1/5

Ministério da Educação Instituto Federal de Educação, Ciência e Tecnologia de Goiás Campus Ánápolis

Departamento de Áreas Acadêmicas Curso de Bacharelado em Ciência da Computação

Disciplina de Matemática Computacional

Lista 3 – Solução de Sistemas de Equações Multivariadas e Lineares

- As questões são sorteadas.
- O código deve ser modularizado. No mínimo, devem existir: 1) função principal; 2) função do problema.
- Código semelhante ou copiado resulta em zero para todos em que isso for detectado.
- Ainda, o código deve imprimir o resultado via terminal até a sexta casa decimal e o número de iterações.
- Deve conter um relatório explicando a fundamentação teórica do método numérico abordado, assim como o enunciado do exercício sorteado e fazer um comentário sobre o resultado final da sua implementação do método numérico.
- O código completo e o relatório devem ser entregues em um único arquivo ZIP via Moodle no prazo determinado.
- 1. Encontre as raízes de f(w, x, y, z) = $\begin{cases} w + 6x + 3y 3z = 2 \\ 2w + 7x + y + 2z = 5 \\ w + 5x + 3y 3z = 3 \end{cases}$ utilizando o método direto da Eliminação Gaussiana -6x 2y + 3z = 6

com pivotamento parcial. Qual a solução para o sistema? O método chegou na solução corretamente?

- 2. Encontre as raízes de $f(x, y, z) = \begin{cases} 3x + 2y = 13 \\ 3x + 2y + z = 13 \text{ utilizando o método direto da Eliminação Gaussiana com pivotamento parcial. Qual a solução para o sistema? O método chegou na solução corretamente?$
- 3. Encontre as raízes de $f(x, y, z) = \begin{cases} -x + y 3z = -4 \\ 3x 2y + 8z = 14 \text{ utilizando o método direto da Eliminação Gaussiana com } 2x 2y + 5z = 7 \end{cases}$ pivotamento parcial. Qual a solução para o sistema? O método chegou na solução corretamente?
- 4. Encontre as raízes de $f(x,y,z) = \begin{cases} 3x + 5y 5z = 21 \\ -4x + 8y 5z = 1 \end{cases}$ utilizando o método direto da Eliminação Gaussiana com pivotamento parcial. Qual a solução para o sistema? O método chegou na solução corretamente?
- 5. Encontre as raízes de $f(x, y, z) = \begin{cases} 2x + z = 2 \\ 5x y + z = 5 \\ -x + 2y + 2z = 0 \end{cases}$ utilizando o método direto da Eliminação Gaussiana com pivotamento parcial. Qual a solução para o sistema? O método chegou na solução corretamente?
- 6. Encontre as raízes de $f(x, y, z) = \begin{cases} 4x + 3y + z = 14 \\ 6x + y = 9 \\ 3x + 5y + 3z = 21 \end{cases}$ utilizando o método direto da Eliminação Gaussiana com pivotamento parcial. Qual a solução para o sistema? O método chegou na solução corretamente?
- 7. Encontre as raízes de $f(x, y, z) = \begin{cases} x + y 3z = -17 \\ 2x + z = 12 \\ -7x 2y + z = -11 \end{cases}$ utilizando o método direto da Eliminação Gaussiana com pivotamento parcial. Qual a solução para o sistema? O método chegou na solução corretamente?
- 8. Encontre as raízes de $f(x_1, x_2) = \begin{cases} 0.780x_1 + 0.563x_2 = 0.217 \\ 0.913x_1 + 0.659x_2 = 0.254 \end{cases}$ utilizando o método direto da Eliminação Gaussiana com pivotamento parcial. Qual a solução para o sistema? O método chegou na solução corretamente?

Ministério da Educação Instituto Federal de Educação, Ciência e Tecnologia de Goiás Campus Anápolis

Departamento de Áreas Acadêmicas

Curso de Bacharelado em Ciência da Computação

Disciplina de Matemática Computacional

(w + 6x + 3y - 3z = 2) (2w + 7x + y + 2z = 5) (2w + 5x + 3y - 3z = 3) utilizando o método direto de Gauss-Jordan com pi-9. Encontre as raízes de f(w, x, y, z) =

votamento parcial. Qual a solução para o sistema? O método chegou na solução corretamente?

10. Encontre as raízes de $f(x, y, z) = \begin{cases} 3x + 2y = 13 \\ 3x + 2y + z = 13 \end{cases}$ utilizando o método direto de Gauss-Jordan com pivotamento 2x + y + 3z = 9

parcial. Qual a solução para o sistema? O método chegou na solução corretamente?

11. Encontre as raízes de $f(x, y, z) = \begin{cases} -x + y - 3z = -4 \\ 3x - 2y + 8z = 14 \text{ utilizando o método direto de Gauss-Jordan com pivota-} \\ 2x - 2y + 5z = 7 \end{cases}$

mento parcial. Qual a solução para o sistema? O método chegou na solução corretamente?

 $\begin{cases} 3x + 5y - 5z = 21 \\ -4x + 8y - 5z = 1 \end{cases}$ utilizando o método direto de Gauss-Jordan com pivota-2x - 5y + 6z = -1612. Encontre as raízes de f(x, y, z) =

mento parcial. Qual a solução para o sistema? O método chegou na solução corretamente?

13. Encontre as raízes de $f(x, y, z) = \begin{cases} 5x - y + z = 5 \end{cases}$ utilizando o método direto de Gauss-Jordan com pivotamento

parcial. Qual a solução para o sistema? O método chegou na solução corretamente?

14. Encontre as raízes de $f(x, y, z) = \{6x + y = 9\}$ utilizando o método direto de Gauss-Jordan com pivota-(3x + 5y + 3z = 21)

mento parcial. Qual a solução para o sistema? O método chegou na solução corretamente?

15. Encontre as raízes de $f(x, y, z) = \begin{cases} x + y - 3z = -17 \\ 2x + z = 12 \end{cases}$ utilizando o método direto de Gauss-Jordan com pivota--7x - 2y + z = -11

mento parcial. Qual a solução para o sistema? O método chegou na solução corretamente?

16.Encontre as raízes de $f(x_1, x_2) = \begin{cases} 0.780x_1 + 0.563x_2 = 0.217 \\ 0.913x_1 + 0.659x_2 = 0.254 \end{cases}$ utilizando o método direto de Gauss-Jordan com pivotamento parcial. Qual a solução para o sistema? O método chegou na solução corretamente?

Ministério da Educação Instituto Federal de Educação, Ciência e Tecnologia de Goiás Campus Anápolis

Departamento de Áreas Acadêmicas Curso de Bacharelado em Ciência da Computação

Disciplina de Matemática Computacional

 $\begin{cases} w + 6x + 3y - 3z = 2\\ 2w + 7x + y + 2z = 5\\ w + 5x + 3y - 3z = 3 \end{cases}$ utilizando a fatoração LU com pivotamento parcial. 17. Encontre as raízes de f(w, x, y, z) =

Qual a solução para o sistema? O método chegou na solução corretamente? Além disso, a fatoração foi feita corretamente?

18. Encontre as raízes de $f(x, y, z) = \{3x + 2y + z = 13 \text{ utilizando a fatoração LU com pivotamento parcial. Qual a$ (2x + v + 3z = 9)

solução para o sistema? O método chegou na solução corretamente? Além disso, a fatoração foi feita corretamente?

 ${3x - 2y + 8z = 14}$ utilizando a fatoração LU com pivotamento parcial. Qual a 19. Encontre as raízes de f(x, y, z) =2x - 2y + 5z = 7

solução para o sistema? O método chegou na solução corretamente? Além disso, a fatoração foi feita corretamente?

3x + 5y - 5z = 21 $\begin{cases} -4x + 8y - 5z = 1 \\ 2x - 5y + 6z = -16 \end{cases}$ utilizando a fatoração LU com pivotamento parcial. Qual a 20. Encontre as raízes de f(x, y, z) =

solução para o sistema? O método chegou na solução corretamente? Além disso, a fatoração foi feita corretamente?

21. Encontre as raízes de f(x, y, z) =utilizando a fatoração LU com pivotamento parcial. Qual a

solução para o sistema? O método chegou na solução corretamente? Além disso, a fatoração foi feita corretamente?

4x + 3y + z = 1422. Encontre as raízes de $f(x, y, z) = \{6x + y = 9\}$ utilizando a fatoração LU com pivotamento parcial. Qual a (3x + 5y + 3z = 21)

solução para o sistema? O método chegou na solução corretamente? Além disso, a fatoração foi feita corretamente?

2x + z = 1223. Encontre as raízes de f(x, y, z) =utilizando a fatoração LU com pivotamento parcial. Qual

a solução para o sistema? O método chegou na solução corretamente? Além disso, a fatoração foi feita corretamente?

24. Encontre as raízes de $f(x_1, x_2) = \begin{cases} 0.780x_1 + 0.563x_2 = 0.217 \\ 0.913x_1 + 0.659x_2 = 0.254 \end{cases}$ utilizando a fatoração LU com pivotamento parcial. Qual a solução para o sistema? O método chegou na solução corretamente? Além disso, a fatoração foi feita corretamente?

4/5

Ministério da Educação Instituto Federal de Educação, Ciência e Tecnologia de Goiás Campus Anápolis Departamento de Áreas Acadêmicas Curso de Bacharelado em Ciência da Computação

Disciplina de Matemática Computacional

	₁₆₁	74	128	127	77ק								
25. Dada a seguinte matriz simétrica	74	146	49	70	63								
	128	49	171	137	95 , r	ealize a respectiva fatoração Cholesky. A fatoração							
	127	70	137	150	78								
l		63	95	78	$_{77}$]								
foi realizada corretamente?													
26.Dada a seguinte matriz simétrica	г108	129	113	74	67	81	84 1						
	129	315	190	177	172	204	155						
	113	190	184	74	140	139	178						
	74	177	74	209	102	145	89	, realize a respectiva fatoração Cho-					
	67	172	140	102	157	136	156						
	81	204	139	145	136	183	147						
	L 84	155	178	89	156	147	224						
lesky. A fatoração foi realizada corretamente?													
-	г469	300	364	252	369	344	333	367	372	2827			
27.Dada a seguinte matriz simétrica	300	353	321	223	311	278	301	283	314	215			
	364	321	474	204	318	244	295	271	351	215			
	252	223	204	218	247	206	226	210	247	230			
	369	311	318	247	435	357	308	331	329	250			
	344	278	244	206	357	412	292	384	270	208			
	333	301	295	226	308	292	360	323	312	234			
	367	283	271	210	331	384	323	431	321	216			
	372	314	351	247	329	270	312	321	412	251			
	[282]	215	215	230	250	208	234	216	251	273			
pectiva fatoração Cholesky. A fato						200	∠ J⁻T	210	231	<i>L</i> / J			

Ministério da Educação Instituto Federal de Educação, Ciência e Tecnologia de Goiás Campus Ánápolis

Departamento de Áreas Acadêmicas Curso de Bacharelado em Ciência da Computação

Disciplina de Matemática Computacional

28. Encontre as raízes de
$$f(w, x, y, z) =$$

$$\begin{cases} w + 6x + 3y - 3z = 2 \\ 2w + 7x + y + 2z = 5 \\ w + 5x + 3y - 3z = 3 \end{cases}$$
 utilizando o método iterativo de Gauss-Seidel na vi-

zinhança de w = x = y = z = 1 e o máximo de 1000 iterações, com tolerância de 10^{-5} . Houve convergência? Quantas iterações foram necessárias? Qual a solução para o sistema? O método chegou na solução corretamente?

29. Encontre as raízes de
$$f(x, y, z) = \begin{cases} 3x + 2y = 13 \\ 3x + 2y + z = 13 \end{cases}$$
 utilizando o método iterativo de Gauss-Seidel na vizinhança $2x + y + 3z = 9$

de x = y = z = 0 e o máximo de 1000 iterações, com tolerância de 10^{-5} . Houve convergência? Quantas iterações foram necessárias? Qual a solução para o sistema? O método chegou na solução corretamente?

30. Encontre as raízes de
$$f(x, y, z) = \begin{cases} -x + y - 3z = -4 \\ 3x - 2y + 8z = 14 \text{ utilizando o método iterativo de Gauss-Seidel na vizinhança} \\ 2x - 2y + 5z = 7 \end{cases}$$

de x=3, y=6, z=9 e o máximo de 1000 iterações, com tolerância de 10^{-5} . Houve convergência? Quantas iterações foram necessárias? Qual a solução para o sistema? O método chegou na solução corretamente?

31. Encontre as raízes de
$$f(x,y,z) = \begin{cases} 3x + 5y - 5z = 21 \\ -4x + 8y - 5z = 1 \end{cases}$$
 utilizando o método iterativo de Gauss-Seidel na vizi-
$$2x - 5y + 6z = -16$$

nhança de x = -5, y = 3, z = 8 e o máximo de 1000 iterações, com tolerância de 10^{-5} . Houve convergência? Quantas iterações foram necessárias? Qual a solução para o sistema? O método chegou na solução corretamente?

32. Encontre as raízes de
$$f(x, y, z) = \begin{cases} 2x + z = 2\\ 5x - y + z = 5\\ -x + 2y + 2z = 0 \end{cases}$$
 utilizando o método iterativo de Gauss-Seidel na vizinhança

de x = 1, y = 100, z = 3 e o máximo de 1000 iterações, com tolerância de 10^{-5} . Houve convergência? Quantas iterações foram necessárias? Qual a solução para o sistema? O método chegou na solução corretamente?

33. Encontre as raízes de
$$f(x, y, z) = \begin{cases} 4x + 3y + z = 14 \\ 6x + y = 9 \\ 3x + 5y + 3z = 21 \end{cases}$$
 utilizando o método iterativo de Gauss-Seidel na vizinhança

de x = -58, y = 10, z = 78 e o máximo de 1000 iterações, com tolerância de 10^{-5} . Houve convergência? Quantas iterações foram necessárias? Qual a solução para o sistema? O método chegou na solução corretamente?

34. Encontre as raízes de
$$f(x, y, z) = \begin{cases} x + y - 3z = -17 \\ 2x + z = 12 \\ -7x - 2y + z = -11 \end{cases}$$
 utilizando o método iterativo de Gauss-Seidel na vizi-

nhança de x=-7, y=8, z=5 e o máximo de 1000 iterações, com tolerância de 10^{-5} . Houve convergência? Quantas iterações foram necessárias? Qual a solução para o sistema? O método chegou na solução corretamente?

35. Encontre as raízes de
$$f(x_1, x_2) = \begin{cases} 0.780x_1 + 0.563x_2 = 0.217 \\ 0.913x_1 + 0.659x_2 = 0.254 \end{cases}$$
 utilizando o método iterativo de Gauss-Seidel na vizinhança de $x = 9$, $y = 10$ e o máximo de 1000 iterações, com tolerância de 10^{-5} . Houve convergência? Quantas iterações foram necessárias? Qual a solução para o sistema? O método chegou na solução corretamente?