PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-227427

(43)Date of publication of application: 03.09.1993

(51)Int.CI.

H04N 1/40 G06F 15/64

(21)Application number: 04-023106

(71)Applicant: N T T DATA TSUSHIN KK

(22)Date of filing:

10.02.1992 (72)Invert

(72)Inventor: SUMIYA KYOICHI

TOUTO

TSUTSUMIDA TOSHIO

(54) SHADING CORRECTION SYSTEM

(57)Abstract:

PURPOSE: To realize highly precise and minute shading correction and to reduce the trouble of a fine adjustment process for the amplifier of a sensor.

CONSTITUTION: A multilevel quantization picture signal for plural sample density values is obtained, and an actual characteristic is estimated from plural pieces of measurement point information. Thus, a shading correction control part 7, an average value calculation part by individual elements 8, a measurement function estimation part 10, a measurement function information memory 11, a standard function information memory 21 and a sample density information memory 9 are newly provided. Thus, the dynamic range of a density area to be noticed can be taken large since a photoelectric conversion characteristic can be defined by a non-linear function.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-227427

(43)公開日 平成5年(1993)9月3日

(51) Int.Cl.5

識別記号 庁内整理番号 FΙ

技術表示箇所

H 0 4 N 1/40

101 A 9068-5C

G06F 15/64

400 D 8840-5L

審査請求 未請求 請求項の数1(全 5 頁)

(21)出願番号

特願平4-23106

(22)出願日

平成4年(1992)2月10日

(71)出願人 000102728

エヌ・ティ・ティ・データ通信株式会社 東京都江東区豊洲三丁目3番3号

(72)発明者 角谷 恭一

東京都港区虎ノ門1丁目26番5号 エヌ・

ティ・ティ・データ通信株式会社内

(72)発明者 堤田 敏夫

東京都港区虎ノ門1丁目26番5号 エヌ・

ティ・ティ・データ通信株式会社内

(74)代理人 弁理士 磯村 雅俊

(54)【発明の名称】 シェーディング補正システム

(57)【要約】

【目的】 補正精度が高く、木目の細かいシェーディン グ補正が可能であり、かつセンサのアンプの微妙な調整 工程の手間を削減する。

【構成】 複数のサンプル濃度値に対する多値量子化画 像信号を取得して、複数の測定点情報から実際の特性を 推定する。そのために、シェーディング補正制御部と、 素子別平均値算出部と、測定関数推定部と、測定関数情 報メモリ、標準関数情報メモリ、およびサンプル濃度情 報メモリを新たに設ける。これにより、光電変換特性を 非線形関数で定義することができるので、着目したい濃 度領域のダイナミックレンジを大きくとることができ る。

7

【特許請求の範囲】

【請求項1】 読み取るべき帳票からの反射光を画像信 号に変換し、これを増幅するセンサ部と、上配画像信号 をディジタルの多値量子化画像信号に変換するA/D変 換部と、多値量子化画像信号の補正値を格納し、上記多 値量子化画像信号をアドレスとして格納値を読み出すシ ェーディング補正用メモリと、補正後の多値量子化値を 格納する画像メモリとを備えたシェーディング補正シス テムにおいて、シェーディング補正値を決定するために 各部を制御し、オペレータにシェーディング補正用帳票 10 の挿入を促すシェーディング補正制御部と、上記センサ 部の素子別およびサンブル濃度値毎の多値量子化画像信 号の平均値を算出し、算出値を格納する素子別平均値算 出部と、シェーディング補正用に多値量子化画像信号を 測定する複数のサンプル濃度の情報を予め格納している サンプル濃度情報メモリと、上記素子別平均値算出部か らのある素子での各サンプル濃度値の時の多値量子化画 像信号の平均値、および上記サンプル濃度情報メモリか らの各サンプル濃度情報を受け取り、これらを基に装置 の光電変換特性を推定する測定関数推定部と、上記測定 20 関数推定部からの測定関数定義情報を格納する測定関数 情報メモリと、予め標準的な光電変換特性の関数定義情 報を格納し、上記測定関数情報メモリの内容をアドレス として、シェーディング補正値となる多値量子化値を出 力する標準関数情報メモリとを具備することを特徴とす るシェーディング補正システム。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、スキャナ等の帳票読取 装置に用いられるシェーディング補正システムに関し、 特にA/D変換後のディジタルの多値量子化画像信号を 補正するシステムに関するものである。

[0002]

【従来の技術】画像入力においては、撮像素子の特性や レンズ収差の影響等により周辺部のレベルが低下した り、濃淡レベルが全画面にわたって均一でなくなったり することがある。これが、シェーディング現象である。 従来、このシェーディング現象を除去するためのシェー ディング補正方法としては、基準白原稿を参照して光電 変換出力自身を補正する処理や、同じく閾値を補正する 処理があった(例えば、『電子情報通信ハンドブック』 第2分冊、昭和63年3月30日、(株)オーム社発行、pp.26 05参照)。ところで、帳票を光電変換機能を用いて読み 取るスキャナ等は、帳票からの反射光を画像信号に変換 する機能および画像信号を増幅する信号増幅用アンプの 機能を具備したセンサ部と、画像信号をディジタルの多 値量子化画像信号に変換するA/D変換部と、多値量子 化値を格納する画像メモリとから構成されている。

【0003】このようなスキャナでは、経時変化等によ

通常である。そのばらつきの差分を吸収するためには、 実際の特性に対する本来の特性への補正値を求めて、シ ェーディング補正部において、その値によりA/D変換 後の多値量子化画像信号の補正を行っていた。図3は、 従来のシェーディング補正の概念図である。図3では、 センサ部の1素子に関する特性を示しており、横軸Xは 濃度値、縦軸Yは多値量子化値を示している。また、標 準関数R(X)は本来の特性、測定関数S(X)は実際 の特性である。図3の2本の傾斜した直線のうち、下方 が測定関数S(X)、上方が標準関数R(X)の各特性 を示すものである。従って、多値量子化値Yinに対す るYoutの値がシェーディング補正値である。ここ で、測定関数S(X)はあるサンプル濃度値XSの時に 測定された多値量子化値Ysで規定される測定点(X s, Ys)をもとに推定したものである。従来の方法で は、1つのサンプル濃度における測定値(Xs. Ys) とR(X)=0の点(Xi, 0)を通る直線でS(X)

を表現していた。 [0004]

【発明が解決しようとする課題】前述の従来方法におい ては、実際にはオフセットレベルの変動により、必ずし もS(Xi)=0とはならない。また全ての濃度値範囲 で多値量子化レベルの変化が1本の直線で近似できると は限らない。従って、測定関数S(X)の推定精度が必 ずしも十分ではないという問題があった。また、S(X i)=0を保証するためには、信号増幅用アンプのオフ セットレベルの調整により解決することができるが、そ のためにはセンサのアンプの微妙な調整工程が必要とな る。この調整は、極めて手間がかかるという問題があっ 30 た。本発明の目的は、このような従来の課題を解決し、 光電変換特性つまり測定関数S(X)の推定精度を向上 させてシェーディング補正を木目細かく実施でき、かつ 信号増幅用アンプの調整を手間を掛けずに行うことがで きるシェーディング補正システムを提供することにあ る。

[0005]

【課題を解決するための手段】上記目的を達成するた め、本発明のシェーディング補正システムは、読み取る べき帳票からの反射光を画像信号に変換し、これを増幅 40 するセンサ部(2)と、画像信号をディジタルの多値量 子化画像信号に変換するA/D変換部(3)と、多値量 子化画像信号の補正値を格納し、多値量子化画像信号を アドレスとして格納値を読み出すシェーディング補正用 メモリ(4)と、補正後の多値量子化値を格納する画像 メモリ(5)とを備えたシェーディング補正システムに おいて、シェーディング補正値を決定するために各部を 制御し、オペレータにシェーディング補正用帳票の挿入 を促すシェーディング補正制御部(7)と、センサ部の 素子別およびサンプル濃度値毎の多値量子化画像信号の ってセンサ部の受光素子に特性のばらつきが生じるのが 50 平均値を算出し、算出値を格納する素子別平均値算出部

(8) と、シェーディング補正用に多値量子化画像信号 を測定する複数のサンプル濃度の情報を予め格納してい るサンプル濃度情報メモリ(9)と、素子別平均値算出 部からのある素子での各サンプル濃度値の時の多値量子 化画像信号の平均値、およびサンプル濃度情報メモリか らの各サンプル濃度情報を受け取り、これらを基に装置 の光電変換特性を推定する測定関数推定部 (10) と、測 定関数推定部からの測定関数定義情報を格納する測定関 数情報メモリと(11)、予め標準的な光電変換特性の関 数定義情報を格納し、測定関数情報メモリの内容をアド 10 レスとして、シェーディング補正値となる多値量子化値 を出力する標準関数情報メモリ(12)とを具備することに 特徴がある。

[0006]

【作用】本発明においては、複数のサンプル濃度値の情 報を記憶して、これらのサンブル濃度値に対応した多値 量子化値を取得し、複数の測定点から測定関数S (X) を推定可能にする。このように、複数のサンプル濃度に 対する多値量子化値を取得することが可能となったの で、測定関数S(X)が高精度で推定可能になり、木目 20 の細かいシェーディング補正ができるようになる。

[0007]

【実施例】以下、本発明の実施例を、図面により詳細に 説明する。図1は、本発明の一実施例を示すシェーディ ング補正システムのプロック図である。図1において、 1は読み取るべき帳票、2は帳票1からの反射光を画像 信号に変換するセンサ、3は画像信号をディジタルの多 値量子化画像信号に変換するA/D変換部、4はシェー ディング補正用メモリ、5は画像メモリ部、6は装置制 御部、7はシェーディング補正制御部、8は素子別平均 30 値算出部、9はサンプル濃度情報メモリ、10は測定関 数推定部、11は測定関数情報メモリ、12は標準関数 情報メモリである。本実施例では、多値量子化信号を6 4階調値として説明しているが、量子化レベルは任意の 整数の値Nの場合でも拡張して適用することができる。 先ず、センサ2は、帳票1からの反射光aを画像信号b に変換した後、変換された画像信号bをA/D変換部3 に送る。A/D変換部3は、アナログ値の画像信号bを ディジタル値の多値量子化画像信号 c に変換して、変換 別平均値算出部8に送出する場合は、シェーディング補 正値決定モード時のときのみであって、いまは通常の読 取りモード時であるので、画像信号 c が送出されても素 子別平均値算出部8ではこれを受け取らない。シェーデ ィング補正用メモリ4には、多値量子化画像信号毎に補 正後の信号値が格納されており、多値量子化画像信号c をアドレスとする領域にそれぞれ格納されている。シェ **-ディング補正制御部7からの制御により送られてきた** 多値量子化画像信号 c をアドレスとする補正値をシェー

ディング補正後の多値量子化画像信号とであり、補正後 の信号 c は画像メモリ5 に格納される。以上が、通常の 読取りモード時の動作である。

【0008】次に、シェーディング補正値を決定するモ ードの時の動作を説明する。先ず、装置制御部6からシ ェーディング補正制御部7に対してシェーディング補正 指示情報dを入力することにより、シェーディング補正 制御部7はシェーディング補正用メモリ消去信号kをシ ェーディング補正用メモリ4に送出して、補正用メモリ 4内のデータを消去する。シェーディング補正制御部7 は、オペレータにシェーディング補正用帳票の挿入を促 す。本発明においては、シェーディング補正用帳票がシ ステムで予め決められたサンプル濃度毎に必要であっ て、オペレータへの指示はサンァル濃度を指定するもの となる。本実施例では、サンプル濃度の数を4個として 説明するが、この数に限定されることなく、任意の整数 Mをサンプル濃度の個数として拡張することができる。

【0009】最初の濃度のサンプルである補正用帳票1 が挿入されると、センサ部2およびA/D変換部3を経 由して、多値量子化画像信号 c が素子別平均値算出部 8 に送出される。素子別平均値算出部8は、挿入されたシ ェーディング補正用帳票1に対するA/D変換部3から の多値量子化画像信号 c を数ライン分だけ取得し、素子 別の平均値を算出して、これを格納する。次に、シェー ディング補正制御部7は、オペレータに次のサンプル濃 度に対する帳票の挿入を促す。このようにして、上記動 作を全サンプル濃度に対して繰り返し行う。測定関数推 定部10は、素子別平均値算出部8からの指定素子平均 値 f とサンプル濃度情報メモリ9に格納されているサン プル濃度情報gを受け取り、後述の方法により測定関数 定義情報hを計算して出力する。次に、測定関数情報メ モリ11は、測定関数推定部10からの測定関数定義情 報りを格納する。格納されるデータは、多値量子化値を アドレスとしてその時の濃度値が格納される。標準関数 情報メモリ12には、予めシステムで決められた本来の 光電変換特性を定義する情報が、濃度情報をアドレスと してその時の多値量子化値を格納している。従って、標 準関数情報メモリ12は、測定関数情報メモリ11から の内容を参照アドレスiとして受け取り、そのアドレス 出力をシェーディング補正用メモリ4に送出する。素子 40 に格納されている値を補正用情報」としてシェーディン グ補正用メモリ4の該当素子の部分に出力する。

【0010】図2は、図1における測定関数推定部の作 用を示す特性曲線図である。図2を用いて、ある素子に おける測定関数の推定方法と、測定関数情報の算出方法 を説明する。前述のように、測定関数推定部10は、入 力された指定素子平均値 f とサンブル濃度情報 g の組合 わせによる4つの点 (X1, Y1) (X2, Y2) (X 3, Y3) (X4, Y4) から測定関数を近似する。そ の近似の方法は既に多くの方法が存在するが、本発明で ディング補正用メモリ4から読み出す。この値がシェー 50 はこれらの方法のいずれでも実現可能である。ここで

は、隣接する2点間を結ぶ線分を求める方法を用いて説 明する。すなわち、図2に示すように、点(X1,X 2) と点 (X2, Y2) を線分で結び、点 (X2, Y 2) と点(X3, Y3) を線分で結び、さらに点(X 3, Y3) と点(X4, Y4) を線分で結ぶ。なお、X 1が0でない場合、およびY4が0でない場合には、そ れぞれ (X1、Y1) (X2, Y2) を結ぶ線分をXが 0になるまで、また (X3, Y3) (X4, Y4) を結 ぶ線分をYが0になるまで延長する。

【0011】上述の方法により推定された関数におい 10 て、Xを0から順次増加させた時のYのマトリクスの形 に表現したものが、測定関数情報となる。なお、Xの増 分幅を細かくすればするほど、補正の精度を向上させる ことができる。図2から明らかなように、Xの最大値は Yが0となる値である。また、Yは、整数化して0から 63の値とする。ただし、あるS(X) = Y1となるXが複数存在することがあるが、その時にはYiの時のX の最大値と最小値の平均値を標準関数定義情報メモリ1 2のアドレスとなるXの値として存在するように、この 値Xを求める必要がある。このように、装置制御部6か 20 8 素子別平均値算出部 らの入力により、複数のサンプル濃度値に対する多値量 子化画像信号を取得して、複数の測定点情報から実際の 特性を推定するので、実際の特性を高精度で推定でき る。その結果、補正精度が高く、木目の細かいシェーデ ィング補正を行うことができる。

[0012]

【発明の効果】以上説明したように、本発明によれば、 サンプル濃度を数を増加させることにより測定関数の推 定精度を向上させることができるので、より正確で、木 目の細かいシェーディング補正値を決定することがで 30 f 指定素子平均値 き、その結果、高品質な画像の取得が可能である。ま た、オフセット濃度をサンプルとすることにより、運用 時における光電変換部のアンプの調整が不要になるの で、保守の手間を削減することができる。さらに、複数

の測定点から非線形な光電変換特性を表現するので、着 目濃度領域のダイナミックレンジを拡大することが可能 である。

[0013]

【図面の簡単な説明】

【図1】本発明の一実施例を示すシェーディング補正シ ステムのプロック図である。

【図2】図1における測定関数推定部の作用を示す特性 曲線図である。

【図3】従来のシェーディング補正の作用を示す特性曲 線図である。

【符号の説明】

- 1 帳票
- 2 センサ部
- 3 A/D変換部
- 4 シェーディング補正用メモリ
- 5 画像メモリ
- 6 装置制御部
- 7 シェーディング補正制御部
- - 9 サンプル濃度情報メモリ
 - 10 測定関数推定部
 - 11 測定関数情報メモリ
 - 12 標準関数情報メモリ
 - a 反射光
 - b 画像信号
 - c 多值量子化画像信号
 - d シェーディング補正指示信号
 - e サンプル濃度指定情報
- - g サンプル濃度情報
 - i 参照アドレス
 - j 補正値情報
 - k シェーディング補正用メモリ消去信号

【図2】

