Business Intelligence & Machine Learning

By Regeneration & Piraeus Bank

The Essentials of Part I

OLTP DATABASE MIGRATION.

DATA WAREHOUSE DESIGN.

ETL PROCESS IMPLEMENTATION.

POWER BI INSIGHTS.

```
Date_Key INT NOT NULL,
Invoice_Date DATE NOT NULL,
Qua...__, SMALLINT NOT NULL,
Price FLOAT NOT NULL,
Total FLOAT NOT NULL,
Extended_Price_Amount FLOAT NOT NULL,
Discount_Amount FLOAT DEFAULT 0 NOT NULL);
```

```
DECLARE SQL Scripts
```

1-01' --Starting value of Date Range
' --End Value of Date Range

WHILE @CurrentDate <= @EndDate

BEGIN

To Develop a Staging Area from the OLTP Database.

VAI

- To Design the ERD Schemas and define the final Star Schema of the Data Warehouse.
- To Establish the connections to the main Fact Table.
- To Extract, Transform, Load data from the Staging Area into the Data Warehouse.
- To Ensure efficient data transfer and query performance.

```
DATEPART(WEEK, @CurrentDate), -- Week

DAY(@CurrentDate), -- Day

DATENAME(WEEKDAY, @CurrentDate) -- DayName
```

Chinook Data Warehouse

- Star Schema
- 5 Dimension Tables
- Main Focus: Fact_Sales
- Connections with primary keys
- 1 to N Cardinality

PowerBI Insights

- Dashboards for a comprehensive analysis
- Slicer usage for customized results
- Cards to portray key analytics
- Variety on Visual Reports

PowerBI Insights

- Dashboards for a comprehensive analysis
- Slicer usage for customized results
- Cards to portray key analytics
- Variety on Visual Reports

PowerBI Insights

- Dashboards for a comprehensive analysis
- Slicer usage for customized results
- Cards to portray key analytics
- Variety on Visual Reports

The Essentials of Part II

PREPROCESSING AND FEATURE ENGINEERING

PERFORMANCE LABELING & ENCODING

MACHINE LEARNING MODEL PIPELINE

EVALUATION INSIGHTS AND ANALYSIS

```
# Define performance labels based on quantiles of 'TotalRevenue'
quantile_labels = ['Low Performer', 'Average Performer', 'High Performer']

df_final['Performance_Label'] = pd.qcut(df_final['TotalRevenue'], q=3, labels=quantile_labels, duplicates='drop')

# Create a dictionary to map labels to desired numbers

label_mapping = {'Low Performer': 0, 'Average Performer': 1, 'High Performer': 2}

# Map labels to numbers

df_final['Performance_Label_Encoded'] = df_final['Performance_Label'].map(label_mapping)

# Display the first few rows of the filtered DataFrame

print(df_final.head())

# Define X (features) and y (target)

X = df_final['TotalInvoices', 'AvgRevenue', 'AnnualRevenue']]

y = df_final['Performance_Label_Encoded']

# Normalize the features using StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

Stratified K-Fold Cross-Validation with GridSearchCV

nodels = {...}

- To Calculate Employee Tenure, Clean Nulls and Remove Outliers.
- To Create Correlation Plots and define the final features.
- To Establish Performance Labels and Encode them.
- To Set Hyperparameters for Optimization, Standardize features and Split the Data Set.
- To Train Models, Evaluate Metrics & Predictions and Generate insightful plots

```
plt.xlabel('Performance Label Encoded')
plt.ylabel('Count')
plt.xticks(rotation=0)
plt.show()

# Train and Evaluate Models and perform confusion matrix
for model_name, model in best_estimators.items():...
```

Pre-Processing & Feature Engineering

- Sample Cleanup with NA filling and Feature Calculation such as "Tenure" as well as "Annual Revenue"
- Outlier Removal such as salesmen with "Total Revenue" more than 600 and employees who are not salesmen
- Feature Selection based on High Correlation to the "Total Revenue" such as "Total Invoices", "Annual Revenue", "Average Revenue"

Label Performance & Encoding

Comments:

- Labeling based on Performance using Quantiles (High, Average, Low)
- Label Encoding manually with Pandas and Label Mapping

Performance Label

Low Performer

Average Performer
 High Performer

Standardization, Model Selection & Training

Comments:

- Feature Scaling of the Training Data with Standard Scaler
- Classification Model Selection for the training
- Set of Hyperparameters per Model using Stratified K-fold Cross Validation with GridSearch

Histogram of Normalized Features

Model Evaluation, Metrics & Confusion Matrix (Part I)

- Strong results based on the classification report per Model
- Metrics achieve over 96% score on Average

Model Evaluation, Metrics & Confusion Matrix (Part II)

- Strong results based on the classification report per Model
- Metrics achieve over 96% score on Average
- Difference between Metrics when we removed all NA values reducing however the Data Set size

969				
	recall	f1-score	support	vs
		0.95 0.95		
	66 969 66 n Report: precision 1.00 0.90	66 969 66 n Report: precision recall 1.00 1.00 0.90 1.00	66 969 66 n Report: precision recall f1-score 1.00 1.00 1.00 0.90 1.00 0.95	66 969 66 n Report: precision recall f1-score support 1.00 1.00 1.00 10 0.90 1.00 0.95 9

Evaluating Decision Tree							
Accuracy: 0.850 Precision: 0.863 Recall: 0.850 F1 Score: 0.853							
Classification Report:							
	precision	recall	f1-score	support			
6	1.00	0.83	0.91	6			
1	l 0.75	0.86	0.80	7			
2	0.86	0.86	0.86	7			
accuracy			0.85	20			
macro avo	9.87	0.85	0.86	20			
weighted avo	g 0.86	0.85	0.85	20			

Project Highlights

Learning Outcomes

- End-to-end process of transforming raw data into insights.
- Implementing modern techniques to solve real problems
- Getting Familiar with the Tech Stack

Tech Stack

- ☐ GitHub
- MS SQL Server
- MS Power BI
- Python

Challenges Faced

- ☐ Schema Set up for DW
- ☐ Feature Engineering
- ☐ Learning a new coding language
- ☐ The correct order of steps for a ML project

From Our Team:

Alexia Kalliani

Giorgos Petrakis

Konstantinos Gkaravelos

Nikos Antoniou