Lecture 6 Variational Inference

Xuanxi Zhang

1 Inference in a Graphical Model

Suppose we have a graphical model with variables x_1, \ldots, x_d . The joint distribution is given by:

$$p(x_1, \dots, x_d) = \frac{1}{Z} \prod_{C \in G} \psi_C(x_C)$$

where C represents the cliques of graph G.

The main task is to compute the marginals:

$$p(x_S) = \int p(x_1, \dots, x_d) \prod_{j \notin S} dx_j$$

where S is a (small) subset of the variables x_1, \ldots, x_d . In general, such marginalization is intractable as soon as $|S| \ll N$ (i.e., #P-complete problem).

Thus, we need to exploit the structure in G.

2 Belief Propagation Algorithm

Factor Graph Representation A factor graph is a bipartite graph where we draw an edge $x_i - C_j$ if variable x_i appears in factor C_j .

2.1 Message Passing in Factor Graphs

The Belief Propagation (BP) algorithm will pass messages between the variables and factors in the graph iteratively.

Undirected Bipartite Factor Graph

We consider an undirected bipartite factor graph:

Introducing Directed Structure

We first introduce a directed structure in this graph. The directed messages are represented as:

$$\nu_{i \to j}, \quad \hat{\nu}_{j \to i}$$

where these are "messages" sent locally in the graph.

Message Passing in Iterations

At each iteration t, for each edge (i, j), we define messages as probability distributions over X_i :

$$\nu_{i\to j}^{(t)}, \quad \hat{\nu}_{j\to i}^{(t)} \in \mathcal{P}(X_i)$$

where $\nu_{i\to j}(x_i) \geq 0$ and

$$\int \nu_{i \to j}(x_i) dx_i = 1.$$

Convergence of Messages

Under some conditions, it turns out that these messages converge to a fixed point as $t \to \infty$.

Message Marginals and Update Rules

Marginal Interpretation

 $\nu_{i\to j}^{(\infty)}$: marginal of X_i in a modified graphical model, where factor j is missing.

 $\hat{\nu}_{i \to i}^{(\infty)}$: marginal of X_i in a modified graphical model, where variable i only has factor j.

Update Rules for Message Passing

Update rules consist of **local message-passing**:

Neighborhood notation:

$$N(i) \setminus j$$
, $N(j) \setminus i$

Variable to Factor Message Update

$$\nu_{i \to j}^{(t+1)}(x_i) \propto \prod_{j' \in N(i) \setminus j} \hat{\nu}_{j' \to i}^{(t)}(x_i)$$

Factor to Variable Message Update

$$\hat{\nu}_{j\to i}^{(t+1)}(x_i) \propto \int \psi_j(x_{C_j}) \left(\prod_{i'\in N(j)\setminus i} \nu_{i'\to j}^{(t)}(x_{i'}) \right) dx_{i'}$$

Computing Marginals by Message Aggregation

We compute the desired marginals by aggregating messages $\hat{\nu}_{j\to i}$ for all $j\in N(i)$:

$$\nu_i^{(t)}(x_i) \propto \prod_{j \in N(i)} \hat{\nu}_{j \to i}^{(t)}(x_i)$$

Correctness of the Algorithm

Question: When is this algorithm correct?

Intuition: When the original graph G can be *separated* along node i, using the modified graphs \tilde{G}_{ij} , for $j \in N(i)$, then we can "divide and conquer".

Key Property: If the graphs \tilde{G}_{ij_1} and \tilde{G}_{ij_2} only share variable x_i , then the marginal $p(x_i)$ satisfies certain properties.

Marginal Computation

$$p(x_i) = \int p(x_1, \dots, x_d) \prod_{i' \neq i} dx_{i'} = \frac{1}{Z} \int \prod_j \psi_j(x_{C_j}) \prod_{i' \neq i} dx_{i'}$$

$$= \frac{1}{Z} \int \left[\prod_{j \in \tilde{G}_{ij_1}} \psi_j(x_{C_j}) \right] \left[\prod_{j \in \tilde{G}_{ij_2}} \psi_j(x_{C_j}) \right] \psi_{j_1}(x_i, x_{N(j_1) \setminus i}) \psi_{j_2}(x_i, x_{N(j_2) \setminus i})$$

$$= \frac{1}{Z} \left[\int \prod_{j \in \tilde{G}_{ij_1}} \psi_j(x_{C_j}) \cdot \psi_{j_1}(x_i, x_{N(j_1) \setminus i}) \prod_{i' \neq i} dx_{i'} \right] \left[\int \tilde{G}_{ij_2} \right]$$

$$\propto \hat{\nu}_{j_1 \to i}(x_i) \cdot \hat{\nu}_{j_2 \to i}(x_i)$$

Tree Structure and Exactness of Belief Propagation

- Graphs G that satisfy this separability condition for every node cannot have any cycle. - Therefore, G is a **tree**.

Theorem: (BP is exact on trees) Consider a tree graphical model, with diameter t^* (the maximum distance between any pair of nodes). Then:

Convergence and Exactness of Belief Propagation

(i) Convergence of BP Updates

Belief Propagation (BP) updates converge after at most t^* iterations, for any initial condition. That is, for any edge (i, j) and any $t > t^*$, we have:

$$\nu_{i \to j}^{(t)} = \nu_{i \to j}^*, \quad \hat{\nu}_{j \to i}^{(t)} = \hat{\nu}_{j \to i}^*$$

(ii) Fixed Point Messages Provide Exact Marginals

The fixed point messages provide exact marginals:

$$\nu_i^*(x_i) = p(x_i) \quad \forall i.$$

Proof (Sketch)

Main idea: Induction over the depth of the tree. For a given node i, let $j' \in N(i) \setminus j$ and $i' \in N(j') \setminus i$.

Induction Step: Assume the result is true for trees of depth $< t^*$.

Final Steps in Proof of BP Exactness on Trees

$$p(x_i) \simeq \psi_j(x_i) \int dx_1 \dots dx_{i-1} dx_{i+1} \dots dx_d \prod_j \psi_j(x_{C_j})$$

Using the **induction hypothesis**, this simplifies to:

$$\simeq \psi_j(x_i) \int \prod_{j' \in N(i) \setminus j} \psi_{j'}(x_{C_j}) \prod_{i' \in N(j') \setminus i} p(x_{i'}) dx_{i'}$$

Applying the **tree structure property**:

$$\simeq \psi_j(x_i) \prod_{j' \in N(i) \setminus j} \int \psi_{j'}(x_{C_j}) \prod_{i' \in N(j') \setminus i} p(x_{i'}) dx_{i'}$$

which leads to:

$$\simeq \nu_{j\to i}$$

Thus, we conclude:

$$\nu_{i \to j} \simeq \nu_i^*(x_i)$$

(More details in M&M, Theorem 14.1.)

Remarks

- We can use the same algorithm to compute marginals (and hence conditionals) over several variables. - Complexity of the BP algorithm on trees:

Complexity of BP on Trees

- BP is linear in the depth of the tree. - BP is exponential in the size of the factors, N(j).

Belief Propagation on General Graphs and Free Energy

Natural Question: How about general graphs? Does BP work?

Observation

As an algorithm, nothing prevents us from running the iterative BP on a generic graph, even if it has loops!

What Happens in This Case?

- **Answer (Worst-case):** We can build counter-examples where BP does not converge to the true marginals. (*Pearl '88*)
- **Answer (Average-case):** In practice, BP fails "gently"; the answer is nearly correct for graphs that "look like" trees.

Open Questions: - Does BP always stop? - How far is BP from the true marginals?

Bethe Free Entropy and Variational Principle

Let p(x) be a general Gibbs distribution over a factor graph, and let q(x) be another positive distribution.

Kullback-Leibler Divergence

Consider the Kullback-Leibler (KL) divergence:

$$D_{\mathrm{KL}}(q||p) := \mathbb{E}_q \left[\log \frac{q(x)}{p(x)} \right]$$

(also known as relative entropy).

Fact: $D_{KL} > 0$ and $D_{KL} = 0$ if and only if q = p.

Jensen's Inequality and KL Divergence

Indeed, we have:

$$D_{\mathrm{KL}}(q||p) = -\mathbb{E}_q \log \frac{p}{q} \ge -\log \mathbb{E}_q \left(\frac{p}{q}\right) = 0.$$

(by Jensen's inequality).

KL Divergence for a Gibbs Distribution

When p(x) is a Gibbs distribution of the form:

$$p(x) = \frac{1}{Z}e^{-E(x)}$$

the KL divergence becomes:

$$D_{\mathrm{KL}}(q||p) = \mathbb{E}_q[E(x)] + \mathbb{E}_q[\log q] + \log Z.$$

Recognizing terms:

$$D_{\text{KL}}(q||p) = U(q) - H(q) + \log Z \ge 0.$$

where U(q) is the expected energy, and H(q) is the entropy.

Variational Principle and Mean-Field Approximation

For a generic q, we have:

$$U(q) - H(q) \ge -\log Z$$

with equality if and only if q = p.

Variational Principle

- Consider $q \in \mathcal{F}$, a variational family, and optimize the left-hand side (LHS) over \mathcal{F} . - The family \mathcal{F} is chosen such that the optimization is tractable.

Mean-Field Variational Model

Consider first a separable approximation:

$$q(x) = \prod_{i} q_i(x_i)$$

Free Entropy of q?

Energy Function

Recall that:

$$p(x) = \frac{1}{Z} \prod_{j} \psi_j(x_{C_j})$$

Thus, the energy function is:

$$E(x) = -\sum_{j} \log \psi_j(x_{C_j}).$$

Expectation of Energy Under q

Using the fact that q is a product measure, we obtain:

$$U(q) = -\sum_{j} \int \log \psi_{j}(x_{C_{j}}) \prod_{i \in C_{j}} q_{i}(x_{i}) dx_{i}.$$

Mean-Field Entropy and Approximation

The entropy term in the mean-field approximation is:

$$H(q) = -\sum_{i} \int q(x_i) \log q(x_i) dx_i.$$

Mean-Field Approximation Reformulation

The mean-field approximation minimizes:

$$\min_{q \text{ separable}} \left[U(q) - H(q) \right] \quad \Leftrightarrow \quad \min_{q_{\text{sep}}} D_{\text{KL}}(q \| p).$$

Remarks on Mean-Field Approximation

- This mean-field approximation does **not** agree with:

$$q(x) = \prod_{i} p(x_i)$$

(the product of the marginals of p).

This would be true if instead we considered:

$$\min_{q_{\text{sep}}} D_{\text{KL}}(p||q).$$

Practical Relevance

- Even though the mean-field approximation (MF) is crude (it assumes no model of interactions), it often provides useful information. - Example: In spin glasses, MF helps estimate **average magnetization**.