Fast Solver of Closely Related Quadratic Programming Problems

Andreas Halle

June 10, 2013

PROMAPS

- Utviklet av Goodtech og MathConsult.
- Kalkurerer leveransepåliteligheten i et nettverk
- Dette er formulert som en rekke veldig like QP-problemer (Quadratic Programming).
- QP-løseren en flaskehals. Skjermbildet (PROMAPS) oppdaterer seg hvert femte minutt.
- http://www.tu.no/energi/2011/10/07/ her-beregnes-risikoen-for-svikt-i-kraftnettet

Objektfunksjonen

$$f(x) = x^{\mathsf{T}} \Phi D x + (g - c)^{\mathsf{T}} x$$

- f(x) representerer leveransekostnader (E/s)
- x representerer strømmen over grenene (W)
- $ightharpoonup \Phi$ representerer strømtap (1/W)
- ightharpoonup D representerer overføringskostnader (E/J)
- g representerer kostnader for å generere strøm (E/J)
- ightharpoonup c representerer leveransepris (E/J)

Objektfunksjonen

$$f(x) = x^T H x + b^T x$$

- ightharpoonup H = ΦD representerer kostnader $(E/(W^2s))$
- ▶ b = g c representerer kostnader (E/J)
- ightharpoonup H er en matrise på størrelsen $n \times n$
- ▶ $b \text{ og } x \text{ er vektorer i } \mathbb{R}^n$

Optimeringsproblemet

Vi definerer et konveks QP-problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
 subject to $Ax = 0, I \le x \le u$

- ightharpoonup A er en $m \times n$ insidensmatrise for et strømnettverk
- ▶ *m* noder
- n grener
- ▶ l og u er nedre og øvre grenkapasitet (W)

Utfall

Vi ønsker å modellere utfall.

- ▶ Setter $I_i = u_i = 0$
- Goodtech ønsker å løse QP-problemet for ulike utfall
- Definerer subinstanser for kombinasjoner av grener som faller ut
- ▶ Instans er et QP-problem uten utfall
- Subinstans er en instans med utfall

Utfall

- Vil løse så mange subinstanser som mulig.
- Usannsynlig at det er mange utfall.
- ▶ Vi prøver å løse alle subinstanser som har mindre eller lik β utfall.

$$\sigma(\beta, n) = \sum_{j=0}^{\beta} \binom{n}{j}$$

Subinstanser

- lacktriangle En mengde av variabler som representerer utfall \mathcal{M}_k
- $k = \sum_{j \in \mathcal{M}_k} 2^{j-1}$
- ► Eks. $\mathcal{M}_k = \{1, 3, 5\}$. k = 21
- ▶ En subinstans Q_k defineres av \mathcal{M}_k
- lacktriangle Optimal løsning til subinstans \mathcal{Q}_k noterer vi som x_k^*

Instanser fra Goodtech

Instanser fra Goodtech

Table: Størrelse for hver instans

Problemstørrelse	small	large	vlarge
Rader	82	328	1127
Kolonne	238	952	3437
Ikke-nuller A	348	1392	4840
Ikke-nuller H	108	432	894

Table: Verdier i objektfunksjonen

	small og large	vlarge
$\max(h_{ii})$	2.9614×10^{-2}	4.9011×10^{-2}
$\min(h_{ii})$	4.9290×10^{-5}	1.1026×10^{-5}
$mean(h_{ii})$	5.2864×10^{-3}	5.8984×10^{-3}
$\max(b_i)$	20	20
$\min(b_i)$	-70	-50

Instanser fra Goodtech

- Vi ser at det lineære leddet har mye høyere verdier enn det kvadratiske
- Prøver å lineærisere objektfunksjonen
- Lineær Taylor-utvikling av objektfunksjonen i punkt a:

$$T_a(x) = -a^T H a + 2a^T H x + b^T x$$

 $T_0(x) = b^T x$

Definerer et LP $\mathcal L$ for hvert QP $\mathcal Q$

$$\min_{x \in \mathbb{R}^n} g(x)$$
 subject to $Ax = 0, \ l \le x \le u$

$$g(x) = T_0(x) = b^T x$$

Hvor like er \mathcal{L} og \mathcal{Q} ?

- ▶ Optimal løsning til Q noteres x^*
- ▶ Optimal løsning til \mathcal{L} noteres \hat{x}
- ▶ Vi noterer avvik mellom $f(\hat{x})$ og $f(x^*)$ for $\Delta = \left|\frac{f(\hat{x}) f(x^*)}{f(x^*)}\right|$
- Vi genererer tilfeldige instanser og sjekker Δ

100Δ

Figure : Avvik som en funksjon av tettheten i objektfunksjonen. x er prosent nuller på diagonalen til H. y er prosent nuller i b

Hvor like er \mathcal{L} og \mathcal{Q} ?

Oppnår 95% optimal verdi etter løst \mathcal{L} .

- Metode basert på successive linear programming (SLP)
- Lar vi startverdien $x_0 = 0$, når vi rundt 95% av optimal målfunksjonsverdi etter første iterasjon
- ▶ Taylor-utvikling i x_k noterer vi som T_k
- ▶ Definerer \mathcal{L}_k som LP-problemet å minimere \mathcal{T}_k underlagt sidekravene til \mathcal{Q} .

Algorithm 1: $slp(x_0, \epsilon \ge 0)$

Et eksempel

minimize
$$(x-1)^2 + (y-1)^2 - 2$$
subject to
$$x + y \leq 3$$

$$x - y \leq 1$$

$$x + 3y \leq 4$$

$$x, y \geq 0$$

► $T_0 = -2x - 2y$ blir lineær objektfunksjon

Linjesøk

- $\alpha = 0.6$
- $x_1 = 0.4x_0 + 0.6\hat{x}_0 = (1.2, 0.6)$
- $T_1 = 0.4x 0.8y 1.8$

$$\alpha = 0.27$$

$$x_2 = (0.88, 0.8)$$

$$T_2 = -0.25x - 0.4y - 0.4$$

$$\alpha = 0.23$$

$$x_3 = (0.96, 1.02)$$

Sti

Endrer et sidekrav

►
$$-x + 3y \le 4$$

►
$$-x + 3y \le 0$$

▶
$$\alpha = 0.2$$

$$x_1 = 0.8x_0 + 0.2\hat{x}_0 = (1.2, 0.4) = x^*$$

Like optimale løsninger

- ▶ En mengde \mathcal{M}_k med grener som faller ut.
- ▶ En subinstans Q_k definert av Q og M_k
- ▶ Optimal løsning til Q_k noteres som x_k^*
- ▶ En mengde med variabler som er 0 i x_k^* noteres som \mathcal{Z}_k .
- ▶ $2^n 1$ subinstanser. $|\mathcal{Z}_0| = 1749$ i *vlarge*.
- $ightharpoonup 2^{1749}pprox 3 imes 10^{526}$ subinstanser har løsning x_0^*

$$\begin{array}{llll} \mathcal{M}_0 = \{\} & \mathcal{Z}_0 = \{1,3\} \\ \mathcal{M}_2 = \{2\} & \mathcal{Z}_2 = \{2,3,5\} \\ \mathcal{M}_3 = \{1,2\} & \mathcal{Z}_3 = \{1,2,4,5\} \\ \mathcal{M}_7 = \{1,2,3\} & \mathcal{Z}_7 = \{1,2,3,5\} \\ \mathcal{M}_8 = \{4\} & \mathcal{Z}_8 = \{1,4,5\} \\ \mathcal{M}_{10} = \{2,4\} & \mathcal{Z}_{10} = \{2,3,4,5\} \end{array} \quad \begin{array}{lll} \mathcal{M}_{12} = \{3,4\} & \mathcal{Z}_{12} = \{4,3,1\} \\ \mathcal{M}_{15} = \{1,2,3,4\} & \mathcal{Z}_{15} = \{1,2,3,4\} \\ \mathcal{M}_{16} = \{5\} & \mathcal{Z}_{16} = \{1,3,5\} \\ \mathcal{M}_{28} = \{3,4,5\} & \mathcal{Z}_{28} = \{2,3,4,5\} \end{array}$$

$$\begin{array}{llll} \mathcal{M}_0 = \{\} & \mathcal{Z}_0 = \{1,3\} \\ \mathcal{M}_2 = \{2\} & \mathcal{Z}_2 = \{2,3,5\} \\ \mathcal{M}_3 = \{1,2\} & \mathcal{Z}_3 = \{1,2,4,5\} \\ \mathcal{M}_7 = \{1,2,3\} & \mathcal{Z}_7 = \{1,2,3,5\} \\ \mathcal{M}_8 = \{4\} & \mathcal{Z}_8 = \{1,4,5\} \\ \mathcal{M}_{10} = \{2,4\} & \mathcal{Z}_{10} = \{2,3,4,5\} \end{array} \quad \begin{array}{lll} \mathcal{M}_{12} = \{3,4\} & \mathcal{Z}_{12} = \{4,3,1\} \\ \mathcal{M}_{15} = \{1,2,3,4\} & \mathcal{Z}_{15} = \{1,2,3,4\} \\ \mathcal{M}_{16} = \{5\} & \mathcal{Z}_{16} = \{1,3,5\} \\ \mathcal{M}_{28} = \{3,4,5\} & \mathcal{Z}_{28} = \{2,3,4,5\} \end{array}$$

Algoritme: find

Vi løser *small*, med $\sigma(2,238) = 28442$ subinstanser

Table : Resultater av de forskjellige implementasjonen med endrende toleranse.

ϵ	cClp	cSlp	nClp	nSlp
10^{-1}	45.51	55.61	72.32	85.51
10^{-2}	46.34	55.89	73.11	85.51
10^{-3}	51.12	59.04	75.60	85.28
10^{-4}	52.46	73.79	77.83	107.39
10^{-5}	54.48	232.53	81.16	355.47
10^{-6}	65.42	1363.46	93.29	2022.25
10^{-7}	70.78	6522.91	100.85	9395.92

Figure: Kjøretid i CPU-sekunder for å løse small og dens subinstanser.

Table : Kjøretid i CPU-sekunder for å løse de tre instansene.

Implementasjon	small	large	vlarge
cClp	0.52	9.55	76.18
cSlp	0.71	32.88	585.60
nClp	0.65	11.68	157.53
nSlp	0.89	39.87	1173.74

Tilfeldige instanser

- ▶ $m = \lfloor \frac{7}{20} n \rfloor$
- ▶ b_i har 50% sannsynlighet for å være null. Ellers $10 \le |b_i| \le 70$.
- ▶ h_{ii} har 50% sannsynlighet for å være null. Ellers $10^{-5} \le h_{ii} \le 10^{-1}$.

Table : Kjøretid for å løse tilfeldige instanser med økende $\emph{n}.$ $\beta=1.$

n	cClp	nClp	Relativ Speedup
500	4.9	5.9	16.9%
1000	42.1	53.0	20.6%
1500	181.5	234.5	22.6%
2000	547.1	710.2	23.0%

Table : Kjøretid i CPU-sekunder for n = 50 og økende β .

β	cClp	nClp	Relativ Speedup	Distinkte løsninger
1	0.03	0.04	25.0%	37.4 (74.3%)
2	0.64	0.94	31.9%	744.3 (58.3%)
3	7.06	15.90	55.6%	9484.7 (45.4%)
4	77.59	188.83	58.9%	82262.5 (32.8%)
5	586.54	1758.23	66.6%	574685.0 (24.2%)

