

[영역] 5.기하

중 2 과정

5-1-1.이등변 삼각형의 성질과 이등변 삼각형이 되는 조건

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일: 2016-10-25

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

계산시 참고사항

1. 이등변삼각형

- 1) 이등변삼각형: 두 변의 길이가 같은 삼각형 \Rightarrow $\overline{AB} = \overline{AC}$
- 2) 꼭지각: 길이가 같은 두 변이 이루는 각 ⇒ ∠A
- 3) 밑변: 꼭지각의 대변 ⇒ BC
- 4) 밑각: 밑변의 양 끝각 ⇒ ∠B, ∠C

- 1) 이등변 삼각형의 두 밑각의 크기는 같다
- $\Rightarrow \angle B = \angle C$
- 2) 이등변삼각형의 꼭지각의 이등분선은 밑변을 수직이등분한다.
- $\Rightarrow \overline{BD} = \overline{CD}, \overline{AD} \perp \overline{BC}$

3. 이등변삼각형이 되는 조건

두 내각의 크기가 서로 같은 삼각형은 이등변삼각형이다.

 \Rightarrow \triangle ABC에서 \angle B = \angle C이면 $\overline{AB} = \overline{AC}$

- ◉ 이등변삼각형에서 다음은 모두 일치 하다.
- (꼭지각의 이등분선)
- =(밑변의 수직이등분선)
- =(꼭짓점A와 밑변의 중점을 잇는 선 분)
- =(꼭짓점 A에서 밑변에 내린 수선)

◉ 어떤 삼각형이 이등변삼각형임을 보 이려면 두 내각의 크기가 같음을 보 이면 된다.

이등변삼각형

☑ 다음 그림과 같은 ∠A가 꼭지각인 이등변삼각형 ABC에서 x의 값을 구하여라.

1.

2.

이등변삼각형의 성질

3. '이등변삼각형의 두 밑각의 크기는 같다.' 임을 설명하여라.

(설명) $\angle A$ 의 이등분선과 \overline{BC} 의 교점을 D라 하면

△ABD와 △ACD에서

 $\overline{AB} = ($

--- (1)

--- (3)

)는 공통 $\angle BAD = ($

) ---

①,②,③에서 $\triangle ABD \equiv ($) (SAS합동)

 $\therefore \angle ABD = ($

'이등변삼각형의 꼭지각의 이등분선은 밑변을 수직이등분한 다.' 임을 설명하여라.

(설명) △ABD와 △ACD에서

 $\overline{AB} = ($) ——— (1)

AD 는 공통

①,②,③에서 $\triangle ABD \equiv \triangle ACD$ (()합동)

 $\therefore \overline{\mathrm{BD}} = ($)

 $\angle ADB = ($) $0|\mathbb{Z}, \angle ADB + \angle ADC = ($

이므로

$$\angle ADB = \angle ADC = ($$

 $\therefore \overline{AD}$ () \overline{BC}

 \square 다음 그림의 이등변삼각형 \triangle ABC에서 \triangle 는 \angle A의 이등분 선일 때, 다음 중 옳은 것에는 ○표, 옳지 않은 것에는 X표 하여라.

5. $\angle B = \angle C$

 $\angle ADC = 90^{\circ}$

7. $\angle A = \angle C$

 $\overline{BC} \perp \overline{AD}$

)

9.
$$\angle ADB = 90^{\circ}$$

)

10.
$$\overline{AB} = \overline{BC}$$

)

11.
$$\overline{BD} = \overline{CD}$$

)

12.
$$\triangle ABD \equiv \triangle ACD$$

)

13.
$$\triangle ABC \equiv \triangle ACD$$

)

)

ightharpoonup 다음 그림의 이등변삼각형 m ABC에서 $m \overline{AM}$ 은 $m \overline{BC}$ 의 중선일 때, 다음 중 옳은 것에는 ○표, 옳지 않은 것에는 X표 하여 라.

14. $\angle AMC = 90^{\circ}$

)

15.
$$\angle ABM = \angle ACM$$

)

16.
$$\angle A = \angle B$$

)

17.
$$\angle A = \angle C$$

)

18.
$$\angle BAM = \angle CAM$$

)

19.
$$\triangle BAM = \triangle CAM$$

)

 \square 다음 그림과 같은 삼각형 ABC에서 x의 값을 구하여라.

20.

21.

22.

23.

24.

25.

26.

27.

ightharpoonup 다음 그림에서 ightharpoonup ABC가 $\overline{AB} = \overline{AC}$ 인 이등변삼각형일 때, ∠ x의 크기를 구하여라.

28.

29.

31.

32.

33.

34.

35.

36.

37.

38.

39.

ightharpoonup 다음 그림에서 $\angle x$, $\angle y$ 의 크기를 구하여라.

41.

42.

43.

 \square 다음 그림에서 $\triangle ABC$ 가 $\overline{AB} = \overline{AC}$ 인 이등변삼각형이다. \angle A의 이등분선과 \overline{BC} 의 교점을 D라 할 때, x, y의 값을 각각 구하여라.

44.

45.

46.

47.

48.

49.

ightharpoonup 다음 그림과 같은 이등변삼각형 m ABC에서 x+y의 값을 구하여라.

51.

52.

53.

54.

55.

56.

ightharpoonup 다음 그림에서 $\angle x + \angle y$ 의 값을 구하여라.

57.

58.

59.

60.

이등변삼각형이 되는 조건

62. "두 내각의 크기가 같은 삼각형은 이등변삼각형이다."임을 설명하여라.

(설명) $\angle A$ 의 이등분선과 \overline{BC} 의 교점을 D라 하면

△ABD와 △ACD에서

$$\angle B = ($$
)

$$\angle BAD = ()$$

이때 삼각형의 세 내각의 크기의 합은 $180\,^{\circ}$ 이므로

$$\angle ADB = ()$$
 ----- ②

() 는 공통 ----- ③

①,②,③에서 $\triangle ABD \equiv ($) (ASA 합동)

 $\therefore \overline{AB} = ($

☑ 다음 그림과 같은 삼각형 ABC에서 x의 값을 구하여라.

63.

64.

65.

66.

67.

68.

69.

ightharpoonup 다음 그림과 같은 ightharpoonupABC에서 ightharpoonup의 길이를 구하여라.

71.

72.

73.

☑ 다음 그림과 같은 삼각형 ABC에서 x의 값을 구하여라.

74.

75.

76.

77.

\square 다음 그림과 같은 삼각형 ABC에서 x+y의 값을 구하여라.

78.

79.

☑ 다음 물음에 답하여라.

81. 다음 그림의 삼각형에서 $\angle B = \angle C$, $\angle EDM = \angle FDM$ 일 때, x+y의 값을 구하여라.

82. 다음 그림의 삼각형에서 x+y의 값을 구하여라.

다음 그림의 삼각형에서 x+y의 값을 구하여라. 83.

□ 다음 그림과 같은 이등변삼각형 ABC에서 ∠A의 이등분선 이 \overline{BC} 와 만나는 점을 D라 하고, \overline{AD} 위에 한 점 P를 잡 자. 다음 중 옳은 것은 ○표, 옳지 않은 것은 X표를 하여라.

84.
$$\overline{BD} = \overline{CD}$$

)

85.
$$\overline{AP} = \overline{BP}$$

)

86.
$$\angle PDC = 90^{\circ}$$

)

87.
$$\triangle PBD = \triangle PCD$$

)

All All변 BC와의 교점을 D라고 하자. $\overline{\mathrm{AD}}$ 위에 한 점 E를 잡았 을 때, 다음 중 옳은 것에는 ○표, 옳지 않은 것에는 X표 하 여라.

88.
$$\overline{BD} = \overline{CD}$$

)

$$89. \quad \angle ABE = \angle EBD$$

)

90.
$$\overline{BE} = \overline{CE}$$

)

91.
$$\angle EBD = \angle ECD$$

)

92.
$$\overline{AE} = \overline{BE}$$

)

93.
$$\angle EDB = \angle EDC$$

)

94. 이등변삼각형 ABC에서 ∠B와 ∠C의 이등분선의 교점을 D라 **할 때.** △DBC는 이등변삼각형임을 설명하여라.

(설명) $\triangle ABC$ 에서 $\overline{AB} = \overline{AC}$ 이므로

 $\angle ABC = ($) ---- (1)

∠ABD = (), ∠ACD= () 이므로

 $\angle DBC = \frac{1}{2}$ (), $\angle DCB = \frac{1}{2}$ () ----- ②

①,②에서 $\angle DBC = ($)이므로 $\triangle DBC = ($ 이등변삼각형이

정답 및 해설

- 1) 8
- 2) 5
- 3) \overline{AC} , \overline{AD} , $\angle CAD$, $\triangle ACD$, $\angle ACD$
- 4) \overline{AC} , $\angle CAD$, SAS, \overline{CD} , $\angle ADC$, 180° , 90° , \bot
- 5) C
- ⇒ 이등변삼각형의 두 밑각의 크기는 서로 같다.
- 6) C
- 이등변삼각형의 꼭지각의 이등분선은 밑변을 수직이등 분한다.
- 7) ×
- 8) 🔾
- 9) 🔾
- 10) X
- 11) 0
- 이등변삼각형의 꼭지각의 이등분선은 밑변을 수직이등 분한다.
- 12) ()
- ⇒ SAS합동
- 13) ×
- 14) 🔾
- 15) 🔾
- 16) ×
- 17) ×
- 18) 🔿
- 19) 🔾
- 20) 5
- 21) 4
- 22) 35
- $\angle C = \frac{1}{2} \times (180^{\circ} 110^{\circ}) = 35^{\circ}$ $\therefore x = 35$

- 23) 8
- 24) 90
- 25) 40
- Arr Arr BDA = 90 ° 이므로 Arr BAD = 180 ° - (50 ° +90 °) = 40 ° Arr Arr Arr Arr Arr Arr Arr
- 26) 70
- 27) 90
- Arr \angle B = 180 ° -2 × 45 ° = 90 ° \therefore x = 90
- 28) 50°
- 29) 50°
- 30) 55°
- $\Rightarrow \angle x = \frac{1}{2} \times (180^{\circ} 70^{\circ}) = 55^{\circ}$
- 31) 30°
- $\Rightarrow \angle ABC = \angle ACB = 180^{\circ} 105^{\circ} = 75^{\circ}$ $\therefore \angle x = 180^{\circ} 75^{\circ} \times 2 = 30^{\circ}$
- 32) 52°
- 다》 \angle C = \angle B = $2\angle x 40$ ° 이므로 $\angle x + (2\angle x - 40$ °) + $(2\angle x - 40$ °) = 180 ° $5\angle x - 80$ ° = 180 °, $5\angle x = 260$ ° $\therefore \angle x = 52$ °
- 33) 105°
- ightharpoonup ig
- 34) 34°
- 35) 110°
- \Rightarrow \angle B = $\frac{1}{2}$ (180°-40°) = 70°이므로 $\angle x$ = 110°이다.
- 36) $52\degree$
- 37) 115°
- \Rightarrow $\angle B = \angle ACB = 65$ 이므로 $\angle x = 180 65 = 115$ 이다.
- 38) 60°
- 39) 70°
- Arr Arr

- 40) 65°
- 41) $\angle x = 50^{\circ}$, $\angle y = 80^{\circ}$
- $\Rightarrow \angle x = \angle ACB = 180^{\circ} 130^{\circ} = 50^{\circ}$ $\angle y = 180^{\circ} 2 \times 50^{\circ} = 80^{\circ}$
- 42) $\angle x = 56^{\circ}$, $\angle y = 124^{\circ}$
- 43) $\angle x = 65^{\circ}$, $\angle y = 65^{\circ}$
- $\Rightarrow \angle x = \frac{1}{2} \times (180^{\circ} 50^{\circ}) = 65^{\circ}$

두 직선이 평행하면 동위각의 크기도 같으므로 $\angle y = \angle x = 65\,^\circ$

- 44) x = 90, y = 8
- 45) x = 50, y = 7
- 46) x = 35, y = 10
- 47) x = 65, y = 3
- 48) x = 6, y = 58
- 49) x = 30, y = 6
- \angle C = \angle B = 60°, \angle ADC = 90°이므로 \angle CAD = 180° (90° + 60°) = 30° $\therefore x = 30$

이때 $\angle BAC = 2 \times 30\degree = 60\degree$ 이므로 $\triangle ABC$ 는 정삼각형이다. $\overline{BC} = \overline{AB} = 12 \text{(cm)}$ 이므로

 $\overline{\text{CD}} = \frac{1}{2}\overline{\text{BC}} = \frac{1}{2} \times 12 = 6 \text{ (cm)}$ $\therefore y = 6$

- 50) x = 8, $y = 90^{\circ}$
- \triangle ABD = \triangle ACD(SAS 합동)이다. 따라서 $\overline{\text{BD}} = \overline{\text{CD}}$, \angle ADB = \angle ADC = 90 °이므로 $x=8,\ y=90$ °이다.
- 51) 95
- $\Rightarrow x = 5, y = 900$ 으로 x + y = 950다.
- 52) 54
- 53) 41
- $\Rightarrow x = 6$, y = 90 55 = 35이므로 x + y = 41이다.
- 54) 46
- $\Rightarrow x = 40, y = 60$ 으로 x + y = 460다.
- 55) 43
- \triangle \triangle ABD = \triangle ACD(SAS 합동)이므로 \triangle ADB = \triangle ADC = 90 $^{\circ}$ 이고 x = 40이다. 또, $\overline{BD} = \overline{CD}$ 이므로 y = 3이다.

- 따라서 x+y=43이다.
- 56) 35
- 57) 210°
- 다 $\angle x = 80$ °, $\angle y = 180$ ° -50° = 130° 이다. 따라서 $\angle x + \angle y = 210$ ° 이다.
- 58) 195°
- 59) 84°
- 60) 90°
- 61) 110°
- 62) $\angle C$, $\angle CAD$, $\angle ADC$, \overline{AD} , $\triangle ACD$, \overline{AC}
- 63) 6
- 64) 6
- \Rightarrow $\angle A = \angle C$ 이면 $\overline{AB} = \overline{BC}$ 이므로 x = 6이다.
- 65) 7
- 66) 7
- 67) 6
- 68) 9
- Arr Arr
- 69) 10
- Arr Arr
- 70) 8
- Arr Arr

이때 $\overline{AB} \perp \overline{CD}$ 이므로 $\overline{AD} = \frac{1}{2}\overline{AB} = 8$ (cm) $\therefore x = 8$

- 71) 5cm
- Arr Arr
- 72) 10 cm
- 73) 7
- \Rightarrow $\angle A = 180^{\circ} 50^{\circ} 80^{\circ} = 50^{\circ}$ 이므로 $\overline{AC} = 7$

- 74) 5
- $\Rightarrow 2x-7=8-x \Rightarrow 3x=15 \Rightarrow x=5$
- 75) 6
- $\Rightarrow 2x-5=x+1 \Rightarrow x=6$
- 76) 6
- $\Rightarrow x+8=3x-4 \Rightarrow 2x=12 \Rightarrow x=6$
- 77) 8
- $\Rightarrow x+4=2x-4 \Rightarrow x=8$
- 78) 75
- ⇒ 삼각형의 세 내각의 합은 180°이다.

즉,
$$y = 180 - (50 + 65) = 65$$
이다.

- 이 때, $\angle B = \angle C$ 이므로 $\overline{AB} = \overline{AC}$ 이다.
- 즉, x = 10이다.
- 따라서 x+y=75이다.
- 79) 56
- Arr Arr Arr Arr ACB = 180 Arr 115 = 65 Arr 이므로 Arr 9 = 50 Arr Arr Arr Arr Arr 115 = 65 Arr 이므로 Arr Arr
- 80) 45
- 81) 11
- 82) 11
- 83) 150
- 84) 🔾
- 85) ×
- 86) 🔾
- 87) 🔾
- □ D = CD, PD는 공통, ∠PDB = ∠PDC이므로
 △PBD ≡ △PCD (SAS 합동)
- 88) 🔾
- 89) ×
- $\Rightarrow \angle ABE = \angle ACE$
- 90) 🔾
- 91) 🔾
- 92) ×
- $\Rightarrow \overline{CE} = \overline{BE}$
- 93) 🔾

94) ∠ACB, ∠DBC, ∠DCB, ∠ABC, ∠ACB, ∠DCB