

10/019590

531 Rec'd PCT/US 26 DEC 2001

UNITED STATES PATENT AND TRADEMARK OFFICE

Examiner: Group: Attorney Docket # 1959

Applicant(s) : Kastinger, G., et al

Serial No. :

Filed :

For : UNIPOLAR TRANSVERSE FLUX MACHINE

SIMULTANEOUS AMENDMENT

December 26, 2001

Honorable Commissioner of Patents and Trademarks
Washington, D.C. 20231

SIRS:

Simultaneously with filing of the above identified application
please amend the same as follows:

In the Claims:

Cancel all claims without prejudice.

Substitute the claims attached hereto.

REMARKS:

This Amendment is submitted simultaneously with filing of the above identified application.

With the present Amendment applicant has amended the claims so as to eliminate their multiple dependency.

10/019590

531 Rec'd PCT 26 DEC 2001

Consideration and allowance of the present application is most respectfully
requested.

Respectfully submitted,

Michael J. Striker
Attorney for Applicant(s)
Reg. No. 27233

10/019590

531 Rec'd PCT 26 DEC 2001

Claims

1. A unipolar transverse flux machine, having a rotor (12) rotatable about a rotor axis (19), which rotor has at least one rotor module (15) each assembled from two coaxial ferromagnetic rotor rings (16, 17) toothed with a constant tooth pitch and one permanent-magnet ring (18) fastened between the rotor rings (16, 17) and magnetized unipolarly in the direction of the rotor axis (19), and having a stator (11), concentric with the rotor axis (19), which stator has at least one stator module (14) associated with the rotor module (15), which stator module comprises an annular coil (23; 23') disposed coaxially to the rotor axis (19) and U-shaped stator yokes (24), fitting over the annular coil, which are fixed with a pitch corresponding to the tooth pitch on a housing (10), characterized in that the toothing of the rotor rings (16, 17) is provided solely on the outer circumference of the rotor rings (16, 17) remote from the rotor axis (19); that in the stator module (14), the stator yokes (24) are disposed such that one leg (241) of each of the stator yokes (24) is located facing one rotor ring (16), and the other leg (242) of each of the stator yokes (24) is located facing the other rotor ring (17), in each case with a radial gap spacing; and that one short-circuit element (25; 25') each is disposed between successive stator yokes (24) in the direction of rotation of the rotor (12), which short-circuit element extends axially over both rotor rings (16, 17) and faces them with radial gap spacing.

2. The machine of claim 1, characterized in that the rotor (12) has two identical rotor modules (15), and the stator (11) has two identical stator modules (14), and that the stator modules (14) are firmly seated axially side by side in a housing

(10) and the rotor modules (15) are firmly seated axially side by side on a rotor shaft (13), each in a mutual relationship, such that the stator modules (14) or the rotor modules (15) are each rotated electrically from one another by 90° .

5

3. The machine of claim 1, characterized in that the rotor (12) has m rotor modules (15), and the stator (11) has m stator modules (14), and that the stator modules (14) are firmly seated axially side by side in a housing (10) and the rotor modules (15) are firmly seated axially side by side on a rotor shaft (13), each in a mutual relationship, such that the stator modules (14) or the rotor modules (15) are each here [verb missing] electrically from one another by $360^\circ/m$, where m is an integer and is greater than 2.

15

4. The machine of [one of claims 1-3] claim 1, characterized in that the stator yokes (24) and short-circuit elements (25; 25') as well as the rotor rings (16, 17) are laminated.

20

5. The machine of [one of claims 1-4] claim 1, characterized in that the short-circuit elements (25; 25') are disposed with an offset of one pole pitch from the stator yokes (24).

25

6. The machine of [one of claims 1-5] claim 1, characterized in that the radial gap spacing between the stator yokes (24) and the rotor rings (16, 17), on the one hand, and between the short-circuit elements (25; 25') and the rotor rings (16, 17) on the other is of equal size.

30

7. The machine of [one of claims 1-6] claim 1,

characterized in that the free end face (244) of the legs (241, 242) of the stator yokes (24) has at least the same axial width as the rotor rings (16, 17), but preferably protrudes past them on one or both sides.

5

8. The machine of [one of claims 1-7] claim 1, characterized in that the width of the stator yokes (24) and the width of the short-circuit elements (25; 25'), measured in each case in the direction of rotation, is approximately equal.

10

9. The machine of [one of claims 1-8] claim 1, characterized in that the ratio of the tooth width (b_{zR}) of the teeth (22) on the rotor rings (16, 17) to the width (b_{zs}) of the stator yokes (24) and short-circuit elements (25), each viewed in the direction of rotation, is selected to be greater than 1 and less than 2, and preferably equal to or less than 1.5.

15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

10. The machine of [one of claims 1-9] claim 1, characterized in that the short-circuit elements (25) are in the form of a C, with two short legs (251, 252) each radially facing a rotor ring (16, 17) and with one crossbar (253), connecting the legs to one another, that extends parallel to the rotor axis (19) on the inside, toward the rotor axis (19), of the annular coil (23), which is embodied circularly.

25

11. The machine of [one of claims 1-9] claim 1, characterized in that the short-circuit elements (25') are in the form of a U, each with two long legs (251', 252') radially facing a rotor ring (16, 17) and with one crossbar (253') connecting these long legs and extending parallel to the rotor axis (19), and that the annular coil (23') of the stator module (14) is shaped in meandering fashion, point-symmetrically to the rotor

30

axis (19) in the radial plane, in such a way that in successive alternation the annular coil extends through the space between the legs (241, 242) of a stator yoke (24) and beyond the outside, remote from the rotor axis (19), of a crossbar (253') of a short-circuit element (25').

5

12. The machine of claim 11, characterized in that the stator yokes (24) and short-circuit elements (25') are embodied identically.

10

13. The machine of [one of claims 10-12] claim 10, characterized in that the free end face (254 and 254', respectively) of the legs (251, 252 and 251', 252') of the short-circuit elements (25 and 25') have at least the same axial width as the rotor rings (16, 17), but preferably protrude past them on one or both sides.

15
20

14. The machine of [one of claims 1-13] claim 1, characterized in that the stator modules (14) are supplied with current in current pulses bipolarly as a function of the rotational angle (θ) of the rotor (12), and that the current pulses in the stator modules (14), when there are two stator modules (14), are phase-displaced by 90° from one another, and when there are m stator modules (14) they are phase-displaced from one another by $360^\circ/m$, where m is an integer and is greater than 2.

25

15. The machine of [one of claims 1-14] claim 1, characterized in that each stator module (14) is received in a housing (30) that comprises two half shells (31, 32), which are embodied identically and placed on one another mirror-symmetrically and which have axially aligned radial grooves (36,

30

37) for insertion of the stator yokes (24) on the one hand and
the short-circuit elements (25) on the other and also have
indentations (39), for receiving the annular coil (23), that face
one another mirror-symmetrically and are oriented concentrically
5 to the housing axis (38).

16. The machine of claim 15, characterized in that each
half shell (31, 32) has a gridlike structure with an inner ring
10 (33) and an outer ring (34) concentric to it, which are
integrally joined to one another by radial ribs (35), and that
the radial grooves (37) that receive the short-circuit elements
(25) are placed in the inner ring (33), and the radial grooves
(36) that receive the stator yokes (24) extend across the inner
ring (33), radial rib (35), and outer ring (34).
15

17. The machine of claim 16, characterized in that the
indentations (39) for the annular coil (23) are made in the
radial ribs (35).

20. The machine of [one of claims 15-17] claim 15,
characterized in that the stator yokes (24) and the radial
grooves (36) that receive them are adapted to one another such
that when the stator yokes (24) and short-circuit elements (25)
have been inserted into the radial grooves (36, 37), the two half
25 shells (31, 32) are fixed against one another radially and
axially nondisplaceably.

30. The machine of claim 18, characterized in that the
width of the radial grooves (36, 37) is adapted to the thickness
of the stator yokes (24) and short-circuit elements (25), and the
axial depth of the radial grooves (36, 37) is dimensioned as
slightly larger than half the axial width of the stator yokes

(24) and short-circuit elements (25).

20. The machine of claim 18 [or 19], characterized in that
the stator yokes (24), on both sides of their crossbar (243),
5 have a respective protruding hook (41), which when the stator
yokes (24) have been inserted into the radial grooves (36) fits
by positive engagement over one radial rib (35) of the two half
shells (31, 32), on its back side remote from the radial groove
(36).

10

21. The machine of claim 20 in a multi-lane version, in
which the rotor modules (15) are disposed in axial alignment on
the rotor shaft (13) and the stator modules (14) are rotated by a
fixed angle relative to one another, characterized in that two
15 spaced-apart radial recesses (42, 43) are inserted, from the
outsides of the half shell (31) that are remote from the radial
grooves (36), into the annular portions (341) of the outer ring
(34) that extend between the radial ribs (35), the width of the
radial recesses in the circumferential direction corresponding to
20 the width of the hooks (41) that protrude from the stator yokes
(24), and the radial depth of the radial recesses corresponding
to the axial length of the hooks (41), and that one radial recess
(43) is disposed offset by the fixed rotational angle from the
next radial groove (36) in succession for a stator yoke (24), and
25 the other radial recess (44) is disposed offset by the same fixed
angle from the preceding radial groove (36) for a stator yoke
(24).

22. The machine of claim 18 [or 19] in a multi-lane
30 embodiment, in which the stator modules (14) are axially aligned
and the rotor modules (15) are disposed, rotated relative to one
another by a fixed angle, on the rotor shaft (13), characterized

in that the stator yokes (24) of the stator modules (14) located side by side in the axial direction are joined together in their crossbar region by axially extending bridges (48); that on their outer side, the two outer stator yokes, of the joined-together
5 stator yokes (24) each have one hook (41) protruding from the crossbar (243), which hook, when the stator yokes (24) have been inserted into the radial grooves (36), fits over a radial rib (35) of the two outer half shells (31, 32) on its back side remote from the radial groove (36).

10

23. The machine of claim 22, characterized in that the stator yokes (24) joined together via bridges (48) are embodied as one-piece stamped parts (49).

CO
DE
S
C
O
D
E
P
T
H
B
W
T
M
S
R

15 24. The machine of [one of claims 20-23] claim 20, characterized in that on the end, located in the outer ring (34), of each radial groove, a radial recess (42) is made in the groove bottom, the radial depth of which recess is dimensioned such that when the stator yoke (24) has been inserted in the correct
20 position into the radial groove (36), the root (411) of the hook (41) protruding from the crossbar (23) strikes the bottom of the recess (42) with its lower edge pointing toward the inner ring (33).

20

25 25. The machine of [one of claims 15-24] claim 15, characterized in that for rotational support of the rotor shaft (13), two bearing plates (45) are placed on the two outer half shells (31, 32), which plates are secured to the half shells (31, 32) with a flange part (46) and receive the rotor shaft (13) in a
30 bearing prop (47) protruding from the flange part.

26. The machine of [one of claims 1-25] claim 1,

characterized in that the at least rotor module (15) is disposed, fixed against relative rotation, on a hollow shaft (50).

Claims

1. A unipolar transverse flux machine, having a rotor (12) rotatable about a rotor axis (19), which rotor has at least one 5 rotor module (15) each assembled from two coaxial ferromagnetic rotor rings (16, 17) toothed with a constant tooth pitch and one permanent-magnet ring (18) fastened between the rotor rings (16, 17) and magnetized unipolarly in the direction of the rotor axis (19), and having a stator (11), concentric with the rotor axis (19), which stator has at least one stator module (14) associated 10 with the rotor module (15), which stator module comprises an annular coil (23; 23') disposed coaxially to the rotor axis (19) and U-shaped stator yokes (24), fitting over the annular coil, 15 which are fixed with a pitch corresponding to the tooth pitch on a housing (10), characterized in that the toothing of the rotor rings (16, 17) is provided solely on the outer circumference of the rotor rings (16, 17) remote from the rotor axis (19); that in the stator module (14), the stator yokes (24) are disposed such 20 that one leg (241) of each of the stator yokes (24) is located facing one rotor ring (16), and the other leg (242) of each of the stator yokes (24) is located facing the other rotor ring (17), in each case with a radial gap spacing; and that one short-circuit element (25; 25') each is disposed between successive 25 stator yokes (24) in the direction of rotation of the rotor (12), which short-circuit element extends axially over both rotor rings (16, 17) and faces them with radial gap spacing.

2. The machine of claim 1, characterized in that the rotor 30 (12) has two identical rotor modules (15), and the stator (11) has two identical stator modules (14), and that the stator modules (14) are firmly seated axially side by side in a housing

(10) and the rotor modules (15) are firmly seated axially side by side on a rotor shaft (13), each in a mutual relationship, such that the stator modules (14) or the rotor modules (15) are each rotated electrically from one another by 90° .

5

3. The machine of claim 1, characterized in that the rotor (12) has m rotor modules (15), and the stator (11) has m stator modules (14), and that the stator modules (14) are firmly seated axially side by side in a housing (10) and the rotor modules (15) are firmly seated axially side by side on a rotor shaft (13), each in a mutual relationship, such that the stator modules (14) or the rotor modules (15) are each here [verb missing] electrically from one another by $360^\circ/m$, where m is an integer and is greater than 2.

15

4. The machine of claim 1, characterized in that the stator yokes (24) and short-circuit elements (25; 25') as well as the rotor rings (16, 17) are laminated.

20

5. The machine of claim 1, characterized in that the short-circuit elements (25; 25') are disposed with an offset of one pole pitch from the stator yokes (24).

25

6. The machine of claim 1, characterized in that the radial gap spacing between the stator yokes (24) and the rotor rings (16, 17), on the one hand, and between the short-circuit elements (25; 25') and the rotor rings (16, 17) on the other is of equal size.

30

7. The machine of claim 1, characterized in that the free end face (244) of the legs (241, 242) of the stator yokes (24) has at least the same axial width as the rotor rings (16, 17),

but preferably protrudes past them on one or both sides.

8. The machine of claim 1, characterized in that the width of the stator yokes (24) and the width of the short-circuit elements (25; 25'), measured in each case in the direction of rotation, is approximately equal.

9. The machine of claim 1, characterized in that the ratio of the tooth width (b_{zR}) of the teeth (22) on the rotor rings (16, 17) to the width (b_{zs}) of the stator yokes (24) and short-circuit elements (25), each viewed in the direction of rotation, is selected to be greater than 1 and less than 2, and preferably equal to or less than 1.5.

10. The machine of claim 1, characterized in that the short-circuit elements (25) are in the form of a C, with two short legs (251, 252) each radially facing a rotor ring (16, 17) and with one crossbar (253), connecting the legs to one another, that extends parallel to the rotor axis (19) on the inside, toward the rotor axis (19), of the annular coil (23), which is embodied circularly.

15. The machine of claim 1, characterized in that the short-circuit elements (25') are in the form of a U, each with two long legs (251', 252') radially facing a rotor ring (16, 17) and with one crossbar (253') connecting these long legs and extending parallel to the rotor axis (19), and that the annular coil (23') of the stator module (14) is shaped in meandering fashion, point-symmetrically to the rotor axis (19) in the radial plane, in such a way that in successive alternation the annular coil extends through the space between the legs (241, 242) of a stator yoke (24) and beyond the outside,

remote from the rotor axis (19), of a crossbar (253') of a short-circuit element (25').

5 12. The machine of claim 11, characterized in that the stator yokes (24) and short-circuit elements (25') are embodied identically.

10 13. The machine of claim 10, characterized in that the free end face (254 and 254', respectively) of the legs (251, 252 and 251', 252') of the short-circuit elements (25 and 25') have at least the same axial width as the rotor rings (16, 17), but preferably protrude past them on one or both sides.

15 14. The machine of claim 1, characterized in that the stator modules (14) are supplied with current in current pulses bipolarly as a function of the rotational angle (Θ) of the rotor (12), and that the current pulses in the stator modules (14), when there are two stator modules (14), are phase-displaced by 90° from one another, and when there are m stator modules (14) they are phase-displaced from one another by $360^\circ/m$, where m is an integer and is greater than 2.

20 15. The machine of claim 1, characterized in that each stator module (14) is received in a housing (30) that comprises two half shells (31, 32), which are embodied identically and placed on one another mirror-symmetrically and which have axially aligned radial grooves (36, 37) for insertion of the stator yokes (24) on the one hand and the short-circuit elements (25) on the other and also have indentations (39), for receiving the annular coil (23), that face one another mirror-symmetrically and are oriented concentrically to the housing axis (38).

16. The machine of claim 15, characterized in that each half shell (31, 32) has a gridlike structure with an inner ring (33) and an outer ring (34) concentric to it, which are integrally joined to one another by radial ribs (35), and that the radial grooves (37) that receive the short-circuit elements (25) are placed in the inner ring (33), and the radial grooves (36) that receive the stator yokes (24) extend across the inner ring (33), radial rib (35), and outer ring (34).

10 17. The machine of claim 16, characterized in that the indentations (39) for the annular coil (23) are made in the radial ribs (35).

15 18. The machine of claim 15, characterized in that the stator yokes (24) and the radial grooves (36) that receive them are adapted to one another such that when the stator yokes (24) and short-circuit elements (25) have been inserted into the radial grooves (36, 37), the two half shells (31, 32) are fixed against one another radially and axially nondisplaceably.

20 19. The machine of claim 18, characterized in that the width of the radial grooves (36, 37) is adapted to the thickness of the stator yokes (24) and short-circuit elements (25), and the axial depth of the radial grooves (36, 37) is dimensioned as slightly larger than half the axial width of the stator yokes (24) and short-circuit elements (25).

25 30 20. The machine of claim 18, characterized in that the stator yokes (24), on both sides of their crossbar (243), have a respective protruding hook (41), which when the stator yokes (24) have been inserted into the radial grooves (36) fits by positive engagement over one radial rib (35) of the two half shells (31,

32), on its back side remote from the radial groove (36).

21. The machine of claim 20 in a multi-lane version, in which the rotor modules (15) are disposed in axial alignment on the rotor shaft (13) and the stator modules (14) are rotated by a fixed angle relative to one another, characterized in that two spaced-apart radial recesses (42, 43) are inserted, from the outsides of the half shell (31) that are remote from the radial grooves (36), into the annular portions (341) of the outer ring (34) that extend between the radial ribs (35), the width of the radial recesses in the circumferential direction corresponding to the width of the hooks (41) that protrude from the stator yokes (24), and the radial depth of the radial recesses corresponding to the axial length of the hooks (41), and that one radial recess (43) is disposed offset by the fixed rotational angle from the next radial groove (36) in succession for a stator yoke (24), and the other radial recess (44) is disposed offset by the same fixed angle from the preceding radial groove (36) for a stator yoke (24).

20
25
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
104
106
108
110
112
114
116
118
120
122
124
126
128
130
132
134
136
138
140
142
144
146
148
150
152
154
156
158
160
162
164
166
168
170
172
174
176
178
180
182
184
186
188
190
192
194
196
198
200
202
204
206
208
210
212
214
216
218
220
222
224
226
228
230
232
234
236
238
240
242
244
246
248
250
252
254
256
258
260
262
264
266
268
270
272
274
276
278
280
282
284
286
288
290
292
294
296
298
300
302
304
306
308
310
312
314
316
318
320
322
324
326
328
330
332
334
336
338
340
342
344
346
348
350
352
354
356
358
360
362
364
366
368
370
372
374
376
378
380
382
384
386
388
390
392
394
396
398
400
402
404
406
408
410
412
414
416
418
420
422
424
426
428
430
432
434
436
438
440
442
444
446
448
450
452
454
456
458
460
462
464
466
468
470
472
474
476
478
480
482
484
486
488
490
492
494
496
498
500
502
504
506
508
510
512
514
516
518
520
522
524
526
528
530
532
534
536
538
540
542
544
546
548
550
552
554
556
558
560
562
564
566
568
570
572
574
576
578
580
582
584
586
588
590
592
594
596
598
600
602
604
606
608
610
612
614
616
618
620
622
624
626
628
630
632
634
636
638
640
642
644
646
648
650
652
654
656
658
660
662
664
666
668
670
672
674
676
678
680
682
684
686
688
690
692
694
696
698
700
702
704
706
708
710
712
714
716
718
720
722
724
726
728
730
732
734
736
738
740
742
744
746
748
750
752
754
756
758
760
762
764
766
768
770
772
774
776
778
780
782
784
786
788
790
792
794
796
798
800
802
804
806
808
810
812
814
816
818
820
822
824
826
828
830
832
834
836
838
840
842
844
846
848
850
852
854
856
858
860
862
864
866
868
870
872
874
876
878
880
882
884
886
888
890
892
894
896
898
900
902
904
906
908
910
912
914
916
918
920
922
924
926
928
930
932
934
936
938
940
942
944
946
948
950
952
954
956
958
960
962
964
966
968
970
972
974
976
978
980
982
984
986
988
990
992
994
996
998
1000

20
25
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
104
106
108
110
112
114
116
118
120
122
124
126
128
130
132
134
136
138
140
142
144
146
148
150
152
154
156
158
160
162
164
166
168
170
172
174
176
178
180
182
184
186
188
190
192
194
196
198
200
202
204
206
208
210
212
214
216
218
220
222
224
226
228
230
232
234
236
238
240
242
244
246
248
250
252
254
256
258
260
262
264
266
268
270
272
274
276
278
280
282
284
286
288
290
292
294
296
298
300
302
304
306
308
310
312
314
316
318
320
322
324
326
328
330
332
334
336
338
340
342
344
346
348
350
352
354
356
358
360
362
364
366
368
370
372
374
376
378
380
382
384
386
388
390
392
394
396
398
400
402
404
406
408
410
412
414
416
418
420
422
424
426
428
430
432
434
436
438
440
442
444
446
448
450
452
454
456
458
460
462
464
466
468
470
472
474
476
478
480
482
484
486
488
490
492
494
496
498
500
502
504
506
508
510
512
514
516
518
520
522
524
526
528
530
532
534
536
538
540
542
544
546
548
550
552
554
556
558
560
562
564
566
568
570
572
574
576
578
580
582
584
586
588
590
592
594
596
598
600
602
604
606
608
610
612
614
616
618
620
622
624
626
628
630
632
634
636
638
640
642
644
646
648
650
652
654
656
658
660
662
664
666
668
670
672
674
676
678
680
682
684
686
688
690
692
694
696
698
700
702
704
706
708
710
712
714
716
718
720
722
724
726
728
730
732
734
736
738
740
742
744
746
748
750
752
754
756
758
760
762
764
766
768
770
772
774
776
778
780
782
784
786
788
790
792
794
796
798
800
802
804
806
808
810
812
814
816
818
820
822
824
826
828
830
832
834
836
838
840
842
844
846
848
850
852
854
856
858
860
862
864
866
868
870
872
874
876
878
880
882
884
886
888
890
892
894
896
898
900
902
904
906
908
910
912
914
916
918
920
922
924
926
928
930
932
934
936
938
940
942
944
946
948
950
952
954
956
958
960
962
964
966
968
970
972
974
976
978
980
982
984
986
988
990
992
994
996
998
1000

radial groove (36).

23. The machine of claim 22, characterized in that the
stator yokes (24) joined together via bridges (48) are embodied
as one-piece stamped parts (49).
5

24. The machine of claim 20, characterized in that on the end, located in the outer ring (34), of each radial groove, a radial recess (42) is made in the groove bottom, the radial depth
10 of which recess is dimensioned such that when the stator yoke (24) has been inserted in the correct position into the radial groove (36), the root (411) of the hook (41) protruding from the crossbar (23) strikes the bottom of the recess (42) with its lower edge pointing toward the inner ring (33).

15
25. The machine of claim 15, characterized in that for rotational support of the rotor shaft (13), two bearing plates (45) are placed on the two outer half shells (31, 32), which plates are secured to the half shells (31, 32) with a flange part (46) and receive the rotor shaft (13) in a bearing prop (47) protruding from the flange part.
20

26. The machine of claim 1, characterized in that the at
least rotor module (15) is disposed, fixed against relative
25 rotation, on a hollow shaft (50).