Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Основи програмування-1. Базові конструкції»

«Організація циклічних

процесів. Ітераційні цикли»

Варіант 28

Виконав студент	ІП-11 Сідак Кирил Ігорович
•	(шифр, прізвище, ім'я, по батькові)
Панавінта	
Перевірив	
	(прізвище, ім'я, по батькові)

Мета: вивчити особливості організації ітераційних циклів.

Варіант 28

28. Дано дійсне a > 0. Послідовність x_0, x_1, \dots утворена по закону

$$x_0 = \begin{cases} \min(2a, 0.95), & a \le 1 \\ a/5, & 1 < a < 25, \\ a/25, & \text{інакше} \end{cases}$$

$$x_n = \frac{4}{5}x_{n-1} + \frac{a}{5x_{n-1}^4}, \quad n = 1, 2, \dots.$$

Знайти перший член x_n , для якого виконується нерівність $\frac{5}{4}a \mid x_{n+1} + x_n \mid < 10^{-6}$. Обчислити для знайденого значення x_n різницю $a - x_n^5$.

Постановка задачі:

Використовуючи ітераційний цикл, знаходимо кожні два наступних члена заданої послідовності, яка прямує до $\sqrt[5]{a}$. Тіло циклу буде виконуватися доти, доки не виконається нерівність $\frac{5}{4}a|x_{n+1}+x_n|<10^{-6}$. Як тільки ця нерівність виконається, то цикл завершиться. Тоді обчислюємо різницю $a-x_n^5$, де x_n - перший член, для якого виконується нерівніть.

Програма на Python:

```
a = float(input("Enter value for variable a: ")) # Введення змінної а
if a <= 1: # Відповідно до значення а присвоїти відповідне значення нульовому члену послідовності
    x_current = min(2*a, 0.95)
elif 1 < a < 25:
    x_current = a / 5
else:
    x_current = a / 25
x_previous = 0 # Ініціалізація попереднього члена послідовності та присвоєння йому
# значення 0 для подальшого використання в циклі
```

```
x_next = (0.8 * x_current) + a / (5 * pow(x_current, 4)) #
Ihiцiaлiзацiя з присвоєнням наступного члена послідовності
while (1.25 * a * abs(x_next - x_current)) >= pow(10, -6): #
Обчислення наступного члена послідовності
    x_previous = x_current # та двох членів, мж якими він
знаходиться, доки сума в умові виходу не буде меншою за 10^(-6)
    x_current = (0.8 * x_previous) + a / (5 * pow(x_previous, 4))
    x_next = (0.8 * x_current) + a / (5 * pow(x_current, 4))
difference = a - pow(x_current, 5) # Обчислення різниці
числа а та знайденного п-го члена в п'ятому степені
print(f"x_n = {x_current}\na-(x_n)^5 = {difference}") #
Виведення знайденного п-го члена та різиці
```

```
a = float(input("Enter value for variable a: ")) # Введення змінної а

if a <= 1: # Відповілно до значення а присвоїти відповідне значення нульовому члену послідовності

x_current = min(2*a, 8.95)

delif 1 < a < 25:
x_current = a / 5

else:
x_current = a / 25

x_previous = 0 # Ініціалізація попереднього члена послідовності та присвоєння йому

# значення 0 для подальшого використання в циклі

x_next = (0.8 * x_current) + a / (5 * pow(x_current, 4)) # Ініціалізація з присвоєнням наступного члена послідовності

x_previous = x_current #__Ta_RBOX_INDRIAR_MX_SMUM_SHL_SHOX_DATEGR_AOKH_CYMB.B_XYBOR_BENGA_SH_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYBE_MENDOR_SB_BENGAY_HS_SYB
```

Результат на Python:

Висновок

Отже, використовуючи ітераційний цикл, в тілі якого обчислюються два наступні члени заданої послідовності, і відповідну умову виходу з циклу, можна отримати перший член послідовності, для якого виконується нерівність, а потім отримати коректний результат обчислення різниці.