

Soutenance de Stage

BTS Systèmes Numériques option Électronique et Communication

Chloé Josse

Lycée technologique Jeanne d'Arc Vitré

Sommaire

PARTIE 1

Introduction

Présentation de l'entreprise

PARTIE 2

Missions confiées

Sujet de stage

Monophasé - Triphasé Testeur de rotation de phase

Réalisation du sujet

PARTIE 3

Bilan

Apports du stage Remeriements

Présentation de l'entreprise

ALLTRONIC

22 avril 1992

contact.client@alltonic.fr

11 rue de la Croix Rouge, 35770 Vern sur Seiche

www.alltronic.fr

Capital: 30 490€

9 personnes

ISO 9001 Version 2008 ISO 9001 Version 2015

ALLTRONIC propose des services de maintenance électronique, de métrologie et de vérification, sur place ou en laboratoire

Sujet de stage

Fournir les ateliers d'un générateur de tensions triphasé :

- transportable, se connectant sur une source de tension monophasé
- pour but de contrôler les testeurs de rotation de phase (voir les analyseurs de tension triphasé)
- paramétrable et simple d'utilisation.

Condition:

- kit de développement Arduino UNO
- composants usuels simples
- documentation libres (sources internet)

Mise en situation et support:

- poste informatique
- poste équipé d'outils d'électronicien
- Le maître de stage a déjà répertorié de la documentation technique libre quant à une piste possible de réalisation

Validation:

L'outil sera validé par les techniciens de maintenances pour la partie production et par les métrologues pour la partie fonctionnelle.

MONOPHASÉ - TRIPHASÉ

Fil de terre

TESTEUR DE ROTATION DE PHASE

RS PRO RS9010 Tension nominale : 40 à 690V

Réalisation du sujet

01

SSS Génération des trois signaux

Définition des broches de sortie

Définie les broches choisie comme des broches output

Temps entre chaque déclanchement

Création des trois signaux

```
<Electronics-project-hub>com
 Test_version_0 §
                   const int output 1 = 9;
 / ----- <Electro
const int output 1
                   const int output 2 = 10;
const int output 2 =
const int output 3 =
                   const int output 3 = 11;
int t = 0:
void setup()
                           pinMode(output_1, OUTPUT);
                   VO:
 pinMode (output_1, (
                           pinMode(output_2, OUTPUT);
 pinMode (output 2,
 pinMode (output 3, OUTPUT);
                                        putput 3, OUTPUT);
void loop()
                    delayMicroseconds(t);
 t = 3250;
                    digitalWrite (output_1, LOW);
 delayMicroseconds(t)
                    delayMicroseconds(t);
 digitalWrite(output_1
 delayMicroseconds(t);
                    digitalWrite(output_3, HIGH);
 digitalWrite(output_3
                    delayMicroseconds(t);
 delayMicroseconds(t);
 digitalWrite(output_2,
                    digitalWrite (output_2, LOW);
 delayMicroseconds(t);
 digitalWrite(output_1
                    delayMicroseconds(t);
 delayMicroseconds(t);
                    digitalWrite(output_1, HIGH);
 digitalWrite(output_3,
 delayMicroseconds(t);
                    delayMicroseconds(t);
 digitalWrite(output 2,
                    digitalWrite(output_3, LOW);
// ----- <Electronic
                    delayMicroseconds(t);
                    digitalWrite(output_2, HIGH);
```


$$\varphi = 2\pi \times f \times \triangle t$$

On a T = 20ms et $\triangle t = 6.60$ ms

$$\varphi = 2\pi \times 49.5 \times 6.8 \times 10^{-3}$$

(f = $\frac{1}{T}$ donc f = $\frac{1}{20.2 \times 10^{-3}}$ = 49.5Hz)

D'où
$$\varphi = \frac{2\pi}{3} = 120^{\circ}$$

>>> De carré à sinusoïde

+ ajout d'un condensateur de filtrage pour enlever la composante continue

>>> Amplifier la tension

On a Vc-c = 600mV, d'où Ueff = 210mV $(Uc-c = 2Umax = 2.\sqrt{2} Ueff)$

Transformateur:

230V au primaire 6V au secondaire

→ Augmentation de la tension nécessaire

Montage amplificateur non inverseur

TL081:

- 1 Offset Null 1
- 2 Inverting input
- 3 Non-inverting input
- 4 Vcc
- 5 Offset Null 2
- 6 Output
- 7 V_{CC}⁺
- 8 N.C.

Montage linéaire :

$$\varepsilon = V + - V - \qquad \varepsilon = 0 \qquad \rightarrow V + = V -$$

$$0 = 3$$

$$\rightarrow$$
 V+ = V-

Pont diviseur de tension :

$$V - = Vs \times \frac{R_1}{R_1 + R_2}$$

$$\rightarrow Ve = Vs \times \frac{R_1}{R_1 + R_2}$$

L'amplification, ou le gain, est : $G = \frac{Vs}{Vc}$.

$$\frac{Ve}{Vs} = \frac{R_1}{R_1 + R_2} \quad \text{d'où} \quad \frac{Vs}{Ve} = \frac{R_1 + R_2}{R_1}$$

Donc
$$G = \frac{Vs}{Ve} = 1 + \frac{R_2}{R_1}$$

R2 = 56kohms

R1 = 1.8kohms

Transformateur

Transformateur pour circuit imprimé RS PRO, 1 sortie: 1 x 6V c.a. - 230V c.a.

0.35VA

Primary voltage	Transformer		Secondary I _S current	RS Stoci number		r Specifi	ication	Primary [V]	Secondary voltage [V]	Secondary current [mA]	No-load voltage ±10% [V]	
		1213819 0.3	S PCB mount	transformer 0.3	35V/	A 1x6 o/p	230	6		58.3		9.7
			v s 	1213822	1.5 1	Transformer PCB 1.5V/	4 2x9V	230	2x9	83.3	2 x 12.5	
				1213823	1.5	Transformer PCB 1.5VA	PCB 1.5VA 2x9V		2x9	83.3	2 x 13.5	
			_ +	1213824	1.5	PCB mount transforme	er 1.5VA 1x12 o/p	230	12	125.0	17.0	
				121382	1.5	Transformer PCB 1.5VA 2x12V		230	2x12	62.5	2 x 18.0	
		← → /)	1213826	1.5	Transformer PCB 1.5V/	A 2x15V	230	2x15	50.0	2 x 22.0	
				121382	2.3	Transformer PCB 2.3VA	A 2x6V	230	2x6	191.6	2 x 9.0	
				1213828	2.3	Transformer PCB 2.3V/	A 2x9V	230	2x9	127.7	2 x 13.5	

Valeur relevée en sortie de la plaquette AOP: I = 45mA

$$V_{pri} \times I_{pri} = V_{sec} \times I_{sec}$$
 $VA = V_{pri} \times I_{pri}$

$$I_{pri} = \frac{VA}{V_{pri}} = \frac{0.35}{230} = 0.001521 A$$

$$I_{sec} = \frac{V_{pri} \times I_{pri}}{V_{sec}}$$

$$= \frac{230 \times 0.001521}{6}$$

$$= 0.0583 A (58.3mA)$$

>>>

Amplifier en intensité

Transistor bipolaire:
BJT (Bipolar Junction Transistor)

2N2905

TIP31

>>> Amplifier en intensité

lout = 500mA

Transformateur

>>> Fabrication du boîtier

>>> Fabrication du boîtier

