Lecture 6: Experiment 5 EE380 (Control Systems)

Manavaalan Gunasekaran

PhD student manyaal@iitk.ac.in Arun Kant Singh

PhD student arunkant@iitk.ac.in

Ramprasad Potluri

Associate Professor potluri@iitk.ac.in

Department of Electrical Engineering Indian Institute of Technology Kanpur

Forward Close

September 09, 2011

Contents

- **Announcements**
- **Outline** of the experiment
- How to design a $K_i(s)$?
- 4 Is $\hat{i} \approx \frac{i_{\text{sens}}}{1.8} \frac{1}{30}$ a good approximation?
- What is a trackable i_d ?

- Where is i tracking i_d useful?
- - Homework (HW) vs. Lab work (LW)
- **Discretization**

Simulate; LW: C code, Implement, Analyze

- 7
- 6

8

9

10

11

3

4

5

Back **Forward** Close

Announcements

- Before doing an experiment, download latest versions of supporting documents from Brihaspati.
- Latest version of program listings are on Brihaspati.
- Turn off power supply to board when not programming dsPIC or taking readings.
- After completion of experiment
 - Shut down PC, FG, PS.
 - Remove PICkit 2 from dsPIC board.

Forward

Outline of the experiment

• Design $K_i(s)$ such that i tracks i_d .

- Use $\hat{i} \approx i_{\rm sens}/1.8 1/30$. Is this a good approximation?
- Determine a trackable i_d using

fundamental torque equation
$$J\frac{\mathrm{d}\omega}{\mathrm{d}t}=-B\omega+T-T_L$$
 voltage equation $V=L\frac{\mathrm{d}i}{\mathrm{d}t}+Ri+E$

44

1

•

Back

Forward

How to design a $K_i(s)$?

Redraw block diagram

- i tracks $i_d i_{ex}$, not i_d alone. i is called well-regulated if it tracks i_d nicely. Nice tracking won't happen while i_{ex} dominates. \therefore choose $K_i(s)$ to supress i_{ex} . Two choices for $K_i(s)$ are P and PI.
- P gives same gain in transient and SS \Rightarrow large demand on u. PI places small demand on u in transient and acceptable demand in SS. Also, \exists current filter to reject noise in $i_{sens.} \Rightarrow$ Choose PI.

44

>>

—

Back

Forward

Is $\hat{i} \approx \frac{i_{\text{sens}}}{1.8} - \frac{1}{30}$ a good approximation?

- From Exp-t 4 saw that don't have an accurate relationship $i = f(i_{sens})$.
- Need to review the derivation that leads to $\begin{bmatrix} b \\ a \end{bmatrix} = \begin{bmatrix} R_{\Sigma} & 7 K_b \widehat{\omega}_{ss7} \\ R_{\Sigma} & 9 K_b \widehat{\omega}_{ss9} \end{bmatrix}^{-1} \begin{bmatrix} 7 \\ 9 \end{bmatrix} \times \alpha$

- With an accurate relationship $i = f(i_{sens})$ can have $\omega \approx \widehat{\omega}$ in Exp-t 4.
- For now, let us live with $\hat{i} \approx \frac{i_{\text{sens}}}{1.8} \frac{1}{30}$ or whatever gave you ω closest to $\widehat{\omega}$ in Exp-t 4. Consequences to be seen in experiment on DOB.

Forward

What is a trackable i_d ?

We define a trackable i_d as one that does not need u to go into saturation. In our case u saturates at about 9 – 10 V. So, let us find i_d that needs $u \leq 9$ V for the applied T_L .

- $L \approx 0$ (see, e.g., Exp-t 4) $\Rightarrow u = R_{\Sigma}i + E \Rightarrow u = R_{\Sigma}i + K_b\omega$.
- At ω_{ss} , $\dot{\omega} = 0 \Rightarrow T = K_t i = T_L + B\omega \Rightarrow \omega = \frac{K_t i T_L}{B}$.
- From the two boxed equations, write an equation in terms of u, i, T_L by eliminating ω :

$$u + \frac{K_b}{B}T_L = \left(R_{\Sigma} + \frac{K_b K_t}{B}\right)i$$

- For u = 9 V, $T_L = 0$, find i_{d1} . For u = 9 V, $T_L = 0.003$ Nm, find i_{d2} . These are max. trackable currents.
- The min. trackable currents are obtained from $i = T_L/K_t$.

Back Forward

Where is i tracking i_d useful?

Abbreviation: $K_{\theta} \equiv K_{\theta}(s)$, $K_{\omega} \equiv K_{\omega}(s)$, $K_i \equiv K_i(s)$.

Position control of pmdc motor while restricting speed and current.

Disturbance observer (DOB): Exp-t 6.

44

>>

Back Forward

Homework (HW) vs. Lab work (LW)

Determine TF from u to i for our pmdc motor module. Use R_{Σ} & B found experimentally.

Choose PI controller for $t_s = 0.5 \ \mathrm{s}$

Determine max. values of i_{d1} & i_{d2}

Simulate CL sys using modified easysim.m for i_{d1} & i_{d2}

Plot i_1 vs. $t \& i_2$ vs. t on one figure. Plot u_1 vs. $t \& u_2$ vs. t one one figure. LW

In main-prog.c: code PI controller; implement control of i; use $i = f(i_{sens})$ that gave best results in Exp-t 4.

Track $90\%i_{d1}$ and $90\%i_{d2}$. i_{d2} provided by 1.5 kg weight hanging from pulley.

While pulley rotating, in both cases stall and release pulley

Take plots in both cases before and after application of additional T_L

Comment on dist. rej. & tracking.

∢

>>

Back

Forward

Discretization

44

>>

Forward

Simulate; LW: C code, Implement, Analyze

- Simulation: easysim.m
- Discretized controller
 - \longrightarrow C code:

- Implement: As in demo slides
- Analyze: Compare results

```
x_1(k+1) = a_{11}x_1(k) + a_{12}x_2(k) + b_1u(k)

x_2(k+1) = a_{21}x_1(k) + a_{22}x_2(k) + b_2u(k)

y(k) = c_1x_1(k) + c_2x_2(k) + du(k)
```

In main-prog.c before main() insert float x1[2],x2[2];
In main() insert x1[0] = x2[0] = 0;

```
x1[1] = a11 * x1[0] + a12 * x2[0] + b1 * u;

x2[1] = a21 * x1[0] + a22 * x2[0] + b2 * u;

y = c1 * x1[0] + c2 * x2[0] + d * u;

x1[0] = x1[1];

x2[0] = x2[1];
```


Forward