

一,关于本周学习

这星期看了李宏毅视频,跟着做了几个例题作业。 做UG902的实验。 然后就是看论文。

两篇综述论文, 我总结了下。 神经网络加速器的设计目标包括以下两个方面: 高速(高吞吐量和低延迟)和高能效。

高吞吐量:

- 1,减小计算量或者每个计算单元的大小
- 2, 增加工作频率来提高峰值性能
- 3, 合理的并行实现以及数据交换

高能效:

- 1: 计算
- 2: 内存访问

Fig. 1. (a) Computation graph of a neural network model. (b) CONV and FC layers in an NN model. (c) CONV and FC layers dominate the computation and parameter of a typical NN model: VGG11.

2:8 K. Guo et al.

Fig. 3. Comparison between different quantization methods from References [17, 20, 29, 49, 82, 83]. The quantization configuration is expressed as (weight bit-width)×(activation bit-width). The "(FT)" denotes that the network is fine-tuned after a linear quantization.

Table 3. FPGA Resource Consumption Comparison for Multiplier and Adder with Different Types of Data

S-	Xilinx Logic				Xilinx DSP			Altera DSP	
	Multiplier		Adder		Multiply and add			Multiply and add	
	LUT	FF	LUT	FF	LUT	FF	DSP	ALM	DSP
fp32	708	858	430	749	800	1284	2	1	1
fp16	221	303	211	337	451	686	1	213	1
fixed32	1112	1143	32	32	111	64	4	64	3
fixed16	289	301	16	16	0	0	1	0	1
fixed8	75	80	8	8	0	0	1	0	1
fixed4	17	20	4	4	0	0	1	0	1

年前的学习计划

- 1,李宏毅视频看完。
- 2,常见的CNN网络跑一遍。
- 3,把xilinx官方的手册看几遍,熟悉Vivado HLS工具的使用。

下周学习计划

1,李宏毅视频看完CNN。

- 2,把xilinx的ug902手册的实验往后做
 - 3, 再找论文看。