Prioritizing Pollutant Reduction to Minimize Bee Colony Loss: Analyzing EPA and Survey Data

A project by Marta Fuentes-Filp and Prab Jaswal

Background, Problem and Methodology

Pollutant Gases: Carbon Monoxide, Nitrogen Dioxide, Ozone, Particulate matter (PM2.5/PM10).

3 Aims

- Investigate the trends and correlations between the presence of pollutant gases and bee populations over time for US states through exploratory data analysis and visualizations.
- Use insights from statistical modelling to understand the extent to which each pollutant gas impacts bee colony numbers.
- 3. Use insights from statistical modeling to understand which pollutant gases should be prioritized for removal to maximize bee colony numbers and to provide recommendations to any interest bodies.

About the data

Exploring the data - Bee Colony Populations

Exploring the data - Air Quality

Model, Evaluation and Interpretation

Linear Regression

```
Root Mean Squared Error: 316651.77884869935
R-squared: 0.01718034841386784
Pollutants impact on Bee Colonies (sorted by impact):
    Pollutant Coefficient
3 Days PM2.5 415.753639
2 Days Ozone 355.479014
4 Days PM10 249.542403
1 Days NO2 59.869507
0 Days CO 19.553487
```

Random Forest Regression Model RMSE (testing data): 309866.742

R2 Score: 0.059

Conclusions & Recommendations

Questions?

