MATH2033 Mathematical Analysis Problem Set 2

Problem 0

Do problem #9 and problem #10 in practice exercise.

Problem 1

We let A, B be any two sets. The symmetric difference of A and B (denoted by $A \Delta B$) is defined by

$$A \Delta B = (A \backslash B) \cup (B \backslash A).$$

- (a) Show that $A \Delta B = (A \cup B) \setminus (A \cap B)$
- **(b)** Show that $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$ for any sets A, B, C.

Problem 2

We let A, B, C be 3 sets, prove that

- (a) $A \setminus (B \setminus A) = A$
- **(b)** $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$.

Problem 3

Prove that the following statements are incorrect.

- (a) $A \setminus B = B \setminus A$ for all non-empty sets A and B
- **(b)** $(A \setminus B) \setminus C = A \setminus (B \setminus C)$ for any non-empty sets A, B and C
- (c) $(A \setminus B) \cup C = (A \cup C) \setminus (B \cup C)$ for any non-empty sets A, B and C.
- (d) If $A \cap B = A \cap C$, then B = C. Here, A, B, C are non-empty sets.

Problem 4 (Harder)

We let A, B be two subsets of a set Ω . If there exists a subset $C \subseteq \Omega$ such that

$$B \cap C = A \cap C$$
 and $B \cup C = A \cup C$.

Show that A = B.

Problem 5

We consider a function $f: \mathbb{R} \to \mathbb{R}$. Suppose that the function is strictly increasing (i.e. $f(x_1) < f(x_2)$ for any x_1, x_2 which $x_1 < x_2$),

- (a) Show that f(x) is injective.
- (b) Determine if f(x) is always surjective. (\bigcirc Hint: The answer is false)

Problem 6

We consider a function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sin x$.

- (a) Write down the range of f(x).
- (b) Determine if the function is injective. Also, determine if the function is surjective

(c) Suppose that the domain of f is changed to $\left[0, \frac{\pi}{2}\right]$, determine if the function is injective.

Problem 7

We let $f: \mathbb{R} \to \mathbb{R}$ be a function satisfying $|f(x_1) - f(x_2)| = |x_1 - x_2|$ for any $x_1, x_2 \in \mathbb{R}$. Show that f is injective.

Problem 8

We let $f: \mathbb{R}\setminus\{-1,1\} \to \mathbb{R}$ be a function defined by $f(x) = \frac{x}{1-x^2}$.

- (a) Determine if the function is injective.
- **(b)** Determine if the function is surjective.

Problem 9 (Harder)

We let $f_1: A \to B$, $f_2: A \to B$, $g: B \to C$, $h_1: C \to D$ and $h_2: C \to D$ be five functions (Here, A, B, C and D ae subsets of \mathbb{R}).

- (a) Suppose that g is injective and $g(f_1(x)) = g(f_2(x))$ for all $x \in A$, show that $f_1(x) = f_2(x)$ for all $x \in A$.
- **(b)** Suppose that g is surjective and $h_1(g(x)) = h_2(g(x))$ for all $x \in B$, show that $h_1(x) = h_2(x)$ for all $x \in C$.

Problem 10

We consider a relation \sim on \mathbb{Z} which

$$m \sim n \iff m + n \text{ is even}$$

- (a) Prove that \sim is an equivalent relation.
- **(b)** Determine all equivalent classes.

Problem 11

We consider a relation \sim on \mathbb{Z}

$$m \sim n \Leftrightarrow |m - 5| = |n - 5|$$

- (a) Prove that \sim is an equivalent relation.
- **(b)** Determine all equivalent classes.

Problem 12 (Harder)

We consider an non-empty set A and let \sim_1 and \sim_2 be two equivalent relations on A.

(a) We let \sim be another relation on A which

$$x \sim y \Leftrightarrow x \sim_1 y \text{ and } x \sim_2 y.$$

- (i) Prove that \sim is an equivalent relation.
- (ii) We consider an element $a \in A$ and let [a], $[a]_1$ and $[a]_2$ be the equivalence class of a with respect to the equivalent relations \sim , \sim_1 and \sim_2 respectively. Show that $[a] = [a]_1 \cap [a]_2$.

(b) We let \sim^* be another relation on A which

$$x \sim^* y \Leftrightarrow x \sim_1 y \text{ or } x \sim_2 y.$$

Determine if \sim^* is an equivalence relation for any A, \sim_1 , \sim_2 .

(\bigcirc Hint: If your answer is yes, provide a mathematical proof. If your answer is no, you need to provide a counter-example and you need to specify the set A and the equivalent relations \sim_1 and \sim_2 .)