模式识别 作业二

181220076, 周韧哲, 本科, 人工智能学院, 人工智能学院选课 2021 年 6 月 26 日

Problem 1

- (a) $\|x_j \mu_i\|^2$ 代表 x_j 到第 i 组的代表 u_i 的距离,当 $\gamma_{ij} = 0$ 时,这一项为 0,说明 $\sum_{i=1}^K \gamma_{ij} \|x_j \mu_i\|^2$ 就是被分到了第 k 组的 x_j 到与其类代表的距离。从而, $\sum_{j=1}^M \sum_{i=1}^K \gamma_{ij} \|x_j \mu_i\|^2$ 就代表所有的样本到其对应类代表的距离和。对其最小化也就是让相同组的样本到其类代表的距离和最小,即属于相同组的样本彼此相似,距离最小。所以该式形式化了 K 均值目标。
- (b) 设第 k 次迭代后为 $\gamma_{ii}^{k}, \mu_{i}^{k}$ 。
 - i. 固定 u_i 后, $\gamma_{ij}^{k+1} = \arg\min_{\gamma_{ij}^k} \sum_{i=1}^K \sum_{j=1}^M \gamma_{ij}^k \|x_j \mu_i^k\|^2$ 。固定 μ_i 后,上式等价于对于每个 x_j , $\gamma_{ij}^{k+1} = \arg\min_{\gamma_{ij}^k} \sum_{i=1}^K \gamma_{ij}^k \|x_j \mu_i^k\|^2$,即选择距离最小的 μ_i^k 对应类别作为 x_j 的类别。所以

$$\gamma_{ij}^{k+1} = \begin{cases} 1, & \|x_j - \mu_j^k\|^2 \le \|x_j - \mu_{j'}^k\|^2, j' = 1, 2, \cdots, K \\ 0, & \text{otherwise} \end{cases}$$

ii. 固定 γ_{ij} 后, $\mu_i^{k+1} = \arg\min_{\mu_i^k} \sum_{i=1}^K \sum_{j=1}^M \gamma_{ij}^{k+1} \|x_j - \mu_i^k\|^2$ 。 $\sum_{j=1}^M \gamma_{ij}^{k+1} \|x_j - \mu_i^k\|^2$ 就是第 i 类样本到 μ_i^k 的距离和, 因而固定 γ_{ij} 后可分别优化每个 μ_i : $\mu_i^{k+1} = \arg\min_{\mu_i^k} \sum_{j=1}^M \gamma_{ij}^{k+1} \|x_j - \mu_i^k\|^2$,由于 $f(x) = \|x\|^2$ 为凸函数,故可求导等于 0 得到最小值

$$u_i^{k+1} = \frac{\sum_{j=1}^{M} \gamma_{ij}^{k+1} x_j}{\sum_{j=1}^{M} \gamma_{ij}^{k+1}}$$

(c) 记目标函数为 $J(\gamma,\mu)$,首先证明在 Floyd 算法中 $J(\gamma,\mu)$ 递减。在 i 步,固定 μ 后,由于对于每个样本均归类到离其最近的样本中心,即任意 x_j 都有 $\|x_j - \mu_j^k\|^2 \le \|x_j - \mu_{j'}^k\|^2$, $j' = 1, 2, \cdots, K$,从而 $J'_{k+1}(\gamma,\mu) \le J_k(\gamma,\mu)$ 。在 ii 步,固定 γ 后,对于每个 μ_i ,都取了 $\sum_{j=1}^M \gamma_{ij}^{k+1} \|x_j - \mu_i^k\|^2$ 的最小值,从而, $J_{k+1}(\gamma,\mu) \le J'_{k+1}(\gamma,\mu)$ 。又因为 $J(\gamma,\mu) \ge 0$ 显然成立,从而目标函数单调递减且有界,必定收敛。

Problem 2

(a) $\min_{\beta} \sum_{i=1}^{n} (y_i - x_i^T \beta)^2$

- (b) $\min_{\beta} (y X\beta)^T (y X\beta)$
- (c) 将优化项展开, 得到

$$\min_{\beta} y^T y - y^T X \beta - \beta^T X^T y + \beta^T X^T X \beta$$

由于中间两项为标量,所以可写为 $\min_{\beta} y^T y - 2\beta^T X^T y + \beta^T X^T X \beta$,其为二次规划问题,可直接求梯度等于 0,得到 $X^T X \beta = X^T y$,假设 $X^T X$ 可逆,所以 $\beta^* = (X^T X)^{-1} X^T y$ 。

- (d) 不可逆, 当 d > n 时 $X^T X$ 为奇异矩阵。
- (e) 该正则项会使得 β 是有偏估计。
- (f) $\min_{\beta} (y X\beta)^T (y X\beta) + \lambda \beta^T \beta$, 展开得到

$$\min_{\boldsymbol{\beta}} \boldsymbol{y}^T \boldsymbol{y} - \boldsymbol{y}^T \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{y} + \boldsymbol{\beta}^T (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I}) \boldsymbol{\beta}$$

加入了 λI 可使得 $X^TX + \lambda I$ 可逆, 故解为 $\beta^* = (X^TX + \lambda I)^{-1}X^Ty$

- (g) 岭回归得到的解中加入了 λI 使得 $X^TX + \lambda I$ 可逆,是普通线性回归的改良版,计算更可靠。
- (h) $\lambda = 0$ 时就是普通线性回归的解, $\lambda = \infty$ 时, 正则化项的惩罚最大, 故解为 $\beta = 0$ 。
- (i) 不可以。如果联合优化的话,因为 λ 对应项为非负的,如果限制 $\lambda > 0$ 的话,为了最小化目标函数, λ 必然非常小,这样就退化为普通线性回归。如果不限制 λ 的话,为了最小化目标函数, λ 会优化成 $-\infty$,没有实际意义。所以不可以在训练集上联合优化 λ 和 β 。

Problem 3

(a) 将 F_{β} 展开得到

$$F_{\beta} = \frac{(1+\beta^2)TP}{(1+\beta^2)TP + \beta^2 FN + FP}$$

由于分子分母各项都非负且 $(1+\beta^2)TP \le (1+\beta^2)TP + \beta^2FN + FP$,所以 $0 \le F_\beta \le 1$, $F_\beta = 0$ 取得条件为 TP = 0, $F_\beta = 1$ 取得条件为 FN = FP = 0。

(b) F_{β} 对查全率 r 和查准率 p 求偏导得

$$\frac{\partial F_{\beta}}{\partial r} = \frac{\beta^2 p^2}{(\beta^2 p + r)^2}, \quad \frac{\partial F_{\beta}}{\partial p} = \frac{r^2}{(\beta^2 p + r)^2}$$

可计算 $\frac{\partial F_{\beta}}{\partial r}/\frac{\partial F_{\beta}}{\partial p}=\beta^2\frac{p^2}{r^2}$,容易看出 $\beta>1$ 时, $\beta^2>1$,查全率更重要, $0\leq \beta<1$ 时, $0\leq \beta^2<1$,查准率更重要。

Problem 4

(a)
$$p(x) = \sum_{y} p(x,y) = \sum_{y} p(x|y)p(y) = (\frac{1}{\sqrt{2\pi}})(e^{-2(x+1)^2} + e^{-2(x-1)^2})$$

- (b) $\mathbb{E}[c_{y,f(x)}] = \sum_{x,y} c_{y,f(x)} p(x,y) = \sum_{x} \sum_{y} c_{y,f(x)} p(y|x) p(x) = \sum_{x} p(x) \sum_{y} c_{y,f(x)} p(y|x)$,对于每个 $x, \sum_{y} c_{y,f(x)} p(y|x)$ 是独立的,所以只需最小化 $\sum_{y} c_{y,f(x)} p(y|x)$ 。可将其展开: $c_{1,f(x)} p(y=1|x) + c_{2,f(x)} p(y=2|x)$,为了使其最小,只需要比较 p(y=1|x) 与 p(y=2|x) 的大小,即 $f(x) = \arg\max_{y} p(y|x)$,这样能使得上面式子退化为较小的一项。多分类时,此规则仍为最优。代价可写为 $\mathbb{I}[f(x) \neq 1] p(y=1|x) + \cdots + \mathbb{I}[f(x) \neq C] p(y=C|x)$,同样地 $f(x) = \arg\max_{y} p(y|x)$ 能使得上式退化为最小的 C-1 项的和,因而是最优的。
- (c) 由贝叶斯公式容易得到 $p(y|x) \propto p(x|y)p(y)$, 因此最优分类策略为 $f(x) = \arg\max_y p(y|x) = \arg\max_y p(x|y)p(y)$, p(x|y) 和 p(y) 均可由题中条件写出。
- (d) 期望代价可写为 $\mathbb{I}[f(x) \neq 1]10p(y = 1|x) + \mathbb{I}[f(x) \neq 2]p(y = 2|x)$,所以最优决策 f(x) 为 $\max(10p(y = 1|x), p(y = 2|x)$ 中对应 y 的取值。

Problem 5

- (a) 由于 $U^TU=I, V^TV=I$,所以 $XX^T=U\Sigma V^TV\Sigma^TU^T=U\Sigma\Sigma^TU^T=U\Sigma\Sigma^TU^{-1}$,所以其特征值为 $\Sigma\Sigma^T$ 的对角线元素,设 r=min(m,n),则其特征值为 $\sigma_1^2,\cdots,\sigma_r^2,0,\cdots,0$,m-r 个 0,特征向量为 U 的对应列向量。
- (b) 类似于 (a), $X^TX = V\Sigma^TU^TU\Sigma V^T = V\Sigma^T\Sigma V^T = V\Sigma^T\Sigma V^{-1}$, 所以其特征值为 $\Sigma^T\Sigma$ 的 对角线元素,其特征值为 $\sigma_1^2, \dots, \sigma_r^2, 0, \dots, 0, n-r \uparrow 0$, 特征向量为 V 的对应列向量。
- (c) 有相同的 r 个特征值, 其为 $\sigma_1, \ldots, \sigma_r$ 的平方。
- (d) XX^T 与 X^TX 的 r 个特征值恰好是 X 的 r 个奇异值的平方。
- (e) 我会先计算 XX^T 的特征值,因为这个矩阵维度仅为 2×2 ,而 X^TX 的特征值就是 XX^T 的特征值再补上 99998 个 0。

Problem 6

- (a) 忘记减去平均向量时,第一个特征向量和平均向量之间的 corr 小于 1,较低,减去平均向量后,第一个特征向量和平均向量之间的 corr 较高,等于 1。
- (b) scale 变量取值变化时,e1 会变化,而 new_e1 不变,即减去平均向量后,第一个特征向量 不随 scale 变量的变化而变化,正确的特征向量是

(-0.4158, 0.3331, -0.7253, -0.1940, -0.1857, 0.1073, 0.1481, -0.1735, 0.2108, -0.0994)