Package 'ushr'

October 12, 2022

Type Package

Title Understanding Suppression of HIV

```
Version 0.2.3
Date 2020-04-21
Maintainer Sinead E. Morris <sinead.morris@columbia.edu>
Description Analyzes longitudinal data of HIV decline in patients on antiretroviral therapy us-
      ing the canonical biphasic exponential decay model (pioneered, for example, by work in Perel-
      son et al. (1997) <doi:10.1038/387188a0>; and Wu and Ding (1999) <doi:10.1111/j.0006-
      341X.1999.00410.x>). Model fitting and parameter estimation are performed, with addi-
      tional options to calculate the time to viral suppression. Plotting and summary tools are also pro-
      vided for fast assessment of model results.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Depends dplyr (>= 0.8.0.1), tidyr (>= 0.8.3), ggplot2 (>= 3.1.1),
      stats
Suggests GGally (>= 1.4.0), knitr (>= 1.22), rmarkdown (>= 1.12),
      testthat (>= 2.2.0)
VignetteBuilder knitr
URL https://github.com/SineadMorris/ushr
NeedsCompilation no
Author Sinead E. Morris [aut, cre] (<a href="https://orcid.org/0000-0001-8626-1698">https://orcid.org/0000-0001-8626-1698</a>),
      Luise Dziobek-Garrett [ctb],
      Andrew Yates [ctb]
Repository CRAN
Date/Publication 2020-04-21 18:20:03 UTC
```

34

Index

R topics documented:

ctg315raw	3
dd_noise	4
iphasic_root	4
lter_data	5
lter_dataTTS	6
t_model	
t_model_triphasic	8
et_biphasic	9
et_CI	10
et_CItable	10
et_curve	11
et_error	
et_error_triphasic	12
et_nonparametricTTS	13
et_optim_fit	14
et_optim_fit_triphasic	
et_parametricTTS	15
et_params	16
et_plottheme	
et_singlephase	17
et_transformed_params	18
et_triphasic	
et_TTS	
lot_data	
lot_model	21
lot_pairs	22
lot_TTS	22
emove_vl0	23
mulate_data	23
mulate_time	
mulate_time_fixed	
mulate_vl	25
ngle_root	26
ummarize_model	
witch_params	
witch_simulated_params	27
ansformVL	28
iphasic_root	28
i_switch_params	
shr	
shr_triphasic	31

actg315raw 3

actg315raw

Data from ACTG315 trial of HIV viral load in adults undergoing ART

Description

Data from the ACTG315 clinical trial of HIV-infected adults undergoing ART. Data are included for 46 individuals, with HIV viral load measurements observed on specific days up to 28 weeks after treatment initiation, and converted to log10 RNA copies/ml. The RNA assay detection threshold was 100 copies/ml. Additional columns include patient identifiers and CD4 T cell counts.

Usage

```
data(actg315raw)
```

Format

A data frame with 361 rows and 5 columns:

Obs.No Row number

Patid Numerical patient identifier

Day Time of each observation, in days since treatment initiation

log10.RNA. HIV viral load measurements, in log10 RNA copies/ml

CD4 CD4 T cell counts, in cells/mm³

Source

Hulin Wu, Data Sets

References

Lederman et al (1998) JID 178(1), 70–79; Connick et al (2000) JID 181(1), 358–363; Wu and Ding (1999) Biometrics 55(2), 410–418.

Examples

```
library(dplyr)
data(actg315raw)

actg315 <- actg315raw %>%
    mutate(vl = 10^log10.RNA.) %>%
    select(id = Patid, time = Day, vl)

print(head(actg315))

plot_data(actg315, detection_threshold = 100)
```

4 biphasic_root

1.1	
add	noise

Add noise to viral load observations

Description

This function adds noise to vI measurements for each subject.

Usage

```
add_noise(vl, sd_noise)
```

Arguments

vl numeric vector of viral load measurements.

sd_noise numeric value indicating the standard deviation level to be used when adding

noise to the simulated data (on the log10 scale).

biphasic_root

Biphasic root function

Description

This function defines the root equation for the biphasic model, i.e. V(t) - suppression_threshold = 0.

Usage

```
biphasic_root(timevec, params, suppression_threshold)
```

Arguments

timevec numeric vector of the times, t, at which V(t) should be calculated

params named vector of all parameters needed to compute the biphasic model, V(t)

suppression_threshold

suppression threshold: measurements below this value will be assumed to represent viral suppression. Typically this would be the detection threshold of the

assay. Default value is 20.

filter_data 5

filter_data	Prepare input data	
-------------	--------------------	--

Description

This function prepares the raw input data for model fitting.

Usage

```
filter_data(data, detection_threshold = 20, censortime = 365,
  censor_value = 10, decline_buffer = 500, initial_buffer = 3,
  n_min_single = 3, threshold_buffer = 10, nsuppression = 1)
```

Arguments

data raw data set. Must be a data frame with the following columns: 'id' - stating

the unique identifier for each subject; 'vl' - numeric vector with the viral load measurements for each subject; 'time' - numeric vector of the times at which

each measurement was taken.

detection_threshold

numeric value indicating the detection threshold of the assay used to measure viral load. Measurements below this value will be assumed to represent unde-

tectable viral load levels. Default value is 20.

censortime numeric value indicating the maximum time point to include in the analysis.

Subjects who do not suppress viral load below the detection threshold within this time will be discarded. Units are assumed to be the same as the 'time'

column. Default value is 365.

censor_value positive numeric value indicating the maximum time point to include in the

analysis. Subjects who do not suppress viral load below the detection threshold within this time will be discarded. Units are assumed to be the same as the

'time' column. Default value is 365.

decline_buffer numeric value indicating the value assigned to measurements below the detec-

tion threshold. Must be less than or equal to the detection threshold.

initial_buffer numeric (integer) value indicating the maximum number of initial observations

from which the beginning of each trajectory will be chosen. Default value is 3.

n_min_single numeric value indicating the minimum number of data points required to be

included in the analysis. Defaults to 3. It is highly advised not to go below this

threshold.

threshold_buffer

numerical value indicating the range above the detection threshold which represents potential skewing of model fits. Subjects with their last two data points

within this range will have the last point removed. Default value is 10.

nsuppression numerical value (1 or 2) indicating whether suppression is defined as having

one observation below the detection threshold, or two sustained observations.

Default value is 1.

6 filter_dataTTS

Details

Steps include: 1. Setting values below the detection threshold to half the detection threshold (following standard practice). 2. Filtering out subjects who do not suppress viral load below the detection threshold by a certain time. 3. Filtering out subjects who do not have a decreasing sequence of viral load (within some buffer range). 4. Filtering out subjects who do not have enough data for model fitting. 5. Removing the last data point of subjects with the last two points very close to the detection threshold. This prevents skewing of the model fit. Further details can be found in the Vignette.

Value

data frame of individuals whose viral load trajectories meet the criteria for model fitting. Includes columns for 'id', 'vl', and 'time'.

Examples

```
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)
filter_data(simulated_data)</pre>
```

filter_dataTTS

Prepare input data for non-parametric TTS calculations.

Description

This function prepares the raw input data for TTS interpolation. Individuals whose data do not meet specific inclusion criteria are removed (see Vignette for more details).

Usage

```
filter_dataTTS(data, suppression_threshold = 20, uppertime = 365,
  censor_value = 10, decline_buffer = 500, initial_buffer = 3)
```

Arguments

data

raw data set. Must be a data frame with the following columns: 'id' - stating the unique identifier for each subject; 'vl' - numeric vector stating the viral load measurements for each subject; 'time' - numeric vector stating the time at which each measurement was taken.

suppression_threshold

numeric value indicating the suppression threshold: measurements below this value will be assumed to represent viral suppression. Typically this would be the detection threshold of the assay. Default value is 20.

fit_model 7

the maximum time point to include in the analysis. Subjects who do not suppress viral load below the suppression threshold within this time will be discarded from model fitting. Units are assumed to be the same as the 'time' column. Default value is 365.

censor_value positive numeric value indicating the maximum time point to include in the analysis. Subjects who do not suppress viral load below the detection threshold within this time will be discarded. Units are assumed to be the same as the 'time' column. Default value is 365.

decline_buffer the maximum allowable deviation of values away from a strictly decreasing sequence in viral load. This allows for e.g. measurement noise and small fluctuations in viral load. Default value is 500.

initial_buffer numeric (integer) value indicating the maximum number of initial observations from which the beginning of each trajectory will be chosen. Default value is 3.

Details

Steps include: 1. Setting values below the suppression threshold to half the suppression threshold (following standard practice). 2. Filtering out subjects who do not suppress viral load below the suppression threshold by a certain time. 3. Filtering out subjects who do not have a decreasing sequence of viral load (within some buffer range).

Examples

```
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)
filter_dataTTS(data = simulated_data)</pre>
```

fit_model

Fit model and obtain parameter estimates

Description

This function fits either the biphasic or single phase model to the processed data and extracts the best-fit parameters.

Usage

```
fit_model(data, id_vector, param_names, initial_params, free_param_index,
    n_min_biphasic, model_list, whichcurve = get_biphasic,
    forward_param_transform_fn, inv_param_transform_fn, searchmethod)
```

8 fit_model_triphasic

Arguments

data dataframe with columns for each subject's identifier ('id'), viral load measure-

ments ('vl'), and timing of sampling ('time')

id_vector vector of identifiers corresponding to the subjects to be fitted.

param_names names of parameter vector.

initial_params named vector of the initial parameter guess.

free_param_index

logical vector indicating whether the parameters A, delta, B, gamma are to be recovered. This should be c(TRUE, TRUE, TRUE, TRUE) for the biphasic model and c(FALSE, FALSE, TRUE, TRUE) for the single phase model.

n_min_biphasic the minimum number of data points required to fit the biphasic model. Defaults

to 6. It is highly advised not to go below this threshold.

model_list character indicating which model is to be fit. Can be either 'four' for the biphasic

model, or 'two' for the single phase model. Defaults to 'four'.

whichcurve indicates which model prediction function to use. Should be get_biphasic for

the biphasic model or get_singlephase for the singlephase model. Defaults to

get_biphasic.

forward_param_transform_fn

list of transformation functions to be used when fitting the model in optim. Defaults to log transformations for all parameters (to allow unconstrained optimiza-

tion).
inv_param_transform_fn

list of transformation functions to be used when back-transforming the trans-

formed parameters. Should be the inverse of the forward transformation func-

tions. Defaults to exponential.

searchmethod optimization algorithm to be used in optim. Defaults to Nelder-Mead.

fit_model_triphasic Fit model and obtain parameter estimates

Description

This function fits the triphasic model to the processed data and extracts the best-fit parameters.

Usage

```
fit_model_triphasic(data, id_vector, param_names, initial_params,
  free_param_index, n_min_triphasic, forward_param_transform_fn,
  inv_param_transform_fn, searchmethod)
```

get_biphasic 9

Arguments

data frame with columns for each subject's identifier ('id'), viral load measure-

ments ('vl'), and timing of sampling ('time')

id_vector vector of identifiers corresponding to the subjects to be fitted.

param_names names of parameter vector.

initial_params named vector of the initial parameter guess.

free_param_index

logical vector indicating whether the parameters A, delta, A_b, delta_b, B, gamma are to be recovered. This should be c(TRUE, TRUE, TRUE, TRUE,

TRUE, TRUE) for the triphasic model.

n_min_triphasic

the minimum number of data points required to fit the triphasic model.

forward_param_transform_fn

list of transformation functions to be used when fitting the model in optim. Defaults to log transformations for all parameters (to allow unconstrained optimization).

inv_param_transform_fn

list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation func-

tions. Defaults to exponential.

searchmethod optimization algorithm to be used in optim. Defaults to Nelder-Mead.

get_biphasic

Compute the biphasic model curve

Description

This function calculates the biphasic model, V(t), for a vector of input times, t

Usage

```
get_biphasic(params, timevec)
```

Arguments

params named numeric vector of all parameters needed to compute the biphasic model,

V(t)

timevec numeric vector of the times, t, at which V(t) should be calculated

Value

numeric vector of viral load predictions, V(t), for each time point in 'timevec'

10 get_CItable

Examples

get_CI

Calculate parameter confidence intervals

Description

This function calculates parameter 95

Usage

```
get_CI(fit)
```

Arguments

fit

the output of optim i.e. the fitted model for a particular subject

get_CItable

Make parameter summary table

Description

This function collate confidence intervals and parameter estimates from all subjects (fitted with the same model) into a nice table.

Usage

```
get_CItable(CIlist, param_names, free_param_index, fitted)
```

Arguments

CIlist a list of confidence intervals and parameter estimates obtained from fitting either

the single or biphasic model to each eligible subject.

param_names character vector of the parameter names. This should be c("A", "delta", "B",

"gamma") for the biphasic model or c("B", "gamma") for the single phase model.

free_param_index

logical vector indicating whether the parameters A, delta, B, gamma are to be included. This should be c(TRUE, TRUE, TRUE, TRUE) for the biphasic model

and c(FALSE, FALSE, TRUE, TRUE) for the single phase model.

fitted data frame with an 'id' column of the unique identifiers for each subject repre-

sented in CIlist. Identifiers should be ordered according to their appearance in

CIlist.

get_curve 11

get	CII	rve

Compute the model for a given subject's data and best-fit parameters

Description

This function calculates the biphasic or single phase model given a subject's data and best-fit parameters

Usage

```
get_curve(data, best_param, param_names, whichcurve = get_biphasic)
```

Arguments

data	data frame with columns for the subject's identifier ('id') and timing of sampling ('time')
best_param	named numeric vector of best fit parameters obtained from fitting the biphasic or single phase model to the subjects data
param_names	character vector containing the names of the parameters in 'best_param'
whichcurve	character indicating which model function should be used. Use 'get_biphasic' for the biphasic model, or 'get_singlephase' for the single phase model. Defaults to 'get_biphasic'.

Value

data frame with columns for the sampling times ('time'), fitted viral load predictions ('fit'), and the corresponding subject identifier ('id')

Examples

12 get_error_triphasic

get_error

Evaluate error metric between data and model prediction

Description

For a given parameter set, this function computes the predicted viral load curve and evaluates the error metric between the prediction and observed data (to be passed to optim).

Usage

```
get_error(params, param_names, free_param_index, data, model_list,
  inv_param_transform_fn)
```

Arguments

params named vector of the parameters from which the model prediction should be gen-

erated.

param_names names of parameter vector.

free_param_index

logical TRUE/FALSE vector indicating whether the parameters A, delta, B, gamma are to be recovered. This should be c(TRUE, TRUE, TRUE, TRUE) for the biphasic model and c(FALSE, FALSE, TRUE, TRUE) for the single phase

model.

data dataframe with columns for the subject's viral load measurements ('vl'), and

timing of sampling ('time')

model_list character indicating which model is begin fit. Can be either 'four' for the bipha-

sic model, or 'two' for the single phase model.

inv_param_transform_fn

list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation func-

tions. Defaults to exponential.

get_error_triphasic

Evaluate error metric between data and model prediction

Description

For a given parameter set, this function computes the predicted viral load curve and evaluates the error metric between the prediction and observed data (to be passed to optim).

Usage

```
get_error_triphasic(params, param_names, free_param_index, data,
  inv_param_transform_fn)
```

get_nonparametricTTS

13

Arguments

params named vector of the parameters from which the model prediction should be gen-

erated.

param_names names of parameter vector.

free_param_index

logical TRUE/FALSE vector indicating whether the parameters A, delta, A_b, delta_b, B, gamma are to be recovered. This should be c(TRUE, TRUE, TRUE,

TRUE, TRUE, TRUE) for the triphasic model.

data frame with columns for the subject's viral load measurements ('vl'), and

timing of sampling ('time').

inv_param_transform_fn

list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation func-

tions. Defaults to exponential.

get_nonparametricTTS Non-parametric TTS function

Description

This function computes the non-parametric form of the time to suppression

Usage

```
get_nonparametricTTS(v1, suppression_threshold, time, npoints)
```

Arguments

vl numeric vector of viral load measurements.

suppression_threshold

numeric value for the suppression threshold: measurements below this value will be assumed to represent viral suppression. Typically this would be the

detection threshold of the assay. Default value is 20.

time numeric vector indicating the time when vI measurements were taken.

npoints numeric value indicating the number of interpolation points to be considered.

14 get_optim_fit

		c: +
get	optim	TIT

Fit model to data using optim

Description

This function uses optim to fit either the biphasic or single phase model to data from a given subject

Usage

```
get_optim_fit(initial_params, param_names, free_param_index, data,
  model_list = "four",
  forward_param_transform_fn = forward_param_transform_fn,
  inv_param_transform_fn = inv_param_transform_fn, searchmethod)
```

Arguments

initial_params named vector of the initial parameter guess.

param_names names of parameter vector.

free_param_index

logical vector indicating whether the parameters A, delta, B, gamma are to be recovered. This should be c(TRUE, TRUE, TRUE, TRUE) for the biphasic model and c(FALSE, FALSE, TRUE, TRUE) for the single phase model.

data dataframe with columns for the subject's viral load measurements ('vl'), and

timing of sampling ('time')

model_list character indicating which model is begin fit. Can be either 'four' for the bipha-

sic model, or 'two' for the single phase model. Defaults to 'four'.

forward_param_transform_fn

list of transformation functions to be used when fitting the model in optim. Defaults to log transformations for all parameters (to allow unconstrained optimization)

tion).

inv_param_transform_fn

list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation func-

tions. Defaults to exponential.

searchmethod optimization algorithm to be used in optim. Defaults to Nelder-Mead.

get_optim_fit_triphasic 15

```
get_optim_fit_triphasic
```

Fit triphasic model to data using optim

Description

This function uses optim to fit the triphasic model to data from a given subject

Usage

```
get_optim_fit_triphasic(initial_params, param_names, free_param_index,
  data, forward_param_transform_fn = forward_param_transform_fn,
  inv_param_transform_fn = inv_param_transform_fn, searchmethod)
```

Arguments

initial_params named vector of the initial parameter guess.

param_names names of parameter vector.

free_param_index

logical vector indicating whether the parameters A, delta, A_b, delta_b, B, gamma are to be recovered. This should be c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE) for the triphasic model.

data

dataframe with columns for the subject's viral load measurements ('vl'), and timing of sampling ('time')

forward_param_transform_fn

list of transformation functions to be used when fitting the model in optim. Defaults to log transformations for all parameters (to allow unconstrained optimization).

inv_param_transform_fn

list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation functions. Defaults to exponential

tions. Defaults to exponential.

searchmethod

optimization algorithm to be used in optim. Defaults to Nelder-Mead.

get_parametricTTS

Parametric TTS function

Description

This function computes the parametric form of the time to suppression

Usage

```
get_parametricTTS(params, rootfunction, suppression_threshold, uppertime)
```

16 get_params

Arguments

params named vector of all parameters needed to compute the suppression model, V(t)

rootfunction specifies which function should be used to calculate the root: biphasic or single

phase.

suppression_threshold

suppression threshold: measurements below this value will be assumed to represent viral suppression. Typically this would be the detection threshold of the

assay. Default value is 20.

uppertime numeric value indicating the maximum time that will be considered. Default

value is 365.

get_params

Extract fitted parameters

Description

This function extracts all untransformed parameters from the output of optim (i.e. the fitted model).

Usage

```
get_params(fit, initial_params, free_param_index, param_names,
  inv_param_transform_fn, index = NULL)
```

Arguments

fit the output of optim i.e. the fitted model for a particular subject

initial_params named vector of the initial parameter guess

free_param_index

logical TRUE/FALSE vector indicating whether the parameters A, delta, B, gamma are to be recovered. This should be c(TRUE, TRUE, TRUE, TRUE) for the biphasic model and c(FALSE, FALSE, TRUE, TRUE) for the single phase

model.

param_names character vector of the parameter names. This should be c("A", "delta", "B",

"gamma") for the biphasic model or c("B", "gamma") for the single phase model.

inv_param_transform_fn

list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation func-

tions.

index indicator value used inside the master function to indicate the subject number.

get_plottheme 17

 ${\tt get_plottheme}$

Get plotting theme

Description

This function sets the plotting theme for ggplot.

Usage

```
get_plottheme(textsize)
```

Arguments

textsize

numeric value for base text size. Default is 9.

get_singlephase

Compute the single phase model curve

Description

This function calculates the single phase model, V(t), for vector of input times, t

Usage

```
get_singlephase(params, timevec)
```

Arguments

params

named numeric vector of all parameters needed to compute the single phase

model, V(t)

timevec

numeric vector of the times, t, at which V(t) should be calculated

Value

numeric vector of viral load predictions, V(t), for each time point in 'timevec'

Examples

```
get\_singlephase(params = c(B = 1000, gamma = 0.68), timevec = seq(1, 100, length.out = 100))
```

18 get_triphasic

```
get_transformed_params
```

Transform parameters

Description

This function transforms parameter estimates according to user defined functions

Usage

```
get_transformed_params(params, param_transform_fn)
```

Arguments

```
params vector of parameters

param_transform_fn

vector of functions for parameter transformation
```

get_triphasic

Compute the triphasic model curve

Description

This function calculates the triphasic model, V(t), for a vector of input times, t

Usage

```
get_triphasic(params, timevec)
```

Arguments

params named numeric vector of all parameters needed to compute the triphasic model,

V(t)

timevec $\,$ numeric vector of the times, t, at which V(t) should be calculated

Value

numeric vector of viral load predictions, V(t), for each time point in 'timevec'

Examples

```
get_triphasic(params = c(A = 10000, delta = 1, B = 1000, gamma = 0.1, C = 100, omega = 0.03),
timevec = seq(1, 100, length.out = 100))
```

get_TTS

get_TTS

Time to suppression (TTS) function

Description

This function calculates the time to suppress HIV below a specified threshold.

Usage

```
get_TTS(model_output = NULL, data = NULL, suppression_threshold = 20,
   uppertime = 365, censor_value = 10, decline_buffer = 500,
   initial_buffer = 3, parametric = TRUE, ARTstart = FALSE,
   npoints = 1000)
```

Arguments

model_output output from fitting model. Only required if parametric = TRUE.

data raw data set. Must be a data frame with the following columns: 'id' - stating

the unique identifier for each subject; 'vl'- numeric vector stating the viral load measurements for each subject; 'time' - numeric vector stating the time at which

each measurement was taken. Only required if parametric = FALSE.

suppression_threshold

suppression threshold: measurements below this value will be assumed to rep-

resent viral suppression. Typically this would be the detection threshold of the

assay. Default value is 20.

uppertime the maximum time interval to search for the time to suppression. Default value

is 365.

censor_value positive numeric value indicating the maximum time point to include in the

analysis. Subjects who do not suppress viral load below the detection threshold within this time will be discarded. Units are assumed to be the same as the

'time' column. Default value is 365.

decline_buffer the maximum allowable deviation of values away from a strictly decreasing se-

quence in viral load. This allows for e.g. measurement noise and small fluctua-

tions in viral load. Default value is 500.

initial_buffer numeric (integer) value indicating the maximum number of initial observations

from which the beginning of each trajectory will be chosen. Default value is 3.

parametric logical TRUE/FALSE indicating whether time to suppression should be cal-

culated using the parametric (TRUE) or non-parametric (FALSE) method. If TRUE, a fitted model object is required. If FALSE, the raw data frame is re-

quired. Defaults to TRUE.

ARTstart logical TRUE/FALSE indicating whether the time to suppression should be rep-

resented as time since ART initiation. Default = FALSE. If TRUE, ART initia-

tion times must be included as a data column named 'ART'.

npoints numeric value of the number of interpolation points to be considered. Default is

1000.

20 plot_data

Details

Options include: parametric (i.e. using the fitted model) or non-parametric (i.e. interpolating the processed data).

Value

a data frame containing all individuals who fit the inclusion criteria, along with their TTS estimates, and a column indicating whether the parametric or nonparametric approach was used.

Examples

```
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)
get_TTS(data = simulated_data, parametric = FALSE)</pre>
```

plot_data

Plot data

Description

This function plots raw, filtered, or simulated data.

Usage

```
plot_data(data, textsize = 9, pointsize = 1, linesize = 0.5,
  facet_col = NULL, detection_threshold = 20)
```

Arguments

data	data frame of raw, filtered, or simulated data. Must include the following columns: 'id' - stating the unique identifier for each subject; 'vl' - numeric vector stating the viral load measurements for each subject; 'time' - numeric vector stating the time at which each measurement was taken.
textsize	numeric value for base text size in ggplot. Default is 9.
pointsize	numeric value for point size in ggplot. Default is 1.
linesize	numeric value for line width in ggplot. Default is 0.5.
facet_col	numeric value for number of columns to use when faceting subject panels. Defaults to NULL (i.e. ggplot default).
detection_threshold	

numeric value indicating the detection threshold of the assay used to measure viral load. Default value is 20.

plot_model 21

Examples

```
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)
plot_data(simulated_data)</pre>
```

plot_model

Plot model fits

Description

This function plots the output from model fitting.

Usage

```
plot_model(model_output, type = "biphasic", detection_threshold = 20,
  textsize = 9, pointsize = 1, linesize = 0.5, facet_col = NULL)
```

Arguments

output from model fitting using ushr(). model_output character string indicating whether the biphasic or single phase fits should be type plotted. Must be either "biphasic", "single", or "triphasic". Defaults to "biphasic". detection_threshold numeric value indicating the detection threshold of the assay used to measure viral load. Default value is 20. numeric value for base text size in ggplot. Default is 9. textsize pointsize numeric value for point size in ggplot. Default is 1. linesize numeric value for line width in ggplot. Default is 0.5. facet_col numeric value for number of columns to use when faceting subject panels. Defaults to NULL (i.e. ggplot default).

Examples

```
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)
model_output <- ushr(data = simulated_data)
plot_model(model_output, type = "biphasic")</pre>
```

plot_TTS

plot_pairs

Plot pairwise parameter distributions

Description

This function creates pairwise scatterplots of the estimates parameters. The default plotting method requires GGally; if this package is not available, base R is used instead.

Usage

```
plot_pairs(model_output, type = "biphasic", textsize = 9,
   pointsize = 1, linesize = 0.5)
```

Arguments

model_output output from model fitting using ushr().

type character string indicating whether the biphasic or single phase fits should be

plotted. Must be either "biphasic", "single", or "triphasic". Defaults to "bipha-

sic".

textsize numeric value for base text size. Default is 9. pointsize numeric value for point size. Default is 1.

linesize numeric value for line width; only used for GGally plots. Default is 0.5.

Examples

```
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)
model_output <- ushr(data = simulated_data)
plot_pairs(model_output)</pre>
```

plot_TTS

Plot time to suppression distribution

Description

This function plots a histogram of the time to suppression estimates.

Usage

```
plot_TTS(TTS_output, textsize = 9, bins = 20)
```

remove_vl0 23

Arguments

TTS_output output from estimating time to suppression (TTS) values using get_TTS()...

textsize numeric value for base text size on ggplot. Default is 9.

bins numeric value indicating the number of bins for the histogram. Default is 20.

Examples

```
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)

TTSestimates <- get_TTS(data = simulated_data, parametric = FALSE)
plot_TTS(TTSestimates, bins = 5)</pre>
```

remove_vl0

Prune viral load data

Description

This function removes the first viral load data point for specific subjects

Usage

```
remove_vl0(id, which_ids, subset)
```

Arguments

id vector of subject ids

which_ids vector of ids that should have the first point removed subset data frame to which the function should be applied

simulate_data

Create data function

Description

This function simulates example data that can be used to explore model fitting and plotting within the package. Subjects are assumed to be observed at regular intervals until either the end of the study or they are lost to follow up.

24 simulate_time

Usage

```
simulate_data(nsubjects = 10, detection_threshold = 20,
  censortime = 365, max_datapoints = 24, min_datapoints = 6,
  sd_noise = 0.1, param_noise = c(1.5, 0.1, 1.5, 0.1),
  mean_params = c(A = 10000, delta = 0.3, B = 10000, gamma = 0.03))
```

Arguments

nsubjects numeric value indicating the number of subjects you want to simulate data for.

Default is 10.

detection_threshold

numeric value indicating the detection threshold of the assay used to measure viral load. Measurements below this value will be assumed to represent unde-

tectable viral load levels. Default value is 20.

censortime numeric value indicating the maximum time point to include in the analysis.

Default value is 365.

max_datapoints numeric value indicating the maximum number of data points collected from

any subject. Defaults to 24.

min_datapoints numeric value indicating the minimum number of data points collected from any

subject. Defaults to 6.

sd_noise numeric value indicating the standard deviation level to be used when adding

noise to the simulated data (on the log10 scale). Default value is 0.1

param_noise numeric vector indicating the standard deviation to be used when selecting pa-

rameter values (on the log scale). Order of entries should be: A, delta, B,

gamma. Default value is c(1.5, 0.1, 1.5, 0.1).

mean_params named numeric vector indicating the mean parameter values for the subject de-

cay curves. Default is c(A = 10000, delta = 0.3, B = 10000, gamma = 0.03).

Examples

```
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)</pre>
```

simulate_time

Simulate timepoints for subjects

Description

This function chooses the correct function for sampling observation times.

Usage

```
simulate_time(npoints, censortime, id, index, max_datapoints)
```

simulate_time_fixed 25

Arguments

npoints numeric value indicating the number of observations to be sampled.

censortime numeric value indicating the maximum time point to include in the analysis.

id subject id. Can be numeric or a character.

index numeric identifier for each subject/model combination.

max_datapoints numeric value indicating the maximum number of data points collected from

any subject.

Description

This function simulates observed timepoints for each subject according to a fixed sampling design.

Usage

```
simulate_time_fixed(npoints, censortime, id, index, max_datapoints)
```

Arguments

npoints numeric value indicating the number of observations to be sampled.

censortime numeric value indicating the maximum time point to include in the analysis.

id subject id. Can be numeric or a character.

index numeric identifier for each subject/model combination.

max_datapoints numeric value indicating the maximum number of data points collected from

any subject.

simulate_vl Simulate vl for subjects

Description

This function simulates observed vl for each subject.

Usage

```
simulate_vl(params, timevec, id)
```

Arguments

params named numeric vector of parameter values to simulate the biphasic model.

timevec numeric vector of observed timepoints.

id subject id. Can be numeric or a character.

26 summarize_model

single	root
STUST	_1006

Single phase root function

Description

This function defines the root equation for the single phase model, i.e. V(t) - suppression_threshold = 0.

Usage

```
single_root(timevec, params, suppression_threshold)
```

Arguments

timevec numeric vector of the times, t, at which V(t) should be calculated

params named vector of all parameters needed to compute the single phase model, V(t)

suppression_threshold

suppression threshold: measurements below this value will be assumed to represent viral suppression. Typically this would be the detection threshold of the

assay. Default value is 20.

summarize_model

Summarize model output

Description

This function summarizes the output of model fitting..

Usage

```
summarize_model(model_output, data, stats = FALSE)
```

Arguments

model_output output from model fitting using ushr().

data dataframe of original data used for model fitting. Must include named 'id' col-

umn with subject identifiers.

stats logical TRUE/FALSE: should the median and sd lifespans also be returned?

Default is FALSE.

Value

a list containing (i) a summary of which subjects were successfully fit using the biphasic or single phase models, with their corresponding infected cell lifespan estimates ('summary'); (ii) if stats = TRUE: summary statistics for the estimated parameters from the biphasic model ('biphasicstats'); and (iii) if stats = TRUE: summary statistics for the estimated parameters from the single phase model ('singlestats').

switch_params 27

Examples

```
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)
model_output <- ushr(data = simulated_data)
summarize_model(model_output, data = simulated_data)</pre>
```

switch_params

Switch names of rate parameters

Description

This function switches the names of delta and gamma estimates if gamma > delta.

Usage

```
switch_params(biphasicCI)
```

Arguments

biphasicCI

data frame of parameter estimates and confidence intervals for the biphasic model.

```
switch_simulated_params
```

Switch names of simulated rate parameters

Description

This function switches the names of delta and gamma estimates if gamma > delta.

Usage

```
switch_simulated_params(params)
```

Arguments

params

matrix of parameter estimates

28 triphasic_root

transformVL

Transform viral load data

Description

This function takes the log10 transform of viral load data & checks for NAs

Usage

```
transformVL(VL)
```

Arguments

VL

vector of viral load data

triphasic_root

Triphasic root function

Description

This function defines the root equation for the triphasic model, i.e. V(t) - suppression_threshold = 0.

Usage

```
triphasic_root(timevec, params, suppression_threshold)
```

Arguments

timevec numeric vector of the times, t, at which V(t) should be calculated

params named vector of all parameters needed to compute the triphasic model, V(t)

suppression_threshold

suppression threshold: measurements below this value will be assumed to represent viral suppression. Typically this would be the detection threshold of the

assay. Default value is 20.

tri_switch_params 29

tri_switch_params

Switch names of rate parameters

Description

This function switches the names of delta and gamma estimates if gamma > delta.

Usage

```
tri_switch_params(triphasicCI)
```

Arguments

triphasicCI

data frame of parameter estimates and confidence intervals for the biphasic

ushr

Master function

Description

This function performs the entire analysis, from data filtering to fitting the biphasic/single phase models. The biphasic/single phase models should be used when ART comprises of RTI/PIs.

Usage

```
ushr(data, filter = TRUE, detection_threshold = 20, censortime = 365,
  censor_value = 10, decline_buffer = 500, initial_buffer = 3,
  threshold_buffer = 10, VL_max_decline = 10000, CI_max_diff = 1000,
  n_min_single = 3, n_min_biphasic = 6, nsuppression = 1,
  forward_param_transform_fn = list(log, log, log, log),
  inv_param_transform_fn = list(exp, exp, exp, exp),
  initial_params = c(A = 10000, delta = 0.68, B = 1000, gamma = 0.03),
  searchmethod = "Nelder-Mead")
```

Arguments

data

raw data set. Must be a data frame with the following columns: 'id' - stating the unique identifier for each subject; 'vl' - numeric vector stating the viral load measurements for each subject; 'time' - numeric vector stating the time at which each measurement was taken.

filter

Logical TRUE/FALSE indicating whether the data should be processed (highly recommended) prior to model fitting. Default is TRUE.

30 ushr

detection_threshold

numeric value indicating the detection threshold of the assay used to measure viral load. Measurements below this value will be assumed to represent undetectable viral levels. Default value is 20.

censortime

numeric value indicating the maximum time point to include in the analysis. Subjects who do not suppress viral load below the detection threshold within this time will be discarded from model fitting. Units are assumed to be same as the 'time' measurements. Default value is 365.

censor value

positive numeric value indicating the maximum time point to include in the analysis. Subjects who do not suppress viral load below the detection threshold within this time will be discarded. Units are assumed to be the same as the 'time' column. Default value is 365.

decline_buffer numeric value indicating the maximum allowable deviation of values away from a strictly decreasing sequence in viral load. This allows for e.g. measurement noise and small fluctuations in viral load. Default value is 500.

initial_buffer integer value indicating the maximum number of initial observations from which the beginning of each trajectory will be chosen. Default value is 3.

threshold_buffer

numeric value indicating the range above the detection threshold which represents potential skewing of model fits. Subjects with their last two data points within this range will have the last point removed. Default value is 10.

VL_max_decline

numeric value indicating the maximum allowable difference between first and second viral load measurements. Default is 10,000.

CI_max_diff

numeric value indicating the maximum allowable relative difference between lower and upper 95% confidence intervals i.e. (upper CI - lower CI)/lower CI. Default is 1000.

n_min_single

numeric value indicating the minimum number of data points required to be included in the analysis. Defaults to 3. It is highly advised not to go below this threshold.

n_min_biphasic

numeric value indicating the minimum number of data points required to fit the biphasic model. Defaults to 6. It is highly advised not to go below this threshold.

nsuppression

numerical value (1 or 2) indicating whether suppression is defined as having one observation below the detection threshold, or two sustained observations. Default value is 1.

forward_param_transform_fn

list of transformation functions to be used when fitting the model in optim. Defaults to log transformations for all parameters (to allow unconstrained optimiza-

inv_param_transform_fn

list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation functions. Defaults to exponential.

initial_params

named numeric vector of initial parameter guesses. Defaults to c(A = 10000,delta = 0.68, B = 1000, gamma = 0.03).

searchmethod

optimization algorithm to be passed to 'optim()'. Defaults to 'Nelder-Mead'.

ushr_triphasic 31

Details

Steps include: 1. Processing the raw data. 2. Fitting the biphasic model to subjects with eligible data e.g. those with enough data points and reliable confidence interval estimates. 3. Fitting the single phase model to the remaining subjects.

Value

a list containing the filtered data ('data_filtered'); parameter estimates for the biphasic and single phase models ('biphasicCI' and 'singleCI'); and predictions from the biphasic and single phase models ('biphasic fits' and 'single fits').

Examples

```
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)
model_output <- ushr(data = simulated_data)</pre>
```

ushr_triphasic

Master function for the triphasic model

Description

This function performs the entire analysis, from data filtering to triphasic model fitting. The triphasic model should be used when ART includes an integrase inhibitor.

Usage

```
ushr_triphasic(data, filter = TRUE, detection_threshold = 20,
  censortime = 365, censor_value = 10, decline_buffer = 500,
  initial_buffer = 3, threshold_buffer = 10, VL_max_decline = 10000,
  CI_max_diff = 1000, n_min_triphasic = 9, nsuppression = 1,
  forward_param_transform_fn = list(log, log, log, log, log, log),
  inv_param_transform_fn = list(exp, exp, exp, exp, exp),
  initial_params = c(A = 10000, delta = 1, A_b = 1000, delta_b = 0.15, B
  = 10, gamma = 0.05), searchmethod = "Nelder-Mead")
```

Arguments

data

raw data set. Must be a data frame with the following columns: 'id' - stating the unique identifier for each subject; 'vl' - numeric vector stating the viral load measurements for each subject; 'time' - numeric vector stating the time at which each measurement was taken.

filter

Logical TRUE/FALSE indicating whether the data should be processed (highly recommended) prior to model fitting. Default is TRUE.

32 ushr_triphasic

detection_threshold

numeric value indicating the detection threshold of the assay used to measure viral load. Measurements below this value will be assumed to represent undetectable viral levels. Default value is 20.

censortime

numeric value indicating the maximum time point to include in the analysis. Subjects who do not suppress viral load below the detection threshold within this time will be discarded from model fitting. Units are assumed to be same as the 'time' measurements. Default value is 365.

censor_value

positive numeric value indicating the maximum time point to include in the analysis. Subjects who do not suppress viral load below the detection threshold within this time will be discarded. Units are assumed to be the same as the 'time' column. Default value is 365.

decline_buffer numeric value indicating the maximum allowable deviation of values away from a strictly decreasing sequence in viral load. This allows for e.g. measurement noise and small fluctuations in viral load. Default value is 500.

initial_buffer integer value indicating the maximum number of initial observations from which the beginning of each trajectory will be chosen. Default value is 3.

threshold buffer

numeric value indicating the range above the detection threshold which represents potential skewing of model fits. Subjects with their last two data points within this range will have the last point removed. Default value is 10.

VL_max_decline numeric value indicating the maximum allowable difference between first and second viral load measurements. Default is 10.000.

CI_max_diff

numeric value indicating the maximum allowable relative difference between lower and upper 95% confidence intervals i.e. (upper CI - lower CI)/lower CI. Default is 1000.

n_min_triphasic

numeric value indicating the minimum number of data points required to be included in the analysis. Defaults to 9. It is highly advised not to go below this threshold.

nsuppression

numerical value (1 or 2) indicating whether suppression is defined as having one observation below the detection threshold, or two sustained observations. Default value is 1.

forward_param_transform_fn

list of transformation functions to be used when fitting the model in optim. Defaults to log transformations for all parameters (to allow unconstrained optimiza-

inv_param_transform_fn

list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation functions. Defaults to exponential.

initial_params named numeric vector of initial parameter guesses. Defaults to c(A = 10000,delta = 1, $A_b = 1000$, $delta_b = 0.15$, B = 10, gamma = 0.05).

searchmethod optimization algorithm to be passed to 'optim()'. Defaults to 'Nelder-Mead'. ushr_triphasic 33

Details

Steps include: 1. Processing the raw data. 2. Fitting the triphasic model to subjects with eligible data e.g. those with enough data points and reliable confidence interval estimates.

Value

a list containing the filtered data ('data_filtered'); parameter estimates for the triphasic model ('triphasicCI'); and predictions from the triphasic model ('triphasic_fits'').

Index

* datasets actg315raw, 3 actg315raw, 3	<pre>single_root, 26 summarize_model, 26 switch_params, 27 switch_simulated_params, 27</pre>
<pre>add_noise, 4 biphasic_root, 4 filter_data, 5 filter_dataTTS, 6 fit_model, 7 fit_model_triphasic, 8</pre>	<pre>transformVL, 28 tri_switch_params, 29 triphasic_root, 28 ushr, 29 ushr_triphasic, 31</pre>
get_biphasic, 9 get_CI, 10 get_CItable, 10 get_curve, 11 get_error, 12 get_error_triphasic, 12 get_nonparametricTTS, 13 get_optim_fit, 14 get_optim_fit_triphasic, 15 get_parametricTTS, 15 get_parametricTTS, 15 get_parametricTTS, 17 get_singlephase, 17 get_transformed_params, 18 get_TTS, 19	
plot_data, 20 plot_model, 21 plot_pairs, 22 plot_TTS, 22	
<pre>remove_vl0, 23 simulate_data, 23 simulate_time, 24 simulate_time_fixed, 25 simulate_vl, 25</pre>	