Math 534H

Homework III

(Due Thursday, February 26th)

(1) Consider the square $\Omega = \{(x_1, x_2) \mid 0 \le x_1 \le 1, \ 0 \le x_2 \le 1\}$ and for every pair of numbers $n, m \in \mathbb{Z}$, the functions

$$u(x_1, x_2) = \sin(2\pi n x_1) \sin(2\pi m x_2).$$

Compute $\Delta u(x_1, x_2)$. Then, say whether there is a finite or infinite number of number λ 's for which one can find a function $u: \Omega \to \mathbb{R}$ -different from the zero function- solving

$$\begin{cases} \Delta u = \lambda u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega. \end{cases}$$

(Meaning, if there are only finitely many, explain why. Otherwise, provide an infinite list of such λ 's with their respective u's. The equation above is known as the *Helmholtz equation*, we'll see it again when we talk about the wave equation and *Schrödinger*'s equation)

(2) The Nefarious Return Of Problem #6 From Homework II. In Problem # 2 above, show that if $\lambda \geq 0$ then the only possible solution to the problem is $u \equiv 0$.

Hint: Following a 2-d analogue of the old hint, multiply both sides of the equation by u, integrate over Ω and use one of the Green identities.

(3) Suppose that L is a linear transformation of the plane onto itself (so, L is given by (l_{ij}) , a 2×2 matrix). Let $u : \mathbb{R}^2 \to \mathbb{R}$. If v is a new function given by

$$v(x) = u(Lx),$$

then use the chain rule to write down $\partial_{x_i x_j} u$ in terms of an expression combining the second partial derivatives of u and the matrix (l_{ij}) .

(4) In the previous problem, suppose that L is a rotation (so that the (l_{ij}) have a special form). Check that in this case

$$\Delta v(x) = (\Delta u)(Lx), \ \forall \ x \in \mathbb{R}^2.$$

(5) (a) Use the Leibniz and chain rules to check the following identities (u is some unknown function)

$$\Delta u^3 = 6u|\nabla u|^2 + 3u^2 \Delta u,$$

$$\Delta(\sin(u)) = -\sin(u)|\nabla u|^2 + \cos(u)\Delta u,$$

$$\Delta(e^u) = e^u|\nabla u|^2 + e^u \Delta u.$$

(b) Based on the previous computations, guess (and check!) a formula for

$$\Delta \phi(u)$$
,

in terms of $|\nabla u|$, Δu , $\phi'(u)$ and $\phi''(u)$.

(6) Suppose that $\Delta u = 0$ in some domain $\Omega \subset \mathbb{R}^2$, and let $\phi(t)$ be a twice-differentiable, convex function of $t \in \mathbb{R}$ (i.e. $\phi''(t) \geq 0$). Then, prove that for any disc $D_r(x_0)$ whose closure is contained in Ω we have

$$\phi(u(x_0)) \le \frac{1}{2\pi r} \int_{D_r(x_0)} \phi(u(x)) \ dx.$$

Hint: Use the calculation from the previous problem and problem #3(a) from Homework II.

- (7) Let Ω be a domain in \mathbb{R}^2 .
 - (a) Check that if $u: \Omega \to \mathbb{R}$ is harmonic, then

$$\int_{\Omega} (\nabla u, \nabla \phi) \ dx = 0$$

for any other function ϕ which is zero on $\partial\Omega$.

Hint: Use the divergence theorem (or the Green identities) with vector field $\phi \nabla u$, and use the fact that this vector field is always zero on $\partial \Omega$.

(b) Show that

$$\int_{\Omega} |\nabla (u+\phi)|^2 dx = \int_{\Omega} |\nabla u|^2 x + 2 \int_{\Omega} (\nabla u, \nabla \phi) dx + \int_{\Omega} |\nabla \phi|^2 dx$$

(c) Using (a) and (b) show that if u = v on $\partial\Omega$ and u is harmonic in Ω then

$$\int_{\Omega} |\nabla u|^2 dx \le \int_{\Omega} |\nabla v|^2 dx.$$

(d) Let u and v as before, but further suppose that you have the equality

$$\int_{\Omega} |\nabla u|^2 \ dx = \int_{\Omega} |\nabla v|^2 \ dx.$$

Conclude in this case that u = v.

Remark: Note that none of the above used in any way the two dimensions, and each of the steps are exactly the same if we have instead a harmonic function $u: \Omega \to \mathbb{R}$ with $\Omega \subset \mathbb{R}^d$, $d \ge 1$.

- (8) **Bonus.** Go on the internet and check out a short video called "Möbius transformations revealed" by Douglas N. Arnold and Jonathan Rogness (yes, just watch the video, that's it!).
- (9) **Bonus.** (Do Problem #8 first). The *inversion* of a point $x \in \mathbb{R}^2$ ($x \neq 0$) with respect to a circle of radius r centered at the origin 0 is the point T(x) given by

$$T(x) = \frac{r^2 x}{|x|^2}$$

If $x = (x_1, x_2)$ then in coordinates we have

$$T(x_1, x_2) = \left(\frac{r^2 x_1}{x_1^2 + x_2^2}, \frac{r^2 x_2}{x_1^2 + x_2^2}\right)$$

Check the following

- (a) If r=1, then T(x) is its own inverse, meaning that for any $x\neq 0$, T(T(x))=x.
- (b) (Again take r=1) Suppose Ω_1 and Ω_2 are two domains on the plane and that

$$0 \notin \Omega_1$$
, $T(\Omega_1) = \Omega_2$

Given a function $u:\Omega_2\to\mathbb{R}$, define a new function $v:\Omega_1\to\mathbb{R}$ by composing u and T,

$$v(x) = u(T(x))$$

By succesive uses of the chain rule, compute the partial derivatives $\partial_{x_1x_1}v$ and $\partial_{x_2x_2}v$ in terms of the partial derivatives of u, and the map T (you may want to do the calculation first for r=1 since thats easier).

- (c) Assume that $\Omega_1 = \Omega_2 = \mathbb{R}^2 \setminus \{0\}$ and $u(x) = \log(|x|)$. What is v(x) in this case?. Also, compute Δv . Hint: Use the radial formula for the Laplacian.
- (d) Assume $\Delta u = 0$, what can you say about Δv ?.
- (10) **Bonus.** Given two harmonic functions u and v in Ω , let $w(x) := \max\{u(x), v(x)\}$. Show that w is always subharmonic in Ω .

Hint: Note that in general this function may fail to have a derivative!, so you cannot simply try arguing that $\Delta w \geq 0$ since w might not eve have second-order derivatives.