ECE2800J

Programming and Introductory Data Structures

Enum, Passing Arguments to Program, I/O Learning Objectives:

Know when and how to use enum type

Know how to write more general programs that can take arguments

Understand I/O streams

Introducing enums

- In addition to single constants, we may need to categorize data.
- For example, there are four different suits in cards:
 - Clubs

Diamonds

Hearts

Spades

• You could encode each of these as a separate integer like:

```
const int CLUBS = 0;
const int DIAMONDS = 1;
// and so on...
```

Introducing enums

```
const int CLUBS = 0;
const int DIAMONDS = 1;
```

- Unfortunately, encoding information this way is not very convenient.
- For example, consider the predicate isRed()
 bool isRed(int suit);

 // REQUIRES: suit is one of Clubs,

 // Diamonds, Hearts,

 or Spades

 // EFFECTS: returns true if the color

 of this suit is red.

Introducing enums

```
const int CLUBS = 0;
const int DIAMONDS = 1;

bool isRed(int suit);

// REQUIRES: suit is one of Clubs,

// Diamonds, Hearts, or Spades

// EFFECTS: returns true if the color

// of this suit is red.
```

- This is annoying, since we need this REQUIRES clause; not all integers encode a suit.
- There is a better way: the **enumeration** (or **enum**) type.

enums

• You can define an enumeration type as follows:

• To define variables of this type you say:

```
Suit t suit;
```

• You can initialize them as:

```
Suit t suit = DIAMONDS;
```

- Once you have such an enum type defined, you can use it as an argument, just like anything else.
- Enums are passed by-value, and can be assigned.

enums

• With enum, the specification for the function isRed() can be simplified by removing the REQUIRES clause.

```
bool isRed(Suit_t s);
// EFFECTS: returns true if the color
// of this suit is red.
```

enums bool isRed(Suit t s) { switch (s) { case DIAMONDS: case HEARTS: return true; break; case CLUBS: case SPADES: return false; break; default: assert(0); break;

enums

• If you write

• Using this fact, it will sometimes make life easier

```
Suit_t s = CLUBS;
const string suitname[] = {"clubs",
        "diamonds", "hearts", "spades"};
cout << "suit s is " << suitname[s];</pre>
```

References

- enum
 - C++ Primer, 4th Edition, Chapter 2.7

Question1: Can I do this?

- enum COLOR1 {red, blue, yellow};
- enum COLOR2 {pink, purple, yellow};
- (yellow appears in two different enum?)

Question2: Can I do this?

```
    enum COLOR1 {
        red = -1,
        blue = 1,
        yellow = -2
        };
```

Question3

```
enum COLOR1 {red=-1,blue=1,yellow};
```

• What's the value of yellow?

Introduction

- So far, we have considered programs that take no arguments
 - You run your program like: ./program
- However, programs can take arguments.
- For example, many Linux commands are programs and they take arguments!
 - diff file1 file2
 - rm file
 - ...

Introduction

diff file1 file2

- The first word, diff, is the **name** of the program to run.
- The second and third words are **arguments** to the diff program.
- These arguments are passed to diff for its consideration, like arguments are passed to functions.
- The operating system collects arguments and passes them to the program it executes.

• Arguments are passed to the program through main() function.

- We need to change the argument list of main():
 - Old: int main()
 - New: int main(int argc, char *argv[])

```
int main(int argc, char *argv[])
```

- Each argument is just a sequence of characters.
- All the arguments (including program name) form an array of C-strings.
- int argc: the number of strings in the array
 - E.g., diff file1 file2: argc = 3
 - The name argc is by convention and it stands for "argument count".

```
int main(int argc, char *argv[])
```

- argv stores the array of C-strings.
 - Remember, a C-string is itself an array of char and it can be thought of as a pointer to char.
 - Thus, an array of C-strings can be thought of as an array of pointers to char.
 - Thus, argv is an array of pointers to char: char *argv[]
 - The name argv is again by convention and it is short for "argument vector" or "argument values".

diff file1 file2

char *argv[]

Pictorially, this would look like the following in memory:

Note: argv[0] is the first string you type to issue the program. It includes the name of the program being executed and optional path (like "./").

Example

- Suppose we wanted to write a program that is given a list of integers as its arguments, and prints out the sum of that list.
- Before we can write this program we need a way to convert from C-strings to integers.
- We use predefined "standard library" function called atoi().
- Its specification is

```
int atoi(const char *s);
// EFFECTS: parses s as a number and
// returns its int value
```

• Needs #include <cstdlib>

Example

• The problem we are examining can be solved as:

```
int main (int argc, char *argv[])
 int sum = 0;
 for (int i = 1; i < argc; i++) {
     sum += atoi(argv[i]);
 cout << "sum is " << sum;</pre>
 return 0;
```

Example

```
int main (int argc, char *argv[]) {
    int sum = 0;
    for (int i = 1; i < argc; i++) {
        sum += atoi(argv[i]);
    }
    cout << "sum is " << sum;
    return 0;
}</pre>
```

• Finally, we save it to sumIt.cpp, compile, and run it:

```
$ g++ -o sumIt sumIt.cpp
$ ./sumIt 3 10 11 12 19
```

For the previous command, select all the correct answers

```
$ ./sumIt 3 10 11 12 19
```

- **A.** argc equals 5.
- **B.** argv contains exactly "3", "10", "11", "12", "19".
- C. argv[0] equals "sumIt".
- **D.** The command outputs "sum is 55".

```
int main (int argc, char *argv[]) {
      int sum = 0;
      for (int i = 1; i < argc; i++)
             sum += atoi(argv[i]);
      cout << "sum is " << sum;
      return 0;
```


Exercise

• Write a program that is given a list of **floats** as its arguments, and prints out the sum of that list.

References

- Command-Line Arguments
 - Absolute C++, 4th Edition, Page 373

Outline

- Know when and how to use enum type
- Know how to write more general programs that can take arguments
- Understand I/O streams

I/O

- I/O Streams
 - Overview
 - Output Stream cout
 - Input Stream cin
 - File Stream
 - String Stream

Input/Output

Streams

- A popular model for how input and output is done in computer systems is centered around the notion of a **stream**.
- A stream is just a sequence of data with functions to put data into one end, and take them out of the other.

```
cin >> a;
```

Input/Output

Streams

• Typical streams:

```
keyboard → program
display ← program
file → program
file ← program
string → program
string ← program
```

- In C++, streams are unidirectional.
- Data is always passed through the stream in one direction.
- If you want to read and write data to the same file or device, you need two streams.

Input/Output

Streams

- In general, there are two kinds of stream data: **characters** and **binary data**.
- Characters are usually used for:
 - Communicating between your program and a keyboard or screen.
 - Reading and writing files.
- In addition to text, files can contain arbitrary binary data.
 - It is usually much more efficient than character representation.
 - However, it is hard to understand and debug.
- We'll talk about **character streams** here.

Outline

- I/O Streams
 - Overview
 - Output Stream cout
 - Input Stream cin
 - File Stream
 - String Stream

Output Stream: cout

```
cout << "Hello, world!\n";</pre>
```

- Output to screen.
- The << is called the **insertion operator**, and is used to insert things into the output stream.
 - It knows how to **convert** all of the other standard data types to **characters** before inserting them into the stream.

```
int foo = 42;
cout << foo << endl;</pre>
```

• Can be cascaded

```
cout << foo << " " << bar <<
endl;</pre>
```

Print with Fixed Field Width

```
cout << foo << setw(4) << bar << endl;</pre>
```

- Here the setw() manipulator sets the width of the following number to the specified number of positions and right-aligns the number within that field.
- It pads with spaces.

right align 7 left align 7

• If you want to use setw(), you should
#include <iomanip>

Alternative Output Streams

• You can also use the Linux I/O **redirection** facility to move the output end of the stream from screen to a file:

- This connects the output end of the cout stream to the file "foo".
- There is another output stream object defined by the iostream library called cerr.
- This stream is identical in most respects to the cout stream; in particular, its default output is also the screen.
- By convention, programs use the Cerr stream for error messages.

Output: Buffering

- I/O in C++ is **buffered**.
- This means output inserted into an output stream is saved by the underlying operating system (in a region of memory called a **buffer**).

• The content in the buffer is written to the output only when specific actions are taken.

Output: Buffering

- The buffer content is written to the output only when:
 - A newline (e.g., endl or '\n') is inserted into the stream. E.g.,
 cout << "ok" << endl;
 - The buffer is explicitly flushed. E.g.,
 cout << "ok" << flush;
 - The buffer becomes full
 - The program decides to read from Cin
 - The program exits
- Once the buffer content is written to the output, the buffer is **cleaned**
- If some content is not printed out, it may be still in the buffer
- In contrast, output sent to Cerr is not buffered

References

- C++ Primer (4th Edision), by Stanley B. Lippman, Josée Lajoie, Barbara E. Moo, Addison-Wesley Publishing (2005)
 - Chapter 8