TEST

DIGITAL LOGIC Time: 60 min.

Directions for questions 1 to 30: Select the correct alternative from the given choices.

- **1.** What is the range of signed decimal numbers that can be represented by 4-bit 1's complement notation?
 - (A) -7 to + 7
- (B) -16 to +16
- (C) -7 to +8
- (D) -15 to +16
- **2.** Which of the following signed representation have a unique representation of 0?
 - (A) Sign-magnitude
- (B) 1's complement
- (C) 0's complement
- (D) 2's complement
- 3. Find the odd one out among the following
 - (A) EBCDIC
- (B) GRAY
- (C) Hamming
- (D) ASCII
- **4.** Gray code for number 8 is
 - (A) 1100
- (B) 1111
- (C) 1000
- (D) 1101
- **5.** Find the equivalent logical expression for $z = x + \overline{x}y$
 - (A) z = xy
- (B) $Z = \overline{x}y$
- (C) $Z = \overline{x} + y$
- (D) Z = x + y
- **6.** The number of distinct Boolean expression of 3 variables is
 - (A) 256
- (B) 16
- (C) 1024
- (D) 65536
- 7. The Boolean expression for the truth table shown is

X	Υ	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

- (A) $Y(X+Z)(\overline{X}+\overline{Z})$
- (B) $Y(X + \overline{Z}) (\overline{x} + Z)$
- (C) $\overline{Y}(X + \overline{Z}) (\overline{x} + Z)$
- (D) $\overline{Y}(X+Z)(\overline{X}+\overline{Z})$
- **8.** The number of essential prime implicants for the Boolean functions shown in the given K-map.

<i>∖WZ</i>					
XY	00	01	11	10	
00	1	1	0	1	
01	1	0	0	1	
11	1	0	0	0	
10	1	0	0	1	

(A) 4

(B) 5

(C) 6

(D) 8

9. The number of product terms in the minimized SOP from is

1	0	0	1
0	D	0	0
0	0	D	1
1	0	0	1

(A) 2

(B) 4

(C) 5

- (D) 3
- **10.** The minimum number of 2 input NAND gates needed to implement Z = XY + VW is
 - (A) 2

(B) 3

(C) 4

- (D) 5
- 11. The operation $\overline{a} \oplus \overline{b}$ represents
 - (A) $ab + \overline{a} \, \overline{b}$
- (B) $\overline{a}b + ab$
- (C) $a\overline{b} + \overline{a}b$
- (D) $a-\overline{b}$
- **12.** Find the dual of X + [Y + XZ] + U
 - (A) X + [Y(X + Z)] + U
- (B) X(Y+XZ)U
- (C) X + [Y(X+Z)]U
- (D) X[Y(X+Z)]U
- **13.** The simplified form of given function $AB + BC + A\overline{C}$ is equal to
 - (A) $AB + A\overline{C}$
- (B) $A\overline{C} + BC$
- (C) $\overline{A}C + BC$
- (D) $A\overline{B} + A\overline{C}$
- **14.** Simplify the following

- (A) $\overline{W}\overline{Y} + \overline{W}\overline{Z} + WXY$
- (B) $\overline{W} \, \overline{X} + \overline{W} \, \overline{Z} + WXY$
- (C) $WY + WYZ + WXY + XY\overline{Z}$
- (D) $\overline{W}\overline{X} + \overline{Y}\overline{Z} + \overline{W}\overline{Z}$
- 15. Simplify the following

 $F = ABCD + A\overline{B}CD + \overline{A}C\overline{B}D + \overline{A}BCD$

- (A) *CD*
- (B) *BC*
- (C) AB

- (D) $\overline{C} + \overline{D}$
- **16.** Find the equivalent Boolean expression for $AC + B\overline{C}$
 - (A) $\overline{A}C + B\overline{C} + AC$
 - (B) $ABC + A\overline{B}C + AB\overline{C} + \overline{A}B\overline{C}$
 - (C) $ABC + A\overline{B}C + AB\overline{C} + \overline{A}\overline{B}\overline{C}$
 - (D) $\overline{A}C + B\overline{C} + \overline{A}\overline{C}$

17. Simplify the following expression

$$\overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + \overline{A}BC + AB\overline{C}$$

- (A) $\overline{A}\overline{C} + B\overline{C} + \overline{A}B$
- (B) $A\overline{C} + B\overline{C} + \overline{A}B$
- (C) $\bar{A}\bar{C} + \bar{B}C + \bar{A}B$
- (D) $\overline{A}\overline{C} + \overline{B}\overline{C} + \overline{A}B$
- **18.** If A = 1 in the logic equation $[A + C\{\overline{B} + (\overline{C} + A\overline{B})\}]$ $[\overline{A} + \overline{C}(A + B)] = 1$, then
 - (A) B = C
- (B) $B = \overline{C}$
- (C) C = 1
- (D) C = 0
- 19. Which is the odd function with 3 Boolean variables in it
 - (A) $\Sigma(0, 3, 5, 6)$
- (B) $\sum_{=}^{\infty} (0, 2, 4, 6)$
- (C) $\Sigma(1, 2, 4, 7)$
- (D) $\Sigma(1, 3, 5, 7)$
- **20.** Which of the following expressions is/are incorrect?
 - (A) $\overline{a+b} = \overline{a} \ \overline{b}$
- (B) $\overline{a+b} = \overline{a} \ \overline{b}$
- (C) $\overline{a} \ \overline{b} = \overline{a} + \overline{b}$
- (D) $\overline{a} + \overline{b} = \overline{a} \overline{b}$
- 21. The simplified form of logic circuit is

- (A) A + B
- (B) \overline{AB}
- (C) $\bar{A} + \bar{B}$
- (D) $\bar{A} \bar{B}$
- 22. The circuit shown in figure is equivalent to gate.

- (A) X-OR gate
- (B) EX-NOR gate
- (C) Half adder
- (D) Half subtractor
- 23. The truth table of the circuit shown in figure

Α	В	С	Z
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

The Boolean expression for Z

(A)
$$\overline{(\overline{A}+B)}(\overline{B}+\overline{C})$$

(B)
$$(\overline{A+B})(\overline{B+\overline{C}})$$

(C)
$$\overline{(\overline{A}+B)}(\overline{B+C})$$

- (D) All of the above
- **24.** A combinational circuit has input *A*, *B* and *C* and its K-map is as shown in figure. The output of the circuit is given by

- (A) $(\overline{AB} + A\overline{B})\overline{C}$
- (B) $(AB + \overline{A}\overline{B})\overline{C}$
- (C) $\overline{A}\overline{B}\overline{C}$
- (D) $A \oplus B \oplus C$
- **25.** Which of the following two 2-input gates will realize the Boolean expression $X(P, Q, R) = \pi(0, 5)$
 - (A) AND and OR
- (B) NAND and OR
- (C) AND and X-OR
- (D) OR and X-OR
- 26. Simplify the given function

$$f(x, y, z) = \sum m(0, 2, 3, 4, 5, 7)$$

- (A) $\overline{x}y + \overline{y}\overline{z} + xz$
- (B) $\overline{x} \overline{z} + x\overline{y} + yz$
- (C) Both (A) and (B)
- (D) $\overline{x} \overline{z} + \overline{x}y + x\overline{y} + xz$
- **27.** Figure below shows a digital circuit, which compares two numbers A_0 A_1 A_2 A_3 , B_0 B_1 B_2 B_3 . Choose the pair of correct input number to get output Y = 0.

- (A) 1100, 1100
- (B) 0110, 0110
- (C) 1011, 0010
- (D) 1011, 1011
- **28.** How many 3 to 8 line decoders with an enable input are required to build 6 of 34 decoder?
 - (A) 6

(B) 2

(C) 9

- (D) 4
- **29.** It is required to construct a 2ⁿ to 1 multiplexer by using 2-to-1 multiplexer only. How many of 2-to-1 multiplexer are needed?
 - (A) n

- (B) 2^{2n}
- (C) 2^{n-1}
- (D) $2^n 1$

1.82 | Unit 1 • Digital Logic

30. Consider the following circuit

Which one of the following give the function implemented by the MUX based digital circuit?

(A)
$$F = C_2 \cdot \overline{C_1} S + \overline{C_2} C_B (\overline{A} + \overline{A})$$

(B)
$$F = \overline{C_2} \cdot \overline{C_1} + C_2 C_1 + C_2 \overline{C_1} S + \overline{C_2} C_1 \overline{AB}$$

(C)
$$F = \overline{AB} + S$$

(D)
$$F = \overline{C_2} \cdot \overline{C_1} + C_2 \cdot \overline{C_1} S + \overline{C_2} C_1 \overline{A} \cdot \overline{B}$$

Answer Keys									
1. A	2. D	3. C	4. A	5. D	6. A	7. A	8. A	9. A	10. B
11. C	12. D	13. B	14. A	15. A	16. B	17. A	18. D	19. C	20. D
21. D	22. B	23. B	24. D	25. D	26. C	27. C	28 . C	29. D	30. D