Symmetric Positive Definite Matrices

Zed

November 19, 2016

1 Preliminaries

1.1 Inner Products

- · Inner product on \mathbb{R}^n : $\langle \boldsymbol{v}, \boldsymbol{u} \rangle = \boldsymbol{v}^\top \boldsymbol{u}$. Has 3 properties:
 - 1. Positivity: $\langle \boldsymbol{v}, \boldsymbol{v} \rangle \geq 0$; $\langle \boldsymbol{v}, \boldsymbol{v} \rangle = 0 \iff \boldsymbol{v} = \boldsymbol{0}$.
 - 2. Bilinearity: $\langle a\mathbf{x} + b\mathbf{y}, \mathbf{z} \rangle = a\langle \mathbf{x}, \mathbf{z} \rangle + b\langle \mathbf{y}, \mathbf{z} \rangle$; $\langle \mathbf{z}, a\mathbf{x} + b\mathbf{y} \rangle = a\langle \mathbf{z}, \mathbf{x} \rangle + b\langle \mathbf{z}, \mathbf{y} \rangle$.
 - 3. Symmetry: $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{y}, \boldsymbol{x} \rangle$.
- · Norm on \mathbb{R}^n : $\|\boldsymbol{v}\|^2 = \langle \boldsymbol{v}, \boldsymbol{v} \rangle$
- · Inner product on \mathbb{C}^n : $\langle \boldsymbol{v}, \boldsymbol{u} \rangle_{\mathbb{C}} = \boldsymbol{v}^H \boldsymbol{u}$. Where $\boldsymbol{v}^H = (\bar{v}_1, ..., \bar{v}_n)$ is conjugate transpose of col vector \boldsymbol{v}, \bar{v} is complex conjugate of entry v, i.e.

$$\langle \boldsymbol{v}, \boldsymbol{u} \rangle_{\mathbb{C}} = \sum_{j=1}^{n} u_j \bar{v}_j$$

Also 3 properties:

- 1. Positivity: $\langle \boldsymbol{v}, \boldsymbol{v} \rangle_{\mathbb{C}} \geq 0$; $\langle \boldsymbol{v}, \boldsymbol{v} \rangle_{\mathbb{C}} = 0 \iff \boldsymbol{v} = \boldsymbol{0}$.
- 2. Sesquilinearity:

$$\langle a\boldsymbol{x} + b\boldsymbol{y}, \boldsymbol{z} \rangle_{\mathbb{C}} = a\langle \boldsymbol{x}, \boldsymbol{z} \rangle_{\mathbb{C}} + b\langle \boldsymbol{y}, \boldsymbol{z} \rangle_{\mathbb{C}}$$

 $\langle \boldsymbol{z}, a\boldsymbol{x} + b\boldsymbol{y} \rangle_{\mathbb{C}} = \bar{a}\langle \boldsymbol{z}, \boldsymbol{x} \rangle_{\mathbb{C}} + \bar{b}\langle \boldsymbol{z}, \boldsymbol{y} \rangle_{\mathbb{C}}$

 $\begin{array}{ll} \underline{Proof.} & \text{Use conjugate symmetry.} & \langle \boldsymbol{z}, a\boldsymbol{x} + b\boldsymbol{y} \rangle_{\mathbb{C}} = \overline{\langle a\boldsymbol{x} + b\boldsymbol{y}, \boldsymbol{z} \rangle_{\mathbb{C}}} = \overline{a} \overline{\langle \boldsymbol{x}, \boldsymbol{z} \rangle_{\mathbb{C}}} + \overline{b} \overline{\langle \boldsymbol{y}, \boldsymbol{z} \rangle_{\mathbb{C}}} = \overline{a} \langle \boldsymbol{z}, \boldsymbol{x} \rangle_{\mathbb{C}} + \overline{b} \overline{\langle \boldsymbol{z}, \boldsymbol{y} \rangle} \end{array}$

- 3. Conjugate Symmetry: $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \overline{\langle \boldsymbol{y}, \boldsymbol{x} \rangle}$.
- · Norm on \mathbb{C}^n : $||v||_{\mathbb{C}}^2 = \langle \boldsymbol{v}, \boldsymbol{v} \rangle_{\mathbb{C}} = \boldsymbol{v}^H \boldsymbol{v}$.
- · Let \boldsymbol{A} be a matrix with complex entries, its conjugate transpose (hermitian): $\boldsymbol{A}^H = \overline{\boldsymbol{A}}^\top$. We have $(\boldsymbol{A}\boldsymbol{B})^H = \boldsymbol{B}^H \boldsymbol{A}^H$.

And by definition of inner product on complex field, $\langle \boldsymbol{A}\boldsymbol{u},\boldsymbol{v}\rangle_{\mathbb{C}}=\boldsymbol{v}^{H}\boldsymbol{A}\boldsymbol{u}=\langle \boldsymbol{u},(\boldsymbol{v}^{H}\boldsymbol{A})^{H}\rangle_{\mathbb{C}}=\langle \boldsymbol{u},\boldsymbol{A}^{H}\boldsymbol{v}\rangle_{\mathbb{C}}.$ Similarly $\langle \boldsymbol{u},\boldsymbol{B}\boldsymbol{v}\rangle=\langle \boldsymbol{B}^{H}\boldsymbol{u},\boldsymbol{v}\rangle.$

2 Symmetric and Orthogonal Matrix

2.1 Basics

· Symmetric matrix: $A = A^{\top}$. Let X be an arbitrary matrix, $X^{\top}X$ and $(X + X^{\top})$ are symmetric.

- $\cdot \ \langle Au, v \rangle = v^{\top}Au = \langle u, A^{\top}v \rangle. \ \text{And} \ \langle u, Bv \rangle = u^{\top}Bv = \langle B^{\top}u, v \rangle.$
- $\cdot \boldsymbol{u} \perp \boldsymbol{v} \iff \langle \boldsymbol{u}, \boldsymbol{v} \rangle = 0.$
- · A matrix Q is orthogonal iff any two different columns of it are orthonormal. (orthogonal and unit norm); or any two different rows of it are orthonormal.

Thm. A square matrix Q is orthogonal iff $Q^{-1} = Q^{\top}$. Proof. We have $Q^{\top}Q = I$.

$$oldsymbol{Q}^{ op}oldsymbol{Q} = egin{pmatrix} oldsymbol{q}_1^{ op} \ oldsymbol{q}_2^{ op} \ oldsymbol{q}_n^{ op} \end{pmatrix} egin{pmatrix} oldsymbol{q}_1 & oldsymbol{q}_2 & \cdots & oldsymbol{q}_n \end{pmatrix} = egin{pmatrix} \|oldsymbol{q}_1\|^2 & \langle oldsymbol{q}_1, oldsymbol{q}_2
angle & \cdots & \langle oldsymbol{q}_1, oldsymbol{q}_n
angle \ \langle oldsymbol{q}_2, oldsymbol{q}_1
angle & \ddots & \ddots & dots \ oldsymbol{q}_n, oldsymbol{q}_1
angle & \cdots & \cdots & \|oldsymbol{q}_n\|^2 \end{pmatrix}$$

Hence $\mathbf{Q}^{\top}\mathbf{Q} = \mathbf{I} \iff \|\mathbf{q}_i\| = 1 \text{ for all } i \text{ and } \langle \mathbf{q}_i, \mathbf{q}_k \rangle = 0 \text{ for } k \neq j. \square$

- · Properties of Q:
 - 1. If Q_1, Q_2 orthogonal matrices, same size $\Rightarrow Q_1Q_2$ orthogonal.
 - 2. \boldsymbol{v} is $n \times 1$ vector, then $\|\boldsymbol{v}\| = \|\boldsymbol{Q}\boldsymbol{v}\|$.
 - 3. If λ is eigval of $\mathbf{Q} \Rightarrow |\lambda| = 1$.

Proof. First prop: $Q_1Q_2(Q_1Q_2)^{\top} = Q_1Q_2Q_2^{\top}Q_1^{\top} = I$. Second: $\langle Qv, Qv \rangle = (Qv)^{\top}Qv = v^{\top}Q^{\top}Qv = v^{\top}v = ||v||^2$. Third: by (2), $||v|| = ||Qv|| = ||\lambda v|| = |\lambda| ||v|| \Rightarrow |\lambda| = 1$.

2.2 Eigvals and Eigvecs

Thm. Any eigval of symmetric matrix is real number.

Proof. We have $Av = \lambda v$. A symmetric and real, hence $A = A^H$. Consider

$$\langle \boldsymbol{A}\boldsymbol{v}, \boldsymbol{v} \rangle_{\mathbb{C}} = \boldsymbol{v}^H \boldsymbol{A}\boldsymbol{v} = \langle \boldsymbol{v}, \boldsymbol{A}^H \boldsymbol{v} \rangle_{\mathbb{C}} = \langle \boldsymbol{v}, \boldsymbol{A}\boldsymbol{v} \rangle_{\mathbb{C}}$$

And $\langle \boldsymbol{A}\boldsymbol{v}, \boldsymbol{v} \rangle_{\mathbb{C}} = \langle \lambda \boldsymbol{v}, \boldsymbol{v} \rangle_{\mathbb{C}} = \lambda \|\boldsymbol{v}\|_{\mathbb{C}}^{2}; \langle \boldsymbol{v}, \boldsymbol{A}\boldsymbol{v} \rangle_{\mathbb{C}} = \langle \boldsymbol{v}, \lambda \boldsymbol{v} \rangle_{\mathbb{C}} = \bar{\lambda} \|\boldsymbol{v}\|_{\mathbb{C}}^{2}$ $\Rightarrow \lambda = \bar{\lambda}$, which implies that λ is real. \square

· Eigvecs corresponding to different eigvals of symmetric matrix are orthogonal.

Proof. $\langle \mathbf{A}\mathbf{v}_1, \mathbf{v}_2 \rangle = \langle \lambda_1 \mathbf{v}_1, \mathbf{v}_2 \rangle = \lambda_1 \langle \mathbf{v}_1, \mathbf{v}_2 \rangle.$

$$\langle \boldsymbol{A}\boldsymbol{v}_1, \boldsymbol{v}_2 \rangle = \langle \boldsymbol{v}_1, \boldsymbol{A}^{\top}\boldsymbol{v}_2 \rangle = \langle \boldsymbol{v}_1, \boldsymbol{A}\boldsymbol{v}_2 \rangle = \langle \boldsymbol{v}_1, \lambda_2 \boldsymbol{v}_2 \rangle = \lambda_2 \langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle.$$

Hence $\lambda_2 \langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle = \lambda_1 \langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle$; $\lambda_1 \neq \lambda_2 \Rightarrow \boldsymbol{v}_1 \perp \boldsymbol{v}_2$. \square

2.3 Diagonal Form

Thm. A is symmetric matrix, then A is diagonalizable, $A = Q\Lambda Q^{-1}$. Its eigvals are entries of Λ , cols of Q are eigvecs, and Q is orthogonal.

So $Q^{\top} = Q^{-1}$, we can also write $A = Q\Lambda Q^{\top}$.

Proof. $\mathbf{A}^{1\times 1}$ case is trivial. We wanna prove by induction.

Assume $A_{n-1} = Q_{n-1}\Lambda_{n-1}Q_{n-1}^{-1}$ with shape $n-1 \times n-1$.

Now consider $A^{n\times n}$. (λ_1, v_1) being an eigentuple of A, pick $||v_1|| = 1$. Construct $Q_1 =$

 $(\boldsymbol{v}_1,\boldsymbol{q}_2,...,\boldsymbol{q}_n)$ such that it is orthogonal. We have

$$egin{aligned} oldsymbol{Q}_1^ op oldsymbol{A} oldsymbol{Q}_1 = egin{pmatrix} oldsymbol{v}_1^ op oldsymbol{A} oldsymbol{Q}_1 = egin{pmatrix} oldsymbol{v}_1^ op oldsymbol{A} oldsymbol{Q}_1^ op oldsymbol{A} oldsymbol{Q}_1 = egin{pmatrix} oldsymbol{v}_1^ op oldsymbol{A} oldsymbol{Q}_1^ op oldsymbol{A} oldsymbol{Q}_1 = oldsymbol{v}_1^ op oldsymbol{A} oldsymbol{Q}_1^ op oldsymbol{A} oldsymbol{Q}_1^ op oldsymbol{A} oldsymbol{Q}_1 = oldsymbol{V}_1^ op oldsymbol{A} oldsymbol{Q}_1^ op oldsymbol{Q}_1^ op oldsymbol{A} oldsymbol{Q}_1 = oldsymbol{V}_1^ op oldsymbol{A} oldsymbol{Q}_1^ op oldsymbol{A} oldsymbol{Q}_1^ op oldsymbol{A} oldsymbol{Q}_1 = oldsymbol{V}_1^ op oldsymbol{A} oldsymbol{Q}_1^ op oldsymbol{A} oldsymbol{Q}_1 = oldsymbol{V}_1^ op oldsymbol{A} oldsymbol{Q}_1^ op oldsymbol{A} oldsymbol{Q}_1 = oldsymbol{V}_1^ op oldsymbol{A} oldsymbol{Q}_1 = oldsymbol{V}_1^ op oldsymbol{A} oldsymbol{Q}_1 + oldsymbol{V}_1^ op oldsymbol{V}_1 + oldsymbol{V}_1^ op oldsymbol{Q}_1 + oldsymbol{V}_1^ op oldsymbol{Q}_1 + oldsymbol{V}_1^ op oldsymbol{Q}_1 + oldsymbol{V}_1^ op oldsymbol{V}_1 + oldsymbol{V}_1^ op oldsymbol{Q}_1 + oldsymbol{V}_1^ op oldsymbol{V}_1 + oldsymbol{V}_1^ op oldsymbol{V}_1 + oldsymbol{V}_1^ op oldsymbol{V}_1 + oldsymbol{V}_1^ op oldsymbol{V}_1 + oldsymbol{V}_1^ op o$$

 $Q_1^{\top} A Q_1$ is symmetric, so other entries on first row are also zeros. The southeast $n-1 \times n-1$ block is A_{n-1} , by assumption it can be written as $A_{n-1} = Q_{n-1} \Lambda_{n-1} Q_{n-1}^{-1} = Q_{n-1} \Lambda_{n-1} Q_{n-1}^t$, Q_{n-1} orthogonal, Λ_{n-1} diagonal. So

$$\begin{split} \boldsymbol{Q}_1^{\top} \boldsymbol{A} \boldsymbol{Q}_1 &= \begin{pmatrix} \lambda_1 & \mathbf{0} \\ \mathbf{0}^{\top} & \boldsymbol{Q}_{n-1} \boldsymbol{\Lambda}_{n-1} \boldsymbol{Q}_{n-1}^t \end{pmatrix} \\ &= \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0}^{\top} & \boldsymbol{Q}_{n-1} \end{pmatrix} \begin{pmatrix} \lambda_1 & \mathbf{0} \\ \mathbf{0}^{\top} & \boldsymbol{\Lambda}_{n-1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0}^{\top} & \boldsymbol{Q}_{n-1}^{\top} \end{pmatrix} \\ &= \boldsymbol{Q}_n \boldsymbol{\Lambda}_n \boldsymbol{Q}_n^{\top} \end{split}$$

 $\Rightarrow A = Q_1 Q_n \Lambda_n Q_n^{\top} Q_1^{\top} = (Q_1 Q_n) \Lambda_n (Q_1 Q_n)^{\top}$. Let $Q := Q_1 Q_n$, it's also orthogonal by prop 1. Hence $A = Q \Lambda_n Q^{\top} = Q \Lambda_n Q^{-1}$. \square

3 Symmetric Positive Definite Matrix

 \cdot **A** is symmetric positive definite (spd) iff

$$\langle \boldsymbol{A}\boldsymbol{x}, \boldsymbol{x} \rangle = \boldsymbol{x}^{\top} \boldsymbol{A}\boldsymbol{x} > 0, \quad \forall \boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{x} \neq \boldsymbol{0}.$$

This def (spd) is equivalent to

$$\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} \geq 0, \ \forall \boldsymbol{x} \in \mathbb{R}^{n} \text{ and } \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} = 0 \iff \boldsymbol{x} = 0$$

A is symmetric positive semidefinite (spsd) iff $\langle \mathbf{A}\mathbf{x}, \mathbf{x} \rangle \geq 0, \, \forall \mathbf{x} \in \mathbb{R}^n$.

A is symmetric negative definite iff $\langle \mathbf{A}\mathbf{x}, \mathbf{x} \rangle < 0$, $\forall \mathbf{x} \in \mathbb{R}^n$. Iff $-\mathbf{A}$ is spd.

A is symmetric negative semidefinite iff -A is spsd.

 $M^{\top}M$ is spsd, it is spd iff M has full rank, i.e. nonsingular.

Proof. $\langle \mathbf{M}^{\top} \mathbf{M} \mathbf{x}, \mathbf{x} \rangle = \langle \mathbf{M} \mathbf{x}, \mathbf{M} \mathbf{x} \rangle = \| \mathbf{M} \mathbf{x} \|^2 \ge 0.$

Moreover, $\|\boldsymbol{M}\boldsymbol{x}\|^2 = 0 \iff \boldsymbol{M}\boldsymbol{x} = 0$. If $\boldsymbol{x} \neq 0$; $\boldsymbol{M}\boldsymbol{x} \neq 0 \iff \boldsymbol{M}$ has full rank, because $\boldsymbol{M}\boldsymbol{x}$ is just linear comb of cols of \boldsymbol{M} with weights \boldsymbol{x} . \square

Thm. Symmetric matrix A is spd \iff all eigenst of it are strictly greater than 0.

It's spsd \iff all eigvals are greater than or equal to 0.

Proof. We show the spsd case.

(\Leftarrow): By diagonal form of symmetric matrix: $\boldsymbol{A} = \boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^{\top}$. So $\boldsymbol{x}^{\top}\boldsymbol{A}\boldsymbol{x} = \boldsymbol{x}^{\top}\boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^{\top}\boldsymbol{x} = \boldsymbol{y}^{\top}\boldsymbol{\Lambda}\boldsymbol{y}$, where $\boldsymbol{y} = \boldsymbol{Q}^{\top}\boldsymbol{x}$, i.e.

$$oldsymbol{x}^{ op} oldsymbol{A} oldsymbol{x} = oldsymbol{y}^{ op} oldsymbol{\Lambda} oldsymbol{y} = \sum_{j=1}^n \lambda_j y_j^2 \geq 0, \ \ orall oldsymbol{y} \in \mathbb{R}^n, oldsymbol{y}
eq oldsymbol{0}.$$

since all $\lambda_j \geq 0$. So \boldsymbol{A} is spsd.

(⇒): Suppose there is a $\lambda < 0$, with eiger v. Then

$$\langle \boldsymbol{A}\boldsymbol{v}, \boldsymbol{v} \rangle = \lambda \|\boldsymbol{v}\|^2 < 0$$

contradicts the fact that ${\pmb A}$ is spsd. Similar proof for strictly positive eigvals and spd case. \Box

- · Spd matrix is nonsingular (due to nonzero eigvals). The inverse of spd matrix is also spd. (eigvals are $\frac{1}{\lambda} > 0$.)
- · symmetric + strictly diagonally dominant + positive entries on main diag \Rightarrow spd. Symmetric + Weakly diagonally dominant + positive entries on main diag \Rightarrow spsd. Proof. By (Gershgorin): $|\lambda - A_{jj}| \leq R_j$. $A_{jj} - \lambda \leq |A_{jj} - \lambda| \leq R_j$ $\Rightarrow \lambda \geq A_{jj} - R_j$. If \mathbf{A} is strictly diagdom with positive diag entries: $A_{jj} = |A_{jj}| > R_j$. Hence $\lambda \geq |A_{jj}| - R_j > 0$. All its eigvals are positive \Rightarrow spd. \square

Thm. (Sylvester's Criterion) A symmetric matrix is spd \iff all its leading principal minors are positive.

It is spsd \iff all its principal minors greater than or equal to 0.