eRum exercises

Mateusz Staniak

Exercises

Exercise 1

Run the following code to fit random forest, linear regression and SVM to the housing prices data.

```
library(tidyverse)
library(live)
library(DALEX)
library(randomForest)
library(e1071)
library(auditor)
load("./rda_files/houses.rda")

house_rf <- randomForest(sqm_price ~., data = houses)
house_svm <- svm(sqm_price ~., data = houses)
house_lm <- lm(sqm_price ~., data = houses)</pre>
```

Create DALEX explainer object for each of the models. Create and compare boxplots of residuals for all the models (model_performance).

- Which model is the best?
- Are there any outlying predictions?
- Find the observation with the largest absolute value of residual among houses cheaper than 7000 PLN.

TIP: object returned by model_performance function is a data frame with colnames predicted, observed, diff and label.

Exercise 2

Create single prediction explainers for the instance chosen in **Exercise 1**. Create Break Down plots for each of the observations. What are the keys factors that drive the prediction? Are they the same for every model?

Bonus for part 1:

Draw plots of fitted vs observed values for each of these models. Can you spot any problems with the predictions? Are the prices usually underestimated of overestimated?

Exercise 3

```
n_obs <- 1189
```

Simulate new data around the observation from Exercise 1 (its index is in the n_{obs} object.) and the add random forest predictions. Then fit a linear model locally.

TIP: remember to load mlr package. TIP2: don't use too small size for the simulated dataset. I recommend at least 1000.

Visualize approximation created in **Exercise 3**. Use plot_explanation2 function to create a forest plot of the linear model and then the Break Down plot.

Bonus for part 2

Use add_predictions function to add SVM and LM predictions to the simulated dataset. Compare plots for all three models.

Exercise 5

Run the following code to train model random forest model using mlr interface (this is necessary for shapleyR package).

```
library(mlr)
load("./rda_files/houses.rda")
n_obs <- 1189

house_task <- makeRegrTask(data = houses, target = "sqm_price")
house_rf_mlr <- train("regr.randomForest", house_task)</pre>
```

Use shapleyR package to calculate Shapley values for prediction chosen in **Exercise 1** (its index is in n_obs object). Are the results consistent with Break Down results from **Exercise 2**? Draw a plot of Shapley values.

TIP: remember to set class of the object returned by shapley function to shapley.singleValue before using plot.

Exercise 6

Use lime package to approximate random forest model around prediction chosen in **Exercise 1** (its index is in n_obs object). Follow the lime work flow: 1. Create an explainer. 2. Approximate the model around the explained instance. 3. Use plot_features function to see, how features influence this prediction.

TIP: use house_rf_mlr object from Exercise 5, because lime works well with mlr objects.

Bonus for part 3:

Create variable importance explainer. Compare global variable importance to scores obtained in **Exercise 5** and **Exercise 6**.

Solutions

```
rf_expl <- DALEX::explain(house_rf, data = houses, y = houses$sqm_price)
svm_expl <- DALEX::explain(house_svm, data = houses, y = houses$sqm_price)
lm_expl <- DALEX::explain(house_lm, data = houses, y = houses$sqm_price)

rf_perf <- model_performance(rf_expl)
svm_perf <- model_performance(svm_expl)</pre>
```



```
arrange(rf_perf, desc(abs(diff))) %>%
filter(observed < 7000) %>%
head(5)
```

```
predicted observed
                           diff
                 1585 2923.472 randomForest
## 1 4508.472
## 2
     7476.846
                  4750 2726.846 randomForest
## 3 4793.898
                  2174 2619.898 randomForest
## 4 6279.129
                  3742 2537.129 randomForest
## 5 5242.653
                  2843 2399.653 randomForest
arrange(svm_perf, desc(abs(diff))) %>%
  filter(observed < 7000) %>%
 head(5)
```

```
## predicted observed diff label
## 1 5771.421 1585 4186.421 svm
## 2 7983.699 4063 3920.699 svm
## 3 5722.197 1957 3765.197 svm
## 4 5907.319 2174 3733.319 svm
```

```
## 5 5544.827
                  1877 3667.827
arrange(lm_perf, desc(abs(diff))) %>%
  filter(observed < 7000) %>%
 head(5)
     predicted observed
                            diff label
## 1 6272.608
               1585 4687.608
                                    lm
## 2 8325.985
                   3702 4623.985
                                    lm
## 3 8250.050
                  4267 3983.050
                                    lm
## 4 6466.103
                   2638 3828.103
                                    lm
## 5 5744.796
                   1957 3787.796
                                    lm
n obs <- which(houses$sqm price == 1585)</pre>
```


Bonus

```
rf_audit <- audit(rf_expl)
svm_audit <- audit(svm_expl)
lm_audit <- audit(lm_expl)

plotPrediction(rf_audit)</pre>
```

Predicted vs Observed response

plotPrediction(svm_audit)

Predicted vs Observed response

plotPrediction(lm_audit)

Predicted vs Observed response


```
library(live)
library(mlr)
houses_similar <- sample_locally2(houses, houses[n_obs, ], "sqm_price", 1000)
houses_similar2 <- add_predictions2(houses_similar, house_rf)</pre>
lm_approx <- fit_explanation2(houses_similar2, "regr.lm")</pre>
lm_approx
## Warning in summary.lm(model_tmp): essentially perfect fit: summary may be
## unreliable
## Dataset:
## Observations: 1000
## Variables: 7
## Response variable: sqm_price
## Explanation model:
## Name: regr.lm
## Variable selection wasn't performed
## Weights present in the explanation model
## R-squared: 0.9203
```

```
plot_explanation2(lm_approx, regr_plot_type = "forest")

## Warning in summary.lm(x): essentially perfect fit: summary may be
## unreliable

## Warning in summary.lm(object): essentially perfect fit: summary may be
## unreliable

## Warning in recalculate_width_panels(panel_positions, mapped_text =
## mapped_text, : Unable to resize forest panel to be smaller than its
## heading; consider a smaller text size
```

Variable		N	Estimate		р		
rooms_r	num 10	000		1002.51 (934.23, 1070.78)	<0.001		
area	10	000		115.56 (-40.84, 271.96)	0.15		
year	10	000		354.88 (190.86, 518.91)	<0.001		
floor	10	000	+	181.91 (118.46, 245.36)	<0.001		
max_floor 1000			-82.71 (-163.29, -2.14)	0.04			
district	Fabryczna?	370	I	Reference			
	Krzyki	63		1319.08 (1251.49, 1386.67)	<0.001		
	Psie Pole	13		1134.13 (990.26, 1278.00)	<0.001		
	Srodmiesc	i 8 7		2066.41 (1979.72, 2153.10)	<0.001		
	Stare Mias	tb7		5304.19 (5178.03, 5430.36)	<0.001		
(Intercept)			⊢ ■ ¦	-715659.83 (-1044976.00, -	-3806003.6		
-1 80 069900000000							

plot_explanation2(lm_approx, regr_plot_type = "waterfall")

Bonus

```
houses_similar3 <- add_predictions2(houses_similar, house_svm)
houses_similar4 <- add_predictions2(houses_similar, house_lm)
lm_approx2 <- fit_explanation2(houses_similar3)
lm_approx3 <- fit_explanation2(houses_similar4)

plot_explanation2(lm_approx2, "waterfall")
```


plot_explanation2(lm_approx2, "forest")

```
## Warning in summary.lm(x): essentially perfect fit: summary may be
## unreliable
## Warning in summary.lm(object): essentially perfect fit: summary may be
## unreliable
## Warning in recalculate_width_panels(panel_positions, mapped_text =
## mapped_text, : Unable to resize forest panel to be smaller than its
## heading; consider a smaller text size
```

Variable		N	Estimate		р	
rooms_num 1000		-	339.54 (337.29, 341.80)	<0.001		
area	•	1000	Ė	-25.64 (-30.80, -20.48)	<0.001	
year	•	1000	-	6.82 (1.41, 12.24)	0.01	
floor	,	1000	-	12.65 (10.56, 14.75)	<0.001	
max_floor 1000		1000	-	67.27 (64.61, 69.93)	<0.001	
district	Fabryczna	Fabryczna 870		Reference		
	Krzyki	63	-	434.74 (432.51, 436.98)	<0.001	
	Psie Pole	13	-	24.60 (19.85, 29.34)	<0.001	
	Srodmiescie37			754.98 (752.12, 757.84)	<0.001	
	Stare Miasto17			1078.80 (1074.64, 1082.9	9₹)0.001	
(Intercept)				-7502.86 (-18373.50, 33	67.0091)8	
-150095000						

plot_explanation2(lm_approx3, "forest")

```
## Warning in summary.lm(x): essentially perfect fit: summary may be
## unreliable
## Warning in summary.lm(object): essentially perfect fit: summary may be
## unreliable
## Warning in recalculate_width_panels(panel_positions, mapped_text =
## mapped_text, : Unable to resize forest panel to be smaller than its
## heading; consider a smaller text size
```

Variable		N	Estimate		р
rooms_num 1000			-439.23 (-439.23, -439.23)<0.00		
area		1000	=	9.38 (9.38, 9.38) < 0.00	1
year		1000	 	12.38 (12.38, 12.38) < 0.00	1
floor		1000	Ė	4.54 (4.54, 4.54) < 0.00	1
max_floor 1000			17.12 (17.12, 17.12) <0.00	1	
district	Fabryczna	a870	+	Reference	
	Krzyki	63	+	277.96 (277.96, 277.96) <0.00	1
	Psie Pole	13	=	-412.57 (-412.57, -412.57) < 0.00	1
	Srodmies	cie37	=	569.83 (569.83, 569.83) < 0.00	1
	Stare Mia	std7		1956.82 (1956.82, 1956.82)<0.00	1
(Intercept)			-18275.81 (-18275.81, -18 27 5) 8	1)	
			-1 500950 00		

library(shapleyr)

```
## Loading required package: checkmate
## Loading required package: combinat
## Attaching package: 'combinat'
## The following object is masked from 'package:utils':
##
##
       combn
## Loading required package: shiny
## Loading required package: shinydashboard
##
## Attaching package: 'shinydashboard'
## The following object is masked from 'package:graphics':
##
##
       box
## Loading required package: reshape2
##
## Attaching package: 'reshape2'
```

```
## The following object is masked from 'package:tidyr':
##
##
       smiths
## Welcome to the ShapleyR package!
shapley_vals <- shapley(n_obs, house_task, house_rf_mlr)</pre>
gather(shapley_vals$values, "colname", "contribution") %>%
  filter(colname %in% colnames(houses)) %>%
  mutate(contribution = as.numeric(contribution)) %>%
  arrange(desc(abs(contribution)))
##
       colname contribution
## 1 district
                  -883.119
                   -499.018
          area
## 3
        floor
                  -118.705
## 4
                   -103.425
         year
## 5 max_floor
                    -75.097
## 6 rooms_num
                     52.103
# alternatively use just
shapley_vals
## $task.type
## [1] "regr"
##
## $feature.names
                                "year"
## [1] "rooms_num" "area"
                                            "floor"
                                                        "max_floor" "district"
## $predict.type
## [1] "response"
## $prediction.response
## [1] 4248.977
## $data.mean
## [1] 6165.112
##
## $values
      _Id _Class rooms_num
                                                 floor max_floor district
##
                               area
                                         year
## 1 1189
              NA
                    52.103 -499.018 -103.425 -118.705
                                                         -75.097 -883.119
class(shapley_vals) <- c("shapley.singleValue", "list")</pre>
plot(shapley_vals)
```



```
library(lime)

##
## Attaching package: 'lime'

## The following object is masked from 'package:DALEX':

##
## explain

## The following object is masked from 'package:dplyr':

##
## explain

lime_rf <- lime(houses, house_rf_mlr)

lime_explanation <- lime::explain(houses[n_obs, ], lime_rf, n_features = 5)

plot_features(lime_explanation)</pre>
```


Bonus

```
rf_global <- variable_importance(rf_expl)
plot(rf_global)</pre>
```

