Lebesgue 非可測集合の存在

Theorem. R の部分集合で、Lebesgue 非可測なものが存在する.

Proof. ℝ上の同値関係 ~ を

$$x \sim y \stackrel{\text{def}}{\Leftrightarrow} x - y \in \mathbb{Q}$$

で定義し、 $\mathbb{R}/\mathbb{Q}:=\mathbb{R}/\sim$ で定義をする. また $\mathbb{R}/\mathbb{Q}=\{A_{\lambda}\}_{\lambda\in\Lambda}$ と添字集合を用いて表しておく. このとき、 $\forall \lambda,\mu\in\Lambda$ ($\lambda\neq\mu$) とすると $A_{\lambda}\cap A_{\mu}=\emptyset$ であるから $\mathbf{X}=\{X_{\lambda}:X_{\lambda}=[0,1]\cap A_{\lambda},A_{\lambda}\in\mathbb{R}/\mathbb{Q}\}$ に対して選択公理を用いると、 \mathbf{X} の各元 X_{λ} から 1 つずつ元 x_{λ} を選び出すことができる.

 $V=\{x_\lambda\}_{\lambda\in\Lambda}$ とすると $V\subset[0,1]$ である. また V を Lebesgue 可測と仮定し, $k\in\mathbb{N}$ に対して $V_k:=V+\frac{1}{k}$ とする. m を 1 次元 Lebesgue 測度とすると平行移動不変性より $m(V_k)=m(V)$ となる. また, $n\neq k$ のとき $V_n\cap V_k=\emptyset$ である. もし, $x\in V_n\cap V_k$ となる x があったとすると

$$x = y + \frac{1}{n} = z + \frac{1}{k}$$

とかける. よって $y-z \in \mathbb{Q}$ となるが, V の定義より y=z であり n=k となるからである.

 $V_n \subset [0,2]$ である. また, $k \in \mathbb{N}$ に対して

$$km(V) = \sum_{j=1}^{k} m(V_j) = m\left(\bigcup_{j=1}^{k} V_j\right) \le m([0, 2]) = 2$$

より k は任意であるから m(V) = 0 となる.

また $\mathbb Q$ は可算集合であり, V の定義から $\mathbb R = \bigcup_{q \in \mathbb Q} (V+q)$ であるから

$$\infty = m(\mathbb{R}) = m\left(\bigcup_{q \in \mathbb{Q}} (V+q)\right) = \sum_{q \in \mathbb{Q}} m(V+q) = \sum_{q \in \mathbb{Q}} m(V) = 0$$

となり矛盾となる.

以上より V は Lebesgue 非可測集合であるから $\mathbb R$ の部分集合で、Lebesgue 非可測なものが存在することが示された. \blacksquare