| 25 | 69  | 45.044423 | 45.044423         | 45.044423 |
| 25 | 70  | 37.656341 | 37.656341         | 37.656341 |
| 25 | 71  | 54.083269 | 54.083269         | 54.083269 |
| 25 | 72  | 48.259714 | 48.259714         | 48.259714 |
| 25 | 73  | 55.901699 | 55.901699         | 55.901699 |
| 25 | 74  | 57.628118 | 57.628118         | 57.628118 |
| 25 | 75  | 18.681542 | 18.681542         | 18.681542 |
| 25 | 76  | 34.481879 | 34.481879         | 34.481879 |
| 25 | 77  | 22.203603 | 22.203603         | 22.203603 |
| 25 |     |           |                   |           |
|    | 78  | 19.209373 | 19.209373         | 19.209373 |
| 25 | 79  | 50.803543 | 50.803543         | 50.803543 |
| 25 | 80  | 61.911227 | 61.911227         | 61.911227 |
| 25 | 81  | 33.241540 | 33.241540         | 33.241540 |
| 25 | 82  | 44.384682 | 44.384682         | 44.384682 |
| 25 | 83  | 30.083218 | 30.083218         | 30.083218 |
| 25 | 84  | 16.031220 | 16.031220         | 16.031220 |
| 25 | 85  | 23.600847 | 23.600847         | 23.600847 |
| 25 | 86  | 26.248809 | 26.248809         | 26.248809 |
| 25 | 87  | 19.235384 | 19.235384         | 19.235384 |
| 25 | 88  | 27.513633 | 27.513633         | 27.513633 |
| 25 | 89  | 45.221676 | 45.221676         | 45.221676 |
| 25 | 90  | 30.675723 | 30.675723         | 30.675723 |
| 25 | 91  | 32.015621 | 32.015621         | 32.015621 |
| 25 | 92  | 29.154759 | 29.154759         | 29.154759 |
|    |     |           | 31.764760         |           |
| 25 | 93  | 31.764760 |                   | 31.764760 |
| 25 | 94  | 43.566042 | 43.566042         | 43.566042 |
| 25 | 95  | 38.078866 | 38.078866         | 38.078866 |
| 25 | 96  | 28.425341 | 28.425341         | 28.425341 |
| 25 | 97  | 42.544095 | 42.544095         | 42.544095 |
| 25 | 98  | 34.132096 | 34.132096         | 34.132096 |
| 25 | 99  | 38.897301 | 38.897301         | 38.897301 |
| 25 | 100 | 23.323808 | 23.323808         | 23.323808 |
| 25 | 101 | 52.469038 | 52.469038         | 52.469038 |
| 26 | 1   | 45.276926 | 45.276926         | 45.276926 |
| 26 | 2   | 80.622577 | 80.622577         | 80.622577 |
| 26 | 3   | 71.196910 | 71.196910         | 71.196910 |
| 26 | 4   | 81.049368 | 81.049368         | 81.049368 |
|    | *   | 51.019300 | J 1 • U 1 J J U U | 01.01000  |

|    |    | =         | =         |           |  |
|----|----|-----------|-----------|-----------|--|
| 26 | 5  | 76.485293 | 76.485293 | 76.485293 |  |
| 26 | 6  | 81.394103 | 81.394103 | 81.394103 |  |
| 26 | 7  | 72.034714 | 72.034714 | 72.034714 |  |
| 26 | 8  | 72.801099 | 72.801099 | 72.801099 |  |
| 26 | 9  | 77.620873 | 77.620873 | 77.620873 |  |
| 26 | 10 | 39.051248 | 39.051248 | 39.051248 |  |
| 26 | 11 | 43.011626 | 43.011626 | 43.011626 |  |
| 26 | 12 | 44.204072 | 44.204072 | 44.204072 |  |
| 26 | 13 | 48.259714 | 48.259714 | 48.259714 |  |
| 26 | 14 | 42.426407 | 42.426407 | 42.426407 |  |
| 26 | 15 | 50.000000 | 50.000000 | 50.000000 |  |
| 26 | 16 | 48.104054 | 48.104054 | 48.104054 |  |
| 26 | 17 | 49.497475 | 49.497475 | 49.497475 |  |
| 26 | 18 | 53.150729 | 53.150729 | 53.150729 |  |
| 26 | 19 | 9.000000  | 9.000000  | 9.000000  |  |
| 26 | 20 | 8.602325  | 8.602325  | 8.602325  |  |
| 26 | 21 | 12.206556 | 12.206556 | 12.206556 |  |
| 26 | 22 | 5.000000  | 5.000000  | 5.000000  |  |
| 26 | 23 | 11.180340 | 11.180340 | 11.180340 |  |
| 26 | 24 | 3.000000  | 3.000000  | 3.000000  |  |
| 26 | 25 | 10.440307 | 10.440307 | 10.440307 |  |
| 26 | 27 | 65.000000 | 65.000000 | 65.000000 |  |
| 26 | 28 | 67.082039 | 67.082039 | 67.082039 |  |
| 26 | 29 | 62.241465 | 62.241465 | 62.241465 |  |
| 26 | 30 | 62.649820 | 62.649820 | 62.649820 |  |
| 26 | 31 | 58.600341 | 58.600341 | 58.600341 |  |
| 26 | 32 | 60.901560 | 60.901560 | 60.901560 |  |
| 26 | 33 | 57.697487 | 57.697487 | 57.697487 |  |
| 26 |    |           | 53.851648 | 53.851648 |  |
|    | 34 | 53.851648 |           |           |  |
| 26 | 35 | 58.309519 | 58.309519 | 58.309519 |  |
| 26 | 36 | 86.162637 | 86.162637 | 86.162637 |  |
| 26 | 37 | 85.440037 | 85.440037 | 85.440037 |  |
| 26 | 38 | 82.637764 | 82.637764 | 82.637764 |  |
| 26 | 39 | 79.711982 | 79.711982 | 79.711982 |  |
| 26 | 40 | 79.056942 | 79.056942 | 79.056942 |  |
| 26 | 41 | 83.815273 | 83.815273 | 83.815273 |  |
| 26 | 42 | 73.681748 | 73.681748 | 73.681748 |  |
| 26 | 43 | 77.620873 | 77.620873 | 77.620873 |  |
| 26 | 44 | 82.462113 | 82.462113 | 82.462113 |  |
| 26 | 45 | 79.555012 | 79.555012 | 79.555012 |  |
| 26 | 46 | 78.447435 | 78.447435 | 78.447435 |  |
| 26 | 47 | 76.902536 | 76.902536 | 76.902536 |  |
| 26 | 48 | 51.855569 | 51.855569 | 51.855569 |  |
| 26 | 49 | 7.000000  | 7.000000  | 7.000000  |  |
| 26 | 50 | 9.899495  | 9.899495  | 9.899495  |  |
| 26 | 51 | 47.634021 | 47.634021 | 47.634021 |  |
| 26 | 52 | 25.000000 | 25.000000 | 25.000000 |  |
| 26 | 53 | 26.925824 | 26.925824 | 26.925824 |  |
| 26 | 54 | 47.434165 | 47.434165 | 47.434165 |  |
| 26 | 55 | 58.523500 | 58.523500 | 58.523500 |  |
| 26 | 56 | 55.226805 | 55.226805 | 55.226805 |  |
| 26 | 57 | 33.541020 | 33.541020 | 33.541020 |  |
| 26 | 58 | 20.615528 | 20.615528 | 20.615528 |  |
| 26 | 59 | 20.615528 | 20.615528 | 20.615528 |  |
| 26 | 60 | 29.154759 | 29.154759 | 29.154759 |  |
| 26 | 61 | 58.523500 | 58.523500 | 58.523500 |  |
| 26 | 62 | 60.827625 | 60.827625 | 60.827625 |  |
| 26 | 63 | 42.426407 | 42.426407 | 42.426407 |  |
| 26 | 64 | 33.541020 | 33.541020 | 33.541020 |  |
| 26 | 65 | 26.925824 | 26.925824 | 26.925824 |  |
| 26 | 66 | 35.000000 | 35.000000 | 35.000000 |  |
| 26 | 67 | 32.557641 | 32.557641 | 32.557641 |  |
| 26 | 68 | 47.010637 | 47.010637 | 47.010637 |  |
| L  |    |           |           |           |  |

| 26 | 69  | 55.226805 | 55.226805 | 55.226805 |  |
|----|-----|-----------|-----------|-----------|--|
| 26 | 70  | 47.169906 | 47.169906 | 47.169906 |  |
| 26 | 71  | 64.000000 | 64.000000 | 64.000000 |  |
| 26 | 72  | 58.309519 | 58.309519 | 58.309519 |  |
| 26 | 73  | 66.211781 | 66.211781 | 66.211781 |  |
| 26 | 74  | 64.140471 | 64.140471 | 64.140471 |  |
| 26 | 75  | 21.213203 | 21.213203 | 21.213203 |  |
| 26 | 76  | 30.000000 | 30.000000 | 30.000000 |  |
| 26 | 77  | 25.961510 | 25.961510 | 25.961510 |  |
| 26 | 78  | 12.165525 | 12.165525 | 12.165525 |  |
| 26 | 79  | 57.706152 | 57.706152 | 57.706152 |  |
| 26 | 80  | 69.354164 | 69.354164 | 69.354164 |  |
| 26 | 81  | 43.680659 | 43.680659 | 43.680659 |  |
|    |     | 54.817880 |           |           |  |
| 26 | 82  |           | 54.817880 | 54.817880 |  |
| 26 | 83  | 38.832976 | 38.832976 | 38.832976 |  |
| 26 | 84  | 26.076810 | 26.076810 | 26.076810 |  |
| 26 | 85  | 32.557641 | 32.557641 | 32.557641 |  |
| 26 | 86  | 33.286634 | 33.286634 | 33.286634 |  |
| 26 | 87  | 23.600847 | 23.600847 | 23.600847 |  |
| 26 | 88  | 29.832868 | 29.832868 | 29.832868 |  |
| 26 | 89  | 54.129474 | 54.129474 | 54.129474 |  |
| 26 | 90  | 32.000000 | 32.000000 | 32.000000 |  |
| 26 | 91  | 42.047592 | 42.047592 | 42.047592 |  |
| 26 | 92  | 39.560081 | 39.560081 | 39.560081 |  |
| 26 | 93  | 42.047592 | 42.047592 | 42.047592 |  |
| 26 | 94  | 53.712196 | 53.712196 | 53.712196 |  |
| 26 | 95  | 48.301139 | 48.301139 | 48.301139 |  |
| 26 | 96  | 38.275318 | 38.275318 | 38.275318 |  |
| 26 | 97  | 52.924474 | 52.924474 | 52.924474 |  |
| 26 | 98  | 33.615473 | 33.615473 | 33.615473 |  |
| 26 |     |           |           |           |  |
|    | 99  | 47.853944 | 47.853944 | 47.853944 |  |
| 26 | 100 | 31.320920 | 31.320920 | 31.320920 |  |
| 26 | 101 | 62.128898 | 62.128898 | 62.128898 |  |
| 27 | 1   | 58.523500 | 58.523500 | 58.523500 |  |
| 27 | 2   | 89.022469 | 89.022469 | 89.022469 |  |
| 27 | 3   | 85.755466 | 85.755466 | 85.755466 |  |
| 27 | 4   | 91.400219 | 91.400219 | 91.400219 |  |
| 27 | 5   | 90.138782 | 90.138782 | 90.138782 |  |
| 27 | 6   | 93.005376 | 93.005376 | 93.005376 |  |
| 27 | 7   | 89.185201 | 89.185201 | 89.185201 |  |
| 27 | 8   | 91.787799 | 91.787799 | 91.787799 |  |
| 27 | 9   | 94.339811 | 94.339811 | 94.339811 |  |
| 27 | 10  | 85.146932 | 85.146932 | 85.146932 |  |
| 27 | 11  | 85.586214 | 85.586214 | 85.586214 |  |
| 27 | 12  | 87.572827 | 87.572827 | 87.572827 |  |
| 27 | 13  | 88.283634 | 88.283634 | 88.283634 |  |
| 27 | 14  | 90.138782 | 90.138782 | 90.138782 |  |
| 27 | 15  | 91.241438 | 91.241438 | 91.241438 |  |
| 27 | 16  | 93.536089 | 93.536089 | 93.536089 |  |
| 27 | 17  | 95.524866 | 95.524866 | 95.524866 |  |
|    |     |           |           |           |  |
| 27 | 18  | 96.176920 | 96.176920 | 96.176920 |  |
| 27 | 19  | 56.797887 | 56.797887 | 56.797887 |  |
| 27 | 20  | 56.648036 | 56.648036 | 56.648036 |  |
| 27 | 21  | 55.081757 | 55.081757 | 55.081757 |  |
| 27 | 22  | 60.415230 | 60.415230 | 60.415230 |  |
| 27 | 23  | 57.008771 | 57.008771 | 57.008771 |  |
| 27 | 24  | 62.241465 | 62.241465 | 62.241465 |  |
| 27 | 25  | 58.940648 | 58.940648 | 58.940648 |  |
| 27 | 26  | 65.000000 | 65.000000 | 65.000000 |  |
| 27 | 28  | 5.000000  | 5.000000  | 5.000000  |  |
| 27 | 29  | 3.000000  | 3.000000  | 3.000000  |  |
| 27 | 30  | 7.071068  | 7.071068  | 7.071068  |  |
| 27 | 31  | 7.000000  | 7.000000  | 7.000000  |  |
|    |     |           |           |           |  |

| 27   33   8.000000   8.000000   8.000000   8.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.000000   77.0000000   77.0000000   77.0000000   77.0000000   77.0000000   77.0000000   77.0000000   77. | 0.7 |    | 0 600005  | 0.600005  | 0.00005   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|-----------|-----------|-----------|--|
| 27         34         11.180340         11.180340         11.180340         11.180340           27         35         61.717096         61.717096         61.717096         61.717096           27         37         62.649820         62.649820         62.649820         62.649820           27         38         60.033324         60.033324         60.033324         60.033324           27         40         61.032778         61.032778         61.032778           27         41         65.192024         65.192024         65.192024           27         43         64.031242         64.031242         64.031242           27         43         64.031242         64.031242         64.031242           27         45         65.604878         65.604878         65.604878           27         45         65.604878         65.604878         65.604878           27         46         91.263355         91.263355         91.263355           27         47         91.809586         91.809586         91.809586           27         48         94.201911         94.201911         94.201911           27         49         58.60341         58.60341         58.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27  | 32 | 8.602325  | 8.602325  | 8.602325  |  |
| 27         35         11.180340         11.180340         11.180340           27         36         61.717096         61.717096         61.717096           27         37         62.49820         62.49820         62.69820         62.69820           27         39         55.902263         59.802263         59.908263         59.908263           27         40         61.032778         61.032778         61.032778         61.032778           27         41         65.192024         65.192024         65.192024           27         42         55.258047         58.258047         58.258047           27         43         64.031242         64.031242         64.031242           27         44         68.007353         68.007353         68.007353           27         46         91.263355         91.263355         91.263355           27         47         91.809586         91.809586         91.809586           27         48         94.201911         94.201911         94.201911         94.201911           27         50         55.973208         55.973208         55.973208         55.973208           27         51         23.537205         23.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |    |           |           |           |  |
| 27         36         61.717096         61.717096         61.717096           27         37         62.464920         62.644920         62.649920           27         38         60.033324         60.033324         60.033324         60.033324           27         40         61.032778         61.032778         61.032778           27         41         651.192024         651.192024         651.192024           27         42         58.258047         58.258047         58.258047           27         43         64.031242         64.031242         64.031242           27         43         64.031242         64.031242         64.031242           27         45         65.604878         65.604878         65.604878         65.604878           27         46         91.263355         91.263355         91.263355         91.809586           27         48         94.201911         94.201911         94.201911         94.201911           27         49         58.600341         58.600341         58.600341         58.600341           27         50         55.973200         55.973200         55.973200         59.3532005           27         51         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |           |           |           |  |
| 27         37         62.649820         62.649820         62.649820         62.649820           27         38         60.033244         60.033244         60.033244         59.908263         59.908263         59.908263         59.908263         59.908263         59.908263         59.908263         59.908263         59.908263         59.908263         59.908263         59.908263         59.908263         59.908263         59.908263         59.908263         59.908263         59.908263         59.908263         59.908263         59.908263         59.908263         59.908263         59.908264         59.908264         59.908264         59.908264         59.908264         59.908264         59.908264         59.908264         59.908264         59.908264         59.908264         59.908264         59.908264         59.908264         59.908264         59.908264         59.908264         59.908264         59.908264         59.908264         59.908264         59.908264         59.908263         59.908264         59.908264         59.908264         59.908264         59.908266         59.908266         59.908266         59.908266         59.908266         59.908266         59.908266         59.908266         59.908266         59.908266         59.908266         59.908266         59.908266         59.908266         59.9082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |    |           |           |           |  |
| 27         38         60.03324         60.03324         60.03324           27         39         59.90263         59.90263         59.90263           27         40         61.032778         61.032778         61.032778           27         41         65.192024         65.192024         65.192024           27         42         58.258047         58.258047         58.258047           27         43         64.031242         64.031242         64.031242           27         44         68.07353         68.007353         68.007353           27         45         65.604878         65.604878         65.604878           27         46         91.263355         91.263355         91.263355           27         47         91.809586         91.809586         91.809586           27         48         94.201911         94.201911         94.201911           27         49         58.600341         58.600341         58.600341         58.600341           27         50         55.973208         55.973208         55.973208         57.973208           27         51         23.537265         24.337205         23.537205         23.537205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |    |           |           |           |  |
| 27         39         59,908263         59,908263         59,908263         59,908263         29,908263         61,032778         61,032778         61,032778         61,032778         61,032778         61,032778         61,032778         62,02024         65,192024         65,192024         65,192024         65,192024         65,192024         65,192024         65,192024         65,192024         65,192024         66,0324         65,192024         66,0324         65,192024         66,0324         66,0324         66,0324         66,0324         66,0324         68,007333         68,007333         68,007333         68,007333         68,007333         68,007333         68,007333         69,007353         68,007383         69,007353         68,007383         69,007353         68,007383         69,007353         68,007383         69,007353         68,007383         69,007353         68,007383         69,007353         68,007383         69,007353         68,007383         69,007353         68,007383         69,007353         68,007383         69,007383         69,007383         69,007383         69,007383         69,007383         69,007383         69,007383         69,120938         69,1809386         91,2603355         91,2603355         91,2603355         91,2603355         91,2603355         91,2603355         91,2603355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |           |           |           |  |
| 27         40         61.032778         61.032778         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         66.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         64.031242         65.04383         65.04383         65.040878         65.040878         65.040878         65.040878         65.040878         65.040878         65.040878         65.040314         83.040314         82.042131         82.042131         82.042131         82.04213         82.04282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |           |           |           |  |
| 27         41         65.192024         65.192024         65.192024         58.258047         58.258047         58.258047         58.258047         58.258047         58.258047         58.258047         58.258047         58.258047         58.258047         58.258047         58.258047         58.258047         58.258047         58.258047         58.258047         58.258047         58.258047         58.258047         58.258047         58.268047         68.007333         68.007333         68.007333         68.007333         68.007343         68.007343         58.60341         58.603355         91.263355         91.263355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.2693355         91.269355         91.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |           |           |           |  |
| 27         42         58,258047         58,258047         58,258047         25,258047           27         43         64,031242         64,031242         64,031242           27         44         68,007353         68,007353         68,007353           27         45         65,604878         65,604878         65,604878           27         46         91,263355         91,263355         91,263355           27         47         91,809586         91,809586         91,809586           27         48         94,201911         94,201911         94,201911           27         59         55,973208         55,973208         55,973208           27         51         23,537205         23,537205         23,537205           27         52         41,231056         41,231056         41,231056         41,231056         41,231056         41,231056         41,231056         41,231056         41,231056         41,231056         41,231056         41,231056         41,231056         41,231056         41,231056         41,231056         41,231056         41,231056         41,231056         41,231056         41,231056         41,231056         41,231056         41,231056         41,231056         41,231056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 40 | 61.032778 |           |           |  |
| 27         43         64.031242         64.031242         64.03753         68.007353         68.007353         68.007353         68.007353         68.007353         68.007353         68.007353         68.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353         69.007353 <td></td> <td>41</td> <td>65.192024</td> <td></td> <td>65.192024</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 41 | 65.192024 |           | 65.192024 |  |
| 27         44         68.007353         68.007353         68.004878           27         45         65.604878         65.604878         65.604878           27         46         91.263355         91.263355         91.263355           27         47         91.809586         91.809586         91.201911           27         49         58.600341         58.600341         58.600341           27         50         55.973208         55.973205         23.537205           27         51         23.537205         23.537205         23.537205           27         52         41.231056         41.231056         41.231056           27         53         70.000000         70.000000         70.000000           27         54         77.620873         77.620873         77.620873           27         55         50.000000         50.000000         50.000000           27         56         71.589105         71.589105         71.589105           27         58         65.192024         65.192024         65.192024         65.192024           27         59         82.462113         82.462113         82.462113         82.462113           27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27  | 42 | 58.258047 | 58.258047 | 58.258047 |  |
| 27         45         65.604878         65.604878         65.604878           27         46         91.263355         91.263355         91.263355           27         47         91.809886         91.809586         91.809586           27         48         94.201911         94.201911         94.201911           27         49         58.600341         58.600341         58.600341           27         50         55.973208         55.973208         55.973208           27         51         23.537205         23.537205         23.537205           27         52         41.231056         41.231056         41.231056           27         53         70.000000         70.000000         70.000000           27         54         77.620873         77.620873         77.620873           27         54         77.620873         77.620873         77.620873         77.620873           27         55         50.000000         50.000000         50.000000         70.000000           27         56         61.5827626         45.276926         45.276926         45.276926         45.276926         45.276926         45.276926         45.276926         45.276926         45.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27  | 43 | 64.031242 | 64.031242 | 64.031242 |  |
| 27         46         91.263355         91.263355         91.263355           27         47         91.809586         91.809586         91.809586           27         48         94.201911         94.201911         94.201911           27         49         58.600341         58.600341         58.600341           27         50         55.973208         55.973205         23.537205           23.537205         23.537205         23.537205         23.537205           27         52         41.231056         41.231056         41.231056           27         53         70.000000         70.000000         70.000000           27         54         77.620873         77.620873         77.620873           27         55         50.000000         50.000000         50.000000         50.000000           27         56         71.589105         71.589105         71.589105         71.589105           27         57         45.276926         45.276926         45.276926         45.276926           27         58         65.192024         65.192024         65.192024         65.192024           27         59         82.462113         82.462113         82.462113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27  | 44 | 68.007353 | 68.007353 | 68.007353 |  |
| 27         47         91.809586         91.809586         91.809586           27         48         94.201911         94.201911         94.201911           27         49         58.600341         58.600341         58.600341           27         50         55.973208         55.973208         55.973208           27         51         23.537205         23.537205         23.537205           27         52         41.231056         41.231056         41.231056           27         53         70.000000         70.000000         70.000000           27         54         77.520873         77.520873         77.520873           27         55         50.000000         50.000000         50.000000           27         56         71.589105         71.589105         71.589105           27         57         45.276926         45.276926         45.276926           27         58         65.192024         65.192024         65.192024         85.86214         85.86214         85.86214         85.86214         85.86214         85.86214         85.86214         85.40037         85.440037         85.440037         85.440037         86.40037         86.032778         61.032778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27  | 45 | 65.604878 | 65.604878 | 65.604878 |  |
| 27         48         94,201911         94,201911         94,201911           27         49         58,600341         58,600341         58,600341           27         50         55,973208         55,973208         55,973205           27         51         23,537205         23,537205         23,537205           27         52         41,231056         41,231056         41,231056           27         54         77,620873         77,620873         77,620873           27         55         50,000000         50,000000         50,000000           27         56         71,589105         71,589105         71,589105           27         57         45,276926         45,276926         45,276926           27         58         65,192024         65,192024         65,192024           27         59         82,462113         82,462113         82,462113           27         61         85,440037         85,440037         85,440037           27         61         85,440037         86,440037         86,440037           27         62         61,032778         61,032778         61,032778         61,032778         61,032778         61,032778         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27  | 46 | 91.263355 | 91.263355 | 91.263355 |  |
| 27         49         \$8.600341         \$5.60341         \$5.60341         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$6.276205         \$6.276205         \$6.276206         \$6.276207         \$7.000000         \$7.000000         \$7.000000         \$7.000000         \$7.000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.00000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.00000000         \$7.00000000         \$7.0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27  | 47 | 91.809586 | 91.809586 | 91.809586 |  |
| 27         49         \$8.600341         \$5.60341         \$5.60341         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$5.973208         \$6.276205         \$6.276205         \$6.276206         \$6.276207         \$7.000000         \$7.000000         \$7.000000         \$7.000000         \$7.000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.00000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.0000000         \$7.00000000         \$7.00000000         \$7.0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27  | 48 | 94.201911 | 94.201911 | 94.201911 |  |
| 27         50         55.973208         55.973208         55.973208         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |           |           |           |  |
| 27         51         23.537205         23.537205         41.231056         41.231056         41.231056         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         23.537205         27.0000000         70.000000         70.000000         70.000000         70.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000         50.000000 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |    |           |           |           |  |
| 27         52         41,231056         41,231056         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,000000         70,0000000         70,0000000         70,0000000         70,000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |    |           |           |           |  |
| 27         53         70.000000         70.000000         70.000000           27         54         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.6208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |    |           |           |           |  |
| 27         54         77.620873         77.620873         77.620873           27         55         50.000000         50.000000         50.000000           27         56         71.589105         71.589105         71.589105           27         57         45.276926         45.276926         45.276926           27         58         65.192024         65.192024         65.192024           27         59         82.462113         82.462113         82.462113           27         60         85.586214         85.586214         85.586214           27         61         85.440037         85.440037         85.440037           27         62         61.032778         61.032778         61.032778           27         63         30.413813         30.413813         30.413813           27         64         31.622777         31.622777         31.622777           27         65         50.00000         50.00000         50.00000           27         66         60.827625         60.827625         60.827625           27         67         54.451814         54.451814         54.451814           27         69         62.649820 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |    |           |           |           |  |
| 27         55         50.000000         50.000000         50.000000           27         56         71.589105         71.589105         71.589105           27         57         45.276926         45.276926         45.276926           27         58         65.192024         65.192024         65.192024           27         59         82.462113         82.462113         82.462113         82.462113           27         60         85.586214         85.586214         85.586214         85.586214           27         61         85.440037         85.440037         85.440037           27         62         61.032778         61.032778         61.032778         61.032778           27         63         30.413813         30.413813         30.413813         30.413813           27         64         31.622777         31.622777         31.622777         31.622777           27         65         50.000000         50.000000         50.000000         50.000000           27         66         60.827625         60.827625         60.827625         60.827625           27         67         54.451814         54.451814         54.451814         54.451814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |    |           |           |           |  |
| 27         56         71.589105         71.589105         71.589105           27         57         45.276926         45.276926         45.276926           27         58         65.192024         65.192024         65.192024           27         59         82.462113         82.462113         82.462113           27         60         85.586214         85.586214         85.586214           27         61         85.440037         85.440037           27         62         61.032778         61.032778         61.032778           27         63         30.413813         30.413813         30.413813           27         64         31.622777         31.622777         31.622777           27         65         50.000000         50.00000         50.000000           27         66         60.827625         60.827625         60.827625           27         67         54.451814         54.451814         54.451814           27         69         62.649820         62.649820         62.649820         62.649820           27         70         67.675697         67.675697         67.675697         71.561163         71.561163         71.561163         71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |    |           |           |           |  |
| 27         57         45.276926         45.276926         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         65.192024         85.86214         85.586214         85.586214         85.586214         85.586214         85.586214         85.586214         85.586214         85.586214         85.586214         85.440037         85.440037         85.440037         85.440037         85.440037         85.440037         85.440037         85.440037         85.440037         85.440037         85.440037         85.440037         85.440037         85.440037         85.440037         85.440037         85.440037         85.440037         85.440037         85.440037         85.440037         85.440037         85.440037         85.451814         85.451814         85.451814         85.451814         85.451814         85.451814         85.451814         85.451814         85.451814         85.452184         85.451814         85.451814 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |    |           |           |           |  |
| 27         58         65.192024         65.192024         65.192024           27         59         82.462113         82.462113         82.462113           27         60         85.586214         85.586214         85.586214           27         61         85.440037         85.440037         85.440037           27         62         61.032778         61.032778         61.032778           27         63         30.413813         30.413813         30.413813           27         64         31.622777         31.622777         31.622777           27         65         50.000000         50.00000         50.000000           27         66         60.827625         60.827625         60.827625           27         67         54.451814         54.451814         54.451814         54.451814           27         69         62.649820         62.649820         62.649820         62.649820           27         70         67.675697         67.675697         67.675697         67.675697           27         71         71.561163         71.561163         71.561163           27         72         39.051248         39.051248         39.051248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |    |           |           |           |  |
| 27       59       82.462113       82.462113       82.462113         27       60       85.586214       85.586214       85.586214         27       61       85.440037       85.440037       85.440037         27       62       61.032778       61.032778       61.032778         27       63       30.413813       30.413813       30.413813         27       64       31.622777       31.622777       31.622777         27       66       60.827625       60.827625       60.827625         27       67       54.451814       54.451814       54.451814         27       69       62.649820       62.649820       62.649820         27       70       67.675697       67.675697       67.675697         27       71       71.561163       71.561163       71.561163         27       73       47.423623       47.423623       47.423623         27       74       97.718985       97.718985       97.718985         27       75       75.663730       75.663730       75.663730         27       76       93.407708       93.407708       93.407708         27       78       76.896034       76.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |           |           |           |  |
| 27       60       85.586214       85.586214       85.586214         27       61       85.440037       85.440037       85.440037         27       62       61.032778       61.032778       61.032778         27       63       30.413813       30.413813       30.413813         27       64       31.622777       31.622777       31.622777         27       65       50.000000       50.000000       50.000000         27       66       60.827625       60.827625       60.827625         27       67       54.451814       54.451814       54.451814         27       69       62.649820       62.649820       62.649820         27       70       67.675697       67.675697       67.675697         27       71       71.561163       71.561163       71.561163         27       72       39.051248       39.051248       39.051248         27       74       97.718985       97.718985       97.718985         27       75       75.663730       75.663730       75.663730         27       78       76.896034       76.896034       76.896034         27       79       39.357337       39.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |           |           |           |  |
| 27         61         85.440037         85.440037         85.440037           27         62         61.032778         61.032778         61.032778           27         63         30.413813         30.413813         30.413813           27         64         31.622777         31.622777         31.622777           27         65         50.000000         50.000000         50.000000           27         66         60.827625         60.827625         60.827625           27         67         54.451814         54.451814         54.451814           27         68         33.241540         33.241540         33.241540           27         69         62.649820         62.649820         62.649820           27         70         67.675697         67.675697         67.675697           27         71         71.561163         71.561163         71.561163           27         72         39.051248         39.051248         39.051248           27         73         47.423623         47.423623         47.423623           27         74         497.718985         97.718985         97.718985           27         75         75.663730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |    |           |           |           |  |
| 27         62         61.032778         61.032778         61.032778           27         63         30.413813         30.413813         30.413813           27         64         31.622777         31.622777         31.622777           27         65         50.000000         50.000000         50.000000           27         66         60.827625         60.827625         60.827625           27         67         54.451814         54.451814         54.451814           27         69         62.649820         62.649820         62.649820         62.649820           27         70         67.675697         67.675697         67.675697           27         71         71.561163         71.561163         71.561163           27         72         39.051248         39.051248         39.051248           27         73         47.23623         47.423623         47.423623           27         74         97.718985         97.718985         97.718985           27         75         75.663730         75.663730         75.663730           27         76         93.407708         93.407708         93.407708           27         77         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |    |           |           |           |  |
| 27       63       30.413813       30.413813       30.413813       30.413813         27       64       31.622777       31.622777       31.622777         27       65       50.000000       50.000000       50.000000         27       66       60.827625       60.827625       60.827625         27       67       54.451814       54.451814       54.451814         27       68       33.241540       33.241540       33.241540         27       69       62.649820       62.649820       62.649820         27       70       67.675697       67.675697       67.675697         27       71       71.561163       71.561163       71.561163         27       72       39.051248       39.051248       39.051248         27       73       47.423623       47.423623       47.423623         27       74       97.718985       97.718985       97.718985         27       75       75.663730       75.663730       75.663730         27       76       93.407708       93.407708       93.407708         27       78       76.896034       76.896034       76.896034         27       79       90.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |           |           |           |  |
| 27       64       31.622777       31.622777       31.622777         27       65       50.000000       50.000000       50.000000         27       66       60.827625       60.827625       60.827625         27       67       54.451814       54.451814       54.451814         27       68       33.241540       33.241540       33.241540         27       69       62.649820       62.649820       62.649820         27       70       67.675697       67.675697       67.675697         27       71       71.561163       71.561163       71.561163         27       72       39.051248       39.051248       39.051248         27       73       47.423623       47.423623       47.423623         27       74       97.718985       97.718985       97.718985         27       75       75.663730       75.663730       75.663730         27       76       93.407708       93.407708       93.407708         27       77       39.357337       39.357337       39.357337         27       78       76.896034       76.896034       76.896034         27       79       90.801982       90.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |           |           |           |  |
| 27       65       50.000000       50.000000       50.000000         27       66       60.827625       60.827625       60.827625         27       67       54.451814       54.451814       54.451814         27       68       33.241540       33.241540       33.241540         27       69       62.649820       62.649820       62.649820         27       70       67.675697       67.675697       67.675697         27       71       71.561163       71.561163       71.561163         27       72       39.051248       39.051248       39.051248         27       73       47.423623       47.423623       47.423623         27       74       97.718985       97.718985       97.718985         27       75       75.663730       75.663730       75.663730         27       76       93.407708       93.407708       93.407708         27       77       39.357337       39.357337       39.357337         27       78       76.896034       76.896034       76.896034         27       79       90.801982       90.801982       90.801982         27       80       96.772930       96.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |           |           |           |  |
| 27       66       60.827625       60.827625       60.827625         27       67       54.451814       54.451814       54.451814         27       68       33.241540       33.241540       33.241540         27       69       62.649820       62.649820       62.649820         27       70       67.675697       67.675697       67.675697         27       71       71.561163       71.561163       71.561163         27       72       39.051248       39.051248       39.051248         27       73       47.423623       47.423623       47.423623         27       74       97.718985       97.718985       97.718985         27       75       75.663730       75.663730       75.663730         27       76       93.407708       93.407708       93.407708         27       77       39.357337       39.357337       39.357337         27       78       76.896034       76.896034       76.896034       76.896034         27       79       90.801982       90.801982       90.801982       90.801982         27       80       96.772930       96.772930       96.772930       96.772930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 64 | 31.622777 | 31.622777 | 31.622777 |  |
| 27       67       54.451814       54.451814       54.451814       54.451814         27       68       33.241540       33.241540       33.241540         27       69       62.649820       62.649820       62.649820         27       70       67.675697       67.675697       67.675697         27       71       71.561163       71.561163       71.561163         27       72       39.051248       39.051248       39.051248         27       73       47.423623       47.423623       47.423623         27       74       97.718985       97.718985       97.718985         27       75       75.663730       75.663730       75.663730         27       76       93.407708       93.407708       93.407708         27       77       39.357337       39.357337       39.357337         27       78       76.896034       76.896034       76.896034         27       79       90.801982       90.801982       90.801982         27       80       96.772930       96.772930       96.772930         27       81       50.921508       50.921508       50.921508         27       82       53.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 65 | 50.000000 | 50.000000 | 50.000000 |  |
| 27       68       33.241540       33.241540       33.241540         27       69       62.649820       62.649820       62.649820         27       70       67.675697       67.675697       67.675697         27       71       71.561163       71.561163       71.561163         27       72       39.051248       39.051248       39.051248         27       73       47.423623       47.423623       47.423623         27       74       97.718985       97.718985       97.718985         27       75       75.663730       75.663730       75.663730         27       76       93.407708       93.407708       93.407708         27       77       39.357337       39.357337       39.357337         27       78       76.896034       76.896034       76.896034         27       79       90.801982       90.801982       90.801982         27       80       96.772930       96.772930       96.772930         27       81       50.921508       50.921508       50.921508         27       82       53.851648       53.851648       53.851648         27       84       58.008620       58.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 66 | 60.827625 |           | 60.827625 |  |
| 27       69       62.649820       62.649820       62.649820         27       70       67.675697       67.675697       67.675697         27       71       71.561163       71.561163       71.561163         27       72       39.051248       39.051248       39.051248         27       73       47.423623       47.423623       47.423623         27       74       97.718985       97.718985       97.718985         27       75       75.663730       75.663730       75.663730         27       76       93.407708       93.407708       93.407708         27       77       39.357337       39.357337       39.357337         27       78       76.896034       76.896034       76.896034         27       79       90.801982       90.801982       90.801982         27       80       96.772930       96.772930       96.772930         27       81       50.921508       50.921508       50.921508         27       82       53.851648       53.851648       53.851648         27       84       58.008620       58.008620       58.008620         27       85       38.013156       38.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27  | 67 | 54.451814 | 54.451814 | 54.451814 |  |
| 27       70       67.675697       67.675697       67.675697         27       71       71.561163       71.561163       71.561163         27       72       39.051248       39.051248       39.051248         27       73       47.423623       47.423623       47.423623         27       74       97.718985       97.718985       97.718985         27       75       75.663730       75.663730       75.663730         27       76       93.407708       93.407708       93.407708         27       77       39.357337       39.357337       39.357337         27       78       76.896034       76.896034       76.896034         27       79       90.801982       90.801982       90.801982         27       80       96.772930       96.772930       96.772930         27       81       50.921508       50.921508       50.921508         27       82       53.851648       53.851648       53.851648         27       83       69.231496       69.231496       69.231496         27       84       58.008620       58.008620       58.008620         27       86       32.756679       32.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27  | 68 | 33.241540 | 33.241540 | 33.241540 |  |
| 27       71       71.561163       71.561163       71.561163         27       72       39.051248       39.051248       39.051248         27       73       47.423623       47.423623       47.423623         27       74       97.718985       97.718985       97.718985         27       75       75.663730       75.663730       75.663730         27       76       93.407708       93.407708       93.407708         27       77       39.357337       39.357337       39.357337         27       78       76.896034       76.896034       76.896034         27       79       90.801982       90.801982       90.801982         27       80       96.772930       96.772930       96.772930         27       81       50.921508       50.921508         27       82       53.851648       53.851648       53.851648         27       83       69.231496       69.231496       69.231496         27       84       58.008620       58.008620       58.008620         27       85       38.013156       38.013156       38.013156         27       87       74.242845       74.242845       74.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27  | 69 | 62.649820 | 62.649820 | 62.649820 |  |
| 27       72       39.051248       39.051248       39.051248         27       73       47.423623       47.423623       47.423623         27       74       97.718985       97.718985       97.718985         27       75       75.663730       75.663730       75.663730         27       76       93.407708       93.407708       93.407708         27       77       39.357337       39.357337       39.357337         27       78       76.896034       76.896034       76.896034         27       79       90.801982       90.801982       90.801982         27       80       96.772930       96.772930       96.772930         27       81       50.921508       50.921508       50.921508         27       82       53.851648       53.851648       53.851648         27       83       69.231496       69.231496       69.231496         27       84       58.008620       58.008620       58.008620         27       85       38.013156       38.013156       38.013156         27       86       32.756679       32.756679       32.756679         27       87       74.242845       74.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27  | 70 | 67.675697 | 67.675697 | 67.675697 |  |
| 27       73       47.423623       47.423623       47.423623         27       74       97.718985       97.718985       97.718985         27       75       75.663730       75.663730       75.663730         27       76       93.407708       93.407708       93.407708         27       77       39.357337       39.357337       39.357337         27       78       76.896034       76.896034       76.896034         27       79       90.801982       90.801982       90.801982         27       80       96.772930       96.772930       96.772930         27       81       50.921508       50.921508       50.921508         27       82       53.851648       53.851648       53.851648         27       83       69.231496       69.231496       69.231496         27       84       58.008620       58.008620       58.008620         27       85       38.013156       38.013156       38.013156         27       86       32.756679       32.756679       32.756679         27       87       74.242845       74.242845       74.242845         27       89       76.321688       76.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27  | 71 | 71.561163 | 71.561163 | 71.561163 |  |
| 27       74       97.718985       97.718985       97.718985         27       75       75.663730       75.663730       75.663730         27       76       93.407708       93.407708       93.407708         27       77       39.357337       39.357337       39.357337         27       78       76.896034       76.896034       76.896034         27       79       90.801982       90.801982       90.801982         27       80       96.772930       96.772930       96.772930         27       81       50.921508       50.921508       50.921508         27       82       53.851648       53.851648       53.851648         27       83       69.231496       69.231496       69.231496         27       84       58.008620       58.008620       58.008620         27       85       38.013156       38.013156       38.013156         27       86       32.756679       32.756679       32.756679         27       87       74.242845       74.242845       74.242845         27       89       76.321688       76.321688       76.321688         27       90       37.536649       37.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27  | 72 | 39.051248 | 39.051248 | 39.051248 |  |
| 27       75       75.663730       75.663730       75.663730         27       76       93.407708       93.407708       93.407708         27       77       39.357337       39.357337       39.357337         27       78       76.896034       76.896034       76.896034         27       79       90.801982       90.801982       90.801982         27       80       96.772930       96.772930       96.772930         27       81       50.921508       50.921508       50.921508         27       82       53.851648       53.851648       53.851648         27       83       69.231496       69.231496       69.231496         27       84       58.008620       58.008620       58.008620         27       85       38.013156       38.013156       38.013156         27       86       32.756679       32.756679       32.756679         27       87       74.242845       74.242845         27       88       83.216585       83.216585         27       89       76.321688       76.321688       76.321688         27       91       60.440053       60.440053       60.440053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27  | 73 | 47.423623 | 47.423623 | 47.423623 |  |
| 27       75       75.663730       75.663730       75.663730         27       76       93.407708       93.407708       93.407708         27       77       39.357337       39.357337       39.357337         27       78       76.896034       76.896034       76.896034         27       79       90.801982       90.801982       90.801982         27       80       96.772930       96.772930       96.772930         27       81       50.921508       50.921508       50.921508         27       82       53.851648       53.851648       53.851648         27       83       69.231496       69.231496       69.231496         27       84       58.008620       58.008620       58.008620         27       85       38.013156       38.013156       38.013156         27       86       32.756679       32.756679       32.756679         27       87       74.242845       74.242845         27       88       83.216585       83.216585         27       89       76.321688       76.321688       76.321688         27       91       60.440053       60.440053       60.440053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27  | 74 | 97.718985 | 97.718985 | 97.718985 |  |
| 27       76       93.407708       93.407708       93.407708         27       77       39.357337       39.357337       39.357337         27       78       76.896034       76.896034       76.896034         27       79       90.801982       90.801982       90.801982         27       80       96.772930       96.772930       96.772930         27       81       50.921508       50.921508       50.921508         27       82       53.851648       53.851648       53.851648         27       83       69.231496       69.231496       69.231496         27       84       58.008620       58.008620       58.008620         27       85       38.013156       38.013156       38.013156         27       86       32.756679       32.756679       32.756679         27       87       74.242845       74.242845       74.242845         27       88       83.216585       83.216585       83.216585         27       89       76.321688       76.321688       76.321688         27       91       60.440053       60.440053       60.440053         27       92       47.539457       47.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |           |           |           |  |
| 27       77       39.357337       39.357337       39.357337         27       78       76.896034       76.896034       76.896034         27       79       90.801982       90.801982       90.801982         27       80       96.772930       96.772930       96.772930         27       81       50.921508       50.921508       50.921508         27       82       53.851648       53.851648       53.851648         27       83       69.231496       69.231496       69.231496         27       84       58.008620       58.008620       58.008620         27       85       38.013156       38.013156       38.013156         27       86       32.756679       32.756679       32.756679         27       87       74.242845       74.242845       74.242845         27       88       83.216585       83.216585       83.216585         27       89       76.321688       76.321688       76.321688         27       91       60.440053       60.440053       60.440053         27       92       47.539457       47.539457       47.539457         27       93       43.965896       43.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    | 93.407708 | 93.407708 | 93.407708 |  |
| 27       78       76.896034       76.896034       76.896034         27       79       90.801982       90.801982       90.801982         27       80       96.772930       96.772930       96.772930         27       81       50.921508       50.921508       50.921508         27       82       53.851648       53.851648       53.851648         27       83       69.231496       69.231496       69.231496         27       84       58.008620       58.008620       58.008620         27       85       38.013156       38.013156       38.013156         27       86       32.756679       32.756679       32.756679         27       87       74.242845       74.242845       74.242845         27       88       83.216585       83.216585       83.216585         27       89       76.321688       76.321688       76.321688         27       90       37.536649       37.536649       37.536649         27       91       60.440053       60.440053       60.440053         27       92       47.539457       47.539457       47.539457         27       93       43.965896       43.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |           |           |           |  |
| 27       79       90.801982       90.801982       90.801982         27       80       96.772930       96.772930       96.772930         27       81       50.921508       50.921508         27       82       53.851648       53.851648         27       83       69.231496       69.231496       69.231496         27       84       58.008620       58.008620       58.008620         27       85       38.013156       38.013156       38.013156         27       86       32.756679       32.756679       32.756679         27       87       74.242845       74.242845       74.242845         27       88       83.216585       83.216585       83.216585         27       89       76.321688       76.321688       76.321688         27       91       60.440053       60.440053       60.440053         27       92       47.539457       47.539457       47.539457         27       93       43.965896       43.965896       43.965896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |           |           |           |  |
| 27       80       96.772930       96.772930       96.772930         27       81       50.921508       50.921508       50.921508         27       82       53.851648       53.851648       53.851648         27       83       69.231496       69.231496       69.231496         27       84       58.008620       58.008620       58.008620         27       85       38.013156       38.013156       38.013156         27       86       32.756679       32.756679       32.756679         27       87       74.242845       74.242845       74.242845         27       88       83.216585       83.216585       83.216585         27       89       76.321688       76.321688       76.321688         27       90       37.536649       37.536649       37.536649         27       91       60.440053       60.440053       60.440053         27       92       47.539457       47.539457       47.539457         27       93       43.965896       43.965896       43.965896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |           |           |           |  |
| 27       81       50.921508       50.921508       50.921508         27       82       53.851648       53.851648       53.851648         27       83       69.231496       69.231496       69.231496         27       84       58.008620       58.008620       58.008620         27       85       38.013156       38.013156       38.013156         27       86       32.756679       32.756679       32.756679         27       87       74.242845       74.242845       74.242845         27       88       83.216585       83.216585       83.216585         27       89       76.321688       76.321688       76.321688         27       90       37.536649       37.536649       37.536649         27       91       60.440053       60.440053       60.440053         27       92       47.539457       47.539457       47.539457         27       93       43.965896       43.965896       43.965896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |    |           |           |           |  |
| 27       82       53.851648       53.851648       53.851648         27       83       69.231496       69.231496       69.231496         27       84       58.008620       58.008620       58.008620         27       85       38.013156       38.013156       38.013156         27       86       32.756679       32.756679       32.756679         27       87       74.242845       74.242845       74.242845         27       88       83.216585       83.216585       83.216585         27       89       76.321688       76.321688       76.321688         27       90       37.536649       37.536649       37.536649         27       91       60.440053       60.440053       60.440053         27       92       47.539457       47.539457       47.539457         27       93       43.965896       43.965896       43.965896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |    |           |           |           |  |
| 27       83       69.231496       69.231496       69.231496         27       84       58.008620       58.008620       58.008620         27       85       38.013156       38.013156       38.013156         27       86       32.756679       32.756679       32.756679         27       87       74.242845       74.242845       74.242845         27       88       83.216585       83.216585       83.216585         27       89       76.321688       76.321688       76.321688         27       90       37.536649       37.536649       37.536649         27       91       60.440053       60.440053       60.440053         27       92       47.539457       47.539457       47.539457         27       93       43.965896       43.965896       43.965896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |    |           |           |           |  |
| 27       84       58.008620       58.008620       58.008620         27       85       38.013156       38.013156       38.013156         27       86       32.756679       32.756679       32.756679         27       87       74.242845       74.242845       74.242845         27       88       83.216585       83.216585       83.216585         27       89       76.321688       76.321688       76.321688         27       90       37.536649       37.536649       37.536649         27       91       60.440053       60.440053       60.440053         27       92       47.539457       47.539457       47.539457         27       93       43.965896       43.965896       43.965896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |           |           |           |  |
| 27       85       38.013156       38.013156       38.013156         27       86       32.756679       32.756679       32.756679         27       87       74.242845       74.242845       74.242845         27       88       83.216585       83.216585       83.216585         27       89       76.321688       76.321688       76.321688         27       90       37.536649       37.536649       37.536649         27       91       60.440053       60.440053       60.440053         27       92       47.539457       47.539457       47.539457         27       93       43.965896       43.965896       43.965896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |    |           |           |           |  |
| 27       86       32.756679       32.756679         27       87       74.242845       74.242845       74.242845         27       88       83.216585       83.216585       83.216585         27       89       76.321688       76.321688       76.321688         27       90       37.536649       37.536649       37.536649         27       91       60.440053       60.440053       60.440053         27       92       47.539457       47.539457       47.539457         27       93       43.965896       43.965896       43.965896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |    |           |           |           |  |
| 27       87       74.242845       74.242845       74.242845         27       88       83.216585       83.216585       83.216585         27       89       76.321688       76.321688       76.321688         27       90       37.536649       37.536649       37.536649         27       91       60.440053       60.440053       60.440053         27       92       47.539457       47.539457       47.539457         27       93       43.965896       43.965896       43.965896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |    |           |           |           |  |
| 27     88     83.216585     83.216585     83.216585       27     89     76.321688     76.321688     76.321688       27     90     37.536649     37.536649     37.536649       27     91     60.440053     60.440053     60.440053       27     92     47.539457     47.539457     47.539457       27     93     43.965896     43.965896     43.965896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |    |           |           |           |  |
| 27       89       76.321688       76.321688       76.321688         27       90       37.536649       37.536649       37.536649         27       91       60.440053       60.440053       60.440053         27       92       47.539457       47.539457       47.539457         27       93       43.965896       43.965896       43.965896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |    |           |           |           |  |
| 27       90       37.536649       37.536649       37.536649         27       91       60.440053       60.440053       60.440053         27       92       47.539457       47.539457       47.539457         27       93       43.965896       43.965896       43.965896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |    |           |           |           |  |
| 27       91       60.440053       60.440053       60.440053         27       92       47.539457       47.539457       47.539457         27       93       43.965896       43.965896       43.965896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |    |           |           |           |  |
| 27     92     47.539457     47.539457     47.539457       27     93     43.965896     43.965896     43.965896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |           |           |           |  |
| 27 93 43.965896 43.965896 43.965896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |    |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    | 47.539457 |           | 47.539457 |  |
| 127 94 40 496913 40 496913 40 496913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 93 |           |           |           |  |
| 2/ 27 10.170713 40.170713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27  | 94 | 40.496913 | 40.496913 | 40.496913 |  |

| 27 | 95       | 42.047592              | 42.047592              | 42.047592              |
|----|----------|------------------------|------------------------|------------------------|
| 27 | 96       | 39.623226              | 39.623226              | 39.623226              |
| 27 | 97       | 46.647615              | 46.647615              | 46.647615              |
| 27 | 98       | 91.787799              | 91.787799              | 91.787799              |
| 27 | 99       | 72.422372              | 72.422372              | 72.422372              |
| 27 | 100      | 69.180922              | 69.180922              | 69.180922              |
| 27 | 101      | 73.925638              | 73.925638              | 73.925638              |
| 28 | 1        | 57.008771              | 57.008771              | 57.008771              |
| 28 | 2        | 86.023253              | 86.023253              | 86.023253              |
| 28 | 3        | 83.240615              | 83.240615              | 83.240615              |
| 28 | 4        | 88.481637              | 88.481637              | 88.481637              |
| 28 | 5        | 87.464278              | 87.464278              | 87.464278              |
| 28 | 6        | 90.138782              | 90.138782              | 90.138782              |
| 28 | 7        | 86.769810              | 86.769810              | 86.769810              |
| 28 | 8        | 89.442719              | 89.442719              | 89.442719              |
| 28 | 9        | 91.787799              | 91.787799              | 91.787799              |
| 28 | 10       | 85.00000               | 85.000000              | 85.000000              |
| 28 | 11       | 85.146932              | 85.146932              | 85.146932              |
| 28 | 12       | 87.143560              | 87.143560              | 87.143560              |
| 28 | 13       | 87.572827              | 87.572827              | 87.572827              |
| 28 | 14       | 90.00000               | 90.00000               | 90.00000               |
| 28 | 15       | 90.553851              | 90.553851              | 90.553851              |
| 28 | 16       | 93.134312              | 93.134312              | 93.134312              |
| 28 | 17       | 95.131488              | 95.131488              | 95.131488              |
| 28 | 18       | 95.524866              | 95.524866              | 95.524866              |
| 28 | 19       | 59.169249              | 59.169249              | 59.169249              |
| 28 | 20       | 58.600341              | 58.600341              | 58.600341              |
| 28 | 21       | 56.648036              | 56.648036              | 56.648036              |
| 28 | 22       | 62.649820              | 62.649820              | 62.649820              |
| 28 | 23       | 58.523500              | 58.523500              | 58.523500              |
| 28 | 24       | 64.412732              | 64.412732              | 64.412732              |
| 28 | 25       | 60.406953              | 60.406953              | 60.406953              |
| 28 | 26       | 67.082039              | 67.082039              | 67.082039              |
| 28 | 27       | 5.000000               | 5.000000               | 5.000000               |
| 28 | 29       | 5.830952               | 5.830952               | 5.830952               |
| 28 | 30       | 5.000000               | 5.000000               | 5.000000               |
| 28 | 31       | 8.602325               | 8.602325               | 8.602325               |
| 28 | 32       | 7.000000               | 7.000000               | 7.000000               |
| 28 | 33       | 9.433981               | 9.433981<br>14.142136  | 9.433981               |
| 28 | 34       | 14.142136              |                        | 14.142136              |
| 28 | 35       | 10.000000<br>57.306195 | 10.000000<br>57.306195 | 10.000000<br>57.306195 |
| 28 | 36<br>37 | 57.306195              | 57.306195              | 57.306195              |
| 28 | 38       | 55.758407              | 55.758407              | 55.758407              |
| 28 | 38<br>39 | 55.803226              | 55.803226              | 55.803226              |
| 28 | 40       | 57.008771              | 57.008771              | 57.008771              |
| 28 | 41       | 61.032778              | 61.032778              | 61.032778              |
| 28 | 42       | 54.488531              | 54.488531              | 54.488531              |
| 28 | 43       | 60.207973              | 60.207973              | 60.207973              |
| 28 | 44       | 64.031242              | 64.031242              | 64.031242              |
| 28 | 45       | 61.717096              | 61.717096              | 61.717096              |
| 28 | 46       | 88.509886              | 88.509886              | 88.509886              |
| 28 | 47       | 89.185201              | 89.185201              | 89.185201              |
| 28 | 48       | 93.536089              | 93.536089              | 93.536089              |
| 28 | 49       | 60.901560              | 60.901560              | 60.901560              |
| 28 | 50       | 57.775427              | 57.775427              | 57.775427              |
| 28 | 51       | 23.000000              | 23.000000              | 23.000000              |
| 28 | 52       | 42.720019              | 42.720019              | 42.720019              |
| 28 | 53       | 70.178344              | 70.178344              | 70.178344              |
| 28 | 54       | 76.485293              | 76.485293              | 76.485293              |
| 28 | 55       | 47.169906              | 47.169906              | 47.169906              |
| 28 | 56       | 69.641941              | 69.641941              | 69.641941              |
| 28 | 57       | 45.000000              | 45.000000              | 45.000000              |
|    |          |                        |                        |                        |

| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |     |           |           |           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----------|-----------|-----------|--|
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28 | 58  | 65.764732 | 65.764732 | 65.764732 |  |
| 28 61 83.815273 83.815273 83.815273 28 62 58.309519 58.309519 58.309519 28 63 30.000000 30.000000 30.000000 28 64 33.511020 33.541020 33.541020 28 65 50.249378 50.249378 50.249378 28 66 60.207973 60.207973 60.207973 28 67 54.037024 54.037024 54.037024 28 68 31.780457 31.780497 31.780497 28 69 60.415230 60.415230 60.415230 28 70 66.219333 66.219333 66.219333 28 71 68.963759 68.963759 68.963759 28 72 36.055513 36.055513 36.055513 28 73 43.863224 43.863324 43.863424 28 74 96.301610 96.301610 96.301610 96.301610 28 75 76.485293 76.485293 76.485293 28 77 41.880783 41.880783 41.880783 41.880783 28 78 79 89.48603 94.98603 89.498603 29 80 94.921020 94.921020 94.921020 28 81 49.477268 49.477268 49.477268 28 82 51.429563 51.429563 51.429563 28 83 68.468971 68.468971 68.468971 28 84 58.137767 58.137767 58.137767 28 85 38.470766 38.470766 38.470768 28 87 74.813100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 7 | 28 | 59  | 83.815273 | 83.815273 | 83.815273 |  |
| 28 61 83.815273 83.815273 83.815273 28 62 58.309519 58.309519 58.309519 28 63 30.000000 30.000000 30.000000 28 64 33.511020 33.541020 33.541020 28 65 50.249378 50.249378 50.249378 28 66 60.207973 60.207973 60.207973 28 67 54.037024 54.037024 54.037024 28 68 31.780457 31.780497 31.780497 28 69 60.415230 60.415230 60.415230 28 70 66.219333 66.219333 66.219333 28 71 68.963759 68.963759 68.963759 28 72 36.055513 36.055513 36.055513 28 73 43.863224 43.863324 43.863424 28 74 96.301610 96.301610 96.301610 96.301610 28 75 76.485293 76.485293 76.485293 28 77 41.880783 41.880783 41.880783 41.880783 28 78 79 89.48603 94.98603 89.498603 29 80 94.921020 94.921020 94.921020 28 81 49.477268 49.477268 49.477268 28 82 51.429563 51.429563 51.429563 28 83 68.468971 68.468971 68.468971 28 84 58.137767 58.137767 58.137767 28 85 38.470766 38.470766 38.470768 28 87 74.813100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 74.913100 7 | 28 | 60  | 86.313383 | 86.313383 | 86.313383 |  |
| 28         62         58.209519         58.309519         58.309519         58.309519         30.000000         30.000000         30.000000         30.000000         30.000000         30.000000         30.000000         33.541020         33.541020         33.541020         33.541020         33.541020         33.541020         33.541020         33.541020         33.541020         33.541020         33.541020         33.541020         33.541020         33.541020         33.541020         33.541020         33.541020         33.541020         33.541020         33.541020         33.541020         33.541020         33.541020         33.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020         34.541020 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |     |           |           |           |  |
| 28 63 30.000000 30.000000 30.000000 20.000000 20.000000 20.000000 30.541020 33.541020 33.541020 33.541020 33.541020 32.541020 33.541020 33.541020 20.00000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.0000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.0000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.00000  |    |     |           |           |           |  |
| 28 64 33.541020 33.541020 33.541020 28.251020 28.65 50.249378 50.249378 50.249378 66.5 50.249378 66.5 50.249378 66.27973 60.207973 67.249378 67.54037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54. |    |     |           |           |           |  |
| 28 65 50.249378 50.249378 50.249378 50.249378 28 66 60.207973 60.207973 60.207973 28 67 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.037024 54.03702 |    |     |           |           |           |  |
| 28 66 60,207973 60,207973 60,207973 28 67 54,037024 54,037024 54,037024 28 68 31,780497 31,780497 31,780497 28 70 66,219333 66,219333 66,219333 28 71 68,963759 68,963759 68,963759 28 72 36,055513 36,055513 36,055513 28 73 43,863424 43,863424 43,863424 28 74 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,301610 96,30161 |    |     |           |           |           |  |
| 28         67         54.037024         54.037024         54.037024           28         68         31.780497         31.780497         31.780497         31.780497           28         69         60.415230         60.415230         60.415230         60.415230           28         70         66.219333         66.219333         66.219333         66.219333           28         72         36.055513         36.055513         36.055513         36.055513           28         74         96.301610         96.301610         96.301610         96.301610           28         75         76.485293         76.485293         76.485293           28         76         94.868330         94.868330         94.868330           28         77         41.880783         41.880783         41.880783           28         79         98.498603         89.498603         89.498603           28         79         89.499603         89.498603         89.498603           28         80         94.921020         94.97268         49.477268           28         81         74.747268         49.477268         49.477268           28         82         51.429563         51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |     |           |           |           |  |
| 28         68         31,780497         31,780497         31,780497           28         69         60,415230         60,415230         60,415230         60,415230           28         70         66,219333         66,219333         66,219333         66,219333           28         72         36,055513         36,055513         36,055513         36,055513           28         73         43,863424         43,863424         43,863424         43,863424           28         74         96,301610         96,301610         96,301610         96,301610           28         75         76,485293         76,485293         76,485293         76,485293           28         76         94,868330         94,868330         94,868330         94,868330           28         77         41,880783         41,880783         41,880783         41,880783           28         79         89,498603         89,498603         89,498603         89,498603           28         80         94,921020         94,921020         94,921020           28         81         49,477268         49,477268         49,477268           28         82         51,429563         51,429563         51,429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |     | 60.207973 |           |           |  |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28 | 67  | 54.037024 | 54.037024 | 54.037024 |  |
| 28 70 66.219333 66.219333 66.219333 28 71 68.963759 68.963759 68.963759 28 72 36.055513 36.055513 36.055513 28 73 43.863424 43.863424 43.863424 43.863424 28 74 96.301610 96.301610 96.301610 28 75 76.485293 76.485293 76.485293 28 76 94.868330 91.868330 94.868330 28 77 41.880783 41.880783 41.880783 28 78 78.790862 78.790862 78.790862 28 79 89.498603 89.498603 89.498603 28 80 94.921020 94.921020 94.921020 28 81 49.477268 49.477268 49.477268 28 82 51.429563 51.429563 51.429563 28 83 68.468971 68.468971 68.468971 28 84 58.137767 58.137767 58.137767 28 85 38.470768 38.470768 38.470768 28 87 74.813100 74.813100 74.813100 28 88 74.632433 74.632433 74.632433 28 90 41.036569 41.036569 41.036569 28 91 59.228372 59.228372 59.228372 28 92 46.529560 46.529560 46.529560 28 91 59.228372 75.228372 59.228372 28 92 46.529560 46.529560 46.529560 28 91 59.228372 75.228372 59.228372 28 92 46.529560 46.529560 46.529560 28 91 59.228372 75.228372 59.228372 28 92 46.529560 69.529560 46.529560 28 91 59.228372 75.228372 59.228372 28 92 46.529560 69.529560 46.529560 28 91 59.228372 75.228372 75.228372 28 92 46.529560 69.529560 46.529560 28 91 59.228372 75.528372 75.5285743 28 94 38.013156 38.013156 38.013156 28 98 92.574294 92.574294 92.574294 28 99 71.063352 71.063352 71.063352 29 1 48.803248 89.022469 89.022469 29 1 5 87.658428 87.658428 87.658428 29 1 1 55.713553 55.713553 55.713553 29 1 1 55.713553 55.713553 55.713553 29 1 1 55.713553 55.713553 83.216585 29 1 1 82.607506 82.607506 89.00000 29 1 10 82.152298 89.152298 89.022469 29 1 10 82.152298 89.152298 89.022469 29 1 10 82.152298 89.152298 89.0553851 29 1 14 87.143560 87.143560 87.143560 29 1 16 90.553851 90.553851 90.553851 29 1 17 92.541882 92.541882 92.541886                                                                                                                                                                                                                                                                                                                                         | 28 | 68  | 31.780497 | 31.780497 | 31.780497 |  |
| 28 70 66.219333 66.219333 66.219333 28 71 68.963759 68.963759 68.963759 28 72 36.055513 36.055513 36.055513 28 73 43.863424 43.863424 43.863424 43.863424 28 74 96.301610 96.301610 96.301610 28 75 76.485293 76.485293 76.485293 28 76 94.868330 91.868330 94.868330 28 77 41.880783 41.880783 41.880783 28 78 78.790862 78.790862 78.790862 28 79 89.498603 89.498603 89.498603 28 80 94.921020 94.921020 94.921020 28 81 49.477268 49.477268 49.477268 28 82 51.429563 51.429563 51.429563 28 83 68.468971 68.468971 68.468971 28 84 58.137767 58.137767 58.137767 28 85 38.470768 38.470768 38.470768 28 87 74.813100 74.813100 74.813100 28 88 74.632433 74.632433 74.632433 28 90 41.036569 41.036569 41.036569 28 91 59.228372 59.228372 59.228372 28 92 46.529560 46.529560 46.529560 28 91 59.228372 75.228372 59.228372 28 92 46.529560 46.529560 46.529560 28 91 59.228372 75.228372 59.228372 28 92 46.529560 46.529560 46.529560 28 91 59.228372 75.228372 59.228372 28 92 46.529560 69.529560 46.529560 28 91 59.228372 75.228372 59.228372 28 92 46.529560 69.529560 46.529560 28 91 59.228372 75.228372 75.228372 28 92 46.529560 69.529560 46.529560 28 91 59.228372 75.528372 75.5285743 28 94 38.013156 38.013156 38.013156 28 98 92.574294 92.574294 92.574294 28 99 71.063352 71.063352 71.063352 29 1 48.803248 89.022469 89.022469 29 1 5 87.658428 87.658428 87.658428 29 1 1 55.713553 55.713553 55.713553 29 1 1 55.713553 55.713553 55.713553 29 1 1 55.713553 55.713553 83.216585 29 1 1 82.607506 82.607506 89.00000 29 1 10 82.152298 89.152298 89.022469 29 1 10 82.152298 89.152298 89.022469 29 1 10 82.152298 89.152298 89.0553851 29 1 14 87.143560 87.143560 87.143560 29 1 16 90.553851 90.553851 90.553851 29 1 17 92.541882 92.541882 92.541886                                                                                                                                                                                                                                                                                                                                         | 28 | 69  | 60.415230 | 60.415230 | 60.415230 |  |
| 28 71 68.963759 68.963759 68.963759 28 72 36.055513 36.055513 36.055513 28 73 43.863424 43.863424 43.863424 28 74 96.301610 96.301610 96.301610 28 75 76.485293 76.485293 76.485293 28 76 94.868330 94.868330 94.868330 28 77 41.880783 41.880783 41.880783 28 78 77.8790862 78.790862 78.790862 28 79 89.498603 89.498603 89.498603 28 80 94.921020 94.921020 94.921020 28 81 49.477268 49.477268 49.477268 28 82 51.429563 51.429663 51.429563 28 83 68.468971 68.468971 68.468971 28 84 58.379767 58.137767 58.137767 28 85 38.470768 38.470768 38.470768 28 86 34.176015 34.176015 34.176015 28 87 74.813100 74.813100 74.813100 28 88 83.725743 83.725743 83.725743 28 89 74.632433 74.632433 74.632433 28 90 41.036569 41.036569 41.036569 28 91 59.228372 59.228372 59.228372 28 92 46.529560 46.529560 46.529560 28 93 42.755117 42.755117 42.755117 28 94 38.013156 38.013156 38.013156 28 96 39.051248 39.051248 39.051248 39 74.632433 84.28382 86.683332 28 99 74.632433 83.051248 39.051248 39 74.632433 83.61569 28 96 39.051248 39.051248 39.051248 39 74.632433 86.683332 86.683332 28 99 74.633332 86.683332 86.683332 29 77 86.608314 86.608314 86.608314 29 9 9 91.809586 91.809586 91.809586 29 12 84.593144 84.593144 84.593144 38.125298 88.2324806 87.143560 87.143560 39 11 82.607506 82.607506 82.607506 39 12 84.593144 84.593144 84.593144 38.232288 99 11.822699 89.022469 39 11.82607506 82.607506 82.607506 39 12 84.593144 84.593144 84.593144 38.232289 99 11.809586 91.809586 99 11.82607506 82.607506 82.607506 99 12 84.593144 84.593144 84.593144 99 13 82.607506 82.607506 82.607506 99 14 87.133500 87.143560 87.143560 99 15 88.283634 88.283634 99 16 90.553851 90.553851 90.553851 99 17 92.541882 92.541882 99 18 93.214806 99.553851 90.553851                                                                                                                                                                                                                                                                                                                                      |    | 70  | 66.219333 | 66.219333 | 66.219333 |  |
| 28         72         36.055513         36.055513         36.055513           28         73         43.863424         43.863424         43.863424           28         75         76.485293         76.485293         76.485293           28         76         94.868330         94.868330         94.868330           28         77         41.880783         41.880783         41.880783           28         78         78.790862         78.790862         78.790862           28         79         89.498603         89.498603         89.498603           28         80         94.921020         94.921020         94.921020           28         81         49.477268         49.477268         49.477268           28         82         51.429563         51.429563         51.429563           28         83         68.468971         68.468971         68.468971           28         84         58.137767         58.137767         58.137767           28         85         38.470768         38.470768         38.470768           28         86         34.176015         34.176015         34.176015           28         87         74.813100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |     |           |           |           |  |
| 28         73         43,863424         43,863424         43,863424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,363424         28,36424         28,36424         28,36424         28,36424         28,36424         28,36424         28,36424         28,37424         28,37424         28,37424         28,37424         28,37424         28,37424         28,37424         28,37424         28,37424         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |     |           |           |           |  |
| 28 74 96.301610 96.301610 96.301610 28 75 76.485293 76.485293 76.485293 28 76 94.868330 94.868330 94.868330 28 77 41.880783 41.880783 41.880783 28 78 78.790862 78.790862 78.790862 28 87 98.498603 89.498603 89.498603 28 80 94.921020 94.921020 94.921020 28 81 49.477268 49.477268 49.477268 28 82 51.429563 51.429563 28 83 68.468971 68.468971 68.468971 28 84 58.137767 58.137767 58.137767 28 85 38.470768 38.470768 38.470768 28 86 34.176015 34.176015 34.176015 28 87 74.813100 74.813100 74.813100 28 88 83.725743 83.725743 83.725743 28 89 74.632433 74.632433 74.632433 28 90 41.036569 41.036569 41.036569 28 91 59.228372 59.228372 59.228372 28 92 46.529560 46.529560 46.529560 28 93 42.755117 42.755117 42.755117 28 94 38.013156 38.013156 38.013156 28 97 44.283180 44.283180 44.283180 28 99 71.063352 71.063352 71.063352 29 9 71.063352 71.063352 71.063352 29 1 55.713553 55.713553 55.713553 29 2 86.683332 86.683332 29 9 9 91.89586 91.89586 91.89586 29 9 9 91.89586 91.89586 91.89586 29 9 9 91.89586 91.89586 91.89586 29 1 1 82.605506 82.605506 82.605506 29 12 84.595144 84.593144 84.593144 29 9 8 89.185201 89.185201 89.185201 29 9 9 91.89586 91.89586 91.89586 29 11 83.216585 83.226585 83.216585 29 11 83.216585 83.226585 83.226585 29 11 84.593144 84.593144 84.593144 29 11 83.236776 85.328776 85.328776 29 11 83.216585 83.226586 83.226585 29 11 84.593144 84.593144 84.593144 29 11 83.23634 88.23634 88.23634 29 11 83.23876 85.328776 85.328776 29 11 84.593144 84.593144 84.593144 29 11 83.23634 88.23634 88.23634 29 11 92.541882 92.541882 29 11 92.541882 92.541882 29 11 92.541882 92.541882 29 11 93.214806 93.214806 93.214806                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |     |           |           |           |  |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |     |           |           |           |  |
| 28 76 94.868330 94.868330 14.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783 41.880783  |    |     |           |           |           |  |
| 28         77         41.880783         41.880783         41.880783         78.790862         78.790862         78.790862         78.790862         78.790862         78.790862         78.790862         78.790862         78.790862         78.790862         78.790862         78.790862         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.498603         89.49603         89.407606         89.407606         89.407606         89.407606         89.20768         89.20768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |     |           |           |           |  |
| 28         78         78,790862         78,790862         78,790862         28,948603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,498603         89,49871         68,468971         68,468971         68,468971         68,468971         68,468971         68,468971         68,468971         68,468971         68,468971         68,468971         68,468971         68,468971         68,468971         68,468971         68,468971         68,468971         68,468971         68,468971         68,468971         68,468971         68,468971         68,468971 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |     |           |           |           |  |
| 28         79         89.498603         89.498603         89.498603           28         80         94.921020         94.921020         94.921020           28         81         49.477268         49.477268         49.477268           28         82         51.429563         51.429563         51.429563           28         83         68.468971         68.468971         68.468971           28         84         58.137767         58.137767         58.137767           28         85         38.470768         38.470768         38.470768           28         86         34.176015         34.176015         54.176015           28         87         74.813100         74.813100         74.813100           28         87         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28 | 77  | 41.880783 | 41.880783 | 41.880783 |  |
| 28         80         94.921020         94.921020         94.921020           28         81         49.477268         49.477268         49.477268         49.477268           28         82         51.429563         51.429563         51.429563         51.429563           28         84         58.137767         58.137767         58.137767         58.137767           28         85         38.470768         38.470768         38.470768         38.470768           28         86         34.176015         34.176015         34.176015         34.176015           28         87         74.813100         74.813100         74.813100         74.813100           28         89         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.6324333         74.6324333         74.632433         74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28 | 78  | 78.790862 | 78.790862 | 78.790862 |  |
| 28         80         94.921020         94.921020         94.921020           28         81         49.477268         49.477268         49.477268         49.477268           28         82         51.429563         51.429563         51.429563         51.429563           28         84         58.137767         58.137767         58.137767         58.137767           28         85         38.470768         38.470768         38.470768         38.470768           28         86         34.176015         34.176015         34.176015         34.176015           28         87         74.813100         74.813100         74.813100         74.813100           28         89         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.632433         74.6324333         74.6324333         74.632433         74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28 | 79  | 89.498603 | 89.498603 | 89.498603 |  |
| 28         81         49.477268         49.477268         49.477268           28         82         51.429563         51.429563         51.429563         51.429563           28         83         68.468971         68.468971         68.468971           28         84         58.137767         58.137767         58.137767           28         85         38.470768         38.470768         38.470768           28         86         34.176015         34.176015         34.176015           28         87         74.813100         74.813100         74.813100           28         88         83.725743         83.725743         83.725743           28         89         74.632433         74.632433         74.632433         74.632433           28         90         41.036569         41.036569         41.036569         41.036569           28         91         59.228372         59.228372         59.228372         59.228372           28         92         46.529560         46.529560         46.529560           28         93         42.755117         42.755117         42.755117           28         94         38.013156         38.013156         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | 80  | 94.921020 | 94.921020 | 94.921020 |  |
| 28         82         51.429563         51.429563         51.429563           28         83         68.466871         68.466871         68.468871           28         84         58.137767         58.137767           28         85         38.470768         38.470768           28         86         34.176015         34.176015           28         87         74.813100         74.813100           28         88         83.725743         83.725743           28         89         74.632433         74.632433           74.632433         74.632433         74.632433           28         90         41.036569         41.036569           41         10.36569         41.036569           41         59.228372         59.228372           28         91         59.228372         59.228372           28         92         46.529560         46.529560           28         93         42.755117         42.755117           28         94         38.013156         38.013156         38.013156           28         95         40.162171         40.162171         40.162171           28         97         44.28318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |     | 49.477268 |           |           |  |
| 28       83       68.468971       68.468971       68.468971         28       84       58.137767       58.137767       58.137767         28       85       38.470768       38.470768       38.470768         28       86       34.176015       34.176015       34.176015         28       87       74.813100       74.813100       74.813100         28       88       83.725743       83.725743       38.725743         28       89       74.632433       74.632433       74.632433         28       90       41.036569       41.036569       41.036569         28       91       59.228372       59.228372       59.228372         28       92       46.529560       46.529560       46.529560         28       93       42.755117       42.755117       42.755117         28       94       38.013156       38.013156       38.013156         28       95       40.162171       40.162171       40.162171         28       96       39.051248       39.051248       39.051248         28       97       71.063352       71.063352       71.063352         28       99       71.063352       71.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |     |           |           |           |  |
| 28       84       58.137767       58.137767       58.137767         28       85       38.470768       38.470768       38.470768         28       86       34.176015       34.176015       34.176015         28       87       74.813100       74.813100       74.813100         28       88       83.725743       83.725743       83.725743         28       89       74.632433       74.632433       74.632433         28       90       41.036569       41.036569       41.036569         28       91       59.228372       59.228372       59.228372         28       92       46.529560       46.529560       46.529560         28       93       42.755117       42.755117       42.755117         28       94       38.013156       38.013156       38.013156         28       95       40.162171       40.162171       40.162171         28       96       39.051248       39.051248       39.051248         28       97       44.283180       44.283180       44.283180         28       99       71.063352       71.063352       71.063352         29       1       55.713553       55.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |     |           |           |           |  |
| 28       85       38.470768       38.470768       38.470768         28       86       34.176015       34.176015       34.176015         28       87       74.813100       74.813100       74.813100         28       88       83.725743       83.725743       83.725743         28       89       74.632433       74.632433       74.632433         28       90       41.036569       41.036569       41.036569         28       91       59.228372       59.228372       59.228372         28       92       46.529560       46.529560       46.529560         28       93       42.755117       42.755117       42.755117         28       94       38.013156       38.013156       38.013156         28       95       40.162171       40.162171       40.162171         28       95       40.162171       40.162171       40.162171         28       96       39.051248       39.051248       39.051248         28       97       44.283180       44.283180       44.283180         28       98       92.574294       92.574294       92.574294         28       99       71.063352       71.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |     |           |           |           |  |
| 28       86       34.176015       34.176015       34.176015         28       87       74.813100       74.813100       74.813100         28       88       83.725743       83.725743       83.725743         28       89       74.632433       74.632433       74.632433         28       90       41.036569       41.036569       41.036569         28       91       59.228372       59.228372       59.228372         28       92       46.529560       46.529560       46.529560         28       93       42.755117       42.755117       42.755117         28       94       38.013156       38.013156       38.013156         28       95       40.162171       40.162171       40.162171         28       96       39.051248       39.051248       39.051248         28       97       44.283180       44.283180       44.283180         28       98       92.574294       92.574294       92.574294         28       99       71.063352       71.063352       71.063352         28       100       69.00000       69.00000       69.00000         29       1       55.713553       55.7135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |     |           |           |           |  |
| 28       87       74.813100       74.813100       74.813100         28       88       83.725743       83.725743       83.725743         28       89       74.632433       74.632433       74.632433         28       90       41.036569       41.036569       41.036569         28       91       59.228372       59.228372       59.228372         28       92       46.529560       46.529560       46.529560         28       93       42.755117       42.755117       42.755117         28       94       38.013156       38.013156       38.013156         28       95       40.162171       40.162171       40.162171         28       96       39.051248       39.051248       39.051248         28       97       44.283180       44.283180       44.283180         28       98       92.574294       92.574294       92.574294         28       99       71.063352       71.063352       71.063352         28       100       69.000000       69.000000       69.000000       69.000000       69.000000         28       101       71.554175       71.554175       71.554175       71.554175 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |     |           |           |           |  |
| 28       88       83.725743       83.725743       83.725743         28       89       74.632433       74.632433       74.632433         28       90       41.036569       41.036569         28       91       59.228372       59.228372         28       92       46.529560       46.529560       46.529560         28       93       42.755117       42.755117       42.755117         28       94       38.013156       38.013156       38.013156         28       95       40.162171       40.162171       40.162171         28       96       39.051248       39.051248       39.051248         28       97       44.283180       44.283180       42.83180         28       98       92.574294       92.574294       92.574294         28       99       71.063352       71.063352       71.063352         28       100       69.000000       69.00000       69.00000         28       101       71.554175       71.554175       71.554175         29       1       55.713553       55.713553       55.713553         29       2       86.683332       86.683332       86.683332 <tr< td=""><td></td><td>86</td><td>34.176015</td><td></td><td></td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 86  | 34.176015 |           |           |  |
| 28       89       74.632433       74.632433       74.632433         28       90       41.036569       41.036569       41.036569         28       91       59.228372       59.228372       59.228372         28       92       46.529560       46.529560       46.529560         28       93       42.755117       42.755117       42.755117         28       94       38.013156       38.013156       38.013156         28       95       40.162171       40.162171       40.162171         28       96       39.051248       39.051248       39.051248         28       97       44.283180       44.283180       44.283180         28       98       92.574294       92.574294       92.574294         28       99       71.063352       71.063352       71.063352         28       100       69.00000       69.00000       69.00000         28       101       71.554175       71.554175       71.554175         29       1       55.713553       55.713553       55.713553         29       2       86.68332       86.68332       80.68332         29       3       83.216585       83.216585 </td <td></td> <td>87</td> <td>74.813100</td> <td>74.813100</td> <td>74.813100</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 87  | 74.813100 | 74.813100 | 74.813100 |  |
| 28       90       41.036569       41.036569       41.036569         28       91       59.228372       59.228372       59.228372         28       92       46.529560       46.529560       46.529560         28       93       42.755117       42.755117       42.755117         28       94       38.013156       38.013156       38.013156         28       95       40.162171       40.162171       40.162171         28       96       39.051248       39.051248         28       97       44.283180       44.283180       44.283180         28       98       92.574294       92.574294       92.574294         28       99       71.063352       71.063352       71.063352         28       100       69.00000       69.00000       69.00000         28       101       71.554175       71.554175       71.554175         29       1       55.713553       55.713553       55.713553         29       2       86.683332       86.683332       86.683332         29       3       83.216585       83.216585       83.216585         29       4       89.022469       89.022469       89.022469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28 | 88  | 83.725743 | 83.725743 | 83.725743 |  |
| 28       91       59.228372       59.228372       59.228372         28       92       46.529560       46.529560       46.529560         28       93       42.755117       42.755117       42.755117         28       94       38.013156       38.013156       38.013156         28       95       40.162171       40.162171       40.162171         28       96       39.051248       39.051248       39.051248         28       97       44.283180       44.283180       44.283180         28       98       92.574294       92.574294       92.574294         28       99       71.063352       71.063352       71.063352         28       100       69.000000       69.000000       69.000000         28       101       71.554175       71.554175       71.554175         29       1       55.713553       55.713553       55.713553         29       2       86.683332       86.683332       86.683332         29       3       83.216585       83.216585       83.216585         29       4       89.022469       89.022469       89.022469         29       5       87.658428       87.6584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28 | 89  | 74.632433 | 74.632433 | 74.632433 |  |
| 28       91       59.228372       59.228372       59.228372         28       92       46.529560       46.529560       46.529560         28       93       42.755117       42.755117       42.755117         28       94       38.013156       38.013156       38.013156         28       95       40.162171       40.162171       40.162171         28       96       39.051248       39.051248       39.051248         28       97       44.283180       44.283180       44.283180         28       98       92.574294       92.574294       92.574294         28       99       71.063352       71.063352       71.063352         28       100       69.000000       69.000000       69.000000         28       101       71.554175       71.554175       71.554175         29       1       55.713553       55.713553       55.713553         29       2       86.683332       86.683332       86.683332         29       3       83.216585       83.216585       83.216585         29       4       89.022469       89.022469       89.022469         29       5       87.658428       87.6584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28 | 90  | 41.036569 | 41.036569 | 41.036569 |  |
| 28       92       46.529560       46.529560       46.529560         28       93       42.755117       42.755117       42.755117         28       94       38.013156       38.013156       38.013156         28       95       40.162171       40.162171       40.162171         28       96       39.051248       39.051248       39.051248         28       97       44.283180       44.283180       44.283180         28       98       92.574294       92.574294       92.574294         28       99       71.063352       71.063352       71.063352         28       100       69.00000       69.00000       69.00000         28       101       71.554175       71.554175       71.554175         29       1       55.713553       55.713553       55.713553         29       2       86.683332       86.683332       86.683332         29       3       83.216585       83.216585       83.216585         29       4       89.022469       89.022469       89.022469         29       5       87.658428       87.658428       87.658428         29       6       90.603532       90.603532 </td <td></td> <td></td> <td>59.228372</td> <td>59.228372</td> <td>59.228372</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |     | 59.228372 | 59.228372 | 59.228372 |  |
| 28       93       42.755117       42.755117       42.755117         28       94       38.013156       38.013156       38.013156         28       95       40.162171       40.162171       40.162171         28       96       39.051248       39.051248       39.051248         28       97       44.283180       44.283180       44.283180         28       98       92.574294       92.574294       92.574294         28       99       71.063352       71.063352       71.063352         28       100       69.000000       69.000000       69.000000         28       101       71.554175       71.554175       71.554175         29       1       55.713553       55.713553       55.713553         29       2       86.683332       86.683332       86.683332         29       3       83.216585       83.216585       83.216585         29       4       89.022469       89.022469       89.022469         29       5       87.658428       87.658428       87.658428         29       6       90.603532       90.603532       90.603532         29       7       86.608314       86.608314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |     |           |           |           |  |
| 28       94       38.013156       38.013156       38.013156         28       95       40.162171       40.162171       40.162171         28       96       39.051248       39.051248       39.051248         28       97       44.283180       44.283180       44.283180         28       98       92.574294       92.574294       92.574294         28       99       71.063352       71.063352       71.063352         28       100       69.00000       69.00000       69.00000         28       101       71.554175       71.554175       71.554175         29       1       55.713553       55.713553       55.713553         29       2       86.683332       86.683332       86.683332         29       3       83.216585       83.216585       83.216585         29       4       89.022469       89.022469       89.022469         29       5       87.658428       87.658428       87.658428         29       6       90.603532       90.603532       90.603532         29       7       86.608314       86.608314       86.608314         29       9       91.809586       91.809586 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |     |           |           |           |  |
| 28       95       40.162171       40.162171       40.162171         28       96       39.051248       39.051248       39.051248         28       97       44.283180       44.283180       44.283180         28       98       92.574294       92.574294       92.574294         28       99       71.063352       71.063352       71.063352         28       100       69.000000       69.000000       69.000000         28       101       71.554175       71.554175       71.554175         29       1       55.713553       55.713553       55.713553         29       2       86.683332       86.683332       86.683332         29       3       83.216585       83.216585       83.216585         29       4       89.022469       89.022469       89.022469         29       5       87.658428       87.658428       87.658428         29       6       90.603532       90.603532       90.603532         29       7       86.608314       86.608314       86.608314       86.608314         29       9       91.809586       91.809586       91.809586         29       10       82.152298<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |     |           |           |           |  |
| 28       96       39.051248       39.051248       39.051248         28       97       44.283180       44.283180       44.283180         28       98       92.574294       92.574294       92.574294         28       99       71.063352       71.063352       71.063352         28       100       69.000000       69.000000       69.000000         28       101       71.554175       71.554175       71.554175         29       1       55.713553       55.713553       55.713553         29       2       86.683332       86.683332       86.683332         29       3       83.216585       83.216585       83.216585         29       4       89.022469       89.022469       89.022469         29       5       87.658428       87.658428       87.658428         29       6       90.603532       90.603532       90.603532         29       7       86.608314       86.608314       86.608314         29       9       91.809586       91.809586       91.809586         29       10       82.152298       82.152298       82.152298         29       11       82.607506       82.607506<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |     |           |           |           |  |
| 28       97       44.283180       44.283180       44.283180       44.283180         28       98       92.574294       92.574294       92.574294         28       99       71.063352       71.063352       71.063352         28       100       69.000000       69.000000       69.000000         28       101       71.554175       71.554175       71.554175         29       1       55.713553       55.713553       55.713553         29       2       86.683332       86.683332       86.683332         29       3       83.216585       83.216585       83.216585         29       4       89.022469       89.022469       89.022469         29       5       87.658428       87.658428       87.658428         29       6       90.603532       90.603532       90.603532         29       7       86.608314       86.608314       86.608314       86.608314         29       8       89.185201       89.185201       89.185201         29       9       18.09586       91.809586       91.809586         29       10       82.152298       82.152298       82.152298         29       13 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |     |           |           |           |  |
| 28       98       92.574294       92.574294       92.574294         28       99       71.063352       71.063352       71.063352         28       100       69.000000       69.000000       69.000000         28       101       71.554175       71.554175       71.554175         29       1       55.713553       55.713553       55.713553         29       2       86.683332       86.683332       86.683332         29       3       83.216585       83.216585       83.216585         29       4       89.022469       89.022469       89.022469         29       5       87.658428       87.658428       87.658428         29       6       90.603532       90.603532       90.603532         29       7       86.608314       86.608314       86.608314         29       8       89.185201       89.185201       89.185201         29       9       91.809586       91.809586       91.809586         29       10       82.152298       82.152298       82.152298         29       11       82.607506       82.607506       82.607506         29       12       84.593144       84.593144 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |     |           |           |           |  |
| 28       99       71.063352       71.063352       71.063352         28       100       69.000000       69.000000       69.000000         28       101       71.554175       71.554175       71.554175         29       1       55.713553       55.713553       55.713553         29       2       86.683332       86.683332       86.683332         29       3       83.216585       83.216585       83.216585         29       4       89.022469       89.022469       89.022469         29       5       87.658428       87.658428       87.658428         29       6       90.603532       90.603532       90.603532         29       7       86.608314       86.608314       86.608314         29       8       89.185201       89.185201       89.185201         29       9       91.809586       91.809586       91.809586         29       10       82.152298       82.152298       82.152298         29       11       82.607506       82.607506       82.607506         29       12       84.593144       84.593144       84.593144         29       14       87.143560       87.143560 </td <td>28</td> <td>97</td> <td></td> <td></td> <td>44.283180</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28 | 97  |           |           | 44.283180 |  |
| 28       100       69.000000       69.000000       69.000000         28       101       71.554175       71.554175       71.554175         29       1       55.713553       55.713553       55.713553         29       2       86.683332       86.683332       86.683332         29       3       83.216585       83.216585       83.216585         29       4       89.022469       89.022469       89.022469         29       5       87.658428       87.658428       87.658428         29       6       90.603532       90.603532       90.603532         29       7       86.608314       86.608314       86.608314         29       8       89.185201       89.185201       89.185201         29       9       91.809586       91.809586       91.809586         29       10       82.152298       82.152298       82.152298         29       11       82.607506       82.607506       82.607506         29       12       84.593144       84.593144       84.593144         29       13       85.328776       85.328776       85.328776         29       14       87.143560       87.143560 </td <td></td> <td>98</td> <td>92.574294</td> <td>92.574294</td> <td>92.574294</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 98  | 92.574294 | 92.574294 | 92.574294 |  |
| 28       101       71.554175       71.554175       71.554175         29       1       55.713553       55.713553       55.713553         29       2       86.683332       86.683332       86.683332         29       3       83.216585       83.216585       83.216585         29       4       89.022469       89.022469       89.022469         29       5       87.658428       87.658428       87.658428         29       6       90.603532       90.603532       90.603532         29       7       86.608314       86.608314       86.608314         29       8       89.185201       89.185201       89.185201         29       9       91.809586       91.809586       91.809586         29       10       82.152298       82.152298       82.152298         29       11       82.607506       82.607506       82.607506         29       12       84.593144       84.593144       84.593144         29       13       85.328776       85.328776       85.328776         29       14       87.143560       87.143560       87.143560         29       15       88.283634       88.283634 <td>28</td> <td>99</td> <td>71.063352</td> <td>71.063352</td> <td>71.063352</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28 | 99  | 71.063352 | 71.063352 | 71.063352 |  |
| 29       1       55.713553       55.713553       55.713553         29       2       86.683332       86.683332       86.683332         29       3       83.216585       83.216585       83.216585         29       4       89.022469       89.022469       89.022469         29       5       87.658428       87.658428       87.658428         29       6       90.603532       90.603532       90.603532         29       7       86.608314       86.608314       86.608314         29       8       89.185201       89.185201       89.185201         29       9       91.809586       91.809586       91.809586         29       10       82.152298       82.152298       82.152298         29       11       82.607506       82.607506       82.607506         29       12       84.593144       84.593144       84.593144         29       13       85.328776       85.328776       85.328776         29       14       87.143560       87.143560       87.143560         29       15       88.283634       88.283634       88.283634         29       16       90.553851       90.553851 <td>28</td> <td>100</td> <td>69.000000</td> <td>69.000000</td> <td>69.000000</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28 | 100 | 69.000000 | 69.000000 | 69.000000 |  |
| 29       1       55.713553       55.713553       55.713553         29       2       86.683332       86.683332       86.683332         29       3       83.216585       83.216585       83.216585         29       4       89.022469       89.022469       89.022469         29       5       87.658428       87.658428       87.658428         29       6       90.603532       90.603532       90.603532         29       7       86.608314       86.608314       86.608314         29       8       89.185201       89.185201       89.185201         29       9       91.809586       91.809586       91.809586         29       10       82.152298       82.152298       82.152298         29       11       82.607506       82.607506       82.607506         29       12       84.593144       84.593144       84.593144         29       13       85.328776       85.328776       85.328776         29       14       87.143560       87.143560       87.143560         29       15       88.283634       88.283634       88.283634         29       16       90.553851       90.553851 <td>28</td> <td>101</td> <td>71.554175</td> <td>71.554175</td> <td>71.554175</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28 | 101 | 71.554175 | 71.554175 | 71.554175 |  |
| 29       2       86.683332       86.683332       86.683332         29       3       83.216585       83.216585       83.216585         29       4       89.022469       89.022469       89.022469         29       5       87.658428       87.658428       87.658428         29       6       90.603532       90.603532       90.603532         29       7       86.608314       86.608314       86.608314         29       8       89.185201       89.185201       89.185201         29       9       91.809586       91.809586       91.809586         29       10       82.152298       82.152298       82.152298         29       11       82.607506       82.607506       82.607506         29       12       84.593144       84.593144       84.593144         29       13       85.328776       85.328776       85.328776         29       14       87.143560       87.143560       87.143560         29       15       88.283634       88.283634       88.283634         29       16       90.553851       90.553851       90.553851         29       17       92.541882       92.541882 <td></td> <td>1</td> <td>55.713553</td> <td>55.713553</td> <td>55.713553</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 1   | 55.713553 | 55.713553 | 55.713553 |  |
| 29       3       83.216585       83.216585       83.216585         29       4       89.022469       89.022469       89.022469         29       5       87.658428       87.658428       87.658428         29       6       90.603532       90.603532       90.603532         29       7       86.608314       86.608314       86.608314         29       8       89.185201       89.185201       89.185201         29       9       91.809586       91.809586       91.809586         29       10       82.152298       82.152298       82.152298         29       11       82.607506       82.607506       82.607506         29       12       84.593144       84.593144       84.593144         29       13       85.328776       85.328776       85.328776         29       14       87.143560       87.143560       87.143560         29       15       88.283634       88.283634       88.283634         29       16       90.553851       90.553851       90.553851         29       17       92.541882       92.541882       92.541882         29       18       93.214806       93.214806 </td <td></td> <td></td> <td></td> <td></td> <td>86.683332</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |     |           |           | 86.683332 |  |
| 29       4       89.022469       89.022469       89.022469         29       5       87.658428       87.658428       87.658428         29       6       90.603532       90.603532       90.603532         29       7       86.608314       86.608314       86.608314         29       8       89.185201       89.185201       89.185201         29       9       91.809586       91.809586       91.809586         29       10       82.152298       82.152298       82.152298         29       11       82.607506       82.607506       82.607506         29       12       84.593144       84.593144       84.593144         29       13       85.328776       85.328776       85.328776         29       14       87.143560       87.143560       87.143560         29       15       88.283634       88.283634       88.283634         29       16       90.553851       90.553851       90.553851         29       17       92.541882       92.541882       92.541882         29       18       93.214806       93.214806       93.214806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |     |           |           |           |  |
| 29       5       87.658428       87.658428       87.658428         29       6       90.603532       90.603532       90.603532         29       7       86.608314       86.608314       86.608314         29       8       89.185201       89.185201       89.185201         29       9       91.809586       91.809586       91.809586         29       10       82.152298       82.152298       82.152298         29       11       82.607506       82.607506       82.607506         29       12       84.593144       84.593144       84.593144         29       13       85.328776       85.328776       85.328776         29       14       87.143560       87.143560       87.143560         29       15       88.283634       88.283634       88.283634         29       16       90.553851       90.553851       90.553851         29       17       92.541882       92.541882       92.541882         29       18       93.214806       93.214806       93.214806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |     |           |           |           |  |
| 29       6       90.603532       90.603532       90.603532         29       7       86.608314       86.608314       86.608314         29       8       89.185201       89.185201       89.185201         29       9       91.809586       91.809586       91.809586         29       10       82.152298       82.152298         29       11       82.607506       82.607506       82.607506         29       12       84.593144       84.593144       84.593144         29       13       85.328776       85.328776       85.328776         29       14       87.143560       87.143560       87.143560         29       15       88.283634       88.283634       88.283634         29       16       90.553851       90.553851       90.553851         29       17       92.541882       92.541882       92.541882         29       18       93.214806       93.214806       93.214806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |     |           |           |           |  |
| 29       7       86.608314       86.608314       86.608314         29       8       89.185201       89.185201       89.185201         29       9       91.809586       91.809586       91.809586         29       10       82.152298       82.152298       82.152298         29       11       82.607506       82.607506       82.607506         29       12       84.593144       84.593144       84.593144         29       13       85.328776       85.328776       85.328776         29       14       87.143560       87.143560       87.143560         29       15       88.283634       88.283634       88.283634         29       16       90.553851       90.553851       90.553851         29       17       92.541882       92.541882       92.541882         29       18       93.214806       93.214806       93.214806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |           |           |           |  |
| 29       8       89.185201       89.185201       89.185201         29       9       91.809586       91.809586       91.809586         29       10       82.152298       82.152298       82.152298         29       11       82.607506       82.607506       82.607506         29       12       84.593144       84.593144       84.593144         29       13       85.328776       85.328776       85.328776         29       14       87.143560       87.143560       87.143560         29       15       88.283634       88.283634       88.283634         29       16       90.553851       90.553851       90.553851         29       17       92.541882       92.541882       92.541882         29       18       93.214806       93.214806       93.214806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |     |           |           |           |  |
| 29       9       91.809586       91.809586       91.809586         29       10       82.152298       82.152298       82.152298         29       11       82.607506       82.607506       82.607506         29       12       84.593144       84.593144       84.593144         29       13       85.328776       85.328776       85.328776         29       14       87.143560       87.143560       87.143560         29       15       88.283634       88.283634       88.283634         29       16       90.553851       90.553851       90.553851         29       17       92.541882       92.541882       92.541882         29       18       93.214806       93.214806       93.214806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |     |           |           |           |  |
| 29       10       82.152298       82.152298       82.152298         29       11       82.607506       82.607506       82.607506         29       12       84.593144       84.593144       84.593144         29       13       85.328776       85.328776       85.328776         29       14       87.143560       87.143560       87.143560         29       15       88.283634       88.283634       88.283634         29       16       90.553851       90.553851       90.553851         29       17       92.541882       92.541882       92.541882         29       18       93.214806       93.214806       93.214806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |     |           |           |           |  |
| 29       11       82.607506       82.607506       82.607506         29       12       84.593144       84.593144       84.593144         29       13       85.328776       85.328776       85.328776         29       14       87.143560       87.143560       87.143560         29       15       88.283634       88.283634       88.283634         29       16       90.553851       90.553851       90.553851         29       17       92.541882       92.541882       92.541882         29       18       93.214806       93.214806       93.214806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 9   | 91.809586 | 91.809586 | 91.809586 |  |
| 29       12       84.593144       84.593144       84.593144         29       13       85.328776       85.328776       85.328776         29       14       87.143560       87.143560       87.143560         29       15       88.283634       88.283634       88.283634         29       16       90.553851       90.553851       90.553851         29       17       92.541882       92.541882       92.541882         29       18       93.214806       93.214806       93.214806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29 | 10  | 82.152298 | 82.152298 | 82.152298 |  |
| 29       12       84.593144       84.593144       84.593144         29       13       85.328776       85.328776       85.328776         29       14       87.143560       87.143560       87.143560         29       15       88.283634       88.283634       88.283634         29       16       90.553851       90.553851       90.553851         29       17       92.541882       92.541882       92.541882         29       18       93.214806       93.214806       93.214806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29 | 11  | 82.607506 | 82.607506 | 82.607506 |  |
| 29       13       85.328776       85.328776       85.328776         29       14       87.143560       87.143560       87.143560         29       15       88.283634       88.283634       88.283634         29       16       90.553851       90.553851       90.553851         29       17       92.541882       92.541882       92.541882         29       18       93.214806       93.214806       93.214806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 12  | 84.593144 | 84.593144 | 84.593144 |  |
| 29       14       87.143560       87.143560       87.143560         29       15       88.283634       88.283634       88.283634         29       16       90.553851       90.553851       90.553851         29       17       92.541882       92.541882       92.541882         29       18       93.214806       93.214806       93.214806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |     |           |           |           |  |
| 29       15       88.283634       88.283634       88.283634         29       16       90.553851       90.553851       90.553851         29       17       92.541882       92.541882       92.541882         29       18       93.214806       93.214806       93.214806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |     |           |           |           |  |
| 29       16       90.553851       90.553851       90.553851         29       17       92.541882       92.541882       92.541882         29       18       93.214806       93.214806       93.214806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |     |           |           |           |  |
| 29       17       92.541882       92.541882       92.541882         29       18       93.214806       93.214806       93.214806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |     |           |           |           |  |
| 29 18 93.214806 93.214806 93.214806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |     |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |     |           |           |           |  |
| 29 19 54.120237 54.120237 54.120237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |     |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29 | 19  | 54.120237 | 54.120237 | 54.120237 |  |

| 29 | 20       | 53.851648 | 53.851648 | 53.851648 |  |
|----|----------|-----------|-----------|-----------|--|
| 29 | 21       | 52.201533 | 52.201533 | 52.201533 |  |
| 29 | 22       | 57.697487 | 57.697487 | 57.697487 |  |
| 29 | 23       | 54.120237 | 54.120237 | 54.120237 |  |
| 29 | 24       | 59.506302 | 59.506302 | 59.506302 |  |
| 29 | 25       | 56.044625 | 56.044625 | 56.044625 |  |
| 29 | 26       | 62.241465 | 62.241465 | 62.241465 |  |
| 29 | 27       | 3.000000  | 3.000000  | 3.000000  |  |
| 29 | 28       | 5.830952  | 5.830952  | 5.830952  |  |
| 29 | 30       | 5.385165  | 5.385165  | 5.385165  |  |
| 29 | 31       | 4.000000  | 4.000000  | 4.000000  |  |
| 29 | 32       | 6.403124  | 6.403124  | 6.403124  |  |
| 29 | 33       | 5.00000   | 5.000000  | 5.000000  |  |
| 29 | 33<br>34 | 8.602325  | 8.602325  | 8.602325  |  |
| 29 | 35       | 8.602325  | 8.602325  | 8.602325  |  |
|    |          |           |           |           |  |
| 29 | 36       | 60.415230 | 60.415230 | 60.415230 |  |
| 29 | 37       | 61.269895 | 61.269895 | 61.269895 |  |
| 29 | 38       | 58.591808 | 58.591808 | 58.591808 |  |
| 29 | 39       | 58.309519 | 58.309519 | 58.309519 |  |
| 29 | 40       | 59.363288 | 59.363288 | 59.363288 |  |
| 29 | 41       | 63.631753 | 63.631753 | 63.631753 |  |
| 29 | 42       | 56.400355 | 56.400355 | 56.400355 |  |
| 29 | 43       | 62.201286 | 62.201286 | 62.201286 |  |
| 29 | 44       | 66.287254 | 66.287254 | 66.287254 |  |
| 29 | 45       | 63.820060 | 63.820060 | 63.820060 |  |
| 29 | 46       | 88.814413 | 88.814413 | 88.814413 |  |
| 29 | 47       | 89.308454 | 89.308454 | 89.308454 |  |
| 29 | 48       | 91.241438 | 91.241438 | 91.241438 |  |
| 29 | 49       | 55.901699 | 55.901699 | 55.901699 |  |
| 29 | 50       | 53.141321 | 53.141321 | 53.141321 |  |
| 29 | 51       | 20.615528 | 20.615528 | 20.615528 |  |
| 29 | 52       | 38.327536 | 38.327536 | 38.327536 |  |
| 29 | 53       | 67.000000 | 67.000000 | 67.000000 |  |
| 29 | 54       | 74.726167 | 74.726167 | 74.726167 |  |
| 29 | 55       | 47.634021 | 47.634021 | 47.634021 |  |
| 29 | 56       | 68.876701 | 68.876701 | 68.876701 |  |
| 29 | 57       | 42.296572 | 42.296572 | 42.296572 |  |
| 29 | 58       | 62.201286 | 62.201286 | 62.201286 |  |
| 29 | 59       | 79.555012 | 79.555012 | 79.555012 |  |
| 29 | 60       | 82.607506 | 82.607506 | 82.607506 |  |
| 29 | 61       | 82.637764 | 82.637764 | 82.637764 |  |
| 29 | 62       | 58.600341 | 58.600341 | 58.600341 |  |
| 29 | 63       | 27.459060 | 27.459060 | 27.459060 |  |
| 29 | 64       | 28.792360 | 28.792360 | 28.792360 |  |
| 29 | 65       | 47.000000 | 47.000000 | 47.000000 |  |
| 29 | 66       | 57.870545 | 57.870545 | 57.870545 |  |
| 29 | 67       | 51.478151 | 51.478151 | 51.478151 |  |
| 29 | 68       | 30.463092 | 30.463092 | 30.463092 |  |
| 29 | 69       | 60.033324 | 60.033324 | 60.033324 |  |
| 29 | 70       | 64.845971 | 64.845971 | 64.845971 |  |
| 29 | 71       | 69.065187 | 69.065187 | 69.065187 |  |
| 29 | 72       | 36.796739 | 36.796739 | 36.796739 |  |
| 29 | 73       | 45.453273 | 45.453273 | 45.453273 |  |
| 29 | 74       | 94.868330 | 94.868330 | 94.868330 |  |
| 29 | 75       | 72.691127 | 72.691127 | 72.691127 |  |
| 29 | 76       | 90.520716 | 90.520716 | 90.520716 |  |
| 29 | 77       | 36.715120 | 36.715120 | 36.715120 |  |
| 29 | 78       | 74.094534 | 74.094534 | 74.094534 |  |
| 29 | 79       | 87.931792 | 87.931792 | 87.931792 |  |
| 29 | 80       | 94.021274 | 94.021274 | 94.021274 |  |
| 29 | 81       | 48.104054 | 48.104054 | 48.104054 |  |
| 29 | 82       | 51.312766 | 51.312766 | 51.312766 |  |
| 29 | 83       | 66.287254 | 66.287254 | 66.287254 |  |
|    | 0.0      | 00.20/204 | 00.207234 | 00.207234 |  |

| 29 84 55,009090 55,009090 55,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 29,009090 |    |     |           |           |           |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----------|-----------|-----------|--|
| 29         86         29.832868         29.832868         29.832668         29.832070         71.253070         71.253070         71.253070         71.253070         71.253070         71.253070         71.253070         71.253070         71.253070         71.253070         71.253070         73.53319         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.234684         80.234684         80.234684         80.234684         80.234684         80.234684         80.234684         80.234684         80.234684         80.234684         80.234684         80.234684         80.234684         80.234684         80.234684         80.234684         80.234684         80.234684         80.234684 <td>29</td> <td>84</td> <td>55.009090</td> <td>55.009090</td> <td>55.009090</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29 | 84  | 55.009090 | 55.009090 | 55.009090 |  |
| 29         87         71.253070         71.253070         71.253070         71.253070         72.538105         73.538105         73.538105         73.538105         73.538105         73.538105         73.538105         73.538105         73.538105         73.538105         73.538105         73.558339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355329         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.3573337         39.3573337         39.357337         39.357337<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29 | 85  | 35.014283 | 35.014283 | 35.014283 |  |
| 29         87         71.253070         71.253070         71.253070         71.253070         72.538105         73.538105         73.538105         73.538105         73.538105         73.538105         73.538105         73.538105         73.538105         73.538105         73.538105         73.558339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355339         35.355329         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.3573337         39.3573337         39.357337         39.357337<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29 | 86  | 29.832868 | 29.832868 | 29.832868 |  |
| 29         88         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         80.224684         40.22464         40.42462         40.42462         30.64674242         30.674242         36.674242         36.674242         36.674242         36.674242         36.674242         36.674242         36.674242         36.674242         36.674242         36.674242         36.674242         36.674242         36.674242         36.674242         36.674242         36.674242         36.674242         36.674242         36.674242         36.674242         36.674242         36.674242         36.674242 <td></td> <td>87</td> <td>71.253070</td> <td>71.253070</td> <td>71.253070</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | 87  | 71.253070 | 71.253070 | 71.253070 |  |
| 29         89         73.539105         73.539105         73.539105           29         90         35.355339         35.355339         35.355329           29         91         57.567352         57.567352         57.567352           29         93         41.109610         41.109610         41.109610           29         94         38.013156         38.013156         38.013156         38.013156           29         95         39.357337         39.357337         39.357337         39.357337           29         96         36.674242         36.674242         36.674242         36.674242           29         97         44.102154         44.102154         44.102154         44.102154           29         98         88.814413         88.814413         88.814413         88.814413           29         100         66.189123         66.189123         66.189123           29         101         71.340236         71.340236         71.340236           30         1         52.201533         52.201533         52.201533           30         2         82.00697         82.00697         82.00697           30         3         78.892332         78.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |     |           |           |           |  |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |     |           |           |           |  |
| 29         91         57,567352         57,567352         57,567352           29         92         44,63029         44,63029         44,63029         94         630029         94         630029         99         93         41,109610         41,109610         41,109610         41,109610         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         38,013156         39,0157377         39,0157377         39,0157377         39,0157377         39,0157377         39,0157377         39,0157377         39,0157377         39,0157377         39,0157377         39,0157377         39,0157377         39,0157377         39,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |     |           |           |           |  |
| 29         92         44.643029         44.643029         44.643029           29         93         41.109610         41.109610         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.013156         38.015154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.102154         44.1021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |           |           |           |  |
| 29   94   38, 013156   38, 013156   38, 013156   39, 015156     29   94   38, 013156   38, 013156   38, 015156     29   95   39,357337   39,357337   39,357337     29   96   36,674242   36,674242   36,674242     29   97   41,102154   44,102154   44,102154     29   98   88,81,814413   88,814413   88,814413     29   99   69,570109   69,570109   69,570109     29   100   66,189123   66,189123   66,189123     20   101   71,344236   71,344236   71,344236     30   1   52,201533   52,201533   52,201533     30   2   82,006097   82,006097   82,006097     30   3   78,892332   78,892332   78,892332     30   4   84,403791   84,403791   84,403791     30   5   83,216585   83,216585   83,216585     30   6   86,023253   86,023253   86,023253     30   7   82,365041   82,365041   82,365041     30   8   85,000000   80,000000   80,00000     30   9   87,464278   87,464278   87,464278     30   10   80,000000   80,000000   80,000000     30   11   80,156098   80,155098   80,155098     30   12   82,152298   82,152298   82,152298     30   13   82,607306   82,607506   82,607506     30   14   85,000000   85,000000   80,000000     30   15   85,586214   85,586214   85,586214     30   17   90,138782   90,138782   90,138782     30   17   90,158782   90,138782   90,138782     30   20   54,120237   54,120237   54,120237     30   24   60,03324   60,03334   60,033324     30   25   55,713553   55,713553   55,713553     30   31   53,85165   5,385165   5,385165     30   32   2,000000   5,000000   5,000000     30   31   5,385165   5,385165   5,385165     30   32   2,000000   5,000000   5,000000     30   31   53,85169   58,309519   58,309519     30   32   53,851665   5,385165   5,385165     30   34   11,180340   11,180340   11,180340     30   35   5,000000   5,000000   5,000000     30   31   5,385165   5,385165   5,385165     30   32   2,000000   5,000000   5,000000     30   31   5,385169   58,309519   58,309519     30   32   5,385169   58,309519   58,309519     30   31   5,385169   58,309519   58,309519     30   32   5,300819   58,309519   58,309519   |    |     |           |           |           |  |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |     |           |           |           |  |
| 29         95         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         39.357337         36.674242         36.674242         36.674242         36.674242         36.674242         39.99         99.69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         69.570109         89.315123         69.48232         78.892332         78.892332         78.892332         78.892332         78.892332         78.492332         78.892332         78.892332         78.492332         78.892332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |           |           |           |  |
| 29         96         36.674242         36.674242         36.674242         36.674242           29         97         44.102154         44.102154         44.102154         44.102154           29         98         88.814413         88.814413         88.814413         88.814413           29         100         66.189123         66.189123         66.189123         66.189123           30         1         52.201533         52.201533         52.201533         52.201533           30         2         82.006097         82.006097         82.006097         82.006097           30         3         78.892332         78.892332         78.892332         78.892332           30         4         84.403791         84.403791         84.403791         84.403791           30         6         86.023253         86.023253         86.023253         86.023253           30         7         82.365041         82.365041         82.365041         82.365041           30         8         85.000000         85.000000         85.000000           30         1         80.000000         85.000000         80.000000           30         12         82.152298         82.152298 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |     |           |           |           |  |
| 29         97         44.102154         44.102154         44.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.102154         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225         10.10225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |     |           |           |           |  |
| 29         98         88.814413         88.814413         88.814413         88.814413           29         99         69.570109         69.570109         69.570109           29         100         66.189123         66.189123         66.189123           30         1         52.201533         52.201533         52.201533           30         2         82.006097         82.006097         82.006097           30         3         78.892332         78.892332         78.892332           30         4         84.403791         84.403791         84.403791           30         5         83.216585         83.216585         83.216585           30         6         86.023253         86.023253         86.023253           30         7         82.365041         82.365041         82.365041           30         8         85.000000         85.000000         85.000000           30         10         80.000000         80.000000         80.000000           30         11         80.156098         80.156098         80.156098           30         12         82.152298         82.152298         82.152298           30         13         82.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |     |           |           |           |  |
| 99         69.570109         69.570109         69.570109           29         100         66.189123         66.189123         66.189123           30         1         52.201533         52.201533         52.201533           30         1         52.201533         52.201533         52.201533           30         2         82.006097         82.006097         82.006097           30         3         78.892332         78.892332         78.892332           30         4         84.403791         84.403791         84.403791           30         6         86.023253         86.023253         86.023253           30         6         86.023253         86.023253         86.023253           30         7         82.365041         82.365041         82.365041           30         8         85.000000         85.000000         85.000000           30         9         87.464278         87.464278         87.464278         87.464278           30         10         80.000000         80.000000         80.000000         80.000000           30         12         82.152298         82.152298         82.1627956         82.607506           30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |     |           |           |           |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |           |           |           |  |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 99  | 69.570109 | 69.570109 | 69.570109 |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29 | 100 | 66.189123 | 66.189123 | 66.189123 |  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29 | 101 | 71.344236 | 71.344236 | 71.344236 |  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30 | 1   | 52.201533 | 52.201533 | 52.201533 |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30 | 2   | 82.006097 | 82.006097 | 82.006097 |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30 | 3   | 78.892332 | 78.892332 | 78.892332 |  |
| S0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |     | 84.403791 | 84.403791 | 84.403791 |  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30 |     | 83.216585 | 83.216585 | 83.216585 |  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30 |     | 86.023253 | 86.023253 | 86.023253 |  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |     |           |           | 82.365041 |  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |     |           |           |           |  |
| 30         10         80.000000         80.000000         80.000000           30         11         80.156098         80.156098         80.156098           30         12         82.152298         82.152298         82.152298           30         13         82.607506         82.607506         82.607506           30         14         85.000000         85.000000         85.000000           30         15         88.566214         85.586214         85.586214           30         16         88.141931         88.141931         88.141931           30         17         90.138782         90.138782         90.138782           30         18         90.553851         90.553851         90.553851           30         19         54.918121         54.918121         54.918121           30         21         52.000000         52.000000         52.000000           30         22         58.309519         58.309519         58.309519           30         23         53.851648         53.851648         53.851648           30         24         60.03324         60.03324         60.033324           30         25         55.713553 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |     |           |           |           |  |
| 30         11         80.156098         80.156098         80.156098           30         12         82.152298         82.152298         82.152298           30         13         82.607506         82.607506         82.607506           30         14         85.000000         85.000000         85.000000           30         15         85.586214         85.586214         85.586214           30         16         88.141931         88.141931         88.141931           30         17         90.138782         90.138782         90.138782           30         18         90.553851         90.553851         90.553851           30         19         54.918121         54.918121         54.918121           30         21         52.000000         52.000000         52.000000           30         21         52.000000         52.000000         52.000000           30         22         58.309519         58.309519         58.309519           30         23         53.851648         53.851648         53.851648           30         24         60.033324         60.033324         60.033324           30         25         57.13553         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |     |           |           |           |  |
| 30         12         82.152298         82.152298         82.152298           30         13         82.607506         82.607506         82.607506           30         14         85.000000         85.000000         85.000000           30         15         85.586214         85.586214         85.586214           30         16         88.141931         88.141931         88.141931           30         17         90.138782         90.138782         90.138782           30         18         90.553851         90.553851         90.553851           30         19         54.918121         54.918121         54.918121           30         20         54.120237         54.120237         54.120237           30         21         52.000000         52.000000         52.000000           30         22         58.309519         58.309519         58.309519         58.309519           30         23         53.851648         53.851648         53.851648         53.851648         53.851648           30         24         60.033324         60.033324         60.033324         60.033324           30         25         55.713553         55.713553         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |     |           |           |           |  |
| 30         13         82.607506         82.607506         82.607506           30         14         85.000000         85.000000           30         15         85.586214         85.586214         85.586214           30         16         88.141931         88.141931         88.141931           30         17         90.138782         90.138782         90.138782           30         18         90.553851         90.553851         90.553851           30         19         54.918121         54.918121         54.918121           30         20         54.120237         54.120237         54.120237           30         21         52.000000         52.000000         52.000000           30         22         58.309519         58.309519         58.309519           30         23         53.851648         53.851648         53.851648           30         24         60.033324         60.033324         60.033324           30         25         55.713553         55.713553         55.713553           30         27         7.071068         7.071068         7.071068           30         28         5.00000         5.00000         5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |     |           |           |           |  |
| 30         14         85.000000         85.000000         85.000000           30         15         85.586214         85.586214         85.586214         85.586214           30         16         88.141931         88.141931         88.141931           30         17         90.138782         90.138782         90.138782           30         18         90.553851         90.553851         90.553851           30         19         54.918121         54.918121         54.918121           30         20         54.120237         54.120237         54.120237           30         21         52.000000         52.000000         52.000000           30         22         58.309519         58.309519         58.309519           30         23         53.851648         53.851648         53.851648           30         24         60.033324         60.033324         60.033324           30         25         55.713553         55.713553         55.713553           30         26         62.649820         62.649820         62.649820           30         27         7.071068         7.071068         7.071068           30         28 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |     |           |           |           |  |
| 30         15         85.586214         85.586214         85.586214           30         16         88.141931         88.141931         88.141931           30         17         90.138782         90.138782         90.138782           30         18         90.553851         90.553851         90.553851           30         19         54.918121         54.918121         54.918121           30         20         54.120237         54.120237         54.120237           30         21         52.000000         52.000000         52.000000           30         22         58.309519         58.309519         58.309519           30         23         53.851648         53.851648         53.851648           30         24         60.033324         60.033324         60.033324           30         25         55.713553         55.713553         55.713553           30         26         62.649820         62.649820         62.649820           30         27         7.071068         7.071068         7.071068           30         28         5.000000         5.00000         5.000000           30         31         5.385165         5.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |     |           |           |           |  |
| 30         16         88.141931         88.141931         88.141931         88.141931           30         17         90.138782         90.138782         90.138782           30         18         90.553851         90.553851         90.553851           30         19         54.918121         54.918121         54.918121           30         20         54.120237         54.120237         54.120237           30         21         52.000000         52.000000         52.000000           30         22         58.309519         58.309519         58.309519           30         23         53.851648         53.851648         53.851648           30         24         60.033324         60.033324         60.033324           30         25         55.713553         55.713553         55.713553           30         26         62.649820         62.649820         62.649820           30         27         7.071068         7.071068         7.071068           30         28         5.000000         5.00000         5.000000           30         31         5.85165         5.385165         5.385165           30         32         2.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |     |           |           |           |  |
| 30       17       90.138782       90.138782       90.138782         30       18       90.553851       90.553851       90.553851         30       19       54.918121       54.918121       54.918121       54.120237         30       20       54.120237       54.120237       54.120237         30       21       52.000000       52.000000       52.000000         30       22       58.309519       58.309519       58.309519         30       23       53.851648       53.851648       53.851648         30       24       60.033324       60.033324       60.033324         30       25       55.713553       55.713553       55.713553         30       26       62.649820       62.649820       62.649820         30       27       7.071068       7.071068       7.071068         30       28       5.00000       5.00000       5.00000         30       31       5.385165       5.385165       5.385165         30       32       2.000000       2.000000       2.000000         30       33       5.830952       5.830952       5.830952         30       34       11.180340       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |     |           |           |           |  |
| 30         18         90.553851         90.553851         90.553851           30         19         54.918121         54.918121         54.918121           30         20         54.120237         54.120237         54.120237           30         21         52.000000         52.000000         52.000000           30         22         58.309519         58.309519         58.309519           30         23         53.851648         53.851648         53.851648           30         24         60.033324         60.033324         60.033324           30         25         55.713553         55.713553         55.713553           30         26         62.649820         62.649820         62.649820           30         27         7.071068         7.071068         7.071068           30         28         5.000000         5.000000         5.000000           30         29         5.385165         5.385165         5.385165           30         31         5.385165         5.385165         5.385165           30         32         2.000000         2.000000         2.000000           30         33         5.83052         5.830952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |           |           |           |  |
| 30         19         54.918121         54.918121         54.918121         54.918121           30         20         54.120237         54.120237         54.120237           30         21         52.000000         52.000000         52.000000           30         22         58.309519         58.309519         58.309519           30         23         53.851648         53.851648         53.851648           30         24         60.033324         60.033324         60.033324           30         25         55.713553         55.713553         55.713553           30         26         62.649820         62.649820         62.649820           30         27         7.071068         7.071068         7.071068           30         28         5.000000         5.000000         5.000000           30         29         5.385165         5.385165         5.385165           30         31         5.385165         5.385165         5.385165           30         32         2.000000         2.000000         2.000000           30         33         5.830952         5.830952         5.830952           30         34         11.180340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |           |           |           |  |
| 30         20         54.120237         54.120237         54.120237           30         21         52.000000         52.000000         52.000000           30         22         58.309519         58.309519         58.309519           30         23         53.851648         53.851648         53.851648           30         24         60.033324         60.033324         60.033324           30         25         55.713553         55.713553         55.713553           30         26         62.649820         62.649820         62.649820           30         27         7.071068         7.071068         7.071068           30         28         5.000000         5.000000         5.000000           30         29         5.385165         5.385165         5.385165           30         31         5.385165         5.385165         5.385165           30         32         2.000000         2.000000         2.000000           30         33         5.830952         5.830952         5.830952           30         34         11.180340         11.180340         11.180340           30         35         5.006352         55.036352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |     |           |           |           |  |
| 30         21         52.000000         52.000000         52.000000           30         22         58.309519         58.309519         58.309519           30         23         53.851648         53.851648         53.851648           30         24         60.033324         60.033324         60.033324           30         25         55.713553         55.713553         55.713553           30         26         62.649820         62.649820         62.649820           30         27         7.071068         7.071068         7.071068           30         28         5.000000         5.000000         5.000000           30         29         5.385165         5.385165         5.385165           30         31         5.385165         5.385165         5.385165           30         32         2.000000         2.000000         2.000000           30         33         5.830952         5.830952         5.830952           30         34         11.180340         11.180340         11.180340           30         35         5.036352         55.036352         55.036352           30         37         55.901699         55.901699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 19  |           |           |           |  |
| 30       22       58.309519       58.309519       58.309519         30       23       53.851648       53.851648       53.851648         30       24       60.033324       60.033324       60.033324         30       25       55.713553       55.713553       55.713553         30       26       62.649820       62.649820       62.649820         30       27       7.071068       7.071068       7.071068         30       28       5.000000       5.000000       5.000000         30       29       5.385165       5.385165       5.385165         30       31       5.385165       5.385165       5.385165         30       32       2.000000       2.000000       2.000000         30       33       5.830952       5.830952       5.830952         30       34       11.180340       11.180340       11.180340         30       35       5.000000       5.000000       5.000000         30       36       55.036352       55.036352       55.036352         30       37       55.901699       55.901699       55.901699         30       38       53.235327       53.235327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 20  | 54.120237 | 54.120237 | 54.120237 |  |
| 30       23       53.851648       53.851648       53.851648         30       24       60.033324       60.033324       60.033324         30       25       55.713553       55.713553       55.713553         30       26       62.649820       62.649820       62.649820         30       27       7.071068       7.071068       7.071068         30       28       5.000000       5.000000       5.000000         30       29       5.385165       5.385165       5.385165         30       31       5.385165       5.385165       5.385165         30       32       2.000000       2.000000       2.000000         30       33       5.830952       5.830952       5.830952         30       34       11.180340       11.180340       11.180340         30       35       5.000000       5.000000       5.000000         30       36       55.036352       55.036352       55.036352         30       37       55.901699       55.901699       55.901699         30       38       53.235327       53.235327       53.235327         30       39       53.000000       53.00000       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30 | 21  | 52.00000  | 52.000000 | 52.000000 |  |
| 30       24       60.033324       60.033324       60.033324         30       25       55.713553       55.713553       55.713553         30       26       62.649820       62.649820       62.649820         30       27       7.071068       7.071068       7.071068         30       28       5.000000       5.000000       5.000000         30       29       5.385165       5.385165       5.385165         30       31       5.385165       5.385165       5.385165         30       32       2.000000       2.000000       2.000000         30       33       5.830952       5.830952       5.830952         30       34       11.180340       11.180340       11.180340         30       35       5.000000       5.000000       5.000000         30       36       55.036352       55.036352       55.036352         30       37       55.901699       55.901699       55.901699         30       38       53.235327       53.235327       53.235327         30       39       53.000000       53.000000       53.000000         30       40       54.083269       54.083269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30 | 22  | 58.309519 | 58.309519 | 58.309519 |  |
| 30       25       55.713553       55.713553       55.713553         30       26       62.649820       62.649820       62.649820         30       27       7.071068       7.071068       7.071068         30       28       5.000000       5.000000       5.000000         30       29       5.385165       5.385165       5.385165         30       31       5.385165       5.385165       5.385165         30       32       2.000000       2.000000       2.000000         30       33       5.830952       5.830952       5.830952         30       34       11.180340       11.180340       11.180340         30       35       5.000000       5.000000       5.000000         30       36       55.036352       55.036352       55.036352         30       37       55.901699       55.901699       55.901699         30       38       53.235327       53.235327       53.235327         30       39       53.000000       53.000000       53.000000         30       40       54.083269       54.083269       54.083269         30       41       58.309519       58.309519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30 | 23  | 53.851648 | 53.851648 | 53.851648 |  |
| 30       26       62.649820       62.649820       62.649820         30       27       7.071068       7.071068       7.071068         30       28       5.000000       5.000000       5.000000         30       29       5.385165       5.385165       5.385165         30       31       5.385165       5.385165       5.385165         30       32       2.000000       2.000000       2.000000         30       33       5.830952       5.830952       5.830952         30       34       11.180340       11.180340       11.180340         30       35       5.000000       5.000000       5.000000         30       36       55.036352       55.036352       55.036352         30       37       55.901699       55.901699       55.901699         30       38       53.235327       53.235327       53.235327         30       39       53.000000       53.000000       53.000000         30       40       54.083269       54.083269       54.083269         30       41       58.309519       58.309519       58.309519         30       42       51.224994       51.224994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30 | 24  | 60.033324 | 60.033324 | 60.033324 |  |
| 30       27       7.071068       7.071068       7.071068         30       28       5.000000       5.000000       5.000000         30       29       5.385165       5.385165       5.385165         30       31       5.385165       5.385165       5.385165         30       32       2.000000       2.000000       2.000000         30       33       5.830952       5.830952       5.830952         30       34       11.180340       11.180340       11.180340         30       35       5.000000       5.000000       5.000000         30       36       55.036352       55.036352       55.036352         30       37       55.901699       55.901699       55.901699         30       38       53.235327       53.235327       53.235327         30       39       53.000000       53.000000       53.00000         30       40       54.083269       54.083269       54.083269         30       41       58.309519       58.309519       58.309519         30       42       51.224994       51.224994       51.224994         30       43       57.008771       57.008771       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30 | 25  | 55.713553 | 55.713553 | 55.713553 |  |
| 30       27       7.071068       7.071068       7.071068         30       28       5.000000       5.000000       5.000000         30       29       5.385165       5.385165       5.385165         30       31       5.385165       5.385165       5.385165         30       32       2.000000       2.000000       2.000000         30       33       5.830952       5.830952       5.830952         30       34       11.180340       11.180340       11.180340         30       35       5.000000       5.000000       5.000000         30       36       55.036352       55.036352       55.036352         30       37       55.901699       55.901699       55.901699         30       38       53.235327       53.235327       53.235327         30       39       53.000000       53.000000       53.00000         30       40       54.083269       54.083269       54.083269         30       41       58.309519       58.309519       58.309519         30       42       51.224994       51.224994       51.224994         30       43       57.008771       57.008771       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |     | 62.649820 | 62.649820 | 62.649820 |  |
| 30       28       5.000000       5.000000       5.000000         30       29       5.385165       5.385165       5.385165         30       31       5.385165       5.385165       5.385165         30       32       2.000000       2.000000       2.000000         30       33       5.830952       5.830952       5.830952         30       34       11.180340       11.180340       11.180340         30       35       5.000000       5.000000       5.000000         30       36       55.036352       55.036352       55.036352         30       37       55.901699       55.901699       55.901699         30       38       53.235327       53.235327       53.235327         30       39       53.000000       53.000000       53.000000         30       40       54.083269       54.083269       54.083269         30       41       58.309519       58.309519       58.309519         30       42       51.224994       51.224994       51.224994         30       43       57.008771       57.008771       57.008771         30       44       61.032778       61.032778       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 27  |           | 7.071068  | 7.071068  |  |
| 30       29       5.385165       5.385165       5.385165         30       31       5.385165       5.385165       5.385165         30       32       2.000000       2.000000       2.000000         30       33       5.830952       5.830952       5.830952         30       34       11.180340       11.180340       11.180340         30       35       5.000000       5.000000       5.000000         30       36       55.036352       55.036352       55.036352         30       37       55.901699       55.901699       55.901699         30       38       53.235327       53.235327       53.235327         30       39       53.000000       53.000000       53.000000         30       40       54.083269       54.083269       54.083269         30       41       58.309519       58.309519       58.309519         30       42       51.224994       51.224994       51.224994         30       43       57.008771       57.008771       57.008771         30       44       61.032778       61.032778       61.032778         30       45       58.600341       58.600341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |     |           |           |           |  |
| 30       31       5.385165       5.385165       5.385165         30       32       2.000000       2.000000       2.000000         30       33       5.830952       5.830952       5.830952         30       34       11.180340       11.180340       11.180340         30       35       5.000000       5.000000       5.000000         30       36       55.036352       55.036352       55.036352         30       37       55.901699       55.901699       55.901699         30       38       53.235327       53.235327       53.235327         30       39       53.000000       53.000000       53.000000         30       40       54.083269       54.083269       54.083269         30       41       58.309519       58.309519       58.309519         30       42       51.224994       51.224994       51.224994         30       43       57.008771       57.008771       57.008771         30       44       61.032778       61.032778       61.032778         30       45       58.600341       58.600341       58.600341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |     |           |           |           |  |
| 30       32       2.000000       2.000000       2.000000         30       33       5.830952       5.830952       5.830952         30       34       11.180340       11.180340       11.180340         30       35       5.000000       5.000000       5.000000         30       36       55.036352       55.036352       55.036352         30       37       55.901699       55.901699       55.901699         30       38       53.235327       53.235327       53.235327         30       39       53.000000       53.000000       53.000000         30       40       54.083269       54.083269       54.083269         30       41       58.309519       58.309519       58.309519         30       42       51.224994       51.224994       51.224994         30       43       57.008771       57.008771       57.008771         30       44       61.032778       61.032778       61.032778         30       45       58.600341       58.600341       58.600341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |     |           |           |           |  |
| 30       33       5.830952       5.830952       5.830952         30       34       11.180340       11.180340       11.180340         30       35       5.000000       5.000000       5.000000         30       36       55.036352       55.036352       55.036352         30       37       55.901699       55.901699       55.901699         30       38       53.235327       53.235327       53.235327         30       39       53.000000       53.000000       53.000000         30       40       54.083269       54.083269       54.083269         30       41       58.309519       58.309519       58.309519         30       42       51.224994       51.224994       51.224994         30       43       57.008771       57.008771       57.008771         30       44       61.032778       61.032778       61.032778         30       45       58.600341       58.600341       58.600341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |     |           |           |           |  |
| 30       34       11.180340       11.180340       11.180340         30       35       5.000000       5.000000       5.000000         30       36       55.036352       55.036352       55.036352         30       37       55.901699       55.901699       55.901699         30       38       53.235327       53.235327       53.235327         30       39       53.000000       53.000000       53.000000         30       40       54.083269       54.083269       54.083269         30       41       58.309519       58.309519       58.309519         30       42       51.224994       51.224994       51.224994         30       43       57.008771       57.008771       57.008771         30       44       61.032778       61.032778       61.032778         30       45       58.600341       58.600341       58.600341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |     |           |           |           |  |
| 30       35       5.000000       5.000000       5.000000         30       36       55.036352       55.036352       55.036352         30       37       55.901699       55.901699       55.901699         30       38       53.235327       53.235327       53.235327         30       39       53.000000       53.000000       53.000000         30       40       54.083269       54.083269       54.083269         30       41       58.309519       58.309519       58.309519         30       42       51.224994       51.224994       51.224994         30       43       57.008771       57.008771       57.008771         30       44       61.032778       61.032778       61.032778         30       45       58.600341       58.600341       58.600341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |     |           |           |           |  |
| 30       36       55.036352       55.036352       55.036352         30       37       55.901699       55.901699       55.901699         30       38       53.235327       53.235327       53.235327         30       39       53.000000       53.000000       53.000000         30       40       54.083269       54.083269       54.083269         30       41       58.309519       58.309519       58.309519         30       42       51.224994       51.224994       51.224994         30       43       57.008771       57.008771       57.008771         30       44       61.032778       61.032778       61.032778         30       45       58.600341       58.600341       58.600341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |           |           |           |  |
| 30       37       55.901699       55.901699       55.901699         30       38       53.235327       53.235327       53.235327         30       39       53.000000       53.000000       53.000000         30       40       54.083269       54.083269       54.083269         30       41       58.309519       58.309519       58.309519         30       42       51.224994       51.224994       51.224994         30       43       57.008771       57.008771       57.008771         30       44       61.032778       61.032778       61.032778         30       45       58.600341       58.600341       58.600341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |     |           |           |           |  |
| 30     38     53.235327     53.235327     53.235327       30     39     53.000000     53.000000     53.000000       30     40     54.083269     54.083269     54.083269       30     41     58.309519     58.309519     58.309519       30     42     51.224994     51.224994     51.224994       30     43     57.008771     57.008771     57.008771       30     44     61.032778     61.032778     61.032778       30     45     58.600341     58.600341     58.600341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |     |           |           |           |  |
| 30       39       53.000000       53.000000       53.000000         30       40       54.083269       54.083269       54.083269         30       41       58.309519       58.309519       58.309519         30       42       51.224994       51.224994       51.224994         30       43       57.008771       57.008771       57.008771         30       44       61.032778       61.032778       61.032778         30       45       58.600341       58.600341       58.600341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |           |           |           |  |
| 30       40       54.083269       54.083269       54.083269         30       41       58.309519       58.309519       58.309519         30       42       51.224994       51.224994       51.224994         30       43       57.008771       57.008771       57.008771         30       44       61.032778       61.032778       61.032778         30       45       58.600341       58.600341       58.600341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |           |           |           |  |
| 30     41     58.309519     58.309519     58.309519       30     42     51.224994     51.224994     51.224994       30     43     57.008771     57.008771     57.008771       30     44     61.032778     61.032778     61.032778       30     45     58.600341     58.600341     58.600341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |     |           |           |           |  |
| 30     42     51.224994     51.224994     51.224994       30     43     57.008771     57.008771     57.008771       30     44     61.032778     61.032778     61.032778       30     45     58.600341     58.600341     58.600341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |     |           |           |           |  |
| 30     43     57.008771     57.008771     57.008771       30     44     61.032778     61.032778     61.032778       30     45     58.600341     58.600341     58.600341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |     |           |           |           |  |
| 30       44       61.032778       61.032778       61.032778         30       45       58.600341       58.600341       58.600341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |           |           |           |  |
| 30 45 58.600341 58.600341 58.600341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | 44  | 61.032778 | 61.032778 | 61.032778 |  |
| 30 46 84.314886 84.314886 84.314886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30 | 45  | 58.600341 | 58.600341 | 58.600341 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30 | 46  | 84.314886 | 84.314886 | 84.314886 |  |

| 30  | 47  | 84.905830 | 84.905830 | 84.905830 |
|-----|-----|-----------|-----------|-----------|
| 30  | 48  | 88.566359 | 88.566359 | 88.566359 |
| 30  | 49  | 56.603887 | 56.603887 | 56.603887 |
| 30  | 50  | 53.225934 | 53.225934 | 53.225934 |
| 30  | 51  | 18.000000 | 18.000000 | 18.000000 |
|     |     |           |           |           |
| 30  | 52  | 38.078866 | 38.078866 | 38.078866 |
| 30  | 53  | 65.192024 | 65.192024 | 65.192024 |
| 30  | 54  | 71.589105 | 71.589105 | 71.589105 |
| 30  | 55  | 43.011626 | 43.011626 | 43.011626 |
| 30  | 56  | 65.000000 | 65.000000 | 65.000000 |
| 30  | 57  | 40.00000  | 40.00000  | 40.000000 |
| 30  | 58  | 60.827625 | 60.827625 | 60.827625 |
| 30  | 59  | 79.056942 | 79.056942 | 79.056942 |
| 30  | 60  | 81.394103 | 81.394103 | 81.394103 |
| 30  | 61  | 79.056942 | 79.056942 | 79.056942 |
| 30  | 62  | 54.083269 | 54.083269 | 54.083269 |
| 30  | 63  | 25.000000 | 25.000000 | 25.000000 |
| 30  |     |           | 29.154759 |           |
|     | 64  | 29.154759 |           | 29.154759 |
| 30  | 65  | 45.276926 | 45.276926 | 45.276926 |
| 30  | 66  | 55.226805 | 55.226805 | 55.226805 |
| 30  | 67  | 49.040799 | 49.040799 | 49.040799 |
| 30  | 68  | 26.925824 | 26.925824 | 26.925824 |
| 30  | 69  | 55.901699 | 55.901699 | 55.901699 |
| 30  | 70  | 61.400326 | 61.400326 | 61.400326 |
| 30  | 71  | 64.660653 | 64.660653 | 64.660653 |
| 30  | 72  | 32.015621 | 32.015621 | 32.015621 |
| 30  | 73  | 40.360872 | 40.360872 | 40.360872 |
| 30  | 74  | 91.482239 | 91.482239 | 91.482239 |
| 30  | 75  | 71.589105 | 71.589105 | 71.589105 |
| 30  | 76  | 90.138782 | 90.138782 | 90.138782 |
| 30  | 77  | 37.802116 | 37.802116 | 37.802116 |
|     |     |           |           |           |
| 30  | 78  | 74.249579 | 74.249579 | 74.249579 |
| 30  | 79  | 84.646323 | 84.646323 | 84.646323 |
| 30  | 80  | 90.249654 | 90.249654 | 90.249654 |
| 30  | 81  | 44.643029 | 44.643029 | 44.643029 |
| 30  | 82  | 47.010637 | 47.010637 | 47.010637 |
| 30  | 83  | 63.505905 | 63.505905 | 63.505905 |
| 30  | 84  | 53.150729 | 53.150729 | 53.150729 |
| 30  | 85  | 33.541020 | 33.541020 | 33.541020 |
| 30  | 86  | 29.546573 | 29.546573 | 29.546573 |
| 30  | 87  | 69.871310 | 69.871310 | 69.871310 |
| 30  | 88  | 78.771822 | 78.771822 | 78.771822 |
| 30  | 89  | 69.892775 | 69.892775 | 69.892775 |
| 30  | 90  | 37.802116 | 37.802116 | 37.802116 |
| 30  | 91  | 54.341513 | 54.341513 | 54.341513 |
| 30  | 92  | 41.593269 | 41.593269 | 41.593269 |
| 30  | 93  | 37.854986 | 37.854986 | 37.854986 |
|     |     | 37.854986 |           | 37.854986 |
| 30  | 94  |           | 33.615473 |           |
| 30  | 95  | 35.468296 | 35.468296 | 35.468296 |
| 30  | 96  | 34.058773 | 34.058773 | 34.058773 |
| 30  | 97  | 39.824616 | 39.824616 | 39.824616 |
| 30  | 98  | 87.664132 | 87.664132 | 87.664132 |
| 30  | 99  | 66.219333 | 66.219333 | 66.219333 |
| 30  | 100 | 64.000000 | 64.000000 | 64.000000 |
| 30  | 101 | 67.119297 | 67.119297 | 67.119297 |
| 31  | 1   | 52.000000 | 52.000000 | 52.000000 |
| 31  | 2   | 83.630138 | 83.630138 | 83.630138 |
| 31  | 3   | 79.881162 | 79.881162 | 79.881162 |
| 31  | 4   | 85.912746 | 85.912746 | 85.912746 |
| 31  | 5   | 84.403791 | 84.403791 | 84.403791 |
| 31  | 6   | 87.458562 | 87.458562 | 87.458562 |
| 31  | 7   | 83.216585 | 83.216585 | 83.216585 |
| 31  |     | 85.755466 | 85.755466 | 85.755466 |
| 2 T | 8   | 00./00400 | 00.700400 | 00./00400 |

| 31 10 78.160092 78.160092 78.160092 31 10 78.639413 78.638413 78.638413 31 12 00.622577 80.622577 80.622577 31 13 81.984103 81.394103 81.394103 31 14 83.150466 83.150466 83.150466 31 15 84.344532 84.344532 84.344532 31 16 06.579443 86.579443 86.579443 31 17 89.566359 88.566359 88.566359 31 18 89.26256 89.262256 89.262256 31 19 50.66324 50.666324 50.666324 31 20 50.159745 50.159745 50.159745 31 21 49.393892 49.383882 48.383882 31 22 54.120237 54.120237 54.120237 31 23 50.289164 50.288164 50.289164 31 24 55.901699 55.901699 55.901699 31 25 52.201533 52.201533 52.201533 31 26 59.60341 58.600341 58.600341 78.600341 31 27 7.00000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.0000000 7.000000 7.000000 7.0000000 7.0000000 7.0000000 7.0000000 7.0000000 7.0000000 7.0000000 7 | 2.1 |    | 00 401637 | 00 401627 | 00 401627 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|-----------|-----------|-----------|--|
| 31         11         12         0.622577         80.622577         80.622577           31         12         0.622577         80.622577         80.622577           31         13         81.394103         81.394103         81.394103           31         14         83.150466         83.150466         83.150466           31         15         84.344532         84.344532         84.344532           31         17         88.566359         88.566359         88.566359           31         17         88.566359         88.566359         88.566359           31         19         50.606324         50.606324         50.606324           31         20         50.159745         50.159745         50.159745           31         21         48.383882         48.383882         48.383882           31         22         54.120227         54.120227         54.120227           31         23         50.288164         50.289164         50.289164           31         24         55.901699         55.901699         55.901699         51.901699           31         25         52.21533         52.201533         52.201533         52.201533         52.201533 </td <td>31</td> <td>9</td> <td>88.481637</td> <td>88.481637</td> <td>88.481637</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31  | 9  | 88.481637 | 88.481637 | 88.481637 |  |
| 31         12         80.622577         80.622577         80.622577         31         31         31.934103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.394103         81.3941033         81.3941034         81.3941034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |    |           |           |           |  |
| 31         13         81.394103         81.394103         81.294103           31         14         81.516466         83.150466         83.150466         83.150466           31         15         84.346532         84.346532         84.346532         84.346532           31         16         86.579443         86.579443         86.579443           31         17         88.566339         88.566339         88.269286           31         19         50.606324         50.606324         50.606324           31         20         50.159745         50.159745         50.159745           31         21         68.383882         48.383882         48.383882           31         22         54.120227         54.120237         54.120237           31         23         50.288164         50.299164         50.299164           31         24         55.901699         55.901699         55.901699           31         25         52.201533         52.201533         52.201533           31         26         88.602325         8.602325         8.602325           31         27         70.00000         7.000000         7.000000           31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |    |           |           |           |  |
| 31         14         83.150466         83.150466         83.150466         83.150466         83.150466         83.150466         83.150466         83.150466         83.150466         83.150466         83.260323         86.579443         86.579443         86.579443         86.579443         86.579443         86.579443         86.579443         86.579443         86.579443         88.566359         89.269256         89.269256         89.269256         89.269256         89.269254         50.606324         50.606324         50.606324         50.606324         50.606324         50.606324         50.606324         50.606324         50.606324         50.606324         50.606324         50.606327         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120237         54.120247 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |    |           |           |           |  |
| 31         15         84,344532         84,344532         84,344532         84,344532           31         16         86,579443         86,579443         86,579443         88,56359         88,56359           31         17         88,566359         88,269256         89,269256         89,269256         89,269256           31         19         50,66524         50,606324         50,606324         50,159745         50,159745           31         20         50,159745         50,159745         50,159745         50,159745           31         21         48,383882         48,383882         48,383882         34,120237           31         22         54,120237         54,120237         54,120237         54,120237           31         23         50,289164         50,289164         50,289164         50,289164         50,289164         50,289164         50,289164         50,289164         50,289164         50,289164         50,289164         50,289164         50,289164         50,289164         50,289164         50,289164         50,289164         50,289164         50,289164         50,289164         50,289164         50,289164         50,289164         50,289164         50,200000         50,00000         50,00000         50,00000<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |    |           |           |           |  |
| 31         16         86,579443         86,579443         86,579443           31         17         88,566359         88,566359         88,566359           31         18         89,269256         89,269256         89,269256           31         19         50,606324         50,606324         50,606324           31         20         50,159745         50,159745           31         21         48,183882         48,393862         49,383882           31         22         54,120237         54,120237         54,120237           31         23         50,289164         50,289164         50,289164         50,289164           31         24         55,901699         55,901699         55,901699           31         25         52,201533         52,201533         52,201533           31         26         58,603341         58,60341         58,60341           31         27         7,000000         7,000000         7,000000           31         28         6,602325         8,602325         8,602325           31         30         5,385165         5,385165         5,385165           31         32         5,00000         5,00000 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |    |           |           |           |  |
| 31         17         88.566359         88.566359         89.269256         89.269256         39.269256           31         18         89.269256         89.269256         50.606324         50.606324         50.606324         50.606324         50.606324         50.606324         50.606324         50.606324         50.159745         50.159745         50.159745         50.159745         50.159745         50.159745         50.159745         50.159745         50.159745         50.159745         50.159745         50.159745         50.159745         50.159745         50.159745         50.159745         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.2891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |           |           |           |  |
| 31         18         89_269256         89_269256         89_269256           31         19         50_66524         50_666324         50_666324         50_666324           31         20         50_159745         50_159745         50_159745         50_159745           31         21         48_383882         48_383882         48_383882           31         22         50_289164         50_289164         50_289164         50_289164           31         24         55_901699         55_901699         55_901699         55_901699           31         25         52_201533         52_201533         52_201533         52_201533           31         26         58_600341         58_600341         58_600341         58_603425           31         27         7_000000         7_000000         7_000000         7_000000           31         29         4_000000         4_000000         4_000000         3_000000           31         30         5_385165         5_385165         5_385165         5_385165           31         32         5_000000         5_000000         5_000000           31         33         1_000000         1_000000         1_000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31  | 16 | 86.579443 | 86.579443 | 86.579443 |  |
| 31         19         50.666324         50.606324         50.159745         50.159745         50.159745         50.159745         50.159745         50.159745         50.159745         50.159745         50.159745         50.159745         50.159745         50.159745         30.159745         50.159745         48.383882         48.383882         48.383882         48.383882         48.383882         48.383882         48.383882         48.383882         48.383882         48.383882         48.383882         48.383882         48.383882         48.383882         48.383882         48.383882         48.383882         48.383882         48.383882         48.383882         48.383882         48.383882         48.383882         48.383882         48.383882         48.282616         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.289164         50.20031         50.20031         50.20031         50.20031         50.20031         50.20031         50.20032         50.20032         50.20032         50.20030         50.00000         50.00000         50.00000         50.00000         50.00000         50.00000         50.00000         50.00000         50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31  | 17 | 88.566359 | 88.566359 | 88.566359 |  |
| 31         20         \$0.159745         \$0.159745         \$0.159745         \$0.159745           31         21         \$4.838382         \$48.38382         \$48.38382         \$48.38382           31         22         \$4.120237         \$4.120237         \$4.120237           31         24         \$5.901699         \$5.901699         \$5.901699         \$5.901699           31         25         \$5.201533         \$52.201533         \$52.201533         \$2.201533           31         26         \$6.600341         \$8.600341         \$8.600341         \$8.600341           31         27         \$7.000000         \$7.000000         \$7.000000           31         28         \$6.02325         \$8.602325         \$8.602325           31         30         \$5.85165         \$5.385165         \$5.385165           31         32         \$5.000000         \$5.000000         \$5.000000           31         33         \$1.000000         \$1.000000         \$1.000000           31         34         \$5.830952         \$5.830952         \$5.830952           31         35         \$5.830952         \$5.830952         \$5.830952           31         36         \$8.872744         \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31  | 18 | 89.269256 | 89.269256 | 89.269256 |  |
| 31         21         48.38382         48.38382         48.38382           31         22         54.120237         54.120237         54.120237           31         23         50.289164         50.289164         50.289164         50.289164           31         24         55.901699         55.901699         55.901699         55.901699           31         26         58.600341         58.600341         58.600341         58.600341           31         27         7.000000         7.000000         7.000000           31         29         4.000000         4.000000         4.000000           31         30         5.385165         5.385165         5.385165           31         32         5.000000         5.000000         5.000000           31         34         6.830952         5.830952         5.830952           31         35         5.830952         5.830952         5.830952           31         36         5.83444         59.615434         59.615434         59.615434           31         37         59.615434         59.615434         59.615434         59.615434           31         39         56.355011         56.356011         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31  | 19 | 50.606324 | 50.606324 | 50.606324 |  |
| 31         22         \$4.120237         \$4.120237         \$4.120237         \$4.120237         \$3.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289166         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164         \$50.289164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31  | 20 | 50.159745 | 50.159745 | 50.159745 |  |
| 31         24         55.901699         55.901699         55.901699         55.901699         31         24         55.901699         55.901699         55.901699         35.201533         32.201533         52.201533         52.201533         52.201533         52.201533         52.201533         52.201533         52.201533         52.201533         52.201533         52.201533         52.201533         52.201533         52.201533         52.201533         52.201533         52.201533         52.201533         52.201533         52.201533         52.201533         52.201533         52.201533         52.201533         52.201533         52.2016333         52.2016333         52.2016333         52.2016333         52.2016333         52.2016333         52.2016333         52.2016333         52.201533         52.201533         52.201533         52.2016333         52.2016333         52.201633         52.201633         52.201633         52.201633         52.2016333         52.201633         52.201633         52.201633         52.201633         52.201633         52.201633         52.201633         52.201633         52.201633         52.201633         52.201633         52.201633         52.201633         52.201633         52.201633         52.201634         52.201634         52.201634         52.201634         52.201634         52.201634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31  | 21 | 48.383882 | 48.383882 | 48.383882 |  |
| 31         24         55,901699         55,901699         55,901699           31         25         52,201533         52,201533         52,201533           31         26         58,600341         58,600341         58,600341           31         27         7,000000         7,000000         7,000000           31         28         8,602325         8,602325         8,602325           31         29         4,000000         4,000000         4,000000           31         30         5,385165         5,85165         5,85165           31         32         5,000000         5,000000         5,000000           31         33         1,000000         1,000000         1,000000           31         34         5,830952         5,830952         5,830952           31         35         5,830952         5,830952         5,830952           31         36         5,8,72744         58,872744         58,872744           31         37         59,615434         59,615434         59,615434           31         38         56,356011         56,356011         56,356011           31         40         57,306195         57,306195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31  | 22 | 54.120237 | 54.120237 | 54.120237 |  |
| 31         26         58.600341         58.600341         58.600341           31         26         58.600341         58.600341         58.600341           31         27         7.000000         7.000000         7.000000           31         28         8.602325         8.602325         8.602325           31         29         4.000000         4.000000         4.000000           31         30         5.385165         5.385165         5.385165           31         32         5.000000         1.000000         1.000000           31         34         5.830952         5.830952         5.830952           31         35         5.830952         5.830952         5.830952           31         36         58.872744         58.872744         58.872744           31         37         59.615434         59.615434         59.615434           31         39         56.356011         56.356011         56.356011           31         39         56.356011         56.356011         56.356011           31         40         57.306195         57.306195         57.306195           31         41         61.717096         61.717096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31  | 23 | 50.289164 | 50.289164 | 50.289164 |  |
| 31         26         58.600341         58.600341         58.600341           31         26         58.600341         58.600341         58.600341           31         27         7.000000         7.000000         7.000000           31         28         8.602325         8.602325         8.602325           31         29         4.000000         4.000000         4.000000           31         30         5.385165         5.385165         5.385165           31         32         5.000000         1.000000         1.000000           31         34         5.830952         5.830952         5.830952           31         35         5.830952         5.830952         5.830952           31         36         58.872744         58.872744         58.872744           31         37         59.615434         59.615434         59.615434           31         39         56.356011         56.356011         56.356011           31         39         56.356011         56.356011         56.356011           31         40         57.306195         57.306195         57.306195           31         41         61.717096         61.717096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31  | 24 | 55.901699 | 55.901699 | 55.901699 |  |
| 31         26         58.600341         58.600341         58.600341           31         27         7.000000         7.000000         7.000000           31         28         8.602325         8.602325         8.602325           31         29         4.000000         4.000000         4.000000           31         30         5.385165         5.385165         5.385165           31         32         5.00000         5.000000         5.000000           31         33         1.000000         1.000000           31         34         5.830952         5.830952         5.830952           31         35         5.830952         5.830952         5.830952           31         36         58.872744         58.872744         58.872744           31         37         59.615434         59.615434         59.615434           31         38         56.859476         56.859476         56.859476           31         39         56.356011         56.356011         56.356011           31         40         57.306195         57.306195         57.306195           31         41         61.717096         61.717096         61.717096     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |           |           |           |  |
| 31         27         7.000000         7.000000         7.000000           31         28         8.602325         8.602325         8.602325           31         29         4.000000         4.000000         4.000000           31         30         5.385165         5.385165         5.385165           31         32         5.000000         5.000000         5.000000           31         33         1.000000         1.000000         1.000000           31         34         5.830952         5.830952         5.830952           31         35         5.830952         5.830952         5.830952           31         36         58.872744         58.872744         58.872744           31         37         59.615434         59.615434         59.615434           31         39         56.356011         56.356011         56.356011           31         39         56.356011         56.356011         56.356011           31         40         57.306195         57.306195         57.306195           31         41         61.717096         61.717096         61.717096           31         42         54.083269         54.083269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |    |           |           |           |  |
| 31         28         8.602325         8.602325         8.602325           31         29         4.000000         4.000000           31         30         5.385165         5.385165         5.385165           31         32         5.000000         5.000000         5.000000           31         33         1.000000         1.000000         1.000000           31         34         5.830952         5.830952         5.830952           31         36         58.872744         58.872744         58.872744         58.872744           31         37         55.615434         59.615434         59.615434         59.615434           31         38         56.859476         56.859476         56.859476         56.859476           31         39         56.556011         56.356011         56.356011         51.356011           31         40         57.306195         57.306195         57.306195         57.306195           31         41         61.717096         61.717096         61.717096         61.717096           31         43         59.908263         59.908263         59.908263           31         43         59.908263         59.908263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |    |           |           |           |  |
| 31         29         4,000000         4,000000         4,000000           31         30         5,385165         5,385165         5,385165         31         32         5,000000         5,000000         5,000000         31         34         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,830952         5,800154         5,600164         5,600164         5,600164         5,600164         5,600164         5,600164         4,600000         4,60000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |           |           |           |  |
| 31         30         5.385165         5.385165         5.385165           31         32         5.000000         5.000000         3.000000           31         33         1.000000         1.000000           31         34         5.830952         5.830952         5.830952           31         35         5.830952         5.830952         5.830952           31         36         58.872744         58.872744         58.872744           31         37         59.615434         59.615434         59.615434           31         38         56.859476         56.859476         56.859476           31         39         56.356011         56.356011         56.356011           31         40         57.306195         57.306195         57.306195           31         41         61.717096         61.717096         61.717096           31         42         54.083269         54.083269         54.083269           31         43         59.908263         59.908263         59.908263           31         44         64.140471         64.140471         64.140471           31         45         61.587336         61.587336         61.587336<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |    |           |           |           |  |
| 31         32         5.000000         5.000000         1.000000           31         33         1.000000         1.000000         1.000000           31         34         5.830952         5.830952         5.830952           31         36         58.872744         58.872744         58.872744         58.872744         58.872744           31         37         59.615434         59.615434         59.615434         59.615434           31         38         56.859476         56.859476         56.859476         56.859476           31         40         57.306195         57.306195         57.306195           31         40         57.306195         57.306195         57.306195           31         41         61.717096         61.717096         61.717096           31         42         54.083269         54.083269         54.083269           31         43         59.908263         59.908263         59.908263           31         44         64.140471         64.140471         64.140471         64.140471         64.140471         64.140471         64.1587336         61.587336         61.587336         61.587336         61.587336         61.587336         61.587336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |           |           |           |  |
| 31         33         1.000000         1.000000           31         34         5.830952         5.830952         5.830952           31         35         5.830952         5.830952         5.830952           31         36         58.872744         58.872744         58.872744           31         37         59.615434         59.615434         59.615434           31         38         56.859476         56.859476         56.859476           31         39         56.356011         56.356011         56.356011           31         40         57.306195         57.306195         57.306195           31         41         61.717096         61.717096         61.717096           31         42         54.083269         54.083269         54.083269           31         43         59.908263         59.908263         59.908263           31         44         64.140471         64.140471         64.140471           31         45         61.587336         61.587336         61.587336           31         47         86.023253         86.023253         86.023253           31         49         52.354560         52.354560         52.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |    |           |           |           |  |
| 31         34         5.830952         5.830952         5.830952         5.830952         31         35         5.830952         5.830952         5.830952         5.830952         31         36         58.872744         58.872744         58.872744         58.872744         58.872744         31         38         56.859476         56.859476         56.859476         56.859476         56.859476         56.859476         56.859476         56.859476         56.859476         56.859476         56.859476         56.859476         56.859476         56.859476         56.859476         56.859476         56.859476         56.859476         56.859476         56.859476         56.859476         56.859476         56.859476         56.859476         56.859476         56.859476         56.859476         56.356011         56.356011         56.356011         56.356011         56.356011         56.356011         56.356029         54.083269         54.083269         54.083269         54.083269         54.083269         54.083269         54.083269         54.083269         54.083269         54.083269         54.083269         54.083269         54.083269         54.083269         54.083269         54.083269         54.083269         54.083269         54.083269         54.083269         54.083269         54.083269         54.08326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |    |           |           |           |  |
| 31         35         5.830952         5.830952         5.830952           31         36         58.872744         58.872744         58.872744         58.872744           31         37         59.615434         59.615434         59.615434           31         38         56.859476         56.859476         56.859476           31         39         56.356011         56.356011         56.356011           31         40         57.306195         57.306195         57.306195           31         41         61.717096         61.717096         61.717096           31         42         54.083269         54.083269         54.083269           31         43         59.908263         59.908263         59.908263           31         44         64.140471         64.140471         64.140471           31         45         61.587336         61.587336         61.587336         61.587338           31         46         85.603738         85.603738         85.603738         87.298339         87.298339           31         47         86.023253         86.023253         86.023253         86.023253           31         49         52.354560         52.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |    |           |           |           |  |
| 31         36         58.872744         58.872744         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.615434         59.80626         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         54.083269         54.083269         54.083269         54.083269         54.083269         54.083269 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |           |           |           |  |
| 31         37         59.615434         59.615434         59.615434         59.615434           31         38         56.859476         56.859476         56.859476         56.859476           31         39         56.356011         56.356011         56.356011         31.56.356011           31         40         57.306195         57.306195         57.306195         57.306195           31         41         61.717096         61.717096         61.717096         61.717096           31         42         54.083269         54.083269         54.083269           31         43         59.908263         59.908263         59.908263           31         44         64.140471         64.140471         64.140471           31         45         61.587336         61.587336         61.587336           31         47         86.023253         86.023253         86.023253           31         48         87.298339         87.298339         87.298339           31         49         52.354560         52.354560         52.354560         52.354560           31         50         49.396356         49.396356         49.396356         49.396356         49.396356         49.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |    |           |           |           |  |
| 31         38         56.859476         56.859476         56.859476           31         39         56.356011         56.356011         56.356011           31         40         57.306195         57.306195         57.306195           31         41         61.717096         61.717096         61.717096           31         42         54.083269         54.083269         54.083269           31         43         59.908263         59.908263         59.908263           31         44         64.140471         64.140471         64.140471           31         45         61.587336         61.587336         61.587336           31         46         85.603738         85.603738         85.603738           31         47         86.023253         86.023253         86.023253           31         48         87.298339         87.298339         87.298339           31         49         52.354560         52.354560         52.354560           31         50         49.396356         49.396356         49.396356           31         51         16.763055         16.763055         16.763055           31         52         34.481879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |           |           |           |  |
| 31         39         56.356011         56.356011         56.356011           31         40         57.306195         57.306195         57.306195           31         41         61.717096         61.717096         61.717096           31         42         54.083269         54.083269         54.083269           31         43         59.908263         59.908263         59.908263           31         44         64.140471         64.140471         64.140471           31         45         61.587336         61.587336         61.587336           31         46         85.603738         85.603738         85.603738           31         47         86.023253         86.023253         86.023253           31         48         87.298339         87.298339         87.298339           31         49         52.354560         52.354560         52.354560         52.354560           31         50         49.396356         49.396356         49.396356         49.396356           31         51         16.763055         16.763055         16.763055         16.763055           31         52         34.481879         34.481879         34.481879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |           |           |           |  |
| 31         40         57.306195         57.306195         57.306195           31         41         61.717096         61.717096         61.717096           31         42         54.083269         54.083269         54.083269           31         43         59.908263         59.908263         59.908263           31         44         64.140471         64.140471         64.140471           31         45         61.587336         61.587336         61.587336           31         46         85.603738         85.603738         85.603738           31         47         86.023253         86.023253         86.023253           31         48         87.298339         87.298339         87.298339           31         49         52.354560         52.354560         52.354560           31         50         49.396356         49.396356         49.396356           31         51         16.763055         16.763055         16.763055           31         52         34.481879         34.481879         34.481879           31         53         63.00000         63.00000         63.00000           31         54         70.880181 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |    |           |           |           |  |
| 31       41       61.717096       61.717096       61.717096         31       42       54.083269       54.083269       54.083269         31       43       59.908263       59.908263       59.908263         31       44       64.140471       64.140471       64.140471         31       45       61.587336       61.587336       61.587336         31       46       85.603738       85.603738       85.603738         31       47       86.023253       86.023253       86.023253         31       48       87.298339       87.298339       87.298339         31       49       52.354560       52.354560       52.354560         31       50       49.396356       49.396356       49.396356         31       51       16.763055       16.763055       16.763055         31       51       16.763055       16.763055       16.763055         31       52       34.481879       34.481879       34.481879         31       53       63.00000       63.00000       63.00000         31       54       70.880181       70.880181       70.880181       70.880181         31       55       44.5982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |    |           |           |           |  |
| 31         42         54.083269         54.083269         54.083269         54.083269         31.083269         31.083269         31.083269         39.908263         59.908263         59.908263         39.908263         39.908263         39.908263         39.908263         39.908263         39.908263         39.908263         39.908263         39.908263         39.908263         39.908263         39.908263         39.908263         39.908263         39.908263         39.908263         39.908263         39.908263         39.908263         39.908263         39.908263         39.908263         39.908263         39.908263         39.808263         39.80866         61.587336         61.587336         61.587336         61.587336         61.587336         61.587336         38.322533         85.603738         85.603738         85.603738         85.603738         85.603738         38.7298339         37.298339         37.298339         37.298339         37.298339         37.298339         37.298339         37.298339         37.298339         37.298339         37.298339         37.298339         37.298339         37.298339         37.298339         37.298339         37.298339         37.298339         37.298339         37.298339         37.298339         37.298339         37.298339         37.2983399         37.298339         37.298339 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |           |           |           |  |
| 31       43       59.908263       59.908263       59.908263         31       44       64.140471       64.140471       64.140471         31       45       61.587336       61.587336       61.587336         31       46       85.603738       85.603738       85.603738         31       47       86.023253       86.023253       86.023253         31       48       87.298339       87.298339       87.298339         31       49       52.354560       52.354560       52.354560         31       50       49.396356       49.396356       49.396356         31       51       16.763055       16.763055       16.763055         31       52       34.481879       34.481879       34.481879         31       54       70.880181       70.880181       70.880181         31       55       44.598206       44.598206       44.598206         31       56       65.299311       65.299311       65.299311         31       57       38.327536       38.327536       38.327536         31       58       58.215118       58.215118       58.215118         31       59       75.690158       75.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |    |           |           |           |  |
| 31       44       64.140471       64.140471       64.140471         31       45       61.587336       61.587336       61.587336         31       46       85.603738       85.603738       85.603738         31       47       86.023253       86.023253       86.023253         31       48       87.298339       87.298339       87.298339         31       49       52.354560       52.354560       52.354560         31       50       49.396356       49.396356       49.396356         31       51       16.763055       16.763055       16.763055         31       52       34.481879       34.481879       34.481879         31       53       63.000000       63.000000       63.000000         31       54       70.880181       70.880181       70.880181         31       55       44.598206       44.598206       44.598206         31       56       65.299311       65.299311       65.299311         31       57       38.327536       38.327536       38.327536         31       58       58.215118       58.215118       58.215118         31       59       75.690158       75.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31  | 42 | 54.083269 | 54.083269 | 54.083269 |  |
| 31       45       61.587336       61.587336       61.587336         31       46       85.603738       85.603738       85.603738         31       47       86.023253       86.023253       86.023253         31       48       87.298339       87.298339       87.298339         31       49       52.354560       52.354560       52.354560         31       50       49.396356       49.396356       49.396356         31       51       16.763055       16.763055       16.763055         31       52       34.481879       34.481879       34.481879         31       53       63.000000       63.000000       63.000000         31       54       70.880181       70.880181       70.880181         31       55       44.598206       44.598206       44.598206         31       56       65.299311       65.299311       65.299311         31       57       38.327536       38.327536       38.327536         31       58       58.215118       58.215118       58.215118         31       59       75.690158       75.690158       75.690158         31       60       78.638413       78.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31  | 43 | 59.908263 | 59.908263 | 59.908263 |  |
| 31       46       85.603738       85.603738       85.603738         31       47       86.023253       86.023253       86.023253         31       48       87.298339       87.298339       87.298339         31       49       52.354560       52.354560       52.354560         31       50       49.396356       49.396356       49.396356         31       51       16.763055       16.763055       16.763055         31       52       34.481879       34.481879       34.481879         31       53       63.000000       63.000000       63.000000         31       54       70.880181       70.880181       70.880181         31       55       44.598206       44.598206       44.598206         31       56       65.299311       65.299311       65.299311         31       57       38.327536       38.327536       38.327536         31       58       58.215118       58.215118       58.215118         31       59       75.690158       75.690158       75.690158         31       60       78.638413       78.638413       78.638413         31       61       78.924014       78.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31  | 44 | 64.140471 | 64.140471 | 64.140471 |  |
| 31       47       86.023253       86.023253       86.023253         31       48       87.298339       87.298339       87.298339         31       49       52.354560       52.354560       52.354560         31       50       49.396356       49.396356       49.396356         31       51       16.763055       16.763055       16.763055         31       52       34.481879       34.481879       34.481879         31       53       63.000000       63.000000       63.000000         31       54       70.880181       70.880181       70.880181         31       55       44.598206       44.598206       44.598206         31       56       65.299311       65.299311       65.299311         31       57       38.327536       38.327536       38.327536         31       58       58.215118       58.215118       58.215118         31       59       75.690158       75.690158       75.690158         31       60       78.638413       78.638413       78.638413         31       61       78.924014       78.924014       78.924014         31       62       55.443665       55.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31  | 45 | 61.587336 | 61.587336 | 61.587336 |  |
| 31       48       87.298339       87.298339       87.298339         31       49       52.354560       52.354560       52.354560         31       50       49.396356       49.396356       49.396356         31       51       16.763055       16.763055       16.763055         31       52       34.481879       34.481879       34.481879         31       53       63.000000       63.000000       63.000000         31       54       70.880181       70.880181       70.880181         31       55       44.598206       44.598206       44.598206         31       56       65.299311       65.299311       65.299311         31       57       38.327536       38.327536       38.327536         31       58       58.215118       58.215118       58.215118         31       59       75.690158       75.690158       75.690158         31       60       78.638413       78.638413       78.638413         31       61       78.924014       78.924014       78.924014         31       62       55.443665       55.443665       55.443665         31       63       23.537205       23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31  | 46 | 85.603738 | 85.603738 | 85.603738 |  |
| 31       49       52.354560       52.354560       52.354560         31       50       49.396356       49.396356       49.396356         31       51       16.763055       16.763055       16.763055         31       52       34.481879       34.481879       34.481879         31       53       63.000000       63.000000       63.000000         31       54       70.880181       70.880181       70.880181         31       55       44.598206       44.598206       44.598206         31       56       65.299311       65.299311       65.299311         31       57       38.327536       38.327536       38.327536         31       58       58.215118       58.215118       58.215118         31       59       75.690158       75.690158       75.690158         31       60       78.638413       78.638413       78.638413         31       61       78.924014       78.924014       78.924014         31       62       55.443665       55.443665       55.443665         31       63       23.537205       23.537205       23.537205         31       64       25.079872       25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31  | 47 | 86.023253 | 86.023253 | 86.023253 |  |
| 31       50       49.396356       49.396356       49.396356         31       51       16.763055       16.763055       16.763055         31       52       34.481879       34.481879       34.481879         31       53       63.000000       63.000000       63.000000         31       54       70.880181       70.880181       70.880181         31       55       44.598206       44.598206       44.598206         31       56       65.299311       65.299311       65.299311         31       57       38.327536       38.327536       38.327536         31       58       58.215118       58.215118       58.215118         31       59       75.690158       75.690158       75.690158         31       60       78.638413       78.638413       78.638413         31       61       78.924014       78.924014       78.924014         31       62       55.443665       55.443665       55.443665         31       63       23.537205       23.537205       23.537205         31       64       25.079872       25.079872       25.079872         31       65       43.000000       43.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31  | 48 | 87.298339 | 87.298339 | 87.298339 |  |
| 31       51       16.763055       16.763055       16.763055         31       52       34.481879       34.481879       34.481879         31       53       63.000000       63.000000       63.000000         31       54       70.880181       70.880181       70.880181         31       55       44.598206       44.598206       44.598206         31       56       65.299311       65.299311       65.299311         31       57       38.327536       38.327536       38.327536         31       58       58.215118       58.215118       58.215118         31       59       75.690158       75.690158       75.690158         31       60       78.638413       78.638413       78.638413         31       61       78.924014       78.924014       78.924014         31       62       55.443665       55.443665       55.443665         31       63       23.537205       23.537205       23.537205         31       64       25.079872       25.079872       25.079872         31       65       43.000000       43.000000         31       66       53.935146       53.935146       53.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31  | 49 | 52.354560 | 52.354560 | 52.354560 |  |
| 31       52       34.481879       34.481879       34.481879         31       53       63.000000       63.000000       63.000000         31       54       70.880181       70.880181       70.880181         31       55       44.598206       44.598206       44.598206         31       56       65.299311       65.299311       65.299311         31       57       38.327536       38.327536       38.327536         31       58       58.215118       58.215118       58.215118         31       59       75.690158       75.690158       75.690158         31       60       78.638413       78.638413       78.638413         31       61       78.924014       78.924014       78.924014         31       62       55.443665       55.443665       55.443665         31       63       23.537205       23.537205       23.537205         31       64       25.079872       25.079872       25.079872         31       65       43.000000       43.000000       43.000000         31       66       53.935146       53.935146       53.935146         31       67       47.518417       47.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31  | 50 | 49.396356 | 49.396356 | 49.396356 |  |
| 31       52       34.481879       34.481879       34.481879         31       53       63.000000       63.000000       63.000000         31       54       70.880181       70.880181       70.880181         31       55       44.598206       44.598206       44.598206         31       56       65.299311       65.299311       65.299311         31       57       38.327536       38.327536       38.327536         31       58       58.215118       58.215118       58.215118         31       59       75.690158       75.690158       75.690158         31       60       78.638413       78.638413       78.638413         31       61       78.924014       78.924014       78.924014         31       62       55.443665       55.443665       55.443665         31       63       23.537205       23.537205       23.537205         31       64       25.079872       25.079872       25.079872         31       65       43.000000       43.000000       43.000000         31       66       53.935146       53.935146       53.935146         31       67       47.518417       47.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31  | 51 | 16.763055 | 16.763055 | 16.763055 |  |
| 31       53       63.000000       63.000000       63.000000         31       54       70.880181       70.880181       70.880181         31       55       44.598206       44.598206       44.598206         31       56       65.299311       65.299311       65.299311         31       57       38.327536       38.327536       38.327536         31       58       58.215118       58.215118       58.215118         31       59       75.690158       75.690158       75.690158         31       60       78.638413       78.638413       78.638413         31       61       78.924014       78.924014       78.924014         31       62       55.443665       55.443665       55.443665         31       63       23.537205       23.537205       23.537205         31       64       25.079872       25.079872       25.079872         31       65       43.00000       43.000000       43.000000         31       66       53.935146       53.935146       53.935146         31       67       47.518417       47.518417       47.518417         31       69       56.603887       56.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31  |    | 34.481879 | 34.481879 | 34.481879 |  |
| 31       54       70.880181       70.880181       70.880181       70.880181         31       55       44.598206       44.598206       44.598206         31       56       65.299311       65.299311       65.299311         31       57       38.327536       38.327536       38.327536         31       58       58.215118       58.215118       58.215118         31       59       75.690158       75.690158       75.690158         31       60       78.638413       78.638413       78.638413         31       61       78.924014       78.924014       78.924014         31       62       55.443665       55.443665       55.443665         31       63       23.537205       23.537205       23.537205         31       64       25.079872       25.079872       25.079872         31       65       43.000000       43.000000       43.000000         31       66       53.935146       53.935146       53.935146         31       67       47.518417       47.518417       47.518417         31       69       56.603887       56.603887       56.603887         31       70       61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |    |           |           |           |  |
| 31       55       44.598206       44.598206       44.598206         31       56       65.299311       65.299311       65.299311         31       57       38.327536       38.327536       38.327536         31       58       58.215118       58.215118       58.215118         31       59       75.690158       75.690158       75.690158         31       60       78.638413       78.638413       78.638413         31       61       78.924014       78.924014       78.924014         31       62       55.443665       55.443665       55.443665         31       63       23.537205       23.537205       23.537205         31       64       25.079872       25.079872       25.079872         31       65       43.000000       43.000000       43.000000         31       66       53.935146       53.935146       53.935146         31       67       47.518417       47.518417       47.518417         31       69       56.603887       56.603887       56.603887         31       70       61.098281       61.098281       61.098281         31       71       65.802736       65.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |    |           |           |           |  |
| 31       56       65.299311       65.299311       65.299311         31       57       38.327536       38.327536       38.327536         31       58       58.215118       58.215118       58.215118         31       59       75.690158       75.690158       75.690158         31       60       78.638413       78.638413       78.638413         31       61       78.924014       78.924014       78.924014         31       62       55.443665       55.443665       55.443665         31       63       23.537205       23.537205       23.537205         31       64       25.079872       25.079872       25.079872         31       65       43.000000       43.000000       43.000000         31       66       53.935146       53.935146       53.935146         31       67       47.518417       47.518417       47.518417         31       68       26.832816       26.832816       26.832816         31       69       56.603887       56.603887       56.603887         31       70       61.098281       61.098281       61.098281         31       71       65.802736       65.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |    |           |           |           |  |
| 31       57       38.327536       38.327536       38.327536         31       58       58.215118       58.215118       58.215118         31       59       75.690158       75.690158       75.690158         31       60       78.638413       78.638413       78.638413         31       61       78.924014       78.924014       78.924014         31       62       55.443665       55.443665       55.443665         31       63       23.537205       23.537205       23.537205         31       64       25.079872       25.079872       25.079872         31       65       43.000000       43.000000       43.000000         31       66       53.935146       53.935146       53.935146         31       67       47.518417       47.518417       47.518417         31       68       26.832816       26.832816       26.832816         31       69       56.603887       56.603887       56.603887         31       70       61.098281       61.098281       61.098281         31       71       65.802736       65.802736       65.802736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |           |           |           |  |
| 31       58       58.215118       58.215118       58.215118         31       59       75.690158       75.690158       75.690158         31       60       78.638413       78.638413       78.638413         31       61       78.924014       78.924014       78.924014         31       62       55.443665       55.443665       55.443665         31       63       23.537205       23.537205       23.537205         31       64       25.079872       25.079872       25.079872         31       65       43.000000       43.000000       43.000000         31       66       53.935146       53.935146       53.935146         31       67       47.518417       47.518417       47.518417         31       68       26.832816       26.832816       26.832816         31       69       56.603887       56.603887       56.603887         31       70       61.098281       61.098281       61.098281         31       71       65.802736       65.802736       65.802736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |           |           |           |  |
| 31       59       75.690158       75.690158       75.690158         31       60       78.638413       78.638413       78.638413         31       61       78.924014       78.924014       78.924014         31       62       55.443665       55.443665       55.443665         31       63       23.537205       23.537205       23.537205         31       64       25.079872       25.079872       25.079872         31       65       43.000000       43.000000       43.000000         31       66       53.935146       53.935146       53.935146         31       67       47.518417       47.518417       47.518417         31       68       26.832816       26.832816       26.832816         31       69       56.603887       56.603887       56.603887         31       70       61.098281       61.098281       61.098281         31       71       65.802736       65.802736       65.802736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |    |           |           |           |  |
| 31       60       78.638413       78.638413       78.638413         31       61       78.924014       78.924014       78.924014         31       62       55.443665       55.443665       55.443665         31       63       23.537205       23.537205       23.537205         31       64       25.079872       25.079872       25.079872         31       65       43.000000       43.000000       43.000000         31       66       53.935146       53.935146       53.935146         31       67       47.518417       47.518417       47.518417         31       68       26.832816       26.832816       26.832816         31       69       56.603887       56.603887       56.603887         31       70       61.098281       61.098281       61.098281         31       71       65.802736       65.802736       65.802736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |    |           |           |           |  |
| 31       61       78.924014       78.924014       78.924014         31       62       55.443665       55.443665       55.443665         31       63       23.537205       23.537205       23.537205         31       64       25.079872       25.079872       25.079872         31       65       43.000000       43.000000       43.000000         31       66       53.935146       53.935146       53.935146         31       67       47.518417       47.518417       47.518417         31       68       26.832816       26.832816       26.832816         31       69       56.603887       56.603887       56.603887         31       70       61.098281       61.098281       61.098281         31       71       65.802736       65.802736       65.802736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |           |           |           |  |
| 31       62       55.443665       55.443665       55.443665         31       63       23.537205       23.537205       23.537205         31       64       25.079872       25.079872       25.079872         31       65       43.000000       43.000000       43.000000         31       66       53.935146       53.935146       53.935146         31       67       47.518417       47.518417       47.518417         31       68       26.832816       26.832816       26.832816         31       69       56.603887       56.603887       56.603887         31       70       61.098281       61.098281       61.098281         31       71       65.802736       65.802736       65.802736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |           |           |           |  |
| 31       63       23.537205       23.537205       23.537205         31       64       25.079872       25.079872       25.079872         31       65       43.000000       43.000000       43.000000         31       66       53.935146       53.935146       53.935146         31       67       47.518417       47.518417       47.518417         31       68       26.832816       26.832816       26.832816         31       69       56.603887       56.603887       56.603887         31       70       61.098281       61.098281       61.098281         31       71       65.802736       65.802736       65.802736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |    |           |           |           |  |
| 31       64       25.079872       25.079872       25.079872         31       65       43.000000       43.000000       43.000000         31       66       53.935146       53.935146       53.935146         31       67       47.518417       47.518417       47.518417         31       68       26.832816       26.832816       26.832816         31       69       56.603887       56.603887       56.603887         31       70       61.098281       61.098281       61.098281         31       71       65.802736       65.802736       65.802736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |    |           |           |           |  |
| 31       65       43.000000       43.000000       43.000000         31       66       53.935146       53.935146       53.935146         31       67       47.518417       47.518417       47.518417         31       68       26.832816       26.832816       26.832816         31       69       56.603887       56.603887       56.603887         31       70       61.098281       61.098281       61.098281         31       71       65.802736       65.802736       65.802736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |           |           |           |  |
| 31       66       53.935146       53.935146       53.935146         31       67       47.518417       47.518417       47.518417         31       68       26.832816       26.832816       26.832816         31       69       56.603887       56.603887       56.603887         31       70       61.098281       61.098281       61.098281         31       71       65.802736       65.802736       65.802736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |           |           |           |  |
| 31     67     47.518417     47.518417     47.518417       31     68     26.832816     26.832816     26.832816       31     69     56.603887     56.603887     56.603887       31     70     61.098281     61.098281     61.098281       31     71     65.802736     65.802736     65.802736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |    |           |           |           |  |
| 31       68       26.832816       26.832816       26.832816         31       69       56.603887       56.603887       56.603887         31       70       61.098281       61.098281       61.098281         31       71       65.802736       65.802736       65.802736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |    |           |           |           |  |
| 31       69       56.603887       56.603887       56.603887         31       70       61.098281       61.098281       61.098281         31       71       65.802736       65.802736       65.802736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |           |           |           |  |
| 31       70       61.098281       61.098281       61.098281         31       71       65.802736       65.802736       65.802736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |           |           |           |  |
| 31 71 65.802736 65.802736 65.802736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |           |           |           |  |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |    |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31  | 72 | 33.970576 | 33.970576 | 33.970576 |  |

| 31  | 73   | 43.011626 | 43.011626 | 43.011626 |
|-----|------|-----------|-----------|-----------|
| 31  | 74   | 91.082380 | 91.082380 | 91.082380 |
| 31  | 75   | 68.731361 | 68.731361 | 68.731361 |
|     |      |           |           |           |
| 31  | 76   | 86.683332 | 86.683332 | 86.683332 |
| 31  | 77   | 33.286634 | 33.286634 | 33.286634 |
| 31  | 78   | 70.384657 | 70.384657 | 70.384657 |
| 31  | 79   | 84.118963 | 84.118963 | 84.118963 |
| 31  | 80   | 90.376988 | 90.376988 | 90.376988 |
| 31  | 81   | 44.384682 | 44.384682 | 44.384682 |
| 31  | 82   | 48.010416 | 48.010416 | 48.010416 |
| 31  | 83   | 62.369865 | 62.369865 | 62.369865 |
| 31  | 84   | 51.009803 | 51.009803 | 51.009803 |
| 31  | 85   | 31.016125 | 31.016125 | 31.016125 |
| 31  | 86   | 25.961510 | 25.961510 | 25.961510 |
| 31  | 87   | 67.268120 | 67.268120 | 67.268120 |
| 31  | 88   | 76.236474 | 76.236474 | 76.236474 |
|     |      | 69.856997 |           |           |
| 31  | 89   |           | 69.856997 | 69.856997 |
| 31  | 90   | 32.649655 | 32.649655 | 32.649655 |
| 31  | 91   | 53.758720 | 53.758720 | 53.758720 |
| 31  | 92   | 40.804412 | 40.804412 | 40.804412 |
| 31  | 93   | 37.336309 | 37.336309 | 37.336309 |
| 31  | 94   | 34.828150 | 34.828150 | 34.828150 |
| 31  | 95   | 35.846897 | 35.846897 | 35.846897 |
| 31  | 96   | 32.756679 | 32.756679 | 32.756679 |
| 31  | 97   | 40.804412 | 40.804412 | 40.804412 |
| 31  | 98   | 84.852814 | 84.852814 | 84.852814 |
| 31  | 99   | 65.787537 | 65.787537 | 65.787537 |
| 31  | 100  | 62.201286 | 62.201286 | 62.201286 |
| 31  | 101  | 67.955868 | 67.955868 | 67.955868 |
| 32  | 1    | 50.289164 | 50.289164 | 50.289164 |
| 32  | 2    |           |           |           |
|     |      | 80.430094 | 80.430094 | 80.430094 |
| 32  | 3    | 77.175126 | 77.175126 | 77.175126 |
| 32  | 4    | 82.800966 | 82.800966 | 82.800966 |
| 32  | 5    | 81.541401 | 81.541401 | 81.541401 |
| 32  | 6    | 84.403791 | 84.403791 | 84.403791 |
| 32  | 7    | 80.622577 | 80.622577 | 80.622577 |
| 32  | 8    | 83.240615 | 83.240615 | 83.240615 |
| 32  | 9    | 85.755466 | 85.755466 | 85.755466 |
| 32  | 10   | 78.000000 | 78.000000 | 78.000000 |
| 32  | 11   | 78.160092 | 78.160092 | 78.160092 |
| 32  | 12   | 80.156098 | 80.156098 | 80.156098 |
| 32  | 13   | 80.622577 | 80.622577 | 80.622577 |
| 32  | 14   | 83.000000 | 83.000000 | 83.00000  |
| 32  | 15   | 83.600239 | 83.600239 | 83.600239 |
| 32  | 16   | 86.145226 | 86.145226 | 86.145226 |
| 32  | 17   | 88.141931 | 88.141931 | 88.141931 |
| 32  | 18   | 88.566359 | 88.566359 | 88.566359 |
|     |      |           |           |           |
| 32  | 19   | 53.254108 | 53.254108 | 53.254108 |
| 32  | 20   | 52.354560 | 52.354560 | 52.354560 |
| 32  | 21   | 50.159745 | 50.159745 | 50.159745 |
| 32  | 22   | 56.603887 | 56.603887 | 56.603887 |
| 32  | 23   | 52.000000 | 52.000000 | 52.000000 |
| 32  | 24   | 58.309519 | 58.309519 | 58.309519 |
| 32  | 25   | 53.851648 | 53.851648 | 53.851648 |
| 32  | 26   | 60.901560 | 60.901560 | 60.901560 |
| 32  | 27   | 8.602325  | 8.602325  | 8.602325  |
| 32  | 28   | 7.000000  | 7.000000  | 7.000000  |
| 32  | 29   | 6.403124  | 6.403124  | 6.403124  |
| 32  | 30   | 2.000000  | 2.000000  | 2.000000  |
| 32  | 31   | 5.000000  | 5.000000  | 5.000000  |
| 32  | 33   | 5.099020  | 5.099020  | 5.099020  |
| 32  | 34   | 10.440307 | 10.440307 | 10.440307 |
| 32  | 35   | 3.000000  | 3.000000  | 3.000000  |
| J 4 | J.J. | 3.00000   | 3.000000  | 3.00000   |

| 32 | 36 | 54.230987 | 54.230987 | 54.230987 |  |
|----|----|-----------|-----------|-----------|--|
| 32 | 37 | 55.036352 | 55.036352 | 55.036352 |  |
| 32 | 38 | 52.325902 | 52.325902 | 52.325902 |  |
| 32 | 39 | 51.971146 | 51.971146 | 51.971146 |  |
| 32 | 40 | 53.000000 | 53.000000 | 53.000000 |  |
|    |    |           |           |           |  |
| 32 | 41 | 57.306195 | 57.306195 | 57.306195 |  |
| 32 | 42 | 50.000000 | 50.000000 | 50.000000 |  |
| 32 | 43 | 55.803226 | 55.803226 | 55.803226 |  |
| 32 | 44 | 59.908263 | 59.908263 | 59.908263 |  |
| 32 | 45 | 57.428216 | 57.428216 | 57.428216 |  |
| 32 | 46 | 82.661962 | 82.661962 | 82.661962 |  |
| 32 | 47 | 83.216585 | 83.216585 | 83.216585 |  |
| 32 | 48 | 86.579443 | 86.579443 | 86.579443 |  |
| 32 | 49 | 54.918121 | 54.918121 | 54.918121 |  |
| 32 | 50 | 51.429563 | 51.429563 | 51.429563 |  |
|    |    |           |           |           |  |
| 32 | 51 | 16.000000 | 16.000000 | 16.000000 |  |
| 32 | 52 | 36.249138 | 36.249138 | 36.249138 |  |
| 32 | 53 | 63.198101 | 63.198101 | 63.198101 |  |
| 32 | 54 | 69.634761 | 69.634761 | 69.634761 |  |
| 32 | 55 | 41.400483 | 41.400483 | 41.400483 |  |
| 32 | 56 | 63.158531 | 63.158531 | 63.158531 |  |
| 32 | 57 | 38.000000 | 38.000000 | 38.000000 |  |
| 32 | 58 | 58.855756 | 58.855756 | 58.855756 |  |
| 32 | 59 | 77.162167 | 77.162167 | 77.162167 |  |
| 32 | 60 | 79.429214 | 79.429214 | 79.429214 |  |
|    |    |           |           |           |  |
| 32 | 61 | 77.162167 | 77.162167 | 77.162167 |  |
| 32 | 62 | 52.430907 | 52.430907 | 52.430907 |  |
| 32 | 63 | 23.000000 | 23.000000 | 23.000000 |  |
| 32 | 64 | 27.459060 | 27.459060 | 27.459060 |  |
| 32 | 65 | 43.289722 | 43.289722 | 43.289722 |  |
| 32 | 66 | 53.235327 | 53.235327 | 53.235327 |  |
| 32 | 67 | 47.042534 | 47.042534 | 47.042534 |  |
| 32 | 68 | 25.000000 | 25.000000 | 25.000000 |  |
| 32 | 69 | 54.120237 | 54.120237 | 54.120237 |  |
| 32 | 70 | 59.481089 | 59.481089 | 59.481089 |  |
| 32 |    |           |           |           |  |
|    | 71 | 62.968246 | 62.968246 | 62.968246 |  |
| 32 | 72 | 30.479501 | 30.479501 | 30.479501 |  |
| 32 | 73 | 39.051248 | 39.051248 | 39.051248 |  |
| 32 | 74 | 89.560036 | 89.560036 | 89.560036 |  |
| 32 | 75 | 69.634761 | 69.634761 | 69.634761 |  |
| 32 | 76 | 88.255311 | 88.255311 | 88.255311 |  |
| 32 | 77 | 36.235342 | 36.235342 | 36.235342 |  |
| 32 | 78 | 72.449983 | 72.449983 | 72.449983 |  |
| 32 | 79 | 82.710338 | 82.710338 | 82.710338 |  |
| 32 | 80 | 88.391176 | 88.391176 | 88.391176 |  |
| 32 | 81 | 42.720019 | 42.720019 | 42.720019 |  |
| 32 | 82 | 45.276926 | 45.276926 | 45.276926 |  |
|    |    |           |           |           |  |
| 32 | 83 | 61.522354 | 61.522354 | 61.522354 |  |
| 32 | 84 | 51.156622 | 51.156622 | 51.156622 |  |
| 32 | 85 | 31.575307 | 31.575307 | 31.575307 |  |
| 32 | 86 | 27.730849 | 27.730849 | 27.730849 |  |
| 32 | 87 | 67.896981 | 67.896981 | 67.896981 |  |
| 32 | 88 | 76.791927 | 76.791927 | 76.791927 |  |
| 32 | 89 | 68.007353 | 68.007353 | 68.007353 |  |
| 32 | 90 | 36.619667 | 36.619667 | 36.619667 |  |
| 32 | 91 | 52.392748 | 52.392748 | 52.392748 |  |
| 32 | 92 | 39.623226 | 39.623226 | 39.623226 |  |
|    |    |           |           |           |  |
| 32 | 93 | 35.902646 | 35.902646 | 35.902646 |  |
| 32 | 94 | 31.906112 | 31.906112 | 31.906112 |  |
| 32 | 95 | 33.615473 | 33.615473 | 33.615473 |  |
| 32 | 96 | 32.062439 | 32.062439 | 32.062439 |  |
| 32 | 97 | 38.078866 | 38.078866 | 38.078866 |  |
| 32 | 98 | 85.702975 | 85.702975 | 85.702975 |  |
|    |    |           |           |           |  |

| 32 | 99  | 64.288413 | 64.288413 | 64.288413 |
|----|-----|-----------|-----------|-----------|
| 32 | 100 | 62.000000 | 62.000000 | 62.000000 |
| 32 | 101 | 65.368188 | 65.368188 | 65.368188 |
| 33 | 1   | 51.078371 | 51.078371 | 51.078371 |
| 33 | 2   | 82.879430 | 82.879430 | 82.879430 |
| 33 | 3   | 79.056942 | 79.056942 | 79.056942 |
| 33 | 4   | 85.146932 | 85.146932 | 85.146932 |
| 33 | 5   | 83.600239 | 83.600239 | 83.600239 |
| 33 | 6   | 86.683332 | 86.683332 | 86.683332 |
| 33 | 7   | 82.377181 | 82.377181 | 82.377181 |
| 33 | 8   | 84.905830 | 84.905830 | 84.905830 |
| 33 | 9   | 87.658428 | 87.658428 | 87.658428 |
| 33 | 10  | 77.162167 | 77.162167 | 77.162167 |
| 33 | 11  | 77.646635 | 77.646635 | 77.646635 |
| 33 | 12  | 79.630396 | 79.630396 | 79.630396 |
| 33 | 13  | 80.411442 | 80.411442 | 80.411442 |
| 33 | 14  | 82.152298 | 82.152298 | 82.152298 |
| 33 | 15  | 83.360662 | 83.360662 | 83.360662 |
| 33 | 16  | 85.586214 | 85.586214 | 85.586214 |
| 33 | 17  | 87.572827 | 87.572827 | 87.572827 |
| 33 | 18  | 88.283634 | 88.283634 | 88.283634 |
| 33 | 19  | 49.739320 | 49.739320 | 49.739320 |
| 33 | 20  | 49.244289 | 49.244289 | 49.244289 |
| 33 | 21  | 47.434165 | 47.434165 | 47.434165 |
| 33 | 22  | 53.235327 | 53.235327 | 53.235327 |
| 33 | 23  | 49.335586 | 49.335586 | 49.335586 |
| 33 | 24  | 55.009090 | 55.009090 | 55.009090 |
| 33 | 25  | 51.244512 | 51.244512 | 51.244512 |
| 33 | 26  | 57.697487 | 57.697487 | 57.697487 |
| 33 | 27  | 8.000000  | 8.000000  | 8.000000  |
| 33 | 28  | 9.433981  | 9.433981  | 9.433981  |
| 33 | 29  | 5.000000  | 5.000000  | 5.000000  |
| 33 | 30  | 5.830952  | 5.830952  | 5.830952  |
| 33 | 31  | 1.000000  | 1.000000  | 1.000000  |
| 33 | 32  | 5.099020  | 5.099020  | 5.099020  |
| 33 | 34  | 5.385165  | 5.385165  | 5.385165  |
| 33 | 35  | 5.385165  | 5.385165  | 5.385165  |
| 33 | 36  | 58.523500 | 58.523500 | 58.523500 |
| 33 | 37  | 59.236813 | 59.236813 | 59.236813 |
| 33 | 38  | 56.462377 | 56.462377 | 56.462377 |
| 33 | 39  | 55.901699 | 55.901699 | 55.901699 |
| 33 | 40  | 56.824291 | 56.824291 | 56.824291 |
| 33 | 41  | 61.269895 | 61.269895 | 61.269895 |
| 33 | 42  | 53.535035 | 53.535035 | 53.535035 |
| 33 | 43  | 59.363288 | 59.363288 | 59.363288 |
| 33 | 44  | 63.631753 | 63.631753 | 63.631753 |
| 33 | 45  | 61.057350 | 61.057350 | 61.057350 |
| 33 | 46  | 84.811556 | 84.811556 | 84.811556 |
| 33 | 47  | 85.211502 | 85.211502 | 85.211502 |
| 33 | 48  | 86.313383 | 86.313383 | 86.313383 |
| 33 | 49  | 51.478151 | 51.478151 | 51.478151 |
| 33 | 50  | 48.466483 | 48.466483 | 48.466483 |
| 33 | 51  | 15.811388 | 15.811388 | 15.811388 |
| 33 | 52  | 33.526109 | 33.526109 | 33.526109 |
| 33 | 53  | 62.000000 | 62.000000 | 62.000000 |
| 33 | 54  | 69.921384 | 69.921384 | 69.921384 |
| 33 | 55  | 43.863424 | 43.863424 | 43.863424 |
| 33 | 56  | 64.412732 | 64.412732 | 64.412732 |
| 33 | 57  | 37.336309 | 37.336309 | 37.336309 |
| 33 | 58  | 57.218878 | 57.218878 | 57.218878 |
| 33 | 59  | 74.726167 | 74.726167 | 74.726167 |
| 33 | 60  | 77.646635 | 77.646635 | 77.646635 |
| 33 | 61  | 78.000000 | 78.000000 | 78.000000 |
|    |     |           |           |           |

| 33 | 62  | 54.671748 | 54.671748 | 54.671748 |  |
|----|-----|-----------|-----------|-----------|--|
| 33 | 63  | 22.561028 | 22.561028 | 22.561028 |  |
| 33 | 64  | 24.166092 | 24.166092 | 24.166092 |  |
| 33 | 65  | 42.000000 | 42.00000  | 42.000000 |  |
| 33 | 66  | 52.952809 | 52.952809 | 52.952809 |  |
| 33 | 67  | 46.529560 | 46.529560 | 46.529560 |  |
| 33 | 68  | 25.942244 | 25.942244 | 25.942244 |  |
|    |     |           |           |           |  |
| 33 | 69  | 55.758407 | 55.758407 | 55.758407 |  |
| 33 | 70  | 60.166436 | 60.166436 | 60.166436 |  |
| 33 | 71  | 65.000000 | 65.000000 | 65.000000 |  |
| 33 | 72  | 33.301652 | 33.301652 | 33.301652 |  |
| 33 | 73  | 42.438190 | 42.438190 | 42.438190 |  |
| 33 | 74  | 90.138782 | 90.138782 | 90.138782 |  |
| 33 | 75  | 67.742158 | 67.742158 | 67.742158 |  |
| 33 | 76  | 85.726309 | 85.726309 | 85.726309 |  |
| 33 | 77  | 32.449961 | 32.449961 | 32.449961 |  |
| 33 | 78  | 69.462220 | 69.462220 | 69.462220 |  |
| 33 | 79  | 83.168504 | 83.168504 | 83.168504 |  |
| 33 | 80  |           |           |           |  |
|    |     | 89.470666 | 89.470666 | 89.470666 |  |
| 33 | 81  | 43.462628 | 43.462628 | 43.462628 |  |
| 33 | 82  | 47.201695 | 47.201695 | 47.201695 |  |
| 33 | 83  | 61.392182 | 61.392182 | 61.392182 |  |
| 33 | 84  | 50.009999 | 50.009999 | 50.009999 |  |
| 33 | 85  | 30.016662 | 30.016662 | 30.016662 |  |
| 33 | 86  | 25.000000 | 25.000000 | 25.000000 |  |
| 33 | 87  | 66.272166 | 66.272166 | 66.272166 |  |
| 33 | 88  | 75.239617 | 75.239617 | 75.239617 |  |
| 33 | 89  | 68.942005 | 68.942005 | 68.942005 |  |
| 33 | 90  | 32.015621 | 32.015621 | 32.015621 |  |
| 33 | 91  | 52.810984 | 52.810984 | 52.810984 |  |
|    |     |           |           |           |  |
| 33 | 92  | 39.849718 | 39.849718 | 39.849718 |  |
| 33 | 93  | 36.400549 | 36.400549 | 36.400549 |  |
| 33 | 94  | 34.058773 | 34.058773 | 34.058773 |  |
| 33 | 95  | 34.985711 | 34.985711 | 34.985711 |  |
| 33 | 96  | 31.780497 | 31.780497 | 31.780497 |  |
| 33 | 97  | 40.00000  | 40.00000  | 40.000000 |  |
| 33 | 98  | 83.862983 | 83.862983 | 83.862983 |  |
| 33 | 99  | 64.845971 | 64.845971 | 64.845971 |  |
| 33 | 100 | 61.204575 | 61.204575 | 61.204575 |  |
| 33 | 101 | 67.119297 | 67.119297 | 67.119297 |  |
| 34 | 1   | 51.478151 | 51.478151 | 51.478151 |  |
| 34 | 2   | 84.852814 | 84.852814 | 84.852814 |  |
| 34 | 3   | 80.430094 | 80.430094 | 80.430094 |  |
|    |     |           |           |           |  |
| 34 | 4   | 87.000000 | 87.000000 | 87.000000 |  |
| 34 | 5   | 85.146932 | 85.146932 | 85.146932 |  |
| 34 | 6   | 88.459030 | 88.459030 | 88.459030 |  |
| 34 | 7   | 83.600239 | 83.600239 | 83.600239 |  |
| 34 | 8   | 86.023253 | 86.023253 | 86.023253 |  |
| 34 | 9   | 89.022469 | 89.022469 | 89.022469 |  |
| 34 | 10  | 75.663730 | 75.663730 | 75.663730 |  |
| 34 | 11  | 76.485293 | 76.485293 | 76.485293 |  |
| 34 | 12  | 78.447435 | 78.447435 | 78.447435 |  |
| 34 | 13  | 79.555012 | 79.555012 | 79.555012 |  |
| 34 | 14  | 80.622577 | 80.622577 | 80.622577 |  |
| 34 | 15  | 82.462113 | 82.462113 | 82.462113 |  |
| 34 | 16  | 84.344532 | 84.344532 | 84.344532 |  |
|    |     |           |           |           |  |
| 34 | 17  | 86.313383 | 86.313383 | 86.313383 |  |
| 34 | 18  | 87.321246 | 87.321246 | 87.321246 |  |
| 34 | 19  | 45.617979 | 45.617979 | 45.617979 |  |
| 34 | 20  | 45.541190 | 45.541190 | 45.541190 |  |
| 34 | 21  | 44.147480 | 44.147480 | 44.147480 |  |
| 34 | 22  | 49.244289 | 49.244289 | 49.244289 |  |
| 34 | 23  | 46.097722 | 46.097722 | 46.097722 |  |
|    |     |           |           |           |  |

| 34         24         \$1,078371         \$1,078371         \$1,078371           34         26         48,082055         48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         \$48,082055         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |    |           |           |           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|-----------|-----------|-----------|--|
| 34         25         48.052055         48.052055         48.052055         48.052055           34         26         53.851648         53.851648         53.851648         53.851648         53.851648         53.851648         53.851648         53.851648         53.85165         11.180340         11.180340         11.180340         11.180340         11.180340         11.180340         11.180340         11.180340         11.180340         13.25164         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85165         53.85164         50.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34 | 24 | 51.078371 | 51.078371 | 51.078371 |  |
| 34         26         53.851648         53.851648         53.851648         14.1120340         11.180340         11.180340         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |           |           |           |  |
| 34         27         11.180340         11.180340         11.180340         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136         14.142136 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |    |           |           |           |  |
| 34         28         14,142136         14,142136         14,142136         14,142136           34         29         8,062225         8,602225         8,602325         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |           |           |           |  |
| 34         29         8,602325         8,602325         8,602325         8,602325         32         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         11,180340         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         10,440307         34,440         60,455230         62,641839         62,641839         63,245553         63,245553         63,245553         63,245553         63,245553         63,245533         63,245534         59,615434         59,615434         59,615434         59,615434         59,615434         59,615434         59,615434         59,615434         59,615434         59,615434         59,615434         59,615434         59,615434         59,615434         59,615434         59,615434         59,615434         59,615434         59,615434         59,615434 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |    |           |           |           |  |
| 34 30 11.180340 11.180340 5.830952 5.830952 34 32 10.440307 10.440307 10.440307 3.40307 3.40307 3.40307 3.5030952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.830952 5.8309 |    |    |           |           |           |  |
| 34         31         5,830952         5,830952         5,830952           34         32         10,440307         10,440307         10,440307           34         33         5,385165         5,385165         5,385165           34         36         62,641839         62,641839         62,641839           34         37         63,245553         63,245553         63,245553           34         38         60,06953         60,406953         60,406953           34         39         59,515434         59,615434         59,615434           34         40         60,415230         60,415230         60,415230           34         41         65,000000         65,000000         65,000000           34         42         56,242291         56,824291         56,824291           34         43         62,649820         62,649820         62,649820         62,649820           34         45         64,412732         61,412732         61,412732         64,412732           34         46         66,83332         86,683332         86,683332         86,683332           34         47         36,683332         47,423623         47,423623         47,423623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    |           |           |           |  |
| 34 32 10.440307 10.440307 10.440307 33 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165 5.385165  |    |    |           |           |           |  |
| 34 33 5,385165 5,385165 5,385165 10,000000 10,0000000 10,0000000 10,0000000 10,0000000 10,0000000 10,0000000 10,0000000 10,0000000 10,0000000 10,0000000 10,0000000 10,0000000 10,0000000 10,0000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,000000 10,00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |    |           |           |           |  |
| 34         35         10.000000         10.000000         10.000000           34         36         62.641839         62.641839         62.641839         62.641839           34         37         63.245553         63.245553         60.406953         60.406953           34         39         59.615434         59.615434         59.615434           34         40         60.415230         60.415230         60.415230           34         41         65.000000         65.000000         65.000000           34         42         56.824291         56.824291         56.824291           34         43         62.649820         62.649820         62.649820           34         44         67.082039         67.082039         67.082039           34         45         66.412732         86.452299         86.452299           34         46         86.452299         86.468332         86.683332         86.683332           34         47         86.683332         86.683332         86.683332         86.683332           34         48         85.375641         85.375641         85.375641         85.375641           34         59         47.423623         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    |           |           |           |  |
| 34         36         62.641839         62.641839         62.641839         63.245553           34         37         63.24553         63.245553         60.406953         60.406953         60.406953         60.406953         60.406953         60.406953         60.406953         60.406953         60.406953         60.406953         60.406953         60.406953         60.406953         60.406953         60.406953         60.406953         60.406953         60.415230         60.415230         60.415230         60.415230         60.415230         60.415230         60.415230         60.415230         60.415230         60.415230         60.415230         60.415230         60.4291         56.824291         56.824291         56.824291         56.824291         56.824291         56.824291         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820         62.649820<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |           |           |           |  |
| 34 37 63.245533 63.245533 63.245533 34 38 60.406953 60.406953 34 40 60.406953 60.406953 60.406953 34 41 65.00000 65.000000 65.000000 34 42 56.824291 56.824291 56.824291 34 43 62.649820 62.649820 62.649820 62.649820 34 44 67.082039 67.082039 67.082039 34 45 64.412732 64.412732 64.412732 34 46 86.683332 86.683332 86.683332 34 47 86.683332 86.683332 86.683332 34 48 49 47.423623 47.423623 47.423623 34 49 47.423623 47.423623 47.423623 34 50 44.922155 44.922155 34 51 16.401219 16.401219 16.401219 16.401219 34 52 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.413813 30.4 |    |    | 10.000000 | 10.000000 | 10.000000 |  |
| 34         38         60.406953         60.406953         60.406953           34         39         59.615434         59.615434         59.615434           34         40         60.415230         60.415230         60.415230           34         41         65.000000         65.000000         65.000000           34         42         56.824291         56.824291         56.824291           34         43         62.649820         62.649820         62.649820           34         45         64.412732         64.412732         64.412732           34         45         64.412732         64.412732         64.412732           34         46         86.452299         86.452299         86.52299           34         47         86.683332         86.683332         86.63332           34         48         85.375641         85.375641         85.375641           34         49         47.423623         47.423623         47.423623           34         50         44.922155         44.922155         44.922155           34         51         16.401219         16.401219         16.401219           34         52         30.413813 <t< td=""><td>34</td><td>36</td><td>62.641839</td><td>62.641839</td><td>62.641839</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34 | 36 | 62.641839 | 62.641839 | 62.641839 |  |
| 34         39         59.615434         59.615434         59.615434         59.615434           34         40         60.415230         60.415230         60.415230         60.415230           34         41         65.000000         65.000000         65.000000         62.000000           34         42         56.824291         56.824291         56.824291         56.824291           34         43         62.649820         62.649820         62.649820         62.649820           34         45         64.412732         64.412732         64.412732         64.412732           34         45         64.52299         86.452299         86.452299         86.452299           34         47         86.633322         86.683332         86.683332           34         48         85.375641         85.375641         85.375641           34         49         47.423623         47.423623         47.423623           34         51         16.401219         16.401219         16.401219         16.401219           34         52         30.413813         30.413813         30.413813         31.413813           34         54         69.61912024         65.192024         65.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34 | 37 | 63.245553 | 63.245553 | 63.245553 |  |
| 34         40         60.415230         60.415230         60.415230           34         41         65.000000         65.000000         65.000000           34         42         56.824291         56.824291         56.824291         56.824291           34         43         62.649820         62.649820         62.649820           34         44         67.082039         67.082039         67.082039           34         45         64.412732         64.412732         64.412732           34         46         86.452299         86.452299         86.452299           34         47         86.683332         86.683332         86.683332           34         48         85.375641         85.375641         85.375641           34         49         47.423623         47.423623         47.423623           34         50         44.922155         44.922155         44.922155           34         51         16.401219         16.401219         16.401219           34         52         30.413813         30.413813         30.413813           34         53         60.207973         60.207973         60.207973           34         54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34 | 38 | 60.406953 | 60.406953 | 60.406953 |  |
| 34         41         65.000000         65.000000           34         42         56.824291         56.824291         56.824291           34         43         62.649820         62.649820         62.649820           34         44         67.082039         67.082039         67.082039           34         45         64.412732         64.412732         64.412732           34         46         86.4852299         86.4852299         86.4852299           34         47         86.683332         86.683332         86.683332           34         48         85.375641         85.375641         85.375641           34         49         47.423623         47.423623         47.423623           34         50         44.922155         44.922155         44.922155           34         51         16.401219         16.401219         16.401219           34         52         30.413813         30.413813         30.413813           34         54         69.61941         69.61941         69.61941         69.61941           34         57         36.400549         36.400549         36.400549           34         58         55.00000 <t< td=""><td>34</td><td>39</td><td>59.615434</td><td>59.615434</td><td>59.615434</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34 | 39 | 59.615434 | 59.615434 | 59.615434 |  |
| 34         41         65.000000         65.000000           34         42         56.824291         56.824291         56.824291           34         43         62.649820         62.649820         62.649820           34         44         67.082039         67.082039         67.082039           34         45         64.412732         64.412732         64.412732           34         46         86.4852299         86.4852299         86.4852299           34         47         86.683332         86.683332         86.683332           34         48         85.375641         85.375641         85.375641           34         49         47.423623         47.423623         47.423623           34         50         44.922155         44.922155         44.922155           34         51         16.401219         16.401219         16.401219           34         52         30.413813         30.413813         30.413813           34         54         69.61941         69.61941         69.61941         69.61941           34         57         36.400549         36.400549         36.400549           34         58         55.00000 <t< td=""><td>34</td><td>40</td><td>60.415230</td><td>60.415230</td><td>60.415230</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34 | 40 | 60.415230 | 60.415230 | 60.415230 |  |
| 34         42         56.824291         56.824291         56.824291           34         43         62.649820         62.649820         62.649820           34         44         67.082039         67.082039         67.082039           34         45         64.412732         64.412732         64.412732           34         46         86.452299         86.452299         86.452299           34         47         86.683332         86.683332         86.683332           34         48         85.375641         85.375641         85.375641           34         49         47.423623         47.423623         47.423623           34         50         44.922155         44.922155         44.922155           34         51         16.401219         16.401219         16.401219           34         53         60.207973         60.207973         60.207973           34         53         60.207972         46.097722         46.097722         46.097722           34         56         65.192024         65.192024         65.192024           34         57         36.400549         36.400549         36.400549           34         58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 41 | 65.000000 | 65.000000 | 65.000000 |  |
| 34         43         62,649820         62,649820         62,649820           34         44         67,082039         67,082039         67,082039           34         45         64,412732         64,412732         64,412732           34         46         86,682299         86,452299         86,452299           34         47         86,683332         86,683332         86,68332           34         49         47,423623         47,423623         47,423623           34         49         47,423623         47,423623         47,423623           34         50         44,922155         44,922155         44,922155           34         51         16,401219         16,401219         16,401219           34         52         30,413813         30,413813         30,413813           34         54         69,641941         69,641941         69,641941           34         55         46,097722         46,097722         46,097722           34         57         36,400549         36,400549         36,400549           34         59         71,589105         71,589105         71,589105           34         59         71,589105         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | 42 |           | 56.824291 | 56.824291 |  |
| 34         44         67.082039         67.082039         67.082039           34         45         64.412732         64.412732         64.412732           34         46         86.452299         86.452299         86.452299           34         47         86.683332         86.683332         86.683332           34         49         47.423623         47.423623         47.423623           34         50         44.922155         44.922155         44.922155           34         51         16.401219         16.401219         16.401219           34         52         30.413813         30.413813         30.413813           34         53         60.207973         60.207973         60.207973           34         54         69.641941         69.641941         69.641941           34         55         46.097722         46.097722         46.097722           34         56         65.192024         65.192024         65.192024           34         58         55.000000         55.00000         55.00000           34         58         55.000000         55.00000         56.66842           34         61         78.262379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |    |           |           |           |  |
| 34         45         64.412732         64.412732         64.412732         86.452299         86.452299         86.452299         34.47         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.683332         86.68332         86.6823         86.2832         86.201555         44.922155         44.922155         44.922155         44.922155         44.922155         44.922155         44.922155         44.922155         44.922155         44.922155         44.922155         44.92158         48.922154         86.692642         46.692144         46.692144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |    |           |           |           |  |
| 34         46         86.4852299         86.4852299         86.485332         86.683332         86.683332         83.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.375641         85.40219         86.40219         86.40219         86.401941         69.641941         69.641941         69.641941         69.641941         69.641941         69.641941         69.641941         69.641941         69.641941         86.0977722         46.097772         46.097772         46.097772 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |    |           |           |           |  |
| 34         47         86.683322         86.683332         86.683332           34         48         85.375641         85.375641         85.375641           34         49         47.423623         47.423623         47.423623           34         50         44.922155         44.922155         44.922155           34         51         16.401219         16.401219         16.401219           34         52         30.413813         30.413813         30.413813           34         53         60.207973         60.207973         60.207973           34         54         69.641941         69.641941         69.641941           34         55         46.097722         46.097722         46.97722           34         56         65.192024         65.192024         65.192024           34         57         36.400549         36.400549         36.400549           34         59         71.589105         71.589105         71.589105           34         60         75.166482         75.166482         75.166482         75.166482           34         61         78.262379         78.262379         78.262379         78.262379           34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    |           |           |           |  |
| 34         48         85.375641         85.375641         85.375641           34         49         47.423623         47.423623         47.423623           34         50         44.922155         44.922155         44.922155           34         51         16.401219         16.401219         16.401219           34         52         30.413813         30.413813         30.413813           34         53         66.207973         60.207973         60.207973           34         54         69.641941         69.641941         69.641941           34         55         46.097722         46.097722         46.097722           34         56         65.192024         65.192024         65.192024           34         57         36.400549         36.400549         36.400549           34         58         55.000000         55.00000         55.00000           34         59         71.589105         71.589105         71.589105           34         61         78.262379         78.262379         78.262379           34         62         56.568542         56.568542         56.568542           34         63         22.360680 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |    |           |           |           |  |
| 34         49         47,423623         47,423623         47,423623         47,423623         47,423623         34         50         44,922155         44,922155         44,922155         44,922155         44,922155         44,922155         44,922155         44,922155         44,922155         44,922155         44,922155         44,922155         44,922155         44,922155         44,922155         44,922155         44,922155         44,922155         44,922155         44,922155         44,922155         44,922155         44,922155         44,922155         44,922155         44,922155         44,922157         44,922157         44,922157         44,922157         44,922157         44,922157         44,922157         44,922157         44,922157         44,922157         44,922157         44,922157         44,922157         44,922157         44,922157         44,922157         44,922157         44,922157         44,922157         44,922157         46,97773         60,279773         60,279773         60,279773         60,279773         60,279773         60,279772         46,097772         46,097772         46,097772         46,097772         46,097772         46,097772         46,097772         46,097772         36,400549         36,400549         36,400549         36,400549         36,400549         36,400549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |    |           |           |           |  |
| 34         50         44.922155         44.922155         44.922155         34.92155         16.401219         16.401219         16.401219         16.401219         34.013813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         40.027973         60.207973         60.207973         60.207973         60.207973         60.207973         60.207973         60.207973         60.207973         60.207973         60.207973         60.207973         60.207973         60.207973         60.207972         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.09782         71.589105         71.589105         71.589105         71.589105         71.589105         71.589105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |    |           |           |           |  |
| 34         51         16.401219         16.401219         16.401219           34         52         30.413813         30.413813         30.413813         30.413813           34         54         69.641941         69.641941         69.641941         69.641941           34         55         46.097722         46.097722         46.097722         46.097722           34         56         65.192024         65.192024         65.192024           34         57         36.400549         36.400549         36.400549           34         58         55.000000         55.000000         55.000000           34         59         71.589105         71.589105         71.589105           34         60         75.166482         75.166482         75.166482           34         61         78.262379         78.262379         78.262379           34         62         56.568542         56.568542         56.568542           34         63         32.360680         22.360680         22.360680           34         64         20.615528         20.615528         20.615528         20.615528           34         65         40.311289         40.311289         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    |           |           |           |  |
| 34         52         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.413813         30.400549         36.2007973         60.207973         60.207972         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097722         46.097022         46.097022         46.097022         46.097022         46.097722         46.097722         46.097022         46.097022         46.097022         46.097022         46.097022         46.097022         46.097022         46.097022         46.097022         46.097022         46.097022         46.097022         46.097022         46.097022         46.097022         46.097022         46.097022         46.097022         46.097022         46.097022         46.097022         46.09702         47.09702 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |    |           |           |           |  |
| 34         53         60.207973         60.207973         60.207973           34         54         69.641941         69.641941         69.641941           34         55         46.097722         46.097722         46.097722           34         56         65.192024         65.192024         65.192024           34         57         36.400549         36.400549         36.400549           34         58         55.00000         55.00000         55.00000           34         59         71.589105         71.589105         71.589105           34         61         78.262379         78.262379         78.262379           34         61         78.262379         78.262379         78.262379           34         63         22.360680         22.360680         22.360680           34         64         20.615528         20.615528         20.615528           34         65         40.311289         40.311289         40.311289           34         66         52.201533         52.201533         52.201533           34         67         45.607017         45.607017         45.607017           34         68         27.018512 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |    |           |           |           |  |
| 34         54         69.641941         69.641941         69.641941           34         55         46.097722         46.097722         46.097722           34         56         65.192024         65.192024         65.192024           34         57         36.400549         36.400549         36.400549           34         58         55.000000         55.000000         55.000000           34         59         71.589105         71.589105         71.589105           34         60         75.166482         75.166482         75.166482         75.166482           34         61         78.262379         78.262379         78.262379           34         62         56.568542         56.568542         56.568542         36.56868           34         63         22.360680         22.360680         22.360680         32.360680           34         64         20.615528         20.615528         20.615528         30.615528         30.615528         30.615528         30.615528         30.615528         30.615528         30.615528         30.615528         30.615528         30.615528         30.615528         30.615528         30.615528         30.615528         30.615528         30.615528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |           |           |           |  |
| 34         55         46.097722         46.097722         46.097722           34         56         65.192024         65.192024         65.192024           34         57         36.400549         36.400549         36.400549           34         58         55.000000         55.000000         55.000000           34         59         71.589105         71.589105         71.589105           34         60         75.166482         75.166482         75.166482           34         61         78.262379         78.262379         78.262379           34         62         56.568542         56.568542         56.568542           34         63         22.360680         22.360680         22.360680           34         64         20.615528         20.615528         20.615528           34         65         40.311289         40.311289         40.311289           34         66         52.201533         52.201533         52.201533           34         67         45.607017         45.607017         45.607017           34         69         57.008771         57.008771         57.008771         57.008771           34         70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34 | 53 | 60.207973 | 60.207973 | 60.207973 |  |
| 34         56         65.192024         65.192024         65.192024           34         57         36.400549         36.400549         36.400549           34         58         55.00000         55.00000           34         59         71.589105         71.589105         71.589105           34         60         75.166482         75.166482         75.166482           34         61         78.262379         78.262379         78.262379           34         62         56.568542         56.568542         56.568542           34         63         22.360680         22.360680         22.360680           34         64         20.615528         20.615528         20.615528           34         65         40.311289         40.311289         40.311289           34         66         52.201533         52.201533         52.201533           34         67         45.607017         45.607017         45.607017           34         68         27.018512         27.018512         27.018512           34         69         57.008771         57.008771         57.008771           34         70         66.603303         66.603303 <t< td=""><td>34</td><td>54</td><td>69.641941</td><td>69.641941</td><td>69.641941</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34 | 54 | 69.641941 | 69.641941 | 69.641941 |  |
| 34         57         36.400549         36.400549         36.400549           34         58         55.000000         55.000000           34         59         71.589105         71.589105         71.589105           34         60         75.166482         75.166482         75.166482           34         61         78.262379         78.262379         78.262379           34         62         56.568542         56.568542         56.568542           34         63         22.360680         22.360680         23.360680           34         64         20.615528         20.615528         20.615528           34         65         40.311289         40.311289         40.311289           34         65         40.311289         40.311289         40.311289           34         66         52.201533         52.201533         52.201533           34         67         45.607017         45.607017         45.607017           34         68         27.018512         27.018512         27.018512           34         70         60.373835         60.373835         60.373835           34         71         66.603303         66.603303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34 | 55 | 46.097722 | 46.097722 | 46.097722 |  |
| 34         58         55.000000         55.000000         55.000000           34         59         71.589105         71.589105         71.589105         71.589105         71.589105         71.589105         71.589105         71.589105         71.589105         71.589105         71.589105         71.589105         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.166482         75.164849         75.166482         75.161528         20.615528         20.615528         20.615528         20.615528         20.615528         27.018512         27.018512         27.018512         27.018512         27.018512         27.018512         27.018512         27.018512         27.018512         27.0185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34 | 56 | 65.192024 | 65.192024 | 65.192024 |  |
| 34         59         71.589105         71.589105         71.589105           34         60         75.166482         75.166482         75.166482           34         61         78.262379         78.262379         78.262379           34         62         56.568542         56.568542         56.568542           34         63         22.360680         22.360680         22.360680           34         64         20.615528         20.615528         20.615528           34         65         40.311289         40.311289         40.311289           34         66         52.201533         52.201533         52.201533           34         67         45.607017         45.607017         45.607017           34         68         27.018512         27.018512         27.018512           34         69         57.008771         57.008771         57.008771           34         70         60.37335         60.373835         60.373835           34         71         66.603303         66.603303         66.603303           34         72         36.055513         36.055513         36.055513           34         73         45.650849         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34 | 57 | 36.400549 | 36.400549 | 36.400549 |  |
| 34         59         71.589105         71.589105         71.589105           34         60         75.166482         75.166482         75.166482           34         61         78.262379         78.262379         78.262379           34         62         56.568542         56.568542         56.568542           34         63         22.360680         22.360680         22.360680           34         64         20.615528         20.615528         20.615528           34         65         40.311289         40.311289         40.311289           34         66         52.201533         52.201533         52.201533           34         67         45.607017         45.607017         45.607017           34         68         27.018512         27.018512         27.018512           34         69         57.008771         57.008771         57.008771           34         70         60.37335         60.373835         60.373835           34         71         66.603303         66.603303         66.603303           34         72         36.055513         36.055513         36.055513           34         73         45.650849         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34 | 58 | 55.000000 | 55.000000 | 55.000000 |  |
| 34       60       75.166482       75.166482       75.166482         34       61       78.262379       78.262379       78.262379         34       62       56.568542       56.568542       56.568542         34       63       22.360680       22.360680       22.360680         34       64       20.615528       20.615528       20.615528         34       65       40.311289       40.311289       40.311289         34       66       52.201533       52.201533       52.201533         34       67       45.607017       45.607017       45.607017         34       68       27.018512       27.018512       27.018512         34       69       57.008771       57.008771       57.008771         34       70       60.373835       60.373835       60.373835         34       71       66.603303       66.603303       66.603303         34       72       36.055513       36.055513       36.055513         34       73       45.650849       45.650849       45.650849         34       74       90.077744       90.077744       90.077744         34       76       82.462113       82.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | 59 | 71.589105 | 71.589105 | 71.589105 |  |
| 34       61       78.262379       78.262379       78.262379         34       62       56.568542       56.568542       56.568542         34       63       22.360680       22.360680       22.360680         34       64       20.615528       20.615528       20.615528         34       65       40.311289       40.311289       40.311289         34       66       52.201533       52.201533       52.201533         34       67       45.607017       45.607017       45.607017         34       68       27.018512       27.018512       27.018512         34       69       57.008771       57.008771       57.008771         34       70       60.373835       60.373835       60.373835         34       71       66.603303       66.603303       66.603303         34       72       36.055513       36.055513       36.055513         34       73       45.650849       45.650849       45.650849         34       74       90.077744       90.077744       90.077744         34       75       65.192024       65.192024       65.192024         34       76       82.462113       82.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |    | 75.166482 | 75.166482 | 75.166482 |  |
| 34       62       56.568542       56.568542       56.568542         34       63       22.360680       22.360680       22.360680         34       64       20.615528       20.615528       20.615528         34       65       40.311289       40.311289       40.311289         34       66       52.201533       52.201533       52.201533         34       67       45.607017       45.607017       45.607017         34       68       27.018512       27.018512       27.018512         34       69       57.008771       57.008771       57.008771         34       70       60.373835       60.373835       60.373835         34       71       66.603303       66.603303       66.603303         34       72       36.055513       36.055513       36.055513         34       73       45.650849       45.650849       45.650849         34       74       90.077744       90.077744       90.077744         34       75       65.192024       65.192024       65.192024         34       76       82.462113       82.462113       82.462113         34       79       83.006024       83.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |    |           |           |           |  |
| 34       63       22.360680       22.360680       22.360680         34       64       20.615528       20.615528       20.615528         34       65       40.311289       40.311289       40.311289         34       66       52.201533       52.201533       52.201533         34       67       45.607017       45.607017       45.607017         34       68       27.018512       27.018512       27.018512         34       69       57.008771       57.008771       57.008771         34       70       60.373835       60.373835       60.373835         34       71       66.603303       66.603303       66.03503         34       72       36.055513       36.055513       36.055513         34       73       45.650849       45.650849       45.650849         34       74       90.077744       90.077744       90.077744         34       76       82.462113       82.462113       82.462113       82.462113         34       77       28.178006       28.178006       28.178006         34       79       83.006024       83.006024       83.006024         34       80       89.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |    |           |           |           |  |
| 34       64       20.615528       20.615528       20.615528         34       65       40.311289       40.311289       40.311289         34       66       52.201533       52.201533       52.201533         34       67       45.607017       45.607017       45.607017         34       68       27.018512       27.018512       27.018512         34       69       57.008771       57.008771       57.008771         34       70       60.373835       60.373835       60.373835         34       71       66.603303       66.603303       66.603303         34       72       36.055513       36.055513       36.055513         34       73       45.650849       45.650849       45.650849         34       74       90.077744       90.077744       90.077744         34       75       65.192024       65.192024       65.192024         34       76       82.462113       82.462113       82.462113         34       77       28.178006       28.178006       28.178006         34       79       83.006024       83.006024       83.006024         34       81       43.908997       43.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |    |           |           |           |  |
| 34       65       40.311289       40.311289       40.311289         34       66       52.201533       52.201533       52.201533         34       67       45.607017       45.607017       45.607017         34       68       27.018512       27.018512       27.018512         34       69       57.008771       57.008771       57.008771         34       70       60.373835       60.373835       60.373835         34       71       66.603303       66.603303       66.603303         34       72       36.055513       36.055513       36.055513         34       73       45.650849       45.650849       45.650849         34       74       90.077744       90.077744       90.077744         34       75       65.192024       65.192024       65.192024         34       76       82.462113       82.462113       82.462113         34       77       28.178006       28.178006       28.178006         34       78       65.787537       65.787537       65.787537         34       79       83.006024       83.006024       83.006024         34       81       43.908997       43.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |    |           |           |           |  |
| 34       66       52.201533       52.201533       52.201533         34       67       45.607017       45.607017       45.607017         34       68       27.018512       27.018512       27.018512         34       69       57.008771       57.008771       57.008771         34       70       60.373835       60.373835       60.373835         34       71       66.603303       66.603303       36.055513         34       72       36.055513       36.055513       36.055513         34       73       45.650849       45.650849       45.650849         34       74       90.077744       90.077744       90.077744         34       75       65.192024       65.192024       65.192024         34       76       82.462113       82.462113       82.462113         34       77       28.178006       28.178006       28.178006         34       79       83.006024       83.006024       83.006024         34       80       89.944427       89.944427       89.944427         34       81       43.908997       43.908997       43.908997         34       82       48.836462       48.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |    |           |           |           |  |
| 34       67       45.607017       45.607017       45.607017         34       68       27.018512       27.018512       27.018512         34       69       57.008771       57.008771       57.008771         34       70       60.373835       60.373835       60.373835         34       71       66.603303       66.603303       66.603303         34       72       36.055513       36.055513       36.055513         34       73       45.650849       45.650849       45.650849         34       74       90.077744       90.077744       90.077744         34       75       65.192024       65.192024       65.192024         34       76       82.462113       82.462113       82.462113         34       77       28.178006       28.178006       28.178006         34       78       65.787537       65.787537       65.787537         34       79       83.006024       83.006024       83.006024         34       81       43.908997       43.908997       43.908997         34       82       48.836462       48.836462       48.836462         34       83       60.728906       60.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |    |           |           |           |  |
| 34       68       27.018512       27.018512       27.018512         34       69       57.008771       57.008771       57.008771         34       70       60.373835       60.373835       60.373835         34       71       66.603303       66.603303       66.603303         34       72       36.055513       36.055513       36.055513         34       73       45.650849       45.650849       45.650849         34       74       90.077744       90.077744       90.077744         34       75       65.192024       65.192024       65.192024         34       76       82.462113       82.462113       82.462113         34       77       28.178006       28.178006       28.178006         34       78       65.787537       65.787537       65.787537         34       79       83.006024       83.006024       83.006024         34       80       89.944427       89.944427       89.944427         34       81       43.908997       43.908997       43.908997         34       82       48.836462       48.836462       48.836462         34       83       60.728906       60.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |    |           |           |           |  |
| 34       69       57.008771       57.008771       57.008771         34       70       60.373835       60.373835       60.373835         34       71       66.603303       66.603303       66.603303         34       72       36.055513       36.055513       36.055513         34       73       45.650849       45.650849       45.650849         34       74       90.077744       90.077744       90.077744         34       75       65.192024       65.192024       65.192024         34       76       82.462113       82.462113       82.462113         34       77       28.178006       28.178006       28.178006         34       78       65.787537       65.787537       65.787537         34       79       83.006024       83.006024       83.006024         34       80       89.944427       89.944427       89.944427         34       81       43.908997       43.908997       43.908997         34       82       48.836462       48.836462       48.836462         34       83       60.728906       60.728906       60.728906         34       84       48.373546       48.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |    |           |           |           |  |
| 34       70       60.373835       60.373835       60.373835         34       71       66.603303       66.603303       66.603303         34       72       36.055513       36.055513       36.055513         34       73       45.650849       45.650849       45.650849         34       74       90.077744       90.077744       90.077744         34       75       65.192024       65.192024       65.192024         34       76       82.462113       82.462113       82.462113         34       77       28.178006       28.178006       28.178006         34       78       65.787537       65.787537       65.787537         34       79       83.006024       83.006024       83.006024         34       80       89.944427       89.944427       89.944427         34       81       43.908997       43.908997       43.908997         34       82       48.836462       48.836462       48.836462         34       83       60.728906       60.728906       60.728906         34       84       48.373546       48.373546       48.373546         34       85       28.284271       28.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |    |           |           |           |  |
| 34       71       66.603303       66.603303       66.603303         34       72       36.055513       36.055513       36.055513         34       73       45.650849       45.650849       45.650849         34       74       90.077744       90.077744       90.077744         34       75       65.192024       65.192024       65.192024         34       76       82.462113       82.462113       82.462113         34       77       28.178006       28.178006       28.178006         34       78       65.787537       65.787537       65.787537         34       79       83.006024       83.006024       83.006024         34       80       89.944427       89.944427       89.944427         34       81       43.908997       43.908997       43.908997         34       82       48.836462       48.836462       48.836462         34       83       60.728906       60.728906       60.728906         34       84       48.373546       48.373546       48.373546         34       85       28.284271       28.284271       28.284271         34       86       22.090722       22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |    |           |           |           |  |
| 34       72       36.055513       36.055513       36.055513         34       73       45.650849       45.650849       45.650849         34       74       90.077744       90.077744       90.077744         34       75       65.192024       65.192024       65.192024         34       76       82.462113       82.462113       82.462113         34       77       28.178006       28.178006       28.178006         34       78       65.787537       65.787537       65.787537         34       79       83.006024       83.006024       83.006024         34       80       89.944427       89.944427       89.944427         34       81       43.908997       43.908997       43.908997         34       82       48.836462       48.836462       48.836462         34       83       60.728906       60.728906       60.728906         34       84       48.373546       48.373546       48.373546         34       85       28.284271       28.284271       28.284271         34       86       22.090722       22.090722       22.090722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |           |           |           |  |
| 34       73       45.650849       45.650849       45.650849         34       74       90.077744       90.077744       90.077744         34       75       65.192024       65.192024       65.192024         34       76       82.462113       82.462113       82.462113         34       77       28.178006       28.178006       28.178006         34       78       65.787537       65.787537       65.787537         34       79       83.006024       83.006024       83.006024         34       80       89.944427       89.944427       89.944427         34       81       43.908997       43.908997       43.908997         34       82       48.836462       48.836462       48.836462         34       83       60.728906       60.728906       60.728906         34       84       48.373546       48.373546       48.373546         34       85       28.284271       28.284271       28.284271         34       86       22.090722       22.090722       22.090722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |    | 66.603303 | 66.603303 |           |  |
| 34       74       90.077744       90.077744       90.077744         34       75       65.192024       65.192024       65.192024         34       76       82.462113       82.462113       82.462113         34       77       28.178006       28.178006       28.178006         34       78       65.787537       65.787537       65.787537         34       79       83.006024       83.006024       83.006024         34       80       89.944427       89.944427       89.944427         34       81       43.908997       43.908997       43.908997         34       82       48.836462       48.836462       48.836462         34       83       60.728906       60.728906       60.728906         34       84       48.373546       48.373546       48.373546         34       85       28.284271       28.284271       28.284271         34       86       22.090722       22.090722       22.090722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |    | 36.055513 | 36.055513 | 36.055513 |  |
| 34       75       65.192024       65.192024       65.192024         34       76       82.462113       82.462113       82.462113         34       77       28.178006       28.178006       28.178006         34       78       65.787537       65.787537       65.787537         34       79       83.006024       83.006024       83.006024         34       80       89.944427       89.944427       89.944427         34       81       43.908997       43.908997       43.908997         34       82       48.836462       48.836462       48.836462         34       83       60.728906       60.728906       60.728906         34       84       48.373546       48.373546       48.373546         34       85       28.284271       28.284271       28.284271         34       86       22.090722       22.090722       22.090722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34 | 73 | 45.650849 | 45.650849 | 45.650849 |  |
| 34       76       82.462113       82.462113       82.462113         34       77       28.178006       28.178006       28.178006         34       78       65.787537       65.787537       65.787537         34       79       83.006024       83.006024       83.006024         34       80       89.944427       89.944427       89.944427         34       81       43.908997       43.908997       43.908997         34       82       48.836462       48.836462       48.836462         34       83       60.728906       60.728906       60.728906         34       84       48.373546       48.373546       48.373546         34       85       28.284271       28.284271       28.284271         34       86       22.090722       22.090722       22.090722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34 | 74 | 90.077744 | 90.077744 | 90.077744 |  |
| 34       76       82.462113       82.462113       82.462113         34       77       28.178006       28.178006       28.178006         34       78       65.787537       65.787537       65.787537         34       79       83.006024       83.006024       83.006024         34       80       89.944427       89.944427       89.944427         34       81       43.908997       43.908997       43.908997         34       82       48.836462       48.836462       48.836462         34       83       60.728906       60.728906       60.728906         34       84       48.373546       48.373546       48.373546         34       85       28.284271       28.284271       28.284271         34       86       22.090722       22.090722       22.090722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34 | 75 | 65.192024 | 65.192024 | 65.192024 |  |
| 34       77       28.178006       28.178006       28.178006         34       78       65.787537       65.787537       65.787537         34       79       83.006024       83.006024       83.006024         34       80       89.944427       89.944427       89.944427         34       81       43.908997       43.908997       43.908997         34       82       48.836462       48.836462       48.836462         34       83       60.728906       60.728906       60.728906         34       84       48.373546       48.373546       48.373546         34       85       28.284271       28.284271       28.284271         34       86       22.090722       22.090722       22.090722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |    |           |           |           |  |
| 34       78       65.787537       65.787537       65.787537         34       79       83.006024       83.006024       83.006024         34       80       89.944427       89.944427       89.944427         34       81       43.908997       43.908997       43.908997         34       82       48.836462       48.836462       48.836462         34       83       60.728906       60.728906       60.728906         34       84       48.373546       48.373546       48.373546         34       85       28.284271       28.284271       28.284271         34       86       22.090722       22.090722       22.090722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |    |           |           |           |  |
| 34       79       83.006024       83.006024       83.006024         34       80       89.944427       89.944427       89.944427         34       81       43.908997       43.908997       43.908997         34       82       48.836462       48.836462       48.836462         34       83       60.728906       60.728906       60.728906         34       84       48.373546       48.373546       48.373546         34       85       28.284271       28.284271       28.284271         34       86       22.090722       22.090722       22.090722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |    |           |           |           |  |
| 34       80       89.944427       89.944427       89.944427         34       81       43.908997       43.908997       43.908997         34       82       48.836462       48.836462       48.836462         34       83       60.728906       60.728906       60.728906         34       84       48.373546       48.373546       48.373546         34       85       28.284271       28.284271       28.284271         34       86       22.090722       22.090722       22.090722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |           |           |           |  |
| 34       81       43.908997       43.908997       43.908997         34       82       48.836462       48.836462       48.836462         34       83       60.728906       60.728906       60.728906         34       84       48.373546       48.373546       48.373546         34       85       28.284271       28.284271       28.284271         34       86       22.090722       22.090722       22.090722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |    |           |           |           |  |
| 34       82       48.836462       48.836462       48.836462         34       83       60.728906       60.728906       60.728906         34       84       48.373546       48.373546       48.373546         34       85       28.284271       28.284271       28.284271         34       86       22.090722       22.090722       22.090722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |    |           |           |           |  |
| 34       83       60.728906       60.728906       60.728906         34       84       48.373546       48.373546       48.373546         34       85       28.284271       28.284271       28.284271         34       86       22.090722       22.090722       22.090722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |    |           |           |           |  |
| 34       84       48.373546       48.373546       48.373546         34       85       28.284271       28.284271       28.284271         34       86       22.090722       22.090722       22.090722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |           |           |           |  |
| 34       85       28.284271       28.284271       28.284271         34       86       22.090722       22.090722       22.090722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |    |           |           |           |  |
| 34 86 22.090722 22.090722 22.090722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |    |           |           |           |  |
| 34 87 64.007812 64.007812 64.007812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34 | 87 | 64.007812 | 64.007812 | 64.007812 |  |

| 34 | 88       | 73.006849 | 73.006849 | 73.006849 |  |
|----|----------|-----------|-----------|-----------|--|
| 34 | 89       | 69.354164 | 69.354164 | 69.354164 |  |
| 34 | 90       | 26.907248 | 26.907248 | 26.907248 |  |
| 34 | 91       | 52.801515 | 52.801515 | 52.801515 |  |
| 34 | 92       | 39.812058 | 39.812058 | 39.812058 |  |
| 34 | 93       | 36.715120 | 36.715120 | 36.715120 |  |
| 34 | 94       | 36.124784 | 36.124784 | 36.124784 |  |
| 34 | 95       | 36.235342 | 36.235342 | 36.235342 |  |
| 34 | 96       | 31.384710 | 31.384710 | 31.384710 |  |
| 34 | 97       | 41.725292 | 41.725292 | 41.725292 |  |
| 34 | 98       | 81.301906 | 81.301906 | 81.301906 |  |
| 34 | 99       | 64.884513 | 64.884513 | 64.884513 |  |
| 34 | 100      | 59.841457 | 59.841457 | 59.841457 |  |
| 34 | 100      | 68.410526 | 68.410526 | 68.410526 |  |
|    |          |           |           |           |  |
| 35 | 1        | 47.434165 | 47.434165 | 47.434165 |  |
| 35 | 2        | 78.102497 | 78.102497 | 78.102497 |  |
| 35 | 3        | 74.625733 | 74.625733 | 74.625733 |  |
| 35 | 4        | 80.430094 | 80.430094 | 80.430094 |  |
| 35 | 5        | 79.056942 | 79.056942 | 79.056942 |  |
| 35 | 6        | 82.006097 | 82.006097 | 82.006097 |  |
| 35 | 7        | 78.032045 | 78.032045 | 78.032045 |  |
| 35 | 8        | 80.622577 | 80.622577 | 80.622577 |  |
| 35 | 9        | 83.216585 | 83.216585 | 83.216585 |  |
| 35 | 10       | 75.000000 | 75.000000 | 75.000000 |  |
| 35 | 11       | 75.166482 | 75.166482 | 75.166482 |  |
| 35 | 12       | 77.162167 | 77.162167 | 77.162167 |  |
| 35 | 13       | 77.646635 | 77.646635 | 77.646635 |  |
| 35 | 14       | 80.00000  | 80.000000 | 80.000000 |  |
| 35 | 15       | 80.622577 | 80.622577 | 80.622577 |  |
| 35 | 16       | 83.150466 | 83.150466 | 83.150466 |  |
| 35 | 17       | 85.146932 | 85.146932 | 85.146932 |  |
| 35 | 18       | 85.586214 | 85.586214 | 85.586214 |  |
| 35 | 19       | 50.803543 | 50.803543 | 50.803543 |  |
| 35 | 20       | 49.739320 | 49.739320 | 49.739320 |  |
| 35 | 21       | 47.423623 | 47.423623 | 47.423623 |  |
| 35 | 22       | 54.083269 | 54.083269 | 54.083269 |  |
| 35 | 23       | 49.244289 | 49.244289 | 49.244289 |  |
| 35 | 24       | 55.758407 | 55.758407 | 55.758407 |  |
| 35 | 25       | 51.078371 | 51.078371 | 51.078371 |  |
| 35 | 26       | 58.309519 | 58.309519 | 58.309519 |  |
| 35 | 27       | 11.180340 | 11.180340 | 11.180340 |  |
| 35 |          | 10.000000 | 10.000000 | 10.000000 |  |
| 35 | 28<br>29 | 8.602325  | 8.602325  | 8.602325  |  |
|    |          |           |           |           |  |
| 35 | 30       | 5.000000  | 5.000000  | 5.000000  |  |
| 35 | 31       | 5.830952  | 5.830952  | 5.830952  |  |
| 35 | 32       | 3.000000  | 3.000000  | 3.000000  |  |
| 35 | 33       | 5.385165  | 5.385165  | 5.385165  |  |
| 35 | 34       | 10.000000 | 10.000000 | 10.000000 |  |
| 35 | 36       | 53.141321 | 53.141321 | 53.141321 |  |
| 35 | 37       | 53.851648 | 53.851648 | 53.851648 |  |
| 35 | 38       | 51.078371 | 51.078371 | 51.078371 |  |
| 35 | 39       | 50.537115 | 50.537115 | 50.537115 |  |
| 35 | 40       | 51.478151 | 51.478151 | 51.478151 |  |
| 35 | 41       | 55.901699 | 55.901699 | 55.901699 |  |
| 35 | 42       | 48.259714 | 48.259714 | 48.259714 |  |
| 35 | 43       | 54.083269 | 54.083269 | 54.083269 |  |
| 35 | 44       | 58.309519 | 58.309519 | 58.309519 |  |
| 35 | 45       | 55.758407 | 55.758407 | 55.758407 |  |
| 35 | 46       | 80.212219 | 80.212219 | 80.212219 |  |
| 35 | 47       | 80.709355 | 80.709355 | 80.709355 |  |
| 35 | 48       | 83.600239 | 83.600239 | 83.600239 |  |
| 35 | 49       | 52.430907 | 52.430907 | 52.430907 |  |
| 35 | 50       | 48.764741 | 48.764741 | 48.764741 |  |
|    |          |           |           |           |  |

|                                               | .000000  |
|-----------------------------------------------|----------|
| 35 52 33.541020 33.541020 33.                 | F 41000  |
|                                               | .541020  |
|                                               | .207973  |
|                                               | .708320  |
|                                               | .051248  |
|                                               | .415230  |
|                                               |          |
|                                               | .00000   |
|                                               | .901699  |
|                                               | .330344  |
|                                               | .485293  |
|                                               | .330344  |
| 35 62 50.000000 50.000000 50.                 | .000000  |
| 35 63 20.000000 20.000000 20.                 | .000000  |
| 35 64 25.000000 25.000000 25.                 | .000000  |
| 35 65 40.311289 40.311289 40.                 | .311289  |
| 35 66 50.249378 50.249378 50.                 | .249378  |
|                                               | .045431  |
|                                               | .135944  |
|                                               | .478151  |
|                                               | .612719  |
|                                               | .464866  |
|                                               | .284271  |
|                                               | .202150  |
|                                               | .683332  |
|                                               |          |
|                                               | .708320  |
|                                               | .440037  |
|                                               | . 970576 |
|                                               | .771054  |
|                                               | .812280  |
|                                               | .615419  |
|                                               | .849718  |
|                                               | .720019  |
|                                               | .549125  |
|                                               | .166378  |
|                                               | .635642  |
| 35 86 25.059928 25.059928 25.                 | .059928  |
| 35 87 64.938432 64.938432 64.                 | .938432  |
| 35   88   73.824115   73.824115   73.         | .824115  |
| 35 89 65.192024 65.192024 65.                 | .192024  |
| 35 90 34.985711 34.985711 34.                 | .985711  |
| 35 91 49.477268 49.477268 49.                 | .477268  |
| 35 92 36.674242 36.674242 36                  | .674242  |
|                                               | .984845  |
|                                               | .410882  |
|                                               | .870698  |
|                                               | .068884  |
|                                               | .510562  |
|                                               | .764727  |
|                                               | .400326  |
|                                               | 9.00000  |
|                                               | 2.769419 |
|                                               | 204072   |
|                                               | 000000   |
|                                               | 097722   |
|                                               | 000000   |
|                                               | 265209   |
|                                               |          |
|                                               | 00000    |
|                                               | 009999   |
|                                               | 952809   |
|                                               | 239832   |
|                                               | .822160  |
|                                               | .622311  |
| 36     12     74.202426     74.202426     74. | .202426  |

| 36         13         71,281134         71,281134         71,281134         71,281137         71,281331         79,619231         79,619231         79,619231         79,619231         79,619231         79,619231         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942         79,056942 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                 |    |     |            |            |            |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|------------|------------|------------|--|
| 16         15         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,783467         73,78347         73,783467         73,78347         73,78347         73,78347                                                                                                 | 36 | 13  | 71.281134  | 71.281134  | 71.281134  |  |
| 16         16         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         78.032045         78.032045         78.032045         78.032045         78.032045         78.032045         78.032045         78.032045         78.032045         78.032045         78.032045         78.032045         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942 <td>36</td> <td>14</td> <td>79.649231</td> <td>79.649231</td> <td>79.649231</td> <td></td>  | 36 | 14  | 79.649231  | 79.649231  | 79.649231  |  |
| 16         16         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         78.032045         78.032045         78.032045         78.032045         78.032045         78.032045         78.032045         78.032045         78.032045         78.032045         78.032045         78.032045         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942 <td>36</td> <td>1.5</td> <td>73.783467</td> <td>73.783467</td> <td>73.783467</td> <td></td> | 36 | 1.5 | 73.783467  | 73.783467  | 73.783467  |  |
| 36         17         80.709335         80.709355         80.709355         80.709355           36         19         83.240615         83.240615         83.240615         83.240615         83.240615         83.240615         83.240615         83.240615         83.240615         83.240615         83.240615         83.240615         83.240615         83.240615         83.240615         83.240615         83.240615         83.240615         83.240616         84.433006         84.433406         84.433406         84.433406         84.433406         84.433406         84.433406         84.433406         84.433406         86.162637         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.094066         85.0940                                                                                                           |    |     |            |            |            |  |
| 16         18         78,032045         78,032045         78,032045         78,032045         32,240615         83,240615         83,240615         83,240615         32,240615         32,240615         32,240615         32,240615         32,240615         32,240615         32,240615         32,240615         32,240615         32,240615         32,240615         32,240615         32,240615         32,240615         32,240615         32,240615         32,240615         32,240615         32,240615         32,240615         32,240615         32,240615         32,240615         32,240615         32,240615         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,240616         32,24141         32,24441         32,24441                                                                                                |    |     |            |            |            |  |
| 16         19         83, 240615         83, 240615         83, 240615         83, 240615         83, 240615         79, 056942         79, 056942         79, 056942         79, 056942         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330344         74, 330387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387         75, 769387                                                                            |    |     |            |            |            |  |
| 16         20         79,056942         79,056942         79,056942         79,056942           36         21         74,330344         74,330344         74,330344         74,330344         74,330344         34,3406         84,433406         84,433406         84,433406         84,433406         84,433406         84,433406         84,433406         85,094066         85,094066         85,094066         85,094066         85,094066         85,094066         85,094066         85,094066         85,094066         85,094066         85,094066         86,162637         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195         75,706195                                                                                                           |    |     |            |            |            |  |
| 36         21         74,330344         74,330344         74,330344         34,33406         84,433406         36,23         75,026662         75,026662         75,026662         75,026662         75,026662         36,04066         85,094066         85,094066         86,094066         36         25,75,769387         75,769387         75,769387         75,769387         36,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,162637         86,1626327         86,1626327                                                                                                     |    |     |            |            |            |  |
| 16         22         84,433406         84,433406         84,433406         33,406         23         75,026662         75,026662         75,026662         75,026662         36         24         85,094066         85,094066         85,094066         85,094066         85,094066         85,094066         85,094066         85,094066         85,094066         86,162637         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,709387         75,709387         75,709387         75,709387         75,709387         75,7306195         75,306195         75,306195         75,306195         75,306195         75,306195         75,306195         75,306195         75,30619                                                                                                   |    |     |            |            |            |  |
| 36         23         75,026662         75,026662         75,026662         36,034066         85,094066         85,094066         86,094066         36         25         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,769387         75,06048         66,015230         66,015230         66,015230         66,015230         66,015230         66,015230         66,015230         66,015230         66,015230         66,015230         66,015230         66,015230         56,023250         58,523500         58,523500         58,523500         58,523500         58,523500         58,523500         58,523500         58,523500         58,523500         58,523500         58,523500         58,523500         58,523500         58,523500         58,523500         58,523500         58,523500                                                                                                            | 36 | 21  | 74.330344  | 74.330344  | 74.330344  |  |
| 36         24         88.094066         85.094066         85.094066           36         25         75.769387         75.769387         75.769387           36         26         86.162637         86.162637         86.162637           36         27         61.717096         61.717096         61.717096           36         28         57.306195         57.306195         57.306195         57.306195           36         29         60.415230         60.415230         60.415230         60.415230           36         31         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744         58.872744                                                                                                                                                                                       | 36 | 22  | 84.433406  | 84.433406  | 84.433406  |  |
| 186         25         75.769387         75.769387         75.769387         75.769387         36.162637         36.162637         36.162637         36.162637         36.162637         36.162637         36.1717096         61.717096         61.717096         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         58.523500         36.30         55.036352         55.036352         55.036352         55.036352         58.523500         38.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         36.34         62.641839         62.641839         62.641839         62.641839         62.641839         62.641839         62.641839         62.641839         62.561839         63.4019324444         43.4000000         73.00000         73.000000                                                                                               | 36 | 23  | 75.026662  | 75.026662  | 75.026662  |  |
| 186         25         75.769387         75.769387         75.769387         75.769387         36.162637         36.162637         36.162637         36.162637         36.162637         36.162637         36.1717096         61.717096         61.717096         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         57.306195         58.523500         36.30         55.036352         55.036352         55.036352         55.036352         58.523500         38.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         58.523500         36.34         62.641839         62.641839         62.641839         62.641839         62.641839         62.641839         62.641839         62.641839         62.561839         63.4019324444         43.4000000         73.00000         73.000000                                                                                               | 36 | 24  | 85.094066  | 85.094066  | 85.094066  |  |
| 36         26         86.162637         86.162637         86.162637         86.17096           36         27         61.717096         61.717096         61.717096           36         28         57.306195         57.306195         57.306195           36         29         60.415230         60.415230         60.415230           36         31         58.872744         58.872744         58.872744         58.872744           36         32         54.230987         54.230987         54.230987           36         33         55.523500         58.523500         58.523500           36         34         62.641839         62.641839         62.641839           36         37         2.000000         2.000000         2.000000           36         37         2.000000         2.000000         2.000000           36         39         7.071088         7.071088         7.071088           36         40         8.602325         8.602325         8.602325           36         41         7.000000         7.00000         7.00000           36         42         13.453624         13.453624         13.453624         13.453624                                                                                                                                                                                                                                                                                                                                 |    | 2.5 | 75.769387  | 75.769387  | 75.769387  |  |
| 36         27         61.717096         61.717096         61.717096           36         28         57.306195         57.306195         57.306195           36         29         60.415230         60.415230         60.415230           36         30         55.036352         55.036352         55.036352           36         31         58.872744         58.872744         58.872744           36         32         54.230987         54.230987         54.230987           36         34         62.641839         62.641839         62.641839           36         34         62.641839         62.641839         62.641839           36         37         2.000000         2.000000         2.000000           36         38         3.605551         3.605551         3.605551           36         39         7.071068         7.071068         7.071068           36         40         8.602325         8.602325         8.602325           36         41         7.000000         7.000000         7.000000           36         42         13.453624         13.453624         13.453624           36         43         13.000000         13.000000 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                       |    |     |            |            |            |  |
| 36         28         57,306195         57,306195         57,306195           36         29         60.415230         60.415230         60.415230           36         30         55.036352         55.036352         55.036352           36         31         58.872744         58.872744         58.872744           36         32         54.230987         54.230987         54.230987           36         33         58.523500         58.523500         58.523500           36         34         62.641839         62.641839         62.641839           36         37         2.000000         2.000000         2.000000           36         38         3.605551         3.605551         3.605551           36         39         7.071068         7.071068         7.071068           36         40         8.602325         8.602325         8.602325           36         41         7.000000         7.00000         7.00000           36         42         13.453624         13.453624         13.453624           36         43         13.00000         13.00000         13.00000           36         47         12.369317         12.369317                                                                                                                                                                                                                                                                                                                             |    |     |            |            |            |  |
| 36         29         60.415230         60.415230         60.415230           36         30         55.036352         55.036352         55.036352           36         31         58.872744         58.872744         58.872744           36         32         54.230987         54.230987         54.230987           36         34         62.641839         62.641839         62.641839           36         35         53.141321         53.141321         53.141321           36         37         2.000000         2.000000         2.000000           36         38         3.605551         3.605551         3.605551           36         40         8.602325         8.602325         8.602325           36         41         7.000000         7.00000         7.000000           36         42         13.453624         13.453624         13.453624           36         43         13.000000         13.000000         13.000000           36         43         13.000000         12.000000         12.000000           36         47         19.5647         47.095647         47.095647           47         19.254441         49.254441         49.2                                                                                                                                                                                                                                                                                                                      |    |     |            |            |            |  |
| 36         30         55.036352         55.036352         55.036352           36         31         58.872744         58.872744         58.872744           36         32         54.230987         54.230987         54.230987           36         33         58.523500         58.523500         58.523500           36         34         62.641839         62.641839         62.641839           36         35         53.141321         53.141321         53.141321           36         37         2.000000         2.000000         2.000000           36         38         3.605551         3.605551         3.605551           36         39         7.071068         7.071068         7.071068           36         40         8.602325         8.602325         8.602325           36         41         7.000000         7.000000         7.000000           36         42         13.453624         13.453624         13.453624           36         43         13.000000         13.000000         13.000000           36         44         12.0369317         12.369317         12.369317           36         47         79.5647         47.095647 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                             |    |     |            |            |            |  |
| 36         31         58.872744         58.872744         58.872744           36         32         54.230987         54.230987         54.230987           36         33         58.523500         58.523500         58.523500           36         34         62.641839         62.641839         62.641839           36         35         53.141321         53.141321         53.141321           36         37         2.000000         2.000000         2.000000           36         38         3.605551         3.605551         3.60551           36         40         8.602325         8.602325         8.602325           36         41         7.000000         7.000000         7.000000           36         42         13.453624         13.453624         13.453624           36         43         13.000000         13.000000         13.000000           36         43         13.053624         13.453624         13.453624           36         43         13.000000         12.000000         12.000000           36         44         12.000000         12.000000         12.000000           36         45         12.369317         12.369317                                                                                                                                                                                                                                                                                                                      |    |     |            |            |            |  |
| 36         32         54,230987         54,230987         54,23008           36         33         58,523500         58,523500         58,523500         58,523500           36         34         62,641839         62,641839         62,641839           36         35         53,141321         53,141321         53,141321           36         37         2,000000         2,000000         2,000000           36         38         3,605551         3,605551         3,605551           36         39         7,071068         7,071068         7,071068           36         40         8,602325         8,602325         8,602325           36         41         7,000000         7,000000         13,453624           36         43         13,000000         13,000000         13,000000           36         44         12,060000         12,000000         12,000000           36         47         49,254441         49,254441         49,254441           36         47         49,254441         49,254441         49,254441           36         47         49,254441         49,254441         49,254441 <trr>         36         49         83,815273&lt;</trr>                                                                                                                                                                                                                                                                                                          |    | 30  | 55.036352  |            |            |  |
| 36         34         62.641839         62.641839         62.641839         62.641839           36         35         53.141321         53.141321         53.141321           36         37         2.000000         2.000000         2.000000           36         38         3.605551         3.605551         3.605551           36         39         7.071068         7.071068         7.071068           36         40         8.602325         8.602325         8.602325           36         41         7.000000         7.000000         7.000000           36         42         13.453624         13.453624         13.453624           36         43         13.000000         13.000000         13.000000           36         44         12.0369317         12.369317         12.369317           36         45         12.369317         47.095647         47.095647         47.095647           47         49.254441         49.254441         49.254441         49.254441         49.254441           36         48         76.321688         76.321688         76.321688           36         49         83.815273         83.815273         83.815273                                                                                                                                                                                                                                                                                                                      |    | 31  | 58.872744  | 58.872744  | 58.872744  |  |
| 36         34         62.641839         62.641839         62.641839           36         35         53.141321         53.141321         53.141321           36         37         2.000000         2.000000           36         38         3.605551         3.605551         3.605551           36         40         8.602325         8.602325         8.602325           36         41         7.000000         7.000000         7.000000           36         42         13.453624         13.453624         13.453624           36         43         13.000000         13.000000         13.000000           36         44         12.000000         12.000000         13.000000           36         47         12.369317         12.369317         12.369317           36         47         49.254441         49.254441         49.254441           36         47         49.254441         49.254441         49.254441           36         47         49.254441         49.254441         49.254441           36         49         83.815273         83.815273         83.815273           36         50         77.162167         77.162167         77.1621                                                                                                                                                                                                                                                                                                                      | 36 | 32  | 54.230987  | 54.230987  | 54.230987  |  |
| 36         35         53,141321         53,141321         53,141321         36,005551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.60551         3.605551         3.605551         3.605551         3.605551         3.60551         3.605564         4.7095647         47.095647         47.095647         47                                                                                                                     | 36 | 33  | 58.523500  | 58.523500  | 58.523500  |  |
| 36         35         53,141321         53,141321         53,141321         36,005551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.605551         3.60551         3.605551         3.605551         3.605551         3.605551         3.60551         3.605564         4.7095647         47.095647         47.095647         47                                                                                                                     | 36 | 34  | 62.641839  | 62.641839  | 62.641839  |  |
| 36         37         2.000000         2.000000         2.000000           36         38         3.605551         3.605551         3.605551           36         39         7.071068         7.071068         7.071068           36         40         8.602325         8.602325         8.602325           36         41         7.000000         7.000000         7.000000           36         42         13.453624         13.453624         13.453624           36         43         13.000000         13.000000         13.000000           36         44         12.000000         12.000000         12.000000           36         45         12.369317         12.369317         12.369317           36         47         49.254441         49.254441         49.254441           49.254441         49.254441         49.254441         49.254441           36         47         49.254441         49.254441         49.254441           36         49         83.815273         83.815273         83.815273           36         50         77.162167         77.162167         77.162167           36         51         50.249378         50.249378         <                                                                                                                                                                                                                                                                                                                  |    |     | 53.141321  | 53.141321  | 53.141321  |  |
| 36         38         3.605551         3.605551         3.605551           36         39         7.071068         7.071068         7.071068           36         40         8.602325         8.602325         8.602325           36         41         7.000000         7.000000         7.000000           36         42         13.453624         13.453624         13.453624           36         43         13.000000         13.000000         13.000000           36         44         12.309317         12.369317         12.369317           36         45         12.369317         12.369317         12.369317           36         46         47.095647         47.095647         47.095647           47         49.254441         49.254441         49.254441         49.254441           36         47         49.254441         49.254441         49.254441         49.254441           36         49         38.315273         83.815273         83.815273         83.815273           36         50         77.162167         77.162167         77.162167         77.162167           36         51         50.249378         50.249378         50.249378                                                                                                                                                                                                                                                                                                                    |    |     |            |            |            |  |
| 36         39         7.071068         7.071068         7.071068           36         40         8.602325         8.602325         8.602325           36         41         7.000000         7.000000           36         42         13.453624         13.453624         13.453624           36         43         13.000000         13.000000         13.000000           36         44         12.000000         12.000000         12.000000           36         45         12.369317         12.369317         12.369317           36         46         47.095647         47.095647         47.095647           36         47         49.254441         49.254441         49.254441           36         48         76.321688         76.321688         76.321688           36         49         83.815273         83.815273         83.815273         83.815273           36         50         77.162167         77.162167         77.162167         77.162167           36         51         50.249378         50.249378         50.249378           36         52         66.098411         66.098411         66.098411           36         53         69.2                                                                                                                                                                                                                                                                                                                      |    |     |            |            |            |  |
| 36         40         8.602325         8.602325         8.602325           36         41         7.000000         7.000000         7.000000           36         42         13.453624         13.453624         13.453624           36         43         13.000000         13.000000         13.000000           36         44         12.000000         12.000000         12.000000           36         45         12.369317         12.369317         12.369317           36         46         47.095647         47.095647         47.095647           36         47         49.254441         49.254441         49.254441           36         48         76.321688         76.321688         76.321688           36         49         83.815273         83.815273         83.815273           36         50         77.162167         77.162167         77.162167         77.162167           36         51         50.249378         50.249378         50.249378           36         52         66.098411         66.098411         66.098411           36         53         69.202601         69.202601         69.202601           36         54         58                                                                                                                                                                                                                                                                                                                      |    |     |            |            |            |  |
| 36         41         7.000000         7.000000         7.000000           36         42         13.453624         13.453624         13.453624         13.453624           36         43         13.000000         12.000000         12.000000         12.000000           36         45         12.369317         12.369317         12.369317         12.369317           36         46         47.095647         47.095647         47.095647         49.254441         49.254441         49.254441         49.254441         49.254441         49.254441         49.254441         49.254441         36.48         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         76.321688         38.815273         83.815273         83.815273 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                              |    |     |            |            |            |  |
| 36         42         13.453624         13.453624         13.000000         13.000000           36         43         13.000000         12.000000         12.000000           36         44         12.000000         12.000000         12.000000           36         45         12.369317         12.369317         12.369317           36         46         47.095647         47.095647         47.095647           36         47         49.254441         49.254441         49.254441           36         48         76.321688         76.321688         76.321688           36         49         83.815273         83.815273         83.815273           36         50         77.162167         77.162167         77.162167         77.162167           36         51         50.249378         50.249378         50.249378         50.249378         50.249378         50.249378         50.249378         50.249378         50.249378         50.249378         50.249378         50.249378         50.249378         50.249378         50.249378         50.249378         50.249378         50.249378         50.249378         50.249378         50.249378         50.249378         50.249378         50.249378         50.249378                                                                                                                                                                                                                                             |    |     |            |            |            |  |
| 36         43         13.000000         13.000000         13.000000           36         44         12.000000         12.000000         12.000000           36         45         12.369317         12.369317         12.369317           36         46         47.095647         47.095647         47.095647           36         47         49.254441         49.254441         49.254441           36         48         76.321688         76.321688         76.321688           36         49         83.815273         83.815273         83.815273           36         50         77.162167         77.162167         77.162167           36         51         50.249378         50.249378         50.249378           36         52         66.098411         66.098411         66.098411           36         53         69.202601         69.202601         69.202601           36         54         58.600341         58.600341         58.600341           36         55         27.730849         27.730849         27.730849           36         56         44.654227         44.654227         44.654227           36         57         52.810984                                                                                                                                                                                                                                                                                                                           |    |     |            |            |            |  |
| 36         44         12.000000         12.000000         12.000000           36         45         12.369317         12.369317         12.369317           36         46         47.095647         47.095647         47.095647           36         47         49.254441         49.254441         49.254441           36         48         76.321688         76.321688         76.321688           36         49         83.815273         83.815273         83.815273           36         50         77.162167         77.162167         77.162167           36         51         50.249378         50.249378         50.249378           36         52         66.098411         66.098411         66.098411           36         53         69.202601         69.202601         69.202601           36         54         58.600341         58.600341         58.600341         58.600341           36         55         27.730849         27.730849         27.730849         27.730849           36         57         52.810984         52.810984         52.810984         52.810984           36         59         91.263355         91.263355         91.263355         9                                                                                                                                                                                                                                                                                                     |    | 42  | 13.453624  | 13.453624  | 13.453624  |  |
| 36         45         12.369317         12.369317         12.369317         12.369317           36         46         47.095647         47.095647         47.095647           36         47         49.254441         49.254441         49.254441           36         48         76.321688         76.321688         76.321688           36         49         83.815273         83.815273         83.815273           36         50         77.162167         77.162167         77.162167           36         51         50.249378         50.249378         50.249378           36         52         66.098411         66.098411         66.098411         66.098411           36         53         69.202601         69.202601         69.202601           36         54         58.600341         58.600341         58.600341           36         55         27.730849         27.730849         27.730849           36         56         44.654227         44.654227         44.654227         44.654227           36         57         52.810984         52.810984         52.810984         52.810984           36         59         91.263355         91.263355         9                                                                                                                                                                                                                                                                                                     | 36 | 43  | 13.000000  | 13.000000  | 13.000000  |  |
| 36         46         47.095647         47.095647         47.095647           36         47         49.254441         49.254441         49.254441           36         48         76.321688         76.321688         76.321688           36         49         83.815273         83.815273         83.815273           36         50         77.162167         77.162167         77.162167           36         51         50.249378         50.249378         50.249378           36         52         66.098411         66.098411         66.098411           36         53         69.202601         69.202601         69.202601           36         54         58.600341         58.600341         58.600341           36         55         27.730849         27.730849         27.730849           36         56         44.654227         44.654227         44.654227           44         46.54227         44.654227         44.654227           44         46.54229         86.452299         86.452299           36         59         91.263355         91.263355         91.263355           36         61         57.697487         57.697487         57.697487 </td <td>36</td> <td>44</td> <td>12.000000</td> <td>12.000000</td> <td>12.000000</td> <td></td>                                                                                                                                                                                                               | 36 | 44  | 12.000000  | 12.000000  | 12.000000  |  |
| 36         47         49.254441         49.254441         49.254441           36         48         76.321688         76.321688         76.321688           36         49         83.815273         83.815273         83.815273           36         50         77.162167         77.162167         77.162167           36         51         50.249378         50.249378         50.249378           36         52         66.098411         66.098411         66.098411           36         53         69.202601         69.202601         69.202601           36         54         58.600341         58.600341         58.600341           36         55         27.730849         27.730849         27.730849           36         56         44.654227         44.654227         44.654227           36         57         52.810984         52.810984         52.810984           36         58         70.491134         70.491134         70.491134           36         59         91.263355         91.263355         91.263355           36         60         86.452299         86.452299         86.452299           36         61         57.697487                                                                                                                                                                                                                                                                                                                           | 36 | 45  | 12.369317  | 12.369317  | 12.369317  |  |
| 36         47         49.254441         49.254441         49.254441           36         48         76.321688         76.321688         76.321688           36         49         83.815273         83.815273         83.815273           36         50         77.162167         77.162167         77.162167           36         51         50.249378         50.249378         50.249378           36         52         66.098411         66.098411         66.098411           36         53         69.202601         69.202601         69.202601           36         54         58.600341         58.600341         58.600341           36         55         27.730849         27.730849         27.730849           36         56         44.654227         44.654227         44.654227           36         57         52.810984         52.810984         52.810984           36         58         70.491134         70.491134         70.491134           36         59         91.263355         91.263355         91.263355           36         60         86.452299         86.452299         86.452299           36         61         57.697487                                                                                                                                                                                                                                                                                                                           | 36 | 46  | 47.095647  | 47.095647  | 47.095647  |  |
| 36       48       76.321688       76.321688       76.321688         36       49       83.815273       83.815273       83.815273         36       50       77.162167       77.162167       77.162167         36       51       50.249378       50.249378       50.249378         36       52       66.098411       66.098411       66.098411         36       53       69.202601       69.202601       69.202601         36       54       58.600341       58.600341       58.600341         36       55       27.730849       27.730849       27.730849         36       56       44.654227       44.654227       44.654227         36       57       52.810984       52.810984       52.810984         36       58       70.491134       70.491134       70.491134         36       59       91.263355       91.263355       91.263355         36       60       86.452299       86.452299       86.452299         36       61       57.697487       57.697487       57.697487         36       62       29.732137       29.732137       29.732137         36       63       50.039984       50.0                                                                                                                                                                                                                                                                                                                                                                                            |    |     |            |            |            |  |
| 36       49       83.815273       83.815273       83.815273         36       50       77.162167       77.162167       77.162167         36       51       50.249378       50.249378       50.249378         36       51       50.249378       50.249378       50.249378         36       52       66.098411       66.098411       66.098411         36       53       69.202601       69.202601       69.202601         36       54       58.600341       58.600341       58.600341         36       55       27.730849       27.730849       27.730849         36       56       44.654227       44.654227       44.654227         36       57       52.810984       52.810984       52.810984         36       58       70.491134       70.491134       70.491134         36       59       91.263355       91.263355       91.263355         36       60       86.452299       86.452299       86.452299         36       61       57.697487       57.697487       57.697487         36       62       29.732137       29.732137       29.732137         36       63       50.039984       50.0                                                                                                                                                                                                                                                                                                                                                                                            |    |     |            |            |            |  |
| 36         50         77.162167         77.162167         77.162167           36         51         50.249378         50.249378         50.249378           36         52         66.098411         66.098411         66.098411           36         53         69.202601         69.202601         69.202601           36         54         58.600341         58.600341         58.600341           36         55         27.730849         27.730849         27.730849           36         56         44.654227         44.654227         44.654227           36         57         52.810984         52.810984         52.810984           36         58         70.491134         70.491134         70.491134           36         59         91.263355         91.263355         91.263355           36         60         86.452299         86.452299         86.452299           36         61         57.697487         57.697487         57.697487           36         62         29.732137         29.732137         29.732137           36         63         50.039984         50.039984         50.039984           36         64         65.030762                                                                                                                                                                                                                                                                                                                           |    |     |            |            |            |  |
| 36         51         50.249378         50.249378         50.249378           36         52         66.098411         66.098411         66.098411           36         53         69.202601         69.202601         69.202601           36         54         58.600341         58.600341         58.600341           36         55         27.730849         27.730849         27.730849           36         56         44.654227         44.654227         44.654227           36         57         52.810984         52.810984         52.810984           36         58         70.491134         70.491134         70.491134           36         59         91.263355         91.263355         91.263355           36         60         86.452299         86.452299         86.452299           36         61         57.697487         57.697487         57.697487           36         62         29.732137         29.732137         29.732137           36         63         50.039984         50.039984         50.039984           36         64         65.030762         65.030762         65.030762           36         59.236813         59.236813                                                                                                                                                                                                                                                                                                                    |    |     |            |            |            |  |
| 36         52         66.098411         66.098411         66.098411           36         53         69.202601         69.202601         69.202601           36         54         58.600341         58.600341         58.600341           36         55         27.730849         27.730849         27.730849           36         56         44.654227         44.654227         44.654227           36         57         52.810984         52.810984         52.810984           36         58         70.491134         70.491134         70.491134           36         59         91.263355         91.263355         91.263355           36         60         86.452299         86.452299         86.452299           36         61         57.697487         57.697487         57.697487           36         62         29.732137         29.732137         29.732137           36         63         50.039984         50.039984         50.039984           36         64         65.030762         65.030762         65.030762           36         59.236813         59.236813         59.236813           36         65         59.236813         59.236813                                                                                                                                                                                                                                                                                                                    |    |     |            |            |            |  |
| 36       53       69.202601       69.202601       69.202601         36       54       58.600341       58.600341       58.600341         36       55       27.730849       27.730849       27.730849         36       56       44.654227       44.654227       44.654227         36       57       52.810984       52.810984       52.810984         36       58       70.491134       70.491134       70.491134         36       59       91.263355       91.263355       91.263355         36       60       86.452299       86.452299       86.452299         36       61       57.697487       57.697487       57.697487         36       62       29.732137       29.732137       29.732137         36       63       50.039984       50.039984       50.039984         36       64       65.030762       65.030762       65.030762         36       65       59.236813       59.236813       59.236813         36       66       55.217751       55.217751       55.217751         36       67       54.589376       54.589376       54.589376         36       69       36.796739       36.7                                                                                                                                                                                                                                                                                                                                                                                            |    |     |            |            |            |  |
| 36       54       58.600341       58.600341       58.600341         36       55       27.730849       27.730849       27.730849         36       56       44.654227       44.654227       44.654227         36       57       52.810984       52.810984       52.810984         36       58       70.491134       70.491134       70.491134         36       59       91.263355       91.263355       91.263355         36       60       86.452299       86.452299       86.452299         36       61       57.697487       57.697487       57.697487         36       62       29.732137       29.732137       29.732137         36       63       50.039984       50.039984       50.039984         36       64       65.030762       65.030762       65.030762         36       65       59.236813       59.236813       59.236813         36       66       55.217751       55.217751       55.217751         36       67       54.589376       54.589376       54.589376         36       69       36.796739       36.796739       36.796739         36       70       48.836462       48.8                                                                                                                                                                                                                                                                                                                                                                                            |    |     |            |            |            |  |
| 36       55       27.730849       27.730849       27.730849         36       56       44.654227       44.654227       44.654227         36       57       52.810984       52.810984       52.810984         36       58       70.491134       70.491134       70.491134         36       59       91.263355       91.263355       91.263355         36       60       86.452299       86.452299       86.452299         36       61       57.697487       57.697487       57.697487         36       62       29.732137       29.732137       29.732137         36       63       50.039984       50.039984       50.039984         36       64       65.030762       65.030762       65.030762         36       65       59.236813       59.236813       59.236813         36       65       59.236813       59.236813       59.236813         36       67       54.589376       54.589376       54.589376         36       68       43.104524       43.104524       43.104524         36       69       36.796739       36.796739       36.796739         36       70       48.836462       48.8                                                                                                                                                                                                                                                                                                                                                                                            | 36 | 53  | 69.202601  | 69.202601  | 69.202601  |  |
| 36       56       44.654227       44.654227       44.654227         36       57       52.810984       52.810984       52.810984         36       58       70.491134       70.491134       70.491134         36       59       91.263355       91.263355       91.263355         36       60       86.452299       86.452299       86.452299         36       61       57.697487       57.697487       57.697487         36       62       29.732137       29.732137       29.732137         36       63       50.039984       50.039984       50.039984         36       64       65.030762       65.030762       65.030762         36       65       59.236813       59.236813       59.236813         36       66       55.217751       55.217751       55.217751         36       67       54.589376       54.589376       54.589376         36       68       43.104524       43.104524       43.104524         36       69       36.796739       36.796739       36.796739         36       70       48.836462       48.836462       48.836462         36       71       35.777088       35.7                                                                                                                                                                                                                                                                                                                                                                                            | 36 | 54  | 58.600341  | 58.600341  | 58.600341  |  |
| 36       57       52.810984       52.810984       52.810984         36       58       70.491134       70.491134       70.491134         36       59       91.263355       91.263355       91.263355         36       60       86.452299       86.452299       86.452299         36       61       57.697487       57.697487       57.697487         36       62       29.732137       29.732137       29.732137         36       63       50.039984       50.039984       50.039984         36       64       65.030762       65.030762       65.030762         36       65       59.236813       59.236813       59.236813         36       66       55.217751       55.217751       55.217751         36       67       54.589376       54.589376       54.589376         36       68       43.104524       43.104524       43.104524         36       69       36.796739       36.796739       36.796739         36       70       48.836462       48.836462       48.836462         36       71       35.777088       35.777088       35.777088         36       72       30.066593       30.0                                                                                                                                                                                                                                                                                                                                                                                            | 36 | 55  | 27.730849  | 27.730849  | 27.730849  |  |
| 36       57       52.810984       52.810984       52.810984         36       58       70.491134       70.491134       70.491134         36       59       91.263355       91.263355       91.263355         36       60       86.452299       86.452299       86.452299         36       61       57.697487       57.697487       57.697487         36       62       29.732137       29.732137       29.732137         36       63       50.039984       50.039984       50.039984         36       64       65.030762       65.030762       65.030762         36       65       59.236813       59.236813       59.236813         36       66       55.217751       55.217751       55.217751         36       67       54.589376       54.589376       54.589376         36       68       43.104524       43.104524       43.104524         36       69       36.796739       36.796739       36.796739         36       70       48.836462       48.836462       48.836462         36       71       35.777088       35.777088       35.777088         36       72       30.066593       30.0                                                                                                                                                                                                                                                                                                                                                                                            | 36 | 56  | 44.654227  | 44.654227  | 44.654227  |  |
| 36       58       70.491134       70.491134       70.491134       70.491134         36       59       91.263355       91.263355       91.263355         36       60       86.452299       86.452299       86.452299         36       61       57.697487       57.697487       57.697487         36       62       29.732137       29.732137       29.732137         36       63       50.039984       50.039984       50.039984         36       64       65.030762       65.030762       65.030762         36       65       59.236813       59.236813       59.236813         36       66       55.217751       55.217751       55.217751         36       67       54.589376       54.589376       54.589376         36       68       43.104524       43.104524       43.104524         36       69       36.796739       36.796739       36.796739         36       70       48.836462       48.836462       48.836462         36       71       35.777088       35.777088       35.777088         36       72       30.066593       30.066593       30.066593         36       74       69.6                                                                                                                                                                                                                                                                                                                                                                                            |    |     | 52.810984  | 52.810984  | 52.810984  |  |
| 36       59       91.263355       91.263355       91.263355         36       60       86.452299       86.452299       86.452299         36       61       57.697487       57.697487       57.697487         36       62       29.732137       29.732137       29.732137         36       63       50.039984       50.039984       50.039984         36       64       65.030762       65.030762       65.030762         36       65       59.236813       59.236813       59.236813         36       66       55.217751       55.217751       55.217751         36       67       54.589376       54.589376       54.589376         36       68       43.104524       43.104524       43.104524         36       69       36.796739       36.796739       36.796739         36       70       48.836462       48.836462       48.836462         36       71       35.777088       35.777088       35.777088         36       72       30.066593       30.066593       30.066593         36       74       69.641941       69.641941       69.641941         36       74       69.641941       69.6                                                                                                                                                                                                                                                                                                                                                                                            |    |     | 70.491134  |            |            |  |
| 36       60       86.452299       86.452299       86.452299         36       61       57.697487       57.697487       57.697487         36       62       29.732137       29.732137       29.732137         36       63       50.039984       50.039984       50.039984         36       64       65.030762       65.030762       65.030762         36       65       59.236813       59.236813       59.236813         36       66       55.217751       55.217751       55.217751         36       67       54.589376       54.589376       54.589376         36       68       43.104524       43.104524       43.104524         36       69       36.796739       36.796739       36.796739         36       70       48.836462       48.836462       48.836462         36       71       35.777088       35.777088       35.777088         36       72       30.066593       30.066593       30.066593         36       74       69.641941       69.641941       69.641941         36       74       69.641941       69.641941       69.641941         36       75       80.212219       80.2                                                                                                                                                                                                                                                                                                                                                                                            |    |     |            |            |            |  |
| 36       61       57.697487       57.697487       57.697487         36       62       29.732137       29.732137       29.732137         36       63       50.039984       50.039984       50.039984         36       64       65.030762       65.030762       65.030762         36       65       59.236813       59.236813       59.236813         36       66       55.217751       55.217751       55.217751         36       67       54.589376       54.589376       54.589376         36       68       43.104524       43.104524       43.104524         36       69       36.796739       36.796739       36.796739         36       70       48.836462       48.836462       48.836462         36       71       35.777088       35.777088       35.777088         36       72       30.066593       30.066593       30.066593         36       73       20.396078       20.396078       20.396078         36       74       69.641941       69.641941       69.641941         36       75       80.212219       80.212219       80.212219                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |            |            |            |  |
| 36       62       29.732137       29.732137       29.732137         36       63       50.039984       50.039984       50.039984         36       64       65.030762       65.030762       65.030762         36       65       59.236813       59.236813       59.236813         36       66       55.217751       55.217751       55.217751         36       67       54.589376       54.589376       54.589376         36       68       43.104524       43.104524       43.104524         36       69       36.796739       36.796739       36.796739         36       70       48.836462       48.836462       48.836462         36       71       35.777088       35.777088       35.777088         36       72       30.066593       30.066593       30.066593         36       73       20.396078       20.396078       20.396078         36       74       69.641941       69.641941       69.641941         36       75       80.212219       80.212219       80.212219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |            |            |            |  |
| 36       63       50.039984       50.039984       50.039984         36       64       65.030762       65.030762       65.030762         36       65       59.236813       59.236813       59.236813         36       66       55.217751       55.217751       55.217751         36       67       54.589376       54.589376       54.589376         36       68       43.104524       43.104524       43.104524         36       69       36.796739       36.796739       36.796739         36       70       48.836462       48.836462       48.836462         36       71       35.777088       35.777088       35.777088         36       72       30.066593       30.066593       30.066593         36       73       20.396078       20.396078       20.396078         36       74       69.641941       69.641941       69.641941         36       75       80.212219       80.212219       80.212219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |     |            |            |            |  |
| 36       64       65.030762       65.030762       65.030762         36       65       59.236813       59.236813       59.236813         36       66       55.217751       55.217751       55.217751         36       67       54.589376       54.589376       54.589376         36       68       43.104524       43.104524       43.104524         36       69       36.796739       36.796739       36.796739         36       70       48.836462       48.836462       48.836462         36       71       35.777088       35.777088       35.777088         36       72       30.066593       30.066593       30.066593         36       73       20.396078       20.396078       20.396078         36       74       69.641941       69.641941       69.641941         36       75       80.212219       80.212219       80.212219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |     |            |            |            |  |
| 36       65       59.236813       59.236813       59.236813         36       66       55.217751       55.217751       55.217751         36       67       54.589376       54.589376       54.589376         36       68       43.104524       43.104524       43.104524         36       69       36.796739       36.796739       36.796739         36       70       48.836462       48.836462       48.836462         36       71       35.777088       35.777088       35.777088         36       72       30.066593       30.066593       30.066593         36       73       20.396078       20.396078       20.396078         36       74       69.641941       69.641941       69.641941         36       75       80.212219       80.212219       80.212219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |            |            |            |  |
| 36       66       55.217751       55.217751       55.217751         36       67       54.589376       54.589376       54.589376         36       68       43.104524       43.104524       43.104524         36       69       36.796739       36.796739       36.796739         36       70       48.836462       48.836462       48.836462         36       71       35.777088       35.777088       35.777088         36       72       30.066593       30.066593       30.066593         36       73       20.396078       20.396078       20.396078         36       74       69.641941       69.641941       69.641941         36       75       80.212219       80.212219       80.212219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |            |            |            |  |
| 36       67       54.589376       54.589376       54.589376         36       68       43.104524       43.104524       43.104524         36       69       36.796739       36.796739       36.796739         36       70       48.836462       48.836462       48.836462         36       71       35.777088       35.777088       35.777088         36       72       30.066593       30.066593       30.066593         36       73       20.396078       20.396078       20.396078         36       74       69.641941       69.641941       69.641941         36       75       80.212219       80.212219       80.212219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | 65  | 59.236813  | 59.236813  | 59.236813  |  |
| 36       68       43.104524       43.104524       43.104524         36       69       36.796739       36.796739       36.796739         36       70       48.836462       48.836462       48.836462         36       71       35.777088       35.777088       35.777088         36       72       30.066593       30.066593       30.066593         36       73       20.396078       20.396078       20.396078         36       74       69.641941       69.641941       69.641941         36       75       80.212219       80.212219       80.212219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36 | 66  | 55.217751  | 55.217751  | 55.217751  |  |
| 36       68       43.104524       43.104524       43.104524         36       69       36.796739       36.796739       36.796739         36       70       48.836462       48.836462       48.836462         36       71       35.777088       35.777088       35.777088         36       72       30.066593       30.066593       30.066593         36       73       20.396078       20.396078       20.396078         36       74       69.641941       69.641941       69.641941         36       75       80.212219       80.212219       80.212219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36 | 67  | 54.589376  | 54.589376  | 54.589376  |  |
| 36       69       36.796739       36.796739       36.796739         36       70       48.836462       48.836462       48.836462         36       71       35.777088       35.777088       35.777088         36       72       30.066593       30.066593       30.066593         36       73       20.396078       20.396078       20.396078         36       74       69.641941       69.641941       69.641941         36       75       80.212219       80.212219       80.212219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |            |            |            |  |
| 36       70       48.836462       48.836462       48.836462         36       71       35.777088       35.777088       35.777088         36       72       30.066593       30.066593       30.066593         36       73       20.396078       20.396078       20.396078         36       74       69.641941       69.641941       69.641941         36       75       80.212219       80.212219       80.212219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |            |            |            |  |
| 36       71       35.777088       35.777088       35.777088         36       72       30.066593       30.066593       30.066593         36       73       20.396078       20.396078       20.396078         36       74       69.641941       69.641941       69.641941         36       75       80.212219       80.212219       80.212219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |     |            |            |            |  |
| 36       72       30.066593       30.066593       30.066593         36       73       20.396078       20.396078       20.396078         36       74       69.641941       69.641941       69.641941         36       75       80.212219       80.212219       80.212219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |     |            |            |            |  |
| 36       73       20.396078       20.396078       20.396078         36       74       69.641941       69.641941       69.641941         36       75       80.212219       80.212219       80.212219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |            |            |            |  |
| 36       74       69.641941       69.641941       69.641941         36       75       80.212219       80.212219       80.212219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |            |            |            |  |
| 36       75       80.212219       80.212219       80.212219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |     |            |            |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |            |            |            |  |
| 36 76 101.212647 101.212647 101.212647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |     |            |            |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36 | 76  | 101.212647 | 101.212647 | 101.212647 |  |

| 36 | 77       | 73.334848 | 73.334848 | 73.334848 |  |
|----|----------|-----------|-----------|-----------|--|
| 36 | 78       | 93.059121 | 93.059121 | 93.059121 |  |
| 36 | 79       | 65.741920 | 65.741920 | 65.741920 |  |
| 36 | 80       | 63.324561 | 63.324561 | 63.324561 |  |
| 36 | 81       | 42.941821 | 42.941821 | 42.941821 |  |
| 36 | 82       | 32.449961 | 32.449961 | 32.449961 |  |
| 36 | 83       | 58.000000 | 58.000000 | 58.000000 |  |
| 36 | 84       |           |           |           |  |
|    |          | 61.773781 | 61.773781 | 61.773781 |  |
| 36 | 85       | 56.885851 | 56.885851 | 56.885851 |  |
| 36 | 86       | 62.128898 | 62.128898 | 62.128898 |  |
| 36 | 87       | 76.400262 | 76.400262 | 76.400262 |  |
| 36 | 88       | 82.134037 | 82.134037 | 82.134037 |  |
| 36 | 89       | 50.774009 | 50.774009 | 50.774009 |  |
| 36 | 90       | 80.000000 | 80.000000 | 80.000000 |  |
| 36 | 91       | 48.414874 | 48.414874 | 48.414874 |  |
| 36 | 92       | 46.615448 | 46.615448 | 46.615448 |  |
| 36 | 93       | 44.271887 | 44.271887 | 44.271887 |  |
| 36 | 94       | 33.541020 | 33.541020 | 33.541020 |  |
| 36 | 95       | 38.327536 | 38.327536 | 38.327536 |  |
| 36 | 96       | 49.244289 | 49.244289 | 49.244289 |  |
| 36 | 97       | 33.241540 | 33.241540 | 33.241540 |  |
| 36 | 98       | 91.967386 | 91.967386 | 91.967386 |  |
| 36 | 99       | 52.630789 | 52.630789 | 52.630789 |  |
| 36 | 100      | 64.660653 | 64.660653 | 64.660653 |  |
| 36 | 101      | 40.249224 | 40.249224 | 40.249224 |  |
| 37 | 1        | 43.011626 | 43.011626 | 43.011626 |  |
| 37 | 2        | 40.000000 | 40.000000 | 40.000000 |  |
|    |          |           |           |           |  |
| 37 | 3        | 44.147480 | 44.147480 | 44.147480 |  |
| 37 | 4        | 43.000000 | 43.000000 | 43.000000 |  |
| 37 | 5        | 45.276926 | 45.276926 | 45.276926 |  |
| 37 | 6        | 45.000000 | 45.000000 | 45.000000 |  |
| 37 | 7        | 48.052055 | 48.052055 | 48.052055 |  |
| 37 | 8        | 50.990195 | 50.990195 | 50.990195 |  |
| 37 | 9        | 50.249378 | 50.249378 | 50.249378 |  |
| 37 | 10       | 74.330344 | 74.330344 | 74.330344 |  |
| 37 | 11       | 71.063352 | 71.063352 | 71.063352 |  |
| 37 | 12       | 72.622311 | 72.622311 | 72.622311 |  |
| 37 | 13       | 69.634761 | 69.634761 | 69.634761 |  |
| 37 | 14       | 78.102497 | 78.102497 | 78.102497 |  |
| 37 | 15       | 72.111026 | 72.111026 | 72.111026 |  |
| 37 | 16       | 77.420927 | 77.420927 | 77.420927 |  |
| 37 | 17       | 79.056942 | 79.056942 | 79.056942 |  |
| 37 | 18       | 76.321688 | 76.321688 | 76.321688 |  |
| 37 | 19       | 82.710338 | 82.710338 | 82.710338 |  |
| 37 | 20       | 78.447435 | 78.447435 | 78.447435 |  |
| 37 | 21       | 73.681748 | 73.681748 | 73.681748 |  |
| 37 | 22       | 83.815273 | 83.815273 | 83.815273 |  |
| 37 | 23       | 74.330344 | 74.330344 | 74.330344 |  |
| 37 |          | 84.433406 | 84.433406 |           |  |
|    | 24       |           |           | 84.433406 |  |
| 37 | 25       | 75.026662 | 75.026662 | 75.026662 |  |
| 37 | 26       | 85.440037 | 85.440037 | 85.440037 |  |
| 37 | 27       | 62.649820 | 62.649820 | 62.649820 |  |
| 37 | 28       | 58.309519 | 58.309519 | 58.309519 |  |
| 37 | 29       | 61.269895 | 61.269895 | 61.269895 |  |
| 37 | 30       | 55.901699 | 55.901699 | 55.901699 |  |
| 37 | 31       | 59.615434 | 59.615434 | 59.615434 |  |
| 37 | 32       | 55.036352 | 55.036352 | 55.036352 |  |
| 37 | 33       | 59.236813 | 59.236813 | 59.236813 |  |
| 37 | 34       | 63.245553 | 63.245553 | 63.245553 |  |
| 37 | 35       | 53.851648 | 53.851648 | 53.851648 |  |
| 37 | 36       | 2.000000  | 2.000000  | 2.000000  |  |
| 37 | 38       | 3.000000  | 3.000000  | 3.000000  |  |
| 37 | 39       | 5.830952  | 5.830952  | 5.830952  |  |
| 1  | <u> </u> | 0.00000   | 0.00000   |           |  |

| 37       | 40        | 7.071068               | 7.071068               | 7.071068               |
|----------|-----------|------------------------|------------------------|------------------------|
| 37       | 41        | 5.000000               | 5.000000               | 5.000000               |
| 37       | 42        | 12.206556              | 12.206556              | 12.206556              |
| 37       | 43        | 11.180340              | 11.180340              | 11.180340              |
| 37       | 44        | 10.000000              | 10.000000              | 10.000000              |
| 37       | 45        | 10.440307              | 10.440307              | 10.440307              |
| 37       | 46        | 45.099889              | 45.099889              | 45.099889              |
| 37       | 47        | 47.265209              | 47.265209              | 47.265209              |
| 37       | 48        | 74.625733              | 74.625733              | 74.625733              |
| 37       | 49        | 83.240615              | 83.240615              | 83.240615              |
| 37       | 50        | 76.537572              | 76.537572              | 76.537572              |
| 37       | 51        | 50.487622              | 50.487622              | 50.487622              |
| 37       | 52        | 65.764732              | 65.764732              | 65.764732              |
| 37       | 53        | 68.007353              | 68.007353              | 68.007353              |
| 37       | 54        | 57.008771              | 57.008771              | 57.008771              |
| 37       | 55        | 26.925824              | 26.925824              | 26.925824              |
| 37       | 56        | 43.011626              | 43.011626              | 43.011626              |
| 37       | 57        | 52.201533              | 52.201533              | 52.201533              |
| 37       | 58        | 69.462220              | 69.462220              | 69.462220              |
| 37       |           | 90.138782              | 90.138782              | 90.138782              |
| 37       | 59<br>60  | 90.138782<br>85.146932 | 90.138782<br>85.146932 | 90.138782<br>85.146932 |
| 37       |           |                        |                        |                        |
|          | 61        | 55.901699              | 55.901699              | 55.901699              |
| 37<br>37 | 62        | 28.284271              | 28.284271              | 28.284271              |
| 37       | 63<br>64  | 50.000000              | 50.000000<br>65.000000 | 50.000000<br>65.000000 |
|          |           | 65.000000              |                        |                        |
| 37       | 65        | 58.523500              | 58.523500              | 58.523500              |
| 37       | 66        | 54.083269              | 54.083269              | 54.083269              |
| 37       | 67        | 53.665631              | 53.665631              | 53.665631              |
| 37       | 68        | 43.011626              | 43.011626              | 43.011626              |
| 37       | 69        | 35.355339              | 35.355339              | 35.355339              |
| 37       | 70        | 47.381431              | 47.381431              | 47.381431              |
| 37       | 71        | 34.000000              | 34.000000              | 34.000000              |
| 37       | 72        | 30.000000              | 30.000000              | 30.000000              |
| 37       | 73        | 20.099751              | 20.099751              | 20.099751              |
| 37       | 74        | 67.779053              | 67.779053              | 67.779053              |
| 37       | 75        | 79.056942              | 79.056942              | 79.056942              |
| 37       | 76        | 100.000000             | 100.000000             | 100.000000             |
| 37       | 77        | 73.171033              | 73.171033              | 73.171033              |
| 37       | 78        | 92.130342              | 92.130342              | 92.130342              |
| 37       | 79        | 63.953108              | 63.953108              | 63.953108              |
| 37       | 80        | 61.400326              | 61.400326              | 61.400326              |
| 37       | 81        | 42.047592              | 42.047592              | 42.047592              |
| 37       | 82        | 31.384710              | 31.384710              | 31.384710              |
| 37       | 83        | 56.639209              | 56.639209              | 56.639209              |
| 37       | 84        | 60.827625              | 60.827625              | 60.827625              |
| 37       | 85        | 56.568542              | 56.568542              | 56.568542              |
| 37       | 86        | 62.032250              | 62.032250              | 62.032250              |
| 37       | 87        | 75.213031              | 75.213031              | 75.213031              |
| 37       | 88        | 80.808415              | 80.808415              | 80.808415              |
| 37       | 89        | 49.091751              | 49.091751              | 49.091751              |
| 37       | 90        | 80.024996              | 80.024996              | 80.024996              |
| 37       | 91        | 47.201695              | 47.201695              | 47.201695              |
| 37       | 92        | 45.880279              | 45.880279              | 45.880279              |
| 37       | 93        | 43.680659              | 43.680659              | 43.680659              |
| 37       | 94        | 33.241540              | 33.241540              | 33.241540              |
| 37       | 95        | 37.854986              | 37.854986              | 37.854986              |
| 37       | 96        | 48.836462              | 48.836462              | 48.836462              |
| 37       | 97        | 32.572995              | 32.572995              | 32.572995              |
| 37       | 98        | 90.609050              | 90.609050              | 90.609050              |
| 37<br>37 | 99<br>100 | 51.088159<br>63.411355 | 51.088159<br>63.411355 | 51.088159<br>63.411355 |
| 37       | 100       | 38.470768              | 38.470768              | 38.470768              |
| 38       | 101       | 40.607881              | 40.607881              | 40.607881              |
| 20       | 1         | 40.00/00T              | 40.00/00T              | 40.00100T              |

| 38       | 2        | 40.112342              | 40.112342              | 40.112342              |  |
|----------|----------|------------------------|------------------------|------------------------|--|
| 38       | 3        | 43.566042              | 43.566042              | 43.566042              |  |
| 38       | 4        | 43.104524              | 43.104524              | 43.104524              |  |
| 38       | 5        | 45.044423              | 45.044423              | 45.044423              |  |
| 38       | 6        | 45.099889              | 45.099889              | 45.099889              |  |
| 38       | 7        | 47.518417              | 47.518417              | 47.518417              |  |
| 38       | 8        | 50.487622              | 50.487622              | 50.487622              |  |
| 38       | 9        | 50.039984              | 50.039984              | 50.039984              |  |
| 38       | 10       | 72.346389              | 72.346389              | 72.346389              |  |
| 38       | 11       | 69.202601              | 69.202601              | 69.202601              |  |
| 38       | 12       | 70.802542              | 70.802542              | 70.802542              |  |
| 38<br>38 | 13<br>14 | 67.955868<br>76.216796 | 67.955868<br>76.216796 | 67.955868<br>76.216796 |  |
| 38       | 15       | 70.491134              | 70.491134              | 70.491134              |  |
| 38       | 16       | 75.716577              | 75.716577              | 75.716577              |  |
| 38       | 17       | 77.388630              | 77.388630              | 77.388630              |  |
| 38       | 18       | 74.793048              | 74.793048              | 74.793048              |  |
| 38       | 19       | 79.812280              | 79.812280              | 79.812280              |  |
| 38       | 20       | 75.584390              | 75.584390              | 75.584390              |  |
| 38       | 21       | 70.837843              | 70.837843              | 70.837843              |  |
| 38       | 22       | 80.956779              | 80.956779              | 80.956779              |  |
| 38       | 23       | 71.512237              | 71.512237              | 71.512237              |  |
| 38       | 24       | 81.596569              | 81.596569              | 81.596569              |  |
| 38       | 25       | 72.235725              | 72.235725              | 72.235725              |  |
| 38       | 26       | 82.637764              | 82.637764              | 82.637764              |  |
| 38       | 27       | 60.033324              | 60.033324              | 60.033324              |  |
| 38       | 28       | 55.758407              | 55.758407              | 55.758407              |  |
| 38       | 29       | 58.591808              | 58.591808              | 58.591808              |  |
| 38       | 30       | 53.235327              | 53.235327              | 53.235327              |  |
| 38       | 31       | 56.859476              | 56.859476              | 56.859476              |  |
| 38       | 32       | 52.325902              | 52.325902              | 52.325902              |  |
| 38       | 33       | 56.462377              | 56.462377              | 56.462377              |  |
| 38       | 34       | 60.406953              | 60.406953              | 60.406953              |  |
| 38       | 35       | 51.078371              | 51.078371              | 51.078371              |  |
| 38       | 36       | 3.605551               | 3.605551               | 3.605551               |  |
| 38       | 37       | 3.000000               | 3.000000               | 3.000000               |  |
| 38       | 39       | 3.605551               | 3.605551               | 3.605551               |  |
| 38       | 40       | 5.385165               | 5.385165               | 5.385165               |  |
| 38       | 41       | 5.830952               | 5.830952               | 5.830952               |  |
| 38       | 42       | 9.899495<br>10.198039  | 9.899495               | 9.899495               |  |
| 38       | 43<br>44 | 10.198039              | 10.198039<br>10.440307 | 10.198039<br>10.440307 |  |
| 38       | 45       | 10.440307              | 10.000000              | 10.440307              |  |
| 38       | 46       | 45.000000              | 45.000000              | 45.000000              |  |
| 38       | 47       | 47.042534              | 47.042534              | 47.042534              |  |
| 38       | 48       | 73.061618              | 73.061618              | 73.061618              |  |
| 38       | 49       | 80.361682              | 80.361682              | 80.361682              |  |
| 38       | 50       | 73.681748              | 73.681748              | 73.681748              |  |
| 38       | 51       | 47.518417              | 47.518417              | 47.518417              |  |
| 38       | 52       | 62.801274              | 62.801274              | 62.801274              |  |
| 38       | 53       | 65.604878              | 65.604878              | 65.604878              |  |
| 38       | 54       | 55.217751              | 55.217751              | 55.217751              |  |
| 38       | 55       | 24.166092              | 24.166092              | 24.166092              |  |
| 38       | 56       | 41.340053              | 41.340053              | 41.340053              |  |
| 38       | 57       | 49.335586              | 49.335586              | 49.335586              |  |
| 38       | 58       | 66.887966              | 66.887966              | 66.887966              |  |
| 38       | 59       | 87.658428              | 87.658428              | 87.658428              |  |
| 38       | 60       | 82.879430              | 82.879430              | 82.879430              |  |
| 38       | 61       | 54.626001              | 54.626001              | 54.626001              |  |
| 38       | 62       | 26.248809              | 26.248809              | 26.248809              |  |
| 38       | 63       | 47.000000              | 47.00000               | 47.000000              |  |
| 38       | 64       | 62.000000              | 62.000000              | 62.000000              |  |
| 38       | 65       | 55.713553              | 55.713553              | 55.713553              |  |

| 38 | 66  | 51.613952 | 51.613952 | 51.613952 |  |
|----|-----|-----------|-----------|-----------|--|
| 38 | 67  | 51.000000 | 51.000000 | 51.000000 |  |
| 38 | 68  | 40.012498 | 40.012498 | 40.012498 |  |
| 38 | 69  | 33.301652 | 33.301652 | 33.301652 |  |
| 38 | 70  | 45.343136 | 45.343136 | 45.343136 |  |
|    |     |           |           |           |  |
| 38 | 71  | 32.695565 | 32.695565 | 32.695565 |  |
| 38 | 72  | 27.000000 | 27.000000 | 27.000000 |  |
| 38 | 73  | 17.117243 | 17.117243 | 17.117243 |  |
| 38 | 74  | 66.730802 | 66.730802 | 66.730802 |  |
| 38 | 75  | 76.609399 | 76.609399 | 76.609399 |  |
| 38 | 76  | 97.616597 | 97.616597 | 97.616597 |  |
| 38 | 77  | 70.178344 | 70.178344 | 70.178344 |  |
| 38 | 78  | 89.470666 | 89.470666 | 89.470666 |  |
|    |     |           |           |           |  |
| 38 | 79  | 62.649820 | 62.649820 | 62.649820 |  |
| 38 | 80  | 60.638272 | 60.638272 | 60.638272 |  |
| 38 | 81  | 39.357337 | 39.357337 | 39.357337 |  |
| 38 | 82  | 28.844410 | 28.844410 | 28.844410 |  |
| 38 | 83  | 54.451814 | 54.451814 | 54.451814 |  |
| 38 | 84  | 58.180753 | 58.180753 | 58.180753 |  |
| 38 | 85  | 53.600373 | 53.600373 | 53.600373 |  |
| 38 | 86  | 59.033889 | 59.033889 | 59.033889 |  |
| 38 | 87  | 72.801099 | 72.801099 | 72.801099 |  |
|    |     |           |           |           |  |
| 38 | 88  | 78.568442 | 78.568442 | 78.568442 |  |
| 38 | 89  | 47.507894 | 47.507894 | 47.507894 |  |
| 38 | 90  | 77.025970 | 77.025970 | 77.025970 |  |
| 38 | 91  | 44.821870 | 44.821870 | 44.821870 |  |
| 38 | 92  | 43.081318 | 43.081318 | 43.081318 |  |
| 38 | 93  | 40.804412 | 40.804412 | 40.804412 |  |
| 38 | 94  | 30.265492 | 30.265492 | 30.265492 |  |
| 38 | 95  | 34.928498 | 34.928498 | 34.928498 |  |
| 38 | 96  | 45.891176 | 45.891176 | 45.891176 |  |
| 38 | 97  | 29.732137 | 29.732137 | 29.732137 |  |
|    |     |           |           |           |  |
| 38 | 98  | 88.413800 | 88.413800 | 88.413800 |  |
| 38 | 99  | 49.203658 | 49.203658 | 49.203658 |  |
| 38 | 100 | 61.073726 | 61.073726 | 61.073726 |  |
| 38 | 101 | 37.161808 | 37.161808 | 37.161808 |  |
| 39 | 1   | 37.202150 | 37.202150 | 37.202150 |  |
| 39 | 2   | 37.336309 | 37.336309 | 37.336309 |  |
| 39 | 3   | 40.311289 | 40.311289 | 40.311289 |  |
| 39 | 4   | 40.311289 | 40.311289 | 40.311289 |  |
| 39 | 5   | 42.000000 | 42.000000 | 42.000000 |  |
|    |     |           |           |           |  |
| 39 | 6   | 42.296572 | 42.296572 | 42.296572 |  |
| 39 | 7   | 44.283180 | 44.283180 | 44.283180 |  |
| 39 | 8   | 47.265209 | 47.265209 | 47.265209 |  |
| 39 | 9   | 47.000000 | 47.00000  | 47.000000 |  |
| 39 | 10  | 68.767725 | 68.767725 | 68.767725 |  |
| 39 | 11  | 65.604878 | 65.604878 | 65.604878 |  |
| 39 | 12  | 67.201190 | 67.201190 | 67.201190 |  |
| 39 | 13  | 64.350602 | 64.350602 | 64.350602 |  |
| 39 | 14  | 72.622311 | 72.622311 | 72.622311 |  |
| 39 | 15  | 66.887966 | 66.887966 | 66.887966 |  |
|    |     |           |           |           |  |
| 39 | 16  | 72.111026 | 72.111026 | 72.111026 |  |
| 39 | 17  | 73.783467 | 73.783467 | 73.783467 |  |
| 39 | 18  | 71.196910 | 71.196910 | 71.196910 |  |
| 39 | 19  | 77.129761 | 77.129761 | 77.129761 |  |
| 39 | 20  | 72.801099 | 72.801099 | 72.801099 |  |
| 39 | 21  | 68.007353 | 68.007353 | 68.007353 |  |
| 39 | 22  | 78.160092 | 78.160092 | 78.160092 |  |
| 39 | 23  | 68.622154 | 68.622154 | 68.622154 |  |
| 39 | 24  | 78.746428 | 78.746428 | 78.746428 |  |
| 39 |     | 69.289249 | 69.289249 | 69.289249 |  |
|    | 25  |           |           |           |  |
| 39 | 26  | 79.711982 | 79.711982 | 79.711982 |  |
| 39 | 27  | 59.908263 | 59.908263 | 59.908263 |  |

| 39 | 28         | 55.803226 | 55.803226 | 55.803226 |  |
|----|------------|-----------|-----------|-----------|--|
| 39 | 29         | 58.309519 | 58.309519 | 58.309519 |  |
| 39 | 30         | 53.000000 | 53.000000 | 53.000000 |  |
| 39 | 31         | 56.356011 | 56.356011 | 56.356011 |  |
| 39 | 32         | 51.971146 | 51.971146 | 51.971146 |  |
| 39 | 33         | 55.901699 | 55.901699 | 55.901699 |  |
| 39 | 34         | 59.615434 | 59.615434 | 59.615434 |  |
| 39 | 35         | 50.537115 | 50.537115 | 50.537115 |  |
| 39 | 36         | 7.071068  | 7.071068  | 7.071068  |  |
| 39 | 37         | 5.830952  | 5.830952  | 5.830952  |  |
| 39 | 38         | 3.605551  | 3.605551  | 3.605551  |  |
| 39 | 40         | 2.000000  | 2.000000  | 2.000000  |  |
|    |            |           |           |           |  |
| 39 | 41         | 5.385165  | 5.385165  | 5.385165  |  |
| 39 | 42         | 6.403124  | 6.403124  | 6.403124  |  |
| 39 | 43         | 7.000000  | 7.000000  | 7.000000  |  |
| 39 | 44         | 8.602325  | 8.602325  | 8.602325  |  |
| 39 | 45         | 7.280110  | 7.280110  | 7.280110  |  |
| 39 | 46         | 42.047592 | 42.047592 | 42.047592 |  |
| 39 | 47         | 44.000000 | 44.000000 | 44.000000 |  |
| 39 | 48         | 69.462220 | 69.462220 | 69.462220 |  |
| 39 | 49         | 77.620873 | 77.620873 | 77.620873 |  |
| 39 | 50         | 70.880181 | 70.880181 | 70.880181 |  |
| 39 | 51         | 46.097722 | 46.097722 | 46.097722 |  |
| 39 | 52         | 60.406953 | 60.406953 | 60.406953 |  |
| 39 | 53         | 62.201286 | 62.201286 | 62.201286 |  |
| 39 | 54         | 51.613952 | 51.613952 | 51.613952 |  |
| 39 | 55         | 21.189620 | 21.189620 | 21.189620 |  |
| 39 | 56         | 37.735925 | 37.735925 | 37.735925 |  |
| 39 | 57         | 46.572524 | 46.572524 | 46.572524 |  |
|    |            |           |           |           |  |
| 39 | 58         | 63.631753 | 63.631753 | 63.631753 |  |
| 39 | 59         | 84.314886 | 84.314886 | 84.314886 |  |
| 39 | 60         | 79.397733 | 79.397733 | 79.397733 |  |
| 39 | 61         | 51.078371 | 51.078371 | 51.078371 |  |
| 39 | 62         | 22.671568 | 22.671568 | 22.671568 |  |
| 39 | 63         | 45.099889 | 45.099889 | 45.099889 |  |
| 39 | 64         | 60.074953 | 60.074953 | 60.074953 |  |
| 39 | 65         | 52.810984 | 52.810984 | 52.810984 |  |
| 39 | 66         | 48.259714 | 48.259714 | 48.259714 |  |
| 39 | 67         | 47.853944 | 47.853944 | 47.853944 |  |
| 39 | 68         | 38.052595 | 38.052595 | 38.052595 |  |
| 39 | 69         | 29.732137 | 29.732137 | 29.732137 |  |
| 39 | 70         | 41.773197 | 41.773197 | 41.773197 |  |
| 39 | 71         | 29.154759 | 29.154759 | 29.154759 |  |
| 39 | 72         | 25.179357 | 25.179357 | 25.179357 |  |
| 39 | 73         | 15.033296 | 15.033296 | 15.033296 |  |
| 39 | 74         | 63.245553 | 63.245553 | 63.245553 |  |
| 39 | 75         | 73.239334 | 73.239334 | 73.239334 |  |
| 39 | 76         | 94.201911 | 94.201911 | 94.201911 |  |
| 39 | 77         | 68.029405 | 68.029405 | 68.029405 |  |
|    |            |           | 86.313383 |           |  |
| 39 | 78<br>70   | 86.313383 |           | 86.313383 |  |
| 39 | 79         | 59.093147 | 59.093147 | 59.093147 |  |
| 39 | 80         | 57.271284 | 57.271284 | 57.271284 |  |
| 39 | 81         | 36.249138 | 36.249138 | 36.249138 |  |
| 39 | 82         | 25.553865 | 25.553865 | 25.553865 |  |
| 39 | 83         | 50.931326 | 50.931326 | 50.931326 |  |
| 39 | 84         | 55.009090 | 55.009090 | 55.009090 |  |
| 39 | 85         | 51.244512 | 51.244512 | 51.244512 |  |
| 39 | 86         | 57.008771 | 57.008771 | 57.008771 |  |
| 39 | 87         | 69.404611 | 69.404611 | 69.404611 |  |
| 39 | 88         | 75.073298 | 75.073298 | 75.073298 |  |
| 39 | 89         | 43.908997 | 43.908997 | 43.908997 |  |
| 39 | 90         | 75.166482 | 75.166482 | 75.166482 |  |
| 39 | 91         | 41.400483 | 41.400483 | 41.400483 |  |
|    | <i>→</i> ± | 11.100103 | 11.100100 | 11.100103 |  |

| 99   93   38.078866   38.078866   38.078866   38.078866   39.9946   39.994   26.017851   28.017851   28.017851   39.9186   39.98269   32.388269   32.388269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.98269   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.982736   39.9 |    |    |           |           |           |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|-----------|-----------|-----------|--|
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39 | 92 | 40.162171 | 40.162171 | 40.162171 |  |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39 | 93 | 38.078866 | 38.078866 | 38.078866 |  |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39 | 94 | 28.017851 | 28.017851 | 28.017851 |  |
| 39   96   43.416587   43.416587   43.416587   39   97   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.925824   26.92582 |    | 95 | 32.388269 | 32.388269 | 32.388269 |  |
| 39   97   26,925824   26,925824   26,925824   28,9941   34,889941   34,889941   34,889941   39   39   48,889941   34,889941   39   39   48,889941   31,5607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   45,607017   46,007010   46,000000   46,000000   46,000000   46,000000   46,000000   46,000000   46,000000   46,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,000000   45,0000000   45,000000   45,000000   45,0000000   45,0000000   45,0000000   45,0000000   45,000 |    |    | 43.416587 | 43.416587 | 43.416587 |  |
| 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |    |           |           |           |  |
| 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |    |           |           |           |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |    |           |           |           |  |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |    |           |           |           |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |           |           |           |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |           |           |           |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40 |    |           |           |           |  |
| A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40 |    | 35.355339 | 35.355339 | 35.355339 |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40 | 3  | 38.327536 | 38.327536 | 38.327536 |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40 | 4  | 38.327536 | 38.327536 | 38.327536 |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40 | 5  | 40.000000 | 40.000000 | 40.000000 |  |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40 |    | 40.311289 | 40.311289 | 40.311289 |  |
| 40         8         45.276926         45.276926         45.00000         45.000000         45.000000           40         9         45.000000         45.000000         45.000000         45.000000           40         11         64.031242         64.031242         64.031242         64.031242           40         12         65.604878         65.604878         65.604878         65.604878         65.604878           40         14         71.063352         71.063352         71.063352         71.063352           40         15         65.192024         65.192024         65.192024         65.192024           40         16         70.455660         70.455660         70.455660         70.455660           40         17         72.111026         72.111026         72.111026         72.111026           40         19         76.687678         76.687678         76.687678         76.687678         76.687678           40         21         67.446275         67.446275         67.446275         67.446275           40         22         77.620873         77.620873         77.620873         77.620873           40         24         78.160092         78.160092         78.160092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |    |           |           |           |  |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |           |           |           |  |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |           |           |           |  |
| 40         11         64.031242         64.031242         63.04878         65.604878         65.604878         65.604878         65.604878         65.604878         65.604878         65.604878         65.604878         65.604878         65.604878         65.604878         65.604878         65.604878         65.604878         65.604878         65.604878         65.604878         71.063352         71.063352         71.063352         71.063352         71.063352         71.063352         71.063352         71.063352         71.063352         71.063352         71.063352         71.063352         71.063352         71.063352         71.063352         71.063352         71.063352         71.063352         71.063352         71.063352         71.063352         71.063352         71.063352         71.063352         71.063352         71.063552         71.063552         71.063552         71.063552         71.063552         71.063552         71.0656560         70.455660         70.455660         70.455660         70.455660         70.455660         70.455660         70.455660         70.11026         72.111026         72.111026         72.111026         72.111026         72.111026         72.111026         72.111026         72.111026         72.111026         72.111026         72.111026         72.111026         72.111026         72.111026 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |    |           |           |           |  |
| 40         12         65.604878         65.604878         65.604878           40         13         62.681736         62.681736         62.681736           40         14         71.063352         71.063352         71.063352           40         15         65.192024         65.192024         65.192024           40         16         70.455660         70.455660         70.455660           40         17         72.111026         72.111026         72.111026           40         18         69.462220         69.462220         69.462220           40         19         76.687678         76.687678         76.687678         76.687678           40         20         72.277244         72.277244         72.277244         72.277244           40         21         67.446275         67.446275         67.446275         67.446275           40         22         77.620873         77.620873         77.620873         77.620873           40         23         68.007353         68.007353         68.007353         68.007353           40         24         78.160092         78.160092         78.160092         78.160092           40         25         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |    |           |           |           |  |
| 40         13         62.681736         62.681736         62.681736         62.681736           40         14         71.063352         71.063352         71.063352         71.063352           40         16         65.192024         65.192024         65.192024         66.192024           40         16         70.455660         70.455660         70.455660         70.455660           40         17         72.111026         72.111026         72.111026         72.111026           40         18         69.462220         69.462220         69.462220         69.462220           40         19         76.687678         76.687678         76.687678         76.687678         76.687678           40         20         72.277244         72.277244         72.277244         72.277244           40         21         67.446275         67.446275         67.446275         67.446275           40         22         77.620873         77.620873         77.620873         77.620873           40         23         68.622154         68.622154         68.622154         68.622154         68.622154         68.622154         68.622154         68.622154         68.622154         68.622154         68.622154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |    |           |           |           |  |
| 40         14         71.063352         71.063352         71.063352           40         15         65.192024         65.192024         65.192024           40         16         70.455660         70.455660         70.455660           40         17         72.111026         72.111026         72.111026           40         18         69.462220         69.462220         69.462220           40         19         76.687678         76.687678         76.687678           40         20         72.277244         72.277244         72.277244           40         21         67.446275         67.446275         67.446275           40         22         77.620873         77.620873         77.620873           40         23         68.007353         68.007353         68.007353           40         24         78.160092         78.160092         78.160092           40         25         68.622154         68.622154         68.622154           40         26         79.056942         79.056942         79.056942         79.056942           40         27         61.032778         61.032778         61.032778         61.032778           40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |    |           |           |           |  |
| 40         15         65.192024         65.192024         65.192024           40         16         70.455660         70.455660         70.455660           40         17         72.111026         72.111026         72.111026           40         18         69.462220         69.462220         69.462220           40         19         76.68768         76.687678         76.687678           40         20         72.277244         72.277244         72.277244           40         21         67.446275         67.446275         67.446275           40         22         77.620873         77.620873         77.620873           40         23         68.007353         68.007353         68.007353           40         24         78.160092         78.160092         78.160092           40         25         68.622154         68.622154         68.622154           40         26         79.056942         79.056942         79.056942           40         27         61.032778         61.032778         61.032778           40         28         57.008771         57.008771         57.008771           40         30         54.083269         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40 | 13 | 62.681736 | 62.681736 | 62.681736 |  |
| 40         16         70.455660         70.455660         70.455660           40         17         72.111026         72.111026         72.111026           40         18         69.462220         69.462220         69.462220           40         19         76.687678         76.687678         76.687678           40         20         72.277244         72.277244         72.277244           40         21         67.446275         67.446275         67.446275           40         22         77.620873         77.620873         77.620873           40         23         68.007353         68.007353         68.007353           40         24         78.160092         78.160092         78.160092           40         25         68.622154         68.622154         68.622154           40         26         79.056942         79.056942         79.056942           40         27         61.032778         61.032778         61.032778           40         28         57.008771         57.008771         57.008771           40         29         59.363288         59.363288         59.363288           40         30         54.083269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40 | 14 | 71.063352 | 71.063352 | 71.063352 |  |
| 40         17         72.111026         72.111026         72.111026           40         18         69.462220         69.462220         69.462220           40         19         76.687678         76.687678         76.687678           40         20         72.277244         72.277244         72.277244           40         21         67.446275         67.446275         67.446275           40         22         77.620873         77.620873         77.620873           40         23         68.007353         68.007353         68.007353           40         24         78.160092         78.160092         78.160092           40         25         68.622154         68.622154         68.622154           40         26         79.056942         79.056942         79.056942           40         27         61.032778         61.032778         61.032778           40         28         57.008771         57.008771         57.008771           40         30         54.083269         54.083269         54.083269           40         31         57.306195         57.306195         57.306195           40         32         53.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40 | 15 | 65.192024 | 65.192024 | 65.192024 |  |
| 40         18         69.462220         69.462220         69.462220         40.46220         40.46220         40.20         76.687678         76.687678         76.687678         76.687678         76.687678         76.687678         76.687678         76.687678         76.687678         76.687678         76.687678         76.687678         76.687678         76.687678         76.687678         76.687678         76.687678         76.687678         76.687678         76.687678         76.687678         76.687678         76.687678         76.687678         76.687678         76.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         66.8003735         68.007355         68.007355         68.0073278         68.6023278         68.6023278         68.6023278         68.622154         68.622154         68.622154         68.622154         68.622154         68.622154         68.622154         68.622154         68.622154         68.622154         68.622154         69.6323278         61.032778         61.032778         61.032778         61.032778         61.032778         61.032778         61.032778 <td>40</td> <td>16</td> <td>70.455660</td> <td>70.455660</td> <td>70.455660</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40 | 16 | 70.455660 | 70.455660 | 70.455660 |  |
| 40         19         76.687678         76.687678         76.687678         70.687678         40         20         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277244         72.277243         60.4152083         68.00325         88.6022154         68.622154         68.622154         68.622154         68.622154         66.22154         40         26         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942 <td>40</td> <td>17</td> <td>72.111026</td> <td>72.111026</td> <td>72.111026</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40 | 17 | 72.111026 | 72.111026 | 72.111026 |  |
| 40         19         76.687678         76.687678         76.687678           40         20         72.277244         72.277244         72.277244           40         21         67.446275         67.446275         67.446275           40         22         77.620873         77.620873         77.620873           40         23         68.007353         68.007353         68.007353           40         24         78.160092         78.160092         78.160092           40         25         68.622154         68.622154         68.622154         68.622154           40         26         79.056942         79.056942         79.056942           40         27         61.032778         61.032778         61.032778           40         29         59.363288         59.363288         59.363288           40         30         54.083269         54.083269         54.083269           40         31         57.306195         57.306195         57.306195           40         32         53.000000         53.000000         53.000000           40         33         56.824291         56.824291         56.824291           40         34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40 | 18 | 69.462220 | 69.462220 | 69.462220 |  |
| 40         20         72.277244         72.277244         72.277244         40         21         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.446275         67.466273         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         77.620873         78.160092         78.160092         78.160092         78.160092         78.160092         78.160092         78.160092         78.160092         78.160092         78.160092         78.160092         78.160092         78.160092         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         79.056942         60.08215         79.056942         60.08215         79.056942         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |    |           |           |           |  |
| 40         21         67.446275         67.446275         67.446275           40         22         77.620873         77.620873         77.620873           40         23         68.007353         68.007353         68.007353           40         24         78.160092         78.160092         78.160092           40         25         68.622154         68.622154         68.622154           40         26         79.056942         79.056942         79.056942           40         27         61.032778         61.032778         61.032778           40         28         57.008771         57.008771         57.008771           40         29         59.363288         59.363288         59.363288           40         30         54.083269         54.083269         54.083269           40         31         57.306195         57.306195         57.306195           40         32         53.000000         53.000000         53.000000           40         33         56.824291         56.824291         56.824291           40         34         60.415230         60.415230         60.415230         60.415230           40         35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |    |           |           |           |  |
| 40         22         77.620873         77.620873         77.620873           40         23         68.007353         68.007353         68.007353           40         24         78.160092         78.160092         78.160092           40         25         68.622154         68.622154         68.622154           40         26         79.056942         79.056942         79.056942           40         27         61.032778         61.032778         61.032778           40         28         57.008771         57.008771         57.008771           40         29         59.363288         59.363288         59.363288           40         30         54.083269         54.083269         54.083269           40         31         57.306195         57.306195         57.306195           40         32         53.00000         53.00000         53.00000           40         33         56.824291         56.824291         56.824291           40         34         60.415230         60.415230         60.415230           40         35         51.478151         51.478151         51.478151           40         36         8.602325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |    |           |           |           |  |
| 40         23         68.007353         68.007353         68.007353           40         24         78.160092         78.160092         78.160092           40         25         68.622154         68.622154         68.622154           40         26         79.056942         79.056942         79.056942           40         27         61.032778         61.032778         61.032778           40         28         57.008771         57.008771         57.008771           40         29         59.363288         59.363288         59.363288           40         30         54.083269         54.083269         54.083269           40         31         57.306195         57.306195         57.306195           40         32         53.000000         53.000000         53.000000           40         33         56.824291         56.824291         56.824291           40         35         51.478151         51.478151         51.478151           40         36         8.602325         8.602325         8.602325           40         37         7.071068         7.071068         7.071068           40         39         2.000000         2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |           |           |           |  |
| 40         24         78.160092         78.160092         78.160092           40         25         68.622154         68.622154         68.622154           40         26         79.056942         79.056942         79.056942           40         27         61.032778         61.032778         61.032778           40         28         57.008771         57.008771         57.008771           40         29         59.363288         59.363288         59.363288           40         30         54.083269         54.083269         54.083269           40         31         57.306195         57.306195         57.306195           40         32         53.000000         53.000000         53.000000           40         33         56.824291         56.824291         56.824291           40         34         60.415230         60.415230         60.415230           40         35         51.478151         51.478151         51.478151           40         36         8.602325         8.602325         8.602325           40         37         7.071068         7.071068         7.071068           40         39         2.000000         2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |           |           |           |  |
| 40       25       68.622154       68.622154       68.622154         40       26       79.056942       79.056942       79.056942         40       27       61.032778       61.032778       61.032778         40       28       57.008771       57.008771       57.008771         40       29       59.363288       59.363288       59.363288         40       30       54.083269       54.083269       54.083269         40       31       57.306195       57.306195       57.306195         40       32       53.000000       53.000000       53.000000         40       33       56.824291       56.824291       56.824291         40       34       60.415230       60.415230       60.415230         40       35       51.478151       51.478151       51.478151         40       36       8.602325       8.602325       8.602325         40       37       7.071068       7.071068       7.071068         40       39       2.000000       2.000000       2.000000         40       41       5.00000       5.00000       5.00000         40       42       5.385165       5.385165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |    |           |           |           |  |
| 40       26       79.056942       79.056942       79.056942         40       27       61.032778       61.032778       61.032778         40       28       57.008771       57.008771       57.008771         40       29       59.363288       59.363288       59.363288         40       30       54.083269       54.083269       54.083269         40       31       57.306195       57.306195       57.306195         40       32       53.000000       53.000000       53.000000         40       33       56.824291       56.824291       56.824291         40       34       60.415230       60.415230       60.415230         40       35       51.478151       51.478151       51.478151         40       36       8.602325       8.602325       8.602325         40       37       7.071068       7.071068       7.071068         40       38       5.385165       5.385165       5.385165         40       39       2.000000       5.00000       5.000000         40       41       5.00000       5.00000       5.000000         40       42       5.385165       5.385165 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |    |           |           |           |  |
| 40         27         61.032778         61.032778         61.032778           40         28         57.008771         57.008771         57.008771           40         29         59.363288         59.363288         59.363288           40         30         54.083269         54.083269         54.083269           40         31         57.306195         57.306195         57.306195           40         32         53.000000         53.000000         53.000000           40         33         56.824291         56.824291         56.824291           40         34         60.415230         60.415230         60.415230           40         35         51.478151         51.478151         51.478151           40         36         8.602325         8.602325         8.602325           40         37         7.071068         7.071068         7.071068           40         39         2.000000         2.000000         2.000000           40         41         5.000000         5.000000         5.000000           40         42         5.385165         5.385165         5.385165           40         43         5.000000         5.000000 <td>40</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40 |    |           |           |           |  |
| 40         28         57.008771         57.008771         57.008771           40         29         59.363288         59.363288         59.363288           40         30         54.083269         54.083269         54.083269           40         31         57.306195         57.306195         57.306195           40         32         53.000000         53.000000         53.000000           40         33         56.824291         56.824291         56.824291           40         34         60.415230         60.415230         60.415230           40         35         51.478151         51.478151         51.478151           40         36         8.602325         8.602325         8.602325           40         37         7.071068         7.071068         7.071068           40         39         2.000000         2.000000         2.000000           40         41         5.000000         5.000000         5.000000           40         42         5.385165         5.385165         5.385165           40         43         5.000000         5.000000         5.000000           40         44         7.071068         7.071068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40 | 26 | 79.056942 | 79.056942 | 79.056942 |  |
| 40         29         59.363288         59.363288         59.363288           40         30         54.083269         54.083269         54.083269           40         31         57.306195         57.306195         57.306195           40         32         53.000000         53.000000         53.000000           40         33         56.824291         56.824291         56.824291           40         34         60.415230         60.415230         60.415230           40         35         51.478151         51.478151         51.478151           40         36         8.602325         8.602325         8.602325           40         37         7.071068         7.071068         7.071068           40         39         2.000000         2.000000         2.000000           40         41         5.000000         5.000000         5.000000           40         42         5.385165         5.385165         5.385165           40         43         5.000000         5.000000         5.000000           40         44         7.071068         7.071068         7.071068           40         45         5.385165         5.385165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40 | 27 | 61.032778 | 61.032778 | 61.032778 |  |
| 40       30       54.083269       54.083269       54.083269         40       31       57.306195       57.306195       57.306195         40       32       53.000000       53.000000       53.000000         40       33       56.824291       56.824291       56.824291         40       34       60.415230       60.415230       60.415230         40       35       51.478151       51.478151       51.478151         40       36       8.602325       8.602325       8.602325         40       37       7.071068       7.071068       7.071068         40       39       2.000000       2.000000       2.000000         40       41       5.000000       5.000000       5.000000         40       42       5.385165       5.385165       5.385165         40       43       5.000000       5.000000       5.000000         40       42       5.385165       5.385165       5.385165         40       43       5.000000       5.000000       5.000000         40       44       7.071068       7.071068       7.071068         40       45       5.385165       5.385165       5.385165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40 | 28 | 57.008771 | 57.008771 | 57.008771 |  |
| 40       31       57.306195       57.306195       57.306195         40       32       53.000000       53.000000       53.000000         40       33       56.824291       56.824291       56.824291         40       34       60.415230       60.415230       60.415230         40       35       51.478151       51.478151       51.478151         40       36       8.602325       8.602325       8.602325         40       37       7.071068       7.071068       7.071068         40       38       5.385165       5.385165       5.385165         40       39       2.000000       2.000000       2.000000         40       41       5.000000       5.000000       5.000000         40       42       5.385165       5.385165       5.385165         40       43       5.000000       5.000000       5.000000         40       44       7.071068       7.071068       7.071068         40       45       5.385165       5.385165       5.385165         40       46       40.049969       40.049969       40.049969         40       47       42.000000       42.000000       42.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40 | 29 | 59.363288 | 59.363288 | 59.363288 |  |
| 40       31       57.306195       57.306195       57.306195         40       32       53.000000       53.000000       53.000000         40       33       56.824291       56.824291       56.824291         40       34       60.415230       60.415230       60.415230         40       35       51.478151       51.478151       51.478151         40       36       8.602325       8.602325       8.602325         40       37       7.071068       7.071068       7.071068         40       38       5.385165       5.385165       5.385165         40       39       2.000000       2.000000       2.000000         40       41       5.000000       5.000000       5.000000         40       42       5.385165       5.385165       5.385165         40       43       5.000000       5.000000       5.000000         40       44       7.071068       7.071068       7.071068         40       45       5.385165       5.385165       5.385165         40       46       40.049969       40.049969       40.049969         40       47       42.000000       42.000000       42.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40 | 30 | 54.083269 | 54.083269 | 54.083269 |  |
| 40       32       53.000000       53.000000       53.000000         40       33       56.824291       56.824291       56.824291         40       34       60.415230       60.415230       60.415230         40       35       51.478151       51.478151       51.478151         40       36       8.602325       8.602325       8.602325         40       37       7.071068       7.071068       7.071068         40       38       5.385165       5.385165       5.385165         40       39       2.000000       2.000000       2.000000         40       41       5.000000       5.000000       5.000000         40       42       5.385165       5.385165       5.385165         40       43       5.000000       5.000000       5.000000         40       44       7.071068       7.071068       7.071068         40       45       5.385165       5.385165       5.385165         40       46       40.049969       40.049969       40.049969         40       47       42.000000       42.000000       42.000000         40       48       67.742158       67.742158       67.742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40 |    |           |           | 57.306195 |  |
| 40       33       56.824291       56.824291       56.824291         40       34       60.415230       60.415230       60.415230         40       35       51.478151       51.478151       51.478151         40       36       8.602325       8.602325       8.602325         40       37       7.071068       7.071068       7.071068         40       38       5.385165       5.385165       5.385165         40       39       2.000000       2.000000       2.000000         40       41       5.000000       5.000000       5.000000         40       42       5.385165       5.385165       5.385165         40       43       5.000000       5.000000       5.000000         40       44       7.071068       7.071068       7.071068         40       45       5.385165       5.385165       5.385165         40       46       40.049969       40.049969       40.049969         40       47       42.000000       42.000000       42.000000         40       48       67.742158       67.742158       67.742158         40       49       77.129761       77.129761       77.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |    |           |           |           |  |
| 40       34       60.415230       60.415230       60.415230         40       35       51.478151       51.478151       51.478151         40       36       8.602325       8.602325       8.602325         40       37       7.071068       7.071068       7.071068         40       38       5.385165       5.385165       5.385165         40       39       2.000000       2.000000       2.000000         40       41       5.000000       5.000000       5.000000         40       42       5.385165       5.385165       5.385165         40       43       5.000000       5.000000       5.000000         40       44       7.071068       7.071068       7.071068         40       45       5.385165       5.385165       5.385165         40       45       5.385165       5.385165       5.385165         40       46       40.049969       40.049969       40.049969         40       47       42.000000       42.000000       42.000000         40       48       67.742158       67.742158       67.742158         40       49       77.129761       77.129761       77.129761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |    |           |           |           |  |
| 40       35       51.478151       51.478151       51.478151         40       36       8.602325       8.602325       8.602325         40       37       7.071068       7.071068       7.071068         40       38       5.385165       5.385165       5.385165         40       39       2.000000       2.000000       2.000000         40       41       5.000000       5.000000       5.000000         40       42       5.385165       5.385165       5.385165         40       43       5.000000       5.000000       5.000000         40       44       7.071068       7.071068       7.071068         40       45       5.385165       5.385165       5.385165         40       46       40.049969       40.049969       40.049969         40       47       42.000000       42.000000       42.000000         40       48       67.742158       67.742158       67.742158         40       49       77.129761       77.129761       77.129761         40       50       70.342022       70.342022       70.342022         40       51       46.572524       46.572524       46.572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |    |           |           |           |  |
| 40       36       8.602325       8.602325       8.602325         40       37       7.071068       7.071068       7.071068         40       38       5.385165       5.385165       5.385165         40       39       2.000000       2.000000       2.000000         40       41       5.000000       5.000000       5.000000         40       42       5.385165       5.385165       5.385165         40       43       5.000000       5.000000       5.000000         40       44       7.071068       7.071068       7.071068         40       45       5.385165       5.385165       5.385165         40       46       40.049969       40.049969       40.049969         40       47       42.000000       42.000000       42.000000         40       48       67.742158       67.742158       67.742158         40       49       77.129761       77.129761       77.129761         40       50       70.342022       70.342022       70.342022         40       51       46.572524       46.572524       46.572524       46.572524         40       52       60.207973       60.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |    |           |           |           |  |
| 40       37       7.071068       7.071068       7.071068         40       38       5.385165       5.385165       5.385165         40       39       2.000000       2.000000       2.000000         40       41       5.000000       5.000000       5.000000         40       42       5.385165       5.385165       5.385165         40       43       5.000000       5.000000       5.000000         40       44       7.071068       7.071068       7.071068         40       45       5.385165       5.385165       5.385165         40       46       40.049969       40.049969       40.049969         40       47       42.000000       42.000000       42.000000         40       48       67.742158       67.742158       67.742158         40       49       77.129761       77.129761       77.129761         40       50       70.342022       70.342022       70.342022         40       51       46.572524       46.572524       46.572524         40       52       60.207973       60.207973       60.207973         40       53       61.032778       61.032778       61.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |    |           |           |           |  |
| 40       38       5.385165       5.385165       5.385165         40       39       2.000000       2.000000       2.000000         40       41       5.000000       5.000000       5.000000         40       42       5.385165       5.385165       5.385165         40       43       5.000000       5.000000       5.000000         40       44       7.071068       7.071068       7.071068         40       45       5.385165       5.385165       5.385165         40       46       40.049969       40.049969       40.049969         40       47       42.000000       42.000000       42.000000         40       48       67.742158       67.742158       67.742158         40       49       77.129761       77.129761       77.129761         40       50       70.342022       70.342022       70.342022         40       51       46.572524       46.572524       46.572524         40       52       60.207973       60.207973       60.207973         40       53       61.032778       61.032778       61.032778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |    |           |           |           |  |
| 40       39       2.000000       2.000000       2.000000         40       41       5.000000       5.000000       5.000000         40       42       5.385165       5.385165       5.385165         40       43       5.000000       5.000000       5.000000         40       44       7.071068       7.071068       7.071068         40       45       5.385165       5.385165       5.385165         40       46       40.049969       40.049969       40.049969         40       47       42.000000       42.000000       42.000000         40       48       67.742158       67.742158       67.742158         40       49       77.129761       77.129761       77.129761         40       50       70.342022       70.342022       70.342022         40       51       46.572524       46.572524       46.572524         40       52       60.207973       60.207973       60.207973         40       53       61.032778       61.032778       61.032778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |    |           |           |           |  |
| 40       41       5.000000       5.000000       5.000000         40       42       5.385165       5.385165       5.385165         40       43       5.000000       5.000000       5.000000         40       44       7.071068       7.071068       7.071068         40       45       5.385165       5.385165       5.385165         40       46       40.049969       40.049969       40.049969         40       47       42.000000       42.000000       42.000000         40       48       67.742158       67.742158       67.742158         40       49       77.129761       77.129761       77.129761         40       50       70.342022       70.342022       70.342022         40       51       46.572524       46.572524       46.572524         40       52       60.207973       60.207973       60.207973         40       53       61.032778       61.032778       61.032778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |    |           |           |           |  |
| 40       42       5.385165       5.385165       5.385165         40       43       5.000000       5.000000       5.000000         40       44       7.071068       7.071068       7.071068         40       45       5.385165       5.385165       5.385165         40       46       40.049969       40.049969       40.049969         40       47       42.000000       42.000000       42.000000         40       48       67.742158       67.742158       67.742158         40       49       77.129761       77.129761       77.129761         40       50       70.342022       70.342022       70.342022         40       51       46.572524       46.572524       46.572524         40       52       60.207973       60.207973       60.207973         40       53       61.032778       61.032778       61.032778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |    |           |           |           |  |
| 40       43       5.000000       5.000000       5.000000         40       44       7.071068       7.071068       7.071068         40       45       5.385165       5.385165       5.385165         40       46       40.049969       40.049969       40.049969         40       47       42.000000       42.000000       42.000000         40       48       67.742158       67.742158       67.742158         40       49       77.129761       77.129761       77.129761         40       50       70.342022       70.342022       70.342022         40       51       46.572524       46.572524       46.572524         40       52       60.207973       60.207973       60.207973         40       53       61.032778       61.032778       61.032778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |    | 5.00000   | 5.000000  | 5.000000  |  |
| 40       44       7.071068       7.071068       7.071068         40       45       5.385165       5.385165       5.385165         40       46       40.049969       40.049969       40.049969         40       47       42.000000       42.000000       42.000000         40       48       67.742158       67.742158       67.742158         40       49       77.129761       77.129761       77.129761         40       50       70.342022       70.342022       70.342022         40       51       46.572524       46.572524       46.572524         40       52       60.207973       60.207973       60.207973         40       53       61.032778       61.032778       61.032778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40 | 42 | 5.385165  | 5.385165  | 5.385165  |  |
| 40       45       5.385165       5.385165       5.385165         40       46       40.049969       40.049969       40.049969         40       47       42.000000       42.000000       42.000000         40       48       67.742158       67.742158       67.742158         40       49       77.129761       77.129761       77.129761         40       50       70.342022       70.342022       70.342022         40       51       46.572524       46.572524       46.572524         40       52       60.207973       60.207973       60.207973         40       53       61.032778       61.032778       61.032778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40 | 43 | 5.00000   | 5.000000  | 5.00000   |  |
| 40       45       5.385165       5.385165       5.385165         40       46       40.049969       40.049969       40.049969         40       47       42.000000       42.000000       42.000000         40       48       67.742158       67.742158       67.742158         40       49       77.129761       77.129761       77.129761         40       50       70.342022       70.342022       70.342022         40       51       46.572524       46.572524       46.572524         40       52       60.207973       60.207973       60.207973         40       53       61.032778       61.032778       61.032778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40 | 44 | 7.071068  | 7.071068  | 7.071068  |  |
| 40       46       40.049969       40.049969       40.049969         40       47       42.000000       42.000000       42.000000         40       48       67.742158       67.742158       67.742158         40       49       77.129761       77.129761       77.129761         40       50       70.342022       70.342022       70.342022         40       51       46.572524       46.572524       46.572524         40       52       60.207973       60.207973       60.207973         40       53       61.032778       61.032778       61.032778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40 | 45 | 5.385165  | 5.385165  | 5.385165  |  |
| 40       47       42.000000       42.000000       42.000000         40       48       67.742158       67.742158       67.742158         40       49       77.129761       77.129761       77.129761         40       50       70.342022       70.342022       70.342022         40       51       46.572524       46.572524       46.572524         40       52       60.207973       60.207973       60.207973         40       53       61.032778       61.032778       61.032778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |    |           |           |           |  |
| 40       48       67.742158       67.742158       67.742158         40       49       77.129761       77.129761       77.129761         40       50       70.342022       70.342022       70.342022         40       51       46.572524       46.572524       46.572524         40       52       60.207973       60.207973       60.207973         40       53       61.032778       61.032778       61.032778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |    |           |           |           |  |
| 40       49       77.129761       77.129761       77.129761         40       50       70.342022       70.342022       70.342022         40       51       46.572524       46.572524       46.572524         40       52       60.207973       60.207973       60.207973         40       53       61.032778       61.032778       61.032778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |    |           |           |           |  |
| 40       50       70.342022       70.342022       70.342022         40       51       46.572524       46.572524       46.572524         40       52       60.207973       60.207973       60.207973         40       53       61.032778       61.032778       61.032778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    |           |           |           |  |
| 40       51       46.572524       46.572524       46.572524         40       52       60.207973       60.207973       60.207973         40       53       61.032778       61.032778       61.032778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |    |           |           |           |  |
| 40       52       60.207973       60.207973       60.207973         40       53       61.032778       61.032778       61.032778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |    |           |           |           |  |
| 40 53 61.032778 61.032778 61.032778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |    |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |    |           |           |           |  |
| IAO EA EO 000000 EO 000000 FO 000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |    |           |           |           |  |
| 40 54 50.000000 50.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40 | 54 | 50.000000 | 50.000000 | 50.000000 |  |

| 40 | 55  | 20.615528 | 20.615528 | 20.615528 |  |
|----|-----|-----------|-----------|-----------|--|
| 40 | 56  | 36.055513 | 36.055513 | 36.055513 |  |
| 40 | 57  | 46.097722 | 46.097722 | 46.097722 |  |
|    |     |           |           |           |  |
| 40 | 58  | 62.649820 | 62.649820 | 62.649820 |  |
| 40 | 59  | 83.216585 | 83.216585 | 83.216585 |  |
| 40 | 60  | 78.102497 | 78.102497 | 78.102497 |  |
| 40 | 61  | 49.244289 | 49.244289 | 49.244289 |  |
| 40 | 62  | 21.213203 | 21.213203 | 21.213203 |  |
| 40 | 63  | 45.276926 | 45.276926 | 45.276926 |  |
| 40 | 64  | 60.207973 | 60.207973 | 60.207973 |  |
| 40 | 65  | 52.201533 | 52.201533 | 52.201533 |  |
| 40 | 66  | 47.169906 | 47.169906 | 47.169906 |  |
|    |     |           |           |           |  |
| 40 | 67  | 47.010637 | 47.010637 | 47.010637 |  |
| 40 | 68  | 38.209946 | 38.209946 | 38.209946 |  |
| 40 | 69  | 28.284271 | 28.284271 | 28.284271 |  |
| 40 | 70  | 40.311289 | 40.311289 | 40.311289 |  |
| 40 | 71  | 27.313001 | 27.313001 | 27.313001 |  |
| 40 | 72  | 25.495098 | 25.495098 | 25.495098 |  |
| 40 | 73  | 15.297059 | 15.297059 | 15.297059 |  |
| 40 | 74  | 61.351447 | 61.351447 | 61.351447 |  |
|    | 75  | 72.111026 | 72.111026 | 72.111026 |  |
| 40 |     |           |           |           |  |
| 40 | 76  | 93.005376 | 93.005376 | 93.005376 |  |
| 40 | 77  | 68.000000 | 68.000000 | 68.000000 |  |
| 40 | 78  | 85.428333 | 85.428333 | 85.428333 |  |
| 40 | 79  | 57.271284 | 57.271284 | 57.271284 |  |
| 40 | 80  | 55.317267 | 55.317267 | 55.317267 |  |
| 40 | 81  | 35.468296 | 35.468296 | 35.468296 |  |
| 40 | 82  | 24.596748 | 24.596748 | 24.596748 |  |
| 40 | 83  | 49.578221 | 49.578221 | 49.578221 |  |
|    |     | 54.129474 | 54.129474 | 54.129474 |  |
| 40 | 84  |           |           |           |  |
| 40 | 85  | 51.088159 | 51.088159 | 51.088159 |  |
| 40 | 86  | 57.078893 | 57.078893 | 57.078893 |  |
| 40 | 87  | 68.242216 | 68.242216 | 68.242216 |  |
| 40 | 88  | 73.756356 | 73.756356 | 73.756356 |  |
| 40 | 89  | 42.190046 | 42.190046 | 42.190046 |  |
| 40 | 90  | 75.325958 | 75.325958 | 75.325958 |  |
| 40 | 91  | 40.224371 | 40.224371 | 40.224371 |  |
| 40 | 92  | 39.560081 | 39.560081 | 39.560081 |  |
| 40 | 93  | 37.656341 | 37.656341 | 37.656341 |  |
|    |     |           |           |           |  |
| 40 | 94  | 28.017851 | 28.017851 | 28.017851 |  |
| 40 | 95  | 32.140317 | 32.140317 | 32.140317 |  |
| 40 | 96  | 43.185646 | 43.185646 | 43.185646 |  |
| 40 | 97  | 26.476405 | 26.476405 | 26.476405 |  |
| 40 | 98  | 83.546394 | 83.546394 | 83.546394 |  |
| 40 | 99  | 44.045431 | 44.045431 | 44.045431 |  |
| 40 | 100 | 56.400355 | 56.400355 | 56.400355 |  |
| 40 | 101 | 31.780497 | 31.780497 | 31.780497 |  |
| 41 | 1   | 40.311289 | 40.311289 | 40.311289 |  |
| 41 |     | 35.000000 | 35.000000 | 35.000000 |  |
|    | 2   |           |           |           |  |
| 41 | 3   | 39.293765 | 39.293765 | 39.293765 |  |
| 41 | 4   | 38.000000 | 38.000000 | 38.000000 |  |
| 41 | 5   | 40.311289 | 40.311289 | 40.311289 |  |
| 41 | 6   | 40.00000  | 40.000000 | 40.00000  |  |
| 41 | 7   | 43.174066 | 43.174066 | 43.174066 |  |
| 41 | 8   | 46.097722 | 46.097722 | 46.097722 |  |
| 41 | 9   | 45.276926 | 45.276926 | 45.276926 |  |
| 41 | 10  | 70.710678 | 70.710678 | 70.710678 |  |
| 41 | 11  | 67.268120 | 67.268120 | 67.268120 |  |
|    |     |           |           |           |  |
| 41 | 12  | 68.767725 | 68.767725 | 68.767725 |  |
| 41 | 13  | 65.604878 | 65.604878 | 65.604878 |  |
| 41 | 14  | 74.330344 | 74.330344 | 74.330344 |  |
| 41 | 15  | 68.007353 | 68.007353 | 68.007353 |  |
| 41 | 16  | 73.409809 | 73.409809 | 73.409809 |  |
| L  |     |           |           |           |  |

| 41 | 17       | 75.000000 | 75.000000 | 75.000000 |  |
|----|----------|-----------|-----------|-----------|--|
| 41 | 18       | 72.111026 | 72.111026 | 72.111026 |  |
| 41 | 19       | 81.584312 | 81.584312 | 81.584312 |  |
| 41 | 20       | 77.129761 | 77.129761 | 77.129761 |  |
| 41 | 21       | 72.277244 | 72.277244 | 72.277244 |  |
|    |          |           |           |           |  |
| 41 | 22       | 82.462113 | 82.462113 | 82.462113 |  |
| 41 | 23       | 72.801099 | 72.801099 | 72.801099 |  |
| 41 | 24       | 82.969874 | 82.969874 | 82.969874 |  |
| 41 | 25       | 73.375745 | 73.375745 | 73.375745 |  |
| 41 | 26       | 83.815273 | 83.815273 | 83.815273 |  |
| 41 | 27       | 65.192024 | 65.192024 | 65.192024 |  |
| 41 | 28       | 61.032778 | 61.032778 | 61.032778 |  |
| 41 | 29       | 63.631753 | 63.631753 | 63.631753 |  |
| 41 |          |           |           |           |  |
|    | 30       | 58.309519 | 58.309519 | 58.309519 |  |
| 41 | 31       | 61.717096 | 61.717096 | 61.717096 |  |
| 41 | 32       | 57.306195 | 57.306195 | 57.306195 |  |
| 41 | 33       | 61.269895 | 61.269895 | 61.269895 |  |
| 41 | 34       | 65.000000 | 65.00000  | 65.000000 |  |
| 41 | 35       | 55.901699 | 55.901699 | 55.901699 |  |
| 41 | 36       | 7.000000  | 7.000000  | 7.000000  |  |
| 41 | 37       | 5.000000  | 5.00000   | 5.000000  |  |
| 41 | 38       | 5.830952  | 5.830952  | 5.830952  |  |
| 41 | 39       | 5.385165  | 5.385165  | 5.385165  |  |
|    |          |           |           |           |  |
| 41 | 40       | 5.000000  | 5.00000   | 5.000000  |  |
| 41 | 42       | 10.198039 | 10.198039 | 10.198039 |  |
| 41 | 43       | 7.071068  | 7.071068  | 7.071068  |  |
| 41 | 44       | 5.000000  | 5.000000  | 5.000000  |  |
| 41 | 45       | 5.830952  | 5.830952  | 5.830952  |  |
| 41 | 46       | 40.112342 | 40.112342 | 40.112342 |  |
| 41 | 47       | 42.296572 | 42.296572 | 42.296572 |  |
| 41 | 48       | 70.455660 | 70.455660 | 70.455660 |  |
| 41 | 49       | 82.000000 | 82.00000  | 82.000000 |  |
|    |          |           |           |           |  |
| 41 | 50       | 75.186435 | 75.186435 | 75.186435 |  |
| 41 | 51       | 51.419841 | 51.419841 | 51.419841 |  |
| 41 | 52       | 65.192024 | 65.192024 | 65.192024 |  |
| 41 | 53       | 65.192024 | 65.192024 | 65.192024 |  |
| 41 | 54       | 53.150729 | 53.150729 | 53.150729 |  |
| 41 | 55       | 25.495098 | 25.495098 | 25.495098 |  |
| 41 | 56       | 39.051248 | 39.051248 | 39.051248 |  |
| 41 | 57       | 50.990195 | 50.990195 | 50.990195 |  |
| 41 | 58       | 67.082039 | 67.082039 | 67.082039 |  |
| 41 | 59       | 87.464278 | 87.464278 | 87.464278 |  |
|    |          |           |           |           |  |
| 41 | 60       | 82.006097 | 82.006097 | 82.006097 |  |
| 41 | 61       | 51.478151 | 51.478151 | 51.478151 |  |
| 41 | 62       | 25.000000 | 25.000000 | 25.000000 |  |
| 41 | 63       | 50.249378 | 50.249378 | 50.249378 |  |
| 41 | 64       | 65.192024 | 65.192024 | 65.192024 |  |
| 41 | 65       | 57.008771 | 57.008771 | 57.008771 |  |
| 41 | 66       | 51.478151 | 51.478151 | 51.478151 |  |
| 41 | 67       | 51.623638 | 51.623638 | 51.623638 |  |
| 41 | 68       | 43.185646 | 43.185646 | 43.185646 |  |
| 41 | 69       | 32.015621 | 32.015621 | 32.015621 |  |
|    |          |           |           |           |  |
| 41 | 70       | 43.931765 | 43.931765 | 43.931765 |  |
| 41 | 71       | 29.681644 | 29.681644 | 29.681644 |  |
| 41 | 72       | 30.413813 | 30.413813 | 30.413813 |  |
| 41 | 73       | 20.223748 | 20.223748 | 20.223748 |  |
| 41 | 74       | 63.158531 | 63.158531 | 63.158531 |  |
| 41 | 75       | 76.321688 | 76.321688 | 76.321688 |  |
| 41 | 76       | 97.082439 | 97.082439 | 97.082439 |  |
| 41 | 77       | 73.000000 | 73.000000 | 73.000000 |  |
| 41 | 78       | 89.961103 | 89.961103 | 89.961103 |  |
| 41 | 78<br>79 |           | 59.539903 | 59.539903 |  |
|    |          | 59.539903 |           |           |  |
| 41 | 80       | 56.612719 | 56.612719 | 56.612719 |  |

| 41 | 81  | 40.162171 | 40.162171 | 40.162171 |
|----|-----|-----------|-----------|-----------|
| 41 | 82  | 29.154759 | 29.154759 | 29.154759 |
| 41 | 83  | 53.413481 | 53.413481 | 53.413481 |
| 41 | 84  | 58.694122 | 58.694122 | 58.694122 |
| 41 | 85  | 56.080300 | 56.080300 | 56.080300 |
| 41 | 86  | 62.072538 | 62.072538 | 62.072538 |
| 41 | 87  | 72.401657 | 72.401657 | 72.401657 |
| 41 | 88  | 77.620873 | 77.620873 | 77.620873 |
|    |     |           |           |           |
| 41 | 89  | 45.000000 | 45.000000 | 45.000000 |
| 41 | 90  | 80.305666 | 80.305666 | 80.305666 |
| 41 | 91  | 44.418465 | 44.418465 | 44.418465 |
| 41 | 92  | 44.384682 | 44.384682 | 44.384682 |
| 41 | 93  | 42.579338 | 42.579338 | 42.579338 |
| 41 | 94  | 33.015148 | 33.015148 | 33.015148 |
| 41 | 95  | 37.121422 | 37.121422 | 37.121422 |
| 41 | 96  | 48.166378 | 48.166378 | 48.166378 |
| 41 | 97  | 31.400637 | 31.400637 | 31.400637 |
| 41 | 98  | 87.321246 | 87.321246 | 87.321246 |
| 41 | 99  | 47.381431 | 47.381431 | 47.381431 |
| 41 | 100 | 60.464866 | 60.464866 | 60.464866 |
| 41 | 101 | 34.132096 | 34.132096 | 34.132096 |
| 42 | 1   | 30.805844 | 30.805844 | 30.805844 |
| 42 | 2   | 34.481879 | 34.481879 | 34.481879 |
| 42 | 3   | 36.000000 | 36.000000 | 36.000000 |
| 42 | 4   | 37.363083 | 37.363083 | 37.363083 |
| 42 | 5   | 38.327536 | 38.327536 | 38.327536 |
| 42 | 6   | 39.293765 | 39.293765 | 39.293765 |
| 42 | 7   | 40.000000 | 40.000000 | 40.000000 |
|    |     |           |           |           |
| 42 | 8   | 43.000000 | 43.000000 | 43.000000 |
| 42 | 9   | 43.289722 | 43.289722 | 43.289722 |
| 42 | 10  | 62.481997 | 62.481997 | 62.481997 |
| 42 | 11  | 59.405387 | 59.405387 | 59.405387 |
| 42 | 12  | 61.032778 | 61.032778 | 61.032778 |
| 42 | 13  | 58.309519 | 58.309519 | 58.309519 |
| 42 | 14  | 66.400301 | 66.400301 | 66.400301 |
| 42 | 15  | 60.901560 | 60.901560 | 60.901560 |
| 42 | 16  | 66.037868 | 66.037868 | 66.037868 |
| 42 | 17  | 67.742158 | 67.742158 | 67.742158 |
| 42 | 18  | 65.299311 | 65.299311 | 65.299311 |
| 42 | 19  | 71.386273 | 71.386273 | 71.386273 |
| 42 | 20  | 66.940272 | 66.940272 | 66.940272 |
| 42 | 21  | 62.096699 | 62.096699 | 62.096699 |
| 42 | 22  | 72.277244 | 72.277244 | 72.277244 |
| 42 | 23  | 62.641839 | 62.641839 | 62.641839 |
| 42 | 24  | 72.801099 | 72.801099 | 72.801099 |
| 42 | 25  | 63.245553 | 63.245553 | 63.245553 |
| 42 | 26  | 73.681748 | 73.681748 | 73.681748 |
| 42 | 27  | 58.258047 | 58.258047 | 58.258047 |
| 42 |     | 54.488531 | 54.488531 |           |
|    | 28  |           |           | 54.488531 |
| 42 | 29  | 56.400355 | 56.400355 | 56.400355 |
| 42 | 30  | 51.224994 | 51.224994 | 51.224994 |
| 42 | 31  | 54.083269 | 54.083269 | 54.083269 |
| 42 | 32  | 50.000000 | 50.000000 | 50.00000  |
| 42 | 33  | 53.535035 | 53.535035 | 53.535035 |
| 42 | 34  | 56.824291 | 56.824291 | 56.824291 |
| 42 | 35  | 48.259714 | 48.259714 | 48.259714 |
| 42 | 36  | 13.453624 | 13.453624 | 13.453624 |
| 42 | 37  | 12.206556 | 12.206556 | 12.206556 |
| 42 | 38  | 9.899495  | 9.899495  | 9.899495  |
| 42 | 39  | 6.403124  | 6.403124  | 6.403124  |
| 42 | 40  | 5.385165  | 5.385165  | 5.385165  |
| 42 | 41  | 10.198039 | 10.198039 | 10.198039 |
| 42 | 43  | 5.830952  | 5.830952  | 5.830952  |
|    |     |           |           |           |

```
42
                    44
                                                                                                           10.440307
                                       10.440307
                                                                         10.440307
42
                    45
                                       7.615773
                                                                       7.615773
                                                                                                       7.615773
42
                    46
                                       38.639358
                                                                         38.639358
                                                                                                           38.639358
42 • http://enl.wikipedia.org/w3ki/178/9icle_routing_orable289
                                                                                                           40.311289
                    48
                                       63.529521
                                                                         63.529521
                                                                                                           63.529521
                    49
                                                                         71.805292
                                                                                                           71.805292
                                       71.805292
Introduction 0
                                       65.000000
                                                                         65.000000
                                                                                                           65.000000
                                        42.379240
                                                                         42.379240
                                                                                                           42.379240
♥enicle Routing Problems ♥kPate NtP-hard optimization problem, it generalises the travelling salesman problem
                                                                                                           55.803226
                                        55.803226
                                                                         55.803226
(FSP).
                   54
                                       45.486262
                                                                         45.486262
                                                                                                           45.486262
• The objective of the VRP2is7to5minimize the1total970te9cost.
                                                                                                          15,297059
     • There \underset{5}{\overset{56}{\text{are}}} several variants, 92 the VRP problem, 792156
                                                                                                           31.764760
                                                                                                           40.792156
pgRouting does not try to implement all variants. 306195
                                                                                                           57.306195
                   59
                                        77.935871
                                                                         77.935871
                                                                                                           77.935871
42
                    60
                                       73.000000
                                                                         73.000000
                                                                                                           73.000000
Characteristics
                                       45.541190
                                                                         45.541190
                                                                                                           45.541190
42
                    62
                                       16.401219
                                                                         16.401219
                                                                                                           16.401219
     • Capacitated Vehicle Routing Problem CVRP_{5}^{40.607881} ecoblem CVRP_{5}^{40.607881} ecoblem CVRP_{5}^{40.607881} ecoblem CVRP_{5}^{40.607881} ecoblem CVRP_{5}^{40.607881} ecoblem CVRP_{5}^{40.607881} experience have surrounded and the surrounded and the surrounded ecoblem a
42
42
42
     • Vehicle Routing Problem with Time Windows VRPTW where the locations of time windows within which
42
                                                                         41.880783
                                                                                                           41.880783
         the vehicle's visits must be made.
                                                                         41.629317
                                                                                                           41.629317
42
     • Vehicles Routing Problems with Pickup and Delivery WRPPD where 3. sumber of goods need to be moved
42
42
         from certain pickup locations/toother delivery locations.
                                                                                                           23.430749
42
                                       35.468296
                                                                         35.468296
                                                                                                           35.468296
42
                    71
                                       23.769729
                                                                         23.769729
                                                                                                          23.769729
4imitations 72
                                       21.189620
                                                                         21.189620
                                                                                                          21.189620
42
                    73
                                       11.180340
                                                                         11.180340
                                                                                                          11.180340
     • No multiple time windows for a location.
42
                                                                         57.974132
                                                                                                           57.974132
42
                                                                         66.850580
                                                                                                           66.850580
42 • Less vehicle used is considered better.
                                                                         87.800911
                                                                                                           87.800911
                                        63.031738
42
                                                                         63.031738
                                                                                                           63.031738
      • Less total duration is better 6230
42
                                                                         80.056230
                                                                                                           80.056230
     • Less wait time is better. 488316
42
                                                                         53.488316
                                                                                                           53.488316
42
                                        52.469038
                                                                         52.469038
                                                                                                           52.469038
                   80
42
                    81
                                       30.083218
                                                                         30.083218
                                                                                                           30.083218
                                       19.235384
                                                                         19.235384
                                                                                                           19.235384
Pick & Delivery
                    83
                                       44.553339
                                                                         44.553339
                                                                                                           44.553339
 \begin{array}{l} P_{7}^{2} \text{ oblem: } \textit{CVRPPDTW} \text{ } \text{Cap}_{46.010868}^{48.7524487} \text{ Pick and Delivery Vehicle Routing problem with Time Windows } \\ 42.010868 \end{array} 
42 • Times are relative to 502.239832
                                                                         52.239832
                                                                                                           52.239832
42
                   87
                                        63.007936
                                                                         63.007936
                                                                                                           63.007936

    The vehicles

42
                                                                         68.680419
                                        68.680419
                                                                                                           68.680419
42
             - have start and ending service duration in 13156
                                                                                                           38.013156
42
                                                                                                           70.576200
42
              - have opening and closing times for the start and cending locations.000000
42
                                       34.205263
                                                                         34.205263
                                                                                                           34.205263
             - haye a capacity<sub>32.388269</sub>
42
                                                                         32.388269
                                                                                                           32.388269
42
                                       23.194827
                                                                         23.194827
                                                                                                          23.194827
     • The orders
                                       27.018512
                                                                         27.018512
                                                                                                           27.018512
42
42
             - Have pick up and delivery socations. 38.052595
                                                                                                           38.052595
42
             - Have opening and closing times for the pickup and delivery locations ^{21}_{8.517514}
42
42
                                                                                                           39.408121
                Have pickup and delivery duration service thinks.1
42
                                                                           51.224994
                                         51.224994
                                                                                                             51.224994

    have a demand request for spoving goods from the pickup location to the delivery location.

42
     • Time based calculations: 33.41020 30.413813
43
                                                                       33.541020
                                                                                                         33.541020
43
                                                                       30.413813
                                                                                                         30.413813
43
                                                                                                         33.376639
                Travel time between customers is distance pspeed
43
                                      33.376639
                                                                       33.376639
                                                                                                         33.376639
             - Pickup and delivery order pair is done by the same vehicle. 35.000000
43
43
                                                                                                         35.355339
                                     35.355339
                                                                       35.355339
                                      37.336309
43
                                                                       37.336309
                                                                                                         37.336309
                                                                                                         40.311289
6.2. Experimental and Proposed functions .311289
                                                                                                                                                                359
43
                                                                       40.000000
                                                                                                         40.000000
                   9
                                     40.000000
43
                   10
                                       63.639610
                                                                         63.639610
                                                                                                           63.639610
```

60.207973

61.717096

60.207973

61.717096

43

43

11

60.207973

61.717096

- A pickup is done before the delivery.

### **Parameters**

#### Pick & deliver

Both implementations use the following same parameters:

| Column       | Туре    | Default | Description                                                                                                                                                                                                                                                                           |
|--------------|---------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| orders_sql   | TEXT    |         | Pick & Deliver Orders SQL query containing the orders to be processed.                                                                                                                                                                                                                |
| vehicles_sql | TEXT    |         | Pick & Deliver Vehicles SQL query containing the vehicles to be used.                                                                                                                                                                                                                 |
| factor       | NUMERIC | 1       | (Optional) Travel time<br>multiplier. See Factor<br>Handling                                                                                                                                                                                                                          |
| max_cycles   | INTEGER | 10      | (Optional) Maximum number of cycles to perform on the optimization.                                                                                                                                                                                                                   |
| initial_sol  | INTEGER | 4       | (Optional) Initial solution to be used.  • 1 One order per truck  • 2 Push front order.  • 3 Push back order.  • 4 Optimize insert.  • 5 Push back order that allows more orders to be inserted at the back  • 6 Push front order that allows more orders to be inserted at the front |

The non euclidean implementation, additionally has:

| Column     | Type | Description                                                              |
|------------|------|--------------------------------------------------------------------------|
| matrix_sql | TEXT | Pick & Deliver Matrix SQL query containing the distance or travel times. |

## **Inner Queries**

- Pick & Deliver Orders SQL
- Pick & Deliver Vehicles SQL
- Pick & Deliver Matrix SQL

### return columns

- Description of return columns
- $\bullet \ \ Description \ of \ the \ return \ columns \ for \ Euclidean \ version$

#### **Pick & Deliver Orders SQL**

In general, the columns for the orders SQL is the same in both implementation of pick and delivery:

| Column    | Type          | Default | Description                                                 |
|-----------|---------------|---------|-------------------------------------------------------------|
| id        | ANY-INTEGER   |         | Identifier of the pick-delivery order pair.                 |
| demand    | ANY-NUMERICAL |         | Number of units in the order                                |
| p_open    | ANY-NUMERICAL |         | The time, relative to 0, when the pickup location opens.    |
| p_close   | ANY-NUMERICAL |         | The time, relative to 0, when the pickup location closes.   |
| d_service | ANY-NUMERICAL | 0       | The duration of the loading at the pickup location.         |
| d_open    | ANY-NUMERICAL |         | The time, relative to 0, when the delivery location opens.  |
| d_close   | ANY-NUMERICAL |         | The time, relative to 0, when the delivery location closes. |
| d_service | ANY-NUMERICAL | 0       | The duration of the loading at the delivery location.       |

For the non euclidean implementation, the starting and ending identifiers are needed:

| Column | Туре    | Description                                                                     |
|--------|---------|---------------------------------------------------------------------------------|
| p_node | ANY-    | The node identifier of the pickup, must match a node identifier in the matrix   |
| id     | INTEGER | table.                                                                          |
| d_node | ANY-    | The node identifier of the delivery, must match a node identifier in the matrix |
| id     | INTEGER | table.                                                                          |

For the euclidean implementation, pick up and delivery (x,y) locations are needed:

| Column     | Type          | Description                      |
|------------|---------------|----------------------------------|
| p_x        | ANY-NUMERICAL | x value of the pick up location  |
| <b>p_y</b> | ANY-NUMERICAL | y value of the pick up location  |
| d_x        | ANY-NUMERICAL | x value of the delivery location |
| d_y        | ANY-NUMERICAL | y value of the delivery location |

### Pick & Deliver Vehicles SQL

In general, the columns for the vehicles\_sql is the same in both implementation of pick and delivery:

| Column      | Туре        | Default     | Description                                           |
|-------------|-------------|-------------|-------------------------------------------------------|
| id          | ANY-INTEGER |             | Identifier of the pick-delivery order pair.           |
| capacity    | ANY-        |             | Number of units in the order                          |
|             | NUMERICAL   |             |                                                       |
| speed       | ANY-        | 1           | Average speed of the vehicle.                         |
|             | NUMERICAL   |             |                                                       |
| start_open  | ANY-        |             | The time, relative to 0, when the starting location   |
|             | NUMERICAL   |             | opens.                                                |
| start_close | ANY-        |             | The time, relative to 0, when the starting location   |
|             | NUMERICAL   |             | closes.                                               |
| start       | ANY-        | 0           | The duration of the loading at the starting location. |
| service     | NUMERICAL   |             |                                                       |
| end_open    | ANY-        | start_open  | The time, relative to 0, when the ending location     |
|             | NUMERICAL   |             | opens.                                                |
| end_close   | ANY-        | start_close | The time, relative to 0, when the ending location     |
|             | NUMERICAL   |             | closes.                                               |
| end_service | ANY-        | start       | The duration of the loading at the ending location.   |
|             | NUMERICAL   | service     |                                                       |

For the non euclidean implementation, the starting and ending identifiers are needed:

| Column  | Туре    | Default | Description                                                     |
|---------|---------|---------|-----------------------------------------------------------------|
| start   | ANY-    |         | The node identifier of the starting location, must match a node |
| node_id | INTEGER |         | identifier in the matrix table.                                 |
| end     | ANY-    | start   | The node identifier of the ending location, must match a node   |
| node_id | INTEGER | node_id | identifier in the matrix table.                                 |

For the euclidean implementation, starting and ending (x,y) locations are needed:

| Column  | Туре          | Default | Description                                         |
|---------|---------------|---------|-----------------------------------------------------|
| start_x | ANY-NUMERICAL |         | x value of the coordinate of the starting location. |
| start_y | ANY-NUMERICAL |         | y value of the coordinate of the starting location. |
| end_x   | ANY-NUMERICAL | start_x | x value of the coordinate of the ending location.   |
| end_y   | ANY-NUMERICAL | start_y | y value of the coordinate of the ending location.   |

### Pick & Deliver Matrix SQL

```
Warning: TODO
```

## **Results**

## Description of the result (TODO Disussion: Euclidean & Matrix)

```
RETURNS SET OF

(seq, vehicle_seq, vehicle_id, stop_seq, stop_type,

travel_time, arrival_time, wait_time, service_time, departure_time)

UNION
(summary row)
```

| Column            | Type    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| seq               | INTEGER | Sequential value starting from 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| vehicle_seq       | INTEGER | Sequential value starting from 1 for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   |         | current vehicles. The $n_{th}$ vehicle in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   |         | the solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| vehicle_id        | BIGINT  | Current vehicle identifier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| stop_seq          | INTEGER | Sequential value starting from 1 for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   |         | the stops made by the current vehi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |         | cle. The $m_{th}$ stop of the current ve-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   |         | hicle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| stop_type         | INTEGER | Kind of stop location the vehicle is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   |         | at:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |         | • 1: Starting location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   |         | <ul><li>2: Pickup location</li><li>3: Delivery location</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                   |         | 6: Ending location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   |         | o. Linding location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| order_id          | BIGINT  | Pickup-Delivery order pair identi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 02401_34          |         | fier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   |         | • -1: When no order is in-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   |         | volved on the current stop lo-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |         | cation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| cargo             | FLOAT   | Cargo units of the vehicle when                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   |         | leaving the stop.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| travel_time       | FLOAT   | Travel time from previous stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |         | seq to current stop_seq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |         | • 0 When stop_type = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| amiral direc      | FLOAT   | Description de la contraction |
| arrival_time      | FLOAT   | Previous departure_time plus current travel_time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| wait_time         | FLOAT   | Time spent waiting for current <i>loca</i> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| wait_tille        | ILOAI   | tion to open.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| service_time      | FLOAT   | Service time at current <i>location</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| departure_time    | FLOAT   | arrival_time + wait_time +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| acpai tui e_tiiit |         | service_time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |         | • When stop_type = 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   |         | has the <i>total_time</i> used for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   |         | the current vehicle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

## **Summary Row**

Warning: TODO: Review the summary

| Column       | Type   | Description                                                       |
|--------------|--------|-------------------------------------------------------------------|
| seq          | INTE-  | Continues the Sequential value                                    |
|              | GER    |                                                                   |
| vehicle_seq  | INTE-  | -2 to indicate is a summary row                                   |
|              | GER    |                                                                   |
| vehicle_id   | BIGINT | Total Capacity Violations in the solution.                        |
| stop_seq     | INTE-  | Total Time Window Violations in the solution.                     |
|              | GER    |                                                                   |
| stop_type    | INTE-  | -1                                                                |
|              | GER    |                                                                   |
| order_id     | BIGINT | -1                                                                |
| cargo        | FLOAT  | -1                                                                |
| travel_time  | FLOAT  | total_travel_time The sum of all the travel_time                  |
| arrival_time | FLOAT  | -1                                                                |
| wait_time    | FLOAT  | total_waiting_time The sum of all the wait_time                   |
| service_time | FLOAT  | total_service_time The sum of all the service_time                |
| departure    | FLOAT  | total_solution_time =                                             |
| time         |        | $total\_travel\_time + total\_wait\_time + total\_service\_time.$ |

## Description of the result (TODO Disussion: Euclidean & Matrix)

```
RETURNS SET OF

(seq, vehicle_seq, vehicle_id, stop_seq, stop_type,

travel_time, arrival_time, wait_time, service_time, departure_time)

UNION
(summary row)
```

| Column         | Туре    | Description                                                                                                                          |
|----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------|
| seq            | INTEGER | Sequential value starting from 1.                                                                                                    |
| vehicle_seq    | INTEGER | Sequential value starting from 1 for current vehicles. The $n_{th}$ vehicle in the solution.                                         |
| vehicle_id     | BIGINT  | Current vehicle identifier.                                                                                                          |
| stop_seq       | INTEGER | Sequential value starting from 1 for the stops made by the current vehicle. The $m_{th}$ stop of the current vehicle.                |
| stop_type      | INTEGER | Kind of stop location the vehicle is at:  • 1: Starting location  • 2: Pickup location  • 3: Delivery location  • 6: Ending location |
| order_id       | BIGINT  | Pickup-Delivery order pair identifier.  • -1: When no order is involved on the current stop location.                                |
| cargo          | FLOAT   | Cargo units of the vehicle when leaving the stop.                                                                                    |
| travel_time    | FLOAT   | Travel time from previous stop seq to current stop_seq. • 0 When stop_type = 1                                                       |
| arrival_time   | FLOAT   | Previous departure_time plus current travel_time.                                                                                    |
| wait_time      | FLOAT   | Time spent waiting for current <i>location</i> to open.                                                                              |
| service_time   | FLOAT   | Service time at current <i>location</i> .                                                                                            |
| departure_time | FLOAT   | <pre>arrival_time + wait_time + service_time. • When stop_type = 6 has the total_time used for the current vehicle.</pre>            |

# **Summary Row**

Warning: TODO: Review the summary

| Column       | Туре   | Description                                                       |
|--------------|--------|-------------------------------------------------------------------|
| seq          | INTE-  | Continues the Sequential value                                    |
|              | GER    |                                                                   |
| vehicle_seq  | INTE-  | -2 to indicate is a summary row                                   |
|              | GER    |                                                                   |
| vehicle_id   | BIGINT | Total Capacity Violations in the solution.                        |
| stop_seq     | INTE-  | Total Time Window Violations in the solution.                     |
|              | GER    |                                                                   |
| stop_type    | INTE-  | -1                                                                |
|              | GER    |                                                                   |
| order_id     | BIGINT | -1                                                                |
| cargo        | FLOAT  | -1                                                                |
| travel_time  | FLOAT  | total_travel_time The sum of all the travel_time                  |
| arrival_time | FLOAT  | -1                                                                |
| wait_time    | FLOAT  | total_waiting_time The sum of all the wait_time                   |
| service_time | FLOAT  | total_service_time The sum of all the service_time                |
| departure    | FLOAT  | total_solution_time =                                             |
| time         |        | $total\_travel\_time + total\_wait\_time + total\_service\_time.$ |

Where:

**ANY-INTEGER** SMALLINT, INTEGER, BIGINT **ANY-NUMERICAL** SMALLINT, INTEGER, BIGINT, REAL, FLOAT

### **Handling Parameters**

To define a problem, several considerations have to be done, to get consistent results. This section gives an insight of how parameters are to be considered.

- Capacity and Demand Units Handling
- Locations
- Time Handling
- Factor Handling

#### **Capacity and Demand Units Handling**

The capacity of a vehicle, can be measured in:

- Volume units like  $m^3$ .
- Area units like  $m^2$  (when no stacking is allowed).
- Weight units like kg.
- Number of boxes that fit in the vehicle.
- Number of seats in the vehicle

The demand request of the pickup-deliver orders must use the same units as the units used in the vehicle's capacity.

To handle problems like: 10 (equal dimension) boxes of apples and 5 kg of feathers that are to be transported (not packed in boxes).

If the vehicle's *capacity* is measured by *boxes*, a conversion of *kg of feathers* to *equivalent number of boxes* is needed. If the vehicle's *capacity* is measured by *kg*, a conversion of *box of apples* to *equivalent number of kg* is needed.

Showing how the 2 possible conversions can be done

Let: -  $f_boxes$ : number of boxes that would be used for I kg of feathers. -  $a_w eight$ : weight of I box of apples.

| Capacity Units | apples         | feathers     |
|----------------|----------------|--------------|
| boxes          | 10             | $5*f\_boxes$ |
| kg             | $10*a\_weight$ | 5            |

#### Locations

- When using the Euclidean signatures:
  - The vehicles have (x, y) pairs for start and ending locations.
  - The orders Have (x, y) pairs for pickup and delivery locations.
- When using a matrix:
  - The vehicles have identifiers for the start and ending locations.
  - The orders have identifiers for the pickup and delivery locations.
  - All the identifiers are indices to the given matrix.

## **Time Handling**

The times are relative to 0

Suppose that a vehicle's driver starts the shift at 9:00 am and ends the shift at 4:30 pm and the service time duration is 10 minutes with 30 seconds.

All time units have to be converted

| Meaning of 0 | time units | 9:00 am   | 4:30 pm         | 10 min 30 secs  |
|--------------|------------|-----------|-----------------|-----------------|
| 0:00 am      | hours      | 9         | 16.5            | 10.5/60 = 0.175 |
| 9:00 am      | hours      | 0         | 7.5             | 10.5/60 = 0.175 |
| 0:00 am      | minutes    | 9*60 = 54 | 16.5 * 60 = 990 | 10.5            |
| 9:00 am      | minutes    | 0         | 7.5*60 = 540    | 10.5            |

## **Factor Handling**

Warning: TODO

### See Also

- https://en.wikipedia.org/wiki/Vehicle\_routing\_problem
- The queries use the Sample Data network.

#### Indices and tables

- genindex
- search



# **Change Log**

- pgRouting 2.5.0 Release Notes
- pgRouting 2.4.1 Release Notes
- pgRouting 2.4.0 Release Notes
- pgRouting 2.3.2 Release Notes
- pgRouting 2.3.1 Release Notes
- pgRouting 2.3.0 Release Notes
- pgRouting 2.2.4 Release Notes
- pgRouting 2.2.3 Release Notes
- pgRouting 2.2.2 Release Notes
- pgRouting 2.2.1 Release Notes
- pgRouting 2.2.0 Release Notes
- pgRouting 2.1.0 Release Notes
- pgRouting 2.0.1 Release Notes
- pgRouting 2.0.0 Release Notes
- pgRouting 1.x Release Notes

## 7.1 Release Notes

To see the full list of changes check the list of Git commits<sup>1</sup> on Github.

### **Table of contents**

- pgRouting 2.5.0 Release Notes
- pgRouting 2.4.1 Release Notes
- pgRouting 2.4.0 Release Notes
- pgRouting 2.3.2 Release Notes
- pgRouting 2.3.1 Release Notes
- pgRouting 2.3.0 Release Notes
- pgRouting 2.2.4 Release Notes

<sup>&</sup>lt;sup>1</sup>https://github.com/pgRouting/pgrouting/commits

- pgRouting 2.2.3 Release Notes
- pgRouting 2.2.2 Release Notes
- pgRouting 2.2.1 Release Notes
- pgRouting 2.2.0 Release Notes
- pgRouting 2.1.0 Release Notes
- pgRouting 2.0.1 Release Notes
- pgRouting 2.0.0 Release Notes
- pgRouting 1.x Release Notes

## 7.1.1 pgRouting 2.5.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.5.0<sup>2</sup> on Github.

#### enhancement:

• pgr\_version is now on SQL language

#### Breaking change on:

- pgr\_edgeDisjointPaths:
  - Added path\_id, cost and agg\_cost columns on the result
  - Parameter names changed
  - The many version results are the union of the one to one version

## **New Signatures:**

• pgr\_bdAstar(one to one)

## **New Proposed functions**

- pgr\_bdAstar(one to many)
- pgr\_bdAstar(many to one)
- pgr\_bdAstar(many to many)
- pgr\_bdAstarCost(one to one)
- pgr\_bdAstarCost(one to many)
- pgr\_bdAstarCost(many to one)
- pgr\_bdAstarCost(many to many)
- pgr\_bdAstarCostMatrix
- pgr\_bdDijkstra(one to many)
- pgr\_bdDijkstra(many to one)
- pgr\_bdDijkstra(many to many)

<sup>&</sup>lt;sup>2</sup>https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.5.0%22+is%3Aclosed

- pgr\_bdDijkstraCost(one to one)
- pgr\_bdDijkstraCost(one to many)
- pgr\_bdDijkstraCost(many to one)
- pgr\_bdDijkstraCost(many to many)
- pgr\_bdDijkstraCostMatrix
- pgr\_pgr\_pickDeliver
- pgr\_pgr\_pickDeliverEuclidean

## **Deprecated Signatures**

- pgr\_bdastar use pgr\_bdAstar instead
- pgr\_gsoc\_vrppdtw use pgr\_pickDeliverEuclidean instead

#### **Renamed Functions**

- pgr\_maxFlowPushRelabel use pgr\_pushRelabel instead
- pgr\_maxFlowEdmondsKarp -use pgr\_edmondsKarp instead
- pgr\_maxFlowBoykovKolmogorov use pgr\_boykovKolmogorov instead
- pgr\_maximumCardinalityMatching use pgr\_maxCardinalityMatch instead

#### **Deprecated function**

• pgr\_pointToEdgeNode

## 7.1.2 pgRouting 2.4.1 Release Notes

#### **Bug fix**

- Fixed compiling error on macOS
- Condition error on pgr\_withPoints

## 7.1.3 pgRouting 2.4.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.4.0<sup>3</sup> on Github.

### **New Signatures**

• pgr\_bdDijkstra

<sup>&</sup>lt;sup>3</sup>https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.4.0%22+is%3Aclosed

### **New Proposed Signatures**

- pgr\_maxFlow
- pgr\_astar(one to many)
- pgr\_astar(many to one)
- pgr\_astar(many to many)
- pgr\_astarCost(one to one)
- pgr\_astarCost(one to many)
- pgr\_astarCost(many to one)
- pgr\_astarCost(many to many)
- pgr\_astarCostMatrix

#### **Deprecated Signatures**

• pgr\_bddijkstra - use pgr\_bdDijkstra instead

### **Deprecated Functions**

• pgr\_pointsToVids

### **Bug fix**

- Bug fixes on proposed functions
  - pgr\_withPointsKSP: fixed ordering
- TRSP original code is used with no changes on the compilation warnings

# 7.1.4 pgRouting 2.3.2 Release Notes

To see the issues closed by this release see the Git closed issues for 2.3.24 on Github.

#### **Bug Fixes**

- Fixed pgr\_gsoc\_vrppdtw crash when all orders fit on one truck.
- Fixed pgr\_trsp:
  - Alternate code is not executed when the point is in reality a vertex
  - Fixed ambiguity on seq

## 7.1.5 pgRouting 2.3.1 Release Notes

To see the issues closed by this release see the Git closed issues for 2.3.15 on Github.

 $<sup>^4</sup> https://github.com/pgRouting/pgrouting/issues?q=milestone\%3A\%22Release+2.3.2\%22+is\%3Aclosed$ 

<sup>&</sup>lt;sup>5</sup>https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.3.1%22+is%3Aclosed

#### **Bug Fixes**

- Leaks on proposed max\_flow functions
- Regression error on pgr\_trsp
- Types discrepancy on pgr\_createVerticesTable

## 7.1.6 pgRouting 2.3.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.3.06 on Github.

#### **New Signatures**

- pgr\_TSP
- pgr\_aStar

#### **New Functions**

• pgr\_eucledianTSP

#### **New Proposed functions**

- pgr\_dijkstraCostMatrix
- pgr\_withPointsCostMatrix
- pgr\_maxFlowPushRelabel(one to one)
- pgr\_maxFlowPushRelabel(one to many)
- pgr\_maxFlowPushRelabel(many to one)
- pgr\_maxFlowPushRelabel(many to many)
- pgr\_maxFlowEdmondsKarp(one to one)
- pgr\_maxFlowEdmondsKarp(one to many)
- $\bullet \ pgr\_maxFlowEdmondsKarp(many\ to\ one)$
- pgr\_maxFlowEdmondsKarp(many to many)
- $\bullet \;\; pgr\_maxFlowBoykovKolmogorov \; (one \; to \; one) \\$
- pgr\_maxFlowBoykovKolmogorov (one to many)
- $\bullet \ pgr\_maxFlowBoykovKolmogorov \ (many \ to \ one)$
- pgr\_maxFlowBoykovKolmogorov (many to many)
- pgr\_maximumCardinalityMatching
- pgr\_edgeDisjointPaths(one to one)
- pgr\_edgeDisjointPaths(one to many)
- pgr\_edgeDisjointPaths(many to one)
- pgr\_edgeDisjointPaths(many to many)
- pgr\_contractGraph

<sup>&</sup>lt;sup>6</sup>https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.3.0%22+is%3Aclosed

#### **Deprecated Signatures**

- pgr\_tsp use pgr\_TSP or pgr\_eucledianTSP instead
- pgr\_astar use pgr\_aStar instead

#### **Deprecated Functions**

- pgr\_flip\_edges
- pgr\_vidsToDmatrix
- pgr\_pointsToDMatrix
- pgr\_textToPoints

## 7.1.7 pgRouting 2.2.4 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.47 on Github.

#### **Bug Fixes**

- Bogus uses of extern "C"
- Build error on Fedora 24 + GCC 6.0
- Regression error pgr\_nodeNetwork

## 7.1.8 pgRouting 2.2.3 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.38 on Github.

## **Bug Fixes**

• Fixed compatibility issues with PostgreSQL 9.6.

## 7.1.9 pgRouting 2.2.2 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.29 on Github.

## **Bug Fixes**

• Fixed regression error on pgr\_drivingDistance

## 7.1.10 pgRouting 2.2.1 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.1<sup>10</sup> on Github.

<sup>&</sup>lt;sup>7</sup>https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.2.4%22+is%3Aclosed

<sup>&</sup>lt;sup>8</sup>https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.2.3%22+is%3Aclosed

<sup>&</sup>lt;sup>9</sup>https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.2.2%22+is%3Aclosed

 $<sup>^{10}</sup> https://github.com/pgRouting/pgrouting/issues?q=milestone\%3A2.2.1+is\%3Aclosed$ 

#### **Bug Fixes**

- Server crash fix on pgr\_alphaShape
- Bug fix on With Points family of functions

## 7.1.11 pgRouting 2.2.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.0<sup>11</sup> on Github.

## **Improvements**

- pgr\_nodeNetwork
  - Adding a row\_where and outall optional parameters
- Signature fix
  - pgr\_dijkstra to match what is documented

#### **New Functions**

- pgr\_floydWarshall
- pgr\_Johnson
- pgr\_dijkstraCost(one to one)
- pgr\_dijkstraCost(one to many)
- pgr\_dijkstraCost(many to one)
- pgr\_dijkstraCost(many to many)

## **Proposed functionality**

- pgr\_withPoints(one to one)
- pgr\_withPoints(one to many)
- pgr\_withPoints(many to one)
- pgr\_withPoints(many to many)
- pgr\_withPointsCost(one to one)
- pgr\_withPointsCost(one to many)
- pgr\_withPointsCost(many to one)
- pgr\_withPointsCost(many to many)
- pgr\_withPointsDD(single vertex)
- pgr\_withPointsDD(multiple vertices)
- pgr\_withPointsKSP
- pgr\_dijkstraVia

 $<sup>^{11}</sup>https://github.com/pgRouting/pgrouting/issues?q=milestone\%3A\%22Release+2.2.0\%22+is\%3Aclosed$ 

#### **Deprecated functions:**

- pgr\_apspWarshall use pgr\_floydWarshall instead
- pgr\_apspJohnson use pgr\_Johnson instead
- pgr\_kDijkstraCost use pgr\_dijkstraCost instead
- pgr\_kDijkstraPath use pgr\_dijkstra instead

### Renamed and deprecated function

• pgr\_makeDistanceMatrix renamed to \_pgr\_makeDistanceMatrix

## 7.1.12 pgRouting 2.1.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.1.0<sup>12</sup> on Github.

### **New Signatures**

- pgr\_dijkstra(one to many)
- pgr\_dijkstra(many to one)
- pgr\_dijkstra(many to many)
- pgr\_drivingDistance(multiple vertices)

#### Refactored

- pgr\_dijkstra(one to one)
- pgr\_ksp
- pgr\_drivingDistance(single vertex)

#### **Improvements**

• pgr\_alphaShape function now can generate better (multi)polygon with holes and alpha parameter.

### **Proposed functionality**

- Proposed functions from Steve Woodbridge, (Classified as Convenience by the author.)
  - pgr\_pointToEdgeNode convert a point geometry to a vertex\_id based on closest edge.
  - pgr\_flipEdges flip the edges in an array of geometries so the connect end to end.
  - pgr\_textToPoints convert a string of x,y;x,y;... locations into point geometries.
  - pgr\_pointsToVids convert an array of point geometries into vertex ids.
  - pgr\_pointsToDMatrix Create a distance matrix from an array of points.
  - pgr\_vidsToDMatrix Create a distance matrix from an array of vertix\_id.
  - pgr\_vidsToDMatrix Create a distance matrix from an array of vertix\_id.
- Added proposed functions from GSoc Projects:

 $<sup>^{12}</sup> https://github.com/pgRouting/pgrouting/issues? q=is\%3 A issue+milestone\%3 A\%22 Release+2.1.0\%22+is\%3 A closed A issue-milestone\%3 A\%22 Release+2.1.0\%22+is\%3 A issue-milestone\%3 A issue-milest$ 

- pgr\_vrppdtw
- pgr\_vrponedepot

### **Deprecated functions**

- pgr\_getColumnName
- pgr\_getTableName
- pgr\_isColumnCndexed
- pgr\_isColumnInTable
- pgr\_quote\_ident
- pgr\_versionless
- pgr\_startPoint
- pgr\_endPoint
- pgr\_pointToId

## No longer supported

• Removed the 1.x legacy functions

## **Bug Fixes**

• Some bug fixes in other functions

### **Refactoring Internal Code**

- A C and C++ library for developer was created
  - encapsulates postgreSQL related functions
  - encapsulates Boost.Graph graphs
    - \* Directed Boost.Graph
    - \* Undirected Boost.graph.
  - allow any-integer in the id's
  - allow any-numerical on the cost/reverse\_cost columns
- Instead of generating many libraries: All functions are encapsulated in one library The library has the prefix 2-1-0

# 7.1.13 pgRouting 2.0.1 Release Notes

Minor bug fixes.

## **Bug Fixes**

• No track of the bug fixes were kept.

## 7.1.14 pgRouting 2.0.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.0.0<sup>13</sup> on Github.

With the release of pgRouting 2.0.0 the library has abandoned backwards compatibility to  $pgRouting\ 1.x$  releases. The main Goals for this release are:

- Major restructuring of pgRouting.
- · Standardization of the function naming
- Preparation of the project for future development.

As a result of this effort:

- pgRouting has a simplified structure
- · Significant new functionality has being added
- · Documentation has being integrated
- · Testing has being integrated
- And made it easier for multiple developers to make contributions.

#### **Important Changes**

- Graph Analytics tools for detecting and fixing connection some problems in a graph
- A collection of useful utility functions
- Two new All Pairs Short Path algorithms (pgr\_apspJohnson, pgr\_apspWarshall)
- Bi-directional Dijkstra and A-star search algorithms (pgr\_bdAstar, pgr\_bdDijkstra)
- One to many nodes search (pgr\_kDijkstra)
- K alternate paths shortest path (pgr\_ksp)
- New TSP solver that simplifies the code and the build process (pgr\_tsp), dropped "Gaul Library" dependency
- Turn Restricted shortest path (pgr\_trsp) that replaces Shooting Star
- Dropped support for Shooting Star
- Built a test infrastructure that is run before major code changes are checked in
- Tested and fixed most all of the outstanding bugs reported against 1.x that existing in the 2.0-dev code base.
- Improved build process for Windows
- Automated testing on Linux and Windows platforms trigger by every commit
- Modular library design
- Compatibility with PostgreSQL 9.1 or newer
- Compatibility with PostGIS 2.0 or newer
- Installs as PostgreSQL EXTENSION
- Return types re factored and unified
- Support for table SCHEMA in function parameters
- Support for st\_ PostGIS function prefix
- Added pgr\_ prefix to functions and types
- Better documentation: http://docs.pgrouting.org

<sup>&</sup>lt;sup>13</sup>https://github.com/pgRouting/pgrouting/issues?q=milestone%3A%22Release+2.0.0%22+is%3Aclosed

• shooting\_star is discontinued

## 7.1.15 pgRouting 1.x Release Notes

To see the issues closed by this release see the Git closed issues for  $1.x^{14}$  on Github. The following release notes have been copied from the previous RELEASE\_NOTES file and are kept as a reference.

#### Changes for release 1.05

· Bug fixes

### Changes for release 1.03

- Much faster topology creation
- · Bug fixes

### Changes for release 1.02

- · Shooting\* bug fixes
- Compilation problems solved

### Changes for release 1.01

· Shooting\* bug fixes

## Changes for release 1.0

- Core and extra functions are separated
- · Cmake build process
- Bug fixes

### Changes for release 1.0.0b

- Additional SQL file with more simple names for wrapper functions
- Bug fixes

#### Changes for release 1.0.0a

- Shooting\* shortest path algorithm for real road networks
- Several SQL bugs were fixed

## Changes for release 0.9.9

- PostgreSQL 8.2 support
- Shortest path functions return empty result if they could not find any path

 $<sup>^{14}</sup> https://github.com/pgRouting/pgrouting/issues?q=milestone\%3A\%22Release+1.x\%22+is\%3Aclosed$ 

## Changes for release 0.9.8

- Renumbering scheme was added to shortest path functions
- Directed shortest path functions were added
- routing\_postgis.sql was modified to use dijkstra in TSP search

## Indices and tables

- genindex
- search



<sup>15</sup> http://www.theprojectspot.com/tutorial-post/simulated-annealing-algorithm-for-beginners/6