Algebra II (ISIM), lista 3 (26.10.2021, deklaracje do godziny 9:00).

G, H, F oznaczają zazwyczaj grupy.

Teoria: Dzielnik normalny (podgrupa normalna) grupy. Grupa ilorazowa. Zasadnicze twierdzenie o homomorfizmie grup. Działanie grupy G na zbiorze X (lewoiprawostronne). Działanie lewostronne jako homomorfizm $\varphi: G \to Sym(X)$. Działanie wierne, tranzytywne. Stabilizator G_x , orbita O(x) = Gx.

- 1. Załóżmy, że H < G oraz [G : H] = 2. Udowodnić, że $H \triangleleft G$.
- 2. * Załóżmy, że H < G oraz indeks [G:H] jest skończony. Udowodnić, że istnieje podgrupa N < H skończonego indeksu w G, normalna w G.
- 3. Załóżmy, że $Y \subseteq X$. Udowodnić, że $(\mathcal{P}(X), \triangle)/(\mathcal{P}(Y), \triangle) \cong (\mathcal{P}(X \setminus Y), \triangle)$.
- 4. Niech $S = \{z \in \mathbb{C} : |z| = 1\} < (\mathbb{C}^*, \cdot).$
 - (a) Określić epimorfizm grup $f: (\mathbb{R}, +) \to S$ taki, że $Ker(f) = \mathbb{Z}$.
 - (b) Udowodnić, że grupa ilrazowa $(\mathbb{Q},+)/(\mathbb{Z},+)$ jest izomorficzna z grupą $S_{\infty} < S$ wszystkich zespolonych pierwiastków z jedności.
 - (c) W grupie $(\mathbb{R}, +)/(\mathbb{Z}, +)$ wskazać elementy (1) rzędu nieskończoność (jakikolwiek) i (2) rzędu 5 (wszystkie).
- 5. (Tw. o faktoryzacji homomorfizmu grup) Załóżmy, że $N \triangleleft G$ oraz $j: G \rightarrow G/N$ jest homomorfizmem ilorazowym. Załóżmy, że $f: G \rightarrow H$ jest homomorfizmem grup. Udowodnić, że następujące warunki są równoważne:
 - (a) Istnieje homomorfizm $\bar{f}: G/N \to H$ taki, że $f = \bar{f} \circ j$.
 - (b) N < Ker(f).
- 6. Załózmy, że $F \triangleleft G, H < G$. Udowodnić, że:
 - (a) FH < G oraz $F \triangleleft FH$
 - (b) $F \cap H \triangleleft H$
 - (c) $H/(H \cap F) \cong (FH)/F$
- 7. Załóżmy, że $F < H \triangleleft G$ oraz $F \triangleleft G$. Udowodnić, że $G/H \cong (G/F)/(H/F)$ (wsk. do tego zadania i zadania poprzedniego (c): zastosować odpowiednio twierdzenie o faktoryzacji lub zasadnicze twierdzenie o homomorfizmie grup).
- 8. Wyznaczyc orbity działania grupy $GL(n,\mathbb{R})$ na:
 - (a) przestrzeni liniowej \mathbb{R}^n (tu dla $A \in GL(n, \mathbb{R})$ i $X \in \mathbb{R}^n$ $A \cdot X = f_A(X)$, gdzie f_A to odwzorowanie liniowe o macierzy A),
 - (b)* zbiorze macierzy $M_{n\times n}(\mathbb{R})$ (tu działanie to mnożenie macierzy $A\cdot X$).