Matrix Multiplication

A pxq matrix of real numbers can be represented by a p-slot list, each slot containing a list of size q,

for example,

Your task is to implemented functions

- mult_c(c, A): returns a resulting matrix from multiplying c (a real number) with matrix A.
- mult(A, B): returns A x B (this is a matrix multiplication).

```
def read_matrix():
    m = []
    nrows = int(input())
    for k in range(nrows):
        x = input().split()
        r = []
        for e in x:
            r.append( float(e) )
        m.append(r)
    return m

def mult_c(c, A):

def mult(A, B):

exec(input().strip())  # This command is necessary to grade your answer
```

From wikipedia https://en.wikipedia.org/wiki/Matrix multiplication

If **A** is an $m \times n$ matrix and **B** is an $n \times p$ matrix,

$$\mathbf{A} = egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}\!, \quad \mathbf{B} = egin{pmatrix} b_{11} & b_{12} & \cdots & b_{1p} \ b_{21} & b_{22} & \cdots & b_{2p} \ dots & dots & \ddots & dots \ b_{n1} & b_{n2} & \cdots & b_{np} \end{pmatrix}$$

the *matrix product* $\mathbf{C} = \mathbf{AB}$ (denoted without multiplication signs or dots) is defined to be the $m \times p$ matrix^{[5][6][7][8]}

$$\mathbf{C} = egin{pmatrix} c_{11} & c_{12} & \cdots & c_{1p} \ c_{21} & c_{22} & \cdots & c_{2p} \ dots & dots & \ddots & dots \ c_{m1} & c_{m2} & \cdots & c_{mp} \end{pmatrix}$$

such that

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{k=1}^n a_{ik}b_{kj},$$

for i = 1, ..., m and j = 1, ..., p.

Input

Python commands.

Output

Result from executing the input commands.

Example

Input (from keyboard)	Output (on screen)
A=read_matrix();print(mul_c(0.5,A))	[[0.5, 1.0], [1.0, 1.5], [1.5,
3	1.0]]
1 2	
2 3	
3 2	
A=read matrix();B=read matrix();pri	[[14.0, 14.0], [6.0, 7.0], [12.0,
nt(mul(A,B))	14.0]]
3	
1 2 3	
1 1 1	
2 2 2	
3	
1 2	
2 3	
3 2	