

planetmath.org

Math for the people, by the people.

Riemannian manifolds category R_M

Canonical name RiemannianManifoldsCategoryRM

Date of creation 2013-03-22 18:25:13 Last modified on 2013-03-22 18:25:13

Owner bci1 (20947) Last modified by bci1 (20947)

Numerical id 26

Author bci1 (20947)
Entry type Definition
Classification msc 30E20
Classification msc 18-00
Classification msc 53B20
Classification msc 53B21

Related topic RiemannianMetric Related topic ConformalMapping

Related topic ExampleOfConformalMapping Related topic PseudoRiemannianManifold

Related topic IndexOfCategories

 $Related\ topic \qquad Einstein Field Equations$

Defines category of pseudo-Riemannian manifolds

Defines conformal Riemannian subcategory
Defines conformal Riemannian manifold

Defines conformal mapping

Defines c_R

Definition 0.1. A category \mathcal{R}_M whose objects are all Riemannian manifolds R and whose morphisms are mappings between Riemannian manifolds m_R is defined as the category of Riemannian manifolds.

0.1 Applications of Riemannian manifolds in mathematical physics

- 1. The conformal Riemannian subcategory \mathcal{R}_C of \mathcal{R}_M , whose objects are Riemannian manifolds R, and whose morphisms are conformal mappings of Riemannian manifolds c_R , is an important category for mathematical physics, in conformal theories.
- 2. It can be shown that, if (R_1, g) and (R_2, h) are Riemannian manifolds, then a map $f: R_1 \to R_2$ is http://planetmath.org/ConformalMappingconformal iff $f^*h = s.g$ for some scalar field s (on R_1), where f^* is the complex conjugate of f.

0.1.1 Category of pseudo-Riemannian manifolds

The category of http://planetmath.org/PseudoRiemannianManifoldpseudo-Riemannian manifolds \mathcal{R}_P that generalize Minkowski spaces M_k is similarly defined by replacing the Riemannian manifolds R in the above definition with pseudo-Riemannian manifolds R_P . Pseudo-Riemannian manifolds R_P s were claimed to have applications in Einstein's theory of general relativity (GR), whereas the subcategory **Mink** of four-dimensional Minkowski spaces in \mathcal{R}_P plays the central role in special relativity (SR) theories.