Question 14 (11 marks)

A small dam on an agricultural property has a length of 20 m, and a uniform cross-section shown below where x and y are in metres. The base of the dam is flat for $0 \le x \le 5$, and the right side is given by $y = \frac{(x-5)^2}{4}$ for $5 < x \le 11.325$. The shaded region on the graph below represents the cross-section of a volume of water V (m³) in the dam with water level h (m).

(a) Using calculus, show that the volume of water in the dam is given by

$$V(h) = 100h + \frac{80}{3}h^{\frac{3}{2}}.$$
 (5 marks)

(b)	Use the increments formula to estimate the change in water volume if the water rises from 6 m to 6.1 m.	level (3 marks)
previou	se the water volume at the start of winter is 1000 m 3 . On the basis of rainfall data us years, the volume of water $V_{\scriptscriptstyle R}$ (m 3) that will flow into the dam over winter is nor uted with a mean of 600 m 3 and a standard deviation of 200 m 3 .	
(c)	Assuming that there are no other sources of water and no losses, determine the probability that the dam will reach full capacity (i.e. depth of 10 m) during winter.	