Linear Algebra: Vector Spaces

Arjun Vardhan

†

Created: 7th July 2022

Last updated: 27th July 2022

1 Vector Spaces

- ullet A vector space V is a set, along with two operations, vector addition and scalar multiplication, satisfying the following properties:
 - 1. v + w = w + v for all $v, w \in V$.
 - 2. (u+v) + w = u + (v+w) for all $u, v, w \in V$.
 - 3. There exists a zero vector $0 \in V$ such that v + 0 = v for all $v \in V$.
 - 4. For every $v \in V$ there exists $w \in V$ such that v + w = 0. Usually denoted -v.
 - 5. $1 \cdot v = v$ for all $v \in V$.
 - 6. $(\alpha\beta) \cdot v = \alpha \cdot (\beta \cdot v)$, for all $v \in V$, for all scalars α, β .
 - 7. $\alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v$, for all $u, v \in V$, for all scalars α .
 - 8. $(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v$, for all $v \in V$, for all scalars α, β .
- The zero vector is unique. Proof: Let $0,0' \in V$ such that 0+v=v and 0'+v=v for all $v \in V$. Then 0=0+0'=0'.
- Additive inverses are unique. Proof: Let $v \in V$. Let $u, w \in V$ such that v + w = v + u = 0. Then $v + w + w = v + u + w \implies (v + w) + w = (v + w) + u \implies w = u$.
- $0 = 0 \cdot v$ for all $v \in V$. Proof: $0 \cdot v = (0+0) \cdot v = 0 \cdot v + 0 \cdot v \implies 0 = 0 \cdot v$.
- $-v = (-1) \cdot v$ for all $v \in V$. Proof: $(-1) \cdot v + v = (-1) \cdot v + 1 \cdot v = (-1+1) \cdot v = 0$. Thus $(-1) \cdot v = -v$.
- The scalars are always from a field, usually $\mathbb R$ or $\mathbb C$.
- An $m \times n$ matrix is a rectangular array with m rows and n columns. Entries of a matrix are denoted a_{ij} or $(A)_{i,j}$, where i is the row and j is the column.
- Given a matrix A, its transpose A^T is the matrix formed by transforming the rows of A into columns. Formally, $(A)_{i,j} = (A^T)_{j,i}$.

2 Linear Combinations and Bases

- Let V be a vector space, and let $v_1, v_2, ..., v_p \in V$ be a collection of vectors. A linear combination of $v_1, v_2, ..., v_p$ is a sum of the form $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_p v_p = \sum_{k=1}^p \alpha_k v_k$.
- A system of vectors $v_1, v_2, ..., v_p \in V$ is called a basis for V if any vector $v \in V$ admits a unique representation as a linear combination of $v_1, v_2, ..., v_p$, i.e, $v = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_p v_p = \sum_{k=1}^p \alpha_k v_k$. The scalars $\alpha_1, \alpha_2, ..., \alpha_p$ are called the coordinates of v with respect to this basis.

- Consider the vector space \mathbb{F}^n , where \mathbb{F} is either \mathbb{R} or \mathbb{C} . Let $e_1, e_2, ..., e_n \in \mathbb{F}^n$, where e_k is the vector whose entries are all 0 except the kth entry, which is 1. Clearly, any vector in \mathbb{F}^n can be expressed uniquely as a linear combination of $e_1, e_2, ..., e_n$. This system is called the standard basis in \mathbb{F}^n .
- A system of vectors $v_1, v_2, ..., v_p \in V$ is called a generating system or spanning system if any vector in V can be represented as a linear combination of them.
- A linear combination $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_p v_p$ is called trivial if $a_k = 0$ for all k.
- A system of vectors $v_1, v_2, ..., v_p \in V$ is called linearly independent if the trivial linear combination is the only linear combination of $v_1, v_2, ..., v_p$ that equals 0.
- If a system is not linearly independent, it is said to be linearly dependent. I.e, if there exists a nontrivial linear combination of $v_1, v_2, ..., v_p$ that equals 0.
- A system of vectors $v_1, v_2, ..., v_p \in V$ is linearly dependent if and only if one of the vectors v_k can be represented as a linear combination of the others. Proof: Suppose the system $v_1, v_2, ..., v_p$ is linearly dependent. Then there exist scalars $\alpha_1, \alpha_2, ..., \alpha_p$, such that $\sum_{m=1}^p \alpha_m v_m = 0$ with $\sum_{m=1}^p |\alpha_m| \neq 0$. Let k be an index such that $\alpha_k \neq 0$. Then $\alpha_k v_k = -\sum_{m=1, m \neq k}^p \alpha_m v_m \implies v_k = \frac{1}{\alpha_k} \sum_{m=1, m \neq k}^p \alpha_m v_m$. Conversely, suppose $v_k = \sum_{m=1, m \neq k}^p \beta_m v_m$. Then $0 = v_k \sum_{m=1, m \neq k}^p \beta_m v_m$, which is a nontrivial linear combination. \blacksquare
- A basis is linearly independent. *Proof:* The trivial linear combination is equal to 0, but as each representation is unique, that is the only linear combination of the basis elements that equals 0. ■
- Thus every basis is linearly independent and a generating system.
- If a system of vectors $v_1, v_2, ..., v_p$ is a linearly independent generating system, then it is a basis. Proof: Let $v \in V$. Then $v = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_p v_p$ for some scalars $\alpha_1, \alpha_2, ..., \alpha_p$. Suppose v has another representation as a linear combination of $v_1, v_2, ..., v_p$, i.e, $v = a_1 v_1 + a_2 v_2 + ... + a_p v_p$. Then $0 = v v = (\alpha_1 a_1)v_1 + (\alpha_2 a_2)v_2 + ... + (\alpha_p a_p)v_p$. As the system is linearly independent, this is the trivial linear combination and so $\alpha_k a_k = 0$ for all k. Thus the representation is unique and $v_1, v_2, ..., v_p$ constitute a basis for V.
- Any finite generating system contains a basis. Proof: Suppose $v_1, v_2, ..., v_p \in V$ is a generating system. If it is linearly independent, we are done, so suppose that it isn't. Then there exists a vector v_k that can be represented as a linear combination of the others. Therefore any linear combination of $v_1, v_2, ..., v_p$ can be represented as a linear combination of those vectors without v_k . So we can delete v_k from the system and it will still be a generating system. If this new system is linearly independent, we are done. Otherwise this procedure will be repeated until we obtain a linearly independent system. The process must terminate because otherwise we would end up with an empty set.

3 Linear Transformations

- Let V, W be vector spaces over the same field \mathbb{F} . A function $T: V \to W$ is called a linear transformation if T(u+v) = T(u) + T(v), $T(\alpha \cdot v) = \alpha \cdot T(v)$ for all $u, v \in V$, all $\alpha \in \mathbb{F}$.
- Let $T: \mathbb{F}^n \to \mathbb{F}^m$ be a linear transformation. Let $e_1, e_2, ..., e_n$ be the standard basis in \mathbb{F}^n . Let $a_1, a_2, ... a_n \in \mathbb{F}^m$ such that $a_k = T(e_k)$ for all k. Let $x \in \mathbb{F}^n$, $x = (x_1, x_2, ..., x_n)$. Then $x = x_1e_1 + x_2e_2 + ... + x_ne_n$. Thus $T(x) = T(x_1e_1 + x_2e_2 + ... + x_ne_n) = x_1a_1 + x_2a_2 + ... + x_na_n$. Therefore knowing how a linear transformation T acts on the standard basis is enough to calculate T(x) for all $x \in V$.

- If we join the vectors $a_1, a_2, ..., a_n$ left to right, we obtain the matrix representation of the linear transformation, generally denoted [T]. If we multiply this matrix with a vector $x \in V$, we obtain T(x).
- In fact it is not necessary to consider the standard basis. The action of a linear transformation on any generating set is enough to describe it completely.
- Let $T:V\to W$ be a linear transformation. Then T(0)=0. Proof: $T(0)=T(0+0)=T(0)+T(0)\Longrightarrow T(0)=0$.

4 Vector Space of Linear Transformations

- Let $T_1, T_2 : V \to W$ be linear transformations and let α be a scalar. Define $T_1 + T_2(v) = T_1(v) + T_2(v)$ and $\alpha T(v) = \alpha \cdot (T(v))$. It is easy to check that $T_1 + T_2$ and αT are linear transformations themselves.
- For fixed vector spaces V and W, let the set of all linear transformations from V to W be denoted by L(V, W). It can easily be verified that L(V, W) is a vector space with respect to the operations defined above.

5 Matrix Multiplication

- The product of two matrices A and B is defined only if A is an $m \times n$ matrix and B is an $n \times r$ matrix.
- Matrix multiplication is defined as such: $(AB)_{i,j} = (A)_i \cdot (B)_j$. That is, $(AB)_{i,j}$ is the dot product of the *i*th row of A and the *j*th column of B.
- Let A, B, C be matrices, and suppose that the following products are defined. Then:
 - 1. A(BC) = (AB)C.
 - $2. \ A(B+C) = AB + AC.$
 - 3. $A(\alpha B) = (\alpha A)B = \alpha (AB)$.

Matrix multiplication is not, in general, commutative.

- $(AB)^T = B^T A^T$. Proof: Let $(AB)^T = C$, and $B^T A^T = D$. Let A be $m \times n$, and let B be $n \times r$. Then C is $r \times m$ and D is $r \times m$, so their dimensions match. $(C)_{i,j} = (AB)_{j,i} = \sum_{k=1}^{n} (A)_{j,k}(B)_{k,i}$. Now $(D)_{i,j}$ is the dot product of the ith row of B^T with the jth column of A^T , which is nothing but the ith column of B and the jth row of A. So $(D)_{i,j} = \sum_{k=1}^{n} (A)_{j,k}(B)_{k,i} = (C)_{i,j}$. Thus C = D.
- For a square $(n \times n)$ matrix A, its trace, denoted trace A, is the sum of all its diagonal entries, i.e, trace $A = \sum_{k=1}^{n} (A)_{k,k}$.
- Let A and B be matrices of size $m \times n$ and $n \times m$ respectively. Then, trace (AB) = trace (BA). Proof: trace $(AB) = \sum_{k=1}^{n} (A)_{1,k}(B)_{k,1} + \sum_{k=1}^{n} (A)_{2,k}(B)_{k,2} + \dots + \sum_{k=1}^{n} (A)_{m,k}(B)_{k,m}$. trace $(BA) = \sum_{k=1}^{m} (B)_{1,k}(A)_{k,1} + \sum_{k=1}^{m} (B)_{2,k}(A)_{k,2} + \dots + \sum_{k=1}^{m} (B)_{n,k}(A)_{k,n} = \sum_{k=2}^{m} (B)_{1,k}(A)_{k,1} + \sum_{k=2}^{m} (B)_{2,k}(A)_{k,2} + \dots + \sum_{k=2}^{m} (B)_{n,k}(A)_{k,n} + \sum_{k=1}^{m} (A)_{1,k}(B)_{k,1} = \sum_{k=3}^{m} (B)_{1,k}(A)_{k,1} + \sum_{k=3}^{m} (B)_{2,k}(A)_{k,2} + \dots$

... +
$$\sum_{k=3}^{m} (B)_{n,k} (A)_{k,n} + \sum_{k=1}^{n} (A)_{1,k} (B)_{k,1} + \sum_{k=1}^{n} (A)_{2,k} (B)_{k,2}$$
. Thus we can conclude that trace $(BA) = \sum_{k=1}^{n} (A)_{1,k} (B)_{k,1} + \sum_{k=1}^{n} (A)_{2,k} (B)_{k,2} + ... + \sum_{k=1}^{n} (A)_{m,k} (B)_{k,m} = \text{trace } (AB)$.

6 Invertible Transformations and Isomorphisms

- Let V be a vector space. Then $I:V\to V;\ I(v)=v$ for all $v\in V$ is called the identity transformation.
- If $I: \mathbb{F}^n \to \mathbb{F}^n$ is the identity transformation in \mathbb{F}^n , its matrix is the identity matrix of size n, denoted I_n ($n \times n$ matrix with 1 in the main diagonal entries and 0 everywhere else).
- Let $T: V \to W$ be a linear transformation. We say that T is left invertible if there exists $A: W \to V$ such that A(T(v)) = v for all $v \in V$. T is right invertible if there exists $B: W \to V$ such that T(B(v)) = v for all $v \in V$. I.e, $A \circ T = I_V$ and $T \circ B = I_W$, where I is the identity transformation in V and W respectively. If T is both left and right invertible, it is said to be invertible.
- If $T: V \to W$ is invertible, then its left and right inverses A and B are the same and unique. Proof: AT = I = TB. Then ATB = (AT)B = IB = B, but ATB = A(TB) = AI = A. Thus B = A. As for uniqueness, suppose there exists A_1 such that $A_1T = I$. Then repeating the above reasoning we get $A_1 = B = A$.
- Corollary: A linear transformation $T:V\to W$ is invertible if and only if there exists a unique linear transformation $T^{-1}:W\to V$ such that $T\circ T^{-1}=I_W$ and $T^{-1}\circ T=I_V$.
- A matrix is invertible if its corresponding linear transformation is invertible.
- An invertible matrix must always be square $(n \times n)$.
- If linear transformations A and B are invertible, then if the product AB is defined, it is invertible and $(AB)^{-1} = B^{-1}A^{-1}$. Proof: $(AB)(B^{-1}A^{-1}) = AIA^{-1} = I$. And $(B^{-1}A^{-1})AB = B^{-1}IB = I$.
- If a matrix A is invertible, then A^T is also invertible and $(A^T)^{-1} = (A^{-1})^T$. Proof: Since $(AB)^T = B^TA^T$, it follows that $(A^{-1})^TA^T = (AA^{-1})^T = I^T = I$. Similarly, $A^T(A^{-1})^T = (A^{-1}A)^T = I$.
- An invertible linear transformation is called an isomorphism. Two vector spaces V and W are isomorphic if an isomorphism between them exists, denoted $V \cong W$.
- Let $T: V \to W$ be an isomorphism, and let $v_1, v_2, ..., v_n$ be linearly independent in V. Then the system $T(v_1), T(v_2), ..., T(v_n)$ is linearly independent in W. Proof: Suppose there exist scalars $\alpha_1, \alpha_2, ..., \alpha_n$, not all 0, such that $\alpha_1 T(v_1) + \alpha_2 T(v_2) + ... + \alpha_n T(v_n) = 0$. Then $T(\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n) = 0$. As T is an isomorphism, T(0) = 0, and thus $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n = 0$, which is a contradiction. So $T(v_1), T(v_2), ..., T(v_n)$ are linearly independent. \blacksquare
- Let $T: V \to W$ be an isomorphism, and let $v_1, v_2, ..., v_n$ be a generating system in V. Then $T(v_1), T(v_2), ..., T(v_n)$ is a generating system in W. Proof: Let $w \in W$. As T is an isomorphism, there exists $v \in V$ such that T(v) = w. There exist scalars $\alpha_1, \alpha_2, ..., \alpha_n$ such that $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n = v$. Thus $T(\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n) = T(v) \Longrightarrow \alpha_1 T(v_1) + \alpha_2 T(v_2) + ... + \alpha_n T(v_n) = w$. Therefore $T(v_1), T(v_2), ..., T(v_n)$ is a generating system.
- Corollary: Let $T: V \to W$ be an isomorphism, and let $v_1, v_2, ..., v_n$ be a basis in V. Then $T(v_1), T(v_2), ..., T(v_n)$ is a basis in W.
- Let $T: V \to W$ be a linear transformation, and let $v_1, v_2, ..., v_n$ and $w_1, w_2, ..., w_n$ be bases in V and W respectively. If $T(v_k) = w_k$ for all k, then T is an isomorphism. Proof: Let $T^{-1}: W \to V$, $T^{-1}(w_k) = v_k$ for all k. So T is invertible and thus an isomorphism.

- Let $A: X \to Y$ be a linear transformation. Then A is invertible if and only if for all $b \in Y$, the equation Ax = b has a unique solution in X. Proof: Suppose A is invertible. Then $x = A^{-1}b$ is a solution for the equation. Suppose that for some $x_1 \in X$, $Ax_1 = b$. Then $A^{-1}Ax_1 = A^{-1}b \implies x_1 = A^{-1}b = x$. Conversely, suppose the equation has a unique solution in X for all $b \in Y$. Let T(b) be this unique solution for each $b \in Y$. Let $b_1, b_2 \in Y$ and let α_1, α_2 be scalars. Let $x_1 = T(b_1)$ and let $x_2 = T(b_2)$. Then $A(\alpha_1x_1 + \alpha_2x_2) = \alpha_1Ax_1 + \alpha_2Ax_2 = \alpha_1b_1 + \alpha_2b_2$, and thus $T(\alpha_1b_1 + \alpha_2b_2) = \alpha_1T(b_1) + \alpha_2T(b_2)$. So T is a linear transformation. Now let $x \in X$ and let y = Ax. Then TAx = Ty = x, so TA = I. Similarly let $y \in Y$ and let x = Ty. Then ATy = Ax = y, so AT = I. Therefore $T = A^{-1}$.
- Corollary: An $n \times n$ matrix is invertible if and only if its columns form a basis in \mathbb{F}^n .

7 Subspaces

- A subspace of a vector space is a nonempty subset $V_0 \subseteq V$ such that $u, v \in V_0 \implies v + u \in V_0$, $v \in V_0 \implies \alpha \cdot v \in V_0$ for all scalars α . A subspace is a vector space itself, with the same operations as the parent space.
- Two trivial subspaces of any vector space V are V itself, and $\{0\}$, the set containing only the zero vector.
- Let U be a subspace of V. Then $0 \in U$. Proof: As U is nonempty, let $u \in U$. Then $-1 \cdot u = -u \in U \implies u + (-u) = 0 \in U$. ■
- Every linear transformation $T: V \to W$ has two associated subspaces:
 - 1. The null space, or kernel of T, denoted $Ker(T) = \{v \in V : T(v) = 0\}$.
 - 2. The range of T, denoted $Ran(T) = \{w \in W : \text{there exists } v \in V, \ T(v) = w\}.$
- Let $T:V \to W$ be a linear transformation. Then $\operatorname{Ker}(T)$ is a subspace of V. Proof: $0 \in \operatorname{Ker}(T)$, so it is nonempty. Suppose $u,v \in \operatorname{Ker}(T)$. Then $T(u) = T(v) = 0 \Longrightarrow T(u) + T(v) = T(u+v) = 0 \Longrightarrow u+v \in \operatorname{Ker}(T)$. Let α be a scalar. Then $T(\alpha \cdot v) = \alpha \cdot T(v) = \alpha \cdot 0 = 0$. Thus $\alpha \cdot v \in \operatorname{Ker}(T)$.
- Let $T: V \to W$ be a linear transformation. Then $\operatorname{Ran}(T)$ is a subspace of W. Proof: $0 \in \operatorname{Ran}(T)$, so it is nonempty. Suppose $u, v \in \operatorname{Ran}(T)$. Then there exist $a, b \in V$ such that T(a) = u and T(b) = v. As u + v = T(a) + T(b) = T(a + b), we have $u + v \in \operatorname{Ran}(T)$. Also $\alpha \cdot v = \alpha \cdot T(b) = T(\alpha \cdot b)$, so $\alpha \cdot v \in \operatorname{Ran}(T)$.
- Given a system of vectors $v_1, v_2, ..., v_n \in V$, their linear span, denoted span $(v_1, v_2, ..., v_n)$, is the set of all linear combinations of $v_1, v_2, ..., v_n$.
- Let $v_1, v_2, ..., v_n \in V$. Then $\operatorname{span}(v_1, v_2, ..., v_n)$ is a subspace of V. Proof: The trivial linear combination, i.e $0 \in \operatorname{span}(v_1, v_2, ..., v_n)$, so it is nonempty. Let $u, w \in \operatorname{span}(v_1, v_2, ..., v_n)$. Then $u = \alpha_1 v_1 + ... + \alpha_n v_n$ and $w = \beta_1 v_1 + ... + \beta_n v_n$. So $(\alpha_1 + \beta_1)v_1 + ... + (\alpha_n + \beta_n)v_n = u + w \in \operatorname{span}(v_1, v_2, ..., v_n)$. Let γ be a scalar. Then $(\gamma \alpha_1)v_1 + ... + (\gamma \alpha_n)v_n = \gamma \cdot u \in \operatorname{span}(v_1, v_2, ..., v_n)$.
- Let X and Y be subspaces of V. Then $X \cap Y$ is a subspace of V. Proof: As $0 \in X$ and $0 \in Y$, $0 \in X \cap Y$ and thus it is nonempty. Let $u, v \in X \cap Y$. As X and Y are both subspaces themselves, u + v and $\alpha \cdot v$ belong to both of them. So u + v, $\alpha \cdot v \in X \cap Y$.
- Let $X, Y \subset V$. Then $X + Y = \{v \in V : v = x + y, x \in X, y \in Y\}$. That is, X + Y is the set of all vectors in V that can be expressed as the sum of a vector from X and a vector from Y.
- X+Y is a subspace of V if X and Y are subspaces themselves. Proof: 0=0+0 so $0 \in X+Y$. Suppose $u,v \in X+Y$. Then $u=x_1+y_1$ and $v=x_2+y_2$ where $x_1,x_2 \in X$ and $y_1,y_2 \in Y$. Then $(x_1+x_2)+(y_1+y_2)=u+v \in X+Y$. Also, $\alpha \cdot x_1+\alpha \cdot y_1=\alpha \cdot u \in X+Y$.