Team ID	PNT2022TMID03184	
Project Name	Project – Smart farmer-IoT enabled	
	smart	
	farming application.	

SOLUTION REQUIREMENTS:

FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTS:

FUNCTIONAL REQUIREMENTS:

NO:	REQUIREMENTS	SUB-TASK
1	REGISTRATION	USER CAN REGISTER USING EMIAL
2	CONFIRMATION	OTP IS SENT TO EMAIL.USER CAN CONFIRM THE EMAIL BY ENTERING THE OTP.
3	LOGIN	AFTER CONFIRMATION THE USER CAN LOGIN.
4	CHECK CREDENTIALS	USER CAN CHECK THE CREDENTIALS GIVEN
5	MANAGE MODULES	1.MANAGE SYSTEM ADMINS 2.MANAGE ROLES 3.MANAGE USER PERMISSSION
6	LOGOUT	AFTER COMPLETING USER CAN LOGOUT

NON-FUNCTIONAL:

NO	REQUIREMENTS	DESCRIPTION
1	Usability	Usability includes easy
_	Osability	learn ability, efficiency in
		use, remember ability,
		lack of errors in operation
		and subjective pleasure
2	Security	Sensitive and private data
		must be protected from
		their production until the
		decision-making and
3	Reliability	storage stages. The shared protection
2	Kenaomity	achieves a better trade-off
		between costs and
		reliability. The model
		uses dedicated and shared
		protection schemes to
		avoid farm service
		outages.
$\frac{4}{}$	Performance	the idea of implementing
		integrated sensors with
		sensing soil and environmental or ambient
		parameters in farming
		will be more efficient for
		overall monitoring.
<u>5</u>	Availability	Automatic adjustment of
_		farming equipment made
		possible by linking
		information like
		crops/weather and
		equipment to auto -adjust
		temperature, humidity,
		etc

<u>6</u>	Scalability	scalability is a major
		concern for IoT
		platforms. It has been
		shown that different
		architectural choices of
		IoT platforms affect
		system scalability and
		that automatic real time
		decision -making is
		feasible in an
		environment composed of
		dozens of thousand