Tribhuvan University

Institute of Science and Technology

Bachelor of Science in Computer Science and Information Technology Second Semester

Course Title: Digital Logic (CSC 151)

Credit hours: 3

Full Marks: 60+20+20

Pass Marks: 24+8+8

Nature of Course: Theory (3 hrs.)+ Lab (3 hrs.)

Course Synopsis: General concepts to be used in the design and analysis of digital systems and introduces the principles of digital computer organization and design.

Goals:

- Introduce fundamental digital logics and switching networks. Exposure of Boolean algebra and its application for circuit analysis.
- Introduction to multilevel gates networks, flip-flops, counters and logic devices.

Course Contents:

Units	Topics	Hours	Remarks
1. Binary systems	 Digital systems Digital and analog system Block diagram of digital computer advantage/disadvantages of digital system 	1	7 hours
	 Binary Numbers Number system (binary, decimal, octal, hexadecimal), importance of number system Number base conversion (binary to decimal, octal & hexadecimal and vice-versa etc.) Complements- r's, (r-1)'s Complement methods of addition/subtraction (r's & (r-1)'s) 	4	
	 Binary Systems BCD codes, error-detection codes, reflected code, alphanumeric codes (ASCII, EBCDIC) 	1	
	 4. Integrated Circuits Concept of DIP, SIMM, linear and digital ICs Advantages of ICs Scale of integration- SSI, MSI, LSI, VLSI 	1	
2. Boolean algebra and	 1. Basic definition of Boolean Algebra Introduction Common postulates 	1	6 hours
Logic Gates	 2. Basic Theory of Boolean Algebra Duality theorem Basic theorems De-Morgans theorem 		

	 Boolean Function Boolean function and truth table Algebraic manipulation and simplification of Boolean function Complement of a function Logic operations and Logic gates Logic circuit, AND, OR, NOT operation Logic Gates: Basic gates, universal gates, Ex-OR, Ex-NOR Buffer Implementation of Boolean function using gates Logic operations and Logic gates 	2	
	 Logic circuit, AND, OR, NOT operation Logic gates: Basic gates, Universal gates, Ex-OR, Ex-NOR, Buffer Implementation of Boolean function using gates 		
	 5. IC Digital Logic Families RTL, TTL, MOS, CMOS, I²L Positive and Negative Logic Special Characteristics Characteristics of IC logic Families 	2	
3. Simplification of Boolean Functions	 SOP and POS SOP, POS, min-term, max-term, standard and canonical form Simplification of SOP and POS function using Boolean algebra 	2	6 hours
	 K-map Importance of k-map Simplification of SOP and POS form 2 and 3 variable k-map 4 variable k-map Don't care combination 	3	
	 NAND and NOR implementation NAND and NOR conversion Rules for NAND and NOR implementation Implementation of SOP and POS logic expressions using NAND, NOR and basic gates 	1	
4. Combinational Logic	 Design Procedure Definition of combinational logic circuit Design procedure Realization / Implementation 	1	6 hours
	 Adders/Sub-tractors Half Adder - definition, truth table, logic diagram, implementation Full Adder - definition, truth table, logic diagram, implementation Half sub-tractor Full sub-tractor 	2	

	3. Code Conversion	1	
	General Concept	-	
	 Code conversion – BCD to Excess-3 		
	4. Analysis Procedure	1	
	General concept	-	
	Steps in analysis		
	 Obtaining Boolean functions from logic diagram 		
	Obtaining truth table from logic diagram		
	5. NAND, NOR, Ex-OR circuits	1	
	 Concept of multi-level NAND and NOR circuits 		
	 Implementation of basic operations using 		
	universal gates		
	 Block diagram method of Boolean function implementation 		
	 Realization of Ex-OR using basic gates and 		
	universal gates		
	Parity generator, Parity checker		
5.	1. Adders	1	6 hours
Combinational	 4-bit parallel binary adder 		
Logic with MSI	 Decimal Adder – BCD Adder 		
and LSI	2. Magnitude Comparator	2	
	 Definition 		
	 4-bit Magnitude Comparator 		
	3. Decoder		
	 Definition of Encoder and Decoder 		
	3-to-8 line decoder		
	4. Multiplexers	1	
	 Meaning of multiplexing and de-multiplexing 		
	 4-to-1 line multiplexer 		
	5. Read-Only-Memory (ROM)	1	
	 Types of ROM 		
	 Combinational logic implementation of ROM 		
	6. Programmable Logic Array (PLA)	1	
	 Difference between ROM and PLA 		
	 Block diagram of PLA 		
	 PLA Program Table 		
	Implementation of PLA		
6.	1. Flip-Flop	3	8 hours
Sequential	 Definition of sequential circuit 		
Logic	 RS flip-flop, clocked RS FF 		
	 D flip-flop, J-K flip-flop, T flip-flop, J-K Master Slave flip-flop 		
	2. Triggering of flip-flop	2	
	 Clock pulse 		
	 Positive and negative edge triggering 		
	 Clocked J-K FF, edge triggered D FF 		
	Direct inputs		

	 3. Design with state equations and state reduction table State table State diagram State equation State reduction and assignment 4. Design procedure 	3	
	 Design procedure of sequential circuits 		
7.	1. Registers	1	6 hours
Registers and	 Introduction to register 		
Counters	 Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out 		
	2. Ripple Counters	3	
	 Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter 		
	3. Synchronous Counters		
	Binary counterBinary up/down counterBCD counter		
	 4. Timing sequences Word time generation Timing signals Johnson's counter 	1	
	 5. Memory Unit Introduction to memory unit Block diagram Read/Write operation Integrated circuit memory 	1	

Text Book:

M. Morris Mano, "Logic & Computer Design Fundamentals", Pearson Education.

Reference:

By Malvino Leech, "Digital Logic", McGraw Hill.