Preconditioning the Stage **Equations of Implicit Runge-**Kutta Methods for Parabolic **PDEs**

Michal Outrata and Martin J. Gander University of Geneva

Outline

Introduction and Preliminaries

Preconditioner

Optimization

Model problem

Model problem

$$\frac{\partial}{\partial t}u = \Delta u \quad \text{in } \Omega \times (0, T)$$

$$u = g \quad \text{on } \partial\Omega \times (0, T)$$

$$u = u_0 \quad \text{at } \partial\Omega \times \{0\}$$

Model problem

$$\Omega = (0,1) \times (0,1)$$

 $t_M = T$

Runge-Kutta methods

Runge-Kutta methods

$$\mathbf{u}^m = \mathbf{u}^{m-1} + \tau \sum_{i=1}^{s} b_i \mathbf{k}_i^m$$

Runge-Kutta methods

$$\mathbf{u}^m = \mathbf{u}^{m-1} + \tau \sum_{i=1}^{s} b_i \mathbf{k}_i^m$$

$$\left(I_s \otimes I_n - \frac{\tau}{h^2} (A \otimes L)\right) \mathbf{k}^m = \frac{1}{h^2} (I_s \otimes L) \mathbf{u}^{m-1}$$

M

$$\hat{S} = M + \left(a_{2,2} - \frac{a_{1,2}a_{2,1}}{a_{1,1}}\right) hF$$

$$A \approx L\hat{U}$$

$$P_{triang} = \hat{U}$$

$$= \begin{bmatrix} M + a_{1,1}hF & a_{1,2}hF \\ \hat{S} \end{bmatrix}$$

Right-preconditioned GMRES: AP^{-1}

V. Howle (TTU)

Preconditioning 2019, Minneapolis

M. M. Rana, V. E. Howle, K. Long, A. Meek, and W. Milestone. A New Block Preconditioner for Implicit Runge-Kutta Methods for Parabolic PDE Problems, 2021.

factor
$$\left(I_s \otimes I_n - \frac{\tau}{h^2} A \otimes L\right)$$

factor
$$\left(I_s \otimes I_n - \frac{\tau}{h^2} A \otimes L\right) \approx I_s \otimes I_n - \frac{\tau}{h^2} \text{factor}(A) \otimes L$$

factor
$$\left(I_s \otimes I_n - \frac{\tau}{h^2} A \otimes L\right) \approx I_s \otimes I_n - \frac{\tau}{h^2} \operatorname{factor}(A) \otimes L$$

$$I_s \otimes I_n - \frac{\tau}{h^2} U_A \otimes L =: P^{\text{triang}}$$

Preconditioner

$$I_s \otimes I_n - \frac{\tau}{h^2} U_A \otimes L =: P^{\text{triang}}$$

$$M\left(P^{\text{triang}}\right)^{-1}$$

 $sp.linalg.gmres(M, rhs, P^{triang})$

Convergence analysis

sp.linalg.gmres

Convergence analysis

sp.linalg.gmres

$$\frac{\|r_k\|}{\|r_0\|} \le \min_{\substack{\varphi(0)=1\\\deg(\varphi)\le k}} \|\varphi(M\left(P^{\text{triang}}\right)^{-1})\|$$

$$\frac{\|r_k\|}{\|r_0\|} \le \kappa(S) \min_{\substack{\varphi(0)=1\\\deg(\varphi)\le k}} \max_{\zeta_i \in \text{sp}(M(P^{\text{triang}})^{-1})} |\varphi(\zeta_i)|$$

$$\frac{\|r_k\|}{\|r_0\|} \le \kappa(S) \min_{\substack{\varphi(0)=1\\\varphi(0)=1\\\deg(\varphi)\le k}} \max_{\zeta \in \text{co}(sp(\cdots))} |\varphi(\zeta)|$$

Step I:

Step I:

$$M(P^{\text{triang}})^{-1} \sim \begin{bmatrix} X_{11} & \dots & X_{1s} \\ \vdots & \ddots & \vdots \\ X_{s1} & \dots & X_{ss} \end{bmatrix}$$

Step I:

$$M(P^{\mathrm{triang}})^{-1} \sim \begin{bmatrix} X_{11} & \dots & X_{1s} \\ \vdots & \ddots & \vdots \\ X_{s1} & \dots & X_{ss} \end{bmatrix}$$

with $X_{ij} = \operatorname{diag}\left(\xi_1^{(ij)}, \dots, \xi_n^{(ij)}\right)$ $\forall ij$

Step II:

Step II:

$$X = \begin{bmatrix} X_{11} & \dots & X_{1s} \\ \vdots & \ddots & \vdots \\ X_{s1} & \dots & X_{ss} \end{bmatrix}$$
with $X_{ij} = \operatorname{diag}\left(\xi_1^{(ij)}, \dots, \xi_n^{(ij)}\right)$

$$X \in \mathbb{R}^{ns \times ns}$$

Step II:

$$X = \begin{bmatrix} X_{11} & \dots & X_{1s} \\ \vdots & \ddots & \vdots \\ X_{s1} & \dots & X_{ss} \end{bmatrix}$$

with
$$X_{ij} = \operatorname{diag}\left(\xi_1^{(ij)}, \dots, \xi_n^{(ij)}\right)$$

$$X \in \mathbb{R}^{ns \times ns}$$

$$X_k \in \mathbb{R}^{s \times s}$$

Lemma. Let $X \in \mathbb{R}^{ns \times ns}$ and $X_k \in \mathbb{R}^{s \times s}$ be as above and set

eigenpair
$$(X_k) = \left(\mu_\ell^{(k)}, \boldsymbol{s}_\ell^{(k)}\right).$$

Then the eigenpairs of X are equal to $\left(\mu_{\ell}^{(k)}, \boldsymbol{s}_{\ell}^{(k)} \otimes \boldsymbol{e}_{k}\right)$.

J. Liesen and Z. Strakoš. GMRES convergence analysis for a convection-diffusion model problem SIAM Journal on Scientific Computing, 26(6):1989–2009, 2005.

s = 2

Theorem. Let s = 2 and $a_{11}, \det(A) \neq 0$. Adopting the above notation and setting $\operatorname{sp}(L) = \{\lambda_k\}_k$ and $\theta_k = \frac{\tau}{h^2} \lambda_k$ we have $\operatorname{sp}(M\left(P^{\operatorname{triang}}\right)^{-1}) = \{1\} \cup_{k=1}^n \zeta_k$ with

Theorem. Let s = 2 and a_{11} , $\det(A) \neq 0$. Adopting the above notation and setting $\operatorname{sp}(L) = \{\lambda_k\}_k$ and $\theta_k = \frac{\tau}{h^2} \lambda_k$ we have $\operatorname{sp}(M\left(P^{\operatorname{triang}}\right)^{-1}) = \{1\} \cup_{k=1}^n \zeta_k$ with

$$\zeta_k = \frac{(1 - a_{22}\theta_k)(1 - a_{11}\theta_k) - a_{21}a_{12}\theta_k^2}{(1 - a_{11}\theta_k)\left(1 - \left(a_{22} - \frac{a_{21}a_{12}}{a_{11}}\right)\right)\theta_k}.$$

Theorem. Let s = 2 and $a_{11}, \det(A) \neq 0$. Adopting the above notation and setting $\operatorname{sp}(L) = \{\lambda_k\}_k$ and $\theta_k = \frac{\tau}{h^2} \lambda_k$ we have $\operatorname{sp}(M\left(P^{\operatorname{triang}}\right)^{-1}) = \{1\} \cup_{k=1}^n \zeta_k$ with

$$\zeta_k = \frac{(1 - a_{22}\theta_k)(1 - a_{11}\theta_k) - a_{21}a_{12}\theta_k^2}{(1 - a_{11}\theta_k)\left(1 - \left(a_{22} - \frac{a_{21}a_{12}}{a_{11}}\right)\right)\theta_k}.$$

Moreover, assuming that $a_{21} \neq 0$ it holds

$$\kappa(S) = \max_{k \in \{1, ..., n\}} \kappa(S_k) = \max_{k \in \{1, ..., n\}} \sqrt{\frac{\sqrt{1 + \alpha_k^2 + \alpha_k}}{\sqrt{1 + \alpha_k^2 - \alpha_k}}}$$
with $\alpha_k = \frac{|a_{21}|}{|a_{11} - \theta_k^{-1}| \cdot |1 - \zeta_k|}$

Numerical examples

Numerical examples

First GMRES solve for the stage functions of IRK

s=2

Results & Generalizations

Results & Generalizations

- Spectral focus jusification
- \pm Multiple stages ($s \geq 3$)
- ± 2D spatial spectrum
- + Other preconditioners
- + Other Butcher tabs

c_1	$a_{1,1}$		$a_{1,s}$
•	•	٠.	•
c_s	$a_{s,1}$		$a_{s,s}$
	b_1		b_s

c_1	$a_{1,1}$		$a_{1,s}$
•	•	٠.	•
c_s	$a_{s,1}$		$a_{s,s}$
	b_1		b_s

GMRES convergence

Order of convergence of RK

Numerical stability (A, L)

• GMRES convergence

Order of convergence of RK

Numerical stability (A, L)

First GMRES solve for the stage functions of IRK

s=2

Finite element method, real-life geometry

s=2

Model problem

$$\left(\frac{\partial}{\partial t} - \nu \Delta + \mu(\mathbf{a}, \nabla)\right) u = f \quad \text{in } \Omega \times (0, T)$$

$$u = g \quad \text{on } \Gamma_D \times (0, T)$$

$$\frac{\partial u}{\partial \mathbf{n}} = 0 \quad \text{on } \Gamma_N \times (0, T)$$

$$\frac{\partial u}{\partial \mathbf{n}} + pu = 0 \quad \text{on } \Gamma_R \times (0, T)$$

$$u = u_0 \quad \text{at } \partial \Omega \times \{0\}$$

Model problem

Model problem

The overal IRK method - average #GMRES iteration

s=2

DoF	NoPrec	UpperTriang	UpperTriang opt
$2 \cdot 324$	42	10	2
$2 \cdot 1384$	45	10	2
$2 \cdot 5712$	42	10	2
$2 \cdot 23200$	42	10	2
$2 \cdot 93504$	42	11	3

Results & Generalizations

Results & Generalizations

- 2D spatial spectrum
- + Multiple stages ($s \geq 3$)
- + Stability (A, L) (& non-normality?)
- + Other/New Butcher tabs (and preconditioners)
- + Efficiency

References

- M. M. Rana, V. E. Howle, K. Long, A. Meek, and W. Milestone. A New Block Preconditioner for Implicit Runge-Kutta Methods for Parabolic PDE Problems, 2021.
- M. Neytcheva and O. Axelsson. Numerical Solution Methods for Implicit Runge-Kutta Methods of Arbitrarily High Order. In *Proceedings of ALGORITHMY 2020*, 2020.
- G. Wanner, S. P. Nørsett, and E. Hairer. Solving Ordinary Differential Equations I: Non-Stiff Problems. Springer Berlin-Heidelberg, 1987.
- G. Wanner and E. Hairer. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer Berlin-Heidelberg, 1996.
- R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press, 1994.

Thank you for your attention

Michal Outrata
University of Geneva