

DELHI TECHNOLOGICAL UNIVERSITY

DEPARTMENT OF SOFTWARE ENGINEERING

B.TECH. 2nd YEAR SYLLABUS

Course Title	Course Structure			Pre-
				Requisite
EC252	L	T	P	Concepts of
Digital	3	0	2	Boolean
Systems &				Algebra, basic
Design				Logic gates

Course Objective:

To introduce the concepts of digital logic, functioning and design of digital devices, Programmable Devices, memory, and digital system design using VHDL.

Course Outcome (CO):

- 1. Apply knowledge of minimization techniques to switching functions, and realization of FSM.
- 2. Apply synchronous sequential logic concept for designing Finite state machines.
- 3. Apply Asynchronous sequential logic concepts for designing circuits from given statements and apply ASM concepts for designing digital circuits.
- 4.Understand the concept of various ADC and DAC conversion and various techniques and designing circuits using programmable logic devices.
- 5. Understand the concept of HDL and demonstrate its knowledge by designing various digital systems.
- 6. Understand the concept of various logic families and their parameters.

S.No.	Content	Contact Hours
Unit 1	Review of basic concepts of switching functions,	8
	and minimization techniques (Karnaugh's Map	
	Method & Tabulation Techniques). Introduction	
	to finite state machine: pulse and fundamental	
	mode of operation, realization of state table from	
	verbal description, state diagram & Transition	
	matrix, Mealy and Moore model machine.	
Unit 2	Design of sequential circuits: Flip Flops, Shift	8
	Registers, Ring counters, Up-Down counters,	
	Asynchronous counters, decade counters.	
Unit 3	Introduction to design asynchronous sequential	8
	circuit flow table realization from verbal	
	description, ASM charts.	
Unit 4	Concept of Digital to Analog Conversion Ladder	8
	Networks, and Concept of Analog to Digital	
	conversion: Dual Slope method, stair case Ramp-	
	method/counter method successive approximation	

	type of A/D converters etc. Introduction to design with the programmable modules: ROM, PAL, PLA, FPGA.	
Unit 5	Introduction to HDL (VHDL), Behavioral Modeling, Dataflow Modeling, Structural Modeling, and Application in Digital System Designs.	6
Unit 6	Introduction Logic Gates Families TTL, Tristate Logic, ECL, CMOS and I ² L Logic, Logic parameters, Bistable, Monostable, Astable and Schmitt trigger circuit	4
	Total	42

Books:-

S.No.	Name of Books/Authors/Publisher
1.	Thomas L. Floyd, Digital Fundamentals, 10thEdition, Pearson Education, ISBN-13:
	9780132359238, 2009.
2.	M. Morris Mano, Digital Design, 4th Edition, Pearson EducationISBN-13:
	9780131989245,2007.
3.	Donald P.Leach and Albert Paul Malvino, GoutamSaha, Digital Principles and
	Applications, 6th Edition, TMH, ISBN: 0070601755, 2006.
4.	John F.Wakerly, Digital Design: principles and practices, 4th Edition, Pearson
	Education, ISBN-10: 0131863894, 2006.
5.	John.M Yarbrough, Digital Logic Applications and Design, Thomson Learning,
	ISBN-10: 0314066756, 2002.
6.	Switching And Finite Automata Theory by Z. Kohavi (TMH). 2010
7.	VHDL Primer by J. Bhaskar; BS Publication. 2001