

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B. Sc. (General) Degree Second Year - Semester II Examination - September/October 2014 MAP 2301 - Algebra

Answer All Questions

Time allowed: Three hours

1. a) Let
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 6 & 1 & 5 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 5 & 4 & 6 & 3 \end{pmatrix}$ and $\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 5 & 6 & 1 \end{pmatrix}$ are three permutations, Compute the following,

i)
$$\alpha \beta^2 \gamma$$

ii)
$$\alpha^6 \beta^5 \gamma^4$$
 iii) $\alpha \beta^{-3} \gamma^{-1}$

iii)
$$\alpha \beta^{-3} \gamma^{-1}$$

b) Construct truth tables for the following:

i)
$$p \wedge \overline{q} \vee r$$
 ii) $\overline{p \vee q} \vee \overline{r}$

- c) Let A be the set of all lines a plane. Let $R \subseteq A \times A$ where $R = \{(l, m) | l, m \in A, l \mid m\}$.
- 2. a) Let $G = \{(a,b) | a, b \text{ rationals}, a \neq 0\}$. Define * on G by (a,b)*(c,d) = (ac,ad+b). Prove that G is a group.
 - b) Define a sub group of a group.

Prove that a non empty subset H of a group G is a subgroup of G if and only if the following condition holds for any $a, b \in H$ then $ab^{-1} \in H$.

- c) If H and K are subgroups of a group G. Then show that $H \cap K$ is also subgroup of G.
- d) Find the elements of symmetric group S_3 .
- 3. a) Let G be a cyclic group with $G = \langle a \rangle$. If G is finite then prove that G has exactly two generators a and a^{-1} .
 - b) State and prove the Lagrange theorem. Using above theorem find all subgroups of C_{24} . where is a cyclic group of order 24 generated by a. ($C_{24} = \langle a \rangle$)
 - c) A subgroup H of a group G is normal in G if and only if $g^{-1}hg \in G$ for all $h \in H, g \in G$.
 - d) Define a center of a group G. Prove that the center of the group G is a normal subgroup of the group G.

- 4. a) Prove that $\{a + \sqrt{3}b \mid a, b \in Z\}$ is a ring under usual addition and multiplication.
 - b) Define an Integral Domain. Prove that any finite integral domain is a field.
 - c) Let R be a commutative ring with identity. Prove that R is a field if and only if ideals of R are $\langle 0 \rangle$ and R itself.
- 5. a) Let a, b, c, m and n be integers. If $c \mid a$ and $c \mid b$, then prove that $c \mid ma + nb$
 - b) Show that, if a and b are integers such that b > 0, then there exists unique integers q and r such that a = bq + r where $0 \le r < b$.
 - c) Find gcd of 1051 and 5072.
 - d) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Show that $a + c \equiv b + d \pmod{m}$.
- 6. a) If a and b be integers and a = bq + r where q and r are integers. Prove that (a,b) = (b,r)
 - b) Define Euler's phi function $\phi(n)$ where n is a positive integer. Find $\phi(24)$ and $\phi(30)$.
 - c) State the Chinese reminder theorem.
 - d) Solve the following linear congruence $3x \equiv 2 \pmod{5}$