Cryptography: Homework 7

(Deadline: 11:59am, 2019/11/13)

- 1. (30 points) Let F be a pseudorandom function. Show that the following MACs are not EUF-CMA. (Let $\langle i \rangle$ denote an n/2-bit encoding of the integer i.)
 - (a) A fixed-length MAC that authenticates messages of 3n/2 bits.
 - $\mathsf{Gen}(1^n)$: choose $k \leftarrow \{0,1\}^n$ uniformly as the secret key.
 - Mac(k, m): To authenticate a message $m = m_1 m_2 m_3$, where $m_i \in \{0, 1\}^{n/2}$ for every $i \in \{1, 2, 3\}$, compute and output the tag

$$t = F_k(\langle 1 \rangle || m_1) \oplus F_k(\langle 2 \rangle || m_2) \oplus F_k(\langle 3 \rangle || m_3).$$

- Vrfy(k, m, t): for a message $m = m_1 m_2 m_3 \in \{0, 1\}^{3n/2}$ and a tag $t \in \{0, 1\}^n$, output 1 if and only if $t = F_k(\langle 1 \rangle || m_1) \oplus F_k(\langle 2 \rangle || m_2) \oplus F_k(\langle 3 \rangle || m_3)$.
- (b) A fixed-length MAC that authenticates messages of n/2 bits.
 - $Gen(1^n)$: choose $k \leftarrow \{0,1\}^n$ uniformly as the secret key.
 - $\mathsf{Mac}(k,m)$: To authenticate a message $m \in \{0,1\}^{n/2}$, choose $r \leftarrow \{0,1\}^n$ uniformly, compute $s = F_k(r) \oplus F_k(\langle 1 \rangle || m)$, output the tag t = (r,s).
 - Vrfy(k, m, t): for a message $m \in \{0, 1\}^{n/2}$ and a tag t = (r, s), output 1 if and only if $s = F_k(r) \oplus F_k(\langle 1 \rangle || m)$.
- 2. (20 points) Define a MAC for arbitrary-length messages by $\mathbf{Mac}((s,k),m) = H^s(k||m)$ where $k \in \{0,1\}^n$ is an *n*-bit secret key and H^s is the collision-resistant hash function on page 2, lecture 16, i.e., the Merkle-Damgård transform of the hash function $h^s: \{0,1\}^{2n} \to \{0,1\}^n$. Show that \mathbf{Mac} is not EUF-CMA. (The *s* is public and known to the adversary. The *k* is secret and not known to the adversary.)