1/2

1. The stress power is defined to be $S_p = \int_R tr(\boldsymbol{\sigma} \cdot \boldsymbol{d}) dV$ where $\boldsymbol{\sigma}$ is the Cauchy stress and $\boldsymbol{d} = \boldsymbol{L}_{sym}$.

Other measures of stress are

$$\Sigma = R^T \cdot \sigma \cdot R$$
 Rotated Cauchy stress
$$\hat{P} = J\sigma \cdot F^{-T}$$
 Piola-Kirchoff stress of the first kind
$$P = JF^{-1} \cdot \sigma \cdot F^{-T} = F^{-1} \cdot \hat{P}$$
 Piola-Kirchoff stress of the second kind

and other rates of deformation are

$$\mathbf{D} = \mathbf{F}^T \cdot \mathbf{d} \cdot \mathbf{F} = \dot{\mathbf{E}} \qquad \mathbf{D}^* = \mathbf{R}^T \cdot \mathbf{d} \cdot \mathbf{R}^T$$

Show that alternative expressions for the stress power are:

$$S_p = \int_R tr (S \cdot \mathbf{D}^*) dV = \int_{R_o} tr (\hat{\mathbf{P}} \cdot \dot{\mathbf{F}}^T) dV_o = \int_{R_o} tr (\mathbf{P} \cdot \dot{\mathbf{E}}) dV_o$$

These combinations of stress and deformation rates are said to be "conjugate."

2. Recall that in connection with the study of a continuum, tensors could be defined as one of four possibilities: m-m, s-s, s-m, m-s where "m" denotes "material" and "s" denotes "spatial". Recall the classifications of F and R from the notes. Assume σ and d are both s-s. Use the relations given in Prob. 1 to classify the tensors Σ , \hat{P} , P, D and D^* .

3. A bar of original length L that is initially horizontal (Fig. 1) deforms in a plane as the result of a simultaneous stretch and rotation as indicated in Fig. 2. The end O is fixed in space. The rotation is defined by $\theta = \omega t$ and the elongation of the end of the bar is $\delta_A = \varepsilon t$ with both ω and ε constant.

Fig. 1. Initial Position

Fig. 2. Deformed position

Two approaches to handle the problem are

(i) Let $e_i = E_i$ for all time and define the deformation by

$$x_1 = X_1(1+\varepsilon t)\cos\theta - X_2\sin\theta$$
 $x_2 = X_1(1+\varepsilon t)\sin\theta + X_2\sin\theta$

or (ii) Let $e_i = \hat{e}_i$ and define the remainder of the deformation by $x_1 = X_1(1 + \varepsilon t)$ $x_2 = X_2$

For approach 1, the basis \mathbf{e}_{1} is fixed; for approach 2 these base vectors vary with time.

- 3.1. For each approach, determine $F, R, U, \dot{F}, \dot{R}, \dot{U}$ and Ω . Do you obtain the same results?
- 3.2 By using the transformation relations between the two bases for approach (ii) obtain \dot{e}_i in terms of E_i and then \dot{e}_i in terms of e_i . Compare these latter results with $\Omega \cdot e_i$.
- 3.3 Consider an element $d\mathbf{X} = dX_1\mathbf{E}_1$. Determine the vector $\mathbf{U} \cdot d\mathbf{X}$ and then the vector $\mathbf{R} \cdot (\mathbf{U} \cdot d\mathbf{X})$.