Final_Project_Template

April 6, 2024

```
[1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

The California Housing Data set from 1990 is a popular dataset often used for machine learning projects, particularly in regression analysis and geographic data visualization. It includes information about the housing in the California region, as recorded during the 1990 U.S. census.

Features:

- Median Income: The median income for households within a block of houses (measured in tens of thousands of USD).
- Housing Median Age: he median age of a house within a block; a lower number is a newer building.
- Total Rooms: The total number of rooms in the houses per block.
- Total Bedrooms: The total number of bedrooms in the houses per block.
- Population: The total number of people residing within a block.
- Households: The total number of households, a group of people residing within a home unit, for a block.
- Latitude: The block's latitude.
- Longitude: The block's longitude.
- Ocean Proximity: distance from the house to the ocean

Target Variable:

• Median House Value: This variable represents the median value of houses within a specific block, and it's what machine learning models aim to predict based on the other features in the dataset. Predicting the Median House Value helps in understanding housing market trends, assessing affordability, and planning economic and housing policies.

```
[2]: filename_data = 'data/housing.csv'
data = pd.read_csv(filename_data)

[3]: data.head(15)
```

```
[3]: longitude latitude housing_median_age total_rooms total_bedrooms \
0 -122.23 37.88 41.0 880.0 129.0
```

1	-122.22	37.86	21.0	7099.0	1106.0
2	-122.24	37.85	52.0	1467.0	190.0
3	-122.25	37.85	52.0	1274.0	235.0
4	-122.25	37.85	52.0	1627.0	280.0
5	-122.25	37.85	52.0	919.0	213.0
6	-122.25	37.84	52.0	2535.0	489.0
7	-122.25	37.84	52.0	3104.0	687.0
8	-122.26	37.84	42.0	2555.0	665.0
9	-122.25	37.84	52.0	3549.0	707.0
10	-122.26	37.85	52.0	2202.0	434.0
11	-122.26	37.85	52.0	3503.0	752.0
12	-122.26	37.85	52.0	2491.0	474.0
13	-122.26	37.84	52.0	696.0	191.0
14	-122.26	37.85	52.0	2643.0	626.0
	population	households	${\tt median_income}$	median_house_value	ocean_proximity
0	000 0				
U	322.0	126.0	8.3252	452600.0	NEAR BAY
1	2401.0	126.0 1138.0	8.3252 8.3014	452600.0 358500.0	
1 2					NEAR BAY
1	2401.0	1138.0	8.3014	358500.0	NEAR BAY NEAR BAY
1 2	2401.0 496.0	1138.0 177.0	8.3014 7.2574	358500.0 352100.0	NEAR BAY NEAR BAY NEAR BAY
1 2 3	2401.0 496.0 558.0	1138.0 177.0 219.0	8.3014 7.2574 5.6431	358500.0 352100.0 341300.0	NEAR BAY NEAR BAY NEAR BAY
1 2 3 4	2401.0 496.0 558.0 565.0	1138.0 177.0 219.0 259.0	8.3014 7.2574 5.6431 3.8462	358500.0 352100.0 341300.0 342200.0	NEAR BAY NEAR BAY NEAR BAY NEAR BAY
1 2 3 4 5	2401.0 496.0 558.0 565.0 413.0	1138.0 177.0 219.0 259.0 193.0	8.3014 7.2574 5.6431 3.8462 4.0368	358500.0 352100.0 341300.0 342200.0 269700.0	NEAR BAY NEAR BAY NEAR BAY NEAR BAY NEAR BAY
1 2 3 4 5 6	2401.0 496.0 558.0 565.0 413.0 1094.0	1138.0 177.0 219.0 259.0 193.0 514.0	8.3014 7.2574 5.6431 3.8462 4.0368 3.6591	358500.0 352100.0 341300.0 342200.0 269700.0 299200.0	NEAR BAY
1 2 3 4 5 6 7	2401.0 496.0 558.0 565.0 413.0 1094.0 1157.0	1138.0 177.0 219.0 259.0 193.0 514.0 647.0	8.3014 7.2574 5.6431 3.8462 4.0368 3.6591 3.1200	358500.0 352100.0 341300.0 342200.0 269700.0 299200.0 241400.0	NEAR BAY
1 2 3 4 5 6 7 8	2401.0 496.0 558.0 565.0 413.0 1094.0 1157.0 1206.0	1138.0 177.0 219.0 259.0 193.0 514.0 647.0 595.0	8.3014 7.2574 5.6431 3.8462 4.0368 3.6591 3.1200 2.0804	358500.0 352100.0 341300.0 342200.0 269700.0 299200.0 241400.0 226700.0	NEAR BAY
1 2 3 4 5 6 7 8	2401.0 496.0 558.0 565.0 413.0 1094.0 1157.0 1206.0 1551.0	1138.0 177.0 219.0 259.0 193.0 514.0 647.0 595.0 714.0	8.3014 7.2574 5.6431 3.8462 4.0368 3.6591 3.1200 2.0804 3.6912	358500.0 352100.0 341300.0 342200.0 269700.0 299200.0 241400.0 226700.0	NEAR BAY
1 2 3 4 5 6 7 8 9 10	2401.0 496.0 558.0 565.0 413.0 1094.0 1157.0 1206.0 1551.0 910.0	1138.0 177.0 219.0 259.0 193.0 514.0 647.0 595.0 714.0 402.0	8.3014 7.2574 5.6431 3.8462 4.0368 3.6591 3.1200 2.0804 3.6912 3.2031	358500.0 352100.0 341300.0 342200.0 269700.0 299200.0 241400.0 226700.0 261100.0	NEAR BAY
1 2 3 4 5 6 7 8 9 10	2401.0 496.0 558.0 565.0 413.0 1094.0 1157.0 1206.0 1551.0 910.0 1504.0	1138.0 177.0 219.0 259.0 193.0 514.0 647.0 595.0 714.0 402.0 734.0	8.3014 7.2574 5.6431 3.8462 4.0368 3.6591 3.1200 2.0804 3.6912 3.2031 3.2705	358500.0 352100.0 341300.0 342200.0 269700.0 299200.0 241400.0 226700.0 261100.0 281500.0	NEAR BAY

0.0.1 Getting to know the data

[4]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	longitude	20640 non-null	float64
1	latitude	20640 non-null	float64
2	housing_median_age	20640 non-null	float64
3	total_rooms	20640 non-null	float64
4	total_bedrooms	20433 non-null	float64
5	population	20640 non-null	float64
6	households	20640 non-null	float64

7 median_income 20640 non-null float64 8 median_house_value 20640 non-null float64 9 ocean_proximity 20640 non-null object

dtypes: float64(9), object(1)

memory usage: 1.6+ MB

[5]: data.describe()

[5]:		longitude	latitude	housing_median_	age	total_room	ms	\
	count	20640.000000	20640.000000	20640.000000 28.639486 12.585558		20640.0000	00	
	mean	-119.569704	35.631861			2635.7630	81	
	std	2.003532	2.135952			2181.6152	52	
	min	-124.350000	32.540000	1.000	000	2.0000	00	
	25%	-121.800000	33.930000	18.000	000	1447.7500	00	
	50%	-118.490000	34.260000	29.000	000	2127.0000	00	
	75%	-118.010000	37.710000	37.000	000	3148.0000	00	
	max	-114.310000	41.950000	52.000	000	39320.0000	00	
		total_bedrooms	population	n households	med	ian_income	\	
	count	20433.000000	20640.000000	20640.000000	20	640.000000		
	mean	537.870553	1425.47674	499.539680		3.870671		
	std	421.385070	1132.462122	382.329753		1.899822		
	min	1.000000	3.000000	1.000000		0.499900		
	25%	296.000000	787.000000	280.000000		2.563400		
	50%	435.000000	1166.000000	409.00000		3.534800		
	75%	647.000000	1725.000000	605.000000		4.743250		
	max	6445.000000	35682.000000	6082.000000		15.000100		
		median_house_v						
	count	20640.00						
	mean	206855.81						
	std	115395.61						
	min	14999.00	0000					
	25%	119600.00						
	50%	179700.00	0000					
	75%	264725.00	0000					
	max	500001.00	0000					

- [6]: data.columns[data.isnull().any()]
 data.isnull().sum()
- [6]: longitude 0 latitude 0 housing_median_age 0 total_rooms 0 total_bedrooms 207 population 0 households 0

median_income 0
median_house_value 0
ocean_proximity 0

dtype: int64

Since there are null values in total bedrooms, we must perform operations on total bedrooms.

[7]: data[data["total_bedrooms

<1H OCEAN

20484

[7]:		longitude	latitude	housing_median_ag	ge total_rooms	s total_bedrooms \	\
	290	-122.16	37.77	47.	.0 1256.0) NaN	
	341	-122.17	37.75	38.	.0 992.0) NaN	
	538	-122.28	37.78	29	.0 5154.0) NaN	
	563	-122.24	37.75	45.	.0 891.0) NaN	
	696	-122.10	37.69	41.	.0 746.0	NaN	
	•••	•••	•••	•••	•••	•••	
	20267	-119.19	34.20	18	.0 3620.0	NaN	
	20268	-119.18	34.19	19	.0 2393.0) NaN	
	20372	-118.88	34.17	15.	.0 4260.0) NaN	
	20460	-118.75	34.29	17.	.0 5512.0) NaN	
	20484	-118.72	34.28	17	.0 3051.0	NaN	
		population	household	s median_income	median_house_	_value \	
	290	570.0	218.	0 4.3750	161	1900.0	
	341	732.0	259.	0 1.6196	85	5100.0	
	538	3741.0	1273.	0 2.5762	173	3400.0	
	563	384.0	146.	0 4.9489	247	100.0	
	696	387.0	161.	0 3.9063	178	3400.0	
	•••	•••	•••	•••			
	20267	3171.0	779.	0 3.3409	220	0500.0	
	20268	1938.0	762.	0 1.6953	167	400.0	
	20372	1701.0	669.	0 5.1033	410	700.0	
	20460	2734.0	814.	0 6.6073	258	3100.0	
	20484	1705.0	495.	0 5.7376	218	3600.0	
		ocean_proxi	•				
	290 NEAR BAY 341 NEAR BAY						
	538	NEAR					
	563	NEAR					
	696	NEAR	BAY				
	•••	•••					
	20267	NEAR O					
	20268	NEAR O					
	20372	<1H 00					
	20460	<1H 00					
	00101	4411 04	3T 4 3T				

[207 rows x 10 columns]

[8]: Empty DataFrame

Columns: [longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income, median_house_value, ocean_proximity]
Index: []

In total bedrooms, the average value of the existing values was assigned instead of the NaN values.

[9]: data.hist(bins=50, figsize=(20,15))
plt.show()

Since the ocean_proximity variable is an object, it was removed from the data because it caused problems in calculating the correlation matrix and did not have any effect on the target variable.

[10]: data = data.drop('ocean_proximity', axis=1)

One way of observing the strength of relationship between a feature and the target variable is to compute the correlation coefficient. The correlation coefficient ranges from -1 to 1. When it is close to 1, it means that there is a strong positive correlation. For example, the target tends to go up when the median_income goes up. When the coefficient is close to -1, it means that there is a strong negative correlation. Coefficients close to zero mean that there is no linear correlation.

```
[11]: corr_matrix=data.corr()
    corr_matrix['median_house_value'].sort_values(ascending=False)
```

```
[11]: median_house_value
                             1.000000
      median_income
                             0.688075
      total_rooms
                             0.134153
      housing_median_age
                            0.105623
      households
                             0.065843
      total_bedrooms
                             0.049454
      population
                            -0.024650
      longitude
                            -0.045967
      latitude
                            -0.144160
```

Name: median_house_value, dtype: float64

The relationship between the variables can also be observed visually, by plotting the scatter plot.

```
[12]: data.plot(kind='scatter', x='median_income', y='median_house_value', alpha=0.5)
```

[12]: <Axes: xlabel='median_income', ylabel='median_house_value'>

[13]: sns.pairplot(data) plt.show()

All remaining features were observed to have a connection with the target variable.

0.0.2 Train/ Test Split

```
[14]: from sklearn.model_selection import train_test_split train_set, test_set= train_test_split(data, test_size=0.2, random_state=42)
```

```
[15]: print("Number of examples in train set:",train_set.shape[0])
     print("Number of examples in test set:",test_set.shape[0])
     Number of examples in train set: 16512
     Number of examples in test set: 4128
[16]: trainX=train_set.drop('median_house_value', axis=1)
     trainY=train_set['median_house_value'].copy()
     testX=test set.drop('median house value', axis=1)
     testY=test_set['median_house_value'].copy()
[17]: print(trainX.shape)
     print(trainY.shape)
     print(testX.shape)
     print(testY.shape)
     (16512, 8)
     (16512,)
     (4128, 8)
     (4128,)
     0.0.3 Linear Regression
[18]: from sklearn.preprocessing import StandardScaler
     scaler = StandardScaler()
     trainX scaled = scaler.fit transform(trainX)
[19]: print(trainX_scaled)
     [[ 1.27258656 -1.3728112
                              0.34849025 ... 0.76827628 0.32290591
      -0.326196
      -0.035843381
       \begin{bmatrix} -0.44760309 & -0.46014647 & -1.95271028 & \dots & -0.44981806 & -0.43046109 \end{bmatrix} 
       0.144701457
      -0.49697313]
      [-1.18553953 0.90651045 -1.07984112 ... 0.30830275 0.15490769
       0.96545045]
      [-1.41489815 0.99543676 1.85617335 ... 1.04883375 1.94776365
      -0.68544764]]
[20]: from sklearn.linear_model import LinearRegression
     model=LinearRegression()
     model.fit(trainX_scaled, trainY)
```

```
[20]: LinearRegression()
[21]: from sklearn.metrics import mean_squared_error, r2_score
      testX_scaled = scaler.transform(testX)
      y_pred = model.predict(testX_scaled)
      mse = mean_squared_error(testY, y_pred)
      r2=r2_score(testY, y_pred)
      print("Mean Squared Error on Test Set:", mse)
      print("r2 score on Test Set:", r2)
      y_pred = model.predict(trainX_scaled)
      mse = mean_squared_error(trainY, y_pred)
      r2=r2_score(trainY, y_pred)
      print("Mean Squared Error on Train Set:", mse)
      print("r2 score on Train Set:", r2)
     Mean Squared Error on Test Set: 5052953703.90163
     r2 score on Test Set: 0.6143987268246023
     Mean Squared Error on Train Set: 4811134397.884197
     r2 score on Train Set: 0.6400947924305294
     0.0.4 Polynomial Regression
[22]: from sklearn.preprocessing import PolynomialFeatures
      poly_features = PolynomialFeatures(degree=2, include_bias=False)
      trainX_poly = poly_features.fit_transform(trainX_scaled)
      print(trainX_poly.shape)
     (16512, 44)
[23]: # Fit the polynomial regression model
      model poly = LinearRegression()
     model_poly.fit(trainX_poly, trainY)
[23]: LinearRegression()
[24]: testX_poly = poly_features.transform(testX_scaled)
      y_pred = model_poly.predict(testX_poly)
      mse = mean_squared_error(testY, y_pred)
      r2=r2_score(testY, y_pred)
      print("Mean Squared Error on Test Set:", mse)
      print("r2 score on Test Set:", r2)
      y_pred = model_poly.predict(trainX_poly)
```

mse = mean squared error(trainY, y pred)

```
r2=r2_score(trainY, y_pred)
      print("Mean Squared Error on Train Set:", mse)
      print("r2 score on Train Set:", r2)
     Mean Squared Error on Test Set: 4577486232.73672
     r2 score on Test Set: 0.6506826259019103
     Mean Squared Error on Train Set: 3988584883.9903984
     r2 score on Train Set: 0.7016270276689182
     0.0.5 Ridge Regression
[25]: from sklearn.linear_model import Ridge
      ridge reg = Ridge(alpha=1.0)
      ridge_reg.fit(trainX_scaled, trainY)
[25]: Ridge()
[26]: testX scaled = scaler.transform(testX)
      y_pred = ridge_reg.predict(testX_scaled)
      mse = mean_squared_error(testY, y_pred)
      r2=r2_score(testY, y_pred)
      print("Mean Squared Error on Test Set:", mse)
      print("r2 score on Test Set:", r2)
      y_pred = ridge_reg.predict(trainX_scaled)
      mse = mean_squared_error(trainY, y_pred)
      r2=r2_score(trainY, y_pred)
      print("Mean Squared Error on Train Set:", mse)
      print("r2 score on Train Set:", r2)
     Mean Squared Error on Test Set: 5052475906.315732
     r2 score on Test Set: 0.6144351885395197
     Mean Squared Error on Train Set: 4811135535.758371
     r2 score on Train Set: 0.6400947073098889
[27]: plt.figure(figsize=(10, 6))
      plt.scatter(trainY, y_pred, alpha=0.5)
      plt.plot([min(trainY), max(trainY)], [min(trainY), max(trainY)], color='red')
      plt.ylabel('Estimated Values')
      plt.title('Real Values vs. Predicted Values')
```

plt.show()

