NSR Search Results Page 1 of 3

Visit the **Isotope Explorer** home page!

16 reference(s) found:

Keynumber: 1998MOZT

Reference: Proc.Intern.Symposium on Nuclear Astrophysics, Nuclei in the Cosmos V, Volos, Greece,

July 6-11, 1998, N.Prantzos, S.Harissopulos, Eds., Editions Frontieres, Paris, p.192 (1998)

Authors: P.Mohr, H.Beer, H.Oberhummer, P.V.Sedyshev, Y.P.Popov, W.Rochow

Title: Neutron Capture of ⁴⁶Ca, ⁴⁸Ca, and ⁵⁰Ti at Stellar Energies

Keyword abstract: NUCLEAR REACTIONS 46 , 48 Ca, 50 Ti(n, γ),E <200 keV; measured capture σ ;

deduced direct capture, resonance contributions.

Keynumber: <u>1997MO17</u>

Reference: Phys.Rev. C56, 1154 (1997)

Authors: P.Mohr, H.Oberhummer, H.Beer, W.Rochow, V.Kolle, G.Staudt, P.V.Sedyshev, Yu.P.Popov

Title: Direct Neutron Capture of 48 Ca at kT = 52 keV

Keyword abstract: NUCLEAR REACTIONS 48 Ca, 197 Au(n, γ),E <0.1 MeV; measured E γ ,I γ ; deduced

neutron capture σ . Direct capture model. Activation technique.

Keynumber: 1997GO34

Reference: Astron. Astrophys. 325, 414 (1997)

Authors: S.Goriely

Title: Direct Neutron Captures and the r-Process Nucleosynthesis

Keyword abstract: NUCLEAR REACTIONS 48 Ca(n, γ),E <1 MeV; calculated direct capture σ .

Several models compared. Comparison with data.

Keyword abstract: NUCLEAR STRUCTURE A=60-210; calculated astrophysical r-process

abundances; deduced direct neutron capture role.

Keynumber: 1996KR01

Reference: Phys.Rev. C53, 469 (1996)

Authors: E.Krausmann, W.Balogh, H.Oberhummer, T.Rauscher, K.-L.Kratz, W.Ziegert

Title: Direct Neutron Capture for Magic-Shell Nuclei

Keyword abstract: NUCLEAR REACTIONS 48 Ca(n, γ), E \leq 1 MeV; calculated capture, Maxwellian-

averaged $\sigma(E)$. Also evaluated ⁵⁰Ca(n, γ) reaction σ .

Keynumber: 1996BE53

Reference: Phys.Rev. C54, 2014 (1996)

Authors: H.Beer, C.Coceva, P.V.Sedyshev, Yu.P.Popov, H.Herndl, R.Hofinger, P.Mohr,

H.Oberhummer

Title: Measurement of Neutron Capture on ⁴⁸Ca at Thermal and Thermonuclear Energies

Keyword abstract: NUCLEAR REACTIONS 48 Ca(n, γ),E=25.3 meV,25-218 keV; measured capture σ ,E γ ,I γ . 49 Ca levels deduced spectroscopic factors. Direct capture model,Saxon-Woods potential,folding

potential, nuclear Ramsauer effect.

Keynumber: 1995MO40

Reference: Aust.J.Phys. 48, 125 (1995) **Authors:** A.J.Morton, D.G.Sargood

Title: Thermonuclear Reactions Rates for Reactions Leading to N = 28 Nuclei

NSR Search Results Page 2 of 3

Keyword abstract: NUCLEAR REACTIONS ⁴⁴, ⁴⁶K, ⁴⁶, ⁴⁷, ⁴⁸Ca, ⁴⁵, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Sc, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰, ⁵¹V, ⁴⁸, ⁴⁹, ⁵⁰, ⁵¹, ⁵²Cr, ⁵¹, ⁵², ⁵³Mn, ⁵², ⁵³, ⁵⁴Fe, ⁵⁵Co(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p),E not given; ⁵⁶Ni(n,γ), (n,p), (n,α), (α,γ), (α,n), (α,p),E not given; ⁴⁶Ar, ⁴⁵, ⁴⁷K (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p),E not given; calculated stellar reaction rates vs temperature. Statistical model calculations,optical-model potential.

Keynumber: 1987KA28

Reference: Phys.Rev. C36, 533 (1987) **Authors:** S.Kahane, J.E.Lynn, S.Raman

Title: Analysis of Primary Electric Dipole Gamma Rays from Slow-Neutron Capture by Ca Isotopes **Keyword abstract:** NUCLEAR REACTIONS ⁴⁰, ⁴², ⁴⁴, ⁴⁶, ⁴⁸Ca(n,γ),E=thermal; calculated direct

capture $\sigma.$ $^{41},$ $^{43},$ $^{45},$ $^{47},$ ^{49}Ca deduced resonance parameters. Optical model.

Keynumber: 1987CA11

Reference: Nucl.Phys. A465, 274 (1987)

Authors: R.F.Carlton, J.A.Harvey, R.L.Macklin, C.H.Johnson, B.Castel

Title: Nuclear Structure of ⁴⁹Ca above 5 MeV Excitation from n + ⁴⁸Ca and Astrophysics for 30 keV

Neutrons

Keyword abstract: NUCLEAR REACTIONS ⁴⁸Ca(n,n), (n, γ), (n,X),E <2 MeV; measured total,capture σ(E),transmission. ⁴⁹Ca deduced levels,J, π , (gΓnG γ /Γ),Γη,Γ γ . R-matrix formalism.

Keynumber: 1985KA12

Reference: Astrophys.J. 291, 319 (1985) **Authors:** F.Kappeler, G.Walter, G.J.Mathews

Title: Stellar Neutron Capture Rates for ⁴⁶Ca and ⁴⁸Ca

Keyword abstract: NUCLEAR REACTIONS ⁴⁶, ⁴⁸Ca(n, γ),E \leq 97 keV; measured E γ ,I γ ,capture σ (E);

deduced stellar neutron capture rates.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND 20 , 21 , 22 Ne, 23 Na, 24 , 25 , 26 Mg, 27 Al, 28 , 29 , 30 Si, 31 P, 32 , 33 , 34 , 36 S, 35 , 37 Cl, 36 , 38 , 40 Ar, 39 , 40 , 41 K, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 Sc, 46 , 47 , 48 , 49 , 50 Ti, 50 , 51 V, 50 , 52 , 53 , 54 Cr, 55 Mn, 54 , 56 , 57 , 58 Fe, 59 Co, 58 , 60 , 61 , 62 , 64 Ni, 63 , 65 Cu, 64 , 66 , 67 Zn(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), 70 Zn(p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), E=low; compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1983MAZD

Reference: Bull.Am.Phys.Soc. 28, No.7, 988, DB9 (1983)

Authors: G.J.Mathews, F.Kaeppeler, G.Walter

Title: Stellar Neutron Capture Cross Sections for ⁴⁶, ⁴⁸Ca

Keyword abstract: NUCLEAR REACTIONS 46 , 48 Ca(n, γ),E \approx stellar energies; measured Maxwellian

 $<\sigma$ (capture) > deduced s-process inadequacy for 48 Ca/ 46 Ca abundance ratio.

Keynumber: 1982MEZU

NSR Search Results Page 3 of 3

Coden: REPT KfK-3452, Mengoni

Keyword abstract: NUCLEAR REACTIONS ⁴², ⁴⁸Ca, ¹³⁶Xe(n, γ),E=thermal; calculated σ (capture).

Lane-Lynn model.

Kevnumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc,Part3,P270,Pisanko

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, ³², ³³, ³⁴S,Cl, ³⁵, ³⁶, ³⁷Cl,Ar, ³⁶, ³⁸, ⁴⁰Ar,K, ³⁹, ⁴⁰, ⁴¹K,Ca, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵, ⁴⁶Sc,Ti, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti,V, ⁵⁰, ⁵¹V,Cr, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,Fe, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co,Ni, ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni,Cu, ⁶³, ⁶⁵Cu,Zn, ⁶⁴, ⁶⁶, ⁶⁷, ⁶⁸, ⁷⁰Zn,Ga, ⁶⁹, ⁷¹Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1971ARZJ

Coden: CONF Legnaro(1f₇/₂ Nuclei),P251

Keyword abstract: NUCLEAR REACTIONS 36 Ar, 40 Ar, 40 K, 40 , 42 , 44 , 46 , 48 Ca, 47 Ti, 55 Mn, 57 Fe, 59 Co(n,γ),E=thermal; surveyed Εγ,Ιγ,γγ-coin,γγ(θ),γ-polarization data. 37 Ar, 41 Ar, 41 K, 41 , 43 , 45 , 47 , 49 Ca, 48 Ti, 56 Mn, 58 Fe, 60 Co deduced levels,J, π ,γ-mixing.

Keynumber: 1968BO53

Reference: Program and Theses, Proc.18th Ann.Conf.Nucl.Spectroscopy and Struct.At.Nuclei, Riga,

p.34 (1968)

Authors: A.P.Bogdanov, L.N.Bystrov, E.A.Rudak, E.I.Firsov

Title: Spectrum of γ -Rays from 48 Ca $(n,\gamma)^{49}$ Ca by Slow Neutrons

Keyword abstract: NUCLEAR REACTIONS 48 Ca(n, γ), E = thermal; measured E γ , I γ , $\gamma\gamma$ -coin. 49 Ca

deduced γ -multipolarity, γ -branching.

Keynumber: 1967CS01

Reference: Nucl. Phys. A95, 229(1967)

Authors: J.Csikai, G.Peto, M.Buczko, Z.Miligy, N.A.Eissa **Title:** Radiative Capture Cross Sections for 14.7 MeV Neutrons

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ³⁰Si, ³¹P, ⁴⁵Sc, ⁴⁸Ca, ⁵⁰Ti, ⁵¹V, ⁸⁹Y, ¹²³Sb, ¹³⁹La, ²⁰⁹Bi(n,γ), E = 14.7 MeV; measured σ. ²³Na, ⁵⁵Mn, ¹⁰³Rh, ¹⁴¹Pr, ¹⁶⁵Ho, ²⁰⁸Pb(n,γ), E = 13.4-15.0

MeV; measured $\sigma(E)$. 103 Rh(n, γ), E = 13.4-15.0 MeV; measured $\sigma(g)/\sigma(M)$; deduced spin cutoff

parameter. Enriched ³⁰Si, ⁴⁸Ca targets.
