Database server selection

1. Understanding the Database Server Role in SMS

The database server is the backbone of the SMS, responsible for:

- Storing statistical data (baggage flow, error counts, etc.).
- Processing large volumes of data for real-time monitoring and historical analysis.
- Generating reports for operational insights.
- Ensuring data security and fault tolerance.

2. Key Considerations for Choosing a Database Server

a. Performance Requirements

- **Read/Write Speed:** The system must handle continuous data input (baggage counts, sensor data) and provide fast query responses for reports.
- **Transaction Processing:** Support multiple simultaneous transactions from BHS systems and SCTs without latency.

b. Storage Capacity

- Analyze data volume requirements:
 - Number of baggage records per day, including attributes like flight number, timestamp, and baggage type.
 - Error logs and metadata storage.
 - o Daily, weekly, monthly, and yearly data storage and backups.
- Include a buffer for data growth (e.g., 5–10 years of data).

c. Scalability

• Choose a system that supports vertical (adding resources to the server) and horizontal (adding more servers) scaling to accommodate future growth.

d. Availability and Redundancy

• High availability (HA) and redundancy are crucial to avoid data loss or system downtime.

e. Budget Constraints

• Balance between performance and cost, choosing hardware that meets the requirements without excessive overhead.

3. Types of Database Servers

a. On-Premises Database Servers

• Benefits:

- o Complete control over hardware and data security.
- o Ideal for systems requiring strict data privacy and real-time processing.

• Components:

- Processor (CPU): Multi-core processors for handling parallel queries (e.g., Intel Xeon or AMD EPYC).
- o **Memory (RAM):** 32–128 GB or more, depending on query load.
- o **Storage:** SSDs for high-speed data access; HDDs for archival storage.
- o **RAID Configuration:** Redundant Array of Independent Disks for fault tolerance (RAID 10 or RAID 5 recommended).
- **Network Interface:** Gigabit Ethernet or higher for fast data exchange with the BHS system.

4. Hardware Recommendations

Minimum Specifications for On-Premises Server:

- **Processor:** Dual Intel Xeon E5-2600 v4 or equivalent (16 cores or more).
- **Memory:** 64 GB DDR4 RAM.
- Storage:
 - o 2–4 TB SSD for operational data.
 - o 4–10 TB HDD for archival and backups.
 - o RAID 10 for redundancy and performance.
- **Network Interface:** Dual 10 Gigabit Ethernet ports.
- Power Supply: Redundant power supplies.
- **Cooling:** Adequate cooling for continuous operation.

High-Performance Configuration for Large-Scale Systems:

- **Processor:** Dual AMD EPYC 7002 series with 32 cores each.
- Memory: 128–256 GB DDR4 ECC RAM.
- Storage:
 - o 4 TB NVMe SSD for database operations.
 - o 10–20 TB HDD for backups and historical data.
- Other:

- o Hot-swappable drives for maintenance.
- o Hardware RAID controller.

5. Selection Criteria

a. Evaluate Based on Usage:

- High transaction volume \rightarrow Opt for high CPU and SSDs.
- Large-scale analytics → Invest in more RAM and storage.

b. Future Proofing:

• Choose servers with modular upgradability for RAM, storage, and processors.

c. Vendor Options:

• Dell PowerEdge, HPE ProLiant, Lenovo ThinkSystem, and Supermicro.

d. Database System Compatibility:

• Ensure hardware supports your chosen database (e.g., MySQL, PostgreSQL, Oracle, or MongoDB).

6. Example Configuration

Small System:

- **Purpose:** Handle up to 1 million records per day with basic analytics.
- Configuration:
 - o CPU: Intel Xeon E-2236 (6 cores, 3.4 GHz).
 - o RAM: 32 GB DDR4.
 - o Storage: 1 TB SSD + 2 TB HDD.
 - o Cost: ~\$3,000.

Medium System:

- **Purpose:** Manage up to 10 million records per day with detailed analytics.
- Configuration:
 - o CPU: Dual Intel Xeon Gold 5218 (16 cores each).
 - o RAM: 128 GB DDR4 ECC.
 - o Storage: 4 TB NVMe SSD + 10 TB HDD.
 - o Cost: ~\$10,000.

Large System:

- **Purpose:** Enterprise-grade, >50 million records per day, advanced analytics.
- Configuration:
 - o CPU: Dual AMD EPYC 7742 (64 cores each).
 - o RAM: 256 GB DDR4 ECC.
 - o Storage: 10 TB NVMe SSD + 20 TB HDD in RAID 10.
 - o Cost: ~\$30,000.

7. Integration with SMS

- The database server interfaces with:
 - o **BHS Sensors and Terminals:** To ingest raw data.
 - Supervisory Computer Terminal (SCT): For querying and reporting.
 - o **Networking Infrastructure:** To ensure seamless data flow.