Optimization and Computational Linear Algebra for Data Science Lecture 1: Vector spaces

Léo MIOLANE · leo.miolane@gmail.com

August 30, 2020

Warning: This material is not meant to be lecture notes. It only gathers the main concepts and results from the lecture, without any additional explanation, motivation, examples, figures...

1 General definitions

We present below the abstract mathematical definition of a vector space. **Please do not try to memorize it!** Simply remember that a vector space is a set whose elements are called *vectors*, that one can add vectors together and multiply them by real numbers called *scalars*.

Definition 1.1 (Vector space)

A vector space (over \mathbb{R}) consists of of a set V (whose elements are called vectors) and two operations + and \cdot that verify:

- 1. The sum of two vectors is a vector: for all $\vec{x}, \vec{y} \in V$ we have $\vec{x} + \vec{y} \in V$.
- 2. The vector sum is commutative and associative. For all $\vec{x}, \vec{y}, \vec{z} \in V$ we have

$$\vec{x} + \vec{y} = \vec{y} + \vec{x}$$
 and $\vec{x} + (\vec{y} + \vec{z}) = (\vec{x} + \vec{y}) + \vec{z}$.

- 3. There exists a zero vector $\vec{0} \in V$ that verifies $\vec{x} + \vec{0} = \vec{x}$ for all $\vec{x} \in V$.
- 4. For all $\vec{x} \in V$, there exists $\vec{y} \in V$ such that $\vec{x} + \vec{y} = \vec{0}$. Such \vec{y} is called the additive inverse of \vec{x} and is written $-\vec{x}$.
- 5. Scalar multiplication: for all $\vec{x} \in V$ and all $\alpha \in \mathbb{R}$, $\alpha \cdot \vec{x} \in V$.
- 6. Identity element for scalar multiplication: $1 \cdot \vec{x} = \vec{x}$ for all $\vec{x} \in V$.
- 7. Compatibility between scalar multiplication and the usual multiplication: for all $\alpha, \beta \in \mathbb{R}$ and all $\vec{x} \in V$, we have

$$\alpha \cdot (\beta \cdot \vec{x}) = (\alpha \beta) \cdot \vec{x}.$$

8. Distributivity: for all $\alpha, \beta \in \mathbb{R}$ and all $\vec{x}, \vec{y} \in V$,

$$(\alpha + \beta) \cdot \vec{x} = \alpha \cdot \vec{x} + \beta \cdot \vec{y}$$
 and $\alpha \cdot (\vec{x} + \vec{y}) = \alpha \cdot \vec{x} + \alpha \cdot \vec{y}$.

From now we will ignore \cdot and simply write $\alpha \vec{x}$ instead of $\alpha \cdot \vec{x}$. We will also remove the arrows and write x instead of \vec{x} .

Example 1.1.

• The set $V = \mathbb{R}^n$ endowed with the usual vector addition +

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$

and the usual scalar multiplication \cdot

$$\alpha \cdot (x_1, \dots, x_n) = (\alpha x_1, \dots, \alpha x_n)$$

is a vector space.

• The set $V = \mathcal{F}(\mathbb{R}, \mathbb{R}) \stackrel{\text{def}}{=} \{f \mid f : \mathbb{R} \to \mathbb{R}\}$ of all functions from \mathbb{R} to itself endowed with the addition + and the scalar multiplication \cdot defined by

is a vector space.

• The set of random variables on a given probability space is a vector space: if X and Y are two random variables and $\alpha \in \mathbb{R}$, X + Y and αX are also random variables.

Definition 1.2 (Subspace)

We say that a non-empty subset S of a vector space V is a subspace if it is closed under addition and multiplication by a scalar, that is if

- (i) for all $x, y \in S$ we have $x + y \in S$,
- (ii) for all $x \in S$ and all $\alpha \in \mathbb{R}$ we have $\alpha x \in S$.

Notice that a subspace is also a vector space!

Exercise 1.1. Show that every subspace S of a vector space V contains the zero vector 0.

2 Linear dependency

Definition 2.1 (Linear combination)

Let V be a vector space and $x_1, \ldots, x_k \in V$. We say that $y \in V$ is a linear combination of the vectors x_1, \ldots, x_k if there exists $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ such that

$$y = \sum_{i=1}^{k} \alpha_i x_i.$$

Remember that a linear combination is always a *finite* sum.

Remark 2.1. If S is a subspace of a vector space V, any linear combination of elements of S belongs to S.

Definition 2.2 (Span)

Let x_1, \ldots, x_k be vectors in a vector space V. We define the linear span of x_1, \ldots, x_k as the set of all linear combinations of these vectors:

$$\operatorname{Span}(x_1,\ldots,x_k) \stackrel{\text{def}}{=} \left\{ \alpha_1 x_1 + \cdots + \alpha_k x_k \, \middle| \, \alpha_1,\ldots,\alpha_k \in \mathbb{R} \right\}.$$

One can easily verify (exercise!) that $\operatorname{Span}(x_1, \ldots, x_k)$ is a subspace of V. One can also verify (exercise!) that

$$\operatorname{Span}(x_1, \dots, x_k) = \bigcap_{\substack{S \text{ subspace of } V \\ x_1, \dots, x_k \in S}} S,$$

 $\operatorname{Span}(x_1,\ldots,x_k)$ is therefore the **smallest** (for the inclusion \subset) **subspace of** S **that contains** x_1,\ldots,x_k .

Definition 2.3 (Linear dependency)

Vectors $x_1, \ldots, x_k \in V$ are linearly dependent is there exists $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ that are not all **zero** such that

$$\alpha_1 x_1 + \dots + \alpha_k x_k = 0.$$

They are said to be linearly independent otherwise.

Saying that x_1, \ldots, x_k are linearly dependent precisely means that one of the vectors x_1, \ldots, x_k can be obtained as a linear combination of the others. Indeed if x_1, \ldots, x_k are linearly dependent, then we can find $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ that are not all zero (there exists i such that $\alpha_i \neq 0$) such that $\alpha_1 x_1 + \cdots + \alpha_k x_k = 0$. This leads to

$$x_i = \sum_{j \neq i} \frac{-\alpha_j}{\alpha_i} x_j,$$

i.e. the vector x_i can be expressed as a linear combinations of the vectors x_j for $j \neq i$. Conversely if we have for some i, and $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$

$$x_i = \alpha_1 x_1 + \dots + \alpha_{i-1} x_{i-1} + \alpha_{i+1} x_{i+1} + \dots + \alpha_k x_k = 0.$$

then $\alpha_1 x_1 + \cdots + \alpha_{i-1} x_{i-1} - x_i + \alpha_{i+1} x_{i+1} + \cdots + \alpha_k x_k = 0$ which gives that x_1, \ldots, x_k are linearly dependent.

Basis, dimension

3.1 **Definitions**

Definition 3.1 (Basis)

A family (x_1, \ldots, x_n) of vectors of V is a basis of V if

- (i) x_1, \ldots, x_n are linearly independent, (ii) $\mathrm{Span}(x_1, \ldots, x_n) = V$.

Definition 3.2 (Dimension)

Let V be a vector space.

- If V admits a basis (v_1, \ldots, v_n) , then every basis of V has also n vectors. We say that V has dimension n and write $\dim(V) = n$.
- Otherwise, we say that V has infinite dimension: $\dim(V) = +\infty$.

The dimension is therefore the minimum number of vector needed to span the vector space. In this course we are going to focus mostly on finite dimensional spaces and \mathbb{R}^n in particular.

Proof. We will need the following lemma:

Lemma 3.1

Let $v_1, \ldots, v_n \in V$ and suppose that we have vectors $x_1, \ldots, x_k \in V$ such that k > n and $x_i \in \operatorname{Span}(v_1, \ldots, v_n)$ for all $i \in \{1, \ldots, k\}$. Then x_1, \ldots, x_k are linearly dependent.

Lemma 3.1 will be proved at the end of the notes. We proceed by contradiction and assume that there exists two basis (v_1, \ldots, v_n) and (x_1, \ldots, x_k) of V such that $k \neq n$. Without loss of generality we can assume that k > n. For $i = 1, \ldots, k$ we have

$$x_i \in V = \operatorname{Span}(v_1, \dots, v_n),$$

because (v_1, \ldots, v_n) is a basis of V. We can therefore apply Lemma 3.1 to get that x_1, \ldots, x_{n+1} are linearly dependent. This contradicts the fact that (x_1, \ldots, x_k) is a basis.

Example 3.1. Let us define the vectors $e_1, \ldots, e_n \in \mathbb{R}^n$ by

$$e_1 = (1, 0, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, 0, 0, \dots, 1).$

One can verify (exercise!) that the family (e_1, \ldots, e_n) is a basis of \mathbb{R}^n . This basis is called the "canonical basis" of \mathbb{R}^n . We conclude that \mathbb{R}^n has dimension n.

Definition 3.3 (Lines, hyperplanes)

Let S be a subspace of \mathbb{R}^n .

- We call S a line if $\dim(S) = 1$.
- We call S an hyperplane if $\dim(S) = n 1$.

3.2 Some useful properties

Proposition 3.1

Let V be a vector space that has dimension $\dim(V) = n$. Then

- Any family of vectors of V that are linearly independent contains at most n vectors (i.e. if $x_1, \ldots, x_k \in V$ are linearly independent, then $k \leq n$).
- Any family of vectors of V that spans V contains at least n vectors (i.e. if $x_1, \ldots, x_k \in V$ are such that $\operatorname{Span}(x_1, \ldots, x_k) = V$, then $k \geq n$).

Exercise 3.1. Prove Proposition 3.1 using Lemma 3.1.

The next proposition is very useful for proving that a family (x_1, \ldots, x_n) is a basis of a vector space V of dimension n:

Proposition 3.2

Let V be a vector space of dimension n and let $x_1, \ldots, x_n \in V$.

- 1. If x_1, \ldots, x_n are linearly independent, then (x_1, \ldots, x_n) is a basis of V.
- 2. If $\operatorname{Span}(x_1, \ldots, x_n) = V$, then (x_1, \ldots, x_n) is a basis of V.

In words, if the family we consider has as many vectors as the dimension of V, then we only have to check one of the two points of Definition 3.1!

Proposition 3.3

Let U and V be two subspaces of \mathbb{R}^n . Assume that $U \subset V$. Then

$$\dim(U) \le \dim(V) \le n.$$

If **moreover** $\dim(U) = \dim(V)$, then U = V.

Exercise 3.2. Prove Proposition 3.3 using Propositions 3.1 and 3.2.

Proposition 3.4 (Coordinates)

Let (v_1, \ldots, v_n) be a basis of V. Then for every $x \in V$ there exists a unique vector $(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$ such that

$$x = \alpha_1 v_1 + \dots + \alpha_n v_n.$$

We say that $(\alpha_1, \ldots, \alpha_n)$ are the coordinates of x in the basis (v_1, \ldots, v_n) .

Proof. Existence. (v_1, \ldots, v_n) forms a basis of V therefore $V = \operatorname{Span}(v_1, \ldots, v_n)$. We get that $x \in \operatorname{Span}(v_1, \ldots, v_n)$ which gives that there exists $\alpha_1, \ldots, \alpha_n$ such that $x = \alpha_1 v_1 + \cdots + \alpha_n v_n$. Uniqueness. Let $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n \in \mathbb{R}$ such that

$$x = \alpha_1 v_1 + \dots + \alpha_n v_n = \beta_1 v_1 + \dots + \beta_n v_n.$$

This leads to

$$(\alpha_1 - \beta_1)v_1 + \dots + (\alpha_n - \beta_n)v_n = 0.$$

The vectors v_1, \ldots, v_n are linearly independent because they forms a basis. Consequently $\alpha_1 - \beta_1 = \alpha_2 - \beta_2 = \cdots = \alpha_n - \beta_n = 0$, i.e. $(\alpha_1, \ldots, \alpha_n) = (\beta_1, \ldots, \beta_n)$.

Proof of Lemma 3.1

Notice that it suffices to prove the theorem for k = n + 1 because if x_1, \ldots, x_{n+1} are linearly dependent, so are $x_1, \ldots, x_{n+1}, \ldots x_k$. We will therefore show for all $n \ge 1$

$$\mathcal{H}_n$$
: « For all $v_1, \ldots, v_n \in V$ and all $x_1, \ldots, x_{n+1} \in \operatorname{Span}(v_1, \ldots, v_n)$, the vectors x_1, \ldots, x_{n+1} are linearly dependent. »

Base case: \mathcal{H}_1 is true. Indeed, if $x_1, x_2 \in \operatorname{Span}(v_1)$, then there exists $\alpha_1, \alpha_2 \in \mathbb{R}$ such that $x_1 = \alpha_1 v_1$ and $x_2 = \alpha_2 v_1$. If $\alpha_1 = 0$ then $x_1 = 0$ and x_1, x_2 are therefore linearly dependent. Otherwise if $\alpha_1 \neq 0$ then $v_1 = \frac{1}{\alpha_1} x_1$ which then gives $x_2 = \frac{\alpha_2}{\alpha_1} x_1$: x_1, x_2 are linearly dependent.

Induction step: We assume now that \mathcal{H}_{n-1} holds for some $n \geq 2$ and we will show that \mathcal{H}_n holds. We consider therefore $x_1, \ldots, x_{n+1} \in \operatorname{Span}(v_1, \ldots, v_n)$. We can find real numbers $\alpha_{i,j}$ such that

$$\begin{array}{rclcrcrcr} x_1 & = & \alpha_{1,1}v_1 & + & \cdots & + & \alpha_{1,n}v_n \\ x_2 & = & \alpha_{2,1}v_1 & + & \cdots & + & \alpha_{2,n}v_n \\ \vdots & & & & & & \\ x_{n+1} & = & \alpha_{n+1,1}v_1 & + & \cdots & + & \alpha_{n+1,n}v_n. \end{array}$$

We have to show that x_1, \ldots, x_{n+1} are linearly dependent. Let us consider the first line. If $\alpha_{1,1} = \alpha_{1,2} = \cdots = \alpha_{1,n} = 0$, then $x_1 = 0$ which gives then that x_1, \ldots, x_{n+1} are linearly dependent. Otherwise, there exists j such that $\alpha_{1,j} \neq 0$. Without loss of generality we can

assume that $\alpha_{1,1} \neq 0$.

If we define $y_i \stackrel{\text{def}}{=} x_i - \frac{\alpha_{i,1}}{\alpha_{1,1}} x_1$ for i = 2, ..., n+1 we obtain have $y_i \in \text{Span}(v_2, ..., v_n)$. We can now apply the induction hypothesis \mathcal{H}_{n-1} to get that $y_2, ..., y_{n+1}$ are linearly dependent. This means that there exists $\beta_2, ..., \beta_{n+1}$ that are not all zero, such that $\beta_2 y_2 + ... + \beta_{n+1} y_{n+1} = 0$ which finally gives

$$\left(-\beta_2 \frac{\alpha_{2,1}}{\alpha_1, 1} - \dots - \beta_{n+1} \frac{\alpha_{n+1,1}}{\alpha_{1,1}}\right) x_1 + \beta_2 x_2 + \dots + \beta_{n+1} x_{n+1} = 0.$$

Since $\beta_2, \ldots, \beta_{n+1}$ are not all zero we get that x_1, \ldots, x_{n+1} are linearly dependent. \mathcal{H}_n is proved.

