Thm 3.3 L1 < g ((V) 0 < dim / < +00 (∀xeL x^=v) ⇒ (∃veV v≠dstx(v)=0 for ∀xeL) Notice & A & KAI L.v= L(v) = [x(v) | x E L , y] Lx=(adl)(x)= [[yx] | y EL] xeL dim Vctoo max KAL Ka Proof (1) 取K LL st dim 4k=1 JEGL-K L=K+IFE (ii) K=0 0+ V K + 0 0+ dim K < dim L ⇒ W = fueV(x())= 0, for ∀xek] ≠0 (iii) 导证 W为L的不变子空间 (av) Z nilpotent => &(v) = = = = = = -7vEW Z(v)=0 => L(w)=0

反矩上涌化→特征向量矩阵严格上涌化→特征指为。的树红向量同时上涌化

Details (i) $L/K \hookrightarrow L$ $SI'[I' \leq L/K] \leftrightarrow SI[K \leq I \leq L]$ $\Rightarrow dim L/K \downarrow \Rightarrow \exists z \in L - k \downarrow z$ $0 \leftrightarrow K$ $+K \leftrightarrow L \Rightarrow dim L/K = 1$ $l+K \in IF(z+K) = IF(z) + K \Rightarrow L \subset IFz + K$ $(iii) \times f(z+K) = [K \times I(w) - \times K(w)] = 0$ $= k(\times w) = [K \times I(w) - \times K(w)] = 0$ $\Rightarrow \times w \in M$ \emptyset $Def N_L(k) \triangleq \int \times \in L[L \times k] \subseteq K]$ $K \land L \iff L \subseteq N_L(K)$

IN $K \leq L \implies K \vee L$, i.e $L \subseteq N_L(K, lenma)$? |lenma| |lenma|

X'. L ~ IF Thm 4.1 $L \leq gl(V)$ $o < dim V < +\infty$ $\lambda : L \longrightarrow 1F$ $(L solvable) \Rightarrow (\exists v \in V \ v \neq o \ \exists t \times (w) : \lambda(w) \ for \forall x \in V$ $\lambda : L \longrightarrow 1F$ $\times = k + rz \mapsto \lambda(k) + ra \quad well - k(v) + rz(v)$ $\lambda : L \longrightarrow 1F$ $\lambda : L \longrightarrow$ $x=k+rz \mapsto \lambda(k) + ra$ well-defined = $\lambda(k)v+rav = (\lambda(k)+ra)v = \lambda(x)v$ S.t x(v)=1(x)v for VxeL) Notice F-Lie代数L char 1F=0 1F代数间 Proof 4.1 (1) 取《 all s.t olim L/k=1 Details ci, Abelian

L/[LL]

L FREL-K L=K+IFZ ([LL] =K) (ii) K=OBJ / KFOBJ dimk<dinL) K' & L/[LL] -> K ~ L $\Rightarrow W = \{v \in \mathcal{N} \times (v) = \lambda(x)(v) \text{ for } \forall x \in k\} \neq 0 \}$ $(iii) \lambda(k) \times (w) \stackrel{?}{=} k(x(w)) = x k(w) + [kx](w)$ (iii) Verify W为L的不安空间 $= *\lambda(k) \times (\omega) + [\lambda([k\times])(\omega)]$ (iv) $\xi_{R}: K \to K \Rightarrow \xi(v) = av \exists v \in W$

Lemma KW Sh(k) + Wi-

 $\begin{pmatrix} \circ & (*) \\ 0 & \circ \end{pmatrix} \qquad \begin{pmatrix} (*) & (*) \\ 0 & (*) \end{pmatrix}$ nilpotent solvable nilpotent

神秘(w), ×(w), ··· × 1-(w)> w生成 0=W0 & W1 & W2 ... W1 ... & WA = W1+, ...

4(xi(w)) = yx(xi-1(w)) = xy(xi-1(w))-[xy](xi-1 k (xi(w))= kx(xi-(w))= = = k (xi-(w)) + [kx] (xi-(w)) € ×[1(p)(xi-(w)) + Wi-1] + Wi-1 EX(K)x+(w) + Wi

Notice $[k \times] \in k \Rightarrow o = tr([\times y]) \rightarrow \lambda([\times y]) \square$

Cor 33 & Thm (Lie) Leg((V) OL rilpotent => Iflag(Vi) L(Vi) EVi+ OL solvable => If(ag(Vi) L(Vi) EVi+ Ladvable CorB 30=Io\$I,\$" In=L IiV Proof consider ad: L -> gl(L) [] $\underbrace{Cor C}_{\text{Engle's}} \underbrace{(ad_{LX})^{n_{-0}}}_{\text{Ad_{LLJ}}} (ad_{LX})^{n_{-0}} = \underbrace{(ad_{LLJ})^{n_{-0}}}_{\text{ad_{LLJ}}} (ad_{LX})^{n_{-0}}_{\text{ad_{LLJ}}}$

Proof adi [[L]=[adiL,ad,L] $\subseteq [t(n,F),t(n,F)]=n(n,1)$

Lie代数第4节习题1-4题答案

周潇翔

2017年10月6日

其实书上已经写得相当清楚了······我不过是练练IATEX罢了。

lemma of Ex 4.1 $Rad L \subseteq B$ for $\forall B$, 其中B为L的极大可解子Lie代数。

Notice. 极大可解理想可以是平凡的,比它大的理想都不可解。

Proof. 由条件, $Rad\ L+B$ 为不可解Lie代数。设 $B^{(n)}=0, (Rad\ L)^{(m)}=0$ 则

$$(Rad\ L + B)^{(1)} = [Rad\ L + B, Rad\ L + B] \subseteq Rad\ L + B^{(1)}$$

$$(Rad\ L+B)^{(i+1)} = [(Rad\ L+B)^{(i)}, (Rad\ L+B)^{(i)}] \subseteq Rad\ L+B^{(i+1)}$$

$$(Rad L + B)^{(n)} \subseteq Rad L + B^{(n)} = Rad L$$
$$(Rad L + B)^{(m+n)} \subseteq (Rad L)^{(m)} = 0$$

与Rad L + B不可解矛盾!

Ex 4.1 复习下:

$$Rad\ L_{:}=L$$
的最大可解理想 = $\bigcup_{\substack{I \lhd L \ I\ \mathrm{solvable}}} I$
$$Z(L)_{:}=\{x \in L \mid [xy]=0\ for\ \forall\ x \in L\} \lhd L$$

注意到Z(L)可解 $\Rightarrow Z(L) \subseteq Rad L$ 。

由Lie定理,极大子Lie代数B在适当的基下每个元素均为上三角矩阵。

$$B \subseteq L \cap t(n, \mathbb{F})$$
 在这组基下

 $L \cap t(n, \mathbb{F})$ 也为子Lie代数,由极大性, $B = L \cap t(n, \mathbb{F})$ 。

$$B_{:}^{t} = \{x^{t} \mid x \in B, \text{此时视B为在原基下的矩阵}\}$$

同样为子Lie代数,同样也是极大的。

#lemma,

$$\left. \begin{array}{l} Rad \ L \subseteq B \\ Rad \ L \subseteq B^t \end{array} \right\} \Rightarrow Rad \ L \subseteq L \cap \delta(n, \mathbb{F}) \tag{1}$$

若 $\exists A \in Rad\ L,\ i \neq j\ s.t.\ a_{ii} = a_{jj}$,则 $[E_{ij},A] \nsubseteq \delta(n,\mathbb{F})$,与 $Rad\ L \lhd L$ 矛盾! 此时 $Z(L) = Rad\ L$ 。

 $char \mathbb{F} = 0 \Rightarrow Rad L = 0$,即L半单。

Ex 4.2 *char* $\mathbb{F} = 0$ 只在 $n\lambda([x,y]) = 0$ 时被用到,而这在 $1 \le n < p$ 时仍然成立(注:仍需代数闭域的条件)。

Ex 4.3 [x,y] = x可自然验证(用左乘行变换,右乘列变换偷懒)。 $y(\alpha) = \lambda \alpha \Rightarrow \lambda = 0 \Rightarrow \alpha = (a,0,\ldots,0)^t$ while $x(\alpha) = (0,0,\ldots,a)^t$ 即y的唯一特征向量不为x的特征向量,i.e x与y无共同的特征向量。

Ex 4.4 设 $L \in gl(V)$, $char \mathbb{F} = p$, 则L的导代数不一定是幂零的。 Proof. 承接第三题,令 $L' = \langle x, y \rangle$,构造 $L = L' \times \mathbb{F}^p$,L自然构成线性空间。

下面定义L的括号运算,使之自然成为Lie代数:

$$\begin{array}{cccc} [\;,\;]: & L\times L & \to & L \\ & \left((\mathscr{A},a),(\mathscr{B},b)\right) & \mapsto & \left([\mathscr{A}\mathscr{B}],\mathscr{A}(b)-\mathscr{B}(a)\right) \end{array}$$

以下验证"L的导代数不一定是幂零的。"

由
$$[L'L'] \subseteq \mathbb{F}x \Rightarrow [LL] \subseteq \mathbb{F}x \times \mathbb{F}^p$$

 $\forall (rx,c) \in \mathbb{F}x \times \mathbb{F}^p, \ (rx,c) = [(x,0),(ry,x^{-1}(c))] \Rightarrow \mathbb{F}x \times \mathbb{F}^p \subseteq [LL]$
综上, $L^1 = L^{(1)} = [LL] = \mathbb{F}x \times \mathbb{F}^p$

类似地,可以证明:

$$L^2=[L^1L^1]=0\times \mathbb{F}^p,$$

$$L^3=[L^2L^2]=0\times 0=0, \ \ \mathrm{即}L$$
可解;

但
$$(L^1)^{(1)}=[L^1L^1]=0 imes\mathbb{F}^p$$
, $(L^1)^{(2)}=[(L^1)^{(1)}L^1]=0 imes\mathbb{F}^p=(L^1)^{(1)}$,

$$(L^1)^{(n)}=(L^1)^{(1)}\quad for\quad \forall n\in\mathbb{N}^*,\ \mathbb{p}[LL]非幂零.$$