

编译原理

第三章 语法分析(8)

中国海洋大学 计算机系 王欣捷 wangxinjie@ouc.edu.cn

- •3.5 LR分析器
 - 3.5.3 构造SLR分析表
 - a. 知其所以然:SLR分析表的机制—— 识别活前缀的DFA
 - b. 一些概念: LR(0)项目、 拓广文法、 项目集闭包
 - · c. 会构造SLR分析表
 - d. 出现冲突的情况

上次课回顾

·SLR分析表构造过程:

- 1. 构造识别活前缀的DFA
 - 1.1 构造拓广文法,为产生式编号

• 1.3 画出DFA, 所有状态都为接收状态

• 2. 构造**SLR**分析表

	ACTION		GO ⁻	го
а	b	\$	Α	S
53	54		2	1
		accept		
53	54		5	
53	54		6	
R3	R3	R3		
		R1		
R2	R2	R2		

• 2.1 根据项目集族和DFA填action-goto表, 其中在项目集内遇到归约项目时,按 FOLLOW集合填归约

 $B \rightarrow aB$

 $B \rightarrow aB$

 $B \rightarrow b$

上次课回顾

 $B \rightarrow a \cdot B$

 $B \rightarrow aB$

 $B \rightarrow b$

	北大	ACTION			GOTO	
	状态	a	b	\$	S	В
	0	s 3	s4		1	2
}	1			acc		
	2	s 3	s4			5
	3	s 3	s4			6
	4	r3	r3	r3		
	5			r1		
	6	r2	r2	r2		

以串bab为例,

理解DFA识别活前缀的过程

栈	输入	动作
0	b a b \$	移进
0 b 4	a b \$	按B→b归约
0 B 2	a b \$	移进
0 B 2 a 3	<i>b</i> \$	移进
0 B 2 a 3 b 4	\$	按B→b归约
0 B 2 a 3 B 6	\$	按 B→aB 归约
0 B 2 B 5	\$	按S→BB归约
0 S 1	\$	接受

本次课内容

- 3.5 LR分析器
 - 3.5.3 构造SLR分析表(续)
 - 3.5.4 构造规范的LR分析表
 - · 核心是用搜索符代替FOLLOW集

LR(1)项目: 带有搜索符的LR(0)项目: A->α·β, a

含义: 子串αβ所在的右句型中直接跟在β后面的终结符

特点: 是FOLLOW集的子集

搜索符

用处: 仅在归约项目里有用,决定了何时将αβ归约为A

LR(1)文法

需要搜索符

LR(1)项目集规范族

如何计算非核心项目的搜索符?

LR(1)项目集规范族

如何修改closure?

- 使用SLR分析表的LR分析是SLR分析,能够构造出无冲突的SLR分析表的文法是SLR文法。
- SLR分析表中如果出现动作冲突(**移进-归约冲 突,归约-归约冲突**),则文法就不是SLR的。
- SLR文法都不是二义的,但是它描述能力有限, 有些非二义的文法不能用SLR分析。

3.5.3 构造SLR分析表(续)

· 例3.29 SLR(1)文法的描述能力有限

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

小节练习:尝试为例 3.29构造SLR分析表, 大家一起来做吧!

3.5.3 构造SLR分析表(续)

第一项目使得 action[2, =] = s6 第二项目使得 action[2, =] 为按 $E \rightarrow V$ 归约,因为 = 是 E 的一个后继符

= 是 E 的一个后继符: $S \Rightarrow V = E \Rightarrow *E = E$ 但是,实际不存在以E = ... 开始的右句型

想一想,为什么会冲突?

文法

- $0) S' \rightarrow S$
- 1) $S \rightarrow V = E$
- 2) $S \rightarrow E$
- 3) $V \rightarrow *E$
- 4) $V \rightarrow id$
- 5) $E \rightarrow V$

 $FOLLOW(E) = \{=, \$\}$

·3.5.3 构造SLR分析表(续)

- ·SLR文法描述能力有限的原因:
 - 归约时缺乏对上下文的考虑: 即归约时只考虑了下一个输入符号是否属于与归约项目 $[A \to \alpha \cdot]$ 相关联的FOLLOW(A)集合,而没考虑串 α 所在的右句型的上下文(即在该右句型中 α 能否被归约为A)。
 - **b** \in FOLLOW(*A*)只是归约 α 的一个必要条件, 而非充分条件
- •解决方法:规范LR分析(LR(1)分析)

高德纳(Donald Ervin Knuth)

•对于产生式 $A \rightarrow \alpha$ 的归约,在不同的使用位

置,A会要求不同的后继符号

文法

- $0) S' \rightarrow S$
- 1) $S \rightarrow V = E$
- 2) $S \rightarrow E$
- 3) $V \rightarrow *E$
- 4) $V \rightarrow id$
- 5) $E \rightarrow V$

X	FOLLOW(X)
S	\$
\boldsymbol{V}	=, \$
$oldsymbol{E}$	=, \$

 $S \rightarrow V = E \cdot , \$$

• 在特定位置,A的后继符集合是FOLLOW(A)的子集

- •LR(1)项目:
 - 重新定义项目, 让它带上搜索符, 成为如下 形式:

$$[A \rightarrow \alpha \cdot \beta, a]$$

- 搜索符是在子串αβ所在的右句型中直接跟在β 后面的终结符。
- •搜索符在 β 不为 ϵ 的情况下是没什么用处的,但当 β 为 ϵ 时,它决定了何时将 α β 归约为A。
- LR(1)中的1实际上指搜索符的长度。
- 这样的a的集合总是FOLLOW(A)的子集,而且它通常是一个真子集。

LR(1)项目[$A \rightarrow \alpha \cdot \beta$, a]中搜索符a的含义是:

- 子串αβ所在的右句型中直接跟在α后面的终结 符
- β 子串αβ所在的右句型中直接跟在β后面的终结符
- ** 非终结符A的后继符号集合
- 事终结符A的开始符号集合

在LR(1)项目[$A \rightarrow \alpha \cdot \beta$, a]中,关于搜索符说法错误的是?

- Α 若β不为空,则搜索符无用
- Β 若β为空,则搜索符无用
- σ 若α不为空,则搜索符无用
- 戸 若α为空,则搜索符无用

• 初始状态的搜索符?

$$[S' \rightarrow \cdot S, \$]$$

•若已知状态I中项目的搜索符,如何计算goto(I,X)中状态X的搜索符?

X新得到的核心项目与I中原项目有相同搜索符。

$$I_0:$$
 $S' o \cdot S, \$$
 $S o \cdot BB, \$$
 $B o \cdot bB, b/a$
 $B o \cdot a, b/a$
 $B o \cdot a, \$$
 $I_2:$
 $S o B \cdot B, \$$
 $B o \cdot bB, \$$
 $B o \cdot bB, \$$

• 如何计算非核心项目的搜索符?

 I_0 : $S' \rightarrow S$, \$ $S \rightarrow BB$, \$ $B \rightarrow bB$, b/a $B \rightarrow a$, b/a

注意, b不可能为 ε , 因为a不为 ε

对于核心LR(1)项目[$A \rightarrow \alpha \cdot B$, a], 计算其非核心项目[$B \rightarrow \cdot \gamma$, b]时, 搜索符b的值是?

- (A) α
- В у
- \bigcirc B
- D a

对于核心LR(1)项目[$A \rightarrow B + A$, a], 计算其非核心项目[$B \rightarrow C * B$, b]时, 搜索符b的值是?

- (A) a
- $oldsymbol{B}$
- (c) +
- (D) *

- •构造规范LR分析表和构造SLR分析表 过程基本相同,不同点为:
 - 构造LR(1)项目集规范族:修改 closure(I)和goto(I, X)函数,使其带上搜索符。
 - 填写action-goto表时,按照搜索符归约, 而不是按FOLLOW集合归约。

- · 构造规范LR分析表步骤:
 - 构造识别活前缀的DFA
 - 拓广文法并为产生式编号(文法中加入 $S' \rightarrow S$)
 - 构造LR(1)项目集规范族。
 - 根据LR(1)项目集规范族和识别活前缀的DFA 构造action-goto表(LR分析表)。

例3.32: 为下面文法构造规范LR分析表

$$S \to BB$$

$$B \to bB \mid a$$

- •第一步:构造识别活前缀的DFA
 - 拓广文法并为产生式编号
 - $(0) S' \rightarrow S$
 - $(1) S \rightarrow BB$
 - $(2) B \to bB$
 - $(3) B \rightarrow a$

- •第一步:构造识别活前缀的DFA
 - 拓广文法并为产生式编号
 - 构造LR(1)项目集规范族
 - 初始项目集: {[S'→·S,\$]}
 - 计算 $closure(\{[S' \rightarrow \cdot S, \$]\})$ 得到第一个项目集 I_0
 - 计算 $goto(I_0,X)$ 得到其他项目集(状态)

- •第一步:构造识别活前缀的DFA
 - 拓广文法并为产生式编号
 - 构造LR(1)项目集规范族
 - 初始项目集: {[S'→·S,\$]}
 - 计算 $closure(\{[S' \rightarrow \cdot S, \$]\})$ 得到第一个项目集 I_0
 - 对*closure(I)*的修改:若项目[$A \rightarrow \alpha \cdot B\beta$, a]在I中,对每一条形式为 $B \rightarrow \gamma$ 的产生式,令b=**FIRST**(βa),把项目[$B \rightarrow \cdot \gamma$, b]加入闭包。(注意,b不可能为 ε ,因为a不为 ε)

- •第一步:构造识别活前缀的DFA
 - 拓广文法并为产生式编号
 - 构造LR(1)项目集规范族
 - 初始项目集: {[*S'*→·*S*,\$]}
 - 计算 $closure(\{[S' \rightarrow \cdot S, \$]\})$ 得到第一个项目集 I_0
 - 计算 $goto(I_0,X)$ 得到其他项目集(状态)
 - 注意计算goto(I,X)时,新得到的核心项目与原项目有相同搜索符。
 - 用goto(I_i,X)计算从任意状态I_i开始,向栈中压入一个文 法符号X所得到的状态(项目集)。直到没有新的状态 (项目集)产生为止。

•第一步:构造识别活前缀的DFA

• 第二步:构造action-goto表(LR分析表)

- •第一步:构造识别活前缀的DFA
- •第二步:构造action-goto表(LR分析表)
 - · 每个项目集对应了action-goto表中一个状态。
 - 项目集中的项目分四类:
 - •接受项目[$S' \rightarrow S \cdot$, \$]: action[i, \$] = acc
 - 移进项目 $[A \rightarrow \alpha \cdot a\beta, b]$: action[i, a] = sj
 - 归约项目[$A \rightarrow \alpha \cdot, a$]: action[i, a]=rj,
 - 待归约项目[$A \rightarrow \alpha \cdot B\beta, b$]: goto[i, B] = j

状态	动作转移			
	a	b	\$	S B
0	s4	s 3		1 2
1			acc	
2	s7	s6		5
3	s4	s 3		8
4	r3	r3		

状态	动 作 转 移			
	a	b	\$	S B
5			r1	
6	s7	s6		9
7			r3	
8	r2	r2		
9			r2	

• 算法3.5: LR(1)项目集的closure()函数

```
SetOfltems CLOSURE ( I ) {
   repeat
       for (I中的每个项 [A \rightarrow \alpha \cdot B\beta, a])
          for (G的每个产生式B \rightarrow \gamma)
              for (FIRST (βa)中的每个符号b)
                  将[B \rightarrow \cdot \gamma, b]加入I中;
   until 在某一轮中没有新的项被加入到I中:
   return I :
```

• 算法3.5: LR(1)项目集的goto()函数

```
SetOfltems GOTO (I, X) { 将J 初始化为空集; for (I 中的每个项[A \rightarrow \alpha \cdot X\beta, \mathbf{a}]) 将项[A \rightarrow \alpha X \cdot \beta, \mathbf{a}]加入到集合J中; return CLOSURE (J); }
```

• 算法3.5: 构造LR(1)项目集规范族的函数

```
void items(G') {
                                    C = \{ CLOSURE (\{[S' \rightarrow \cdot S, \$]\}) \};
                                    repeat
                                                                      for(C + option for
                                                                                                           for(每个文法符号X)
                                                                                                                                              if(GOTO(I, X)非空且不在C中)
                                                                                                                                                                                      将GOTO (I, X)加入C中;
                                                                        until在某一轮中没有新的项集被加入到C中;
```

•注意:构造LR(1)项目集规范族时,不要 遗漏搜索符。例如,给如下文法构造LR(1)

项目集 I_0 时:

$$E' \rightarrow E$$

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid id$$

$$I_0$$
:
 $E' o \cdot E$, \$
 $E o \cdot E + T$, \$/+
 $E o \cdot T$, \$/+
 $T o \cdot T * F$, \$/+/*
 $T o \cdot F$, \$/+/*
 $F o \cdot (E)$, \$/+/*
 $F o \cdot id$, \$/+/*

- 算法3.6 构造规范的LR分析表算法
- 方法:

注意与SLR分 析表的区别

- (1) 构造G'的LR(1)项目集规范族 $C = \{I_0, I_1, \dots, I_n\}$
- (2) 令 I_i 对应状态i。状态i的action按照下面的方法决定:
 - (a) if $[A \rightarrow \alpha \cdot a\beta, b] \in I_i$ and $GOTO(I_i, a) = I_i$ then AC[IION[i, a] = sj
 - (b) *if* [A→α·, a]∈I_i 且A≠S' then ACTION[i, a]=rj (j是产生式 A→α的编号)
 - (c) if $[S' \rightarrow S \cdot, \$] \in I_i$ then ACTION[i, \$] = acc
- (3)状态i的goto按照下面的方法决定:
 - (a) if $[A \rightarrow \alpha \cdot B\beta, b] \in I_i$ and $GOTO(I_i, B) = I_j$ then GOTO[i, B] = j
- (4) 没有定义的所有条目都设置为error
- (5) 初始状态是包含[$S' \rightarrow S$]的项目集对应的状态

- 使用规范的LR(1)分析表的LR分析是规范的 LR(1)分析,能够构造出无冲突(即表项无多重 定义)的LR(1)分析表的文法是LR(1)文法。
- LR(1)分析表中如果出现表项有多重定义的情况 (即出现了动作冲突)则文法就不是LR(1)的。
- · 所有SLR文法都是LR(1)文法; 有些文法不是 SLR文法, 但是是LR(1)文法。

• 例3.29 SLR无法分析但规范LR可分析的 例子:

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

我们在本节课开始时 已经构造过此SLR分 析表了,里面有冲突。

文法

- $0) S' \rightarrow S$
- 1) $S \rightarrow V = E$
- 2) $S \rightarrow E$
- 3) $V \rightarrow *E$
- 4) $V \rightarrow id$
- 5) $E \rightarrow V$

		<i>I</i> ₆ :
I_2 : $S \rightarrow V = E$, \$ $E \rightarrow V \cdot$, \$	=	$S \rightarrow V = \cdot E, \$$
		, ·
		$V \rightarrow *E, \$$
		$V \rightarrow \cdot id, \$$
		γ γ 1α, φ

状态	ACTION				GOTO			
	*	id	II	\$	S	V	E	
0	s4	s 5			1	2	3	
1				acc				
2			s6	r5				
3				r2				
4	s4	s 5				8	7	
5			r4	r4				
6	s11	s12				10	9	
7			r3	r3				
8			r5	r5				
9				r1				
10				r 5				
11	s11	s12				10	13	
12				r4				
13				r3				
-	-	-		-		-		

- ·规范LR分析法的问题:
 - •状态数庞大,构造难度很大。
- •缓解的办法:
 - •LALR分析法

- LALR (LookAhead LR) 分析表特 点:
 - •LALR和SLR的分析表有同样多的状态, 而规范LR分析表要大得多
 - •LALR的分析能力介于SLR和规范LR之间
 - •实际的编译器经常使用LALR分析法

3.5.5 构造LALR分析表

- 同心的LR(1)项目集: 略去搜索符后它们是相同的集合
- LALR分析在规范的LR分析的基础上合并 同心项目集
- 合并同心集后的项目集族叫做LALR(1)项目集族。
- •注意:一般而言
 - •一个心对应文法的一个LR(0)项目集
 - LR(1) 文法可能使多个项目集同心

本节小结

- 3.5 LR分析器
 - 3.5.3 构造SLR分析表(续)
 - 3.5.4 构造规范的LR分析表

LR(1)项目: 带有搜索符的LR(0)项目: $A - > α \cdot β$, a含义: 子串αβ所在的右句型中直接跟在β后面的终结符 特点:是FOLLOW集的子集 搜索符 用处: 仅在归约项目里有用,决定了何时将αβ归约为Α 如何计算非核心项目的搜索符? LR(1)项目集规范族 如何修改closure? 构造LR分析表

LR(1)分析法 (规范的LR分析)

LR(1)文法

需要搜索符

作业4——提前布置

- 1, P105/3.21(a)
- 2、构造下面文法的SLR分析表,看看哪里有冲突,以说明该 文法不是SLR文法。并构造该文法的规范LR分析表。

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

- 3, P105/3.24
- 4、P106/3.31
- · 5、P107/3.35

作业4的截止时间 为5月9日,即第3 章-习题课之前哦

