Phil's Code in Markdown

Ronald Maxseiner

2/12/2022

```
#Group 1: Diabetes Dataset
#Members: Phil, Ron, Kelly, Jane
#Libraries used
library(caret) #ML Model builling package
## Loading required package: ggplot2
## Loading required package: lattice
library(tidyverse) #ggplot and dplyr
## -- Attaching packages ------ tidyverse 1.3.1 --
## v tibble 3.1.6
                   v dplyr 1.0.7
## v tidyr 1.1.4 v stringr 1.4.0
## v readr 2.1.1
                   v forcats 0.5.1
## v purrr 0.3.4
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
## x purrr::lift() masks caret::lift()
library(MASS) #Modern Applied Statistics with S
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
##
library(mlbench) #data sets from the UCI repository.
library(summarytools)
##
## Attaching package: 'summarytools'
## The following object is masked from 'package:tibble':
##
##
library(corrplot) #Correlation plot
## corrplot 0.92 loaded
```

```
library(gridExtra) #Multiple plot in single grip space
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
       combine
library(timeDate)
library(pROC) #ROC
## Type 'citation("pROC")' for a citation.
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
##
       cov, smooth, var
library(caTools) #AUC
library(rpart.plot) #CART Decision Tree
## Loading required package: rpart
library(e1071) #imports graphics, grDevices, class, stats, methods, utils
##
## Attaching package: 'e1071'
## The following objects are masked from 'package:timeDate':
##
##
       kurtosis, skewness
library(doParallel)
## Loading required package: foreach
## Attaching package: 'foreach'
## The following objects are masked from 'package:purrr':
##
##
       accumulate, when
## Loading required package: iterators
## Loading required package: parallel
library(AppliedPredictiveModeling)
library(rpart)
library(partykit)
## Loading required package: grid
## Loading required package: libcoin
## Loading required package: mvtnorm
library(randomForest)
## randomForest 4.6-14
```

```
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:gridExtra':
##
##
       combine
## The following object is masked from 'package:dplyr':
##
##
       combine
## The following object is masked from 'package:ggplot2':
##
##
       {\tt margin}
registerDoParallel(cores=7)
set.seed(100)
#Pima Indians Diabetes Dataset Found Inside Caret Function
data(PimaIndiansDiabetes)# There are two of them, versions
df <- PimaIndiansDiabetes</pre>
df
```

##		pregnant	glucose	pressure	triceps	insulin	mass	pedigree	age	diabetes
##	1	6	148	72	35		33.6	0.627	50	pos
##	2	1	85	66	29	0	26.6	0.351	31	neg
##	3	8	183	64	0	0	23.3	0.672	32	pos
##	4	1	89	66	23	94	28.1	0.167	21	neg
##	5	0	137	40	35	168	43.1	2.288	33	pos
##	6	5	116	74	0	0	25.6	0.201	30	neg
##	7	3	78	50	32	88	31.0	0.248	26	pos
##	8	10	115	0	0	0	35.3	0.134	29	neg
##	9	2	197	70	45	543	30.5	0.158	53	pos
##	10	8	125	96	0	0	0.0	0.232	54	pos
##	11	4	110	92	0	0	37.6	0.191	30	neg
##	12	10	168	74	0	0	38.0	0.537	34	pos
##	13	10	139	80	0	0	27.1	1.441	57	neg
##	14	1	189	60	23	846	30.1	0.398	59	pos
##	15	5	166	72	19	175	25.8	0.587	51	pos
##	16	7	100	0	0	0	30.0	0.484	32	pos
##	17	0	118	84	47	230	45.8	0.551	31	pos
##	18	7	107	74	0	0	29.6	0.254	31	pos
##	19	1	103	30	38	83	43.3	0.183	33	neg
##	20	1	115	70	30	96	34.6	0.529	32	pos
##	21	3	126	88	41	235	39.3	0.704	27	neg
##	22	8	99	84	0	0	35.4	0.388	50	neg
##	23	7	196	90	0	0	39.8	0.451	41	pos
##	24	9	119	80	35	0		0.263	29	pos
##	25	11	143	94	33		36.6	0.254	51	pos
##	26	10	125	70	26	115	31.1	0.205	41	pos
##	27	7	147	76	0		39.4	0.257	43	pos
##	28	1	97	66	15	140	23.2	0.487	22	neg
##	29	13	145	82	19	110	22.2	0.245	57	neg

##		5	117	92	0	0	34.1	0.337	38	neg
##	31	5	109	75	26	0	36.0	0.546	60	neg
##	32	3	158	76	36	245	31.6	0.851	28	pos
##	33	3	88	58	11	54	24.8	0.267	22	neg
##	34	6	92	92	0	0	19.9	0.188	28	neg
##	35	10	122	78	31	0	27.6	0.512	45	neg
##	36	4	103	60	33	192	24.0	0.966	33	neg
##	37	11	138	76	0	0	33.2	0.420	35	neg
##	38	9	102	76	37	0	32.9	0.665	46	pos
##	39	2	90	68	42	0	38.2	0.503	27	pos
##	40	4	111	72	47	207	37.1	1.390	56	pos
##	41	3	180	64	25	70	34.0	0.271	26	neg
##	42	7	133	84	0	0	40.2	0.696	37	neg
##	43	7	106	92	18	0	22.7	0.235	48	neg
##	44	9	171	110	24	240	45.4	0.721	54	pos
##	45	7	159	64	0	0	27.4	0.294	40	neg
##	46	0	180	66	39	0	42.0	1.893	25	pos
##	47	1	146	56	0	0	29.7	0.564	29	neg
##	48	2	71	70	27	0	28.0	0.586	22	neg
##	49	7	103	66	32	0	39.1	0.344	31	pos
##	50	7	105	0	0	0	0.0	0.305	24	neg
##	51	1	103	80	11	82	19.4	0.491	22	neg
##	52	1	101	50	15	36	24.2	0.526	26	neg
##	53	5	88	66	21	23	24.4	0.342	30	neg
##	54	8	176	90	34	300	33.7	0.467	58	pos
##	55	7	150	66	42		34.7	0.718	42	neg
##	56	1	73	50	10	0	23.0	0.248	21	neg
##	57	7	187	68	39	304	37.7	0.254	41	pos
##	58	0	100	88	60	110	46.8	0.962	31	neg
##	59	0	146	82	0	0	40.5	1.781	44	neg
##	60	0	105	64	41	142	41.5	0.173	22	neg
##	61	2	84	0	0	0	0.0	0.304	21	neg
##	62	8	133	72	0	0	32.9	0.270	39	pos
##	63	5	44	62	0	0	25.0	0.587	36	neg
##	64	2	141	58	34	128	25.4	0.699	24	neg
##	65	7	114	66	0	0	32.8	0.258	42	pos
##	66	5	99	74	27	0	29.0	0.203	32	neg
##	67	0	109	88	30	0	32.5	0.855	38	pos
##	68	2	109	92	0	0	42.7	0.845	54	neg
##	69	1	95	66	13	38	19.6	0.334	25	neg
##	70	4	146	85	27	100	28.9	0.189	27	neg
##	71	2	100	66	20	90	32.9	0.867	28	pos
##	72	5	139	64	35	140	28.6	0.411	26	neg
##	73	13	126	90	0	0	43.4	0.583	42	pos
##	74	4	129	86	20	270	35.1	0.231	23	neg
##	75	1	79	75	30	0	32.0	0.396	22	neg
##	76	1	0	48	20	0	24.7	0.140	22	neg
##	77	7	62	78	0	0	32.6	0.391	41	neg
##	78	5	95	72	33	0	37.7	0.370	27	neg
##	79	0	131	0	0	0	43.2	0.270	26	pos
##	80	2	112	66	22	0	25.0	0.307	24	neg
##	81	3	113	44	13	0	22.4	0.140	22	neg
##	82	2	74	0	0	0	0.0	0.102	22	neg
##	83	7	83	78	26	71	29.3	0.767	36	neg

##	84	0	101	65	28	0	24.6	0.237	22	neg
##	85	5	137	108	0	0	48.8	0.227	37	pos
##	86	2	110	74	29	125	32.4	0.698	27	neg
##	87	13	106	72	54	0	36.6	0.178	45	neg
##	88	2	100	68	25	71	38.5	0.324	26	neg
##	89	15	136	70	32	110	37.1	0.153	43	pos
##	90	1	107	68	19	0	26.5	0.165	24	neg
##	91	1	80	55	0	0	19.1	0.258	21	neg
##	92	4	123	80	15	176	32.0	0.443	34	neg
##	93	7	81	78	40	48	46.7	0.261	42	neg
##	94	4	134	72	0	0	23.8	0.277	60	pos
##	95	2	142	82	18	64	24.7	0.761	21	neg
##	96	6	144	72	27	228	33.9	0.255	40	neg
##	97	2	92	62	28	0	31.6	0.130	24	neg
##	98	1	71	48	18	76	20.4	0.323	22	neg
##	99	6	93	50	30	64	28.7	0.356	23	neg
##	100	1	122	90	51	220	49.7	0.325	31	pos
##	101	1	163	72	0	0	39.0	1.222	33	pos
##	102	1	151	60	0	0	26.1	0.179	22	neg
##	103	0	125	96	0	0	22.5	0.262	21	neg
##	104	1	81	72	18	40	26.6	0.283	24	neg
##	105	2	85	65	0	0	39.6	0.930	27	neg
##	106	1	126	56	29	152	28.7	0.801	21	neg
##	107	1	96	122	0	0	22.4	0.207	27	neg
##	108	4	144	58	28	140	29.5	0.287	37	neg
##	109	3	83	58	31	18	34.3	0.336	25	neg
##	110	0	95	85	25	36	37.4	0.247	24	pos
##	111	3	171	72	33	135	33.3	0.199	24	pos
##	112	8	155	62	26	495	34.0	0.543	46	pos
##	113	1	89	76	34	37	31.2	0.192	23	neg
##	114	4	76	62	0	0	34.0	0.391	25	neg
##	115	7	160	54	32	175	30.5	0.588	39	pos
##	116	4	146	92	0	0	31.2	0.539	61	pos
##	117	5	124	74	0	0	34.0	0.220	38	pos
##	118	5	78	48	0	0	33.7	0.654	25	neg
##	119	4	97	60	23	0	28.2	0.443	22	neg
	120	4	99	76	15		23.2	0.223	21	neg
	121	0	162	76	56		53.2	0.759	25	pos
##	122	6	111	64	39		34.2	0.260	24	neg
	123	2	107	74	30		33.6	0.404	23	neg
	124	5	132	80	0		26.8	0.186	69	neg
	125	0	113	76	0		33.3	0.278	23	pos
	126	1	88	30	42		55.0	0.496	26	pos
	127	3	120	70	30		42.9	0.452	30	neg
##	128	1	118	58	36		33.3	0.261	23	neg
	129	1	117	88	24		34.5	0.403	40	pos
	130	0	105	84	0		27.9	0.741	62	pos
	131	4	173	70	14		29.7	0.361	33	pos
	132	9	122	56	0		33.3	1.114	33	pos
	133	3	170	64	37		34.5	0.356	30	pos
	134	8	84	74	31		38.3	0.457	39	neg
	135	2	96	68	13		21.1	0.647	26	neg
	136	2	125	60	20		33.8	0.088	31	neg
##	137	0	100	70	26	50	30.8	0.597	21	neg

##	138	0	93	60	25	92	28.7	0.532	22	neg
##	139	0	129	80	0	0	31.2	0.703	29	neg
##	140	5	105	72	29	325	36.9	0.159	28	neg
##	141	3	128	78	0	0	21.1	0.268	55	neg
##	142	5	106	82	30	0	39.5	0.286	38	neg
##	143	2	108	52	26	63	32.5	0.318	22	neg
##	144	10	108	66	0	0	32.4	0.272	42	pos
##	145	4	154	62	31	284	32.8	0.237	23	neg
##	146	0	102	75	23	0	0.0	0.572	21	neg
##	147	9	57	80	37	0	32.8	0.096	41	neg
##	148	2	106	64	35	119	30.5	1.400	34	neg
##	149	5	147	78	0	0	33.7	0.218	65	neg
##	150	2	90	70	17	0	27.3	0.085	22	neg
##	151	1	136	74	50	204	37.4	0.399	24	neg
##	152	4	114	65	0	0	21.9	0.432	37	neg
##	153	9	156	86	28	155	34.3	1.189	42	pos
	154	1	153	82	42		40.6	0.687	23	neg
	155	8	188	78	0		47.9	0.137	43	pos
##	156	7	152	88	44	0	50.0	0.337	36	pos
	157	2	99	52	15	94	24.6	0.637	21	neg
	158	1	109	56	21		25.2	0.833	23	neg
	159	2	88	74	19		29.0	0.229	22	neg
	160	17	163	72	41		40.9	0.817	47	pos
	161	4	151	90	38		29.7	0.294	36	neg
	162	7	102	74	40		37.2	0.204	45	neg
	163	0	114	80	34		44.2	0.167	27	neg
	164	2	100	64	23		29.7	0.368	21	neg
##	165	0	131	88	0	0	31.6	0.743	32	pos
	166	6	104	74	18		29.9	0.722	41	pos
	167	3	148	66	25	0	32.5	0.256	22	neg
##	168	4	120	68	0	0	29.6	0.709	34	neg
##	169	4	110	66	0	0	31.9	0.471	29	neg
	170	3	111	90	12		28.4	0.495	29	neg
	171	6	102	82	0	0	30.8	0.180	36	pos
	172	6	134	70	23	130	35.4	0.542	29	pos
##	173	2	87	0	23			0.773	25	neg
##	174	1	79	60	42		43.5	0.678	23	neg
	175	2	75	64	24		29.7	0.370	33	neg
	176	8	179	72	42		32.7	0.719	36	pos
	177	6	85	78	0		31.2	0.382	42	neg
	178	0	129	110	46		67.1	0.319	26	pos
	179	5	143	78	0		45.0	0.190	47	neg
	180	5	130	82	0		39.1	0.956	37	pos
	181	6	87	80	0		23.2	0.084	32	neg
	182	0	119	64	18		34.9	0.725	23	neg
	183	1	0	74	20		27.7	0.299	21	neg
	184	5	73	60	0		26.8	0.268	27	neg
	185	4	141	74	0		27.6	0.244	40	neg
	186	7	194	68	28		35.9	0.745	41	pos
	187	8	181	68	36		30.1	0.615	60	pos
	188	1	128	98	41		32.0	1.321	33	pos
	189	8	109	76	39		27.9	0.640	31	pos
	190	5	139	80	35		31.6	0.361	25	pos
	191	3	111	62	0		22.6	0.142	21	neg
ап	-0-	3		02	5	J	0	0.172		1108

	192	9	123	70	44		33.1	0.374	40	neg
	193	7	159	66	0		30.4	0.383	36	pos
	194	11	135	0	0		52.3	0.578	40	pos
	195	8	85	55	20		24.4	0.136	42	neg
##	196	5	158	84	41	210	39.4	0.395	29	pos
##	197	1	105	58	0	0	24.3	0.187	21	neg
##	198	3	107	62	13	48	22.9	0.678	23	pos
##	199	4	109	64	44	99	34.8	0.905	26	pos
##	200	4	148	60	27	318	30.9	0.150	29	pos
##	201	0	113	80	16	0	31.0	0.874	21	neg
##	202	1	138	82	0	0	40.1	0.236	28	neg
	203	0	108	68	20		27.3	0.787	32	neg
	204	2	99	70	16		20.4	0.235	27	neg
	205	6	103	72	32		37.7	0.324	55	neg
	206	5	111	72	28		23.9	0.407	27	neg
	207	8	196	76	29		37.5	0.605	57	pos
	208	5	162	104	0		37.7	0.151	52	pos
	209	1	96	64	27		33.2	0.289	21	
	210	7	184	84	33		35.5	0.355	41	neg
	211	2	81	60	22		27.7	0.333	25	pos
	211	0					42.8			neg
	212		147	85	54			0.375	24	neg
		7	179	95	31		34.2	0.164	60	neg
	214	0	140	65	26		42.6	0.431	24	pos
	215	9	112	82	32		34.2	0.260	36	pos
	216	12	151	70	40		41.8	0.742	38	pos
	217	5	109	62	41		35.8	0.514	25	pos
	218	6	125	68	30		30.0	0.464	32	neg
	219	5	85	74	22		29.0	1.224	32	pos
	220	5	112	66	0		37.8	0.261	41	pos
	221	0	177	60	29		34.6	1.072	21	pos
	222	2	158	90	0		31.6	0.805	66	pos
	223	7	119	0	0		25.2	0.209	37	neg
	224	7	142	60	33		28.8	0.687	61	neg
	225	1	100	66	15		23.6	0.666	26	neg
	226	1	87	78	27		34.6	0.101	22	neg
##	227	0	101	76	0		35.7	0.198	26	neg
##	228	3	162	52	38	0	37.2	0.652	24	pos
##	229	4	197	70	39	744	36.7	2.329	31	neg
##	230	0	117	80	31		45.2	0.089	24	neg
##	231	4	142	86	0	0	44.0	0.645	22	pos
##	232	6	134	80	37	370	46.2	0.238	46	pos
##	233	1	79	80	25	37	25.4	0.583	22	neg
##	234	4	122	68	0	0	35.0	0.394	29	neg
##	235	3	74	68	28	45	29.7	0.293	23	neg
##	236	4	171	72	0	0	43.6	0.479	26	pos
##	237	7	181	84	21	192	35.9	0.586	51	pos
##	238	0	179	90	27	0	44.1	0.686	23	pos
	239	9	164	84	21		30.8	0.831	32	pos
	240	0	104	76	0		18.4	0.582	27	neg
	241	1	91	64	24		29.2	0.192	21	neg
	242	4	91	70	32		33.1	0.446	22	neg
	243	3	139	54	0		25.6	0.402	22	pos
	244	6	119	50	22		27.1	1.318	33	pos
	245	2	146	76	35		38.2	0.329	29	neg
	0	_	110	. 5		-01		0.020		

	246	9	184	85	15		30.0	1.213	49	pos
	247	10	122	68	0		31.2	0.258	41	neg
	248	0	165	90	33		52.3	0.427	23	neg
##	249	9	124	70	33		35.4	0.282	34	neg
##	250	1	111	86	19		30.1	0.143	23	neg
##	251	9	106	52	0	0	31.2	0.380	42	neg
##	252	2	129	84	0	0	28.0	0.284	27	${\tt neg}$
##	253	2	90	80	14		24.4	0.249	24	${\tt neg}$
##	254	0	86	68	32	0	35.8	0.238	25	neg
##	255	12	92	62	7		27.6	0.926	44	pos
##	256	1	113	64	35	0	33.6	0.543	21	pos
##	257	3	111	56	39	0	30.1	0.557	30	neg
##	258	2	114	68	22	0	28.7	0.092	25	neg
##	259	1	193	50	16	375	25.9	0.655	24	neg
##	260	11	155	76	28	150	33.3	1.353	51	pos
##	261	3	191	68	15	130	30.9	0.299	34	neg
##	262	3	141	0	0	0	30.0	0.761	27	pos
##	263	4	95	70	32	0	32.1	0.612	24	neg
##	264	3	142	80	15	0	32.4	0.200	63	neg
##	265	4	123	62	0	0	32.0	0.226	35	pos
##	266	5	96	74	18	67	33.6	0.997	43	neg
##	267	0	138	0	0	0	36.3	0.933	25	pos
##	268	2	128	64	42	0	40.0	1.101	24	neg
##	269	0	102	52	0	0	25.1	0.078	21	neg
##	270	2	146	0	0	0	27.5	0.240	28	pos
##	271	10	101	86	37		45.6	1.136	38	pos
	272	2	108	62	32		25.2	0.128	21	neg
	273	3	122	78	0	0	23.0	0.254	40	neg
##	274	1	71	78	50	45	33.2	0.422	21	neg
##	275	13	106	70	0		34.2	0.251	52	neg
	276	2	100	70	52		40.5	0.677	25	neg
##	277	7	106	60	24	0	26.5	0.296	29	pos
##	278	0	104	64	23		27.8	0.454	23	neg
	279	5	114	74	0		24.9	0.744	57	neg
	280	2	108	62	10		25.3	0.881	22	neg
##	281	0	146	70	0		37.9	0.334	28	pos
##	282	10	129	76	28		35.9	0.280	39	neg
	283	7	133	88	15		32.4	0.262	37	neg
	284	7	161	86	0		30.4	0.165	47	pos
	285	2	108	80	0		27.0	0.259	52	pos
	286	7	136	74	26		26.0	0.647	51	neg
	287	5	155	84	44		38.7	0.619	34	neg
	288	1	119	86	39		45.6	0.808	29	pos
		4	96	56	17		20.8	0.340	26	neg
	290	5	108	72	43		36.1	0.263	33	neg
	291	0	78	88	29		36.9	0.434	21	neg
	292	0	107	62	30		36.6	0.757	25	pos
	293	2	128	78	37		43.3	1.224	31	pos
	294	1	128	48	45		40.5	0.613	24	pos
	295	0	161	50	0		21.9	0.254	65	neg
	296	6	151	62	31		35.5	0.692	28	neg
	297	2	146	70	38		28.0	0.337	29	pos
	298	0	126	84	29		30.7	0.520	24	neg
	299	14	100	78	25		36.6	0.412	46	pos
ıт П	200	14	100	10	20	104	55.0	0112	-10	Pop

##	300	8	112	72	0	0	23.6	0.840	58	neg
##	301	0	167	0	0	0	32.3	0.839	30	pos
##	302	2	144	58	33	135	31.6	0.422	25	pos
##	303	5	77	82	41	42	35.8	0.156	35	neg
##	304	5	115	98	0	0	52.9	0.209	28	pos
##	305	3	150	76	0	0	21.0	0.207	37	neg
##	306	2	120	76	37	105	39.7	0.215	29	neg
##	307	10	161	68	23	132	25.5	0.326	47	pos
##	308	0	137	68	14	148	24.8	0.143	21	neg
##	309	0	128	68	19	180	30.5	1.391	25	pos
##	310	2	124	68	28	205	32.9	0.875	30	pos
##	311	6	80	66	30	0	26.2	0.313	41	neg
##	312	0	106	70	37	148	39.4	0.605	22	neg
##	313	2	155	74	17	96	26.6	0.433	27	pos
##	314	3	113	50	10	85	29.5	0.626	25	neg
##	315	7	109	80	31	0	35.9	1.127	43	pos
##	316	2	112	68	22	94	34.1	0.315	26	neg
##	317	3	99	80	11	64	19.3	0.284	30	neg
##	318	3	182	74	0	0	30.5	0.345	29	pos
##	319	3	115	66	39	140	38.1	0.150	28	neg
##	320	6	194	78	0	0	23.5	0.129	59	pos
##	321	4	129	60	12	231	27.5	0.527	31	neg
##	322	3	112	74	30	0	31.6	0.197	25	pos
##	323	0	124	70	20	0	27.4	0.254	36	pos
##	324	13	152	90	33	29	26.8	0.731	43	pos
##	325	2	112	75	32	0	35.7	0.148	21	neg
##	326	1	157	72	21	168	25.6	0.123	24	neg
##	327	1	122	64	32	156	35.1	0.692	30	pos
##	328	10	179	70	0	0	35.1	0.200	37	neg
##	329	2	102	86	36	120	45.5	0.127	23	pos
##	330	6	105	70	32	68	30.8	0.122	37	neg
##	331	8	118	72	19	0	23.1	1.476	46	neg
##	332	2	87	58	16	52	32.7	0.166	25	neg
##	333	1	180	0	0	0	43.3	0.282	41	pos
##	334	12	106	80	0	0	23.6	0.137	44	neg
##	335	1	95	60	18	58	23.9	0.260	22	neg
##	336	0	165	76	43	255	47.9	0.259	26	neg
##	337	0	117	0	0	0	33.8	0.932	44	neg
##	338	5	115	76	0	0	31.2	0.343	44	pos
##	339	9	152	78	34	171	34.2	0.893	33	pos
##	340	7	178	84	0	0	39.9	0.331	41	pos
##	341	1	130	70	13	105	25.9	0.472	22	neg
##	342	1	95	74	21	73	25.9	0.673	36	neg
##	343	1	0	68	35	0	32.0	0.389	22	neg
##	344	5	122	86	0	0	34.7	0.290	33	neg
##	345	8	95	72	0	0	36.8	0.485	57	neg
##	346	8	126	88	36	108	38.5	0.349	49	neg
##	347	1	139	46	19	83	28.7	0.654	22	neg
##	348	3	116	0	0	0	23.5	0.187	23	neg
##	349	3	99	62	19	74	21.8	0.279	26	neg
##	350	5	0	80	32	0	41.0	0.346	37	pos
##	351	4	92	80	0	0	42.2	0.237	29	neg
##	352	4	137	84	0	0	31.2	0.252	30	neg
##	353	3	61	82	28	0	34.4	0.243	46	neg
										_

##	354	1	90	62	12	43	27.2	0.580	24	neg
##	355	3	90	78	0	0	42.7	0.559	21	neg
##	356	9	165	88	0	0	30.4	0.302	49	pos
##	357	1	125	50	40	167	33.3	0.962	28	pos
##	358	13	129	0	30	0	39.9	0.569	44	pos
##	359	12	88	74	40	54	35.3	0.378	48	neg
##	360	1	196	76	36	249	36.5	0.875	29	pos
##	361	5	189	64	33	325	31.2	0.583	29	pos
##	362	5	158	70	0	0	29.8	0.207	63	neg
##	363	5	103	108	37	0	39.2	0.305	65	neg
##	364	4	146	78	0	0	38.5	0.520	67	pos
##	365	4	147	74	25		34.9	0.385	30	neg
##	366	5	99	54	28	83	34.0	0.499	30	neg
##	367	6	124	72	0	0	27.6	0.368	29	pos
##	368	0	101	64	17	0	21.0	0.252	21	neg
##	369	3	81	86	16	66	27.5	0.306	22	neg
##	370	1	133	102	28	140	32.8	0.234	45	pos
	371	3	173	82	48	465	38.4	2.137	25	pos
##	372	0	118	64	23	89	0.0	1.731	21	neg
##	373	0	84	64	22	66	35.8	0.545	21	neg
	374	2	105	58	40	94	34.9	0.225	25	neg
##	375	2	122	52	43	158	36.2	0.816	28	neg
	376	12	140	82	43		39.2	0.528	58	pos
##	377	0	98	82	15	84	25.2	0.299	22	neg
	378	1	87	60	37		37.2	0.509	22	neg
	379	4	156	75	0	0	48.3	0.238	32	pos
##	380	0	93	100	39	72	43.4	1.021	35	neg
	381	1	107	72	30		30.8	0.821	24	neg
##	382	0	105	68	22		20.0	0.236	22	neg
##	383	1	109	60	8		25.4	0.947	21	neg
	384	1	90	62	18		25.1	1.268	25	neg
##	385	1	125	70	24		24.3	0.221	25	neg
##	386	1	119	54	13	50	22.3	0.205	24	neg
	387	5	116	74	29	0	32.3	0.660	35	pos
##	388	8	105	100	36		43.3	0.239	45	pos
	389	5	144	82	26		32.0	0.452	58	pos
	390	3	100	68	23		31.6	0.949	28	neg
	391	1	100	66	29		32.0	0.444	42	neg
	392	5	166	76	0		45.7	0.340	27	pos
	393	1	131	64	14		23.7	0.389	21	neg
	394	4	116	72	12		22.1	0.463	37	neg
	395	4	158	78	0		32.9	0.803	31	pos
	396	2	127	58	24		27.7	1.600	25	neg
	397	3	96	56	34		24.7	0.944	39	neg
	398	0	131	66	40		34.3	0.196	22	pos
	399	3	82	70	0		21.1	0.389	25	neg
	400	3	193	70	31		34.9	0.241	25	pos
	401	4	95	64	0		32.0	0.161	31	pos
	402	6	137	61	0		24.2	0.151	55	neg
	403	5	136	84	41		35.0	0.286	35	pos
	404	9	72	78	25		31.6	0.280	38	neg
	405	5	168	64	0		32.9	0.135	41	pos
	406	2	123	48	32		42.1	0.520	26	neg
##	407	4	115	72	0	0	28.9	0.376	46	pos

##	408	0	101	62	0	0	21.9	0.336	25	neg
##	409	8	197	74	0	0	25.9	1.191	39	pos
##	410	1	172	68	49	579	42.4	0.702	28	pos
##	411	6	102	90	39	0	35.7	0.674	28	neg
##	412	1	112	72	30	176	34.4	0.528	25	neg
##	413	1	143	84	23	310	42.4	1.076	22	neg
##	414	1	143	74	22	61	26.2	0.256	21	neg
##	415	0	138	60	35	167	34.6	0.534	21	pos
##	416	3	173	84	33	474	35.7	0.258	22	pos
##	417	1	97	68	21	0	27.2	1.095	22	neg
##	418	4	144	82	32	0	38.5	0.554	37	pos
##	419	1	83	68	0	0	18.2	0.624	27	neg
##	420	3	129	64	29	115	26.4	0.219	28	pos
##	421	1	119	88	41	170	45.3	0.507	26	neg
##	422	2	94	68	18	76	26.0	0.561	21	neg
##	423	0	102	64	46	78	40.6	0.496	21	neg
##	424	2	115	64	22	0	30.8	0.421	21	neg
##	425	8	151	78	32		42.9	0.516	36	pos
##	426	4	184	78	39	277	37.0	0.264	31	pos
##	427	0	94	0	0	0	0.0	0.256	25	neg
##	428	1	181	64	30	180	34.1	0.328	38	pos
##	429	0	135	94	46	145	40.6	0.284	26	neg
##	430	1	95	82	25	180	35.0	0.233	43	pos
##	431	2	99	0	0	0	22.2	0.108	23	neg
##	432	3	89	74	16	85	30.4	0.551	38	neg
##	433	1	80	74	11	60	30.0	0.527	22	neg
##	434	2	139	75	0	0	25.6	0.167	29	neg
##	435	1	90	68	8	0	24.5	1.138	36	neg
##	436	0	141	0	0	0	42.4	0.205	29	pos
##	437	12	140	85	33	0	37.4	0.244	41	neg
##	438	5	147	75	0	0	29.9	0.434	28	neg
##	439	1	97	70	15	0	18.2	0.147	21	neg
##	440	6	107	88	0	0	36.8	0.727	31	neg
##	441	0	189	104	25	0	34.3	0.435	41	pos
	442	2	83	66	23		32.2	0.497	22	neg
	443	4	117	64	27	120	33.2	0.230	24	neg
##	444	8	108	70	0	0	30.5	0.955	33	pos
	445	4	117	62	12		29.7	0.380	30	pos
	446	0	180	78	63		59.4	2.420	25	pos
	447	1	100	72	12		25.3	0.658	28	neg
	448	0	95	80	45		36.5	0.330	26	neg
	449	0	104	64	37		33.6	0.510	22	pos
	450	0	120	74	18		30.5	0.285	26	neg
	451	1	82	64	13		21.2	0.415	23	neg
	452	2	134	70	0		28.9	0.542	23	pos
	453	0	91	68	32		39.9	0.381	25	neg
	454	2	119	0	0		19.6	0.832	72	neg
	455	2	100	54	28		37.8	0.498	24	neg
	456	14	175	62	30		33.6	0.212	38	pos
	457	1	135	54	0		26.7	0.687	62	neg
	458	5	86	68	28		30.2	0.364	24	neg
	459	10	148	84	48		37.6	1.001	51	pos
	460	9	134	74	33		25.9	0.460	81	neg
##	461	9	120	72	22	56	20.8	0.733	48	neg

##	462	1	71	62	0	0	21.8	0.416	26	neg
##	463	8	74	70	40	49	35.3	0.705	39	neg
##	464	5	88	78	30	0	27.6	0.258	37	neg
##	465	10	115	98	0	0	24.0	1.022	34	neg
##	466	0	124	56	13	105	21.8	0.452	21	neg
##	467	0	74	52	10	36	27.8	0.269	22	neg
##	468	0	97	64	36	100	36.8	0.600	25	neg
##	469	8	120	0	0	0	30.0	0.183	38	pos
##	470	6	154	78	41	140	46.1	0.571	27	neg
##	471	1	144	82	40	0	41.3	0.607	28	neg
##	472	0	137	70	38	0	33.2	0.170	22	neg
##	473	0	119	66	27	0	38.8	0.259	22	neg
##	474	7	136	90	0	0	29.9	0.210	50	neg
##	475	4	114	64	0	0	28.9	0.126	24	neg
##	476	0	137	84	27	0	27.3	0.231	59	neg
##	477	2	105	80	45	191	33.7	0.711	29	pos
##	478	7	114	76	17		23.8	0.466	31	neg
##	479	8	126	74	38		25.9	0.162	39	neg
	480	4	132	86	31		28.0	0.419	63	neg
##	481	3	158	70	30		35.5	0.344	35	pos
	482	0	123	88	37		35.2	0.197	29	neg
	483	4	85	58	22		27.8	0.306	28	neg
	484	0	84	82	31		38.2	0.233	23	neg
	485	0	145	0	0		44.2	0.630	31	pos
	486	0	135	68	42		42.3	0.365	24	pos
	487	1	139	62	41		40.7	0.536	21	neg
	488	0	173	78	32		46.5	1.159	58	neg
	489	4	99	72	17		25.6	0.294	28	neg
	490	8	194	80	0	0	26.1	0.551	67	neg
	491	2	83	65	28		36.8	0.629	24	neg
	492	2	89	90	30	0	33.5	0.292	42	neg
	493	4	99	68	38		32.8	0.145	33	neg
	494	4	125	70	18		28.9	1.144	45	pos
	495	3	80	0	0	0	0.0	0.174	22	neg
	496	6	166	74	0	0	26.6	0.304	66	neg
	497	5	110	68	0	0	26.0	0.292	30	neg
	498	2	81	72	15		30.1	0.547	25	neg
	499	7	195	70	33		25.1	0.163	55	pos
	500	6	154	74	32		29.3	0.839	39	neg
	501	2	117	90	19		25.2	0.313	21	neg
	502	3	84	72	32		37.2	0.267	28	neg
	503	6	0	68	41		39.0	0.727	41	pos
	504	7	94	64	25		33.3	0.738	41	neg
	505	3	96	78	39		37.3	0.238	40	neg
	506	10	75	82	0		33.3	0.263	38	neg
	507	0	180	90	26		36.5	0.314	35	pos
	508	1	130	60	23		28.6	0.692	21	neg
	509	2	84	50	23		30.4	0.092	21	neg
	510	8	120	78	0		25.0	0.409	64	neg
	511	12	84	72	31		29.7	0.403	46	pos
	512	0	139	62	17		22.1	0.297	21	neg
	513	9	91	68	0		24.2	0.207	58	neg
	514	2	91	62	0		27.3	0.525	22	
		3	99				25.6			neg
##	515	3	99	54	19	00	20.0	0.154	24	neg

##	516	3	163	70	18	105	31.6	0.268	28	pos
##	517	9	145	88	34	165	30.3	0.771	53	pos
##	518	7	125	86	0	0	37.6	0.304	51	neg
##	519	13	76	60	0	0	32.8	0.180	41	neg
##	520	6	129	90	7		19.6	0.582	60	neg
##	521	2	68	70	32	66	25.0	0.187	25	neg
##	522	3	124	80	33	130	33.2	0.305	26	neg
##	523	6	114	0	0	0	0.0	0.189	26	neg
##	524	9	130	70	0	0	34.2	0.652	45	pos
##	525	3	125	58	0	0	31.6	0.151	24	neg
##	526	3	87	60	18	0	21.8	0.444	21	neg
##	527	1	97	64	19	82	18.2	0.299	21	neg
##	528	3	116	74	15	105	26.3	0.107	24	neg
##	529	0	117	66	31	188	30.8	0.493	22	neg
##	530	0	111	65	0	0	24.6	0.660	31	neg
##	531	2	122	60	18	106	29.8	0.717	22	neg
##	532	0	107	76	0	0	45.3	0.686	24	neg
##	533	1	86	66	52	65	41.3	0.917	29	neg
##	534	6	91	0	0	0	29.8	0.501	31	neg
##	535	1	77	56	30	56	33.3	1.251	24	neg
##	536	4	132	0	0	0	32.9	0.302	23	pos
##	537	0	105	90	0	0	29.6	0.197	46	neg
##	538	0	57	60	0	0	21.7	0.735	67	neg
##	539	0	127	80	37	210	36.3	0.804	23	neg
##	540	3	129	92	49	155	36.4	0.968	32	pos
##	541	8	100	74	40	215	39.4	0.661	43	pos
##	542	3	128	72	25	190	32.4	0.549	27	pos
##	543	10	90	85	32	0	34.9	0.825	56	pos
##	544	4	84	90	23	56	39.5	0.159	25	neg
##	545	1	88	78	29	76	32.0	0.365	29	neg
##	546	8	186	90	35	225	34.5	0.423	37	pos
##	547	5	187	76	27	207	43.6	1.034	53	pos
##	548	4	131	68	21	166	33.1	0.160	28	neg
##	549	1	164	82	43	67	32.8	0.341	50	neg
##	550	4	189	110	31	0	28.5	0.680	37	neg
##	551	1	116	70	28	0	27.4	0.204	21	neg
##	552	3	84	68	30	106	31.9	0.591	25	neg
##	553	6	114	88	0	0	27.8	0.247	66	neg
##	554	1	88	62	24	44	29.9	0.422	23	neg
##	555	1	84	64	23	115	36.9	0.471	28	neg
##	556	7	124	70	33	215	25.5	0.161	37	neg
##	557	1	97	70	40	0	38.1	0.218	30	neg
##	558	8	110	76	0	0	27.8	0.237	58	neg
##	559	11	103	68	40	0	46.2	0.126	42	neg
##	560	11	85	74	0	0	30.1	0.300	35	neg
##	561	6	125	76	0	0	33.8	0.121	54	pos
##	562	0	198	66	32	274	41.3	0.502	28	pos
##	563	1	87	68	34	77	37.6	0.401	24	neg
##	564	6	99	60	19	54	26.9	0.497	32	neg
##	565	0	91	80	0	0	32.4	0.601	27	neg
##	566	2	95	54	14	88	26.1	0.748	22	neg
##	567	1	99	72	30	18	38.6	0.412	21	neg
##	568	6	92	62	32	126	32.0	0.085	46	neg
	569	4	154	72	29		31.3	0.338	37	neg
										9

##	570	0	121	66	30	165	34.3	0.203	33	pos
##	571	3	78	70	0	0	32.5	0.270	39	neg
##	572	2	130	96	0	0	22.6	0.268	21	neg
##	573	3	111	58	31	44	29.5	0.430	22	neg
##	574	2	98	60	17	120	34.7	0.198	22	neg
##	575	1	143	86	30	330	30.1	0.892	23	neg
##	576	1	119	44	47	63	35.5	0.280	25	neg
##	577	6	108	44	20	130	24.0	0.813	35	neg
	578	2	118	80	0	0	42.9	0.693	21	pos
##	579	10	133	68	0	0	27.0	0.245	36	neg
##	580	2	197	70	99	0	34.7	0.575	62	pos
##	581	0	151	90	46	0	42.1	0.371	21	pos
##	582	6	109	60	27	0	25.0	0.206	27	neg
##	583	12	121	78	17	0	26.5	0.259	62	neg
##	584	8	100	76	0	0	38.7	0.190	42	neg
##	585	8	124	76	24	600	28.7	0.687	52	pos
##	586	1	93	56	11	0	22.5	0.417	22	neg
##	587	8	143	66	0	0	34.9	0.129	41	pos
##	588	6	103	66	0	0	24.3	0.249	29	neg
##	589	3	176	86	27	156	33.3	1.154	52	pos
##	590	0	73	0	0	0	21.1	0.342	25	neg
##	591	11	111	84	40	0	46.8	0.925	45	pos
##	592	2	112	78	50	140	39.4	0.175	24	neg
##	593	3	132	80	0	0	34.4	0.402	44	pos
##	594	2	82	52	22	115	28.5	1.699	25	neg
##	595	6	123	72	45	230	33.6	0.733	34	neg
##	596	0	188	82	14	185	32.0	0.682	22	pos
##	597	0	67	76	0	0	45.3	0.194	46	neg
##	598	1	89	24	19	25	27.8	0.559	21	neg
##	599	1	173	74	0	0	36.8	0.088	38	pos
##	600	1	109	38	18	120	23.1	0.407	26	neg
##	601	1	108	88	19	0	27.1	0.400	24	neg
##	602	6	96	0	0	0	23.7	0.190	28	neg
##	603	1	124	74	36	0	27.8	0.100	30	neg
##	604	7	150	78	29	126	35.2	0.692	54	pos
##	605	4	183	0	0	0	28.4	0.212	36	pos
##	606	1	124	60	32	0	35.8	0.514	21	neg
##	607	1	181	78	42	293	40.0	1.258	22	pos
##	608	1	92	62	25	41	19.5	0.482	25	neg
##	609	0	152	82	39	272	41.5	0.270	27	neg
##	610	1	111	62	13	182	24.0	0.138	23	neg
##	611	3	106	54	21	158	30.9	0.292	24	neg
##	612	3	174	58	22	194	32.9	0.593	36	pos
##	613	7	168	88	42	321	38.2	0.787	40	pos
##	614	6	105	80	28	0	32.5	0.878	26	neg
##	615	11	138	74	26	144	36.1	0.557	50	pos
##	616	3	106	72	0	0	25.8	0.207	27	neg
##	617	6	117	96	0	0	28.7	0.157	30	neg
##	618	2	68	62	13	15	20.1	0.257	23	neg
##	619	9	112	82	24	0	28.2	1.282	50	pos
##	620	0	119	0	0	0	32.4	0.141	24	pos
##	621	2	112	86	42		38.4	0.246	28	neg
	622	2	92	76	20		24.2	1.698	28	neg
##	623	6	183	94	0		40.8	1.461	45	neg
										J

##	624	0	94	70	27	115	43.5	0.347	21	neg
	625	2	108	64	0	0	30.8	0.158	21	neg
##	626	4	90	88	47	54	37.7	0.362	29	neg
##	627	0	125	68	0	0	24.7	0.206	21	neg
##	628	0	132	78	0	0	32.4	0.393	21	neg
##	629	5	128	80	0	0	34.6	0.144	45	neg
##	630	4	94	65	22	0	24.7	0.148	21	neg
##	631	7	114	64	0	0	27.4	0.732	34	pos
	632	0	102	78	40		34.5	0.238	24	neg
	633	2	111	60	0		26.2	0.343	23	neg
	634	1	128	82	17		27.5	0.115	22	neg
	635	10	92	62	0	0	25.9	0.167	31	neg
	636	13	104	72	0	0	31.2	0.465	38	pos
	637	5	104	74	0		28.8	0.153	48	neg
	638	2	94	76	18		31.6	0.649	23	neg
	639	7	97	76	32		40.9	0.871	32	pos
	640	1	100	74	12		19.5	0.149	28	neg
	641	0	102	86	17		29.3	0.695	27	neg
	642	4	128	70	0		34.3	0.303	24	neg
	643	6	147	80	0	0	29.5	0.178	50	pos
	644	4	90	0	0		28.0	0.610	31	neg
	645	3	103	72	30		27.6	0.730	27	neg
	646	2	157	74	35		39.4	0.134	30	neg
	647	1	167	74	17		23.4	0.447	33	pos
	648	0	179	50	36		37.8	0.455	22	pos
	649	11	136	84	35		28.3	0.260	42	pos
	650	0	107	60	25		26.4	0.133	23	neg
	651	1	91	54	25		25.2	0.234	23	neg
	652	1	117	60	23		33.8	0.466	27	neg
	653	5	123	74	40		34.1	0.269	28	neg
	654	2	120	54	0	125	26.8	0.455	27	neg
	655 656	1	106	70	28		34.2	0.142	22	neg
	656	2 2	155	52 58	27		38.7 21.8	0.240	25 22	pos
	657 658	1	101		35		38.9	0.155		neg
	659	11	120 127	80 106	48 0		39.0	1.162 0.190	41 51	neg
	660	3	80	82	31		34.2	1.292	27	neg
	661	10	162	84	0		27.7	0.182	54	pos
	662	10	199	76	43		42.9	1.394	22	neg pos
	663	8	167	106	46		37.6	0.165	43	pos
	664	9	145	80	46		37.9	0.637	40	pos
	665	6	115	60	39		33.7	0.245	40	pos
	666	1	112	80	45		34.8	0.240	24	neg
	667	4	145	82	18		32.5	0.235	70	pos
	668	10	111	70	27		27.5	0.141	40	pos
	669	6	98	58	33		34.0	0.430	43	neg
	670	9	154	78	30		30.9	0.164	45	neg
	671	6	165	68	26		33.6	0.631	49	neg
	672	1	99	58	10		25.4	0.551	21	neg
	673	10	68	106	23		35.5	0.285	47	neg
	674	3	123	100	35		57.3	0.880	22	neg
	675	8	91	82	0		35.6	0.587	68	neg
	676	6	195	70	0		30.9	0.328	31	pos
##	677	9	156	86	0		24.8	0.230	53	pos
										-

##	678	0	93	60	0	0	35.3	0.263	25	neg
##	679	3	121	52	0		36.0	0.127	25	pos
##	680	2	101	58	17	265	24.2	0.614	23	neg
##	681	2	56	56	28	45	24.2	0.332	22	neg
##	682	0	162	76	36	0	49.6	0.364	26	pos
##	683	0	95	64	39	105	44.6	0.366	22	neg
##	684	4	125	80	0	0	32.3	0.536	27	pos
##	685	5	136	82	0	0	0.0	0.640	69	neg
##	686	2	129	74	26	205	33.2	0.591	25	neg
##	687	3	130	64	0	0	23.1	0.314	22	neg
##	688	1	107	50	19	0	28.3	0.181	29	neg
##	689	1	140	74	26	180	24.1	0.828	23	neg
##	690	1	144	82	46	180	46.1	0.335	46	pos
##	691	8	107	80	0	0	24.6	0.856	34	neg
##	692	13	158	114	0	0	42.3	0.257	44	pos
##	693	2	121	70	32	95	39.1	0.886	23	neg
##	694	7	129	68	49	125	38.5	0.439	43	pos
##	695	2	90	60	0	0	23.5	0.191	25	neg
##	696	7	142	90	24	480	30.4	0.128	43	pos
##	697	3	169	74	19	125	29.9	0.268	31	pos
##	698	0	99	0	0	0	25.0	0.253	22	neg
##	699	4	127	88	11		34.5	0.598	28	neg
##	700	4	118	70	0		44.5	0.904	26	neg
	701	2	122	76	27		35.9	0.483	26	neg
##	702	6	125	78	31			0.565	49	pos
	703	1	168	88	29	0	35.0	0.905	52	pos
	704	2	129	0	0	0	38.5	0.304	41	neg
	705	4	110	76	20	100	28.4	0.118	27	neg
	706	6	80	80	36	0	39.8	0.177	28	neg
##	707	10	115	0	0	0	0.0	0.261	30	pos
	708	2	127	46	21	335	34.4	0.176	22	neg
##	709	9	164	78	0	0	32.8	0.148	45	pos
	710	2	93	64	32	160	38.0	0.674	23	pos
##	711	3	158	64	13		31.2	0.295	24	neg
	712	5	126	78	27		29.6	0.439	40	neg
##	713	10	129	62	36		41.2	0.441	38	pos
	714	0	134	58	20		26.4	0.352	21	neg
	715	3	102	74	0		29.5	0.121	32	neg
	716	7	187	50	33		33.9	0.826	34	pos
	717	3	173	78	39		33.8	0.970	31	pos
	718	10	94	72	18		23.1	0.595	56	neg
	719	1	108	60	46		35.5	0.415	24	neg
	720	5	97	76	27		35.6	0.378	52	pos
	721	4	83	86	19		29.3	0.317	34	neg
	722	1	114	66	36		38.1	0.289	21	neg
	723	1	149	68	29		29.3	0.349	42	pos
	724	5	117	86	30		39.1	0.251	42	neg
	725	1	111	94	0		32.8	0.265	45	neg
	726	4	112	78	40		39.4	0.236	38	neg
	727	1	116	78	29		36.1	0.496	25	neg
	728	0	141	84	26		32.4	0.433	22	neg
	729	2	175	88	0		22.9	0.326	22	neg
	730	2	92	52	0		30.1	0.141	22	neg
	731	3	130	78	23		28.4	0.323	34	pos
σ π	, 51	3	100	70	20	13	20.4	0.020	O-T	Pos

```
## 732
                       120
                                                     0 28.4
                                                                 0.259
                8
                                  86
                                                                         22
                                                                                  pos
## 733
                2
                       174
                                  88
                                           37
                                                   120 44.5
                                                                 0.646
                                                                         24
                                                                                  pos
## 734
                2
                                                                 0.426
                       106
                                  56
                                           27
                                                   165 29.0
                                                                         22
                                                                                  neg
## 735
                2
                       105
                                  75
                                                     0 23.3
                                                                 0.560
                                                                         53
                                            0
                                                                                  neg
##
  736
                4
                        95
                                  60
                                           32
                                                     0 35.4
                                                                 0.284
                                                                         28
                                                                                  neg
## 737
                0
                       126
                                  86
                                           27
                                                   120 27.4
                                                                 0.515
                                                                         21
                                                                                  neg
## 738
                8
                                  72
                                           23
                                                     0 32.0
                                                                 0.600
                                                                         42
                        65
                                                                                  neg
## 739
                2
                        99
                                                   160 36.6
                                                                 0.453
                                                                         21
                                  60
                                           17
                                                                                  neg
## 740
               1
                       102
                                  74
                                            0
                                                     0 39.5
                                                                 0.293
                                                                         42
                                                                                  pos
## 741
                       120
                                  80
                                           37
                                                   150 42.3
                                                                 0.785
                                                                         48
               11
                                                                                  pos
## 742
                3
                       102
                                  44
                                           20
                                                    94 30.8
                                                                 0.400
                                                                         26
                                                                                  neg
## 743
                       109
                                                   116 28.5
                                                                 0.219
                                                                         22
               1
                                  58
                                           18
                                                                                  neg
  744
               9
                                                     0 32.7
##
                       140
                                  94
                                            0
                                                                 0.734
                                                                         45
                                                                                  pos
## 745
               13
                                  88
                                           37
                                                   140 40.6
                                                                 1.174
                                                                         39
                       153
                                                                                  neg
## 746
               12
                       100
                                  84
                                           33
                                                   105 30.0
                                                                 0.488
                                                                         46
                                                                                  neg
## 747
                1
                       147
                                  94
                                           41
                                                     0 49.3
                                                                 0.358
                                                                         27
                                                                                  pos
## 748
                1
                        81
                                  74
                                                    57 46.3
                                                                 1.096
                                                                         32
                                           41
                                                                                  neg
## 749
                                                   200 36.4
                                                                 0.408
                3
                       187
                                  70
                                           22
                                                                         36
                                                                                  pos
## 750
                6
                      162
                                  62
                                            0
                                                     0 24.3
                                                                 0.178
                                                                         50
                                                                                  pos
## 751
                                                     0 31.2
                4
                       136
                                  70
                                            0
                                                                 1.182
                                                                         22
                                                                                  pos
## 752
                1
                       121
                                  78
                                           39
                                                    74 39.0
                                                                 0.261
                                                                         28
                                                                                  neg
## 753
                3
                       108
                                  62
                                           24
                                                     0 26.0
                                                                 0.223
                                                                         25
                                                                                  neg
## 754
                0
                                                   510 43.3
                                                                 0.222
                       181
                                  88
                                           44
                                                                         26
                                                                                  pos
## 755
                8
                       154
                                  78
                                           32
                                                     0 32.4
                                                                 0.443
                                                                         45
                                                                                  pos
                                                                 1.057
## 756
                1
                       128
                                  88
                                           39
                                                   110 36.5
                                                                         37
                                                                                  pos
## 757
                7
                      137
                                  90
                                           41
                                                     0 32.0
                                                                 0.391
                                                                         39
                                                                                  neg
## 758
                0
                       123
                                  72
                                            0
                                                     0 36.3
                                                                 0.258
                                                                         52
                                                                                  pos
   759
                       106
                                  76
                                            0
                                                     0 37.5
                                                                 0.197
                                                                         26
##
                1
                                                                                  neg
## 760
                6
                       190
                                            0
                                                     0 35.5
                                                                 0.278
                                  92
                                                                         66
                                                                                  pos
## 761
                2
                                                    16 28.4
                                                                 0.766
                        88
                                  58
                                           26
                                                                         22
                                                                                  neg
## 762
               9
                       170
                                  74
                                           31
                                                     0 44.0
                                                                 0.403
                                                                         43
                                                                                  pos
## 763
               9
                        89
                                  62
                                            0
                                                     0 22.5
                                                                 0.142
                                                                         33
                                                                                  neg
## 764
               10
                                  76
                                                                 0.171
                       101
                                           48
                                                   180 32.9
                                                                         63
                                                                                  neg
## 765
                2
                       122
                                  70
                                           27
                                                     0 36.8
                                                                 0.340
                                                                         27
                                                                                  neg
## 766
               5
                                                                 0.245
                       121
                                  72
                                           23
                                                   112 26.2
                                                                         30
                                                                                  neg
## 767
                1
                       126
                                  60
                                            0
                                                     0 30.1
                                                                 0.349
                                                                         47
                                                                                  pos
## 768
                1
                        93
                                  70
                                           31
                                                     0 30.4
                                                                 0.315
                                                                         23
                                                                                  neg
```

str(df)

```
'data.frame':
                    768 obs. of 9 variables:
##
    $ pregnant: num
                     6 1 8 1 0 5 3 10 2 8 ...
    $ glucose : num
                     148 85 183 89 137 116 78 115 197 125 ...
##
                     72 66 64 66 40 74 50 0 70 96 ...
   $ pressure: num
                     35 29 0 23 35 0 32 0 45 0 ...
##
    $ triceps : num
##
   $ insulin : num
                     0 0 0 94 168 0 88 0 543 0 ...
##
   $ mass
                     33.6 26.6 23.3 28.1 43.1 25.6 31 35.3 30.5 0 ...
              : num
##
   $ pedigree: num
                     0.627 0.351 0.672 0.167 2.288 ...
                     50 31 32 21 33 30 26 29 53 54 ...
##
              : num
    $ diabetes: Factor w/ 2 levels "neg","pos": 2 1 2 1 2 1 2 1 2 2 ...
```

#Summary Statistics

summary(df)

```
## pregnant glucose pressure triceps ## Min. : 0.000 Min. : 0.00 Min. : 0.00
```

```
## 1st Qu.: 1.000
                   1st Qu.: 99.0
                                    1st Qu.: 62.00
                                                    1st Qu.: 0.00
## Median : 3.000
                   Median :117.0
                                   Median : 72.00
                                                    Median :23.00
## Mean : 3.845
                    Mean
                         :120.9
                                   Mean : 69.11
                                                    Mean :20.54
                                    3rd Qu.: 80.00
                                                    3rd Qu.:32.00
  3rd Qu.: 6.000
                    3rd Qu.:140.2
##
  Max.
         :17.000
                    Max. :199.0
                                    Max.
                                         :122.00
                                                    Max.
                                                          :99.00
##
      insulin
                                                                   diabetes
                        {\tt mass}
                                      pedigree
                                                        age
## Min. : 0.0
                   Min. : 0.00
                                   Min. :0.0780
                                                                   neg:500
                                                   Min. :21.00
## 1st Qu.: 0.0
                   1st Qu.:27.30
                                   1st Qu.:0.2437
                                                    1st Qu.:24.00
                                                                   pos:268
## Median : 30.5
                   Median :32.00
                                   Median :0.3725
                                                   Median :29.00
## Mean : 79.8
                   Mean :31.99
                                   Mean :0.4719
                                                    Mean :33.24
## 3rd Qu.:127.2
                   3rd Qu.:36.60
                                   3rd Qu.:0.6262
                                                    3rd Qu.:41.00
## Max.
          :846.0
                   Max.
                          :67.10
                                          :2.4200
                                                           :81.00
                                   Max.
                                                    Max.
#Confirmation of No Near Zero Variance for Predictor Variables
predictors <- PimaIndiansDiabetes[ , -(9)]</pre>
print(nearZeroVar(predictors))
## integer(0)
#Check for missing values
#Confirmed No Missing Values
sapply(df, function(x) sum(is.na(x)))
## pregnant glucose pressure triceps insulin
                                                   mass pedigree
                                                                      age
                  0
                           0
                                   0
                                             0
                                                      0
                                                                       0
## diabetes
#List Zero Markers: 6 out of 9 Variables have zero markers for Predictor Variables
list( Column = colSums(df==0),
Row = sum(rowSums(df==0)))
## $Column
## pregnant glucose pressure triceps insulin
                                                   mass pedigree
                                                                     age
       111
                  5
                          35
                                  227
                                           374
                                                    11
                                                                       0
## diabetes
##
##
## $Row
## [1] 763
#Logic Behind 6 Zero Markers
#pregnant- not all woman have a baby, likely 0 is a true value, will keep predictor variable
#glucose- only 5 values are missing, will keep predictor variable, will use numerical mean
#pressure- only 35 values are missing, will keep predictor variable, will use numerical mean
#triceps- approximately 30% of the data contains 0 values, will keep predictor variable, will use numer
#insulin- almost 50% of the data has 0 values, will keep predictor variable, will use numerical mean
#mass- only 11 values are missing, will keep predictor variable
#Predictor Variables After Review of Summary Statistics and Zero Markers
#1.pregnant
#2.qlucose
#3.pressure
#4.mass
#5.pedigree
#6.age
#7. triceps
```

```
#8.insulin
#Outcome Variable
#1.diabetes
#Replace All Zeros
df[df == 0] \leftarrow NA
#Return Pregnant NA back to O(zerO)
df$pregnant[is.na(df$pregnant)] <- 0</pre>
#df
#Replace NA Values with Mean from respective columns: glucose, pressure, mass, insulin & triceps
df$glucose[is.na(df$glucose)] <-mean(df$glucose, na.rm=TRUE) #qlucose
df$pressure[is.na(df$pressure)] <-mean(df$pressure, na.rm=TRUE) #pressure
df$mass[is.na(df$mass)]<-mean(df$mass,na.rm=TRUE) #mass</pre>
df$insulin[is.na(df$insulin)] <-mean(df$insulin, na.rm=TRUE) #insulin
df$triceps[is.na(df$triceps)] <- mean(df$triceps, na.rm=TRUE) #triceps
df \leftarrow df[,-4]
#df
#Updated Summary Statistics After replacing NA Values with Mean from respective columns: glucose, press
summary(df)
##
       pregnant
                        glucose
                                         pressure
                                                           insulin
##
  Min. : 0.000
                     Min. : 44.00
                                             : 24.00
                                                       Min. : 14.0
                                      Min.
  1st Qu.: 1.000
                     1st Qu.: 99.75
                                      1st Qu.: 64.00
                                                        1st Qu.:121.5
## Median : 3.000
                     Median :117.00
                                      Median : 72.20
                                                       Median :155.5
## Mean : 3.845
                                      Mean : 72.41
                     Mean
                           :121.69
                                                       Mean
                                                               :155.5
## 3rd Qu.: 6.000
                     3rd Qu.:140.25
                                      3rd Qu.: 80.00
                                                        3rd Qu.:155.5
## Max.
          :17.000
                     Max.
                            :199.00
                                      Max.
                                             :122.00
                                                       Max.
                                                               :846.0
##
        mass
                       pedigree
                                          age
                                                     diabetes
                                           :21.00
## Min.
          :18.20 Min.
                           :0.0780
                                                     neg:500
                                     Min.
## 1st Qu.:27.50 1st Qu.:0.2437
                                     1st Qu.:24.00
                                                     pos:268
## Median :32.40 Median :0.3725
                                     Median :29.00
## Mean :32.46
                    Mean :0.4719
                                     Mean
                                            :33.24
## 3rd Qu.:36.60
                    3rd Qu.:0.6262
                                     3rd Qu.:41.00
## Max.
          :67.10
                  {\tt Max.}
                           :2.4200
                                     Max.
                                           :81.00
#Histograms of Diabetes: Predictor Variables
n <-df[,1:(ncol(df)-1)] #Predictors are variables 1-8
par(mfrow = c(3,3)) #Histograms will be 3x3
for (i in 1:ncol(n))
{hist(n[ ,i], xlab = names(n[i]), main = paste(names(n[i]), "Histogram"), col="orange")
}
#Correlation Plot of Diabetes: Predictor Variables
x \leftarrow cor(df[1:ncol(df)-1])
corrplot(x, method="number")
#Box Plots of Diabetes: Predictor Variables
boxplot(df$pregnant, main = "Pregnant Boxplot", col = "red")
```


pregnant glucose pressure insulin Min. : 0.000 : 15.0 ## Min. : 56.0 Min. : 24.00 Min. 1st Qu.: 1.000 1st Qu.: 99.0 1st Qu.: 64.00 1st Qu.:125.0 Median : 3.000 Median :117.0 Median : 72.41 Median :155.5

```
## Mean : 3.881
                   Mean
                        :121.9
                                  Mean : 72.62
                                                  Mean
  3rd Qu.: 6.000 3rd Qu.:140.0
                                  3rd Qu.: 80.00
                                                  3rd Qu.:155.5
## Max.
                                  Max. :122.00 Max.
         :17.000 Max. :199.0
                                                         :846.0
##
                    pedigree
                                                diabetes
        {\tt mass}
                                      age
## Min.
          :18.2
                Min.
                        :0.0780
                                 Min. :21.00
                                                neg:400
  1st Qu.:27.6
                1st Qu.:0.2370
                                 1st Qu.:24.00
##
                                                pos:215
## Median :32.4
                Median :0.3640
                                 Median :29.00
## Mean :32.6
                                 Mean :33.41
                Mean :0.4647
## 3rd Qu.:36.8
                 3rd Qu.:0.6110
                                 3rd Qu.:41.00
## Max.
        :67.1
                 Max. :2.2880
                                 Max.
                                        :81.00
#Logistic Regression: Training Model
#No Tuning Parameters for Simple Logistic Regression
lr_train_data <- caret::train(diabetes ~., data = train_data,</pre>
                        method = "glm",
                        metric = "ROC",
                        tuneLength = 10,
                        trControl = trainControl(method = "cv", number = 10,
                                                classProbs = T, summaryFunction = twoClassSummary),
                        preProcess = c("center", "scale"))
lr train data
## Generalized Linear Model
##
## 615 samples
##
   7 predictor
##
    2 classes: 'neg', 'pos'
##
## Pre-processing: centered (7), scaled (7)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 553, 553, 554, 553, 554, 554, ...
## Resampling results:
##
##
    ROC
               Sens
                     Spec
    0.8446807 0.885 0.5900433
summary(lr_train_data)
##
## Call:
## NULL
##
## Deviance Residuals:
      Min
               1Q Median
                                3Q
                                        Max
## -2.6733 -0.7046 -0.3818 0.6726
##
## Coefficients:
             Estimate Std. Error z value Pr(>|z|)
                         0.11010 -7.900 2.8e-15 ***
## (Intercept) -0.86976
## pregnant
                         0.12451
                                  3.522 0.000428 ***
              0.43851
                         0.13312
                                 8.758 < 2e-16 ***
## glucose
              1.16594
## pressure
             -0.10367
                         0.11925 -0.869 0.384630
## insulin
                         0.11357 -0.150 0.880496
             -0.01707
```

```
## mass
               0.68502
                          0.12187
                                     5.621 1.9e-08 ***
               0.34252
                          0.10753
                                     3.185 0.001445 **
## pedigree
                          0.12639
## age
               0.13217
                                   1.046 0.295677
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 796.05 on 614 degrees of freedom
## Residual deviance: 556.89 on 607 degrees of freedom
## AIC: 572.89
## Number of Fisher Scoring iterations: 5
#Random Forest: Training Model
rf_train_data <- caret::train(diabetes ~., data = train_data,</pre>
                            method = "ranger",
                            metric = "ROC",
                             trControl = trainControl(method = "cv", number = 10,
                                                      classProbs = T, summaryFunction = twoClassSummary
                             preProcess = c("center", "scale"))
rf_train_data
## Random Forest
##
## 615 samples
##
    7 predictor
##
    2 classes: 'neg', 'pos'
##
## Pre-processing: centered (7), scaled (7)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 554, 553, 554, 553, 553, 553, ...
## Resampling results across tuning parameters:
##
##
    mtry splitrule
                      ROC
                                 Sens
                                          Spec
##
                       0.8345509 0.8525 0.6183983
     2
          gini
          extratrees 0.8445536 0.8800 0.5911255
##
     2
##
    4
                      0.8339935 0.8550 0.6515152
          gini
        extratrees 0.8420049 0.8700 0.6279221
##
    4
##
    7
          gini
                      0.8291288 0.8500 0.6651515
          extratrees 0.8415368 0.8600 0.6324675
##
##
## Tuning parameter 'min.node.size' was held constant at a value of 1
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were mtry = 2, splitrule = extratrees
## and min.node.size = 1.
plot(rf_train_data)
FinalTree = rf_train_data$finalModel$importance.mode
#K Nearest Neighbor: Training Model
knn_train_data <- caret::train(diabetes ~., data = train_data,</pre>
                         method = "knn",
```

```
metric = "ROC",
                          tuneGrid = expand.grid(.k = c(3:10)),
                          trControl = trainControl(method = "cv", number = 10,
                                                   classProbs = T, summaryFunction = twoClassSummary),
                          preProcess = c("center", "scale"))
knn_train_data
## k-Nearest Neighbors
##
## 615 samples
##
    7 predictor
     2 classes: 'neg', 'pos'
##
## Pre-processing: centered (7), scaled (7)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 554, 554, 554, 553, 553, 554, ...
## Resampling results across tuning parameters:
##
##
         ROC
    k
                    Sens
                            Spec
     3 0.7554437 0.7975 0.5679654
##
##
     4 0.7794183 0.8275 0.5722944
     5 0.7857495 0.8350 0.5816017
##
##
     6 0.8004518 0.8325 0.5543290
##
     7 0.8020292 0.8275 0.5913420
     8 0.8062716 0.8425 0.5956710
##
##
     9 0.8168236 0.8400 0.6145022
##
     10 0.8220996 0.8625 0.5731602
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was k = 10.
plot(knn_train_data)
#Classification and Regression Trees (CART): Training Model
cart_train_data <- caret::train(diabetes ~., data = train_data,</pre>
                            method = "rpart",
                            metric = "ROC",
                            tuneLength = 20,
                            trControl = trainControl(method = "cv", number = 10,
                                                     classProbs = TRUE, summaryFunction = twoClassSumma
                            preProcess = c("center", "scale", "pca"))
cart_train_data
## CART
##
## 615 samples
     7 predictor
##
     2 classes: 'neg', 'pos'
## Pre-processing: centered (7), scaled (7), principal component signal
## extraction (7)
## Resampling: Cross-Validated (10 fold)
```

```
## Summary of sample sizes: 554, 554, 553, 554, 553, 553, ...
## Resampling results across tuning parameters:
##
##
    ср
                ROC
                          Sens
                                  Spec
##
    0.00000000 0.7626028 0.7950 0.56774892
    0.01223990 0.7785092 0.8200 0.57662338
##
    0.02447980 0.7706034 0.8225 0.60043290
##
    0.03671971 0.7689935 0.8325 0.55865801
##
    0.04895961 0.7709253 0.8350 0.55865801
##
##
    0.06119951 0.7712825 0.8375 0.55389610
##
    0.07343941 0.7697944 0.8100 0.59675325
    0.08567931 0.7697944 0.8100 0.59675325
##
##
    0.09791922 0.7604924 0.7825 0.60670996
    0.11015912 \quad 0.7585606 \quad 0.7625 \quad 0.65670996
##
##
    0.12239902 0.7556629 0.7450 0.67943723
##
    0.13463892 0.7502462 0.7175
                                  0.71277056
##
    0.14687882 0.7429167 0.6750 0.76731602
##
    ##
    0.17135863 0.7071374 0.6725 0.74177489
    ##
##
    0.20807834 0.6114448 0.8125 0.41038961
##
##
    0.22031824 0.5216071 0.9575 0.08571429
    0.23255814 0.5000000 1.0000 0.00000000
##
##
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.0122399.
FinalTree = cart_train_data$finalModel
rpartTree = as.party(FinalTree)
dev.new()
plot(rpartTree)
#Neural Net
registerDoParallel(cores=7)
nnetGrid \leftarrow expand.grid(.decay = c(0, 0.01, 0.1),
                       .size = c(1:10),
                       .bag = FALSE
)
nnet_train_data <- caret::train(diabetes ~., data = train_data,</pre>
                              method = "avNNet",
                              tuneGrid = nnetGrid,
                              metric = "ROC",
                              trControl = trainControl(method = "cv", number = 10,
                                                      classProbs = TRUE, summaryFunction = twoClassS
                              preProcess = c("center", "scale"),
                              linout = TRUE,
                              trace = FALSE,
                              \frac{\text{MaxNWts}}{\text{MaxNWts}} = 10 * (\text{ncol(train_data}) + 1) + 10 + 1,
                              maxit = 500)
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, :
```

There were missing values in resampled performance measures.

```
## Warning in train.default(x, y, weights = w, ...): missing values found in
## aggregated results
nnet train data
## Model Averaged Neural Network
##
## 615 samples
##
     7 predictor
##
     2 classes: 'neg', 'pos'
##
## Pre-processing: centered (7), scaled (7)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 554, 554, 553, 554, 553, 554, ...
## Resampling results across tuning parameters:
##
##
                 ROC
     decay
            size
                              Sens
                                      Spec
##
     0.00
                  0.8476569
                             0.8600
                                      0.6229437
             1
##
     0.00
             2
                  0.8470076
                             0.8500
                                     0.6043290
##
     0.00
             3
                  0.8393723
                             0.8525
                                      0.6225108
##
     0.00
                  0.8307576
                             0.8450
             4
                                     0.6034632
##
     0.00
             5
                  0.8203409
                             0.8550
                                      0.5714286
##
     0.00
                  0.8144102
                             0.8325
                                      0.5857143
             6
     0.00
##
             7
                  0.8255087
                             0.8575
                                     0.5995671
##
     0.00
             8
                  0.8115747
                             0.8425
                                     0.6093074
##
     0.00
             9
                  0.8081872
                             0.8225
                                     0.6127706
##
     0.00
            10
                        \mathtt{NaN}
                                 NaN
                                            NaN
##
     0.01
                  0.8476569 0.8625
                                     0.6231602
             1
##
     0.01
             2
                  0.8501948 0.8525
                                     0.6367965
##
     0.01
             3
                  0.8438745 0.8600 0.6088745
##
     0.01
             4
                  0.8347673
                             0.8675
                                      0.5904762
##
     0.01
             5
                  0.8371861 0.8625
                                     0.6041126
##
     0.01
                  0.8318452 0.8250
                                     0.6136364
##
     0.01
             7
                  0.8316234
                             0.8500
                                     0.5904762
##
     0.01
             8
                  0.8236364
                             0.8450
                                     0.5906926
##
                  0.8211201
                                     0.5902597
     0.01
             9
                             0.8475
##
     0.01
            10
                         NaN
                                 NaN
##
     0.10
                  0.8478896
                             0.8625
                                      0.6231602
             1
##
     0.10
             2
                  0.8518994
                             0.8650
                                      0.5861472
##
     0.10
             3
                  0.8530790 0.8700
                                     0.5906926
##
     0.10
             4
                  0.8437771 0.8525
                                     0.5941558
##
     0.10
             5
                  0.8357522
                             0.8500
                                     0.5857143
##
     0.10
             6
                  0.8319210
                             0.8475
                                     0.5954545
##
     0.10
             7
                  0.8302814 0.8425
                                     0.5580087
##
                  0.8321212
                             0.8500
                                     0.5854978
     0.10
             8
##
     0.10
             9
                  0.8249188
                             0.8375
                                      0.5807359
##
     0.10
                        NaN
                                 NaN
                                            NaN
            10
##
## Tuning parameter 'bag' was held constant at a value of FALSE
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were size = 3, decay = 0.1 and bag = FALSE.
plot(nnet_train_data)
```

```
svmFit <- train(diabetes ~., data = train_data,</pre>
              method = "svmRadial",
              metric = "ROC",
              tuneLength = 14,
               preProcess = c("center", "scale"),
               trControl = trainControl(method = "cv", number = 10,
                                      classProbs = TRUE, summaryFunction = twoClassSummary))
svmFit
## Support Vector Machines with Radial Basis Function Kernel
## 615 samples
##
    7 predictor
##
    2 classes: 'neg', 'pos'
##
## Pre-processing: centered (7), scaled (7)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 554, 553, 554, 553, 553, 553, ...
## Resampling results across tuning parameters:
##
##
    C
             ROC
                       Sens
                               Spec
##
       0.25 0.8425271 0.8800 0.6088745
       0.50 0.8415043 0.8850 0.5900433
##
##
       1.00 0.8384199 0.8875 0.5621212
##
       2.00 0.8345184 0.8950 0.5149351
       4.00 0.8201245 0.8850 0.5432900
##
##
       8.00 0.8038366 0.8850 0.5012987
      16.00 0.7779221 0.8750 0.4922078
##
##
      32.00 0.7582684 0.8800 0.4411255
##
      64.00 0.7406872 0.8775 0.3768398
##
     128.00 0.7341721 0.8975 0.3536797
##
     256.00 0.7264989 0.9000 0.3112554
     512.00 0.7167803 0.9100 0.2839827
##
##
    1024.00 0.7156061 0.9175 0.2707792
##
    2048.00 0.7101732 0.8975 0.2935065
##
## Tuning parameter 'sigma' was held constant at a value of 0.1441702
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were sigma = 0.1441702 and C = 0.25.
plot(svmFit)
gbmGrid <- expand.grid(.interaction.depth = seq(1, 7, by = 2),</pre>
                     .n.trees = seq(100, 1000, by = 50),
                     .shrinkage = c(0.01, 0.1),
                     .n.minobsinnode = 10)
gbmFit <- train(diabetes ~., data = train_data,</pre>
               method = "gbm",
```

tuneGrid = gbmGrid,

```
preProcess = c("center", "scale"),
                 verbose = FALSE,
                 trControl = trainControl(method = "cv", number = 10,
                                           classProbs = TRUE, summaryFunction = twoClassSummary))
## Warning in train.default(x, y, weights = w, ...): The metric "Accuracy" was not
## in the result set. ROC will be used instead.
gbmFit
## Stochastic Gradient Boosting
##
## 615 samples
##
     7 predictor
##
     2 classes: 'neg', 'pos'
##
## Pre-processing: centered (7), scaled (7)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 553, 553, 553, 554, 554, 554, ...
## Resampling results across tuning parameters:
##
##
                interaction.depth n.trees
                                              ROC
                                                                   Spec
     shrinkage
                                                          Sens
##
     0.01
                                              0.8122078
                                                          0.9425
                                                                  0.3722944
                                      100
     0.01
##
                                      150
                                                          0.9300
                 1
                                              0.8209578
                                                                  0.4190476
##
     0.01
                 1
                                      200
                                              0.8273295
                                                          0.9175
                                                                  0.4653680
##
     0.01
                 1
                                      250
                                                         0.9075
                                                                  0.5110390
                                              0.8333144
##
     0.01
                 1
                                      300
                                              0.8362013
                                                          0.8975
                                                                  0.5294372
##
     0.01
                                      350
                                                          0.8950
                 1
                                              0.8386742
                                                                  0.5339827
##
     0.01
                 1
                                      400
                                              0.8420563
                                                          0.8900
                                                                  0.5387446
##
     0.01
                 1
                                      450
                                              0.8427922
                                                          0.8900
                                                                  0.5389610
##
     0.01
                 1
                                      500
                                              0.8457197
                                                          0.8850
                                                                  0.5296537
##
                                                          0.8850
     0.01
                 1
                                      550
                                              0.8472457
                                                                  0.5482684
##
     0.01
                 1
                                      600
                                              0.8483117
                                                          0.8850
                                                                  0.5577922
                                                          0.8850
##
     0.01
                 1
                                      650
                                              0.8484253
                                                                  0.5577922
##
     0.01
                                      700
                                                          0.8850
                 1
                                              0.8480519
                                                                  0.5718615
##
     0.01
                 1
                                      750
                                              0.8480574
                                                          0.8800
                                                                  0.5766234
                                              0.8482089
##
     0.01
                 1
                                      800
                                                          0.8825
                                                                  0.5766234
##
     0.01
                 1
                                      850
                                              0.8485552
                                                          0.8800
                                                                  0.5813853
##
     0.01
                 1
                                      900
                                              0.8477435
                                                          0.8775
                                                                  0.5859307
##
     0.01
                 1
                                      950
                                              0.8480952
                                                          0.8725
                                                                  0.5859307
##
     0.01
                 1
                                     1000
                                              0.8478896
                                                          0.8725
                                                                  0.5952381
##
     0.01
                 3
                                                         0.9200
                                      100
                                              0.8378842
                                                                  0.4829004
##
     0.01
                 3
                                      150
                                                          0.8975
                                                                  0.5158009
                                              0.8409037
     0.01
                 3
##
                                      200
                                              0.8405952
                                                          0.8875
                                                                  0.5435065
##
     0.01
                 3
                                      250
                                                          0.8800
                                              0.8439610
                                                                  0.5482684
##
     0.01
                 3
                                      300
                                              0.8438799
                                                          0.8775
                                                                  0.5668831
##
     0.01
                 3
                                      350
                                                          0.8700
                                              0.8439340
                                                                  0.5809524
                 3
##
     0.01
                                      400
                                              0.8446861
                                                          0.8700
                                                                  0.5857143
##
                 3
                                                          0.8700
     0.01
                                      450
                                              0.8445617
                                                                  0.5904762
##
     0.01
                 3
                                      500
                                              0.8436742
                                                          0.8675
                                                                  0.6041126
##
                3
     0.01
                                      550
                                              0.8437716
                                                          0.8700
                                                                  0.6088745
##
     0.01
                 3
                                      600
                                                          0.8675
                                                                  0.6181818
                                              0.8432197
```

0.8403571

0.8362987

0.8700

0.8700

0.6181818

0.6136364

650

700

##

##

0.01

0.01

3

3

##	0.01	3	750	0.8352597	0.8675	0.6134199
##	0.01	3	800	0.8352489	0.8650	0.6136364
##	0.01	3	850	0.8340801	0.8675	0.6365801
##	0.01	3	900	0.8343074	0.8650	0.6181818
##	0.01	3	950	0.8343182	0.8625	0.6227273
##	0.01	3	1000	0.8337229	0.8575	0.6318182
##	0.01	5	100	0.8459361	0.9075	0.5017316
##	0.01	5	150	0.8475379	0.8875	0.5389610
##	0.01	5	200	0.8483983	0.8850	0.5666667
##	0.01	5	250	0.8490422	0.8825	0.5852814
##	0.01	5	300	0.8470942	0.8775	0.5945887
##	0.01	5	350	0.8432684	0.8750	0.5948052
##	0.01	5	400	0.8417641	0.8675	0.6088745
##	0.01	5	450	0.8413041	0.8650	0.6134199
##	0.01	5	500	0.8387229	0.8650	0.6086580
##	0.01	5	550	0.8364286	0.8700	0.6179654
##	0.01	5	600	0.8366667	0.8625	0.6086580
##	0.01	5	650	0.8354870	0.8625	0.6274892
##	0.01	5	700	0.8341126	0.8500	0.6322511
##	0.01	5	750	0.8329491	0.8500	0.6274892
##	0.01	5	800	0.8312121	0.8525	0.6274892
##	0.01	5	850	0.8310931	0.8500	0.6320346
##	0.01	5	900	0.8299459	0.8475	0.6415584
##	0.01	5	950	0.8287771	0.8450	0.6367965
##	0.01	5	1000	0.8276245	0.8425	0.6277056
##	0.01	7	100	0.8457684	0.9050	0.5158009
##	0.01	7	150	0.8460606	0.8825	0.5666667
##	0.01	7	200	0.8470022	0.8750	0.5991342
##	0.01	7	250	0.8462229	0.8750	0.6138528
##	0.01	7	300	0.8455574	0.8700	0.6183983
##	0.01	7	350	0.8423160	0.8725	0.6231602
##	0.01	7	400	0.8402597	0.8675	0.6326840
##	0.01	7	450	0.8395671	0.8625	0.6233766
##	0.01	7	500	0.8373918	0.8650	0.6231602
##	0.01	7	550	0.8358658	0.8625	0.6279221
##	0.01	7	600	0.8337662	0.8575	0.6279221
##	0.01	7	650	0.8324188	0.8525	0.6233766
##	0.01	7	700	0.8317262	0.8525	0.6233766
##	0.01	7	750	0.8317208	0.8525	0.6140693
##	0.01	7	800	0.8302327	0.8425	0.6140693
##	0.01	7	850	0.8292478	0.8425	0.6183983
##	0.01	7	900	0.8277273	0.8400	0.6138528
##	0.01	7	950	0.8264448	0.8400	0.6140693
##	0.01	7	1000	0.8256223	0.8375	0.6090909
##	0.10	1	100	0.8444210	0.8650	0.5958874
##	0.10	1	150	0.8391396	0.8600	0.6277056
##	0.10	1	200	0.8363961	0.8600	0.6090909
##	0.10	1	250	0.8355465	0.8475	0.6093074
##	0.10	1	300	0.8349188	0.8600	0.5904762
##	0.10	1	350	0.8332143	0.8600	0.6051948
##	0.10	1	400	0.8332143	0.8550	0.6093074
##	0.10	1	450	0.8287554	0.8350	0.6283550
##	0.10	1	500	0.8285498	0.8450	0.5911255
##	0.10	1	550	0.8251461	0.8400	0.6006494
πĦ	0.10	1	330	0.0201401	0.0400	0.0000434

##	0.10	1	600	0.8237771	0.8475	0.6006494
##	0.10	1	650	0.8205465	0.8450	0.6054113
##	0.10	1	700	0.8231223	0.8425	0.6149351
##	0.10	1	750	0.8216180	0.8400	0.6054113
##	0.10	1	800	0.8220671	0.8375	0.6196970
##	0.10	1	850	0.8217911	0.8400	0.5917749
##	0.10	1	900	0.8197835	0.8400	0.5870130
##	0.10	1	950	0.8207955	0.8425	0.5961039
##	0.10	1	1000	0.8178571	0.8425	0.6054113
##	0.10	3	100	0.8354600	0.8550	0.6231602
##	0.10	3	150	0.8274297	0.8450	0.6090909
##	0.10	3	200	0.8184253	0.8400	0.5948052
##	0.10	3	250			
				0.8130032	0.8300	0.6000000
##	0.10	3	300	0.8111201	0.8400	0.5906926
##	0.10	3	350	0.8090152	0.8300	0.6002165
##	0.10	3	400	0.8059091	0.8375	0.5954545
##	0.10	3	450	0.8001840	0.8250	0.5948052
##	0.10	3	500	0.7996320	0.8225	0.5950216
##	0.10	3	550	0.8006764	0.8225	0.5857143
##	0.10	3	600	0.7979221	0.8200	0.5995671
##	0.10	3	650	0.7941504	0.8225	0.5900433
##	0.10	3	700	0.7941558	0.8150	0.5989177
##	0.10	3	750	0.7937554	0.8050	0.6086580
##	0.10	3	800	0.7897565	0.8075	0.6086580
##	0.10	3	850	0.7909957	0.8100	0.6043290
##	0.10	3	900	0.7891234	0.8100	0.6045455
##	0.10	3	950	0.7886959	0.8025	0.6088745
##	0.10	3	1000	0.7902976	0.8025	0.6138528
##	0.10	5	100	0.8233496	0.8350	0.6419913
##	0.10	5	150	0.8148701	0.8400	0.6329004
##	0.10	5	200	0.8105628	0.8350	0.6093074
##	0.10	5	250	0.8093344	0.8350	0.6240260
##	0.10	5	300	0.8061580	0.8275	0.6004329
##	0.10	5	350	0.8074188	0.8350	0.6051948
##	0.10	5	400	0.8020887	0.8275	0.5958874
##	0.10	5	450	0.7997781	0.8275	0.5909091
##	0.10	5	500	0.8000541 0.8015801	0.8175	0.6002165
##	0.10	5	550		0.8200	0.5956710
##	0.10	5	600	0.7981872 0.7943615	0.8125 0.8175	0.5906926
##	0.10	5	650			0.5865801
##	0.10	5	700	0.7963799	0.8100	0.6000000
##	0.10	5	750	0.7990747	0.8100	0.5909091
##	0.10	5	800	0.7976353	0.8150	0.5952381
##	0.10	5	850	0.7966126	0.8025	0.5954545
##	0.10	5	900	0.7960065	0.8025	0.5956710
##	0.10	5	950	0.7942478	0.8025	0.5956710
##	0.10	5	1000	0.7940693	0.8000	0.5956710
##	0.10	7	100	0.8148377	0.8275	0.6188312
##	0.10	7	150	0.8056169	0.8200	0.5997835
##	0.10	7	200	0.7975379	0.8125	0.5941558
##	0.10	7	250	0.7982900	0.8075	0.6090909
##	0.10	7	300	0.8018561	0.8150	0.5950216
##	0.10	7	350	0.7985335	0.8050	0.6136364
##	0.10	7	400	0.7969697	0.8100	0.6132035

```
##
    0.10
                                  450
                                         0.7948701 0.8025 0.6043290
##
    0.10
               7
                                         0.7956926 0.8025 0.6181818
                                  500
##
    0.10
               7
                                  550
                                         7
##
    0.10
                                         0.7932143 0.8000 0.6179654
                                  600
##
    0.10
               7
                                  650
                                         7
##
    0.10
                                  700
                                         0.7954762 0.8100 0.6086580
               7
##
    0.10
                                  750
                                         0.7951569 0.7975 0.5995671
               7
##
    0.10
                                  800
                                         0.7946916 0.8025 0.6090909
##
    0.10
               7
                                  850
                                         0.7911797
                                                   0.8050
                                                           0.5950216
               7
##
    0.10
                                  900
                                         0.7905844
                                                   0.8025 0.5948052
##
    0.10
               7
                                  950
                                         0.7931494 0.7975 0.6038961
               7
##
                                 1000
                                         0.7927165 0.8000 0.6038961
    0.10
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were n.trees = 250, interaction.depth =
## 5, shrinkage = 0.01 and n.minobsinnode = 10.
glmnGrid \leftarrow expand.grid(.alpha = c(0, .1, .2, .4, .6, .8, 1),
                      .lambda = seq(.01, .2, length = 40))
glmnFit <- train(diabetes ~., data = train_data,</pre>
               method = "glmnet",
               tuneGrid = glmnGrid,
               preProcess = c("center", "scale"),
               metric = "ROC",
               trControl = trainControl(method = "cv", number = 10,
                                       classProbs = TRUE, summaryFunction = twoClassSummary))
glmnFit
## glmnet
##
## 615 samples
##
    7 predictor
##
    2 classes: 'neg', 'pos'
##
## Pre-processing: centered (7), scaled (7)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 553, 554, 554, 554, 553, 553, ...
## Resampling results across tuning parameters:
##
##
    alpha lambda
                      ROC
                                 Sens
                                        Spec
##
    0.0
           0.01000000 0.8499351 0.8925
                                        0.558008658
##
           0.01487179  0.8499351  0.8925
    0.0
                                        0.558008658
##
    0.0
           0.01974359 0.8499351
                                0.8925
                                        0.558008658
##
    0.0
           0.02461538 0.8498214
                                0.8925
                                        0.558008658
##
    0.0
           0.02948718  0.8498160  0.8950
                                        0.548701299
##
    0.0
           0.03435897  0.8496753  0.8950
                                        0.548701299
##
    0.0
           0.553463203
##
    0.0
           0.04410256 0.8501515 0.8975
                                        0.553463203
##
    0.0
           0.04897436 0.8503842 0.8975
                                        0.548917749
##
    0.0
           0.05384615  0.8505249  0.8975  0.548917749
```

```
##
     0.0
             0.05871795
                          0.8499459
                                     0.9025
                                              0.539393939
##
     0.0
             0.06358974
                          0.8505357
                                      0.9025
                                              0.539393939
                                              0.539393939
##
     0.0
             0.06846154
                          0.8502922
                                      0.9025
             0.07333333
                          0.8500703
##
     0.0
                                      0.9050
                                              0.539393939
##
     0.0
             0.07820513
                          0.8504275
                                      0.9050
                                              0.539393939
##
     0.0
             0.08307692
                          0.8503030
                                      0.9075
                                              0.539393939
                          0.8500541
##
     0.0
             0.08794872
                                      0.9100
                                              0.539393939
                                              0.534848485
##
     0.0
             0.09282051
                          0.8498268
                                      0.9100
##
     0.0
             0.09769231
                          0.8497132
                                      0.9100
                                              0.530303030
##
     0.0
             0.10256410
                          0.8497132
                                      0.9125
                                              0.525541126
##
     0.0
             0.10743590
                          0.8497186
                                      0.9125
                                              0.516450216
##
     0.0
             0.11230769
                          0.8491342
                                      0.9125
                                              0.516450216
##
     0.0
             0.11717949
                          0.8487879
                                      0.9125
                                              0.516450216
##
     0.0
             0.12205128
                          0.8480952
                                      0.9125
                                              0.511904762
##
                          0.8480898
     0.0
             0.12692308
                                      0.9125
                                              0.511904762
##
     0.0
             0.13179487
                          0.8483225
                                      0.9125
                                              0.511904762
##
     0.0
                          0.8483225
                                      0.9150
                                              0.511904762
             0.13666667
##
             0.14153846
                          0.8485606
                                      0.9150
                                              0.507142857
     0.0
##
     0.0
             0.14641026
                          0.8485660
                                      0.9200
                                              0.493073593
##
     0.0
             0.15128205
                          0.8484470
                                      0.9200
                                              0.493073593
                          0.8484470
##
     0.0
             0.15615385
                                      0.9225
                                              0.493073593
                          0.8486742
                                      0.9225
                                              0.493073593
##
     0.0
             0.16102564
                                              0.493073593
##
     0.0
             0.16589744
                          0.8482035
                                      0.9225
##
     0.0
             0.17076923
                          0.8483171
                                      0.9225
                                              0.488528139
##
     0.0
             0.17564103
                          0.8480790
                                      0.9300
                                              0.488528139
##
     0.0
             0.18051282
                          0.8475054
                                      0.9300
                                              0.488528139
##
                          0.8475054
                                      0.9300
     0.0
             0.18538462
                                              0.483982684
##
     0.0
             0.19025641
                          0.8476245
                                      0.9300
                                              0.479220779
##
                          0.8473972
     0.0
             0.19512821
                                      0.9300
                                              0.474458874
##
     0.0
             0.20000000
                          0.8469426
                                      0.9300
                                              0.474458874
##
     0.1
             0.01000000
                          0.8497998
                                      0.8850
                                              0.571645022
##
     0.1
             0.01487179
                          0.8497998
                                      0.8900
                                              0.562554113
##
     0.1
             0.01974359
                          0.8494589
                                      0.8900
                                              0.562554113
##
     0.1
             0.02461538
                          0.8496807
                                      0.8900
                                              0.562554113
##
             0.02948718
                          0.8502706
                                      0.8925
                                              0.553246753
     0.1
##
     0.1
             0.03435897
                          0.8506223
                                      0.8950
                                              0.543939394
##
     0.1
             0.03923077
                          0.8502760
                                      0.9025
                                              0.539177489
##
                          0.8506169
                                      0.9025
                                              0.539177489
     0.1
             0.04410256
             0.04897436
                          0.8507359
                                      0.9075
##
     0.1
                                              0.539177489
##
             0.05384615
                          0.8505032
                                      0.9075
                                              0.539177489
     0.1
##
     0.1
             0.05871795
                          0.8506277
                                      0.9075
                                              0.530086580
             0.06358974
                          0.8509740
                                      0.9100
##
     0.1
                                              0.530086580
##
     0.1
             0.06846154
                          0.8509740
                                      0.9125
                                              0.530086580
##
             0.07333333
                          0.8508550
                                      0.9125
     0.1
                                              0.534848485
##
     0.1
             0.07820513
                          0.8509740
                                      0.9125
                                              0.530086580
                                      0.9150
##
     0.1
             0.08307692
                          0.8514502
                                              0.525541126
##
     0.1
             0.08794872
                          0.8516829
                                      0.9150
                                              0.520995671
##
     0.1
             0.09282051
                          0.8508658
                                      0.9150
                                              0.520995671
             0.09769231
##
     0.1
                          0.8503950
                                      0.9150
                                              0.520995671
##
     0.1
             0.10256410
                          0.8500541
                                      0.9150
                                              0.520995671
##
     0.1
             0.10743590
                          0.8502868
                                      0.9150
                                              0.520995671
##
     0.1
             0.11230769
                          0.8504113
                                      0.9200
                                              0.520995671
##
     0.1
             0.11717949
                          0.8500595
                                      0.9200
                                              0.516450216
##
     0.1
             0.12205128
                          0.8499405
                                     0.9200
                                              0.516450216
```

```
##
     0.1
             0.12692308
                          0.8499405
                                     0.9200
                                              0.511904762
##
     0.1
             0.13179487
                          0.8498268
                                      0.9200
                                              0.507359307
                                      0.9200
##
     0.1
             0.13666667
                          0.8495996
                                              0.507359307
                          0.8496050
##
     0.1
             0.14153846
                                      0.9200
                                              0.493506494
##
     0.1
             0.14641026
                          0.8490260
                                      0.9200
                                              0.493506494
##
             0.15128205
                          0.8492641
                                     0.9250
                                              0.493506494
     0.1
##
     0.1
             0.15615385
                          0.8493723
                                      0.9250
                                              0.493506494
                                              0.493506494
##
     0.1
             0.16102564
                          0.8493723
                                      0.9250
##
     0.1
             0.16589744
                          0.8493777
                                      0.9250
                                              0.488961039
##
     0.1
             0.17076923
                          0.8493723
                                      0.9300
                                              0.484199134
##
     0.1
             0.17564103
                          0.8491450
                                      0.9300
                                              0.474675325
                          0.8489123
##
     0.1
             0.18051282
                                      0.9300
                                              0.469913420
##
             0.18538462
                          0.8487933
                                      0.9300
                                              0.469913420
     0.1
                                              0.465151515
##
     0.1
             0.19025641
                          0.8487987
                                      0.9300
##
                          0.8485660
     0.1
             0.19512821
                                      0.9300
                                              0.460389610
##
     0.1
             0.2000000
                          0.8483279
                                      0.9300
                                              0.446320346
##
     0.2
             0.01000000
                          0.8496699
                                      0.8875
                                              0.571645022
##
     0.2
             0.01487179
                          0.8505032
                                      0.8900
                                              0.567099567
##
     0.2
             0.01974359
                          0.8503896
                                      0.8900
                                              0.562554113
##
     0.2
             0.02461538
                          0.8502652
                                      0.8950
                                              0.557792208
##
     0.2
             0.02948718
                          0.8499080
                                      0.8975
                                              0.553030303
             0.03435897
                          0.8497890
                                      0.9025
##
     0.2
                                              0.543722944
##
     0.2
             0.03923077
                          0.8498972
                                      0.9050
                                              0.539177489
##
     0.2
             0.04410256
                          0.8496591
                                      0.9050
                                              0.534632035
##
     0.2
             0.04897436
                          0.8501299
                                      0.9125
                                              0.534632035
##
     0.2
             0.05384615
                          0.8503680
                                      0.9125
                                              0.534632035
##
     0.2
             0.05871795
                          0.8502543
                                      0.9125
                                              0.534632035
##
     0.2
             0.06358974
                          0.8497835
                                      0.9125
                                              0.530086580
##
                          0.8494318
                                      0.9125
     0.2
             0.06846154
                                              0.520779221
##
     0.2
             0.07333333
                          0.8494156
                                      0.9125
                                              0.520779221
##
     0.2
             0.07820513
                          0.8494156
                                      0.9125
                                              0.516233766
##
     0.2
             0.08307692
                          0.8494210
                                      0.9125
                                              0.516233766
##
     0.2
             0.08794872
                          0.8494210
                                      0.9125
                                              0.516233766
##
     0.2
             0.09282051
                          0.8489556
                                      0.9175
                                              0.516233766
##
     0.2
             0.09769231
                          0.8489610
                                      0.9200
                                              0.516233766
##
     0.2
             0.10256410
                          0.8488528
                                     0.9200
                                              0.506926407
##
     0.2
             0.10743590
                          0.8488528
                                      0.9200
                                              0.506926407
##
     0.2
             0.11230769
                          0.8488582
                                      0.9225
                                              0.506926407
     0.2
             0.11717949
                          0.8488690
                                      0.9225
                                              0.506926407
##
##
     0.2
             0.12205128
                          0.8491071
                                     0.9225
                                              0.502380952
##
     0.2
             0.12692308
                          0.8487554
                                      0.9225
                                              0.497619048
                          0.8489827
                                      0.9250
                                              0.492857143
##
     0.2
             0.13179487
##
     0.2
             0.13666667
                          0.8492100
                                      0.9250
                                              0.483766234
##
                          0.8491017
                                      0.9250
                                              0.479004329
     0.2
             0.14153846
##
     0.2
             0.14641026
                          0.8488636
                                      0.9250
                                              0.464935065
     0.2
                          0.8487392
                                      0.9250
##
             0.15128205
                                              0.464935065
##
     0.2
             0.15615385
                          0.8485065
                                      0.9275
                                              0.464935065
##
     0.2
             0.16102564
                          0.8482792
                                      0.9300
                                              0.464935065
             0.16589744
##
     0.2
                          0.8478139
                                      0.9300
                                              0.460389610
##
     0.2
             0.17076923
                          0.8475758
                                      0.9375
                                              0.460389610
##
                                              0.455844156
     0.2
             0.17564103
                          0.8473431
                                      0.9375
##
     0.2
             0.18051282
                          0.8468615
                                      0.9400
                                              0.446753247
##
     0.2
             0.18538462
                          0.8469913
                                      0.9400
                                              0.442207792
##
     0.2
             0.19025641
                          0.8461797
                                     0.9425
                                              0.437662338
```

```
##
     0.2
             0.19512821
                          0.8460714
                                     0.9425
                                              0.423376623
     0.2
##
             0.20000000
                          0.8459578
                                     0.9475
                                              0.409307359
             0.01000000
##
     0.4
                          0.8506061
                                      0.8950
                                              0.571645022
##
     0.4
             0.01487179
                          0.8497998
                                      0.8950
                                              0.562337662
##
     0.4
             0.01974359
                          0.8503626
                                      0.9000
                                              0.562337662
##
     0.4
             0.02461538
                          0.8496699
                                      0.9025
                                              0.553246753
##
     0.4
             0.02948718
                          0.8501299
                                      0.9025
                                              0.543722944
##
     0.4
             0.03435897
                          0.8502489
                                      0.9050
                                              0.543722944
##
     0.4
             0.03923077
                          0.8499134
                                      0.9075
                                              0.543722944
##
     0.4
             0.04410256
                          0.8500271
                                      0.9125
                                              0.539177489
##
     0.4
             0.04897436
                          0.8502543
                                      0.9150
                                              0.534415584
##
     0.4
             0.05384615
                          0.8494426
                                      0.9150
                                              0.534415584
##
     0.4
             0.05871795
                          0.8490855
                                      0.9150
                                              0.529870130
                                              0.525108225
##
     0.4
             0.06358974
                          0.8485065
                                      0.9150
##
                          0.8479221
     0.4
             0.06846154
                                      0.9175
                                              0.520562771
##
     0.4
             0.07333333
                          0.8469859
                                      0.9200
                                              0.515800866
##
     0.4
             0.07820513
                          0.8468777
                                      0.9200
                                              0.515800866
##
             0.08307692
                          0.8467695
                                      0.9200
                                              0.511038961
     0.4
##
     0.4
             0.08794872
                          0.8461797
                                      0.9200
                                              0.511038961
##
     0.4
             0.09282051
                          0.8452489
                                      0.9200
                                              0.506493506
##
     0.4
             0.09769231
                          0.8448972
                                      0.9225
                                              0.501948052
##
     0.4
             0.10256410
                          0.8447727
                                      0.9250
                                              0.497186147
##
     0.4
             0.10743590
                          0.8439502
                                      0.9250
                                              0.492640693
##
     0.4
             0.11230769
                          0.8437175
                                      0.9275
                                              0.487878788
##
     0.4
             0.11717949
                          0.8424351
                                      0.9300
                                              0.469480519
##
     0.4
             0.12205128
                          0.8420617
                                      0.9350
                                              0.464935065
##
             0.12692308
                          0.8418074
                                      0.9350
     0.4
                                              0.455627706
##
     0.4
             0.13179487
                          0.8408658
                                      0.9425
                                              0.446536797
##
     0.4
             0.13666667
                          0.8406115
                                      0.9425
                                              0.441991342
##
     0.4
             0.14153846
                          0.8391180
                                      0.9450
                                              0.432683983
##
     0.4
             0.14641026
                          0.8385335
                                      0.9475
                                              0.428138528
##
     0.4
             0.15128205
                          0.8375703
                                      0.9475
                                              0.414069264
##
     0.4
             0.15615385
                          0.8360552
                                      0.9525
                                              0.395670996
##
     0.4
             0.16102564
                          0.8351190
                                      0.9575
                                              0.386363636
##
             0.16589744
                          0.8346591
                                      0.9575
     0.4
                                              0.367748918
##
     0.4
             0.17076923
                          0.8338420
                                      0.9575
                                              0.358658009
##
     0.4
             0.17564103
                          0.8331494
                                      0.9600
                                              0.349350649
##
     0.4
                          0.8312879
                                      0.9625
                                              0.340043290
             0.18051282
             0.18538462
                          0.8303571
                                      0.9625
##
     0.4
                                              0.335497835
##
     0.4
             0.19025641
                          0.8289827
                                      0.9650
                                              0.330735931
##
     0.4
             0.19512821
                          0.8276948
                                      0.9650
                                              0.330735931
                          0.8274784
##
     0.4
             0.20000000
                                      0.9675
                                              0.316450216
##
     0.6
             0.01000000
                          0.8495563
                                      0.8950
                                              0.576406926
##
                          0.8494264
                                      0.9025
     0.6
             0.01487179
                                              0.562337662
##
     0.6
             0.01974359
                          0.8496591
                                      0.9025
                                              0.557792208
##
     0.6
             0.02461538
                          0.8500000
                                      0.9025
                                              0.553030303
##
     0.6
             0.02948718
                          0.8502219
                                      0.9050
                                              0.548268398
##
     0.6
             0.03435897
                          0.8498972
                                      0.9075
                                              0.538961039
##
     0.6
             0.03923077
                          0.8487338
                                      0.9100
                                              0.534415584
##
     0.6
             0.04410256
                          0.8478084
                                      0.9100
                                              0.529870130
##
             0.04897436
                          0.8469751
                                      0.9100
                                              0.529870130
     0.6
##
     0.6
             0.05384615
                          0.8460335
                                      0.9075
                                              0.520562771
##
     0.6
             0.05871795
                          0.8456818
                                      0.9150
                                              0.515800866
##
     0.6
             0.06358974
                         0.8453139
                                     0.9175
                                              0.511038961
```

```
##
     0.6
             0.06846154
                          0.8447403
                                     0.9200
                                              0.511038961
##
     0.6
             0.07333333
                          0.8426136
                                      0.9225
                                              0.506277056
             0.07820513
                          0.8418939
                                      0.9225
##
     0.6
                                              0.501731602
             0.08307692
                          0.8411797
                                      0.9225
                                              0.492424242
##
     0.6
##
     0.6
             0.08794872
                          0.8401407
                                      0.9250
                                              0.487662338
##
     0.6
             0.09282051
                          0.8382468
                                      0.9275
                                              0.483116883
##
     0.6
             0.09769231
                          0.8373106
                                      0.9325
                                              0.473809524
##
     0.6
             0.10256410
                          0.8353355
                                      0.9325
                                              0.455411255
##
     0.6
             0.10743590
                          0.8335985
                                      0.9400
                                              0.450865801
##
     0.6
             0.11230769
                          0.8323106
                                      0.9425
                                              0.446320346
##
     0.6
             0.11717949
                          0.8299729
                                      0.9425
                                              0.432251082
                          0.8280249
##
     0.6
             0.12205128
                                      0.9450
                                              0.409307359
##
             0.12692308
                          0.8274513
                                      0.9500
                                              0.40000000
     0.6
##
     0.6
             0.13179487
                          0.8241126
                                      0.9500
                                              0.381818182
##
                          0.8244481
                                              0.372510823
     0.6
             0.13666667
                                      0.9550
##
     0.6
             0.14153846
                          0.8245617
                                      0.9600
                                              0.363203463
##
     0.6
                          0.8237960
                                      0.9625
                                              0.349350649
             0.14641026
##
     0.6
             0.15128205
                          0.8226542
                                      0.9625
                                              0.330735931
     0.6
                          0.8225352
##
             0.15615385
                                      0.9650
                                              0.326190476
##
     0.6
             0.16102564
                          0.8223079
                                      0.9675
                                              0.316883117
##
     0.6
             0.16589744
                          0.8210200
                                      0.9675
                                              0.307575758
             0.17076923
                          0.8200839
                                      0.9700
##
     0.6
                                              0.298051948
##
     0.6
             0.17564103
                          0.8199540
                                      0.9725
                                              0.283982684
##
     0.6
             0.18051282
                          0.8183306
                                      0.9725
                                              0.274675325
##
     0.6
             0.18538462
                          0.8166748
                                      0.9725
                                              0.265584416
##
     0.6
             0.19025641
                          0.8151596
                                      0.9725
                                              0.256277056
##
                          0.8133144
                                      0.9725
     0.6
             0.19512821
                                              0.242207792
##
     0.6
             0.20000000
                          0.8114367
                                      0.9725
                                              0.228138528
##
                          0.8496429
     0.8
             0.01000000
                                      0.8975
                                              0.571645022
##
     0.8
             0.01487179
                          0.8496483
                                      0.9025
                                              0.557792208
##
     0.8
             0.01974359
                          0.8498701
                                      0.9025
                                              0.557792208
##
     0.8
             0.02461538
                          0.8500054
                                      0.9000
                                              0.548268398
##
     0.8
             0.02948718
                          0.8487284
                                      0.9000
                                              0.538961039
##
     0.8
             0.03435897
                          0.8469589
                                      0.9025
                                              0.538961039
##
     0.8
             0.03923077
                          0.8461418
                                      0.9050
                                              0.529653680
##
     0.8
             0.04410256
                          0.8456710
                                      0.9075
                                              0.525108225
##
     0.8
             0.04897436
                          0.8448377
                                      0.9075
                                              0.520346320
##
     0.8
             0.05384615
                          0.8424675
                                      0.9100
                                              0.515584416
     0.8
             0.05871795
                          0.8411634
                                      0.9100
                                              0.510822511
##
##
     0.8
             0.06358974
                          0.8398972
                                      0.9100
                                              0.496969697
##
     0.8
             0.06846154
                          0.8379004
                                      0.9150
                                              0.492207792
             0.07333333
                          0.8355628
                                      0.9175
##
     0.8
                                              0.483116883
##
     0.8
             0.07820513
                          0.8333550
                                      0.9250
                                              0.473809524
##
             0.08307692
                          0.8301894
                                      0.9275
     0.8
                                              0.460173160
##
     0.8
             0.08794872
                          0.8278842
                                      0.9350
                                              0.460173160
             0.09282051
                          0.8256818
                                      0.9350
##
     0.8
                                              0.446320346
##
     0.8
             0.09769231
                          0.8247998
                                      0.9375
                                              0.432251082
##
     0.8
             0.10256410
                          0.8244264
                                      0.9375
                                              0.418398268
##
     0.8
             0.10743590
                          0.8231602
                                      0.9450
                                              0.413852814
##
     0.8
             0.11230769
                          0.8226596
                                      0.9475
                                              0.404978355
##
     0.8
             0.11717949
                          0.8212473
                                      0.9525
                                              0.386580087
##
     0.8
             0.12205128
                          0.8200785
                                      0.9575
                                              0.354112554
##
     0.8
             0.12692308
                          0.8187960
                                      0.9600
                                              0.349350649
##
     0.8
             0.13179487
                          0.8166802
                                     0.9675
                                              0.330952381
```

```
##
     0.8
             0.13666667
                          0.8152733
                                     0.9700
                                              0.316666667
##
     0.8
             0.14153846
                          0.8124919
                                      0.9700
                                              0.307575758
                                      0.9700
##
     0.8
             0.14641026
                          0.8106196
                                              0.298484848
##
             0.15128205
                          0.8080709
     0.8
                                      0.9725
                                              0.288961039
##
     0.8
             0.15615385
                          0.8063285
                                      0.9725
                                              0.265367965
##
     0.8
             0.16102564
                          0.8034064
                                      0.9725
                                              0.256060606
                          0.8030601
##
     0.8
             0.16589744
                                      0.9775
                                              0.232683983
##
     0.8
             0.17076923
                          0.8019183
                                      0.9775
                                              0.232683983
##
     0.8
             0.17564103
                          0.8012338
                                      0.9775
                                              0.204978355
##
     0.8
             0.18051282
                          0.8010552
                                      0.9800
                                              0.177056277
##
     0.8
             0.18538462
                          0.8010552
                                      0.9825
                                              0.162987013
                          0.8013393
##
     0.8
             0.19025641
                                      0.9850
                                              0.153896104
##
     0.8
             0.19512821
                          0.8013393
                                      0.9900
                                              0.130519481
##
     0.8
             0.20000000
                          0.8013393
                                      0.9925
                                              0.097619048
##
                          0.8496483
     1.0
             0.01000000
                                      0.9000
                                              0.571645022
##
     1.0
             0.01487179
                          0.8492857
                                      0.8950
                                              0.557792208
     1.0
##
             0.01974359
                          0.8501028
                                      0.8975
                                              0.548268398
##
             0.02461538
                          0.8486039
                                      0.8975
                                              0.543722944
     1.0
##
     1.0
             0.02948718
                          0.8466071
                                      0.9000
                                              0.543506494
##
     1.0
             0.03435897
                          0.8455574
                                      0.9000
                                              0.529653680
##
     1.0
             0.03923077
                          0.8432900
                                      0.9075
                                              0.524891775
##
             0.04410256
                          0.8415152
                                      0.9100
                                              0.529653680
     1.0
##
                                              0.524891775
     1.0
             0.04897436
                          0.8394156
                                      0.9100
                          0.8366180
##
     1.0
             0.05384615
                                      0.9100
                                              0.501515152
             0.05871795
##
     1.0
                          0.8342803
                                      0.9150
                                              0.501515152
##
     1.0
             0.06358974
                          0.8303030
                                      0.9175
                                              0.492207792
##
             0.06846154
                          0.8277652
                                      0.9200
     1.0
                                              0.483333333
##
     1.0
             0.07333333
                          0.8252381
                                      0.9250
                                              0.474242424
##
             0.07820513
                          0.8239502
                                      0.9250
                                              0.469696970
     1.0
##
     1.0
             0.08307692
                          0.8234443
                                      0.9350
                                              0.451082251
##
     1.0
             0.08794872
                          0.8214800
                                      0.9350
                                              0.437229437
##
     1.0
             0.09282051
                          0.8202029
                                      0.9375
                                              0.423593074
##
     1.0
             0.09769231
                          0.8185633
                                      0.9425
                                              0.404978355
##
     1.0
             0.10256410
                          0.8163231
                                      0.9425
                                              0.391125541
##
             0.10743590
                          0.8130763
                                      0.9475
                                              0.381818182
     1.0
##
                          0.8105005
     1.0
             0.11230769
                                      0.9500
                                              0.358874459
##
     1.0
             0.11717949
                          0.8077246
                                      0.9600
                                              0.335281385
##
             0.12205128
                          0.8051542
                                      0.9625
                                              0.321428571
     1.0
##
             0.12692308
                          0.8024865
                                      0.9650
                                              0.316883117
     1.0
##
     1.0
             0.13179487
                          0.8019129
                                      0.9675
                                              0.302813853
##
     1.0
             0.13666667
                          0.8018561
                                      0.9700
                                              0.284199134
                          0.8013393
                                      0.9775
                                              0.265367965
##
     1.0
             0.14153846
##
     1.0
             0.14641026
                          0.8013393
                                      0.9775
                                              0.237229437
##
             0.15128205
                          0.8013393
                                      0.9775
                                              0.223376623
     1.0
##
     1.0
             0.15615385
                          0.8013393
                                      0.9800
                                              0.200432900
##
                          0.8013393
                                      0.9825
     1.0
             0.16102564
                                              0.167748918
##
     1.0
             0.16589744
                          0.8013393
                                      0.9875
                                              0.149134199
##
     1.0
             0.17076923
                          0.8013393
                                      0.9925
                                              0.106926407
             0.17564103
##
     1.0
                          0.8013393
                                      0.9925
                                              0.074675325
##
     1.0
             0.18051282
                          0.8013393
                                      0.9975
                                              0.037229437
##
     1.0
             0.18538462
                          0.8013393
                                      1.0000
                                              0.004761905
##
     1.0
             0.19025641
                          0.8013393
                                      1.0000
                                              0.00000000
##
     1.0
             0.19512821
                          0.8013393
                                      1.0000
                                              0.00000000
##
     1.0
             0.20000000
                         0.8013393
                                     1.0000
                                              0.00000000
```

```
##
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were alpha = 0.1 and lambda = 0.08794872.
nscGrid <- data.frame(.threshold = 0:25)</pre>
nscFit <- train(diabetes ~., data = train_data,</pre>
               method = "pam",
               tuneGrid = nscGrid,
               preProcess = c("center", "scale"),
               metric = "ROC",
               trControl = trainControl(method = "cv", number = 10,
                                       classProbs = TRUE, summaryFunction = twoClassSummary))
## 1
nscFit
## Nearest Shrunken Centroids
##
## 615 samples
##
    7 predictor
##
    2 classes: 'neg', 'pos'
##
## Pre-processing: centered (7), scaled (7)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 553, 553, 554, 554, 553, 554, ...
  Resampling results across tuning parameters:
##
##
    threshold ROC
                          Sens
                                  Spec
##
     0
                          0.9550 0.31580087
               0.8380682
##
                          0.9775 0.19047619
     1
               0.8430844
##
     2
               0.8351299
                          0.9925 0.04155844
     3
                         1.0000 0.00000000
##
               0.8158820
                         1.0000 0.00000000
##
     4
               0.7968642
##
     5
               0.7967505
                         1.0000 0.00000000
##
     6
               0.7967505 1.0000 0.00000000
##
     7
               0.5000000 1.0000 0.00000000
##
                         1.0000 0.00000000
     8
               0.5000000
##
     9
               0.5000000 1.0000 0.00000000
##
    10
               0.5000000 1.0000 0.00000000
##
               0.5000000 1.0000 0.00000000
    11
##
    12
               0.5000000
                         1.0000 0.00000000
               0.5000000 1.0000 0.00000000
##
    13
##
    14
               0.5000000
                         1.0000 0.00000000
##
    15
                         1.0000 0.00000000
               0.5000000
##
    16
               0.5000000
                          1.0000
                                 0.00000000
##
    17
                          1.0000
               0.5000000
                                 0.00000000
##
    18
               0.5000000
                          1.0000
                                 0.00000000
##
    19
                         1.0000
               0.5000000
                                 0.00000000
                         1.0000
##
    20
               0.5000000
                                 0.00000000
##
    21
               0.5000000 1.0000
                                 0.00000000
##
               0.5000000 1.0000
    22
                                 0.00000000
##
    23
               0.5000000 1.0000
                                 0.00000000
               0.5000000 1.0000
##
    24
                                 0.00000000
```

0.5000000 1.0000 0.00000000

##

25

```
##
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was threshold = 1.
ldaFit <- train(diabetes ~., data = train_data,</pre>
               method = "lda",
               metric = "ROC",
               preProcess = c("center", "scale"),
               trControl = trainControl(method = "cv", number = 10,
                                      classProbs = TRUE, summaryFunction = twoClassSummary))
ldaFit
## Linear Discriminant Analysis
## 615 samples
##
   7 predictor
##
    2 classes: 'neg', 'pos'
## Pre-processing: centered (7), scaled (7)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 553, 554, 553, 554, 554, 554, ...
## Resampling results:
##
##
    ROC
               Sens
                      Spec
    0.8461472 0.8875 0.5722944
#Compare ROC Value by Training Model
allmodels <- list(Logistic_Regression = lr_train_data, Random_Forest = rf_train_data, KNN = knn_train_d
trainresults <- resamples(allmodels)</pre>
#Box Plot: Training Models' ROC Values
#Logistic Regression Performed Best on Training Data
bwplot(trainresults, metric="ROC")
#Logistic Regression: Testing Data
lrpredict <- predict(lr_train_data, test_data)</pre>
#Confusion Matrix Accuracy
lrconfusion <- confusionMatrix(lrpredict, test_data$diabetes, positive="pos")</pre>
lrconfusion
## Confusion Matrix and Statistics
##
            Reference
##
## Prediction neg pos
##
         neg 86 26
##
         pos 14 27
##
                Accuracy : 0.7386
##
##
                  95% CI: (0.6615, 0.8062)
##
      No Information Rate: 0.6536
      P-Value [Acc > NIR] : 0.01536
##
```

##

```
##
                     Kappa: 0.3902
##
##
   Mcnemar's Test P-Value: 0.08199
##
##
               Sensitivity: 0.5094
##
               Specificity: 0.8600
##
            Pos Pred Value: 0.6585
            Neg Pred Value: 0.7679
##
##
                Prevalence: 0.3464
##
            Detection Rate: 0.1765
##
      Detection Prevalence: 0.2680
##
         Balanced Accuracy: 0.6847
##
##
          'Positive' Class : pos
##
#Random Forest: Testing Data
rfpredict <- predict(rf_train_data, test_data)</pre>
#Confusion Matrix Accuracy
rfconfusion <- confusionMatrix(rfpredict, test_data$diabetes, positive="pos")
rfconfusion
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction neg pos
##
          neg 84 22
##
          pos 16 31
##
##
                  Accuracy : 0.7516
                    95% CI : (0.6754, 0.8179)
##
       No Information Rate: 0.6536
##
##
       P-Value [Acc > NIR] : 0.005891
##
##
                     Kappa: 0.4365
##
##
   Mcnemar's Test P-Value: 0.417304
##
##
               Sensitivity: 0.5849
##
               Specificity: 0.8400
##
            Pos Pred Value: 0.6596
##
            Neg Pred Value: 0.7925
##
                Prevalence: 0.3464
##
            Detection Rate: 0.2026
##
      Detection Prevalence: 0.3072
##
         Balanced Accuracy: 0.7125
##
##
          'Positive' Class : pos
##
#K Nearest Neighbor: Testing Data
knnpredict <- predict(knn_train_data, test_data)</pre>
#Confusion Matrix Accuracy
knnconfusion <- confusionMatrix(knnpredict, test_data$diabetes, positive="pos")
knnconfusion
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction neg pos
          neg 80 22
##
##
          pos 20 31
##
##
                  Accuracy: 0.7255
##
                    95% CI: (0.6476, 0.7945)
##
       No Information Rate: 0.6536
##
       P-Value [Acc > NIR] : 0.03543
##
##
                     Kappa: 0.3883
##
##
   Mcnemar's Test P-Value: 0.87737
##
##
               Sensitivity: 0.5849
##
               Specificity: 0.8000
##
            Pos Pred Value: 0.6078
##
            Neg Pred Value: 0.7843
##
                Prevalence: 0.3464
##
            Detection Rate: 0.2026
      Detection Prevalence: 0.3333
##
##
         Balanced Accuracy: 0.6925
##
##
          'Positive' Class : pos
##
#Classification and Regression Trees (CART): Testing Data
cartpredict <- predict(cart_train_data, test_data)</pre>
#Confusion Matrix Accuracy
cartconfusion <- confusionMatrix(cartpredict, test_data$diabetes, positive="pos")</pre>
cartconfusion
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction neg pos
##
          neg 85 19
##
          pos 15 34
##
##
                  Accuracy: 0.7778
##
                    95% CI: (0.7036, 0.8409)
       No Information Rate : 0.6536
##
##
       P-Value [Acc > NIR] : 0.000586
##
##
                     Kappa: 0.5004
##
##
   Mcnemar's Test P-Value: 0.606905
##
##
               Sensitivity: 0.6415
##
               Specificity: 0.8500
##
            Pos Pred Value: 0.6939
##
            Neg Pred Value: 0.8173
##
                Prevalence: 0.3464
```

```
##
            Detection Rate: 0.2222
##
      Detection Prevalence: 0.3203
##
         Balanced Accuracy: 0.7458
##
##
          'Positive' Class : pos
##
#Neural Net: Testing Data
nnetpredict <- predict(nnet_train_data, test_data)</pre>
#Confusion Matrix Accuracy
nnetconfusion <- confusionMatrix(nnetpredict, test_data$diabetes, positive="pos")</pre>
nnetconfusion
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction neg pos
##
          neg 82 25
##
          pos 18 28
##
##
                  Accuracy: 0.719
##
                    95% CI: (0.6407, 0.7886)
##
       No Information Rate: 0.6536
       P-Value [Acc > NIR] : 0.05152
##
##
##
                     Kappa: 0.3595
##
##
   Mcnemar's Test P-Value: 0.36020
##
##
               Sensitivity: 0.5283
               Specificity: 0.8200
##
##
            Pos Pred Value: 0.6087
##
            Neg Pred Value: 0.7664
##
                Prevalence: 0.3464
##
            Detection Rate: 0.1830
      Detection Prevalence: 0.3007
##
##
         Balanced Accuracy: 0.6742
##
##
          'Positive' Class : pos
##
#Support Vector Machines
svmpredict <- predict(svmFit, test_data)</pre>
#Confusion Matrix Accuracy
svmconfusion <- confusionMatrix(svmpredict, test_data$diabetes, positive="pos")</pre>
symconfusion
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction neg pos
##
          neg 81 24
##
          pos 19 29
##
##
                  Accuracy: 0.719
                    95% CI: (0.6407, 0.7886)
##
```

```
##
       No Information Rate: 0.6536
       P-Value [Acc > NIR] : 0.05152
##
##
##
                     Kappa: 0.3653
##
##
   Mcnemar's Test P-Value: 0.54187
##
               Sensitivity: 0.5472
##
##
               Specificity: 0.8100
##
            Pos Pred Value: 0.6042
##
            Neg Pred Value: 0.7714
                Prevalence: 0.3464
##
            Detection Rate: 0.1895
##
##
      Detection Prevalence: 0.3137
##
         Balanced Accuracy: 0.6786
##
##
          'Positive' Class : pos
##
#Boost
gbmpredict <- predict(gbmFit, test_data)</pre>
#Confusion Matrix Accuracy
gbmconfusion <- confusionMatrix(gbmpredict, test_data$diabetes, positive="pos")</pre>
gbmconfusion
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction neg pos
##
          neg 85 25
##
          pos 15 28
##
##
                  Accuracy : 0.7386
                    95% CI: (0.6615, 0.8062)
##
##
       No Information Rate: 0.6536
       P-Value [Acc > NIR] : 0.01536
##
##
##
                     Kappa: 0.3959
##
##
   Mcnemar's Test P-Value: 0.15473
##
##
               Sensitivity: 0.5283
##
               Specificity: 0.8500
            Pos Pred Value: 0.6512
##
##
            Neg Pred Value: 0.7727
##
                Prevalence: 0.3464
##
            Detection Rate: 0.1830
##
      Detection Prevalence: 0.2810
##
         Balanced Accuracy: 0.6892
##
##
          'Positive' Class : pos
##
# Elastinet
glmnpredict <- predict(glmnFit, test_data)</pre>
```

```
#Confusion Matrix Accuracy
glmnconfusion <- confusionMatrix(glmnpredict, test_data$diabetes, positive="pos")</pre>
glmnconfusion
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction neg pos
##
         neg 90 28
##
          pos 10 25
##
##
                  Accuracy: 0.7516
##
                    95% CI: (0.6754, 0.8179)
##
       No Information Rate: 0.6536
##
       P-Value [Acc > NIR] : 0.005891
##
##
                     Kappa: 0.4039
##
##
   Mcnemar's Test P-Value: 0.005820
##
##
               Sensitivity: 0.4717
##
               Specificity: 0.9000
##
            Pos Pred Value: 0.7143
##
            Neg Pred Value: 0.7627
##
                Prevalence: 0.3464
##
            Detection Rate: 0.1634
##
      Detection Prevalence: 0.2288
##
         Balanced Accuracy: 0.6858
##
##
          'Positive' Class : pos
##
# Nearest Shrunken Centroid
nscpredict <- predict(nscFit, test_data)</pre>
#Confusion Matrix Accuracy
nscconfusion <- confusionMatrix(nscpredict, test_data$diabetes, positive="pos")</pre>
nscconfusion
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction neg pos
         neg 99 46
##
##
          pos
              1
##
##
                  Accuracy : 0.6928
##
                    95% CI: (0.6132, 0.7648)
##
       No Information Rate: 0.6536
       P-Value [Acc > NIR] : 0.1753
##
##
##
                     Kappa: 0.1525
##
##
  Mcnemar's Test P-Value: 1.38e-10
##
##
               Sensitivity: 0.13208
```

```
##
               Specificity: 0.99000
##
            Pos Pred Value: 0.87500
            Neg Pred Value: 0.68276
##
##
                Prevalence: 0.34641
##
            Detection Rate: 0.04575
      Detection Prevalence: 0.05229
##
         Balanced Accuracy: 0.56104
##
##
##
          'Positive' Class : pos
##
#Boost
ldapredict <- predict(ldaFit, test_data)</pre>
#Confusion Matrix Accuracy
ldaconfusion <- confusionMatrix(ldapredict, test_data$diabetes, positive="pos")</pre>
ldaconfusion
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction neg pos
##
          neg 86 28
##
          pos 14 25
##
##
                  Accuracy: 0.7255
##
                    95% CI: (0.6476, 0.7945)
##
       No Information Rate: 0.6536
##
       P-Value [Acc > NIR] : 0.03543
##
##
                     Kappa: 0.3537
##
##
   Mcnemar's Test P-Value: 0.04486
##
##
               Sensitivity: 0.4717
##
               Specificity: 0.8600
##
            Pos Pred Value: 0.6410
##
            Neg Pred Value: 0.7544
##
                Prevalence: 0.3464
##
            Detection Rate: 0.1634
##
      Detection Prevalence: 0.2549
##
         Balanced Accuracy: 0.6658
##
##
          'Positive' Class : pos
##
#Comparing Test Results
lrfinal<- c(lrconfusion$byClass['Sensitivity'], lrconfusion$byClass['Specificity'], lrconfusion$byClass</pre>
            lrconfusion$byClass['Recall'], lrconfusion$byClass['F1'])
rffinal <- c(rfconfusion$byClass['Sensitivity'], rfconfusion$byClass['Specificity'], rfconfusion$byClas
             rfconfusion$byClass['Recall'], rfconfusion$byClass['F1'])
knnfinal <- c(knnconfusion$byClass['Sensitivity'], knnconfusion$byClass['Specificity'], knnconfusion$by
              knnconfusion$byClass['Recall'], knnconfusion$byClass['F1'])
cartfinal <- c(cartconfusion$byClass['Sensitivity'], cartconfusion$byClass['Specificity'], cartconfusion</pre>
```

```
cartconfusion$byClass['Recall'], cartconfusion$byClass['F1'])
nnetfinal <- c(nnetconfusion$byClass['Sensitivity'], nnetconfusion$byClass['Specificity'], nnetconfusion
               nnetconfusion$byClass['Recall'], nnetconfusion$byClass['F1'])
svmfinal <- c(svmconfusion$byClass['Sensitivity'], svmconfusion$byClass['Specificity'], svmconfusion$by
              svmconfusion$byClass['Recall'], svmconfusion$byClass['F1'])
gbmfinal <- c(gbmconfusion$byClass['Sensitivity'], gbmconfusion$byClass['Specificity'], gbmconfusion$by
              gbmconfusion$byClass['Recall'], gbmconfusion$byClass['F1'])
glmnfinal <- c(glmnconfusion$byClass['Sensitivity'], glmnconfusion$byClass['Specificity'], glmnconfusion</pre>
              glmnconfusion$byClass['Recall'], glmnconfusion$byClass['F1'])
nscfinal <- c(nscconfusion$byClass['Sensitivity'], nscconfusion$byClass['Specificity'], nscconfusion$by
              nscconfusion$byClass['Recall'], nscconfusion$byClass['F1'])
ldafinal <- c(ldaconfusion$byClass['Sensitivity'], ldaconfusion$byClass['Specificity'], ldaconfusion$by
              ldaconfusion$byClass['Recall'], ldaconfusion$byClass['F1'])
allmodelsfinal <- data.frame(rbind(lrfinal, rffinal, knnfinal, cartfinal, nnetfinal, svmfinal, gbmfinal
names(allmodelsfinal) <- c("Sensitivity", "Specificity", "Precision", "Recall", "F1")</pre>
allmodelsfinal
##
             Sensitivity Specificity Precision
                                                  Recall
## lrfinal
               0.5094340
                                0.86 0.6585366 0.5094340 0.5744681
## rffinal
               0.5849057
                                0.84 0.6595745 0.5849057 0.6200000
```