

Classificador chamadas 112

Projeto MPEI Dinis Cunha - 119316 Henrique Lopes - 119954

Introdução ao Tema

Problema: Classificar chamadas feitas ao número de emergência 112 para decidir se devem ser encaminhadas para:

- I: INEM (Serviços Médicos de Emergência)
- **B**: Bombeiros
- P: Polícia

Objetivo: Criar soluções eficientes para classificar e organizar as chamadas usando três métodos:

- Naive Bayes para classificação.
- Bloom Filter para legitimidade de chamadas.
- Minhash para encontrar similaridade entre chamadas.

Vantagens e Limitações

Vantagens:

- Bloom Filter Deteção rapida de SPAM
- Naive Bayes Classificação eficiente em categorias
- MinHash Identificação de frases similares a partir da estimativa de Jaccard

Limitações:

- Bloom Filter Nunca será exato, pode sempre haver falsos positivos
- Naive Bayes Sensível ao vocabulário
- MinHash Resultados aproximados que podem introduzir erro

Aplicação do Bloom Filter

Descrição:

- Bloom Filter é uma estrutura de dados probabilística que é extremamente eficiente em termos de espaço e tempo, usada para verificar rapidamente se um item está ou não presente em um conjunto.
- A principal vantagem é que o Bloom Filter pode indicar com alta eficiência se um item já foi registrado antes, mas pode gerar falsos positivos (onde indica que um item está no conjunto, mesmo que não esteja).

Aplicação ao problema:

- Detectar e Filtrar Chamadas Falsas: Quando uma chamada é registrada como falsa, usamos o Bloom Filter para garantir que chamadas subsequentes do mesmo número de telefone não precisem ser processadas novamente.
- Isso evita que o modelo Naive Bayes seja acionado para chamadas já identificadas como falsas, economizando tempo e recursos.

Etapas do processo do Bloom Filter

Comparação de histórico de números

- Antes de dar entrada no Filtro Bloom, é analisado se o número já se encontra na Lista Negra.
- Se sim, é logo classificado como SPAM e passa à frase seguinte.

Implementação de dataset

• O sistema usa um conjunto de chmadas consideradas como SPAM, o mesmo é processado e inserido no Filtro Bloom

Verificação de frases de teste

• Comparação individual de cada frase no filtro

Evitar Processamento desnecessário

• Ignorar chamadas classificadas como SPAM

Atualização da Lista Negra

Números ingoradas são adicionados á lista.

Métrica Valor Obti	
Tamanho do Filtro (N)	2962
Número de Funções Hash (k)	10
Probabilidade Teórica (P)	0.001
Contagem de FP Prática	1
Taxa Prática de FP (%)	0.001418

Resultados do Bloom Filter

Aplicação do Naive Bayes

Pré processamento de dados

• Stopwords e caracteres (vírgulas e pontos) são removidas e frases convertida para minúsculas.

Divisão de dados de teste e treino

O dataset é dividido em 60% frases de treino e as restantes de teste

• Naive Bayes calcula a probabilidade de cada frase pertencer a uma das categorias (I, B ou P)

>> Teste_NaiveBayes Métricas por Classe - Naive Bayes:				
Categoria		Recall	F1Score	
"p"	0.96053	0.92797	0.94397	
"B"	0.89513	0.93359	0.91396	
"I"	0.90476	0.89202	0.89835	
Precisão Global:	91.91%			

Eficiência do modelo

```
>> main

Deseja usar frases customizadas e números de telefone? (s/n): s

Digite uma frase (ou pressione Enter para terminar): someone stole my phone

Digite o número de telefone associado: 963856234

Digite uma frase (ou pressione Enter para terminar):

Frase: "someone stole phone" -> Categoria prevista: P

Naive Bayes através de input do utilizador
```

Resultados de Desempenho

Aplicação do MinHash

Geração de Shingles

• Cada frase gera shingles de tamanho 4.

Assinaturas MinHash

• As assinaturas são criadas a partir dos shingles usando múltiplas funções hash.

Cálculo de similaridade

• A similaridade das frases é calculada comparando as assinaturas geradas. É definido um limiar do que é considerado semelhante

>> testeMinHash Similaridade Média: 0.28 Mediana da Similaridade: 0.25

Distribuição das similaridades

Aplicação Conjunta

Filtragem Inicial com Filtro Bloom

Verifica se a frase pertence ao dataset de SPAM

Classificação com Naive Bayes

• O que não for descartado é classificado em uma das 3 categorias

Identificação de Similaridade com MinHash

• Cálculo de similaridade com as frases de treino, após a classificação

Recomendações Automáticas

• Dependendo da categoria e similaridade, são atribuídas recomendações sobre o que fazer

Resultados Aplicação Conjunta

```
>> main
Deseja usar frases customizadas e números de telefone? (s/n): s
Digite uma frase (ou pressione Enter para terminar): someone stole my phone
Digite o número de telefone associado: 963487294
Digite uma frase (ou pressione Enter para terminar):
Frase: "someone stole phone" -> Categoria prevista: P
Digite o valor do threshold de similaridade (ex: 0.60): 0.0
Threshold de similaridade definido como: 0.00
Deseja ver todas as frases de teste ou apenas as similares? (0/1): 1
Frase de teste: "someone stole phone"
Frase semelhante no treino: "someone stole phone shopping "
Similaridade estimada de Jaccard: 0.63

Número de frases similares: 1
Percentagem de frases similares: 100.00%
```


