(19) 대한민국특허청(KR) (12) 공개특허공보(A)

(51) 。Int. Cl. ⁷ B41J 5/30

(11) 공개번호 특2001 - 0086027

(43) 공개일자 2001년09월07일

(21) 출원번호

10 - 2001 - 7006078

(22) 출원일자

2001년05월14일

번역문 제출일자

2001년05월14일

(86) 국제출원번호

PCT/JP2000/06198

(86) 국제출원출원일자

(87) 국제공개번호

WO 2001/20896

2000년09월11일

(87) 국제공개일자

2001년03월22일

(81) 지정국

국내특허 : 오스트레일리아, 캐나다, 중국, 대한민국, 멕시코, 미국, 싱가포르, 인도, 인도네

시아.

EP 유럽특허: 오스트리아, 벨기에, 스위스, 독일, 덴마크, 스페인, 프랑스, 영국, 그리스, 아 일랜드, 이탈리아, 룩셈부르크, 모나코, 네덜란드, 포르투칼, 스웨덴, 핀랜드, 사이프러스,

(30) 우선권주장

99 - 261279

1999년09월14일

일본(JP)

(71) 출원인

소니 가부시끼 가이샤

이데이 노부유끼

일본국 도쿄도 시나가와쿠 키타시나가와 6쵸메 7반 35고

(72) 발명자

이하라유시

일본국도쿄도시나가와쿠키타시나가와6쵸메7반35고소니가부시끼가이샤(내)

(74) 대리인

이병호

심사청구 : 없음

(54) 화상 인쇄 시스템

요약

IEEE (The Institute of Electrical and Electronics Engineers) 1394 규격의 AV/C 프로토콜에 있어서의 캡처 커맨 드를 이하와 같이 설정한다.

송신하는 데이터량(data_size), X방향 화소수(image_size_x) 및 Y방향 화소수(image_size_y)를 모두 0으로 한다. 이미지 타이프(image_format_specifier)를 Don't Care로 설정한다.

이러한 캡처 커맨드를 수신한 프린터 장치는 그 화상을 인쇄하지 않고, 그 인쇄 에이리어를 공백으로 하여 다음 화상 인 쇄를 행한다.

대표도

도 2

색인어

화상 처리, 화상 신호, 인쇄 장치, 인쇄 처리 장치, 기록 매체

명세서

기술분야

본 발명은 예를 들면 IEEE(The Institute of Electrical and Electronics Engineers) 1394 규격에 준거한 인터페이 스를 개재시켜 접속된 프린터 장치에 의해 화상을 인쇄하는 시스템에 사용하기 적합한 화상 처리 장치 및 방법, 인쇄 장 치 및 방법, 화상 인쇄 시스템 및 방법 및 화상 처리 및 인쇄 프로그램을 격납한 기록 매체에 관한 것이다.

배경기술

IEEE 1394 규격은 상호 접속하여 각 기기에 구비되어 있는 커넥터의 물리적인 규격, 전기적인 규격 등에 대해서 정의하고 있다. 이러한 IEEE 1394 규격에 준거한 인터페이스를 구비한 각 기기는 물리적으로 접속됨으로써 고속으로 디지털 데이터의 송수신, 기기간 접속 설정을 자동적으로 행하는 Hot Plug and Play 등을 실현할 수 있으며, IEEE 1394 규격은 업계 표준의 시리얼 인터페이스 규격으로서 보급하고 있다.

또, 이 IEEE 1394 인터페이스는 컴퓨터 분야뿐만 아니라, AV 기기간을 접속하는 인터페이스로서 보급해 오고 있다. 구체적으로는 예를 들면 위성 방송을 수신하여 텔레비젼 장치에 표시하는 STB(set top box)와 화상을 인쇄하는 프린터 장치가 IEEE 1394 인터페이스에 의해 접속되어 있을 때, STB는 FCP(Function Control Protocol) 및 AV/C 프로 토콜을 사용하여 프린터 장치를 제어한다. 여기서, STB 및 프린터 장치는 FCP 및 AV/C 프로토콜을 실장하고 있으며, FCP 커맨드 및 AV/C 커맨드에 따라서 동작한다.

중래의 IEEE 1394 인터페이스로 접속된 FCP 및 AV/C 프로토콜을 실장한 프린터 장치와, 프린터 장치를 제어하는 컨트롤러를 구비한 화상 인쇄 시스템에 있어서는 정지 화상을 인쇄할 때에는 인쇄 설정을 행하기 위한 정보를 나타내는 오퍼레이션 모드(operation_mode_parameter)로 정의되어 있는 설정 항목을 컨트롤러 측에서 지정하여 어싱크로너스 패킷에 격납하여, 프린터 장치에 인쇄를 행하게 한다. 이 때, 컨트롤러는 유저의 요구에 따라서 인쇄 설정을 행한다. 이 러한 인쇄 설정은 예를 들면 문헌 「1394 TRADE ASSOCIATION TA Document XXXXXXXX AV/C Printer Subunit Specification Version 1.0 Draft 0.5:145」에서 제안되어 있다.

구체적으로는 컨트롤러에 의해 프린터 장치 인쇄를 제어할 때에는 대, 중, 소 3단계에서 화상과 인쇄 용지와의 크기 관계를 설정하는 정보(sizing), 인쇄 용지의 인쇄 방향을 설정하는 정보(orientations), 화상의 인쇄 위치를 설정하는 정보(posx, posy), 동일 화상을 인쇄 용지 내에 몇 개 인쇄할지를 나타내는 정보(multiple_tiled), 1페이지에 몇 개 화상을 인쇄할지를 나타내는 정보(number_of_pics), 몇 장 인쇄할지를 나타내는 정보(number_of_copies)를 유저가 설정하여, 어싱크로너스 패킷에 포함시켜 프린터 장치에 송신함으로써 인쇄를 행한다.

그런데, 이러한 컨트롤러 및 프린터 장치에서는 예를 들면, 1페이지에 몇 개 화상을 인쇄할지를 나타내는 정보를 설정하며, 예를 들면, 1페이지에 4장의 화상을 인쇄했다고 하면, 도 1에 도시하는 바와 같이, 1/4로 축소된 4장의 화상이 1장의 용지를 4분할한 각 영역에 할당된다.

그렇지만, 이러한 컨트롤러 및 프린터 장치에서는 예를 들면, 1페이지에 복수 장의 화상을 인쇄할 경우에, 그 일부 영역에 공백 에이리어를 설치하도록 인쇄를 할 수 없었다. 예를 들면, 1페이지에 4장의 화상을 인쇄할 경우에, 도 2에 도시하는 바와 같은 1장분의 영역을 공백 에이리어로 하여, 1/4로 축소된 3장의 화상을 각 영역에 할당하도록 할 수 없었다.

또한, 본 출원인은 IEEE 1394 Trade Association에 대해, 본 출원의 우선권 주장의 기초가 되는 일본국 공개 특허 공보 제(평) 11 - 261279호의 내용을 규격화를 위해 수시 제안하며, 이들 제안 내용은 하기 드래프트로서 IEEE 1394 Trade Association에서 공개되었다.

- · AV/C Printer Subunit Specification Version 1.0 Draft 0.97:60 (2Q00 AVWG 0ff Cycle Meeting on May 2 4 25, 2000)
- · AV/C Printer Subunit Specification Version 1.0 Draft 0.7:5(1000 TA OM AV WG on Jan 18, 2000)

발명의 상세한 설명

그래서, 본 발명은 상술한 바와 같은 실정에 비추어 제안된 것으로, IEEE 1394 규격에 준거한 인터페이스로 접속된 기기에서, 1페이지에 복수 장의 화상을 인쇄할 경우에 있어서, 그 일부분 영역에 공백 에이리어를 설치할 수 있는 인쇄 처리 장치 및 방법을 제공하는 것을 목적으로 한다.

또, 본 발명은 IEEE 1394 규격에 준거한 인터페이스로 접속된 기기에서, 1페이지에 복수 장의 화상을 인쇄할 경우에 있어서, 그 일부분 영역에 공백 에이리어를 설치하여 인쇄할 수 있는 인쇄 장치 및 방법을 제공하는 것을 목적으로 한다.

또, 본 발명은 IEEE 1394 규격에 준거한 인터페이스로 접속된 기기에서, 1페이지에 복수 장의 화상을 인쇄할 경우에 있어서, 그 일부분 영역에 공백 에이리어를 설치할 수 있는 화상 인쇄 시스템 및 방법을 제공하는 것을 목적으로 한다.

또, 본 발명은 IEEE 1394 규격에 준거한 인터페이스로 접속된 기기에서, 1페이지에 복수 장의 화상을 인쇄할 경우에 있어서, 그 일부분 영역에 공백 에이리어를 설치할 수 있는 화상 처리 프로그램 및 인쇄 프로그램이 격납된 기록 매체를 제공하는 것을 목적으로 한다.

본 발명에 따른 화상 처리 장치는 외부로부터 입력한 화상 신호에 화상 처리를 실시하여, 화상 데이터를 생성하는 화상 처리 수단과, 인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함한 인쇄 제어 정보를 생성하는 제어 정보 생성 수단과, 상기 화상 처리 수단으로 생성한 화상 데이터 및 상기 제어 정보 생성 수단으로 생성한 인쇄 제어 정보를 IEEE 1394 규격에 준거한 패킷에 포함시켜 인쇄 장치에 출력하는 출력 수단을 구비하며, 상기 제어 정보 생성 수단은 인쇄 용지에 인쇄하는 화상에 공백 화상을 포함시키는 정보를 포함한 인쇄 제어 정보를 생성하는 것을 특징으로 한다.

본 발명에 따른 화상 처리 방법은 외부로부터 입력한 화상 신호에 화상 처리를 실시하고, 화상 데이터를 생성하며, 인쇄용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함함과 동시에 인쇄용지에 대해 인쇄하는 화상에 공백 화상을 포함시키는 것을 나타내는 정보를 포함한 인쇄 제어 정보를 생성하며, 생성한 상기 화상 데이터 및 상기 인쇄 제어 정보를 IEEE 1394 규격에 준거한 패킷에 포함시켜 인쇄 장치에 출력하는 것을 특징으로 한다.

본 발명에 따른 화상 처리 방법은 외부로부터 입력한 화상 신호에 화상 처리를 실시하고, 화상 데이터를 생성하며, 생성한 상기 화상 데이터에 대한 인쇄 조브 개시를 지시하는 커맨드, 인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함시키는 커맨드, 생성한 상기 화상 데이터에 대한 인쇄 제어 정보를 포함한 캡처 커맨드와 생성하며, 생성한 상기 화상 데이터 및 각 커맨드를 IEEE 1394 규격에 준거한 패킷에 포함시켜 인쇄 장치에 출력하며, 상기 인쇄 용지 중에 인쇄되는 화상 영역에 공백 화상을 포함시킬 경우에는 그 공백 화상에 대한 인쇄 제어 정보로서 화상 데이터의 데이터량, X방향, Y방향의 화소수를 제로로 설정함과 동시에 화상 데이터의 이미지 타이프를 케어하지 않는 것을 나타내는 값을 상기 캡처 커맨드에 설정하는 것을 특징으로 한다.

본 발명에 따른 인쇄 장치는 IEEE 1394 규격에 준거한 패킷에 포함되는 화상 데이터 및 인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함함과 동시에 인쇄 용지에 대해 인쇄하는 화상에 공백 화상을 포함시키는 것을 나타내는 정보를 포함한 인쇄 제어 정보가 입력되는 입력 수단과, 상기 입력 수단에 입력된 화상 데이터가 나타내는 화상을 상기 인쇄 제어 정보에 따라서 인쇄하는 인쇄 수단을 구비하며, 상기 인쇄 수단은 공백 화상을 포함시키는 정보를 포함한 인쇄 제어 정보가 입력된 경우에는 상기 인쇄 용지 중에 인쇄되는 화상 영역을 공백으로 하는 것을 특징으로 한다.

본 발명에 따른 인쇄 방법은 IEEE 1394 규격에 준거한 패킷에 포함되는 화상 데이터 및 인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함함과 동시에 인쇄 용지에 대해 인쇄하는 화상에 공백 화상을 포함시키는 것을 나타내는 정보를 포함한 인쇄 제어 정보가 입력되며, 입력된 상기 화상 데이터가 나타내는 화상을 상기 인쇄 제어 정보에 따라서 인쇄하며, 인쇄 용지에 인쇄하는 화상에 공백 화상을 포함시키는 정보를 포함한 인쇄 제어 정보가 입력된 경우에는 상기 인쇄 용지 중에 인쇄되는 화상 영역을 공백으로 하는 것을 특징으로 한다.

본 발명에 따른 인쇄 방법은 외부로부터 입력한 화상 신호에 화상 처리를 실시하고, 화상 데이터를 생성하며, IEEE 13 94 규격에 준거한 패킷에 포함되는 화상 데이터, 상기 화상 데이터에 대한 인쇄 조브 개시를 지시하는 커맨드, 인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함시키는 커맨드, 생성한 상기 화상 데이터에 대한 인쇄 제어 정보를 포함한 캡처 커맨드가 입력되며, 입력된 상기 화상 데이터가 나타내는 화상을 각 커맨드에 따라서 인쇄하며, 인쇄제어 정보로서 화상 데이터의 데이터량, X방향, Y방향의 화소수를 제로로 설정함과 동시에 화상 데이터의 이미지 타이프를 케어하지 않는 것을 나타내는 값이 설정된 캡처 커맨드가 입력된 경우에는 상기 인쇄 용지 중에 인쇄되는 화상 영역을 공백으로 하는 것을 특징으로 한다.

본 발명에 따른 화상 인쇄 시스템은 외부로부터 입력한 화상 신호에 화상 처리를 실시하여, 화상 데이터를 생성하는 화상 처리 수단과, 인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함한 인쇄 제어 정보를 생성하는 제어 정보 생성 수단과, 상기 화상 처리 수단으로 생성한 화상 데이터 및 상기 제어 정보 생성 수단으로 생성한 인쇄 제어 정보를 IEEE 1394 규격에 준거한 패킷에 포함시켜 출력하는 출력 수단을 구비하며, 상기 제어 생성 수단은 인쇄 용지에 인쇄하는 화상에 공백 화상을 포함시키는 정보를 포함한 인쇄 제어 정보를 생성하는 인쇄 처리 장치와, IEEE 1394 규격에 준거한 패킷에 포함되는 정보를 포함한 인쇄 제어 정보를 생성하는 인쇄 처리 장치와, IEEE 1394 규격에 준거한 패킷에 포함되는 화상 데이터 및 인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함함과 동시에 인쇄 용지에 대해 인쇄하는 화상에 공백 화상을 포함시키는 것을 나타내는 정보를 포함한 인쇄 제어 정보가 입력되는 입력 수단과, 상기 입력 수단에 입력된 화상 데이터가 나타내는 화상을 상기 인쇄 제어 정보에 따라서 인쇄하는 인쇄 수단을 구비하며, 상기 인쇄 수단은 공백 화상을 포함시키는 정보를 포함한 인쇄 제어 정보가 입력된 경우에는 상기 인쇄 용지 중에 인쇄되는 화상 영역을 공백으로 하는 인쇄 장치를 구비하는 것을 특징으로 한다.

본 발명에 따른 화상 인쇄 방법은 외부로부터 입력한 화상 신호에 화상 처리를 실시하고, 화상 데이터를 생성하여, 인쇄용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함함과 동시에 인쇄용지에 대해 인쇄하는 화상에 공백 화상을 포함시키는 것을 나타내는 정보를 포함한 인쇄 제어 정보를 생성하며, 생성한 상기 화상 데이터 및 상기 인쇄 제어 정보를 IEEE 1394 규격에 준거한 패킷에 포함시켜 인쇄 장치에 출력하며, IEEE 1394 규격에 준거한 패킷에 포함되는 상기 화상 데이터 및 인쇄용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함함과 동시에 인쇄용지에 대해 인쇄하는 화상에 공백화상을 포함시키는 것을 나타내는 정보를 포함한 상기 인쇄 제어 정보를 수신하며, 수신한 상기화상데이터가 나타내는 화상을 상기 인쇄 제어 정보에 따라서 인쇄하며, 인쇄용지에 인쇄하는 화상에 공백화상을 포함시키는 정보를 포함한 인쇄 제어 정보가 입력된 경우에는 상기 인쇄용지 중에 인쇄되는 화상 영역을 공백으로 하는 것을

특징으로 한다.

본 발명에 따른 기록 매체는 외부로부터 입력한 화상 신호에 화상 처리를 실시하고, 화상 데이터를 생성하며, 인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함함과 동시에 인쇄 용지에 대해 인쇄하는 화상에 공백 화상을 포함 시키는 것을 나타내는 정보를 포함한 인쇄 제어 정보를 생성하며, 생성한 상기 화상 데이터 및 상기 인쇄 제어 정보를 IEEE 1394 규격에 준거한 패킷에 포함시켜 인쇄 장치에 출력하는 화상 처리 프로그램을 격납한 것을 특징으로 한다.

본 발명에 따른 기록 매체는 IEEE 1394 규격에 준거한 패킷에 포함되는 화상 데이터 및 인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함함과 동시에 인쇄 용지에 대해 인쇄하는 화상에 공백 화상을 포함시키는 것을 나타내 는 정보를 포함한 인쇄 제어 정보가 입력되며, 입력된 상기 화상 데이터가 나타내는 화상을 상기 인쇄 제어 정보에 따라 서 인쇄하며.

인쇄 용지에 인쇄하는 화상에 공백 화상을 포함시키는 정보를 포함한 인쇄 제어 정보가 입력된 경우에는 상기 인쇄 용지 중에 인쇄되는 화상 영역을 공백으로 하는 인쇄 프로그램을 격납한 것을 특징으로 한다.

도면의 간단한 설명

도 1은 1/4로 축소된 4장의 화상을 1장의 용지를 4분할한 각 영역에 할당한 인쇄예를 설명하기 위한 도면,

도 2는 1장의 인쇄 용지에 4장의 화상을 할당한 경우에 있어서, 공백 에이리어를 작성할 수 있던 경우의 인쇄예를 설명하는 도면.

도 3은 본 발명을 적용한 화상 인쇄 시스템을 도시하는 도면.

도 4는 본 발명을 적용한 화상 인쇄 시스템을 구성하는 STB 및 프린터 장치 구성을 도시하는 블록도.

도 5는 STB와 프린터 장치 사이에서 송수신되는 어싱크로너스 패킷의 데이터 구성을 도시하는 도면.

도 6은 어싱크로너스 패킷의 데이터부의 데이터 구성을 도시하는 도면.

도 7은 데이터 변환부로부터 데이터 입력부에 어싱크로너스 패킷을 송신할 때의 타임 차트.

도 8은 정지 화상의 이미지 타이프를 설명하기 위한 도면.

도 9는 캡처 커맨드롤 포함하는 어싱크로너스 패킷의 데이터 구성을 도시하는 도면.

도 10은 image_format_specifier에 격납되는 이미지 타이프의 명칭에 대해서 설명하기 위한 도면.

도 11은 image_format_specifier에 격납되는 이미지 타이프의 다른 예에 대해서 설명하기 위한 도면.

도 12는 YCC4:2:2의 화소 포맷의 정지 화상 데이터를 점 순차로 프린터 장치에 송신할 때의 화소 데이터의 송신 순서를 설명하기 위한 도면.

도 13은 YCC4:2:0의 화소 포맷의 정지 화상 데이터를 점 순차로 프린터 장치에 송신할 때의 화소 데이터의 송신 순서를 설명하기 위한 도면.

도 14는 YCC4:2:2의 화소 포맷의 정지 화상 데이터를 선 순차로 프린터 장치에 송신할 때의 화소 데이터의 송신 순서를 설명하기 위한 도면.

- 도 15는 YCC4:2:0의 화소 포맷의 정지 화상 데이터를 선 순차로 프린터 장치에 송신할 때의 화소 데이터의 송신 순서를 설명하기 위한 도면.
- 도 16은 이미지 타이프가 480_422_4×3인 정지 화상을 점 순차로 송신하는 것을 설명하기 위한 도면.
- 도 17은 이미지 타이프가 480_420_4×3인 정지 화상을 점 순차로 송신하는 것을 설명하기 위한 도면.
- 도 18은 이미지 타이프가 480_422_4×3인 정지 화상을 선 순차로 송신하는 것을 설명하기 위한 도면,
- 도 19는 이미지 타이프가 480_420_4×3인 정지 화상을 선 순차로 송신하는 것을 설명하기 위한 도면.
- 도 20은 오퍼레이션 모드(2) 커맨드를 포함하는 어싱크로너스 패킷의 데이터 구성을 도시하는 도면.
- 도 21은 오퍼레이션 모드(2) 커맨드에 포함되는 subfunction 내용에 대해서 설명하기 위한 도면.
- 도 22는 오퍼레이션 모드(2) 커맨드에 포함되는 Oparation_mode2_parameters 내용에 대해서 설명하기 위한 도면.
- 도 23은 Oparation_mode2_parameters에 포함되는 media_type 내용에 대해서 설명하기 위한 도면.
- 도 24는 media_type에 포함되는 각 설정 항목의 의미 내용에 대해서 설명하기 위한 도면.
- 도 25는 Oparation_mode2_parameters에 포함되는 media_size 내용에 대해서 설명하기 위한 도면.
- 도 26은 media_size에 포함되는 각 설정 항목의 의미 내용에 대해서 설명하기 위한 도면.
- 도 27은 Oparation_mode2_parameters에 포함되는 media_size 내용의 다른 예에 대해서 설명하기 위한 도면.
- 도 28은 media_size에 포함되는 각 설정 항목의 의미 내용의 다른 예에 대해서 설명하기 위한 도면.
- 도 29는 media_size에 포함되는 각 설정 항목의 의미 내용의 다른 예에 대해서 설명하기 위한 도면.
- 도 30은 Oparation_mode2_parameters에 포함되는 print_quality 내용에 대해서 설명하기 위한 도면.
- 도 31은 print_quality에 포함되는 각 설정 항목의 의미 내용에 대해서 설명하기 위한 도면.
- 도 32는 Oparation_mode2_parameters에 포함되는 mono_color 내용에 대해서 설명하기 위한 도면.
- 도 33은 mono_color에 포함되는 각 설정 항목의 의미 내용에 대해서 설명하기 위한 도면.
- 도 34는 Oparation_mode2_parameters에 포함되는 mono_color 내용의 다른 예에 대해서 설명하기 위한 도면.
- 도 35는 mono_color에 포함되는 각 설정 항목의 의미 내용의 다른 예에 대해서 설명하기 위한 도면.
- 도 36은 Oparation_mode2_parameters에 포함되는 offset 내용에 대해서 설명하기 위한 도면.
- 도 37은 offset에 포함되는 각 설정 항목의 의미 내용에 대해서 설명하기 위한 도면.
- 도 38은 Oparation_mode2_parameters에 포함되는 layuot_type 내용에 대해서 설명하기 위한 도면.
- 도 39는 layuot_type의 의미 내용에 대해서 설명하기 위한 도면.

도 40은 오퍼레이션 모드 커맨드를 포함하는 커맨드 패킷의 다른 예에 대해서 설명하기 위한 도면.

도 41은 오퍼레이션 모드 커맨드를 포함하는 커맨드 패킷에 포함되는 각 설정 항목의 의미 내용에 대해서 설명하기 위한 도면.

도 42는 본 발명을 적용한 화상 인쇄 시스템을 구성하는 프린터 장치에서 행하는 인쇄 처리의 처리 순서에 대해서 설명하기 위한 플로 차트.

도 43은 텔레비전 장치에서 표시하고 있는 화상을 프린터 장치에 의해 인쇄할 때에 있어서의 STB의 CPU 처리 순서에 대해서 설명하기 위한 플로 차트.

도 44는 STB와 프린터 장치 사이에서 어싱크로너스 패킷을 송수신하여 정지 화상 데이터를 프린터 장치에서 인쇄하는 처리에 대해서 설명하기 위한 도면.

도 45는 본 발명을 적용한 화상 인쇄 시스템에 의해 1장의 인쇄 용지에 4장의 화상을 할당한 경우의 인쇄예를 설명하는 도면.

도 46은 1장의 인쇄 용지에 4장의 화상을 할당한 경우에 있어서, 공백 에이리어를 작성할 수 없는 경우의 인쇄예를 설명하는 도면.

도 47은 1장의 인쇄 용지에 4장의 화상을 할당한 경우에 있어서, 공백 에이리어를 작성할 수 있던 경우의 인쇄예를 설명하는 도면.

도 48은 공백 에이리어를 작성하기 위해 프린터 장치에 송신하는 캡처 커맨드 내용을 설명하기 위한 도면.

도 49는 공백 에이리어를 작성하기 위해 프린터 장치에 송신하는 다른 캡처 커맨드 내용을 설명하기 위한 도면.

도 50은 공백 에이리어를 작성하기 위해 설정된 이미지 타이프를 설명하기 위한 도면.

도 51은 공백 에이리어를 작성하기 위해 설정된 캡처 커맨드의 subfunction에 격납하는 정보를 설명하기 위한 도면.

실시예

이하, 본 발명의 실시예에 대해서 도면을 참조하면서 상세하게 설명한다.

본 발명을 적용한 화상 인쇄 시스템은 예를 들면 도 3에 도시하는 바와 같이 구성된다.

이 화상 인쇄 시스템(1)은 예를 들면 통신 위성을 사용하여 방영되고 있는 동화상을 수신하는 안테나(2)와, 수신한 동화상 데이터에 소정의 신호 처리를 실시하는 STB(Set Top Box)(3)와, 동화상 및 정지 화상을 표시하는 텔레비전 장치(4)와, 화상을 인쇄하여 출력하는 프린터 장치(5)로 이루어진다.

안테나(2)는 동화상을 나타내는 영상 신호를 수신하여 STB(3)에 출력한다. 이 안테나(2)로 수신하는 영상 신호는 다채널의 영상 신호가 중첩되어 이루어지며, 동화상 데이터가 예를 들면 MPEG(Moving Picture Experts Group) 방식으로 압축됨과 동시에 소정의 암호화 방식으로 암호화되어 있다.

텔레비전 장치(4)는 STB(3)를 개재시켜 NTSC(National Television System Committee) 방식의 동화상 데이터가 입력됨으로써 동화상을 표시한다. 또, 이 텔레비전 장치(4)는 HDTV일 때에는 STB(3)로부터 HD(High Definition) 규격에 준한 동화상 데이터가 입력됨으로써 동화상을 표시한다. 또, 이 텔레비전 장치(4)는 STB(3)에 의해 표시 상태가 제어되며, 정지 화상이나 그 밖의 문자 정보 등의 표시도 행한다.

STB(3)는 도 4에 도시하는 바와 같이, 안테나(2)로 수신한 영상 신호에 복조 처리를 실시하는 복조부(11)와, 동화상 데이터에 대해서 암호 해독 처리를 실시하는 디스크램블부(12)와, IEEE 1394 규격에 준거한 데이터 변환 처리 등을 실시하는 데이터 변환부(13)와, 소정의 채널에 있어서의 동화상 데이터를 추출하는 처리 등을 행하는 디멀티플랙서부(14)와, 화상 메모리(15)와, 디코드 처리를 행하는 MPEG 처리부(16)와, 디코드용 메모리(17)와, 텔레비전 장치(4)에서 화면 표시하기 위한 데이터로 변환하는 NTSC 처리부(18)와, 표시 제어부(19)와, 표시 메모리(20)와, 유저로부터의 지시가 입력되는 조작 입력부(21)와, RAM(Random Access Memory)(22)과, 각 부를 제어하는 CPU(Centra I Processing Unit)(23)를 구비한다.

이 STB(3)는 복조부(11), 디스크램블부(12), 데이터 변환부(13), 디멀티플랙서부(14), MPEG 처리부(16), 조작 입력부(21), RAM(22), CPU(23)가 버스에 접속되며, CPU(23)에 의해 해당 버스를 개재시켜 각 부의 처리 동작을 제어하도록 구성되어 있다.

복조부(11)는 안테나(2)로부터 예를 들면 동화상 스트림을 나타내는 아날로그 방식의 영상 신호가 입력된다. 이 복조부(11)는 안테나(2)로부터의 영상 신호에 복조 처리 및 A/D 변환 처리를 실시하며, 디지털 방식의 동화상 데이터로서디스크램블부(12)에 출력한다. 또, 이 복조부(11)는 버스를 개재시켜 CPU(23)로부터 제어 신호가 입력되며, 해당 제어 신호에 근거하여 복조 처리 및 A/D 변환 처리를 실시한다.

디스크램블부(12)는 복조부(11)로부터의 동화상 데이터에 대해서 암호 해독 처리를 행한다. 즉, 디스크램블부(12)에는 암호화된 동화상 데이터가 입력되며, 입력된 동화상 데이터의 암호화 방식에 따라서 암호 해독 처리를 행한다. 그리고, 디스크램블부(12)는 암호 해독 처리를 실시한 동화상 데이터를 데이터 변환부(13)에 출력한다. 이 디스크램블부(12)는 버스를 개재시켜 CPU(23)로부터 제어 신호가 입력되며, 예를 들면 제어 신호에 포함되는 암호 키 정보를 사용하여 암호 해독 처리를 행한다.

데이터 변환부(13)는 예를 들면 IEEE 1394 규격에 준한 인터페이스 회로로 이루어지며, CPU(23)로부터의 제어 신호에 따라서, 디스크램블부(12)로부터의 동화상 데이터에 대해서 IEEE 1394 규격에 준한 신호 처리를 실시함으로써, 입력된 동화상 데이터 또는 정지 화상 데이터를 IEEE 1394 규격에 준한 패킷에 포함시키는 처리를 행한다. 여기서, 데이터 변환부(13)는 예를 들면 동화상 데이터 등의 시간적으로 연속한 데이터를 송신할 때에는 아이소크로너스(Isochro nous) 패킷을 생성하며, 정지 화상 데이터, 커맨드 또는 접속 설정을 하기 위한 데이터 등의 정적인 데이터를 송신할 때에는 도 5에 도시하는 바와 같은 어싱크로너스(Asynchronous) 패킷(100)을 생성하는 처리를 행한다.

도 5에 도시하는 어싱크로너스 패킷(100)은 IEEE 1394 규격에 준거한 헤더부(101)와 데이터부(102)를 갖고 있다.

헤더부(101)에는 패킷 수신 측 ID, 즉 프린터 장치(5) ID를 나타내는 수신 측 ID(destination_ID), 전송처 레벨(t1 :transaction label), 재송 코드(rt:retry code), 전송 코드(tcode:transaction code), 우선도(pri:priority), 패킷 송신 측 ID, 즉 STB(3) ID를 나타내는 송신 측 ID(source_ID), 패킷 수신 측 메모리 어드레스를 나타내는 destinat ion_offset, 데이터 필드 길이(data_length), 확장 전송 코드(entended_tcode:entended transaction code), 헤더부 (101)에 대한 CRC를 나타내는 헤더 CRC(header_CRC:CRC of header field)가 격납된다.

또, 데이터부(102)에는 FCP(Function Control Protocol) 프로토콜 및 AV/C 프로토콜에 따른 데이터가 격납되는 데이터 필드와, 헤더부(102)에 대한 CRC를 나타내는 데이터 CRC(data_CRC)가 격납된다.

데이터 필드에는 도 6에 도시하는 바와 같이, FCP에 따른 정보로서, CTS(Command Transaction Set)와, 커맨드 타이프(Command type)와, 패킷 수신 측 서브 유닛 종류를 나타내는 서브 유닛 타이프(subunit_type)와, 패킷 수신 측 서브 유닛 ID(subunit_ID)이 격납된다. 여기서, 패킷 수신 측 서브 유닛은 프린터 장치(5)의 데이터 입력부(31)가 해당하며, 패킷 수신 측 서브 유닛 종류는 프린터 장치(5)의 경우에는 "00010" 으로 표현된다.

또, 데이터 필드에는 서브 유닛 ID에 계속해서, 프린터 장치(5)에 송신하는 정지 화상 데이터(data)나 프린터 장치(5)에 대한 커맨드(command)가 격납된다. 여기서, 데이터 필드에 격납되는 커맨드는 프린터 장치(5)를 제어하는 AV/C 커맨드라 호칭되는 커맨드 셋에 포함되는 커맨드이다. 여기서, 상기 CTS는 FCP의 종류를 분류하여, 예를 들면 송신되는 패킷이 커맨드일 때에, 그 값이 0000이면, 데이터 필드에는 IEEE 1394의 AV/C DigitalInterface Command 셋에서 정의된 AV/C 커맨드가 데이터부(102)에 격납되어 있다.

데이터 변환부(13)는 아이소크로너스 패킷을 외부에 출력할 때에는 아이소크로너스 패킷을 규칙적인 간격으로 송신한다.

데이터 변환부(13)는 어싱크로너스 패킷(100)에 프린터 장치(5)에서 인쇄하는 정지 화상 데이터를 포함시켜 송신할 때에는 도 7에 도시하는 바와 같이, 125마이크로초의 사이클 주기로 어싱크로너스 패킷(100)을 송신한다. 여기서, 데이터 변환부(13)는 우선 사이클 스타트(Cycle_start)를 나타내는 사이클 타임 데이터(cycle_time_data)를 헤더부(101) 포함한 어싱크로너스 패킷(100)인 사이클 스타트 패킷(111)을 송신하며, 소정 시간의 갭을 개재시켜 예를 들면 정지 화상 데이터를 보내는 취지를 나타내는 캡처(capture) 커맨드를 데이터부(102)에 포함한 커맨드 패킷(112)을 송신한다. 다음으로, 데이터 변환부(13)는 캡처 커맨드를 수신한 프린터 장치(5)에 데이터부(102)에 정지 화상 데이터를 격납한 데이터 패킷(113)을 사이클 주기마다 송신한다.

이 때, 데이터 변환부(13)는 정지 화상 데이터를 프린터 장치(5)에 출력할 때에는 비동기 어비트레이션(Asynchrono use Arbitration)에 따른다. 즉, 이 데이터 변환부(13)는 정지 화상 데이터를 프린터 장치(5)에 출력할 때에는 프린터 장치(5)로부터의 응답에 따라서, 정지 화상 데이터를 포함하는 각 어싱크로너스 패킷(100)을 출력한다.

구체적으로는 이 데이터 변환부(13)는 IEEE 1394 규격에 준한 시리얼 버스 관리 하에 트랜잭션 레이어, 링크 레이어, 물리 레이어에 있어서의 처리를 행한다. 이로써, 데이터 변환부(13)는 CPU(23)로부터의 제어에 따라서, 프린터 장치(5)와의 접속 관계를 설정함과 동시에, 정지 화상 데이터와 제어 정보인 오버헤드를 포함한 어싱크로너스 패킷(100)을 생성하고, IEEE 1394 규격에 준하여 접속된 프린터 장치(5)에 어싱크로너스 패킷(100)을 사이클 주기마다 송신함으로써 시분할 제어한다.

또, 이 데이터 변환부(13)는 STB(3)에서 수신한 동화상 데이터를 그대로 텔레비전 장치(4)에 의해 IEEE 1394 규격에 준한 처리를 행하지 않고 표시할 때에는 CPU(23)로부터의 제어 신호에 근거하여, 디스크램블부(12)로부터의 동화상 데이터를 디멀티플랙서부(14)에 출력한다.

디멀티플랙서부(14)는 데이터 변환부(13)로부터의 동화상 데이터에 중첩된 복수의 채널로부터 CPU(23)에 의해 지정 된 채널을 선별하는 채널 선별 처리를 행하여, 지정된 채널을 나타내는 동화상 데이터만을 MPEG 처리부(16)에 출력 한다.

또, 디멀티플랙서부(14)는 CPU(23)에 의한 제어에 의해 휘도 정보와 색차 정보로 이루어지는 정지 화상 테이터가 M PEG 처리부(16)로부터 입력되며, 해당 정지 화상 데이터를 화상 메모리(15)에 격납하여, CPU(23)로부터의 제어에 따라서 데이터 변환부(13)에 출력한다.

MPEG 처리부(16)는 CPU(23)로부터의 제어 신호에 근거하여, 디멀티플랙서부(14)로부터의 동화상 데이터에 대해서 MPEG 규격에 준거한 디코드 처리를 행함으로써 비압축 동화상 데이터로서 NTSC 처리부(18)에 출력한다. 이로써, MPEG 처리부(16)는 동화상을 구성하는 각 프레임을 휘도 정보(Y)와 색차 정보와(Cr, Cb)를 포함하는 화소 데이터로 이루어지는 화상(이하, YCC 화상이라 부른다.)이라 한다. 이 때, MPEG 처리부(16)는 디코드 처리 대상이 되는 복수의 프레임 단위의 동화상 데이터를 MPEG용 메모리(17)에 수시 기억시키면서 작업 영역으로서 사용한다.

여기서, MPEG 처리부(16)는 휘도 정보(Y)와 색차 정보(Cr)와 색차 정보(Cb)와의 표본화 주파수 비를 4:2:2, 즉 휘도 정보(Y)에 대해 색차 정보(Cr, Cb)를 세로 방향 또는 가로 방향에 있어서 반으로 삭감한 화소 포맷의 YCC 화상을 생성한다. 또, 이 MPEG 처리부(16)는 휘도 정보(Y)에 대해 색차 정보(Cr, Cb)를 세로 방향 및 가로 방향에 있어서 반으로 삭감하여, 4:2:0으로 한 화소 포맷의 YCC 화상을 생성한다. 여기서 4:2:0의 화소 포맷으로는 예를 들면 홀수라인이 색차 정보(Cb)를 포함하지 않고 4:2:0의 표본화 주파수 비가 됨과 동시에 짝수 라인이 색차 정보(Cr)를 포함하지 않고 4:0:2의 표본화 주파수 비가 되지만, 한쪽을 대표하여 4:2:0이라 표현된다. 또, 이 MPEG 처리부(16)는 4:2 또는 4:2:0의 화소 포맷뿐만 아니라, 색차 정보(Cr, Cb)를 삭감하지 않은 4:4:4의 화소 포맷의 YCC 화상도 생성해도 된다.

또, MPEG 처리부(16)는 CPU(23)로부터의 압축율 등을 나타내는 제어 신호에 근거하여, NTSC 처리부(18)로부터의 동화상 데이터에 대해서 MPEG 규격에 준거한 인코드 처리를 행함으로써 시간 축 방향 및 공간 방향으로 동화상 데이터를 압축하여 디멀티플랙서부(14)에 출력한다. 이 때, MPEG 처리부(16)는 MPEG용 메모리(17)에 인코드 처리 대상이 되는 복수의 프레임 단위의 동화상 데이터를 격납하는 처리를 행한다.

NTSC 처리부(18)는 MPEG 처리부(16)로부터 입력된 동화상 데이터를 텔레비전 장치(4)가 화면 표시 가능한 NTS C 방식의 동화상 데이터로 하도록 인코드 처리를 행하여 텔레비전 장치(4)에 출력한다.

표시 제어부(19)는 NTSC 처리부(18)에 의해 NTSC 방식의 동화상 데이터를 텔레비전 장치(4)에 표시하기 위한 처리를 행한다. 이 때, 표시 제어부(19)는 표시 메모리(20)에 처리 대상이 되는 데이터를 수시 격납한다.

구체적으로는 이 표시 제어부(19)는 텔레비전 장치(4)에 따라, 동화상 데이터를 구성하는 프레임 단위의 텔레비전 장치(4)에 표시할 때의 화상 사이즈를 예를 들면 NTSC 방식의 720화소×480화소 또는 HD(High Definition) 방식의 가로 1920화소×세로 1080화소로 하도록 제어하는 처리를 행한다. 이 때, 표시 제어부(19)는 1화소의 데이터를 생성할 때, 휘도 신호(Y)와 색차 신호(Cr)와 색차 신호(Cb)와의 표본화 주파수 비를 4:2:2의 화소 포맷으로 사용한 16비트의 정보 또는 휘도 신호(Y)와 색차 신호(Cr)와 색차 신호(Cb)와의 표본화 주파수 비를 4:2:0의 화소 포맷으로 사용한 정보를 사용하여 텔레비전 장치(4)에 출력하는 처리를 행한다.

더욱이, 이 표시 제어부(19)는 상술한 바와 같은 방식으로 텔레비전 장치(4)에 출력할 경우뿐만 아니라, 도 8에 도시하는 바와 같이, 화상 사이즈(pixel_x, pixel_y), 주사 방식(interlaced/progressive), 화소 포맷(pixel format), 화면 중황비(screen aspect ratio), 화소 중황비(pixel aspect ratio), 데이터량(image size)를 정의한 이미지 타이프 (Image Type)의 화상을 생성해도 된다. 이 도 8에 있어서, 예를 들면 pixel_y가 720화소, 화소 포맷이 4:2:2이며, 화면 중황비가 16:9인 이미지 타이프를 720_422_16×9라부르고 있다. 여기서, 표시 제어부(19)는 미국에서 사용되고 있는 디지털 TV 방송 방식의 이미지 타이프인 720_422_16×9 및 720_420_16×9의 화상도 생성 가능하게 이루어져 있다. 또, 이 표시 제어부(19)는 PAL(Phase Alternation by Line) 방식의 이미지 타이프인 576_422_4×3 및 522_420_4×3 화상도 생성 가능하게 이루어져 있다.

조작 입력부(21)는 예를 들면 STB(3)에 설치되어 있는 조작 버튼 등을 유저가 조작함으로써, 조작 입력 신호를 생성하여 CPU(23)에 출력한다. 구체적으로는 조작 입력부(21)는 예를 들면 유저에 의해 텔레비전 장치(4)에 표시되어 있는 동화상을 일시 정지하여 프린터 장치(5)에 의해 정지 화상을 인쇄하는 취지의 조작 입력 신호를 생성한다.

또, 조작 입력부(21)는 프린터 장치(5)에 의해 정지 화상을 인쇄하는 취지의 조작 입력 신호를 생성할 때에 있어서, 예를 들면 텔레비전 장치(4)에 표시된 인쇄 설정 화면에 따라서, 인쇄 용지 타이프 설정, 인쇄 용지 사이즈 설정, 인쇄 품질 설정, 인쇄 색 설정, 위치 오프셋 설정, 레이아웃 설정을 지정하는 조작 입력 신호를 생성하여 CPU(23)에 출력한다.

CPU(23)는 예를 들면 조작 입력부(21)로부터의 조작 입력 신호에 근거하여, STB(3)를 구성하는 상술한 각 부를 제어하는 제어 신호를 생성한다.

CPU(23)는 예를 들면 안테나(2)로 수신한 영상 신호를 텔레비전 장치(4)에 표시할 때에는 상술한 복조부(11), 디스크램블부(12), 데이터 변환부(13), 디멀티플랙서부(14), MPEG 처리부(16)에 제어 신호를 출력함으로써, 동화상 데이터에 대해 복조, 암호 해독 처리, 채널 선별 처리, MPEG 규격에 준거한 디코드처리를 행하도록 제어한다.

또, 이 CPU(23)는 조작 입력부(21)로부터의 조작 입력 신호에 의해 텔레비전 장치(4)에 표시된 동화상 중, 프레임 단위의 정지 화상을 캡처할 때에는 조작 입력 신호가 입력된 시각에 있어서 표시 메모리(20)에 격납되어 있는 프레임 단위의 정지 화상 데이터를 화상 메모리(15)에 판독하도록 제어 신호를 생성한다.

더욱이, 이 CPU(23)는 조작 입력부(21)로부터 인쇄 설정을 하는 취지의 조작 입력 신호가 입력되었을 때에는 텔레비전 장치(4)에 인쇄 설정 화면을 표시하도록 표시 제어부(19)를 제어하며, 상술한 각종 인쇄 설정에 따른 조작 입력 신호를 데이터 변환부(13)에 출력하도록 제어한다.

더욱이, 이 CPU(23)는 정지 화상 데이터를 생성한 화상에 대해서 프린터 장치(5)에 의해 인쇄하는 취지의 조작 입력 신호가 입력되었을 때에는 디멀티플랙서부(14) 및 데이터 변환부(13)를 제어함으로써, 화상 메모리(15)에 격납된 프 레임 단위의 정지 화상 데이터로, 휘도 정보(Y)와 색차 정보(Cr, Cb)로 이루어지는 YCC 화상을 IEEE 1394 규격에 준거한 인터페이스 회로인 데이터 변환부(13)를 개재시켜 프린터 장치(5)에 출력하도록 제어한다.

이 때, 데이터 변환부(13)는 CPU(23) 제어에 의해, 정지 화상 데이터를 프린터 장치(5)에 송신할 때에는 도 6에 도시한 서브 유닛 ID에 계속해서 도 9에 도시하는 바와 같은 캡처 커맨드를 격납한 어싱크로너스 패킷(100)을 송신함으로 써, 프린터 장치(5)에 정지 화상 데이터를 수신하는 캡처 커맨드를 송신한다.

도 9에 도시하는 캡처 커맨드에는 opcode(operation code: 조작 부호)로서 캡처(CAPTURE) 커맨드가 16진수의 X X₁₆ 으로 표현되어 격납된다. 계속해서, operand[0]으로서 subfunction이 격납되며, operand[1]로서 상위 5비트에 source_subunit_type, 하위 3비트에 source_subunit_ID가 격납되며, operand[2]로서 source_plug가 격납되며, o perand[3]으로서 status가 격납되며, operand[4]로서 dest_plug가 격납된다. 계속해서, 캡처 커맨드에는 operand[5] 내지 operand[16]으로서 print_job_ID가 격납되며, operand[17] 내지 operand[20]으로서 data_size가 격납되며, operand[21] 내지 operand[22]로서 image_size_x가 격납되며, operand[23] 내지 operand[24]로서 image_size_y가 격납되며, operand[27] 내지 operand[29]가 re served가 되며, operand[30]으로서 Next_pic이 격납되며, operand[31] 내지 operand[32]로서 Next_page가 격납된다.

여기서, 상기 source_subunit_type는 STB(3) 측에서 어싱크로너스 패킷(100)을 송신하는 서브 유닛 종류를 나타내는 정보로, 상기 source_subunit_ID와는 어싱크로너스 패킷(100)을 송신하는 서브 유닛 ID이며, 상기 source_plug는 어싱크로너스 패킷(100)을 송신하는 서브 유닛의 플래그 번호이며, 상기 dest_plug란 어싱크로너스 패킷(100)을 수신하는 서브 유닛의 플러그 번호이며, 상기 print_job_ID란 1장의 정지 화상을 인쇄하는 처리(job) ID이며, 상기 data_size란 프린터 장치(5)에서 정지 화상을 인쇄할 때에 STB(3)로부터 프린터 장치(5)에 송신하는 데이터량이며, 상기 image_size_x란 도 8에 도시한 이미지 타이프에 대응한 x방향의 화소수이며, 상기 image_size_y란 이미지 타이프에 대응한 Y방향 화소수이며, 상기 image_format_specifier란 상기 이미지 타이프 명칭이다. 또, 상기 reserved는

임의의 비트수로 구성되며, 캡처 커맨드 전체 비트수를 4의 배수로 하기 위해 설치된다. 이 reserved를 설치함으로써, IEEE 1394 규격에 준거한 패킷을 전송할 때의 데이터 단위에 적합한 비트수가 된다.

상기 image_format_specifier에는 도 10에 도시하는 바와 같이, 이미지 타이프 명칭이 16진수 값(Value)으로 구별되어 격납되어 있다. 이 도 10에 있어서, 이미지 타이프 명칭 중 " chunky" 는 점 순차로 데이터 변환부(13)로부터 프린터 장치(5)에 송신되는 정지 화상인 것을 나타내며, " liner" 는 선 순차로 데이터 변환부(13)로부터 프린터 장치(5)에 송신되는 정지 화상인 것을 나타낸다.

또, 상기 image_format_specifier에는 도 10에 도시하는 바와 같이 이미지 타이프 명칭을 기술하는 경우뿐만 아니라, 도 11에 도시하는 바와 같이, 16진수 값(Value, Sub - value)으로 표현되며, 도 10에 도시하는 이미지 타이프와는 달리 화소수에 관한 정보를 포함하지 않는 이미지 타이프 명칭을 격납해도 된다. 이 때, 프린터 장치(5)에서 인쇄하는 화소수는 도 9에 도시하는 캡처 커맨드의 operand[21]~[22]에 기술되어 있는 image_size_x, operand[23]~[24]에 기술되어 있는 image_size_y에 의해 정의된다.

예를 들면 상기 image_format_specifier의 msb에 16진수로 00 (Meaning:sRGB raw) 이라 기술되어 있을 때에는 화상 데이터를 RGB 데이터로서 프린터 장치(5) 측에 송신하는 것을 나타낸다. 더욱이, 상기 image_format_specifier의 msb에 16진수로 00이라 기술되며, lsb에 16진수로 00 (Type:sRGB raw) 이라 기술되어 있을 때에는 RGB 데이터를 R, G, B, R, G, B, · · · 순으로 송신하며, lsb에 01 (Type:sRGB raw, quadlet) 이라 기술되어 있을 때에는 R, G, B, 0, R, G, B, 0, · · · 순으로 송신한다. 즉, msb에 00이라 기술되어 있을 때에는 B와 R 사이에 0데이터를 송신함으로 써, R, G, B, 0를 1단위의 4바이트 데이터로서 송신한다.

또, 상기 image_format_specifier의 msb에 16진수로 01 (Meaning:YCC raw)이라 기술되어 있을 때에는 화상 데이터를 YCC 데이터로서 프린터 장치(5) 측에 송신하는 것을 나타낸다. 더욱이, 상기 image_format_specifier의 msb에 16진수로 01이라 기술되고, lsb에 16진수로 0X(X는 부정수) (Type:YCC4:2:2 raw/pixel)라 기술되어 있을 때에는 휘도 정보와 색차 정보를 4:2:2의 화소 포맷 데이터를 점 순차(chunky)로 송신하며, lsb에 1X(Type:YCC4:2:2 raw/line)라 기술되어 있을 때에는 4:2:2의 화소 포맷 데이터를 선 순차(liner)로 송신하며, lsb에 16진수로 8X(Type:YCC4:2:2 raw/chunky)라 기술되어 있을 때에는 취도 정보와 색차 정보를 4:2:0의 화소 포맷 데이터를 점 순차(chunky)로 송신하며, lsb에 9X(Type:YCC4:2:0 raw/line)라 기술되어 있을 때에는 4:2:0의 화소 포맷 데이터를 선 순차 (liner)로 송신하는 것을 나타낸다.

또, 상기 image_format_specifier의 msb에 16진수로 01 (Meaning:YCC raw)이라 기술되고, Isb에 16진수의 X0 내지 XC가 기술되어 있을 때에는 화소비 (Pixel ratio 1.00×1.00, pixel ratio 1.19×1.00 또는 Pixel ratio 0.89×1.00), 색 공간 지정 (ITU - R (International Telecommunications Union - Radiocommunication Sector) BT.709 - 2, ITU - R BT.601 - 4 또는 ITU - R BT.1203), 점 순차(chunky) 또는 선 순차(liner)가 지정되어 데이터를 송신한다. 더욱이, Isb에 16진수의 X0 내지 X4가 기술되어 있을 때에는 인터레이스 화상을 송신하는 것을 나타내며, Isb에 X8 내지 XC가 기술되어 있을 때에는 프로그래시브 화상을 송신하는 것을 나타낸다. 더욱이 또, Isb에 X0 내지 X2 및 X8 내지 XA가 기술되어 있을 때에는 ITU - R BT. 709 - 2에 준거한 데이터를 송신하는 것을 나타내며, X3 및 XB가 기술되어 있을 때에는 ITU - R BT.601 - 4에 준거한 데이터를 송신하는 것을 나타내며, X4 및 XC가 기술되어 있을 때에는 ITU - R BT.1203(PAL 방식)에 준거한 데이터를 송신하는 것을 나타낸다.

더욱이, 상기 image_format_specifier의 msb에 16진수로 10(Meaning:DCF Object)이라 기술되어 있을 때에는 화상 데이터를 디지털 카메라에 있어서 규정된 포맷(DCF:Design rule for Camera format)으로서 프린터 장치(5) 측에 송신하는 것을 나타낸다. 더욱이, 상기 image_format_specifier의 msb에 16진수로 10이라 기술되며, lsb에 16진수로 00(Type:Exif2.1)이라 기술되어 있을 때에는 화상 부분이 JPEG 형식으로 촬영 상황이나 조건 등을 기록한 헤더가부가된 Exif 형식의 데이터를 송신하는 것을 나타낸다. 또, lsb가 16진수로 01(Type:JFIF(JPEG File Interplay Format))이라 기술되어 있을 때에는 JFIF 형식의 데이터를 송신하는 것을 나타내며, lsb가 02(Type:TIFF(Tag Image File Format))라 기술되어 있을 때에는 TIFF 형식의 데이터를 송신하는 것을 나타내며, 0F(Type:JPEG(joint photographic coding experts group))와 기술되어 있을 때에는 JPEG 형식으로 화상 데이터를 프린터 장치(5)측에 송신하는 것을 나타낸다.

더욱이 또, 상기 image_format_specifier의 msb에 16진수로 80 내지 8F라 기술되어 있을 때에는 다른 포맷에 따른 형식으로 송신하는 것을 나타내며, 더욱이 lsb에 기술되어 있는 00 내지 FF에서 지정된 포맷의 데이터를 송신한다.

더욱이 또, 상기 image_format_specifier에는 상술한 예와는 별도로 msb에 16진수로 FE(Meaning:Special meaning)으로, lsb가 00(Type:Unit Plug defined), 01(Don't care)을 설정할 수 있다.

데이터 변환부(13)는 캡처 커맨드를 격납한 어싱크로너스 패킷(100)을 송신하여, 프린터 장치(5)로부터의 ACK(ack nowledge)를 수신한 후에, 프린터 장치(5)에 정지 화상 데이터를 포함한 어싱크로너스 패킷(100)을 송신한다.

정지 화상 데이터의 송신 규칙은 도 12 내지 도 15에 도시하게 된다.

도 12는 YCC4:2:2의 화소 포맷의 정지 화상 데이터를 점 순차(chunky)로 프린터 장치(5)에 송신할 때의 화소 데이터의 송신 순서를 송신한다.

도 13은 YCC4:2:0의 화소 포맷의 정지 화상 데이터를 점 순차(chunky)로 프린터 장치(5)에 송신할 때의 화소 데이터의 송신 순서를 도시한다.

도 14는 YCC4:2:2의 화소 포맷의 정지 화상 데이터를 선 순차(liner)로 프린터 장치(5)에 송신할 때의 화소 데이터의 송신 순서를 도시한다.

도 15는 YCC4:2:0의 화소 포맷의 정지 화상 데이터를 선 순차(liner)로 프린터 장치(5)에 송신할 때의 화소 데이터의 송신 순서를 도시한다.

또한, 도 12 내지 도 15에 있어서, $Y_i(L_j)$ 는 라인 번호(j)에 포함되는 화소 번호(i)의 휘도 정보(Y)를 도시한다. 휘도 정보(Y)의 화소를 지정할 때에 사용되는 i는 1 내지 N까지의 정수치가 되며, j는 1 내지 M까지의 정수치가 된다. Cb_i (L_j)는 라인 번호(j)에 포함되는 화소 번호(i)의 색차 정보(Cb)를 나타낸다. 색차 정보(Cb)의 화소를 지정할 때에 사용되는 i는 1, 3, $5 \cdot \cdot \cdot \cdot$ N-1 값이 되며, j는 YCC4:2:2의 경우에는 1 내지 M까지의 정수치가 되며, YCC4:2:0의 경우에는 1, 3, $5 \cdot \cdot \cdot \cdot$ N-1 값이 된다. $Cr_i(L_j)$ 는 라인 번호(j)에 포함되는 화소 번호(i)의 색차 정보(Cr)를 나타낸다. 색차 정보(Cr)의 화소를 지정할 때에 사용되는 i는 1, 10, 11 값이 되며, 12 YCC4:2:2의 경우에는 11 내지 M까지의 정수치가 되며, YCC4:2:0의 경우에는 13, 15 · · · · N-11 값이 된다. N은 11 라인 내의 토탈 화소수를 나타낸다. M은 11 화면 내의 토탈 라인수를 나타낸다.

데이터 변환부(13)는 예를 들면, 도 10에 도시하는 이미지 타이프가 480_422_4×3으로, x방향으로 화소 번호(1 내지 720)가 부가되며, y방향으로 라인 번호(1 내지 480)가 부가된 화소로 이루어지며, 정지 화상을 어싱크로너스 패킷 (100)에 포함시켜 점 순차(chunky)로 정지 화상 데이터를 프린터 장치(5)에 송신할 때에는 도 16에 도시하는 바와 같이 화소 데이터를 송신한다.

즉, 데이터 변환부(13)는 어드레스 오프셋(address_offset)에 계속해서 라인 번호(1)에 포함되는 화소 번호(1)에 대

한 휘도 정보(Y1)(L1), 휘도 정보(Y2)(L1), 색차 정보(Cb1)(L1), 색차 정보(Cr1)(L1)를 송신한다. 그리고, 데이터 변환부(13)는 라인 번호(1)에 포함되는 화소 번호(720)까지의 화소 데이터에 계속해서, 다음 라인 번호(2) 이후의 휘도 정보 및 색차 정보를 송신하며, 라인 번호(480)에 포함되는 화소 번호(720)까지의 화소 데이터를 송신함으로써 1장의 정지 화상을 나타내는 정지 화상 데이터 송신을 종료한다.

또, 데이터 변환부(13)는 예를 들면, 이미지 타이프가 480_420_4×3일 때에는 도 17에 도시하는 바와 같이, 어드레스 오프셋(address_offset)에 계속해서 라인 번호(1)에 포함되는 화소 번호(1)에 대한 휘도 정보(Y1)(L1), 휘도 정보(Y2)(L1), 휘도 정보(Y1)(L2), 휘도 정보(Y2)(L2)를 송신한 후에, 화소 번호(1)의 화소 데이터에 포함되는 색차 정보(Cb1)(L1), 색차 정보(Cr1)(L1), 휘도 정보(Y3)(L1), 휘도 정보(Y4)(L1)를 송신한다. 그리고, 데이터 변환부(13)는 라인 번호(480)에 포함되는 화소 번호(720)까지의 화소 데이터를 송신함으로써 1장의 정지 화상을 나타내는 정지 화상 데이터 송신을 종료한다.

더욱이, 데이터 변환부(13)는 예를 들면, 이미지 타이프가 480_422_4×3인 정지 화상 데이터를 어싱크로너스 패킷(100)에 포함시켜 선 순차(line)로 송신할 때에는 도 18에 도시하는 바와 같이, 어드레스 오프셋(address_offset)에 계속해서 라인 번호(1)에 대한 휘도 정보(Y1)(L1), 휘도 정보(Y2)(L1), 휘도 정보(Y3)(L1), 휘도 정보(Y4)(L1), ···, 휘도 정보(Y720)(L1)까지 송신한 후에, 라인 번호(1)에 대한 색차 정보(Cb1)(L1), 색차 정보(Cr1)(L1), ···, 색차 정보(Cb720)(L1), 색차 정보(Cr720)(L1)를 송신하고, 계속해서 라인 번호(2) 이후의 휘도 정보 및 색차 정보를 송신하며, 라인 번호(480)의 색차 정보(Cr720)(L480)를 송신함으로써 정지 화상 데이터 송신을 종료한다.

더욱이 또, 데이터 변환부(13)는 예를 들면, 이미지 타이프가 480_420_4×3인 정지 화상 데이터를 어싱크로너스 패킷(100)에 포함시켜 선 순차(line)로 송신할 때에는 도 19에 도시하는 바와 같이, 우선 라인 번호(1)의 휘도 정보(Y 1)(L1) 내지 휘도 정보(Y720)(L1)를 송신하며, 계속해서 라인 번호(2)의 휘도 정보(Y1)(L2) 내지 휘도 정보(Y720)(L2)를 송신하며, 계속해서 라인 번호(1)의 색차 정보(Cb1)(L1), 색차 정보(Cr1)(L1) 내지 색차 정보(Cb720)(L1), 색차 정보(Cr719)(L1)를 송신하며, 라인 번호(1) 및 라인 번호(12)의 화소 데이터 송신을 행하며, 계속해서 라인 번호(3)이후의 휘도 정보 및 색차 정보를 송신하며, 색차 정보(Cb719)(L479), 색차 정보(Cr719)(L479)까지 송신함으로써 정지 화상 데이터 송신을 종료한다.

더욱이 또, 데이터 변환부(13)는 조작 입력부(21)로부터의 조작 입력 신호에 따라서 인쇄 용지 타이프 설정, 인쇄 용지 사이즈 설정, 인쇄 품질 설정, 인쇄 색 설정, 위치 오프셋 설정, 레이아웃 설정을 지정하여 인쇄 설정을 행할 때에는 IEEE 1394 규격으로 이미 제안되어 있는 operation_mode_parameters(이하, 오퍼레이션 모드(1) 패러미터라 부른다.)와는 다른 도 20에 도시하는 오퍼레이션 모드(2) 커맨드에 포함되는 오퍼레이션 모드(2) (OPERATION MODE2) 패러미터(이하, 오퍼레이션 모드(2) 패러미터라 부른다.)를 커맨드 패킷에 격납한다.

여기서, 상기 오퍼레이션 모드(1) 패러미터는 대, 중, 소 3단계에서 화상과 인쇄 용지와의 크기 관계를 설정하는 정보 (sizing), 인쇄 용지의 인쇄 방향을 설정하는 정보(orientations), 화상의 인쇄 위치를 설정하는 정보(posx, posy), 동일 화상을 인쇄 용지 내에 몇 개 인쇄할지를 나타내는 정보(multiple_tiled), 1페이지에 몇 개 화상을 인쇄할지를 나타내는 정보(number_of_pics), 몇 장 인쇄할지를 나타내는 정보(number_of_copies)를 포함하여 구성되어 있다.

도 20에 도시하는 오퍼레이션 모드(2) 커맨드에는 opcode(operation code:조작 부호)로서 오퍼레이션 모드(2)(OP ERAT10N MODE(2)) 커맨드를 나타내는 정보가 16진수로 "51"이라 표현되어 격납된다. 계속해서, operand[0]로

서 subfuction이 격납되며, operand[1]로서 status가 격납되며, operand[2] 내지 operand[4]로서 reserved가 격납된다. 계속해서, operand[5] 내지 operand[16]로서 print_job_ID가 격납되며, operand[17] 내지 operand[31]로서 오퍼레이션 모드(2) 커맨드가 구체적인 인쇄 설정 내용을 나타내는 Oparation_mode2_parameters(오퍼레이션 모드(2) 패러미터)가 격납된다.

상기 subfunction에는 도 21에 도시하는 바와 같이, 16진수의 01로 표현되어 "get"이라 호칭되는 정보, 16진수의 02로 표현되어 "set"이라 호칭되는 정보 또는 16진수의 03으로 표현되어 "query"라 호칭되는 정보가 격납된다.

데이터 변환부(13)는 프린터 장치(5)의 인쇄 설정 정보를 나타내는 오퍼레이션 모드(2) 패러미터를 취득할 때에는 s ubfunction에 "get"을 격납하며, 프린터 장치(5)의 오퍼레이션 모드(2) 패러미터 설정을 할 때에는 "set"을 격납하며, 프린터 장치(5)의 오퍼레이션 모드(2) 패러미터가 설정 가능한 범위를 알고 싶을 때에는 "query"를 격납한다. 또한, 상기 16진수로 01, 02, 03 이외에 표현된 정보일 때에는 subfunction은 Reserved가 된다.

또, 후술하는 데이터 입력부(31)는 데이터 변환부(13)로부터의 오퍼레이션 모드(2) 커맨드에 대해 응답을 할 때에는 상기 subfunction 내용을 변화시킨 어싱크로너스 패킷을 생성한다.

상기 Oparation_mode2_parameters에는 도 22에 도시하는 바와 같이, 인쇄 용지 종류 정보(media_type), 인쇄 용지 사이즈 정보(Media_size), 예비 영역(reserved), 인쇄 품질 정보(Print_quality), 인쇄 색 정보(Mono_color), 인쇄 오프셋 위치 정보(offset), 레이아웃 설정 정보(layout_type)가 격납된다.

상기 인쇄 용지 종류 정보(media_type)는 도 23 및 도 24에 도시하는 바와 같이, 각 설정 항목마다 1비트가 할당되며, 복수의 설정 항목이 순차로 나열하는 구성으로 되어 있다. 즉, device_dependent, Plain_paper(보통지), Bond_pape r(실), Special_paper(전용지), Photo_paper(포토 용지), Transparency_film(OHP 필름)이 순차로 나열하는 구성으로 되어 있으며, 각 설정 항목에 대한 비트가 데이터 변환부(13) 또는 데이터 입력부(31)에 의해 정해짐으로써 인쇄 용지 종류를 지정한다. 또, 인쇄 용지 종류 정보는 유저가 인쇄 용지를 특정하지 않으며, 프린터 장치(5) 측에서 최적인쇄 용지 종류를 선택시킬 때에는 device_dependent에 대해서의 비트가 정해진다.

상기 인쇄 용지 사이즈 정보(Media_size)는 도 25 및 도 26에 도시하는 바와 같이, device_dependent, A5(ISO an d JIS A5), A4(ISO and JIS A5), B5(JIS B5), Executive(US Executive), Letter(US Letter), Legal(US Lega I), Reserved, Hagaki(엽서), Oufuku_hagaki(왕복 엽서), A6(ISO and JIS A6 Card), Index_4×6(US Index Ca rd 4"×6", Index_5×8(US Index Card 5"×3", A3(ISO A3), B4, Lagel_1×17, Commercial10_portrait(US Commercial#10(portrait)), Commercial10_landscape(US Commecial#10(landscape)), DL(International DL), C6(International C6), A2(US A2), Custom(Custom paper)이 격납된다.이 인쇄 용지 사이즈 정보는 각 설정 항목에 대한 비트가 데이터 변환부(13) 또는 데이터 입력부(31)에 의해 정해짐으로써 인쇄 용지 사이즈를 지정한다.

또, 상기 인쇄 용지 사이즈 정보(Media_size)의 다른 예로서는 도 27, 도 28 및 도 29에 도시하는 바와 같이, devec e_dependent, other가 격납되고, 계속해서 규격화되어 있는 letter (North American letter size), legal (North American legal size), na_10×13_envelope (North American 10×13 envelope), na_9×12_envelope (North American 9×12 envelope), na_number_10_envelope (North American 10 business envelope), na_7×9_envelope (North American 7×9), na_9×11_envelope (North American 9×11), na_10×14_envelope (North American 10×14 envelope), na_6×9_envelope (North American 6×9 envelope), na_10×15_envelope (North American 10×15 envelope), a (engineering A), b (engineering B), c (engineering C), d (engineering D), iso a0 (ISO A0), iso a1 (ISO A1), iso a2 (ISO A2), iso a3 (ISO A3), iso a4 (ISO A4), iso a5 (ISO A5), iso a6 (ISO A6), is o a7 (ISO A7), iso a8 (ISO A8), iso a9 (ISO A9), iso a10 (ISO A10), iso b0 (ISO B0), iso b1 (ISO B1), iso b2

(ISO B2), iso b3(ISO B3), iso b4(ISO B4), iso b5(ISO B5), iso b6(ISO B6), iso b7(ISO B7), iso b8(ISO B8), iso b9(ISO B9), iso b10(ISO B10), iso c0(ISO C0), iso c1(ISO C1), iso c2(ISO C2), iso c3(ISO C3), iso c4 (ISO C4), iso c5(ISO C5), iso c6(ISO C6), iso c7(ISO C7), iso c8(ISO C8), iso designated (ISO Designated Long), jis b0(JIS B0), jis b1(JIS B1), jis b2(JIS B2), jis b3(JIS B3), jis b4(JIS B4), jis b5(JIS B5), jis b6(JIS B6), jis b7(JIS B7), jis b8(JIS B8), jis b9(JIS B9), jis b10(JIS B10), index_4×6(North American I ndex Card 4"×6"), index_5×8(North American Index Card 5"×8"), japanese_hagaki(Japanese Hagaki P ostcard), japanese_ouhuku_hagaki(Japanese Ouhuku_Hagaki Postcard)가 순차로 격납되는 구성으로 되어 있으며, 각 설정 항목에 대한 비트가 데이터 변환부(13) 또는 데이터 입력부(31)에 의해 정해짐으로써 인쇄 용지 사이즈를 지정한다.

상기 인쇄 품질 정보(Print_quality)는 도 30 및 도 31에 도시하는 바와 같이, device_dependent, economy(속도 우선), normal(보통), Best(화질 우선)가 격납된다. 이 인쇄 품질 정보는 각 설정 항목에 대한 비트가 데이터 변환부(13) 또는 데이터 입력부(31)에 의해 정해짐으로써 인쇄 품질을 지정한다.

상기 인쇄 색 정보(Mono_color)는 도 32 및 도 33에 도시하는 바와 같이, device_dependent, mono(흑백 인쇄), c olor(컬러 인쇄)가 격납된다. 이 인쇄 색 정보는 각 설정 항목에 대한 비트가 데이터 변환부(13) 또는 데이터 입력부(31)에 의해 정해짐으로써 인쇄 색을 지정한다.

또, 상기 인쇄 색 정보(Mono_color)의 다른 예로서는 도 34 및 도 35에 도시하는 바와 같이, device_dependent, bl ack_white(흑백 인쇄), mono(흑백(그레이 스케일) 인쇄), color(컬러 인쇄)가 격납된다.

상기 인쇄 오프셋 위치 정보(offset)는 도 36 및 도 37에 도시하는 바와 같이, Offset_top, Offset_left가 격납된다. 상기 Offset_top 및 Offset_left는 16진수의 X000 내지 X999 사이에서 표현되며, BCD(binary coded decimal: 2진화 10진법 시스템)를 사용하여 2바이트로 오프셋 위치를 지정한다. 여기서, 상기 X가 16진수의 0인 때는 인쇄 용지의 안쪽 방향(플러스)의 인쇄 개시 위치를 나타내며, 8인 때는 인쇄 용지의 바깥 측 방향(마이너스)의 인쇄 개시 위치를 나타내며, 하위 3자리수 중 2자리수로 정수를 표현하여 나머지 1자리수로 소수점 이하를 표현한다. 이로써, 인쇄 용지의 좌측 위의 원점 위치를 위(top), 왼쪽(left)의 종이 끝으로부터의 폭으로 00.0mm 내지 99.9mm의 범위 내에서 지정하여 인쇄 개시 위치를 지정한다. 또, 인쇄 오프셋 위치 정보는 16진수의 FFFF라 표현되었을 때에는 device_dependent가 된다. 더욱이, 이 인쇄 오프셋 위치 정보는 subfunction이 오퍼레이션 모드(2) 패러미터가 설정 가능한 범위를 묻는 qualy일 때에는 설정 가능한 최대치가 격납된다.

상기 레이아웃 설정 정보(Layout_type)는 도 38 및 도 39에 도시하는 바와 같이, Layout_type가 4바이트로 격납된다. 이 레이아웃 설정 정보는 16진수의 00000000 내지 0FFFFFFF 사이에서 표현됨으로써 레이아웃 종류를 나타내며, FFFFFFFF라 표현되었을 때에는 device_dependent가 된다.

또, 상술한 데이터 출력부(13)는 상술한 도 20에 도시하는 바와 같은 커맨드의 다른 일례로서, 도 40에 도시하는 바와 같이, 상술한 오퍼레이션 모드(1)와, 오퍼레이션 모드(2)를 단일 커맨드로서 프린터 장치(5) 측에 출력해도 된다.

이 오퍼레이션 모드 커맨드는 도 40에 도시하는 바와 같이, opcode에 오퍼레이션 커맨드인 취지가 16진수의 41로 표현되며, subfunction, status, next_pic, next_page, print_job_ID에 계속해서, operand[17] 내지 operand[24]에 상술한 오퍼레이션 모드(1) 패러미터에 대응하는 operation_mode_parameters, operand[25] 내지 operand[29]에 상술한 도 20의 오퍼레이션 모드(2) 커맨드에 포함되는 오퍼레이션 모드(2) (OPERATION MODE2) 패러미터 (opera tion_mode2_parameters)에 대응하여 인쇄 용지 종류 정보, 인쇄 용지 사이즈 정보, 인쇄 품질 정보, 인쇄 색 정보, 인쇄 오프셋 위치 정보, 레이아웃 설정 정보를 나타내는 operation_mode_optional_parameters가 격납된다. 이러한 오퍼레이션 커맨드는 operation_mode_parameters 부분이 표준 설정이 되며, operation_mode_optional_parameters 부분이 확장 설정되어 데이터 변환부(13)와 데이터 입력부(31) 사이에서 처리된다.

상기 operation_mode_parameters에는 상술한 바와 같이, 오퍼레이션 모드(1) 커맨드에 격납되어 있는 내용과 동일 한 정보가 격납된다.

상기 operatil_mode_optional_parameters에는 도 41에 도시하는 바와 같이, 상술한 도 20에 도시한 오퍼레이션 모드(2) 커맨드에 격납되어 있는 도 22에 도시하는 Operation_mode2_parameters와 마찬가지로, 프린터 장치(5)에서 인쇄하는 인쇄 용지 종류를 나타내는 medai_type, 프린터 장치(5)에서 인쇄하는 인쇄 용지 치수를 나타내는 media_size, 프린터 장치(5)에서 인쇄할 때의 인쇄 품질을 나타내는 print_quality, mono_color가 격납되며, 더욱이 rende ring intent가 격납되어 있다.

프린터 장치(5)는 도 4에 도시하는 바와 같이, 프린터 장치(5)로부터 정지 화상 데이터를 입력하는 데이터 입력부(31)와, 인쇄 제어 프로그램이 격납된 ROM(Read Only Memory)(32)와, 피인쇄물에 인쇄를 행하는 프린트 엔진(33)과, RAM(34)과, 구성하는 각 부를 제어하는 CPU(35)를 구비한다.

데이터 입력부(31)는 예를 들면 IEEE 1394 규격에 준한 인터페이스 회로로 이루어지며, CPU(35)로부터의 제어 신호에 따라서, STB(3)로부터 어싱크로너스 패킷(100)에 포함된 정지 화상 데이터에 대해서 IEEE 1394 규격에 준한 신호 처리를 실시한다.

구체적으로는 이 데이터 입력부(31)는 IEEE 1394 규격에 준한 시리얼 버스 관리 하에 트랜잭션 레이어, 링크 레이어, 물리 레이어에 있어서의 처리를 행한다. 이로써, 데이터 입력부(31)는 어싱크로너스 패킷(100)에 포함되는 정지 화상 데이터를 CPU(35)에 출력한다.

또, 이 데이터 입력부(31)는 데이터 변환부(13)로부터 오퍼레이션 모드(2) 패러미터가 격납된 커맨드 패킷을 수신했을 때에는 각종 인쇄 설정 정보를 CPU(35)에 출력하는 처리를 행한다.

또, 이 데이터 입력부(31)는 subfunction으로서 프린터 장치(5)의 인쇄 설정 정보를 나타내는 오퍼레이션 모드(2) 패러미터를 취득하는 get이 격납되어 있다고 판정했을 때에는 인쇄 용지 종류 정보, 인쇄 용지 사이즈 정보, 인쇄 품질 정보, 인쇄 색 정보, 인쇄 오프셋 위치 정보, 레이아웃 설정 정보 중, STB(3) 측에서 취득하고 싶은 인쇄 설정을 인식한다. 그리고, 데이터 입력부(31)는 인식한 인쇄 설정에 대한 오퍼레이션 모드(2) 패러미터를 포함하는 패킷을 레스폰스로서 데이터 변환부(13)에 반송한다.

더욱이, 데이터 입력부(31)는 subfunction으로서 프린터 장치(5)의 오퍼레이션 모드(2) 패러미터 설정을 하는 set이 격납되어 있다고 판정했을 때에는 인쇄 용지 종류 정보, 인쇄 용지 사이즈 정보, 인쇄 품질 정보, 인쇄 색 정보, 인쇄 오 프셋 위치 정보, 레이아웃 설정 정보 중, STB(3) 측에서 설정하고 싶은 인쇄 설정을 인식한다. 그리고, 데이터 입력부(31)는 인식한 인쇄 설정에 대한 오퍼레이션 모드(2) 패러미터를 설정하도록 CPU(35)에 그 취지를 나타내는 정보를 출력한다.

더욱이 또, 데이터 입력부(31)는 subfunction으로서 오퍼레이션 모드(2) 패러미터가 설정 가능한 범위를 묻는 qualy 가 격납되어 있다고 판정했을 때에는 인쇄 용지 종류 정보, 인쇄 용지 사이즈 정보, 인쇄 품질 정보, 인쇄 색 정보, 인쇄 오프셋 위치 정보, 레이아웃 설정 정보 중, 각 설정 항목에 대한 비트를 조사함으로써 데이터 변환부(13)가 맞추어 있는 인쇄 설정을 인식한다. 그리고, 데이터 입력부(31)는 데이터 변환부(13)가 묻고 있는 인쇄 설정에 대한 오퍼레이션 모드(2) 패러미터 설정 가능치를 어싱크로너스 패킷(100)에 포함시킨 패킷을 레스폰스로서 데이터 변환부(13)에 반

송한다.

더욱이 또, 이 데이터 입력부(31)는 인쇄 용지 종류 정보, 인쇄 용지 사이즈 정보, 인쇄 품질 정보, 인쇄 색 정보, 인쇄 오프셋 위치 정보, 레이아웃 설정 정보에 있어서 device_dependent에 비트가 정해져 있을 때에는 그 취지를 CPU(35)에 출력한다.

더욱이 또, 이 데이터 입력부(31)는 예를 들면 광 케이블 등을 개재시켜 STB(3)와 기계적으로 접속되었을 때 등에 있어서, 프린터 장치(5)와 어싱크로너스 패킷(100)을 송수신하기 위한 접속 설정을 STB(3)의 데이터 변환부(13) 사이에서 행한다.

프린트 엔진(33)은 피인쇄물 보존 구동 기구, 프린터 헤드, 프린터 헤드 구동 기구 등으로 이루어지며, CPU(35)에 의해 제어되어, 피인쇄물에 정지 화상을 인쇄한다.

CPU(35)는 상술한 데이터 입력부(31), 프린트 엔진(33)을 제어하는 제어 신호를 생성한다. 이 때, CPU(35)는 ROM (32)에 격납된 인쇄 제어 프로그램에 따라서 동작함과 동시에, RAM(34)을 작업 영역으로서 그 내용을 제어한다.

또, CPU(35)는 인쇄 용지 종류 정보(media_type), 인쇄 용지 사이즈 정보(Media_size), 인쇄 품질 정보(Print_qu ality), 인쇄 색 정보(Mono_color), 인쇄 오프셋 위치 정보(offset), 레이아웃 설정 정보(Layout_type)을 데이터 입력부(31)로부터 입력했을 때에는 각종 인쇄 설정에 따라서, 프린트 엔진(33)을 제어한다.

또, 이 CPU(35)는 예를 들면 프린트 엔진(33)에 데이터 입력부(31)로부터의 인쇄 용지 종류 정보로 지정하는 인쇄 용지 종류와는 다른 인쇄 용지 종류가 준비되어 있을 때에는 그 취지를 나타내는 패킷을 생성하도록 데이터 입력부(31) 를 제어한다. 여기서, CPU(35)는 오퍼레이션 모드(2) 패러미터와는 다른 인쇄 설정으로 되어 있을 때에는 도시하지 않은 램프 등의 표시 기구에 의해 그 취지를 정지하는 처리를 해도 된다.

또, CPU(35)는 인쇄 용지 종류 정보, 인쇄 용지 사이즈 정보, 인쇄 품질 정보, 인쇄 색 정보, 인쇄 오프셋 위치 정보, 레이아웃 설정 정보에 있어서 device_dependent에 비트가 정해져 있는 취지를 나타내는 신호가 데이터 입력부(31)로 부터 입력되었을 때에는 인쇄 용지 종류, 인쇄 용지 사이즈, 인쇄 품질, 인쇄 오프셋 위치 또는 레이아웃 위치가 최적이되도록 인쇄를 행한다.

이러한 CPU(35)는 인쇄 제어 프로그램에 따라서, 도 42의 플로 차트에 도시하는 처리를 했한다.

이 도 42에 의하면, 우선 스텝(ST1)에 있어서, 프린터 장치(5)의 데이터 입력부(31)는 데이터 변환부(13)로부터 IE EE 1394 규격에 준하여 생성된 데이터 패킷을 수신한다. 이 때, 데이터 입력부(31)는 IEEE 1394 규격에 준거한 트랜잭션 레이어, 링크 레이어, 물리 레이어에 있어서의 처리를 행함으로써, 휘도 정보(Y)와 색차 정보(Cr, Cb)로 이루어지는 YCC 화상인 정지 화상 데이터를 추출한다. 또, 이 데이터 입력부(31)는 커맨드 패킷에 오퍼레이션 모드(2) 패러미터가 포함되어 있을 때에는 각 인쇄 설정을 CPU(35)에 출력한다.

다음 스텝(ST2)에 있어서, CPU(35)는 텔레비전 장치(4)의 화면 전체에 표시되어 있는 것 모두를 인쇄하기 위한 스크린 덤프 처리를 해한다.

다음 스텝(ST3)에 있어서, CPU(35)는 상술한 스텝(ST2)에서 스크린 덤프 처리가 이루어진 정지 화상 데이터에 대해서 래스터 처리를 행한다. 즉, CPU(35)는 정지 화상 데이터를 프린트 엔진(33)에 전송하기 위한 도트 형식으로 변환하는 처리를 행한다.

다음 스텝(ST4)에 있어서, CPU(35)는 상술한 스텝(ST3)에서 래스터 처리가 이루어진 정지 화상 데이터에 대해서, 예를 들면 인쇄 사이즈 정보에 따라서, 확대/축소 처리를 행한다. 즉, 이 CPU(35)는 인쇄할 때의 정지 화상 크기를 예를 들면 유저에 의해 지정된 범위 내에서 변화시키는 처리를 행한다.

다음 스텝(ST5)에 있어서, CPU(35)는 상술한 스텝(ST4)에서 확대/축소 처리가 이루어진 정지 화상 데이터에 대해서, 예를 들면 인쇄 색 정보에 따라서 색 조정 처리를 행함으로써, 휘도 정보와 색차 정보로 이루어지는 정지 화상 데이터를 R(Red), G(Green), B(Blue)로 이루어지는 인쇄 데이터 또는 백 및 흑으로 이루어지는 인쇄 데이터로 한다.

또한, Y(ITU-R BT. 601-4) 포맷으로 색 공간 지정이 된 화소치와, RGB로 색 공간 지정이 된 화소치와의 관계식을 나타낸다.

 $Y'_{601YCC} = 0.299*R'_{RGB} + 0.587*G'_{KGB} + 0.144*B'_{RGB}$

 $Cr'_{601YCC} = 0.713*(R'_{RGB} - Y'_{601YCC}) = 0.500*R'_{RGB} - 0.419*G'_{RGB} - 0.081*B'_{RGB}$

 $Cb'_{601YCC} = 0.564*(B'_{RGB} - Y'_{601YCC}) = -0.169*R'_{RGB} - 0.331*G'_{RGB} + 0.500*B'_{RGB}$

이것을 8비트치로 하면 이하와 같이 된다.

 $Y'_{601YCC\ 8bit} = (219.0*Y'_{601YC}) + 16.0$

 $Cb'_{601YCC_8bit} = (224.0*Cb'_{601YCC}) + 128.0$

 $Cr'_{601YCC\ 8bit} = (224.0*Cr'_{601YCC}) + 128.0$

이 8비트치가 화상 데이터로서, STB(3)로부터 프린터 장치(5)로 송신되며, 이 스텝(ST5)에 있어서, 이 8비트의 YC C 값을 RGB로 변환하게 된다.

또, Y(ITU-RBT. 709-2) 포맷으로 색 공간 지정이 된 화소치와, RGB로 색 공간 지정이 된 화소치와의 관계식을 나타낸다.

 $Y'_{709YCC} = 0.2126*R'_{RGB} + 0.7152*G'_{RGB} + 0.0722*B'_{RGB}$

 $Cb'_{709YCC} = 0.5389*(B'_{RGB} - Y'_{709YCC})$

 $Cr'_{709YCC} = 0.6350*(R'_{RGB} - Y'_{709YCC})$

이것을 8비트치로 하면 이하와 같이 된다.

 $Y'_{709YCC\ 8bit} = (219.0*Y'_{709YCC}) + 16.0$

 $Cb'_{709YCC_8bit} = (224.0*Cb'_{709YCC}) + 128.0$

 $Cr'_{709YCC\ 8bit} = (224.0*Cr'_{709YCC}) + 128.0$

이 8비트치가 화상 데이터로서, STB(3)로부터 프린터 장치(5)로 송신되며, 이 스텝(ST5)에 있어서, 이 8비트의 YC C 값을 RGB로 변환하게 된다.

다음 스텝(ST6)에 있어서, CPU(35)는 색 조정이 이루어지며, RGB로 이루어지는 인쇄 데이터를 청록색, 진홍색, 옐로우의 각 색으로 변환하는 처리를 행함으로써, 각 도트에 있어서의 청록색, 진홍색, 옐로우 비율을 결정하여, 스텝(ST7)에서 디더(dither) 처리를 행한다.

그리고, 스텝(ST8)에 있어서, CPU(35)는 디더 처리를 실시하여 얻은 인쇄 데이터를 프린트 엔진(33)에 출력함으로 써, 프린트 엔진(33)을 구동시켜 피인쇄물에 화상을 그리는 인쇄 처리를 행한다. 이 때, CPU(35)는 데이터 변환부(13)로부터의 커맨드 패킷에 격납된 오퍼레이션 모드(2) 패러미터에 따라서, 인쇄 용지 종류, 인쇄 용지 사이즈, 인쇄 품질, 인쇄 색, 인쇄 오프셋 위치, 레이아웃 설정을 설정하여 인쇄 처리를 행한다.

이렇게 구성된 화상 인쇄 시스템(1)에 있어서, STB(3)에서 수신한 화상 데이터를 프린터 장치(5)에 의해 인쇄할 때의 CPU(23) 처리에 대해서 도 43을 참조하여 설명한다.

도 43에 도시하는 플로 차트에 의하면, 우선, 스텝(ST11)에 있어서, STB(3)의 CPU(23)는 유저가 STB(3)에 구비된 조작 버튼이 조작됨으로써, 텔레비전 장치(4)에 표시된 동화상을 프리즈하는 취지의 조작 입력 신호가 입력된다. 이에 따라서, CPU(23)는 NTSC 처리부(18)로부터 텔레비전 장치(4)로의 동화상 데이터 출력을 정지시키도록 표시 제어부 (19)를 제어함으로써, 텔레비전 장치(4)에 정지 화상을 표시시킨다.

다음 스텝(ST12)에 있어서, CPU(35)는 상술한 스텝(ST11)에 있어서 프리즈되며, 텔레비전 장치(4)에 표시되어 있는 프레임 단위의 정지 화상 데이터를 선택하여 프린터 장치(5)에서 인쇄하는 취지의 조작 입력 신호가 조작 입력부(21)로부터 입력되었을 때에는 표시 메모리(20)에 격납된 프레임 단위의 정지 화상 데이터를 화상 메모리(15)에 판독하도록 표시 제어부(19), MPEG 처리부(16), 디멀티플랙서부(14)를 제어한다. 이로써, CPU(23)는 휘도 정보(Y)와 색차 정보(Cr, Cb)로 이루어지는 정지 화상 데이터를 화상 메모리(15)에 격납한다.

다음 스텝(ST13)에 있어서, CPU(35)는 STB(3)와 프린터 장치(5) 사이에서 IEEE 1394 규격에 준한 접속 설정을 행하도록 데이터 변환부(13)를 제어한다. 즉, 데이터 변환부(13)는 CPU(23)로부터 접속 설정을 행하는 취지의 제어 신호가 입력되었을 때에는 커맨드 패킷을 생성하여 데이터 입력부(31)와의 사이에서 플러그 인식을 행한다. 이 때, 데이터 변환부(13)는 프린터 장치(5)의 데이터 입력부(31)가 상기 송신 측 플러그를 나타내는 정보를 격납한 커맨드 패킷을 송신한다. 그리고, 프린터 장치(5)의 데이터 입력부(31)는 송신 측 플러그를 나타내는 정보를 인식하여 비동기 접속하는 수신 측 플러그를 나타내는 정보를 격납한 커맨드 패킷을 데이터 변환부(13)에 송신한다. 이로써, 데이터 변환부(13)는 프린터 장치(5)의 데이터 입력부(31)의 수신 측 플러그를 나타내는 정보를 인식하며, 데이터 입력부(31)는 STB(3)의 데이터 변환부(13)의 송신 측 플러그를 나타내는 정보를 인식한다.

다음 스텝(ST14)에 있어서, CPU(23)는 조작 입력 신호에 따라서, 프린터 장치(5)에 정지 화상을 인쇄할 때의 인쇄용지 종류, 인쇄용지 사이즈, 인쇄품질, 인쇄색, 인쇄오프셋위치또는 레이아웃설정을 지정하는 커맨드 패킷을 생성하여 데이터 입력부(31)에 출력함과 동시에, 캡처 커맨드를 포함하는 커맨드 패킷을 생성하여 데이터 입력부(31)에 출력함으로써 인쇄요구를 행한다.

다음 스텝(ST15)에 있어서, CPU(23)는 프린터 장치(5)에서 인쇄하기 위한 정지 화상 데이터를 프린터 장치(5)에 출력하도록 디멀티플랙서부(14) 및 데이터 변환부(13)를 제어함으로써, 화상 메모리(15)에 격납된 정지 화상 데이터를 포함하는 데이터 패킷을 생성하여 프린터 장치(5)에 송신시킨다.

그리고, 프린터 장치(5)는 수신 측 플러그를 나타내는 정보를 포함하는 복수의 데이터 패킷을 수신함으로써, 정지 화상 데이터의 모든 데이터를 수신했다 판정했으면, 상술한 도 42에 도시하는 처리를 CPU(35)에 의해 행함으로써 화상 데이터가 나타내는 화상을 지정된 인쇄 사이즈 등에 따라서 인쇄 처리를 행한다.

다음으로, STB(3)와 프린터 장치(5) 사이에서 어싱크로너스 패킷(100)을 송수신하여 정지 화상 데이터를 프린터 장치(5)에서 인쇄할 때의 일례에 대해서 도 44를 참조하여 설명한다.

이 도 44에 의하면, 인쇄 처리를 개시하기 전에 있어서 데이터 변환부(13)는 프린터 장치(5)에 대해 커맨드 패킷(JO B_QUEUE)(S11)을 송신하여 1장의 정지 화상을 인쇄하는 조브가 있는 것을 나타내며, 이에 대한 레스폰스 패킷(S1 2)을 얻고 있다.

또, 데이터 변환부(13)는 프린터 장치(5)에서 인쇄할 때의 인쇄 용지 종류, 크기, 인쇄 품질, 인쇄 처리를 행할 때의 색 (흑백/컬러), 인쇄 위치 등을 나타내는 오퍼레이션 모드(OPERATION MODE) 또는 인쇄 용지 종류 정보, 인쇄 용지 사이즈 정보, 인쇄 품질 정보, 인쇄 색 정보, 인쇄 오프셋 위치 정보, 레이아웃 설정 정보를 포함하는 오퍼레이션 모드(2) 패러미터를 지정하는 커맨드 패킷(S13)을 프린터 장치(5)에 송신하며, 이에 대한 레스폰스 패킷(S14)을 얻는다. 이 때, 데이터 변환부(13)는 프린터 장치(5)로부터의 응답에 의해, 프린터 장치(5) 측이 오퍼레이션 모드(2) 패러미터가 접수 가능한지의 여부를 판정한다.

그리고, 데이터 변환부(13)는 데이터 입력부(31)에 정지 화상 데이터를 송신하기 위한 플러그 설정을 행한다. 즉, ST B(3)는 우선, 수신 측 플러그 설정을 행하도록 데이터 입력부(31)에 ALLOCATE 커맨드를 격납한 커맨드 패킷(S15)을 송신하며, 이에 대한 레스폰스 패킷(S16)을 얻는다.

또, 데이터 변환부(13)는 프린터 장치(5)에서 인쇄를 행하는 정지 화상 데이터를 포함한 데이터 패킷을 수신하는 플러그를 설정하여 데이터 패킷 송수신을 행하는 것을 나타내는 ATTACH 커맨드를 격납한 커맨드 패킷(S17)을 송신하여, 이에 대한 레스폰스 패킷(S18)을 얻는다.

다음으로, 데이터 변환부(13)는 캡처 커맨드를 포함하는 커맨드 패킷(S19)을 송신한다. 여기서, 커맨드 패킷(S19)에는 데이터 변환부(13) 측의 송신 측 플러그를 나타내는 정보(source_plug)가 격납된다. 이로써, 데이터 입력부(31)는 데이터 변환부(13)의 송신 측 플러그를 인식한다.

다음으로, 데이터 입력부(31)는 oAPR(output Asychronous Port Register)을 설정하는 정보를 포함하는 패킷(S20)을 데이터 변환부(13)에 송신한다. 여기서, 패킷(S20)에는 데이터 입력부(31)의 수신 측 플러그를 나타내는 정보 (dest_plug)가 격납된다. 이 때, 데이터 입력부(31)는 커맨드 패킷(S19)을 수신함으로써 인식한 송신 측 플러그를 나타내는 정보를 패킷(S20)을 송신한다. 그리고, 데이터 변환부(13)는 데이터 입력부(31)의 수신 측 플래그를 인식한다.

다음으로 데이터 변환부(13)는 데이터부(102)에 YCC 화상을 정지 화상 데이터를 격납한 데이터 패킷(S21)을 데이터 입력부(31)에 송신한다. 여기서, 데이터 변환부(13)는 정지 화상 데이터를 소정 데이터량으로 분할하여 복수의 데이터 패킷(S21)을 송신한다.

그리고, 데이터 변환부(13)는 송신 측 플러그의 플로 컨트롤 레지스터의 iAPR(input Asychronous Port Register)에 관한 정보를 포함하는 레스폰스 패킷(S22)을 데이터 입력부(31)에 송신한다.

다음으로, 데이터 입력부(31)는 캡처 커맨드를 접수한 취지를 나타내는 커맨드 패킷(S23)을 데이터 변환부(13)에 송신한다.

이에 따라, 데이터 변환부(13)는 프린터 장치(5)와의 접속을 해제하는 것을 나타내는 DETACH 커맨드를 포함하는 커맨드 패킷(S24)을 송신하여, 데이터 입력부(31)로부터의 레스폰스 패킷(S25)을 얻는다.

다음으로, 데이터 변환부(13)는 RELEASE 커맨드를 포함하는 커맨드 패킷(S25)을 프린터 장치(5)의 데이터 입력부(31)에 송신하여, 데이터 입력부(31)로부터의 레스폰스 패킷(S26)을 얻는다.

다음으로, 데이터 변환부(13)는 정지 화상을 인쇄하는 조브를 나타내는 시퀀스가 종료한 것을 나타내는 커맨드 패킷(JOB_QUEUE)(S28)을 데이터 입력부(31)에 송신하여, 이에 대한 레스폰스 패킷(S29)을 얻는다.

따라서, 이러한 화상 인쇄 시스템(1)에 의하면, IEEE 1394 규격에 준거하여 STB(3)와 프린터 장치(5)가 접속되어도 인쇄 용지 종류 정보, 인쇄 용지 사이즈 정보, 인쇄 품질 정보, 인쇄 색 정보, 인쇄 오프셋 위치 정보, 레이아웃 설정 정보를 어싱크로너스 패킷(100)에 포함시켜 프린터 장치(5)에 송신하며, 유저의 요구에 따른 상세한 인쇄 설정을 행할수 있다.

즉, 이 화상 인쇄 시스템(1)에 의하면, 유저가 인쇄 품질, 인쇄 속도 등을 요구하는 조작 입력 신호를 생성하여 프린터 장치(5)에서 해당 조작 입력 신호에 따른 인쇄 처리를 행하게 할 수 있다.

더욱이, 이 화상 인쇄 시스템(1)에 의하면, 절단이 형성되어 있는 실 등, 인쇄 위치를 정세하게 지정하지 않으면 정확한 위치에 인쇄할 수 없는 인쇄 용지라도, 인쇄지 종류 정보, 인쇄 오프셋 위치 정보 등을 포함한 커맨드 패킷을 데이터 변환부(13)로부터 데이터 입력부(31)에 송신하여 프린터 장치(5)에 정확한 인쇄 처리를 행하게 할 수 있다.

더욱이 또, 이 화상 인쇄 시스템(1)에 의하면, 인쇄 오프셋 위치 정보에 의해, 인쇄 용지의 좌측 위의 원점 위치를 위(top), 왼쪽(left)의 종이 끝으로부터 00.0mm 내지 99.9mm 범위 내에서 지정하여 인쇄 개시 위치를 오프셋 위치 정보에 의해 지정할 수 있기 때문에, 미소한 인쇄 개시 위치 제어가 가능해진다.

여기서, 인쇄 유효 범위 내의 인쇄 위치는 레이아웃 설정 정보 등에 의해 지정되지만, 예를 들면 인쇄 용지를 수동이나 카세트를 사용한 급지 방식의 차이 등에 의해 인쇄 유효 범위가 미소하게 어긋나는 경우가 있다. 이렇게, 유저에게 의존하는 프린터 장치(5)의 사용 상태, 프린터 장치(5)의 경년 변화, 인쇄 용지 두께, 인쇄 용지의 표면 상태, 인쇄 용지 사이즈 등에 의해 급지의 기계적 정밀도가 변화하는 경우라도, 인쇄 오프셋 위치 정보에 의해 인쇄 개시 위치를 미소하게 설정할 수 있어, 정확한 위치에 인쇄를 행할 수 있다.

또, 이러한 화상 인쇄 시스템(1)에 의하면, STB(3) 측에서 종이 종류에 따라서 최적 인쇄를 행할 수 있다. 구체적으로는 이 화상 인쇄 시스템(1)에 의하면, 예를 들면 실을 인쇄 용지로서 사용했을 때에는 보통지를 인쇄할 때와 비교하여 저속도로 인쇄하는 등, 인쇄 용지 종류에 따라서 인쇄 속도를 조정할 수 있다.

더욱이 또, 이러한 화상 인쇄 시스템(1)에 의하면, 유저의 요구와는 다른 상태에 프린터 장치(5)가 설정되어 있는 경우라도, 프린터 장치(5) 측의 CPU(35)가 데이터 입력부(31)로부터 그 취지를 나타내는 커맨드 패킷을 데이터 변환부(13)에 송신하도록 제어함으로써, 유저에게 제시할 수 있다.

또한, 상술한 화상 인쇄 시스템(1) 설명에 있어서는 STB(3)로부터 비압축 정지 화상 데이터를 어싱크로너스 패킷(100)에 포함시켜 프린터 장치(5)에 송신하는 일례에 대해서 설명했지만, MPEG 처리부(16)에서 JPEG 방식에 의한 압축 처리를 행하여 정지 화상 데이터를 어싱크로너스 패킷(100)에 포함시켜 송수신해도 된다. 이러한 화상 인쇄 시스템(1)에 의하면, 송신하는 데이터량을 줄일 수 있기 때문에, 보다 고속 데이터 전송 및 인쇄 처리를 실현할 수 있다.

또, 상술한 화상 인쇄 시스템(1) 설명에 있어서는 STB(3) 및 프린터 장치(5)에 각각 IEEE 1394 규격에 준거한 인터페이스 회로인 데이터 변환부(13), 데이터 입력부(31)를 구비하고 있는 일례에 대해서 설명했지만, 예를 들면 다른 USB 등의 인터페이스 회로여도 된다. 즉, USB를 구비한 STB(3) 및 프린터 장치(5)로 이루어지는 화상 인쇄 시스템(1)에 의하면, 디지털 방식으로 STB(3)와 프린터 장치(5) 사이에서 패킷을 송수신할 수 있어, 프린터 장치(5)에 세밀한화상을 인쇄시킬 수 있다.

그런데, FCP 및 AV/C 프로토콜에서는 인쇄 설정을 행하기 위한 오퍼레이션 모드(1) 커맨드에 있어서, 1페이지에 몇개 화상을 인쇄할지를 나타내는 정보(number_of pics)가 규정되어 있다.

여기서, 도 45에 도시하는 바와 같이, 예를 들면, CD 앨범 인덱스를 작성할 경우에 있어서, 용지의 좌측 반에는 화상 사이즈가 1/4로 축소된 음악 곡명의 리스트를 인쇄하고, 용지의 우측 반에는 화상 사이즈가 1/4로 축소된 이미지 화상을 인쇄한다고 하자. 이 경우, 오퍼레이션 모드(1) 커맨드의 number_of_pics에 의해, 1장의 용지에 4장의 화상을 할 당하는 것을 설정하여, 캡처 커맨드에 의해, 곡명 리스트와 이미지 화상을 교대로 프린터 장치(5)에 송신하면, 이러한 인쇄가 가능해진다.

그렇지만, 어느 1개 앨범에 곡명 리스트가 존재하지 않을 경우, 그 앨범의 곡명 리스트를 프린터 장치(5)에 송신할 수 없다. 그렇게 하면, 도 46에 도시하는 바와 같이, 그 앨범의 이미지 화상이 앞으로 채워져, 본래 곡명 리스트가 인쇄되어야 할 용지의 좌측 반에 인쇄되어버린다.

그래서, 이 STB(3) 및 프린터 장치(5)에서는 이하에 나타내는 바와 같은 설정을 행하며, 도 47에 도시하는 바와 같이, 1페이지에 복수 장의 화상을 인쇄할 때에 있어서의 임의의 인쇄 영역에 공백 에이리어를 설치하도록 하고 있다.

예를 들면, 공백 에이리어를 설치하는 데는 도 48에 도시하는 바와 같이, 캡처 커맨드에 있어서, 이미지 타이프(image _format_specifier)는 설정하지만(예를 들면, Don't Care), 송신하는 데이터량(data_size), X방향의 화소수(image _size_x) 및 Y방향의 화소수(image_size_y)를 모두 0으로 설정하도록 한다. 구체적으로는 STB(3)는 공백 에이리어를 작성할 경우에는 유저의 조작 입력에 따라서, 도 48에 도시하는 바와 같은 캡처 커맨드를 설정하여 프린터 장치(5)에 송신한다. 그리고, 이러한 설정이 이루어진 캡처 커맨드를 수신한 프린터 장치(5)는 이 설정에 근거하여, 그 영역을 공백으로 하여, 다음 영역에서 인쇄를 계속하도록 한다. 또한, 이 경우, 이미지 타이프(image_format_specifer)는 도 48에 도시한 바와 같은 Don't Care 이외에, 예를 들면 도 49에 도시하는 바와 같이 sRGB row로 해도 된다.

또, 예를 들면, 도 50에 도시하는 바와 같이, 캡처 커맨드로 설정되는 이미지 타이프(image_format_specifier) 화상에 Null Object의 포맷 타이프를 추가하도록 한다. 또한, 이 도 50에서 새롭게 도시되어 있는 Unit Plug defined는 캡처 커맨드의 source_plug에 아이소크로너스 플러그를 지정하여, 아이소크로너스 패킷을 송신하는 경우에 격납된다. D on't care는 송신 측에서는 이미지 타이프의 케어를 하지 않는 것을 나타내고 있다. 즉, 송신 측에서는 송출하는 오브젝트 내용, 즉 캡처된 화상의 이미지 타이프에 대해서는 케어를 하지 않는다는 의미이다. 이 경우, 프린터 측에서 어떠한 처리가 필요했다 해도 AV/C 커맨드에서는 취급하지 않으며, 필요에 따라서 프린터 측에서 디폴트에 설정하거나, 다른 커맨드에서 케어를 하는 등의 처리가 행해지는 것을 나타내고 있다. 따라서, 본 발명과 같이 공백 에이리어를 설치할 경우도, 사이즈로 지정된 크기의 영역을 설치할 필요가 있지만, 실질적으로 이미지 내용이 존재하지 않기 때문에, 결국 화상 사이즈, X방향, Y방향의 화소수가 제로인 것을 의미하며, 1개의 캡처분이 공백으로서 처리할 수 있게 된다.

또, STB(3)는 공백 에이리어를 작성할 경우에는 유저의 조작 입력에 따라서, 캡처 커맨드의 이미지 타이프(image_fo rmat_specifier)에 Null Object를 설정하여, 프린터 장치(5)에 송신한다. 그리고, 이러한 설정이 된 캡처 커맨드를 수신한 프린터 장치(5)는 이 설정에 근거하여, 그 영역을 공백으로 하여 다음 영역으로부터 인쇄를 계속하도록 한다.

또, 예를 들면, 캡처 커맨드의 subfunction에 공백 에이리어를 작성하기 위한 스킵 정보를 격납하도록 한다. 예를 들면, 도 51에 도시하는 바와 같은 16진수의 02로 표현되며 "skip" 이라 호칭되는 정보를 격납하도록 한다. STB(3)는 공백에이리어를 작성할 경우에는 유저의 조작 입력에 따라서, 캡처 커맨드의 subfunction에 16진수의 02를 격납하여, 프린터 장치(5)에 송신한다. 이러한 설정이 된 캡처 커맨드를 수신한 프린터 장치(5)는 이 설정에 근거하여, 그 영역을 공백으로 하여, 다음 영역으로부터 인쇄를 계속하도록 한다. 또한, 이 subfunction에 설정되는 정보로서는 그 외에, 예를 들면, 16진수의 01로 표현되며 "receive"라 호칭되는 정보와, 16진수의 03으로 표현되며 "resume"라 호칭되는 정보와, 16진수의 04로 표현되며 "query"라 호칭되는 정보가 있다. "receive"는 이 캡처 커맨드에 의해 화상 데이터의 수신 명령을 줄 때에 subfunction에 격납된다. STB(3)는 화상 데이터를 송신할 경우에는 캡처 커맨드의 subfunction에 "receive"가 격납하여, 프린터 장치(5)에 대해 화상 데이터의 수신 명령을 준다. 또, "resume"는 IEEE 13 94 인터페이스로 버스 리셋이 된 경우에, 지금까지 프린터 장치(5)에 송신 완료 화상 데이터의 데이터량 등의 확인 등을 할 때에 subfunction에 격납된다. 또, "query"는 프린터 장치(5)의 오퍼레이션 모드(2) 패러미터가 설정 가능한 범위를 알고 싶을 때에 subfunction에 격납된다.

이상과 같이 화상 인쇄 시스템(1)에 의하면, 1페이지에 복수 장의 화상을 인쇄할 경우에 있어서, 그 일부분 영역에 공백 에이리어를 설치할 수 있다. 그 때문에, 화상 인쇄 시스템(1)에 의하면, 인쇄 용지 상의 임의의 위치에 축소한 화상을 할당할 수 있다.

또, 할당 매수에 대해 송신된 캡처 커맨드 수가 적을 경우에, 그 영역이 공백 에이리어가 되는 것인지 혹은 에러인 것인지의 판단을 용이하게 행할 수 있다.

산업상 이용 가능성

본 발명에 관련되는 화상 처리 장치 및 방법에서는 인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보 및 인쇄 용지에 인쇄하는 화상에 공백 화상을 포함시키는 정보를 포함한 인쇄 제어 정보를 전송하기 때문에, 1페이지에 복수 장의화상을 인쇄할 경우에, 그 일부분 영역에 공백 에이리어를 설치할 수 있다. 그 때문에, 본 발명에 의하면, 인쇄 용지 상의 임의의 위치에 축소한 화상을 할당할 수 있다.

또, 본 발명에 관련되는 인쇄 장치 및 방법에서는 인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보 및 인쇄 용지 에 인쇄하는 화상에 공백 화상을 포함시키는 정보를 포함한 인쇄 제어 정보를 사용하여 인쇄를 하기 때문에, 1페이지에 복수 장의 화상을 인쇄할 경우에, 그 일부분 영역에 공백 에이리어를 설치할 수 있다. 그 때문에, 본 발명에 의하면, 인쇄 용지 상의 임의의 위치에 축소한 화상을 할당할 수 있다.

또, 본 발명에 관련되는 화상 인쇄 시스템 및 방법에서는 인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보 및 인쇄 용지에 인쇄하는 화상에 공백 화상을 포함시키는 정보를 포함한 인쇄 제어 정보를 전송하기 때문에, 1페이지에 복수장의 화상을 인쇄할 경우에, 그 일부분 영역에 공백 에이리어를 설치할 수 있다. 그 때문에, 본 발명에 의하면, 인쇄 용지 상의 임의의 위치에 축소한 화상을 할당할 수 있다.

본 발명에 관련되는 기록 매체로는 인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보 및 인쇄 용지에 인쇄하는 화상에 공백 화상을 포함시키는 정보를 포함한 인쇄 제어 정보를 전송하기 때문에, 1페이지에 복수 장의 화상을 인쇄할 경우에, 그 일부분 영역에 공백 에이리어를 설치할 수 있다. 그 때문에, 본 발명에 의하면, 인쇄 용지 상의 임의의 위치에 축소한 화상을 할당할 수 있다.

본 발명에 관련되는 기록 매체로는 인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보 및 인쇄 용지에 인쇄하는 화상에 공백 화상을 포함시키는 정보를 포함한 인쇄 제어 정보를 사용하여 인쇄를 하기 때문에, 1페이지에 복수 장의화상을 인쇄할 경우에 그 일부분 영역에 공백 에이리어를 설치할 수 있다. 그 때문에, 본 발명에 의하면, 인쇄 용지 상의임의의 위치에 축소한 화상을 할당할 수 있다.

(57) 청구의 범위

청구항 1.

외부로부터 입력한 화상 신호에 화상 처리롤 실시하여, 화상 데이터를 생성하는 화상 처리 수단과.

인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함한 인쇄 제어 정보를 생성하는 제어 정보 생성 수단과,

상기 화상 처리 수단으로 생성한 화상 데이터 및 상기 제어 정보 생성 수단으로 생성한 인쇄 제어 정보를 IEEE(The I nstitute of Electrical and Electronics Engineers) 1394 규격에 준거한 패킷에 포함시켜 인쇄 장치에 출력하는 출력 수단을 구비하며,

상기 제어 정보 생성 수단은 인쇄 용지에 인쇄하는 화상에 공백 화상을 포함시키는 정보를 포함한 인쇄 제어 정보를 생성하는 것을 특징으로 하는 화상 처리 장치.

청구항 2.

외부로부터 입력한 화상 신호에 화상 처리를 실시하여, 화상 데이터를 생성하며,

인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함함과 동시에 인쇄 용지에 대해 인쇄하는 화상에 공백 화상을 포함시키는 것을 나타내는 정보를 포함한 인쇄 제어 정보를 생성하며.

생성한 상기 화상 데이터 및 상기 인쇄 제어 정보를 IEEE 1394 규격에 준거한 패킷에 포함시켜 인쇄 장치에 출력하는 것을 특징으로 하는 화상 처리 방법.

청구항 3.

외부로부터 입력한 화상 신호에 화상 처리를 실시하여, 화상 데이터를 생성하며,

생성한 상기 화상 데이터에 대한 인쇄 조브 개시를 지시하는 커맨드, 인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함하는 커맨드, 생성한 상기 화상 데이터에 대한 인쇄 제어 정보를 포함한 캡처 커맨드와 생성하며,

생성한 상기 화상 데이터 및 각 커맨드를 IEEE 1394 규격에 준거한 패킷에 포함시켜 인쇄 장치에 출력하며,

상기 인쇄 용지 중에 인쇄되는 화상 영역에 공백 화상을 포함시킬 경우에는 그 공백 화상에 대한 인쇄 제어 정보로서 화상 데이터의 데이터량, X방향, Y방향의 화소수를 제로로 설정함과 동시에 화상 데이터의 이미지 타이프를 케어하지 않은 것을 나타내는 값을 상기 캡처 커맨드에 설정하는 것을 특징으로 하는 화상 처리 방법.

청구항 4.

IEEE 1394 규격에 준거한 패킷에 포함되는 화상 데이터 및 인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함함과 동시에 인쇄 용지에 대해 인쇄하는 화상에 공백 화상을 포함시키는 것을 나타내는 정보를 포함한 인쇄 제어 정보가 입력되는 입력 수단과.

상기 입력 수단에 입력된 화상 데이터가 나타내는 화상을 상기 인쇄 제어 정보에 따라서 인쇄하는 인쇄 수단을 구비하며,

상기 인쇄 수단은 공백 화상을 포함시키는 정보를 포함한 인쇄 제어 정보가 입력된 경우에는 상기 인쇄 용지 중에 인쇄 되는 화상 영역을 공백으로 하는 것을 특징으로 하는 인쇄 장치.

청구항 5.

IEEE 1394 규격에 준거한 패킷에 포함되는 화상 데이터 및 인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함함과 동시에 인쇄 용지에 대해 인쇄하는 화상에 공백 화상을 포함시키는 것을 나타내는 정보를 포함한 인쇄 제어 정보가 입력되며,

입력된 상기 화상 데이터가 나타내는 화상을 상기 인쇄 제어 정보에 따라서 인쇄하며,

인쇄 용지에 인쇄하는 화상에 공백 화상을 포함시키는 정보를 포함한 제어 정보가 입력된 경우에는 상기 인쇄 용지 중에 인쇄되는 화상 영역을 공백으로 하는 것을 특징으로 하는 인쇄 방법

청구항 6.

외부로부터 입력한 화상 신호에 화상 처리를 실시하여, 화상 데이터를 생성하며,

IEEE 1394 규격에 준거한 패킷에 포함되는 화상 데이터, 상기 화상 데이터에 대한 인쇄 조브 개시를 지시하는 커맨드, 인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함하는 커맨드, 생성한 상기 화상 데이터에 대한 인쇄 제어 정보를 포함한 캡처 커맨드가 입력되며.

입력된 상기 화상 데이터가 나타내는 화상을 각 커맨드에 따라서 인쇄하며.

인쇄 제어 정보로서 화상 데이터의 데이터량, X방향, Y방향의 화소수를 제로로 설정함과 동시에 화상 데이터의 이미지 타이프를 케어하지 않는 것을 나타내는 값이 설정된 캡처 커맨드가 입력된 경우에는 상기 인쇄 용지 중에 인쇄되는 화 상 영역을 공백으로 하는 것을 특징으로 하는 인쇄 방법.

청구항 7.

외부로부터 입력한 화상 신호에 화상 처리를 실시하여, 화상 데이터를 생성하는 화상 처리 수단과, 인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함한 인쇄 제어 정보를 생성하는 제어 정보 생성 수단과, 상기 화상 처리 수단으로 생성한 화상 데이터 및 상기 제어 정보 생성 수단으로 생성한 인쇄 제어 정보를 IEEE 1394 규격에 준거한 패킷에 포함시켜 출력하는 출력 수단을 구비하며, 상기 각 제어 정보 생성 수단은 인쇄 용지에 인쇄하는 화상에 공백 화상을 포함시키는 정보를 포함한 인쇄 제어 정보를 생성하는 인쇄 처리 장치와.

IEEE 1394 규격에 준거한 패킷에 포함되는 화상 데이터 및 인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함함과 동시에 인쇄 용지에 대해 인쇄하는 화상에 공백 화상을 포함시키는 것을 나타내는 정보를 포함한 인쇄 제어 정보가 입력되는 입력 수단과, 상기 입력 수단에 입력된 화상 데이터가 나타내는 화상을 상기 인쇄 제어 정보에 따라서 인쇄하는 인쇄 수단을 구비하며, 상기 인쇄 수단은 공백 화상을 포함시키는 정보를 포함한 인쇄 제어 정보가 입력된 경우에는 상기 인쇄 용지 중에 인쇄되는 화상 영역을 공백으로 하는 인쇄 장치를 구비하는 화상 인쇄 시스템.

청구항 8.

외부로부터 입력한 화상 신호에 화상 처리를 실시하여, 화상 데이터를 생성하며,

인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함함과 동시에 인쇄 용지에 대해 인쇄하는 화상에 공백 화상을 포함시키는 것을 나타내는 정보를 포함한 인쇄 제어 정보를 생성하며,

생성한 상기 화상 데이터 및 상기 인쇄 제어 정보를 IEEE 1394 규격에 준거한 패킷에 포함시켜 인쇄 장치에 출력하며,

IEEE 1394 규격에 준거한 패킷에 포함되는 상기 화상 데이터 및 인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함함과 동시에 인쇄 용지에 대해 인쇄하는 화상에 공백 화상을 포함시키는 것을 나타내는 정보를 포함한 상기인쇄 제어 정보를 수신하며.

수신한 상기 화상 데이터가 나타내는 화상을 상기 인쇄 제어 정보에 따라서 인쇄하며

인쇄 용지에 인쇄하는 화상에 공백 화상을 포함시키는 정보를 포함한 인쇄 제어 정보가 입력된 경우에는 상기 인쇄 용지 중에 인쇄되는 화상 영역을 공백으로 하는 것을 특징으로 하는 화상 인쇄 방법.

청구항 9.

외부로부터 입력한 화상 신호에 화상 처리를 실시하여, 화상 데이터를 생성하며.

인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함함과 동시에 인쇄 용지에 대해 인쇄하는 화상에 공백 화상을 포함시키는 것을 나타내는 정보를 포함한 인쇄 제어 정보를 생성하며,

생성한 상기 화상 데이터 및 상기 인쇄 제어 정보를 IEEE 1394 규격에 준거한 패킷에 포함시켜 인쇄 장치에 출력하는 것을 특징으로 하는 화상 처리 프로그램을 격납한 기록 매체.

청구항 10.

IEEE 1394 규격에 준거한 패킷에 포함되는 화상 데이터 및 인쇄 용지 1페이지로의 인쇄 화상 매수를 나타내는 정보를 포함함과 동시에 인쇄 용지에 대해 인쇄하는 화상에 공백 화상을 포함시키는 것을 나타내는 정보를 포함한 인쇄 제어 정보가 입력되며,

입력된 상기 화상 데이터가 나타내는 화상을 상기 인쇄 제어 정보에 따라서 인쇄하며,

인쇄 용지에 인쇄하는 화상에 공백 화상을 포함시키는 정보를 포함한 인쇄 제어 정보가 입력된 경우에는 상기 인쇄 용지 중에 인쇄되는 화상 영역을 공백으로 하는 것을 특징으로 하는 인쇄 프로그램을 격납한 기록 매체.

도면

도면 1

도면 2

도면 4

도면 5

100

도면 6

CTS	ctype	subuni t	subuni t _ID	оре	code	operand	[0]
opera	nd[1]	operan	d[2]	oper	and[3]	operand	[4]
opera	nd[n]					1-1-1-1-1	1 1

도면 8

480_420_4x3 720 480 Interlaced/ YCbCr 4:3	480_422_4x3 720 480 Interlaced/ YCbCr 4:3	480_420_16x9 720 480 interlaced/ YCbCr 16:9	480_422_16x9 720 480 interlaced/ YCbCr 16:9	576_420_4x3 720 576 interlaced/ YCbCr 4:3	576_422_4x3 720 576 Interlaced/ YCbCr 4:3	720_420_16x9	720_422_16x9	1080_420_16x9	1080_422_16x9	brogressive format aspect ratio
1	ΥCbCr 4:2:2	YCbCr 4:2:0	YCbCr 4:2:2	YCbCr 4:2:0	YCbCr 4:2:2	YCbCr 4:2:0	YCbCr 4:2:2	YCbCr 4:2:0	YCbCr 4:2:2	format
	0.89:1	9 1.19:1	9 1.19:1	3 1.07:1	3 1.07:1	9 1:1	9 1:1	9 1:1	9 1:1	ratio aspect ratio
ITU-R	ITU-R BT.601-4	11U-R BT. 709-2	ITU-R BT. 709-2	ITU-R BT.1203	ITU-R BT.1203	ANSI/SMP TE 296 M-1997	ANSI/SMP TE 296 M-1997	ITU-R BT. 709-2	ITU-R BT. 709-2	o standard
506KB	675KB	506KB	675KB	608KB	810KB	1.32MB	1.76MB	2.97MB	3.96MB	size

도면 9

	msb Isb						
opcode	CAPTURE(42 ₁₆)						
operand[0]	subfunction						
operand[1]	source_subunit_type source_subunit_ID						
operand[2]	source_plug						
operand[3]	status						
operand[4]	dest_plug						
operand[5]							
:	print_job_1D						
operand[16]	·						
operand[17]	data_size						
operand[18]							
operand[19]	33.5_3.20						
operand[20]							
operand[21]	image_size_x						
operand[22]							
operand[23]	image_size_y						
operand[24]							
operand[25]	image_format_specifier						
operand[26]							
operand[27]							
operand[28]	reserved						
operand[29]							
operand[30]	next_pic						
operand[31]	next_page						
operand[32]							

도면 10

value	Туре	Meaning
2016	1080 i_422 chunky_16×9	
2116	1080p_422chunky_16×9	
2216	720p_422chunky_16×9	
	4801_422chunky_16×9	
2416		
2516	4801_422chunky_4×3	
2616	480p_422chunky_4×3	
2816	1080i_4221iner_16×9	,
2916	1080p_4221iner_16×9	
2A16	720p_422liner_16×9	
2B ₁₆	4801_4221iner_16×9	
2C ₁₆	$480p_422liner_16\times9$	
2D16		
2E16	480p_422liner_4×3	
3016	1080 i_420 planer_16x9	
3116	1080p_420planer_16x9	
	720p_420planer_16×9	
3316		
3416		
3516		
3616		
	1080i_420liner_16×9	
3916		
3A ₁₆		·
3B ₁₆		
3C ₁₆		
3D ₁₆		
3E ₁₆		
6016		MD-clip ASCII
6116		MD-clip modified ISO8859-1
6216	Text(Music Shifted JIS)	MD-clip Music Shifted JIS

도면 11

		FE ₁₈	80 ₁₈ ~8F ₁₆					1010															01,8			00,	Valuue(MSB)
01,6	00,0		00 ₁₉ ~FF ₁₀	0F,	02,6	01,,	00,		XC,	ΧΒ _{ιε}	XA ₁₆	Х9 ₁₆	X8,₅	X4 ₁₈	Х3 ₁₆	X2,	X1,,	Х0, ,	. 9X₁•	8X,	1X,6	0X,,		01,6	00,		Valuue(LSB)
don't care	Unit Plug defined		Vendor Dependent format	JPEG	TIFF	JFIF	Exif2.1		Pixel ratio 1.07X1.00/ITU-R BT.1203/progressive	Pixel ratio 0.89X1.00/ITU—R BT.601—4/progressive	/ITU-R BT.709-2/	Pixel ratio 1.19X1.00/ITU-R BT.709-2/progressive	Pixel ratio 1.00X1.00/ITU-R BT.709-2/progressive	Pixel ratio 1.07X1.00/ITU-R BT.1203/interlace	Pixel ratio 0.89X1.00/ITU—R BT.601—4/interlace	Pixel ratio 0.89X1.00/ITU-R BT.709-2/interlace	Pixel ratio 1.19X1.00/ITU-R BT.709-2/interlace	Pixel ratio 1.00X1.00/ITU-R BT.709-2/interlace	YCC4:2:0 raw/liner	YCC4:2:0 raw/chunky	YCC4:2:2 raw/liner	YCC4:2:2 raw/chunky		sRGB raw,quadlet	sRGB raw		Туре
		Special meaning						DCF Object															YCC raw			sRGB raw	Meaning

도면 12

Y1(L1)	Y2(L1)	Cb1(L1)	Cr1(L1)
Y3(L1)	Y4(L1)	C b 3(L1)	Cr3(L1)
		•	
Y _{N-1} (L ₁)	YN(L1)	C b _{N-1} (L ₁)	CrN-1(L1)
Y1(L2)	Y2(L2)	Cb ₁ (L ₂)	Cr1(L2)
		•	
Y _{N-1} (L _M)	YN(LM)	CbN-1(LM)	CrN-1(LM)

도면 13

Y1(L1)	Y2(L1)	Y1(L2)	Y2(L2)
C b 1 (L1)	Cr1(L1)	Y3(L1)	Y4(L1)
Y 3(L2)	Y4(L2)	Cb3(L1)	Cr3(L1)
		•	
YN-3 (LM-1)	YN-2 (LM-1)	YN-3 (LM)	YN-2 (LM)
C bN-3 (LM-1)	C rN-3 (LM-1)	YN-1 (LM-1)	YN (LM-1)
Y _{N-1} (L _M)	YN(LM)	C b _{N-1} (L _{M-1})	C rN-1 (LM-1)

도면 14

Y1(L1)	Y2(L1)	Y3(L1)	Y4(L1)
		•	
Y _{N-3} (L ₁)	Y _{N-2} (L ₁)	Y _{N-1} (L ₁)	YN(L1)
C b 1 (L1)	Cr1(L1)	Cb3(L2)	Cr3(L1)
	,	•	
C b N-3(L1)	CrN-3(L1)	C b _{N-1} (L ₁)	CrN-1(L1)
Y1(L2)	Y2(L2)	Y3(L1)	Y4(L1)
		•	
CbN-3(LM)	CrN-3(LM)	CbN-1(LM)	CrN-1(LM)

도면 15

Y1(L1)	Y2(L1)	Y3(L1)	Y4(L1)
		•	
YN-3(L1)	YN-2(L1)	Y _{N-1} (L ₁)	Y _N (L ₁)
Y1(L2)	Y2(L2)	Y 3(L2)	Y4(L2)
		•	,
YN-3(L2)	Y _{N-2} (L ₂)	YN-1(L2)	Y _N (L ₂)
C b1(L1)	Cr1(L1)	Cb3(L1)	Cr3(L1)
		•	
C b _{N-3} (L ₁)	CrN-3(L1)	C b N-1(L1)	CrN-1(L1)
Y1(L3)	Y2(L3)	Y3(L3)	Y4(L3)
		•	
C bN-3 (LM-1)	CrN-3 (LM-1)	C b _{N-1} (L _{M-1})	C rN-1 (LM-1)

도면 16

480) Cr719(L480)	C 6719(L 480)	Y720(L480)	00 0A 8B FC16 Y719(L480) Y720(L480) C6719(L4	00 0A 8B FC ₁₆
Cr1(L2)	Cb1(L2)	Y2(L2)	Y1(L2)	00 00 05 A0 ₁₆
L1) Cr719(L1)	Cb719(L1)	Y720(L1)	00 00 05 9C ₁₆ Y719(L1) Y720(L1) Cb719(00 00 05 9616
			-	
Cr3(L1)	Cb3(L1)	Y4(L1)	Y3(L1)	00 00 00 0416
Cr1(L1)	Cb1(L1)	Y2(L1)	Y1(L1)	00 00 00 00 ₁₆
4 th byte	3 rd byte	2 ^{n d} b y t e	18tbyte	Offset
				Address

도면 17

Cr719(L479)	00 07 E8 FC16 Y719(L480) Y720(L480) C6719(L479) C7719(L479)	Y720(L480)	Y719(L480)	00 07 E8 FC ₁₆
Y720(L479)	00 07 E8 F816 C6717(L479) Cr717(L479) Y719(L479) Y720(L479)	Cr717(L479)	Cb717(L479)	00 07 E8 F8 ₁₆
				•
Cr3(L1)	Cb3(L1)	Y4(L2)	Y 3(L 2)	00 00 00 0816
Y4(L1)	Y3(L1)	00 00 00 04 ₁₆ Cr1(L1) Cr1(L1)	Cr1(L1)	00 00 00 0416
Y2(L2):	Y1(L2)	Y2(L1)	Y1(L1)	00 00 00 00 16
4 th byte	3 rd byte	2 ^{n d} b y t e	l ^{at} byte	Offset
				Address

도면 18

Cr719(L480)	00 0A 88 FC16 C6717(L480) Cr717(L480) C6719(L480) Cr719(L480)	Cr717(L480)	Cb717(L480)	00 0A 8B FC ₁₆
Y4(L2)	Y3(L2)	Y2(L2) Y3(L2	Y1(L2)	00 00 05 A0 ₁₆
)Cr719(L1)		00 00 05 9F ₁₆ Cb717(L1) Cr717(L1) Cb719(I	C b717(L1)	00 00 05 9F ₁₆
Cr3(L1)	C b 3(L1)	00 00 02 00 ₁₆ Cb1(L1) Cr1(L1) Cb3(L1)	Cb1(L1)	00 00 02 0016
Y720(L1)	Y719(L1)	00 00 02 CF ₁₆ Y717(L1) Y718(L1) Y719(L1)	Y717(L1)	00 00 02 CF ₁₆
				• •
Y4(L1)	Y3(L1)	Y2(L1)	Y1(L1)	00 00 00 00 16
4 th byte	3 rd byte	2 ^{n d} b y t e	l st byte	Address Offset

도면 19

Address	00 07 E8 FC ₁₆ Cb717(L479) Cr717(L479) Cb719(L479) Cr719(L479)
Address 18tbyte 2n Offset 18tbyte 2n 00 00 00 0016 Y1(L1) Y Y Y Y Y Y Y Y Y	Y2(L3)
Address Offset 18tbyte 2m Offset 18tbyte 2m 00 00 00 0016 Y1(L1) Y 00 00 02 CF16 Y717(L1) Y7 00 00 02 D016 Y1(L2) Y7 00 00 05 9F16 Y717(L2) Y7 00 00 05 A016 Cb1(L1) Cr	17(L1)
Address Offset 18tbyte 2n 00 00 00 0016 Y1(L1) Y 00 00 02 CF16 Y717(L1) Y7 00 00 02 D016 Y1(L2) Y7 00 00 05 9F16 Y717(L2) Y7 00 00 05 A016 Cb1(L1) Cr	
Address 18tbyte 2n Offset 18tbyte 2n Offset Y1(L1) Y Y Y Y Y Y Y Y Y	Cr1(L1)
Address 18tbyte 2m Offset 18tbyte 2m 2m 00 00 00 0016 Y1(L1) Y Y Y Y Y Y Y Y Y	18(L2)
Address 18tbyte 2n Offset 18tbyte 2n	• • •
Address 18tbyte 2n Offset 18tbyte 2n Y (L1) Y Y	Y2(L2)
l st byte Y1(L1)	8(L1)
1 ^{8 t} b y t e Y 1 (L 1)	
1ªtbyte	Y2(L1)
	2 ^{n d} b y t e

도면 20

		operand[31]
Operation_mode2_parameters	Opera	
		operand[17]
		operand[16]
print_job_ID		• •
		operand[5]
-		operand[4]
reserved		operand[3]
		operand[2]
8 t a t u 8		operand[1]
aubfunction	-	operand[0]
OPERATION MODE 2(51 ₁₆)	0	opcode
186	msb	

도면 21

va i ue	Symbol	Weaning
0116	108	Get the current operation modes
0216	188	Set the specified operation modes
0316	query	bet the supported operation modes
Other values		Reserved

도면 22

Address Offset	Contents
0016	media_type
0116	Media_size
0216	
0316	·
0416	reserved
0516	Print_quality
0616	Mono_color.
0716	offset
0816	
0916	
0A ₁₆	
0B ₁₆	Layout_type
0C ₁₆	,
0D ₁₆	
0E ₁₆	

도면 23

N d d d l A d d	ncy_film	paper	paper	laded	paper	dependent	<
	1.60.601.6	Photo_	Special_	Bond_	Plain_	device.	
lsb						ms b	offset
	-			-	-	_	address

도면 24

Symbol	Meaning
device_dependent The	The image output will be sized as device dependent. (Mandatory)
Plain_paper	보통 지
Bond-paper	r1≥.
Special-paper	전용기
Photo_paper	王王 多기
Transparency_film OHP 쾰름	OHP 쾰름

도면 25

	0			•	}		æ 	
7 4 9 9	7 0 0 0		64	66	2	ommerci Commerci	Commerci Commer	
=	04	3	7 ABY - AV	1 WU A- YAU	20	Hagaki	6	<u> </u>
XII-INB-	D .	<u>ک</u>	7 A A A A A A A A A A A A A A A A A A A	Ay Appullyay Appul	S	Outuku-	E	
08A 1888V	LUBAI	רפורפו	Lyannita Fait		2		dependent	00
	-			5		>		30;
							m.e.b	offeet
_	_	_	_	_			_	address

도면 26

Symbol	Meaning
Device_dependent	The image output will be
	sized as device dependent.
	(Mandatory)
A5	ISO and JIS A5
A4	ISO and JIS A4
B5	JIS B5
Executive	US Executive
Letter	US Letter
Legal	US Legal
Hagakl	ハガキ
Oufuku_hagakl	往復ハガキ
A 6	ISO and JIS A6 Card
Index_4×6	US Index Card 4"X6"
Index_5×8	US Index Card 5"x3"
A3	ISO A3
B4	B4
Legal_11×17	Legal 11×17
Commercial10_portrait	US Comercial#10(portrait)
Commercial 10_landscape	US Comercial#10(landscape)
DL	InternationalDL
C 6	International C6
A2	US A2
Custom	Custom paper

도면 27

<u></u>					,							<u>-</u> -		
0816	0A16	0916	9180		0716	0616	0516	0416	0316	0216	0116		0016	address Offset
index_4x6	118 b8	118 60		85 08	180 cO	180 b8	iso bO	180 88	iso a0	B	envelope	10x13	device_	m s b
index_4x6 index_5x8	Jis b9	J 18 bi	designated	180-	180 c]	180 b9	180 b]	180 89	180 al	D'	envelope	20 OY13	other	
rese	Jis b10	118 b2			180 c2	180 b]O	180 b2	180 810	180 a2	C .	_envelope	be 10x13 be 0x10 be sucher 10 be 7x0	other letter legal	
reserved		<u>-</u> 8			180 c3		180		180 a3	a.			e & a	
Japanese _hasaki	<u>_</u>	b3 1 8 b4	reserve		180	7	b3 180 b4	-	180 84	Ө	envelope envel	a 0y11		
japanese _oufuku _hagaki	eserved	b4 1 8 b5	rved		c4 180 c5	eserved	b4 180 b5	eserved	180 a5	7	envelope		୮	
Г 0 8 е	d d	lia b6			c5 180 c6) d	180 b6	b d	180 86	eserved			r v e d	
eserved) 18 b7			c6 180 c7		180 b7		a6 iso a7	b (envelope	10015		lab

도면 28

Value	Symbol	Meaning	Width	Helght
0016	device_dependent	The paper size will be		_
		used as device dependent		·
0116		other		
1016	letter	North American letter size	8,5 Inch	11 Inch
1116	legal	North American letter size	8,5 inch	14 Inch
2016	na_10x13_envelope	North American 10x13	10 Inch	13 inch
2018		envelope size		
2116	na_9x12_envelope	North American 9x12	9 inch	12 Inch
		envelope		
2216	ns_number_10	North American number	4.125 inch	9.5 Inch
	_ 80 4610 68	IODUSINOS ONVAIODE		
		North American 7X9		9 inch
2416	na_3A[_envelope	North American 9x11	9 Inch	11 Inch
2516	na_lux 4_envelope	North American 10×14 envelope	10 Inch	14 Inch
	ne fixe envelope	North American 6X9	6 Inch	9 inch
2616	ne-ons-on for ope	envelope	O I N C II	Sinci
0.0	na_10x15_envelope	North American 10x15	10 inch	15 inch
2716		envelope		
3016		engineeringA	8.5 inch	11 inch
3116	b	engineering B	11 Inch	17 inch
3216		engineering C	17 Inch	22 Inch
3316	d	engineering D	22 Inch	34 Inch
3416	0	engineering E	34 Inch	44 inch
4016		ISO AO	841 mm	1189 mm
4116		ISO A1	594 mm	841 mm
4216	180 a2	ISO A2	420 mm	594 mm
4316	lso a3	ISO A3	297 mm	
4416		ISO A4	210 mm	
4516		ISO A5		210 mm
4616	iso a 6	ISO A6		148 mm
4716	180 a7	ISO A7		105 mm
4816	iso a8	ISO A8	52mm	74 mm
4916	lao a9	ISO A9	37 m m	52mm
4A16	Ofeosi	ISO A10	26 m m	37mm
				

도면 29

Value	Symbol	Meaning	Width	Height
5016		ISO BO	1000 mm	
5116	iso b1	ISO BI		1000mm
5216	lao b2	ISO B2	500 mm	
5316	lao b3	ISO B3	353 mm	
5416	l so b4	ISO B4	250mm	
5516	1 8 0 b 5	ISO B5	176 mm	
5616		ISO B6	125 mm	
5716	iso b7	ISO B7	88 m m	125mm
5816	lao b8	ISO BB	62 m m	88 mm
5916	lao b9	ISO B9	44 m m	62mm
5A16	lao b10	ISO B10	31 m m	44 mm
6016	180 cO	ISO CO		1297mm
6116	180 c1	ISO C1	648 mm	
6216	lao c2	ISO C2	458 mm	
6316	180 c3	ISO C3	324 mm	
6416	iao c4	ISO C4		324 mm
6516		ISO C5		229 mm
6616	180 06	ISO C6	114 mm	162mm
6716	180 07	ISO C7	81 mm	114mm
6816		ISO C8	57 mm	81 mm
		ISO Dealsnated Long		220 mm
7016	lao bO	ISO BO	1030mm	1456mm
7116	i a o b l	ISO B1		1030mm
7216	isob2	ISO B2	515mm	728 mm
7316	iaob3	ISO B3	364 m m	
7416	I so b4	ISO B4		364 mm
7516		ISO B5	182mm	257 mm
7616	isob6	ISO B6	128mm	
7716		ISO B7	91 mm	128 mm
7816		ISO B8	64 m m	91 mm
7916		ISO B9	45 mm	64 mm
7A16		ISO B10	32 mm	45 mm
8016		NorthAmericanIndexCar44"X6"	4 Inch	6 Inch
8116		NorthAmerican IndexCord5'X8'		8 Inch
				148 mm
12,16	japanese_oufuku _hasaki		148mm	200 mm
	-1148811	Postcard		

도면 30

도면 31

Symbol	Meaning
device_dependent	The image output will be sized as device dependent, (Mandatory)
economy	속도 우신
normal	ofm 于
1884	화질 수선

도면 32

도면 33

Symbol	Weaning
device_dependent	The image output will be sized as device dependent. (Mandatory)
M 0 7 0	그야 바 인화
10 00	칼라 인쇄

도면 34

도면 35

Symbol	Weening
device_dependent	device-dependent The image output will be sized as device dependent,
black_white	다 바 인화
mono	흑백(그레이 스케일)인쇄
00 07	칼라 인쇄

도면 36

도면 37

	Offset_left ~(Offset_top X(Symbol
이너스 중이 바깥즉 방향)) FF16 'device_dependent	~99,9mm, X=0 16 '플러스(종이안쪽 방향), X=8 16 :	Tpack	Meaning

도면 38

도면 39

	Layout_type	Symbol
FFFFFFF16 :device_dependent	0000000016 ~0FFFFFFFF : 레이 아웃 종류	Meaning

도면 40

operand [25] operand [29]	operand[1/]	operand 5	operand 3 operand 4	operand[2]	operand[1]	operand[0]	opcode	
operation_mode_optional_parameters	operation_mode_parameters	print_job_ID	next_page	next_pic	· status	subfunction	OPERATION MODE(41,)	msb

도면 41

rendering_Intent	04 ₁₆
mono_color	03 ₁₆
print_quality	02,6
media_size	01,6
media_type	91,00
Contents	Address Offset

도면 42

도면 43

도면 44

도면 45

도면 46

도면 47

도면 48

Next - page	opcode[28]
No « + 70 20	opcode[27]
	opcode[26]
imase_format_specifier=0001 ₁₆ (Dont	opcode[25]
0 0 0	opcode[24]
0 0 70	opcode[23]
0	opcode[22]
	opcode[21]
	opcode[20]
	opcode[]9]
+ •	opcode[18]
	opcode[17]
	opcode[16]
print_job_ID	
	opcode[5]
reserved	opcode[4]
status	opcode[3]
source_plug	opcode[2]
source_subunit_type source_subun	opcode[1]
subfunct i on	opcode[0]
CAPTURE(XX ₁₆)	opcode
msb	

도면 49

	opcode[28]
	opcode[27]
t_plc	opcode[26]
imase_format_specifler=00001s(sRGBraw	opcode[25]
1111 a 8 a - 8 1 Z a - 3 - 0 0 0 0 1 6	opcode[24]
	opcode[23]
1	opcode[22]
,	opcode[21]
	opcode[20]
data_size=UUUUUU000 ₁₆	opcode[19]
	opcode[18]
	opcode[17]
	opcode[16]
print_job_ID	• • •
	opcode[5]
reserved	opcode[4]
	opcode[3]
p l u g	opcode[2]
0	opcode[1]
subfunction	opcode[0]
CAPTURE(XX16)	opcode
msb	

도면 50

	N c	0216	
	Don't care	0116	
	Unit Plus Defined	0016	
Special meaning			FE16
	Vendor Dependent format	6 0016~FF16	8016~8F16
	JPEG	0F ₁₆	
	TIFF	0216	
	JFIF	0116	
	Exif2.1	0016	
DCF Object	•		1016
	Pixel ratio 0.89x1.00/ITU-RBT.709-4/line	XB16	
	Pixel ratio 0,89x1,00/ITU-RBT,709-2/11ne	XA ₁₆	
	Pixel ratio 1.19x1.00/ITU-RBT.709-2/line	X9 ₁₆	
	Pixel ratio 1.00x1.00/ITU-RBT.709-2/line	X816	
	Pixel ratio 0.89×1.00/ITU-RBT,709-4/pixel		
	Pixel ratio 0.89×1.00/ITU-RBT.709-2/pixel		
	Pixel ratio 1.19x1.00/ITU-RBT.709-2/pixel	X1 ₁₆	
	Pixel ratio 1.00×1.00/ITU-RBT.709-2/pixel	X016	
	YCC 4:2:0 raw	1 X 1 6	
	YCC 4:2:2 raw	0 X 1 6	
YCC raw			3116
	sRGB raw, quadiet	0116	
	aRGB raw	0016	
sRGB raw			3016
Meaning	Туре	Sub-Value	Value

도면 51

VA I UB	Symbol	Meaning
0116	receive	Receive the image
0216	skip	Skip the image area
0316	l e s u m e	Resume from the bus reset
0416	query	Get the supported values
Other values		Reserved