Bevezetés a méréstechnikába és jelfeldolgozásba

1. előadás

i) Mérési alapelvek

Cserey György 2024. 03. 04.

Tantárgykövetelmények!

- Moodle
- KisZH-k, jegyzőkönyvek, HF
- Mérési jegyzőkönyv minta

Az USA-ban nem tértek át az SI-re...

1999-ben az alvállalkozó Lockheed Martin cég munkatársai a NASA által használt metrikus rendszer helyett az angolszász mértékegységeket használták (1 1áb = 0.3048 méter). A hiba következtében a Mars Climate Orbiter nevű szonda, amelynek feladata a marsi atmoszféra vizsgálata lett volna, olyan alacsonyra ereszkedett, hogy nem "élte túl" az ott uralkodó légköri hatásokat.

Mars Climate Orbiter és Mars Polar Lander

A mérés és méréstechnika fogalma

- Mérés = Információszerzés egy folyamat állapotáról
 - □ Fizikai, kémiai, biológiai, gazdasági, társadalmi
- Méréstechnika = Módszerek és eszközök
 összessége LÉNYEGKIEMELÉS

Kapcsolat egyértelmű, és ismert

A méréstechnika alapelvei

- Mérés = összehasonlítás
- Minden mérésnek bizonytalansága van!
- A mérés megzavarja a vizsgált jelenséget! A mérendő és mérő illesztése.
- Hitelesítés

Mérés = összehasonlítás

- A mérés célja: egy mennyiség értékét célszerű pontossággal meghatározni
- A mérés feladata: a mérendő mennyiséget egyezményes etalonnal összehasonlítsa
- Az etalon nincs mindig jelen! Lehet közvetetten is mérni egy használati mérőeszközzel (amelyet leszármaztatás útján etalonnal hitelesítettek).

Mértékegység rendszerek

- Számtalan rendszer között a legfontosabb különbség: a fundamentális alapmennyiségek.
- Példa: Planck m.e.r.
 - Fénysebesség (c), gravitációs állandó (G), Planck állandó (h), Boltzmann állandó (k), permitivitás (ε₀)

Name	Quantity	Expressions	Approximate SI equivalent	Other equivalent
Planck length ^[1]	Length (L)	$l_P = \sqrt{\frac{\hbar G}{c^3}}$	1.616252 × 10 ⁻³⁵ m	

v · d · e	Systems of measurement			
Metric systems	International System of Units · centimetre-gram-second units · metre-tonne-second units · gravitational units			
Natural units	$Geometric \ unit \ systems \cdot Planck \ units \cdot Stoney \ units \cdot "Schr\"{o}dinger" \ units \cdot Atomic \ units \cdot Electronic \ units \cdot Quantum \ electrodynamical \ units \cdot Planck \ units \cdot Stoney \ units \cdot Units \cdot Planck \ units \cdot Unit$			
Customary systems	Avoirdupois units · Troy units · Apothecaries' units · English units · Imperial units · Canadian units · US customary units · Danish units · Dutch units · Finnish units · French units · German units · Maltese units · Norwegian units · Scottish units · Spanish/Portuguese units · Swedish units · Polish units · Romanian units · Russian units · Tatar units · Hindu units · Pegu units · Chinese units · Japanese units · Taiwanese units			
Ancient systems	Greek units · Roman units · Egyptian units · Hebrew units · Arabic units · Mesopotamian units · Persian units · Harappan units			
Other systems	Non-standard measurement units · Mesures usuelles			

SI

SI alapegységek

Name	Symbol	Quantity
metre	m	length
kilogram	kg	mass
second	s	time
ampere	A	electric current
kelvin	К	thermodynamic temperature
mole	mol	amount of substance
candela	cd	luminous intensity

Name	yotta-	zetta-	exa-	peta-	tera-	giga-	mega-	kilo-	hecto-	deca-
Symbol	Υ	Z	E	Р	Т	G	М	k	h	da
Factor	10 ²⁴	10 ²¹	10 ¹⁸	10 ¹⁵	10 ¹²	10 ⁹	10 ⁶	10 ³	10 ²	10 ¹
Name	deci-	centi-	milli-	micro-	nano-	pico-	femto-	atto-	zepto-	yocto-
Symbol	d	С	m	μ	n	р	f	а	Z	у
Factor	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁶	10 ⁻⁹	10 ⁻¹²	10 ⁻¹⁵	10 ⁻¹⁸	10 ⁻²¹	10 ⁻²⁴

SI származtatott egységek

Name	Symbol	Quantity	Expression in terms of other units	Expression in terms of SI base units		
hertz	Hz	frequency	1/s	s ⁻¹		
newton	N	force, weight	m·kg/s ²	m·kg·s ⁻²		
pascal	Pa	pressure, stress	N/m ²	m ⁻¹ ·kg·s ⁻²		
joule	J	energy, work, heat	N·m	m ² ·kg·s ⁻²		
watt	W	power, radiant flux	J/s	m ² ·kg·s ⁻³		
coulomb	С	electric charge or electric flux	s·A	s-A		
volt	V	voltage, electrical potential difference, electromotive force	W/A = J/C	$m^2 \cdot kg \cdot s^{-3} \cdot A^{-1}$		
farad	F	electric capacitance	C/V	m ⁻² ·kg ⁻¹ ·s ⁴ ·A ²		
ohm	Ω	electric resistance, impedance, reactance	V/A	m ² ·kg·s ⁻³ ·A ⁻²		
siemens	S	electrical conductance	1/Ω	$m^{-2} \cdot kg^{-1} \cdot s^3 \cdot A^2$		
weber	Wb	magnetic flux	J/A	$m^2 \cdot kg \cdot s^{-2} \cdot A^{-1}$		
tesla	Т	magnetic field	$V \cdot s/m^2 = Wb/m^2 = N/A \cdot m$	kg·s ⁻² ·A ⁻¹		
henry	Н	inductance	$V \cdot s/A = Wb/A$	$m^2 \cdot kg \cdot s^{-2} \cdot A^{-2}$		
Celsius	°C	Celsius Temperature	$t_{^{\circ}C} = t_K - 273.15$	K		
lumen	lm	luminous flux	cd·sr	cd		
lux	lx	illuminance	lm/m ²	m ⁻² ·cd		
becquerel	Bq	radioactivity (decays per unit time)	1/s	s ⁻¹		
gray	Gy	absorbed dose (of ionizing radiation)	J/kg	m ² ·s ⁻²		
sievert	Sv	equivalent dose (of ionizing radiation)	J/kg	m ² ·s ⁻²		
katal	kat	catalytic activity	mol/s	s ⁻¹ ·mol		

Az etalon definiciója

Az etalon mérték, mérőeszköz, anyagminta vagy mérőrendszer, amelynek az a rendeltetése, hogy egy mérhető mennyiség egységét, illetve egy vagy több ismert értékét definiálja, megvalósítsa, fenntartsa vagy újraelőállítsa és referenciaként szolgáljon. A rendszeresen mértékek, mérőeszközök vagy anyagminták kalibrálására vagy ellenőrzésére szolgáló etalonokat használati etalonoknak nevezik.

Leszármaztatás

A leszármaztatás (vagy átszármaztatás) az országos etalontól a használati mérőeszközökig húzódó mérések megszakítatlan láncolatának elvégzése, melyek célja a mértékegység átvitele a legpontosabb mérőeszközökről (az etalonokról) a kisebb pontosságú mérőeszközökre, minél kisebb mértékű és feltétlenül ismert nagyságú pontosságveszteség mellett. A leszármaztatás biztosítja a mérési eredmények visszavezethetőségét. A leszármaztatási lánc (vagy visszavezethetőségi lánc) felsőbb szakaszai általában a mérésügyi szerveknél, alsóbb szakaszai különféle laboratóriumokban valósíthatók meg.

A leszármaztatás vertikális rendszere

Modell és modellezés

- Modell = a vizsgált jelenségre vonatkozó ismereteink formális kifejezése (funkcionális, fizikai, matematikai).
- A modell jellemzője a jósága hibája.
- A szükséges modell: tovább nem egyszerűsíthető, mert a hiba megengedhetetlen.
- Elégséges modell: bonyolultabb modell felesleges költségeket okoz.
- Mérés megtervezése = optimális modell kiválasztása.

Példa modellezésre

- A.) Feladat: Föld és a Hold közötti távolság meghatározása
 - □ 1. Modell : A két égitest pontszerű ⇒ távolság a pontok között értendő!
 - □ 2. Modell: A két égitest ideális gömb ⇒ távolság a gömbök középpontja között értendő?
- B.) Feladat Elektromos ellenállás modellje
 - $\begin{array}{ccc} \blacksquare & 1. \text{ Modell:} & & R \\ & & & \blacksquare & u=Ri \end{array}$

A méréstechnika alapelvei, alapfogalmai

- Mérés = összehasonlítás
- Minden mérésnek bizonytalansága van!
- A mérés megzavarja a vizsgált jelenséget! A mérendő és mérő illesztése.
- Hitelesítés

Minden mérésnek bizonytalansága van!

A mérési bizonytalanság becslése – metrológia

$$X_T - \Delta X \le X \le X_T + \Delta X$$
 $\Pr(X_0 - u \le X \le X_0 + u) = 1 - \alpha$

- Komponensei:
 - Korrigálható hiba
 - Véletlen bizonytalanság
 - Pontatlan mérőeszköz illetve a mérési módszer bizonytalansága
 - A vizsgált jelenség tökéletlen modellje okozta bizonytalanság
 - Mérési tévedés (validációval javítható) -> megbízhatóság?
- ISO: "Guide to the expression of uncertainty in measurement" 1993

A mérési bizonytalanságok eredete

B-típusú hiba (Rendszeres hiba vagy rendszerhiba)

- csak egy értéke lehet,
- ez az érték meghatározható,
- ezért korrigálni lehet,
- a rendszerhiba egyik fajtája a műszerhiba (hitelesítéssel javítható)
- a rendszerhiba másik fajtája a módszerhiba vagy modellhiba (nem alkalmas műszer vagy a mérés megzavarja a mérendő objektumot)

A-típusú hiba (Véletlen hiba)

- leolvasás hibája
- mérési körülmények változása (hőmérséklet, hálózati feszültség, légnyomás ingadozása)
- zaj, külső zavaró jel

A-típusú hiba

- Egy mérés tökéletes megismétlése azért lehetetlen, mert a mérőeszköz, vagy a mérendő (vagy mindkettő) ki van téve kontrolálhatatlan, apró zavaroknak a mérési környezetben. Ilyen változások lehetnek például az elektromos interferenciák, mechanikai rezgések, hőmérsékletváltozás, stb.
- Azon fluktuáló hibákat, amelyek a fenti okok miatt lépnek fel, de a mi feltételezésünk szerint azonos kondíciókkal ismételtük meg mérésünket, véletlen hibáknak nevezzük..

Table 4.1. Voltage values as displayed by a DMM and difference from the mean voltage of 2.889 μV

DMM indication (µV)	Differences from mean (μV)		
2.87	-0.019		
2.91	+0.021		
2.89	+0.001		
2.88	-0.009		
2.87	-0.019		
2.88	-0.009		
2.86	-0.029		
2.95	+0.061		
2.88	-0.009		
2.90	+0.011		

Figure 4.1. Random errors when measuring the temperature coefficient of a resistor (courtesy of the National Measurement Institute of Australia).

B-típusú hiba

- Vannak hibák, amelyek azonos kondíciókkal megismételt mérések esetén konstans értékkel lépnek fel. Egy példa erre a mérőműszer konstans additív vagy szubsztraktív offset hibája.
- Javítás: i) rendszeres kalibráció. ii) a mérés áthelyezése más környezetbe (ezzel kivédhető a lassan változó természeti folyamat)
- Mit cseréljünk:
 - Cseréljük le a műszert egy azonos pontossági osztályú, de lehetőleg más gyártó termékére.
 - □ Végezze el egy másik személy is a mérést.
 - Egy új mérési módszer (illetve modell), ami bizonyíthatóan pontosabb eltérő eredményt adhat.
 - Nagypontosságú elektromos méréseknél cseréljük a fémcsatlakozókat a termikus zaj csökkentése érdekében (ld. későbbi előadás).

A hiba becslése

- A típusú bizonytalanság becslés
 - Statisztika alapú becslés, a mérés megfelelő számú ismétlésével a hiba csökken
- B típusú bizonytalanság becslés

A hiba becslése= a mérés bizonytalansága

- A bizonytalanság egy olyan paraméter, amely leírja egy érték szóródását.
 - Példa: Ha egy tömeg adott (1.24 ± 0.13) kg alakban, akkor ez azt jelenti, hogy a valódi éréke nagy valószínűséggel valahol 1.11 kg és 1.37 kg között van. A bizonytalanság 0.13 kg, és hasonlóan a szóráshoz pozitív mennyiség (ellenben a hiba lehet pozitív és negatív is).
- Két típusú bizonytalanságot különböztetünk meg:
 - A típusú és
 - B típusú bizonytalanság.

A-típusú bizonytalanság

- Altalában egy mérési sorozat eredményei csak kis mértékben különböző értékek lesznek (a véletlen hiba miatt), amelyeknek kiszámolható az átlaga és az egyedi mérések és ezen átlag különbségei. Ezen különbségek szóródása jól jelzi a mérés bizonytalanságát: minél nagyobb a szóródás, annál nagyobb egy mérésnek a bizonytalansága.
- Az átlag számítása, azaz a mérési sorozat tagjainak összegzése és osztása a számukkal, a legegyszerűbb statisztikai analízis. Ugyanakkor rendelkezésre állnak szofisztikáltabb statisztikai eszközök is.
- Példa: az ellenállás hőmérséklet koefficiensének meghatározásánál lineáris regressziós egyenes illesztése

B-típusú bizonytalanság

- A B típusú bizonytalanság meghatározható a
 - műszerek specifikációiból, és
 - kalibrációs riportjából,

ebből becsülhető a bizonytalanság, és ezzel a rendszer hiba kiküszöbölhető (ha a becslésünk elég pontos).

A méréstechnika alapelvei, alapfogalmai

- Mérés = összehasonlítás
- Minden mérésnek bizonytalansága van!
- A mérés megzavarja a vizsgált jelenséget! A mérendő és mérő illesztése.
- Hitelesítés

A mérés megzavarja a vizsgált jelenséget! A mérendő és mérő illesztése.

Példa: feszültség mérése valóságos voltmérővel

A méréstechnika alapelvei, alapfogalmai

- Mérés = összehasonlítás
- Minden mérésnek bizonytalansága van!
- A mérés megzavarja a vizsgált jelenséget! A mérendő és mérő illesztése.
- Hitelesítés

Hitelesítés

- A hitelesítés célja annak az elbírálása, hogy a mérőeszköz megfelel-e a mérésügyi követelményeknek. A hitelesítés mérésügyi hatósági tevékenység, melyet csak feljogosított hitelesítő végezhet.
- A hitelesítés fázisai:
 - annak a megállapítása, hogy a hitelesítendő mérőeszköz az engedélyezett **típus**nak megfelel-e,
 - méréssel történő vizsgálata annak, hogy a mérőeszköz pontossága megfelel-e a hitelesítési hibahatár követelményének és
 - a hitelesség tanúsító jellel és/vagy okirattal történő igazolása (tanúsítás).

Általános mérési módszertani elvek

- Közvetlen összehasonlítás
- Közvetett összehasonlítás
- Differencia módszer
- Helyettesítő módszer
- Felcserélési módszer
- Analóg és digitális módszer

Közvetlen összehasonlítás

Súlymérés

Egyensúlyi állapotban: G_x=G_n

Feszültségmérés

A nullindikátor zérus jelzésekor: U_x=U_n

Közvetett összehasonlítás

Megjegyzés:

- ► Közvetett, mert méréskor az etalon nincs jelen
- > Az etalonra visszavezetés hitelesítéskor

Közvetett összehasonlítás

Megjegyzés:

- Közvetett, mert méréskor az etalon nincs jelen
- Az etalonra visszavezetés hitelesítéskor
- Pontos működés feltétele: érzékenység (rugóállandó) állandósága

Differencia módszer

Megjegyzés:

- Nem pontos az egyezés az etalon és mérendő mennyiség között
- A különbséget hozzá kell adni az eredményhez

Helyettesítő módszer

$$G_{x}k_{1}=G_{e}k_{2}$$

$$G_n k_1 = G_e k_2$$

$$G_{x}=G_{n}$$

Felcserélési módszer

$$G_{X} = G_{n} \frac{k_{2}}{k_{1}}$$

$$G_{X} = G_{n} \frac{k_{1}}{k_{2}}$$

$$G_{X} = \sqrt{G_{n}G_{n}}$$

Kalibráció

- Mérési eredmény visszavezethetősége: folytonos kalibrációs láncon keresztül egészen a nemzetközi etalonig (dokumentáltan)
- Versenypiacon létkérdés!

Direkt kalibrálás feszültségmérőnél

Hiba= U_m - U_r

Indirekt kalibrálás feszültségmérőnél

Hiba= U_{xm} - U_{rm}

Feszültségforrás követelményei:

- ➤ Beállíthatóság (széles tartományban)
- > stabilitás
- **>** jeltisztaság

Önkalibrálás felcserélési módszerrel

Digitális voltmérő feltételezett hibája:

- **>**ofszet
- > erősítéshiba

Nullponthiba (ofszet)

Erősítéshiba

Még néhány jellegzetes hiba

Linearitási hiba

Hiszterézishiba

Önkalibrálás felcserélési módszerrel

- 1. állásban U₁=U₀A
- 2. állásban $U_2=(U_r+U_o)A$
- 3. állásban $U_3 = (U_x + U_o)A$

Önkalibrálás felcserélési módszerrel (2)

3 egyenlet, ismeretlen Ux, Uo, A

$$\frac{U_{X}}{U_{r}} = \frac{U_{3} - U_{1}}{U_{2} - U_{1}}$$

Tehát sem ofszet, sem erősítés nem szerepel benne

Vége az 1. előadásnak

i) Mérési alapelvek

Cserey György 2024. 03. 04.