### Game Architecture Linear Algebra

Here's looking at Euclid

### Today's Agenda

- Points and spaces
- Coordinate Systems
- Vector and vector operations
- Planes

#### **Points**

- An element of some set called a space.
- Captures the idea of a unique location in that space.
- Represented by tuple of n terms where n is the dimension of the space.

$$P = (P_x, P_y, P_z)$$

Cartesian Coordinate System



### Handedness







#### Vectors

- A geometric primitive with:
- Direction
- Magnitude (Length)
- Represented by tuple of n terms where n is the dimension of the space.

$$\mathbf{v} = (\mathbf{v}_{x}, \mathbf{v}_{y}, \mathbf{v}_{z})$$

#### Examples:

- Velocity
- Acceleration
- Force



### Linear Operations

- Vector AdditionScalar Multiplication

### Linear Operations

Vector Addition

$$\mathbf{a} + \mathbf{b} = (\mathbf{a}_{x} + \mathbf{b}_{x}, \mathbf{a}_{y} + \mathbf{b}_{y})$$

Scalar Multiplication



### Linear Operations

- Vector Addition
- Scalar Multiplication

$$\mathbf{v}\alpha = (\mathbf{v}_{x}\alpha, \mathbf{v}_{y}\alpha, \mathbf{v}_{z}\alpha)$$

Length changes but direction does not (can go negative, but still same direction).



### Vector Space

- A vector space is a set of vectors that is *closed* under linear operations (vector addition and scalar multiplication).
- A set is *closed* under an operation if the result of that operation on any members of the set is also a member of the set.

### Vector Space

- A vector space is a set of vectors that is *closed* under linear operations (vector addition and scalar multiplication).
- A set is *closed* under an operation if the result of that operation on any members of the set is also a member of the set.

Euclidean space (Rn) is a vector space.

- Add two vectors together in R<sup>n</sup> and get a third vector also in R<sup>n</sup>.
- Multiply a vector in R<sup>n</sup> by a scalar in get another vector in R<sup>n</sup>.

### **Vector Basis**

A set of vectors form a basis if
 every vector in the vector space
 are a linear combination of the
 vectors in that set.

### Standard Basis

$$i = (1, 0, 0)$$

$$i = (1, 0, 0)$$
  
 $j = (0, 1, 0)$   
 $k = (0, 0, 1)$ 

$$k = (0, 0, 1)$$

### **Trigonometry**

Branch of mathematics that studies relationships involving lengths and angles of triangles.



### **Trigonometry**

$$\sin \theta = \frac{Opposite}{Hypotenuse}$$

$$\cos \theta = \frac{Adjacent}{Hypotenuse}$$

$$\cos \theta = \frac{Adjacent}{Hypotenuse}$$

$$\tan \theta = \frac{Opposite}{Adjacent}$$



## Pythagoras Theorem



## Pythagoras Theorem



# Vector Length (Magnitude)



$$|\mathbf{a}| = \sqrt{\mathbf{a}_{x} + \mathbf{a}_{y} + \mathbf{a}_{z}}$$

## Vector Normalization



Odd numbers good. Even numbers

evil.

Obviously.

- Odd numbers good. Even numbers
- Beans home to souls of dead.

Do not eat the beans.

- Odd numbers good. Even numbers
- Beans home to souls of dead.
- Wear pants.



This was a weird idea for the time.

- Odd numbers good. Even numbers evil.
- Beans home to souls of dead.
- Wear pants.
- Do not look in mirrors.



- Odd numbers good. Even numbers
- Beans home to souls of dead.
- Wear pants.
- Do not look in mirrors.
- All numbers expressed as ratio of whole numbers.



- Odd numbers good. Even numbers evil
- Beans home to souls of dead.
- Wear pants.
- Do not look in mirrors.
- All numbers expressed as ratio of whole numbers.



1. 
$$1^2 + 1^2 = c^2$$

- Odd numbers good. Even numbers
- Beans home to souls of dead.
- Wear pants.
- Do not look in mirrors.
- All numbers expressed as ratio of whole numbers.



1. 
$$1^2 + 1^2 = c^2$$

$$c^2 = 2$$

$$c = \sqrt{2}$$

$$a/b = \sqrt{2}$$

### **Trigonometry**

Branch of mathematics that studies relationships involving lengths and angles of triangles.



### **Trigonometry**

Branch of mathematics that studies circles.





#### **Dot Product**

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}_{x} \mathbf{b}_{x} + \mathbf{a}_{y} \mathbf{b}_{y} + \mathbf{a}_{z} \mathbf{b}_{z}$$

### **Dot Product**



 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$ 

- Angle between two vectors
- Vector length (squared)
- Vector projection and rejection
  - Planes



- Angle between two vectors
- Vector length (squared)
- Vector projection and rejection
- Planes

Original definition:

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

Rearranging terms:

$$\theta = \cos^{-1} \frac{a \cdot b}{|a||b|}$$

- Angle between two vectors
- Vector length (squared)
- Vector projection and rejection
- Planes

|     | p <sup>n</sup> g | a a a a a a a a a a a a a a a a a a a | a <sup>e</sup> |
|-----|------------------|---------------------------------------|----------------|
| a-b | 1.0              | 0.0                                   | -1.0           |
| θ   | 0                | 06                                    | 180            |

- Angle between two vectors
- Vector length (squared)
- Vector projection
- Planes

Original definition:

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

Substituting b for a:

$$\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}| |\mathbf{a}| \cos \theta$$

So  $\theta$  is 0 and  $\cos(0) = 1$ :

$$a \cdot a = |a|^2$$

- Angle between two vectors
- Vector length (squared)
  - Vector projection
- Planes

The projection of a onto b:

$$proj_b \alpha = (\alpha \cdot \hat{b})\hat{b}$$



- Angle between two vectors
- Vector length (squared)
  - Vector projection
- **Planes**



$$\mathbf{n} \cdot (\mathbf{x} - \mathbf{x}_0) = 0$$

Oľ

$$an_x + bn_y + cn_z + d = 0$$

### **Cross Product**

$$\mathbf{a}_{x}\mathbf{b} = (\mathbf{a}_{y}\mathbf{b}_{z} - \mathbf{a}_{z}\mathbf{b}_{y}, \, \mathbf{a}_{z}\mathbf{b}_{x} - \mathbf{a}_{x}\mathbf{b}_{z}, \, \mathbf{a}_{x}\mathbf{b}_{y} - \mathbf{a}_{y}\mathbf{b}_{x})$$

### **Cross Product**





#### Radians

A radian is the angle made at the center of a circle by an arc whose length is equal to the radius of the circle.



#### Radians

#### **Questions?**