Question Number	Answer	Notes	Marks
4	$(a) \\ 2 \times 4 = 8$	B1	
	(b) $S_2 = 2a + d = 4 \times 5$	M1A1	
	$d = 4$ (c) 25th term = $a + 24d = 8 + 24 \times 4 = 104$	A1 M1A1	
			(6)

Notes

(a)

B1 for 8 seen

(b)

Alt 1

M1 for $S_2 = 2a + d$ or $S_2 = 2 \times 8 + d$ or $2 \times 8 + d = 2 \times 2(2 + 3)$ oe seen with their a. This must be an attempt at a **complete method** to find d.

A1 for a fully correct method to find d.

A1 d=4

Alt 2

By comparing coefficients

$$\{\frac{n}{2}(2a+(n-1)d) = 2n(n+3) \Rightarrow 2a+dn-d = 4n+12 \Rightarrow 16-d+dn = 12+4n \Rightarrow d=4\}$$

M1 for setting
$$\frac{n}{2}(2a + (n-1)d) = 2n(n+3)$$

A1 for a correct expressions as far as substituting the correct value for a to give: 16 - d + dn = 12 + 4n

A1 d=4

(c)

M1 attempts to use a correct $U_n = a + (n-1)d$ with n = 25 only. Ft their d provided it is a numerical value. Or any other correct method eg., $S_{25} - S_{24}$ etc.

A1 $U_{25} = 104$