**Subject: DataBase Systems** 

## **Project Documentation**

**Title: Tournament Management System** 



Submitted by: Areeba Khan (FA22-BSE-008)

Submitted to: Ma'am Nighat Usman

**Department of Software Engineering** 

**Comsats University Islamabad** 

**Abbottabad Campus** 

## **Table of Contents**

| TOURNAMENT MANAGEMENT SYSTEM                   | 3  |
|------------------------------------------------|----|
| MERGING AND SPLITTING                          | 6  |
| NOMALIZATION UPTO 3.5                          | 12 |
| TABLES AFTER NORMALIZATION                     | 35 |
| ATTRIBUTES AND RELATIONSHIP                    | 38 |
| ERD DIAGRAM                                    | 41 |
| DATABASE QUERIES FOR CRICKET MANAGEMENT SYSTEM | 42 |

## **TOURNAMENT MANAGEMENT SYSTEM**

### 1. Match Table

| MatchID | TeamID1 | TeamID2 | VenueID | UmpireID |
|---------|---------|---------|---------|----------|
| 1       | 1       | 2       | 1       | 1        |
| 2       | 1       | 3       | 2       | 2        |
| 3       | 3       | 3       | 3       | 4        |
| 4       | 4       | 5       | 5       | 4        |
| 5       | 5       | 6       | 5       | 5        |

#### 2. TicketDetails Table

| TicketID | MatchID | SeatNumber | BuyerName     |
|----------|---------|------------|---------------|
| 1        | 1       | A1         | John Doe      |
| 2        | 1       | A2         | Alice Smith   |
| 3        | 2       | B1         | Emma Watson   |
| 4        | 4       | A1         | Emma Watson   |
| 5        | 3       | C1         | Robert Downey |

## 3. Tournament Table

| TournamentID | Name             | StartDate  | EndDate    | VenueID |
|--------------|------------------|------------|------------|---------|
| 1            | ICC World Cup    | 2024-03-01 | 2024-04-01 | 1       |
| 2            | IPL 2024         | 2024-05-01 | 2024-06-30 | 1       |
| 3            | IPL 2024         | 2024-04-15 | 2024-06-31 | 3       |
| 4            | T20 World Cup    | 2024-04-15 | 2024-09-01 | 4       |
| 5            | Champions Trophy | 2024-10-01 | 2024-06-31 | 5       |

## 4. Sponsorship Table

| SponsorID | TeamID | Name   | Amount  | MatchID |
|-----------|--------|--------|---------|---------|
| 1         | 1      | Pepsi  | 5000000 | 1       |
| 2         | 2      | Pepsi  | 5000000 | 1       |
| 3         | 2      | Adidas | 4000000 | 3       |
| 4         | 3      | Nike   | 3500000 | 4       |
| 5         | 4      | Puma   | 3000000 | 5       |

## 5. Player Table

| Joe Root |        |                 |     |
|----------|--------|-----------------|-----|
| PlayerID | TeamID | Name            | Age |
| 1        | 1      | Virat Kohli     | 34  |
| 2        | 3      | Steve Smith     | 35  |
| 3        | 3      | Joe Root        | 33  |
| 4        | 4      | Virat Kohli     | 37  |
| 5        | 5      | Kane Williamson | 33  |

## **6. PlayerStats Table**

| PlayerStatsID | PlayerID | Runs | Wickets | Catches |
|---------------|----------|------|---------|---------|
| 1             | 1        | 500  | 20      | 15      |
| 2             | 2        | 600  | 30      | 18      |
| 3             | 3        | 500  | 25      | 10      |
| 4             | 4        | 700  | 30      | 20      |
| 5             | 5        | 550  | 28      | 18      |

## 7. Venue Table

| VenueID | Name         | City      | Capacity |
|---------|--------------|-----------|----------|
| 1       | Eden Gardens | Kolkata   | 60000    |
| 2       | MCG          | Melbourne | 55000    |
| 3       | Lord's       | London    | 30000    |
| 4       | MCG          | Mumbai    | 25000    |
| 5       | The Oval     | London    | 25000    |

## 8. Team Table

| TeamID | Name        | CoachID |
|--------|-------------|---------|
| 1      | India       | 1       |
| 2      | Australia   | 2       |
| 3      | England     | 3       |
| 4      | Pakistan    | 4       |
| 5      | New Zealand | 5       |

## 9. Coach Table

| CoachID | TeamID | Name          | Experience |
|---------|--------|---------------|------------|
| 1       | 1      | Ricky Ponting | 10         |
| 2       | 3      | Shane Warne   | 12         |
| 3       | 3      | Shane Warne   | 12         |
| 4       | 4      | Gary Kirsten  | 8          |
| 5       | 5      | Justin Langer | 7          |

## 10. TeamStats Table

| TeamStatsI | Win | MatchesPlaye | Losse | Point |
|------------|-----|--------------|-------|-------|
| D          | S   | d            | S     | S     |
| 1          | 10  | 15           | 5     | 20    |
| 2          | 12  | 16           | 4     | 24    |
| 3          | 8   | 14           | 5     | 16    |
| 4          | 8   | 14           | 6     | 16    |
| 5          | 14  | 18           | 4     | 28    |

## 11. Umpire Table

| UmpireID | Name             | Experience |
|----------|------------------|------------|
| 1        | Nitin Menon      | 12         |
| 2        | Kumar Dharmasena | 15         |
| 3        | Aleem Dar        | 18         |
| 4        | Marais Erasmus   | 15         |
| 5        | Hassan ali       | 13         |

## 12. MatchTimeDetails Table

| MatchID | StartTime | EndTime  |
|---------|-----------|----------|
| 1       | 10:00 AM  | 01:00 PM |
| 2       | 11:00 AM  | 02:00 PM |
| 3       | 10:00 AM  | 04:00 PM |
| 4       | 02:00 PM  | 05:00 PM |
| 5       | 03:00 PM  | 01:00 PM |

## **MERGING AND SPLITTING**

Merged Table: Match+Match details

#### 1. Match details

| MatchID | TeamID1 | TeamID2 | VenueID | UmpireID | StartTime | EndTime  |
|---------|---------|---------|---------|----------|-----------|----------|
| 1       | 1       | 2       | 1       | 1        | 10:00 AM  | 01:00 PM |
| 2       | 1       | 3       | 2       | 2        | 11:00 AM  | 02:00 PM |
| 3       | 3       | 3       | 3       | 4        | 10:00 AM  | 04:00 PM |
| 4       | 4       | 5       | 5       | 4        | 02:00 PM  | 05:00 PM |
| 5       | 5       | 6       | 5       | 5        | 03:00 PM  | 01:00 PM |

#### **Anomalies:**

### 1. Insert Anomaly:

o If you insert a match but forget to insert match details (like start time or umpire), or vice versa, the data will be incomplete.

### 2. Update Anomaly:

o If match details (like start time) change, you will need to update every row for the match. Forgetting to do so will cause inconsistency in your data.

#### 3. Delete Anomaly:

o If you delete a match, both match and match details will be removed. If you only want to delete the match without removing its details, this will cause issues.

## Splitting the table

#### **Match Table**

| MatchID | TeamID1 | TeamID2 | VenueID | UmpireID |
|---------|---------|---------|---------|----------|
| 1       | 1       | 2       | 1       | 1        |
| 2       | 1       | 3       | 2       | 2        |
| 3       | 3       | 3       | 3       | 4        |
| 4       | 4       | 5       | 5       | 4        |
| 5       | 5       | 6       | 5       | 5        |

#### **MatchTimeDetails Table**

| MatchID | StartTime | EndTime  |
|---------|-----------|----------|
| 1       | 10:00 AM  | 01:00 PM |
| 2       | 11:00 AM  | 02:00 PM |

| 3 | 10:00 AM | 04:00 PM |
|---|----------|----------|
| 4 | 02:00 PM | 05:00 PM |
| 5 | 03:00 PM | 01:00 PM |

**Match + MatchDetails: Lossless Decomposition** 

2.Merged Table: Player+Player stats

### **PlayerDetails**

| PlayerID | TeamID | Name            | Age | Runs | Wickets | Catches | PlayerStatsID |
|----------|--------|-----------------|-----|------|---------|---------|---------------|
| 1        | 1      | Virat Kohli     | 34  | 500  | 20      | 15      | 1             |
| 2        | 3      | Steve Smith     | 35  | 600  | 30      | 18      | 2             |
| 3        | 3      | Joe Root        | 33  | 500  | 25      | 10      | 3             |
| 4        | 4      | Virat Kohli     | 37  | 700  | 30      | 20      | 4             |
| 5        | 5      | Kane Williamson | 33  | 550  | 28      | 18      | 5             |

#### **Anamolies**

### ☐ Insert Anomaly:

• Must insert both player and stats together. If only one is inserted, it creates incomplete data.

### ☐ **Update Anomaly**:

• Changing player details (e.g., age) requires updating every stat row. Forgetting this causes inconsistency.

#### ☐ Delete Anomaly:

• Deleting a player removes both details and stats. If you only want to delete stats, this causes data loss.

## **Solution**

## **Splitting the table**

## **Player Table**

| Joe Root |        |                 |     |
|----------|--------|-----------------|-----|
| PlayerID | TeamID | Name            | Age |
| 1        | 1      | Virat Kohli     | 34  |
| 2        | 3      | Steve Smith     | 35  |
| 3        | 3      | Joe Root        | 33  |
| 4        | 4      | Virat Kohli     | 37  |
| 5        | 5      | Kane Williamson | 33  |

## **PlayerStats Table**

| PlayerStatsID | PlayerID | Runs | Wickets | Catches |
|---------------|----------|------|---------|---------|
| 1             | 1        | 500  | 20      | 15      |
| 2             | 2        | 600  | 30      | 18      |
| 3             | 3        | 500  | 25      | 10      |
| 4             | 4        | 700  | 30      | 20      |
| 5             | 5        | 550  | 28      | 18      |

Player + PlayerStats: Lossless Decomposition

## 3. Merged Table: team+team stats

### **TeamDetails**

| TeamID | Name      | CoachID | Wins | MatchesPlayed | Losses | Points | TeamStatsID |
|--------|-----------|---------|------|---------------|--------|--------|-------------|
| 1      | India     | 1       | 10   | 15            | 5      | 20     | 1           |
| 2      | Australia | 2       | 12   | 16            | 4      | 24     | 2           |
| 3      | England   | 3       | 8    | 14            | 5      | 16     | 3           |
| 4      | Pakistan  | 4       | 8    | 14            | 6      | 16     | 4           |
| 5      | New       | 5       | 14   | 18            | 4      | 28     | 5           |
|        | Zealand   |         |      |               |        |        |             |

| FA22-BSE-008 |
|--------------|
| raza -       |
|              |

#### Anamoliess

☐ Insert Anomaly: Must insert both team and stats together. Otherwise, incomplete data is created.
 ☐ Update Anomaly: Changing team details requires updating stats. Failing to do so causes inconsistency.

□ **Delete Anomaly**: Deleting a team removes both details and stats. If only stats need deletion, this causes issues.

### **Solution**

## Splitting the table

#### **Team Table**

| TeamID | Name        | CoachID |
|--------|-------------|---------|
| 1      | India       | 1       |
| 2      | Australia   | 2       |
| 3      | England     | 3       |
| 4      | Pakistan    | 4       |
| 5      | New Zealand | 5       |

#### **TeamStats Table**

| TeamStatsI | Win | MatchesPlaye | Losse | Point |
|------------|-----|--------------|-------|-------|
| D          | S   | d            | S     | S     |
| 1          | 10  | 15           | 5     | 20    |
| 2          | 12  | 16           | 4     | 24    |
| 3          | 8   | 14           | 5     | 16    |
| 4          | 8   | 14           | 6     | 16    |
| 5          | 14  | 18           | 4     | 28    |

**Team + TeamStats: Lossless Decomposition** 

## **4.**Merged Table: Venue +Tournament

## **VenueTournamentDetails**

| VenueI<br>D | Name                | City          | Capaci<br>ty | Tournament ID | TournamentNa<br>me  | StartDa<br>te  | EndDa<br>te    |
|-------------|---------------------|---------------|--------------|---------------|---------------------|----------------|----------------|
| 1           | Eden<br>Garde<br>ns | Kolkata       | 60000        | 1             | ICC World Cup       | 2024-<br>03-01 | 2024-<br>04-01 |
| 2           | MCG                 | Melbour<br>ne | 55000        | 2             | IPL 2024            | 2024-<br>05-01 | 2024-<br>06-30 |
| 3           | Lord's              | London        | 30000        | 3             | IPL 2024            | 2024-<br>04-15 | 2024-<br>06-31 |
| 4           | MCG                 | Mumbai        | 25000        | 4             | T20 World Cup       | 2024-<br>04-15 | 2024-<br>09-01 |
| 5           | The<br>Oval         | London        | 25000        | 5             | Champions<br>Trophy | 2024-<br>10-01 | 2024-<br>06-31 |

### Anamolies

|     | <b>Insert Anomaly</b> : If a venue | is added | without a | tournament | (or vice | versa), i | it creates |
|-----|------------------------------------|----------|-----------|------------|----------|-----------|------------|
| ino | complete data.                     |          |           |            |          |           |            |

|     | <b>Update Anomaly:</b> | Changing tournan    | nent details r | equires upd | lating all rows | s for the | same |
|-----|------------------------|---------------------|----------------|-------------|-----------------|-----------|------|
| vei | nue. Failure to do so  | o causes inconsiste | ency.          |             |                 |           |      |

| ☐ <b>Delete Anomaly</b> : Deleting a v | enue removes both the venu | ue and the tournament | t. If only one |
|----------------------------------------|----------------------------|-----------------------|----------------|
| needs deletion, this causes issues.    |                            |                       |                |

## Solution

## **Splitting the tables**

## **Venue Table**

| VenueID | Name         | City      | Capacity |
|---------|--------------|-----------|----------|
| 1       | Eden Gardens | Kolkata   | 60000    |
| 2       | MCG          | Melbourne | 55000    |
| 3       | Lord's       | London    | 30000    |
| 4       | MCG          | Mumbai    | 25000    |
| 5       | The Oval     | London    | 25000    |

#### **Tournament Table**

| TournamentID | Name             | StartDate  | EndDate    | VenueID |
|--------------|------------------|------------|------------|---------|
| 1            | ICC World Cup    | 2024-03-01 | 2024-04-01 | 1       |
| 2            | IPL 2024         | 2024-05-01 | 2024-06-30 | 1       |
| 3            | IPL 2024         | 2024-04-15 | 2024-06-31 | 3       |
| 4            | T20 World Cup    | 2024-04-15 | 2024-09-01 | 4       |
| 5            | Champions Trophy | 2024-10-01 | 2024-06-31 | 5       |

**Venue + Tournament: Lossless Decomposition** 

### 5.(Merged Table) match+sponsorship

#### **SponsorshipDetails**

| Sponsorshi<br>pID | Match<br>ID | Team<br>ID | SponsorN<br>ame | Amou<br>nt  | Venue<br>ID | Umpire<br>ID | StartTi<br>me | EndTi<br>me |
|-------------------|-------------|------------|-----------------|-------------|-------------|--------------|---------------|-------------|
| 1                 | 1           | 1          | Pepsi           | 50000<br>00 | 1           | 1            | 10:00<br>AM   | 01:00<br>PM |
| 2                 | 1           | 2          | Pepsi           | 50000<br>00 | 1           | 1            | 10:00<br>AM   | 01:00<br>PM |
| 3                 | 2           | 2          | Adidas          | 40000<br>00 | 2           | 2            | 11:00<br>AM   | 02:00<br>PM |
| 4                 | 3           | 3          | Nike            | 35000<br>00 | 3           | 4            | 10:00<br>AM   | 04:00<br>PM |
| 5                 | 4           | 4          | Puma            | 30000<br>00 | 5           | 4            | 02:00<br>PM   | 05:00<br>PM |

#### **Explanation:**

- **Insert Anomaly**: If a sponsorship or match is inserted without the corresponding match/sponsorship, it will lead to incomplete data.
- **Update Anomaly**: If sponsorship or match details change, every relevant row needs to be updated, which could lead to inconsistencies.
- Delete Anomaly: Deleting a match or sponsorship causes loss of relevant data.

## **Solution**

## **Splitting the table**

### **Match Table**

| MatchID | TeamID1 | TeamID2 | VenueID | UmpireID |
|---------|---------|---------|---------|----------|
| 1       | 1       | 2       | 1       | 1        |
| 2       | 1       | 3       | 2       | 2        |
| 3       | 3       | 3       | 3       | 4        |
| 4       | 4       | 5       | 5       | 4        |
| 5       | 5       | 6       | 5       | 5        |

## **Sponsorship Table**

| SponsorID | TeamID | Name   | Amount  | MatchID |
|-----------|--------|--------|---------|---------|
| 1         | 1      | Pepsi  | 5000000 | 1       |
| 2         | 2      | Pepsi  | 5000000 | 1       |
| 3         | 2      | Adidas | 4000000 | 3       |
| 4         | 3      | Nike   | 3500000 | 4       |
| 5         | 4      | Puma   | 3000000 | 5       |

match+sponsorship: Lossless Decomposition

## **NOMALIZATION UPTO 3.5**

## 1. Match Table

| MatchID | TeamID1 | TeamID2 | VenueID | UmpireID |
|---------|---------|---------|---------|----------|
| 1       | 1       | 2       | 1       | 1        |
| 2       | 1       | 3       | 2       | 2        |
| 3       | 3       | 3       | 3       | 4        |
| 4       | 4       | 5       | 5       | 4        |
| 5       | 5       | 6       | 5       | 5        |

| lacksquare Functional Dependency: MatchID $ ightarrow$ | TeamID1, TeamID2, VenueID, | UmpireID |
|--------------------------------------------------------|----------------------------|----------|
|--------------------------------------------------------|----------------------------|----------|

☐ Candidate Key: MatchID

☐ Prime Attribute: MatchID

☐ Non-prime Attributes: TeamID1, TeamID2, VenueID, UmpireIDStep 4: Normalization Process

#### 1st Normal Form (1NF)

• Analysis: The table already has atomic values (each cell contains a single value), so it's in 1NF.

#### 2nd Normal Form (2NF)

#### **Analysis:**

- o There are no partial dependencies because **MatchID** is the only candidate key, and all non-prime attributes (TeamID1, TeamID2, VenueID, UmpireID) dependentirely on **MatchID**.
- Conclusion: The table is in 2NF.

#### 3rd Normal Form (3NF)

- Analysis:
  - o There are no transitive dependencies because none of the non-prime attributes (TeamID1, TeamID2, VenueID, UmpireID) depend on each other.
  - o Conclusion: The table is in 3NF.

#### 3.5 Normal Form (3.5NF)

- **Analysis**: The table has no derived dependencies because each non-prime attribute is directly dependent on the primary key (MatchID).
- Conclusion: The table is in 3.5NF.

### 2. Ticket Details Table

| TicketID | MatchID | SeatNumber | BuyerName     |
|----------|---------|------------|---------------|
| 1        | 1       | A1         | John Doe      |
| 2        | 1       | A2         | Alice Smith   |
| 3        | 2       | B1         | Emma Watson   |
| 4        | 4       | A1         | Emma Watson   |
| 5        | 3       | C1         | Robert Downey |

#### **TicketDetails Table:**

Columns: TicketID, MatchID, SeatNumber, BuyerName

#### **Step 1: Functional Dependencies (FDs)**

• TicketID → MatchID, SeatNumber, BuyerName (TicketID determines the other attributes).

#### Step 2: Candidate Key

• The Candidate Key is TicketID because it uniquely identifies each record.

#### **Step 3: Prime and Non-prime Attributes**

- Prime Attribute: TicketID (
- Non-prime Attributes: MatchID, SeatNumber, BuyerName Step 4: Normalization Process

#### 1st Normal Form (1NF)

• The table is in 1NF because each column contains atomic values (no repeating groups).

#### 2nd Normal Form (2NF)

- The table is in **1NF**.
- Analysis:
  - TicketID is the candidate key, and all non-prime attributes (MatchID, SeatNumber, BuyerName) are fully dependent on TicketID.
  - There is **no partial dependency** because **TicketID** is the only candidate key.
- Conclusion: The table is in 2NF.

#### 3rd Normal Form (3NF)

- The table is in **2NF**.
- Analysis:
  - o There are no transitive dependencies.
  - All non-prime attributes (MatchID, SeatNumber, BuyerName) depend directly on TicketID.
- Conclusion: The table is in 3NF.

#### 3.5 Normal Form (3.5NF)

- The table is in **3NF**.
- Analysis: No derived or unnecessary dependencies exist.

• Conclusion: The table is in 3.5NF.

#### 3. Tournament Table

| TournamentID | Name             | StartDate  | EndDate    | VenueID |
|--------------|------------------|------------|------------|---------|
| 1            | ICC World Cup    | 2024-03-01 | 2024-04-01 | 1       |
| 2            | IPL 2024         | 2024-05-01 | 2024-06-30 | 1       |
| 3            | IPL 2024         | 2024-04-15 | 2024-06-31 | 3       |
| 4            | T20 World Cup    | 2024-04-15 | 2024-09-01 | 4       |
| 5            | Champions Trophy | 2024-10-01 | 2024-06-31 | 5       |
|              |                  |            |            |         |

#### **Step 1: Functional Dependencies (FDs)**

• TournamentID → Name, StartDate, EndDate, VenueID (TournamentID determines the rest of the attributes).

#### Step 2: Candidate Key

• The Candidate Key is TournamentID because it uniquely identifies each record.

#### **Step 3: Prime and Non-prime Attributes**

- **Prime Attribute: TournamentID** (since it's part of the candidate key).
- Non-prime Attributes: Name, StartDate, EndDate, VenueID (these are not part of the candidate key).

#### **Step 4: Normalization Process**

#### 1st Normal Form (1NF)

• The table is in **1NF** because each column contains atomic values (no repeating groups).

#### 2nd Normal Form (2NF)

- The table is in **1NF**.
- Analysis:
  - TournamentID is the candidate key, and all non-prime attributes (Name, StartDate, EndDate, VenueID) are fully dependent on TournamentID.
  - There is **no partial dependency** because **TournamentID** is the only candidate key.
- Conclusion: The table is in 2NF.

#### 3rd Normal Form (3NF)

- The table is in **2NF**.
- Analysis:
  - o There are no transitive dependencies.
  - o All non-prime attributes (Name, StartDate, EndDate, VenueID) depend directly on TournamentID.
- Conclusion: The table is in 3NF.

#### 3.5 Normal Form (3.5NF)

- The table is in **3NF**.
- Analysis: No derived or unnecessary dependencies exist.
- Conclusion: The table is in 3.5NF.

### **Sponsorship Table:**

### 4. Sponsorship Table

| SponsorID | TeamID | Name   | Amount  | MatchID |
|-----------|--------|--------|---------|---------|
| 1         | 1      | Pepsi  | 5000000 | 1       |
| 2         | 2      | Pepsi  | 5000000 | 1       |
| 3         | 2      | Adidas | 4000000 | 3       |
| 4         | 3      | Nike   | 3500000 | 4       |
| 5         | 4      | Puma   | 3000000 | 5       |

Columns: SponsorID, TeamID, Name, Amount, MatchID

#### **Step 1: Functional Dependencies (FDs)**

- SponsorID → TeamID, Name, Amount, MatchID (SponsorID determines all other attributes).
- **TeamID**, **MatchID** → **SponsorID**, **Name**, **Amount** (The combination of TeamID and MatchID determines SponsorID, Name, and Amount).

#### **Step 2: Candidate Keys**

- SponsorID is the candidate key because it uniquely identifies each record.
- **TeamID**, **MatchID** is also a **candidate key** (composite key) because this combination uniquely identifies the sponsorship.

### **Step 3: Prime and Non-prime Attributes**

• Prime Attributes: SponsorID, TeamID, MatchID (because they are part of candidate keys).

• Non-prime Attributes: Name, Amount (because these are not part of the candidate key).

#### **Step 4: Normalization Process**

#### 1st Normal Form (1NF)

• The table is already in **1NF** as it contains atomic values (no repeating groups).

#### 2nd Normal Form (2NF)

• The table is in **2NF** because it has no partial dependencies. All non-prime attributes depend entirely on the **candidate keys**.

#### 3rd Normal Form (3NF)

- Analysis:
  - There are no transitive dependencies between the non-prime attributes. However, **Name** (the sponsor's name) depends solely on **SponsorID**.
  - o SponsorID → Name (transitive dependency through SponsorID)
  - o This creates a situation where the **Name** attribute depends on the **primary key** (SponsorID) indirectly through the **candidate key** (TeamID, MatchID).
  - o Conclusion: The table is **not in 3NF** because of this transitive dependency.

#### **Step 5: 3NF Normalization**

To convert the table to 3NF, we need to remove the transitive dependency (i.e., Name depends on SponsorID).

#### **Decomposition:**

We can decompose the table into two tables:

- 1. Sponsorship Table:
  - o SponsorID, TeamID, MatchID, Amount
  - o This table will contain information about the sponsorships, with **SponsorID** as the primary key.
- 2. Sponsor Information Table:
  - o SponsorID, Name

This table will contain information about the sponsor (the sponsor's name), with **SponsorID** as the primary key.

## **Sponsorship Table (After 3NF):**

| SponsorID | TeamID | MatchID |
|-----------|--------|---------|
| 1         | 1      | 1       |
| 2         | 2      | 1       |
| 3         | 2      | 3       |
| 4         | 3      | 4       |
| 5         | 4      | 5       |

## **Sponsor Information Table (After 3NF):**

| SponsorID | Name   | Amount  |
|-----------|--------|---------|
| 1         | Pepsi  | 5000000 |
| 2         | Pepsi  | 5000000 |
| 3         | Adidas | 4000000 |
| 4         | Nike   | 3500000 |
| 5         | Puma   | 3000000 |

**Step 6: 3.5NF Normalization** 

The tables are already in 3NF. No derived dependencies exist.

## Applying natural join:

## **Result (CROSS JOIN Output):**

| SponsorInfoID | Name   | Amount  | SponsorshipID | TeamID | MatchID |
|---------------|--------|---------|---------------|--------|---------|
| 1             | Pepsi  | 5000000 | 1             | 1      | 1       |
| 1             | Pepsi  | 5000000 | 2             | 2      | 1       |
| 1             | Pepsi  | 5000000 | 3             | 2      | 3       |
| 1             | Pepsi  | 5000000 | 4             | 3      | 4       |
| 1             | Pepsi  | 5000000 | 5             | 4      | 5       |
| 2             | Pepsi  | 5000000 | 1             | 1      | 1       |
| 2             | Pepsi  | 5000000 | 2             | 2      | 1       |
| 2             | Pepsi  | 5000000 | 3             | 2      | 3       |
| 2             | Pepsi  | 5000000 | 4             | 3      | 4       |
| 2             | Pepsi  | 5000000 | 5             | 4      | 5       |
| 3             | Adidas | 4000000 | 1             | 1      | 1       |
| 3             | Adidas | 4000000 | 2             | 2      | 1       |

| 3 | Adidas | 4000000 | 3 | 2 | 3 |
|---|--------|---------|---|---|---|
| 3 | Adidas | 4000000 | 4 | 3 | 4 |
| 3 | Adidas | 4000000 | 5 | 4 | 5 |
| 4 | Nike   | 3500000 | 1 | 1 | 1 |
| 4 | Nike   | 3500000 | 2 | 2 | 1 |
| 4 | Nike   | 3500000 | 3 | 2 | 3 |
| 4 | Nike   | 3500000 | 4 | 3 | 4 |
| 4 | Nike   | 3500000 | 5 | 4 | 5 |
| 5 | Puma   | 3000000 | 1 | 1 | 1 |
| 5 | Puma   | 3000000 | 2 | 2 | 1 |
| 5 | Puma   | 3000000 | 3 | 2 | 3 |
| 5 | Puma   | 3000000 | 4 | 3 | 4 |
| 5 | Puma   | 3000000 | 5 | 4 | 5 |

## **Final Result:**

| SponsorID | Name   | Amount  | TeamID | MatchID |
|-----------|--------|---------|--------|---------|
| 1         | Pepsi  | 5000000 | 1      | 1       |
| 2         | Pepsi  | 5000000 | 2      | 1       |
| 3         | Adidas | 4000000 | 2      | 3       |
| 4         | Nike   | 3500000 | 3      | 4       |
| 5         | Puma   | 3000000 | 4      | 5       |

## 5. Player Table

| Joe Root |        |                 |     |
|----------|--------|-----------------|-----|
| PlayerID | TeamID | Name            | Age |
| 1        | 1      | Virat Kohli     | 34  |
| 2        | 3      | Steve Smith     | 35  |
| 3        | 3      | Joe Root        | 33  |
| 4        | 4      | Virat Kohli     | 37  |
| 5        | 5      | Kane Williamson | 33  |

**Player Table Analysis** 

Columns: PlayerID, TeamID, Name, Age

**Step 1: Functional Dependencies (FDs)** 

• PlayerID → TeamID, Name, Age (PlayerID uniquely identifies TeamID, Name, and Age for each player).

#### **Step 2: Candidate Keys**

• PlayerID is the candidate key because it uniquely identifies each record.

#### **Step 3: Prime and Non-prime Attributes**

- **Prime Attributes: PlayerID** (it is part of the candidate key).
- Non-prime Attributes: TeamID, Name, Age (these attributes are not part of the candidate key).

#### **Step 4: Normalization Process**

#### 1st Normal Form (1NF)

• The table is already in **1NF** because it contains atomic values (no repeating groups).

#### 2nd Normal Form (2NF)

• The table is in **2NF** because there are no partial dependencies. All non-prime attributes depend entirely on the **candidate key** (**PlayerID**).

#### 3rd Normal Form (3NF)

- Analysis:
  - There are no transitive dependencies in this table. Name and Age are directly dependent on PlayerID.
  - o **TeamID** is not dependent on **PlayerID**, so there's no violation of 3NF.
  - o Conclusion: The table is already in 3NF.

#### **Step 5: 3.5NF Normalization**

• Since the table is already in 3NF, it is also in 3.5NF, with no derived dependencies.

### 6. PlayerStats Table

| PlayerStatsID | PlayerID | Runs | Wickets | Catches |
|---------------|----------|------|---------|---------|
| 1             | 1        | 500  | 20      | 15      |
| 2             | 2        | 600  | 30      | 18      |
| 3             | 3        | 500  | 25      | 10      |
| 4             | 4        | 700  | 30      | 20      |

| 5 5 | 550 28 | 3 18 |
|-----|--------|------|
|-----|--------|------|

#### **Step 1: Functional Dependencies**

• PlayerStatsID → PlayerID, Runs, Wickets, Catches (PlayerStatsID uniquely determines PlayerID and the statistics for that player).

PlayerID → Runs, Wickets, Catches
 (PlayerID determines the statistics, assuming each player has only one set of statistics in the PlayerStats table).

#### **Step 2: Candidate Keys**

- PlayerStatsID is the candidate key since it uniquely identifies each row.
- **PlayerID** is **not** a candidate key because multiple players can have their statistics, but PlayerStatsID uniquely identifies the record.

#### **Step 3: Prime and Non-prime Attributes**

- **Prime Attribute: PlayerStatsID** (it is part of the candidate key).
- Non-prime Attributes: PlayerID, Runs, Wickets, Catches (these attributes are not part of the candidate key).

#### **Step 4: Normalization Process**

#### 1st Normal Form (1NF)

- **Analysis**: The table is already in **1NF** because each column contains atomic (indivisible) values. There are no repeating groups or multi-valued attributes.
- Conclusion: The table is in 1NF.

#### 2nd Normal Form (2NF)

- **Analysis**: In 2NF, the table must meet 1NF and have no partial dependencies. Partial dependencies occur when a non-prime attribute is dependent on only part of a candidate key.
- In this case, **PlayerStatsID** is the candidate key, and all non-prime attributes (PlayerID, Runs, Wickets, Catches) depend entirely on **PlayerStatsID**.
- There are no partial dependencies.
- Conclusion: The table is in 2NF.

#### 3rd Normal Form (3NF)

• **Analysis**: In 3NF, there should be no transitive dependencies. A transitive dependency occurs when a non-prime attribute depends on another non-prime attribute.

- PlayerID → Runs, Wickets, Catches creates a transitive dependency because Runs, Wickets, and Catches depend on PlayerID, which is not the candidate key.
- o This violates 3NF.

To fix this, we will decompose the table into two separate tables to remove the transitive dependency.

#### **Decomposition of the Table:**

- 1. PlayerStats Table (Decomposed)
  - o Columns: PlayerStatsID, PlayerID
  - $\circ$  PlayerStatsID  $\rightarrow$  PlayerID
- 2. PlayerStatsDetails Table (New Table)
  - o Columns: PlayerID, Runs, Wickets, Catches
  - o PlayerID → Runs, Wickets, Catches

By splitting the data, PlayerStats and PlayerStatsDetails are now in 3NF.

- PlayerStats Table is in 3NF because PlayerStatsID directly determines PlayerID.
- PlayerStatsDetails Table is in 3NF because PlayerID directly determines Runs, Wickets, and Catches.

#### 3.5 Normal Form (3.5NF)

• The tables are in **3.5NF** because there are no derived dependencies. Each non-prime attribute is directly dependent on the primary key in its respective table.

#### **Step 5: Final Tables**

1. PlayerStats Table (Decomposed)

| PlayerStatsID | PlayerID |
|---------------|----------|
| 1             | 1        |
| 2             | 2        |
| 3             | 3        |
| 4             | 4        |
| 5             | 5        |

### 2.PlayerStatsDetails Table

| PlayerID | Runs | Wickets | Catches |
|----------|------|---------|---------|
| 1        | 500  | 20      | 15      |
| 2        | 600  | 30      | 18      |
| 3        | 500  | 25      | 10      |
| 4        | 700  | 30      | 20      |
| 5        | 550  | 28      | 18      |

## Natural join

| PlayerStatsID | PlayerID (from | PlayerID (from      | Runs | Wickets | Catches |
|---------------|----------------|---------------------|------|---------|---------|
|               | PlayerStats)   | PlayerStatsDetails) |      |         |         |
| 1             | 1              | 1                   | 500  | 20      | 15      |
| 1             | 1              | 2                   | 600  | 30      | 18      |
| 1             | 1              | 3                   | 500  | 25      | 10      |
| 1             | 1              | 4                   | 700  | 30      | 20      |
| 1             | 1              | 5                   | 550  | 28      | 18      |
| 2             | 2              | 1                   | 500  | 20      | 15      |
| 2             | 2              | 2                   | 600  | 30      | 18      |
| 2             | 2              | 3                   | 500  | 25      | 10      |
| 2             | 2              | 4                   | 700  | 30      | 20      |
| 2             | 2              | 5                   | 550  | 28      | 18      |
| 3             | 3              | 1                   | 500  | 20      | 15      |
| 3             | 3              | 2                   | 600  | 30      | 18      |
| 3             | 3              | 3                   | 500  | 25      | 10      |
| 3             | 3              | 4                   | 700  | 30      | 20      |
| 3             | 3              | 5                   | 550  | 28      | 18      |
| 4             | 4              | 1                   | 500  | 20      | 15      |
| 4             | 4              | 2                   | 600  | 30      | 18      |
| 4             | 4              | 3                   | 500  | 25      | 10      |
| 4             | 4              | 4                   | 700  | 30      | 20      |
| 4             | 4              | 5                   | 550  | 28      | 18      |
| 5             | 5              | 1                   | 500  | 20      | 15      |
| 5             | 5              | 2                   | 600  | 30      | 18      |
| 5             | 5              | 3                   | 500  | 25      | 10      |
| 5             | 5              | 4                   | 700  | 30      | 20      |
| 5             | 5              | 5                   | 550  | 28      | 18      |

## **Result:**

| PlayerStatsID | PlayerID | Runs | Wickets | Catches |
|---------------|----------|------|---------|---------|
| 1             | 1        | 500  | 20      | 15      |
| 2             | 2        | 600  | 30      | 18      |

| 3 | 3 | 500 | 25 | 10 |
|---|---|-----|----|----|
| 4 | 4 | 700 | 30 | 20 |
| 5 | 5 | 550 | 28 | 18 |

#### 7. Venue Table

| VenueID | Name         | City      | Capacity |
|---------|--------------|-----------|----------|
| 1       | Eden Gardens | Kolkata   | 60000    |
| 2       | MCG          | Melbourne | 55000    |
| 3       | Lord's       | London    | 30000    |
| 4       | MCG          | Mumbai    | 25000    |
| 5       | The Oval     | London    | 25000    |

#### **Step 1: Functional Dependencies**

• VenueID → Name, City, Capacity (The venue's ID determines the name, city, and capacity of the venue.)

#### **Step 2: Candidate Keys**

• VenueID is the candidate key as it uniquely identifies each venue.

#### **Step 3: Prime and Non-prime Attributes**

- **Prime Attribute**: **VenueID** (part of the candidate key).
- Non-prime Attributes: Name, City, Capacity (these are dependent on the candidate key VenueID).

#### **Step 4: Normalization Process**

#### 1st Normal Form (1NF)

- **Analysis**: The table is already in **1NF** because each column contains atomic values (no multi-valued or repeating attributes).
- Conclusion: The table is in 1NF.

#### 2nd Normal Form (2NF)

• Analysis: In 2NF, the table must meet 1NF and have no partial dependencies (i.e., all non-prime attributes must depend on the entire candidate key).

- VenueID is the only candidate key, and Name, City, and Capacity all depend entirely on VenueID.
- o There are no partial dependencies.
- Conclusion: The table is in 2NF.

#### 3rd Normal Form (3NF)

- **Analysis**: In **3NF**, the table should have no transitive dependencies, where a non-prime attribute depends on another non-prime attribute.
  - o There are no transitive dependencies because **Name**, **City**, and **Capacity** depend directly on the **VenueID** and not on each other.
- Conclusion: The table is in 3NF.

#### 3.5 Normal Form (3.5NF)

- **Analysis**: In **3.5NF**, there should be no derived dependencies, and each non-prime attribute should be directly dependent on the primary key.
  - There are no derived dependencies, as each non-prime attribute is directly dependent on **VenueID**.

#### 8. Team Table

| TeamID | Name        | CoachID |
|--------|-------------|---------|
| 1      | India       | 1       |
| 2      | Australia   | 2       |
| 3      | England     | 3       |
| 4      | Pakistan    | 4       |
| 5      | New Zealand | 5       |

#### 1. Functional Dependencies:

• TeamID → Name, CoachID

(TeamID determines Name and CoachID)

#### 2. Step 1: First Normal Form (1NF)

#### **1NF** requires that:

- All attributes contain atomic (single) values.
- There are no repeating groups of attributes.

The original table already satisfies **1NF** because:

- All cells contain a single value.
- There are no repeating groups.

Conclusion: The table is in 1NF.

#### . Step 2: Second Normal Form (2NF)

#### **2NF** requires that:

- The table must be in **1NF**.
- There must be no partial dependency, meaning non-prime attributes (attributes that are not part of the primary key) must depend on the **entire** primary key.

In this table, **TeamID** is the **primary key**, and there are no partial dependencies because **TeamID** determines both **Name** and **CoachID** directly.

Conclusion: The table is in 2NF.

#### **Step 3: Third Normal Form (3NF)**

#### **3NF** requires that:

- The table must be in **2NF**.
- There must be no transitive dependencies, meaning non-prime attributes must not depend on other non-prime attributes.

#### In this case:

- TeamID determines Name and CoachID.
- There are no transitive dependencies because CoachID does not depend on Name, and Name does not depend on CoachID.

Conclusion: The table is in 3NF.

#### **Step 4: Third and a Half Normal Form (3.5NF)**

#### **3.5NF** requires that:

- The table must be in **3NF**.
- There are no **derived dependencies** (i.e., no non-prime attributes are derived from other non-prime attributes).

This table doesn't have derived dependencies.

Conclusion: The table is in 3.5NF.

#### 9. TeamStats Table

| TeamStatsI | Win | MatchesPlaye | Losse | Point | Tea  |
|------------|-----|--------------|-------|-------|------|
| D          | S   | d            | S     | S     | m id |
| 1          | 10  | 15           | 5     | 20    | 1    |
| 2          | 12  | 16           | 4     | 24    | 2    |
| 3          | 8   | 14           | 5     | 16    | 3    |
| 4          | 8   | 14           | 6     | 16    | 4    |
| 5          | 14  | 18           | 4     | 28    | 5    |

**Step 1: Functional Dependencies (FDs)** 

The functional dependencies in the **TeamStats** table are:

- 1. TeamStatsID → Wins, MatchesPlayed, Losses, Points, TeamID
  - o **TeamStatsID** determines all other attributes in the table.
- 2. TeamID  $\rightarrow$  TeamName
  - o **TeamID** determines the **TeamName** (transitive dependency via TeamInfo table).

#### **Step 2: Candidate Keys (CK)**

- A Candidate Key (CK) is a minimal set of attributes that can uniquely identify a record.
- **TeamStatsID** is the primary key, and no other attribute or combination of attributes can uniquely identify a record in this table.

Thus, TeamStatsID is the Candidate Key.

• **TeamID** is not a candidate key by itself, as it doesn't uniquely identify a record in **TeamStats**.

#### **Step 3: Prime and Non-Prime Attributes**

- Prime Attributes are attributes that are part of a candidate key.
  - o Prime Attribute: TeamStatsID
- Non-Prime Attributes are attributes that are not part of any candidate key.
  - o Non-Prime Attributes: Wins, MatchesPlayed, Losses, Points, TeamID

#### **Step 4: Normalization Process**

#### 1st Normal Form (1NF):

• **1NF** requires that the table has atomic values, meaning each field contains only one value, and no repeating groups.

• The **TeamStats** table is already in **1NF**, as all attributes contain atomic values and there are no repeating groups.

#### 2nd Normal Form (2NF):

- **2NF** requires that the table is in **1NF** and has **no partial dependencies**. That means every non-prime attribute must depend on the whole candidate key.
- In this case, **TeamStatsID** is the **candidate key**, and all other attributes depend on it. There are **no partial dependencies**.

Conclusion: The table is in 2NF.

#### 3rd Normal Form (3NF):

- **3NF** requires that the table is in **2NF** and has **no transitive dependencies**. That means there should be no dependencies between non-prime attributes.
- TeamID → TeamName is a transitive dependency because TeamID determines TeamName, and TeamID is not the primary key (it's a non-prime attribute).

Conclusion: The table is not in 3NF due to the transitive dependency TeamID  $\rightarrow$  TeamName.

#### 3.5 Normal Form (3.5NF):

- 3.5NF requires that the table is in 3NF and has no derived dependencies (non-prime attributes depending on other non-prime attributes).
- To remove the transitive dependency, we separate **TeamName** into a new table.

After splitting the data into two tables, we have:

#### **TeamStats Table**

| TeamStatsID | TeamID |
|-------------|--------|
| 1           | 1      |
| 2           | 2      |
| 3           | 3      |
| 4           | 4      |
| 5           | 5      |

## **TeamStatisticsDetails Table**

| TeamID | Wins | MatchesPlayed | Losses | Points |
|--------|------|---------------|--------|--------|
| 1      | 10   | 15            | 5      | 20     |
| 2      | 12   | 16            | 4      | 24     |
| 3      | 8    | 14            | 5      | 16     |
| 4      | 8    | 14            | 6      | 16     |
| 5      | 14   | 18            | 4      | 28     |

## Natural join

| TeamStatsI | TeamID           | TeamID (from                | Win | MatchesPlaye | Losse | Point |
|------------|------------------|-----------------------------|-----|--------------|-------|-------|
| D          | (from            | <b>TeamStatisticsDetail</b> | S   | d            | S     | S     |
|            | <b>TeamStats</b> | <b>s</b> )                  |     |              |       |       |
|            | )                |                             |     |              |       |       |
| 1          | 1                | 1                           | 10  | 15           | 5     | 20    |
| 1          | 1                | 2                           | 12  | 16           | 4     | 24    |
| 1          | 1                | 3                           | 8   | 14           | 5     | 16    |
| 1          | 1                | 4                           | 8   | 14           | 6     | 16    |
| 1          | 1                | 5                           | 14  | 18           | 4     | 28    |
| 2          | 2                | 1                           | 10  | 15           | 5     | 20    |
| 2          | 2                | 2                           | 12  | 16           | 4     | 24    |
| 2          | 2                | 3                           | 8   | 14           | 5     | 16    |
| 2          | 2                | 4                           | 8   | 14           | 6     | 16    |
| 2          | 2                | 5                           | 14  | 18           | 4     | 28    |
| 3          | 3                | 1                           | 10  | 15           | 5     | 20    |
| 3          | 3                | 2                           | 12  | 16           | 4     | 24    |
| 3          | 3                | 3                           | 8   | 14           | 5     | 16    |
| 3          | 3                | 4                           | 8   | 14           | 6     | 16    |
| 3          | 3                | 5                           | 14  | 18           | 4     | 28    |
| 4          | 4                | 1                           | 10  | 15           | 5     | 20    |
| 4          | 4                | 2                           | 12  | 16           | 4     | 24    |
| 4          | 4                | 3                           | 8   | 14           | 5     | 16    |
| 4          | 4                | 4                           | 8   | 14           | 6     | 16    |
| 4          | 4                | 5                           | 14  | 18           | 4     | 28    |
| 5          | 5                | 1                           | 10  | 15           | 5     | 20    |
| 5          | 5                | 2                           | 12  | 16           | 4     | 24    |
| 5          | 5                | 3                           | 8   | 14           | 5     | 16    |
| 5          | 5                | 4                           | 8   | 14           | 6     | 16    |
| 5          | 5                | 5                           | 14  | 18           | 4     | 28    |

#### Result

| TeamStatsI | Win | MatchesPlaye | Losse | Point | Tea  |
|------------|-----|--------------|-------|-------|------|
| D          | S   | d            | S     | S     | m id |
| 1          | 10  | 15           | 5     | 20    | 1    |
| 2          | 12  | 16           | 4     | 24    | 2    |
| 3          | 8   | 14           | 5     | 16    | 3    |
| 4          | 8   | 14           | 6     | 16    | 4    |
| 5          | 14  | 18           | 4     | 28    | 5    |

## 10.Umpire Table

| UmpireID | Name             | Experience |
|----------|------------------|------------|
| 1        | Nitin Menon      | 12         |
| 2        | Kumar Dharmasena | 15         |
| 3        | Aleem Dar        | 18         |
| 4        | Marais Erasmus   | 15         |
| 5        | Hassan ali       | 13         |

**Step 1: Functional Dependencies (FDs)** 

1. UmpireID  $\rightarrow$  Name, Experience

o UmpireID uniquely determines the Name and Experience of the umpire.

**Step 2: Candidate Keys (CK)** 

• Candidate Key: UmpireID

• **UmpireID** is the unique identifier for each record, and no other combination of attributes can uniquely identify a record.

Thus, UmpireID is the Candidate Key.

#### **Step 3: Prime and Non-Prime Attributes**

• Prime Attributes: Attributes that are part of the Candidate Key.

o Prime Attribute: UmpireID

• Non-Prime Attributes: Attributes that are not part of any Candidate Key.

o Non-Prime Attributes: Name, Experience

#### **Step 4: Normalization Process**

#### 1st Normal Form (1NF):

• 1NF requires that the table has atomic values, meaning each field contains only one value, and no repeating groups.

• The **Umpire Table** is already in **1NF** since all attributes have atomic values and there are no repeating groups.

#### 2nd Normal Form (2NF):

- **2NF** requires that the table is in **1NF** and has **no partial dependencies**. A partial dependency occurs when a non-prime attribute depends on only a part of the candidate key.
- Since **UmpireID** is the only candidate key, and both **Name** and **Experience** depend entirely on **UmpireID**, there are **no partial dependencies**.

Conclusion: The table is in 2NF.

#### 3rd Normal Form (3NF):

- **3NF** requires that the table is in **2NF** and has **no transitive dependencies**. A transitive dependency occurs when a non-prime attribute depends on another non-prime attribute.
- In this case, **Name** and **Experience** are both directly dependent on **UmpireID**, and there is no dependency between the non-prime attributes (**Name** and **Experience**).

Conclusion: The table is in 3NF.

#### 3.5 Normal Form (3.5NF):

- 3.5NF requires that the table is in 3NF and has no derived dependencies (non-prime attributes depending on other non-prime attributes).
- Since the table is already in **3NF**, and there are no derived dependencies, it is also in **3.5NF**.

#### 11. Coach Table

| CoachID | TeamID | Name          | Experience |
|---------|--------|---------------|------------|
| 1       | 1      | Ricky Ponting | 10         |
| 2       | 3      | Shane Warne   | 12         |
| 3       | 3      | Shane Warne   | 12         |
| 4       | 4      | Gary Kirsten  | 8          |
| 5       | 5      | Justin Langer | 7          |

#### **Step 1: Functional Dependencies (FDs)**

Analyze the given data to determine the functional dependencies:

CoachID → TeamID, Name, Experience
 (Each CoachID uniquely determines the associated team, name, and experience.)

#### Step 2: Candidate Key

The Candidate Key is the minimal attribute(s) that uniquely identify each record.

• In this case, CoachID is the Candidate Key because it uniquely identifies each row.

#### **Step 3: Prime and Non-prime Attributes**

• Prime Attribute:

Attributes that are part of the candidate key.

o Prime Attribute: CoachID

• Non-prime Attributes:

Attributes that are not part of the candidate key.

o Non-prime Attributes: **TeamID**, **Name**, **Experience** 

#### **Step 4: Normalization Process**

#### 1st Normal Form (1NF):

- A table is in 1NF if:
  - o All values are atomic (no repeating groups or multi-valued attributes).
- Coach Table is already in 1NF because all columns contain atomic values, and there are no repeating groups.

#### 2nd Normal Form (2NF):

- The candidate key is **CoachID**.
- Non-prime attributes (**TeamID**, **Name**, **Experience**) are fully dependent on **CoachID** (no partial dependencies).

#### **Conclusion:**

• The table is in 2NF.

#### 3rd Normal Form (3NF):

- Non-prime attributes (**TeamID**, **Name**, **Experience**) directly depend on the candidate key (**CoachID**).
- There are no transitive dependencies.

#### **Conclusion:**

• The table is in 3NF.

#### 3.5 Normal Form (3.5NF or BCNF):

The only determinant is **CoachID**, which is already a candidate key.

#### **Conclusion:**

• The table is in BCNF.

#### 12. MatchTimeDetails Table

| MatchID | StartTime | EndTime  |
|---------|-----------|----------|
| 1       | 10:00 AM  | 01:00 PM |
| 2       | 11:00 AM  | 02:00 PM |
| 3       | 10:00 AM  | 04:00 PM |
| 4       | 02:00 PM  | 05:00 PM |
| 5       | 03:00 PM  | 01:00 PM |

### **Step 1: Functional Dependencies (FDs)**

- 1. MatchID → StartTime, EndTime
  - o MatchID uniquely determines the StartTime and EndTime of a match.

#### **Step 2: Candidate Keys (CK)**

- Candidate Key: MatchID
  - o **MatchID** is the unique identifier for each match, and no other combination of attributes can uniquely identify a record.

Thus, MatchID is the Candidate Key.

#### **Step 3: Prime and Non-Prime Attributes**

- Prime Attributes: Attributes that are part of the Candidate Key.
  - o Prime Attribute: MatchID
- Non-Prime Attributes: Attributes that are not part of any Candidate Key.
  - o Non-Prime Attributes: StartTime, EndTime

#### **Step 4: Normalization Process**

#### 1st Normal Form (1NF):

- **1NF** requires that the table has atomic values, meaning each field contains only one value, and no repeating groups.
- The **MatchTimeDetails Table** is already in **1NF** since all attributes have atomic values and there are no repeating groups.

#### 2nd Normal Form (2NF):

- **2NF** requires that the table is in **1NF** and has **no partial dependencies**. A partial dependency occurs when a non-prime attribute depends on only a part of the candidate key.
- Since **MatchID** is the only candidate key, and both **StartTime** and **EndTime** depend entirely on **MatchID**, there are **no partial dependencies**.

Conclusion: The table is in 2NF.

#### 3rd Normal Form (3NF):

- 3NF requires that the table is in 2NF and has no transitive dependencies. A transitive dependency occurs when a non-prime attribute depends on another non-prime attribute.
- In this case, **StartTime** and **EndTime** are both directly dependent on **MatchID**, and there is no dependency between the non-prime attributes (**StartTime** and **EndTime**).

Conclusion: The table is in 3NF.

### 3.5 Normal Form (3.5NF):

• 3.5NF requires that the table is in 3NF and has no derived dependencies (non-prime attributes depending on other non-prime attributes).

• Since the table is already in **3NF**, and there are no derived dependencies, it is also in **3.5NF**.

## **TABLES AFTER NORMALIZATION**

#### 1. Match Table

| MatchID | TeamID1 | TeamID2 | VenueID | UmpireID |
|---------|---------|---------|---------|----------|
| 1       | 1       | 2       | 1       | 1        |
| 2       | 1       | 3       | 2       | 2        |
| 3       | 3       | 3       | 3       | 4        |
| 4       | 4       | 5       | 5       | 4        |
| 5       | 5       | 6       | 5       | 5        |

#### 2. TicketDetails Table

| TicketID | MatchID | SeatNumber | BuyerName     |
|----------|---------|------------|---------------|
| 1        | 1       | A1         | John Doe      |
| 2        | 1       | A2         | Alice Smith   |
| 3        | 2       | B1         | Emma Watson   |
| 4        | 4       | A1         | Emma Watson   |
| 5        | 3       | C1         | Robert Downey |

#### 3. Tournament Table

| TournamentID | Name             | StartDate  | EndDate    | VenueID |
|--------------|------------------|------------|------------|---------|
| 1            | ICC World Cup    | 2024-03-01 | 2024-04-01 | 1       |
| 2            | IPL 2024         | 2024-05-01 | 2024-06-30 | 1       |
| 3            | IPL 2024         | 2024-04-15 | 2024-06-31 | 3       |
| 4            | T20 World Cup    | 2024-04-15 | 2024-09-01 | 4       |
| 5            | Champions Trophy | 2024-10-01 | 2024-06-31 | 5       |

### **4.Sponsorship Table:**

| SponsorID | TeamID | MatchID |
|-----------|--------|---------|
| 1         | 1      | 1       |

| 2 | 2 | 1 |
|---|---|---|
| 3 | 2 | 3 |
| 4 | 3 | 4 |
| 5 | 4 | 5 |

## **5.Sponsor Information Table:**

| SponsorID | Name   | Amount  |
|-----------|--------|---------|
| 1         | Pepsi  | 5000000 |
| 2         | Adidas | 4000000 |
| 3         | Nike   | 3500000 |
| 4         | Puma   | 3000000 |
|           |        |         |

## 6. Player Table

| Joe Root |        |                 |     |
|----------|--------|-----------------|-----|
| PlayerID | TeamID | Name            | Age |
| 1        | 1      | Virat Kohli     | 34  |
| 2        | 3      | Steve Smith     | 35  |
| 3        | 3      | Joe Root        | 33  |
| 4        | 4      | Virat Kohli     | 37  |
| 5        | 5      | Kane Williamson | 33  |

## 7.PlayerStats Table:

| PlayerStatsID | PlayerID |
|---------------|----------|
| 1             | 1        |
| 2             | 2        |
| 3             | 3        |
| 4             | 4        |
| 5             | 5        |

## 8. Player Stats Details Table

| PlayerID | Runs | Wickets | Catches |
|----------|------|---------|---------|
| 1        | 500  | 20      | 15      |
| 2        | 600  | 30      | 18      |
| 3        | 500  | 25      | 10      |
| 4        | 700  | 30      | 20      |

| 5 | 550 | 28 | 18 |
|---|-----|----|----|
| 3 | 550 | 20 | 10 |

## 9. Team Table

| TeamID | Name        | CoachID |
|--------|-------------|---------|
| 1      | India       | 1       |
| 2      | Australia   | 2       |
| 3      | England     | 3       |
| 4      | Pakistan    | 4       |
| 5      | New Zealand | 5       |

#### 10. Coach Table

| CoachID | TeamID | Name          | Experience |
|---------|--------|---------------|------------|
| 1       | 1      | Ricky Ponting | 10         |
| 2       | 3      | Shane Warne   | 12         |
| 3       | 3      | Shane Warne   | 12         |
| 4       | 4      | Gary Kirsten  | 8          |
| 5       | 5      | Justin Langer | 7          |

#### 11.1TeamStats Table

| TeamStatsID | TeamID |  |
|-------------|--------|--|
| 1           | 1      |  |
| 2           | 2      |  |
| 3           | 3      |  |
| 4           | 4      |  |
| 5           | 5      |  |

### 12. TeamStatisticsDetails Table

| TeamID | Wins | MatchesPlayed | Losses | Points |
|--------|------|---------------|--------|--------|
| 1      | 10   | 15            | 5      | 20     |
| 2      | 12   | 16            | 4      | 24     |
| 3      | 8    | 14            | 5      | 16     |
| 4      | 8    | 14            | 6      | 16     |
| 5      | 14   | 18            | 4      | 28     |

## 13. Umpire Table

| UmpireID | Name        | Experience |
|----------|-------------|------------|
| 1        | Nitin Menon | 12         |

| 2 | Kumar Dharmasena | 15 |
|---|------------------|----|
| 3 | Aleem Dar        | 18 |
| 4 | Marais Erasmus   | 15 |
| 5 | Hassan ali       | 13 |

#### 14. MatchTimeDetails Table

| MatchID | StartTime | EndTime  |
|---------|-----------|----------|
| 1       | 10:00 AM  | 01:00 PM |
| 2       | 11:00 AM  | 02:00 PM |
| 3       | 10:00 AM  | 04:00 PM |
| 4       | 02:00 PM  | 05:00 PM |
| 5       | 03:00 PM  | 01:00 PM |

#### 15. Venue Table

| VenueID | Name         | City      | Capacity |
|---------|--------------|-----------|----------|
| 1       | Eden Gardens | Kolkata   | 60000    |
| 2       | MCG          | Melbourne | 55000    |
| 3       | Lord's       | London    | 30000    |
| 4       | MCG          | Mumbai    | 25000    |
| 5       | The Oval     | London    | 25000    |

## **ATTRIBUTES AND RELATIONSHIP**

#### 1. Match Table

- Attributes: MatchID, TeamID1, TeamID2, VenueID, UmpireID
- Relationships:
  - o One-to-Many with TicketDetails (Match has many tickets)
  - o Many-to-One with Venue (Match happens at one venue)
  - o Many-to-One with Umpire (Match has one umpire)
  - o Many-to-One with Team (TeamID1 and TeamID2 are teams)
  - o Many-to-Many with Tournament (Match can be part of many tournaments)

#### 2. TicketDetails Table

- Attributes: TicketID, MatchID, SeatNumber, BuyerName
- Relationships:
  - o Many-to-One with Match (A ticket is associated with a match)

#### 3. Tournament Table

- Attributes: TournamentID, Name, StartDate, EndDate, VenueID
- Relationships:
  - Many-to-Many with Match (Tournament has multiple matches)
  - o Many-to-One with Venue (Tournament occurs at a venue)

#### 4. SponsorInformation Table

- Attributes: SponsorID, Name, Amount
- Relationships:
  - o One-to-Many with Sponsorship (Sponsor sponsors multiple matches)

#### 5. Sponsorship Table

- Attributes: SponsorID, TeamID, MatchID
- Relationships:
  - Many-to-One with SponsorInformation (Sponsorship links to sponsor)
  - o Many-to-One with Team (A team is sponsored by a sponsor)
  - o Many-to-One with Match (A sponsorship is linked to a match)

#### 6. Player Table

- Attributes: PlayerID, TeamID, Name, Age
- Relationships:
  - o Many-to-One with Team (Player belongs to a team)
  - o One-to-One with PlayerStats (Player has one set of stats)

#### 7. PlayerStats Table

- Attributes: PlayerStatsID, PlayerID
- Relationships:
  - o One-to-One with Player (Player has one set of stats)
  - o One-to-One with PlayerStatsDetails (PlayerStats contains detailed stats)

#### 8. PlayerStatsDetails Table

- Attributes: PlayerID, Runs, Wickets, Catches
- Relationships:
  - o Many-to-One with PlayerStats (Stats are linked to PlayerStats)

#### 9. Venue Table

- Attributes: VenueID, Name, City, Capacity
- Relationships:
  - o One-to-Many with Match (A venue hosts many matches)
  - o One-to-Many with Tournament (A venue can host multiple tournaments)

#### 10. Team Table

- Attributes: TeamID, Name, CoachID
- Relationships:
  - o One-to-Many with Player (A team has many players)
  - o One-to-Many with Sponsorship (A team can have multiple sponsors)
  - o One-to-Many with TeamStats (A team has one set of stats)
  - o Many-to-One with Coach (A team has one coach)

#### 11. Coach Table

- Attributes: CoachID, TeamID, Name, Experience
- Relationships:
  - o One-to-One with Team (A coach works for one team)

#### 12. TeamStats Table

- Attributes: TeamStatsID, Wins, MatchesPlayed, Losses, Points, TeamID
- Relationships:
  - o Many-to-One with Team (Stats belong to one team)

#### 13. TeamStatisticsDetails Table (New Entity)

- Attributes: TeamID, Wins, MatchesPlayed, Losses, Points
- Relationships:
  - Many-to-One with TeamStats (Stats are linked to team statistics)

#### 14. Umpire Table

- Attributes: UmpireID, Name, Experience
- Relationships:
  - o One-to-Many with Match (An umpire officiates multiple matches)

#### 15. MatchTimeDetails Table

• Attributes: MatchID, StartTime, EndTime

#### • Relationships:

o Many-to-One with Match (Time details are linked to a match)

## **ERD DIAGRAM**



### **DATABASE QUERIES FOR CRICKET MANAGEMENT SYSTEM**

## **Button 1: Insert Player Data**

**Purpose:** Insert data into the Player table, including PlayerID, TeamID, Name, and Age.

INSERT INTO Player (PlayerID, TeamID, Name, Age) VALUES (@PlayerID, @TeamID, @Name, @Age);

# Button 2: Fetch Match Details with Team Names, Venue, and Umpire Information

**Purpose:** Retrieve match details with team names, venue name, venue city, and umpire information.

#### **SELECT**

m.MatchID,

t1.Name AS Team1Name,

t2.Name AS Team2Name,

v.Name AS VenueName,

v.City AS VenueCity,

u.Name AS UmpireName,

u.Experience AS UmpireExperience

FROM Match m

JOIN Team t1 ON m.TeamID1 = t1.TeamID

JOIN Team t2 ON m.TeamID2 = t2.TeamID

JOIN Venue v ON m. VenueID = v. VenueID

JOIN Umpire u ON m.UmpireID = u.UmpireID;

## **Button 3: Fetch Venue and Umpire Details**

**Purpose:** Get venue city and umpire name for each match.

#### **SELECT**

m.MatchID,

(SELECT City FROM Venue v WHERE v. VenueID = m. VenueID) AS VenueCity,

(SELECT Name FROM Umpire u WHERE u.UmpireID = m.UmpireID) AS UmpireName FROM Match m;

### **Button 4: Get Player Details by Name**

**Purpose:** Retrieve player details (such as runs, wickets, and catches) for a specific player (e.g., Virat Kohli).

```
SELECT
p.PlayerID,
p.Name AS PlayerName,
t.Name AS TeamName,
ps.Runs,
ps.Wickets,
ps.Catches
FROM Player p
JOIN Team t ON p.TeamID = t.TeamID
JOIN PlayerStatsDetails ps ON p.PlayerID = ps.PlayerID
WHERE p.Name = 'Virat Kohli';
```

#### **Button 5: Get Average Wickets Per Team**

**Purpose:** Calculate the average number of wickets taken by players in each team.

```
SELECT
t.Name AS TeamName,
AVG(ps.Wickets) AS AverageWickets
FROM Player p
JOIN Team t ON p.TeamID = t.TeamID
JOIN PlayerStatsDetails ps ON p.PlayerID = ps.PlayerID
GROUP BY t.Name:
```

### **Button 6: Buyer Name, Tournament Name, and Venue Name**

**Purpose:** Retrieve ticket details, including buyer name, seat number, tournament name, and venue name.

```
SELECT
td.TicketID,
td.BuyerName,
td.SeatNumber, -- Added SeatNumber
t.Name AS TournamentName,
v.Name AS VenueName
FROM TicketDetails td
JOIN Match m ON td.MatchID = m.MatchID
JOIN Tournament t ON m.VenueID = t.VenueID
```

JOIN Venue v ON m. VenueID = v. VenueID;

#### **Button 7: Match Stats (Runs, Catches)**

**Purpose:** Retrieve the total runs and catches for both teams in each match.

```
SELECT
  m.MatchID,
  t1.Name AS Team1Name.
  SUM(ps1.Runs) AS Team1TotalRuns,
  SUM(ps1.Catches) AS Team1TotalCatches,
  t2.Name AS Team2Name,
  SUM(ps2.Runs) AS Team2TotalRuns,
  SUM(ps2.Catches) AS Team2TotalCatches
FROM Match m
JOIN Player p1 ON p1.TeamID = m.TeamID1
JOIN PlayerStatsDetails ps1 ON p1.PlayerID = ps1.PlayerID
JOIN Team t1 ON m.TeamID1 = t1.TeamID
JOIN Player p2 ON p2.TeamID = m.TeamID2
JOIN PlayerStatsDetails ps2 ON p2.PlayerID = ps2.PlayerID
JOIN Team t2 ON m.TeamID2 = t2.TeamID
GROUP BY m.MatchID, t1.Name, t2.Name;
```

# Button 8: Find the Venues, Points, and Team Where Matches Were Played by the Team with the Most Points

**Purpose:** Find the venues, points, and teams where matches were played by the team with the most points.

```
OR m.TeamID2 = (
    SELECT TeamID
    FROM TeamStatisticsDetails
    WHERE Points = (SELECT MAX(Points) FROM TeamStatisticsDetails)
))
AND tsd.Points = (SELECT MAX(Points) FROM TeamStatisticsDetails);
```

### **Button 9: Average Age of Players Per Team**

**Purpose:** Calculate the average age of players for each team.

```
SELECT
t.Name AS TeamName,
AVG(p.Age) AS AveragePlayerAge
FROM Player p
JOIN Team t ON p.TeamID = t.TeamID
GROUP BY t.Name
ORDER BY AveragePlayerAge DESC;
```

### **Button 10: Team with Average Experienced Coaches**

**Purpose:** Retrieve teams with coaches having more experience than the average experience.

```
select

t.Name AS TeamName,

c.Name AS CoachName,

c.Experience AS CoachExperience

FROM Coach c

JOIN Team t ON c.TeamID = t.TeamID
```

WHERE c.Experience > (SELECT AVG(Experience) FROM Coach);

### **Button 11: Team with Highest Sponsorship**

**Purpose:** Retrieve the team with the highest total sponsorship amount from the Sponsorship table, calculating the sum of sponsorship amounts for each team.

```
SELECT
T.TeamID,
T.Name AS TeamName,
S.TotalSponsorship
FROM
Team T
INNER JOIN (
```

```
SELECT
    TeamID,
    SUM(SI.Amount) AS TotalSponsorship
  FROM
    Sponsorship S
  INNER JOIN SponsorInformation SI ON S.SponsorID = SI.SponsorID
  GROUP BY
    TeamID
) AS S ON T.TeamID = S.TeamID
WHERE
  S.TotalSponsorship = (
    SELECT MAX(SumSponsorship)
    FROM (
      SELECT
        TeamID,
        SUM(SI.Amount) AS SumSponsorship
      FROM
        Sponsorship S
      INNER JOIN SponsorInformation SI ON S.SponsorID = SI.SponsorID
      GROUP BY
        TeamID
    ) AS InnerQuery
  );
```

### **Button 12: Match Duration in Minutes**

**Purpose:** Calculate the duration of each match in minutes based on the StartTime and EndTime from the MatchTimeDetails table.

```
SELECT
MatchID,
StartTime,
EndTime,
DATEDIFF(MINUTE, StartTime, EndTime) AS DurationInMinutes
FROM
MatchTimeDetails;
```