Identification of Cellular Automata

Witold Bołt (witold.bolt@hope.art.pl)

Systems Research Institute PAS, Warsaw

January 18, 2017

Cellular automaton: general definition

A cellular automaton $\mathscr C$ is a quintuple $\mathscr C=\langle \mathcal T,S,s,N,\Phi\rangle$:

- countably infinite tessellation \mathcal{T} of \mathbb{R}^n , consisting of cells c_i , $i \in \mathbb{N}$
- \bullet finite set S of k states
- ullet output function s yields the state $s(c_i,t)$ of cell c_i at step t
- neighborhood function N maps every cell c_i to a finite sequence $N(c_i)=(c_{i_j})_{j=1}^{|N(c_i)|}$
- transition functions $\Phi = (\phi_i)_{i \in \mathbb{N}}$ govern the dynamics:

$$s(c_i, t+1) = \phi_i(\tilde{s}(N(c_i), t))$$

where
$$\tilde{s}(N(c_i), t) = (s(c_{i_j}, t))_{j=1}^{|N(c_i)|}$$

[J.M. Baetens and B. De Baets. Dynamical Systems, 27:411-430, 2012.]

Witold Bołt Identification of CAs January 18, 2017 2 / 78

1D CAs considered in our experiments

- M cells arranged in a circular array $(c_{i+M} = c_i)$, k states, deterministic
- Symmetric neighborhood with radius r (size 2r + 1)
- Local rule: unique transition function $f: \{0, \dots, k-1\}^{2r+1} \to \{0, \dots, k-1\}$
 - a local rule can be represented as a lookup table (LUT)
 - general form of a LUT for an Elementary CA (ECA) $(k=2,\ r=1\ {\rm and}\ \ell_i\in\{0,1\})$

111	110	101	100	011	010	001	000
ℓ_8	ℓ_7	ℓ_6	ℓ_5	ℓ_4	ℓ_3	ℓ_2	ℓ_1

LUT of local rule with number $n=(\ell_8,\ell_7,\ell_6,\ell_5,\ell_4,\ell_3,\ell_2,\ell_1)_2$

• 256 ECAs (88 independent ones)

Witold Bołt

Global rules, configurations and space-time diagrams

- Configuration: $X \in \{0, \dots, k-1\}^M$, e.g. $s(\cdot, t)$
- Global rule: $A \colon \{0,\dots,k-1\}^M \to \{0,\dots,k-1\}^M$ such that $\frac{s(\cdot,t+1) = A(s(\cdot,t))}{s(\cdot,t+1)}$

expressing the evolution of configurations in time:

$$X \to A(X) \to A(A(X)) \to \ldots \to A^t(X)$$

- Initial configuration: first configuration
- Space-time diagram: entire diagram
 - space-time diagram with M cells and N time steps can be seen as a matrix $D \in \{0, k-1\}^{N \times M}$
 - t-th row in D represents the configuration at time stamp t (after t-1 applications of A)

Witold Bołt

Problem formulation

- CA-based models can solve complex computational/modelling problems
- To build a CA-based model one needs to define the transition function, a non-trivial task
- In many domains designing the transition function by hand is key to model development
- Building CA-based models automatically from observations (real-world data) is very compelling

CA identification problem

The problem of algorithmically/automatically finding the local rule of CAs fulfilling a set of conditions on the global/local dynamics

Witold Bołt Identification of CAs January 18, 2017 5 / 78

Specific CA identification problems

- Majority Problem or Density Classification Problem:
 - Only the initial configuration and the desired final configuration are known
 - Pre-defined state set, geometry and typically also neighborhood
 - Problem known to be unsolvable, only "approximate" or weak solutions exist

several approaches, including genetic algorithms, genetic programming, machine learning methods, . . .

 Global Synchronization Problems such as the firing squad synchronization problem: similar approaches as above

Witold Bolt Identification of CAs January 18, 2017 6 / 78

General CA identification problem

- Extracting CAs from experimental data: Richards et al. (1990)
 - building nondeterministic CA on the basis of photographs of dendritic solidification of NH₂Br
 - approach based on genetic algorithms (GA)
 - fitness based on joint information measure
 - some form of temporal incompleteness of observations (unknown time scale)
- General identification formulation: Adamatzky (1994)
 - extraction of local transitions from complete observations
 - reading/estimating the LUT of deterministic/nondeterministic CAs
 - touches upon radius selection and state set selection in various settings

Witold Bołt Identification of CAs January 18, 2017 7 / 78

Informal introduction

- What we have: recorded behavior of some system, which we "believe" is a CA
- What we want: the underlying CA rule

Note

Sometimes the problem might be very easy. Example...

Incomplete observations of space-time diagrams

- Incomplete observation of a space-time diagram (observation): matrix $I \in \{0,1,?\}^{N \times M}$
 - spatial incompleteness: ? denotes an unknown state
 - temporal incompleteness: specific time stamp of a given row is unknown, i.e. in between two consecutive rows of an observation, there might be a **time gap** of unknown length

Witold Bołt Identification of CAs January 18, 2017 9 / 78

Identification problem

Motivation:

- faulty or/and limited observation capabilities
- lack of synchrony: different clocks

Problem statement

Given an incomplete observation I, find a CA A such that there exists a space-time diagram D of A, for which there exists a sequence of integers $(\tau_i)_{i=1}^N$ such that $\tau_1=1$, $\tau_n<\tau_{n+1}$ and for all n,m:

$$I[n,m] = ?$$

or

$$D[\tau_n, m] = I[n, m]$$

In words

Find a CA with a space-time diagram D such that we can assign any row of the observation I to a specific row in D for which all non-? states agree

Identification as an optimization problem

- Technical assumptions:
 - lacktriangledown initial configuration I[1] is completely observed
 - $\begin{tabular}{ll} \textbf{2} & \textbf{3} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{2} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{3} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} &$
- A-completion of an (incomplete) observation I: given a CA A and a sequence of time stamps $\tau=(\tau_i)_{i=1}^N$, we construct a complete observation

$$\bar{I}_{\tau}^A \in \{0,1\}^{N \times M}$$

by replacing every occurrence of ? in I by the result of evaluating A taking into account $\boldsymbol{\tau}$

Witold Bolt Identification of CAs January 18, 2017 11 / 78

Identification as an optimization problem

• Consider $\tau = (\tau_i)_{i=1}^N$ and let $t_i = \tau_{i+1} - \tau_i$, $i = 1, \dots, N-1$, then we define the following error

$$E_I(A,\tau) = \sum_{i=1}^{N-1} d_H(A^{t_i}(I_\tau^A[i]), \bar{I}_\tau^A[i+1])$$

where d_H stands for the Hamming distance

• In view of the maximal time gap, we can define an error that does not depend on the choice of τ :

$$E_I(A) = \min_{\tau} \sum_{i=1}^{N-1} d_H(A^{t_i}(I_{\tau}^A[i]), \bar{I}_{\tau}^A[i+1])$$

where the minimum only covers sequences $(\tau_i)_{i=1}^N$ satisfying $t_i \leq T$, $i=1,\ldots,N-1$

Witold Bolt Identification of CAs January 18, 2017 12 / 78

Fitness function

• The fitness function is defined with the use of E_I as:

$$fit_I(A) = C - M - E_I(A)$$

where C is the total number of entries in observation I having a value in $\{0,1\}$

- \bullet The term C-M is the total number of completely observed states, excluding the initial configuration
- In words: the fitness function counts the number of matching cells when comparing the space-time diagram of A with observation I, considering the best possible sequence of time stamps
- The goal of the evolutionary algorithm is to maximize the given fitness function
- In practice, we use a small subset of set of observations \mathcal{I} , which is updated during GA evolution, to overcome local optima and limit computing costs

Genetic algorithm - summary of design

- Individuals: variable length bit-strings corresponding to LUTs; fixed size population
- Selection: fitness proportional, with replacement
- Crossover: uniform with radius selection
- Mutation: radius decrease and increase, random bit-flip
- Elite survival: top performers preserved
- Restart: population reinitialization in case of local optima
- Halting condition: perfect solution found

GA setup

- Population: 192 individuals, elite: 24
- Radius min: 2, max: 5
- Mutation probabilities: up/down-scale: 0.001, bit-flip base: 0.001
- Max time gap: 10, random length
- Observations: 64 observations (8 used for fitness approx.), 69×69 pixels

Fitness evolution in time

Witold Bołt

Best individuals

Fitness evolution in time

Witold Bołt

Best individuals

Overview of experiments

Set-up

- Input: sets of observations of known CAs with randomly introduced incompleteness
- Performance: number of GA iterations needed to find the solution
- Goal: evaluate the performance of the GA in various settings

Experiments (first three on ECAs)

- Relation between performance and dynamical properties in case of temporal incompleteness
- Impact of constant time gaps on the performance
- Impact of spatial incompleteness on the performance
- Radius detection

Experiment 1: Design

- 64 spatially complete observations per ECA
- Same set of 64 random initial conditions
- Upper bound of 10 for independent time gaps
- Number of cells and number of observed time steps: 69 (square observations)
- GA population size: 32 individuals (elite: 8)
- Radii of CAs in populations: from 2 to 5, i.e. the search space has more than $2^{2^{11}}$ elements
- Simulations repeated 50 times per ECA

Experiment 1: Relation with dynamical properties

- In each GA run, a solution was found
- Wolfram classification:

class	avg(min-iter)	avg(avg-iter)	avg(max-iter)
ı	38	207	666
Ш	47	244	915
Ш	40	296	1264
IV	57	690	2650

• normalized maximum Lyapunov exponent:

nMLE	avg(min-iter)	avg(avg-iter)	avg(max-iter)
$-\infty$	44	257	934
0	38	176	665
> 0	49	308	1187

Experiment 1: Easiest and hardest ECAs

• Easiest:

ECA	nMLE	min-iter	avg-iter	max-iter
255	$-\infty$	1	3	9
0	$-\infty$	4	30	183
221	$-\infty$	25	47	86
207	0	25	55	156
246	0	27	57	112

Hardest:

ECA	nMLE	min-iter	avg-iter	max-iter
137	0.6577	48	1679	8270
193	0.6561	52	1625	6221
110	0.6574	49	1348	4269
25	0.5168	43	1262	5690
124	0.6567	59	1231	4431

Experiment 2: Design & Results

- Compared to Experiment 1, each observation I has a randomly selected constant time gap (the GA is unaware of this)
- The nature of the time gaps can greatly affect the performance and even prevent the GA to successfully identify a solution

description	avg(avg-iter)
even time gaps	158
odd time gaps	7074

Experiment 3: Design

- Same as Experiment 1
- We gradually introduce spatial incompleteness by changing 2000 randomly selected entries in the set of observations to?
- This process is repeated multiple times until we end up with observations of which only the first row is known
- Simulations repeated 50 times per ECA after each step

Performance

Maximal percentage S_A of ? symbols in the set of observations for which the identification is successful for at least one of the 50 runs in fewer than $G=9\times 10^5$ iterations

Experiment 3: Results

Wolfram classification:

class	$avg(S_A)$
ı	98.14 %
Ш	74.46 %
Ш	58.10 %
IV	55.17 %

• normalized maximum Lyapunov exponent:

nMLE	avg(S_A)
$-\infty$	81.63 %
0	83.74 %
> 0	66.61 %

Experiment 4: Design

- Randomly selected CAs with radii 2, 3, 4 (100 CAs per radius)
- 64 spatially complete observations per CA
- GA population size: 512 individuals (elite: 128) with radii from 1 to 5
- Algorithm is stopped when finding a solution or after $G=10^4$ iterations
- No repetitions

Experiment 4: Results

- Only 6 runs were unsuccessful
- Breakdown according to radius:

radius	min(iter)	avg(iter)	max(iter)
2	25	217	4988
3	77	325	2457
4	250	572	2173

- For radii 3 and 4, the solution always has the desired radius, and a strict majority of the population has this radius some time before finding the solution
- For radius 2, the same happens for 93% of the cases; otherwise, the final solution and the majority of the population have a larger radius

Experiment 4: Results

Performance

Percentage of the number of GA iterations before finding the solution, during which a strict majority of the population has the desired radius

radius	avg(% iter)
2	57.74%
3	63.26%
4	75.00%

Conclusion

- Measures from dynamical systems theory allow to gain insight into the interplay between CA dynamics and model design
 - design parameters can have a dramatic impact on the dynamical properties
 - further research needed: multi-state Lyapunov exponents, Lyapunov profiles, . . .
- Evolutionary techniques are able to discover CA rules based on sets of observations
 - the GA can handle various types of temporal incompleteness very effectively
 - the GA is very effective in case of no or limited spatial incompleteness; in case of higher spatial incompleteness, the performance depends on the rule
 - the performance differs greatly among rules, and is related with the dynamical characteristics of the rules

Thank you for your attention!