Black Widow: Blackbox Data-driven Web Scanning

Benjamin Eriksson*, Giancarlo Pellegrino†, and Andrei Sabelfeld*

*Chalmers University of Technology

†CISPA Helmholtz Center for Information Security

Blackbox Web Scanning

- No prior knowledge about the applications.
- Using crawlers to explore and identify attack surfaces, e.g., input fields.
- Generating tests to feed the applications and trigger bugs.
- Challenges
 - Coverage of dynamic and complex web applications.
 - Control-flow and data-flow dependencies between states/pages.
 - Index.php ->Viewbooks.php ->Selectbooks.php ->Checkout.php

Challenges – Navigation model

- Web applications are stateful.
- The navigation model shall model
 - Links, forms, events, etc. that change states in both server-side and client-side.
 - State conversion and paths.
 - Inter-state dependencies.

Challenges – Traversing

- Traversing a workflow requires a combination of link navigation, form submission, and event interaction.
- Decide in which order and when to perform (state-changing) actions.
- Workflow reproducing in state changing.

Challenges – Inter-state Dependencies

- Model how user inputs affect web applications.
- Blackbox taint analysis

Black Widow – Navigation Modeling

- A labeled directed graph
 - Node is a state of the client-side program, including URL of the page and state of JavaScript program
 - Edge is an action to move from one state to another, considering GET requests,
 Form submissions, iframes, JavaScript events

Black Widow – Navigation Modeling

- Gradually extend the navigation graph
- Breadth-first search for unvisited edges in navigation model
- Traverse() finds a sequence of edges (actions) leading to a new page
- Gradually extend the navigation graph

```
Data: Target url
1 Global: tokens // Used in Algorithm 3
2 Graph navigation; // Augmented navigation graph
3 navigation.addNode(empty);
4 navigation.addNode(url);
5 navigation.addEdge(empty, url);
6 while unvisited edge e in navigation do
      traverse(e); // See Algorithm 2
      inspectTokens(e, navigation); // See Algorithm 3
      resources = extract({urls, forms, events, iframes});
9
      for resource in resources do
10
          navigation.addNode(resource)
11
          navigation.addEdge(e.targetNode, resource)
      end
12
      attack(e);
13
      injectTokens(e);
14
      mark e as visited;
15
16 end
```

Black Widow – Traversal

- Recursively inspect the previous edge till a safe edge.
 - Safe actions do not expect to change server state.
 - The purpose is to allow automated retrieval processes (spiders) and cache performance optimization (pre-fetching)
 - Idempotent actions: multiple identical actions has the same effect of a single such request.
 - Traverse from beginning.

```
Function traverse(e: edge)

workflow = []; // List of edges

currentEdge = e;

while prevEdge = currentEdge.previous do

workflow.prepend(currentEdge);

if isSafe(currentEdge.type) then

break;

end

currentEdge = prevEdge

end

navigate(workflow);

end
```

Black Widow – Inter-state Dependencies

- Identify input fields as sources
- Inject unique tokens as taint values
- Reappear of the tokens as sinks

 Attack(): fuzz the source to check the sink

```
1 Function inspectTokens(e: edge, q: graph)
      for token in tokens do
          if pageSource(e) contains token.value then
               token.sink = e;
               g.dependency(token.source, token.sink);
               attack(token.source, token.sink);
          end
      end
8
9 end
10 Function injectTokens(e: edge)
      for parameter in e do
11
          token.value = generateToken();
12
           token.source = e:
13
           tokens.append(token);
14
          inject token in parameter;
15
16
      end
17 end
```

Black Widow – Overall

- InspectTokens()
- Attack(): fuzz parameters for vulnerability detection.
 Parameters might include URL parameters, form values, etc.

```
Data: Target url
1 Global: tokens // Used in Algorithm 3
2 Graph navigation; // Augmented navigation graph
3 navigation.addNode(empty);
4 navigation.addNode(url);
5 navigation.addEdge(empty, url);
6 while unvisited edge e in navigation do
      traverse(e); // See Algorithm 2
      inspectTokens(e, navigation); // See Algorithm 3
      resources = extract({urls, forms, events, iframes});
9
      for resource in resources do
10
          navigation.addNode(resource)
11
          navigation.addEdge(e.targetNode, resource)
      end
12
      attack(e);
13
      injectTokens(e);
14
      mark e as visited;
15
16 end
```

Black Widow – Dynamic XSS Detection

- Inject JavaScript code xss(ID) on every page that insert ID to a result array
- Generate JavaScript payload that tries to call xss(ID)
- Monitor and inspect the result array for XSS vulnerabilities.

```
1 Function inspectTokens(e: edge, q: graph)
      for token in tokens do
          if pageSource(e) contains token.value then
               token.sink = e;
               g.dependency(token.source, token.sink);
               attack(token.source, token.sink);
          end
      end
9 end
10 Function injectTokens(e: edge)
      for parameter in e do
11
           token.value = generateToken();
12
           token.source = e:
13
           tokens.append(token);
14
          inject token in parameter;
15
16
      end
17 end
```

Implementation

- Use Python and Selenium to control a browser
- A custom JavaScript library to extract actions

Evaluation

- Code coverage
- Vulnerability detection
- Comparison:
 - State-of-the-art academic blackbox scanners: Enemy of the State, jAk
 - Scanner used in related works: Skipfish, Wget, w3af, Arachni and ZAP
 - Commercial scanners are NOT included.
- Application dataset:
 - Applications with known vulnerabilities
 - Modern production-grade applications.

Evaluation – Coverage

- Has highest coverage on 9/10 applications
- Finds many unique code that no others find (Table II)
- Finds more unique code than other tools (Table III)

Crawler		Arachni			Enemy			jÄk			Skipfish			w3af			Wget			ZAP	
	$A \setminus B$	$A\cap B$	$B \setminus A$	$A \setminus B$	$A\cap B$	$B \setminus A$	$A \setminus B$	$A\cap B$	$B \setminus A$	$A \setminus B$	$A\cap B$	$B \setminus A$	$A \setminus B$	$A\cap B$	$B \setminus A$	$A \setminus B$	$A\cap B$	$B \setminus A$	$A \setminus B$	$A\cap B$	$B \setminus A$
Drupal	35 146	22 870	757	6 3 6 5	51 651	20 519	25 198	32 818	5 846	29 873	28 143	937	32 213	25 803	725	32 981	25 035	498	15 610	42 406	2 591
HotCRP	2 416	16 076	948	16 573	1919	0	6771	11721	271	11 295	7 197	31	3 2 1 7	15 275	768	16 345	2 147	3	16 001	2 491	24
Joomla	14 573	29 263	1 390	33 335	10 501	621	24728	19 108	1 079	33 254	10 582	328	12 533	31 303	1 255	33 975	9861	576	7 655	36 181	1 659
osCommerce	3 9 1 9	6722	172	9 6 2 6	1 015	15	4 171	6 4 7 0	507	4 964	5 677	110	5 601	5 040	661	6 070	4 571	103	6722	3 9 1 9	209
phpBB	2 822	5 178	492	2963	5 037	337	3 150	4850	348	4 643	3 357	72	4 3 1 2	3 688	79	4 431	3 569	21	4 247	3 753	65
PrestaShop	105 974	75 924	65 650	157 095	24 803	3 332	155 579	26 319	58	138 732	43 166	1018	156 513	25 385	3 053	148 868	33 030	118	141 032	40 866	110
SCARF	189	433	12	270	352	5	342	280	2	464	158	5	404	218	6	520	102	2	340	282	2
Vanilla	5 381	9 908	491	6 032	9 257	185	3 122	12 167	536	8 285	7 004	577	8 202	7 087	171	8 9 7 6	6313	18	8 396	6 893	145
WackoPicko	202	566	2	58	710	9	463	305	0	274	494	14	111	657	9	495	273	0	379	389	2
WordPress	8 871	45 345	1615	35 092	19 124	256	18 572	35 644	579	7 307	46 909	5 114	26 785	27 431	640	37 073	17 143	73	25 732	28 484	781

Evaluation – Coverage

- Enemy of the State outperforms Black Widow on Drupal
 - Enemy keeps authenticated state while Black Widow loses the state too early.
 - Logout action is chosen early in Black Widow.
 - Drupal does not present a login form when trying to perform an unauthorized operation.
- Skipfish performs well on WordPress because some pages do not include JavaScript.

Evaluation – XSS Vulnerability Detection

- Black Widow finds 25 unique vulnerabilities, six of which are previous unknown, including ones in modern complicated applications.
- Black Widow detects all vulnerabilities found by other tools.
- No false positives

Crawler	Ara	chni	Ene	emy	j j	k	Ski	pfish	w3	Baf	Wio	dow	ZA	AΡ
Type	R	S	R	S	R	S	R	S	R	S	R	S	R	S
Drupal	-	-	-	-	-	-	-	-	-	-	-	-	-	_
HotCRP	-	-	-	-	-	-	-	-	-	-	1	-	_	-
Joomla	-	-	-	-	-	-	-	-	-	-	-	-	_	-
osCommerce	-	-	-	-	-	-	-	-	-	-	1	1	-	-
phpBB	-	-	-	-	-	-	-	-	-	-	-	3	-	-
PrestaShop	-	-	-	-	-	-	-	-	-	-	1	-	-	-
SCARF	3	-	-	-	-	-	-	-	1	-	3	5	-	-
Vanilla	-	-	-	-	-	-	-	-	-	-	1	2	-	-
WackoPicko	3	1	2	1	1	-	1	-	1	-	3	2	-	-
WordPress	-	-	-	-	-	-	-	-	-	-	1	1	-	-

Evaluation — Feature Attribution

- Impact of individual techniques
 - Navigation modeling: combination of actions to find the XSS
 - Traversing: Injection point depends on previous states
 - Inter-state dependencies: Different reflection and injection points.

Id	Application	Description	Model	Workflow	ISD	Unique
1	HotCRP	User upload	 	✓		√
2	osCommerce	Review rating				✓
3	osCommerce	Tax class				✓
4	phpBB	Admin ranks			✓	✓
5	phpBB	Configuration			✓	✓
6	phpBB	Site name			✓	✓
7	PrestaShop	Date	✓	✓		✓
8	SCARF	Add session		✓	✓	✓
9	SCARF	Comment		✓	✓	✓
10	SCARF	Conference name				
11	SCARF	Edit paper		✓	✓	✓
12	SCARF	Edit session				
13	SCARF	Delete comment		✓	✓	✓
14	SCARF	General options				
15	SCARF	User options			✓	
16	Vanilla	Comment draft			✓	✓
17	Vanilla	Locale			✓	✓
18	Vanilla	Title banner	✓			✓
19	WackoPicko	Comment				
20	WackoPicko	Multi-step		✓	✓	✓
21	WackoPicko	Picture				
22	WackoPicko	Search				
23	WackoPicko	SQL error				
24	WordPress	Comment		✓	✓	✓
25	WordPress	Nearby event	✓	✓	✓	✓

Evaluation –Not Covered

- False positive analysis
- Back-to-back comparison

Conclusion

- Techniques to identify inter-state dependencies with support of multiple user actions.
- High code coverage and more vulnerabilities.
- New XSS vulnerabilities in modern applications.

Reasons to present this paper

- Learn how do crawlers/scanners work internally.
- Learn how the "state" and "chain" problems are solved in such a blackbox work.

Comments on this work

- Technically more like a combination of existing works.
- Reasonably good results because of the techniques, e.g., high coverage.
- Interestingly, new XSS bugs can be found in modern web applications.
- Writing can be improved (maybe)?
 - Repeated and redundant texts/tables in code coverage. Some text description is not consistent with the table. Unclear decriptions. (It is just a preprint)
- Can an edge have multiple previous edges?
- Taint token can be aware of constraints, e.g., client-side constraints for input validation.

Potential future work

- Modeling states is always required in fuzzing complex systems, e.g., kernel (components).
 - NDSS'20: HFL: Hybrid Fuzzing on the Linux Kernel
 - Obtain potential dependency pairs (read/write on the same memory), write operation has to be invoked before read.
 - S&P'20: IJON: Exploring Deep State Spaces via Fuzzing
 - Add human annotation to guide fuzzer to particularly study certain location or data structure. It can play and solve *Super Mario Bros* game!
 - S&P'19: Fuzzing File Systems via Two-Dimensional Input Space Exploration
 - Context-aware workloads (FS system calls).
- Complex system fuzzing tries to use clean/fresh targeted program, e.g., OS, for reproducing problem.
- Balance of reproduction and state exploration.

Furthermore

- Hybrid Fuzzing
 - S&P'20: SAVIOR: Towards Bug-Driven Hybrid Testing
 - Converting coverage-oriented to bug-driven.
 - S&P'20: PANGOLIN: Incremental Hybrid Fuzzing with Polyhedral Path Abstraction
 - Preserve the explored states for more effective mutation and constraint solving.