Una revisión sobre redes convolucionales para localización de objetos en imágenes

Julio Waissman

Licenciatura en Ciencias de la Computación Universidad de Sonora

12 de abril de 2018

Plan de la presentación

- ¿Qué es la localización de objetos en imágenes?
- Arquitectura RCNN
 - La arquitectura básica: RCNN
 - Su primer modificación: Fast RCNN
 - La que se emplea actualmente: Fastest RCNN
- Arquitecturas alternativas
 - R-FCN
 - SSD

Conclusiones

Detección de objetos en imágenes

Redes convolucionales para tratamiento de imágenes

Reconocimiento de objetos en imágenes, la aplicación más exitosa de las CNN

 Localización de objetos en imágenes es parecido a aplicar el reconocimiento en muchas subimágenes y luego fusionar la información

Redes convolucionales basadas en regiones (RCNN)

- La primera red convolucional para detección de objetos
- Es la base de todas las redes siguientes, pero solo se utiliza actualmente como método ilustrativo.
- Muy lenta, implica el entrenamiento de muchos métodos

Redes convolucionales basadas en regiones (RCNN) Algortimo general

- Escanea la imágen de entrada utilizando un algoritmo llamado Selective Search, y genera al rededor de 2000 regones para probar si en éstas se encuentra algun objeto.
- Ejecuta una red convolucional (capas convolucionales y de max pooling por cada una de las regiones.
- Toma la salida de cada una de dichas CNNs.

Redes convolucionales basadas en regiones (RCNN)

Redes convolucionales basadas en regiones mejorada (Fast-RCNN)

Última version mejorada (Fast-RCNN)

Otra arquitectura no tan directa (RFCN)

Ejemplo de RFCN

Figure 3: Visualization of R-FCN ($k \times k = 3 \times 3$) for the *person* category.

position-sensitive score maps

Otra arquitectura más (SSD)

Ejemplo de SSD

(a) Image with GT boxes (b) 8×8 feature map (c) 4×4 feature map