Исследование модели диффузной границы для развития канала электрического пробоя

Студент:

Пономарев Андрей Сергеевич

Научный руководитель:

Савенков Евгений Борисович

Консультант:

Зипунова Елизавета Вячеславовна

Содержание

- Введение
- Постановка задачи
- Теоретический анализ
- Численный анализ
- Исследование обобщения модели

Содержание

- Введение
- Постановка задачи
- Теоретический анализ
- 4 Численный анализ
- Исследование обобщения модели

Физическое явление

Электрический пробой

Явление резкого возрастания тока в диэлектрике при приложении электрического напряжения выше критического.

- Рассматриваем твердый диэлектрик
- Деградация диэлектрических свойств материала
- Процесс развивается в ограниченной зоне канале пробоя
- Сложная физическая природа

Модель типа диффузной границы

Вещество находится в разных фазах. Состояние вещества описывается гладкой функцией $\phi(\mathbf{x},t)$ — фазовым полем.

- ullet $\phi=1$ неповрежденная среда
- $oldsymbol{oldsymbol{\phi}} \phi = 0$ полностью разрушенная среда
- ullet Зона $\phi \in (0,1)$ диффузная граница
- На разрушение среды тратится энергия

Модель, предложенная в работе [1]:

$$ullet$$
 $\pi = -rac{1}{2}\epsilon[\phi](
abla\Phi,
abla\Phi) + \Gamma\left(rac{1-f(\phi)}{l^2} + rac{1}{4}(
abla\phi,
abla\phi)
ight)$ – плотность свободной энергии

- Г энегрия роста пробоя на единицу длины
- / величина «размытия» пробоя
- ullet $\epsilon(\mathbf{x},t)$ диэлектрическая проницаемость среды
- $f(\phi)$ интерполирующая функция

$$ullet$$
 $\epsilon(\mathbf{x},t)=rac{\epsilon_0(\mathbf{x})}{f(\phi(\mathbf{x},t))+\delta}$ — диэлектрическая проницаемость среды

ullet $f(\phi)=4\phi^3-3\phi^4$ — интерполирующая функция

Уравнения модели

• Уравнение электрического потенциала Ф:

$$\operatorname{div}(\epsilon[\phi]\nabla\Phi) = 0 \tag{1}$$

• Уравнение фазового поля ϕ :

$$\frac{1}{m}\frac{\partial\phi}{\partial t} = \frac{1}{2}\epsilon'(\phi)(\nabla\Phi, \nabla\Phi) + \frac{\Gamma}{l^2}f'(\phi) + \frac{1}{2}\Gamma\triangle\phi$$
 (2)

Свойства:

- ullet связанная система уравнений на ϕ и Φ ;
- ullet уравнение для ϕ типа Аллена-Кана, нелинейное.

Пример вычислительного эксперимента

Расчет из работы [2]

Цель работы

Цель работы

Исследовать качественные характеристики системы уравнений (1), (2): условия развития канала пробоя, границы применения разностной схемы.

Для этого будем рассматривать задачу в определенных краевых условиях, упрощающих ее, но позволяющих установить интересующие нас свойства.

Содержание

- Введение
- Постановка задачи
- Теоретический анализ
- Численный анализ
- Исследование обобщения модели

Одномерная задача

- ullet Область $\Omega = [0,w]_{x} imes [0,h]_{y} imes I_{z}$ в форме параллелепипеда;
- $\phi({\sf x},0)=\phi_0({\sf x})=\phi_0(x),\; \epsilon_0({\sf x})=\epsilon_0(x)$ не зависят от y и z;
- $\bullet \ \Phi|_{y=0} = \Phi^- \in \mathbb{R}, \ \Phi|_{y=h} = \Phi^+ \in \mathbb{R}.$

Решением является функция электрического потенциала

$$\Phi(\mathbf{x},t) = \Phi^- + \frac{y}{h}(\Phi^+ - \Phi^-)$$

Тогда уравнение на ϕ принимает вид

$$\frac{1}{m}\frac{\partial \phi}{\partial t} = \frac{1}{2}K_{\Phi}^{2}\epsilon'(\phi) + \frac{\Gamma}{l^{2}}f'(\phi) + \frac{1}{2}\Gamma\frac{\partial^{2}\phi}{\partial x^{2}}$$

$$\mathcal{K}_{\Phi} = rac{\Phi^+ - \Phi^-}{h}$$
. Будем считать $\epsilon_0 = \mathsf{const.}$

Содержание

- Введение
- Постановка задачи
- Теоретический анализ
- 4 Численный анализ
- Исследование обобщения модели

Анализ положений равновесия

- Пробой может развиваться из малых возмущений свойств неповрежденной среды.
 Выясним условия развития.
- Рассмотрим положения равновесия вида $\phi(x,t)\equiv C$. Положению равновесия соответствует ноль C функции

$$\chi(\phi) = \frac{1}{2} K_{\Phi}^2 \epsilon'(\phi) + \frac{\Gamma}{l^2} f'(\phi)$$

- Исследуем положения равновесия на устойчивость спектральным методом: к $\phi \equiv C$ прибавим возмущение $\delta \phi = e^{\alpha t} \cos(\omega x)$, линеаризуем уравнение на $\delta \phi$.
- $\chi(\phi)$ возрастает в $C\Longrightarrow$ равновесие неустойчиво; $\chi(\phi)$ убывает в $C\Longrightarrow$ равновесие устойчиво.

Анализ положений равновесия

«Слабое» напряжение

$$0 \leqslant \frac{K_{\Phi}^2 I^2 \epsilon_0}{2\Gamma} < \delta^2$$

 $\phi \equiv 0$ неустойчивое $\phi \equiv 1$ устойчивое

«Среднее» напряжение

$$\delta^2 < rac{\mathcal{K}_\Phi^2 l^2 \epsilon_0}{2\Gamma} < (1+\delta)^2$$

 $\phi \equiv 0$ устойчивое

 $\phi \equiv \mathrm{C}_3$ неустойчивое

 $\phi \equiv 1$ устойчивое

«Сильное» напряжение

$$(1+\delta)^2 < \frac{K_\Phi^2 l^2 \epsilon_0}{2\Gamma}$$

 $\phi \equiv 0$ устойчивое

 $\phi \equiv 1$ неустойчивое

Содержание

- Введение
- Постановка задачи
- ③ Теоретический анализ
- Ф Численный анализ
- Исследование обобщения модели

Разностная схема

Разностная задача

$$\frac{1}{m} \frac{\phi_a^{b+1} - \phi_a^b}{\tau} = \frac{1}{2} K_\phi^2 \epsilon'(\phi_a^b) + \frac{\Gamma}{l^2} f'(\phi_a^b) + \frac{\Gamma}{2} \frac{\phi_{a+1}^b - 2\phi_a^b + \phi_{a-1}^b}{h^2}$$
$$\phi_a^0 = \phi_0(ah); \quad \phi_0^b = \phi_l(b\tau); \quad \phi_{w/h}^b = \phi_r(b\tau)$$

Сетка регулярная; τ — шаг по времени, h — шаг по пространству.

Явная разностная схема первого порядка по времени, второго – по пространству.

Оценка устойчивости

• Рассмотрим возмущенное решение $\phi_a^b + \delta_a^b$. Линеаризуем уравнение на возмущение δ_a^b в точке $\phi_a^b = P$:

$$\delta_a^{b+1} = \delta_a^b + m\tau \left(\frac{1}{2} K_{\Phi}^2 \epsilon''(P) \delta_a^b + \frac{\Gamma}{l^2} f''(P) \delta_a^b + \frac{\Gamma}{2} \frac{\delta_{a+1}^b - 2\delta_a^b + \delta_{a-1}^b}{h^2} \right)$$

• Применим спектральный признак устойчивости:

$$1>\lambda(heta)=1+m au\left(rac{1}{2} extstyle{K}_{\Phi}^{2}\epsilon''(P)+rac{\Gamma}{l^{2}}f''(P)-rac{2\Gamma}{h^{2}}\sin^{2}rac{ heta}{2}
ight)$$

ullet Исследуем вблизи P=0.

Оценка устойчивости

Условие устойчивости

$$\tau \leqslant \frac{1}{2m} \left(\frac{K_{\Phi}^2 \epsilon_0}{\delta^{5/3}} + \frac{\Gamma}{h^2} \right)^{-1}$$

Упрощенное условие устойчивости

$$au \leqslant rac{1}{4m} \min \left(rac{\delta^{5/3}}{K_{\Phi}^2 \epsilon_0}, rac{h^2}{\Gamma}
ight)$$

Вычисления: типичное решение

Узлов по измерениям: $n_x = 10^3, n_t = 10^5$

Вычисления: проверка устойчивости

$$\tau \leqslant \frac{1}{2m} \left(\frac{K_{\Phi}^2 \epsilon_0}{\delta^{5/3}} + \frac{\Gamma}{h^2} \right)^{-1}$$

Вычисления: проверка сходимости

Здесь, согласно оценке устойчивости, $au=rac{\hbar^2}{4m\Gamma}$

Вычисления: положения равновесия

$$(1+\delta)^2 < rac{\mathcal{K}_\Phi^2 l^2 \epsilon_0}{2\Gamma}$$
 — «сильное» напряжение

 $\phi \equiv 1$ неустойчивое

Свободная энергия

$$\Pi(t) = \int\limits_{\Omega} \pi(x,t) dx$$

$$\pi(x,t) = \pi_1(x,t) + \pi_2(x,t) + \pi_3(x,t)$$

- ullet $\pi_1(x,t)=-rac{\mathcal{K}_\Phi^2}{2}\epsilon(\phi(x,t))$ плотность энергии электрического поля;
- $\pi_2(x,t) = \Gamma \frac{1 f(\phi(x,t))}{l^2}$ плотность энергии, отнесенной к веществу внутри канала;
- ullet $\pi_3(x,t)=rac{\Gamma}{4}\left(rac{\partial \phi}{\partial x}(x,t)
 ight)^2$ плотность энергии, отнесенной к граничной зоне канала

Вычисления: свободная энергия

Вычисления: свободная энергия

МФТИ

Вычисления: свободная энергия

Содержание

- Введение
- Постановка задачи
- ③ Теоретический анализ
- Численный анализ
- Исследование обобщения модели

Постановка задачи

Исследуем распределение фазового поля вокруг проводников ($\phi=0$) различного вида. Рассмотрим следующие краевые задачи:

- $oldsymbol{0}$ $\Omega = [0, +\infty)_x \times I_y \times I_z, \ \phi|_{x=0} = 0, \ \phi \to 1$ при $r=x \to +\infty$ плоский случай;
- ② $\Omega=\mathbb{R}_{x} imes\mathbb{R}_{y} imes I_{z},\;\phi|_{x,y=0}=0,\;\phi\to 1$ при $r=\sqrt{x^2+y^2}\to +\infty$ цилиндрический случай;
- $\Omega=\mathbb{R}_x imes\mathbb{R}_y imes\mathbb{R}_z,\;\phi|_{x,y,z=0}=0,\;\phi o 1$ при $r=\sqrt{x^2+y^2+z^2} o +\infty$ сферический случай.

Ищем стационарное решение $\phi=\phi(r)$.

Суть проблемы

Плоский случай

Задача Коши:

$$\phi(0) = 0;$$
 $\frac{\partial \phi}{\partial x} = \frac{2}{l} \sqrt{1 - f(\phi)}$

Цилиндрический случай

Задача поставлена некорректно и решения не имеет [3]

Обобщение модели

Обобщение модели, предложенное в работе [3]

• Уравнение электрического потенциала Ф:

$$\mathsf{div}(\epsilon[\phi]\nabla\Phi)=0$$

ullet Уравнение фазового поля ϕ :

$$\frac{1}{m}\frac{\partial \phi}{\partial t} = \frac{1}{2}\epsilon'(\phi)(\nabla \Phi, \nabla \Phi) + \frac{\Gamma}{l^2}f'(\phi) + \frac{1}{2}\Gamma \triangle \phi - \alpha \frac{\Gamma l^2}{4} \triangle^2 \phi + \beta \Gamma l^{p-2}\operatorname{div}(\|\nabla \phi\|_2^{p-2}\nabla \phi)$$

- $\triangle^2 \phi = \triangle(\triangle \phi)$ билапласиан;
- $\operatorname{div}(\|\nabla\phi\|_2^{p-2}\nabla\phi) p$ -лапласиан

Разностная схема

На границе r=0 области моделирования у решения ϕ ожидается особенность. Основная идея: пусть одна из базисных функций, используемых для приближения ϕ вблизи 0, имеет тот же вид особенности.

$$\frac{1}{m}(\widetilde{\phi}_{i}^{j+1} - \widetilde{\phi}_{i}^{j}) = \tau \frac{\Gamma}{I^{2}} f'(\widetilde{\phi}_{i}^{j}) + \frac{\tau}{dV_{i}} \Gamma(\rho_{i+1/2}^{j} S_{i+1/2} - \rho_{i-1/2}^{j} S_{i-1/2});$$

$$dV_{i} = r_{i+1/2}^{k+1} - r_{i-1/2}^{k+1}; \qquad S_{i\pm 1/2} = (k+1)r_{i\pm 1/2}^{k};$$

$$\rho_{i\pm 1/2}^{j} = \frac{1}{2} \left[\frac{\partial \phi}{\partial r} \right]_{i\pm 1/2}^{j} - \alpha \frac{I^{2}}{4} \left[\frac{\partial(\Delta \phi)}{\partial r} \right]_{i\pm 1/2}^{j} + \beta I^{2} \left(\left[\frac{\partial \phi}{\partial r} \right]_{i\pm 1/2}^{j} \right)^{3};$$

$$\widetilde{\Delta \phi}_{i}^{j} = \frac{1}{dV_{i}} \left(\left[\frac{\partial \phi}{\partial r} \right]_{i\pm 1/2}^{j} S_{i+1/2} - \left[\frac{\partial \phi}{\partial r} \right]_{i\pm 1/2}^{j} S_{i-1/2} \right)$$

Полученные результаты

Предполагаемые виды особенности решения ϕ в точке r=0

	$\alpha=0,\ \beta=0$	$\alpha = 0, \ \beta \neq 0$	$\alpha \neq 0$
Плоский случай	Без особенности	Без особенности	Без особенности
Цилиндрический случай	Не имеет решения	r ^{2/3}	$r^2(\ln r - 1)$
Сферический случай	Предположительно не имеет решения	r ^{1/3}	Предположительно не имеет решения

Полученные результаты

Цилиндрический случай, lpha=1: особенность вида $r^2(\ln r-1)$

Полученные результаты

Сферический случай, $lpha=0,\; eta=1$: особенность вида $r^{1/3}$

Заключение

Основные результаты работы.

- Проведен теоретический анализ модели.
- Построена разностная схема, дана содержательная оценка ее устойчивости.
- Исследовано обобщение исходной модели; на основе метода конечных объемов построена специальная разностная схема, учитывающая особенности решений на границе области моделирования.

Литература

K. C. Pitike и W. Hong. Phase-field model for dielectric breakdown in solids. 2014.

Е. В. Зипунова, А. А. Кулешов и Е. Б. Савенков. Численное исследование модели фазового поля для описания развития канала электрического пробоя в неоднородной среде. 2024.

Е. В. Зипунова и Е. Б. Савенков. *О моделях диффузной границы для описания динамики объектов высшей коразмерности.* 2020.

Спасибо за внимание

