2. Задачки

Задача 1

$$RTT = 2 \cdot (\frac{10 \,\mathrm{M}}{3 \cdot 10^8 \,\mathrm{M/c}} + \frac{200 \,\mathrm{GHT}}{15 \,\mathrm{GHT/c}}) \approx 26,667 \,\mathrm{c}$$

$$R_{\mathrm{файла}} = \frac{10 \,\mathrm{M}}{3 \cdot 10^8 \,\mathrm{M/c}} + \frac{10^5 \,\mathrm{GHT}}{15 \,\mathrm{GHT/c}} \approx 6666,667 \,\mathrm{c}$$
 a) $t = (2 \cdot RTT + R_{\mathrm{файла}}) \cdot 11 \approx 73920,011 \,\mathrm{c} \approx 20,53 \,\mathrm{H}$ 6) $t = RTT + (RTT + R_{\mathrm{файла}}) \cdot 11 \approx 73653,341 \,\mathrm{c} \approx 20,46 \,\mathrm{H}$

Существенного улучшения не ожидалось, так как большая часть суммарного времени составляет передача файлов, установление соединения по сравнению с передачей файлов значительно короче, и их сокращение повлияет не так сильно.

Задача 2

Сравнение схем раздачи

N = 10

Сравнение схем раздачи

N = 100

Сравнение схем раздачи

N = 1000

Задача 3

- а) Пусть сервер отправляет файл каждому пиру со скоростью $\frac{u_s}{N}$. По условию, $\frac{u_s}{N} \leq d_{min}$, а значит, каждый пир принимает файл с такой же скоростью $\frac{u_s}{N}$. Тогда общее время раздачи $F / \frac{u_s}{N} = \frac{NF}{u_s}$.
- б) Пусть сервер отправляет файл каждому пиру со скоростью d_{min} . По условию, $\frac{u_s}{N} \geq d_{min}$, а значит, общая скорость отдачи $N \cdot d_{min} \leq u_s$, поэтому такая схема возможна. Каждый пир получает файл за время $\frac{F}{d_{min}}$, а так как это происходит одновременно, то и общее время раздачи $\frac{F}{d_{min}}$.

B)
$$D_{c-s} \geq max\{\frac{NF}{u_s}, \frac{F}{d_{min}}\}.$$

Пусть $\frac{u_s}{N} \leq d_{min}$, тогда $D_{c-s} \geq \frac{NF}{u_s}$, при этом из (a) достигается равенство $D_{c-s} = \frac{NF}{u_s}$, то есть $D_{c-s} = \frac{NF}{u_s}$ при $\frac{u_s}{N} \leq d_{min}$.

Пусть $\frac{u_s}{N} \geq d_{min}$, тогда $D_{c-s} \geq \frac{F}{d_{min}}$, при этом из (a) достигается равенство $D_{c-s} = \frac{F}{d_{min}}$, то есть $D_{c-s} = \frac{F}{d_{min}}$ при $\frac{u_s}{N} \geq d_{min}$.

Следовательно, $D_{c-s} = max\{\frac{NF}{u_s}, \frac{F}{d_{min}}\}$.