Aim:

To classify data points using the K-Nearest Neighbors (KNN) algorithm and evaluate its performance on a sample dataset.

Procedure:

- 1. Import necessary libraries: pandas, numpy, sklearn (for KNN, train-test split, metrics), and matplotlib for visualization.
- 2. Load a dataset (e.g., Iris dataset) and perform basic data preprocessing like handling missing values and encoding categorical features.
- 3. Split the dataset into training and testing sets using train_test_split.
- 4. Create a KNN classifier using KNeighborsClassifier, fit it on the training data, and make predictions on the test set.
- 5. Evaluate the model using metrics like accuracy, confusion matrix, and visualize results if needed.

```
In [3]:
import numpy as np
import pandas as pd
df=pd.read csv("C:\\Users\\kaviy\\Downloads\\Iris (1).csv")
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
  Column Non-Null Count Dtype
                 _____
 0 sepal.length 150 non-null
                               float64
 1 sepal.width 150 non-null float64
 2 petal.length 150 non-null float64
 3 petal.width 150 non-null float64
    variety
                150 non-null object
dtypes: float64(4), object(1)
memory usage: 6.0+ KB
                                                                 In [4]:
df.variety.value counts()
                                                                 Out[4]:
Setosa 50
Versicolor
           50
           50
Virginica
Name: variety, dtype: int64
                                                                 In [5]:
df.head()
                                                                 Out[5]:
```

sepal.length sepal.width petal.length petal.width variety

0	5.1	3.5	1.4	0.2	Setosa						
1	4.9	3.0	1.4	0.2	Setosa						
2	4.7	3.2	1.3	0.2	Setosa						
3	4.6	3.1	1.5	0.2	Setosa						
4	5.0	3.6	1.4	0.2	Setosa						
						In [9]:					
	features=df.iloc[:,:-1].values										
fr	<pre>label=df.iloc[:,4].values from sklearn.model_selection import train_test_split</pre>										
<pre>from sklearn.neighbors import KNeighborsClassifier xtrain,xtest,ytrain,ytest=train_test_split(features,label,test_size=.2,rand</pre>											
<pre>om_state=42) model KNN=KNeighborsClassifier(n neighbors=5)</pre>											
<pre>model_KNN.fit(xtrain,ytrain) Out[9]:</pre>											
KN	GeighborsC	lassifier				οιτίρ].					
<pre>KNeighborsClassifier KNeighborsClassifier()</pre>											
In [10]:											
	<pre>print(model_KNN.score(xtrain,ytrain)) print(model KNN.score(xtest,ytest))</pre>										
	0.96666666666667 1.0										
± •	O					In [11]:					
			import confu	_		A A					
CO	ntusion_ma	trix(labe.	l,model_KNN.	.predict(fe	eatures	Out[11]:					
ar	ray([[50,	0, 0],									
	[0, 47, 3], [0, 1, 49]], dtype=int64)										
	[0,	<u> </u>	deype inco.	- /		In [12]:					
	from sklearn.metrics import classification_report										
<pre>print(classification_report(label, model_KNN.predict(features)))</pre>											
	Setosa	1 (00 1.00) 1.00)	50					
	Versicolor			1 0.9		50					
	Virginica	0.	0.98	0.9	6	50					
	accuracy			0.9	7	150					

EXPERIMENT:8		KNN	KNN				
macro avg	0.97	0.97	0.97	150			
weighted avg	0.97	0.97	0.97	150			

Result:

- The KNN model successfully classified the data points based on their nearest neighbors.
- Accuracy on the test set depends on the chosen value of **k** and distance metric.
- Confusion matrix and classification report show the performance and areas of misclassification.