Sistemas Operativos Avanzados Problemas de examen

UAH, Departamento de Automática, ATC-SOL http://atc1.aut.uah.es

Febrero 2011

Problema 1

Se está trabajando en un sistema que reúne las siguientes características:

- Gestión de memoria con segmentación paginada.
- Direccionamiento a nivel de byte (de 8 bits). Es decir, cada celda de memoria direccionable contiene 8 bits.
- Ordenación de bytes "big endian" para números de más de 1 byte. Es decir, que en un número de 4 bytes, el byte de la dirección más baja es el más significativo.
- Direcciones virtuales de 16 bits que incluyen, de más significativo a menos significativo: número de segmento (4 bits), número de página (4 bits) y desplazamiento (8 bits).
- 2¹² marcos de memoria física como máximo.
- Tabla de segmentos con entradas de 32 bits que incluyen, de más significativo a menos significativo: PRWX¹ (4 bits), base de la tabla de páginas (15 bits), reservado (1 bit siempre a cero) y límite del segmento (12 bits). La verdadera dirección física de la base de la tabla de páginas se calcula añadiendo 5 bits a cero a la derecha. El límite del segmento se expresa como la dirección del byte más alto al que permite acceder el segmento. Por lo tanto, un segmento con límite O_h sería un segmento de tan solo un byte, y un segmento con límite FF_h (255 en decimal) tendría un tamaño de 256 bytes.
- Tablas de páginas con entradas de 16 bits que incluyen, de más significativo a menos significativo: reservado (1 bit siempre a cero), PMR² (3 bits) y número de marco (12 bits).
- Por cada proceso, la base y el tamaño de la tabla de segmentos dependen, respectivamente de los registros RPBTS³ y RLTS⁴. El RLTS almacena el número del segmento más alto al que puede acceder el proceso actual.

¹P: presencia, R: lectura, W: escritura, X: ejecución

²P: presencia, M: modificado, R: referenciado

³RPBTS: Registro Puntero a la Base de la Tabla de Segmentos

⁴RLTS: Registro Límite de la Tabla de Segmentos

Responda, razonando muy brevemente, las siguientes preguntas:

- 1. ¿Qué tamaño máximo tiene el espacio virtual de memoria direccionable por un proceso?
- 2. ¿Qué tamaño tienen los marcos de página y las páginas?
- 3. ¿Qué tamaño máximo puede llegar a tener la memoria física?
- 4. ¿Cuántas tablas de página de tamaño máximo caben en un marco?

En un momento determinado, se están ejecutando concurrentemente dos procesos. El cuadro 1 muestra los valores de los registros RPBTS y RLTS de dichos procesos. El cuadro 2 muestra un volcado hexadecimal del primer marco de la memoria física. Interprete los datos relacionados con las tablas de segmentos y páginas, y realice las siguientes tareas:

- 5. Marque en el volcado del cuadro 2 las secuencias de bytes que pertenecen a tablas de segmentos.
- 6. Marque en el mismo volcado las secuencias de bytes que pertenecen a tablas de páginas.
- 7. Complete las tablas de segmentos del cuadro 3 con los datos correspondientes.
- 8. Complete las tablas de páginas del cuadro 4 con los datos correspondientes.
- 9. Complete el cuadro 5 verificando si los accesos a memoria listados están permitidos. En los accesos permitidos, traduzca la dirección virtual a dirección física. En los accesos no permitidos, indique la causa.

Cuadro 1: Registros de las tablas de segmentos del problema 1

Proceso	RPBTS	RLTS
1	$\mathtt{000A4}_h$	2_h
2	00080_{h}	\mathfrak{Z}_h

Suponga que un tercer proceso realiza los siguientes accesos a memoria virtual:

```
0800_h, 0804_h, 011A_h, 00D3_h, 011E_h, 000A_h, 0954_h, 0804_h, 0808_h, 01F0_h, 003A_h, 09B3_h, 0000_h, 08BC_h, 11E0_h, 11E4_h, 09B0_h, 08C0_h, 0117_h, 00CD_h
```

Teniendo en cuenta que el proceso sólo tiene 3 marcos de página a su disposición, y que inicialmente están vacíos, responda a las siguientes cuestiones:

- 10. Extraiga la cadena de referencias
- 11. ¿Cuál es el mínimo teórico de fallos de página? Justifique la respuesta.
- 12. ¿Cuántos fallos de página se producirán con una política de reemplazo FIFO? Justifique la respuesta simulando el algoritmo.

Cuadro 2: Volcado hexadecimal de la memoria del problema 1

	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F
00000	00	01	03	00	00	A4	00	02	04	00	00	80	FF	FF	F2	E9
00010	A2	В6	24	9A	04	3D	22	CD	27	66	21	1B	FE	37	82	D5
00020	71	00	51	01	7D	F8	4 A	C4	86	C4	66	E3	48	59	CD	EA
00030	11	F2	86	15	31	A9	E3	58	10	05	74	10	3C	F7	E6	D8
00040	4F	ΕO	4F	E1	4F	E2	4F	E3	4F	E4	4F	E5	4F	E6	4F	E7
00050	4F	E8	4F	E9	4F	EΑ	4F	EΒ	4F	EC	4F	ED	4F	EE	4F	EF
00060	4F	FO	4F	F1	4F	F2	4F	F3	25	ΕO	AЗ	6E	9D	47	C8	4E
00070	71	39	2F	46	8D	6A	2B	E7	1 A	20	7E	C1	FB	EE	ΑE	61
08000	90	00	CA	26	90	00	4F	FF	90	00	63	FF	CO	00	ΑO	7F
00090	2C	3D	CB	BA	A7	F6	AЗ	C1	17	22	84	13	11	34	75	D1
000A0	40	01	OD	28	90	00	CA	26	CO	00	ΑO	7F	ΕO	00	21	FF
000B0	29	63	E8	D1	5B	8C	93	73	AF	19	87	C1	4D	FD	93	DF
000C0	50	80	50	09	50	ΟA	50	OB	40	OC	40	OD	40	ΟE	40	OF
000D0	40	10	40	11	ΑO	ЗА	B2	50	53	ЗВ	12	A1	39	A6	82	F7
000E0	47	8B	В7	1C	78	97	FO	72	55	D8	6E	00	57	98	D4	3B
000F0	AC	7B	7A	4D	В5	2E	9E	OA	69	B1	AB	A2	58	2F	9B	9F

Cuadro 3: Tablas de segmentos del problema 1

Proceso 1 Proceso 2

N^o	PRWX	Base	0	Límite
0	PX	$000C0_h$	-	$\mathtt{A26}_h$
1			-	
2			-	
3			-	
4			-	
5			-	

N.	_	PRWX	Base	0	Limite
C)			-	
1				-	
2				-	
3	3			-	
4	:			-	
- 5	,			-	

Cuadro 4: Tablas de páginas del problema 1

Dire	Dirección: 00020_h			Dirección:			Dirección:				Dirección:		
N^o	OPMR	Marco		N^o	OPMR	Marco	N^o	OPMR	Marco		N^o	OPMR	Marco
0	-PMR	100 _h		0			0			_	0		
1				1			1			_	1		
2			į .	2			2			_	2		
3				3			3			_	3		
4				4			4				4		
5				5			5				5		
6				6			6				6		
7				7			7				7		
8				8			8				8		
9				9			9				9		
10				10			10				10		
11				11			11				11		
12				12			12				12		
13				13			13				13		
14				14			14				14		
15				15			15				15		
16				16			16				16		
17				17			17				17		
18				18			18				18		
19				19			19				19		

Nota: una de estas columnas debería contener dos tablas de páginas diferentes que son contiguas en memoria física

Cuadro 5: Accesos a memoria y traducción de direcciones del problema 1

Proceso	R/W/X	Direción virtual	Direción física o causa del error
1	Escritura	0004 _h	Segmento accesible sólo para ejecución
1	Ejecución	0004_{h}	
1	Ejecución	3000_{h}	
2	Ejecución	3000_{h}	
2	Lectura	307F _h	
2	Lectura	3080 _h	
1	Lectura	107F _h	