Polynomial Factoring solution (version 665)

1. The quadratic formula says if $ax^2 + bx + c = 0$ then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. Use the quadratic formula to solve the following equation.

$$x^2 + 12x + 54 = 0$$

Simplify your answer(s) as much as possible.

Solution

$$x = \frac{-(12) \pm \sqrt{(12)^2 - 4(1)(54)}}{2(1)}$$

$$x = \frac{-(12) \pm \sqrt{144 - 216}}{2(1)}$$

$$x = \frac{-12 \pm \sqrt{-72}}{2}$$

$$x = \frac{-12 \pm \sqrt{-36 \cdot 2}}{2}$$

$$x = \frac{-12 \pm 6\sqrt{2}i}{2}$$

$$x = -6 \pm 3\sqrt{2}i$$

Notice that i in NOT under the square-root radical symbol!!

2. Express the product of 6-4i and 9-7i in standard form (a+bi).

Solution

$$(6-4i) \cdot (9-7i)$$

$$54-42i-36i+28i^{2}$$

$$54-42i-36i-28$$

$$54-28-42i-36i$$

$$26-78i$$

Polynomial Factoring solution (version 665)

3. Write function $f(x) = x^3 - 5x^2 - 12x + 36$ in factored form. I'll give you a hint: one factor is (x-2).

Solution

$$f(x) = (x-2)(x^2 - 3x - 18)$$

$$f(x) = (x-2)(x-6)(x+3)$$

4. Polynomial p is defined below in factored form.

$$p(x) = -(x+3)^2 \cdot (x-1) \cdot (x-6)^2$$

Sketch a graph of polynomial y = p(x).

