

planetmath.org

Math for the people, by the people.

proof of rank-nullity theorem

Canonical name ProofOfRanknullityTheorem

Date of creation 2013-03-22 12:25:13 Last modified on 2013-03-22 12:25:13

Owner rmilson (146) Last modified by rmilson (146)

Numerical id 4

Author rmilson (146)

Entry type Proof

Classification msc 15A03

Let $T:V\to W$ be a linear mapping, with V finite-dimensional. We wish to show that

$$\dim V = \dim \operatorname{Ker} T + \dim \operatorname{Img} T$$

The images of a basis of V will span $\operatorname{Img} T$, and hence $\operatorname{Img} T$ is finite-dimensional. Choose then a basis w_1, \ldots, w_n of $\operatorname{Img} T$ and choose preimages $v_1, \ldots, v_n \in U$ such that

$$w_i = T(v_i), \quad i = 1 \dots n$$

Choose a basis u_1, \ldots, u_k of Ker T. The result will follow once we show that $u_1, \ldots, u_k, v_1, \ldots, v_n$ is a basis of V.

Let $v \in V$ be given. Since $T(v) \in \operatorname{Img} T$, by definition, we can choose scalars b_1, \ldots, b_n such that

$$T(v) = b_1 w_1 + \dots b_n w_n.$$

Linearity of T now implies that $T(b_1v_1 + \ldots + b_nv_n - v) = 0$, and hence we can choose scalars a_1, \ldots, a_k such that

$$b_1v_1 + \ldots + b_nv_n - v = a_1u_1 + \ldots + a_ku_k$$
.

Therefore $u_1, \ldots, u_k, v_1, \ldots, v_n$ span V.

Next, let $a_1, \ldots, a_k, b_1, \ldots, b_n$ be scalars such that

$$a_1u_1 + \ldots + a_ku_k + b_1v_1 + \ldots + b_nv_n = 0.$$

By applying T to both sides of this equation it follows that

$$b_1w_1 + \ldots + b_nw_n = 0,$$

and since w_1, \ldots, w_n are linearly independent that

$$b_1 = b_2 = \ldots = b_n = 0.$$

Consequently

$$a_1u_1 + \ldots + a_ku_k = 0$$

as well, and since u_1, \ldots, u_k are also assumed to be linearly independent we conclude that

$$a_1 = a_2 = \ldots = a_k = 0$$

also. Therefore $u_1, \ldots, u_k, v_1, \ldots, v_n$ are linearly independent, and are therefore a basis. Q.E.D.