National Bureau of Standards Library, N. W. Bldg.

MAY 4 1949

Reference book not to be taken from the Library.

IONOSPHERIC DATA

ISSUED
APRIL 1949

IONOSPHERIC DATA

CONTENTS

	F	age
Symbols and Terminology; Conventions for Determining Median Values	•	2
Monthly Average and Median Values of World-Wide Ionospheric Data	•	4
Ionospheric Data for Every Day and Hour at Washington, D. C	•	6
Ionosphere Disturbances	•	6
American and Zürich Provisional Relative Sunspot Numbers	•	8
Solar Coronal Intensities Observed at Climax, Colorado.	•	8
Tables of Ionospheric Data	•	9
Graphs of Ionospheric Data	•	40
Index of Tables and Graphs of Ionospheric Data in CRPL-F56		64

SYMBOLS AND TERMINOLOGY; CONVENTIONS FOR DETERMINING MEDIAN VALUES

Beginning with data reported for January \$949, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Fifth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Stockholm, 1948, and given in detail on pages 2 to 10 of the report CRPL-F53, "Ionospheric Data," issued January 1949.

For symbols and terminology used with data prior to January 1949, see report IRPL-C61, "Report of International Radio Propagation Conference, Washington, 17 April to 5 May, 1944," previous issues of the F series, in particular, IRPL-F5, CRPL-F24, F33, F50, and report CRPL-7-1, "Preliminary Instructions for Obtaining and Reducing Manual Ionospheric Records."

Following the recommendations of the Washington (1944) and Stockholm (1948) conferences, beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

In addition to the conventions for the determination of medians given in Appendix 5 of Document No. 293 E of the Stockholm conference, which are listed on pages 9 and 10 of CRPL-F53, the following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given on pages 2-9 of CRPL-F53 (Appendixes 1-4 of Document No. 293 E referred to above).

a. For all ionospheric characteristics:

Values missing because of A, B, C, F, L, M, N, Q, R, S, or T (see terminology referred to above) are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count. See CRPL-F38, page 9.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h'F2, as equal to or greater than the median.

Values missing because of W are counted:

- 1. For foF2, as equal to or less than the median.
- 2. For h'F2, as equal to or greater than the median.

Values missing for any other reason are omitted from the median count.

c. For MUF factors (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of G (no Es reflections observed, the equipment functioning normally otherwise) are counted as equal to or less than the median foE, or equal to or less than the lower frequency count of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- 1. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

MONTHLY AVERAGE AND MEDIAN VALUES OF WORLD-WIDE IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 47 and figures 1 to 94 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL predictions of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Australian Council for Scientific and Industrial Research,
Radio Research Board:
Brisbane, Australia
Canberra, Australia
Hobart, Tasmania

Australian Department of Supply and Shipping, Bureau of Mineral Resources, Geophysical Section: Watheroo, W. Australia

British Department of Scientific and Industrial Research, Radio Research Board:

Falkland Is.
Fraserburgh, Scotland
Lindau/Harz, Germany
Singapore, British Malaya
Slough, England

Radio Wave Research Laboratory, Central Broadcasting Administration: Chungking, China Lanchow, China Nanking, China

National Laboratory of Radio Electricity (French Ionospheric Bureau):
Bagneux, France
Poitiers, France

All India Radio (Government of India), New Delhi, India:
Bombay, India
Delhi, India
Madras, India

Japanese Physical Institute for Radio Waves (under supervision of Supreme Commander, Allied Powers):

Fukaura, Japan Shibata, Japan Tokyo (Kokubunji), Japan Wakkanai, Japan Yamakawa, Japan New Zealand Radio Research Committee: Christchurch, New Zealand (Canterbury University College Observatory) Rarotonga I.

South African Council for Scientific and Industrial Research: Capetown, Union of S. Africa Johannesburg, Union of S. Africa

United States Army Signal Corps: Okinawa I.

National Bureau of Standards (Central Radio Propagation Laboratory):
Baton Rouge, Louisiana (Louisiana State University)
Boston, Massachusetts (Harvard University)
Huancayo, Peru (Instituto Geofisico de Huancayo)
Maui, Hawaii
Palmyra I.
San Francisco, California (Stanford University)
San Juan, Puerto Rico (University of Puerto Rico)
Trinidad, British West Indies
Washington, D. C.
White Sands, New Mexico
Wuchang. China

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when foF2 is less than or equal to foF1, leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder. Blank spaces at the beginning and end of columns of h'Fl, foFl, h'E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.
- c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zurich sunspot numbers were used in constructing the contour charts:

Month		Predict	ed Sunsp	ot No.	
	1949	1948	1947	1946	1945
December		114	126	85	38
November		115	124	83	36
October		116	119	81	23
September		117	121	79	22
August		123	122	77	20
July		125	116	73	
June		129	112	67	
May		130	109	67	
April		133	107	62	
March	111	133	105	51	
February	113	133	90	46	
January	112	130	88	42	

IONOSPHERIC DATA FOR EVERY DAY AND HOUR AT WASHINGTON, D. C.

The data given in tables 48 to 59 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols and Terminology; Conventions for Determining Median Values."

IONOSPHERE DISTURBANCES

Table 60 presents ionosphere character figures for Washington, D. C., during March 1949, as determined by the criteria presented in the report IRPL-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

Table 61 lists for the stations whose locations are given the sudden ionosphere disturbances observed on the continuous field intensity recordings made at the Sterling Radio Propagation Laboratory during March 1949.

Table 62 lists for the stations whose locations are given the sudden ionosphere disturbances observed at the Brentwood, England, receiving station of Cable and Wireless, Ltd., for February 20 and March 9, 1949.

Table 63 lists for the stations whose locations are given the sudden ionosphere disturbances observed at the Point Reyes, California, receiving station of RCA Communications. Inc., for March 9, 1949.

Table 64 lists for the stations whose locations are given the sudden ionosphere disturbances observed at the Riverhead, New York, receiving station of RCA Communications, Inc., for various days in March and April 1949.

Table 65 gives provisional radio propagation quality figures for the North Atlantic and North Pacific areas, for Ol to 12 and 13 to 24 GCT, February 1949, compared with the CRPL daily radio disturbance warnings, which are primarily for the North Atlantic paths, the CRPL weekly radio propagation forecasts of probable disturbed periods, and the half-day Cheltenham, Maryland, geomagnetic K-figures.

The radio propagation quality figures are prepared from radio traffic and ionospheric data reported to the CRPL, in a manner basically the same as that described in IRPL-R31, "North Atlantic Radio Propagation Disturbances, October 1943 through October 1945," issued February 1, 1946. The scale conversions for each report are revised for use with the data beginning January 1948, and statistical weighting replaces what was, in effect, subjective weighting. Separate master distribution curves of the type described in IRPL-R31 were derived for the part of 1946 covered by each report; data received only since 1946 are compared with the master curve for the period of the available data. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. Each report is given a statistical weight which is the reciprocal of the departure from linearity. The half-daily radio propagation quality figure, beginning January 1948, is the weighted mean of the reports received for that period.

These radio propagation quality figures give a consensus of opinion of actual radio propagation conditions as reported by the half day over the two general areas. It should be borne in mind, however, that though the quality may be disturbed according to the CRPL scale, the cause of the disturbance is not necessarily known. There are many variables that must be considered. In addition to ionospheric storminess itself as the cause. conditions may be reported as disturbed because of seasonal characteristics such as are particularly evident in the pronounced day and night contrast over North Pacific paths during the winter ronths, or because of improper frequency usage for the path and time of day in question. possible, frequency usage is included in rating the reports. Where the actual frequency is not shown in the report to the CRPL, it has been assumed that the report is made on the use of optimum working frequencies for the path and time of day in question. Since there is a possibility that all the disturbance shown by the quality figures is not due to ionospheric storminess alone, care should be taken in using the quality figures

in research correlations with solar, auroral, geomagnetic, or other data. Nevertheless, these quality figures do reflect a consensus of opinion of actual radio propagation conditions as found on any one half day in either of the two general areas.

AMERICAN AND ZÜRICH PROVISIONAL RELATIVE SUNSPOT NUMBERS

Table 66 presents the daily American relative sunspot number, R_A , computed from observations communicated to CRPL by observers in America and abroad. Beginning with the observations for January 1948, a new method of reduction of observations is employed such that each observer is assigned a scale-determining "observatory coefficient," ultimately referred to Zürich observations in a standard period, December 1944 to September 1945, and a statistical weight, the reciprocal of the variance of the observatory coefficient. The daily numbers listed in the table are the weighted means of all observations received for each day. Details of the procedure are given in the Fublication of the Astronomical Society of the Pacific, issued February 1949, in an article entitled "Reduction of Sunspot-Number Observations." The American relative sunspot number computed in this way is designated RA. It is noted that a number of observatories abroad, including the Zürich observatory, are included in RA. The scale of RA was referred specifically to that of the Zurich relative sunspot numbers in the standard comparison period; since that time, RA is influenced by the Zurich observations only in that Zurich proves to be a consistent observer and receives a high statistical weight. In addition, this table lists the daily provisional Zurich sunspot numbers, Rz.

SOLAR CORONAL INTENSITIES OBSERVED AT CLIMAX, COLORADO

In tables 67a and 67b are listed the intensities of green (5303A) line of the emission spectrum of the solar corona as observed during March 1949 by the High Altitude Observatory of Harvard University and the University of Colorado at Climax, Colorado, for east and west limbs, respectively, at 5-degree intervals of position angle north and south of the solar equator at the limb. Beginning January 11, 1949, the actual measurements are on solar rotation coordinates rather than astronomical coordinates; thus values of the correction f given in previous coronal tables are cmitted. The time of observation is given to the nearest tenth of a day, GCT. The tables of coronal observations in CRPL-F29 to F41 listed the data on astronomical coordinates; the present format on solar cotation coordinates is in conformity with the tables of CRPL-1-4, "Observations of the Solar Corona at Climax, 1944-46."

Tables 68a and 68b give similarly the intensities of the first red (6374A) coronal line; tables 69a and 69b list the intensities of the second red (6704A) coronal line. The following symbols are used in tables 67, 68, and 69: a, observation of low weight; -, corona not visible; and x, nosition angle not included in plate estimates.

3.1

3.1

3.0

3.0

3.0 3.0

3.0

2.8

2.7

Teble 1

Washington, D.C. (39.0°N, 77.5°W)

warch 1949

Boston, Massachusetts (42.4°N. 71.2°W)

10.8

10.9

11.3

11.2

11.1

11.2

10.8

10.7

9.5

3.2 7.4

7.2

6.9

h'F2

265

262

260

265

250

250

265

248

240

250

260

258

250

250

255

240

238

235

235

240

250 255

Time

00

01

02

03

04

05

07

08

09

10 11

12

13

14 15

16 17 18

19

20

21

Time

00

01

02

03

04

05

06 07

08

09

10

11

12

14

15

16

17

18

19

50

21

22

290

280

280

260

240

280

290

255

240

240

230

230

230

230

230

230

240

240

230

220

230

240

260 270 Teble 2

Time	h°F2	Lols.	h'Fl	f°F1	h'E	toE	fEs	F2-M3000
00	255	7.0						2.8
01	260	6.8						2.7
02	260	6.6						2.7
03	250	6.2						2.7
04	250	5.8						2.8
05	270	5.5						2.8
06	250	5.5						2.8
07	230	7.8			110	2.3		3.1
08	230	9.6			100	2.8	2.7	3.2
09	230	11.2	215		100	3.2	3.9	3.0
10	230	12.0	205		100	3.5		3.0
11	230	12.6	200		100	3.7		2.9
12	240	12.5	200	5.2	100	3.7		2.8
13	230	12.4	210		100	3.8		2.9
14	230	12.4	210		100	3.7		2.8
15 16	230	12.2	220		100	3.5		2.9
17	230 230	12.0 11.6			100 100	3.2	2 7	2.9
18	230	11.3			120	2.7	2.7	2.9
19	225	(10.3)			120	2.0		3.0
20	230	9.3						3.0 2.9
21	240	8.5						2.9
22	250	7.9						2.8
23	250	7.4						2.8

Sweep: 0.8 Mc to 14.0 Mc in 1 minute.

Time: 75.0%.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 3 San Francisco, California (37.40M, 122.20W)

February 1949

					Table 4
White	Sande,	New	Mexico	(32.3°M,	106.5°W)

5.0

5.0

5.0

4.8

4.7

4.2

4.2 7.1

10.3

11.5

12.5

12.6

13.0

12.9

12.6

12.2

12.0

11.3

10.6

(7.4)

6.7 5.5

February 1949

2.3

2.3

2.4

3.5 3.9

4.4

4.8

4.3

3.6 2.6 2.4

2.4

2.4

2.0 2.7 3.2

3.8 3.9

3.9

3.8

3,5

3,1

2.4

120

115

120

120

120

120

120

120

F2-M3000

2.6

2.6 2.7 2.7

2.6

2.5 2.6

8.8

3.1 3.1

2.8

2.6

2.7

2.8

2.8

2.8

(8.8)

3.0

Time	h'F2	for2	h'Fl	forl	h	LoE	fEs	F2-M3000
00	280	4.4						2,5
01	280	4.2						2.6
02	280	4.4						2.6
03	280	4.5						2.5
04	280	4.2						2.5
05	290	4.3						2.5
06	280	4.4						2.5
07	240	6.4			160	2.0		2.8
80	230	9.6			120	2.7		3.1
09	230	11.0	-		120	3.3		2.9
10	530	12.0			120	3.5		2.8
11	250	12.5		~~~	120	3.6		2.8
12	23 5	12.8	550		120	3.9		2.7
13	225	12.8	550		120	3.8		2.7
14	230	12.5			120	3.6		2.7
15	230	12.0			120	3.6		2.6
16	240	11.6			120	3.2		2.7
17	220	11.0			120	2,5		2.9
18	220	10.5						2.8
19	550	8.8						2.8
20	530	7.6						2.8
57	220	5.9						2.8
55	240	4.8						2.7
23	260	4.4						2.5

-	_	
		 _ 0

Time: 105.0°W. Sweep: 0.79 Mc to 14.0 Mc in 2 minutes.

Time: 120.0°W.

Sweep: 1.3 Mc to 18.0 Mc in 4 minutes 30 seconds.

February 1949 f°F2 for fee F2-M3000 h'Fl h'E 2.6 6.3 2.6 6.0 5.9 2.6 2.6 5.6 5.3 4.6 2.7 3.1 8.0 162 2.2 ---9.9 ---

2.4

1.9

155

150

260

Time: 75.0°W.

Wuchang, China (30.6°N, 114.4°E)

February 1949

Baton Rouge, Louisiana (30.5°N, 91.2°W)

February 1949

Time	h¹F2	f°F2	h'Fl	f°Fl	h'E	foE	fEs	F2-M3000	Time	h¹F2	f°F2	h'Fl	f ^c Fl	h'E	toE	fEs	F2-M3000
00	250	7.4						2.8	00	290	5.7						2.8
01	250	7.1						2.9	01	290	5.4						2.8
02	250	6.8						2.9	02	290	5.6						8.8
03	242	6.6						3.0	03	290	5.3						2.9
04	550	5.4						3.3	04	285	4.9						2.9
05	208	3.8						3.0	05	300	4.3						2.7
06	252	3.4						2.8	06	300	4.7						2.8
07	262	6.0			150	1.6		3.0	07	270	7.2						3.1
08	225	10.0			105	2.5		3.3	08	280	10.1	235		120	2.8		3.1
09	550	11.5			100	3.1		3.2	09	280	11.8	240		120	3.3		3.1
10	2 2 5	12.5	220	6.0	100	3.5		3.1	10	290	12.0	230		120	3.5		3.0
11	23 5	13.7	210	5.2	100	3.7		3.1	11	290	12.4	220		120	3.6		2.9
12	240	14.0	215	5.2	100	3.8		2.9	12	300	12.7	230		(120)	(3.7)		2.9
13	250	15.0	210	6.0	100	3.8		2.9	13	300	12.5	230		120	3.7		2.9
14	268	15.0	210	6.4	100	3.8		2.9	14	310	12.4	230		120	3.6		2.9
15	245	15.0	220	6.4	100	3.6		2.9	15	310	12.0	230		120	3.5		2.8
16	225	15.0	550	5.3	100	3.3		2.9	16	300	11.9	230		120	3.2		2.8
17	555	14.8			100	2.8		2.9	17	290	11.6			130	2.6		2.9
18	230	13.7			110	2.0		3.0	18	240	10.8						2.9
19	550	13.5					2.0	3.0	19	230	8.7						2.9
20	\$50	13.4						2.9	20	260	7.8						2.9
21	\$50	11.4						3.0	21	260	7.1						2.9
55	230	10.0						3.0	22	270	6.4						2.9
23	230	8.4						2.9	23	290	6.0						2.8

Time: 120.0°E. Sweep: 1.2 Mc to 19.0 Mc, manual operation.

Time: 90.0°W.

Sweep: 2.12 Mc to 15.3 Mc in 8 minutee 30 seconds, automatic operation.

Table 8

Table 6

Table 7

Okinawa I. (26.3°N, 127.7°E)

February 1949

Maui, Hawaii (20.8°N, 156.5°W)

February 1949

Time	h¹F2	f°F2	h*Fl	f°Fl	h'E	foE	ſEs	F2-M3000	Time	h'F2	f°F2	h'F1	f°Fl	h'E	foE	ſEs	F2-M3000
00	}	10.8						2.9	00	230	7.6						3.2
01		9.8						3.0	01	230	7.0						3.2
0.5		8.7						3.0	02	230	5.6						(3.2)
03		7.8						3.0	03	230	4.4						(3.2)
04		6.5						3.2	04	280	3.6						(2.8)
05	ĺ	4.3						3.0	05	300	3.1						2.8
06		3.8						2.9	08	310	3.0						2.7
07		5.6				E		2.8	07	255	6.0				E		(3.0)
08	1	10.8				E		3.2	80	240	10.3			110	2.8		3.3
09	{	12.8				E	3.6	3,2	09	230	12.6	220		100	3.4		3.2
10	{	14.0					4.0	3.1	10	240	13.8	210		100	3.7		(3.0)
11		14.6					4.3	3.0	11	260	14.4	210	6.0	100	3.9		(8.8)
12		15.1					4.4	2.9	12	300	14.8	200	6.6	100	4.0		2.8
13		16.0					4.6	8.8	13	330	15.6	210	6.4	100	3.9		(8.8)
14	1	16.7					4.6	8.8	14	330	15.8	220	6.4	100	3.7		2.8
15		17.2					4.4	8.8	15	320	16.0	230	6.3	100	3.6		(8.8)
16		17.3					4.0	2.7	16	3 00	15.5	230	6.2	100	3.5		2.8
17		16.7				E	3.4	2.8	17	250	14.8	240		100	3.0	3.4	(2.8)
18	ì	16.9				E		2.9	18	250	14.2			110	2.4	3.0	(2.9)
19	1	(16.7)						(2.9)	19	240	13.7					3.0	(3.0)
20	}	17.1						2.9	20	230	12.8					2.5	(3.0)
21		(17.1)						(3.0)	21	230	11.8						(3.0)
SS		(14.7)						(3.1)	22	230	10.6						(3.1)
23		12.5						3.0	23	230	9.0						3.0
										!							

Time: 135.0°E. Sweep: 3.2 Mc to 18.0 Mc in 15 minutes, manual operation.

Time: 150.0°W. Sweep: 2.2 Mc to 16.0 Mc in 1 minute.

Table 9

San Juan, Puerto Rico (18.4°N, 66.1°W)

February 1949

Trinidad, Brit. West Indies (10.6°N. 61.2°W)

Time h'F2 f°F2 h'F1 f°F1 h'E

February 1949

fEs F2-M3000

Time	h'F2	f°F2	h'Fl	f°Fl	h¹E	toE	ſEs	F2-M3000
00		8.2						2.9
01		8.0						2.9
0.5		6.7						3.0
03		6.0						3.0
04		5.0						8.8
05		4.5						2.7
06		4.6						2.8
07	250	7.7		3.0				2.9
08	240	10.5		3.8		E		3.1
09	250	12.2				3.4		3.0
10	260	13.5				3.7		3.0
11	260	13.5				3.8		2.9
12	275	13.0				4.0		2.8
13	300	(12.4)				4.0		(2.7)
14	305	12.5		6.0				2.7
15	300	12.5		5.5		3.7		2.7
16	300	11.9		5.5		3.4		2.6
17	270	11.4		(4.1)		3.0		2.7
18	250	11.5		3.0				2.7
19	250	10.6						2.8
20		9.4						2.8
21		9.1						2.7
22		9.0						2.7
23		8.8						2.7

	1							
00	250	10.0						3.0
01	250	8.8						3.0
02	240	7.2						3.2
03	235	5.3						3.0
04	270	4.3						3.0
05	280	4.0					2.2	2.8
06	270	4.4					2.4	2.8
07	250	8.7			120	2.3	2.8	3.2
08	240	11.6			120	3.1	4.0	3.2
09	250	13.4	230	(4.8)	120	3.6	4.4	3.1
10	260	13.8	230	5.1	120	3.9	4.6	3.0
11	260	13.2	220	5.2	120	4.1	4.6	2.9
12	260	13.4	220	5.3	120	4.2	4.7	2.8
13	270	13.4	220	5,2	120	4.1	4.7	2.7
14	265	13.0	220	5.2	120	3.9	4.6	2.7
15	270	13.1	230	5.1	120	3.8	4.6	2.7
16	280	13.1	240	(5.0)	120	3.5	4.4	2.7
17	255	12.8	250		120	3.1	4.0	2.7
18	260	12.4			120	2.2	3.1	2.8
19	260	11.9					3,4	2.8
20	260	11.7					2.7	2.8
21	260	11.6					2.6	8.8
22	2 7 0	10.9					2.4	2.8
2.3	250	11.4						3.0

Table 10

Time: 60.0°W.

Sweep: 2.8 Mc to 13.0 Mc in 9 minutes, supplemented by manual operation.

Time: 60.0°W.

Sweep: 1.2 Mc to 18.0 Mc, manual operation.

Table 11

Palmyra I. (5.9°N, 162.1°W)

February 1949

Teble 12 Hu

February 1949

Time	h'F2	f°F2	h'Fl	f°Fl	h¹ E	f°E	fEs	F2-113000
00	250	12.8					3,8	2.8
01	250	12.0					3.4	2.9
02	350	(9.8)					3.6	(8.8)
03	240	8.2					3.6	(2.9)
04	240	7.7					3.4	2.9
05	250	6.6					3.6	2.9
06	250	5.7					3.3	3.0
07	290	8.2			140	2.2	3,6	2.9
08	2 50	11.4			120	3.2	3.9	2.7
09	240	12.6	240		120	3.7	4.3	2.4
10	270	12.6	240		120	3.9	4.2	2.3
11	270	12.1	230		120	4.2	4.2	2.2
12	280	11.8	230		120			2.1
13	275	12.0	230		120			2.2
14	270	12.6	225		120	4.2	4.2	2.2
15	260	13.2	220		120	4.0	4.3	2.2
16	250	13.7	200	3.8	120	3.6	4.1	2.3
17	260	13.8			120	3.3	4.0	2.4
18	280	13.8			140	2.5	4.0	2.4
19	330	13.8					3.7	2.3
20	380	13.8					2.8	2.2
SI	340	13.8					2.1	(2.4)
22	290	14.4					3.6	(2.5)
23	270	14.1					3.6	(2.7)

Time: 157.5° M.

Sweep: 1.0 Mc to 13.0 Mc in 1 minute 36 seconde, automatic operation; 13.0 Mc to 18.0 Mc, manual operation.

ancayo,	Peru	(12.0°s,	75.3°W)	
		, ,		

Time	h F2	f°F2	h'Fl	f ^o Fl	h'E	foE	fEs	F2-M3000
00	260	9.0						2.0
								2.8
01	235	8.5						2.8
02	230	7.8						3.0
03	230	7.2						3.1
04	230	5.7						3.0
05	240	4.0						3.0
06	270	6.5				1.9	2.7	2.9
07	250	10.2				2.9		3.0
08	240	12.5				3.5		2.8
09		13.9	230			3.9	11.0	2.6
10	(265)	14.3	215	5.4		4.0	11.9	2.3
11	250	14.0	210	5.4			11.9	2.2
12	260	13.2	210	5.4			11.9	2.2
13	250	12.9	210	5.4			11.9	2.1
14	280	12.7	205	5.4			11.9	2.1
15	260	12.2	210	5.4		3.9	11.8	2.1
16	230	12.2				3.5	11.2	2.1
17	260	12.0				3.0	10.6	2.0
18	290	11.8				2.1	3.7	2.1
19	380	11.3				~		2.1
20	430	9.5						2.0
21	405	9.8						2.1
22	360	9.4						2.2
23	310	(9.6)						(2.4)

Time: 75.0° W. Sweep: 16.0 Mc to 0.5 Mc in 15 minutee, eutomatic operation.

Linuan/Harz, Germany (51.6°W, 10.1°E)

January 1949

Chungking, China (29.4°E, 106.8°E)

for2 her1

Time

h'F2

January 1949

fEa F2-M3000

Time	h¹F2	f°F2	h'Fl	(°F1	h¹E	toE	ſĘs	F2-M3000
00	320	2.8					2.0	
01	310	2,8					2.4	
02	320	2.9						
03	310	2,8						
04	305	2.5						
05	300	2.5						
06	300	2.8						
07	\$30	2.5						
08	215	4.9			130	1.7		
09	205	8.0			110	2.2	2.8	
10	210	10.4			105	2.5	2.8	
11	210	10.4			105	2.8	3.0	
12	215	10.1			105	2.9	3.2	
1.3	215	10.5			105	2.8	3.4	
14	215	10.5			105	2.7	3.2	
1.5	205	9.9			105	2.4	3.0	
16	205	9.2			110	2.1	2.8	
17	210	8.4					2.8	
18	205	6.7					2.8	
19	205	5.0					2.4	
SO	240	3.7					2.1	
21	300	3.3					2.0	
22	305	3.0						
23	310	2.8						

	1							
00	270	4.7						2.6
01	260	4.5						2.8
02	260	4.5						2.9
03	240	4.1						3.0
04	240	3.4						3.0
05	300	3.0					1.8	2.5
06	265	3.2						2.7
07	240	5.9					3.4	3.0
08	230	10.2	205		100	3.0	4.0	3.2
09	235	11.1	210		100	3.1	4.1	3,2
10	240	12.3	210		90	3.4	4.6	3.0
11	250	12.6	210				4.6	2.9
12	260	13.3	210	8.3	95	3.6	4.4	2.8
13	260	14.2	220	5.8	100	3.6	4.6	2.7
14	270	14.0	220		100	3.8	4.5	2.7
15	240	14.1	200		80	3.2	4.3	2.8
18	230	14.0	200		90	3.0	4.0	2.8
17	200	13.4	200		95	2.3	4.0	2.9
18	210	12.5					2.8	2.9
19	220	11.3					2.2	2.9
20	205	9.3					2	3.0
21	210	7.8						3.0
22	220	5.2						2.7
23	240	4.8						2.7
								٠. ١

Table 14

forl h'E

Time: 15.0°E. Sweep: 1.0 Mc to 16.0 Mc in 12 minutes.

Time: $105.0^{\circ}E$. Sweep: 1.5 Mc to 20.0 Mc in 15 minutes, manual operation.

Table 15 Johannesburg, Union of S. Africa (26.20S, 28.00E)

January 1949

Table 18 Watheroo, W. Australia (30.3°S, 115.9°E)

January 1949

Time	h!F2	ror2	h'Fl	ſ°Fl	h'E	toE	fEa	F2-M3000
00	280	8.9					2.0	2.7
01	270	6.6					2.3	2.8
02	280	6.0					2.1	2.8
03	280	5.8					2.1	2.8
04	280	5.3					2.0	2.7
05	280	5.1					1.8	2.8
08	260	6.4			110	2.1		2.9
07	275	7.7	230		110	2.9	3.5	2.8
08	310	8.9	230	5.1	110	3.3	3.9	2.7
09	330	9.9	222	5.4	110	3.6		2.7
10	340	10.6	210	5.6	110	3.9	4.1	2.6
11	370	10.9	210	5.6	110	4.0	4.1	2.8
12	370	11.0	210	5.9	110	(4.1)	4.3	2.6
13	370	11.0	210	5.7	110	(4.0)	4.3	2.6
14	370	10.8	210	5.7	110	(4.0)	4.3	2.6
15	360	10.5	220	5.5	110	3.9	4.3	2.6
16	340	10.2	220	5.1	110	3.6	4.1	2.7
17	320	9.5	225	5.0	110	3.2	3.9	2.7
18	300	9.0	250		110	2.6	3.8	2.7
19	260	9.1				(1.8)	3.0	2.8
20	260	9.1					2.5	2.8
21	260	8.7					2.2	2.8
55	260	7.8						2.8
23	280	7.2					1.8	2.7

F2-M3000	toE tEa	h'E	forl	h*Fl	for2	h*F2	Time
	4.4				7.0	270	00
	5.4				6.8	270	01
	3.8				6.5	285	02
	3.4				6.0	280	03
	3.2				5.5	290	04
2 2.7	3.2				5.4	290	05
3.0	2.1 3.2				6.0	280	08
4 2.8	2.8 3.4		4.4	230	6.7	2 7 0	07
7 2.6	3.2 4.7		5.2	240	7.1	400	08
9 2.6	3.5 4.9		5.3	245	7.9	400	09
5 2.6	3.8 5.6		5.5	240	8.5	360	10
5 2.6	3.9 5.5		5.6	220	9.1	385	11
3 2.6	4.0 5.3		5.6	230	9.4	400	12
2.6	4.0 5.0		5.6	230	9.6	400	13
8,5	4.0 4.8		5.6	230	9.8	380	14
6 2,6	3.8 4.6		5.6	240	9.8	380	15
3 2.6	3.6 4.3		5.4	240	9.0	360	16
1 2.7	3.2 5.1		5.2	250	8.4	335	17
4 2.7	2.8 4.4				8.2	270	18
7 2.7	3.7				8.0	270	19
3 2.7	3.3				8.0	270	20
8,5	3.2				7.8	280	
	3.3				7.5	290	
	4.4				7.2	290	23
	3 3 3 3				8.0 8.0 7.8 7.5	270 270 280 290	19 20 21 22

Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 eeconds.

Time: $120.0^{9}E$. Sweep: 0.5 Mc to 16.0 Mc in 15 minutes, automatic operation.

Table 17

4.7

5.2

5.6 6.0

6.0

6.0 5.9

5.6

5.4

5.1

4.7

Capetown, Union of S. Africa (34.20S, 18.30E)

5.5

5.1

5.1

5.1 4.9

4.2

5.4

6.9 7.9

9.0

9.6

10.4

10.2

10.1

9.8

8.9

8.1 7.8

7.0 6.1

h'Fl

250

240

225

220

230

230

250

January 1949

2.0

1.9

2.5

2.1

2.0 3.0

3.6

3.5

4.1

3.8 3.4 3.6

3.0

2.1

1.9

1.7 2.6

3.0

3.4

(3.6)

3.4 3.0

2.3

110

110

100

100

110

110

110

110

100

110

110

110

F2-M3000

2.7

2.6

8.9 8.5

2.7

2.6

2.6

2.5 2.5 2.6

2.6 2.6 2.7 2.7

2.8

2.8

2.8

Table 18 Christchurch, New Zealand (43.50\$, 172.70E)

January 1949

Time	h¹F2	for2	h'Fl	f°Fl	h'E	toE.	(Es	F2-M3000
	000						2.5	0.4
00	280	7.6					3.5	2.6
01	290	7.1					4.1	2.6
02	280	6.5					4.3	2.6
03	285	6.2					3.7	2.6
04	280	5,8					3.0	2.7
05	270	5.7				1.5	3.5	8,8
06	280	6.4	250	4.2		2.5	4.4	2.9
07	30 5	7.4	250	4.7		3.0	4.9	8.8
80	345	7.2	230	5.0		3.4	6.0	8.8
09	330	7.6	225	5.3		3.6	6.6	2.8
10	415	7.9	235	5.6		3.7	6.5	2.7
11	400	8.0	230	5.8		3.8	6.8	2.7
12	410	8.0	225	5.8		3.8	6.4	2.6
13	410	8.1	240	5.7		3.8	6.7	2.6
14	430	7.9	230	5.7		3.7	5.5	2.6
15	400	8.1	230	5.6		3.7	4.8	2.6
16	380	7.9	240	5.3		3.5	4.7	2.6
17	350	8.3	240	5.0		3.2	4.4	2.7
18	280	8.4	245	4.3		2.7	4.4	2.7
19	270	8.1				1.9	4.2	2.7
20	280	8.0				1.2	4.2	2.6
21	390	8.1					4.8	2,5
22	295	8.0					3.9	2.5
23	290	8.0					4.0	2.5

Time: 172.5°E.

Sweep: 1.0 Mc to 13.0 Mc.

Time

00

02

03 04 05

06 07 08

09

20

22

h F2

(290)

(305)

(300)

(300) (285)

(300)

270

(280)

320

355

355

360

380

380

380

370

360

350

320

(290)

260

250

250

260

Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

Table 19

Wakkanai, Japan (45.4°N, 141.7°E)

December 1948

Fukaura, Japan (40.6°N, 139.9°E)

December 1948

Time	h'F2	f°F2	h'Fl	f°F1	h'E	toE	fEs	F2-M3000
00	300	3.2					1.8	2.7
01	300	3.3					(2.1)	2.7
0.5	300	3.3					1.8	2.6
03	300	3,3					1.4	8.8
04	300	3.5					1.6	2.6
05	250	3.5					2.0	3.0
06	220	3.4				E		3.0
07	(210)	(6.4)						(3.4)
08	(550)	(8.6)			100	2.2		(3.4)
09	210	9.7			100	2.7	2.7	3.3
10	220	11.0			100	2.9	3.0	3,3
11	220	10.6			100	3.0		3.3
12	210	10.6			100	3.0	3.3	3.3
13	220	9.6			100	2.9	3.2	3.3
14	220	8.9			100	2.7	3.0	3.2
15	210	8.6			100	2.3	2.7	3.4
16	210	7.0			105	1.6	2.1	3,3
17	200	6.2				E	2.4	3.2
18	220	4.8					2.2	3.2
19	220	4.2					5.5	3.2
20	220	3.3					5.2	3.2
21	255	3.0					5.2	2.9
22	280	3.1					2.0	2.7
23	300	3.2					1.8	2.7

Time: 135.0°E.

Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

		-0-0		-0				
Time	h'F2	f°F2	h'Fl	f°F1	h'E	LoE	fEs	F2-M3000
		_						
00	310	3.4					2.0	2.7
01	320	3.2					1.8	2.6
0.5	320	3.2					2.1	2.7
03	310	3.4					1.8	2.7
04	290	3.4					1.8	2.7
05	280	3.4					1.5	2.7
06	260	3.7				E	2.4	3.0
07	245	6.4				1.7	2.2	3.2
08	(220)	(8.5)			115	2.77	(2.8)	(3.4)
09								
10								
11								
12	230	10.2			110		3.2	3,2
13	240	9.8			120	3.7	(3,2)	3.3
14	(235)	(9.4)			110	2.8	•	(3,2)
15	(230)	(9.2)			115	2.6	(3.2)	(3.2)
16	(230)							
17	, , , ,							
18								
19								
50								
21								
22	310	3.0					2.0	2.6
23	310	3.2					2.0	2.6
20	510	0.0					0.0	2.0

Table 20

Time: 135.0°E.

Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

Table 21

Shibata, Japan (37.9°N, 139.3°E)

December 1948

Lanchow, China (36.1°N. 103.8°E)

h!F2

f°F2

h'Fl

Time

December 1948

foe fes F2-M3000

Time	h'F2	f°F2	h'Fl	f°Fl	h'E	toE	ſEs	F2-M3000
00	290	3.3					2.1	2.8
01	290	3.3					2.3	2.7
02	300	3.4					2.2	2.8
03	280	3.4					2.4	2.9
04	250	3.4					2.4	3.0
05	240	3.2					2.2	2.8
06	245	3.2					2.4	3.0
07	220	6.6				(1.8)	2.5	3.4
08	200	8.8			100	(2.6)	2.9	3.5
09	200	9.9			100	2.9	3.6	3 ,5
10	205	10.2			100	3.3	3.6	3.4
11	220	11.0			100	3.4	3.7	3,3
12	210	10.5			100	3.4	3.8	3.3
13	220	10.1	210		100	3.4	3.8	3.3
14	210	9.8			100	3.1	3.8	3.3
15	210	9.5			100	2.7	3.4	3,3
16	200	8.8			110	(2.2)	3.3	3.4
17	200	8.9					2.7	3, 4
18	210	5.6				E	2.8	3.3
19	210	4.9					2.5	3.4
20	215	4.0					2.3	3.2
21	245	3.2					2.0	3.2
22	270	3.0					2.1	2.9
23	290	3.2					1.9	2,7

m a	175 00	
Time:	135.0°E.	

Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

00	450	3.4					2.3
01	440	3.6					2.3
02	420	3.6					2.3
03	380	3.8					2.5
04	380	3.8					2.4
05	340	3.6					2.5
06	400	3.4					2.4
07	340	4.7	320				2.5
08	310	(9.6)	280			3.0	(2.8)
09	300	9.5	280			3.7	2.6
10	\$20	11.0	280	140	3.4	3.8	2.7
11	310	12.0	280	140	3.5	3.9	2.6
12	320	13.5	280	140	3.7	4.3	2.6
13	320	13.2	280	140	3.6	4.1	2.6
14	320	13.0	280	135	3,6	4.1	2.5
15	300	12.2	280	135	3.4	4.1	2.6
16	320	12.2	280			3.2	2.6
17	320	(9.4)	270				(2.6)
18	(S90)	(7.2)	260				(2.7)
19							
20	300	6.2					2.6
21	300	4.2					2.6
22	360	3.6					2.4
23	440	3.2					2.2

Table 22

forl h'E

Time: $105.0^{\circ}E$. Sweep: 2.4 Mc to 16.0 Mc in 15 minutes, manual operation.

Table 23

Tokyo, Japan (35.7°N, 139.5°E)

December 1948

Table 24

Time	h¹F2	f°F2	h'Fl	f°Fl	h'E	toE	fEs	F2-113000
]								
00	290	3.2						2.9
01	280	3.2						2.8
02	290	3.2						2.8
03	280	3.4						2.9
04	260	3.3						3.0
05	270	3.1						2.9
06	260	3.2						3,0
07	220	7.0	225		150	2.0		3.4
08	220	9.3	200		100	2.4		3.6
09	210	10.3	225		100	3.0	3.4	3,5
10	550	10.5	210		100	3.3		3.4
11	230	11.4	220		100	3.4		3.3
12	240	11.0	220		100	3.5	3.6	3.3
13	230	10.2	210		100	3.4	3.8	3, 3
14	230	10.0	210		100	3.2	3.6	3.3
15	230	9.9	220		100	2.8	3.2	3.4
16	210	8.9	205		100	2.3	3.0	3.5
17	200	7.2	500		130	1.6	2.6	3.4
18	SS0	5.9					2.8	3,3
19	210	5.2					2,2	3.3
50	210	4.2						3.3
21	240	3.6					2.0	3.2
22	270	3.1						2.9
23	300	3.2						2.8

Time: 135.0°E. Sweep: 1.0 Mc to 16.0 Mc in 15 minutee, manual operation.

Nanking,	China	(32.1°N,	119.0°E)

December 1948

Time	h'F2	f°F2	h'Fl	f°Fl	h'E	toE	fEs	F2-M3000
00								
01								
02								
03								
C4								
05								
06								
07	280	5.8	240				1.7	2.8
08	260	10.0	240		140	2.5	2.3	3.0
09	260	11.0	240		120	2.9	3.0	3.0
10	260	11.5	240		120	3.4	3.5	2.9
11	260	11.5	230		120	3.5	3.6	2.9
12	285	12.4	550	5.8	120	3.6	3.6	2.7
13	280	12.7	240	5.6	150	3.6		2.8
14	280	12.5	240		120	3, 5	3.3	2.8
15	275	12.3	240		120	3.4	3.5	2.8
16	260	11.5	240		120	2.7		2.8
17	240	10.2			130	2.0	2.3	2.9
18	220	8.0					1.8	2.8
19	550	7.7						2.8
20	550	6.4						2.8
21	240	5.6						2.8
SS	250	4.8						2.6
23								

Time: 120.0° E, Sweep: 1.7 Mc to 15.0 Mc in 15 minutes, manual operation.

Table 25

h'E

110 110 110

110 110 110

110 110

145

for

1.6 2.4 2.9 3.3 3.5 3.6 3.6 3.4 3.2 2.7

2.2 E

3.4

(4.0)

3.6

2.4

h'Fl foFl

230

230

240

230

230

230

210

Yamakawa, Japan (31.2°N, 130.6°E)

f°F2

3.7 3.7

3.6

3.6

3.3

3.2

5.1

9.2

11.6

11.2 12.0 11.6

11.5

11.2

9.7

8.5 7.2

6.6

6.0

4.8

h F2

310 300

310

290 260

310

290

240

240

240 240 280

280

280 260

240

240 210

220 220

230

240

290

Time

00

01

08 09

23

December 1948 fEs F2-M3000

2.8

2.7 2.7 2.7

2.9 2.8 2.7 2.9

3.3

3.3

3.2

3.0

3.1

3.2

3.2 3.2 3.2

3.1

3.0

2.8

Chungking, China (29.4°N, 106.8°E)

December 1948

Time	h'F2	f°F2	h'Fl	f°Fl	h'E	toE	ſEs	F2-M3000
00	300	4.1				-		2.4
01	300	4.0						2.5
02	270	4.1						2.7
03	250	3.9						2.8
04	240	3.3						3.1
05	255	3.1						2.8
06	260	3.2						2.8
07	240	6.4	230					3.0
08	220	11.0	200		100	2.7	3.8	3.2
09	230	12.2	220		90	3.0	3.9	3.2
10	240	12.1	210		90	3.5	3.9	3.0
11	240	12.5	200	5.7	90	3.8	4.2	2.8
12	260	13.7	200	4.9	90	3.7	4.2	2.8
13	275	14.8	215	5.3	110	3.6	4.2	2.7
14	260	14.5	215	5.0	100	3.4	4.0	2.7
15	240	14.5	200	0.0	90	3.2	4.0	2.8
16	220	13.5	200		90	2.7	4.0	2.9
17	200	12.5	200		100	2.0	3.4	3.0
18	200	11.2	400		200	2.0	2,6	2,8
19	210	9.5					2.0	2.9
20	200	9.0						2.9
21	210	7.8						2.9
22	215	5.6						2.9
23	255	4.7						2.6

Teble 26

Time: 105.0°E.

Sweep: 1.5 Mc to 20.0 Mc in 15 minutes, manual operation.

Time: 135.0°E.
Sweep: 1.2 Mc to 18,5 Mc in 15 minutes, manual operation.

Table 27

Earotonga I.(21.3°S, 159.8°W)

December 1948

		_	
Brisbane,	Australia	(27.5°S,	153.0°E)

December 1948

Time	h'F2	foF2	h'Fl	f°Fl	h'E	foE	fEs	F2-M3000
00	270	10.0					4.1	2.8
01	260	9.3					4.4	2.8
02	270	8.4					4.0	2.7
03	280	7.8					3.5	2.6
04	270	7.5					2.8	2.7
05	260	7.8			120	1.8	2.2	2.8
06	240	8.0	250	4.3	110	2.7	3.5	2.8
07	280	8.5	250	4.9	110	3.2	4.5	2.8
08	330	9.5	220	5.3	110	3.5	4.3	2.7
09	345	9.8	210	5.5	100	3.8	4.6	2.6
10	365	10.1	210	5.9		4.1	5.2	2.5
11	340	11.0	210	8.0	100	4.2	4.5	2.8
12	350	11.2	205	5.8	100		4.6	2.6
13	350	11.0	230	5.9	100	4.1		2,8
14	350	10.8	230	5.8	105	4.0		2.8
15	350	10.8	230	5.5	110	3.8		2.6
16	330	10.3	240	5.1	110	3.5		2.7
17	290	9.8	240	4.5	110	3.0		2.7
18	270	9.5					4.0	2.7
19	280	9.0					3.7	2.8
50	300	9.0					3.5	2.6
21	310	9.2					3.6	2.5
22	310	9.5					4.8	2.6
23	300	9.8					4.5	2.6

Table 28

Time: 150.0°E.
Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconds.

Time	h¹F2	f°F2	h'Fl	f°Fl	h¹E	foE	fEs	F2-M3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	270 250 250 295 350 360 380 390 380 350 340 300 300 365 340	9.9 10.6 10.5 10.8 11.8 12.2 13.2 13.2 14.5 14.5 11.3 10.8 11.1	250 250 250 250 250 250 240 250 250 250 250	(6.4) 8.4 6.5 6.5 6.4 6.2 5.9	110 110 110 110 110 110 110 110 110 120	2.3 2.9 3.3 3.6 4.0 4.0 4.0 3.5 3.1 2.5	3.6 5.1 5.4 5.6 5.4 5.2 5.3 5.7 2 5.5 5.5 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	2.8 2.9 2.8 2.5 2.5 2.5 2.7 2.7 2.7 2.7 2.7 2.5 2.5
	1							

Time: 157.5°W.

Sweep: 2.0 Mc to 16.0 Mc, manual operation.

Watheroo, W. Australia (30.3°S. 115.9°E)

December 1948

Camberra, Australia (35.3°S, 149.0°E)

December 1948

Time	h!F2	f°F2	h'Fl	f°F1	hIE	foE	ſEs	F2-M3000
00	300	7.0					3.8	2.7
01	290	6.8					3.8	2.7
05	300	6.4					3.6	2.7
03	285	6.1					3.4	2.6
04	280	5.8					3.2	2.7
05	280	5.8				1.8	2.9	2.7
06	280	6.2	252	3.8		2.5	3.3	2.8
07	325	6.8	235	4.7		3.1	4.2	2.8
08	330	7.5	230	5.2		3.3	5.2	2.7
09	390	7.5	250	5.4		3.6	4.6	2.7
10	380	8.5	230	5.4		3.7	5.0	2.6
11	395	9.0	220	5.4		3.8	4.6	2.6
12	392	8.8	230	5.3		3.8	4.3	2.5
13	380	9.2	230	5.4		3.8	4.7	2.6
14	385	8.6	230	5.4		3.8	4.3	2.6
15	370	9.1	230	5.3		3.7	4.3	2.6
16	350	8.8	235	5.3		3.6	4.0	2.6
17	330	8.5	235	5.0		3.2	3.8	2.7
18	290	8.6	255	4.3		2.5	3.7	2.7
19	265	8.5				1.9	3.0	2.8
20	270	8.0					5.8	2.8
21	295	7.6					3.2	2.7
22	298	7.2					3.4	2.7
23	295	7.0					3.9	2.7

Time: 120.0°E, Sweep: 16.0 Mc to 0.5 Mc in 15 minutes, automatic operation.

Time	h!F2	f°F2	h'Fl	f°Fl	h'E	toE	ſEs	F2-113000
00	260	8.5					3.5	2.8
01	260	7.8					4.0	2.7
02	260	7.3					3.0	2.6
03	260	6.9					2.6	2.6
04	270	6.4					2.6	2.6
05	260	6.2			100	1.6	3.4	2.8
06	250	6.7	240	4.0	100	2.5	3.7	2.9
07	300	7.3	225	4.6	100	3.1	3.9	2.9
08	350	7.6	235	5.1	100	3.5	6.3	2.8
09	360	8.2	210	5.3	100	3.6	6.0	2.8
10	340	8.2	200	5.5	100	3.8	6.5	2.7
11	350	8.6	200	5.6	100	4.0	6.2	2.6
12	360	8.6	200	5.7	100	(4.0)	6.4	2.7
13	370	8.7	210	5.6	100	4.0	4.7	2.6
14	365	8.1	210	5.5	100	3.8	4.2	2.7
15	352	8.4	250	5.5	100	3.6	3.8	2.7
16	350	8.3	530	5.2	100	3.5	3.9	2.8
17	310	8.5	240	4.9	100	3.1	5.0	2.8
18	260	8.5			100-	2.5	5.1	2.8
19	260	8.2					5.6	2.8
50	260	8.2					5.1	2.7
21	290	8.5					4.9	2.6
22	290	8.5					3.6	2.7
23	280	8.5					3.8	2.7

Table 30

Time: 150.0°E.

Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconds.

Table 31

Hobart, Tasmania (42.8°S, 147.4°E)

December 1948

Fraserburgh, Scotland (57.6°N, 2.1°W)

November 1948

Time	h F2	f°F2	h'Fl	f°Fl	h1E	foE	ſEs	F2-M3000
00	275	7.3					2.0	2.7
01	280	6.7					2.4	2.7
02	290	6.1					2.5	2.7
03	270	5.5					2.1	2.6
04	290	5.0				1.3	2.2	2.8
05	270	5.4	270	3.4	100	2.0		2.8
06	315	5.8	240	4.0	100	2.7		2.9
07	350	6.3	240	4.5	100	3.1		2.9
08	370	6.7	230	5.0	100	3.5		2.8
09	390	7.0	230	5.1	100	3.6		2.7
10	400	7.2	225	5.4	100	3.8		2.7
11	430	7.4		5.5	100	3.8		2.7
12	430	7.6	230	5.5	100	3.9		2.6
13	400	7.5	(220)	5.5	100	3.8		2.6
14	400	7.8	230	5.4	100	3.8		2.7
15	390	7.7	230	5.3	100	3.8		2.7
16	370	7.6	230	5.1	100	3.5		2.7
17	350	8.0	240	4.8	100	3.2		2.8
18	300	8.1	250	4.5	100	2.7		2.8
19	27)	8.0			100	2.0		2.8
20	270	8.2				1.4	6.4	2.8
21	270	8.3					4.8	2.7
22	260	8.0					3.0	2.7
23	280	8.0					1.8	2.7

Time: 150.0° E. Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

Time	h'F2	f°F2	h'Fl	f°F1	h'E	foE	fEs	F2-113000
00	370	2.9						2.4#
01	370	2.8						2.2#
02	360	2.6						2.5
03	370	2.7						2.4
04	360	2.8						2.3
05	340	2.8						2.6
06	340	2.8						2.8
07	320	3.8						2.7#
08	260	6.4	350	3.0#				2.7
09	245	8.8	280	3.7#	120	2.5#		2.8
10	240	10.2	280	3.5#				2.8
11	245	10.6	260	4.1#	140	2.6#		2.8
12	240	11.1			120	(2.8)#		2.6
13	235	(11.2)			145	2.6		2.5
14	230	(10.7)						3.0₽
15	230	(10.6)						2.8#
16	230	9.8						2.5#
17	240	8.8						3.0#
18	260	7.0						2.9
19	300	4.8						3.3#
20	325	4.0						2.7
21	345	3.2						2.4#
22	375	3.3						2.4#
23	380	3.3						2.4

Table 32*

Time: Local.

Sweep: 2.2 Mc to 16.0 Mc in 1 minute.

"Average values except foF2, which are median values.

#One or two observations only.

Slough, England (51.5°N, 0.6°W)

November 1948

Lanchow, China (36.1°N, 103.8°E)

h'F2

400

Time

00

f°F2 . h'Fl

Movember .348

F2-13000

Time	h*F2	f°F2	h'Fl	f°Fl	h'E	toE	fEs	F2-113000
00	311	3.7					2,6	2.7
01	310	3.6					2.6	2.7
02	305	3.6					2.6	2.7
03	291	3.3					2.6	2.8
04	279	3.0					2.6	2.8
05	270	3.0					3.2	2,9
06	275	2.9					2.6	2.9
07	256	5.0				1.6	3.6	3.1
08	227	7.6			126	2.0	4.5	3.3
09	228	9.9	275	4.1	120	2.4	4.7	3.3
10	231	11.1	250	4.3	119	2.8	4.8	3.3
11	232	12.2	232	4.4	118	3.0	4.4	3.2
12	234	12.2	233	4.6	118	3.0	4.8	3.2
13	229	12.2	255	4.5	115	2.9	4.8	3.2
14	231	12.3	245	4.1	119	2.7	4.8	3,2
15	227	11.7			123	2.3	4.7	3.2
16	223	10.8			138	1.8	4.0	3.3
17	220	9.4			125	1.4	2.8	3.3
18	228	7.9					2.6	3.2
19	235	5.8					2.6	3.1
20	251	4.5						3.0
21	303	4.2						2.7
22	311	4.1						2.7
23	315	3.8					2.5	2.7

Time: Local. Swoep: 0.5 Mc to 16.5 Mc in 5 minutee. *Average values except for foF2 and fEs, which are median values.

01	390	4.6			2.3	
02	380	4.5			2.4	
03	360	4.4			2.3	
04	360	4.2			2.5	
05	360	4.2			2,3	
06	320	4.0			2.4	
07	300	7.4	300	3.	2.6	
08	(320)	(11,5)	290	3.	5 (2.6)	
09	(320)	(12.4)	280	3.	9 (2.5)	
10	(320)	(13.0)	280	4.	0 (2.6)	
11	300	13.2	280	3.	5 2.5	
12	305	14.0	280	4.1		
13	325	(14.3)	280	4.3	3 (2.5)	
14	325	13.6	300	4.2	2.5	
15	320	13.5	285	4.		
16	320	(12.2)	280	3.	6 (2.5)	
17	300	(11.6)			(2.4)	
18						
19						
50	(280)					
21	305	6.6			(2.6)	
22	350	4.8			2.3	
23	390	4.6			2.3	

Table 34

foFl h'E

foE

fEs

Time: 105.0°E.

Sweep: 2.4 Mc to 16.0 Mc in 15 minutes, manual operation.

Table 35

f°F1

6.0

6.0

6.1

h*E

140 130

120

120

120

120

120

120

130

Nanking, China (32.1°N, 119.0°E)

f°F2 h'F1

250

240

240

230

240

240

240

240

240

240

240

3.8

8.6 10.7 11.5

13.0 13.5

14.1

14.5 14.5

14.0

13.1

10.8

9.3 8.6

7.6

5.9

h*F2

270 250

260

280

280

280

280

260

260

240

220

240 240

220

255

Time

07 08 09

10 11 12

17

18 19

50

22

23

November 1948

1.7 2.0 2.9

3.6

3.8

4.0

4.0

3.6

3.0

2.1

1.9

3.8

1.9

3.1 3.5 3.6

3.9

3.8

3.1 2.7 2.2

fEs F2-M3000

2.7

3.0

2.9 2.8 2.8 2.7 2.7 2.7

2.8

2.8 2.8

2.6

Delhi,	India	(28.6°N,	77.1°E

Movember 1948

								0.0
Time	•	tol5	h 1 F 1	fon	h'E	IOE	fle	F2-1/3000
00	440	4.9						2.4
01	440	4.5						
02	430	4.0						
03								
04	(440)	(4.2)						2.7
05	440	4.0						~
06	400	5.5						
07	360	9.5						
08	380	12.0						2.8
09	400	12.8						•••
10	400	13.3						
11	420	(13.6)						
12	440	(14.0)						2,6
13	(460)	(14.5)						2.0
14	460	(14.2)						
15	(440)	(14.3)						
16	420	(14.3)						2.7
17	400	13.6						D. 1
18								
19								
20	400	10.7						2.6
21	400	8.4						۵.0
22	440	6.8						
23	440	5.6						

Table 36

Time: 120.0°E.

Sweep: 1.7 Mc to 15.0 Mc in 15 minutes, manual operation.

Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutee, manual operation.
"Height at 0.83 foF2.

**Average values; other columns, median values.

Bombay, India (19.0°N, 73.0°E)

November 1948

Madras, India (13.0°E, 80.2°E)

420

480 480

540

10.2

13.0

13.5

Time

November 1948

#2-M3000

2.3

2.3

2.4

fEs

line	t .	To ES	h'F1	f°Fl	h'E	f°E	fEs	F2-M3000
00 01 02 03 04 05								2.9
06 07 08 09 10	330 390 480	10.5 12.6 14.0 (14.2) (14.6)						2.7
12 13 14 15 16		(14.7) (15.1) (15.1) (15.1) (15.3) (15.1)						2.7
18 19 20 21	(480)	(15.1) (15.0) (14.9) 14.6						
53	(420)	(13.6)						

10 540 13.8 540 13.6 13 14 15 16 17 18 570 13.8 570 13.8 570 13.8 570 14.0 555 13.4 13.0 540 19 20 21 540 12.8 (12.5) (12.1) 540

Table 38

fore hire fore

Time: Local.

22 23

525

Table 39* Singapore, British Malaya (1.3°N, 103.8°E)

No	vember	194

Table 40 Hobart, Taemania (42.8°S, 147.4°£)

November 1948

Pime	F. LS	f°F2	h'F1	f°F1	P.E	foE	_fΣe	F2-M3000
00	290							2.6
00								2.6
01	295 295							2.6
02	300							2.8
04	290							2.0
05	290							2.9
06	300							2.7
07	250	(8.6)						3.0
08	230	10.4					4.1	2.7
09	225	10.9					4.5	2.2
10	220	13.7					4.6	2.2
11	220	12.0					4.6	2.2
12	220	12.2					4.5	2.2
13	220	10.0					4.0	۵.۵
14	240	12.2					5.0	2.1
15	225	(12.5)					4.9	2.1
16	245	(12.6)					(4.1)	5.2
17	270	(12.5)					(4.1)	2.1
18	340#	(12.07						2.0
19	0.10%							2.0
20								
21	270							2.6
22	230							
23	250							3.0 2.7

Time: 112.5°E.

#One or two observations only.

Time	P. LS	tols	ו"גיע.	fofi	h!E	föe	₹Ba	F2-M3000
00	300	6.9					2.5	2,7
01	290	6.3					2.0	2.7
02	290	5.6					2.6	2.7
03	300	5.3					2.7	2.7
04	300	5.0				E	2,1	2.7
05	280	5.3			100	1.9		2.8
06	250	6.0	240	4.0	100	2.6		3.0
0.7	350	6.5	250	4.5	100	3.0		2.8
08	350	7.0	240	4.9	100	3.3		2.8
09	400	7.0	230	5.0	100	3.6		2.7
10	430	7.3	225	5,3	100	3.7		2.6
11	400	7.5	222	5.3	100	3.8	5.0	2.7
12	420	7.6	220	5.5	100	3.8		2.6
13	400	7.8	230	5.3	100	3.8		2.6
14	380	8.0	228	5.4	100	3.8		2.7
15	380	8.0	230	5.3	100	3.6		2.7
16	370	8.0	240	5.3	100	3,4		2.7
17	330	8.4	248	4.8	100	3.0		2.8
18	270	6.6			100	2.5		2.8
19	270	8.6			130	1.9	3.3	2.8
20	270	8.3					3.7	(2.8)
21	280	8.0					4.0	(2.7)
22	290	7.8					3.1	2.7
23	300	7.1					2.1	2,7

Time: $150.0^{\circ}E$, Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 eeconde.

Time: Local. Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

^{*}Height at 0.83 foF2.

^{**}Average values; other columne, median valuee.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutee, manual operation.
*Height at 0.83 foF2.
**Average valuee; other columns, median values.

Sweep: 4.0 Mc to 15.0 Mc in 10 to 15 minutee, manual operation. *Average values except for 2 and fee, which are median values.

Fraserburgh, Scotland (57.6°N, 2.1°W)

October 1948

Slough, England (51.5°N, 0.6°W)

h*F2

320 320

306

f°F2 h'F1

4.2

4.0

3.9

3.6

Time |

01

02

03

October 1948

2.5

2.5

2.5

2.5

2.5

fEs F2-13000

2.4

2.6

2.6

2.6

Time	h F2	f°F2	h'Fl	f°Fl	h'E	LoE.	ſEs_	F2-M3000
00	360	3.2						
01	380	3.2						2,5
02	360	3.0						0.0
03	360	2.8						
0.5	360	3.1						
05	340	3.0						2.9
06	340	3.5						2.8
07	270	5.6	300	3.4	120	2.4		2.9
08	260	6.6	260	4.1	130	2.5	(3.6)	3.0
09	260	7.7	250	4.4	120	2.7	(3,0)	2.9
10	270	8.4	240	4.4	130	2.9	(3.0)	2.9
11	260	8.2	210	4.4	120	3.0	(1.00)	2.9
12	260	7.8	250	4.5	120	3.0		2.6
13	270	7.8	250	4.6	120	3.0		≈.9
14	250	9.0	180	4.9	120	2.9		2.8
15	250	8.4			130	2.7		2.7
16	250	9.1			140	2.5		2.8
17	270	8.5						2.9
18	270	8.2						3,2
19	270	6.7						2.8
50	300	5.5						
21	320	3.6						2.9
55	340	3.6						
23	360	3.4						

04 288 3.2 2.6 2.6 05 290 3.2 06 286 300# 2.**7**# 3.4 135# 2.7 4.0 3.6 07 253 5.9 266 125 4.4 08 251 7.9 256 4.3 117 09 255 9.2 240 2.8 3.0 4.3 116 3.9 10 262 10.6 558 4.6 113 11 256 246 10.8 228 234 113 12 10.8 4.7 113 3.8 233 112 3,2 2.9 14 246 11.2 234 112 3.1 240 2.8 15 11.0 245# 4.4# 113 237 275# 16 11.0 4.5# 116 3.8 3.8 3.0 17 234 118 18 233 9.0 3.0 19 233 7.0 2.6 2.9 246 5.6 21 273 5.3

Table 42*

Time: Local.
Sweep: 2.2 Mc to 16.0 Mc in 1 minute.

*Average values except for foF2 and fEs, which are median values.

Time: Local.

303

SS

4.5 4.2

Sweep: 0.5 Mc to 16.5 Mc in 5 minutee. *Average values except foF2 and fEs, which are median values.

#One or two observations only.

Table 43°

Falkland Ie. (51.7°S, 57.8°W)

October 1948

Falkland Is. (51.7°S, 57.8°W)

September 1948

Time	h1#2	tols	h'Fl	f°F1	h¹E	f°E	TEs	F2-M3000
00	333	7.7						2,4
00								2.5
01	320	8.1						2.5
02	311	7.8						2.5
03	306	7.6						2.4
04	307	7.3						
05	267	(7.7)						2.5
06	245	(9.2)			125	2.4		2.9
07	239	9.6			115	2.8		3.0
08	239	(10.1)			114	3.2		2.8
09	253	11.6	245#	6.6#	112	3.4		2.8
10	248	12.4	240#	5.6#	111	3.6	4.4	2.8
11	261	13.0	240#	6.4	111	3.7	4.5	2.7
12	263	13.4	230	5.6	112	3.7	4.1	5.8
13	245	13.3	240#	6.0₽	111	3.7		2.8
14	255	11.8	240#	5.8\$	114	3.4		2.9
15	247	11.2			112	3.2		2.9
16	252	10.4			118	2,9		3.0
17	254	10.7			123	2.4		2.9
18	254	(10.0)			138			3.0
19	261	8.9						2.8
20	271	8.4						2.7
21	279	8.1						2.6
22	304	8.2						2.4
23	327	8.2						2.4

Time: Local.

Sweep: 2.2 Mc to 16.0 Mc in 1 minute.

*Average values except fof2 and fEs, which are median values.

#One or two observations only.

Time	h'F2	f°F2	h'Fl	forl	htl	toE	fEs	F2-113000
00	357	5.2						2.4
01	349	5.5						2.5
02	349	5.6						2.5
03	333	5.4						2.5
04	312	5.4						2.6
05	291	5.5						2.6
06	239	7.4						3.0
07	229	(9.1)			128	2.6		3.0
08	230	(11.2)			125	2.7		3.0
09	231	(11.6)			122	2.8		3.1
10	233	(11.2)			110#	2.9#		3.1
11	238#	(11.5)	200#	(5.0)#	113#	3.1#		3.0
12	234	11.6			111	3.2		3.0
13	258 #	11.4	210#	(5.3)#	115#	3.3#		2.9
14	242	11.0			116	3.0		3.0
15	244	10.2			122	2.8		2,9
16	247	9.6			133	2.6		2.9
17	247	9.0						7.0
18	247	7.5						3.0
19	256	6.7						2.9
50	268	(5.6)						2,8
21	293	(5.5)						2.6
22	32 7	(5.7)						2.5
23	348	(5.4)						2.4

Table 44*

Time: local.
Sweep: 2.2 Mc to 16.0 Mc in 1 minute.
*Average values except foF2, which are median values.

#Cne or two observations only.

Time

10 11

13 14 15

16 17

18

19

21

SS 23 forl his

(6.8) 7.2 (8.1)

(8.4)

(8.0)

8.2 (7.8)

(7.8) (8.0) (8.3) (8.4) (7.7) (8.1) (7.8) (7.4)

(6.8) (8.1) (7.7)

h'F1

275

260 250

230

240 250

230

2**7**0 240

240

250

290

h F2

330

350

340

360

360

360

(385)

350

350

330

305

295 290

310

fEs F2-M3000

5.0 4.2 4.7 4.9 4.4 4.3 4.4

Poitiers, France (46.6°N. 2.0°N)

July 1948

Time	h'F2	roF2	h'F1	roF1	h'E	toE	ſEs	F2-M3000
00	(320)	7.7					4.8	2.6
02	(320)	7.0						(2.6)
03	(320)	6.5					(3.6)	2.6
04	(310)	6.2					(-10)	2.6
05	285	6.5						8.8
06	262	7.2	240				(3.8)	2.8
07	295	7.3	240				(4.8)	2.9
80	310	7.7	220				5.8	(2.8)
09	380	8.2	210				5.5	2.7
10	358	8.4	220				5.4	2.7
11	3 7 0	8.4	235	5.5			5,2	2.8
12	380	8.3	210	5.6			5.4	2.7
13	380	8.3	220	5.5			5.2	2.7
14	375	8.3	225	5.4			4.8	2.8
15	3 7 5	8.0	230	5.2			4.8	2.8
16	350	8.0	230				5.4	2.7
17	33Ç	8.0	230				6.0	2.8
18	290	8.4	255				5.0	2.9
19	270	8.2	260				(6.0)	(2.9)
20	270	8.1					(5.5)	2.9
21	290	8.0					(5.8)	2.7
SS	310	7.9					(5.2)	2.6
23	(320)	7.8					4.1	2.6

Time: 0.0° . Sweep: 3.1 Mc to 11.8 Mc in 6 minutes, automatic operation.

Bagneux, France (48.8°N, 2.3°E)

July 1948

(2.8) (2.7) (2.7) (2.8)

(2.9)

(2.8)

(2.9)

Time: 0.0°.
Sweep: 3.9 Mc to 6.8 mc, and 7.8 Mc to 13.5 Mc in 12 minutes,
manual operation.
*Medians in this column were obtained from observed values of foF2 and
values derived from fxF2.

Table 47

Bagneux, France (48.8°N, 2.3°E)

June 1948

Cime	h'F2	ror2	h'Fl	_f°F1	h'E	foE	fEs	F2-M3000
00								
01								
02								
03								
04								
05								
06	300	8.6	225				4.0	2.9
C7	310	8.7	240				4.4	2.8
08	330	8.8	210				4.3	2.8
09	350	8.8	220				4.4	2.8
10	370	9.0	225				4.6	2.8
11	385	8.8	250				4.6	2.8
12	370	8.7	210				4.3	2.7
1.3	360	8.4	230				4.4	2.6
14	390	8.6	550				4.2	2.7
15	380	8.5	230				4.2	2.8
16	370	8.4	250				4.0	2.7
17	330	8.5	250				4.5	2.8
18	290	8.4					***	2.8
19	290	8.7						3.0
20	285	(8.5)						(2.9)
21	300	(8.4)						(- • • •
22	310	(8.6)						(2,7)

Time: 0.0° . Sweep: 3.9 Mc to 6.8 Mc, and 7.8 Mc to 13.5 Mc in 12 minutes. manual operation.

Farm adopted June 1946

 $TABLE \quad 48$ Central Radia Prapagation Laboratory, National Bureau of Standards, Washington 25, D.C.

hF2 Km	Kan()		March (Month)	Ī	946		5	פחזומו הם	dia Frap	Central Hadra Propagation Laboratory, National Bureau of Standards, Washington 25, I ONOSPHERIC DATA	ONOSPHERIC	HER.			us, wasn	ngron 23	: :			Nation	National Bureau of	edu of	Ston	ards	V
Washington, [_	D.C.		- 1															Scaled by:		E J.W.		J. M.	. i	
W-5.77 Cong 77.5°W	- 18	., Long 77.5°W	7.5°W	1							75	75°W	Mean Time	ne					Calculated	by:	A.G.J.,	J.J.S.	الا. الا.	.C., G.P.G.	1.8
01 02 03 04	03		04		0.5	90	07	90	60	0	=	12	131	4	15	9	17	18	61	20	12	22	23		1
250 250 250 240 250	250 240	240	250		250	250	240	230	230	230	U	U	230	C	C	240	230	230	220	230	230	250	260°		
260 250 270 250 240	270 250	-	240		240	230	250F	220F	220	250	250"	250	220	200	240	(230]6	220	220	230	230	230	250	250		
260 250 250 250 230	250 € 250	250	230		240	250	230	230	240	200"	710"	[220]	220	× 80 H	U	U	230	230	220	220	230	250	250		
250 250 250 250 250	250 250	-	250	_	280	250	240	200	220	250	240	220	210	250	240	230	220	230	210	230	220	230	250		
300 270 270 240	270 270	-	240	-	230	230	230	210	230	230	240	230 H	230	230	230	230	230	210	210	230	210	220	250		
240 250 260 270 260	270	-	260	-	260	(250)3	220 6	(210)5	210	2106	(210)5	U	U	220	240	230	230	230 ((220)	250	230	250	250		1
(250)\$ 250 250 240 250	250 240	-	250		270	270	230	220	210	210	230	2 40 H	210"	210	220	230 1	[220]c	210	200	230	220	250	240		1
240 240 230 250 (270)\$	250	50	(270)	200	(280)3	250	220	230	230	220 [[230]L	240	230	230	230	230 #	230	230	230	230	230	250	260		
270 250 230 230	230		200	-	250	250	230	230	230	200	220 ((220)8	(230)8	220	230	210"	230	240	210	220	230	240	250		
260 260 240 250	260 240	muoim	250	_	250	250	230	250#	220	220 [[23gt	230	210	220	240	230	230	230	220	230	250	240	250		
250 250 (260)\$ 250	x50 (260)5	8	8		250	230	230	230	220	220	210	200	220 6	(220)3	220	220	220	240	220	230	230	230	250		1
250 250 230 250 250	230 250	-	250	-	250	250	230	230	220	230	230	250	210	240	220	230	240	230	230	250	270	270	280		
280 270 250 270	270 250	-	270		280	250	230	230	230	220	200 #	250	220	230	230	240	250	240 K	230 K	250K	250 K	270 X	230K		
240" 250" 250" 280" 300"	250 K 280 K	280 K		8	360r	370x	290 K	370 K	380 K	550 K	550 K	560 K	\$009	550 K	500 £	420 %	[33g K	270 E	260 K	270 K	780 K	300 K	270 E		
260 K 260x 260 K 250K M K	260K 250K	250K		-	¥	×	X	£	260 H	[30] t	350×		350 K	420K	370 K	230 K	250 K	250 K	250K	250K	250 K	250K	250 K		
260 x 260 x 260 x 270 x 280 x	260 × 270 ×	270 X	ž	Y.	300 K	270	230	230	220	210	200	230	240 H	230	220	230	220	230	230	250	270	260	230		8110
250 240 250 260	240 250	recommon the same	260		280	280	240	230	220	230	200	230	210	230	210	230	230	230 K	230K	270 K	320 K	330K	300 K		
(350) x 350 x 300 x 370 x 350 k	300 × 370F	370E		No let	320x	290k	240	220	220"	220"	240	200	230	250	230#	230	220	230	220	220	230	250	250		
250 280 280 280 260	280 280		260		270	250	230	230	200	250	250	230	250	220	230	230	230	230	220	230	230	250	240		
250 250 270 280 (230)5	280	-	(230)	V1	240	250	230	220	230	230	230	240	250	230 ((230)A	240	230	220 ((230)A	210	230	(290)A	270		
	270 250	-	230		250	260	230	220	220	250	230	250	270	220	220	230	240 K	250 K	240K	250K	390K	310 K	300 K		
420" 450K 410 K 400 K 300 K	410 K 400 K	400 K		K.X	300K	310 K	270 K	260K	240 K	G K	* 60 ×	380 #	380 ₩	450K	380K	260 K	250 K	260K	250K	250K	250 K	780 K	350 K		
400 K 410 K 330 K 350 K 350 K	330 × 350 K	350 K		LK.	300K	270 K	250 K	740K	380 × [30]		210 K	780 K	250 K	240 K	U	C	U	U	C	U	U	U	Ú		
0000	O	MI SAPAN	U	_	C	C	U	C	230	240	250	230"	230	200	230	230	230	230	220	220	230	230	250		
300 300 (260) 250	(360)8		250		230	250	240	230	200 #	C	U	250	300	280	230	230	240	230	220	250	250	250	240		
280 300 × 330 K 300 K	300 × 330 K	330 K			(270)\$	270 K	250K	230K	320 K	310 K	340 K	350 K	380 K	350 K	330 K	[280]k	240 K	250 K	250	250	250	250	250		
(270)5 (280)3 270 240	(280)3 270	270	240		250	250	230	230	230	210#	210	300	210	260	230	230	240	230	230	220	250	250	250		
280 (240) 230 250	(240)8 230	230	250		(280)5	300	230	220	210 #	200	210	220	220	230	230	230	240	230	210	(230)5	240	260	250		
250 250 240 260	250 240	240			280	250	340	230	220	250	250	260	210	220	270	230	230	230	230	230	240	250	260		
300 300 (300)5 300 F	(300)5	(300)5	300	L.	(270)	280	250	230	250	200	210	290#	250"	270	220	230	\vdash	240	230	230	250	260	270		
(250) 260 260 250 250	260 250	-	250		250	250	230	230	230 "	200	200	200	230	210 ;	220	230	220	250	220	220	240	250	250		
		-				\vdash	-	\rightarrow				\vdash	\vdash		1	\vdash		1				\vdash			
260 250	250		3	\rightarrow	270	0	0	0	0	0	7	240		0	2		230		225	230	240	0	250		
30 30 34	0.5	-	74	-	44	29	79	29	3/	30	29	29	30	30	7.6	29	30	30	30	30	30	30	30		1
										0	0	7 36 44 26	O my what i	25											

Sweep 10 Mc to 25.0 Mc in 0.25 min Manual 🗆 Automatic 🗵

Form adopted June 1946

National Bureau of Standards

J.M.C.

E.J.W.

Scaled by:

TABLE 49
Central Radia Propagatian Laboratory, National Bureau of Standords, Washingtan 25, D.C.

IONOSPHERIC DATA

949

March

Mc

Washington, D.C.

Observed at

G.P.G. J.M.C. \$ (8.9) (8.0) 3 48 (6.7) (7.3) 6.5 (4.9) 4.9 200 (8.7) × 5.9 (7.7) 2.6 8.7 9 23 2.8 0 J. J. S. 6.6 × 7.9 6.3 (4.9) 3 (7.7) (7.0) (75) (8.2) 3 90 .S 7 00 00 78 7.8 8.7 00 80 30 r. 00 7.7 7.7 22 2.9 7.7 1 6 2.9 2.6 1: 8.0 19 00 200 Calculated by: A.G.J., 0.0 (8.2) 6.3 K 7.0 K 6.0 A 5.9 x 00 9.0 00 (88) 8.5 8 5 7.7 0; 10 30 2 00 00 83 7.7 8.00 8.4 2.9 60 8.7 9.1 8.9 8.7 7.7 8.7 U 9.3 × \$ (0.8) (102)5 (96) (9.6) \$ (7.6) (95)P (100)5 6.8 x 7.6 × (9.5) 5 (7.0) 9.3 x (7.4) } 9. 9.0 2.8 30 9.7 0 00 9.0 50 9.5 0 9.3 0 6.7 8 \$(5.01) \$ (8.11) 16 \$ (4.6) \$ (8.6) \$ (8.6) (10.3) 11.5 (10.5) (10.3) 12.0 1 (11.8) \$ 10.01) 8.6 X 11.5 (10.5) \$ (10.3) 3 c # 01 (6.6) 8(0.01) 8 (0.11) 6.9 (1/3) 5 11.0 (10.5/5) (10.5)3 (801) 8.01 (11.3) 7 (10.6) 3 8.6 × 3.8 (11.5) 8 (11.5) 8 (11.3) 8 (10.8) 3 10.7 11.5 10.9 (10.0)3 2 (x.6) × 4.11 5(8.01) € (9.6) 0.11 102 11.3 (10.3) 00 12.0 12.0 10.7 6 30 30 7.4 X 9.0 X 9(5.11) (11.4) 115 11.8 120 (11.8) 17.3 11.5 6.8 11.7 1.7 8.11 8 S 8 S (123) 5 × 9. 11.4 6(6 11) [811] 6(0.71) × 00 (12.3) 124 12.4 10.9 % 5 (9.6) 1.6 11.0 1.5 30 11.7 11.9 120 8 // 8.11 1.8 9/1 11.3 7 U 7.7 KK (12.1) S × 9 % 5(1.01) (120)3 (12.1) 5 6.7 K (11.4)5 126 , y [120] 120 11.2 8.11 120 116 12.5 123 122 12.6 12.0 125 11.3 120 29 124 4:1 9 / 126 9 S J 1263 12.4 (12.8)5 (12.1)\$ 7.11 11.5 (11.5) 8 S X 11.7 12.6 (126)5 13.4 (12.0)5 8.0 K 8.5 K 13.0 7.5 12.5 4.11 12.5 12.4 12.4 12.2 120 126 12.5 125 12.6 12.5 12.3 13.3 (12.5) 126 12.3 4.01 9.01 30 28 11.7 128 122 (12.4)\$ 12.3 124 4.11 2 J J U x # 3 6.8 10.2 K X 4.8 (14.3)5 12.0 (12.4) (12.2) 12.0 12.3 12.8 11.5 12.6 12.3 13.0 128 126 125 12.6 11.5 4 O Mean Time × 7. 12.0 K.7 K 103 X 00 X 12.8 12.6 (13.0) \$ [12.2] B 12.8 13.3 126 11.8 13.2 (13.3)% 7:11 120 120 13.5 125 12.4 11.5 124 (123) (123)5 0.// 126 126 12.8 12.5 12.6 30 1.9 10 U 7.7 K [128] (130) 5 128 13.4 10.3 K (125)3 (128)2 8.5 K 13.0 12.5 12.0 30 128 12.6 12.3 4.9 9.11 12.5 (13.4) 73.3 11.2 11.6 127 130 11.3 1.9 75°W 2 O 60 (13.0) 7.9 V 12.5 00 X 6.01 124 (13.3) 117 124 (13.2) 130 123 124 (130)5 120 [129] 12.4 132 12.5 (129) 130 (13.0) 13.8 500 122 [11.2] [11.8] 12.0 12.7 11.0 12.0 12.6 122 (126)3 127 130 12.6 126 6. 9 = 3 × 5.1 6 8.6 × 7.4 × 10.5 (122) 123 (12.3) × -: 124 120 120 11.4 12.0 12.0 12.3 12.3 11.0 9.7 59 8.11 11.3 11.3 3 9 7.5 K 113 F (12.2) 5.5 00 X (11.0) \$ 12.0 11.3 1:// 0:11 1.01 10.5 10.6 10.2 11.5 6.3 10.0 11.2 120 12.4 11.5 11.5 11.5 120 13.0 3 6 3 1.7 7 11.4 0.11 60 8 // (102) 3 10 2 4.8 X 7.7 K 8 01 8 0/ 10.7 (10.4)z (9.6) 6.3 (4.01) 501 36 10.6 6.2 9.6 10.0 9.6 0. 9.0 4.6 9.0 4.7 9.7 13 € 1.6 9.6 9.3 10.3 57 90 6 U Σ (6.4) 5 4.7 7.8 8 7.3 77 0.8 68 7 00 9.2 7 5.7 2.9 00 7.7 8.9 11 4.5 5.7 17 7.0 0 8 3 29 6.3 7 1: O 07 (6.3)5 45 F (7.1) (6.0) 5(4.5) 8(6.4) 00 X M * M 3.0 K (4.1) S 7 c x * + + (5.9) 3 5.5 (5.4)] [48] SK(4.9) J 5.9 1 (5.9)3 1 (5.8)5 (4.9) 3 (5.7) 5 50 (4 7)3 5.7 3 P. 5.7 4.8 5, 5.6 57 90 5.3 6.1 3 J (5.5) (5.5) 3 (5.9)3 K (4.1) 3 (3.9) \$ [4.4] \$ 15.63 5.5 (5.8) 3 (5.3) 65 4.4 50 24 4.9 6 6.5 5.5 5.5 5.9 0.9 7.9 0.5 5.4 4.3 U 5.6 F (8.8) (59) (5.7) (5.3) (5.6)3 (5.7) (4.2) 5.7 F 3.1 5 50 65 6.7 (5.0) 4.9 3 W. 27.7 PLOU , N. 0.05 77.5°W 69 53 ₹ 6.5 2.8 04 20 U (7.0) (66) 3 3.1 / (3.9) \$ (5.8) (6.1)3 [4.6] SK (4 3) 5 (6.0) 3 (5.8) 3 5.9 A (5.5) (5.9) 30 6.3 7.7 4.9 3 5.2 20 60 63 (6.9) 7.7 5.9 (4.9)3 3.7 6.7 03 5.3 7 J 5(2.9) (5.9)5 5.9 K 3.5 (7.1) 7.0 5.915 6.4 5.7 30 02 1: 79 00 000 6.9 00 6.9 0 8.9 4.9 9.9 J 4.8 (6.8)5 (7.1) (8.0) 3 (53) x (5.2) 3 1 5 K (5.9) (7.3) 5 (1.7) 5 (7 7) 7.9 4.7 6.0 30 7.3 2 1.1 5 (3.1) 8.9 69 7.4 5.5 2.9 6 7 1.1 ō 39 KK 7.6 K K 8 6.9 × £(0.7) (7.1) 5 5.7 (3.1) (7.0) (73)5 2 (8.2) 6 5 7.9 7.0 و۔ 2.0 6 3 19 7.3 73 8.7 1.1 ક્ષ 7.6 7.2 2.6 % 6.9 6.0 U 00 Median Gount 9 ю <u>~</u> 6 Day S თ 0 2 4 2 91 8 23 24 27 59 7 20 2 22 25 56 30 28

Sweep 1.0 Mc to 25.0 Mc in 0.25 min Manual [] Autamatic [8]

Manuol 🔲 Autamotic 🔯

TABLE 50 Central Radio Propagatan Lobaratory, National Bureau of Standards, Washington 25, D.C.

Form adopted June 1946

		G. P.G.																																				6 0 - *02518
rds	J.M.C.	+																																				NG OFFICE 194
National Bureau of Standards	tution)	J.M.C.	2330	(7.2)F	7.3	(7.1)3	65	63	(7.2)5	00	7.9	7.1	7.7	7.5	9	7.7 K	1 (6.5)3	5.8 K	(7.8)3	[5.1]	(7.0) 3	(81)3	7.1	[44]	5.8 KK (48)5	J	(7.8)3	7.1 E	((.))	(7.4)	(8.1)5	4(6.9)	(7.1)3	(7.2)3		(7.2)	30	D S GOVERNMENT PRINTING OFFICE 1946 G . * 03311
Jo no	J.J.S.	J.J.S.	2230	7.7 F	7.0	7.6	(1.4) 5	7.7	(7.4)3	% cf	8.3	(7.5)3	29	8.0	200	8.5 R	K (6.5)3	6.0 K	6.6	4(50)\$	(7.0)3	2.5	7.6	K(6.1)3		J	7.9	8.5	(1.1)	8.3	(8.4)	(7.7)3	(7.0)3	(7.3)3		7.6	30	U S CQVE
al Bure	E.J.W.	by: A.G.J., J.J.S.	2130	8.5	0 8	1.8	08	(8.3)2	(8.4)P	8.7	N.00	8.4	5.0	00	8.7	\$ (68)	[6.3] s	x 8 9	8.6	\$ (5:6) }	(2.6)	00	7.5	(63)8	5.7 *	J	8.2	8.6	7.4	8.6	(2.0)	8.3	(7.6)3	8.4		20	30	
Nation			2030	4.6	8.7	00	(88)2	9.0	(6.6)	9.3	9.3	9.0	9.5	4.4	6.9	2. 7.	K 6.00	7.2 K	2.0	(6.5)	50	(6.3)5	50	63 ×	(6.1)\$	J	9.1	(8.8)8	7.9	9.1	8.7	(6.6)	1.9	9.8		80	30	
	Scaled by:	Calculated	1930	(10.01)	4.6	8.6	(6.5)	10.0	9.5	69.8)	6(8.6)	(9.6)	(10.0)\$	5(4.01)	10.0	(9.7)s		8.0 K	20	8.3 K	6.3	(9.5)\$	5(8.6)	(7.9) \$		J	(6.6)	9.2	82	g(E.91)	9.5	(9.5)}	2.0	(102)		(6.2)	30	
			1830	11.7	10.3	11.5	[10.9]5	S	[11.2]5	(11.3)	(11.0)8	11.2	11.3	(11.0)	(11.0)5		i	8.6 K	\$(10.4)	2(001)	10.9	(11.3)	11.6	8 7 ×	7.2 K	J	(11.0)\$	(10.0)3	8.4 K	11.2	11.4	(10.7)3	4.6	(10.7)		10.9	29	
5, D.C.			1730	11.7	11.7	11.8	11.4	S	12.2	[116]	(11.7)	11.0	(11.8)2	[11.3]	11.7	(12.0)	6.7 K	9.0K	17.2	12.4	(11.7)5	(120)5	12.3	10.015	(7.5)	J	11.2	(11.0)8	8.6 K	(//.5)8	11.5	11.5	26	11.05		11.5	29	
Central Radio Propogotian Loboratory, National Bureou of Standards, Washingtan 25, D. JOHA OF TO			1630	12.4	(8.11)	J	11.6	12.0	12.5	1.8	(11.8)5	11.3	(1.2.2)S	[11.7]	(12.2)6	12.2	6.7 11	8.6 K	(11.5)5	12.5	(12.3)8	12.3	122	11.3	K(7.4)3	J	11.3	11.2	8.5 K		11.4	[12.0]	(10.0)	11.0		11.7	29	
ards, Was	I		1530	12.7	(12.0)	J	12.4	12.4	12.8	12.6	9(8.11)	11.7	(12.6)8	[12.2]	11.8	(125)8	× 6.9	8.6 K	12.4	12.7	12.4	12.5	12.5	(11.4)5	7.7 K	J	11.3	11.4	8.5 K	11.5	(11.8)	12.2	103	11.4		12.0	29	
of Standa	10	Типе	1430	J	12.3	13.0	12.6	[125]	(13.0)	12.5	12.7	125	12.3	12.4	(123)8	12.6	6.5 K	200	13.0	12.6	12.4	(130)5	12.6	11.4	7.3 %	C	11.5	11.5	8.5 K	711	[12.3]	(12.4)\$	105	11.5		12.4	29	0.25 mm
Bureou		Mean T	1330	IJ		12.4	12.8	12.8	J	12.4	(123)	(12.0)	12.8	12.7	130	12.3	4 E. 9	8.0 K	13.0	12.7	12.9	13.2	13.7	12.0	¥ 9.9	(10.2)	11.6	11.5	8.5 K	12.0	12.1	(12.3)	10.7	11.4		12.3	3.9	Mc to 250 Mc in 0.25 mm
otian Loboratory, National Bur		₩°57	1230	J	12.4	[12]c	12.0	12.5	J	(12.5)	13.8	(12.3)\$	13.2	13.2	12.8	12.5	6.0 K	8.1K	11.5	12.7	13.0	13.5	130	12.3	(6.6)F	102"	12.2	12.0	8.4K	12.0	13.3	(123)	11.1	4.11		13.3	39	Mc 10 25
oborator		7	1130	11.6	12.5	13.0	13.0	12.5	J	13.0	[124]	13.5	13.0	13.1	13.2	13.3	6.3 K	7.6x	(125)	12.8	12.8	13.0	13.0	12.4	624	9.9K	122	12.0	8.6 K	11.7	12.0	12.5	11.0	8.01		12.5	_	Sweep 1.0
ogotian L	$\frac{2}{2}$		1030	(1):()	12.5	12.4	11.8	125	(12.5)	12.8	12.8	12.8	12.6	(12.7)	12.5	13.4	5.9 K	7.7 K	12.5	13.4	(11.8)	12.7	12.6	1 1.8	5.3 F	85 ×	11.5	11.6	87 "	11.6	11.6	120	10.5	0.11		130	31	Swe
adio Prop			0930	8.01	611	11.9	11.5	12.0	11.6	12.5	12.2	12.5	12.0	12.0	12.4	12.0	6.1 K	7.2 5	122	(12.5)3	8.11	12.0	12.0	13.0	S.7 E	7.4K	8.01	(8:01)	8 S K	11.3	10.01	8.11	9.3	701		11.8	3,	
entral R			0830	10.4	8.6	11.3	11.2	4.01	10.6	(11.5)	911	11.7	11.5	g(s://)	12.0	11.0	63K	N K	0.11	11.0	8.01	10.7	11.3	80/	50K	S.9 K	J	(6.5)8	8.0 ×	10.5	67	10.9	00	(100)5		108	46	
0			0730	8.4	7.7 F	00	9.3	P. (1)	9.5	[64] 8	10.3	10.0	92	(6.1)5	10.6	9.6	6.0 K	×	500	67	6.7	9.6	(10.2)3	8.9	K(4.7) }	6.1 K	J	4.8	7.2 K	1.6	6.7	6.8	7.3	8.7 F	NO. STORY	6:00	49	
			0630	5.4		5.8 7	15	5.6	6.6	63	7.4	6.9	00	\$(1.9)	7.1	7.3	× 6.7	×	5.8 K	((6.3)	(6.3)x	7.9	7.4	6.3	4.6%	5.2 F	J	9.5	618	(6.7)	7.1	7.5 F	(5.8)	(20)8		6.3	14	
849 6			0530	5.4	5.7	5.5	4.4	4:5	5.4	5.0	5.9	5:7	5.6	5.7	8.5	9.	(3.4) Z	Σ	10 K	5.7 8	1 [44] E	(4.1)5	5.4 F	(5.3)	K(4.0)5	K(4.5) 5	J	5.7	*(5.8) 5	(5.5)3	(5.7)	(5.4)3	(4.7)	(5.5)		5.5	29	
Ì	ē	7.5°W	0430	5.4 F	1.9	6.15	454	6.1	4.5	5,2	(2.4)8	4.9	3.5	6	1.0	6.5	K (4.4) 5	N.	3.2 K	5.5 F	K(4.4) 5	(4.5) g	(6.0) J	0.9	41 F	(4.8) E	J	6.3	(5.9)	(5.5)	(5.3)	(3.8)	(5.1)	(5.5)		5.5	49	
March	(Month)	, Long 77.5°W	0330	5.6 F	8.9	6.4 F	5.3	8.9	5.6	6.2	5.9	7.4	6.1	6.5	6.5	7.1	5.00	E	3.7 E	(6.0)5	K(4.3)5	(5.0)	6.5 F	8.9	3.1 F	1 (41) 3	J	8.9	x(5:3)\$	(88)3	(6.1)5	6.0 5	(5.3)	(8.6)		0.9	29	
Mc	Jion, D.	N.0 62 107	0230	5.7 F	7.2	6.6 5	5.9	9.9	09	6.2	6.5	6.2	6.68	6.5	6.7	8.0	(6.5)\$	5.7 1	3.8 K	6.3 5	(4.2)%	(6.1)3	6.4 5	(7.1)	25 E	3.2%	J	8.9	R(5.7) 3	(5.9)3	(2.2)	6.7	5.4 5	(6.2) 3		4.9	30	
2	(Unit) Washington,	Lat 3	0130	8.9	(7.3)3	(4.7)	6.3	6.5	6.3	8.9	7.4	1.00	6.9	0:0	7.3	500	(7.0 s	K(5.0) 5	4.6 K	6.4	(4.9) S	(6.0)	6.5	7.0	[33] 8	2.3 E	J	6.4	6.5	(8.9)3	(7.1)3	7.1	6:5	99		2.0	30	
foF2	Istic	5	0030	7.1	(7.4)3	7.0	6.9	6.3	6.5	6.9	00	7.9	7.2	(7.4)5	7.6	3.0	x(7.7)3	\$ (5.9)	5.0 K	(6.8)3	(5.3)3	(6.2)3	7.1	6.9	(3.1) F	2.7 E	J	5.9	1.9		(8.9)	(3.6)8	6.1	17.013		69	30	
4-	Observed at	1000	Day	-	2	ъ	4	5	9	7	Ф	6	0_	=	12	5	4	rō.	91	17	81	6-1	20	2.1	22	23	24	25	26	27	28	29	30	3.1		Medion	Count	

Form adopted June 1946

Scoled by: E.J.W., J.J.S., J.M.C.

TABLE 51
Central Radio Propagatian Laboralary, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

Characteristic (Juli) (March 1949 (Characteristic) (Juli) (Manth) (Mashington, D.C.

16 17 18 19 20 21 22 22 22 22 22 22 22 22 22 22 22 22	01 02 03 04 05 06 07 06 07 06 09 10 11 12 13 14 15 16 17 16 19 20 21 10 10 10 10 10 10 10 10 10 10 10 10 10	01 02 03 04 05 06					M ₂ C)		Mean Time					Colcu	Colculated by: A.C.J.	000	U.U.O. , U.IVI.U.,	, ,	12.4
A			0.2				_		14	15	16	17	18	61	20	21	22	23	
A 120 190 200 Q 100 100 100 100 120 120 Q 120	A 120 190 200 A 200 2.0 A A 200 A 200 A 200 A A 200 A 200 A 200 A A 200 A 200 A 200 A A 20 A A 20 A 200 A A 20 A A 30 A 40 A 50 A 50					H		Н	B	B	B	B							
220 2 20 20 20 20 20 20 20 20 20 20 20 2	20		3			-			a	700	210	a							
200 22 220 220 20 20 20 20 20 20 20 20 2	220		0						200	J	C	B							
200 Q 12 120 Q 20 Q 2 120 Q Q Q 2 120 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	20		B				mer may be		400	700	Ø	B							
Q Q Q Q Q A10 A10 Q Q Q A2 A2 A2 A2 A2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		9							Ø	Q	B							
20	20 Q C Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q		a	H	-		-		a	220	a	Q							
20	20 Q (2.0) 2 200 190 2.0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q		3			<u> </u>	-		a	a	a	a							
20	20		G					-	-	7/0	a	3							
Q Q 100 Q Q 120 Q Q Q Q Q Q Q Q Q	Q Q 200 200 Q Q 2x0 Q Q Q Q Q Q Q Q Q		3				-	-	-	200	Q	a							
2	2 20 2.0 2.0 2.0 2.20 2.0 2.0 2.0 2.0 2.		7	-	-		-	-	a	220	a	B							
20 200 210 200 2 2	20 200 210 . 200 Q 200 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q		2	_	\vdash		_		B	a	a	a							
120 Q Q Q Q Q Q Q Q Q	120 Q Q Q Q Q Q Q Q Q		3	-	-	-		_	200	a	a	a							
				-	30	-			3	a	Œ	a							
			7	E &			ŧ.	-	220	1									
A A A A A A A A A A	A 240 B 20 B B B B B B B B B B B B B B B B B			×	1			10 1 (250		1	1								
A 220 B B B B B B B B B B B B B B B B B B	A 220 Q 200 Q 200 Q Q Q Q Q Q Q Q Q Q Q Q		9		H	-		1	a	a	Ø	a							
Q, Q, 200 Q, 200, 200 200 Q, Q Q, 270 200 200 220 Q, Q Q, 200 200 200 220 Q, Q Q, 200 Q, 200 220 Q, Q 250 200 Q, 220 230 Q, 230 Q, Q 250 200 Q, 220 220 Q, Q Q, 210 Q, 220 220 Q, Q Q, 220 220 220 Q, Q Q, Q, Q, Q, Q, Q, Q, Q, Q Q, Q, Q, Q, Q, Q, Q, Q, Q, Q Q, Q, Q	Q, Q, 200 Q, 200" 200 Q, 0 Q Q Q, 210 200 200 210 Q, 200 Q Q Q, 200 200 200 210 Q, Q, Q Q, 200 Q, 230 230 430 430 430 430 Q 230 x 200 Q, 230 x 230 430 430 430 Q 240 Q, 200 190 Q, Q, Q, Q, Q, Q Q, 200 200 190 Q, Q, Q, Q, Q, Q, Q Q, 200 200 210 200 Q,		9	_		_		-	a	a	a	a							
A 210 200 200 210 A 210 A 210 A A A A A A A A A A A A A A A A A A A	(2.10) 2.00 2.00 2.00 0, 2.00 0, 2.00 0, 0.00		9	_	-		_	-	I	200	B	Q							
(1/0)	(210) 1 200 200 200 220 Q A Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q		9			-	_	-	_	7/0	a	Q							
2	2		0		ĺ		_		-	₹	a	Q							
2 K 2,06 190 K 220 230 230 K 2	28 × 2.06 190 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 200		3	-	H		-	-	_	a	g	S.							
			~	_	×	l	l	_	×	X 30 K	230 K	a							
2 C C 200 200 A 00 B B B B B B B B B B B B B B B B	200 200 200 190 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q		7	×		L	1 .	ł	*	J	J	U							
A 220 C C 200 210 210 Q Q Q Q Q Q 210 A 220 A 230 A 23	A 120K 120K 120K 120K 220 2/0 2/0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q			-			-	}	Ø	Q	Q	C							
A 120 K 320 K 320 K 230	A 220 K 220 K 220 K 220 K 230 K 230 K 230 K Q K 210 Q Q 230 Q 210 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q		9		a				-	a	a	Q							
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 2 20 20 20 0 0 0 0 0 0 0 0 0 0		9	×					£		230 K	a							
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		9		01		DHCSACTES		210	a	a	Ø							
2 2 200 200 200 Q Q 210 Q Q Q 210 Q Q Q Q Q 210 220 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	2, 200 200 200 2, 200 Q Q 2, 20 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q)		6		hermona:		Q	Q	a	Q							
2 Q Q 210 200 220 Q Q Q 2 Q Q Q 2 Q Q Q Q Q Q Q	2 Q Q Q 220 220 Q Q Q Q Q Q Q Q Q Q Q Q)	_		-	_		a	220	a	d							
2 Q Q Q Q Q Q Q Q Q Q 215 215 205 220 -	2 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q				70						B	Q							
715 205 200 200 3/0 3/0 220 -	215 205 200 200 210 220		5	-	ď	-			B	Q	d	Q							
215 205 200 200 210 210 220 -	215 205 200 200 210 210 220	-			-														
	12 14 15 19 13 13 4 1 Sweep_LQ_Mc to 250 Mc in 0.25 min			-	\rightarrow		-		-	220	(١.							
12 14 15 18 13 13 13	Mc to_25.0 Mc in 0.85_min								/3	/3	4	1							

TABLE 52

									Central	Rodio Pro	Central Radia Prapagation Labaratory, National Bureau of Standords, WashIngton 25, D.C	A L	Notional Notional	52 Bureau of	Standard	s, Washing	fon 25, D.	Ü					Form adopted June 1946	ine 1946
¥	foFi	Mc	Mc	March		1949					20	CNOCEPTEBLO	TTD		DATA				J	National	Bureau	of Sta	ndards	-
(Characterist	.2	ĕ	Unit) aton, E	§ 5	oth)						2				I - I				Sca	Scaled by: E.J.W., J.J.S., J.M.C.	J.W., J.	Institution)	I.M.C.	
00000	1	Lat 3	N-0.6E 101	., Lang.	Long 77.5°W	18						75	75°W	Mean Time	9				Ca	Calculated by: A.G.J., J.J.S.	G.J., J.	- 1	J.M.C. G.P.G.	9
Day	00	ō	02	03	0 4	0.5	٥	6 07	80	60	0	=	12	H	4	15	21 91	81	6	20	21 22	2 23		Ц
-					-	-			Q	Ø	a	Ø	Q	a		a	8	2	_	NO MENTE CO	+	+		NAME OF TAXABLE PARTY.
N									d	q	7	7	2.1	+	+	+	+				-	1		
20									a ·	7	a	a ·	0	0	+	+	0							
4 (-		o o	0	7	7	9	+	+	+	70				-	-		
S						+	-		0	7	38	7	3 (+	+	9	+				+	+		
9						+			9	3	3 0	9	9	300	+	+	+		-		-			
_						-	+		G (g (000	0	Q.	-	+	+	0 0					-		
80									0	3	8	7	7	+	+	+	8				1			
0)								-	d	7	Ø	a	a	Q	+	+	+	-				+		
0		Charles Or 1 CE Sales	Constitution of the last					Commence and Commence	7	q	Ø	7	da	+	+	+	-							
=									O	0	Ø	Ø	Q	a	0			~						
12									0	Q	7	7	7		-	0	0	~						
13					-				d	7	Ø	Ø	G		0			_						
14									464	,			5.1	¥	5.2 5	7	Z¥							
-22									` \ -	45 %	_* 7		5.2 x	¥	56x			*						
9					~~~				Q	Q	Ø	Q	Ø	Ø		_	-	~						
17									Q	Ø	7	Ø	77	-	0		0							
18									Q	Ø	a	7	0			-								
6									Ø	Ø	7	17	7	7	0		0							
20									Ø	7	7	7	7	7		A		~						
21									Ø	-4	_		7	-			H							
22					(NO) POST				318	Q	1	`1		5.02 K	¥~	¥	Je.	2 *						
23					E.0401				Ø	x / 'S	\rightarrow		× 7	X X	- 1	0	C							
24									S	7	7	7	7	Q	0	0	0	~						
25									Q	a	U	J	7	7	7	0	-		_					
56									O	* 7	× 7	5.6 *	5.5	5.5	K K	X 77	7	, K						
27									Ø	7	Q	Q	7	a	7	7.00	\dashv					_		
28						-			0	Ø	Ø	Ø	Q	Q	0	0	9 0	~						
59									C	a	7	7	7		0	7 6								
8									Ø	7	Ø	Q	7	7	7	0	0							
31								-	O	Ø	Ø	0	Ø	Q	8	0	9	2				_		
						-								-										
edian						-			1	1	1	1	5.2	1	1	1	1							
aunt									٦	ŋ	7		5	*	00	7	7				-	-		
											Swe	Sweep 1.0 Mc to	Ac to 25.0	Me ta 25.0 Me in 0.25	.5 ти						D	S COVERMMENT P	RINTING OFFICE 1946 0 -	\$1000 · 1
												2		1										

Form adopted June 1946

National Bureau of Standards
(Institution)
by: E.J.W., J.J.S.

Scaled by: __

TABLE 53 Central Radia Prapagation Laboratary, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

March (Month)

Characteristic) (Unit)

U S GOVERNMENT PRINTING OFFICE, 1945 0 - 100518

TABLE 54
Central Radio Prapagation Laboratory, National Bureau of Standards, Washington 25, D.C.
IONOSPHERIC DATA

Form adopted June 1946

	foE (Characteristic)	Erretic)	(Unit)	M	March (Month)	946			Central	Olbar Olbar		IONOSPHERIC	HER		DATA	, wdsning	Central reaso Proposition Leadershy, National Bureau at Standards, Masterngron 23, D.C. IONOSPHERIC DATA		1	Na	ional B	Bureau (1	of Sta	Indard	
1	Ogserved o		hington,	0	1			ï				ř							S	aled by:_	9 6	, V.,	0 0	O.W.C	
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1.0		Lc	390°		77.5°\	2							A A	Medn Tım	e				ŏ	Iculated	by: A.G	ال , ال	5.5	O.M.	П
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	\dashv	-	0.4	-	-	\dashv	-	60	01	=	12	13	-	\dashv	-	8	5	\dashv	\dashv	\dashv	-	20	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									20	3.2	3.5	J	C	3 8			4	<i>y</i>							
A3 A2 B4 B4 B4 B4 B4 B4 B4 B	2								28	es es	35 "	8	3.9	-			3						_		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ю							~	×	w n	36	00	[3.8]											_	h (C) C) H
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4							2 0	ž.	35	D0 . C0	39	4.0		ì										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5							(2.2		32	90.00	200	0. #			77	~	~							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9				_			7	1		36	25	J			-	-	_	_						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7							٧	-		3.6	[34]	3 9		-	2									
$\lambda \lambda^{\mu}$ 30 39 39 30 31 35 37 31 35 37 31 35 37 31 35 37 31 37 31 37 31 37 31 37 31 37	80							7	L.	-	[3 6] A	39	3.9 H			2	-	તે	Ŧ						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6							~	T.	3 3	3 9	39	89	_	_	2	~								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10							۲		-	20	A (8.E)	25°	-	Lu)	5	-	-						_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								٦	1	-		2.5		1	2	*		u		L		-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12							(2)	₹			20			W.			-						_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3							7	E		2 6	37		-			-	-	* *	_					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4							×	7	3.2	1			×	£ ×	7 6	×	N ×	42						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15					-		Z	7	3.1	4		3. C. K	1	×	1×	25	- Jac	*	-					m m. age -tota
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-6							2 3	-	P	A	A	-	1	-	╁	H	L	_	H	-			\vdash	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17							77	E	3.3	36	3.00	3.8	-	-	-	-	-	×						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18							77	3		3.5		1		-		-	_						_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6							7 7	-		A			S	-	-	-							_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20							4	00		¥.	3.7	3.7	A			ď.	٩						_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.1							77	-	Н	3.4 "	3.5	3.7		H	-	\vdash	×	£.¥	_	_			-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22							4	7				3.5 1	(35) A (.	L.	¥	×	×	¥						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23							23	200		3.3 K	3.5 K		¥	*	_		C							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24							U	O	32	3 4 3	3.5		ł	V.	_		3.0						_	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25							1,3	-	3.3	2	-	-	\vdash	-			\vdash							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26							8 3	×	X 3.3 A	3.6 %	3.6 K	3.7 8	×	k	*	×	×	2 ×		_				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27				May-0/70			54	H.	[30]		38 %	(3 8) 5					_	Z.						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28							23			35		3.9	A		_									
$ (2.3)^{5} 2.7 3.7 (3.4)^{4} 3.7 [3.7]^{4} 3.7 [3.7]^{4} 3.7 3.5 3.7 3.5 3.7 3.6 3.6 3.6 3.6 3.6 3.6 3.7$	29							23		×	[3.5] A					_	£	H		_	-			_	_
(23) ⁵ 27 37 36 36 36 36 36 37 37 37 1 1 1 2 34 35 37 37 37 37 37 37 37 1 2 3 3 37 37 37 37 37 37 2 3 4 3 3 37 37 37 37 3 4 3 4 3 4 37 48 27	30							, s.	ž		[3 4]"	A (3.E)	_		u.	_									
32 35 37 38 37 35 33 37 31 32 37 38 37 35 33 37 32 37 38 37 38 37 37 32 37 38 37 37 37 33 37 37 38 37 37 34 38 37 48 38 38	31							(4.3	4	-	3.3	3.6 4	1		2										
23 28 37 37 38 3.7 3.7 3.8 3.7 3.7 3.8 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7																									
26 29 27 28 27 28 27 28 28 28 28	Median							2 3		3.2	3.5	3.7	3.7	-	-	5						_			
	Count					_		26	-	82	27		48	77		-						_			

Form adopted June 1946

Scoled by E.J.W., J.J.S. J.M.C.

Mc,Km March 1949

IONOSPHERIC DATA

75° W 75	72.58W. Near Time 72.58W. Near	D.C. 1. Loring ZT.59W 1. Lor
75° W 75	7750W 9 750	Moshington D. Moents Moshington Mos
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	775°W 10 775°W 10 775°W 10 70 05 06 07 08 09 09 09 09 09 09 09 09 09 09 09 09 09	Moshington D. Moshing Moshing Moshing Moshington D.
**	Month) 17.50W 10.0 7.750W 10.0 7.50 W 10	Mashington, D.C. Month Mostlington, D.C. Mostlington, D.C
	* 1, 1, 2, 2, 2, 3, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,	Washington, D. C. G G G G G G G G G

00

0

30

30

30

Manual

Automatic 33

96

00

30

20

30

30

TABLE 56
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

Form adopted June 1946

National Bureau of Standards

IONOSPHERIC DATA

646

March (Month)

(MISOO)F2 (Charocteristic)

G.P.G. J.M.C. (1.6)x (8.7) (1.9) 15 1 (1.7) (18)3 (1.9)5 (18)5 (6.9) 6:1 0.0 97 61 000 20 6.7 67 J.J.S. J.J.S. (61) (1.8)3 (1.6)5 (19)3 473 000 1.8 22 2.0 00. 61 6.1 0.0 6:1 6.7 61 3.0 6. 6.1 6.7 0 0 (00) (1.6)5 x 6% (18)5 E.J.W. (6.7) 0.0 Calculated by: A.G.J. 03.0 00/ 0.0 61 1.8 6:1 0.00 6.7 00 000 000 000 1.8 000 0 2 0 6 6.7 6 8 (49) 9(00) r (1.2)3 (0.0) (1.8)5 (6.7) (0:0) 20 (20)3 (19) 6.1 (100) 00 0.0 11.235 0.0 1.8 6.1 00 6. 50 0 6. 20 0.00 0 6.1 6 Scaled by: (00) (61) (0.0) (21)3 9(0:0) (20) (20)3 9(6.1) 9(0.6) K(20) 5 K(9) P 1,935 100 1.9 x (0:0) (0:00) (6.9) (E 50) (1.910 (6) 67 (0.0)K (021)P (020)3 00 6 61 17 81 20 19 4 (19)6 x 6:1 ¥ 6.7 1.9 * (0:0) 0.00 (1.9) 0 (0.1) 5 (1.9) 7 (20)3 1.7 x 00 5.0 000 50 3 (4.5.1) 67 (0.0) 0.0 000 03:0 0.5 0.00 23.1 050 0.00 8 (20) P (49)5 X 6.7 0.00 (1.9)5 (00) (2.0) (0.0) 6.1 0.0 0.0 0.00 3.0 00 03.1 2.1 6.1 8 0.0 6.7 61 1.7 000 00 <u>~</u> U 1.8 X X 5(6.1) (20) (0.0) (1.9)3 (0.00) 9(61) 9(87) 00 1.8 6.1 28 0.0 20 6.1 67 00 6 1.8 6. 01 9.1 61 20 00 0 9 61 6. 1.2 K (60) (1.8)5 (00) 6.1 (6.7) 000 6.7 (6.7) 16 6.1 3 6.1 6. 61 (13.1) 0.0 1.00 61 6.1 1.8 61 0.00 0 2 J 5(87) (0.0) Sweep 1.0 Mc to 25.0 Mc in 0.25 min 0.50 67 (19) 9.1 00 (6.1) 61 0.50 0.0 1.7 00 00 00 0.50 00 6.1 6.1 91 6.7 6. 4 S 6. 3 61 6.7 8. 61 30 Mean Time (6.9)3 1.9 x (1.9)6 (00) 6.9 00 6 00. 1.5 1.2 6. 8.0 0 61 10 0.0 000 3 0.00 6 0.0 00 0.00 6 6. 0.0 0 0 (0.0) (000) (63) 1.9 (6.7) (61) 000 6.7 (00) 0. 0 0 1.8 00 000 000 200 67 1.8 0. 6.1 61 0. 2 U 61 1.0 75°W 1.8 K (4) 2.0 (0.0) S (60) (2.3) (0.0) (000) 1.00 0 00 8 9.1 00 000 61 6.1 1.6 0.00 1.8 0.50 6: 6 61 = Ú V U (202)5 (20) 1.6 × 3.2 10 0 030 1:00 0.0 00 1.50 0.0 2.0 6.1 6.1 2.0 000 21 1.00 15 6.1 0 O 8 (02.1) 3 02.1 (02.1) 20K 20K 0.00 000 27.20 1.80 5.50 2 2.2 2.5 2.2 00 61 2.1 1.8 1.9 8.0 000 00 60 100 1.00 3, 2.1 (8.5) (2.3) (13.1) (0.00) 03.0 22.02 5 2 1.00 J. 5.3 3 2,2 ٤ 0. 2 η η 27.02 08 3 1.8 1.00 00 6:1 0.00 2 U (18) F (20) S (21) F 22 × × 20K 00 0.00 0.8 2.2 2 2 00 00 20 0.50 (1.9)5 20 0.00 1.00 07 02.02 2.00 4 1:00 3 20.00 6:1 3 1.00 2. 1.50 0 (6.7) ¥ E K K (.9)3 (0:0) (1.9) 5 (0.0) 1.95 000 (94 (20) 19x (1.9)5 (81) (18) 000 1.7 K 0 0.00 6:1 90 67 80% 6.1 00 6. 9.1 100 1.9 007 61 U 3 0.0 (1.5)F (17)3 (,9)3 1 (1.7)3 (8) (19)3 (1.9)3 (1.9) (1.8)F (1.2)5 00. (1.1) 81 67 1.8 00. 0 2 00% 0. 1.8 1.7 6.1 970 Ŋ U C, 1.6 x 1.6 x 6: 1.7 K (1.7)5 (17)5 E(8.1) 1(9.7) 1173 ., Long 77.5°W 5(81) (0.20) 6.9 (1.9) 2 (1.8) 3 (1.7) 3 (1.7) 3 (1.8) 8 8.1 04 6.1 0.00 6 61 8 6 00 61 ξ 20 U 7(87) × K (17) 5 (1.8)3 x 1 (2.5) 5 0(61) (16)5 00. (16)3 1.7 K (18)3 (1.8) 6 (19)5 000 1.8 1.4 X (1.6) F 03 1.8 6.7 6.0 0.00 1.8 1.7 (6:1) (/.8)3 1.8 1.6 1.8 61 Washington, D.C. J (1.9)3 (16)5 N.0.65 101 1.6 K 164 6 67 8/ 0.0 1.8 61 00 8 1.7 02 6 1.8 0 0.00 6.9 1.8 (8/) 0. 1.7 V Q 1.8 X X 8.1 (1.8)3 17 (0.9)3 (8.1)S (16/K (1.6)3 (4.9) 1.7 (1.9) F 0,0 8 0 1.7 6.1 6.7 000 1.8 ō 1.8 18 0 1.8 d 1.0 1 00 (19)F (02.1) 1,615 (18)z (19)3 (19)3 6.7 6.9 67 000 0.50 6. Observed at 00 8 6 6. 17 141 U 18 00 91 6 Count Day ~ 0 0 50 89 Median 9 5 2 8 CJ. 20 4 2 22 23 24 25 26 27 28 58 30

National Bureau of Standards

J.M.C.

J. J. S.

E.J.W.

DATA IONOSPHERIC

March

(M3000)F2

Washington, D.C.

G.P.G. J.M.C. (2.9)5 (2.8)3 (2.7)3 1. 8/5 1 (2.6) 5 J (2.4) 5 J (2.7) K 2.9 23 3,00 J. J. S. 2.34 (2.8)3 2.6 x 29K 2.7K 2.74 (2,8)5 Jan 18 I (2.4) 8 K (2.5) 5 (2.9) 7 (2.9)3 2.8 30 2.8 2.7 2.7 22 30 8.0 2.9 (3.0)P 8.8 2.7 2.9 3.0 29 2.9 2.9 0.5 2.0 3.00 2 3. O 3 2.7 K (2.9)5 (2.9)5 (3.0)5 Calculated by: (2.9)S 4.7 (3.0)5 (3.0) 3.0 2.9 2.9 20 2.9 Q 2.5 K 2.6 K K (3.0) 5 (3.2)S 5(8.0) (3.1)5 (3.0)5 (4.9) 2.7 K (2.9) P 5(0.8) (2.9) \$ (2.9)8 K (3.0) & K (2.9) 5 2.9x (3.0)% (3.1) \$ (3.0) 3 3.0 (3.0)3 (3.0)5 (3.0)5 (3.0)5 (3.0)3 8.9 6 3.1 ω. 0 30 (3.0) 2.9 4 2.6 K 2.5 K 2.9 % (2.8) J (2.9) J 2.9/5 (3.0)5 (3.0) 3.0 2.9 2.9 9.6 3.0 30 00 3 2.CX (3.9) 2.9× J(2.4)8 2.8 K (2.9) (2.8) 5 (2.8) 5 (3-0) 5 2.9 2.9 2.8 2.9 2,0 3.0 2.9 (38) 3.1 29 3.0 _ O 2.4x 8.8 2.7K J. (2.9)3 (2.9)3 3.0)8 (3.8) 3.9,5 2.9 2.9 2.0 3.0 2.8 2.0 2.9 3.0 2.9 2.9 9 2.9 00 (4.9)5 2.5.K (3.0)5 5(6.8) (2.7)5 (2.8) \$ 30 2.9 (2.9)5 (3.0)5 3.9 8.8 3.00 9.8 2.9 2.9 2.8 2.6 2.7 3.9 00 U 2 9.0 U 2.4. K 8.5x (2.8)5 (4.9) 2.9× 2.7K (2.815 (2.8) 2.00 Sweep 1.0 Mc to 25.0 Mc in 0.25 min 2.7 2.9 2.00 3.0 8.8 2.9 3.0 4 C x 8.6 2.6 X (2.9)5 20.8 (2.9)3 8.80 3. 2.8 30 8.9 300 9.6 3.0 2.8 2.9 3.0 5.0 3 2,9 10 30 3.0 (15) (3.9)5 2.8× (2.9)5 2.8x (3.0)5 (3.8)5 3.8 (2.9) (8.6) 3.8 2.8 3.0 20 2.9 8 2.9 2.9 4.9 2.0 2.9 2.8 3.9 75°W 2 (2.9)5 (3.0)5 (2.9)5 (2.918 2.4 K (3.2)5 8.7× 2.9 31 (2.9)5 (3.0)5 3.0 2.5% 00.00 3.0 2.8 200 3.0 2.9 2.0 2.8 = Ð J U x 8.8 3.0 (3.0)P × & 3.1 3.0 2.9 3.0 29 3.0 2.9 3.0 3.0 3.0 3.0 3.0 3.0 0 3.9 3.0 (7) O 3.1 3.0 30 2.00 K (3.0) 5 2.9 X (3.0)5 2.0 AX (i) 3.0 3. 3.0 3.0 3.1 3.0 3.0 3) (3.3) 5 (3.3) \$ 2.94 2.7 8 (3.2)5 (3.2)5 X 3.2 F 3.0 K 9 32 3.2 3.1 3.1 3.3 3.2 5 5 3 3 3.0 3.2 08 J 3. 29 (2.9)5 3.1 3.0 3.0 3.0 3.0 3.2 20.87 3.2 3. É 3.7 0 3 3.1 0 3.1 30 2.5 2.7 F S K 7 (2.8) S (4.8)5 2.8 N (2.7)3 (2.8)5 (2.7) 2.6 = (2.8) 3 2.8 (3.0) 2.5 KJ (2.2) K 26K 2.8 K 2.8 K 6.95 3.0 F 2.9 € 2.6 X (2.8) (2.7) 3 (2.7) 3 (2.7) 5 (2.9) (2.9) (2.9) 5 8.8 2.5 x 7 (2.6) SF (2.8) S 2.6F (2.6)F (2.8)5 2.7 M X M X 8.00 3.0 2.8 90 4.9 23 7(2.45 3.6 T X (3.8) E (2.7) 5 (2.7) 3 3.1 5 2.9 6 2.8 5 7.7 2.0 2,00 3,00 0 2 (2.9) 5 2.9 2.7 3 2.8 F 2.7 V X (29) = (2.5) K 2.6 (2.6)S 300 (2.5/5 0 4 (2.6)5 (4.8)3 8.8 Long 77.5°W م 00 3.8 10 2.9 2.00 2.7 2.6K J. 4)KFC 30 2.6 (2.4)7 2.8 F (27)5 2.7 (2.9)8 2.8 (2.8)F (2.8)5 (2.8)3 2.7 x F(2.6) S 2.7K (2.8)3 (2.7)3 (2.9)3 (2.6)5 3.7 3.0 (2.8) S (2.9) 5 2.0 03 2.5 K 2.7 K 2.8 K J (2.4) E N.0 62 101 2.7 0. 3.9 03.6 02 200 0.6 3.0 2.8 2.8 2.8 32 4.9 2.8 (2.4) 5 3.48 2.6 2.7 2 2 2 (3.0) F (2.7)5 × (2.8)5 (2.8) J 2.5x 3(2.8) S (2.8) x (2.6) x 00 3.0 8.6 2.7 2.9 2.7 2.6 U 0 2.7 23 (3.1)5 F 22 28 00.00 2/8 2) 2.8 2.00 2.9 03.60 4.7 Observed of 3.0 00 3 800 00 J 2.9 200 3 Median 0 Day 9 ø, 2 1.7 0 22 2 Ю 4 un 9 24 27 Count 56 25 28 30 2

Manual

Automatic

Manual

- D 9461 331A0

| 4 5 4 3 Sweep 1.0 Mc to 25.0 Mc in 0.25 min Manual [3] Autamatic [8]

~

m

Count

TABLE 58
Central Radia Propagatian Labaratary, National Bureau af Standards, Washington 25, D.C.

Form adopted June 1946

IONOSPHERIC DATA

(M3000)FI

G.P.G. J.M.C. National Bureau of Standards

(Institution) J.M.C.

by: E.J.W., J.J.S., J.M.C. 23 Cofculated by: A.G.J., J.J.S. 22 21 20 Scaled by: ____ 6 $\underline{\omega}$ 999 9 Q 2 5 a 3 75°W 2 Q 60 Q 90 Eagaa 20 90 0.5 March 1949 0 4 Wo 277. Song 77.5°W 03 Observed at Washington, D.C. 02 ō 00 Day 16 19 20 20 21 21 4 Median D. 9 00 0 2 -33 4 15 7 0 22 23 24 25 26 27 28 30 ا

Table 60

Ionospheric Storminess at Washington, D.C.

March 1949

Day	Ionospheric 00-12 GCT	character* 12-24 GCT	Principa Beginnir GCT	al storms ng End GCT	Geomagnetic 00-12 GCT	character** 12-24 GCT
1 2 3 4 5 6 7 8 9 10 11 2 3 14 15 16 17 18 9 20 1 22 23 24 25 6 27 8 29 31	12112110111114441522276**2421132	1111122111212762111017421531023	2300 2300 2200 	1100 1200	2442311120113542343236522403332	3232111231124324433234222113211

^{*}Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

^{**}Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

^{***}No readable record. Refer to table 49 for detailed explanation.

⁻⁻⁻⁻Dashes indicate continuing storm.

[#]Value uncertain owing to insufficient data.

^{##}Time of ending unknown because of loss of record.

Table 61
Sudden Ionosphere Disturbances Observed at Washington, D. C.
March 1949

1949 Day	GC: Beginnin		Location of transmitters	Relative intensity at minimum*	Other phenomena
March 8	1500	1515	D.C., England	0.2	
9	1553	1705	Ohio, D.C., England, New Brunswick	0.0	0
9	2145	2205	Ohio, D.C., England	0.03	
13	1442	1500	Ohio, D.C., England	0.05	
14	2027	2050	Ohio, D.C.	0.05	
16	1340	1400	Ohio, D.C., England	0.3	
26	1420	1450	Ohio, D.C., England	0.0	Terr.mag.pulse** 1421-1430 Solar flare*** 1424 Solar flare*** 1427
28	1739	1800	Ohio, D.C., England	0.2	
31	1639	1700	Ohio, D.C., England	0.1	Terr.mag.pulse** 1640-1655
31	1733	1825	Ohio, D.C., England	0.0	Terr.mag.pulse** 1734-1800

^{*}Ratio of received field intensity during SID to average field intensity before and after, for station W8XAL, 6080 kilocycles, 600 kilometers distant, for all SID except the following: Station GLH, 13525 kilocycles, 5800 kilometers distant, was used for the SID on March 8.

<u>Table 62</u>

<u>Sudden Ionosphere Disturbances Reported by Engineer-in-Chief.</u>

<u>Cable and Wireless, Ltd., as Observed in England</u>

1949 Day	GCT Beginnir	NAMES OF TAXABLE PARTY.	Receiving station	Location of transmitters	Other phenomena
February 20	0810	0830	Brentwood	Bahrein I., Eritrea, India, Iran, Kenya, Malta, Southern Rhodesia, Syria, U.S.S.R.	Solar flare* 0808
March	1610	1640	Brentwood	Parbados. Colombia. Venezuela	

^{*}Time of observation at Prague Observatory, Czechoslovakia.

^{**}As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

^{***}Time of observation at Prague Observatory, Czechoslovakia.

^{****}Time of observation at Meudon Observatory, France.

Sudden Ionosphere Disturbances Reported by RCA Communications, Inc.,
as Observed at Point Reyes, California

1949 Day	G(Beginnir	oT ng End	ide der gjend fra vrom etalig sigle Glages etaliges etaliges. Ber enregnister fill eine december etaliges etalistische etalische etalis	Loca	tion of	transmi	tters		
March 9	2145	2205	Australia, Philippine		Hawaii,	Japan,	Java,	New	York,

<u>Table 64</u>

<u>Sudden Ionosphere Disturbances Reported by RCA Communications. Inc.</u>

<u>as Observed at Riverhead. New York</u>

1949 Day	GC: Beginnin	THE RESERVE OF THE PERSON NAMED IN	Location of transmitters	Other phenomena
March 9	1610	1645	Argentina, Canada, England, Italy, Panama	
26	1425	1445	Argentina, Canada, England, Italy, Morocco	Solar flare* 1424 Solar flare** 1427
31	1735	1750	Argentina, Canada, England, Italy, Morocco, Panama	
April 5	1638	1700	Argentina, Canada, England, Italy, Morocco, Panama	OUT WEST THE SERVE IN SOME DOWN THE WAS THE SERVE

^{*}Time of observation at Prague Observatory, Czechoslovakia.

^{**}Time of observation at Meudon Observatory, France.

Note: Observers are invited to send to the CRPL information on times of beginning and end of sudden ionosphere disturbances for publication as above. Address letters to the Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

Table 65

Provisional Radio Propagation Quality Figures (Including Comparisons with CRPL Warnings and CRPL Probable Disturbed Period Forecasts) February 1949

	1	North Atla	ntic		No	orth Paci	fic		
Day	Quality figure	CRPL® Warning	CEPL Forecast of probable disturbed periods	Geo- mag- netic KCh	Quality figure		CRPL Forecast of probable disturbed periods	Geo- mag- netic KCh	<u>Qua</u> 1 2 3 4
	01-12 GCT 13-24 GCT	01-12 GCT 13-24 GCT		01-12 GCT 13-24 GCT	01-12 GCT 13-24 GCT	01-12 GCT 13-24 GCT	Ę	13-24 GCT	5 6 7 8 9
1 2 3 4 5 6 7	5 6 5 6 6 6 (4) 5 6 6 5 5 (4) 6	x x x x x x x x x	x x x	1 1 1 2 2 3 5 2 1 2 2 3 4 1	6 7 6 6 7 6 5 5 5 5	x x x x x x x x x	X X X	1 1 1 2 2 3 5 2 1 2 2 3 4 1	Sym X
8 9 10 11 12 13 14 15	5 6 6 7 6 6 6 7			0 1 1 1 3 3 3 3 3 2 3 2 2 2	5 6 6 7 6 6 5 6 5 6 6 7 6 6			0 1 1 1 1 1 3 3 3 3 3 2 3 2 2 2 2 2	м
16 17 18 19 20 21 22 23	6 6 5 7 6 6 6 5 6 (4) 6 6 6	x x x x	X X	2 2 3 4 4 3 2 1 0 2 3 4 5 3 2 2	6 6 6 6 7 7 6 6 6 5 6 5 6	x x x x	X	3 4 4 3 2 1 0 2 3 4 5 3 2 2	G (S
24 25 26 27 28	6 6 6 6 7 6 6 6 7			4 3 1 1 1 2 4 2 2 2	(4) 6 5 7 5 6 6 7 6 6			4 3 1 1 1 2 4 2 2 2	S ()
Score: H M G (S) S		3 0 20 3 2	2 1 22 2 1			0 1 19 5 3	0 1 2 2 3 2		•

^{*}Broadcast on WWV, Washington, D.C. Times of warnings recorded to nearest half day as broadcast.

ity Figure Scale: - Useless

- Very poor

- Poor

- Poor to fair

- Fair - Fair to good

- Good - Very good

- Excellent

bols:

Warning given or probable disturbed date

Quality 4 or worse on day or half day of warning

Quality 4 or worse on day or half day of no warning

Quality 5 or better on day of no warning

Quality 5 on day of warning

Quality 6 or better on day of warning

Quality 4 or worse (disturbed)

omagnetic K_{Ch} on the standard scale of O to 9, 9 representing the greatest disturbance.

Table 66

American and Zürich Provisional Relative Sunspot Numbers

March 1949

Date	R _A *	R _Z **	Date	R _A *	R _Z **
1	190	150	17	248	182
2	187	170	18	228	199
3	202	144	19	239	200
4	199	158	20	251	210
5	219	169	21	257	221
6	203	174	22	213	169
7	192	186	23	189	153
8	216	172	24	174	126
9	230	160	25	151	112
10	200	152	26	150	109
11	202	154	27	132	114
12	199	185	28	124	112
13	214	178	29	133	90
14	242	164	30	150	122
15	224	175	31	179	120
16	226	172	Mean:	198.8	158.1

^{*}Combination of reports from 50 observers; see page 8.
**Dependent on observations at Zurich Observatory and its stations at Locarno and Arosa.

Table 67a

Coronal observations at Climax, Colorado (5303A), east limb

Date				Deg	ree	s n	ort	h	f 1	the	sol	ar	eq	uat	or				00	d											lar						
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	Ľ	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1949																																					
Mar. 2.7	-	_	_	-	-	-	-	-	-	_	-	5	9	12	16	15	33	30	25	23	17	19	22	25	12		g	5	-	-	-	-	-	-	-	60	-
3.6	_	-	-	-	-	-	-	-	-	-	_	3														16		_	_	-	-	-	-	-	_	-	-
4.8	X	-	-	_	_	-	$\stackrel{\leftarrow}{\rightarrow}$	-	-	_	4	6														15		g	5	_	_	_	-	_	409	4600	458
5.6	X	-	-	-	_	_	_	-	-	-	3	5						10						19				3	-	-	-	-	-	***	457	-	-
6.7	-	_	-	_	_	_	3	3	3	4	g														20	15	11	3	3	2	-	-	-	CER	_	_	-
9.8	-	-	-	_	-	-	_	-	-	3	g							15							5	3	-	_	-	-	-	•	-	-	-	-	-
12.9	-	-	-	-	_	-	-	3	4	5	8	13												13		g	5	5	5'	X	X	X	X	X	X	X	X
14.0	X	-		-	_	-	_	2	3	5	5	10	_													13	12	7	-	-	-	-	-	-	m3;	veb	-
14.8	-	-	_	_	_	-	_	-	-	4	5	10	8											15		7	7	X	X	X	X	X	X	X	X	X	X
16,8	X	-	-	_	_	14	Ŋ	11	4	5	8	9	11	12	11	12	13	13	13	14	13	12	13	13	12	9	5	6	6	5	-	-	-	-	om.	-	X
18.0	X	-	-	_	9	10	10	11	10	11	11	8	5	-	_	-	-	-	-	-	-	7	8	10	11	15	12	10	11	10	9	9	7	X	X	X	X
21.8	-	-	-	-	-	-	-	_	-	5	7	8	9	10	12	18	55	22	22	25	21	18	12	g	g	6	5	5	3	-	-	-	-	-	-	deca	-

Table 68a
Coronal observations at Climax, Colorado (63'74A), east limb

Date												ar			r				00				Deg	rees	3 80	outh	ı oi	t	he	sol	ar	equ	ato	~			
	90 8	35	30 ′	75 '	70 6	55 6	0 5	55 5	50 4	45 4	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35 4	,O Z	15	50	55	60	65 '	70 '	75	80 1	85	90
1949																																					
Mar. 2.7	3	٤3	3	3	2	1	1	1	-	_	1	3	2	14	14	2	14	12	13	2	1	7	8	13	9	3	3	1	1	1	1	1	-	-	-	-	43
3.6	2	2	2	2	1	_	900	_	-	-	-	-	1	g	10	11	11	3	1	7	10	12	9	9	2	2	2	3	1	1	1	1	1	1	1	1	1
4.8	X	_	-	-	***	_	_	_	_	-	-	-	3	3	3	5	1	1	-	8	10	10	12	3	14	3	1	1	1	1	-	-	400	CHES	-	400)	K.
5.6	X	_	-	_	_	-	-	-	_	-	-	1	2	3	1	ĵţ	1	-	-	2	3	7	7	_	-	609	-	-	630	-	420	-	-	-	-	_	40
6.7	-	-	-	-	-	-	-	1	1	3	4	3	8	9	11	11	14	15	1	3	1	11	10	6	6	5	1	2	2	1	1	1	-	-	-	an	um
9.8	1	2	2	2	1	1	1	_	_	_	-	-	-	1	10	13	10	Σţ	3	J.	1	1	1	1	1	-	_	1	1	_	-	-	-	-	-	_	-
12.9	-	_	_	_	-	-	-	-	-	_	-	_	-	6	2	10	13	10	2	3	1	1	_	-	-	-	400	-	-	X	X	X	X	X	X	X	X
14.0	X	-	-	2	2	2	1	1	1	_	-	-	-	1	2	5	11	11	3	3	1	1	1	1	1	-	_	-	-	-	_	_	-	-	-	-	-
14.8	-	_	_	_	-	-	-	-	-	_	-	-	-	1	1	5	12	9	1	1	2	3	14	14	1	-	-	X	X	X	X	X	X	X	X	X	X
16.8	X	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10	-	-	1	1	-	1	1	400	-	-	-	-	•	-	-	-	•	460	emp	X
18.0	X	-	_	_	_	_	_	-	-	-	-	_	-	-	40	-	-		-	-	-	_	013	460	-	-	-	-	-	-	-	-	_	X	X	X	X
21.8	1	1	1	1	1	-	-	-	_	_	-	-	****	1	2	2	2	2	10	1	1	14	4	1	1	-	-	_	-	-	-	-	800	-	_	620	60

Table 69a

Coronal observations at Climax, Colorado (6704A), east limb

Date														uat					00	<u>L</u>			De	gre	98	sou:	th o	of t	the	so.	lar	eq1	ua to	or			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1949																			١.																		
Mar. 2.7	-	-	-	-	-	-	-	-	-	-	-	_	-	1	2	3	4	4	4	3	2	1	1	1	1	_	-	-	-	-	-	-	-	-	-	-	440
3,6	-	_	_	-	_	-	_	-	-	-	-	_	1	2	3	3	4	4	3	2	2	2	2	2	1	1	1	1	1	-	-	-	-	-	-	400	-
4.8	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	A	X	X	X	X	X	X	X	X	X	X	X	X
5.6	X	_	-	-	_	_	-	-	_	-	-		_	-	-	-	630		-	-	1	1.	2	1	1	1	_	-	_	-	-	-	-			esp	usa
5.6 6. 7	-	-	_	-	_	_	000	-	-	ente	-	1	1	2	2	2	2	2	2	3	14	14	74	4	3	2	1	-	_	_	_	-	-	-	-	-	cus
9.8	-	_	_	-	_	_	-	-	-	-	-	-	_	-	-	1	1	1	-	-	-	1	1	1	1	1	1	-	_	-	-	en e	-	-	-	_	am a
12.9	-	_	-	_	-	-	-	-	-	_	-	_	-	1	1	1	1	1	1	1	1	1	_	_	-	-	-	-	_	X	X	X	X	X	X	. X	X
14.0	X		-		_	_	_	-	-	-	_	_	-	1	1	5	2	1	1	1	1	1	1	1	1	1	1	-	_	_	-	-	-	-	_	_	
14.8	-	_	_	_	_	_	_	-	400	-	_	_	_	_	_	_	-	460	-	-	_	_	-	-	-	-	_	X	X	X	X	X	X	X	X	X	X
16.8	X	_	-	-	-	_		-	-	_	_	-	_	-	_	-	_	_	-	-	_	-	_	_	-	-	_	_	-		_	_	-	_	_	_	X
18.0	X	***	_	_	_	_	-	_	_	_	_	_	_	_	_	_	-	-	-	-	-	_	_	_	_	-	-	-	-	-44	-	_	_	X	X	X	X
21.8	-	_	_	-	_	_	_	_	-	-	-	-	_	.1	1	1	1	1	2	2	1	_	-	-	-	-	-	-	-	-	_	-	-	-	_	_	emb

Table 67b

Coronal observations at Climax, Colorado (5303A), west limb

Date							out												0									of t	he	sol	ar	equ	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	1	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1949			-									_								١.																	
Mar. 2.7	-	_	-	-	_	2	2	3	3	3	4	6	13	18	14	13	13		_					19			7	5	2	-	-	_	_	-	_	-	-
3.6	-	-	-	-	-	-	_	-	-	_	3	6	9	12	9	7	5	8			_			13			3	-	-	-	-	-	_	-	-	_	-
4.8	_	-	-	-	-	2	2	2	3	3	4	5	g	11	13	11	10	13						18		12	4	X	X	X	X	X	X	X	X	X	X
5.6 6.7	-	-	-	-	-	_	-	-	-	3	4	5	4	4	4	3	7	15		F 2	- 4	-	_	13	_	9	5	3	X	X	X	X	X	X	X	X	X
6.7	-	_	-	-	2	3	5	6	8	9	9	10	10	8	6	. 5	20								9	g	7	6	4	7	7	5	3	-	-	-	-
9.8	-	-	-	-	-	-	-	2	3	3	4	5	8	12	14	24	28	23	20	19	19	16	16	14	11	10	7	5	3	2	-	-	_	-	_	_	-
12.9	X	X	X	X	X	X	X	X	X	X	X	X		X	Х	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-
14.0	-	-	_	-	_	_	_	-	_	3	3	7	8	12	15	27	26	26	23	22	21	22	23	23	18	13	12	9	7	1	_	-	_	X	X	X	X
14.8	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-
16.8	X	X	X	X	X	X	X	X	X	X	X	X	g	13	18	17	16	15	15	16	18	18	19	20	15	7	_	-	X	X	X	X	X	X	X	X	X
18.0	X	_	_	-	_	_	_	-	_	_	-	-	7	8	10	9	9	-	-	-	6	8	9			.7	5	-	-	-	X	X	X	X	X	X	X
21.8	-	-	-	-	-	-	3	5	7	8	9	11	13	15	30	30	27	25	22	13	18	30	29	25	13	14	13	8	-	_	-	-	-	-	-	-	-
										_				_					L,	L																	

Table 68b

Coronal observations at Climax, Colorado (6374A), west limb

ate		[Deg	ree	s s	out	h o	ft	he	sol	ar	equ	ato	r				Λa				Degi	ree	s no	orth	1 0	f th	10	sole	ır	equ	ato:	r			
GCT		90	85	80	75	70	65	60	55	50 .	45	40	35	30	25	20	15	10	5	٠	5	10	15	20 2	25	30 ;	35 4	<u>،</u> 0	45 5	50	55 €	0	65	70	75	80	85	90
1949	9																																					
lar.	2.7	-	-	1	2	1	1	1	1	1	1	1	1	-	1	_	1	1	1	1	1	1	3	7	2	3	9	_	1	1	1	1	1	1	1	1	2	3
	3.6	1	1	ŀ	1	1	_	_	-	_	_	_	-	_	_	_	1	3	3	1	_	3	2	1	1	1	1	_	_	-	_	_	_	_	_	ī	ī	ź
	4.8	X	X	X	X	X	X	X	χ	X	X	X	X	X	X	X	Х	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
	5.6	-	-	-	_	_	-	-	-	-	-	-	-	-	_	-	_	9	9	5	1	g	7	6	_	_	_	-	_	X	X	X	X	X	X	X	X	X
	6.7	-	-	-	-	_	-	_	-	-	-	_	-	_	_	2	8	11	9	3	13	11	10	1	_	1	1	1	-	_	-	_	_	_	_	_	_	_
	9.8	-	-	-	-	-	-	_	-	-	_	_	-	-	_	-	1	10	3	5	11	2	1	_	_	_	-	_	_	_	_	1	2	2	1	1	1	1
	12.9	X	X	X	X	X	X	X	X	X	X	X	X	Х	X	X	X	X	X	X	X	X	X	X	X	X	Х	X	X	X	X	X	X	X	X	X	X	_
	L ¹⁴ .0	-	-	-	_	-	-	-	-	-	-	-	-	1	2	14	13	15	1	3	1	2	3	14	1	1	1	1	1	_	-	_	_	_	X	X	X	X
	14.8	X	X	X	X	X	X	Х	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-
	16.8	X	X	X	X	X	X	X	X	X	X	X	X	3	5	6	6	10	8	3	1	1	1	8 :	11	5	1	-	-	X	X	X	X	X	X	X	X	X
	18.0	X	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	9	5	-	-	-	-	1	3	1	-	-	-	_	_	X	X	X	X	X	X	X
2	21.8	-	-	-	1	1	1	1	1	1	1	1	1	1	9	10	9	12	1	2	10	10	5	1	-	_	-	-	-	-	-	_	-	1	1	1	1	1

Table 69b

Coronal observations at Climax, Colorado (6704A), west limb

					_						-	_							_	_	-			_	_													
Date											the									00				Deg	gree	es 1	nort	th o	of †	the	30]	ar	equ	1ato	r			
GCT		90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	10	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1949)																				Π																	
Mar.	2.7	-	_	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	1	1	1	1	1	1	2	2	-	_	_	_	-	_	_	_	_	_	-	_
	3.6	-	-	_	_	-	-	_	-	-	-	-	1	1	1	2	2	3	3	1	1	2	2	2	1	1	1	1	_	_	_	_	_	_	-	_	_	-
	4.8	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
	5.6	-	-	_	_	-	-	_	-	_	-	-	-	-	_	-	-	-	1	1	2	2	1	1	1	1	1	1	_	X	X	X	X	X	X	X	X	X
	6.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	1	1	1	1	1	1	1	1	_	_	_	-	-	-	-	-
	9.8	-	_	_	-	-	_	_	-	-	_	-	-	_	1	1	1	2	2	3	13	3	2	2	1	1	_	_	_	_	_	_	_	_	_	_	_	_
	12.9	X	X	X	Х	X	X	X	Х	X	X	X	X	X	Х	Х	Х	X	X	X	X	X	X	X	X	X	X	X	X	\mathbf{x}	X	X	X	X	X	X	X	-
:	L4.O	-	-	-	_	_	-	_	-	-	-	-	_	-	_	-	1	1	1	2	2	2	2	1	1	1	1	1	1	-	_	_	_	-	X	X	X	X
	14.8	X	X	X	X	X	X	X	X	X	X	X	X	Х	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Χ.	X	X	X	-
]	16.8	X	X	X	X	X	X	X	X	X	X	X	X	1	1	1	1	1	1	1	1	1	1	1	1	_	_	_	_	X	X	X	X	X	X	X	X	X
	18.0	X	_	_	-	_	_	_	-	_	_	-	_	-	-	_	_	_	_	-	-	_	_	_	_	_	_	_	_	_	_	X	X	X	X	X	X	X
2	21.8	-	-	-	-	-	-	-	-	-	-	-	-	l	1	2	2	2	2	1	1	1	1	1	1	1	1	1		-	_	-	-	-	-	-	_	-
																					1					_												

Index of Tables and Graphs of Ionospheric Data

in CRPL-F56

	Table page	Figure page
Bagneux, France		**
July 1948	. 20	62
June 1948		63.
Baton Rouge, Louisiana	• 20	• •
February 1949	. 10	42
Pombay, India	• 20	4.7
November 1949	. 18	58
Boston, Massachusetts		, ,
February 1949	• 9	40
Brisbane, Australia	,	4.
December 1948	. 16	53
Canberra, Australia	•	
December 1948	. 16	54
Capetown, Union of S. Africa	• 10	74
January 1949	. 13	48
Christchurch, New Zealand	• +)	до
January 1949	. 13	48
Chungking, China	• 1)	40
January 1949	. 12	46
December 1948		52
	• 1))2
Delhi, India	. 17	ET
November 1948	• 1/	57
Falkland Is.	30	61
October 1948		61
September 1948	. 19	OT
Fraserburgh, Scotland	16	F F
November 1948		55
October 1948	. 19	60
Fukaura, Japan	3.0	
December 1948	. 13	49
Hobart, Tasmania	2/	
December 1948		55
November 1948	. 18	59
Huancayo, Peru		
February 1949	. 11	45
Johannesburg, Union of S. Africa	20	. ~
January 1949	. 12	47
Lanchow, China		
December 1948	. 14	50
November 1948	. 17	56
Lindau/Harz, Germany	• •	
January 1949	. 12	46
Madras, India		
November 1948	. 18	58

Index (CRPL-F56, continued)

	Table page	Figure page
Maui, Hawaii		
February 1949	. 10	43
Nanking, China	7 /	63
December 1948		51 57
Okinawa I.	• 21	71
February 1949	. 10	43
Palmyra I.		
February 1949	. 11	45
July 1948	. 20	62
Rarotonga I.		
December 1948	. 15	53
San Francisco, California	. 9	41
February 1949	• 7	41
February 1949	. 11	44
Shibata, Japan	_	
December 1948	. 14	50
Singapore, British Malaya November 1948	. 18	59
Slough, England	• 10	<i>)</i> /
November 1948	. 17	56
October 1948	. 19	60
Tokyo, Japan December 1948	. 14	51
Trinidad, British West Indies	• 1.4) I
February 1949	. 11	44
Wakkanai, Japan		
December 1948	. 13	49
Washington, D. C. March 1949	. 9	40
Watheroo, W. Australia	• /	40
January 1949	. 12	47
December 1948	. 16	54
White Sands, New Mexico February 1949	0	.7
Wuchang, China	. 9	41
February 1949	. 10	42
Yamakawa, Japan		
December 1948	. 15	52

CRPL and IRPL Reports

[A list of CRPL Section Reports is available from the Central Radio Propagation Laboratory upon request]

Daily: Radio disturbance warnings, every half hour from broadcast station WWV of the National Bureau of Standards. Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Weekly: CRPL-J. Radio Propagation Forecast (of days most likely to be disturbed during following month).

Semimonthly: CRPL-Ja. Semimonthly Frequency Revision Factors for CRPL Basic Radio Propagation Prediction Reports.

Monthly. CRPL-D. Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC-13-1 (), monthly supplements to DNC-13-1.) CRPL-F. Ionospheric Data.

Quarterly: *IRPL-A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific. *IRPL-H. Frequency Guide for Operating Personnel.

Circulars of the National Bureau of Standards: NBS Circular 462. Ionospheric Radio Propagation.
NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

Reports issued in past:
IRPL-C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944. IRPL-G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions.

IRPL-R. Nonscheduled reports Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies.

R5. Criteria for Ionospheric Storminess.
R6. Experimental Studies of Ionospheric Propagation as Applied to the Loran System.
R7. Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System.
R9. An Automatic Instantaneous Indicator of Skip Distance and MUF.
R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.

R11. A Nomographic Method for Both Prediction and Observation Correlation of Ionosphere Characteristics.
R12. Short Time Variations in Ionospheric Characteristics.
R14. A Graphical Method for Calculating Ground Reflection Coefficients.
R15. Predicted Limits for F2-layer Radio Transmission Throughout the Solar Cycle:
R16. Predicted F2-layer Frequencies Throughout the Solar Cycle, for Summer, Winter, and Equinox Season.

R17. Japanese Ionospheric Data—1943.
R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures—October 1943 Through May 1945.

R19. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for June.
R20. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for September.
R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For

distances out to 4000 km.)

R22. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for December.

R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.

R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System.

R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena.

R26. The Ionosphere as a Measure of Solar Activity.

R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped

by Distance From Center of Disc.

R28. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for January.

R30. Disturbance Rating in Values of IRPL Quality-Figure Scale from A. T. & T. Co. Transmission Disturbance

ance Reports to Replace T. D. Figures as Reported.

R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.
R32. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for February.

R33. Ionospheric Data on File at IRPL.
R34. The Interpretation of Recorded Values of fEs.
R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of 3 Mc.

IRPL-T. Reports on tropospheric propagation: T1. Radar operation and weather. (Superseded by JANP 101.)
 T2. Radar coverage and weather. (Superseded by JANP 102.)

CRPL-T3. Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group WPG-5.)

^{*}Items bearing this symbol are distributed only by U.S. Navy. They are issued under one cover as the DNC-14 series.

