UMB CS622 Nondeterministic TMs

Friday, April 5, 2024

Announcements

- HW 7 out
 - due Mon 4/8 12pm noon EST

Last Time: Turing Machines

- Turing Machines can read and write to arbitrary "tape" cells
 - Tape initially contains input string
- The tape is infinite
 - (to the right)

On a transition, "head" can move left or right 1 step

Call a language *Turing-recognizable* if some Turing machine recognizes it.

Turing Machine: High-Level Description

• M_1 accepts if input is in language $B = \{w \# w | w \in \{0,1\}^*\}$

 M_1 = "On input string w:

1. Zig-zag across the side of the # side of the # side of the same symbols. Cross off symbols symbols corresponds

We will (mostly)
define TMs using
high-level
descriptions,
like this one

ding positions on either

(But it must always correspond to some formal low-level tuple description)

to keep track of which

2. When all symbols to the check for any remaining s symbols remain, reject; ot

Analogy:

High-level (e.g., Python) <u>function definitions</u>
VS

Low-level assembly language

Turing Machines: Formal Tuple Definition

- A **Turing machine** is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and
 - **1.** Q is the set of states,
 - 2. Σ is the input alphabet not containing the **blank symbol** \Box
 - **3.** Γ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$,
 - **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
 - 5. $q_0 \in \mathcal{C}$ read le sta write to move
 - **6.** $q_{\text{accept}} \in Q$ is the accept state, and
 - 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Flashback: DFAS VS NFAS

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- 3. $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

VS

Nondeterministic transition produces <u>set</u> of possible next states

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

Remember: Turing Machine Formal Definition

A **Turing machine** is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the *blank symbol* \Box ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- 5. $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Nondeterministic Nondeterministic Nondeterministic Turing Machine Formal Definition

A Nondeterministic is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the *blank symbol* \Box ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,

4.
$$\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$$
 $\delta: Q \times \Gamma \longrightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$

- **5.** $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Thm: Deterministic TM ⇔ Non-det. TM

- ⇒ If a deterministic TM recognizes a language, then a non-deterministic TM recognizes the language
 - Convert: Deterministic TM → Non-deterministic TM ...
 - ... change Deterministic TM δ output to: one-element set
 - $\delta_{\text{ntm}}(q, a) = \{\delta_{\text{dtm}}(q, a)\}$
 - (just like conversion of DFA to NFA --- HW 3, Problem 1)
 - DONE!
- ← If a non-deterministic TM recognizes a language, then a deterministic TM recognizes the language
 - Convert: Non-deterministic TM → Deterministic TM ...
 - ... ???

Review: Nondeterminism

Deterministic computation

Flashback: PDA Configurations (IDS)

• A configuration (or ID) is a "snapshot" of a PDA's computation

3 components (q, w, γ):
 q = the current state
 w = the remaining input string
 γ = the stack contents

A sequence of configurations represents a PDA computation

TM Configuration (ID) = ???

A *Turing machine* is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the *blank symbol* \sqcup ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- 5. $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

TM Configuration = State + Head + Tape

TM Configuration = State + Head + Tape

TM Computation, Formally

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$

Multi-step

Base Case

$$I \stackrel{*}{\vdash} I$$
 for any ID I

Recursive Case

 $I \stackrel{*}{\vdash} J$ if there exists some ID K such that $I \vdash K$ and $K \stackrel{*}{\vdash} J$

Edge cases:
$$q_1\mathbf{a}\beta \vdash q_2\mathbf{x}\beta$$

Head stays at leftmost cell

$$\alpha q_1 \vdash \alpha \lrcorner q_2$$

if
$$\delta(q_1, \mathbf{a}) = (q_2, \mathbf{x}, \mathbf{L})$$

(I movo

if
$$\delta(q_1, \square) = (q_2, \square, R)$$

(L move, when already at leftmost cell)

(R move, when at rightmost filled cell)

Add blank symbol to config

Nondeterminism in TMs

1st way

Simulate NTM with Det. TM:

• Det. TM keeps multiple configs on single tape

• Like how single-tape TM simulates multi-tape

- Then run all computations, concurrently
 - I.e., 1 step on one config, 1 step on the next, ...
- Accept if any accepting config is found
- Important:
 - Why must we step configs concurrently?

Because any one path can go on forever!

Nondeterministic

computation

Interlude: Running TMs inside other TMs

Remember analogy: TMs are like function definitions, they can be "called" like functions ...

Exercise:

• Given: TMs M_1 and M_2

• Create: TM M that accepts if either M_1 or M_2 accept

Possible Results for M

 $\rightarrow M_2$

accept

 M_1

reject

Possible solution #1:

M = on input x,

- 1. Call M_1 with arg x; accept x if M_1 accepts
- 2. Call M_2 with arg x; accept x if M_2 accepts

Note: This solution would be ok if we knew M_1 and M_2 were deciders (which halt on all inputs)

"loop" means input string not accepted (but it should be)

M

M Expected?

accept

accept

accept

accept

Interlude: Running TMs inside other TMs

Just an analogy: "calling" a TM actually requires "computing" how it computes ...

Exercise:

• Given: TMs M_1 and M_2

• Create: TM M that accepts if either M_1 or M_2 accept

... with concurrency!

Possible solution #1:

M = on input x,

- 1. Call M_1 with arg x; accept x if M_1 accepts
- 2. Call M_2 with arg x; accept x if M_2 accepts

M_1	M_2	M
reject	accept	accept
accept	reject	accept
accept	loops	accept
loops	accept	loops

Possible solution #2:

M = on input x,

- 1. Call M_1 and M_2 , each with x, concurrently, i.e.,
 - a) Run M_1 with x for 1 step; accept x if M_1 accepts
 - b) Run M_2 with x for 1 step; accept x if M_2 accepts
 - c) Repeat

M_1	M_2	M	M Expected?
reject	accept	accept	accept
accept	reject	accept	accept
accept	loops	accept	accept
loops	accept	accept	accept

2nd way (Sipser)

- Simulate NTM with Det. TM:
 - Number the nodes at each step
 - Check all tree paths (in breadth-first order)
 - 1
 - 1-1

2nd way (Sipser)

- Simulate NTM with Det. TM:
 - Number the nodes at each step
 - Check all tree paths (in breadth-first order)
 - 1
 - 1-1
 - 1-2

2nd way (Sipser)

- Simulate NTM with Det. TM:
 - Number the nodes at each step
 - Check all tree paths (in breadth-first order)
 - 1
 - 1-1
 - 1-2
 - 1-1-1

2nd way (Sipser)

- ✓ ⇒ If a deterministic TM recognizes a language, then a nondeterministic TM recognizes the language
 - Convert Deterministic TM → Non-deterministic TM

- - Convert Nondeterministic TM → Deterministic TM

Conclusion: These are All Equivalent TMs!

Single-tape Turing Machine

Multi-tape Turing Machine

Non-deterministic Turing Machine

Interlude: Running TMs inside other TMs

Just an analogy: "calling" a TM actually requires "computing" how it computes ...

Exercise:

Hmmm ...

- Given: TMs M_1 and M_2
- Create: TM *M* that accepts if either M_1 or M_2 accept

Possible solution #1:

M = on input x,

- 1. Call M_1 with arg x; accept x if M_1 accepts
- 2. Call M_2 with arg x; accept x if M_2 accepts

M_1	M_2	M
reject	accept	accept
accept	reject	accept
accept	loops	accept
loops	accept	loops

Possible solution #2:

M = on input x,

- 1. Call M_1 and M_2 , each with x, concurrently, i.e.,
 - a) Run M_1 with x for 1 step; accept x if M_1 accepts
 - b) Run M_2 with x for 1 step; accept x if M_2 accepts
 - c) Repeat

M_1	M_2	M
reject	accept	accept
accept	reject	accept
accept	loops	accept
loops	accept	accept

Flashback: HW 1, Problem 1

- 1. Come up with 2 strings that are accepted by the DFA. These strings are said to be in the **language** recognized by the DFA.
- 2. Come up with 2 strings that are not accepted (rejected) by the DFA. These strings are not in the language recognized by the DFA.
- 3. Come up with a formal description for this DFA.

a. $\hat{\delta}(q0, 420)$

Recall that a DFA's formal description is a tuple of five components, e.g. $M=(Q,\Sigma,\delta,q_{start},F)$.

You may assume that the alphabet contains only the symbols from the diagram.

Then for each of the following, say whether the computation represents an **accepting computation** or not (make sure to review the definition of an accepting computation). If the answer is no, explain why not:

Figuring out this HW problem (about a DFA's computation) ... is itself (meta) computation!

language

What "kind" of computation is it?

Could you write a <u>program</u> (<u>function</u>) to compute it?

A function: DFAaccepts(B,w) returns TRUE if DFA B accepts string w

- 1) Define "current" state $q_{\rm current}$ = start state q_0
- 2) For each input char a_i ... in w
 - a) Define $q_{\text{next}} = \delta_{\text{B}}^{\vee}(q_{\text{current}}, a_i)$
 - b) Set $q_{\text{current}} = q_{\text{next}}$
- 3) Return TRUE if q_{current} is an accept state (of B)

You had to "compute" how a DFA computes

This is "computing" the **accepting computation** $\hat{\delta}(q_0, w) \in F!!$

The language of **DFAaccepts**

 $A_{\mathsf{DFA}} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$

How is this language a set of strings???

A function: DFAaccepts(B,w) returns TRUE if DFA B accepts string w

Interlude: Encoding Things into Strings

Definition: A language's elements / (Turing) machine's input is always a string

Problem: We sometimes want TM's (program's) input to be "something else" ...

• set, graph, DFA, ...?

Solution: allow encoding "other kinds of input" as a string

Notation: <Something> = string encoding for Something

• A tuple combines multiple encodings, e.g., <*B*, *w*> (from prev slide)

Example: Possible string encoding for a DFA?

Details don't matter! (In this class) **Just assume it's possible**

 (Q,Σ,δ,q_0,F)

(written as string) 74

Interlude: High-Level TMs and Encodings

A high-level TM description:

- 1. Needs to say the type of its input
 - E.g., graph, DFA, etc.

M = "On input $\langle B, w \rangle$, where B is a DFA and w is a string:

- Doesn't need to say how input string is encoded
- 3. Assumes TM knows how to parse and extract parts of input Definition of M can refer to B's $(Q, \Sigma, \delta, q_0, F)$
- 4. Assumes input is a <u>valid</u> encoding
 - Invalid encodings implicitly rejected

DFAaccepts as a TM recognizing A_{DFA}

Remember:
TM ~ program (function)
Creating TM ~ programming

 $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \}$

A function: DFAaccepts(B,w) returns TRUE if DFA B accepts string w

- 1) Define "current" state q_{current} = start state q_0
- 2) For each input char a_i ... in w
 - a) Define $q_{\text{next}} = \delta(q_{\text{current}}, a_i)$
 - b) Set $q_{\text{current}} = q_{\text{next}}$
- 3) Return TRUE if q_{current} is an accept state

"On input $\langle B, w \rangle$, where B is a DFA and w is a string:

$$B = (Q, \Sigma, \delta, q_0, F)$$

- 1) Define "current" state q_{current} = start state q_0
- 2) For each input char a_i ... in w
 - a) Define $q_{\text{next}} = \delta(q_{\text{current}}, a_i)$
 - b) Set $q_{\text{current}} = q_{\text{next}}$
- 3) **Accept** if q_{current} is an accept state in F

The language of **DFAaccepts**

What "kind" of computation is it?

 $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \}$

• A_{DFA} has a Turing machine

But is that TM a decider or recognizer?

• I.e., is it an algorithm?

• To show it's an algo, need to <u>prove</u>: A_{DFA} is a decidable language

How to prove that a language is decidable?

How to prove that a language is decidable?

Statements

step

1. If a **decider** decides a lang *L*, then *L* is a **decidable** lang

Justifications

1. Definition of **decidable** langs

- 2. Define **decider** $M = \text{On input } w \dots$, (ey M **decides** L
- 2. See *M* def, and Examples Table

3. L is a **decidable** language

3. By statements #1 and #2

How to Design Deciders

- A **Decider** is a TM ...
 - See previous slides on how to:
 - write a high-level TM description
 - Express encoded input strings
 - E.g., M = On input < B, w>, where B is a DFA and w is a string: ...
- A Decider is a TM ... that must always halt
 - Can only accept or reject
 - Cannot go into an infinite loop
- So a **Decider** definition must include an extra **termination argument**:
 - Explains how <u>every step</u> in the TM halts
 - (Pay special attention to loops)
- Remember our analogy: TMs ~ Programs ... so <u>Creating</u> a TM ~ Programm<u>ing</u>
 - To design a TM, think of how to write a program (function) that does what you want

Next Time: ADFA is a decidable language

 $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \}$

Decider for A_{DFA} :