ML para prever empréstimos

Aplicação de Machine Learning para prever se um novo cliente de um banco vai pagar o empréstimo solicitado ou não.

Para criar os modelos de ML foram analisados os dados do dataset 'credit-data.csv'. Para o pré-processamento dos dados foram usadas as bibliotecas:

- Pandas
- NumPy
- Scikit-learn

Para que a aplicação faça a previsão, é necessário informar os dados de entrada, sendo eles:

- Renda anual
- Idade
- Valor do empréstimo

Foram utilizados diversos algoritmos de classificação para encontrar os melhores, sendo eles:

- Naive Bayes
- Árvore de Decisão
- Regressão Logística
- SVM
- KnN
- Random Forest
- Redes Neurais

A média do desempenho de cada pode ser observado no arquivo 'teste_estatístico.csv' e/ou no *screenshot* apresentado abaixo:

	Naive Bayes	Árvore	Random Forest	Regras	kNN	Logística	SVM	RNA
eed 1	0.9255	0.9825	0.9875	0.9630	0.9815	0.9475	0.9830	0.9970
eed 2	0.9245	0.9840	0.9870	0.9655	0.9810	0.9465	0.9840	0.9970
eed 3	0.9255	0.9865	0.9865	0.9615	0.9810	0.9470	0.9865	0.9960
eed 4	0.9250	0.9860	0.9845	0.9580	0.9805	0.9485	0.9835	0.9970
eed 5	0.9260	0.9860	0.9880	0.9725	0.9830	0.9455	0.9845	0.9965
ed 6	0.9250	0.9820	0.9815	0.9615	0.9805	0.9475	0.9860	0.9960
eed 7	0.9260	0.9850	0.9875	0.9730	0.9835	0.9470	0.9870	0.9970
eed 8	0.9255	0.9830	0.9870	0.9630	0.9820	0.9480	0.9835	0.9970
eed 9	0.9265	0.9840	0.9865	0.9625	0.9800	0.9480	0.9835	0.9970
eed 10	0.9255	0.9870	0.9875	0.9595	0.9810	0.9475	0.9860	0.9965
eed 11	0.9250	0.9810	0.9865	0.9615	0.9820	0.9470	0.9860	0.9975
eed 12	0.9255	0.9830	0.9880	0.9635	0.9840	0.9465	0.9855	0.9965
eed 13	0.9260	0.9815	0.9845	0.9625	0.9800	0.9465	0.9840	0.9965
eed 14	0.9255	0.9875	0.9855	0.9605	0.9775	0.9475	0.9855	0.9965
eed 15	0.9265	0.9845	0.9885	0.9580	0.9815	0.9455	0.9855	0.9965
eed 16	0.9260	0.9820	0.9880	0.9580	0.9795	0.9470	0.9850	0.9970
eed 17	0.9245	0.9850	0.9860	0.9635	0.9820	0.9480	0.9820	0.9960
eed 18	0.9270	0.9850	0.9865	0.9600	0.9790	0.9475	0.9850	0.9970
eed 19	0.9255	0.9840	0.9895	0.9585	0.9815	0.9470	0.9875	0.9970
eed 20	0.9265	0.9860	0.9860	0.9685	0.9810	0.9465	0.9855	0.9970
eed 21	0.9260	0.9850	0.9865	0.9730	0.9805	0.9485	0.9855	0.9980
eed 22	0.9250	0.9865	0.9880	0.9535	0.9785	0.9450	0.9865	0.9970
eed 23	0.9270	0.9820	0.9860	0.9640	0.9770	0.9485	0.9850	0.9970
eed 24	0.9270	0.9825	0.9860	0.9550	0.9775	0.9465	0.9850	0.9965
eed 25	0.9255	0.9840	0.9880	0.9625	0.9825	0.9470	0.9875	0.9965
eed 26	0.9255	0.9840	0.9880	0.9505	0.9825	0.9455	0.9840	0.9975
eed 27	0.9250	0.9835	0.9885	0.9615	0.9810	0.9480	0.9850	0.9965
eed 28	0.9270	0.9840	0.9870	0.9625	0.9810	0.9475	0.9860	0.9975
eed 29	0.9255	0.9815	0.9840	0.9650	0.9815	0.9480	0.9870	0.9965
eed 30	0.9260	0.9825	0.9895	0.9605	0.9795	0.9460	0.9855	0.9970
1édia	0.9258	0.9840	0.9868	0.9621	0.9808	0.9471	0.9852	0.9968
	Naive Bayes	Árvore	Random	Regras	knn	Logística	SMV	RNA

Desses, os três algoritmos com melhores desempenho de acordo com o método de validação cruzada com 30 repetições de sementes geradoras e testes estatísticos, foram:

- 1. Redes Neurais Artificiais
- 2. Random Forest
- 3. SVM

laive Bayes	Árvore	Random Forest	Regras	kNN	Logística	SVM	RNA
8	4	2	6	5	7	3	1
8	3.5	2	6	5	7	3.5	1
8	2.5	2.5	6	5	7	4	1
8	2	3	6	5	7	4	1
8	3	2	6	5	7	4	1
8	3	4	6	5	7	2	1
8	4	2	6	5	7	3	1
8	4	2	6	5	7	3	1
8	3	2	6	5	7	4	1
8	3	2	6	5	7	4	1
8	5	2	6	4	7	3	1
8	5	2	6	4	7	3	1
8	4	2	6	5	7	3	1
8	2	3.5	6	5	7	3.5	1
8	4	2	6	5	7	3	1
8	4	2	6	5	7	3	1
8	3	2	6	4.5	7	4.5	1
8	3.5	2	6	5	7	3.5	1
8	4	2	6	5	7	3	1
8	2.5	2.5	6	5	7	4	1
8	4	2	6	5	7	3	1
8	3.5	2	6	5	7	3.5	1
8	4	2	6	5	7	3	1
8	4	2	6	5	7	3	1
8	4	2	6	5	7	3	1
8	3.5	2	6	5	7	3.5	1
8	4	2	6	5	7	3	1
8	4	2	6	5	7	3	1
8	4.5	3	6	4.5	7	2	1
8	4	2	6	5	7	3	1
8.0	3.6	2.2	6.0	4.9	7.0	3.3	1.0

Com isso, foram criados os modelos de ML desses 3 melhores algoritmos.

Para a criação da aplicação web para previsão de novos registros, foram utilizadas as seguintes ferramentas:

- Biblioteca Pickle para armazenar/ler os modelos no/do disco;
- Flask para fazer o back-end da aplicação;
- Bootstrap para o front-end da aplicação;
- GitHub para hospedagem do código;
- Heroku para fazer o deploy da aplicação.

A aplicação web faz a classificação do novo registro utilizando os 3 melhores modelos obtidos.

Disponível em: https://credit-predict.herokuapp.com/