习题课

一、填空题

- 1. 设 C 为闭曲线|x|+|y|=2,取逆时针方向,则 $\oint_C \frac{axdy-bydx}{|x|+|y|} = _____$ 。
- 2. 设 Σ 为平面 x+y+z=4 被圆柱 $x^2+y^2=1$ 截下的有限限部分,则 $\iint_{\Sigma} z dS =$ ___。
- 3. 设 f(u) 具有连续导数,且 $\int_0^4 f(u)du = 4$, C 为半圆周 $y = \sqrt{2x x^2}$,起点为 A(0,0) ,终点为 B(2,0) ,则 $\int_C f(x^2 + y^2)(xdx + ydy) = ____$ 。

二、解答题

- 1. 计算曲线积分 $I = \int_C (e^y 12xy) dx + (xe^y \cos y) dy$,其中 C 曲线 $y = x^2$ 上从 A(-1, 1) 到 B(1, 1) 的一段。
- 2. 求 $I = \int_C \frac{x-y}{x^2+y^2} dx + \frac{x+y}{x^2+y^2} dy$,其中 C 从点 A(-a, 0) 经上半椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ($y \ge 0$) 到达点 B(a, 0) 的弧段,且 0 < b < a 。
- 3. 计算曲线积分 $\int_C \frac{-ydx+xdy}{4x^2+y^2}$, 其中 C 是由点 A(1,0) 经半圆周 $y=\sqrt{1-x^2}$ 到点 B(-1,0) 再沿直线 x+y=-1 到点 E(1,-2) 的路径。
- 4. 设曲线积分 $\int_C xy^2 dx + y \varphi(x) dy$ 与路径无关, 其中 $\varphi(x)$ 具有连续导数, 且 $\varphi(0)=0$,计算 $\int_{(0,0)}^{(1,1)} xy^2 dx + y \varphi(x) dy$ 的值。
- 5. 设函数 f(x) 在 $(-\infty, +\infty)$ 内具有一阶连续导数,L 是上半平面 (y>0) 内有向分段 光滑曲线,其起点为 (a,b),终点为 (c,d),记

$$I = \int_{L} \frac{1}{y} [1 + y^{2} f(xy)] dx + \frac{x}{y^{2}} [y^{2} f(xy) - 1] dy,$$

- (1) 证明: 曲线积分I与路径无关; (2) 当ab=cd时, 求I的值。
- 6. 已知曲线积分 $\oint_C \frac{xdy-ydx}{2y^2+\varphi(x)} \equiv A(A$ 为常数),其中 $\varphi(x)$ 的一阶导数连续,且 $\varphi(1)=1$,
- C 是围绕原点一周的任一正向闭曲线,
 - (1)证明在任一不包含原点的单连通区域内, 曲线积分 $\int_C \frac{xdy-ydx}{2y^2+\varphi(x)}$ 与路径无关;
 - (2) 确定 $\varphi(x)$, 并求 A 的值。
- 7. 设 x>0, f(x) 为连续可微函数,且 f(1)=2 ,对 x>0 的任一闭曲线 C,有 $\oint_C 4x^3ydx + xf(x)dy = 0$,求 f(x) 和积分 $\oint_{C(AB)} 4x^3ydx + xf(x)dy$ 的值,其中 AB 是由 A(2,0) 至 B(3,3) 的一段弧。