CÁLCULO. GRADO EN INFORMÁTICA. GRUPO C.

1. Calcula los números reales que verifican que

$$\left|\frac{2x-1}{x^2+x}\right| > 1.$$

Solución.

Evidentemente la inecuación no tiene sentido cuando el denominador $x^2 + x = 0$ que es cuando x = 0 o x = -1; así que estos puntos no tendremos que estudiarlos.

Se tiene que $2x - 1 = 0 \Leftrightarrow x = \frac{1}{2}$ y $x^2 + x = 0 \Leftrightarrow x = 0$ o x = -1. Veamos el signo del cociente en cada uno de los intervalos que nos define los valores anteriores de x.

(a) Si x < -1 entonces $x^2 + x > 0$ y 2x - 1 < 0 con lo que la desigualdad queda

$$\frac{1-2x}{x^2+x} > 1 \Leftrightarrow 1-2x > x^2+x \Leftrightarrow x^2+3x-1 < 0.$$

Estudiamos cuando $x^2+3x-1=0$ que se verifica si $x=\frac{-3\pm\sqrt{13}}{2}$ y entonces la desigualdad se verifica si $x\in]-3/2-\sqrt{13}/2,-3/2+\sqrt{13}/2[$ (estudiando el signo del polinomio en los distintos intervalos de $\mathbb R$ que me dan las soluciones de dicha ecuación). Como estamos trabajando en el caso de que x<-1 entonces tenemos como solución el intervalo $]-3/2-\sqrt{13}/2,-1[$.

(b) Si -1 < x < 0 entonces $x^2 + x < 0$, 2x - 1 < 0 y la inecuación queda

$$\frac{2x-1}{x^2+x} > 1 \Leftrightarrow 2x-1 < x^2+x \Leftrightarrow x^2-x+1 > 0.$$

Obsérvese que en este caso al multiplicar la desigualdad por $x^2 + x$ esta desigualdad cambia de sentido ya que $x^2 + x < 0$.

Si intentamos resolver la ecuación $x^2 - x + 1 = 0$ vemos que no tiene soluciones reales y como $x^2 - x + 1$ es un polinomio de grado 2 con coeficiente líder positivo entonces es siempre mayor que 0 y todo el intervalo]-1,0[es solución de la inecuación.

(c) Ahora $0 < x \le 1/2$ y tenemos que $2x - 1 \le 0$ mientras que $x^2 + x > 0$ con lo que la inecuación nos quedará

$$\frac{1-2x}{x^2+x} > 1 \Leftrightarrow 1-2x > x^2+x \Leftrightarrow x^2+3x-1 < 0,$$

que ya hemos visto, en el primer apartado, que se verifica si $x \in]-3/2-\sqrt{13}/2,-3/2+\sqrt{13}/2[$ con lo que nos quedamos como solución $]0,-3/2+\sqrt{13}/2[$.

(d) Finalmente, cuando x > 1/2 las dos expresiones afectadas por el valor absoluto son ≥ 0 y la desigualdad queda

$$\frac{2x-1}{x^2+x} > 1 \Leftrightarrow 2x-1 > x^2+x \Leftrightarrow x^2-x+1 < 0,$$

que hemos visto antes que no se verifica nunca.

Juntando todas las soluciones que hemos obtenido tenemos que la desigualdad se verifica si $x \in [-3/2 - \sqrt{13}/2, -3/2 + \sqrt{13}/2] \setminus \{0, -1\}.$

2. Calcula la imagen de la función $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} e^{\frac{-1}{x^2}} \left(\frac{x+1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Solución.

Tenemos una función definida en un intervalo. Para concluir que la imagen es un intervalo tendremos que comprobar que la función es continua y así utilizar el teorema del valor intermedio. El único punto donde la continuidad está en duda es el punto 0. Vamos a estudiar el límite de f en este punto. Es fácil observar que, cuando $x \to 0$, estamos ante una indeterminación $0 \cdot \infty$ (e^{-1/x^2} tiende a 0 mientras que $\frac{x+1}{x}$ diverge ya sea positivamente o negativamente dependiendo de por dónde nos acerquemos a 0). Para aplicar las reglas de L'Hôpital tendremos que ponerlo de forma que sea un cociente donde tanto numerador como denominador tiendan a 0 o diverjan. Pero antes de aplicar nada vamos a simplificar un poco

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} e^{\frac{-1}{x^2}} \left(\frac{x+1}{x} \right) = \left(\lim_{x \to 0} (x+1) \right) \left(\lim_{x \to 0} \frac{e^{\frac{-1}{x^2}}}{x} \right) = \lim_{x \to 0} \frac{e^{\frac{-1}{x^2}}}{x}.$$

Si aplicamos la primera regla de L'Hôpital al cociente que nos ha quedado nos damos cuenta de que el cociente se va complicando así que será mejor poner

$$\lim_{x \to 0} \frac{e^{\frac{-1}{x^2}}}{x} = \lim_{x \to 0} \frac{1/x}{e^{\frac{1}{x^2}}}.$$

y ahora aplicamos la segunda regla de L'Hôpital con lo que obtenemos

$$\lim_{x \to 0} \frac{-1/x^2}{e^{\frac{1}{x^2}}(-2/x^3)} = \lim_{x \to 0} \frac{x}{2e^{\frac{1}{x^2}}} = 0$$

y la función es continua en todo \mathbb{R} .

Para estudiar la imagen vamos a estudiar el crecimiento de la función y el comportamiento en los extremos del intervalo de definición (en este caso $-\infty$ y $+\infty$). Para estudiar el crecimiento estudiamos la derivada. Está claro que la función es derivable para $x \neq 0$ por ser composición de

funciones derivables y podemos calcular la derivada en estos números mediante las fórmulas de derivación. Así, para $x \neq 0$, tenemos que

$$f'(x) = e^{\frac{-1}{x^2}} \left(\frac{2}{x^3}\right) \left(\frac{x+1}{x}\right) + e^{\frac{-1}{x^2}} \left(\frac{-1}{x^2}\right) = e^{\frac{-1}{x^2}} \left(\frac{-x^2 + 2x + 2}{x^4}\right).$$

Para estudiar si la función es derivable en 0, como es continua en 0 y derivable en $\mathbb{R} \setminus \{0\}$, nos basta con ver si existe el limite de la derivada en 0.

$$\lim_{x \to 0} f'(x) = \left(\lim_{x \to 0} (-x^2 + 2x + 2)\right) \left(\lim_{x \to 0} \frac{e^{\frac{-1}{x^2}}}{x^4}\right) = 2\lim_{x \to 0} \frac{e^{\frac{-1}{x^2}}}{x^4} = 2\lim_{x \to 0} \frac{1/x^4}{e^{\frac{-1}{x^2}}}.$$

La última igualdad la hemos puesto para hacer lo mismo que hicimos para estudiar la continuidad de la función en 0. Para hacer este límite aplicamos la segunda regla de L'Hôpital y nos queda

$$\lim_{x \to 0} \frac{-4/x^5}{e^{\frac{1}{x^2}}(-2/x^3)} = 2\lim_{x \to 0} \frac{1/x^2}{e^{\frac{1}{x^2}}} = 2\lim_{y \to +\infty} \frac{y}{e^y} = 0.$$

La penúltima igualdad sale haciendo el cambio de variable $y=1/x^2$ y la última de la escala de infinitos (o se aplica otra vez L'Hôpital). Así la función es derivable en 0 y su derivada f'(0)=0. Además hay otros puntos críticos, que son cuando $-x^2+2x+2=0$, es decir $x=1-\sqrt{3}$ y $x=1+\sqrt{3}$.

Si nos damos cuenta que, para $x \neq 0$ la derivada la podemos expresar como

$$f'(x) = e^{\frac{-1}{x^2}} \left(\frac{-(x - (1 - \sqrt{3})(x - (1 + \sqrt{3}))}{x^4} \right).$$

Así si $x < 1 - \sqrt{3}$ la derivada es menor que 0 y la función estrictamente decreciente. Si $1 - \sqrt{3} < x < 1 + \sqrt{3}$ la derivada es positiva (salvo en 0 que vale 0) y la función es estrictamente creciente. Finalmente si $x > 1 + \sqrt{3}$ la derivada vuelve a ser negativa y la función estrictamente decreciente. Teniendo en cuenta que el límite de la función tanto en $+\infty$ como en $-\infty$ es 1 (no presenta ninguna indeterminación mas allá de un cociente de polinomios del mismo grado) entonces la imagen consiste en el intervalo

$$[f(1-\sqrt{3}), f(1+\sqrt{3})] = \left[\frac{(\sqrt{3}-2)e^{\frac{1}{2\sqrt{3}-4}}}{(\sqrt{3}-1)}, \frac{(\sqrt{3}+2)e^{\frac{-1}{2\sqrt{3}+4}}}{(\sqrt{3}+1)}\right]$$

3. Calcula los siguiente límites

a)
$$\lim_{x\to 0} (x^2 + \cos(x))^{\frac{\cos(x)}{\sin(x^2)}}$$
, b) $\lim_{x\to +\infty} (\pi/2 - \arctan(x))^{\frac{1}{x}}$.

Solución

(a) El primer límite presenta claramente una indeterminación del tipo 1^{∞} por lo que vamos a probar con la regla del número e.

$$\lim_{x \to 0} \left(x^2 + \cos(x) \right)^{\frac{\cos(x)}{\sin(x^2)}} = e^{\lim_{x \to 0} \frac{\cos(x)}{\sin(x^2)} \left(x^2 + \cos(x) - 1 \right)} = e^{(\lim_{x \to 0} \cos(x)) \left(\lim_{x \to 0} \frac{x^2 + \cos(x) - 1}{\sin(x^2)} \right)}.$$

Como $\lim_{x\to 0}\cos(x)=1$ tenemos que hacer el otro límite. Ese límite lo podemos descomponer en dos sumas

$$\lim_{x \to 0} \frac{x^2 + \cos(x) - 1}{\sin(x^2)} = \lim_{x \to 0} \frac{x^2}{\sin(x^2)} + \lim_{x \to 0} \frac{\cos(x) - 1}{\sin(x^2)}.$$

El primer límite vale 1 (ya hemos estudiado en clase que $\lim_{x\to 0} \frac{\sin x}{x} = 1$) y al segundo le podemos aplicar la primera regla de L'Hôpital y nos queda

$$\lim_{x \to 0} \frac{-\sin(x)}{2x\cos(x^2)} = \frac{-1}{2},$$

y el límite que buscamos vale $e^{1/2} = \sqrt{e}$.

(b) El segundo limite presenta una indeterminación de la forma 0^0 . Utilizando que la función exponencial y logaritmos son inversas y que cada una de ellas es continua obtenemos que

$$\lim_{x \to +\infty} (\pi/2 - \arctan(x))^{\frac{1}{x}} = \lim_{x \to +\infty} e^{\log\left((\pi/2 - \arctan(x))^{\frac{1}{x}}\right)} =$$

$$= \lim_{x \to +\infty} e^{\frac{\log(\pi/2 - \arctan(x))}{x}} = e^{\lim_{x \to +\infty} \frac{\log(\pi/2 - \arctan(x))}{x}} = .$$

En el exponente tenemos una indeterminación de la forma $\frac{\infty}{\infty}$ con lo que podemos aplicar la segunda regla de L'Hôpital y nos queda

$$\lim_{x \to +\infty} \frac{\frac{-1}{1+x^2}}{\pi/2 - \arctan(x)}.$$

Si aplicamos esta vez la primera regla de L'Hôpital nos queda esta vez

$$\lim_{x \to +\infty} \frac{\frac{2x}{(1+x^2)^2}}{\frac{-1}{1+x^2}} = \lim_{x \to +\infty} \frac{-2x}{1+x^2} = 0,$$

y el límite que buscamos vale $e^0 = 1$.

4. Calcula las dimensiones del cilindro de volumen máximo que se puede inscribir dentro de una esfera de radio 5.

Solución El volumen del cilindro es el área de la base por la altura, según el dibujo quedará $(\pi r^2)2h$, pero claramente r y h están relacionados ya que $r^2 + h^2 = 25$, por lo que $h = \sqrt{25 - r^2}$

con lo que la función a la que tenemos que calcularle el máximo es $f:[0,5]\to\mathbb{R}$ definida por $f(r)=2\pi r^2\sqrt{25-r^2}$ que es una función que en los extremos del intervalo dominio vale 0 y en el interior del intervalo es positiva. Si tuviera un único punto crítico en ese interior tendría que ser necesariamente un máximo relativo y también absoluto. Veamos los puntos críticos de dicha función.

$$f'(r) = 2\pi \left(2r\sqrt{25 - r^2} - \frac{r^3}{\sqrt{25 - r^2}} \right) = 2\pi \left(\frac{2r(25 - r^2) - r^3}{\sqrt{25 - r^2}} \right) = 2\pi \left(\frac{50r - 3r^3}{\sqrt{25 - r^2}} \right).$$

que es igual a 0 si, y sólo si, r = 0 o $r = \sqrt{50/3}$. Según los comentarios que hemos hecho antes este último valor es el radio del cilindro de mayor volumen.

5. Calcula una aproximación de cos(1) con un error menor que 10^{-4} .

Solución.

En este caso se considera la función $f(x) = \cos(x)$. Haremos su polinomio de Taylor centrado en a = 0 y evaluaremos en x = 1.

Teniendo en cuenta que las derivadas de $f(x) = \cos(x)$ son $f'(x) = \sin(x)$, $f''(x) = -\cos(x)$, $f'''(x) = \sin(x)$ y a partir de ahí se repiten con periodo 4, es decir $f^{(n)}(x) = f^{(n+4)}(x)$ para cualquier n natural y x real, se tiene que

$$\cos(1) = 1 - \frac{(1-0)^2}{2!} + \frac{(1-0)^4}{4!} - \frac{(1-0)^6}{6!} \cdots + f^{(n)}(0) \frac{(1-0)^n}{n!} + f^{(n+1)}(c) \frac{(1-0)^{n+1}}{(n+1)!},$$

donde $c \in]0,-1[$. El último sumando es el resto y queremos que ese resto sea (en valor absoluto) menor que 10^{-4} . Hay que acotar el resto haciendo desaparecer el número c que no conocemos pero en este caso es fácil ya que, como las derivadas de la función coseno son siempre cosenos o senos salvo un signo y, por tanto, en valor absoluto, menores o iguales que 1 tendremos que

$$|+f^{n+1}(c)\frac{(1}{(n+1)!}| < \frac{1}{(n+1)!} \le 10^{-4} \Leftrightarrow (n+1)! > 10^4.$$

Probamos y comprobamos que 8!=40320 es el menor natural que cumple lo que queremos con lo que n=7 y el valor aproximado de e^{-1} será

$$1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!}.$$

Granada, 3 de diciembre de 2014