Balancing graphs using bicolored edges

Antoine Dailly

Joint work with Adriana Hansberg and Denae Ventura.

Recall the context

2-coloring

A 2-coloring of the edges of K_n is a partition $E(K_n) = R \cup B$.

Balanced copy

Within a 2-coloring of the edges of K_n , a balanced copy of G is a copy of G with half its edges in R and the other half in B.

Recall the context

2-coloring

A 2-coloring of the edges of K_n is a partition $E(K_n) = R \cup B$.

Balanced copy

Within a 2-coloring of the edges of K_n , a balanced copy of G is a copy of G with half its edges in R and the other half in G.

Example: finding a balanced copy of C_4

Recall the context

2-coloring

A 2-coloring of the edges of K_n is a partition $E(K_n) = R \cup B$.

Balanced copy

Within a 2-coloring of the edges of K_n , a balanced copy of G is a copy of G with half its edges in R and the other half in G.

Example: finding a balanced copy of C_4

Impossible: only one edge in *R*.

Balanceability

Definition

A graph G is balanceable if there exists a k such that, for n sufficiently large, every 2-coloring of the edges of K_n with |R|, |B| > k contains a balanced copy of G.

Balanceability

Definition

A graph G is balanceable if there exists a k such that, for n sufficiently large, every 2-coloring of the edges of K_n with |R|, |B| > k contains a balanced copy of G.

The smallest k such that this holds is the balancing number, denoted by bal(n, G).

Balanceability

Definition

A graph G is balanceable if there exists a k such that, for n sufficiently large, every 2-coloring of the edges of K_n with |R|, |B| > k contains a balanced copy of G.

The smallest k such that this holds is the balancing number, denoted by bal(n, G).

Example

$$bal(n, C_4) = 1$$

- $ightharpoonup \geq 1$ by the previous slide;
- ▶ Easy to check that at least 2 edges of each color are enough to find a balanced C_4 .

Characterization

Theorem (Caro, Hansberg, Montejano, 2019+)

A graph is balanceable if and only if it has both:

- ► A cut crossed by half its edges;
- ► An induced subgraph containing half its edges.

Characterization

Theorem (Caro, Hansberg, Montejano, 2019+)

A graph is balanceable if and only if it has both:

- ► A cut crossed by half its edges;
- ► An induced subgraph containing half its edges.

Example: C_4 is balanceable

Proposition

If G is eulerian and $\frac{|E(G)|}{2}$ is odd, then G is not balanceable.

Proposition

If G is eulerian and $\frac{|E(G)|}{2}$ is odd, then G is not balanceable.

Proof by contradiction

Let (X, Y) be a cut crossed by half the edges

Proposition

If G is eulerian and $\frac{|E(G)|}{2}$ is odd, then G is not balanceable.

Proof by contradiction

Let (X, Y) be a cut crossed by half the edges

 X_{odd} : set of vertices of odd cut-degree in X

Proposition

If G is eulerian and $\frac{|E(G)|}{2}$ is odd, then G is not balanceable.

Proof by contradiction

Let (X, Y) be a cut crossed by half the edges

 X_{odd} : set of vertices of odd cut-degree in X

 $|X_{odd}|$ is odd since $\frac{|E|}{2}$ is odd.

Proposition

If G is eulerian and $\frac{|E(G)|}{2}$ is odd, then G is not balanceable.

Proof by contradiction

Let (X, Y) be a cut crossed by half the edges

 X_{odd} : set of vertices of odd cut-degree in X

 $|X_{odd}|$ is odd since $\frac{|E|}{2}$ is odd. Also, vertices in X_{odd} have odd degree in G[X].

Proposition

If G is eulerian and $\frac{|E(G)|}{2}$ is odd, then G is not balanceable.

Proof by contradiction

Let (X, Y) be a cut crossed by half the edges

 X_{odd} : set of vertices of odd cut-degree in X

 $|X_{odd}|$ is odd since $\frac{|E|}{2}$ is odd. Also, vertices in X_{odd} have odd degree in G[X]. \Rightarrow Sum of degrees in G[X] is odd \Rightarrow Contradiction

Non-balanceable graphs

Proposition

If G is eulerian and $\frac{|E(G)|}{2}$ is odd, then G is not balanceable.

Corollary

 K_{8k+5} is not balanceable.

Non-balanceable graphs

Proposition

If G is eulerian and $\frac{|E(G)|}{2}$ is odd, then G is not balanceable.

Corollary

 K_{8k+5} is not balanceable.

 \rightarrow Question: "how unbalanceable" is K_5 ?

Non-balanceable graphs

Proposition

If G is eulerian and $\frac{|E(G)|}{2}$ is odd, then G is not balanceable.

Corollary

 K_{8k+5} is not balanceable.

ightarrow Question: "how unbalanceable" is K_5 ?

How hard would it be to guarantee a balanced copy of K_5 by relaxing the problem?

Bicolored edges

Let $E(K_n) = R \cup B$ be a 2-coloring of the edges of K_n . We now allow $R \cap B \neq \emptyset$.

Bicolored edges

Let $E(K_n) = R \cup B$ be a 2-coloring of the edges of K_n . We now allow $R \cap B \neq \emptyset$.

An edge in $R \cap B$ is called bicolored, and we can set it of either color as needed.

Bicolored edges

Let $E(K_n) = R \cup B$ be a 2-coloring of the edges of K_n . We now allow $R \cap B \neq \emptyset$.

An edge in $R \cap B$ is called bicolored, and we can set it of either color as needed.

Example with C_4

Bicolored edges

Let $E(K_n) = R \cup B$ be a 2-coloring of the edges of K_n . We now allow $R \cap B \neq \emptyset$.

An edge in $R \cap B$ is called bicolored, and we can set it of either color as needed.

Example with C_4

Redefining the balancing number

Balancing number: extension

For a graph G, we call bal(n, G) the smallest k such that every 2-coloring $R \cup B$ of the edges of K_n allowing bicolored edges with |R|, |B| > k contains a balanced copy of G.

Now, even non-balanceable graphs have a balancing number!

Redefining the balancing number

Balancing number: extension

For a graph G, we call bal(n, G) the smallest k such that every 2-coloring $R \cup B$ of the edges of K_n allowing bicolored edges with |R|, |B| > k contains a balanced copy of G.

Now, even non-balanceable graphs have a balancing number!

First observations

▶ If G is balanceable, then bal(n, G) does not change.

Redefining the balancing number

Balancing number: extension

For a graph G, we call bal(n, G) the smallest k such that every 2-coloring $R \cup B$ of the edges of K_n allowing bicolored edges with |R|, |B| > k contains a balanced copy of G.

Now, even non-balanceable graphs have a balancing number!

First observations

- ▶ If G is balanceable, then bal(n, G) does not change.
- ▶ If *G* is not balanceable, then $bal(n, G) \ge \frac{1}{2} \binom{n}{2}$ since we need bicolored edges.
- ▶ bal $(n, G) < \binom{n}{2}$: if $R = B = E(K_n)$ then we will find a balanced copy of G.

Assume that $|R|, |B| = \frac{1}{2} \binom{n}{2} + b$.

Assume that $|R|, |B| = \frac{1}{2} \binom{n}{2} + b$.

Assume that $|R|, |B| = \frac{1}{2} \binom{n}{2} + b$.

 $\Rightarrow 2b$ bicolored edges

Assume that $|R|, |B| = \frac{1}{2} \binom{n}{2} + b$.

Proposition

If having k bicolored edges guarantees a balanced copy of G, then bal $(n, G) \leq \frac{1}{2}\binom{n}{2} + \lceil \frac{k}{2} \rceil - 1$.

 \Rightarrow 2*b* bicolored edges

Turán number of a family ${\cal H}$

 $ex(n, \mathcal{H})$ is the maximum number of edges in a graph of order n and containing no (not necessarily induced) H for $H \in \mathcal{H}$.

Turán number of a family ${\cal H}$

 $\operatorname{ex}(n,\mathcal{H})$ is the maximum number of edges in a graph of order n and containing no (not necessarily induced) H for $H \in \mathcal{H}$.

Theorem: general upper bound

Let G be a graph, and $\mathcal H$ be the family of subgraphs of G with $\geq \frac{|E(G)|}{2}$ edges. We have $\mathrm{bal}(n,G) \leq \frac{1}{2}\binom{n}{2} + \lceil \frac{\mathrm{ex}(n,\mathcal H)}{2} \rceil$.

Turán number of a family ${\cal H}$

 $\operatorname{ex}(n,\mathcal{H})$ is the maximum number of edges in a graph of order n and containing no (not necessarily induced) H for $H \in \mathcal{H}$.

Theorem: general upper bound

Let G be a graph, and $\mathcal H$ be the family of subgraphs of G with $\geq \frac{|E(G)|}{2}$ edges. We have $\mathrm{bal}(n,G) \leq \frac{1}{2}\binom{n}{2} + \lceil \frac{\mathrm{ex}(n,\mathcal H)}{2} \rceil$.

Proof idea

If |R|, $|B| > \frac{1}{2}\binom{n}{2} + \lceil \frac{\text{ex}(n,\mathcal{H})}{2} \rceil$, then there are at least $\text{ex}(n,\mathcal{H}) + 1$ bicolored edges.

Turán number of a family ${\cal H}$

 $\operatorname{ex}(n,\mathcal{H})$ is the maximum number of edges in a graph of order n and containing no (not necessarily induced) H for $H \in \mathcal{H}$.

Theorem: general upper bound

Let G be a graph, and $\mathcal H$ be the family of subgraphs of G with $\geq \frac{|E(G)|}{2}$ edges. We have $\mathrm{bal}(n,G) \leq \frac{1}{2}\binom{n}{2} + \lceil \frac{\mathrm{ex}(n,\mathcal H)}{2} \rceil$.

Proof idea

If |R|, $|B| > \frac{1}{2}\binom{n}{2} + \lceil \frac{\operatorname{ex}(n,\mathcal{H})}{2} \rceil$, then there are at least $\operatorname{ex}(n,\mathcal{H}) + 1$ bicolored edges. Select bicolored edges forming a graph in \mathcal{H} , add edges to get G, and set the bicolored edges as needed to have a balanced copy.

Applying the theorem

Upper bound for
$$bal(n, K_5)$$

$$\mathsf{bal}(\textit{n},\textit{K}_5) \leq \tfrac{1}{2}\tbinom{\textit{n}}{2} + \lceil \tfrac{\mathsf{ex}(\textit{n},\{\textit{C}_3,\textit{C}_4,\textit{C}_5\})}{2} \rceil$$

Applying the theorem

Upper bound for $bal(n, K_5)$

$$\mathsf{bal}(\textit{n},\textit{K}_5) \leq \tfrac{1}{2}\tbinom{\textit{n}}{2} + \lceil \tfrac{\mathsf{ex}(\textit{n},\{\textit{C}_3,\textit{C}_4,\textit{C}_5\})}{2} \rceil$$

Proof idea

A graph with more than $ex(n, \{C_3, C_4, C_5\})$ edges has girth ≤ 5 and a certain density.

- \Rightarrow It has at least 5 edges among 5 vertices.
- \Rightarrow We can apply the theorem.

Applying the theorem

Upper bound for $bal(n, K_5)$

$$\mathsf{bal}(n, K_5) \leq \tfrac{1}{2} \tbinom{n}{2} + \lceil \tfrac{\mathsf{ex}(n, \{C_3, C_4, C_5\})}{2} \rceil$$

Proof idea

A graph with more than $ex(n, \{C_3, C_4, C_5\})$ edges has girth ≤ 5 and a certain density.

- \Rightarrow It has at least 5 edges among 5 vertices.
- \Rightarrow We can apply the theorem.

Question

How good is this upper bound?

A lower bound for $bal(n, K_5)$

Lower bound

There is a 2-coloring $R \cup B$ of the edges of K_n with $|R|, |B| \ge \frac{1}{2}\binom{n}{2} + \theta(\text{ex}(n, \{C_3, C_4, C_5\}))$ without a balanced K_5 .

A lower bound for $bal(n, K_5)$

Lower bound

There is a 2-coloring $R \cup B$ of the edges of K_n with $|R|, |B| \ge \frac{1}{2}\binom{n}{2} + \theta(\text{ex}(n, \{C_3, C_4, C_5\}))$ without a balanced K_5 .

A lower bound for $bal(n, K_5)$

Lower bound

There is a 2-coloring $R \cup B$ of the edges of K_n with $|R|, |B| \ge \frac{1}{2}\binom{n}{2} + \theta(\text{ex}(n, \{C_3, C_4, C_5\}))$ without a balanced K_5 .

We can have $|R|, |B| = \frac{1}{2} \binom{n}{2} + \theta(\text{ex}(n, \{C_3, C_4, C_5\})).$

Theorem

$$\mathsf{bal}(\textit{n},\textit{K}_5) = \tfrac{1}{2}\binom{\textit{n}}{2} + \theta(\mathsf{ex}(\textit{n},\{\textit{C}_3,\textit{C}_4,\textit{C}_5\})).$$

Theorem

$$bal(n, K_5) = \frac{1}{2}\binom{n}{2} + \theta(ex(n, \{C_3, C_4, C_5\})).$$

So, what does it mean?

 $\theta(\text{ex}(n, \{C_3, C_4, C_5\})) = \theta(n^{\frac{3}{2}})$ bicolored edges are both *necessary* and *sufficient* to balance K_5 .

Theorem

$$\mathsf{bal}(n, K_5) = \tfrac{1}{2}\binom{n}{2} + \theta(\mathsf{ex}(n, \{C_3, C_4, C_5\})).$$

So, what does it mean?

 $\theta(\text{ex}(n,\{C_3,C_4,C_5\})) = \theta(n^{\frac{3}{2}})$ bicolored edges are both *necessary* and *sufficient* to balance K_5 .

However, in the case of C_{4k+2} , we need 1 bicolored edge while the theorem for the general upper bound gives an upper bound of $\frac{1}{2}\binom{n}{2} + \theta(nk-k^2)$.

Theorem

$$\mathsf{bal}(n, K_5) = \frac{1}{2}\binom{n}{2} + \theta(\mathsf{ex}(n, \{C_3, C_4, C_5\})).$$

So, what does it mean?

 $\theta(\text{ex}(n, \{C_3, C_4, C_5\})) = \theta(n^{\frac{3}{2}})$ bicolored edges are both *necessary* and *sufficient* to balance K_5 .

However, in the case of C_{4k+2} , we need 1 bicolored edge while the theorem for the general upper bound gives an upper bound of $\frac{1}{2}\binom{n}{2} + \theta(nk-k^2)$.

Questions

Why this difference? What makes a graph "difficult" to balance, even with bicolored edges?

