Chapter 2 Boolean Algebra and Logic Gates

Definitions

Theorems

Functions

Canonical and Standard Forms

Operations

Gates

Integrated Circuits

Canonical Forms

- A canonical form is a standard method for representing Boolean functions.
- The two canonical forms that are used are:
 - Sum of Minterms
 - Product of Maxterms
- These forms are sometimes considered the "brute force" method of representing functions as they seldom represent a function in a minimized form.

Minterms

- Any given binary variable can be represented in two forms:
 - x, its normal form, and
 - x', its complement
- If we consider two binary variables and the AND operation, there are four combinations of the variables:
 - xy
 - xy'
 - x'y
 - x'y'
- Each of the above four AND terms is called a minterm or a standard product.
- n variables can be combined to form 2ⁿ minterms.

Minterms Expressed

			Mint	Minterms		
X	y	Z	Term	Designation		
0	0	0	x'y'z'	m_0		
0	0	1	x'y'z	mı		
0	1	0	x'yz'	m_2		
0	1	1	x'yz	m3		
1	0	0	xy'z'	m4		
1	0	1	x'yz'	m ₅		
1	1	0	xyz'	mം		
1	1	1	жуг	m7		

Maxterms

- Any given binary variable can be represented in two forms:
 - x, its normal form, and
 - x', its complement
- If we consider two binary variables and the OR operation, there are four combinations of the variables:
 - -x+y
 - -x+y
 - -x'+y
 - x' + y'
- Each of the above four OR terms is called a maxterm or a standard sum.
- n variables can be combined to form 2ⁿ maxterms.
- Each maxterm is the complement of its corresponding minterm and vice-versa.

Maxterms Expressed

			Maxterms		
x	y	Z	Term	Designation	
0	0	0	x + y + z	M_{0}	
0	0	1	x + y + z'	M_1	
0	1	0	x + y' + z	M_2	
0	1	1	x + y' + z'	M_3	
1	0	0	x' + y + z	M_4	
1	0	1	x' + y + z'	M_5	
1	1	0	x' + y' + z	M_6	
1	1	1	x' + y' + z'	M_7	

Truth Table to Expression (Sum of Minterms)

- Any Boolean function can be expressed as a sum of minterms or sum of products (i.e. the ORing of terms).
 - You can form the function algebraically by forming a minterm for each combination of the variables that produces a 1 in the function. (Each row with output of 1 becomes a product term)
 - Sum (OR) product terms together.

Sum of Minterms Example

X	У	Z	Function F ₁	Required Minterms
0	0	0	1	x'y'z'
0	0	1	0	
0	1	0	0	
0	1	1	1	x'yz
1	0	0	1	xy'z'
1	0	1	0	
1	1	0	0	
1	1	1	0	

$$F_1 = x'y'z' + x'yz + xy'z'$$

= $m_0+m_3+m_4$
= $\sum (0,3,4)$

Equivalent Representations of Circuits

- All three formats are equivalent
- Number of 1's in truth table output column equals AND terms for Sum-of-Products (SOP)

X	У	Z	G
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$G = xyz + xyz' + x'yz$$

Truth Table to Expression (Product of Maxterms)

- Any Boolean function can be expressed as a product of maxterms or product of sums (i.e. the ANDing of terms).
 - You can form the function algebraically by forming a maxterm for each combination of the variables that produces a 0 in the function. (Each row with output of 0 becomes a standard sums)
 - AND these maxterms together.

Product of Maxterms Example

x	У	Z	Function F ₁	Required Maxterms
0	0	0	1	
0	0	1	0	x + y + z'
0	1	0	0	x + y' + z
0	1	1	1	
1	0	0	1	
1	0	1	0	x' + y + z'
1	1	0	0	x' + y' + z
1	1	1	0	x' + y' + z'

$$F_1 = (x + y + z')(x + y' + z)(x' + y + z')(x' + y' + z)(x' + y' + z')$$

$$= M_1 M_2 M_5 M_6 M_7$$

$$= \prod (1, 2, 5, 6, 7)$$

Minterms and Maxterms

- Each variable in a Boolean expression is a literal
- Boolean variables can appear in normal (x) or complement form (x')
- Each AND combination of terms is a minterm
- Each OR combination of terms is a maxterm
- Example:

Minterms					Maxterms				
x y z Minterm					X	у	Z	Maxterm	
	0		x'y'z'	m_0	0	0	0	$x+y+z$ M_0	
		1		_	0	0	1	x+y+z' M ₁	
1	0		 xy'z'	m ₄	1	0		 x'+y+z M ₄	
1	1		 xyz	m ₇	1	1		 x'+y'+z' M ₇	
				-					

Obtaining Sum of Minterms Form

A	В	С	$\mathbf{F} = \mathbf{A'B} + \mathbf{B'} + \mathbf{C}$	Required Minterms	Required Designations
0	0	0	1	A'B'C'	mo
0	0	1	1	A'B'C	m_1
0	1	0	1	A'BC'	m_2
0	1	1	1	A'BC	m ₃
1	0	0	1	AB'C'	m4
1	0	1	1	AB'C	m_5
1	1	0	0		
1	1	1	1	ABC	m7

$$F = A'B'C' + A'B'C + A'BC' + A'BC + AB'C' + AB'C' + AB'C' + AB'C' + ABC' + AB$$

Obtaining Product of Maxterms

A	В	C	F = A'B + B'C	Required	Required
				Maxterms	Designations
0	0	0	0	A+B+C	M_0
0	0	1	1		
0	1	0	1		
0	1	1	1		
1	0	0	0	A' + B + C	M_4
1	0	1	1		
1	1	0	0	A' + B' + C	M_6
1	1	1	0	A' + B' + C'	M_7

$$F = (A + B + C)(A' + B + C)(A' + B' + C)(A' + B' + C')$$

$$= M_0 \cdot M_4 \cdot M_6 \cdot M_7$$

$$F(A, B, C) = \prod (0, 4, 6, 7)$$

Canonical Form Conversion

- A function represented as Sum of minterms can be represented as the Product of maxterms of the remaining terms.
- The complement of a function expressed in sum of minterms equals the sum of minterms missing from the original function

```
- F(A, B, C) = \sum (0, 3,4) = m_0 + m_3 + m_4
- F'(A, B, C) = \sum (1,2,5,6,7) = m_1 + m_2 + m_5 + m_6 + m_7
```

 Now if we take the complement of F' using DeMorgan's theorem, we obtain F in the product of maxterms form:

```
- (F')' = (m_1+m_2+m_5+m_6+m_7)'

- F = m_1' \cdot m_2' \cdot m_5' \cdot m_6' \cdot m_7' [Complement of minterms]

- = M_1 M_2 M_5 M_6 M_7 [maxterms]

- = [(1,2,5,6,7)]
```

This implies the following relation:

```
- m'j = Mj
```

• So sum of minterms: $\sum (0,3,4) = \text{product of maxterms: } \prod (1,2,5,6,7)$