# EF5 Parameters



# **CREST/Water Balance**

| Parameter | Min    | Max    | Effect                                            |
|-----------|--------|--------|---------------------------------------------------|
| WM        | 5.000  | 250.00 | Increase → soil holds more water → less runoff    |
| В         | 0.100  | 20.00  | Increase → less infiltration → more runoff        |
| IM        | 0.010  | 0.50   | Increase → less infiltration → more runoff        |
| KE        | 0.001  | 1.00   | Increase → use more water for PET → less runoff   |
| FC        | 0.000  | 150.00 | Increase → water enters soil easily → less runoff |
| IWU       | 24.999 | 25.00  | Increase → less space for water → more runoff     |

## WM

- Maximum soil water capacity (depth integrated pore space) of the model soil layer in millimeters
- Physically, a function of several soil properties
- How much water the soil can store
- Important in calibration

В

- Exponent of the variable infiltration curve
- Increasing B partitions more of the surface water into runoff for a particular soil moisture condition
- Important in calibration

#### IM

- Impervious area ratio
- Percentage area on a grid cell by grid cell basis covered by impermeable material (rocks, rocky soils, concrete, other human development)
- Can be "geographic" for geographic standard lat/lon projection

## KE

- Adjustment factor to PET grids
- Standard FEWSNET PET grids provided with EF5 training run a little too high (too much PET), so this should generally be less than one

## FC

- Soil saturated hydraulic conductivity in mm/hr
- Describes how easily water travels through saturated soils
- Higher values will reduce runoff by bringing more water into the soil

## **IWU**

- Initial value of soil water
- Generally assumed to be around 25%, but if you use a warm up period you won't need to worry about this parameter

# **EF5 Parameters**



# **Kinematic Wave (Routing)**

| Parameter | Min                | Max                 | Effect/Notes                                      |
|-----------|--------------------|---------------------|---------------------------------------------------|
| TH        | 30 km <sup>2</sup> | 300 km <sup>2</sup> | (convert to grid cell space in control file)      |
| UNDER     | 0.0001             | 3.00000             | Increase → faster interflow speed → faster runoff |
| LEAKI     | 0.0100             | 1.00000             | Increase → water leaks from interflow → faster    |
| ISU       | 0.0000             | 0.00001             | Increase → immediate runoff → bad early peak      |
| ALPHA     | 0.0100             | 3.00000             | Increase → incr. Q for const. A → slower peak     |
| BETA      | 0.0100             | 1.00000             | Increase → incr. Q for const. A → slower peak     |
| ALPHA0    | 0.0100             | 5.00000             | Increase → incr. Q for const. A → slower peak     |

# ΤH

- Threshold for how many cells must drain into a cell for it to be considered part of a river
- Depends on resolution of topographic files
- Convert from grid cells to actual area in square kilometers and then pick a TH (in grid cells) that would be between 30 and 300 square kilometers

### **UNDER**

- Interflow flow speed multiplier
- Determines how fast water moves downstream through the interflow layer

## **LEAKI**

- Amount of water leaking out of the interflow reservoir at each time step
- Water leaks downstream into the next cell's interflow reservoir

## ISU

- Initial value of the interflow reservoir
- Usually should be zero; otherwise will cause an unphysical peak in the simulation at the beginning of the hydrograph

## **ALPHA**

- Multiplier in the  $Q = \alpha A^{\beta}$  equation
- Increasing ALPHA results in slower flood waves as Q increases at that point and not downstream

### BETA

- Exponent in the  $Q = \alpha A^{\beta}$  equation
- Increasing BETA results in slower flood waves as Q increases at that point and not downstream

## ALPHA0

- Multiplier in the  $Q = \alpha A^{\beta}$  equation for non channel cells
- Behaves similarly to ALPHA
- BETA is set to 0.6 for all non channel cells