245 Fonctions holomorphes et méromorphes sur un ouvert de C. Exemples et applications.

Soit $\Omega \subseteq \mathbb{C}$ un ouvert. Soit $f : \Omega \to \mathbb{C}$.

I - Dérivabilité au sens complexe

Définition 1. On dit que f est **holomorphe** en $a \in \Omega$ s'il existe un complexe f'(a) tel que

[**QUE**] p. 76

$$f'(a) = \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{f(a+h) - f(a)}{h}$$

On dit que f est holomorphe sur Ω si elle l'est en tout point de Ω et on note f' la fonction $f':z\mapsto f'(z)$ ainsi que $\mathscr{H}(\Omega)$ l'ensemble des fonctions holomorphes sur Ω .

Exemple 2. $-z \mapsto z^2$ est holomorphe sur \mathbb{C} , de dérivée $z \mapsto 2z$.

— $z \mapsto \overline{z}$ n'est holomorphe en aucun point de \mathbb{C} .

Proposition 3. (i) $\mathcal{H}(\Omega)$ est une algèbre sur \mathbb{C} avec pour tout $g, h \in \mathcal{H}(\Omega)$ et $\lambda \in \mathbb{C}$:

- --(g+h)'=g'+h'.
- $--(\lambda g)'=\lambda g'.$
- --(gh)'=g'h+gh'.
- $\left(\frac{g}{h}\right)' = \frac{g'h gh'}{g^2}$ quand g ne s'annule pas sur Ω.
- (ii) Pour tout $g \in \mathcal{H}(\Omega)$, $h \in \mathcal{H}(\Omega_1)$ où $g(\Omega) \subseteq \Omega_1$

$$h \circ g \in \mathcal{H}(\Omega)$$
 et $(h \circ g)' = (h' \circ g)g'$

(iii) Soit $g \in \mathcal{H}(\Omega)$ holomorphe bijective d'inverse h. On suppose h continue en b = g(a) et $g'(a) \neq 0$. Alors h est holomorphe en b et

$$h'(b) = \frac{1}{g'(a)}$$

Théorème 4 (Conditions de Cauchy-Riemann). On pose u = Re(f) et v = Im(f). On suppose $f \mathbb{R}$ -différentiable en $a \in \Omega$. Alors, les propositions suivantes sont équivalentes :

- (i) *f* est holomorphe en *a*.
- (ii) $\mathrm{d}f_a$ est \mathbb{C} -linéaire.
- (iii) $\frac{\partial f}{\partial y}(a) = i \frac{\partial f}{\partial x}(a)$.

[**BMP**] p. 57

(iv) $\frac{\partial u}{\partial x}(a) = \frac{\partial v}{\partial y}(a)$ et $\frac{\partial u}{\partial y}(a) = -\frac{\partial v}{\partial x}(a)$.

Exemple 5. $z \mapsto \text{Re}(z)$ et $z \mapsto \text{Im}(z)$ ne sont holomorphes en aucun point de \mathbb{C} .

[**QUE**] p. 115

Théorème 6 (Weierstrass). Une suite de fonctions holomorphes qui converge uniformément sur tout compact de Ω a une limite holomorphe sur Ω . De plus, la suite des dérivées k-ième converge uniformément sur tout compact vers la dérivée k-ième de la limite pour tout $k \in \mathbb{N}$.

[**BMP**] p. 69

II - Séries entières et analycité

1. Généralités sur les séries entières

Définition 7. On appelle **série entière** toute série de fonctions de la forme $\sum a_n z^n$ où z est une variable complexe et où (a_n) est une suite complexe.

[**GOU20**] p. 247

Lemme 8 (Abel). Soient $\sum a_n z^n$ une série entière et $z_0 \in \mathbb{C}$ tels que $(a_n z_0^n)$ soit bornée. Alors :

- (i) $\forall z \in \mathbb{C}$ tel que $|z| < |z_0|$, $\sum a_n z^n$ converge absolument.
- (ii) $\forall r \in]0, |z_0|[, \sum a_n z^n \text{ converge normalement dans } \overline{D}(0, r) = \{z \in \mathbb{C} \mid |z| \leq r\}.$

Définition 9. En reprenant les notations précédentes, le nombre

$$R = \sup\{r \ge 0 \mid (|a_n|r^n) \text{ est born\'ee}\}\$$

est le **rayon de convergence** de $\sum a_n z^n$.

p. 255

Exemple 10. — $\sum n^2 z^n$ a un rayon de convergence égal à 1.

— $\sum \frac{z^n}{n!}$ a un rayon de convergence infini. On note $z\mapsto e^z$ la fonction somme.

Proposition 11. Soit $\sum a_n z^n$ une série entière de rayon de convergence $r \neq 0$. Alors $S \in \mathcal{H}(D(0,r))$ et,

$$S'(z) = \sum_{n=0}^{+\infty} n a_n z^{n-1}$$

pour tout $z \in D(0, r)$.

[**QUE**] p. 57 Plus précisément, pour tout $k \in \mathbb{N}$, S est k fois dérivable avec

$$S^{(k)}(z) = \sum_{n=k}^{+\infty} n(n-1) \dots (n-k+1) a_n z^{n-k}$$

2. Analycité

Définition 12. On dit que f est **analytique** sur Ω si, pour tout $a \in \Omega$, il existe r > 0 et une série entière $\sum a_n z^n$ de rayon de convergence $\geq r$, tels que

$$D(a,r) \subseteq \Omega$$
 et $\forall z \in D(a,r), f(z) = \sum_{n=0}^{+\infty} a_n z^n$

ie. f est développable en série entière en tout point de Ω . On note $\mathscr{A}(\Omega)$ l'ensemble des fonctions analytiques sur Ω .

Proposition 13. Soit $\sum a_n z^n$ une série entière de rayon de convergence $r \neq 0$. Alors $S \in \mathcal{A}(D(0,r))$ et, si $|z-a| \leq r - |a|$:

$$f(z) = \sum_{k=0}^{+\infty} \frac{S^{(k)}(a)}{k!} (z - a)^k$$

(où $S^{(k)}$ désigne la k-ième dérivée complexe de S).

Proposition 14. $\mathscr{A}(\Omega) \subseteq \mathscr{H}(\Omega)$.

Proposition 15. Si f = P/Q est une fraction rationnelle, alors f est développable en série entière au voisinage de chaque point qui n'est pas un pôle de f (cf. Définition 40).

Théorème 16 (Zéros isolés). On suppose Ω connexe et $f \in \mathcal{A}(\Omega)$. Si f n'est pas identiquement nulle sur Ω , alors l'ensemble des zéros de f n'admet pas de point d'accumulation dans Ω .

Corollaire 17. $\mathscr{A}(\Omega)$ est une algèbre intègre.

Remarque 18 (Prolongement analytique). Reformulé de manière équivalente au Théorème 16, si deux fonctions analytiques coïncident sur un sous-ensemble de Ω qui possède un point d'accumulation dans Ω , alors elles sont égales sur Ω .

p. 57

p. 85

p. 78

[BMP]

p. 53

p. 73

p. 53

p. 77

Exemple 19. Il existe une unique fonction g holomorphe sur \mathbb{C} telle que

$$\forall n \in \mathbb{N}^*, g\left(\frac{1}{n}\right) = \frac{1}{n}$$

et c'est la fonction identité.

Contre-exemple 20. Il existe au moins deux fonctions g holomorphes sur $\Omega = \{z \in \mathbb{C} \mid \text{Re}(z) > 0\}$ telles que

 $\forall n \in \mathbb{N}^*, g\left(\frac{1}{n}\right) = 0$

III - Holomorphie et intégration

1. Intégration sur une courbe

Définition 21. — Un **chemin** est une application $\gamma : [a, b] \to \mathbb{C}$ (où [a, b] est un segment de \mathbb{R}) continue.

- Si $\gamma(a) = \gamma(b)$, on dit que γ est **fermé**.
- Si γ est un chemin \mathscr{C}^1 par morceaux, on dit que γ est une **courbe**.
- On appelle $\gamma^* = \gamma([a, b])$ l'**image** de γ .

Exemple 22. Soient $\omega \in \mathbb{C}$ et $r \in \mathbb{R}_*^+$. Alors,

$$\gamma: \begin{array}{ccc} [0,2\pi] & \to & \mathbb{C} \\ t & \mapsto & \omega + re^{it} \end{array}$$

est une courbe fermée (c'est la paramétrisation du cercle de centre ω et de rayon r).

Définition 23. Soit $\gamma:[a,b]\to\Omega$ une courbe. L'**intégrale curviligne** le long de γ est

$$\int_{\gamma} f(z) \, \mathrm{d}z = \int_{b}^{a} f(\gamma(t)) \gamma'(t) \, \mathrm{d}t$$

Proposition 24. Soit $\gamma:[a,b]\to\Omega$ une courbe de longueur $L(\gamma)=\int_a^b|\gamma'(t)|\,\mathrm{d}t$, alors,

$$\left| \int_{\gamma} f(z) \, \mathrm{d}z \right| \le \sup_{z \in \gamma^*} |f(z)| \times L(\gamma)$$

p. 85

Proposition 25. Soit $\gamma : [a, b] \to \Omega$ une courbe. On suppose $\gamma^* \subseteq \Omega$, f holomorphe sur Ω telle que f' est continue sur γ^* . Alors,

$$\int_{\gamma} f'(z) \, \mathrm{d}z = f(\gamma(b)) - f(\gamma(a))$$

2. Théorie de Cauchy et lien avec l'analycité

Définition 26. Soit $\gamma : [a, b] \to \Omega$ une courbe telle que $\omega \notin \gamma^*$. L'indice de ω par rapport à γ , noté $I(\omega, \gamma)$, est défini par

$$I(\omega, \gamma) = \frac{1}{2i\pi} \int_{\gamma} \frac{1}{z - a} dz = \frac{1}{2i\pi} \int_{b}^{a} \frac{1}{\gamma(t) - a} \gamma'(t) dt$$

Remarque 27. En reprenant les notations précédentes, $I(\omega, \gamma)$ compte le nombre de tours orientés que γ fait autour de ω . En particulier :

- (i) On a toujours $I(\omega, \gamma) \in \mathbb{Z}$.
- (ii) On note $\gamma^* = \gamma([a, b])$ l'image de γ . $I(\omega, \gamma)$ est nulle sur la composante connexe non bornée de $\mathbb{C} \setminus \gamma^*$.

Théorème 28 (Cauchy homologique). Soit Γ un cycle homologue à zéro dans Ω (ie. tel que $z \notin \Omega \implies I(a,\Gamma) = 0$). On suppose $f \in \mathcal{H}(\Omega)$. Alors,

$$\int_{\Gamma} f(z) \, \mathrm{d}z = 0$$

Corollaire 29 (Formule intégrale de Cauchy). Soit Γ un cycle homologue à zéro dans Ω . On suppose $f \in \mathcal{H}(\Omega)$. Alors,

$$z_0 \in \Omega \setminus \Gamma^* \implies \frac{1}{2i\pi} \int_{\Gamma} \frac{f(z)}{z - z_0} \, \mathrm{d}z = I(z_0, \gamma) f(z_0)$$

Corollaire 30. On a $\mathcal{H}(\Omega) \subseteq \mathcal{A}(\Omega)$. De plus, si $a \in \Omega$ et que l'on pose $d = d(a, \mathbb{C} \setminus \Omega)$, on a

$$f(a+h) = \sum_{n=0}^{+\infty} a_n h^n \text{ pour } |h| < d \text{ avec } a_n = \frac{f^{(n)}(a)}{n!} = \frac{1}{2i\pi} \int_{C^+(a,d)} \frac{f(z)}{(z-a)^{n+1}} \, \mathrm{d}z$$

p. 85

p. 134

[**BMP**] p. 64

3. Conséquences

Proposition 31 (Inégalités de Cauchy). On suppose f holomorphe au voisinage du disque $\overline{D}(a, R)$. On note c_n les coefficients du développement en série entière de f en a. Alors,

[**QUE**] p. 102

$$\forall n \in \mathbb{N}, \forall r \in [0, R], |c_n| \le \frac{M(r)}{r^n}$$

où $M(r) = \sup_{|z-a|=r} |f(z)|$.

Corollaire 32 (Théorème de Liouville). On suppose f holomorphe sur $\mathbb C$ tout entier. Si f est bornée, alors f est constante.

p. 107

Théorème 33 (Principe du maximum). On suppose Ω borné et f holomorphe dans Ω et continue dans $\overline{\Omega}$. On note M le sup de f sur la frontière (compacte) de Ω . Alors,

$$\forall z \in \Omega, |f(z)| \leq M$$

4. Holomorphie d'une intégrale à paramètre

p. 101

Théorème 34 (Holomorphie sous le signe intégral). On suppose :

- (i) $\forall z \in \Omega, x \mapsto f(z, x) \in L_1(X)$.
- (ii) pp. en $x \in X$, $z \mapsto f(z,x)$ est holomorphe dans Ω . On notera $\frac{\partial f}{\partial z}$ cette dérivée définie presque partout.
- (iii) $\forall K \subseteq \Omega$ compact, $\exists g_K \in L_1(X)$ positive telle que

$$|f(x,z)| \le g_K(x) \quad \forall z \in K$$
, pp. en x

Alors F est holomorphe dans Ω avec

$$\forall z \in \Omega, F'(z) = \int_X \frac{\partial f}{\partial z}(z, t) \, \mathrm{d}\mu(z)$$

p. 115

Application 35. Soit $f \in L_1(\mathbb{R})$ ainsi que sa transformée de Fourier $\widehat{f} : x \mapsto \int_{\mathbb{R}} f(t) e^{-ixt} dt$. Alors f = 0.

[**BMP**] p. 83

Application 36. $F: z \mapsto \int_{\mathbb{R}} e^{zx} e^{-x^2} \, \mathrm{d}x$ définit une fonction holomorphe sur \mathbb{C} qui coïncide

avec la transformée de Fourier de $f: x \mapsto e^{-x^2}$ sur \mathbb{R} . On trouve en particulier,

$$\forall t \in \mathbb{R}, \widehat{f}(t) = F(it) = \sqrt{\pi}e^{-\frac{t^2}{4}}$$

Notation 37. Soient *I* un intervalle de \mathbb{R} et $\rho: I \to \mathbb{R}$ une fonction poids. On note :

- $\forall n \in \mathbb{N}, g_n : x \mapsto x^n.$
- $L_2(I,\rho)$ l'espace des fonctions de carré intégrable pour la mesure de densité ρ par rapport à la mesure de Lebesgue.

Lemme 38. On suppose que $\forall n \in \mathbb{N}$, $g_n \in L_1(I, \rho)$ et on considère (P_n) la famille des polynômes orthogonaux associée à ρ sur I. Alors $\forall n \in \mathbb{N}$, $g_n \in L_2(I, \rho)$. En particulier, l'algorithme de Gram-Schmidt a bien du sens et (P_n) est bien définie.

p. 140

p. 110

[DEV]

Application 39. Soient I un intervalle de \mathbb{R} et ρ une fonction poids. On considère (P_n) la famille des polynômes orthogonaux associée à ρ sur I.

On suppose qu'il existe a > 0 tel que

$$\int_{I} e^{a|x|} \rho(x) \, \mathrm{d}x < +\infty$$

alors (P_n) est une base hilbertienne de $L_2(I,\rho)$ pour la norme $\|.\|_2$.

IV - Méromorphie

1. Singularités

Définition 40. Soit $a \in \Omega$. On suppose $f \in \mathcal{H}(\Omega \setminus \{a\})$.

[**QUE**] p. 165

- On dit que a est une **singularité effaçable** pour f s'il existe $g \in \mathcal{H}(\Omega)$ tel que f(z) = g(z) pour tout $z \in \Omega \setminus \{a\}$.
- On dit que a est un **pôle** d'ordre m s'il existe des scalaires c_{-1}, \ldots, c_{-m} avec $c_{-m} \neq 0$ tels que $z \mapsto f(z) \sum_{k=1}^{m} \frac{c_{-k}}{(z-a)^k}$ ait une singularité effaçable en a.
- $\sum_{k=1}^{m} \frac{c_{-k}}{(z-a)^k}$ est la **partie principale** de f en a et c_{-1} est le **résidu** de f en a noté $\mathrm{Res}(f,a)$.

Exemple 41. $-z \mapsto \frac{\sin(z)}{z}$ a une singularité effaçable en 0.

— $z\mapsto \frac{e^z}{z}$ a un pôle d'ordre 1 (simple) en 0 avec partie principale égale à $\frac{1}{z}$ et Res(f,0)=1.

Définition 42. On dit que f est **méromorphe** sur Ω s'il existe $A \subseteq \Omega$ tel que :

- A n'a que des points isolés dans Ω (en particulier, A est au plus dénombrable et $\Omega \setminus A$ est ouvert).
- $--f\in \mathcal{H}(\Omega\setminus A).$
- f a un pôle en chaque point de a.

Exemple 43. $z\mapsto \frac{1}{\sin(z)}$ est méromorphe dans $\mathbb C$ et en reprenant les notations précédentes, $A=\{k\pi\mid k\in\mathbb Z\}.$

Exemple 44. La fonction Γ définie par

$$\Gamma: \begin{array}{ccc} \{z \in \mathbb{C} \mid \operatorname{Re}(z) > 0\} & \to & \mathbb{C} \\ & z & \mapsto & \int_0^{+\infty} e^{-t} t^{z-1} \, \mathrm{d}t \end{array}$$

se prolonge en une fonction méromorphe sur $\mathbb{C} \setminus \mathbb{N}$.

Proposition 45. On suppose $f = \frac{g}{h}$ où g et h sont holomorphes en un voisinage de $a \in \Omega$ avec a un zéro simple de h et $g(a) \neq 0$. Alors, a est un pôle simple de f de résidu

$$\operatorname{Res}(f, a) = \frac{g(a)}{h'(a)}$$

Exemple 46. Le résidu de $z \mapsto \frac{z^2}{(z+1)(z-1)^2}$ en 1 est égal à $\frac{3}{4}$.

2. Théorème des résidus

Théorème 47 (des résidus). On suppose f méromorphe sur Ω et on note A l'ensemble de ses pôles. Soit γ une courbe homologue à zéro dans Ω et ne rencontrant pas A. Alors,

$$\int_{\gamma} f(z) dz = 2i\pi \sum_{a \in A} I(a, \gamma) \operatorname{Res}(f, a)$$

Exemple 48.

$$\int_0^{2\pi} \frac{1}{3 + 2\cos(t)} \, \mathrm{d}t = \frac{2\pi}{\sqrt{5}}$$

9

Exemple 49 (Intégrale de Dirichlet).

$$\int_0^{+\infty} \frac{\sin(x)}{x} \, \mathrm{d}x = \frac{\pi}{2}$$

[DEV]

Exemple 50 (Transformée de Fourier d'une gaussienne). On définit $\forall a \in \mathbb{R}_*^+$,

[AMR08] p. 156

$$\gamma_a: \begin{array}{ccc}
\mathbb{R} & \to & \mathbb{R} \\
x & \mapsto & e^{-ax^2}
\end{array}$$

Alors,

$$\forall \xi \in \mathbb{R}, \, \widehat{\gamma_a}(\xi) = \sqrt{\frac{\pi}{a}} e^{\frac{-\xi^2}{4a}}$$

[**QUE**] p. 171

Application 51 (Théorème de Kronecker). On suppose f holomorphe sur Ω et non identiquement nulle dans Ω . Soit γ une courbe homologue à zéro dans Ω et qui ne rencontre pas l'ensemble des zéros de f. Alors, le nombre Z=Z(f) des zéros de f à l'intérieur de γ comptés avec multiplicités vérifie

$$Z = \frac{1}{2i\pi} \int_{\gamma} \frac{f'(z)}{f(z)} \, \mathrm{d}z$$

Application 52 (Théorème de Rouché). Soient γ un cycle homologue à zéro dans Ω et $g,h\in\mathcal{H}(\Omega)$. On suppose

$$z \in \gamma^* \implies |g(z)| \le |f(z)|$$

Alors,

$$Z(g) = Z(g+h)$$

Exemple 53. $z \mapsto z^8 - 5z^3 + z - 2$ a trois zéros dans D(0,1).

[**BMP**] p. 67

Bibliographie

Analyse de Fourier dans les espaces fonctionnels

[AMR08]

Mohammed El-Amrani. *Analyse de Fourier dans les espaces fonctionnels. Niveau M1*. Ellipses, 28 août 2008.

https://www.editions-ellipses.fr/accueil/3908-14232-analyse-de-fourier-dans-les-espaces-fonctionnels-niveau-m1-9782729839031.html.

Objectif agrégation

[BMP]

Vincent BECK, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2^e éd. H&K, 22 août 2005. https://objectifagregation.github.io.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

Analyse complexe et applications

[QUE]

Martine Quefféllec et Hervé Queffélec. *Analyse complexe et applications. Nouveau tirage.* Calvage & Mounet, 13 mai 2017.

http://www.calvage-et-mounet.fr/2022/05/09/analyse-complexe-et-applications/.