O isomorfismo de Curry-Howard

Ou sobre a similaridade entre provas e programas.

Rodrigo Ribeiro

Logic side: Dedução natural

$$\frac{A \in \Gamma}{\Gamma \vdash A} \qquad \frac{\Gamma \vdash A \to B \quad \Gamma \vdash A}{\Gamma \vdash B}$$

$$\frac{\Gamma \cup \{A\} \vdash B}{\Gamma \vdash A \to B} \qquad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B}$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B}$$

Type theory side : λ -cálculo tipado simples

$$\frac{x : A \in \Gamma}{\Gamma \vdash x : A} \qquad \frac{\Gamma \vdash \lambda x.e : A \to B \quad \Gamma \vdash e' : A}{\Gamma \vdash (e \ e') : B}$$

$$\frac{\Gamma \cup \{x : A\} \vdash e : B}{\Gamma \vdash \lambda x.e : A \to B} \qquad \frac{\Gamma \vdash e : A \quad \Gamma \vdash e' : B}{\Gamma \vdash (e, e') : A \times B}$$

$$\frac{\Gamma \vdash e : A \times B}{\Gamma \vdash fst \ e : A} \qquad \frac{\Gamma \vdash e : A \times B}{\Gamma \vdash snd \ e : B}$$

Então você percebe...

Figure 1: The truth

Uma outra visão da lógica.

- Lógica clássica: toda proposição é verdadeira ou falsa.
- ► Lógica intucionista: Uma proposição é verdadeira somente se esta pode ser provada.
 - Mudança de paradigma: verdade sujeita a existência de evidência.
 - Lógica intuicionista é exatamente a lógica clássica sem o axioma do terceiro excluído e propriedades derivadas deste.
 - Ao contrário da lógica clássica, a semântica da lógica intuicionista é baseada na construção de provas, isto é, na dedução natural.

O isomorfismo de Curry-Howard

- Provas em um dado subconjunto da matemática correspondem a programas em uma dada linguagem de programação
 - Descoberto por Curry em '58 e por Howard em '69.
 - Esse "isomorfismo" é também conhecido como "proof-as-programs" correspondence.
- ► Teoremas nada mais são que tipos e o programa correspondente a prova.
 - ▶ Para isso, sua linguagem de programação deve ser expressiva.
 - ▶ Não tente provar teoremas usando Java, C/C++, Python... :)

The truth is out there...

Lógica	Computação
Provas	Programas
Fórmulas	Tipos
A implica B	função de A em B
$A \in B$	par formado por $A \in B$
A ou B	tagged union de A e B
falso	tipo vazio
verdadeiro	tipo unit
$\exists x. P(x)$	um par formado por x e um valor de tipo $P(x)$
$\forall x \in A.P(x)$	uma função de x : A em $P(x)$.

The truth is out there...

- ▶ Não é só isso: provas por indução são funções recursivas!
- ▶ Teorema: Para todo $n \in \mathbb{N}$, existe $p \in \mathbb{N}$ tal que n = 2p ou n = 2p + 1.
 - ightharpoonup Caso n=0. Imediato.
 - ► Caso n = m + 1. Pela I.H. temos que existe p tal que m = 2p ou m = 2p + 1.
 - ▶ Caso m = 2p: temos que n = 2p + 1.
 - Caso m = 2p + 1: temos que n = 2(p + 1)

The truth is out there. . .

▶ Não é só isso: provas por indução são funções recursivas!