NetworkX: a Python module (and related modules)

Inspired by the tutorial of Salvatore Scellato for the course "Social and Technological Network Analysis", University of Cambridge (2011)

Introduction to NetworkX

"Python package for the creation, manipulation and study of the structure, dynamics and functions of complex networks."

- Data structures for representing many types of networks, or graphs
- Nodes can be any (hashable) Python object, edges can contain arbitrary data
- Flexibility ideal for representing networks found in many different fields
- Easy to install on multiple platforms
- Online up-to-date documentation
- First public release in April 2005

Introduction to NetworkX - design requirements

- Tool to study the structure and dynamics of social, biological, and infrastructure networks
- Ease-of-use and rapid development
- Open-source tool base that can easily grow in a multidisciplinary environment with non-expert users and developers
- An easy interface to existing code bases written in C, C++, and FORTRAN
- To painlessly slurp in relatively large nonstandard data sets

When should I AVOID NetworkX to perform network analysis?

- Large-scale problems that require faster approaches (i.e. massive networks with 100M/1B edges)
- Better use of memory/threads than Python (large objects, parallel computation)

NetworkX: online resources

https://networkx.org/documentation/stable/tutorial.html

Contact

Mailing list Issue tracker Source

Releases

Stable (notes)

2.6.2 — July 2021 download | doc | pdf

Latest (notes)

2.7 development github | doc | pdf

Archive

NetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks.

Software for complex networks

- · Data structures for graphs, digraphs, and multigraphs
- · Many standard graph algorithms
- · Network structure and analysis measures
- · Generators for classic graphs, random graphs, and synthetic networks
- · Nodes can be "anything" (e.g., text, images, XML records)
- · Edges can hold arbitrary data (e.g., weights, time-series)
- · Open source 3-clause BSD license
- · Well tested with over 90% code coverage
- Additional benefits from Python include fast prototyping, easy to teach, and multiplatform