

FINE GRAINED SOIL PHYSICAL STATES SOIL CLASSIFICATION

Georgia Institute of Technology

Lecture Topics

- Introduction
- Physical state of fine grained soils
- Atterberg limits
 - Casagrande Cup: Liquid Limit
 - Fall Cone: Liquid Limit
 - Plastic Limit
- Classification
- Other particle characteristics

Physical States of Fine Grained Soils

- Plasticity
 - "Ability of a soil to undergo unrecoverable deformation at constant volume without cracking or crumbling"
 - Applies to fine-grained soils
 - Clay minerals in the presence of water can be remolded without crumbling – known as plasticity
 - Consistency is a function of the amount of water, or water content, of the soil
 - Fine-grained soils can exist in four states and we use a descriptive method developed by A. Atterberg to describe these states

Atterberg Limits / Transition w%

State of Soil	Transition water content	Notes	Increasing w(%)
Solid		Note: water content = Mass water/Mass solids	
	Shrinkage limit (SL)	As water evaporates from soil, it shrinks; however, eventually equilibrium is reached -water content where no further volume change takes place, this is the shrinkage limit	
Semisolid			
	Plastic limit (PL)	 – water content at transition from semi-solid to plastic (~≤40) 	
Plastic			
	Liquid limit (LL)	 – water content at transition from plastic to liquid (~≤100) 	
Liquid			

Physical States of Fine Grained Soils

Plot volume as a function of water content

Atterberg Limits

- Liquid limit (LL)
- Plastic Limit (PL)
- Shrinkage Limit (SL)
- All are moisture contents of the soil
- Together known as the Atterberg limits
- Determined experimentally in the laboratory
- Atterberg was a Swedish scientist working in the ceramics industry
 - Developed the limits to help quantify how much a clay would shrink or crack when it was fired into a ceramic piece
- Every soil has unique LL, PL, and SL
- Plasticity Index (PI) = Liquid limit plastic limit PI = LL PL
- Range over which a clay is plastic

Plasticity: Typical Values

Range over which a clay is plastic

PI	Description
0	Nonplastic
1-5	Slightly Plastic
5-10	Low Plasticity
10-20	Medium Plasticity
20-40	High Plasticity
>40	Very High Plasticity
10-20 20-40	Medium Plasticity High Plasticity

Typical Atterberg Limits for Soils

Soil type	LL (%)	PL (%)	PI (%)
Sand		Nonplastic	
Silt	30-40	20-25	10-15
Clay	40-150	25-50	15-100

Liquidity Index and Activity

Liquidity Index – measure of soil strength

$$LI = \frac{W - PL}{PI}$$

Activity – measure of the surface area of the particles and indictor of mineralogy

$$A = \frac{PI}{clayfraction(\%)}$$

Casagrande Cup for Liquid Limit

Calibration

Test Procedure 1/2

Test Procedure 2/2

Casagrande Cup Data Analysis

Plastic Limit

Plasticity Chart: Background

- Geotechnical engineering has existed as a discipline for ~
 90 years
 - Extensive database of plasticity characteristics
 - Use for characterization and correlation
- Arthur Casagrande organized the LL and PI data
 - Plasticity chart used for soil classification
 - Plot plasticity index versus the liquid limit
 - Have two important lines on the chart
 - A-line
 - Above the A-line are inorganic clays
 - Below the A-line are silts and organic clays
 - Also have the U-line Upper limit of all soils ever tested

Plasticity Chart

Plasticity Chart: Background

- We want a common language to describe different types of soils:
- In the U.S. we use the Unified Soil Classification System
- Give each soil a two letter designation:
 - G = gravel
 - S = sand
 - M = silt
 - C = clay
 - O = organic
 - First letter is the predominate size of the grains
 - Second letter is used to provide additional description
 - For example, we can have:
 - Silty sands: SM
 - Low plasticity clays CL

Decision Tree: Coarse Grains

Decision Tree: Fine Grains

Other Characteristics

- Particle shape
 - Important in soil behavior, but difficult to measure
- Bulky angular, subangular, subrounded, rounded

Typical shapes of coarse-grained bulky particles. (Photograph by M. Surendra)

Range of Shapes

Sand and silt size particle shapes as seen in silhouette

Influence of Shapes

- Particle shape operates at several levels
 - Sphericity (versus eccentricity or platiness)
 - Similarity between the particles length, height, and width
 - Roundness (versus angularity) –major surface features
 - Manufactured crushed sands
 - Roundness 0.2-0.3
 - Sphericity 0.7-0.8
 - Natural sands
 - Roundness 0.3-0.9
 - Sphericity 0.5-0.9
 - Smoothness roughness of the particle surface
 - At smaller scales, concerned about roughness