MATH 102: IDEAS OF MATH

WORKSHEET 3

1. Statement

Problem 1.1. Classify the following as statements or non-statemetrs:

- (1) I had a hearty laugh at the joke!
- (2) He had a fever of 102^{o} but still completed his task.
- (3) Why would anyone want to do this?
- (4) If you go to the city, you will find what you are seeking.
- (5) I am so happy today!
- (6) x > x 1.
- (7) For all integers x, x + 2 is even.

Problem 1.2. Classify whether the following statements are propositions.

- (1) The Sun is a star.
- (2) Every prime number is odd.
- (3) The Moon is a star.
- (4) Every even number
- (5) If 4 is a prime, then FUV is the best university in the world.
- (6) " $P \implies Q$ " has the same meaning as " $\neg P \lor Q$ ".

2. Logical equivalence

Definition 2.1. Let P and Q be logical formulae. We say that P and Q are logically equivalent and write $P \equiv Q$ if Q can be derived from P and P can be derived from Q.

Problem 2.1. Show that

$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R),$$

where P, Q, R are propositional variables.

It turns out that the following is true.

Theorem 2.2. Two propositional formulae are logically equivalent if and only if their truth values are the same under any assignment of truth values to their constituent propositional variables.

Date: September 12, 2023.

Even though the proof of this theorem is beyond the scope of this class, we can use this to our advantage to check whether P and Q are logically equivalent by just looking at their truth tables.

Theorem 2.3. Two propositional formulae are logically equivalent if and only if they have the same truth table.

Problem~2.2. Check the theorem above by redo Problem 1.2.6 and Problem 2.2