X - Réduction des matrices

I - Éléments propres

Définition 1 - Valeur propre, Vecteur propre

Soit $M \in \mathcal{M}_n(\mathbb{R})$ et $\lambda \in \mathbb{R}$. Le réel λ est une valeur propre de M s'il existe un vecteur colonne $X \in \mathcal{M}_{n,1}(\mathbb{R})$ non nul tel que $MX = \lambda X$.

Exemple 1 - Valeurs / Vecteurs propres

Soit
$$A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$
 et $X = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$. Alors,

$$AX = \begin{pmatrix} -1 - 1\\ 1 + 1\\ 1 - 1 \end{pmatrix}$$
$$= 2X.$$

Ainsi, X est un vecteur propre de A associé à la valeur propre 2.

Exercice 1.

- 1. Déterminer les valeurs propres de la matrice identité.
- **2.** Déterminer les valeurs propres de la matrice $\begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}$.
- 3. Déterminer les valeurs propres des matrices diagonales.

Définition 2 - Sous-espace propre

Soit $M \in \mathcal{M}_n(\mathbb{R})$ et λ une valeur propre de M. Le sous-espace propre de M associé à la valeur propre λ est l'espace vectoriel $E_{\lambda}(M) = \text{Ker}(M - \lambda I_n)$.

Exercice 2.

- 1. Déterminer les sous-espaces propres de la matrice identité.
- **2.** Déterminer les sous-espaces propres de la matrice $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.

Proposition 1 - Sous-espace propre

Soit $\lambda \in \mathbb{R}$ et $M \in \mathcal{M}_n(\mathbb{R})$. L'ensemble $E_{\lambda}(M) = \operatorname{Ker}(M - \lambda I_n)$ est un sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbb{R})$. De plus, dim $E_{\lambda}(M) \geq 1$ si et seulement si λ est une valeur propre de M.

II - Diagonalisation

Définition 3 - Matrices diagonalisables

Soit $A \in \mathscr{M}_n(\mathbb{R})$ une matrice carrée. La matrice A est diagonalisable s'il existe une matrice $P \in \mathscr{M}_n(\mathbb{R})$ inversible et une matrice $D \in \mathscr{M}_n(\mathbb{R})$ diagonale telles que $A = PDP^{-1}$.

Exemple 2 - Matrice diagonalisable

Soit
$$A = \begin{pmatrix} 7 & -4 & -4 \\ 3 & -1 & -3 \\ 5 & -4 & -2 \end{pmatrix}$$
, $D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$

$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}.$$

 \bullet D'une part,

$$AP = \begin{pmatrix} -1 & 0 & 3 \\ -1 & 2 & 0 \\ -1 & -2 & 3 \end{pmatrix}.$$

Chapitre X - Réduction des matrices

• D'autre part,

$$PD = \begin{pmatrix} -1 & 0 & 3 \\ -1 & 2 & 0 \\ -1 & -2 & 3 \end{pmatrix}.$$

• De plus, en utilisant la méthode de Gauss-Jordan,

$$\begin{vmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & -1 & 1 & 0 & 0 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 & L_2 \leftarrow L_2 - L_1 \\ 0 & -1 & 0 & -1 & 0 & 1 & L_3 \leftarrow L_3 - L_1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & -1 & -2 & 1 & 1 & L_3 \leftarrow L_3 + L_2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 2 & -1 & -1 & L_3 \leftarrow -L_3 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & 0 & -1 & 1 & 1 & L_4 \leftarrow L_1 - L_3 \\ 0 & 1 & 0 & 1 & 0 & -1 & L_2 \leftarrow L_2 + L_3 \\ 0 & 0 & 1 & 2 & -1 & -1 \end{vmatrix}$$

Ainsi, P est inversible.

D'où,

$$AP = PD$$

$$APP^{-1} = PDP^{-1}$$

$$AI = PDP^{-1}$$

$$A = PDP^{-1}$$

II.1 - Critères

Théorème 1

Soit $M \in \mathcal{M}_n(\mathbb{R})$. Si M possède n valeurs propres distinctes, alors M est diagonalisable.

Exercice 3.

Théorème 2 - Matrices symétriques

Toute matrice symétrique réelle est diagonalisable.

Exercice 4.