Спектральный анализ электрических сигналов*

Иван Едигарьев, Московский Физико-Технический Институт Факультет Общей и Прикладной Физики, 526т

Цель работы: 1) изучение спектрального состава периодических электрических сигналов. В работе используются: анализатор спектра СК4-56, генератор прямоугольных импульсов Г5-54, генератор сигналов специальной формы Г6-34, осциллограф С1-76.

В работе изучается спектральный состав периодических электрических сигналов различной формы: последовательности прямоугольных импульсов, последовательности цугов и амплитудно-модулированных гармонических колебаний. Спектры этих сигналов наблюдаются с помощью промышленного анализатора спектра и сравниваются с рассчитанными теоретически.

I. ПРИНЦИП РАБОТЫ СПЕКТРОАНАЛИЗАТОРА.

Для исследования спектров в работе используется гетеродинный анализатор спектра типа СК4-56. Принцип работы анализатора заключается в следующем: входные цепи анализатора последовательно преобразуют поступающие на его вход колебания с разными частотами в колебания вполне определённой промежуточной частоты; выходной прибор (в нашем случае это электроннолучевая трубка — ЭЛТ) воспроизводит амплитуду сигнала промежуточной частоты. Напряжение, пропорциональное частоте сигнала, который в данный момент преобразуется в сигнал промежуточной частоты, подаётся на вход X ЭЛТ; напряжение, пропорциональное амплитуде исследуемой гармоники, поступает на вход Y. На экране анализатора возникает, таким образом, график, изображающий зависимость амплитуды гармоник от частоты, т.е. Фурье-спектр исследуемого сигнала. Для преобразования частоты колебаний, относящихся к исследуемому участку спектра, в сигнал промежуточной частоты служит нелинейный элемент (смеситель), на вход которого подаются исследуемый сигнал и сигнал со вспомогательного генератора колебаний регулируемой частоты (с гетеродина). При нелинейном сложении этих колебаний на выходе смесителя возникают сигналы суммарной и разностной частоты.

Для анализа используется только разностный сигнал. Смешение частот исследуемого сигнала и частоты гетеродина лежит в основе большинства современных радиоприёмных устройств — супергетеродинов.

Упрощённая структурная схема, поясняющая последовательный супергетеродинный метод спектрального анализа внешнего сигнала, изображена на рис. 1. Исследуемый сигнал f(t) поступает на смеситель, на который одновременно подаётся напряжение с гетеродина. Разностный по частоте

сигнал подаётся на фильтр, пропускающий очень узкую полосу частот, усиливается, детектируется, вновь усиливается и подводится на вертикальный вход ЭЛТ.

Рис. 1. Структурная схема анализатора спектра

Частота гетеродина управляется пилообразным напряжением, которое вырабатывается в генераторе развёртки. Сигнал с генератора подаётся также на горизонтальный вход ЭЛТ. Частота сигналов, вырабатываемых гетеродином, изменяется в пределах от 128 до 188 кГц. Фильтр настроен на частоту 128 кГц. Прибор анализирует, таким образом, колебания с частотами, лежащими между 128-128=0 кГц и 188-128=60 кГц.

II. ИССЛЕДОВАНИЕ СПЕКТРА ПЕРИОДИЧЕСКОЙ ПОСЛЕДОВАТЕЛЬНОСТИ ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ.

А. Экспериментальная установка

Схема для исследования спектра периодической последовательности прямоугольных импульсов представлена на рис. 2. Сигнал с выхода генератора прямоугольных импульсов Г5-54 подаётся на вход анализатора спектра и одновременно — на вход У осциллографа. С генератора импульсов на осциллограф подаётся также сигнал синхронизации, запускающий ждущую развёртку осциллографа. При этом на экране осциллографа можно наблюдать саму последовательность прямоугольных импульсов, а на

экране ЭЛТ анализатора спектра— распределение амплитуд спектральных составляющих этой последовательности.

Рис. 2. Схема для исследования спектра периодической последовательности прямоугольных импульсов

В наблюдаемом спектре отсутствует информация об амплитуде нулевой гармоники, т. е. о величине постоянной составляющей; её местоположение (начало отсчёта шкалы частот) отмечено небольшим вертикальным выбросом.

В. Задание

В этом упражнении исследуется зависимость ширины спектра периодической последовательности прямоугольных импульсов от длительности отдельного импульса.

- 1. Соберите схему согласно рис. 2 и включите в сеть только генератор Γ 5-54.
- 2. Познакомьтесь с назначением ручек управления генератора и осциллографа по техническому описанию, расположенному на установке (ТО, разделы I и II).
- 3. Подготовьте установку к измерениям, следуя техническому описанию (см. ТО, раздел III A).
- 4. Установив на анализаторе режим работы с однократной развёрткой, получите на его экране спектр импульсов с параметрами $f_{\text{повт}}=10^3~\Gamma \text{ц};~\tau=25~\text{мкс};$ частотный масштаб $m_x=5~\text{к}\Gamma \text{ц}/\text{дел}$ (см. ТО, III A, п. 7).
- 5. Проанализируйте, как меняется спектр ($\Delta \nu$ и $\delta \nu$ на рис. П.3): а) при увеличении τ вдвое при неизменном $f_{\text{повт}}=1$ к Γ ц; б) при увеличении $f_{\text{повт}}$ вдвое при неизменном $\tau=25$ мкс. Опишите результаты или зарисуйте в тетрадь качественную картину.
- 6. Проведите измерения зависимости ширины спектра от длительности импульса $\Delta \nu(\tau)$ при увеличении τ от 25 до 200 мкс (6–8 значений при $f_{\rm повт}=1$ к Γ ц и масштабе по горизонтали $m_x=5$ к Γ ц/дел).
- 7. Скопируйте на кальку огибающие спектров с параметрами: $f_{\text{повт}}=1$ к Γ ц, $m_x=5$ к Γ ц/дел, а) $\tau=50$ мкс, б) $\tau=100$ мкс. Запишите на кальках эти параметры и приложите кальки к отчёту.
- 8. Постройте график $\Delta \nu (1/\tau)$ и по его наклону убедитесь в справедливости соотношения неопределённостей.

III. ИССЛЕДОВАНИЕ СПЕКТРА ПЕРИОДИЧЕСКОЙ ПОСЛЕДОВАТЕЛЬНОСТ И ЦУГОВ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ.

А. Экспериментальная установка

Исследование спектра периодически чередующихся цугов гармонических колебаний проводится по схеме, изображённой на рис. 3. Генератор $\Gamma 6$ -34 вырабатывает синусоидальные колебания высокой частоты. На вход АМ (амплитудная модуляция) генератора $\Gamma 6$ -34 подаются прямоугольные импульсы с генератора $\Gamma 5$ -54 и синусоида модулируется — «нарезается» на отдельные куски — *цуги*. Эти цуги с выхода генератора $\Gamma 6$ -34 поступают на вход спектроанализатора и одновременно на вход Y осциллографа. Сигнал синхронизации подаётся на вход осциллографа с генератора импульсов.

Рис. 3. Схема для исследования спектра периодической последовательности пугов высокочастотных колебаний

В. Задание

В этом упражнении исследуется зависимость расстояния между ближайшими спектральными компонентами от частоты повторения цугов.

- 1. Соберите схему, изображённую на рис. 3.
- 2. Подготовьте приборы к работе, следуя техническому описанию (ТО, раздел III, Б).
- 3. Установив частоту несущей $\nu_0=25$ к Γ ц, проанализируйте, как изменяется вид спектра при увеличении длительности импульса вдвое ($\tau=50,\ 100$ мкс для $f_{\text{повт}}=1$ к Γ ц).
- 4. При фиксированных значениях $f_{\text{повт}}=1~\text{к}\Gamma\text{ц},~\tau=100~\text{мкс}$ и частотном масштабе $m_x=5~\text{к}\Gamma\text{ц}/\text{дел}$ проследите, как меняется картина спектра при изменении несущей частоты ν_0 (на генераторе $\Gamma6\text{-}34~\nu_0=25,~10$ или $40~\text{к}\Gamma\text{ц}$). Опишите результаты эксперимента или зарисуйте качественную картину в тетради.
- 5. При фиксированной длительности импульсов $\tau=50$ мкс исследуйте зависимость расстояния $\delta\nu$ между соседними спектральными компонентами от периода T (частоты повторения импульсов $f_{\text{повт}}$). Проведите измерения для 5–6 значений частоты $f_{\text{повт}}$ в диапазоне 1–8 к Γ ц, подбирая горизонтальный масштаб m_x , удобный для измерений (см. ТО, III A, п.7).

- 6. Скопируйте на кальку спектры цугов с параметрами: $\tau=100$ мкс, $m_x=5$ к Γ ц/дел; а) $f_{\text{повт}}=1$ к Γ ц; б) $f_{\text{повт}}=2$ к Γ ц. Запишите на кальках эти параметры и приложите кальки к отчёту.
- 7. Постройте график $\delta \nu(f_{\text{повт}})$ и по его наклону убедитесь в справедливости соотношения неопределённости.
- 8. Сравните зарисованные на кальку спектры: а) прямоугольных импульсов при одинаковых периодах и разных длительностях импульса τ ; б) цугов при одинаковых τ и разных периодах; в) цугов и прямоугольных импульсов при одинаковых значениях τ и T.

IV. ИССЛЕДОВАНИЕ СПЕКТРА ГАРМОНИЧЕСКИХ СИГНАЛОВ, МОДУЛИРОВАННЫХ ПО АМПЛИТУДЕ.

А. Экспериментальная установка

Схема для исследования амплитудномодулированного сигнала представлена на рис. 4. Модуляционный генератор встроен в левую часть генератора сигналов Г6-34. Синусоидальный сигнал с частотой модуляции $f_{\rm мод}=1~{\rm к}\Gamma$ ц подаётся с модуляционного генератора на вход АМ (амплитудная модуляция) генератора, вырабатывающего синусоидальный сигнал высокой частоты (частота несущей $\nu_0=25~{\rm k}\Gamma$ ц). Амплитудномодулированный сигнал с основного выхода генератора поступает на осциллограф и на анализатор спектра.

Рис. 4. Схема для исследования спектра высокочастотного гармонического сигнала, промодулированного по амплитуде низкочастотным гармоническим сигналом

В. Задание

В этом упражнении исследуется зависимость отношения амплитуд спектральных линий синусоидального сигнала, модулированного низкочастотными гармоническими колебаниями, от коэффициента модуляции, который определяется с помощью осциллографа.

- 1. Соберите схему, изображённую на рис. 4.
- 2. Подготовьте приборы к работе, следуя техническому описанию (${
 m TO},$ раздел III, ${
 m C}$).
- 3. Изменяя глубину модуляции (ручка 11 на Γ 6-34), исследуйте зависимость отношения амплитуды боковой линии спектра к амплитуде основной линии $(A_{\text{бок}}/A_{\text{осн}})$ от глубины модуляции m (5–6 значений

- в диапазоне $0 < m \leqslant 1$); для расчёта глубины модуляции m по формуле (П.13) измеряйте максимальную $2A_{max}$ и минимальную $2A_{min}$ амплитуды сигнала на экране осциллографа (см. рис. П.6 и П.7).
- 4. При 100% глубине модуляции ($A_{min}=0$) посмотрите, как меняется спектр при увеличении частоты модулирующего сигнала (ручка 10 на Γ 6-34 поворачивается по часовой стрелке).
- 5. Постройте график отношения $A_{\rm fok}/A_{\rm och}$ в зависимости от m. Определите угол наклона графика и сравните с рассчитанным с помощью формулы (П.14).

V. ОБРАБОТКА ИЗМЕРЕНИЙ.

A. II

По измеренной зависимости $\Delta \nu(1/ au)$ построим график и построим невзвешенный метод наименьших квадратов.

Результаты построения модели $\Delta \nu = \alpha + \beta(1/\tau)$:

$$\beta = 1.01 \pm 0.03, \quad \alpha = 0.0 \pm 0.04$$

Что позволяет нам говорить о справедливости соотношения неопределённостей.

B. III

По измеренной зависимости $\delta \nu(f_{\text{повт}})$ построим график и аналогично построим невзвешенный метод наименьших квадратов.

Результаты построения модели $\delta \nu = \alpha + \beta(f_{\text{повт}})$:

$$\beta = 0.99 \pm 0.06$$
, $\alpha = 0.0 \pm 0.3$

C. IV

Построим график измеренной зависимости отношения амплитуды боковой линии спектра к амплитуде основной линии $(A_{\text{бок}}/A_{\text{осн}})$ от глубины модуляции m.

Построим невзвешенный метод наименьших квадратов и определим угол наклона графика. Стоит напомнить, что согласно теоретической модели значение угла наклона должно быть равным 1/2.

Результат построения:

$$\beta = 0.54 \pm 0.04, \quad \alpha = 0.0 \pm 0.2$$

Предпологаемое значение лежит в 67% доверительном интервале, на этом уровне значимости можно утверждать совпадение результатов измерения с теорией.

VI. ФОТОГРАФИИ СПЕКТРОВ.