Analisi del Fine Tuning del Modello BERT per l'Analisi di Risposte LLM, Versione 1.8

10 aprile 2025

Sommario

Questo documento presenta un'analisi dettagliata del processo di fine tuning effettuato su un modello BERT (bert-base-uncased) per l'analisi di risposte generate da modelli LLM. Vengono descritti il dataset utilizzato, la metodologia di training, l'andamento della loss, ed i risultati quantitativi ottenuti in fase di valutazione. In coda al documento è incluso il codice completo di training.

1 Introduzione

Il fine tuning di modelli pre-addestrati come BERT permette di adattare la rappresentazione linguistica a task specifici, come in questo caso l'analisi delle risposte generate da modelli LLM. L'approccio adottato prevede l'uso di un dataset suddiviso in set di train, validazione e test. Il modello è stato inizializzato con i pesi di bert-base-uncased e successivamente sottoposto a ulteriori allenamenti sul dataset target, aggiornando anche il classificatore (con parametri classifier.weight e classifier.bias) che non erano presenti nel checkpoint di partenza.

2 Dataset e Pre-Processing

Il dataset utilizzato è organizzato in un DatasetDict con le seguenti caratteristiche:

- **Training:** 12.000 esempi (poi suddivisi in 9.600 per l'addestramento e 2.400 per la validazione)
- **Test:** 1.773 esempi

Le colonne principali del dataset sono:

- response: Contiene le risposte generate dai modelli LLM.
- label: Indicatore della classe (con etichette uniche: "0" e "1").

Il pre-processing ha incluso la mappatura delle etichette sui rispettivi ID, la tokenizzazione dei testi con un tokenizer pre-addestrato e la rimozione di colonne non utili all'addestramento.

3 Dettagli del Training e Risultati

3.1 Impostazioni e Log del Training

Il training è avvenuto per 3 epoche con i seguenti parametri chiave:

• Learning rate: 2×10^{-5}

• Batch size: 16 per dispositivo (sia per train che per eval)

• Warmup steps: 500

• Weight decay: 0.01

• FP16: Abilitato per l'ottimizzazione

• Gradient Accumulation: 2 steps

Il training log mostra un andamento della **loss** decrescente. Alcuni step rappresentativi sono:

• Step 100: Loss ≈ 0.6206

• Step 300: Loss ≈ 0.2167

• Step 700: Loss ≈ 0.0881

• Step 900: Loss ≈ 0.0752

Questi valori indicano una convergenza adeguata del modello nel corso del training, con una progressiva riduzione dell'errore.

3.2 Valutazione sul Test Set

I risultati finali sul test set evidenziano un'alta capacità predittiva del modello:

• Loss: 0.501045

• Accuracy: 90.02%

• Precision: 90.34%

• Recall: 90.02%

• **F1-score:** 89.92%

Questi risultati suggeriscono che il modello, dopo il fine tuning, sia in grado di catturare efficacemente le caratteristiche del problema di classificazione. L'accuratezza elevata e i valori bilanciati di precision e recall indicano una buona generalizzazione, sebbene una loss non trascurabile possa ancora essere oggetto di ulteriori ottimizzazioni, per esempio tramite tecniche di regolarizzazione o un ulteriore tuning degli iperparametri.

3.3 Considerazioni Tecniche

- Il messaggio "Some weights of BertForSequenceClassification were not initialized..." indica che il classificatore è stato inizializzato casualmente e quindi ha dovuto apprendere da zero la parte finale della rete.
- L'approccio di suddividere il dataset in training, validazione e test consente una stima affidabile della generalizzazione del modello.
- L'uso di metriche multiple (accuracy, precision, recall e F1-score) offre una visione completa delle performance, importante in applicazioni di NLP dove la distribuzione delle classi può essere sbilanciata.

4 Conclusioni

Il fine tuning effettuato sul modello BERT ha prodotto un sistema capace di classificare con una buona accuratezza le risposte generate dai modelli LLM. I risultati quantitativi confermano l'efficacia dell'approccio adottato e la corretta impostazione dei parametri di training. Per futuri miglioramenti si potrebbero esplorare:

- Ulteriore ottimizzazione degli iperparametri;
- Tecniche di data augmentation per incrementare la robustezza del modello;
- Strategie di regularizzazione per ridurre ulteriormente la loss.

Codice di Training

Di seguito viene riportato il codice utilizzato per il fine tuning del modello:

```
! pip install transformers datasets evaluate torch accelerate -
U
!pip install -U transformers

# 'accelerate' è raccomandato per Trainer per ottimizzare l'uso
della GPU/TPU
import os
```

```
import numpy as np
6
   import pandas as pd
   from datasets import load_dataset
   from transformers import AutoTokenizer,
       {\tt AutoModelForSequenceClassification}, \ {\tt TrainingArguments},
       Trainer, TrainerCallback
   import evaluate
   from sklearn.metrics import precision_recall_fscore_support
11
12
   # Disabilitiamo wandb in modalita offline (salva i log
13
       localmente)
   os.environ["WANDB_MODE"] = "offline"
14
15
   # Definiamo la directory di output dove salvare il modello e il
16
   output_directory = "my-bert-fine-tuned-model"
17
18
19
   # Carichiamo il dataset
20
   data_files = {
        "train": "dataset_completo.json",
21
        "test": "Test2.json"
22
23
   dataset = load_dataset('json', data_files=data_files)
24
   print("Struttura del dataset:")
26
   print(dataset)
27
   print("\nColonne_nel_dataset_train:")
   print(dataset["train"].column_names)
   {\tt print("\nPrimo_lesempio_lnel_ldataset:")}
30
   print(dataset["train"][0])
31
32
   # Determiniamo le colonne di testo e etichette
33
   first_example = dataset["train"][0]
34
   text_column = None
35
   label_column = None
36
   # Trova la colonna del testo (quella più lunga)
38
   longest_text_len = 0
39
   for col in first_example:
40
        if isinstance(first_example[col], str) and len(
41
            first_example[col]) > longest_text_len:
            longest_text_len = len(first_example[col])
42
            text_column = col
43
44
   # Trova la colonna delle etichette (cerca 'label', 'class' o '
45
       category')
   for col in first_example:
46
        if 'label' in col.lower() or 'class' in col.lower() or '
            category' in col.lower():
            label_column = col
48
            break
49
50
   if text_column is None:
51
      raise ValueError("Non_{\sqcup}\grave{e}_{\sqcup}stata_{\sqcup}trovata_{\sqcup}una_{\sqcup}colonna_{\sqcup}di_{\sqcup}testo.
```

```
□Specifica manualmente il nome della colonna.")
   if label_column is None:
53
54
       # Se non troviamo una colonna di etichette evidente,
           utilizziamo una colonna non di testo
       for col in first_example:
            if col != text_column and not isinstance(first_example[
               col], str):
                label_column = col
57
                break
58
59
   print(f"\nColonna_di_testo_identificata:_''{text_column}'")
60
   print(f"Colonnaudiuetichetteuidentificata:u'{label_column}'")
61
62
   # Pre-processiamo le etichette e creiamo il mapping label -> ID
63
   def get_unique_labels(examples):
64
65
       labels = examples[label_column]
66
       unique_labels = set()
67
       for label in labels:
            if isinstance(label, list):
68
                for 1 in label:
69
                    unique_labels.add(1)
70
            else:
71
                unique_labels.add(label)
72
       return list(unique_labels)
73
74
   unique_labels = get_unique_labels(dataset["train"])
   print(f"\nEtichette_uniche_trovate:_{\sqcup}\{unique\_labels\}")
76
77
   label_to_id = {label: i for i, label in enumerate(sorted(
78
       unique_labels))}
   id_to_label = {i: label for label, i in label_to_id.items()}
   print(f"\nMapping_etichette_->_ID:_{label_to_id}")
80
81
   def preprocess_labels(examples):
82
       result = dict(examples)
83
       labels = examples[label_column]
84
       processed_labels = []
85
86
       for label in labels:
            if isinstance(label, list):
87
                processed_labels.append(label_to_id[label[0]] if
88
                   label else 0)
89
                processed_labels.append(label_to_id[label])
90
91
       result[label_column] = processed_labels
92
93
   processed_dataset = dataset.map(preprocess_labels, batched=True
94
       )
95
   # Scegliamo il modello e il tokenizer (ad es. "bert-base-
96
       uncased")
   model_checkpoint = "bert-base-uncased"
97
   tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
98
99
```

```
def tokenize_function(examples):
100
101
                 return tokenizer(
102
                           examples [text_column],
103
                           padding="max_length",
104
                           truncation=True,
105
                           max_length=128
106
107
        # Tokenizziamo il dataset
108
        tokenized_datasets = processed_dataset.map(tokenize_function,
109
                batched=True)
        tokenized_datasets = tokenized_datasets.remove_columns([col for
110
                  col in processed_dataset["train"].column_names if col !=
                label_column])
        tokenized_datasets = tokenized_datasets.rename_column(
111
                 label_column, "labels")
112
        tokenized_datasets.set_format("torch")
113
114
        \# Creiamo i set di training, validazione e test
        train_testvalid = tokenized_datasets["train"].train_test_split(
115
                 test_size=0.2, seed=42)
        train_dataset = train_testvalid["train"]
116
        validation_dataset = train_testvalid["test"]
117
        test_dataset = tokenized_datasets["test"]
118
        print (f "\nDimensione \ndel \ndel
120
                 train_dataset)} uesempi")
        validation_dataset) \( \( esempi'' \)
        print(f"Dimensione_{\sqcup}del_{\sqcup}dataset_{\sqcup}di_{\sqcup}test:_{\sqcup}\{len(test\_dataset)\}_{\sqcup}
122
                 esempi")
123
        # Impostiamo la metrica di accuracy
124
        metric = evaluate.load("accuracy")
125
126
        def compute_metrics(eval_pred):
127
                 logits, labels = eval_pred
128
129
                  predictions = np.argmax(logits, axis=-1)
                  accuracy = metric.compute(predictions=predictions,
130
                         references=labels)
                 precision, recall, f1, _ = precision_recall_fscore_support(
131
                         labels, predictions, average='weighted')
                 return {
132
133
                           'accuracy': accuracy['accuracy'],
                           'precision': precision,
134
                            'recall': recall,
                           'f1': f1
136
                 }
137
138
        num_labels = len(label_to_id)
139
        model = AutoModelForSequenceClassification.from_pretrained(
140
                 model_checkpoint,
141
                 num_labels=num_labels
142
143
```

```
144
145
    # Definiamo un callback personalizzato per salvare e stampare i
         log di training
146
    class LogCallback(TrainerCallback):
147
        def __init__(self):
            self.logs = []
                            # Lista per salvare i log intermedi
148
149
        def on_log(self, args, state, control, logs=None, **kwargs)
150
            if logs is not None:
151
                 # Salviamo solo i log rilevanti (es. loss, lr, step
152
                     , epoch)
153
                 self.logs.append({
                     'step': state.global_step,
154
                     'epoch': state.epoch,
                     'loss': logs.get('loss', None),
156
157
                     'learning_rate': logs.get('learning_rate', None
                         ),
                     'eval_loss': logs.get('eval_loss', None)
158
                })
159
160
        def on_train_end(self, args, state, control, **kwargs):
161
            # Alla fine dell'addestramento stampiamo una tabella
162
                riassuntiva
            df = pd.DataFrame(self.logs)
163
            print("\n===_Riassunto_Training_Log_===")
164
            # Stampiamo log ogni 100 step
165
            df_summary = df[df['step'] % 100 == 0]
166
            print(df_summary.to_string(index=False))
167
168
    # Configuriamo gli argomenti di addestramento
169
    training_args = TrainingArguments(
170
        output_dir=output_directory,
171
        eval_steps=100,
                                         # Valutazione ogni 100 step
172
        save_steps=100,
                                         # Salvataggio ogni 100 step
173
        logging_steps=100,
                                        # Stampa dei log ogni 100
174
            step
        learning_rate=2e-5,
175
        per_device_train_batch_size=16,
176
        per_device_eval_batch_size=16,
177
        num_train_epochs=3,
178
        weight_decay=0.01,
179
        warmup_steps=500,
180
        fp16=True,
181
        gradient_accumulation_steps=2,
182
        save_total_limit=2,
        report_to="none"
184
185
186
    \# Inizializziamo il trainer passando il parametro aggiornato \#
187
       processing_class" invece di "tokenizer"
    log_callback = LogCallback()
188
   trainer = Trainer(
189
       model=model,
190
```

```
args=training_args,
191
         train_dataset=train_dataset,
192
193
         eval_dataset=validation_dataset,
         processing_class=tokenizer, # Utilizziamo il nuovo
             parametro in sostituzione di 'tokenizer'
195
         compute_metrics=compute_metrics,
         callbacks=[log_callback]
196
    )
197
198
    print("Inizio_{\square}addestramento_{\square}sull'intero_{\square}dataset...")
199
    trainer.train()
200
    print("Addestramento completato!")
201
202
    # Valutazione sul test set
203
    print("Valutazione usul utest uset uset ucompleto...")
204
    test_results = trainer.evaluate(test_dataset)
    print("Risultati_test:", test_results)
206
207
208
    # Salva il modello e il tokenizer
    trainer.save_model(output_directory)
209
    tokenizer.save_pretrained(output_directory)
210
    print(f"Modelloueutokenizerusalvatiuinu{output_directory}")
211
212
    # Stampa il dizionario delle etichette per uso futuro
213
    214
        previsioni):")
    print(id_to_label)
215
216
    # Esempio di utilizzo del modello:
217
    print("\nEsempio_di_utilizzo_del_modello:")
218
    print('from_{\sqcup}transformers_{\sqcup}import_{\sqcup}
219
        AutoModelForSequenceClassification, _AutoTokenizer')
    print(f, model = AutoModelForSequenceClassification.
220
        from_pretrained("{output_directory}")')
    print(f'tokenizer_=_AutoTokenizer.from_pretrained("{
        output_directory}")')
    print('inputs_{\sqcup} = _{\sqcup} tokenizer(''Esempio_{\sqcup} di_{\sqcup} testo'', _{\sqcup} return\_tensors = ''
        pt")')
    print('outputs_=_model(**inputs)')
223
    print('predictions_=_outputs.logits.argmax(-1).item()')
    print('etichetta\_prevista_{\sqcup} = _{\sqcup}id\_to\_label[predictions]_{\sqcup\sqcup} \#_{\sqcup}
225
        {\tt Converti}_{\sqcup} {\tt l} \setminus {\tt 'ID}_{\sqcup} {\tt nell} \setminus {\tt 'etichetta}_{\sqcup} {\tt originale'})
226
227
    # Stampiamo una tabella finale con i risultati complessivi
    summary_dict = {
228
         "Metric": ["eval_loss", "accuracy", "precision", "recall",
229
            "f1"],
         "Valore": [
230
             test_results.get('eval_loss', 'N/A'),
231
             test_results.get('eval_accuracy', 'N/A'),
232
             test_results.get('eval_precision', 'N/A'),
233
             test_results.get('eval_recall', 'N/A'),
234
             test_results.get('eval_f1', 'N/A')
235
236
```

Listing 1: Codice di Training per il Fine Tuning di BERT