PMat - wspólna praca domowa seria IV

Gracjan Barski, album: 448189

February 15, 2024

Zadanie 417:

 $\langle X, \leq \rangle$ dowolny porządek i dowolne $A, B \subseteq X$.

(a) Stwierdzenie fałszywe. Kontrprzykład:

$$X = \mathbb{Q}$$

$$\leq = \leq_0$$

$$A = \{x \in \mathbb{Q} \mid 0 \leq x < \sqrt{2}\}$$

$$B = \{x \in \mathbb{Q} \mid 0 \leq x \leq 2\}$$

Gdzie \leq_0 oznacza "standardową" relację nierówności. Jasnym jest, że $\sup(A \cup B) = 2$, jednak $\sup A$ nie istnieje.

 \leq_0 już jest liniowy więc liniowość tego porządku nic nie zmienia.

(b) Stwierdzenie fałszywe. Kontrprzykład:

$$X = \mathbb{N}$$

$$\leq = \mathbf{1}_{\mathbb{N}}$$

$$A = \{1\}$$

$$B = \{2\}$$

 $1_{\mathbb{N}}$ trywialnie jest porzadkiem cześciowym.

Jasnym jest, że sup A=1 oraz sup B=2, jednak sup $(A\cup B)$ nie istnieje ponieważ elementy 1, 2 są porównywalne tylko same ze sobą, więc nie istnieje żaden element "większy" od obu z nich.

Jednak jeśli ≤ ma być liniowe to zdanie będzie prawdziwe.

Oznaczmy sup A = a, sup B = b. WLOG $a \ge b$, wtedy wiemy że:

$$\forall_{x \in A} \ x \le a \quad \land \quad \forall_{y \in B} \ y \le a$$

Więc a jest ograniczeniem górnym $A \cup B$. Jednak znalezienie mniejszego ograniczenia nie jest możliwe, ponieważ a było już supremum A, a w wyniku operacji sumowania zbiorów, nic z nich nie ubyło, więc nie da się zmniejszyć kresu. Więc sup $(A \cup B) = a$.

(c) Stwierdzenie prawdziwe. Oznaczmy sup A=a, sup B=b, sup $(A\cup B)=c$, sup $\{a,b\}=d$.

Z definicji d, wiemy że $a \leq d \wedge b \leq d$.

Z definicji a, wiemy że: $\forall_{x \in A} \ x \leq a$.

Z przechodniości relacji \leq , mamy: $\forall_{x \in A} x \leq d$.

Poprzez analogiczne rozumowanie dla B otrzymujemy fakt, że d jest ograniczeniem górnym $A \cup B$. Jeśli d byłoby najmniejszym możliwym ograniczeniem, to byłoby kresem, więc byłoby równe c a to kończyłoby zadanie. W innym przypadku, jeśli byłoby nieporównywalne z c, to wtedy w ogóle założenia zadania nie są spełnione bo $\sup(A \cup B)$ nie istniałoby (ponieważ kres nie byłby jednoznacznie określony). Dlatego teraz załóżmy, że d nie jest najmniejszym możliwym kresem, to znaczy $c \le d$.

Wtedy istnieje jakieś e, które jest ograniczeniem górnym $A \cup B$ spełniające $e \le d$. Jednak wtedy nie zachodzi $(a \le e \land b \le e)$, ponieważ jeśli by zachodziło to wtedy d nie byłoby kresem $\{a,b\}$. Więc e nie jest ograniczeniem górnym któregoś ze zbiorów A,B, więc nie jest też ograniczeniem $A \cup B$, co prowadzi do sprzeczności (ponieważ e miało być ograniczeniem tej sumy), więc takie e nie istnieje. Z tego wnioskujemy, że d jest najmniejszym ograniczeniem górnym $A \cup B$, więc c = d.

Jeśli \leq ma być liniowy to nic się nie zmienia.

Zadanie 433:

r porządek częściowy na A. $f: A \xrightarrow{\text{bij}} A. g: A \times A \to A \times A. g(x,y) = \langle f(x), f(y) \rangle.$

- (a) $g(r) \subseteq r \iff f$ jest monotoniczna ze względu na porządek r.
 - (\Longrightarrow) Weźmy dowolne $x,y\in A$ takie że x r y. Z definicji g, wiemy że $\langle f(x),f(y)\rangle\in g(r)$. Ale wiemy że $g(r)\subseteq r$, więc z definicji inkluzji zbiorów mamy f(x) r f(y), więc f jest monotoniczna ze względu na porządek r.
 - (\Leftarrow) Weźmy dowolne $x, y \in A$ takie że x g(r) y (1), oraz weźmy $a, b \in A$ takie że f(a) = x oraz f(b) = y. Takie a, b istnieją, ponieważ x, y należą do obrazu funkcji. Z definicji g(r) oraz z (1) wiemy że a r b, a z monotoniczności f mamy f(a) r f(b) czyli x r y, więc istotnie $g(r) \subseteq r$.

Czyli f może być dowolna, nie musi być bijekcją.

(b)
$$r \subseteq g(r) \iff \forall_{x,y \in A} (f(x) \ r \ f(y) \implies x \ r \ y)$$

- (\Longrightarrow) Weźmy dowolne $x,y\in A$ takie że f(x) r f(y). Z inkluzji $r\subseteq g(r)$ mamy $\langle f(x),f(y)\rangle\in g(r)$. Ale teraz z faktu, że f jest iniekcją (musi być ponieważ moglibyśmy dostać x' i y' takie że $\langle x',y'\rangle\notin r$) i z definicji g(r) mamy x r y, więc zachodzi $\forall_{x,y\in A}$ (f(x) r f(y) $\Longrightarrow x$ r y).
- (\iff) Weźmy dowolne $x,y\in A$ takie że x r y, oraz weźmy $a,b\in A$ takie że f(a)=x oraz f(b)=y. Takie a,b istnieją ponieważ f jest surjekcją. Teraz z założenia x r y mamy f(a) r f(b), a to z warunku po prawej stronie oryginalnej równoważności daje a r b. Z definicji g, wiemy że $\langle f(a), f(b) \rangle \in g(r)$, a to z definicji a,b daje: $\langle x,y \rangle \in g(r)$, więc istotnie $r \subseteq g(r)$.

W tym podpunkcie założenie, że f jest bijekcją było istotne

Zadanie 594:

Jakiej mocy jest zbiór wszystkich łańcuchów? (Oznaczmy go X)

(a) W zbiorze $\mathbb{N} - \{0\}$ uporządkowanym przez relację podzielności.

Wiemy że $|X| \leq \mathfrak{c}$, ponieważ wszystkich łańcuchów jest na pewno mniej niż wszystkich podzbiorów liczb naturalnych bez 0 (chociażby dlatego, że podzbiór $\{2,3\}$ nie jest łańcuchem), a zbiór wszystkich podzbiorów $\mathbb{N} - \{0\}$ ma moc \mathfrak{c} . Teraz znaleźć dolne ograniczenie i bedzie gotowe.

Weźmy nieskończony zbiór $P=\{2^n\mid n\in\mathbb{N}\}$ składający się z kolejnych naturalnych potęg dwójki. Jego moc to \aleph_0 , ponieważ istnieje bijekcja $f\colon P\to\mathbb{N}$, określona $f(n)=\log_2(n)$. Wszystkie elementy w nim są postaci 2^p dla pewnego $p\in\mathbb{N}$. Biorąc dwa dowolne różne elementy $2^k, 2^l\in P$ dla $k,l\in\mathbb{N}$ $(k\neq l)$, zachodzi $2^k\mid 2^l$ lub $2^l\mid 2^k$. Więc wszystkie elementy są porównywalne ze sobą nawzajem, więc istotnie każdy podzbiór P jest łańcuchem w tym porządku. Z tego, że $|P|=\aleph_0$, otrzymujemy $|\mathcal{P}(P)|=\mathfrak{c}$. Więc łańcuchów które są podzbiorami P jest \mathfrak{c} , ale tych łańcuchów w X jest więcej (chociażby $\{3,9\}$), więc $|X|\geq\mathfrak{c}$.

Z twierdzenia Cantora-Bernsteina otrzymujemy $|X| = \mathfrak{c}$.

(b) W zbiorze słów nad alfabetem $\{a,b\}$ uporządkowanym prefiksowo.

Wiadomo, że $X \subseteq \mathcal{P}(\{a,b\}^*)$. Z wykładu wiadomo, że $|\{a,b\}^*| = \aleph_0$, więc $|\mathcal{P}(\{a,b\}^*)| = \mathfrak{c}$, więc $|X| \le \mathfrak{c}$. Teraz rozważny zbiór A zdefiniowany następująco:

$$\epsilon \in A$$

$$w \in A \Longrightarrow w \cdot a \in A$$

Gdzie · oznacza konkatenację słów. Teraz weźmy dowolne dwa różne elementy A, oczywiście jeden z nich jest prefiksem drugiego (ponieważ składają się z samych a lub element jest pusty i są różnej długości). Analogiczne rozumowanie wykazuje, że dowolny podzbiór A jest łańcuchem. Oczywiście $A \sim \mathbb{N}$ (prosta bijekcja $f \colon A \to \mathbb{N}$, gdzie f(w) = |w|), więc $|A| = \mathbb{N}$. Wiemy że każdy podzbiór A jest łańcuchem, a skoro A to tych łańcuchów jest \mathfrak{c} , ale łańcuchów w X jest więcej niż tylko te złożone z elementów z A (na przykład $\{a,ab\}$), więc $|X| \ge \mathfrak{c}$. Z twierdzenia Cantora-Bernsteina otrzymujemy $|X| = \mathfrak{c}$.

(c) W zbiorze słów nad alfabetem $\{a,b\}$ uporzadkowanym leksykograficznie.

Tutaj wszystko działa jak w podpunkcie (b), tak samo wszystkie podzbiory A są łańcuchami w tym porządku (ponieważ elementy składają się z samych a lub element jest pusty i są różnej długości), więc tutaj również $|X| = \mathfrak{c}$.