assignment07

June 23, 2019

1 Functional Programming SS19

2 Assignment 07 Solutions

2.0.1 Exercise 1 (Transformation to Simple Haskell)

The data structure List a is defined by

```
data List a = Nil | Cons a (List a)
```

Transform the following Haskell-expression to an equivalent simple Haskell-expression using the transformation rules (1)-(9) from the lecture. Please give all intermediate expressions and indicate in each step which transformation rule was used. You may apply rules to several identical subterms simultaneously.

```
let length Nil = 0
    length (Cons x xs) = 1 + length xs
in length xs
```

Please simplify the intermediate expressions according to the following rules:

- (i) if (isa $_{ntuple}$ exp) then exp1 else exp2 should be replaced by exp1 for any $n \leq 0$
- (ii) (\var -> exp1) exp should be replaced by exp1', where exp1' results from exp1 by replacing all (free) occurrences of var by exp.

```
(7) \implies
let length = \xspace x1 ->
                if (isa_{Nil} x1)
                then (match () (argof_{Nil} x1) 0
                             (if (isa_{Cons} x1)
                              then match (x, xs)
                                          (argof_{Cons} x1)
                                          (1 + length xs)
                                          bot)
                              else bot))
                else (if (isa_{Cons} x1)
                      then (match (x, xs)
                                   (argof_{Cons} x1)
                                   (1 + length xs)
                                   bot)
                      else bot)
in length xs
   (8) \implies
let length = \x1 ->
                if (isa_{Nil} x1)
                then (if (isa_{0-tuple} (argof_{Nil} x1))
                      then 0
                      else (if (isa_{Cons} x1)
                              then match (x, xs)
                                          (argof_{Cons} x1)
                                          (1 + length xs)
                                          bot)
                              else bot))
                else (if (isa_{Cons} x1)
                      then (match (x, xs)
                                   (argof_{Cons} x1)
                                   (1 + length xs)
                                   bot)
                      else bot)
in length xs
   (9) \implies
let length = \xspace x1 ->
                if (isa_{Nil} x1)
                then (if (isa_{0-tuple} (argof_{Nil} x1))
                      then 0
                      else (if (isa_{Cons} x1)
                              then (if (isa_{2-tuple} (argof_{Cons} x1))
                                    then match x (sel_{2,1} (argof_{Cons} x1))
                                          (match xs (sel_{2,2} (argof_{Cons} x1))
```

in length xs

Since we know that isa_{0-tuple} (argof_{Nil} x1) is indeed the case based on the given definition of List, we can replace this expression by 0. Similarly, we know that isa_{2-tuple} (argof_{Cons} x1) is also the case. We thus have

```
let length = \xspace x1 ->
                if (isa_{Nil} x1)
                then 0
                else (if (isa_{Cons} x1)
                      then match x (sel_{2,1} (argof_{Cons} x1))
                            (match xs (sel_{2,2} (argof_{Cons} x1))
                                 (1 + length xs)
                                 bot)
                      else bot)
in length xs
   (7) \implies
let length = \xspace x1 ->
                if (isa_{Nil} x1)
                then 0
                else (if (isa_{Cons} x1)
                      then (\x -> (\x -> (1 + length xs))
                                        (sel_{2,2} (argof_{Cons} x1)))
                                (sel_{2,1} (argof_{Cons} x1)))
in length xs
```

We can now apply the second hint two successive times. After the first application to the innermost lambda, we have:

After the second application, we obtain:

None of the reduction rules are applicable anymore, so this is our resulting simple Haskell expression.

2.0.2 Exercise 2 (Substitutions)

Identify the free variables of the following lambda terms t_1 , t_2 , and t_3 , and also apply the three substitutions $\sigma_1 = [x/\lambda x.x \ y]$, $\sigma_2 = [y/v \ y]$, and $\sigma_3 = [z/\lambda z.x \ z]$ respectively, to each of these terms (so that you obtain in total 9 possibly different lambda terms $t_i\sigma_j$ with $i,j \in \{1,2,3\}$):

- a) $t_1 = \lambda y.x (\lambda x.y x)$
- b) $t_2 = \lambda x.(\lambda y.x y) x y$
- c) $t_3 = \lambda y.(\lambda z.z \ x \ y) \ z \ y$

Before we start with the identification of the free variables of t_1 , t_2 , and t_3 and the substitutions, let us identify the free variables of the terms that will be substituted.

free
$$(\lambda x.x \ y) = \text{free}(x \ y) \setminus \{x\}$$

$$= (\text{free}(x) \cup \text{free}(y)) \setminus \{x\}$$

$$= (\{x\} \cup \{y\}) \setminus \{x\}$$

$$= \{x,y\} \setminus \{x\}$$

$$= \{y\}$$
free $(v \ y) = \text{free}(v) \cup \text{free}(y)$

$$= \{v\} \cup \{y\}$$

$$= \{v,y\}$$
free $(\lambda z.x \ z) = \text{free}(x \ z) \setminus \{z\}$

$$= (\text{free}(x) \cup \text{free}(z)) \setminus \{z\}$$

$$= (\{x\} \cup \{z\}) \setminus \{z\}$$

$$= \{x,z\} \setminus \{z\}$$

a)
$$t_1 = \lambda y.x (\lambda x.y x)$$

$$free(\lambda y.x (\lambda x.y x)) = free(x (\lambda x.y x)) \setminus \{y\}$$

$$= (free(x) \cup free(\lambda x.y x)) \setminus \{y\}$$

$$= (\{x\} \cup free(\lambda x.(y x))) \setminus \{y\}$$

$$= (\{x\} \cup free(y x) \setminus \{x\}) \setminus \{y\}$$

$$= (\{x\} \cup (free(y) \cup free(x)) \setminus \{x\}) \setminus \{y\}$$

$$= (\{x\} \cup (\{y\} \cup \{x\}) \setminus \{x\}) \setminus \{y\}$$

$$= (\{x\} \cup \{x,y\} \setminus \{x\}) \setminus \{y\}$$

$$= (\{x,y\} \setminus \{x\}) \setminus \{y\}$$

$$= \{y\} \setminus \{y\}$$

$$= \emptyset$$

Applying the substitution rules in definition 3.1.3, we have:

$$t_{1}\sigma_{1} = (\lambda y.x (\lambda x.y x))[x/\lambda x.x y]$$

$$= \lambda y'.((x (\lambda x.y x))[y/y'][x/\lambda x.x y])$$

$$= \lambda y'.((x)[y/y'][x/\lambda x.x y] (\lambda x.y x)[y/y'][x/\lambda x.x y])$$

$$= \lambda y'.(\lambda x.x y) (\lambda x.y' x)$$

$$t_{1}\sigma_{2} = (\lambda y.x (\lambda x.y x))[y/v y]$$

$$= \lambda y.x (\lambda x.y x)$$

$$t_{1}\sigma_{3} = (\lambda y.x (\lambda x.y x))[z/\lambda z.x z]$$

$$= \lambda y.((x (\lambda x.y x))[z/\lambda z.x z])$$

$$= \lambda y.((x (\lambda x.y x))[z/\lambda z.x z])$$

$$= \lambda y.(x (x.y x))[z/\lambda x.x z]$$

$$= \lambda y.(x (x.y x))[z/\lambda x.x z]$$

```
free(\lambda x.(\lambda y.x \ y) \ x \ y) = free((\lambda x.((\lambda y.x \ y) \ x) \ y) \setminus \{x\}

= (free((\lambda y.x \ y) \ x) \cup free(y)) \ {x}

= (free((\lambda y.x \ y) \ x) \cup free(y)) \ {x}

= ((free((\lambda y.x \ y) \ y) \cup \{x\}) \cup \{y\}) \ {x}

= (((free((x \ y) \ y) \cup \{x\}) \cup \{y\}) \cup \{x\}) \cup \{y\}) \ {x}

= ((((free((x \ y) \ y) \cup \{x\}) \cup \{y\}) \cup \{x\}) \cup \{y\}) \setminus \{x\}

= (((({(x \ y) \ y) \cup \{x\}) \cup \{y\}) \setminus \{x\}

= (({(x \ y) \cup \{x\}) \cup \{y\}) \setminus \{x\}

= (((x \ y) \cup \{x\}) \cup \{y\}) \setminus \{x\}

= ((x \ y) \cup \{y\}) \setminus \{x\}
```

For the substitutions, we have:

$$t_{2}\sigma_{1} = (\lambda x.(\lambda y.x y) x y)[x/\lambda x.x y]$$

$$= \lambda x.(\lambda y.x y) x y$$

$$t_{2}\sigma_{2} = (\lambda x.(\lambda y.x y) x y)[y/v y]$$

$$= \lambda x.(((\lambda y.x y) x y)[y/v y])$$

$$= \lambda x.(((\lambda y.x y) x)[y/v y] (y)[y/v y])$$

$$= \lambda x.(((\lambda y.x y)[y/v y] (y)[y/v y]) vy)$$

$$= \lambda x.(((\lambda y.x y)[y/v y] (x)[y/v y]) vy)$$

$$= \lambda x.((\lambda y.x y) x v y$$

$$= \lambda x.((\lambda y.x y) x v y)$$

$$t_{2}\sigma_{3} = (\lambda x.(\lambda y.x y) x y)[z/\lambda z.x z]$$

$$= \lambda x.(((\lambda y.x y) x y)[z/\lambda z.x z])$$

$$= \lambda x.(((\lambda y.x y) x)[z/\lambda z.x z] (y)[z/\lambda z.x z])$$

$$= \lambda x.(((\lambda y.x y)[z/\lambda z.x z] (y)[z/\lambda z.x z]) y)$$

$$= \lambda x.(((\lambda y.(x y)[z/\lambda z.x z] (y)[z/\lambda z.x z]) x) y)$$

$$= \lambda x.(((\lambda y.((x y)[z/\lambda z.x z] (y)[z/\lambda z.x z]) x) y)$$

$$= \lambda x.(((\lambda y.((x y)[z/\lambda z.x z] (y)[z/\lambda z.x z]) x) y)$$

$$= \lambda x.(((\lambda y.((x y)) x) y)$$

$$= \lambda x.(((\lambda y.((x y)) x) y)$$

$$= \lambda x.((\lambda y.((x y)) x) y$$

$$= \lambda x.((\lambda y.(x y)) x) y$$

$$= \lambda x.((\lambda y.(x y)) x) y$$

$$= \lambda x.((\lambda y.(x y)) x y$$

c)
$$t_3 = \lambda y.(\lambda z.z \ x \ y) \ z \ y$$

```
 free(\lambda y.(\lambda z.z \ x \ y) \ z \ y) = free(\lambda y.((\lambda z.z \ x \ y) \ z) \ y) \ \\ = free((\lambda z.(z \ x \ y) \ z) \ y) \ \setminus \{y\} \\ = free(((\lambda z.(z \ x) \ y) \ z) \ y) \ \setminus \{y\} \\ = (free((\lambda z.(z \ x) \ y) \ \cup free(y)) \ \setminus \{y\} \ ) \ \\ = (((free((z \ x) \ y) \ \setminus \{z\}) \cup \{z\}) \cup \{y\}) \ \setminus \{y\} \ ) \\ = ((((free(z \ x) \cup free(y)) \ \setminus \{z\}) \cup \{z\}) \cup \{y\}) \ \setminus \{y\} \ ) \\ = (((((free(z) \cup free(x)) \cup \{y\}) \ \setminus \{z\}) \cup \{z\}) \cup \{y\}) \ \setminus \{y\} \ ) \\ = ((((\{z\} \cup \{x\}) \cup \{y\}) \ \setminus \{z\}) \cup \{y\}) \ \setminus \{y\} \ ) \\ = (((\{x,y\} \cup \{z\}) \cup \{z\}) \cup \{y\}) \ \setminus \{y\} \ ) \\ = ((\{x,y,z\} \cup \{y\}) \ \setminus \{y\} \ ) \\ = \{x,y,z\} \ \setminus \{y\} \ ) \\ = \{x,z\}
```

The substitutions are given as follows:

```
t_3\sigma_1 = (\lambda y.(\lambda z.z \ x \ y) \ z \ y)[x/\lambda x.x \ y]
        = \lambda y'.(((\lambda z.z \ x \ y') \ z \ y')[x/\lambda x.x \ y])
        = \lambda y'.((((\lambda z.z \ x \ y') \ z) \ y')[x/\lambda x.x \ y])
        = \lambda y'.(((\lambda z.z \ x \ y') \ z)[x/\lambda x.x \ y] \ (y')[x/\lambda x.x \ y])
        = \lambda y' \cdot (((\lambda z \cdot z \times y')[x/\lambda x \cdot x y] (z)[x/\lambda x \cdot x y]) y')
        = \lambda y'.((\lambda z.(z x y')[x/\lambda x.x y] z) y')
        = \lambda y'.((\lambda z.((z x) y')[x/\lambda x.x y] z) y')
        = \lambda y'.((\lambda z.((z x)[x/\lambda x.x y] (y')[x/\lambda x.x y]) z) y')
        = \lambda y'.((\lambda z.(((z)[x/\lambda x.x y] (x)[x/\lambda x.x y]) y') z) y')
        = \lambda y'.((\lambda z.((z (\lambda x.x y)) y') z) y')
        = \lambda y'.((\lambda z.(z (\lambda x.x y) y') z) y')
        = \lambda y'.(\lambda z.(z (\lambda x.x y) y') z) y'
        = (\lambda y'.(\lambda z.z (\lambda x.x y) y') z) y'
        = \lambda y'.(\lambda z.z (\lambda x.x y) y') z y'
t_3\sigma_2 = (\lambda y.(\lambda z.z \ x \ y) \ z \ y)[y/v \ y]
        = \lambda y.(\lambda z.z \ x \ y) \ z \ y
t_3\sigma_3 = (\lambda y.(\lambda z.z \ x \ y) \ z \ y)[z/\lambda z.x \ z]
        = \lambda y.(((\lambda z.z \ x \ y) \ z \ y)[z/\lambda z.x \ z])
        = \lambda y.((((\lambda z.z \ x \ y) \ z) \ y)[z/\lambda z.x \ z])
        = \lambda y.(((\lambda z.z \ x \ y) \ z)[z/\lambda z.x \ z] \ (y)[z/\lambda z.x \ z])
        = \lambda y.(((\lambda z.z \ x \ y)[z/\lambda z.x \ z] \ (z)[z/\lambda z.x \ z]) \ y)
        = \lambda y.(((\lambda z.z \ x \ y) \ (\lambda z.x \ z)) \ y)
        = \lambda y.((\lambda z.z \ x \ y) \ (\lambda z.x \ z) \ y)
        = \lambda y.(\lambda z.z \ x \ y) \ (\lambda z.x \ z) \ y
```

2.0.3 Exercise 3 (β -reduction)

a) Give all reduction sequences with \rightarrow_{β} starting with the following term:

$$(\lambda x \ y.x \ y) \exp((\lambda x \ z.mult \ x \ (mult \ z \ z)) \ 3 \ 2)$$

b) Give all reduction sequences \rightarrow_{β} with at most 3 steps starting with the following term:

$$(\lambda f.(\lambda x. f(x x)) (\lambda x. f(x x))) (\lambda y.y)$$

Hints:

• You can save space by representing the reduction sequences as directed graphs. For example, $t_1 \rightarrow_{\beta} t_2 \rightarrow_{\beta} t_4$, $t_1 \rightarrow_{\beta} t_2 \rightarrow_{\beta} t_5$, and $t_1 \rightarrow_{\beta} t_3 \rightarrow_{\beta} t_5$ can be represented as:

reduction_sequence_graph

- In a), you may abbreviate exp to e and mult to m to save space.
- In b), you may write A_f instead of $\lambda x.f$ $(x \ x)$, B instead of $\lambda y.y$ and C instead of $\lambda x.x \ x$ to save space. The start term could then be represented as $(\lambda f.A_f \ A_f)$ B. Furthermore, the term $\lambda x.(\lambda y.y)$ $(x \ x)$ can be abbreviated to A_B .
- a) The graph showing the \rightarrow_{β} reduction sequences for $(\lambda x \ y.x \ y)$ exp $((\lambda x \ z.mult \ x \ (mult \ z \ z))$ 3 2) is given below.

2.0.4 Exercise 4 (Confluence)

- a) Let $\mathbb{N} = \{0, 1, 2, ...\}$ be the natural numbers with the standard relation >. Indicate whether the following properties hold. Explain your solution!
- For any $n \in \mathbb{N}$ there is an $m \in \mathbb{N}$ such that m is a normal form of n w.r.t. >.
- > is confluent.

Based on definition 3.2.3, the transitive-reflexive closure of > is the relation \ge since for any $t_1, t_2, t_3 \in \mathbb{N}$, it holds that * $t_1 > t_2 \implies t_1 \ge t_2 * t_1 > t_2 \ge t_3 \implies t_1 \ge t_3 * t_1 \ge t_1$

According to the same definition, a number $m \in \mathbb{N}$ is a normal form of $n \in \mathbb{N}$ w.r.t > iff $n \ge m$ and m is a normal form, which is the case iff there is no $q \in \mathbb{N}$ for which m > q. The normal form of \mathbb{N} is m = 0 since there is no $q \in \mathbb{N}$ such that m > q. Since it also holds that $n \ge 0$ for any $n \in \mathbb{N}$, we see that the first property holds. \square

3a_beta_reduction_sequences

> is confluent if for every $t, q_1, q_2 \in \mathbb{N}$ we have that, whenever $t \geq q_1$ and $t \geq q_2$, there is a $q \in \mathbb{N}$ such that $g_1 \geq q$ and $g_2 \geq q$. Let us investigate four exhaustive cases to show that the confluence property holds:

- 1. If $t = q_1 = q_2$, the property clearly holds since we can then take q = t to satisfy it.
- 2. Without loss of generality, if we assume $t = q_1 \neq q_2$, we can take $q = q_2$ to satisfy it since $q_1 = t \geq q$ and $q_2 = q \geq q$.
- 3. If $q_1 = q_2 \neq t$, we can, without loss of generality, take $q = q_1$ to satisfy the property since $q_1 = q \geq q$ and $q_2 = q \geq q$.
- 4. In the most general case, $t \neq q_1 \neq q_2$. Since we know that > has a normal form for any $n \in \mathbb{N}$, we can satisfy the property by taking q = 0 since $q_1 \geq 0$ and $q_2 \geq 0$.

This proves that > is confluent. \square

- b) Let $\mathbb{N} = \{0, 1, 2, ...\}$ be the natural numbers with the following relation \succ : $m \succ n$ if there is some $0 < r \in \mathbb{N}$ with $m = r \cdot n$, i.e. n divides m. Indicate whether the following properties hold. Explain your solution!
- For any $n \in \mathbb{N}$ there is an $m \in \mathbb{N}$ such that m is a normal form of n w.r.t. \succ .
- \succ is confluent.

The relation \succ is its own transitive-reflexive closure since for any $t_1, t_2, t_3 \in \mathbb{N}$, we have:

• $t_1 \succ t_2 \implies t_2 \succ t_2$

- $t_1 \succ t_2 \succ t_3 \implies t_1 \implies t_3$ (proof: if we write $t_1 = mt_2$ and $t_2 = nt_3$ for some $0 < m, n \in \mathbb{N}$, then $t_1 = mt_2 = m(nt_3) = kt_3$ where k = mn).
- $t_1 > t_1$ (this clearly holds for any m > 0 since any number is divisible by itself; for the given definition of >, this also holds for m = 0 since we can then take any $0 < r \in \mathbb{N}$ to satisfy the definition)

 $m \in \mathbb{N}$ is a normal form of $n \in \mathbb{N}$ w.r.t. > iff $n \succ m$ and m is a normal form. m will be a normal form iff a $q \in \mathbb{N}$ for which $m \succ q$ does not exist; however, as we know from before, \succ is reflexive and so for any m, we can take q = m to satisfy the relation. Thus, m is not a normal form and can therefore not be a normal form of n. \square

The relation \succ will be confluent if for any $t, q_1, q_2 \in \mathbb{N}$ such that $t \succ q_1$ and $t \succ q_2$, we can find a $q \in \mathbb{N}$ for which $q_1 \succ q$ and $q_2 \succ q$. This clearly holds since we can take q = 1 to satisfy the relation for any arbitrary t, q_1, q_2 ; thus, \succ is confluent. \square

- c) Let \mathbb{Z} be the integers with the standard relation >. Indicate whether the following properties hold. Explain your solution!
- For any $z \in \mathbb{Z}$ there is a $q \in \mathbb{Z}$ such that q is a normal form of z w.r.t. >.
- > is confluent.

As in part a), the transitive-reflexive closure of > will be the relation \ge .

A number $q \in \mathbb{Z}$ is a normal form of $z \in \mathbb{Z}$ w.r.t. > iff $z \ge q$ and q is a normal form. Now, q is a normal form if there is no $q' \in \mathbb{Z}$ such that q > q'; however, for any q, we can always take $q' = q - 1 \in \mathbb{Z}$ so that q > q'. This means that q cannot be a normal form and is thus not a normal form of z w.r.t. >.

Let's proceed to show that q is confluent as in part a), namely by considering $t, q_1, q_2 \in \mathbb{Z}$.

- 1. The first three cases, namely $t = q_1 = q_2$, $t = q_1 \neq q_2$, and $q_1 = q_2 \neq t$, can be treated the same as in a)
- 2. For the most general case of $t \neq q_1 \neq q_2$, let us, without loss of generality, assume that $q_1 \geq q_2$. Then, we can take $q = q_2 1$, in which case we have $q_1 \geq q$ and $q_2 \geq q$.

Thus, > is confluent. \square

- d) Let $\operatorname{Pot}_{\neq\varnothing}(\mathbb{Z})$ be the set of nonempty subsets of the integers with the relation \subsetneq : $A \subsetneq B$ whenever $A \neq B$ and A is a subset of B. Indicate whether the following properties hold. Explain your solution!
- For any $\emptyset \neq A \subseteq \mathbb{Z}$ there is a $B \subseteq \mathbb{Z}$ such that B is a normal form of A w.r.t. \subseteq .
- \subseteq *is confluent.*

The transitive-reflexive closure of \subsetneq will be the relation \subseteq since for any $A, B, C \subseteq \mathbb{Z}$, we have:

- $A \subsetneq B \implies A \subseteq B$
- $A \subsetneq B \subseteq C \Longrightarrow A \subseteq C$
- $A \subseteq A$

A set $\varnothing \neq B \subseteq Z$ will be a normal form of $\varnothing \neq A \subseteq Z$ iff $A \subseteq B$ and B is a normal form, which is the case if there is no $\varnothing \neq C \subseteq Z$ such that $B \subsetneq C$. The normal form of \mathbb{Z} is $B = \mathbb{Z}$ since there is then no $C \subseteq \mathbb{Z}$ with $B \subsetneq C$. Since every $A \subseteq \mathbb{Z} \subseteq B = \mathbb{Z}$, the first property holds. \square

The relation \subsetneq is confluent if for any A, B, $C \subseteq \mathbb{Z}$, whenever $A \subseteq B$ and $A \subseteq C$, then there is a $Q \subseteq \mathbb{Z}$ such that $B \subseteq Q$ and $C \subseteq Q$. This clearly holds since we can take $Q = \mathbb{Z}$, in which case $B \subseteq Q$ and $C \subseteq Q$. Thus, \subsetneq is confluent. \square