Mo Tu We Th Fr Sa Su Date /
T .
LEC 22 Green's Theorem 225, 2, 197
$ \oint_{\mathcal{C}} \vec{F} \cdot d\vec{r} = ? $
Genen Green's Theorem:
If C closed curve, enclosing a region &,
Counterclackwise, Frector field defined & diff-
-eventiable in R then Ic Fidit = Sx curlifield
Je Max+ Ndy = //R [Nx-My)d1
Warning: only for dosed curve
Example: Let C = circle of radius 2 contend
at (20) counterdockwise
$\oint_{\mathcal{C}} y e^{-x} dx + (\frac{1}{2}x^2 - e^{-x}) dy$
D: X=2+0000 (Y=5m0
(2) x e : using green theorem:
· · · · · · · · · · · · · · · · · · ·
compute instead DR curlified
$(url(\vec{E}) = N_X - M_Y) \int_{\mathcal{R}} (x + e^{-x}) - e^{-x} dA = \iint_{\mathcal{R}} x dA$
$\iint_{X} X dB = \iint_{X} = A \operatorname{rea}(R) \cdot \widetilde{X} = 2\pi$
2, by geommetry

a Special case: If our P = 0, then F is conservative? Green's: 9cF. dr= SIR curl F.dA = SSR OdA = 0 Consequence: If F defined everywhere in the plane and curl(F1 => everwhere, then Fis Conservative Proof of Green's Therom: Ic Max+ Ndy = SR (Nx-Mx) dA observe: \$cMdx = Six -Mydld (where N=0) 18 Similar argue-ment & Ndy = SK Nxd/8 summing, get Green's therom 21 an decompose K into simpler regions. it we prove \$c,Mdx = SIR, -MydA and for Mdx = SR2 - Mydd \$ Mdx = \$c, + \$c_x = SR, + SRx = SR - MydA

because we go twice through prosit

along boundary between ki and Rx with clirection

	Ø	Z	7	R			
7	Мо	Tu	We	Th	Fr	Sa	Su

Memo No.			
Date	1	/	

Cut R in to "vertically simple" Reigons

acxcb, f. (x) < y < f.(x)

Main step: prove & Mdx = S/R - MydA If & R
vertically simple C=boundary of R
$\int_{C_1}^{C_2} \int_{C_2}^{C_3} \int_{C_4}^{C_4} $
$\int_{C_2} M dx = 0 , x = b , dx = 0$
$\int_{C4} M dx = 0 , dx = 0$
Sc3 Mdx, y= focu, x from b = a
$= \int_{b}^{a} M(x, f_{2}(x)) dx = - \int_{a}^{b} M(x, f_{2}(x)) dx$
sum together: f. Molx = Sa M(x, f, (x))dx - (a M(x, f, (x))dx
Sig - Myda = - Sytem dydr
Inner: $\int_{f(x)}^{f(x)} \frac{\partial M}{\partial y} dy = M(x, f_{\perp}(x)) - M(x_{\perp}, f_{\perp}(x))$
=> //R-MydA=-/a(TM(xx,fxx)]+[M(x,
$f_{i}(x)$) dx