НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ" ФІЗИКО-ТЕХНІЧНИЙ ІНСТИТУТ

КАФЕДРА ІНФОРМАЦІЙНОЇ БЕЗПЕКИ

	«До захисту допущено»
	Завідувач кафедри
	М. В. Грайворонський (инціали, прізвище) 2017 р.
Дипло	мна робота
освітньо-кваліфів	саційного рівня "магістр"
за спеціальністю 8.04030101 «Прикл на тему «Тема»	падна математика»
Виконав студент 6 курсу групи ФІ-5	1м
Кригін Валерій Михайлович	
Керівник к.т.н., Барановський Олекс	ій Миколайович
Рецензент,	(підпис)
	(підпис)
	Засвідчую, що у цій дипломній роботі
	немає запозичень з праць інших авторів
	без відповідних посилань.
	Студент

РЕФЕРАТ

КЛЮЧЕВЫЕ СЛОВА

ABSTRACT

KEYWORDS

РЕФЕРАТ

СЛОВА

3MICT

Вступ	6
1 Теоретичні відомості	7
1.1 Задача	7
1.1.1 Бінарна функція витрат	9
1.1.2 Різниця моделей	9
1.1.3 Різниця параметрів	12
1.2 Розв'язок	13
1.2.1 Бінарна функція витрат	13
1.2.2 Gaussian parameters difference	15
1.2.3 Monte-Carlo	16
2 Практичні результати	17
3 Охорона праці	18
Висновки	19
Перецік посилань)(

ВСТУП

Актуальність роботи.

Об'єкт дослідження —

Предмет дослідження —

Мета дослідження.

Завдання наступні:

- 1) Вивчити;
- 2) Розробити.

Практичне значення одержаних результатів.

1 ТЕОРЕТИЧНІ ВІДОМОСТІ

1.1 Задача

Маємо множину T зображень. Кольори — відтінки сірого, що визначаються лише інтенсивністю від 0 до 1. Введемо множину I пікселів зображення. Зображення $t \in T$ є відображення з множини пікселів на множину їх значень

$$t: I \rightarrow [0; 1]$$
.

Інтенсивність пікселя i в зображенні t позначимо як t_i .

Взагалі кажучи, I — множина індексів матриць однакового розміру

$$I = \{\langle i, j \rangle \mid i = \overline{1..h}, j = \overline{1..w} \}.$$

Зазвичай зображення можуть бути розміром від $100 \times 100 = 10^4$ пікселів. Проте в середньому це значення досягає мільйона пікселів. Це означає, що при використанні $2^8 = 256$ градацій сірого маємо приблизно $10^{6\cdot 256} = 10^{1536}$ різних зображень, тобто неймовірно багато.

Тривимірна модель обличчя визначається набором n дійсних параметрів. Множина всіх параметрів $X=\mathbb{R}^n$. Функцією, що перетворює набір параметрів на зображення, є відображення

$$f:X\to T.$$

Введемо позначення для зображення згенерованого з певним набором параме-

 τ рів x

$$f(x) = t$$
.

Інтенсивність і пікселя позначимо

$$f_i(x) = t_i$$
.

Поставимо Баєсову задачу розпізнавання. Для цього потрібно визначитися з функцією витрат [1]

$$W: X \times X \to \mathbb{R}$$
.

Введемо множину стратегій розпізнавання Q як функцій, які кожному $t \in T$ ставлять у відповідність параметри, з якими було згенеровано обличчя на даному зображенні

$$Q = X^T$$
.

Стратегію $q \in Q$, яка для зображення t дає результат x, позначимо

$$q(t) = x$$
.

Математичне очікування функції витрат для даного вирішального правила q як функції випадкової величини x за умови, що було пред'явлено зображення t, називається Баєсовим ризиком

$$R(q) = \sum_{t \in T} \sum_{x \in X} \mathbb{P}(x, q(t)) \cdot W(x, q(t)).$$

Задача — знайти таке вирішальне правило q, яке мінімізує Баєсів ризик

$$q^* = \operatorname*{arg\,min}_{q \in Q} R.$$

1.1.1 Бінарна функція витрат

Досить росповсюдженою, проте зазвичай неприродною ϵ бінарна функція штрафу

$$W(x, x') = \mathbb{1}(x \neq x').$$

Оберемо стратегію q^* , що мінімізує математичне очікування цієї функції витрат

$$\begin{split} q^*\left(t\right) &= \operatorname*{arg\,min}_{x'} \left\{ \sum_{x \in X} \mathbb{P}\left(x \mid t\right) \cdot \mathbb{1}\left(x \neq x'\right) \right\} = \\ &= \operatorname*{arg\,min}_{x'} \left\{ \sum_{x \in X} \mathbb{P}\left(x \mid t\right) - \sum_{x \in X} \mathbb{P}\left(x \mid t\right) \cdot \mathbb{1}\left(x = x'\right) \right\} = \\ &= \operatorname*{arg\,min}_{x'} \left\{ 1 - \mathbb{P}\left(x' \mid t\right) \right\}. \end{split}$$

Маємо

$$q^{*}\left(t\right) = \operatorname*{arg\,max}_{x} \mathbb{P}\left(x \mid t\right).$$

Отже, якщо використовується бінарна функція витрат, потрібно обирати найбільш ймовірний варіант. Така задача може бути розумною, коли ϵ мало різних варіантів відповіді. Проте в даному випадку відповідь — набір з сотень дійсних чисел. Аналітичного виразу для розрахування f нема ϵ , отже доведеться скористатися чисельними методами, які не дадуть точної відповіді.

1.1.2 Різниця моделей

Розглянемо більш природню функцію витрат — квадрат евклідової відстані між точками дійсної та обраної моделі.

Введемо множину вершин обличчя V. Кожна вершина має певні координати в тривимірному просторі \mathbb{R}^3 . Модель обличчя — відображення, яке кожній вершині v ставить у відповідність її координати

$$M: V \to \mathbb{R}^3$$
.

Генеративна модель обличчя — відображення, яке кожному набору параметрів x ставить у відповідність модель m

$$G: X \to M$$
.

Координати g вершини v моделі згенерованої з параметрами x позначимо

$$G_v(x) = g.$$

Координати кожної вершини v генеративної моделі отримуються шляхом перемноження компонент параметру x на відповідний коефіцієнт α^v отриманий шляхом методу головних компонент

$$G_v(x) = \sum_{i \in I}^n \alpha_i^v \cdot x_i, \qquad v \in V.$$

Функція витрат має вигляд

$$W(x, x') = \|G(x) - G(x')\|^{2} = \sum_{v \in V} [G_{v}(x) - G_{v}(x')]^{2} =$$

$$= \sum_{v \in V} \sum_{p \in P} [\alpha_{p}^{v} \cdot (x_{p} - x'_{p})]^{2} = \sum_{p \in P} \left\{ (x_{p} - x'_{p})^{2} \cdot \sum_{v \in V} (\alpha_{p}^{v})^{2} \right\} =$$

$$= \left| \beta_{p}^{2} = \sum_{v \in V} (\alpha_{p}^{v})^{2} \right| = \sum_{p \in P} \beta_{p}^{2} \cdot (x_{p} - x'_{p})^{2}.$$

Оберемо стратегію q^* , що мінімізує математичне очікування цієї функції витрат

$$q^{*}\left(t\right) = \operatorname*{arg\,min}_{x'} \left\{ \sum_{x \in X} \left[\mathbb{P}\left(x \mid t\right) \cdot \sum_{i=1}^{n} \beta_{i}^{2} \cdot \left(x_{i}' - x_{i}\right)^{2} \right] \right\}.$$

Маємо мінімізацію неперервної функції від параметрів x_i' , отже можемо взяти по них похідну

$$\frac{\partial \sum\limits_{x \in X} \left[\mathbb{P}\left(x \mid t\right) \cdot \sum\limits_{i=1}^{n} \beta_{i}^{2} \cdot \left(x_{i}^{\prime} - x_{i}\right)^{2} \right]}{\partial x_{i}^{\prime}} = 2 \cdot \sum\limits_{x \in X} \mathbb{P}\left(x \mid t\right) \cdot \beta_{i}^{2} \cdot \left(x_{i}^{\prime} - x_{i}\right), \qquad i = 1..n$$

та прирівняти до нуля

$$\sum_{x \in X} \mathbb{P}(x \mid t) \cdot (x_i' - x_i) = 0, \qquad i = 1..n.$$

Маємо значення компоненти

$$x_i' = \frac{\sum\limits_{x \in X} \mathbb{P}(x \mid t) \cdot x_i}{\sum\limits_{x \in X} \mathbb{P}(x \mid t)} = \sum\limits_{x \in X} \mathbb{P}(x \mid t) \cdot x_i, \qquad i = 1..n.$$

Результуюча стратегія

$$q^{*}(t) = \sum_{x \in X} x \cdot \mathbb{P}(x \mid t).$$

У випадку неперервного розподілу ймовірностей

$$q^{*}(t) = \int_{x \in X} x \cdot \mathbb{P}(x \mid t) dx.$$

1.1.3 Різниця параметрів

Розглянемо більш просту функцію витрат — квадрат евклідової норми різниці між дійсними та обраними параметрами моделі зображеного обличчя

$$W(x, x') = ||x - x'||^2 = \sum_{p \in P} (x_p - x'_p)^2.$$

Оберемо стратегію q^* , що мінімізує математичне очікування цієї функції витрат

$$q^{*}(t) = \operatorname*{arg\,min}_{x'} \left\{ \sum_{x \in X} \left[\mathbb{P}\left(x \mid t\right) \cdot \sum_{i=1}^{n} \left(x'_{i} - x_{i}\right)^{2} \right] \right\}.$$

Маємо мінімізацію неперервної функції від параметрів x_i' , отже можемо взяти по них похідну

$$\frac{\partial \sum_{x \in X} \left[\mathbb{P}(x \mid t) \cdot \sum_{i=1}^{n} \cdot (x_i' - x_i)^2 \right]}{\partial x_i'} = 2 \cdot \sum_{x \in X} \mathbb{P}(x \mid t) \cdot (x_i' - x_i), \qquad i = 1..n$$

та прирівняти до нуля

$$\sum_{x \in X} \mathbb{P}(x \mid t) \cdot (x_i' - x_i) = 0, \qquad i = 1..n.$$

Маємо значення компоненти

$$x_i' = \frac{\sum\limits_{x \in X} \mathbb{P}(x \mid t) \cdot x_i}{\sum\limits_{x \in X} \mathbb{P}(x \mid t)} = \sum\limits_{x \in X} \mathbb{P}(x \mid t) \cdot x_i, \qquad i = 1..n.$$

Результуюча стратегія

$$q^{*}(t) = \sum_{x \in X} x \cdot \mathbb{P}(x \mid t).$$

У випадку неперервного розподілу ймовірностей

$$q^{*}(t) = \int_{x \in X} x \cdot \mathbb{P}(x \mid t) dx.$$

Отримана та ж стратегія, що мінімізує математичне очікування суми квадратів різниць координат вершин дійсної та обраної моделі обличчя. Тобто це вирішувальне правило розв'язує обидві задачі.

1.2 Розв'язок

1.2.1 Бінарна функція витрат

Вважаємо, що на даному зображенні t присутній нормальний шум з невідомою дисперсією σ_t^2 . Тоді ймовірність того, що дане зображення було отримано

саме з параметрами x

$$\mathbb{P}(x \mid t) = \prod_{i \in I} \frac{\exp\left\{-\frac{(t_i - f_i(x))^2}{2 \cdot \sigma_t^2}\right\}}{\sqrt{2 \cdot \pi \cdot \sigma_t^2}}.$$

Коли з контексту буде зрозуміло, якому саме зображенню належить дана дисперсія, індекс t не будемо використовувати.

$$\ln \mathbb{P}\left(x \mid t\right) = \sum_{i \in I} \left\{ -\frac{\left(t_i - f_i\left(x\right)\right)^2}{2 \cdot \sigma^2} - \frac{\ln 2 + \ln \pi + 2 \cdot \ln \sigma}{2} \right\} \to \max$$

$$\sum_{i \in I} (t_i - f_i(x))^2 \to \min$$

$$\sum_{i \in I} (t_i - f_i(x))^2 = \sum_{i \in F} (t_i - f_i(x))^2 + \sum_{i \in I \setminus F} (t_i - f_i(x))^2$$

$$\overline{\sigma_F^2} = \frac{\sum_{i \in F} (t_i - f_i(x))^2}{|F - 1|} \Rightarrow \overline{\sigma_F^2} \sim \frac{\sum_{i \in I} (t_i - f_i(x))^2}{|I| - 1}$$

$$\sum_{i \in I} (t_i - f_i(x))^2 \sim (|I| - 1) \cdot \overline{\sigma_F^2} \to \min$$

$$\overline{\sigma_F^2} = \frac{\sum_{i \in F} (t_i - f_i(x))^2}{|F - 1|} \to \min$$

1.2.2 Gaussian parameters difference

$$\mathbb{P}(x \mid t) = \prod_{i \in I} \frac{\exp\left\{-\frac{(t_i - f_i(x))^2}{2 \cdot \sigma^2}\right\}}{\sqrt{2 \cdot \pi \cdot \sigma^2}} \cdot \prod_{p \in P} \frac{\exp\left(-\frac{x_p^2}{2}\right)}{\sqrt{2 \cdot \pi}}$$

$$c = (2 \cdot \pi)^{\frac{|I| + |P|}{2}} \cdot \sigma^{|I|}$$

$$\mathbb{P}(x \mid t) = c \cdot \exp\left\{-\frac{\|t - f(x)\|}{2 \cdot \sigma^2}\right\} \cdot \exp\left\{-\frac{\|x\|}{2}\right\}$$

$$q^*(t) = c \cdot \sum x \cdot \exp\left\{-\frac{\|x\|}{2}\right\} \cdot \exp\left\{-\frac{\|t - f(x)\|}{2 \cdot \sigma^2}\right\}$$

$$\overline{\sigma^2} = \sum_{x \in X} \frac{\|f(x) - t\|}{N}, \qquad N = |X| \cdot |I| - 1$$

$$D_t^2(x) = \frac{\|f(x) - t\|}{2 \cdot \overline{\sigma^2}}$$

$$q'(t) = c \cdot \sum_{x \in X} x \cdot \exp\left\{-D_t^2(x) - \frac{\|x\|}{2}\right\}$$

$$\begin{cases} \max_x D_t^2(x) = 0, \\ \min_x D_t^2(x) < \infty, \end{cases} \forall t \in T$$

$$q'(t) \sim q''(t) = c \cdot \int_X x \cdot \exp\left\{-D_t^2(x) - \frac{\|x\|}{2}\right\} dx, \qquad X = \mathbb{R}^{|P|}$$

$$q_{i}''(t) = c \cdot \int_{\mathbb{R}} x_{i} \cdot e^{-\frac{x_{i}^{2}}{2}} \int_{\mathbb{R}} e^{-\frac{x_{1}^{2}}{2}} \cdots \int_{\mathbb{R}} e^{-\frac{x_{i-1}^{2}}{2}} \int_{\mathbb{R}} e^{-\frac{x_{i+1}^{2}}{2}} \cdots \int_{\mathbb{R}} e^{-\frac{x_{p}^{2}}{2}} e^{-D_{t}^{2}(x)} dx$$

$$\max_{f} q_{i}''(t) = c \cdot \int_{\mathbb{R}} x_{i} \cdot e^{-\frac{x_{i}^{2}}{2}} dx_{i} \cdot \left(\int_{\mathbb{R}} e^{-\frac{y^{2}}{2}} dy \right)^{|P|-1}$$

$$c \cdot \left(\frac{\pi}{2} \right)^{|P|} = 1 \Longrightarrow c = \left(\frac{\pi}{2} \right)^{-\frac{|P|}{2}}$$

$$|q_{i}''(t)| \le \left(\frac{\pi}{2} \right)^{-\frac{1}{2}}$$

1.2.3 Monte-Carlo

$$z_{\gamma}^{2} = 2.575^{2}$$

$$\varepsilon^{2} = 0.01^{2}$$

$$M(N) = \sum_{i=1}^{N} \left(\hat{Q}^{(i)}(x)\right)^{2}$$

$$S(N) = \sum_{i=1}^{N} \left(\hat{Q}^{(i)}(x)\right)$$

$$\hat{V}_{r}^{2} = \frac{1}{N-1} \cdot \left[M(N) - \frac{1}{N} \cdot (S(N))\right]$$

$$\hat{Q}_{N}^{2} = \left(\frac{1}{N} \cdot S(N)\right)$$

2 ПРАКТИЧНІ РЕЗУЛЬТАТИ

3 ОХОРОНА ПРАЦІ

висновки

В результаті виконання роботи вдалося.

ПЕРЕЛІК ПОСИЛАНЬ

Berger, J.O. Statistical Decision Theory: Foundations, Concepts, and Methods /
 J.O. Berger // Springer Series in Statistics. — Springer New York, 1980.