PROGRESS IN NIOBIUM AND TANTALUM COORDINATION CHEMISTRY

Rolf W. Berg

Chemistry Department A, The Technical University of Denmark, DK-2800 Lyngby, Denmark

(Received September, 18 1990)

CONTENTS

Introd	uction	3
Nb(V)	and $Ta(V)$ compounds (d^0)	5
2.1	Nb(V) and Ta(V) complexes containing only halides	5
2.2	Nb(V) and Ta(V) oxyhalide complexes	10
	2.2.1 Oxyfluoride complexes	10
	2.2.2 Other Oxyhalide complexes	13
2.3	Nb(V) and Ta(V) peroxyhalide and peroxy-pseudohalide complexes	15
2.4	Nb(V) and Ta(V) chalcogeno-halide complexes	16
2.5	Nb(V) and Ta(V) halide complexes with O-donor ligands	17
	2.5.1 Fluoride complexes with O-donor ligands	17
	2.5.2 Chloride complexes with O-donor ligands	18
	2.5.3 Bromide complexes with O-donor ligands	23
2.6	Nb(V) and Ta(V) halide complexes with N-donor ligands	23
2.7	Nb(V) and Ta(V) oxyhalide complexes with N-donor ligands	28
2.8	Nb(V) and Ta(V) thiohalide complexes with N-donor ligands	31
2.9	Nb(V) and Ta(V) halide complexes with C-donor and other ligands	32
2.10	Nb(V) and Ta(V) pseudo-halide complexes with oxy-donors	33
2.11	Oxides of niobium(V) and tantalum(V)	36
2.12	Heteropolycompounds of Nb(V) and Ta(V)	49
2.13	Perchlorates, sulphates, phosphates and other	
	Oxy-complexes of Nb(V) and Ta(V)	50
2.14	Intercalation of molecules into Nb(V) and Ta(V) oxides	54
2.15	Peroxy-niobates(V) and -tantalates(V)	55
2.16	Nb(V) and Ta(V) sulphides and selenides	55
2.17	Nb(V) and Ta(V) complexes with O-donor ligands	57

	2.17.1 Nb(V) and Ta(V) alkoxides	57	
	2.17.2 Nb(V) and Ta(V) alkenoxides	62	
	2.17.3 Nb(V) and Ta(V) carboxylates	63	
	2.18 Nb(V) and Ta(V) complexes with S- and Se-donor ligands	64	
	2.19 Nb(V) and Ta(V) complexes with O- and S-donor ligands	66	
	2.20 Nb(V) and Ta(V) oxynitrides and complexes		
	with O- and N-donors	68	
	2.21 Nb(V) and Ta(V) complexes with As-ligands	71	
	2.22 Nb(V) and Ta(V) carbides and complexes with C-donor ligands	71	
	2.23 Biological complexes of Nb(V) and Ta(V)	72	
	2.24 Solvent extraction of Nb(V) and Ta(V)	73	
3.	Nb(V) and Nb(IV) mixed complexes (d^0 and d^1)	74	
4.	Nb(IV) and Ta(IV) compounds (d^1)		
	4.1 Nb(IV) and Ta(IV) halide complexes	75	
	4.2 Nb(IV) and Ta(IV) oxyhalide complexes	77	
	4.3 Nb(IV) and Ta(IV) halide complexes with O-donors	77	
	4.4 Other Nb(IV) and Ta(IV) halide complexes	79	
	4.5 Nb(IV) and Ta(IV) oxides	80	
	4.6 Nb(IV) and Ta(IV) complexes with O-donors	80	
	4.7 Nb(IV) and Ta(IV) sulphides and selenides	81	
	4.8 Other Nb(IV) and Ta(IV) complexes	84	
	4.9 Nb(IV) and Ta(IV) complexes with N- and C-donors	84	
5.	Mixed Nb(IV) and Nb(III) complexes $(d^1 \text{ and } d^2)$	85	
6.	Nb(III) and Ta(III) complexes (d^2)		
	6.1 Nb(III) and Ta(III) halides and halide complexes	85	
	6.2 Nb(III) and Ta(III) chalcogenohalide complexes	86	
	6.3 Nb(III) and Ta(III) halides with O- and chalcogen-donors	86	
	6.4 Nb(III) and Ta(III) halides with N- and P-donors	89	
	6.5 Nb(III) and Ta(III) halides with C-donors	91	
	6.6 Nb(III) and Ta(III) oxides, sulphides and selenides	94	
	6.7 Nb(III) and Ta(III) nitrides	96	
	6.8 Nb(III) and Ta(III) C-donor complexes	97	
7.	Niobium and tantalum clusters of oxidation state < III	97	
8.	Nb(II) and Ta(II) complexes (d ³)	102	
9.	Nb(I) and Ta(I) complexes (d4)		
10.		104	
11.	Niobium and tantalum in oxidation states below 0	105	
12.	Compounds of unknown oxidation state	106	
Refe	erences	109	

