Выпускная квалификационная работа

Использование обучения с подкреплением в задаче автоматического тестирования мобильных приложений

Фомин Сергей Александрович

Научный руководитель:

Турдаков Денис Юрьевич

Научный консультант:

Сорокин Константин Сергеевич

ИСП РАН

02.06.2021

Тестирование мобильных приложений

- Цель: проверка приложения на наличие сбоев во время работы
- Взаимодействие с пользовательским интерфейсом жестами: нажатие, долгое нажатие, вертикальная и горизонтальная прокрутка

Автоматическое тестирование

Актуальность

- Востребованность мобильной разработки
- Промышленная востребованность: ручное тестирование дорого, долго и ненадежно
- Отсутствие оптимального инструмента для тестирования Android приложений:
 - Невоспроизводимость тестов
 - Медленный тестовый генератор
 - Другая операционная система
 - Упрощенный дизайн элементов

Постановка задачи

- Исследовать применимость методов обучения с подкреплением в задаче тестирования мобильных приложений через взаимодействие с графическим интерфейсом
- Реализовать и внедрить алгоритмы обучения с подкреплением в систему тестирования DroidBot
- Сравнить разные стратегии и функции наград алгоритмов обучения с подкреплением используя метрику уникальных состояний
- Сравнить лучшую стратегию обучения с подкреплением с современным инструментом Humanoid

Обучение с подкреплением: Q-learning

A4

	A1	A2	A3	A4
S1				
S2				
S3				
S4				
S5				
S6				

Независимые от приложения стратегии

- QBE* (2018)
 - Абстрактное состояние количество интерактивных элементов на экране
 - Абстрактное действие тип взаимодействия с экраном
- Сверточная нейронная сеть
 - Состояние изображение экрана
 - Действие бинарная маска места нажатия на экране
 - Сверточная нейронная сеть эмулирует таблицу предсказания действия
- В обоих подходах функция награды пропорциональна количеству интерактивных элементов в новом состоянии

Зависимые от приложения стратегии

- Базовая версия алгоритма
 - Состояние список интерактивных элементов в текущий момент времени
 - Действие взаимодействие с устройством, доступное в текущем состоянии
 - Награда: Обратная частота нажатий

$$\frac{1}{count(state[t], event[t])}$$

Зависимые от приложения стратегии: награды

• Награда: Количество интерактивных элементов в новом состоянии

```
\frac{|\mathit{events}|}{\mathit{count}(\mathit{state}[t], \mathit{event}[t])}
```

• Награда: Обратное число к количеству интерактивных элементов

$$\frac{1}{|events|count(state[t], event[t])}$$

• Награда: Расстояние между состояний

```
\frac{\textit{dist}(\textit{state}[t], \textit{state}[t+1])}{\textit{count}(\textit{state}[t], \textit{event}[t])}
```

Улучшение стратегий

- Эпсилон жадная стратегия
 - Добавление случайности в выбор действия на первых этапах обучения
 - Эпсилон вероятность случайного нажатия
- Предобучение Q-таблицы
 - Обучение таблицы в течение 4 эпизодов по 12 минут
 - Тестирование в течении одного эпизода
- Предобучение Q-таблицы с эпсилон жадной стратегией
 - В эпизоды обучения добавляется случайность, которая уменьшается к последнему эпизоду

Приложения

AliExpress (ali)

AppleBee's (ab)

Booking (bk)

ColorNote (cn)

Dominos pizza (dom)

EBAY (eb)

FaceApp (fca)

New York Times (nyt)

Wikipedia (wik)

Wall Street Journal (wsj)

Покупки

Еда и напитки

Путешествия

Работа

Еда и напитки

Покупки

Дополненная реальность

Новости и журналы

Книги и справочники

Новости и журналы

Стратегия		ab	bk	cn	dom	eb	fca	nyt	wik	wsj
Абстрактные состояния		30	76	52	16	41	36	34	118	36
Сверточная нейронная сеть		23	45	81	20	24	37	27	65	53
Обратная частота нажатий		32	116	142	35	67	54	77	74	96
Количество интерактивных элементов	34	30	85	153	34	45	48	45	77	117
Обратное количество интерактивных элементов	32	34	85	183	30	40	48	49	95	85
Расстояние между состояниями	30	32	86	164	30	46	39	74	46	82
Эпсилон Жадная	30	35	94	130	37	60	63	68	101	84
Предобучение	80	68	107	189	39	40	79	53	139	117
Предобучние + эпсилон жадная	63	63	97	190	36	34	59	60	154	134

Метрика: уникальные состояния

Стратегия		ab	bk	cn	dom	eb	fca	nyt	wik	wsj
Абстрактные состояния		30	76	52	16	41	36	34	118	36
Сверточная нейронная сеть		23	45	81	20	24	37	27	65	53
Обратная частота нажатий	37	32	116	142	35	67	54	77	74	96
Количество интерактивных элементов	34	30	85	153	34	45	48	45	77	117
Обратное количество интерактивных элементов	32	34	85	183	30	40	48	49	95	85
Расстояние между состояниями	30	32	86	164	30	46	39	74	46	82
Эпсилон Жадная	30	35	94	130	37	60	63	68	101	84
Предобучение	80	68	107	189	39	40	79	53	139	117
Предобучние + эпсилон жадная	63	63	97	190	36	34	59	60	154	134

Стратегия	ali	ab	bk	cn	dom	eb	fca	nyt	wik	wsj
Абстрактные состояния	25	30	76	52	16	41	36	34	118	36
Сверточная нейронная сеть	24	23	45	81	20	24	37	27	65	53
Обратная частота нажатий	37	32	116	142	35	67	54	77	74	96
Количество интерактивных элементов	34	30	85	153	34	45	48	45	77	117
Обратное количество интерактивных элементов	32	34	85	183	30	40	48	49	95	85
Расстояние между состояниями	30	32	86	164	30	46	39	74	46	82
Эпсилон Жадная	30	35	94	130	37	60	63	68	101	84
Предобучение	80	68	107	189	39	40	79	53	139	117
Предобучние + эпсилон жадная	63	63	97	190	36	34	59	60	154	134

Метрика: уникальные состояния

Сравнение с Humanoid

 Humanoid: современный инструмент тестирования на основе глубоких нейронных сетей

Результаты работы

- Изучены подходоы обучения с подкреплением в задаче тестирования мобильных приложения через взаимодействие с графическим интерфейсом
- Реализовано и внедрено несколько стратегий обучения с подкреплением в инструмент DroidBot
- Проведен сравнительный анализ разработанных подходов на основе метрики уникальных состояний и выбран лучший из них
- Лучший реализованный Q-learning подход с предобучением таблицы превзошел современный инструмент тестирования Humanoid