

MBA em DATA SCIENCE & ARTIFICIAL INTELLIGENCE

APPLIED STATISTICS

profregina.bernal@fiap.com.br
reginabernal@terra.com.br

Dra. Regina Tomie Ivata Bernal Cientista de Dados na área da Saúde

Formação Acadêmica:

Estatístico - UFSCar

Mestre em Saúde Pública – FSP/USP

Doutor em Ciências – Epidemiologia - FSP/USP

Atividades Profissionais:

Professora de pós-graduação na FIAP

Consultora externa da SVS/MS

Cientista de Dados em Saúde

TÍTULO DA APRESENTAÇÃO OU TÍTULO PRINCIPAL DO DOCUMENTO

Técnicas Estatísticas

TÉCNICAS NÃO SUPERVISIONADAS

ANÁLISE ESTRUTURAL

Análise de Conglomerados - Cluster

Descobertas Não Supervisionadas de Relações

Segmentação

A segmentação é um processo de agrupar clientes em grupos tais que apresentam características semelhantes entre os elementos do grupo e distintas entre os grupos.

Instrumentação da Estratégia de Fidelização

Tipos de Segmentações

Comportamental

Comportamento quanto ao uso do produto

Descritiva

Geo-Demográficos

Atitudinal

Valores, Hábitos e Atitudes do Cliente

Percepção

Considerações sobre o Produto Conforme o
objetivo
selecionar a
entidade de
análise e as
variáveis
segmentadoras

Tipos de Segmentações

Tipos de Segmentações

Modelos Geográficos

Processo Interpretativo

RENDA

- Acima de 3
- 1,1 a 3,0
- 0,5 a 1,1
- 0,3a 0,5
- Abaixo de 0,3
- Inadimplentes
- Clientes

Segmentação Geo-demográfica

-Município de São Paulo

geo-marketing

Objetivo: Separar um conjunto de objetos em grupos (clusters) de forma que os membros de qualquer grupo formado sejam os mais homogêneos possíveis com relação a algum critério → uso de medidas de distância

Elementos da Análise

Entidades

Seleção Conjuntos de Atributos - Variáveis Discriminantes

Renda Mensal

As etapas do processo de análise de clusters são:

- 1. Seleção da base de modelagem → em função do objetivo (qual entidade, qual histórico..)
- 2. Seleção de atributos → variáveis segmentadoras
- 3. Medida de proximidade
- 4. Critério de agrupamento
- 5. Algoritmo de agrupamento
- 6. Verificação dos resultados
- 7. Interpretação dos resultados

Análise de Agrupamentos – Cluster Analysis Medidas de distância

Por exemplo a distância Euclidiana é calculada por:

$$d_{ij} = \sqrt{\left[\sum_{k=1}^{p} \left(x_{ik} - x_{jk}\right)^{2}\right]}$$

Onde x_{ik} é o valor da variável X_k para o indivíduo (registro) i e x_{jk} é o valor da mesma variável para o indivíduo j.

→ Usualmente as variáveis são padronizadas antes de se calcular as distâncias, assim, as *p* variáveis serão igualmente importantes. Geralmente, a padronização feita é para que todas as variáveis (quantitativas) tenham média zero e variância 1.

• • +

Padronização das variáveis:

Os métodos baseados em distância são afetados pela diferença de escala entre os valores das variáveis/atributos, sendo necessário normalizar os atributos.

Padronização - Transforma os valores em números de desvios padrões a partir da média. É dada por: :

$$z = \frac{X - \overline{X}}{S}$$

Onde : X = Média da variável S = desvio padrão

Metodologia: Classificação das Técnicas

•todas as observações iniciam como sendo um grupo(unitário); grupos próximos são, então gradualmente juntados até, finalmente, todas as observações constituírem um único grupo.

Divisivas

•todas as observações iniciam num único grupo. Após são separados em dois grupos e assim por diante, até que cada observação seja o próprio grupo.

Não Hierárquicas (trabalha com interações)

Métodos Hierárquicos de Agrupamentos:

Método do Vizinho Mais Próximo

Método calcula-se a matriz de distâncias entre os "n" indivíduos da população, em seguida os indivíduos mais próximos são agrupados(método do encadeamento simples "single linkage method"

Métodos Hierárquicos de Agrupamentos:

Exemplo de Agrupamento

- Método: vizinho mais próximo
- Dissimilaridade: distância euclidiana
- Dendrograma

Um dendograma é um meio prático de sumarizar um padrão de agrupamento. Este começa com todos os indivíduos separados ("folhas") fundindo-se progressivamente em pares (folhas, ramos, galhos, tronco) até chegar a uma única raiz. A ordem dos indivíduos mostrada no dendograma e a ordem na qual os grupos entram no agrupamento.

Métodos Hierárquicos de Agrupamentos:

→ Matriz de distância D1

Matriz de distância euclidiana entre os "n" indivíduos da população;

Como d (1 e 5) é a menor distância em D1, os indivíduos 1 e 5 são agrupados.

Ind. (n)	1	2	3	4	5
1	0	5	10	7	1
2		0	5	2	6
3			0	3	11
4				0	8
5					0

Distância Euclidiana

$$d_{ij} = \sqrt{\sum_{k=1}^{p} (x_{ik} - x_{jk})^2}$$

Métodos Hierárquicos de Agrupamentos:

→ Matriz de distância D2

Matriz de distância euclidiana entre d(1 e 5) e os demais indivíduos da população; O menor valor em D2 é d(2 e 4)=2, então os indivíduos 2 e 4 são agrupados.

	(15)	2	3	4
(15)	0	5	10	7
2		0	5	2
3			0	3
4				0

Métodos Hierárquicos de Agrupamentos:

→ Matriz de distância D3

Matriz de distância euclidiana entre d 2 e4 e os demais indivíduos da população;

O menor valor em D3 é d(2 e4)=3, então os indivíduo 3 é incluído no grupo 2 e 4.

Ind.	(15)	(24)	3
(15)	0	5	10
(24)		0	3
3			0

→ Matriz de distância D4

Matriz de distância euclidiana entre (234) e (15);

	(15)	(234)
(15)	0	5
(234)		0

O grupo (234) é incluído no grupo (15), formando assim um único grupo .

Métodos Hierárquicos de Agrupamentos:

Resumo do método do vizinho mais próximo

Tabela resumindo passos, grupos e distâncias entre grupos.

PASSO	GRUPOS	DISTÂNCIA
1	1,5	1
2	2,4	2
3	24,3	3
4	15,234	5

Exemplo:

+

•			
Observação	Valor		
а	2		
b	8		
С	1		
d	15		
е	3		
f	11		
g	13		
h	7		
i	10		

+

Técnicas Hierárquicas

Dendograma - Representação Gráfica de Agrupamento Aglomerativo

Técnica Não-Hierárquica

K-Means - Uso intenso para grande volume de dados

- Parte de k sementes ou k clusters iniciais sobre os quais calcula as médias;
- Associa um item à semente/ média mais próxima (usando, por exemplo, a Distância Euclideana). Recalcula a média deste novo cluster e repete iterativamente esta etapa até que não haja mais realocação de elementos.

. .

Técnica Não-Hierárquica

K-Means - Uso intenso para grande volume de dados

- Parte de k sementes ou k clusters iniciais sobre os quais calcula as médias;
- Associa um item à semente/ média mais próxima (usando, por exemplo, a Distância Euclideana). Recalcula a média deste novo cluster e repete iterativamente esta etapa até que não haja mais realocação de elementos.

ANÁLISE DE CONGLOMERADOS: Cluster Analysis - KMeans)

Estatísticas a serem Avaliadas

- Número de Grupos
- Quantidade de Elementos no Grupo
- Média e Desvio-Padrão das Variáveis do Grupo
- Valor Máximo e Mínimo das Variáveis do Grupo
- Soma de Quadrados Médios dentro dos Grupos
- Soma de Quadrados Médios entre os Grupos

Segmentação ComportamentalModelo RFV - Exemplo

FIMP MBA

Dados Internos

- Período da base de dados
 - Janeiro de 2.018 a Dezembro de 2.018 (1,7 MM clientes)
- Variáveis
 - Recência: Quantos dias atrás última visita no site
 - Frequência: Quantos vezes por mês visita o site
 - Valor: Valor médio de compras em reais
- Técnica estatística: Análise de Cluster
 - Procedimento de aglomeração "K-Means"
 - Quantidade de Clusters: 4

Análise de Cluster

· • +

Exercitando!!!!!

Segmentação RFV

Exemplo

Perfil dos Segmentos

Variáveis	Segmento 1	Segmento 2	Segmento 3	Segmento 4	Total
Média de visitas por mês	7,8	1,9	3,2	1,5	2,6
Recência em dias *	3,4	9,3	6,7	15,0	10,4
Valor médio por compra	R\$ 490,47	R\$ 260,94	R\$ 155,21	R\$ 110,79	R\$ 188,81

^{*} Em média quantos dias atrás fez visita no site

Segmentação Comportamental **Modelo RFV - Resultados**

Distribuição da quantidade de Clientes, quantidade visitas e faturamento

Fonte: Dados internos

DATA ANALYTICS

O que você achou da aula de hoje?

Pelo aplicativo da FIAP

(Entrar no FIAPP, e no menu clicar em Experience Survey)

A grande finalidade do conhecimento não é conhecer, mas agir.

T. Huxley

OBRIGADO

Copyright © 2023 | Professora Dra. Regina Tomie Ivata Bernal
Todos os direitos reservados. Reprodução ou divulgação total ou parcial deste documento, é expressamente
proibido sem consentimento formal, por escrito, do professor/autor.

• • • + - +

. . .

• •

.... +

-¦-