

QCM DE MATHÉMATIQUES - LILLE

Répondre en cochant la ou les cases correspondant à des assertions vraies (et seulement celles-ci).

Ces questions ont été écrites par Arnaud Bodin, Barnabé Croizat et Christine Sacré de l'université de Lille. Relecture de Pascal Romon.

Ce travail a été effectué en 2021-2022 dans le cadre d'un projet Hilisit porté par Unisciel.

Ce document est diffusé sous la licence *Creative Commons – BY-NC-SA – 4.0 FR*. Sur le site Exo7 vous pouvez récupérer les fichiers sources.

Equations différentielles

Arnaud Bodin, Barnabé Croizat, Christine Sacré

1 Equations différentielles

1.1 Primitive | Facile

Question 1

Quelles sont les affirmations vraies?

- \Box [Faux] x^3 est une primitive de $3x^2 + 3$.
- \Box [Vrai] $x^3 + 3$ est une primitive de $3x^2$.
- \Box [Faux] $\ln(x^2+1)$ est une primitive de $\frac{1}{x^2+1}$.
- \Box [Vrai] \sqrt{x} est une primitive de $\frac{1}{2\sqrt{x}}$ (sur]0, + ∞ [).

Explications: Pour vérifier si une fonction f est une primitive d'une fonction g, on calcule la dérivée de f et on regarde si on obtient bien la fonction g. La dérivée de x^3 et de $x^3 + 3$ est $3x^2$. La dérivée de $\ln(x^2 + 1)$ est $\frac{2x}{x^2 + 1}$ et non $\frac{1}{x^2 + 1}$. La dérivée de \sqrt{x} sur $]0, +\infty[$ est bien $\frac{1}{2\sqrt{x}}$.

Question 2

Quelles sont les affirmations vraies?

- \square [Faux] $\cos(x)$ est une primitive de $\sin(x)$.
- \square [Vrai] $\exp(x)$ est une primitive de $\exp(x)$.
- \Box [Vrai] $x^4 3x^3 + 2x^2 8$ est une primitive de $4x^3 9x^2 + 4x$.
- \Box [Faux] $4x^3 + x^2 3x + 6$ est une primitive de $x^4 + 2x 3$.

Explications: Pour vérifier si une fonction f est une primitive d'une fonction g, on calcule la dérivée de f et on regarde si on obtient bien la fonction g. $\cos'(x) = -\sin(x)$; $\exp'(x) = \exp(x)$; $(x^4 - 3x^3 + 2x^2 - 8)' = 4x^3 - 9x^2 + 4x$; $(4x^3 + x^2 - 3x + 6)' = 12x^2 + 2x - 3$.

Ouestion 3

Parmi les phrases suivantes, quelles sont les affirmations correctes?

- ☐ [Vrai] L'opération du calcul de primitives est le contraire de l'opération du calcul de dérivées.
- □ [Vrai] L'opération du calcul de dérivées est le contraire de l'opération du calcul de primitives.
- ☐ [Vrai] Deux primitives d'une même fonction sur un intervalle sont égales à une constante près.
- □ [Vrai] Si on connaît une primitive d'une fonction, alors on les connaît toutes.

Explications: Tout est vrai! Les calculs de dérivées et de primitives sont bien réciproques l'un de l'autre, et dès que l'on connaît une primitive F d'une fonction f sur un intervalle, alors toutes les primitives de f sur cet intervalle seront de la forme F(x) + C (où C est une constante).

Pour chacune des équations différentielles suivantes, la fonction donnée est-elle solution?

- \square [Faux] Pour $y' = \sin(x)$ la fonction $f(x) = \cos(x)$ est solution.
- \square [Faux] Pour $y' = e^{2x}$ la fonction $f(x) = e^{2x} + 1$ est solution.
- \square [Faux] Pour $y' = \ln(x)$ la fonction $f(x) = \frac{1}{x}$ est solution.
- \square [Vrai] Pour $y' = \frac{1}{e^x}$ la fonction $f(x) = 1 e^{-x}$ est solution.

Explications: Pour $y' = \sin(x)$ la fonction $f(x) = -\cos(x)$ est solution. Pour $y' = e^{2x}$ la fonction $f(x) = \frac{1}{2}e^{2x} + 1$ est solution. C'est pour $y' = \frac{1}{x}$ que $f(x) = \ln(x)$ est solution. Pour $y' = \frac{1}{e^x} = e^{-x}$ la fonction $f(x) = 1 - e^{-x}$ est bien solution puisque $f'(x) = -(-e^{-x}) = e^{-x} = \frac{1}{e^x}$.

1.2 Primitive | Moyen

Question 5

On considère la fonction $f: x \mapsto 2e^{-2x} - 3$. Quelles sont les affirmations exactes?

- \square [Faux] f est une primitive de $-e^{-2x} 3x$ sur \mathbb{R} .
- \Box [Vrai] f est une primitive de $-4e^{-2x}$ sur \mathbb{R} .
- \square [Vrai] f est la primitive de $-4e^{-2x}$ sur \mathbb{R} valant -1 en x = 0.
- \square [Faux] f est la dérivée de $x \mapsto -e^{-2x}$

Explications: Pour vérifier si une fonction f est une primitive d'une fonction g, on calcule la dérivée de f et on regarde si on obtient bien la fonction g. La dérivée de e^{-2x} est $-2e^{-2x}$ donc $f'(x) = -4e^{-2x}$. De plus $f(0) = 2e^0 - 3 = 2 - 3 = -1$.

Question 6

Quelles sont les affirmations vraies?

- \square [Faux] $x \mapsto \ln(x)$ est une primitive de $x \mapsto 1/x$ sur \mathbb{R} .
- \square [Faux] $x \mapsto \ln(x)$ est une primitive de $x \mapsto 1/x$ sur] $-\infty$, 0[.
- \square [Vrai] $x \mapsto \ln(x)$ est une primitive de $x \mapsto 1/x$ sur $]0, +\infty[$.
- \square [Vrai] $x \mapsto \ln(-x)$ est une primitive de $x \mapsto 1/x$ sur] $-\infty$, 0[.

Explications: La fonction ln n'est définie et dérivable que sur $]0,+\infty[$. Pour tout x de $]0,+\infty[$, $(\ln(x))'=1/x$; pour tout x de $]-\infty,0[$, la fonction $x\mapsto \ln(-x)$ est bien définie et dérivable, et on a $(\ln(-x))'=-1/-x=1/x$.

Question 7

Soit F une primitive d'une fonction f et G une primitive d'une fonction g sur un intervalle I. Quelles sont les affirmations vraies?

- \square [Faux] Si f = g alors F = G.
- \square [Vrai] Si F = G alors f = g.
- \square [Faux] Si $f = g^2$ alors $F = G^2$.
- \square [Vrai] Si F = G + C (où C est une constante) alors f = g.

Explications: Si f = g alors F = G + C (où C est une constante). On rappelle que F' = f et G' = g, donc si F = G + C alors en dérivant l'égalité on obtient F' = f = (G + C)' = G' + 0 = g. Remarquez par ailleurs que les primitives de x^2 sont $\frac{x^3}{3} + C$ (où C est une constante): ce ne sont les carrés des primitives de x (qui sont $\frac{x^2}{2} + \widetilde{C}$, où \widetilde{C} est une constante).

Question 8

Quelles sont les affirmations vraies?

- \square [Faux] Une primitive de x^k est $\frac{x^k}{k}$.
- \Box [Faux] Une primitive de $\ln(x)$ est $\frac{1}{x}$.
- \Box [Vrai] Une primitive de $\frac{1}{\sqrt{x}}$ est $2\sqrt{x}$.
- \Box [Faux] Une primitive de e^{ax} est e^{ax} (où a > 0 est une constante).

Explications: Une primitive de x^k est $\frac{x^{k+1}}{k+1}$. C'est $\ln(x)$ qui est une primitive de $\frac{1}{x}$, l'inverse est faux. Oui, une primitive de $\frac{1}{\sqrt{x}}$ est $2\sqrt{x}$ puisque $(2\sqrt{x})' = 2 \times \frac{1}{2\sqrt{x}} = \frac{1}{\sqrt{x}}$. Enfin, une primitive de e^{ax} est $\frac{1}{a}e^{ax}$.

1.3 Primitive | Difficile

Question 9

Parmi les fonctions suivantes, laquelle est une primitive de \sqrt{x} sur l'intervalle $]0,+\infty[$?

- \Box [Faux] $2x\sqrt{x}$
- \Box [Faux] $\frac{1}{2\sqrt{x}}$
- \Box [Faux] $x^2 \sqrt{x}$
- \square [Vrai] $\frac{2}{3}x\sqrt{x}$

Explications: La dérivée de $x\sqrt{x}$ est $\sqrt{x}+x\times\frac{1}{2\sqrt{x}}=\sqrt{x}+\frac{(\sqrt{x})^2}{2\sqrt{x}}=\sqrt{x}+\frac{1}{2}\sqrt{x}=\frac{3}{2}\sqrt{x}$ donc $\frac{2}{3}x\sqrt{x}$ est une primitive de \sqrt{x} . Remarquez d'ailleurs que $x\sqrt{x}$ peut aussi s'écrire $x^{3/2}$, ce qui permet d'obtenir différemment sa dérivée : $(x^{3/2})'=\frac{3}{2}x^{3/2-1}=\frac{3}{2}\sqrt{x}$. Par ailleurs, les dérivées de $x^2\sqrt{x}$ et de $\frac{1}{2\sqrt{x}}$ donnent respectivement $\frac{5}{2}x\sqrt{x}$ et $\frac{-1}{4x\sqrt{x}}$, qui sont donc bien distinctes de \sqrt{x} .

Question 10

Quelles sont les affirmations vraies?

- \Box [Vrai] $x^2e^{1/x}$ est une primitive de $(2x-1)e^{1/x}$ sur $]-\infty,0[$.
- □ [Faux] $\ln(|x|)$ est une primitive de 1/x sur \mathbb{R} .
- \Box [Faux] $\ln(x^2 + x + 1)$ est une primitive de $\frac{2x}{x^2 + x + 1}$ sur \mathbb{R} .
- \Box [Vrai] $e^x \ln(x)$ est une primitive de $e^x \ln(x) + e^x/x$ sur $]0, +\infty[$.

Explications: On calcule que $(x^2e^{1/x})'=2xe^{1/x}+x^2(-1/x^2)e^{1/x}=(2x-1)e^{1/x}$. Ensuite, la fonction $x\mapsto \ln(x^2+x+1)$ est bien définie sur $\mathbb R$ puisque $x^2+x+1>0$ pour tout nombre réel x. Mais on a: $(\ln(x^2+x+1))'=\frac{(x^2+x+1)'}{x^2+x+1}=\frac{2x+1}{x^2+x+1}$. La fonction $x\mapsto \frac{1}{x}$ n'est pas définie en x=0: il est donc impossible de lui déterminer une primitive sur $\mathbb R$ $(x\mapsto \ln(|x|)$ est une primitive de $x\mapsto \frac{1}{x}$ seulement sur $\mathbb R^*$). Enfin, on calcule que $(e^x\ln(x))'=(e^x)'\ln(x)+e^x(\ln(x))'=e^x\ln(x)+e^x\cdot \frac{1}{x}$.

Quelles sont les affirmations vraies?

- \Box [Vrai] Une primitive de $\sin(x)e^{\cos(x)}$ est $-e^{\cos(x)}$.
- \Box [Faux] Une primitive de $\cos(x^3 + x)$ est $\sin(x^3 + x)$.
- \square [Vrai] Une primitive de $\ln(x)$ est $x \ln(x) x$ (sur $]0, +\infty[$).
- \Box [Vrai] Une primitive de $4x^3 + 4x$ est $(x^2 + 1)^2$.

Explications: Une primitive de $\sin(x)e^{\cos(x)}$ est bien $-e^{\cos(x)}$ puisque $(-e^{\cos(x)})' = -(-\sin(x))e^{\cos(x)} = \sin(x)e^{\cos(x)}$. La dérivée de $\sin(x^3 + x)$ est $(3x^2 + 1)\cos(x^3 + x)$, donc $\sin(x^3 + x)$ n'est pas une primitive de $\cos(x^3 + x)$. Oui une primitive de $\ln(x)$ est $x \ln(x) - x$ puisque la dérivée de cette-dernière donne bien $\ln(x) + x \cdot \frac{1}{x} - 1 = \ln(x)$. Enfin, la dérivée de $(x^2 + 1)^2$ est $2 \times 2x \times (x^2 + 1) = 4x^3 + 4x$, donc $(x^2 + 1)^2$ est bien une primitive de $4x^3 + 4x$.

Question 12

Soit $f:I\to\mathbb{R}$ une fonction définie sur un intervalle. Soit F une primitive de f. C désigne une constante. Quelles sont les affirmations vraies?

- \square [Vrai] Si f(x) = 0 sur I alors F(x) = C.
- \square [Faux] Si f(x) = x alors $F(x) = x^2 + C$.
- \square [Faux] Si $f(x) \times \cos(x) = 1$ alors $F(x) = \frac{1}{\sin(x)} + C$.
- \square [Faux] Si $f(\ln(x)) = 0$ alors $F(x) = e^x + C$.

Explications: Si f est la fonction nulle, alors F est une fonction constante. Si f(x) = x, alors $F(x) = \frac{1}{2}x^2 + C$. Les autres affirmations sont fantaisistes: lorsqu'on dérive $\frac{1}{\sin(x)} + C$ on obtient $\frac{-\cos(x)}{\sin^2(x)}$ qui n'est pas du tout l'inverse de $\cos(x)$. Et si $F(x) = e^x + C$, alors $f(x) = F'(x) = e^x$ ce qui donne $f(\ln(x)) = e^{\ln(x)} = x \neq 0$!

1.4 Notion d'équation différentielle | Facile

Question 13

On considère la fonction $f: x \mapsto 2e^{-x} + 3$. Parmi les équations différentielles suivantes, quelles sont celles dont f est solution?

- \square [Vrai] y' = -y + 3
- \square [Vrai] $y' = y 4e^{-x} 3$
- \square [Faux] y' = 2y + 3
- \square [Vrai] $v' = -2e^{-x}$

Question 14

Parmi les fonctions suivantes, quelles sont celles qui sont solutions de l'équation différentielle y' = 2y - 10.

$$\square$$
 [Vrai] $f: x \mapsto 4e^{2x} + 5$

$$\Box \quad [Faux] f : x \mapsto 2x + 5$$

Explications: Pour vérifier si une fonction f est solution d'une équation différentielle du premier ordre, on remplace y par f(x), y' par f'(x) et on regarde si l'égalité est vraie pour tout x (égalité entre fonctions). La dérivée de e^{2x} étant $2e^{2x}$, on constate que l'égalité f'(x) = 2f(x) - 10 a seulement lieu pour $4e^{2x} + 5$ et $e^{2x} + 5$ parmi les solutions proposées.

Ouestion 15

Parmi les fonctions suivantes quelles sont celles qui sont des solutions de l'équation différentielle y' = xy?

- \Box [Faux] $f(x) = \exp(x^2)$
- $\Box \quad [Vrai] f(x) = 2 \exp(x^2/2)$
- \square [Vrai] f(x) = 0
- \square [Faux] f(x) = 1

Explications: On calcule f'(x) dans chaque cas et on observe si elle vérifie l'équation f'(x) = xf(x). C'est le cas pour la fonction définie par $f(x) = 2\exp(x^2/2)$ (dont la dérivée est $f'(x) = 2x \exp(x^2/2)$) et pour f(x) = 0 (de dérivée f'(x) = 0).

Question 16

Soit la fonction $f(x) = \cos(x)$. De quelle(s) équation(s) différentielle(s) f est-elle solution?

- \Box [Faux] y' = y
- \Box [Vrai] y'' = -y
- $\Box \quad [Vrai] \ y' y = -\sin(x) \cos(x)$
- \Box [Faux] y'' = -y'

Explications: D'une part $f'(x) = -\sin(x)$, donc $f'(x) - f(x) = -\sin(x) - \cos(x)$. D'autre part $f''(x) = -\cos(x)$, donc f'' = -f. En revanche, on a $f'(x) \neq f(x)$ et $f''(x) \neq -f'(x)$.

1.5 Notion d'équation différentielle | Moyen

Question 17

Soit l'équation différentielle y' = 2x(y+x) - 1. Quelles sont les affirmations vraies?

- \Box [Vrai] $y = e^{x^2} x$ est une solution.
- □ [Vrai] Cette équation différentielle n'a pas de solution constante.
- \Box [Vrai] y = -x est une solution.
- \Box [Faux] $y = e^{x^2} x + 1$ est une solution.

Explications: Pour une fonction constante y=C, y'=0 et 2x(y+x)-1=2x(C+x)-1, ce qui n'est pas la fonction nulle (c'est un polynôme du second degré), donc y=C n'est pas solution. Pour y=-x, 2x(y+x)-1=-1=y', donc y=-x est solution. Pour $y=e^{x^2}-x$, $2x(y+x)-1=2xe^{x^2}-1=y'$ donc $y=e^{x^2}-x$ est une solution. Pour $y=e^{x^2}-x+1$, $y'=2xe^{x^2}-1$ et $2x(y+x)-1=2xe^{x^2}+2x-1$ donc $y=e^{x^2}-x+1$ n'est pas solution.

Soit l'équation différentielle xy' - 3y = 0. Quelles sont les affirmations vraies? \Box [Faux] $x^3 + 1$ est une solution. \square [Vrai] x^3 est une solution. \Box [Faux] e^{3x} est une solution. □ [Vrai] La fonction nulle est la seule solution constante. Explications: Pour une solution constante y = C, y' = 0 donc 3y = 0 donc y est la fonction nulle (et réciproquement, la fonction nulle est bien solution). Pour $y = x^3$, $xy' - 3y = x \cdot 3x^2 - 3x^3 = 0$ donc x^3 est solution. Pour $y = x^3 + 1$, $xy' - 3y = x \cdot 3x^2 - 3x^3 - 3 = -3$ donc $x^3 + 1$ n'est pas solution. Pour $y = e^{3x}$, $xy' - 3y = x \cdot 3e^{3x} - 3e^{3x} = 3(x-1)e^{3x}$, ce qui n'est pas la fonction nulle, donc $y = e^{3x}$ n'est pas solution. **Ouestion 19** Soit f une solution de l'équation différentielle $y' = y^2 + 1$. Quelles sont les affirmations vraies sur la fonction f? \square [Vrai] f est une fonction croissante. \square [Faux] f est une fonction décroissante. \square [Vrai] f' est une fonction positive. \square [Faux] f peut être une fonction constante. Explications: Si f est solution de l'équation $y' = y^2 + 1$, alors on a $f'(x) = f^2(x) + 1$ et donc $f'(x) \ge 1 > 0$. Ainsi f' est strictement positive, et par conséquent f est strictement croissante. Question 20 Soit l'équation différentielle y'-2xy=4x. Quelles sont les affirmations vraies concernant les solutions de cette équation? \square [Vrai] y = -2 est une solution. \Box [Faux] y = +2 est une solution. \Box [Faux] $y = e^{x^2} + 2$ est une solution. \Box [Vrai] $y = e^{x^2} - 2$ est une solution. Explications: Si y = C est constante, alors y' = 0 et on a $0 - 2x \cdot C = 4x$ donc C = -2 est la seule solution constante de notre équation différentielle. D'autre part, la dérivée de e^{x^2} étant $2xe^{x^2}$, on vérifie en remplaçant dans l'équation différentielle que $e^{x^2}-2$ est solution puisqu'alors $y'-2xy=2xe^{x^2}-2x(e^{x^2}-2)=4x$. En revanche $e^{x^2}+2$ n'est pas solution puisque $y'-2xy=2xe^{x^2}-2x(e^{x^2}+2)=4x$. 2) = -4x.

1.6 Notion d'équation différentielle | Difficile

Ouestion 21

Soit f une solution de l'équation différentielle $y' = 2y - x^3$. On sait que la courbe représentative de f passe par le point A(1,2). Quelle est la pente de sa tangente au point A?

Faux	—]

□ [Faux] 1

□ [Faux] 2 □ [Vrai] 3 Explications: La pente de la tangente au point $A(1,2)$ est le nombre $f'(1)$. Or on sait que $f(1)$ = puisque la courbe représentative de f passe par $A(1,2)$. De plus, comme f est solution de l'équation différentielle $y' = 2y - x^3$, on a - en considérant cette égalité pour la fonction f et pour $f'(1) = 2f(1) - 1^3 = 2 \times 2 - 1 = 3$. Question 22 Soit f une solution de l'équation différentielle $f'(1) = f'(1) = f'(1)$ and $f'(1) = f'(1) = f'(1)$ and $f'(1) = f'(1)$ are solution de l'équation différentielle $f'(1) = f'(1)$ and $f'(1) = f'(1)$ are solution de l'équation différentielle $f'(1) = f'(1)$ and $f'(1) = f'(1)$ are solution de l'équation différentielle $f'(1) = f'(1)$ and $f'(1) = f'(1)$ are solution de l'équation différentielle $f'(1) = f'(1)$ and $f'(1) = f'(1)$ are solution de l'équation différentielle $f'(1) = f'(1)$ and $f'(1) = f'(1)$ are solution de l'équation différentielle $f'(1) = f'(1)$ and $f'(1) = f'(1)$ are solution de l'équation différentielle $f'(1) = f'(1)$ and $f'(1) = f'(1)$ are solution de l'équation différentielle $f'(1) = f'(1)$ and $f'(1) = f'(1)$ are solution de l'équation différentielle $f'(1) = f'(1)$ and $f'(1) = f'(1)$ are solution de l'équation différentielle $f'(1) = f'(1)$ are solution de l'équati
puisque la courbe représentative de f passe par $A(1,2)$. De plus, comme f est solution de l'équation différentielle $y'=2y-x^3$, on a - en considérant cette égalité pour la fonction f et pour $f'(1)=2f(1)-1^3=2\times 2-1=3$. Question 22 Soit f une solution de l'équation différentielle $f'=f$ 0 au sait de plus que la courbe représente.
Soit f une solution de l'équation différentielle $y'=y+3x$. On sait de plus que la courbe représent
tative de f passe par le point $A(-1,2)$. Quelles sont les affirmations exactes? \square [Vrai] La pente de la tangente à la courbe de f au point A est -1 . \square [Faux] La pente de la tangente à la courbe de f au point A est A . \square [Vrai] La tangente à la courbe de A admet pour équation : A 0 [Faux] La tangente à la courbe de A 1 admet pour équation : A 2 [Faux] La tangente à la courbe de A 3 admet pour équation : A 4 est A 5.
Explications: La pente de la tangente au point $A(-1,2)$ est le nombre $f'(-1)$. Or on sait que $f(-1)$ 2 puisque la courbe représentative de f passe par $A(-1,2)$. De plus, comme f est solution de l'équ tion différentielle $y' = y + 3x$, en considérant cette égalité pour la fonction f et pour $x = -1$, calcase $f'(-1) = f(-1) + 3 \times (-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1)$ est donc $f'(-1) = f(-1) + 3 \times (-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = f(-1) + 3 \times (-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = f(-1) + 3 \times (-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = f(-1) + 3 \times (-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = f(-1) + 3 \times (-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = f(-1) + 3 \times (-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = f(-1) + 3 \times (-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = f(-1) + 3 \times (-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = f(-1) + 3 \times (-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = f(-1) + 3 \times (-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = f(-1) + 3 \times (-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = f(-1) + 3 \times (-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = f(-1) + 3 \times (-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = f(-1) + 3 \times (-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = f(-1) + 3 \times (-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = f(-1) + 3 \times (-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = 2 - 3 = -1$. La pente de la tangente en $f'(-1) = 2 - 3 = -1$. La pente de
Question 23 Soit l'équation différentielle $xy' = y - x$ définie pour $x \in]0, +\infty[$. Quelles sont les fonctions solutions de cette équation, quelle que soit la constante C ? □ [Faux] $f(x) = x - C \ln(x)$ □ [Faux] $f(x) = x - \ln(x) + C$ □ [Vrai] $f(x) = Cx - x \ln(x)$ □ [Faux] $f(x) = Cx - x \ln(x)$ □ [Faux] $f(x) = x - C$ Explications: Seule la fonction $f(x) = Cx - x \ln(x)$, avec $f'(x) = C - \ln(x) - 1$, vérifie l'équation différentielle. On a en effet $xf'(x) = Cx - x \ln(x) - x = f(x) - x$. Pour les autres fonctions proposée les calculs de $xf'(x)$ et de $f(x) - x$ diffèrent.
Question 24 Soit f une solution de l'équation différentielle $y' = \cos(x)y$, vérifiant $f(\frac{\pi}{3}) = 3$. On considère courbe représentative de f . Quelles sont les affirmations vraies? \Box [Faux] La tangente en $x = \frac{\pi}{3}$ a pour équation $y = \frac{3}{2}x + 3$. \Box [Vrai] La tangente en $x = \frac{\pi}{3}$ a pour équation $y = \frac{3}{2}(x - \frac{\pi}{3}) + 3$.

Explications: En $x=\frac{\pi}{2}$, par l'équation différentielle on a $f'(\frac{\pi}{2})=0$ (car $\cos\frac{\pi}{2}=0$), donc la tangente est horizontale. En $x=\frac{\pi}{3}$, on obtient $f'(\frac{\pi}{3})=\cos(\frac{\pi}{3})y(\frac{\pi}{3})=\frac{1}{2}\times 3=\frac{3}{2}$, donc la pente de la tangente en $x=\frac{\pi}{3}$ est $\frac{3}{2}$. Cette tangente passe par le point $(\frac{\pi}{3},3)$ donc son équation est $y=\frac{3}{2}(x-\frac{\pi}{3})+3$.

 \Box [Faux] La tangente en $x = \frac{\pi}{3}$ est horizontale.

1.7 y' = ay | Facile

Question 25

Les solutions de l'équation différentielle y' = -y sont :

- \Box [Faux] $e^{-x} + C$ avec C constante réelle.
- \Box [Faux] $e^x + C$ avec C constante réelle.
- \Box [Vrai] Ce^{-x} avec C constante réelle.
- \square [Faux] Ce^x avec C constante réelle.

Explications : Les solutions de l'équation différentielle y' = ay sont les fonctions Ce^{ax} avec C constante réelle. Ici, a = -1.

Question 26

Les solutions de l'équation différentielle y' + 2y = 0 sont :

- \Box [Faux] $e^{-2x} + C$ avec C constante réelle.
- \Box [Faux] $e^{2x} + C$ avec C constante réelle.
- \Box [Faux] Ce^{2x} avec C constante réelle.
- \Box [Vrai] Ce^{-2x} avec C constante réelle.

Explications: Les solutions de l'équation différentielle y' = ay sont les fonctions Ce^{ax} avec C constante réelle. Ici, a = -2 puisque y' + 2y = 0 se réécrit comme y' = -2y.

Question 27

De quelle(s) équation(s) différentielle(s) $4e^{3x}$ est-elle une solution?

- \square [Vrai] y' = 3y
- \Box [Faux] 3y' = y
- \Box [Faux] y' = 4y
- \Box [Faux] 4y' = y

Explications : Les solutions de l'équation différentielle y'=ay sont les fonctions Ce^{ax} avec C constante réelle. Ici, a=3 et C=4.

Question 28

Parmi les fonctions suivantes, quelles sont celles solutions de l'équation différentielle y' = 3y?

- \Box [Faux] $f(x) = 3e^{2x}$
- \Box [Vrai] $f(x) = 2e^{3x}$
- \Box [Faux] $f(x) = e^{-3x}$
- \Box [Faux] $f(x) = e^{-2x}$

Explications: La forme générale des solutions est $y(x) = Ce^{3x}$ où C est une constante réelle.

Question 29

Parmi les fonctions suivantes, quelles sont celles solutions de l'équation différentielle $y' = \frac{1}{e}y$?

$$\square$$
 [Vrai] $f(x) = C \exp(x/e)$

- \Box [Faux] $f(x) = C \exp(ex)$
- \Box [Faux] $f(x) = Ce \exp(x)$
- \Box [Faux] $f(x) = C \frac{\exp(x)}{e}$

Explications: La forme générale des solutions de y' = ay est $y(x) = C \exp(ax) = Ce^{ax}$. Ici $a = \frac{1}{e}$, donc la forme générale des solutions est $y(x) = C \exp(x/e)$.

1.8 y' = ay | Moyen

Question 30

Que peut-on dire des solutions de l'équation différentielle y' = ay?

- \square [Faux] Ce sont toutes des fonctions croissantes sur \mathbb{R} .
- \square [Faux] Ce sont toutes des fonctions décroissantes sur \mathbb{R} .
- \square [Faux] Si $a \ge 0$, ce sont des fonctions croissantes sur \mathbb{R} .
- \square [Vrai] Ce sont toutes des fonctions monotones sur \mathbb{R} .

Explications: Les solutions de l'équation différentielle y'=ay sont les fonctions Ce^{ax} avec C constante réelle. Si $a \ge 0$, ce sont des fonctions croissantes pour $C \ge 0$ et décroissantes pour $C \le 0$. Si $a \le 0$, ce sont des fonctions décroissantes pour $C \ge 0$ et croissantes pour $C \le 0$. Dans tous les cas, ce sont toutes des fonctions monotones sur \mathbb{R} .

Question 31

Soit $f: x \mapsto -2e^{3x}$. Quelles sont les affirmations vraies?

- \square [Faux] f est la seule solution de l'équation différentielle y' = 3y dont la courbe représentative passe par le point A(0,3).
- □ [Faux] f est la seule solution de l'équation différentielle y' = 3y qui tend vers $-\infty$ lorsque x tend vers $+\infty$.
- \Box [Vrai] f est la seule solution de l'équation différentielle y' = 3y valant -2 en x = 0.
- \square [Vrai] f est la seule solution de l'équation différentielle y' = 3y dont la dérivée en x = 0 est -6.

Explications: Les solutions de l'équation différentielle y'=3y sont les fonctions $f_C: x \mapsto Ce^{3x}$ avec C constante réelle. $f=f_{-2}$ est donc bien solution de y'=3y. $f_C(0)=C$: la valeur de la constante C correspond à la valeur de la fonction en x=0. Ainsi $f(x)=-2e^{3x}$ est bien la seule solution valant -2 en x=0. Par contre, $f(0)\neq 3$ donc sa courbe représentative ne passe pas par A(0,3). Puisque d'après l'équation différentielle on a $f'_C(0)=3f_C(0)=3C$, alors f est la seule solution telle que $f'_C(0)=-6$ car cela impose C=-2. Enfin, dès que C<0, Ce^{3x} tend vers $-\infty$ lorsque x tend vers $+\infty$ donc f n'est pas la seule fonction ayant cette propriété.

Question 32

Soit l'équation différentielle y' + 5y = 0. Quelles sont les affirmations vraies?

- \Box [Vrai] Les solutions générales sont $y(x) = Ce^{-5x}$.
- \Box [Faux] Les solutions générales sont $y(x) = Ce^{5x}$.
- \Box [Faux] La solution vérifiant y(1) = 0 est $y(x) = e^{-5x}$.
- \Box [Faux] La solution vérifiant y(1) = 0 est $y(x) = e^{5x}$.

Explications: Les solutions générales sont $y(x) = Ce^{-5x}$. Si y(1) = 0 alors C = 0 et y est la solution nulle partout.

Question 33

Pour quelles valeurs de a et b la fonction $y(x) = 7e^{-5x}$ est-elle solution de y' = ay avec y(0) = b?

- \square [Vrai] a = -5 et b = 7
- \Box [Faux] a = 5 et b = 7
- \Box [Faux] a = 5 et b = 0
- \square [Faux] a = 0 et b = 7

Explications: La solution de y' = ay vérifiant y(0) = b est $y(x) = be^{ax}$. Donc on identifie: a = -5 et b = 7.

1.9 y' = ay | Difficile

Question 34

Soit f la solution de l'équation différentielle y' + 3y = 0 telle que f'(0) = -6. Quelles sont les affirmations vraies?

- \square [Vrai] La courbe représentative de f passe par A(0,2).
- \square [Faux] La courbe représentative de f passe par A(0,-6).
- \square [Faux] f est toujours négative.
- \square [Vrai] f est une fonction décroissante sur \mathbb{R} .

Explications: Comme f est solution de l'équation différentielle, f'(0) + 3f(0) = 0 donc f(0) = 2 donc la courbe représentative de f passe par le point de coordonnées (0,2) et ne passe pas par celui de coordonnées (0,-6). De plus, $f(x) = 2e^{-3x}$ et $f'(x) = -6e^{-3x}$ donc f est toujours positive et f' est toujours négative. Par conséquent f est décroissante sur \mathbb{R} .

Question 35

Soit f la solution de l'équation différentielle y' = 4y telle que $f(1) = e^4$.

- \square [Vrai] La courbe représentative de f passe par le point $A(1, e^4)$.
- \square [Vrai] La courbe représentative de f passe par le point B(0,1).
- \square [Faux] La pente de la tangente à la courbe de f en x = 1 est 4.
- \Box [Faux] On n'a pas assez de données pour déterminer la pente de la tangente à la courbe de f en x=0.

Explications: Les solutions de l'équation différentielle y'=4y sont les fonctions Ce^{4x} avec C constante réelle. Comme on a $f(1)=e^4$, on obtient que C=1 et donc $f(x)=e^{4x}$. Par conséquent la courbe représentative de f passe par les points A et B. De plus $f'(1)=4f(1)=4e^4$ et f'(0)=4, ce qui donne la pente de la tangente à la courbe en x=1 et x=0 respectivement.

Question 36

Soit l'équation différentielle y' = ay avec a > 0. Quelles sont les affirmations vraies?

☐ [Faux] Il n'y a pas de solutions constantes.

☐ [Vrai] Il y a une seule solution constante.
□ [Faux] Toute solution vérifie $y(x) \ge 0$.
□ [Vrai] Toute solution $y(x)$ tend vers 0 lorsque x tend vers $-\infty$.
Explications: Les solutions générales sont $y(x) = Ce^{ax}$. La solution est constante dans le seul cas où $C = 0$ (y est alors la solution partout nulle). Puisque $a > 0$, on sait que Ce^{ax} tend vers 0 lorsque x tend vers $-\infty$. Attention, si $C < 0$ alors la fonction y est strictement négative et décroissante.
Question 37
Soit la solution de l'équation différentielle $y' = 2y$ vérifiant $y(0) = -1$. Quelles sont les affirmations vraies?
☐ [Vrai] La solution est toujours négative.
☐ [Vrai] La solution est une fonction décroissante.
\square [Faux] La pente de la tangente en $x = 0$ vaut 1.
\square [Vrai] La pente de la tangente en $x = 1$ vaut $-2e^2$.
Explications: Les solutions générales sont $y(x) = Ce^{2x}$. Comme $y(0) = -1$ alors $C = -1$. La solution est donc $f(x) = -e^{2x}$. La pente de la tangente en x_0 est donnée par $f'(x_0)$. Comme $f(0) = -1$ alors $f'(0) = -2$, la pente de la tangente en $x = 0$ vaut -2 . De façon générale, comme $f(x) = -e^{2x}$, alors $f'(x) = -2e^{2x}$ qui est une fonction toujours négative: ainsi f est une fonction décroissante. La pente de sa tangente en $x = 1$ vaut bien $f'(1) = -2e^2$.
1.10 $y' = ay + b$ et $y' = ay + f$ Facile
<i>Question 38</i> Soit l'équation différentielle $2y' + 4y = 3$. Quelles sont les affirmations vraies?
\square [Faux] La seule solution constante est $y = 3/2$.
□ [Vrai] La seule solution constante est $y = 3/4$.
□ [Faux] Les solutions sont $Ce^{-4x} - 3$ avec C constante réelle.
□ [Vrai] Les solutions sont $Ce^{-2x} + 3/4$ avec C constante réelle.
<i>Explications</i> : La seule solution constante est $y=3/4$: c'est ce qu'on retrouve dans l'équation différentielle lorsqu'on cherche y constante avec donc $y'=0$: l'équation devient $2y=3/2$ donc $y=3/4$. On peut réécrire l'équation différentielle $y'=-2y+3/2$, dont les solutions sont $Ce^{-2x}+3/4$ avec C constante réelle.
Question 39 Soit l'équation différentielle 2y' — y 2 Quelles sont les affirmations vroies 2
Soit l'équation différentielle $3y' = y - 3$. Quelles sont les affirmations vraies?
\square [Faux] La seule solution constante est $y = 1$.
□ [Vrai] La seule solution constante est $y = 3$. □ [Faux] Les solutions sont $Ce^{3x} + 1$ avec C constante réelle.
□ [Faux] Les solutions sont $Ce^{3x} + 1$ avec C constante réelle. □ [Vrai] Les solutions sont $Ce^{x/3} + 3$ avec C constante réelle.
Explications: Le soule solution constante est $y = 3 \cdot c^2$ est ce qu'on retrouve dans l'équation différen

Explications : La seule solution constante est y=3 : c'est ce qu'on retrouve dans l'équation différentielle lorsqu'on cherche y constante avec donc y'=0 : l'équation devient y-3=0 donc y=3. On peut réécrire l'équation différentielle $y'=\frac{1}{3}y-1$, dont les solutions sont $Ce^{x/3}+3$ avec C constante réelle.

Soit $f(x) = e^x + 3$. De quelle(s) équations(s) différentielle(s) cette fonction est-elle solution?

- \Box [Faux] $y' y = e^x$
- \square [Vrai] y' = y 3
- \Box [Faux] 3y' y = 0
- \Box [Faux] y' 3y = 0

Explications: Lorsqu'on dérive f, on obtient $f'(x) = e^x = (e^x + 3) - 3 = f(x) - 3$: ainsi f est solution de l'équation différentielle y' = y - 3. On vérifie en remplaçant dans les autres équations différentielles y par f (et y' par f') que les égalités ne sont pas vérifiées, donc que f n'est pas une solution.

Question 41

Soit l'équation différentielle $y' = 2y + \cos(x)$. Quelles sont les affirmations vraies?

- \square [Faux] Les solutions de l'équation homogène associée sont les $y(x) = C \sin(x)$.
- \square [Faux] Les solutions de l'équation homogène associée sont les $y(x) = C \cos(x)$.
- □ [Vrai] Une solution particulière est $y(x) = \frac{1}{5}\sin(x) \frac{2}{5}\cos(x)$.
- \Box [Faux] Une solution particulière est $y(x) = e^{2x}$.

Explications: L'équation homogène est y'=2y, dont les solutions sont les $y_h(x)=Ce^{2x}$. Une solution particulière de l'équation $y'=2y+\cos(x)$ est $y_p(x)=\frac{1}{5}\sin(x)-\frac{2}{5}\cos(x)$. Les solutions générales sont alors $y(x)=y_h(x)+y_p(x)$.

Question 42

Soit l'équation différentielle y' = 2y - 2x + 1. Quelles sont les affirmations vraies?

- \Box [Faux] La seule solution constante est $y(x) = x \frac{1}{2}$.
- \square [Vrai] y(x) = x est une solution particulière.
- \Box [Vrai] $y(x) = 3e^{2x} + x$ est une solution particulière.
- \Box [Faux] $y(x) = x^2$ est une solution particulière.

Explications: Si l'on recherche une solution constante y = C, avec donc y' = 0, on obtient dans l'équation différentielle 0 = 2C - 2x + 1 et donc $C = x - \frac{1}{2}$. Mais ceci n'est pas une constante! Donc il n'existe aucune solution constante. Pour f(x) = x et f'(x) = 1, on constate en remplaçant que f est bien solution de l'équation différentielle puisque f' = 1 = 2x - 2x + 1. Il en va de même pour $f(x) = 3e^{2x} + x$, avec $f'(x) = 6e^{2x} + 1$ puisque $6e^{2x} + 1 = 2(3e^{2x} + x) - 2x + 1$. En revanche, pour $f(x) = x^2$, et donc f'(x) = 2x, l'équation différentielle n'est pas vérifiée puisque $2x \neq 2x^2 - 2x + 1$.

1.11 y' = ay + b et y' = ay + f | Moyen

Question 43

Quelles sont les valeurs de a, b et c telles que $f: x \mapsto ax^2 + bx + c$ soit solution de l'équation différentielle $y' + 2y = 4x^2 + 2x - 1$?

- \Box [Faux] a = 4, b = 2, c = -1
- \Box [Vrai] a = 2, b = -1, c = 0
- \Box [Faux] a = 2, b = -1, c = -1

 \Box [Faux] a = 4, b = -3, c = 1

Explications: On a f'(x) = 2ax + b donc $f'(x) + 2f(x) = 2ax^2 + (2a + 2b)x + b + 2c$. Ce polynôme doit être égal à $4x^2 + 2x - 1$. On calcule alors a, b et c en identifiant les coefficients: 2a = 4; 2a + 2b = 2; b + 2c = -1. On obtient a = 2, puis b = 1 - a = -1, et enfin c = (-1 - b)/2 = 0.

Question 44

Parmi les fonctions suivantes, quelles sont celles qui sont solutions sur $\mathbb R$ de l'équation différentielle $y'=2y+e^{2x}$ et qui valent 2 en x=0:

- \Box [Faux] $x \mapsto 2e^{2x}$
- \Box [Faux] $x \mapsto xe^{2x}$
- \Box [Faux] $x \mapsto xe^{2x} + 2$
- \Box [Vrai] $x \mapsto (x+2)e^{2x}$

Explications: On peut éliminer la fonction $x \mapsto xe^{2x}$ qui ne prend pas la valeur 2 en x=0 contrairement aux trois autres. On calcule ensuite la dérivée des autres fonctions proposées et on remplace y et y' dans l'équation différentielle pour identifier celle qui est solution: la seule qui soit solution de notre équation différentielle est $x \mapsto (x+2)e^{2x}$. Rappel: la dérivée du produit de deux fonctions u et v est u'v + uv'. Ainsi $[(x+2)e^{2x}]' = e^{2x} + 2(x+2)e^{2x}$.

Question 45

Le graphique ci-dessous représente plusieurs solutions de l'équation différentielle y' + 2y = b, où b est un réel. Quelle est la valeur de b?

- \square [Vrai] b = -2
- \Box [Faux] b = -1
- \Box [Faux] b = 1/2
- \square [Faux] b = 1

Explications: L'équation différentielle peut s'écrire y'=ay+b avec a=-2 donc ses solutions sont les fonctions $x\mapsto Ce^{ax}-\frac{b}{a}=Ce^{-2x}+\frac{b}{2}$. De plus $\lim_{x\to+\infty}e^{-2x}=0$ donc b/2 est la limite des solutions lorsque x tend vers $+\infty$. On lit graphiquement que cette limite vaut -1=b/2 donc on en déduit que b=-2.

Question 46

Soit l'équation différentielle $y' + y = e^x$. Quelles sont les affirmations vraies?

- □ [Faux] Les solutions de l'équation homogène associée sont $y(x) = Ce^x$. □ [Faux] Une solution particulière est $y(x) = e^{-x}$.
- □ [Vrai] La solution vérifiant y(0) = 1 est $y(x) = \frac{e^x + e^{-x}}{2}$.
- \square [Faux] La solution vérifiant y(1) = 1 est $y(x) = e \cdot e^{-x}$.

Explications: L'équation homogène est y'+y=0, dont les solutions sont les $y_h(x)=Ce^{-x}$. Pour aller plus loin: une solution particulière de l'équation $y'+y=e^x$ est $y_p(x)=\frac{1}{2}e^x$; les solutions générales sont alors $y(x)=y_h(x)+y_p(x)=Ce^{-x}+\frac{1}{2}e^x$.

Question 47

Soit l'équation différentielle $y' = y + x^2 - 1$. Quelles sont les affirmations vraies?

- □ [Faux] Les solutions de l'équation homogène associée sont $y(x) = \frac{1}{3}x^3 x + C$.
- \Box [Faux] Les solutions de l'équation homogène associée sont $y(x) = Ce^{x^2-1}$.
- \square [Faux] Une solution particulière est $y(x) = e^x$.
- \square [Vrai] Une solution particulière est $y(x) = -x^2 2x 1$.

Explications : L'équation homogène est y'=y, dont les solutions sont les $y_h(x)=Ce^x$. Une solution particulière de l'équation $y'=y+x^2-1$ est $y_p(x)=-x^2-2x-1$. Les solutions générales sont alors $y(x)=y_h(x)+y_p(x)$.

Question 48

On considère l'équation différentielle $y' + y = 2x^2(x + 3)$. Quelles sont les affirmations vraies?

- \square [Faux] Il existe un nombre réel r tel que $y(x) = e^{rx}$ soit une solution particulière.
- \square [Vrai] Il existe deux nombres entiers k et n tels que $y(x) = kx^n$ soit une solution particulière.
- □ [Faux] $y(x) = e^{-x} + 2x^3$ est une solution particulière vérifiant y(0) = 0.
- □ [Faux] $y(x) = -2e^{-x} + 2x^3$ est une solution particulière vérifiant y(0) = 0.

Explications: Si l'on cherche une solution sous la forme $y(x) = kx^n$, on a $y'(x) = knx^{n-1}$. En remplaçant dans l'équation différentielle, on obtient alors (en développant): $knx^{n-1} + kx^n = 6x^2 + 2x^3$. En identifiant, on vérifie que l'égalité est vraie pour k=2 et n=3. Ainsi $f(x)=2x^3$ est une solution particulière. En revanche, si on cherche une solution sous la forme $f(x)=e^{rx}$, alors $f'(x)=re^{rx}$, et en remplaçant on obtient $(r+1)e^{rx}=2x^2(x+3)$ ce qui est impossible (un côté est une exponentielle et l'autre un polynôme). Enfin, on vérifie que les fonctions $y(x)=e^{-x}+2x^3$ et $y(x)=-2e^{-x}+2x^3$ sont bien solutions de notre équation différentielle, mais aucune des deux ne vaut 0 en x=0 (elles valent respectivement 1 et -2).

Question 49

Soit (*E*) l'équation différentielle $y' + 5y = 5x^2 + 2x$. Alors :

- □ [Faux] Si f est solution de (E), alors la fonction $x \mapsto f(x) 5x^2 2x$ est solution de l'équation différentielle (H) : y' + 5y = 0.
- □ [Vrai] Si f est solution de (E), alors la fonction $x \mapsto f(x) x^2$ est solution de l'équation différentielle (H): y' + 5y = 0.
- □ [Faux] Si f est solution de (E), alors la fonction $x \mapsto f(x) e^{-5x}$ est solution de l'équation différentielle (H): y' + 5y = 0.

□ [Faux] Si f est solution de (E), alors la fonction $x \mapsto f(x) - 2x$ est solution de l'équation différentielle (H): y' + 5y = 0.

Explications: Si f est solution de (E), alors $f'(x) + 5f(x) = 5x^2 + 2x$. On calcule alors que: $(f(x) - x^2)' + 5(f(x) - x^2) = f'(x) - 2x + 5f(x) - 5x^2 = f'(x) + 5f(x) - 2x - 5x^2 = 5x^2 + 2x - 2x - 5x^2 = 0$. Ainsi la fonction $x \mapsto (f(x) - x^2)$ est bien solution de (H). En revanche, lorsqu'on remplace dans y' + 5y avec les fonctions $x \mapsto f(x) - 5x^2 - 2x$, $x \mapsto f(x) - e^{-5x}$ et $x \mapsto f(x) - 2x$ (toujours en utilisant le fait que f'(x) + 5f(x) peut être remplacé par $5x^2 + 2x$) on ne trouve pas 0.

Question 50

Soit l'équation différentielle $y' = y + 2e^{3x} + 4xe^{3x}$. On recherche une solution particulière sous la forme $f(x) = axe^{bx}$. Quelles doivent être les valeurs de a et b?

- □ [Faux] a = 4, b = 3
- □ [Vrai] a = 2, b = 3
- \Box [Faux] a = 1, b = 3
- \Box [Faux] a = 1, b = 4

Explications: On calcule qu'avec la forme voulue, on a $f'(x) = ae^{bx} + abxe^{bx}$. Ainsi en remplaçant dans l'équation différentielle, on obtient : $ae^{bx} + abxe^{bx} = axe^{bx} + 2e^{3x} + 4xe^{3x}$, ce qu'on peut écrire $(a+a(b-1)x)e^{bx} = (2+4x)e^{3x}$ pour y voir plus clair. On peut donc identifier dans l'exposant de l'exponentielle que b=3. Puis cela donne pour le polynôme qui accompagne les exponentielles a+2ax=2+4x, et donc a=2.

1.12
$$y' = ay + b$$
 et $y' = ay + f$ | Difficile

Question 51

Le graphique ci-dessous représente la courbe représentative d'une fonction f ainsi que sa tangente en un point A. Cette fonction f est solution d'une des équations différentielles suivantes ; laquelle ?

 \Box [Faux] y' = 2x

- $\Box \quad [Faux] \ y' = y + 1$
- \square [Vrai] y' = 2y + 2
- \square [Faux] y' = 2y 2

Explications: On a f(0) = 0 et f'(0) = 2 puisqu'il s'agit de la pente de la tangente à la courbe de f au point d'abscisse x = 0. Ceci élimine toutes les réponses proposées sauf y' = 2y + 2. De fait, la courbe représentative donnée est celle de $x \mapsto e^{2x} - 1$ qui en est bien une solution.

Question 52

Soit f une fonction dont la courbe représentative admet pour tangente en x=-1 la droite d'équation y=2x-2. Parmi les équations différentielles suivantes, quelle est la seule dont f peut être une solution?

- \Box [Faux] $y' = y + e^x$
- \square [Vrai] y' = -y + 2x
- \Box [Faux] $y' = 2y + 3x^3$
- \Box [Faux] 2y' y = 2

Explications: Sur la droite y = 2x - 2, le point d'abscisse x = -1 est A(-1, -4) donc f(-1) = -4. De plus, la pente de la droite est 2, donc f'(-1) = 2. Parmi les équations différentielles proposées, y' = -y + 2x est la seule qui permet d'obtenir ces deux valeurs (on remplace y par f', et on évalue tout cela en x = -1).

Question 53

Soit l'équation différentielle 2y' = 3y + 1. Quelles sont les affirmations vraies?

- \Box [Faux] Il y a au moins une solution dont la limite en $-\infty$ est 0.
- □ [Vrai] La solution vérifiant y(0) = 0 est $y(x) = \frac{1}{3}(e^{\frac{3}{2}x} 1)$.
- \square [Faux] La solution vérifiant y(0) = 0 est y(x) = 0.
- □ [Faux] La solution vérifiant y(0) = 0 est $y(x) = e^{\frac{3}{2}x} 1$.

Explications : Notre équation différentielle peut se réécrire sous la forme $y'=\frac{3}{2}y+\frac{1}{2}$. Les solutions d'une équation différentielle y'=ay+b sont les fonctions $x\mapsto Ce^{ax}-\frac{b}{a}$. Donc ici les solutions de l'équation différentielle sont les fonctions $f(x)=Ce^{\frac{3}{2}x}-\frac{1}{3}$. La solution vérifiant y(0)=0 est $y_0(x)=\frac{1}{3}e^{\frac{3}{2}x}-\frac{1}{3}=\frac{1}{3}(e^{\frac{3}{2}x}-1)$. Enfin, puisque la limite de $e^{\frac{3}{2}x}$ en $-\infty$ est nulle, la limite de toutes les fonctions solutions en $-\infty$ sera $-\frac{1}{3}$.

Question 54

Soit l'équation différentielle y' = y + 3x - 2. Quelles sont les affirmations vraies?

- \square [Vrai] Une solution particulière est y(x) = -3x 1.
- \square [Faux] Une solution particulière est y(x) = 3x 2.
- \square [Vrai] La solution vérifiant y(0) = 1 est $y(x) = 2e^x 3x 1$.
- \square [Faux] La solution vérifiant y(0) = 1 est $y(x) = 3e^x + 3x 2$.

Explications: L'équation homogène est y'=y, dont les solutions sont les $y_h(x)=Ce^x$. Une solution particulière de l'équation y'=y+3x-2 est $y_p(x)=-3x-1$. Les solutions générales sont alors $y(x)=y_h(x)+y_p(x)$. La solutions vérifiant y(0)=1 est $y_0(x)=2e^x-3x-1$.

Soit f une solution de l'équation différentielle (H): y' = 4y. De quelle équation différentielle la fonction $g: x \mapsto f(x) + e^{2x}$ sera-t-elle solution?

- $\Box \quad [Faux] \ y' = 4y + e^{2x}$
- $\Box \quad [Faux] \ y' 4y = 4e^{2x}$
- \square [Vrai] $y' = 4y 2e^{2x}$
- \Box [Faux] y' = 2y

Explications: Si f est solution de (H), alors f'(x) = 4f(x). On calcule alors la dérivée de g: $g'(x) = f'(x) + 2e^{2x}$. Mais on a alors: $g'(x) = 4f(x) + 2e^{2x} = 4f(x) + 4e^{2x} - 2e^{2x} = 4(f(x) + e^{2x}) - 2e^{2x} = 4g(x) - 2e^{2x}$. De ce fait, g est solution de $g' = 4g(x) - 2e^{2x}$. On pouvait aussi exploiter le fait que g'(x) s'écrit sous la forme g'(x) et tenter de remplacer directement dans chacune des équations différentielles les expressions de g et de g'(x) pour voir quelle égalité était vérifiée.