TUTORIAL 1

1. Show that a real polynomial that is irreducible has degree at most two. i.e., if

$$f(x) = a_0 + a_1 x + \ldots + a_n x^n, \ a_i \in \mathbb{R},$$

then there are non-constant real polynomials g and h such that f(x) = g(x)h(x) if $n \ge 3$.

(Assume FTA)

- 2. Show that a non-constant polynomial $f(z_1, z_2)$ in complex variables z_1 and z_2 and with complex coefficients has infinitely many roots (in \mathbb{C}^2). (Assume FTA)
- 3. Show that the complex plane minus a countable set is path-connected.
- 4. Check for real differentiability and holomorphicity:

1.
$$f(z) = c$$

2.
$$f(z) = z$$

3.
$$f(z) = z^n, n \in \mathbb{Z}$$

4.
$$f(z) = \operatorname{Re}(z)$$

5.
$$f(z) = |z|$$

6.
$$f(z) = |z|^2$$

$$7. \ f(z) = \bar{z}$$

8.
$$f(z) = \begin{cases} \frac{z}{\bar{z}} & \text{if } z \neq 0\\ 0 & \text{if } z = 0. \end{cases}$$