Kapitel WT:VIII (Fortsetzung)

VIII. Semantic Web

- WWW heute
- Semantic Web Vision
- □ RDF: Einführung
- □ RDF: Konzepte
- □ RDF: XML-Serialisierung
- □ RDF: Anwendungen
- □ RDFS: Einführung
- □ RDFS: Konzepte
- □ Semantik im Web
- □ Semantik von RDF/RDFS
- Ontologien
- □ OWL: Konzepte
- OWL: Logikhintergrund
- □ OWL: Anwendungen

WT:VIII-112 Semantic Web: RDFS ©STEIN 2005-2014

Typsystem

RDF-Properties werden auf zwei Arten benutzt:

- 1. zur Beschreibung von Eigenschaften einer Ressource
- 2. zur Beschreibung von Beziehungen zwischen Ressourcen

Es gibt kein Konzept, um *übergeordnete* Aussagen für Ressourcen zu notieren.

WT:VIII-113 Semantic Web: RDFS ©STEIN 2005-2014

Typsystem

RDF-Properties werden auf zwei Arten benutzt:

- 1. zur Beschreibung von Eigenschaften einer Ressource
- 2. zur Beschreibung von Beziehungen zwischen Ressourcen

Es gibt kein Konzept, um *übergeordnete* Aussagen für Ressourcen zu notieren.

RDF-Schema (RDFS, RDF vocabulary description language):

- eine semantische Erweiterung von RDF (intendierte Semantik) [w3C]
- ermöglicht die Gruppierung von Ressourcen
- ermöglicht eine Beschreibung der Verwendung von Ressourcen
- → stellt ein Typsystem für RDF zur Verfügung [w3C]

WT:VIII-114 Semantic Web: RDFS ©STEIN 2005-2014

Typsystem

Zusammenfassung von Ressourcen mit gleichen Eigenschaften. Unterklassen und Unter-Properties sind Teilmengen ihrer Oberklasse bzw. Ober-Properties.

Klassenhierarchie:

2. Property-Hierarchie:

WT:VIII-115 Semantic Web: RDFS ©STEIN 2005-2014

Bemerkungen:

- Vokabularbeschreibungen für RDF-Schema sind in RDF, also unter Rückgriff auf das Datenmodell und die Syntax von RDF formuliert.
- □ Die Vokabulare (einschließlich Kommentar, Angabe der Signatur bei Prädikat-Ressourcen, Angabe der Oberklasse bei Subjekt-Ressourcen) für RDF und RDFS finden sich in den zugehörigen Namensräumen http://www.w3.org/2000/01/rdf-schema.

 http://www.w3.org/2000/01/rdf-schema.
- Die Namensräume für RDF und RDFS spezifizieren eine *intendierte* Semantik. Mit rdf:subClassOf (zum Beispiel) wird etwas Bestimmtes intendiert bzw. gefordert. Es ist Aufgabe der Anwendung, die ein RDF-Schema verarbeitet, die intendierte Semantik zu operationalisieren. Wie die intendierte Semantik exakt zu implementieren ist, also welche Eigenschaften und welches Verhalten ein Element des Vokabulars aufzuweisen hat, ist in http://www.w3.org/TR/rdf-mt/ definiert.
 - Zum Beispiel wird durch rdf: subClassOf unter anderem gefordert, dass diejenige Klasse, die eine Unterklasse einer Klasse C ist, von dem gleichem Typ wie C ist.
- Letztendlich sollen die in den Vokabularbeschreibungen modellierten Zusammenhänge einem *Schlussfolgerungsprozess* zugänglich gemacht werden. Die Durchführung von Schlussfolgerungsprozessen geschieht in Anwendungsprogrammen.

WT:VIII-116 Semantic Web: RDFS © STEIN 2005-2014

Modellieren und Schlussfolgern mit RDF/RDFS

WT:VIII-117 Semantic Web: RDFS © STEIN 2005-2014

Modellieren und Schlussfolgern mit RDF/RDFS

WT:VIII-118 Semantic Web: RDFS ©STEIN 2005-2014

Modellieren und Schlussfolgern mit RDF/RDFS

WT:VIII-119 Semantic Web: RDFS ©STEIN 2005-2014

Modellieren und Schlussfolgern mit RDF/RDFS

WT:VIII-120 Semantic Web: RDFS ©STEIN 2005-2014

Modellieren und Schlussfolgern mit RDF/RDFS

[vgl. DB:II Entwurfsprozess]

WT:VIII-121 Semantic Web: RDFS ©STEIN 2005-2014

Bemerkungen:

- □ RDF und RDFS sind formale Sprachen. Sie lassen sich in die Prädikatenlogik einbetten und stellen in diesem Sinne Spezialisierungen der Prädikatenlogik dar.
- Das RDFS-Modell des Weltausschnitts kann deshalb unmittelbar als eine Axiomatisierung (= Formel in der Prädikatenlogik + intensionale Interpretation) des Weltausschnitts aufgefasst werden. Eine Instanziierung entspricht dann einer Menge von Grundprädikaten (= Prädikate ohne Variablen). Aus dieser Menge von Formeln lassen sich mit Hilfe eines Kalküls Schlussfolgerungen ziehen.
- □ In der Praxis des Semantic Web ist die Verwendung der vollständigen Sprache der Prädikatenlogik nicht sinnvoll. Deshalb werden bestimmte Einschränkungen gemacht und es kommen spezielle Logiken zum Einsatz. Stichworte: Beschreibungslogik (Description Logics), DL, Frame-Logic

WT:VIII-122 Semantic Web: RDFS ©STEIN 2005-2014

Modellierungsbeispiel


```
<rdfs:Class rdf:about="http://www.buw.de/lecturer">
  <rdfs:subClassOf rdf:resource="http://www.buw.de/teaching-staff"/>
</rdfs:Class>
```

WT:VIII-123 Semantic Web: RDFS ©STEIN 2005-2014

Modellierungsbeispiel


```
<rdfs:Class rdf:about="http://www.buw.de/lecturer">
  <rdfs:subClassOf rdf:resource="http://www.buw.de/teaching-staff"/>
  </rdfs:Class>
```

WT:VIII-124 Semantic Web: RDFS ©STEIN 2005-2014

Modellierungsbeispiel

WT:VIII-125 Semantic Web: RDFS ©STEIN 2005-2014

Modellierungsbeispiel


```
<rdfs:Property rdf:about="&example; hasToDoWith">
    <rdfs:domain rdf:resource="http://www.buw.de/teaching-activity"/>
    <rdfs:range rdf:resource="http://www.buw.de/staff"/>
    </rdfs:Property>
    <rdfs:Property rdf:about="http://www.buw.de/isTaughtBy">
         <rdfs:subPropertyOf rdf:resource="&example; hasToDoWith"/>
         <rdfs:range rdf:resource="http://www.buw.de/teaching-staff"/>
         </rdfs:Property>
```

WT:VIII-126 Semantic Web: RDFS ©STEIN 2005-2014

Modellierungsbeispiel


```
<rdf:Description rdf:about="http://www.buw.de/Benno-Stein">
    <<u>rdf:type</u> rdf:resource="http://www.buw.de/lecturer"/>
    </rdf:Description>
```

WT:VIII-127 Semantic Web: RDFS ©STEIN 2005-2014

Vokabular: Klassen

Klassenname	Beschreibung
rdfs:Resource	die Klasse aller Ressourcen (= Klasse, der alle Ressourcen angehören)
rdfs:Class	die Klasse aller Klassen (= Klasse, der alle Klassen angehören)
rdf:Property	die Klasse derjenigen Ressourcen, die Properties sind
rdfs:Literal	die Klasse aller String-Literale
rdf:Statement	die Klasse aller vergegenständlichten Statements
rdfs:Container	die Klasse aller Container-Klassen
rdf:Bag	die Klasse der ungeordneten Mengen
rdf:Seq	die Klasse der geordneten Mengen
rdf:Alt	die Klasse der exklusiv-oder-Mengen (= Alternativen)

WT:VIII-128 Semantic Web: RDFS ©STEIN 2005-2014

Vokabular: Properties

Property-Name	Domain	Range	Beschreibung
rdf:type	rdfs:Resource	rdfs:Class	Instanzbeziehung
rdfs:subClassOf	rdfs:Class	rdfs:Class	Spezialisierungsbeziehung zwischen Klassen
rdfs:subPropertyOf	rdfs:Property	rdfs:Property	Spezialisierungsbeziehung zwischen Properties
rdfs:domain	rdfs:Property	rdfs:Class	Einschränkung des Urbildbereichs
rdfs:range	rdfs:Property	rdfs:Class	Einschränkung des Bildbereichs
rdfs:member	rdfs:Container	rdfs:Class	Elementbeziehung zu einer Container-Klasse

WT:VIII-129 Semantic Web: RDFS ©STEIN 2005-2014

Vokabular: Properties (Fortsetzung)

Property-Name	Domain	Range	Beschreibung
rdf:subject	rdf:Statement	rdfs:Resource	kennzeichnet Ressource als Subjekt eines Statements
rdf:predicate	rdf:Statement	rdfs:Property	kennzeichnet Property als Prädikat eines Statements
rdf:object	rdf:Statement	rdfs:Resource	kennzeichnet Ressource als Objekt eines Statements
rdfs:seeAlso	rdfs:Resource	rdfs:Resource	verweist auf Ressource mit Zusatzinformation
rdfs:isDefinedBy	rdfs:Resource	rdfs:Resource	verweist auf Definitions-URI
rdfs:comment	rdfs:Resource	rdfs:Literal	Kommentar zur Ressource
rdfs:label	rdfs:Resource	rdfs:Literal	verständlicher Ressource-Name

WT:VIII-130 Semantic Web: RDFS © STEIN 2005-2014

Bemerkungen:

- □ Die Tabellen zeigen eine Teilmenge des Vokabulars.
- Der Prefix rdf: steht für die Namensraum-URI http://www.w3.org/1999/02/22-rdf-syntax-ns#; der Prefix rdfs: steht für die Namensraum-URI http://www.w3.org/2000/01/rdf-schema#. Dort befinden sich die vollständigen Vokabularbeschreibungen der RDF- und RDFS-Ressourcen.
- □ Eine Klasse kann Unterklasse mehrerer Klassen sein; eine Property kann Unter-Property mehrerer Properties sein.
- □ Die Semantik der Unterklassen- und Unter-Property-Relationen beinhaltet die Transitivität dieser Relationen.

WT:VIII-131 Semantic Web: RDFS © STEIN 2005-2014

Property-zentrierte Modellierung

Die Begriffe "Klasse", "Eigenschaft" oder "Vererbung" sind Merkmale vieler objektorientierter Sprachen. Abweichend zur verbreiteten Semantik gilt in RDF:

- RDF-Properties sind global sichtbar.
- □ Eine RDF-Klasse *definiert nicht* und *kapselt nicht* die ihr zugeordneten Properties sondern: Properties werden Ressourcen zugeordnet.

WT:VIII-132 Semantic Web: RDFS ©STEIN 2005-2014

Property-zentrierte Modellierung

Die Begriffe "Klasse", "Eigenschaft" oder "Vererbung" sind Merkmale vieler objektorientierter Sprachen. Abweichend zur verbreiteten Semantik gilt in RDF:

- RDF-Properties sind global sichtbar.
- □ Eine RDF-Klasse *definiert nicht* und *kapselt nicht* die ihr zugeordneten Properties sondern: Properties werden Ressourcen zugeordnet.

Klassisch objektorientiert

RDF/RDFS

```
Pearl-Thesis

title
"Heuristics"

author
"Judea Pearl"
```

```
<rdfs:Property rdf:about="&example;author">
    <rdfs:domain rdf:resource="&example;book"/>
    <rdfs:range rdf:resource="&example;person"/>
</rdfs:Property>
<rdf:Description rdf:ID="Pearl-Thesis">
    <rdf:type rdf:resource="&example;book"/>
    <example:title>Heuristics</example:title>
    <example:author>Judea Pearl</example:author>
</rdf:Description>
```

WT:VIII-133 Semantic Web: RDFS ©STEIN 2005-2014

Property-zentrierte Modellierung

author: book \longrightarrow person

function: domain \longrightarrow range

example:book

Modellierung

WT:VIII-134 Semantic Web: RDFS ©STEIN 2005-2014

Property-zentrierte Modellierung

author: book \longrightarrow person

function: domain \longrightarrow range

WT:VIII-135 Semantic Web: RDFS ©STEIN 2005-2014

Property-zentrierte Modellierung

author: book \longrightarrow person

function: domain \longrightarrow range

WT:VIII-136 Semantic Web: RDFS © STEIN 2005-2014

Property-zentrierte Modellierung

author: book \longrightarrow person

function: domain \longrightarrow range

WT:VIII-137 Semantic Web: RDFS © STEIN 2005-2014

Property-zentrierte Modellierung

author: book \longrightarrow person

function: domain ---> range

WT:VIII-138 Semantic Web: RDFS ©STEIN 2005-2014

Property-zentrierte Modellierung

author: book \longrightarrow person

function: domain ---> range

WT:VIII-139 Semantic Web: RDFS ©STEIN 2005-2014

Property-zentrierte Modellierung

author: book \longrightarrow person

function: domain → range

→ Ressourcen (Klassen) können jederzeit und von jedem erweitert werden.

WT:VIII-140 Semantic Web: RDFS © STEIN 2005-2014

RDFS in RDF

RDF-Schema selbst ist mittels des RDF-Schema-Vokabulars und in dem Datenmodell von RDF definiert.

Ausschnitt der *Klassen* hierarchie:

Alle Beziehungen sind vom Typ rdfs:subClassOf.

WT:VIII-141 Semantic Web: RDFS ©STEIN 2005-2014

RDFS in RDF

RDF-Schema selbst ist mittels des RDF-Schema-Vokabulars und in dem Datenmodell von RDF definiert.

Ausschnitt der *Typ* hierarchie:

Alle Beziehungen sind vom Typ rdf:type.

WT:VIII-142 Semantic Web: RDFS ©STEIN 2005-2014

Bemerkungen und Kritikpunkte [vgl. Tomczyk 2004]:

- □ Nur für manche Primitive gibt es eine explizite Semantik.
- □ Teilweise schwer verständliches formales Modell: eine Ressource kann gleichzeitig eine Instanz (Individuum), eine Klasse (Konzept) und ein Prädikat (Rolle) sein.
- □ Die Aussdrucksstärke von RDFS ist gering:
 - nur Domain- und Range-Einschränkungen von Properties
 - keine einfachen Axiome wie Reflexivität, Symmetrie und Transitivität
 - keine allgemeinen Regeln

WT:VIII-143 Semantic Web: RDFS ©STEIN 2005-2014