Q1: Calories_consumed-> predict weight gained using calories consumed

• Target variable is Weight Gain and independent variable is Calories consumed

Model	Υ	X	Correlation	R-	Correlation	RMSE
	WeightGain	CaloriesConsumed	(between X and Y)	Square	(between Y and Yhat)	
1	Υ	X	0.946991	0.8968	0.94699	103.3025
2	Υ	poly(X,2)		0.9521	0.9757338	70.40752
3	Υ	poly(X,3)		0.9811	0.9905292	44.15011

Conclusion:

Now in our final model we are taking the 3 degree polynomial transformation of the X.

Our Model becomes

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3$$

We get the High R² value and lower RMSE value in our model 3

Coefficients	Value
ß0 (Intercept)	357.71
ß1 (Slope)	1139.37
ß2 (Slope)	282.84
ß3 (Slope)	-205.21

Q2: Delivery_time -> Predict delivery time using sorting time

Target variable is DeliveryTime, and Independent variable is SortingTime

Model	Y DeliveryTime	X SortingTime	Correlation (between X and Y)	R-Square	Correlation (between Y and Yhat)	RMSE
1	Υ	Х	0.825599	0.6823	0.825997	2.79165
2	Y	poly(X,2)		0.6934	0.8327302	2.742148
3	Υ	ploy(X,5)		0.7142	0.845121	2.6475
4	log(Y)	poly(X,2)		0.7649	0.8244099	2.799042

Conclusion:

Although in model 3 we consider 5 degree polynomial and get higher R² value and least RMSE value, we are not going to accept the model as the X³,X4, and X5 are insignificant in this model. So we may consider the 4th model which has significant variable consideration.

Our model is : $log(Y) = \beta_0 + \beta_1 X + \beta_2 X^2$. Or we can say : $Y = exp(\beta_0 + \beta_1 X + \beta_2 X^2)$

Coefficients	Value	
ß0 (Intercept)		2.77479
ß1 (Slope)		1.19994
ß2 (Slope)		-0.33045

Q3: Emp_data -> Build a prediction model for Churn_out_rate

Target variable is "Churn out rate", and Independent variable is "Salary hike"

Model	Υ	Х	Correlation	R-	Correlation	RMSE
	Churn out rate	Salary hike	(between X and Y)	Square	(between Y and Yhat)	
1	Υ	Х	-0.9117216	0.8312	0.9117216	3.997528
2	Υ	poly(X,2)		0.9737	0.9867	1.5779

Conclusion:

Here we will consider our second model which is with higher coefficient of determination, as well as least RMSE value. All the considered variables of the second degree polynomial i.e. X and X^2 are significant in this model.

Our model is : $Y = \beta_0 + \beta_1 X + \beta_2 X^2$.

Coefficients	Value	
ß0 (Intercept)		72.9
ß1 (Slope)		-28.0553
ß2 (Slope)		11.6147

Q4: Salary_hike -> Build a prediction model for Salary_hike

Target variable is "Salary", and Independent variable is "YearsExperience"

Model	Y Salary	X YearsExperience	Correlation (between X and Y)	R-Square	Correlation (between Y and Yhat)	RMSE
1	Y	X	0.9782416	0.957	0.9782	5592.044
2	Y	poly(X,2)		0.9636	0.9816	5142.642

Conclusion:

Here we will consider our First model. Although we are getting higher R² in the 2nd model, as well as lower RMSE value, but we can see that variable X² is insignificant in this model, although X³ is significant variable in this model.

Without any transformation also we are getting 0.95 coefficient of determination Our model is : $Y = \beta_0 + \beta_1 X$.

Coefficients	Value
ßO (Intercept)	25792.2
ß1 (Slope)	9450