HLT ECal alley – recent developments

A. Żurański, M. Witek

Introduction

- Two lines: e-line and γ -line. Focus on γ -line today.
 - $B_s \rightarrow \phi \gamma$, $B \rightarrow K^* \gamma$ offline selection by Lesya
 - Two ingredients of confirmation:
 - L0 photon
 - □ L0 hadron ($\phi \rightarrow KK, K*\rightarrow K\pi$)
- Old L1 ~ first implementation in HLT
 - photon E_T>2.95 GeV + track 0.15 mm < IP <3 mm & PT>1.2 GeV
- γ-line starts for L0Photon=1
 - Signal eff = 56% @ mbias rate = 8 kHz

Starting point for improvements

L0 photon – π^0 merged removal

- \Box Check quality of L0 photon remove π^0 to reduce mbias rate
 - Inpired by method by Sergey Barsuk $,,\gamma/\pi^0$ separation at high E_T "
 - http://indico.cern.ch/getFile.py/access?contribId=s1t10&resId=1&materiaIId=0&confId=a031013

Variables for π^0/γ discrimination

Shower Shape

Tails/Core

Asymmetry

Kappa

L0 photon – π^0 merged removal

- ECal reconstruction needed to calculate shower shape variables.
 - At this stage of HLT is has to be a fast version of full Calo reconstruction.
 - □ Cut on minimum E_T of Calo clusters
- Treat 3 ECal regions separately (different cell size)
 - γ from signal,
 - \blacksquare π^0 merged from mbias events (two photons form one cluster)

L0 photon – shower shape variables

L0 photon – π^0/γ discrimination

L0 photon – π^0/γ discrimination

- \square π^0 merged removal
 - 90 % signal 25% mbias efficiency at the cluster level.
- But only 85 % of L0 photons that trigger are due to π^0 in mbias and only 35% are π^0 merged.
- At the level of events it gives
 - Signal eff = 90 % and 50 % reduction of mbias

L0 hadron part - φ→KK

Correlation in PT distributions of kaons Large fraction – both PT<1500 MeV

Loss in 2D => 3D HLT phase of VELO track reconstruction Main cause of efficiency loss for L1 style (eff = 56 %)

Confirmation

- Problem with confirmation for $\phi \rightarrow KK$ from $B_s \rightarrow \phi \gamma$
 - Need to lower PT min of L0Hadron cluster to be confirmed in T.

For PT> 1 GeV number of L0 hadron clusters seems to be too large.

Alternative is to use modified version of L1 trigger.

- 2 tracks 0.15 mm < IP <3 mm & PT>0.6 GeV (using standard HLT VELO reconstruction IP_{2D}>0.1 mm)
- photon ET>2.5 GeV + π^0/γ discrimination
- => Signal eff = 75 % at mbias rate ~ 8 kHz

Summary

- Useful discrimination of π^0/γ based on shower shape variables
 - Needs fast Calo reconstruction
- □ Confirmation of L0 hadron (ϕ →KK from B_s→ $\phi\gamma$) results in low PT threshold (too many L0 hadron clusters to consider)
- Try different scenarios, check timing, choose optimal solution.