

CIRED 2023 International

Conference & Exhibition on Electricity Distribution

Impact of discontinuous measurements on the trend analysis of Power Quality parameters

Agenda

- Introduction PQM in Austria
- Motivation
- Trend assessment
- Analysis results
- Conclusion

ROME, ITALY **12-15 JUNE 2023**

Introduction PQM in Austria

Full area covering annual PQM

Possible Measurement points in Austria: More than 5000

360 mobile 3-week-Measurements (MV), in Austria p.a.

40 seasonal and locally fixed 3-week-Measurements (MV) p.a.

All-the-Year measurement of voltage events in all substations

One week Measurements – From 2010!! Three week Measurements – Since 2014!!

Motivation

- Fundamental changes in distribution grids
 (e.g. increasing number of modern power electronics)
- Large Power Quality monitoring systems/campaigns
 (e.g. to identify trend developments of Power Quality levels)
- Temporary measurements (yearly repeated) may be legally required (e.g. in Austria due to feasibility to measure all sites permanently)
- Trend assessment based on discontinuous measurements reliable?

Continuous measurements

- Continuous measurements over multiple years
- Assessment based on weekly 95th percentiles (e.g. as in EN 50160)
- Utilization of the limit in %
 (e.g. 6% for 5th voltage harmonic)

- Seasonal variations (lower emission in winter) with increasing tendency
- Extracted trend component (= reference) using time series decomposition

Discontinuous measurements

- Temporary measurements:
 - Regularly repeated (e.g. yearly)
 - Fixed duration (e.g. 3 weeks)
- Trend assessment using linear regression between two consecutive measurements

Yearly measurements start in 1st calendar week

Resulting yearly trend gains G_{gap} (slope of estimated regression)

Comparison of assessments (1)

- Comparison of yearly trend gains:
 G_{gap} ... discontinuous measurements
 G_{con} ... continuous measurements
- Difference between trend gains: $\Delta G = G_{gap} - G_{con}$
- Example starting in CWO1:
 - Small differences
 - Average difference small ($\overline{\Delta G} = 1.2\%$)

Yearly measurements start in 1st calendar week

Year	2016	2017	2018	2019	2020
$G_{ m gap}$ / $\%$	4.6	1.3	0.9	2.7	5.4
$G_{ m con}$ / %	1.4	2.2	1.8	-0.3	3.8
ΔG / %	3.2	-0.9	-0.9	3.0	1.6

Comparison of assessments (2)

- Comparison of yearly trend gains:
 G_{gap} ... discontinuous measurements
 G_{con} ... continuous measurements
- Difference between trend gains: $\Delta G = G_{gap} - G_{con}$
- Example starting in CW15:
 - Higher differences
 - Average difference small ($\overline{\Delta G} = 0.6\%$)

Yearly measurements start in 15th calendar week

Year	2016	2017	2018	2019	2020
$G_{ m gap}$ / $\%$	3.8	4.5	1.3	-10.8	12.7
G _{con} / %	1.6	2.3	1.3	0.2	3.3
ΔG / %	2.2	2.2	0.0	-11.0	9.4

Comparison of assessments (3)

- Resulting trend gains strongly affected by starting calendar week of yearly measurement
- Resulting differences ΔG
 between trend gains
 rarely exceed ±5%

Difference between trend gains for different starting weeks

→ Analysis for multiple measurement sites and PQ parameters

Measurement sites and PQ parameters

Measurement sites:

- 23 sites located in rural and urban areas of Austria
- Medium voltage level with 10 kV, 20 kV and 30 kV

PQ Parameters:

- 28 voltage quality parameters (RMS, flicker, unbalance, THD and harmonics of order 2, 3, ..., 25)
- 10 min values for 5-6 years (2016-2022)

Pre-processing:

- Uncertainty assessment

 (e.g. max. magnitude error of 10% for harmonics)
- 2. Calculation of weekly 95th percentiles
- 3. Impute missing weeks (up to 20% missing weeks and maximum gap of 10 weeks)
- 4. Selection of suitable time series
- \rightarrow 866 of 1.886 time series for the analysis

Yearly trend gains

Assessment of continuous measurements:

- Many PQ parameters with

 (very) low utilization of limits
 (mostly < 50 % of their limits for
 EN50160 product quality requirements)
- Yearly increases/decreases for the limit utilization (G_{con}) of all PQ parameters:
 - mostly smaller 5% and
 - never exceeds 15%

Yearly trend gains based on continuous measurements

Comparison of assessments (1)

- Absolute difference between trend gains $|\Delta G| = |G_{gap} G_{con}|$ are small
- Differences for most PQ parameters:
 - Small with |ΔG| < 5%
 - Mostly |ΔG| < 10%
- Highest differences for flicker (Uplt)
 - |ΔG| < 34% (99th percentile)
 - Maximum of |ΔG| = 83%

Comparison of assessments (2)

- Highest differences mostly due to single weeks strongly deviating compared to the rest of the year
- Example Flicker:
 - Decreasing trend of limit utilization (limit Uplt = 1)

Conclusion

Main findings

- Yearly trend assessment based on discontinuous measurements comparable to continuous measurements (most differences |ΔG| < 7%)
- Measurements should be repeated within same calendar weeks each year
- Misleading large yearly trend gains (|G_{gap}| > 15%) due to single weeks or seasonal effects with unusual high/low values → extend or repeat measurements
- Mostly low limit utilization (< 50% of limits) and typical yearly trend gains $|G_{gap}|$ < 5%
- Trend assessment only for high limit utilizations:
 Step 1) Check limit utilization for defined threshold (e.g. all values > 20%?)
 Step 2) Trend assessment, only if step 1 is true

Thank you for your attention!

rene.braunstein@e-netze.at

+43 316 90555 55890

