Quelques rappels en analyse uni et bidimensionnelle

1 Analyses préliminaires

- => consiste à cadrer l'information contenue dans les données.
 - Variables : leur signification, leur nature/format, présence de valeurs manquantes,?
 - Observations : combien?

2 Statistique univariée

=> consiste à étudier chaque variable l'une après l'autre.

2.1 pour une variable quantitative

- Numériquement : min, max, 1er et 3e quartiles, médiane, moyenne, écart-type.
- Graphiquement : histogramme, boîte à moustaches.
- => peut servir à éliminer une variable si elle est quasiment constante, à éliminer des individus s'ils ont des valeurs aberrantes ou du moins à repérer des individus ayant des valeurs particulières, à transformer une variable pour la rendre plus régulière.
- Outils : le meilleur moyen d'analyser une variable quantitative sous SAS est d'utiliser le module distribution de SAS Insight. En l'absence de SAS Insight, utiliser les procédures means et univariate.

2.2 pour une variable qualitative

- Numériquement : tableau d'effectifs et de fréquences.
- Graphiquement : diagramme en bâtons.
- => peut servir à éliminer une variable si elle est presque constante ou à regrouper des modalités proches si effectifs trop faibles.
- Outils : pour analyser une variable qualitative sous SAS, on peut utiliser le module distribution sous SAS Insight en affichant les tableaux de fréquences (frequency counts), ou la procédure freq.

3 Statistique bivariée

=> permet d'étudier la relation entre deux variables.

3.1 pour 2 variables quantitatives, notées x et y

- Graphiquement : Nuage de points entre x et y
- Numériquement : Cœfficient de corrélation linéaire :

$$r(x,y) = \frac{cov(x,y)}{\sigma(x)\sigma(y)}$$

Si r(x,y) proche de 0 = > pas de corrélation entre les 2 variables.

Si r(x,y) proche de -1 = présence d'une corrélation linéaire négative entre x et y.

Si r(x,y) proche de +1 = y présence d'une corrélation linéaire positive entre x et y.

• Test de nullité du cœfficient de corrélation :

 $H_0: \rho = 0$ vs $H_1: \rho \neq 0$, où ρ est la vraie valeur inconnue du cœfficient de corrélation.

On utilise la statistique de test:

$$Tcal = r(x,y)\sqrt{\frac{n-2}{1-r(x,y)^2}}$$

à comparer au fractile de la loi de Student à n-2 ddl.

Si $Tcal > t_{n-2,1-\alpha/2}$ ou p-value< 5% => on rejette H_0 et on conclut à la présence d'une corrélation significative entre x et y.

=> peut être complétée par une régression linéaire simple si nécessaire à condition que la corrélation soit significative et que l'on puisse définir une relation de cause à effet entre les 2 variables.

• Outils :

- sous SAS Insight, utiliser les modules Scatter plot et Multivariate (en affichant le tableau des p-values).
- procédures gplot et corr.

3.2 pour 2 variables qualitatives

Utilisons 2 variables qualitatives, respectivement, à L et C modalités.

- Graphiquement : Diagramme en bâtons.
- Numériquement : Tableau de contingence croisant les 2 variables, constituée de $L \times C$ cellules. Dans chaque cellule (l,c) :
 - les effectifs n_{lc} ,
 - le pourcentage de la cellule par rapport au nombre total d'observations n_{lc}/n ,
 - le pourcentage en ligne (appelé rowpct sous SAS) : $n_{lc}/n_{l.}$,
 - le pourcentage en colonne (appelé colpct sous SAS) : $n_{lc}/n_{.c.}$

Les totaux des lignes et colonnes donnent la répartition des individus selon chaque variable.

• Test d'indépendance du Chi-deux

=> permet de détecter s'il existe une liaison significative entre les 2 variables, c'est-à-dire si la répartition des individus selon une variable sera la même ou non selon les modalités de l'autre variable.

On utilise la statistique de test du Chi-deux :

$$\chi_{cal}^2 = \sum_{l,c} \frac{(O_{l,c} - E_{l,c})^2}{E_{l,c}}$$

où $O_{l,c}$ est l'effectif observé pour la cellule (l,c) et $E_{l,c}$ est l'effectif attendu pour la cellule (l,c) sous l'hypothèse d'indépendance entre les deux variables de la façon suivante :

$$E_{l,c} = \frac{Total_l \times Total_c}{Total}$$

Cette statistique de test est à comparer au fractile de la loi du Chi-deux à $(L-1) \times (C-1)$ ddl, à condition que tous les effectifs attendus soient supérieurs à 5.

Si $\chi^2_{cal} > \chi^2_{(L-1)(C-1),1-\alpha}$ ou p-value < 5%, on rejette l'hypothèse d'indépendance et on conclut à une liaison significative entre les deux variables.

• Outils : procédure freq avec l'option chisq.

3.3 pour une variable quantitative et une variable qualitative

- Graphiquement : Boîte à moustaches ou histogramme de la variable quantitative par groupe, c'est-àdire selon les modalités de la variable qualitative.
- Numériquement : Calcul des indicateurs statistiques habituels pour variable quantitative, par groupe.
- Test : Comparaison de moyennes par une analyse de variance à un facteur, par un test de Student ou des tests non-paramétriques.
- Outils : proc means avec l'instruction class, proc ttest (pour comparer deux moyennes), proc npar1way (test non-paramétrique de comparaison de moyennes), proc glm.