

MATH1131 Mathematics 1A – Algebra

Lecture 13: Complex Roots and Powers

Lecturer: Sean Gardiner – sean.gardiner@unsw.edu.au

Based on slides by Jonathan Kress

Recall that it is easy to find large powers of a complex number if it is first written in exponential polar form.

Recall that it is easy to find large powers of a complex number if it is first written in exponential polar form.

Example

Calculate $(1+\sqrt{3}i)^{10}$.

Recall that it is easy to find large powers of a complex number if it is first written in exponential polar form.

Example

Calculate $(1+\sqrt{3}i)^{10}$.

Recall that it is easy to find large powers of a complex number if it is first written in exponential polar form.

Example

Calculate $(1+\sqrt{3}i)^{10}$.

So
$$(1+\sqrt{3}i)^{10}=(2e^{i\frac{\pi}{3}})^{10}$$

Recall that it is easy to find large powers of a complex number if it is first written in exponential polar form.

Example

Calculate $(1+\sqrt{3}i)^{10}$.

So
$$(1+\sqrt{3}i)^{10}=(2e^{i\frac{\pi}{3}})^{10}=2^{10}e^{i\frac{\pi}{3}\times 10}$$

Recall that it is easy to find large powers of a complex number if it is first written in exponential polar form.

Example

Calculate $(1+\sqrt{3}i)^{10}$.

So
$$(1+\sqrt{3}i)^{10}=(2e^{i\frac{\pi}{3}})^{10}=2^{10}\,e^{i\frac{\pi}{3}\times 10}=1024e^{i\frac{10\pi}{3}}$$

Recall that it is easy to find large powers of a complex number if it is first written in exponential polar form.

Example

Calculate $(1+\sqrt{3}i)^{10}$.

So
$$(1+\sqrt{3}i)^{10}=(2e^{i\frac{\pi}{3}})^{10}=2^{10}\,e^{i\frac{\pi}{3}\times 10}=1024e^{i\frac{10\pi}{3}}=1024e^{-i\frac{2\pi}{3}}.$$

Recall that it is easy to find large powers of a complex number if it is first written in exponential polar form.

Example

Calculate $(1+\sqrt{3}i)^{10}$.

So
$$(1+\sqrt{3}i)^{10}=(2e^{i\frac{\pi}{3}})^{10}=2^{10}e^{i\frac{\pi}{3}\times 10}=1024e^{i\frac{10\pi}{3}}=1024e^{-i\frac{2\pi}{3}}.$$

Since
$$e^{-i\frac{2\pi}{3}} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$
, we have:

Recall that it is easy to find large powers of a complex number if it is first written in exponential polar form.

Example

Calculate $(1+\sqrt{3}i)^{10}$.

So
$$(1+\sqrt{3}i)^{10}=(2e^{i\frac{\pi}{3}})^{10}=2^{10}\,e^{i\frac{\pi}{3}\times 10}=1024e^{i\frac{10\pi}{3}}=1024e^{-i\frac{2\pi}{3}}.$$

Since
$$e^{-i\frac{2\pi}{3}} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$
, we have:

$$(1+\sqrt{3}i)^{10}=1024e^{-i\frac{2\pi}{3}}$$

Recall that it is easy to find large powers of a complex number if it is first written in exponential polar form.

Example

Calculate $(1+\sqrt{3}i)^{10}$.

So
$$(1+\sqrt{3}i)^{10}=(2e^{i\frac{\pi}{3}})^{10}=2^{10}e^{i\frac{\pi}{3}\times 10}=1024e^{i\frac{10\pi}{3}}=1024e^{-i\frac{2\pi}{3}}.$$

Since
$$e^{-i\frac{2\pi}{3}} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$
, we have:

$$(1+\sqrt{3}i)^{10}=1024e^{-i\frac{2\pi}{3}}=1024\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}i\right)$$

Recall that it is easy to find large powers of a complex number if it is first written in exponential polar form.

Example

Calculate $(1+\sqrt{3}i)^{10}$.

So
$$(1+\sqrt{3}i)^{10}=(2e^{i\frac{\pi}{3}})^{10}=2^{10}\,e^{i\frac{\pi}{3}\times 10}=1024e^{i\frac{10\pi}{3}}=1024e^{-i\frac{2\pi}{3}}.$$

Since
$$e^{-i\frac{2\pi}{3}} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$
, we have:

$$(1+\sqrt{3}i)^{10}=1024e^{-i\frac{2\pi}{3}}=1024\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}i\right)=-512-512\sqrt{3}i.$$

Definition

A complex number α is an n^{th} root of $z \in \mathbb{C}$ if

$$\alpha^n = z$$
.

Definition

A complex number α is an n^{th} root of $z \in \mathbb{C}$ if

$$\alpha^n = z$$
.

To find n^{th} roots we again prefer to use polar form.

Definition

A complex number α is an n^{th} root of $z \in \mathbb{C}$ if

$$\alpha^n = z$$
.

To find n^{th} roots we again prefer to use polar form.

Suppose $z = re^{i\theta}$ and that $\alpha = se^{i\phi}$ is an n^{th} root of z.

Definition

A complex number α is an n^{th} root of $z \in \mathbb{C}$ if

$$\alpha^n = z$$
.

To find n^{th} roots we again prefer to use polar form.

Suppose $z = re^{i\theta}$ and that $\alpha = se^{i\phi}$ is an n^{th} root of z.

$$z = re^{i\theta}$$

Definition

A complex number α is an n^{th} root of $z \in \mathbb{C}$ if

$$\alpha^n = z$$
.

To find n^{th} roots we again prefer to use polar form.

Suppose $z=re^{i\theta}$ and that $\alpha=se^{i\phi}$ is an $n^{\rm th}$ root of z.

$$z = re^{i\theta} = \alpha^n$$

Definition

A complex number α is an n^{th} root of $z \in \mathbb{C}$ if

$$\alpha^n = z$$
.

To find n^{th} roots we again prefer to use polar form.

Suppose $z=re^{i\theta}$ and that $\alpha=se^{i\phi}$ is an $n^{\rm th}$ root of z.

$$z = re^{i\theta} = \alpha^n$$
$$= (se^{i\phi})^n$$

Definition

A complex number α is an n^{th} root of $z \in \mathbb{C}$ if

$$\alpha^n = z$$
.

To find n^{th} roots we again prefer to use polar form.

Suppose $z=re^{i\theta}$ and that $\alpha=se^{i\phi}$ is an $n^{\rm th}$ root of z.

$$z = re^{i\theta} = \alpha^n$$

= $(se^{i\phi})^n$
= $s^n e^{in\phi}$

Definition

A complex number α is an n^{th} root of $z \in \mathbb{C}$ if

$$\alpha^n = z$$
.

To find n^{th} roots we again prefer to use polar form.

Suppose $z = re^{i\theta}$ and that $\alpha = se^{i\phi}$ is an n^{th} root of z.

$$z = re^{i\theta} = \alpha^{n}$$
$$= (se^{i\phi})^{n}$$
$$= s^{n}e^{in\phi}$$

So $s^n = r$ and $n\phi = \theta + 2k\pi$ for some $k \in \mathbb{Z}$.

Example

Find the 5th roots of 1. That is, find all α such that

$$\alpha^5 = 1.$$

Example

Find the 5th roots of 1. That is, find all α such that

$$\alpha^{5} = 1.$$

In polar form, $1 = e^{i \times 0}$

Example

Find the 5th roots of 1. That is, find all α such that

$$\alpha^{5} = 1.$$

In polar form, $1 = e^{i \times 0} = e^{i \times (0 + 2k\pi)}$ for any $k \in \mathbb{Z}$.

Example

Find the 5th roots of 1. That is, find all α such that

$$\alpha^{5} = 1.$$

In polar form, $1 = e^{i \times 0} = e^{i \times (0 + 2k\pi)}$ for any $k \in \mathbb{Z}$.

So if $\alpha^5 = e^{i \times (0 + 2k\pi)}$, we must have $\alpha = e^{i \times \frac{1}{5}(0 + 2k\pi)}$ for some $k \in \mathbb{Z}$.

Example

Find the 5th roots of 1. That is, find all α such that

$$\alpha^{5} = 1.$$

In polar form, $1 = e^{i \times 0} = e^{i \times (0 + 2k\pi)}$ for any $k \in \mathbb{Z}$.

So if $\alpha^5 = e^{i \times (0 + 2k\pi)}$, we must have $\alpha = e^{i \times \frac{1}{5}(0 + 2k\pi)}$ for some $k \in \mathbb{Z}$.

Picking k = 0, 1, 2, 3, ... gives possible arguments:

Example

Find the 5th roots of 1. That is, find all α such that

$$\alpha^{5} = 1.$$

In polar form, $1 = e^{i \times 0} = e^{i \times (0 + 2k\pi)}$ for any $k \in \mathbb{Z}$.

So if $\alpha^5 = e^{i \times (0 + 2k\pi)}$, we must have $\alpha = e^{i \times \frac{1}{5}(0 + 2k\pi)}$ for some $k \in \mathbb{Z}$.

Picking k = 0, 1, 2, 3, ... gives possible arguments:

$$0, \frac{2\pi}{5}, \frac{4\pi}{5}, \frac{6\pi}{5}, \frac{8\pi}{5}, \frac{10\pi}{5}, \dots$$

Example

Find the 5th roots of 1. That is, find all α such that

$$\alpha^{5} = 1.$$

In polar form, $1 = e^{i \times 0} = e^{i \times (0 + 2k\pi)}$ for any $k \in \mathbb{Z}$.

So if $\alpha^5 = e^{i \times (0 + 2k\pi)}$, we must have $\alpha = e^{i \times \frac{1}{5}(0 + 2k\pi)}$ for some $k \in \mathbb{Z}$.

Picking k = 0, 1, 2, 3, ... gives possible arguments:

$$0, \frac{2\pi}{5}, \frac{4\pi}{5}, \frac{6\pi}{5}, \frac{8\pi}{5}, \frac{10\pi}{5}, \dots$$

which are principal arguments:

$$0, \frac{2\pi}{5}, \frac{4\pi}{5}, -\frac{4\pi}{5}, -\frac{2\pi}{5}, 0, \dots$$

Example

Find the 5th roots of 1. That is, find all α such that

$$\alpha^{5} = 1.$$

In polar form, $1 = e^{i \times 0} = e^{i \times (0 + 2k\pi)}$ for any $k \in \mathbb{Z}$.

So if $\alpha^5 = e^{i \times (0 + 2k\pi)}$, we must have $\alpha = e^{i \times \frac{1}{5}(0 + 2k\pi)}$ for some $k \in \mathbb{Z}$.

Picking k = 0, 1, 2, 3, ... gives possible arguments:

$$0, \frac{2\pi}{5}, \frac{4\pi}{5}, \frac{6\pi}{5}, \frac{8\pi}{5}, \frac{10\pi}{5}, \dots$$

which are principal arguments:

$$0, \frac{2\pi}{5}, \frac{4\pi}{5}, -\frac{4\pi}{5}, -\frac{2\pi}{5}, 0, \dots$$

So the 5th roots of 1 are:

1,
$$e^{i\frac{2\pi}{5}}$$
, $e^{i\frac{4\pi}{5}}$, $e^{-i\frac{4\pi}{5}}$, and $e^{-i\frac{2\pi}{5}}$.

Example

Find the 5th roots of $z = 1 + \sqrt{3}i$.

Example

Find the 5th roots of $z = 1 + \sqrt{3}i$.

Example

Find the 5th roots of $z = 1 + \sqrt{3}i$.

In polar form, $1+\sqrt{3}i=2e^{i\frac{\pi}{3}}=2e^{i(\frac{\pi}{3}+2k\pi)}$ for any $k\in\mathbb{Z}$.

Example

Find the 5th roots of $z = 1 + \sqrt{3}i$.

In polar form, $1+\sqrt{3}i=2e^{i\frac{\pi}{3}}=2e^{i(\frac{\pi}{3}+2k\pi)}$ for any $k\in\mathbb{Z}$.

So if $\alpha^5 = 2e^{i(\frac{\pi}{3} + 2k\pi)}$, we have $\alpha = 2^{\frac{1}{5}}e^{i \times \frac{1}{5}(\frac{\pi}{3} + 2k\pi)}$ for some $k \in \mathbb{Z}$.

Example

Find the 5th roots of $z = 1 + \sqrt{3}i$.

In polar form, $1+\sqrt{3}i=2e^{i\frac{\pi}{3}}=2e^{i(\frac{\pi}{3}+2k\pi)}$ for any $k\in\mathbb{Z}$.

So if $\alpha^5=2e^{i(\frac{\pi}{3}+2k\pi)}$, we have $\alpha=2^{\frac{1}{5}}e^{i\times\frac{1}{5}(\frac{\pi}{3}+2k\pi)}$ for some $k\in\mathbb{Z}$.

Picking k = 0, 1, 2, 3, ... gives possible arguments:

Example

Find the 5th roots of $z = 1 + \sqrt{3}i$.

In polar form, $1+\sqrt{3}i=2e^{i\frac{\pi}{3}}=2e^{i(\frac{\pi}{3}+2k\pi)}$ for any $k\in\mathbb{Z}$.

So if $\alpha^5 = 2e^{i(\frac{\pi}{3} + 2k\pi)}$, we have $\alpha = 2^{\frac{1}{5}}e^{i \times \frac{1}{5}(\frac{\pi}{3} + 2k\pi)}$ for some $k \in \mathbb{Z}$.

Picking k = 0, 1, 2, 3, ... gives possible arguments:

$$\frac{\pi}{15}$$
, $\frac{7\pi}{15}$, $\frac{13\pi}{15}$, $\frac{19\pi}{15}$, $\frac{25\pi}{15}$, $\frac{31\pi}{15}$, ...

Example

Find the 5th roots of $z = 1 + \sqrt{3}i$.

In polar form, $1+\sqrt{3}i=2e^{i\frac{\pi}{3}}=2e^{i(\frac{\pi}{3}+2k\pi)}$ for any $k\in\mathbb{Z}$.

So if $\alpha^5 = 2e^{i(\frac{\pi}{3}+2k\pi)}$, we have $\alpha = 2^{\frac{1}{5}}e^{i\times\frac{1}{5}(\frac{\pi}{3}+2k\pi)}$ for some $k \in \mathbb{Z}$.

Picking k = 0, 1, 2, 3, ... gives possible arguments:

$$\frac{\pi}{15}$$
, $\frac{7\pi}{15}$, $\frac{13\pi}{15}$, $\frac{19\pi}{15}$, $\frac{25\pi}{15}$, $\frac{31\pi}{15}$, ...

which are principal arguments:

$$\frac{\pi}{15}$$
, $\frac{7\pi}{15}$, $\frac{13\pi}{15}$, $-\frac{11\pi}{15}$, $-\frac{5\pi}{15}$, $\frac{\pi}{15}$, ...

Example

Find the 5th roots of $z = 1 + \sqrt{3}i$.

In polar form, $1+\sqrt{3}i=2e^{i\frac{\pi}{3}}=2e^{i(\frac{\pi}{3}+2k\pi)}$ for any $k\in\mathbb{Z}$.

So if $\alpha^5 = 2e^{i(\frac{\pi}{3}+2k\pi)}$, we have $\alpha = 2^{\frac{1}{5}}e^{i\times\frac{1}{5}(\frac{\pi}{3}+2k\pi)}$ for some $k \in \mathbb{Z}$.

Picking k = 0, 1, 2, 3, ... gives possible arguments:

$$\frac{\pi}{15}$$
, $\frac{7\pi}{15}$, $\frac{13\pi}{15}$, $\frac{19\pi}{15}$, $\frac{25\pi}{15}$, $\frac{31\pi}{15}$, ...

which are principal arguments:

$$\frac{\pi}{15}$$
, $\frac{7\pi}{15}$, $\frac{13\pi}{15}$, $-\frac{11\pi}{15}$, $-\frac{5\pi}{15}$, $\frac{\pi}{15}$, ...

So the 5th roots of $1 + \sqrt{3}i$ are:

$$2^{\frac{1}{5}} e^{i\frac{\pi}{15}}$$
, $2^{\frac{1}{5}} e^{i\frac{7\pi}{15}}$, $2^{\frac{1}{5}} e^{i\frac{13\pi}{15}}$, $2^{\frac{1}{5}} e^{-i\frac{11\pi}{15}}$, and $2^{\frac{1}{5}} e^{-i\frac{\pi}{3}}$.

Some facts about the n^{th} roots of a complex number z:

• There are always exactly *n* different roots.

- There are always exactly *n* different roots.
- All the roots have the same modulus $|z|^{\frac{1}{n}}$, and so lie on a circle with centre 0 and radius $|z|^{\frac{1}{n}}$.

- There are always exactly *n* different roots.
- All the roots have the same modulus $|z|^{\frac{1}{n}}$, and so lie on a circle with centre 0 and radius $|z|^{\frac{1}{n}}$.
- The roots are evenly spaced around that circle, since adjacent roots are $\frac{2\pi}{n}$ radians apart.

- There are always exactly *n* different roots.
- All the roots have the same modulus $|z|^{\frac{1}{n}}$, and so lie on a circle with centre 0 and radius $|z|^{\frac{1}{n}}$.
- The roots are evenly spaced around that circle, since adjacent roots are $\frac{2\pi}{n}$ radians apart.

- There are always exactly *n* different roots.
- All the roots have the same modulus $|z|^{\frac{1}{n}}$, and so lie on a circle with centre 0 and radius $|z|^{\frac{1}{n}}$.
- The roots are evenly spaced around that circle, since adjacent roots are $\frac{2\pi}{n}$ radians apart.

- There are always exactly *n* different roots.
- All the roots have the same modulus $|z|^{\frac{1}{n}}$, and so lie on a circle with centre 0 and radius $|z|^{\frac{1}{n}}$.
- The roots are evenly spaced around that circle, since adjacent roots are $\frac{2\pi}{n}$ radians apart.

- There are always exactly *n* different roots.
- All the roots have the same modulus $|z|^{\frac{1}{n}}$, and so lie on a circle with centre 0 and radius $|z|^{\frac{1}{n}}$.
- The roots are evenly spaced around that circle, since adjacent roots are $\frac{2\pi}{n}$ radians apart.

It can be useful to find roots by thinking diagrammatically.

Example

It can be useful to find roots by thinking diagrammatically.

Example

It can be useful to find roots by thinking diagrammatically.

Example

It can be useful to find roots by thinking diagrammatically.

Example

It can be useful to find roots by thinking diagrammatically.

Example

It can be useful to find roots by thinking diagrammatically.

Example

It can be useful to find roots by thinking diagrammatically.

Example

Find the 3^{rd} roots of -1.

So the three 3rd roots of -1 are: -1, $e^{i\frac{\pi}{3}}$ and $e^{-i\frac{\pi}{3}}$.

When calculating small powers of a complex number, it can be useful to apply the Binomial Theorem:

When calculating small powers of a complex number, it can be useful to apply the Binomial Theorem:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$
 where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

When calculating small powers of a complex number, it can be useful to apply the Binomial Theorem:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$
 where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

To find the coefficients $\binom{n}{k}$, use the formula above (recalling $n! = n \times (n-1) \times (n-2) \times \cdots \times 1$), or take the (k+1)th entry in the (n+1)th row of Pascal's triangle:

When calculating small powers of a complex number, it can be useful to apply the Binomial Theorem:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$
 where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

To find the coefficients $\binom{n}{k}$, use the formula above (recalling $n! = n \times (n-1) \times (n-2) \times \cdots \times 1$), or take the (k+1)th entry in the (n+1)th row of Pascal's triangle:

Example

Find $(-2+i)^7$.

Example

Find
$$(-2+i)^7$$
.

The corresponding row in Pascal's triangle is:

1 7 21 35 35 21 7 1

Example

Find
$$(-2 + i)^7$$
.

$$(-2+i)^7$$

Example

Find
$$(-2+i)^7$$
.

$$(-2+i)^{7}$$

$$= 1 \times (-2)^{7}i^{0} + 7 \times (-2)^{6}i^{1} + 21 \times (-2)^{5}i^{2} + 35 \times (-2)^{4}i^{3} + 35 \times (-2)^{3}i^{4} + 21 \times (-2)^{2}i^{5} + 7 \times (-2)^{1}i^{6} + 1 \times (-2)^{0}i^{7}$$

Example

Find
$$(-2 + i)^7$$
.

$$(-2+i)^{7}$$

$$= 1 \times (-2)^{7}i^{0} + 7 \times (-2)^{6}i^{1} + 21 \times (-2)^{5}i^{2} + 35 \times (-2)^{4}i^{3} + 35 \times (-2)^{3}i^{4} + 21 \times (-2)^{2}i^{5} + 7 \times (-2)^{1}i^{6} + 1 \times (-2)^{0}i^{7}$$

$$= -128 \times 1 + 448 \times i - 672 \times (-1) + 560 \times (-i) + -280 \times 1 + 84 \times i - 14 \times (-1) + 1 \times (-i)$$

Example

Find
$$(-2 + i)^7$$
.

$$(-2+i)^{7}$$

$$= 1 \times (-2)^{7}i^{0} + 7 \times (-2)^{6}i^{1} + 21 \times (-2)^{5}i^{2} + 35 \times (-2)^{4}i^{3} + 35 \times (-2)^{3}i^{4} + 21 \times (-2)^{2}i^{5} + 7 \times (-2)^{1}i^{6} + 1 \times (-2)^{0}i^{7}$$

$$= -128 \times 1 + 448 \times i - 672 \times (-1) + 560 \times (-i) + -280 \times 1 + 84 \times i - 14 \times (-1) + 1 \times (-i)$$

$$= 278 - 29i.$$

$cos(n\theta)$ and $sin(n\theta)$

The Binomial Theorem is particularly useful when expressing $\cos(n\theta)$ and $\sin(n\theta)$ in terms of powers of $\cos\theta$ and $\sin\theta$, and vice versa.

$$cos(n\theta)$$
 and $sin(n\theta)$

When expressing powers of $\sin \theta$ and $\cos \theta$ in terms of sines and cosines of multiples of θ , it is useful to use the following properties:

$$\cos(n\theta) = \frac{1}{2}(e^{in\theta} + e^{-in\theta})$$
$$\sin(n\theta) = \frac{1}{2i}(e^{in\theta} - e^{-in\theta})$$

$$cos(n\theta)$$
 and $sin(n\theta)$

When expressing powers of $\sin \theta$ and $\cos \theta$ in terms of sines and cosines of multiples of θ , it is useful to use the following properties:

$$\cos(n\theta) = \frac{1}{2}(e^{in\theta} + e^{-in\theta})$$
$$\sin(n\theta) = \frac{1}{2i}(e^{in\theta} - e^{-in\theta})$$

$$cos(n\theta)$$
 and $sin(n\theta)$

When expressing powers of $\sin \theta$ and $\cos \theta$ in terms of sines and cosines of multiples of θ , it is useful to use the following properties:

$$\cos(n\theta) = \frac{1}{2}(e^{in\theta} + e^{-in\theta})$$
$$\sin(n\theta) = \frac{1}{2i}(e^{in\theta} - e^{-in\theta})$$

$$\frac{1}{2}(e^{in\theta}+e^{-in\theta})$$

$$cos(n\theta)$$
 and $sin(n\theta)$

When expressing powers of $\sin \theta$ and $\cos \theta$ in terms of sines and cosines of multiples of θ , it is useful to use the following properties:

$$\cos(n\theta) = \frac{1}{2}(e^{in\theta} + e^{-in\theta})$$
$$\sin(n\theta) = \frac{1}{2i}(e^{in\theta} - e^{-in\theta})$$

$$\frac{1}{2}(e^{in\theta}+e^{-in\theta})=\frac{1}{2}(z+\overline{z})$$

$$cos(n\theta)$$
 and $sin(n\theta)$

When expressing powers of $\sin \theta$ and $\cos \theta$ in terms of sines and cosines of multiples of θ , it is useful to use the following properties:

$$\cos(n\theta) = \frac{1}{2}(e^{in\theta} + e^{-in\theta})$$
$$\sin(n\theta) = \frac{1}{2i}(e^{in\theta} - e^{-in\theta})$$

$$rac{1}{2}(e^{in heta}+e^{-in heta})=rac{1}{2}(z+\overline{z})={\sf Re}(z)$$

$$cos(n\theta)$$
 and $sin(n\theta)$

When expressing powers of $\sin \theta$ and $\cos \theta$ in terms of sines and cosines of multiples of θ , it is useful to use the following properties:

$$\cos(n\theta) = \frac{1}{2}(e^{in\theta} + e^{-in\theta})$$
$$\sin(n\theta) = \frac{1}{2i}(e^{in\theta} - e^{-in\theta})$$

$$\frac{1}{2}(e^{in\theta}+e^{-in\theta})=\frac{1}{2}(z+\overline{z})=\operatorname{Re}(z)=\cos(n\theta),$$

$$cos(n\theta)$$
 and $sin(n\theta)$

When expressing powers of $\sin \theta$ and $\cos \theta$ in terms of sines and cosines of multiples of θ , it is useful to use the following properties:

$$\cos(n\theta) = \frac{1}{2}(e^{in\theta} + e^{-in\theta})$$
$$\sin(n\theta) = \frac{1}{2i}(e^{in\theta} - e^{-in\theta})$$

To prove these formulae, consider $z = e^{in\theta} = \cos(n\theta) + i\sin(n\theta)$.

Then

$$\frac{1}{2}(e^{in\theta}+e^{-in\theta})=\frac{1}{2}(z+\overline{z})=\operatorname{Re}(z)=\cos(n\theta),$$

$$\frac{1}{2i}(e^{in\theta}-e^{-in\theta})$$

$$cos(n\theta)$$
 and $sin(n\theta)$

When expressing powers of $\sin \theta$ and $\cos \theta$ in terms of sines and cosines of multiples of θ , it is useful to use the following properties:

$$\cos(n\theta) = \frac{1}{2}(e^{in\theta} + e^{-in\theta})$$
$$\sin(n\theta) = \frac{1}{2i}(e^{in\theta} - e^{-in\theta})$$

To prove these formulae, consider $z = e^{in\theta} = \cos(n\theta) + i\sin(n\theta)$.

Then

$$\frac{1}{2}(e^{in\theta}+e^{-in\theta})=\frac{1}{2}(z+\overline{z})=\operatorname{Re}(z)=\cos(n\theta),$$

$$\frac{1}{2i}(e^{in\theta}-e^{-in\theta})=\frac{1}{2i}(z-\overline{z})$$

$$cos(n\theta)$$
 and $sin(n\theta)$

When expressing powers of $\sin \theta$ and $\cos \theta$ in terms of sines and cosines of multiples of θ , it is useful to use the following properties:

$$\cos(n\theta) = \frac{1}{2}(e^{in\theta} + e^{-in\theta})$$
$$\sin(n\theta) = \frac{1}{2i}(e^{in\theta} - e^{-in\theta})$$

To prove these formulae, consider $z = e^{in\theta} = \cos(n\theta) + i\sin(n\theta)$.

Then

$$\frac{1}{2}(e^{in\theta}+e^{-in\theta})=\frac{1}{2}(z+\overline{z})=\operatorname{Re}(z)=\cos(n\theta),$$

$$\frac{1}{2i}(e^{in\theta}-e^{-in\theta})=\frac{1}{2i}(z-\overline{z})=\operatorname{Im}(z)$$

$$cos(n\theta)$$
 and $sin(n\theta)$

When expressing powers of $\sin \theta$ and $\cos \theta$ in terms of sines and cosines of multiples of θ , it is useful to use the following properties:

$$\cos(n\theta) = \frac{1}{2}(e^{in\theta} + e^{-in\theta})$$
$$\sin(n\theta) = \frac{1}{2i}(e^{in\theta} - e^{-in\theta})$$

To prove these formulae, consider $z = e^{in\theta} = \cos(n\theta) + i\sin(n\theta)$.

Then

$$\frac{1}{2}(e^{in\theta}+e^{-in\theta})=\frac{1}{2}(z+\overline{z})=\operatorname{Re}(z)=\cos(n\theta),$$

$$\frac{1}{2i}(e^{in\theta} - e^{-in\theta}) = \frac{1}{2i}(z - \overline{z}) = \operatorname{Im}(z) = \sin(n\theta).$$

Use De Moivre's Theorem to find formulae for $\cos(4\theta)$ and $\sin(4\theta)$ in terms of powers of $\sin\theta$ and $\cos\theta$.

Use De Moivre's Theorem to find formulae for $\cos(4\theta)$ and $\sin(4\theta)$ in terms of powers of $\sin\theta$ and $\cos\theta$.

De Moivre's Theorem tells us that

$$\cos(4\theta) + i\sin(4\theta) = (\cos\theta + i\sin\theta)^4.$$

Use De Moivre's Theorem to find formulae for $\cos(4\theta)$ and $\sin(4\theta)$ in terms of powers of $\sin\theta$ and $\cos\theta$.

De Moivre's Theorem tells us that

$$\cos(4\theta) + i\sin(4\theta) = (\cos\theta + i\sin\theta)^4.$$

Expanding the right-hand side:

$$(\cos \theta + i \sin \theta)^4$$

$$= \cos^4 \theta + 4i \cos^3 \theta \sin \theta + 6i^2 \cos^2 \theta \sin^2 \theta + 4i^3 \cos \theta \sin^3 \theta + i^4 \sin^4 \theta$$

$$= \cos^4 \theta + 4i \cos^3 \theta \sin \theta - 6 \cos^2 \theta \sin^2 \theta - 4i \cos \theta \sin^3 \theta + \sin^4 \theta$$

Use De Moivre's Theorem to find formulae for $\cos(4\theta)$ and $\sin(4\theta)$ in terms of powers of $\sin\theta$ and $\cos\theta$.

De Moivre's Theorem tells us that

$$\cos(4\theta) + i\sin(4\theta) = (\cos\theta + i\sin\theta)^4.$$

Expanding the right-hand side:

$$(\cos \theta + i \sin \theta)^4$$

$$= \cos^4 \theta + 4i \cos^3 \theta \sin \theta + 6i^2 \cos^2 \theta \sin^2 \theta + 4i^3 \cos \theta \sin^3 \theta + i^4 \sin^4 \theta$$

$$= \cos^4 \theta + 4i \cos^3 \theta \sin \theta - 6 \cos^2 \theta \sin^2 \theta - 4i \cos \theta \sin^3 \theta + \sin^4 \theta$$

So equating real and imaginary parts, we find

$$\cos(4\theta) = \cos^4(\theta) - 6\cos^2\theta\sin^2\theta + \sin^4\theta,$$

Use De Moivre's Theorem to find formulae for $\cos(4\theta)$ and $\sin(4\theta)$ in terms of powers of $\sin\theta$ and $\cos\theta$.

De Moivre's Theorem tells us that

$$\cos(4\theta) + i\sin(4\theta) = (\cos\theta + i\sin\theta)^4.$$

Expanding the right-hand side:

$$(\cos \theta + i \sin \theta)^4$$

$$= \cos^4 \theta + 4i \cos^3 \theta \sin \theta + 6i^2 \cos^2 \theta \sin^2 \theta + 4i^3 \cos \theta \sin^3 \theta + i^4 \sin^4 \theta$$

$$= \cos^4 \theta + 4i \cos^3 \theta \sin \theta - 6 \cos^2 \theta \sin^2 \theta - 4i \cos \theta \sin^3 \theta + \sin^4 \theta$$

So equating real and imaginary parts, we find

$$\cos(4\theta) = \cos^4(\theta) - 6\cos^2\theta\sin^2\theta + \sin^4\theta,$$

and

$$\sin(4\theta) = 4\cos^3\theta\sin\theta - 4\cos\theta\sin^3\theta.$$

Example

Example

Using
$$sin(n\theta) = \frac{1}{2i}(e^{in\theta} - e^{-in\theta})$$
:

Example

Using
$$\sin(n\theta) = \frac{1}{2i}(e^{in\theta} - e^{-in\theta})$$
:
$$\sin^3 \theta = \left(\frac{1}{2i}(e^{i\theta} - e^{-i\theta})\right)^3$$

Example

Using
$$\sin(n\theta) = \frac{1}{2i}(e^{in\theta} - e^{-in\theta})$$
:

$$\sin^3 \theta = \left(\frac{1}{2i}(e^{i\theta} - e^{-i\theta})\right)^3$$

$$= \frac{1}{-8i}(e^{3i\theta} - 3e^{2i\theta}e^{-i\theta} + 3e^{i\theta}e^{-2i\theta} - e^{-3i\theta})$$

Example

Using
$$\sin(n\theta) = \frac{1}{2i} (e^{in\theta} - e^{-in\theta})$$
:

$$\sin^3 \theta = \left(\frac{1}{2i} (e^{i\theta} - e^{-i\theta})\right)^3$$

$$= \frac{1}{-8i} (e^{3i\theta} - 3e^{2i\theta}e^{-i\theta} + 3e^{i\theta}e^{-2i\theta} - e^{-3i\theta})$$

$$= -\frac{1}{4} \left(\frac{1}{2i} (e^{3i\theta} - e^{-3i\theta}) - \frac{1}{2i} (3e^{i\theta} - 3e^{-i\theta})\right)$$

Example

Using
$$\sin(n\theta) = \frac{1}{2i} (e^{in\theta} - e^{-in\theta})$$
:

$$\sin^3 \theta = \left(\frac{1}{2i} (e^{i\theta} - e^{-i\theta})\right)^3$$

$$= \frac{1}{-8i} (e^{3i\theta} - 3e^{2i\theta}e^{-i\theta} + 3e^{i\theta}e^{-2i\theta} - e^{-3i\theta})$$

$$= -\frac{1}{4} \left(\frac{1}{2i} (e^{3i\theta} - e^{-3i\theta}) - \frac{1}{2i} (3e^{i\theta} - 3e^{-i\theta})\right)$$

$$= -\frac{1}{4} (\sin(3\theta) - 3\sin\theta)$$

Using
$$\sin(n\theta) = \frac{1}{2i}(e^{in\theta} - e^{-in\theta})$$
:

$$\sin^3 \theta = \left(\frac{1}{2i}(e^{i\theta} - e^{-i\theta})\right)^3$$

$$= \frac{1}{-8i}(e^{3i\theta} - 3e^{2i\theta}e^{-i\theta} + 3e^{i\theta}e^{-2i\theta} - e^{-3i\theta})$$

$$= -\frac{1}{4}\left(\frac{1}{2i}(e^{3i\theta} - e^{-3i\theta}) - \frac{1}{2i}(3e^{i\theta} - 3e^{-i\theta})\right)$$

$$= -\frac{1}{4}(\sin(3\theta) - 3\sin\theta)$$
So
$$\int \sin^3 \theta \, d\theta$$

Example

Using
$$\sin(n\theta) = \frac{1}{2i}(e^{in\theta} - e^{-in\theta})$$
:

$$\sin^3 \theta = \left(\frac{1}{2i}(e^{i\theta} - e^{-i\theta})\right)^3$$

$$= \frac{1}{-8i}(e^{3i\theta} - 3e^{2i\theta}e^{-i\theta} + 3e^{i\theta}e^{-2i\theta} - e^{-3i\theta})$$

$$= -\frac{1}{4}\left(\frac{1}{2i}(e^{3i\theta} - e^{-3i\theta}) - \frac{1}{2i}(3e^{i\theta} - 3e^{-i\theta})\right)$$

$$= -\frac{1}{4}(\sin(3\theta) - 3\sin\theta)$$
So

So
$$\int \sin^3 \theta \ d\theta = \int \left(-\frac{1}{4} (\sin(3\theta) - 3\sin\theta) \right) \ d\theta$$

Example

Using
$$\sin(n\theta) = \frac{1}{2i} (e^{in\theta} - e^{-in\theta})$$
:

$$\sin^3 \theta = \left(\frac{1}{2i} (e^{i\theta} - e^{-i\theta})\right)^3$$

$$= \frac{1}{-8i} (e^{3i\theta} - 3e^{2i\theta}e^{-i\theta} + 3e^{i\theta}e^{-2i\theta} - e^{-3i\theta})$$

$$= -\frac{1}{4} \left(\frac{1}{2i} (e^{3i\theta} - e^{-3i\theta}) - \frac{1}{2i} (3e^{i\theta} - 3e^{-i\theta})\right)$$

$$= -\frac{1}{4} (\sin(3\theta) - 3\sin\theta)$$

So
$$\int \sin^3 \theta \ d\theta = \int \left(-\frac{1}{4} (\sin(3\theta) - 3\sin\theta) \right) \ d\theta = \frac{1}{12} \cos(3\theta) - \frac{3}{4} \cos\theta.$$