МГТУ им. Баумана

Лабораторная работа №2

По курсу: "Анализ алгоритмов"

Алгоритмы умножения матриц

Работу выполнила: Оберган Татьяна, ИУ7-55Б

Преподаватели: Волкова Л.Л., Строганов Ю.В.

Оглавление

Введение 3			
1	Аналитическая часть		
	1.1	Стандартный алгоритм умножения матриц	4
	1.2	Алгоритм Винограда	5
	1.3	Вывод	5
2	Кон	иструкторская часть	6
	2.1	Схемы алгоритмов	6
	2.2	Трудоемкость алгоритмов	10
		2.2.1 Трудоемкость первичной проверки	10
		2.2.2 Классический алгоритм	10
		2.2.3 Алгоритм Винограда	11
		2.2.4 Оптимизированный алгоритм Винограда	11
3	Tex	нологическая часть	12
	3.1	Выбор ЯП	12
	3.2	Описание структуры ПО	12
	3.3	Сведения о модулях программы	13
	3.4	Листинг кода алгоритмов	13
		3.4.1 Оптимизация алгоритма Винограда	17
4	Исс	ледовательская часть	19
	4.1	Сравнительный анализ на основе замеров времени работы	
		алгоритмов	19
	4.2	Тестирование программы	20
	4.3	Вывод	21

Заключение 22

Введение

Цель работы: изучение алгоритмов умножения матриц. В данной лабораторной работе рассматривается стандартный алгоритм умножения матриц, алгоритм Винограда и модифицированный алгоритм Винограда. Также требуется изучить рассчет сложности алгоритмов, получить навыки в улучшении алгоритмов. Эти алгоритмы активно применяются во всех областях, применяющих линейную алгебру, таких как:

- компьютерная графика
- физика
- экономика

и так далее.

В ходе лабораторной работы предстоит:

- Изучить алгоритмы умножения матриц: стандартный и алгоритм Винограда
- Оптимизировать алгоритм Винограда
- Дать теоретическую оценку базового алгоритма умножения матриц, алгоритма Винограда и улучшенного алгоритма Винограда
- Реализовать три алгоритма умножения матриц на одном из языков программирования
- Сравнить алгоритмы умножения матриц

1 Аналитическая часть

Матрица - математический объект, эквивалентный двумерному массиву. Если число столбцов в первой матрице совпадает с числом строк во второй, то эти две матрицы можно перемножить. У произведения будет столько же строк, сколько в первой матрице, и столько же столбцов, сколько во второй.

1.1 Стандартный алгоритм умножения матриц

Пусть даны две прямоугольные матрицы A[m*n] и B[n*k]:

$$\begin{bmatrix} a_{1,1} & \dots & a_{1,n} \\ \dots & \dots & \dots \\ a_{m,1} & \dots & a_{m,n} \end{bmatrix}$$

$$\begin{bmatrix} b_{1,1} & \dots & b_{1,k} \\ \dots & \dots & \dots \\ b_{n,1} & \dots & b_{n,k} \end{bmatrix}$$

В результате получим матрицу С [m*k]:

$$\begin{bmatrix} c_{1,1} & \dots & c_{1,k} \\ \dots & \dots & \dots \\ c_{m,1} & \dots & c_{m,k} \end{bmatrix}$$

$$c_{i,j} = \sum_{r=1}^{n} a_{i,r} \cdot b_{r,j}$$
 называется произведением матриц A и B.

1.2 Алгоритм Винограда

Рассмотрим два вектора V=(v1,v2,v3,v4) и W=(w1,w2,w3,w4). Их скалярное произведение равно:

$$V \cdot W = v_1 \cdot w_1 + v_2 \cdot w_2 + v_3 \cdot w_3 + v_4 \cdot w_4$$

Это равенство можно переписать в виде: $V \cdot W = (v_1 + w_2) \cdot (v_2 + w_1) + (v_3 + w_4) \cdot (v_4 + w_3) - v_1 \cdot v_2 - v_3 \cdot v_4 - w_1 \cdot w_2 - w_3 \cdot w_4$

Менее очевидно, что выражение в правой части последнего равенства допускает предварительную обработку: его части можно вычислить заранее и запомнить для каждой строки первой матрицы и для каждого столбца второй. Это означает, что над предварительно обработанными элементами нам придется выполнять лишь первые два умножения и последующие пять сложений, а также дополнительно два сложения.

1.3 Вывод

Были рассмотрены алгоритмы классического умножения матриц и алгоритм Винограда, основное отличие которых — наличие предварительной обработки, а также количество операций умножения.

2 Конструкторская часть

Требования к вводу: На вход подаются две матрицы **Требования к программе:**

- Корректное умножение двух матриц
- При матрицах неправилыных размеров программа не должна аварийно завершаться

2.1 Схемы алгоритмов

В данной части будут рассмотрены схемы алгоритмов.

Рис. 2.1: Схема классического алгоритма умножения матриц

Рис. 2.2: Схема алгоритма Винограда

Рис. 2.3: Схема оптимизированного алгоритма Винограда

2.2 Трудоемкость алгоритмов

Введем модель трудоемкости для оценки алгоритмов:

- базовые операции стоимостью 1-+,-,*,/,=,==,<=,>=,!=,+=,[], получение полей класса
- оценка трудоемкости цикла: $F\mu = init + N*(a + F\tau ena + post) + a$, где a условие цикла, init предусловие цикла, post постусловие цикла
- стоимость условного перехода применим за 0, стоимость вычисления условия остаётся

Оценим трудоемкость алгоритмов по коду программы.

2.2.1 Трудоемкость первичной проверки

Рассмотрим трудоемкость первичной проверки на возможность умножения матриц.

таол. 2.1 построчная оценка веса			
Код	Bec		
int n1 = mart1.Length;	2		
$\int int \ n2 = matr2.Length;$	2		
if $(n1 == 0 n2 == 0)$ return null;	3		
int m1 = mart1[0].Length;	3		
int m2 = matr2[0].Length;	3		
if (m1 != n2) return null;	1		
Итого	14		

Табл. 2.1 Построчная оценка веса

2.2.2 Классический алгоритм

Рассмотрим трудоемкость классического алгоритма:

Инициализация матрицы результата: 1+1+n1*(1+2+1)+1=4*n1+3 Подсчет:

2.2.3Алгоритм Винограда

Аналогично рассмотрим трудоемкость алгоритма Винограда.

Первый цикл: 15/2 * MN + 5 * M + 2

Второй цикл: 15/2 * MN + 5 * M + 2

Второй цикл: 13/2*MN+3*M+2 Третий цикл: 13*MNQ+12*MQ+4M+2 Условный переход: $\begin{bmatrix} 2 & \text{, в случае невыполнения условия} \\ 15*QM+4*M+2 & \text{, в случае выполнения условия} \end{bmatrix}$ Итого: $13MNQ+15MN+12MQ+14M+6+\begin{bmatrix} 2 & \text{, в случае невыполнения условия} \\ 15QM+4M+2 & \text{, в случае выполнения условия} \end{bmatrix}$

2.2.4Оптимизированный алгоритм Винограда

Аналогично Рассмотрим трудоемкость алгоритма Винограда:

Первый цикл: 11/2 * MN + 4 * M + 2

Второй цикл: 11/2 * MN + 4 * M + 2

Второй цикл: 11/2*MN+4*M+2 Третий цикл: 17/2*MNQ+9*MQ+4*M+2 Условный переход: $\begin{bmatrix} 1 & \text{, в случае невыполнения условия} \\ 10*QM+4*M+2 & \text{, в случае выполнения условия} \end{bmatrix}$ Итого: $17/2*MNQ+11MN+9MQ+12M+6+\begin{bmatrix} 1 & \text{, в случае невыполнения условия} \\ 10*QM+4*M+2 & \text{, в случае невыполнения условия} \end{bmatrix}$

3 Технологическая часть

3.1 Выбор ЯП

В качестве языка программирования был выбран C#, а средой разработки Visual Studio. Время работы алгоритмов было замерено с помощью класса Stopwatch.

3.2 Описание структуры ПО

Рис. 3.1: Функциональная схема умножения матриц (IDEF0 диаграмма 1 уровня)

3.3 Сведения о модулях программы

Программа состоит из:

- Program.cs главный файл программы, в котором располагается точка входа в программу и функция замера времени.
- Mult.cs файл класса Mult, в которм находятся алгоритмы умножения матриц
- TestMult.cs файл с юнит тестами

3.4 Листинг кода алгоритмов

Листинг 3.1: Стандартный алгоритм умножения матриц

```
public static int[][] MultStand(int[][] mart1, int[][]
     matr2)
               int n1 = mart1.Length;
               int n2 = matr2.Length;
               if (n1 == 0 | | n2 == 0)
                   return null;
               int m1 = mart1[0]. Length;
               int m2 = matr2[0].Length;
11
               if (m1 != n2)
12
                   return null;
1.3
14
               int[][] res = new int[n1][];
15
               for (int i = 0; i < n1; i++)
                   res[i] = new int[m2];
17
18
               for (int i = 0; i < n1; i++)
19
                   for (int j = 0; j < m2; j++)
20
                        for (int k = 0; k < m1; k++)
21
                            res[i][j] += mart1[i][k] * matr2[k
^{22}
                               ][j];
```

Листинг 3.2: Алгоритм Винограда

```
public static int[][] MultVin(int[][] matr1, int[][] matr2)
          {
2
               int n1 = matr1.Length;
3
               int n2 = matr2.Length;
               if (n1 == 0 || n2 == 0)
                    return null;
               int m1 = matr1[0]. Length;
               int m2 = matr2[0].Length;
10
11
               if (m1 != n2)
12
                   return null;
13
14
               int[] mulH = new int[n1];
15
               int[] mulV = new int[m2];
16
17
               int[][] res = new int[n1][];
18
               for (int i = 0; i < n1; i++)
19
                    res[i] = new int[m2];
20
^{21}
               for (int i = 0; i < n1; i++)
22
23
                   for (int j = 0; j < m1 / 2; j++)
24
25
                        mulH[i] = mulH[i] + matr1[i][j * 2] *
26
                           matr1[i][j * 2 + 1];
                   }
27
               }
28
29
               for (int i = 0; i < m2; i++)
30
31
                    for (int j = 0; j < n2 / 2; j++)
32
                   {
33
                        mu|V[i] = mu|V[i] + matr2[j * 2][i] *
34
```

```
matr2[j * 2 + 1][i];
                    }
35
               }
36
^{37}
                for (int i = 0; i < n1; i++)
39
                    for (int j = 0; j < m2; j++)
40
41
                         res[i][j] = -mulH[i] - mulV[j];
42
                         for (int k = 0; k < m1 / 2; k++)
43
44
                             res[i][j] = res[i][j] + (matr1[i][2
45
                                  * k + 1] + matr2[2 * k][j]) * (
                                 matr1[i][2 * k] + matr2[2 * k +
                                 1][j]);
                         }
46
                    }
47
               }
48
49
                if (m1 \ \% \ 2 == 1)
50
51
                    for (int i = 0; i < n1; i++)
52
53
                         for (int j = 0; j < m2; j++)
54
55
                             res[i][j] = res[i][j] + matr1[i][m1
^{56}
                                  -1 * matr2 [m1 - 1][j];
                         }
57
                    }
58
               }
59
60
                return res;
61
           }
62
```

Листинг 3.3: Оптимизированный алгоритм Винограда

```
public static int [][] MultVinOpt(int [][] matr1, int [][]

matr2)
{
    int n1 = matr1.Length;
    int n2 = matr2.Length;
```

```
5
                if (n1 == 0 || n2 == 0)
6
                    return null;
7
8
                int m1 = matr1[0]. Length;
9
                int m2 = matr2[0].Length;
10
11
                if (m1 != n2)
12
                     return null;
13
14
                int[] mulH = new int[n1];
15
                int[] mulV = new int[m2];
16
17
                int [][] res = new int[n1][];
18
                for (int i = 0; i < n1; i++)
19
                     res[i] = new int[m2];
20
^{21}
                int m1Mod2 = m1 \ \% \ 2;
22
                int n2Mod2 = n2 \ \% \ 2;
^{23}
24
                for (int i = 0; i < n1; i++)
25
                {
26
                     for (int j = 0; j < (m1 - m1Mod2); j += 2)
27
                    {
28
                         mulH[i] += matr1[i][j] * matr1[i][j +
29
                             1];
                    }
30
                }
31
^{32}
                for (int i = 0; i < m2; i++)
33
34
                    for (int j = 0; j < (n2 - n2Mod2); j += 2)
35
^{36}
                         mulV[i] += matr2[j][i] * matr2[j + 1][i
37
                             ];
                    }
                }
39
40
                for (int i = 0; i < n1; i++)
41
42
```

```
for (int j = 0; j < m2; j++)
43
44
                         int buff = -(mulH[i] + mulV[j]);
45
                         for (int k = 0; k < (m1 - m1Mod2); k +=
46
                             2)
                        {
47
                             buff += (matr1[i][k+1] + matr2[k]
48
                                 [j]) * (matr1[i][k] + matr2[k +
                                  1][j]);
^{49}
                         res[i][j] = buff;
50
                    }
               }
52
53
                if (m1Mod2 == 1)
54
55
                    int m1Min 1 = m1 - 1;
56
                    for (int i = 0; i < n1; i++)
57
                         for (int j = 0; j < m2; j++)
59
60
                             res[i][j] += matr1[i][m1Min_1] *
61
                                 matr2 [m1Min 1] [j];
                        }
62
                    }
63
               }
64
65
                return res;
66
           }
67
```

3.4.1 Оптимизация алгоритма Винограда

В рамках данной лабораторной работы было предложено 3 оптимизации:

- 1. Избавление от деления в условии цикла;
- 2. Замена $mulH[i] = mulH[i] + \dots$ на $mulH[i] + = \dots$ (аналогично для mulV[i]);

Листинг 3.4: Оптимизации алгоритма Винограда №1 и №2

```
int m1Mod2 = m1 \ \% \ 2;
    int n2Mod2 = n2 \ \% \ 2;
    for (int i = 0; i < n1; i++)
      for (int j = 0; j < (m1 - m1Mod2); j += 2)
        mulH[i] += matrix1[i][j] * matrix1[i][j + 1];
    }
10
11
    for (int i = 0; i < m2; i++)
12
13
      for (int j = 0; j < (n2 - n2Mod2); j += 2)
14
15
        mulV[i] += matrix2[j][i] * matrix2[j + 1][i];
16
      }
17
    }
```

3. Накопление результата в буфер, чтобы не обращаться каждый раз к одной и той же ячейке памяти. Сброс буфера в ячейку матрицы после цикла.

Листинг 3.5: Оптимизации алгоритма Винограда №3

4 Исследовательская часть

4.1 Сравнительный анализ на основе замеров времени работы алгоритмов

Был проведен замер времени работы каждого из алгоритмов.

Первый эксперимент производится для лучшего случая на матрицах размером от $100 \times 100 \text{ до } 1000 \times 1000 \text{ с}$ шагом 100. Сравним результаты для разных алгоритмов:

Рис. 4.1: Сравнение времени работы алгоритмов при четном размере матрицы

Второй эксперимент производится для худшего случая, когда поданы матрицы с нечетными размерами от 101 х 101 до 1001 х 1001 с шагом 100. Сравним результаты для разных алгоритмов:

Рис. 4.2: Сравнение времени работы алгоритмов при нечетном размере матрицы

4.2 Тестирование программы

Было произведено тестирование реализованных алгоритмов с помощью библиотеки Microsoft. Visual Studio. Test Tools. Unit Testing.

Всего было реализованно 7 тестовых случаев:

- Некорректный размер матриц. Алгоритм должен возвращать Null
- Размер матриц равен 1
- Размер матриц равен 2
- Сравнение работы стандартной реализации с Виноградом на случайных значениях
 - Четный размер
 - Нечетный размер

• Сравнение работы стандартной реализации с оптимизированным Виноградом на случайных значениях

Четный размер

Нечетный размер

Далее будут предоставлены результаты тестирования программы:

Рис. 4.1: Результаты работы тестов

4.3 Вывод

По результатам тестирования все рассматриваемые алгоритмы реализованы правильно. Самым медленным алгоритмом оказался алгоритм классического умножения матриц, а самым быстрым — оптимизированный алгоритм Винограда.

Заключение

В ходе лабораторной работы я изучила алгоритмы умножения матриц: стандартный и Винограда, оптимизировала алгоритм Винограда, дала теоретическую оценку алгоритмов стандартного умножения матриц, Винограда и улучшенного Винограда, реализовала три алгоритма умножения матриц на языке программирования С# и сравнила эти алгоритмы.