

What is claimed is:

1. A stacked gate flash memory cell, comprising:
 - 2 a substrate having a trench therein;
 - 3 a conductive layer disposed on the bottom of the trench;
 - 4 a pair of source regions, each disposed in the substrate adjacent to one sidewall of the trench and electrically connected by the conductive layer;
 - 5 a source isolation layer disposed on the conductive layer;
 - 6 a pair of tunnel oxide layers, respectively disposed on one sidewall of the trench and the source isolation layer;
 - 7 a U-shaped floating gate disposed on the source isolation layer, contacting the tunnel oxide layers thereby;
 - 8 a pair of control gate spacers, respectively disposed on each vertical portion of the U-shaped floating gate, substantially having the same width as the vertical portions;
 - 9 a U-shaped inter-gate dielectric layer disposed on the U-shaped floating gate and the control gate spacers;
 - 10 a control gate disposed in the U-shaped inter-gate dielectric; and
 - 11 a drain region disposed in the substrate adjacent to the trench.

1 2. The cell as claimed in claim 1, wherein the
2 substrate is P-type silicon substrate.

1 3. The cell as claimed in claim 1, wherein a
2 bottom insulating layer is further disposed under the
3 conductive layer.

1 4. The cell as claimed in claim 3, wherein the
2 bottom insulating layer is silicon dioxide.

1 5. The cell as claimed in claim 1, wherein the
2 conductive layer is N-type dopant doped polysilicon.

1 6. The cell as claimed in claim 1, wherein the
2 source isolation layer is silicon dioxide.

1 7. The cell as claimed in claim 1, wherein the
2 tunnel oxide layer is silicon dioxide.

1 8. The cell as claimed in claim 1, wherein the U-
2 shaped floating gate and the control gate are N-type
3 dopant doped polysilicon.

1 9. The cell as claimed in claim 1, wherein the U-
2 shaped inter-gate dielectric layer is silicon dioxide.

1 10. The cell as claimed in claim 1, wherein the
2 control gate spacer is silicon.

1 11. A method of fabricating stacked gate flash
2 memory cells, comprising the steps of:

3 providing a substrate;

4 forming a plurality of parallel long trenches along
5 a first direction in the substrate;

6 forming a conductive layer and a pair of source
7 regions on the bottom of each long trench,
8 wherein the source regions are respectively
9 disposed in the substrate adjacent to two
10 sidewalls of each long trench and electrically
11 connected by the conductive layer therein;
12 forming a source isolation layer on each conductive
13 layer;
14 forming a tunnel oxide on two sidewalls of each long
15 trench;
16 forming a U-shaped floating gate on each source
17 isolation layer, contacting the tunneling oxide
18 layers;
19 forming a pair of control gate spacers respectively
20 disposed on the vertical portion of the U-
21 shaped floating gate, substantially having the
22 same width as the vertical portions;
23 forming an U-shaped inter-gate dielectric layer on
24 each U-shaped floating gate and the control
25 gate spacers;
26 forming a control gate in each U-shaped inter-gate
27 dielectric layer;
28 forming a plurality of parallel shallow trench
29 isolation (STI) regions along a second
30 direction, defining a plurality of cell
31 trenches; and
32 forming a drain region in the substrate adjacent to
33 each cell trench.

1 12. The method as claimed in claim 11, wherein the
2 first direction is perpendicular to the second direction.

1 13. The method as claimed in claim 11, wherein the
2 substrate is P-type silicon substrate.

1 14. The method as claimed in claim 11, further
2 comprising before forming a plurality of parallel long
3 trenches along a first direction in the substrate, the
4 step of sequentially forming a pad oxide layer and a mask
5 layer on the substrate.

1 15. The method as claimed in claim 14, wherein the
2 mask layer is silicon nitride.

1 16. The method as claimed in claim 14, wherein the
2 pad oxide layer is silicon dioxide.

1 17. The method as claimed in claim 11, further
2 comprising before forming a conductive layer and a pair
3 of source regions on the bottom of each long trench, the
4 step of forming a bottom insulating layer on the bottom
5 of each long trench.

1 18. The method as claimed in claim 11, wherein
2 forming a conductive layer and a pair of source regions
3 on the bottom of each long trench further comprises the
4 steps of:

5 forming a source material layer in each long trench;
6 performing a thermal annealing process on the source
7 material layer, driving out dopants therefrom,
8 forming a pair of source regions in the

9 substrate adjacent to two sidewalls of each
10 long trench, electrically connected by the
11 conductive layer therebetween; and

12 removing the source material layer from each long
13 trench.

1 19. The method as claimed in claim 18, wherein the
2 source material layer is N-type doped polysilicon.

1 20. The method as claimed in claim 19, wherein the
2 N-type doped polysilicon comprises phosphorous (P) doped
3 polysilicon or arsenic (As) doped polysilicon.

1 21. The method as claimed in claim 11, further
2 comprising before forming a tunnel oxide on two sidewalls
3 of each long trench, the step of performing a threshold
4 voltage implantation on the sidewalls of each long
5 trench.

1 22. The method as claimed in claim 11, wherein
2 forming a U-shaped floating gate on the source isolation
3 layer, contacting the tunnel oxide layers further
4 comprises the steps of:

5 conformably depositing a floating gate layer in each
6 long trench;

7 forming a protective layer on the floating gate
8 layer in each long trench, exposing portions of
9 the floating gate layer; and

10 removing portions of the floating gate layer exposed
11 by the protective layer, forming a U-shaped
12 floating gate therein.

1 23. The method as claimed in claim 22, wherein the
2 protective layer is boro-silicate-glass (BSG).

1 24. The method as claimed in claim 11, wherein
2 forming a pair of control gate spacers, each disposed on
3 the vertical portion of the U-shaped floating gate,
4 having the same width as the vertical portions further
5 comprises the steps of:

6 conformably depositing materials of a control gate
7 spacer layer;

8 etching the materials of the control gate spacer
9 layer, stopping at the protective layer in each
10 long trench, forming a control gate spacer
11 disposed on each vertical portion of each U-
12 shaped floating gate, substantially having a
13 same width as that thereof; and
14 removing the protective layer therein.

1 25. The method as claimed in claim 24, wherein the
2 method for removing the protective layer is wet etching.

1 26. The method as claimed in claim 25, wherein the
2 control gate spacer is silicon dioxide.

1 27. The method as claimed in claim 11, wherein
2 forming a plurality of parallel shallow trench isolation
3 (STI) regions along a second direction, defining a
4 plurality of cell trenches, further comprises the steps
5 of:

6 sequentially performing photolithography and
7 etching, defining a plurality of parallel long

8 isolation trenches along a second direction,
9 stopping at the source isolation layer therein;
10 and

11 forming an insulating layer in each long isolation
12 trench.

1 28. The method as claimed in claim 27, wherein the
2 insulating layer is silicon dioxide.

1 29. The method as claimed in claim 27, wherein the
2 method of forming the insulating layer is high density
3 plasma enhanced chemically vaporization deposition (HDP
4 CVD).

1 30. The method as claimed in claim 12, wherein
2 forming a drain region in the substrate adjacent to each
3 of the cell trenches further comprises the steps of:

4 removing the mask layer, exposing the pad oxide
5 layer;

6 performing a drain implantation;

7 performing a thermal annealing process, forming a
8 drain region in the substrate adjacent each
9 cell trenches;

10 removing the pad oxide layer; and

11 forming a second insulating layer on each drain
12 region.

1 31. The method as claimed in claim 30, wherein
2 impurities used in the drain region implantation are N-
3 type impurities.

1 32. The method as claimed in claim 31, wherein the
2 N-type impurities comprise phosphorous (P) ions or
3 arsenic (As) ions.

1 33. The method as claimed in claim 30, wherein the
2 method for forming the second insulating layer is low
3 pressure chemical vapor deposition (LPCVD).