NAME UCID

 $(qD_n/_nL_p)n'(x)$ General $J_{n,df,p \text{ region}}(x) =$ $= \frac{N_D - N_A}{2} + \sqrt{\left(\frac{N_D - N_A}{2}\right)^2 + n_i^2}$ $(qD_p/_pL_n)p'(x)$ $J_{p,df,n}$ region(x)Universal constants $= N_D - N_A \text{ if } N_D - N_A > 10n_i$ $1.38 \times 10^{-23} J/K$ $p = \frac{N_A - N_D}{2} + \sqrt{\left(\frac{N_A - N_D}{2}\right)^2 + n_i^2}$ $6.63 \times 10^{-34} Js$ $1.60 \times 10^{-19} C$ $9.1 \times 10^{-32} \ kg$ $= N_A - N_D \text{ if } N_A - N_D > 10n_i$ $8.85 \times 10^{-12} \ F/m$ $= n_i^2$ at equilirium ϵ_o np@300K $= n_0 + n'$ kT26~meV $= p_0 + p'$ $N_C e^{-(E_C - E_F)/kT}$ $v_T = kT/q$ $26 \ mV$ $= N_V e^{-(E_F - E_V)/kT}$ Silicon@300K $2.8 \times 10^{19}/cm^3$ $N_C =$ D $= (kT/q)\mu$ $1.0 \times 10^{19}/cm^3$ $dE/dx = \rho/\epsilon$; $|E| = \nabla V$ $1.0 \times 10^{10}/cm^3$ Junction 1.1~eV $V_{bi} = (kT/q)\ln(N_A N_D/n_i^2)$ $W_{dep} = \sqrt{\frac{2\epsilon(V_{bi} - v)}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right)}$ 12 $1400 \ cm^2/Vs$ $470 \ cm^2/Vs$ μ_p $x_N N_D = x_P N_A$ Germanium@300K $1.0 \times 10^{19}/cm^3$ N_C $n'(x_P) = n(x_P) - n_{P0} = n_{P0} \left(e^{v/v_T} - 1 \right)$ $= 6.0 \times 10^{18}/cm^3$ N_V $p'(x_N) = p(x_N) - p_{N0} = p_{N0} \left(e^{v/v_T} - 1\right)$ $2.0 \times 10^{13}/cm^3$ 0.67~eV E_g $n'(x) = n'(x_P) \left(e^{-(x-x_P)/nL_p}\right) \text{ for } x > x_P$ 16 ϵ_r $p'(x) = p'(x_N) \left(e^{-(x-x_N)/pL_n}\right) \text{ for } x > x_N$ $3900 \ cm^2/Vs$ μ_n $1900 \ cm^2/Vs$ $_{n}L_{p} = \sqrt{_{n}\tau_{p}D_{n}}$; $_{p}L_{n} = \sqrt{_{p}\tau_{n}D_{p}}$

1. (2 marks) Complete the table below for a an n⁺p junction

	Always	Never	It depends
The depletion region is mostly on the n side	0	0	0
The p side of the depletion regions stores more charge than the n side	\bigcirc	\bigcirc	\bigcirc
Under reverse bias, the depletion capacitance increases	\bigcirc	\bigcirc	\bigcirc
Under forward bias, the charge stored in the n side of the depletion region increases	\bigcirc	\bigcirc	\bigcirc

- 2. (2 marks) Answer true or false. For a forward biased pn junction
- (a) Electrons on the n side predominanatly flow by diffusion
- (b) Excess hole concentration on the p side decreases exponentially with distance from the p depletion edge
- 3. (2 marks) Consider the band diagram of a pn junction at equilibrium below. Given the co-ordinate system, in what direction will be the electric field in the region enclosed in the dashed box. Justify your answer for any credit.

- 4. Consider a **silicon** junction at x=0. At zero bias, the magnitude of the electric field near the junction was found to be $E_0(10^{-6} 2|x|)$ where x is in meters, |.| denotes the absolute value and E_0 =1.25×10¹² V/m.
- (a) Find the width of the depletion region
- (b) Find the built-in potential of the junction
- (c) Find the minority concentration on the n depletion edge at equilibrium and at a 390 mV forward bias.
- (d) If, under the bias of part (c), the electron concentration on the n side 5 μ m from the depletion edge is 99.99% of the maximum electron concentration on that side, find the hole lifetime on the n side