## SPIN ECHOES IN IMAGING:

-LAST TIME WE LEARNED ABOUT INDUCING A "SPIN ECHO",
AND HOW IT LETS US UNDO THE EXTRINSIC FACTORS THAT CAUSE
THE MR SIGNAT TO DEPHATE AND DERAY MORE RAPIDLY (T2\* DERAY).

HOW CAN WE WE A SPIN ECHO IN A PULSE SEQUENCE?



ADC TE TE TE ACQUIRE CENTER OF

K-SPACE (GRADIENTELHO) AT THE SAME TIME AS THE SPIN ECHO.

-NOTICE THAT I HAVEN'T DRAWN THE GRADIENTS, YOU CAN USE THE SPIN ECHO TECHNIQUE WITH A VARIETY OF K-SPACE TRATECTORIES! FOR EXAMPLE, 2DFT SPIN ECHO:



THE 180° PANCAKE FLIPPER MOVES US TO THE CONJUGATE POSITION IN K-SPACE! (SEE P.140-142
IN MISHIMURA)

-SPIN ECHO SEQUENCES ARE VERY PREVALENT IN
IMAGING (OR VARIATIONS LIKE FAST SPIN ELHO).
FSF

-IN FAST SPIN ELHO, WE ACRURE MULTIPLE LINETIN K-SPACE
WITH EACH EXCITATION (THAT IS, WE ACQUIRE MULTIPLE
LINES IN K-SPACE PER TR)
A1800



# OF SPIN ECTIVES ACQUIRED POR TR IS CALLED THE "ECHO TRAIN LENGTH"

CAN YOU DESIGN THE GX AND GY WAVEFORMS NEEDED FOR ESE?

INCORPORATING TO RELAXATION INTO SIGNAL EQUATION:

- WE HAVE IGNORED TO RELAXATION IN OUR SIGNAL EQN UP TO THIS POINT:

$$5(t) = \int \int m(x,y) e^{-i2\pi(k_x(t)x + k_y(t)y)} dy dx$$

- MODING IN THE EFFECT OF A SPATIALLY-VARYING TO VALUE, WE HAVE:

$$s(t) = \iint_{x \in Y} m(x,y) e^{-i2\pi(k_x(t)x + k_y(t)y)} e^{-\frac{t}{T_z(k_x y)}} dy dx$$

SOMETIMES TO GAM INSIGHT INTO THE TZ BLURRING THAT THIS TZ DELAY DURING OUR READOUT PRODUCES, WE ASSUME A CONSTANT TZ OVER THE ORTELT.

WE THEN HAVE:

$$5(t) = e^{-t/\tau_2} \iint m(x,y) e^{-i2\pi(k\pi(4)x+ky(4)y)} dydx$$

OR, IN K-SPACE:

WITH THIS MODEL, IT IS EASY TO SIMULATE THE BURRING EFFECT FROM THE EXPONDUTIAL DELAY ACROSS OUR TRATECTORIES IN K-SPACE.

YOU DID THIS IN AW. #1! /

## RF FIELD (OR B,) INHOMOGENETIES:

- OUR RE COILS OFTEN HAVE VARIATIONS IN SENSITIVITY (AMPLITUDE AND PHASE) ACROSS OUR IMAGING VOLUME
  - · DURING EXCITATION, THIS CAUSES VARIATIONS IN FUIP ANGLE ALROSS OUR OBJECT AND VARIATIONS IN SIGNAL PHASE ACROSS OUR OBJECT (ON TOP OF PHASE VARIATIONS WE IMPUCE W/ GRADIENTS!),
  - PHASE IN THE DETECTED SIGNAL.

TRANSMIT OF WE IN THE MENT OF

IN THE SIDMAL EDN. AS:

$$S(t) = \iint c(x,y) \, m(x,y) \, e^{-i2\pi (xy)t + ky(t)y} \, e^{-\frac{t}{T_2}(x,y)} \, dy \, dx$$

COIL SENSITIVITY