LAB. 2, IMN - WYBRANE WYNIKI: RÓWNANIA RÓZNICZKOWE ZWYCZAJNE

1 Zadanie: błąd globalny

1.1 Błąd globalny w funkcji t dla równania $\frac{du}{dt} = 32t - 4$

Rysunek 1: Wyniki uzyskane różnymi schematami dla kroku czasowego dt = 1.5. Na wykresie a): porównanie rozwiązania analitycznego i numerycznego z jawnej metody Eulera. Niejawna metoda Eulera spowoduje identyczne błędy (z dokładnością do wartości bezwzględnej), natomiast rozwiązanie dla metody trapezów idealnie pokryje się z rozwiązaniem dokładnym.

1.2 Błąd globalny w funkcji dt dla t=10, jawny schemat Eulera

Rysunek 2: Błąd globalny dla jawnego schematu Eulera po czasie t = 10, różne dt.

2 Zadanie: stabilność bezwzględna

Rysunek 3: Wyniki uzyskane jawnym schematem Eulera dla różnych kroków czasowych. Rozwiązania dla dwóch najmniejszych kroków powinny być stabilne. Krok dt=0.25 jest granicą pomiędzy stabilnością a niestabilnością schematu - rozwiązanie u(t) będzie oscylować wokół analitycznego o stałą wartość. Każdy większy krok powoduje eksplozję rozwiązania.

3 Zadanie: niejawna metoda Eulera

Rysunek 4: Wyniki uzyskane niejawnym schematem Eulera dla różnych kroków czasowych. Niejawna metoda Eulera powinna dać stabilne rozwiązanie dla każdego z zadanych kroków czasowych - jak np. dla dt=1.33 na wykresie a)

4 Zadanie: iteracja funkcjonalna dla niejawnego Eulera

Numer	Wartość	Numer	Wartość
iteracji μ	$u_1^{\mu}(dt = 0.01)$	iteracji μ	$u_1^{\mu}(dt = 0.01)$
0	9.500000000000000	4	9.31494091366400
1	9.30012800000000	5	9.31493272690688
2	9.31611776000000	6	9.31493338184745
3	9.31483857920000	7	9.31493332945220

Tabela 1: Kolejne wartości u_1^μ przy kroku dt=0.01.

Rysunek 5: Wartości u_1^{μ} w kolejnych iteracjach μ , uzyskane niejawnym schematem Eulera z iteracją funkcjonalną dla kroku dt = 0.01 - ilustracja wyników z tabeli 1.

Krok dt=0.125 nie pozwoli na dojście do zbieżności: jest to graniczny krok czasowy, przy którym u_1^{μ} wpadnie w oscylacje pomiędzy dwiema liczbami. Większy krok czasowy spowoduje stałe zwiększanie się rozbieżności pomiędzy kolejnymi wielkościami u_1^{μ} .

5 Zadanie: iteracja Newtona dla niejawnego Eulera

Numer	Wartość		
iteracji μ	$u_1^{\mu}(dt = 1.33)$		
0	9.500000000000000		
1	33.0856989690722		
2	33.0856989690722		

Tabela 2: Kolejne wartości u_1^{μ} przy kroku dt=1.33.

Rysunek 6: Wartości u_1^{μ} w kolejnych iteracjach μ , uzyskane niejawnym schematem Eulera z iteracją Newtona dla kroku dt = 1.33 - ilustracja wyników z tabeli 2.

6 Równanie nieliniowe

Numer	Wartość	Numer	Wartość
iteracji μ	$u_1^{\mu}(dt=1.0)$	iteracji μ	$u_1^{\mu}(dt=1.0)$
0	1.900000000000000	4	2.08026295321267
1	2.29767441860465	5	2.08019203362540
2	2.13715628672538	6	2.08019202276230
3	2.08598391306810		

Tabela 3: Kolejne wartości u_1^{μ} przy kroku dt = 1.0.

Rysunek 7: Wartości u_1^{μ} w kolejnych iteracjach μ , uzyskane **niejawnym schematem Eulera z iteracją Newtona** przy **równaniu nieliniowym** dla kroku **dt** = **1.0** - ilustracja wyników z tabeli 3.

7 Zadanie: Iloraz różnicowy zamiast pochodnej po $\,u$

Zamiana analitycznej pochodnej na numeryczną powinna pozwolić na prawie równie szybkie dotarcie do zbieżności, jak w zad. 6.

8 Zadanie: Iteracja Newtona dla metody trapezów z ilorazem różnicowym

Rysunek 8: Wyniki uzyskane niejawnym schematem trapezów z ilorazem różnicowym.