Review of Papers applying Reinforcement Learning in Medical Domain

Subhojyoti Mukherjee*

College of Information and Computer Science
University of Massachusetts Amherst
Massachusetts, MA 01003
http://bio-nlp.org/index.php/people

Abstract

1 Introduction

Machine Learning algorithms have come to dominate several applications in our day-to-day life like recommender systems, managing industrial workforce, game-playing, etc. Simultaneously, in the health-care domain as well the machine learning algorithms have found increasing applications in recommending and improving treatment policies for ailing patients. Among the various available approaches within the machine learning framework we specifically discuss about Reinforcement learning (RL) in this report. RL is a sub-field of Machine Learning which has many useful applications in medical domain but simultaneously also faces many challenges as we will discuss in this report.

2 Motivational Examples

We will illustrate the use of RL in medical scenarios with a few motivational examples. These will be recurring examples throughout the report. We summarize these test-cases below.

2.1 Diabetes

The first motivating example we state is that of treating diabetes. Diabetes is a disease that causes a high blood glucose level in patients. Currently there is no evident cure for this disease (Holt et al., 2011). There are two major sub-types of diabetes mellitus: type-1 and type-2. The treatment for diabetes consists of regulating a patient's blood glucose level to stay within a specific range. In order to keep their blood glucose level in an acceptable range, type-1 diabetic patients must inject insulin several times during a day. The amount of insulin that needs to be injected depends on the amount of carbohydrate in the last meal consumed by the patient and current blood glucose level. This is because, when we eat food, our digestive system breaks the carbohydrates down to glucose. The absorption of glucose in the intestine increases its concentration in the blood stream, which puts the body into a state of hyperglycemia (state of high blood glucose). Glucose, the key source of energy in human body, needs insulin for its routine disposal into cells. In a healthy individual, the pancreas produces insulin, which allows muscle and fat cells to absorb glucose from blood stream. Consequently the blood glucose level decreases back to the normal level. Other mechanisms operate when the blood glucose goes below its normal value – that is, when the body enters a state of hypoglycemia. The global situation of diabetes afflicting people is shown in Figure 1(a).

^{*}Use footnote for providing further information about author (webpage, alternative address)—not for acknowledging funding agencies.

Figure 1: Severity of Diabetes and Sepsis

2.2 Sepsis

Our second motivating example is sepsis treatment in ICU. Sepsis is a complication of an infection resulting out of an extreme immune system response triggering widespread inflammation throughout the body. Sepsis can range from mild to severe and because it can be potentially life-threatening, it requires sustained and immediate medical attention. Sepsis treatment varies and depends on the cause of the infection that led to sepsis, as well as the severity of symptoms. Because mild sepsis can rapidly progress to severe sepsis and then septic shock, doctors must work quickly to reduce inflammation. Common treatments for sepsis include: 1. administering Antibiotics 2. injecting Intravenous (IV) Fluids and 3. in the extreme cases when blood pressure has fallen dangerously low using Vasopressors. An illustrative figure showing the severity of sepsis leading to death resulting from delay in administering antibiotics is shown in Figure 1(b).

3 Why Reinforcement Learning?

A large number of problems in science and engineering, robotics and game playing, resource management, financial portfolio management, medical treatment design, ad placement, website optimization and packet routing can be modeled as sequential decision-making under uncertainty. Many of these real-world interesting sequential decision-making problems can be formulated as reinforcement learning (RL) problems (see (Bertsekas and Tsitsiklis, 1996), (Sutton and Barto, 1998)). In an RL problem, an agent interacts with a dynamic, stochastic, and unknown environment, with the goal of finding an action-selection strategy or policy that optimizes some long-term performance measure. Every time when the agent interacts with the environment it receives a signal/reward from the environment based on which it modifies its policy. The agent learns to optimize the choice of actions over several time steps which is learned from the sequences of data that it receives from the environment. This is the crux of online sequential learning.

This is in contrast to supervised learning methods that deal with labeled data which are independently and identically distributed (i.i.d.) samples from the considered domain and train some classifier

on the entire training dataset to learn the pattern of this distribution to predict the labels of future samples (test dataset) with the assumption that it is sampled from the same domain. In contrast to this, an RL agent learns from the samples that are collected from the trajectories generated by its sequential interaction with the system. For an RL agent, the trajectory consists of a series of sequential interactions whereby it transitions from one state to another following some dynamics intrinsic to the environment while collecting the reward till some stopping condition is reached. This is known as an episode. Here, for an action a_t taken by the agent at the t-th timestep, the agent transitions from its current state denoted by S_t to state S_{t+1} and observes the reward $R(s_t, a_t)$. An illustrative image depicting the reinforcement learning scenario is shown in Figure 2.

Figure 2: Reinforcement Learning

In the healthcare domain, there exists many scenarios in which the treatment involves taking a series of decisions over a long time. After every medical decision is made, and a treatment administered the condition of the patient changes. Based on this new condition of the patient medical practitioners may alter their evaluation policy to administer a new set of treatments or may continue with the last policy with the same dosage. Notice, that this is quite similar to the general RL framework where the condition of the patient can be defined by the state S_t , the treatment administered can be defined by action a_t and after administering the treatment the new condition that the patient transitions to can be defined by S_{t+1} . We will formalize this setting in Section 5 while we will illustrate several challenges where this simple framework will fail in real world scenarios in Section 6.

As mentioned in Nemati et al. (2016) RL is particularly well-suited for the medication dosing problem given the sequential nature of clinical treatment where multiple treatment decision are performed without immediate knowledge of effectiveness. Indeed, the lack of a one-to-one correspondence between actions and outcomes makes it difficult to assign credit or blame to individual actions along the way to an intermediate or terminal outcome. Moreover, the effect of interventions for a given patient can be non-deterministic, and attempting to predict the effects of a series of treatments over time only causes more uncertainty.

4 Notations, Assumptions and Definitions

We use capitalized calligraphic notations to denote sets while individual elements within the set is denoted by non-capitalized alphabets. The random variables are denoted by capitalized, non-calligraphic alphabets. \mathcal{A} denotes the finite set of actions with individual action indexed by $A_t=a$ such that action taken at time t is a. We assume that the total number of actions is constant throughout the time horizon. We assume that the transition function is stationary that is, it is not changing between episodes.

5 MDP Formulation

A RL setting is usually characterized by a MDP or Markov Decision Process. A MDP is defined by the tuple $\{S, A, P, d_R, d_0, \gamma\}$ where each element of the tuple is defined as:-

- 1. S is the finite state space such that at each time step t the patient is in state $S_t \in S$. This state space can be discrete or continuous depending on the modeling assumption of the learner.
- 2. A is the action space such that at each time t, the agent takes action $A_t \in A$, which causes it to change its state from S_t to S_{t+1} . Again this action space can be discrete or continuous depending on the modeling assumption of the learner.
- 3. P is the transition function which describes how the state of the environment changes. So, $P(s, a, s') = Pr(S_{t+1} = s' | S_t = s, A_t = a)$
- 4. d_R denotes the process of reward generation when the state of the agent changes.
- 5. d_0 denotes the initial state distribution of the agent.
- 6. The discount factor, γ , determines the relative weight of immediate and long-term rewards.

The goal of the RL agent is to learn a policy, i.e. a mapping $\pi: \mathcal{S} \times \mathcal{A} \to [0, 1]$ from states to actions, that maximizes the expected discounted return G_t

$$J(\pi) = \mathbb{E}\left[\sum_{t=0}^{\infty} G_t | \pi\right] = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_t | \pi\right]$$

where R_t is all the accumulated rewards by the agent and T denotes the time horizon.

6 Some Challenges of Medical Domain

Some of the challenges that rises out of the medical domain is to formulate the various aspects of the MDP.

6.1 State Representation

The medical environment is a partially observed environment. At any instant the physician is only exposed to some of the factors influencing the health of the patient. The state space can be discrete or continuous, depending on the disease that is being specified or how the model is defined. The continuous state space suffers from the same problems as in general reinforcement learning. Often the data about the patient history is inadequate or missing and hence cannot be represented effectively by all the features specified. There maybe cases when the patient itself does not comply with the prescribed treatment and so the interaction itself is missing. Often treatments cannot be directly administered to the patient and the policy needs to be learnt from the patient's history of interaction. This results in the situation called off-policy policy evaluation algorithms that learns an effective treatment policy without actually running the treatment itself. Again these off-policy algorithms have high variance and in the continuous state space their performance suffers heavily.

6.2 Reward function formulation

The medical environment suffers from long horizon problem where the learner only receives the feedback at the end of the episode or the feedbacks are very sparse in nature. Often the reward function itself has to be defined based on the disease itself. This can be handled to some extent by the inverse RL (Ng and Russell, 2000) approach where we learn the reward function itself from the patient history. parse rewards and confounding variables in the real-life datasets are another set of challenges that needs to be handled carefully. If not handled with care these may result in the algorithm proposing bizarre policy which will not go well with the clinicians.

6.3 Action formulation

As specified earlier, for a variety of reasons, the state-action interaction history may not exist at all. Handling such situation is a difficult situation. The action space can also be continuous, for example dosing range (Bastani, 2014) which is a difficult scenario to handle. The actions proposed by the algorithm at each state needs to be safe and trustworthy to the physician. Deriving such confidence

interval for action for off-policy algorithms in continuous state space (and possibly continuous action space) is another important challenge.

3. Transition Probability formulation: (Have to write)

7 Discussion on Algorithms

7.1 Off-Policy algorithms

In the off-policy setting, there are two stationary Markov policies, one used to generate the data, called the behavior policy and another one called the target policy whose value function we seek to estimate. The two policies can be completely arbitrary but subject to some constraints. The behavior policy must be soft, that is it must have a non-zero probability of selecting every action in each state. Some algorithms require even weaker constraints on the behavior policy that it can be stationary and non-starving.

Off-policy evaluation is difficult because there is a mismatch of distributions. Since the learner has to estimate the target policy but is only goven samples from the behavior policy. A classical way of handling such situations comes from Rubinstein (1981) by the way of *Importance Sampling*. Several interesting algorithms in the Reinforcement Learning setting have been proposed for off-policy evaluation incorporating Importance Sampling. These Per-Decision Importance Sampling (Precup et al., 2000), Per-Decision Weighted Importance Sampling (Precup et al., 2000), Doubly Robust Importance (Jiang and Li, 2015) Sampling and Weighted Doubly Robust Importance Sampling (Thomas and Brunskill, 2016).

Fitted Q iteration (FQI) is a batch RL algorithm whose main fea- ture lies in the way that it handles the experience (Ernst et al., 2005). Unlike incremental algorithms like Watkin's Q-learning (Watkins and Dayan, 1992), FQI uses the complete set of transitions each time that updates the estimation of the optimal Q-function. Although this process involves more computation, it allows to extract more information from the stored experience. Conse- quently, FQI is more data-efficient than other RL algorithms. This feature makes FQI a very suitable algorithm in many application domains. In certain scenarios it is quite expensive to conduct an experiment with respect to both money and time. For, example administering a dose to a patient and waiting to observe its effect. Thus, reducing the quantity of data required by the algorithm can be crucial.

7.2 Value Function based methods

7.3 Policy Gradient Methods

7.4 Using Linear and Non-Linear function approximation

8 Related Papers

We create a comprehensive list of papers which uses Reinforcement Learning in clinical applications by scraping through PubMed and Google scholar. This process is elaborately shown in Figure 3.

Some of the survey papers which give a broad description of the state-of-the-art approaches for RL in biological data are Mahmud et al. (2018), Kappor et al. (2018). Among theses Mahmud et al. (2018) focuses in non-linear function approximation using Deep Learning techniques in RL for biological data. They review papers from bio-imaging, medical-imaging, human-machine-interfaces, etc which uses RL as their learning mechanism of incorporating feedback and using function approximation using deep learning architectures as function approximators.

We review some of the relevant papers related to sepsis, ICU patients, Lung Cancer, Epilepsy, Heparin Dosing treatment.

Figure 3: Scraping paper from PubMed and Google Scholar

Table 1: Review of papers

Paper	Disease	Algo type	MDP info	Contributions	Approach	Conclusions/ Observa- tions	Limitations & Future Works
Raghu et al. (2017)	Sepsis	Dueling Double- Deep Q Net- work (Off- policy algo- rithm)	1) Continuous States 2) Discrete Actions	1) Deep RL models with continuous-state spaces, improving on earlier work with discretized models. 2) Identify treatment policies that could improve patient outcomes 3) Investigate the learned policies for clinical interpretability	1) Q-values are frequently overestimated in practice, leading to incorrect predictions and poor policies. So, uses Double-Deep Q Network, where the target Q values are determined using actions found through a feed-forward pass on the main network, as opposed to being determined directly from the target network. 2) For finding optimal treatments, they separate the influence on Q-values of a) a patient's underlying state being good (e.g. near discharge), and b) the correct action being taken at that timestep. So, uses a Dueling Q Network, where the action-value function for a given (s, a) pair, Q(s, a), is split into separate value and advantage streams. The value stream represents the quality of the current state, and the advantage represents the quality of the chosen action. Training such a model can be slow as reward signals are sparse and only available on terminal timesteps. They use Prioritized Experience Replay to accelerate learning by sampling a transition from the training set with probability proportional to the previous error observed.	Their policies learned that vaso-pressors may not be a good first response to sepsis and maybe harmful in some populations.	1) The reward assignment in this model is quite sparse, with rewards/penalties only being issued at terminal states. There is scope for improvement here; one idea could be to use a clinically informed reward function based on patient blood counts to help learn better policies. 2) Another approach could be to use inverse RL techniques to derive a suitable reward function based on the actions of experts (the physicians).

Table 2: Review of papers

Paper	Disease	Algo type	MDP info	Contributions	Approach	Conclusions/ Observa- tions	Limitations & Future Works
Weng et al. (2017)	Sepsis	Off-policy evaluation using policy iteration for π^* , π^r from real trajectories.	1) Discrete State Space, with patient conditions being noted at regular intervals. 2) Discrete Actions with continuous glu- cose level being catego- rized into 11 bins.	1 They hypothesize that the patient states, glycemic values, and patient outcomes can be modeled by a Markov decision process (MDP) whose parameters and optimal policies can be learned from data. 2) They develop a decision support for glycemic control to target specific ranges of serum glucose that optimizes outcomes and is personalized for each patient depending on their specific circumstances.	1) To learn the patient state representation they use two types of feature representations: raw interpretable clinical features and the feature representation generated by a sparse autoencoder. After they generate the state representation, they categorize the patients into 500 clusters by using k-means clustering algorithm. 2 Policy Iteration algorithm is used to learn π^* which is the behavior policy. The estimation policy π^r is evaluated based on real trajectories where they limited the action space of each state to only the one with the highest probability in the transition matrix instead of exploring all possible actions. 3) π^r and real mortality rate were used to obtain the estimated mortality-expected return function, which reveals the relationship between expected return and the estimated 90-day mortality rate. This function was used to compute and compare the estimated mortality rate of real and optimal glycemic trajectories obtain by π^r and π^*	1) If clinicians chosen dosages can actually achieve the target glucose levels chosen by the policy then it may reduce the mortality rate of septic patients. 2) Their mortality—expected return function shows that using raw feature representation or learned feature representation using autoencoder may yield a good result, that is both are close to mortality rate calculated from the real data. latent rep-	1) State space is discrete, which is an issue. 2) The off policy evaluation needs to be better.

Table 3: Review of papers

Paper	Disease	Algo	MDP	Contributions	Approach	Conclusions/ Ob-	Limitations &
-		type	info			servations	Future Works
Gottesma	nSepsis	Comapre	1) Dis-	1) Data needs	1) The weighted	1) State repre-	1) If outcomes
et al.		Per-	crete	to be processed	methods (WPDIS,	sentation need	are sparse then
(2018)		Decision	State	correctly	WDR) trade in-	to account for	performance
This		Impor-	Space,	otherwise	creased bias for	any variables that	suffers. 2)
paper		tance	with	the suscepti-	reduced variance,	might confound	High variance
is very		Sam-	patient	bility of AI	while the per de-	estimates of	in the per-
impt.		pling	condi-	algorithms to	cision methods	outcomes under	formance of
as it is		(PDIS),	tions	learn harmful	reduce variance	the policy. 2)	Importance
like a		Weighted	_	policies due to	by computing the	It's impossible to	sampling algo-
review		Per-	noted	artifacts in the	weights in a way	account for the	rithms as some
paper		decision	at	data increases.	that does not penal-	entire history of	actions which
detail-		Impor-	regular	2) The algo-	ize the probability	the patient and	are never
ing the		tance	inter-	rithm learns	of a current action	determine/avoid	tested has
chal-		sam-	vals.	to recognize	based on future	such confound-	close to zero
lenges		pling	2) Dis-	patients who	ones. 2) Doubly	ing variables.	probability.
		(WPDIS)		need additional	robust methods (DR,	Instead, domain	3) Sufficient
		Doubly-	treat-	care but lack	WDR) leverage	knowledge by an	confidence on
		Robust	ment IV	of options in actions makes	an approximate model of the reward	expert/clinical researcher must	the action by the policies
		(DR), and	fluids	the algorithm	function to reduce	be applied to take	cannot be
		Weighted		choose intu-	variance. 3) All of	care of this. This	guaranteed.
		Doubly-	sopres-	bation which	the policies have	is especially a	guaranteed.
		Robust	sors	is not recom-	relatively close	difficult prob-	
		(WDR).	each	mended. 3)	median values and	lem to solve	
		(WDR).	into 5	They observed	large variances,	in sequential	
			bins,	the learned	making it hard to	setting.	
			the first	policies recom-	draw definitive	seems.	
			repre-	mend minimal	conclusions. The		
			senting	treatment	model-based WDR		
			no	for patients	estimator uses a		
			treat-	with very	model to reduce		
			ment	high SOFA	variance, but also in-		
			(zero	(Sequential	herits the optimistic		
			dosage),	Organ Failure	bias of the model.		
			and the	Assessment)	The model-free		
			rest	score. This	WPDIS estimator		
			repre-	recommenda-	also suffers from		
			senting	tion is faulty	large variances.		
			quar-	but algorithms	4) To the patients		
			tiles	predict this	belonging to a lower		
			of the	because the	risk group, the		
			actions	mortality rate	WPDIS method suf-		
			pre-	for this sub-	fers from a selection		
			scribed	population is	bias. It predicts a		
			by physi	high and hence	no-treatment policy		
			physi-	the policy have not learnt what	to these group as		
			cians. Hence	to do.	they have lower mortality rate.		
			total 25	io uo.	mortanty fate.		
			actions.				
			3 Re-				
			ward is				
			zero till				
			the last				
			action.				
<u> </u>	1	l	2011011.				

Table 4: Review of papers

Paper	Disease	Algo	MDP	Contributions	Approach	Conclusions/ Ob-	Limitations &
		type	info			servations	Future Works
Raghu	Sepsis	Per	1) Con-	1) This work	1) They use PHWIS	1) Uncalibrated	1) The pro-
et al.		Hori-	tinuous	evaluates the	and PHWDR in-	behaviour pol-	posed proce-
(2018)		zon	State	sensitivity	stead of step-wise	icy models can	dure can be
		Weighted	Space	of off-policy	IS and DR to reduce	result in highly	used in other
		Impor-	(Toy	evaluation to	variance. 2) To	inaccurate OPE	situations
		tance	do-	calibration	split the horizon	in a simple, con-	where the be-
		sam-	main)	errors in the	for estimation and	trolled navigation	haviour policy
		pling	2) Dis-	learned be-	behavior policy,	domain. 2) In a	is unknown,
		(PH-	crete	haviour policy.	two methods are	real-world sepsis	and could
		WIS),	Action	They show	considered, random	management	improve the
		and Per	Space	how powerful	and intervention	domain, powerful	quality of OPE
		Hori-	(Toy	parametric	splitting. Random	parametric mod-	estimates.
		zon	Do-	models such	splitting randomly	els such as deep	
		Weighted	main)	as neural	chooses half the	neural networks	
		Doubly-		networks can	trajectories for each	produce highly	
		Robust		result in highly	policies, while in-	uncalibrated prob-	
		(PH-		uncalibrated	tervention splitting	ability estimates.	
		WDR).		behaviour	splits patients who	Neural networks	
				policy models	have been treated	can produce	
				on a real-	with vasopressors	overconfident	
				world medical	(or not). 3) To com-	and incorrect	
				dataset	pare between π_e	probability esti-	
					and π_b the use Mean	mates of actions.	
					square estimation.	3) A simple,	
						non-parametric,	
						k-nearest neigh-	
						bours model	
						is shown to be	
						better calibrated	
						than all the	
						other parametric	
						models in their	
						medical domain,	
						and using this as a behaviour	
						l	
						policy model	
						results in superior OPE.	
						OPE.	

Table 5: Review of papers

Paper	Disease	Algo	MDP	Contributions	Approach	Conclusions/	Limitations & Future
Тарст	Discase	type	info	Contributions	Approach	Observations	Works
Prasad	ICU pa-	Fitted	1) Con-	1) This work	1) Simple	1) They show	1) Policies must show
et al.	tient	Q-	tinuous	develops a	Q-Learning	that the al-	some invariance to re-
(2017)		Iteration	State	decision sup-	using 3 layers	gorithm is	ward shaping. The
		wither	Space	port tool to	of hidden layer	capable of	current methods dis-
		Extra	2) Dis-	alert clinicians	fails to learn	extracting	play considerable sen-
		Trees	crete	when a patient	propoerly. 2)	meaningful	sitivity to the rela-
		and	Action	is ready for	They use FQI	indicators in	tive weighting of var-
		Neural Net-	Space	weaning (taken	(with batch	recommending	ious components of
		work	3) They	off mechanical ventilation). 2)	mode learning) with Regressor	extubation time and se-	the feedback received after each transition.
		as func-	do not	It uses avail-	as Extra Trees	dation levels,	A more principled ap-
		tion	con-	able patient	for Function	on average	proach to the design
		approx-	sider	information in	approxima-	outperforming	of the reward func-
		imators	this	the ICU setting	tion and this	clinical prac-	tion, for example by
			as a	and proposes	performs well.	tice in terms	applying techniques in
			POMDP	the off-policy	3) Neural	of regulation	inverse reinforcement
				Fitted Q-	FQI with 3	of vitals and	learning (Ng and Rus-
				Iteration (FQI)	hidden layers	reintubations	sell, 2000), can help
				algorithm	for function	for patients.	tackle this sensitivity.
				with different	approximation		2) Effective commu-
				regressors	also performs		nication of the best
				for optimal	well in this dataset. Neural		action, expected reward, and the associ-
				treatment.	FQI achieves a		ated uncertainty, calls
					four-fold gain		for a probabilistic ap-
					in performance		proach to estimation of
					as compared to		the Q-function, which
					FQI with extra		can perhaps be ad-
					trees.		dressed by pairing re-
							gressors such as Gaus-
							sian processes with Fit-
							ted Q-iteration. 3) In-
							crease the sophistica-
							tion of the state space
							by handling long term
							effects more explicitly using second-order
							statistics of vitals 4)
							Modeling the system
							as a partially observ-
							able MDP, in which
							observations map to
							some underlying state
							space. 5) Extend-
							ing the discrete action
							space to continuous ac-
							tion space so that con-
							tinuous dosages of spe-
							cific drug types and set- tings such as ventila-
							tor modes can be taken
							into account.
<u> </u>	I	l	1			<u> </u>	

Table 6: Review of papers

Paper	Disease	Algo	MDP	Contributions	Approach	Conclusions/	Limitations &
Tuper	Discuse	type	info	Contributions	ripprouen	Observations	Future Works
Padmanabhan	Anesthesia	Modified	1) Dis-	1) This work	1) The states	1) In this	1) Discrete
et al. (2014)	of ICU	Watkin's	crete	develop a	of the system	paper, a re-	State and
	patient	Q-	State	RL-based	should be	inforcement	Action Space
	with res-	learning	Space	closed- loop	observable	learning-based	is a drawback
	piratory	(on-	2) Dis-	anesthesia con-	for decision	approach for	2) Too less
	disease	policy).	crete	troller using	making. 2)	the simultane-	number of
	sym-		Action	the bispectral	The states of	ous control of	patients in the
	dromes		Space	index (BIS)	the system are	sedation and	experiment,
				as a control	based on the	hemodynamic	so doubtful
				variable while	measurable	parameter	conclusions
				concurrently	parameters BIS and MAP.	management	can be drawn.
				accounting		is proposed	
				for mean arterial pressure	3) The error is measured	using the regulation of	
				(MAP). 2)	based on a	the anesthetic	
				This work	weighted com-	drug propofol.	
				uses these two	bination of the	2) Simulation	
				parameters	error of the	results using	
				to control	BIS(error) and	30 patient	
				propofol in-	MAP(error).	models with	
				fusion rates	This reduces	varying phar-	
				to regulate	the com-	macokinetic	
				the BIS and	putational	and pharma-	
				MAP within a	complexity	codynamic	
				desired range.	of the RL	parameters	
					algorithm and	show that	
					consequently	the proposed	
					the controller	RL control strategy is	
					processing time4) Finally	strategy is promising	
					Q-Learning is	in designing	
					used to learn	closed-loop	
					the sequence	controllers for	
					of infusion	ICU sedation	
					rates that	to regulate	
					results in a	sedation and	
					minimum	hemodynamic	
					BIS(error) and	pa- rameters si-	
					MAP(error).	multaneously.	
						3) The simula-	
						tions show that	
						the RL-based,	
						closed-loop	
						control is ro-	
						bust to system	
		<u> </u>				uncertainties.	

Table 7: Review of papers

Paper	Disease	Algo	MDP	Contributions	Approach	Conclusions/	Limitations &
		type	info			Observations	Future Works
Zhao	Treating	Q-	1) Dis-	1) This work	1)The proposed clini-	1) They be-	1) Future work
et al.	Non-	learning	crete	presents an	cal reinforcement trial	lieve that	includes giving
(2011)	Small	with	State	adaptive re-	for NSCLC involves	Q-functions	a confidence
	Cell	SVR	Space	inforcement	a randomization of	in clinical	set for the
	Lung	used	2) Dis-	learning	patients among the	applications	resulting treat-
	Cancer	for	crete	approach	different therapies in	will be too	ment regimens
	(NSCLC)	func-	Action	to discover	first and second-line	complex for	and associated
		tion	Space	optimal in-	treatments, as well	para-metric	Q-functions
		approx-		dividualized	as randomization of	regression	2) How to
		ima-		treatment	second-line initiation	and that semi-	determine an
		tion		regimens for	time. This design	parametric	appropriate
		(on-		patients with	enables estimation of	and non-	sample size
		policy).		advanced	optimal individualized	parametric	for a clinical
				NSCLC. 2)	treatment regimes. 2)	regression ap-	reinforcement
				Q-learning is	Next, reinforcement	proaches, such	trial to reliably
				used to learn	learning is used to ana-	as -SVR-C, is	obtain treat-
				an optimal	lyze the resulting data.	needed.	ment regimen
				regimen from	They use Q-Learning		that is very
				patient data	with a modified SVR		close to the
				generated from	(Vapnik et al., 1996)		true optimal
				the clinical	to fit nonlinear Q-		regimen.
				reinforcement	functions for each of		
				trial.	the two decision times		
					(before first line and		
					before second line).		
					This is required to		
					handle the complex		
					fact of heterogeneity		
					in treatment across		
					individuals as well as		
					right-censored survival data. 3) In addition, a		
					second, confirmatory		
					trial with a phase III		
					structure is conducted		
					after the first trial to		
					validate the optimal		
					individualized therapy.		

Table 8: Review of papers

Paper	Disease	Algo type	MDP info	Contributions	Approach	Conclusions/ Observations	Limitations & Future Works
Escandel	l- Anemia	Fitted	1) Dis-	1) The method-	1) The Gaus-	1) In this	1) Discrete State and
Montero	treat-	Q-	crete	ology pro-	sian RBF	paper, a re-	Action Space is a draw-
et al.	ment in	Iteration	State	posed in this	network with	inforcement	back 2) Too less num-
(2014)	Hemodia		Space	work uses the	fixed bases is	learning-based	ber of patients in the
(2011)	ysis	rithm	2) Dis-	algorithm fit-	employed to	approach for	experiment, so doubt-
	pa-	with	crete	ted Q iteration	approximate	the simultane-	ful conclusions can be
	tients	Ex-	Action	to learn a	the Q-function.	ous control of	drawn.
	ticits	tremely	Space	policy of ESA	This requires	sedation and	diawii.
		Ran-	Space	administration	the definition	hemodynamic	
		dom-		from a set	of the number	parameter	
		ized		of medical	of Gaussian	management	
		trees.		records. The	functions,	is proposed	
		nees.			·		
					their centers and standard	using the regulation of	
				ployed to define the	deviations.	the anesthetic	
				MDP model	This process	drug propofol.	
						2) Simulation	
				are extracted	typically re-	*	
				in part from	quires trial	results using	
				the laboratory	and error ex-	30 patient	
				tests and in	perimentation	models with	
				part from a	with various	varying phar-	
				clustering	configurations.	macokinetic	
				procedure of		and pharma-	
				the patient's		codynamic	
				main attributes.		parameters	
				In order to test		show that	
				the methodol-		the proposed	
				ogy, a series		RL control	
				of experiments		strategy is	
				has been con-		promising	
				ducted using a		in designing	
				computational		closed-loop	
				model that		controllers for	
				simulates the		ICU sedation	
				response of the		to regulate	
				patients. The		sedation and	
				performance		hemodynamic	
				has been as-		pa- rameters si-	
				sessed against		multaneously.	
				the algorithm		3) The simula-	
				Q-learning and		tions show that	
				a standard pro-		the RL-based,	
				tocol of dose		closed-loop	
				adjustment.		control is ro-	
						bust to system	
						uncertainties.	

Table 9: Review of papers

Guez et al. (2008) Titteration Space (on-policy). Space (on-spolicy). Space Space (on-spolicy). Space (on-s					9: Review of pape			
Guez et al. (2008) Comparison of applying policy). Space (on-policy). Space (on-policy). Space of the examines tion (on-policy). Space (on-policy). Space of the problem of applying policy. Space of the problem of applying terest (on-policy). Space of the problem of applying tereinforcement the learning technology to in time, given some informance of seizures by compared to the current best stimulation strategies (on-strategies) in the neu-roscience literature (and foo% compared to when seizures now and in the future. 2) Space of the importance of the importance of seizures by compared to the current best stimulation strategies on with the problem of applying terestory moment of seizures by compared to the current best strategies on which stimulation. Space of the importance of applying terestory was treated to decide with the problem of the terming, they are able to on-policies. Space of the importance of applying terestory was treated to decide with the problem o	Paper	Disease	_		Contributions	Approach		Limitations & Future
et al. (2008) Crete State the problem of applying to (on-policy). Policy). Policy								
Titeration Space (on- golicy). Space (on- policy). In this case, acquiring large amounts of patient data (if any) so as is extremely expensive and invasive. Therefore they use of batch reinforcement to the signal previously (our state), we (our state) we	Guez	Epilepsy	Fitted-	1) Dis-	1) This paper			
tion (on- 2) Dispolicy). Crete (arming tech- niques to learning tech- niques to learning tech- niques to learning tech- niques to learn from in vitro studies of stimulation. Space (a) Dispolicy). Crete (a) Dispolicy). Crete (a) Dispolicy. Crete (a) Dispolicy (a) Dispolicy. Crete (b) Dispolicy. Crete (a) Dispolicy. Crete (b) Dispolicy. Crete (b) Dispolicy. Crete (a) Dispolicy. Crete (b) Dispolicy. Crete			Q	crete	examines		sults show	Action Space is a
(on-policy). Conpolicy). Crete Action policy Space Sp	(2008)		Itera-	State	the problem			drawback 2) Some
policy). crete Action Space learning tech-Action nology to optimize control strategies for deep-brain electrical stimulation in the treatment of epilepsy. 2) In this case, acquiring large amounts of patient data is extremely expensive and invasive. Therefore they niques to learn from in vitro studies of stimulation. policy). crete Action Space learning tech-niques to learn from in vitro studies of simulation. every moment in time, given in to the signal previously (our state), we quantify performance of adaptive current best stimulation strategies in the neuroscience literature (and 60% compared to when there:- How should current best stimulation strategies (in the neuroscience literature (and 60% compared to when there:- How we quantify performance of adaptive current best stimulation strategies (in the neuroscience literature (and 60% compared to when the exploration policies with formal guarantee of with the neuroscience literature (and formal previously to mance of adaptive current best strategies (in the neuroscience literature (and fow compared to when the return to the current best strategies (and learn from ver strategies.)			tion	Space	of applying	be formulated	reinforcement	of the important
Action Space optimize control strategies for deep-brain electrical stimulation in the treatment of epilepsy. 2) In this case, acquiring large amounts of patient data is extremely expensive and invasive. Therefore they use of batch reinforcement learning techniques to learn from in vitro studies of stimulation. Action Space optimize conoptimize control strategies for deep-brain electrical stimulation about what happened to the signal strategies? Use of batch reinforcement learning techniques to learn from in vitro stimulation. In time, given some information about what happened to the current best stimulation strategies? If we quantify performance of adaptive we quantify performance of adaptive stimulation strategies? In the neuroscience literature (and 60% compared to when stimulation). 60% compared to the current best stimulation strategies which stimulation aduut current best stimulation strategies? If we quantify performance of adaptive current best stimulation strategies which stimulation and in the neuroscience literature (and 60% compared to when stimulation). 60% compared to the current best stimulation strategies which stimulation action we should choose (if any) so as is extremely expensive and in the future. 2) The fitted Q iteration algorithm requires a supervised regression algorithm to stimulation.			(on-	2) Dis-	reinforcement	as follows: at	learning, they	questions and future
Space optimize control strategies for deep-brain electrical stimulation in the treatment of epilepsy. 2) In this case, acquiring large amounts of patient data is extremely expensive and invasive. Therefore they use of batch reinforcement from in vitro studies of stimulation. Space optimize control strategies mation about what happened to the signal previously current best stimulation strategies? How we quantify performance of adaptive current best stimulation strategies? In the neuroscience with formal guarantee on worse-case performance? How should choose stimulation alout to the signal previously current best stimulation strategies? In the neuroscience literature (and 60% compared to when stimulation). Space optimize control seizures by 25%, compared to the signal previously current best stimulation strategies? in the neuroscience literature (and 60% compared to when stimulation). Space optimize control seizures by 25%, compared to the signal previously current best stimulation strategies? in the neuroscience literature (and 60% compared to when stimulation). Space optimize control seizures by 25%, compared to the stimulation strategies? In the neuroscience literature (and 60% compared to when stimulation). Space optimize to the signal previously current best stimulation strategies? in the neuroscience literature (and 60% compared to when stimulation). Space optimize to the stimulation strategies? In the neuroscience on worse-case performance? How we quantify performance of adaptive current best stimulation outling to the neuroscience on worse-case performance? How we quantify performance of adaptive current best stimulation on the neuroscience on worse-case performance? How we quantify performance of adaptive current best stimulation on the neuroscience on worse-case performance? How we quantify performance of adaptive current best stimulation on the strategies? Space optimize to the current best stimulation on the strategies? Space optimize to the current best stimulation on the neuroscience on wors			policy).	crete	learning tech-	every moment	are able to	directions noted by
trol strategies for deep-brain electrical stimulation in the treatment of epilepsy. 2) In this case, acquiring large amounts of patient data is extremely expensive expensive and invasive. Therefore they reinforcement learning techniques to learn from in vitro studies of stimulation. To deep-brain electrical to the signal previously what happened to the signal previously (our state), we can learn from ver stimulation strategies? How we can learn from ver stimulation strategies? How we can learn from ver little training data Can we design "safe in the neuroscience literature (and 60% compared to when there is no stimulation). The fitted Q iteration algorithm to stimulation. The fitted Q iteration algorithm to stimulation. In the neuroscience literature (and 60% compared to when there is no stimulation). The fitted Q iteration algorithm to stimulation. In the neuroscience literature (and 60% compared to when there is no stimulation).				Action	nology to	in time, given	reduce the	them are mentioned
for deep-brain electrical stimulation in the treatment of epilepsy. 2) In this case, acquiring large amounts of patient data is extremely expensive and invasive. Therefore they use of batch reinforcement learning techniques to learn from in vitro studies of stimulation. for deep-brain to the signal previously cour state), we can learn from very stimulation strategies? How we can learn from very stimulation strategies? Can we design "safe current best stimulation in the neuroscience with formal guarantee on worse-case performance? How can we re-use data, or learner there is no stimulation. The fitted Q iteration algorithm to stimulation. The fitted Q iteration algorithm to stimulation. In the case, which stimulation in the neuroscience literature (and 60% compared to when there is no stimulation). The fitted Q iteration algorithm to stimulation. In the current best stimulation in the neuroscience literature (and 60% compared to when there is no stimulation).				Space	optimize con-	some infor-	incidence of	here:- How should
electrical stimulation in the treatment of epilepsy. 2) In this case, acquiring large amounts of patient data is extremely expensive and invasive. Therefore they use of batch reinforcement from in vitro stimulation. electrical stimulation in the treatment of the treatment of epilepsy. 2) In this case, acquiring large amounts of patient data (if any) so as is extremely expensive and invasive. Therefore they use of batch reinforcement learning techniques to learn from in vitro stimulation. electrical stimulation in the previously (our state), we need to decide which stimulation strategies? Can we design "safe exploration policies with formal guarantee on worse-case performance? How can we re-use data, or learner there is no stimulation). The fitted Q iterative (and 60% compared to when there is no stimulation). The fitted Q iterative (and 60% compared to when there is no stimulation). The fitted Q iterative (and 60% compared to when there is no stimulation).					trol strategies	mation about	seizures by	we quantify perfor-
electrical stimulation in the treatment of epilepsy. 2) In this case, acquiring large amounts of patient data is extremely expensive and invasive. Therefore they use of batch reinforcement from in vitro stimulation. electrical stimulation in the treatment of the treatment of epilepsy. 2) In this case, acquiring large amounts of patient data (if any) so as is extremely expensive and invasive. Therefore they use of batch reinforcement learning techniques to learn from in vitro stimulation. electrical stimulation in the previously (our state), we need to decide which stimulation strategies? Can we design "safe exploration policies with formal guarantee on worse-case performance? How can we re-use data, or learner there is no stimulation). The fitted Q iterative (and 60% compared to when there is no stimulation). The fitted Q iterative (and 60% compared to when there is no stimulation). The fitted Q iterative (and 60% compared to when there is no stimulation).					for deep-brain	what happened	25%, com-	mance of adaptive
the treatment of epilepsy. 2) In this case, acquiring large amounts of patient data is extremely expensive and invasive. Therefore they use of batch reinforcement learning techniques to learn from in vitro studies of stimulation. the treatment of epilepsy. 2) In this case, acquiring large amounts of patient data is extremely expensive and invasive. Therefore they use of batch reinforcement learning techniques to learn from in vitro studies of stimulation. the treatment of epilepsy. 2) In this case, which stimulation strategies in the neuroscience literature (and 60% compared to when there is no stimulation). Therefore they use of batch reinforcement learning techniques to learn from in vitro studies of stimulation. In this case, which stimulation strategies in the neuroscience literature (and 60% compared to when there is no stimulation). The fitted Q iteration algoritimates a supervised regression algorithm to learn the Q-functions. In					electrical	to the signal	pared to the	strategies? How we
of epilepsy. 2) need to decide In this case, acquiring large amounts of patient data is extremely expensive and invasive. Therefore they use of batch reinforcement learning techniques to learn from in vitro stimulation. of epilepsy. 2) need to decide which stimulation decide which stimulation action we should choose (if any) so as is extremely expensive and in the future. 2) use of batch reinforcement learning techniques to learn from in vitro stimulation. of epilepsy. 2) need to decide which stimulation we should choose (if any) so as is extremely to minimize seizures now and in the future. 2) use of batch reinforcement learning techniques to learn from in vitro stimulation. of epilepsy. 2) need to decide which stimulation we should choose (literature (and 60% compared to when there is no stimulation). The fitted Q reinforcement learning techniques to learn from in vitro studies of stimulation. In the neuroscience literature (and 60% compared to when there is no stimulation).					stimulation in	previously	current best	can learn from very
In this case, acquiring large amounts of patient data is extremely expensive and invasive. Therefore they learning techniques to learn from in vitro stimulation. In this case, acquiring large amounts of patient data (if any) so as is extremely expensive and in the fitted Q iteration algorithm to stimulation. In this case, acquiring large tion action we should choose literature (and 60% compared to when there is no stimulation). Exploration policies with formal guarantee on worse-case performance? How can worse-case performance? In this case, according to the following part to when there is no stimulation.					the treatment	(our state), we	stimulation	little training data?
acquiring large amounts of should choose patient data is extremely expensive and invasive. Therefore they use of batch reinforcement learning techniques to learn from in vitro stimulation. acquiring large amounts of should choose should choose literature (and 60% compared to when there is no stimulation). with formal guarantee on worse-case performance? How can worse-case performance?					of epilepsy. 2)	need to decide	strategies	Can we design "safe"
amounts of patient data (if any) so as is extremely expensive and invasive. Therefore they use of batch reinforcement learning techniques to learn from in vitro stimulation. The fitted Q functions. In literature (and 60% compared to when there is no stimulation). Iliterature (and 60% compared to when there is no stimulation). Therefore they future. 2) The fitted Q iteration algorithm to learn the Q-functions. In					In this case,	which stimula-	in the neu-	exploration policies,
patient data is extremely expensive and invasive. Therefore they use of batch reinforcement learning techniques to learn from in vitro stimulation. patient data (if any) so as to minimize seizures now and in the future. 2) Therefore they use of batch reinforcement learning techniques to learn from in vitro stimulation. In mance? How can we re-use data, or learner there is no stimulation). The fitted Q iteration algorithm requires a supervised regression algorithm to learn the Q-functions. In					acquiring large	tion action we	roscience	with formal guarantees
is extremely expensive and invasive. Therefore they use of batch reinforcement learning techniques to learn from in vitro stimulation. Tis extremely expensive seizures now and in the future. 2) The fitted Q iteration algorithm to stimulation. The fitted Q iteration algorithm to learn the Q-functions. In					amounts of	should choose	literature (and	on worse-case perfor-
expensive and invasive. Therefore they use of batch reinforcement learning techniques to learn from in vitro stimulation. expensive and in the stimulation). Therefore is no stimulation. Therefore is no stimulation. The fitted Q iteration algorithm requires a supervised regression algorithm to learn the Q-functions. In					patient data	(if any) so as	60% com-	mance? How can we
and invasive. Therefore they use of batch reinforcement learning techniques to learn from in vitro stimulation. and invasive. The fitted Q iteration algorithm requires a supervised regression studies of stimulation. and in the future. 2) The fitted Q iteration algorithm requires a supervised regression algorithm to learn the Q-functions. In					is extremely	to minimize	pared to when	re-use data, or learned
Therefore they use of batch reinforcement learning techniques to learn from in vitro studies of stimulation. The fitted Q iteration algorithm requires a supervised regression algorithm to learn the Q-functions. In					expensive	seizures now	there is no	policies, between
use of batch reinforcement learning techniques to learn from in vitro studies of stimulation. The fitted Q iteration algorithm requires a supervised regression algorithm to learn the Q-functions. In					and invasive.	and in the	stimulation).	different patients?
reinforcement learning techniques to learn from in vitro studies of stimulation. reinforcement literation algorithm requires a supervised regression algorithm to learn the Q-functions. In					Therefore they	future. 2)		_
learning techniques to learn from in vitro studies of stimulation. learning techniques rithm requires a supervised regression algorithm to learn the Q-functions. In					use of batch	The fitted Q		
learning techniques to learn from in vitro studies of stimulation. learning techniques rithm requires a supervised regression algorithm to learn the Q-functions. In					reinforcement	iteration algo-		
niques to learn from in vitro regression studies of stimulation. a supervised regression algorithm to learn the Q-functions. In					learning tech-			
from in vitro regression studies of algorithm to stimulation. learn the Q-functions. In								
studies of algorithm to learn the Q-functions. In								
stimulation. learn the Q-functions. In					studies of			
functions. In					stimulation.			
4								
this paper they						this paper they		
use Extremely								
Randomized								
trees.								

Table 10: Review of papers

Paper	Disease	Algo	MDP	Contributions	Approach	Conclusions/	Limitations &
		type	info			Observations	Future Works
Nemati	Heparin	Discrimi	na 1 i)veDis-	1) This work	1) The objective of	1) The RL	1) Whether
et al.	Dosing	Hidden	crete	tries to infer	the RL medication	agent's rec-	the suboptimal
(2016)		Markov	State	an optimal	dosing agent is to	ommendation	heparin dosing
		Model	Space	dosing strategy	learn a dosing policy	starts slightly	we observed
		(DHMM)	2) Dis-	that accounts	that maximizes the	above the	were from
		for	crete	for both the	overall fraction of	population	intentional
		state	Action	activated	time a given patient	mean for hep-	actions on
		estima-	Space	partial throm-	stays within his/her	arin and then	the part of
		tion.		boplastin time	therapeutic aPTT	converges to	the clinician,
		Within		(aPTT) level,	range. 2) Since the	the population	mistakes, or
		the fit-		and evolv-	actual physiological	mean, which	simply due
		ted Q-		ing patient	state of the patient is	is likely to	to a lack of
		learning		physiological	at best only partially	bring patients	adherence
		frame-		condition.	observed, the agent	within their	to hospital
		work		2)To accom-	has to infer both the	therapeutic	guidelines are
		the Q-		plish this	state of the patient and	range more	beyond our
		function		inference, they	an optimal policy from	quickly. 2)	ability to in-
		is		train a RL	sample trajectories of	They further	vestigate with
		repre-		model (using	its interaction with	tested this	the dataset at
		sented		DHMM and	the environment. 3)	hypothesis,	hand. This
		by a		Neural FQI)	When optimizing over	and found that	points at one
		neural		using the	a large patient cohort,	patients whose	of the major
		net-		time series of	a stochastic optimiza-	administered	challenges of
		work.		several com-	tion approach—using	heparin tra-	retrospective
		(off-		mon clinical	mini-batches with	jectory most	analysis of
		policy)		measurements	a few iterations per	closely fol-	clinical big
				within the	batch and a momen-	lowed the RL	data; the
				patient's elec-	tum term—yielded	agent's policy	rational for
				tronic medical	improved generaliza-	could on aver-	treatment deci-
				record (EMR).	tion performance with	age expect a	sions are often
					significant speed up.	positive reward	unknown, and
					4) Hyper-parameters	after just a few	some features
					of the DHMM and	adjustment and	which may be
					the neural network	stay within	important for
					representing the policy	range.	understanding
					(such the number of		outcomes may
					layers and nodes) were		be missing,
					tuned using Bayesian		most likely not
					Optimization.		at random.

Table 11: Review of papers

Paper	Disease	Algo	MDP	Contributions	Approach	Conclusions/	Limitations & Future
		type	info			Observations	Works
Ernst	HIV in-	fitted	1) Dis-	1) This work	1) They use	1) Trial-and er-	1) One of their lim-
et al.	fected	Q itera-	crete	computes	batch-mode	ror approaches	itation was that they
(2006)	patient	tion	State	optimal struc-	supervised	were chosen	did not consider par-
			Space	tured treatment	learning	for setting	tial observability. In
			2) Dis-	interruption	Extra-Trees	the hyper-	their example they as-
			crete	strategies for	algorithm	parameters.	sumed that all the state
			Action	HIV infected	(Geurts et al.,	But this is a	variables were directly
			Space	patients. They	2006). This	risky approach	observable. 2) They
				show that	algorithm	and cannot	also did not account
				reinforcement	builds a model	be used on	for corrupted measure-
				learning may	in the form of	real patients.	ments. Collected clin-
				be useful	the average	There is a	ical data are not nec-
				to extract	prediction of	need to rely	essarily thorough and
				such strate-	an ensemble	on medical	accurate. 3) Further-
				gies directly	of regressions	expertise in	more, the patients may
				from clinical	trees obtained	order to state	not necessarily com-
				data, without	by randomiza-	properly the	ply with the prescribed
				the need of	tion.	optimal control	treatment. This may
				an accurate		problem. 2)	lead to uncertainties
				mathematical model of		Also some specific tools	and measurement cor-
				HIV infection		should be built	ruption which may sig-
				dynamics.		to help in this	nificantly degrade the quality of the results
				dynamics.		task. 3) Based	obtained. One solu-
						on a sufficient	tion to mitigate the ad-
						amount of	verse effects of cor-
						simulated data,	rupted measurements
						they found that	would be to design
						reinforcement	some preprocessing al-
						learning was	gorithms able to filter
						indeed able to	out highly corrupted
						derive STI ther-	data.
						apies which	
						appear as	
						excellent when	
						used to "treat"	
						simulated	
						patients.	

9 Some Toy Domains

In this section we build a gadget world or a toy domain for the Reinforcement Learning (RL) setup for the medical domain. A gadget problem is a simple environment which captures some of the complexities of the real-world domain which we are trying to model. We can test various RL algorithms in this gadget worlds before transitioning to the real-world higher complexity environments. The hypothesis behind creating such gadget worlds is that if an RL algorithms performs poorly in this small gadget world, it will surely perform poorly in real-world domains.

We introduce the 10×10 gridworld Figure 4(a) which has the following features:-

- 1. The starting state is shown as S in green color.
- 2. At any grid, only four discrete actions are possible, left, right, bottom, top.
- 3. The obstacles are shown in red colors. When an agent hits the obstacles, it stays in the state before attempting to transition.
- 4. The only difference between Domain 4(a) and Domain 4(b) is the position of the death state $S_t=D$.
- 5. The terminal states are shown in orange. D represents the state "death" with a negative reward of $R(S_t = D, A_t = a) = -60$ while G represents the state "get well" with a time-varying reward of $R(S_t = G, A_t = a) = 60 t$, $1 \le t \le 60$. All the other transitions result in a reward of 0.
- 6. Note, that the time t is part of the representation of state as rewards are changing with time t.
- 7. The states are featurized by the function $\Phi: S \to R^{r+c}$, where r is the number of rows and c is the number of columns in the gridworld. So, $\Phi(s)$ is a function that maps states to vectors of features. We define $\Phi(s)$ such that for the state $s_{i,j}$, where i is the row-index and j is the column index in the grid, then $\Phi(s_{i,j})$ is the vector v such that,

$$v_k = 1$$
, if $k = i+j$
= 0 otherwise,

and $k = 1, \ldots, (r + c)$ is the index of the vector v.

Next, we illustrate why these features where included in these gadget worlds and link up with our discussion on the complexities of the medical domain.

- 1. The state space is discrete and and the action space is also finite and discrete. We wanted to keep the gadget worlds simple.
- 2. Domain 4(b) is slightly more difficult than Doamin 4(a) as the path to "get well" state $S_t = G$ is more restricted in the former.
- 3. There is only substantial reward (positive/negative) at the end of the long episodes when the agent reaches the states either $S_t = G$ or $S_t = D$. This handles the long horizon problem.
- 4. Rewards are also adversarial as they are changing with time. Because of this, if the agent reaches the goal state at t=60, it receives a reward of 0. Moreover, the rewards are diminishing with time indicating, that the agent has to reach the terminal "get well" state quickly.
- 5. The partially observed environment is captured in how we are featurizing the states. Note that $\Phi(s_{2,3})$ will have the same embedding as $\Phi(s_{3,2})$. This follows from the idea that when feature representation of states are *not* rich enough it result in a partially observed environment.
- 6. The obstacles, (marked in red) forces the q-value function approximator not to generalize too well. These makes the simple environment slightly more difficult to be generalized well enough.

Figure 4: Description of two Toy gridworld domain

10 Experiments

10.1 Toy Gridworld Domain

In this section, we run Q-learning and Sarsa with linear function approximation in the two gridworld domain shown in Figure 4(a) and Figure 4(b). The results of the experiments are shown in Figure 5(a) and Figure 5(b) for the domain 1 and 2 respectively. All the algorithms were averaged over 50 independent trials and each trial consisted of 6000 episodes.

Experiment 1 (Domain 1): In this experiment we use linear function approximation for both Q-Learning and Sarsa to handle this partially observed environment. From Figure 5(a) we see that Sarsa performs better than Q-Learning in this Domain and stabilizes before Q-Learning.

Experiment 2 (Domain 2): In this experiment again we use linear function approximation for both Q-Learning and Sarsa to handle this partially observed environment. From Figure 5(b) we see that Sarsa performs worse than Q-Learning in this Domain. Infact both the algorithms does not stabilize in this experiment. This results from the fact the entry to the state $S_t = G$ is restricted and both the algorithms spend considerable amount of time in fruitless exploration.

Figure 5: A comparison of the performance of various algorithms.

10.2 Classic Domain

The mountain car was first described in Andrew Moore's Thesis (?) and was latter properly defined in Singh and Sutton (1996). The task consist of driving a car resting in a valley up the mountain. The main challenge of this task is that the car by itself cannot drive up the mountain and it has to swing back and forth to gather the sufficient momentum to reach the top of the mountain (see Figure 6(a)). Nonetheless, this simple environment consist of several challenges that afflicts the medical domain. It's a continuous state space problem, hence function approximation has to be used which makes it a partially observed MDP. Moreover, the car can only accumulate a positive reward of +50 when it reaches the top or suffers a negative reward of -1 the time while it swings back and forth. So this models the long horizon problem. The action space is discrete in this toy domain.

In Figure 6(b) we show how $Q(\lambda)$ and $Sarsa(\lambda)$ along with Fourier basis can be used to solve this problem.

Figure 6: A comparison of the performance of various algorithms.

11 Conclusions and Future Works

In this report we reviewed some of the papers applying reinforcement learning techniques to medical domains. We discussed how RL algorithms are extremely important in modeling medical test-cases. We also describes general settings for the RL algorithm and some pf the challenges the this sequential tasks faces in real-life medical test-cases. Then we discussed in detail several important papers which have proposed some of the seminal RL algorithms in medical settings. Finally we came up with some gadget problems which are easy to handle and yet has sufficient complexities to handle many important and intriguing features of the real-life medical domain. We also showed that both Q-Learning and Sarsa with linear approximation fails to perform well in these domains. Future work includes proposing new algorithm that might perform better in these environments or to test planning algorithms in these domains.

References

- Bastani, M. (2014). *Model-free intelligent diabetes management using machine learning*. PhD thesis, University of Alberta.
- Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-dynamic programming (optimization and neural computation series, 3). *Athena Scientific*, 7:15–23.
- Ernst, D., Geurts, P., and Wehenkel, L. (2005). Tree-based batch mode reinforcement learning. *Journal of Machine Learning Research*, 6:503–556.
- Ernst, D., Stan, G.-B., Goncalves, J., and Wehenkel, L. (2006). Clinical data based optimal sti strategies for hiv: a reinforcement learning approach. In *Decision and Control*, 2006 45th IEEE Conference on, pages 667–672. IEEE.
- Escandell-Montero, P., Chermisi, M., Martínez-Martínez, J. M., Gómez-Sanchís, J., Barbieri, C., Soria-Olivas, E., Mari, F., Vila-Francés, J., Stopper, A., Gatti, E., and Martín-Guerrero, J. D. (2014). Optimization of anemia treatment in hemodialysis patients via reinforcement learning. *Artificial Intelligence in Medicine*, 62(1):47–60.
- Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. *Machine learning*, 63(1):3–42.
- Gottesman, O., Johansson, F. D., Meier, J., Dent, J., Lee, D., Srinivasan, S., Zhang, L., Ding, Y., Wihl, D., Peng, X., Yao, J., Lage, I., Mosch, C., Lehman, L. H., Komorowski, M., Faisal, A., Celi, L. A., Sontag, D., and Doshi-Velez, F. (2018). Evaluating reinforcement learning algorithms in observational health settings. *CoRR*, abs/1805.12298.
- Guez, A., Vincent, R. D., Avoli, M., and Pineau, J. (2008). Adaptive treatment of epilepsy via batch-mode reinforcement learning. In *Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008*, pages 1671–1678.
- Holt, R., Cockram, C., Flyvbjerg, A., and Goldstein, B. (2011). Textbook of Diabetes. Wiley.
- Jiang, N. and Li, L. (2015). Doubly robust off-policy evaluation for reinforcement learning. CoRR, abs/1511.03722.
- Kappor, R., Walters, S. P., and Al-Aswad, L. A. (2018). The current state of artificial intelligence in ophthalmology. *Survey of ophthalmology*.
- Mahmud, M., Kaiser, M. S., Hussain, A., and Vassanelli, S. (2018). Applications of deep learning and reinforcement learning to biological data. *IEEE transactions on neural networks and learning systems*, 29(6):2063–2079.
- Nemati, S., Ghassemi, M. M., and Clifford, G. D. (2016). Optimal medication dosing from suboptimal clinical examples: A deep reinforcement learning approach. In 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016, Orlando, FL, USA, August 16-20, 2016, pages 2978–2981.
- Ng, A. Y. and Russell, S. J. (2000). Algorithms for inverse reinforcement learning. In *Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000), Stanford University, Stanford, CA, USA, June 29 July 2, 2000*, pages 663–670.
- Padmanabhan, R., Meskin, N., and Haddad, W. M. (2014). Closed-loop control of anesthesia and mean arterial pressure using reinforcement learning. In 2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, ADPRL 2014, Orlando, FL, USA, December 9-12, 2014, pages 1–8.
- Prasad, N., Cheng, L., Chivers, C., Draugelis, M., and Engelhardt, B. E. (2017). A reinforcement learning approach to weaning of mechanical ventilation in intensive care units. *CoRR*, abs/1704.06300.
- Precup, D., Sutton, R. S., and Singh, S. P. (2000). Eligibility traces for off-policy policy evaluation. In *Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000), Stanford University, Stanford, CA, USA, June 29 July 2, 2000*, pages 759–766.

- Raghu, A., Gottesman, O., Liu, Y., Komorowski, M., Faisal, A., Doshi-Velez, F., and Brunskill, E. (2018). Behaviour policy estimation in off-policy policy evaluation: Calibration matters. CoRR, abs/1807.01066.
- Raghu, A., Komorowski, M., Celi, L. A., Szolovits, P., and Ghassemi, M. (2017). Continuous state-space models for optimal sepsis treatment - a deep reinforcement learning approach. *CoRR*, abs/1705.08422.
- Rubinstein, R. Y. (1981). Simulation and the Monte Carlo method. Wiley series in probability and mathematical statistics. Wiley.
- Singh, S. P. and Sutton, R. S. (1996). Reinforcement learning with replacing eligibility traces. *Machine Learning*, 22(1-3):123–158.
- Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction. MIT press.
- Thomas, P. S. and Brunskill, E. (2016). Data-efficient off-policy policy evaluation for reinforcement learning. In *Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016*, pages 2139–2148.
- Vapnik, V., Golowich, S. E., and Smola, A. J. (1996). Support vector method for function approximation, regression estimation and signal processing. In *Advances in Neural Information Processing Systems 9, NIPS, Denver, CO, USA, December 2-5, 1996*, pages 281–287.
- Watkins, C. J. C. H. and Dayan, P. (1992). Technical note q-learning. Machine Learning, 8:279-292.
- Weng, W., Gao, M., He, Z., Yan, S., and Szolovits, P. (2017). Representation and reinforcement learning for personalized glycemic control in septic patients. *CoRR*, abs/1712.00654.
- Zhao, Y., Zeng, D., Socinski, M. A., and Kosorok, M. R. (2011). Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer. *Biometrics*, 67(4):1422–1433.