MATH 3110 - Spring 2023, Learning Activity 10 Team Leader: Group member:
Group member: Group member: Table number:
Team Leader needs to scan and upload it on Gradescope "Learning Activity 10" and add all group members to
the submission (due 2/08).
1. (2 points) Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a 2×2 matrix such that $ad = bc$. Is A invertible? Explain your answer. Mark the right answer by X .
Explain your answer:
Explain your answer: Since $ad=bc$, this means $ad-bc=0$. However, for a matrix be invertible, $det(A)\neq 0$ or $ad-bc\neq 0$.
he invertible, det(A) \$0 or ad-bc \$0.
2. (3 points) Explain why the matrix $E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -5 \\ 0 & 0 & 1 \end{bmatrix}$ is an elementary matrix.
E is an elementary matrix because it is one to the row upera

operation from becoming the identity matrix, 13. The redo get it to I3 would be R2+5R3 > R2.

3. (3 points) Let A, B and P be $n \times n$ matrices such that P is invertible and $A = PBP^{-1}$. Solve for B in

terms of A.

Computation:

$$A = PBP^{-1}$$

$$P^{-1}A = P^{-1}PBP^{-1}$$

$$P^{-1}A = T_nBP^{-1}$$

$$P^{-1}A = BP^{-1}$$

$$B = P^{-1}AP$$

4. (4 points) Compute the inverse of the matrix
$$M = \begin{bmatrix} 2 & 4 & 1 \\ 0 & 6 & -1 \\ 0 & -4 & 1 \end{bmatrix}$$
 by using elementary row operations must be shown.

Computation:
$$\begin{bmatrix} 2 & 4 & 1 \\ 0 & 6 & -1 \\ 0 & -4 & 1 \end{bmatrix} \xrightarrow{\frac{1}{6}} R_2 \xrightarrow{-7} R_2 \begin{bmatrix} 2 & 4 & 1 \\ 0 & 1 & -\frac{1}{6} \\ 0 & -4 & 1 \end{bmatrix} \xrightarrow{\frac{1}{6}} R_2 \xrightarrow{-7} R_3 \begin{bmatrix} 2 & 4 & 1 \\ 0 & 1 & -\frac{1}{6} \\ 0 & -4 & 1 \end{bmatrix} \xrightarrow{\frac{1}{6}} R_2 \xrightarrow{-7} R_3 \begin{bmatrix} 2 & 4 & 1 \\ 0 & 1 & -\frac{1}{6} \\ 0 & -4 & 1 \end{bmatrix} \xrightarrow{\frac{1}{6}} R_3 \xrightarrow{-7} R_3 \begin{bmatrix} 2 & 4 & 1 \\ 0 & 1 & -\frac{1}{6} \\ 0 & -4 & 1 \end{bmatrix} \xrightarrow{\frac{1}{6}} R_3 \xrightarrow{-7} R_3 \begin{bmatrix} 2 & 4 & 1 \\ 0 & 1 & -\frac{1}{6} \\ 0 & -4 & 1 \end{bmatrix} \xrightarrow{\frac{1}{6}} R_3 \xrightarrow{-7} R_3 \begin{bmatrix} 2 & 4 & 1 \\ 0 & 1 & -\frac{1}{6} \\ 0 & 1 &$$