Basic formulas for statistical measures

Law	Discrete	Continuous					
Mean (μ) Expected Value	$\mu = E(X) = \Sigma (x f(x))$	$\mu = E(X) = \int (x f(x)) dx$					
Joint Mean Expected Value	$\mu_{g(x,y)} = \Sigma\Sigma (g(x,y) * f(x,y))$	$\mu_{g(x,y)} = \iiint (g(x,y) * f(x,y)) dx dy$					
Variance ($\sigma \wedge 2$)	$\sigma^2 = \Sigma (x^2 * f(x)) - \mu^2$	$\sigma^2 = \int (x^2 * f(x)) dx - \mu^2$					
Variance (σ^2)	$\sigma^2 = E(x^2) - \mu^2$						
	$σ_{xy} = ΣΣ [(xy) f(x,y)] - μ_xμ_y$	$\sigma_{xy} = \int \int [(xy) f(x,y)] dx dy - \mu_x \mu_y$					
Covariance (σ _{xy})	$\mu_x = \Sigma (x * g(x))$	$\mu_{x} = \int (x * g(x)) dx$					
check linearity $-\infty < \sigma_{xy} < \infty$	$\mu_y = \Sigma (y * h(y))$	$\mu_y = \int (y * h(y)) dy$					
	$\sigma_{xy} = E(XY) - \mu_x \mu_y$						
Correlation (ρ _{xy}) Measure linearity	$\sigma_x^2 = E(x^2) - \mu_x^2$	$\sigma_{y}^{2} = E(y^{2}) - \mu_{y}^{2}$					
-1 < ρ _{xy} < 1	ρ _{xy} =	$\rho_{xy} = \sigma_{xy} / (\sigma_x \sigma_y)$					

Summary of Common Probability Distributions

	Probability		
Name	Distribution	Mean	Variance
Discrete			
Uniform	$\frac{1}{n}, a \le b$	$\frac{(b+a)}{2}$	$\frac{(b-a+1)^2-1}{12}$
Binomial	$\binom{n}{x}p^x(1-p)^{n-x},$	np	np(1-p)
	$x=0,1,\ldots,n,0\leq p\leq 1$		
Geometric	$(1-p)^{x-1}p,$ $x = 1, 2, \dots, 0 \le p \le 1$	1/p	$(1-p)/p^2$
Negative binomial	$\binom{x-1}{r-1}(1-p)^{x-r}p^r$	r/p	$r(1-p)/p^2$
	$x = r, r + 1, r + 2, \dots, 0 \le p \le 1$		
Hypergeometric	$\frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}$	np , where $p = \frac{K}{N}$	$np(1-p)\left(\frac{N-n}{N-1}\right)$
	$x = \max(0, n - N + K), 1, \dots$	N	
	$\min(K, n), K \le N, n \le N$		
Poisson	$\frac{e^{-\lambda}\lambda^x}{x!}, x = 0, 1, 2, \dots, 0 < \lambda$	λ	λ
Continuous			
Uniform	$\frac{1}{b-a}, a \le x \le b$	$\frac{(b+a)}{2}$	$\frac{(b-a)^2}{12}$
Normal	$\frac{1}{\sigma\sqrt{2\pi}}e^{-1/2(\frac{x-\mu}{\sigma})^2}$	μ	σ^2
	$-\infty < x < \infty, -\infty < \mu < \infty, 0 < \sigma$		
Exponential	$\lambda e^{-\lambda x}, 0 \le x, 0 < \lambda$	$1/\lambda$	$1/\lambda^2$
Erlang	$\frac{\lambda^r x^{r-1} e^{-\lambda x}}{(r-1)!}$, $0 < x, r = 1, 2,$	r/λ	r/λ^2
Gamma	$\frac{\lambda x^{r-1} e^{-\lambda x}}{\Gamma(r)}, 0 < x, 0 < r, 0 < \lambda$	r/λ	r/λ^2
Weibull	$\frac{\beta}{\delta} \left(\frac{x}{\delta} \right)^{\beta - 1} e^{-(x/\delta)^{\beta}},$	$\delta\Gamma\left(1+\frac{1}{\beta}\right)$	$\delta^2\Gamma\left(1+\frac{2}{\beta}\right)$
	$0 < x, 0 < \beta, 0 < \delta$		$-\delta^2\!\!\left[\Gamma\left(1+\frac{1}{\beta}\right)\right]^2$
Lognormal	$\frac{1}{x\sigma\sqrt{2\pi}}\exp\left(\frac{-[\ln(x)-\theta]^2}{2\omega^2}\right)$	$e^{\theta + \omega^2/2}$	$e^{2\theta+\omega^2}(e^{\omega^2}-1)$

Frequency Table

- Range = Upper value Lower value.
- Sturges's formula for class count: $k = 1+3.322\log(n) \rightarrow n$ number of items.
- Calculate class width: R / K.
- Assign data points to classes to build the frequency table.

Quartile

- Count the data points.
- Order them from smallest to largest.
- Locate the median (Q2).
- Divide the dataset into two at the median.
- For odd-sized datasets, exclude the median for the next steps.
- For even-sized datasets, include both middle values in the halves.
- The median of the lower half is Q1.
- The median of the upper half is Q3

- Binominal (Bernolli) used for x success in n trials (true and false trials)
- Geometric is used for x trials to get the first success
- Negative binonminal is used for kth success in x trials
- Poission is used for number of outcomes in a region with average or rate
- Uniform is used when the outcomes have equal likelihood
- Exponential is used for time between events with average
- Standard Normal Distribution has the following equation to convert its table0 values to any other normal distribution system

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{\frac{-z^2}{2}}$$
$$Z = \frac{X - \mu}{\sigma}$$

- \circ Where μ is the mean of population
- \circ σ is the standard deviation of the population
- x is the value from foreign system with normal distribution
- z is the result equivalent from standard normal distribution

	Category	Algorithm	When to Use	
		Bubble Sort	Simple sorting, small datasets	
		Insertion Sort	Small datasets, mostly sorted data	
		Selection Sort	Small datasets, simplicity over efficiency	
		Merge Sort	Large datasets, require stable sort	
	Sorting	Quick Sort	Large datasets, average case speed	
		Heap Sort	Need to sort <mark>large</mark> datasets in place	
		Radix Sort	Large datasets with <mark>fixed-length keys</mark>	
		Bucket Sort	Large datasets, <mark>uniformly</mark> distributed	
		External Sort	Very large datasets that don't fit in memory	
		Linear Search	Unsorted data, small datasets	
	Searching	Binary Search	Sorted data, large datasets	
	Searching	Depth-First Search (DFS)	Graphs, exploring edges/node paths	
		Breadth-First Search (BFS)	Graphs, finding shortest path	
	Data Structures	Arrays, Link	ed Lists, queue, stack, priority queue	
	String Manipulation			
	Tree and BST	Tree Traversal	Accessing/Searching/Manipulating tree data	
Hierarchical data		BST Operations	Efficient search, insert, delete in sorted data	
		AVL Trees	Self-balancing BST where lookup speed is critical	
networks, paths, and	Granh	Dijkstra's Algorithm	Shortest path in weighted graph without negative edges	
relationships	Graph	Kruskal's Algorithm	Minimum spanning tree in sparse graphs	
		Prim's Algorithm	Minimum spanning tree in dense graphs	
sequence of decisions	Greedy			
		Quick Sort	When average case performance is key	
		Merge Sort	Large datasets where stability is key	
Can be divided to sub problems	Divide and conquer	Binary Search	Quickly finding an item in sorted data	
can be divided to sub problems	Divide and Conquer	Strassen's Matrix Multiplication	Large matrix multiplication	
		Karatsuba Algorithm	Fast multiplication of large numbers	
Permutations Combinations	Backtracking			
Overlapping Subproblems Optimal Substructure	Dynamic Programming	Fibonacci, knapsack and palindromes		

- Symbolic Al
- Genetic Algorithms Rules Classical → Answers Data programming
- A* and DIjkstra

Machine Learning - 1990

- Probabilistic Modeling (Naive Bayes & Logistic Regression)
- Kernel Methods (SVM)
- Machine → Rules Forest) learning Answers -

Deep Learning - 2010

CNN

CNN and RNNS for high-dimensional, large, complex dataset (low interpretability and higher computational resources)

TYPE, Learning, Function, Complextity

1. Type:

- 1) SVM (Support Vector Machine)
- 2) PCA (Principal Component Analysis)
- 3) Decision Forests
- 4) Naive Bayes
- 5) Linear Regression
- 6) Logistic Regression
- 7) KNN (K-Nearest Neighbors)
- 8) K-Means
- 9) Small CNN → SqueezeNet & MobileNet
- 10) Large CNN → DenseNet & EfficientNet & NASNet & AlexNet & GoogleNet & VGG
- 11) RNN → LSTM & BiLSTM & GRU & ResNet
- 12) CNN + RNN → Attention-based models & Transformers
- 13) GANs (Generative Adversarial Networks)
- 14) Autoencoder

2. Learning:

- Supervised Learning: Algorithms learn from labeled data, with input-output pairs provided during training.
- Unsupervised Learning: Algorithms learn patterns and structures in unlabeled data without explicit supervision.
- Semi-supervised learning exists between supervised and unsupervised learning
- Reinforcement Learning: Agents learn to interact with an environment to maximize rewards through trial and error.

3. Function:

- Classification: Algorithms predict discrete class labels for given input data.
- Regression: Algorithms predict continuous values based on input data.
- Clustering: Algorithms group similar data points together based on some similarity measure.
- Dimensionality Reduction: Techniques reduce the number of input variables while preserving important information.
- Computer Vision: Algorithms designed to process and interpret visual data.
- Natural Language Processing (NLP): Algorithms designed to understand and process human language.
- Speech Recognition: Algorithms designed to transcribe spoken language into text.
- Recommendation Systems: Algorithms designed to recommend items or content to users based on their preferences.
- Ensemble Learning: Techniques that combine multiple machine learning models to improve prediction accuracy or robustness
- Anomaly Detection

4. Complexity:

- Parametric Models: Models have a fixed number of parameters and a predefined structure, such as linear regression.
- Non-parametric Models: Models have a flexible number of parameters, such as decision trees and k-nearest neighbors.
- Deep Learning: Neural networks with multiple hidden layers, capable of learning intricate patterns and representations from data.

- Let's say you're working on predicting the price of a house based on various features such as square footage, number of bedrooms, number of bathrooms, and location. In this case, you have a continuous target variable (price) that you want to predict, and the relationship between the features and the target variable is likely to be linear.
- > Using linear regression would be appropriate in this scenario because it models the relationship between the input features and the target variable as a linear function. Linear regression would allow you to estimate the coefficients of each feature, which represent the change in the target variable for a one-unit change in each feature, holding all other features constant.
- > On the other hand, logistic regression is used for binary classification problems where the target variable is categorical (e.g., yes/no, 1/0). If the target variable is not binary or if the relationship between the features and the target variable is not linear, logistic regression would not be suitable.
- Let's consider a scenario where you have a dataset with high-dimensional features, such as images represented as pixel values. You want to perform binary classification to distinguish between images of cats and dogs. Each image is represented by a large number of features (e.g., pixel values), making the dataset high-dimensional.
- In this case, using SVM with a kernel function, such as the radial basis function (RBF) kernel, can effectively handle high-dimensional data and find complex nonlinear decision boundaries between the classes. SVM with the RBF kernel is capable of capturing intricate patterns in the data, which may be necessary for distinguishing between images of cats and dogs with high accuracy.
- > On the other hand, PCA is a dimensionality reduction technique that aims to reduce the dimensionality of the dataset by finding a lower-dimensional representation while preserving most of the variance in the data. However, PCA may not be as effective in capturing complex nonlinear relationships in the data, especially in cases where the decision boundary between classes is highly nonlinear or intricate.
- > Consider a text classification problem where you want to classify emails as either spam or not spam based on the words contained in the email. Each email is represented by a bag-of-words representation, where the presence or absence of words in the email is used as features for classification. In this scenario:
- Naive Bayes: Naive Bayes classifiers are well-suited for text classification tasks because they assume that features are conditionally independent given the class label. Despite this simplifying assumption, Naive Bayes classifiers often perform well on text data and are computationally efficient. They calculate the probability of each class given the features and select the class with the highest probability.

Algorithm	Туре	Functionality	-	Model Complexity	Code example	image
CNN	Supervised	Classification, Regression	Yes	Deep	<pre>from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3))) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Flatten()) model.add(Dense(64, activation='relu')) model.add(Dense(10, activation='softmax'))</pre>	VGG-16 CNN Architecture Conv-2 Conv-3 Conv-4 Conv-5 FC-6 FC-7 FC-8 1×1×4096 1×1×1000 7×7×512 Convolution+ReLU max pooling fully connected+ReLU
SVM (Support Vector Machine)	Supervised	Classification, Regression	No	Parametric	<pre>from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.svm import SVC iris = datasets.load_iris() X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42) svm_model = SVC(kernel='linear') svm_model.fit(X_train, y_train) accuracy = svm_model.score(X_test, y_test) print("Accuracy:", accuracy)</pre>	
Decision Forests	Supervised	Classification, Regression	No	Non- parametric	<pre>from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier iris = datasets.load_iris() X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42) rf_model = RandomForestClassifier(n_estimators=100) rf_model.fit(X_train, y_train) accuracy = rf_model.score(X_test, y_test) print("Accuracy:", accuracy)</pre>	Random Forest Simplified Instance Tree-1 Class-α Class-β Output means regression Final result

Naive Bayes	Supervised	Classification	No	Parametric	<pre>from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB iris = datasets.load_iris() X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42) nb_model = GaussianNB() nb_model.fit(X_train, y_train) accuracy = nb_model.score(X_test, y_test) print("Accuracy:", accuracy)</pre>	Likelihood of the Evidence given that the Hypothesis is True $P(H E) = \frac{P(E H) * P(H)}{P(E)}$ Posterior Probability of the Hypothesis given that the Evidence is True Prior Probability Prior Probability that the evidence is True
Linear Regression	Supervised	Regression	No	Parametric	from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression boston = load_boston() X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, test_size=0.3, random_state=42) lr_model = LinearRegression() lr_model.fit(X_train, y_train) accuracy = lr_model.score(X_test, y_test) print("Accuracy:", accuracy)	Y=1 Y=0 X-Axis
Logistic Regression	Supervised	Classification	No	Parametric	<pre>from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression iris = datasets.load_iris() X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42) lr_model = LogisticRegression() lr_model.fit(X_train, y_train) accuracy = lr_model.score(X_test, y_test) print("Accuracy:", accuracy)</pre>	Logistic Regression Y=1 Six Y- Y=0 X-Axis

KNN (K- Nearest Neighbors)	Supervised	Classification	No	Non- parametric	from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier iris = load_iris() X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42) knn_model = KNeighborsClassifier(n_neighbors=5) knn_model.fit(X_train, y_train) accuracy = knn_model.score(X_test, y_test) print("Accuracy:", accuracy)	Training instances New instance
PCA (Principal Component Analysis)	Unsupervised	Dimension Reduction	No	Non- parametric	from sklearn.datasets import load_iris from sklearn.decomposition import PCA iris = load_iris() pca = PCA(n_components=2) X_reduced = pca.fit_transform(iris.data)	Principal Component Analysis (PCA) Y X
K-Means	Unsupervised	Clustering	No	Non-parametric	from sklearn.cluster import Means X, _ = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0) kmeans = KMeans(n_clusters=4) kmeans.fit(X)	Cluster plot cluster 1 2.5 3 cluster 1 2 3 radius_mean

GANs (Generative Adversarial Networks)	Unsupervised	Generation	Yes	Deep	Real images Sample Discriminator Discriminator Discriminator Discriminator
					Generator Sample Sample
Autoencoder	Unsupervised	Dimension Reduction, Generation	Yes	Deep	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

Time Complexity of 10 Most Popular ML Algorithms

1 1111111111	Linear Regression (OLS)	$O(nm^2 + m^3)$	O(m)
	Linear Regression (SGD)	$O(n_{epoch}nm)$	O(m)
*****	Logistic Regression (Binary)	$O(n_{epoch}nm)$	O(m)
0000	Logistic Regression (Multiclass OvR)	$O(n_{epoch}nmc)$	O(mc)
<i>X X</i>	Decision Tree	$O(n \cdot \log(n) \cdot m)$ $O(n^2 \cdot m)$	$O(d_{vec})$
	Random Forest Classifier	$O(n_{trees} \cdot n \cdot \log(n) \cdot m)$	O(dtrees * dtree)
•	Support Vector Machines (SVMs)	$O(nm^2 + m^3)$	O(m * nsv)
ٛ	k-Nearest Neighbors	~	O(nm)
$P(A B) = \frac{P(B A) * P(A)}{P(B)}$	Naive Bayes	O(nm)	O(mc)
	Principal Component Analysis (PCA)	$O(nm^2 + m^3)$	-
	t-SNE	$O(n^2m)$	
18. W	KMeans Clustering	O(iknm)	??

n: samples

m: dimensions

n_{epoch}: epochs

c: classes

d....: depth

n.: Support vectors

k: clusters

i: iterations

Advanced CNNs

Model	Type	Best Case to Use	Model Size
SqueezeNet	CNN	When limited computational resources are available	Small
MobileNet	CNN	Mobile and edge devices, real-time applications	Small
BiLSTM (Bidirectional LSTM)	RNN	Sequential data with bidirectional context	Medium
GRU (Gated Recurrent Unit)	RNN	Sequences with less complex dependencies	Medium
LSTM (Long Short-Term Memory)	RNN	Long sequences with complex dependencies	Medium
DenseNet	CNN	Image classification tasks	Large
EfficientNet	CNN	State-of-the-art performance with efficient use of resources	Large
NASNet (Neural Architecture Search Network)	CNN	High-performance image classification tasks	Large
AlexNet	CNN	Legacy image classification tasks	Large
GoogLeNet (Inception)	CNN	Tasks requiring strong generalization	Large
VGG (Visual Geometry Group) networks (e.g., VGG16, VGG19)	CNN	Image classification tasks, benchmarking	Large
Attention-based models (e.g., Transformer with Attention Mechanisms)	RNN/CNN	NLP tasks, sequence-to-sequence learning	Varies
Transformer	RNN/CNN	NLP tasks, language translation	Varies

History Table

1950	Al started
1990	Machine Learning Started
1997	LSTM
2010	Deep Learning Started
2012	CNN started

- > Machine learning is not a science or mathematics where advancements is achieved by paper and pen it's an engineering
- > If machine learning is an engine so the data is its coal
- > Neural netword core is a layer and its like a data filter with activation function
- > Each model should have (loss function, optimizer, metric to monitor during training)
- > Preprocessing: one of the best ones is to make any parameter value ranging from 0 to 1 by normalization

	PREDICTED CLASS					
		Class=Yes	Class=No			
ACTUAL	Class=Yes	a (TP)	b (FN)			
	Class=No	c (FP)	d (TN)			

Accuracy =
$$\frac{TP+TN}{TP+FN+TN+FP}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP+FN}$$

F-measure =
$$\frac{2 \cdot TP}{2 \cdot TP + FN + FP}$$

$$Cost = TP \times Cost_{TP} + FN \times Cost_{FN}$$
$$+ TN \times Cost_{TN} + FP \times Cost_{FP}$$

Sensitivity = Recall

Specificity =
$$1 - \frac{FP}{FP + TN} = \frac{TN}{TN + FP}$$

False Positive Rate = 1 - Specificity

Neural Network	Training Time Complexity	Classification Time Complexity	Space Complexity (Missing Data)
Feedforward Network	O(n * E * I * H * O)	O(n * I * H * O)	O(E * I * H * O)
Convolutional Network	O(n * E * I * K * O)	O(n * I * K * O)	O(E * I * K * O)
Recurrent Network	O(n * E * I * H^2)	O(n * I * H^2)	O(E * I * H^2)
Generative Adversarial Network (GAN)	O(n * E * G * D)	O(n * G * D)	O(E * G * D)
Long Short-Term Memory (LSTM)	O(n * E * I * H^2)	O(n * I * H^2)	O(E * I * H^2)
Transformer Network	O(n * E * I^2 * H)	O(n * I^2 * H)	O(E * I^2 * H)

In the table:

- "n" represents the number of training examples
- "E" denotes the number of training epochs
- "I" refers to the number of input features
- "H" represents the number of hidden units or layers
- "O" denotes the number of output units
- "K" represents the kernel size (for Convolutional Networks)
- "G" denotes the number of generator iterations (for GANs)
- "D" represents the number of discriminator iterations (for GANs)