X-Ray Classification

By Tony, Meric, Mohak, Alexander

Background

- Identify different heart/lung/chest conditions via X-rays.
- Al models can identify features that humans miss, especially for fuzzy or low quality images.
 - Reduce misdiagnosis.
- Assist less experienced doctors with diagnosing X-rays, reduce workload for experienced doctors.

Dataset

- Vingroup Big Data Institute Chest X-ray Abnormalities Detection from Kaggle
 - Image ID, condition name/id, radiologist id, box coordinates, image dimensions
- 15000+ images
 - Two Vietnamese hospitals (2018–2020)
 - o 50000+ annotations by almost 20 radiologists
- 14 medical conditions (15 classes), and instances of co-occurrences within the same image

- Choose 5 most abundant classes
 - No Finding, Aortic Enlargement, Pulmonary
 Fibrosis, Cardiomegaly, Pleural Effusion
- There are ~1000 instances of each class
 - Split in 60:20:20 ratio for train/validation/test
 - Classes within split sets are about the same

Aortic Enlargement

Cardiomegaly

Pleural Effusion

Features

Histogram Of Oriented Gradients (HOG)	 Captures localized orientation patterns and edge gradients. Highly useful for detecting structural changes in the lungs such as fibrosis and opacities
Fourier Transform	 Highlights global frequency structures Helpful in identifying patterns in texture and calcifications across the entire X-Ray
Local Binary Pattern	 Capture the subtle inconsistencies in texture caused by these diseases Useful for identifying diffuse disease patterns like interstitial disease or pleural thickening
Spatial Features	 Extracts positional relationships between pathologies (distances, angles, overlaps) as numerical values These spatial measurements are incorporated as additional features in our models to improve classification accuracy

Local Binary Pattern

Feature - Image Pyramids

Image Pyramid Decomposition

- Builds multiscale representations of images using Gaussian pyramids
- Preserve both fine and coarse structural features across different scales

Image Pyramid

Feature - Transfer Learning Models

Our project utilizes **pre-trained convolutional neural networks** as complex features:

- **DenseNet121**: Dense connectivity pattern with 121 layers
 - Each layer connects to every other layer in a feed-forward fashion
 - Effective feature reuse and reduced parameter count
- ResNet50: Deep residual network with 50 layers
 - Skip connections help solve vanishing gradient problem
 - Enables training of much deeper networks
- EfficientNetB0: Optimized network architecture
 - o Balanced depth, width, and resolution using compound scaling
 - Achieves state-of-the-art performance with fewer parameters

These models, pre-trained on ImageNet (1.2M images), capture hierarchical visual features from edges and textures to complex anatomical structures relevant for medical image classification.

We fine-tune these networks using our chest X-ray dataset while preserving their ability to recognize generalizable visual patterns.

Dimensionality Reduction - PCA

- Principal Component Analysis
 (PCA) was used to retain 95% of the variance across samples.
- This PCA step was useful to reduce the dimensionality of the engineered features, making the logistic regression and SVM models more efficient and less prone to overfitting

Dimensionality Reduction - t-SNE

Observations:

- We don't see clear, isolated clusters for any condition, which suggests these diseases have overlapping feature representations
- The similar distribution patterns across different conditions suggest potential correlations between these diseases

Models

Logistic Regression	 Uses binary one-vs-rest approach, training a separate model for each disease class Hyperparameter tuning is performed using GridSearchCV with cross-validation The model operates on PCA-reduced engineered features, which include HOG, Fourier, edge detection, LBP, pyramid, and spatial features
Support Vector Machine	 Uses binary one-vs-rest approach, training a separate model for each disease class GridSearchCV optimizes both C (regularization parameter) and gamma (kernel coefficient) Like the logistic regression model, it operates on PCA-reduced engineered features
Convolutional Neural Network	 Uses a transfer learning approach with systematic hyperparameter tuning via Keras Tuner (learning rate, dropout rate, #fine tuning layers, dense units in classification head) The base model is DenseNet121 (pre-trained on ImageNet), with fine-tuning of top layers uses a multi-label output with sigmoid activation for binary classification of each disease

Results- model x f1 score for each class

Model	No Finding	Aortic Enlargement	Pleural Thickening	Pulmonary Fibrosis	Cardiomegaly	Total F1
Logistic Regression	0.888889	0.895706	0.698413	0.678571	0.845070	0.801
SVM	0.809917	0.864865	0.764706	0.624000	0.782609	0.769
CNN	0.413333	0.437086	0.385093	0.257426	0.512500	0.401

- "No finding" (AUC 0.967) and "Aortic enlargement" (AUC 0.960) show exceptional classification performance
- "Pleural thickening" and "Pulmonary fibrosis" show good but lower performance (AUC 0.855 and 0.846)
- Effectively capture key diagnostic patterns even with this simple model

Results - SVM

- "No finding" maintains strong performance (AUC 0.956), slightly lower than logistic regression
- SVM shows improved detection of "Pleural thickening" (AUC 0.877) compared to logistic regression
- Classification patterns remain consistent across models with same disease ranking

Results - CNN

- All disease categories show poor classification performance (AUC values 0.413-0.536)
- Transfer learning from natural images (ImageNet) clearly failed to adapt to medical X-ray domain
- Curves hover near or below the random classification line, indicating ineffective learning
- "Cardiomegaly" achieves marginally better results (AUC 0.536) but still barely above random
- Suggests CNN model failed to capture relevant features or experienced training issues
- Dramatic performance drop compared to engineered feature approaches (LogReg, SVM)

Discussion - Model Comparison

Discussion - Training

Conclusion

- Compared 3 models for thoracic disease detection
 - Aortic Enlargement, Cardiomegaly, Pleural Thickening, Pulmonary Fibrosis, No Finding
 - Logistic Regression / SVM / CNN
- Logistic Regression performed the best across all metrics (AUC, F1, accuracy)
 - Additionally is was the most computationally efficient
- Lack of efficacy of CNN models

Thank you!

Reference links for data and stuff

Past Powerpoint:

https://docs.google.com/presentation/d/1k5_-dGR8qoV-HKyayk4uby9PWyVnEO7V7mANLOyxVVI/edit?slide=id.g349d5c2eaf0_0_10#slide=id.g349d5c2eaf0_0_10

Colab:

(Old) https://colab.research.google.com/drive/1fSQw8jvgEeiBmfblgfPsI6Dmn7FUEHz2?authuser=1

(Latest)

https://colab.research.google.com/drive/1wrqoyukZCSysKNUlPPAUm0G1ycrzBKLX?authuser=1

Rubric:

https://bcourses.berkeley.edu/courses/1540266/files?preview=90391386

Transfer Learning Model Performance Challenges

Despite using these powerful architectures, we observed poor performance (F1 scores ~0.13-0.33):

- **Domain shift**: Models pre-trained on natural images (ImageNet) may not transfer well to medical imaging
- Limited compute capacity constrained training data: Our dataset size (1000 samples) is potentially insufficient for fine-tuning deep networks
- Class imbalance: Medical conditions have inherent imbalance affecting model training
- **Subtle visual patterns**: Radiological findings can be extremely subtle compared to ImageNet object classes
- Inter-class similarity: Different pathologies may have similar visual appearances
- Mutual exclusivity constraints: The relationship between "No finding" and other classes creates unique learning challenges

We explored multiple approaches to address these issues including custom loss functions, various fine-tuning strategies, and custom architectures but did not see any promising results.

Misclassification Deep Dive

- Cardiomegaly is most commonly misclassified as

Misclassification Deep Dive

