Министерство образования Республики Беларусь Учреждение образования «Брестский государственный технический университет» Кафедра ИИТ

Лабораторная работа №9

Выполнил:

Студент 3 курса Факультета ЭИС Группы АС-50 Литвинко В.А. **Проверил:** Давидюк Ю.И. Цель работы: приобрести практические навыки проектирования инфраструктуры «умного дома», научиться основам программирования микроконтроллерных устройств

Задание 1

Последовательно выполните задания, используя режим реального времени СРТ. В качестве результата должна быть получена работающая сетевая инфраструктура, изображенная на рис. 1.

Рис. 1. Схема подключения устройств «умного дома»

1)Все необходимые устройства могут быть найдены во вкладках End Devices \rightarrow End Devices, End Devices \rightarrow Home и Network Devices \rightarrow Wireless Devices. Ключевое устройство Home Gateway. Именно оно объединяет все устройства умного дома и клиентские терминалы (такие, как лэптоп) в общую беспроводную сеть. Это сервер IoT.

2)После размещения всех необходимых устройств в рабочей области откройте Home Gateway и во вкладке Config \rightarrow Interface \rightarrow Wireless определите тип аутентификации как WPA2-PSK и задайте любой пароль из 8 символом (например, cisco123).

3)После настройки сервера, переходим на любое устройство IoT и открываем расширенные настройки (Advanced). Дело в том, что эти устройства по умолчанию не поддерживают беспроводную передачу данных. Откройте вкладку I/O Config. Далее в списке Network Adapter2 выберите беспроводной адаптер PT-IOT-NM-1W.

4)После выполнения предыдущего действия во вкладке Config появится беспроводной интерфейс Wireless3. Откройте его и настройте подключение к серверу, задав правильный тип аутентификации, пароль и выбрав вариант DHCP в IP Configuration (этот вариант чаще всего задан по умолчанию, убедитесь в этом случае, что узлом получен IP-адрес из того же диапазона, что и IP-адрес сервера – как правило, из 192.168.25.0). В данном случае сервер IoT Номе Gateway является DHCP-сервером для подключаемых устройств (автоматически раздает IP-адреса).

- 5)Далее откройте Settings (там же, во вкладке Config) и поставьте в группе IoT Server переключатель в положение Home Gateway.
- 6)После выполнения всех этих действий, убедитесь, что между сервером и настраиваемым узлом появилось отображение беспроводной связи.
- 7)Проделайте действия 3-6 для других устройств, исключая лэптоп.

8)Откройте лэптоп и изучите его физическую конфигурацию. Вы можете заметить, что на нем также, как и на IoT-устройствах не установлен модуль беспроводной связи. Это можно исправить следующим образом: извлеките установленный Fast Ethernet-модуль (предварительно выключив лэптоп) и поместите в свободный слот модуль PT-LAPTOP-NM-1W. После этого включите устройство и произведите похожие настройки беспроводного интерфейса (укажите SSID, тип аутентификации и пароль). Между сервером и лэптопом должна появиться визуализация беспроводной связи.

9)Откройте вкладку Desktop лэптопа и далее IoT Monitor. Нажмите Ок в окне авторизации на сервере, убедившись в правильности написанного IP-адреса сервера. После этого перед вами должен появиться список всех беспроводных устройств, подключенных к нашему серверу. Поэкспериментируйте с кнопками включения/выключения устройств и изучите изменения, которые с ними происходят.

10)Добавьте фон для построенной инфраструктуры, воспользовавшись предложенными (папка background) или использовав свой (рис. 2).

Задание 2

В первом задании, несмотря на наличие IoT-устройств, сформирована лишь сетевая инфраструктура, но не полноценное IoT-решение. Это так, поскольку все устройства контролируются (пусть и удаленно), но человеком. Т.е. человек принимает решения о включении/выключении устройств, а не сама система. Попробуем создать решение, которое будет обладать определенной автономностью.

Для этого воспользуемся микроконтроллерными устройствами, которые будут принимать решение о активации тех или иных узлов системы. Спроектируем систему для поддержания комфортной температуры внутри помещения, изображенную на рис. 3

1)Для начала добавьте микроконтроллерную плату в рабочую область (вкладка Components → Boards). Выберите из предложенных плату SBC Board.
2)Откройте добавленную плату на вкладке Programming. Далее в списке слева выберите пункт Blink (Python) и далее main.py. Программирование для такой платы производится на языке Python. Он является достаточно простым скриптовым языком с большим количеством разработанных библиотек (подробнее о языке можно почитать в предложенной презентации). Скрипт, который откроется, нужен для решения простой задачи — он включает и выключает пин (разъем) на нашей плате, активируя подключенную к нему нагрузку. В качестве

такой нагрузки может выступать светодиоды, разные датчики, LCD-экраны и

т.д.

3)Попробуйте добавить светодиод (LED) с вкладки Components \rightarrow Actuators к рабочей области. Затем во вкладке Connections выберите тип соединения IoT Custom Cable и соедините пин D1 вашей платы с пином D0 светодиода. Запустите программу, нажав на кнопку Run. Вы должны увидеть мигающий светодиод. Откройте программу, попытайтесь изучить и понять ее содержимое. Команда pinMode нужна для определения режима, в котором будет работать наш пин платы (это может быть IN или OUT - для выходных и входных сигналов соответственно). Как следует из программы, мы делаем пин D1 (или просто пин с номером 1) выходным, для того, чтобы регулировать уровень напряжения и включать и выключать его. Пины бывают цифровыми (D) и аналоговыми (A). Цифровые пины оперируют 0 и 1 (или LOW и HIGH) и лучше всего описывают взаимодействие с устройствами, которые нужно включать и выключать. Аналоговые пины нужны для передачи какой-то многоуровневой информации (например, уровня температуры и влажности). Как вы видите, в программе мы записываем попеременно высокий и низкий сигнал в пин номер 1, что приводит к миганию светодиода (это делается с помощью функции digitalWrite с указанием номера пина и уровня сигнала). Функция delay вызывает задержку перед выполнением следующей команды на указанное количество миллисекунд.

4)Удалите LED из рабочей области. Добавьте другие компоненты, необходимые для реализации проекта (вкладка Actuators), а также цифровой термометр для отслеживания температуры (End Devices → Home→ Temperature Monitor)). Температурный сенсор находится на вкладке (Components → Sensors→ Temperature Sensor).

5) Heating Element нужен для повышения температуры, Air Cooler для понижения. О характеристиках этих устройств можно почитать, кликнув по ним. Для нас важно то, что они включаются и выключаются как цифровые устройства (т.е. вызовом команды digitalWrite). Temperature Monitor нужен для считывания данных о температуре. Это аналоговый датчик, поэтому для считывания данных применяется функция analogRead с указанием единственного параметра – номера пина. Подсоедините все указанные датчики к плате, выбрав произвольные пины (запомните свой выбор). Для Темрегаture Monitor выберите пин АО на нем.

6)Далее изучите изменение температуры в течение суток с помощью показателей температурного монитора. В СРТ можно изменять текущее время суток (это делается нажатием на кнопку с «текущим» временем или Shift + E. Как вы заметите, температура изменяется. Хотелось бы, чтобы она оставалась в определенном заданном интервале (например, от 20 до 25 градусов).

Location: Intercity			•	Edit
Current Time: 19:57:30 E	dit Pau	se		
Select an environment to sh	ow its cha	art.		
Filter	Search	Reset		
■ Farth Physical Features				⊿ Gra

7)Итак, мы подошли к самому главному. Теперь вам нужно написать программу, которая будет поддерживать текущую температуру в заданном интервале. Используйте пины, активируя устройства для обогрева и охлаждения на основании данных, считанных с температурного датчика. Имейте в виду, что датчик возвращает данные в интервале от 0 до 1023, соответствующие температуре -100 до 100 градусов. Используйте следующую формулу для получения значения температуры:

```
from gpio import *
from time import *

def main():
    pinMode(0, IN)
    pinMode(1, OUT)
```

```
pinMode(2, OUT)
            while True:
                            a = ((analogRead(0)*200/1023)-100)
                            if a<20:
                                           digitalWrite(2, HIGH);
                                           digitalWrite(1, LOW);
                            if a>25:
                                           digitalWrite(1, HIGH);
                                           digitalWrite(2, LOW);
                            print(a);
                           delay(1000)
if __name__ == "__main__":
            main()
 Open New Delete Rename Import
                                                  Install to Desktop Stop Clear Outputs Help
                                  Reload Copy Paste Undo Redo Find Replace Zoom:+ -
                               1 from gpio import *
2 from time import *
                              2 from time import *
3 def main():
5 pinMode(0, IN)
6 pinMode(1, OUT)
7 pinMode(2, OUT)
8 * while True:
9 a = ((analogRead(0)*200/1023)-100)
10 * if a<20:
11 digitalWrite(2, HIGH):
12 digitalWrite(1, LOW);
13 * if a>25:
14 digitalWrite(1, HIGH);
15 digitalWrite(1, HIGH);
16 print(a);
17 delay(1000)
18
                             8 while True:
9 a = ((analogRead(0)
10 + if ac20:
11 digitalWrite(2,
12 digitalWrite(1,
13 + if a>25:
14 digitalWrite(1,
15 digitalWrite(2,
16 print(a);
17 delay(1000)
18
19 + if __name__ == "__main__":
20 main()
```

При температуре меньше 20 градусов температура повышается, при температуре больше 25 понижается.