

Machine Learning

Lecture 17b: Gaussian BC and Generative vs.

Discriminative Classifier

Dr. Beilun Wang

Southeast University
School of Computer Science
and Engineering

Course Content Plan

- Regression (supervised)
- Classification (supervised)
- Unsupervised models
- Learning theory
- ☐ Graphical models

☐ Reinforcement Learning

Y is a continuous

Y is a discrete

NO Y

About f()

About interactions among X1,... Xp

Learn program to Interact with its environment

Today: More Generative Bayes Classifiers

- Generative Bayes Classifier
- Naïve Bayes Classifier
- - Gaussian Bayes Classifiers
 - Gaussian distribution
 - Naïve Gaussian BC
 - Not-naïve Gaussian BC → LDA, QDA
 - LDA: Linear Discriminant Analysis
 - QDA: Quadratic Discriminant Analysis
 - Extra: Discriminative vs. Generative classifier

$\underset{k}{\operatorname{argmax}} P(C_{k} \mid X) = \underset{k}{\operatorname{argmax}} P(X, C) = \underset{k}{\operatorname{argmax}} P(X \mid C) P(C)$

Generative Bayes Classifier

aussian Naive

Multinomial

classification Prob. models p(X|C) $P(X_1, \dots, X_n \mid C)$ EPE with 0-1 loss → MAP Rule Many options Prob. Models' **Parameter**

$$\hat{P}(X_j \mid C = c_k) = \frac{1}{\sqrt{2\pi}\sigma_{jk}} \exp\left(-\frac{(X_j - \mu_{jk})^2}{2\sigma_{jk}^2}\right)$$

$$P(W_1 = n_1, ..., W_v = n_v \mid c_k) = \frac{N!}{n_{1k}! n_{2k}! ... n_{vk}!} \theta_{1k}^{n_{1k}} \theta_{2k}^{n_{2k}} ... \theta_{vk}^{n_{vk}}$$

 $p(W_i = true \mid c_k) = p_{i,k}$

Review: Single-Variate Gaussian Distribution

Multivariate Normal (Gaussian) PDFs

 The only widely used continuous joint PDF is the multivariate normal (or Gaussian):

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{\mathrm{P}/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$
 Covariance Matrix

- Mean of normal PDF is at peak value.
 Contours of equal PDF form ellipses.
- The covariance matrix captures linear dependencies among the variables

Example: the Bivariate Normal distribution

$$f(x_1, x_2) = \frac{1}{(2\pi)|\Sigma|^{1/2}} e^{-\frac{1}{2}(\vec{x} - \vec{\mu})^T \Sigma^{-1}(\vec{x} - \vec{\mu})}$$

with
$$\vec{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$
 and

$$\sum_{2\times 2} = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{bmatrix} = \begin{bmatrix} \sigma_1^2 & \rho\sigma_1\sigma_2 \\ \rho\sigma_1\sigma_2 & \sigma_2^2 \end{bmatrix}_{2\times 2}$$
$$|\Sigma| = \sigma_{11}\sigma_{22} - \sigma_{12}^2 = \sigma_1^2\sigma_2^2 \left(1 - \rho^2\right)$$

Bi-Variate Gaussian Distribution

Bivariate normal PDF

- Mean of normal PDF is at peak value.
 Contours of equal PDF form ellipses.
- The covariance matrix captures linear dependencies among the variables

Surface Plots of the bivariate Normal distribution

Contour Plots of the bivariate Normal distribution

Trivariate Normal distribution

The Big Picture

How to Estimate 1D Gaussian: MLE

 In the 1D Gaussian case, we simply set the mean and the variance to the sample mean and the sample variance:

$$\bar{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\bar{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{\mu})^2$$

How to Estimate p-D Gaussian: MLE

$$\langle X_1, X_2, ..., X_p \rangle \sim N(\vec{\mu}, \Sigma)$$

$$\vec{\mu} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_p \end{bmatrix} \qquad \Sigma_{p \times p} = \begin{bmatrix} var(X_1) & \dots & cov(X_1, X_p) \\ \vdots & \ddots & \vdots \\ cov(X_p, X_1) & \dots & var(X_p) \end{bmatrix}$$

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu}) (x_i - \hat{\mu})^T$

Review: Generative BC

Review: Naïve Bayes Classifier

$$\underset{C}{\operatorname{argmax}} P(C \mid X) = \underset{C}{\operatorname{argmax}} P(X, C) = \underset{C}{\operatorname{argmax}} P(X \mid C) P(C)$$

Naïve Bayes Classifier

$$P(X_1, X_2, \dots, X_p | C) = P(X_1 | C) P(X_2 | C) \dots P(X_p | C)$$

Today: More Generative Bayes Classifiers

- Generative Bayes Classifier
- Naïve Bayes Classifier
- Gaussian Bayes Classifiers
 - Gaussian distribution
- - Naïve Gaussian BC
 - Not-naïve Gaussian BC → LDA, QDA
 - LDA: Linear Discriminant Analysis
 - QDA: Quadratic Discriminant Analysis
 - Extra: Discriminative vs. Generative classifier

$$\underset{C}{\operatorname{argmax}} P(C \mid X) = \underset{C}{\operatorname{argmax}} P(X, C) = \underset{C}{\operatorname{argmax}} P(X \mid C) P(C)$$

Naïve Bayes Classifier

$$P(X_1, X_2, \dots, X_p | C) = P(X_1 | C) P(X_2 | C) \dots P(X_p | C)$$

$$\hat{P}(X_j \mid C = c_i) = \frac{1}{\sqrt{2\pi}\sigma_{ji}} \exp\left(-\frac{(X_j - \mu_{ji})^2}{2\sigma_{ji}^2}\right)$$

 μ_{ji} : mean (avearage) of attribute values X_j of examples for which $C = c_i$

 σ_{ii} : standard deviation of attribute values X_i of examples for which $C = c_i$

- Continuous-valued Input Attributes
 - Conditional probability modeled with the normal distribution

$$\hat{P}(X_j \mid C = c_i) = \frac{1}{\sqrt{2\pi}\sigma_{ji}} \exp\left(-\frac{(X_j - \mu_{ji})^2}{2\sigma_{ji}^2}\right)$$

 μ_{ii} : mean (avearage) of attribute values X_i of examples for which $C = c_i$

 σ_{ji} : standard deviation of attribute values \mathbf{X}_j of examples for which $C = c_i$

- Learning Phase: for $\mathbf{X} = (X_1, \dots, X_p), \quad C = c_1, \dots, c_L$ Output: L different p-normal distributions and $P(C = c_i)$ $i = 1, \dots, L$

- Continuous-valued Input Attributes
 - Conditional probability modeled with the normal distribution

$$\hat{P}(X_j \mid C = c_i) = \frac{1}{\sqrt{2\pi}\sigma_{ji}} \exp\left(-\frac{(X_j - \mu_{ji})^2}{2\sigma_{ji}^2}\right)$$

 μ_{ji} : mean (avearage) of attribute values X_j of examples for which $C = c_i$

 σ_{ii} : standard deviation of attribute values X_{ij} of examples for which $C = c_{ij}$

- Learning Phase: for $\mathbf{X} = (X_1, \dots, X_p), \quad C = c_1, \dots, c_L$ Output: L different p-normal distributions and $P(C = c_i)$ $i = 1, \dots, L$
- Test Phase: for $\mathbf{X'} = (X'_1, \dots, X'_p)$
 - Calculate conditional probabilities with all the normal distributions
 - Apply the MAP rule to make a decision

$$P(X_{1}, X_{2}, \dots, X_{p} \mid C = c_{j}) = P(X_{1} \mid C)P(X_{2} \mid C) \dots P(X_{p} \mid C)$$

$$= \prod_{i=1}^{n} \frac{1}{\exp\left(-\frac{(X_{j} - \mu_{ji})^{2}}{2}\right)}$$

$$= \prod_{i} \frac{1}{\sqrt{2\pi\sigma_{ji}}} \exp\left(-\frac{(X_{j} - \mu_{ji})^{2}}{2\sigma_{ji}^{2}}\right)$$

Diagonal Matrix
$$\sum c_k = \Lambda c_k$$

11/6/19 Dr. Yanjun Qi / UVA CS

Each class' covariance matrix is diagonal

Today: More Generative Bayes Classifiers

- Generative Bayes Classifier
- Naïve Bayes Classifier
- Gaussian Bayes Classifiers
 - Gaussian distribution
 - Naïve Gaussian BC
- Not-naïve Gaussian BC → LDA, QDA
 - LDA: Linear Discriminant Analysis
 - QDA: Quadratic Discriminant Analysis
- Extra: Discriminative vs. Generative classifier

Not-naïve Gaussian means?

Not Naïve $P(X_1, X_2, \cdots, X_p \mid C) = \\ \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$

Naïve

$$P(X_{1}, X_{2}, \dots, X_{p} | C = c_{j}) = P(X_{1} | C)P(X_{2} | C) \dots P(X_{p} | C)$$

$$= \prod_{i} \frac{1}{\sqrt{2\pi\sigma_{ii}}} \exp\left(-\frac{(X_{j} - \mu_{ji})^{2}}{2\sigma_{ii}^{2}}\right)$$

Diagonal Matrix
$$\sum c_k = \Lambda c_k$$

11/6/19 Dr. Yanjun Qi / UVA CS

Each class' matrix is diagonal

•

LDA: Linear Discriminant Analysis

• QDA: Quadratic Discriminant Analysis

covariance matrix are the same across classes

LDA (Linear Discriminant Analysis)

Linear Discriminant Analysis : $\sum_{k} = \sum_{k} \forall k$

Each class' covariance matrix is the same

The Gaussian Distribution are shifted versions of each other

$$\underset{k}{\operatorname{argmax}} P(C_{k}|X) = \underset{k}{\operatorname{argmax}} P(X,C_{k}) = \underset{k}{\operatorname{argmax}} P(X|C_{k}) P(C_{k})$$

$$= \underset{k}{\operatorname{argmax}} \log \{P(X|C_{k})P(C_{k})\}$$

Decision Boundary Points satisfying:

$$P(C_i|X) = P(C_j|X)$$

$$\frac{P(C_i|X)}{P(C_i|X)} = 1 \Rightarrow log \frac{P(C_k|K)}{P(C_k|K)} = 0$$

$$\underset{k}{\operatorname{argmax}} P(C_{k}|X) = \underset{k}{\operatorname{argmax}} P(X,C_{k}) = \underset{k}{\operatorname{argmax}} P(X|C_{k}) P(C_{k})$$

$$= \underset{k}{\operatorname{argmax}} \{P(X|C_{k})P(C_{k})\}$$

$$= arg \max_{k} log P(x|C_k) + log P(C_k) \longrightarrow \pi_k$$

Decision Boundary Points

$$\log \frac{P(C_k|X)}{P(C_l|X)} = 0 = \log \frac{P(X|C_k)}{P(X|C_l)} + \log \frac{\pi_k}{\pi_l}$$

$$= log P(X|C_k) - log P(X|C_l) + log \frac{\pi_k}{\pi_l}$$

$$\log \frac{P(C_k|X)}{P(C_l|X)} = \log \frac{P(X|C_k)}{P(X|C_l)} + \log \frac{P(C_k)}{P(C_l)}$$

Decision Boundary Points of LDA classifier -

$$= \log \frac{\pi_k}{\pi_\ell} - \frac{1}{2} (\mu_k + \mu_\ell)^T \mathbf{\Sigma}^{-1} (\mu_k - \mu_\ell) + x^T \mathbf{\Sigma}^{-1} (\mu_k - \mu_\ell),$$
(4.9)

The above is derived from the following:

$$-\frac{1}{2}(x-\mu_k)^T \Sigma^{-1}(x-\mu_k) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k - \frac{1}{2} x^T \Sigma^{-1} x$$

$$\log \frac{P(C_k|X)}{P(C_l|X)} = \log \frac{P(X|C_k)}{P(X|C_l)} + \log \frac{P(C_k)}{P(C_l)}$$

Decision Boundary Points of LDA classifier ->

$$\underbrace{\log \frac{\pi_k}{\pi_{\ell}} - \frac{1}{2} (\mu_k + \mu_{\ell})^T \Sigma^{-1} (\mu_k - \mu_{\ell})}_{+ x^T \Sigma^{-1} (\mu_k - \mu_{\ell}), = 0}$$

$$(4.9)$$

$$\underbrace{\log \frac{\pi_k}{\pi_{\ell}} - \frac{1}{2} (\mu_k + \mu_{\ell})^T \Sigma^{-1} (\mu_k - \mu_{\ell})}_{a}$$

 $\Rightarrow x^T a + b = 0 \Rightarrow$ linear line decision boundary

LDA Classification Rule

Also called as Linear discriminant function

$$\underset{k}{\operatorname{argmax}} P(C_{k} | X) = \underset{k}{\operatorname{argmax}} P(X, C_{k}) = \underset{k}{\operatorname{argmax}} P(X | C_{k}) P(C_{k})$$

$$= \underset{k}{\operatorname{arg max}} \left[-\log((2\pi)^{p/2}|\Sigma|^{1/2}) - \frac{1}{2}(x - \mu_{k})^{T} \Sigma^{-1}(x - \mu_{k}) + \log(\pi_{k}) \right]$$

$$= \underset{k}{\operatorname{arg max}} \left[-\frac{1}{2}(x - \mu_{k})^{T} \Sigma^{-1}(x - \mu_{k}) + \log(\pi_{k}) \right]$$

Linear Discriminant Function for LDA

LDA: Linear Discriminant Analysis

QDA: Quadratic Discriminant Analysis

If covariance matrix are not the same

QDA (Quadratic Discriminant Analysis)

- Estimate the covariance matrix Σ_k separately for each class k, k = 1, 2, ..., K.
- Quadratic discriminant function:

$$\delta_k(x) = -\frac{1}{2} \log |\Sigma_k| - \frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) + \log \pi_k.$$

Classification rule:

$$\hat{G}(x) = \arg\max_{k} \delta_k(x)$$
.

- Decision boundaries are quadratic equations in x.
- QDA fits the data better than LDA, but has more parameters to estimate.

Regularized Discriminant Analysis

- A compromise between LDA and QDA.
- Shrink the separate covariances of QDA toward a common covariance as in LDA.
- Regularized covariance matrices:

$$\hat{\Sigma}_k(\alpha) = \alpha \hat{\Sigma}_k + (1 - \alpha)\hat{\Sigma}.$$

- ► The quadratic discriminant function $\delta_k(x)$ is defined using the shrunken covariance matrices $\hat{\Sigma}_k(\alpha)$.
- ▶ The parameter α controls the complexity of the model.

More: Decision Boundary of Gaussian naïve Bayes Classifiers?

Orange Team

Red Team

Naïve Gaussian Bayes Classifier is not a linear classifier!

Red Team

Naïve Gaussian Bayes Classifier is not a linear classifier!

Today: More Generative Bayes Classifiers

- Generative Bayes Classifier
- Naïve Bayes Classifier
- Gaussian Bayes Classifiers
 - Gaussian distribution
 - Naïve Gaussian BC
 - Not-naïve Gaussian BC → LDA, QDA
 - LDA: Linear Discriminant Analysis
 - QDA: Quadratic Discriminant Analysis

Extra: Discriminative vs. Generative classifier

Discriminative vs. Generative

- Generative approach
 - Model the joint distribution p(X, C) using p(X | C = c_k) and p(C = c_k)

- Discriminative approach
 - Model the conditional distribution p(c| X) directly

e.g.
$$P(C = 1|x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 * X)}}$$

Discriminative vs. Generative

LDA vs. Logistic Regression

LDA (Generative model)

- Assumes Gaussian class-conditional densities and a common covariance
- Model parameters are estimated by maximizing the full log likelihood, parameters for each class are estimated independently of other classes, $Kp + \frac{p(p+1)}{2} + (K-1)$ parameters
- Makes use of marginal density information Pr(x)
- Easier to train, low variance, more efficient if model is correct
- Higher asymptotic error, but converges faster

Logistic Regression (Discriminative model)

- Assumes class-conditional densities are members of the (same) exponential family distribution
- Model parameters are estimated by maximizing the conditional log likelihood, simultaneous consideration of all other classes, (K-1)(p+1) parameters
- Ignores marginal density information Pr(x)
- Harder to train, robust to uncertainty about the data generation process
- Lower asymptotic error, but converges more slowly

LDA vs. Logistic Regression

- Discriminative classifier (Logistic Regression)
 - Smaller asymptotic error
 - Slow convergence ~ O(p)
- Generative classifier (Naive Bayes)
 - Larger asymptotic error
 - Can handle missing data (EM)
 - Fast convergence ~ O(lg(p))

the speed at which a convergent sequence approaches its limit is called the rate of convergence.

Summary: Discriminative vs. Generative

- Empirically, generative classifiers approach their asymptotic error faster than discriminative ones
 - Good for small training set
 - Handle missing data well (EM)
- Empirically, discriminative classifiers have lower asymptotic error than generative ones
 - Good for larger training set

- https://qiyanjun.github.io/2019f-UVA-CS6316-MachineLearning/
- Prof. Tan, Steinbach, Kumar's "Introduction to Data Mining" slide
- Prof. Andrew Moore's slides
- Prof. Eric Xing's slides
- Prof. KeChen NB slides qHastie, Trevor, et al. The elements of statistical learning. Vol. 2. No. 1. New York: Springer, 2009.

Thanks for listening