

SEQUENCE LISTING

<110> Jaffray, Ann
Williamson, Anna-Lise
Rybicki, Edward Peter

<120> A Method for the Production of HIV-1 GAG Virus-Like Particles

<130> 45669-316582

<140> US 10/537,557

<141> 2005-06-03

<150> PCT/IB03/005634

<151> 2003-12-04

<160> 4

<170> PatentIn version 3.3

<210> 1

<211> 1549

<212> DNA

<213> Homo sapiens

<400> 1
gaattcatgg gtgcgagagc gtcaatatta agagggaaa aattagataa atggaaaaag 60
attaggttaa ggccaggggg aaagaaaacat tatatgttaa aacacatagt atggcgagc 120
agggagctgg aaagatttgc acttaaccct ggccttttag aaacatcaga agatgtaaa 180
caaataatga aacagctaca accagctctc cagacaggaa cagaggaact taaatcatta 240
tacaacacag tagcaactct ctattgtgt a catgaaaaga tagaagtacg agacaccaag 300
gaaggccttag ataagataga ggaagaacaa aacaaatgtc agaaaaaac gcagcaggca 360
aaagcggctg acggaaaagt cagtc当地tatcctatag tgcagaatct ccaaggccaa 420
atggtacatc aagccatatc acctagaacc ttgaatgcat gggtaaaagt aatagaagaa 480
aaggcttta gcccagaggt aataccatg tttacagcat tatcagaagg agccacccca 540
caagatttaa acaccatgtt aaatacagtg gggggacacc aagcagccat gcaaatgtta 600
aaagatacta ttaatgaaga ggctgcagaa tggatagat tacatccagt ccatgcgggg 660
cctattgcac caggccagat gagagaacca agggaaagt acatgcagg aactactagt 720
acccttcagg aacaaatagc atggatgaca agtaacccac ctattccagt gggagacatc 780

tataaaagat ggataattct ggggttaaat aaaatagtga gaatgtatag cccggtcagc	840
attttggaca taagacaagg gccaaaggaa cccttcgag actatgtaga tcggttctt	900
aaaactttaa gagctgaaca agctacacaa gaagtaaaaa attggatgac agacaccctg	960
tttagtccaaa atgcgaaccc agattgtaaag accatttga gagcattagg accagggct	1020
acattagaag aaatgtatgac agcatgtcaa ggggtgggag gacctggcca caaagcaaga	1080
gtattggctg aggcaatgag tcaaacaac agtggaaaca taatgtatgca gagaagcaat	1140
tttaaaggcc ctagaagaat tgtaaatgt tttaactgtg gcaaggaagg gcacatagcc	1200
agaaattgca gagcccctag gaaaaaaggc tggtggaaat gtggaaaaga aggacaccaa	1260
atgaaagact gcactgagag gcaggctaatttttaggaa aaatttggcc ttcccacaag	1320
gggaggccag ggaatttcct tcagaacaga ccagagccaa cagccccacc agcagagagc	1380
ttcaggttcg aagagacaac ccccgctccg aaacaggagc cgatagaaag ggaaccctta	1440
acttccctca aatcacttt tggcagcgac cccttgtctc aataaaagta gggggccaga	1500
caaggaggc tctcttagac acaggagcag atgatacagt attgtcgac	1549

<210> 2
<211> 1479
<212> DNA
<213> Homo sapiens

<400> 2 atgggtgcga gaggcgtcaat attaagaggg gaaaaattag ataaatggga aaagattagg	60
ttaaggccag gggaaaagaa acattatatg ttaaaacaca tagtatggc gagcagggag	120
ctggaaagat ttgcacttaa ccctggcctt ttagaaacat cagaaggatg taaacaata	180
atgaaacagc tacaaccagc tctccagaca ggaacagagg aacttaaatc attatacaac	240
acagtagcaa ctctctattg tgtacatgaa aagatagaag tacgagacac caaggaagcc	300
ttagataaga tagaggaaga acaaaacaaa tgcagcaaa aaacgcagca ggcaaaagcg	360
gctgacggga aagtcaatcct atagtgca atctccaagg gcaaattgtt	420
catcaagcca tatcacctag aaccttgaat gcatggtaa aagtaataga agaaaaggct	480
tttagcccaag aggtataacc catgtttaca gcattatcag aaggagccac cccacaagat	540

ttaaacacca	tgttaaatac	agtgggggga	caccaagcag	ccatgcaa	at	gttaaaagat	600
actattaatg	aaggaggctgc	agaatggat	agattacatc	cagtccatgc	ggggcctatt		660
gcaccaggcc	agatgagaga	accaagggga	agtgacatag	caggaactac	tagtaccctt		720
caggaacaaa	tagcatggat	gacaagtaac	ccacctattc	cagtggaga	catctataaa		780
agatggataa	ttctggggtt	aaataaaata	gtgagaatgt	atagcccggt	cagcattttg		840
gacataagac	aagggccaaa	ggaaccctt	cgagactatg	tagatcggtt	ctttaaaact		900
ttaagagctg	aacaagctac	acaagaagta	aaaaatttgg	tgacagacac	cttggtagtc		960
caaaaatgcga	acccagattt	taagaccatt	ttgagagcat	taggaccagg	ggctacatta		1020
gaagaaatga	tgacagcatg	tcaaggggtg	ggaggacctg	gccacaaagc	aagagtattt		1080
gctgaggcaa	tgagtcaa	aaacagtgg	aacataatga	tgcagagaag	caattttaaa		1140
ggccctagaa	gaattgttaa	atgtttttaac	tgtggcaagg	aagggcacat	agccagaaat		1200
tgcagagccc	ctaggaaaaaa	aggctgttgg	aatgtggaa	aagaaggaca	ccaaatgaaa		1260
gactgcactg	agaggcaggc	taattttta	ggggaaattt	ggccttcca	caaggggagg		1320
ccagggaaatt	tccttcagaa	cagaccagag	ccaacagccc	caccagcaga	gagttcagg		1380
ttcgaagaga	caacccccgc	tccgaaacag	gagccgatag	aaagggaaacc	cttaacttcc		1440
ctcaaattcac	tctttggcag	cgacccttg	tctcaataa				1479

<210> 3
<211> 513
<212> PRT
<213> Homo aspiens

<400> 3

Glu	Phe	Met	Gly	Ala	Arg	Ala	Ser	Ile	Leu	Arg	Gly	Glu	Lys	Lys	Lys	Asp	
1									5			10				15	

Lys	Trp	Glu	Lys	Ile	Arg	Ley	Arg	Pro	Gly	Gly	Lys	Lys	His	Tyr	Met		
									20			25			30		

Leu	Lys	His	Ile	Val	Trp	Ala	Ser	Arg	Glu	Ley	Glu	Arg	Phe	Ala	Leu		
									35			40			45		

Asn Pro Gly Leu Leu Glu Thr Ser Glu Gly Cys Lys Gln Ile Met Lys
50 55 60

Gln Leu Gln Pro Ala Leu Gln Thr Gly Thr Glu Glu Leu Lys Ser Leu
65 70 75 80

Tyr Asn Thr Val Ala Thr Leu Tyr Cys Val His Glu Lys Ile Glu Val
85 90 95

Arg Asp Thr Lys Glu Ala Leu Asp Lys Ile Glu Glu Gln Asn Lys
100 105 110

Cys Gln Gln Lys Thr Gln Gln Ala Lys Ala Ala Asp Gly Lys Val Ser
115 120 125

Gln Asn Tyr Pro Ile Val Gln Asn Leu Gln Gly Gln Met Val His Gln
130 135 140

Ala Ile Ser Pro Arg Thr Leu Asn Ala Trp Val Lys Val Ile Glu Glu
145 150 155 160

Lys Ala Phe Ser Pro Glu Val Ile Pro Met Phe Thr Ala Leu Ser Glu
165 170 175

Gly Ala Thr Pro Gln Asp Leu Asn Thr Met Leu Asn Thr Val Gly Gly
180 185 190

His Gln Ala Ala Met Gln Met Leu Lys Asp Thr Ile Asn Glu Glu Ala
195 200 205

Ala Glu Trp Asp Arg Leu His Pro Val His Ala Gly Pro Ile Ala Pro
210 215 220

Gly Gln Met Arg Glu Pro Arg Gly Ser Asp Ile Ala Gly Thr Thr Ser
225 230 235 240

Thr Leu Gln Glu Gln Ile Ala Trp Met Thr Ser Asn Pro Pro Ile Pro

245

250

255

Val Gly Asp Ile Tyr Lys Arg Trp Ile Ile Leu Gly Leu Asn Lys Ile
260 265 270

Val Arg Met Tyr Ser Pro Val Ser Ile Leu Asp Ile Arg Gln Gly Pro
275 280 285

Lys Glu Pro Phe Arg Asp Tyr Val Asp Arg Phe Phe Lys Thr Leu Arg
290 295 300

Ala Glu Gln Ala Thr Gln Glu Val Lys Asn Trp Met Thr Asp Thr Leu
305 310 315 320

Leu Val Gln Asn Ala Asn Pro Asp Cys Lys Thr Ile Leu Arg Ala Leu
325 330 335

Gly Pro Gly Ala Thr Leu Glu Glu Met Met Thr Ala Cys Gln Gly Val
340 345 350

Gly Gly Pro Gly His Lys Ala Arg Val Leu Ala Glu Ala Met Ser Gln
355 360 365

Thr Asn Ser Gly Asn Ile Met Met Gln Arg Ser Asn Phe Lys Gly Pro
370 375 380

Arg Arg Ile Val Lys Cys Phe Asn Cys Gly Lys Glu Gly His Ile Ala
385 390 395 400

Arg Asn Cys Arg Ala Pro Arg Lys Lys Gly Cys Trp Lys Cys Gly Lys
405 410 415

Glu Gly His Gln Met Lys Asp Cys Thr Glu Arg Gln Ala Asn Phe Leu
420 425 430

Gly Lys Ile Trp Pro Ser His Lys Gly Arg Pro Gly Asn Phe Leu Gln
435 440 445

Asn Arg Pro Glu Pro Thr Ala Pro Pro Ala Glu Ser Phe Arg Phe Glu
450 455 460

Glu Thr Thr Pro Ala Pro Lys Gln Glu Pro Ile Glu Arg Glu Pro Leu
465 470 475 480

Thr Ser Leu Lys Ser Leu Phe Gly Ser Asp Pro Leu Ser Gln Lys Gly
485 490 495

Arg

<210> 4
<211> 492
<212> PRT
<213> *Homo sapiens*

<400> 4

Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys His Tyr Met Leu Lys
20 25 30

His Ile Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Leu Asn Pro
35 40 45

Gly Leu Leu Glu Thr Ser Glu Gly Cys Lys Gln Ile Met Lys Gln Leu
50 55 60

Gln Pro Ala Leu Gln Thr Gly Thr Glu Glu Leu Lys Ser Leu Tyr Asn
65 70 75 80

Thr Val Ala Thr Leu Tyr Cys Val His Glu Lys Ile Glu Val Arg Asp
85 90 95

Thr Lys Glu Ala Leu Asp Lys Ile Glu Glu Glu Gln Asn Lys Cys Gln
100 105 110

Gln Lys Thr Gln Gln Ala Lys Ala Ala Asp Gly Lys Val Ser Gln Asn
115 120 125

Tyr Pro Ile Val Gln Asn Leu Gln Gly Gln Met Val His Gln Ala Ile
130 135 140

Ser Pro Arg Thr Leu Asn Ala Trp Val Lys Val Ile Glu Glu Lys Ala
145 150 155 160

Phe Ser Pro Glu Val Ile Pro Met Phe Thr Ala Leu Ser Glu Gly Ala
165 170 175

Thr Pro Gln Asp Leu Asn Thr Met Leu Asn Thr Val Gly Gly His Gln
180 185 190

Ala Ala Met Gln Met Leu Lys Asp Thr Ile Asn Glu Glu Ala Ala Glu
195 200 205

Trp Asp Arg Leu His Pro Val His Ala Gly Pro Ile Ala Pro Gly Gln
210 215 220

Met Arg Glu Pro Arg Gly Ser Asp Ile Ala Gly Thr Thr Ser Thr Leu
225 230 235 240

Gln Glu Gln Ile Ala Trp Met Thr Ser Asn Pro Pro Ile Pro Val Gly
245 250 255

Asp Ile Tyr Lys Arg Trp Ile Ile Leu Gly Leu Asn Lys Ile Val Arg
260 265 270

Met Tyr Ser Pro Val Ser Ile Leu Asp Ile Arg Gln Gly Pro Lys Glu
275 280 285

Pro Phe Arg Asp Tyr Val Asp Arg Phe Phe Lys Thr Leu Arg Ala Glu
290 295 300

Gln Ala Thr Gln Glu Val Lys Asn Trp Met Thr Asp Thr Leu Leu Val
305 310 315 320

Gln Asn Ala Asn Pro Asp Cys Lys Thr Ile Leu Arg Ala Leu Gly Pro
325 330 335

Gly Ala Thr Leu Glu Glu Met Met Thr Ala Cys Gln Gly Val Gly Gly
340 345 350

Pro Gly His Lys Ala Arg Val Leu Ala Glu Ala Met Ser Gln Thr Asn
355 360 365

Ser Gly Asn Ile Met Met Gln Arg Ser Asn Phe Lys Gly Pro Arg Arg
370 375 380

Ile Val Lys Cys Phe Asn Cys Gly Lys Glu Gly His Ile Ala Arg Asn
385 390 395 400

Cys Arg Ala Pro Arg Lys Lys Gly Cys Trp Lys Cys Gly Lys Glu Gly
405 410 415

His Gln Met Lys Asp Cys Thr Glu Arg Gln Ala Asn Phe Leu Gly Lys
420 425 430

Ile Trp Pro Ser His Lys Gly Arg Pro Gly Asn Phe Leu Gln Asn Arg
435 440 445

Pro Glu Pro Thr Ala Pro Pro Ala Glu Ser Phe Arg Phe Glu Glu Thr
450 455 460

Thr Pro Ala Pro Lys Gln Glu Pro Ile Glu Arg Glu Pro Leu Thr Ser
465 470 475 480

Leu Lys Ser Leu Phe Gly Ser Asp Pro Leu Ser Gln
485 490