Problem Set 5 Complex Analysis

Bennett Rennier bennett@brennier.com

October 29, 2018

Ex 1 Let $u: U \to \mathbb{R}$ be given. We define

$$\limsup_{z \to \partial U} u(z) = \inf_K \sup_{z \in U \backslash K} u(z)$$

where the infimum is over all compact subsets K of U. Show that

- a) Set $L = \limsup_{z \to \partial U} u(z)$. Prove that for every $S \in \mathbb{R}$ with S > L, there is a compact $K \subseteq U$ such that $u(z) \leq S$ for all $z \in U \setminus K$. Also prove that there is a sequence $(z_n)_n$ in U tending to ∂U with $\limsup_{n \to \infty} u(z_n) \geq L$.
- b) Prove that

$$\lim \sup_{z \to \partial U} u(z) = \sup_{(z_n)_n} \limsup_{n \to \infty} u(z_n)$$

where the limit supremum is over all sequences $(z_n)_n$ with $z_n \to \partial U$.

- c) Suppose that Ω is a domain and that $u:\Omega\to\mathbb{C}$ is nonconstant and harmonic. Suppose $z_n\in\Omega$ is a sequence such that $|u(z_n)|\to\sup_{z\in\Omega}|u(z)|$. Prove that $z_n\to\partial\Omega$.
- d) Suppose that $\Omega \subseteq \mathbb{C}$ is a domain and $u: \Omega \to \mathbb{C}$ is harmonic. Prove that

$$\sup_{z\in\Omega}|u(z)|=\limsup_{z\to\partial\Omega}|u(z)|.$$

Proof.

a) Suppose that there is no compact $K \subseteq U$ such that $u(z) \leq S$ for all $z \in U \setminus K$. This means that $\sup_{z \in U \setminus K} u(z) \geq S$ for any compact $K \subseteq U$. Thus, we'd have that

$$\limsup_{z \to \partial U} u(z) = \inf_K \sup_{z \in U \backslash K} u(z) \geq S > L = \lim_{z \to \partial U} u(z)$$

which is a contradiction. Thus, there is some compact $K \subseteq U$ such that $u(z) \leq S$ for all $z \in U \setminus K$.

Let $K_i = \overline{\{x \in U : d(x, \partial U) \geq \frac{1}{n}, |x| \leq i\}}$ where $d(x, \partial U) = \inf_{u \in U} |x - u|$. We see that K_i are closed and also bounded (as $K_i \subseteq \overline{B_i(0)}$), so they're compact. We also see that $K_i \subseteq K_{i+1}$. For each K_i , we have by the definition of L that $L \leq \sup_{z \in U \setminus K_i} u(z)$. This means there exists a $z_i \in U \setminus K_i$ such that $u(z_i) \geq L - \frac{1}{i}$. Take these z_i 's as a sequence $(z_i)_{i \in \mathbb{N}}$. And I claim this sequence is what we seek.

We see that $\limsup_{n\to\infty} u(z_n) \geq \limsup_{n\to\infty} L - \frac{1}{n} = L$, so we need only to prove that $z_n \to \partial U$. Let K be a compact set and let $\delta = d(\partial U, K)$ and let $D = \operatorname{diam}(K)$, which is finite as K is compact. This means that $K \subseteq K_n$ for $n \geq D$ and $\frac{1}{n} \leq \delta$. Since $z_n \in U \setminus K_n$, we have that $z_n \notin K$ for all n greater than $\max(D, \frac{1}{\delta})$. This proves that $z_n \to \partial U$, concluding the proof of the statement.

b) In part (a) we found a sequence $(z_i)_{i\in\mathbb{N}}$ such that $z_n\to \partial U$ and $\limsup_{n\to\infty}u(z_n)\geq \limsup_{z\to\partial U}u(z)$. This proves that

$$\limsup_{z \to \partial U} u(z) \le \sup_{(z_n)_n} \limsup_{n \to \infty} u(z_n).$$

For the reverse inequality, let $(z_n)_{n\in\mathbb{N}}$ be any sequence such that $z_n \to \partial U$. We see that for each K_i (as constructed in part (a)), there's an N_i such that $z_n \in U \setminus K_i$ for all $n \geq N_i$. This means that $\sup\{u(z_n) : n \geq N_i\} \leq \sup\{u(z) : z \in U \setminus K_i\}$. Since removing beginning terms of $(z_n)_{n\in\mathbb{N}}$ doesn't affect the limsup, we see that

$$\limsup_{n \to \infty} u(z_n) \le \sup_{z \in U \setminus K_i} u(z)$$

for each K_i . From this and the fact that any compact set of U is contained in some K_i , we can conclude that

$$\limsup_{n\to\infty} u(z_n) \leq \inf_{K_i} \sup_{z\in U\backslash K_i} u(z) = \inf_{K_i} \sup_{z\in U\backslash K} u(z) = \limsup_{z\to \partial U} u(z),$$

which proves the statement.

c) Let $z_n \in \Omega$ be a sequence such that $|u(z_n)| \to \sup_{z \in \Omega} |u(z)|$ and let $K \subseteq \Omega$ be any compact set. We can construct the open neighborhood $U = \{z \in \Omega : z \in K \text{ or } d(z,K) < \delta\}$ where $\delta = \min(d(\partial\Omega,K),1)$. Since u is nonconstant, by the Maximum Modulus Principle we have thate

$$\sup_{z \in K} |u(z)| < \sup_{z \in \partial U} |u(z)| \le \sup_{z \in \Omega} |u(z)|.$$

Thus, in order for $|u(z_n)| \to \sup_{z \in \Omega} |u(z)|$, it must be that for some $N \geq 0$, $z_n \notin K$ for all $n \geq N$. This proves that $z_n \to \partial \Omega$.

d) We first see that

$$\limsup_{z\to\partial\Omega}|u(z)|=\inf_K\sup_{z\in U\backslash K}|u(z)|\leq\inf_K\sup_{z\in\Omega}|u(z)|=\sup_{z\in\Omega}|u(z)|.$$

Now let $(z_n)_{n\in\mathbb{N}}$ be a sequence such that $|z_n|\to \sup_{z\in\Omega}|u(z)|$. Then we know that $\limsup_{n\to\infty}|u(z_n)|=\sup_{z\in\Omega}|u(z)|$ and by part (c) we have that $z_n\to\partial\Omega$. This means

$$\sup_{z\in\Omega}|u(z)|=\limsup_{n\to\infty}|u(z_n)|\leq \sup_{(z_n)}\limsup_{n\to\infty}|u(z_n)|=\limsup_{z\to\partial U}|u(z)|$$

where the last equality is from part (b). This proves the statement.

Ex 2

a) Let $\phi:[a,b]\times[c,d]\to\mathbb{C}$ be a continuous function and define $g:[c,d]\to\mathbb{C}$ by

$$g(t) = \int_a^b \phi(s, t) \, ds.$$

Prove that g is continuous.

b) Let G be an open set and let γ be a C^1 curve in G. Suppose that $\phi: \{\gamma\} \times G \to \mathbb{C}$ is a continuous function and define $g: G \to \mathbb{C}$ by

$$g(z) = \int_{\gamma} \phi(w, z) dw.$$

Then we know that g is continuous. If $\frac{\partial \phi}{\partial z}$ exists for each (w,z) in $\{\gamma\} \times G$ and is continuous, then g is analytic and

$$g'(z) = \int_{\gamma} \frac{\partial \phi}{\partial z}(w, z) dw.$$

Proof.

a) Let $\varepsilon > 0$. Since ϕ is continuous, there exists a $\delta > 0$ such that

$$0 < ||x - y|| < \delta \implies |\phi(x) - \phi(y)| < \frac{\varepsilon}{b - a}$$

where ||x-y|| is the norm in \mathbb{R}^2 . We see then that for $t_0, t_1 \in [c, d]$ such that $0 \neq |t_0 - t_1| < \delta$ we have

$$|g(t_0) - g(t_1)| = \left| \int_a^b \phi(s, t_0) \, ds - \int_a^b \phi(s, t_1) \, ds \right| = \left| \int_a^b (\phi(s, t_0) - \phi(s, t_1)) \, ds \right|$$

$$\leq \int_a^b |\phi(s, t_0) - \phi(s, t_1)| \, ds < \int_a^b \frac{\varepsilon}{b - a} \, ds = \varepsilon$$

where the last inequality follows because

$$||(s,t_0)-(s,t_1)||=||(s-s,t_0-t_1)||=\sqrt{0+(t_0-t_1)^2}=|t_0-t_1|<\delta.$$

This proves that g(t) is a continuous function.

b) Let $z_0 \in G$ and let $D \subseteq G$ be a closed disk of radius r > 0 centered at z_0 . Since ϕ_z is continuous, this means that its uniformly continuous on $\text{Im}(\phi) \times D$ (as its compact). If we let $|h| \to 0$ be sufficiently closed to zero so that $z_0 + h \in D$, then

$$\left| \frac{\phi(w, z_0 + h) - \varphi(w, z_0)}{h} - \varphi_z(w, z_0) \right| = \left| \frac{1}{h} \int_{z_0}^{z_0 + h} \varphi(w, z) \, dz - \varphi_z(w, z_0) \right|$$

$$= \left| \frac{1}{h} h \int_0^1 \varphi(w, z_0 + sh) \, ds - \varphi_z(w, z_0) \right|$$

$$= \left| \int_0^1 \left(\varphi(w, z_0 + sh) - \varphi_z(w, z_0) \right) \, ds \right|$$

$$\leq \int_0^1 \left| \varphi(w, z_0 + sh) - \varphi_z(w, z_0) \right| \, ds.$$

By the uniformly continuity of φ_z , for any $\varepsilon > 0$, there exists a $\delta > 0$ such that $|\varphi_z(t, z_0 + sh) - \varphi_z(t, z_0)| < \varepsilon$. Thus, the difference above is strictly bounded by ε for any $w \in \text{Im}(\varphi)$. This proves that $\frac{\varphi(w, z_0 + h) - \varphi(w, z_0)}{h} \to \varphi_z(w, z_0)$ converges uniformly with respect to w in

 $\operatorname{Im}(\varphi) \times D$. Using this, we see that

$$g'(z_0) = \lim_{|h| \to 0} \frac{g(z_0 + h) - g(z_0)}{h} = \lim_{|h| \to 0} \frac{\int_{\gamma} \phi(w, z_0 + h) dw - \int_{\gamma} \phi(w, z_0) dw}{h}$$

$$= \lim_{|h| \to 0} \int_{\gamma} \frac{\phi(w, z_0 + h) - \phi(w, z_0)}{h} dw = \int_{\gamma} \lim_{|h| \to 0} \frac{\phi(w, z_0 + h) - \phi(w, z_0)}{h} dw$$

$$= \int_{\gamma} \phi_z(w, z_0) dw,$$

as we wanted. (We can interchange the limit and the integral because of the uniform convergence we just proved for |h| sufficiently close to 0.) This proves the statement.

Ex 3 Find all entire functions f such that f(f(z)) = f(z) for all $z \in \mathbb{C}$.

Proof. We see that if f is constant, say f(x) = c, then f(f(x)) = f(c) = c = f(x). This proves that constant maps satisfy the condition. Suppose that f is nonconstant then. Let $y \in \text{Im}(f)$, meaning y = f(x) for some $x \in \mathbb{C}$. From this, we get that f(y) = f(f(x)) = f(x) = y, which proves that $f|_{\text{Im}(f)}$ is the identity map. Since f is nonconstant, by the Open Mapping Theorem, we have that $\text{Im}(f) = f(\mathbb{C})$ is open. Let $y \in \text{Im}(f)$ and let r > 0 be such that $B_r(y) \subseteq \text{Im}(f)$. Thus, we have that f(x) = x for all $x \in B_r(y)$. Since the set $B_r(y)$ has an accumulation point, we know the set $\{z \in \mathbb{C} : f(z) = z\}$ has an accumulation point in \mathbb{C} . This proves that f(z) = z on all of \mathbb{C} . Hence, the only entire functions satisfying the condition that f(f(z)) = f(z) for all $z \in \mathbb{C}$ are constants and the identity map.

Ex 4 Suppose that $p(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0$ with $|a_0| > 1$ and $n \ge 1$. Show that there is a $w \in \mathbb{C}$ with |w| > 1 and p(w) = 0.

Proof. Since $n \geq 1$, by the Fundamental Theorem of Algebra (proved on the last homework), we know that p(z) has a root r_1 . This means that $z - r_1$ divides p(z), so that $p(z) = (z - r_1)\tilde{p}(z)$. By comparing degrees of polynomials, we see that the degree of \tilde{p} must be n-1. If $n-1 \geq 1$, we can continue this process by applying the Fundamental Theorem of Algebra to \tilde{p} to obtain a root r_2 of \tilde{p} (and of p). Repeating this process, we get that $p(z) = c(z - r_1) \cdots (z - r_n)$ for some constant $c \in \mathbb{C}$. We see that if we expand this out cz^n is the highest power term and $cr_1 \cdots r_n$ is the constant term. By comparing with our original form of p(z), we see that $cz^n = z^n$, meaning c = 1 and that $cz^n = a_0$. Suppose that for $|r_i| \leq 1$ for all $cz^n = a_0$. Then $|a_0| = |r_1 \cdots r_n| = |r_1| \cdots |r_n| \leq 1$, which is a contradiction to our assumption. Thus, there is at least one r_k such that $|r_k| > 1$ and $p(r_k) = 0$, which proves the claim.

Ex 5 Suppose that $f: \mathbb{C} \to \mathbb{C}$ is entire and that there is a $\theta \in [0, 2\pi)$ such that $f(\mathbb{C}) \cap \{re^{i\theta} : r \ge 0\} = \emptyset$. Show that f is constant.

Proof. Let $R(z)=ze^{i(\pi-\theta)}$, which rotates $\mathbb C$ so that $(R\circ f)(\mathbb C)\cap\{re^{i\pi}:r\geq 0\}=\varnothing$. We note from homework 3, question 2, there is a conformal map ϕ from $\Omega_\pi=\{r^{i\theta}:r>0,-\pi<\theta<\pi\}$ (which is the complement of $\{re^{i\pi}:r\geq 0\}$) to $\mathbb D$. Thus, the composition $\phi\circ R\circ f$ is a holomorphic function from $\mathbb C$ to $\mathbb D$. By Liouville's Theorem, $\phi\circ R\circ f$ must be constant. Since ϕ and R are conformal, they are bijections, so it must be that f is a constant.

Ex 6

a) Suppose that f, g are entire functions and that $|f| \leq |g|$. Prove that there is a $c \in \overline{\mathbb{D}}$ such that f(z) = cg(z).

b) Suppose that $f: \mathbb{C} \to \mathbb{C}$ is entire. Suppose that there exists $R \in (0, \infty)$ and $\alpha \in \mathbb{N}$ such that $|f(z)| \leq R|z|^{\alpha}$. Prove that f is a polynomial.

Proof.

a) If f is identically zero on \mathbb{C} , then we have that $f = 0 \cdot g$, so the result is satisfied. Now suppose that f is not identically zero. This means that g cannot be identically zero either. Suppose that $g(z_0) = 0$ for some $z_0 \in \mathbb{C}$. Since g is analytic, there is a power series representation of g around z_0 ; that is $g(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$. Since g is not identically zero, there is a least positive integer k such that $a_k \neq 0$. We have then that

$$\tilde{g}(z) = (z - z_0)^{-k} g(z) = (z - z_0)^{-k} \sum_{n=k}^{\infty} a_n (z - z_0)^n = \sum_{n=k}^{\infty} a_n (z - z_0)^{n-k} = \sum_{n=0}^{\infty} a_{n+k} (z - z_0)^n$$

is a holomorphic function and that $\tilde{g}(z_0) = a_k \neq 0$. Now, since $g(z_0) = 0$, we know that $f(z_0) = 0$. Similar as with g, let $f(z) = \sum_{n=0}^{\infty} b_n (z-z_0)^n$ and let m be the least positive integer such that $b_m \neq 0$. Again, we define $\tilde{f}(z) = (z-z_0)^{-m} f(z)$ and note that $\tilde{f}(z_0) = b_m \neq 0$. Now it must be that $m \geq k$, otherwise we have that

$$|(z-z_0)^m \tilde{f}(z)| = |f(z)| \le |g(z)| = |(z-z_0)^k \tilde{g}(z)|.$$

This gives that $|\tilde{f}(z)| \leq |\tilde{g}(z)||z-z_0|^{k-m}$. Plugging in z_0 , we get that

$$|b_m| = |f(z_0)| \le |\tilde{g}(z_0)||z_0 - z_0|^{k-m} = |a_k|0^{k-m} = 0,$$

which is a contradiction. Thus, $f(z) = (z - z_0)^m \tilde{f}(z)$ and $g(z) = (z - z_0)\tilde{g}(z)$ where $m \ge k$. This means that

$$\frac{f(z)}{g(z)} = \frac{(z - z_0)^m \tilde{f}(z)}{(z - z_0)^k \tilde{g}(z)} = \frac{(z - z_0)^{m-k} \tilde{f}(z)}{\tilde{g}(z)}.$$

Since $\tilde{g}(z_0) = a_k \neq 0$, this proves that f/g can be defined at z_0 . As z_0 was an arbitrary zero of g, we have that f/g is actually an entire function. Since $|f(z)/g(z)| = |f(z)|/|g(z)| \leq |g(z)|/|g(z)| = 1$, by Liouville's Theorem, f/g = c for some constant $c \in \mathbb{C}$. We see that $|c| = |f/g| \leq 1$, so the constant must lie in $\overline{\mathbb{D}}$. This proves that f(z) = cg(z) for some constant $c \in \overline{\mathbb{D}}$ as we desired.

b) Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Cauchy's Integral formula gives us that for any circle C_r of radius r,

$$a_n = f^{(n)}(0) = \frac{n!}{2\pi i} \int_{C_r} \frac{f(s)}{s^{n+1}} ds.$$

We see then that

$$\begin{split} |a_n| &= \left|\frac{n!}{2\pi i} \int_{C_r} \frac{f(s)}{s^{n+1}} \, ds \right| \leq \frac{n!}{2\pi} \int_{C_r} \frac{|f(s)|}{|s^{n+1}|} |ds| \leq \frac{n!}{2\pi} \int_{C_r} \frac{R|s|^\alpha}{|s|^{n+1}} |ds| \leq \frac{n!}{2\pi} \int_{C_r} Rr^{\alpha-(n+1)} |ds| \\ &\leq \frac{n!}{2\pi} \int_{C_r} Rr^{\alpha-(n+1)} |ds| = \frac{n!}{2\pi} Rr^{\alpha-(n+1)} \int_{C_r} |ds| \leq \frac{n!}{2\pi} Rr^{\alpha-(n+1)} \ell(C_r) \leq n! Rr^{\alpha-n}. \end{split}$$

Thus, if $n \geq \alpha$, we have that

$$|a_n| = \lim_{r \to \infty} n! Rr^{\alpha - n} = n! R \lim_{r \to \infty} r^{\alpha - n} = n! R \cdot 0 = 0.$$

This proves that $f(z) = \sum_{n=0}^{\lfloor \alpha \rfloor} a_n z^n$, which is a polynomial.

Ex 7 Let $S=\{x+iy:|x|\leq 1,|y|\leq 1\}$. Suppose that $f:\overline{S}\to\mathbb{C}$ is continuous and that $f|_S$ is holomorphic. Let the four sides of the square be denoted by S_1,S_2,S_3,S_4 . Suppose that $M_1,M_2,M_3,M_4\in[0,\infty)$ and $|f|_{S_i}|\leq M$. Prove that $|f(0)|\leq (M_1M_2M_3M_4)^{1/4}$.

Proof. Consider the function $g: \overline{S} \to \mathbb{C}$ where g(z) = f(z)f(iz)f(-z)f(-iz). We note that g is holomorphic on S and that for $z \in \partial S$,

$$|g(z)| = |f(z)||f(iz)||f(-z)||f(-iz)| \le M_1 M_2 M_3 M_4$$

since z, iz, -z, and -iz are on the four sides of S. Since \overline{S} is compact, it attains its maximum and by the maximum modulus principle, this maximum is attained somewhere on the boundary (Note: this works even if g is constant). Thus,

$$|f(0)|^4 = |f(0)f(0)f(0)f(0)| = |g(0)| \le \sup_{z \in S} |g(z)| \le \sup_{z \in \partial S} |g(z)| \le M_1 M_2 M_3 M_4.$$

After taking fourth roots, we have the result.