To show that our method is a fully polynomial-time approximation scheme, we derive a bound on the length of a DMS set. After trimming, successive elements DMS_i and DMS_i of DMS must have a relationship:

$$\frac{DMS_i'}{DMS_i} > 1 + \varepsilon$$

Therefore, each possible *DMS* set contain up to $log_{1+\varepsilon} PML_{val}$ values.

$$\log_{1+\varepsilon} PMS_{val} = \frac{\ln PMS_{val}}{\ln 1 + \varepsilon}$$

Since
$$\frac{x}{1+x} \le \ln(1+x) \le x$$
 and $0 < \varepsilon < 1$:

$$\frac{\ln PMS_{val}}{\ln 1 + \varepsilon} \le \frac{(1 + \varepsilon) \ln PMS_{val}}{\varepsilon} \le \frac{2 \ln PMS_{val}}{\varepsilon}$$

From the equation above, this bound is polynomial in the size of the input PMS_{val} . It is also polynomial in the size of the set DMS since ε is directly proportional to the number of cysteine-containing peptides k (according to Eq. 2), which are combined to form each set DMS_i .

Since the running time of APROX-DMS routine is polynomial in the length of each set *DMS_i* and the same proof can be used to demonstrate the polynomial running time characteristic of the APROX-FMS routine, our method is a fully polynomial-time approximation scheme.