

Introduction to Computers and Programming

Introduction

Chapter 1.1

Introduction

- Computers perform any job that their programs tell them to do
- A program is a set of instructions that a computer follows to perform a task.
- Programs are commonly referred to as software

Creators of Software

- Programmers (a.k.a. Software Developers)
 are the individuals that create programs
- They have the training and skills to design, create, and test computer programs

Hardware

Chapter 1.2

Hardware

- The term *hardware* refers to any physical device that a computer is made of
- Computers are, in fact, large systems that consists of different devices that work together

Hardware Categories

- Input Devices
- Process Devices
- Output Devices
- Store Devices

Input Devices

- Convert analog to digital data
- Input feed information into a computer
 - Words and symbols
 - Numbers
 - Pictures
- Common forms of input
 - Keyboard
 - Mouse

Process Devices

- Computers can analyze and create data
- Basic Terms:
 - Process actions used to manipulate data
 - Processor device that processes data
- Common forms
 - Pentium Processor
 - various other chips and hardware

Output Devices

- Convert digital data to analog
- Output send information out of a computer
- Common forms of output
 - Monitor
 - Printers
 - Music and Sound using speakers

Storage Devices

- Copy data for later use
- The data is kept in digital form
- Common Forms:
 - Memory
 - CD ROM
 - Hard Disk
 - Flash Disks

Storage Devices

- Primary Storage
 - helps run your computer
 - this includes motherboard memory and memory used to run programs
- Secondary Storage
 - much slower than primary storage
 - allows data to be stored permanently

Functions of a Computer

Functions of a Computer

The Processor

- Performs calculations & logic
 - called the "Arithmetic Logic Unit"
 - registers hold data
- Controls your computer
 - called the "Control Unit"
 - talks to other components
 - talks to ports

The Processor

- Examples
 - Intel Pentium
 - IBM PowerPC
 - MOS 6502
 - · ... thousands more

Evolution of the Processor

- Modern processors are small enough to fit in your hand
- And they contain millions of transistors
- The size of computers has changed drastically in the last 70 years
- The first computer was huge by today's standards

ENIAC – Computer of War

- <u>E</u>lectronic <u>N</u>umerical <u>I</u>ntegrator <u>A</u>nd <u>C</u>omputer
- Development
 - John Eckert and John W. Mauchly
 - U.S. Ballistics Research Laboratory
 - Needed to fight World War II then Cold War
 - Compute ballistic firing tables

ENIAC – Computer of War

- Designed to be <u>Turing Complete</u>
- Operational in February 1946
- Features
 - 5 KHz (5000 Hz)
 - programmed by rewiring pre 1948
 - based on decimal not binary
 - weighed 30 tons, 18 feet high, 80 feet long

ENIAC

- A tube burned out once every 2 days
- Retired in 1955
- operational for only 9 years
- But... in just 9 years... it is estimated to have performed more calculations than all of humanity had ever done prior

Primary Storage

Random Access Memory

- Random Access Memory (RAM)
 - memory used to run data and programs
 - fast
 - temporary it is gone after the computer is turned off (power is lost)
- The more memory you have...
 - the more you can open/run at one time
 - stored on DIMM cards that can be added to motherboards

Virtual Memory

- Used when the system runs out of memory
 - computers with limited RAM can run large programs
 - this is a type of "emergency" memory
- Uses hard disk space
 - slow... not as fast as RAM
 - "invisible" to application software

Secondary Storage

Hard Disks

- Use magnets to store data
- Hard disk platter
 - flat, rigid, maintainable disk used to store bits
 - there are multiple platters in each hard drive
- Head crash
 - the read-write head hits into a dust particle or other contaminant on the disk
 - head crash damages some data on disk

Inside a Hard Disk

Tape Storage

- Magnetic Media
- Long continuous tape
 - sequential access
 - finding data requires seeking
- Inexpensive
 - lots of storage!
 - often used for backups
 - primarily used in business

Solid State Storage

- Data is stored on a low-power chip
- Advantages
 - non-volatile (stored when power is lost)
 - portable
 - versatile used from digital cameras to computers

Solid State Technology

Cards

- Compact Flash
- MMC
- Secure Digital
- Smart Media
- USB Flash Drive
 - Plugs into any USB port
 - Acts like a hard drive

Optical Storage

- Data is read using lasers
 - light spots are called lands
 - dark spots are called pits
- Safer than magnetic media
 - data not lost over time
 - safe from magnets
 - resists the other elements

Current Mediums

CD

- Compact Disk
- holds 700 MB of data (80 min)

- Digital Versatile Disk
- holds about 4.7 GB of data
- double layer can store 8.5 GB

Current Mediums

- Blue-ray
 - Named after blue laser used to read/write the data
 - Official acronym is <u>BD</u>
 - holds about 25 GB of data
 - double layer can store 50 GB

Binary Numbers

What is a Number?

- We use the Hindu-Arabic Number System
 - positional grouping system
 - each position represents a power of 10
- Binary numbers
 - based on the same system
 - use powers of 2 rather than 10

Base 10 Number

The number 1783 is ...

104	10 ³	10 ²	10 ¹	100
10000	1000	100	10	1
0	1	7	8	3

$$1000 + 700 + 80 + 3 = 1783$$

Binary Number Example

The number 0110 1001 is ...

27	2 ⁶	2 ⁵	24	2 ³	2 ²	21	2 ⁰
128	64	32	16	8	4	2	1
0	1	1	0	1	0	0	1

$$64 + 32 + 8 + 1 = 105$$

Binary Number Example

The number 1101 1011 is ...

27	2 ⁶	2 ⁵	24	2 ³	2 ²	21	2 ⁰
128	64	32	16	8	4	2	1
1	1	0	1	1	0	1	1

$$128 + 64 + 16 + 8 + 2 + 1 = 219$$

Bits and Bytes

- Everything in a modern computer is stored using combination of ones and zeros
- Bit is one binary digit
 - either 1 or 0
 - shorthand for a bit is b
- Byte is a group of 8 bits
 - (Europe did not like the name so they call it an octet)
 - e.g. 0010 0100
 - shorthand for a byte is <u>B</u>

Text in Programming Languages

Characters

- Computer often store and transmit textual data
- Examples:
 - punctuation
 - numerals 0 9
 - letter
- Each of these symbols is called a character and are the basis for written communication

Characters

- Processors rarely know what a "character" is, and instead store each as an integer
- In this case, each character is given a unique value
- The letter "A", for instance, could have the value of 1, "B" is 2, etc...

Characters

- Characters and their matching values are a character set
- There have been many characters sets developed over time

Character Sets

ASCII

- 7 bits 128 characters
- uses a full byte, one bit is not used
- created in the 1967

EBCDIC

- Alternative system used by old IBM systems
- Not used much anymore\

ASCII Chart

Control characters

	0	1	2	3	4	5	6	7	8	ક	А	В	С	D	E	F
0	NUL	SOH	STX	ETX	ЕОТ	ENQ	ACK	BEL	BS	НТ	LF	VT	FF	CR	so	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2	sp	!	11	#	\$	olo	&	1	()	*	+	,	ı	•	/
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	3
4	@	A	В	C	D	E	F	G	Н	I	J	ĸ	L	M	N	0
5	P	Q	R	ß	T	บ	v	W	x	Y	Z	[\]	^	_
6	,	a	b	U	d	W	f	g	h	i	j	k	1	m	n	0
7	р	q	r	S	t	u	v	W	x	У	z	{	1	}	~	DEL

ASCII Codes

- Each character has a unique value
- The following is how "Moe" is stored in ASCII

	Binary	Decimal
M	01001101	77
0	01101111	111
е	01100101	101

Useful Control Characters

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	нт	LF	VT	FF	CR	so	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2	sp	į	11	#	ጭ	olo	IJ	T	(•	*	+	,	1	•	/
3	0	1	2	თ	4	5	6	7	8	9	••	•,	\	II	>	?
4	@	A	В	U	D	E	F	G	Н	I	J	K	L	M	N	0
5	P	Q	R	Ø	Т	ט	٧	W	x	Y	Z	[\]	<	_
6	,	a	b	U	d	e	f	g	h	i	j	k	1	m	n	0
7	р	q	r	s	t	u	v	w	x	У	z	{	I	}	~	DEL

Unicode Character Set

- ASCII is only good for the United States
 - Other languages need additional characters
 - Multiple competing character sets were created
- Unicode was created to support every spoken language
- Developed in Mountain View, California

Unicode Character Set

- Originally used 16 bits
 - that's over 65,000 characters!
 - includes every character used in the World
- Expanded to 21 bits
 - 2 million characters!
 - now supports every character ever created
- Unicode can be stored in different formats

Chapter 1.4

How a Program Works

- The CPU does all the operations on the computer
- Each operation is called an instruction
- The collection of the instructions that be performed on a computer is its instruction set

How a Program Works

• Examples:

- read a piece of data
- add two numbers
- multiply two numbers
- moving data around
- comparing two pieces of data
- etc...

How a Program Works

- Computer programs, just like everything else on a computer, are just 1's and 0's
- So, the processor only reads, and "understands", binary
- These binary instructions are called machine language

Fetch-Decode-Execute

- When a program is executed, the processor needs to perform three tasks
- These are referred to the Fetch-Decode-Execute cycle

Fetch-Decode-Execute

- Fetch read the next machine language instruction from memory
- Decode Look at the 1's and 0's and determine what it does
- 3. Perform the operation

Assembler

- Converts assembly into machine code
- Each computer instruction is written using a mnemonic – a short name for the instruction
- Programmers have the full power of the processor – but have to write programs carefully

Assembler

High-Level Programming

- Most programs are written in languages such as C#, Java, Visual Basic, etc...
- These are high-level languages which are written in simple readable text
- Programs written this way are referred to as source code

Programming Languages

Language

- series of symbols & words that form a meaningful pattern
- This is true of spoken languages such as English, Spanish, Hindi, Arabic, etc...

Programming

- language used to write programs
- there many different programming languages

Example Programming Languages

- Ada
- BASIC
- FORTRAN
- COBOL
- C
- C++

- C#
- Java
- JavaScript
- Python
- Ruby
- Visual Basic .NET

Compilers and Interpreters

Compilers

 convert a high-level language directly to assembly or machine code

Interpreters

- looks at a high-level language and executes it immediately – using its own code
- similar to the concept of macros which might have heard about

Compilers

Integrated Development Environments

- Many high-level languages are written in a *Integrated Development Environment* (also called a Integrated Design Environment)
- It is a program designed to help the programmer create the program
- Contains features for debugging, managing, compiling, etc...

Chapter 1.5

Software Major Categories

- System Software
 - runs programs & manages data
 - operating System Windows, Mac-OS
 - includes utility programs
- Application Software
 - works with the user to perform a task
 - example: Microsoft Word, Solitaire

What an Operating System Does

- Master controller for all of the activities that take place within a computer
- Basic Duties:
 - memory management
 - track resources
 - communicate with devices
 - interact with application software
 - interact with the user

Microsoft Windows

- Created by Microsoft
- The most common operating system on Intel-PCs
- Major Versions:
 - Windows XP 2001
 - Windows Vista 2007
 - Windows 7 2010
 - Windows 8 2012

Windows 7

Windows 1

Linux

- Evolved from UNIX
- Multiple competing versions
 - Red Hat
 - Ubuntu
 - Android phones
 - etc....
- Popular for small servers & computer science workstations

Apple Mac-OS

- Created by the Apple Corporation for the Macintosh
- Major Versions:
 - System 1 1984
 - System 6 1988
 - System 7 1991
 - Mac-OS X 2001

