Условие

В данной работе предлагается исследовать механические свойства желеобразных веществ, к которым относятся желе, гели, студни. Встречаются и животные с желеобразными телами, например, медуза Аурелия ушастая (Moon Jelly) с прозрачным студенистым телом.

Желеобразные вещества занимают промежуточное положение между жидкими и твёрдыми веществами. Они характеризуются отсутствием текучести, способностью сохранять форму, прочностью, упругими свойствами. По многим своим механическим свойствам эти вещества уникальны. В данной работе вам предлагается определить модуль Юнга E и скорость звука c в желатине.

В этой работе вам могут помочь следующие теоретические сведения.

Модуль Юнга характеризует упругие свойства вещества, определяя жёсткость различных конструкций. Например, небольшая относительная деформация ε цилиндра сечением S и высотой h под действием растягивающей (или сжимающей) силы F равна (по определению модуля Юнга):

$$\varepsilon = \frac{\Delta h}{h} = \frac{F}{ES}.$$

Изгиб цилиндра. Пусть цилиндр закреплен в вертикальном положении. Если к верхнему основанию приложить момент сил M, оно наклонится на угол φ к горизонту. По закону Гука при малых деформациях:

$$M=\kappa\varphi,$$

где $\kappa - \varkappa \ddot{e} c m \kappa o c m_b$ цилиндра на изгиб. Она определяется модулем Юнга и геометрическими параметрами цилиндра по формуле:

$$\kappa = E \frac{\pi R^4}{4h},$$

где R — радиус цилиндра, а h — его высота.

Кручение цилиндра. Верхнее основание цилиндра относительно нижнего, закреплённого, основания можно повернуть на угол φ вокруг оси цилиндра в горизонтальной плоскости. Такая деформация называется кручением. При небольших деформациях по закону Гука момент сил M, необходимый для закручивания цилиндра, также пропорционален углу φ :

$$M = \chi \varphi,$$

где $\chi \approx E\pi R^4/(6h) - \kappa pymuльная жёсткость желатинового цилиндра.$

Крутильные колебания возникают, если прикреплённый к верхнему основанию цилиндра стержень отклонить в горизонтальной плоскости от положения равновесия на некоторый угол и отпустить (нижнее основание цилиндра закреплено). Период гармонических колебаний такого Т-образного кру-

тильного маятника определяется крутильной жёсткостью цилиндра и моментом инерции I маятника относительно оси вращения:

$$T = 2\pi \sqrt{\frac{I}{\chi}}.$$

Момент инерции крутильного маятника (подобно массе груза для пружинного маятника) определяет его инерционность. Момент инерции зависит от распределения масс относительно оси вращения маятника. Так, момент инерции тонкого однородного стержня длиной l и массой m_0 относительно оси, перпендикулярной стержню и проходящей через его середину, равен:

$$I_{\rm ct} = \frac{m_0 l^2}{12}.$$

Если же на стержень нацепить небольшой грузик массой m на расстоянии r от оси вращения, то момент инерции маятника увеличится на величину момента инерции грузика $\Delta I = I_m = mr^2$ и станет равным:

$$I = I_{\rm ct} + mr^2.$$

Это связано с тем, что момент инерции — величина аддитивная.

Модуль Юнга входит в формулу для **скорости звука** в различных материалах. Если, например, по торцу тонкого стержня ударить молотком, то по стержню побежит продольная звуковая волна со скоростью $c=\sqrt{E/\rho}$. Так, для стали с модулем Юнга $E=2\cdot 10^{11}$ Па и плотностью $\rho=7,9$ г/см³ эта скорость составляет $c=\sqrt{E/\rho}\approx 5$ км/с.

Задание

- 1.1. Изготовьте из желатинового цилиндра диаметром D=29 мм и длинной деревянной линейки Т-образный маятник (при необходимости, если недостаточно собственной «липкости» желатина, линейку можно подклеить к цилиндру, а сам цилиндр к деревянной подставке с помощью «желатинового» клея). Исследуйте желатиновый цилиндр на изгиб статическим методом. Для этого снимите зависимость $\varphi(M)$ изменения угла φ наклона линейки Т-образного маятника под действием приложенного к линейке момента сил M. Зарисуйте схему установки и опишите методику измерений.
 - 1.2. Результаты измерений п. 1.1 представьте графически.
- 1.3. По результатам эксперимента п. 1.1 получите значение модуля Юнга E желатина. Оцените погрешность измерений.
- 2.1. Исследуйте желатиновый цилиндр Т-образного маятника на кручение динамическим методом. Для этого исследуйте зависимость изменения периода $T_{\mathrm{крут}}$ крутильных колебаний маятника от изменения момента его инерции. Зарисуйте схему установки и опишите методику измерений.
 - 2.2. Результаты измерений п. 2.1 представьте графически.

- 2.3. По результатам измерений п. 2.1 получите значение модуля Юнга ${\cal E}$ желатина. Оцените погрешность измерений.
- 3.1. Исследуя поведение тонких ($d=19,5\,\mathrm{mm}$) желатиновых цилиндров на вибрирующей подставке, определите скорость продольных звуковых волн c_9 в желатине. Желатиновые цилиндры выдавливаются из шприцов с помощью поршня. Для приготовления цилиндров необходимой длины используйте канцелярский нож Зарисуйте схему установки и опишите методику измерений.

Внимание: не подавайте на электромоторчик напряжение, превыщающее 9.5 В.

Cosem: отрезать нужную длину образца лучше по мере выдавливания цилиндра, прижимая нож к торцу шприца.

Подсказка: вибрирующая подставка может быть реализована с помощью линейки с закреплённым на ней электромоторчиком.

- 3.2. Сравните полученное значение $c_{\mathfrak{s}}$ с теоретическим, рассчитанным по формуле $c_{\mathtt{T}}=\sqrt{E/\rho}$, где E модуль Юнга, определённый статическим или динамическим методом. Плотность желатина $\rho=1,05$ г/см³.
- 4. С помощью пластиковой ложечки съешьте фруктовое желе. Запишите свои впечатления. Зарисовывать схему установки, описывать методику поедания, определять модуль Юнга и делать оценку погрешности в этом пункте не надо. Ашларыгыз тәмле булсын!

Примечание. Этот пункт можно выполнить в любой момент.

Оборудование. Широкий шприц с внутренним диаметром D=29 мм, деревянная подставка, 3 маленьких шприца с внутренним диаметром d=19.5 мм, электромоторчик постоянного тока с эксцентриком, закреплённый на деревянной линейке, регулируемый источник постоянного тока, стробоскопический тахометр, секундомер, деревянная линейка, канцеллярский нож, 2 одинаковые большие гайки массой $m_{\rm r}=9.75$ г каждая, канцелярская клипса, фруктовое желе (яблочное, вишнёвое или клубничное), пластиковая (одноразовая) ложечка. Клей (расплавленный желатин) по требованию.

Примечание. Чтобы плавно регулировать напряжение на источнике, поверните ручку пределов напряжения в крайнее правое положение (0-15 V). Остальные положения ручки задают фиксированное значение напряжения.

Примечание. Проверьте, что перед включением два левых тумблера повёрнуты до конца по часовой стрелке, а два правых тумблера — против часовой стрелки. Для изменения напряжения пользуйтесь двумя правыми тумблерами: «COARSE» для грубого изменения и «FINE» для плавного.

Возможное решение

Статический метод

Отрежем цилиндр желатина высотой $h=35\pm1$ мм из толстого шприца (радиус R=14,5 мм). С помощью клея закрепим его на подставке, а затем приклеим к нему сверху линейку так, чтобы она лежала горизонтально (рис. 1).

Для вычисления модуля Юнга снимем зависимость $\varphi(M)$. Угол $\varphi \approx \sin \varphi = \Delta y/l$. Для изменения момента силы M будем использовать гайку. Так как угол φ наклона линейки мал, $M = mgr\cos \varphi \approx mgr$. Если гайка начнет сползать, будем закреплять её желатиновым клеем.

Таблица 1.							
r, cm	y, см	Δy , cm	φ , рад				
0	4,4	0,0	0,00				
2	6,8	2,4	0,09				
3	8,1	3,7	$0,\!14$				
4	9,2	4,8	$0,\!19$				
5	10,3	5,9	$0,\!23$				
6	11,5	7,1	$0,\!27$				
7	12,6	8,2	0,31				
8	13,7	9,3	$0,\!35$				

Построим график полученной зависимости на рисунке 2 ($\Delta r = 0.1$ см, $\Delta \varphi = \Delta(\Delta y)/l + \Delta l/l \approx 0.2/20 = 0.01$).

Угловой коэффициент прямой $s=4{,}36\pm0{,}03~{\rm M}^{-1}$ Вычислим модуль Юнга по формуле:

$$E = \frac{4mgh}{\pi s R^4} = 22 \pm 2 \text{ кПа.}$$

Динамический метод

В этой части будем использовать установку из предыдущей части. Теперь положим две гайки на одинаковом расстоянии r от центра (рис. 3).

Аккуратно отклоним линейку на небольшой угол так, чтобы она всё время оставалась горизонтальной (иначе могут возникнуть другие моды колебаний), и отпустим. Возникнут крутильные колебания. Будем измерять время t=10T, за которое система совершает 10 колебаний в зависимости от расстояния до гаек r. Повторим измерения для каждого значения r несколько раз.

Таблина 2.

r, cm	$10T_1$, c	$10T_2$, c	$10T_3$, c	$10T_4$, c	$10T_5$, c	r^2 , cm ²	T^2 , c^2
0	6,32	6,34	6,35	6,39	6,34	0	0,402
2	$6,\!41$	$6,\!41$	$6,\!38$	$6,\!38$	$6,\!47$	4	$0,\!410$
4	$6,\!87$	6,90	6,94	$6,\!84$	$6,\!84$	16	$0,\!473$
6	7,69	7,72	7,62	7,69	7,69	36	$0,\!590$
8	8,59	8,66	8,60	8,63	8,66	64	0,744
10	9,68	9,69	9,63	9,68	9,66	100	0,934
12	10,88	10,99	10,91	10,91	10,88	144	$1,\!191$
14	12,12	$12,\!15$	$12,\!15$	$12,\!10$	12,09	196	1,469
16	$13,\!37$	$13,\!34$	$13,\!41$	$13,\!34$	$13,\!35$	256	1,785
18	$14,\!59$	14,60	14,63	14,61	14,62	324	$2,\!134$
20	15,93	15,91	15,90	15,91	15,92	400	2,532

Момент инерции системы равен $I=I_0+2mr^2$, где I_0 — момент инерции линейки. Тогда зависимость квадрата периода колебаний T^2 от r^2 будет линейной:

$$T^2 = 4\pi^2 \frac{I}{\chi} = \frac{8\pi^2 m}{\chi} r^2 + \frac{4\pi^2 I_0}{\chi}.$$

Построим линеаризованный график $T^2(r^2)$ (рис. 4). Погрешности: $\Delta(r^2)=2r\Delta r,\ \Delta(T^2)=2T\Delta T,\ \Delta T\approx 0.2/10=0.02$ — время реакции, делённое на количество периодов.

Угловой коэффициент прямой $a=8\pi^2m/\chi=53.7\pm0.3~{\rm c^2/m^2}.$ Отсюда, используя выражение для χ , получаем, что модуль Юнга

$$E = \frac{6\chi h}{\pi R^4} = \frac{48\pi mh}{aR^4} = 22 \pm 2$$
 кПа.

Резонансный метод

В этой части нам потребуются цилиндры разной высоты, которые мы будем нарезать из образцов в тонких шприцах. Соберем установку (рис. 5).

Линейку с моторчиком закрепим на краю стола с помощью клипсы так, чтобы её конец с двигателем сильно выступал за пределы парты (как минимум, на 10 см). На линейке закрепим несколько желатиновых цилиндров разной высоты. Для каждого цилиндра измерим его резонансную частоту $\nu_{\rm p}$. Для начала настроим частоту с помощью источника тока так, чтобы амплитуда колебаний выбранного цилиндра высотой H была максимальна. Затем, освещая стробоскопом на вертушку и изменяя частоту вспышек света, найдём положение, когда вертушка моторчика останавливается, и при этом виден

только один винт (если видно несколько винтов, то это кратные частоты). В этом случае частота стробоскопа совпадает с частотой колебаний системы.

В цилиндре возбуждается стоячая волна, при этом, так как амплитуда максимальна на конце цилиндра, то там пучность, значит высота цилиндра — это четверть длины волны, то есть $h=\lambda/4$. При этом скорость звука $c=\lambda\nu_{\rm p}$, откуда $\nu_{\rm p}=c/(4h)$. Измерим $\nu_{\rm p}$ для нескольких цилиндров разной высоты.

	Таблица 3	3.
h,cm	$ u_{ m p},{ m of/}{ m muh}$	h^{-1}, M^{-1}
4,0	1600	25
3,4	2000	29
2,8	2500	36
2,4	2750	42
2,0	3300	50

Построим график зависимости $4\nu_{\rm p}(h^{-1})$ (рис. 6).

Угловой коэффициент проведённой прямой $k=66\pm10~{\rm m\cdot of/muh},$ откуда скорость звука

$$c_9 = \frac{4k}{60} = 4.4 \pm 0.7 \text{ M/c}$$

Посчитаем теоретическое значение $c_{\rm T} = \sqrt{E/\rho} = 4.6 \pm 0.2 {\rm m/c}$.

4. Приведём один из возможных ответов на этот пункт:

В первую очередь хочется отметить удачный выбор прозрачной упаковки для яблочного желе, которое позволяет насладиться насыщенным цветом красителей «Куркумин» и «Хлорофиллы» ещё до начала выполнения этого пункта. Желе обладает лёгким приятным запахом ароматизатора «Яблоко», что всячески способствует желанию наконец попробовать его. Нельзя обойти стороной нежную, тающую на языке, текстуру желатина и его сладкий (но не приторный) вкус с нотками лимонной кислоты и сорбата калия. Наконец, судя по текучести желе с ложки на ответные листы, разумно предположить, что и модуль Юнга этого желатина значительно меньше результата, полученного в предыдущих пунктах. Можно было бы подтвердить эту догадку измерением, но делать этого мы, конечно же, не будем.

11 класс, Э1, Желе

1 Статический метод (3,5)					
1.1 Метод измерений		0,2			
Таблица измерений (7+ точек, диапазон, регулярность)					
5-6 точек	1				
3-4 точки	0,5				
1.2 График		1			
Проведена прямая в области линейности з. Гука	0,4				
Подписаны оси	0,1+0,1				
Выбран хороший масштаб	0,2				
Нанесены кресты ошибок (обосновано)	0,2				
1.3 Ответ E = 12-23 кПа		0,6			
6-30 кПа	0,3				
Указана погрешность (обосновано)		0,2			
2 Динамический метод (5,7)					
2.1 Метод измерений		0,2			
Кол-во периодов при измерении времени 10+		1,2			
5-9	0,8				
3-5	0,4				
Кол-во точек 7+		1,5			
5-6	1,0				
3-4	0,5				
2.2 График		1,6			
Линеаризация (величины по осям)	0,6				
Точки ложатся на прямую	0,4				
Подписаны оси	0,1+0,1				
Выбран хороший масштаб	0,1				
Нанесены кресты ошибок (обосновано)	0,3				
2.3 Ответ E = 12-23 кПа		0,8			
6-30 кПа	0,4				
Указана погрешность (обосновано)		0,4			

3 Скорость звука (5,8)		
3.1 Метод измерений		1
Резонанс при h = λ/4		1,3
Измерения (3+ точек)		1,2
2 точки	0,8	
1 точка	0,5	
График		1
Точки ложатся на прямую	0,4	
Подписаны оси	0,1+0,1	
Выбран хороший масштаб	0,1	
Нанесены кресты ошибок (обосновано)	0,3	
Эксп. скорость звука с = 3-6 м/с		0,6
1-9 m/c	0,3	
Указана погрешность обосновано		0,4
3.2 Теор. скорость звука с = 3-5 м/с		0,25
2-6 m/c	0,15	
Оценена погрешность		0,05
4 Впечатления		0,01
	Сумма	

Условие

Простейший электрический диполь представляет собой систему из двух одинаковых по величине и противоположных по знаку точечных электрических зарядов, смещённых друг относительно друга на вектор \vec{l} , проведённый от отрицательного (-q) к положительному заряду (+q). Дипольный момент — это векторная величина, равная:

$$\vec{P} = q\vec{l}$$
.

Диполь называют точечным (или элементарным), если его размеры малы по сравнению расстоянием r до диполя: $l \ll r$.

Эксперимент и теория показывают, что картина силовых линий напряжённости \vec{E} поля электрического точечного диполя \vec{P} не отличается от картины силовых линий магнитной индукции \vec{B} магнитного точечного диполя \vec{P}_m (маленького постоянного магнитика или виточка с током). Это означает, что, получив законы взаимодействия электрических точечных диполей и заменив в формулах \vec{P} на \vec{P}_m , а константу электрического взаимодействия $k_\varepsilon=(4\pi\varepsilon_0)^{-1}=9\cdot 10^9~\text{M/}\Phi$ — на константу магнитного взаимодействия $k_\mu=\mu_0/(4\pi)=10^{-7}~\Gamma\text{H/M}$, мы сможем рассчитать поля и законы взаимодействия магнитных диполей. Вектор магнитного момента \vec{P}_m постоянного магнита направлен от южного к северному полюсу (для витка с током это направление соответствует правилу буравчика).

Магнитный шар

Магнитные моменты неодимовых магнитов в нашей работе не меняются под действием внешнего магнитного поля, то есть являются магнитожёсткими.

Поле неодимового шара радиусом R на расстояниях $r\geqslant R$ совпадает с полем точечного магнитного диполя \vec{P}_m , равного магнитному моменту шара и расположенного в его центре.

Неодимовые шары заимодействуют как жёсткие точечные диполи, расположенные в центрах шаров.

Железный шар в магнитном поле

Железный шар в нашей работе в отсутствие магнитных полей практически не намагничен и, соответственно, не несёт никакого магнитного момента. В магнитном поле он намагничивается, приобретая магнитный момент пропорциональный индукции магнитного поля B:

$$\vec{P}_{\text{III}} = \frac{4\pi}{\mu_0} \frac{\mu - 1}{\mu + 2} \vec{B} R^3,$$

где R — радиус шара, а μ — магнитная проницаемость железа. В результате возникает взаимодействие между наведённым магнитным моментом шара $\vec{P}_{\rm m}$ и магнитным моментом \vec{P}_m постоянного магнита.

Задание

- 1.1 Снимите зависимость силы $F(\theta)$ взаимодействия двух неодимовых шаров от угла θ между их магнитными моментами с шагом в 10° в двух случаях: а) магнитный момент \vec{P}_m одного из шаров (неподвижного) направлен вдоль
- а) магнитный момент P_m одного из шаров (неподвижного) направлен вдоль прямой, соединяющей центры шаров.
- б) магнитный момент \vec{P}_m одного из шаров (неподвижного) перпендикулярен прямой, соединяющей центры шаров.

Опишите установку и методику измерений.

- 1.2. Постройте зависимости $F_{\rm a}(\theta)$ и $F_{\rm 6}(\theta)$ на одном графике.
- 1.3. Постройте график $\gamma(\theta) = F_a(\theta)/F_6(\theta)$.
- 2. Получите теоретическое значение отношения $\gamma(\theta)$ для значений $\theta=0^\circ,\,90^\circ,\,180^\circ,\,270^\circ.$
- 3. Определите максимальную силу $F_{\rm cu}$ сцепления соприкасающихся магнитных шаров.
- 4. Считая, что неодимовые шары намагничены одинаково, используя экспериментальные данные, рассчитайте их магнитные моменты P_m .
 - 5. Определите индукцию $B_{\rm n}$ магнитного поля на полюсе неодимового шара.
- 6. Снимите зависимость силы $F(\theta)$ взаимодействия неодимового шара с железным от угла θ между магнитным моментом \vec{P}_m постоянного магнита и линией, соединяющей центры шаров. Постройте график этой зависимости. Определите отношение $k_9 = F_{\rm max}/F_{\rm min}$ сил взаимодействия на графике 1.2.

Примечание. Диапазон значений силы для этой зависимости может существенно отличаться от уже выбранного масштаба для графика 1.2. В таком случае вы можете выбрать дополнительную ось ординат (Y), отметив её с правой стороны графика, со своим масштабом и смещением. Укажите, к какой из осей ординат какая зависимость относится.

- 7. Считая, что железный шар находится в однородном поле, равном внешнему полю в его центре, сделайте теоретическую оценку отношения $k_{\rm T}=F_{\rm max}/F_{\rm min}$ сил взаимодействия магнита с железным шаром. Сравните теоретическую оценку с экспериментальным значением $k_{\rm p}$, полученным в предыдущем пункте.
- 8. Оцените максимальную величину $P_{\rm m}$ наведённого магнитного момента железного шара при расстоянии между центрами шаров $r\approx 5$ см.
- 9. Оцените магнитную проницаемость материала, из которого изготовлен железный шар.

Оборудование. Два одинаковых неодимовых магнитных шара диаметром $d=20\,$ мм (один полюс помечен), железный шар диаметром $d=20\,$ мм, штатив, устройства для крепления и поворота шаров, шкала для отсчёта угла поворота магнита, электронные весы, деревянная линейка, перманентный маркер по требованию.

Возможное решение

- 1.1. Закрепим нижний магнит на подставки и положим на весы. Верхний магнит фиксируем в держателе при помощи резинки. Для исключения силы тяжести подставки с закреплённым магнитом, показания весов при удалённом расположении магнитов зануляем с помощью клавиши «TARE». Тогда, при сближении магнитов, весы показывают только силу магнитного взаимодействия, причём знаку «+» соответствует отталкивание, а знаку «-» притяжение магнитов. Важно, чтобы центр магнита находился на оси вращения держателя. Убеждаемся в этом, поворачивая держатель на 180°: сила должна поменяться на противоположную.
- а) Магнитный момент нижнего шара ориентируем по вертикали. Верхний шар закрепляем на штативе так, чтобы центры шаров находились на одной вертикали на таком расстоянии, чтобы максимальная сила взаимодействия магнитов составляла ≈ 10 г. В начальном положении магнитный момент верхнего шара ориентируем по вертикали и закрепляем так, чтобы нулю отсчёта по шкале соответствовала максимальная сила притяжения (весы при этом показывают ≈ -10 г). Поворачивая верхний шар (нижний шар неподвижен), снимаем зависимость показаний весов F_{\parallel} от угла θ .
- б) Расстояние между шарами не изменяем (сохраняем как в предыдущем пункте). Магнитный момент нижнего шара ориентируем горизонтально и параллельно плоскости вертикальной стойке штатива. Магнитный момент верхнего шара ориентируем параллельно магнитному моменту нижнего шара и закрепляем так, чтобы нулю отсчёта по шкале соответствовала максимальная сила притяжения (она оказывается примерно в два раза меньше максимальной силы притяжения в случае $\vec{r} \parallel \vec{P}_m$). Поворачивая верхний шар в вертикальной плоскости (нижний шар неподвижен) снимаем зависимость показаний весов F_\perp от угла θ .

Результаты измерений при расстоянии между шарами при r=96 мм представлены в Таблице N1.

Таблица 1.

ρ ο	Taosima I.							
θ , °	m_{\parallel}, Γ	F_{\parallel} , мН	m_{\perp} , г	<i>F</i> ⊥, мН	γ			
0	12,42	121,7	6,24	61,2	1,99			
10	12,08	118,4	6,04	59,2	2,00			
20	11,96	117,2	5,95	58,3	2,01			
30	10,87	106,5	5,46	53,5	1,99			
40	9,97	97,7	5,07	49,7	1,97			
50	8,36	81,9	$4,\!27$	41,9	1,96			
60	$6,\!89$	67,5	$3,\!55$	34,8	1,94			
70	4,83	47,3	2,50	24,5	1,93			
80	2,85	27,9	1,50	14,7	1,90			
90	$0,\!48$	4,7	0,48	4,7	1,00			
100	-1,88	-18,4	-0,53	-5,2	$3,\!55$			
110	-3,77	-37,0	-1,58	-15,5	2,39			
120	-5,73	-56,2	-2,66	-26,1	2,15			
130	-7,34	-71,9	-3,46	-34,0	2,12			
140	-9,08	-89,0	-4,33	-42,4	2,10			
150	-10,29	-100,8	-4,84	-47,5	2,12			
160	-11,68	-114,5	-5,44	-53,3	2,15			
170	-11,97	-117,3	-5,66	-55,5	2,11			
180	-12,47	-122,2	-5,98	-58,6	2,09			
190	-11,91	-116,7	-5,84	-57,2	2,04			
200	-11,55	-113,2	-5,80	-56,8	1,99			
210	-10,32	-101,1	-5,33	-52,2	1,94			
220	-9,26	-90,8	-4,95	-48,5	1,87			
230	-7,56	-74,1	-4,13	-40,5	1,83			
240	-6,00	-58,8	-3,38	-33,1	1,78			
250	-4,06	-39,8	-2,40	-23,6	1,69			
260	-2,19	-21,5	-1,47	-14,4	1,49			
270	-0.04	-0,4	-0,40	-3,9	0,10			
280	2,11	20,7	0,67	6,6	3,15			
290	4,09	40,1	1,67	16,3	2,46			
300	6,14	60,2	2,69	26,4	2,28			
310	7,75	76,0	3,59	35,2	$2,\!16$			
320	9,50	93,1	$4,\!55$	44,6	2,09			
330	10,41	102,0	5,08	49,7	2,05			
340	11,49	112,6	5,69	55,8	2,02			
350	11,82	115,8	5,89	57,8	2,01			
360	12,36	121,1	6,20	60,8	1,99			

- 1.2. Графики зависимостей $F_{\parallel}(\theta)$ и $F_{\perp}(\theta)$ представлен на рисунке 1.
- 1.3. Построим график $\gamma(\theta) = F_{\parallel}(\theta)/F_{\perp}(\theta)$.

2. Если второй диполь находится на оси первого $(\vec{r} \parallel \vec{P}_m)$, то

$$F=\frac{\mu_0}{4\pi}\frac{6P_m^2\cos\theta}{r^4}, \qquad \text{откуда следует}$$

$$F(0^\circ)=-F(180^\circ)=F_\parallel^{\max}=\frac{\mu_0}{4\pi}\frac{6P_m^2}{r^4}, \qquad F(90^\circ)=F(270^\circ)=0.$$

Если дипольный момент неподвижного шара перпендикулярен прямой, соединяющей их центры $(\vec{r} \perp \vec{P}_m)$, то

$$F=\frac{\mu_0}{4\pi}\frac{3P_m^2\cos\theta}{r^4}, \qquad$$
откуда следует
$$F(0^\circ)=-F(180^\circ)=F_\perp^{\rm max}=\frac{\mu_0}{4\pi}\frac{3P_m^2}{r^4}, \qquad F(90^\circ)=F(270^\circ)=0.$$

Из графиков видно, что эксперимент согласуется с теорией при $\theta=90^\circ, 270^\circ$. Также из теории следует, что амплитуды колебаний силы в первом и втором случаях различаются в два раза (при $\theta=90^\circ, 270^\circ$ обе силы равны нулю и отношение неопределено.):

$$\gamma(\theta) = \frac{F_{\parallel}^{\text{max}}}{F_{\perp}^{\text{max}}} = 2.$$

В пределах погрешности это согласуется с экспериментом:

$$\gamma(\theta) = \frac{F_{\parallel}^{\rm max}}{F_{\perp}^{\rm max}} = \frac{12{,}42~{\rm r}}{6{,}24~{\rm r}} = 2{,}02. \label{eq:gamma_total_problem}$$

3. Снимаем зависимость F(r). Поскольку $F \propto r^{-4}$, график $F^{-1/4}(r)$ — линейная функция (рис. 2).

Угловой коэффициент зависимости $k_{\rm m}=3.10\pm0.15~{\rm mH^{-1/4}m}$. С помощью него определим силу сцепления:

$$F_{\text{cu}} = F(d) = (k_{\text{m}}d)^{-4} = 69 \pm 15 \text{ H}.$$

4. Из формулы для максимальной силы находим:

$$P_m = \sqrt{rac{F_{
m cu}(d/2)^4}{6\mu_0/4}} = 4{,}15\;{
m Дж/Tл}.$$

5. Найдём индукцию магнитного поля на полюсе:

$$B_{\text{п}} = \frac{\mu_0}{4\pi} \frac{2P_m}{R^3} = 0.83 \text{ Тл.}$$

6. Железный шар закрепим на подставке и разместим на весах. Для исключения силы тяжести подставки с закреплённым магнитом, показания весов при удалённом расположении шара и магнита зануляем с помощью клавиши «TARE». Тогда, при сближении шара с магнитом, весы показывают только силу их магнитного взаимодействия: знаку «+» соответствует отталкивание; знаку «-» — притяжение магнитов.

Магнитный шар закрепляем в штативе так, чтобы центры шаров находились на одной вертикали на таком расстоянии, чтобы максимальная сила вза-имодействия магнита с шаром составляла $F_{\rm m}\approx 5~{\rm r}c$. В начальном положении магнитный момент верхнего шара ориентируем по вертикали и закрепляем

так, чтобы нулю отсчёта по шкале соответствовала максимальная сила притяжения (весы при этом показывают ≈ 5 г). Поворачивая верхний шар (нижний железный шар — неподвижен), снимаем зависимость показаний весов F от угла θ . Результаты измерений при расстоянии между шарами $r_0=46$ мм представлены в таблице 2.

Таблина	2.

θ , °	m_{m} , г	$F_{\rm m}$, мН	θ , °	m_{III} , г	$F_{\rm m}$, мН	θ , °	m_{III} , г	$F_{\rm III}$, мН
0	5,40	52,9	120	2,33	22,8	260	1,40	13,7
20	$5,\!12$	50,2	140	3,69	36,2	270	$1,\!35$	13,2
40	4,00	39,2	160	4,95	48,5	280	$1,\!53$	15,0
60	2,60	25,5	180	$5,\!50$	53,9	300	$2,\!50$	24,5
80	$1,\!55$	15,2	200	4,88	47,8	320	3,88	38,0
90	1,39	13,6	220	$3,\!53$	34,6	340	4,94	48,4
100	$1,\!51$	14,8	240	$2,\!14$	21,0	360	$5,\!42$	53,1

Построим график $F_{\rm m}(\theta)$ на графике вмете с $F_{\parallel}(\theta)$ и $F_{\perp}(\theta)$ (рис. 3). Поскольку диапазон величин $F_{\rm m}$ заметно меньше, введём дополнительную ось справа. Отметим, что период полученной косинусоиды в два раза меньше периода графика $F_{\parallel}(\theta)$.

7. Из законов Кулона, а также электрическо-магнитной аналогии не трудно получить что:

$$F_{\text{max}} = \frac{\mu_0}{4\pi} \frac{6P_m \alpha B_{\parallel}}{r^4},$$

где $\alpha B_{\parallel} = \alpha (2P_m)/r^3$ — наведённый момент шара при $\vec{r} \parallel \vec{P}_m.$

$$F_{\min} = \frac{\mu_0}{4\pi} \frac{3P_m \alpha B_{\perp}}{r^4},$$

где $\alpha B_{\perp} = \alpha(P_m)/r^3$ — наведённый момент шара при $\vec{r} \perp \vec{P}_m$.

Таким образом, теоретическая оценка $k_{\rm T} = F_{\rm max}/F_{\rm min} = 4$ — хорошо согласуется с экспериментальным значением: $k_{\rm P} = 53,1/13,2 = 4,03$.

8. Максимальная сила взаимодействия шара с магнитом на расстоянии между центрами шаров $r_0 = 46$ мм:

$$F_{\text{max}} = \frac{\mu_0}{4\pi} \frac{6P_m P_{\text{III}}}{r_0^4} = 53.1 \text{ MH}.$$

Экспериментально находим, что примерно такая же сила притяжения возникает между магнитными шарами с магнитными моментами, направленными вдоль линии соединяющей центры шаров, на расстоянии r=115 мм:

$$F_{\parallel} = \frac{\mu_0}{4\pi} \frac{6P_m^2}{r^4} = 53.5 \text{ MH}.$$

Теперь можно оценить $P_{\rm m}$:

$$rac{P_{ ext{III}}}{P_m} = rac{F_{ ext{max}}}{F_{ ext{II}}} rac{r_0^4}{r^4} pprox 0,024, \qquad ext{откуда} \qquad P_{ ext{III}} pprox 0,024 P_m pprox 0,1 \ Дж/Тл.$$

9. Оценим μ из формулы для наведённого магнитного момента

$$P_{\text{III}} = \frac{4\pi}{\mu_0} \frac{\mu - 1}{\mu + 2} BR^3 = \frac{\mu - 1}{\mu + 2} 2P_m \frac{R^3}{r_0^3} \approx 0.024 P_m.$$

В пределах погрешности получаем, что отношение

$$\frac{\mu-1}{\mu+2} \approx 1,$$
 откуда $\mu \gg 1.$

	Задача Е11-2 Магнитное взаимодействие	Сумма		
1	Таблица измерений, графики для сил, график для отношения		4.0	
	1.1 Таблица измерений			
	Полупериод от минимума до максимума (в таблице есть сила)	1.8+0.2		
	Полупериод от нуля до нуля (в таблице есть сила)	0.9+0.1		
	1.2 Графики для силы	0.9+0.1		
	1.3 График для отношения	1.0		
2	Вывод формул		2.0	
	$_{E}$ $_{-}$ 6 $\left(\frac{\mu_{0}}{4\pi}\right)p_{1}p_{2}$	0.6		
	$r_1 - \frac{r_4}{r_4}$			
	$F_{1} = \frac{6 \left(\frac{\mu_{0}}{4\pi}\right) p_{1} p_{2}}{r^{4}}$ $F_{2} = \frac{3 \left(\frac{\mu_{0}}{4\pi}\right) p_{1} p_{2}}{r^{4}}$	1.2		
		0.2		
_	$F_3 = 0$	0.2	• •	
3	Определение силы сцепления $F_{\text{сц}} = 57 - 70 \text{ H}$		2.0	
	Экстраполяция	1.2+0.6+0.2		
	Через пропорцию	0.6+0.3+0.1		
	Экспериментально	0.6+0.3+0.1		
4	Определение $P_m = 3.5 - 4.5 \text{Дж/Тл}$		1.0	
	Аналогично пункту 3			
5	Определение $B = 0.7 - 0.9$ Тл		1.0	
	Аналогично пункту 3			
6	Таблица измерений, графики для сил, отношение		2.0	
	Таблица	1.2		
	График	0.4		
	$k_{9} \ll 4 \ (k_{9} > 3.5)$	0.4		
7	Определено $k_{\scriptscriptstyle m T}=4$		1.0	
8			1.0	
9	Определение μ		1.0	
	$\frac{\mu-1}{\mu+2} \approx 1$ при условии наличия 8 пункта	1.0		