專案主題: Introduction of Feed Forward NN & CNN

學生: 陳冠維 國立清華大學 計財所 碩一

大綱

一般NN模型介紹

Neural Network / Deep Learning

- ▶「類神經網路」發跡於1980年代,由日本科學家福島邦彥提出
 - 1990年代,NN近乎消聲匿跡,原因是計算代價過於龐大,耗時過久
- ▶ 直至2010年代,NN再次受到重視,賦名為「深度學習」
 - 歸功於電腦計算能力的提升,人們得以透過NN解決許多難題
 - 例如:圖像辨識、影音辨識、NLP、AlphaGo

➤ Regression model可視為neural network的一個特例

$$y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + \varepsilon$$

➤ Regression model可視為neural network的一個特例

$$y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + \varepsilon$$

➤ Regression model可視為neural network的一個特例

$$y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + \varepsilon$$

➤ Regression model可視為neural network的一個特例

$$y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + \varepsilon$$

➤ Regression model可視為neural network的一個特例

$$y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + \varepsilon$$

 $\mathbf{y} = w_0 + w_1 \mathbf{x_1} + w_2 \mathbf{x_2} + w_3 \mathbf{x_3} + \boldsymbol{\varepsilon}$

- 訓練參數數量較少
- input與權重做線性組合後的結果就是output

- 訓練參數數量較多
- input與權重做線性組合後, 會經過一個非線性的激勵函 數,再產生output

Input 為一個 28*28 的灰階圖像

透過matrix 將圖像轉換成數值

每一個pixel的值介於 0~255 值越大的地方代表顏色越深

將這個 28*28 的圖像拉成一條向量,每個 1*1 的像素代表一個 factor (x_i)

將這個 28*28 的圖像拉成一條向量,每個 1*1 的像素代表一個 factor (x_i)

將這個 28*28 的圖像拉成一條向量,每個 1*1 的像素代表一個 factor (x_i)

將這個 28*28 的圖像拉成一條向量,每個 1*1 的像素代表一個 factor (x_i)

將這個 28*28 的圖像拉成一條向量,每個 1*1 的像素代表一個 factor (x_i)

將這個 28*28 的圖像拉成一條向量,每個 1*1 的像素代表一個 factor (x_i)

作特徵擷取

透過Hidden layer類 取出的這些特徵, 去預測這個圖像是 哪個類別

➤ 3-layer:

$$z_{\ell}^{(2)} = w_{\ell 0}^{(1)} + \sum_{j=1}^{p} w_{\ell j}^{(1)} x_{j}, \qquad \ell = 1, 2, ..., p_{2}$$

$$a_{\ell}^{(2)} = g^{(2)} \left(z_{\ell}^{(2)} \right), \qquad \ell = 1, 2, ..., p_{2}$$

$$z^{(3)} = w_{0}^{(2)} + \sum_{\ell=1}^{p_{2}} w_{\ell}^{(2)} a_{\ell}^{(2)}, \qquad o = z^{(3)}$$

Note:

 $z_{\ell}^{(2)}$ is a linear transformation of all inputs.

 $g^{(2)}(\cdot)$ is *activation function* (usually nonlinear).

 $w_{\ell j}^{(1)}$ and $w_{\ell}^{(2)}$ are **weights**.

 $w_{\ell 0}^{(1)}$ and $w_0^{(2)}$ are **bias parameters**.

➤ 3-layer:

$$z_{\ell}^{(2)} = w_{\ell 0}^{(1)} + \sum_{j=1}^{p} w_{\ell j}^{(1)} x_{j}, \qquad \ell = 1, 2, ..., p_{2}$$

$$a_{\ell}^{(2)} = g^{(2)} \left(z_{\ell}^{(2)} \right), \qquad \ell = 1, 2, ..., p_{2}$$

$$z^{(3)} = w_{0}^{(2)} + \sum_{\ell=1}^{p_{2}} w_{\ell}^{(2)} a_{\ell}^{(2)}, \qquad o = z^{(3)}$$

Note:

 $z_{\ell}^{(2)}$ is a linear transformation of all inputs.

 $g^{(2)}(\cdot)$ is *activation function* (usually nonlinear).

 $w_{\ell j}^{(1)}$ and $w_{\ell}^{(2)}$ are **weights**.

 $w_{\ell 0}^{(1)}$ and $w_0^{(2)}$ are **bias parameters**.

➤ 3-layer:

$$z_{\ell}^{(2)} = w_{\ell 0}^{(1)} + \sum_{j=1}^{p} w_{\ell j}^{(1)} x_{j}, \qquad \ell = 1, 2, ..., p_{2}$$

$$a_{\ell}^{(2)} = g^{(2)} \left(z_{\ell}^{(2)} \right), \qquad \ell = 1, 2, ..., p_{2}$$

$$z^{(3)} = w_{0}^{(2)} + \sum_{\ell=1}^{p_{2}} w_{\ell}^{(2)} a_{\ell}^{(2)}, \qquad o = z^{(3)}$$

Note:

 $z_{\ell}^{(2)}$ is a linear transformation of all inputs.

 $g^{(2)}(\cdot)$ is *activation function* (usually nonlinear).

 $w_{\ell j}^{(1)}$ and $w_{\ell}^{(2)}$ are **weights**.

 $w_{\ell 0}^{(1)}$ and $w_0^{(2)}$ are **bias parameters**.

➤ 3-layer:

$$z_{\ell}^{(2)} = w_{\ell 0}^{(1)} + \sum_{j=1}^{p} w_{\ell j}^{(1)} x_{j}, \qquad \ell = 1, 2, ..., p_{2}$$

$$a_{\ell}^{(2)} = g^{(2)} \left(z_{\ell}^{(2)} \right), \qquad \ell = 1, 2, ..., p_{2}$$

$$z^{(3)} = w_{0}^{(2)} + \sum_{\ell=1}^{p_{2}} w_{\ell}^{(2)} a_{\ell}^{(2)}, \qquad o = z^{(3)}$$

K-layer:

$$z_{\ell}^{(k)} = w_{\ell 0}^{(k-1)} + \sum_{j=1}^{p_{k-1}} w_{\ell j}^{(k-1)} a_j^{(k-1)}, \quad a_{\ell}^{(k)} = g^{(k)} \left(z_{\ell}^{(k)} \right),$$

$$for \ \ell = 1, 2, \dots, p_k, \quad where \ a_j^{(1)} = x_j \ and \ p_1 = p$$

What does Activation Function do?

> A K-layer feed-forward NN

$$f(\mathbf{x}, \mathbf{w}) = w_0^{(k-1)} + \sum_{\ell=1}^{p_{k-1}} w_\ell^{(k-1)} g^{(k-1)} \left(w_{\ell 0}^{(k-2)} + \sum_{j=1}^{p_{k-2}} w_{\ell j}^{(k-2)} x_j \right)$$

 \triangleright Note, Activation Function: $g^{(k-1)}(\cdot)$

What does Activation Function do?

> A K-layer feed-forward NN

$$f(\mathbf{x}, \mathbf{w}) = w_0^{(k-1)} + \sum_{\ell=1}^{p_{k-1}} w_\ell^{(k-1)} g^{(k-1)} \left(w_{\ell 0}^{(k-2)} + \sum_{j=1}^{p_{k-2}} w_{\ell j}^{(k-2)} x_j \right)$$

 \triangleright Note, Activation Function: $g^{(k-1)}(\cdot)$

Basis Expansion

$$f(X) = \sum_{m=1}^{M} \beta_m h_m(X)$$

Basis Expansion

透過函數向量 $\{h_1(X), h_2(X), ..., h_M(X)\}$ 將X轉換到M維空間

$$f(X) = \sum_{m=1}^{M} \beta_m h_m(X)$$

 $h_m(X)$ example:

$$h_1(X) = x_i$$
; $h_2(X) = x_i^2$; $h_3(X) = \log(x_i)$...

True function (紅線): $y_i = g(x_i) + \varepsilon_i$

Model ①(藍線):簡單的線性模型

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Model ② (黄線):透過一些polynomial term捕捉True function非線性的部分,我們可以更好的去逼近True function

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_k x_i^k + \varepsilon_i$$

Activation Function VS Basis Expansion

A K-layer feed-forward NN

$$f(\mathbf{x}, \mathbf{w}) = w_0^{(k-1)} + \sum_{\ell=1}^{p_{k-1}} w_\ell^{(k-1)} g^{(k-1)} \left(w_{\ell 0}^{(k-2)} + \sum_{j=1}^{p_{k-2}} w_{\ell j}^{(k-2)} x_j \right)$$

> Basis Expansion

$$f(X) = \sum_{m=1}^{M} \beta_m h_m(X)$$

- ➤ Activation Function的特點
 - ▶ 激勵函數其實就像Basis Expansion一樣,將輸入值做一些非線性的轉換,使我們的模型可以更好去逼近任意函數
 - ho 不過可以發現激勵函數有別於一般的Basis Expansion,其輸入值的權重是學出來的($w_{\ell j}^{(k-2)}$),而Basis Expansion的輸入值則是給定的X。這就造就了我們的激勵函數的待估參數有無限多種可能,有別於一般的Basis Expansion只有一種可能。因此激勵函數要來的更加有彈性,可以更好的去捕捉各種pattern。

Activation Function

- $> g^{(k)}(\cdot)$ is known as the **activation function** (usually nonlinear).
 - $g^{(k)}(\cdot)$ at the inner layers can be the same or different.
- ➤ When it comes to human brain: Each neuron in the network would be a simple binary on/off.
- > For example, Heaviside (or Step) function:

$$f(x) = \left\{egin{array}{ll} 0 \ : \ x_i \leq T \ 1 \ : \ x_i > T \end{array}
ight.$$

➤ In practice:

People usually consider differentiable activation function. (Reason: We need to do gradient descent with backpropagation)

Activation Function — Identity (or Linear) Function

 \succ Formula: $f\left(x_i
ight)=x_i$

> The linear function is not used in the hidden layers.

We must use non-linear transfer functions in the hidden layer nodes or else the output will only ever end up being a linearly separable solution.

Activation Function — Softmax

For M-class classification problem, the number of output units is usually M, and the final activation function is usually the **softmax function**

> Formula:

$$g_m^{(K)}(z_m, \mathbf{z}) = \frac{e^{z_m}}{\sum_{\ell=1}^M e^{z_\ell}}$$

- > Property:
 - Range: [0, 1]
 - The total sum of all outputs is 1.
- Probability: Softmax layer as the output layer ■ $1 > y_i > 0$ $\blacksquare \sum_i y_i = 1$ Softmax Layer

Softmax 示意圖

> The output of softmax is a probability distribution.

Activation Function — Sigmoid (or Logistic) Function

Formula:
$$f(x_i) = \frac{1}{1+e^{-x_i}}$$

$$f'\left(x_i
ight) = f\left(x_i
ight)\left(1 - f\left(x_i
ight)
ight)$$

> Property:

- Range: (0, 1)
- 一般用於二分類神經網絡(輸出為機率值)

> Issue:

- · 易產生梯度消失,增大NN訓練難度、影響性能
- exp 指數運算成本高

Activation Function — Hyperbolic Tangent Function (tanh(x))

$$\succ$$
 Formula: $f\left(x_i
ight) = anh(x_i) = rac{e^{x_i} - e^{-x_i}}{e^{x_i} + e^{-x_i}}$

- > Property:
 - Range: (-1, 1)
- > Advantage:
 - 收斂速度比 Sigmoid 快
- > Issue:
 - 同樣存在梯度消失問題

$$f'\left(x_i
ight) = 1 - anh\left(x_i
ight)^2$$

Activation Function — Rectifying Linear Unit (ReLU)

ightharpoonup Formula: ReLU = $\max(0, x)$

- > Property:
 - Range: [0, infinity)
- > Advantage:
 - 在正區間解決了梯度消失的問題
 - 計算速度較快,只需要判斷input是否>0
 - 收斂速度遠快於 sigmoid 和 tanh
- > Issue:
 - Dying ReLU problem

Activation Function — Parametric ReLU

> Formula:

$$f(x) = \max(\alpha x, x)$$

Parametric ReLU: y=ax

- > Property:
 - When $\alpha = 0.01$, it's called Leaky ReLU.
 - Range: $(-\infty, \infty)$
 - Avoid flat spots and accompanying zero gradients, solving the Dying ReLU problem.

模型訓練

Fitting a Neural Network

▶ 根據前面的推導,我們的neural network模型可以表示成:

$$f(\mathbf{x}_i; W) = w_{\ell 0}^{(k-1)} + \sum_{j=1}^{p_{k-1}} w_{\ell j}^{(k-1)} a_j^{(k-1)}$$

 \blacktriangleright In order to fit our model $f(x_i; W)$, we need to create a loss function (研究者設計的)

> E.g.
$$L(y, f(x)) = \frac{1}{2} (y - f(x))^2$$

> After creating our loss function, we might seek to solve the above optimization problem:

$$\min_{\mathcal{W}} \frac{1}{n} \sum_{i=1}^{n} L\left(y_i, f\left(\mathbf{x}_i; \mathcal{W}\right)\right)$$

Fitting a Neural Network

> Problems we might face

Example: OLS

OLS的loss function $L(y_i, f(x_i))$ 是Convex,可用FOC解出最適解

Loss Function of NN

 $L(y_i, f(x_i; W))$ 顯然不是Convex

Loss Function of NN

我們無法去使用簡 單的FOC解出最適解

Gradient Descent

因此我們需要採用一些algorithm 的解法。這裡我們採用梯度下降 法去配適出我們模型的參數。

$$\min_{\mathcal{W}} \frac{1}{n} \sum_{i=1}^{n} L\left(y_i, f\left(\mathbf{x}_i; \mathcal{W}\right)\right)$$

The intuition of Gradient Descent

$$J(w) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i; w))$$

➤ First Step: 給定一個起始值W₀

 \triangleright Second Step: 計算出J(w)的gradient: $\frac{\partial J(w)}{\partial w}$, 並將資料 (x_i, y_i) 代入

- ➤ Condition1: 當gradient > 0的時候,可以發現我們的weight太大了,因此我們減掉一些
- ➤ Condition2: 當gradient < 0的時候,可以發現我們的weight太小了,因此我們加上一些
- ▶ 重複這個動作,直到我們的gradient = 0,也就達 到我們想要的optimal solution

Gradient Descent

- ▶ 將前頁一維的情形推廣至多維可得:
 - \triangleright mimize $\frac{1}{n}\sum_{i=1}^{n}L(y_i, f(x_i; \mathbf{W}))$
 - For Gradient: $\Delta w_{lj}^{(k)} = \frac{1}{n} \sum_{i=1}^{n} \partial L(y_i, f(x_i; \boldsymbol{W})) / \partial w_{lj}^{(k)}$, k = 1, 2, ..., K 1 (number of tatal layers: K)
 - ▶ 註1:因為先累加再取偏微分,與先取偏微分,再累加的結果一樣。
- \triangleright Given a set of starting values $(w_0^{(k)})$ for all the weights, a gradient descent update is:
 - $\rightarrow w_{lj}^{(k)} \leftarrow w_{lj}^{(k)} \alpha * \Delta w_{lj}^{(k)}, k = 1, 2, ..., K 1$
 - ho α > 0 is the learning rate (表示gradient的步長,研究者自行給定)

The size of learning rate

- > Condition 1:
 - \blacktriangleright When α is too big, gradient may overshoot the minimum. It may diverge.

- > 因此我們需要謹慎挑選α
 - ▶ 一般取值介於0、1之間
 - 可以用cross validation去挑選α

> Condition 2:

 \blacktriangleright When α is too small, the converge speed may be too slow.

Problems we met in Gradient Descent

The gradient is hard to calculate

$$\Delta w_{lj}^{(k)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial L(y_i, f(x_i; \mathbf{W}))}{\partial w_{lj}^{(k)}}$$

Backpropagation

- ightharpoonup In order to solve $\frac{\partial L}{\partial Z_l^{(k+1)}}$
- We find a way called backpropagation

Using Chain Rule

$$\frac{\partial L(y, f(x; \mathbf{W}))}{\partial w_{lj}^{(k)}} = \frac{\partial L}{\partial Z_{l}^{(k+1)}} * \frac{\partial Z_{l}^{(k+1)}}{\partial w_{lj}^{(k)}}$$

- Since $Z_l^{(k+1)}$ is a linear transformation of $a_l^{(k)}$ and $w_{lj}^{(k)}$, the second part is easy to calculate.
- $> Z_l^{(k+1)} = w_{l0}^{(k)} + \sum_{j=1}^{P_k} w_{lj}^{(k)} * a_j^{(k)}$
- $\geq \frac{\partial Z_l^{(k+1)}}{\partial w_{lj}^{(k)}} = a_j^{(k)}$

Intuition of Backpropagation

- ightrightarrow 首先,定義 $\frac{\partial L}{\partial Z_l^{(k)}}$ 為error term $\delta_l^{(k)}$
 - ▶ 這個error term代表了每個節點 (node) 的值的變化,會對誤差造成多少影響

- ightharpoonup 先求出output layer的error term $\delta_1^{(4)}$
- ightharpoonup 接著依照目前的權重以及 $\delta_1^{(4)}$,推出第二層hidden layer的error term $\delta^{(3)}$
- ightharpoonup 再依據目前的權重以及 $\delta^{(3)}$,推出第一層hidden layer的error term $\delta^{(2)}$

input layer

hidden layer 1

hidden layer 2

output layer

Backpropagation 數學推導

ightharpoonup For each output unit l in the output layer $(Layer_K)$:

$$\delta_l^{(K)} = \frac{\partial L}{\partial Z_l^{(K)}} = \frac{\partial L}{\partial a_l^{(K)}} * \frac{\partial a_l^{(K)}}{\partial Z_l^{(K)}} = \frac{\partial L}{\partial a_l^{(K)}} * g'^{(K)}(Z_l^{(K)})$$

- ightharpoonup 註1: $a_l^{(K)} = g^{(K)}(z_l^{(K)})$
- ightharpoonup 註2: $g'^{(K)}(z_l^{(K)})$ 是activation function的一階微分

- \triangleright Example: If the loss function is: $L(y, f(x) = a_l^{(K)}) = \frac{1}{2} * (y a_l^{(K)})^2$
 - > Then $\delta_l^{(K)} = \frac{1}{2} * 2(y a_l^{(K)}) * (-1) * g'^{(K)}(z_l^{(K)})$
 - $ightharpoonup y a_l^{(K)}$ is the residual which we can calculate after getting $a_l^{(K)}$
 - $\geq g'^{(K)}(z_l^{(K)})$ 則是activation function的一階微分,代入 $z_l^{(K)}$ 即可求出

Backpropagation 數學推導

For hidden layers $Layer_k$, $k = K - 1, K - 2, \dots 2$ and each node l:

$$\delta_l^{(k)} = \frac{\partial L}{\partial Z_l^{(k)}} \text{ and } \delta_l^{(k+1)} = \frac{\partial L}{\partial Z_l^{(k+1)}}$$

> Since $L(y, f(x; \mathbf{W}))$ is a function of $Z_j^{(k+1)}$ for $j=1,2,...,P_{k+1}$, we can rewrite $\delta_l^{(k)}$ by Chain Rule:

$$\delta_{l}^{(k)} = \sum_{j=1}^{P_{k+1}} \frac{\partial L}{\partial Z_{j}^{(k+1)}} * \frac{\partial Z_{j}^{(k+1)}}{\partial Z_{l}^{(k)}} = \sum_{j=1}^{P_{k+1}} \delta_{j}^{(k+1)} * \frac{\partial Z_{j}^{(k+1)}}{\partial Z_{l}^{(k)}}$$

Backpropagation 數學推導

ightharpoonup Next, we need to find out $\frac{\partial Z_j^{(k+1)}}{\partial Z_l^{(k)}}$

$$\geq \text{Example: } \frac{\partial Z_{j}^{(k+1)}}{\partial Z_{1}^{(k)}} = \frac{\partial (w_{j_0}^{(k)} * g^{(k)}(Z_{0}^{(k)}) + w_{j_1}^{(k)} * g^{(k)}(Z_{1}^{(k)}) + \dots + w_{j_{p_k}}^{(k)} * g^{(k)}(Z_{p_k}^{(k)}))}{\partial Z_{1}^{(k)}} = w_{j_1}^{(k)} * g'^{(k)}(Z_{1}^{(k)})$$

- > Then we have $\frac{\partial Z_j^{(k+1)}}{\partial Z_l^{(k)}} = w_{jl}^{(k)} * g'^{(k)}(Z_l^{(k)})$ and $\delta_l^{(k)} = \sum_{j=1}^{P_{k+1}} \delta_j^{(k+1)} * \frac{\partial Z_j^{(k+1)}}{\partial Z_l^{(k)}}$
- ightharpoonup Finally we got $\delta_l^{(k)} = \{\sum_{j=1}^{P_{k+1}} w_{jl}^{(k)} * \delta_j^{(k+1)}\} * g'^{(k)}(Z_l^{(k)})$

Backpropagation and Gradient Descent

- ightharpoonup Feedforward pass: 將起始值 $W_0^{(k)}$ 以及每個 training pair(x_i, y_i)代入,求出每個Layer的 output $a_l^{(k)}$, k=2,3,4
- ightharpoonup BackPropagation: 先求出output layer的 $\delta_l^{(K)}$, 再依序反向傳播推出hidden layer的 $\delta_l^{(k)}$

$$\delta_l^{(K)} = \frac{\partial L}{\partial a_l^{(K)}} * g'^{(K)}(z_l^{(K)})$$

$$\geq \frac{\partial L(y, f(x; \mathbf{W}))}{\partial w_{lj}^{(k)}} = \frac{\partial L}{\partial Z_{l}^{(k+1)}} * \frac{\partial Z_{l}^{(k+1)}}{\partial w_{lj}^{(k)}} = \delta_{l}^{(k+1)} * a_{j}^{(k)}$$

Backpropagation and Gradient Descent

- ightharpoonup Feedforward pass: 將起始值 $W_0^{(k)}$ 以及每個 training pair (x_i, y_i) 代入,求出每個Layer的 output $a_l^{(k)}$, k=2,3,4
- ightharpoonup BackPropagation: 先求出output layer的 $\delta_l^{(K)}$, 再依序反向傳播推出hidden layer的 $\delta_l^{(k)}$

$$\geq \frac{\partial L(y, f(x; \mathbf{W}))}{\partial w_{lj}^{(k)}} = \frac{\partial L}{\partial Z_{l}^{(k+1)}} * \frac{\partial Z_{l}^{(k+1)}}{\partial w_{lj}^{(k)}} = \delta_{l}^{(k+1)} * a_{j}^{(k)}$$

Gradient Descent: the initial weights

要做Gradient Descent時,一開始必須給定一組權重的起始值

- ▶ 如果給定起始值皆為0,將導致Gradient一開始就為0,因此權重永遠不會更新
 - $\geq \text{ Example: } \frac{\partial L(y,f(x;W))}{\partial w_{lj}^{(k)}} = \delta_l^{(k+1)} * a_j^{(k)} = \left\{ \sum_{j=1}^{P_{k+2}} w_{jl}^{(k+1)} * \delta_j^{(k+2)} \right\} * g'^{(k)}(z_l^{(k)}) * a_j^{(k)} = 0$
- ▶ 如果**給定起始值皆為同一數值**,將導致每個layer下的neurons的輸出都一樣(等同於多個neurons只學到一種pattern)。每個layer下各個權重的Gradient都一樣,最後每一個layer下各個權重更新後仍為同一數值
 - \triangleright Example: if all weights set to w, we have:

$$> Z_1^{(2)} = w + w * x_1 + w * x_2 + w * x_3 = Z_2^{(2)} \rightarrow a_1^{(2)} = a_2^{(2)}$$

$$\triangleright \delta_2^{(2)} = (w * \delta_1^{(3)} + w \delta_2^{(3)}) * g'^{(2)}(Z_2^{(2)})$$

$$\triangleright \ \delta_1^{(2)} = \delta_2^{(2)}$$

$$\geq \frac{\partial L(y, f(x; \mathbf{W}))}{\partial w_{li}^{(k)}} = \delta_l^{(k+1)} * a_j^{(k)}$$

➤ In general, we would randomly select our initial weights from Uniform or Gaussian Distribution to break the symmetric.

Gradient Descent: feature scaling

做Gradient Descent時,如果沒有事先標準化每個features,則權重的起始值不同,會導致很不一樣的結果

> Example:

X1: 年收入 (range from 0 to 5000000 dollars)

X2: 平均每日工時 (range from 0 to 24 hours)

$$> Z_1^{(2)} = w_{10}^{(1)} + w_{11}^{(1)} * x_1 + w_{12}^{(1)} * x_2$$

- \rightarrow if the initial weight is (0, 0.5, -0.5)
- $> Z_1^{(2)} = 0 + 0.5 * 1000000 0.5 * 8 = 499996$
- ➤ If the initial weight is (0, -0.5, 0.5)
- $Z_1^{(2)} = 0 0.5 * 1000000 + 0.5 * 8 = -499996$

- ightharpoonup 可以發現 $Z_1^{(2)}$ 會因為起始值的不同而劇烈變動,同樣的 $a_1^{(2)}$ 也會因起始值的不同而劇烈變動
- $\sum \frac{\partial L(y,f(x;W))}{\partial w_{lj}(k)} = \delta_l^{(k+1)} * a_j^{(k)}$ 也因起始值的不同而劇烈變動,這將導致每次隨著起始值的不同,Gradient Descent的結果可能會非常不一樣

Stochastic Gradient Descent

- ▶ 回顧一般的Gradient Descent
- $ightharpoonspice 一般的Gradient Descent將全部的training pairs <math>((x_i, y_i), i = 1, ..., N)$ 代入後,只做一次的權重更新
- ▶ Stochastic Gradient Descent提出了一個更有效率的方法,一次只將**部分的training pairs** $((x_i, y_i), i = 1, ..., n)$ 代入後,就做一次的權重更新(將資料分批下去做訓練)
- ▶ 這個部分的n個training pairs 研究者可以自行給定,我們稱其為Batch Size
- ▶ 利用一個Batch Size的訓練集去做一次訓練,我們稱其為一個*iteration*。而完整的跑完整個training set 我們稱為一個*epoch*
 - Example: 假設資料共有1000筆,我們設計一個Batch大小為200,則完成一個epoch的訓練需要5次iteration
 - ▶ Stochastic Gradient Descent在這個例子裡做了5次的權重更新,而一般的Gradient Descent只更新了一次

NN實作

手寫辨識(一):以NN為例

```
10 # Load mnist
12 from keras.datasets import mnist
13
14 (train images, train labels), (test images, test labels) \
      = mnist.load data()
15
17 # Take a Look on mnist
18
19 train labels[0:10]
20
21 import matplotlib.pyplot as plt
23 digit = train_images[9] # Try 2 and 9
24 plt.imshow(digit, cmap = plt.cm.binary)
25 plt.show()
26
```

從MINST(美國國家標準局) 資料庫導入範例所需資料

Train資料: 60000筆公務員手寫數字

train_images 60000個28*28的array

train_labels 為一60000*1的array 紀錄train_images對應之正確數字

Test資料: 10000筆高中生手寫數字

test_images 10000個28*28的array

test_labels 為一10000*1的array 紀錄test_images對應之正確數字

```
In [30]: train labels[0:10]
Out[30]: array([5, 0, 4, 1, 9, 2, 1, 3, 1, 4], dtype=uint8)
```

import matplotlib.pyplot as plt

```
digit = train_images[2]
plt.imshow(digit, cmap = plt.cm.binary)
plt.show()
```


import matplotlib.pyplot as plt

```
digit = train_images[9]
plt.imshow(digit, cmap = plt.cm.binary)
plt.show()
```


Example: Image

Input 為一個 28*28 的灰階圖像

透過matrix 將圖像轉換成數值

每一個pixel的值介於 0~255 值越大的地方代表顏色越深

Scale and Labels

```
train_images_ = train_images.reshape((60000, 28 * 28))
train_images_ = train_images_.astype('float32') / 255
test images = test images.reshape((10000, 28 * 28))
test images = test images .astype('float32') / 255
from keras.utils import to categorical
train_labels_ = to_categorical(train labels)
test labels = to categorical(test labels)
 ▶ 利用to categorical函數轉換labels資料
```


Output Layer

Output Layer

train_labels - NumPy array

	0	
0	5	
1	0	
2	4	
3	1	
4	9	
5	2	
6	1	
7	3	
8	1	
9	4	
10	3	
11	5	
12	3	
13	6	
14	1	
15	7	

> 將輸入資料轉為one hot形式

Output Layer的Soft Max將數值轉換成各個類別的機率,形成一個 10*1的Vector。為了計算Loss,我們將原始的labels(0~9)轉為 one hot形式的類別資料,也形成一個10*1的Vector。

train_labels_ - NumPy array

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	1	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0
2	0	0	0	0	1	0	0	0	0	0
3	0	1	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	1
5	0	0	1	0	0	0	0	0	0	0
6	0	1	0	0	0	0	0	0	0	0
7	0	0	0	1	0	0	0	0	0	0
8	0	1	0	0	0	0	0	0	0	0
9	0	0	0	0	1	0	0	0	0	0
10	0	0	0	1	0	0	0	0	0	0
11	0	0	0	0	0	1	0	0	0	0
12	0	0	0	1	0	0	0	0	0	0
13	0	0	0	0	0	0	1	0	0	0
14	0	1	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	1	0	0

Layer (type) Output Shape Param #

dense_1 (Dense) (None, 512) 401920 = (28*28+1)*512

dense_2 (Dense) (None, 10) 5130 = (512+1)*10

Total params: 407,050

Trainable params: 407,050

In [39]: network.summary()

Model: "sequential 1"

Non-trainable params: 0

```
#以compile函數定義損失函數(loss)、優化函數(optimizer)及成效衡量指標(mertrics)
network.compile(optimizer = 'SGD',
         loss = 'categorical crossentropy',
         metrics = ['accuracy'])
# Besides SGD, we may also try rmsprop, Adam, or others.
# Train
network.fit(train images , train labels ,
       epochs = 5, batch size = 128)
In [66]: network.fit(train images , train labels ,
         epochs = 5, batch size = 128)
 . . . :
Epoch 1/5
Epoch 2/5
Epoch 3/5
Epoch 4/5
Epoch 5/5
Out[66]: <keras.callbacks.callbacks.History at 0x1683cba4668>
```

Cross Entropy

$$-\sum_{i=1}^{n} \sum_{m=1}^{M} y_{im} * \ln(\hat{y}_{im})$$

- > M is the total class of our labels
- $\triangleright n$ is the total numbers of training data
- $> y_{im} = 1$ if sample i belongs to class m. Otherwise, $y_{im} = 0$
- $\triangleright \hat{y}_{im}$ is the output probability that sample i belongs to class m

Cross Entropy

- ▶ 為何在分類問題要使用Cross Entropy Loss?
 - > 以二元分類問題為例來解釋
- > MSE Loss

$$\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2$$

Binary Cross Entropy Loss

$$-\sum_{i=1}^{n} [y_i * \ln(\hat{y}_i) + (1 - y_i) * \ln(1 - \hat{y}_i)]$$

Cross Entropy

- > MSE Loss
- $\triangleright L = (y \hat{y})^2$
 - $rac{1}{2} for y = 0, L_0 = \hat{y}^2$
 - \rightarrow for $y = 1, L_1 = (1 \hat{y})^2$

- Binary Cross Entropy Loss
- $> L = -y * \ln(\hat{y}) (1 y) * \ln(1 \hat{y})$
 - $rightarrow for y = 0, L_0 = -\ln(1 \hat{y})$
 - $rac{1}{2} for y = 1, L_1 = -\ln(\hat{y})$
- 可以發現Cross Entropy在預測錯誤類 別時給的Gradient較 MSE大。
- 並且預測錯誤的越離 譜,給予的懲罰成指 數成長。這能使我們 的模型在面對分類問 題時,更好的去辨識 類別。


```
# Test
train loss, train acc = \
   network.evaluate(train_images_, train_labels_)
print('train acc:', train acc)
test loss, test acc = \
   network.evaluate(test images , test labels )
print('test acc:', test acc)
                  ▶ .evaluate()函數回傳loss value 和 metrics values (此為accuracy)
                                                     print出預測準確率
   print出loss value
                                                     In [64]: print('train acc:', train acc)
  In [3]: print('train_loss:', train_loss)
                                                     train acc: 0.9101166725158691
  train loss: 0.3326067911823591
                                                     In [65]: print('test_acc:', test_acc)
  In [4]: print('test loss:', test loss)
                                                     test acc: 0.9150999784469604
  test loss: 0.3167715199768543
```

prediction_labels_ = network.predict(test_images_)

➤ prediction_labels_為一10000*10之array

▶ 列index:代表第幾張圖片

► 行index: 代表該圖片為哪個數字

▶ 值:表該圖片為行index數字之機率大小

	0	1	2	3	4	5	6	7	8	9
0	0.000302772	2.72351e-06	0.000140463	0.000724466	3.7201e-05	7.17846e-05	1.93222e-06	0.995531	7.55003e-05	0.00311227
1	0.0156435	0.000561828	0.896425	0.0145481	1.72796e-06	0.0126114	0.0534574	2.47404e-06	0.00674681	1.80917e-06
2	0.000252189	0.958659	0.0109619	0.00635125	0.00118656	0.0029894	0.00386011	0.00556357	0.00799581	0.00218005
3	0.996743	1.38839e-08	0.000255874	4.24796e-05	9.10588e-07	0.00188287	0.000666166	0.000251471	0.000107518	5.02274e-05
4	0.0040834	8.66717e-05	0.0145453	0.00102025	0.835824	0.00341786	0.0118257	0.0220998	0.0137318	0.0933656
5	2.26214e-05	0.983877	0.00249365	0.00349457	0.000201571	0.000460215	0.000182544	0.00409028	0.0043422	0.000835543
6	0.000157027	9.5832e-05	0.000187791	0.0032181	0.891031	0.0302201	0.000770723	0.00698703	0.0271017	0.0402307
7	0.000157233	0.00460278	0.00560672	0.0146375	0.136212	0.0876534	0.00783568	0.0133735	0.0719496	0.657972
8	0.0312687	0.000555947	0.189721	0.000136351	0.0550694	0.0306119	0.66966	0.000276212	0.0175523	0.00514877
9	0.000133228	1.40671e-06	2.17844e-05	5.75156e-05	0.0251209	0.000692835	8.46199e-05	0.0902726	0.00337519	0.88024
10	0.951081	1.289e-06	0.00280419	0.00221742	9.62963e-06	0.0387008	0.000270735	9.22378e-06	0.00490262	3.61688e-06
11	0.0353406	0.00234231	0.0785764	0.0144717	0.0152674	0.0301152	0.652974	0.000640833	0.168354	0.00191749
12	0.000218136	3.59033e-06	0.000219676	0.000387391	0.0602201	0.00136613	0.000236652	0.0379691	0.00182975	0.89755
13	0.982964	1.53531e-07	0.00027865	0.000141298	4.39752e-05	0.00947983	3.4453e-05	0.000191465	0.00557603	0.00129049

```
digit = test_images[8]
plt.imshow(digit, cmap = plt.cm.binary)
plt.show()
```



```
In [62]: test_labels[8]
Out[62]: 5
In [63]: prediction_labels[8]
Out[63]: 6
```

查看模型預測錯誤的圖像:實際上這張 圖片為數字5,但我們的模型預測成6。 不過模型判斷錯誤情有可原,因為這張 手寫圖本來就模稜兩可。

CNN

Difference between CNN & DNN

➤ 舉圖像辨識來說,一般的DNN會將原本 32*32的灰階圖片先轉成一條vector,每一 個1*1的pixel分別作為一個factor輸入神經 網路,這將使這個圖像的輸入失去了位置 資訊

➤ CNN會將完整個32*32灰階圖片矩陣輸入, 保留了圖像的位置資訊。並透過中間的 Convolve Layer & pool Layer逐步擷取出圖 像的特徵,再把這些細微的圖像特徵當作 輸入,丟進原本的DNN中

Intuition1 of CNN

▶ 前面提到CNN可以擷取每個細小的圖像特徵。每個neuron要去觀察這些特徵有無出現時,實際上不需要看整張圖片,而只需要看圖片的一小部分,就可以決定這件事情

CNN 擷取特徵的方法

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

》假設今天我們要擷取下圖的這個3*3的 斜條紋特徵

▶ 我們的filter會是下方這個3*3的矩陣

1	-1	-1
-1	1	-1
-1	-1	1

Our filter

Our image

step1

Our filter

Our image

step1

Our filter

1 -1 -1 -1 1 -1 -1 -1 1

Our image

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0
	0 0 1	0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 0 0 1 1 0 0 0 1 0	0 1 0 0 0 0 1 1 1 0 0 0 0 1 0 0	0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 1

-1

step1

Our filter

Our image

step1

step3

這個4*4的matrix我們稱為 Feature Map,裡面值越大, 代表我們的filter要偵測的 特徵出現在那個區域

Intuition2 of CNN

▶ 同一個特徵,出現在一張圖裡多次,我們不需要用新的filter去偵測有無這個特徵

Intuition2 of CNN

▶ 同一個特徵,出現在一張圖裡多次,我們不需要用新的filter去偵測有無這個特徵(權值共享)

- ▶ 事實上, filter裡的每個element就是之前DNN的每個權重。因此權值共享的這個特性,讓CNN有比DNN更少的參數,模型更為簡易。
 - ▶ 假設CNN我們設計有100個 filters,則這層layer總共會需要訓練3*3*100+100 = 1000 個參數
 - ▶ 假設DNN我們設計有100個 neurons,則這層layer總共會需要訓練6 * 6 * 100 + 100 = 3700 個參數

Intuition3 of CNN

- ▶ 對原始的圖片做subsampling,並不會影響圖像的辨識
 - ➤ Example: 對這張圖抽掉奇數行、偶數列的pixel,圖縮小、畫值下降,但不影響圖像辨識

▶ 同樣地,做了subsampling後,我們的圖縮小了。這也就表示我們可以用較少的參數去讓神經網路去 學習這張圖像。

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6x6 image

1	-1	-1
-1	1	-1
-1	-1	1

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2 Matrix

Filter 1

Matrix

- ➤ 這些Filter其實就是hidden layers 的權重(待會解釋),是必須 學出來的,不是研究者自行給 定的
- ➤ Filter 1捕捉的是一個3*3的斜條 紋特徵
- ➤ Filter 2捕捉的是一個3*3的直條 紋特徵
- → 研究者在每個Convolve Layer可以去決定要設定幾個Filter

Filter 1

1	-1	-1
-1	1	-1
-1	-1	1

Our image

3

Filter 1

Our image

Feature Map 1

▶ 註:設定多少個Filter,就會 得到多少個Feature Map

4x4 image

Convolution

Our image

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

-2

-1

-1

-1

Our image

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Convolution

-1

Fully Connected Neural Network

1
0
0
0
. 0
0

➤ Convolution Layer其實就像是 Fully Connected 拿掉一些weight 的結果

6x6 image

▶ 可以發現Feature Map 1 的第一個element代表著 這層Layer的一個Neuron。 這個Neuron只連結了9 個weights,也就是其他 weights都為0

- ▶ 可以發現Feature Map 1 的第一個element代表著 這層Layer的一個Neuron。 這個Neuron只連結了9個 weights,也就是其他 weights都為0
- ▶ 可以發現這裡3的Neuron和-1的Neuron共享了權重。有別於原本Fully
 Connected每個Neuron都有自己的一組weight

Filter 1

1	-1	-1
-1	1	-1
-1	-1	1

3		-1	-3	-1	
	· ·				

Filter 2

-1	1	-1
-1	1	-1
-1	1	-1

-1 -1 -2 1

-1 0 -4 3

Our Original image

6x6 image

Two different 2x2 image

Since we use 2 filter in this layer, we have 2 new but smaller image

Our Original image

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6x6 image

Flatten

CNN實作

手寫辨識(二):以CNN為例

```
# Load mnist
from keras.datasets import mnist
(train images, train labels), (test images, test labels) \
    = mnist.load data()
train_images_ = train_images.reshape((60000, 28, 28, 1))
train_images_ = train images .astype('float32') / 255
test_images_ = test_images.reshape((10000, 28, 28, 1))
test images = test images .astype('float32') / 255
from keras.utils import to categorical
train labels = to categorical(train labels)
test labels = to categorical(test labels)
```

> Reshape

因為 CNN 將一張圖片作了 特徵擷取,擷取成多張圖片, 使這邊的輸入變成一個3維 的 cubic。我們 reshape 一個新的維度去存取這個資 料

```
# Model
```

```
from keras import models
from keras import layers
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation = 'relu',
                          input shape = (28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation = 'relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation = 'relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation = 'relu'))
model.add(layers.Dense(10, activation = 'softmax'))
model.summary()
```

In [45]: model.summary()
Model: "sequential_9"

Layer (type)	Output	Shape	Param #
conv2d_10 (Conv2D)	(None,	26, 26, 32)	320
max_pooling2d_7 (MaxPooling2	(None,	13, 13, 32)	0
conv2d_11 (Conv2D)	(None,	11, 11, 64)	18496
max_pooling2d_8 (MaxPooling2	(None,	5, 5, 64)	0
conv2d_12 (Conv2D)	(None,	3, 3, 64)	36928
flatten_4 (Flatten)	(None,	576)	0
dense_17 (Dense)	(None,	64)	36928
dense_18 (Dense)	(None,	10)	650

Total params: 93,322

Trainable params: 93,322 Non-trainable params: 0

```
model.compile(optimizer = 'SGD',
        loss = 'categorical crossentropy',
        metrics = ['accuracy'])
 # Train
 model.fit(train images , train labels ,
      epochs = 5, batch size = 64)
Epoch 1/5
Epoch 2/5
Epoch 3/5
Epoch 4/5
0.966160000 [========>>.....] - ETA: 22s - loss: 0.1155 - accuracy: 0.9641
Epoch 5/5
```

Out[46]: <keras.callbacks.callbacks.History at 0x17d00da04e0>

```
In [48]: train loss, train acc = \
   ...: model.evaluate(train_images_, train_labels_)
   ...: print('train acc:', train acc)
   ...: print('train loss:', train loss)
   . . . .
   ...: test loss, test acc = \
   ...: model.evaluate(test images , test labels )
   ...: print('test acc:', test acc)
   ...: print('test loss:', test loss)
   . . . :
   ...: prediction labels = model.predict(test images )
   ...: print(prediction labels )
60000/60000 [============= ] - 14s 241us/step
train acc: 0.9754166603088379
train loss: 0.07986300249285996
10000/10000 [============= ] - 2s 243us/step
test acc: 0.9768999814987183
test loss: 0.0713429974405095
```

prediction_labels_ = model.predict(test_images_) print(prediction_labels_)

■ prediction_labels_ - NumPy array

	0	1	2	3	4	5	6	7	8	9
)	3.98347e-07	2.39098e-07	8.82927e-05	8.34233e-06	2.59351e-10	3.88126e-07	1.52368e-11	0.99989	3.52551e-07	1.19916e-0
l	0.000457783	0.00141693	0.997965	0.000118726	1.47063e-09	2.59835e-07	3.7427e-05	1.22674e-07	3.65812e-06	3.03868e-1
2	1.54006e-05	0.998305	0.000161518	5.23328e-05	0.000571158	3.6872e-06	3.67397e-05	0.000673382	0.000164858	1.56651e-0
3	0.99966	1.32143e-08	0.000122678	1.64148e-07	1.3685e-06	3.34461e-05	0.000122152	6.50997e-06	4.51145e-06	4.9159e-0
ı	2.20174e-06	1.62384e-06	3.14915e-06	5.94696e-07	0.998494	1.05229e-07	4.97165e-06	1.46398e-05	3.18975e-06	0.0014755
5	7.11319e-07	0.998648	5.67097e-06	7.32383e-06	0.000127258	4.69029e-08	3.61701e-07	0.00116504	3.52738e-05	9.94527e-0
5	2.61395e-08	9.23076e-06	1.19052e-06	4.84983e-05	0.966106	0.00116555	4.09004e-06	0.00229129	0.00951138	0.0208627
7	1.41059e-06	0.00015442	0.00091158	0.00851292	0.00765205	0.00810194	5.81907e-07	0.00301966	0.00156175	0.970084
3	8.3535e-05	1.33264e-08	0.000356382	1.93962e-05	4.67693e-05	0.970318	0.0159721	5.07912e-06	0.0129097	0.0002887
)	1.8375e-06	1.11773e-07	3.95874e-05	0.000111064	0.000119689	9.14849e-05	1.25028e-07	0.0776257	0.00417967	0.917831
0	0.999134	1.16382e-07	0.000203231	4.3141e-07	1.06634e-06	0.000272205	0.000326756	1.20575e-06	2.27719e-05	3.87684e-0
1	0.000167322	2.69889e-08	4.6866e-06	1.88588e-07	6.08099e-07	0.000146328	0.997359	1.00986e-08	0.00232209	1.13795e-0
2	4.80919e-07	1.4498e-08	2.56503e-06	5.32362e-05	0.00058812	0.000128737	5.98134e-08	0.0022717	0.000111174	0.996844
3	0.999706	3.75238e-09	2.8017e-05	2.95162e-08	5.81228e-07	1.49476e-05	8.28073e-06	1.56893e-05	2.95746e-05	0.0001973
4	4.82769e-07	0.999587	3.54895e-05	0.000120722	8.09122e-06	3.92386e-06	2.37004e-06	3.77662e-05	0.000193004	1.15884e-
5	1.0214e-06	2.12502e-08	6.23592e-05	0.00398774	3.21506e-08	0.995583	3.47299e-06	1.5802e-07	0.000352627	9.69322e-
6	1.77657e-06	1.51161e-08	3.36053e-06	3.62013e-06	0.00145375	9.81736e-07	8.29354e-08	0.000403341	2.67995e-05	0.998106
7	1.75845e-06	9.74229e-08	0.000109827	2.62102e-05	1.27718e-11	4.35581e-07	1.94498e-12	0.999856	3.06508e-08	5.52277e-
8	1.12931e-05	4.2977e-06	0.00562527	0.925307	9.1532e-07	0.0039657	1.64692e-05	4.79276e-06	0.065041	2.33458e-

```
digit = test_images[247]
plt.imshow(digit, cmap = plt.cm.binary)
plt.show()
```

查看讓模型預測錯誤的圖片

In [54]: test_labels[247]
Out[54]: 4

In [55]: prediction labels[247]

Out[55]: 2

實際上這張圖片為數字4 但我們的模型預測成2

Reference

- ▶ 清大楊睿中教授《機器學習與經濟計量》:Neural Networks
- Figure 1. Efron, B. and T. Hastie (2016), Computer Age Statistical Inference: Algorithms, Evidence and Data Science, Cambridge.
- ▶ 台大 李宏毅教授 ML Lecture 10: Convolutional Neural Network