Digital Image Processing Lab

MTH Junaidi, AP17110010074, CSE B

Lab 06: Frequency Domain Filtering

```
In [48]:
```

```
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import numpy as np
import cv2
```

In [49]:

```
lena = mpimg.imread("lena.png")
```

In [50]:

```
temp1 =[]
temp2 = []
for i in range(256):
    for j in range(256):
        temp2.append(sum(lena[i][j])/3)
    temp1.append(temp2)
    temp2 =[]
```

In [51]:

```
lena = np.array(temp1)
```

In [52]:

```
plt.imshow(lena, cmap='gray')
```

Out[52]:

<matplotlib.image.AxesImage at 0x1293c74d0>

localhost:8888/lab 1/24

Ideal_Low_Pass = ideal_LowPass(50, lena.shape)

```
In [53]:
def distance(point1,point2):
    return np.sqrt((point1[0]-point2[0])**2 + (point1[1]-point2[1])**2)
In [54]:
def ideal LowPass(D0, image shape):
    new = np.zeros(image_shape[:2])
    rows, cols = image shape[:2]
    center = (rows/2, cols/2)
    for v in range(cols):
        for u in range(rows):
            if distance((u,v), center) < D0:</pre>
                new[u,v] = 1
    return new
In [55]:
lena.max()
Out[55]:
1.0
In [56]:
lena = lena*256
lena.max()
Out[56]:
256.0
In [57]:
```

localhost:8888/lab 2/24

In [58]:

plt.imshow(Ideal_Low_Pass, cmap='gray')

Out[58]:

<matplotlib.image.AxesImage at 0x12923c710>

localhost:8888/lab 3/24

In [66]:

```
original = np.fft.fft2(lena)  #Fourier Transform of the image
center = np.fft.fftshift(original)  #Shifting the zero-frequency component to t
he center of the spectrum
plt.figure(figsize=(6.4*5, 4.8*5), constrained_layout=False)

#Ideal Low Pass Filter
LowPassCenter = center * ideal_LowPass(60,lena.shape)
LowPass = np.fft.ifftshift(LowPassCenter)
inverse_LowPass = np.fft.ifft2(LowPass)
Low_pass_lena = np.abs(inverse_LowPass)
plt.subplot(131),plt.imshow(Low_pass_lena, "gray")
```

localhost:8888/lab 4/24

Out[66]:

localhost:8888/lab 5/24

In [67]:

```
def butterworth_LowPass(D0, image_shape, n): #n = order of filter
  new = np.zeros(image_shape[:2])
  rows, cols = image_shape[:2]
  center = (rows/2, cols/2)

for v in range(cols):
    for u in range(rows):
        new[u,v] = 1/(1+(distance((u,v), center)/D0)**(2*n))
  return new
```

In [68]:

```
butter_worth_low_pass = butterworth_LowPass(50, lena.shape, 5)
```

In [69]:

```
plt.imshow(butter_worth_low_pass, cmap='gray')
```

Out[69]:

<matplotlib.image.AxesImage at 0x12bd4b8d0>

localhost:8888/lab 6/24

In [71]:

```
LowPassCenter = center * butterworth_LowPass(60,lena.shape,5)
LowPass = np.fft.ifftshift(LowPassCenter)
inverse_LowPass = np.fft.ifft2(LowPass)
plt.imshow(np.abs(inverse_LowPass), "gray")
```

Out[71]:

<matplotlib.image.AxesImage at 0x12bd29f50>

In [72]:

```
def gaussian_LowPass(D0, image_shape):
    new = np.zeros(image_shape[:2])
    rows, cols = image_shape[:2]
    center = (rows/2, cols/2)

    for v in range(cols):
        for u in range(rows):
            new[u,v] = np.exp(((-distance((u,v), center)**2)/(2*(D0**2))))
    return new
```

In [73]:

```
gaussian_low_pass = gaussian_LowPass(50, lena.shape)
```

localhost:8888/lab 7/24

In [74]:

```
plt.imshow(gaussian_low_pass, cmap='gray')
```

Out[74]:

<matplotlib.image.AxesImage at 0x12f5a3390>

In [77]:

```
LowPassCenter = center * gaussian_LowPass(60,lena.shape)
LowPass = np.fft.ifftshift(LowPassCenter)
inverse_LowPass = np.fft.ifft2(LowPass)
plt.imshow(np.abs(inverse_LowPass), "gray")
```

Out[77]:

<matplotlib.image.AxesImage at 0x12fd8b810>

1.b) Ringing effect

localhost:8888/lab 8/24

In [80]:

```
LowPassCenter = center * ideal_LowPass(60,lena.shape)
LowPass = np.fft.ifftshift(LowPassCenter)
inverse_LowPass = np.fft.ifft2(LowPass)
plt.imshow(np.abs(inverse_LowPass), "gray")
```

Out[80]:

<matplotlib.image.AxesImage at 0x12fccaed0>

1.c Butterworth Low pass filter with different cutoffs

In [83]:

```
#cut-off Frequency = 5
LowPassCenter = center * butterworth_LowPass(5,lena.shape,2)
LowPass = np.fft.ifftshift(LowPassCenter)
inverse_LowPass = np.fft.ifft2(LowPass)
plt.imshow(np.abs(inverse_LowPass), "gray"), plt.title("Butterworth Low Pass (Cut-off Frequency = 5)")
```

Out[83]:

```
(<matplotlib.image.AxesImage at 0x1303bbb50>,
  Text(0.5, 1.0, 'Butterworth Low Pass (Cut-off Frequency = 5)'))
```


localhost:8888/lab 9/24

In [84]:

```
#cut-off Frequency = 15
LowPassCenter = center * butterworth_LowPass(15,lena.shape,2)
LowPass = np.fft.ifftshift(LowPassCenter)
inverse_LowPass = np.fft.ifft2(LowPass)
plt.imshow(np.abs(inverse_LowPass), "gray"), plt.title("Butterworth Low Pass (Cut-off Frequency = 5)")
```

Out[84]:

```
(<matplotlib.image.AxesImage at 0x13254fd10>,
  Text(0.5, 1.0, 'Butterworth Low Pass (Cut-off Frequency = 5)'))
```


In [85]:

```
#cut-off Frequency = 30
LowPassCenter = center * butterworth_LowPass(30,lena.shape,2)
LowPass = np.fft.ifftshift(LowPassCenter)
inverse_LowPass = np.fft.ifft2(LowPass)
plt.imshow(np.abs(inverse_LowPass), "gray"), plt.title("Butterworth Low Pass (Cut-off Frequency = 5)")
```

Out[85]:

```
(<matplotlib.image.AxesImage at 0x130723e90>,
  Text(0.5, 1.0, 'Butterworth Low Pass (Cut-off Frequency = 5)'))
```


localhost:8888/lab 10/24

In [86]:

```
#cut-off Frequency = 90
LowPassCenter = center * butterworth_LowPass(90,lena.shape,2)
LowPass = np.fft.ifftshift(LowPassCenter)
inverse_LowPass = np.fft.ifft2(LowPass)
plt.imshow(np.abs(inverse_LowPass), "gray"), plt.title("Butterworth Low Pass (Cut-off Frequency = 5)")
```

Out[86]:

```
(<matplotlib.image.AxesImage at 0x1327bc090>,
  Text(0.5, 1.0, 'Butterworth Low Pass (Cut-off Frequency = 5)'))
```


In [87]:

```
#cut-off Frequency = 120
LowPassCenter = center * butterworth_LowPass(120,lena.shape,2)
LowPass = np.fft.ifftshift(LowPassCenter)
inverse_LowPass = np.fft.ifft2(LowPass)
plt.imshow(np.abs(inverse_LowPass), "gray"), plt.title("Butterworth Low Pass (Cut-off Frequency = 5)")
```

Out[87]:

```
(<matplotlib.image.AxesImage at 0x132902210>,
  Text(0.5, 1.0, 'Butterworth Low Pass (Cut-off Frequency = 5)'))
```


localhost:8888/lab 11/24

1.d Gaussian Low pass filter with different cutoffs

In [90]:

```
#cut-off Frequency = 5
LowPassCenter = center * gaussian_LowPass(5,lena.shape)
LowPass = np.fft.ifftshift(LowPassCenter)
inverse_LowPass = np.fft.ifft2(LowPass)
plt.imshow(np.abs(inverse_LowPass), "gray")
```

Out[90]:

<matplotlib.image.AxesImage at 0x12c7eff10>

In [91]:

```
#cut-off Frequency = 15
LowPassCenter = center * gaussian_LowPass(15,lena.shape)
LowPass = np.fft.ifftshift(LowPassCenter)
inverse_LowPass = np.fft.ifft2(LowPass)
plt.imshow(np.abs(inverse_LowPass), "gray")
```

Out[91]:

<matplotlib.image.AxesImage at 0x12c6d60d0>

localhost:8888/lab 12/24

In [92]:

```
#cut-off Frequency = 30
LowPassCenter = center * gaussian_LowPass(30,lena.shape)
LowPass = np.fft.ifftshift(LowPassCenter)
inverse_LowPass = np.fft.ifft2(LowPass)
plt.imshow(np.abs(inverse_LowPass), "gray")
```

Out[92]:

<matplotlib.image.AxesImage at 0x12ca2f250>

In [93]:

```
#cut-off Frequency = 90
LowPassCenter = center * gaussian_LowPass(90,lena.shape)
LowPass = np.fft.ifftshift(LowPassCenter)
inverse_LowPass = np.fft.ifft2(LowPass)
plt.imshow(np.abs(inverse_LowPass), "gray")
```

Out[93]:

<matplotlib.image.AxesImage at 0x12cb2c3d0>

localhost:8888/lab 13/24

In [94]:

```
#cut-off Frequency = 120
LowPassCenter = center * gaussian_LowPass(120,lena.shape)
LowPass = np.fft.ifftshift(LowPassCenter)
inverse_LowPass = np.fft.ifft2(LowPass)
plt.imshow(np.abs(inverse_LowPass), "gray")
```

Out[94]:

<matplotlib.image.AxesImage at 0x12cd26550>

Question 2

In [95]:

```
def ideal_HighPass(D0, image_shape):
    new = np.ones(image_shape[:2])
    rows, cols = image_shape[:2]
    center = (rows/2,cols/2)

for v in range(cols):
    for u in range(rows):
        if distance((u,v), center) < D0:
            new[u,v] = 0
    return new</pre>
```

In [96]:

```
Ideal_high_pass = ideal_HighPass(50 , lena.shape)
```

localhost:8888/lab 14/24

In [97]:

```
plt.imshow(Ideal_high_pass, cmap='gray')
```

Out[97]:

<matplotlib.image.AxesImage at 0x12cf7fa50>

In [106]:

```
original = np.fft.fft2(lena)
center = np.fft.fftshift(original)
```

In [112]:

```
HighPassCenter = center * ideal_HighPass(60,lena.shape)
HighPass = np.fft.ifftshift(HighPassCenter)
inverse_HighPass = np.fft.ifft2(HighPass)
plt.imshow(np.abs(inverse_HighPass), "gray")
```

Out[112]:

<matplotlib.image.AxesImage at 0x12e1aa650>

localhost:8888/lab 15/24

In [98]:

```
def butterworth_HighPass(D0,image_shape,n): #n = order of filter
  new = np.zeros(image_shape[:2])
  rows, cols = image_shape[:2]
  center = (rows/2,cols/2)

for v in range(cols):
    for u in range(rows):
        new[u,v] = 1-1/(1+(distance((u,v), center)/D0)**(2*n))
  return new
```

In [100]:

```
butter_worth_highpass = butterworth_HighPass(50 , lena.shape , 5)
```

In [101]:

```
plt.imshow(butter_worth_highpass, cmap='gray')
```

Out[101]:

<matplotlib.image.AxesImage at 0x12d097210>

localhost:8888/lab 16/24

In [111]:

```
HighPassCenter = center * butterworth_HighPass(60,lena.shape,5)
HighPass = np.fft.ifftshift(HighPassCenter)
inverse_HighPass = np.fft.ifft2(HighPass)
plt.imshow(np.abs(inverse_HighPass), "gray")
```

Out[111]:

<matplotlib.image.AxesImage at 0x12d7dcdd0>

In [102]:

```
def gaussian_HighPass(D0, image_shape):
    new = np.zeros(image_shape[:2])
    rows, cols = image_shape[:2]
    center = (rows/2,cols/2)

for v in range(cols):
    for u in range(rows):
        new[u,v] = 1 - np.exp(((-distance((u,v), center)**2)/(2*(D0**2))))
    return new
```

In [103]:

```
gaussian_high_pass = gaussian_HighPass(50 , lena.shape)
```

localhost:8888/lab 17/24

In [104]:

```
plt.imshow(gaussian_high_pass, cmap='gray')
```

Out[104]:

<matplotlib.image.AxesImage at 0x12cf8a590>

In [115]:

```
HighPassCenter = center * gaussian_HighPass(60,lena.shape)
HighPass = np.fft.ifftshift(HighPassCenter)
inverse_HighPass = np.fft.ifft2(HighPass)
plt.imshow(np.abs(inverse_HighPass), "gray")
```

Out[115]:

<matplotlib.image.AxesImage at 0x12fbc55d0>

2.b Rigging Effect

localhost:8888/lab 18/24

In [118]:

```
HighPassCenter = center * ideal_HighPass(60,lena.shape)
HighPass = np.fft.ifftshift(HighPassCenter)
inverse_HighPass = np.fft.ifft2(HighPass)
plt.imshow(np.abs(inverse_HighPass), "gray")
```

Out[118]:

<matplotlib.image.AxesImage at 0x12fc12550>

2.C Comparing multiple butters worth filers with different cutoff frequencies

In [122]:

```
#Cut-off Frequency = 5
HighPassCenter = center * butterworth_HighPass(5,lena.shape,2)
HighPass = np.fft.ifftshift(HighPassCenter)
inverse_HighPass = np.fft.ifft2(HighPass)
plt.imshow(np.abs(inverse_HighPass), "gray")
```

Out[122]:

<matplotlib.image.AxesImage at 0x1316adcd0>

localhost:8888/lab 19/24

In [123]:

```
#Cut-off Frequency = 15
HighPassCenter = center * butterworth_HighPass(15,lena.shape,2)
HighPass = np.fft.ifftshift(HighPassCenter)
inverse_HighPass = np.fft.ifft2(HighPass)
plt.imshow(np.abs(inverse_HighPass), "gray")
```

Out[123]:

<matplotlib.image.AxesImage at 0x12dc3ae50>

In [124]:

```
#Cut-off Frequency = 30
HighPassCenter = center * butterworth_HighPass(30,lena.shape,2)
HighPass = np.fft.ifftshift(HighPassCenter)
inverse_HighPass = np.fft.ifft2(HighPass)
plt.imshow(np.abs(inverse_HighPass), "gray")
```

Out[124]:

<matplotlib.image.AxesImage at 0x131b0dfd0>

localhost:8888/lab 20/24

In [125]:

```
#Cut-off Frequency = 90
HighPassCenter = center * butterworth_HighPass(90,lena.shape,2)
HighPass = np.fft.ifftshift(HighPassCenter)
inverse_HighPass = np.fft.ifft2(HighPass)
plt.imshow(np.abs(inverse_HighPass), "gray")
```

Out[125]:

<matplotlib.image.AxesImage at 0x131b78190>

In [126]:

```
#Cut-off Frequency = 120
HighPassCenter = center * butterworth_HighPass(120,lena.shape,2)
HighPass = np.fft.ifftshift(HighPassCenter)
inverse_HighPass = np.fft.ifft2(HighPass)
plt.imshow(np.abs(inverse_HighPass), "gray")
```

Out[126]:

<matplotlib.image.AxesImage at 0x131dcd310>

2.D Comparing multiple gaussian filers with different cutoff frequencies

localhost:8888/lab 21/24

In [128]:

```
# Cutoff frequency = 5
HighPassCenter = center * gaussian_HighPass(5,lena.shape)
HighPass = np.fft.ifftshift(HighPassCenter)
inverse_HighPass = np.fft.ifft2(HighPass)
plt.imshow(np.abs(inverse_HighPass), "gray")
```

Out[128]:

<matplotlib.image.AxesImage at 0x131f66550>

In [129]:

```
# Cutoff frequency = 15
HighPassCenter = center * gaussian_HighPass(15,lena.shape)
HighPass = np.fft.ifftshift(HighPassCenter)
inverse_HighPass = np.fft.ifft2(HighPass)
plt.imshow(np.abs(inverse_HighPass), "gray")
```

Out[129]:

<matplotlib.image.AxesImage at 0x1320bf750>

localhost:8888/lab 22/24

In [130]:

```
# Cutoff frequency = 30
HighPassCenter = center * gaussian_HighPass(30,lena.shape)
HighPass = np.fft.ifftshift(HighPassCenter)
inverse_HighPass = np.fft.ifft2(HighPass)
plt.imshow(np.abs(inverse_HighPass), "gray")
```

Out[130]:

<matplotlib.image.AxesImage at 0x13221c8d0>

In [131]:

```
# Cutoff frequency = 90
HighPassCenter = center * gaussian_HighPass(90,lena.shape)
HighPass = np.fft.ifftshift(HighPassCenter)
inverse_HighPass = np.fft.ifft2(HighPass)
plt.imshow(np.abs(inverse_HighPass), "gray")
```

Out[131]:

<matplotlib.image.AxesImage at 0x132377a50>

localhost:8888/lab 23/24

In [132]:

```
# Cutoff frequency = 120
HighPassCenter = center * gaussian_HighPass(120,lena.shape)
HighPass = np.fft.ifftshift(HighPassCenter)
inverse_HighPass = np.fft.ifft2(HighPass)
plt.imshow(np.abs(inverse_HighPass), "gray")
```

Out[132]:

<matplotlib.image.AxesImage at 0x132c33b90>

THE END

In []:

localhost:8888/lab 24/24