

Quadern de treball:

Introducció a l'estimació de l'error en Reconeixement de Formes

Albert Sanchis

Departament de Sistemes Informàtics i Computació

Objectius formatius

- Calcular l'error teòric d'un classificador
- Calcular l'error de Bayes
- Calcular el nombre mínim de mostres de test necessari per a aconseguir que l'interval de confiança al $95\,\%$ del error del clasificador no supere un cert percentatge

■ *Qüestió 1*: Siga un problema de classificació en tres classes per a dades del tipus $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, amb les distribucions de probabilitat de la taula:

x_1	x_2	$P(c=1 \mid \boldsymbol{x})$	$P(c=2 \mid \boldsymbol{x})$	$P(c = 3 \mid \boldsymbol{x})$	$P(\boldsymbol{x})$	$c(oldsymbol{x})$
0	0	0,2	0,1	0,7	0,2	2
0	1	$0,\!4$	0,3	0,3	0	1
1	0	0,3	$0,\!4$	0,3	0,4	3
1	1	$0,\!4$	$0,\!4$	0,2	0,4	1

Calcula l'error del classificador donat, ε :

$$\varepsilon = 0.2 \cdot (1 - 0.1) + 0 \cdot (1 - 0.4) + 0.4 \cdot (1 - 0.3) + 0.4 \cdot (1 - 0.4) = 0.70$$

■ *Qüestió 2*: Siga un problema de classificació en quatre classes per a dades del tipus $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, amb les distribucions de probabilitat de la taula:

x_1	x_2	$P(c=1 \boldsymbol{x})$	$P(c=2 \boldsymbol{x})$	$P(c=3 \boldsymbol{x})$	$P(c=4 \boldsymbol{x})$	$P(\boldsymbol{x})$
0	0	0,1	0,3	0,1	0,5	0
0	1	$0,\!2$	0,5	0,3	0	0,1
1	0	$0,\!2$	$0,\!4$	$0,\!1$	0,3	0,3
1	1	0,1	0,3	0,3	0,3	0,6

Calcula l'error de Bayes, ε^* :

$$\varepsilon^* = 0 \cdot (1 - 0.5) + 0.1 \cdot (1 - 0.5) + 0.3 \cdot (1 - 0.4) + 0.6 \cdot (1 - 0.3) = 0.65$$

■ *Qüestió 3*: La probabilitat d'error d'un classificador s'estima que és del 20%. Determina quin és el nombre mínim de mostres de test necessari, M, per aconseguir que l'interval de confiança al 95% del dit error no supere el $\pm 1\%$; açò es, I = [19%, 21%]

$$I = \left[\hat{\varepsilon}_{N,M} \pm 1,96\sqrt{\frac{\hat{\varepsilon}_{N,M}(1-\hat{\varepsilon}_{N,M})}{M}} \right]$$

$$0,01 = 1,96\sqrt{\frac{0,2(1-0,2)}{M}}$$

$$0,01^2 = 1,96^2 \frac{0,2(1-0,2)}{M}$$

$$M = 1,96^2 \frac{0,2(1-0,2)}{0,01^2} = 6146,56 \approx 6147 \text{ mostres}$$

