Grafika Komputerowa. Wprowadzenie

Aleksander Denisiuk
Polsko-Japońska Akademia Technik Komputerowych
Wydział Informatyki w Gdańsku
ul. Targ Drzewny 9/11
80-894 Gdańsk

denisiuk@pja.edu.pl

Wprowadzenie

Wprowadzenie

Interpolacja

Najnowsza wersja tego dokumentu dostępna jest pod adresem

http://users.pja.edu.pl/~denisjuk

Wprowadzenie

Wizualizacja

Blender

Uznanie

Trzy modele wyświetlaczy graficznych

Interpolacja

Wprowadzenie

Wizualizacja komputerowa

Wprowadzenie

Wizualizacja

Blender

Uznanie

Trzy modele wyświetlaczy graficznych

- potrzeby wizualizacji
 - ☐ Antonie van Leeuwenhoek, mikroskop 1677
- Karta dziurkowana
- CRT (Cathode Ray Tube)
 - □ 1897, Ferdinand Braun
 - ☐ 1951, MIT, Whirlwind computer

Interakcja

Wprowadzenie

Wizualizacja

Blender

Uznanie

Trzy modele wyświetlaczy graficznych

- tryb tekstowy
- 1961, MIT, Ivan Sutherland, Sketchpad

- grafika komputerowa w czasie rzeczywistym
- 1968, Ivan Sutherland oraz Bob Sproull, "The Sword of Damocles": proste trójwymiarowe modele szkeletowe

Ewolucja sprzętowa

Wprowadzenie

Wizualizacja

Blender

Uznanie

Trzy modele wyświetlaczy graficznych

- Lata 1940 lata 1950, pierwsza generacja
- Połowa lat 1950, druga generacja: tranzystory
- Połowa lat 1960, trzecia generacja: układy scalone, UNIX
- 1971, czwarta generacja: mikroprocesor (Intel)

Komputery osobiste

Wprowadzenie

Wizualizacja

Blender

Uznanie

Trzy modele wyświetlaczy graficznych

- Początek lat 1970: pierwszy komputer osobisty
- 1977: Apple II, PET (Commodore International)
- Lata 1980: GIU (GUI), CGA

Gry komputerowe

Wprowadzenie

Wizualizacja

Blender

Uznanie

Trzy modele wyświetlaczy graficznych

- Lata 1970 1980: gry wideo na specjalizowanych systemach, animacja komputerowa w filmach: rzadko, 3W grafika w czasie rzeczywistym: tylko dla wizualizacji
- 1992: Wolfenstein 3D (id Software)
- 1993: Doom (id Software): 3W grafika renderowana w czasie rzeczywistym (programowo)

Ewolucja kart graficznych

Wprowadzenie

Wizualizacja

Blender

Uznanie

Trzy modele wyświetlaczy graficznych

Interpolacia

- Koniec lat 1990: openGL standardem 3W grafiki
 - ☐ CAD, Quake 2, Unreal, Half-Life
- Pierwsze dedykowane 3W karty graficzne
 - □ ATI 3D Rage, S3 ViRGE
 - Voodoo Graphics (3Dfx Interactive)
 - Glide API
 - □ NVIDIA
 - GeForce 256
 - GPU (Graphics Processing Unit)
 - T&L (Transform & Lighting)

□ OpenGL, Direct3D

Biblioteka Graficzna OpenGL

Wprowadzenie

Wizualizacja

Blender

Uznanie

Trzy modele wyświetlaczy graficznych

Interpolacja

http://www.opengl.org

Blender

Wprowadzenie

Wizualizacja

Blender

Uznanie

Trzy modele wyświetlaczy graficznych

- http://www.blender.org
- NeoGeo (Ton Roosendaal, Holandia)
- 1998: NeoGeo
- 2002: Blender Foundation, GNU
 - \square od 18 lipca do 13 października zebrano $eq 100\,000$
- 2011: Blender 2.5
- 25 października 2013: Blender 2.69
- 26 czerwca 2014: Blender 2.71
- 9 października 2015: Blender 2.76b (ostatnia wersja dla Windows XP)
- 31 grudnia 2018: 2.80 (cycles, eewee)
- **3** grudnia 2021: 3.0
- 5 grudnia 2023: 4.0
- repozytorium git

Filmy

Wprowadzenie

Wizualizacja

Blender

Uznanie

Trzy modele wyświetlaczy graficznych

- 2004: Spiderman 2
- 24 Marca 2006: Elephants Dream
- 30 Maja 2008: Big Buck Bunny
- 30 września 2010: Sintel
- 26 września 2012: Tears of Steel
- 2015 Cosmos Laundromat (24 września Netherlands Film Festival)
- 2015: Glass Half
- **2017: Agent 327**
- Blender Studio

Blend4Web

Wprowadzenie

Wizualizacja

Blender

Uznanie

Trzy modele wyświetlaczy graficznych

- WebGL, Web Audio, etc bez wtyczek
- Experience Curiosity

Prawa autorskie na obrazki

Wprowadzenie

Wizualizacja

Blender

Uznanie

Trzy modele wyświetlaczy graficznych

- Niektóre obrazki (te, co mają podpisy w języku angielskim)) w tej i innych prezentacjach pochodzą z książki SAMUEL R. BUSS: 3-D Computer Graphics. A Mathematical Introduction with OpenGL
- http://www.math.ucsd.edu/~sbuss/MathCG/
- Prawa autorskie na te obrazki należą do Cambridge University Press

Grafika rastrowa

Wprowadzenie

Wizualizacja

Blender

Uznanie

Trzy modele wyświetlaczy graficznych

Interpolacja

tablica pikseli

Figure I.1: A pixel is formed from subregions or subpixels, each of which displays one of three colors. See color plate C.1.

Grafika wektorowa

Wprowadzenie

Wizualizacja

Blender

Uznanie

Trzy modele wyświetlaczy graficznych

Interpolacja

prymitywy graficzne

Figure I.2: Examples of vector graphics commands.

Grafika rastrowa a wektorowa

Wprowadzenie

Wizualizacja

Blender

Uznanie

Trzy modele wyświetlaczy graficznych

Grafika 3W

Wprowadzenie

Wizualizacja

Blender

Uznanie

Trzy modele wyświetlaczy graficznych

- przymitywy graficzne
- wieloboki (slang: polygony)
- renderowanie
 - □ w czasie rzeczywistym
 - □ nie w czasie rzeczywistym

Wprowadzenie

Interpolacja

Zagadnienie

Jednowymiarowa

Dwuwymiarowa

Zagadnienie interpolacji

Wprowadzenie

Interpolacja

Zagadnienie

Jednowymiarowa

- \blacksquare Dane są węzły: x_0, \ldots, x_n
- \blacksquare Dane są wartości: y_0, \ldots, y_n
- Wyznaczyć funkcję f(x) taką, że $f(x_0)=y_0,\ldots,f(x_n)=y_n$
- Interpolacja wielomianowa: f(x) jest wielomianem

Interpolacja jednowymiarowa

Wprowadzenie

Interpolacja

Zagadnienie

Jednowymiarowa

Dwuwymiarowa

- $x_0,\ldots,x_n\in\mathbb{R}$
- $y_0,\ldots,y_n\in\mathbb{R}$

Twierdzenie 1. Istnieje jedyny taki wielomian f(x) stopnia n, że $f(x_0) = y_0, \ldots, f(x_n) = y_n$.

Wielomian Lagrange'a

Wprowadzenie

Interpolacja

Zagadnienie

Jednowymiarowa

$$f(x) = y_0 \frac{(x - x_1) \dots (x - x_n)}{(x_0 - x_1) \dots (x_0 - x_n)} + y_1 \frac{(x - x_0)(x - x_2) \dots (x - x_n)}{(x_1 - x_0)(x_1 - x_2) \dots (x_1 - x_n)} + \dots + y_k \frac{(x - x_0) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_n)}{(x_k - x_0) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x_k - x_n)} + \dots + y_n \frac{(x - x_0) \dots (x - x_{n-1})}{(x_n - x_0) \dots (x_n - x_{n-1})}$$

Ilorazy różniczkowe

Wprowadzenie

Interpolacja

Zagadnienie

Jednowymiarowa

$$x_0$$
 $f(x_0)$ $f(x_0; x_1)$ $f(x_0; x_1; x_2)$ $f(x_0; x_1; x_2)$ $f(x_0; x_1; x_2; x_3)$ x_2 $f(x_2)$ $f(x_2; x_3)$ $f(x_1; x_2; x_3)$ $f(x_1; x_2; x_3)$ $f(x_1; x_2; x_3)$ $f(x_2; x_3)$ $f(x_2; x_3; x_4)$... $f(x_2; x_3; x_4)$...

- $f(x_0; x_1) = \frac{f(x_1) f(x_0)}{x_1 x_0}, f(x_1; x_2) = \frac{f(x_2) f(x_2)}{x_2 x_2}, \dots$
- $f(x_0; x_1; x_2) = \frac{f(x_1; x_2) f(x_0; x_1)}{x_2 x_0}, \dots$
- $f(x_0; x_1; x_2; x_3) = \frac{f(x_1; x_2; x_3) f(x_0; x_1; x_2)}{x_3 x_0}, \dots$
- ______
- $f(x_0; \dots; x_n) = \frac{f(x_1; \dots; x_n) f(x_0; \dots; x_{n-1})}{x_n x_0}, \dots$

Wielomian Newtona

Wprowadzenie

Interpolacja

Zagadnienie

Jednowymiarowa

Dwuwymiarowa

$$f(x) = f(x_0) + f(x_0; x_1)(x - x_0) +$$

$$+ f(x_0; x_1; x_2)(x - x_0)(x - x_1) +$$

$$+ \dots + f(x_0; \dots; x_n)(x - x_0) \dots (x - x_{n-1})$$

■ To jest ten sam wielomian zapisany inaczej

Interpolacja liniowa

Wprowadzenie

Interpolacja

Zagadnienie

Jednowymiarowa

$$f(x) = y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0}$$

$$f(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0} (x - x_0)$$

Interpolacja sześcienna

Wprowadzenie

Interpolacja

Zagadnienie

Jednowymiarowa

- $x_k = x_0 + kh, k = 0, 1, \dots, n$
- \blacksquare $k = \left\lceil \frac{x x_0}{h} \right\rceil$ (część całkowita, podłoga, floor)

Interpolacja dwuliniowa

Wprowadzenie

Interpolacja

Zagadnienie

Jednowymiarowa

$$f(x,y) = f(x,y_k) \frac{y - y_{k+1}}{y_k - y_{k+1}} + f(x,y_{k+1}) \frac{y - y_k}{y_{k+1} - y_k}$$

$$\Box f(x,y_k) = f(x_k,y_k) \frac{x - x_{k+1}}{x_k - x_{k+1}} + f(x_{k+1},y_k) \frac{x - x_k}{x_{k+1} - x_k}$$

$$\Box f(x, y_{k+1}) = f(x_k, y_{k+1}) \frac{x - x_{k+1}}{x_k - x_{k+1}} + f(x_{k+1}, y_{k+1}) \frac{x - x_k}{x_{k+1} - x_k}$$

Interpolacja dwusześcienna

Wprowadzenie

Interpolacja

Zagadnienie

Jednowymiarowa

