Reliable Network-on-Chip Architecture for Reliable Applications

Michael Grieco

Introduction

level

Related Work

Application-level redundancy

data reception

data reception

- Port types RW, RO, WO
- Three ports with the adapter
- Crossbar: 7 input, 5 output

typical mesh router arch.

proposed router mesh arch.

Experimental Setup

- SystemC model of NoC
 - Typical mesh
 - With/without custom redundancy
 - TMR for AES-256-CBC
- Tools
 - latency measure
 - fault injection

Results – fault-tolerance

- Functional compliance
- Compare to expected output

58 ns - Completed simulation, checking output... Final report: 128 bytes compared, 0 errors

```
60 ns - Error detected in checkpoint at byte 00000020 60 ns - [commander]: Received interrupt with signal 1 60 ns - Completed simulation, checking output... Final report: 32 bytes compared, 0 errors

Info: /OSCI/SystemC: Simulation stopped by user. Total of 11 faults over 48 bytes.
```


Results – latency

Results – memory

- Additional VC buffers
- Additional ports
 - Share data, ...
 - Different output address

Per redundant module (i.e., x3)

Memory size for different components

*4 VCs per router, each with 8 entries **For 4 checkpoints, each with 4 packets (256b)

Conclusion

Combination with other work

Application-level redundancy

 Separate packet for each destination

Same packet copied

Updated router interface

 Adapter control logic

12/5/2023 © 2023 Grieco. 15

Experimental Setup – faultinjection

 Define probability of fault per byte per time step

