

CHANDIGARH UNIVERSITY UNIVERSITY INSTITUTE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Submitted By: Lipakshi	Submitted To: Navneet Kaur	
Subject Name	Machine Learning Lab	
Subject Code	20CSP-317	
Branch	Computer Science	
Semester	5th	

UNIVERSITY INSTITUTE OF ENGINEERING

Department of Computer Science & Engineering

Subject Name: Machine Learning Lab

Subject Code: 20CSP-317

Submitted to: Submitted by:

Faculty name: Navneet Kaur Name: Lipakshi

UID: 20BCS5082

Section: 607

Group: B

Ex. No	List of Experiments	Date	Condu c t (MM: 12)	Viva (MM : 10)	Recor d (MM: 8)	Total (MM: 30)	Remarks/Signature
1.1	Implement Exploratory Data Analysis on any data set.						
1.2	Implement Data Visualization.	23-08-2 022					
1.3	Data analysis of any data set via graphs using linear regression.						
1.4	Implement support Vector machine on any data set and analyse the accuracy with logistic regression.	10-10-2 022					
2.2	Implement Naive Bayes on any Data Set.	10-10-2 022					

2.3					
2.4					
3.1	Implement K-Means	07-11-2 022			
3.2	Implement PCA	07-11-2 022			
3.3					

Experiment 9

Q1. Task to be done/ Which logistics used: Implement PCA.

Code:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd import
seaborn as sns

dataset = pd.read_csv('Wine.csv')
dataset.head()

	imp imp imp	ort ma ort pa ort se	ndas as paborn as pd.read_	pyp ¹ od sns	lot as plt)								
Out[1]:														
		Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenols	Flavanoids	Nonflavanoid_PhenoIs	Proanthocyanins	Color_Intensity	Hue	OD280	Pr
	0	Alcohol 14.23		Ash 2.43	Ash_Alcanity	Magnesium 127	Total_Phenols 2.80	Flavanoids 3.06	Nonflavanoid_Phenols 0.28	Proanthocyanins 2.29	Color_Intensity 5.64	30,4653656	OD280 3.92	A 18000
	-		1.71	202000			NS-SERIES CONTRACTOR	BOOKS AND ASSESSED TO THE PARTY OF THE PARTY	The same of the sa			1.04	ACT CONTRACT	
	0	14.23	1.71 1.78	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64 4.38	1.04	3.92	
	0	14.23 13.20	1.71 1.78 2.36	2.43 2.14	15.6 11.2	127 100	2.80 2.65	3.06 2.76	0.28 0.26	2.29	5.64 4.38 5.68	1.04	3.92 3.40	

X = dataset.iloc[:, 0:13].values y

= dataset.iloc[:, 13].values

from sklearn.model_selection import train_test_split

X train, X test, y train, y test = train test split(X, y, test size = 0.2, random state = 0)

from sklearn.preprocessing import StandardScaler sc = StandardScaler()

X_train = sc.fit_transform(X_train)

 $X_{test} = sc.transform(X_{test})$

from sklearn.decomposition import PCA

pca = PCA(n_components = 2)

X_train = pca.fit_transform(X_train)

X_test = pca.transform(X_test)

explained_variance = pca.explained_variance_ratio_

from sklearn.linear_model import LogisticRegression

classifier = LogisticRegression(random_state = 0)
classifier.fit(X_train, y_train) y_pred =
classifier.predict(X_test)

from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report

cm = confusion_matrix(y_test, y_pred) cm

sns.heatmap(confusion_matrix(y_test,y_pred),annot = True,cmap = 'Oranges')

```
pca = PCA(n_components = 2)
        X_train = pca.fit_transform(X_train)
        X_{\text{test}} = pca.transform(X_{\text{test}})
        explained_variance = pca.explained_variance_ratio_
        from sklearn.linear_model import LogisticRegression
        classifier = LogisticRegression(random_state = 0)
        classifier.fit(X_train, y_train)
        y_pred = classifier.predict(X_test)
        from sklearn.metrics import confusion_matrix
        from sklearn.metrics import classification_report
        cm = confusion_matrix(y_test, y_pred)
        CM
        sns.heatmap(confusion_matrix(y_test,y_pred),annot = True,cmap = 'Oranges')
Out[4]: <AxesSubplot:>
                                                 12
                                                 10
```

cr = classification_report(y_test, y_pred) cr

from sklearn import metrics print("PCA accuracy(in %):", metrics.accuracy score(y test, y pred)*100)

```
In [10]: from sklearn import metrics
print("PCA accuracy(in %):", metrics.accuracy_score(y_test, y_pred)*100)
PCA accuracy(in %): 97.2222222222222
```

Evaluation Grid (To be created as per the SOP and Assessment guidelines by the faculty):

Sr. No. Parameters Marks Obtained Maximum Marks

1

2

3

4