Towards Evaluating High-Speed ASIC Implementations of CAESAR Candidates for Data at Rest and Data in Motion

Work in Progress

Singapore, 28. September 2015

Michael Muehlberghuber

Frank K. Gürkaynak

Integrated Systems Laboratory (IIS)

Potential CAESAR Evaluation Criteria

Motivation

FTH zürich M. Muehlberghuber (IIS) 1 / 21

Outline

1 High-Speed ASIC Designs

2 State-Of-The-Art HDL Verification Approach

3 Conclusion

- Prioritize authors' suggested primary algorithm versions
- Both encryption and decryption must be supported

- Prioritize authors' suggested primary algorithm versions
- Both encryption and decryption must be supported
- Consistent I/O interface: Three AXI-4 Stream interfaces

- Prioritize authors' suggested primary algorithm versions
- Both encryption and decryption must be supported
- Consistent I/O interface: Three AXI-4 Stream interfaces

- Prioritize authors' suggested primary algorithm versions
- Both encryption and decryption must be supported
- Consistent I/O interface: Three AXI-4 Stream interfaces
 - Comparatively short I/O delays
 - Stallable architecture designs

- Prioritize authors' suggested primary algorithm versions
- Both encryption and decryption must be supported
- Consistent I/O interface: Three AXI-4 Stream interfaces
 - Comparatively short I/O delays
 - Stallable architecture designs
- Target technology: 65 nm by UMC (aiming at techn. indep.)

- Prioritize authors' suggested primary algorithm versions
- Both encryption and decryption must be supported
- Consistent I/O interface: Three AXI-4 Stream interfaces
 - Comparatively short I/O delays
 - Stallable architecture designs
- Target technology: 65 nm by UMC (aiming at techn. indep.)
- No *fancy* hardware archit. transf. (sub-round pipelining, ...)

Use Case Scenarios

Data at Rest (Local Encryption)

- Huge amount of data is available on site
- Negligible cipherkey and public message number (PMN) changes
- Large amount of associated (AD) and message data

Use Case Scenarios

Data at Rest (Local Encryption)

- Huge amount of data is available on site
- Negligible cipherkey and public message number (PMN) changes
- Large amount of associated (AD) and message data

Typically used within previous work (whether intentional or not)

Use Case Scenarios

Data at Rest (Local Encryption)

- Huge amount of data is available on site
- Negligible cipherkey and public message number (PMN) changes

- Large amount of associated (AD) and message data

Typically used within previous work (whether intentional or not)

Data in Motion (Protocol Encryption) - 100 Gbps Ethernet

- Rare cipherkey changes
- PMN changes for every transmitted packet
- AD and message data size adheres to a certain range
- Minimum amount of AD stemming from the header

4D > 4A > 4B > 4B > B 990

GCM-AES-128

GCM-AES-128

■ Major blocks: Block cipher and *GF*(2¹²⁸) multiplier

- ◆ロト ◆御 ト ◆ 差 ト ◆ 差 ・ かくで

■ Fully-unrolled, single-core AES-128

■ Fully-unrolled, single-core AES-128 with iterative key expansion

- Fully-unrolled, single-core AES-128 with iterative key expansion
- Combinational, bit-parallel $GF(2^{128})$ multiplier

◆ロト ◆部ト ◆意ト ◆意ト 意 めなぐ

NORX[1]

- Permutation-based algorithm using the monkeyDuplex [2] construction
- Primary recommendation: NORX64-4-1
 - 16 word state, each word 64 bits, 4 rounds
 - Key size = 256 bits, tag size = 128 bits

NORX[1]

- Permutation-based algorithm using the monkeyDuplex [2] construction
- Primary recommendation: NORX64-4-1
 - 16 word state, each word 64 bits, 4 rounds
 - Key size = 256 bits, tag size = 128 bits

NORX [1]

- Permutation-based algorithm using the monkeyDuplex [2] construction
- Primary recommendation: NORX64-4-1
 - 16 word state, each word 64 bits, 4 rounds
 - Key size = 256 bits, tag size = 128 bits

NORX[1]

- Permutation-based algorithm using the monkeyDuplex [2] construction
- Primary recommendation: NORX64-4-1
 - 16 word state, each word 64 bits, 4 rounds
 - Key size = 256 bits, tag size = 128 bits

100 Gbps NORX - Data at Rest Design

- NORX architecture based on 8 G functions
- Large fan-outs due to 1024 bit state
- Comparatively short I/O timings

- NORX architecture based on 8 G functions
- Large fan-outs due to 1024 bit state
- Comparatively short I/O timings

100 Gbps NORX - Data at Rest Design

- NORX architecture based on 8 G functions
- Large fan-outs due to 1024 bit state
- Comparatively short I/O timings

- NORX architecture based on 8 G functions
- Large fan-outs due to 1024 bit state
- Comparatively short I/O timings

Design	100 Gbit/s	Performance	Maximum TP Performance				
	Area f_{100}	Efficiency	Area	f _{max}	TP	Efficiency	
	[kGE] [MHz]	[kbps/GE] [%]	[kGE]	[MHz]	[Gbps]	[kbps/GE]	[%]

◆□ → ←함 → ←분 → 분 → 분 →

Design	100	Gbit/s	Performand	ce	Maximum TP Performance				
	Area [kGE]	100	Efficier [kbps/GE]	- 3				Efficiency [kbps/GE]	[%]
GCM AES (Cap)	171 2	701 3	594.2	100					

4 다 가 소리에 가 소를 가 소를 가 드를

Design	100 Gbit/s Performance				Maximum TP Performance				
	Area [kGE]	100	Efficier [kbps/GE]	- ,				Efficiency [kbps/GE]	[%]
GCM-AES (Can)	171.2	781.3	• 584.2	100	177.8	813.0	104.1	Ø 585.3	100

Design	100 Gbit/s Performance				N	Maximum TP Performanc			
		<i>f</i> ₁₀₀ [MHz]		,				Efficiency [kbps/GE]	
GCM-AES (Can) GCM-AES (LUT)	171.2	781.3	• 584.2	100	177.8	813.0	104.1	Ø 585.3	100 92

イロト (部) (書) (書) (書) (9 (9)

Design	100 Gbit/s Performance				Maximum TP Performance				
	Area [kGE]	100	Efficience [kbps/GE] [,				Efficiency [kbps/GE]	[%]
GCM-AES (Can)	171.2	781.3	● 584.2 1	.00	177.8	813.0	104.1	Ø 585.3	100
GCM-AES (LUT)	191.9	781.3	521.1	89	211.5	885.0	113.3	535.6	92
NORX-64-4-1 (8G	118.3	625.0	▲ 845.3 1	L45	189.0	775.5	124.0	△ 656.4	112

Data at Rest - Message Size Performance

- Considering processing time required for initialization with PMNs
- Considering processing time required for tag generation

- Considering processing time required for initialization with PMNs
- Considering processing time required for tag generation

Data at Rest - Message Size Performance

- Considering processing time required for initialization with PMNs
- Considering processing time required for tag generation

Project - Current State

Data at Rest - Implemented 2nd-Round Candidates

- GCM-AES-128 (ref. impl.)
- AEGIS
- MORUS

- ICEPOLE
- NORX
- Tiaoxin-346

Project - Current State

Data at Rest - Implemented 2nd-Round Candidates GCM-AES-128 (ref. impl.) ICEPOLE **AEGIS** NORX **MORUS** ■ Tiaoxin-346 Perf. Max. ICEPOLE - 1 Round Tiaoxin-346 - LUT MORUS - MORUS-1280-128 1 SU Function AEGIS - AEGIS-128L 1 SU Function 100Gbps NORX - 8 G functions GCM-AES - One stage - LUT GCM-AES - One stage - Canright 1000 3000 5000 6000 7000 8000 2000 4000 Throughput/Area [kbps/GE]

Data at Rest - 100 Gbps Performance

Data at Rest - Max. TP Performance

Use Case II

Data in Motion

IEEE 802.3

Ethernet Revisited - IEEE 802.3 and MACsec

IEEE 802.3

Ethernet Revisited - IEEE 802.3 and MACsec

IEEE 802.1AE (MACsec)

Ethernet Revisited - IEEE 802.3 and MACsec

Ethernet Revisited - IEEE 802.3 and MACsec

Ethernet Revisited - IEEE 802.3 and MACsec

100 Gbps GCM-AES - Data in Motion Design

100 Gbps GCM-AES - Data in Motion Design

- Data input buffering according to block cipher latency
- Minor adaptions to the controlling

- 4 ロ ト 4 個 ト 4 種 ト - 種 - り Q (C)

Project - Outlook (WiP)

Data in Motion - 100 Gbps Ethernet

- Adapting the data at rest architectures to provide 100 Gbps
 Ethernet communication
- Functional verification of candidate designs

Ultimate Goal

- Add additional 2nd-round candidates
- Compare all implemented candidates against the GCM-AES reference architecture

Which candidates can significantly beat GCM-AES in both the data at rest and data in motion 100 Gbps scenario?

- ☐ High-level language (C, C++,...)
- ☐ Hardware description language

- ☐ High-level language (C, C++,...)
- ☐ Hardware description language

File-based testbench

- Intermediate files
- Re-implement functionality
- Minimize source of errors

- ☐ High-level language (C, C++,...)
- ☐ Hardware description language

File-based testbench

- Intermediate files
- Re-implement functionality
- Minimize source of errors

- High-level language (C, C++,...)
- ☐ Hardware description language

File-based testbench

- Intermediate files
- Re-implement functionality
- Minimize source of errors

DPI-based testbench

- Direct Programming Interface (DPI)
- No intermediate files
- Reuse of C functions, C-like coding
- CAESAR: Coherent C API
- Powerful and extendable

- High-level language (C, C++,...)
- ☐ Hardware description language

File-based testbench

- Intermediate files
- Re-implement functionality
- Minimize source of errors

DPI-based testbench

- Direct Programming Interface (DPI)
- No intermediate files
- Reuse of C functions, C-like coding
- CAESAR: Coherent C API
- Powerful and extendable

https://iis-git.ee.ethz.ch/mbgh/caesar-tb

イロトイラト モン・モト モージ Q で ETH z ürich M. Muehlberghuber (IIS) 19 / 21

1 Specify the **field of application** of hardware implementations

1 Specify the **field of application** of hardware implementations

TP/area metric without a goal in mind is often misleading

Specify the field of application of hardware implementations

TP/area metric without a goal in mind is often misleading

3 Initial results of 100 Gbps data at rest and data in motion (Ethernet) ASIC designs

II Specify the **field of application** of hardware implementations

TP/area metric without a goal in mind is often misleading

3 Initial results of 100 Gbps data at rest and data in motion (Ethernet) ASIC designs

4 Simplify your HDL verification approach

Questions

Contact and References

- Michael Muehlberghuber
- Integrated Systems Laboratory, Gloriastrasse 35. CH-8092 Zurich
- mbgh@iis.ee.ethz.ch @
- J.-P. Aumasson et al. *NORX*. https://norx.io/.
- [2] G. Bertoni et al. Duplexing the Sponge: Single-Pass Authenticated Encryption and Other Applications. SAC 2011.