Methods 3: Multilevel Statistical Modeling and Machine Learning

Week 6: *Mid-way evaluation and Machine Learning Intro*November 2, 2021

by: Lau Møller Andersen

These slides are distributed according to the CC BY 4.0 licence:

https://creativecommons.org/licenses/by/4.0/

Attribution 4.0 International (CC BY 4.0)

Study Café how is it going?

Reminder: Office hours (If assignments are hard, why is no one coming?)

Python book in Stakbogladen

https://www.stakbogladen.dk/soegning.asp?phrase=

9781783555130

Also available online at the Royal Library (thanks, Emil!)

BOG

Python machine learning: unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics

Sebastian Raschka author; Randal S Olson author of foreword 2015; 1st edition

Practical exercise tomorrow

To make sure that *Python* runs within *R Markdown*, make sure you have the *reticulate* package installed install.packages('reticulate')

Also create a text file that is called *.Renviron* (remember the dot) placed in the folder where your *RProj* file is. It should have a single line: RETICULATE_PYTHON=PATH where PATH is the path to your *methods3* conda environment. Use the commands below to find the paths:

```
library(reticulate)
print(conda_list())
```

```
python
##
             name
       miniconda3
## 1
                                     /home/lau/miniconda3/bin/python
                       /home/lau/miniconda3/envs/methods3/bin/python
## 2
         methods3
## 3
                            /home/lau/miniconda3/envs/mne/bin/python
              mne
## 4
         mne 0.17
                       /home/lau/miniconda3/envs/mne 0.17/bin/python
                   /home/lau/miniconda3/envs/mne func sig/bin/python
## 5 mne func sig
## 6
           mnedev
                         /home/lau/miniconda3/envs/mnedev/bin/python
## 7
         psychopy
                       /home/lau/miniconda3/envs/psychopy/bin/python
## 8
        fslpython
                                 /usr/local/fsl/fslpython/bin/python
        fslpython /usr/local/fsl/fslpython/envs/fslpython/bin/python
## 9
```

Practical exercise tomorrow

NB! No spaces around equals sign!

Practical exercise tomorrow

Update environment

conda env create --force -f methods3_environment.yml

Overwrite old environment

Update environment (new packages have been added). Run this command from the folder week_06

Mid-way evaluation

Mid-way evaluation

- 1) Write something you liked about the course so far
- 2) Write something you did not like about the course so far
- 3) What would you change?

Next time: I'll summarise the feedback on the three points and what I'll change

Learning goals

Evaluating and comparing models

- 1) Learning tools for comparing models
 - 1) Variance explained
 - 2) Likelihood ratio tests
 - 3) Information criteria
- 2) Bridging to out-of-sample

Why are we modelling?

Remember Emil's slides from week 03

- To be able to understand the world
- To be able to predict and manipulate the world

$$F = G \frac{m_1 m_2}{r^2}$$

EXPLANATION

NASA/Bill Ingalls

PREDICTION

What constitutes a good model?

Remember Emil's slides from week 03

- Accurate estimation
 of the underlying
 parameters of the
 population distribution
- Generalisation to new data

EXPLANATION

PREDICTION

Within an **explanatory** framework, how can we assess whether we have done a good job?

quick recap of...

Variance explained

- Pros
 - R² is intuitive
- Cons
 - More complex models will always explain more variance
 - Hard to interpret in the case of collinearity
 - R² doesn't give us what we want

Doesn't tell us about the likelihood of this particular model to be true

Likelihood ratio

we now have a principles way of comparing models, which we didn't get from R2.

Pros

- Models can be compared in a principled way by reference to a theoretical distribution, χ^2 . (In the single level case, F can be calculated)

Cons

- Models have to be nested in one another we can only compare models where one is a subset of the ot
- Maximum likelihood fitting may be biased for complex models
- Requires large sample sizes
- Be careful if collinearity is high Text

Information criteria

also based on maximum likelihood fitting.

Pros

 Models can be compared even though one is not nested within the other (response data has to be the same though)

Cons

- Number of effective parameters not well defined for multilevel models
- Maximum likelihood fitting may be biased for complex models

Did you learn? (it's not easy)

Evaluating and comparing models

- 1) Learning tools for comparing models
 - 1) Variance explained
 - 2) Likelihood ratio tests
 - 3) Information criteria
- 2) Bridging to out-of-sample

Learning goals

Explanation and prediction

- 1) Understanding that fitting (explaining) often leads to overfitting
- 2) Learning methods to prevent overfitting by introducing *bias*
- 3) Understanding how the error can be decomposed into *bias* and *variance*

To fit is to overfit

(Yarkoni and Westfall, 2017)

Overfitting: fitting sample-specific noise, which is thus not representative of the population

Text

Fig. 1. Training and test error produced by fitting either a linear regression (left) or a 10th-order polynomial regression (right) when the true relationship in the population (red line) is linear. In both cases, the test data (green) deviate more from the model's predictions (blue line) than the training data (blue). However, the flexibility of the 10th-order polynomial model facilitates much greater overfitting, resulting in lower training error but much higher test error than the linear model. MSE = mean squared error.

(Yarkoni and Westfall, 2017)

A sample of 10 linear or quadratic?

A sample of 10 linear or quadratic?

A sample of 10 linear or quadratic?

Residuals (linear)

Residuals (quadratic)

Quadratic:

 $ax^2 + bx + c$

Linear:

bx + c

Estimates

$$a = 0.6184$$
; $b = 3.0201$

b = 3,020

Now a sample of 100

$$b = 1,650$$

$$a = -0.03074 \approx 0.5b = 1.650$$

Fig. 2. An estimator's predictions can deviate from the desired outcome (or true scores) in two ways. First, the predictions may display a systematic tendency (or *bias*) to deviate from the central tendency of the true scores (compare right panels with left panels). Second, the predictions may show a high degree of *variance*, or imprecision (compare bottom panels with top panels).

33

tions is expected in the right-hemisphere hand region of the primary somatosensory cortex.

The foot area is shown at the top of the head. See text for further explanation.

(Yarkoni and Westfall, 2017)

(Yarkoni and Westfall, 2017) Sum of squared errors Bias-variance decomposition X the bias is the systematic difference from the true target. when you know what the bias is, you can calculate the squared errors again. IRL it is almost impossible to know what the bias is. How do you calculate the bias (where the dot is)?

Fig. 3. Schematic illustration of the bias-variance decomposition. (Left) Under the classical error model, prediction error is defined as the sum of squared differences between true scores and observed scores (black lines). (Right) The bias-variance decomposition partitions the total sum of squared errors into two separate components: a bias term that captures a model's systematic tendency to deviate from the true scores in a predictable way (black line) and a variance term that represents the deviations of the individual observations from the model's expected prediction (gray lines).

Bias variance decomposition

E=expection of the squared difference between the trrue value and the estimated value. Expectation is the value it will take if you do it an infinite number of times.

$$E \left[\begin{array}{c} \text{The first term 1s our expection of the error. That can be decomposed into two. The square of the bias + the variance} \\ -f\left(x_0\right) \right] = bias \left(f\left(x_0\right) \right) + var\left(f\left(x_0\right) \right) + \sigma \right)$$

This formula is wrong! See the updated slides.

bias(
$$\hat{f}(x_0)$$
)= $E[(y_0 + \hat{f}(x_0))^2]$

actual formula: bias($^f(x_0)$)=E[($^f(x_0)$]-f($^f(x_0)$)

is the *expected* squared error between the true value y_o and its estimates based on fits $\hat{f}(x_o)$

If we introduce bias, we end up reducing variance.

We'll look more into this during tomorrow's exercise

Multilevel modelling as a *bias* introducer

"For example, some readers may be surprised to learn that multilevel modeling approaches to analyzing clustered data—which have recently seen a dramatic increase in adoption in psychology—improve on ordinary least squares (OLS) approaches to estimating individual cluster effects by deliberately biasing (through "shrinking" or "pooling") the cluster estimates toward the estimated population average"

(Yarkoni and Westfall, 2017)

Introducing bias

"In a widely used form of penalized regression called lasso regression (Tibshirani, 1996, 2011), this leastsquares criterion is retained, but the overall cost function that the estimation seeks to minimize now includes an additional penalty term that is proportional to the sum of the absolute values of the coefficients."

Text

(Yarkoni and Westfall, 2017)

Penalised regression

Why have small beta values?
because high beta values gotta
be right, and since we're not sure
that they are, we prefer them

 $RSS = \sum (y_i - \hat{y}_i)^2 (\text{minimise to obtain least squares so that the pare, we prefer them to be a bit lower.})$

penalise the model for having too big beta hats.

lasso regression: RSS+
$$\lambda \sum_{j=1}^{p} |\beta_j|$$
 (them to the RSS, and that's what we're going to minimize. When to have beta hats values too large. In practice, we would just set the beta values to 0. Why?

ridge regression: RSS+
$$\lambda \sum_{j=1}^{p} (\beta_j^2)$$
 (minimise this sum)

i:observations

p: predictor variables

 λ : a constant

Penalised regression

If lambda goes to 0, the beta values increase.

RSS =
$$\sum (y_i - \hat{y}_i)^2$$
 (minimise to obtain least squares solution)

lasso regression: RSS+
$$\lambda \sum_{j=1}^{p} |\beta_j|$$
 (minimise this sum)

ridge regression : RSS +
$$\lambda \sum_{j=1}^{p} (\beta_{j}^{2})$$
 (minimise this sum)

i:observations

p: predictor variables

 λ : a constant

Group discussion

In each case: what happens when?

- 1. λ increases?
- 2. λ decreases?
- 3. λ is 0?
- 4. λ goes towards infinity?

Penalised regression

 $RSS = \sum_{i} (y_i - \hat{y}_i)^2 (minimise to obtain least squares solution)$

We want to find the lambda that minimizes

$$\underset{\lambda}{\operatorname{argmin}} = \operatorname{RSS} + \lambda \sum_{j=1}^{p} |\beta_j|$$

$$\underset{\lambda}{\operatorname{argmin}} = \operatorname{RSS} + \lambda \sum_{j=1}^{p} \left(\beta_{j}^{2} \right)$$

i:observations

p: predictor variables

 λ : a constant

How to choose λ ?

What is λ equal to here?

```
sum.of.squares.total <- sum((y - mean(y))^2)
sum.of.squared.errors.lm <- sum(residuals(linear_model)^2)
print(r.squared.lm <- 1 - sum.of.squared.errors.lm/sum.of.squares.total)</pre>
```

```
## [1] 0.8072553
```

How to choose λ (lasso)?

Text

```
##
## Call: glmnet(x = x, y = y, alpha = 1, lambda = c(0, 0.2, 2, 4, 20,
100))
##
                           lambda
                                          RSS
                                                  penalty
                                                                   sum
##
     Df
          %Dev Lambda
                                                             145726.9
                            100.0 145726.9
                                                 0.0
                100.0
      0.0000
## 2
      2 0.6567
                 20.0
                         20.00000 50025.64218
                                                  14.05496 50039.69714
## 3
     3 0.8004
                  4.0
                           4.00000 29082.92003
                                                  41.34363 29124.26366
                           2.00000 28408.50683
                                                  44.99057 28453.49740
##
                  2.0
      3 0.8051
## 5
      4 0.8072
                  0.2
                          0.20000 28097.60764
                                                  52.47741 28150.08505
                           0.00000 28088.09951
                                                  54.46997 28142.56948
## 6
      4 0.8073
                  0.0
```

How to choose λ ?

Text

What does \(\lambda\) do (ridge)?

$$\beta_{ridge} = (X^T X + \lambda I)^{-1} X^T y$$

I : an identity matrix with p predictor variables λ : a constant (small)

What is X^TX?

head(X)

```
## Mazda RX4 1 21.0 2.620 3.90 16.46
## Mazda RX4 Wag 1 21.0 2.875 3.90 17.02
## Datsun 710 1 22.8 2.320 3.85 18.61
## Hornet 4 Drive 1 21.4 3.215 3.08 19.44
## Hornet Sportabout 1 18.7 3.440 3.15 17.02
## Valiant 1 18.1 3.460 2.76 20.22
```

print(cov.X)

When whilliplying these two matrices we get a new matrice that's squared. The diagonal is the variance

```
wt
                                 drat
                                            qsec
              mpg
        14042.310 1909.7528 2380.2770 11614.745
  mpg
                             358.7190
  wt
         1909.753
                   360.9011
                                        1828.095
                   358.7190
                              422.7907
  drat
         2380.277
                                        2056.914
## qsec 11614.745 1828.0946 2056.9140 10293.480
```

$$X_{COV} = X^T X$$

diagonal: Variance that each variable explains in isolation. The other fields are the fileds in which the variables are co-explaining.

Covariance matrix

The fact that the off-diagonal > 0, indicates that there is collinearity

Collinearity can be bad

```
##
## Call:
## lm(formula = hp \sim mpg + wt + drat + qsec, data = mtcars)
##
## Coefficients:
                                    Text
                                                     drat
   (Intercept)
                          mpg
                                                                   qsec
       473.779
##
                       -2.877
                                     26.037
                                                    4.819
                                                                -20.751
```

Assuming no collinearity, what is the interpretation of the coefficients? With collinearity, is that interpretation possible?

$$\hat{\beta_{ridge}} = (X^T X + \lambda I)^{-1} X^T y$$

Inverted Covariance matrix, regularized:(lambda= 0)

$$\hat{\beta_{ridge}} = (X^T X + \lambda I)^{-1} X^T y$$

Inverted Covariance matrix, regularized:(lambda= 1)

$$\hat{\beta_{ridge}} = (X^T X + \lambda I)^{-1} X^T y$$

Inverted Covariance matrix, regularized:(lambda= 10)

$$\hat{\beta_{ridge}} = (X^T X + \lambda I)^{-1} X^T y$$

Inverted Covariance matrix, regularized:(lambda= 100)

$$\hat{\beta_{ridge}} = (X^T X + \lambda I)^{-1} X^T y$$

Inverted Covariance matrix, regularized:(lambda= 1000)

So why is it called regularisation?

Two notes about the inverted matrix:

When increasing bias, we're moving away from the true parameters, but we're reducing colinirarity.

with increase of λ

- 1. Diagonal shrinks (bias is added)
- 2. Off-diagonal shrinks (collinearity is reduced, which improves the stability of the model)

In a stable model:

Feeding new data or adding new predictor variables will not change the parameter estimates a lot

We have succeeded in finding a λ making our model more stable (improved **in-sample** validity), but we haven't found a λ that optimises predictive power – (**out-of-sample**)

Out-of-sample as validity check

mtcars.1 <- mtcars[1:10,]</pre>

Out-of-sample as validity check

```
Call:
lm(formula = hp \sim mpg + wt + drat + qsec, data = mtcars.1)
Coefficients:
(Intercept)
                                                 drat
                                     wt
                                                                qsec
                      mpg
    414.541
                  -13.638
                                 12.753
                                               11.263
                                                             -5.042
Call:
 lm(formula = hp \sim mpq + wt + drat + qsec, data = mtcars)
Coefficients:
                                                  drat
 (Intercept)
                                      wt
                       mpg
                                                                qsec
     473.779
                    -2.877
                                  26.037
                                                 4.819
                                                             -20.751
```

Suddenly, someone shows up with

Let's check our model

mtcars.2 <- mtcars[11:32,]</pre>

Predictions based on mtcars.1

Finding optimal lambda

Ridge Regression


```
Call:
lm(formula = hp \sim mpg + wt + drat + qsec + 0, data = mtcars.1)
Coefficients:
   mpg wt drat qsec
-8.379 76.588 45.705 -5.850
print(beta.hat.ridge <- ridge.regression(X, y, mtcars.1, min.lambda))</pre>
##
             mpg wt drat gsec
## [1,] -7.421887 33.637 22.0378 4.70691
```

What has happened to the coefficients?

Predictions based on mtcars.1; lambda=3,53

Prediction on mtcars.2

$$\lambda = 0$$

Predictions based on mtcars.1; lambda=3,53

"Prediction" on mtcars.1

$$\lambda = 0$$

Predictions based on mtcars.1; lambda=0

Nomenclature

- mtcars.1 -> training set
- mtcars.2 -> test set
 - NB! Normally, we prefer that out training set is bigger than our test set
- By introducing bias in our training set, we at the same time reduce the variance of our training set, increasing the reliability of our predictions on a test set

"Testing" on training set

greater bias lesser variance

smallest bias greater variance (of \hat{y})

Predictions based on mtcars.1; lambda=3,53

Predictions based on mtcars.1; lambda=0

Optimal λ

lesser bias lesser variance more bias greater variance (of \hat{y})

Did you learn?

Explanation and prediction

- 1) Understanding that fitting (explaining) often leads to overfitting
- 2) Learning methods to prevent overfitting by introducing *bias*
- 3) Understanding that the error can be decomposed into *bias* and *variance*

Next time

- The Perceptron
- Adaline
- Linear regression

References

- Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H., White, J.-S.S., 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24, 127–135. https://doi.org/10.1016/j.tree.2008.10.008
- Gelman, A., Hill, J., 2006. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press.
- Hari, R., Puce, A., 2017. MEG-EEG Primer. Oxford University Press, New York, NY, US.
- Yarkoni, T., Westfall, J., 2017. Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning. Perspect Psychol Sci 12, 1100–1122. https://doi.org/10.1177/1745691617693393