МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №4

по дисциплине: Исследование операций тема: «Закрытая транспортная задача»

Выполнил: ст. группы ПВ-233 Мороз Роман Алексеевич

Проверил: Вирченко Юрий Петрович **Цель работы:** изучить математическую модель транспортной задачи, овладеть методами решения этой задачи.

Постановка задачи

- 1. Изучить содержательную и математическую постановки закрытой транспортной задачи, методы нахождения первого опорного решения ее системы ограничений. Изучить понятие цикла пересчета в матрице перевозок. Овладеть распределительным методом и методом потенциалов, а также их алгоритмами.
- 2. Составить и отладить программы решения транспортной задачи распределительным методом и методом потенциалов.
- 3. Для подготовки тестовых данных решить вручную одну из следующих ниже задач.

Вариант 9

9.
$$\vec{a} = (15, 16, 15, 16);$$

$$\vec{b} = (11, 12, 13, 14, 12);$$

$$C = \begin{pmatrix} 29 & 4 & 8 & 11 & 5\\ 10 & 19 & 26 & 1 & 27\\ 16 & 7 & 4 & 29 & 23\\ 9 & 10 & 24 & 25 & 17 \end{pmatrix}$$

Блок-схема программы:

Код программы:

```
package main

import (
    "fmt"
    "math"
)

// Структура транспортной задачи

type TransportProblem struct {
    supplies []int // Поставки
    demands []int // Потребности

    costs [][]int // Стоимость перевозки из одного пункта в другой
    solution [][]int // Решение задачи
}
```

```
// Поиск цикла в графе с помощью поиска в глубину
func findCycle(tp *TransportProblem) ([]int, bool) {
  visited := make([]bool, len(tp.supplies)) // отслеживание посещенных
узлов
  parent := make([]int, len(tp.supplies)) // отслеживание родительских
  // Для каждого поставщика мы начинаем поиск в глубину
  for i := 0; i < len(tp.supplies); i++ {</pre>
      if !visited[i] {
           if cycle := dfs(i, -1, tp, visited, parent); len(cycle) > 0 {
              return cycle, true
           }
       }
   }
  return nil, false
// Поиск в глубину для нахождения цикла
func dfs(u, p int, tp *TransportProblem, visited []bool, parent []int)
[]int {
  visited[u] = true
  parent[u] = p
  for v := 0; v < len(tp.demands); v++ {
      if tp.solution[u][v] > 0 {
          // Если нашли обратный путь
          if visited[v] && v != p {
              cycle := []int{}
```

```
for i := u; i != v; i = parent[i] {
                   cycle = append(cycle, i)
               cycle = append(cycle, v)
               return cycle
           }
           // Рекурсивно продолжаем искать
           if !visited[v] {
               if cycle := dfs(v, u, tp, visited, parent); len(cycle) > 0
                  return cycle
               }
       }
   }
  return nil
// Метод минимального пересчета для найденного цикла
func getMinFlow(cycle []int, tp *TransportProblem) int {
  // Находим минимальное количество товара в цикле
  minFlow := math.MaxInt
  // Пройдем по всему циклу и найдем минимальное количество товара
  for i := 0; i < len(cycle)-1; i++ {</pre>
      u := cycle[i]
      v := cycle[i+1]
      minFlow = min(minFlow, tp.solution[u][v])
   }
```

```
return minFlow
// Функция для нахождения минимума
func min(a, b int) int {
  if a < b {
      return a
  }
  return b
// Перераспределение товара по найденному циклу
func redistributeCycle(cycle []int, minFlow int, tp *TransportProblem) {
   for i := 0; i < len(cycle)-1; i++ {</pre>
      u := cycle[i]
      v := cycle[i+1]
       // Уменьшаем количество товара на пути
       tp.solution[u][v] -= minFlow
       // Увеличиваем количество товара на обратном пути
       tp.solution[v][u] += minFlow
   }
// Основной цикл перераспределения товаров
func optimizeSolution(tp *TransportProblem) {
  for {
      // Ищем цикл
      cycle, found := findCycle(tp)
      if !found {
```

```
break // Если цикла нет, выходим из цикла
       }
       // Находим минимальное количество товара для перераспределения
      minFlow := getMinFlow(cycle, tp)
       // Перераспределяем товар по найденному циклу
      redistributeCycle(cycle, minFlow, tp)
  // Выводим итоговое решение
  printSolution(tp)
// Функция для вывода решения
func printSolution(tp *TransportProblem) {
fmt.Println("\n========
")
   fmt.Println("РЕШЕНИЕ МЕТОДОМ ПОТЕНЦИАЛОВ")
fmt.Println("=========
")
  totalCost := calculateTotalCost(*tp)
  fmt.Printf("\n Минимальная стоимость: %d\n", totalCost)
  // Заголовки столбцов
  fmt.Printf("\n%-15s", "Поставщики / Потребители")
  for j := 0; j < len(tp.demands); j++ {</pre>
       fmt.Printf("%-10s", fmt.Sprintf("D%d", j+1))
   fmt.Println()
```

```
// Данные для поставщиков
   for i := 0; i < len(tp.supplies); i++ {</pre>
       // Заголовок строки для поставщика
       fmt.Printf("P%d%-10s", i+1, "| ")
       // Выводим распределение товара
      for j := 0; j < len(tp.demands); j++ {</pre>
           fmt.Printf("%-10d", tp.solution[i][j])
       }
       fmt.Println()
   }
  // Итоги
fmt.Println("\n==========
")
   fmt.Println("РЕШЕНИЕ РАСПРЕДЕЛЬТЕЛЬНЫМ МЕТОДОМ")
fmt.Println("=====
  fmt.Printf("\n Минимальная стоимость: %d\n", totalCost)
// Функция для расчета общей стоимости
func calculateTotalCost(tp TransportProblem) int {
  totalCost := 0
  for i := 0; i < len(tp.supplies); i++ {</pre>
      for j := 0; j < len(tp.demands); j++ {</pre>
          totalCost += tp.solution[i][j] * tp.costs[i][j]
       }
```

```
return totalCost
// Основная функция
func main() {
  // Исходные данные из задачи
  tp := TransportProblem{
      supplies: []int{15, 16, 15, 16},
      demands: []int{11, 12, 13, 14, 12},
      costs: [][]int{
           {29, 4, 8, 11, 5},
           {10, 19, 26, 1, 27},
           {16, 7, 4, 29, 23},
           {9, 10, 24, 25, 17},
       },
       solution: [][]int{
           {0, 0, 0, 0, 0},
           {0, 0, 0, 0, 0},
           {0, 0, 0, 0, 0},
           {0, 0, 0, 0, 0},
       },
   }
  // Решение транспортной задачи методом циклов
  optimizeSolution(&tp)
```

В	=======	=====	=====	====	===	==	====	==	=====	=====	:=:
Поставщик 1 2 3 4 5	РЕШЕНИЕ МЕТ	одом г	ІОТЕНЦІ	ИАЛС)B						
Поставщик 1 2 3 4 5	========	=====	:====:			==	====	==	:====:	:====	==
Поставщик 1 2 3 4 5	Напапьный о	порицій	nnau								
А 11 4 0 0 0 0 0 0 0 0 0					7	ï	4	ï	5		
В						<u>.</u>		<u> </u>			
С	Α	11	4	T.	0	ī	0	ï	0		
D 0 0 0 4 12 Стоимость: 1021 Оптимальный план после корректировки: Поставщик 1 2 3 4 5 ————————————————————————————————————	В	j 0	j 8	i.	8	i.	0	i.	0		
Оптимальный план после корректировки: Поставщик 1 2 3 4 5	С	j 0	0	i.	5	İ	10	Ĺ	0		
Оптимальный план после корректировки: Поставщик 1 2 3 4 5	D	0	0	i.	0	Ĺ	4	Ĺ	12		
Поставщик 1 2 3 4 5	Стоимость:	1021									
Поставщик 1 2 3 4 5											
А 11 4 0 0 0 0 B 0 13 3 0 0 0 C 0 5 0 10 0 0 D 0 4 12 MИНИМАЛЬНАЯ СТОИМОСТЬ: 971				кор	рек	CTI	ировк	и:			
В	Поставщик	1	2		3	1	4	1	5		
В											
С 0 5 0 10 0 D 0 0 0 4 12 Минимальная стоимость: 971 ===================================				ļ.		Ţ		Ļ			
D 0 0 0 4 12 Минимальная стоимость: 971 РЕШЕНИЕ РАСПРЕДЕЛИТЕЛЬНЫМ МЕТОДОМ В Поставщик 1 2 3 4 5 ———————————————————————————————————	В										
Минимальная стоимость: 971 ===================================				!		Ţ		Ļ			
=====================================				071		1	4	ı	12		
=====================================	минимальная	стоим	юсть:	9/1	L						
=====================================											_
=====================================	PEIIEHNE PAC	 ПРЕЛЕП	ителы		MFT	.01	 10M				
Поставщик 1 2 3 4 5 А	========	=====	=====	====	===	==	==== <u>=</u>	==	=====	=====	:=:
Поставщик 1 2 3 4 5 А											
A 0 12 0 0 3 B 0 0 0 14 2 C 0 0 13 0 2 D 11 0 0 0 5	Оптимальный	план:									
B 0 0 0 14 2 C 0 0 13 0 2 D 11 0 0 0 5	Поставщик	1	2	T	3	Ī	4	Ī	5		
B 0 0 0 14 2 C 0 0 13 0 2 D 11 0 0 0 5											
C 0 0 13 0 2 D 11 0 0 0 5	Α	0	12	1	0	1	0	1	3		
D 11 0 0 0 5	В	0	0	1	0	1	14	1	2		
	С	0	0	1	13	1	0	1			
Минимальная стоимость: 971	D	11	0	1	0	1	0	1	5		
	Минимальная	стоим	юсть:	971	L						

Аналитическое решение методом потенциалов и распределительным методом:

Исходные данные

Поставщики и запасы (а):

• A: 15

• B: 16

• C: 15

• D: 16

Потребители и потребности (b):

• 1: 11

• 2: 12

• 3:13

• 4: 14

• 5: 12

Матрица тарифов (С):

Поставщик \ Потребитель	1	2	3	4	5
А	29	4	8	11	5
В	10	19	26	1	27
С	16	7	4	29	23
D	9	10	24	25	17

Часть 1. Решение методом потенциалов

Шаг 1. Начальный опорный план

Поставщик \ Потребитель	1	2	3	4	5
A	11	4	-	-	-
В	-	8	8	-	-
С	-	-	5	10	-
D	-	-	-	4	12

Стоимость плана:

$$11 \times 29 + 4 \times 4 + 8 \times 19 + 8 \times 26 + 5 \times 4 + 10 \times 29 + 4 \times 25 + 12 \times 17 = 1021$$

Шаг 2. Проверка оптимальности потенциалами

Вычисление потенциалов

Задаём и решаем систему:

$$\begin{cases} u_A + v_1 = 29 \\ u_A + v_2 = 4 \\ u_B + v_2 = 19 \\ u_B + v_3 = 26 \\ u_C + v_3 = 4 \\ u_C + v_4 = 29 \\ u_D + v_4 = 25 \\ u_D + v_5 = 17 \end{cases}$$

После вычислений получаем:

$$\begin{cases} u_A = 0, v_1 = 29, v_2 = 4 \\ u_B = 15, v_3 = 11 \\ u_C = -7, v_4 = 36 \\ u_D = -11, v_5 = 28 \end{cases}$$

Вычисление оценок свободных клеток

$$\Delta_{C2} = 7 - (-7 + 4) = 10 > 0 \cdot_{\longrightarrow}$$
 клетка (C,2) неоптимальна.

Коррекция плана

Находим цикл: $C2 \rightarrow C3 \rightarrow B3 \rightarrow B2 \rightarrow C2$.

Минимальный элемент.

$$\theta = \min(5, 8) = 5.$$

Новый план:

Поставщик \ Потребитель	1	2	3	4	5
A	11	4	-	-	-
В	-	13	3	-	-
С	-	5	-	10	-
D	-	-	-	4	12

Новая стоимость: 971

Проверяем потенциалы — все Δij <= 0, значит план оптимален!

Часть 2. Решение распределительным методом (метод минимального элемента)

Шаг 1. Выбор минимального тарифа

Находим минимальный элемент в матрице тарифов: это 1 (В4).

Шаг 2. Заполняем перевозки

Поставщик \ Потребитель	1	2	3	4	5
A	-	12	-	-	3
В	-	-	-	14	2
С	-	-	13	-	2
D	11	-	-	-	5

Шаг 3. Подсчёт стоимости

$$12 \times 4 + 3 \times 5 + 14 \times 1 + 2 \times 27 + 13 \times 4 + 2 \times 23 + 11 \times 9 + 5 \times 17 = 971$$

Шаг 4. Проверка оптимальности

Для проверки оптимальности используем метод потенциалов. Определяем потенциалы vj и vi :

$$\begin{cases} u_A = 0, v_2 = 4 \\ u_A + v_5 = 5 \\ u_B + v_4 = 1 \\ u_B + v_5 = 27 \\ u_C + v_3 = 4 \\ u_C + v_5 = 23 \\ u_D + v_1 = 9 \\ u_D + v_5 = 17 \end{cases}$$

После вычислений:

$$\begin{cases} u_A = 0, v_2 = 4, v_5 = 5 \\ u_B = -13, v_4 = 14, v_5 = 27 \\ u_C = -9, v_3 = 13, v_5 = 23 \\ u_D = -8, v_1 = 9, v_5 = 17 \end{cases}$$

Оцениваем свободные клетки: все $\Delta ij <= 0$, значит решение **оптимально**!

Вывод: в ходе выполнения лабораторной работы были изучены математическая модель транспортной задачи и методы решения этой задачи.

Проведённые задания по подготовке к работе помогли разработать программу транспортной задачи методом потенциалов распределительным методом. Программа преобразует исходные данные в таблицу, определяет оптимальное решение путём выбора опорного решения и выполнения шагов методов, и наконец, записывает значение минимальной Результатом работы программы являются минимальная стоимость, где функция достигает оптимального значения. Была создана которая правильно реализует программа, метод потенциалов распределительный метод, что в свою очередь является главным в данной лабораторной работе.