Bài 3. LOGARIT

A. KIẾN THỰC SÁCH GIÁO KHOA CẦN CẦN NẮM

1. Đinh nghĩa

Cho hai số dương a, b với $a \neq 1$. Số α thỏa mãn đẳng thức $a^{\alpha} = b$ được gọi là lôgarit cơ số a của b và kí hiệu là $\log_a b$.

Ta viết $\alpha = \log_a b \Leftrightarrow a^{\alpha} = b$.

2. Các tính chất

Cho $a, b > 0, a \neq 1$, ta có

- $oldsymbol{o}$ $a^{\log_a b} = b, \log_a(a^{\alpha}) = \alpha.$

3. Lôgarit của một tích

Cho 3 số dương a, b_1, b_2 với $a \neq 1$, ta có

$$\log_a(b_1 \cdot b_2) = \log_a b_1 + \log_a b_2.$$

4. Lôgarit của một thương

Cho 3 số dương a, b_1, b_2 với $a \neq 1$, ta có

$$\log_a \frac{b_1}{b_2} = \log_a b_1 - \log_a b_2.$$

Đặc biệt, với $a, b > 0, a \neq 1$ ta có $\log_a \frac{1}{b} = -\log_a b.$

5. Lôgarit của lũy thừa

Cho $a, b > 0, a \neq 1$, với mọi α , ta có

$$\log_a b^{\alpha} = \alpha \log_a b.$$

Đặc biệt: $\log_a \sqrt[n]{b} = \frac{1}{n} \log_a b$.

6. Công thức đối cơ số

Cho 3 số dương a, b, c với $a \neq 1, c \neq 1$, ta có

$$\log_a b = \frac{\log_c b}{\log_c a}.$$

Đặc biệt: $\log_a c = \frac{1}{\log_a a}$ và $\log_{a^{\alpha}} b = \frac{1}{\alpha} \log_a b$ với $\alpha \neq 0$.

7. Lôgarit thập phân và Lôgarit tự nhiên

- \odot Lôgarit thập phân là lôgarit cơ số 10. Viết $\log_{10} b = \log b = \lg b$.
- \odot Lôgarit tự nhiên là lôgarit cơ số e. Viết $\log_e b = \ln b$.

B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TÂP

1. Các ví du

VÍ DỤ 1. Tính giá trị của biểu thức $P = \log_a \left(a \cdot \sqrt[3]{a\sqrt{a}} \right)$ với $0 < a \neq 1$.

VÍ DU 2. Tính giá trị của biểu thức $P = 22 \log_2 12 + 3 \log_2 5 - \log_2 15 - \log_2 150$.

VÍ DỤ 3. Cho $a>0, a\neq 1$. Tính giá trị biểu thức $A=(\ln a+\log_a e)^2+\ln^2 a-\log_a^2 e$.

VÍ DỤ 4. Cho các số dương a, b, c, d. Tính giá trị biểu thức $S = \ln \frac{a}{b} + \ln \frac{b}{c} + \ln \frac{c}{d} +$

VÍ DỤ 5. Tính giá trị của biểu thức $P = \log_{a^2} \left(a^{10}b^2\right) + \log_{\sqrt{a}} \left(\frac{a}{\sqrt{b}}\right) + \log_{\sqrt[3]{b}} b^{-2}$ (với $0 < a \neq 1; 0 < b \neq 1$).

VÍ DỤ 6. Xét các số thực a, b thỏa mãn a > b > 1. Tìm giá trị nhỏ nhất P_{\min} của biểu thức $P = \log_{\frac{a}{h}}^{2}(a^{2}) + 3\log_{b}\left(\frac{a}{h}\right)$

 $\ln (\tan 89^{\circ}).$

2. Các câu hỏi trắc nghiệm

CÂU 1. Cho a là số thực dương và khác 1. Tính giá trị biểu thức $P = \log_{\sqrt{a}} a$.

A.
$$P = -2$$
.

B.
$$P = 0$$
.

c.
$$P = \frac{1}{2}$$
.

D.
$$P = 2$$
.

CÂU 2. Cho a > 0, $a \neq 1$, giá trị của biểu thức $A = a^{\log \sqrt{a}}$ bằng bao nhiêu?

CÂU 3. Giá trị của biểu thức $B=2\log_2 12+3\log_2 5-\log_2 15-\log_2 150$ bằng bao nhiêu?

CÂU 4. Cho a > 0, $a \neq 1$, biểu thức $P = \log_{a^3} a$ có giá trị bằng bao nhiêu?

B.
$$\frac{1}{3}$$
.

D.
$$-\frac{1}{3}$$

CÂU 5. Giá trị của biểu thức $C = \frac{1}{2} \log_7 36 - \log_7 14 - 3 \log_7 \sqrt[3]{21}$ bằng bao nhiêu?

A.
$$-2$$
.

c.
$$-\frac{1}{2}$$
.

D.
$$\frac{1}{2}$$
.

CÂU 6. Cho $a>0,\,a\neq 1,$ biểu thức $E=a^{4\log_{a^2}5}$ có giá trị bằng bao nhiêu?

D.
$$5^8$$
.

CÂU 7. Trong các số a thoã mãn điều kiện dưới đây. Số nào lớn hơn 1.

A.
$$\log_2 a = -2$$
.

B.
$$\log_3 a = \pi$$
.

C.
$$\log_4 a^2 = -1$$
.

C.
$$\log_4 a^2 = -1$$
. **D.** $\log_3 a = -0, 3$.

CÂU 8. Trong các số a thoả mãn điều kiện dưới đây. Số nào nhỏ hơn 1.

A.
$$\log_{\frac{1}{3}} a = -2.$$

B.
$$\log_a 5 = 2$$
.

C.
$$\log_3 5 = a$$
.

D.
$$\log_{\frac{1}{\sqrt{3}}} a = 2$$

CÂU 9. Giá trị của biểu thức $A = \log_a \sqrt{a\sqrt{a\sqrt{a^3}}} \; (1 \neq a > 0)$ là

A.
$$a = \frac{4}{3}$$
.

B.
$$a = \frac{3}{4}$$
.

B.
$$a = \frac{3}{4}$$
. **C.** $a = \frac{8}{9}$. **D.** $a = \frac{9}{8}$.

D.
$$a = \frac{9}{8}$$
.

CÂU 10. Giá trị của biểu thức $A = \log_a \frac{\sqrt{a^3}}{a\sqrt[4]{a}} \ (1 \neq a > 0)$ là

A.
$$A = \frac{1}{4}$$
.

B.
$$A = \frac{1}{3}$$
.

C.
$$A = \frac{1}{2}$$
. **D.** $A = \frac{3}{4}$.

D.
$$A = \frac{3}{4}$$
.

CÂU 11. Giá trị của biểu thức $A = \log_a \left(a^3 \sqrt{a} \sqrt[5]{a} \right) \ (1 \neq a > 0)$ là

A.
$$A = \frac{17}{5}$$
.

B.
$$A = \frac{37}{10}$$
.

c.
$$A = \frac{21}{5}$$
.

D.
$$A = \frac{39}{10}$$
.

CÂU 12. Cho $\sqrt{x\sqrt{x\sqrt{x}}}=x^a$ và $\log_y\sqrt{y\sqrt{y^3}}=b$ (với $x;\ y>0;\ y\neq 1$). Vậy A = a + b bằng

A.
$$A = \frac{9}{4}$$

B.
$$A = \frac{3}{2}$$

c.
$$A = \frac{15}{8}$$

A.
$$A = \frac{9}{4}$$
. **B.** $A = \frac{3}{2}$. **C.** $A = \frac{15}{8}$. **D.** $A = \frac{17}{8}$.

CÂU 13. Cho $\sqrt{x\sqrt{x\sqrt[3]{x^4}}}=x^m$ và $\log_y\sqrt[3]{y^2\sqrt{y}}=n$ (với $x;\ y>0;\ y\neq 1$). Vậy A = m + n bằng

A.
$$A = \frac{23}{12}$$
.

B.
$$A = \frac{7}{4}$$

C.
$$A = 3$$

B.
$$A = \frac{7}{4}$$
. **C.** $A = 3$. **D.** $A = \frac{7}{3}$.

CÂU 14. Thu gọn biểu thức $A=\left(a^3\sqrt{a}\right)^{\log_a b}+\left(\sqrt[3]{b^2}\right)^{\log_b a}\,(1\neq a;b>0)$ ta được

A.
$$A = \sqrt{a^7} + \sqrt[3]{b^2}$$
.
C. $A = \sqrt{a^2} + \sqrt[3]{b^7}$.

B.
$$A = \sqrt{a^3} + \sqrt[7]{b^2}$$
.
D. $A = \sqrt[3]{a^2} + \sqrt{b^7}$.

C.
$$A = \sqrt{a^2} + \sqrt[3]{b^7}$$
.

D.
$$A = \sqrt[3]{a^2} + \sqrt{b^7}$$
.

CÂU 15. Thu gọn biểu thức $A=(a\sqrt{a^3})^{\log_a b^2}+(b\sqrt{b})^{\log_b a^2}~(1\neq a;\ b>0)$ ta

A.
$$A = a^5 + b^3$$
.

A.
$$A = a^5 + b^3$$
. **B.** $A = a^3 + b^5$. **C.** $A = a^3 + b^3$. **D.** $A = a^5 + b^5$.

C.
$$A = a^3 + b^3$$

D.
$$A = a^5 + b^5$$

CÂU 16. Thu gọn biểu thức $A=(a\cdot\sqrt[4]{a})^{\log_a\sqrt{b}}+\left(b\cdot\sqrt[3]{b}\right)^{\log_b a}(1\neq a;b>0)$ ta

A.
$$A = a^{\frac{5}{8}} + b^{\frac{4}{3}}$$
. **B.** $A = a^{\frac{5}{4}} + b^{\frac{4}{3}}$. **C.** $A = a^{\frac{4}{3}} + b^{\frac{5}{8}}$. **D.** $A = a^{\frac{4}{3}} + b^{\frac{5}{2}}$.

B.
$$A = a^{\frac{5}{4}} + b^{\frac{4}{3}}$$
.

c.
$$A = a^{\frac{4}{3}} + b^{\frac{5}{8}}$$

D.
$$A = a^{\frac{4}{3}} + b^{\frac{5}{2}}$$

CÂU 17. Cho $\log_a b = 2$ và $\log_a c = 3$. Tính $P = \log_a \left(b^2 c^3\right)$.

A.
$$P = 108$$
.

B.
$$P = 13$$
.

C.
$$P = 31$$
.

D.
$$P = 30$$
.

CÂU 18. Cho $\log_3 x = 4 \log_3 a + 2 \log_3 b \ (a; b > 0)$. Khi đó

A.
$$x = 8ab$$
.

B.
$$x = a^4 + b^2$$
.

$$\mathbf{C.} \quad x = \sqrt{a^2 b}.$$

D.
$$x = a^4b^2$$
.

CÂU 19. Cho $\log_{\frac{1}{3}} x = \log_{\frac{1}{3}} \sqrt{a\sqrt{a}} + \log_{\frac{1}{3}} \frac{b}{\sqrt{b\sqrt{b}}} \ (a; b > 0)$. Khi đó

A.
$$x = \sqrt[4]{a^3b}$$
. **B.** $x = \sqrt[4]{ab^3}$.

B.
$$x = \sqrt[4]{ab^3}$$
.

C.
$$x = \sqrt[4]{a^3b^3}$$
.

D.
$$x = \sqrt[4]{ab}$$
.

CÂU 20. Cho $\log_4 x = 2 \log_2 \sqrt[3]{a^2} + 3 \log_2 \frac{1}{b^2 \sqrt{b}} \ (a; b > 0)$. Khi đó

A.
$$x = 6 \cdot a^{\frac{2}{3}} \cdot b^{-\frac{5}{2}}$$
.

B.
$$x = a^{\frac{4}{3}} \cdot b^{\frac{-15}{2}}$$
.

C.
$$x = a^{\frac{4}{3}} \cdot b^{\frac{15}{2}}$$
.

D.
$$x = -10ab$$
.

CÂU 21. Rút gọ biểu thức $A = \log_2 \sqrt{a} + \log_4 \frac{1}{a^2} - \log_{\sqrt{2}} a^8 \ (a > 0)$ ta được

A.
$$A = \frac{33}{2} \log_2 a$$
.

B.
$$A = -\frac{33}{2} \log_2 a$$
.

C.
$$A = 33 \log_2 a$$
.

B.
$$A = -\frac{33}{2} \log_2 a$$
.
D. $A = \frac{-1}{2} \log_2 a$.

CÂU 22. Rút gọn biểu thức $A = \log_4 a - \log_8 a + \log_{16} a^2 \ (a > 0)$ ta được **A.** $A = \log_2 a$. **B.** $A = \frac{13}{6} \log_2 a$. **C.** $A = \frac{3}{2} \log_2 a$. **D.** $A = \frac{2}{3} \log_2 a$.

$$A. \quad A = \log_2 a.$$

B.
$$A = \frac{13}{6} \log_2 a$$
.

C.
$$A = \frac{3}{2} \log_2 a$$
.

D.
$$A = \frac{2}{3} \log_2 a$$

CÂU 23. Cho $\log_2 x = \sqrt{2}$. Tính giá trị của biểu thức $A = \log_2 x^2 + \log_{\frac{1}{2}} x^3 + \log_{\frac{1}{2}}$ $\log_4 x$.

A.
$$A = -\sqrt{2}$$
.

B.
$$A = -2\sqrt{2}$$
.

C.
$$A = \frac{-\sqrt{2}}{2}$$

A.
$$A = -\sqrt{2}$$
. **B.** $A = -2\sqrt{2}$. **C.** $A = \frac{-\sqrt{2}}{2}$. **D.** $A = \frac{-\sqrt{2}}{4}$.

CÂU 24. Cho $\log_x 2 = 3$. Tính giá trị của biểu thức $A = \log_4 x - 2\log_2 \sqrt{x}$.

A.
$$A = 6$$
.

B.
$$A = \frac{1}{6}$$
.

B.
$$A = \frac{1}{6}$$
. **C.** $A = \frac{-1}{6}$.

D.
$$A = -6$$
.

CÂU 25. Rút gọn biểu thức $A = \log_8 x \sqrt{x} - \log_{\frac{1}{4}} x^2 \ (x > 0)$ ta được

A.
$$A = \frac{3}{2} \log_2 x$$
.

A.
$$A = \frac{3}{2} \log_2 x$$
. **B.** $A = -\frac{1}{2} \log_2 x$. **C.** $A = 2 \log_2 x$. **D.** $A = \frac{2}{3} \log_2 x$.

C.
$$A = 2 \log_2 x$$
.

D.
$$A = \frac{2}{3} \log_2 x$$

CÂU 26. Rút gọn biểu thức $A = \log_3 x \cdot \log_2 3 + \log_5 x \cdot \log_4 5 \; (x>0)$ ta được

A.
$$A = \frac{3}{2} \log_2 x$$
.

A.
$$A = \frac{3}{2} \log_2 x$$
. **B.** $A = -\frac{1}{2} \log_2 x$. **C.** $A = 2 \log_2 x$. **D.** $A = \frac{2}{3} \log_2 x$.

c.
$$A = 2 \log_2 x$$
.

D.
$$A = \frac{2}{3} \log_2 x$$

CÂU 27. Cho $\log_2 x = \sqrt{3}$. Tính giá trị của biểu thức $B = \log_{\frac{1}{4}} x + \log_{\frac{1}{5}} x +$ $\log_{\frac{1}{16}} x$.

A.
$$B = \sqrt{3}$$

A.
$$B = \sqrt{3}$$
. **B.** $B = \frac{-13\sqrt{3}}{12}$. **C.** $9\sqrt{3}$.

c.
$$9\sqrt{3}$$
.

D.
$$-9\sqrt{3}$$
.

CÂU 28. Cho $\log_3 x = 1 + \sqrt{2}$. Tính giá trị biểu thức $A = \log_3 x^3 + \log_{\frac{1}{2}} x + \log_{\frac{1}{2}} x$ $\log_9 x^2$.

A.
$$A = 2(1 + \sqrt{2}).$$

C. $A = -2(1 + \sqrt{2}).$

B.
$$A = 1 + \sqrt{2}$$
.

C.
$$A = -2(1 + \sqrt{2})$$

B.
$$A = 1 + \sqrt{2}$$
.
D. $A = 3(1 + \sqrt{2})$.

CÂU 29. Tính giá trị của biểu thức $P = \log_a \frac{1}{h^3} \cdot \log_{\sqrt{b}} a^3 \ (1 \neq a; b > 0).$

B.
$$\frac{-1}{2}$$

D.
$$\frac{1}{2}$$
.

CÂU 30. Tính giá trị của biểu thức $P = \log_{\sqrt{a}} b^3 \cdot \log_{\sqrt{b}} a \ (1 \neq a, b > 0).$

c.
$$\frac{3}{4}$$

D.
$$\frac{4}{3}$$

CÂU 31. Cho $\ln x = 2$. Tính giá trị của biểu thức $T = 2 \ln \sqrt{ex} - \ln \frac{e^2}{\sqrt{x}} + \ln 3$. $\log_3 ex^2$

A.
$$T = 21$$
.

B.
$$T = 12$$
.

C.
$$T = 13$$
.

D.
$$T = 7$$
.

CÂU 32. Cho $\ln x=3$. Tính giá trị của biểu thức $T=2\ln\frac{x^2}{\sqrt{e}}+\ln 2\cdot \log_2\left(x^3\cdot e^2\right)$

A.
$$T = 16$$
.

B.
$$T = 15$$
.

B.
$$T = 15$$
. **C.** $T = \frac{27}{2}$. **D.** $T = 22$.

D.
$$T = 22$$

CÂU 33. Cho $\log_a b = 3$; $\log_a c = -2$. Tính giá trị của $\log_a x$, biết rằng $x = \frac{a^2 b^3}{\sqrt{c^5}}$.

A.
$$\log_a x = 16$$
.

$$\mathbf{B.} \ \log_a x = 6$$

C.
$$\log_a x = 13$$

A.
$$\log_a x = 16$$
. **B.** $\log_a x = 6$. **C.** $\log_a x = 13$. **D.** $\log_a x = \frac{5}{2}$.

CÂU 34. Cho $\log_a b = 2$; $\log_a c = 3$. Tính giá trị của biểu thức $\log_a x$, biết rằng $x = \frac{a\sqrt{b^3}}{c^2}$. **A.** $\log_a x = -6$. **B.** $\log_a x = -4$. **C.** $\log_a x = -2$. **D.** $\log_a x = -1$.

A.
$$\log_a x = -6$$
.

B.
$$\log_a x = -4$$

c.
$$\log_a x = -2$$
.

D.
$$\log_a x = -1$$
.

1. D	2. B	3. D	4. B	5. A	6. C	7. B	8. D	9. D	10.A
11.B	12. D	13.A	14. D	15. B	16. C	17.B	18. D	19.A	20.B
21.B	22. D	23. C	24. C	25.A	26.A	27.B	28. D	29.A	30.B
			31. D	32. D	33.A	34. C			

🖶 Dạng 2. Biếu diễn logarit

1. Các ví du

VÍ DỤ 8. Cho $\log_{12} 27 = a$, tính $\log_6 16$ theo a.

VÌ DỤ 9. Cho $\log_2 3 = a$; $\log_2 7 = b$. Tính $\log_2 2016$ theo a và b.

VÍ DỤ 10. Biết $\log_{27} 5 = a$; $\log_8 7 = b$; $\log_2 3 = c$, tính $\log_{12} 35$ theo a, b, c.

VÍ DỤ 11. Cho $\frac{\log a}{n} = \frac{\log b}{q} = \frac{\log c}{r} = \log x \neq 0; \frac{b^2}{qc} = x^y$. Tính y theo p, q, r.

VÍ DỤ 12. Cho các số thực dương x; y > 0 thỏa mãn $x^2 + y^2 = 8xy$. Chứng minh rằng

$$2\log(x+y) = 1 + \log x + \log y.$$

2. Các câu hỏi trắc nghiêm

CÂU 35. Cho các số dương a; b ($a \neq 1$). Khẳng định nào dưới đây là **sai**?

- **A.** $\log_a(a^3b^4) = 3 + 4\log_a b$.
- $\mathbf{B.} \ \log_a b = \frac{\log_a b}{\log_a 3}.$ $\mathbf{D.} \ \log_a b \cdot \log_b 9 = 2\log_a 3.$
- **C.** $2 + 2 \log_a b = \log_a (a^2 + b^2).$

CÂU 36. Cho các số thực dương a, b, c với $a, b, ab \neq 1$. Khẳng định nào sau đây là sai?

- **A.** $\log_a c + \log_b c = \log_{ab} c$.
- **B.** $2\log_a b + 3\log_a c = \log_a (b^2c^3)$.
- $\mathbf{C.} \ \log_b c + \log_a b = \log_a c.$
- **D.** $\log_b c = \frac{\log_a c}{\log_a b}$.

CÂU 37. Cho các số dương a > b > 0 ($a \neq 1$). Khẳng định nào dưới đây là **sai**?

- **A.** $\log_a (a^2 b^2) = \log_a (a b) + \log_a (a + b)$.
- **B.** $\log_a(a^2b^2) = 2 + 2\log_a b$. **C.** $\log_a(a+b)^2 = 2(1 + \log_a b)$.
- **D.** $\log_{a^2} \sqrt{ab} = \frac{1}{4} (1 + \log_a b).$

CÂU 38. Cho các số dương $a; b > 0 \ (a \neq 1)$. Khẳng định nào dưới đây là sai?

- **A.** $\log_{a^2}(a\sqrt{b}) = \frac{1}{4}(2 + \log_a b).$
- **B.** $\log_{a^2}(\sqrt{a}b) = \frac{1}{4}(1 + 2\log_a b).$
- **C.** $\log_{\sqrt{a}}(ab) = 2(1 + \log_a b).$
- $\mathbf{D.} \ \log_{\sqrt{a}}(a\sqrt{b}) = 2 + 4\log_a b.$

CÂU 39. Cho các số dương $a; b > 0 \ (a \neq 1)$. Khẳng định nào dưới đây là **sai**?

- **A.** $3^{\log_a b} = b^{\log_a 3}$. **B.** $a^{\log_a ab} = ab$.
- $\mathbf{C.} \ a^{\log\sqrt{a}\,b} = b^2.$
- $a^{\log_{a^2} b} = b^2$

CÂU 40. Cho các số dương $a; b; c > 0 \ (a \neq 1)$. Khẳng định nào sau đây là **sai**?

A. $\log_{a^c} b^c = \log_a b$.

- $\mathbf{B.} \ \log_{\underline{1}} b^c = -\log_a b.$
- **C.** $2\log_a b 3\log_a c = \frac{2}{3}\log_a \frac{b}{a}$.
- **D.** $\log_a b + \log_a c 1 = \log_a \frac{bc}{c}$.

CÂU 41. Cho các số thực a, b, x, y > 0 với $a, b \neq 1$. Khẳng định nào sau đây là

A. $\log_a b \cdot \log_b a = 1$.

- **B.** $\ln \frac{x}{\sqrt{y}} = \ln x \frac{1}{2} \ln y$.
- **C.** $\log_a x + \log_{3/a} y = \log_a (xy^3)$.

CÂU 42. Đặt $a = \log_2 3$. Hãy tính $\log_2 48$ theo a.

A. $\log_2 48 = 3 + 2a$.

B. $\log_2 48 = 4 + 2a$.

C. $\log_2 48 = 4 + a$.

D. $\log_2 48 = 5 - a$.

CÂU 43. Đặt $a = \log_2 5$. Hãy tính $\log_4 10$ theo a.

A. $\log_4 10 = 2(1+a)$.

- **B.** $\log_4 10 = \frac{a+1}{2}$.
- **C.** $\log_4 10 = -2(1+a)$.
- **D.** $\log_4 10 = \frac{-a-1}{2}$.

CAU 44. Đặt $a = \log_2 3$. Hãy tính $\log_{12} 18$ theo a.

A. $\log_{12} 18 = \frac{a+2}{2a+1}$. **C.** $\log_{12} 18 = \frac{2a+2}{2-a}$.

B. $\log_{12} 18 = \frac{2a-2}{2-a}$. **D.** $\log_{12} 18 = \frac{2a+1}{2+a}$.

CÂU 45. Cho $\log_2 5 = a$. Hãy tính $\log_4 1250$ theo a

A. $\log_4 1250 = \frac{4+a}{2}$

B. $\log_4 1250 = \frac{1+4a}{2}$.

- **C.** $\log_4 1250 = \frac{4a+3}{2}$.
- **D.** $\log_4 1250 = \frac{4a^2 1}{2}$.

- **CÂU 46.** Cho $a = \log_{15} 3$ thì **A.** $\log_{25} 15 = \frac{3}{5(1-a)}$.

B. $\log_{25} 15 = \frac{5}{3(1-a)}$.

C	log 15 —	1
U .	$\log_{25} 15 =$	$\overline{2(1-a)}$.

D.
$$\log_{25} 15 = \frac{1}{5(1-a)}$$
.

CÂU 47. Cho $a = \log_2 7$. Hãy tính $\log_{14} 49$ theo a.

A.
$$\log_{14} 49 = \frac{2a}{1+a}$$
C. $\log_{14} 49 = \frac{2a}{2-a}$

B.
$$\log_{14} 49 = \frac{2a}{2+a}$$
.

C.
$$\log_{14} 49 = \frac{2a}{2-a}$$

D.
$$\log_{14} 49 = \frac{2}{1+a}$$
.

CÂU 48. Cho $\log_{\sqrt{10}} 20 = a$. Hãy biểu diễn $\log_2 5$ theo a.

A.
$$\log_2 5 = \frac{a+4}{a+2}$$

B.
$$\log_2 5 = \frac{a-4}{2-a}$$
.

C.
$$\log_2 5 = \frac{a-4}{2a-1}$$
.

B.
$$\log_2 5 = \frac{a-4}{2-a}$$
.

D. $\log_2 5 = \frac{2a-1}{a-4}$.

CÂU 49. Đặt $\log_3 4 = a$. Hãy tính $\log_3 \frac{27}{16}$ theo a.

A.
$$\log_3 \frac{27}{16} = 3 - 4a$$
.
C. $\log_3 \frac{27}{16} = 3 - 2a$.

B.
$$\log_3 \frac{27}{16} = 3(1-a)$$

c.
$$\log_3 \frac{27}{16} = 3 - 2a$$

B.
$$\log_3 \frac{27}{16} = 3(1-a)$$
.
D. $\log_3 \frac{27}{16} = \frac{3-2a}{2}$.

CÂU 50. Cho $\log_{18} 12 = a$. Hãy biểu diễn $\log_2 3$ theo a. **A.** $\log_2 3 = \frac{a-2}{1-2a}$. **B.** $\log_2 3 = \frac{a+2}{2a-1}$. **D.** $\log_2 3 = \frac{a+2}{2a-1}$.

A.
$$\log_2 3 = \frac{a-2}{1-2a}$$

B.
$$\log_2 3 = \frac{a-2}{2a-1}$$

c.
$$\log_2 3 = \frac{a+2}{2a-1}$$

B.
$$\log_2 3 = \frac{a-2}{2a-1}$$
.
D. $\log_2 3 = \frac{a-1}{1-2a}$.

CÂU 51. Cho $a = \log_{20} 50$. Hãy biểu diễn $\log_2 5$ theo a.

A.
$$\log_2 5 = \frac{2a+1}{a-2}$$

B.
$$\log_2 5 = \frac{2a+1}{2-a}$$

A.
$$\log_2 5 = \frac{2a+1}{a-2}$$
.
C. $\log_2 5 = \frac{2a-1}{2-a}$.

B.
$$\log_2 5 = \frac{2a+1}{2-a}$$
.
D. $\log_2 5 = \frac{2a-1}{a+2}$.

CÂU 52. Đặt $\log_2 3 = a$, $b = \log_3 5$. Hãy biểu diễn $\log_2 45$ theo a và b.

A.
$$\log_2 45 = 2a + 2ab$$
.

B.
$$\log_2 45 = a + ab$$
.

C.
$$\log_2 45 = 3a + ab$$
.

D.
$$\log_2 45 = 2a + ab$$
.

CÂU 53. Đặt $\log_2 3 = a, b = \log_3 5$. Hãy biểu diễn $\log_{12} 15$ theo a và b.

A.
$$\log_{12} 15 = \frac{a+ab}{b+2}$$
.
C. $\log_{12} 15 = \frac{a+b}{ab+2a}$

B.
$$\log_{12} 15 = \frac{a+ab}{a+2}$$

$$\mathbf{C.} \ \log_{12} 15 = \frac{a+b}{ab+2a}.$$

B.
$$\log_{12} 15 = \frac{a+ab}{a+2}$$
.
D. $\log_{12} 15 = \frac{a+b}{ab+2b}$

CÂU 54. Đặt $a = \log_2 3$, $b = \log_5 3$. Hãy biểu diễn $\log_6 45$ theo a và b.

A.
$$\log_6 45 = \frac{a + 2ab}{ab}$$

B.
$$\log_6 45 = \frac{2a^2 - 2ab}{ab}$$
.

C.
$$\log_6 45 = \frac{ab}{ab+b}$$

B.
$$\log_6 45 = \frac{2a^2 - 2ab}{ab}$$
.
D. $\log_6 45 = \frac{2a^2 - 2ab}{ab + b}$.

CÂU 55. Đặt $a = \log_5 2$; $b = \log_5 3$. Hãy tính $\log_5 72$ theo a và b.

A.
$$\log_5 72 = 3a + 2b$$
.

B.
$$\log_5 72 = 2a + 3b$$
.

C.
$$\log_5 72 = 3a + 3b$$
.

D.
$$\log_5 72 = 2a + 2b$$
.

CÂU 56. Đặt $\log 3 = p$; $\log 5 = q$. Hãy biểu diễn $\log_{15} 30$ theo p; q.

A.
$$\log_{15} 30 = \frac{1+q}{p+q}$$
.
C. $\log_{15} 30 = \frac{p+q}{p+1}$.

B.
$$\log_{15} 30 = \frac{1+p}{n+q}$$
.

$$\mathbf{C.} \ \log_{15} 30 = \frac{p + \hat{q}}{p + 1}$$

B.
$$\log_{15} 30 = \frac{1+p}{p+q}$$
.
D. $\log_{15} 30 = \frac{p+q}{q+1}$.

CÂU 57. Cho $a = \log_3 15$; $b = \log_3 10$. Hãy tính $\log_{\sqrt{3}} 50$ theo a và b.

A.
$$\log_{\sqrt{3}} 50 = \frac{a+b+1}{2}$$
.

B.
$$\log_{\sqrt{3}} 50 = \frac{a+b-1}{2}$$
.
D. $\log_{\sqrt{3}} 50 = 2a+2b-2$.

C.
$$\log_{\sqrt{3}} 50 = 2a + 2b + 2$$
.

D.
$$\log_{\sqrt{3}} 50 = 2a + 2b - 2$$
.

CÂU 58. Cho $a = \log_2 3$, $b = \log_7 2$. Hãy tính $\log \log_{\sqrt{6}} 28$ theo a và b.

A.
$$A = \frac{b+1}{2a+2}$$
.

B.
$$A = \frac{4b+2}{ab+b}$$

C.
$$A = \frac{4b+2}{a+2}$$

A.
$$A = \frac{b+1}{2a+2}$$
. **B.** $A = \frac{4b+2}{ab+b}$. **C.** $A = \frac{4b+2}{a+2}$. **D.** $A = \frac{b+1}{2ab+2b}$

CÂU 59. Cho $a = \log_2 5$, $b = \log_7 5$. Hãy tính $\log_{14} 100$ theo a, b.

A.
$$\log_{14} 100 = \frac{2a+b}{a+b}$$
.

B.
$$\log_{14} 100 = \frac{2ab + b}{a + b}$$
.

A.
$$\log_{14} 100 = \frac{2a+b}{a+b}$$
.
C. $\log_{14} 100 = \frac{2a+ab}{a+ab}$.

B.
$$\log_{14} 100 = \frac{2ab + b}{a + b}$$
.
D. $\log_{14} 100 = \frac{2ab + b}{a + b}$.

CÂU 60. Cho $\log_5 2 = a$; $b = \log_5 3$. Hãy biểu diễn $\log_{15} 36$ theo a, b. **A.** $\log_{15} 36 = \frac{2a+b}{b+1}$. **B.** $\log_{15} 36 = \frac{a+2b}{b+1}$. **C.** $\log_{15} 36 = \frac{2a+2b}{b+1}$. **D.** $\log_{15} 36 = \frac{2a+2b}{a+1}$.

A.
$$\log_{15} 36 = \frac{2a+b}{b+1}$$
.

B.
$$\log_{15} 36 = \frac{a+2b}{b+1}$$
.

c.
$$\log_{15} 36 = \frac{2a + 2b}{b + 1}$$
.

B.
$$\log_{15} 36 = \frac{a+2b}{b+1}$$
.
D. $\log_{15} 36 = \frac{2a+2b}{a+1}$.

CÂU 61. Đặt $a = \log_2 5$, $b = \log_2 3$. Hãy biểu diễn $\log_{40} 45$ theo a, b.

A.
$$\log_{40} 45 = \frac{2a+b}{b+3}$$
.

C. $\log_{40} 45 = \frac{2a+2b}{b+3}$.

$$\mathbf{B.} \ \log_{40} 45 = \frac{a + 2b}{b + 3}.$$

c.
$$\log_{40} 45 = \frac{2a+2b}{b+3}$$
.

B.
$$\log_{40} 45 = \frac{a+2b}{b+3}$$
.
D. $\log_{40} 45 = \frac{a+2b}{a+3}$.

 $\begin{array}{ll} \textbf{C\^{A}U 62.} & \text{Cho } \log_2 6 = a \text{ và } \log_3 5 = b. \text{ Hãy tính } \log_{12} \sqrt{20} \text{ theo } a, b. \\ \textbf{A.} & \log_{12} \sqrt{20} = \frac{ab - b + 2}{2(a + 1)}. \\ \textbf{B.} & \log_{12} \sqrt{20} = \frac{ab + b - 2}{2(a + 1)}. \\ \textbf{C.} & \log_{12} \sqrt{20} = \frac{ab + b - 2}{2(a - 1)}. \\ \end{array}$

A.
$$\log_{12}\sqrt{20} = \frac{ab-b+2}{2(a+1)}$$
.

B.
$$\log_{12}\sqrt{20} = \frac{ab+b-2}{2(a+1)}$$

c.
$$\log_{12}\sqrt{20} = \frac{ab+b-2}{2(a-1)}$$
.

B.
$$\log_{12}\sqrt{20} = \frac{ab+b-2}{2(a+1)}$$
.
D. $\log_{12}\sqrt{20} = \frac{ab-b+2}{2(a-1)}$.

CÂU 63. Đặt $\log_2 7 = a$; $\log_3 7 = b$. Hãy tính $\log_{14} 12$ theo a, b.

A.
$$\log_{14} 12 = \frac{a+2b}{ab+a}$$
.

B.
$$\log_{14} 12 = \frac{a+2b}{ab+b}$$

A.
$$\log_{14} 12 = \frac{a+2b}{ab+a}$$
.
C. $\log_{14} 12 = \frac{2a+b}{ab+a}$.

B.
$$\log_{14} 12 = \frac{a+2b}{ab+b}$$
.
D. $\log_{14} 12 = \frac{2a+b}{ab+a}$.

 $\begin{array}{ll} \textbf{CÂU 64.} \ \ \text{Dặt} \ \ a = \log_2 5 \ \text{và} \ b = \log_2 6. \ \text{Hãy biểu diễn} \ \log_3 90 \ \text{theo} \ a \ \text{và} \ b. \\ \textbf{A.} \ \ \log_3 90 = \frac{a+2b-1}{b-1}. \\ \textbf{B.} \ \ \log_3 90 = \frac{a+2b-1}{a-1}. \\ \textbf{C.} \ \ \log_3 90 = \frac{a-2b+1}{b+1}. \\ \textbf{D.} \ \ \log_3 90 = \frac{a-2b-1}{a+1}. \end{array}$

A.
$$\log_3 90 = \frac{a+2b-1}{b-1}$$
.

B.
$$\log_3 90 = \frac{a+2b-1}{a-1}$$
.

$$\mathbf{C.} \ \log_3 90 = \frac{a - 2b + 1}{b + 1}.$$

B.
$$\log_3 90 = \frac{a+2b-1}{a-1}$$
.
D. $\log_3 90 = \frac{a-2b-1}{a+1}$.

CÂU 65. Đặt $\log_2 5 = a$, $\log_4 15 = b$. Hãy tính $\log_3 10$ theo a, b. **A.** $\log_3 10 = \frac{1-a}{a+2b}$. **B.** $\log_3 10 = \frac{ab-a}{a+2b}$. **C.** $\log_3 10 = \frac{ab+a}{a+2b}$. **D.** $\log_3 10 = \frac{1+a}{2b-a}$.

A.
$$\log_3 10 = \frac{1-a}{a+2b}$$

B.
$$\log_3 10 = \frac{ab - a}{a + 2b}$$

c.
$$\log_3 10 = \frac{ab+a}{a+2b}$$
.

D.
$$\log_3 10 = \frac{1+a}{2b-a}$$

CÂU 66. Đặt $a = \log_2 3$; $b = \log_5 2$; $c = \log_2 7$. Hãy biểu diễn $\log_{42} 15$ theo a, b, b

A.
$$\log_{42} 15 = \frac{ab+1}{b(a+c+1)}$$
.
C. $\log_{42} 15 = \frac{ab+1}{ab+b+c}$.

B.
$$\log_{42} 15 = \frac{ac+1}{c(a+c+1)}$$
.

C.
$$\log_{42} 15 = \frac{ab+1}{ab+b+c}$$
.

D.
$$\log_{42} 15 = \frac{a+c}{a+b+bc}$$
.

CÂU 67. Cho các số thực a, b > 0; $a \neq 1$. Khẳng định nào sau đây là đúng?

A.
$$\log_a (a^4 + b) = 4 + \log_a b$$
.

B.
$$\log_a \left(a^2 + a^2b^2\right) = 2 + \log_a \left(b^2 + 1\right).$$

D. $\log_a \left(a^3b + 1\right) = 4 + \log_a b.$

C.
$$\log_a(a+b) = 1 + \log_a b$$
.

D.
$$\log_a (a^3b+1) = 4 + \log_a b$$

CÂU 68. Cho các số thực a, b > 0; $a \neq 1$. Khẳng định nào sau đây là đúng?

A.
$$\log_{a^2}(ab) = \frac{1}{2}\log_a b.$$

B.
$$\log_{a^2}(ab) = 2 + 2\log_a b$$
.

c.
$$\log_{a^2}(ab) = \frac{2}{4}\log_a b.$$

D.
$$\log_{a^2}(ab) = \frac{1}{2} + \frac{1}{2}\log_a b.$$

CÂU 69. Cho các số thực a, b > 0; $a; b; ab \neq 1$. Khẳng định nào sau đây là đúng?

A.
$$\log_{ab} \frac{a}{b} = \frac{1 + \log_a b}{1 - \log_a b}.$$
C. $\log_{ab} \frac{a}{b} = \frac{1 + \log_b b}{1 - \log_a b}.$

B.
$$\log_{ab}\frac{a}{b}=\frac{1-\log_a b}{1+\log_a b}.$$
D. $\log_{ab}\frac{a}{b}=\frac{1+\log_a b}{1-\log_b b}.$

c.
$$\log_{ab} \frac{a}{b} = \frac{1 + \log_b b}{1 - \log_b b}$$
.

D.
$$\log_{ab} \frac{a}{b} = \frac{1 + \log_a b}{1 - \log_b b}$$

QUICK NOTE

 $\begin{array}{ll} \textbf{C\^{A}U 70.} & \text{Cho c\'{a}c s\'{o} thực } a,b>0; a; a\sqrt{b} \neq 1. \text{ Khẳng định nào sau đây là đúng?} \\ \textbf{A.} & \log_{a\sqrt{b}}(ab) = \frac{1+\log_a b}{2+\log_a b}. \\ \textbf{B.} & \log_{a\sqrt{b}}(ab) = \frac{2+\log_a b}{1+\log_a b}. \\ \textbf{C.} & \log_{a\sqrt{b}}(ab) = \frac{2+2\log_a b}{2+\log_a b}. \\ \end{array}$

$$\mathbf{A.} \ \log_{a\sqrt{b}}(ab) = \frac{1 + \log_a b}{2 + \log_a b}.$$

B.
$$\log_{a\sqrt{b}}(ab) = \frac{2 + \log_a b}{1 + \log_a b}.$$

c.
$$\log_{a\sqrt{b}}(ab) = \frac{2 + 2\log_a b}{2 + \log_a b}$$
.

D.
$$\log_{a\sqrt{b}}(ab) = \frac{2 + \log_a b}{2 + 2\log_a b}$$
.

CÂU 71. Cho các số thực dương x; y > 0 thỏa mãn $x^2 + y^2 = 8xy$. Khẳng định nào sau đây là đúng?

A.
$$\log(x+y) = \frac{1 + \log x + \log y}{2}$$
.
C. $\log(x+y) = \log x + \log y - 1$.

B.
$$\log(x+y) = \log x + \log y + 1$$
.

C.
$$\log(x+y) = \log x + \log y - 1$$

CÂU 72. Cho các số thực dương x; y > 0 thỏa mãn $x^2 + y^2 = 14xy$. Khẳng định nào sau đây là đúng?

A.
$$\log_2 \frac{x+y}{14} = \log_2 x + \log_2 y$$
.

B.
$$\log_2 \frac{x+y}{16} = \log_2 x + \log_2 y$$
.

C.
$$\log_2(x+y) = \frac{\log_2 x + \log_2 y}{2}$$

D.
$$\log_2(x+y) = 2 + \frac{\log_2 xy}{2}$$
.

CÂU 73. Cho các số $x, y \in \mathbb{R}$ và $x^2 + y^2 = 3xy$. Khẳng định nào sau đây là đúng?

A.
$$\log_5(x+y) = \frac{1+\log_5 xy}{2}$$
.

B.
$$\log_5(x+y)^2 = 1 + \log_5 x + \log_5 y$$
.

C.
$$\log_5(x+y)^2 = 1 + \log_5(xy)$$
.

CÂU 74. Cho $\log_a x = p$; $\log_b x = q$; $\log_c x = r \ (1 \neq a; b; c; x > 0)$. Hãy tính $\log_{abc} x$.

$$A. \log_{abc} x = \frac{pqr}{pq + qr + rp}$$

B.
$$\log_{abc} x = pqr$$
.

A.
$$\log_{abc} x = \frac{pqr}{pq + qr + rp}$$
.

C. $\log_{abc} x = \frac{pqr}{p + q + r}$.

$$\mathbf{D.} \ \log_{abc} x = \frac{pq + qr + rp}{p + q + r}.$$

CÂU 75. Cho $\log_a x = m$ và $\log_{ab} x = n$ $(1 \neq x; a; ab > 0)$. Khi đó $\log_b x$ bằng **A.** $\log_b x = \frac{mn}{n-m}$.

$$\mathbf{A.} \ \log_b x = \frac{mn}{n-m}$$

B.
$$\log_b x = \frac{mn}{m-n}$$

$$\mathbf{C.} \ \log_b x = \frac{mn}{m+n}.$$

B.
$$\log_b x = \frac{mn}{m-n}$$
.
D. $\log_b x = \frac{1}{m} - \frac{1}{n}$.

CÂU 76. Thu gọn biểu thức $A = \frac{1}{\log_a b} + \frac{1}{\log_{a^2} b} + \frac{1}{\log_{a^2} b} + \dots + \frac{1}{\log_{a^n} b}$ ta được **A.** $A = \frac{n(n+1)}{\log_a b}$. **B.** $A = \frac{n+1}{2\log_a b}$. **C.** $A = \frac{n(n+1)}{2\log_a b}$. **D.** $A = \frac{n(n-1)}{\log_a b}$.

$$A. A = \frac{n(n+1)}{\log_2 b}.$$

B.
$$A = \frac{n+1}{2\log h}$$

c.
$$A = \frac{n(n+1)}{2\log_2 b}$$
.

$$\mathbf{D.} \ \ A = \frac{n(n-1)}{\log_a b}.$$

35. C	36.A	37.C	38. D	39. D	40. C	41.D	42.C	43.B	44. D
45. B	46. C	47.A	48. B	49.C	50.A	51.C	52. D	53.B	54. C
55. A	56. B	57. D	58. B	59. D	60. C	61. D	62.A	63.B	64.A
65. D	66.A	67. B	68. D	69. B	70. C	71.A	72. D	73.C	74.A