TRUYỀN TIN

Cho n máy tính đánh số từ 1 tới n chưa được kết nối với nhau. Người ta lên kế hoạch lắp đặt m đường truyền tin một chiều để kết nối các máy tính đó. Các đường truyền tin được đánh số từ 1 tới m, đường truyền tin thứ i sau khi được lắp đặt sẽ nối từ máy tính u_i tới máy tính v_i . Các đường truyền tin sẽ được lắp đặt lần lượt theo thứ tự từ 1 tới m. Việc lắp đặt một đường truyền tin mất đúng 1 đơn vị thời gian.

Máy tính 1 có thể truyền tin tới máy tính n nếu tồn tại một dãy các máy tính $(1=p_1,p_2,...,p_k=n)$ sao cho có đường truyền tin một chiều từ máy tính p_i tới máy tính p_{i+1} đã được lắp đặt ($\forall i=\overline{1,k-1}$).

Giả sử việc lắp đặt các đường truyền tin được thực hiện liên tục bắt đầu từ thời điểm 0. Hãy cho biết thời điểm sớm nhất mà máy tính 1 có thể truyền tin tới máy tính n.

Dữ liệu: Vào từ file văn bản COMNET.INP

- Dòng 1 chứa hai số nguyên dương n, m $(n, m \le 300000; n \ge 2)$
- ullet m dòng tiếp theo, dòng thứ i chứa hai số nguyên dương u_i, v_i

Các số trên một dòng của input file được ghi cách nhau ít nhất một dấu cách

Kết quả: Ghi ra file văn bản COMNET.OUT một số nguyên duy nhất là thời điểm sớm nhất mà máy tính 1 có thể truyền tin tới máy tính n. Trong trường hợp đã lắp đặt xong m đường truyền tin mà máy tính 1 vẫn không thể truyền tin tới máy tính n, ghi ra file kết quả một số - 1

Ví dụ

COMNET.INP	COMNET.OUT
4 5	4
1 2	
3 4	
4 1	
2 3	
3 2	

DÃY CON CHUNG DÀI NHẤT

Cho hai dãy số nguyên $A=(a_1,a_2,...,a_m)$ và $B=(b_1,b_2,...,b_n)$. Dãy số $C=(c_1,c_2,...,c_k)$ được gọi là dãy con chung của hai dãy A và B nếu tồn tại hai dãy chỉ số:

$$1 \le i_1 < i_2 < \dots < i_k \le m$$

$$1 \le j_1 < j_2 < \dots < j_k \le n$$

Sao cho $c_p=a_{i_p}=b_{j_p}$ ($\forall p=\overline{1,k}$)

Yêu cầu: Tìm dãy số C là dãy con chung của hai dãy A và B với độ dài lớn nhất có thể.

Dữ liệu: Vào từ file văn bản LCS.INP

- Dòng 1 chứa hai số nguyên dương $m \le 10^3$; $n \le 10^6$
- Dòng 2 chứa m số nguyên $a_1, a_2, ..., a_m$ ($\forall i: |a_i| \le 10^6$)
- Dòng 3 chứa n số nguyên $b_1, b_2, ..., b_n$ ($\forall j: \left|b_j\right| \leq 10^6$)

Kết quả: Ghi ra file văn bản LCS.OUT 2 dòng:

- Dòng 1 ghi độ dài dãy C tìm được (k)
- Dòng 2 ghi các số $c_1, c_2, ..., c_k$

Ví dụ

LO	LCS.INP								LCS.OUT						
9	9								7						
1	2	7	3	4	8	5	6	9	1	2	3	4	5	6	9
1	2	3	4	5	6	7	8	9							

BÚP BÊ GÕ

Công ty đồ chơi X nhập khẩu n con búp bê gỗ. Các con búp bê được đánh số từ 1 tới n trong đó con búp bê thứ i là một hộp rỗng có kích thước là một số nguyên a_i . Người ta có thể lồng con búp bê thứ i vào trong con búp bê thứ j nếu con búp bê thứ j đang rỗng và $a_i+k\leq a_j$, với k là một số nguyên dương cho trước. Bằng cách lồng các con búp bê vào nhau theo cách như vậy, công ty X chỉ cần tìm chỗ đặt những con búp bê ngoài cùng (những con búp bê không nằm trong bất kỳ con búp bê nào khác) vào kho.

Yêu cầu: Hãy giúp công ty X lồng các con búp bê vào nhau sao cho tổng kích thước các con búp bê ngoài cùng là nhỏ nhất.

Dữ liệu: Vào từ file văn bản DOLLS.INP

- Dòng 1 của chứa hai số nguyên dương $n \le 10^5; k \le 10^9$ cách nhau ít nhất một dấu cách.
- Dòng 2 của nhóm chứa n số nguyên dương $a_1, a_2, ..., a_n$ ($a_i \le 10^9, \forall i = 1, 2, ..., n$) cách nhau ít nhất một dấu cách.

Kết quả: Ghi ra file văn bản DOLLS.OUT một số nguyên duy nhất là tổng kích thước các con búp bê ngoài cùng theo phương án tìm được.

Ví dụ

DC	DOLLS.INP							DOLLS.OUT			
8	2							18			
8	4	2	1	1	3	5	9				

