БЛОБЫ. Лекция 6.

Преподаватель: Сибирцева Елена elsibirtseva@gmail.com

Когда удобно проводить занятия?

В предыдущих сериях...

Особенности (features)

- «Хорошо различимые фрагменты» объекта
 - «особенности» (features)
 - «характеристические точки» (characteristic points)
 - «локальные особые точки» (local feature points)
- Характерные фрагменты позволяют справится с изменениями ракурса, масштаба и перекрытиями

Требования к особенностям

- Повторимость (Repeatability)
 - Особенность находится в том же месте объекта не смотря на изменения масштаба, положения, ракурса и освещения
- Локальность (Locality)
 - Особенность занимает маленькую область изображения, поэтому работа с ней нечувствительна к перекрытиям
- Значимость (Saliency)
 - Каждая особенность имеет уникальное (distinctive) описание
- Компактность и эффективность
 - Количество особенностей существенно меньше числа пикселей изображения

Локальные особенности

Проведём эксперимент, будем рассматривать разные точки на изображении и проверять, являются ли они локальными особенностями

монотонный регион: в любом направлении изменений нет

«край»: вдоль края изменений нет

«уголок»: изменения при перемещении в любую сторону

Детектор Харриса

- Наиболее популярный детектор локальных особенность точек – детектор Харриса (Harris)
- Ищет такие точки (x,y), окрестность которых меняется при любом сдвиге (x+u, y+v)
- Такие точки обычно оказываются углами, поэтому метод ещё называют «детектор углов»

Функция отклика углов

Функция отклика угла по Харрису:

$$R = \det M - k \left(\operatorname{trace} M \right)^{2}$$
$$\det M = \lambda_{1} \lambda_{2}$$
$$\operatorname{trace} M = \lambda_{1} + \lambda_{2}$$
$$(k = 0.04 - 0.06)$$

Функция по Фёрстнеру (Forstner):

$$R = \det M / \operatorname{trace} M$$

Алгоритм детектора Харриса

- 1. Вычислить градиент изображения в каждом пикселе
 - С использованием гауссова сглаживания
- 2. Вычислить матрицу вторых моментов М по окну вокруг каждого пикселя
- 3. Вычислить отклик угла *R*
- 4. Отсечение по порогу R
- Найти локальные максимумы функции отклика (nonmaximum suppression) по окрестности заданного радиуса
- 6. Выбор N самых сильных локальных максимумов

Найдём точки с большим откликом R>порог

- Как быть с тем, что функция отклика угла больше порога в некоторых областях?
- Как нам выбрать конкретные точки в областях?

Оставим только точки локальных максимумов R

ДЕТЕКТОР БЛОБОВ

Инвариантность к масштабированию

- Цель: определять размер окрестности особой точки в масштабированных версиях одного и того же изображения
- Требуется метод выбора размера характеристической окрестности

Блобы

Поиск краев

Второй проход

От краев к блобам

- Край = «всплеск»
- Блоб = совмещение двух «всплесков»

Выбор масштаба: величина отклика лапласиана Гауссиана достигает максимума в центре блоба в том случае, если размер лапласиана «соответствует» размеру блоба

Выбор масштаба

- Нужно найти характеристический размер блоба путем свертки с Лапласианом в нескольких масштабах и найти максимальные отклики
- Однако, отклик Лапласиана затухает при увеличении масштаба:

Нормализация масштаба

 Отклик производной фильтра Гаусса на идеальный край затухает с увеличением масштаба о

Нормализация масштаба

- Отклик производной фильтра Гаусса на идеальный край затухает при увеличении σ
- Нужно домножить производную на σ для достижения инвариантности к масштабу
- Лапласиан это вторая производная фильтра гаусса, поэтому домножаем на σ²

Эффект нормализации

Поиск блобов в 2D

Лапласиан Гауссиана: Центрально-симметричный оператор поиска блобов в 2D

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

Поиск блобов в 2D

Лапласиан Гауссиана: Центрально-симметричный оператор поиска блобов в 2D

Нормализация:
$$\nabla^2_{\text{norm}} g = \sigma^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right)$$

Выбор масштаба

 На каком масштабе Лапласиан достигает максимума отклика на бинарный круг радиуса r?

Выбор масштаба

2D Лапласиан задается формулой:

$$(x^2+y^2-2\sigma^2)\,e^{-(x^2+y^2)/2\sigma^2}$$
 (с точностью до масштаба)

• Для бинарного круга радиуса г, Лапласиан достигает максимума в $\sigma = r/\sqrt{2}$

Характеристический размер

 Характеристический размер определяется как масштаб, на котором достигается максимум отклика Лапласиана

Характеристический размер

У «хорошего блоба» – один ярко выраженный пик функции

Многомасштабный детектор блобов

- 1. Свертываем изображение нормализованным фильтром Лапласианом на разных масштабах
- 2. Ищем максимум отклика Лапласиана в 3D

Пример

Пример

34

Пример

Эффективная реализация (DoG)

Приближение Лапласиана с помощью разницы гауссиан:

$$L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
 (Лапласиан)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$
 (Разница Гауссиан)

Эффективная реализация (DoG)

Детектор DoG также выделяет «блобы» на изображении

Детектор Harris-Laplacian

- Выделяем углы на изображении, но с характеристическим размером
- Нужно найти точки, максимизирующие
 - Отклик угла Харриса по изображению (x,y)
 - Лапласиан по масштабу
- Разные варианты чередования вычисления функции Харриса и Лапласиана

FIGHT!

Сравнение простого детектора Харриса и Харрис-Лапласиана

Углы и блобы

- Углы и блобы разные виды локальных особенностей
- Детекторы Харрис-Лапласиан и LoG (DoG) выделяют разные множества особенностей
- Можно применять их одновременно

Выбор точек

- Цель: выбрать фиксированное кол-во точек на изображении
 - Точки должны быть равномерно распределены по изображению
 - Самые сильные отклики обычно расположены в текстурированных областях, неравномерно распределенных по изображению

4

Адаптивный радиус

- Пройдёмся по всем точкам в порядке качества
- Для каждой точки выкинем из списка всех соседей в окрестности радиуса г
- Посчитаем количество оставшихся точек
- Выберем такой радиус r, при котором получим нужное нам количество точек

Резюме локальных особенностей

- Локальные особенности один из основных инструментов анализа изображений
- Рассмотрели алгоритмы выделения особенностей:
 - Harris (Forstner)
 - Harris-Laplace
 - LoG (Laplacian of Gaussian)
 - DoG (Difference of Gaussians)

LECKPAITOPЫ

Дескрипторы

Точки найдены - как их сопоставить?

- Нужно как-то описать каждую точку, чтобы можно было отличать одну от другой!
- Дескриптор (Descriptor) вектор признак окрестности точки

Дескрипторы

Необходимо каждую интересную точку описать набором параметров:

Как будем поступать:

- Возьмём окрестность точки
 - Какой формы?
 - Какого размера?
- Вычислим по окрестности набор признаков
 - Какие?

Простейший подход

- Возьмём квадратные окрестности, со сторонами, параллельными строкам и столбцами изображения
- Яркости пикселов будут признаками
- Сравнивать будем как два изображения попиксельно (SAD, SSD)
- Такая окрестность инвариантна только к сдвигу изображения

Инвариантность к яркости

- Можем добиться следующим образом:
 - Локальная нормализация гистограммы
 - Дескрипторы, основанные на градиенте яркости, инвариантны к сдвигу яркости
 - Нормирование яркости вычесть среднее значение, поделить на дисперсию

$$I' = (I - \mu)/\sigma$$

Недостаток простой окрестности

- Детектор точек инвариантен к повороту, а окрестность нет
- Небольшие сдвиги, т.е. ошибки в нахождении точки делают невозможным попиксельное сравнение

Mетод SIFT

- Scale-Invariant Feature Transform:
 - Детектор DoG
 - Определение положения и характерного масштаба особенности
 - Ориентация
 - Определение доминантной ориентации особенности по градиентам
 - Дескриптор
 - Использование статистик по направлению градиентам
- Устойчив к изменениям освещенности и небольшим сдвигам

Гистограмма ориентаций градиентов

- Основа дескриптора SIFT подсчёт гистограммы ориентаций градиентов
 - Вычислим направление градиента в каждом пикселе
 - Квантуем ориентации градиентов на 8 ячеек (направлений)
 - Пометим каждый пиксель номером ячейки
 - Посчитаем гистограмму направлений градиентов
 - Для каждой ячейки посчитаем количество пикселов с номером этой ячейки

Ориентация фрагмента

- Идея: найти основное (доминантное) направление градиентов пикселей в окрестности точки
- Выберем в гистограмме ячейку с максимальным значением, возьмём это направление как доминирующее

 Повернем фрагмент так, чтобы доминантное направление градиента было направлен вверх

 Если локальных максимумов несколько – считаем, что несколько точек с разной ориентацией

Окрестность особенности

- Для каждой найденной особенности теперь знаем характеристические масштаб и ориентацию
- Выберем соответствующую прямоугольную окрестность
 - (Rotation Invariant Frame)
- Приведем окрестность к стандартному размеру (масштабируем)

Пример локальных особенностей

Построение дескриптора

- Для учета локальных свойств разделим окрестность на блоки сеткой, в каждом блоке посчитаем свою гистограмму градиентов
- Обычно сетка 4х4, в каждой гистограмма с 8ю ячейками
- Стандартная длина вектора-дескриптора 128 (4*4*8)
- Можем использовать обычную меру SSD для сравнения дескрипторов
- Можем использовать другие метрики, учитывающие, что дескриптор SIFT – это гистограмма

Устойчивость к сдвигам

- За счёт чего можно дескриптор сделать устойчивым к небольшим сдвигам?
- При расчёте гистограммы будем взвешивать вклад пикселей
- Веса рассчитываем в зависимости от близости к центру, по Гауссине
- Небольшие ошибки в положении, масштабе и ориентации будут приводить к небольшим изменения дескриптора

Использование цвета

- RGB-SIFT
 - 3 дескриптора SIFT для каждого канала
- C-SIFT
 - Каналы 0₁ и 0₂

- rgSIFT
 - Каналы ги д

$$\begin{pmatrix} O_1 \\ O_2 \\ O_3 \end{pmatrix} = \begin{pmatrix} \frac{R-G}{\sqrt{2}} \\ \frac{R+G-2B}{\sqrt{6}} \\ \frac{R+G+B}{\sqrt{3}} \end{pmatrix}$$

$$\begin{pmatrix} r \\ g \\ b \end{pmatrix} = \begin{pmatrix} \frac{R}{R+G+B} \\ \frac{G}{R+G+B} \\ \frac{B}{R+G+B} \end{pmatrix}$$

Резюме SIFT

- Дескриптор SIFT весьма специфичен, устойчив к изменениям освещения, небольшим сдвигам
- Вся схема SIFT (детектор, выбор окрестностей, дескриптор) оказалась очень эффективным инструментов для анализа изображений
- Очень широко используется

Резюме лекции

- Локальные характерные особенности один из основных инструментов для анализа изображений
- Особенности должны быть устойчивы к изменению положения, масштаба, ракурса и освещения изображения
- Мы рассмотрели несколько методов:
 - Детекторы: Harris, LoG, DoG, Harris-Laplace
 - Дескрипторы: цветовая окрестность, SIFT, C-SIFT

В следующих сериях...