Since

ii)

Then

Quiz 4

Let

$$y = \beta_0 + \beta_1 \pi$$

$$\frac{x}{y} = \frac{2}{2} \frac{\zeta}{\zeta}$$

$$\frac{\zeta}{y} = \frac{2}{2} \frac{\zeta}{\zeta}$$

$$\frac{\zeta}{z} = \frac{2}{3} \frac{\zeta}{\zeta}$$

$$\frac{\zeta}{z} = \frac{1}{3} \frac{\zeta}{\zeta} = \frac{3}{3} \frac{\zeta}{\zeta} = \frac{1}{3} \frac{\zeta}{\zeta} = \frac{1}{3} \frac{\zeta}{\zeta} = \frac{3}{3} \frac{\zeta}{\zeta} = \frac{3}{3} \frac{\zeta}{\zeta} = \frac{1}{3} \frac{\zeta}{\zeta} = \frac{3}{3} \frac{\zeta}{\zeta} = \frac{3}{3} \frac{\zeta}{\zeta} = \frac{3}{3} \frac{\zeta}{\zeta} = \frac{3}{3} \frac{\zeta}{\zeta} = \frac{1}{3} \frac{\zeta}{\zeta} = \frac{$$

$$rank (A) = 2,$$

Since rank
$$(A) = 2$$
, $\hat{A} = (A^{7}A)^{-1}A^{7}\hat{b}$

$$A^{7}A = \begin{bmatrix} 1 & 1 & 1 \\ -2 & 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 1 & 2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 4 & 24 \end{bmatrix}$$

 $A^{T}b = \begin{bmatrix} 1 & 1 & 1 \\ -2 & 2 & 4 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -20 & 1 \end{bmatrix}$

 $\overrightarrow{A}\overrightarrow{x}_{i}$ \in Co(CA) , \forall $\overrightarrow{x}_{c} \in \mathbb{R}^{n}$

We have $C_1 = C_2 = \cdots = C_r = 0$

 $\lambda_1 = a - b$, $\lambda_2 = a + b$

 $\overrightarrow{V}_{l} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad , \qquad \overrightarrow{V}_{\nu} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

 $Q = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \quad D = \begin{bmatrix} a-b & 0 \\ 0 & a+b \end{bmatrix}$

Q2 Unitary: $UU^{H} = 1$ $\Rightarrow U^{2} = 1$ Hermitian: $U = U^{H}$ $\Rightarrow U = Q D Q^{H}$

 $\Rightarrow \lambda^2 = 1, \lambda = \pm 1.$

 $\lambda^2 = 1$ $\Rightarrow \lambda = \pm 1$

Q2 proof: Since $\dim[Col(A^7)] = \dim[Col(A)] = \operatorname{rank}(A)$, we only

 $C_1 \overrightarrow{Ax}_1 + C_2 \overrightarrow{Ax}_2 + \cdots + C_r \overrightarrow{Ax}_r = \vec{0}$

 $A\left(c_{1}\vec{x_{1}}+c_{2}\vec{x_{2}}+\cdots+c_{r}\vec{x_{r}}\right)=\vec{0}$

Hence \(\subsection \) \(\zeta \) \(\ze

C1x1 + 111 + Crxr = 01

Since Co((AT) L N(A) and Col(AT) / N(A) = 303

because $3\vec{\chi}_1, \dots, \vec{\chi}_r$ form a basis of $Col(A^7)$.

Q1 $det(A-\lambda 2) = \begin{vmatrix} a-\lambda & b \\ b & a-\lambda \end{vmatrix} = (a-\lambda)^2 - b^2 = (a-b-\lambda)(a+b-\lambda)$

need to argue $3A\bar{x}$, $A\bar{x}$,..., $A\bar{x}$ are linearly independent and are from Col(A).

A is symmetric then A is orthogonally diagonalizable by an orthogonal methns a s.t.

 $A = QDQ^{T} = Q\int^{\Lambda} Q^{T} = \Lambda QQQ^{T} = \Lambda Q.$

 $L=U^2=QD^2Q^H$, hence eigenvalues of D^2 and Z are the same.

 $U^{2}\vec{x} = U(\lambda \vec{x}) = \lambda^{2}\vec{x}$ $U^{2}\vec{x} = U^{H}U\vec{x} = 1\vec{x} = \vec{x}$ $(\lambda^{2}-1)\vec{x} = \vec{0}$

Method 2: Let 1 be an eigenvalue of U with eigenvector x.

Q3 proof: A is singular (\Rightarrow) $A\vec{x} = \vec{o} = 0\vec{x}$ for some $\vec{x} \neq \vec{o}$

(=) O is an eigenvalue of A with eigenvector $\tilde{\varkappa}$.

$$A^{7}A = \begin{bmatrix} 1 & 1 & 1 \\ -2 & 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 1 & 2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 4 & 24 \end{bmatrix}$$

$$(A^{7}A)^{-1} = \frac{1}{3xxy-4xy} \begin{bmatrix} 24 & -4 \\ -4 & 3 \end{bmatrix} = \frac{1}{56} \begin{bmatrix} 24 & -4 \\ -4 & 3 \end{bmatrix}$$

$$\frac{1}{b} = \int_{0}^{2} dt$$

$$rac{2}{2}$$