## COMPUTER ARCHITECTURE

2020 - 2021

# TD n°3

#### Exercise 1: use of truth tables.

In a brasserie you order a ham sandwich **or** a pâté sandwich **and** a glass of beer. The waiter listens to you distractedly because he is busy.

At first, he is sure of the place of the **or** and the **and** but he hesitates about the place of the brackets.

- 1. Write the corresponding propositional formula for each of the possible commands.
- 2. To be sure to satisfy the customer, it must satisfy both possible orders: write the corresponding propositional formula.

Show with the help of a truth table that the latter is logically equivalent to bringing (a ham sandwich or a pâté sandwich) and a glass of beer.

In a second step the waiter also hesitates about the place of or and and.

- 3. Repeat questions (1) and (2) with logical equivalences.
- 4. Show that he can then just bring a ham sandwich **and** (a pâté sandwich **or** a glass of beer).

What should it provide as a minimum to satisfy the customer and answer all his hesitations?

## Exercise 2: equation simplification.

We give the equation  $\dagger = x\overline{y} + z(\overline{x} + y)$ .

Start by rewriting this equation without parentheses, with three terms: build the truth table, then Karnaugh's rectangular table with xy on the one hand and z on the other hand.

Deduce the simplified form of t.

#### Exercise 3: about XOR gates

We give this logic circuit with four input bits A, B, C and D, and an output S.

Show that there are exactly two cases for the inputs leading to S = 1 at the output and give these two cases. To do this, add to the drawing below the results obtained at the output of each of the XOR gates in the diagram.



## Exercise 4: construct a logical function.

Let an integer from 0 to 7 be represented by 3 bits  $b_2b_1b_0$ . Let F be the logic function whose inputs are these 3 bits, and which takes the value 1 if the input value is 0, 3, 4 or 7 (coded in binary), and 0 otherwise.

- 1. Give the truth table of F, write it in its canonical form and simplify the resulting expression.
- 2. Find the previous result by writing the Karnaugh table of F.
- 3. Draw the logic circuit calculating F, using only NAND gates.