A PROJECT REPORT ON

ESTIMATE THE CROP YIELD USING DATA ANALYTICS

DOMAIN: DATA ANALYTICS

DONE BY

TEAM ID: PNT2022TMID54302

Team Size: 4

Team Leader: Aishwarya M

Team member : Amruthashreya G

Team member : Gopika J

Team member : Atshaya R

TABLE OF CONTENTS

- 1.ABSTRACT
- 2. INTRODUCTION
- 2.1 Project Overview
- 2.2 Purpose
- 3. LITERATURE SURVEY
- 3.1 Existing problem
- 3.2 References
- 3.3 Problem Statement Definition
- 4. IDEATION & PROPOSED SOLUTION
- 4.1 Empathy Map Canvas
- 4.2 Ideation & Brainstorming
- 4.3 Proposed Solution
- 4.4 Problem Solution fit
- 5. REQUIREMENT ANALYSIS
- 5.1 Functional requirement
- 5.2 Non-Functional requirements
- 6. PROJECT DESIGN
- 6.1 Data Flow Diagrams
- 6.2 Solution & Technical Architecture
- 6.3 User Stories
- 7. PROJECT PLANNING & SCHEDULING
- 7.1 Sprint Planning & Estimation
- 7.2 Sprint Delivery Schedule
- 8. CODING & SOLUTIONING (Explain the features added in the project along with code)
- 8.1 Feature 1
- 8.2 Feature 2

- 8.3 Database Schema (if Applicable)
- 9. TESTING
- 9.1 Test Cases
- 9.2 User Acceptance Testing
- 10. RESULTS
- 10.1 Performance Metrics
- 11. ADVANTAGES & DISADVANTAGES
- 12. CONCLUSION
- 13. FUTURE SCOPE
- 14. APPENDIX

GitHub & Project Demo Link

1.ABSTRACT

One of the most important occupations for human survival is Agriculture and especially the majority of the population in India is into this. Due to variations in climatic conditions and various other challenges, the Agrarian sector in India is facing rigorous problems to maximize crop productivity. It has become an arduous task to achieve the desired targets in crop yield. Various factors like monsoon rains, rodents, water scarcity are to be considered, which do have a direct impact on the production and productivity of the crops. And thus, crop yield prediction with recent advancements in technology can be one of the important factors in agriculture practices as the use of technology in agriculture has comparatively increased in the recent years. The present study gives insights on data analytics methods and various machine learning techniques applied to find the crop yield prediction

2.INTRODUCTION

2.1 Project overview

Weather plays an important role in agriculture production. Thus there is no aspect of crop culture that is immune to impact of weather. Weather factor contribute to optimal crop growth, development and yield. For rainfall variability needs to be expressed in terms of percentage so that minimum assured rainfall amounts at a certain level of probability. For optimal productivity at a given location crops must be such that their weather requirements match the temporal match of relevant weather elements. A detailed knowledge of rainfall regime at a place is an important prerequisite for agriculture planning and management. Soil fertility refers to the inherent capacity of soil to supply nutrients in adequate amount and in suitable proportion for crop growth and crop yield.

2.2 Purpose

- ✓ To prepare the fields for sowing of crops with adequate availability of seed zone.
- ✓ To contribute optimal crop growth, development, and yield.
- ✓ To predict appropriate crop yield using data analytics and machine learning techniques.

3.LITERATURE SURVEY

3.1 Existing problem

Existing Problem: Agriculture, being the most important and predominant occupation of our country, is facing a lot of hurdles for the past few years.

Increase in global warming and pollution leading to abrupt climate change and depletion of soil fertility is affecting the crop yield for the farmers. Wrong seed for the soil, unexpected flooding rains, etc are some of the issues faced by the farmers that can be rectified by Data Analytics.

3.2 References

[1] CROP YIELD PREDICTION USING DATA ANALYTICS AND HYBRID APPROACH by Ms. Shreya V. Bhosale, Ms. Ruchita A. Thombare, Mr. Prasanna G. Dhemey, Students and Ms. Anagha N. Chaudhari

Various techniques and algorithms are discussed in this paper for predicting the crop yield. Using one such method or interrelating two or more methods results in better productivity and efficiency.

The three approaches are listed as follows

1. K-means clustering

Clustering is the process of grouping the data. Basically the K in K-means denotes the number of clusters. Each cluster is represented by the mean value of the objects in the cluster. Data objects which are similar to each other belong to the same cluster. The database about the clusters are stored in a computer, then the studied k-means algorithm is applied and the frequent item is obtained as the output.

2. Apriori algorithm

Here in apriori the support for the crop is found. With the help of it, the crops which have maximum support from the people are selected for estimation.

3. Naive Bayes algorithm

Generally, this algorithm is based on Bayesian classification. The probability of the crops grown in an acre of land is considered for calculation and the majority is taken for final accumulation of the result.

[2] CROP YIELD PREDICTION USING MACHINE LEARNING

By B M Sagar

A research group investigated the utilization of various information mining methods which will foresee rice crop yield for the data collected from the state of Maharashtra, India. A total of 27 regions of Maharashtra were selected for the assessment and the data was collected related to the principle rice crop yield influencing parameters such as different atmospheric conditions and various harvest parameters i.e Precipitation rate, minimum, average, maximum and most extreme temperature, reference trim cultivable area, evapotranspiration, and yield for the season between June to November referred as Kharif, for the years 1998 to 2002 from the open source, Indian Administration records. WEKA a Java based dialect programming for less challenging assistance with information data sets, assigning design outcomes tool was applied for dataset processing and the overall methodology of the study includes, (1) pre-processing of dataset (2) Building the prediction model utilizing WEKA and (3) Analysing the outcomes. Cross validation study is carried out to scrutinize how a predictable information mining method will execute on an ambiguous dataset. Study applied 10-fold higher cross validation study design to assess the data subsets for screening and testing. Identified and collected information was randomly distributed into 10 sections where one data section was used for testing while all other data sections were utilized for the preparation information. Study reported that the method applied was supportive in the precise estimation of rice crop yield for the state of Maharashtra, India. The precise quantification of the rice productivity in various climatic conditions can help farmers to understand the optimum condition for the higher rice crop yield.

[3] ANALYSIS OF CROP YIELD PREDICTION USING DATA MINING TECHNIQUES by D Ramesh, B Vishnu Vardhan

Generally, in this paper, the data are taken into account to analyse the production and yield. The data are taken in eight input variables. The variables are 'Year', 'Rainfall', 'Area of Sowing', 'Yield', 'Fertilizers' (Nitrogen, Phosphorus and Potassium) and 'Production'. The attribute 'Year' specifies the year in which the data are available in Hectares. 'Rainfall' attribute specifies the average rainfall in centimetres. 'Area of Sowing' attribute specifies the total area sowed in the specified year for that region in Hectares. 'Yield' specifies a kilogram per hectare. 'Production' attribute specifies the production of crops in the specified year in Metric Tons. 'Fertilizers' specify in Tons. Similarly statistical model like Multiple Linear Regression (MLR) techniques can be applied on existing data and analysed using data mining techniques like density-based clustering technique which is a method of considering the data points in the region separated by two clusters of low point density were taken into account for the estimation crop yield analysis.

3.3 Problem statement definition

The project Crop Yield Estimation using Data Analytics uses millions of datasets previously collected and stored from farmers, soil experts, agriculturists, environmentalist, and meteorologists to visualise the data for the customer when he enters the required details. This helps farmers predict about the profit they might incur on the requested seasonal harvest.

4.IDEATION&PROPOSED SOLUTION

4.1 Empathy Map Canvas

4.2 Ideation & Brainstorming

- One of the most important occupations for human survival is Agriculture and especially the majority of the population in India is into this. Due to variations in climatic conditions and various other challenges, the Agrarian sector in India is facing rigorous problems to maximize crop productivity. It has become an arduous task to achieve the desired targets in crop yield. Various factors like monsoon rains, rodents, water scarcity are to be considered, which do have a direct impact on the production and productivity of the crops. And thus, crop yield prediction with recent advancements in technology can be one of the important factors in agriculture practices as the use of technology in agriculture has comparatively increased in the recent years.
- With the decrease of available cultivable land globally and the decreased cultivable water resources, it is almost impossible to report higher crop yield. Agricultural big data analytics is one approach, believed to have a significant role and positive impact on the increase of crop yield by providing the optimum condition for the plant growth and decreasing the yield gaps and the crop damage and wastage. India is basically agricultural country and approximately 70% our country economics is directly or indirectly related to the agricultural crops. The crop which occupies the highest (60-70%) percentage of cultivable land in the Indian soil is the paddy culture and it is the major crop especially in central and south parts of the India. Rice crop cultivation plays an imperative part in sustenance security of India, contributing over 40% to general yield generation. The enhanced yield of the rice crop depends largely on the water availability and climatic conditions.
- The accurate prediction of crop yield certainly benefits the farmers in choosing the right method to reduce the crop damage and gets best prices for their crops. A research group conducted a work with an objective of accurate prediction of crop yield through big data analytics to assess various crop yield influencing factors such as Area under Cultivation (AUC) interims of hectors, Annual Rainfall (AR) rates and Food Price Index (FPI) and to develop relationship among these parameters. Regression Analysis (RA) methodology was applied to examine the selected factors and their impact on crop prediction and final yield. RA methodology is a multivariable investigation practice which can categorize the factors in to groups such as

explanatory and response variables and helps to assess their interaction to obtain a resolution.

• Analysing the yields of crop is necessary to update the policies to ensure food security. A research group conducted a study with the aim in suggesting a novel data mining method to predict the yields of crop depends on agricultural big data analytics methodologies, which were progressively contrast with conventional data mining methodologies in the process of handling data and model the designs. Study suggested that the method employed should be user friendly, work based on progressive big-data responsive processing structure, supposed to utilize the existing agricultural significant datasets and would still be used with the larger volumes of data growing at enormous rates.

4.3 Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	Agriculture is one of the most important sources of income which eventually affect
		everyone's life. Indian agriculture is affected by various circumstances. This may directly or indirectly affect the life of a farmer. Feeding the growing population, loss of agricultural land and low production in the varieties of crops and livestock may be the root cause.
2.	Idea / Solution description	Increase in crop yield, better productivity of crops through effective techniques and efficient methods. A comparison of the subsequent crop yield predictions can be made with the entire set of existing available data and can be dedicated to suitable approaches for improving the efficiency of the proposed technique.
3.	Novelty / Uniqueness	Increase in knowledge of agriculture in terms of crop production from sowing the seeds till harvesting. It gives an overview on the total crop yield before even sowing the seed from the previous datasets.
4.	Social Impact / Customer Satisfaction	Agriculture sector contributes approximately 14% of the country's total Gross Domestic Product. Even though the agriculture sector plays an important role in the Indian Economy, there is a constant drop in this sector compared to the other sectors.

5.	Business Model (Revenue Model)	Regression analysis: we use this method for mainly two purposes. One is to predict the values of the dependent variables for individuals or to estimate the effects of few explanatory variables on the dependent variables. Regression analysis is a powerful statistical method which allows us to analyze the relationship between two or more variables of our own. The dependent and independent variables show a linear
		relationship between the slope and the intercept.

6.	Scalability of the Solution	Data analytics help the farmers to predict the market conditions, climatic changes, usage of fertilizers, factor-in inflation, and other variables that will helpthem plan the entire process even before sowing the seeds. All of this information assists farmers in making accurate and effective decisions that maximize the productivity

4.4 Problem Solution fit

5.REQUIREMENT ANALYSIS

5.1 Functional requirements

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Gmail Registration through IBM Cognos analytics
FR-2	User Confirmation	Email confirmation & OTP verification
FR-3	Data collection	Various datasets are collected and processed
FR-4	Data processing	Working with datasets collected
FR-5	Data visualization	Data visualization charts can be done through IBM Cognos analytics

5.2 Non-Functional requirements

Following are the non-functional requirements of the proposed solution.

FR No. Non-Fu	nctional Requirement	Description
NFR-1 Usabilit	ty	It is completely user friendly. As it is designed to provide support for agriculturalists and farmers, the user experience is simple and efficient.

NFR-2	Security	Should be secured with unique and standard user id and password with integration with mail id.
NFR-3	Performance	With efficient usability and increased security, the performance in turn is increased.
NFR-4	Reliability	This deals with lots of previous data undergoing machine learning techniques and thus provides reliable output.
NFR-5	Scalability	Will have more datasets loaded in and thus performance does not vary with the increased need/demand.
NFR-6	Availability	Can be made available in all platforms with minimum constraints and a stable speed network connection.

6.PROJECT DESIGN

6.1 Data Flow Diagram

6.2 Solution & Technical Architecture

Technical Architecture:

Problem solution steps

6.3 User Stories

7.PROJECT PLANNING & SCHEDULING

7.1 Sprint Planning & Estimation

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional Requirement (Epic)	User Story Number	User Story & task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a user,I can sign up for the application by providing my email ID,password and confirmation.	2	High	Aishwarya Gopika

Sprint-1		USN-2	After registering for the application, I as a user will receive a confirmation email.	1	High	Atshaya Amruthashreya
Sprint-2		USN-3	I can sign up for the application as a user using Google.	2	Low	Atshaya Gopika
Sprint-1 USN-4 I can sign up		I can sign up for the application as a user using Gmail.	2	Low	Amruthashreya Aishwarya	
Sprint-1	Login	USN-5	I can access the application as a user by providing my email address and password.	1	High	Aishwarya
Sprint-3	Dashboard	USN-6	I am free to use my dashboard and explore the features as a user.	2	High	Gopika Amruthashreya
Sprint-2		USN-7	I can access using the credentials as a user the assets I'm applying for.	2	High	Aishwarya Amruthashrey aAtshaya Gopika
Sprint-3		USN-8	Data manipulation operations carried out by the application.	1	High	Atshaya Aishwarya
Sprint-3	Visualization	USN-9	Can use certain datasets to generate dashboards.	2	Medium	Gopika Aishwarya
Sprint-4		USN-10	One can perform predictive analysis.	1	High	Amruthashreya Atshaya
Sprint-3		USN-11	With certain datasets, I can produce stories.	2	High	Aishwarya Atshaya

Sprint-4	USN-12	Can export and send	2	High	Amruthashreya
		reports in accordance with			Gopika
		the built-in dashboards			
		and stories.			

7.2 Sprint Delivery Schedule

Project Tracker, Velocity & Burndown Chart:

Sprint	Total Story Point	Duration (days)	Sprint Start Date	Sprint End Date(Planned)	Story Points Completed (as on	Sprint Release date(actual)
					planned end date)	
Sprint-1	20	6	24-10-2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6	31-10-2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6	07-10-2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6	14 Oct 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Consider a scenario in which the sprint will last 10 days and the team's velocity is 20. (Points per sprint). Let us determine the group's average velocity (AV) for each iteration (story points per day).

AV = Sprint Duration/Velocity

AV = Sprint Duration/Velocity = 20/10=2

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often usedin agile <u>software development</u> methodologies such as <u>Scrum</u>. However, burn down charts can be applied to any project containing measurable progress over.

8. CODING & SOLUTIONING

(Explain the features added in the project along with code)

8.1 Feature 1

Registration Form

Name	
Email	
Password	
	Register
	Login Form
Email	
Password	Login
	Register DATABASE CONNECTIVITY: CODING
	CSS COMPONENT
mat-card {	
max-width: 600px;	
margin: 2em auto;	
text-align: center;	
max-height: 600px	•

```
}
.header{
 text-align: center;
}
.full-width {
 width: 80%;
}
.button-row {
 padding-top: 5px;
}
.button-row a {
 margin-right: 8px;
 text-align: center;
.forget-password{
 padding-left: 0px;
}
.emailInput{
 padding-top: 10px;
}
```

```
.contentBody {
    padding: 60px 1rem;
    background :#006064;
    display: block;
}

.aLink{
    float: right;
    padding-right: 60px;
    text-decoration: none;
}
```

HTML COMPONENT:

```
Email is required
              </mat-error>
          </mat-form-field>
        </div>
        <div>
          <span>
            <a class="text-link" class="aLink" routerLink="/auth/forgot-</pre>
password">Forgot Password?</a>
          </span>
          <mat-form-field class="full-width" appearance="outline">
            <mat-label>Password</mat-label>
            <input formControlName="password" matInput [type]=" hide ?</pre>
 password' : 'text'" required />
            <button mat-icon-button matSuffix (click)="hide = !hide"</pre>
[attr.aria-label]="'Hide Password'"
            [attr.aria-pressed]="hide">
            <mat-icon>
                {{hide ? 'visibility_off' : 'visibility'}}
            </mat-icon>
        </button>
        <mat-error *ngIf="!loginForm.controls['password'].valid">
            Password is required
          </mat-error>
        </mat-form-field>
        </div>
        <button mat-flat-button color="primary">Login</button>
      </form>
      <div class="button-row">
        Create New Account
      </div>
```

```
</mat-card-content>
</mat-card>
```

.SPEC.TS COMPONENT:

```
import { ComponentFixture, TestBed } from '@angular/core/testing';
import { LoginComponent } from './login.component';
describe('LoginComponent', () => {
  let component: LoginComponent;
  let fixture: ComponentFixture<LoginComponent>;
  beforeEach(async () => {
    await TestBed.configureTestingModule({
      declarations: [ LoginComponent ]
    })
    .compileComponents();
    fixture = TestBed.createComponent(LoginComponent);
    component = fixture.componentInstance;
    fixture.detectChanges();
  });
  it('should create', () => {
    expect(component).toBeTruthy();
 });
});
```

8.2 Feature 2

CREATING DASHBOARD USING IBM COGNOS

8.3 Database Schema (if Applicable)

	A	В	C	D	E	F	G	H	1.	J
1	State_Nar	District_N	Crop_Year	Season	Crop	Area	Production			
2	Andaman	NICOBARS	2000	Kharif	Arecanut	1254	2000			
3	Andaman	NICOBARS	2000	Kharif	Other Kha	2	1			
4	Andaman	NICOBARS	2000	Kharif	Rice	102	321			
5	Andaman	NICOBARS	2000	Whole Ye	Banana	176	641			
6	Andaman	NICOBARS	2000	Whole Ye	Cashewnu	720	165			
7	Andaman	NICOBAR!	2000	Whole Yes	Coconut	18168	65100000			
8	Andaman	NICOBARS	2000	Whole Ye	Dry ginger	36	100			
9	Andaman	NICOBARS	2000	Whole Ye	Sugarcane	1	2			
10	Andaman	NICOBARS	2000	Whole Yes	Sweet pot	5	1.5			
11	Andaman	NICOBARS	2000	Whole Ye	Tapioca	40	169			
12	Andaman	NICOBARS	2001	Kharif	Arecanut	1254	2061			
13	Andaman	NICOBARS	2001	Kharif	Other Kha	2	1			
1/4	Andaman	NICOBAR!	2001	Kharif	Rice	83	300			
15	Andaman	NICOBARS	2001	Whole Ye	Cashewnu	719	192			
16	Andaman	NICOBARS	2001	Whole Ye	Coconut	18190	64430000			
17	Andaman	NICOBARS	2001	Whole Yes	Dry ginger	46	100			
18	Andaman	NICOBARS	2001	Whole Ye	Sugarcane	1	1			
19	Andaman	NICOBARS	2001	Whole Ye	Sweet pot	11	33			
20	Andaman	NICOBARS	2002	Kharif	Rice	189.2	510.84			
21	Andaman	NICOBARS	2002	Whole Ye	Arecanut	1258	2083			
22	Andaman	NICOBARS	2002	Whole Ye	Banana	213	1278			
23	Andaman	NICOBARS	2002	Whole Yes	Black pepi	63	13.5			
	4 6	crop pr	oduction	(

9. TESTING

9.1 Test Cases

Section	Total Cases	Not Tested	Fail	Pass
Overall process	7	0	0	7
Security	51	0	0	51
Client side	2	0	0	2
Outsource shipping	3	0	0	3
Exception Reporting	9	0	0	9
Final Report Output	4	0	0	4
Version Control	2	0	0	2

Resolution	Severity 1	Severity 2	Severity 3	Severity 4
Use-Easiness	7	5	4	4
Reliability	8	5	9	4
Security	4	5	7	6
Availability	5	7	6	2
Performance	5	4	5	8
Scalability	2	4	3	3

9.2 User Acceptance Testing

This is a survey result on our project's Scalability, User friendliness and Security.

Count of Security

.

10. RESULTS

10.1 Performance Metrics

11.MERITS AND DEMERITS

Merits

- ✓ Weather aberrations can cause physical damage to crops.
- ✓ Help in cut costs.
- ✓ Product higher crop yield.
- ✓ Prevent over or under watering.

Demerit

✓ Sudden change in weather cause crop damage

12.CONCLUSION

Weather aberrations can cause physical damage to crops. With help of this project, we can predict in certain environmental conduction which crop should be taken. From the graph of % of production we can determine sowing and harvesting period of particular crop in given temperature and rainfall. This data will continue to enhance farmer efficiency by further enabling them to monitor each plot of land and determine the precise input needed for their crops.

13.FUTURE SCOPE

- 1. Predict appropriate crop and maximum yield in the climate change.
- 2. Create an android app.
- 3. Collection of data, Analysis of it and modification of the algorithm.
- 4. IOT application in agriculture, automation in production line and man free agriculture which is the future of the world, this is the first step of it.
- 5. Find the percentage yield to happen from the match given percentage in terms of % error.

14. APPENDIX

GitHub Link:

Our team ID PNT2022TMID54302

https://github.com/IBM-EPBL/IBM-Project-41480-1660642404

Project Demo Link:

https://drive.google.com/file/d/1SFHlknxQxJHT9T6ICsiXSHHohpZ FCt_/view?usp=sharing