${ m CYK/2023/PH201}$ Mathematical Physics

QUIZ 1

Total Marks: 10 Marks, Duration: 50 Mins

Date: 22 Aug 2023, Tuesday

- 1. $[4 \times 1 \text{ Marks}]$ Answer the following short questions (You can write the answers directly):
 - (a) Find $\lim_{z \to e^{i\pi/4}} \frac{z^2}{z^4 + z + 1}$.
 - (b) Using the rules of the differentiation, find the derivative of $\sin(3z^2 + z)$.
 - (c) Sketch the map of the unit circle |z|=1 under the transformation $w=e^{i\pi/3}\left(1+\sqrt{2}e^{i\pi/4}z\right)$.
 - (d) Find the numerical value of $\sin^2(2+3i)$.

Answers:

(a)
$$\lim_{z \to e^{i\pi/4}} \frac{z^2}{z^4 + z + 1} = e^{i\pi/4}$$
.

(b)
$$\frac{d}{dz}\sin(3z^2+z) = (6z+1)\cos(3z^2+z)$$

- (c) The transformation can be written as $w e^{i\pi/3} = \sqrt{2}e^{i7\pi/12}z$. Thus, $|w e^{i\pi/3}| = \sqrt{2}e^{i\pi/3}$. The image of the set is again a circle of radius $\sqrt{2}$ with center at $e^{i\pi/3}$.
- (d) $\sin^2(2+3i) = 66.4251 76.3285i$
- 2. [3 Marks] Determine if the function u(x,y) = 1 x(4y + 1) is harmonic. If it is harmonic, find the conjugate harmonic function v(x,y) and express u + iv as an analytic function of z.

Angwore

Since $\left(\partial_x^2 + \partial_y^2\right) u = 0$, the function u is harmonic. Since $v_y = u_x$,

$$v_y = -(4y+1) \implies v(x,y) = -(2y^2 + y) + g(x).$$

And from $v_x = -u_y$, we get

$$g'(x) = 4x \implies g(x) = 2x^2.$$

And hence $v(x,y) = 2x^2 - 2y^2 - y$. The complex function u + iv, will be

$$u + iv = 1 - x (4y + 1) + i (2x^{2} - 2y^{2} - y)$$
$$= 1 - z + i2z^{2}.$$

3. [3 Marks] A function f(z) is defined as

$$f(z) = \begin{cases} 2z^2 & \text{Im}(z) > 0\\ 3\bar{z} & \text{Im}(z) < 0 \end{cases}$$

and C is the anticlockwise circular arc of unit radius with center at +1. Write a parametrization for C and using primary definition, find $\int_C f(z)dz$.

Answer:

The whole contour can be written as two contours $C_1: z=1+e^{i\theta}$ with $\theta: -\pi \to 0$ and $C_2: z=1+e^{i\theta}$ with $\theta: 0\to \pi$. Now, $dz=izd\theta$ for both cases, and

$$\int_{C_1} f(z) dz = \int_{C_1} 3\bar{z} dz = \int_{-\pi}^{0} 3\left(1 + e^{-i\theta}\right) \left(ie^{i\theta}\right) d\theta = 6 + 3i\pi.$$

And

$$\int_{C_2} 2z^2 dz = \int_0^{\pi} 2z^2 \cdot iz d\theta = 2i \int_0^{\pi} \left(1 + e^{i\theta}\right)^2 e^{i\theta} d\theta = -\frac{16}{3}$$

Thus,

$$\int_C f(z)dz = \frac{2}{3} + i3\pi.$$