Esto se deduce del teorema de Pitágoras (vea la figura 4.4). Se ha usado la notación $|\mathbf{v}|$ para denotar la magnitud de \mathbf{v} . Observe que $|\mathbf{v}|$ es un *escalar*.

Figura 4.4

La magnitud de un vector con coordenada x igual a a y coordenada yigual a b es $\sqrt{a^2 + b^2}$.

EJEMPLO 4.1.1 Cálculo de la magnitud de seis vectores

Nota

 $\tan\theta$ es periódica con periodo π . Entonces, si $a \neq 0$, siempre existen dos números en $[0, 2\pi)$, tales que

$$\tan \theta = \frac{b}{a}$$
. Por ejemplo, $\tan \frac{\pi}{4} =$

$$\tan \frac{5\pi}{4} = 1$$
. Para determinar θ

de manera única es necesario determinar el cuadrante de \mathbf{v} , como se apreciará en el ejemplo 4.1.2.

Dirección de un vector

Nota

A continuación se presenta la definición del arco tangente con imagen de $[0, 2\pi)$ del cociente de dos números reales a, b, a partir de la función tan $^{-1}$. que tiene por imagen $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

$$\arctan\left[\frac{b}{a}\right] =$$

$$\begin{cases} \tan^{-1} \left[\frac{b}{a} \right], & \text{si } a > 0, b > 0 \\ \tan^{-1} \left[\frac{b}{a} \right] + \pi, & \text{si } a < 0 \end{cases} \\ \tan^{-1} \left[\frac{b}{a} \right] + 2\pi, & \text{si } a > 0, b < 0 \end{cases} \\ \frac{\pi}{2}, & \text{si } a = 0, b > 0 \\ -\frac{\pi}{2}, & \text{si } a = 0, b < 0 \end{cases}$$

Calcule las magnitudes de los vectores i) $\mathbf{v} = (2, 2)$; ii) $\mathbf{v} = (2, 2\sqrt{3})$; iii) $\mathbf{v} = (-2\sqrt{3}, 2)$; iv) $\mathbf{v} = (-3, -3)$; v) $\mathbf{v} = (6, -6)$; vi) $\mathbf{v} = (0, 3)$.

SOLUCIÓN
$$ightharpoonup$$
 i) $|\mathbf{v}| = \sqrt{2^2 + 2^2} = \sqrt{8} = 2\sqrt{2}$

ii)
$$|\mathbf{v}| = \sqrt{2^2 + (2\sqrt{3})^2} = 4$$

iii)
$$|\mathbf{v}| = \sqrt{(-2\sqrt{3})^2 + 2^2} = 4$$

iv)
$$|\mathbf{v}| = \sqrt{(-3)^2 + (-3)^2} = \sqrt{18} = 3\sqrt{2}$$

v)
$$|\mathbf{v}| = \sqrt{6^2 + (-6)^2} = \sqrt{72} = 6\sqrt{2}$$

vi)
$$|\mathbf{v}| = \sqrt{0^2 + 3^2} = \sqrt{9} = 3$$

Se define la **dirección de un vector v** = (a, b) como el ángulo θ , medido en radianes, que forma el vector con el lado positivo del eje x. Por convención, se escoge θ tal que $0 \le \theta$ < 2π . De la figura 4.4 se deduce que si $a \ne 0$, entonces

$$\tan \theta = \frac{b}{a} \tag{4.1.2}$$

EJEMPLO 4.1.2 Cálculo de las direcciones de seis vectores

Calcule las direcciones de los vectores en el ejemplo 4.1.1.

SOLUCIÓN Estos seis vectores están dibujados en la figura 4.5.

- a) v se encuentra en el primer cuadrante y como arctan $\theta = \frac{2}{2} = 1$, $\theta = \frac{\pi}{4}$.
- b) $\theta = \arctan^{-1} \frac{2\sqrt{3}}{6} = \arctan^{-1} \sqrt{3} = \frac{\pi}{3}$ (ya que v está en el primer cuadrante).
- c) v está en el segundo cuadrante y como $\arctan^{-1} \frac{2}{2\sqrt{3}} = \arctan^{-1} \frac{1}{\sqrt{3}} = \frac{5\pi}{6}$.
- d) v está en el tercer cuadrante y arctan⁻¹ $1 = \frac{5\pi}{4}$.