武汉大学数学与统计学院

偏微分方程数值解实验报告

Homework 3

班级: 2017 级信计班

姓名: 江金阳

学号: 2017301000090

WUHAN UNIVERSITY

2020年5月19日

目录

Proble	m1																			2
1.1	理论推导																			2
1.2	数值结果																			3
1.3	误差分析	•				•											•		•	4
Proble	m2																			5
2.1	理论推导																			5

Problem1

用线性有限元方法求解一维 Strum-Liouville 问题

$$-(pu')' + qu = f, \quad 0 < x < 2\pi,$$

$$u(0) = u(2\pi) = 0.$$

其中 p(x) = 1 + x, q(x) = x, $f(x) = (2x + 1)\sin x - \cos x$, 方程的真实解为 $u(x) = \sin x$.

1.1 理论推导

1. 将问题转化成弱形式,在等式的两边同时乘以一个试函数 v(x),其满足 Dirichlet 边界条件 $v(0) = v(2\pi) = 0$,得到

$$\int_0^{2\pi} \left(-(pu')' + qu \right) v dx = -pu'v \Big|_0^{2\pi} + \int_0^{2\pi} (pu'v' + quv) dx$$
$$= \int_0^{2\pi} fv dx$$
$$\Longrightarrow \int_0^{2\pi} (pu'v' + quv) dx = \int_0^{2\pi} fv dx, \quad \forall v \in H_0^1(0, 2\pi).$$

- 2. 生成网格,在本问题的实现中使用的是笛卡尔网格 $x_i=ih,\ i=0,...,n$,因此网格尺寸为 $h=\frac{1}{n}$,并定义区间 $(x_{i-1},x_i), i=1,2,...,n$.
 - 3. 构造基函数,选择分片线性具有紧支撑的 hat function.(i = 1, 2, ..., n 12)

$$\phi_i(x) = \begin{cases} \frac{x - x_{i-1}}{h}, & \text{if } x_{i-1} \le x < x_i, \\ \frac{x_{i+1} - x}{h}, & \text{if } x_i \le x < x_{i+1}, \\ 0, & \text{otherwise.} \end{cases} \quad \phi_i'(x) = \begin{cases} \frac{1}{h}, & \text{if } x_{i-1} \le x < x_i, \\ -\frac{1}{h}, & \text{if } x_i \le x < x_{i+1}, \\ 0, & \text{otherwise.} \end{cases}$$

4. 用基函数的线性组合表示有限元解

$$u_h(x) = \sum_{j=1}^{n-1} c_j \phi_j(x)$$

将 $u_h(x)$ 代入问题的弱形式 $\int_0^{2\pi} (pu'v' + quv) dx = \int_0^{2\pi} fv dx$ 中得到

$$\int_0^{2\pi} \left(p \sum_{j=1}^{n-1} c_j \phi_j' v' + q \sum_{j=1}^{n-1} c_j \phi_j v\right) dx = \sum_{j=1}^{n-1} c_j \int_0^{2\pi} \left(p \phi_j' v' + q \phi_j v\right) dx = \int_0^{2\pi} f v dx$$

将试函数 v(x) 取为 $\phi_1, \phi_2, ..., \phi_{n-1}$,可以得到如下的线性方程组

$$\left(\int_{0}^{2\pi} (p\phi'_{1}\phi'_{1} + q\phi_{1}\phi_{1})dx\right)c_{1} + \dots + \left(\int_{0}^{2\pi} (p\phi'_{1}\phi'_{n-1} + q\phi_{1}\phi_{n-1})dx\right)c_{n-1} = \int_{0}^{2\pi} f\phi_{1}dx$$

$$\left(\int_{0}^{2\pi} (p\phi'_{2}\phi'_{1} + q\phi_{2}\phi_{1})dx\right)c_{1} + \dots + \left(\int_{0}^{2\pi} (p\phi'_{2}\phi'_{n-1} + q\phi_{2}\phi_{n-1})dx\right)c_{n-1} = \int_{0}^{2\pi} f\phi_{2}dx$$

$$\dots \dots \dots \dots \dots$$

$$\left(\int_{0}^{2\pi} (p\phi'_{i}\phi'_{1} + q\phi_{i}\phi_{1})dx\right)c_{1} + \dots + \left(\int_{0}^{2\pi} (p\phi'_{i}\phi'_{n-1} + q\phi_{i}\phi_{n-1})dx\right)c_{n-1} = \int_{0}^{2\pi} f\phi_{i}dx$$

$$\dots \dots \dots \dots \dots$$

$$\left(\int_{0}^{2\pi} (p\phi'_{n-1}\phi'_{1} + q\phi_{n-1}\phi_{1})dx\right)c_{1} + \dots + \left(\int_{0}^{2\pi} (p\phi'_{n-1}\phi'_{n-1} + q\phi_{n-1}\phi_{n-1})dx\right)c_{n-1} = \int_{0}^{2\pi} f\phi_{n-1}dx$$

上述线性方程组可被表示为以下的形式

$$\begin{bmatrix} a(\phi_1, \phi_1) & a(\phi_1, \phi_2) & \cdots & a(\phi_1, \phi_{n-1}) \\ a(\phi_2, \phi_1) & a(\phi_2, \phi_2) & \cdots & a(\phi_2, \phi_{n-1}) \\ \vdots & \vdots & \ddots & \vdots \\ a(\phi_{n-1}, \phi_1) & a(\phi_{n-1}, \phi_2) & \cdots & a(\phi_{n-1}, \phi_{n-1}) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_{n-1} \end{bmatrix} = \begin{bmatrix} (f, \phi_1) \\ (f, \phi_2) \\ \vdots \\ (f, \phi_{n-1}) \end{bmatrix}$$

$$a(\phi_i, \phi_j) = \int_0^{2\pi} (p\phi_i'\phi_j' + q\phi_i\phi_j)dx, \ (f, \phi_j) = \int_0^{2\pi} f\phi_j dx$$

由于 ϕ_i 是具有紧支撑的基函数,易知 $p\phi_i'\phi_j' + q\phi_i\phi_j$ 也是具有紧支撑的,因为

$$\phi'_{j}(x)\phi'_{i}(x) \equiv 0, \ \phi_{j}(x)\phi_{i}(x) \equiv 0,$$

$$\begin{cases}
\forall x \notin (x_{j-1}, x_{j}) & \text{if } i = j - 1, \\
\forall x \notin (x_{j-1}, x_{j+1}) & \text{if } i = j, \\
\forall x \notin (x_{j}, x_{j+1}) & \text{if } i = j + 1, \\
\forall x \in (0, 2\pi) & \text{otherwise.}
\end{cases}$$

那么全局刚度矩阵应该是一个三对角矩阵,且全局刚度矩阵和全局载荷向量分别可以用以下的局部刚度矩阵和局部载荷向量逐元素组装.

$$K_{i}^{e} = \begin{bmatrix} \int_{x_{i}}^{x_{i+1}} p\phi_{i}^{\prime 2} dx & \int_{x_{i}}^{x_{i+1}} p\phi_{i}^{\prime}\phi_{i+1}^{\prime} dx \\ \int_{x_{i}}^{x_{i+1}} p\phi_{i+1}^{\prime}\phi_{i}^{\prime} dx & \int_{x_{i}}^{x_{i+1}} p\phi_{i+1}^{\prime 2} dx \end{bmatrix} + \begin{bmatrix} \int_{x_{i}}^{x_{i+1}} q\phi_{i}^{2} dx & \int_{x_{i}}^{x_{i+1}} q\phi_{i}\phi_{i+1} dx \\ \int_{x_{i}}^{x_{i+1}} q\phi_{i+1}\phi_{i} dx & \int_{x_{i}}^{x_{i+1}} q\phi_{i+1}^{2} dx \end{bmatrix}$$
$$F_{i}^{e} = \begin{bmatrix} \int_{x_{i}}^{x_{i+1}} f\phi_{i} dx \\ \int_{x_{i}}^{x_{i+1}} f\phi_{i+1} dx \end{bmatrix}$$

1.2 数值结果

令 $h = \pi/32$, 计算得到如下结果, 其中 $||u - u_h||_{\infty} = 0.00042261$.

1.3 误差分析

根据教材 P178 Remark7.1.3 的结论,在一维 Strum-Liouville 问题中,线性有限元方法有如下的误差估计

$$||u - u_h||_{\infty} \le Ch^2 ||u''||_{\infty}$$

改变网格尺度,再次计算得到如下结果

\overline{h}	Error
$2\pi/32$	0.0016872
$2\pi/64$	0.00042261
$2\pi/128$	0.00010566
$2\pi/256$	2.642 e-05
$2\pi/512$	6.6049 e-06
$2\pi/1024$	1.6512e-06

h_2	Order
$2\pi/64$	1.9973
$2\pi/128$	2
$2\pi/256$	1.9997
$2\pi/512$	2
$2\pi/1024$	2
	$2\pi/64$ $2\pi/128$ $2\pi/256$ $2\pi/512$

从网格细化分析的结果可以看出此问题中误差是二阶的.

Problem2

求以下问题的弱形式

$$-a^{2} \frac{\partial^{2} u(x,y)}{\partial x^{2}} - b^{2} \frac{\partial^{2} u(x,y)}{\partial y^{2}} + q(x,y)u(x,y) = f(x,y),$$

$$(x,y) \in \Omega = \{(x,y) : x^{2} + y^{2} \le 1\}, \quad u(x,y)|_{\partial\Omega} = 0, \quad q(x,y) \ge 0.$$

2.1 理论推导

考虑坐标变换
$$\bar{x}=x/a;\; \bar{y}=y/b$$
,则 $(\bar{x},\bar{y})\in\bar{\Omega}=\{(\bar{x},\bar{y}):a^2\bar{x}^2+b^2\bar{y}^2\leq 1\}$ 并定义

$$\bar{u}(\bar{x},\bar{y})=u(a\bar{x},b\bar{y});\ \bar{q}(\bar{x},\bar{y})=q(a\bar{x},b\bar{y});\ \bar{f}(\bar{x},\bar{y})=f(a\bar{x},b\bar{y}).$$

显然有 $\bar{u}(\bar{x},\bar{y}) = u(x,y)$, $\bar{q}(\bar{x},\bar{y}) = q(x,y)$, $\bar{f}(\bar{x},\bar{y}) = f(x,y)$, 代入原方程得到

$$-a^2 \frac{\partial^2 \bar{u}}{\partial x^2} - b^2 \frac{\partial^2 \bar{u}}{\partial y^2} + \bar{q}(\bar{x}, \bar{y}) \bar{u}(\bar{x}, \bar{y}) = \bar{f}(\bar{x}, \bar{y}),$$

又因为

$$\frac{\partial \bar{u}}{\partial x} = \frac{\partial \bar{u}}{\partial \bar{x}} \frac{\partial \bar{x}}{\partial x} = \frac{1}{a} \frac{\partial \bar{u}}{\partial \bar{x}}, \quad \frac{\partial^2 \bar{u}}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{1}{a} \frac{\partial \bar{u}}{\partial \bar{x}} \right) = \frac{1}{a^2} \frac{\partial^2 \bar{u}}{\partial \bar{x}^2},$$
$$\frac{\partial \bar{u}}{\partial y} = \frac{\partial \bar{u}}{\partial \bar{y}} \frac{\partial \bar{y}}{\partial y} = \frac{1}{b} \frac{\partial \bar{u}}{\partial \bar{y}}, \quad \frac{\partial^2 \bar{u}}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{1}{b} \frac{\partial \bar{u}}{\partial \bar{y}} \right) = \frac{1}{b^2} \frac{\partial^2 \bar{u}}{\partial \bar{y}^2},$$

可将方程化为

$$-\frac{\partial^2 \bar{u}(\bar{x},\bar{y})}{\partial \bar{x}^2} - \frac{\partial^2 \bar{u}(\bar{x},\bar{y})}{\partial \bar{y}^2} + \bar{q}(\bar{x},\bar{y})\bar{u}(\bar{x},\bar{y}) = \bar{f}(\bar{x},\bar{y}),$$

取试函数 $\bar{v}(\bar{x},\bar{y})=v(a\bar{x},b\bar{y})=v(x,y)$,且满足 $v(x,y)|_{\partial\Omega}=0$,故显然有 $\bar{v}(\bar{x},\bar{y})|_{\partial\bar{\Omega}}=0$,在上式两端同时乘以 \bar{v} 并在 $\bar{\Omega}$ 上积分有

$$\iint_{\bar{\Omega}} \left(-\Delta \bar{u} + \bar{q}\bar{u} \right) \bar{v} d\bar{x} d\bar{y} = \iint_{\bar{\Omega}} \bar{f} \bar{v} d\bar{x} d\bar{y}$$

由散度定理

$$\iint_{\bar{\Omega}} \bar{v} \Delta \bar{u} d\bar{x} d\bar{y} = \int_{\partial \bar{\Omega}} \bar{v} \frac{\partial \bar{u}}{\partial \bar{n}} d\bar{s} - \iint_{\bar{\Omega}} \nabla \bar{u} \cdot \nabla \bar{v} d\bar{x} d\bar{y} = -\iint_{\bar{\Omega}} \nabla \bar{u} \cdot \nabla \bar{v} d\bar{x} d\bar{y}$$

代入前面的结果有

$$\iint_{\bar{\Omega}} (\nabla \bar{u} \cdot \nabla \bar{v} + \bar{q} \bar{u} \bar{v}) \, d\bar{x} d\bar{y} = \iint_{\bar{\Omega}} \bar{f} \bar{v} d\bar{x} d\bar{y}, \quad \forall \bar{v} \in H_0^1(\bar{\Omega}).$$

将坐标还原得到原问题的弱形式

$$\iint_{\Omega} \left(a^2 \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + b^2 \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} + quv \right) dx dy = \iint_{\Omega} f v dx dy,$$

$$\forall v \in H_0^1(\Omega) = \{ v(x, y), \ v(x, y) |_{\partial \Omega} = 0, \ v(x, y) \in H^1(\Omega) \}.$$