

planetmath.org

Math for the people, by the people.

Proof of Fekete's subadditive lemma

 ${\bf Canonical\ name} \quad {\bf ProofOfFeketesSubadditiveLemma}$

Date of creation 2014-03-18 14:41:50 Last modified on 2014-03-18 14:41:50

Owner Filipe (28191) Last modified by Filipe (28191)

Numerical id 3

Author Filipe (28191)

Entry type Proof

If there is a m such that $a_m = -\infty$, then, by subadditivity, we have $a_n = -\infty$ for all n > m. Then, both sides of the equality are $-\infty$, and the theorem holds. So, we suppose that $a_n \in \mathbf{R}$ for all n. Let $L = \inf_n \frac{a_n}{n}$ and let B be any number greater than L. Choose $k \geq 1$ such that

$$\frac{a_k}{k} < B$$

For n > k, we have, by the division algorithm there are integers p_n and q_n such that $n = p_n k + q_n$, and $0 \le q_n \le k - 1$. Applying the definition of subadditivity many times we obtain:

$$a_n = a_{p_n k + q_n} \le a_{p_n k} + a_{q_n} \le p_n a_k + a_{q_n}$$

So, dividing by n we obtain:

$$\frac{a_n}{n} \le \frac{p_n k}{n} \frac{a_k}{k} + \frac{a_{q_n}}{n}$$

When n goes to infinity, $\frac{p_n k}{n}$ converges to 1 and $\frac{a_{q_n}}{n}$ converges to zero, because the numerator is bounded by the maximum of a_i with $0 \le i \le k-1$. So, we have, for all B > L:

$$L \le \lim_{n} \frac{a_n}{n} \le \frac{a_k}{k} < B$$

Finally, let B go to L and we obtain

$$L = \inf_{n} \frac{a_n}{n} = \lim_{n} \frac{a_n}{n}$$