微分方程 II

目录

1	前言		5			
	1	调和函数	5			
	2	Sobolev Space	5			
	3	线性椭圆方程	6			
	4	发展方程	6			
	5	参考书籍	6			
2	调和		7			
	1	平均值公式及其应用	7			
		1.1 平均值公式	7			
		1.2 平均值公式的应用	8			
	2	极值原理 1	1			
		2.1 弱极值原理	1			
		2.2 梯度估计 1	2			
		2.3 强极值原理	4			
	3	Laplace 方程 Dirichlet 问题	5			
		3.1 基本解	5			
		3.2 Green 函数	5			
		3.3 球上 Dirichlet 问题的解	8			
	4	一般线性椭圆算子极值原理 1	9			
		4.1 弱极值原理	0			
		4.2 解的有界估计	2			
		4.3 梯度估计 2	4			
		4.4 强极值原理	8			
3	Sobo	lev 空间	6			
1 L^p 函数 \ldots						
		1.1 重要的不等式	6			
	2	卷积	9			
	3	截断函数及其应用 4	2			

		3.1	截断函数 42
		3.2	截断函数的应用
	4	Hölder	Space
	5	Sobole	v 空间
		5.1	Sobolev 空间的定义
		5.2	逼近 52
		5.3	延拓
		5.4	限制 (Trace)
		5.5	Sobolev 不等式
		5.6	紧性
		5.7	庞加莱不等式
		5.8	差商 70
		5.9	其他函数空间
4	勘由	刑 一 166.	一致线性椭圆方程解的存在性,正则性 75
4	取反 1		定义
	2		存在性
	3		
	5	3.1	内部正则性
		3.2	边界正则性
	4		理
	4	4.1	弱极值原理
		4.2	强极值原理
	5		子和 Hilbert-Schmidt 定理
	6		与特征函数
	U	6.1	对称椭圆算子的特征值
		-	非对称椭圆算子的特征值
	7		有界估计
	•	7.1	moser 迭代
		7.2	stampacchia 迭代
	8		Krahn 定理和能量估计
		8.1	Faber-Krahn 定理
		8.2	能量估计
5	线性	发展方	
	1	二阶抛	物方程
		1.1	抛物方程弱解的定义
		1.2	抛物方程弱解的存在性(Galerkin 逼近)
		1.3	含时间变量的 Sobolev 空间, 能量估计

目	录	E	目录
<u>目</u>	1.4 1.5 1.6 1.7 2 二阶分 2.1 2.2 2.3 2.4 2.5	抛物方程解的存在唯一性	133 135 143 147 148 148 150 151 154 156
6	2.6 偏微分方程		160
7	习题		162

Chapter 1

前言

微分方程 II 的主要目标是证明方程解的存在性,主要方法就是在合适的空间(Sobolev 空间)利用泛函分析的结论得到方程解的存在性。另外在这个空间内我们也可以证明解的唯一性,那么说明 Sobolev 空间恰好是我们找解比较好的空间。

我们回忆一下以前关于下面的 Poisson 方程的经典解

$$\begin{cases} \Delta u = f & in \overline{\Omega} \\ u = \varphi(x) & on \partial\Omega. \end{cases}$$
 (0.1)

找到解的方法是物理中的 Dirichlet 原理,即当区域是球时,存在 $u \in C^2(B_1) \cap C^0(\partial B_1)$ 是 (0.1) 的经典解。但是 Weierstrass 利用反例证明, $\Omega \in \mathbb{R}^n$ 中某个连通子集时, $f \in C^0(\Omega)$,(0.1) 可能不存在解 $u \in C^2(\Omega) \cap C^0(\partial \Omega)$ 。具体的反例也可以参考韩青线性椭圆书 P_{21} 的例子 2.1.4。

另外我们知道微积分主要是研究连续可微的函数,然后在实变函数中我们开始考虑可测函数,具体来说就是不可求导的 Lebesgue 可积函数,那么自然的问题就是可不可以考虑 Lebesgue 可积函数的"微分"呢?这部分就是我们在 Evnas 书中第五章要研究的内容,通俗的说就是关于 Lesbegue 可积函数的广义导数。

下面是微分方程 II 的主要内容,分为下面几个部分。

1 调和函数

- (1),调和函数的平均值性质。作为平均值的应用,介绍了调和函数的强极值原理,梯度内估计,单调性公式。
- (2),弱极值原理,通过找适当的辅助函数做调和函数梯度内估计,对数梯度估计,Harnack 不等式,强极值原理。
- (3), 基本解, 通过 Green 函数能够写出调和方程 Dirichlet 问题的形式解, 在球上我们得到 Poisson 积分公式。
- (4),对一般线性椭圆算子,用找合适的辅助函数的办法结合极值原理,做 Dirichlet 问题、Neumann 问题解的有界估计和梯度估计以及强极值原理的一些应用。

2 Sobolev Space

(1), $W^{k,p}(U)$ 是一个 Banach Space, 主要研究逼近, 延拓, 限制。

3. 线性椭圆方程 CHAPTER 1. 前言

- (2), Sobolev 嵌入定理。 $(W^{k,p}(U))$ 与 $C^{k-1,\alpha}(U)$ 的关系,Morrey 不等式)
- (3), 紧性问题。 $(W^{1,p}(U) \hookrightarrow \hookrightarrow L^q(U))$
- (4),一些重要的不等式。

3 线性椭圆方程

- (1),方程解的存在性。主要研究方法是利用泛函分析的 Lax-milgram 定理,Riesz-Fredholm 二择一定理和 Riesz-Schauder 定理关于紧算子的一些理论。
 - (2), 弱解的正则性定理。方法是通过研究弱解的差商,来提升正则性。
- (3),最大值原理。在完全非线性椭圆方程的先验估计中最终要的工具,主要方法是找到合适的辅助函数,得到相应的先验估计。
 - (4), 研究线性椭圆方程的特征值问题。

4 发展方程

(1), 研究特征函数展开, 然后 Garlerkin 逼近方法找解。

最后我们陈述一下我们为什么要研究偏微分方程。第一个就是能够帮助我们认识世界,比如广义相对论中的爱因斯坦场方程 $R_{ij}=\lambda g_{ij}$,电学中的 Maxwell 方程,还有微观世界的薛定谔方程 $iu_t+\Delta u=0$,等等。第二个就是在微分几何中的一些问题,比如说寻找预定平均曲率,或者预定 Guass 曲率的超曲面。还有几何物理里面的超弦理论,比如丘成桐证明 Calabi 猜想最终等价于证明蒙日安培方程 $det(u_{i\bar{j}}+g_{i\bar{j}})=f$ 解的存在性问题。

5 参考书籍

Sobolev 空间部分可以参考 Real Analysis (E.Dibenedetto),实变函数 (周民强),Introduction to Sobolev Space (Tartar)。椭圆方程部分可以参考偏微分方程的 L^2 理论 (王耀东),偏微分方程中的变分法 (陆文端),二阶椭圆方程(韩青,林芳华)。发展发成可以参考二阶抛物方程(陈亚浙),Hyperbolic PDE (Alinahc)。

Chapter 2

调和函数

1 平均值公式及其应用

这一节主要讲述调和函数的平均值公式,然后利用平均值公式得到强极值原理和调和函数的梯度内估计,同时也会通过一些例子介绍调和函数能量估计特有的一些单调性。

1.1 平均值公式

Theorem 1.1. (平均值公式) 区域 $\Omega \subset R^n$, 函数 $u \in C^2(\Omega)$ 且满足 $\Delta u = 0$ in Ω , 那么对于任意的 $B_r(x_0) \subset \Omega$ 我们有

$$u(x_0) = \frac{1}{|\partial B_r(x_0)|} \int_{\partial B_r(x_0)} u(x) dx$$
 (1.1)

以及,

$$u(x_0) = \frac{1}{|B_r(x_0)|} \int_{B_r(x_0)} u(x) dx$$
 (1.2)

证明.

$$0 = \int_{B_r(x_0)} \Delta u(x) dx$$

$$= \int_{\partial B_r(x_0)} \frac{\partial u}{\partial \nu}(x) d\sigma$$

$$= \int_{\partial B_r(x_0)} \frac{\partial u}{\partial r}(x) d\sigma$$

$$= r^{n-1} \int_{\partial B_1(0)} \frac{\partial u}{\partial r}(x_0 + rw) d\sigma_{s^{n-1}}$$

$$= r^{n-1} \frac{\partial}{\partial r} \int_{\partial B_r(0)} u(x_0 + rw) d\sigma_{s^{n-1}}$$

于是我们得到 $\int_{\partial B_1(x_0)} u(x_0+rw)d\sigma_{s^{n-1}}$ 为常数 $\forall r$ 满足 $B_r(x_0)\subset\subset\Omega$,我们让 r=0,可以得到

$$\int_{\partial B_1(0)} u(x_0 + rw) d\sigma_{s^{n-1}} = |s^{n-1}| u(x_0)$$
(1.3)

所以得到 (1) 式

$$u(x_0) = \frac{1}{|\partial B_r(x_0)|} \int_{\partial B_r(x_0)} u(x) dx$$
 (1.4)

为了得到(2),我们先注意到以下这个事实,

$$\int_{B_r(x_0)} f(x)dx = \int_0^r \int_{\partial B_s(x_0)} f(x)d\sigma_{\partial B_s}ds = \int_0^r s^{n-1} \int_{\partial B_1(0)} f(x_0 + sw)d\sigma_{s^{n-1}}ds$$
 (1.5)

即

$$\frac{d}{dr} \int_{B_r(x_0)} f(x) dx = r^{n-1} \int_{\partial B_1(0)} f(x_0 + rw) d\sigma_{s^{n-1}} = \int_{\partial B_r(x_0)} f(x) dx \tag{1.6}$$

所以对 (1) 式, 我们稍作变换, 然后两边对 r 进行积分有

$$u(x_0)|\partial B_r(x_0)| = \int_{\partial B_r(x_0)} u(x)dx$$
$$|s^{n-1}| \int_0^r r^{n-1} u(x_0) dr = \int_0^r \int_{\partial B_r(x_0)} u(x) dx$$
$$\frac{r^n}{n} |s^{n-1}| u(x_0) = \int_{B_r(x_0)} u(x) dx$$

由此我们得到(2)式。

1.2 平均值公式的应用

下面我们利用平均值公式证明强极值原理。

Theorem 1.2. (强极值原理) 连通区域 $\Omega \subset R^n$, 函数 $u \in C^2(\Omega)$ 且满足 $\Delta u = 0$ in Ω , 若 u 在 $x_0 \in \Omega$ 内部达到极大值 M (或极小值 m),则 $u \equiv M(m)$ in Ω

证明. 记 $\Sigma := \{x \in \Omega | u(x) \equiv M\}$, 我们只需证明 Σ 是既开又闭的。 $\forall \{x_n\}$,使得 $u(x_n) = M$, 因为 $u \in C^2(\Omega)$, $x_n \longrightarrow x_0$,有 $u(x_0) = M$,所以 Σ 是闭的。

下证 Σ 是开的: 任取 $x_0 \in \Omega, \forall \epsilon > 0$ 使得 $B_{\epsilon}(x_0) \subset \Omega$ 。由平均值性质有,

$$M = u(x_0) = \frac{1}{|\partial B_{\epsilon}(x_0)|} \int_{\partial B_{\epsilon}(x_0)} u(x) dx$$
(1.7)

假设存在 $x_1 \in B_{\epsilon}(x_0)$ 且 $u(x_1) < M$, 那么与上式矛盾。所以 Σ 是开的。

综上, Σ 既开又闭, 且 Ω 是连通的, 所以 $u(x) \equiv M$ in Ω 。

下面依旧是在 $\Delta u = 0, \Omega \subset \mathbb{R}^n$ 为连通区域, $B_r(x_0) \subset \Omega, u \in \Omega$ 条件下,平均值公式的几个应用。

Example 1.1. (梯度内估计)

$$|Du(x_0)| \le \frac{n^{\frac{3}{2}}}{r} \sup_{\partial B_r(x_0)} |u|$$
 (1.8)

证明:

$$\Delta u = 0 \tag{1.9}$$

于是

$$\Delta \left(\frac{\partial u}{\partial x_i} \right) = 0 \tag{1.10}$$

运用平均值公式

$$\frac{\partial u}{\partial x_i}(x_0) = \frac{1}{|B_r(x_0)|} \int_{B_r(x_0)} \frac{\partial u}{\partial x_i}(x) dx \tag{1.11}$$

取向量场 X, 用散度定理得到

$$\frac{\partial u}{\partial x_i}(x_0) = \frac{1}{|B_r(x_0)|} \int_{\partial B_r(x_0)} u v_i d\sigma \tag{1.12}$$

于是得到

$$\left| \frac{\partial u}{\partial x_i}(x_0) \right| \leq \frac{|\partial B_r(x_0)|}{|B_r(x_0)|} \sup_{\partial B_r(x_0)} |u|
= \frac{n}{r} \sup_{\partial B_r(x_0)} |u|$$
(1.13)

即

$$|Du(x_0)| = \left(\sum_{i=1}^n \left(\frac{\partial u}{\partial x_i}(x_0)\right)^2\right)^{\frac{1}{2}}$$

$$\leq \frac{n^{\frac{3}{2}}}{r} \sup_{\partial B_r(x_0)} |u|$$
(1.14)

remark: 若 $u \ge 0$, 则

$$\frac{\partial u}{\partial x_i}(x_0) = \frac{1}{|B_r(x_0)|} \int_{\partial B_r(x_0)} u v_i d\sigma$$

$$\leq \frac{n}{r} \sup_{\partial B_r(x_0)} u \tag{1.15}$$

推论: 若 u 上 (或下) 有界, $\Delta u \equiv 0$ in \mathbb{R}^n , 那么 u 为常数。

Example 1.2. $\Delta u = 0$, 考虑 $D(r) = \int_{B_r(0)} |Du|^2 dx$, 证明

$$rD'(r) = (n-2) \int_{B_r(0)} |Du|^2 dx + 2r \int_{\partial B_r(0)} \left(\frac{\partial u}{\partial x}\right)^2 d\sigma_x$$
 (1.16)

证明.

$$D'(r) = \int_{\partial B_r(0)} |Du|^2 d\sigma_x \tag{1.17}$$

计算 $rD^{'}(r)$,取 ν 为球面外法向,于是有 $\nu_i = \frac{x_i}{r}$ 考虑到

$$x \cdot \nu = \sum_{i=1}^{n} x_i \frac{x_i}{r} = r \tag{1.18}$$

$$rD'(r) = r \int_{\partial B_{r}(0)} |Du|^{2} d\sigma_{x}$$

$$r = x_{i} \nu_{i} \int_{\partial B_{r}(0)} x \cdot \nu |Du|^{2} d\sigma_{x}$$

$$= \int_{B_{r}(0)} (x_{i}|Du|^{2})_{i} dx$$

$$= \int_{B_{r}(0)} n|Du|^{2} + 2x_{i} u_{j} u_{ij} dx$$

$$= \int_{B_{r}(0)} n|Du|^{2} + 2(x_{i} u_{j} u_{i})_{j} - 2(x_{i} u_{j})_{j} u_{i} dx$$

$$= \int_{B_{r}(0)} n|Du|^{2} - 2\delta_{ij} u_{j} u_{i} - 2x_{i} u_{jj} u_{i} dx + \int_{B_{r}} 2(x_{i} u_{j} u_{i})_{j} dx$$

$$= (n-2) \int_{B_{r}(0)} |Du|^{2} dx + \int_{\partial B_{r}(0)} 2x_{i} u_{i} u_{j} \cdot \nu_{j} dx$$

$$x_{i} = \nu_{i} = \nu_{i} \quad (n-2) \int_{B_{r}(0)} |Du|^{2} dx + \int_{\partial B_{r}(0)} 2r u_{i} \cdot \nu_{i} u_{j} \cdot \nu_{j} dx$$

$$= (n-2) \int_{B_{r}(0)} |Du|^{2} dx + 2r \int_{\partial B_{r}(0)} \left(\frac{\partial u}{\partial x}\right)^{2} d\sigma_{x}$$

$$(1.19)$$

Example 1.3. $\Delta u = 0$, 考虑 $H(r) = \int_{\partial B_{r}(0)} u^{2} dx$, 计算 H'(r)。解:

$$H(r) = r^{n-1} \int_{\partial B_1(0)} u(rw)^2 dx$$
 (1.20)

$$H'(r) = (n-1)r^{n-2} \int_{\partial B_1(0)} u(rw)^2 dx + 2r^{n-1} \int_{\partial B_1(0)} u \frac{u(rw)}{r} dx$$

$$= \frac{n-1}{r} \int_{\partial B_r(0)} u^2 dx + 2 \int_{B_r(0)} \Delta(u^2) dx$$

$$= \frac{n-1}{r} \int_{\partial B_r(0)} u^2 dx + 2 \int_{B_r(0)} |Du|^2 dx$$
(1.21)

Example 1.4.

$$N(r) = \frac{rD(r)}{H(r)} \tag{1.22}$$

证明: $N'(r) \ge 0$

证明.

$$N'(r) = \frac{1}{(H(r))^{2}} \left[(D(r) + rD'(r))H(r) - rD(r)H'(r) \right]$$

$$= \frac{1}{(H(r))^{2}} \left[(D(r) + rD'(r))H(r) - rD(r)H'(r) \right]$$

$$= \left[\int_{B_{r}(0)} |Du|^{2} dx + (n-2) \int_{B_{r}(0)} |Du|^{2} dx + 2r \int_{\partial B_{r}(0)} \left(\frac{\partial u}{\partial x} \right)^{2} d\sigma_{x} \right]$$

$$- \int_{B_{r}(0)} |Du|^{2} dx \left[(n-1) \int_{\partial B_{r}(0)} u^{2} dx + 2r \int_{B_{r}(0)} |Du|^{2} dx \right]$$

$$= 2r \left[\int_{\partial B_{r}(0)} \left(\frac{\partial u}{\partial x} \right)^{2} d\sigma_{x} + \int_{B_{r}(0)} |Du|^{2} dx \right]$$

$$\geq 0 \qquad (1.23)$$

2 极值原理

2.1 弱极值原理

现在不用平均值性质, 来看看 $\Delta u = 0, \Omega \subset R^n$, $B_r(x_0) \subset C$ $\Omega, u \in \Omega$ 条件下我们能得出的结论。先证明下面的弱极值原理,然后运用弱极值原理通过证明 Harnack 不等式来证明强极值原理以及做一些梯度内估计。

Theorem 2.1. (弱极值原理) $u \in C^2(\Omega) \cap C(\overline{\Omega})$ $\Delta u \geq 0 \leq 0, \Omega \subset \mathbb{R}^n$, $B_r(x_0) \subset \Omega$ 为有界区域, $u \in \Omega$ 则 u 的最大 (\mathbb{R}^n) 值必在 $\partial\Omega$ 上达到。

证明. 任取 $\epsilon > 0$ 选辅助函数 $\varphi = u + \epsilon x_1^2$

$$\varphi_i = u_i + 2x_1\delta_{i1}$$
$$\Delta\varphi = \Delta u + 2\epsilon > 0$$

由数学分析的知识,假设 $\varphi(x)$ 在 Ω 内部 x_0 处达到极大值, $\varphi_i(x_0) = 0$ 且 $\varphi(x)$ 的 hessian 矩阵是负定的。即 $\varphi_{ii}(x_0) \leq 0$,与计算结果矛盾。

所以 $\varphi(x)$ 在边界达到极大值。从而

$$\sup_{\Omega} u \le \sup_{\Omega} \varphi \le \sup_{\partial \Omega} \varphi = \sup_{\partial \Omega} u + \epsilon x_1^2 \tag{2.1}$$

由于 ϵ 的任意性, 且 Ω 为有界区域, 令 $\epsilon \to 0$, 我们得到

$$\sup_{\Omega} u \le \sup_{\partial \Omega} u \tag{2.2}$$

同理, 当 $\Delta u \leq 0$ 选辅助函数 $\varphi = u - \epsilon x_1^2$, 可得

$$\inf_{\Omega} u \ge \inf_{\partial\Omega} u \tag{2.3}$$

综上,调和函数 $u(\Delta u \ge 0$ 且 $\Delta u \le 0$) 的最大值在最小值均在边界达到。

remark: $\Delta u = 0$, 若 $u \in C^3(\Omega) \cap C^1(\overline{\Omega})$ 则

$$(|Du|^2)_i = 2u_j u_{ji}$$

$$\Delta |Du|^2 = 2|D^2 u|^2 + 2(\Delta u)_j = 2|D^2 u|^2 \ge 0$$

从而 $|Du|^2$ 在边界达到极大值。

2.2 梯度估计

Theorem 2.2. (梯度内估计) $\Delta u = 0, \Omega \subset \mathbb{R}^n$ 为有界区域, $B_r(0) \subset \Omega, u \in \Omega$, 则有

$$|Du(0)| \le \frac{\sqrt{2n+12}}{r} \sup_{\partial B_r(0)} |u| \tag{2.4}$$

证明. 令 $\xi = r^2 - x^2$, 选取辅助函数 $\varphi = \xi^2 |Du|^2 + \alpha u^2$, 其中 α 待定。

$$\varphi_{i} = (\xi^{2})_{i} |Du|^{2} + \xi^{2} (|Du|^{2})_{i} + 2\alpha u u_{i}$$

$$\Delta \varphi = \underbrace{\Delta(\xi^{2}) |Du|^{2}}_{\text{(1)}} + \underbrace{2(\xi^{2})_{i} (|Du|^{2})_{i}}_{\text{(2)}} + \underbrace{\xi^{2} \Delta(|Du|^{2})}_{\text{(3)}} + \underbrace{2\alpha |Du|^{2}}_{\text{(4)}} + \underbrace{2\alpha u \Delta u}_{\text{(5)}}$$
(2.5)

$$\xi_{i} = -2x_{i} \quad |D\xi|^{2} = 4x^{2} \quad \Delta \xi = -2n$$

$$(1) = (2\xi \Delta \xi + 2|D\xi|^{2})|Du|^{2} = 8|x|^{2} - 4n\xi$$

$$(2) = 8\xi \xi_{i}u_{i}u_{ij} \ge -2\xi^{2}|D^{2}u|^{2} - 8|D\xi|^{2}|Du|^{2} = -2\xi^{2}|D^{2}u|^{2} - 32|x|^{2}|Du|^{2}$$

$$(3) = 2\xi^{2}|D^{2}u|^{2}$$

$$(4) = 2\alpha|Du|^{2}$$

$$(5) = 0$$

(2.6)

即

$$\Delta \varphi \ge |Du|^2 (2\alpha - 24|x|^2 - 4n\xi) \tag{2.7}$$

取 $\alpha = 2(n+6)r^2$, 则有

$$\Delta \varphi \ge 0 \tag{2.8}$$

由弱极大值原理, φ 最大值在 $\partial B_r(0)$ 达到, 即有

$$r^4|Du(0)|^2 \le \sup_{B_r(0)} \varphi \le \sup_{\partial B_r(0)} \varphi = \alpha \sup_{\partial B_r(0)} u^2 = 2(n+6)r^2 \sup_{\partial B_r(0)} u^2$$
(2.9)

最终得到

$$|Du(0)|^{2} \leq \frac{2n+12}{r^{2}} \sup_{\partial B_{r}(0)} u^{2}$$

$$\Rightarrow |Du(0)| \leq \frac{\sqrt{2n+12}}{r} \sup_{\partial B_{r}(0)} |u|$$
(2.10)

Theorem 2.3. (对数梯度估计) $\Delta u = 0, \Omega \subset R^n$ 为有界区域, $B_r(0) \subset C$ $\Omega, u \in \Omega$,则有 $\sup_{B_{\frac{r}{2}}} |Dlogu| \leq \frac{C_n}{r}$

证明. $v = logu, u = e^v, u_i = e^v v_i$

$$0 = \Delta u = e^{v} (\Delta v + |Dv|^2) \Rightarrow \Delta v = -|Dv|^2$$
(2.11)

令 $\xi=r^2-x^2$ 选取辅助函数 $\varphi=\xi^2\frac{|Du|^2}{u^2}=\xi^2|Dv|^2$ 假设 $\varphi(x)$ 在内部 x_0 处达到极大值, $\varphi_i=0$,下面计算均在 x_0 处进行。

$$0 = \varphi_i = (\xi^2)_i (|Dv|^2) + (\xi^2)(|Dv|^2)_i \Rightarrow \xi(|Dv|^2)_i = -2(\xi)_i |Dv|^2$$
(2.12)

$$\Delta \varphi = \underbrace{\xi^2 \Delta(|Dv|^2)}_{\text{(I)}} + \underbrace{\Delta(\xi^2)|Dv|^2}_{\text{(2)}} + \underbrace{2(\xi^2)_i(|Dv|^2)_i}_{\text{(3)}}$$
(2.13)

简单计算有

$$\Delta |Dv|^2 = \sum_{i} (2\sum_{j} v_j v_{ji})_i = 2\sum_{i,j} v_{ij}^2 + 2\sum_{j} v_j (\Delta v)_j = 2\sum_{i,j} v_{ij}^2 - 2v_j (|Dv|^2)_j$$

$$(1) = 2\xi^2 \sum_{i,j} v_{ij}^2 - 2\xi \sum_{j} v_j (\xi |Dv|_j^2) = 2\xi^2 \sum_{i,j} v_{ij}^2 + 4\xi \xi_j v_j |Dv|^2$$

$$(3) = 4\xi_i \xi (|Dv|^2)_i = -8\xi_i^2 |Dv|^2 = -8|D\xi|^2 |Dv|^2$$

$$0 \ge \delta \varphi = 2\xi^2 \sum_{j} v_{ij}^2 + 4\xi \xi_j v_j |Dv|^2 + (\Delta(\xi^2) - 8|D\xi|^2) |Dv|^2$$

$$(2.14)$$

于是得到

$$\sum_{i,j} v_{ij}^2 \ge \sum_{i} v_{ii}^2 \ge \frac{|\Delta v|^2}{n} = \frac{|Dv|^4}{n} \tag{2.15}$$

$$\Rightarrow \frac{2}{n}\xi^{2}|Dv|^{2} \leq -4\xi\xi_{j}v_{j} + 8|D\xi|^{2} - \Delta(\xi^{2})$$

$$\leq \frac{1}{n}\xi^{2}|Dv|^{2} + 4n|D\xi|^{2} + 8|D\xi|^{2} - \Delta(\xi^{2})$$
(2.16)

$$\Rightarrow \frac{1}{n}\xi_2|Dv|^2(x_0) \leq (4n+8)|D\xi|^2 - (2\xi\Delta\xi + 2|D\xi|^2)$$

$$= 4(4n+8)|x|^2 + 4n(r^2 - |x|^2) - 8|x|^2$$

$$\leq (16n+24)r^2$$

$$\Rightarrow \xi_2 |Dv|^2(x_0) \le n(16n + 24)r^2$$

(2.17)

又由于

$$\sup_{B_{\frac{r}{2}}(0)} \varphi = \sup_{B_{\frac{r}{2}}(0)} (r^2 - x^2)^2 |Dv|^2
\geq \inf_{B_{\frac{r}{2}}(0)} (r^2 - x^2)^2 \sup_{B_{\frac{r}{2}}(0)} |Dv|^2
= \frac{9}{16} r^4 \sup_{B_{\frac{r}{2}}(0)} |Dv|^2$$
(2.18)

从而

$$\frac{9}{16}r^4 \sup_{B_{\frac{r}{2}}(0)} |Dv|^2 \le \sup_{B_{\frac{r}{2}}(0)} \varphi \le \sup_{B_{r}(0)} \varphi \le \varphi(x_0) \le n(16n + 24)r^2$$
(2.19)

即

$$\sup_{B_{\frac{r}{2}}(0)} |Dlogu| \le \frac{c_n}{r} \tag{2.20}$$

2.3 强极值原理

由对数梯度估计我们可以简单地得到下面 Harnack 不等式。

Theorem 2.4. (Harnack 不等式) $\Delta u = 0$, 且 u > 0 in $B_r(0)$, 则有

$$\sup_{B_{\frac{r}{2}}(0)} u \le C(n) \inf_{B_{\frac{r}{2}}(0)} u. \tag{2.21}$$

证明.

$$\begin{split} |logu(x) - logu(y)| &= |logu(tx + (1 - t)y)||_{t=0}^{t=1} \\ &= |\int_0^1 \frac{d}{dt} logu(tx + (1 - x)y)dt| \\ &= |\int_0^1 \frac{\partial logu(tx + (1 - x)y)}{\partial x_i} (x - y)_i dt| \\ &\leq \sup_{B_{\frac{r}{2}}(0)} |Dlogu||x - y| \\ &\leq \frac{c_n}{r} r = c_n \end{split} \tag{2.22}$$

于是得到

$$u(x) \le e^{c_n} u(y) \tag{2.23}$$

也即

$$\sup_{B_{\frac{r}{2}}(0)} u \le C(n) \inf_{B_{\frac{r}{2}}(0)} u. \tag{2.24}$$

Remark: 对于 $u \ge 0$ 不等式也成立。只需由 $u + \epsilon$, 令 $\epsilon \longrightarrow 0$ 即可得。

Theorem 2.5. (强极大值原理) $\Delta u = 0$, 若 u 在 $x_0 \in \Omega$ 内部达到极大值 M, 则 $u(x) \equiv M$ in Ω .

证明. 令 v=M-u, 于是我们有 $v\geq 0$ 且 $v(x_0)=0$, $\Delta v=0$ 于是用 Harnack 不等式, $\forall x\in\Omega$, 都可以通过可数个球连接到 x_0 处,于是

$$v(x) \le C_n v(x_0) = 0 \tag{2.25}$$

综上

$$v(x) \equiv 0 \quad in \quad \Omega$$

 $\Rightarrow u(x) \equiv M \quad in \quad \Omega$ (2.26)

3 Laplace 方程 Dirichlet 问题

3.1 基本解

由于 $\Delta u(x) = 0 \Leftrightarrow tr(u_{ij}(x)) = 0$,所以对 x 做旋转得到 y = Ax, 其中 A 为正交矩阵, $tr(u_{ij}(Ax)) = 0 \Leftrightarrow \Delta u(y) = 0$ 。于是考虑 $\Delta u = 0$ 在 $R^n \setminus 0$ 处,令 r = |x|,求得径向解

$$0 = \Delta u = u'' + \frac{n-1}{r}u' \tag{3.1}$$

�

$$v = u'$$

$$\Rightarrow v' + \frac{n-1}{r}v = 0$$

$$\Rightarrow v = C_1 r^{1-n}$$
(3.2)

最终得到

$$u(r) = \begin{cases} C_2 + C_1 lnr, & n = 2, \\ C_3 + C_1 \frac{r^{2-n}}{2-n}, & n \ge 3. \end{cases}$$
 (3.3)

定义基本解

$$\Gamma(x,y) = \begin{cases} \frac{1}{2\pi} \ln|x-y|, & n=2, \\ \frac{1}{(2-n)w_n} |x-y|^{2-n}, & n \ge 3. \end{cases}$$
 (3.4)

 $w_n = |S^{n-1}|$ 于是有

$$\int_{\partial B_r(x)} \frac{\partial \Gamma(x-y)}{\partial \nu} = 1 \tag{3.5}$$

对任意 r > 0 成立,其中 ν 为球面 $\partial B_r(x)$ 外法向。

3.2 Green 函数

利用散度定理,我们很简单地就有 (Green 第二恒等式) $u, v \in C^2(\Omega) \cap C^1(\overline{\Omega})$

$$\int_{\Omega} (u\Delta v - v\Delta u)dx = \int_{\partial\Omega} (u\frac{v}{\nu} - v\frac{\partial u}{\partial\nu})$$
(3.6)

其中 ν 为 $\partial\Omega$ 外法向。

Theorem 3.1. Ω 为有界区域, $\partial \Omega \in C^1$,

$$u(x) = \int_{\Omega} \Gamma(x - y) \Delta_y u(y) dy - \int_{\partial \Omega} \left[\Gamma(x - y) \frac{\partial u}{\partial \nu}(y) - u(y) \frac{\partial \Gamma}{\partial \nu}(y) \right] d\sigma_y$$
 (3.7)

证明. 只证 $n \ge 3$ 时,

在上述恒等式中, 令 $v(y) = \Gamma(x - y)$, 在 $\Omega \setminus B_{\epsilon}(x)$ 中进行处理

$$\int_{\Omega \setminus B_{\epsilon}(x)} \left[u(y) \Delta \Gamma(x-y) - \Gamma(x-y) \Delta u(y) \right] dy = \int_{\partial(\Omega \setminus B_{\epsilon}(x))} \left[u \frac{\partial \Gamma(x-y)}{\partial \nu} - \Gamma(x-y) \frac{\partial u}{\partial \nu} \right]$$
(3.8)

此处, ν 为 $\partial(\Omega \setminus B_{\epsilon}(x))$ 外法向。且在 $\partial B_{\epsilon}(x)$ 上, $\nu_i = -\frac{(y-x)_i}{\epsilon}$ 此时简单计算

$$\frac{\partial\Gamma(x-y)}{\partial\nu} = \frac{\partial\Gamma(x-y)}{\partial y_i}\nu_i$$

$$= \frac{\partial\Gamma(x-y)}{\partial r}\frac{\partial r}{\partial y_i}\frac{(x-y)_i}{\epsilon}$$

$$= \frac{\partial\Gamma(x-y)}{\partial r}\left[-\frac{(y-x)_i^2}{\epsilon^2}\right]$$

$$= -\frac{1}{w_n}\epsilon^{1-n} = -\frac{1}{|\partial B_{\epsilon}|}$$
(3.9)

于是得到

$$\int_{\partial B_{\epsilon}(x)} u(y) \frac{\partial \Gamma(x-y)}{\partial \nu} d\sigma_y = -\frac{1}{|\partial B_{\epsilon}|} \int_{\partial B_{\epsilon}(x)} u(y) d\sigma_y = -u(x)$$
(3.10)

且

$$\left| \int_{\partial B_{\epsilon}(x)} \Gamma(x-y) \frac{\partial u(y)}{\partial \nu} d\sigma_{y} \right| = \left| \frac{1}{(2-n)w_{n}} \epsilon^{2-n} \int_{\partial B_{\epsilon}(x)} \frac{\partial u(y)}{\partial y_{i}} \nu_{i} d\sigma_{y} \right|$$

$$\leq \frac{1}{(2-n)w_{n}} \epsilon^{2-n} \epsilon^{1-n} w_{n} \sup_{\partial B_{r(0)}(x)} |Du|$$
(3.11)

$$\int_{\partial B_{\epsilon}(x)} \Gamma(x-y) \frac{\partial u(y)}{\partial \nu} d\sigma_y = 0$$
(3.12)

$$u(x) = \int_{\Omega} \Gamma(x - y) \Delta_y u(y) dy - \int_{\partial \Omega} \left[\Gamma(x - y) \frac{\partial u}{\partial \nu}(y) - u(y) \frac{\partial \Gamma}{\partial \nu}(y) \right] d\sigma_y$$
 (3.13)

引入 $\Phi(x,y)$, 使得

$$\begin{cases} \Delta_y \Phi(x, y) = 0, & in \quad \Omega, \\ \Phi(x, y) = \Gamma(x, y), & y \in \partial \Omega. \end{cases}$$
(3.14)

Definition 3.1. $G(x,y) = \Gamma(x,y) - \Phi(x,y)$ 为 Green 函数。

于是我们有

$$u(x) = \int_{\Omega} G(x, y) \Delta u(y) dy - \int_{\partial \Omega} u(y) \frac{\partial G}{\partial \nu}(x, y) d\sigma_y$$
(3.15)

特别地, 当区域 Ω 为球时, 我们可以直接写出 Green 函数的表达式。

Theorem 3.2. $\Omega = B_R(0)$

$$G(x,y) = \begin{cases} \frac{1}{2\pi} \left(\ln|y - x| - \ln\left| \frac{|x|}{R} y - \frac{R}{|x|} x \right| \right), & n = 2, \\ \frac{1}{(2-n)w_n} \left(|y - x|^{2-n} - \left| \frac{|x|}{R} y - \frac{R}{|x|} x \right| \right)^{2-n}, & n \ge 3. \end{cases}$$
(3.16)

证明. 只证 n > 3 的情形。

若 $x \in B_R(0), y \in \partial B_R(0), \diamondsuit X = \frac{R^2}{|x|^2}x$ 则

$$\Delta oxy \sim \Delta oyX \tag{3.17}$$

$$\Rightarrow \frac{|x|}{R} = \frac{y - x}{y - X}$$

$$\Rightarrow |y - x| = \frac{|x|}{R}|y - X| \tag{3.18}$$

从而猜测

$$\Phi = C_n \left(\frac{|x|}{R} |y - x| \right)^{2-n} = C_n \left| \frac{|x|}{R} y - \frac{R}{|x|} x \right|^{2-n}$$
(3.19)

$$\begin{cases}
\Delta_y \Phi(x, y) = 0, & in \quad B_R(0), \\
\Phi(x, y) = \Gamma(x, y), & on \quad \partial B_R(0).
\end{cases}$$
(3.20)

于是得到

$$\begin{cases}
\Delta u = 0, & in \quad B_R(0), \\
u = \varphi, & on \quad \partial B_R(0).
\end{cases}$$
(3.21)

 $\varphi \in C^0(\bar{\Omega})$ 的解为

$$u(x) = \int_{\partial B_R(0)} \varphi(y) \frac{\partial G(x, y)}{\partial \nu} d\sigma_y$$
 (3.22)

下面我们不妨计算在 $\partial B_R(0)$ 上 $n \geq 3$ 情形下 $\frac{\partial G(x,y)}{\partial \nu}$ 的值。简单计算,

$$\frac{\partial}{\partial y_i} |y - x|^{2-n} = (2 - n)|y - x|^{-n}(y - x)_i$$

$$\frac{\partial}{\partial y_i} \left| \frac{|x|}{R} y - \frac{R}{|x|} x \right|^{2-n} = (2 - n) \left(\frac{|x|}{R} \right)^{2-n} (y - X)^{-n} (y - X)_i$$

$$\Rightarrow \frac{\partial G(x,y)}{\partial y_i} = \frac{1}{w_n} \left(\frac{(y-x)_i}{|y-x|^n} + \left(\frac{|x|}{R} \right)^{2-n} \frac{(y-X)_i}{(y-X)^n} \right)$$

$$= \frac{1}{w_n} \left(\frac{(y-x)_i}{|y-x|^n} + \frac{|x|^2}{R^2} \frac{(y-\frac{R^2}{|x|^2})x_i}{(y-x)^n} \right)$$

$$= \frac{1}{w_n} \frac{y_i}{|y-x|^n} \left(1 - \frac{|x|^2}{R^2} \right)$$

即,

$$\begin{array}{ccc} \frac{\partial G(x,y)}{\partial \nu} & = & \frac{\partial G(x,y)}{\partial y_i} \frac{y_i}{R} \\ & = & \frac{1}{w_n R} \frac{R^2 - |x|^2}{|y - x|^n} \end{array}$$

所以

$$u(x) = \frac{1}{w_n R} \int_{\partial R_D(0)} \varphi(y) \frac{R^2 - |x|^2}{|y - x|^n} d\sigma_y$$
 (3.23)

3.3 球上 Dirichlet 问题的解

下面我们可以考虑球上 Dirichlet 问题的解。

Theorem 3.3. $u \in C^{\infty}(B_R) \cap C(\overline{B_R})$ 其中

$$u(x) = \begin{cases} \int_{\partial B_R(0)} \frac{1}{w_n R} \frac{R^2 - |x|^2}{|y - x|^n} \varphi(y) d\sigma_y & x \in B_R(0) \\ \varphi(x), & x \in \partial B_R(0). \end{cases}$$
(3.24)

证明. 只需验证: $u \in C(\overline{B_R(0)})$ 。下面证: $\forall y_0 \in \partial B_R(0)$,有

$$\lim_{\substack{x \to y_0 \\ |x| < R}} \int_{\partial B_R(0)} \frac{R^2 - |x|^2}{w_n R|y - x|^n} \varphi(y) d\sigma_y = \varphi(y_0)$$
(3.25)

由

$$\int_{\partial B_{R}(0)} \frac{R^{2} - |x|^{2}}{w_{n}R|y - x|^{n}} \varphi(y) d\sigma_{y} - \varphi(y_{0}) \qquad (3.26)$$

$$= \underbrace{\int_{\partial B_{R}(0) \cap B_{\delta}(y_{0})} \frac{R^{2} - |x|^{2}}{w_{n}R|y - x|^{n}} (\varphi(y) - \varphi(y_{0})) d\sigma_{y}}_{\text{①}} + \underbrace{\int_{\partial B_{R}(0) \setminus B_{\delta}(y_{0})} \frac{R^{2} - |x|^{2}}{w_{n}R|y - x|^{n}} (\varphi(y) - \varphi(y_{0})) d\sigma_{y}}_{\text{②}}$$

从而 $u \in C(\overline{B_R(0)})$ 。

Definition 3.2. 我们称

$$K(x,y) = \frac{R^2 - |x|^2}{w_n R|y - x|^n} \quad , x \in B_R(0) \quad , y \in \partial B_R(0)$$
 (3.27)

为 Poisson 核。

Definition 3.3. 我们称

$$u(x) = \int_{\partial B_R(0)} K(x, y)\varphi(y)d\sigma_y \tag{3.28}$$

为 Poisson 积分公式。

显然 u 是

$$\begin{cases}
\Delta u = 0, & in \quad B_R(0), \\
u = \varphi, & on \quad \partial B_R(0).
\end{cases}$$
(3.29)

 $\varphi \in C^0(\bar{\Omega})$ 的解。

Theorem 3.4. (调和函数奇点可去性)

u 为 $B_R \setminus \{0\}$ 内的调和函数,满足当 $|x| \to 0$ 时

$$u(x) = \begin{cases} o(\log|x|) & n = 2, \\ o(|x|^{2-n}) & n \ge 3. \end{cases}$$

那么 u 可以在零点处补充定义,且 $u \in C^2(B_R), \Delta u = 0$ in B_R 。

证明. 假设 u 连续到边, 即 u 在 0 < |x| < R 内连续, 令 v 为方程

$$\begin{cases} \Delta v = 0 & in B_R, \\ v = u & on \partial B_R. \end{cases}$$
 (3.30)

只需证明 v=u in $B_R\setminus\{0\}$ 。令 $\omega=v-u$ in $B_R\setminus\{0\}$, $M=\max_{\partial B_r}|\omega|$,下面我们考虑 $n\geq 3$ 的情形。注意到 $\Delta\omega=0$ in $B_R\setminus\{0\}$,且 $|\omega(x)|\leq M_r\frac{r^{n-2}}{|x|^{n-2}}$,on ∂B_r 。由于 ω 和 $\frac{1}{|x|^{n-2}}$ 在 $B_R\setminus B_r$ 上均为调和函数,且

$$\pm u(x) - M_r \frac{r^{n-2}}{|x|^{n-2}} \le 0 \quad on \ \partial B_R \cup \partial B_r, \tag{3.31}$$

则 $|\omega(x)| \leq M_r \frac{r^{n-2}}{|x|^{n-2}}$ in $B_R \setminus B_r$ 。 另外

$$M_r = \max_{\partial B_r} |v - u| \le \max_{\partial B_r} |v| + \lim_{\partial B_r} |u| \le \max_{\partial B_R} |v| + \max_{\partial B_r} |u|. \tag{3.32}$$

当 $x \neq 0$ 时,

$$|\omega(x)| \le \frac{r^{n-2}}{|x|^{n-2}} \max_{\partial B_R} |v| + \frac{r^{n-2}}{|x|^{n-2}} \max_{\partial B_r} |u| \to 0, \quad as \ r \to 0,$$
 (3.33)

则
$$\omega = 0$$
 in $B_R \setminus \{0\}$ 。

Example 3.1. (*Poisson* 公式应用) $u \in C(\overline{\Omega})$ 满足平均值公式,则 u 调和。

证明. $\forall x_0 \in \Omega, \exists B_R(x_0) \subset \Omega$, 考虑方程

$$\begin{cases} \Delta h = 0 & in \ B_R(x_0), \\ h = u & on \ \partial B_R(x_0). \end{cases}$$
(3.34)

从而存在唯一解 $h \in C^{\infty}(B_R(x_0)) \cap C(\overline{B_R}(x_0))$ 。令 v = h - u,则 v 满足强极值原理,而 $v|_{\partial B_R} = 0$

$$\Rightarrow v \equiv 0 \tag{3.35}$$

$$\Rightarrow u \equiv h$$
, 即 u 调和。

4 一般线性椭圆算子极值原理

 $\Omega \subset R^n$ 有界区域 $a_{ij}(x), b_i(x), c(x) \in C(\overline{\Omega})$ 。 $0 < \lambda \le \Lambda < +\infty, \lambda I \le a_{ij}(x) \le \Lambda$ 。

$$Lu = \sum_{i,j} a_{ij}(x)u_{ij} + \sum_{i} b_{i}(x)u_{i} + c(x)u = f, \quad in \quad \Omega$$
(4.1)

 $u \in C^2(\Omega) \cap C(\overline{\Omega}).$

4.1 弱极值原理

这一节主要介绍一般线性椭圆算子的弱极值原理,以及以下的一些应用。

(1),解的有界估计。

这里的有界估计是指先验估计,即不知方程是否有界,若有解,分析 ||u||。先验估计加上泛函分析的知识可以得到解的存在性。

(2),解的梯度估计。

$$\left\{ egin{array}{ll} \dot{\mathbb{R}} & \dot{\mathbb{R}} & \dot{\mathbb{R}} \\ & \dot{\mathbb{R}} & \dot{\mathbb{R}} & \dot{\mathbb{R}} \\ \dot{\mathbb{R}} & \dot{\mathbb{R}} & \dot{\mathbb{R}} & \dot{\mathbb{R}} \\ & \dot{\mathbb{R}} & \dot{\mathbb{R}} \\ & \dot{\mathbb{R}} & \dot{\mathbb{R}} & \dot{\mathbb{R}} \\ & \dot{\mathbb{R}} & \dot{\mathbb{R}} \\ & \dot{\mathbb{R}} & \dot{\mathbb{R}} & \dot{\mathbb{R}} \\ & \dot{\mathbb{R}} \\ & \dot{\mathbb{R}} & \dot{\mathbb{R}} \\ & \dot{\mathbb{R}} & \dot{\mathbb{R}} \\ & \dot{\mathbb{R}} \\ & \dot{\mathbb{R}} \\ & \dot{\mathbb{R}} & \dot{\mathbb{R}} \\ & \dot{\mathbb{R}} \\ & \dot{\mathbb{R}} \\ & \dot{\mathbb{R}} & \dot{\mathbb{R}} \\ & \dot{\mathbb{R}} \\$$

(3), Hopf 引理 ⇒ 强极值原理。可应用在解的某种刚性上。

Lemma 4.1. $A \ge 0, B \le 0 \ \mathbb{N} \ tr(AB) \le 0$.

证明. \exists 正交阵 P, 使得

$$PBP^{-1} = \begin{bmatrix} \mu_1 & & & \\ & \mu_2 & & \\ & & \ddots & \\ & & & \mu_n \end{bmatrix}$$

 $\nu_i < 0$ 。且 $\widetilde{A} = PAP^{-1} \geq 0, \widetilde{a}_{ii} \geq 0$ 。从而

$$tr(AB) = tr(\widetilde{A} \begin{bmatrix} \mu_1 & & & \\ & \mu_2 & & \\ & & \ddots & \\ & & & \mu_n \end{bmatrix}) = \sum_{i=1}^n \tilde{a}_{ii} u_i \le 0$$

Theorem 4.1. (弱极值原理) 若

$$\begin{cases} c(x) \le 0\\ Lu \ge 0 \end{cases} \tag{4.2}$$

则 u 的非负最大值在 $\partial\Omega$ 达到。

证明. Step 1, $c(x) \equiv 0, Lu \geq 0, u$ 的最大值在边界达到。

情形一: Lu > 0。若 u 在 $x_0 \in \Omega$ 达到极大,则 $Du(x_0) = 0, D^2u(x_0) \le 0$ 。于是, 由观察知

$$Lu(x_0) = \sum_{ij} a_{ij}(x_0)u_{ij}(x_0) + \sum_{i} b_i(x_0)u_i(x_0) \le 0$$
(4.3)

与 Lu > 0 矛盾,故 u 的最大值在边界达到。

情形二: $Lu \ge 0$ 。选取辅助函数 $\varphi = u + \epsilon e^{\alpha x_1}$, $\alpha > 0$ 待定, $\epsilon > 0$ 。

$$\varphi_i = u_i + \epsilon \alpha e^{\alpha x_1} \delta_{il}$$

$$\varphi_{ij} = u_{ij} + \epsilon \alpha^2 e^{\alpha x_1} \delta_{il} \delta_{j1}$$

于是

$$L\varphi = \sum_{ij} a_{ij}\varphi_{ij} + \sum_{i} b_{i}\varphi_{i}$$

$$= \sum_{ij} a_{ij}u_{ij} + \sum_{i} b_{i}u_{i} + \epsilon\alpha e^{\alpha x_{1}}(\alpha a^{11} + b_{1})$$

$$= Lu + \epsilon\alpha e^{\alpha x_{1}}(\alpha a^{11} + b_{1})$$

由 $a_{11} \ge \lambda, |b_1| \le \Lambda$ 。取 $\alpha = \alpha_0$,使得 $\lambda \alpha_0 - \Lambda = 1$ 这时

$$L\varphi \ge \epsilon \alpha_0 e^{\alpha x_1} > 0$$

由情形一,知 $\varphi = u + \epsilon e^{\alpha_0 x_1}$ 的最大值在边界达到。于是,

$$\sup_{\Omega} u \leq \sup_{\Omega} \varphi \leq \sup_{\partial \Omega} \varphi \leq \sup_{\partial \Omega} u + \epsilon \sup_{\partial \Omega} e^{\alpha_0 x_1}$$

$$\sup_{\Omega} u \leq \sup_{\partial \Omega} u$$

Step 2, $c(x) \le 0$,Lu > 0,u 的非负最大值在边界达到。

若 $\sup_{\Omega} u = u(x_0) \ge 0$,且 $x_0 \in \Omega$,则

$$Du(x_0) = 0, D^2u(x_0) < 0$$

从而

$$Lu(x_0) = \sum_{ij} a_{ij}(x_0)u_{ij}(x_0) + \sum_{i} b_i(x_0)u_i(x_0) + c(x_0)u(x_0) \le 0$$

这与 Lu > 0 矛盾,故 u 的非负最大值在边界达到。

Step 3, $c(x) \le 0$, $Lu \ge 0$,u 的非负最大值在边界达到。令 $\varphi = u + \epsilon e^{\alpha x_1}$, $\alpha > 0$ 待定, $\epsilon > 0$ 。则

$$L\varphi = \epsilon e^{\alpha x_1} (\alpha^2 a^{11} + \alpha b_1 + c)$$

取 $\alpha = \alpha_0$, 使得 $\alpha_0^2 \lambda - (\alpha_0 + 1)\Lambda = 1$ 。这时有

$$L\varphi \ge \epsilon e^{\alpha_0 x_1} > 0$$

由 Step 2, 知 φ 的最大值在边界达到。于是,

$$\sup_{\Omega} u \leq \sup_{\Omega} \varphi \leq \sup_{\partial \Omega} \varphi \leq \sup_{\partial \Omega} u^{+} + \epsilon \sup_{\partial \Omega} e^{\alpha_0 x_1}$$

$$\sup_{\Omega} u \le \sup_{\partial \Omega} u^+$$

Remark 4.1. $U \subset \mathbb{R}^n$ 有界区域的条件是不能去掉的,我们给出一个具体的例子。若 $U = \{x_n > 0\}$, $\partial U = \{x_n = 0\}$,那么对于函数 $u = x_n$,我们有 $\Delta u = 0$ in U。但是显然 u 的最大值不是在 ∂U 上面达到的。

Remark 4.2. $c(x) \le 0$ 这个条件一般不可以去掉的,我们给出一个具体的反例。 $\Omega = [0, \pi] \times [0, \pi]$,

$$\begin{cases} \Delta u + 2u = 0 \\ u|_{\partial\Omega} = 0 \end{cases} \tag{4.4}$$

有解 $u=sinx_1sinx_2$, 而 $1=\sup_{\Omega}u=u(\frac{\pi}{2},\frac{\pi}{2})$, 并非在边界取得。

4.2 解的有界估计

Lemma 4.2. (比较定理)

$$\begin{cases} Lu \ge Lv & in \quad \Omega \\ u \le v & on \quad \partial \Omega \end{cases} \tag{4.5}$$

则有 $u \leq v$ in Ω 。

证明. 令 w = u - v,

$$\begin{cases} Lw \ge 0 & in \quad \Omega \\ w \le 0 & on \quad \partial \Omega \end{cases} \tag{4.6}$$

有弱极值原理, $w \le 0$ in $\Omega \Rightarrow u \le v$ in Ω .

对于 Dirichlet 问题最简单情形,

$$\begin{cases} \Delta u = 0 & in \quad \Omega \\ u|_{\partial\Omega} = \varphi \end{cases} \tag{4.7}$$

我们立刻可以知道,

$$\min_{\partial\Omega}\varphi \le u \le \max_{\partial\Omega}\varphi \tag{4.8}$$

情形一:

$$\begin{cases} \Delta u = 1 & in \quad \Omega \\ u|_{\partial\Omega} = 0 \end{cases} \tag{4.9}$$

证明. 首先由弱极值原理知, $u\leq 0$ in Ω 。注意到,当 $\Omega=B_R(0)$ 时, $u=\frac{|x|^2-R^2}{2n}$ 为方程的解。对于 $\forall\Omega,\exists R$ 使得 $\Omega\subset B_R(x_0)$ 。令 $v=\frac{|x-x_0|^2-R^2}{2n}$,于是有

$$\begin{cases} \Delta v = 1 & in \quad \Omega \\ v|_{\partial\Omega} < 0 \end{cases} \tag{4.10}$$

即

$$\begin{cases} \Delta v \ge \Delta u & in \quad \Omega \\ v \le u & on \quad \partial \Omega \end{cases} \tag{4.11}$$

由比较定理, $v = \frac{|x-x_0|^2 - R^2}{2n} \le u$ in Ω 。

综上

$$\frac{|x - x_0|^2 - R^2}{2n} \le u \le 0 \tag{4.12}$$

情形二:

$$\begin{cases} \Delta u = f & in \quad \Omega \\ u = \varphi & on \quad \partial \Omega \end{cases} \tag{4.13}$$

证明. $\exists R$ 使得 $\Omega \subset B_R(x_0)$,记 $F = ||f||_{c^0(\overline{\Omega})}, \Phi = ||\varphi||_{c^0(\partial\Omega)}$ 。 令 $v = -\Phi + \frac{|x-x_0|^2 - R^2}{2n} F$,于是有

$$\begin{cases} \Delta v = F \ge \Delta u & in \quad \Omega \\ v \le u & on \quad \partial \Omega \end{cases} \tag{4.14}$$

由比较定理, $v=-\Phi+rac{|x-x_0|^2-R^2}{2n}F\leq u$ in Ω 。同时 $-v=\Phi-rac{|x-x_0|^2-R^2}{2n}F$

$$\begin{cases} \Delta u \ge \Delta(-v) & in \quad \Omega \\ u \le -v & on \quad \partial\Omega \end{cases} \tag{4.15}$$

由比较定理 $u \le -v = \Phi - \frac{|x-x_0|^2 - R^2}{2n} F$ in Ω 。

综上

$$-\Phi + \frac{|x - x_0|^2 - R^2}{2n}F \le u \le \Phi - \frac{|x - x_0|^2 - R^2}{2n}F \quad in \quad \Omega$$
 (4.16)

情形三: $c(x) \leq 0$,

$$\begin{cases}
Lu = \sum_{i,j} a_{ij} u_{ij} + \sum_{i} b_{i} u_{i} + cu = f & in \quad \Omega \\
u = \varphi & on \quad \partial\Omega
\end{cases}$$
(4.17)

证明. 选取合适坐标系使得 $\Omega \subset 0 < x_1 < d$,记 $F = ||f||_{c^0(\overline{\Omega})}, \Phi = ||\varphi||_{c^0(\partial\Omega)}$ 。 考虑

$$v = \Phi + (e^{\nu d} - e^{\nu x_1})F \tag{4.18}$$

现在我们有 $v|_{\partial\Omega} \ge \Phi \ge u|_{\partial\Omega}$, 目标是 $u \le v$ in Ω , 由比较定理,于是希望 $Lu \ge Lv$ in Ω 。

$$v_i = -\mu F e^{\mu x_1} \delta_{i1} \tag{4.19}$$

$$v_{ij} = -\mu^2 F e^{\mu x_1} \delta_{i1} \delta_{j1} \tag{4.20}$$

则

$$Lv = \sum_{i,j} a_{ij}v_{ij} + \sum_{i} b_{i}v_{i} + cv \tag{4.21}$$

$$= \mu F e^{\mu x_1} (-\mu a_{11} - b_1) + c(x)\Phi + c(x)(e^{\nu d} - e^{\nu x_1})F$$
(4.22)

$$\leq \mu F(-\mu a_{11} - b_1) \tag{4.23}$$

只需取 $\mu = \mu_0 > 0$, 使得 $\mu_0^2 \lambda - \mu_0 \Lambda = 1 \Rightarrow Lv \leq -F \leq Lu$ 得到

$$u \le v \quad in \quad \Omega$$
 (4.24)

同理可得

$$-v \le u \quad in \quad \Omega \tag{4.25}$$

综上

$$||u||_{c^{0}(\overline{(\Omega)})} \leq \max_{\partial} \varphi + \max_{\overline{\Omega}} |f| e^{\mu_{0} diam(\Omega)}$$

$$\tag{4.26}$$

Remark 4.3. Neumann 问题的有界估计需要用到强极大值原理。

Remark 4.4. 针对

$$\begin{cases} f \in L^2(\Omega) \\ \partial \Omega \ \mbox{几何条件} \end{cases} \tag{4.27}$$

需要引入 sobolev 空间。

4.3 梯度估计

先考虑整体梯度估计归结到边界梯度估计。

Step 1,
$$\Delta u=0$$
 in $\Omega,u\in C^3(\Omega)\cap C^1(\Omega),\ \ \ \ \ \ \frac{1}{\Omega}|Du|^2\leq \sup_{\overline{\partial\Omega}}|Du|^2$

证明. 考虑辅助函数 $\varphi = |Du|^2$,

$$\Delta \varphi = (2u_j u_{ji})_i = 2|D^2 u|^2 + 2\sum_{j=1}^n u_j (\Delta u)_j = 2|D^2 u|^2 \ge 0$$
(4.28)

由弱极大值原理, |Du|2 最大值一定在边界达到。

$$\textbf{Step 2, } \Delta u = f \quad in \quad \Omega, f \in c^1(\overline{\Omega}), u \in C^3(\Omega) \cap C^1(\Omega), ||u||_{C^0(\overline{\Omega})} \leq M, \ \overleftarrow{\pi} \ \sup_{\overline{\Omega}} |Du|^2 \leq \sup_{\overline{\partial \Omega}} |Du|^2$$

证明. 考虑辅助函数 $\varphi = |Du|^2 + \alpha u^2 + e^{\beta x_1}$, α , β 待定。

$$\varphi_i = 2u_j u_{ji} + 2\alpha u u_i + \beta e^{\beta x_1} \delta_{i1}$$

$$\Delta \varphi = 2|D^2 u| + 2\sum_{j=1}^n u_j f_j + 2|D u|^2 + \underbrace{2uf}_{\textcircled{2}} + \beta^2 e^{\beta x_1}$$

$$\textcircled{1}$$

 $\mathbb{R} \alpha = 1$,

①
$$\geq 2|Du|^2 - 2|Du||Df| \geq -\frac{1}{2}|Df|^2$$

② $\geq -2||u||_{C^0}||f||_{C^0}$
 $e^{\beta x_1} \geq 1$

从而

$$\Delta \varphi \ge 2|D^2 u|^2 + \beta^2 - \frac{1}{2}|Df|^2 - 2||u||_{C^0}||f||_{C^0}$$
(4.29)

取 β_0 大, 使得

$$\beta_0^2 - \frac{1}{2}|Df|^2 - 2||u||_{C^0}||f||_{C^0} \ge 0 \tag{4.30}$$

从而

$$\Delta \varphi \ge 0 \tag{4.31}$$

运用弱极值原理

$$\sup_{\Omega} |Du|^2 \le \sup_{\Omega} \varphi \le \sup_{\partial \Omega} \varphi \le \sup_{\partial \Omega} |Du|^2 + ||u||_{C^0}^2 + e^{\beta_0 d}$$
(4.32)

即

$$\sup_{\Omega} |Du|^2 \le \sup_{\partial \Omega} |Du|^2 + C \qquad C \sim ||u||_{C^0}, f \tag{4.33}$$

Step 3, 假设 $u \in C^3(\Omega) \cap C^1(\overline{\Omega})$, 且满足

$$Lu = \sum_{i,j=1}^{n} a^{ij}(x)u_{ij} + \sum_{i=1}^{n} b^{i}(x)u_{i} + c(x)u = f \text{ in } \Omega,$$
(4.34)

 $0<\lambda I\leq a^{ij}\leq \Lambda I,\ \max\{||a^{ij}||_{C^1(\Omega)},||b^i||_{C^1(\Omega)},||c||_{C^1(\Omega)},||f||_{C^1(\Omega)}\}\leq \Lambda,\ \boxplus\ \Omega\subset\{0< x_1< d\}\circ I$

$$\sup_{\Omega} |Du| \le \sup_{\partial \Omega} |Du| + C. \tag{4.35}$$

证明. 考虑辅助函数 $\varphi = |Du|^2 + \alpha u^2 + e^{\beta x_1}, \alpha, \beta$ 待定。

$$\varphi_{i} = 2u_{k}u_{ki} + 2\alpha uu_{i} + \beta e^{\beta x_{1}}\delta_{i1}$$

$$\varphi_{ij} = 2\sum_{k=1}^{n} u_{k}u_{kij} + 2\sum_{k=1}^{n} u_{ki}u_{kj} + 2\alpha u_{i}u_{j} + 2\alpha uu_{ij} + \beta^{2}e^{\beta x_{1}}\delta_{i1}\delta_{j1}$$
(4.36)

下面计算 $L\varphi$

$$L\varphi = 2\sum_{i,j,k=1}^{n} a^{ij}u_{k}u_{ijk} + 2\sum_{i,j,k=1}^{n} a^{ij}u_{ki}u_{kj} + 2\alpha\sum_{i,j=1}^{n} a^{ij}u_{i}u_{j} + 2\alpha\sum_{i,j=1}^{n} a^{ij}uu_{ij} + 2\alpha\sum_{i,j$$

方程两边求导

$$\sum_{i,j=1}^{n} a^{ij} u_{ijk} + \sum_{i=1}^{n} b^{i} u_{ik} + c u_{k} + \sum_{i,j=1}^{n} a_{k}^{ij} u_{ij} + \sum_{i=1}^{n} b_{k}^{i} u_{i} + c_{k} u = f_{k}$$

$$(4.38)$$

简单处理

$$\textcircled{1}_2 \geq -2\lambda \sum_{i,j=1}^n -\frac{\Lambda^2}{2\lambda} |Du|^2 \Rightarrow \textcircled{1}_2 + \textcircled{2} \geq -\frac{\Lambda^2}{2\lambda} |Du|^2$$

$$(\mathbb{D}_3 \ge -2\Lambda |Du|^2$$

$$\textcircled{1}_4 \geq -(2c+\Lambda)|Du|^2 - \Lambda^2 - \Lambda M$$

(4.40)

因此

$$\textcircled{4} + \textcircled{7} + \textcircled{0} = 2\alpha u f - c\alpha u^2 \ge 2\alpha M\Lambda - \aleph\Lambda M^2$$

从而

$$L\varphi \ge (2\alpha\lambda - \frac{\Lambda^2}{2\lambda} - 6\Lambda - 1)|Du|^2 + e^{\beta x_1}(\lambda\beta^2 - \Lambda\beta - \Lambda) - \lambda^2 - \Lambda M - 2\alpha M\Lambda - \alpha\Lambda M^2$$
 (4.41)

先取 α 足够大, 再取 β 足够大, 即可得到

$$L\varphi \ge 0 \tag{4.42}$$

从而我们得到:

$$\begin{cases} Lu = f & in \Omega, \\ u|_{\partial\Omega} = \varphi \end{cases}$$
 (4.43)

此处 $c(x) \leq 0$, 加上前面的有界估计,

$$||u||_{c^{0}(\overline{\Omega})} \leq \max_{\partial \Omega} \varphi + C_{0}(n, \varphi) \max_{\overline{\Omega}} |f|$$
(4.44)

我们采用辅助函数 $\varphi = |Du|^2 + \alpha u^2 + e^{\beta x_1}$ 来得到梯度估计:

已经有 $\Omega \subset \{0 < x_1 < d\}$ 且 $\aleph, \beta > 0$ 充分大的时候, $L\varphi \ge 0$ 。从而利用弱极值原理可以得到

$$\sup_{\Omega} |Du|^2 \le \sup_{\Omega} (|Du|^2 + \alpha u^2 + e^{\beta x_1}) \le \sup_{\partial \Omega} (|Du|^2 + \alpha u^2 + e^{\beta x_1}) \le C + \sup_{\partial \Omega} |Du|^2$$

$$(4.45)$$

其中
$$C \sim \Omega, n, f, \varphi$$
.

现在已知 $||u||_{C^0(\Omega)}$ 估计,并将整体梯度估计归结为边界梯度估计。下面先考虑 Dirichlet 问题的边界梯度估计。

原则:辅助函数必须有距离函数。

Theorem 4.2. (Dirichlet 问题边界梯度估计) $u \in C^2(\Omega) \cap C^0(\Omega)$,

$$Lu = \sum_{i,j=1}^{n} a^{ij}(x)u_{ij} + \sum_{i=1}^{n} b^{i}(x)u_{i} + c(x)u = f \text{ in } \Omega$$
(4.46)

 $\lambda I \leq a^{ij} \leq \Lambda I, \ 0 < \lambda \leq \Lambda < +\infty, a^{ij}, b^i, c \in C^1(\Omega)$ 且 $\Omega \subset \{0 < x_1 < d\}, \Omega$ 满足一致外球条件,从而对 $\varphi \in C^2(\overline{\Omega}),$

$$\begin{cases}
Lu = f & \text{in } \Omega, \\
u|_{\partial\Omega} = \varphi
\end{cases}$$
(4.47)

则对于 $\forall x \in \overline{\Omega}, x_0 \in \partial \Omega$

$$|u(x) - u(x_0)| \le C|x - x_0| \tag{4.48}$$

 $C \ {\operatorname{\mathsf{A}}}- {\operatorname{\mathtt{L}}} + {\operatorname{\mathsf{L}}} +$

证明. 令 $\tilde{L}u = \sum_{i,j=1}^{n} a^{ij}(x)u_{ij} + \sum_{i=1}^{n} b^{i}(x)u_{i} = f - c(x)u = \tilde{f}$, 令 $v = u - \varphi$, 从而有

$$\begin{cases} \tilde{L}v = \tilde{f} - \tilde{L}\varphi & in \ \Omega, \\ v|_{\partial\Omega} = 0. \end{cases}$$
 (4.49)

变换后,只需考虑

$$\begin{cases} \tilde{L}u = \tilde{f} & \text{in } \Omega, \\ u|_{\partial\Omega} = 0. \end{cases}$$
 (4.50)

希望找 w(x), 使得 $\tilde{w} \leq F$, 此处 $F = ||f||_{C^0(\overline{\Omega})}$, 且 $w(x_0) = 0, w(x) \geq 0\partial\Omega$ 从而令 v = w - u, 有

$$\begin{cases}
\tilde{L}v = \tilde{L}w - \tilde{L}u \le -F - f \le 0 & \text{in } \Omega, \\
v|_{\partial\Omega} \le 0, \ v(x_0) = 0
\end{cases}$$
(4.51)

由比较定理, v 的最小值在边界达到, $v \ge 0$ in Ω , 即 $u \le w$ in Ω 。同理令 $\tilde{v} = w + u$, 有

$$\begin{cases}
\tilde{L}\tilde{v} \leq 0 & \text{in } \Omega, \\
v|_{\partial\Omega} \geq 0, \ v(x_0) = 0
\end{cases}$$
(4.52)

可得 $u \ge -w$ in Ω 。

 $\Rightarrow -w \le u \le w$, 于是只需找到合适的 w(x), 使得 $|w(x) - w(x_0)| \le C|x - x_0|$ 成立, 即有

$$|u(x) - u(x_0)| \le |w(x) - w(x_0)| \le C|x - x_0| \tag{4.53}$$

引入距离函数 d(x) = |x-y| - R, 令 $w = \psi$, 令 $w = \psi(d)$, ψ 待定,且满足一些条件:

$$\psi(0) = 0 \Rightarrow w(x_0) = 0$$

$$\psi'(d) > 0 \Rightarrow w(x) \ge 0, x \in \partial\Omega$$

另外后面还加条件, $\psi''(d) < 0$ 。 计算 $\tilde{L}w = \sum_{i,j=1}^{n} a^{ij}(x)w_{ij} + \sum_{i=1}^{n} b^{i}(x)w_{i}$

$$\psi_i = \psi_i d_i, \quad \psi_{ij} = \psi_{i'} d_i d_j + \psi_i d_{ij}$$

从而

$$\tilde{L}w = \psi'' \sum_{i,j=1}^{n} a^{ij} d_i d_j + \psi' \sum_{i,j=1}^{n} a^{ij} d_{ij} + \psi' \sum_{i=1}^{n} b^i d_i \ge -F$$
(4.54)

转化为常微分方程问题。简单计算,

$$d_{x_i} = \frac{x_i - y_i}{|x - y|}, \quad d_{ij} = \frac{\delta_{ij}}{|x - y|} - \frac{(x_i - y_i)(x_j - y_j)}{|x - y|^3},$$

则

$$\sum_{i,j=1}^{n} a^{ij} d_i d_j \geq \lambda |Dd|^2 = \lambda$$

$$\sum_{i,j=1}^{n} a^{ij} d_{ij} = \frac{\sum_{i,j=1}^{n} a^{ii}}{|x-y|} - \frac{\sum_{i,j=1}^{n} a^{ij} (x-y)_i (x-y)_j}{|x-y|^3}$$

$$\leq \frac{n\Lambda}{|x-y|} - \frac{\lambda}{|x-y|} \leq \frac{n\Lambda - \lambda}{R}$$

$$|\sum_{i=1}^{n} b^i d_i| \leq \Lambda$$

注意到另加了条件 $\psi^{''}(d) < 0$, 则归结为找 $\psi(d)$ 满足

$$\tilde{L}w = \lambda \psi^{"} + \left(\frac{n\Lambda - \lambda}{R} + \lambda\right)\psi^{'} \ge -F \tag{4.55}$$

解方程

$$\psi'' + a\psi' + b = 0 \Rightarrow \psi = -\frac{b}{a}d + C_1 - \frac{C_2}{a}e^{-ad}$$
(4.56)

再结合

$$\psi(0) = 0, \quad \psi'(d) > 0, \quad \psi''(d) < 0$$

从而

$$\psi(d) = \frac{b}{a} \left[\frac{e^{aD}}{1 - e^{-ad}} - d \right], D = diam(\Omega)$$
(4.57)

4.4 强极值原理

回忆在前学习调和方程 $\Delta u=0$ in U, 如果 u 在 U 的内部达到最大值,那么 u 是常数。之前的证明办法是平均值公式或者是 Harnack 不等式,对于一般的线性的一致椭圆方程,我们首先用弱极值原理证明一个重要的引理。

Definition 4.1. 区域 Ω 在 x_0 满足外球条件,即存在开球 $B \subset \Omega$,且 $x_0 \in \partial B$ 。

Theorem 4.3. (Hopf Lemma) $Lu \geq 0$ in Ω, Ω 为 R^n 中有界连通区域,且满足内球条件。 $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$, 且 $c \leq 0$ in Ω 。且存在 $x_0 \in \partial \Omega$ 使得 $u(x) < u(x_0), \forall x \in \overline{\Omega}, u(x_0) \leq 0$ 。则有

$$\frac{\partial u}{\partial n}(x_0) > 0 \tag{4.58}$$

其中n为 x_0 处的外法向。

证明. **Step 1**,先考虑 $\Omega = B_R(0), x_0 \in \partial B_R(0)$,令 $\tilde{\Omega} = B_R(0) \setminus B_{\frac{R}{2}}(0), \psi(x) = e^{-\mu x^2} - e^{-\mu R^2}, \mu$ 待定。考虑辅助函数

$$\varphi(x) = u(x) - u(x_0) + \epsilon \psi(x), \quad \epsilon > 0 \tag{4.59}$$

于是有

$$\varphi|_{\partial B_R(0)} = u(x)|_{\partial B_R(0)} - u(x_0) \le 0$$
 (4.60)

同时取合适的 ϵ_0 , 使得

$$\varphi|_{\partial B_{\frac{R}{2}}(0)} = u(x)|_{\partial B_{\frac{R}{2}}(0)} - u(x_0) + \epsilon_0(e^{-\mu \frac{R^2}{4}} - e^{-\mu R^2}) \le 0$$
(4.61)

现在 $L\psi = Lu + \epsilon L\psi$, 若能取得 $\mu = \mu_0$ 足够大,使得

$$\begin{cases}
L\psi \ge 0, & \text{in } \tilde{\Omega}, \\
\psi_{\partial \tilde{\Omega}} \le 0, & \psi(x_0) = 0.
\end{cases}$$
(4.62)

由弱极值原理, ψ 在 $\overline{\tilde{\Omega}}$ 的最大值在边界 x_0 处达到。于是

$$0 \le \frac{\partial \varphi}{\partial n}(x_0) = \frac{\partial u}{\partial n}(x_0) + \epsilon_0 \frac{\partial \psi}{\partial n}(x_0) \tag{4.63}$$

$$\Rightarrow \frac{\partial u}{\partial n}(x_0) \ge -\epsilon_0 \frac{\partial \psi}{\partial n}(x_0) = 2\epsilon_0 \mu_0 R e^{-\mu_0 R^2} > 0 \tag{4.64}$$

命题得证。现在找 μ_0 足够大, 使得 $L\psi \geq 0$, $in \tilde{\Omega}$ 。简单计算,

$$\psi_i = e^{-\mu x^2} (-2\mu x_i), \quad \psi_{ij} = e^{-\mu x^2} (4\mu^2 x_i x_j - 2\mu \delta_{ij})$$
 (4.65)

$$L\psi = \sum_{i,j=1}^{n} a^{ij}(x)\psi_{ij} + \sum_{i=1}^{n} b^{i}(x)\psi_{i} + c(x)\psi$$

$$= e^{-\mu x^{2}} \sum_{i,j=1}^{n} a^{ij}(x)(4\mu^{2}x_{i}x_{j} - 2\mu\delta_{ij}) + e^{-\mu x^{2}} \sum_{i=1}^{n} b^{i}(x)(-2\mu x_{i}) + c(x)(e^{-\mu x^{2}} - e^{-\mu R^{2}})$$
(4.66)

结合已知条件

$$\sum_{i,j=1}^{n} a^{ij} x_i x_j \ge \lambda |x|^2 \ge \frac{\lambda R^2}{4}, \quad \sum_{i=1}^{n} a^{ii} \le n\Lambda, \quad |b^i|, |c| \le \Lambda$$
 (4.67)

得到

$$L\psi \ge e^{-\mu x^2} \left[\lambda R^2 \mu^2 - (2n\Lambda + 2\lambda R)\mu - \Lambda \right] \tag{4.68}$$

从而只需取 $\mu = \mu_0$ 足够大,即可有 $L\psi \geq 0$, in $\tilde{\Omega}$ 。

Step 2,
$$\Omega$$
 一般情形时,用内球条件处理即可。

下面应用 hopf 引理证明强极值原理。

Theorem 4.4. (强极值原理) $Lu \geq 0$ in Ω,Ω 为 R^n 中有界连通区域。 $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$, $\lambda I \leq a^{ij} \leq \Lambda I$, $0 < \lambda \leq \Lambda < +\infty, |b_i|, |c| \leq \Lambda, a^{ij}, b^i, c \in C(\overline{\Omega})$, 若 u 在 Ω 内部达到非负极大值,则 $u \equiv$ 常数。

证明. 若 u 在 $x_0 \in \Omega$ 达到非负极大值 M。记 $D = \{x \in \Omega, u(x) = M\}$ 。由 u 的连续性,D 相对于 Ω 为闭的,则 $\Omega \setminus D$ 为开集。若有 $x \in \Omega \setminus D$,则 $\exists x \in B \subset \Omega \setminus D$, $\partial B \cap D = x_0$ 。从而由 Hopf 引理,有 $\frac{\partial u}{\partial n}(x_0) > 0$,这与 $Du(x_0) = 0$ 矛盾。故 $D = \Omega$ 。

下面考虑如何去掉条件 $c(x) \leq 0$ 。

Proposition 4.1. $u \in C^2(\Omega) \cap C^1(\overline{\Omega}), Lu \geq 0$ in Ω . 若有 $u \leq 0$ in $\overline{\Omega}$, 若 $u \leq 0$ in $\overline{\Omega}$, 则 u < 0 in Ω 或 $u \equiv 0$ 。

证明. 令 $c(x) = c^{+}(x) - c^{-}(x)$, c^{+} 为 c 的正部 c^{-} 为 c 的负部。由 $Lu \ge 0$, 则有

$$\sum_{i,j=1}^{n} a^{ij}(x)u_{ij} + \sum_{i=1}^{n} b^{i}(x)u_{i} - c^{-}(x)u = -c^{+}(x)u \ge 0$$

$$(4.69)$$

由强极值原理可得 u < 0 in Ω 或 $u \equiv 0$ in Ω .

Remark 4.5. 反之, $u \ge 0$ in $\overline{\Omega}$, $Lu = \sum_{i,j=1}^n a^{ij}(x)u_{ij} + \sum_{i=1}^n b^i(x)u_i + c(x) \le 0$ in Ω 。有 u > 0 in Ω 或 $u \equiv 0$ in Ω .

Remark 4.6. $Lu \leq 0, c(x) \leq 0$,则 u 的非正最小值在边界达到。

下面介绍一些强极值原理的应用。考虑方程

$$\begin{cases} \Delta u = -2 & \text{in } \Omega \subset \mathbb{R}^2, \\ u|_{\partial\Omega} = 0 \end{cases}$$
 (4.70)

由弱极值原理,则已有 $u \ge 0$,再由强极值原理可知 u > 0 in Ω 。从而由 hopf 引理,有 $\frac{\partial u}{\partial n}|_{\partial\Omega} < 0$,此处 n 为外法向。而又 $u = v^2$,则有

$$u_i = 2vv_i , -2 = \Delta u = 2|Dv|^2 + 2v\Delta v$$
 (4.71)

则方程变为

$$\begin{cases} v\Delta v = -(1+|Dv|^2) & in \ \Omega \subset \mathbb{R}^2, \\ v|_{\partial\Omega} = 0 \end{cases}$$
 (4.72)

$$v_{i} = -\frac{1}{2}u^{-\frac{1}{2}}u_{i}$$

$$v_{ij} = \frac{1}{4}u^{-\frac{3}{2}}u_{i}u_{j} - \frac{1}{2}u^{-\frac{1}{2}}u_{ij} = \frac{1}{4}u^{-\frac{3}{2}}(u_{i}u_{j} - 2uu_{ij})$$

从而

$$\psi = 8v^{4} \frac{u^{-3}}{16} \begin{vmatrix} u_{1}^{2} - 2uu_{11} & u_{1}u_{2} - 2uu_{12} \\ u_{1}u_{2} - 2uu_{12} & u_{2}^{2} - 2uu_{22} \end{vmatrix}
= \frac{1}{2u} \left[4udetu_{ij} + 2u(u_{1}u_{2}u_{12} - u_{2}^{2}u_{11} - u_{1}^{2}u_{22}) \right]
= \varphi$$
(4.73)

由前面习题计算结果知 $\Delta \varphi \leq 0$ 。又由于在 $\partial \Omega$ 上,有 u=0,结合曲线 $u(x_1,x_2)=const$ 的曲率表达式

$$k = \frac{2u_1u_2u_{12} - u_2^2u_{11} - u_1^2u_{22}}{|Du|^3}$$
(4.74)

有

$$\varphi|_{\partial\Omega} = 2u_1 u_2 u_{12} - u_1^2 u_{22} - u_2^2 u_{11} = k|Du|^3|_{\partial\Omega}$$
(4.75)

由于 Ω 是凸区域,于是有 k>0,所以 $\varphi|_{\partial\Omega}\geq 0$ 。所以 φ 满足一致双曲条件

$$\begin{cases}
\Delta \varphi \leq 0 & \text{in } \Omega \subset R^2, \\
\varphi |_{\partial \Omega} \geq 0
\end{cases}$$
(4.76)

由弱极值原理可知, $\varphi \ge 0$ 。再由强极值原理得到, $\varphi > 0$ 或 $\varphi \equiv 0$ 。下面把上述结果一般化。

Proposition 4.2. 方程

$$\left\{ \begin{array}{ll} v\Delta v = -(1+|Dv|^2) & in \ \Omega \subset R^2, \\ v < 0 & in \ \Omega \end{array} \right.$$

其中 v 为严格凸函数 $(\Rightarrow \Delta v > 0)$, 若 $\varphi = detv_{ij} \geq 0$, 则有 $\varphi \equiv 0$ in Ω 或 $\varphi > 0$ in Ω .

证明. 采用反证法。

假设 $\exists x_0 \in \Omega$ 使得 $\varphi(x_0) = 0$ 。令 $E = \{x \in \Omega | \varphi(x) = 0\}$,E 在 Ω 内相对闭。欲证明 E 在 Ω 内相对开,从 而 $E = \Omega$,也即 $\varphi \equiv 0$ 。只需证明,若 $x_1 \in \Omega$, $\varphi(x_1) = 0$,则 $\exists \epsilon_0 > 0$ s.t. $\varphi(x) \equiv 0$, $\forall x \in B_{\epsilon_0}(x_1)$ 。而又由强 极值原理及 $\varphi \geq 0$,只需 $\exists C_1, C_2$,使得

$$\Delta \varphi \le C_1 |D\varphi| + C_2 \varphi \quad in \quad B_{\epsilon_0}(x)$$
 (4.77)

根据条件,

$$\varphi(x_1) = 0, \quad v_{11} + v_{22} > 0$$
 (4.78)

对于 $\bar{x} \in x_1$ 小邻域上,旋转坐标系,使 $x_{ij}(\bar{x})$ 对角,且有 $v_{11}(\bar{x}) \geq v_{22}(\bar{x}), v_{12}(\bar{x}) = 0$ 。由于 $v_{11}(\bar{x}) + v_{22}(\bar{x}) > 0$ 。从而有 $v_{11}(\bar{x}) \geq C_0 > 0$ 。

以下计算在点 \bar{x} 上进行,

由 $\varphi(\bar{x}) = v_{11}(\bar{x_1})v_{22}(\bar{x_1})$, 则 $v_{22}(\bar{x_1}) = \frac{\varphi(\bar{x})}{v_{11}(\bar{x_1})}$, 简单计算

$$\varphi_i = v_{11i}v_{22} + v_{11}v_{22i} - 2v_{12}v_{12i} \tag{4.79}$$

$$\Rightarrow v_{22i} = \frac{\varphi_i}{v_{11}} + \frac{v_{11i}}{v_{11}} \cdot \frac{\varphi}{v_{11}} \tag{4.80}$$

$$\Delta \varphi = \underbrace{v_{11ii}v_{22}}_{\textcircled{1}} + \underbrace{2v_{11i}v_{22i}}_{\textcircled{2}} + \underbrace{v_{11}v_{22ii}}_{\textcircled{3}} - \underbrace{2v_{12i}^2}_{\textcircled{4}} \tag{4.81}$$

由 $\Delta v = f(v, Dv) = -\frac{1+|Dv|^2}{v}$ 进一步处理

$$\textcircled{1} = D_{11} f \frac{\varphi}{v_{11}}$$

$$\textcircled{2} = 2v_{111}v_{221} + 2v_{112}v_{222} = 2v_{111} \left(\frac{\varphi_1}{v_{11}} - \frac{\varphi}{v_{11}^2}\right) + 2v_{112} \left(\frac{\varphi_2}{v_{11}} - \frac{v_{112}\varphi}{v_{11}^2}\right)$$

$$\textcircled{3} : \Delta v_2 = f_v v_2 + f_{D_v} v_{12}$$

$$\Delta v_{22} = f_{vv}v_2^2 + f_{vD_i}v_2v_{2i} + f_vv_{22} + f_{D_iv}v_{i2}v_2 + f_{D_i}f_{D_j}v_{i2}v_{j2} + f_{D_i}v_{i22}$$
$$v_{11} = f - v_{22} = f - \frac{\varphi}{u_1}$$

$$3 = f f_{vv} v_2^2 + D(\varphi) + O(|D\varphi|)$$
$$4 = -2u_{112}^2 - 2v_{122}^2$$

于是有

$$f_v = \frac{1 + |Dv|^2}{v^2}, f_{vv} = \frac{-2(1 + |Dv|^2)}{v^3} \Rightarrow ff_{vv}v_2^2 - f_v^2v_2^2 = \left[\frac{2(1 + |Dv|^2)^2}{v^4} - \frac{2(1 + |Dv|^2)^2}{v^4}\right]v_2^2$$
(4.82)

即

$$\Delta \varphi \le C_1 |D\varphi| + C_2 \varphi \tag{4.83}$$

Theorem 4.5. Neumann 问题有界估计

情形一:

$$\begin{cases} \Delta u = 0 & in \quad \Omega \\ \frac{\partial u}{\partial n} = -u + \varphi(x) & on \quad \partial \Omega \end{cases}$$
(4.84)

其中 n 为单位外法向。

证明. $\Delta u = 0 \Rightarrow$ 最大值在 $x_0 \in \partial$ 达到,总有

$$\frac{\partial u}{\partial n}(x_0) \ge 0 \quad \Rightarrow \quad -u(x_0) + \varphi(x_0) \ge 0$$
$$\Rightarrow \quad u(x_0) \le \varphi(x_0) \le \sup_{\partial \Omega} \varphi$$

同理 $\Delta u = 0 \Rightarrow$ 最小值在 $x_1 \in \partial$ 达到,总有

$$\frac{\partial u}{\partial n}(x_1) \le 0 \quad \Rightarrow \quad -u(x_1) + \varphi(x_1) \le 0$$
$$\Rightarrow \quad u(x_0) \le \varphi(x_1) \le \inf_{\partial \Omega} \varphi$$

即

$$\inf_{\partial\Omega}\varphi \le u \le \sup_{\partial\Omega}\varphi$$

情形二:

$$\begin{cases} \Delta u = f & in \quad \Omega \\ \frac{\partial u}{\partial n} = -u + \varphi(x) & on \quad \partial \Omega \end{cases}$$
(4.85)

其中 n 为单位外法向, $f \ge 0$ 。

证明. $\Delta u = 0 \Rightarrow$ 最大值在 $x_0 \in \partial$ 达到,总有

$$\frac{\partial u}{\partial n}(x_0) \ge 0 \quad \Rightarrow \quad -u(x_0) + \varphi(x_0) \ge 0$$
$$\Rightarrow \quad \sup_{\overline{\Omega}} \le \sup_{\partial \Omega} \varphi$$

下面考虑 u 的最小值, 取辅助函数

$$\Phi = u - \alpha |x|^2$$

$$\Delta \Phi = \Delta u - 2n\alpha = f - 2n\alpha$$

取 $\alpha = \frac{|f|_{C^0(\overline{\Omega})}}{2n}$, 则有 $\Delta \Phi \leq 0$ $\Rightarrow \Phi$ 的最小值在 $x_1 \in \Omega$ 达到。

$$0 \ge \frac{\partial \Phi}{\partial n}(x_1) = \frac{\partial u}{\partial n}(x_1) - 2\alpha < x_1, n >$$
$$= -u(x_1) + \varphi(x_1) - 2\alpha < x_1, n >$$

$$\Rightarrow u(x_1) \ge \varphi(x_1) - 2\alpha < x_1, n >$$

而

$$\Phi(x_1) = \min_{\overline{\Omega}} \Phi \le \min_{\overline{\Omega}} u - \alpha \min_{\overline{\Omega}} |x|^2$$

则

$$\min_{\overline{\Omega}} u \geq \min_{\overline{\Omega}} \Phi + \alpha \min_{\overline{\Omega}} |x|^{2}$$

$$= u(x_{1}) - \alpha |x_{1}|^{2} + \alpha \min_{\overline{\Omega}} |x|^{2}$$

$$\geq \varphi(x_{1}) - \alpha < x_{1}, n > -\alpha |x_{1}|^{2} + \alpha \min_{\overline{\Omega}} |x|^{2}$$

$$\geq \inf_{\overline{\Omega}} \varphi - C_{0}(\Omega)$$

同理, 现取辅助函数

$$\Phi = u + \alpha |x|^2$$
$$\Delta \Phi = f + 2n\alpha$$

取 $\alpha = \frac{|f|_{C^0(\overline{\Omega})}}{2n}$,则有 $\Delta \Phi \ge 0$

⇒ Φ 的最大值在 $x_0 \in \Omega$ 达到。通过同样的分析可以得出

$$\max_{\overline{\Omega}} u \le \max_{\overline{\Omega}} \varphi + C_1(\Omega)$$

综上:

$$\inf_{\overline{\Omega}} \varphi - C(\Omega) \le u \le \max_{\overline{\Omega}} \varphi + C(\Omega)$$

下面做 Neumann 问题梯度估计

$$\begin{cases} \Delta u = f & in \quad \Omega \\ \frac{\partial u}{\partial n} = \varphi(x) & on \quad \partial \Omega \end{cases}$$
(4.86)

其中 $\varphi \in c^3(\overline{\Omega})$ 若假设 $|u|_{L^\infty(\Omega)} \leq M_0$,且已有梯度内估计 $\sup_{\Omega'} \leq C(M_0,f,\Omega',\Omega,n)$ 。问 $\sup_{\overline{\Omega}} |Du| \leq C(M_0,f,\Omega,n)$ 。

证明. (承认) 若 $\partial\Omega \in C^2, \exists d_0 > 0$ s.t. $d(x) = dist(x, \partial\Omega \in C^2(\Omega_{d_0}),$ 其中 $\Omega_{d_0} = \{x \in \Omega | dist(x, \partial\Omega) < d_0\}$ 。 $|Dd|^2 = 1, |D^2d| \le C_0, d_n = -1(n \partial)$ 。 令

$$w = u + \varphi dw_n|_{\partial\Omega} = u_n + (\varphi_n d + \varphi d_n)|_{\partial\Omega} = u_n - \varphi = 0$$
(4.87)

现在取定 $d_0,\Omega\setminus\Omega_{d_0}$ 已有梯度内估计。下面只需要在 Ω_{d_0} 处理。选取辅助函数 $\Phi = log|Dw|^2 + h(u) + \alpha d$,其中 $h(u) = -log(1 + M_0 - u)$ 。

- Φ 达到最大值分为以下三种情况:
- ①, Φ 在 $\partial\Omega_d$ 达到最大值。这种情况下,由梯度内估计已知结果。
- ②, Φ 在 $x_0 \in \partial \Omega$ 达到最大值。于是有

$$0 \le \frac{\partial \Phi}{\partial n}(x_0) = \frac{|Dw|^2}{|Dw|^2} + h^{'}u_n + \alpha d_n \tag{4.88}$$

将 $(|Dw|^2)|_n$ 分解成法向和切向。

$$(|Dw|^2)|_n = (w_n^2 + |D'w|^2)_n \stackrel{w_n|_{\partial\Omega}=0}{=} (|D'w|^2)_n \tag{4.89}$$

而

$$|D'w|^2 = |Dw|^2 - (Dw \cdot Dd)^2 = (\delta_{ij} - d_i d_j) w_i w_j = c^{ij} w_i w_j$$
(4.90)

$$|D'w|_n^2 = C_n^{ij} w_i w_j + 2C^{ij} w_{in} w_j \tag{4.91}$$

$$w_{in} = u_{in} - (\varphi d)_{in} \tag{4.92}$$

而

$$C^{ij}(\varphi d)_{in} \le C_0 \tag{4.93}$$

关键步骤是求切向导,下面处理 $C^{ij}u_{in}$ 该项。由 $u_n = \varphi$, 求切向导

$$C^{ij}(u_n - \varphi)_i = 0 \Rightarrow C^{ij}u_{ni} = C^{ij}\varphi_i \tag{4.94}$$

综上所述,

$$|D'w|^2|_{\partial\Omega} \le C_0|Dw|^2 + C_1|Dw| \tag{4.95}$$

从而, 在 x_1 处

$$-\alpha + h'\varphi + \frac{C_0|Dw|^2 + C_1|Dw|}{|Dw|^2} \ge 0 \tag{4.96}$$

又

$$h = -log(1 + M - u)$$
 , $h' = \frac{1}{1 + M - u}$
 $\Rightarrow \frac{1}{1 + 2M} \le h'(u) \le 1$ (4.97)

若 α 足够大,则 $\frac{\Phi}{n}(x_0) < 0$ 矛盾, Φ 不在 $\partial\Omega$ 达到最大值。

③, Φ 在 $x_1 \in \Omega_{d_0}$ 达到极大值,则有 $\Phi_i(x_1 = 0), \Delta\Phi_i(x_1) \leq 0$,以下所有计算在 x_1 处做。

$$0 = \Phi_{i} = \frac{(|Dw|^{2})_{i}}{|Dw|^{2}} + h^{'}u_{i} + \alpha d_{i} \Rightarrow \frac{(|Dw|^{2})_{i}}{|Dw|^{2}} = -(h^{'}u_{i} + \alpha d_{i})$$

$$(4.98)$$

$$\Delta \Phi = \underbrace{\frac{\Delta(|Dw|^2)}{|Dw|^2}}_{\text{(I)}} - \underbrace{\frac{|D|Dw|^2|^2}{|Dw|^4}}_{\text{(2)}} + h''|Du|^2 + h'\Delta u + \alpha \Delta d \tag{4.99}$$

计算①

$$\Delta(|Dw|^2) = 2(w_j w_{ji})_i = 2\sum_{i,j} w_{ij}^2 + 2\sum_j (\Delta w)_j$$
(4.100)

$$\textcircled{1} = \underbrace{\frac{2\sum_{i,j} w_{ij}^2}{|Dw|^2}}_{\textcircled{1}_1} + \underbrace{\frac{2\sum_{j} (\Delta w)_j}{|Dw|^2}}_{\textcircled{1}_2} \tag{4.101}$$

$$\textcircled{1}_{1} = \frac{2\sum_{i}\sum_{j}w_{ij}^{2}\sum_{j}w_{j}^{2}}{|Dw|^{4}} \ge \frac{2\sum_{i}(\sum_{j}w_{ij}^{2}w_{j})^{2}}{|Dw|^{4}} = \frac{1}{2}\textcircled{2}$$
(4.102)

$$\textcircled{1}_2 = \frac{2\sum_j w_j f_j + 2\sum_j w_j (\Delta(\varphi d))_j}{|Dw|^2} \ge -C|Dw|$$
(4.104)

不妨设 $|Dw|^2 > 1$,否则不必做了: $|Du| \le |Dw| + C \le C'$ 。

$$0 \ge \Delta \Phi(x_1) \ge \left[h^{"} - \frac{3}{4} (h^{'}) \right] |Du|^2 - C_1 |Du| + h^{'} f - C_0 \alpha - \frac{3}{2} \alpha$$
 (4.105)

$$|Du|^2 - C_1|Du| - C_2 \le 0 \Rightarrow |Du| \le C$$
 (4.106)

Chapter 3

Sobolev 空间

1 L^p 函数

1.1 重要的不等式

这一节中我们主要复习一下关于 L^p 函数的一些重要的不等式,以及卷积的定义及基本性质和应用,和 截断函数的定义和应用,还有单位分解定理等等。

Theorem 1.1. (Cauchy 不等式)

$$2ab \le a^2 + b^2,$$

$$2ab \le \varepsilon a^2 + \frac{b^2}{\varepsilon}, \ (\forall \ \varepsilon > 0)$$

$$(\sum a_i b_i)^2 \le (\sum a_i^2)(\sum b_i^2).$$

Theorem 1.2. (Young 不等式)

若 $\frac{1}{p} + \frac{1}{q} = 1$, $1 \le p, q \le +\infty$, 则有

$$ab \le \frac{a^p}{p} + \frac{b^q}{q} \quad (a, b \ge 0).$$
 (1.1)

证明. 令 $f(s) = \frac{s^p}{p} + \frac{1}{q} - s$, $s \ge 0$, 那么可得 $f'(s) = s^{p-1} - 1$, $f''(s) = (p-1)s^{p-2} \ge 0$, f'(1) = 0。可知 当 s = 1 时有最小值,所以 $s \le \frac{s^p}{p} + \frac{1}{q}$ 。取 $s = \frac{a}{b^{\frac{q}{p}}}$,便可以证明该不等式。

Theorem 1.3. (Holder 不等式)

 $f\in L^p$, $g\in L^q$, $\frac{1}{p}+\frac{1}{q}=1$, 则有

$$||fg||_{L^1} \le ||f||_{L^p} ||g||_{L^q}. \tag{1.2}$$

证明. 令 $a = \frac{f}{||f||_{L^p}}, b = \frac{g}{||g||_{L^q}}$ 。利用 Young 不等式,则有

$$\int |ab|dx \le \frac{1}{p} \int |a|^p dx + \frac{1}{q} \int |b|^q dx = \frac{1}{p} + \frac{1}{q} = 1.$$
 (1.3)

即

$$||fg||_{L^1} \le ||f||_{L^p}||g||_{L^q}. \tag{1.4}$$

Theorem 1.4. (Minkowski 不等式)

若 $f,g \in L^p$, 则有

$$||f+g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}. \tag{1.5}$$

证明.

$$||f+g||_{L^{p}}^{p} \leq \int |f+g|^{p-1}(|f|+|g|)dx$$

$$= \int |f+g|^{p-1}|f|dx + \int |f+g|^{p-1}|g|dx$$

$$\leq \left(\int |f+g|^{p-1\cdot\frac{p}{p-1}}dx\right)^{\frac{p-1}{p}}\left(\int |f|^{p}dx\right)^{\frac{1}{p}} + \left(\int |f+g|^{p-1\cdot\frac{p}{p-1}}dx\right)^{\frac{p-1}{p}}\left(\int |g|^{p}dx\right)^{\frac{1}{p}}$$

$$= ||f+g||_{L^{p}}^{p-1}(||f||_{L^{p}} + ||g||_{L^{p}}).$$

即

$$||f+g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}. \tag{1.6}$$

Theorem 1.5. (其他不等式)

若 0 , 则

$$(x+y)^p < x^p + y^p, (x,y>0).$$
 (1.7)

若 p > 1,则

$$(x+y)^p \le 2^{p-1}(x^p+y^p), \quad (x,y>0).$$
 (1.8)

证明. 利用 $g(t)=(1+t)^p-(1+t^p)\leq 0$,令 $t=\frac{x}{y}$ 可以证明(1.7)。利用 $f(t)=\frac{(1+t)^p}{1+t^p}, f(t)\leq f(1)$,可以证明(1.8)。

利用上面陈述的不等式我们可以证明下面的定理。

Theorem 1.6. $L^p(\mathbb{R}^n)$ ($1 \le p \le +\infty$) 是完备的 Banach 空间。

证明. 证明 $L^p(\mathbb{R}^n)$ 的完备性,等价于证明 $\{f_i\}_{i=1}^{\infty}$ 为 $L^p(\mathbb{R}^n)$ 中的 Cauchy 列,则 $\exists f \in L^p(\mathbb{R}^n)$ 使得 $f_i \to f$ in $L^p(\mathbb{R}^n)$ 。

当 $1 \le p \le +\infty$ 时,我们在 $L^p(\mathbb{R}^n)$ 中选取 Cauchy 列, $\{f_j\}_{j=1}^{\infty}$ 满足

$$\lim_{i,j\to+\infty} ||f_i - f_j||_{L^p} = 0, \tag{1.9}$$

我们只需要证明存在 $f \in L^p(\mathbb{R}^n)$, 满足

$$\lim_{i \to +\infty} ||f_i - f||_{L^p} = 0, \tag{1.10}$$

关键就在于我们需要将这个极限函数 f 找出来。

由 Cauchy 列知, $\{f_j\}_{j=1}^\infty$ 是依测度收敛的 Cauchy 列,利用实变函数 Resiz 定理(周民强, P_{135} 定理 3.17),存在子列 $\{f_{i_k}\}_{k=1}^\infty$ 在 \mathbb{R}^n 上几乎处处收敛于函数 f(x)。下面证明 $\lim_{i\to+\infty}||f_i-f||_{L^p}=0$,和 $f\in L^p(\mathbb{R}^n)$ 。

Case 1, 当 $p = +\infty$ 时。设 $\{f_k\}_{k=1}^{\infty}$ 满足

$$\lim_{k,j\to\infty} ||f_k - f_j||_{L^{\infty}(\mathbb{R}^n)} = 0, \tag{1.11}$$

因为对于任意的 k, j 和对于几乎处处的 $x \in E$ 有

$$|f_k(x) - f_j(x)| \le ||f_k - f_j||_{L^{\infty}(\mathbb{R}^n)},$$
(1.12)

则存在零测集 Z,对于一切的 k, j 有

$$|f_k(x) - f_j(x)| \le ||f_k - f_j||_{L^{\infty}(\mathbb{R}^n)}, \ x \notin Z.$$
 (1.13)

从而存在 f(x) 使得

$$\lim_{k \to \infty} f_k(x) = f(x), \quad x \in \mathbb{R}^n \setminus Z, \tag{1.14}$$

显然 $f \in L^{\infty}(\mathbb{R}^n)$ 。

现在对于任意的 $\varepsilon > 0$, 取自然数 N, 使得

$$||f_k - f_j||_{\infty} < \varepsilon, \quad j, k > N, \tag{1.15}$$

由于当 k > N 且 $x \in \mathbb{R}^n \setminus Z$ 时有

$$|f_k(x) - f(x)| = \lim_{j \to \infty} |f_k(x) - f_j(x)| \le \varepsilon.$$
(1.16)

故当 $k \geq N$ 时有 $||f_k - f||_{L^\infty(\mathbb{R}^n)} \leq \varepsilon$,表明当 $k \to \infty$ 时, $||f_k - f||_\infty \to 0$ 。

Case 2, $1 \le p < +\infty$ 时, $\forall \ \varepsilon > 0$, $\diamondsuit \ E_{j,k}(\varepsilon) = \{x \in \mathbb{R}^n : |f_j(x) - f_k(x)| \ge \varepsilon\}$ 。 则

$$\varepsilon^{p} m(E_{j,k}(\varepsilon)) = \int_{E_{j,k}(\varepsilon)} \varepsilon^{p} dx$$

$$\leq \int_{E_{j,k}(\varepsilon)} |f_{j}(x) - f_{k}(x)|^{p} dx$$

$$\leq \int_{\mathbb{R}^{n}} |f_{j}(x) - f_{i}(x)|^{p} dx$$

$$= ||f_{j} - f_{k}||_{L^{p}(\mathbb{R}^{n})}^{p}.$$
(1.17)

则

$$m(E_{j,k}(\varepsilon)) \le \left(\frac{1}{\varepsilon}||f_j - f_k||_{L^p(\mathbb{R}^n)}\right)^p \to 0, \quad (j,k\to\infty).$$
 (1.18)

则 $\{f_i\}_{i=1}^\infty$ 依测度收敛。不妨假设 $f_i(x)$ 依测度收敛于 f(x),那么由 Riesz 表示定理,可知存在子列 $\{f_{i_l}\}_{l=1}^\infty \to f(a,e)$,则由 Fatou 定理

$$0 \leq \int_{\mathbb{R}^n} |f_i - f|^p dx = \int_{\mathbb{R}^n} \lim_{l \to \infty} |f_i - f_{i_l}|^p dx$$

$$\leq \liminf_{l \to \infty} \int_{\mathbb{R}^n} |f_i - f_{i_l}|^p dx$$

$$\leq \lim_{l \to \infty} ||f_i - f_{i_l}||^p_{L^p(\mathbb{R}^n)} \to 0 \ (i \to \infty). \tag{1.19}$$

所以

$$\int_{\mathbb{D}_n} |f_i - f|^p dx \to 0, \quad (i \to \infty). \tag{1.20}$$

由 Minkowski 不等式可得, $||f||_{L^p(\mathbb{R}^n)} \leq ||f_i - f||_{L^p(\mathbb{R}^n)} + ||f_i||_{L^p(\mathbb{R}^n)} < +\infty$,则 $f \in L^p(\mathbb{R}^n)$ 。

2 卷积

Recall: 由周民强书的 Thm6.23 知道 $C_0^{\infty}(\mathbb{R}^n)$ 函数在 $L^p(\mathbb{R}^n)$ 中稠密。这个定理表明我们可以将经典的 Newton-Leibniz 微积分同实分析联系在一起,具体来说我们可以利用逼近的观点解决实分析中可积函数的问题,那么自然要问是不是能够将这样的结果也推广到 Sobolev 空间中去呢?

Definition 2.1. $f,g \in L^1(E)$, f,g 的卷积定义为:

$$(f * g)(x) = \int_{E} f(x - y)g(y)dy. \tag{2.1}$$

由周民强书中 Cor.3.24, 可知 f(x-y) 为 $\mathbb{R}^n \times \mathbb{R}^n$ 上的可测函数,由 Theorem.4.34,可知 (f*g)(x) 是 \mathbb{R}^n 上的可积函数。由 4.5 节的例 4, 当 $f \in L^1(\mathbb{R}^n)$, g 为有界可测函数,则 (f*g)(x) 为一致连续函数。

Theorem 2.1. (卷积的 Young 不等式)

 $f \in L^1(\mathbb{R}^n), g \in L^p(\mathbb{R}^n)$,则有

$$||f * g||_{L^p} \le ||f||_{L^1} ||g||_{L^p}. \tag{2.2}$$

证明.

$$|f * g| \leq \int_{\mathbb{R}^{n}} |f(x-y)||g(y)|dy$$

$$= \int_{\mathbb{R}^{n}} (|f(x-y)|^{\frac{1}{q}})(|f(x-y)|^{\frac{1}{p}})|g(y)|dy \quad (\frac{1}{q} + \frac{1}{p} = 1)$$

$$\leq \left(\int_{\mathbb{R}^{n}} |f(x-y)|dy\right)^{\frac{1}{q}} \left(\int_{\mathbb{R}^{n}} |f(x-y)||g(y)|^{p} dy\right)^{\frac{1}{p}}.$$
(2.3)

那么则有:

$$\int |f * g|^p dx \le ||f||_{L^1}^{\frac{p}{q}} \int (\int_{\mathbb{R}^n} |f(x-y)||g|^p dy) dx = ||f||_{L^1}^p ||g||_{L^p}^p.$$

即

$$||f * g||_{L^p} \le ||f||_{L^1} ||g||_{L^p}. \tag{2.4}$$

回忆数学分析中的一个例子

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x > 0\\ 0 & x \ge 0 \end{cases}$$

知 $f \in C^{\infty}(\mathbb{R})$,且 $f^{n}(0) = 0$, $\forall n \geq 0$,但是它不是解析函数。如果 g 为 I 上的解析函数,那么对于 $\forall x_0 \in I$, $\exists U_{\delta}(x_0) \in I$ 使得 f(x) 在 $x \in U_{\delta}(x_0)$ 的值可以展成幂级数。推广到高维情形为

$$\eta(x) = \begin{cases} Ce^{\frac{1}{|x|^2 - 1}} & |x| < 1\\ 0 & |x| \ge 1 \end{cases}$$

显然 n(x) 是一个径向函数且满足

$$\begin{split} &\eta(x)\in C_0^\infty(\mathbb{R}^n), \quad supp(\eta)=\overline{\{x\in\mathbb{R}^n||\eta(x)|>0\}}=\overline{B_1(0)}\\ &\int_{\mathbb{R}^n}\eta(x)dx=1\\ &\sup_{\mathbb{R}^n}|D^\alpha\eta(x)|\leq C_{n,|\alpha|}, \end{split}$$

其中 $|\alpha| = \alpha_1 + \dots + \alpha_n$, $\alpha = (\alpha_1, \dots, \alpha_n)$, $D^{|\alpha|} \eta = \frac{\partial^{|\alpha|} \eta(x)}{\partial^{\alpha_1} x_1 \dots \partial^{\alpha_n} x_n}$ 。 设 $U \subset \mathbb{R}^n$ 开集, $\varepsilon > 0$, $U_{\varepsilon} = \{x \in U | dist(x, \partial U) > \varepsilon\}$,引入

$$\eta_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \eta(\frac{x}{\varepsilon}). \tag{2.5}$$

称 η_{ε} 为 $\eta(x)$ 的展缩函数。另外可知 $supp(\eta_{\varepsilon}) = \overline{B_{\varepsilon}(0)}$,且 $\int_{\mathbb{R}^n} \eta_{\varepsilon}(x) dx = \int_{B(x,\varepsilon)} \eta_{\varepsilon}(x) dx = 1$ 。定义

Definition 2.2. $f:U \to \mathbb{R}, f \in L^1_{loc}(U)$, 即在 U 的任意一个紧子集上可积,

$$f^{\varepsilon}(x) = (\eta_{\varepsilon} * f)(x) = \int_{U} \eta_{\varepsilon}(x - y) f(y) dy$$

= $\int_{B(0,\varepsilon)} \eta_{\varepsilon}(z) f(x - z) dz$.

Theorem 2.2. (1), $f^{\varepsilon} \in C^{\infty}(U_{\varepsilon})_{\circ}$

- (2), $f^{\varepsilon} \to f$, a.e.
- (3), 若 $f \in C(U)$, 那么 $f_{\varepsilon} \to f$ 在任一紧集 $V \subset U$ 上一致收敛。
- $(4),\ 1 \leq p < \infty, f \in L^p_{loc}(U)$,则有 $f^{\varepsilon} \to f$ in $L^p_{loc}(U)$ 。

证明. (1), 回忆 Lagrange 中值定理

$$f(x) - f(x_0) = f'(x_0 + \xi(x - x_0))(x - x_0), \quad \xi \in (0, 1).$$
(2.6)

则

$$\begin{split} \frac{\partial f^{\varepsilon}}{\partial x_{i}} &= \lim_{h \to 0} \frac{1}{h} [f^{\varepsilon}(x + he_{i}) - f^{\varepsilon}(x)] \\ &= \lim_{h \to 0} \int_{U} (\eta_{\varepsilon}(x + he_{i} - y) - \eta_{\varepsilon}(x - y)f(f)) dy \\ &= \lim_{h \to 0} \frac{1}{h} \int_{V} (\eta_{\varepsilon}(x + he_{i} - y) - \eta_{\varepsilon}(x - y))f(y) dy. \end{split}$$

这里令 h 充分小,使得 $x + he_i \in U_{\varepsilon}, y \in V \subset U_{\varepsilon}$

$$\begin{split} &|\frac{1}{h}[\eta_{\varepsilon}(x+he_{i}-y)-\eta_{\varepsilon}(x-y)] - \frac{1}{\varepsilon^{n}}\frac{\partial}{\partial x_{i}}\eta(\frac{x-y}{\varepsilon})| \\ &= |\frac{\partial}{\partial x_{i}}\eta_{\varepsilon}(x+\xi e_{i}-y) - \frac{1}{\varepsilon^{n}}\frac{\partial}{\partial x_{i}}\eta(\frac{x-y}{\varepsilon})| \\ &= \frac{1}{\varepsilon^{n}}|\frac{\partial}{\partial x_{i}}\eta(\frac{x+\xi e_{i}-y}{\varepsilon}) - \frac{\partial}{\partial x_{i}}\eta(\frac{x-y}{\varepsilon})| \\ &= \frac{1}{\varepsilon^{n+1}}|\frac{\partial^{2}}{\partial x_{i}^{2}}\eta(\frac{x+\xi e_{i}-y}{\varepsilon})| \cdot \xi \to 0, \quad (h\to 0). \end{split}$$

则

$$\frac{\partial f^{\varepsilon}}{\partial x_{i}}(x) = \frac{1}{\varepsilon^{n}} \int_{U} \frac{\partial}{\partial x_{i}} \eta(\frac{x-y}{\varepsilon}) f(y) dy = \int_{U} (\eta_{\varepsilon})_{x_{i}}(x-y) f(y) dy. \tag{2.7}$$

类似地可以证明 $D^{\alpha}f^{\varepsilon}$ 存在。

(2), 回忆周民强书 Cor.5.8, 若 $f \in L([a,b])$, 则对于 $x \in [a,b]$ 几乎处处有

$$\lim_{h \to 0} \frac{1}{h} \int_0^h |f(x+t) - f(x)| dt = 0, \tag{2.8}$$

我们称满足(2.8)的点 x 为 f(x) 的 Lebesgue 点。另外由 Dibenedetto 的实分析 Theorem.11.2,设 μ 是 \mathbb{R}^n 上的 Radon 测度, $f \in L^1_{loc}(\mu)$,则存在 $E \subset \mathbb{R}^n$ 满足 $\mu(E) = 0$,且

$$\lim_{\rho \to 0} \frac{1}{\mu(B_{\rho}(x))} \int_{B_{\rho}(x)} |f(y) - f(x)| d\mu = 0, \tag{2.9}$$

对于 $x \in \mathbb{R}^n \setminus E$ 成立,同样 x 称为 f 的 Lebesgue 点。

$$|f^{\varepsilon}(x) - f(x)| = |\int_{B(x,\varepsilon)} \eta_{\varepsilon}(x - y) f(y) dy - \int_{B(x,\varepsilon)} \eta_{\varepsilon}(x - y) f(x) dy|$$

$$= |\int_{B(x,\varepsilon)} \eta_{\varepsilon}(x - y) [f(y) - f(x)] dy|$$

$$\leq \frac{C}{\varepsilon^{n}} \int_{B(x,\varepsilon)} |f(y) - f(x)| dy \to 0, \quad (\varepsilon \to 0). \tag{2.10}$$

(3), 对于 $V \subset \subset U, \varepsilon_0 = \frac{1}{2} dist(V, \partial U), 0 < \varepsilon < \varepsilon_0, f \in C(U)$ 有,

$$\sup_{x \in V} |f^{\varepsilon}(x) - f(x)| = \sup_{x \in V} |\int_{|y| \le 1} \eta(y) f(x - \varepsilon y) dy - \int_{|y| \le 1} \eta(y) f(x) dy|$$

$$\leq \sup_{x \in V} \int_{|y| \le 1} \eta(y) |f(x - \varepsilon y) - f(x)| dy$$

$$\leq \sup_{x \in V} \sup_{|y| \le 1} |f(x - \varepsilon y) - f(x)| \to 0. \tag{2.11}$$

(4),周民强书 Lemma.6.6, $\forall f \in L^p(U), \forall \varepsilon > 0$,存在 \mathbb{R}^n 上具有紧支集的连续函数 g(x),使得 $\int_U |f(x)-g(x)|^p dx < \varepsilon$ 。

设
$$W\subset\subset V$$
,由于 $||f^{\varepsilon}(x)||_{L^p(V)}^p=\int_V|f(x)|^pdx$,和

$$|f^{\varepsilon}(x)| = |\int_{B(x,\varepsilon)} \eta_{\varepsilon}(x-y)^{\frac{1}{p}+\frac{1}{q}} f(y) dy|$$

$$\leq (\int_{B(x,\varepsilon)} \eta_{\varepsilon}(x-y) dy)^{\frac{1}{q}} (\int_{B(x,\varepsilon)} \eta_{\varepsilon}(x-y) |f^{p}(y)| dy)^{\frac{1}{p}}$$

$$\leq (\int_{B(x,\varepsilon)} \eta_{\varepsilon}(x-y) |f(y)|^{p} dy)^{\frac{1}{p}},$$

则

$$\begin{aligned} ||f^{\varepsilon}(x)||_{L^{p}(V)}^{p} &= \int_{V} |f^{\varepsilon}(x)|^{p} dx \\ &\leq \int_{V} (\int_{B(x,\varepsilon)} \eta_{\varepsilon}(x-y)|f(y)|^{p} dy) dx \\ &= \int_{V} |f(y)|^{p} dy \\ &\leq \int_{W} |f(y)|^{p} dy = ||f||_{L^{p}(W)}^{p}. \end{aligned}$$

由此

$$||f^{\varepsilon} - f||_{L^{p}(V)} = ||(f - g)^{\varepsilon}||_{L^{p}(V)} + ||g^{\varepsilon} - g||_{L^{p}(V)} + ||g - f||_{L^{p}(V)}$$

$$\leq 2||f - g||_{L^{p}(W)} + ||g^{\varepsilon} - g||_{L^{p}(V)} < \frac{2\delta}{3} + \frac{\delta}{3} = \delta.$$

$$\mathbb{II} \lim_{\varepsilon \to 0} ||f^{\varepsilon} - f||_{L^p(V)} = 0.$$

Theorem 2.3. $C_0^{\infty}(\mathbb{R}^n)$ 在 $L^p(\mathbb{R}^n)$ 中稠密。

证明. 考虑 $f \in L^p(\mathbb{R}^n)$, 对于 $\forall \delta > 0$, $\exists B_{\delta}($ 球) 满足:

$$\int_{\mathbb{R}^n \setminus B_{\delta}} |f|^p dy < \frac{\delta^p}{2^p},\tag{2.12}$$

另外定义

$$f_{k,\delta}(x) = \begin{cases} f(x) & x \in B_{\delta} \\ 0 & x \in \mathbb{R}^n \setminus B_{\delta}. \end{cases}$$

令 $f_{\varepsilon}(x) = f_{k,\delta} * \eta_{\varepsilon}(x)$, 那么利用上面的定理可知

$$||f_{\varepsilon} - f_{k,\delta}||_{L^{p}(\mathbb{R}^{n})} < \frac{\delta}{2}. \tag{2.13}$$

因此

$$||f_{\varepsilon} - f||_{L^{p}(\mathbb{R}^{n})} \le ||f_{\varepsilon} - f_{k,\delta}||_{L^{p}(\mathbb{R}^{n})} + ||f_{k,\delta} - f||_{L^{p}(\mathbb{R}^{n})} \le \delta.$$

$$(2.14)$$

3 截断函数及其应用

3.1 截断函数

我们可以构造出某些区域上符合要求的截断函数,然后通过利用截断函数我们可以证明单位分解定理和关于调和方程的梯度内估计以及 Green 公式。这部分内容可以参考王耀东的偏微分方程的 L^2 理论。

Lemma 3.1. $\forall \ \Omega' \subset\subset \Omega, \ \exists \ \xi \in C_c^{\infty}(\Omega), \ 满足$

$$\begin{cases} \xi = 1 & in \ \Omega' \\ 0 \le \xi \le 1 & in \ \Omega \\ ||D^{\alpha}\xi||_{C^{\infty}(\Omega)} \le \frac{C_n}{dist(\Omega', \partial\Omega)^{|\alpha|}} & in \ \Omega. \end{cases}$$
(3.1)

证明. 记: $3d = dist(\Omega^{'}, \Omega), \Omega_i = \{x \in \Omega | dist(x, \Omega^{'}) < id\}, (1 \leq i \leq 2)$ 。 令

$$\varphi(x) = \begin{cases} 1 & x \in \Omega_1 \\ 0 & x \in \Omega \setminus \Omega_1 \end{cases}$$

和

$$\xi(x) = \varphi_d(x) = \int_{\Omega} \eta_d(x - y)\varphi(y)dy,$$

可以验证 $\xi(x)$ 即为满足题目要求的函数,在这里我们只验证导数估计,

$$\begin{split} \frac{\partial}{\partial x_i}(\xi(x)) &= \frac{\partial}{\partial x_i} \int_{\Omega} \eta_d(x-y) \varphi(y) dy \\ &= \frac{\partial}{\partial x_i} \int_{\Omega} \frac{1}{d^n} \eta(\frac{x-y}{d}) \varphi(y) dy \\ &= \frac{1}{d^n} \int_{\Omega} \frac{\partial}{\partial x_i} [\eta(\frac{x-y}{d})] \varphi(y) dy \\ &= \frac{1}{d} \int_{B_1(x)} \frac{\partial}{\partial z} (\eta(z)) \varphi(y) dy. \end{split}$$

利用 $|D^{\alpha}\eta(x)| \leq C_n$, 可知 $||D\xi||_{C^0(\Omega)} \leq \frac{C_n}{d}$ 。对于更高阶的导数估计是类似可以得到的。

3.2 截断函数的应用

Theorem 3.1. (调和函数的梯度内估计)

假设函数 $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ 满足 $\Delta u = 0$ in $\overline{\Omega}$, 则对于 $\forall \Omega' \subset \subset \Omega$, 有

$$\sup_{\Omega'} |Du| \le \frac{C_n}{dist(\Omega', \partial\Omega)} \sup_{x \in \partial\Omega} |u|.$$

Recall: 如果函数 u 满足 $\Delta u \geq 0$,那么函数 u 只能在区域 Ω 的边界上达到最大值。在这里我们给出证明。令

$$v = u + \varepsilon x_1^2,$$

则有

$$\Delta v = \Delta u + 2\varepsilon > 0,$$

因此

$$\sup_{x\in\overline{\Omega}}u\leq \sup_{x\in\overline{\Omega}}v\leq \sup_{x\in\partial\Omega}\left(u+\varepsilon x_1^2\right)\leq \sup_{\partial\Omega}u+\varepsilon \sup_{\partial\Omega}x_1^2.$$

 \diamond $\varepsilon \to 0$,便可知 u 在边界上达到最大值。利用这个极值原理然后再选取合适的辅助函数来证明调和函数的梯度内估计。

证明. 选取函数 $\varphi(x) = \xi(x)|Du|^2 + C_0u^2$, 我们期望合理的选取 C_0 使得 $\Delta \varphi \geq 0$ 。下面是具体的计算

$$\begin{split} \Delta\varphi(x) &= \Delta(\xi^2)|Du|^2 + 2(\xi^2)_i(|Du|^2)_i + \xi^2\Delta(|Du|^2) + C_0\Delta(u^2) \\ &= \Delta(\xi^2)|Du|^2 + 8\xi\xi_iu_lu_{li} + 2\xi^2\sum u_{ij}^2 + 2C_0|Du|^2 \\ &\geq \Delta(\xi^2)|Du|^2 - 2\xi^2\sum u_{ij}^2 - 8n^2|Du|^2|D\xi|^2 + 2\xi^2\sum u_{ij}^2 + 2C_0|Du|^2 \\ &= (2C_0 + \Delta(\xi^2) - 8n^2|D\xi|^2)|Du|^2 \end{split}$$

由之前的截断函数的性质知 $|D\xi|^2 + |D^2\xi| \le \frac{C}{d^2}$,我们取 $C_0 = \frac{(4n^2+1)C}{d^2}$ 便可以得到 $\Delta \varphi \ge 0$ 。然后再利用前面陈述的极值原理便可以得到该定理的证明。

Example 3.1. 假设 $\Omega \subset \mathbb{R}^n$ 是有界区域,函数 $u \in C^2(\Omega)$ 且 $f \in C(\Omega)$,对方程 $\Delta u = f(x)$ in Ω ,我们作梯度内估计和高阶梯度内估计。

(1), 能量估计

任意给定 $\Omega^{'}\subset\subset\Omega$,我们给出 $\int_{\Omega^{'}}|Du|^{2}dx$ 的估计。已知 \exists 截断函数 $\xi\in C_{c}^{\infty}(\Omega)$ 满足

$$\begin{cases} \xi = 1 & in \ \Omega' \\ 0 \le \xi \le 1 & in \ \Omega \\ ||D^{\alpha}\xi||_{C^{\infty}(\Omega)} \le \frac{C_n}{dist(\Omega', \partial\Omega)^{|\alpha|}} & in \ \Omega. \end{cases}$$
(3.2)

方程两边同时乘以 $\xi^2 u$ 并在 Ω 上积分, 得到

$$\int_{\Omega} \xi^2 u \Delta u dx = \int_{\Omega} \xi^2 u f dx \tag{3.3}$$

$$left = \int_{\Omega} (\xi^{2} u u_{i})_{i} - (\xi^{2} u)_{i} u_{i} dx = -\int_{\Omega} (\xi^{2})_{i} u u_{i} - \xi^{2} |Du|^{2} dx$$
$$= -2 \int_{\Omega} \xi \xi_{i} u u_{i} dx - \int_{\Omega} \xi^{2} |Du|^{2} dx$$
(3.4)

方程变为

$$\int_{\Omega} \xi^2 |Du|^2 dx = -\int_{\Omega} \xi^2 u f dx - 2 \int_{\Omega} \xi \xi_i u u_i dx \tag{3.5}$$

于是运用平均值不等式

$$\int_{\Omega} \xi^{2} |Du|^{2} dx \leq \frac{1}{2} \int_{\Omega} \xi^{2} f^{2} dx + \frac{1}{2} \int_{\Omega} \xi^{2} u^{2} dx + \frac{1}{2} \int_{\Omega} \xi^{2} |Du|^{2} dx + \frac{1}{2} \int_{\Omega} |D\xi|^{2} u^{2} dx$$
(3.6)

因此

$$\int_{\Omega'} |Du|^2 dx \leq \int_{\Omega} \xi^2 |Du|^2 dx
\leq C_0 \left(\int_{\Omega} u^2 dx + \int_{\Omega} f^2 dx \right)$$
(3.7)

此处常数 C_0 只和维数 n 以及 $dist(\Omega',\Omega)$ 有关,得到的是内估计。

(2), 高阶梯度内估计

类似的,任意给定 $\Omega''\subset\Omega$,我们将得到 u 的二阶导在 Ω'' 上的能量估计。方程两边同时乘以 $\xi^2u_{i_0i_0}$ 并在 Ω 上积分,得到

$$\int_{\Omega} \xi^2 u_{i_0 i_0} \Delta u dx = \int_{\Omega} \xi^2 u_{i_0 i_0} f dx \tag{3.8}$$

$$left = \int_{\Omega} (\xi^{2} u_{i_{0}i_{0}} u_{j})_{j} - (\xi^{2} u_{i_{0}i_{0}})_{j} u_{j} dx$$

$$= \int_{\Omega} -2\xi \xi_{j} u_{j} u_{i_{0}i_{0}} - \xi^{2} u_{i_{0}i_{0}j} u_{j} dx$$

$$= -2 \int_{\Omega} \xi \xi_{j} u_{j} u_{i_{0}i_{0}} dx - \int_{\Omega} (\xi^{2} u_{i_{0}j} u_{j})_{i_{0}} - (\xi^{2} u_{j})_{i_{0}} u_{i_{0}j} dx$$

$$= -2 \int_{\Omega} \xi \xi_{j} u_{j} u_{i_{0}i_{0}} dx + 2 \int_{\Omega} \xi \xi_{i_{0}} u_{j} u_{i_{0}j} dx + \int_{\Omega} \xi^{2} u_{i_{0}j}^{2} dx$$
(3.9)

方程整理为

$$\int_{\Omega} \xi^2 u_{i_0 j}^2 dx = \int_{\Omega} \xi^2 u_{i_0 i_0} f dx - 2 \int_{\Omega} \xi \xi_{i_0} u_j u_{i_0 j} dx + 2 \int_{\Omega} \xi \xi_j u_j u_{i_0 i_0} dx$$
 (3.10)

对右边三项均用 Cauchy 不等式

$$\int_{\Omega} \xi^{2} u_{i_{0}i_{0}} f dx \leq \frac{1}{4} \int_{\Omega} x i^{2} u_{i_{0}i_{0}}^{2} dx + 4 \int_{\Omega} \xi^{2} f^{2} dx
-2 \int_{\Omega} \xi \xi_{i_{0}} u_{j} u_{i_{0}j} dx \leq \frac{1}{4} \int_{\Omega} x i^{2} u_{i_{0}j}^{2} dx + 4 \int_{\Omega} |Du|^{2} |D\xi|^{2} dx
2 \int_{\Omega} \xi \xi_{j} u_{j} u_{i_{0}i_{0}} dx \leq \frac{1}{4} \int_{\Omega} x i^{2} u_{i_{0}i_{0}}^{2} dx + 4 \int_{\Omega} |Du|^{2} |D\xi|^{2} dx$$
(3.11)

结合 (1) 中的能量估计

$$\frac{1}{4} \int_{\Omega} \xi^2 u_{i_0 j}^2 dx \le C_1 \left(\int_{\Omega''} |Du|^2 dx + \int_{\Omega} f^2 dx \right) \le C_1 \left(\int_{\Omega} u^2 dx + \int_{\Omega} f^2 dx \right)$$
(3.12)

此处常数 C_2 只和只和维数 n, Ω 以及 Ω'' 有关, 于是

$$\int_{\Omega''} u_{ij}^2 dx \le \int_{\Omega} \xi^2 u_{ij}^2 dx \le C \int_{\Omega} \xi^2 u_{i_0j}^2 dx \le C (\int_{\Omega} u^2 dx + \int_{\Omega} f^2 dx)$$
 (3.13)

Theorem 3.2. (刘维尔定理) 设 u 满足 $\Delta u = 0$, $in \mathbb{R}^n$, 另外 $u \in L^2(\mathbb{R}^n)$, 可知 $u \equiv 0$.

证明. 已知存在截断函数 $\xi(x) \in C_c^{\infty}(B_R)$ 满足 $\xi = 1$ in $B(0, \frac{R}{2}), \xi \in C_0^{\infty}(B(0, R))$,方程两端同时乘上 $\xi^p u$ 然后积分可得

$$0 = \int_{\mathbb{R}^n} \xi^p u \Delta u dx = -\int_{\mathbb{R}^n} p \xi^{p-1} \xi_i u u_i dx - \int_{\mathbb{R}^n} \xi^p |Du|^2 dx,$$

等价于

$$\begin{split} \int_{\mathbb{R}^n} \xi^p |Du|^2 dx &= p \int_{\mathbb{R}^n} \xi^{p-1} \xi_i u u_i dx \\ &\leq \frac{1}{2} \int_{\mathbb{R}^n} \xi^p |Du|^2 dx + \frac{p^2}{2R^2} \int_{\mathbb{R}^n} u^2 dx. \end{split}$$

利用 $u \in L^2(\mathbb{R}^n)$, 令 $R \to +\infty$, 可知 $u \equiv 0$ 。

Theorem 3.3. $\Delta u + u^{\alpha} = 0$ in \mathbb{R}^n , u > 0, 且 $1 < \alpha < \frac{n}{n-2}$, 那么解不存在。

证明. 方程两端同时乘以 ξ^p , 其中 $\xi \in C_c^\infty(B_{2R})$ 为截断函数且满足:

$$\begin{cases} \xi = 1 \text{ in } B_R \text{ and } 0 \le \xi \le 1, \\ |D^{\alpha} \xi| \le \frac{C_n}{R^{|\alpha|}}. \end{cases}$$

$$(3.14)$$

可得

$$\int u^{\alpha} \xi^{p} dx = -\int \Delta u \xi^{p} dx = -\int u \Delta(\xi)^{p} dx$$

$$\leq \frac{C_{n}}{R^{2}} \int u \xi^{p-2} dx$$

$$\leq \frac{1}{2} \int u^{\alpha} \xi^{p} dx + CR^{n - \frac{2\alpha}{\alpha - 1}}$$

如果 $1<\alpha<\frac{n}{n-2}$ 可知 $n-\frac{2\alpha}{\alpha-1}<0$ 。当 $R\to\infty$ 时可知 $u\equiv0$,便得到矛盾。另外 $\alpha=\frac{n}{n-2}$ 时结论也是成立的。

截断函数最重要的一个应用就是可以用来证明散度定理。(所有积分运算的核心就是散度定理)首先我们陈述一下散度定理

Theorem 3.4. Ω 是有界区域且 $\partial\Omega\in C^1$,即边界上每一点法向连续。给定向量 $\overrightarrow{X}\in C^1(\overline{\Omega})$,有

$$\int_{\Omega} div(\overrightarrow{X}) dx = \int_{\partial \Omega} \overrightarrow{X} \cdot \overrightarrow{n} ds.$$

Remark 3.1. (1), 我们要求 $\partial\Omega$ 是 C^1 的是为了保证边界上的法向量是连续的。

(2), $\partial\Omega\in C^1$ 指的是对于任意点 $a\in\Omega$,不失一般性,我们可以假设 a 为坐标原点,使得平面 $\{x_n=0\}$ 与 Ω 相切与点 a,并且存在 C^1 函数 $\psi(x)$ 和充分小的 r,使得 $\partial\Omega\cap B_r(a)$ 可以表示为 $\{x\in\mathbb{R}^n|x_n=\psi(x^{'})\}$ 。 ℓ (或者可以表述为局部上边界的定义函数是 ℓ (0) 此时这个局部区域的边界上的法向量可以表示为

$$\overrightarrow{n} = \frac{(D\psi, -1)}{\sqrt{1 + |D\psi|^2}}. (3.15)$$

(3), 我们可以取 $\varphi \in C_0^\infty(\Omega)$, $u \in C^1(\Omega)$, $\overrightarrow{X} = (0,0,\cdots,u\xi,\cdots,0)$, 那么可得

$$\int_{\Omega} \frac{\partial}{\partial x_i} (u\varphi) dx = \int_{\partial \Omega} u\varphi \cdot n_i d\sigma,$$

此时 $\int_{\partial\Omega} u\varphi \cdot n_i d\sigma = 0$, 则

$$\int_{\Omega} u\varphi_{x_i} dx = -\int_{\Omega} u_{x_i} \varphi dx. \tag{3.16}$$

上式(3.16)将有助于我们在后面定义弱导数。

Lemma 3.2. (紧集上的单位分解)

设 $K \subset \mathbb{R}^n$ 是紧集, $\{\Omega_i\}_{i=1}^N$ 为 K 的一个开覆盖, 那么存在开集 Ω , 及 $K \subset \Omega$ 和函数簇 $\{a_i\}_{i=1}^N$ 满足

$$\begin{cases} a_{i} \in C_{0}^{\infty}(\Omega_{i}), \\ a_{i} \geq 0, \\ \sum_{i=1}^{N} a_{i}(x) = 1, \ x \in K. \end{cases}$$
(3.17)

证明. Method 1, 首先我们令 $O=\cup_{i=1}^N\Omega_i$, $d=dist(K,\partial O)$, $\Omega=\{x\in\mathbb{R}^n|d(x,K)<\frac{d}{2}\}$, 显然有 $\overline{\Omega}\subset O$ 。 我们考虑一个球簇集合

$$\beta = \{ B_{r(x)}(x) | x \in \Omega_i, 1 \le i \le N, \overline{B_{r(x)}(x)} \subset \Omega_i \}, \tag{3.18}$$

对于 $\forall x \in \Omega_i$,取合适的半径 r(x) > 0,使得 $B_{r(x)}(x) \subset \Omega_i$ 。那么利用有限覆盖定理可知存在有限个球 $\{B_{r_j}|1 \leq j \leq I\}$ 覆盖 $\overline{\Omega}$ 。令 $B_j = B_{r_j}$,记属于 Ω_i 的球的并集为 $\widetilde{\Omega}_i$,则 $\widetilde{\Omega}_i = \bigcup_{B_j \subset \Omega_i} B_j \subset \Omega_i$ 。对 Ω_i 由 Lemma(3.1) 可知,存在 ξ_i 满足 $\xi_i(x) \in C_0^\infty(\Omega_i)$, $\xi_i(x) = 1$, in Ω_i . 那么取

$$a_1 = \xi_1 \tag{3.19}$$

$$a_2 = (1 - \xi_1)\xi_2 \tag{3.20}$$

$$\cdots$$
 (3.21)

$$a_N = (1 - \xi_1) \cdots (1 - \xi_{N-1}) \xi_N.$$
 (3.22)

可以验证 $\{a_i\}_{i=1}^N$ 即为满足要求的函数。

Method 2,因为开集 Ω_1 可以覆盖闭集 $K \setminus \bigcup_{i=2}^N \Omega_i$,所以 $\delta = dist(\partial \Omega_1, \Omega \setminus \bigcup_{i=2}^N \Omega_i) > 0$,令 $\Omega_1^* = \{x \in \Omega_1 | dist(x, \partial \Omega_1) > \frac{\delta}{2} \}$,那么显然 $\Omega_1^*, \Omega_2^*, \cdots, \Omega_N^*$ 仍然构成 K 的一个开覆盖,由前面已知的结论可知存在 $\xi_i \in C_0^\infty(\Omega_i), \xi_i = 1$ in Ω_i^* ,令

$$\phi_i = \frac{\xi_i}{\sum_{i=1}^{N} \xi_i}.$$
 (3.23)

则 ϕ_i 即为满足要求的函数。另外取 $\Omega_i^{**} = dist(x \in \Omega_i | dist(x, \partial \Omega_i) > \frac{3\delta}{4})$ 和 $\Omega = \bigcup_{i=1}^N \Omega_i^{**}$ 。

4 Hölder Space

在前面之前我们考虑的空间主要为 $C^k(\overline{U})$ 和 $L^p(\overline{U})$,前者对应的空间太好,后者对应的空间太广,因此引进 Hölder Space 是非常有必要的。主要原因是我们在证明椭圆方程的解的存在性时,我们首先需要得到先验估计,然后再利用张恭庆书中的 Arzela-Ascoli 引理我们便可以证明连续性方法中的闭性。我们陈述一下这个定理,

Theorem 4.1. (Arzela-Ascoli 定理) $F \in C(\overline{U})$ 是列紧集, 当且仅当 F 是一致有界, 等度连续的函数簇。

一致有界指的是: $\forall u \in \mathcal{F}, |u|_{C^0} \leq M, M$ 是一个一致常数。

等度连续指的是: $\forall \varepsilon > 0, \exists \delta > 0, \forall x, y \in U, \ and \ |x - y| < \delta, |u(x) - u(y)| < \varepsilon, \ \forall u \in \mathcal{F}.$

Motivation :(1), 如果说对于 $\forall x, y \in U, \forall u \in \mathcal{F}$, 满足

$$|u(x) - u(y)| \le C|x - y|^{\alpha}, \ 0 < \alpha \le 1,$$
 (4.1)

其中 C 是一个一致的常数,显然 u 满足上式的话肯定满足等度连续的性质,因此这是我们引入 Hölder Space 的一个非常重要的动机。

(2), 另外一个引入 Hölder 空间的原因是我们考虑下面的 Poisson 方程

$$\begin{cases} \Delta u = f & in \quad \overline{\Omega} \\ u = \varphi(x) & on \quad \partial \Omega \end{cases}$$
 (4.2)

如果 $f \in C^0(\Omega)$,那么不一定会存在 $u \in C^2(U)$ 满足 (4.2),具体的反例可以看 G-T 的书第二章的习题。但是如果 $f \in C^{\alpha}(U)$,由线性椭圆的 Schauder 理论可知存在 $u \in C^{2,\alpha}(U)$ 满足 (4.2)。

Definition 4.1. (Hölder 半范数)

假设 $U \subset \mathbb{R}^n$ 为开集, $0 < \alpha \le 1$, 我们定义

$$[u]_{C^{0,\alpha}(\overline{U})} = \sup_{\substack{x,y \in U \\ x \neq y}} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}}.$$
(4.3)

Definition 4.2. (Hölder 范数)

$$||u||_{C^{k,\alpha}(\overline{U})} = \sum_{|\alpha| \le k} ||D^{\alpha}u||_{C^{k}(\overline{U})} + \sum_{|\alpha| = k} [D^{\alpha}u]_{C^{0,\alpha}(\overline{U})}. \tag{4.4}$$

Definition 4.3. $C^{k,\alpha}(\overline{U})$ (Hölder space) 是由 $u \in C^k(\overline{U})$ 且 $||u||_{C^{k,\alpha}(\overline{U})} < +\infty$ 的函数组成。

Theorem 4.2. $C^{k,\nu}(\overline{U})$ 是一个 Banach 空间。

证明. Step 1, 首先证明 $||\cdot||_{C^{k,\nu}(\overline{U})}$ 是范数。

$$(a), \forall u \in C^k(\overline{U}), ||u||_{C^{k,\nu}(\overline{U})} = \sum_{|\alpha| \leq k} ||D^\alpha u||_{C^0(\overline{U})} + \sum_{|\alpha| = k} [D^\alpha u]_{C^{0,\nu}(\overline{U})} \geq 0$$
 显然成立,另外由 $||u||_{C^{k,\nu}(\overline{U})} = 0$ $\Leftrightarrow ||D^\alpha u||_{C^0(\overline{U})} = 0, \forall |\alpha| \leq k$ 。 所以 $u \equiv 0$ in \overline{U} 。

- (b), $\forall u \in C^k(\overline{U}), \lambda \in \mathbb{R}^n, ||\lambda u||_{C^{k,\nu}(\overline{U})} = |\lambda||u||_{C^{k,\nu}(\overline{U})}$, 显然成立。
- $(c), \forall u_1, u_2 \in C^k(\overline{U}),$

$$\begin{aligned} ||u_{1}+u_{2}||_{C^{k,\nu}(\overline{U})} &= \sum_{|\alpha| \leq k} ||D^{\alpha}(u_{1}+u_{2})||_{C^{0}(\overline{U})} + \sum_{|\alpha| = k} [D^{\alpha}(u_{1}+u_{2})]_{C^{0,\nu}(\overline{U})} \\ &\leq \sum_{|\alpha| \leq k} (||D^{\alpha}u_{1}||_{C^{0}(\overline{U})} + ||D^{\alpha}u_{2}||_{C^{0}(\overline{U})}) + \sum_{|\alpha| = k} \sup_{\substack{x,y \in U \\ x \neq y}} \frac{|D^{\alpha}u_{1}(x) - D^{\alpha}u_{1}(y)|}{|x - y|^{\nu}} \\ &+ \sum_{|\alpha| = k} \sup_{\substack{x,y \in U \\ x \neq y}} \frac{|D^{\alpha}u_{2}(x) - D^{\alpha}u_{2}(y)|}{|x - y|^{\nu}} \\ &= ||u_{1}||_{C^{k,\nu}(\overline{U})} + ||u_{2}||_{C^{k,\nu}(\overline{U})}. \end{aligned}$$

Step 2, 证明 $C^{k,\nu}(\overline{U})$ 是完备的 Banach 空间。

设 $\{u_n\}$ 为 $C^{k,\nu}(\overline{U})$ 中的 Cauchy 列,则

$$\sum_{|\alpha| \le k} ||D^{\alpha} u_m - D^{\alpha} u_n||_{C^0(\overline{U})} \to 0, \tag{4.5}$$

和

$$\sum_{|\alpha|=k} [D^{\alpha} u_m - D^{\alpha} u_n]_{C^{0,\nu}(\overline{U})} \to 0. \quad (m, n \to \infty).$$

$$\tag{4.6}$$

由于

$$||u_{n} - u_{m}||_{C^{k}(\overline{U})} = \max_{|\alpha| \leq k} \max_{x \in \overline{U}} |D^{\alpha}u_{m} - D^{\alpha}u_{n}|$$

$$\leq \max_{|\alpha| \leq k} ||D^{\alpha}(u_{n} - u_{m})||_{C^{0}(\overline{U})}$$

$$\leq \sum_{|\alpha| \leq k} ||D^{\alpha}(u_{n} - u_{m})||_{C^{0}(\overline{U})}, \tag{4.7}$$

表明 $\{u_n\}_{n=1}^{\infty}$ 为 $C^k(\overline{U})$ 中的 Cauchy 列,由于 $C^k(\overline{U})$ 为 Banach 空间,则 $\exists u \in C^k(\overline{U})$ 使得 $u_n \to u$ in $C^k(\overline{U}), (n \to \infty)$ 。

下面证明 $u \in C^{k,\nu}(\overline{U})$, $\forall |\alpha| = k$,

$$\begin{split} [D^{\alpha}u]_{C^{0,\mu}(\overline{U})} &= \sup_{\substack{x,y \in U \\ x \neq y}} \frac{|D^{\alpha}u(x) - D^{\alpha}u(y)|}{|x - y|^{\nu}} \\ &= \sup_{\substack{x,y \in U \\ x \neq y}} \lim_{n \to \infty} \frac{|D^{\alpha}u_n(x) - D^{\alpha}u_n(y)|}{|x - y|^{\nu}} \\ &\leq \sup[D^{\alpha}u_n]_{C^{0,\nu}(\overline{U})} < +\infty. \end{split}$$

则 $u \in C^{k,\nu}(\overline{U})$ 。 另外 $\forall |\alpha| = k$,

$$\begin{split} [D^{\alpha}(u_{n}-u)]_{C^{0,\nu}(\overline{U})} & = \sup_{\substack{x,y \in U \\ x \neq y}} \frac{|(D^{\alpha}u_{n}(x) - D^{\alpha}u(x)) - (D^{\alpha}u_{n}(y) - D^{\alpha}u(y))|}{|x-y|^{\nu}} \\ & \leq \sup_{\substack{x,y \in U \\ x \neq y}} \frac{|D^{\alpha}u_{n}(x) - D^{\alpha}u(x)|}{|x-y|^{\nu}} + \sup_{\substack{x,y \in U \\ x \neq y}} \frac{|D^{\alpha}u_{n}(y) - D^{\alpha}u(y)|}{|x-y|^{\nu}} \to 0 \ (n \to \infty). \end{split}$$

故

$$||u_n - u||_{C^{k,\nu}(\overline{U})} = \sum_{|\alpha| \le k} ||D^{\alpha}u_n - D^{\alpha}u||_{C^0(\overline{U})} + \sum_{|\alpha| = k} [D^{\alpha}u_n - D^{\alpha}u]_{C^{0,\nu}(\overline{U})} \to 0, \ (n \to \infty).$$
 (4.8)

表明 $C^{k,\nu}(\overline{U})$ 是 Banach 空间。

5 Sobolev 空间

5.1 Sobolev 空间的定义

Motivation: 对于 $u \in C^1(U)$, 和 $\phi \in C_0^{\infty}(U)$, 利用散度定理可得

$$\int_{U} u\phi_{x_i} dx = -\int_{U} u_{x_i} \phi dx, \tag{5.1}$$

同样对于一般地 $u \in C^k(U)$ 有

$$\int_{U} u D^{\alpha} \phi = (-1)^{|\alpha|} \int_{U} D^{\alpha} u \phi, \quad \forall \ |\alpha| \le k.$$
 (5.2)

自然的问题是如果 $u \in L^1_{loc}$,我们怎么合理的定义 $D^{\alpha}u$ 呢?我们的目标应该是对于实分析中的可积函数 $u \in L^p(U)$,我们怎么通过一种合理的方式引入它的"弱导数",然后同实分析中一样是否有相应的逼近理论?

Definition 5.1. 如果 $u,v \in L^1_{loc}(U)$, 称 v 是 u 的 α 阶弱导数, 如果满足

$$\int_{U} u D^{\alpha} \phi = (-1)^{|\alpha|} \int_{U} v \phi, \quad \forall \phi \in C_0^{\infty}(U)$$

$$(5.3)$$

在弱意义下记为 $D^{\alpha}u = v$ 。

Example 5.1. (1), f(x) = |x|, x f(x) 的弱导数。

$$(2), U = (0,2), n = 1$$

$$u(x) = \begin{cases} x & 0 < x \le 1\\ 1 & 1 \le x < 2 \end{cases}$$

求 u(x) 的弱导数。

我们求一下 (2) 的一阶弱导数是什么?等价于 $\forall \phi \in C_0^\infty(U), \int_0^2 u\phi' dx = -\int_0^2 v\phi dx$,目标找到 v。

$$\begin{split} Left &= \int_0^2 u\phi' dx = \int_0^1 x\phi' dx + \int_1^2 \phi' dx &= \int_0^1 x d\phi + \phi(2) - \phi(1) \\ &= (x\phi)|_0^1 - \int_0^1 \phi dx - \phi(1) \\ &= -\int_0^1 \phi dx - \int_1^2 0 \cdot \phi dx. \end{split}$$

那么可知

$$v(x) = \begin{cases} 1 & 0 < x \le 1\\ 0 & 1 \le x < 2 \end{cases}$$

另外我们参考 Evans 书 5.2 节中的例子 2, U = (0,2), n = 1

$$u(x) = \begin{cases} x & 0 < x \le 1\\ 2 & 1 \le x < 2 \end{cases}$$

可知 u 的一阶弱导数是不存在的。对比上面两个例子我们可以知道一个函数存在弱导数的关键在于函数本身首先要满足一定的连续性才可以。

如果函数 u 存在,那么关键性的问题就是 u 的弱导数唯一吗?

Lemma 5.1. (变分引理) 如果函数 u 的 α 阶弱导数存在, 那么一定是唯一的(在几乎处处相等的意义下)。

证明. 利用反证法,不妨假设 v_1, v_2 为 u 的 α 阶的弱导数,令 $v = v_1 - v_2 \in L^1_{loc}(U)$,由弱导数的定义可知

$$\int_{U} v\phi dx = 0, \quad \phi \in C_0^{\infty}(U), \tag{5.4}$$

下面只需证明 v = 0, a.e。我们给出两种方法证明。

Method 1, $\forall y \in U' \subset\subset U$, 记 $2\varepsilon = dist(U', \partial U)$, 则有

$$v_{\varepsilon} = \int_{U} v(y) \eta_{\varepsilon}(x - y) dy = 0. \tag{5.5}$$

另外知 $v_{\epsilon} \to v$ in $L^1_{loc}(U^{'})$,利用前面证明 Theorem 1.6即证明 L^p 完备性的方法知,存在子列 $\{v_{\varepsilon_i}\}$ 收敛于 v_{ε_i} 由极限的唯一性,可知 v=0, a.e in U_{ε_i}

Method 2,可以参见周民强书 P_{183} 例三,这里我们采取的是反证法。

不妨设 v(x) 在有界正测集上有 v(x) > 0,那么可作具有紧支集连续函数列 $\{\varphi_k(x)\}$,使得

$$\begin{cases} \lim_{k \to \infty} \int_{\mathbb{R}^n} |\mathcal{X}_E(x) - \varphi_k(x)| dx = 0, \\ |\varphi_k(x)| \le 1, \\ \lim_{k \to \infty} \varphi_k(x) = \mathcal{X}_E. \end{cases}$$
 (5.6)

那么利用 $|v(x)\varphi_k(x)| \leq |v(x)|, x \in E$, 可得

$$0 < \int_{E} f(x)dx = \int_{E} f(x)\mathcal{X}_{E}(x)dx$$
$$= \lim_{k \to \infty} \int_{\mathbb{R}^{n}} f(x)\varphi_{k}(x)dx = 0.$$

由此我们得到矛盾。

Definition 5.2. 我们定义 Sobolev 空间, $W^{k,p}(U) = \{u \in L^1_{loc}, u : U \to \mathbb{R}, D^{\alpha}u \text{ exist in the weak sense, and } D^{\alpha}u \in L^p(U), \forall |\alpha| \leq k\}$ 。对应的范数为:

$$||u||_{W^{k,p}(U)} = \begin{cases} \left(\sum_{|\alpha| \le k} \int_{U} |D^{\alpha}u|^{p} dx\right)^{\frac{1}{p}} & 1 \le p < +\infty \\ \sum_{|\alpha| \le k} ess \sup_{U} |D^{\alpha}u| & p = +\infty. \end{cases}$$

记 $W_0^{k,p}(U)$ 为 $C_0^{\infty}(U)$ 在 $W^{k,p}(U)$ 范数下的完备化空间。

Remark 5.1. 一般地 $u \in W_0^{k,p}(U)$ 有 $D^{\alpha}u = 0$, a.e on $\partial U, \forall |\alpha| \leq k-1$.

Example 5.2. $u(x) = |x|^{-\alpha}, B_1(0) \subset \mathbb{R}^n, \alpha > 0$ 。若 $u \in W^{k,p}(B_1(0))$,那么 p, n 应该满足什么关系?

证明. Step 1, 首先看 $u, D^{\alpha}u \in L^p(B_1(0))$ 应该满足什么条件。

若 $x \neq 0$,则 $u_i = \frac{\alpha x_i}{|x|}$ 。如果 $u \in L^p(B_1(0))$,等价于

$$\int_{B_{\gamma}(0)} (|x|^{-\alpha})^p = \int_0^1 r^{\alpha p + n - 1} < \infty, \tag{5.7}$$

那么可得 $n-\alpha p>0$ 。 另外同理可知当 $D^{\alpha}u\in L^p(B_1(0))$ 时可得 $n-(\alpha+1)p>0$ 。

Step 2,需要保证 u 的一阶弱导数是存在的。

现在考虑弱导数的存在性,即寻找v满足

$$\int_{B_1(0)} u\phi_i dx = -\int_{B_1(0)} v\phi dx, \forall \ \phi \in C_0^{\infty}(B_1(0)).$$
(5.8)

因为

$$Left = \lim_{\varepsilon \to 0^{+}} \int_{B_{1}(0) - B_{\varepsilon}(0)} u \phi_{i} dx$$

$$= \lim_{\varepsilon \to 0^{+}} \left[-\int_{B_{1}(0)} u_{i} \phi dx + \int_{\partial B(0,\varepsilon)} u \phi \nu^{i} ds \right] \quad (divergence \ thm)$$

$$\leq \lim_{\varepsilon \to 0^{+}} -\int_{B_{1}(0)} u_{i} \phi dx + C_{n} \varepsilon^{n-1} ||\phi||_{L^{\infty}} \varepsilon^{-\alpha}$$

$$\leq \lim_{\varepsilon \to 0^{+}} -\int_{B_{1}(0)} u_{i} \phi dx + C \varepsilon^{n-1-\alpha}$$

$$(5.9)$$

所以当 $\varepsilon^{n-1-\alpha} \to 0$, $as \varepsilon \to 0$, 等价于 $\alpha < n-1$ 。弱导数为

$$u_i = \begin{cases} \frac{-\alpha x_i}{|x|} & |x| \neq 0\\ 0 & |x| = 0 \end{cases}$$

综上所述 q, n 需满足 $n > \alpha + 1$ 和 $\alpha < \frac{n-p}{p}$ 。

Theorem 5.1. (弱导数的基本性质)设 $u, v \in W^{k,p}(U), |\alpha| \leq k$,则

- (1), $D^{\alpha}u \in W^{k-|\alpha|,p}(U)$, 和 $D^{\beta}(D^{\alpha}u) = D^{\alpha}(D^{\beta}u) = D^{\alpha+\beta}u$, 对于多重指标 α,β 满足 $|\alpha| + |\beta| \leq k$ 成立。
 - (2), 对于 $\forall \lambda, \mu \in \mathbb{R}$, $\lambda u + \mu v \in W^{k,p}(U)$, 且 $D^{\alpha}(\lambda u + \mu v) = \lambda D^{\alpha}u + \mu D^{\alpha}v$, $|\alpha| \leq k$ 。
 - (3), 若 V 时 U 的开子集, 有 $\lambda u + \mu v \in W^{k,p}(V)$ 。
 - (4),若 $\xi \in C_0^\infty(U)$,则 $\xi u \in W^{k,p}(U)$ 且 $D^\alpha(\xi u) = \sum_{\beta \leq \alpha} C_{|\alpha|}^{|\beta|} D^\beta \xi D^{\alpha-\beta} u$ 。

证明. 这里只给出 (4) 的证明。不妨考虑 $|\alpha|=k=1$,计算 $D_{x_i}(\xi u)$,

$$\int_{U} (\xi u)\phi_{i}dx = \int_{U} u(\xi\phi_{i})dx = \int_{U} u[(\xi\phi)_{i} - \xi_{i}\phi]dx$$

$$= \int_{U} u(\xi\phi)_{i}dx - \int_{U} (u\xi_{i})\phi dx$$

$$= -\int_{U} (u\xi_{i})\xi\phi dx - \int_{U} (u\xi_{i})\phi dx. \tag{5.10}$$

故
$$D_{x_i}(\xi u) = \xi D_{x_i} u + \xi_{x_i} u$$
。

Remark 5.2. 性质 (4) 是非常重要的一条性质,考虑单位分解 $u = \sum_{i=1}^{N} (a_i u)$, $supp(a_i) \subset \Omega_i$, 其中 $a_i u \in W^{k,p}(\Omega_i)$, 而在局部 Ω_i 上,可以把区域平坦化,把边界拉直,便于计算。

Theorem 5.2. $W^{k,p}(U)$ 空间是 Banach 空间, $1 \le p \le +\infty$ 。

证明. Step 1, 证明是赋范线性空间。

$$\begin{split} ||u+v||_{W^{k,p}(U)} &= (\sum_{|\alpha| \le k} ||D^{\alpha}u + D^{\alpha}v||_{L^{p}(U)}^{p})^{\frac{1}{p}} \\ &\le (\sum_{|\alpha| \le k} (||u||_{L^{p}(U)} + ||v||_{L^{p}(U)})^{p})^{\frac{1}{p}} \\ &\le (\sum_{|\alpha| \le k} ||u||_{L^{p}(U)}^{p})^{\frac{1}{p}} + (\sum_{|\alpha| \le k} ||u||_{L^{p}(U)}^{p})^{\frac{1}{p}} \\ &= ||u||_{W^{k,p}(U)} + ||v||_{W^{k,p}(U)} \end{split}$$

上面的不等式放缩主要是利用积分形式和离散形式的 Minkowski 不等式。

Step 2, 证明完备性。

任意的 Cauchy 列 $\{u_m\}_{k=1}^{\infty} \subset W^{k,p}(U)$, $\exists u \in W^{k,p}(U)$ 满足 $u_m \to u$ in $W^{k,p}(U)$ 。利用 L^p 完备性,可知 $\forall |\alpha| \leq k$,总存在 $u_\alpha \in L^p(U)$,满足 $D^\alpha u \to u_\alpha$ in $L^p(U)$ 。

Claim: $D^{\alpha}u_0 = u_{\alpha}$.

证明: 因为 $u_m \to u_0$ in $L^p(U)$,所以

$$\int_{U} |u_{m} - u_{0}| |D^{\alpha} \phi| dx \le ||u_{m} - u_{0}||_{L^{p}(U)} ||D^{\alpha} \phi||_{L^{q}(U)} \to 0,$$

另外

$$\int_{U} u_{0} D^{\alpha} \phi dx = \lim_{m \to \infty} \int_{U} u_{m} D^{\alpha} \phi dx$$

$$= \lim_{m \to \infty} (-1)^{|\alpha|} \int_{U} D^{\alpha} u_{m} \phi dx$$

$$= (-1)^{|\alpha|} \int_{U} u_{\alpha} \phi dx.$$

表明 $D^{\alpha}u_0 = u_{\alpha}$, 上述讨论则表明 $W^{k,p}(U)$ 是完备的。

Remark 5.3. $u \in L^1_{loc}(U)$, $\eta_{\varepsilon}(x) = \varepsilon^{-n} \eta(\frac{x}{\varepsilon})$, $\forall V \subset U$, $2\varepsilon = dist(V, \partial U)$.

$$u_{\varepsilon}(x) = (u * \eta_{\varepsilon})(x) = \int_{U} \eta_{\varepsilon}(x - y)u(y)dy, \ x \in V,$$
(5.11)

已知 $u_{\varepsilon}(x) \in C^{\infty}(V)$, $D^{\alpha}u$ 存在, 求 $D^{\alpha}u_{\varepsilon}$ 。

简单计算可知

$$\begin{split} \frac{\partial u_{\varepsilon}}{\partial x_{i}} &= \int_{U} \frac{\partial}{\partial x_{i}} (\eta_{\varepsilon}(\frac{x-y}{\varepsilon})) u(y) dy &= \varepsilon^{-n} \int_{U} \frac{\partial}{\partial x_{i}} (\eta(\frac{x-y}{\varepsilon})) u(y) dy \\ &= -\varepsilon^{-n} \int_{U} \frac{\partial}{\partial y_{i}} (\eta(\frac{x-y}{\varepsilon})) u(y) dy \\ &= \varepsilon^{-n} \int_{U} (\eta(\frac{x-y}{\varepsilon})) D_{y_{i}} u(y) dy \\ &= (D_{y_{i}} u * \eta_{\varepsilon})(x). \end{split}$$

则

$$D_{x_i}(\eta_{\varepsilon} * u)(x) = (\eta_{\varepsilon} * D_{y_i} u)(x), \tag{5.12}$$

类似地对于高阶求导数有

$$D_x^{\alpha} u_{\varepsilon} = (D_y^{\alpha} u * \eta_{\varepsilon})(x). \tag{5.13}$$

5.2 逼近

我们假定 $k \in \mathbb{N}, 1 \leq p + \infty, U_{\varepsilon} = \{x \in U | dist(x, \partial U)\}$ 。

Theorem 5.3. (局部逼近) 若 $u \in W^{k,p}(U), 1 \le p < +\infty, u^{\varepsilon} = \eta_{\varepsilon} * u, in U_{\varepsilon}$ 。则

- (1), $u^{\varepsilon} \in C^{\infty}(U_{\varepsilon}), \forall \varepsilon > 0.$
- (2), $u^{\varepsilon} \to u$, in $W_{loc}^{k,p}(U)$ as $\varepsilon \to 0$.

证明. (1), 由 Theorem (2.2) 可以直接得到。

(2), k=0, 利用 Theorem (2.2)也可以直接得到。 $k\geq 1$,由于 $D^{\alpha}(\eta_{\varepsilon}*u)=\eta_{\varepsilon}*D^{\alpha}u$,那么对于 $V\subset\subset U$

$$||u^{\varepsilon} - u||_{W^{k,p}(V)}^{p} = \sum_{\alpha \le k} ||D^{\alpha}u^{\varepsilon} - D^{\alpha}u||_{L^{p}(V)}$$

$$= \sum_{\alpha \le k} ||D^{\alpha}(\eta_{\varepsilon} * u) - D^{\alpha}u||_{L^{p}(V)}$$

$$= \sum_{\alpha \le k} ||\eta_{\varepsilon} * D^{\alpha}u - D^{\alpha}u||_{L^{p}(V)} \to 0,$$

最后一个趋于零是对 $D^{\alpha}u$ 使用 k=0 时结论。则有 $u^{\varepsilon} \to u$ in $W_{loc}^{k,p}(U)$, as $\varepsilon \to 0$ 。

Theorem 5.4. (整体逼近)

若 $U \subset \mathbb{R}^n$ 有界区域, $\partial \Omega \in C^1, u \in W^{k,p}(U), 1 \leq p < +\infty, k \in \mathbb{N}$ 。则 $\exists u_m \in C^{\infty}(\overline{U})$ 使得 $u_m \to u$ in $W^{k,p}(U)$ 。

证明. Step 1,

 $\forall x_0 \in \partial U$,由于 $\partial U \in C^1$,等价于 $\exists r > 0$ 使得 $U \cap B(x_0, r)$ 可以表示为

$$U \cap B(x_0, r) = \{ x \in B(x_0, r) | x_N < \gamma(x_1, \dots, x_{N-1}) \},$$
(5.14)

这里 $\gamma(x'): \mathbb{R}^{N-1} \to \mathbb{R}$ 为 C^1 函数。另外满足

$$|D\gamma| \le C_0 \text{ in } B(x_0, r) \cap \{x_n = 0\}, \tag{5.15}$$

这里的 C_0 是依赖于 ∂U 的常数。

Step 2(近边区域的逼近),

令 $V = U \cap B(x_0, \frac{r}{2})$, $x^{\varepsilon} = x + \lambda \varepsilon e_n$, $(x \in V, \varepsilon > 0)$ 。因为 $|D\gamma| \leq C_0$,那么对于 $\forall x \in V$, ε 足够小,存在一致的 λ 使得 $B(x^{\varepsilon}, \varepsilon) \subset U \cap B(x_0, r)$ 。(这件事情是可以做到的,主要是最差的边界是那种带尖点的那种 Lipchitz 情形。)另外令 $u_{\varepsilon}(x) = u(x^{\varepsilon})$,和 $v^{\varepsilon} = \eta_{\varepsilon} * u_{\varepsilon}$ 。(更大的区域上 $\widetilde{V} \supset V$ 上做卷积,利用卷积函数可以局部 L^p 逼近,而且可知 $v^{\varepsilon} \in C^{\infty}(\overline{V})$ 。)

Claim: $v^{\varepsilon} \to u \ in \ W^{k,p}(V)$.

证明:

$$||D^{\alpha}v^{\varepsilon} - D^{\alpha}u||_{L^{p}(V)} = ||D^{\alpha}v^{\varepsilon} - D^{\alpha}u_{\varepsilon} + D^{\alpha}u_{\varepsilon} - D^{\alpha}u||_{L^{p}(V)}$$

$$\leq ||D^{\alpha}v^{\varepsilon} - D^{\alpha}u_{\varepsilon}||_{L^{p}(V)} + ||D^{\alpha}u_{\varepsilon} - D^{\alpha}u||_{L^{p}(V)} \to 0.$$

第一项是利用卷积逼近知趋于零,第二项是 L^p 函数的积分平移不变性知趋于零。

Step 3 (利用单位分解做到整体的逼近)

取 $\delta > 0$,因为 ∂U 是紧的,则存在有限个点 $\{x_i\}_{i=1}^N, x_i \in \partial U, r_i > 0$,令 $V_i = U \cap B(x_i, \frac{r_i}{2})$ 和函数 $v_i \in C^{\infty}(\overline{V_i})$ 满足 $\partial U \subset \bigcup_{i=1}^N B(x_i, \frac{r_i}{2})$,和

$$||v_i - u||_{W^{k,p}(V_i)} < \delta.$$
 (5.16)

再取 $V_0 \subset\subset U$,使得 $U\subset \bigcup_{i=0}^N V_i$,以及从属于开覆盖 $\{V_i\}_{i=0}^N$ 的单位分解 $\{\xi_i\}_{i=0}^N$ 。利用前面得到的 Theorem 5.3,可知存在 $v_0\in C^\infty(\overline{V_0})$ 满足

$$||v_0 - u||_{W^{k,p}(V_0)} \le \delta. \tag{5.17}$$

Step 4,

令
$$v=\sum_{i=0}^N \xi_i v_i$$
,已知 $u=\sum_{i=0}^N \xi_i u$,和 $\xi_i u \in W^{k,p}(U)$ 。则有当 $|\alpha|=1$ 时

$$||D^{\alpha}v - D^{\alpha}u||_{L^{p}(U)} = ||D^{\alpha}(\sum_{i=0}^{N} \xi_{i}v_{i}) - D^{\alpha}(\sum_{i=0}^{N} \xi_{i}u)||_{L^{p}(U)}$$

$$\leq \sum_{i=0}^{N} ||D^{\alpha}(\xi_{i}v_{i}) - D^{\alpha}(\xi_{i}u)||_{L^{p}(U)}$$

$$= \sum_{i=0}^{N} (||(D^{\alpha}\xi_{i})(v_{i} - u)||_{L^{p}(U)} + \dots + ||\xi_{i}D^{\alpha}(v_{i} - u)||_{L^{p}(U)})$$

$$\leq C(N+1)\delta$$

对于 $|\alpha| \leq k$ 可以类似得到,因此

$$||u - v||_{W^{k,p}(U)} = \left(\sum_{|\alpha| \le k} ||D^{\alpha}(u - v)||_{L^{p}(U)}^{p}\right)^{\frac{1}{p}} \le C\delta, \tag{5.18}$$

其中 C 和 $n, |\alpha|$ 以及 $\xi_i (0 \le i \le N)$ 有关。

Remark 5.4. (1), 这个定理主要的技巧就是局部化的技巧(利用单位分解定理),另外 $\partial U \in C^1$ 这个条件是可以放松为 ∂U 可以为 Lipschitz 连续,这个条件在证明中主要保证的是对于边界点可以提升之后有空间进行磨光操作。

(2),此逼近定理是在边界条件较好的情况下可以做到光滑到边的函数逼近,那么将有助于在后面我们定义 Sobolev 函数的迹。证明这个定理的主要思想就是利用关于紧集的单位分解定理和处理靠近边界区域的提升思想。

为了得到本节最后一个逼近定理,我们先做一个开集上的单位分解定理。

Theorem 5.5. (开集上的单位分解定理)

设 $\{\Omega_i\}_{i=1}^{\infty}$ 为有界开集, $\Omega=\cup_{i=1}^{\infty}\{\Omega_i\},\Omega_i\subset\subset\Omega$ 。每一个紧集 $K\subset\Omega$ 只和有限个 Ω_i 相交,则存在函数 $\{a_i\}_{i=1}^{\infty}$ 满足

$$\begin{cases} a_i \in C^{\infty}(\Omega_i) \\ \sum_{i=1}^{\infty} a_i = 1 \text{ and } 0 \le a_i \le 1, \ \forall \ x \in \Omega. \end{cases}$$
 (5.19)

证明. 对于 Ω_1 我们可以找到 $\underbrace{B_1}_{closed} \subset \underbrace{O_1}_{open} \subset \underbrace{\Omega_1}_{open}$, 取 $B_1 = \Omega_1/(\cup_{i=2}^\infty \Omega_i)$ 那么 B_1 是闭集。这是因为

$$\overline{\Omega}_1/(\cup_{i=2}^{\infty}\Omega_i)\subset\Omega_1/(\cup_{i=2}^{\infty}\Omega_i)$$

因为 $\overline{\Omega}_1 \subset \Omega$,那么 $x \in \overline{\Omega}_1 \setminus (\bigcup_{i=2}^{\infty} \Omega_i)$,所以 $x \in \Omega/(\bigcup_{i=2}^{\infty} \Omega_i) = \Omega_1/(\bigcup_{i=2}^{\infty} \Omega_i)$ 。令 $O_1 = \{x | dist(x, B_1) < \frac{1}{2} dist(x, \partial \Omega_1)\}$,则有 $O_1 \cup_{i=2}^{\infty} \Omega_i = \Omega$,和 $B_1 \subset O_1 \subset \Omega_1$,以及存在函数 $\beta_1(x) \in C_0^{\infty}(\Omega_1)$ 满足 $\beta_1(x) = 1$ in $O_1, 0 \leq \beta_1(x) \leq 1$ 。

同理可以令

$$B_2 = \Omega_2/(O_1 \cup_{i=3}^{\infty} \Omega_i), \quad O_2 = \{x | dist(x, B_2) < \frac{1}{2} dist(x, \partial \Omega_2)\}.$$

以及对应的 $\beta_2(x)$, $\beta_2(x) \in C_0^\infty(\Omega_2)$ and $\beta_2(x) = 1$ in O_2 and $0 \le \beta_2 \le 1$ in Ω_2 。那么我们令

$$a_i = \frac{\beta_i(x)}{\sum_{i=1}^{\infty} \beta_i(x)}$$

可以验证上面的定义是有意义的,因为对于 $x \in \Omega$ 上式中只是有限项的加和。而且 $\{a_i\}_{i=1}^{\infty}$ 即为满足要求的函数。

Theorem 5.6. 设 U 是有界集, $u \in W^{k,p}(U), 1 \leq p < +\infty$, 则存在 $u_m \in C^{\infty} \cap W^{k,p}(U)$ 使得 $u_m \to u$ in $W^{k,p}(U)$ 。

证明. Step 1

令 $U_i = \{x \in U | dist(x, \partial U) > \frac{1}{i}\}$,令 $V_i = U_{i+3} - U_i$ 。合理选取一个 $V_0 \subset U$ 使得 $U = \cup_{i=0}^{\infty} V_i$,则对于任意紧集 $K \subset U$ 只会同有限个 $\{V_i\}$ 相交,那么利用我们前面得到的这个单位分解定理,可知存在函数 $\xi_i \in C_0^\infty(V_i)$ 且 $\sum_{i=1}^{\infty} \xi_i(x) = 1$, $\forall \ x \in U$ 。

Step 2

令 $W_i = U_{i+4} - U_i$, 那么显然 $V_i \subset W_i$, $(W_i$ 上面可以做卷积光滑化) 和

$$u(x) = \sum_{i=0}^{\infty} \xi_i u = \sum_{i=0}^{\infty} (\xi_i u)(x), \tag{5.20}$$

则 $supp(\xi_i u) \in V_i$,利用前面单位分解定理可知上面其实是有限项加和,而且 $\xi_i u \in W^{k,p}(U)$ 。令 $u^i(x) = \eta_{\epsilon_i} * (\xi_i u)$,则有

$$||u^i - u||_{W^{k,p}(U)} \le \frac{\delta}{2^{i+1}},$$
 (5.21)

 $\mathbb{E} \sup p(u^i) \subset W_i$.

Step 3

令 $v = \sum_{i=1}^{\infty} u^i$ 对于任意的紧集 $V \subset\subset U$, 可知 K 只和有限个 V_i 相交,则有

$$||v - u||_{W^{k,p}(U)} = ||\sum_{i=0}^{\infty} u^i - \sum_{i=0}^{\infty} \xi_i u||_{W^{k,p}(U)}$$

$$\leq \sum_{i=0}^{\infty} ||u_i - \xi_i u||_{W^{k,p}(U)}$$

$$\leq \delta$$

上面的计算有意义的原因是上面的加和其实是有限项的加和。

5.3 延拓

Theorem 5.7. 设 U 为有界区域, $\partial U \in C^1$,给定有界开集 V 使得 $U \subset C$ V,则存在线性有界算子 $E: W^{1,p}(U) \to W^{1,p}(\mathbb{R}^n)$,使得 $\forall u \in W^{1,p}(U)$,有

- (1), Eu = u, a.e in U.
- $(2), ||Eu||_{W^{1,p}(\mathbb{R}^n)} \le C(n,U)||u||_{W^{k,p}(U)} \circ$
- (3), $supp(Eu) \subset V$, V 是有界集。

证明. Step 1 (假设边界是平直的)

对于 $\forall x_0 \in \partial U$, 当边界是平直的, 不妨假设 $\partial U \subset \{x_n = 0\}$ 以及存在以 x_0 为心, r 为半径的球 B, 记

$$B^+ := B(x_0, r) \cap \{x_n > 0\} \subset \overline{U}, \quad B^- := B(x_0, r) \cap \{x_n < 0\} \subset \mathbb{R}^n - U.$$

不妨假设 $u \in C^1(B^+)$ (最后我们利用逼近处理非 C^1 情形), 令

$$u(x) = \begin{cases} \overline{u}(x) & x \in B^+, \\ -3u(x_1, \dots, x_{n-1}, -x_n) + 4u(x_1, \dots, x_{n-1}, -\frac{x_n}{2}) & x \in B^-. \end{cases}$$

Claim: $\overline{u} \in C^1(B)$

证明: 首先验证 $u\in C(B)$,只需要验证 $\lim_{x_n\to 0^+}\overline{u}=\lim_{x_n\to 0^-}\overline{u}(x)$,利用 $\overline{u}(x)$ 的定义式,可知成立,即 $u\in C(B)$ 。下面验证 u 的一阶导数是存在连续的。

令
$$u^+ = \overline{u}|_{B^+ \cap \{x_n > 0\}}$$
, $u^- = \overline{u}|_{B^- \cap \{x_n < 0\}}$ 。 由于 $u^+ = u^-$,on $\{x_n = 0\}$,可知

$$D_{x_{\alpha}}u^{+} = D_{x_{\alpha}}u^{-}, \forall |\alpha| \le k - 1,$$
 (5.22)

和

$$u_{x_n}^+(x',0^+) = u_{x_n}^-(x',0^-),$$
 (5.23)

则 $u \in C^1(B)$ 。而对于一般的 $u \in C^m(B^+)$,我们定义延拓为

$$\overline{u}(x) = \begin{cases} u(x', x_n) & x \in B^+ \\ \sum_{j=1}^{m+1} c_j u(x', -\frac{x_n}{j}) & x \in B^- \end{cases}$$

那么要求 $\overline{u} \in C^m(B)$ 的话只需

$$\sum_{j=1}^{m+1} c_j \left(-\frac{1}{j}\right)^k = 0, \quad k = 0, 1, \dots, m.$$
 (5.24)

另外我们还要知道 $\int_{B}|\overline{u}|^{p}+|D\overline{u}|^{p}dx$ 与 $\int_{B^{+}}|u|^{p}+|Du|^{p}dx$ 之间的关系。首先有

$$\int_{B} |\overline{u}|^{p} dx = \int_{B^{+}} |\overline{u}|^{p} dx + \int_{B^{-}} |\overline{u}|^{p} dx \le C_{1} \int_{B^{+}} |\overline{u}|^{p} dx, \tag{5.25}$$

利用反射的性质同理可以得到

$$\int_{B} |D\overline{u}| dx \le C \int_{B^{+}} |Du|^{p} dx. \tag{5.26}$$

Step 2(边界是不平直的)

设 $\partial U \in C^1$, $x_0 \in \partial U$, 令

$$\begin{cases} y_i = x_i, & i \le n - 1, \\ y_n = x_n - \gamma(x'). \end{cases}$$

其中 $\partial U \cap B(x_0,r)$ 可以表示为 $\{x_n = \gamma(x^{'}) | x^{'} \in B(x_0,r) \cap \{x_n = 0\}\}$, 其中 $\gamma(x^{'}) \in C^1$ 。

不妨设 $y=\Phi(x)$,利用上面的变量替换公式知 $\det(\frac{\partial y_i}{\partial x_j})\neq 0$,那么利用隐函数定理可知存在逆变换 $x=\Psi(y)$,此边界拉平使得

$$\Phi: \ \partial U \cap V \to \{y_n = 0\} \cap \Phi(V), \tag{5.27}$$

取 r > 0,使得 $B(0,r) \subset \Phi(V)$,令 $u'(y) := u(\Psi(y)), y \in B^+(0,r)$,记

$$\overline{u}'(y) = \begin{cases} u'(y) & y \in B^{+}(0 r) \\ -3u'(y', -y_n) + 4u'(y', -\frac{y_m}{2}) & y \in B^{-}(0, r). \end{cases}$$

则 $\overline{u}'(y) \in C^1(B(0,r))$,

$$||\overline{u}'||_{W^{1,p}(B(0,r))} \le C||u'||_{W^{1,p}(B^{+}(0,r))}.$$
 (5.28)

记 $W = \Psi(B(0,r)), W^+ = \Psi(B^+(0,r)), \overline{u}(x) = \overline{u}'(\Phi(x)), x \in \Psi(B(0,r)),$ 则有

$$\int_{W} |\overline{u}|^{p} dx = \int_{B(0,r)} |\overline{u}(\Psi(y))|^{p} \left| \frac{\partial x_{i}}{\partial y_{j}} | dy = \int_{B(0,r)} |\overline{u}'(y)|^{p} \left| \frac{\partial x_{i}}{\partial y_{j}} | dy, \right|$$

$$(5.29)$$

由于 $\Psi(y)$ 为微分同胚,则雅可比矩阵 $|\frac{\partial x_i}{\partial y_j}| = |\frac{\partial \Psi(y)}{\partial y_j}|$ 非奇异,故 $|\frac{\partial x_i}{\partial y_j}|$ 关于 y 是一致有界,即存在常数 C_1, C_2 使得 $C_1 \leq |\frac{\partial x_i}{\partial y_i}| \leq C_2$,

$$\int_{W} |\overline{u}(x)|^{p} dx \le C_{2} \int_{B(0,r)} |\overline{u}'(y)|^{p} dy \le C_{2} \int_{B^{+}(0,r)} |\overline{u}'(y)|^{p} dy, \tag{5.30}$$

又因为

$$\int_{B^{+}(0,r)} |u^{'}(y)|^{p} dy = \int_{W^{+}} |u^{'}(\Psi(x))|^{p} |\frac{\partial y_{i}}{\partial x_{j}}| dx = \int_{W^{+}} |u(x)|^{p} |\frac{\partial y_{i}}{\partial x_{j}}| dx, \tag{5.31}$$

类似的有 $\left|\frac{\partial y_i}{\partial x_i}\right|$ 是有界的,则有

$$\int_{W} |\overline{u}(x)|^{p} dx \le C \int_{W^{+}} |u(x)|^{p} dx. \tag{5.32}$$

即

$$||\overline{u}||_{L^p(W)} \le C||u||_{L^p(W^+)}.$$
 (5.33)

类似的可以估计得到 $||D^{\alpha}\overline{u}||_{L^{p}(W)} \leq C||D^{\alpha}u||_{L^{p}(W^{+})}$, 综上所述可得

$$||\overline{u}||_{W^{1,p}(W)} \le ||u||_{W^{1,p}(W^+)} \le ||u||_{W^{1,p}(U)}. \tag{5.34}$$

Step 3 (利用截断函数拼接为一个整体定义的延拓函数)

由于 ∂U 是紧的,存在 $\{x_i^0\}_{i=1}^N \subset U, r_i^0 > 0$ 使得 $\bigcup_{i=1}^N B(x_i^0, r_i^0)$ 为 ∂U 的覆盖,取 $V_0 \subset C$ U 使得 $V_0 \cup \bigcup_{i=1}^N B(x_i^0, r_i^0)$ 为 U 的覆盖,记 $V_i = B(x_i^0, r_i^0)$ 。令 $\{\xi\}_{i=0}^N$ 为从属于 $\{V_i\}_{i=0}^N$ 的单位分解,定义 $\overline{u}(x) = \sum_{i=0}^N \xi_i(x)\overline{u}_i(x)$,其中 $\overline{u}_i(x)$ 为 u(x) 在 V_i 上的延拓,且 $\overline{u}_0 = u(x)$ 。可以验证

(1),
$$\overline{u}(x) = \sum_{i=1}^{N} \xi_i(x) \overline{u}_i(x) = \sum_{i=0}^{N} \xi_i(x) u(x) = u(x)$$
,

- (2), $||\overline{u}||_{W^{1,p}(\mathbb{R}^n)} \leq \sum_{i=0}^N ||\overline{u}||_{W^{1,p}(V_i)} \leq C||u||_{W^{1,p}(U)}$,
- (3),由于 $\xi_i \in C_c^{\infty}(V_i)$,存在有界开集 $V \subset \cup_{i=0}^N V_i$ 使得 $supp(\overline{u}) \subset V$ 。

则对于 $u \in C^1(\overline{U})$, 可以找到延拓函数 \overline{u} 。

Step 4(处理 u 不是 C^1)

对于 $u \in W^{1,p}(U)$,存在 $u_m \in C^1(\overline{U})$ 使得 $||u_m - u||_{W^{1,p}(U)} \to 0$ as $m \to \infty$ 。记 $Eu_m := \overline{u}_m$ 为 u_m 对应的延拓,则 Eu_m 是不是有极限呢? 只需研究 $\{Eu_m\}_{m=1}^{\infty}$ 是否为 Cauchy 列。

由于

$$||Eu_n - Eu_m||_{W^{1,p}(\mathbb{R}^n)} \le C||u_n - u_m||_{W^{1,p}(U)} \to 0, \quad (m, l \to \infty).$$
 (5.35)

知 $\{Eu_m\}_{m=1}^{\infty}$ 为 $W^{1,p}(\mathbb{R}^n)$ 中的 Cauchy 列,由 $W^{1,p}(\mathbb{R}^n)$ 的完备性,可知存在 $Eu\in W^{1,p}(\mathbb{R}^n)$ 使得 $\lim_{m\to\infty}Eu_m=Eu$ in $W^{1,p}(\mathbb{R}^n)$,则 Eu 即为所求之延拓。下面还需验证

(1), 首先验证 Eu = u, a.e, in U,

$$||Eu - u||_{L^{p}(U)} \le ||Eu - Eu_{m}||_{L^{p}(U)} + ||Eu_{m} - u_{m}||_{L^{p}(U)} + ||u_{m} - u||_{L^{p}(U)} \to 0 \ (m \to \infty), \tag{5.36}$$

- (2),由于对于 $\forall m$,存在有界开集 V'_m 使得 $supp(\overline{u_m}) \subset V'_m \subset \bigcup_{i=0}^N V_i$,则 $supp(Eu) \subset \bigcup_{i=0}^N V_i$ 。
- (3), 验证 $||Eu||_{W^{1,p}(\mathbb{R}^n)} \leq C||u||_{W^{1,p}(U)}$.

$$||Eu||_{W^{1,p}(\mathbb{R}^n)} \leq ||Eu - Eu_m||_{W^{1,p}(\mathbb{R}^n)} + ||Eu_m||_{W^{1,p}(\mathbb{R}^n)}$$

$$\leq ||Eu - Eu_m||_{W^{1,p}(\mathbb{R}^n)} + C||u_m||_{W^{1,p}(U)}$$

$$\leq ||Eu - Eu_m||_{W^{1,p}(\mathbb{R}^n)} + C||u_m - u||_{W^{1,p}(U)} + C||u||_{W^{1,p}(U)}. \tag{5.37}$$

即可。

Step 5(说明 Eu 与逼近序列的选取没有关系)

不妨假设存在序列 $\{u_m\}$ 和 $\{v_n\}$ 是两个不同的逼近序列满足 $u_m \to u, v_n \to u$ in $W^{1,p}(U)$ 则

$$||u_m - v_n||_{W^{1,p}(U)} \to 0 \text{ as } m, n \to +\infty,$$
 (5.38)

和

$$||Eu_m - Ev_n||_{W^{1,p}(\mathbb{R}^n)} \le C||u_m - v_n||_{W^{1,p}(U)},\tag{5.39}$$

 $\Leftrightarrow m, n \to \infty$,可得

$$||\overline{u} - \overline{v}||_{W^{1,p}(\mathbb{R}^n)} \to 0, \tag{5.40}$$

因此可知延拓与逼近的序列选取没有关系。

Remark 5.5. 该定理应用很多,例如我们研究 $u \in W^{1,p}(U)$ 时我们只需研究 $u \in W^{1,p}(\mathbb{R}^n)$ 即可,然后再利用逼近的观点去研究 C_0^∞ 或者 C_0^1 函数。后面我们证明 Sobolev 和 Morrey 不等式和 Poincaré 不等式时我们只需要对 $u \in C_0^1$ 操作,从而可以使用经典的微积分。

5.4 限制 (Trace)

这一小节我们主要研究限制,首先我们知道对于 L^p 函数而言,我们研究它在低一维的子流形上面的限制是没有意义的,这是因为 L^p 函数空间是几乎处处相等意义下定义的函数空间。而对于 $u \in C^1(\overline{U})$ 那么 u 在 ∂U 上面的限制显然是有意义的,自然而然我们就会问如果 $u \in W^{1,p}(U)$ 我们能不能研究 u 在边界上面的性质呢?还有就是研究这个限制有什么意义呢?

首先研究这个是很有意义的,比如说就 Possion 方程而言

$$\begin{cases} \Delta u = f & \text{in } \Omega \\ u(x) = \varphi & \text{on } \partial \Omega \end{cases}$$

我们需要在 Sobolev 空间中研究这个方程的存在性的时候那么就不可避免的要考虑边界上的限制这个问题了。这个限制是有的,但是我们需要边界的正则性要好一点,满足 $\partial U \in C^1$ 。

另外我们可能还需要在限制存在的条件下,边界上的 L^p 范数与整体的 $W^{1,p}$ 范数满足一定的控制关系。 具体来说就是 $(\int_{\partial U} |u|^p ds)^{\frac{1}{p}} \leq C||u||_{W^{1,p}(U)}$ 。 当边界是平直的时候我们就可以很容易得到这个关系,不妨设 $x_0 \in \partial U$,存在 r > 0, $\partial U \cap B(x_0,r) \subset \{x_n = 0\}$,和 $B^+ = B(x_0,r) \cap \{x_n \geq 0\}$, $\Gamma = B(x_0,\frac{r}{2}) \cap \partial U$,以及 截断函数 $\xi(x), \xi \in C_0^\infty(B(x_0,r))$ 和 $\xi|_{B(x_0,\frac{r}{2})} = 1$ 。那么可得

$$\int_{\Gamma} \xi |u|^{p} dx^{'} \leq \int_{B(x_{0},r) \cup \{x_{n}=0\}} \xi |u|^{p} dx^{'}
= \int_{B^{+}} (\xi |u|^{p})_{x_{n}} dx
\leq \int_{B^{+}} |\xi_{x_{n}}| |u|^{p} dx + p \int_{B^{+}} \xi |u|^{p-1} |u_{x_{n}}| dx
\leq C \left(\int_{B^{+}} (|u|^{p} + |Du|^{p}) dx \right).$$

Theorem 5.8. 假设 $U \subset \mathbb{R}^n$ 是有界 C^1 区域,那么存在线性化算子 $T: W^{1,p}(U) \to L^p(\partial U)$ 使得

- (1), $Tu = u|_{\partial\Omega}$ if $u \in W^{1,p}(U) \cap C(\overline{U})$,
- (2), $||Tu||_{L^p(\partial U)} \le C(p,U)||u||_{W^{1,p}(U)}$.

我们称 Tu 为 u 在 ∂U 上面的迹。

证明. Step 1

 $u\in C^1(\overline{U})$, $x_0\in\partial U$ 并且 ∂U 在 x_0 附近是平坦的,即存在 $\gamma>0$ 使得 $\partial U\cap B(x^0,r)\subset\{x_n=0\}$,令 $\widetilde{B}=B(x_0,\frac{r}{2}),\Gamma=\partial\cap\widetilde{B}$,则有

$$\int_{\Gamma} |u|^{p} dx' \le C \int_{B^{+}(x_{0}, r)} (|u|^{p} + |Du|^{p}) dx. \tag{5.41}$$

Step 2 处理非平直的边界(拉直操作本质上就是多出来一个雅可比矩阵)

 $\forall x_0 \in \partial U$,取 x_0 邻域 W 及微分同胚 $y = \Phi(x)$ 其逆映射为 $x = \Psi(y)$ 使得 $\Phi: \partial U \cap W \to \{y_n = 0\} \cap \Phi(W)$,取 r > 0 使得 $B(0,r) \subset \Phi(W)$,记 $u'(y) = u(\Psi(y)), y \in B^+(0,r)$,则

$$\int_{\Psi(\{y_{n}=0\}\cap B(0,\frac{r}{2}))} |u|^{p} d\sigma(x) = \int_{\{y_{n}=0\}\cap B(0,\frac{r}{2})} |u'(y')|^{p} \sqrt{\det(g_{ij})} d\sigma(y'), \tag{5.42}$$

这里 $g_{ij} = \frac{\partial \Psi(y)}{\partial y_i} \frac{\partial \Psi(y)}{\partial y_j}$, 由于 $\Psi(y)$ 为微分同胚, 则

$$\begin{split} \int_{\Psi(\{y_n=0\}\cap B(0,\frac{r}{2}))} |u|^p d\sigma & \leq & C \int_{\{y_n=0\}\cap B(0,\frac{r}{2})} |u^{'}(y^{'})|^p d\sigma(y^{'}) \\ & \leq & C \int_{B^+(0,r)} (|u^{'}(y)|^p + |Du^{'}(y)|^p) dy. \end{split}$$

类似延拓中的做法,由于 $\Phi(x)$ 为微分同胚则,

$$\int_{B^{+}(0,r)} (|u'(y)|^{p} + |Du'(y)|^{p}) dy = \int_{\Phi(B^{+}(0,r))} (|u(x)|^{p} + |Du|^{p}) |\frac{\partial y_{i}}{\partial x_{j}}| dx
\leq C \int_{U} (|u|^{p} + |Du|^{p}) dx,$$
(5.43)

即

$$\int_{\Psi(\{y_n=0\}\cap B(0,\frac{r}{2}))} |u|^p d\sigma \le C \int_U (|u|^p + |Du|^p) dx. \tag{5.44}$$

Step 3 (做覆盖将整体问题局部化处理)

由于 ∂U 是紧的,存在有限多个 $\{x_i^0\}_{i=1}^N\subset \partial U$,使得 $\cup_{i=1}^N\Gamma_i=\partial$,这里 $\Gamma_i=\partial U\cap B(x_i^0,\bar{r}_i)$ 。由 Step 2 可得

$$\int_{\Gamma_i} |u|^p d\sigma \le C \int_U (|u|^p + |Du|^p) dx, \tag{5.45}$$

记 $Tu := u|_{\partial U}$,则

$$||Tu||_{L^p(\partial U)} \le C||u||_{W^{1,p}(U)}.$$
 (5.46)

Step 4 (逼近处理一般的 $u \in W^{1,p}(U)$)

利用前面的得到的逼近定理可知存在 $u_m \in C^{\infty}(\overline{U}) \cap W^{1,p}(U)$ 满足 $u_m \to u$ in $W^{1,p}(U)$ 。则有

$$||Tu_m - Tu_n||_{L^p(\partial U)} \le C||u_m - u_n||_{W^{1,p}(U)},\tag{5.47}$$

知 $\{Tu_m\}_{m=1}^\infty$ 是 Cauchy 列,利用 $L^p(\partial U)$ 的完备性,得 $\{Tu_m\}_{m=1}^\infty$ 为收敛列,记 $Tu:=\lim_{m\to\infty}Tu_m$ 。由于 $||Tu_m||_{L^p(\partial U)}\leq C||u_m||_{W^{1,p}(U)}$,两边同时取极限得

$$||Tu||_{L^p(U)} \le C||u||_{W^{1,p}(U)}. (5.48)$$

Step 5 (定义与逼近序列的选取没有关系)

假设存在另外的序列 $v_m \in C(\overline{U}) \cap W^{1,p}(U)$, and $v_m \to u$ in $W^{1,p}(U)$ 。另外存在 \overline{u} 使得 $Tv_m \to \overline{u}$ in $L^p(\partial U)$ 。需要证明 $Tu = \overline{u}$ a.e on ∂U 。

这是因为

$$||Tu - \overline{u}||_{L^{p}(\partial U)} \leq ||Tu_{m} - Tu - Tv_{m} + \overline{u} + T(v_{m} - u_{m})||_{L^{p}(\partial U)}$$

$$\leq ||Tu_{m} - Tu||_{L^{p}(\partial U)} + ||Tv_{m} - \overline{u}||_{L^{p}(\partial U)}$$

$$+ ||Tu_{m} - Tv_{m}||_{L^{p}(\partial U)} \to 0 \text{ as } m \to \infty.$$
(5.49)

因此 Tu 同 $\{u_m\}_{m=1}^{\infty}$ 的选取无关。

Theorem 5.9. 设 $U \in \mathbb{R}^n$ 中的有界开区域, $\partial U \in C^1$, $u \in W^{1,p}(U)$ 。则 $u \in W^{1,p}_0(U)$ 当且仅当 Tu = 0 a.e on ∂U 。

Remark 5.6. 回忆之前我们做的这么多的定理, 其实主要技巧或者说工具就是, 单位分解(利用卷积得到截断函数将整体问题局部化然后再拼接为整体), 散度定理, Newton – Leibniz 公式, Holder 不等式。

5.5 Sobolev 不等式

5.5.1 Gigliardo-Nirenberg-Sobolev Inequality

这一小节我们主要是想解决这样一个问题,就是如果说 $u \in W^{1,p}(U)$ 那么 u 会不会还在别的空间里面呢?然后我们将对 p 的大小进行分类,分别为 $1 \le p < n$,p = n 和 p > n,在这三种情况下,我们得到相应的不等式从而回答刚开始的问题。

我们先看一个简单的情形,如果 $u \in C_0^{\infty}(\mathbb{R}^n)$,我们是否可以建立下面形式的不等式呢?

$$||u||_{L^q(U)} \le C||Du||_{L^p(U)},$$

其中 $q \ge p$ 。简单来说就是是否可以用导数的可积性换来函数本身的更高的 L^p 可积性? 当然我们首先应该确定 q 应该怎么取? 这个是需要使用 Scaling 的技巧来做,同我们前面做调和方程的刘维尔定理想法是一样的。

引进 $u_{\lambda}(x) := u(\lambda x)$,那么可得 $||u_{\lambda}(x)||_{L^{q}} \leq C||Du_{\lambda}||_{L^{p}(\mathbb{R}^{n})}$ 。由于

$$||u_{\lambda}||_{L^{q}(\mathbb{R}^{n})}^{q} = \int_{\mathbb{R}^{n}} |u_{\lambda}|^{q} dx = \lambda^{n} \int_{\mathbb{R}^{n}} |u(y)|^{q} dy,$$

$$(5.50)$$

和

$$||Du_{\lambda}||_{L^{p}(\mathbb{R}^{n})}^{p} = \int_{\mathbb{R}^{n}} |Du_{\lambda}(x)|^{p} dx = \int_{\mathbb{R}^{n}} \lambda^{p} |Du(y)|^{p} \lambda^{-n} dx$$
$$= \lambda^{p-n} \int_{\mathbb{R}^{n}} |Du(y)|^{p} dy.$$

那么等价得到

$$\lambda^{-\frac{n-p}{p}+\frac{n}{q}}||u||_{L^q(\mathbb{R}^n)} \le C(n,p)||Du||_{L^q(\mathbb{R}^n)}.$$

如果 $\lambda \to 0^+$ or $+\infty$ 时,我们只能令 $\frac{n-p}{p}-\frac{n}{q}=0$ i.e $q=\frac{np}{n-p}$ 这个不等式才有可能成立。所以当 $1\leq p< n$ 时,我们记 $p^*=\frac{np}{n-p}$ 。

Theorem 5.10. (Gigliardo-Nirenberg-Sobolev Inequality)

设 $1 \le p < n$, 那么存在 C = C(n, p) 使得对于任意的 $u \in C_0^{\infty}(\mathbb{R}^n)$ 有

$$||u||_{L^{p^*(\mathbb{R}^n)}} \le C||Du||_{L^p(\mathbb{R}^n)}.$$
 (5.51)

证明. 我们只需对 $p=1, p^*=\frac{n}{n-1}$ 来做,这是因为 p=1 是成立时,我们令 $v=|u|^\gamma$ 那么可得

$$\int_{\mathbb{R}^{n}} (|u|^{\gamma})^{\frac{n}{n-1}} dx \leq C \int_{\mathbb{R}^{n}} D(|u|^{\gamma}) dx
= C\gamma \int_{\mathbb{R}^{n}} |u|^{\gamma-1} |Du| dx
\leq C \left(\int_{\mathbb{R}^{n}} |u|^{(\gamma-1)\frac{p}{p-1}} \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^{n}} |Du|^{p} \right)^{\frac{1}{p}}.$$
(5.52)

令 $\gamma \frac{n}{n-1} = (\gamma - 1) \frac{p}{p-1} \Rightarrow \gamma = \frac{p(n-1)}{n-p}$ 可得 $(\gamma - 1) \frac{p}{p-1} = \frac{np}{n-p}$,表明只需做 p = 1 的情形便可以了。 p = 1 时,我们有

$$u(x) = \int_{-\infty}^{x_i} \frac{\partial u}{\partial x_i}(x_1, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_n) dy_i,$$

则

$$|u|^{\frac{n}{n-1}} \le \prod_{i=1}^{n} \left(\int_{-\infty}^{x_i} \frac{\partial u}{\partial x_i}(x_1, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_n) dy_i \right)^{\frac{1}{n-1}}.$$

上面的式子对 x_1 变量进行积分

$$\int_{-\infty}^{+\infty} |u|^{\frac{n}{n-1}} dx_{1} \leq \int_{-\infty}^{+\infty} \prod_{i=1}^{n} \left(\int_{-\infty}^{+\infty} |Du| dy_{i} \right)^{\frac{1}{n-1}} dx_{1}
= \left(\int_{-\infty}^{+\infty} |Du| dy_{1} \right)^{\frac{1}{n-1}} \int_{-\infty}^{+\infty} \prod_{i=2}^{n} \left(\int_{-\infty}^{+\infty} |Du| dy_{i} \right)^{\frac{1}{n-1}} dx_{1}
\leq \left(\int_{-\infty}^{+\infty} |Du| dy_{1} \right)^{\frac{1}{n-1}} \left(\prod_{i=0}^{n} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} |Du| dy_{i} dx_{1} \right)^{\frac{1}{n-1}},$$

然后重复上面的操作分别对 x_2, \cdots, x_n 变量进行积分便可以得到

$$\int_{\mathbb{R}^n} |u|^{\frac{n}{n-1}} \le \left(\int_{\mathbb{R}^n} |Du| dx \right)^{\frac{n}{n-1}}.$$

Theorem 5.11. $U \subset \mathbb{R}^n$ 是有界 C^1 区域, $u \in W^{1,p}(U), 1 , 那么存在 <math>C = C(n,p)$ 使得

$$||u||_{L^{p^*}(U)} \le C||u||_{W^{1,p}(U)},\tag{5.53}$$

其中 C 只与 p, n, U 有关, $p^* = \frac{np}{n-p}$ 。

证明. **Step 1**, 因为 U 为有界区域, $\partial U \in C$,则 $\exists \overline{u} \in W^{1,p}(\mathbb{R}^n)$ 且 $supp(\overline{u}) \subset V$ 有界,那么利用 Theorem 5.3,存在 $\{u_m\}_{m=1}^{\infty} \subset C_c^{\infty}(\mathbb{R}^n)$,不妨取 $u_{\varepsilon_m} = \eta_{\varepsilon} * \overline{u}$, ε_m 满足 $0 < \varepsilon_m < dist(supp(\overline{u}), \partial V)$,则

$$u_m \to \overline{u}, \quad in \ W^{1,p}(\mathbb{R}^n).$$
 (5.54)

Step 2, 对于 $\{u_m\}_{m=1}^{\infty} \subset C_c^{\infty}(\mathbb{R}^n)$, 有 $||u_m||_{L^p(\mathbb{R}^n)} \leq C||Du_m||_{L^p(\mathbb{R}^n)}$ 。由于

$$||u_m - u_l||_{L^{p^*}(\mathbb{R}^n)} \le C||Du_m - Du_L||_{L^p(\mathbb{R}^n)} \to 0 \ (m, l \to \infty),$$
 (5.55)

则 $\{u_m\}_{m=1}^{\infty}$ 为 $L^{p^*}(\mathbb{R}^n)$ 中的 Cauchy 列。由 $L^{p^*}(\mathbb{R}^n)$ 空间的完备性知 $u_m \to \overline{u}$ in $L^{p^*(\mathbb{R}^n)}$,则

$$\begin{split} ||\overline{u}||_{L^{p^{*}(\mathbb{R}^{n})}} & \leq ||u_{m} - \overline{u}||_{L^{p^{*}(\mathbb{R}^{n})}} + ||u_{m}||_{L^{p^{*}}(\mathbb{R}^{n})} \\ & \leq ||u_{m} - \overline{u}||_{L^{p^{*}}(\mathbb{R}^{n})} + C||Du_{m}||_{L^{p}(\mathbb{R}^{n})} \\ & \leq ||u_{m} - \overline{u}||_{L^{p^{*}}(\mathbb{R}^{n})} + C||Du_{m} - D\overline{u}||_{L^{p}(\mathbb{R}^{n})} + C||D\overline{u}||_{L^{p}(\mathbb{R}^{n})}. \end{split}$$

利用延拓性质, 当 $m \to \infty$ 时我们可以得到

$$||\overline{u}||_{L^{p^*}(\mathbb{R}^n)} \le C||u||_{W^{1,p}(U)}. \tag{5.56}$$

则

$$||u||_{L^{p^*}(U)} \le C||u||_{W^{1,p}(U)}. \tag{5.57}$$

Theorem 5.12. (庞加莱不等式)

假设 U 是 \mathbb{R}^n 中有界区域, $u \in W_0^{1,p}(U)$ 且 $1 \le p < n$, 则存在 C 只与 p,q,n,U 有关, 满足

$$||u||_{L^q(U)} \le C||Du||_{L^p(U)}, \quad \forall 1 \le q \le p^*,$$
 (5.58)

特别地

$$||u||_{L^p(U)} \le C||Du||_{L^p(U)}. (5.59)$$

证明. 由于 $u \in W_0^{1,p}(U)$,存在 $\{u_m\} \in C_c^{\infty}(U)$,使得 $u_m \to u$ in $W^{1,p}(U)$ 。不妨设 $u_m = 0$ in $\mathbb{R}^n \setminus \overline{U}$,则 $u_m \in C_c^{\infty}(\mathbb{R}^n)$ 。由 Theorem 5.10可得

$$||u_m||_{L^{p^*}(\mathbb{R}^n)} \le C||Du_m||_{L^p(\mathbb{R}^n)}.$$
 (5.60)

类似于 Theorem 5.11的操作,上式两边取极限得

$$||u||_{L^{p^*}(U)} \le C||Du||_{L^p(U)}.$$
 (5.61)

由于 U 是有界区域,则 $1 \le q \le p^*$,

$$||u||_{L^{q}(U)}^{q} = \int_{U} |u|^{q} dx \leq ||u^{q}||_{L^{\frac{p^{*}}{q}}(U)} ||1||_{L^{\frac{p^{*}}{p^{*}-q}}(U)}$$

$$\leq ||u||_{L^{p^{*}}(U)}^{q} |U|^{\frac{p^{*}-q}{p^{*}}} \leq C||Du||_{L^{p}(U)}^{q}.$$

$$(5.62)$$

即

$$||u||_{L^{p^*}(U)} \le C||Du||_{L^p(U)}. \tag{5.63}$$

5.5.2 Morrey Inequality

前面我们解决的是 $1 \le p < n$ 的情形时对应的 Sobolev 不等式,这个小节我们处理的是 p > n 的情形,我们会得到相应的 Morrey-Inequality。在做 Morrey 不等式前,我们需要下面的一些准备工作,这也是我们证明该不等式的主要技巧。

(1), Newton-Leibniz 公式

 $\forall \omega \in \partial B(0,1)$, 我们有

$$u(x+t\omega) - u(x) = \int_0^t \frac{\partial u}{\partial s}(x+s\omega)ds = \int_0^t D_i u(x+s\omega)\omega_i ds, \qquad (5.64)$$

因此

$$|u(x+t\omega) - u(x)| \le |\int_0^t Du(x+s\omega) \cdot \omega ds| \le \int_0^t |Du(x+s\omega)| ds.$$
 (5.65)

(2), 极坐标替换公式

$$\int_{B(x,r)} f(y)dy = \int_0^r \int_{\partial B(0,s)} f(y)d\sigma_{\omega_s} ds$$

$$= \int_0^r s^{n-1} \int_{\partial B(x,1)} f(x+s\omega)d\sigma_{\omega_1} ds. \tag{5.66}$$

(3), Hölder 不等式

$$\int fgdx \le ||f||_{L^p}||g||_{L^q}. \tag{5.67}$$

最后我们证明一个关键性的引理,有了这个引理之后只需要利用 Hölder 不等式就可以证明 Morrey 不等式。

Lemma 5.2. $u \in C^1(\mathbb{R}^n)$,则

$$\oint_{B(x,r)} |u(z) - u(x)| dz \le C_n \int_{B(x,r)} \frac{|Du(y)|}{|x - y|^{n-1}} dy,$$
(5.68)

这里
$$f_{B(x,r)}|u(z)-u(x)|dz = \frac{\int_{B(x,r)}|u(z)-u(x)|dz}{|B(x,r)|}$$
。

证明. 只需做 $\int_{B(x,r)} |u(z)-u(x)| dz \le C_n r^n \int_{B(x,r)} \frac{|Du(y)|}{|x-y|^{n-1}} dy$ 。因为

$$\int_{B(x,r)} |u(z) - u(x)| dz = \int_0^r \left(\int_{\partial B(x,s)} |u(z) - u(x)| d\sigma_z \right) dS
= \int_0^r \left(\int_{\partial B(0,1)} |u(x+s\omega) - u(x)| \cdot s^{n-1} d\sigma_\omega \right) dS
\leq \int_0^r \left(\int_{\partial B(0,1)} \left(\int_0^s |Du(x+t\omega)| dt \right) d\sigma_\omega \right) s^{n-1} dS
= \int_0^r \left(\int_0^s \left(\int_{\partial B(0,t)} |Du(x+\widetilde{\omega})| d\sigma_{\widetilde{\omega}} \right) \frac{1}{t^{n-1}} dt \right) s^{n-1} dS
= \int_0^r \left(\int_0^s \left(\int_{\partial B(x,t)} |Du(y)| d\sigma \right) \frac{1}{t^{n-1}} dt \right) s^{n-1} dS
= \int_0^r \left(\int_{B(x,s)} \frac{|Du(y)|}{|x-y|^{n-1}} d\sigma \right) dt \right) s^{n-1} dS
= \int_0^r \left(\int_{B(x,s)} \frac{|Du(y)|}{|x-y|^{n-1}} dy \right) s^{n-1} dS
\leq r^n \int_{B(x,r)} \frac{|Du(y)|}{|x-y|^{n-1}} dy.$$

Theorem 5.13. (Morrey-Inequality)

假设 $n , <math>u \in C^1(\mathbb{R}^n)$, 存在常数 C 使得

$$||u||_{C^{0,\nu}(\mathbb{R}^n)} \le C||u||_{W^{1,p}(\mathbb{R}^n)},\tag{5.69}$$

其中 C 只与 p,n 有关, $\nu=1-\frac{n}{n}$ 。

证明. 首先已知
$$||u||_{C^{0,\nu}(\mathbb{R}^n)} = ||u||_{C^0(\mathbb{R}^n)} + [u]_{C^{\nu}(\mathbb{R}^n)}, \ [u]_{C^{\nu}(\mathbb{R}^n)} = \sup_{\substack{x,y \in \mathbb{R}^n \\ x \neq y}} \frac{|u(x) - u(y)|}{|x - y|^{\nu}} \circ$$

Step 1, 我们先估计 $||u||_{C^0(\mathbb{R}^n)}$ 。对于任意的 $x \in \mathbb{R}^n$,

$$|u(x)| \le \int_{B(x,1)} |u(x) - u(y)| dy + \int_{B(x,1)} |u(y)| dy$$
 (5.70)

$$\leq C \int_{B(x,1)} \frac{|Du(y)|}{|x-y|^{n-1}} dy + \int_{B(x,1)} |u(y)| dy$$
(5.71)

$$\leq C\left(\int_{B(x,1)} |Du(y)|^p dy\right)^{\frac{1}{p}} \left(\int_{B(x,1)} |x-y|^{-(n-1)\frac{p}{p-1}} dy\right)^{\frac{p-1}{p}} + \int_{B(x,1)} |u(y)| dy \qquad (5.72)$$

$$\leq C||Du||_{L^{p}(B(x,1))}(\int_{0}^{1}r^{n-1-(n-1)\frac{p}{p-1}}dr)^{\frac{p-1}{p}}+\int_{B(x,1)}|u(y)|dy.$$

(5.71)式是利用 Lemma 5.2得到, (5.72)是利用 Hölder 不等式得到。又因为

$$f_{B(x,1)}|u(y)|dy \le ||u||_{L^p(B(x,1))}|B(x,1)|^{-\frac{1}{p}} \le C||u||_{L^p(B(x,1))},\tag{5.73}$$

则

$$|u(x)| \leq C||u||_{L^{p}(B(x,1))} + C||Du||_{L^{p}(B(x,1))}$$

$$\leq C||u||_{W^{1,p}(B(x,1))}. \tag{5.74}$$

因为对于任意的 $x \in \mathbb{R}^n$ 均成立,因此

$$||u||_{C^{0}(\mathbb{R}^{n})} = \sup_{x \in \mathbb{R}^{n}} |u(x)| \le C||u||_{W^{1,p}(\mathbb{R}^{n})}.$$
(5.75)

Step 2, 估计 $[u]_{C^{\nu}(\mathbb{R}^n)}$ 。 只需证明

$$|u(x) - u(y)| \le Cr^{\nu} ||u||_{W^{1,p}(\mathbb{R}^n)}, \quad r = |x - y|. \tag{5.76}$$

 $\diamondsuit \ W = B(x,r) \cap B(y,r), \ \ \bigcup \ |u(x) - u(y)| = \ \ \int \ \ _W |u(x) - u(z)| dz + \ \ \int \ \ _W |u(y) - u(z)| dz, \ \ 和$

$$\begin{array}{lcl} f_{-W}|u(x)-u(z)|dz & \leq & C & f_{-B(x,r)}|u(x)-u(z)|dz \\ \\ & \leq & C\int_{B(x,r)}\frac{|Du(z)|}{|x-z|^{n-1}}dz \\ \\ & \leq & C||Du||_{L^{p}(B(x,r))}(\int_{B(x,r)}|x-z|^{-\frac{(n-1)p}{p-1}}dz)^{\frac{p-1}{p}} \\ \\ & \leq & Cr^{1-\frac{n}{p}}||Du||_{L^{p}(B(x,r))}. \end{array}$$

类似地

$$f_{W}|u(y) - u(z)|dz \le Cr^{1-\frac{n}{p}}||Du||_{L^{p}(B(y,r))},$$
(5.77)

则

$$|u(x) - u(y)| \le Cr^{1 - \frac{n}{p}} ||Du||_{L^p(\mathbb{R}^n)} \le Cr^{\nu} ||u||_{W^{1, p}(\mathbb{R}^n)}.$$
(5.78)

由此可得

$$||u||_{C^{0,\nu}(\mathbb{R}^n)} \le C||u||_{W^{1,p}(\mathbb{R}^n)}. \tag{5.79}$$

Remark 5.7. Morrey 不等式的重要在于建立了 $C^{k-1,\alpha}$ 与 $W^{k,p}$ 之间的联系,对于后面我们研究解的正则性方面,也就是提升正则性起到至关重要的作用。

Definition 5.3. 我们称 u^* 是 u 的一个 version, 如果 $u = u^*, a.e.$

Theorem 5.14. 若 $U \subset \mathbb{R}^n$ 为有界区域, $\partial U \in C^1$ 。假设 $n ,则对 <math>u \in W^{1,p}(U)$ 存在 u 的一个 $version\ u^* \in C^{0,\nu}(\overline{U})$,满足 $||u^*||_{C^{0,\nu}(U)} \le C||u||_{W^{1,p}(U)}$,其中 $\nu = 1 - \frac{n}{p}$ 和 C 只与 p,n,U 有关。

证明. 由于 $\partial U \in C^1$, 且 U 为有界区域,存在 $\overline{u} \in W^{1,p}(\mathbb{R}^n)$ 使得 $\overline{u} \equiv u$ in $U, supp(\overline{u}) \subset V$ 有界,且

$$||\overline{u}||_{W^{1,p}(\mathbb{R}^n)} \le C||u||_{W^{1,p}(U)}. \tag{5.80}$$

对 \overline{u} ,利用前面得到的逼近定理,可知存在 $\{u_m\}_{m=1}^\infty$ 使得 $u_m \to \overline{u}$ in $W^{1,p}(\mathbb{R}^n)$ 。这里 $u_m = \eta_{\varepsilon_m} * \overline{u}$, ε_m 满足 $\varepsilon_m < dist(supp(\overline{u}), \partial V)$,则有

$$||u_m||_{C^{0,\nu}(\mathbb{R}^n)} \le C||u_m||_{W^{1,p}(\mathbb{R}^n)}. \tag{5.81}$$

由于

$$||u_m - u_l||_{C^{0,\nu}(\mathbb{R}^n)} \le C||u_m - u_l||_{W^{1,p}(\mathbb{R}^n)} \to 0, \quad (m,l \to \infty).$$
 (5.82)

则 $\{u_m\}_{m=1}^{\infty}$ 为 $C^{0,\nu}(\mathbb{R}^n)$ 中的 Cauchy 列。又因为 $C^{0,\nu}(\mathbb{R}^n)$ 为 Banach 空间,则 $\exists u^* \in C^{0,\nu}(\mathbb{R}^n)$,使得

$$u_m \to u^*, \quad in \ C^{0,\nu}(\mathbb{R}^n).$$
 (5.83)

对(5.81)两端同时取极限得

$$||u^*||_{C^{0,\nu}(U)} \le C||\overline{u}||_{W^{1,p}(U)} \le C||u||_{W^{1,p}(U)},\tag{5.84}$$

即对于 $\forall u \in W^{1,p}(U)$, 存在 $version\ u^* \in C^{0,\nu}(\overline{U})$ 使得

$$||u^*||_{C^{0,\nu}(\overline{U})} \le C||u||_{W^{1,p}(U)}. \tag{5.85}$$

Remark 5.8. 在以后的应用中我们可以直接认为 $u \in C^{0,1-\frac{n}{p}}$ 。因为在证明的过程中我们发现, $u^* = u, a.e$,那么我们补充定义之后就认为 $u \in C^{0,1-\frac{n}{p}}$ 。同样对于更高阶的嵌入问题 $W^{k,p} \hookrightarrow C^{k-1,\alpha}$,我们也是利用逼近的方式证明,然后利用 $H\ddot{o}lder$ 空间的完备性得到 $u^* \in C^{k-1,\alpha}$ 。而且 $D^{\beta}u^* = D^{\beta}u, \ |\beta| \leq k-1$,那么我们就认为 $u \in C^{k-1,\alpha}$ 。

5.6 紧性

这一节我们研究紧嵌入问题。作为这个的应用我们可以得到 Poincaré 不等式,和一般的线性椭圆弱解存在性的证明。比如说我们在考虑下面方程解的存在性

$$\begin{cases} \Delta u = f(x), & x \in U \\ u|_{\partial U} = 0. \end{cases}$$
 (5.86)

上面这个方程是最简单的线性椭圆方程,后面我们会看到我们需要使用 Fredholm 二择一定理来证明这个方程解的存在性,但是这个定理最基本的要求就是算子是紧算子。对于这个问题的话,我们不妨定义

$$u := Kf = (\Delta)^{-1}(f), \tag{5.87}$$

则 K 是由 $H_0^1(U) \subset L^2(U) \to L^2(U)$ 的线性算子。

利用能量估计,方程两端同时乘上u可得

$$\begin{split} |-\int_{U}|Du|^{2}dx| &= |\int_{U}\Delta uudx| \\ &= |\int_{U}fudx| \\ &\leq ||u||_{L^{2}(U)}||f||_{L^{2}(U)} \\ &\leq c||Du||_{L^{2}(U)}||f||_{L^{2}(U)} \\ &\leq \frac{1}{2}||Du||_{L^{2}(U)} + C_{0}||f||_{L^{2}(U)}. \end{split}$$

可以得到

$$||u||_{H_0^1(U)} \le C||f||_{L^2(U)}. (5.88)$$

上面的不等式放缩过程中利用了 Poincaré 不等式和 Hölder 不等式。

那么我们想知道 $K: L^2(U) \to L^2(U)$ 到底是不是紧算子,就归结于问题 $H^1_0(U)$ 中的有界列在 $L^2(U)$ 中会不会存在收敛列。这一节我们就是要解决这样一个紧嵌入问题。

在得到本节的主要定理之前,我们做一些准备工作

Theorem 5.15. (Arzela-Ascoli 定理)

设 $\{u_m\}_{m=1}^{\infty} \subset C(\overline{\Omega})$ 为列紧集, 当且仅当 $\{u_m\}_{m=1}^{\infty}$ 一致有界, 等度连续。

Lemma 5.3. 对于 $\forall \varepsilon > 0, \{u_m\}_{m=1}^{\infty} \in W^{1,p}(U)$,且 $||u_m||_{W^{1,p}(U)} \leq C_0$ 。定义 $u_m^{\varepsilon} := \eta_{\varepsilon} * u_m$,则 $\{u_m^{\varepsilon}\}_{m=1}^{\infty}$ 是一致有界,而且等度连续的函数簇。

证明. 利用 $\{u_m^{\varepsilon}\}$ 的定义知

$$|u_{m}^{\varepsilon}(x)| = \left| \int_{B(x,\varepsilon)} \eta_{\varepsilon}(x-y)u_{m}(y)dy \right|$$

$$\leq \int_{B(x,\varepsilon)} |\eta_{\varepsilon}(x-y)u_{m}(y)|dy$$

$$\leq ||\eta_{\varepsilon}||_{L^{\infty}}||u_{m}||_{L^{1}(U)}$$

$$\leq \frac{C}{\varepsilon^{n}}||u_{m}||_{W^{1,p}(U)} < +\infty.$$
(5.89)

和

$$|Du_{m}^{\varepsilon}| = |\int_{B(x,\varepsilon)} D(\eta_{\varepsilon}(x-y)) u_{m}(y) dy|$$

$$\leq ||D(\eta_{\varepsilon}(x-y))||_{L^{\infty}} ||u_{m}||_{L^{1}(U)}$$

$$\leq \frac{C_{0}}{\varepsilon^{n+1}} ||u_{m}||_{W^{1,p}(U)}.$$
(5.90)

(5.89)和(5.90)表明对于每一个固定的 $\varepsilon>0$,可知 $\{u_m^\varepsilon\}$ 都是一致有界和等度连续的。

Lemma 5.4. (插值不等式)

若 $1 \le s \le r \le t \le +\infty$, $u \in L^s(U) \cap L^t(U)$, 则 $u \in L^r(U)$, 且

$$||u||_{L^{r}(U)} \le ||u||_{L^{s}(U)}^{\theta} ||u||_{L^{t}(U)}^{1-\theta}.$$

$$(5.91)$$

这里 θ 满足 $\frac{\theta}{s} + \frac{1-\theta}{t} = \frac{1}{r}$ 。

证明.

$$\begin{aligned} ||u||_{L^{r}(U)}^{r} &= (\int_{U} |u|^{\theta r + (1-\theta)r}) dx \\ &\leq (\int_{U} |u|^{\theta r \frac{s}{\theta r}} dx)^{\frac{\theta r}{s}} (\int_{U} |u|^{(1-\theta)r \frac{t}{(1-\theta)r}} dx)^{\frac{(1-\theta)r}{t}} \\ &= (\int_{U} |u|^{s} dx)^{\frac{\theta r}{s}} (\int_{U} |u|^{t} dx)^{\frac{(1-\theta r)}{t}} \\ &= ||u||_{L^{s}(U)}^{\theta r} ||u||_{L^{t}(U)}^{(1-\theta)r}. \end{aligned}$$

 $\mathbb{H}\colon \ ||u||_{L^r(U)} \leq ||u||_{L^s(U)}^{\theta} ||u||_{L^t(U)}^{1-\theta} \circ$

Lemma 5.5. 设 $\{u_m\}_{m=1}^\infty \in W^{1,p}(V)$ 一致有界,即 $||u_m||_{W^{1,p}(V)} \leq C$, $\forall m$ 。定义 $u_m^\varepsilon = \eta_\varepsilon * u_m$, ε 为充分小的正数,且 $supp(u_m^\varepsilon) \subset \subset V$ 。则 $u_m^\varepsilon \to u_m$ in $L^1(V)$ 对于任意的 m 是一致的。

证明. 我们不妨假设 $\{u_m\}_{m=1}^{\infty}$ 是光滑的函数列,这是因为对于非光滑情形的话,我们利用前面得到的逼近理论同样可以得到相同的结论。

下面只需要证明

$$\int_{V} |u_m^{\varepsilon}(x) - u_m| dx \le \varepsilon C_0 ||Du_m||_{L^p(V)}, \tag{5.92}$$

因为由 Lemma 5.3, $||u_m||_{W^{1,p}(V)} \leq C_0$,令 $\varepsilon \to 0$ 即可得到 $u_m^{\varepsilon} \to u_m$ in $L^1(V)$ 。

$$\begin{split} \int_{V} |u_{m}^{\varepsilon}(x) - u_{m}(x)| dx &= \int_{V} |\int_{B(x,\varepsilon)} \frac{1}{\varepsilon^{n}} \eta(\frac{x-y}{\varepsilon}) \left(u_{m}(y) - u_{m}(x)\right) dy | dx \\ &= \int_{V} |\varepsilon \int_{B(0,1)} \eta(z) \int_{0}^{1} \frac{\partial u_{m}(x - \varepsilon t z)}{\partial x_{i}} z_{i} dt dz | dx \\ &\leq \varepsilon \int_{V} \int_{B(0,1)} \eta(z) \int_{0}^{1} |D u_{m}(x - \varepsilon t z)| dt dz dx \\ &\leq \varepsilon ||D u_{m}||_{L^{1}(V)} \\ &\leq \varepsilon |V|^{\frac{p-1}{p}} ||D u_{m}||_{L^{p}(V)}. \end{split}$$

Definition 5.4. 设 X,Y 是两个 Banach 空间, $X \subset Y$ 。 我们称 X 紧嵌入到 Y 中去, 记为 $X \hookrightarrow \hookrightarrow Y$ 。 如果满足:

- (1), $||x||_Y \le C||x||_X$ ($\forall x \in X$), 其中 C 是常数。
- (2),X 中的任意有界列在 Y 中是列紧的。即若 $\{u_m\}_{m=1}^{\infty}\subset X,\sup_m||u_m||_X\leq C_0<+\infty$,则存在 $\{u_m\}_{m=1}^{\infty}$ 的某一子列 $\{u_{m_i}\}_{i=1}^{\infty}$ 在 Y 中收敛到某一个极限 $u\in Y$,即 $\lim_{i\to\infty}||u_{m_i}-u||_Y=0$ 。

下面我们看一个具体的特例。

对于 $X=W^{1,2}(U)$, $Y=L^2(U)$,给定 $u\in W^{1,2}(U)$,显然有 $u\in L^2(U)$ 且 $||u||_{L^2(U)}\leq ||u||_{W^{1,2}(U)}$,那么对于给定的 $\{u_m\}_{m=1}^\infty\subset W^{1,2}(U)$,是否可以找到 $\{u_{m_i}\}_{i=1}^\infty$ 使得 $u_{m_i}\to u$ in $L^2(U)$ 呢?

若给定条件 $\{u_m\}_{m=1}^{\infty}$ 是一致有界的,定义 $u_m^{\varepsilon} = \eta_{\varepsilon} * u_m$, $\varepsilon > 0$, $supp(u_m^{\varepsilon}) \subset U$,则有 Lemma5.3知, $\{u_m^{\varepsilon}\}$ 为一致有界,等度连续的函数簇。那么由 Arzela-Ascoli 定理知 $\{u_m^{\varepsilon}\}_{m=1}^{\infty}$ 为列紧集,即存在子列 $\{u_{m_l}\}_{l=1}^{\infty}$ 为收敛子列。对于 $\forall \delta > 0$,

$$||u_{m_i} - u_{m_j}||_{L^2(U)} \le ||u_{m_i} - u_{m_i}^{\varepsilon}||_{L^2(U)} + ||u_{m_i}^{\varepsilon} - u_{m_j}^{\varepsilon}||_{L^2(U)} + ||u_{m_j}^{\varepsilon} - u_{m_j}||_{L^2(U)}.$$

$$(5.93)$$

由于 $\{u_{m_i^{\varepsilon}}\}$ 为收敛子列,则

$$||u_{m_i}^{\varepsilon} - u_{m_j}^{\varepsilon}||_{L^2(U)} \to 0, \quad as \ i, j \to \infty.$$
 (5.94)

另外由 Lemma5.5知 $u_m^{\varepsilon} \to u_m$ in $L^1(U)$ 对 m 是一致成立的。若 U 为有界区域且 $\partial U \in C^1$,则由 Theorem 5.10,

$$||u_m^{\varepsilon} - u_m||_{L^{\frac{2n}{n-2}}(U)} \le C||u_m^{\varepsilon} - u_m||_{W^{1,2}(U)} \to 0 \text{ as } \varepsilon \to 0.$$
 (5.95)

由 Lemma5.4可得

$$||u_m^{\varepsilon} - u_m||_{L^2(U)} \le ||u_m^{\varepsilon} - u_m||_{L^1(U)}^{\frac{2}{n+2}} ||u_m^{\varepsilon} - u_m||_{L^{\frac{2n}{n-2}}(U)}^{\frac{n}{n+2}} \to 0, \text{ as } \varepsilon \to 0,$$

$$(5.96)$$

上式是对m一致成立的。因此

$$||u_{m_i} - u_{m_i}^{\varepsilon}|| < \frac{1}{3}\delta, \quad ||u_{m_j} - u_{m_j}^{\varepsilon}|| < \frac{1}{3}\delta.$$

则

$$||u_{m_i} - u_{m_j}||_{L^2(U)} < \delta, \quad (i, j \to +\infty).$$
 (5.97)

下面我们陈述一下本节的主要定理并给出证明

Theorem 5.16. (Rellich Kondrachov Compactness Theorem)

 $U \subset \mathbb{R}^n$ 中的有界区域, $\partial U \in C^1$, 假设 $1 \leq p < n$, 则有

$$W^{1,p}(U) \hookrightarrow \hookrightarrow L^q(U).$$
 (5.98)

对于任意的 $1 \le q < p^* = \frac{np}{n-p}$ 均成立。

证明. Step 1,由于 U 是有界区域, $1 \le q < p^*$,利用 Theorem 5.10 知, $W^{1,p}(U) \subset L^q(U)$,且 $||u||_{L^q(U)} \le C||u||_{W^{1,p}(U)}$ 。 因此只要证明 $\{u_m\}_{m=1}^{\infty}$ 是 $W^{1,p}(U)$ 中的有界列,存在子列 $\{u_{m_l}\}_{l=1}^{\infty}$ 和 $u \in L^q(U)$ 使得 $u_m \to u$ in $L^q(U)$ 。

Step 2,由延拓定理,不妨设 $U=\mathbb{R}^n$,存在有界开集 V 使得 $U\subset\subset V$ 且 $supp(u_m)\subset V$,假设 $sup\ ||u_m||_{W^{1,p}(V)}<+\infty$ 。

Step 3, 定义 $u_m^{\varepsilon} = \eta_{\varepsilon} * u_m, \varepsilon > 0$, 不妨设 $supp(u_m^{\varepsilon}) \subset V$ 。

Step 4,由 Lemma5.5 知, $u_m^{\varepsilon} \to u_m \ in \ L^q(V)$ 对于 m 是一致成立的。

Step 5, 由 Lemma5.3, 对于任意固定的 $\varepsilon > 0$, $\{u_m^{\varepsilon}\}_{m=1}^{\infty}$ 为一致有界,等度连续的函数簇。

Step 6,利用 Arzela-Ascoli 定理, $\{u_m^{\varepsilon}\}_m^{\infty}$ 为 $C^0(V)$ 中的列紧集。即存在子列 $\{u_{m_l}^{\varepsilon}\}_{l=1}^{\infty}$ 满足

$$||u_{m_i}^{\varepsilon} - u_{m_j}^{\varepsilon}||_{C^0(V)} \to 0 \quad (i, j \to \infty),$$
 (5.99)

则有

$$||u_{m_i}^{\varepsilon} - u_{m_j}^{\varepsilon}||_{L^q(V)} \to 0 \quad (i, j \to \infty).$$
 (5.100)

固定 $\delta>0$,由 Step~4, $\exists~\varepsilon$ 充分小,使得 $||u_m^\varepsilon-u_m||_{L^q(V)}<\frac{\delta}{3}$,则 $\exists~N$ 充分大,使得对于 ε 和 i,j>N 有

$$||u_{m_i} - u_{m_j}||_{L^q(V)} \le ||u_{m_i} - u_{m_i}^{\varepsilon}||_{L^q(V)} + ||u_{m_i}^{\varepsilon} - u_{m_i}^{\varepsilon}||_{L^q(V)} + ||u_{m_i}^{\varepsilon} - u_{m_j}||_{L^p(V)} < \delta.$$
 (5.101)

即

$$\lim_{i,j\to\infty} ||u_{m_i} - u_{m_j}||_{L^q(V)} < \delta.$$
 (5.102)

Step 7,用对角线法则(取 $\delta = 1, \frac{1}{2}, \cdots$)可以取出子列 $\{u_{m_l}\}_{l=1}^{\infty}$,使得

$$\lim_{k \to \infty} \sup_{l \to \infty} ||u_{m_l} - u_{m_k}||_{L^q(V)} = 0, \tag{5.103}$$

故 $\{u_{m_l}\}_{l=1}^{\infty}$ 为 $L^q(V)$ 中的收敛列,即 $\exists u \in L^q(V)$ 使得 $u_{m_l} \to u$ in $L^q(U)$ 。

由上述 Theorem 5.16可知 $H_0^1(U) \hookrightarrow \hookrightarrow L^2(U)$ 。那么就回答了前面的问题, $K: H_0^1(U) \subset L^2(U) \to L^2(U)$ 是一个紧算子。特别的在后面我们讨论一般的线性椭圆方程解的存在性的时候,即下面方程

$$\begin{cases}
Lu = -\sum_{i,j=1}^{n} (a_{ij}u_j)_i + \sum_{i=1}^{n} b_i u_i + cu = f & in U \\
u|_{\partial U} = 0.
\end{cases}$$
(5.104)

我们想问 $f \in L^2(U)$ 满足什么条件时上面方程会存在解?后面我们会看到解决这个问题的方法是先利用 Lax-Milgram 定理证明 K 这个算子的存在性, 然后再利用能量估计和 Theorem 5.16 证明 K 是紧算子,剩余的就是利用 Fredholm 二择一定理得到我们想要的结果.

下面这一节是紧性定理的另外一个应用,即庞加莱不等式。

5.7 庞加莱不等式

Theorem 5.17. (Poincaré 不等式)

设 $U \subset \mathbb{R}^n$ 为有界连通开子集, $\partial U \in C^1$, $1 \le p \le +\infty$ 。对于 $\forall u \in W^{1,p}(U)$,存在 C = C(n,p,U) 使得下面的不等式成立

$$||u - (u)_U||_{L^p(U)} \le C||Du||_{L^p(U)},$$

其中 $(u)_U = \frac{1}{|U|} \int_U u dx$ 。

这个不等式的证明的方法称为紧性论断,在完全非线性椭圆方程的先验估计中也有应用。其实本质就是反证法,利用我们已知的紧性定理来得到矛盾,下面是具体的证明过程。

证明. 假设上面的不等式不正确, 那么对于 $\forall k \in \mathbb{N}$, 存在 $u_k \in W^{1,p}(U)$ 满足

$$||u_k - (u_k)_U||_{L^p(U)} \ge k||Du_k||_{L^p(U)}.$$

令

$$v_k := \frac{u_k - (u_k)_U}{\|u_k - (u_k)_U\|_{L^p(U)}},\tag{5.105}$$

那么显然有: $\int_U v_k dx = 0$, $||v_k||_{L^p(U)} = 1$ 和 $||Dv_k||_{L^p(U)} \le \frac{1}{k}$ 成立。

利用前面得到的紧嵌入定理可知存在子列 $\{v_{k_i}\} \subset \{v_k\}$ 使得

$$v_{k_i} \to v$$
 in $L^q(U)$,

对于任意的 $1 \le q < p^*$ 均成立。

由于

$$\left| \int_{U} (v_k - v) dx \right| \le |U|^{\frac{p-1}{p}} |v_k - v|_{L^p(U)}^{\frac{1}{p}}, \tag{5.106}$$

利用前面得到的紧嵌入定理可知 $\int_U v dx = 0$ 。

下面我们要证明 v=0。这是因为 $\forall \phi \in C_c^{\infty}(U)$

$$\int_{U} v\phi_{x_{i}} dx = \lim_{j \to +\infty} \int_{U} v_{k_{j}} \phi_{x_{i}} dx$$

$$= -\lim_{j \to +\infty} \int_{U} (v_{k_{j}})_{x_{i}} \phi dx$$

$$\leq \lim_{j \to +\infty} ||Dv_{k_{j}}||_{L^{p}(U)} ||\phi||_{L^{q}(U)} = 0.$$
(5.107)

表明 v 的弱导数 Dv=0,可知 v 是常数。另外由 $\int_U v dx=0$,可得 v=0,但是这同 $||v||_{L^p(U)}=1$ 相矛盾,因此不等式得到证明。

5.8 差商

Recall: 函数在一点处的偏导数的定义为

$$\frac{\partial u}{\partial x_i}(x) = \lim_{h \to 0} \frac{u(x + he_i) - u(x)}{h},\tag{5.108}$$

问题:在什么条件下 $u \in L^q(U)$ 可以得到 $u \in W^{1,p}(U)$?如果能够得到该结论,那么再利用 Morrey 不等式可以得到 $u \in C^{0,\nu}(U)$,再利用线性椭圆方程的 Schauder 理论,便可以提升正则性。因此差商是我们研究椭圆方程弱解正则性的主要工具。首先我们定义

Definition 5.5.

$$D_i^h u = \frac{u(x + he_i) - u(x)}{h} \text{ for } x \in V, h \in \mathbb{R}, 0 < |h| < dist(V, \partial U).$$
 (5.109)

$$D^{h}u = (D_{1}^{h}u, \cdots, D_{n}^{h}u). \tag{5.110}$$

Theorem 5.18. (1), $1 \le p < +\infty$, $u \in W^{1,p}(U)$ 。则对于 $V \subset \subset U$,对于任意的 h 满足 $0 < h < \frac{1}{2} dist(V, \partial U)$ 有

$$||D^h u||_{L^p(V)} \le C||Du||_{L^p(U)}. (5.111)$$

(2),若 $1 ,<math>u \in L^p(V)$,且存在常数 C 使得 $||D^hu||_{L^p(V)} \le C$,对于任意的 $0 < |h| < \frac{1}{2}dist(V,\partial U)$ 均成立。那么可得

$$||Du||_{L^p(V)} \le C,$$
 (5.112)

 $\mathbb{P} u \in W^{1,p}(V)$.

证明. 在开始证明之前我们做一些准备工作

$$\int_{V} u(x)D_{i}^{h}\phi dx = -\int_{V} (D_{i}^{-h}u(x))\phi(x)dx, \quad \phi \in C_{c}^{\infty}(U),$$

和

$$\begin{split} \int_V D_i^h \phi(x) &= \int_V u(x) \frac{\phi(x + he_i) - \phi(x)}{h} dx \\ &= \int_V u(y - he_i) \frac{\phi(y)}{h} dy - \int_V u(y - he_i) \frac{\phi(y - he_i)}{h} dy, \\ &= \int_V u(y - he_i) \frac{\phi(y)}{h} dy - \int_V u(y) \frac{\phi(y)}{h} dy \\ &= \int_V \frac{u(x - he_i) - u(x)}{h} \phi(x) dx \\ &= -\int_V D_i^{-h} u(x) \phi(x) dx. \end{split}$$

以及由 Newton-Leibniz 公式可知

$$u(x + he_i) - u(x) = \int_0^1 \frac{d}{dt} u(x + the_i) dt = h \int_0^1 \frac{\partial u}{\partial x_i} (x + the_i) dt,$$

则

$$D_i^h u(x) = \frac{u(x + he_i) - u(x)}{h} = \int_0^1 \frac{\partial u}{\partial x_i}(x + the_i)dt.$$

下面是该定理的主要证明过程。

(1),利用逼近的理论我们可以不妨假设 u 是光滑函数。那么对于任意的 $x\in V,\ i\in\{1,2,\cdots,n\}$,和 $0<|h|<\frac{1}{2}dist(V,\partial U)$ 。我们有

$$|u(x+he_i) - u(x)| = |\int_0^1 u_{x_i}(x+the_i)he_i dt| \le h \int_0^1 |Du(x+the_i)| dt$$
 (5.113)

可得

$$||D^{h}u||_{L^{p}(V)} = \left(\int_{V} |D^{h}u|^{p} dx\right)^{\frac{1}{p}}$$

$$= \left(\int_{V} \left(\sum_{i=1}^{n} |D^{h}_{i}u|^{2}\right)^{\frac{2}{p}} dx\right)^{\frac{1}{p}}$$

$$\leq \left(\int_{V} \left(\sum_{i=1}^{n} |D^{h}_{i}u|\right)^{p} dx\right)^{\frac{1}{p}}$$

$$\leq \sum_{i=1}^{n} \left(\int_{V} |D^{h}_{i}u(x)|^{p} dx\right)^{\frac{1}{p}}$$

$$= \sum_{i=1}^{n} \left(\int_{V} |\int_{0}^{1} \frac{\partial u}{\partial x_{i}} (x + the_{i}) dt|^{p} dx\right)^{\frac{1}{p}}$$

$$\leq \sum_{i=1}^{n} \int_{0}^{1} \left(\int_{V} |\frac{\partial u}{\partial x_{i}} (x + the_{i})|^{p} dx\right)^{\frac{1}{p}} dt$$

$$\leq C||Du||_{L^{p}(V)} \leq C||Du||_{L^{p}(U)}.$$
(5.115)

(5.114)和 (5.115)是由 Minkowski 不等式得到。然后再由逼近可知上面的结论对于任意的 $u \in W^{1,p}(U)$ 均成立。

(2), 对于任意的 $0 < h < \frac{1}{2} dist(V, \partial U)$ 和 $\phi \in C_c^{\infty}(V)$, 可得

$$\int_{V} u(x) \left[\frac{\phi(x + he_i) - \phi(x)}{h} \right] dx = -\int_{V} \left[\frac{u(x) - u(x - he_i)}{h} \right] \phi(x) dx, \tag{5.116}$$

等价于

$$\int_{V} u(D_{i}^{h}\phi)dx = -\int_{V} (D_{i}^{-h}u)\phi dx,$$
(5.117)

上面的式子是利用变量替换得到的。利用题目的假设已知

$$\sup_{h} ||D_i^{-h}u||_{L^p(V)} < \infty,$$

由周民强书 6.6 节可知,当 $1 时,<math>L^p$ 空间是自反的。而对于自反的 Banach 空间而言,有界性和弱收敛性是等价的。那么可得存在 $v_i \in L^p(V)$ 和 $h_k \to 0$ 时

$$D_i^{-h_k}u \rightharpoonup v_i, \quad weakly \ in \ L^p(V).$$

则有

$$\int_{V} u\phi_{x_{i}} dx = \int_{U} u\phi_{x_{i}} dx = \lim_{h_{k} \to 0} \int_{U} uD_{i}^{h_{k}} \phi dx$$
$$= -\lim_{h_{k} \to 0} \int_{V} D_{i}^{-h_{k}} u\phi dx$$
$$= -\int_{V} v_{i} \phi dx = -\int_{U} v_{i} \phi dx.$$

那么利用弱导数的定义知道 $v_i = u_{x_i}$ 和 $Du \in L^p(V)$,因此 $u \in W^{1,p}(V)$ 。

Remark 5.9. 在 (2) 的证明过程中我们换了积分区域,但是没有关系这是因为 $\phi \in C_c^\infty(V)$ 。另外 (2) 是我们提升正则性的关键,因为我们在没有高阶正则性的时候不能够进行求导,但是我们可以做差商,然后研究差商的性质。

5.9 其他函数空间

Recall: 内积空间的范数是由内积诱导的,Hilbert 空间是完备的内积空间, H^1 是内积空间,对应的内积为

$$(f,g) = \int_{U} (fg + DfDg)dx, \quad f,g \in H^{1},$$
 (5.118)

对应的范数为

$$||f||_{H^1(U)} = \left(\int_U |u|^2 + |Du|^2 dx\right)^{\frac{1}{2}}.$$
(5.119)

 $H^1_0(U)$ 为 $H^1(U)$ 限制在 $C^\infty_c(U)$ 上的完备化,也是一个 Hilbert 空间。

Definition 5.6. 我们称 $H^{-1}(U)$ 为 $H_0^1(U)$ 的对偶空间, $H^{-1}(U)$ 的范数为

$$||f||_{H^{-1}(U)} = \sup\{\langle f, u \rangle : u \in H_0^1(U), ||u||_{H_0^1(U)} \le 1\}.$$
 (5.120)

其中 $<\cdot,\cdot>$ 为 Hilbert 空间中的配对。

Remark 5.10. 容易得到 $H_0^1(U) \subset L^2(U) \subset H^{-1}(U)$ 。

Theorem 5.19. (1), 如果 $f \in H^{-1}(U)$, 则存在 $f^0, f^1, \dots, f^n \in L^2(U)$, 使得

$$\langle f, v \rangle = \int_{U} f^{0}v + \sum_{i=1}^{n} f^{i}v_{x_{i}}dx, \quad \forall v \in H_{0}^{1}(U).$$
 (5.121)

(2),

$$||f||_{H^{-1}(U)} = \inf\{\left(\int_{U} \sum_{i=0}^{n} |f^{i}|^{2} dx\right)^{\frac{1}{2}} | \text{ for all } f^{0}, \dots, f^{n} \in L^{2}(U), f \text{ satisfies } (1)\}.$$
 (5.122)

 $(\mathbf{3}), \ \not \Xi \ u \in H^1_0(U), \ v \in L^2(U) \subset H^{-1}(U), \ \mathbb{M} \ (v,u)_{L^2(U)} = < v, u >_{\circ}$

证明这个定理之前,我们先做一些准备工作。

Riesz 表示定理: H 为 Hilbert 空间,对于 $\forall u^* \in H^*$,存在唯一的 $u \in H$,使得

$$\langle u^*, v \rangle = (u, v), \quad \forall v \in H.$$
 (5.123)

证明分析:

- (1) Riesz 表示定理,考虑令 $f^i = u_{x_i}, f^0 = u_{\circ}$
- (2) 首先考虑利用 Cauchy 不等式证明 $||f||_{H^{-1}(U)}^2 \leq \sum_{i=0}^n ||f^i||_{L^2(U)}$,然后再利用范数定义证明 $||f||_{H^{-1}(U)}^2 \geq \sum_{i=0}^n ||f^i||_{L^2(U)}$ 。

证明. (1),对于 $\forall u,v \in H^1_0(U), (u,v) = \int_U (uv + DuDu) dx$ 。利用 Riesz 表示定理,存在唯一的 $u \in H^1_0(U)$,使得

$$\langle f, v \rangle = (u, v) = \int_{U} (uv + \sum_{i=1}^{n} u_{x_i} v_{x_i}) dx.$$
 (5.124)

只须令 $f^0 = u, f^i = u_{x_i}, (i = 1, 2, \dots, n)$ 即可。

Remark 5.11. 注: 若令 v = u,,则有

$$\langle f, u \rangle = ||u||_{H_0^1(U)}^2 = \int_U |Du|^2 + |u|^2 dx = \int_U \sum_{i=0}^n |f^i|^2 dx.$$
 (5.125)

(2),若 $f\in H^{-1}(U)$, $< f,v>=\int_U (g^0v+\sum\limits_{i=1}^n g^iv_{x_i})dx$,其中 $g^0,\cdots,g^n\in L^2(U)$, $\forall v\in H^1_0(U)$ 。 先说 明 $||f||_{H^{-1}(U)}=||u||_{H^1_0(U)}$ 。

a, 对于
$$u \in H^1_0(U)$$
, $||f||_{H^{-1}(U)} \ge \frac{< f, u>}{||u||_{H^1_0(U)}} = ||u||_{H^1_0(U)}$, (范数定义)。

b, 对于 $\forall v \in H_0^1(U)$, 利用 Cauchy 不等式可得

$$\langle f, v \rangle = (u, v)_{H_0^1(U)} = \int_U (uv + DuDv) dx \le ||u||_{H_0^1(U)} ||v||_{H_0^1(U)}.$$
 (5.126)

则有

$$||f||_{H^{-1}(U)} = \sup_{||v||_{H_0^1(U)} = 1} \langle f, v \rangle \leq ||u||_{H_0^1(U)}, \tag{5.127}$$

所以

$$||f||_{H^{-1}(U)} = ||u||_{H_0^1(U)} = \left(\int_U \sum_{i=0}^n |f^i|^2 dx\right)^{\frac{1}{2}}.$$
 (5.128)

另外取 u=v,则有

$$\langle f, u \rangle = \int_{U} (g^{0}u + \sum_{i=1}^{n} g^{i}u_{x_{i}})dx \le (\int_{u} \sum_{i=0}^{n} |g^{i}|^{2}dx)^{\frac{1}{2}} ||u||_{H_{0}^{1}(U)}.$$
 (5.129)

即

$$||u||_{H_0^1(U)} \le \left(\int_U \sum_{i=0}^n |g^i|^2 dx\right)^{\frac{1}{2}}.$$
 (5.130)

因此则有

$$||f||_{H^{-1}(U)} = \inf\{\left(\int_{U} \sum_{i=0}^{n} |f^{i}|^{2} dx\right)^{\frac{1}{2}} | \text{ for all } f^{0}, \dots, f^{n} \in L^{2}(U), f \text{ satisfies } (1)\}.$$
 (5.131)

Chapter 4

散度型二阶一致线性椭圆方程解的存在性, 正则性

1 弱解的定义

这一小节我们主要给出散度形二阶一致线性椭圆方程弱解的定义。 首先考虑下面给定的方程

$$\begin{cases}
-\Delta u = f, & in \ U, \\
u|_{\partial U} = 0
\end{cases}$$
(1.1)

其中 $f \in H^{-1}(U)$ 或者 $f \in L^2(U)$,为了简单起见,我们首先假设 $f \in C^0(\overline{U})$ 。另外 $u \in C^2(U) \cap C(\overline{U})$ 为 经典解,对于 $\forall \varphi \in C_0^\infty(U)$,有

$$-\int_{U} \varphi \Delta u dx = \int_{U} f \varphi dx. \tag{1.2}$$

另外

$$\int_{U} \varphi \Delta u dx = \int_{U} \sum_{i=1}^{n} \left((\varphi u_{x_i})_{x_i} - \varphi_{x_i} u_{x_i} \right) dx = -\sum_{i=1}^{n} \int_{U} \varphi_{x_i} u_{x_i} dx.$$

$$\tag{1.3}$$

则有

$$\int_{U} \left(-\sum_{i=1}^{n} \varphi_{x_i} u_{x_i} + f\varphi\right) dx = 0. \tag{1.4}$$

我们给出方程(1.1)的弱解的定义。

Definition 1.1. 我们称 $u \in H_0^1(U)$ 是(1.1)的弱解,如果

$$\int_{U} \nabla u \nabla v dx = \int_{U} f v dx. \tag{1.5}$$

对于任意的 $v \in H_0^1(U)$ 均成立。

我们有如下的存在性定理。

Theorem 1.1. 若 $f \in L^2(U)$, 则方程(1.1) 的弱解存在而且唯一。

证明. **Step 1**,定义泛函 $J(v) = \frac{1}{2} \int_U |\nabla v|^2 dx - \int_U fv dx$, $v \in H^1_0(U)$ 。如果 $\inf_{v \in H^1_0(U)} J(v)$ 存在,那么极小点即为所求。

首先我们证明 J(v) 是下有界的。

$$\left| \int_{U} fv dx \right| \le ||f||_{L^{2}(U)} ||v||_{L^{2}(U)} \le C||f||_{L^{2}(U)} ||Dv||_{L^{2}(U)} \tag{1.6}$$

$$\leq \frac{1}{4} \int_{U} |Dv|^{2} dx + c_{0}^{2} ||f||_{L^{2}(U)}.$$
(1.7)

(1.6)是利用柯西不等式得到, (1.7)庞加莱不等式得到。则有

$$J(v) \ge \frac{1}{4} \int_{U} |Dv|^{2} dx - c_{0}^{2} ||f||_{L^{2}(U)} \ge -c_{0}^{2} ||f||_{L^{2}(U)}. \tag{1.8}$$

因此表明 J(v) 当 $v \in H_0^1$ 是下有界的。

Step 2,由 Step 1 可以知道 J(v) 是有下确界的,我们不妨设 $J_0 = \inf_{v \in H_0^1(U)} J(v)$ 。那么利用下确界的定义可知,对于 $\forall k \in \mathbb{N}, \; \exists v_k \in H_0^1(U)$ 使得 $J_0 \leq J(v_k) < J_0 + \frac{1}{k}$,我们称 $\{v_k\}$ 为极小化序列,以及 $J(v_k) = \frac{1}{2} \int_{U} |Dv_k|^2 dx - \int_{U} fv_k dx$ 。同时可知

$$||D(v_k - v_l)||_{L^2(U)}^2 = \int_U |Dv_k - Dv_l|^2 dx = \int_U 2(|Dv_k|^2 + |Dv_l|^2) - (Dv_k + Dv_l)^2 dx$$

$$= 4(J(v_k) + \int_U fv_k dx) + 4(J(v_l) + \int_U fv_l dx)$$

$$-2J(v_k + v_l) - 2\int_U f(v_k + v_l) dx$$

$$= 4J(v_k) + 4J(v_l) + 2\int_U f(v_k + v_l) dx - 2J(v_k + v_l)$$

$$= 4J(v_k) + 4J(v_l) - 8J(\frac{v_k + v_l}{2})$$

$$\leq 4(J_0 + \frac{1}{k}) + 4(J_0 + \frac{1}{l}) - 8J_0$$

$$= 4(\frac{1}{k} + \frac{1}{l}) \to 0, \text{ as } k, l \to \infty.$$

则 $\{Dv_k\}_{k=1}^{\infty}$ 为 $L^2(U)$ 中的 Cauchy 列。利用庞加莱不等式可知,

$$||v_k||_{L^2(U)} \le C||Dv_k||_{L^2(U)},\tag{1.9}$$

所以 $\{v_k\}_{k=1}^{\infty}$ 同时为 $L^2(U)$ 中的 Cauchy 列,则存在 $v_0 \in H^1_0(U)$ 使得 $v_k \to v_0$, $in\ H^1_0(U)$ 。由 $J(v_k)$ 的定义可知,当 $k \to \infty$, $J(v_0) = \lim_{k \to \infty} J(v_k) = J_0$ 。

Step 3, 令 $h(t) = J(v_0 + t\varphi)$, 其中 $\varphi \in H_0^1(U)$, 可得

$$h'(t)|_{t=0} = \frac{d}{dt} \left[\frac{1}{2} \int_{u} |D(v_0 + t\varphi)|^2 - \int_{U} f(v_0 + t\varphi) dx \right]|_{t=0}$$

$$= \int_{U} Dv_0 D\varphi dx - \int_{U} f\varphi dx. \tag{1.10}$$

又由于 h'(0) = 0, 所以

$$\int_{U} Dv_0 D\varphi dx = \int_{U} f\varphi dx. \tag{1.11}$$

因此 v_0 即为方程的弱解。

Step 4, 证明唯一性。

不妨假设存在两个弱解 $u,v \in H_0^1(U)$, 那么可以得到对于任意的 $\varphi \in H_0^1(U)$,

$$\int_{U} DuD\varphi dx = \int_{U} f\varphi = \int_{U} DvD\varphi dx. \tag{1.12}$$

所以

$$\int_{U} D(u-v)D\varphi dx = 0, \tag{1.13}$$

 φ = u - v 可得

$$\int_{U} |Du - Dv|^{2} dx = 0, \tag{1.14}$$

则 u-v=Constant。但是 u=v=0 在边界上,那么 u=v。

上面对于泊松方程我们可以证明弱解的存在唯一性,方法是利用变分法,但是这个方法对于一般的散度型方程的话该方法行不通了。下面我们主要研究下面的散度型二阶一致线性椭圆方程。

$$\begin{cases}
Lu = -\sum_{i,j=1}^{n} (a_{ij}u_j)_i + \sum_{i=1}^{n} b_i u_i + cu = f & in U \\
u|_{\partial U} = 0
\end{cases}$$
(1.15)

这里 $a_{ij}(x), b_i(x), c(x) \in L^{\infty}(U)$,系数满足椭圆条件,即对于 $\xi \in \mathbb{R}^n, a.e, x \in U, \exists \lambda, \land$ 满足

$$\lambda |\xi|^2 \le \sum_{i,j=1}^n a_{ij}(x)\xi_i\xi_j \le \Lambda |\xi|^2.$$
 (1.16)

另外 $a_{ij}(x)=a_{ji}(x)$, $U\subset\mathbb{R}^n$ 为有界开子集, $u:\overline{U}\to\mathbb{R}$, $f\in L^2(U)$ 。我们给出(1.15)弱解的定义。

Definition 1.2. 我们称 $u \in H_0^1$ 是 (1.15)的弱解, 如果

$$\int_{U} \sum_{i,j}^{n} a_{ij} u_{j} v_{i} + \sum_{i}^{n} b_{i} u_{i} v + c u v dx = \int_{U} f v dx, \qquad (1.17)$$

对于任意的 $v \in H_0^1(U)$ 均成立!

我们引入一个双线性形式 B[u,v], 对于任意的 $u,v \in H_0^1(U)$, 我们定义

$$B[u,v] = \int_{U} \sum_{i,j}^{n} a_{ij} u_{j} v_{i} + \sum_{i}^{n} b_{i} u_{i} v + c u v dx, \qquad (1.18)$$

那么弱解的定义式可以写为 $B[u,v] = (f,v)_{L^2(U)}$ 。

2 弱解的存在性

我们主要是考虑下面方程

$$\begin{cases} Lu = -\sum_{i,j=1}^{n} (a_{ij}u_j)_i + \sum_{i=1}^{n} b_i u_i + cu = f & in \ U \\ u|_{\partial U} = 0 \end{cases}$$
 (2.1)

弱解的存在性。

Recall: a, 泊松方程极小化序列的方法得到对应方程弱解的存在性。

b,Riesz 表示定理, $\sum_{i=1}^{n} b_i u_i$ 项会出现困难,c(x) < 0 时不能使用。另外方程(2.1)可能会解不存在。但是存在 $\nu > 0$ 充分大,使得下面方程有解。

$$\begin{cases} Lu + \nu u = f & in \ U \\ u|_{\partial U} = 0. \end{cases}$$
 (2.2)

思考题: 为何 Riesz 表示定理对下面的方程不合适

$$\begin{cases}
-\Delta u + \sum_{i=1}^{n} b_i(x)u_i = f \in L^2(U) & \text{in } U \\
u|_{\partial U} = 0.
\end{cases}$$
(2.3)

2.0.1 Lax-Milgram 定理

假设 H 时实的 Hilbert 空间, $\|\cdot\|$ 为范数, (\cdot,\cdot) 表示内积。

Theorem 2.1. (Lax-Milgram Theorem)

设 $B: H \times H \to \mathbb{R}$ 为双线性形式,存在常数 $\alpha, \beta > 0$,使得

$$|B(u,v)| \le \alpha ||u|| ||v||, \quad \forall u, v \in H_0^1(U),$$
 (2.4)

$$\beta||u||^2 \le B[u, u], \quad \forall u \in H. \tag{2.5}$$

令 $f: H \to \mathbb{R}$ 为有界线性泛函,则存在唯一的 $u \in H$,使得 $B[u,v] = (f,v), \forall v \in H$ 。

证明. **Step 1**,对于每一个固定的 $u \in H$,映射 $v \to B[u,v]$ 是 H 上面的有界线性泛函,这个是很容易验证的。那么由 Riesz 表示定理可知存在唯一的 ω 使得

$$B(u,v) = (u,\omega) \quad (v \in H), \tag{2.6}$$

我们记: $\omega = Au$,则有

$$B[u, v] = (Au, v) \quad (u, v \in H),$$
 (2.7)

Step 2, $Claim: A: H \to H$ 是有界线性算子。

先验证线性性: $\forall v \in H, \lambda_1, \lambda_2 \in \mathbb{R}, u_1, u_2 \in H$,

$$(A(\lambda_{1}u_{1} + \lambda_{2}u_{2}), v) = B[\lambda_{1}u_{1} + \lambda_{2}u_{2}, v]$$

$$= \lambda_{1}B[u_{1}, v] + \lambda_{2}B[u_{2}, v]$$

$$= \lambda_{1}(Au_{1}, v) + \lambda_{2}(Au_{2}, v)$$

$$= (\lambda_{1}Au_{1} + \lambda_{2}Au_{2}, v),$$
(2.8)

表明 $A(\lambda_1 u_1 + \lambda_2 u_2) = \lambda_1 A u_1 + \lambda_2 A u_2$ 。

再验证有界: 己知 $||Au||^2 = (Au, Au) = B[u, Au] \le \alpha ||u||||Au||$,表明 $||Au|| \le \alpha ||u||$, $\forall u \in H$,那么 A 是有界线性算子。

Step 3, 证明 A 是单射,且 R(A) 在 H 中是闭的。

先说明单射: $\forall u_1, u_2 \in H$, 如果 $Au_1 = Au_2$, 那么对于任意的 $v \in H$,

$$B[u_1 - u_2, v] = (A(u_1 - u_2, v) = (Au_1, v) - (Au_2, v) = 0,$$

取 $v = u_1 - u_2$, 则有 $B[u_1 - u_2, u_1 - u_2] \ge \beta ||u_1 - u_2||^2$, 所以 $u_1 = u_2$ 。

再说明 R(A) 是闭的: $\forall v \in \overline{R(A)}, \exists \{v_n\}_{n=1}^{\infty} \subset H$,使得 $v = \lim_{n \to \infty} Av_n$ 。利用强制性条件(2.5)可知

$$\beta ||v_n - v_m||^2 \le B[v_n - v_m, v_n - v_m] = (A(v_n - v_m), v_n - v_m)$$
$$= ||A(v_n - v_m)|| ||v_n - v_m||$$

即:

$$||v_n - v_m|| \le \frac{1}{\beta} ||Av_n - Av_m|| \to 0, \quad as \quad n, m \to \infty.$$

那么 $\{v_n\}$ 为 H 中的 Cauchy 列,因此存在 $v^* \in H$ 使得 $\lim_{n \to \infty} = v^*$ 。那么再利用 A 的连续性可得 $v = Av^*$,即 $v \in R(A)$,所以 R(A) 是闭的。

Step 4, A 是满射。只需证明 R(A) = H,等价于 $R(A)^{\perp} = \{\emptyset\}$ 。

假设 $\omega \in R(A)^{\perp}$,则 $\forall v \in H$, $(\omega, Av) = 0$ 。不妨取 $v = \omega$,可得 $(\omega, Av) = 0$ 。由前面的定理假设强制性条件(2.5)可知

$$\beta||\omega||^2 \le B[\omega,\omega] = (A\omega,\omega) = 0, \tag{2.9}$$

那么可得 $\omega = \theta$,表明矛盾,所以 A 是单射。

Step 5, 对于给定的 f, 利用 Riesz 表示定理可知, 存在 $\tilde{\alpha} \in H$ 使得

$$\langle f, v \rangle = (\widetilde{\omega}, v), \quad v \in H.$$
 (2.10)

由 Banach 逆算子定理, $A^{-1} \in \mathcal{L}(H)$ 。令 $\widetilde{u} = A^{-1}\widetilde{\omega}$,则 $v \in H$,

$$\langle f, v \rangle = (\widetilde{\omega}, v) = (A\widetilde{u}, v) = B[\widetilde{u}, v],$$
 (2.11)

那么 \tilde{u} 即为所求。

Step 6, 证明唯一性。

假设存在 $u_1, u_2 \in H$ 满足上式,则有 $B[u_i, v] = \langle f, v \rangle$, i = 1, 2。可得

$$B[u_1 - u_2, v] = 0, \quad \forall v \in H. \tag{2.12}$$

取 $v = u_1 - u_2$, 利用定理假设中的强制性条件(2.5)可知

$$\beta||u_1 - u_2||^2 < B[u_1 - u_2, u_1 - u_2] = 0, \tag{2.13}$$

2.0.2 能量估计

下面我们为得到存在性定理做一些准备工作,即能量估计。双线性型 $B[u,v] = \int_U \sum_{i=1}^n a_{ij}(x)u_iv_j + \sum_{i=1}^n b_i(x)u_iv + c(x)uvdx$.

Theorem 2.2. (能量估计)

存在 $\alpha, \beta > 0$, $\nu \geq 0$, 使得对于 $\forall u, v \in H_0^1(U)$,

$$|B[u,v]| \le \alpha ||u||_{H_0^1(U)} ||v||_{H_0^1(U)},\tag{2.14}$$

$$\beta||u||_{H_0^1U}^2 \le B[u,u] + \nu||u||_{L^2(U)}^2. \tag{2.15}$$

Remark 2.1. 该定理可以处理 $\sum_{i=1}^{n} b_i u_i$ 项, 以及 c(x) < 0 的情形。

证明. 首先证明(2.14),

$$|B[u,v]| = |\int_{U} \sum_{i,j=1}^{n} a_{ij}(x)u_{i}v_{j} + \sum_{i=1}^{n} b_{i}u_{i}v + cuvdx|$$

$$\leq \sum_{i,j=1}^{n} ||a_{ij}||_{L^{\infty}(U)} \int_{U} |Du||Dv|dx + \sum_{i=1}^{n} ||b_{i}||_{L^{\infty}(U)} \int_{U} |Du||v|dx + ||c||_{L^{\infty}(U)} \int_{U} |u||v|dx$$

$$\leq \alpha ||u||_{H_{0}^{1}(U)} ||v||_{H_{0}^{1}(U)}.$$

再证明(2.15),利用椭圆性条件可知

$$\lambda ||Du||_{L^{2}(U)}^{2} \leq \int_{U} \sum_{i=1}^{n} a_{ij} u_{i} u_{j} dx
= B[u, u] - \int_{U} \sum_{i=1}^{n} b_{i} u_{i} u - cu^{2} dx
\leq B[u, u] + \sum_{i=1}^{n} ||b_{i}||_{L^{\infty}(U)} \left(\varepsilon \int_{U} |Du|^{2} dx + \frac{1}{4\varepsilon} \int_{U} |u|^{2} dx\right) + ||c||_{L^{\infty}(U)} \int_{U} u^{2} dx. \quad (2.16)$$

取 $\varepsilon > 0$,使得 $\varepsilon \sum_{i=1}^{n} ||b_i||_{L^{\infty}(U)} < \frac{\lambda}{2}$,则

$$\frac{\lambda}{2}||Du||_{L^2(U)}^2 \le B[u,u] + C||u||_{L^2(U)}^2. \tag{2.17}$$

再利用庞加莱不等式 $||u||_{L^2(U)} \le C||Du||_{L^2(U)}$, 可得

$$\beta||u||_{H_0^1(U)}^2 \le B[u, u] + \nu||u||_{L^2(U)}^2. \tag{2.18}$$

Example 2.1. 给出对于方程 $-\Delta u = f$ 对应的能量估计。

证明.

$$|B[u,v]| = |\int_{U} u_{i}v_{i}dx| \le \int_{U} |Du||Dv|dx \le ||u||_{H_{0}^{1}(U)}||v||_{H_{0}^{1}(U)}, \tag{2.19}$$

此时(2.14)式中的 $\alpha = 1$ 。

$$||u||_{H_0^1(U)}^2 = ||u||_{L^2(U)}^2 + ||Du||_{L^2(U)}^2 \le (C+1)B[u,u]. \tag{2.20}$$

此时
$$(2.15)$$
中 $\beta = \frac{1}{C+1}, \nu = 0$ 。

Example 2.2. 给出方程 $-\Delta u + 2u = f$ 对应的能量估计。

证明.

$$|B[u,v]| = |\int_{U} u_{i}v_{i}dx + 2\int_{U} uvdx| \le \int_{U} |Du||Dv|dx + 2\int_{U} |u||v|dx \le 3||u||_{H_{0}^{1}(U)}||v||_{H_{0}^{1}(U)},$$

$$(2.21)$$

此时(2.14)中 $\alpha = 3$ 。

$$2||u||_{H_0^1(U)}^2 2||u||_{L^2(U)}^2 + 2||Du||_{L^2(U)}^2 \le B[u, u] + ||Du||_{L^2(U)}^2 \le 2B[u, u]. \tag{2.22}$$

此时
$$(2.15)$$
中 $\beta = 1, \nu = 0$ 。

Theorem 2.3. (弱解第一存在定理)

存在 $\nu \geq 0$, 使得 $\forall \mu \geq \nu$, $f \in L^2(U)$, 方程

$$\begin{cases} Lu + \nu u = f & in U \\ u|_{\partial U} = 0. \end{cases}$$
 (2.23)

存在唯一的弱解。

证明. 对于 Theorem 2.2中的 ν , 若 $\mu \geq \nu$, 定义双线性型形式

$$B_{\mu}[u,v] = B[u,v] + \mu(u,v), \quad \forall u,v \in H_0^1(U).$$
 (2.24)

利用 Theorem 2.2, 可知

$$|B_{\mu}[u,v]| = |B[u,v] + \mu(u,v)| \le (\alpha + \mu)||u||_{H_0^1(U)}||v||_{H_0^1(U)}, \tag{2.25}$$

$$\beta||u||_{H_{\sigma}^{1}(U)}^{2} \leq B[u,u] + \nu||u||_{L^{2}(U)}^{2} \leq B[u,u] + \mu||u||_{L^{2}(U)}^{2} = B_{\mu}[u,u]. \tag{2.26}$$

由 Lax-Milgram 定理, 对于 $\forall f \in L^2(U) \subset H^{-1}(U)$, 存在唯一的 $u \in H^1_0(U)$, 使得

$$B_{\nu}[u,v] = \langle f, v \rangle, \quad \forall v \in H_0^1(U).$$

另外 $< f, v >= (f, v)_{L^2(U)}$,则有

$$B_{\mu}(u,v) = (f,v)_{L^{2}(U)},$$

即 u 为所求的弱解。

Remark 2.2. 方程

$$\begin{cases}
Lu = -\Delta u + c(x)u = f & \text{in } U \\
u|_{\partial U} = 0.
\end{cases}$$
(2.27)

 $c(x) < \lambda_1$, λ_1 为第一特征值,后续也是可以处理的。

Recall: 对于常微分方程

$$\begin{cases} X''(t) + \lambda X(t) = 0 & t \in [0, 1] \\ X(0) = X(1) = 0. \end{cases}$$
 (2.28)

则

$$\lambda \int_{0}^{1} X^{2}(t) dt = - \int_{0}^{1} X^{''}(t) X(t) dt = \int_{0}^{1} |X^{'}(t)|^{2} dt.$$

表明 $\lambda > 0$ 。

另外知道对应的解为;

$$X(t) = C_1 \sin(\sqrt{\lambda}t) + C_2 \cos(\sqrt{\lambda}t). \tag{2.29}$$

带入初始条件可得 $C_2 = 0$, $\lambda = k^2 \pi^2, k \in \mathbb{Z}^+$, 所以 $X(t) = C \sin(k\pi t)$.

Homework 2.1. 考虑方程

$$\begin{cases} X''(t) + \lambda X(t) = 0 & t \in [0, 1] \\ X(0) = X(1) = 0. \end{cases}$$
 (2.30)

若方程(2.30)有解,f 应该满足什么条件? (提示: $\int_0^1 f(t)\sin(k\pi t)dt = 0$)

Conjecture 2.1. 对于方程

$$\begin{cases} \Delta u + \lambda u = 0 & in \ U \\ u|_{\partial U} = 0. \end{cases}$$
 (2.31)

 λ_k 为方程(2.31)的算子特征值, u_k 为对应的特征函数。那么对于方程

$$\begin{cases} \Delta u + \lambda u = f & in \ U \\ u|_{\partial U} = 0. \end{cases}$$
 (2.32)

若 $\lambda = \lambda_k$,方程(2.32) 有解,则要求 $f \perp u_k$ 。 若 $\lambda \neq \lambda_k, k \in \mathbb{N}$,则对于 $\forall f \in L^2(U)$ 方程(2.32)存在唯一解。

2.0.3 Fredholm-Alternative 定理

下面我们将介绍我们得到存在性的最重要的泛函分析的一个定理,Fredholm Alternative 定理。

Definition 2.1. 有界线性算子 $K: X \to Y$ 成为紧算子, 如果对于任意的有界序列 $\{u_k\}_{k=1}^{\infty} \subset X$, $\{Ku_k\}_{k=1}^{\infty}$ 为 Y 中的预紧集。即存在子列 $\{Ku_{k_j}\}_{j=1}^{\infty}$ 在 Y 中收敛。

Property 2.1. $H \neq Hilbert$ 空间, $K: H \to H$ 是紧算子, 若存在 $\{u_i\}_{i=1}^{\infty} \subset H$ 满足 $u_i \rightharpoonup u$, 则 $Ku_i \to Ku$ 。

证明. 记 Ku=v,利用反证法。我们不妨假设存在 $\exists \varepsilon_0 > 0$,子列 $\{u_{i_k}\}_{k=1}^{\infty}$,满足 $||Ku_{i_k}-v|| \geq \varepsilon_0$ 。由 Banach-Steinhaus 定理, $\{u_i\}_{i=1}^{\infty}$ 有界。由于 K 为紧算子,存在子列 $\{u_{i_k}\}_{m=1}^{\infty} \subset \{u_{i_k}\}_{k=1}^{\infty}$,使得

$$Ku_{i_{k_m}} \to \omega.$$
 (2.33)

而 $\forall A \in H^*$ 有,

$$\langle A, K(u_{i_{k-}} - v) \rangle = \langle K^*A, u_{i_{k-}} - u \rangle \to 0,$$
 (2.34)

则 $Ku_{i_{k_m}} \to v$ 。由此可得 $v = \omega$,表明矛盾。

Remark 2.3. 上述性质的逆命题也是成立的, 前提是算子 $A: X \to Y$ 中 X 是自反的。

Property 2.2. 若 $K: H \to H$ 为紧算子,则共轭算子 $K^*: H \to H$ 也是紧算子。

证明. 令 $\{u_k\}_{k=1}^{\infty}$ 为 H 中的有界列,取 $\{u_{k_j}\}_{j=1}^{\infty}$ 使得 $u_{k_j} \to u$, in H,只需证明 $K^*u_{k_j} \to K^*u$ 。

$$||K^*u_{k_i} - K^*u||^2 = (K^*u_{k_i} - K^*u, K^*(u_{k_i} - u)) = (KK^*u_{k_i} - KK^*u, u_{k_i} - u).$$
(2.35)

由于 $K^*u_{k_i} \to K^*u$, K 为紧算子,则有 $KK^*u_{k_i} \to KK^*u$ 。即 $K^*u_{k_i} \to K^*u$ 。

Theorem 2.4. (Fredholm 二择一定理)

 $K: H \to H$ 为紧算子,则有

- (1), N(I-K) is finite dimensional,
- (2), R(I-K) is closed,
- (3), $R(I K) = N(I K^*)^{\perp}$,
- $(4), N(I-K) = \{0\}, if and only if, R(I-K) = H,$
- (5), $dimN(I-K) = dimN(I-K^*)$.

证明. (1),利用反证法证明。不妨假设 $dimN(I-K) = +\infty$,则存在正交规范集 $\{u_k\}_{k=1}^{\infty} \subset N(I-K)$,即 $Ku_k = u_k$ 。那么

$$||u_k - u_l||^2 = ||u_k|| + ||u_l||^2 - 2(u_k, u_l) = 2, \quad (k \neq l)$$
(2.36)

表明

$$||Ku_k - Ku_l|| = \sqrt{2},\tag{2.37}$$

这与 K 是紧算子是矛盾的。

(2), $Cliam: \exists \gamma > 0$,使得 $\forall u \in N(I-K)^{\perp}$, $||u-Ku|| \geq \gamma ||u||$ 。 反证: 若结论不成立,那么 $\exists \{u_k\} \subset N(I-K)^{\perp}$ 使得 $||u_k|| = 1$, $||u_k - Ku_k|| < \frac{1}{k}$ 。由 $\{u_k\}_{k=1}^{\infty}$ 是有界的

知存在 $\{u_{k_j}\}_{j=1}^{\infty} \subset \{u_k\}_{k=1}^{\infty}$,使得 $u_{k_j} \to u$ 。利用 K 是紧算子知 $Ku_{k_j} \to Ku$,由 $||u_k - Ku_k|| \leq \frac{1}{k}$ 得 $u_k - Ku_k \to 0 \ (k \to \infty)$ 。所以

$$||u_{k_j} - Ku|| \le ||u_{k_j} - Ku_{k_j}|| + ||Ku_{k_j} - Ku|| \to 0, (j \to \infty).$$
(2.38)

即:

$$u_{k_i} \to Ku. \ (j \to \infty)$$
 (2.39)

则 Ku = u,表明 $u \in N(I - K)$ 。另外 $\forall j, (u_{k_j}, u) = 0$ 。令 $j \to \infty$ 可得 $(u, u) = ||u||^2 = 0$,矛盾。

下面利用 Claim 证明 (2)。

取 $\{v_k\}_{k=1}^{\infty} \subset R(I-K), v_k \to v$,则存在 $\{u_k\}_{k=1}^{\infty} \subset N(I-K)^{\perp}$ 使得

$$u_k - Ku_k = v_k, (2.40)$$

那么利用 Claim 可得

$$||v_k - v_l|| = ||(u_k - Ku_k) - (u_l - Ku_l)|| \ge \gamma ||u_k - u_l||, \tag{2.41}$$

由 $\{v_k\}$ 为收敛列知道 $\{u_k\}$ 也是收敛列。对于 $u_k - Ku_k = v_k$ 两边同时取极限可得

$$u - Ku = v, (2.42)$$

即 $v \in R(I - K)$, 故 R(I - K) 是闭的。

(3), $Claim : \forall T \in \mathcal{L}(H), \overline{R(T)} = N(T^*)^{\perp}$.

先证: $\overline{R(T)} \subset N(T^*)^{\perp}$ 。

 $\forall v \in \overline{R(T)}, \exists \{v_k\}_{k=1}^{\infty} \subset R(T) \notin \{v_k\} \rightarrow v \in M \exists u_k, \notin \{Tu_k = v_k\}, \forall T \in N(T^*), \}$

$$(\omega, v_k) = (\omega, Tu_k) = (T^*\omega, u_k) = 0, \quad \forall k.$$

$$(2.43)$$

两边同时取极限可得 $(\omega, v) = 0$,所以 $v \in N(T^*)^{\perp}$ 。

再证明: $N(T^*)^{\perp} \subset \overline{R(T)}$ 。

引入记号 $^{\perp}M=\{f\in H^*|< f,v>=0, \forall x\in M\}, M\subset H$ 。容易证明 $^{\perp}R(T)\subset N(T^*)$,则有 $N(T^*)^{\perp}\subset (^{\perp}R(T))^{\perp}$ 。因此只需证明 $(^{\perp}R(T))^{\perp}\subset N(T^*)^{\perp}$ 。对于 $\forall v\in (^{\perp}R(T))^{\perp}$,由 Hahn-Banach 定理知只需证明对于 $\forall f\in H^*, f(R(T))=0\Longrightarrow f(v)=0$ 。即证 $f\in ^{\perp}R(T)\Longrightarrow f(v)=0$ 。事实上 $v\in (^{\perp}R(T))^{\perp}$,所以上式是成立的。因此

$$\overline{R(I-K)} = N(I-K^*)^{\perp}. \tag{2.44}$$

利用 (2) 知道 R(I-K) 是闭的,所以 $R(I-K) = N(I-K^*)^{\perp}$ 。

(4), Step 1, $N(I - K) = \{0\} \Longrightarrow R(I - K) = H$.

利用反证法证明。我们不妨假设 $H_1=(I-K)(H)\subseteq H$,由 (2) 得 H_1 是 H 的闭子空间。由 $N(I-K)=\{0\}$,可知 I-K 是单射,则 $H_2=(I-K)H_1\subseteq H_1$,且 H_2 为 H_1 的闭子空间。类似的我们记 $H_k=(I-K)^kH$,那么 H_k 为 H 的子空间,而且 $H_{k+1}\subseteq H_k$ 。

选取 $u_k \in H_k$,使得 $||u_k|| = 1$ 且 $u_k \in H_{k=1}^{\perp}$ 。不妨设 k > l,那么便有 $H_{k+1} \subseteq H_k \subset H_{l+1} \subseteq H_l$ 。已知 $Ku_k - Ku_l = -(u_k - Ku_k) + (u_l - Ku_l) + u_k - u_l$,而 $u_k - Ku_k, u_l - Ku_l, u_k \in H_{l+1}, u_l \in H_{l+1}^{\perp}$ 。所以

$$||Ku_k - Ku_l||||u_l|| \ge (Ku_k - Ku_l, -u_l) = ||u_l||^2 = 1, \tag{2.45}$$

即:

$$||ku_k - Ku_l|| > 1.$$

又因为 $\{u_k\}$ 为有界序列,K 为紧算子,矛盾。

Step 2, $R(I-K) = H \Longrightarrow N(I-K) = \{0\}$.

由 (3) 得 $N(I-K^*)=\{0\}$,又因为 K^* 是紧算子,利用 $Step\ 1$ 可知 $R(I-K^*)=H$ 。再利用 (3) 可得 $N(I-k)^\perp=R(I-K^*)=H$,则 $N(I-K)=\{0\}$ 。

(5), $Claim: dimN(I-K) \leq dimR(I-K)^{\perp}$ 。利用反证法,我们不妨假设 $dimN(I-K) < dimR(I-K)^{\perp}$ 。那么存在有界线性算子 $A: N(I-K) \to R(I-K)^{\perp}$, A 是单射,但是不是满射。定义 $A|_{N(I-K)^{\perp}} = 0$,则 A 是定义在 H 上得线性算子,且 A 的值域是有限维的,K+A 是紧算子。

另外,若 $u \in N(I-(K+A))$,则 u = Ku + Au。由此可得 $u - Ku = Au \in R(I-K)^{\perp}$,则 u - Ku = 0,即 $u \in N(I-K)$ 。又因为 A 在 N(I-K) 上是单射,由 Au = 0 可得 u = 0,因此 $N(I-(K+A)) = \{0\}$ 。另外由 (4) 知,R(I-(K+A)) = H。但是此时由于 $v \in R(I-K)^{\perp}$ 且 $v \notin R(A)$,表明 u - (Ku + Au) = v 无解,矛盾。由 (3), $dim N(I-K^*) \geq dim R(I-K^*)^{\perp} = dim N(I-K)$ 。同理可证 $dim N(I-K) \geq dim N(I-K^*)$ 。综上便可知

$$dimN(I - K) = dimN(I - K^*). \tag{2.46}$$

Example 2.3. 对于方程

$$\begin{cases}
-\Delta u = f & \in U, \quad f \in L^2(U) \\
u|_{\partial U} = 0
\end{cases}$$
(2.47)

记 $u=(-\Delta)^{-1}f$, $K:=(-\Delta)^{-1}:L^2(U)\to H^1_0(U)$, 问 K 是紧算子吗?

分析:用能量方法,方程两端同时乘上u可得

$$\int_{U} -u\Delta u dx = \int_{U} f u dx,\tag{2.48}$$

由 Guass-Green 公式可知

$$\int_{U} -u\Delta u dx = \int_{U} |\nabla u|^{2} dx. \tag{2.49}$$

则有

$$\begin{split} \int_{U} |\nabla u|^2 dx &= \int_{U} f u dx &\leq ||f||_{L^2(U)} ||u||_{L^2(U)} \\ &\leq \frac{1}{2} ||D u||_{L^2(U)}^2 + \frac{C^2}{2} ||f||_{L^2(U)}^2. \end{split}$$

则有: $||Du||^2_{L^2(U)} \le C^2 ||f||^2_{L^2(U)} \Longrightarrow ||u||_{H^1_0(U)} \le C ||f||_{L^2(U)}$ 。 即如果 $u \in H^1_0(U)$ 是方程的弱解,那么对于 $f \in L^2(U)$,u 是一致有界的。再利用紧性定理 $H^1_0(U) \subset L^2(U)$,则 $K: L^2(U) \to L^2(U)$ 是紧算子。

Definition 2.2. (1),算子 L^* 成为 L 的形式自伴算子 $L^*v = -\sum_{i,j=1}^n (a_{ij}v_j)_i + (c(x) - \sum_{i=1}^n (b_i)_i)v$,这里 $b_i(x) \in C^1(\overline{U})$ 。

- (2), 自伴双线性型: $B^*: H^1_0(U) \times H^1_0(U) \to \mathbb{R}$, $B^*[v,u] = B[u,v], \forall u,v \in H^1_0(U)$ 。
- (3), $v \in H_0^1(U)$ 为下面自伴问题的弱解,

$$\begin{cases}
L^*v = f & \in U, \\
v|_{\partial U} = 0
\end{cases}$$
(2.50)

如果 $B^*[v,u] = (f,u), \forall u \in H_0^1(U)$ 均成立。

简单分析: 已知 $B[u,v] = \int_U \left[\sum_{i,j=1}^n a_{ij} u_i v_j + \sum_{i=1}^n b_i u_i v + cuv \right] dx$, 而 $\int_u b_i u_i v dx = \int_U \left[(b_i u v)_i - (b_i v)_i u \right] dx = -\int_U \left[b_i v_i u - (b_i)_i v u \right] dx$ 。所以

$$B[u,v] = \int_{U} \left[\sum_{i,j=1}^{n} a_{ij} u_{i} v_{j} - \sum_{i=1}^{n} v_{i} u + \left(c - \sum_{i=1}^{n} (b_{i})_{i} u v\right) \right] dx \triangleq B^{*}[u,v].$$
 (2.51)

因此 L^*v 的定义来源于 B[u,v] 与 Lu 的对应,这里为 $B^*[v,u]$ 对应于 L^*v 。对应于上例中的 $-\Delta u = f, B[u,v] = \int_U Du Dv dx, B^*[v,u] = B[vu,v], L^*v = -\Delta v.$

Theorem 2.5. (弱解的第二存在性定理)

- (1), 下面的两种情形只有一种发生
- (a), 对于 $\forall f \in L^2(U)$, 边值问题

$$\begin{cases} Lu = f & \in U, \\ u|_{\partial U} = 0 \end{cases}$$
 (2.52)

弱解存在唯一。

(b), 齐次方程

$$\begin{cases}
L^* u = 0 & \in U, \\
u|_{\partial U} = 0
\end{cases}$$
(2.53)

存在弱解 $u \neq 0$ 。

(2), 若 (b) 成立, 齐次方程解空间 $N \subset H_0^1(U)$ 是有限维的, 且与 $N^* \subset H_0^1(U)$ 维数相同。 N^* 为共轭方程

$$\begin{cases}
L^*v = 0 & \in U, \\
v|_{\partial U} = 0
\end{cases}$$
(2.54)

的解空间。

(3), 边值问题的弱解存在当且仅当 $(f,v)=0, \forall v \in N^*$ 。

Remark 2.4. 利用 Theorem 2.5, 我们可以给出前面留的一个作业的答案。

(1), 或者对 $\forall f \in L^2[0,1]$, 边值问题

$$\begin{cases} X''(t) + \lambda X(t) = f(t) & t \in [0, 1], \\ X(0) = X(1) = 0 \end{cases}$$
 (2.55)

存在唯一解。

或者

$$\begin{cases} X''(t) + \lambda X(t) = 0 & t \in [0, 1], \\ X(0) = X(1) = 0 \end{cases}$$
 (2.56)

有非零解,此时必须满足 $\lambda = (k\pi)^2$ 。

(2), 边值问题存在解的充要条件是: $\int_{\mathcal{U}} f(t) \sin(k\pi t) dt = 0$.

证明. **Step 1**, 在 Theorem 2.3 (弱解的第一存在性定理)中取 $\mu = \nu$, 定义

$$B_{\nu}[u,v] = B[u,v] + \nu(u,v), \quad u,v \in H_0^1(U), \tag{2.57}$$

记 $L_{\nu}u = Lu + \nu u$,由 Theorem 2.3, $\forall g \in L^2(U)$,存在唯一的 $u \in H^1_0(U)$ 使得

$$B_{\nu}[u,v] = (g,v)_{L^{2}(U)} = (g,v)_{L^{2}(U)}, \quad \forall v \in H_{0}^{1}(U).$$
 (2.58)

 $i \exists u = L_{\nu}^{-1} g \circ$

Step 2, u 为边值问题的弱解当且仅当 $B_{\nu}[u,v] = (\nu u + f,v), \ \forall v \in H_0^1(U)$,即 $u = L_{\nu}^{-1}(\nu u + f)$ 。容易证明 L_{ν}^{-1} 具有线性性。另外记 $Ku := \nu L_{\nu}^{-1}u, h = L_{\nu}^{-1}f$,则上式可以化为 u - Ku = h。

Step 3, $Claim: K: L^2(U) \to L^2(U)$ 为紧算子, 对于 $\forall g \in L^2(U), u = L_{\nu}^{-1}g$ 。利用前面的能量估计可知

$$\beta ||u||_{H_0^1(U)}^2 \le B_{\nu}[u, u] = (g, u) \le ||g||_{L^2(U)} ||u||_{L^2(U)}$$
$$\le ||g||_{L^2(U)} ||u||_{H_0^1(U)}.$$

则有

$$\beta || L_{\nu}^{-1} g ||_{H_0^1(U)} \le ||g||_{L^2(U)}, \tag{2.59}$$

即

$$||Kg||_{H_0^1(U)} \le \frac{\nu}{\beta} ||g||_{L^2(U)}.$$
 (2.60)

那么再利用紧性定理 $H_0^1 \subset\subset L^2(U)$, 可知 K 为紧算子。

Step 4, 利用 Fredholm 二择一定理可得:

- (a), 对于 $\forall h \in L^2(U), u Ku = h$ 存在唯一解 $u \in L^2(U)$ 。
- (b), (I K)u = 0 即 Ku = u 只有非零解。

对于 (a),由于 $h=L_{\nu}^{-1}f\in H_0^1(U), Ku=\nu L_{\nu}^{-1}u\in H_0^1(U)$,则 $u\in H_0^1(U)$ 。即 $u\in H_0^1(U)$ 为

$$\begin{cases} Lu = f & in U, \\ u|_{\partial U} = 0. \end{cases}$$
 (2.61)

的唯一弱解。

对于 (b), u - Ku = 0 有非零解, 即 $u \in H_0^1(U)$ 为

$$\begin{cases} Lu = 0 & in \ U, \\ u|_{\partial U} = 0. \end{cases}$$
 (2.62)

的非零解。

由 Fredholm 二择一定理可知

- (1), 解空间 N = N(I K) 维数是有限的。
- (2),N 和 $N^* = N(I K^*)$ 的维数是相同的。其中 N^* 为方程 $v K^*v = 0$ 的解空间,也是方程

$$\begin{cases}
L^*v = 0 & in U, \\
v|_{\partial U} = 0.
\end{cases}$$
(2.63)

的解空间。

Step 5, 对于 (a), 由 Fredholm 二择一定理知, $h \in N(I - K^*)^{\perp}$ 。则对于 $\forall v \in N^*$,

$$0 = (h, v) = (L_{\nu}^{-1} f, v) = \frac{1}{v} (Kf, v) = \frac{1}{v} (f, K^* v) = \frac{1}{v} (f, v).$$
 (2.64)

则边值问题弱解存在当且仅当 $(f,v)=0, \forall v \in N^*$ 。

Example 2.4. 对于方程

$$\begin{cases} \Delta u + \lambda u = f & in \ U = [0, 1] \times [0, 1], \\ u|_{\partial U} = 0. \end{cases}$$
 (2.65)

考虑

$$\begin{cases} \Delta u + \lambda u = 0 & in \ U = [0, 1] \times [0, 1], \\ u|_{\partial U} = 0. \end{cases}$$
 (2.66)

用分离变量法, 令 u(x,y) = A(x)B(y), 则有

$$A''(x)B(y) + A(x)B''(y) + \lambda A(x)B(y) = 0.$$
(2.67)

即

$$\begin{cases} \frac{A^{"}(x)}{A(x)} + \frac{B^{"}(y)}{B(y)}_{\lambda} = 0 & in \ U = [0, 1] \times [0, 1], \\ A(0) = A(\pi) = B(0) = B(\pi) = 0. \end{cases}$$
(2.68)

则 $\lambda = k^2 + l^2, (k, l \in \mathbb{Z}^+)$ 。 取最小的特征值 $\lambda = 2$,特征函数为 $u_{1,1}(x, y) = \sinh \sinh y$ 。 则

$$\begin{cases} \Delta u + 2u = f & in \ U = [0, 1] \times [0, 1], \\ u|_{\partial U} = 0. \end{cases}$$
 (2.69)

的充要条件是;

$$\int_0^{\pi} \int_0^{\pi} f(x, y) \sinh x \sinh y dx dy = 0.$$
 (2.70)

Definition 2.3. $A: X \to X$ 为有界线性算子,

- (1), A 的预解集定义为: $\rho(A) = \{ \eta \in R | A \eta I \text{ is injective} \}$.
- (2), A 的谱集: $\sigma(A) = \mathbb{R} \setminus \rho(A)$ 。若 $\eta \in \rho(A)$,有 Banach 逆算子定理, $(A \eta I)^{-1}: X \to X$,是有界线性算子。
- (3), 称 $\eta \in \sigma(A)$ 为 A 的特征值, 如果 $N(A \eta I) \neq \{0\}$, A 的全部特征值即为 $\sigma_p(A)$, 称为点谱。
- (4), 若 η 为 A 的特征值,则存在 $\omega \neq 0$ 使得 $A\omega = \eta \omega$, 称 ω 为对应的 η 的特征值。

Theorem 2.6. (算子的谱)

假设 $dimH = \infty$, $K: H \to H$ 是紧算子, 则

- (1), $0 \in \sigma(K)$,
- (2), $\sigma(K) \{0\} = \sigma_p \{0\}$,
- (3), $\sigma(K) \{0\}$ 为有限集, 或者是一个收敛于 0 的序列。

证明. (1),利用反证法。我们不妨假设 $0 \notin \sigma(K)$,即 $K: H \to H$ 是双射,令 $Q = K \circ K^{-1}$,容易证明 K^{-1} 是有界线性算子,故 Q 是紧算子。利用 Fredholm 二择一定理可知, $dimH = dimN(I-Q) < \infty$,所以矛盾。故 $0 \in \sigma(K)$ 。

(2),假设 $\eta \in \sigma(K)$, $\eta \neq 0$ 。若 $N(K - \eta I) = \{0\}$,由 Fredhlom 二择一定理知, $R(K - \eta I) = H$ 。则由定义 $\eta \in \rho(K)$,得到矛盾。因此 $N(K - \eta I) \neq \{0\}$,所以 $\eta \in \sigma_v(K)$ 。

(3),给定 $\{\eta_k\}_{k=1}^{\infty} \subset \sigma(K) - \{0\}$ 且 $\eta_k \to \eta$ 。下证 $\eta = 0$ 。

由 (2) 知, $\eta_k \in \sigma_p(K) - \{0\}$ 。则 $\exists \omega_k \neq 0$,使得 $K\omega_k = \eta_k \omega_k$ 。记 $H_k = Span\{\omega_1, \dots, \omega_k\}$,由于 $\{\omega_k\}_{k=1}^{\infty}$ 是 线性无关的,则有 $H_{k+1} \supseteq H_k$, $\forall k$ 。容易发现 $(K - \eta_k I)H_k \subseteq H_{k-1}$, $(k = 2, \dots)$ 。对于 $\forall k$,取 $u_k \in H_k$, $u_k \in H_k^\perp$, $||u_k|| = 1$ 。若 k > l,则有

$$H_k \supseteq H_{k-1} \subseteq H_l \supseteq H_{l-1}, \tag{2.71}$$

因此由 $Ku_k - \eta_k u_k, Ku_l - \eta_l u_l, u_l \in H_{k-1}$, 则有

$$||\frac{Ku_k}{\eta_k} - \frac{Ku_l}{\eta_l}|| = ||\frac{Ku_k - \eta_k u_k}{\eta_k} - \frac{Ku_l - \eta_l u_l}{\eta_l} + u_k - u_l|| \ge 1,$$
(2.72)

而 $\eta_k \to \eta \neq 0$,由 K 为紧算子可得到矛盾,所以 $\eta = 0$ 。

Example 2.5. 对于方程

$$\begin{cases} \Delta u + \lambda u = f & \text{in } U, \\ u|_{\partial U} = 0. \end{cases}$$
 (2.73)

记 $u = (-\Delta)^{-1}f$, $K = (-\Delta)^{-1}: L^2(U) \to L^2(U)$ 为紧算子。

若 $\eta_i \in \sigma(K) \setminus \{0\}$, $\exists \omega_i \neq 0$, 使得 $K\omega_i = \eta_i \omega_i \Longrightarrow (-\Delta u)^{-1}\omega_i = \eta_i \omega_i$, 即 $\omega_i = \eta_i (-\Delta \omega_i)$, 则有

$$\begin{cases} \Delta\omega_i + \frac{\omega_i}{\eta_i} = 0 & in \ U\\ \omega_i|_{\partial U} = 0 \end{cases}$$
 (2.74)

由 Theorem 2.6可知, $\frac{1}{\eta_i} \rightarrow 0$ 。 因此方程

$$\begin{cases} \Delta u + \lambda u = 0 & in \ U, \\ u|_{\partial U} = 0 \end{cases}$$
 (2.75)

中 λ 的值只能为一个离散的, 收敛到 $+\infty$ 的序列 $\{\lambda_n\}$ 。即

(1), $\lambda \neq \lambda_k$, 方程

$$\begin{cases} \Delta u + \lambda u = 0 & in \ U, \\ u|_{\partial U} = 0 \end{cases}$$
 (2.76)

只有零解,那么由 Fredholm 二择一定理,方程

$$\begin{cases} \Delta u + \lambda u = f & \text{in } U, \\ u|_{\partial U} = 0. \end{cases}$$
 (2.77)

存在唯一解对于 $\forall f \in L^2(U)$ 。

(2), 方程

$$\begin{cases} \Delta u + \lambda_k u = f & in \ U, \\ u|_{\partial U} = 0. \end{cases}$$
 (2.78)

有解当且仅当 $(f,\omega_k)=0$, 其中 ω_k 满足 $\Delta\omega_k+\lambda_k\omega_k=0$ 。

Theorem 2.7. (弱解的第三存在性定理)

(1), 存在至多可数集 $\Sigma \subset \mathbb{R}$ 使得 $\forall f \in L^2(U)$, 边值问题

$$\begin{cases}
Lu = \lambda u + f & \text{in } U, \\
u|_{\partial U} = 0.
\end{cases}$$
(2.79)

存在唯一的弱解当且仅当 $\lambda \notin \Sigma$ 。

(2), 若 Σ 为无限集, $\Sigma = \{\lambda_k\}_{k=1}^{\infty}$, 则 $\lambda_k \to +\infty$, 当 $k \to +\infty$ 。

证明. 不失一般性,取 Theorem 2.3 中的 $\nu > 0$,并且假设 $\lambda > \nu$ 。由 Theorem 2.5,边值问题存在唯一的弱解当且仅当齐次方程

$$\begin{cases} Lu = \lambda u & in \ U, \\ u|_{\partial U} = 0. \end{cases}$$
 (2.80)

只有零解。即方程

$$\begin{cases}
Lu + \nu u = (\lambda + \nu)u & \text{in } U, \\
u|_{\partial U} = 0
\end{cases}$$
(2.81)

只有零解。

那么由 Theorem 2.5,方程的解由 $u=L_{\nu}^{-1}(\lambda+\nu)u=\frac{\nu+\lambda}{\nu}Ku$ 给出。那么表明 $\frac{\nu}{\nu+\lambda}$ 不是 K 的特征值。而 K 是紧算子。再利用 Theorem 2.6,不妨取 $\sigma(K)=\{\mu_i\}_{i=1}^{\infty}$ 。令 $\frac{\nu}{\nu+\lambda_i}=\nu_i$,得 $\lambda_i=\frac{\nu}{\nu_i}-\nu\to+\infty$ 。记 $\Sigma=\{\lambda_i\}_{i=1}^{\infty}$,若 $\lambda\notin\Sigma$,边值问题存在唯一解。

Theorem 2.8. (逆的有界性)

$$||u||_{L^2(U)} \le C||f||_{L^2(U)},\tag{2.82}$$

这里 $f \in L^2(U)$, $u \in H^1_0(U)$ 是方程

$$\begin{cases}
Lu + = (\lambda + \nu)u + f & \text{in } U, \\
u|_{\partial U} = 0.
\end{cases}$$
(2.83)

的弱解, $C 与 \lambda, \mu$ 以及 L 的系数有关。

证明. 利用反证法。(类似于庞加莱不等式的证明)

取 $\{f_k\}_{k=1}^{\infty} \subset L^2(U), \{u_k\}_{k=1}^{\infty} \subset H_0^1(U)$ 使得

$$\begin{cases}
Lu_k = \lambda u_k + f_k & \text{in } U, \\
u_k|_{\partial U} = 0.
\end{cases}$$
(2.84)

成立, 并且

$$||u_k|| \ge k||f_k||_{L^2(U)}, \quad (k = 1, 2, \cdots).$$
 (2.85)

不妨令 $||u_k||_{L^2(U)} = 1$,则 $||f_k||_{L^2(U)} \to 0$ 。由前面得到的能量估计知, $\{u_k\}_{k=1}^{\infty}$ 是 $H_0^1(U)$ 中的有界列,那么存在 $H_0^1(U)$ 中的弱收敛子列 $\{u_{k_j}\}_{j=1}^{\infty} \to u$,再利用紧性定理知 $H_0^1(U) \subset L^2(U)$ 。那么存在 $\{u_{k_{j_i}}\}_{i=1}^{\infty} \subset \{u_{k_j}\}_{j=1}^{\infty}$ 使得 $u_{k_{j_i}} \to u$ 在 $L^2(U)$ 中。

我们对方程两端同时取极限可得 $Lu = \lambda u$, 即 u 是方程

$$\begin{cases} Lu = \lambda u & \in U, \\ u|_{\partial U} = 0 \end{cases}$$
 (2.86)

的弱解。由 $\lambda \notin \Sigma$ 知 $u \equiv 0$ 。这与 $||u_k||_{L^2(U)} = 1$ 是矛盾的。

Example 2.6. 考虑常微分方程

$$\begin{cases} X''(t) = -\lambda X(t) + f(t), \\ X(0) = X(\pi) = 0. \end{cases}$$
 (2.87)

这里 $\Sigma = \{k^2, k \in \mathbb{Z}\}$ 。不妨取 $\lambda = \frac{1}{2}$,在两边同时乘上 X(t) 则有

$$-\int_{0}^{\pi} X(t)X^{"}(t)dt = \frac{1}{2}\int_{0}^{\pi} X^{2}(t)dt + \int_{0}^{\pi} f(t)X(t)dt.$$
 (2.88)

由 Guass-Green 定理,

$$\int_{0}^{\pi} |X'(t)|^{2} dt = \frac{1}{2} \int_{0}^{\pi} X^{2}(t) dt + \int_{0}^{\pi} f(t) X(t) dt.$$
 (2.89)

方程

$$\begin{cases} X''(t) + \lambda X(t) = 0, \\ X(0) = X(\pi) = 0. \end{cases}$$
 (2.90)

有非零解,则 $\lambda = k^2 (k \in \mathbb{Z})$,所以 $\lambda \geq 1$ 。两边同时乘上 X(t) 可得

$$\lambda \int_{0}^{\pi} X^{2}(t)dt = -\int_{0}^{\pi} X(t)X^{''}(t)dt = \int_{0}^{\pi} |X^{'}(t)|^{2}dt, \tag{2.91}$$

则有

$$\int_{0}^{\pi} X^{2}(t)dt \le \int_{0}^{\pi} |X^{'}(t)|^{2}dt \tag{2.92}$$

将(2.92)带入(2.89)可得

$$\frac{1}{2} \int_0^{\pi} X^2(t)dt \le \int_0^{\pi} f(t)X(t)dt \le \frac{1}{4} \int_0^{\pi} X^2(t)dt + \int_0^{\pi} f^2(t)dt.$$
 (2.93)

即

$$\frac{1}{4} \int_0^{\pi} X^2(t)dt \le \int_0^{\pi} f^2(t)dt. \tag{2.94}$$

得到了类似于 Theorem 2.8的结论。

3 正则性

3.1 内部正则性

方程解正则性的提升,反映了偏微分方程算子的特性,利用 Sobolev 不等式,可以联系 $H_0^k(U)$ 和 $C^{k,\alpha}(U)$ 。在之前已有的准备工作, $u\in L^2(U)$ 如何得到 $u\in W^{1,2}(U)$ 。在 Evans Chapter 5 的 5.8 节中 Theorem 3,可以证明 $||D^hu||_{L^2(V)}\leq C$ 。类似地可以考虑 $D_{ij}u\in L^2(U)$,是否可以证明 $||D^hD_iu||_{L^2(U)}\leq C$ 。

Motivation: 考虑 $-\Delta u = f$ in \mathbb{R}^n , $u \in C_0^{\infty}(\mathbb{R}^n)$, $f \in C_c^{\infty}(\mathbb{R}^n)$ 。方程两端同时平方再积分可得

$$\int_{\mathbb{R}^n} f^2 dx = \int_{\mathbb{R}^n} (\Delta u)^2 dx = \sum_{i,j=1}^n \int_U u_{ii} u_{jj} dx$$
$$= -\sum_{i,j=1}^n \int_{\mathbb{R}^n} u_{iij} u_j dx$$
$$= \sum_{i,j=1}^n \int_{\mathbb{R}^n} u_{ij} u_{ij} dx$$
$$= \int_{\mathbb{R}^n} |D^2 u|^2 dx.$$

先做内部的正则性,考虑的方程为 $-\Delta u=f$ in $U,f\in L^2(U)$ 。已知 $u\in W^{1,2}(U)$,如何得到 $u\in W^{2,2}_{loc}(U)$? 首先选取截断函数 ξ ,对于 $V\subset\subset W\subset\subset U$, $\exists \xi\in C_c^\infty(U)$,满足

(1),
$$\xi = 1 \text{ in } V$$
,
(2), $\xi = 0 \text{ in } W^c$,
(3), $|D^{\alpha}\xi| \leq \frac{C}{|d_0|^{|\alpha|}}$. (3.1)

其中 $2d_0 = dist(V, \partial U)$, $W = \{x \in U, dist(x, \partial U) > d_0\}$ 。目标是证明:

$$||D^h D_i u||_{L^2(V)} \le C(||f||_{L^2(U)} + ||Du||_{L^2(U)}^2).$$
(3.2)

弱解 u 满足

$$\int_{U} \nabla u \nabla v dx = \int_{U} f v dx, \quad \forall v \in H_0^1(U). \tag{3.3}$$

关键在于选取测试函数。此时我们选取 $v=\xi^2u$,则有 $\nabla v=2\xi u\nabla\xi+\xi^2\nabla u$ 。方程两端同时乘上 ξ^2u 然后再进行积分可得

$$\int_{U} \nabla u(2\xi u \nabla \xi + \xi^{2} \nabla u) dx = \int_{U} \xi^{2} f u dx.$$
(3.4)

则

$$\begin{split} \int_{U} \xi^{2} |\nabla u|^{2} dx &= \int_{U} f \xi^{2} u dx - 2 \int_{U} \xi u \nabla u \nabla \xi dx \\ &\leq \int_{U} f \xi^{2} u dx + \frac{1}{2} \int_{U} \xi^{2} |\nabla u|^{2} dx + \int_{U} u^{2} |\nabla \xi|^{2} dx. \end{split} \tag{3.5}$$

因此

$$\frac{1}{2} \int_{U} \xi^{2} |\nabla u|^{2} \le C_{0} \left(\int_{U} |u|^{2} dx + \int_{U} f^{2} dx \right). \tag{3.6}$$

即

$$||Du|_{L^{2}(V)}^{2} \le C(||u||_{L^{2}(U)}^{2} + ||f||_{L^{2}(U)}^{2}). \tag{3.7}$$

记 $D_i^h u(x) = \frac{u(x+he_i)-u(x)}{h}$,和 $u_i^h(x) = u(x+he_i)$,那么对于 $u \in W^{1,p}(U), V \subset\subset U$, $\phi \in C_c^\infty(U)$,有

$$\int_{V} u(x)D_{i}^{h}\phi dx = -\int_{V} (D_{i}^{-h}u(x))\phi(x)dx.$$
(3.8)

考虑到 v 需要包含两阶导数项,以及截断函数 $\xi^p(p$ 可以用待定系数法确定,一般选 p=2),选择 $v=-D_k^{-h}(\xi^2D_k^hu)$,带入(3.3)可得

$$\int_{U} \nabla u \nabla (-D_{k}^{-h}(\xi^{2} D_{k}^{h} u)) dx = -\int_{U} f D_{k}^{-h}(\xi^{2} D_{k}^{h} u) dx.$$
(3.9)

我们先说明 $D_i(D_k^{-h}f) = D_k^{-h}(f_{x_i})$ 。

$$D_i(D_k^{-h}f) = \frac{\partial}{\partial x_i}(-\frac{1}{h})[f(x - he_k) - f(x)] = -\frac{1}{h}\left[\frac{\partial}{\partial x_i}f(x - he_k) - \frac{\partial f}{\partial x_i}\right] = D_k^{-h}f_{x_i}.$$
 (3.10)

那么则有

$$\begin{split} \int_{U} \nabla u \nabla (-D_{k}^{-h}(\xi^{2}D_{k}^{h}u)) dx &= \sum_{i=1}^{n} \int_{U} u_{x_{i}} - D_{k}^{-h}(\xi^{2}D_{k}^{h}u)_{x_{i}} dx \\ &= \sum_{i=1}^{n} \int_{U} D_{k}^{h}u_{x_{i}}(\xi^{2}D_{k}^{h}u)_{x_{i}} dx \\ &= \sum_{i=1}^{n} \int_{U} D_{k}^{h}u_{x_{i}}(2\xi\xi_{x_{i}}D_{k}^{h}u + \xi^{2}D_{k}^{h}u_{x_{i}}) \\ &= \int_{U} \xi^{2} |D_{k}^{h}Du|^{2} dx + 2\sum_{i=1}^{n} \int_{U} \xi\xi_{x_{i}}D_{k}^{h}u_{x_{i}}D_{k}^{h}u dx. \end{split}$$

利用 Evans 5.8.2 节中的 Theorem 3, (1) 可知

$$\begin{split} |\int_{U} f D_{k}^{-h}(\xi^{2} D_{k}^{h} u) dx| & \leq \frac{1}{2\varepsilon} \int_{U} f^{2} dx + \frac{\varepsilon}{2} \int_{U} |D_{k}^{-h}(\xi^{2} D_{k}^{h} u)^{2}|^{2} dx \\ & \leq \frac{1}{2\varepsilon} \int_{U} f^{2} dx + \frac{C\varepsilon}{2} \int_{U} |D(\xi^{2} D_{k}^{h} u)|^{2} dx \\ & \leq \frac{1}{2\varepsilon} \int_{U} f^{2} dx + C\varepsilon (\int_{U} \xi^{2} |D_{k}^{h} u|^{2} dx + \xi^{2} |D_{k}^{h} D u|^{2} dx). \end{split} \tag{3.11}$$

又因为

$$|2\sum_{i=1}^{n} \int_{U} \xi \xi_{x_{i}} D_{k}^{h} u_{x_{i}} D_{k}^{h} u dx| \leq \varepsilon \int_{U} \xi^{2} |D_{k}^{h} u_{x_{i}}|^{2} dx + \frac{C}{\varepsilon} \int_{U} |D_{k}^{h} u|^{2} dx$$
$$\leq \varepsilon \int_{U} \xi^{2} |D_{k}^{h} D u|^{2} dx + \frac{C}{\varepsilon} \int_{U} |D u|^{2} dx,$$

所以

$$(1 - \varepsilon - C\varepsilon) \int_{U} \xi^{2} |D_{k}^{h} Du|^{2} dx \le \frac{1}{2\varepsilon} \int_{U} f^{2} dx + (\frac{C}{\varepsilon} + C\varepsilon) \int_{U} |Du|^{2} dx.$$
 (3.12)

则

$$\int_{V} |D_{k}^{h} Du|^{2} dx \leq \int_{U} \xi^{2} |D_{k}^{h} Du|^{2} dx \leq C(\int_{U} f^{2} dx + \int_{U} |Du|^{2} dx)$$

$$\leq C(\int_{U} f^{2} dx + \int_{U} u^{2} dx).$$

即

$$||D_k^h Du||_{L^2(V)} \le C(||f||_{L^2(U)} + ||u||_{L^2(U)}).$$
 (3.13)

Theorem 3.1. (Interior H^2 regularity)

设 $a_{ij}(x)\in C^1(U), b_i, c\in L^\infty(U), (i,j=1,\cdots,n), f\in L^2(U),\ u\in H^2(U)$ 为椭圆方程 Lu=f in U 的弱解,则 $u\in H^2_{loc}(U)$,且对于任意的开子集 $V\subset\subset U$ 有

$$||u||_{H^2(V)} \le C(||f||_{L^2(U)} + ||u||_{L^2(U)}). \tag{3.14}$$

其中 C 是依赖于 V,U 以及 L 的系数的常数。

证明. **Step 1**,对于 $V \subset\subset U$,取开集 W 满足 $V \subset\subset W \subset\subset U$ 。取截断函数 $\xi \in C_c^\infty(W)$,满足 $(a), \xi = 1$ on V, $(b), \xi \equiv 0$ in W^c , $(c), 0 \leq \xi \leq 1$ 。

Step 2,由于 u是方程 Lu = f的解,则有 $B[u,v] = (f,v), \forall v \in H_0^1(U)$,即

$$\sum_{i,j=1}^{n} \int_{U} a_{ij}(x) u_{x_i} v_{x_j} dx = \int_{U} \widetilde{f} v dx,$$

其中 $\widetilde{f} = f - \sum_{i=1}^{n} b_i u_{x_i} - cu_{\circ}$

Step 3,取 |h| > 0 充分小,对于 $k = 1, \cdots, n$ 。令 $v = -D_k^{-h}(\xi^2 D_k^h u)$,其中 $D_k^h u(x) = \frac{u(x + he_k) - u(x)}{h}(h \in \mathbb{R}, h \neq 0)$ 为差商。记

$$A = \sum_{i,j=1}^{n} \int_{U} a_{ij}(x) u_{x_i} v_{x_j} dx, \quad B = \int_{U} \widetilde{f} v dx.$$

Step 4, 对 A 做估计。

$$A = -\sum_{i,j=1}^{n} \int_{U} a_{ij}(x) u_{x_i} [D_k^{-h}(\xi^2 D_k^h u)_{x_j}] dx$$
(3.15)

$$= -\sum_{i,j=1}^{n} \int_{U} a_{ij}(x) u_{x_i} D_k^{-h}((\xi^2 D_k^h u)_{x_j}) dx$$
(3.16)

$$= \sum_{i,j=1}^{n} \int_{U} D_{k}^{h}(a_{ij}(x)u_{x_{i}})((\xi^{2}D_{k}^{h}u)_{x_{j}})dx$$
(3.17)

$$= \sum_{i,j=1}^{n} \int_{U} a_{ij}^{h} (D_{k}^{h} u_{x_{i}}) (\xi^{2} D_{k}^{h} u)_{x_{j}} + (D_{k}^{h} a_{ij}) u_{x_{i}} (\xi^{2} D_{k}^{h} u)_{x_{j}} dx.$$

$$(3.18)$$

(3.16)式是利用 $D_i(D_k^h f) = D_k^h(f_{x_i})$ 得到,(3.17) 式是利用 $\int_U u D_k^h \phi dx = -\int_U D_k^{-h} u \phi dx$ 得到,(3.18) 是利用 $D_k^h(v\omega) = v^h D_k^h \omega + \omega D_k^h v$ 得到。

则有

$$A = \sum_{i,j=1}^{n} \int_{U} a_{ij}^{h}(D^{h}u_{x_{i}})(D_{h}^{h}u_{x_{j}})\xi^{2} + \sum_{i,j=1}^{n} \int_{U} a_{ij}^{h}(D_{k}^{h}u_{x_{i}})(D_{k}^{h}u)2\xi\xi_{x_{j}}$$

$$+ (D_{k}^{h}a_{ij})u_{x_{i}}D_{k}^{h}u_{x_{j}}\xi^{2} + (D_{k}^{h}a_{ij})u_{x_{j}}D_{k}^{h}u2\xi\xi_{x_{j}}dx$$

$$=: A_{1} + A_{2}.$$
(3.19)

由一致椭圆条件可知

$$A_1 \le \theta \int_U \xi^2 |D_k^h Du|^2 dx. \tag{3.20}$$

利用 $a_{ij} \in C^1(U)$ 可以得到

$$|A_2| \leq C \int_U \xi |D_k^h Du| |D_k^h u| + \xi |D_k^h Du| |Du| + \xi |D_k^h u| |Du| dx$$

$$\leq \varepsilon \int_U \xi^2 |D_k^h u|^2 dx + \frac{C}{\varepsilon} \int_W |D_k^h u|^2 + |Du|^2 dx.$$

取 $\varepsilon = \frac{\theta}{2}$, 由 Evans 5.8.2 Theorem 3, 可得

$$\int_{W} |D_{k}^{h}u|^{2} dx \le ||D_{k}^{h}u||_{L^{2}(W)}^{2} \le C \int_{U} |Du|^{2} dx.$$
(3.21)

由此可以得到

$$|A_2| \le \frac{\theta}{2} \int_U \xi^2 |D_k^h Du|^2 dx + C \int_U |Du|^2 dx,$$
 (3.22)

则

$$A = A_1 + A_2 \ge \frac{\theta}{2} \int_{U} \xi^2 |D_k^h Du|^2 dx - C \int_{U} |Du|^2 dx.$$
(3.23)

Step 5, 对 *B* 做估计

$$|B| \le C \int_{U} (|f| + |Du| + |u|)|v| dx,$$
 (3.24)

再次利用 Theorem 3 in 5.8.2, 有

$$\int_{U} |v|^{2} dx \leq C \int_{U} |D(\xi^{2} D_{k}^{h} u)|^{2} dx
\leq C \int_{W} |D_{k}^{h} u|^{2} + \xi^{2} |D_{k}^{h} D u|^{2} dx
\leq C \int_{U} |D u|^{2} + \xi^{2} |D_{k}^{h} D u|^{2} dx.$$
(3.25)

所以

$$|B| \le \varepsilon \int_{U} \xi^{2} |D_{k}^{h} Du|^{2} dx + \frac{C}{\varepsilon} \int_{U} f^{2} dx + \frac{C}{\varepsilon} \int_{U} u^{2} dx + \frac{C}{\varepsilon} \int_{U} |Du|^{2} dx, \tag{3.26}$$

那么取 $\varepsilon = \frac{\theta}{4}$, 可得

$$|B| \le \frac{\theta}{4} \int_{U} \xi^{2} |D_{k}^{h} Du|^{2} dx + C(\int_{U} f^{2} dx + \int_{U} u^{2} dx + \int_{U} |Du|^{2} dx). \tag{3.27}$$

Step 6, 由 A = B 得到

$$\int_{V} |D_{k}^{h} Du|^{2} dx \le \int_{U} \xi^{2} |D_{k}^{h} Du|^{2} dx \le C \int_{U} f^{2} + u^{2} + |Du|^{2} dx.$$
(3.28)

再由 Theorem 3 in 5.8.2,可以得到 $Du \in H^1_{loc}(U)$,即 $u \in H^2_{loc}(U)$,并且

$$||u||_{H^{2}(V)} \le C(||f||_{L^{2}(U)} + ||u||_{H^{1}(U)}). \tag{3.29}$$

Step 7, 类似上式,对于 $V \subset\subset W \subset\subset U$,也可以得到

$$||u||_{H^2(V)} \le C(||f||_{L^2(W)} + ||u||_{H^1(W)}). \tag{3.30}$$

对于 W 和 U 可以用类似的截断函数 $\xi \in C_c^{\infty}(U)$,满足: (a), $\xi \equiv 1$ on W,(b), $\xi \equiv 0$ on U^c ,(c), $0 \le \xi \le 1$ 。 在弱解的表达式中取 $v = \xi^2 u$,可以得到

$$\int_{U} \xi^{2} |Du|^{2} dx \le C \int_{U} f^{2} + u^{2} dx. \tag{3.31}$$

即

$$||u||_{H^1(W)} \le C(||f||_{L^2(U)} + ||u||_{L^2(U)}). \tag{3.32}$$

则有

$$||u||_{H^2(V)} \le C(||f||_{L^2(U)} + ||u||_{L^2(U)}). \tag{3.33}$$

下面是我们具体解释将 $v = \xi^2 u$ 带入弱解表达式中得到(3.31)式。我们记

$$A = \sum_{i,j=1}^{n} \int_{U} a_{ij}(x) u_{x_{i}} 2\xi \xi_{x_{j}} u + a_{ij}(x) u_{x_{i}} \xi^{2} u_{x_{j}}$$

$$=: A_{1} + A_{2}.$$
(3.34)

那么利用一致椭圆性条件

$$A_2 \ge \theta \int_U \xi^2 |Du|^2 dx,\tag{3.35}$$

以及

$$|A_1| \le C \int_U \xi |Du| u dx \le \varepsilon \int_U \xi^2 |Du|^2 dx + \frac{C}{\varepsilon} \int_U u^2 dx. \tag{3.36}$$

取 $\varepsilon = \frac{\theta}{2}$,有

$$|A_1| \le \frac{\theta}{2} \int_U \xi^2 |Du|^2 dx + C \int_U u^2 dx. \tag{3.37}$$

则

$$A = A_1 + A_2 \ge \frac{\theta}{2} \int_U \xi^2 |Du|^2 dx - C \int_U u^2 dx, \tag{3.38}$$

另外

$$|B| \leq C \int_{U} (|f| + |Du| + |u|)|v| dx,$$

$$\leq \epsilon \int_{U} \xi^{2} |Du|^{2} dx + C \int_{U} (f^{2} + u^{2}) dx.$$
(3.39)

 $\epsilon = \frac{\theta}{4}$ 得

$$|B| \le \frac{\theta}{4} \int_{U} \xi^{2} |Du|^{2} dx + C \int_{U} (f^{2} + u^{2}) dx.$$
(3.40)

由 A = B 得到

$$\int_{U} \xi^{2} |Du|^{2} dx \le C \int_{U} (f^{2} + u^{2}) dx. \tag{3.41}$$

Theorem 3.2. (High interior regularity)

若 $m\in\mathbb{Z}^+,a_{ij},b_i,c\in C^{m+1}(U),(i,j=1,\cdots,n).f\in L^2(U)$ 。 $u\in H^1(U)$ 为方程 Lu=f 在 U 中的弱解,则 $u\in H^{m+2}_{loc}(U)$,且对于任意的 $V\subset\subset U$ 有

$$||u||_{H^{m+2}(V)} \le C(||f||_{H^m(U)} + ||u||_{L^2(U)}), \tag{3.42}$$

其中 C 只与 U,V 及 L 的系数有关。

3.2 边界正则性

$$\begin{cases}
-\Delta_p u = -\nabla(|\nabla u|^{p-2}\nabla u) = f \in L^2(U), \\
u|_{\partial U} = 0
\end{cases}$$
(3.43)

1 时,可以得到估计

$$||\nabla(|\nabla u|^{p-2}\nabla u)||_{L^2(U)} \le C||f||_{L^2(U)} \tag{3.44}$$

整体正则性: 局部 \rightarrow 整体, 边界 \rightarrow 全局。

Theorem 3.3. (Boundary H^2 regularity)

假设 $a_{ij}\in C^1(\overline{U}), b_i, c\in L^\infty(U), (i,j=1,\cdots,n), f\in L^2(U)$ 。若 $u\in H^1_0(U)$ 为椭圆方程边值问题

$$\begin{cases} Lu = f & in \ U, \\ u|_{\partial U} = 0. \end{cases}$$
 (3.45)

的弱解, $\partial U \in C^2$, 则 $u \in H^2(U)$, 且

$$||u||_{H^2(U)} \le C(||f||_{L^2(U)} + ||u||_{L^2(U)}), \tag{3.46}$$

其中 C 只与 U 及 L 的椭圆系数有关。

证明. **Step 1**, 考虑 $U = B^0(0,1) \cap \mathbb{R}^n_+$, $V = B^0(0,\frac{1}{2}) \cap \mathbb{R}^n_+$ 。取截断函数 $\xi \in C_c^{\infty}(U)$,满足 $\xi \equiv 1$ on $B(0,\frac{1}{2})$, $\xi \equiv 0$ on $\mathbb{R}^n \setminus B(0,1)$, $0 \le \xi \le 1$ 。

Step 2, 由方程的弱解定义知 $B[u,v]=(f,v), \forall v \in H_0^1(U)$, 即

$$\sum_{i,i=1}^{n} \int_{U} a_{ij}(x) u_{x_i} v_{x_j} dx = \int_{U} \widetilde{f} v dx, \tag{3.47}$$

其中 $\widetilde{f} = f - \sum_{i=1}^{n} b_i u_{x_i} - cu$ 。

Step 3,取 h > 0 充分小,对于 $k = 1, \dots, n-1$,取 $v = -D_k^{-h}(\xi^2 D_k^h u)$,即

$$v(x) = -\frac{1}{h} D_k^{-h} (\xi^1 [u(x + he_k) - u(x)])$$

$$= \frac{1}{h^2} (\xi^2 (x - he_k) [u(x) - u(x - he_k)] - \xi^2 [u(x + he_k) - u(x)]). \tag{3.48}$$

在迹意义下, u=0 on $\{x_n=0\}$, 且 $\xi\equiv 0$ on ∂U , 故 $v\in H^1_0(U)$ 。注意如果 k=n, 则 v 不能作为 Test Function 的,因为不是良定的。

Step 4, 记

$$A = \sum_{i,j=1}^{n} \int_{U} a_{ij}(x) u_{x_{i}} v_{x_{j}} dx \quad B = \int_{U} \tilde{f} v dx.$$
 (3.49)

由 Theorem 3.1可以得到类似的估计

$$A \ge \frac{\theta}{2} \int_{U} \xi^{2} |D_{k}^{h} Du|^{2} dx - C \int_{U} |Du|^{2} dx, \tag{3.50}$$

和

$$|B| \le \frac{\theta}{4} \int_{U} \xi^{2} |D_{k}^{h} Du|^{2} dx + C \int_{U} f^{2} + u^{2} + |Du|^{2} dx.$$
(3.51)

由 A = B 得到估计

$$\int_{V} |D_{k}^{h} Du|^{2} dx \le C(\int_{U} f^{2} + u^{2} + |Du|^{2} dx). \tag{3.52}$$

利用 Evans 5.8.2 Theorem 3, 可得 $u_{x_k} \in H^1(V), (k = 1, \dots, n-1)$, 且

$$\sum_{\substack{i,j=1\\i+i<2n}}^{n} ||u_{x_k x_l}||_{L^2(V)} \le C(||f||_{L^2(U)} + ||u||_{H^1(U)}). \tag{3.53}$$

Step 5, 由 Lu = f 得到

$$a_{nn}u_{x_nx_n} = -\sum_{\substack{i,j=1\\i+j<2n}}^n a_{ij}u_{x_ix_j} + \sum_{i=1}^n \widetilde{b}_i u_{x_i} + cu - f$$
(3.54)

这里 $\widetilde{b}_i = b_i - \sum_{j=1}^n (a_{ij})_{x_j}$ 。由一致椭圆性条件, $a_{ij}\xi_i\xi_j \ge \theta |\xi|^2$, $x \in U, \theta \in \mathbb{R}^n$ 。取 $\xi = e_n = (0, \dots, 0, 1)$,可得 $a_{nn}(x) \le \theta > 0$ 。则

$$|u_{x_n x_n}| \le C\left(\sum_{\substack{i,j=1\\i+j<2n}}^n |u_{x_i x_j}| + |Du| + |u| + |f|\right), \tag{3.55}$$

由此可得 $u \in H^2(V)$, 且

$$||u||_{H^2(V)} \le C(||f||_{L^2(U)} + ||u||_{L^2(U)}). \tag{3.56}$$

Step 6, 对于一般的情形,需要将边界拉平。取 $x^0 \in \partial U$,由 $\partial U \in C^2$ 知存在 $\gamma > 0$, γ 为 C^2 函数: $\mathbb{R}^{n-1} \to \mathbb{R}$ 。使得 $U \cap B(x^0, r) = \{x \in B(x^0, r) | x_n > \gamma(x_1, \cdots, x_{n-1}) \}$ 。做坐标变换

$$\begin{cases} y_i = x_i, & i = 1, \dots, n - 1, \\ y_n = x_n - \gamma(x_1, \dots, x_{n-1}). \end{cases}$$
 (3.57)

记 $y = \Phi(x)$,对应的逆映射为 $x = \Psi(y)$ 。

Step 7, 取 s>0 充分小, $U^{'}=B^{0}(0,s)\cap\{y_{n}>0\},V^{'}=B^{0}(0,\frac{s}{2})\cap\{y_{n}>0\}$ 。定义 $u^{'}(y)=u(\Psi(y)),\ (y\in U^{'})$,容易得到 $u^{'}\in H^{1}(U^{'})$ 且 u=0 on $\partial U\cap\{y_{n}=0\}$ 。

Step 8, Claim: u' 是方程 L'u' = f' 在 U' 的弱解。这里

$$L'u' = -\sum_{k,l=1}^{n} (a'_{kl}u'_{y_k})_{y_l} + \sum_{k=1}^{n} b'_k u'_{y_k} + c'u'$$
(3.58)

$$a'_{kl}(y) = \sum_{r,s=1}^{n} a_{rs}(\Psi(y)) \Phi_{x_r}^k(\Psi(y)) \Phi_{x_s}^l(\Phi(y)), \quad (k,l=1,\cdots,n)$$
(3.59)

$$b'_{k}(y) = \sum_{r=1}^{n} b_{r}(\Psi(y)) \Phi_{x_{r}}^{k}(\Psi(y)) \quad (k = 1, \dots, n)$$
(3.60)

$$c'(y) = c(\Psi(y)), \qquad f'(y) = f(\Psi(y))$$
 (3.61)

对于 $\forall v' \in H_0^1(U')$, 对于算子 L' 引入双线性形式,

$$B'[u',v'] = \int_{U'} \sum_{k,l=1}^{n} a'_{kl} u'_{y_k} v'_{y_l} + \sum_{k=1}^{n} b'_{k} u'_{y_k} v + c' u' v' dy,$$
(3.62)

定义 $v(x) := v'(\Phi(x))$, 则有

$$B'[u',v'] = \sum_{i,i=1}^{n} \sum_{k,l=1}^{n} \int_{U'} a'_{kl} u_{x_i} \Psi^{i}_{y_k} v_{x_j} \Psi^{j}_{y_l} dy + \sum_{i=1}^{n} \sum_{k=1}^{n} \int_{U'} b'_{k} u_{x_i} \Psi^{i}_{y_k} v dy + \int_{U'} c' u v dy.$$
(3.63)

由 a'_k, b'_k 的定义可得,

$$\sum_{k,l=1}^{n} a'_{kl} \Psi^{i}_{y_k} \Psi^{j}_{y_l} = \sum_{r,s=1}^{n} \sum_{k,l=1}^{n} a_{rs} \Phi^{k}_{x_r} \Phi^{l}_{x_s} \Psi^{i}_{y_k} \Psi^{j}_{y_l} = a_{ij},$$
(3.64)

$$\sum_{k=1}^{n} b_k' \Psi_{y_k}^i = \sum_{r=1}^{n} \sum_{k=1}^{n} b_r \Phi_{x_r}^k \Phi_{y_k}^i = b_i, \tag{3.65}$$

带入 $B^{'}[u^{'},v^{'}]$ 的表达式中可得

$$B'[u',v'] = \int_{U} \sum_{i,j=1}^{n} a_{ij} u_{x_i} v_{x_j} + \sum_{i=1}^{n} b_i u_{x_i} v + cuv dx = B[u,v] = (f,v)_{L^2(U)} = (f',v')_{L^2(U')}, \quad (3.66)$$

即 u' 是方程 L'u'=f' 在 U' 中的解。

Step 9, 验证 L' 在 U' 中是一致椭圆的。 对于 $y \in U'$, $\xi \in \mathbb{R}^n$,

$$\sum_{k,l=1}^{n} a'_{kl} x i_k \xi_l = \sum_{r,s=1}^{n} a_{rs}(\Psi(y)) \Phi^k_{x_r} \Phi^l_{x_s} \xi_k \xi_l = \sum_{r,s=1}^{n} a_{rs}(\Psi(y)) \eta_r \eta_s \ge \theta |\eta|^2, \tag{3.67}$$

这里 $\eta = \xi D\Phi$,即 $\eta_r = \sum_{k=1}^n \Phi_{x_r}^k \xi_k$,则有 $\xi = \eta D\Psi$ 。

由于 Ψ 为微分同胚,则 $|\xi| \leq C|\eta|$,即

$$\sum_{k,l=1}^{n} a'_{kl}(y)\xi_k \xi_l \ge \theta' |\xi|^2, \quad \theta' > 0.$$
(3.68)

Step 10, 由 *Step* 1 到 *Step* 5, 我们有估计

$$||u'||_{H^{2}(V')} \le C(||f'||_{L^{2}(U')} + ||u'||_{L^{2}(U')}).$$
 (3.69)

$$||u||_{H^2(V)} \le C(||f||_{L^2(U)} + ||u||_{L^2(U)}),\tag{3.70}$$

由于 ∂U 是紧的,那么存在有限多个 V_1, \dots, V_n 满足 $U \subset \bigcup_{i=1}^n V_i$,分别进行估计,可以得到

$$||u||_{H^2(U)} \le C(||f||_{L^2(U)} + ||u||_{L^2(U)}). \tag{3.71}$$

4 极值原理

4.1 弱极值原理

记
$$Lu = -\sum_{i,j=1}^{n} a_{ij} u_{x_i x_j} + \sum_{i=1}^{n} b_i u_{x_i} + cu$$
,其中 $a_{ij}, b_i, c \in C(\overline{U})$, a_{ij} 满足一致椭圆条件。

Theorem 4.1. (Weak Maximum principle $(c \equiv 0)$)

设 $u \in C^2(U) \cap C(\overline{U})$, 且 $C \equiv 0$ in U,

- (1), 如果 $Lu \leq 0$ in U, 则有 $\max_{\overline{U}} = \max_{\partial U} u$,
- (2), 如果 $Lu \ge 0$ in U, 则有 $\min_{\overline{U}} = \min_{\partial U} u$ 。

证明. (1), 令 $v = u + \varepsilon e^{\lambda x_1}, \lambda > 0, \varepsilon > 0$ 。计算可知

$$v_{x_i} = u_{x_i} + \lambda \varepsilon e^{\lambda x_1} \delta_{1i}, \quad v_{x_i x_j} = u_{x_i x_j} + \lambda^2 \varepsilon e^{\lambda x_1} \delta_{1i} \delta_{1j}. \tag{4.1}$$

则

$$Lv = -\sum_{i,j=1}^{n} a_{ij} (u_{x_i x_j} + \lambda^2 \varepsilon e^{\lambda_1} \delta_{1i} \delta_{1j}) + \sum_{i=1}^{n} b_i (u_{x_i} + \lambda \varepsilon e^{\lambda x_1} \delta_{1i})$$

$$= Lu - a_{11} \lambda^2 \varepsilon e^{\lambda x_1} + b_1 \lambda \varepsilon e^{\lambda x_1}$$

$$= Lu + \varepsilon \lambda e^{\lambda x_1} (-a_{11} \lambda + b_1).$$

利用椭圆性条件知, $a_{11} > \theta > 0$, 取 λ 充分大, 则有 Lv < 0。

Claim :v 的最大值是在 ∂U 上达到。

证明: 利用反证法. 我们假设最大值是在内部达到的,不妨设在 x_0 点,那么则有 $Dv(x_0)=0$ 和 $D^2v(x_0)\leq 0$ 。由 A 是正定矩阵,则存在正交阵 $O=(O_{ij})$ 使得 $OAO^T=diag(d_1,\cdots,d_n)$ 。记 $y=x_0+O(x-x_0)$,则 $x-x_0=O^T(y-x_0)$,所以

$$v_{x_i} = \sum_{k=1}^{n} v_{y_k} O_{ki}, \quad v_{x_i x_j} = \sum_{k,l=1}^{n} v_{y_k y_l} O_{ki} O_{lj}, \quad (i, j = 1, \dots, n).$$

$$(4.2)$$

则

$$\sum_{i,j=1}^{n} a_{ij} v_{x_i x_j} = \sum_{k,l=1}^{n} \sum_{i,j=1}^{n} a_{ij} v_{y_k y_l} O_{ki} O_{lj} = \sum_{k=1}^{n} d_k v_{y_k y_k} \le 0.$$

$$(4.3)$$

因此在 x_0 点处有,

$$Lv = -\sum_{i,j=1}^{n} a_{ij} v_{x_i x_j} + \sum_{k=1}^{n} b_k v_{x_k} \ge 0,$$
(4.4)

同之前得到的 Lv < 0 矛盾,表明 v 在区域边界上达到最大值。另外

$$\max_{\overline{U}} \le \max_{\overline{U}} v = \max_{\partial U} \le \max_{\partial U} u + \varepsilon \max_{\partial U} e^{\lambda x_1}. \tag{4.5}$$

由于 U 是有界区域, 我们令 $\varepsilon \to 0$ 得到:

$$\max_{\overline{U}} = \max_{\partial U} u. \tag{4.6}$$

(2),对 -u 使用 (1) 中同样的操作技巧,便可以得到 $\max_{\overline{U}} u = \min_{\overline{U}} u$.

Theorem 4.2. (Weak Maximum principle $(c \ge 0)$)

设 $u \in C^2(U) \cap C(\overline{U})$, 且 $C \ge 0$ in U,

(1), 如果 $Lu \leq 0$ in U, 则有 $\max_{\overline{U}} = \max_{\partial U} u^+$,

(2), 如果 $Lu \ge 0$ in U, 则有 $\min_{\overline{U}} = -\min_{\partial U} u^-$

其中 $u^+ = \max\{u, 0\}, \quad u^- = \max\{0, -u\}.$

证明. (1),取 $V = \{x \in U, u(x > 0)\}$,令 $Ku := Lu - cu \le -cu \le 0$ in K,利用前面 $C \equiv 0$ 的弱极值原理可以得到

$$\max_{\overline{V}} u = \max_{\partial V} u \le \max_{\partial U} u^{+} \tag{4.7}$$

因为非负最大值一定在 U 和 V 公共边界取到。

$$(2)$$
,对 $-u$ 使用 (1) 对应的操作就可以了。

Example 4.1. $\Delta u = 0$ in $\Omega \subset \mathbb{R}^n$, $\mathbb{R} \varphi = |Du|^2$, $\mathbb{R} A = \mathbb{R} A$

$$\Delta \varphi = \sum_{i=1}^{n} \sum_{j=1}^{n} (2u_{x_j} u_{x_j x_i})_{x_i} = 2 \sum_{i,j=1}^{n} u_{x_i x_j}^2 + 2 \sum_{i,j=1}^{n} u_{x_j} u_{x_i x_i x_j} \ge 0, \tag{4.8}$$

所以 φ 的最大值是在边界上取到。

Example 4.2. $\Delta u = 2$ in $\Omega \subset \mathbb{R}^n$, $\mathbb{R} \varphi = |Du|^2 + Cu$. $\mathbb{R} A = \mathbb{R} A$

$$\Delta \varphi = 2 \sum_{i,j=1}^{n} u_{x_i x_j}^2 + 2 \sum_{i,j=1}^{n} u_{x_j x_i x_i} + C \Delta u = 2 \sum_{i,j=1}^{n} u_{x_i x_j}^2 + 2C, \tag{4.9}$$

利用 Cauchy 不等式, 可得 $\sum_{i,j=1}^n u_{x_ix_j}^2 \ge \sum_{i=1}^n u_{x_ix_i}^2 \ge \frac{1}{n} (\sum_{i=1}^n u_{x_ix_i})$. 所以

$$\Delta \varphi \ge \frac{8}{n} + 2C. \tag{4.10}$$

我们只要取 $C=-\frac{4}{n}$ 可得 $\Delta \varphi \geq 0$ 。

当 n=2 条件下,取 $\varphi=|Du|^2-2u$ 可以说明 φ 在 $\{x\in U||Du|\neq 0\}$ 的边界上达到最大和最小值。具体计算

$$\varphi_{x_i} = \sum_{j=1}^n 2u_{x_j} u_{x_j x_i} - 2u_{x_i}, \tag{4.11}$$

令 $|Du|=u_{x_1},u_{x_2}=0, \ \ (\forall x\in U)$ 。 所以

$$\varphi_{x_1} = 2u_1 u_{11}, \quad \varphi_{x_2} = 2u_{x_1} u_{12}, \tag{4.12}$$

则有

$$u_{x_1x_1} = \frac{\varphi_{x_1}}{2u_{x_1}} + 1, \quad u_{x_1x_2} = \frac{\varphi_{x_2}}{u_{x_1}}, \quad u_{x_2x_2} = 2 - u_{x_1x_x} = 1 - \frac{\varphi_{x_1}}{2u_{x_2}}.$$
 (4.13)

所以

$$\Delta \varphi = 2 \sum_{i,j=1}^{n} u_{x_i x_j} - 4 = 2 \left[\left(\frac{\varphi_{x_1}}{2u_{x_1}} + 1 \right)^2 + 2 \left(\frac{\varphi_{x_2}}{u_{x_1}} \right)^2 + \left(1 - \frac{\varphi_{x_1}}{2u_{x_2}} \right)^2 \right] - 4$$

$$= \frac{\varphi_{x_1^2} + \varphi_{x_2^2}}{u_{x_1^2}} = \frac{|D\varphi|^2}{|Du|^2}.$$

利用前面的 Theorem 4.1可知

$$L\varphi := \Delta\varphi - \frac{D\varphi}{|Du|^2}\Delta\varphi = 0, \tag{4.14}$$

所以 φ 的最大和最小值就在 ∂U 或者 $\{x \in U : |Du| = 0\}$ 处达到。

Remark 4.1. $U \subset \mathbb{R}^n$ 有界区域的条件是不能去掉的, 我们给出一个具体的例子。

若 $U=\{x_n>0\}$, $\partial U=\{x_n=0\}$, 那么对于函数 $u=x_n$, 我们有 $\Delta u=0$ in U。但是显然 u 的最大值不是在 ∂U 上面达到的。

Remark 4.2. $c \ge 0$ 这个条件也是不可以去掉的, 我们给出一个具体的反例。

取 $U = \{(x,y) : |x| < \frac{\pi}{2}, |y| < \frac{\pi}{2}\}$, 函数 $u(x,y) = \cos x \cos y$, 满足 $\Delta u = -2\cos x \cos y$ 。则 u 满足

$$\begin{cases}
-\Delta u - 2u = 0 & in U, \\
u|_{\partial U} = 0
\end{cases}$$
(4.15)

但是 $u_{\text{max}} = u(0,0) = 1$, 在内部达到最大值。

4.2 强极值原理

回忆在前学习调和方程 $\Delta u = 0$ in U, 如果 u 在 U 的内部达到最大值,那么 u 是常数。之前的证明办法是平均值公式或者是 Harnack 不等式,对于一般的线性的一致椭圆方程,我们首先证明一个重要的引理。

Theorem 4.3. (Hopf Lemma)

假设 $u\in C^2(U)\cap C^1(\overline{U})$, 且 $c\equiv 0$ in U。若 $Lu\leq 0$ in U 且存在 $x^0\in \partial U$ 使得 $u(x^0)>u(x), \forall x\in U$, U 在 x^0 满足外球条件,即存在开球 $B\subset U$,且 $x^0\in \partial B$ 。则

- (1), $\frac{\partial u}{\partial \nu}(x^0)$, ν 为 x^0 处的内法向。
- (2), 若 $c \ge 0$ in U 且 $u(x^0) \ge 0$ 可以得到同样的结论。

证明. 记 $B = B^0(0,r), R = B^0(0,r) \setminus B(0,\frac{r}{2})$ 假设 $c \ge 0$ 。

Step 1, 定义 $\varphi=e^{-\lambda|x|^2}-e^{-\lambda r^2}, \ x\in B(0,r), \lambda>0$, 那么可知 $\varphi\geq 0, \varphi|_{\partial B(0,r)}=0$ 。简单计算,在环状区域 R 中成立

$$L\varphi \le e^{-\lambda|x|^2} (-\theta \lambda^2 r^2 + 2\lambda t race A + 2\lambda |b| r + c) \le 0 \quad inR,$$
(4.16)

在 λ 充分大的情形下成立。

Step 2, 定义 $\omega(x) = u(x) + \varepsilon \varphi(x) - u(x^0), x \in B(0,r), \varepsilon > 0$ 。则有

$$\omega|_{\partial B(0,r)} = u|_{\partial B(0,r)} - u(x^{0}) \le 0,
\omega|_{\partial B(0,\frac{r}{2})} = u|_{\partial B(0,\frac{r}{2})} - u(x^{0}) + \varepsilon\varphi|_{\partial B(0,\frac{r}{2})},$$
(4.17)

由于紧集上的连续函数必有最大,最小值。所以

$$u|_{\partial B(0,\frac{r}{2})} \le M < u(x^0),$$
 (4.18)

那么存在 ε 充分小使得 $\omega|_{\partial B(0,\frac{\pi}{2})} \leq 0$ 。

Step 3, $L\omega = Lu + \varepsilon L\varphi - cu(x^0)$, $in\ R$, 且 $\omega|_{\partial\Omega} \le 0$, $\omega(x^0) = 0$, 那么利用弱极值原理, $\omega \le 0$ $in\ R$, 且 ω 在 x^0 处达到极大值。因此

$$\frac{\partial \omega}{\partial \nu}(x^0) = \frac{\partial u}{\partial \nu}(x_0) + \varepsilon \frac{\partial \varphi}{\partial \nu}(x^0) \ge 0. \tag{4.19}$$

则

$$\frac{\partial u}{\partial \nu}(x^0) \ge -\varepsilon \frac{\partial \varphi}{\partial \nu}(x^0) = -\varepsilon \sum_{i=1}^n \frac{\partial \varphi}{\partial x_i} \frac{x_i}{r}|_{x=x^0} = 2\lambda \varepsilon r e^{-\lambda r^2} > 0.$$
 (4.20)

Theorem 4.4. (Strong Maximum Principle)

假设 $u \in C^2(U) \cap C^1(\overline{U})$, 且 $c \equiv 0$ in U, $U \subset \mathbb{R}^n$ 为有界区域,则

- (1), 若 $Lu \leq 0$ in U, u 在 \overline{U} 的内部达到最大值,则 $u \equiv constant$ in U。
- (2), 若 $Lu \ge 0$ in U, u 在 \overline{U} 的内部达到最小值, 则 $u \equiv constant$ in U。

证明. 令 $M = \max_{x \in \overline{U}} u, \ C = \{x \in U | u(x) = M\}, \ V = \{x \in U | u(x) < M\}$ 。采用反证法,不妨假设 $u \neq M$,取 $y \in V$ 使得 $dist(y,C) < dist(y,\partial U)$ 。令 B 为 V 中以 y 为球心的最大球,存在 $x_0 \in C$ 且 $x_0 \in \partial B$ 。即 V 在 x_0 处满足内球条件,那么利用 Hopf-Lemma 可知, $\frac{\partial u}{\partial \nu}(x_0) > 0$ 。但是由于 u 在 x_0 处取到最大值,那么可知 $Du(x_0) = 0$,所以我们得到矛盾,故 $u \equiv M$ in U。

Theorem 4.5. (Strong Maximum Principle with c > 0)

假设 $u \in C^2(U) \cap C^1(\overline{U})$, 且 c > 0 in $U, U \subset \mathbb{R}^n$ 为连通区域,则有

- (1), 若 $Lu \leq 0$ in U, u 在 \overline{U} 的内部达到非负最大值, 则 $u \equiv constant$ in U。
- (2), 若 $Lu \ge 0$ in U, u 在 \overline{U} 的内部达到非正最小值, 则 $u \equiv constant$ in U。

Theorem 4.6. 假设 $u \in C^2(U) \cap C^1(\overline{U})$, $Lu = \sum_{i,j=1}^n a_{ij} u_{x_i x_j} + \sum_{i=1}^n b_i u_{x_i} + c(x) u \ge 0$ in U。 若 $u \le 0$ in U,则 u < 0 in U 或 $u \equiv 0$ in U。

证明. 令 $c(x) = c^{+}(x) - c^{-}(x)$, 其中 c^{+}, c^{-} 分别是 c(x) 的正部和负部。利用 $Lu \ge 0$ 可得

$$\sum_{i,j=1}^{n} a_{ij} u_{x_i x_j} + \sum_{i=1}^{n} b_i u_{x_i} - c^-(x) u \ge -c^+ u \ge 0, \quad in \quad U.$$

$$(4.21)$$

对于 $\widetilde{L}u = \sum_{i,j=1}^{n} a_{ij}u_{x_ix_j} + \sum_{i=1}^{n} b_iu_{x_i} - c^-(x)u$,有 $\widetilde{L}u \geq 0$ in U。又因为 $u \leq 0$ in U,若存在 $x_0 \in U$ 使得 $u(x_0) = 0$,那么利用 Theorem 4.5可知 $u \equiv 0$ in U。否则 u < 0 in U。

Remark 4.3. 我们可以利用前面得到的极值原理将先验估计约化到边界,例如对于 $\Delta u=0$ 的梯度估计,有 $\sup_{U}|Du|\leq\sup_{\partial U}|Du|$ 。 我们只需考虑 $\varphi=|Du|^2$,那么计算可知 $\Delta\varphi=2\sum_{i,j=1}^nu_{x_ix_j}^2\geq 0$ 。利用极值原理可知 φ 的最大值是在边界上达到的。下面对于更一般的线性一致椭圆方程也可以。

Theorem 4.7. (整体梯度估计约化到边界梯度估计)

假设 $u \in C^3(U) \cap C^1(\overline{U})$, 且满足

$$Lu = \sum_{i,j=1}^{n} a_{ij} u_{x_i x_j} + \sum_{i=1}^{n} b_i u_{x_i} = f \text{ in } U,$$
(4.22)

这里 $a_{ij}, b_i, c \in C^1(\overline{U}), f \in C^1(\overline{U})$ 。则有

$$\sup_{U} |Du| \le \sup_{\partial U} |Du| + C. \tag{4.23}$$

证明. 先估计 $L(|Du|^2)$, 下面是具体计算过程

$$(|Du|^2)_{x_i} = 2\sum_{k=1}^n u_{x_k} u_{x_k x_i},$$

$$|Du|^2)_{x_i x_j} = 2\sum_{k=1}^n u_{x_k x_i} u_{x_k x_j} + 2\sum_{k=1}^n u_{x_k} u_{x_k x_i x_j}.$$

对 Lu = f 两边同时关于 x_k 进行求导, 再同时乘上 u_{x_k} , 关于 k 再进行求和可得,

$$\begin{split} L(|Du|^2) &= \sum_{i,j=1}^n a_{ij} (|Du|^2)_{x_i x_j} + \sum_{i=1}^n b_i (|Du|^2)_{x_i} \\ &= 2 \sum_{i,j,k=1}^n a_{ij} u_{x_k x_i} u_{x_k x_j} + 2 \sum_{i,j,k=1}^n a_{ij} u_{x_k} u_{x_k x_i x_j} + 2 \sum_{i,k=1}^n b_i u_{x_k} u_{x_k x_i} \\ &= 2 \sum_{i,j,k=1}^n a_{ij} u_{x_k x_i} u_{x_k x_j} - 2 \sum_{i,j,k=1}^n (a_{ij})_{x_k} u_{x_i x_j} u_{x_k} - 2 \sum_{i,k=1}^n (b_i)_{x_k} u_{x_i} u_{x_k} + 2 \sum_{k=1}^n f_{x_k} u_{x_k}. \end{split}$$

利用椭圆性条件可得 $\sum_{i,j,k=1}^{n} a_{ij} u_{x_k x_i} u_{x_k x_j} \ge \sum_{k=1}^{n} \theta |D u_{x_k}|^2 = \theta |D^2 u|^2$ 。 另外

$$\begin{split} &|2\sum_{i,j,k=1}^{n}(a_{ij})_{x_k}u_{x_ix_j}u_{x_k}+2\sum_{i,k=1}^{n}(b_i)_{x_k}u_{x_i}u_{x_k}-2\sum_{k=1}^{n}f_{x_k}u_{x_k}|\\ &\leq C|D^2u||Du|+C|Du|^2+C|Df||Du|\\ &\leq \theta|D^2u|^2+\frac{C^2}{4\theta}|Du|^2+C|Du|^2+\frac{C}{2}(|Df|^2+|Du|^2)\\ &\leq \theta|D^2u|^2+C|Du|^2+C. \end{split}$$

所以

$$L(|Du|^2) \ge \theta |D^2u|^2 - C|Du|^2 - C. \tag{4.24}$$

再考虑 u^2 项的估计,

$$L(u^{2}) = 2 \sum_{i,j=1}^{n} a_{ij} u_{x_{i}} u_{x_{j}} + 2 \sum_{i,j=1}^{n} a_{ij} u u_{x_{i}x_{j}} + 2 \sum_{i=1}^{n} b_{x_{i}} u u_{x_{i}}$$

$$\geq 2\theta |Du|^{2} + 2uf.$$

当下式中 α 充分大时,则有

$$L(|Du|^2 + \alpha u^2) \ge \theta |D^2u|^2 + (2\theta\alpha - C)|Du|^2 - C \ge \theta |D^2u|^2 + |Du|^2 - C. \tag{4.25}$$

再取 $\beta > 0$,

$$L(|Du|^2 + \alpha u^2 + e^{\beta x_1}) \ge \theta |D^2 u|^2 + |Du|^2 - (\beta^2 a_{11} e^{\beta x_1} + \beta b_1 e^{\beta x_1} - C), \tag{4.26}$$

对于 $U \subset \{x_1 > 0\}$ 且 $\beta > 0$ 充分大的时候,可以得到 $L(|Du|^2 + \alpha u^2 + e^{\beta x_1}) \ge 0$ in U。那么利用弱极值原理可以得到

$$\sup_{U}(|Du|^{2} + \alpha u^{2} + e^{\beta x_{1}}) \leq \sup_{\partial U}(|Du|^{2} + \alpha u^{2} + e^{\beta x_{1}}). \tag{4.27}$$

又因为U是有界区域,所以可得

$$\sup_{U} |Du|^2 \le \sup_{\partial U} |Du| + C. \tag{4.28}$$

Theorem 4.8. (梯度内估计)

假设 $u \in C^3(U) \cap C^1(\overline{U})$, 且满足

$$Lu = \sum_{i,j=1}^{n} a_{ij} u_{x_i x_j} + \sum_{i=1}^{n} b_i u_{x_i} = f \quad in \quad U,$$
(4.29)

这里 $a_{ij}, b_i, c \in C^1(\overline{U}), f \in C^1(\overline{U})$ 。则对于 $\forall V \subset \subset U$,有

$$\sup_{V} |Du| \le C. \tag{4.30}$$

证明. 取截断函数 ξ 使得 $\xi=1$ in V, $0 \le \xi \le 1$,且 $supp(\xi) \subset U$ 。取辅助函数 $\varphi=\xi^2|Du|^2+\alpha u^2+e^{\beta x_1}$ 。计算可得

$$\varphi_{x_{i}} = (\xi^{2})_{x_{i}} + xi^{2}(|Du|^{2})_{x_{i}} + 2\alpha u u_{x_{i}} + \beta e^{\beta x_{1}} \delta_{1i},$$

$$\varphi_{x_{i}x_{j}} = (\xi^{2})_{x_{i}x_{j}} + \xi^{2}(|Du|^{2})_{x_{i}x_{j}} + (\xi^{2})_{x_{j}}(|Du|^{2})_{x_{j}} + (\xi^{2})_{x_{i}}(|Du|^{2})_{x_{j}}$$

$$+ 2\alpha u_{x_{i}}u_{x_{j}} + 2\alpha u u_{x_{i}x_{j}} + \beta^{2}e^{\beta x_{1}} \delta_{1j},$$
(4.31)

则有

$$L\varphi = \sum_{i,j=1}^{n} a_{ij}\varphi_{x_{i}x_{j}} + \sum_{i=1}^{n} b_{i}\varphi_{x_{i}}$$

$$= 2\xi^{2}(\sum_{i,j,k=1}^{n} a_{ij}u_{x_{k}x_{i}}u_{x_{k}x_{j}} + \sum_{i,j=1}^{n} a_{ij}u_{x_{k}}u_{x_{k}x_{i}x_{j}}) + 4\sum_{i,j=1}^{n} (\xi^{2})_{x_{i}}a_{ij}u_{x_{k}}u_{x_{k}x_{j}}$$

$$+2\alpha u \sum_{i,j=1}^{n} a_{ij}u_{x_{i}x_{j}} + |Du|^{2} \sum_{i,j=1}^{n} a_{ij}(\xi^{2})_{x_{i}x_{j}} + 2\alpha \sum_{i,j=1}^{n} a_{ij}u_{x_{i}}u_{x_{j}} + \beta^{2}a_{11}e^{\beta x_{1}}$$

$$+|Du|^{2} \sum_{i=1}^{n} b_{i}(\xi^{2})_{x_{i}} + 2\xi^{2} \sum_{i,k=1}^{n} b_{i}u_{x_{k}}u_{x_{k}x_{i}} + 2\alpha u \sum_{i=1}^{n} b_{i}u_{x_{i}} + \beta b_{1}e^{\beta x_{1}}. \tag{4.32}$$

其中

$$2\xi^{2}\left(\sum_{i,j=1}^{n}a_{ij}u_{x_{k}}u_{x_{k}x_{i}x_{j}} + \sum_{i,k=1}^{n}b_{i}u_{x_{k}}u_{x_{k}x_{i}}\right) = 2\xi^{2}\sum_{k=1}^{n}u_{x_{k}}[f_{x_{k}} + f_{u}u_{x_{k}} - \sum_{i,j=1}^{n}(a_{ij})_{x_{k}}u_{x_{i}x_{j}} - \sum_{i=1}^{n}(b_{i})_{x_{k}}u_{x_{i}}]$$

$$2\alpha u \sum_{i,j=1}^{n}a_{ij}u_{x_{i}x_{j}} + 2\alpha u \sum_{i=1}^{n}b_{i}u_{x_{i}} = 2\alpha u f(x, u),$$

$$2\xi^{2}\sum_{i,j=1}^{n}a_{ij}u_{x_{k}x_{i}}u_{x_{k}x_{j}} \geq 2\xi^{2}\theta \sum_{k=1}^{n}|Du_{x_{k}}|^{2} = 2\xi^{2}\theta|D^{2}u|^{2}, \quad on \quad V.$$

同理

$$2\alpha \sum_{i,j=1}^{n} a_{ij} u_{x_i} u_{x_j} \leq 2\alpha\theta |Du|^2,$$

$$4 \sum_{i,j,k=1}^{n} (\xi^2)_{x_i} a_{ij} u_{x_k} u_{x_k x_j} = 8\xi \sum_{i,j,k=1}^{n} \xi_{x_k} a_{ij} u_{x_k} u_{x_k x_j} \leq \xi^2 \theta |D^2 u|^2 + C|Du|^2,$$

$$|Du|^2 \sum_{i,j=1}^{n} a_{ij} (\xi^2)_{x_i x_j} + |Du|^2 \sum_{i=1}^{n} b_i (\xi^2)_{x_i} \leq C|Du|^2,$$

$$2\xi^2 \sum_{k=1}^{n} u_{x_k} f_{x_k} \leq 2|D_x f||Du| \leq C + C|Du|^2,$$

$$2\xi^2 \sum_{k=1}^{n} u_{x_k}^2 f_u \leq C|Du|^2,$$

$$2\xi^2 \sum_{i,j,k=1}^{n} (a_{ij})_{x_k} u_{x_i x_j} u_{x_k} \leq \frac{1}{2} \xi^2 \theta |D^2 u|^2 + C|Du|^2,$$

$$2\xi^2 \sum_{i,j,k=1}^{n} (b_i)_{x_k} u_{x_i u_{x_k}} \leq C|Du|^2.$$

所以

$$L\varphi = \frac{1}{2}\xi^2\theta|D^2u|^2 - (2\alpha\theta - C)|Du|^2 + (\beta b_1 e^{\beta x_1} + \beta^2 a_{11}e^{\beta x_1} - C). \tag{4.33}$$

取 α, β 充分大可以得到 $L\varphi \geq 0$, 所以 φ 的最大值是在边界上取到,则

$$\sup_{V} |Du|^{2} \le \sup_{U} (\xi^{2} |Du|^{2} + \alpha u^{2} + e^{\beta x_{1}}) \le \alpha \sup_{\partial U} u^{2} + \sup_{\partial U} e^{\beta x_{1}} \le C.$$
 (4.34)

Theorem 4.9. (Harnack Inequality)

假设 $u \in C^2(U), u \ge 0$ 为方程 Lu = 0 in U 的解, $V \subset U$ 连通, 则存在常数 C 使得

$$\sup_{V} u \le C \inf_{V} u. \tag{4.35}$$

其中 C 依赖于 V,L。

证明. 这里只证明 $Lu = \sum_{i,j=1}^{n} a_{ij} u_{x_i x_j}$ 的情形。

Step 1, 假设 u>0 in U。否则考虑 $u_{\varepsilon}=u+\varepsilon$,得到结论,然后再让 $\varepsilon\to 0$ 。

$$\sum_{i,j=1}^{n} a_{ij} v_{x_i} v_{x_j} + \sum_{i,j=1}^{n} a_{ij} v_{x_i x_j} = 0 \text{ in } U.$$

$$(4.36)$$

Step 2, 令 $\omega = \sum_{i,j}^{n} a_{ij} v_{x_i} v_{x_j}$ 。 计算可得

$$\omega_{x_k x_l} = 2 \sum_{i,j=1}^{n} a_{ij} v_{x_k x_i} v_{x_j x_l} + 2 \sum_{i,j=1}^{n} a_{ij} v_{x_i x_k x_l} v_{x_j} + R, \tag{4.37}$$

其中 R 为表达式中含 a_{ij} 的导数项部分,利用 Cauchy 不等式,

$$|R| \le \varepsilon |D^2 v|^2 + C(\varepsilon)|Dv|^2,\tag{4.38}$$

则有

$$-\sum_{k,l=1}^{n} a_{kl} \omega_{x_k x_l} = 2\sum_{i,j=1}^{n} a_{ij} v_{x_j} \left(-\sum_{k,l=1}^{n} a_{kl} v_{x_i x_k x_l}\right) - 2\sum_{i,j,k,l=1}^{n} a_{ij} a_{kl} v_{x_i x_k} v_{x_j x_l} - R,$$

$$(4.39)$$

对 ω 进行求导可以得到

$$-\sum_{k,l=1}^{n} a_{kl} v_{x_i x_k x_l} = \omega_{x_i} + \sum_{k,l=1}^{n} (a_{kl})_{x_i} v_{x_k x_l} \quad (i = 1, \dots, n),$$

$$(4.40)$$

对上式有

$$\left| \sum_{k,l=1}^{n} (a_{kl})_{x_i} v_{x_k x_l} \right| \le C|D^2 v|. \tag{4.41}$$

由一致椭圆条件

$$\sum_{i,j,k,l=1}^{n} a_{ij} a_{kl} v_{x_i x_k} v_{x_j x_l} \ge \sum_{k,l=1}^{n} a_{kl} \theta |D v_{x_k}| |D v_{x_l}| \ge \theta^2 |D^2 v|^2.$$
(4.42)

将上述估计带入(4.39),得到

$$-\sum_{k,l=1}^{n} a_{kl} \omega_{x_k x_l} + \sum_{k=1}^{n} b_k \omega_{x_k} \le -\frac{\theta^2}{2} |D^2 v|^2 + C|Dv|^2, \tag{4.43}$$

这里 $b_k = 2\sum_{l=1}^n a_{kl} v_{x_l}, \quad (k=1,\dots,n)$ 。

Step 3, 对 $V \subset U$, 取截断函数 $\xi = C_c^\infty(U)$, 使得 $\xi \equiv 1$ on $V, \xi \equiv 0$ on $U^c, 0 \le \xi \le 1$ 。令 $z = \xi^4 \omega$,我们假设 z 在 $x_0 \in U$ 的内部达到极大值,那么在 x_0 处,

$$\xi \omega_{x_k} + 4\xi_{x_k}\omega = 0, \quad (k = 1, \dots, n).$$
 (4.44)

和

$$0 \le -\sum_{k,l=1}^{n} a_{kl} \omega_{x_k x_l} + \sum_{k=1}^{n} b_k z_{x_k} = -\sum_{k,l=1}^{n} a_{kl} (\xi^4 \omega)_{x_k x_l} + \sum_{k=1}^{n} b_k (\xi^4 \omega)_{x_k}, \tag{4.45}$$

所以

$$0 \le \xi^4 \left(-\sum_{i,j=1}^n a_{kl} \omega_{x_k x_l} + \sum_{k=1} b_x \omega_k \right) + \widetilde{R}, \tag{4.46}$$

其中 \widetilde{R} 为表达式中含 ξ 导数项部分,利用截断函数的性质得,

$$|\widetilde{R}| \le C(\xi^2 \omega + \xi^3 |D\omega|),\tag{4.47}$$

再利用 x_0 处, $4\xi_{x_k}\omega + \xi\omega = 0$,有

$$|\widetilde{R}| \le C\xi^2 \omega,\tag{4.48}$$

有(4.43),(4.48),可以得到

$$\xi^4 |D^2 v|^2 \le C\xi^4 |Dv|^2 + C\xi^2 \omega. \tag{4.49}$$

再由 ω 的定义有, $\theta |Dv|^2 \le \omega \le C|D^2v|$,带入 (4.49) 中可得

$$\xi^4 |D^2 v|^2 \le C|D^2 v|. \tag{4.50}$$

则 $z = \xi^4 \omega \le C \xi^4 |D^2 v| \le C$,在 x_0 点成立。又因为 z 在 x_0 处达到极大值,且 $\xi \equiv 1$ in V,因此 $|Dv| \le C$ in V。 **Step 4**,若取 V = B(0,r) 则

$$v(x_2) - v(x_1) \le \sup_{V} |Dv||x_1 - x_2| \le C, \quad \forall x_1, x_2 \in V.$$
 (4.51)

即 $u(x_2) \le u(x_1)e^C$ 。 因此 $\sup_V u \le C \inf_V u$ 。

Step 5,对于一般的情形,可以对 \overline{V} 用闭有限覆盖定理。取 $\overline{V}=\bigcup_{x\in V}B(x,r)$,则 $\exists\{x_i\}_{i=1}^N\subset V$ 使得 $\overline{V}\subset\bigcup_{i=1}^NB(x,r)$ 。由此可以得到对于一般的 $V\subset\subset U$,有

$$\sup_{V} u \le C \inf_{V} u. \tag{4.52}$$

最后我们证明一下 Capcciopolli 不等式。

Recall: $\Delta u = 0$ in $B_R(0) \subset U \subset \mathbb{R}^n$,称 $u \in H^1_0(B_R(0))$ 为方程的弱解,如果对于 $\forall \varphi \in H^1_0(B_R(0))$,

$$\int_{B_r(0)} \nabla u \nabla \varphi dx = 0. \tag{4.53}$$

取截断函数 $\xi \in C_c^{\infty}(B_R(0))$,使得 $\xi = 1$ on $B_{\frac{R}{2}}(0)$, $|\nabla \xi| \leq \frac{C_0}{R}$,且 $0 \leq \xi \leq 1$ 。取 $\varphi = \xi^2 u \in H_0^1(B_R(0))$,则有

$$0 = \int_{B_R(0)} \nabla u \nabla (\xi^2 u) dx = \int_{B_R(0)} \xi^2 |\nabla u|^2 dx + 2 \int_{B_R(0)} \xi u \nabla \xi \nabla u dx.$$
 (4.54)

所以

$$\int_{B_{R}(0)} \xi^{2} |\nabla u|^{2} dx = -2 \int_{B_{R}(0)} \xi u \nabla \xi \nabla u dx$$

$$\leq \frac{1}{2} \int_{B_{R}(0)} \xi^{2} |\nabla u|^{2} dx + 2 \int_{B_{R}(0)} u^{2} |\nabla \xi|^{2} dx. \tag{4.55}$$

即

$$\int_{B_{R}(0)} \xi^{2} |\nabla u|^{2} dx \le 4 \int_{B_{R}(0)} u^{2} |\nabla \xi|^{2} dx \le \frac{C}{R^{2}} \int_{B_{R}(0)} u^{2} dx. \tag{4.56}$$

由 $\xi = 1$ on $B_{\frac{R}{\alpha}}(0)$ 有

$$\int_{B_{\frac{R}{2}}(0)} |\nabla u|^2 dx \le \frac{C}{R^2} \int_{B_R(0)} u^2 dx. \tag{4.57}$$

上式即为 Capcciopolli 不等式。

对于一般的情形 $Lu:=\sum\limits_{i,j=1}^n(a_{ij}u_{x_j})_{x_i}=0$ in $B_R(0)\subset U\subset\mathbb{R}^n$ 。称 $u\in H^1_0(B_R(0))$ 为方程的弱解,如果

$$\int_{B_R(0)} \sum_{i,j=1}^n a_{ij} u_{x_j} \varphi_{x_i} dx = 0, \tag{4.58}$$

对于 $\forall \varphi \in H_0^1(B_R(0))$ 均成立。

类似地取截断函数 ξ , 以及 $\varphi = \xi^2 u \in H_0^1(B_R(0))$, 则有

$$0 = \int_{B_R(0)} \sum_{i,j=1}^n a_{ij} u_{x_j} (\xi^2 u_{x_i} + 2\xi \xi_{x_i} u) dx, \tag{4.59}$$

则

$$\begin{split} \int_{B_R(0)} \sum_{i,j=1}^n \xi^2 a_{ij} u_{x_j} u_{x_i} dx &= -2 \int_{B_R(0)} \sum_{i,j=1}^n \xi \xi_{x_i} a_{ij} u u_{x_j} dx, \\ &\leq \frac{\theta}{2} \int_{B_R(0)} \xi^2 |Du|^2 dx + C \int_{B_R(0)} u^2 |D\xi|^2 dx. \end{split}$$

由一致椭圆性条件可得

$$\int_{B_R(0)} \sum_{i,j=1}^n \xi^2 a_{ij} u_{x_i} u_{x_j} dx \ge \theta \int_{B_R(0)} \xi^2 |Du|^2 dx, \tag{4.60}$$

所以

$$\int_{B_{R}(0)} \frac{\theta}{2} \xi^{2} |Du|^{2} dx \le C \int_{B_{R}(0)} u^{2} |D\xi|^{2} dx \le \frac{C}{R^{2}} \int_{B_{R}(0)} u^{2} dx, \tag{4.61}$$

即

$$\int_{B_{\frac{R}{2}}(0)} |\nabla u|^2 dx \le \frac{C}{R^2} \int_{B_R(0)} u^2 dx. \tag{4.62}$$

Corollary 4.1. 若 $u \in C^1(B_1(0))$ 满足 $\forall \varphi \in C^1_0(B_1(0))$, $\int_{B_1(0)} a_{ij} u_{x_i} \varphi_{x_j} dx = 0$, 则对于 $0 < R \le 1$, 有

$$\int_{B_{\frac{R}{\lambda}}(0)} u^2 dx \le \theta \int_{B_R(0)} u^2 dx, \tag{4.63}$$

其中 $\theta = \theta(n, a_{ij}) \in (0, 1)$ 。

证明.

$$\int_{B_{R}(0)} |D(\xi u)|^{2} dx \leq 2 \int_{B_{R}(0)} [u^{2}|D\xi|^{2} + \xi^{2}|Du|^{2}] dx
\leq C \int_{B_{R}(0)} u^{2}|D\xi|^{2} dx \leq \frac{C}{R^{2}} \int_{B_{R}(0)\setminus B_{\frac{R}{2}}} u^{2} dx.$$
(4.64)

第二个不等号是利用上面的(4.61)得到。再利用庞加莱不等式

$$\int_{B_R(0)} |\xi u|^2 dx \le CR^2 \int_{B_R(0)} |D(\xi u)|^2 dx \tag{4.65}$$

则

$$\int_{B_{\frac{R}{2}}(0)} |u|^2 dx \le C_0 \int_{B_R(0) \setminus B_{\frac{R}{2}}(0)} |u|^2 dx, \tag{4.66}$$

两边同时加 $C_0 \int_{B_{\frac{R}{2}}} |u|^2 dx$,则有

$$\int_{B_{\frac{R}{2}}(0)} u^2 dx \le \frac{C_0}{1 + C_0} \int_{B_R(0)} u^2 dx. \tag{4.67}$$

5 对称算子和 Hilbert-Schmidt 定理

Definition 5.1. 设 $A \in \mathcal{L}(H)$, 称它是对称的, 如果 (Ax,y) = (x,Ay), $\forall x,y \in H$.

Remark 5.1. 由于 $(Ax, y) = (x, A^*y)$, 所以也称 A 是自共轭算子。

Property 5.1. H 上的对称算子具有下面的性质

- (1), A 是对称的当且仅当 $(Ax,x) \in \mathbb{R}^1, (\forall x \in H)$ 。
- (2), 若 A 是对称的, $\lambda, \lambda' \in \sigma_p(A), \lambda \neq \lambda'$, 则

$$N(\lambda I - A) \perp N(\lambda' I - A). \tag{5.1}$$

(3), 若 A 对称, 则 $\sigma(A) \subset \mathbb{R}^1$, 且

$$||(\lambda I - A)^{-1}x|| \le \frac{1}{|Im\lambda|}||x||, \quad \forall x \in H, \lambda \in \mathbb{C}, Im\lambda \ne 0.$$

$$(5.2)$$

证明. (1),令 a(x,y)=(Ax,y), $\forall x,y\in H$ 。则 $a(\cdot,\cdot)$ 为 H 上的共轭双线性函数,则 (Ax,x) 为 $a(\cdot,\cdot)$ 诱导的二次型,则有命题 1.6.2 可得, $(Ax,x)\in\mathbb{R}^1\Leftrightarrow (Ax,y)=\overline{(Ay,x)}$ 。由内积的定义,(Ay,x)=(x,Ay),则有 (Ax,y)=(x,Ay),即 A 是对称算子。

(2), 若 $x \in N(\lambda I - A), x' \in N(\lambda' I - A)$, 则有

$$\lambda(x, x') = (Ax, x') = (x, Ax') = \lambda'(x, x'), \tag{5.3}$$

由于 $\lambda \neq \lambda'$, 所以 (x, x') = 0。

(3), 设 $\lambda = \mu + \nu, \nu \neq 0$, 由对称性

$$||(\lambda I - A)x||^2 = ||(\mu I - A)x||^2 + |\nu|||x||^2 \le |\nu|||x||^2, \tag{5.4}$$

再由
$$R(\lambda I - A)^{\perp} = N(\overline{\lambda}I - A^*) = N(\overline{\lambda}I - A) = \{\theta\}$$
. 因此 $R(\lambda I - A) = H$ 。 所以 $\sigma(A) \subset \mathbb{R}^1$ 。

下面令 $S: H \to H$ 为线性有界对称算子。记 $m = \inf_{||u||=1} (Su, u), M = \sup_{||u||=1} (Su, u).$

Lemma 5.1. *(*谱的有界性*)*

$$(1), \sigma(S) \subset [m, M].$$

$$(2), m, M \in \sigma(S).$$

证明. (1), 若 $\eta > M$, 则

$$(\eta u - Su, u) \ge (\eta - M)||u||^2$$
 (5.5)

又因为

$$|(\eta u - Su, v)| \le ||\eta I - S|| ||u|| ||v||, \quad \forall u, v \in H.$$
(5.6)

表明 Lax-Milgram 定理的限制性条件和有界性条件都成立,所以 $\eta I-S$ 是 1-1 的,即 $\eta \in \rho(S)$ 。同理可以说明 $\eta \in \rho(S)$ 如果 $\eta < m$ 。

(2), Step 1, 定义一个对称双线性型 [u, v] := (Mu - Su, v)。则有

$$[u, u] = (Mu - Su, u) \ge 0$$
 (5.7)

再利用 Cauchy 不等式可得

$$|(Mu - Su, v)| \le (Mu - Su, u)^{\frac{1}{2}} (Mv - Sv, v)^{\frac{1}{2}}, \tag{5.8}$$

因此

$$||Mu - Su|| = \sup_{||v||=1} |(Mu - Su, v)| \le C(Mu - Su, u)^{\frac{1}{2}},$$
(5.9)

 $Step\ 2$,由 $M=\sup_{||u||=1}(Su,u)$,取 $\{u_k\}_{k=1}^n\subset H$,满足 $||u_k||=1,(k=1,\cdots,n)$ 且 $(Su_k,u_k)\to M$ 。由(5.9)可知 $||Mu_k-Su_k||\to 0$,假设 M 是正则值,则 $u_k=(MI-S)^{-1}(Mu_k-Su_k)\to 0 (k\to\infty)$,表明矛盾。所以 $M\in\sigma(S)$ 。

Theorem 5.1. (紧对称算子的特征值)

若 H 为可分的 Hilbert 空间, $S:H\to H$ 为紧的对称算子,则存在 H 的可数正交基,且由 S 的特征向量组成。

证明. **Step 1**,令 $\{\eta_k\}$ 为 S 不同的特征值,则 $\eta_k \neq \eta_l, (k \neq l)$ 。令 $\eta_0 = 0$,记 $H_0 = N(S)$, $H_k = N(S - \eta_k I)$, $(k = 1, 2, \cdots)$ 。由 Fredholm 二择一定理知: $0 \leq dim H_0 \leq \infty$, $0 < dim H_k < \infty$ 。

Step 2, 由命题 4.4.5, (4) 知 H_k 与 H_l 正交, 当 $k \neq l$ 。

Step 3, $\Leftrightarrow \widetilde{H} = \{\sum_{k=0}^{n} a_k u_k : m \in \{0, 1, \dots\}, u_k \in H_k, a_k \in \mathbb{R}\}$ $\Leftrightarrow H_k \subset \widetilde{H}, \forall k \in \mathbb{N}$ \Leftrightarrow

 $Claim: \widetilde{H} \times H$ 是稠密的。

显然 $S(\widetilde{H}) \subset \widetilde{H}$,且 $S(\widetilde{H}^{\perp}) \subset \widetilde{H}^{\perp}$ 以及 $\forall u \in \widetilde{H}^{\perp}, v \in \widetilde{H}$,(Su,v) = (u,Sv) = 0。记 $\widetilde{S} = S|_{\widetilde{H}^{\perp}}$,则 \widetilde{S} 是紧 对称算子,而且 $\sigma(\widetilde{S}) = \{0\}$ 。再由前面的 Lemma 5.1可知, $\forall u \in \widetilde{H}^{\perp}$, $(\widetilde{S}u,u) = 0$ 。对于 $\forall u,v \in \widetilde{H}^{\perp}$,

$$2(\widetilde{S}u,v) = (\widetilde{S}(u+v), u+v) - (\widetilde{S}u,u) - (\widetilde{S}v,v) = 0,$$

$$(5.10)$$

表明 $\widetilde{S}=0$ 。因此 $\widetilde{H}^{\perp}\subset N(S)\subset \widetilde{H}$,故 $\widetilde{H}=\{0\}$,即 \widetilde{H} 在 H 中稠密。

Step 4, 对于任一 $H_k(k=0,1,\cdots)$, 取 H_k 的正交规范集,则可以得到由特征向量组成的正交规范集。 \square

Example 5.1. 对于 $H = L^2(U)$, 方程 $\Delta u = f \in L^2(U)$, 令 $S = (-\Delta)^{-1}$ 。若 $u \in N(\frac{1}{\lambda}I - S)$,则 $\frac{1}{\lambda}u - (-\Delta)^{-1}u = 0$ 。即

$$\begin{cases}
-\Delta u = \lambda u & \text{in } U, \\
u|_{\partial U} = 0
\end{cases}$$
(5.11)

而 S 为紧算子,则可以取 $\{\lambda_k\}_{k=1}^{\infty}$ 及与之对应的 $\{u_k\}_{k=1}^{\infty}$ 。则 $\{u_k\}_{k=1}^{\infty}$ 为 $L^2(U)$ 中的正交基。

6 特征值与特征函数

Definition 6.1. 内积空间 $\mathcal X$ 中正交规范集 $S=\{e_{\alpha}|\alpha\in A\}$ 称为一个基。如果 $\forall x\in\mathcal X$ 有 $x=\sum_{\alpha\in A}(x,e_{\alpha})e_{\alpha}$ 。 其中 $\{(e_{\alpha},x)|\alpha\in A\}$ 成为 x 关于基 $\{e_{\alpha}|\alpha\in A\}$ 的 Fourier 系数。

Theorem 6.1. (Bessel 不等式)

设 $S=\{e_{\alpha}|\alpha\in A\}$ 为 Hilbert 空间中的正交规范集,则对于 $\forall x\in H$, $\sum_{\alpha\in A}(x,e_{\alpha})e_{\alpha}\in H$,且

$$||x - \sum_{\alpha \in A} (x, e_{\alpha})e_{\alpha}||^{2} = ||x||^{2} - \sum_{\alpha \in A} |(x, e_{\alpha})|^{2}.$$
(6.1)

Theorem 6.2. (Bessel 不等式)

设 $S=\{e_{\alpha}|\alpha\in A\}$ 为 Hilbert 空间中的正交规范集,则 S 是 H 的一个基 \Leftrightarrow $S^{\perp}=\{\theta\}$ \Leftrightarrow $||x||^2=\sum_{\alpha\in A}|(x,e_{\alpha})|^2$ 。

6.1 对称椭圆算子的特征值

我们考虑 $Lu = -\sum_{i,j=1}^{n} (a_{ij}u_{x_j})_{x_i}, a_{ij} \in C^{\infty}(\overline{U}), (i,j=1,\cdots,n), a_{ij} = a_{ji}$ 。满足一致椭圆条件。双线性 形式 $B[u,v] = B[v,u], \forall u,v \in H^1_0(U)$,另外假设 U 是连通区域。

Theorem 6.3. (对称椭圆算子的特征值)

- (1), L 的特征值是实数。
- (2), 若特征值按重数计算, $\Sigma = \{\lambda_k\}_{k=1}^{\infty}$, 其中 $0 < \lambda_1 \le \lambda_2 \le \lambda_3 \le \cdots$, 且 $\lambda_k \to +\infty$.
- (3), 存在 $L^2(U)$ 中的正交规范基 $\{\omega_k\}_{k=1}^{\infty} \subset L^2(U)$, ω_k 是对应于 λ_k 的特征函数,满足

$$\begin{cases}
-L\omega_k = \lambda_k \omega_k & \text{in } U, \\
\omega_k|_{\partial U} = 0.
\end{cases}$$
(6.2)

由正则性理论知, $\omega_k \in C^\infty(U)$ 。若 $\partial U \in C^\infty$ 可以得到 $\omega_k \in C^\infty(\overline{U})$ 。

证明. 记 $S:=L^{-1}:L^2(U)\to L^2(U)$ (这里应该先说明一下 Lu=0 只有零解),则 S 为有界线性算子。 Claim :S 是对称算子。

取 $f,g \in L^2(U)$, 则 Sf = u。 可知 $u \in H^1_0(U)$ 为方程

$$\begin{cases} Lu = f & in \ U, \\ u|_{\partial U} = 0. \end{cases}$$
 (6.3)

的弱解, 因此

$$(Sf,g) = (u,g) = (u Lv) = B[v,u],$$

 $(f,Sg) = (f,v) = (Lu,v) = B[u,v].$

利用 B[u,v] = B[v,u] 有 (Sf,g) = (f,Sg)。故 S 为对称算子。

Claim: S 为紧算子。

对于 $f \in L^2(U)$, $u = L^{-1}f = Sf$ 。方程两端同时乘上 u, 有 $\int_U Lu \cdot u dx = \int_U f \cdot u dx$ 。而另外

$$\int_{U} Lu \cdot u dx = -\int_{U} \sum_{i,j=1}^{n} (a_{ij} u_{x_{i}})_{x_{j}} u dx = \int_{U} \sum_{i,j=1}^{n} a_{ij} u_{x_{i}} u_{x_{j}} dx \ge \theta \int_{U} |Du|^{2} dx,$$

$$\int_{U} f \cdot u dx \le ||f||_{L^{2}(U)} ||u||_{L^{2}(U)} \le C||f||_{L^{2}} ||Du||_{L^{2}} \le \frac{\theta}{2} \int_{U} |Du|^{2} dx + C \int U|f|^{2} dx. \tag{6.4}$$

(6.4)中第一个不等号是利用 Hölder 不等式,第二个不等号是利用 Poincaré 不等式,最后一个不等号是 Cauchy 不等式。

那么则有

$$||Du||_{L^2(U)} \le C||f||_{L^2(U)},\tag{6.5}$$

因此

$$||u||_{H_0^1(U)} \le C||f||_{L^2(U)}. (6.6)$$

利用 Rellich-Kondrachov 紧性定理, $H_0^1(U) \subset\subset L^2(U)$, 表明 $S: L^2(U) \to L^2(U)$ 为紧算子。

对于 $\forall f \in L^2(U)$, 有

$$(Sf, f) = (u, f) = B[u, u] = \int_{U} \sum_{i,j=1}^{n} a_{ij} u_{x_i} u_{x_j} dx \ge \theta ||Du||_{L^2(U)}^2.$$

$$(6.7)$$

由前面的 Lemma 可知 S 的特征值都是正实数,且可以取与之对应的特征函数组成 $L^2(U)$ 的正交规范基。而对于 S 的特征值 η_k 和对应的特征函数 ω_k ,有 $S\omega_k = \eta_k\omega_k$ 。取 $\frac{1}{\eta_k} = \lambda_k$,则 $L\omega_k = \lambda_k\omega_k$ 。由此得到结论。

Theorem 6.4. (Weyl Law)

考虑方程

$$\begin{cases} \Delta u + \lambda u = 0 & in U, \\ u|_{\partial U} = 0. \end{cases}$$
 (6.8)

其中U是光滑有界开集,则有

$$\lim_{k \to \infty} \frac{\lambda_k^{\frac{n}{2}}}{k} = \frac{(2\pi)^n}{|U|\alpha(n)},\tag{6.9}$$

 $\alpha(n)$ 表示的是 n 维单位球的体积。另外我们称 λ_1 为 L 的主特征值。

Theorem 6.5. (主特征的变分刻画)

- (1), $\lambda_1 = \min\{B[u,u]|u \in H_0^1(U), ||u||_{L^2(U)} = 1\}$.
- (2), λ_1 对应的特征函数 ω_1 满足 $\omega_1 > 0$ in U, 且满足

$$\begin{cases} L\omega_1 = \lambda_1 \omega_1 & in \ U, \\ \omega_1|_{\partial U} = 0. \end{cases}$$
 (6.10)

(3), 若 $u \in H_0^1(U)$ 为方程

$$\begin{cases}
Lu = \lambda_1 u & \text{in } U, \\
u|_{\partial U} = 0.
\end{cases}$$
(6.11)

在 U 中的弱解,则 u 是 ω 的倍数。

分析:已有 $H^1_0(U)$ 上的内积 $(u,v)_{H^1_0(U)}=\int_U(Du\cdot Dv+u\cdot v)dx$,诱导的范数为 $||u||_{H^1_0(U)}=(\int_U|Du|^2+u^2dx)^{\frac{1}{2}}$ 。另外利用庞加莱不等式,也可以引进内积: $(u,v)=\int_UDu\cdot Dvdx$ 或者 $(u,v)=\int_U\sum_{i,j=1}^na_{ij}u_{x_i}v_{x_j}dx$ 。它们诱导的范数同原来的范数是等价的。

证明. Step 1, $\forall k, l = 1, 2, \cdots, k \neq l$, 有

$$B[\omega_k, \omega_k] = \lambda_k ||\omega_k||_{L^2(U)}^2 = \lambda_k, \tag{6.12}$$

而且

$$B[\omega_k, \omega_l] = \lambda_k(w_k, \omega_l) = 0. \tag{6.13}$$

Step 2, 己知 $\{\omega_k\}_{k=1}^{\infty}$ 为 $L^2(U)$ 的正交规范基,则 $\forall u \in H^1_0(U), ||u||_{L^2(U)} = 1$,由 Theorem 1,可得 $u = \sum_{k=1}^{\infty} d_k \omega_k, d_k = (u, \omega_k)_{L^2(U)}$,而且 $\sum_{k=1}^{\infty} d_k^2 = ||u||_{L^2(U)}^2 = 1$ 。

Step 3,由 Step 1 知 $\{\frac{\omega_k}{\lambda_k^{\frac{1}{2}}}\}$ 为 $H_0^1(U)$ 的正交规范集,这里 $H_0^1(U)$ 的范数为内积 $B[\cdot,\cdot]$ 诱导的范数, $B[u,v] = \int_U \sum_{i=1}^n a_{ij} u_{x_i} u_{x_j} dx \circ$

Claim : $\{\frac{\omega_k}{\lambda_k^{\frac{1}{2}}}\}$ 为 $H^1_0(U)$ 的基。等价于只需表明 $(\{\frac{\omega_k}{\lambda_k^{\frac{1}{2}}}\}_{k=1}^{\infty})^{\perp} = \{\theta\}$ 。

 $\forall u \in H_0^1(U)$,若 $B[\omega_k, u] = \lambda_k(\omega_k, u)_{L^2} = 0$ 。 因此 $(\omega_k, u)_{L^2(U)} = 0$ 。 而 $\{\omega_k\}_{k=1}^{\infty}$ 为 $L^2(U)$ 的一组基,故 $u \equiv 0$ 。

Step 4, 由 Step 1 和 Step 2 可以得到

$$B[u, u] = \sum_{k=1}^{n} d_k^2 \lambda_k \le \lambda_1, \quad \forall u \in H_0^1(U), \ ||u||_{L^2(U)} = 1.$$

$$(6.14)$$

取 $u = \omega_1$,可得 $B[\omega_1, \omega_1] = \lambda_1$,则

$$\lambda_1 = \min\{B[u, u] | u \in H_0^1(U), ||u||_{L^2(U)} = 1\}. \tag{6.15}$$

Step 5, Claim: 若 $u \in H_0^1(U)$ 且 $||u||_{L^2(U)} = 1$ 。则 u 是方程

$$\begin{cases} Lu = \lambda_1 u & in \ U, \\ u|_{\partial U} = 0. \end{cases}$$
 (6.16)

的弱解, 当且仅当 $B[u,u] = \lambda_1$ 。

先证明 ⇒, 因为

$$B[u, u] = (Lu, u)_{L^2(U)} = \lambda_1 ||u||_{L^2(U)}^2 = \lambda_1.$$
(6.17)

再证明 \leftarrow ,利用 Step 2,可知

$$\sum_{k=1}^{\infty} d_k^2 \lambda_1 = \lambda_1 = B[u, u] = \sum_{k=1}^{k} d_k^2 \lambda_k, \tag{6.18}$$

则 $\sum_{k=1}^{n} (\lambda_k - \lambda_1) d_k^2 = 0$ 。若 $\lambda_k > \lambda_1$,则有 $d_k = (u, \omega_k)_{L^2(U)} = 0$ 。又因为 λ_1 的重根是有限的,则 $u = \sum_{k=1}^{n} (u, \omega_k)_{L^2(U)} \omega_k$,且 $L\omega_k = \lambda_1 \omega_k$ 。因此

$$Lu = \sum_{k=1}^{m} (u, \omega_k)_{L^2(U)} L\omega_k = \lambda_1 u.$$
 (6.19)

Step 6, Claim: 若 $u \in H_0^1(U)$ 为方程

$$\begin{cases} Lu = \lambda_1 u & in \ U, \\ u|_{\partial U} = 0. \end{cases}$$
 (6.20)

如果 $u \neq 0$, 则 u 在 U 内不变号。即 u > 0 或者 u < 0 在 U 内。

不失一般性,我们设 $||u||_{L^2(U)}=1$,记 $\alpha=\int_U(u^+)^2dx$, $\beta=\int_U(u^-)^2dx$ 。若 $u\in H^1_0(U)$,则

$$Du^{+} = \begin{cases} Du & ae. \ on \ \{u \ge 0\} \\ 0 & ae. \ on \ \{u \le 0\} \end{cases}$$

和

$$Du^{-} = \begin{cases} -Du & ae. \ on \ \{u \le 0\} \\ 0 & ae. \ on \ \{u \ge 0\} \end{cases}$$

所以 $B[u^+, u^-] = 0$,则

$$\lambda_1 = B[u, u] = B[u^+, u^+] + B[u^-, u^-] \ge \lambda_1 ||u^+||_{L^2(U)}^2 + \lambda_1 ||u^-||_{L^2(U)}^2 = \lambda_1, \tag{6.21}$$

上式成立必须有 $B[u^a, u^a] = \lambda_1 ||u^a||_{L^2(U)}^2$, $a \in \{+, -\}$ 。故 u^+, u^- 均为方程

$$\begin{cases} Lu = \lambda_1 u & \text{in } U, \\ u|_{\partial U} = 0. \end{cases}$$
 (6.22)

的弱解。

Step 7,由于系数 $a_{ij} \in C^{\infty}$,则 $u^{+} \in C^{\infty}(U)$,而且 $Lu^{+} = \lambda_{1}u^{+} \geq 0$ in U。由强极值原理可得, $u^{+} > 0$ in U,或者 $u^{+} \equiv 0$ 。因此 $u^{-} \equiv 0$ 或者 $u^{-} > 0$ in U。

Step 8, (唯一性)

假设 u, \widetilde{u} 为方程的弱解,利用 Step~6 和 Step~7 知 $\int_U \widetilde{u} dx \geq 0$,则存在常数 \mathcal{X} 使得 $\int_U (u - \mathcal{X}\widetilde{u}) dx = 0$ 。 而 $u - \mathcal{X}\widetilde{u}$ 为方程的弱解,所以 $u - \mathcal{X}\widetilde{u} \equiv 0$,即 $u = \mathcal{X}\widetilde{u}$ 。

6.2 非对称椭圆算子的特征值

对于 $Lu=-\sum\limits_{i,j=1}^na_{ij}u_{x_ix_j}+\sum\limits_{i=1}^nb_iu_{x_i}+cu,\ a_{ij},b_i,c\in C^\infty(\overline{U})$,U 为有界区域,而且 $\partial U\in C^\infty$ 。另外 $a_{ij}=a_{ji},\ c\geq 0$ in U。

Theorem 6.6. (非对称椭圆算子的主特征值)

- (1), 存在 L 的实特征值 $\lambda_1 > 0$, 且对于其他特征值 $\lambda \in \mathbb{C}$, 有 $Re(\lambda) > \lambda_1$ 。
- (2), 存在与 λ_1 对应的特征函数 ω_1 , 且 $\omega_1 > 0$ in U。
- (3), λ_1 的重数为 1, 即 u 为方程的弱解, 那么 u 是 ω_1 的倍数。

7 弱解的有界估计

我们现在常接触的解空间主要有经典解空间 $C^{k,\alpha}(U)$ 与弱解空间 $W^{1,2}(U)$ 。以前做经典解的有界估计一般采用弱极大值原理,比如运用比较定理然后找合适的闸函数。现在考虑方程

$$\begin{cases}
-\sum_{i,j=1}^{n} (a_{ij}u_{x_j})_{x_i} = f & \text{in } U, \\
u|_{\partial U} = 0.
\end{cases}$$
(7.1)

弱解 $u \in W_0^{1,2}$ 的有界估计。这种情况下,因为没办法求导,所以不宜用弱极大值原理,只能选择用积分的办法。经验上通常会采取于方程两边乘以"合适的量",再进行积分。通常找到合适的 test-function 并不是一件容易的事情。

7.1 moser 迭代

首先, 我们定义 $u \in H_0^1$ 为方程 (1) 的弱上解, 若满足 $\forall \varphi \in H_0^1(U)$ 且 $\varphi \geq 0$,

$$\int_{U} \sum_{i,j=1}^{n} a_{ij} u_{x_j} \varphi_{x_i} dx \ge 0, \tag{7.2}$$

同样地, 我们定义 $u \in H_0^1$ 为方程 (1) 的弱下解, 若满足 $\forall \varphi \in H_0^1(U)$ 且 $\varphi \geq 0$,

$$\int_{U} \sum_{i,j=1}^{n} a_{ij} u_{x_j} \varphi_{x_i} dx \le 0, \tag{7.3}$$

Lemma 7.1. 假设 $\Phi(s) \in C^{0,1}_{loc}(R)$ 为凸函数 (1) 若 u 为方程的弱下解, $\Phi'(s) \geq 0$ 则 $v = \Phi(u)$ 也是方程的弱下解。(2) 若 u 为方程的弱下解, $\Phi'(s) \leq 0$ 则 $v = \Phi(u)$ 也是方程的弱上解。

证明. **Step 1**, 先考虑 $\Phi(s) \in C^2_{loc}(R)$, $\Phi'(s) \geq 0$, $\Phi''(s) \geq 0$ 现证对 $v = \Phi(u)$,

$$\forall \varphi \in C_0^{\infty}(U), \varphi \ge 0 \int_U a^{ij} v_i \varphi_j dx \le 0$$
 (7.4)

$$\int_{U} a^{ij} v_i \varphi_j dx = \int_{U} a^{ij} \Phi'(u) u_i \varphi_j dx = \int_{U} \left[a^{ij} (\Phi'(u))_j u_i - \Phi''(u) a^{ij} u_i u_j \varphi \right] dx \le 0$$

$$(7.5)$$

Step 2, 若 $\Phi(s) \in C^{0,1}_{loc}(R)$, $\Phi'(s) \ge 0$, 为凸函数。

记 $v_{\epsilon}=\Phi^{\epsilon}(u)$,从而 v_{ϵ} 为方程(1)的弱下解,所以 $v_{\epsilon}\in H^{1,2}_{0}(U)$

从而 $D_i(v_\epsilon) \in L^2_{loc}(U)$ 。于是 $D_i(v_\epsilon) \longrightarrow D_i v$ a.e. 且 $\|v_\epsilon\|_{L^1(U)} \le \|v\|_{L^1(U)}$

又由
$$\int_U a^{ij}(v_\epsilon)_i \varphi_j dx \leq 0$$
,用控制收敛定理,令 $\epsilon \longrightarrow 0$ 有 $\int_U a^{ij} v_i \varphi_j dx \leq 0$

Lemma 7.2. $||v||_{L^{\infty}(U)} = \lim_{p \to \infty} ||v||_{L^{p}(U)}$

Theorem 7.1. 设 $u \in W^{1,2}(U)$ 为其有界弱下解,则有

$$\sup_{B_{\theta r}(0)} u \le C \left(\int_{B_R} (u^+)^p dx \right)^{\frac{1}{p}} \tag{7.6}$$

 $\forall p > 0, 0 < \theta < 1$, $B_R(0) \subset U$, $C \sim n, \frac{\Lambda}{\lambda}, p, \frac{1}{1-\theta}$

证明. **Step 1**, $p \geq 2$, 由引理 $v^+ \in H^1(U)$ 为有界非负弱下解,所以不妨设 $v \geq 0$, $\forall \varphi \in W_0^{1,2}(U)$, $\varphi \geq 0$, 有 $\int_U a^{ij} v_i \varphi_j dx \leq 0$ $\xi \in C_0^{\infty}(B_R(0))$, $\diamondsuit \varphi = \xi^2 v^{p-1}$, 有

$$\int_{U} a^{ij} v_i (\xi^2 v^{p-1})_j dx \le 0 \tag{7.7}$$

即

$$(p-1)\int_{U} \xi^{2} a^{ij} v^{p-2} v_{i} v_{j} dx \le (-2)\int_{U} a^{ij} \xi \xi_{j} v^{p-1} v_{i} dx$$
 (7.8)

$$left \ge \lambda(p-1) \int_{U} \xi^{2} v^{p-2} |Dv|^{2} dx \tag{7.9}$$

$$right \le 2\Lambda \int_{U} v^{p-1} \xi |Du| |D\xi| dx \le 2\Lambda \left(\int_{U} v^{p-2} \xi^{2} |Dv|^{2} dx \right)^{\frac{1}{2}} \left(\int_{U} v^{p} |D\xi|^{2} dx \right)^{\frac{1}{2}}$$
 (7.10)

得到

$$\lambda(p-1)(\int_{U} \xi^{2} v^{p-2} |Dv|^{2} dx)^{\frac{1}{2}} \le 2\Lambda(\int_{U} v^{p} |D\xi|^{2} dx)^{\frac{1}{2}}$$
(7.11)

即

$$\int_{U} \xi^{2} v^{p-2} |Dv|^{2} dx \le \frac{4\Lambda^{2}}{(p-1)^{2} \lambda^{2}} \int_{U} v^{p} |D\xi|^{2} dx \tag{7.12}$$

用待定系数法调整两边系数,令

$$v^{p-2}|Dv|^2 = |Dv^a|^2|^2 = a^2v^{2a-2}|Dv|^2$$
(7.13)

对比系数 2a-2=p-2 得到 $a=\frac{p}{2}$ 可得

$$v^{p-2}|Dv|^2 = \frac{4}{p^2}|Dv^{\frac{p}{2}}|^2 \tag{7.14}$$

代入 (1) 式,得到

$$\int_{U} \xi^{2} |Dv^{\frac{p}{2}}|^{2} dx \le \frac{p^{2} \Lambda^{2}}{(p-1)^{2} \lambda^{2}} \int_{U} |D\xi|^{2} v^{p} dx \tag{7.15}$$

记作(1)式。

Step 2, 由 Sobolev 不等式

$$\left(\int_{B_R} \left(\xi v^{\frac{p}{2}}\right)^{\frac{2n}{n-2}}\right)^{\frac{n-2}{2n}} \le C_n \left(\int_{B_R} \left|D(\xi v^{\frac{p}{2}})\right|^2 dx\right)^{\frac{1}{2}} \tag{7.16}$$

$$\left(\int_{B_{\mathcal{P}}} \left(\xi v^{\frac{p}{2}}\right)^{\frac{2n}{n-2}}\right)^{\frac{n-2}{n}} \le C_n \int_{B_{\mathcal{P}}} \left|D(\xi v^{\frac{p}{2}})\right|^2 dx \tag{7.17}$$

即又因为

$$\left| D(\xi v^{\frac{p}{2}}) \right|^2 = (D\xi v^{\frac{p}{2}} + \xi D v^{\frac{p}{2}})^2 \le 2\xi^2 |Dv^{\frac{p}{2}}|^2 + 2v^p |D\xi|^2$$
(7.18)

结合(1)式,我们最终得到

$$\left(\int_{B_R} \left(\xi v^{\frac{p}{2}}\right)^{\frac{2n}{n-2}} dx\right)^{\frac{n-2}{n}} \le C_n \int_{B_R} \xi^2 |Dv^{\frac{p}{2}}|^2 dx \le \frac{C_n p^2 \Lambda^2}{(p-1)^2 \lambda^2} \int_U |D\xi|^2 v^p dx \tag{7.19}$$

也即

$$\left(\int_{B_{R}} \left(\xi v^{\frac{p}{2}}\right)^{\frac{2n}{n-2}} dx\right)^{\frac{n-2}{n}} \le C \int_{U} |D\xi|^{2} v^{p} dx \tag{7.20}$$

其中 $C \sim n, \frac{\Lambda}{\lambda}, p$, 记作 (2) 式。

Step 3, 令 $R_k = R(\theta + \frac{1-\theta}{2^k}), k = 0, 1, 2, \cdots$,取 $\xi_k \in C_0^{\infty}(B_{R_k}), \xi_k \equiv 1$ in $B_{R_{k+1}}$ 且 $|D\xi_k|^2 \leq \frac{C}{(R_k - R_{k-1})^2} = \frac{C4^{k+1}}{R^2(1-\theta)^2}, C \sim n$ $p_k = (\frac{n}{n-2})^k p$ k=0 时,由(2)式

$$\left(\int_{B_{R_1}} \left(v^{\frac{p}{2}}\right)^{\frac{2n}{n-2}} dx\right)^{\frac{n-2}{n}} = \left(\int_{B_{R_0}} \left(\xi v^{\frac{p}{2}}\right)^{\frac{2n}{n-2}} dx\right)^{\frac{n-2}{n}} \le C \int_{B_{R_0}} |D\xi|^2 v^p dx \le \frac{4C}{R^2 (1-\theta)^2} \int_{B_{R_0}} v^p dx \ (7.21)^{\frac{n-2}{n-2}} dx$$

两边开 P_0 次方,得到

$$\left(\int_{B_{R_1}} v^{\frac{np}{n-2}} dx\right)^{\frac{n-2}{np}} \le \left(\frac{4C}{R^2(1-\theta)^2}\right)^{\frac{1}{p}} \left(\int_{B_{R_0}} v^p dx\right)^{\frac{1}{p}} \tag{7.22}$$

即

$$||v||_{L^{p_1}(B_{R_1})} \le \left(\frac{4C}{R^2(1-\theta)^2}\right)^{\frac{1}{p}} ||v||_{L^p(B_R)}$$
(7.23)

同理,

$$\left(\int_{B_{R_{k+1}}} v^{\frac{np_k}{n-2}} dx\right)^{\frac{n-2}{n}} = \left(\int_{B_{R_k}} v^{\frac{np_k}{n-2}} dx\right)^{\frac{n-2}{n}} \le \frac{C4^{k+1}}{R^2(1-\theta)^2} \int_{B_{R_k}} v^{p_k} dx \tag{7.24}$$

两边开 P_k 次方,得到

$$\left(\int_{B_{R_{k+1}}} v^{\frac{np_k}{n-2}} dx\right)^{\frac{n-2}{np_k}} \le \left(\frac{C4^{k+1}}{R^2(1-\theta)^2}\right)^{\frac{1}{p_k}} \left(\int_{B_{R_k}} v^{p_k} dx\right)^{\frac{1}{p}} \tag{7.25}$$

即

$$||v||_{L^{p_{k+1}}(B_{R_{k+1}})} \le \left(\frac{C4^{k+1}}{R^2(1-\theta)^2}\right)^{\frac{1}{p_k}} ||v||_{L^p(B_{R_k})}$$
(7.26)

最后得

$$||v||_{L^{p_{k+1}}(B_{R_{k+1}})} \le 4^{\sum_{i=0}^{k} \frac{i+1}{p_i}} \left(\frac{C}{R^2(1-\theta)^2}\right)^{\sum_{i=0}^{k} \frac{1}{p_i}} ||v||_{L^p(B_R)}$$
(7.27)

让 $k \longrightarrow \infty$ $,\sum\limits_{i=0}^{\infty} \frac{1}{p_i} = \frac{n}{2p}$ 又由数项级数判别法,可知 $\left\{\frac{i+1}{p_i}\right\} = \left\{(i+1)(\frac{n-2}{n})^i p\right\}$ 收敛。即得

$$||v||_{L^{\infty}(B_{\theta r}(0))} = \lim_{k \to \infty} ||v||_{L^{p_k}(B_{R_k})} \le \lim_{k \to \infty} 4^{\sum_{i=1}^{k-1} \frac{i+1}{p_i}} \left(\frac{C}{R^2(1-\theta)^2}\right)^{\sum_{i=1}^{k-1} \frac{1}{p_i}} ||v||_{L^p(B_R)} = \frac{C}{R^{\frac{n}{p}}} \left(\int_{B_R} v^p dx\right)^{\frac{1}{p}}$$
(7.28)

这里 $C \sim n, \frac{\Lambda}{\lambda}, p, \frac{1}{1-\theta}$ 。

7.2 stampacchia 迭代

Theorem 7.2.

$$\begin{cases}
-\sum_{i,j=1}^{n} (a_{ij}u_{x_j})_{x_i} + a(x)u \leq f_0 + \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_j} & in \ U, \\
u|_{\partial U} \leq 0.
\end{cases}$$
(7.29)

u 为弱下解。 $\lambda I \leq a_{ij} \leq \Lambda I, a_{ij} \in L^\infty(U), n \geq 2U$ 为 \mathbb{R}^n 中有界区域, $0 \leq a(x) \leq \Lambda$ 。 $f_0 \in L^q(U), \frac{1}{q} = \frac{1}{p} + \frac{1}{n}, f_i \in L^p(U), 1 \leq i \leq n, p \geq n \geq 2.$ 我们可以得到结论

$$u^{+} \le C(\|f_0\|_{L^p(U)} + \|f\|_{L^q(U)})|u|^{\frac{1}{n} - \frac{1}{p}}$$

$$(7.30)$$

其中 $C \sim n, \Lambda, \lambda, p, |f| = \sum_{i=1}^{n} f_i^2$

Corollary 7.1. 取 u 为方程

$$-\sum_{i,j=1}^{n} (a_{ij}u_{x_j})_{x_i} + a(x)u = f_0 + \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_j}$$
 (7.31)

弱解, $u \in L^{\infty}(U)$, 且

$$u^{+} \le C(\|f_0\|_{L^p(U)} + \|f\|_{L^q(U)})|u|^{\frac{1}{n} - \frac{1}{p}}$$

$$(7.32)$$

 $C \sim n, \Lambda, \lambda, p$

Lemma 7.3. (迭代引理) $\Phi:[0,+\infty]\longrightarrow R^+$ 非增函数。

$$\Phi(h) \le \left(\frac{c}{h-k}\right)^{\alpha} \Phi(k)^{\beta}, \quad h > k \tag{7.33}$$

 c, α, β 正常数, 如 $\beta > 1, \Phi(d) = 0, d = (\Phi(0))^{\frac{\beta-1}{\alpha}} 2^{\frac{\beta}{\beta-1}}$ 。

证明. $h_n=d-\frac{d}{2^n}, n\in\mathbb{N}$ 于是 $h_{n+1}-h_n=\frac{d}{2^{n+1}}$

$$\Phi(h_{n+1}) \le \left(\frac{c}{h_{n+1} - h_n}\right)^{\alpha} \Phi(h_n)^{\beta}, \quad k = h_n \tag{7.34}$$

即

$$\Phi(h_{n+1}) \le \left(\frac{c}{h_{n+1} - h_n}\right)^{\alpha} \Phi(h_n)^{\beta}, \quad k = h_n$$
(7.35)

$$\leq \left(\frac{c}{d}\right)^{\alpha} 2^{(n+1)\alpha} \Phi(h_n)^{\beta} \tag{7.36}$$

Claim: $\Phi(h_n) \leq \Phi(0)2^{\frac{n\alpha}{1-\beta}}$

证明:用数学归纳法,

n=0 时, $\Phi(0) \leq \Phi(0)2^{\frac{0\alpha}{1-\beta}}$ 假设我们有 $\Phi(h_n) \leq \Phi(0)2^{\frac{n\alpha}{1-\beta}}$,那么 n+1 时,我们有

$$\Phi(h_{n+1}) = \left(\frac{c}{d}\right)^{\alpha} 2^{(n+1)\alpha} \left[\Phi(0) 2^{\frac{n\alpha}{1-\beta}}\right]^{\beta}$$
(7.37)

取

$$d = c\Phi(0)^{\frac{\beta-1}{\alpha}} 2^{\frac{\beta}{\beta-1}} \tag{7.38}$$

即可得到

$$\Phi(h_{n+1}) \le \Phi(0)2^{\frac{(n+1)\alpha}{1-\beta}} \tag{7.39}$$

于是我们有,

$$0 \le \Phi(d) \le \Phi(h_n) \le \Phi(0) 2^{\frac{n\alpha}{1-\beta}} \tag{7.40}$$

$$n \longrightarrow +\infty$$
 时,右边趋于零。即 $\Phi(d) = 0$,其中 $d = c\Phi(0)^{\frac{\beta-1}{\alpha}} 2^{\frac{\beta}{\beta-1}}$

现在证明定理

证明. Step 1,

 \mathbb{R} h > k > 0

$$\Phi(h) = |\{x \in U | u(x) > h\}| \tag{7.41}$$

$$\Phi(k) = |\{x \in U | u(x) > k\}| \tag{7.42}$$

(7.43)

目标:

$$\Phi(h) \le \left[\frac{C_0(\|f_0\|_{L^p(U)} + \|f\|_{L^q(U)})}{h - k} \right]^{p'^*} \Phi(k)^{p'^*(\frac{2}{p'} - 1)}$$

$$(7.44)$$

这里 $p^{'}$ 为 hölder 指数,即 $p^{'}=\frac{p}{p-1}$ p^{*} 为 sobolev 指数,即 $p^{*}=\frac{np}{n-p}$

$$c = C_0 (\|f_0\|_{L^p(U)} + \|f\|_{L^q(U)}), C_0 \sim n, \lambda, \Lambda, p,$$
(7.45)

$$\frac{1}{q} = \frac{1}{p} + \frac{1}{n}, p > n \ge 3,\tag{7.46}$$

$$\alpha = p'^* = \frac{np'}{n-p'} = \frac{np}{np-n-p} > 0,$$
 (7.47)

$$\beta = p'^* (\frac{2}{p'} - 1) = \frac{np - n - n}{np - n - p} > 1, \tag{7.48}$$

$$\frac{\beta - 1}{\alpha} = \frac{p - n}{np} = \frac{1}{n} - \frac{1}{p},$$
 (7.49)

如果一式正确,由引理我们便有 $\Phi(d) = 0, d = (\Phi(0))^{\frac{\beta-1}{\alpha}} 2^{\frac{\beta}{\beta-1}}$ 即 $d = C(\|f_0\|_{L^p(U)} + \|f\|_{L^q(U)})|u|^{\frac{1}{n} - \frac{1}{p}}, C \sim n, \Lambda, \lambda, p$ 则定理得证。

Step 2,

要证一式, 令 $F_k(u) = (u - k)^+$, 因为一式等价于

$$(h-k)\Phi(h)^{\frac{1}{p'*}} \le C_0(\|f_0\|_{L^p(U)} + \|f\|_{L^q(U)})\Phi(k)^{\frac{2}{p'}-1}$$
(7.50)

注意到

$$(h-k)\Phi(h)^{\frac{1}{p'*}} \leq \left(\int_{\{u>h\}} \left\{ (u-k)^+ \right\}^{p'*} dx \right)^{\frac{1}{p'*}}$$

$$\leq \left(\int_{\{u>k\}} \left\{ (u-k)^+ \right\}^{p'*} dx \right)^{\frac{1}{p'*}}$$

$$= \|F_k(u)\|_{p'*} \tag{7.51}$$

所以我们只需证明

$$||F_k(u)||_{p'^*} \le C_0(||f_0||_{L^p(U)} + ||f||_{L^q(U)})\Phi(k)^{\frac{2}{p'}-1}$$
(7.52)

上式记为二式

Step 3,

由 Sobolev 等式

$$C_{n,p} \| F_k(u) \|_{p'^*} \le \| DF_k(u) \|_{p'}$$
 (7.53)

所以我们只需证明

$$||DF_k(u)||_{p'} \le C_0(||f_0||_{L^p(U)} + ||f||_{L^q(U)})\Phi(k)^{\frac{2}{p'}-1}$$
(7.54)

Claim:

$$||DF_k(u)||_2 \le \left(C_0(||f_0||_p + ||f||_q)||DF_k(u)||_{p'}\right)^{\frac{1}{2}}$$
(7.55)

证明:

只需证明

$$||DF_k(u)||_2^2 \le C_0(||f_0||_p + ||f||_q)||DF_k(u)||_{p'}$$
(7.56)

回到方程

$$\begin{cases}
-\sum_{i,j=1}^{n} (a_{ij}u_{x_j})_{x_i} + a(x)u \leq f_0 + \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_j} & in U, \\
u|_{\partial U} \leq 0.
\end{cases}$$
(7.57)

因为 u 为弱下解,取 $F_k = (u - k)^+$ 为 test-function, 得到

$$\int_{U} a_{ij} u_{i} F_{k}(u)_{j} dx + \int_{U} a(x) u F_{k}(u) dx \leq \int_{U} f_{0} F_{k}(u) dx + \int_{U} \frac{\partial f_{i}}{\partial x_{j}} F_{k}(u) dx$$
 (7.58)

$$\underbrace{\int_{U} a_{ij} u_{i} F_{k}(u)_{j} dx}_{a} + \underbrace{\int_{U} a(x) u F_{k}(u) dx}_{b} \leq \underbrace{\int_{U} f_{0} F_{k}(u) dx}_{c} - \underbrace{\int_{U} f_{i} F_{k}(u)_{i} dx}_{d}$$
(7.59)

$$a = \int_{U} a_{ij} u_i F_k(u)_j dx \ge \lambda \int_{U} |DF_k(u)|^2 dx \tag{7.60}$$

$$b = \int_{U} a(x)uF_k(u)dx \ge 0 \tag{7.61}$$

(7.62)

$$c = \int_{U} f_{0}F_{k}(u)dx \leq |\int_{U} f_{0}F_{k}(u)dx|$$

$$\leq ||f_{0}||_{q}||f_{k}(u)||_{q'}$$

$$= ||f_{0}||_{q}||f_{k}(u)||_{p'*}$$

$$\leq C_{0}||f_{0}||_{q}||Df_{k}(u)||_{p'}$$
(7.63)

$$d = \int_{U} f_{i} F_{k}(u)_{i} dx \le \|f_{0}\|_{q} \|Df_{k}(u)\|_{p'}$$
(7.64)

claim 得证。

$$||DF_{k}(u)||_{p'} = \left(\int_{\{u>k\}} |Du|^{p'} dx\right)^{\frac{1}{p'}}$$

$$\leq \left(\left(\int_{\{u>k\}} (|Du|^{p'})^{\frac{2}{p'}} dx\right)^{\frac{p'}{2}} \Phi(k)^{\frac{2-p'}{2}}\right)^{\frac{1}{p'}}$$

$$= \left(\int_{\{u>k\}} |Du|^{2} dx\right)^{\frac{1}{2}} \Phi(k)^{\frac{2-p'}{2p'}}$$

$$\leq \left(C_{0}(||f_{0}||_{p} + ||f||_{q})||DF_{k}(u)||_{p'}\right)^{\frac{1}{2}} \Phi(k)^{\frac{2-p'}{2p'}}$$

$$(7.65)$$

于是得到

$$\left(\|DF_k(u)\|_{p'}\right)^{\frac{1}{2}} \le \left(C_0(\|f_0\|_p + \|f\|_q)\right)^{\frac{1}{2}} \Phi(k)^{\frac{2-p'}{2p'}} \tag{7.66}$$

即

$$||DF_k(u)||_{p'} \le C_0(||f_0||_p + ||f||_q)\Phi(k)^{\frac{2}{p'}-1}$$
(7.67)

8 Faber-Krahn 定理和能量估计

抛物方程和双曲方程解的存在性主要利用半群方法,Schauder 不动点定理,Galerkin 逼近, $u^m(x,t) = \sum_{k=1}^{\infty} d_k^m \omega_k(x)$,用待定系数法,然后再用能量估计说明级数收敛。

8.1 Faber-Krahn 定理

下面叙述的定义和定理可以参见周民强书 189 页。

Definition 8.1. 设 f(x) 在 E 上是可测的,则称 $f_*(\lambda) = m\{x \in E : |f(x)| > \lambda\}$, $\lambda > 0$ 为 f(x) 在 E 上的分布函数。

Theorem 8.1. 设 f(x) 在 E 上是可测的,则对于 $1 \le p < +\infty$,有

$$\int_{E} |f(x)|^{p} dx = p \int_{0}^{+\infty} \lambda^{p-1} f_{*}(\lambda) d\lambda.$$
(8.1)

下面是余面积公式

Theorem 8.2. 若 $u: \mathbb{R}^n \to \mathbb{R}$ 为 Lipschitz 连续函数,且对于几乎处处的 $r \in \mathbb{R}$,水平集 $\{x \in \mathbb{R}^{n-1} | u(x) = r\}$ 是 (n-1) 维的 C^{∞} 超曲面。设 $f: \mathbb{R}^n \to \mathbb{R}$ 是连续可积的,则有

$$\int_{\mathbb{R}^n} f|Du|dx = \int_{-\infty}^{+\infty} \left(\int_{\{u=r\}} fdS\right)dr. \tag{8.2}$$

Corollary 8.1. 取 $u(x) = |x - x_0|, x_0 \in \mathbb{R}^n$, 可以得到 |Du(x)| = 1。那么则有

$$\int_{\mathbb{R}^n} f dx = \int_0^{+\infty} \left(\int_{\partial B(x_0, r)} f dS \right) dr, \tag{8.3}$$

而且

$$\frac{d}{dr}\left(\int_{B(x_0,r)} f dx\right) = \int_{\partial B(x_0,r)} f dS. \tag{8.4}$$

和

$$\frac{d\{x:|f(x)|\geq c\}}{dc}=-\int_{\{f=c\}}\frac{1}{|\nabla f|}d\sigma. \tag{8.5}$$

Remark 8.1. 在余面积公式中, 取 $g = \frac{f}{|Du|}$ 有,

$$\int_{\Omega} g dx = \int_{-\infty}^{+\infty} \left(\int_{\{f=c\}} \frac{g}{|\nabla f|} dS \right) dc. \tag{8.6}$$

取 $\Omega = \{f \ge c\}, g = 1, 则有$

$$|\{f \ge c\}| = \int_0^c \left(\int_{\{f = c\}} \frac{1}{|\nabla f|} ds \right) d\sigma.$$
 (8.7)

Theorem 8.3. (等周不等式) 假设 $\Omega \subset \mathbb{R}^n$ 是有界区域,则存在 C > 0 为独立于区域 Ω 的常数,使得

$$CVol(\Omega)^{\frac{n-1}{n}} \le Vol(\Omega).$$
 (8.8)

Theorem 8.4. (Faber-Krahn 定理)

假设 $\Omega \subset \mathbb{R}^n$ 是有界区域, $|\Omega|=|B_R(0)|$, $B_R(0)$ 是以原点为心,R 为半径的球。则第一特征值 $\lambda_1(B_R(0)) \leq \lambda_1(\Omega)$ 。

证明. 对于 $|\Omega| = |B_R(0)|$, 若 f 满足

$$\begin{cases} \Delta f = -\lambda_1 f & \text{in } U, \\ f|_{\partial U} = 0. \end{cases}$$
 (8.9)

则 f > 0 in Ω 。

引入 $g: B_R(0) \to \mathbb{R}^+$,使得 $Vol(\{f \ge c\}) = Vol(\{g \ge c\})$,称 g 为 f 的重排对称。 $g|_{|x|=R} = 0$ 且 g 为 径向函数。那么利用方程可得

$$\lambda_1 \int_{\Omega} f^2 dx = \int_{\Omega} |\nabla f|^2 dx, \tag{8.10}$$

又因为

$$\int_{\Omega} f^2 dx = \int_0^{+\infty} Vol(\{f^2 \ge c\}) dc = \int_0^{+\infty} Vol(\{g^2 \ge c\}) dc = \int_{B_R(0)} g^2 dx. \tag{8.11}$$

则 g 满足

$$\begin{cases}
\Delta u = -\widetilde{\lambda}_1 g & \text{in } B_R(0), \\
g|_{\partial B_R(0)} = 0.
\end{cases}$$
(8.12)

且 $\widetilde{\lambda_1} = \frac{\int_{B_R(0)|\nabla g|^2 dx}}{\int_{B_R(0)} g^2 dx}$ 。 因此证明 $\widetilde{\lambda_1} \le \lambda_1$,只需证明

$$\int_{B_R(0)} |\nabla g|^2 dx \le \int_{\Omega} |\nabla f|^2 dx. \tag{8.13}$$

因为

$$Vol^{2}(\{g=c\}) = \left(\int_{\{g=c\}} 1d\sigma\right)^{2} = \int_{\{g=c\}} |\nabla g| d\sigma \cdot \int_{\{g=c\}} \frac{1}{|\nabla g|} d\sigma, \tag{8.14}$$

最后一个等号利用 $|\nabla g|_{\{g=c\}} = constant$ 。

$$Vol^{2}(\{f=c\}) = \left(\int_{\{f=c\}} 1d\sigma\right)^{2} \le \left(\int_{\{f=c\}} |\nabla f| dx\right) \left(\int_{\{f=c\}} \frac{1}{|\nabla f|} dx\right). \tag{8.15}$$

再利用上面叙述的等周不等式, 可知

$$Vol(\{f = c\}) \ge Vol(\{g = c\}),$$
 (8.16)

利用余面积公式, $-\frac{d}{dc}Vol(\{f \geq c\}) = \int_{\{f=c\}} \frac{1}{|\nabla f|} d\sigma$, $-\frac{d}{dc}Vol(\{g \geq c\}) = \int_{\{g=c\}} \frac{1}{|\nabla g|} d\sigma$,和 $Vol(\{f \geq c\}) = Vol(\{g \geq c\})$ 得

$$\int_{\{f=c\}} \frac{1}{|\nabla f|} d\sigma = \int_{\{g=c\}} \frac{1}{\nabla g} d\sigma, \tag{8.17}$$

再结合(8.16)可得

$$\int_{\{f=c\}} |\nabla f| d\sigma \ge \int_{\{g=c\}} |\nabla g| d\sigma, \tag{8.18}$$

则有

$$\int_{\Omega} |\nabla f|^2 dx = \int_{0}^{+\infty} \left(\int_{\{f=c\}} |\nabla f| d\sigma \right) dc \ge \int_{0}^{+\infty} \left(\int_{\{g=c\}} |\nabla g| d\sigma \right) dc = \int_{B_R(0)} |\nabla g|^2 dx. \tag{8.19}$$

上式中第一个等号是利用余面积公式得到。

8.2 能量估计

拋物方程得能量估计假设 $U \subset \mathbb{R}^n$ 为有界开集, $\partial U \in C^1, T > 0$,

$$U_T = U \times (0, T], \quad \Gamma_T = \overline{U_T} - U_T,$$

$$C_1^2(U_T) = \{u : U_T \to \mathbb{R} | u, D_x u, D_x^2 u, u_t \in C(U_T) \}.$$

下面叙述 Evans 书 63 页热方程两个定理。

Theorem 8.5. 初边值问题

$$\begin{cases} u_t - \Delta u = f & in \ U_T, \\ u|_{\Gamma_T} = g. \end{cases}$$
 (8.20)

的解存在唯一。

证明,证明唯一性。

若 u_1, u_2 为方程的解,则 $\omega = u_1 - u_2$ 满足方程

$$\begin{cases} \omega_t - \Delta \omega = 0 & in \ U_T, \\ \omega|_{\Gamma_T} = 0. \end{cases}$$
(8.21)

则

$$\frac{1}{2}\frac{d}{dt}\int_{U}\omega^{2}(x,t)dx = \int_{U}\omega\omega_{t}dx = \int_{U}\omega\Delta\omega dx = -\int_{U}|D\omega|^{2}dx \le 0.$$
 (8.22)

所以

$$\int_{U} \omega^{2}(x,t)dx \le \int_{U} \omega^{2}(x,t)dx|_{t=0} = 0,$$
(8.23)

即
$$\omega = 0, \forall t \in [0,1]$$
。

Theorem 8.6. 设 $u, \widetilde{u} \in C^2(\overline{U_T})$ 分别为方程

$$\begin{cases} u_t - \Delta u = 0 & \text{in } U_T, \\ u| = g, & \text{on } \partial U \times [0, T]. \end{cases}$$
(8.24)

和

$$\begin{cases} \widetilde{u}_t - \Delta \widetilde{u} = 0 & in \ U_T, \\ \widetilde{u}| = g, & on \ \partial U \times [0, T]. \end{cases}$$
(8.25)

的解。若 $u(x,T) = \widetilde{u}(x,T), \forall x \in U$,则 $u \equiv \widetilde{u}$ in U_T 。

证明. 记 $\omega = u - \widetilde{u}$, 令 $e(t) = \int_U \omega^2(x,t) dx$, $(0 \le t \le T)$, 则有

$$\begin{split} \frac{d}{dt}e(t) &= 2\int_{U}\omega\omega_{t}dx = 2\int_{U}\omega\Delta\omega dx = -2\int_{U}|D\omega|^{2}dx,\\ \frac{d^{2}}{d^{2}e(t)} &= -4\int_{U}D\omega\cdot D\omega_{t}dx = 4\int_{U}\Delta\omega\omega_{t}dx = 4\int_{U}(\Delta\omega)^{2}dx. \end{split}$$

所以

$$(\dot{e}(t))^2=4(\int_U|D\omega|^2dx)^2=4(\int_U\omega\Delta\omega dx)^2\leq (\int_U\omega^2dx)(4\int_U(\Delta\omega)^2dx)=e(t)\ddot{e}(t),$$

 $\mathbb{P}\left[e(t)\ddot{e}(t) \geq (\dot{e}(t))^2 \quad \forall t \in [0, T]\right]$

反证,假设存在 $[t_1,t_2] \subset [0,T]$ 使得 e(t)>0, $t_1 \leq t < t_2$, $e(t_2)=0$ 。令 $f(t)=\log e(t)$, $t_1 \leq t < t_2$,则 $\ddot{f}(t)=\frac{\ddot{e}(t)}{e(t)}-\frac{\dot{e}(t)}{e^2(t)}\geq 0$ 。因此 f 在 (t_1,t_2) 上是凸函数。则对于 $0<\tau<1$, $t_1< t< t_2$,有

$$f((1-\tau)t_1 + \tau t) \le (1-\tau)f(t_1) + \tau f(t), \tag{8.26}$$

即

$$e((1-\tau)t_1+\tau t) \le e(t_1)^{1-\tau}e(t)^{\tau},$$
(8.27)

再令 $t \to t_2^-$ 可得 $e((1-\tau)t_1+\tau t_2)=0$ 。该式对于任意的 $0<\tau<1$ 均成立,矛盾。所以 $e(t)\equiv 0,\ 0\leq t\leq T$ 。 即 $u\equiv \widetilde{u}$ in U_T 。

Chapter 5

线性发展方程

1 二阶抛物方程

Recall: 数学方程的学习中,解下面的方程

$$\begin{cases} u_t = u_{xx} & x \in [0, 1], \ t \in (0, +\infty), \\ u|_{t=0} = \varphi(x), \\ u|_{x=0} = u|_{x=1} = 0. \end{cases}$$
(1.1)

利用分离变量法, 令 u(x,t) = T(t)X(x), 代入方程可得

$$T'(t)X(x) = T(t)X''(t) \Rightarrow \frac{T'(t)}{T(t)} = \frac{X''(x)}{X(x)} := -\lambda.$$
 (1.2)

对于特征值问题

$$\begin{cases} X''(t) + \lambda X(t) = 0 & x \in [0, 1], \\ X(0) = X(1) = 0. \end{cases}$$
 (1.3)

可以得到 $\lambda_k = (k\pi)^2, k = 1, 2, \cdots$ 和 $X_k(x) = \sin(k\pi x)$ 。带入 $T'(t) = -\lambda_k T(t)$ 可得 $T_k(t) = e^{-(k\pi^2)t}$ 。可得

$$u(x,t) = \sum_{k=0}^{\infty} C_k T_k(t) X_k(x),$$
 (1.4)

其中 C_k 为待定的系数。再利用 $\{X_k(x)\}$ 为正交系,得 $u|_{t=o}\sum_{k=1}^{\infty}C_kX_k(x)=\varphi(x)$,知 $l\in\mathbb{N}$,

$$C_l = 2 \int_0^1 (\sum_{k=0}^\infty C_k X_k(x) X_l(x)) dx = 2 \int_0^2 \varphi(x) X_l(x) dx.$$

另外一个内容就是最大值原理和唯一性定理。

Theorem 1.1. 若 $u \in C_1^2(U_T) \cap C(\overline{U_T})$ 满足 $u_t = u_{xx}$ in U_T , 则 $\max_{\overline{U_T}} u = \max_{\Gamma_T} u$.

Theorem 1.2. 若 $g \in C(\mathbb{R}^n), f \in C(\mathbb{R}^n \times [0,T])$ 。则初值问题

$$\begin{cases} u_t - \Delta u = f & \text{in } \mathbb{R}^n \times (0, T), \\ u| = g, & \text{on } \mathbb{R}^n \times \{t = 0\}. \end{cases}$$
 (1.5)

至多存在唯一解 $u \in C_1^2(\mathbb{R}^n \times (0,T]) \cap (\mathbb{R}^n \times [0,T])$, 满足

$$|u(x,t)| \le Ae^{a|x|^2}, \quad x \in \mathbb{R}^n, \ 0 \le t \le T,$$
 (1.6)

这里 a > 0, A > 0。

下面是 Evans 书 168 页的一个例子。

Example 1.1. 设 $U \subset \mathbb{R}^n$ 为有界开集, $\partial U \in C^{\infty}$ 。考虑初边值问题

$$\begin{cases} u_t - \Delta u = f & \text{in } U \times (0, \infty) \\ u = 0 & \text{on } \partial U \times [0, \infty) \\ u = g & \text{on } U \times \{t = 0\}. \end{cases}$$

$$(1.7)$$

利用分离变量法, 令 $u(x,t) = v(t)\omega(t)$, 代入方程可得

$$v'(t)\omega(x) = v(t)\Delta\omega(x), \Rightarrow \frac{v'(t)}{v(t)} = \frac{\Delta\omega(x)}{\omega(x)} = -\lambda.$$
 (1.8)

由此可得

$$\begin{cases} \Delta\omega + \lambda\omega = 0 & in \ U, \\ \omega = 0 & on \ \partial U. \end{cases}$$
 (1.9)

由 Theorem 6.3可得存在 $\{\lambda_k\}_{k=1}^{\infty}$ 使得上面的方程存在非零解,而且 $\lambda_k \to +\infty (k \to +\infty)$,对应的特征函数为 $\{\omega_k\}_{k=1}^{\infty}$ 为 $L^2(U)$ 的一组基。

带入 $v'(t) = -\lambda v(t)$ 可得 $v(t) = e^{-\lambda_k t}$, 则有

$$u(x,t) = \sum_{k=0}^{\infty} C_k e^{-\lambda_k t} \omega_k(x). \tag{1.10}$$

利用 $\{\omega_k\}_{k=1}^{\infty}$ 为正交系,得 $u|_{t=0}\sum_{k=0}^n C_k\omega_k(x)=g(x)$,所以对于 $\forall l\in\mathbb{N}$,有

$$C_l = \int_0^\infty \left(\sum_{k=0}^\infty C_k \omega_k(x) \omega_l(x) dx = \int_0^\infty g(x) \omega_l(x) dx.\right)$$
(1.11)

1.1 抛物方程弱解的定义

本小节我们给出关于抛物方程弱解的定义。

假设 $U \subset \mathbb{R}^n$ 为有界开集, $U_T = U \times (0,T], T > 0$ 。考虑初边值问题

$$\begin{cases} u_t + Lu = f & in U_T, \\ u = 0 & on \partial U \times [0, T] \\ u = g & on U \times \{t = 0\}. \end{cases}$$

$$(1.12)$$

其中 $f: U_T \to \mathbb{R}, g: U \to \mathbb{R}, u: \overline{U_T} \to \mathbb{R}$ 为未知函数。

散度形式 $Lu = -\sum_{i,j=1}^n (a_{ij}(x,t)u_{x_i})_{x_j} + \sum_{i=1}^n b_i(x,t)u_{x_i} + c(x,t)u$,我们称微分算子 $\frac{\partial}{\partial t} + L$ 为一致抛物的,如果 $\exists \theta > 0$,使得 $\sum_{i,j=1}^n a_{ij}(x,t)\xi_i\xi_j \geq \theta |\xi|^2$, $\forall (x,t) \in U_T, \xi \in \mathbb{R}^n$ 。

我们称 $\sum_{i,j=1}^n a_{ij}(x,t)u_{x_i}u_{x_j}$ 为扩散项, $\sum_{i=1}^n b_iu_{x_i}$ 为漂移项,cu 称为反应项。

假设 $a_{ij}, b_i, c \in L^{\infty}(U_T), (i, j = 1, 2, \dots, n), f \in L^2(U_T), g \in L^2(U), a_{ij} = a_{ji}$ 。 我们可以定义一个双线性形式

$$B[u, v, t] = \int_{U} \sum_{i,j=1}^{n} a_{ij}(\cdot, t) u_{x_i} u_{x_j} + \sum_{i=1}^{n} b_i(\cdot, t) u_{x_i} v + c(\cdot, t) uv dx, \quad u, v \in H_0^1(U), a.e \ 0 \le t \le T.$$
 (1.13)

Motivation: 假设 u(x,t) 是光滑函数, 令

$$u: [0,T] \to H_0^1(U), [u(t)](x) = u(x,t), \quad x \in U, 0 \le t \le T,$$

$$f:[0,T]\to L^2(U), [f(t)](x)=f(x,t), \ x\in U, 0\le t\le T.$$

对于 $\forall v \in H_0^1(U)$, 方程两边同时乘上 v,

$$\int_{U} u_{t}vdt + \int_{U} Luvdx = \int_{U} fvdx, \tag{1.14}$$

分部积分可得

$$\left(\frac{d}{dt}u,v\right) + B[u,v,t] = (f,v), \quad \forall 0 \le t \le T. \tag{1.15}$$

这里利用方程 $u_t = g^0 + \sum_{j=1}^n g_{x_j}^j$ in U_T , 其中 $g^0 = f - \sum_{i=1}^n b_i u_{x_i} - cu$, $g_i = \sum_{i=1}^n a_{ij} u_{x_j}$ 。利用 Evans 书 5.9.1 的 Theorem 1 可知,

$$||u_t||_{H^{-1}(U)} \le \left(\sum_{j=0}^n ||g^j||_{L^2(U)}^2\right)^{\frac{1}{2}} \le C(||u||_{H_0^1(U)} + ||f||_{L^2(U)}). \tag{1.16}$$

Definition 1.1. 称 $u \in L^{2}(0,T;H_{0}^{1}(U)), u' \in L^{2}(0,T;H^{-1}(U))$ 为初边值问题的弱解,如果

$$(1), < u', v > +B[u, v, t] = (f, v), \forall x \in H_0^1(U), a.e \ 0 \le t \le T.$$

$$(1.17)$$

$$(2), \ u(0) = g. \ (u \in L^2(0, T; H_0^1(U)) \Rightarrow u \in C([0, T]; L^2(U))). \tag{1.18}$$

下面我们均将 X 记为实的 Banach 空间。

Definition 1.2.

$$L^{p}(0,T;X) = \{u : [0,T] \to X \mid ||u||_{L^{p}(0,T;X)} = (\int_{0}^{T} ||u||^{p} dt)^{\frac{1}{p}} < \infty\},$$
(1.19)

$$L^{\infty}(0,T;X) = \{u : [0,T] \to X \mid ||u||_{L^{\infty}(0,T;X)} = ess \sup_{0 < t < T} ||u(t)|| < \infty\},$$
(1.20)

$$C([0,T],X) = \{u : [0,T] \to X \mid ||u||_{C(0,T;X)} = \max_{0 \le t \le 1} ||u(t)|| \le \infty\}.$$
 (1.21)

Definition 1.3. (1), 我们称 $s:[0,T]\to X$ 为简单函数, 如果 $s=\sum_{i=1}^m \mathcal{X}_{E_i}u_i,\ 0\leq t\leq T$ 。其中 $E_i\subset [0,T], u_i\in X(i=1,\cdots,m)$ 。

(2),我们称 $f:[0,T]\to X$ 为强可测函数,如果存在简单函数列 $s_k:[0,T]\to X$,使得 $s_k(t)\to f(t),a.e$ $0\le t\le T$ 。

Definition 1.4. (1), 若 $s(t) = \sum_{i=1}^{m} \mathcal{X}_{E_i} u_i$ 是简单函数, 定义:

$$\int_{0}^{T} s(t)dt = \sum_{i=1}^{n} |E_{i}|u_{i}.$$
(1.22)

(2), 称强可测函数 f 是可积的, 如果存在简单函数 $\{s_k\}_{k=1}^{\infty}$ 满足

$$\int_{0}^{T} ||s_{k}(t) - f(t)||dt \to 0, \quad as \ k\infty.$$
 (1.23)

(3), 若 f 是可积的, 定义 $\int_0^T f(t)dt = \lim_{k \to \infty} \int_0^T s_k(t)dt$ 。

Definition 1.5. $u \in L^{2}(0,T;X)$,称 $v \in L^{1}(0,T;X)$ 为 u 的弱导数,如果 $\int_{0}^{T} \phi^{'}(t)u(t)dt = -\int_{0}^{T} \phi(t)v(t)dt$, $\forall \phi \in C_{c}^{\infty}(0,T)$ 。 记作 $u^{'}=v$ 。

Definition 1.6. Sobolev 空间 $W^{1,p}(0,T;X) = \{u \in L^p(0,T;X) : u' \text{ exists and } u' \in L^p(0,T;X)\}$,对应的范数定义为

$$||u||_{W^{1,p}(0,T;X)} = \begin{cases} & (\int_{0}^{T} ||u(t)||^{p} + ||u^{'}(t)||^{p} dt)^{\frac{1}{p}}, \quad 1 \leq p < \infty, \\ & ess \sup_{0 \leq t \leq T} (||u(t)|| + ||u^{'}(t)||), \quad p = \infty. \end{cases}$$

为了方便起见,我们记 $H^1(0,T;X) = W^{1,2}(0,T;X)$ 。

(1), $u \in C([0,T];X)$ (在去掉一个零测集的意义下成立)。(2), $u(t) = u(s) + \int_{s}^{t} u'(\tau) d\tau$, $0 \le s < t \le T$ 。(3), $\max_{0 \le t \le T} ||u(t)||_{L^{2}(U)} \le C(||u||_{L^{2}(0,T;H^{1}_{0}(U))} + ||u'||_{L^{2}(0,T;H^{-1}(U))})$ 。

上面定理中 (1) 对应于周民强实变函数 Theorem.5.10, (2) 对应于 Theorem.5.14。

Theorem 1.4. $\c u \in L^2(0,T;H^1_0(U)), u' \in L^2(0,T;H^{-1}(U)),$

- (1), $u \in C([0,T]; L^2(U))$, (在去掉一个零测集意义下是成立的)。
- (2), $\max_{0 \le t \le T} ||u(t)||_{L^2(U)} \le C(||u||_{L^2(0,T;H^1_0(U))} + ||u^{'}||_{L^2(0,T;H^{-1}(U))})$.

1.2 抛物方程弱解的存在性(Galerkin 逼近)

Theorem 1.5. (逼近解的构造)

对于
$$\forall m=1,2,\cdots$$
,存在唯一的函数 $u_m=\sum\limits_{k=1}^m d_m^k(t)\omega_k$ 满足
$$d_m^k(0)=(g,\omega_k),\quad k\in\{1,\cdots,m\},$$

$$(u_m^{'},\omega_k)+B[u_m,\omega_k,t]=(f,\omega_k),\quad (0\leq t\leq T,k=1,\cdots,m).$$

这里 $\{\omega_k\}_{k=1}^\infty$ 为 $L^2(U)$ 的正交规范基, $H^1_0(U)$ 的正交基。

Remark 1.1. 用 Theorem 1 在 Evans 6.5.1 中, 取 $L = -\Delta$ 可以给出 $\{\omega_k\}_{k=1}^{\infty}$ 。

证明. 假设 $u_m = \sum_{k=1}^m d_m^k(t)\omega_k$,则 $(u_m^{'}(t),\omega_k) = (d_m^k(t))^{'}$ 。

$$B[u_m, \omega_k, t] = \int_U \sum_{i,j=1}^n a_{ij}(x,t)(u_m)_{x_i}(\omega_k)_{x_j} + \sum_{i=1}^n b_i(x,t)(u_m)_{x_i}\omega_k + c(x,t)u_m\omega_k dx,$$

$$= \sum_{l=1}^m d_m^l(t)B[\omega_l, \omega_k; t] = \sum_{l=1}^m d_m^l(t)e^{kl}(t).$$
(1.24)

记 $(f,\omega_k)=f^k(t)$,则我们可以得到常微分方程

$$\begin{cases}
 \left(d_m^k(t)\right)' + \sum_{l=1}^m e^{kl}(t)d_m^l(t) = f^k(t), & (k=1,\cdots,m), \\
 d_m^k(0) = (g,\omega_k).
\end{cases}$$
(1.25)

那么利用常微分方程组解的存在性定理,存在唯一的绝对连续函数 $d_m(t) = (d_m^1(t), \cdots, d_m^m(t))$ 满足(1.25),当 $0 \le t \le T$,(几乎处处意义下)。那么即表明逼近解是存在的。

Question: 逼近解的收敛性是如何得到呢?

在回答这个问题之前,我们先回忆

$$\begin{cases} u_t = u_{xx} & x \in [0, 1], \ t \in (0, +\infty), \\ u|_{t=0} = \varphi(x), & \\ u|_{x=0} = u|_{x=1} = 0. \end{cases}$$
 (1.26)

有

$$\frac{d}{dt} \int_0^1 u^2 dx = 2 \int_0^1 u u_t dx = 2 \int_0^1 u u_{xx} dx = -2 \int_0^1 u_x^2 dx. \tag{1.27}$$

令 $E(t) = \int_0^1 u^2(x,t)dx$,则有 $\frac{d}{dt}E(t) \leq 0$ 。因此

$$\sup_{t \in [0,1]} ||u||_{L^2(0,1)} \le ||u(\cdot,0)||_{L^2(0,1)} = ||\varphi||_{L^2},\tag{1.28}$$

又

$$\begin{split} \int_0^T ||Du||^2_{L^2(0,1)} dt & \leq \int_0^T (\int_0^1 u_x^2 dx) dt & = & -\frac{1}{2} (\int_0^T \int_0^1 u^2 dx) dt \\ & = & -\frac{1}{2} (E(T) - E(0)) \leq \frac{1}{2} E(0). \end{split}$$

对于高维的情形

$$\begin{cases} u_t = \Delta u & in \ U_T, \\ u|_{t=0} = g, \\ u = 0 & on \ \partial U \times [0, T]. \end{cases}$$

$$(1.29)$$

$$\frac{d}{dt} \int_{U} u^{2}(x,t)dx = 2 \int_{U} uu_{t}dx = 2 \int_{U} u\Delta udx = -2 \int_{U} |\nabla u|^{2}dx.$$

$$\tag{1.30}$$

令 $E(t) = \int_{U} u^{2}(x,t)dt$,则 $\frac{d}{dt}E(t) \leq 0$,因此 $\sup_{t \in [0,T]} ||u||_{L^{2}(U)} \leq ||u(\cdot,0)||_{L^{2}(U)} = ||g||_{L^{2}(U)}$ 。类似地, $\int_{0}^{T} ||Du||_{L^{2}(U)}^{2} dt \leq \frac{1}{2}E(t)$ 。

Theorem 1.6. (Gronwall Inequality)

(1), 令 $\eta(\cdot)$ 是非负的绝对连续函数, $\eta:[0,T]\to\mathbb{R}$, 满足对于几乎处处的 t

$$\eta'(t) \le \phi(t)\eta(t) + \psi(t),\tag{1.31}$$

其中 $\phi(t), \psi(t)$ 均为 [0,T] 上的非负可积函数,则

$$\eta(t) \le e^{\int_0^t \phi(s)ds} (\eta(0) + \int_0^t \psi(s)ds).$$
(1.32)

(2), 令 $\xi(t)$ 为非负可测函数, $\xi:[0,T]\to\mathbb{R}$, 满足对于几乎处处的 t,

$$\xi(t) \le C_1 \int_0^t \xi(s)ds + C_2,$$
 (1.33)

其中 C_1, C_2 为非负常数。则

$$\xi(t) \le C_2(1 + e^{C_1 t}), \quad a.e \ 0 \le t \le T.$$
 (1.34)

证明. (2), 令 $\eta(t) = \int_0^t \xi(s)ds$, 则有 $\eta'(t) \leq C_1\eta(t) + C_2$ 。利用 (1) 可以得到

$$\eta(t) \le e^{C_1 t} (\eta(0) + C_2 t) = C_2 t e^{C_1 t},$$
(1.35)

因此

$$\xi(t) \le C_1 \eta(t) + C_2 \le C_2 (1 + C_1 t e^{C_1 t}). \tag{1.36}$$

Theorem 1.7. (能量估计)

若 $\{u_m\}_{m=1}^{\infty}$ 为方程的逼近解序列,则

 $\max_{0 \leq t \leq T} ||u_m(t)||_{L^2(U)} + ||u_m||_{L^2(0,T;H^1_0(U))} + ||u_m^{'}||_{L^2(0,T;H^{-1}(U))} \leq C(||f||_{L^2(0,T;L^2(U))} + ||g||_{L^2(U)}),$

其中 C 只与 U,T 以及 L 的系数有关。

证明. (1),利用逼近解的定义式有

$$(u'_m, u_m) + B[u_m, u_m, t] = (f, u_m), \quad a.e \ 0 \le t \le T.$$
 (1.37)

由椭圆方程的能量估计 (6.2.2, Theorem~2), $\exists \beta > 0, \nu \geq 0$ 使得

$$\beta||u_m||_{H_0^1(U)}^2 \le B[u_m, u_m, t] + \nu||u_m||_{L^2(U)}^2, \tag{1.38}$$

对于 a.e., $0 \le t \le T, m = 1, 2, \cdots$. 成立。 又因为

$$|(f, u_m)| \le \frac{1}{2} ||f||_{L^2(U)}^2 + 2\beta ||u_m||_{L^2(U)}^2,$$

$$(u_m', u_m) = \frac{d}{dt} (\frac{1}{2} ||u_m||_{L^2(U)}^2).$$

则有

$$\frac{d}{dt}(||u_m||_{L^2(U)}^2) + 2\beta||u_m||_{H_0^1(U)}^2 \le C_1||u_m||_{L^2(U)}^2 + C_2||f||_{L^2(U)}^2, \quad a.e \ 0 \le t \le T.$$

$$(1.39)$$

记 $E(t) = ||u_m||_{L^2(U)}^2$, 由上式可得

$$E'(t) \le C_1 E(t) + C_2 ||f||_{L^2(U)}^2. \tag{1.40}$$

再利用 Gronwall 不等式可得

$$E(t) \le E^{C_1 t}(E(0) + C_2 \int_0^t ||f||_{L^2(U)}^2 ds).$$
 (1.41)

再利用初值条件可得

$$E(0) = ||u_m(0)||_{L^2(U)}^2 \le \sum_{k=1}^m |(g, \omega_k)|^2 \le ||g||_{L^2(U)}^2, \tag{1.42}$$

最后一个不等号是用 Bessel 不等式得到。因此

$$||u_m||_{L^2(U)}^2 \le C(||g||_{L^2(U)}^2 + ||f||_{L^2(0,T;L^2(U))}^2). \tag{1.43}$$

(2),对(1.39)在[0,T]上进行积分,有

$$\begin{split} ||u_m||^2_{L^2(0,T;H^1_0(U))} & = & \int_0^T ||u_m||^2_{H^1_0(U)} dt \\ & \leq & C_1 \int_0^T ||u_m||^2_{L^2(U)} dt + C_2 \int_0^T ||f||^2_{L^2(U)} dt, \\ & \leq & C_1 \int_0^T C||g||^2_{L^2(U)} dt + C_1 \int_0^T C||f||^2_{L^2(0,T;L^2(U))} dt + C_2 \int_0^T ||f||^2_{L^2(U)} dt, \\ & = & C(||g||^2_{L^2(U)} + ||f||^2_{L^2(0,T;L^2(U))}). \end{split}$$

(3),对于任意的 $v \in H^1_0(U)$,且 $||v||_{H^1_0(U)} \le 1$,记 $v = v^1 + v^2$,其中 $v^1 \in span\{\omega_k\}_{k=1}^m$, $(v^2, \omega_k) = 0$, $(k = 1, \cdots, m)$ 。则有

$$\begin{split} ||v^1||^2_{H^1_0(U)} &= (v^1, v^1)_{H^1_0(U)} \\ &= (v - v^2, v - v^2)_{H^1_0(U)} \\ &= ||v||^2_{H^1_0(U)} + ||v^2||^2_{H^1_0(U)} - 2(v, v^2)_{H^1_0(U)} \\ &= ||v||^2_{H^1_0(U)} + ||v^2||^2_{H^1_0(U)} - 2(v^1 + v^2, v^2)_{H^1_0(U)} \\ &= ||v||^2_{H^1_0(U)} - ||v^2||^2_{H^1_0(U)} \\ &\leq ||v||^2_{H^1_0(U)} \leq 1. \end{split}$$

利用逼近解的定义式有

$$(u'_m, v^1) + B[u_m, v^1, t] = (f, v^1), \quad a.e \ 0 \le t \le T.$$
 (1.44)

带入 $u_m = \sum_{k=1}^m d_m^k(t)\omega_k$ 可得

$$\langle u'_{m}, u \rangle = (u'_{m}, u) = (u'_{m}, v^{1}) = (f, v^{1}) - B[u_{m}, v^{1}, t].$$
 (1.45)

利用椭圆方程的能量估计,存在 $\alpha > 0$ 使得

$$|\langle u'_{m}, v \rangle| \leq ||f(t)||_{L^{2}(U)} ||v^{1}||_{L^{2}(U)} + \alpha ||u_{m}(t)||_{H^{1}_{0}(U)} ||v^{1}||_{H^{1}_{0}(U)}$$

$$\leq C(||f||_{L^{2}(U)} + ||u_{m}||_{H^{1}_{0}(U)}).$$
(1.46)

则

$$||u_m^{'}||_{H^{-1}(U)} \le C(||f||_{L^2(U)} + ||u_m||_{H_0^1(U)}),$$
 (1.47)

因此

$$||u'_{m}||_{L^{2}(0,T;H^{-1}(U))}^{2} = \int_{0}^{T} ||u'_{m}||_{H^{-1}(U)}^{2} dt \leq C\left(\int_{0}^{T} ||f||_{L^{2}(U)}^{2} dt + \int_{0}^{T} ||u_{m}||_{H_{0}^{1}(U)}^{2}\right) \leq (||f||_{L^{2}(0,T;L^{2}(U))}^{2} + ||g||_{L^{2}(U)}^{2}).$$

$$(1.48)$$

1.3 含时间变量的 Sobolev 空间,能量估计

下面陈述的主要是周民强实变函数里面的一些定理。

Theorem 1.8. 设 $f \in L([a,b])$, 令 $F(x) = \int_a^x f(t)dt$, $x \in [a,b]$ 。则 F'(x) = f(x), a.e., x.

Theorem 1.9. 若 $f \in L([a,b])$,则其不定积分 $F(x) = \int_a^x f(t)dt$ 是 [a,b] 上的绝对连续函数。

Theorem 1.10. (微积分基本定理)

若 f 是 [a,b] 上的绝对连续函数,则有

$$f(x) - f(a) = \int_{a}^{x} f'(t)dt, \quad x \in [a, b].$$
 (1.49)

Theorem 1.11. Evans, P307, Theorem 2

证明. 延拓 u 使得 u=0, on $(-\infty,0)\cup(T,+\infty)$, 令 $u^{\varepsilon}=\eta_{\varepsilon}*u$ 。即

$$u^{\varepsilon} = (\eta_{\varepsilon} * u)(t) = \int_{-\infty}^{+\infty} \varepsilon^{-1} \eta(\frac{t-s}{\varepsilon}) u(s) ds.$$
 (1.50)

类似于 5.3.1, Theorem 1 有, $(u^{\varepsilon})' = \eta_{\varepsilon} * u'$, on $(\varepsilon, T - \varepsilon)$ 。可得 $u^{\varepsilon} \to u$ in $L^{p}(0,T;X)$,且 $(u^{\varepsilon})' \to u'$ in $L^{p}_{loc}(0,T;X)$ 。对 $u^{\varepsilon}(t)$ 用微积分基本定理得, $u^{\varepsilon}(t) = u^{\varepsilon}(s) = \int_{s}^{t} (u^{\varepsilon})'(\tau) d\tau$ 。再令 $\varepsilon \to 0^{+}$,可得 $u(t) = u(s) + \int_{s}^{t} u'(\tau) d\tau$,利用 u' 的可积性知 u 为绝对连续函数。再由上式

$$||u(t)||^{p} \leq ||u(s)||^{p} + ||\int_{s}^{t} u'(\tau)d\tau||^{p}$$

$$\leq ||u(s)||^{p} + |\int_{0}^{T} ||u'(\tau)||d\tau|^{p}$$
(1.51)

$$\leq C \int_{0}^{T} ||u(\tau)||^{p} d\tau + T^{\frac{p}{q}} \int_{0}^{T} ||u'(\tau)||^{p} d\tau \tag{1.52}$$

$$\leq C||u||_{W^{1,p}(0,T;X)}^{p}.$$
 (1.53)

上式中的第二个不等号(1.51)是利用下面的 Bochner 定理得到,第三个不等号(1.52)是利用 Holder 不等式得到。

Theorem 1.12. (Bochner)

强可测函数 $f:[0,T]\to X$ 可积当且仅当 $t\to ||f(t)||$ 为可积函数, 此时

$$||\int_{0}^{T} f(t)dt|| \le \int_{0}^{T} ||f(t)||dt.$$
(1.54)

回忆

$$\begin{cases} u_t = \Delta u + f & in \ U_T \\ u|_{t=0} = g, \\ u = 0, \quad on \ \partial U \times [0, T]. \end{cases}$$

$$(1.55)$$

$$\frac{1}{2}\frac{d}{dt}\int_{U}u^{2}(x,t)dx = \int_{U}uu_{t}dx = -\int_{U}|\nabla u|^{2}dx + \int_{U}fudx,$$
(1.56)

则有

$$\frac{d}{dt} \int_{U} u^{2}(x,t)dx + 2 \int_{U} |\nabla u|^{2} dx \le \int_{U} f^{2} dx + \int_{U} u^{2} dx, \tag{1.57}$$

 $\Leftrightarrow E(t) = \int_U u^2(x,t) dx$

 $Case\ 1,\ E'(t) \leq E(t) + \int_{U} f^{2} dx,\ 那么利用\ Gronwall\ 不等式可得$

$$E(t) \le e^{t}(E(0) + \int_{0}^{T} \int_{U} f^{2} dx dt) \le e^{T}(||g||_{L^{2}(U)}^{2} + ||f||_{L^{2}(0,T;L^{2}(U))}^{2}). \tag{1.58}$$

Case 2, 对(1.57)两边进行积分,有

$$2\int_{0}^{T} \int_{U} |\nabla u|^{2} dx dt \leq \int_{0}^{T} \int_{U} f^{2} dx dt + \int_{0}^{T} u^{2} dx dt$$
 (1.59)

$$= ||f||_{L^{2}(0,T;L^{2}(U))}^{2} + \int_{0}^{T} E(t)dt$$
 (1.60)

$$\leq C(||f||_{L^{2}(0,T;L^{2}(U))}^{2} + ||g||_{L^{2}(U)}^{2}).$$
 (1.61)

1.4 抛物方程解的存在唯一性

我们先做一些准备工作,我们先叙述周民强书中的一个例子和一个定理。

Example 1.2. 设 $f \in L^1(\mathbb{R}^n)$, 若对于一切 \mathbb{R}^n 上具有紧支集的连续函数 $\varphi(x)$ 有

$$\int_{\mathbb{D}_n} f(x)\varphi(x)dx = 0,$$
(1.62)

则有 f(x) = 0, $a.e, x \in \mathbb{R}^n$ 。

Theorem 1.13. (分部积分公式)

设 f(x), g(x) 为 [a,b] 上的可积函数, $\alpha, \beta \in \mathbb{R}$, 令

$$F(x) = \alpha + \int_{a}^{x} f(t)dt, \quad G(x) = \beta + \int_{a}^{x} g(t)dt, \tag{1.63}$$

则有

$$\int_{a}^{b} G(x)f(x)dx + \int_{a}^{b} g(x)F(x)dx = F(b)G(b) - F(a)G(a). \tag{1.64}$$

Theorem 1.14. 初边值问题(1.12)存在弱解。

证明. **Step 1**, 由前面得到得能量估计, $\{u_m\}_{m=1}^{\infty}$ 在 $L^2(0,T;H_0^1(U))$ 中有界, $\{u_m'\}_{m=1}^{\infty}$ 在 $L^2(0,T;H^{-1}(u))$ 中有界。因此存在子列 $\{u_{m_l}\}_{l=1}^{\infty}\subset\{u_m\}_{m=1}^{\infty},u\in L^2(0,T;H_0^1(U)),u'\in L^2(0,T;H^{-1}(U)),$ 使得

$$u_{m_{l}} \rightharpoonup in \ L^{2}(0,T; H_{0}^{1}(U)),$$

 $u'_{m_{l}} \rightharpoonup u' \ in \ L^{2}(0,1; H^{-1}(U)).$

Step 2,取 $N \in \mathbb{N}, v \in C^1([0,T], H_0^1(U))$ 满足 $v(t) = \sum_{k=1}^N d^k(t)\omega_k, \{d^k\}_{k=1}^N \subset C^\infty([0,T])$ 。对于 $m \geq n$,弱解定义式有,

$$\int_{0}^{T} \langle u'_{m}, v \rangle + B[u_{m}, v, t]dt = \int_{0}^{T} (f, v)dt.$$
 (1.65)

取 $m = m_l$,然后令 $l \to \infty$ 可得 $\int_0^T < u', v > +B[u, v, t]dt = \int_0^T (f, v)dt$ 。而形如 $v(t) = \sum_{k=1}^N d^k(t)\omega_k$ 的函数 在 $L^2(0, T; H^1_0(U))$ 中稠密,故上式对于 $\forall v \in L^2(0, T; H^1_0(U))$ 成立。利用弱导数唯一性的证明技巧有

$$< u', v > +B[u, v, t] = (f, v) \quad \forall v \in H_0^1(U)$$
 (1.66)

对于 a.e. $0 \le t \le T$ 成立,那么再由 Evans,5.9.2 知 $u \in C([0,T],L^2(U))$ 。

Step 3,由于 $t \to (u(t), v(t))$ 式绝对连续函数,由微积分基本定理得到

$$\int_{0}^{T} (u'(t), v(t)) + (u(t), v'(t))dt = (u(T), v(T)) - (v(0), v(0)). \tag{1.67}$$

因此对于 $\forall v \in C^1([0,T]; H^1_0(U))$ 且 V(T) = 0,有

$$\int_{0}^{T} \langle v', u \rangle + B[u, v, t] dt = \int_{0}^{T} (f, v) dt + (u(0), v(0)). \tag{1.68}$$

再利用逼近序列,同样可以得到

$$\int_{0}^{T} -\langle v', u_{m} \rangle + B[u_{m}, v; t]dt = \int_{0}^{T} (f, v)dt + (u_{m}(0), v(0)), \tag{1.69}$$

取 $m=m_l$, 令 $l \to \infty$ 得到

$$\int_{0}^{T} -\langle v', u \rangle + B[u, v; t] dt = \int_{0}^{T} (f, v) dt + (g, v(0)). \tag{1.70}$$

在这里用到了 $u_{m_l}(0) \to g$ in $L^2(U)$,因为 $u_{m_l}(0) = \sum_{k=1}^{m_l} (g, \omega_k) \omega_k$ 。因此 (u(0), v(0)) = (g, v(0)) 对于任意的 v(0) 成立,即 u(0) = g。

Theorem 1.15. 抛物方程的弱解的唯一。

证明. 只需证明方程

$$\begin{cases} u_t + \Delta u = 0 & in \ U_T \\ u = 0, & on \ \Gamma_T. \end{cases}$$
 (1.71)

在(1.66)中取 v=u, 有 $< u^{'}, u>+B[u,u,t]=0$,利用 Evnas,5.9.2,Theorem 3 得

$$\frac{d}{dt}(\frac{1}{2}||u||_{L^2(U)}^2) + B[u, u, t] = 0, \tag{1.72}$$

由椭圆方程的能量估计, $\exists \beta > 0, \gamma \geq 0$,使得

$$B[u, u, t] \ge \beta ||u||_{H_0^1(U)}^2 - \gamma ||u||_{L^2(U)}^2 \ge -\gamma ||u||_{L^2(U)}^2.$$
(1.73)

则有

$$\frac{d}{dt}(\frac{1}{2}||u||_{L^{2}(U)}^{2}) \le \gamma ||u||_{L^{2}(U)}^{2},\tag{1.74}$$

再利用 Gronwall 不等式得

$$||u||_{L^2(U)}^2 \le e^{2\gamma T} ||u(0)||_{L^2(U)}^2 = 0, \tag{1.75}$$

由此可得 $u \equiv 0$ 。

1.5 抛物方程弱解的正则性

这一节我们研究抛物方程的正则性正则性,首先考虑下面的初边值问题。

$$\begin{cases} u_t - \Delta u = f & in \ \mathbb{R}^n \times [0, T] \\ u = g & on \ \mathbb{R}^n \times \{t = 0\}. \end{cases}$$
 (1.76)

我们先做一些形式上得计算,假设 u 为光滑函数,且 $u(t,\cdot) \in C_c^{\infty}(\mathbb{R}^n)$,方程两边同时乘上 u_t 进行积分可得

$$\int_{\mathbb{R}^n} |u_t|^2 dx = \int_{\mathbb{R}^n} u_t \Delta u + \int_{\mathbb{R}^n} f u_t dx$$

$$= -\sum_{i=1}^n \int_{\mathbb{R}^n} (u_t)_{x_i} u_{x_i} dx + \int_{\mathbb{R}^n} f u_t dx$$

$$= -\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^n} |\nabla u|^2 dx + \int_{\mathbb{R}^n} f u_t dx. \tag{1.77}$$

则有

$$\int_{\mathbb{R}^n} |u_t|^2 dx + \frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^n} |\nabla u|^2 dx = \int_{\mathbb{R}^n} f u_t dx \le \frac{1}{2} \int_{\mathbb{R}^n} f^2 dx + \frac{1}{2} \int_{\mathbb{R}^n} |u_t|^2 dx. \tag{1.78}$$

即

$$\int_{\mathbb{R}^n} |u_t|^2 dx + \frac{d}{dt} \int_{\mathbb{R}^n} |\nabla u|^2 dx \le \int_{\mathbb{R}^n} f^2 dx. \tag{1.79}$$

Case 1,由微积分基本定理, $\int_0^t \frac{d}{dt} \int_{\mathbb{R}^n} |\nabla u|^2 dx dt \leq \int_0^t \int_{\mathbb{R}^n} f^2 dx dt$,即

$$\int_{\mathbb{R}^n} |\nabla u(t)|^2 dx \le \int_{\mathbb{R}^n} |\nabla u(0)|^2 dx + \int_0^T \int_{\mathbb{R}^n} f^2 dx dt. \tag{1.80}$$

则有

$$\sup_{0 \le t \le T} \int_{\mathbb{R}^n} |\nabla u|^2 dx \le \int_0^T \int_{\mathbb{R}^n} f^2 dx dt + ||\nabla g||_{L^2(\mathbb{R}^n)}. \tag{1.81}$$

Case 2,对(1.79)式两边积分,有

$$\int_{0}^{T} \int_{\mathbb{R}^{n}} |u_{t}|^{2} dx dt \leq \int_{\mathbb{R}^{n}} |\nabla g|^{2} dx + \int_{0}^{T} \int_{\mathbb{R}^{n}} f^{2} dx dt.$$
 (1.82)

Case 3, 从 $\Delta u=u_t-f$ 入手,考虑 $\int_0^T\int_{\mathbb{R}^n}|D^2u|^2dxdt$ 的估计。准备工作:

1,对于初边值问题,有 $||u_m(0)||_{H_0^1(U)} \leq ||g||_{H_0^1(U)}$ 。

$$(1), ||u_m(0)||_{L^2(U)}^2 = \sum_{k=1}^m |(g,\omega_k)|^2 \le ||g||_{L^2(U)}^2.$$

$$(1.83)$$

(2),
$$\Delta u_m(0) = \sum_{k=1}^n d_m^k(0) \Delta \omega_k = -\sum_{k=1}^m d_m^k(0) \lambda_k \omega_k.$$
 (1.84)

则

$$(u_{m}(0), \Delta u_{m}(0)) = (u_{m}(0), -\sum_{k=1}^{m} d_{m}^{k}(0)\lambda_{k}\omega_{k})$$

$$= (g, -\sum_{k=1}^{m} d_{m}^{k}(0)\lambda_{k}\omega_{k}) = (g, \Delta u_{m}(0))$$

$$= \int_{U} g\Delta u_{m}(0)dx = -\int_{U} \nabla g\nabla u_{m}(0)dx.$$
(1.85)

又因为

$$(u_m(0), \Delta u_m(0)) = \sum_{i=1}^n \int_U (u_m(0)(u_m(0))_{x_i})_{x_i} dx - \int_U |\nabla u_m(0)|^2 dx = -\int_U |\nabla u_m(0)|^2 dx, \qquad (1.86)$$

则有

$$\int_{U} |\nabla u_m(0)|^2 dx = \int_{U} \nabla g \nabla u_m(0) dx \le \frac{1}{2} \int_{U} |\nabla g|^2 dx + \frac{1}{2} \int_{U} |\nabla u_m(0)|^2 dx, \tag{1.87}$$

即

$$\int_{U} |\nabla u_m(0)|^2 dx \le \int_{U} |\nabla g|^2 dx. \tag{1.88}$$

结合(1.83)可得

$$||u_m(0)||_{H_0^1(U)}^2 \le ||g||_{H_0^1(U)}^2. \tag{1.89}$$

2, 椭圆方程边界正则性中, 若 $u \in H_0^1(U)$ 为方程

$$\begin{cases} Lu = f & in \ U \\ u = 0 & on \ \partial U. \end{cases}$$
 (1.90)

的唯一弱解,利用 Theorem 2.8(逆的有界性)可以得到 $||u||_{H^2(U)} \le C||f||_{L^2(U)}$ 。

 $\mathbf{Aim}: ||u_m(0)||_{H^2(U)} \le C||g||_{H^2(U)}.$

$$||u_m(0)||_{H^2(U)}^2 \le C||\Delta u_m(0)||_{L^2(U)}^2 \tag{1.91}$$

$$= C(u_m(0), \Delta^2 u_m(0)) (1.92)$$

$$= C(g, \Delta^2 u_m(0)) = C(\Delta g, \Delta u_m(0))$$
(1.93)

$$\leq \frac{1}{2}||u_m||_{H^2(U)}^2 + C||g||_{H^2(U)}^2.$$
(1.94)

即

$$||u_m(0)||_{H^2(U)} \le C||g||_{H^2(U)}. (1.95)$$

其中(1.92)是利用分部积分,(1.93)同 1 的技巧相同,(1.94)使用 Cuachy 不等式,(1.91) 是利用庞加莱不等式。

因为 $||u_m(0)||^2_{H^2(U)} = ||u_m(0)||^2_{L^2(U)} + ||Du_m(0)||^2_{L^2(U)} + ||D^2u||^2_{L^2(U)}$,已有 $||u_m(0)|| \le C||Du_m(0)||_{L^2(U)}$,则

$$||Du_{m}(0)||_{L^{2}(U)}^{2} \leq C||D(|Du_{m}(0)|)||_{L^{2}(U)}^{2}$$

$$= C||\sum_{j=1}^{n} (\frac{\sum_{i=1}^{n} 2((u_{m}(0))_{x_{i}}(u_{m}(0))_{x_{i}x_{j}})}{2|Du_{m}(0)|})^{2}||_{L^{2}(U)}^{2}$$

$$\leq C||\sum_{i,j=1}^{n} (u_{m}(0))_{x_{i}x_{j}}^{2}||_{L^{2}(U)}^{2} = C||D^{2}u_{m}(0)||_{L^{2}(U)}^{2}.$$

$$(1.96)$$

又

$$||D^{2}u_{m}(0)||_{L^{2}(U)} = ||\Delta u_{m}(0)||_{L^{2}(U)}, \tag{1.97}$$

则有

$$||u_m(0)||_{H^2(U)}^2 \le C||\Delta u_m(0)||_{L^2}^2.$$
(1.98)

Theorem 1.16. (Improved regularity)

(1), 假设 $g \in H^{1}_{0}(U), f \in L^{2}(0,T;L^{2}(U))$ 。若 $u \in L^{2}(0,T;H^{1}_{0}(U)), u^{'} \in L^{2}(0,T;H^{-1}(U))$ 是方程

$$\begin{cases} u_t + Lu = f & in \ U_T \\ u = 0 & on \ \partial U \times [0, T], \\ u = g, & on \ U \times \{t = 0\}. \end{cases}$$
 (1.99)

的弱解,则 $u \in L^2(0,T;H^2(U)) \cap L^\infty(0,T;H^1_0(U)), u' \in L^2(0,T;L^2(U))$,且有估计

$$ess \sup_{0 \le t \le T} ||u(t)||_{H_0^1(U)} + ||u||_{L^2(0,T;H^2(U))} + ||u^{'}||_{L^2(0,T;L^2(U))} \le C(||f||_{L^2(0,T;L^2(U))} + ||g||_{H_0^1(U)}). \quad (1.100)$$

(2),在 (1) 的条件假设下,若 $g\in H^2(U), f^{'}\in L^2(0,T;L^2(U))$,则 $u\in L^\infty(0,T;H^2(U)), u^{'}\in L^\infty(0,T;L^2(U))\cap L^2(0,T;H^1(U)), u^{''}\in L^2(0,T;H^{-1}(U))$,且有估计

$$ess \sup_{0 \le t \le T} (||u(t)||_{H^{2}(U)} + ||u'(t)||_{L^{2}(U)}) + ||u'||_{L^{2}(0,T;H^{1}_{0}(U))} + ||u''||_{L^{2}(0,T;H^{-1}(U))}$$

$$\le C(||f||_{H^{1}(0,T;L^{2}(U))} + ||g||_{H^{2}(U)}). \tag{1.101}$$

证明. (1), 固定 $m \ge 1$, 由逼近解的表达式 $u_m' = \sum_{k=1}^m (d_m^k(t))' \omega_k$, $k = 1, \dots, m$ 。由弱解的定义有

$$(u'_m, u'_m) + B[u_m, u'_m; t] = (f, u'_m), \quad a.e., \ 0 \le t \le T.$$
 (1.102)

记

$$B[u_m, u'_m, t] = \int_U \sum_{i,j=1}^n a_{ij}(u_m) x_i(u'_m)_{x_j} dx + \int_U \sum_{i=1}^n b_i(u_m)_{x_i} u'_m + c u_m u'_m dx := A + B.$$
 (1.103)

令 $A[u,v]=\int_U\sum_{i,j=1}^na_{ij}u_{x_i}v_{x_j},\ \forall u,v\in H^1_0(U),\ \ \ \ \ \ \ A=\frac{1}{2}\frac{d}{dt}A[u_m,u_m]$ 。 在本节中我们假设 U 是有界开集, $\partial U\in C^\infty$,系数 $a_{ij},b_i,c,(i,j=1,\cdots,n)$ 与 t 无关,且 $a_{ij},b_i,c\in C^\infty(\overline{U})$ 。而另外

$$|B| = |\int_{U} \sum_{i=1}^{n} b_{i}(u_{m})_{x_{i}} u_{m}^{'} + c u_{m} u_{m}^{'} dx| \leq \frac{C}{\varepsilon} ||u_{m}||_{H_{0}^{1}(U)}^{2} + \varepsilon ||u_{m}^{'}||_{L^{2}(U)}^{2},$$

$$|(f, u_{m}^{'})| \leq \frac{C}{\varepsilon} ||f||_{L^{2}(U)}^{2} + \varepsilon ||u_{m}^{'}||_{L^{2}(U)}^{2},$$

$$(1.104)$$

带回到弱解的定义式,可得

$$||u_m'||_{L^2(U)}^2 + \frac{1}{2} \frac{d}{dt} A[u_m, u_m] \le \frac{C}{\varepsilon} (||u_m||_{H_0^1(U)}^2 + ||f||_{L^2(U)}^2) + 2\varepsilon ||u_m'||_{L^2(U)}^2.$$
(1.105)

取 $\varepsilon = \frac{1}{4}$, 两边关于 t 进行积分, 可得

$$\int_{0}^{T} ||u'_{m}||_{L^{2}(U)}^{2} dt + \sup_{0 \le t \le T} A[u_{m}(t), u_{m}(t)]$$

$$\le C(A[u_{m}(0), u_{m}(0)] + \int_{0}^{T} ||u||_{H_{0}^{1}(U)}^{2} + ||f||_{L^{2}(U)}^{2} dt)$$

$$\le C(||g||_{H_{0}^{1}(U)}^{2} + ||f||_{L^{2}(0,T;L^{2}(U))}^{2}).$$
(1.106)

(1.106)是利用下式得到的

$$\int_{0}^{t} \frac{d}{ds} A[u_{m}, u_{m}] ds \leq C \int_{0}^{t} ||u_{m}||_{H_{0}^{1}(U)}^{2} + ||f||_{L^{2}(U)}^{2} ds$$

$$\leq C \int_{0}^{T} ||u_{m}||_{H_{0}^{1}(U)}^{2} + ||f||_{L^{2}(U)}^{2} dt, \quad 0 \leq t \leq T. \tag{1.108}$$

处理 $\int_0^T ||u_m||^2_{H^1_0(U)} dt$ 项使用 Theorem 1.7的能量估计, $A[u_m(0),u_m(0)] \leq \int_U |Du_m(0)|^2 dx \leq ||g||^2_{H^1_0(U)}$ 是由前面的准备工作 1 得到。

利用一致抛物条件, $A[u_m,u_m] \ge \theta \int_U |Du_m|^2 dx$,再结合能量估计可得

$$\sup_{0 \le t \le T} ||u_m(t)||_{H_0^1(U)}^2 \le C(||g||_{H_0^1(U)}^2 + ||f||_{L^2(0,T;L^2(U))}^2). \tag{1.109}$$

对于上面两个估计,取 $m=m_l$,令 $l\to\infty$,有 $u\in L^\infty(0,T;H^1_0(U)),u^{'}\in L^2(0,T;L^2(U))$,且

$$\int_{0}^{T} ||u^{'}||_{L^{2}(U)}^{2} dt + \sup_{0 \le t \le T} ||u(t)||_{H_{0}^{1}(U)}^{2} \le C(||g||_{H_{0}^{1}(U)}^{2} + ||f||_{L^{2}(0,T;L^{2}(U))}^{2}). \tag{1.110}$$

在这里使用了一个结论,H 是 Hilbert 空间,如果 $u_k \rightharpoonup u$ in $L^2(0,T;H)$,且 $ess \sup_{0 \le t \le T} ||u_k(t)|| \le C$, $(k=1,\cdots)$,则有 $ess \sup_{0 \le t \le T} ||u(t)|| \le C$ 。

u 的 $H^2(U)$ 估计。由弱解的定义有,

$$(u', v) + B[u, v, t] = (f, v), \quad a.e \ 0 \le t \le T, \ \forall v \in H_0^1(U).$$
 (1.111)

这里已经有 $u^{'} \in L^{2}(U)$,记 $h = f - u^{'} \in L^{2}(U)$, $a.e \ 0 \le t \le T$,且 B[u,v,t] = (h,v)。利用椭圆的正则性理论,在 Evans 6.3.2 Theorem 4 可以得到 $u(t) \in H^{2}(U)$, $a.e \ 0 \le t \le T$,且

$$||u||_{H^{2}(U)}^{2} \le C(||h||_{L^{2}(U)}^{2} + ||u||_{L^{2}(U)}^{2}) \le C(||f||_{L^{2}(U)}^{2} + ||u'||_{L^{2}(U)}^{2} + ||u||_{L^{2}(U)}^{2}), \tag{1.112}$$

上式两边关于 t 积分,有

$$||u||_{L^{2}(0,T;H^{2}(U))}^{2} \le C(||f||_{L^{2}(0,T;L^{2}(U))}^{2} + ||g||_{H_{0}^{1}}^{2}). \tag{1.113}$$

综上所述, 可以得到

$$ess \sup_{0 \le t \le T} ||u(t)||_{H_0^1(U)} + ||u||_{L^2(0,T;H^2(U))} + ||u^{'}||_{L^2(0,T;L^2(U))} \le C(||f||_{L^2(0,T;L^2(U))} + ||g||_{H_0^1(U)}). \quad (1.114)$$

下面我们进一步形式上计算,假设 u 是光滑函数,且 $u(t,\cdot)\in C_c^\infty(\mathbb{R}^n)$, \mathbf{u} 满足

$$\begin{cases} u_t - \Delta u = f & in \ \mathbb{R}^n \times (0, T] \\ u = g, & on \ \mathbb{R}^n \times \{t = 0\}. \end{cases}$$
 (1.115)

对方程关于 t 求导得到

$$\begin{cases} u_{tt} - \Delta u_t = f_t & in \ \mathbb{R}^n \times (0, T] \\ u_t = f(\cdot, 0) + \Delta g, & on \ \mathbb{R}^n \times \{t = 0\}. \end{cases}$$
 (1.116)

两边同乘 u_t ,积分得到

$$\int_{\mathbb{R}^n} u_t u_{tt} dx - \int_{\mathbb{R}^n} \Delta u_t u_t dx = \int_{\mathbb{R}^n} f_t u_t dx.$$
 (1.117)

利用分部积分

$$\int_{\mathbb{R}^n} \Delta u_t u_t dx = \sum_{i=1}^n \int_{\mathbb{R}^n} (u_t(u_t)_{x_i})_{x_i} dx - \int_{\mathbb{R}^n} |Du_t|^2 dx = -\int_{\mathbb{R}^n} |Du_t|^2 dx, \tag{1.118}$$

又

$$\int_{\mathbb{R}^n} f_t u_t dx \le \frac{1}{2} \left(\int_{\mathbb{R}^n} f_t^2 dx + \int_{\mathbb{R}^n} u_t^2 dx \right), \tag{1.119}$$

则有

$$\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^n} u_t^2 dx + \int_{\mathbb{R}^n} |Du_t|^2 dx \le \frac{1}{2}\int_{\mathbb{R}^n} f_t^2 dx + \frac{1}{2}\int_{\mathbb{R}^n} u_t^2 dx. \tag{1.120}$$

Case 1, $\frac{d}{dt}\int_{\mathbb{R}^n}u_t^2dx \leq \int_{\mathbb{R}^n}u_t^2dx + \int_{\mathbb{R}^n}f_t^2dx$, 那么利用 Gronwall 不等式可得

$$\int_{\mathbb{R}^n} u_t^2 dx \le e^t \left(2 \int_{\mathbb{R}^n} f^2(\cdot, 0) + (\Delta g)^2 dx + \int_0^t \int_{\mathbb{R}^n} f_\tau^2 dx d\tau\right),\tag{1.121}$$

即

$$\sup_{0 < t < T} \int_{\mathbb{R}^n} u_t^2 dx \le C(\int_0^T \int_{\mathbb{R}^n} f_t^2 + \int_{\mathbb{R}^n} f^2(\cdot, 0) + |D^2 g|^2 dx). \tag{1.122}$$

Case 2,

$$\int_{0}^{T} \int_{\mathbb{R}^{n}} |Du_{t}|^{2} dx \leq \frac{1}{2} \int_{0}^{T} \int_{\mathbb{R}^{n}} f_{t}^{2} dx dt + \frac{1}{2} \int_{0}^{T} \int_{\mathbb{R}^{n}} u_{t}^{2} dx dt \\
\leq C \left(\int_{0}^{T} \int_{\mathbb{R}^{n}} f_{t}^{2} dx dt + \int_{\mathbb{R}^{n}} f^{2}(\cdot, 0) + |D^{2}g|^{2} dx \right).$$
(1.123)

下面我们接着证明 (2)。记 $\widetilde{u_m}=u_m'$,固定 $m\geq 1$ 。由弱解的定义式得

$$(\widetilde{u_m}', \omega_k) + B[\widetilde{u_m}, \omega_k; t] = (f', \omega_k). (k = 1, \dots, m)$$

$$(1.124)$$

带入逼近表达式: $u_m^{'} = \sum_{k=1}^m (d_m^k(t))^{'} \omega_k$, 得到

$$(\widetilde{u_m}', \widetilde{u_m}) + B[\widetilde{u_m}, \widetilde{u_m}; t] = (f', \widetilde{u_m}). \tag{1.125}$$

利用椭圆方程的能量估计, $\exists \beta > 0, \nu > 0$,使得

$$\beta ||\widetilde{u_m}||_{H_0^1(U)}^2 \le B[\widetilde{u_m}, \widetilde{u_m}; t] + \nu ||\widetilde{u_m}||_{L^2(U)}^2, \quad a.e. \quad 0 \le t \le T, m = 1, 2, \cdots$$
(1.126)

又因为 $|(f^{'},\widetilde{u_{m}})| \leq \frac{1}{2}||f^{'}||_{L^{2}(U)}^{2} + \frac{1}{2}||\widetilde{u_{m}}||_{L^{2}(U)}^{2}$,和 $(\widetilde{u_{m}}^{'},\widetilde{u_{m}}) = \frac{1}{2}\frac{d}{dt}(||\widetilde{u_{m}}||_{L^{2}(U)}^{2})$,则有

$$\frac{d}{dt}(||\widetilde{u_m}||_{L^2(U)}^2) + 2\beta||\widetilde{u_m}||_{H_0^1(U)}^2 \le C_1||f'||_{L^2(U)}^2 + C_2||\widetilde{u_m}||_{L^2(U)}^2, \tag{1.127}$$

记 $\widetilde{E}(t)=||\widetilde{u_m}||^2_{L^2(U)}$,由上式得, $\widetilde{E}(t)^{'}=C_2\widetilde{E}(t)+C_1||f^{'}||^2_{L^2(U)}$,再利用 Gronwall 不等式,得

$$\widetilde{E}(t) \le e^{C_2 t} (||\widetilde{u_m}(0)||_{L^2(U)}^2 + C_1 \int_0^t ||f'(s)||_{L^2(U)}^2 ds).$$
 (1.128)

即

$$\sup_{0 \le t \le T} ||u'_m(t)||_{L^2(U)}^2 \le C(||\widetilde{u_m}(0)||_{L^2(U)}^2 + ||f'||_{L^2(0,T;L^2(U))}^2). \tag{1.129}$$

对(1.127)在 [0,T] 上进行积分,有

$$\int_{0}^{T} ||\widetilde{u_{m}}||_{H_{0}^{1}(U)}^{2} dt \leq C||\widetilde{u_{m}}(0)||_{L^{2}(U)}^{2} + \int_{0}^{T} (C_{1}||f'||_{L^{2}(U)}^{2} + C_{2}||\widetilde{u_{m}}||_{L^{2}(U)}^{2}) dt
\leq C||u'_{m}(0)||_{L^{2}(U)}^{2} + ||f'||_{L^{2}(0,T;L^{2}(U))}^{2}.$$

利用弱解的定义式, $(u_m^{'},u_m^{'})=(f,u_m^{'})-B[u_m,u_m^{'},t],~a.e~0\leq t\leq T$ 。注意到 $B[u_m,u_m^{'},t]$ 的主项

$$\left| \int_{U} a_{ij}(u_{m})_{x_{i}}(u_{m}^{'})_{x_{j}} dx \right| \leq C \left| \int_{U} |Du_{m}Du_{m}^{'}| dx \right| = C \int_{U} |\Delta u_{m}u_{m}^{'}| dx$$

$$\leq \varepsilon ||u_{m}^{'}||_{L^{2}(U)}^{2} + C||u_{m}||_{H^{2}(U)}^{2}. \tag{1.130}$$

整理可得

$$||u_{m}^{'}(0)||_{L^{2}(U)}^{2} \le C(||f||_{H^{1}(0,T;L^{2}(U))}^{2} + ||u_{m}(0)||_{H^{2}(U)}^{2}). \tag{1.131}$$

上面的不等式对 f 的估计用了 Evans 5.9.2 Theorem 2。然后再利用之前的准备工作 2,有

$$||u_m(0)||_{H^2(U)} \le C||g||_{H^2(U)},\tag{1.132}$$

代入上式可得

$$\sup_{0 \le t \le T} ||u'_m(t)||^2_{L^2(U)} + \int_0^T ||u'_m||^2_{H^1_0(U)} dt \le C(||f||^2_{H^1(0,T;L^2(U))} + ||g||^2_{L^2(U)}). \tag{1.133}$$

u 的 $H^2(U)$ 的估计。由弱解的定义式有

$$B[u_m, \omega_k] = (f - u'_m, \omega_k), \quad (k = 1, \dots, m),$$
 (1.134)

上式两端再同时乘上 $\lambda_k d_m^k(t)$ 并对 k 求和可得

$$B[u_m, -\Delta u_m] = (f - u'_m, -\Delta u_m), \quad a.e \ 0 \le t \le T.$$
(1.135)

Claim 1: $B[u_m, -\Delta u_m] = (Lu_m, -\Delta u_m)_{\circ}$

$$(Lu_{m}, -\Delta u_{m}) = \int_{U} \left(-\sum_{i,j=1}^{n} (a_{ij}(u_{m})_{x_{i}})_{x_{j}} + \sum_{i=1}^{n} b_{i}(u_{m})_{x_{i}} + cu_{m}\right)(-\Delta u_{m})dx$$

$$= \int_{U} \sum_{i,j=1}^{n} a_{ij}(u_{m})_{x_{i}}(-\Delta u_{m})_{x_{j}} + \sum_{i=1}^{n} b_{i}(u_{m})_{x_{i}}(-\Delta u_{m}) + cu_{m}(-\Delta u_{m})dx$$

$$= B[u_{m}, -\Delta u_{m}]. \tag{1.136}$$

则有 $(Lu_m, -\Delta u_m) = (f - u'_m, -\Delta u_m)$ 。

 $\text{\bf Claim 2:} \ \beta ||u||^2_{H^2(U)} \leq (Lu, -\Delta u) + \nu ||u||^2_{L^2(U)}, \quad \forall u \in H^2(U) \cap H^1_0(U).$

若上面的 Claim 均成立,利用已有的估计以及 Evnas 5.9.2 Theorem 2 可得

$$\sup_{0 \le t \le T} ||u_m||_{H^2(U)}^2 \le C(||f||_{H^1(0,T;L^2(U))}^2 + ||g||_{H^2(U)}^2). \tag{1.137}$$

对(1.133),(1.137)两式,取 $m=m_{l},\ l\to\infty$,有 $u\in L^{\infty}(0,T;H^{2}(U)),u^{'}\in L^{2}(0,T;H^{1}_{0}(U))\cap L^{\infty}(0,T;L^{2}(U))$ 。日

$$\sup_{0 \le t \le T} (||u^{'}(t)||_{L^{2}(U)}^{2} + ||u||_{H^{2}(U)}^{2}) + ||u^{'}||_{L^{2}(0,T;H_{0}^{1}(U))}^{2} \le C(||f||_{H^{1}(0,T;L^{2}(U))}^{2} + ||g||_{H^{2}(U)}^{2}). \tag{1.138}$$

下面我们只需证明 Claim 2 式正确的。

$$(Lu, -\Delta u) = \int_{U} \sum_{i,j=1}^{n} (a_{ij}u_{x_i})_{x_j} - \sum_{i=1}^{n} b_i u_{x_i} \Delta u - cu \Delta u dx,$$
 (1.139)

注意到

$$|\int_{U} \sum_{i=1}^{n} b_{i} u_{x_{i}} \Delta u dx| \leq C \int_{U} |Du| |\Delta u| dx$$

$$\leq \varepsilon_{0} ||u||_{H^{2}(U)}^{2} + C||Du||_{L^{2}(U)}^{2}$$

$$\leq \varepsilon ||u||_{H^{2}(U)}^{2} + C||u||_{L^{2}(U)}^{2}. \tag{1.140}$$

(1.140)是利用 Evnas Chapter 5 Problem 9 知

$$||Du||_{L^{2}(U)} \le C||u||_{L^{2}(U)}^{\frac{1}{2}}||D^{2}u||_{L^{2}(U)}^{\frac{1}{2}}, \quad u \in H_{0}^{1}(U) \cap H^{2}(U), \tag{1.141}$$

所以

$$\left| \int_{U} cu \Delta u dx \right| \le \varepsilon ||u||_{H^{2}(U)}^{2} + C||u||_{L^{2}(U)}^{2}. \tag{1.142}$$

和

$$\int_{U} \sum_{i,j=1}^{n} (a_{ij} u_{x_{i}})_{x_{j}} \Delta u dx = -\int_{U} \sum_{i,j=1}^{n} a_{ij} u_{x_{i}} \sum_{k=1}^{n} (u_{x_{k} x_{k} x_{j}}) dx
= -\int_{U} [\sum_{i,j,k=1}^{n} (a_{ij} u_{x_{i}} u_{x_{k} x_{j}})_{x_{k}} - (a_{ij} u_{x_{i}})_{x_{k}} u_{x_{k} x_{j}}] dx
= -\int_{\partial U} \sum_{i,j,k=1}^{n} a_{ij} u_{x_{i}} u_{x_{k} x_{j}} \nu^{k} ds + \int_{U} \sum_{i,j,k=1}^{n} (a_{ij})_{x_{k}} u_{x_{i}} u_{x_{k} x_{j}} + a_{ij} u_{x_{i} x_{k}} u_{x_{k} x_{j}} dx.$$

利用一致椭圆性条件得

$$\int_{U} \sum_{i,j=1}^{n} a_{ij} u_{x_k x_i} u_{x_k x_j} dx \ge \theta ||D^2 u||_{L^2(U)}^2 \ge \theta (1 - \varepsilon) ||u||_{H^2(U)}^2 - C||u||_{L^2(U)}^2, \tag{1.143}$$

和

$$\left| \int_{U} (a_{ij})_{x_k} u_{x_i} u_{x_k x_j} dx \right| \le C \int_{U} |Du|^2 |D^2 u| dx \le \varepsilon ||u||_{H^2(U)}^2 + C||u||_{L^2(U)}^2. \tag{1.144}$$

下面估计 $\int_{\partial U} \sum_{i,i,k=1}^{n} a_{ij} u_{x_i} u_{x_k x_j} dS$ 。

利用单位分解定理,可以假设 a_{ij} 的支集包含于某个 $x_0 \in \partial U$ 得领域 $B_r(x_0)$ 内,不妨取 x_0 为坐标原点, $B_r(x_0) \cap \partial U = \{(x^{'}, x_n : x_n = \varphi(x^{'}))\}$ 。那么由 $\partial U \in C^{\infty}$ 可以得到 $\varphi : \mathbb{R}^{n-1} \to \mathbb{R}$ 为 C^2 函数,其中 ∂U 得单位外法向为 $\nu = \frac{1}{\sqrt{1+|\nabla \varphi|^2}}(\nabla \varphi, -1)$ 。已知 u = 0 on ∂U ,则有 $u(x^{'}, \varphi(x^{'})) = 0$, $x^{'} \in \{x_{n=0}\} \cap B_r(x_0) := \Sigma$ 。对于 $\forall 1 \leq \alpha, \beta \leq n-1$,上式对 x_{α} 进行求导,可得 $\frac{\partial u}{\partial x_{\alpha}} + \frac{\partial u}{\partial x_n} \frac{\partial \varphi}{\partial x_{\alpha}} = 0$,然后再对 x_{β} 求导,可得

$$\frac{\partial^2 u}{\partial x_\alpha \partial x_\beta} + \frac{\partial^2 u}{\partial x_\alpha \partial x_n} \frac{\partial \varphi}{\partial x_\beta} + \frac{\partial^2 u}{\partial x_\alpha^2} \frac{\partial \varphi}{\partial x_\alpha} \frac{\partial \varphi}{\partial x_\beta} + \frac{\partial^2 u}{\partial x_n \partial x_\beta} \frac{\partial \varphi}{\partial x_\alpha} + \frac{\partial u}{\partial x_n} \frac{\partial^2 \varphi}{\partial x_\alpha \partial x_\beta} = 0. \tag{1.145}$$

取 $\alpha = \beta$ 并对 α 进行求和可得

$$\sum_{\alpha=1}^{n-1} \left[\frac{\partial^2 u}{\partial x_{\alpha}^2} + 2 \frac{\partial^2 u}{\partial x_{\alpha} \partial x_n} \frac{\partial \varphi}{\partial x_{\alpha}} + \frac{\partial^2 u}{\partial x_n^2} (\frac{\partial \varphi}{\partial x_{\alpha}})^2 \right] + \frac{\partial u}{\partial x_n} \sum_{\alpha=1}^{n-1} \frac{\partial^2 \varphi}{\partial x_{\alpha}^2} = 0. \tag{1.146}$$

记 $v(x^{'}) = \frac{\partial u}{\partial x_{n}}(x^{'}, \varphi(x^{'}))$,则 $\frac{\partial v}{\partial x_{\alpha}} = \frac{\partial^{2} u}{\partial x_{n} \partial x_{\alpha}} + \frac{\partial^{2} u}{\partial x_{n}^{2}} \frac{\partial \varphi}{\partial x_{\alpha}}$,利用 $\Delta u = 0$ on ∂U ,有 $\sum_{\alpha=1}^{n-1} \frac{\partial^{2} u}{\partial x_{\alpha}^{2}} + \frac{\partial^{2} u}{\partial x_{n}^{2}} = 0$ 。带回到求和式可得

$$-\frac{\partial^2 u}{\partial x_n^2} + 2\sum_{\alpha=1}^{n-1} \left(\frac{\partial v}{\partial x_\alpha} - \frac{\partial^2 u}{\partial x_n^2} \frac{\partial \varphi}{\partial x_\alpha}\right) \frac{\partial \varphi}{\partial x_\alpha} + \sum_{\alpha=1}^{n-1} \frac{\partial^2 u}{\partial x_n^2} \left(\frac{\partial \varphi}{\partial x_\alpha}\right)^2 + v\Delta\varphi = 0, \tag{1.147}$$

则有

$$-\frac{\partial^2 u}{\partial x_n^2} \left(1 + \sum_{\alpha=1}^{n-1} \left(\frac{\partial \varphi}{\partial x_\alpha}\right)^2\right) = -v\Delta\varphi - 2\sum_{\alpha=1}^{n-1} \frac{\partial v}{\partial x_\alpha} \frac{\partial \varphi}{\partial x_\alpha},\tag{1.148}$$

即

$$\frac{\partial^2 u}{\partial x_n^2} = \frac{1}{1 + |D\varphi|^2} (v\Delta\varphi + 2DvD\varphi). \tag{1.149}$$

带回 $\frac{\partial v}{\partial x_a}$ 的表达式得

$$\frac{\partial^2 u}{\partial x_n x_\alpha} = \frac{\partial v}{\partial x_\alpha} - \frac{1}{1 + |D\varphi|^2} (v\Delta\varphi + 2DvD\varphi) \frac{\partial \varphi}{\partial x_\alpha}.$$
 (1.150)

将 $\frac{\partial^2 u}{\partial x_n^2}$, $\frac{\partial^2 u}{\partial x_n \partial x_\alpha}$ 带回到(1.145)式可得

$$\frac{\partial^2 u}{\partial x_\alpha \partial x_\beta} = -v \frac{\partial^2 \varphi}{\partial x_\alpha \partial x_\beta} - \frac{\partial v}{\partial x_\alpha} \frac{\partial \varphi}{\partial x_\beta} - \frac{\partial v}{\partial x_\beta} \frac{\partial \varphi}{\partial x_\alpha} - \frac{1}{1 + |D\varphi|^2} \frac{\partial \varphi}{\partial x_\alpha} \frac{\partial \varphi}{\partial x_\beta} (v \Delta \varphi + 2Dv D\varphi). \tag{1.151}$$

由此得到

$$\begin{split} & \int_{\partial U} \sum_{i,j,k=1}^{n} a_{ij} u_{x_{i}} u_{x_{i}x_{j}} \nu^{k} dS \\ & = \int_{\Sigma} \sum_{i=1}^{n-1} [\sum_{j=1}^{n-1} (a_{ij} u_{x_{i}} u_{x_{k}x_{j}} \varphi_{x_{k}} - a_{ij} u_{x_{i}} u_{x_{n}x_{j}}) + (\sum_{k=1}^{n} a_{in} u_{x_{i}} u_{x_{k}x_{n}} \varphi_{x_{k}} - a_{in} u_{x_{i}} u_{x_{n}x_{n}})] dx^{'} \\ & + \int_{\Sigma} \sum_{j=1}^{n-1} (\sum_{k=1}^{n-1} a_{nj} u_{x_{n}} u_{x_{k}x_{j}} \varphi_{x_{k}} - a_{nj} u_{x_{n}} u_{x_{n}x_{j}}) + (\sum_{k=1}^{n-1} a_{nn} u_{x_{n}} u_{x_{k}x_{n}} \varphi_{x_{k}} - a_{nn} u_{x_{n}} u_{x_{n}x_{n}}) dx^{'}. \end{split}$$

利用 a_{ij} 的支集性质,可得

$$\left| \int_{U} \sum_{i,j,k=1}^{n} a_{ij} u_{x_i} u_{x_k x_j} \nu^k dS \right| \le C \int_{\Sigma} \nu^2 dx \le C \int_{\partial U} |Du|^2 dS. \tag{1.152}$$

这里的 C 同 a_{ij} 和 $||\varphi||_{C^2}$ 有关。另外再利用 $\int_{\partial U} |Du|^2 dS \leq (\int_U |u|^2 dx)^{\frac{1}{2}} (\int_U |D^2 u|^2 dx)^{\frac{1}{2}}$ 得到

$$\left| \int_{\partial U} \sum_{i,j,k=1}^{n} a_{ij} u_{x_i} u_{x_k x_j} \nu^k dS \right| \le \varepsilon ||u||_{H^2(U)}^2 + C||u||_{L^2(U)}^2, \tag{1.153}$$

再取 $\varepsilon < \frac{\theta}{\theta+4}$ 得到

$$(Lu, -\Delta u) \ge \beta(\varepsilon)||u||_{H^2(U)}^2 - \gamma||u||_{L^2(U)}^2$$
 (1.154)

那么我们便完成了 Claim 2 的证明。

最后证明 $u'' \in L^2(0,T;H^{-1}(U))$ 。

对于任意的 $v \in H^1_0(U)$,且 $||v||_{H^1_0(U)} \le 1$,记 $v = v^{(1)} + v^{(2)}$,q 其中 $v^{(1)} \in Span\{\omega_k\}_{k=1}^m, (v^{(2)}, \omega_k) = 0$, $k = 1, \cdots, m$ 。则对于 a.e. $0 \le t \le T$,有

$$< u_{m}^{''}, v> = (u_{m}^{''}, v) = (u_{m}^{''}, v^{(1)}) = (f^{'}, v^{(1)}) - B[u_{m}^{'}, v^{(1)}, t]. \tag{1.155}$$

则

$$|\langle u_{m}^{"}, v \rangle| \le C(||f^{'}||_{L^{2}(U)} + ||u_{m}^{'}||_{H^{1}_{\sigma}(U)}),$$
 (1.156)

利用 $||v||_{H^1_0(U)} \leq 1$,得

$$||u_{m}^{"}||_{H^{-1}(U)} = \sup_{v \in H_{0}^{1}(U)} |\langle u_{m}^{"}, v \rangle| \le C(||f^{'}||_{L^{2}(U)} + ||u_{m}^{'}||_{H_{0}^{1}(U)}). \tag{1.157}$$

两边再对 t 积分并取 $m=m_l$,令 $l\to\infty$ 得到 $u''\in L^2(0,T;H^{-1}(U))$,且

$$||u''||_{L^{2}(0,T;H^{-1}(U))} \le C(||f||_{H^{1}(0,T;L^{2}(U))} + ||g||_{H^{2}(U)}). \tag{1.158}$$

1.6 抛物方程的 Harnack 不等式

记 $Lu = -\sum_{i,j=1}^{n} a_{ij} u_{x_i x_j} + \sum_{i=1}^{n} b_i u_{x_i} + cu, \ a_{ij}, b_i, c \in C(\overline{U_T})$, a_{ij} 满足一致抛物条件。

Theorem 1.17. (Parabolic Harnack inequality)

假设 $u \in C_1^2(U_T)$ 为方程 $u_t + Lu = 0$ in U_T 的解且 $u \ge 0$ in U_T 。设 $V \subset C$ 是连通的,则对于任意的 $0 < t_1 < t_2 \le T$,存在常数 C 满足:

$$\sup_{V} u(\cdot, t_1) \le C \inf_{V} u(\cdot \cdot \cdot \cdot, t_2), \tag{1.159}$$

其中 C 只与 V, t_1, t_2 及 L 的系数有关。

Example 1.3. 考虑方程 $u_t = \Delta u$, 我们得到对应的 Harnack 不等式

取
$$v = \log u$$
, $u = e^v$, $u_t = e^v v_t$, $\Delta u = e^v (|Dv|^2 + \Delta v)$ 。 则有

$$v_t = |Dv|^2 + \Delta v, \quad in \ U_T \tag{1.160}$$

$$\omega_t - \Delta\omega = \Delta(|Dv|^2) = 2\sum_{i,j=1}^n v_{x_i x_j}^2 + 2\sum_{i,j=1}^n v_{x_i} v_{x_i x_j x_j} = 2\sum_{i,j=1}^n v_{x_i x_j}^2 + 2\sum_{i=1}^n v_{x_i} \omega_{x_i},$$
(1.161)

和

$$\widetilde{\omega}_t - \Delta \widetilde{\omega} = 4 \sum_{i,i=1}^n v_{x_i} v_{x_j} v_{x_i x_j} - 2 \sum_{i,i=1}^n v_{x_i x_j} = 2 \sum_{i=1}^n v_{x_i} \widetilde{\omega}_{x_i} - 2 \sum_{i,i=1}^n v_{x_i x_j}^2.$$
(1.162)

令 $\hat{\omega} = \omega + k\tilde{\omega}, \ 0 \le k \le \frac{1}{2}$ 待定,则

$$\widehat{\omega}_t - \Delta \widehat{\omega} = (\omega_t - \Delta \omega) + k(\widetilde{\omega}_t - \Delta \widetilde{\omega}) = 2\sum_{i=1}^n v_{x_i} \widehat{\omega}_{x_i} + (2 - 2k) \sum_{i,j=1}^n v_{x_i x_j}^2.$$
 (1.163)

取 ξ 为截断函数满足 $\xi \equiv 1$ on $V \times [t_1, t_2]$,其中 $V \subset\subset U$, $0 < t_1 < t_2 \le T$. $\xi \equiv 0$ on Γ_T , $0 \le \xi \le 1$, $\xi \in C^\infty(U_T)$ 。

取 $\varphi = \xi^4 \widehat{\omega} + \mu t$, 设 φ 在 $(x_0, t_0) \in U \times (0, T]$ 上达到负极小。则在 (x_0, t_0) 处

$$\varphi_t = (\xi^4)_t \widehat{\omega} + \xi^4 \widehat{\omega}_t + \mu = 0, \tag{1.164}$$

$$\varphi_{x_i} = (\xi^4)_{x_i} \widehat{\omega} + \xi^4 \widehat{\omega}_{x_i} = 0, \Rightarrow 4\xi_{x_i} \widehat{\omega} + \xi \widehat{\omega}_{x_i} = 0, \tag{1.165}$$

$$\Delta \varphi = \Delta(\xi^4)\widehat{\omega} + 2\sum_{i=1}^n (\xi^4)_{x_i}\widehat{\omega}_{x_i} + \xi^4 \Delta \widehat{\omega} \ge 0, \tag{1.166}$$

和

$$\varphi_{t} - \Delta \varphi = \xi^{4}(\widehat{\omega}_{t} - \Delta \widehat{\omega}) + (\xi^{2})_{t}\widehat{\omega} - \Delta(\xi^{4})\widehat{\omega} - 32\xi^{2}|D\xi|^{2}\widehat{\omega} + \mu$$

$$= xi^{4}(2\sum_{i=1}^{n} v_{x_{i}}\widehat{\omega}_{x_{i}} + (2 - 2k)\sum_{i,j=1}^{n} v_{x_{i}x_{j}^{2}}) + [(\xi^{4})_{t} - \Delta(\xi^{4}) - 32\xi^{2}|D\xi|^{2}]\widehat{\omega} + \mu$$

$$= [-8\xi^{3}DvD\xi + (\xi^{4})_{t} - \Delta(\xi^{4}) - 32\xi^{2}|D\xi|^{2}]\widehat{\omega} + (2 - 2k)\xi^{4}\sum_{i,j=1}^{n} v_{x_{i}x_{j}}^{2} + \mu$$

$$\leq 0. \tag{1.167}$$

已知 $\widehat{\omega} = \omega + k\widetilde{\omega}$ 在 (x_0, t_0) 处有 $\widehat{\omega} < 0$,利用 $\omega, \widetilde{\omega}$ 的定义有 $|Dv|^2 \le C|D^2v|$,则 $|\widehat{\omega}| \le C|D^2v|$ at (x_0, t_0) 。 另外

$$|[-8\xi^3 DvD\xi + (\xi^4)_t - \Delta(\xi^4) - 32\xi^2 |D\xi|^2 \widehat{\omega}]| \le C|D^2v| + C|D^2v|^{\frac{3}{2}} \le \varepsilon \xi^4 |D^2v|^2 + C$$
(1.168)

则有 $\mu+(2-2k)\xi^4\sum_{i,j=1}^n v_{x_ix_j}^2-\varepsilon|D^2v|^2-C\leq 0$ 。若取 $k=\frac12,\varepsilon=1,\mu$ 足够大,那么上式是不成立的,则表明矛盾。因此 $\varphi=\xi^4\widehat\omega+\mu t\geq 0$ in U_T ,即

$$\widehat{\omega} + \mu t \ge 0, \quad \text{in} \quad V \times [t_1, t_2]. \tag{1.169}$$

则 $v_t = \omega + \widetilde{\omega} = \widetilde{\omega} + \frac{1}{2}\widetilde{\omega} \ge \frac{1}{2}|Dv|^2 - \mu t = \alpha |Dv|^2 - \beta$ 。利用 Newton-Leibniz 公式,对于 $\forall x_1, x_2 \in V, \ t_2 > t_1$,有

$$v(x_{2}, t_{2}) - v(x_{1}, t_{1}) = v(sx_{2} + (1 - s)x_{1}, st_{2} + (1 - s)t_{1})|_{s=0}^{s=1}$$

$$= \int_{0}^{1} \frac{d}{ds}v(sx_{2} + (1 - s)x_{1}, st_{2} + (1 - s)t_{1})dS$$

$$= \int_{0}^{1} Dv \cdot (x_{1} - x_{2}) + v_{t}(t_{2} - t_{1})dS$$

$$\geq \int_{0}^{1} -|Dv||x_{2} - x_{1}| + (\alpha|Dv|^{2} - \beta)(t_{2} - t_{1})dS$$

$$\geq -\nu$$

$$(1.170)$$

即

$$u(x_2, t_2) \ge e^{-\nu} u(x_1, t_1). \tag{1.171}$$

由 x_1, x_2 的任意性, 便可以得到

$$\sup_{V} u(\cdot, t_1) \le C \inf_{V} u(\cdot, t_2). \tag{1.172}$$

Corollary 1.1. 若存在 $x_0 \in V$,使得 $u(x_0, t_2) = 0$,则 $u(x, t) \equiv 0$, $t < t_2$ 。

下面我们来证明 Theorem 1.17。

证明. 这里证明 $Lu = -\sum_{i,j=1}^{n} a_{ij} u_{x_i x_j}$ 的情形,不妨假设 a_{ij} 为光滑函数。

Step 1,不妨假设 u>0 in U_T ,否则可以对 $u+\varepsilon$ 得到结论,然后再令 $\varepsilon\to 0$ 。令 $v=\log u$,则有

$$v_t = \sum_{i,j=1}^n a_{ij} v_{x_i} v_{x_j} + \sum_{i,j=1}^n a_{ij} v_{x_i x_j}.$$
(1.173)

定义 $\omega = \sum_{i,j=1}^{n} a_{ij} v_{x_i x_j}, \widetilde{\omega} = \sum_{i,j=1}^{n} a_{ij} v_{x_i} v_{x_j}, 则有 v_t = \omega + \widetilde{\omega}.$

Step 2, 由上式得到

$$v_{x_k x_l t} = \omega_{x_k x_l} + 2 \sum_{i,j=1}^{n} a_{ij} v_{x_i x_k x_l} v_{x_j} + 2 \sum_{i,j=1}^{n} a_{ij} v_{x_i x_k} v_{x_j x_l} + R,$$

$$(1.174)$$

R 为 $\widetilde{\omega}_{x_k x_l}$ 中含有 a_{ij} 导数的项,满足 $|R| \leq \varepsilon |D^2 v|^2 + C |D v|^2$,则有

$$\omega_{t} = \sum_{k,l=1}^{n} a_{kl} v_{x_{k}x_{l}t} + \sum_{k,l=1}^{n} a_{kl,t} v_{x_{k}x_{l}}
= \sum_{k,l=1}^{n} a_{kl} \omega_{x_{k}x_{l}} + 2 \sum_{i,j,k,l=1}^{n} a_{ij} a_{kl} v_{x_{i}x_{k}} v_{x_{j}x_{l}} + 2 \sum_{i,j=1}^{n} a_{ij} \omega_{x_{i}} v_{x_{j}} + R.$$
(1.175)

R 同上面那个估计满足同样的估计式, 取 ε 充分小可以得到

$$\omega_t - \sum_{k,l=1}^n a_{kl} \omega_{x_k x_l} + \sum_{k=1}^n b_k \omega_k \ge \theta^2 |D^2 v|^2 - C|Dv|^2, \tag{1.176}$$

这里 $b_k = -2\sum_{l=1}^n a_{kl} v_{x_l}, \quad (k=1,\dots,n)$ 。

Step 3, 类似于 Step 2, 有

$$\widetilde{\omega}_t - \sum_{k,l=1}^n a_{kl} \widetilde{\omega}_{x_k x_l} = 2 \sum_{i,j=1}^n a_{ij} v_{x_i} (v_{x_j,t} - \sum_{k,l=1}^n a_{kl} v_{x_j x_k x_l}) - 2 \sum_{i,j,k,l=1}^n a_{ij} a_{kl} v_{x_i x_k} v_{x_j x_l} + R, \qquad (1.177)$$

R 同前面一样满足相同的估计式,则有

$$\widetilde{\omega}_t - \sum_{k,l=1}^n a_{kl} \widetilde{\omega}_{x_k x_l} + \sum_{k=1}^n b_k \widetilde{\omega}_k \ge -c|D^2 v|^2 - C|D v|^2 - C, \tag{1.178}$$

最后一个不等号是利用 Young 不等式得到。

Step 4, $\diamondsuit \widehat{\omega} = \omega + k\widetilde{\omega}$, $0 < k \leq \frac{1}{2}$, 由 $Step \ 2$, $Step \ 3$ 得

$$\widehat{\omega}_t - \sum_{k,l=1}^n a_{kl} \widehat{\omega}_{x_k x_l} + \sum_{k=1}^n b_k \widehat{\omega}_{x_k} \ge \frac{\theta^2}{2} |D^2 v|^2 - C|Dv|^2 - C. \tag{1.179}$$

Step 5,取 $V \subset \subset U$, $0 < t_1 < t_2 \le T$ 。取截断函数 $\xi \in C^{\infty}(U_T)$ 满足: $\xi \equiv 1$ on $V \times [t_1, t_2]$, $\xi \equiv 0$ on Γ_T , $0 \le \xi \le 1$ 。

设 μ 为给定正数,假设 $\varphi = \xi^4 \omega$ 在 $(x_0, t_0) \in U \times (0, T]$ 内部达到负极小。那么在 (x_0, t_0) 点处,我们有

$$\varphi_{x_k} - (\xi^4)_{x_k} \widehat{\omega} + \xi^4 \widehat{\omega}_{x_k} = 0, \tag{1.180}$$

即

$$\xi \widehat{\omega}_{x_k} + 4\xi_{x_k} \widehat{\omega} = 0, \quad (k = 1, 2 \cdots). \tag{1.181}$$

和

$$\varphi_t + L\varphi = (\xi^4 \widehat{\omega} + \mu t)_t - \sum_{k,l=1}^n a_{kl} (\xi^4 \widehat{\omega} + \mu t)_{x_k x_l} \le 0, \tag{1.182}$$

即

$$\mu + \xi^4(\widetilde{\omega}_t - \sum_{k,l=1}^n a_{kl}\widehat{\omega}_{x_k x_l}) - 2\sum_{k,l=1}^n a_{kl}(\xi^4)_{x_k}\widehat{\omega}_{x_l} + \widehat{R} \le 0.$$
 (1.183)

其中 $|\hat{R}| \leq C\xi^2 |\hat{\omega}|$ 。 带入(1.179)得到

$$\mu + \xi^4 \left(\frac{\theta^2}{2}|D^2v|^2 - C|Dv|^2 - \sum_{k=1}^n b_k \widetilde{\omega}_{x_k} - C\right) + \widetilde{R} \le 0, \tag{1.184}$$

再对 $\sum_{k=1}^{n} b_k \hat{\omega}_{x_k}$ 使用一阶导数条件得到

$$\mu + \xi^4(\frac{\theta^2}{2}|D^2v|^2 - C|Dv|^2 - C) + \widetilde{R} \le 0, \tag{1.185}$$

这里 $|\widetilde{R}| \le C\xi^2 |\widehat{\omega}| + C\xi^3 |Dv| |\widehat{\omega}|$ 。

由于 $\varphi = \xi^4 \omega + \mu t$ 在 (x_0, t_0) 处达到负极小知 $\widehat{\omega} = \omega + k\widetilde{\omega} < 0$,带入 $\omega, \widetilde{\omega}$ 的表达式得 $|Dv|^2 \le C|D^2v|$,则 $|\widehat{\omega}| \le C|D^2v|$ at (x_0, t_0) 。则有

$$|\widetilde{R}| \le C\xi^2 |D^2 v| + C\xi^3 |D^2 v|^{\frac{3}{2}} \le \varepsilon \xi^4 |D^2 v|^2 + C \tag{1.186}$$

最后一个不等号是用 Young 不等式得到的。那么取 $\varepsilon=\frac{\theta^2}{2},$ 则带回上式的到 $\mu\leq C|D^2v|+C,$ 对于 μ 充分大可以得到矛盾。

Step 6, 由 Step 5 知 $\varphi = \xi^4 \omega + \mu t \geq 0$ in U_T , 即 $\widehat{\omega} + \mu t \geq 0$, in $V \times [t_1, t_2]$, 那么则有

$$v_t = \omega + \widetilde{\omega} \ge (1 - k)\widetilde{\omega} - \mu t \ge \alpha |Dv|^2 - \beta, \quad \alpha, \beta > 0.$$
(1.187)

Step 7, 固定 $x_1, x_2 \in V, t_2 > t_1$, 则

$$V(x_{2}, t_{2}) - V(x_{1}, t_{1}) = \int_{0}^{1} \frac{d}{ds} v(sx_{2} + (1 - s)x_{1}, st_{2} + (1 - s)t_{1})dS$$

$$= \int_{0}^{1} Dv \cdot (x_{2} - x_{1}) + v_{t}(t_{2} - t_{1})dS$$

$$\geq \int_{0}^{1} -|Dv||x_{2} - x_{1}| + (\alpha|Dv|^{2} - \beta)(t_{2} - t_{1})dS$$

$$\geq -\int_{0}^{1} \frac{|x_{2} - x_{1}|^{2}}{4\alpha(t_{2} - t_{1})} + \beta(t_{2} - t_{1})dS \geq -\nu.$$

$$(1.188)$$

则

$$\log u(x_2, t_2) > \log u(x_1, t_1) - \nu, \tag{1.189}$$

即

$$u(x_2, t_2) \ge e^{-\nu} u(x_1, t_1), \quad in \quad V.$$
 (1.190)

由 $V \subset U$,利用有限覆盖定理可以得到

$$\sup_{V} u(\cdot, t_1) \le C \inf_{V} u(\cdot, t_2). \tag{1.191}$$

1.7 抛物方程的极值原理

Theorem 1.18. (Weak Maximum Principle)

假设 $u \in C_1^2(U_T) \cap C(\overline{U_T}), c \equiv 0 \text{ in } U_T$ 。

- (1), $\nexists u_t + Lu \leq 0 \ in \ U_T$, $M \max_{\overline{U_T}} u = \max_{\Gamma_T} u_o$
- (2), $\not\equiv u_t + Lu \geq 0$ in U_T , $\not\bowtie \min_{\overline{U_T}} u = \min_{\Gamma_T} u$.

证明. (1),假设 $u_t + Lu < 0$ in U_T ,且存在 $(x_0 t_0) \in U_T$,使得 $u(x_0, t_0) = \max_{\overline{U_T}} u_o$ 。若 $0 < t_0 < T$,则 $u_t = 0$ at (x_0, t_0) 。由椭圆方程的弱解极值原理的证明可知 $Lu \ge 0$ at (x_0, t_0) ,则 $u_t + Lu \ge 0$ at (x_0, t_0) 。表明矛盾。若 $t_0 = T$,则 $u_{t_0} \ge 0$ at (x_0, t_0) 。类似地有 $u_t + Lu \ge 0$ at (x_0, t_0) ,同样得到矛盾。则有 $\max_{\overline{U_T}} u = \max_{\Gamma_T} u_o$

对于一般情形,我们考虑 $u^{\varepsilon}(x,t) = u(x,t) - \varepsilon t$, $\varepsilon > 0$ 。由 $u_t^{\varepsilon} + Lu^{\varepsilon} = u_t + Lu - \varepsilon < 0$,得到 $\max_{\overline{U_T}} u^{\varepsilon} = \max_{\Gamma_T} u^{\varepsilon} \le \max_{\Gamma_T} u$ 。即 $\max_{\overline{U_T}} u - \varepsilon T \le \max_{\Gamma_T} u$,令 $\varepsilon \to 0^+$ 得 $\max_{\overline{U_T}} = \max_{\Gamma_T} u$ 。

(2),令
$$v=-u$$
,然后同 (1),便可以得到 $\min_{\overline{U_T}}u=\min_{\Gamma_T}u$ 。

Theorem 1.19. (Weak Maximum Principle for $c \ge 0$)

假设 $u \in C_1^2(U_T) \cap C(\overline{U_T}), c \geq 0$ in U_T ,

- (1),若 $u_t + Lu \le 0$ in U_T ,则 $\max_{\overline{U_T}} u \le \max_{\Gamma_T} u^+$ 。
- (2),若 $u_t + Lu \ge 0$ in U_T ,则 $\min_{\overline{U_T}} u \ge -\max_{\Gamma_T} u^-$ 。

证明. (1),假设 $u_t + Lu < 0$ in U_T ,且 u 在内部 $(x_0, t_0) \in U_T$ 达到正极大值,而在 (x_0, t_0) 处, $u_t + Lu = (-\sum\limits_{i,j=1}^n a_{ij}u_{x_ix_j} + \sum\limits_{i=1}^n b_iu_{x_i}) + cu \geq 0$,表明矛盾。对于 $u_t + Lu \leq 0$ in U_T ,考虑 $u^\varepsilon(x,t) = u(x,t) - \varepsilon t$,则 $u_t^\varepsilon - Lu^\varepsilon < 0$ in U_T 。则 u^ε 在边界取得正极大值,即

$$\max_{\overline{U_T}} u^{\varepsilon} \le \max_{\Gamma_T} (u^{\varepsilon})^+ \le \max_{\Gamma_T} u^+. \tag{1.192}$$

又 $\max_{\overline{U_T}} u - \varepsilon T \le \max_{\overline{U_T}} u^{\varepsilon}$,然后令 $\varepsilon \to 0$,得到 $\max_{\overline{U_T}} \le \max_{\Gamma_T} u^+$ 。

(2),考察
$$-u$$
,同 (1) 一样的操作,可以得到 $\min_{\overline{U_T}} \ge -\max_{\Gamma_T} u^-$ 。

Theorem 1.20. (Strong Maximum Principle)

假设 $u \in C_1^2(U_T) \cap C(\overline{U_T}), c \equiv 0 \text{ in } U_T, U$ 是连通的。

- (1), 若 $u_t + Lu \le 0$ in U_T , u 在 $\overline{U_T}$ 的内部 $(x_0, t_0) \in U_T$ 取到最大值,则 $u \equiv const$ on U_{t_0} 。
- (2), 若 $u_t + Lu \le 0$ in U_T , u 在 $\overline{U_T}$ 的内部 $(x_0, t_0) \in U_T$ 取到最小值, 则 $u \equiv const$ on U_{t_0} 。

证明. (1), 取 $W \subset \subset U$ 使得 $x \in W$, 令 v 为方程

$$\begin{cases} v_t + Lv = f & in W_T \\ v = u & on E_T. \end{cases}$$
 (1.193)

 E_T 为 W_T 的抛物边界。由弱极值原理得到 $u \leq v$ 。取 $M = \max_{U_T} u$,则 $v(x_0,t_0) \geq u(x_0,t_0) = M$ 。对 v 再用弱极值原理,得到 $v(x_0,t_0) \leq \max_{E_T} v = \max_{E_T} u \leq M$,则 $u(x_0,t_0) = M$ 。

记 $\widetilde{v} = M - v$,则 $\widetilde{v}_t - L\widetilde{v} = 0, \widetilde{v} \ge 0$ in W_T 。取 $V \subset C$ 使得 $x_0 \in V$ 且 V 是连通的。令 $0 < t < t_0$,由 Harnack 不等式,

$$\max_{V} \widetilde{v}(\cdot, t) \le C \inf_{V} \widetilde{v}(\cdot, t_0) \le C \widetilde{v}(x_0, t_0) = 0, \tag{1.194}$$

则 $\tilde{v} \equiv 0$ on $V \times \{t\}, \forall 0 < t < t_0$,即 $\tilde{v} \equiv 0$ on W_{t_0} ,所以 $v \equiv M$ on W_{t_0} 。由 v = u on E_T 得到 $u \equiv M$ on $\partial W \times [0, t_0]$,由 W 的任意性得到 $u \equiv M$ on U_{t_0} 。

$$(2)$$
 对 $-u$ 使用 (1) 即可。

Theorem 1.21. (Strong Maximum Principle for $c \geq 0$)

假设 $u \in C_1^2(U_T) \cap C(\overline{U_T}), c \ge 0$ in U_T , U 是连通的。

- (1),若 $u_t + Lu \leq 0$ in U_T ,u 在 $\overline{U_T}$ 的内部 $(x_0,t_0) \in U_T$ 取到非负极大值,则 $u \equiv const$ on U_{t_0} 。
- (2), 若 $u_t + Lu \le 0$ in U_T , u 在 $\overline{U_T}$ 的内部 $(x_0, t_0) \in U_T$ 取到非正极小值, 则 $u \equiv const$ on U_{t_0} 。

证明. (1), 令 $M=\max_{U_T}u\geq 0$, 若 M>0, 取 $W\subset\subset U$ 使得 $x_0\in W$, 令 v 为方程

$$\begin{cases} v_t + Kv = f & in W_T \\ v = u & on E_T. \end{cases}$$
 (1.195)

的解, 其中 Kv = Lv - cv。

由弱极值原理知, $0 \le v \le M$,由于 $u_t + Kv \le -cu \le 0$ on $\{u \ge 0\}$,那么由弱极值原理可知 $u \le v$,则 v = M at (x_0, t_0) ,记 $\widetilde{v} = M - v$,则 $\widetilde{v}_t + K\widetilde{v} = 0$,且 $\widetilde{v} \ge 0$ in W_T 。取 $V \subset C$ W 使得 $x_0 \in V$,V 是连通的。令 $0 < t < t_0$,由 Harnack 不等式,可得 $\widetilde{v} \equiv 0$ on $\partial W \times [0, t_0]$,即 $v = u^+ \equiv M$ on $\partial W \times [0, t_0]$ 。由 M > 0 得 $u \equiv M$ on $\partial W \times [0, t_0]$,由 W 得任意性有 $u \equiv M$ on U_{t_0} 。对于 M = 0 可以直接得到 $u \equiv 0$ on U_{t_0} 。

$$(2)$$
,对 $-u$ 使用 (1) 即可。

2 二阶双曲方程

2.1 波方程回顾

Recall: 我们在数理方程中主要学习了下面波动方程的两种初值问题

$$\begin{cases} u_{tt} - u_{xx} = 0 & in \ \mathbb{R} \times (0, \infty) \\ u = g, \quad u_t = h \quad on \ \mathbb{R} \times \{t = 0\}. \end{cases}$$
 (2.1)

我们可以用达朗贝尔公式求解。对于一般的初边值问题

$$\begin{cases} u_{tt} - u_{xx} = 0 & in [0, 1] \times (0, \infty) \\ u|_{x=0} = u|_{x=1} = 0, \\ u|_{t=0} = g, \ u_t|_{t=0} = h. \end{cases}$$
(2.2)

可以用分离变量的方法求解.

Remark 2.1. (1), 不能推广到高维有界区域。(2), 能量估计是可以推广, 可以证明弱解的存在唯一性。

Example 2.1. 考虑运输方程

$$\begin{cases} u_t + bu_x = 0 & in \ \mathbb{R} \times (0, \infty) \\ u = g, & on \ \mathbb{R} \times \{t = 0\}. \end{cases}$$
 (2.3)

$$\frac{dz(s)}{ds} = bu_x + u_t = 0, (2.4)$$

即 z(s) = const 在直线 $(x_0 + sb, t_0 + s)$ 上。若取 $s = -t_0$ 则 $u(x_0 - bt_0, 0) = g(x_0 - bt_0)$,那么由 x_0, t_0 的任意性得 u(x + sb, t + s) = g(x - bt),取 s = 0 得 u(x, t) = g(x - bt)。下面是非齐次的问题

$$\begin{cases} u_t + bu_x = f & in \ \mathbb{R} \times (0, \infty) \\ u = g, & on \ \mathbb{R} \times \{t = 0\}. \end{cases}$$
 (2.5)

令 $z(s) = u(x+sb,t+s), s \in \mathbb{R}$ 。则 $\frac{dz(s)}{ds} = bu_x + u_t = f(x+sb,t+s)$,因此沿直线 (x_0+sb,t_0+s) 对 s 积分,已知 $z(0) = u(x_0,t_0), z(-t_0) = u(x_0-bt_0,0)$ 。则

$$u(x_0, t_0) - u(x_0 - bt_0, 0) = z(s)|_{s=-t_0}^{s=0} = \int_{-t_0}^{0} \frac{dz(s)}{ds} ds,$$

$$= \int_{-t_0}^{0} f(x_0 + sb, t_0 + s) ds$$

$$= \int_{0}^{t_0} f(x_0 - (s - t_0)b, s) ds.$$
(2.6)

由 (x_0,t_0) 的任意性得

$$u(x,t) = g(x-bt) + \int_0^t f(x+(s-t)b,s)ds.$$
 (2.7)

Example 2.2. 一维得波动方程

$$\begin{cases} u_{tt} - u_{xx} = 0 & in \ \mathbb{R} \times (0, \infty) \\ u = g, \quad u_t = h \quad on \ \mathbb{R} \times \{t = 0\}. \end{cases}$$
 (2.8)

令 $v(x,t)=u_t(x,t)-u_x(x,t)$,则有 $v_t+v_x=u_{tt}-u_{xx}=0$ 。且 $v|_{t=0}=u_t|_{t=0}-u_x|_{t=0}=h-g^{'}$. 即 v 满足运输方程

$$\begin{cases} v_t + v_x = 0 & in \ \mathbb{R} \times (0, \infty) \\ v = h - g', & on \ \mathbb{R} \times \{t = 0\}. \end{cases}$$
 (2.9)

由上例得 v(x,t) = h(x-t) - g'(x-t) := a(x,t), 那么 u 满足运输方程

$$\begin{cases} u_t - u_x = a(x,t) & \text{in } \mathbb{R} \times (0,\infty) \\ u = g, & \text{on } \mathbb{R} \times \{t = 0\}. \end{cases}$$
 (2.10)

那么可知

$$u(x,t) = g(x+t) + \int_{0}^{t} h(x+t-2s) - g'(x+t-2s)ds = \frac{1}{2}[g(x+t) - g(x-t)] + \frac{1}{2} \int_{x-t}^{x+t} h(s)ds. \quad (2.11)$$

上式即为以为全空间双曲方程解的达朗贝尔公式。

Example 2.3. 初边值问题

$$\begin{cases} u_{tt} - u_{xx} = 0 & in [0, 1] \times (0, \infty) \\ u|_{x=0} = u|_{x=1} = 0, \\ u|_{t=0} = g, \ u_t|_{t=0} = h. \end{cases}$$
(2.12)

令
$$u(x,t) = T(t)X(x)$$
,则 $u_{tt} = T''X(x), u_{xx} = T(t)X''(x)$,则 $\frac{T''(t)}{T(t)} = \frac{X''(x)}{X(x)} = -\lambda$. 考虑
$$\begin{cases} X'' + \lambda X(x) = 0, & x \in [0,1] \\ X(0) = X(1) = 0. \end{cases}$$
 (2.13)

容易解得 $\lambda_k = (k\pi)^2, X_k(x) = C_k \sin(k\pi x), (k = 1, 2 \cdots),$ 带入 $T'' = -\lambda T(t)$ 得 $T_k(t) = A_k \cos(k\pi t) + B_k \sin(k\pi t)$ 。那么可得 $u(x,t) = \sum_{k=1}^n T_k(t) X_k(x)$ 。带入初值即可得到 $T_k(t)$ 的表达式。

另外我们再看一下唯一性,考虑方程

$$\begin{cases}
 u_{tt} - u_{xx} = 0 & x \in [0, 1], t > 0 \\
 u|_{x=0} = u|_{x=1} = 0, \\
 u|_{t=0} = g, u_t|_{t=0} = h.
\end{cases}$$
(2.14)

只需证明对于方程 g=h=0 的条件下 $u\equiv 0$ 。令 $E(t)=\frac{1}{2}\int_0^1 u_t^2+u_x^2 dx$,则有

$$\frac{dE(t)}{dt} = \int_0^1 (u_t u_{tt} + u_x u_{tx}) dx = \int_0^1 ((u_t u_x)_x - u_t u_{xx} + u_t u_{tt}) dx
= (u_t u_x)|_{x=0}^{x=1} = 0.$$
(2.15)

而 E(0) = 0,由此可得 $u \equiv 0$ 。

有限传播速度: 对于方程 $u_{tt} - u_{xx} = 0$, $in \mathbb{R} \times (0, \infty)$, 固定 $x_0 \in \mathbb{R}, t_0 > 0$, 定义 $K(x_0, t_0) = \{(x, t) : 0 \le t \le t_0, |x - x_0| \le |t_0 - t|\}$ 。

Theorem 2.1. $\not\equiv u \equiv u_t \equiv 0 \text{ on } B(x_0, t_0) \times \{t = 0\}, \ \ \emptyset \ \ u \equiv 0 \text{ in } K(x_0, t_0).$

证明. 定义局部能量 $e(t)=\frac{1}{2}\int_{x_0-(t_0-t)}^{x_0+(t_0-t)}u_t^2(x,t)+u_x^2(x,t)dx,~0\leq t\leq t_0$ 。则有

$$\frac{de(t)}{dt} = \int_{x_0 - (t_0 - t)}^{x_0 + (t_0 + t)} (u_t u_{tt} + u_x u_{xt}) dx - \frac{1}{2} (u_t^2 + u_x^2)|_{x = x_0 + t_0 - t}$$

$$= \int_{x_0 - (t_0 - t)}^{x_0 + (t_0 + t)} (u_t u_x)_x dx - \frac{1}{2} (u_t^2 + u_x^2)|_{x = x_0 + t_0 - t} + \frac{1}{2} (u_t^2 + u_x^2)|_{x = x_0 - (t_0 - t)}.$$

利用 $u_x u_t \leq \frac{1}{2}(u_t^2 + u_x^2)$, 得到 $\frac{de(t)}{dt} \leq 0$ 。由 e(0) = 0 知 e(t) = 0, $\forall 0 \leq t \leq t_0$ 。则 $u \equiv 0$ in $K(x_0, t_0)$ 。

2.2 双曲方程弱解的定义

记 $U_T = U \times (0,T], T > 0, U \subset \mathbb{R}^n$ 为有界开集。考虑初边值问题

$$\begin{cases} u_{tt} + Lu = f & x \in U_T \\ u = 0, \text{ on } \partial U \times [0, T] \\ u| = g, u_t = h, \text{ on } U \times \{t = 0\}. \end{cases}$$
 (2.16)

 $f: U_T \to \mathbb{R}, g, h: U \to \mathbb{R}, u: \overline{U_T} \to \mathbb{R}$ 的未知函数。

散度形式 $Lu = -\sum_{i,j=1}^n (a_{ij}(x,t)u_{x_i})_{x_j} + \sum_{i=1}^n b_i(x,t)u_{x_i} + c(x,t)u$ 称微分算子 $\frac{\partial^2}{\partial t^2} + L$ 是一致双曲的,如果存在 $\theta > 0$,使得 $\sum_{i,j=1}^n a_{ij}(x,t)\xi_i\xi_j \geq \theta |\xi|^2$, $\forall (x,t) \in U_T, \xi \in \mathbb{R}^n$ 成立。

设 $a_{ij}, b_i, c \in C^1(\overline{U_T}), \ (i, j = 1, \cdots, n), f \in L^2(U_T), g \in H^1_0(U), h \in L^2(U), a_{ij} = a_{ji}$ 。 我们定义一个双线性型

$$B[u,v,t] = \int_{U} \sum_{i,j=1}^{n} a_{ij}(x,t)u_{x_i}v_{x_j} + \sum_{i=1}^{n} b_i(x,t)u_{x_i}v + c(x,t)uvdx, \quad u,v \in H_0^1(U), \quad 0 \le t \le T.$$
 (2.17)

Motivation: 假设 u 是光滑函数, 令

$$u:[0,T] \to H_0^1(U), \quad [u(t)](x) = u(x,t), \quad x \in U, 0 \le t \le T.$$

 $f:[0,T] \to L^2(U), \quad [f(t)](x) = f(x,t), \quad x \in U, 0 \le t \le T.$

对于 $\forall v \in H_0^1(U)$ 方程两端同时乘上 v,有 $\int_U u_{tt}vdx + \int_U Luvdx = \int_U fvdx$ 。利用分部积分可以得到

$$(u'', v) + B[u, v, t] = (f, v). (2.18)$$

利用方程 $u_{tt}=g^0+\sum\limits_{i=1}^ng^j_{x_j}$ in U_T ,这里 $g^0=f-\sum\limits_{i=1}^nb_iu_{x_i}-cu$ 和 $g^j=\sum\limits_{i=1}^na_{ij}u_{x_i}$ 。由 Evans 5.9.1,Theorem 1 可得 $u_{tt}\in H^{-1}(U)$ 且 $(u^{''},v)=< u^{''},v>_\circ$

Definition 2.1. 称 $u \in L^{2}(0,T;H_{0}^{1}(U)), u^{'} \in L^{2}(0,T;L^{2}(U)), u^{''} \in L^{2}(0,T;H^{-1}(U))$ 为初边值问题(2.16)的弱解,如果

(1),
$$\langle u^{''}, v \rangle + B[u, v, t] = (f, v), \quad \forall v \in H_0^1(U), \text{ a.e. } 0 \le t \le T,$$

(2), $u(0) = g, \quad u^{'}(0) = h.$

Remark 2.2. 由 Evans 5.9.2, Theorem 3 得到 $u \in C([0,T],L^2(U)), u' \in C([0,T],H^{-1}(U))$ 。

2.3 双曲方程弱解的存在性 (Galerkin 逼近)

Theorem 2.2. (逼近解的构造)

对于
$$\forall m=1,2\cdots$$
,存在唯一函数 $u_m=\sum\limits_{k=1}^m d_m^k(t)\omega_k$ 满足

$$d_{m}^{k}(0) = (g, \omega_{k}), \quad (d_{m}^{k})'(0) = (h, \omega_{k}), \quad (k = 1, \dots, m),$$

$$(u_{m}'', \omega_{k}) + B[u_{m}, \omega_{k}, t] = (f, \omega_{k}), \quad (k = 1, \cdot, m, \ 0 \le t \le T). \tag{2.19}$$

这里 $\{\omega_k\}_{k=1}^{\infty}$ 为 $L^2(U)$ 的正交规范基, $H_0^1(U)$ 的正交基。

证明. 容易得到 $(u_m''(t), \omega_k) = (d_m^k(t))''$, 和

$$B[u_m, \omega_k, t] = \sum_{l=1}^m d_m^l(t) B[\omega_l, \omega_k, t] = \sum_{l=1}^m d_m^l(t) e^{kl}(t).$$
 (2.20)

记 $(f,\omega_k)=f^k(t)$, 则我们得到常微分方程

$$\begin{cases} (d_m^k(t))^{"} + \sum_{l=1}^{m} d_m^l e^{kl}(t) = f^k(t), & (k=1,\cdots,m) \\ d_m^k(0) = (g,\omega_k), & (d_m^k)^{'}(0) = (h,\omega_k). \end{cases}$$

利用常微分方程组解的存在性定理,存在唯一的绝对连续函数 $d_m(t)=(d_m^1,\cdot,d_m^m(t))$ 满足条件,即逼近解存在。

类似于抛物方程可以得到 $d_m^k \in W^{2,2}(0,T)$ 。

Recall: 对于方程 $u_{tt} = \Delta u + f(x,t)$ in U_T , 有

$$\begin{split} \frac{1}{2} \frac{d}{dt} \int_{U} u_{t}^{2} dx &= \int_{U} u_{t} u_{tt} dx = \int_{U} u_{t} (\Delta u + f) dx \\ &= \int_{U} \sum_{i=1}^{n} [(u_{t} u_{x_{i}})_{x_{i}} - u_{tx_{i}} u_{x_{i}}] dx + \int_{U} f u_{t} dx \\ &= \int_{\partial U} \sum_{i=1}^{n} u_{t} u_{x_{i}} \nu^{i} dS - \frac{1}{2} \frac{d}{dt} \int_{U} |Du|^{2} dx + \int_{U} f u_{t} dx. \end{split}$$

由此得到

$$\frac{1}{2}\frac{d}{dt}\int_{U}(u_{t}^{2}+|Du|^{2})dx = \int_{U}fu_{t}dx \le \frac{1}{2}\int_{U}u_{t}^{2}dx + \frac{1}{2}\int_{U}f^{2}dx. \tag{2.21}$$

即

$$\frac{d}{dt} \int_{U} (u_t^2 + |Du|^2) dx \le \int_{U} (u_t^2 + |Du|^2) dx + \int_{U} f^2 dx, \tag{2.22}$$

由 Gronwall 不等式

$$\int_{U} (u_t + |Du|^2) dx \le e^T (||h||_{L^2(U)}^2 + ||g||_{H_0^1(U)}^2 + ||f||_{L^2(0,T;L^2(U))}). \tag{2.23}$$

Theorem 2.3. (能量估计)

若 $\{u_m\}_{m=1}^{\infty}$ 为方程的逼近解序列,则

 $\max_{0 \leq t \leq T} (||u_m(t)||_{H_0^1(U)} + ||u_m^{'}(t)||_{L^2(U)}) + ||u_m^{''}||_{L^2(0,T;H^{-1}(U))} \leq C(||f||_{L^2(0,T;L^2(U))} + ||g||_{H_0^1(U)} + ||h||_{L^2(U)}),$

其中 C 只与 U,T 及 L 的系数有关。

证明. (1),由逼近解的的定义有 $(u_m^{''},u_m^{'})+B[u_m,u_m^{'};t]=(f,u_m^{'}),\ a.e.\ 0\leq t\leq T$,注意到 $(u_m^{''},u_m^{'})=\frac{1}{2}\frac{d}{dt}||u_m^{'}||_{L^2(U)}^2$,同时有

$$B[u_m, u'_m, t] = \int_{U} \sum_{i,j=1}^{n} a_{ij} (u'_m)_{x_i} (u'_m)_{x_j} dx + \int_{U} \sum_{i=1}^{n} b_i (u_m)_{x_i} u'_m + c u_m u'_m dx := B_1 + B_2.$$
 (2.24)

其中

$$B_{1} = \int_{U} \sum_{i,j=1}^{n} a_{ij} (u'_{m})_{x_{i}} (u'_{m})_{x_{j}} dx = \frac{1}{2} \frac{d}{dt} \int_{U} \sum_{i,j=1}^{n} a_{ij} (u_{m})_{x_{i}} (u_{m})_{x_{j}} dx - \frac{1}{2} \int_{U} \sum_{i,j=1}^{n} (a_{ij})_{t} (u_{m})_{x_{i}} (u_{m})_{x_{j}} dx.$$

记
$$A[u,v,t]=\int_U\sum_{i,j=1}^n a_{ij}u_{x_i}v_{x_j}dx$$
,则

$$B_1 \ge \frac{1}{2} \frac{d}{dt} A[u_m, u_m; t] - C||u_m||_{H_0^1(U)}^2, \tag{2.25}$$

和

$$|B_2| \le C(||u_m||_{H^1(U)}^2 + ||u_m'||_{L^2(U)}^2). \tag{2.26}$$

将上述估计式带入弱解的定义式有

$$\frac{d}{dt}(||u_{m}^{'}||_{L^{2}(U)}^{2} + A[u_{m}, u_{m}; t]) \le C(||u_{m}^{'}||_{L^{2}(U)}^{2} + ||u_{m}||_{H_{0}^{1}(U)}^{2} + ||f||_{L^{2}(U)}^{2}), \tag{2.27}$$

利用一致双曲条件, $A[u, u, t] \ge \theta \int_U |Du|^2 dx$, 则有

$$\frac{d}{dt}(||u_{m}^{'}||_{L^{2}(U)}^{2} + A[u_{m}, u_{m}; t]) \le C(||u_{m}^{'}||_{L^{2}(U)}^{2} + A[u_{m}, u_{m}; t] + ||f||_{L^{2}(U)}^{2}). \tag{2.28}$$

若记 $\eta(t) = ||u_m'||_{L^2(U)}^2 + A[u_m, u_m; t], \xi(t) = ||f(t)||_{L^2(U)}^2$ 。那么上式可以记为

$$\eta'(t) \le C_1 \eta(t) + C_2 \xi(t),$$
 (2.29)

由 Gronwall 不等式得

$$\eta(t) \le e^{C_1 t} (\eta(0) + C_2 \int_0^t \xi(s) ds),$$
(2.30)

这里 $\eta(0) = ||u_m^{'}(0)||^2_{L^2(U)} + A[u_m(0), u_m(0); 0] \le C(||h||^2_{L^2(U)} + ||g||^2_{H^1_o(U)})$,由此可以得到

$$||u_{m}'(t)||_{L^{2}(U)}^{2} + A[u_{m}(t), u_{m}(t), t] \le C(||h||_{L^{2}(U)}^{2} + ||g||_{L^{2}(U)}^{2} + ||f||_{L^{2}(0,T;L^{2}(U))}^{2}).$$
(2.31)

(2),对于任意的 $v \in H^1_0(U)$, $||v||_{H^1_0(U)} \le 1$,记 $v = v^{(1)} + v^{(2)}$ 其中 $v^{(1)} \in Span\{\omega_k\}_{k=1}^m$, $(v^{(2)}, \omega_k) = 0$, $(k = 1, \cdots, m)$ 且 $||v^{(1)}||_{H^1_0(U)} \le 1$ 。利用逼近解定义式有

$$(u''_m, v^{(1)}) + B[u_m, v^{(1)}; t] = (f, v^{(1)}), (2.32)$$

再利用椭圆方程得能量估计得

$$|\langle u_m'', v^{(1)} \rangle| = |\langle u_m'', v^{(1)} \rangle| \le C(||f||_{L^2(U)} + ||u_m||_{H^1_\sigma(U)}),$$
 (2.33)

则

$$||u_m''|| \le C(||f||_{L^2(U)} + ||u_m||_{H_0^1(U)}). \tag{2.34}$$

两边在关于 t 积分,可得

$$||u_{m}^{"}||_{L^{2}(0,T;H^{-1}(U))}^{2} = \int_{U} ||u_{m}^{"}||_{H^{-1}(U)}^{2} dt \leq \int_{0}^{T} ||f||_{L^{2}(U)}^{2} + ||u_{m}||_{H_{0}^{1}(U)}^{2} dt,$$

$$\leq C(||g||_{H_{0}^{1}(U)}^{2} + ||h||_{L^{2}(U)}^{2} + ||f||_{L^{2}(0,T;L^{2}(U))}^{2}). \tag{2.35}$$

Theorem 2.4. 初边值问题(2.16)存在弱解。

证明. Step 1,由能量估计, $\{u_m\}_{m=1}^{\infty} \in L^2(0,T;H_0^1(U))$ 中有界, $\{u_m\} \in L^2(0,T;L^2(U))$ 中有界, $\{u_m''\} \in L^2(0,T;H^{-1}(U))$ 中有界。因此会存在子列 $\{u_{m_l}\}_{l=1}^{\infty} \subset \{u_m\}_{m=1}^{\infty}, u \in L^2(0,T;H_0^1(U)), u' \in L^2(0,T;L^2(U)), u'' \in L^2(0,T;H^{-1}(U)), u' \in L^2(0,T;H^{-1}(U)), u'' \in L^2(U), u$

$$u_{m_l} \rightharpoonup u \text{ in } L^2(0,T;H_0^1(U)),$$

 $u'_{m_l} \rightharpoonup u' \text{ in } L^2(0,T;L^2(U)),$
 $u''_{m_l} \rightharpoonup u'' \text{ in } L^2(0,T;H^{-1}(U)).$

Step 2,固定 N,取 $v \in C^1([0,T]; H^1_0(U))$ 满足 $v(t) = \sum_{k=1}^n d^k(t)\omega$, $\{\omega_k\}_{k=1}^N$ 为光滑函数。对于 $m \geq N$,由弱解的定义式有

$$\int_{0}^{T} \langle u_{m}^{"}, v \rangle + B[u_{m}, v; t]dt = \int_{0}^{T} (f, v)dt.$$
 (2.36)

取 $m > m_l$, 令 $l \to \infty$ 得到

$$\int_{0}^{T} \langle u'', v \rangle + B[u, v; t] dt = \int_{0}^{T} (f, v) dt.$$
 (2.37)

而形如 $v(t) = \sum_{k=1}^N d^k(t)\omega_k$ 的函数在 $L^2(0,T;H^1_0(U))$ 中稠密,故上式对 $\forall v \in L^2(0,T;H^1_0(U))$ 均成立。利用弱导数唯一性的证明技巧,

$$< u'', v > +B[u, v, t] = (f, v), \ \forall v \in H_0^1(u), \ a.e. \ 0 \le t \le T.$$
 (2.38)

再由 Evans 5.9.2 Theorem 2,3 知 $u \in C([0,T];L^2(u)), u' \in C([0,T];H^{-1}(U))$ 。

Step 3,取 $v \in C^{2}([0,T]; H_{0}^{1}(U)), v(T) = v^{'}(T) = 0$,由于 $t \to (u^{'}(t), v(t))$ 和 $t \to (u(t), v^{'}(t))$ 均为绝对连续函数,由微积分基本定理

$$\int_{0}^{T} (u^{''}(t), v(t)) + (u^{'}(t), v^{'}(t))dt = (u^{'}(T), v(T)) - (u^{'}(0), v(0)),$$

$$\int_{0}^{T} (u(t), v^{''}(t)) + (u^{'}(t), v^{'}(t))dt = (u(T), v^{'}(T)) - (u(0), v^{'}(0)).$$

则有

$$\int_{0}^{T} (u''(t), v(t)) - (u(t), v''(t))dt = (u(0), v'(0)) - (u'(0), v(0)). \tag{2.39}$$

将上式带入到(2.37),有

$$\int_{0}^{T} (v^{''}, u) + B[u, v; t] dt = \int_{0}^{T} (f, v) dt + (u^{'}(0), v(0)) - (u(0), v^{'}(0)). \tag{2.40}$$

对逼近解序列,同样可以得到

$$\int_{0}^{T} (v'', u_m) + B[u_m, v; t]dt = \int_{0}^{T} (f, v)dt + (u'_m(0), v(0)) - (u_m(0), v'(0)).$$
(2.41)

取 $m = m_l$, 然后令 $l \to \infty$ 得到

$$\int_{0}^{T} (v'', u) + B[u, v, t] dt = \int_{0}^{T} (f, v) dt + (h, v(0)) - (g, v'(0)), \tag{2.42}$$

再由 $v(0), v^{'}(0)$ 的任意性得到 $u(0) = g, u^{'}(0) = h$ 。

2.4 弱解的唯一性

Theorem 2.5. 双曲方程的弱解唯一。

证明. 注意到 $u'(t) \notin L^2(0,T;H^1_0(U))$, 不能取为测试函数, 下面只需证明方程

$$\begin{cases} u_{tt} + Lu = 0 & x \in U_T, \\ u = 0 \text{ on } \partial U \times [0, T], \\ u| = 0, u_t = 0, \text{ on } U \times \{t = 0\}. \end{cases}$$
 (2.43)

只有零解。

记
$$\omega(t) = \int_0^t u(\tau)d\tau, \ 0 \le t \le T$$
。

Claim : $||u(s)||_{L^2(U)}^2 + ||\omega(s)||_{H_0^1(U)}^2 \le C \int_0^s ||u||_{L^2(U)}^2 + ||\omega||_{H_0^1(U)}^2 dt$, $0 \le s \le T_1$, T_1 给定。固定 $0 \le s \le T$, 取

$$v(t) = \begin{cases} \int_{t}^{s} u(\tau)d\tau & 0 \le t \le s, \\ 0 & s \le t \le T. \end{cases}$$

则 $v(t) \in H^1_0(U)$, $0 \le t \le T$ 。v 作为测试函数,由弱解定义式, $\int_0^s < u'', v > +B[u,v;t]dt = 0$ 。由于 u'(0) = v(s) = 0,利用分部积分得到

$$\int_{0}^{s} \langle u^{''}, v \rangle dt = \langle u^{'}(s), v(s) \rangle - \langle u^{'}(0), v(0) \rangle - \int_{0}^{s} \langle u^{'}, v^{'} \rangle dt, \tag{2.44}$$

则有

$$\int_{0}^{s} -(u', v') + B[u, v, t]dt = 0.$$
(2.45)

由 v 的定义, $v^{'}=-u$, $0 \le t \le s$,因此 $\int_{0}^{s} < u^{'}, u > -B[v^{'}, v, t]dt = 0$ 。注意到 $< u^{'}, u > = \frac{1}{2}\frac{d}{dt}||u||_{L^{2}(U)}^{2}$,

$$B[v', v; t] = \frac{1}{2} \frac{d}{dt} B[v, v; t] - \frac{1}{2} \int_{U} \sum_{i,j=1}^{n} (a_{ij})_{t} v_{x_{i}} v_{x_{j}} + \sum_{i=1}^{n} (b_{i})_{t} v_{x_{i}} v + c_{t} v^{2} dx$$

$$- \frac{1}{2} \int_{U} \sum_{i=1}^{n} b_{i} v_{x_{i}} v' dx + \frac{1}{2} \int_{U} \sum_{i=1}^{n} b_{i} v'_{x_{i}} v dx$$

$$= \frac{1}{2} \frac{d}{dt} B[v, v; t] - \frac{1}{2} \int_{U} \sum_{i,j=1}^{n} (a_{ij})_{t} v_{x_{i}} v_{x_{j}} + \sum_{i=1}^{n} (b_{i})_{t} v_{x_{i}} v + c_{t} v^{2} dx$$

$$+ \left(\int_{U} \sum_{i=1}^{n} b_{i} v_{x_{i}} u dx + \frac{1}{2} \int_{U} \sum_{i=1}^{n} (b_{i})_{x_{i}} u v dx \right)$$

$$:= \frac{1}{2} \frac{d}{dt} B[v, v; t] - D[v, v; t] - C[u, v; t]. \tag{2.46}$$

带回到原式可得

$$\int_0^s \frac{d}{dt} \left(\frac{1}{2}||u||_{L^2(U)}^2 - \frac{1}{2}B[v,v;t]\right)dt = -\int_0^s C[u,v;t] + D[v,v;t]dt, \tag{2.47}$$

即

$$\frac{1}{2}||u(s)||_{L^{2}(U)}^{2} + \frac{1}{2}B[v(0), v(0), 0] = -\int_{0}^{s} C[u, v; t] + D[v, v; t]dt.$$
(2.48)

利用椭圆方程的能量估计,

$$B[v(0), v(0); 0] \le \beta ||v(0)||_{H_0^1(U)}^2 - \gamma ||v(0)||_{L^2(U)}^2,$$

$$C[u, v; t] \le C(||v||_{H_0^1(U)}^2 + ||u||_{L^2(U)}^2),$$

$$D[v, v; t] \le \alpha ||v||_{H_0^1(U)}^2.$$
(2.49)

带回到(2.48)得到

$$||u(s)||_{L^{2}(U)}^{2} + ||u(0)||_{H_{0}^{1}(U)}^{2} \le C(\int_{0}^{s} ||v||_{H_{0}^{1}(U)}^{2} + ||u||_{L^{2}(U)}^{2} dt + ||v(0)||_{L^{2}(U)}^{2}). \tag{2.50}$$

对于定义的 $\omega(t)$,有

$$||u(s)||_{L^{2}(U)}^{2} + ||\omega(s)||_{H_{0}^{1}(U)}^{2} \le C(\int_{0}^{s} ||\omega(t) - \omega(s)||_{H_{0}^{1}(U)}^{2} + ||u||_{L^{2}(U)}^{2} dt + ||\omega(s)||_{L^{2}(U)}^{2}). \tag{2.51}$$

利用

$$||\omega(t) - \omega(s)||_{H_0^1(U)}^2 \le 2(||\omega(t)||_{H_0^1(U)}^2 + ||\omega(s)||_{H_0^1(U)}^2),$$

$$||\omega(s)||_{L^2(U)} = ||v(s)||_{L^2(U)} = ||\int_0^s u(\tau)d\tau||_{L^2(U)} \le \int_0^s ||u(t)||_{L^2(U)}dt.$$

上面最后一个不等式是利用 Bochner 定理得到。所以

$$||u(s)||_{L^{2}(U)}^{2} + (1 - 2sC_{1})||\omega(s)||_{H_{0}^{1}(U)}^{2} \le C_{1} \int_{0}^{s} ||\omega(t)||_{H_{0}^{1}(U)}^{2} + ||u(t)||_{L^{2}(U)}^{2} dt.$$

$$(2.52)$$

取 T_1 使得 $1 - 2C_1T_1 \ge \frac{1}{2}$,则对于 $0 \le s \le T_1$,有

$$||u(s)||_{L^{2}(U)}^{2} + ||\omega(s)||_{H_{0}^{1}(U)}^{2} \le C \int_{0}^{s} ||\omega(t)||_{H_{0}^{1}(U)}^{2} + ||u(t)||_{L^{2}(U)}^{2} dt, \tag{2.53}$$

由 Gronwall 不等式得 $||u(s)||^2_{L^2(U)} + ||\omega(s)||^2_{H^1_0(U)} \equiv 0$,即 $u \equiv 0$ on $[0,T_1]$ 。类似地可以将结论在 $[T_1,2T_1]$, $[2T_1,3T_3]$,· · · ,上实现,因此 $u \equiv 0$ on [0,T]。

2.5 双曲方程的正则性

考虑边值问题

$$\begin{cases} u_{tt} - \Delta u = 0 & x \in \mathbb{R}^n \times (0, T] \\ u| = g, \ u_t = h, \ on \ \mathbb{R}^n \times \{t = 0\}. \end{cases}$$
 (2.54)

我们先做一些形式上的计算,假设 u 为光滑函数,方程两边关于 t 求导,有 u_{tt} – $\Delta u_t = f_t$ 。那么在方程的两端同时乘上 u_{tt} ,得到

$$\frac{1}{2}\frac{d}{dt}\int_{U}u_{tt}^{2}dx - \int_{U}u_{tt}\Delta u_{t}dx = \int_{U}f_{t}u_{tt}dx,$$
(2.55)

再利用分部积分得到

$$\int_{U} u_{tt} \Delta u_{t} dx = \sum_{i=1}^{n} \int_{U} (u_{tt}(u_{t})_{x_{i}})_{x_{i}} - (u_{tt})_{x_{i}} (u_{t})_{x_{i}} dx = -\frac{1}{2} \frac{d}{dt} \int_{U} |Du_{t}|^{2} dx.$$
 (2.56)

则有 $\frac{1}{2}\frac{d}{dt}\int_{U}[u_{tt}^{2}+|Du_{t}|^{2}]dx=\int_{U}f_{t}u_{tt}dx$, 两边积分得到结论。

下面在本节中我们假设 U 是有界开集, $\partial U \in C^{\infty}$,系数 $a_{ij}, b_i, c(i, j=1, \cdots, n)$ 与 t 无关,且 $a_{ij}, b_i, c \in C^{\infty}(\overline{U})$ 。

Theorem 2.6. (Improved Regularity)

(1), 假设 $g \in H^1_0(U), h \in L^2(U), f \in L^2(0,T;L^2(U))$, 若 $u \in L^2(0,T;H^1_0(U)), u \in L^2(0,T;L^2(U)), u^{''} \in L^2(0,T;H^{-1}(U))$ 为方程

$$\begin{cases} u_{tt} + Lu = f & x \in U_T, \\ u = 0 & \text{on } \partial U \times [0, T] \\ u| = g, \ u_t = h, \ \text{on } \mathbb{R}^n \times \{t = 0\}. \end{cases}$$
 (2.57)

的弱解,则存在 $u \in L^{\infty}(0,T;H^{1}_{0}(U)), u^{'} \in L^{\infty}(0,T;L^{2}(U))$,且有估计

$$(ess \sup_{0 \le t \le T} ||u(t)||_{H_0^1(U)} + ||u'(t)||_{L^2(U)}) \le C(||f||_{L^2(0,T;L^2(0,T;L^2(U)))} + ||g||_{H_0^1(U)} + ||h||_{L^2(U)}). \tag{2.58}$$

(2), 在 (1) 的条件下,若 $g \in H^2(U), h \in H^1_0(U), f^{'} \in L^2(0,T;L^2(U))$,则 $u \in L^{\infty}(0,T;H^2(U)), u^{'} \in L^{\infty}(0,T;H^1_0(U)), u^{''} \in L^{\infty}(0,T;L^2(U)), u^{''} \in L^{\infty}(0,T;H^1_0(U))$,且有估计

$$ess \sup_{0 \le t \le T} (||u(t)||_{H^{2}(U)} + ||u'(t)||_{H^{1}_{0}(U)} + ||u''(t)||_{L^{2}(U)}) + ||u'''||_{L^{2}(0,T;H^{-1}(U))}$$

$$(2.59)$$

$$\leq C(||f||_{H^1(0,T;L^2(U))} + ||g||_{H^2(U)} + ||h||_{H^1(U)}).$$
(2.60)

证明. (1), 由能量估计, 我们得到

$$\sup_{0 \le t \le T} (||u_m(t)||_{H_0^1(U)} + ||u_m'(t)||_{L^2(U)}) \le C(||f||_{L^2(0,T;L^2(U))} + ||g||_{H_0^1(U)} + ||h||_{L^2(U)}), \tag{2.61}$$

取 $m = m_l$, 令 $l \to \infty$ 得到估计式。

(2),固定 $m\geq 1$,记 $\widetilde{u_m}=u_m^{'}$,由弱解的定义式有 $(\widetilde{u_m}^{''},\omega_k)+B[\widetilde{u_m},\omega_k]=(f^{'},\omega_k)$, $k=1,\cdots,m$ 。 两边再同时乘上 $(d_m^k(t))^{''}$ 并求和得到

$$(\widetilde{u_m}'', \widetilde{u_m}') + B[\widetilde{u_m}, \widetilde{u_m}'] = (f', \widetilde{u_m}'). \tag{2.62}$$

类似于 Theorem 1.7的证明过程,得到

$$\frac{d}{dt}(||\widetilde{u_m}'||_{L^2(U)}^2 + A[\widetilde{u_m}, \widetilde{u_m}]) \le C(||\widetilde{u_m}'||_{L^2(U)}^2 + A[\widetilde{u_m}, \widetilde{u_m}] + ||f'||_{L^2(U)}^2). \tag{2.63}$$

这里 $A[u,v] = \int_{U} \sum_{i,j=1}^{n} a_{ij} u_{x_i} v_{x_j} dx, \quad \forall v, u \in H_0^1(U)$ 。

由弱解的定义式有

$$B[u_m, \omega_k] = (f - u_m'', \omega_k), \quad (k = 1, \dots, m).$$
 (2.64)

上式两边同时乘上 $\lambda_k d_m^k(t)$ 并对 k 求和得到

$$B[u_m, -\Delta u_m] = (f - u''_m, -\Delta u_m). \tag{2.65}$$

类似于抛物的高阶正则性,有

$$B[u_m, -\Delta u_m] = (Lu_m, -\Delta u_m), \tag{2.66}$$

且有

$$\beta||u||_{H^2(U)}^2 \le (Lu, -\Delta u) + \gamma||u||_{L^2(U)}^2, \quad \forall u \in H^2(U) \cap H_0^1(U). \tag{2.67}$$

若以上的结论成立,则

$$\beta||u_{m}||_{H^{2}(U)}^{2} \leq (Lu_{m}, -\Delta u_{m}) + \gamma||u_{m}||_{L^{2}(U)}^{2} = (f - u_{m}^{"}, -\Delta u_{m}) + \gamma||u_{m}||_{L^{2}(U)}^{2}$$

$$\leq \frac{\beta}{2}||u_{m}||_{H^{2}(U)}^{2} + C||f||_{L^{2}(U)}^{2} + ||u_{m}^{"}||_{L^{2}(U)}^{2} + ||u_{m}||_{L^{2}(U)}^{2}. \tag{2.68}$$

利用上式和(2.63),由 Gronwall 不等式得到

$$\sup_{0 \le t \le T} (||u_m(t)||^2_{H^2(U)} + ||u_m'||^2_{H^2(U)} + ||u_m''(t)||^2_{L^2(U)}) \le C(||f||^2_{H^1(0,T;L^2(U))} + ||g||^2_{L^2(U)} + ||h||^2_{H^1(U)}).$$
(2.69)

取
$$m=m_l$$
,令 $l\to\infty$ 得到估计式,类比于抛物方程高阶正则性可以得到 $u'''\in L^2(0,T;H^{-1}(U))$ 。

2.6 有限传播速度

我们考虑 $u_t + Lu = 0$ in $\mathbb{R}^n \times (0, \infty)$,这里 $Lu = -\sum_{i,j=1}^n a_{ij} u_{x_i x_j}$,系数 $a_{ij} \in C^\infty(\mathbb{R}^n)$ 且同 t 无关,满足一致双曲条件。下面我们给出定理成立的"锥体":给定 $(x_0, t_0) \in \mathbb{R}^n \times (0, \infty)$ 。取 P 为 Hamilton - Jacobi 方程 $P_t - (\sum_{i,j=1}^n a_{ij} P_{x_i} P_{x_j})^{\frac{1}{2}} = 0$ in $\mathbb{R}^n \times (0, \infty)$ 的解。分离变量,我们令 $P(x, t) = Q(x) + t - t_0$, $x \in \mathbb{R}^n$, $0 \le t \le t_0$ 。因此 Q 是方程

$$\begin{cases} \sum_{i,j=1}^{n} a_{ij} Q_{x_i} Q_{x_j} = 1 & x \in \mathbb{R}^n - \{x_0\}, \\ Q(x_0) = 0. \end{cases}$$
 (2.70)

 $i \exists K = \{(x,t)|Q(x,t) < 0\} = \{(x,t)|Q(x) < t_0 - t\}, K_t = \{x|Q(x) < t_0 - t\}.$

Theorem 2.7. 若 u 为方程 $u_t + Lu = 0$ in $\mathbb{R}^n \times (0, \infty)$ 的光滑解, $u \equiv u_t \equiv 0$ on K_0 , 则 $u \equiv 0$ in K。

证明. 定义能量
$$e(t) = \frac{1}{2} \int_{K_t} u_t^2 + \sum_{i,j=1}^n a_{ij} u_{x_i} u_{x_j} dx$$
, $0 \le t \le t_0$, 则有

$$\dot{e}(t) = \int_{K_t} u_t u_{tt} + \sum_{i,j=1}^n a_{ij} u_{x_i} (u_{x_j})_t dx - \frac{1}{2} \int_{\partial K_t} (u_t^2 + \sum_{i,j=1}^n a_{ij} u_{x_i} u_{x_j}) \frac{1}{|DQ|} dS$$

$$=: A - B.$$

分部积分得到

$$A = \int_{\partial K_t} u_t (u_{tt} - \sum_{i,j=1}^n (a_{ij} u_{x_i})_{x_j}) dx + \int_{\partial K_t} \sum_{i,j=1}^n a_{ij} u_{x_i} u_t \nu^j dS$$
$$= -\int_{\partial K_t} u_t \sum_{i,j=1}^n (a_{ij})_{x_j} u_{x_i} dx + \int_{\partial K_t} \sum_{i,j=1}^n u_{x_i} u_t \nu^j dS,$$

已知 $Q=t_0-t$ on ∂K_t ,则 $\nu=\frac{DQ}{|DQ|}$ on ∂K_t ,则有

$$\begin{split} |\sum_{i,j=1}^{n} a_{ij} u_{x_i} \nu^j| & \leq (\sum_{i,j=1}^{n} a_{ij} u_{x_i} u_{x_j})^{\frac{1}{2}} (\sum_{i,j=1}^{n} a_{ij} v_i v_j)^{\frac{1}{2}} = (\sum_{i,j=1}^{n} a_{ij} u_{x_i} u_{x_j})^{\frac{1}{2}} (\sum_{i,j=1}^{n} a_{ij} \frac{Q_{x_i} Q_{x_j}}{|DQ|^2})^{\frac{1}{2}} \\ & = \frac{1}{|DQ|} (\sum_{i,j=1}^{n} a_{ij} u_{x_i} u_{x_j})^{\frac{1}{2}}. \end{split}$$

利用一致双曲条件,

$$|-\int_{K_t} u_t \sum_{i,j=1}^n (a_{ij})_{x_j} u_{x_i} dx| \leq C \int_{K_t} u_t^2 + |Du|^2 dx,$$

$$\leq C \int_{K_t} u_t^2 + \frac{1}{\theta} \sum_{i,j=1}^n a_{ij} u_{x_i} u_{x_j} dx \leq Ce(t).$$

由此得到

$$|A| \leq Ce(t) + \int_{\partial K_t} (\sum_{i,j=1}^n a_{ij} u_{x_i} u_{x_j})^{\frac{1}{2}} |u_t| \frac{1}{DQ} dS,$$

$$\leq Ce(t) + \frac{1}{2} \int_{\partial K_t} (u_t^2 + \sum_{i,j=1}^n a_{ij} u_{x_i} u_{x_j}) \frac{1}{DQ} dS$$

$$= Ce(t) + B. \tag{2.71}$$

即 $\dot{e}(t) \leq Ce(t)$,又因为 e(0)=0,利用 Gronwall 不等式得到 $e(t)\equiv 0,\ 0\leq t\leq t_0$ 。即 $u_t\equiv Du\equiv 0$ $in\ K$,则 $u\equiv 0$ $in\ K$ 。

Chapter 6

偏微分方程的发展

二阶椭圆方程: L^2 理论, 50 年代开始发展。

1957 - 1958, DeGiorgi, Nash, Moser.

1960,Ladyzenskaya – Uralcera 推广到拟线性椭圆方程。

1970, Pogorelov 研究蒙日安培方程,

$$\begin{cases} \det(u_{ij}) = f(x), \\ u|_{\partial\Omega} = \varphi. \end{cases}$$
 (0.1)

在对 $\Omega, \varphi, f(x)$ 加一定条件的情况下可以得到内部正则性,不然会有反例。

丘成桐研究紧致凯勒流形 (M,g) 上的蒙日安培型方程, $\det(u_{i\bar{j}}+g_{i\bar{j}})=f(z)$ 证明了 Calabi 猜想。

1979, Krylov-Safanov 研究 Lu=f 的 Harnack 不等式, 然后得到 Evans-Krylov 估计, 即 $F(D^2u)=f, \lambda I\leq \frac{\partial F}{\partial u_{ij}}\leq \gamma I$, F 对于 D^2u 是凹的, 则有

$$[D^2 u]_{C^{2,\alpha}} \le C(||u||_{L^2} + ||f||_{C^{2,\alpha}}). \tag{0.2}$$

1976, Aubin, **1984**, Schoen, 研究 Yamabe 问题, $\Delta u + u^{\frac{n+2}{n-2}} = 0$ 。 Brezis - Nirenberg 研究达到 Sobolev 不等式最佳常数的极值函数。

1960,极小曲面方程

$$\begin{cases}
\sum_{i=1}^{n} D_i(\frac{u_i}{\sqrt{1+|Du|^2}}) = 0 & \text{in } U \subset \mathbb{R}^n, \\
u|_{\partial\Omega} = \varphi.
\end{cases}$$
(0.3)

Dirichlet 问题,Serrin 得到对于任意的 φ 有解 $\Leftrightarrow H|_{\partial U} \geq 0$ 。

对应的内估计是由 Degiorgi - Giusk - Bumblen 得到。

1985, Caffarelli - Nirenberg - Spruck 研究

$$\begin{cases}
\sigma_k(\lambda(D^2u)) = f(x) & \text{in } U, \\
u|_{\partial U} = \varphi.
\end{cases}$$
(0.4)

解的存在性问题。

2016, Logonov 研究 $\Delta u + \lambda_k u = 0$ 对应的 Nodal – Set 猜想。

在物理方面, DiGiorgi 猜想: $\Delta u + u(1 - u^2) = 0$ **R**ⁿ。

若 $-1 \le u \le 1$, $\frac{\partial u}{\partial x_i}$ 单调递增,则 u 的水平集是水平集。

 $n \le 8$, Caffarelli 需要加条件。

 $n \ge 9$,魏军诚等人可以给出反例。

抛物方程: 动力系统, 行波解, 几何曲率流, Ricci - flow, 平均曲率流。

双曲(色散)方程: Schrödinger 方程。

Chapter 7

习题

Homework 0.1. 弱导数例题, $u(x) = |\log |x||^{\alpha} \in H^1(\Omega)$, 求 α 和 n 的关系。

(1),
$$\Omega = B_{\frac{1}{2}}^n(0) \subset \mathbb{R}^n$$
, (2), $\Omega = B_2^n(0) \setminus \overline{B_{\frac{1}{2}}(0)}$, $n \ge 2$. (0.1)

证明. (1), 首先看 $u \in L^2(\Omega)$ 应该满足什么条件,

$$\int_{\Omega} |u|^2 dx = \int_{B(0,\frac{1}{2})} |\log |x||^{2\alpha} dx = \int_{0}^{\frac{1}{2}} \int_{\partial B(0,r)} |\log r|^{2\alpha} dS dr$$

$$= \sigma(S^{n-1}) \int_{0}^{\frac{1}{2}} |\log r|^{2\alpha} r^{n-1} dr < \infty, \tag{0.2}$$

可知对于 $n \ge 1$, 任意的 α 均满足。

验证弱导数存在满足什么条件, $\forall \phi \in C_c^{\infty}(\Omega)$,

$$\int_{\Omega} u\phi_{x_{i}} dx = \lim_{\varepsilon \to 0} \int_{B(0,\frac{1}{2})\backslash B(0,\varepsilon)} u\phi_{x_{i}} dx$$

$$\lim_{\varepsilon \to 0} \int_{\partial B(0,\varepsilon)} u\phi\nu^{i} dS - \lim_{\varepsilon \to 0} \int_{B(0,\frac{1}{2})\backslash B(0,\varepsilon)} u_{x_{i}} \phi dx \quad . \tag{0.3}$$

$$\left| \int_{\partial B(0,\varepsilon)} u\phi \nu^i dS \right| \le ||\phi||_{L^{\infty}} \int_{\partial B(0,\varepsilon)} |\log \varepsilon|^{\alpha} dS \le C |\log \varepsilon|^{\alpha} \varepsilon^{n-1} \to 0, \tag{0.4}$$

对于 n > 1, 任意的 α 。

验证 $Du \in L^2(\Omega)$ 满足什么条件,

$$u_{x_i} = \alpha (\log |x|)^{\alpha - 1} \frac{x_i}{|x|^2}, \quad |Du| = \frac{|\alpha| |\log |x||^{\alpha - 1}}{|x|},$$

$$\int_{\Omega} |Du|^{2} = \int_{B(0,\frac{1}{2})} \alpha^{2} |\log|x||^{2(\alpha-1)} \frac{1}{|x|^{2}} dx = \int_{0}^{\frac{1}{2}} \int_{\partial B(0,r)} \alpha^{2} |\log r|^{2(\alpha-1)} \frac{1}{r^{2}} dS dr$$

$$= \sigma(S^{n-1}) \alpha^{2} \int_{0}^{\frac{1}{2}} |\log r|^{2(\alpha-1)} r^{n-3} dx = C \int_{\ln 2}^{+\infty} t^{2(\alpha-1)} e^{-(n-2)t} dt < +\infty. \tag{0.5}$$

只需 $n=2, 2(\alpha-1)<-1, n\geq 3, \forall \alpha$ 均可以。

2, 先验证 $u \in L^2(\Omega)$,

$$\int_{\Omega} |u|^2 dx = \int_{\frac{1}{2}}^2 \int_{\partial B(0,r)} |\log r|^{2\alpha} dS dr = \sigma(S^{n-1}) \int_{\frac{1}{2}}^2 |\log r|^{2\alpha} r^{n-1} dx < +\infty, \tag{0.6}$$

利用反常积分的收敛判别法, 只需 $n \ge 1, 2\alpha > -1$ 即可。

验证 $Du \in L^2(\Omega)$,

$$\int_{\Omega} |Du|^2 dx = \int_{\frac{1}{2}}^2 \int_{\partial B(0,r)} \alpha^2 |\log r|^{2(\alpha-1)} \frac{1}{r^2} dS dr
= \sigma(S^{n-1}) \alpha^2 \int_{\frac{1}{2}}^2 |\log r|^{2(\alpha-1)} r^{n-3} dr < +\infty,$$
(0.7)

只需 $2(\alpha - 1) > -1, n \ge 1$ 。

综上所述,
$$n \ge 1, \alpha > \frac{1}{2}$$
。 另外 $\alpha = 0$ 也满足 $u \in H^1(\Omega)$ 。

Homework 0.2. 调和函数的光滑性(参见 $Evans p_{28}$)

若 $u \in C(U)$ 对于任意球 $B(x,r) \subset U$ 满足平均值性质, 则 $u \in C^{\infty}(U)$ 。

证明. $\diamondsuit u^{\varepsilon} = \eta_{\varepsilon} * u \text{ in } U_{\varepsilon} = \{x \in U | dist(x, \partial U) > \varepsilon\}$ 。则 $u^{\varepsilon} \in C^{\infty}(U_{\varepsilon})$ 。

Claim: $u \equiv u \text{ on } U_{\varepsilon}$.

证明: 若 $x \in U_{\varepsilon}$,

$$u^{\varepsilon}(x) = \int_{U} \eta_{\varepsilon}(x - y)u(y)dy = \frac{1}{\varepsilon^{n}} \int_{B(0,\varepsilon)} \eta(\frac{|x - y|}{\varepsilon})u(y)dy$$

$$= \frac{1}{\varepsilon^{n}} \int_{0}^{\varepsilon} \eta(\frac{r}{\varepsilon})(\int_{\partial B(x,r)} udS)dr$$

$$= \frac{1}{\varepsilon^{n}} u(x) \int_{0}^{\varepsilon} \eta(\frac{r}{\varepsilon})n\alpha(n)r^{n-1}dr$$

$$= u(x) \int_{0}^{\varepsilon} \eta_{\varepsilon}(r)(\int_{\partial B(0,r)dS})dr$$

$$= u(x) \int_{B(0,\varepsilon)} \eta_{\varepsilon}dy = u(x). \tag{0.8}$$

那么利用 Claim 和 ε 的任意性即可得到结论。

Homework 0.3. 能量泛函,变分法(参加 Evans p_{42})

考虑边值问题

$$\begin{cases} \Delta u = f(x), & in \ U \\ u|_{\partial U} = g. \end{cases}$$
 (0.9)

其中 U 为有界开集, $\partial U \in C^1$ 。

证明方程(0.9)最多只有一个解 $u \in C^2(\overline{U})$ 。

证明. 假设 \tilde{u} 为方程的另外一个解, 令 $\omega = u - \tilde{u}$, 则 $\Delta \omega = 0$ in U。利用分部积分,

$$0 = -\int_{U} \omega \Delta \omega dx = \int_{\Omega} |D\omega|^{2} dx, \qquad (0.10)$$

则 $D\omega \equiv 0$ in U,又因为 $u|_{\partial U} = 0$,所以 $\omega \equiv 0$ in U,即 $\widetilde{u} = u$ 。

Homework 0.4. (Dirichlet-Principle)

定义能量泛函 $I[\omega]=\int_U \frac{1}{2}|D\omega|^2-\omega f dx, \omega\in\mathcal{A}=\{\omega\in C^2(\overline{U}):\omega=g\ on\ \partial U\}$,则 u 是边值问题(0.9)的解当且仅当 $I[u]=\min_{\omega\in\mathcal{A}},u\in\mathcal{A}$ 。

证明. " \Rightarrow ", 取 $\omega \in A$, 由方程得到

$$0 = \int_{U} (-\Delta u - f)(u - \omega) dx, \tag{0.11}$$

则利用分部积分可得

$$0 = \int_{U} Du \cdot D(u - \omega) - f(u - \omega) dx, \tag{0.12}$$

则

$$\int_{U} |Du|^{2} - ufdx = \int_{U} Du \cdot D\omega - \omega fdx \le \int_{U} \frac{1}{2} |Du|^{2} dx + \int_{U} \frac{1}{2} |D\omega|^{2} - \omega fdx, \tag{0.13}$$

即 $I[u] \leq I[\omega]$ 。又因为 $u \in \mathcal{A}$,由 ω 的任意性有 $I[u] = \min_{\omega \in \mathcal{A}} I[\omega]$ 。

" \leftarrow ",取 $v \in C_c^\infty(U)$,记 $i(\tau) = I[u + \tau v], \tau \in \mathbb{R}$,由于 $u + \tau v \in \mathcal{A}, \tau \in \mathbb{R}$,则 $i(\tau)$ 在 $\tau = 0$ 处取得最小值,即 i'(0) = 0。而

$$i(\tau) = \int_{U} \frac{1}{2} |D(u+\tau v)|^{2} - (u+\tau v) f dx$$

$$= \frac{1}{2} |Du|^{2} - \tau Du \cdot Dv + \frac{\tau^{2}}{2} |Dv|^{2} - (u+\tau v) f dx. \tag{0.14}$$

则

$$0 = i'(0) = \int_{U} Du \cdot Dv - vf dx = \int_{U} (-\Delta u - f) v dx.$$
 (0.15)

利用证明弱导数唯一性证明技巧可得 $-\Delta u = f$ in U。

上面两道题都是关于变分法的应用,此外还有更多的应用,

Example 0.1. Nuemann 问题的变分法

$$\begin{cases} \Delta u = f(x) \in C(\overline{\Omega}), & in \ U \\ \frac{\partial u}{\partial n} = g \in C(\partial \Omega). \end{cases}$$
 (0.16)

容许集 $\mathcal{A}=\{u\in C^2(\Omega)\cap C^1(\overline{\Omega})\},\ I[\omega]=\int_U \frac{1}{2}|D\omega|^2-f\omega dx-\int_{\partial\Omega}g\omega dS$ 。

Example 0.2.

$$\begin{cases} \Delta u = f(x) \in C(\overline{\Omega}), & in \ U \\ \frac{\partial u}{\partial n} + \alpha(x)u = g \in C(\partial\Omega). \end{cases}$$
 (0.17)

 $\label{eq:Alpha} \mathcal{A} = C^2(\Omega) \cap C^1(\overline{\Omega}), \ I[\omega] = \int_{\Omega} \tfrac{1}{2} |D\omega|^2 - f\omega dx + \int_{\partial\Omega} (\tfrac{1}{2}\alpha\omega^2 - g\omega) dS \,.$

Example 0.3. 极小曲面: 设 $u \in C^2(\Omega), \Sigma_u = \{(x, y, u(x, y)) | (x, y) \in \Omega\}$. 对应图的面积为

$$Area(\Sigma_u) = \int_{\Omega} |(1, 0, u_x) \times (0, 1, u_y)| dx = \int_{\Omega} \sqrt{1 + |Du|^2} dx, \tag{0.18}$$

则

$$Area(\Sigma_u) = \min_{\Sigma \in \mathcal{A}}, \quad \mathcal{A} = \{\Sigma : \partial \Sigma = \partial(\Sigma_u)\}. \tag{0.19}$$

最终化简为求解下面的方程

$$div(\frac{Du}{\sqrt{1+|Du|^2}}) = 0. {(0.20)}$$

Homework 0.5. $: \inf_{u \in \mathcal{M}} \{ \int_{\Omega} |\nabla u|^2 + 2u dx + \int_{|x|=1} u^2 dS \}, \Omega = \{ 1 < |x| < 2 \} \subset \mathbb{R}^3, \mathcal{M} = \{ v \in H^1(\Omega) | v = 0 \text{ on } |x| = 2 \}.$

证明. 对于 $v \in C^{\infty}(\Omega) \cap \mathcal{M}$,定义 $I[\omega] = \int_{\Omega} |\nabla \omega|^2 + 2\omega dx + \int_{|x|=1} \omega^2 dS$ 。若 u 为 $I[\omega]$ 的极小点,记

$$i(t) := I(u+tv) = \int_{\Omega} |\nabla u + t\nabla v|^2 + 2(u+tv)dx + \int_{|x|=1} (u+tv)^2 dx$$
$$= \int_{\Omega} |\nabla u|^2 + 2t\nabla u\nabla v + t^2|\nabla v|^2 + 2u + 2tvdx + \int_{|x|=1} u^2 + 2tuv + t^2v^2 dS. (0.21)$$

注意到

$$0 = i'(0) = \int_{\Omega} 2\nabla u \nabla v + 2v dx + \int_{|x|=1} 2uv dS$$

$$= \int_{\partial\Omega} 2\frac{\partial u}{\partial n} v dS - \int_{\Omega} 2v \Delta u dx + \int_{\Omega} 2v dx + \int_{|x|=1} 2uv dS$$

$$= 2\int_{U} v(-\Delta u + 1) dx + \int_{|x|=1} 2(\frac{\partial u}{\partial n} + u)v dS. \tag{0.22}$$

因此可得 u 满足

$$\begin{cases}
\Delta u = 1, & in \Omega \\
u = 0, & on |x| = 2 \\
\frac{\partial u}{\partial n} + u = 0 & on |x| = 1
\end{cases}$$
(0.23)

Homework 0.6. 求 \mathbb{R}^2 中所有的调和函数满足 $u_y(x,y)=3xy^2-x^3$ 。

证明. 对上式进行积分可得

$$u(x,y) = xy^3 - x^3y + f(x), (0.24)$$

其中 f(x) 是待确定的函数。

由 $\Delta u=0$ 得到 $u_{xx}+u_{yy}=0$ 即 $f^{''}(x)=ax+b, \forall a,b\in\mathbb{R}$,所以

$$u(x,y) = xy^3 - x^3y + ax + b. (0.25)$$

Homework 0.7. 求 \mathbb{R}^2 中所有使得 $u_x(x,y) < u_y(x,y), (x,y) \in \mathbb{R}^2$ 的调和函数 u(x,y)。

证明. 设 $v(x,y) = u_x(x,y) - u_y(x,y)$, 由 u 是调和函数,那么可得 v 也是调和函数,且 v < 0。即

$$\begin{cases}
\Delta - v = 0, \\
-v > 0.
\end{cases}$$
(0.26)

那么利用 Liouville 定理可知 $v \equiv Const$, 即 $u_x - u_y = Const$.

Remark 0.1. 也可以利用平均值原理得到 v 是常数。

$$D_{x_i} = \frac{1}{\alpha(n)R^n} \int_{B_R(x_0)} D_{x_i} v dy = \frac{1}{\alpha(n)R^n} \int_{\partial B_R(x_0)} v \nu^i dS, \tag{0.27}$$

和

$$|D_{x_i}v(x_0)| \le \frac{n}{R}||v||_{L^{\infty}(\mathbb{R}^2)}.$$
 (0.28)

令 $R \to +\infty$, 得 $|Dv(x_0)| = 0$, $\forall x_0 \in \mathbb{R}^2$ 。则 $Dv \equiv 0$, 所以 v 为常数。

Homework 0.8. 设 $\Omega = \{(x,y) \in \mathbb{R}^2 | 0 < x < 1, 0 < y < 1\}, u \in C^2(\overline{\Omega}), \ \Delta u = 0 \ in \ \overline{\Omega}, \ u|_{y=0} = u|_{y=1} = 0, 0 \le x \le 1$ 。 问函数 $f(x) = \int_0^1 u^2(x,y) dy$ 在 (0,1) 内是否有拐点?

证明. 由于 $u \in C^2(\overline{\Omega})$, 利用含参变量积分的性质,

$$f'' = 2 \int_0^1 u_x^2 + u u_{xx} dy = 2 \int_0^1 u_x^2 - u u_{yy} dy$$

$$= 2 \int_0^1 u_x^2 dy - 2(u u_y|_0^1 - \int_0^1 u_y^2 dy)$$

$$= 2 \int_0^1 |Du|^2 dy \ge 0, \ x \in [0, 1]. \tag{0.29}$$

表明 f 没有拐点。

Homework 0.9. 设 u(x) 是 $B_a^n(0)$ 内的调和函数且在 $\overline{B_a^n(0)}$ 上连续, u(0)=0。试求 $\int_{B^+}u(x)dx$ 和 $\int_{B^-}u(x)dx$ 。

证明. 由平均值性质, 记 $B^0 = \{x \in B_a^n(0) | u(x) = 0\}$, 则

$$0 = u(0) = \frac{1}{\alpha(n)a^n} \int_{B_a^n(0)} u(x)dx$$
$$= \frac{1}{\alpha(n)a^n} (\int_{B^+} u(x)dx + \int_{B^-} u(x)dx + \int_{B^0} u(x)dx), \tag{0.30}$$

即

$$\int_{B^{+}} u(x)dx = -\int_{B^{-}} u(x)dx. \tag{0.31}$$

Homework 0.10. 设 u 是 $\overline{B_1^2(0)}$ 上得调和函数,求 $\int_0^{2\pi} u_{\rho\rho}(l,\theta)d\theta$ 。

证明. 做极坐标的变换, 由平均值原理

$$u(0,0) = \frac{1}{2\pi R} \int_{\partial B_R(0)} u(x,y) dS = \frac{1}{2\pi R} \int_0^{2\pi} u(R\cos\theta, R\sin\theta) R d\theta$$
$$= \frac{1}{2\pi} \int_0^{2\pi} u(R\cos\theta, R\sin\theta) d\theta. \tag{0.32}$$

两边关于 R 求导得到

$$0 = \frac{1}{2\pi} \int_0^{2\pi} u_{RR}(R\cos\theta, R\theta) d\theta. \tag{0.33}$$

取
$$R=1$$
 得到 $\int_0^{2\pi} u_{\rho\rho}(1,\theta)d\theta=0$ 。

Homework 0.11. if $u(x) = C^2(B_1^2(0)) \cap C(\overline{B_1^2(0)}), \Delta u = 0, x := (x_1, x_2) \in B_1^2(0); u(x) = x_2^2, x \in S_1^2(0), x_2 \geq 0; u(x) = x_2, x \in S_1^2(0), x_2 < 0.$ if $\int_{B_{\frac{1}{2}}^2} u(x) dx$.

证明. 由平均值公式,

$$u(0) = \frac{1}{2} \int_{S_1^2} u(\xi) d\xi = \frac{1}{2\pi} \int_0^{2\pi} u(\cos\theta, \sin\theta) d\theta$$
$$= \frac{1}{2\pi} \left(\int_0^{2\pi} \sin^2\theta d\theta + \int_{\pi}^{2\pi} \sin\theta d\theta \right) = \frac{1}{4} - \frac{1}{\pi}. \tag{0.34}$$

另外一方面, $u(0) = \frac{4}{\pi} \int_{B_{\frac{1}{2}}^2(0)} u(x) dx$,则 $\int_{B_{\frac{1}{2}}^2} u(x) dx = \frac{\pi}{16} - \frac{1}{4}$ 。

Homework 0.12. (Evans Chapter 5 Problem 4)

 $n = 1, u \in W^{1,p}(0,1), 1 \le p < \infty$.

- (1), u 几乎处处等于一个绝对连续函数, u' 存在且属于 $L^p(0,1)$ 。
- (2), $\not\equiv 1 , <math>\not\parallel |u(x) u(y)| \le |x y|^{1 \frac{1}{p}} (\int_0^1 |u'|^p dt)^{\frac{1}{p}}, a.e., x, y \in [0, 1].$

证明. (1), 由定义 $u^{'}$ 存在且属于 $L^{p}(0,1)$ 。令 $u^{*}=\int_{0}^{x}u^{'}(t)dt$, $u^{'}$ 为 u 的导数,下证 $u-u^{*}\equiv C,\ a.e.\forall \phi\in C_{c}^{\infty}(0,1)$,

$$\int_{0}^{1} (u^{*} - u)\phi' dx = \int_{0}^{1} (\int_{0}^{x} u'(t)dt)\phi(x)dx - \int_{0}^{1} u(x)\phi'(x)dx
= \int_{0}^{1} (\int_{0}^{1} \phi'(x)dx)u'(t)dt + \int_{0}^{1} u'(x)\phi(x)dx
= -\int_{0}^{1} \phi(t)u'(t)dt + \int_{0}^{1} u'(x)\phi(x)dx = 0.$$
(0.35)

只需证明 $\int_0^1 f \phi' dx = 0 \Rightarrow f \equiv C$ 。

设 $g,h \in C_c^{\infty}(0,1), \int_0^1 h(x) dx = 1$ 。 令 $\varphi(x) = \int_0^x g(t) dt - \int_0^x h(t) dt \int_0^1 g(t) dt$,则 $\varphi \in C_c^{\infty}(0,1)$ 。 $\varphi'(x) = g(x) - h(x) \int_0^1 g(t) dt$, ∀ $x \in [0,1]$ 。 从而

$$0 = \int_{0}^{1} f(x)\varphi'(x)dx = \int_{0}^{1} f(x)(g(x) - h(x)) \int_{0}^{1} g(t)dt dx$$

$$= \int_{0}^{1} f(x)g(x)dx - \int_{0}^{1} f(x)h(x)dx \int_{0}^{1} g(t)dt$$

$$= \int_{0}^{1} (f(x) - \int_{0}^{1} f(t)h(t)dt)g(x)dx.$$
(0.36)

上式对 $\forall g \in C_c^\infty(0,1)$ 成立,则 $f(x) - \int_0^1 f(t)h(t)dt = 0$, a.e,即 $f(x) = \int_0^1 f(t)h(t)dt$,则 $f(x) \equiv C$,所以 $u = u^* + C$, a.e。即 u 几乎处处意义下等于一个绝对连续函数。

(2),

$$|u(x) - u(y)| = |\int_{y}^{x} u'(t)dt| \leq (\int_{y}^{x} |u'(t)|^{p} dt)^{\frac{1}{p}} (\int_{y}^{x} 1^{q} dt)^{\frac{1}{q}}$$

$$\leq |x - y|^{1 - \frac{1}{p}} (\int_{0}^{1} |u'|^{p} dt)^{\frac{1}{p}}, \quad a.e. \ x, y \in [0, 1]. \tag{0.37}$$

Remark 0.2. 需要说明 $u^* \in L^p(0,1)$.

$$\left(\int_{0}^{1} |u^{*}|^{p} dx\right)^{\frac{1}{p}} = \left(\int_{0}^{1} |\int_{0}^{x} u'(t) dt|^{p} dx\right)^{\frac{1}{p}} \\
\leq \left(\int_{0}^{1} (\int_{0}^{1} |\mathcal{X}_{[0,x]}(t) u'(t)| dt\right)^{p} dx\right)^{\frac{1}{p}} \\
= ||\mathcal{X}_{[0,x]}(t) u'(t)||_{L_{t}^{1} L_{x}^{p}} \\
\leq \int_{0}^{1} (\int_{0}^{1} \mathcal{X}_{[0,x]}^{p}(t) dx\right)^{\frac{1}{p}} |u'(t)| dt \\
\leq \int_{0}^{1} |u'(t)| dt < +\infty. \tag{0.38}$$

Homework 0.13. 设 U 为连通开集, $u \in W^{1,p}(U), Du = 0, a.e, in U.$ 证明 $u \equiv C, a.e, in U.$

证明. 令 $u^{\varepsilon} = (\eta_{\varepsilon} * u)(x)$, $\forall V \subset U$ 。利用证明局部逼近的技巧, $Du^{\varepsilon}(x) = (\eta_{\varepsilon} * Du)(x) = 0$, a.e, $in \ V$ 。由于 $u^{\varepsilon} \in C^{\infty}(V)$,则 $u^{\varepsilon} = C_{\varepsilon} \ in \ V$ 。由 $||u^{\varepsilon}||_{L^{p}(V)} \leq ||u||_{L^{p}(U)} < +\infty$,可得 $|C_{\varepsilon}| < +\infty$ 。由有界列必有收敛子列,则 $\exists \{C_{\varepsilon_{i}}\}_{i=1}^{\infty}$ 满足 $C_{\varepsilon_{i}} \to C_{0}$, $(i \to \infty)$,又因为 $u^{\varepsilon_{i}} \to u$ $in \ W^{1,p}$,所以 $u = C_{0}$ a.e, $in \ V$ 。那么再利用 V 的任意性可得 $u = C_{0}$, a.e, $in \ U$ 。

Homework 0.14. (最大模估计)

设 $\Omega \subset \mathbb{R}^n$ 为有界区域, $u \in C^2(\Omega) \cap C(\overline{\Omega})$ 满足

$$\begin{cases} \Delta u = f(x), & in \ \Omega \\ u = \varphi & on \ \partial\Omega. \end{cases}$$
 (0.39)

其中 $f \in C(\overline{\Omega}), \varphi \in C(\partial\Omega)$, 证明

$$\max_{\Omega} |u| \le \max_{\partial \Omega} |\varphi| + C \max_{\Omega} |f|. \tag{0.40}$$

证明. 只需证明对于 $\forall x \in \Omega$ 有 $|u(x)| \leq \max_{\partial \Omega} |\varphi| + C \max_{\Omega} |f|$,我们记 $\Phi = \max_{\partial \Omega} |\varphi|$, $F = \max_{\Omega} |f|$ 。我们构造 $\omega : \Omega \to \mathbb{R}$ 满足

$$\begin{cases} \Delta \pm u = \pm f(x) \ge -F \ge \Delta \omega & in \ \Omega \\ \pm u = \pm \varphi \le \Phi \le \omega & on \ \partial \Omega \end{cases}$$
 (0.41)

我们取 $\omega = \Phi + \frac{R^2 - |x|^2}{2n} F$, R 满足 $\Omega \subset B_R(0)$,这样有

$$\begin{cases} \Delta \omega = -F & in \ \omega \\ \omega = \Phi + \frac{R^2 - |x|^2}{2n} F \ge \Phi & on \ \partial \Omega \end{cases}$$
 (0.42)

那么利用比较原理, $\pm u \le \omega \le \Phi + \frac{R^2}{2n}F$,即 $\sup_{\Omega} \le \Phi + CF$ 。

Homework 0.15. 设 $u \in C^3(\Omega) \cap C^1(\overline{\Omega})$ 满足

$$\begin{cases}
\Delta u - 2 = f(x), & in \quad \Omega = B_1(0) \subset \mathbb{R}^2 \\
u = \varphi & on \quad \partial \Omega.
\end{cases} (0.43)$$

其中 $f \in C(\overline{\Omega}), \varphi \in C(\partial\Omega)$ 。证明

$$\max_{\overline{\Omega}} |u| \le \max_{\partial \Omega} |\varphi| + C_0 \max_{\overline{\Omega}} |f|. \tag{0.44}$$

证明. Method 1, 简单计算可知

$$\Delta u^{2} = 2|Du|^{2} + 2u\Delta u = 2|Du|^{2} + 4u^{2} = 2uf$$

$$\geq 2|Du|^{2} + 3u^{2} - f^{2}.$$
(0.45)

若 $\Delta(u^2 + \beta \frac{|x|^2}{4}) \ge 2|Du|^2 + 3u^2 - f^2 + \beta \le 0$,只需 $\beta = \max_{\overline{\Omega}} |f|$,则有

$$\max_{\overline{\Omega}} |u|^2 \leq \max_{\overline{\Omega}} (u^2 + \beta \frac{|x|^2}{4}) \leq \max_{\partial \Omega} u^2 + \frac{1}{4} \max_{\overline{\Omega}} |f|^2$$
 (0.46)

所以

$$\max_{\overline{\Omega}} |u| \le \max_{\partial \Omega} |\varphi| + C_0 \max_{\overline{\Omega}} |f|. \tag{0.47}$$

$$\Delta\omega - 2\omega = -F - 2\omega \le -F \le \pm f = \Delta(\pm u) - 2(\pm u),\tag{0.48}$$

则有

$$\begin{cases}
\Delta\omega - 2\omega \le \Delta(\pm u) - 2(\pm u) & in \quad \Omega \\
\omega \ge \pm u & on \quad \partial\Omega.
\end{cases} (0.49)$$

利用一般线性椭圆的比较原理可得 $\pm u \leq \omega \leq \Phi + \frac{1}{4}F$ 。则有

$$\max_{\overline{O}} |u| \le \max_{\partial \Omega} |\varphi| + \frac{1}{4} \max_{\overline{O}} |f|. \tag{0.50}$$

Remark 0.3. 由 $(\Delta-2)(\omega\pm u)\leq 0$ 可得 $\omega\pm u$ 的非正最小值是在边界上达到,这是利用弱极值原理得到的。又因为 $\omega\pm u\geq 0$ on $\partial\Omega$,则 $\inf_{\Omega}(\omega\pm u)\geq 0$,所以 $\omega\pm u\leq 0$ in Ω 。

Homework 0.16. (梯度内估计)

设 $u\in C^3(\Omega)$ 满足 $\Delta u=f\in C^1(\Omega),\ \Omega$ 是一个有界区域。则对于 $\forall\Omega^{'}\subset\subset\Omega$ 有

$$\max_{\Omega'} |Du| \le C,\tag{0.51}$$

其中 C 依赖于 $n, diam(\Omega), dist(\Omega', \partial\Omega), \max_{\partial\Omega} u, ||f||_{C^1(\Omega)}$ 。

证明. $\forall \Omega^{'} \subset\subset \Omega$,取截断函数 $\xi \in C_0^{\infty}(\Omega), \xi \equiv 1 \ in \ \Omega^{'}, 0 \leq \xi \leq 1 \ in \ \Omega$,且

$$||D^{\alpha}\xi||_{C^{0}(\Omega)} \leq \frac{C_{n}}{\operatorname{dist}^{|\alpha|}(\Omega',\partial\Omega)} \text{ in } \Omega, \tag{0.52}$$

令 $\varphi = \xi^2 |Du|^2 + \alpha |u|^2 + \beta \frac{|x|^2}{2n}$,简单计算可以

$$\Delta(\xi^{2}|Du|^{2}) = \Delta(\xi^{2})|Du|^{2} + 2\sum_{i=1}^{n}(\xi^{2})_{x_{i}}(|Du|^{2})_{x_{i}} + \xi^{2}\Delta(|Du|^{2})$$

$$= 2(\xi\Delta\xi + |D\xi|^{2})|Du|^{2} + 8\sum_{i,j}\xi\xi_{x_{i}}u_{x_{j}}u_{x_{i}x_{j}} + 2\xi^{2}DuDf + 2\xi^{2}|D^{2}u|^{2}$$

$$(0.53)$$

利用 Cauchy 不等式可得

$$2\xi^{2}DuDf \ge -\xi^{2}|Du|^{2} - \xi^{2}|Df|^{2},$$

$$8\sum_{i,j}\xi\xi_{x_{i}}u_{x_{j}}u_{x_{j}x_{i}} \le \varepsilon\xi^{2}|D^{2}u|^{2} + \frac{16}{\varepsilon}|Du|^{2}|D\xi|^{2}.$$
(0.54)

则

$$\Delta \varphi \geq 2|D\xi|^2|D^2u|^2 + 2\xi\Delta\xi|Du|^2 + 2\xi^2|D^2u|^2 - \xi^2|Du|^2 - \xi^2|Df|^2 - \varepsilon\xi^2|D^2u|^2 - \frac{16}{\varepsilon}|Du|^2|D\xi|^2 + 2\alpha|Du|^2 - \alpha u^2 - \alpha f^2 + \beta. \tag{0.55}$$

取 $\varepsilon = 2$, 所以

$$\Delta \varphi \ge (-6|D\xi|^2 + 2\xi \Delta \xi - \xi^2 + 2\alpha)|Du|^2 + \beta - \xi^2|Df|^2 - \alpha u^2 - \alpha f^2, \tag{0.56}$$

取 α 使得 $2\alpha + 2\xi\Delta\xi - \xi^2 - 6|D\xi|^2 \ge 0$, 取 β 使得

$$\beta - \xi^2 ||Df||_{C^0(\Omega)}^2 - \alpha ||u||_{L^{\infty}(\Omega)}^2 - \alpha ||f||_{C^0(\Omega)}^2 \ge 0, \tag{0.57}$$

则 $\Delta \varphi \geq 0$ in Ω , 那么利用极值原理可得

$$\max_{\Omega'} |Du|^2 \le \max_{\Omega'} \varphi \le \max_{\partial \Omega} \varphi \le \alpha \max_{\partial \Omega} u^2 + \frac{\beta}{2n} \max_{\partial \Omega} |x|^2, \tag{0.58}$$

即

$$\max_{\Omega'} |Du| \le C. \tag{0.59}$$

Homework 0.17. (整体梯度估计)

设 $u\in C^3(\Omega)\cap C^1(\overline{\Omega}), \Delta u=f(x,u)\in C^1(\overline{\Omega}\times\mathbb{R})$,则有

$$\max_{\Omega} |Du| \le \max_{\partial \Omega} |Du| + C,\tag{0.60}$$

其中 C 依赖于 $n, diam(\Omega), \max_{\Omega} u, ||f||_{C^1(\overline{\Omega} \times [-M,M])}$ 。

证明. 同梯度内估计一样,取 $\varphi = |Du|^2 + \alpha u^2 + \beta \frac{|x|^2}{2n}$,简单计算可得

$$\Delta(|Du|^2) = 2|D^2u|^2 + 2\sum_{k=1}^n u_{x_k}(f_{x_k} + f_u u_{x_k}), \tag{0.61}$$

那么则有

$$\Delta \varphi = 2|D^{2}u|^{2} + 2DuD_{x}f + 2|Du|^{2}f_{u} + 2\alpha|Du|^{2} + 2\alpha uf + \beta,$$

$$\geq 2|D^{2}u|^{2} - |Du|^{2} - |D_{x}f|^{2} - 2|Du|^{2}||f||_{C^{1}} + 2\alpha|Du|^{2} - \alpha u^{2} - \alpha f^{2} + \beta$$

$$\geq 2|D^{2}u|^{2} + (2\alpha - 2||f||_{C^{1}} - 1)|Du|^{2} - ||f||_{C^{1}}^{2} - \alpha||u||_{C^{0}(\Omega)}^{2} - \alpha||f||_{C^{0}(\Omega)}^{2} + \beta. \tag{0.62}$$

取 α, β 使得

$$2\alpha - 2||f||_{C^1} - 1 \ge 0,$$

$$\beta - ||f||_{C^1}^2 - \alpha||u||_{C^0(\Omega)}^2 - \alpha||f||_{C^0(\Omega)}^2 \ge 0.$$
(0.63)

则有

$$\max_{\Omega} |Du|^2 \le \max_{\Omega} \varphi \le \max_{\partial \Omega} \varphi \le \max_{\partial \Omega} |Du|^2 + C. \tag{0.64}$$

$$\mathbb{P}: \max_{\Omega} |Du| \leq \max_{\partial\Omega} |Du| + C_{\circ}$$

Homework 0.18. 设 $\Delta u = 0, x \in \overline{B_2^2(0)} \setminus B_1^2(0)$, 那么 $\int_{S_1^2(0)} \frac{\partial u}{\partial \rho}(\rho, \theta) dS$ 和 $\int_{S_2^2} \frac{\partial u}{\partial \rho}(\rho, \theta) dS$ 哪一个大一些?证明. 利用散度定理可得

$$3\pi = \int_{\overline{B_2^2(0)} \setminus B_1^2(0)} dx = \int_{\overline{B_2^2(0)} \setminus B_1^2(0)} \Delta u dx = \int_{\partial(\overline{B_2^2(0)} \setminus B_1^2(0))} \frac{\partial u}{\partial n} dS$$
$$= \int_{S_2^2(0)} \frac{\partial u}{\partial \rho} (\rho, \theta) dS - \int_{S_1^2(0)} \frac{\partial u}{\partial \rho} (\rho, \theta) dS, \tag{0.65}$$

表明

$$\int_{S_2^2(0)} \frac{\partial u}{\partial \rho}(\rho, \theta) dS \ge \int_{S_1^2(0)} \frac{\partial u}{\partial \rho}(\rho, \theta) dS. \tag{0.66}$$

Homework 0.19. 设 $\overline{\Omega_1} \subset \Omega_2, u_k \in C^2(\Omega_k) \cap C(\overline{\Omega_k}), (k=1,2)$, 其中 u_k 满足

$$\begin{cases} \Delta u_k = 0 & in \ \Omega_k \\ \omega_k = f_k & on \ \partial \Omega_k \end{cases}$$
 (0.67)

 $f_1(x^1) < f^2(x_2), \ \forall x^1 \in \partial \Omega_1, x^2 \in \partial \omega_2. \ \ \text{问如果} \ \ \forall x^0 \in \Omega_1, \ \ u_1(x^0) \ \ 与 \ \ u_2(x^0) \ \ 哪一个大一些?$

证明. 令 $v=u_1-u_2$,则 $\Delta v=0$ in Ω_1 ,故 v 的最大最小值是在边界达到。由于

$$\begin{cases} \Delta u_2 = 0 & in \ \Omega_2, \\ \omega_2 = f_2 & on \ \partial \Omega_2. \end{cases}$$
 (0.68)

则 u_2 的最大最小值是在边界上达到,即 $u_2(x) \geq \min_{\partial \Omega_2} f_2(x)$ 。

对于 $x \in \partial\Omega_1, v(x) = f_1(x) - u_2(x) \le f_1(x) - \min_{\partial\Omega_2} f_2$,即 $\min_{\partial\Omega_1} < 0$ 。那么便可以知道 v(x) < 0 in Ω_1 ,则 $u_1(x^0) < u_2(x^0)$ 。

Homework 0.20. 设 $u \in C^2(B_1^2(0)) \cap C(\overline{B_1^2(0)}), u_{x_1x_1} + u_{x_1x_2} + u_{x_2x_2} = 1, x \in B_1^2(0)$ 。问 u(x) 在 $B_1^2(0)$ 内部是否有最大值,最小值?

证明. 做坐标旋转变化使得导数的交叉项消失,令

$$\begin{cases} y_1 = x_1 + x_2 \\ y_2 = x_1 - x_2 \end{cases}$$
 (0.69)

利用链式法则可得: $3\frac{\partial^2 u}{\partial y_1^2} + \frac{\partial^2 u}{\partial y_2^2} = 1$.

若在内部 $x_0 \in B_1^2(0)$ 取得最大值,则 $D_y^2 u \leq 0$,这是不可能发生的。若在 x_0 处取得最小值, $D_y^2 u \geq 0$,这种情形是可能发生的,比如 $u(x) = \frac{1}{2}(x_1 - 100)^2 + \frac{1}{2}x_2^2$ 在 $(1,0) \in \partial B_1$ 取到最小值。

Homework 0.21. 读 $u \in C^2(\Omega) \cap C(\overline{\Omega}), q \in C(\overline{\Omega}), \Delta u(x) + q(x)u(x) = 0, x \in \Omega$ 。另外记 $M = \max_{\overline{\Omega}} u(x), m = \max_{\partial \Omega} u(x)$ 。

如果 $(\mathbf{a}), q(x) \equiv 0$, $(\mathbf{b}), q > 0$, $(\mathbf{c}), q(x) < 0$, M > 0, $(\mathbf{d}), q(x) < 0$, M < 0。上述四种情形是否可能有 M > m 成立?

证明. (a),不可能。 $\Delta u = 0$,说明 u 的最大值是在边界上达到的。

- (**b**),可能。例如 $n=1, q\equiv 1$,则 $u^{''}+u(x)=0, \ x\in (0,\pi)$ 。取 $u(x)=\sin x$,则 u 的最大值是在内部 $x=\frac{\pi}{2}$ 达到。
 - (c),不可能。若 u 的最大值是在内部达到,设 $x_0 \in \Omega$ 为最大值点,则 $\Delta u(x_0) \le 0$,矛盾。
- (d),可能。例如 $n=1, q\equiv -1$,则 $u^{''}-u(x)=0, \ \forall x\in (-1,1)$ 。取 $u(x)=-e^x-e^{-x}$,则 u 的最大值是在 x=0 处达到。

Homework 0.22. 设 $\Omega_{\infty} = \mathbb{R}^3 \setminus \overline{B_1^3(0)}$, $u_k \in C^2(\Omega_{\infty}) \cap C(\overline{\Omega_{\infty}})$, $\Delta u_k(x) = 0, x \in \Omega_{\infty}$, (k = 1, 2)。 如果 $u_1(x) < u_2(x), \forall x \in \partial \Omega_{\infty}$, 是否可以得出 $u_1(x) < u_2(x), \forall x \in \Omega_{\infty}$?

证明. 考虑方程的径向解,已知 $\Delta u = \frac{\partial^2 u}{\partial r^2} + (n-1)\frac{1}{r}\frac{\partial u}{\partial r} + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2}$,则有

$$\begin{cases} u_k^{"} + \frac{2}{r}u_k^{'} = 0\\ u_1(1) = 1, \ u_2(1) = 2 \end{cases}$$
 (0.70)

做一个变量替换 $r = e^t$ 可得

$$\begin{cases} u_k'' + u_k = 0 \\ u_1(0) = 1, \ u_2(0) = 2 \end{cases}$$
 (0.71)

那么可得 $u_k = C_1 \sin \ln r + C_2 \cos \ln r$ 。 故而可以再加条件 $u_1(2) < u_2(2)$,不妨取 $u_1(2) = 2, u_2(2) = 1$ 即可。

Homework 0.23. (Hopf-Lemma)

 $\Delta u = 0$ in $B_1(0), u \in C(\overline{B_1(0)})$, 若存在 $x_0 \in \partial B_1(0)$ 使得 $u(x) < u(x_0), \forall x \in B_1(0)$, 则有

$$\frac{\partial u}{\partial \nu}(x_0) \le C(n)(u(x_0) - u(0)),\tag{0.72}$$

其中 ν 为 $x_0 \in \partial \Omega$ 的外法向。

证明. 令 $v(x) = e^{-\alpha|x|^2} - e^{-\alpha}$, $\alpha > 0$ 待定。则 v(x) > 0 in $B_1(0)$,简单的计算如下

$$v_{x_i} = -2\alpha x_i e^{-\alpha |x|^2}$$

$$v_{x_i x_i} = -2\alpha e^{-\alpha |x|^2} + 4\alpha^2 x_i^2 e^{-\alpha |x|^2}$$

则 $\Delta v = (-2\alpha n + 4\alpha^2 |x|^2)e^{-\alpha|x|^2}$,若 $|x| > \frac{1}{2}, \alpha > 2n$,则 $\Delta v > 0$ 。

令 $h_{\varepsilon}(x) = u(x) - u(x_0) + \varepsilon v(x)$, $\varepsilon > 0$ 待确定。则 $\Delta h_{\varepsilon} = \varepsilon \Delta v(x) > 0$ in $B_1(0) \setminus \overline{B_{\frac{1}{2}}(0)}$,从而 h_{ε} 的最大值是在边界 $\partial B_1(0) \cup \partial B_{\frac{1}{2}}(0)$ 达到。注意到 $h_{\varepsilon}(x_0) = 0$,另外 $x \in \partial B_1(0), h_{\varepsilon}(x) \leq 0$,on $\partial B_1(0)$ 和 $x \in \partial B_{\frac{1}{2}}(0), h_{\varepsilon} = u(x) - u(x_0) + (e^{-\frac{\alpha}{4}} - e^{-\alpha})\varepsilon$,若 $\varepsilon \leq \frac{u(x_0 - u(x))}{e^{-\frac{\alpha}{4}} - e^{-\alpha} + 1}$,则 $h_{\varepsilon} < 0$ 。从而 h_{ε} 在 $x_0 \in \partial B_1(0)$ 处取到最大值,所以 $\frac{\partial h_{\varepsilon}}{\partial \nu}(x_0) \geq 0$ 。因此

$$\frac{\partial u}{\partial \nu}(x_0) \ge -\varepsilon \frac{\partial v}{\partial \nu}(x_0) = 2\alpha \varepsilon e^{-\alpha}.$$
(0.73)

下面来估计 ε 。 令 $\omega = u(x_0) - u(x)$,则 $\Delta \omega = 0$, $\Omega > 0$ in $B_1(0)$ 。由 Harnack-Inequality 可得

$$\inf_{B_{\frac{1}{2}(0)}} \omega \ge C(n) \sup_{B_{\frac{1}{2}}(0)} \omega \le C(n)\omega(0) = C(n)(u(x_0) - u(0)), \tag{0.74}$$

则
$$\inf_{B_{\frac{1}{2}(0)}} \omega = u(x_0) - \sup_{B_{\frac{1}{2}(0)}} u \le u(x_0) - u(x)$$
,故我们可取 $\varepsilon = C(n) \frac{u(x_0) - u(0)}{e^{-\frac{\alpha}{4}} - e^{-\alpha} + 1}$ 。

Homework 0.24. 读 $\overline{\Omega} = \{(x,y) \in \mathbb{R}^2 | 1 \le x^2 + y^2 \le 2\}, u \in C^2(\overline{\Omega}),$ 且

$$\begin{cases}
\Delta u = 0 & (x, y) \in \overline{\Omega}, \\
u(x, y) = x + y & x^2 + 2y^2 = 2, \\
\frac{\partial u(x, y)}{\partial \nu} + (1 - x)u(x, y) = 0 & x^2 + 2y^2 = 1.
\end{cases}$$
(0.75)

证明. 由最大值原理可知 u 的最大值是在 $\Gamma_1 \cup \Gamma_2 = \{(x,y) \in \mathbb{R}^2 | x^2 + 2y^2 = 1\} \cup \{(x,y) \in \mathbb{R}^2 | x^2 + 2y^2 = 2\}$ 上取到的。

若最大值是在 Γ_2 上达到,则

$$\max_{\overline{\Omega}} u(x,y) = \max_{\Gamma_2} (x+y) = \max_{\Gamma_2} \sqrt{2-2y^2} + y = \sqrt{3}, \ at \ y = \frac{1}{\sqrt{2}}.$$
 (0.76)

若最大值是在 Γ_1 上达到,设为 x_0 ,那么利用 Hopf-Lemma 可知 $\frac{\partial u}{\partial \nu}(x_0)>0$ 从而 (1-x)u(x,y)<0 at x_0 ,又因为 $|x_0|<1$,则 u(x,y)<0 at x_0 。故 $\max_{x \in \mathcal{X}} u(x,y)=\sqrt{3}$ 。

对最小值的论述与最大值的论述相同,则
$$\displaystyle\max_{\overline{\Omega}} |u(x,y)| = \sqrt{3}$$
。
 \Box

Homework 0.25. (差商性质)

- (1),若 $1 \leq p < +\infty, u \in W^{1,p}(U)$,则对于 $\forall V \subset \subset U, ||D^h u||_{L^p(V)} \leq C||Du||_{L^p(U)}$,对 $0 < h < \frac{1}{2}d, d = dist(V, \partial U)$ 均成立。
 - (2), 若 1 , 且存在常数 <math>C 使得

$$||D^h u||_{L^p(V)} \le C, (0.77)$$

对 $0 < h < \frac{1}{2} dist(V, \partial U)$ 成立,则有 $||Du||_{L^p(V)} \le C$,即 $u \in W^{1,p}(V)$ 。

证明. (1), U 为有界区域,由逼近定理可知, $\forall u \in W^{1,p}(U)$, $\exists u_m \in C^{\infty}(U) \cap W^{1,p}(U), u_m \to u \ in \ W^{1,p}(U)$ 。前面我们已经证明了

$$||D^h u_m||_{L^p(V)} \le C||Du_m||_{L^p(U)} \tag{0.78}$$

那么由

$$||D^{h}u_{m} - D^{h}u_{l}||_{L^{p}(V)} \le C||Du_{m} - Du_{l}||_{L^{p}(U)} \to 0, \ (m, l \to \infty)$$

$$(0.79)$$

知 $\{D^h u_m\}_{m=1}^{\infty}$ 为 $L^p(V)$ 中的 Cauchy 列,再利用 $L^p(V)$ 空间的完备性,可知 $\{D^h u_m\}$ 为收敛列。又因为

$$||D^{h}u_{m} - D^{h}u||_{L^{p}(V)} = \frac{1}{h}||(u_{m} - u)(\cdot + he_{i}) - (u_{m} - u)(\cdot)||_{L^{p}(V)}$$

$$\leq \frac{2}{h}||u_{m} - u||_{L^{p}(U)} \to 0, \quad (m \to \infty).$$

则 $D^h u_m \to D^h u$ in $L^p(V)$, 对(0.78)两端取极限有

$$||D^h u||_{L^p(V)} \le C||Du||_{L^p(U)}. (0.80)$$

(2),已知(0.77)对于 $\forall 0 < |h| < \frac{1}{2} dist(V, \partial U)$ 均成立,我们可以选取 $i \in \{1, 2, \cdots, n\}, \phi \in C_c^{\infty}(V)$,那么当 h 充分小的时候

$$\int_{V} u(x) \left[\frac{\phi(x + he_i) - \phi(x)}{h} \right] dx = -\int_{V} \left[\frac{u(x) - u(x - he_i)}{h} \right] \phi(x) dx, \tag{0.81}$$

等价于

$$\int_{V} u(D_{i}^{h}\phi)dx = -\int_{V} (D_{i}^{-h}u)\phi dx. \tag{0.82}$$

(0.77)表明

$$\sup_{L} ||D_i^{-h}u||_{L^p(V)} < \infty, \tag{0.83}$$

因为 $1 , 那么存在 <math>v_i \in L^p(V)$ 和 $\{h_k\}_{k=1}^{\infty} \to 0$ 使得

$$D_i^{-h_k} u \to v_i$$
, weakly in $L^p(V)$, (0.84)

但是

$$\int_{V} u\phi_{x_{i}}dx = \int_{U} u\phi_{x_{i}}dx = \lim_{h_{k}\to 0} \int_{U} uD_{i}^{h_{k}}\phi dx$$

$$= -\lim_{h_{k}\to 0} \int_{V} D_{i}^{-h_{k}}u\phi dx$$

$$= -\int_{V} v_{i}\phi dx = -\int_{U} v_{i}\phi dx. \tag{0.85}$$

因此 $u_{x_i}=v_i$ 在弱的意义下,因此 $Du\in L^p(V)$ 。因为 $u\in L^p(V)$,所以 $u\in W^{1,p}(V)$ 。

Remark 0.4. (2) 中的 p=1 结论可能不成立的。

Homework 0.26. 举例说明 $u \in L^1(V)$,存在常数 C 使得 $||D^h u||_{L^1(V)} \le C, 0 < |h| < \frac{1}{2} dist(V, \partial U)$,但是不一定有 $u \in W^{1,1}(V)$ 。

证明. 取 $V = (-1,1), U = (-1-\delta, 1+\delta)$, 和

$$u(x) = \begin{cases} 0 & U \cap \{x < 0\} \\ 1 & U \cap \{x > 0\} \end{cases}$$

不妨设 h > 0,则

$$D^{h}u(x) = \frac{u(x+h) - u(x)}{h} = \begin{cases} 0 & \{x > 0\} \cup \{x+h < 0\} \\ \frac{1}{h} & -h < x < 0 \end{cases}$$

则 $||D^h u(x)||_{L^1(V)} = \int_{-1}^1 |D^h u(x)| dx = \int_{-h}^0 \frac{1}{h} dx = 1$ 。但是 u 的弱导数是不存在的。

考虑方程

$$\begin{cases}
-\Delta u = |u|^{p-1}u & \text{in } U \\
u|_{\partial U} = 0
\end{cases}$$
(0.86)

其中 $\frac{n+2}{n-2} 。$

Definition 0.1. 开集 U 称为关于 0 是星形的,如果对于 $\forall x \in \overline{U}$,线段 $\{\lambda x | 0 \le \lambda \le 1\} \subset \overline{U}$ 。

Homework 0.27. U 为关于 0 的星形域, $\partial U \in C^1$,则 $x \cdot \nu(x) \ge 0$, $\forall x \in \partial U$, ν 是 ∂U 于 x 点处的外法向。证明. 由 $\partial U \in C^1$,取 $x \in \partial U$, $\forall \varepsilon > 0$, $\exists \delta > 0$ 使得 $|y - x| < \delta$ 且 $y \in \overline{U}$ 有 $\nu(x) \frac{y - x}{|y - x|} \le 0$,特别地

$$\lim_{\substack{y \to x \\ y \in \overline{U}}} \nu(x) \frac{y - x}{|y - x|} \le 0, \tag{0.87}$$

$$\nu(x)\frac{x}{|x|} = -\lim_{x \to 1^{-}} \nu(x) \frac{\lambda x - x}{|\lambda x - x|} \ge 0,$$
(0.88)

即:
$$x \cdot \nu(x) \geq 0$$
。

Homework 0.28. 假设 $u \in C^2(\overline{U})$ 为边值问题(0.86)的解, U 为关于 0 的星形域, $\partial U \in C^1$, 则 $u \equiv 0$ in U。证明. 方程两端同时乘上 $x \cdot Du$ 再做分部积分有,

$$\int_{U} (-\Delta u)(x \cdot Du) dx = \int_{U} |u|^{p-1} u(x \cdot Du) dx, \tag{0.89}$$

记为 A = B, 其中

$$A = -\sum_{i,j=1}^{n} \int_{U} u_{x_{i}x_{i}} x_{j} u_{x_{j}} dx$$

$$= -\sum_{i,j=1}^{n} \int_{\partial U} u_{x_{i}} \nu^{i} x_{j} u_{x_{j}} dS + \sum_{i,j=1}^{n} u_{x_{i}} (x_{j} u_{x_{j}})_{x_{i}} dx$$

$$A_{1} = -\sum_{i,j=1}^{n} \int_{\partial U} u_{x_{i}} \nu^{i} x_{j} u_{x_{j}} dS + \sum_{i,j=1}^{n} u_{x_{i}} (x_{j} u_{x_{j}})_{x_{i}} dx$$

则有

$$A_{2} = \sum_{i,j=1}^{n} \left(\int_{U} u_{x_{i}} \delta_{ij} u_{x_{j}} dx + \int_{U} u_{x_{i}} x_{j} u_{x_{i}x_{j}} dx \right)$$

$$= \int_{U} |Du|^{2} dx + \sum_{j=1}^{n} \int_{U} \left(\frac{|Du|^{2}}{2} \right)_{x_{j}} x_{j} dx$$

$$= \left(1 - \frac{n}{2} \right) \int_{U} |Du|^{2} dx + \int_{\partial U} \frac{|Du|^{2}}{2} \nu \cdot x dS.$$

由 $u|_{\partial U}=0$,可以得到 $Du(x)//\nu(x), \forall x\in\partial U$ 。即 $Du(x)=\pm |Du(x)|\nu(x)$ 。则

$$A_{1} = -\int_{\partial U} (Du \cdot \nu)(Du \cdot x)dS = -\int_{\partial U} (Du \cdot \frac{Du}{\pm |Du|})(\pm Du\nu \cdot x)dS$$
$$= -\int_{\partial U} |Du|^{2}(x \cdot \nu)dS. \tag{0.90}$$

那么可得

$$A = A_1 + A_2 = \frac{2-n}{2} \int_U |Du|^2 dx - \frac{1}{2} \int_{\partial U} |Du|^2 (x \cdot \nu) dS, \tag{0.91}$$

和

$$B = \sum_{j=1}^{n} \int_{U} |u|^{p-1} u x_{j} u_{x_{j}} dx = \sum_{j=1}^{n} \int_{U} \left(\frac{|u|^{p+1}}{p+1}\right)_{x_{j}} x_{j}$$
$$= -\frac{n}{p+1} \int_{U} |u|^{p+1} dx. \tag{0.92}$$

由 A = B 得到

$$\frac{n-2}{2} \int_{U} |Du|^{2} dx + \frac{1}{2} \int_{\partial U} |Du|^{2} (\nu \cdot x) dS = \frac{n}{p+1} \int_{U} |u|^{p+1} dx. \tag{0.93}$$

(0.93)即为 Derrick-Pohozaev 恒等式。

由上面的一个习题可得

$$\frac{n-2}{2} \int_{U} |Du|^{2} dx \le \frac{n}{p+1} \int_{U} |u|^{p+1} dx, \tag{0.94}$$

对方程 $-\Delta u = |u|^{p-1}u$ 两端同时乘上 u 可得

$$\int_{U} |Du|^{2} dx = -\int_{U} u \Delta u dx = \int_{U} |u|^{p+1} dx, \qquad (0.95)$$

对比(0.94)和(0.32)有

$$\frac{n-2}{2} \int_{U} |Du|^2 dx \le \frac{n}{p+1} \int_{U} |Du|^2 dx, \tag{0.96}$$

则
$$\frac{n-2}{2} \le \frac{n}{p+1}$$
, 即 $p \le \frac{n+2}{n-1}$, 矛盾。

Homework 0.29. 求解平面边值问题: $\Delta u = 0$ in $B(0,R) \subset \mathbb{R}^2$ 。

证明. 已知 $\Delta u = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial \theta} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$,令 $u(x,y) = u(r\cos\theta,r\sin\theta), 0 < \theta < 2\pi$,分离变量得到 $u(r,\theta) = f(r)g(\theta)$, $g(\theta)$ 是以 2π 为周期的函数。代入方程有

$$f''(r)g(\theta) + \frac{1}{r}f'(r)g(\theta) + \frac{1}{r^2}f(r)g''(\theta) = 0,$$
(0.97)

则

$$\frac{r^2 f''(r) + r f'(r)}{f(r)} + \frac{g''(\theta)}{g(\theta)} = 0$$
 (0.98)

所以可设

$$\frac{r^2 f''(r) + r f'(r)}{f(r)} = C \quad \frac{g''(\theta)}{g(\theta)} = -C,$$
(0.99)

先考察 $g''(\theta) + Cg(\theta) = 0$, 对应的特征方程为 $\lambda^2 + C = 0$,

C < 0, $\lambda = \pm \sqrt{-C}$,则 $g(\theta) = C_1 e^{\sqrt{-C}t} + C_2 e^{-\sqrt{-C}t}$,显然不是周期函数。

$$c=0$$
, $g(\theta)=a\theta+b$,则 $a=0$ 。

c > 0, $g(\theta) = C_1 \cos \sqrt{C}\theta + C_2 \sin \sqrt{C}\theta$, 利用周期性有 $C = n^2$ 。

综上所述,则 $g_n(\theta) = A_n \cos n\theta + B_n \sin n\theta$, $n = 1, 2, \cdots$ 。另外 $C = n^2$ 时,得到

$$r^{2}f^{''}(r) + rf^{'}(r) - n^{2}f(r) = 0,$$

令 $r = e^t, h(t) = f^{e^t} = f(r)$, 简单的计算可知

$$h'(t) = f'(r)\frac{dr}{dt} = f'(r)e^{t} = rf'(r),$$

$$h''(t) = (e^{t}f'(r(t)))' = e^{t}f'(r) + e^{t}f''(r)\frac{dr}{dt} = rf'(r) + r^{2}f''(r),$$

带回到原式可得

$$h''(t) - n^2 h(t) = 0, (0.100)$$

容易解出

$$h_n(t) = \begin{cases} C_n e^{nt} + D_n e^{-nt} & n \ge 1 \\ C_0 + D_0 t & n = 0 \end{cases}$$

则

$$f_n(r) = \begin{cases} C_n r^n + D_n r^{-n} & n \neq 0 \\ C_0 + D_0 \log r & n = 0 \end{cases}$$

由于 $\{\sin n\theta, \cos n\theta\}_{n=0}^{\infty}$ 是完备的,则

$$u(r,\theta) = \sum_{n=0}^{\infty} f_n(r)g_n(\theta)$$

$$= A_0 + B_0 \log r + \sum_{n=1}^{\infty} (A_n r^n + B_n r^{-n}) \cos n\theta + \sum_{n=1}^{\infty} (C_n r^n + D_n r^{-n}) \sin n\theta.$$
 (0.101)

Homework 0.30. 在集合 $\{\omega \in H^1(B_1^2(0))|\omega - f \in \mathring{H}^1(B_1^2(0))\}$ 上求 $\inf \int_{B_1^2(0)} |grad\omega(x)|^2 dx$,其中 $f(x_1,x_2) = x_2^2$ 。

证明. 由 Dirichlet 原则, 取到 $\inf \int_{B_1^2(0)} |\nabla \omega|^2 dx$ 的 ω 满足

$$\begin{cases} \Delta \omega = 0 & in \ B_1^2(0), \\ \omega|_{\partial B_1^2(0)} = x_2^2. \end{cases}$$
 (0.102)

利用极坐标的变换可知

$$\omega(r,\theta) = A_0 + \sum_{n=1}^{\infty} (A_n r^n + B_n r^{-n}) \cos n\theta + \sum_{n=1}^{\infty} (C_n r^n + D_n r^{-n}) \sin n\theta.$$
 (0.103)

则

$$\omega(1,\theta) = A_0 + \sum_{n=1}^{\infty} (A_n + B_n) \cos n\theta + \sum_{n=1}^{\infty} (C_n + D_n) \sin n\theta = \frac{1 - \cos 2\theta}{2},$$
(0.104)

即 $A_0=\frac{1}{2},A_2+B_2=-\frac{1}{2}$ 。由于 $B_1^2(0)$ 包含 0 点,则 $B_0=B_2=0$,所以

$$\omega(r,\theta) = \frac{1}{2} - \frac{1}{2}r^2\cos 2\theta,$$
 (0.105)

则

$$\omega(x_1, x_2) = \frac{1}{2} - \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2. \tag{0.106}$$

那么则有

$$\inf \int_{B_1^2(0)} |\nabla \omega|^2 dx = \int_{B_1^2(0)} (-x_1)^2 + x_2^2 dx = \int_0^{2\pi} \int_0^1 r^2 r dr d\theta = \frac{\pi}{2}.$$
 (0.107)

Homework 0.31. 固定 $\alpha > 0, U = \mathring{B}(0,1)$ 。证明存在常数 C 只与 n, α 有关使得

$$\int_{U} u^2 dx \le C \int_{U} |Du|^2 dx,\tag{0.108}$$

如果 $|\{x \in U | u(x) = 0\}| \ge \alpha, u \in H^1(U)$ 成立。

证明. 反证法。假设不存在常数 C 满足条件,则存在 $\{u_m\}_{m=1}^{\infty} \subset H^1(U), |\{x \in U | u(m) = 0\}| \geq \alpha, \int_U u_m^2 dx = 1$,且 $\int_U |Du_m|^2 dx \to 0 \ (m \to \infty)$ 。则 $||u_m||_{H^1(U)} \leq +\infty$,已知 $H^1(U) \subset \subset L^2(U)$,因此存在子列 $\{u_{m_i}\}_{i=1}^{\infty}$

$$u_{m_i} \rightharpoonup u_0$$
, in $H^1(U)$, $u_{m_i} \to u_0$ in $L^2(U)$, and $||u_0||_{L^2(U)} = 1$. (0.109)

则 $\forall \phi \in C_c^{\infty}(U)$,有

$$\int_{U} u_{0}\phi_{x_{j}} dx = \lim_{i \to \infty} \int_{U} u_{m_{i}}\phi_{x_{j}} dx = -\lim_{i \to \infty} \int_{U} (u_{m_{i}})_{x_{j}} \phi dx = 0.$$
 (0.110)

则 $Du_0=0, a.e, in U.$ 所以

$$0 = \lim_{i \to \infty} \int_{U} |u_{m_i} - u_0|^2 dx \ge \lim_{i \to \infty} \int_{\{u_{m_i} = 0\}} |u_{m_i} - u_0|^2 dx \ge |u_0(x)| \inf_{i} |\{u_{m_i} = 0\}| > 0.$$
 (0.111)

Homework 0.32. 设 Ω 是有界区域且满足一致外球条件, $u \in C^2 \cap C(\overline{\Omega})$ 满足

$$\begin{cases} \Delta u = f(x) & \text{in } \Omega, \\ u|_{\partial\Omega} = \varphi. \end{cases}$$
 (0.112)

其中 $f \in C(\overline{\Omega}), \varphi \in C^2(\overline{\Omega})$ 。则对于 $\forall x \in \Omega, x_0 \in \partial, |u(x) - u(x_0)| \leq C|x - x_0|$ 。C 为一正常数且只与 $\Omega, ||f||_{L^{\infty}(\overline{\Omega})}, ||\varphi||_{C^2(\overline{\Omega})}, ||u||_{L^{\infty}(\Omega)}$ 有关。

证明. 不妨设

$$\begin{cases} \Delta u = f(x) & in \Omega \\ u|_{\partial\Omega} = 0 \end{cases}$$
 (0.113)

不然的话可以令 $v = u - \varphi$, 则

$$\begin{cases} \Delta v = f(x) - \Delta \varphi & \text{in } \Omega, \\ v|_{\partial \Omega} = 0. \end{cases}$$
 (0.114)

如果得到 $|v(x) - v(x_0)| \le C|x - x_0|$,则

$$|u(x) - u(x_0)| = |(u - \varphi)(x) - (u - \varphi)(x_0) + \varphi(x) - \varphi(x_0)|$$

$$\leq |v(x) - v(x_0)| + |\varphi(x) - \varphi(x_0)|$$

$$\leq (C + ||\varphi||_{C^1(\overline{\Omega})})|x - x_0|,$$

 $\Leftrightarrow F = \sup_{\Omega} |f|, \ \mathbb{M} \ \Delta(\pm u) = \pm f > -F.$

对于 $\forall x_0 \in \partial \Omega$, 我们希望找到 ω , 满足

(1),
$$\omega(x_0) = 0$$

$$(2), \quad \omega|_{\partial\Omega} \geq 0$$

$$(3), \quad \Delta\omega \le -F \tag{0.115}$$

则由条件 (3) 得到 $\Delta(\omega \pm u) = \Delta\omega \pm f < 0$,利用极值原理知, $\omega \pm u$ 的最小值是在边界上达到的,所以

$$\omega \pm u \ge \min_{\partial \Omega} \omega \pm u \le 0, \tag{0.116}$$

即 $-\omega \leq u \leq \omega$ 。

由条件 (1), $\omega(x_0) = 0, u|_{\partial\Omega} = 0$, 则

$$-(\omega(x) - \omega(x_0)) \le u(x) - u(x_0) \le \omega(x) - \omega(x_0), \tag{0.117}$$

即 $|u(x) - u(x_0)| \le \omega(x) - \omega(x_0)$ 。若 ω 的一阶导数是有界的,那么命题得证。

由 Ω 满足一致外球条件,即 $\forall x_0 \in \partial \Omega, \exists R(x_0), y \ st. \overline{B_{R(x_0)}(y)} \cap \overline{\Omega} = \{x_0\}, R(x_0) > R$,其中 R 是一个 同 Ω 有关的常数。定义 $d(x) = dist(x, \partial B_{R(x_0)}(y_0)) = |x - y| - R(x_0), \ d(x_0) = 0$ 。我们考虑 $\omega = \psi(d), \psi: [0, \infty) \to \mathbb{R}$ 。可以验证: $(1), \omega(x_0) = 0$ 时只需 $\psi(0) = 0$ 。 $(2), \omega|_{\partial\Omega} \geq 0$ 则只需要 $\psi(d) \geq 0$,如果 $d \geq 0$ 。最后我们合理选取 ψ 使得 (3) 也成立。

$$d_{x_i} = \frac{x_i - y_i}{|x - y|}, \quad d_{ij} = \frac{\delta_{ij}}{|x - y|} - \frac{(x_i - y_i)(x_j - y_j)}{|x - y|^3}, \tag{0.118}$$

则

$$\Delta\omega = \psi^{"} |\nabla d|^{2} + \psi^{'} \Delta d = \psi^{"} + \psi^{'} \frac{n-1}{|x-y|} \le \psi^{"} + \psi^{'} \frac{n-1}{R(x_{0})}$$

$$(0.119)$$

这里自然地要求 $\psi^{'}>0$,则有 $\psi(d)>0$,d>0。另外要求 $\Delta\omega\leq -F$,则需要

$$\psi'' + \psi' \frac{n-1}{R} + F \le 0, \tag{0.120}$$

下面解方程 $\psi'' + A\psi' + B = 0$, A, B > 0。 可得 $\psi = -\frac{B}{A}t + \frac{C_1}{A}e^{-At} + C_2$ 。

 ψ 满足 (1) 还需要 $\psi(0)=\frac{C_1}{A}+C_2=0 \Rightarrow \psi=\frac{-Bt}{A}+C(1-e^{-At})$ 。

 ψ 满足 (2) 需要 $\psi'(t)=-\frac{B}{A}+CAe^{-At}\geq 0$,只需 $-\frac{B}{A}+CAe^{-Adiam(\Omega)}=0$,因此我们取 $C=\frac{Be^{Adiam(\Omega)}}{A^2}$ 即可。由此可以得到

$$\psi(t) = -\frac{B}{A}t + \frac{Be^{Adiam(\Omega)}}{A}(1 - e^{-At}). \tag{0.121}$$

Remark 0.5. 由 Homework(0.32), 我们可以得到边界上的法向估计, 即 $|\frac{\partial u}{\partial \nu}|_{\partial\Omega} \leq C$ 。然后再利用我们前面得到的整体梯度估计约化到边界, 我们便得到整体梯度估计。

Homework 0.33. (Harnack-Inequality)

假设 $u \in C^{\infty}(\overline{B_1(0)}), u > 0$. 满足 $\Delta u + u = 0$, 证明存在常数 C, 使得

$$\sup_{B_{\frac{1}{2}}(0)} u \le C \inf_{B_{\frac{1}{2}}(0)} u. \tag{0.122}$$

证明. 只需证明

$$\sup_{B_{\frac{1}{2}}} |\nabla \log u| \le C. \tag{0.123}$$

我们令 $v = \log u, \forall x_1, x_2 \in B_{\frac{1}{2}}(0)$,

$$|v(x_1) - v(x_2)| = |v(x_2 + t(x_1 - x_2))|_{t=0}^{t=1}|$$

$$\leq |\int_0^1 \frac{d}{dt} v(x_2 + t(x_1 - x_2)) dt|$$

$$\leq \int_0^1 |\nabla v| |x_2 - x_2| dt \leq C.$$
(0.124)

则 $|\log u(x_1) - \log u(x_2)| \le C \Rightarrow u(x_1) \le Cu(x_2)$, 再利用 x_1, x_2 的任意性可以得到结论。

下面我们来证明(0.123)。

取截断函数 $\eta \equiv 1$ in $B_{\frac{1}{2}}(0)$, $0 \le \eta \le 1$ in $B_1(0)$, $\eta \in C_c^{\infty}(B_1(0))$ 。取 $\varphi = \eta^2 |\nabla v|^2$,由 v = logu 得 $u = e^v$,则

$$u_{x_i} = e^v v_{x_i}, \quad u_{x_i x_j} = e^v v_{x_i} v_{x_j} + e^v v_{x_i x_j},$$

$$\Delta u = e^v |\nabla v|^2 + e^v \Delta v, \tag{0.125}$$

带入方程可得

$$|\nabla v|^2 + \Delta v + 1 = 0. ag{0.126}$$

由于 φ 的最大值一定是在内部达到的,不妨设为 $x_0 \in B_1(0)$ 。则

$$0 = \varphi_{x_i} = \eta^2 (|\nabla v|^2)_{x_i} + 2\eta \eta_{x_i} |\nabla v|^2 \Rightarrow \eta(|\nabla v|^2)_{x_i} = -2\eta_{x_i} |\nabla v|^2$$

$$0 \ge \Delta \varphi = \underbrace{\Delta(\eta^2)|\nabla v|^2}_{a} + \underbrace{\eta^2 \Delta(|\nabla v|^2)}_{b} + \underbrace{2\sum_{i=1}^{n} (\eta^2)_{x_i} (|\nabla v|^2)_{x_i}}_{(0.127)}$$

简单计算知

$$\begin{split} c &= -8|\nabla \eta|^2 |\nabla v|^2, \\ \Delta(|\nabla v|^2) &= 2\sum_{i,j} v_{x_i x_j}^2 + 2\sum_i v_{x_i} (\Delta v)_{x_i} = 2\sum_{i,j} v_{x_i x_j} + 2\sum_i v_{x_i} (-|\nabla v|^2 - 1)_{x_i} \\ &= 2\sum_{i,j} v_{x_i x_j}^2 + 4\frac{\nabla \eta \nabla v |\nabla v|^2}{\eta}, \\ b &= 2\eta^2 \sum_{i,j} v_{x_i x_j} + 4\eta \nabla \eta \nabla v |\nabla v|^2. \end{split}$$

又因为

$$\sum_{i,j} v_{x_i x_j}^2 \ge \sum_{i} v_{x_i x_i} \ge \frac{1}{n} (\Delta v)^2 = \frac{1}{n} (1 + |\nabla v|^2)^2 = \frac{1}{n} (|\nabla v|^4 + 2|\nabla v|^2 + 1), \tag{0.128}$$

则

$$0 \ge \Delta \varphi \ge \Delta(\eta^{2})|\nabla v|^{2} - 8|\nabla \eta|^{2}|\nabla v|^{2} + 4\eta \nabla \eta \nabla v|\nabla v|^{2} + \frac{2}{n}\eta^{2}(|\nabla v|^{4} + 2|\nabla v|^{2} + 1)$$

$$\ge \Delta(\eta^{2})|\nabla v|^{2} - 8|\nabla \eta|^{2}|\nabla v|^{2} + 4\eta \nabla \eta \nabla v|\nabla v|^{2} + \frac{2}{n}\eta^{2}|\nabla v|^{4} + \frac{4}{n}\eta^{2}|\nabla v|^{2}. \tag{0.129}$$

所以可得

$$0 \ge \Delta(\eta^2) - 8|\nabla \eta|^2 + 4\eta \nabla \eta \nabla v + \frac{2}{n}\eta^2 |\nabla v|^2 + \frac{4}{n}\eta^2, \tag{0.130}$$

利用 Cauchy 不等式可以得到

$$|4\eta\nabla\eta\nabla v| \le 2(\frac{1}{\varepsilon}|\nabla\eta|^2 + \varepsilon\eta^2|\nabla v|^2),\tag{0.131}$$

取 $2\varepsilon = \frac{1}{n}$,则

$$0 \ge \Delta(\eta^2) - 8|\nabla \eta|^2 + \frac{1}{n}\eta^2|\nabla v|^2 - 4n|\nabla \eta|^2 + \frac{4}{n}\eta^2, \tag{0.132}$$

由此可以得到

$$\frac{1}{n}\eta^2 |\nabla v|^2 \le (4n+8)|\nabla \eta|^2 - \frac{4}{n}\eta^2 + \Delta(\eta^2) \le C,$$
(0.133)

即

$$\sup_{B_{\frac{1}{2}}(0)} |\nabla v| \le C. \tag{0.134}$$

Homework 0.34. $u \in H_0^2(U)$ 为边值问题

$$\begin{cases} \Delta^2 u = f(x) & in \ U \\ u = \frac{\partial u}{\partial \nu} = 0 & on \ \partial U \end{cases}$$
 (0.135)

如果 $\int_U \Delta u \Delta v dx = \int_U f v dx, \ v \in H^2_0(U)$ 。 给定 $f \in L^2(U)$,证明方程存在唯一解。

证明. 我们记 $B[u,v]=\int_{U}\Delta u \nabla v dx$,则方程弱解的表达式可以写做 $B[u,v]=(f,v)_{L^{2}(U)}$,

Step 1, 由赫尔德不等式得

$$|B[u,v]| \leq ||\Delta u||_{L^{2}(U)} ||\Delta v||_{L^{2}(U)} \leq C||D^{2}u|||D^{2}v||_{L^{2}(U)}$$

$$\leq C||u||_{H^{2}_{\alpha}(U)} ||v||_{H^{2}_{\alpha}(U)}, \tag{0.136}$$

表明 Lax-Milgram 定理中有界性成立。

Step 2, 我们先考虑 $u \in C_c^{\infty}(U)$,

$$B[u,u] = \int_{U} (\Delta u)^{2} dx = ||D^{2}u||_{L^{2}(U)}^{2}$$

$$\geq C(||D^{2}u||_{L^{2}(U)}^{2} + ||Du||_{L^{2}(U)}^{2} + ||u||_{L^{2}(U)}^{2})$$

$$\geq C||u||_{H_{0}^{2}(U)}^{2}. \tag{0.137}$$

对于 $\forall u \in H^2_0(U)$,存在 $\{u_m\}_{m=1}^\infty \subset C_c^\infty(U)$,使得 $u_m \to u$ in $H^2(U)$ 。对于 u_m 我们有

$$B[u_m, u_m] \ge C||u_m||_{H^2(U)}^2,$$
 (0.138)

另外

$$|B[u_m, u_m] - B[u, u]| = ||\Delta u_m||_{L^2(U)}^2 - ||\Delta u||_{L^2(U)}^2|$$

$$\leq ||\Delta (u - u_m)||_{L^2(U)}^2$$

$$\leq C||D^2(u - u_m)||_{L^2(U)}^2 \to 0 \ (m \to \infty).$$

对(0.138)两边同时取极限,可得

$$B[u, u] \ge C||u||_{H^2(U)}^2,\tag{0.139}$$

表明 Lax - Milgram 定理的强制性条件成立。

那么由 Lax-Milgram 定理知,存在唯一的
$$u \in H_0^2(U)$$
,使得 $B[u,v] = (f,v)_{L^2(U)}$ 。

Homework 0.35. (Hardy-Inequlity)

 $n \geq 3$, 存在常数 C 使得

$$\int_{\mathbb{R}^n} \frac{u^2}{|x|^2} dx \le C \int_{\mathbb{R}^n} |Du|^2 dx, \quad \forall u \in H^1(\mathbb{R}^n). \tag{0.140}$$

证明. 首先先考虑 $u \in C_c^{\infty}(\mathbb{R}^n)$, 设 $f(x) = \frac{x}{|x|^2}$, 则

$$\int_{\mathbb{R}^{n}} u^{2} div f dx = -\int_{\mathbb{R}^{n}} D(u^{2}) f dx = -2 \int_{\mathbb{R}^{n}} u D u f dx
\leq 2||D u||_{L^{2}} ||u f||_{L^{2}}.$$
(0.141)

由于 $divf = \frac{n-2}{|x|^2}, |f(x)|^2 = \frac{1}{|x|^2}$, 带入上式可得

$$\int_{\mathbb{R}^n} \frac{(n-2)u^2}{|x|^2} dx \le 2\left(\int_{\mathbb{R}^n} |Du|^2 dx\right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^n} \frac{u^2}{|x|^2} dx\right)^{\frac{1}{2}},\tag{0.142}$$

即

$$\frac{(n-2)^2}{4} \int_{\mathbb{R}^n} \frac{u^2}{|x|^2} dx \le \int_{\mathbb{R}^n} |Du|^2 dx. \tag{0.143}$$

Claim: $H^1(\mathbb{R}^n) = H^1_0(\mathbb{R}^n)$.

证明: $\forall u \in H^1(\mathbf{R}^n), u \in L^2(\mathbb{R}^n), Du \in L^2(\mathbf{R}^n)$,利用 $C_c^{\infty}(\mathbf{R}^n)$ 在 $L^2(\mathbb{R}^n)$ 中的稠密性,存在 $\{u_m\}_{m=1}^{\infty} \subset C_c^{\infty}(\mathbb{R}^n)$ 满足 $u_m \to u$ in $L^2(\mathbb{R}^n)$ 。那么对于 $\forall \phi \in C_c^{\infty}$,

$$\left| \int_{\mathbb{R}^{n}} \left((u_{x})_{x_{i}} - u_{x_{i}} \right) \phi dx \right| = \left| \int_{\mathbb{R}^{n}} (u_{m} - u) \phi_{x_{i}} dx \right| \\
\leq \left| |u_{m} - u||_{L^{2}} ||D\phi||_{L^{2}} \to 0, \ (m \to \infty) \tag{0.144}$$

即

$$\int_{\mathbb{D}_n} \lim_{m \to \infty} \left((u_m)_{x_i} - u_{x_i} \right) \phi dx = 0. \tag{0.145}$$

利用弱导数唯一性的证明技巧可得,

$$\lim_{m \to \infty} (u_m)_{x_i} - u_{x_i} = 0, \ a.e, \ in \ \mathbb{R}^n.$$
(0.146)

则有 $Du_m \to Du$ in $L^2(\mathbb{R}^n)$ 。即 $H_1(\mathbb{R}^n) \subset H^1_0(\mathbb{R}^n)$ 。

由上面的 Claim 知,存在 $u_k \in C_c^{\infty}(\mathbb{R}^n), u_k \to u$ in $H^1(\mathbb{R}^n)$,从而

$$\frac{(n-2)^2}{4} \int_{\mathbb{R}^n} \frac{u_k^2}{|x|^2} dx \le \int_{\mathbb{R}^n} |Du_k|^2 dx, \tag{0.147}$$

由于 $u_k \to u$ in $L^2(\mathbb{R}^n)$,则存在子列 $u_{k_j} \to u$,a.e,in \mathbb{R}^n 。则 $\frac{u_{k_j}}{|x|^2} \to \frac{u}{|x|^2}$ a.e,in \mathbb{R}^n 。所以

$$\frac{(n-2)^2}{4} \int_{\mathbb{R}^n} \frac{u^2}{|x|^2} dx \leq \liminf_{j \to \infty} \int_{\mathbb{R}^n} \frac{(n-2)^2}{4} \frac{u_{k_j}^2}{|x|^2} dx
\leq \liminf_{j \to \infty} \int_{\mathbb{R}^n} |Du_{k_j}|^2 dx = \int_{\mathbb{R}^n} |Du|^2 dx.$$
(0.148)

Homework 0.36. (Hadamard 三圆定理)

u(x,y) 在包含 $\{r_1<|x|< r_2\}$ 的区域 D 上时上调和的(即 $\Delta u \geq 0$),记 $M(r)=\max_{x^2+y^2=r}u(x,y),\ r_1< r_2$ 。则

$$M(r) \le \frac{M(r_1)(\log r_2 - \log r) + M(r_2)(\log r - \log r_1)}{\log r_2 - \log r_1}.$$
(0.149)

证明. 令 $r = \sqrt{x^2 + y^2}$, $\varphi(r) = \frac{M(r_1)\log\frac{r_2}{r} + M(r_2)\log\frac{r}{r_1}}{\log\frac{r}{r_1}}$ 。则 $\Delta \varphi = 0$, $\varphi(r_1) = M(r_1)$, $\varphi(r_2) = M(r_2)$ 。由此可得

$$\begin{cases} \Delta(u-\varphi) \ge 0 & \text{in } D, \\ \varphi \ge u & \text{on } \partial D. \end{cases}$$
 (0.150)

那么由弱极值原理可得 $u \leq \varphi$, 即 $M(r) \leq \varphi(r)$ 。命题得证。

Homework 0.37. 若 u 在 $\mathbb{R}^0 \setminus \{0\}$ 上下调和, 即 $\Delta u \geq 0$ in $\mathbb{R}^2 \setminus \{0\}$, 且 u 上有界, 则 u 恒为常数。

证明. 取 $r_2 > r > r_1 > 0$,由 u 上有界知 $|M(r)| = \max_{x^2 + y^2 = r^2} |u(x,y)| \le C$ 。在 Hadamard 三圆定理的结论中,令 $r_2 \to \infty$,有 $M(r) \le M(r_1)$,然后令 $r_1 \to 0$ 有 $M(r) \le M(r_2)$ 。则有 $M(r_1) \le M(r_2)$,从 $M(r_1) \ge M(r_2)$,得到 $M(r_1) = M(r_2)$, $M(r_2)$,由极值原理得到 $M(r_1) = M(r_2)$, $M(r_2)$ 由极值原理得到 $M(r_2)$ 。

Homework 0.38. 设 $U \subset \mathbb{R}^n$ 为有界区域, $\partial U \in C^1$ 。则存在 $\beta > 0$,使得 $\forall u \in H^1(U)$

$$\beta ||u||_{H^1(U)}^2 \le ||Du||_{L^2(U)}^2 + ||Tu||_{L^2(\partial U)}^2. \tag{0.151}$$

证明. 只需证明

$$\beta \int_{U} |u|^{2} dx \le \int_{U} |Du|^{2} dx + \int_{\partial U} |Tu|^{2} dS. \tag{0.152}$$

利用反正法,假设 $\{u_k\}_{k=1}^{\infty} \in H^1(U)$ 使得

$$\int_{U} |Du_{k}|^{2} dx + \int_{\partial U} |Tu_{k}|^{2} dS < \frac{1}{k} \int_{U} u_{k}^{2} dx. \tag{0.153}$$

取 $v_k = \frac{u_k}{||u_k||_{L^2(U)}}$,则 $||v_k||_{L^2(U)} = 1$,则

$$\int_{U} |Dv_{k}|^{2} dx + \int_{\partial U} |Tv_{k}|^{2} dS \le \frac{1}{k}.$$
(0.154)

故 $\{v_k\}$ 为 $H^1(U)$ 中的有界列,那么存在子列 $\{v_{k_i}\}_{i=1}^{\infty}$ 满足

$$v_{k_j} \to v \quad in \ L^2(U),$$

$$v_{k_j} \rightharpoonup v \quad in \ H^1(U). \tag{0.155}$$

再证明 Dv = 0, a.e, in U, $\forall \phi \in C_c^{\infty}(U)$,

$$\int_{U} v \phi_{x_i} dx = \lim_{j \to \infty} \int_{U} v_{k_j} \phi_{x_j} - \lim_{j \to \infty} \int_{U} (v_{k_j})_{x_i} \phi dx$$

$$\leq \lim_{j \to \infty} ||Dv_{k_j}||_{L^2(U)} ||\phi||_{L^2(U)}$$

$$\leq \lim_{j \to \infty} \frac{1}{k_j} ||\phi||_{L^2(U)} = 0.$$

利用证明弱导数唯一的技巧可得 Dv = 0, a.e, in U。再由 U 的连通性可知 $v \equiv C$ a.e, in U,另外

$$\begin{split} \int_{\partial U} |Tv|^2 dS & \leq \int_{\partial U} |Tv - Tv_{k_j} + Tv_{k_j}|^2 dS \\ & \leq 2 \int_{\partial U} |Tv - Tv_{k_j}|^2 dS + 2 \int_{\partial U} |Tv_{k_j}|^2 dS \\ & \leq 2 \int_{U} |v - v_{k_j}|^2 dx + 2 \int_{U} |Dv - Dv_{k_j}|^2 dx + \frac{2}{k_j} \to 0. \\ \end{split}$$

则 Tv=0 $a.e, on <math>\partial U$ 。所以 v=0, a.e, in U。但是 $v_{k_j} \to v \ in \ L^2(U)$ 且 $||v_{k_j}||_{L^2(U)}=1$,则矛盾。 \square

Homework 0.39. (弱解的极值原理)

- (1), $u \in H_0^1(\Omega)$ 满足 $\Delta u \geq 0$ in Ω , 则 $u \leq 0$ in Ω , a, e.
- (2), $u \in H^1(U)$ 满足 $\Delta u + cu \ge 0$, $c \le 0$ 。则 $\sup_{\Omega} u \le \sup_{\partial \Omega} u^+$ 。

证明. (1),只需证明 $u^+=0$ in Ω ,这里 $u^+=\max\{u,0\}$ 。注意到 $u\in H^1_0(U)$,那么则有 $u^+,u^-\in H^1_0(\Omega)$,且 $Du^+=Du\cdot\mathcal{X}_{u>0},Du^-=-Du\cdot\mathcal{X}_{u<0}$,则

$$\int_{\Omega} \Delta u u^+ dx = -\int_{\Omega} Du Du^+ dx = -\int_{\{u>0\}} |Du|^2 dx \le 0.$$
 (0.156)

又因为 $\int_{\Omega} \Delta u \cdot u^+ dx \ge 0$,则 $Du^+ = 0$ a.e.,in Ω ,那么再由 $u \in H^1_0(\Omega)$ 可得 $u^+ \equiv 0$ 。即 $u \le 0$ a.e.,in Ω 。

(2),记
$$M = \sup_{\Omega} u, m = \sup_{\partial \Omega} u^+$$
。反证,若 $M > m$,取 $k \in (m, M)$ 。

取 $v = (u - k)^+ \in H^1_0(\Omega)$,则 v 满足 $v \le 0$ in Ω 。且 $uv \ge 0$ in Ω , $u \le k$ 时 v = 0, uv = 0, u > k 时 v > 0, uv > 0。则有

$$0 \le \int_{\Omega} (\Delta u + cu)v dx = -\int_{\Omega} Du Dv dx + C \int_{\Omega} uv dx. \tag{0.157}$$

则

$$\int_{\Omega} DuDvdx \le c \int_{\Omega} uvdx \le 0, \tag{0.158}$$

则 $Dv \equiv 0$ in Ω 。由庞加莱不等式 $||v||_{L^2(\Omega)} \le C||Dv||_{L^2(\Omega)} = 0$ 可得 v = 0 a.e, in Ω 。即 $(u-k)^+ = 0$ a.e, in Ω ,所以 $u \le k$ in Ω 。则 $M = \sup_{\Omega} u \le k$,矛盾。

Homework 0.40. 假设存在 $\omega \in C^2(\Omega) \cap C^1(\overline{\Omega})$ 满足 $\omega > 0$ in Ω , $L\omega \leq 0$ in Ω 。若 $u \in C^2(\Omega) \cap C(\overline{\Omega})$ 满足 $Lu \geq 0$ in Ω , 则 $\frac{u}{\omega}$ 的非负最大值是在边界上达到,否则 $\frac{u}{\omega} \equiv C$ 。

证明. 令 $v = \frac{u}{\omega}$, 则 $u = \omega v$ 。简单计算有,

$$u_{x_i x_j} = v_{x_i x_j} \omega + v_{x_i} \omega_{x_j} + v \omega_{x_j x_i}, \tag{0.159}$$

和

$$\sum_{i,j} a_{ij} v_{x_i x_j} \omega = \sum_{i,j} a_{ij} (u_{x_i x_j} - v_{x_i} \omega_{x_j} - v_{x_j} \omega_{x_i}) - v(L\omega - \sum_i b_i \omega_{x_i} - c\omega)$$

$$\geq -\sum_i b_i u_{x_i} - cu - \sum_{i,j} (v_{x_i} \omega_{x_j} + v_{x_j} \omega_{x_i}) - v(L\omega - \sum_i b_i \omega_{x_i} - c\omega)$$

$$= -\sum_i b_i v_{x_i} \omega - 2 \sum_{i,j} a_{ij} v_{x_i} \omega_{x_j} - vL\omega. \tag{0.160}$$

由 $\omega > 0$ 得到

$$\sum_{i,j} a_{ij} v_{x_i x_j} + \sum_{i} (b_i + \frac{2}{\omega} \sum_{j} a_{ij} \omega_{x_j}) v_{x_i} + \frac{L\omega}{\omega} v \ge 0, \tag{0.161}$$

用 $c \ge 0$ 的极值原理得到 v 的最大值是在边界上达到。

Remark 0.6. 若算子 L 满足上面习题的条件,则 Dirichlet 边值问题

$$\begin{cases} Lu = f & \text{in } \Omega, \\ u = \varphi & \text{on } \partial\Omega. \end{cases}$$
 (0.162)

最多只有一个解。

Homework 0.41. 假设 d>0, e 为单位向量满足 $|(y-x)\cdot e|< d$, $\forall x,y\in\Omega$ 。则存在 $d_0>0$,使得当 $d>d_0$ 时,存在 $\omega\in C^2(\Omega)\cap C^1(\overline{\Omega})$ 满足 $\omega>0$ in $\Omega,L\omega\leq0$ in $\Omega,\ d_0$ 只与 λ,b_i,c^+ 有关。

证明. 不妨设 $e=(1,0,\cdots,0),\overline{\Omega}\subset\{0< x_1< d\}, b^i,c^+\leq N$,其中 N 为给定常数,取 $\omega=e^{\alpha d}-e^{\alpha x_1}>0$ in $\overline{\Omega}$, α 待定。则

$$L\omega = -a_n \alpha^2 e^{\alpha x_1} - b_1 \alpha e^{\alpha x_1} + c(e^{\alpha d} - e^{\alpha x_1}) \le -(a_{11} \alpha^2 + b_1 \alpha) + N e^{\alpha d}, \tag{0.163}$$

取 α 充分大使得

$$a_{11}\alpha^2 + b_1\alpha \ge \lambda\alpha^2 - N\alpha \ge 2N,\tag{0.164}$$

则 $L\omega \leq -2N + Ne^{\alpha d}$, 若取 $e^{\alpha d} \leq 2(d$ 充分小), 则 $L\omega \leq 0$ 。

Homework 0.42. (移动平面法)

若 $u \in C(\overline{B_1}) \cap C^2(B_1), u > 0$ 为方程

$$\begin{cases} \Delta u + f(u) = 0 & in B_1, \\ u = 0 & on \partial B_1. \end{cases}$$
 (0.165)

的解, f 是 \mathbb{R} 上局部 Lipschitz 的, 则 u 在 B_1 内是镜像对称的, 且 $\frac{\partial u}{\partial r} < 0, (x \neq 0)$ 。

证明. 记 $(x,y) \in B_1, y \in \mathbb{R}^{n-1}$, 目标:

$$u(x_1, y) < u(x_1^*, y), if x_1 > 0, x_1^* < x_1, x_1 + x_1^* > 0.$$
 (0.166)

如果(0.166)成立, 令 $x_1^* \rightarrow x_1$, 得到

$$u(x_1, y) \le u(-x_1, y), \quad \forall x_1$$
 (0.167)

然后再用 x_1 代替 $-x_1$ 得到

$$u(x_1, y) = u(-x_1, y). (0.168)$$

取 $0 < \lambda < 1$,令 $\Sigma_{\lambda} = \{x \in B_1 | x_1 \geq \lambda\}, T_{\lambda} = \{x_1 = \lambda\}, \Sigma_{\lambda}'$ 和 Σ_{λ} 关于 T_{λ} 对称, $x = (x_1, \dots, x_n), x_{\lambda} = (2\lambda - x_1, \dots, x_n)$ 。在 Σ_{λ} 中定义 $\omega_{\lambda}(x) = u(x) - u(x_{\lambda}), x \in \Sigma_{\lambda}$,则

$$\Delta\omega_{\lambda} = \Delta u(x) - \Delta u(x_{\lambda}) = -f(u) + f(u(x_{\lambda})) = C(x, \lambda)(u(x_{\lambda}) - u(x)). \tag{0.169}$$

 $C(x,\lambda)$ 是有界的,则

$$\begin{cases}
\Delta\omega_{\lambda} + C(x,\lambda) = 0 & \text{in } \Sigma_{\lambda}, \\
\omega_{\lambda} = 0 & \text{on } \partial T_{\lambda}, \\
\omega_{\lambda} < 0 & \text{on } \partial \Sigma_{\lambda} \cap \partial B_{1}.
\end{cases}$$
(0.170)

所以

$$\omega_{\lambda} \le 0 \quad on \quad \partial \Sigma_{\lambda}.$$
 (0.171)

要证明 $\omega_{\lambda} < 0$ in Σ_{λ} , $\lambda \in (0,1)$ 。若该结论成立,则 ω_{λ} 在 T_{λ} 上达到最大值,那么利用 Hopf-Lemma 可得

$$D_{x_1}\omega_{\lambda}|_{x_1=\lambda} = 2D_{x_1}u|_{x_1=\lambda} < 0. (0.172)$$

当 λ 充分靠近 1 的时候,利用狭窄区域的极值原理, $\omega_{\lambda} < 0$ in Σ_{λ} 。设 $(\lambda_0, 1)$ 为满足 $\omega_{\lambda} < 0$ 的最大存在区间,下面证明 $\lambda_0 = 0$ 。

若不然, $\lambda_0>0$,由连续性, $\omega_{\lambda_0}\leq 0$ in $\Sigma_{\lambda_0}, \omega_{\lambda_0}\neq 0$ on $\partial\Sigma_{\lambda_0}$ 。由强极值原理可知, $\omega_{\lambda_0}<0$ in Σ_{λ_0} 。下面证明 $\forall \varepsilon$ 充分小, $\omega_{\lambda_0-\varepsilon}<0$ in $\Sigma_{\lambda_0-\varepsilon}$ 。取 $\delta>0$ 待定,设 K 为 Σ_{λ_0} 的闭子集,使得 $|\Sigma_{\lambda_0}\setminus K|<\frac{\delta}{2}$,则由 $\omega_{\lambda_0}<0$ in Σ_{λ_0} 得到 $\omega_{\lambda_0}(x)\leq -\eta<0$, $\forall x\in K$,由连续性知 $\omega_{\lambda_0-\varepsilon}\leq 0$ in $\Sigma_{\lambda_0-\varepsilon}\setminus K$ 。利用前面习题得到的结论可知 $\omega_{\lambda_0-\varepsilon}<0$ in $\Sigma_{\lambda_0-\varepsilon}\setminus K$ 。因此 $\omega_{\lambda_0-\varepsilon}<0$ in $\Sigma_{\lambda_0-\varepsilon}$,这与 λ_0 的极小性矛盾。

故 $\omega_{\lambda} < 0$, $\forall \lambda \in (0,1)$ 。即

$$u(x) < u_{\lambda}(x) = u(2\lambda - x_1, y), \text{ in } \Sigma_{\lambda}. \tag{0.173}$$

Homework 0.43. (抛物方程 Cauchy 问题解的唯一性)

给定 Cauchy 问题,

$$\begin{cases} u_t - \Delta v = f & in \ \mathbb{R}^n \times (0, T) \\ u = \varphi & on \ \mathbb{R}^n \times \{t = 0\} \end{cases}$$
 (0.174)

的解在有解类中是唯一的。

证明. 只需证明

$$\begin{cases} u_t - \Delta u = 0 & in \ \mathbb{R}^n \times (0, T) \\ u = 0 & on \ \mathbb{R}^n \times \{t = 0\} \end{cases}$$
 (0.175)

只有零解。

设 $|u(x,t)| \leq M$, $\forall (x,t) \in \mathbb{R}^n \times (0,T)$, 考虑 $\Omega := B_r(x_0) \times (0,T)$, 取 $V(x,t) = \frac{4M}{r^2}(\frac{|x-x_0|^2}{2} + nt)$, 则

$$V(x,0) = \frac{2M}{r^2} |x - x_0|^2 \le 0 = u(x,0). \tag{0.176}$$

当 $|x-x_0|=r$ 时, $V(x,t)=2M+rac{4M}{r^2}nt\geq u(x,t)$ 。注意到 $V_t-\Delta V=rac{4M}{r^2}n-rac{4M}{r^2}n=0$,则 V 满足

$$\begin{cases}
V_t - \Delta V = 0 & \text{in } \Omega, \\
V \ge u & \text{on } \Gamma_{t_0}.
\end{cases}$$
(0.177)

令 $\omega = V - u$,则 ω 的最大最小值是在 Γ_t 上取到,则 $V \ge u$ in $B_r(x_0) \times (0,T)$ 。取 $\overline{V} = -V$ 同理可得 $u \ge -V$,则 $u \le |V|$ in $\overline{B_r(x_0) \times (0,T)}$ 。特别地在 (x_0,t_0) 点,有 $u(x_0,t_0) \le \frac{4Mnt_0}{r^2}$,然后令 $r \to \infty$ 得 $u(x_0,t_0) = 0$,再由 x_0,t_0 的任意性可得 $u(x,t) \equiv 0$ 。

Homework 0.44. 若 $u \in C_1^2(\mathbb{R}^n \times (0,T]) \cap C(\mathbb{R}^n \times [0,T])$ 为

$$\begin{cases} u_t - \Delta u = 0 & in \ \mathbb{R}^n \times (0, T), \\ u = \varphi & on \ \mathbb{R}^n \times \{t = 0\}. \end{cases}$$
 (0.178)

的解。若 $u(x,t) \leq Ae^{a|x|^2}$, $x \in \mathbb{R}^n$, $0 \leq t \leq T$ 。则

$$\sup_{\mathbb{R}^n \times [0,T]} u = \sup_{\mathbb{R}^n} \varphi. \tag{0.179}$$

证明. 构造 $v = u + \omega$, 记 $\Omega = B_R(x_0) \times (0,T)$, Γ_T 为 Ω 的抛物边界。

Step 1,希望 $\omega_t - \Delta \omega = 0$,则 $v_t - \Delta v = 0$,则 v 的最大最小值是在边界 Γ_T 上取到的。

Step 2, 希望 $\omega \le 0$, 则 $v(x,0) \le u(x,0) \le \sup_{\mathbb{R}^n} \varphi$ 。当 $|x-x_0| = R$ 时,

$$v(x,t) = u(x,t) + \omega(x,t) \le Ae^{a|x|^2} + \omega(x,t) \le Ae^{a(|x_0 + R|^2)} + \omega(x,t). \tag{0.180}$$

Step 3, 希望 $Ae^{a(|x_0|+R)^2}+\omega(x,t)\leq \sup_{\mathbb{R}^n} \varphi$, 则 $v(x,t)\leq \sup_{\mathbb{R}^n} \varphi$ in Ω 。

Step 4, 希望 $\omega(x_0,t) \geq 0$ 或者 $\omega(x_0,t) \to 0$, 这样有 $u(x_0,t) \leq \sup_{\mathbb{R}^n} \varphi_{\circ}$

下面我们就是具体的寻找 ω 满足上面 $Step\ 1-Step\ 4$ 的要求。

令
$$\omega = \frac{b}{t^{(f(t))^{\frac{n}{2}}}} e^{-\frac{|x-x_0|^2}{4g(t)}}$$
,若 $\omega_t - \Delta \omega = 0$,则 $-\frac{n}{2} \frac{f'(t)}{f(t)} + \frac{|x-x_0|^2}{4g^2(t)} (g'(t) - 1) + \frac{n}{2g(t)} = 0$,即

$$\begin{cases} g'(t) = 1, \Rightarrow g = t - B, \\ \frac{f'(t)}{f(t)} = \frac{1}{g(t)} \Rightarrow f = t - B \text{ or } f = B - t. \end{cases}$$
 (0.181)

故令 $\omega_1 = \frac{b_1}{(t-B_1)^{\frac{n}{2}}} e^{-\frac{|x-x_0|^2}{4(t-B_1)}}$ 和 $\omega_2 = \frac{b_2}{(B_2-t)^{\frac{n}{2}}} e^{-\frac{|x-x_0|^2}{4(B_2-t)}}$ 。 $Step\ 2$ 中为了 $\omega(x,0) \leq 0$,对于 ω_1 需要 $(-B_1)^{\frac{n}{2}}$ 定号,则 $B_1 < 0$, $b_1 < 0$ 。 ω_2 需要 $B_2 > 0$, $b_2 < 0$ 。 $Step\ 3$ 中 ω 必须衰减速度快于 $e^{a(|x_0|+R)^2}$ 增速, ω_1 不满足,对于 ω_2 , $B_2 - t > 0$, $\forall t \in (0,T)$,只需 $B_2 > T$ 即可。我们取 $B_2 = 2T$, $\omega_2 = \frac{-b}{(2T-t)^{\frac{n}{2}}} e^{\frac{|x-x_0|^2}{4(2T-t)}}$,b > 0。则

$$\omega_2 + Ae^{a(|x_0 + R|)^2} \le \sup_{\mathbb{R}^n} \varphi,$$
 (0.182)

只需

$$-\frac{b}{(2T)^{\frac{n}{2}}} e^{\frac{R^2}{8T}} + Ae^{a(|x_0|+R)^2} \le \sup_{\mathbb{R}^n} \varphi, \tag{0.183}$$

我们取 $\frac{1}{8T} = 2a$, 即 $T = \frac{1}{16a}$, 则有

$$-b(8a)^{\frac{n}{2}}e^{2aR^2} \le Ae^{a(|x_0|+R)^2} - \sup_{\mathbb{R}^n} \varphi.$$
 (0.184)

只需

$$b(8a)^{\frac{n}{2}}e^{2aR^2} \ge -2\sup_{\mathbb{R}^n}\varphi,$$
 (0.185)

$$b(8a)^{\frac{n}{2}}e^{2aR^2} \ge 2Ae^{a(|x_0|+R)^2}. (0.186)$$

记 $\widetilde{R} = \frac{1}{2a} \ln(\frac{2\sup\varphi}{(8a)^{\frac{\varphi}{2}}b})$, $R_1 = \max\{\widetilde{R}, 0\}$ 则 $R^2 \geq R_1^2$ 时(0.185)成立。记 $R_2 = \frac{2}{a}(3|x_0|^2 + \ln 2A - \frac{n}{2}\ln 8a - \ln b)$,则 $R^2 \geq R_2^2$ 时(0.186)成立。因此我们取 $\overline{R} = R_1 + R_2$,即可使得上面两式都成立。

综上 $\forall b>0, \exists R=R(x_0,b,A,a)>0$,使得 $\omega=-\frac{b}{(2T-t)^{\frac{n}{2}}}e^{\frac{|x-x_0|^2}{4(2T-t)}}$,其中 T=T(a)。满足前面的 $Step\ 1-Step\ 3$ 。从而 $u(x,t)\leq \sup_{\mathbb{R}^n}\ in\ B_R\times(0,\frac{1}{32a}),\ v(x_0,t)=-\frac{b}{(2T-t)^{\frac{n}{2}}}+u(x_0,t)\leq \sup_{\mathbb{R}^n}\varphi$,令 $b\to 0$,则 $u(x_0,t)\leq \sup_{\mathbb{R}^n}\varphi$ 。对于区间 $(0,\frac{1}{32a}),(\frac{1}{32a},\frac{1}{16a})$,有 $u\leq u|_{t=\frac{1}{32a}}\leq u|_{t=0}$.

假设 $u \in C_1^2(\Omega_T)$,定义 $Lu := u_t - \Delta u + cu$,这里 $\Omega_T = \Omega \times (0,T)$, $\Gamma = (\partial \Omega \times (0,T)) \cup (\Omega \times \{t=0\})$ 。

Theorem 0.1. (极值原理)

$$u \in C_1^2(\Omega_T) \cup C(\overline{\Omega_T}), c \geq 0 \ in \ \Omega_T, \ \not\equiv Lu \leq 0 \ in \ \Omega_T, \ \not\bowtie \sup_{\Omega_T} u \leq \sup_{\Gamma} u^+$$

Lemma 0.1. $u \in C_1^2(\Omega_T) \cap C(\overline{\Omega_T})$, c 有界, Ω 为有界区域, $Lu \leq 0$ in Ω_T , 若 $\sup_{\Gamma} u \leq 0$ 。则 $\sup_{\Omega_T} u \leq 0$ 。

证明. 令 $v=e^{C_0t}u, C_0 \leq \inf_{\Omega_T}c$,则 $c-C_0 \geq 0$ 。定义 $L^*v=v_t-\Delta v+(c-C_0)v=e^{C_0t}Lu \leq 0$,那么利用极 值原理

$$\sup_{\Omega_T} v \le \sup_{\Gamma} v^+ = 0. \tag{0.187}$$

Theorem 0.2. (比较原理)

 $u, v \in C_1^2(\Omega_T) \cap C(\overline{\Omega_T}), c \notin \mathbb{R},$

$$\begin{cases}
Lu \leq Lv & \text{in } \Omega_T, \\
u \leq v & \text{on } \Gamma.
\end{cases}$$
(0.188)

则 $u \leq v$ in Ω_T 。

证明. 取
$$\omega = u - v$$
 然后用上面的引理即可。

Corollary 0.1.

$$\begin{cases}
Lu = f & \text{in } \Omega_T, \\
u = g & \text{on } \Omega, \\
u = h & \text{on } \Omega \times \{t = 0\}.
\end{cases}$$
(0.189)

最多只有一个光滑解。

Homework 0.45. (最大模估计)

 Ω 为有界区域, c 非负有界, $u\in C^2_1(\Omega_T)\cap C(\overline{\Omega_T})$ 是 Lu=f 的解,则

$$(1), \sup_{\Omega_T} |u| \le \sup_{\Gamma} |u| + T \sup_{\Omega_T} |f|,$$

$$\begin{split} &(\mathbf{1}), \sup_{\Omega_T} |u| \leq \sup_{\Gamma} |u| + T \sup_{\Omega_T} |f|, \\ &(\mathbf{2}), \sup_{\Omega_T} |u| \leq \sup_{\Gamma} |u| + M \sup_{\Omega_T} |f|, \end{split}$$

其中(2)中的M是与区域有关的常数。

证明. (1),取 $\omega = -\sup_{\Gamma} |u| - t\sup_{\Omega_T} |f|$, $v = \sup_{\Gamma} |u| + t\sup_{\Omega_T} |f|$ 。则

$$\begin{cases}
L\omega \le Lu \le Lv & in \Omega_T \\
\omega \le u \le v & on \Gamma
\end{cases}$$
(0.190)

由极值原理可得, $\omega \leq u \leq v$ in Ω_T 。

(2),构造 $v=\sup_{\Gamma}|u|+h(x)\sup_{\Omega_T}|f|$,h 待定,需要满足: h 是光滑的非负函数,且 $Lh\geq 1$ $\forall x\in\Omega$ 。则

$$Lv = Lh \sup_{\Omega_T} |f| + c \sup_{\Gamma} |u| \ge \sup_{\Omega_T} |f| \ge f = Lu \ in \ \Omega_T.$$
 (0.191)

另外 $u \le v$ on Γ ,则由极值原理, $u \le v$ in Ω_T 。

我们将 h 定出来。取 $x_1^0 = \inf\{x_1 | x = (x_1, \dots, x_n) \in \Omega\}$,则 $0 \le x_1 - x_1^0 \le d$,d 为区域的直径。令 $h = e^d - e^{x_1 - x_1^0}$,则 h 是光滑的非负函数,另外

$$Lh = e^{x_1 - x_1^0} + c(e^d - e^{x_1 - x_1^0}) \ge 1, (0.192)$$

类似地取 $\omega = -\sup_{\Gamma} |u| - h(x) \sup_{\Omega_T} |f|$,则

$$\sup_{\Omega_T} \le \sup_{\Gamma} |u| + h(x) \sup_{\Omega_T} |f| \le \sup_{\Gamma} |u| + e^d \sup_{\Omega_T} |f|. \tag{0.193}$$

Remark 0.7. c 不满足非负条件,仅有界时,则有:

$$(1), \sup_{\Omega_T} |u| \le e^{-C_0 T} (\sup_{\Gamma} |u| + T \sup_{\Omega_T} |f|),$$

$$\begin{aligned} &(\mathbf{1}), \sup_{\Omega_T} |u| \leq e^{-C_0 T} (\sup_{\Gamma} |u| + T \sup_{\Omega_T} |f|), \\ &(\mathbf{2}), \sup_{\Omega_T} |u| \leq e^{-C_0 T} (\sup_{\Gamma} |u| + M \sup_{\Omega_T} |f|), \end{aligned}$$

其中 $C_0 = \min\{\inf_{\Omega_T} c(x), 0\}$ 。

证明. (1),令 $v = e^{C_0 t} u$,定义 $L^* v = v_t - \Delta v + (c - C_0) v = e^{C_0 t} L u = e^{c_0 t} f$,则

$$\begin{split} \sup_{\Omega_T} |v| & \leq \sup_{\Gamma} |v| + T \sup_{\Omega_T} |e^{C_0 t} f|, \\ \sup_{\Omega_T} |v| & \leq \sup_{\Gamma} |v| + M \sup_{\Omega_T} |e^{C_0 t} f|, \end{split}$$

由 $v = |e^{C_0 t}u| \le |u|, C_0 \le 0$,有 $\sup_{\Omega_T} \le e^{-C_0 T} (\sup_{\Gamma} |u| + T \sup_{\Omega_T} |f|)$,所以

$$\sup_{\Omega_T} |u| \le e^{-C_0 T} (\sup_{\Gamma} |u| + M \sup_{\Omega_T} |f|). \tag{0.194}$$

Corollary 0.2. c 有界,则方程

$$\begin{cases} Lu = f & in \ \Omega_T \\ u = g & on \ \Gamma. \end{cases}$$
 (0.195)

的解是稳定的,即 $u_k(k=1,2)$ 是

$$\begin{cases} Lu_k = f_k & in \ \Omega_T \\ u_k = g_k & on \ \Gamma. \end{cases}$$
 (0.196)

的解。那么对于 $orall arepsilon > 0, \exists \delta$,当 $\sup_{\Omega_T} |f_1 - f_2| < \delta, \sup_{\Gamma} |g_1 - g_2| < \delta$ 时, $\sup_{\Omega_T} |u_1 - u_2| < \varepsilon$ 。

证明. 对 $u_1 - u_2$ 应用上面的最大模估计即可。

Homework 0.46. (地物方程 C^1 估计)

$$u \in C_1^2(Q_R) \cap C(\overline{Q_R}), Q_R = B_R \times (0, R^2), \ u \ 满足 \ u_t - \Delta u = 0, \ 则$$

$$\sup_{Q_{\frac{R}{2}}} |\nabla u| \le \frac{C}{R} \sup_{\partial Q_R} |u|. \tag{0.197}$$

证明. **Step 1**,当 R=1 的情形。令 $\varphi=\eta^2|\nabla u|^2+\alpha u^2$, η 为截断函数,满足 $\eta\in C_c^\infty(Q_1)$,且 $\eta\equiv 1$ in $Q_{\frac{1}{2}},\eta\equiv 0$ in $Q_1\setminus Q_{\frac{3}{4}},0\leq \eta\leq 1$ 。

$$\begin{split} &(\partial_t - \Delta)(\eta^2 |\nabla u|^2) = 2\eta \eta_t |\nabla u|^2 + 2\sum_k \eta^2 u_{x_k} u_{x_k t} - \Delta(\eta^2 |\nabla u|^2), \\ &\Delta(\eta^2 |\nabla u|^2) = \Delta(\eta^2) |\nabla u|^2 + 8\sum_{i,j} \eta \eta_{x_i} u_{x_j} u_{x_j x_i} + 2\eta^2 u_{x_i x_j}^2 + \sum_{i,j} 2\eta^2 u_{x_j} u_{x_j x_i x_i}. \\ &(2\eta \Delta \eta + 2|\nabla \eta|^2) |\nabla u|^2 + 8\sum_{i,j} \eta \eta_{x_i} u_{x_j} u_{x_i x_j} + \sum_{i,j} 2\eta^2 u_{x_i x_j}^2 \sum_{i,j} 2\eta^2 u_{x_i} u_{x_i t}. \end{split}$$

则

$$(\partial_{t} - \Delta)(\eta^{2}|\nabla u|^{2}) = 2\eta\eta_{t}|\nabla u|^{2} - (2\eta\Delta\eta + 2|\nabla\eta|^{2})|\nabla u|^{2} - 8\sum_{i,j}\eta\eta_{x_{i}}u_{x_{j}}u_{x_{i}x_{j}} - 2\sum_{i,j}\eta^{2}u_{x_{i}x_{j}}^{2}$$

$$= 2(\eta\eta_{t} - \eta\Delta\eta + |\nabla\eta|^{2})|\nabla u|^{2} - 2\sum_{i,j}(\eta u_{x_{i}x_{j}} + 2\eta_{x_{i}}u_{x_{j}})^{2} + 8|\nabla\eta|^{2}|\nabla u|^{2}$$

$$\leq C|Du|^{2}.$$
(0.198)

另外

$$(\partial_t - \Delta)u^2 = 2uu_t - 2u\Delta u - 2|\nabla u|^2 = -2|\nabla u|^2.$$
(0.199)

所以

$$(\partial_t - \Delta)\varphi \le (C - 2\alpha)|Du|^2,\tag{0.200}$$

取 α 充分大,则有 $(\partial_t - \Delta)\varphi \leq 0$ 。那么再利用极值原理,可得

$$\sup_{Q_{\frac{1}{2}}} |\nabla u|^2 \le \sup_{Q_1} \varphi \le \sup_{\partial Q_1} \varphi \le C \sup_{\partial Q_1} |u|^2, \tag{0.201}$$

即

$$\sup_{Q_{\frac{1}{2}}} |\nabla u| \le C \sup_{\partial Q_1} |u|. \tag{0.202}$$

Step 2,对于一般的 R,令 $v(y,s) = u(Ry,R^2s), (y,s) \in Q_1$ 。简单计算知 $v_s = R^2u_s, \ v_i = Ru_i, \ v_{ii} = R^2u_{ii}$ 。则 $v_s - \Delta v = 0$ 。然后对 v 使用 Step 1 得到的结论可知 $\sup_{Q_{\frac{1}{2}}} |\nabla v| \leq C \sup_{Q_{\frac{1}{2}}} |v|$,即

$$\sup_{Q_{\frac{R}{2}}} |\nabla u| \le \frac{C}{R} \sup_{\partial Q_R} |u|. \tag{0.203}$$

Homework 0.47.

$$\begin{cases} u_t - u_{xx} = 0 & in \ [0, T] \times (0, \infty) \\ u|_{x=0, x=1} = 0 \\ u|_{t=0} = g. \end{cases}$$
 (0.204)

证明: $\lim_{t \to +\infty} u(x,t) = 0$ 。

证明. 利用分离变量法可以得到 $u(x,t)=\sum\limits_{i=1}^{\infty}C_{n}e^{-n^{2}\pi^{2}t}\sin(n\pi x)$,其中 $C_{n}=2\int_{0}^{1}g(x)\sin(n\pi x)dx\to 0$ $(n\to\infty)$ 。 故取 N 充分大使得 $C_{n}>1$, (n>N),则

$$\lim_{t \to +\infty} |u(x,t)| \le |\sum_{n=1}^{N} C_n e^{-n^2 \pi^2 t} \sin n\pi x| + \sum_{n=N+1}^{\infty} e^{-n^2 \pi^2 t} \le \frac{e^{-N\pi t}}{1 - e^{-N\pi t}} \to 0.$$
 (0.205)

 $\mathbb{P}, \lim_{t \to +\infty} u(x,t) = 0.$

另外在方程两端同时乘上 u,有 $\int_0^1 u_t u dx = -\int_0^1 (u_x)^2 dx$,由 $u \in H^1_0(0,1)$,利用庞加莱不等式

$$\int_0^1 u^2 dx \le C \int_0^1 (u_x)^2 dx,\tag{0.206}$$

即

$$\frac{1}{2}\frac{d}{dt}\int_0^1 u^2 dx = -\int_0^1 (u_x)^2 \le -\frac{1}{C}\int_0^1 u^2 dx. \tag{0.207}$$

那么再利用 Gronwall 不等式:

$$0 < \int_0^1 u^2 dx \le e^{-\frac{2}{C}} \int_0^1 u(\cdot, 0)^2 dx = e^{-\frac{2}{C}t} ||g||_{L^2(0, 1)}^2 \to 0 \ (t \to \infty). \tag{0.208}$$

Homework 0.48. 设 $u(x,t;a),(x,t) \in \mathbb{R} \times \mathbb{R}_+$ 是 Cauchy 问题

$$\begin{cases}
 u_{tt} = a^2 u_{xx} \\
 u|_{t=0} = \frac{1}{1+x^2} \\
 u_t|_{t=0} = 0.
\end{cases}$$
(0.209)

的解。证明 u(x,t;a) 关于 a 是速降的。

证明. 利用达朗贝尔公式知

$$u(x,t;a) = \frac{1}{2} \left[\frac{1}{1 + (x+at)^2} + \frac{1}{1 + (x-at)^2} \right] \to 0, \quad (t \to \infty)$$
 (0.210)

Homework 0.49. 设 u(x,t) 为 $\mathbb{R}^3 \times \mathbb{R}_+$ 中 Cauchy 问题

$$\begin{cases} u_{tt} = \Delta_x u \\ u_t|_{t=0} = (1+4|x|^2)^{-\frac{1}{2}} \\ u|_{t=0} = 0 \end{cases}$$
 (0.211)

的解, 证明 $\lim_{t\to +\infty} u(0,t)$ 。

证明. 当 n=3 时,由 Kirchhoff 公式, $u(x,t)=\frac{1}{4\pi t}\int_{|\xi-x|=t}(1+4|\xi|^2)^{-\frac{1}{2}}dS_{\xi}$ 。则有

$$\lim_{t \to +\infty} u(0,t) = \lim_{t \to +\infty} \frac{1}{4\pi t} \int_{|\xi|=t} (1+4|\xi|^2)^{-\frac{1}{2}} dS_{\xi} = \lim_{t \to +\infty} \frac{1}{4\pi t} (1+4t^2)^{-\frac{1}{2}} 4\pi t^2$$

$$= \lim_{t \to +\infty} \frac{t}{\sqrt{1+4t^2}} = \frac{1}{2}.$$
(0.212)

Homework 0.50. 设 u(x,t) 是在 $\overline{\mathbb{R}}_+ \times \overline{\mathbb{R}}_+$ 中问题 $u_{tt} = u_{xx}, u_x|_{x=0} = 0, u_t|_{t=0}$,

$$u|_{t=0} = \begin{cases} -\sin^3 x & \pi < x < 2\pi \\ 0 & x \notin (\pi, 2\pi). \end{cases}$$

的解。求集合 $\{(x,t) \in \overline{\mathbb{R}}_+ \times \overline{\mathbb{R}}_+ | u(x,t) \neq 0\}$ 。

证明. 利用延拓

$$u|_{t=0} = \begin{cases} \sin^3 x & -2\pi < x < -\pi \\ 0 & x \notin (-2\pi, -\pi). \end{cases}$$

和 $u_t|_{t=0}=0,\ x<0$ 。 利用达朗贝尔公式知 $u(x,t)=\frac{1}{2}[\varphi(x+t)-\varphi(x-t)], \varphi\neq 0, x\in (-2\pi,-\pi)\cup (\pi,2\pi)$ 。 那么满足条件的集合是 $\{\pi< x+t< 2\pi, -2\pi< x-t< -\pi, \pi< x-t< 2\pi, t, x>0\}$ 。

Homework 0.51. 设 u(x,t) 是在 $[0,1] \times \overline{R}_+$ 中的混合问题

$$\begin{cases} u_{tt} = 4u_{xx} \\ u|_{x=0} = u|_{x=1} = 0 \\ u|_{t=0} = 4\sin^3 \pi x \\ u_t|_{t=0} = 30x(1-x). \end{cases}$$
 (0.213)

的解。

则

(a),
$$\sharp f(\frac{1}{3})$$
, $\sharp \psi f(t) = \int_0^1 [u_t^2(x,t) + 4u_x^2(x,t)]$.

证明. (a), $f'(t) = \int_0^1 2u_t u_{tt} + 8u_x u_{xt} dt = \int_0^1 2u_t u_{tt} - 8u_x u_t u_t dx + 8u_x u_t |_{x=0}^{x=1}$ 。由 $u|_{x=0} = u|_{x=1} = 0$ 得 $u_t|_{x=0} = u_t|_{x=1} = 0$ 。又因为 $u_{tt} = 4u_{xx}$,则 f'(t) = 0 和

$$\begin{split} f(\frac{1}{3}) &= f(0) &= \int_0^1 [u_t^2(x,0) + 4u_x^2(x,0)] dx \\ &= \int_0^1 (30x(1-x))^2 + 4(12\pi \sin^2 \pi x \cos \pi x)^2 dx \\ &= 30 + 36\pi^2. \end{split}$$

(b),利用分离变量法得到 $u(x,t) = \sum_{k=1}^{\infty} (A_k \sin k\pi t + B_k \cos k\pi t) \sin k\pi x$ 。因为 $u(x,0) = \sum_{k=1}^{\infty} B_k \sin k\pi x$,

$$u(x,2) = \sum_{k=1}^{\infty} B_k \sin k\pi x = u(x,0) = 4\sin^3 \pi x.$$
 (0.214)

Homework 0.52. 设 u(x,t) 为 $[0,1] \times \overline{R}_+$ 中混合问题

$$\begin{cases} u_{tt} = u_{xx} \\ u|_{x=0} = u|_{x=1} = 0 \\ u|_{t=0} = 0 \end{cases}$$

$$(0.215)$$

的解。求 $\lim_{t\to +\infty} \int_0^{\frac{1}{2}} [u_t^2(x,t) + u_x^2(x,t)] dx$ 。

证明. 令 $f(t) = \int_0^{\frac{1}{2}} u_t^2 + u_x^2 dx$,则

$$f'(t) = \int_0^{\frac{1}{2}} 2u_t u_{tt} + 2u_x u_{tx} dt = 2u_x u_t \Big|_{x=0}^{x=1} = 2u_x u_t \Big|_{x=\frac{1}{2}}, \tag{0.216}$$

由分离变量法得到 $u(x,t) = \sum_{k=1}^{\infty} A_k \sin k\pi t \sin k\pi x$ 。 先证 $A_{2n} = 0$

$$\int_0^1 x^2 (1-x)^2 \sin 2k\pi x dx = -\int_{-\frac{1}{2}}^{\frac{1}{2}} (\frac{1}{4} - t^2)^2 \sin 2k\pi t \cos k\pi dt = 0, \tag{0.217}$$

则 $u(x,t) = \sum_{n=1}^{\infty} A_{2n+1} \sin(2n+1)\pi x \sin(2n+1)\pi t := \sum_{n=1}^{\infty} u_n$ 。注意到 $(u_n)_x = \pi(2n+1)A_{2n+1} \sin(2n+1)\pi t \cos(2n+1)\pi x$,则 $(u_n)_x|_{x=\frac{1}{2}} = 0$,即 f'(t) = 0,则

$$f(t) = f(0) = \int_0^{\frac{1}{2}} x^2 (1-x)^2 dx = \frac{1}{1260}.$$
 (0.218)

Homework 0.53. 设 $u \in C_1^2(\Omega_T) \cap C(\overline{\Omega_T})$ 为方程

$$\begin{cases} u_t - \Delta u = f & \text{in } \Omega \times [0, T] \\ u(x, 0) = \varphi(x) & \text{on } \partial \Omega \times [0, T]. \end{cases}$$

$$(0.219)$$

的解,证明上述方程的梯度估计。

证明. Step 1,整体梯度估计约化到边界。

我们选取辅助函数 $H=|\nabla u|^2+\alpha u^2$,设 $M=\sup_{\Omega\times[0,T]}u$ 。假设 H 于 $\Omega\times[0,T]$ 的最大值是在点 (x_0,t_0) 处达到。

(a), $t_0 = 0$ 时,则

$$H \le H(x_0, t_0) = |\nabla \varphi(x_0)|^2 + \alpha \varphi^2(x_0), \tag{0.220}$$

所以利用 H 于 (x_0,t_0) 处的极大性质得

$$|\nabla u|^2 \le |\nabla \varphi(x_0)| + \alpha \varphi^2(x_0) - \alpha u^2, \quad \forall (x, t) \in \Omega \times [0, T]. \tag{0.221}$$

 $(b), x_0 \in \partial \Omega, \mathbb{N}$

$$H \le H(x_0, t_0) = |\nabla \varphi|^2 + \alpha \varphi \implies |\nabla u|^2 \le \sup_{\partial \Omega} |\nabla u|^2 + 2\alpha M^2. \tag{0.222}$$

(c), $x_0 \in \Omega, t_0 \in (0,T]$, 则有

$$0 = H_{x_i} = (|\nabla u|^2)_{x_i} + \alpha(u^2)_{x_i}$$

$$0 \le H_t = (|\nabla u|^2)_t + \alpha(u^2)_t$$

所以

$$0 \leq H_{t} - \Delta H = 2u_{x_{k}}u_{x_{k}t} + 2\alpha uu_{t} - 2u_{x_{k}x_{l}}^{2} - 2u_{x_{k}}\Delta u_{x_{k}} - 2\alpha |\nabla u|^{2} - 2\alpha u\Delta u$$

$$= 2u_{x_{k}}(u_{x_{k}y} - \Delta u_{x_{k}}) + 2\alpha u(u_{t} - \Delta u) - 2u_{x_{k}x_{l}}^{2} - 2\alpha |\nabla u|^{2}$$

$$= 2u_{x_{k}}f_{x_{k}} + 2\alpha uf - 2u_{x_{k}x_{l}}^{2} - 2\alpha |\nabla u|^{2}$$

$$\leq |\nabla u|^{2} + |\nabla f|^{2} + 2\alpha M \sup |f| - 2u_{x_{k}x_{l}}^{2} - 2\alpha |\nabla u|^{2}.$$

$$(0.223)$$

取 $\alpha = 1$,可得 $|\nabla u|^2 \le |\nabla f|^2 + 2\alpha M \sup |f|$ 。

综合上面三种情形, 我们可以得到

$$|\nabla u| \le \sup_{\partial \Omega} |\nabla u| + C, \quad \forall (x,t) \in \Omega \times [0,T].$$
 (0.224)

Step 2,在边界上得梯度估计,只需要做法向得梯度估计。我们采用闸函数的方法,此时 Ω 满足一致外球条件。称 ω 满足 $L\omega \geq 1, \omega \geq 0$ on $\Gamma = (\Omega \times \{0\}) \cup (\partial \Omega \times (0,T]), \omega(x_0) = 0$ 为 L 在 $x_0 \in \partial \Omega$ 得一个闸函数。

$$\begin{cases} v_t - \Delta v = u_t - \Delta u - \varphi_t + \Delta \varphi = f + \Delta \varphi := g \\ v(x, 0) = 0 & in \ \Omega \\ v(x, t) = 0 & on \ \partial \times (0, T] \end{cases}$$
 (0.225)

令 $G = \sup_{\Omega \times (0,T]} |g|$, 若存在 ω 满足

$$\begin{cases}
L(G\omega - v) = GL\omega - Lv \ge G - g \le 0 \\
G\omega - v \ge 0 \text{ on } \Gamma
\end{cases}$$
(0.226)

则 $u \leq G\omega$, $in \Omega \times [0,T]$ 。同理可得

$$\begin{cases}
L(-G\omega - v) \le 0 \\
-G\omega - v \ge 0 \text{ on } \Gamma
\end{cases}$$
(0.227)

则 $-G\omega < u$, 所以 $-G\omega < u < G\omega$ 。便可以得到法向导数估计。下面是如何选取 ω 。

令 $\omega = f(d), d = |x - y| - R \Rightarrow d(x_0) = 0$, $B_R(y)$ 为 $x_0 \partial \Omega$ 处得外接球。简单计算

$$\begin{split} d_{x_i} &= \frac{x_i - y_i}{|x - y|}, \quad d_{x_i x_j} = \frac{\delta_{ij}}{|x - y|} - frac(x_i - y_i)(x_j - y_j)|x - y|^3, \\ |\nabla d| &= 1, \quad \Delta d = \frac{n - 1}{|x - y|}. \end{split}$$

如果 $L\omega > 1$, 等价于

$$f'd - (f'\Delta d + f''|\nabla d|^2) - 1 \ge 0,$$
 (0.228)

即

$$f'' + f' \frac{n-1}{R_0} + 1 \le 0, (0.229)$$

令 $a = \frac{n-1}{R_0}$,可得

$$\begin{cases} f'' + af' + 1 = 0 \\ f(0) = 0, (\omega(x_0) = 0) \end{cases}$$
 (0.230)

解得 $f=-\frac{1}{a}d+\frac{C}{a}(1-e^{-ad})$ 。 另外要求 $f^{'}=Ce^{-ad}-\frac{1}{a}\geq 0$ 时,只需取 $C=\frac{1}{a}e^{adiam(\Omega)}$,则

$$\omega(x) = f(d) = -\frac{1}{a}d + \frac{1}{a^2}e^{adiam(\Omega)}(1 - e^{-ad}). \tag{0.231}$$