Amendments to the Claims:

The listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A computing system, comprising:

a first approximation apparatus to approximate a term 2^X , wherein X is a real number, the first approximation apparatus comprises a rounding apparatus to accept an input value (X) that is a real number represented in floating-point format, and to compute a <u>first</u> rounded value ($[X]_{integer}$) by rounding the input value (X) <u>using a floor technique toward minus infinity</u>, wherein the rounded value ($[X]_{integer}$) is represented in an integer format;

a memory to store a computer program that utilizes the first approximation apparatus; and a central processing unit (CPU) to execute the computer program, the CPU is cooperatively connected to the first approximation apparatus and the memory.

- 2. (Cancelled).
- 3. (Currently Amended) The system of claim 1, wherein the first approximation apparatus includes:

an integer-to-floating-point converter to accept as input a <u>the</u> first rounded value (X) being an <u>the</u> input value (X) that is a real number represented in an integer format, and to convert the first rounded value (X) integer to a second rounded value (X) floating-point represented in floating-point format.

- 4. (Currently Amended) The system of claim 1, wherein the first approximation apparatus includes:
- a floating-point subtraction operator to compute the difference between an input value (X) and $LX \perp_{floating-point}$ which is the input value (X) rounded using the floor technique toward minus infinity and is represented in floating-point format.
- 5. (Currently Amended) The system of claim 1, wherein the first approximation apparatus includes a shift-left logical operator to generate a shifted $\lfloor X \rfloor_{integer}$ value by shifting a the first rounded value ($\lfloor X \rfloor_{integer}$), being the input value (X) that is a real number to the left by a predetermined number of bit positions.

6. (Original) The system of claim 1, wherein the first approximation apparatus includes:

a second approximation apparatus to accept ΔX as input, to approximate $2^{\Delta X}$, and to return an approximation of $2^{\Delta X}$, wherein $\Delta X = X - \lfloor X \rfloor_{\text{floating-point}}$ and $\lfloor X \rfloor_{\text{floating-point}}$ is the input value (X) rounded using the floor technique and is represented in floating-point format.

- 7. (Original) The system of claim 6, wherein the second approximation apparatus computes the approximation of $2^{\Delta X}$ by applying Horner's method in calculating a sum of a plurality of elements of a series in the equation $2^{\Delta X} = \sum_{N=0}^{\infty} \frac{(\Delta X \ln 2)^{N}}{N!}$.
- 8. (Currently Amended) The system of claim 1, wherein the first approximation apparatus includes:

an integer addition operator to accept a shifted $\lfloor X \rfloor_{integer}$ value, being the an input value (X) that is a real number represented in an integer format and undergoes a bit-wise shift operation and an approximation of $2^{\Delta X}$ as input, and to perform an integer addition operation on the shifted $\lfloor X \rfloor_{integer}$ value and the approximation of $2^{\Delta X}$ to generate an approximation of 2^{X} , wherein $\Delta X = X - \lfloor X \rfloor_{floating-point}$ and $\lfloor X \rfloor_{floating-point}$ is the input value (X) rounded toward minus infinity using the floor technique and is represented in floating-point format.

9. (Original) The system of claim 1, further comprising:

a third approximation apparatus to approximate a term C^Z , wherein C is a constant and a positive number and Z is a real number,

the third approximation apparatus using a floating-point multiplication operator to compute a product of $\log_2 C \times Z$, and feeding the product of $\log_2 C \times Z$ into the first approximation apparatus to generate an approximation of C^Z .

10. (Currently Amended) A method comprising:

generating a first rounded value, wherein generating the first rounded value comprises rounding an input value (X) using a floor technique to generate the first rounded value represented in an integer format; and

generating a second rounded value;

subtracting the second rounded value from an the input value (X) to generate ΔX ;

generating an approximation of $2^{\Delta X}$;

performing a bit-wise left shift to the first rounded value to generate a shifted value; and approximating 2^X by performing an integer addition operation to add the shifted value to the approximation of $2^{\Delta X}$.

11. (Cancelled)

12. (Currently Amended) The method of claim 10, wherein generating the second rounded value comprises:

converting the first rounded value represented in an integer format to the second rounded value represented in <u>a_floating-point format</u>.

13. (Original) The method of claim 10, wherein generating an approximation of $2^{\Delta X}$ comprises:

applying Horner's method in calculating a sum of a plurality of elements of a series in the

equation
$$2^{\Delta X} = \sum_{N=0}^{\infty} \frac{(\Delta X \ln 2)^{\frac{N}{N}}}{N!}$$
.

14. (Original) The method of claim 10, wherein performing a bit-wise left shift operation to the first rounded value comprises:

shifting the first rounded value to the left by a predetermined number of bit positions so that the first rounded value occupies bit positions reserved for an exponent of a floating-point value.

- 15. (Original) The method of claim 10, wherein approximating 2^{X} comprises: performing an integer addition operation to add the shifted value to the approximation of $2^{\Delta X}$, such that the first rounded value is added to an exponent value of the approximation of $2^{\Delta X}$.
- 16. (Currently Amended) A machine-readable medium comprising instructions which, when executed by a machine, cause the machine to perform operations comprising:

a first code segment to perform computations to approximate the term 2^X , wherein X is a real number; and

a second code segment to accept an input value (X) that is a real number represented in floating-point format, to compute a rounded value ($[X]_{integer}$) by rounding the input value (X)

using a floor technique, and to return the rounded value ([X]_{integer}) which is represented in an integer format.

17. (Cancelled)

18. (Currently Amended) The machine-readable medium of claim $\underline{16}$ 17, wherein the second code segment computes the approximation of $2^{\Delta X}$ by applying Horner's method in calculating a sum of a plurality of elements of a series in the following equation,

$$2^{\Delta X} = \sum_{N=0}^{\infty} \frac{(\Delta X \ln 2)^{\frac{N}{N}}}{N!}.$$

19. (Original) The machine-readable medium of claim 16, wherein the first code segment includes:

a third code segment to accept ΔX as input and to generate an approximation of $2^{\Delta X}$, wherein $\Delta X = X - \lfloor X \rfloor_{\text{floating-point}}$ and $\lfloor X \rfloor_{\text{floating-point}}$ is the input value (X) rounded and is represented in floating-point format.

20. (Currently Amended) The machine-readable medium of claim 16, wherein the first code segment includes:

a fourth code segment to accept a shifted $[X]_{integer}$ value, being an the input value (X) that is a real number represented in an integer format and undergoes a bit-wise shift operation and an approximation of $2^{\Delta X}$ as input, and to generate an approximation 2^{X} by performing an integer addition operation on the shifted $[X]_{integer}$ value and the approximation of $2^{\Delta X}$, wherein $\Delta X = X - [X]_{floating-point}$ and $[X]_{floating-point}$ is the input value (X) rounded and is represented in floating-point format.

21. (Original) The machine-readable medium of claim 16, further includes: a fifth code segment to approximate a term C^Z , wherein C is a constant and a positive number and Z is a real number, the fifth code segment computing a product of $\log_2 C \times Z$ and feeding the product of $\log_2 C \times Z$ into the first code segment to generate an approximation of C^Z .

22. (New) A computing system, comprising:

a first approximation apparatus to approximate a term 2^X with an input value (X) being a real number represented in floating-point format, the first approximation apparatus includes an integer-to-floating-point converter to accept as input a first rounded value ($[X]_{integer}$) associated with the input value (X), and to convert the first rounded value ($[X]_{floating-point}$) represented in floating-point format;

a memory to store a computer program that utilizes the first approximation apparatus; and a central processing unit (CPU) to execute the computer program, the CPU is cooperatively connected to the first approximation apparatus and the memory.

- 23. (New) The system of claim 22, wherein the first approximation apparatus comprises a rounding apparatus to accept the input value (X), and to compute the first rounded value ($[X]_{integer}$) by rounding the input value (X) using a floor technique, the first rounded value ($[X]_{integer}$) being represented in an integer format.
- 24. (New) The system of claim 22, wherein the first approximation apparatus includes:

a floating-point subtraction operator to compute a difference between the input value (X) and the second rounded value ($\lfloor X \rfloor_{floating-point}$) which is the input value (X) rounded using the floor technique.

- 25. (New) The system of claim 22, wherein the first approximation apparatus includes a shift-left logical operator to generate a shifted first rounded value by shifting the first rounded value ($\lfloor X \rfloor_{integer}$) to the left by a predetermined number of bit positions.
- 26. (New) The system of claim 22, wherein the first approximation apparatus includes:

a second approximation apparatus to accept ΔX as input, to approximate $2^{\Delta X}$, and to return an approximation of $2^{\Delta X}$, wherein $\Delta X = X - \lfloor X \rfloor_{\text{floating-point}}$ and $\lfloor X \rfloor_{\text{floating-point}}$ is the input value (X) rounded using the floor technique.

- (New) The system of claim 26, wherein the second approximation apparatus computes the approximation of $2^{\Delta X}$ by applying Horner's method in calculating a sum of a plurality of elements of a series in the equation $2^{\Delta X} = \sum_{N=0}^{\infty} \frac{(\Delta X \ln 2)^{N}}{N!}$.
- 28. (New) The system of claim 22, wherein the first approximation apparatus includes:

an integer addition operator to accept a shifted $\lfloor X \rfloor_{integer}$ value, being the input value (X) being a real number represented in an integer format and undergoes a bit-wise shift operation and an approximation of $2^{\Delta X}$ as input, and to perform an integer addition operation on the shifted $\lfloor X \rfloor_{integer}$ value and the approximation of $2^{\Delta X}$ to generate an approximation of 2^{X} , wherein $\Delta X = X - \lfloor X \rfloor_{floating-point}$ and $\lfloor X \rfloor_{floating-point}$ is the input value (X) rounded using a floor technique and is represented in floating-point format.

29. (New) The system of claim 22, further comprising:

a third approximation apparatus to approximate a term C^Z , wherein C is a constant and a positive number and Z is a real number, the third approximation apparatus using a floating-point multiplication operator to compute a product of $\log_2 C \times Z$, and feeding the product of $\log_2 C \times Z$ into the first approximation apparatus to generate an approximation of C^Z .

30. (New) A computing system, comprising:

a first approximation apparatus to approximate a term 2^X with an input value (X) being a real number represented in floating-point format, the first approximation apparatus includes a floating-point subtraction operator to compute the difference between the input value (X) and a first rounded value $[X]_{floating-point}$ being the input value (X) rounded using a floor technique and represented in floating-point format;

a memory to store a computer program that utilizes the first approximation apparatus; and a central processing unit (CPU) to execute the computer program, the CPU is cooperatively connected to the first approximation apparatus and the memory.

31. (New) A method comprising: generating a first rounded value;

generating a second rounded value by converting the first rounded value represented in an integer format to the second rounded value represented in floating-point format;

subtracting the second rounded value from an input value (X) to generate ΔX ; generating an approximation of $2^{\Delta X}$;

performing a bit-wise left shift to the first rounded value to generate a shifted value; and approximating 2^X by performing an integer addition operation to add the shifted value to the approximation of $2^{\Delta X}$.