Lecture Notes (index.html) Collected lectures notes in computational biology

Lecture notes (../index.html) > Modeling (.)> Fitzhugh-Nagumo model: an excitable system [Download notebook (excitable_systems.ipynb) notebook without solution (excitable_systems_sujet.ipynb)]

Fitzhugh-Nagumo model: an excitable system

The Fitzhugh-Nagumo model of an excitable system is a two-dimensional simplification of the Hodgkin-Huxley model of spike generation in squid giant axons.

$$\left\{egin{array}{l} rac{dv}{dt} = v - v^3 - w + I_{
m ext} \ au rac{dw}{dt} = v - a - bw \end{array}
ight.$$

Here I_{ext} is a stimulus current.

We want to model the spike that is generated by a squid gian axon.

The action of an excitable neuron has the following characteristics that we knw from experiments:

- · The neuron cell is initially at a resting potential value.
- If we experimentally displace the potential a little bit, it return to the resting value.
- If the perturbation is higher than a threshold value, the potential will shoot up to a very high value. In other words the spike will occur. After the spike the membrane potential will return to its resting value.

We model the fact that the neuron as a resting potential (equilibrium for the state variable v). Since it is a stable equilibrium, small perturbation always leads to trajectory that converge on it. Since big perturbation start the spiking, this equilibrium cannot be unique. This is the *self-excitation via a positive feedback*.

Since the long term behavior of the system is to go back to the resting potential. We need a second dimension and a recovery variable that has a slower dyamics (time scale parameter τ) and bring back the system toward the resting potential (-w term). The recovery variable decay (-bw term).

Moreover, electrophysiology show that imposing a moderate current to the membrane result in a periodic spiking. If the external current is too high, the spikes are blocked (Excitation block). Periodic spiking requires a third-degree polynomial form for the membrane potential.

Phase Diagram

```
from functools import partial
import numpy as np
import scipy.integrate
import scipy
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches #used to write custom legends
%matplotlib inline
```

```
def fitzhugh_nagumo(x, t, a, b, tau, I):
    """Time derivative of the Fitzhugh-Nagumo neural model.
Args:
    x (array size 2): [Membrane potential, Recovery variable]
    a, b (float): Parameters.
    tau (float): Time scale.
    t (float): Time (Not used: autonomous system)
    I (float): Constant stimulus current.
Return: dx/dt (array size 2)
    """
pass
Solution:
```

```
# Do the numerical integration.
trajectories = {} # We store the trajectories in a dictionnary, it is easier to recover them.
for i.param in enumerate(scenarios):
    trajectories[i] = get displacement(param, number=3, time span=time span, dmax=0.5)
# Draw the trajectories.
fig, ax = plt.subplots(1, len(scenarios), figsize=(5*len(scenarios),5))
for i,param in enumerate(scenarios):
         ax[i].set(xlabel='Time', ylabel='v, w',
                        title='{}'.format(param))
         for j in range(len(trajectories[i])):
             v = ax[i].plot(time span,trajectories[i][j][:,0], color='CO')
             w = ax[i].plot(time span,trajectories[i][j][:,1], color='C1', alpha=.5)
         ax[i].legend([v[0],w[0]],['v','w'])
plt.tight layout()
           {'tau': 20, 'b': 1.4, 'a': -0.3, 'I': 0}
                                                  {'tau': 20, 'b': 1.4, 'a': -0.3, 'I': 0.23}
                                                                                          {'tau': 20, 'b': 1.4, 'a': -0.3, 'l': 0.5}
                                                                                  1.3
   1.0
                                                                                  1.2
   0.5
≥ 0.0
                                                                                  1.0
  -0.5
                                                                                  0.9
  -1.0
                                                                                  0.8
                                    500
                                                                                           100
                                                                                                 200
            100
                  200
                        300
                              400
                                                    100
                                                          200
                                                                300
                                                                      400
                                                                            500
                                                                                                       300
                                                                                                              400
                     Time
                                                             Time
                                                                                                    Time
```

Isoclines

Isoclines zero (or null-clines) are the manifolds on which one component of the flow is null. Find the equation of the null-clines for v and w.

Solution:

To find the null-isoclines, you have to solve:

$$rac{dv}{dt} = 0 \Leftrightarrow w = v - v^3 + I$$

For the first one and:

$$rac{dw}{dt} = 0 \Leftrightarrow w = rac{1}{b}(v-a)$$

For the second one.

Plot the isoclines in the phase space.

```
def plot_isocline(ax, a, b, tau, I, color='k', style='--', opacity=.5, vmin=-1,vmax=1):
    """Plot the null iscolines of the Fitzhugh nagumo system"""
    v = np.linspace(vmin,vmax,100)
    ax.plot(v, v - v**3 + I, style, color=color, alpha=opacity)
    ax.plot(v, (v - a)/b, style, color=color, alpha=opacity)
```


Flow

Let us plot the flow, which is the vector field defined by:

$$F: \mathbb{R}^2 \mapsto \mathbb{R}^2$$

$$ec{F}(v,w) = \left[egin{array}{c} rac{dv}{dt}(v,w) \ rac{dw}{dt}(v,w) \end{array}
ight]$$

```
# Plot the flow using matplotlib.pyplot.streamplot. # On the domain w \in [-1,1] and v \in [-(1+a)/b]
```

```
def plot_vector_field(ax, param, xrange, yrange, steps=50):
    # Compute the vector field
    x = np.linspace(xrange[0], xrange[1], steps)
    y = np.linspace(yrange[0], yrange[1], steps)
    X,Y = np.meshgrid(x,y)

dx,dy = fitzhugh_nagumo([X,Y],0,**param)

# streamplot is an alternative to quiver
    # that looks nicer when your vector filed is
    # continuous.
    ax.streamplot(X,Y,dx, dy, color=(0,0,0,.1))

ax.set(xlim=(xrange[0], xrange[1]), ylim=(yrange[0], yrange[1]))
```


Equilibrium points

The equilibria are found at the crossing between the null-isocline for v and the one for w.

Find the polynomial equation verified by the equilibria of the model.

Solution:

$$f(v_*) = 0 = v_*^3 + v_* \left(rac{1}{b} - 1
ight) - rac{a}{b} \ w_* = v_* - v_*^3 + I$$

```
# We know that polynomial equations have at most has many roots as their degree.
# Which allow us to find all the equilibria.
# Numerically solve this equation using the function numpy.roots. Keep only the real roots.
```

Solution:

```
def find roots(a,b,I, tau):
    # The coeficients of the polynomial equation are:
    # 0
                * v**2
    \# - (1/b - 1) * v**1
    \# - (a/b + I) * v**0
    coef = [1, 0, 1/b - 1, -a/b - I]
    # We are only interested in real roots.
    \# np.isreal(x) returns True only if x is real.
    # The following line filter the list returned by np.roots
    # and only keep the real values.
    roots = [np.real(r) for r in np.roots(coef) if np.isreal(r)]
    # We store the position of the equilibrium.
    return [[r, r - r^{**}3 + I] for r in roots]
eqnproot = \{\}
for i, param in enumerate(scenarios):
    eqnproot[i] = find roots(**param)
```

Nature of the equilibria

The local nature and stability of the equilibrium is given by linearising the flow function. This is done using the Jacobian matrix of the flow:

$$egin{bmatrix} F_1(v+h,w+k) \ F_2(v+h,w+k) \end{bmatrix} = egin{bmatrix} F_1(v,w) \ F_2(v,w) \end{bmatrix} + egin{bmatrix} rac{\partial F_1(v,w)}{\partial v} & rac{\partial F_1(v,w)}{\partial w} \ rac{\partial F_2(v,w)}{\partial v} & rac{\partial F_2(v,w)}{\partial w} \end{bmatrix} egin{bmatrix} h \ k \end{bmatrix} + o\left(igg|igg|igg|igg| h \ k \end{bmatrix}$$

Solution:

$$Jig|_{v,w} = egin{bmatrix} rac{\partial F_1(v,w)}{\partial v} & rac{\partial F_1(v,w)}{\partial w} \ rac{\partial F_2(v,w)}{\partial v} & rac{\partial F_2(v,w)}{\partial w} \end{bmatrix} = -egin{bmatrix} 1-3v^2 & -1 \ rac{1}{ au} & -rac{b}{ au} \end{bmatrix}$$

```
def jacobian_fitznagumo(v, w, a, b, tau, I):
    """ Jacobian matrix of the ODE system modeling Fitzhugh-Nagumo's excitable system

Args:
    v (float): Membrane potential
    w (float): Recovery variable
    a,b (float): Parameters
    tau (float): Recovery timescale.
    Return: np.array 2x2"""
```

```
# Symbolic computation of the Jacobian using sympy...
import sympy
sympy.init printing()
# Define variable as symbols for sympy
v, w = sympy.symbols("v, w")
a, b, tau, I = sympy.symbols("a, b, tau, I")
# Symbolic expression of the system
dvdt = v - v**3 - w + I
dwdt = (v - a - b * w)/tau
# Symbolic expression of the matrix
sys = sympy.Matrix([dvdt, dwdt])
var = sympy.Matrix([v, w])
jac = sys.jacobian(var)
# You can convert jac to a function:
jacobian fitznagumo symbolic = sympy.lambdify((v, w, a, b, tau, I), jac, dummify=False)
#jacobian fitznagumo = jacobian fitznagumo symbolic
iac
```

$$egin{array}{cccc} -3v^2+1 & -1 \ rac{1}{ au} & -rac{b}{ au} \end{array}$$

```
def stability(jacobian):
    """ Stability of the equilibrium given its associated 2x2 jacobian matrix.
    Use the eigenvalues.
    Aras:
        jacobian (np.array 2x2): the jacobian matrix at the equilibrium point.
    Return:
        (string) status of equilibrium point.
    eigv = np.linalg.eigvals(jacobian)
    if all(np.real(eigv)==0) and all(np.imag(eigv)!=0):
        nature = "Center"
    elif np.real(eigv)[0]*np.real(eigv)[1]<0:</pre>
        nature = "Saddle"
    else:
        stability = 'Unstable' if all(np.real(eigv)>0) else 'Stable'
        nature = stability + (' focus' if all(np.imag(eigv)!=0) else ' node')
    return nature
def stability alt(jacobian):
    """ Stability of the equilibrium given its associated 2x2 jacobian matrix.
    Use the trace and determinant.
    Args:
        jacobian (np.array 2x2): the jacobian matrix at the equilibrium point.
    Return:
        (string) status of equilibrium point.
    determinant = np.linalq.det(jacobian)
    trace = np.matrix.trace(jacobian)
    if np.isclose(trace, 0):
        nature = "Center (Hopf)"
    elif np.isclose(determinant, 0):
        nature = "Transcritical (Saddle-Node)"
    elif determinant < 0:</pre>
        nature = "Saddle"
    else:
        nature = "Stable" if trace < 0 else "Unstable"</pre>
        nature += " focus" if (trace**2 - 4 * determinant) < 0 else " node"</pre>
    return nature
```

```
eqstability = {}
for i, param in enumerate(scenarios):
    eqstability[i] = []
    for e in eqnproot[i]:
        J = jacobian_fitznagumo(e[0],e[1], **param)
        eqstability[i].append(stability(J))
eqstability

{0: ['Stable node'],
    1: ['Stable focus', 'Unstable focus', 'Saddle'],
    2: ['Stable node']}
```

Complete phase diagram

```
def plot_phase_diagram(param, ax=None, title=None):
    """Plot a complete Fitzhugh-Nagumo phase Diagram in ax.
    Including isoclines, flow vector field, equilibria and their stability"""
    if ax is None:
        ax = plt.gca()
    if title is None:
        title = "Phase space, {}".format(param)
# ( ... )
```

```
def plot phase diagram(param, ax=None, title=None):
    """Plot a complete Fitzhugh-Nagumo phase Diagram in ax.
    Including isoclines, flow vector field, equilibria and their stability"""
    if ax is None:
        ax = plt.qca()
    if title is None:
        title = "Phase space, {}".format(param)
    ax.set(xlabel='v', ylabel='w', title=title)
    # Isocline and flow...
   xlimit = (-1.5, 1.5)
   vlimit = (-.6, .9)
    plot vector field(ax, param, xlimit, ylimit)
    plot isocline(ax, **param, vmin=xlimit[0], vmax=xlimit[1])
    # Plot the equilibria
    eqnproot = find roots(**param)
    eqstability = [stability(jacobian fitznagumo(e[0], e[1], **param)) for e in eqnproot]
    for e,n in zip(eqnproot,eqstability):
        ax.scatter(*e, color=EQUILIBRIUM COLOR[n])
        # Show a small perturbation of the stable equilibria...
        time span = np.linspace(0, 200, num=1500)
        if n[:6] == 'Stable':
           for perturb in (0.1, 0.6):
                ic = [e[0]+abs(perturb*e[0]),e[1]]
                traj = scipy.integrate.odeint(partial(fitzhugh nagumo, **param),
                                                  v0=ic,
                                                  t=time span)
                ax.plot(traj[:,0], traj[:,1])
    # Legend
    labels = frozenset(eqstability)
    ax.legend([mpatches.Patch(color=EQUILIBRIUM COLOR[n]) for n in labels], labels,
          loc='lower right')
```


Bifurcation diagram

```
# Plot the bifurcation diagram for v with respect to parameter I.

ispan = np.linspace(0,0.5,200)
bspan = np.linspace(0.6,2,200)
```

Bifucation on the external stimulus I

```
I_list = []
eqs_list = []
nature_legends = []
trace = []
det = []

for I in ispan:
    param = {'I': I, 'a': -0.3, 'b': 1.4, 'tau': 20}
    roots = find_roots(**param)
    for v,w in roots:
        J = jacobian_fitznagumo(v,w, **param)
        nature = stability(J)
        nature_legends.append(nature)
        I_list.append(I)
        eqs_list.append(v)
        det.append(np.linalg.det(J))
        trace.append(J[0,0]+J[1,1])
```


There are four bifurcations of codim 1 in this diagram: two fold bifurcation (saddle-node) and two Hopf bifurcations (stable focus-unstable focus).

```
plt.scatter(det,trace, c=[EQUILIBRIUM COLOR[n] for n in nature legends])
plt.arid()
x = np.linspace(0..2)
plt.plot(x, np.sqrt(4*x),color='k')
plt.plot(x, -np.sqrt(4*x),color='k')
plt.vlines(0, -1,1, color='k')
plt.hlines(0, -0.05,x.max(), color='k')
plt.text(-0.01, -0.5, 'Fold', rotation=90)
plt.text(0.15, 0.015, 'Hopf')
plt.gca().set(xlabel='Determinant of the Jacobian', ylabel='Trace of the Jacobian')
plt.fill between(x,0,np.sqrt(4*x), color=EOUILIBRIUM COLOR['Unstable focus'], alpha=0.2)
plt.fill between(x,0,-np.sqrt(4*x), color=EQUILIBRIUM COLOR['Stable focus'], alpha=0.2)
plt.fill between(x,-np.sgrt(4*x),-1, color=EQUILIBRIUM COLOR['Stable node'], alpha=0.2)
plt.fill between(x,np.sqrt(4*x),1, color=EQUILIBRIUM COLOR['Unstable node'], alpha=0.2)
plt.fill between([-0.05,0],-1,1, color=EQUILIBRIUM COLOR['Saddle'], alpha=0.2)
plt.legend([mpatches.Patch(color=EQUILIBRIUM COLOR[n]) for n in labels], labels,
               loc='lower right')
plt.title("Equilibrium trajectory in the jacobian's Trace/Determinant space")
```

Text(0.5, 1.0, "Equilibrium trajectory in the jacobian's Trace/Determinant space")

Codim 2 bifurcation on I and b

(*) Plot the codim 2 bifurcation diagram for v with respect to parameters I and b # For each pair (I,b) indicate the number of equilibria and if the system has periodic heteroclinic behavior.

```
def plot displacement(param, dmax=0.5, ax1=None, ax2=None, tmax=200, number=20):
    if ax1 is None or ax2 is None:
        fig, (ax1,ax2) = plt.subplots(1,2,figsize=(10,5))
    # We start from the resting point...
    time span = np.linspace(0,tmax, 1000)
    ic = scipy.integrate.odeint(partial(fitzhugh nagumo, **param),
                                                      v0=[0,0],
                                                      t=time span)[-1]
    # and do some displacement of the potential.
    plot phase diagram(param, ax=ax2)
    for displacement in np.linspace(0,dmax, number):
        traj = scipy.integrate.odeint(partial(fitzhugh nagumo, **param),
                                                      y0=ic+np.array([displacement,0]),
                                                      t=time span)
        ax1.plot(time span, traj[:,0], color='k', alpha=0.3)
        ax1.set xlabel('Time')
        ax1.set_ylabel('Membrane Potential (v)')
        ax2.plot(trai[:,0], trai[:,1], color='C0')
```

```
# Periodic behavior only happen when there are 3 equilibria, on saddle point and two unstable (focus or node).
roots = []
periodic = []
for x, i in enumerate(ispan):
    roots.append([])
    periodic.append([])
    for y, b in enumerate(bspan):
        param = {'I': i, 'a': -0.3, 'b': b, 'tau': 20}
        r = find_roots(**param)
        stab = [stability(jacobian_fitznagumo(v,w, **param)) for v,w in r]
        # Check if none of the equilibria is stable.
        periodic[x].append(not any([x[:6]=="Stable" for x in stab]))
        roots[x].append([u[0] for u in r])
```

```
mono = [1]
bi = []
per = []
for x,i in enumerate(ispan):
    for y,b in enumerate(bspan):
        if len(roots[x][v]) == 1:
            mono.append((i,b))
        else:
            if not periodic[x][y]:
                bi.append((i,b))
            else:
                per.append((i,b))
plt.scatter(*zip(*mono), color='C0', marker='.' ,label='Monostable')
plt.scatter(*zip(*bi), color='C1', marker='.', label='Non Periodic')
plt.scatter(*zip(*per), color='C2', marker='.', label='Periodic')
plt.legend()
ii = 0.25
bb = 1.2
plt.scatter(ii,bb, marker='X', color='k')
plt.xlabel('External stimulus, $I {ext}$')
plt.ylabel('Recovery parameter, $b$');
plt.show()
plot displacement({'I': ii, 'a': -0.3, 'b': bb, 'tau': 20}, tmax=300)
```


Non autonomous system

So far we have considered the behavior of the system under a constant stimulus I_{ext} . However, it is possible to extend this model to cases where the stimulus is more complex, by making I_{ext} a functio of time.

$$\left\{ egin{aligned} rac{dv}{dt} &= v - v^3 - w + I_{
m ext}(t) \ au rac{dw}{dt} &= v - a - bw \end{aligned}
ight.$$

Note that now the system is *non-autonomous*.

```
# Implement a non autonomous version of the Fitzhugh Nagumo Model.
# Simulate some trajectories.
# Here are a few stimulus function that you can try.
def step stimulus(t, value, time):
    """Step stimulus for the non autonomous Fitzhugh-Nagumo model"""
    return 0 if t<time else value
def step stimulus 2(t, values, time):
    """Step stimulus for the non autonomous Fitzhugh-Nagumo model"""
    return 0 if t<time else values[int(t//time)] if t<len(values)*time else values[-1]</pre>
def periodic stimulus(t, magnitude, freg):
    """Periodic stimulus for the non autonomous Fitzhugh-Nagumo model"""
    return magnitude * np.sin(freg * t)
def generate noisy(scale, steps=300, dt=1, tmax=300):
    time = np.linspace(0, tmax, num=steps)
    noise = [0]
    for i in range(len(time)-1):
        noise.append( noise[-1] + (0-noise[-1])*dt + dt*np.random.normal(loc=0, scale=scale))
    def noisy stimulus(t):
        """Noisy stimulus for the non autonomous Fitzhugh-Nagumo model"""
        tscaled = (t/tmax)*(len(noise)-2)
        i = int(tscaled)
        return (tscaled-i)*noise[i] + (i+1-tscaled)*noise[1+i]
    return noisy stimulus
# Some parameter sets:
step sc = []
time span = np.linspace(0, 500, num=1500)
step sc.append({"a":-.3, "b":1.4, "tau":20, 'I': partial(step stimulus, value=0.2, time=100)})
step sc.append({"a":-.3, "b":1.4, "tau":20, 'I': partial(step stimulus 2, values=[0.1,0.2,0.6], time=100)})
step sc.append({"a":-.3, "b":1.4, "tau":20, 'I': partial(periodic stimulus, magnitude=1,freq=.1)})
step sc.append(\{"a":-.3, "b":1.4, "tau":20, 'I': generate noisy(<math>.\overline{5}, tmax=time span[-1], steps=len(time span))\})
initial conditions = [(-0.5, -0.1), [0, -0.16016209760708508]]
```

```
def non_autonomous_fitzhugh_nagumo(x, t, a, b, tau, I):
    """Time derivative of the Fitzhugh-Nagumo neural model.
Args:
    x (array size 2): [Membrane potential, Recovery variable]
    a, b (float): Parameters.
    tau (float): Time scale.
    t (float): Time (Not used: autonomous system)
    I (function of t): Stimulus current.
Return: dx/dt (array size 2)
    """
pass
```

```
# Draw the trajectories.
fig, ax = plt.subplots(len(step sc), 2, figsize=(15,15))
for i, param in enumerate(step sc):
     for j, ic in enumerate(initial conditions):
         ax[i, j].set(xlabel='Time', ylabel='v, w, I')
         ax[i, j].plot(time span,[param['I'](t) for t in time span], label='I', color='C2', alpha=0.5)
         ax[i, j].plot(time span,trajectory nonauto[i, j][:,0], label='v', color='C0')
         ax[i, j].legend()
plt.tight layout()
   1.0
                                                                  1.0
   0.5
                                                                  0.5
v, w, l
                                                               v, w, l
                                                                  0.0
   0.0
                                                                 -0.5
  -0.5
                                                                 -1.0
  -1.0
                 100
                           200
                                                                                100
                                                                                          200
                                                                  1.0
   1.0
                                                                  0.5
   0.5
                                                               v, w, l
                                                                 0.0
   0.0
                                                                 -0.5
  -0.5
                                                                 -1.0
  -1.0
                 100
                           200
                                                400
                                                          500
                                                                                100
                                                                                          200
                                      300
                                                                                                    300
                                                                                                              400
                                                                                                                        500
                                Time
                                                                                               Time
                                                                  1.0
   1.0
   0.5
                                                                  0.5
v, w, l
                                                               v, w, l
  0.0
                                                                 0.0
                                                                 -0.5
  -0.5
```


Stochastic Differential Equation

So far we have seen continuous-time, continuous-state determinsitic systems in the form of Ordinary Differential Equations (ODE). Their stochastic counterpart are Stochastic Differential Equations (SDE).

Consider the now familiar non-autonomous ODE:

$$rac{dy}{dt} = f(y,t)$$

The corresponding integral equation is:

$$y(t)=y(0)+\int_0^tf(y(s),s)ds$$

The SDE would be:

$$Y_t = f(Y_t,t)dt + g(Y_t,t)dB_t$$

Now Y_t is a random variable. B_t is the standard Brownian motion. The corresponding integral equation is:

$$y(t)=y(0)+\int_0^tf(Y_s,s)ds+\int_0^tg(Y_s,s)dB_s$$

We will use the Euler-Maruvama (https://en.wikipedia.org/wiki/Euler%E2%80%93Maruvama method) integration scheme.

Implement the Euler-Maruyama integration algorithm.

```
def euler_maruyama(flow, noise_flow, y0, t):
    "'' Euler-Maruyama intergration.

Args:
    flow (function): deterministic component of the flow (f(Yt,t))
    noise_flow (function): stochastic component of the flow (g(Yt,t))
    y0 (np.array): initial condition
    t (np.array): time points to integrate.

Return the Euler Maruyama approximation of the SDE trajectory defined by:

y(t) = f(Y(t),t)dt + g(Yt,t)dBt
y(0) = y0
iii
pass
```

```
def euler_maruyama(flow, noise_flow, y0, t):
    ''' Euler-Maruyama intergration.

Args:
    flow (function): deterministic component of the flow (f(Yt,t))
    noise_flow (function): stochastic component of the flow (g(Yt,t))
    y0 (np.array): initial condition
    t (np.array): time points to integrate.

Return the Euler Maruyama approximation of the SDE trajectory defined by:

y(t) = f(Y(t),t)dt + g(Yt,t)dBt
y(0) = y0

'''

y = np.zeros((len(t),len(y0)))
y[0] = y0

for n,dt in enumerate(np.diff(t),1):
    y[n] = y[n-1] + flow(y[n-1],dt) * dt + noise_flow(y[n-1],dt) * np.random.normal(0,np.sqrt(dt))
return y
```

```
# Draw the trajectories.
fig, ax = plt.subplots(2, 2, figsize=(20,10))
for i,param in enumerate(scenarios[:2]):
    for j, ic in enumerate(initial conditions):
        ax[i, j].set(xlabel='Time', ylabel='v, w', title='Trajectory of v, w, {} with init = {}'.format(param, ic),
                    xlim=(0, time s[-1]), ylim=(-1.5, 1.5))
        ax[i, j].plot(time s,stochastic[i, j][:,0], label='v (SDE)')
        ax[i, j].plot(time s,trajectory[i, j][:,0], label='v (ODE)', color='CO', ls=":")
ax[0, 0].legend()
```



```
xlimit = (-1.3, 1.3)
ylimit = (-0.5, 0.5)
fig, ax = plt.subplots(1,2, figsize=(12,5))
for i, param in enumerate(scenarios[:2]):
    ax[i].set(xlabel='v', ylabel='w', title="Phase space, {}".format(param))
    plot_vector_field(ax[i], param, xlimit, ylimit)
    plot_vector_field(ax[i], param, xlimit, ylimit)
    plot_isocline(ax[i], **param, vmin=xlimit[0], vmax=xlimit[1])
    for j, ic in enumerate(initial_conditions):
        ax[i].plot(stochastic[i, j][:,0], stochastic[i, j][:,1],lw=1)
```


Collected lecture notes by Guilhem Doulcier (https://www.normalesup.org/~doulcier/) - Version control (https://gitlab.com/geeklhem/teaching) - Collected lecture notes by Guilhem Doulcier (https://creativecommons.org/licenses/by-sa/4.0/) - Page generated on Mon Mar 18 17:59:09 2019