MOVIE SUCCESS PREDICTION: PROJECT REPORT

Presented by: Kunal Tyagi

1. Introduction

The movie industry involves high-stakes investment, where inaccurate forecasting of a film's success can lead to major financial losses. This capstone project aims to leverage machine learning to predict whether a movie will be a *Flop*, *Average*, or *Hit* before its release, focusing especially on accurately identifying potential *Hit* movies.

2. Problem Statement

Film production companies often face difficulties in determining a movie's potential success at the early stages. The objective is to develop a predictive model that classifies movies into success categories (Hit, Average, Flop) using relevant features, aiding data-driven decision-making for greenlighting projects.

3. Objectives

- Analyze and clean the movie dataset.
- Perform detailed Exploratory Data Analysis (EDA).
- Engineer features and prepare data for modeling.
- Train classification models (Logistic Regression, Random Forest, Gradient Boosting).
- Evaluate models with a focus on precision for *Hit* class.

4. Dataset Overview

- Over 5000 movie records.
- Features include: Budget, Gross Earnings, Cast Facebook Likes, IMDb Score, etc.
- The IMDb score was converted into categorical target classes: Flop, Average, and Hit.
- Major challenges included missing data and skewed distributions in numeric fields.

5. EDA & Insights

- High-budget movies with high social media engagement are more likely to be hits.
- Features like Facebook Likes and Votes showed strong correlation with movie success.
- Visualization of distributions helped identify patterns across different success classes.

6. Data Preprocessing & Feature Engineering

- Irrelevant columns removed.
- Missing values imputed using median or mode.

- Categorical features label-encoded; numeric features scaled.
- Log transformation applied to skewed features like Budget and Gross.

7. Model Building

- Three models were trained using an 80/20 stratified train-test split:
 - Logistic Regression
 - Random Forest
 - o Gradient Boosting
- Evaluation metrics included Accuracy, Precision, Recall, and F1-Score.

8. Model Evaluation & Comparison

Model	Accuracy	Precision (Hit)
Random Forest	0.84	0.88
Gradient Boosting	0.83	0.86
Logistic Regression	0.72	0.78

- **Random Forest** emerged as the best-performing model with balanced results.
- Focus was on maximizing precision for *Hit* movies to reduce false positives.

9. Business Insights

- Budget and social media engagement are strong predictors of movie success.
- Facebook Likes emerged as a key feature.
- The model can guide investment allocation and early marketing strategies.

10. Future Enhancements

- Hyperparameter tuning (e.g., GridSearchCV) for better performance.
- Incorporate sentiment analysis from reviews or trailers.
- Deploy an interactive dashboard using Power BI or Streamlit.

11. Conclusion

The project demonstrates that machine learning can effectively predict movie success categories using prerelease data. The Random Forest model offers a reliable tool for production houses to assess project viability and plan investments. Next steps include deploying the model via a web app for real-world use.