Geometry 2024, homework set 3

- Below you can find your third homework assignment. Please upload it to BrightSpace by **Friday April 5**. The deadline is strict, so late homework will not be graded.
- The number of points per question is given in a box. 20 extra points are given for a clear writing of solutions. Note that high marks for the homeworks contribute to the final grade.

QUESTIONS

1. 10+10+10=30pts (Affine and projective classification of quadrics in \mathbb{R}^3)

Let $M^2 = \{Q = 0\}$ be a non-singular and non-empty quadric surface¹ in \mathbb{R}^3 . Give a list of such quadric surfaces (each representing its unique equivalence class) up to the following transformations of \mathbb{R}^3 :

- a) Invertible affine transformations of \mathbb{R}^3 ;
- b) Invertible projective transformations of \mathbb{R}^3 (viewed as a subset of $P_3(\mathbb{R})$).
- c) Show the projective transformation bringing a quadric to its equivalence class representative can always be chosen to be a composition of an affine map and a perspectivity.

Hint for part b): Rewrite the polynomial equation Q = 0 defining the quadric in homogeneous coordinates (making Q a homogeneous polynomial) and apply diagonalization to the corresponding quadratic form.

- 2. 10+10+5+5=30pts (Quaternions and the orthogonal group O(3)) Consider \mathbb{R}^4 as a Euclidean vector space with the orthonormal basis 1, i, j, k and the algebra structure on it defined by the following rules:
 - 1 is the unit element of the algebra;
 - $i^2 = j^2 = k^2 = -1;$
 - ij = k, jk = i, and ki = j;
 - ij = -ji, jk = -kj, and ki = -ik.

The numbers (elements of the algebra) $q = a_0 + ia_1 + ja_2 + ka_3$, $a_i \in \mathbb{R}$, are called *quaternions*. If $a_0 = 0$, then the number is called a *pure quaternion*. Note that pure quaternions thus span a Euclidean 3-space \mathbb{R}^3 .

¹See Lecture 5 for the list of such quadric surfaces up to Euclidean isometries.

- a) Prove that for each quaternion s of unit length, the mapping $q \mapsto sqs^{-1}$, where q is a pure quaternion, is a rotation of \mathbb{R}^3 ;
- b) We thus get a mapping from the sphere of unit quaternions

$$S^{3} = \{ s = s_{0} + is_{1} + js_{2} + ks_{3} \in \mathbb{R}^{4} \mid s_{0}^{2} + s_{1}^{2} + s_{2}^{2} + s_{3}^{2} = 1 \}$$

to the group SO(3) of orthogonal matrices with unit determinant. Show that two unit quaternions s and τ represent the same rotation if and only if $\tau = -s$;

- c) Deduce that SO(3) can naturally be identified with the real projective space $P_3(\mathbb{R})$;
- d) Show that the full orthogonal group O(3) can also be represented using quaternions.

Hint: It may be handy to look at the similar Exercise IV.45 in the book by M. Audin.

3. $10+10=20 \mathrm{pts}$ (The 1-d projective groups over \mathbb{R} and \mathbb{C}) Prove that the group of projective transformations of $P_1(\mathbb{C})$ consists of the maps

$$f = \frac{az+b}{cz+d}$$
, where $a, b, c, d \in \mathbb{C}$ and $ad-bc = 1$.

Determine its subgroup that gives the group of orientation preserving isometries of the Poincaré unit disk $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$ with the Riemannian metric $G(u, v) = \frac{4(\mathrm{d}u^2 + \mathrm{d}v^2)}{(1 - u^2 - v^2)^2}$, z = u + iv.

End of homework