1	In the claims:
2	1. A flex circuit for use in a fuel cell, the flex circuit, comprising:
3	a fuel-side flexible circuit, comprising:
4	a first flex substrate, wherein the first flex substrate comprises openings
5	through which pass liquid fuel,
6	a first porous layer adjacent the first flex substrate, the first porous layer
7	including a first catalyst layer,
8	an anode electrode between the first flex substrate and the first porous
9	layer, and
10	a boundary layer disposed adjacent the first porous layer, the boundary
11	layer preventing cross-over of the liquid fuel;
12	an air/water-side flexible circuit, disposed in parallel with the fuel-side flexible
13	circuit, comprising:
14	a second flex substrate, wherein the second flex substrate comprises
15	openings through which pass water,
16	a second porous layer adjacent the second flex substrate, the second
17	porous layer including a second catalyst layer, and
18	a cathode electrode between the second flex substrate and the second
19	porous layer; and
20	a center section disposed between the first and the second flex circuits, wherein
21	the first and the second flex substrates are conformable to non-planar shapes.
22	2. The flex circuit of claim 1, wherein the center section is a proton exchange
23	membrane.
24	3. The flex circuit of claim 1, wherein the center section is a channel carrying
25	dionized water, the center section further comprising spacers to maintain a separation
26	between the fuel-side flexible circuit and the air/water-side flexible circuit.
27	4. The flex circuit of claim 1, wherein the flex circuit is formed in a shape of a
28	cylinder.
29	5. The flex circuit of claim 4, wherein the liquid fuel is contained within an interior of
30	the cylindrical flex circuit.

HP 10006771-1 10

- 1 6. The flex circuit of claim 4, wherein the liquid fuel is contained exterior to the cylindrical flex circuit.
- The flex circuit of claim 1, wherein the flex circuit is formed in a shape of a
- 4 polygon, and wherein the liquid fuel is contained within an interior of the polygon.
- 5 8. The flex circuit of claim 1, wherein the flex circuit is in a shape of a star having N
- 6 points, and wherein the liquid fuel is contained within an interior of the star-shaped flex
- 7 circuit.
- 8 9. The flex circuit of claim 1, wherein the first porous layer comprises a plurality
- 9 of pores oriented in a vertical direction and approximately parallel to a local plane
- defined by the first porous layer, wherein a size one or more of the plurality of the pores
- is chosen such that the liquid fuel is transported to near a top vertical limit of the one or
- more pores by capillary action.
- 13 10. The flex circuit of claim 1, wherein the first and the second porous layers
- 14 comprise porous metal.
- 15 11. The flex circuit of claim 10, wherein the metal is chosen from the group
- 16 consisting of zinc and silver.
- 17 12. A flex-based fuel cell, comprising:
- a first flexible circuit; comprising:
- a first flexible substrate, and
- a porous metal/catalyst layer, wherein the porous metal/catalyst layer
- 21 comprises a plurality of pores oriented to distribute fuel to substantially all of the first
- 22 flexible circuit using a capillary action:
- a separation section adjacent the first flexible circuit; and
- a second flexible circuit adjacent the separation circuit, wherein the first and the
- second flexible circuits are conformable to a substantially non-planar shape.
- 26 13. The flex-based fuel cell of claim 12, wherein the separation section is a proton
- exchange membrane.
- 28 14. The flex-based fuel cell of claim 12, wherein the separation section is a channel
- 29 comprising dionized water.
- The flex-based fuel cell of claim 12, wherein the substantially non-planar shape

HP 10006771-1 11

1	comprises a cylinder.
2	16. The flex-based fuel cell of claim 15, wherein an interior of the cylindrical flex-
3	based fuel cell comprises liquid fuel.
4	17. The flex-based fuel cell of claim 16, wherein the liquid fuel is methanol.
5	18. The flex-based fuel cell of claim 12, further comprising a dry film adhesive
6	disposed between the first flexible substrate and the second flexible substrate.
7	19. A flex-based fuel cell, comprising:
8	means for converting liquid fuel to protons, comprising:
9	means for transporting liquid fuel through the liquid fuel converting
10	means, and
11	first means for flexibly supporting the liquid fuel converting means;
12	means for receiving the protons, comprising:
13	means for converting the protons to water vapor, and
14	second means for flexibly supporting the proton converting means; and
15	means for exchanging the protons from the liquid fuel converting means to the
16	proton converting means.
17	20. The flex-based fuel cell of claim 19, wherein the liquid fuel transporting means
18	comprises a porous metal layer having means for causing capillary transport of the liquid
19	fuel within the porous metal layer.
20	21. The flex-based fuel cell of claim 19, wherein the proton exchanging means
21	comprises a proton exchange membrane.
22	22. The flex-based fuel cell of claim 19, wherein the proton exchanging means
23	comprises a dionized water channel.
24	23. A method of preparing a flex circuit for a fuel cell, comprising:
25	patterning a conductive material on flex supporting means having a front surface
26	and a back surface, wherein the conductive material is patterned on the front surface;
27	attaching a layer of porous material to the conductive material;
28	depositing a layer of catalytic coating on the surface of the porous material; and
29	ablating the supporting means from the back surface to make openings so that
30	the porous material is exposed.

HP 10006771-1 12

- 1 24. The method of claim 23, further comprising the step of coating the catalyst layer
- with a thin layer of proton transfer membrane.

HP 10006771-1

13