엑셀을 활용한 경제성평가 모델링

유수연

한국보건의료연구원

순서

- 분석모형 이론
- 엑셀 실습

결정분석 (Decision Analysis)

- 결정분석은 서로 다른 선택대안이 가지는 상대적 가치를 평가하는 정량적 접근 방법
- 결정분석은
 - 의사결정을 해야 할 내용이 복잡하고,
 - Advantage와 disadvantage의 trade-off를 포함하며,
 - 주어진 전략의 선택에 따른 불확실성이 존재할 때 유용
- 분석 과정은 의사결정의 전반적 "구조"를 설명하고, 중요한 이슈에 대한 이해를 높임
- Clinical Trial은 여러 형태의 측정(measurement)에 초점, 결정모형 은 특정한 의사결정에 필요한 정보를 주는 것이 관심사
- 결정수형모형(Decision Tree), 마콥모형(Markov Model)

결정분석 단계

- Defining the decision problem
 - Study question
 - 대상인구, 비교대안
- Defining the boundaries of the model
 - 결과에 미치는 영향, data availability, 모형의 복잡성 정도에 따라 결정
- Structuring a decision model
 - Decision tree, Markov model
- 분석하는데 필요한 정보 수집
- Expected value 분석
- 민감도 분석

결정수형 모형 (Decision Tree Model)

결정수형 모형(Decision Tree)

- 불확실한 상황 하에서 의사결정자가 내리는 선택과, 그로 인해 발생 가능한 결과들을 그림으로 나타낸 것
- 관련대안과 각 대안들을 선택했을 때 이어지는 일련의 확률적 사건들, 그러한 사건이 발생할 확률과 최종결과로 구성됨

Good Result

Decision Tree 예시

결정수형 모형(Decision tree)의 기본요소

- 결정마디(Decision nodes)
 - 의사결정자가 하나 혹은 그 이상의 가능한 경로에 대한 선택을 하게 되는
 지점
- 확률마디(Chance nodes)
 - 의사결정자의 통제를 넘어선 불확실한 확률적 사건
- 확률(Probabilities)
 - 사건들이 일어날 가능성(각 확률마디마다 부여)
- 결과(Outcomes, pay-off)
 - 비용
 - 효과

Parameter에 대한 정보 수집

- 문헌고찰
 - 임상시험, 역학자료, 체계적 문헌 고찰(systematic review)
- 일차적 자료수집
 - 임상시험, 성과연구(관찰연구), 설문조사
- 이차 자료 분석
 - registries 분석, 건강보험자료 분석
- 전문가 의견
- 가정

결정 수형 분석

- 기대치(Expected value)를 구하는 과정
- Folding back and averaging
 - 가지의 끝에서 시작
 - 각 가지의 결과와 모든 확률을 서로 곱함 (folding back, roll back)
 - 각 대안에 대해 결과(outcome)를 나타내는 행의 값을 합함 (averaging)
- 서로 다른 대안들의 기대치를 비교

결정수형모형 구축 6가지 권고사항

- The tree must have balance
- Only two branches after each chance node
- No embedded decision node
- The branches must be linked
- The tree must have symmetry
- Don't worry about order

Detsky AS, et al. Primer on Medical Decision Analysis. *Med Decis Making* 1997; 17: 126-135.

The tree must have balance

Only two branches after each chance node

No embedded decision node

- The branches must be linked
- The tree must have symmetry

Don't worry about order

결정수형모형의 한계

- Instantaneous discrete period
 - ✓ 시간에 대한 정의 없음
 - ✔ 정해진 기간 동안 사건이 동시에 발생하는 것으로 가정.
 - ✓ 건강상태 변화가 언제 일어나는 지 알 수 없음
- 매우 복잡함 (bushy)
 - ✔ 장기간 예후(재발, 전이, 부작용) 고려하는 경우 매우 복잡해짐

예제

• 심근증 환자에게 와파린을 투여하는 것에 대한 경제성 분석(박병주 등, 근거중심 보건의료 2008)

- 본 예제는 이해를 돕기 위한 가상의 예입니다.

모형 개요

- 연구 배경 및 연구 목적
 - 심근증(Cardiomyopathy) 환자에게 warfarin을 투여할 것인지결정하고자 함
 - Warfarin은 embolism으로 stroke 발생 위험을 낮춰주지만,
 부작용으로 출혈을 일으킬 위험도 있음
- 모형이 적용되는 인구집단: 심근증 환자
- 분석 모형의 종류: 결정수형
- 분석 대상 및 비교 대상
 - 와파린 투여 vs. 와파린 비투여(do nothing)
- 분석 기간: 5년

모형 구축

모형 구축

모형 구축

- 하나의 확률마디에서 비롯한 사건들의 확률 합 = 1
- #: 다른 사건들의 확률로부터 자동 결정 (위 그림에서 1- pE)

Parameter 확인

전이 확률	값
와파린 투여 후 embolism 발생확률(효과)	0.017
와파린 투여하지 않았을 때 embolism 발생확률(효과)	0.090
와파린 투여 후 부작용(bleeding) 발생확률	0.045

비용	값
와파린 투여비용	300,000
Embolism에 따른 치료비용	1,000,000
Bleeding에 따른 치료비용	500,000

효용(QALY)	값
Embolism + Bleeding	1.8
Embolism + No bleeding	2.3
No embolism + Bleeding	4.0
No embolism + No bleeding	4.6

전이확률, 비용과 효과 대입

Expected value 계산

가지	효과	비용 (만원)	기대 효과 (expected QALYs)	기대 비용(만원) (expected cost)
1	1.8	180	0.017*0.045*1.8	0.017*0.045*180
2	2.3	130	0.017*(1-0.045)*2.3	0.017*(1-0.045)*130
3	4	80	(1-0.017)*0.045*4	(1-0.017)*0.045*80
4	4.5	30	(1-0.017)*(1-0.045)*4.5	(1-0.017)*(1-0.045)*30
warfarin		n	4.44	339,500
5	2.3	100	0.09*2.3	0.09*100
6	4.5	0	(1-0.09)*4.5	(1-0.09)*0
1	No warfa	arin	4.302	90,000

점증적 비용-효과비 도출 및 결과 해석

치료법	Warfarin	No warfarin	차이
비용(원)	339,500	90,000	249,500
효과(QALY)	4.440	4.302	0.138
ICER	-	-	1,806,662

- → 와파린을 투여하는 요법이 그렇지 않은 요법에 비해 0.138 QALYs를 더 얻으면서 추가로 비용 249,500원이 소요, 점증적 비용-효과비(ICER)는 1,806,662원이었음
- → 비용-효과성에 대한 임계값이 2,000만원일 경우 와파린 투여는 비용-효과적임

마콥 모형(Markov Model)

마콥모형(Markov Model)

- 결정수형은 가능한 예후를 서로 다른 가지로 표현
- 마콥 모형은 주어진 기간 동안 환자가 처할 수 있는 일련
 의 건강상태에 기초하여 분석
 - 환자는 시간의 흐름에 따라 일정한 확률로 서로 다른 건강상태로 이동하고 각 상태에 머무는 동안 발생하는 비용과 삶의 질 등이 시간의 경과에 따라 누적됨
- 마콥 모형이 필요한 경우
 - 시간의 흐름에 따라 사건이 반복
 - 시간에 따른 사건 발생이 중요한 의미를 가질 때
 - 사건이 하나 이상일 때

마콥모형 구축

- 코호트 정의
- 건강상태(Markov states) 결정
- 주기의 길이(Cycle length) 결정
- 전이 경로(transitions) 결정
- 전이 확률(transition probability) 결정
- 각 상태(states)에 비용, 효과 등 결과값 할당
- 주기 당 비용, 효과 등 산출
- Expected Value 계산
- 민감도 분석

건강상태 (Markov States)

- 질병을 구성하는 건강상태
 - 모든 적절한 임상 경과를 포함
 - 현실세계의 중요한 측면을 놓치지 않는다는 전제 하에 모형은 가능한 단순한 것이 좋음
 - 각 상태들은 서로 배타적이어야 함

Source

- 임상교과서, 선행연구, 전문가 의견, 연구자 판단
- 자료 여부가 건강상태 정의를 좌우해서는 안됨
- 건강상태 유형
 - Absorbing state: once in, never out(death)
 - non-absorbing state: 다른 건강상태로 전이
 - tunnel state(temporary): 반드시 거쳐야 하는 상태, 머무를 수 없음

건강상태 (Markov States)

전이 경로 (Transitions)

전이 확률 (Transition Probability)

Neumann et al. *Neurology* (1999) Yu et al. *J Alz Dis* (2015)

Teipel et al. *Eur Arch Psychiatry Clin Neurosci* (2007)

전이 확률 (Transition Probability)

- 각 주기를 따라 하나의 마콥 상태에서 다른 상태로 이동할 확률
 - 각 상태(state)로 전이할 확률의 합은 1
 - Markov Chain, Markov Process
- Markovian assumption
 - Markov model은 전이 확률이 현재 상태에만 의존
- Source
 - 문헌(임상시험, 후향적 코호트 연구 등), 임상자문, 가정
 - 정상인 사망률(life table)

분석주기 (Cycle)

- 각 상태에서 다른 상태로 이전이 일어나는 고정된 시간 간격
- 적절한 주기의 길이는 한 주기 내에서 병리나 치료에 대한 의사결정 이나 비용이 여러 단계로 변화하지 않을 정도
- 질병의 특성에 따라 주기는 다를 수 있음
- 질병의 경과가 빠르게 변하는 경우 주기가 짧음
- 만성질환의 경우 주로 1년을 주기로 함

마콥모형 분석

- Cohort Simulation
- 가상적 코호트 전체를 전이확률에
 따라 각 상태에 할당
- 각 상태에 할당된 사람 수와 각 상 태에 주어진 비용, 효과 추정치로부 터 전체 코호트의 기대값을 산출

Cohort Simulation

- Static(closed) model
 - 일정기간 동안 하나의 코호트를 따라서 전이
- Dynamic(open) model
 - 사람들이 시간에 따라 모델에 더 들어오거나, 나갈 수 있음
 - 어떤 도시에 대한 모델링, 전 연령, 성의 인구가 모델에 포함되는 경우
 가임 여성 수와 출생률에 따라 1세 인구가 계속 증가
 - 전염병 발생: 예방접종으로 전염병 발생가능성 자체가 없어짐

Cohort Simulation

• 100명 코호트에 대해 5 cycle동안 추적

주기	Well	Sick	Dead ¹	Total
출발	100	0	0	100
1	0.89 x 100 =89	$0.1 \times 100 + 0.6 \times 0 = 10$	$0.01 \times 100 + 0.4 \times 0 + 0 = 1.0$	100
2	0.89 x 89 =79.2	$0.1 \times 89 + 0.6 \times 10 = 14.9$	0.01 x 89 + 0.4 x 10 + 1.0=5.9	100
3	0.89 x 79.2 =70.5	70.5 $0.1 \times 79.2 + 0.6 \times 14.9 = 16.9$ $0.01 \times 79.2 + 0.4 \times 14.9 + 5.9 = 12.6$		100
4	0.89 x 70.5 =62.7	0.1 x 70.5 + 0.6 x 16.9=17.2	0.01 x 70.5 + 0.4 x 16.9 + 12.6=20.1	100
5	0.89 x 62.7 =55.8	0.1 x 62.7 + 0.6 x 17.2=16.6	0.01 x 62.7 + 0.4 x 17.2 + 20.1=27.6	100

Limitation

- Markovian assumption
 - Time Dependency and Memoryless property
 - : 현재 건강상태는 과거 건강상태를 기억하지 못함
 - : 'mild' → 'severe', 'moderate' → 'severe'
- 이전 건강상태에 따라 전이확률이 변화할 때
 - 시간에 종속된 전이 확률을 적용하기 어려움
 - 서로 다른 이력을 모형에 반영하여 다른 건강상태로 설정
 - 너무 복잡해지는 경우, micro simulation or individual sampling model

예제

• 본 예제는 이해를 돕기 위한 가상의 예입니다.

모형 개요

- 해당 지역의 인구(코호트) 수 10,000명
- 코호트 질병 정보
 - 매년 인구의 10%가 질병 A에 이환
 - 매년 질병 A에 이환된 사람 중 40%가 사망
 - 한번 질병 A에 이환되면 회복되지 않음
 - 매년 건강한 100명 중 1명이 질병 A가 아닌 다른 원인으로 사망
- 분석 모형의 종류: 마콥모형
- 분석주기 1년, 분석기간 10년

전이확률

3 HEI	~로 전이				
~로 부터	건강	질병이환	사망		
건강	0.89(=1-0.1-0.01)	0.1	0.01		
질병이환	0	0.6(=1-0.4)	0.4		
사망	0	0	1		

마콥모형

코호트 시뮬레이션

주기	건강	질병이환	사망	계
0	10,000	0	0	10,000
1	10,000*0.89 =8,900	10,000*0.1+0*0.6 =1,000	10,000*0.01+0*0.4+0 =100	10,000
2	8,900*0.89 =7,921	8,900*0.1+1,000*0.6 1,490	8,900*0.01+1,000*0.4+100 589	10,000
3	7,050	1,686	1,264	10,000
4	6,274	1,717	2,009	10,000
5	5,584	1,657	2,759	10,000
6	4,970	1,553	3,477	10,000
7	4,423	1,429	4,148	10,000
8	3,937	1,300	4,764	10,000
9	3,504	1,173	5,323	10,000
10	3,118	1,054	5,827	10,000
계(person year)	55,681	14,059	30,260	100,000

기대 수명 계산

주기	각 상태에 머무는 사람 수			life expe	ctancy
	건강	질병이환	사망	per cycle	cumulative
0	10,000	0	0		
1	8,900	1,000	100	8,900+1,000 =9,900	9,900
2	7,921	1,490	589	9,411	19,311
3	7,050	1,686	1,264	8,736	28,047
4	6,274	1,717	2,009	7,991	36,038
5	5,584	1,657	2,759	7,241	43,279
6	4,970	1,553	3,477	6,523	49,802
7	4,423	1,429	4,148	5,852	55,654
8	3,937	1,300	4,764	5,236	60,890
9	3,504	1,173	5,323	4,677	65,567
10	3,118	1,054	5,827	4,173	69,739

Average survival duration over 10 cycles = 69,739/10,000 = 6.97 years

QALYs 계산

주기	각 상태에 머무는 사람 수			QALYs	
	건강	질병이환	사망	per cycle	cumulative
0	10,000	0	0		
1	8,900	1,000	100	8,900*1.0+1,000*0.5+100*0.0 9,400	9,400
2	7,921	1,490	589	7,921*1.0+1,490*0.5+589*0.0 8,666	18,066
3	7,050	1,686	1,264	7,893	25,959
4	6,274	1,717	2,009	7,133	33,092
5	5,584	1,657	2,759	6,413	39,504
6	4,970	1,553	3,477	5,747	45,251
7	4,423	1,429	4,148	5,138	50,388
8	3,937	1,300	4,764	4,587	54,975
9	3,504	1,173	5,323	4,091	59,066
10	3,118	1,054	5,827	3,645	62,711

Utilities: 건강(1.0), 질병이환(0.5), 사망(0.0)

Expected QALYs over 10 cycles = 62,711/1,000 = 6.27

반주기 보정

주기	건강상태
0	10,000
1	8,900
2	7,921
3	7,050
4	6,274
5	5,584

주기 :	전이가 일어나는 시점						전이	
T/1	주기 시작	주기 끝	반주기(half-cycle)					
1	10,000	8,900	8,900+0.5*(10,000 -8,900) =(8,9000+10,000)*0.5=9,450					
2	8,900	7,921	7,921+0.5*(8,900-7,921)=8,411					
3	7,921	7,050	7,050+0.5*(7,921-7,050)=7,486					
4	7,050	6,274	6,274+0.5*(7,050-6,274)=6,662					
5	6,274	5,584	5,584+0.5*(6,274-5,584)=5,929					
		계	10,000*0.5+8,9000+7,921+7,050 +6,274+5,584*0.5					

- 반주기 보정의 중요성은 cycle length에 따라 달라짐
- cycle length가 average survival duration에 비해 긴 편이라면 보정 중요

Half-cycle Correction

비용-효과분석

- 분석목적
 - 신약의 비용효과성 파악
- 신약 정보
 - 질병의 발생과 사망률 모두 20% 감소
 - 약제비: 1인당 연간 10만원
- 기타 질병 치료비용 1인당 연간 100만원
- 가정
 - 건강한 사람 및 질병에 이환된 사람의 사망을 예방하기
 위해 이 약을 계속 복용해야 함
 - 할인율 0%

신약 투여군의 전이확률

3 HCI	~로 전이			
~로 부터	건강	질병이환	사망	
건강	1-sum	0.1*RR(=0.8)	0.01	
질병이환	0	1-sum	0.4*RR(=0.8)	
사망	0	0	1	

신약 비투여 군의 비용, 효과

주기	건강	질병이환	사망	생존 년	비용(천원)
0	10,000	0	0		
1	8,900	1,000	100	8,9000+1,000 =9,900	1,000*1,000천 원 =1,000,000
2	7,921	1,490	589	7,921+1,490 =9,411	1,490*1,000천 원 =1,490,000
3	7,050	1,686	1,264	8,736	1,686,100
4	6,274	1,717	2,009	7,991	1,716,629
5	5,584	1,657	2,759	7,241	1,657,400
6	4,970	1,553	3,477	6,523	1,552,846
7	4,423	1,429	4,148	5,852	1,428,689
8	3,937	1,300	4,764	5,236	1,299,527
9	3,504	1,173	5,323	4,677	1,173,375
10	3,118	1,054	5,827	4,173	1,054,381
계				69,739	14,058,947

신약 투여군의 비용, 효과

주기	건강	질병이환	사망	생존 년	비용(천원)
0	10,000	0	0		
1	9,100	10,000*0.1* <mark>0.8</mark> =800	100	9,900	9,900*100천원 +800*1,000천원 1,790,000
2	8,281	1,272	447	9,553	2,227,300
3	7,536	1,527	937	9,063	2,433,755
4	6,857	1,642	1,501	8,499	2,491,417
5	6,240	1,665	2,095	7,905	2,455,346
6	5,679	1,631	2,690	7,310	2,362,311
7	5,168	1,564	3,269	6,731	2,236,706
8	4,703	1,477	3,821	6,179	2,094,565
9	4,279	1,380	4,340	5,660	1,946,284
10	3,894	1,281	4,825	5,175	1,798,476
계				75,975	21,836,160

경제성 분석 결과 도출

* 코호트 기준

	효과(LYG)	총 비용(천원)	점증적 비용-효과비
신약	75,975	21,836,160	
기존 약	69,739	14,058,947	
차이	6,235	7,777,213	1,247,000/LYG

* 1인당 기준

	효과(LYG)	총 비용	점증적 비용-효과비
신약	7.5975	2,183,616	
기존 약	6.9739	1,405,895	
차이	0.6235	777,721	1,247,000/LYG

References

- Briggs A, Claxton K & Sculpher M. Decision modelling for health economic evaluation. Oxford: Oxford University Press. 2006.
- Drummond M, Sculpher M, Torrance G, O'Brien B, Stoddart G. Methods for the economic evaluation of health care programmes. 4th edition. Oxford: Oxford University Press. 2015.
- Gold M, Siegel J, Russell L & Weinstein M. Cost-effectiveness in health and medicine. New York: Oxford University Press. 1996.
- James F. O'Mahony, Anthony T. Newall, and Joost van Rosmalen. Dealing with Time in Health Economic Evaluation: Methodological Issues and Recommendations for Practice *Pharmacoeconomics*. 2015; 33(12): 1255–1268.
- Su-Yeon Yu, Tae-Jin Lee, Su-Hyun Jang, Ji Won Han, Tae Hui Kim, Ki Woong Kim. Cost-effectiveness of a nationwide opportunistic screening program for dementia in South Korea *J Alzheimer's disease* 2015; 44: 195-204
- Downloads

https://www.herc.ox.ac.uk/downloads/handbooks-in-health-economic-evaluation

실습(엑셀파일)

엑셀 실습

- EXCEL TIP
 - Label: 수식 → 선택영역에서 만들기
 - Drop-down: 데이터 → 데이터 유효성 검사
 - VLOOKUP
- Decision Tree, Markov Model
 - Expected Value 계산: 치료 성공율, Life Years, QALY, Cost
 - ICER (Incremental Cost-Effectiveness Ratio)

Decision Tree Model

모형 개요

- 분석목표
 - 두 종류의 항구토제 효과에 대한 경제성 분석
 - Drummond et al. (Methods for the Economic Evaluation of Health Care Programmes, 2005; Buxton and O'Brien, 1992 재인용)
- 분석 대상 집단: 구토 환자
- 분석 모형: 결정수형
- 분석 대상 및 비교 대상
 - Ondansetron vs. Metoclopramide
- 분석 기간: 일주일
- Expected Value: 건강결과("No emesis+No ADEs"이면 1, 나머지 0), 비용

모형 구축

- 결정수형 그림 그리기
 - 파워포인트
 - 엑셀
 - Treeage

Parameter 입력

- 변수설명, 변수명, 값, 자료원 입력
- 변수이름 부여: 수식-선택영역에서 만들기

Expected Value 계산

- 효과와 비용 입력
 - 각 가지 별 outcome 입력
 - 값이 바뀌어도 자동 계산되도록 link
- 전이확률에 따라 기대 비용/기대 효과 계산(roll back)

ICER 산출

<u>분석 결과 정리</u>

기본 분석

	Expected Effects (No emesis, No ADEs)	Expected Costs	ICER
Ondansetron	0.668	£20.72	
Metoclopramide	0.370	£33.07	
차이	0.298	-12.354	-£41.47

일원민감도 분석(One-Way Sensitivity Analysis)

Ondansetron 비용 £30.00

011010111011111111111111111111111111111	200100			
	Expected Effects	Expected Costs	ICER	
	(No emesis, No ADEs)	Expected Costs	ICEN	
Ondansetron	0.668	£20.72		
Metoclopramide	0.370	£33.07		
차이	0.298	-12.354	-£41.47	

Markov Model Model

- 코호트 시뮬레이션

모형 개요

- 분석목표
 - 코호트에서 질병이 발생하는 경우 치료제 A와 B의 비용효과성 비교
- 코호트 정의: 20세 정상 인구(질병이 없음)
- 비교대안: Drug A와 Drug B
- 건강상태: Normal, Mild, Moderate, Severe, Death
- 분석주기: 1년
- 분석기간: 79년(79 cycles), 20-99세
- 분석모형: Markov model
- Expected Value: 생존년수(LYG), 질보정생존년수(QALY), 비용
- 할인율: 5%

모형 구축

- 마콥모형 그림 그리기
 - 파워포인트
 - 건강상태 전이방향 확인

Parameter 입력

• 변수설명, 변수명, 값, 자료원 입력

Α	В	С	D	Е
	Parameter	Parameter_name	Active value	자료원
Cohort				
	코호트	Cohort	1,000	
RR				
	drugA의 상대효과	T_effectA	0.45	메타분석
	drugB의 상대효과			
Utility				
	정상	U_Normal	0.8	문헌
	질병_경도	U_D_Mi	0.48	
	질병_중등도	U_D_Mo	0.34	
	질병_중증	U_D_S	0.10	
Transition	n Probability			
	정상->경도	tpN2M	0.09	
	경도->중등증	tpM2Mo	0.32	
	경도->중증	tpM2S	0.04	
	경도->사망	tpM2D	0.02	
	중등도->중증	tpMo2S	0.339	
I	TEE US		^ ^	

Parameter 입력

- 주기(cycle)에 따라 값이 변할 경우 별도 입력
 - 연령별 사망률, 연령별 질병발생률
- VLOOKUP
 - 시뮬레이션 시 자료 매칭에 활용

연령	사망확률- 각세별
0	0.00305
1	0.00032
2	0.00024
3	0.00017
4	0.00013
5	0.00011
6	0.00011
7	0.0001
8	0.00009
9	0.00009
10	0.00009
11	0.0001
12	0.00012
13	0.00014
14	0.00016

C3	•	- (-	f_{x} =C2*(1-VLOOKU	JP(B\$2:B\$8	2,Death_tal	ble!B\$8:C\$1	107,2)
Α	В	С	D	Е	F	G	Н	
Cycle	age	Normal	Mild	Moderate	Severe	Death	Check	생존제
0	20	1,000	0			0		
1	21	912	88	0	0	0	1,000	
2	22	832	134	28	4	3	1,000	
3	23	759	155	59	18	9	1,000	
4	24	692	162	83	42	22	1,000	
5	25	631	160	99	70	41	1,000	
6	26	575	153	107	100	65	1,000	
-								

건강상태 전이확률

• Normal로 올 수 있는 건강상태,

= C2*tpN2M+D2*(1-tpM2Mo-tpM2S-tpM2D)

- Normal
- Mild로 올 수 있는 건강상태
 - Normal, Mild

Α		В	С	D	Е	F	G	Н
Cycle		age	Normal	Mild	Moderate	Severe	Death	Check
	0	20	1,000	0			0	
	1	21	912	88	0	0	0	1,00
	2	22	832	134	28	4	3	1,00
	3	23	759	155	59	18	9	1,00

- Moderate로 올 수 있는 건강상태
 - Mild, Moderate
- Severe로 올 수 있는 건강상태
 - Mild, Moderate, Severe
- Death로 올 수 있는 건강상태
 - Normal, Mild, Moderate, Severe, Death

G3	•	=C2*VLOOKUP(B\$2:B\$82,Death_table!B\$8:C\$107,2)+D2*tpM2D+E2*tpMo2D+F2*tpS2D+G2								
Α	В	С	D	Е	F	G	Н	I	J	
Cycle	age	Normal	Mild	Moderate	Severe	Death	Check	생존자수(반주기 보정)	생존자수(할인율 적용)	
0	20	1,000	0				0	500		
1	21	912	88	0	0		1,000	1,000	ć	
2	22	832	134	28	4		3 1,000	997	ç	

Outcome 입력

- 주기 별 효과 및 비용 부여
 - 반주기 보정
 - 효과: 생존자수, 질보정 생존자수
 - 비용: 건강상태 별 비용

<i>f</i> _x = D3*	=D3*C_Mi_B+E3*C_Mo_B+F3*C_S_B										
D	Е	F	G		Н	I	J	K	L	М	
Mild	Moderate	Severe	Death		Check	생존자수 (반주기 보정)	생존자수 (할인율 적용)	질보정생존자수 (반주기보정)	질보정생존자수 (할인율 적용)	비용 비	
0				0		500	500	400	400	0_	
88	0		0	0	1,000	1,000	952	771	\$ 35	438,000,000	
134	28		4	3	1,000	997	905	739	670	930,846,360	
155	59	1	18	9	1,000	991	856	702	607	1,428,581,967	
162	83	4	12	22	1,000	978	805	662	545	1,890,800,777	
160	99	7	70	41	1,000	959	752	621	486	2,291,685,120	

할인율 적용

• 주기 별 할인율 적용

MEDIAN	,	- (= × <	f_{x} =I3/(1	L+DC_rate)	^A3						
Α	В	С	D	Е	F		G		Н	I	J
Cycle	age	Normal	Mild	Moderate	Severe		Death		Check	생존자수 (반주기 보정)	생존자수 (할인율 적용)
0_	20	1,000	0					0		500	500
1	21	912	88	0		0		0	1,000	1,000	=I3/(1+
2	22	832	134	28		4		3	1,000	997	DC_rate)^A3
3	23	759	155	59		18		9	1,000	991	856
4	24	692	162	23		42		22	1 000	972	805

Expected Value 계산

- 코호트 시뮬레이션
 - 생존년수(Life Year Gained), 질보정 생존년수(Quality-Adjusted Life Year), 비용
 - 각 비교대안에 대하여 모든 주기에 발생한 결과를 합계
 - 1인당 결과 산출

MEDIAN	MEDIAN ▼ (× ✓ f _x =N82/Cohort										
Α	G	Н	I	J	K	L	М	N			
Cycle	Death	Check	생존자수 (반주기 보정)	생존자수 (할인율 적용)	질보정생존자수 (반주기보정)	질보정생존자수 (할인율 적용)	비용	비용(할인율 적용)			
75	999	1,000	1	0	0	0	10,383,666	267,395			
76	999	1,000	1	0	0	0	8,976,177	220,143			
77	999	1,000	1	0	0	0	7,738,793	180,758			
78	999	1,000	1	0	0	0	6,655,382	148,050			
79	999	1,000	0	0	0	0	5,710,551	120,983			
			20,040	11,615	10,924	6,930	76,282,042,311	35,592,322,814			
			20.0403	11.6151	10.9236	6.9305	76,282,042	=N82/Cohort			

ICER 산출

• 점증적 비용효과비

	豆豆	라	총 비용(원)	비용-효과비		
	LYG	QALY	중 미중(편)	△원/△LYG	△원/△QALY	
drug A	13.1162	10.4124	79,363,932			
drug B	11.6151	6.9305	35,592,323			
차이 △	1.5011 3.4819		43,771,610	29,158,990	12,571,089	

Thank You

suyeon.yu@neca.re.kr