МИНОБРНАУКИ РОССИИ ФГБОУ ВО «СГУ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

КЛАССИФИКАЦИЯ БИНАРНЫХ ОТНОШЕНИЙ И СИСТЕМЫ ЗАМЫКАНИЙ

ЛАБОРАТОРНАЯ РАБОТА

студента 3 курса 331 группы	
специальности 100501 — Компьютерная безопасность	
факультета КНиИТ	
Окунькова Сергея Викторовича	
Проверил	
аспирант	В. Н. Кутин

СОДЕРЖАНИЕ

1	Постановка задачи				
2	Teop	ретические сведения по рассмотренным темам с их обоснованием 4			
3	Резу	Результаты работы			
	3.1	Алгор	итм 1 - Построение подполугруппы по заданному порож-		
		дающе	ему множеству 6		
	3.2	Коды	программ, реализующей рассмотренные алгоритмы 6		
	3.3	Резули	ьтаты тестирования программ10		
	3.4	Оценк	ки сложности рассмотренных алгоритмов11		
		3.4.1	Алгоритм определения рефлексивности		
		3.4.2	Алгоритм определения антирефлексивности11		
		3.4.3	Алгоритм определения симметричности11		
		3.4.4	Алгоритм определения антисимметричности		
		3.4.5	Алгоритм определения транзитивности11		
		3.4.6	Алгоритм классификации11		
		3.4.7	Построение замыкания рефлексивности		
		3.4.8	Построение замыкания симметричности		
		3.4.9	Построение замыкания транзитивности		
34	КЛЮ)ЧЕНИ	E		

1 Постановка задачи

Цель работы:

Изучение основных свойств бинарных отношений и операций замыкания бинарных отношений.

Порядок выполнения работы:

- 1. Рассмотреть понятия полугруппы, подполугруппы и порождающего множества. Разработать алгоритм построения подполугрупп по по таблице Кэли.
- 2. Разработать алгоритм построения полугруппы бинарных отношений по заданному порождающему множеству.
- 3. Рассмотреть понятия подгруппы, порождающего множества и определяющих соотношений. Разработать алгоритм построения полугруппы по порождающему множеству и определяющим соотношениям.

2 Теоретические сведения по рассмотренным темам с их обоснованием

Полугруппа — это алгебра $S = (S, \cdot)$ с однойассоциативной бинарной операцией \cdot , т.е. выполняется $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ для любых $x, y, z \in S$.

Если полугрупповая операция называется умножением (соответственно, сложением), то полугруппу называют мультипликативной (соответственно, аддитивной).

Подмножество X полугруппы S называется **подполугруппой**, если X устойчиво относительно операции умножения, т.е. для любых $x,y\in X$ выполняется свойство: $x\cdot y\in X$.

В этом случае множество X с ограничением на нем операции умножения исходной полугруппы S образует полугруппу.

В силу общего свойства подалгебр пересечение любого семейства X_i $(i \in I)$ подполугрупп полугруппы S является подполугруппой S и, значит, множество Sub(S) всех подполугрупп полугруппы S является системой замыканий. множество X. Такая полугруппа обозначается символом $\langle X \rangle$ и называется подполугруппой S, порождённой множеством X. При этом множество X называется также **порождающим множеством** подполугруппы X. В частности, если X называется порождающим множеством полугруппы X и говорят, что множество X порождает полугруппу X.

Для любой конечной полугруппы S найдется такой конечный алфавит A, что для некоторого отображения $\phi:A\to S$ выполняется равенство $<\phi(A)>=S$ и, значит, $S\cong A^+/ker\phi$ этом случае множество A называется множеством порождающих символов полугруппы S (относительно отображения $\phi:A\to S$). Если при этом для слов $w_1,w_2\in A$ выполняется равенство $\phi(w_1)=\phi(w_2)$, т.е. $w_1\equiv w_2(ker\phi)$, то говорят, что на S выполняется соотношение $w_1=w_2$ (относительно отображения $\phi:A\to S$).

Очевидно, что в общем случае множество таких соотношений $w_1=w_2$ для всех пар $(w_1,w_2)\in ker\phi$ будет бесконечным и не представляется возможности эффективно описать полугруппу S в виде полугруппы классов конгруэнции $ker\phi$. Однако в некоторых случаях можно выбрать такое сравнительно простое подмножество $\rho\subset ker\phi$, которое однозначно определяет конгруэнцию $ker\phi$ как наименьшую конгруэнцию полугруппы A^+ , содержащую отношение ρ , т.е. $ker\phi=f_{con}(\rho)=f_{eq}(f_{req}(\rho)).$

Так как в случае $(w_1,w_2)\in \rho$ по-прежнему выполняется равенство $\phi(w_1)=\phi(w_2)$, то будем писать $w_1=w_2$ и называть такие выражения **определяющими соотношениями**. Из таких соотношений конгруэнция $ker\phi$ строится с помощью применения следующих процедур к словам $u,v\in A^+$:

- (а) слово v непосредственно выводится из слова u, если v получается из u заменой некоторого подслова w_1 на слово w_2 , удовлетворяющее определяющему соотношению $w_1 = w_2$, т.е. $(u, v) = (xw_1y, xw_2y)$ для некоторых $x, y \in A^*$;
- (б) слово v выводится из слова u, если v получается из u с помощью конечного числа применения процедуры (а).

Если все выполняющиеся на S соотношения выводятся из определяющих соотношений совокупности ρ , то конгруэнция $ker\phi$ полностью определяется отношением ρ и выражение $< A : w_1 = w_2 : (w_1, w_2) \in \rho >$ называется копредставлением полугруппы S.

3 Результаты работы

3.1 Алгоритм 1 - Построение подполугруппы по заданному порождающему множеству

 Bxod : Полугруппа S с таблицей Кэли $A=(a_{ij})$ размерности $n\times n$ и подмножество $X\subset S$.

Выход: Подполугруппа $\langle X \rangle \subset S$.

Шаг 1. Положим $i = 0, X_0 = X$.

<u>Шаг 2.</u> Для X_i вычислим $\overline{X}_l = \{x \cdot y : x \in X_i \land y \in X\}$ и положим $X_{i+1} = X_i \cup \overline{X}_l$ (выражение $x \cdot y$ означает a_{xy} в таблице Кэли A).

<u>Шаг 3.</u> Если $X_{i+1} = X_i$ вернем X_i , которое будет являться подполугруппой $\langle X \rangle \subset S$, иначе положим i=i+1 и вернемся ко 2-му шагу.

Трудоемкость алгоритма $O(n^3)$.

3.2 Коды программ, реализующей рассмотренные алгоритмы

```
import numpy as np
from itertools import product
def get_set(a):
    s = []
    for i in range(len(a)):
        for j in range(len(a[i])):
            if a[i][j] == 1:
                s.append((i + 1, j + 1))
    return s
def subsets(n):
    nums = [i for i in range(n)]
    from functools import reduce
    return reduce(lambda res, x: res + [subset + [x] for subset in res],
                  nums, [[]])[1:]
def get_res(matrixes):
    res = []
    for subset in subsets(len(matrixes)):
        podres = matrixes[subset[0]]
        for index in subset[1:]:
            podres *= matrixes[index]
```

```
for relation in get_set(podres):
             res.append(relation)
    return set(res)
def add_correlation(cur_word, alph, dct, semigroup_elems):
    new_words = []
    for letter in alph:
        new_word = cur_word + letter
        \mathbf{m} = \begin{bmatrix} 1 \end{bmatrix}
        for i in dct[cur_word]:
             if i != '*':
                 m.append(dct[letter][semigroup_elems.index(i)])
             else:
                 m.append('*')
        flag = True
        for key in dct:
             if m == dct[key]:
                 print(new_word, '->', key)
                 flag = False
        if flag:
             dct[new_word] = m
            new_words.append(new_word)
    return new_words
def find_correlation(ans):
    result = {}
    correlations = {}
    for key, value in ans.items():
        if not any(np.array_equal(value, i) for i in result.values()):
            result[key] = value
        else:
             for k, v in result.items():
                 if np.array_equal(v, value):
                     correlations[key] = k
    print("Coopresentation: ")
    for key, value in result.items():
        print(key, ":\n", value)
    print("The resulting ratios: ")
```

```
for key, value in correlations.items():
        print(key, "->", value)
def task1():
    print("Enter your set")
    st = list(input().split())
    print('Enter Cayley table')
    print(" ", *st)
    matrix = []
    for i in range(len(st)):
        print(st[i], end=" ")
        s = list(input().split())
        matrix.append(s)
    print("Enter your subset")
    subst = list(input().split())
    x_i = subst.copy()
    while True:
        x_1 = []
        for x in x_i:
            for y in subst:
                x_l.append(matrix[x_i.index(x)][st.index(y)])
        x_0 = x_i.copy()
        x_0.sort()
        x_i = list(set(x_i).union(set(x_l)))
        x i.sort()
        if x_0 == x_i:
            print('Subsemigroup is', *x_i)
            break
def task2():
    print("Enter the elements of the set: ")
    input_list = input().replace(",", "").split()
    n = len(input_list)
    print("Enter the number of binary relations")
    bin_relation_amount = int(input())
    bin_relation_matrices = {}
    for i in range(1, bin_relation_amount + 1):
        print(f"Enter boolean matrix Values {i} binary relation: ")
        print(" ", *input_list)
```

```
matrix = [list(map(int, input(f"{input_list[i]} ").split())) for i in range(n
        matrix = np.array(matrix).reshape(n, n)
        bin_relation_matrices[str(i)] = matrix
    combinations_list = []
    for i in range(1, bin_relation_amount + 1):
        combinations = list(product(''.join([str(elem) for elem in range(1, bin_relat
        combinations_list += combinations
    for comb in combinations_list:
        cur_matrix = bin_relation_matrices[comb[0]].copy()
        word = comb[0]
        for comb_i in range(1, len(comb)):
            cur_matrix *= bin_relation_matrices[comb[comb_i]]
            word += comb[comb_i]
        bin_relation_matrices[word] = cur_matrix
    find_correlation(bin_relation_matrices)
def task3():
    print("Enter semigroup elements: ")
    semigroup_elems = [elem for elem in input().replace(",", "").split()]
    n = len(semigroup_elems)
    print("Enter the elements of the transformation set: ")
    generators_list = input().replace(",", "").split()
    gn = len(generators_list)
    translation_dict = {}
    for i in range(gn):
        print(f"Enter transformation values '{generators_list[i]}' elements of the sen
        print((str(semigroup_elems)[1:-1]).replace(", ", " ").replace("'", ""))
        translation = input().split()
        translation_dict[generators_list[i]] = translation
    print("Coopresentation: ")
    gl = generators_list.copy()
    while gl:
        gl1 = []
        for s in gl:
            gl1.extend(add_correlation(s, generators_list, translation_dict, semigroup
        gl = gl1
    print("The resulting ratios: ")
```

```
print(translation_dict)
task3()
```

3.3 Результаты тестирования программ

```
How you want enter your relation (set or matrix)?
Enter the number of elements in relation
Enter your set
Relation's matrix
[[0 1 1]
[0 0 0]
[0 0 0]]
Set is anti-reflexive
Set is anti-symmetry
Set is transitive
Relation is the relation of the strict order
Closure matrix:
[[1 1 1]
[1 1 0]
[1 0 1]]
Closure set:
(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (3, 1) (3, 3)
```

Рисунок 1 – Ввод бинарного отношения (1, 2), (1, 3) в виде множества с выводом свойств этого множества и замыкания относительно эквивалентности

3.4 Оценки сложности рассмотренных алгоритмов

3.4.1 Алгоритм определения рефлексивности

Сложность выполнения проверки на рефлексивность определяется как O(n).

3.4.2 Алгоритм определения антирефлексивности

За счет схожести с алгоритмом определения рефлексивности сложность определяется как O(n).

3.4.3 Алгоритм определения симметричности

Сложность транспонирования в питру определяется как $O(n^{3/2}log\ n)$, сложность сравнение двух матриц поэлементно определяется как $O(n^2)$. Отсюда можно сделать вывод, что сложность алгоритма будет определятся как $O(n^{3/2}log\ n+n^2)=O(n^2)$.

3.4.4 Алгоритм определения антисимметричности

Сложность поэлементного умножения матриц определяется как $O(n^2)$, сложность сравнение двух матриц поэлементно определяется как $O(n^2)$. Отсюда можно сделать вывод, что сложность будет определятся как $O(n^2+n^2)=O(n^2)$

3.4.5 Алгоритм определения транзитивности

Из всего выше сказанного очевидно, что сложность проверки на транзитивность или антитранзитивность составляет $O(n^3)$, так как в нем используется умножение, сравнение матриц и тройной цикл для проверки рефлексивности в худшем случае матриц.

3.4.6 Алгоритм классификации

Сложность выполнения самого алгоритма классификации бинарных отношений реализованно через словарь языка python и оператор if, поэтому является константной (O(1)), если не учитывать сложность выполнения проверки свойств отношения. Если учитывать сложность алгоритмов проверки свойств отношения, то :

- 1. Сложность проверка на квазипорядок определяется как $O(n^3+n)=O(n^3).$
- 2. Сложность проверка на эквивалентность определяется как $O(n^3 + n + n^{3/2}log n) = O(n^3)$.

- 3. Сложность проверка на частичный порядок определяется как $O(n^3+n+n^3)=O(n^3).$
- 4. Сложность проверка на строгий порядок определяется как $O(n^3+n+n^3)=O(n^3).$

3.4.7 Построение замыкания рефлексивности

Так как весь алгоритм строится на заполнении главной диагонали матрицы 1, то его сложность состовляет O(n).

3.4.8 Построение замыкания симметричности

Для посторения замыкания симметричности используются вложенный цикла, поэтому сложность алгоритма определяется как $O(n^2)$.

3.4.9 Построение замыкания транзитивности

Для посторения замыкания транзитивности используются три вложенный цикла, поэтому сложность алгоритма определяется как $O(n^4)$.

ЗАКЛЮЧЕНИЕ

В рамках данной лабораторной работы были рассмотренны теоритические основы свойств бинарных отношений, их видов и методов их замыкания по каждому из свойств. На основе этой теоретической части была смоделирована программа на языке Python с использованием средств библиотеки Numpy, которая способна определить свойства заданного множества, его вид и построить систему замыкания по каждому из основных свойств бинарного отношения, а так же была оценена асимптотика каждого реализованного алгоритма.