main

August 23, 2021

1 Examine sample make-up

1.1 Samples after quality control

```
[2]: save_ggplots <- function(p, fn, w, h){
    for(ext in c('.pdf', '.png', '.svg')){
        ggsave(pasteO(fn, ext), plot=p, width=w, height=h)
    }
}</pre>
```

1.1.1 Load Caudate data

1.1.2 Load DLPFC data

1.1.3 Load Hippocampus data

1.1.4 Load DG data

1.1.5 Merge data

1.2 STRUCTURE analysis

```
id
                          Afr
                                  Eur
                                          group
                          <dbl> <dbl>
                  <chr>
                                          <chr>
                  Br2374 0.007
                                  0.993
                                          CAUC
                  Br1857 0.001
                                  0.999
                                          CAUC
A data.table: 6 \times 4
                  Br1306 0.759
                                  0.241
                                          AA
                  Br2605 0.644
                                  0.356
                                          AA
                  Br1802 0.840
                                  0.160
                                          AA
                  Br2565 0.005
                                  0.995
                                          CAUC
```

```
AA_mean
                                  AA\_sd
                                              AA_{max}
                                                        AA_min EA_mean
                                                                              EA sd
                                                                                          EA max
              group
                                                         <dbl>
                                                                              <dbl>
              <fct>
                      <dbl>
                                  <dbl>
                                              <dbl>
                                                                   <dbl>
                                                                                          <dbl>
A tibble: 2 \times 9
              AA
                      0.78962609
                                  0.10611682
                                              0.999
                                                         0.381
                                                                   0.2103739
                                                                              0.10611682
                                                                                          0.619
              CAUC
                      0.03087879
                                  0.02997578
                                              0.156
                                                         0.001
                                                                   0.9691212
                                                                              0.02997578
                                                                                          0.999
```



```
[12]: save_ggplots(bxp, "ancestry_structure_distribution", 10, 5)

1.3 eQTL analysis
[13]: pheno %>% dim

1. 1334 2. 21
[14]: print(paste("There are", unique(pheno$BrNum) %>% length, "unique BrNum."))

[1] "There are 509 unique BrNum."
```

```
[15]: pheno %>% select(BrNum, Region) %>% distinct %>%
          mutate_if(is.character, as.factor) %>%
          group_by(Region) %>% count()
```

[16]: pheno %>% select(BrNum, Race) %>% distinct %>% mutate_if(is.character, as.factor) %>% group_by(Race) %>% count()

A grouped_df:
$$2 \times 2 \frac{\text{Race n}}{<\text{fct}>} \frac{<\text{sint}>}{<\text{AA}}$$

$$EA = 256$$

$$EA = 253$$

[17]: pheno %>% select(BrNum, Race, Region) %>% distinct %>% mutate_if(is.character, as.factor) %>% group_by(Region, Race) %>% count()

[18]: pheno %>% select(BrNum, Sex, Region) %>% distinct %>% mutate_if(is.character, as.factor) %>% group_by(Region, Sex) %>% count()

	Region	Sex	n
A grouped_df: 8×3	<fct $>$	<fct $>$	<int $>$
	Caudate	F	126
	Caudate	M	274
	DentateGyrus	\mathbf{F}	48
	DentateGyrus	M	113
	DLPFC	\mathbf{F}	121
	DLPFC	M	257
	HIPPO	\mathbf{F}	126
	HIPPO	M	269

```
[19]: pheno %>% group_by(Region) %>%
         summarise_at(vars(c("Age")), list(mean = mean, sd = sd))
                      Region
                                     mean
                                               \operatorname{sd}
                      <chr>
                                     <dbl>
                                                <dbl>
                      Caudate
                                     49.12390
                                               16.05379
      A tibble: 4 \times 3
                      DentateGyrus
                                     50.06770
                                               15.43849
                      DLPFC
                                     45.83574
                                               16.49445
                      HIPPO
                                     45.49527
                                               16.41527
[20]: pheno %>% group_by(Region, Race) %>%
         summarise_at(vars(c("Age")), list(mean = mean, sd = sd))
                           Region
                                           Race
                                                   mean
                                                              \operatorname{sd}
                           <chr>
                                           <chr>
                                                   <dbl>
                                                              <dbl>
                           Caudate
                                           AA
                                                   48.81325
                                                              14.49676
                           Caudate
                                           EA
                                                             17.58900
                                                   49.45376
                           DentateGyrus
                                           AA
                                                   50.18423
                                                              15.53374
     A grouped df: 8 \times 4
                           DentateGyrus
                                           EA
                                                             15.44210
                                                   49.95819
                           DLPFC
                                           AA
                                                   46.97896
                                                             15.34261
                           DLPFC
                                           EA
                                                   44.49542
                                                             17.70090
                           HIPPO
                                           AA
                                                   46.34080
                                                             15.61922
                           HIPPO
                                           EA
                                                   44.50571
                                                             17.29140
[21]: pheno %>% filter(RIN != "NA") %>% mutate("RIN"=as.numeric(unlist(RIN))) %>%
           group_by(Region) %>% summarise_at(vars(c("RIN")), list(mean = mean, sd =__
        sd))
                      Region
                                     mean
                                               \operatorname{sd}
                      <chr>
                                     <dbl>
                                                <dbl>
                      Caudate
                                     7.861000
                                               0.8648983
     A tibble: 4 \times 3
                      DentateGyrus
                                     5.208403
                                               1.1871187
                      DLPFC
                                     7.699471
                                               0.9340876
                      HIPPO
                                     7.616962
                                               1.0311104
[22]: pheno %>% filter(RIN != "NA") %>% mutate("RIN"=as.numeric(unlist(RIN))) %>%
           group_by(Region, Race) %>% summarise_at(vars(c("RIN")), list(mean = mean,__
        \rightarrowsd = sd))
                           Region
                                           Race
                                                   mean
                                                              \operatorname{sd}
                            <chr>
                                           <chr>
                                                              <dbl>
                                                   <dbl>
                           Caudate
                                           AA
                                                              0.8416464
                                                   7.859709
                           Caudate
                                           EA
                                                   7.862371
                                                              0.8911055
                                           AA
                           DentateGyrus
                                                   5.206349
                                                             1.2062837
     A grouped df: 8 \times 4
                           DentateGyrus
                                           EA
                                                   5.210714
                                                             1.1760765
                           DLPFC
                                           AA
                                                   7.678922
                                                             0.9445184
                           DLPFC
                                           EA
                                                   7.723563
                                                             0.9238440
                           HIPPO
                                           AA
                                                   7.604225
                                                              1.0509344
                           HIPPO
                                           EA
                                                   7.631868
                                                             1.0101014
```

1.4 Adult individuals for expression related analysis

```
[23]: pheno = pheno %>% filter(Age > 17, Dx == "Control")
      pheno %>% dim
     1, 785 2, 21
[24]: print(paste("There are", unique(pheno$BrNum) %>% length, "unique BrNum."))
     [1] "There are 292 unique BrNum."
[25]: pheno %>% select(BrNum, Region) %>% distinct %>%
          mutate_if(is.character, as.factor) %>%
          group_by(Region) %>% count()
                          Region
                                        n
                          <fct>
                                        <int>
                          Caudate
                                        240
     A grouped df: 4 \times 2
                         DentateGyrus
                                        90
                          DLPFC
                                        212
                          HIPPO
                                        243
[26]: pheno %>% select(BrNum, Race) %>% distinct %>%
          mutate_if(is.character, as.factor) %>%
          group_by(Race) %>% count()
                          Race
                                 n
                          <fct>
                                 <int>
     A grouped_df: 2 \times 2
                          AA
                                 151
                          EA
                                 141
[27]: pheno %>% select(BrNum, Race, Region) %>% distinct %>%
          mutate_if(is.character, as.factor) %>%
          group_by(Region, Race) %>% count()
                          Region
                                        Race
                                               n
                          <fct>
                                        <fct>
                                               <int>
                          Caudate
                                        AA
                                                122
                          Caudate
                                        EA
                                               118
                          DentateGyrus
                                        AA
                                               47
     A grouped df: 8 \times 3
                         DentateGyrus
                                        EA
                                               43
                          DLPFC
                                        AA
                                               123
                          DLPFC
                                        EA
                                               89
                          HIPPO
                                        AA
                                               133
                          HIPPO
                                        EA
                                               110
[28]: pheno %>% select(BrNum, Sex, Region) %>% distinct %>%
          mutate_if(is.character, as.factor) %>%
```

group_by(Region, Sex) %>% count()

```
Region
                                            Sex
                                                    n
                            <fct>
                                            < fct >
                                                    <int>
                            Caudate
                                            \overline{\mathrm{F}}
                                                    71
                            Caudate
                                            Μ
                                                    169
                            DentateGyrus
                                           F
                                                    26
      A grouped df: 8 \times 3
                            DentateGyrus
                                           Μ
                                                    64
                            DLPFC
                                            \mathbf{F}
                                                    66
                            DLPFC
                                            М
                                                    146
                            HIPPO
                                            \mathbf{F}
                                                    74
                            HIPPO
                                            Μ
                                                    169
[29]: pheno %>% group_by(Region) %>%
         summarise_at(vars(c("Age")), list(mean = mean, sd = sd))
                      Region
                                      mean
                                                \operatorname{sd}
                      <chr>
                                      < dbl >
                                                 <dbl>
                      Caudate
                                      48.31150
                                                15.84692
      A tibble: 4 \times 3
                      DentateGyrus
                                      47.88311
                                                15.02380
                      DLPFC
                                      45.16991
                                                14.76717
                      HIPPO
                                      44.56724 \quad 14.73045
[30]: pheno %>% group_by(Region, Race) %>%
         summarise_at(vars(c("Age")), list(mean = mean, sd = sd))
                            Region
                                            Race
                                                    mean
                                                               \operatorname{sd}
                            <chr>
                                            <chr>
                                                    <dbl>
                                                               <dbl>
                            Caudate
                                                               14.72979
                                            AA
                                                    45.63770
                            Caudate
                                            EA
                                                    51.07593
                                                               16.53588
                            DentateGyrus
                                            AA
                                                    45.85043
                                                               16.32827
      A grouped df: 8 \times 4
                            DentateGyrus
                                           EA
                                                               13.28980
                                                    50.10488
                            DLPFC
                                            AA
                                                    44.12511
                                                               14.97092
                            DLPFC
                                            EA
                                                    46.61386
                                                               14.43996
                            HIPPO
                                            AA
                                                    43.30015
                                                               14.73609
                            HIPPO
                                            EA
                                                    46.09927
                                                               14.64404
[31]: pheno %>% filter(RIN != "NA") %>% mutate("RIN"=as.numeric(unlist(RIN))) %>%
           group_by(Region) %>% summarise_at(vars(c("RIN")), list(mean = mean, sd =__
        sd))
                      Region
                                      mean
                                                \operatorname{sd}
                      <chr>
                                      <dbl>
                                                 <dbl>
                      Caudate
                                      7.850000
                                                0.7956997
      A tibble: 4 \times 3
                      DentateGyrus
                                      5.315152
                                                1.2186048
                      DLPFC
                                      7.699057
                                                0.8803807
                      HIPPO
                                      7.735391
                                                0.9668378
[32]: pheno %>% filter(RIN != "NA") %>% mutate("RIN"=as.numeric(unlist(RIN))) %>%
           group_by(Region, Race) %>% summarise_at(vars(c("RIN")), list(mean = mean,__
        \rightarrowsd = sd))
```

	Region	Race	mean	sd
A grouped_df: 8×4	<chr $>$	<chr $>$	<dbl $>$	<dbl $>$
	Caudate	AA	7.829508	0.7993477
	Caudate	EA	7.871186	0.7947587
	DentateGyrus	AA	5.447368	1.2173824
	DentateGyrus	EA	5.135714	1.2190507
	DLPFC	AA	7.696748	0.8851169
	DLPFC	EA	7.702247	0.8787876
	HIPPO	AA	7.715038	0.9754173
	HIPPO	EA	7.760000	0.9602370

1.5 Reproducibility Information

```
[33]: Sys.time()
    proc.time()
    options(width = 120)
    sessioninfo::session_info()

[1] "2021-08-23 09:58:16 EDT"
```

user system elapsed

18.162 1.469 20.029

Session info setting value

version R version 4.0.3 (2020-10-10)

os Arch Linux

system x86_64, linux-gnu

ui X11 language (EN)

collate en_US.UTF-8
ctype en_US.UTF-8
tz America/New_York

date 2021-08-23

Packages

package	*	version	date	lib	source
abind		1.4-5	2016-07-21	[1]	CRAN (R 4.0.2)
assertthat		0.2.1	2019-03-21	[1]	CRAN (R 4.0.2)
backports		1.2.1	2020-12-09	[1]	CRAN (R 4.0.2)
base64enc		0.1-3	2015-07-28	[1]	CRAN (R 4.0.2)
Biobase	*	2.50.0	2020-10-27	[1]	Bioconductor
BiocGenerics	*	0.36.1	2021-04-16	[1]	Bioconductor
bitops		1.0-7	2021-04-24	[1]	CRAN (R 4.0.3)
broom		0.7.8	2021-06-24	[1]	CRAN (R 4.0.3)
Cairo		1.5-12.2	2020-07-07	[1]	CRAN (R 4.0.2)
car		3.0-11	2021-06-27	[1]	CRAN (R 4.0.3)
carData		3.0-4	2020-05-22	[1]	CRAN (R 4.0.2)
cellranger		1.1.0	2016-07-27	[1]	CRAN (R 4.0.2)

```
cli
                        3.0.0
                                 2021-06-30 [1] CRAN (R 4.0.3)
                        2.0 - 2
                                 2021-06-24 [1] CRAN (R 4.0.3)
colorspace
                        1.4.1
                                 2021-02-08 [1] CRAN (R 4.0.3)
crayon
curl
                        4.3.2
                                 2021-06-23 [1] CRAN (R 4.0.3)
                                 2021-02-21 [1] CRAN (R 4.0.3)
data.table
                        1.14.0
DBI
                        1.1.1
                                 2021-01-15 [1] CRAN (R 4.0.2)
dbplyr
                        2.1.1
                                 2021-04-06 [1] CRAN (R 4.0.3)
DelayedArray
                        0.16.3
                                 2021-03-24 [1] Bioconductor
                        0.6.27
                                 2020-10-24 [1] CRAN (R 4.0.2)
digest
                                 2021-06-18 [1] CRAN (R 4.0.3)
dplyr
                      * 1.0.7
                        0.3.2
                                 2021-04-29 [1] CRAN (R 4.0.3)
ellipsis
                        0.14
                                 2019-05-28 [1] CRAN (R 4.0.2)
evaluate
                                 2021-05-25 [1] CRAN (R 4.0.3)
fansi
                        0.5.0
                                 2021-02-28 [1] CRAN (R 4.0.3)
farver
                        2.1.0
forcats
                      * 0.5.1
                                 2021-01-27 [1] CRAN (R 4.0.2)
                        0.8-80
                                 2020-05-24 [2] CRAN (R 4.0.3)
foreign
fs
                        1.5.0
                                 2020-07-31 [1] CRAN (R 4.0.2)
generics
                        0.1.0
                                 2020-10-31 [1] CRAN (R 4.0.2)
GenomeInfoDb
                      * 1.26.7
                                 2021-04-08 [1] Bioconductor
GenomeInfoDbData
                        1.2.4
                                 2021-02-02 [1] Bioconductor
GenomicRanges
                      * 1.42.0
                                 2020-10-27 [1] Bioconductor
                      * 3.3.5
                                 2021-06-25 [1] CRAN (R 4.0.3)
ggplot2
ggpubr
                      * 0.4.0
                                 2020-06-27 [1] CRAN (R 4.0.2)
                        2.9
                                 2018-05-14 [1] CRAN (R 4.0.2)
ggsci
                                 2021-06-14 [1] CRAN (R 4.0.3)
                        0.6.2
ggsignif
                        1.4.2
                                 2020-08-27 [1] CRAN (R 4.0.2)
glue
                        0.3.0
                                 2019-03-25 [1] CRAN (R 4.0.2)
gtable
                                 2021-04-23 [1] CRAN (R 4.0.3)
haven
                        2.4.1
                        1.1.0
                                 2021-05-17 [1] CRAN (R 4.0.3)
hms
htmltools
                        0.5.1.1
                                 2021-01-22 [1] CRAN (R 4.0.2)
                        1.4.2
                                 2020-07-20 [1] CRAN (R 4.0.2)
httr
IRanges
                      * 2.24.1
                                 2020-12-12 [1] Bioconductor
IRdisplay
                        1.0
                                 2021-01-20 [1] CRAN (R 4.0.2)
IRkernel
                        1.2
                                 2021-05-11 [1] CRAN (R 4.0.3)
                        1.7.2
                                 2020-12-09 [1] CRAN (R 4.0.2)
jsonlite
labeling
                        0.4.2
                                 2020-10-20 [1] CRAN (R 4.0.2)
                                 2020-04-02 [2] CRAN (R 4.0.3)
lattice
                        0.20 - 41
lifecycle
                        1.0.0
                                 2021-02-15 [1] CRAN (R 4.0.3)
lubridate
                                 2021-02-26 [1] CRAN (R 4.0.3)
                        1.7.10
                                 2020-11-17 [1] CRAN (R 4.0.2)
magrittr
                        2.0.1
                        1.3-4
                                 2021-06-01 [1] CRAN (R 4.0.3)
Matrix
MatrixGenerics
                      * 1.2.1
                                 2021-01-30 [1] Bioconductor
matrixStats
                      * 0.59.0
                                 2021-06-01 [1] CRAN (R 4.0.3)
                                 2020-05-19 [1] CRAN (R 4.0.2)
modelr
                        0.1.8
                                 2018-06-12 [1] CRAN (R 4.0.2)
munsell
                        0.5.0
openxlsx
                        4.2.4
                                 2021-06-16 [1] CRAN (R 4.0.3)
pbdZMQ
                        0.3 - 5
                                 2021-02-10 [1] CRAN (R 4.0.3)
pillar
                        1.6.1
                                 2021-05-16 [1] CRAN (R 4.0.3)
```

```
pkgconfig
                        2.0.3
                                 2019-09-22 [1] CRAN (R 4.0.2)
                      * 0.3.4
                                 2020-04-17 [1] CRAN (R 4.0.2)
purrr
                                 2020-10-28 [1] CRAN (R 4.0.2)
R.6
                        2.5.0
                        1.0.7
                                 2021-07-07 [1] CRAN (R 4.0.3)
Rcpp
RCurl
                        1.98-1.3 2021-03-16 [1] CRAN (R 4.0.3)
readr
                      * 1.4.0
                                 2020-10-05 [1] CRAN (R 4.0.2)
readxl
                        1.3.1
                                 2019-03-13 [1] CRAN (R 4.0.2)
                                 2021-01-21 [1] CRAN (R 4.0.2)
repr
                        1.1.3
                       2.0.0
                                 2021-04-02 [1] CRAN (R 4.0.3)
reprex
                                 2021-06-21 [1] CRAN (R 4.0.3)
rio
                       0.5.27
                       0.4.11
                                 2021-04-30 [1] CRAN (R 4.0.3)
rlang
                       0.7.0
                                 2021-02-13 [1] CRAN (R 4.0.3)
rstatix
                                 2020-11-12 [1] CRAN (R 4.0.2)
                       0.13
rstudioapi
                                 2021-03-09 [1] CRAN (R 4.0.3)
rvest
                        1.0.0
S4Vectors
                      * 0.28.1
                                 2020-12-09 [1] Bioconductor
scales
                        1.1.1
                                 2020-05-11 [1] CRAN (R 4.0.2)
sessioninfo
                        1.1.1
                                 2018-11-05 [1] CRAN (R 4.0.2)
                        1.7.3
                                 2021-07-16 [1] CRAN (R 4.0.3)
stringi
                      * 1.4.0
                                 2019-02-10 [1] CRAN (R 4.0.2)
stringr
SummarizedExperiment * 1.20.0
                                 2020-10-27 [1] Bioconductor
                                 2021-02-20 [1] CRAN (R 4.0.3)
svglite
                        2.0.0
systemfonts
                        1.0.2
                                 2021-05-11 [1] CRAN (R 4.0.3)
                                 2021-05-16 [1] CRAN (R 4.0.3)
tibble
                      * 3.1.2
tidyr
                      * 1.1.3
                                 2021-03-03 [1] CRAN (R 4.0.3)
tidyselect
                        1.1.1
                                 2021-04-30 [1] CRAN (R 4.0.3)
                      * 1.3.1
                                 2021-04-15 [1] CRAN (R 4.0.3)
tidyverse
utf8
                        1.2.1
                                 2021-03-12 [1] CRAN (R 4.0.3)
                                 2020-02-26 [1] CRAN (R 4.0.2)
uuid
                        0.1 - 4
                        0.3.8
                                 2021-04-29 [1] CRAN (R 4.0.3)
vctrs
withr
                        2.4.2
                                 2021-04-18 [1] CRAN (R 4.0.3)
xm12
                        1.3.2
                                 2020-04-23 [1] CRAN (R 4.0.2)
XVector
                                 2020-10-27 [1] Bioconductor
                       0.30.0
                                 2021-05-31 [1] CRAN (R 4.0.3)
zip
                        2.2.0
zlibbioc
                        1.36.0
                                 2020-10-27 [1] Bioconductor
```

^{[1] /}home/jbenja13/R/x86_64-pc-linux-gnu-library/4.0

^{[2] /}usr/lib/R/library