

PVsyst - Simulation report

Grid-Connected System

Project: Kopellis_ 1 Axis

Variant: 114 kW 1 axis E-W

Trackers single array, with backtracking

System power: 114 kWp

Thessaloniki/Livadákion - Greece

PVsyst TRIAL

PVsyst TRIAL

Author

VC3, Simulation date: 15/07/22 00:36 with v7.2.16

Project: Kopellis_ 1 Axis

Variant: 114 kW 1 axis E-W

Project summary

Geographical Site

Thessaloniki/Livadákion

Greece

Situation

Latitude Longitude

40.52 °N 22.97 °E

Altitude 4 m

Time zone

UTC+2

System summary

Grid-Connected System

Trackers single array, with backtracking

PV Field Orientation

Thessaloniki/Livadákion

Orientation

Meteo data

Tracking plane, horizontal E-W axis Normal azimuth to axis

Meteonorm 8.0 (1994-2006), Sat=14% - Synthetic

Tracking algorithm

Astronomic calculation Backtracking activated

System information

PV Array

Nb. of modules 216 units Pnom total 114 kWp

Inverters

Nb. of units Pnom total

1 unit 111 kWac

0.20

Pnom ratio 1.031

Project settings

Near Shadings

Linear shadings

Albedo

User's needs

Unlimited load (grid)

Results summary

Produced Energy

178.6 MWh/year

Specific production

1560 kWh/kWp/year Perf. Ratio PR

85.50 %

Table of contents

Project and results summary	2
General parameters, PV Array Characteristics, System losses	3
Horizon definition	5
Near shading definition - Iso-shadings diagram	6
Main results	7
Loss diagram	8
Special graphs	9

VC3, Simulation date: 15/07/22 00:36 with v7.2.16

Project: Kopellis_ 1 Axis

Variant: 114 kW 1 axis E-W

General parameters

Trackers single array, with backtracking

PV Field Orientation

Grid-Connected System

Orientation Tracking plane, horizontal E-W axis

Normal azimuth to axis

Tracking algorithm

Astronomic calculation Backtracking activated **Backtracking array**

Nb. of trackers 4 units

Single array Sizes

Tracker Spacing 10.00 m 4.57 m Collector width Ground Cov. Ratio (GCR) 45.7 % 20.0 / 50.0 ° Tilt min / max.

Backtracking strategy

Phi limits +/- 62.7 ° 10.00 m Backtracking pitch Backtracking width 4.57 m

Models used

Transposition Perez Diffuse Perez, Meteonorm Circumsolar separate

Horizon Average Height 7.4 ° **Near Shadings** Linear shadings

User's needs

Unlimited load (grid)

PV Array Characteristics

PV module Inverter Manufacturer Generic

JKM-530M-72HL4-V Model

(Custom parameters definition) Unit Nom. Power 530 Wp Number of PV modules 216 units Nominal (STC) 114 kWp Modules 8 Strings x 27 In series

At operating cond. (50°C)

Pmpp 104 kWp U mpp 1002 V 104 A I mpp

Total PV power

Loss Fraction

Nominal (STC) 114 kWp 216 modules Total Module area 557 m²

Manufacturer Model

(Original PVsyst database) Unit Nom. Power

111 kWac Number of inverters Total power 111 kWac 780-1450 V Operating voltage

Total inverter power

Pnom ratio (DC:AC)

Total power 111 kWac Number of inverters 1 unit Pnom ratio 1.03

Array losses

Array Soiling Losses Thermal Loss factor

1.5 %

Module temperature according to irradiance

Uc (const) 29.0 W/m²K

0.0 W/m²K/m/s Uv (wind)

Module Quality Loss Module mismatch losses

Loss Fraction 0.0 % Loss Fraction 0.6 % at MPP

DC wiring losses

Global array res.

Loss Fraction

1.0 % at STC

106 mΩ

Generic

SG111-HV

1 unit

1.03

VC3, Simulation date: 15/07/22 00:36 with v7.2.16

Project: Kopellis_ 1 Axis

Variant: 114 kW 1 axis E-W

Array losses

IAM loss factor

Incidence effect (IAM): Fresnel, AR coating, n(glass)=1.526, n(AR)=1.290

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.999	0.987	0.962	0.892	0.816	0.681	0.440	0.000

System losses

Auxiliaries loss

Proportionnal to Power 4.0 W/kW

0.0 kW from Power thresh.

AC wiring losses

Inv. output line up to MV transfo

Inverter voltage 540 Vac tri
Loss Fraction 0.21 % at STC

Inverter: SG111-HV

Wire section (1 Inv.) Copper 1 x 3 x 240 mm 2 Wires length 70 m

AC losses in transformers

MV transfo

Grid voltage 20 kV

Operating losses at STC

Nominal power at STC 113 kVA
Iron loss (24/24 Connexion) 0.11 kW
Loss Fraction 0.10 % at STC

Coils equivalent resistance $3 \times 25.76 \text{ m}\Omega$ Loss Fraction 1.00 % at STC

PVsyst TRIAL

PVsyst V7.2.16 VC3, Simulation date: 15/07/22 00:36 with v7.2.16

Project: Kopellis_ 1 Axis

Variant: 114 kW 1 axis E-W

Horizon definition

Horizon from PVGIS website API, Lat=39°37"58', Long=22°13"41', Alt=153m

Average Height	7.4 °	Albedo Factor	0.72
Diffuse Factor	0.93	Albedo Fraction	100 %

Horizon profile

Azimuth [°]	-180	-173	-165	-158	-143	-135	-128	-120	-113	-105	-98	-90
Height [°]	1.9	3.4	4.6	5.7	7.3	6.5	4.6	4.2	5.3	6.1	5.7	5.3
Azimuth [°]	-83	-75	-68	-60	-53	-45	-38	-30	-23	-15	0	8
Height [°]	4.6	4.2	3.4	3.1	2.3	1.9	0.4	1.1	1.5	1.1	1.1	3.4
Azimuth [°]	15	23	38	45	135	143	150	158	165	173	180	
Height [°]	6.5	11.5	11.5	14.9	14.9	8.0	8.0	5.3	1.9	1.5	1.9	

Sun Paths (Height / Azimuth diagram)

Project: Kopellis_ 1 Axis

Variant: 114 kW 1 axis E-W

Near shadings parameter

VC3, Simulation date: 15/07/22 00:36 with v7.2.16

Project: Kopellis_ 1 Axis

Variant: 114 kW 1 axis E-W

Main results

System Production

Produced Energy

178.6 MWh/year

Specific production Performance Ratio PR 1560 kWh/kWp/year

85.50 %

Normalized productions (per installed kWp)

Balances and main results

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	ratio
January	52.6	29.21	4.95	85.5	77.4	8.78	8.48	0.867
February	76.4	39.36	6.71	111.7	103.1	11.60	11.24	0.879
March	118.0	57.36	9.91	147.0	137.6	15.29	14.84	0.882
April	150.3	77.02	13.73	164.8	156.0	17.10	16.61	0.881
Мау	195.0	84.41	19.52	199.3	189.3	20.22	19.66	0.862
June	218.4	75.24	24.54	218.0	207.4	21.63	21.02	0.843
July	214.7	82.15	27.83	216.8	205.9	21.23	20.64	0.832
August	194.0	76.29	27.71	208.4	198.2	20.47	19.91	0.835
September	144.2	53.93	21.67	174.7	164.7	17.41	16.91	0.846
October	94.1	43.87	16.53	134.5	124.4	13.50	13.09	0.850
November	57.9	29.79	11.46	93.3	85.8	9.49	9.17	0.858
December	43.4	24.96	6.66	70.8	64.7	7.29	7.02	0.866
Year	1559.1	673.58	15.99	1824.7	1714.5	183.99	178.60	0.855

Legends

GlobHor Global horizontal irradiation DiffHor Horizontal diffuse irradiation T_Amb **Ambient Temperature**

GlobInc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings **EArray** E_Grid PR

Effective energy at the output of the array

Energy injected into grid

Performance Ratio

Project: Kopellis_ 1 Axis

Variant: 114 kW 1 axis E-W

VC3, Simulation date: 15/07/22 00:36 with v7.2.16

Project: Kopellis_ 1 Axis

Variant: 114 kW 1 axis E-W

Power injected into grid [kW]