

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Veröffentlichungsnummer:

0 339 308
A1

⑫

EUROPÄISCHE PATENTANMELDUNG

⑬ Anmeldenummer: 89105859.6

⑮ Int. Cl. 4: B28D 1/28

⑭ Anmelddatum: 04.04.89

⑯ Priorität: 27.04.88 DE 3814148

⑰ Veröffentlichungstag der Anmeldung:
02.11.89 Patentblatt 89/44

⑲ Benannte Vertragsstaaten:
AT BE CH DE FR GB LI NL

⑳ Anmelder: SF-Vollverbundstein-Kooperation
GmbH
Bremerhavener Heerstrasse 14
D-2820 Bremen 77(DE)

㉑ Erfinder: Hagenah, Gerhard
Walter-Bertelsmann-Weg 25
D-2862 Worpsswede(DE)

㉒ Vertreter: Bolte, Erich, Dipl.-Ing. et al
c/o Meissner, Bolte & Partner Patentanwälte
Holleralee 73
D-2800 Bremen 1(DE)

㉓ Verfahren und Vorrichtung zum künstlichen Altern von Betonsteinen sowie künstlich gealterter Betonstein.

㉔ Bei einer Steinfertigungsanlage werden auf Fertigungsbrettern (14) angeordnete Lagen von Betonsteinen (10) kontinuierlich durch eine Hammervorrichtung (23) hindurchgefördert.

Fig. 3

EP 0 339 308 A1

Verfahren und Vorrichtung zum künstlichen Altern von Betonsteinen sowie künstlich gealterter Betonstein

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum künstlichen Altern von Betonsteinen (Pflastersteinen) durch Schlagbehandlung von Steinoberflächen (Sichtflächen) und Steinkanten. Des weiteren betrifft die Erfindung oberflächenbehandelte Betonsteine, insbesondere im Bereich der Sichtseite behandelte Pflastersteine.

Betonsteine (Pflastersteine) finden weitverbreiteten Einsatz im Wege, Straßen- und Platzbau. Oftmals kommt es hierbei zu einem Nebeneinander alter Bausubstanz und neu angelegter Pflasterbereiche. Besonders auf dem Gebiet der Altstadtsanierung herrscht mittlerweile ein hoher Anspruch, wenn es z.B. darum geht, Straßen, Wege und Plätze mit einer neuen Pflasterdecke zu versehen, die sich harmonisch in das von Bauten geprägte Erscheinungsbild von Straßenzügen einfügt. Da es sich bei Betonsteinen (Pflastersteinen) um einen neuen Baustoff handelt, erweist sich eine künstliche Alterung der Betonsteine als notwendig.

In der DE-OS 36 21 276 ist ein Verfahren gezeigt, bei dem eine Vorrichtung mit "Stockmeißeln" eingesetzt wird, die unter entsprechender Belastung auf die Oberfläche von einlagig auf einer Platte angeordneten Pflastersteinen einwirken. Hierdurch werden einerseits die Kanten gebrochen, andererseits erhält die Oberfläche der Pflastersteine infolge der Bearbeitung durch die schaftständigen "Stockmeißel" eine markante, für eine gealterte Steinoberfläche eher atypische Struktur. Der so bearbeitete Pflasterstein ist seinem Erscheinungsbild nach eher ein Strukturstein als ein künstlich gealterter Pflasterstein. Ein weiterer Nachteil dieses Verfahrens ist, daß für die Dauer der Bearbeitung der Steinoberflächen mit der in einer Steinfertigungsanlage integrierten "Stockmeißel"-Vorrichtung jede Steinlage dem ansonsten kontinuierlichen Förderfluß der Steinfertigungsanlage entnommen werden muß.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung der eingangs genannten Art zu schaffen, mit dem bzw. der ohne Beeinflussung des Förderflusses der Steinfertigungsanlage Sichtflächen von Betonsteinen zur Erzielung eines gealterten Aussehens mechanisch nachbehandelt werden, derart, daß sie trotz einer mechanischen Oberflächenbehandlung ein einem natürlichen Alterungszustand entsprechendes Erscheinungsbild haben.

Es ist ferner Aufgabe, entsprechend oberflächenbehandelte Betonsteine, insbesondere Pflastersteine, bereitzustellen. Zur Lösung dieser Aufgabe ist das erfindungsgemäße Verfahren dadurch gekennzeichnet, daß die für das künstliche Altern

erforderliche Bearbeitung während des kontinuierlichen Fertigungsablaufs in einer Steinfertigungsanlage für Betonsteine mittels einer in den Fertigungsablauf integrierten Hammervorrichtung erfolgt, die auf eine auf einem Fertigungsbrett befindliche Fertigungsformation von Betonsteinen einwirkt.

Die Bearbeitung der Oberflächen mit einem Hammer als Schlagwerkzeug, also einem gegenüber einem "Stockmeißel" stumpfen Gegenstand, ermöglicht zum einen ein sauberes Brechen der Kanten, zum anderen aber auch eine Oberflächenbehandlung, die der Sichtfläche eher ein Erscheinungsbild nach Art einer Patina verleiht als das einer strukturierten Oberfläche, wie sie durch Anwendung des in der DE-OS 36 21 276 beschriebenen Verfahrens erzielt wird.

Die auf einem Fertigungsbrett angeordnete Fertigungsformation von Betonsteinen wird stetig unter der oberhalb dieser installierten Hammervorrichtung hindurchgeführt. Dabei erfolgt gleichzeitig ein Verfahren der Hammervorrichtung quer zur Förderrichtung. Hierdurch wird eine einseitig ausgerichtete Orientierung der durch die Hammerschläge verursachten Spuren auf der Sichtfläche ausgeschlossen und damit eine natürlich erscheinende Oberfläche erreicht.

Die in der erfindungsgemäßen Hammervorrichtung eingesetzten Werkzeuge zur Bearbeitung der Betonsteine sind Hammerwerkzeuge mit abgerundeten Schlagflächen. Durch diese Ausbildung der Schlagflächen wird eine starke Zerkleinerung der Oberflächen, die einem Alterungseffekt entgegensteht, verhindert und gleichwohl ein geringer, leicht ungleichmäßiger alterungstypischer Materialabtrag erzielt. Die Hammervorrichtung besteht aus einem Vorrichtungsgestell, in dem quer zur Förderrichtung der Fertigungsformation mehrere Hammeraggregate an einem gemeinsamen Träger montiert sind.

Zur Erzielung einer möglichst großen Bearbeitungsdichte sind die Hammeraggregate in zwei Reihen, jeweils auf Lücke zueinander versetzt am Träger des Vorrichtungsgestells angeordnet. Zur Sicherung der Fertigungsformation auf dem Fertigungsbrett während der Schlagbeaufschlagung durch die Hammervorrichtung ist eine verfahrbare Haltevorrichtung vorgesehen.

Nachstehend wird eine bevorzugte Ausführungsform einer erfindungsmäßig ausgebildeten Hammervorrichtung sowie die Anordnung derselben innerhalb einer Beton-Fertigungsanlage unter Darstellung des erfindungsgemäßen Verfahrens sowie eines erfindungsgemäß hergestellten Beton-

steins (Pflasterstein) näher beschrieben. Es zeigen:
Fig. 1 einen Bereich einer Fertigungsformation in Draufsicht,

Fig. 2 der Bereich der Fertigungsformation nach Fig. 1 in Seitenansicht,

Fig. 3 eine Hammervorrichtung im Bereich einer Transportbahn für Betonsteine,

Fig. 4 eine Haltevorrichtung als Einzelteil der Fig. 3 in Draufsicht,

Fig. 5 die Hammervorrichtung nach Fig. 3 in Längsansicht der zugeordneten Transportbahn,

Fig. 6 eine Steinfertigungsanlage mit Hammervorrichtung auf der Trockenbetonseite in schematischer Draufsicht.

Betonsteine 10 werden in der Regel in an sich bekannten Steinfertigungsanlagen hergestellt (Fig. 6). Diese bestehen aus einer Steinfertigungsma schine 11, einer Transport bahn 12, vorzugsweise in Form eines kontinuierlich bewegten, endlosen Förderbands oder dgl., einem Querförderer in Form eines quer zur Förderrichtung der Transportbahn 12 hin- und herbewegbaren Gabelhubwagens 13, mittels dessen frisch geformte Betonsteine 10 auf Paletten bzw. Fertigungsbrettern 14 liegend in eine Trockenkammer (15) bringbar und nach Beendigung des Trocknungsvorgangs aus dieser wieder entnehmbar sind, und einer sich etwa parallel zur erstgenannten Transportbahn 12 erstreckenden weiteren Transportbahn 16, wobei zwischen den beiden Transportbahnen 12 und 16 die Trockenkammer bzw. Trockenkammern 15 angeordnet und die Transportbahn 12 Teil der Naßbetonseite und die Transportbahn 16 Teil der Trockenbetonseite der Steinfertigungsanlage sind. Mittels eines Abstaplergeräts 17 werden die getrockneten Betonsteine 10 von der trockenbetonseitigen Transportbahn 16 abgenommen und zu fertigen Steinpaketen 18 übereinandergestapelt. Die Steinpakete 18 können dann mittels eines Gabelhubwagens 19 an den Ort der Verladung gebracht werden. Auch die trockenbetonseitige Transportbahn 16 ist ebenso wie die naßbetonseitige Transportbahn 12 als Endlosförderer ausgebildet, z.B. in Form eines kontinuierlich angetriebenen endlosen Förderbands oder in Form eines Glieder- bzw. Kettenförderers.

Der Gabelhubwagen 13 ist vorzugsweise auf zwei sich parallel zueinander erstrecken Schienen 20 in Richtung des Doppelpfeils 21 hin- und herverfahrbare. Leere Fertigungsbretter 14 werden durch einen Förderer 22 zur Steinfertigungsma schine 11 transportiert. Der Förderer 22 ist vorzugsweise ein Band-, Rollen- oder Kettenförderer.

Bei dem Ausführungsbeispiel der Fig. 6 ist im Bereich der trockenbetonseitigen Transportbahn 16 eine Hammervorrichtung 23 angeordnet, wie sie im einzelnen weiter unten beschrieben werden wird. Die Hammervorrichtung 23 ist in den Produktions-

ablauf integriert, so daß die Behandlung von Beton steinen den Fertigungsablauf nicht beeinflußt, insbe sondere nicht verzögert.

Wie in Fig. 3 und 5 gezeigt, ist die Hammer vorrichtung 23 oberhalb der Transportbahn 16 orts fest installiert. Die wesentlichen Betandteile der Hammervorrichtung 23 sind an einem höhenverstellbaren Träger 24 montierte Hammeraggregate 25.

Die pneumatisch betriebenen Hammeraggrega te 25 enthalten Hammerwerkzeuge 26, die durch eine geeignete Druckluftsteuerung in eine vertikale Hin- und Herbewegung versetzt werden können, und zwar derart, daß die Schlagfrequenz und Schlagstärke der auf die Oberflächen der unter ihnen hindurchgeführten Betonsteine einwirkenden Hammerwerkzeuge 26 steuerbar sind.

In Fig. 1 und 2 ist schematisch die Bearbeitung von Betonsteinen 10 mit Hammerwerkzeugen 26 dargestellt. Fig. 1 zeigt einen Ausschnitt aus einer Lage von Betonsteinen 10 auf einem Fertigungs brett 14. Die eher regellose Anordnung der Beton steine 10 bei diesem Beispiel soll lediglich aufzeigen, daß für die Bearbeitung von Betonsteinen 10 mit Hammerwerkzeugen 26 eine geordnete Lage der Betonsteine 10 - wie es tatsächlich während des Fertigungsverfahrens in einer Steinfertigungs anlage der Fall ist - keine Voraussetzung ist. Die Betonsteine 10 werden in Richtung des Pfeils 27 unter den im Querschnitt dargestellten Hammer werkzeugen 26 hindurchgeführt. Gleichzeitig führen die mit dem Träger 24 (Fig. 3) verbundenen Ham merwerkzeuge 26 eine hin- und hergehende Quer bewegung in Richtung des Doppelpfeils 28 aus. Die Überlagerung dieser Querbewegung mit der Fortbewegung der Betonsteine 10 im Förderriß der Steinfertigungsanlage 11 hat zur Folge, daß die Hammerwerkzeuge 26 im Zuge der Fortbewegung der Betonsteine 10 auf deren gesamte Oberseite einwirken. Das Auftreffen der Hammerwerkzeuge 26 mit ihren abgerundeten Schlagflächen 29 verur sacht im Bereich von Oberkanten 30 der Betonsteine 10 ein Ausbrechen des Betons. Im Bereichen, die genügend weit entfernt von den Oberkanten 30 der Betonsteine 10 liegen, kommt es zu einer punktuellen, oberflächigen Verdichtung des Betons. Die Oberseite bleibt in sich glatt, ohne durch die mechanische Behandlung strukturiert oder gar zer klüftet zu wirken, erhält aber durch die punktuelle Schlagbeanspruchung mit den abgerundeten Schlagflächen 29 der Hammerwerkzeuge 26 eine Art Patina, die ihr ein gealtertes Aussehen verleiht.

Während die in zwei Reihen, jeweils auf Lücke zueinander versetzt am Träger 24 montierten Ham meraggregate 25 auf die auf dem Fertigungsbrett 14 angeordnete Lage von Betonsteinen 10 einwirken, ist die Lage auf dem Fertigungsbrett 14 durch eine Haltevorrichtung 31 gesichert, da die aufgrund

der Bearbeitung entstehenden Vibratlononen dazu führen könnten, daß die Betonsteine 10 seitlich vom Fertigungsbrett 14 gefördert werden.

Bei der Bearbeitung von Betonsteinen 10 mit der Hammervorrichtung 23 in einer Steinfertigungsanlage führen der Träger 24 sowie die Haltevorrichtung 31 zeitlich miteinander gekoppelte Bewegungen aus. Wenn sich ein Fertigungsbrett 14 mit einer Lage Betonsteine 10 der Hammervorrichtung 23 nähert, wird die Haltevorrichtung 31 über zwei pneumatisch gesteuerte Kolben-Zylinder-Einheiten 32 auf das Fertigungsbrett 14 abgesetzt. Die Haltevorrichtung 31 ist über Gleitschuhe 33 in Führungs schienen 34 geführt und kann somit der Förderbewegung des Transportbands 16 folgen. Erreicht das Fertigungsbrett 14 die Reihen der Hammeraggregate 25, senkt sich, über einen nicht dargestellten Sensor betätigt, der Träger 24 soweit ab, daß die ebenfalls über einen Sensor bei Kontakt mit den Betonsteinen 10 in Gang gesetzten Hammeraggregate 25 die unter diesen entlang geförderten Betonsteine 10 bearbeiten können. Das Absenken des Trägers 24 erfolgt pneumatisch über die Kolben-Zylinder-Einheit 35. Gleichzeitig mit dem Beginn der Bearbeitung wird über die pneumatisch gesteuerte Kolben-Zylinder-Einheit 36 der Träger 24 in die bereits beschriebene hin- und hergehende Querbewegung versetzt. Nach dem Durchlauf des Fertigungsbretts 14 durch die Hammervorrichtung 23 wird der Träger 24 mit den Hammeraggregaten 25 wieder nach oben verfahren und die Haltevorrichtung 31 vom Fertigungsbrett 14 abgehoben. Mit einer geeigneten, nicht dargestellten Transporteinrichtung wird die Haltevorrichtung 31 wieder in ihre Ausgangslage zurückverfahren, so daß sie sich erneut auf das im Förderfluß nächstfolgende Fertigungsbrett 14 absenken kann.

Die die Hammervorrichtung 23 durchlaufenden Betonsteine 10 können vor dem vollständigen Aus hären, das in der Regel eine Zeit von ca. 28 Tagen in Anspruch nimmt, durch die Hammerwerkzeuge 26 bearbeitet werden. Durch die abgerundete Ausführung der Schlagflächen 29 der Hammer werkzeuge 26 hält sich die mechanische Beanspruchung der noch nicht vollständig ausgehärteten, am Ende des Durchlaufs einer Stein fertigungsanlage erst ca. 24 Stunden alten Betonsteine 10 in Grenzen, so daß die Betonsteine 10 durch die beschriebene Art der Bearbeitung nicht zerstört werden.

Anstatt der pneumatisch arbeitenden Kolben Zylinder-Einheiten 32, 35 und 36 ist es natürlich auch denkbar, andere zur Durchführung des Verfahrens geeignete Mittel einzusetzen.

Ansprüche

- 5 1. Verfahren zum künstlichen Altern von Beton steinen (Pflastersteine) durch Schlagbehandlung von Steinoberflächen (Sichtflächen) und Steinkanten, dadurch gekennzeichnet, daß die für das künstliche Altern erforderliche Bearbeitung während des kontinuierlichen Fertigungsablaufs in einer Stein fertigungsanlage für Betonsteine (10) mittels einer in den Fertigungsablauf integrierten Hammer vorrichtung (23) erfolgt, die auf eine auf einem Fertigungsbrett (14) befindliche Fertigungsformation (Lage) von Betonsteinen (10) einwirkt.
- 10 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Fertigungsformation (Lage) stetig unter der ortsfesten Hammervorrichtung (23) hindurchgeführt wird.
- 15 3. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß in der Hammervorrichtung (23) installierte Hammeraggregate (25) während des Durchlaufs der Fertigungsformation (Lage) relativ, insbesondere quer zur Förderrichtung der Stein fertigungsanlage verfahren werden.
- 20 4. Vorrichtung zum künstlichen Altern von Betonsteinen (Pflastersteinen) durch Schlagbehandlung von Steinoberflächen (Sichtflächen) und Steinkanten, insbesondere nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die in einer Hammervorrichtung (23) eingesetzten Werkzeuge zur Bearbeitung der Betonsteine (10) Hammerwerkzeuge (26) mit stumpfen, vorzugsweise abgerundeten Schlagflächen (29) sind.
- 25 5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Hammervorrichtung (23) aus einem Vorrichtungsgestell besteht, in dem mehrere, insbesondere eine Reihe von Hammeraggregaten (25) an einem gemeinsamen, vorzugsweise quer zur Förderrichtung der Fertigungsformation (Lage) verfahrbaren Träger (24) angeordnet sind.
- 30 6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Hammeraggregate (25) in zwei Reihen, jeweils auf Lücke zueinander versetzt am Träger (24) der Hammervorrichtung (23) ange ordnet sind.
- 35 7. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Hammervorrichtung (23) eine verfahrbare Haltevorrichtung (31) aufweist, die die Fertigungsformation (Lage) während der Bearbeitung der Oberflächen (Sichtflächen) der Betonsteine (10) auf dem Fertigungsbrett (14) sichert.
- 40 8. Betonstein (Pflasterstein) mit rings um eine Seitenfläche (Sichtfläche) verlaufenden, unregelmäßig gebrochenen Kanten, dadurch gekennzeichnet, daß die Sichtfläche mit einer Hammervorrich tung (23) bearbeitet ist.
- 45 50 55

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 89105859.6

EINSCHLÄGIGE DOKUMENTE			EP 89105859.6
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrift Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
X	DE - C - 5 043 (SCHMIDT) * Spalte 1, Zeilen 27-31; Längenschnitt; Querschnitt *	1, 2, 3 5, 8	B 28 D 1/28
Y	--	4, 6	
X	DE - A - 1 752 141 (KUSSER) * Seite 12, Zeile 6 - Seite 13, Zeile 7 *	1, 2, 6 7, 8	
X	DE - A - 1 902 132 (KUSSER) * Seite 8, Zeilen 11-13; Seite 9, Zeilen 6-8 *	1, 8	
Y	CH - A - 77 496 (FOCHTENBERGER) * Fig. 5 *	4	
Y	US - A - 2 562 899 (FINN) * Spalte 2, Zeilen 46-49 *	6	RECHERCHIERTE SACHGESETZE (Int. Cl.4)
Y	DE - A1 - 3 334 771 (SIKU) * Fig. 1, 4, 6 *	6	B 28 D E 01 C

Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt.

Recherchenort	Abschlußdatum der Recherche	Prüfer
WIEN	21-07-1989	GLAUNACH

KATEGORIE DER GENANNTEN DOKUMENTEN

- X : von besonderer Bedeutung allein betrachtet
- Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
- A : technologischer Hintergrund
- O : nichtschriftliche Offenbarung
- P : Zwischenliteratur
- T : der Erfindung zugrunde liegende Theorien oder Grundsätze

- E : älteres Patentdokument, das jedoch erst am oder nach dem Anmelde datum veröffentlicht worden ist
- D : in der Anmeldung angeführtes Dokument
- L : aus andern Gründen angeführtes Dokument

- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument