Log => inverse function to exponentiation.

logb x => to what power should b be raised to reach x.

$$\frac{\log b^{n} = k}{b^{n}} = n$$

$$\log_2 4 = 2$$

$$2 = 4$$

$$2 = 4$$

$$\log_3 81 = 4$$

$$3^4 = 81$$

log 2 n 7 12 7 How many times should I multiply 1 by 2 to reach n.

H How many numbers in a range.

$$[3,10] = 8$$

3, 4, 5, 6, 7, 8, 9, 10

 $\begin{bmatrix} a, b \end{bmatrix} \neq b - a + 1$

Both numbers !

Airthmetic Progression

- Detween consecutive terms is constant.

Tonstant difference is known as

 $\frac{\mathcal{E}_{XI}}{2}$: 1, 4, 7, 10, 13, 16

Generalize: a, a+d, a+2d, a+3d ---- a+(n-1)dnth ferm = a+(n-1)d

Sum of 1st n terms = $\frac{1}{2} \left[2a + (n-1)d \right]$

 $\frac{2x1}{2}: \frac{1}{2}, \frac{5}{6}, \frac{9}{6}, \frac{13}{13}$ $\frac{4}{2} \left[\frac{2(1)}{4} + \frac{(4-1)}{4} \right]$ $\frac{2}{2} \times \left[\frac{14}{3} \right] = 28$

Grometric Progression

- Sequence of numbers, where the next term can be found by multiplying the previous term by a fixed number.

Ex: 2, 4, 8, 16,32

Common [8]

Ex2: 3, 12, 48, 192, 768 -- -

Ex3: 1, 1/2, 1/4, 1/8, 1/16 -.

Generalize: a, ar, ar², ar³

 n^{++} term = ar^{n-1}

Sum of 1st n terms = $a(x^n-1)$

Special Cose: 821 & scoice is infinite.

then 8° 70.

$$\int_{S} \left(\inf_{i=1}^{\infty} \frac{1}{i} \leq N \right) dx$$

$$S = S + i;$$
3

$$7 i : [1,n]$$

$$1 - 1 + 1 = 0$$

$$7 0 (n)$$

$$i : [0, 100]$$

$$= 100 - 0 + 1$$

$$= 0(1)$$

time rumplexit

On for (int
$$i=1$$
; $i*i \le n$; $i++$) d
$$= \frac{1}{2} \le n$$

$$i = [1, \sqrt{n}]$$

$$= \sqrt{n} - 1 + 1$$

$$= \sqrt{n}$$

Observations =
$$\log 2$$

The state of the stat

Ob for (inti=0;
$$i \le n$$
; $i = i * 2$) $(i = 0 + 2)$ $(i =$

Oz $\int_{0}^{\infty} (in+i=1; i \leq n; i=i*2) dx$ $= \frac{3}{3}$ i=1,2,4,8,16,32... $= \frac{3}{3}$ $= \frac{3}{3}$ =

10:39

NESTED LOOPS!

O1 for (int
$$i=1$$
; $i \leq 10$; $i++$) \mathcal{L}

for (int $j=1$; $j \leq n$; $j++$) \mathcal{L}

3

Č	j	Total sterding
1	[1,n]	\cap
2	$\begin{bmatrix} 1, 0 \end{bmatrix}$	\cap
3	[2,n]	n
, , ,		
		0
10	[], n]	

10

100

 \bigcirc (n)

#10+10n

 $\frac{2}{2}$

č	j	TotI
0	100	100
1	\bigcirc	\bigcirc
2	\bigcirc	\bigcirc
3	0	\bigcirc
;		
1051	6	

105 - 100

))

j	

 $\mathcal{O}(n^2)$

Os for (int
$$i=1$$
; $i \le n$; $i++$) h
$$\int_{Ox} \left(\int_{Int} \int_{J} -1 \right) = \int_{J} \int_{I} \int_{J} \int_{J}$$

ì	j	Told.
1	dogn	Jogn
2	Dog 19	Josh
. (
1		
\bigwedge	lusn	Josn

A Nogn (nogn) 3

High

How to calculate Big O from the number of iterations!

D I gnore lower order terms

2) Ignose Constants

1 no of iterations = 4n2+3n+2

151 Step: Ignor lower order terms

4n2+3n+2

2 ha Step: I gnox Coxtants.

 $\frac{1}{2}$

Dz no afiterations => 3 n Jn + 4 logn + 3 n logn

1515/4): Ignore lower order terms

 $3n\sqrt{n} + 4\log n + 3n\log n$

n	$n\sqrt{n}$	nlusn
232	248	237
264	296	270

32

That Step: I gnox Coxtants.

 $\frac{2}{2} \frac{1}{2} \frac{1}$

 $\int \int \int + \log n$

is O(i) less than O(n)

Double

$$\begin{cases}
\text{or } (\text{inti=0}; i < n; i + t) \\
\text{if } (i = = 2) \\
\text{breal2};
\end{cases}$$

$$\int_{0}^{\infty} \left(\inf_{i=1}^{\infty} : i \leq n ; i + = 2 \right) dx$$

$$i = 1, 3, 5, 7 \dots$$

$$Q + (x-i)d \neq 0$$

$$1 + (x-i)2 \neq 0$$

$$(X-1)^{2} = n^{-1}$$

$$X-1 = \sum_{i=1}^{n-1} + 1 = n+1$$

$$X = \sum_{i=1}$$

$$\frac{\log \left(\text{ind} j = 0 ; i \neq 0 \right) }{\log \left(\text{ind} j = 0 ; j \neq 1 ; j \neq 1 \right) }$$

$$\frac{1}{2} \frac{1}{2} \frac{1}{2}$$