

Введение в оптоинформатику

Лекция 3. Оптические волокна

Асеев Владимир Анатольевич, доцент Кафедры ОТиМ

aseev@oi.ifmo.ru

Начало

...во многой мудрости много печали; и кто умножает познания, умножает скорбь

Книга Екклесиаста) (гл. 1, ст. 17—18)

тмо UNIVERSITY ВВЕДЕНИЕ

- 1. Широкополосность оптических сигналов, несущая $f=10^{14}-10^{15}$ Гц. Следовательно в такой среде можно передавать полезный сигнал с частотой 10^{12} Гц, или Тбит/с.
- 2.Скорость передачи может быть увеличена вдвое за счет того, что подному волокну можно передавать одновременно в двух направлениях.
- 3. Скорость можно поднять еще в два раза благодаря использованию волн перпендикулярных друг другу поляризаций.
- 4. Частотное уплотнение по оптоволоконным линиям связи передача разных сигналов на разных длинах волн.
- 5. Очень малое затухание светового сигнала в среде передачи (до
- 0.15 dB/км, теоретический предел для фторцирконатных волокон 0.02 dB/км).
- 6. Неподверженность электромагнитным помехам.
- 7. Химическая стойкость.

Устройство оптоволокна

Показатель преломления сердцевины должен быть больше показателя преломления оболочки $(n_1>n_2)$, одно из условий волноводного распространения.

Виды волокон

Одномодовые

Характерные размеры Диаметр сердцевины - 7 мкм. Диаметр оболочки - 125 мкм.

Диаметр сердцевины - 50-62.5 мкм. Диаметр оболочки - 125 мкм.

Виды волокон

Числовая апертура

Пусть луч падает из воздуха на торец волокна под углом Ω . Найдем максимальный угол $\Omega_{\rm m}$, под которым можно ввести этот луч в волокно, чтобы луч в дальнейшем распространялся в волокне. При этом луч в сердцевине будет распространяться под углом $\theta_{\rm kp}$, соответствующем случаю полного отражения от границы раздела с оболочкой

Числовая апертура

Закон преломления для границы раздела воздух-сердцевина волокна (точка А):

$$\frac{\sin \Omega_{\rm m}}{\sin \theta_{\rm kp}} = \frac{n_1}{n_0}.$$

Угол θ_{KP} находим по формуле

$$\cos \theta_{\kappa p} = n_2 / n_1$$

$$\sin \Omega_{\rm m} = n_1 \sin \theta_{\rm Kp} = n_1 \sqrt{1 - \cos^2 \theta_{\rm Kp}} = n_1 \sqrt{1 - \frac{n_2^2}{n_1^2}} = \sqrt{n_1^2 - n_2^2}$$

Числовая апертура

$$NA = \sin \Omega_{\rm m} = \sqrt{n_1^2 - n_2^2}$$

Числовая апертура волокна определяет максимальный угол ввода в волокно луча, который будет испытывать полное внутреннее отражение и распространяться в волокне.

Числовая апертура: градиентное

волокно

 $Sin\Omega_{m}$ (r)- локальная числовая апертура волокна

$$NA(r) = \sin \Omega_{m}(r) = \sqrt{n^{2}(r) - n_{2}^{2}}$$

Любой луч, падающий на торец волокна на расстоянии r от оси и попадающий внутрь апертурного конуса с углом при вершине Ω_m (r), испытывает после ввода полное внутреннее отражение и распространяется в волокне. Локальная числовая апертура максимальна на оси волокна и падает до нуля на границе сердцевина и оболочки.

Числовой апертурой градиентного волокна будем называть максимальное значение локальной числовой апертуры

"Мощность излучения, вводимая

В ВОЛОКНО

Рассмотрим малоразмерный диффузный источник света, яркость которого одинакова во всех направлениях.

Пусть I_0 - мощность, излучаемая в единицу телесного угла по нормали к источнику, $I(\theta) = I0 \cos\theta$ - мощность, излучаемая под углом θ Тогда мощность, излучаемая в малый телесный угол $\delta\Omega$

 $I_0 \cos \theta \delta \theta = I_0 \cos \theta 2\pi \sin \theta \delta \theta$

Мощность излучения, вводимая

В ВОЛОКНО

Полная мощность, излучаемая таким источником:

$$\Phi_{0} = \int_{0}^{\pi/2} (I_{0} \cos \theta)(2\pi)(\sin \theta)d\theta = 2\pi I_{0} \int_{0}^{\pi/2} \sin \theta d(\sin \theta) =$$

$$= 2\pi I_{0} \left(\frac{\sin^{2} \theta}{2}\right)\Big|_{\theta=0}^{\pi/2} = \pi I_{0}.$$

Мощность излучения, вводимая

В ВОЛОКНО

Мощность, введенная в волокно, диаметр сердцевины которого меньше диаметра источника, определяется следующим интегралом:

$$\begin{split} \Phi &= \int\limits_0^{\Omega_m} (I_0 \cos \theta)(2\pi)(\sin \theta) d\theta = 2\pi I_0 \left(\frac{\sin^2 \theta}{2}\right) \Big|_{\theta=0}^{\Omega_m} = \\ &= \pi I_0 \sin^2 \Omega_m = \Phi_0 (NA)^2 . \\ &\frac{\Phi}{\Phi_0} = \sin^2 \Omega_m = (NA)^2 . \end{split}$$

Мощность, вводимая в волокно, зависит от числовой апертуры волокна NA.

Мощность излучения, вводимая В ВОЛОКНО

NA =
$$\sqrt{n_1^2 - n_2^2} = \sqrt{\frac{(n_1 - n_2)(n_1 + n_2)n_1}{n_1}} \approx \sqrt{\frac{2n_1^2(n_1 - n_2)}{n_1}} = n_1\sqrt{2\Delta}$$
,

Где
$$\Delta = \frac{n_1^2 - n_2^2}{2 n_1^2}$$

Где $\Delta = \frac{n_1^2 - n_2^2}{2 \, n_1^2}$ относительная разность показателей преломления.

УСЛОВИЕ ОДНОМОДОВОГО ITMO UNIVERSITY распространения

Одна мода будет распространяться при выполнении условия

Где V нормированная частота

$$V = \frac{\pi \cdot d \cdot NA}{\lambda} \quad ,$$

7 \vee

$$NA = \sqrt{n_1^2 - n_2^2}$$
 - числовая апертура, $d=2a$ - диаметр сердцевины.

УСЛОВИЕ ОДНОМОДОВОГО ITMO UNIVERSITY распространения

Одна мода будет распространяться при выполнении условия

Где V нормированная частота

$$V = \frac{\pi \cdot d \cdot NA}{\lambda} \quad ,$$

7 \vee

$$NA = \sqrt{n_1^2 - n_2^2}$$
 - числовая апертура, $d=2a$ - диаметр сердцевины.

Дисперсия

Дисперсия — это рассеяние во времени спектральных и модовых составляющих оптического сигнала Существует три типа дисперсии:

- **ДИСПЕРСИЯ МОД** характерна для многомодового волокна и обусловлена наличием большого числа мод, время распространения которых различно.
- **дисперсия материала** обусловлена зависимостью показателя преломления от длины волны.
- **ВОЛНОВОДНАЯ ДИСПЕРСИЯ** обусловлена процессами внутри моды и характеризуется зависимостью скорости распространения моды от длины волны.

Дисперсия

Модовая дисперсия: лучи, одновременно вошедшие в оптоволокно, выйдут из него в разное время в зависимости от угла входа. Это явление характерно для многомодовых волокон, оно сильно понижает максимальную дальность передачи сигнала. Например, для 100Мбитной сети при использовании многомодовых оптических волокон максимальная длина сегмента составляет 2 км.

Материальная дисперсия обусловлена тем, что лучи света разных длин волн распространяются с разной скоростью, а, следовательно, размывают фронты импульсов. Это явление необходимо учитывать для одномодовых волокон.

$$V(\lambda)=c/n(\lambda)$$

Полоса пропускания

Материальная дисперсия ограничивает полосу пропускания, которая измеряется в МГц/км (ГГц/км, ТГц/км).

Пример. Если ширина спектра излучения светодиода со свечением в ближнем инфракрасном диапазоне (800нм) составляет 50нм, то световые импульсы расширяются на 5нс при прохождении каждого километра, следовательно, сквозь такую километровую линию можно пропустить сигнал с максимальной частотой примерно 100МГц, а полоса пропускания кабеля будет 100МГц/км.

К счастью, длины волн 1.3мкм и 1.5мкм (минимумы по поглощению для волокон некоторых типов) являются также точками минимальной материальной дисперсии. Подбор состава и легирование оптических волокон позволяют выровнять зависимость $n(\lambda)$ в небольшом диапазоне длин волн.

Межмодовая дисперсия в

ступенчатом волокне

Любой световой импульс, введенный в волокно, состоит из ряда лучей, которые распространяются и вдоль оси волокна и по траекториям, очень наклоненным к ней.

Луч 1 - осевой. Луч 2 - распространяющийся под углом θкр, соответствующим полному отражению от границы раздела с оболочкой. Пусть осевой луч №1 пройдет путь L вдоль волокна. На это он затратит время

$$t_1 = \frac{L}{v} = \frac{L n_1}{c}.$$

Здесь v - скорость света в сердцевине. Чтобы сместиться вдоль оси волокна на то же расстояние, наиболее наклонный луч №2 должен пройти путь

$$t_2 = \frac{L}{\cos \theta_{\kappa p}} v = \frac{L n_1}{\cos \theta_{\kappa p}} c = \frac{L n_1^2}{n_2 c}$$

Межмодовая дисперсия в ступенчатом волокне

лучи, введенные в волокно одновременно, пройдя расстояние L, на выход придут с запаздыванием

$$\Delta t = t_2 - t_1 = \frac{L n_1}{c} (\frac{n_1}{n_2} - 1) = \frac{L n_1}{c} \frac{n_1 - n_2}{n_2}.$$

В результате световой импульс, содержащий лучи под всеми возможными углами, окажется размытым во времени на величину, определяемую выражением

$$\frac{\Delta t}{L} = \frac{n_1}{c} \frac{(n_1 - n_2)}{n_2}$$

Такое уширение светового импульса при его распространении, возникающее из-за того, что лучи в волокне распространяются под разными углами и проходят при этом разные расстояния, называется межмодовой дисперсией.

Межмодовая дисперсия в ступенчатом волокне

Дисперсия Δt имеет размерность времени. Обычно дисперсия нормируется в расчете на 1 км, тогда под названием "дисперсия" понимается величина τ mod= $\Delta t/L$, измеряемая в нс/км Таким образом, межмодовая дисперсия для ступенчатого волокна рассчитывается по формуле

$$\tau_{\text{mod}} = \frac{n_1}{c} \frac{(n_1 - n_2)}{n_2}$$
.

Покрытие сердцевины волокна стеклянной оболочкой с показателем преломления n2, лишь немного меньшим чем n1, приводит к возникновению трех эффектов:

- 1) существенному уменьшению потерь в том случае, если по- крытие имеет высокое качество и необходимую толщину;
- 2) уменьшению межмодовой дисперсии;
- 3) уменьшению вводимой в волокно мощности света

ITMO UNIVERSITY

Потери в оптических волокнах

Полное затухание в волокне определяется в виде суммы и измеряется в дБ/км:

$$\alpha = \alpha_{int} + \alpha_{rad} = \alpha_{abs} + \alpha_{sct} + \alpha_{rad}$$
.

Рассеяние Рэлея – это потери в материале, вызванные рассеянием света из-за флуктуации плотности материала световода

$$\alpha_{R} = C_{R} f_{4} = C_{R} \lambda^{-4}$$

Для кварцевого стекла $C_R \approx 0.6$ [мкм⁴ дБ/км]

Рассеяние Ми имеет место на неоднородностях, сравнимых по порядку величины с длиной волны.

$$2\pi r/\lambda$$

Наиболее важными, с точки зрения поглощения, являются ионы металлов

Cu, Ti, V, Cr, Mn, Fe, Co, Ni

и гидроксильная группа ОН-

они имеют электронные переходы с энергиями, достаточно низкими для возбуждения фотонами в видимом свете или инфракрасной области

Потери на геометрических неоднородностях оптического волокна — это дополнительные потери из-за наличия макронеоднородностей и включений, которые создаются при изготовлении волокна, даже, если материал однороден, а также из-за геометрических неоднородностей поверхности раздела сердцевина-оболочка

В одномодовом волокне эти геометрические возмущения приводят к связи направляемых мод и мод излучения, и происходит потеря энергии

В многомодовом волокне геометрические неоднородности в первую очередь связывают между собой различные моды сердцевины. При этом энергия не теряется, а перераспределяется между направленными модами. Поэтому на полное затухание этот эффект оказывает незначительное влияние, но может влиять на искажение сигналов

Потери на изгибах оптического волокна обусловлены преобразованием на них направляемых мод в моды излучения

макроизгибы

микроизгибы

$$h_{\text{max}}/2b = 0.5 - 1.0$$

Оптические характеристики градиентных многомодовых п одномодовых (без сохранения поляризации) волокон

Характеристика	Многомодовые $(d_c = 50 \text{ мкм})$		Одномодовые	
Длина волны, мкм	0,85	1,3	1,3	1,55
Коэффициент затухания, дБ/км	2,4 – 5,0	0,6 – 1,5	0,35 – 0,06	0,22 – 0,35
Коэффициент широкополосности, МГц·км	200 – 1000	200 – 1500	1	1
Дисперсия	-	-	3 – 12	2,5-3,5
Длина волны отсечки, мкм	-	-	1,1 – 1,28	1,28

Литература

- J. Laferriere, G. Lietaert, R. Taws, S. Wolszczak, Reference Guide to Fiber Optic Testing. Second edition. 2011
- А. Л. Дмитриев. Оптические системы передачи информации /Учебное
- пособие. СПб: СПбГУИТМО, 2007. 96 с.
- Макаров Т. В. Когерентные волоконно-оптические системы передачи :
- Учебник / Макаров Т. В. Одесса: ОНАС им. А.С. Попова, 2009. 220 с.
- Emmanuel Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications Wiley, New York, 1994