Khôlles de Mathématiques - Semaine 3

George Ober

17 avril 2024

1 Preuve de l'inégalité triangulaire et de l'inégalité montrant que le module est 1-lipschitzien + dessin et interprétation géométrique

 $D\acute{e}monstration.$

2 Caractérisation du cas d'égalité de l'inégalité triangulaire dans $\mathbb C$

 $D\acute{e}monstration.$

3 Calcul de $\sum_{k=0}^{n} \cos(k\theta)$ pour tout $\theta \in \mathbb{R}$

 $D\acute{e}monstration.$

4 Si z_0 est racine de la fonction polynômiale P, alors P se factorise par $(z-z_0)$

Soient $n \in \mathbb{N}$, $(a_0, \dots, a_n) \in \mathbb{C}^{n+1}$ et $z_0 \in \mathbb{C}$ Posons pour tout $z \in \mathbb{C}$, $P(z) = \sum_{k=0}^n a_k z^k$ (i) Si $P(z_0) = 0$, alors $\exists Q \in \mathbb{C}[z] : \forall z \in \mathbb{C}$, $P(z) = (z - z_0)Q(z)$

Démonstration. Soit $z \in \mathbb{C}$ fixé quelconque,

$$P(z) = P(z) - P(z_0)$$

$$= \sum_{k=0}^{n} a_k z^k - \sum_{k=0}^{n} a_k z_0^k$$

$$= \sum_{k=0}^{n} a_k (z^k - z_0^k)$$

$$= \sum_{k=1}^{n} \left(a_k (z - z_0) \left(\sum_{j=0}^{k-1} z^j z_0^{k-1-j} \right) \right)$$

$$= (z - z_0) \sum_{k=1}^{n} a_k \left(\sum_{j=0}^{k-1} z^j z_0^{k-1-j} \right)$$

Donc en posant $Q(z) = \sum_{k=1}^{n} a_k \left(\sum_{j=0}^{k-1} z^j z_0^{k-1-j} \right), \in \mathbb{C}[z]$, on a montré que P se factorise.

5 Si z_1, \ldots, z_n sont n racines distinctes de la fonction polynômiale P de degré n, alors P(z) se factorise en ...

Soient $n \in \mathbb{N}$, $(a_0, \dots, a_n) \in \mathbb{C}^{n+1}$ et $z_0 \in \mathbb{C}$ Posons pour tout $z \in \mathbb{C}$, $P(z) = \sum_{k=0}^n a_k z^k$ (ii) Si $\exists p \in \mathbb{N}^* : \exists (z_1, \dots, z_p) \in \mathbb{C}^p$ deux à deux distincts tels que $\forall k \in [1, p], P(z_k) = 0$ alors, $\exists Q \in \mathbb{C}[x] : \forall z \in \mathbb{C}$, $P(z) = Q(z) \times \prod_{k=1}^p (z - z_k)$.

Démonstration. Considérons la propriété $\mathcal{P}(\cdot)$ définie pour tout $p \in \mathbb{N}^*$ par

$$\mathcal{P}(p): \forall P \in \mathbb{C}[z], (\exists (z_1, \dots, z_p) \in \mathbb{C}^p, \ 2 \text{ à 2 distincts } : \forall i \in [1, p], P(z_i) = 0) \implies \exists Q \in \mathbb{C}[z]: P(z) = Q(z) \prod_{i=1}^p (z - z_i) = 0$$

- $\Diamond \mathcal{P}(1)$ est vraie d'après la preuve précédente.
- \Diamond Soit $p \in \mathbb{N}^*$ fixé quelconque tel que $\mathcal{P}(p)$ est vraie. Soit $P \in \mathbb{C}[z]$ fq tq $\exists (z_1, \ldots, z_{p+1}) \in \mathbb{C}^{p+1}$ deux à deux distincts tels que $\forall i \in [1, p+1], P(z_i) = 0$. Appliquons $\mathcal{P}(p)$ à $P \in \mathbb{C}[z]$ dont (z_1, \ldots, z_p) sont les p racines deux à deux distinctes.

$$\exists Q_1 \in \mathbb{C}[z] : \forall z \in \mathbb{C}, P(z) = Q_1(z) \prod_{i=1}^p (z - z_i)$$

Évaluons cette expression en z_{p+1}

$$\underbrace{P(z_{p+1})}_{=0} = Q_1(z_{p+1}) \prod_{i=1}^{p} \underbrace{(z_{p+1} - z_i)}_{\neq 0 \text{ car distincts}}$$

Donc $Q_1(z_{p+1}) = 0$, ce qui permet d'appliquer (i) pour $P \leftarrow Q_1, z_0 \leftarrow z_{p+1}$.

$$\exists Q \in \mathbb{C}[z] : \forall z \in \mathbb{C}, Q_1(z) = (z - z_{p+1})Q(z)$$

Donc

$$\forall z \in \mathbb{C}, P(z) = (z - z_{p+1})Q(z) \prod_{i=1}^{p} (z - z_i) = Q(z) \prod_{i=1}^{p+1} (z - z_i)$$

Donc $\mathcal{P}(p+1)$ est vraie.