Understanding Octupole vibration in Ca⁴⁸ and A Toy Model

Biplab Mahato

Visiting student from IISc

25/07/2018

Table of content

- Octupole vibration
 - TDHF
 - RPA

Toy Model

Table of content

- Octupole vibration
 - TDHF
 - RPA

Toy Model

• Schrodinger equation is solved iteratively in a mean field

- Schrodinger equation is solved iteratively in a mean field
- Time-dependent potential for vibration

- Schrodinger equation is solved iteratively in a mean field
- Time-dependent potential for vibration
- Linear regime: only 1p1h states contribute

Calculations

Ca⁴⁸ Octupole vibration

TDHF Calculations

Ca⁴⁸ Octupole vibration

Octupole moment

Calculations

Ca⁴⁸ Octupole vibration

Octupole moment

Calculations

Ca⁴⁸ Octupole vibration

Strength function

Calculations

Ca⁴⁸ Octupole vibration

Strength function

TDHF Calculations

Ca⁴⁸ Octupole vibration

Strength function

Peaks: 6MeV and 10MeV

Background

Digging deeper

Background

Digging deeper

¹All energies are in MeV

Background

Digging deeper

Only 3⁻ states contribute

Neutron and Proton transition densities for Ca⁴⁸

Strength function for proton

Neutron and Proton transition densities for Ca⁴⁸

Strength function for proton

Strength function for neutron

Neutron and Proton transition densities for Ca⁴⁸

Table of content

- Octupole vibration
 - TDHF
 - RPA

Toy Model

 Full hamiltonian with residual interaction is taken into account

$$H = H_{MF} + V_{res}$$

- Full hamiltonian with residual interaction is taken into account
- Matrix representation of the full hamiltonian in 1p1h basis is diagonalised

- Full hamiltonian with residual interaction is taken into account
- Matrix representation of the full hamiltonian in 1p1h basis is diagonalised
- Excited states are written as a linear combination of all 1p1h states.

$$|
u
angle = \sum_{1
ho1h} C_{1
ho1h} |1
ho1h
angle$$

- Full hamiltonian with residual interaction is taken into account
- Matrix representation of the full hamiltonian in 1p1h basis is diagonalised
- $|
 u
 angle = \sum_{1
 ho 1h} C_{1
 ho 1h} |1
 ho 1h
 angle$

- Excited states are written as a linear combination of all 1p1h states.
- particle-hole correlation

Calculations

strength function

Calculations

Calculations

TDHF vs RPA

Comparison

TDHF vs RPA

Comparison

1p1h contribution

1p1h contribution

• Random Phase Approximation

$$Q_{\nu}^{\dagger} = \sum_{mi} \left(X_{mi}^{\nu} \mathbf{a}_{m}^{\dagger} \mathbf{a}_{i} - Y_{mi}^{\nu} \mathbf{a}_{i}^{\dagger} \mathbf{a}_{m} \right)$$

1p1h contribution

- Random Phase Approximation
- Tamm-Dancoff Approximation

$$Q_{\nu}^{\dagger}=\sum_{mi}X_{mi}^{\nu}\mathbf{a}_{m}^{\dagger}\mathbf{a}_{i}$$

1p1h contribution

Tamm-Dancoff Approximation:

1p1h contribution

Tamm-Dancoff Approximation

1p1h contribution

Tamm-Dancoff Approximation

•
$$\pi(1f_{\frac{7}{2}})(2s_{\frac{1}{2}})^{-1} 3.7\%$$

•
$$\nu(1g_{\frac{9}{2}})(1f_{\frac{7}{2}})^{-1} 3.75\%$$

• $\nu(1f_{\frac{5}{2}})(1d_{\frac{5}{2}})^{-1}$ 2.45%

Table of content

- Octupole vibration
 - TDHF
 - RPA

2 Toy Model

The problem

• Two nucleus approaching each other

The problem

- Two nucleus approaching each other
- An alpha particle exchange

The problem

- Two nucleus approaching each other
- An alpha particle exchange
- Recurrance time

Symmetric Potential Well

- Symmetric Potential Well
- Two eigenstate $(|+\rangle and |-\rangle)$

$$\begin{pmatrix} 0 & 0 \\ 0 & \epsilon \end{pmatrix}$$

- Symmetric Potential Well
- Two eigenstate $(|+\rangle and |-\rangle)$
- Left and right state (45 degree rotation) $|L\rangle$ and $|R\rangle$.

$$\begin{pmatrix} \epsilon/2 & -\epsilon/2 \\ -\epsilon/2 & \epsilon/2 \end{pmatrix}$$

- Symmetric Potential Well
- Two eigenstate $(|+\rangle and |-\rangle)$
- Left and right state (45 degree rotation) $|L\rangle$ and $|R\rangle$.
- Two internal states $|0\rangle$ and $|1\rangle$.

$$\begin{pmatrix} \frac{\epsilon}{2} & 0 & -\frac{\epsilon}{2} & 0\\ 0 & \frac{\epsilon}{2} + \delta & 0 & -\frac{\epsilon}{2} + \delta\\ -\frac{\epsilon}{2} & 0 & \frac{\epsilon}{2} & 0\\ 0 & -\frac{\epsilon}{2} + \delta & 0 & \frac{\epsilon}{2} + \delta \end{pmatrix}$$

- Symmetric Potential Well
- Two eigenstate $(|+\rangle and |-\rangle)$
- Left and right state (45 degree rotation) $|L\rangle$ and $|R\rangle$.
- \bullet Two internal states $|0\rangle$ and $|1\rangle.$
- Coupling V

$$\begin{pmatrix} \frac{\epsilon}{2} & 0 & -\frac{\epsilon}{2} & 0\\ 0 & \frac{\epsilon}{2} + \delta & 0 & -\frac{\epsilon}{2} + \delta\\ -\frac{\epsilon}{2} & 0 & \frac{\epsilon}{2} & V\\ 0 & -\frac{\epsilon}{2} + \delta & V & \frac{\epsilon}{2} + \delta \end{pmatrix}$$

• Initial state
$$|\Psi(t=0)\rangle = |L0\rangle$$

- Initial state $|\Psi(t=0)\rangle = |L0\rangle$
- Schrodinger Equation: $i rac{d|\Psi
 angle}{dt} = \hat{H}|\Psi
 angle$

- Initial state $|\Psi(t=0)\rangle = |L0\rangle$
- Schrodinger Equation: $i \frac{d |\Psi\rangle}{dt} = \hat{H} |\Psi\rangle$
- $|\Psi(t)\rangle = e^{-i\hat{H}t}|\Psi(0)\rangle$

- Initial state $|\Psi(t=0)\rangle = |L0\rangle$
- Schrodinger Equation: $i\frac{d|\Psi\rangle}{dt} = \hat{H}|\Psi\rangle$
- Projection: $|\langle \Psi(0)|\Psi(t)\rangle|^2$

Projection: $|\langle \Psi(0)|\Psi(t)\rangle|^2$

$$\delta = V = 0$$

$$T \propto \frac{1}{\epsilon}$$

Projection: $|\langle \Psi(0)|\Psi(t)\rangle|^2$

 $\delta = 0 \text{ small V}$

An envelop due to introduction of coupling

Projection: $|\langle \Psi(0)|\Psi(t)\rangle|^2$

 $\delta = 0$, large V

Projection: $|\langle \Psi(0)|\Psi(t)\rangle|^2$

Everything non-zero

Projection: $|\langle \Psi(0)|\Psi(t)\rangle|^2$

Everything non-zero

Alternative way to obtain Recurrance time

• Diagonalise the Hamiltonian

• Eigenvalues: Ei

• Eigenvectors: v_i

- Diagonalise the Hamiltonian
- Any state can be written as a linear combination of eigenstate.

$$|\Psi\rangle = \sum_{i=1}^4 c_i |v_i\rangle$$

- Diagonalise the Hamiltonian
- Any state can be written as a linear combination of eigenstate.
- Time evolution of the state

$$|\Psi(t)
angle = \sum_{i=1}^4 c_i e^{-iE_it} |v_i
angle$$

- Diagonalise the Hamiltonian
- Any state can be written as a linear combination of eigenstate.
- Time evolution of the state
- Note: Each of the time dependent term repeats when $E_i t = 2\pi n_i, n \in \mathbb{Z}$.

$$|\Psi(t)\rangle = \sum_{i=1}^{4} c_i e^{-iE_i t} |v_i\rangle$$

- Diagonalise the Hamiltonian
- Any state can be written as a linear combination of eigenstate.
- Time evolution of the state
- Note: Each of the time dependent term repeats when $E_i t = 2\pi n_i, n \in \mathbb{Z}$.
- So recurrance time is LCM($\frac{2\pi}{E_i}$).

$$|\Psi(t)\rangle = \sum_{i=1}^4 c_i e^{-iE_it} |v_i\rangle$$

Unfinished Business

Change-epsilon(time-dependent)

- Change-epsilon(time-dependent)
 - Step

- Change-epsilon(time-dependent)
 - Step
 - Linear

- Change-epsilon(time-dependent)
 - Step
 - Linear
- Introduce more internal states

$$\begin{pmatrix} \frac{\epsilon}{2} & 0 & 0 & -\frac{\epsilon}{2} & 0 & 0 \\ 0 & \frac{\epsilon}{2} & 0 & 0 & -\frac{\epsilon}{2} & 0 \\ 0 & 0 & \frac{\epsilon}{2} + \delta & 0 & 0 & \delta - \frac{\epsilon}{2} \\ -\frac{\epsilon}{2} & 0 & 0 & \frac{\epsilon}{2} & 0 & 0 \\ 0 & -\frac{\epsilon}{2} & 0 & 0 & \frac{\epsilon}{2} & 0 \\ 0 & 0 & \delta - \frac{\epsilon}{2} & 0 & 0 & \frac{\epsilon}{2} + \delta \end{pmatrix}$$

- Change-epsilon(time-dependent)
 - Step
 - Linear
- Introduce more internal states
 - Coupling with only ground state

$$\begin{pmatrix} \frac{\epsilon}{2} & 0 & 0 & -\frac{\epsilon}{2} & 0 & 0 \\ 0 & \frac{\epsilon}{2} & 0 & 0 & -\frac{\epsilon}{2} & 0 \\ 0 & 0 & \frac{\epsilon}{2} + \delta & 0 & 0 & \delta - \frac{\epsilon}{2} \\ -\frac{\epsilon}{2} & 0 & 0 & \frac{\epsilon}{2} & V & V \\ 0 & -\frac{\epsilon}{2} & 0 & V & \frac{\epsilon}{2} & 0 \\ 0 & 0 & \delta - \frac{\epsilon}{2} & V & 0 & \frac{\epsilon}{2} + \delta \end{pmatrix}$$

$$V' = \sqrt{2}V$$

- Change-epsilon(time-dependent)
 - Step
 - Linear
- Introduce more internal states
 - Coupling with only ground state
 - Coupling between excited states

$$\begin{pmatrix} \frac{\epsilon}{2} & 0 & 0 & -\frac{\epsilon}{2} & 0 & 0 \\ 0 & \frac{\epsilon}{2} & 0 & 0 & -\frac{\epsilon}{2} & 0 \\ 0 & 0 & \frac{\epsilon}{2} + \delta & 0 & 0 & \delta - \frac{\epsilon}{2} \\ -\frac{\epsilon}{2} & 0 & 0 & \frac{\epsilon}{2} & V_1 & V_2 \\ 0 & -\frac{\epsilon}{2} & 0 & V_1 & \frac{\epsilon}{2} & V_3 \\ 0 & 0 & \delta - \frac{\epsilon}{2} & V_2 & V_3 & \frac{\epsilon}{2} + \delta \end{pmatrix}$$

Thank you!!