CONTENTS

Contents

1	Unbiased Implicit Variational Inference	2
	1.1 Analysis	9
2	Other references	_

1 Unbiased Implicit Variational Inference

Based on Titsias and Ruiz [1].

- Authors introduce unbiased implicit variational inference (UIVI) that defines a flexible variational family. Like semi-implicit variational inference (SIVI), UIVI uses an implicit variational distribution $q_{\theta}(z) = \int q_{\theta}(z|\varepsilon)q(\varepsilon)d\varepsilon$ where $q_{\theta}(z|\varepsilon)$ is a reparameterizable distribution whose parameters can be outputs of some neural network g, i.e., $q_{\theta}(z|\varepsilon) = h(u; g(\varepsilon;\theta))$ with $u \sim q(u)$. Under two assumptions on the conditional $q_{\theta}(z|\varepsilon)$, the ELBO can be approximated via Monte Carlo sampling. In particular, the entropy component of the ELBO can be rewritten as an expectation w.r.t. the reverse conditional $q_{\theta}(\varepsilon|z)$. Efficient approximation of this expectation w.r.t. the reverse conditional is done by reusing samples from approximating the main expectation to initialize a MCMC sampler.
- Questions: TODO
 - 1. Can the gradient be pushed into the expectation? (Section 2.2)
- In SIVI, the variational distribution $q_{\theta}(z)$ is defined as

$$q_{\theta}(z) = \int q_{\theta}(z|\varepsilon)q(\varepsilon)d\varepsilon$$

where $\varepsilon \sim q(\varepsilon)$.

- UIVI:
 - Like SIVI, UIVI uses an implicit variational distribution $q_{\theta}(z)$ whose density cannot be evaluated but from which samples can be drawn. Unlike SIVI, UIVI directly maximizes the ELBO rather than a lower bound.
 - The dependence of $q_{\theta}(z|\varepsilon)$ on ε can be arbitrarily complex. Titsias and Ruiz [1] take the parameters of a reparameterizable distribution (Assumption 1) as the output of a neural network with parameters θ that takes ε as input, i.e.,

$$z = h(u; g_{\theta}(\varepsilon)) = h_{\theta}(u; \varepsilon)$$

where $u \sim q(u)$ and g_{θ} is some neural network. It is also assumed that $\nabla_z \log q_{\theta}(z|\varepsilon)$ can be evaluated (Assumption 2).

- The gradient of the ELBO is given by

$$\begin{split} \nabla_{\theta} \mathcal{L}(\theta) &= \nabla_{\theta} \mathbb{E}_{q_{\theta}(z)} \left[\log p(x, z) - \log q_{\theta}(z) \right] \\ &= \nabla_{\theta} \mathbb{E}_{q(\varepsilon)q(u)} \left[\log p(x, z) - \log q_{\theta}(z) \big|_{z = h_{\theta}(u; \varepsilon)} \right] \\ &= \nabla_{\theta} \left(\mathbb{E}_{q(\varepsilon)q(u)} \left[\log p(x, z) \big|_{z = h_{\theta}(u; \varepsilon)} \right] - \mathbb{E}_{q(\varepsilon)q(u)} \left[\log q_{\theta}(z) \big|_{z = h_{\theta}(u; \varepsilon)} \right] \right) \\ &= \mathbb{E}_{q(\varepsilon)q(u)} \left[\nabla_{z} \log p(x, z) \big|_{z = h_{\theta}(u; \varepsilon)} \nabla_{\theta} h_{\theta}(u; \varepsilon) \right] - \mathbb{E}_{q(\varepsilon)q(u)} \left[\nabla_{z} \log q_{\theta}(z) \big|_{z = h_{\theta}(u; \varepsilon)} \nabla_{\theta} h_{\theta}(u; \varepsilon) \right] \; . \end{split}$$

(TODO: where is $\mathbb{E}_{q_{\theta}(z)}[\nabla_{\theta} \log q_{\theta}(z)] = 0$ applied?) (TODO: pushing gradient into expectation?) As $\nabla_z \log q_{\theta}(z)$ cannot be evaluated, this gradient is rewritten as an expectation using the log-

deritative identity: $\nabla_x \log f(x) = \frac{1}{f(x)} \nabla_x f(x)$:

$$\nabla_{z} \log q_{\theta}(z) = \frac{1}{q_{\theta}(z)} \nabla_{z} q_{\theta}(z)$$

$$= \frac{1}{q_{\theta}(z)} \nabla_{z} \int q_{\theta}(z|\varepsilon) q(\varepsilon) d\varepsilon$$

$$= \frac{1}{q_{\theta}(z)} \int \nabla_{z} q_{\theta}(z|\varepsilon) q(\varepsilon) d\varepsilon$$

$$= \frac{1}{q_{\theta}(z)} \int q_{\theta}(z|\varepsilon) q(\varepsilon) \nabla_{z} \log q_{\theta}(z|\varepsilon) d\varepsilon$$

$$= \int q_{\theta}(\varepsilon|z) \nabla_{z} \log q_{\theta}(z|\varepsilon) d\varepsilon$$

$$= \mathbb{E}_{q_{\theta}(\varepsilon|z)} \left[\nabla_{z} \log q_{\theta}(z|\varepsilon) \right] .$$

 $\nabla_z \log q_\theta(z|\varepsilon)$ can be evaluated by assumption.

• UIVI estimates the gradient of the ELBO by drawing S samples from $q(\varepsilon)$ and q(u) (in practice, S=1):

$$\nabla_{\theta} \mathcal{L}(\theta) \approx \frac{1}{S} \sum_{s=1}^{S} \left(\nabla_{z} \log p(x,z) \big|_{z=h_{\theta}(u_{s},\varepsilon_{s})} \nabla_{\theta} h_{\theta}(u_{s};\varepsilon_{s}) - \mathbb{E}_{q_{\theta}(\varepsilon|z)} \left[\nabla_{z} \log q_{\theta}(z|\varepsilon) \right] \big|_{z=h_{\theta}(u_{s};\varepsilon_{s})} \nabla_{\theta} h_{\theta}(u_{s};\varepsilon_{s}) \right) .$$

To estimate the inner expectation, samples are drawn from the reverse conditional $q_{\theta}(\varepsilon|z) \propto q_{\theta}(z|\varepsilon)q(\varepsilon)$ using MCMC. Exploiting the fact that (z_s, ε_s) comes from the joint $q_{\theta}(z, \varepsilon)$, UIVI initializes the MCMC at ε_s so no burn-in is required. A number of iterations are run to break the dependency between ε_s and the ε_s' that is used to estimate the inner expectation.

1.1 Analysis

TODO: analyze the (best-case) approximation of UIVI. Questions:

- 1. Approach? Probabilistic bound on KL as function of ELBO optimization iteration?
- 2. How to deal with implicit mixing component? Do surrogate families simpler than neural networks help? What assumptions would be needed?

2 Other references

VI review:

- Advances in Variational Inference (2019)
- Variational Inference: A Review for Statisticians (2017)

Possibly related VI approaches/of interest

- Semi-Implicit Variational Inference (2018)

 Doubly Semi-Implicit Variational Inference (2019)
 - Structured Semi-Implicit Variational Inference (2019)
 - Efficient Semi-Implicit Variational Inference (2021)
- Importance Weighted Hierarchical Variational Inference (2019)
- Stochastic Normalizing Flows (2020)

Theory/analysis

- Statistical Guarantees for Transformation Based Models with Applications to Implicit Variational Inference (2021)
 - Statistical and Computational Properties of Variational Inference (2021; thesis)
- Theoretical Guarantees of Variational Inference and Its Applications (2020; thesis)
- Contributions to the theoretical study of variational inference and robustness (2020; thesis)
- On Statistical Optimality of Variational Bayes (2018)
 Statistical guarantees for variational Bayes (2021; slides)
- Statistical Guarantees and Algorithmic Convergence Issues of Variational Boosting (2020)
- Robust, Accurate Stochastic Optimization for Variational Inference (2020) iterates as MCMC?
- Convergence Rates of Variational Inference in Sparse Deep Learning (2019)
 On the Convergence of Extended Variational Inference for Non-Gaussian Statistical Models (2020)

REFERENCES

References

[1] Michalis K Titsias and Francisco Ruiz. Unbiased implicit variational inference. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 167–176. PMLR, 2019.