

Cloud & Edge Computing Workshop Series Day 2

Embrace the future of IT today

Tom Claes – CSA Azure Core Merlijn Stoffels – Intern CSA Data & Al

Agenda – Day 2

Introduction to Containerization & kubernetes

Refresh on Generative AI & LLMs

Break 10'

Hands-on project

Wrap up

Quiz (to win some prizes) 😊

Q&A

Containerization and Kubernetes

Empower everyone to innovate

Scale innovation amplifying the tech talent across your organization

- Increase agility across your organization
- Build apps without compromises
- Enable extensibility for developers

Code to Cloud

How to host application on the cloud

VMs

Azure Virtual Machines

Containers

Azure Kubernetes Service | Azure Red Hat OpenShift

PaaS/Serverless

App Service | Functions | Spring Apps | Container Apps

Low code

Power Apps | Al Builder Azure Services

Managed databases

Azure SQL Database | PostgreSQL | MySQL | Cosmos DB

DevOps

GitHub | Azure DevOps | VS Code

Azure | Azure Arc | Azure Stack

What is "cloud native?"

Cloud-native architecture and technologies are an approach to designing, constructing, and operating workloads that are built in the cloud and take full advantage of the cloud computing model.

Lift-and-shift enables cloud benefits, while "cloud native" is about fully optimizing those workloads to access full advantages across developers, teams, and organizations

Microservices

- Architectural framework
- Decentralized management and development
- Technology & language agnostic
- Scalability & elasticity

Build new intelligent cloud-native applications

Microservices

Azure's Application Platform

Virtual Machines

Containers

Why containers?

- Resource Efficiency
- Portability
- Faster Startup Times
- Simplified Management
- Immutability and Version Control
- Agile development of applications
- Microservices architecture

Modern application pattern

Kubernetes

GenAl & Large Language Models (LLMs) Tom Claes

Artificial Intelligence

Machine Learning

Deep Learning

Generative Al

Artificial Intelligence

the field of computer science that seeks to create intelligent machines that can replicate or exceed human intelligence

1997

Machine Learning

subset of AI that enables machines to learn from existing data and improve upon that data to make decisions or predictions

2017

Deep Learning

a machine learning technique in which layers of neural networks are used to process data and make decisions

Generative AI

Create new written, visual, and auditory content given prompts or existing data.

Generative Al

GPT

SORA

Dall-E

Stable-diffusion

Vall-E

Llama 2

Bard

PaLM

Midjourney

• • •

Generative Al

Create new written, visual, and auditory content given prompts or existing data.

- Text to text
- Text to image
- Text to speech
- Text to audio
- Image to text
- Image to image
- Text to video
- Image to video
- ...

Neural Networks & Deep Learning

Discriminative model

15% CAT

TRAINING

During the training phase, a neural network is fed thousands of *labeled* images of various animals, learning to classify them.

INPUT

An unlabeled image is shown to the pretrained network.

FIRST LAYER

The neurons respond to different simple shapes, like edges.

HIDDEN LAYER

Neurons respond to more Neurons respond to highly complex structures.

TOP LAYER

complex, abstract concepts that we would identify as different animals.

OUTPUT

The network predicts what the object most likely is, based on its training.

Large Language Models

Must read paper: <u>Attention is all you need</u>

Large Language Models

Large – 100s of GBs of RAM required to loadLanguage – built for natural language processingModel – pre trained and ready to use

Generate text by predicting one word at the time

What does **Generative Pre-trained Transformer** (**GPT**) mean

Generative

Means "next word prediction."

Pre-trained

The LLM is pretrained on massive amounts of text from the internet and other sources.

Transformer

The neural network architecture used (introduced in 2017).

Tasks & Use cases

Hands-on demo

Hands-on demo

- 1. Prepare Python Flask application with Azure OpenAl endpoint
- 2. Create Dockerfile & build Docker image
- 3. Create Azure Container Registry
- 4. Push image to ACR
- 5. Deploy WebApp based on the image

Quick demo

Recap of the day

Cloud & Edge Computing Thank you!

Tom Claes – CSA Azure Core

Merlijn Stoffels – Intern CSA Data & Al

