

Transferability and Explainability of Machine Learning Models for Network Intrusion Detection

Final Project Report

Author: Ahmed Bedair

Supervisor: Dr. Fabio Pierazzi

Student ID: K2105577

February 24, 2025

Abstract

This dissertation investigates the effectiveness of machine learning-based Network Intrusion Detection Systems (NIDS) in detecting cyber threats by analysing patterns in network traffic data. The study assesses the transferability of Random Forest and Support Vector Machine (SVM) classifiers across the CTU13 and CICIDS2017 datasets. Models trained on one dataset are tested on the other to evaluate how well learned patterns generalise to different network environments. Additionally, the SHAP (SHapley Additive exPlanations) technique is employed to identify critical features influencing the detection of malicious traffic, enhancing the transparency of the models' decision-making processes.

The novelty of this work lies in its comprehensive analysis of model transferability within NIDS and the application of explainable AI to improve interpretability. Findings reveal significant challenges arising from dataset biases and the limitations of directly applying models across datasets. To address these, the study proposes strategies to enhance detection accuracy and model interpretability, strengthening NIDS robustness against evolving cyber threats. This research advances cybersecurity by providing insights into the adaptability of machine learning models and the key factors impacting NIDS performance across diverse network settings.

Originality Avowal

I verify that I am the sole author of this report, except where explicitly stated to the contrary. I grant the right to King's College London to make paper and electronic copies of the submitted work for purposes of marking, plagiarism detection and archival, and to upload a copy of the work to Turnitin or another trusted plagiarism detection service. I confirm this report does not exceed 25,000 words.

Ahmed Bedair February 24, 2025

Acknowledgements

I extend my sincere gratitude to my supervisor, Dr Fabio Pierazzi, for his invaluable guidance and unwavering support throughout this project. His expertise and encouragement were instrumental in keeping me focused and enabling me to complete this work successfully.

I would also like to express my heartfelt thanks to my family and friends for their constant encouragement and belief in me. Their support has been a source of strength and motivation.

Contents

1	Inti	roduction	3			
2	Bac	Background				
	2.1	CTU13 and CICIDS2017 Datasets	5			
	2.2	Machine Learning Classifiers	7			
	2.3	Explainable AI Techniques	7			
3	Relevant Work					
	3.1	Botnet Detection using CTU13 Dataset	9			
	3.2	Intrusion Detection using CICIDS2017 Dataset	10			
	3.3	Random Forest for Intrusion Detection	11			
	3.4	Support Vector Machines for Intrusion Detection	11			
	3.5	Explainable AI Techniques for Intrusion Detection	12			
	3.6	Challenges and Limitations	12			
	3.7	Summary and Positioning	13			
4	Specification & Design					
	4.1	Experiments	15			
	4.2	Classifier Configurations	16			
	4.3	Transferability Evaluation	17			
	4.4	Summary	17			
5	Implementation 19					
	5.1	Experiment Implementation	19			
	5.2	Package Implementation	22			
6	Evaluation 27					
	6.1	Performance Evaluation	27			
7	Legal, Social, Ethical and Professional Issues					
	7.1	Legal Considerations	39			
	7.2	Ethical & Social Considerations	40			
	7.3	Professional Considerations	40			
	7.4	Societal Impact and Sustainability	41			
	7.5	British Computing Society Code of Conduct	42			

8	Conclusion and Future Work		
	Bibliography	49	
A	Algorithms	50	
В	SHAP Feature List	56	
\mathbf{C}	User Guide	58	

Chapter 1

Introduction

In an increasingly interconnected digital landscape, safeguarding computer network security is of paramount importance. The relentless evolution of cyber threats challenges the effectiveness of conventional signature-based Network Intrusion Detection Systems (NIDS), which often fail to detect novel and sophisticated attacks [18]. Consequently, the research community has shifted towards machine learning approaches that identify unseen intrusions by analysing network traffic for patterns and anomalies [7].

The efficacy of machine learning-driven NIDS depends significantly on the authenticity and comprehensiveness of the datasets employed for training and evaluation. The CTU13 and CICIDS2017 datasets stand out as prominent examples, providing genuine botnet traffic within regular network flows and a diverse array of contemporary attack vectors, respectively [11, 24]. Despite their extensive use, a critical research gap persists: understanding how machine learning models can generalise patterns learned from one dataset to accurately detect intrusions in another remains underexplored.

This dissertation investigates the effectiveness of machine learning algorithms—specifically Random Forest and Support Vector Machine (SVM) classifiers—trained on the CICIDS2017 dataset, in identifying botnet activities within the CTU13 dataset. By evaluating their performance on CTU13, we assess the transferability and applicability of learned features across distinct datasets. This approach mirrors real-world scenarios where models trained on specific datasets must protect diverse network environments against intrusions.

Following Arp et al.'s guidelines for applying machine learning in cybersecurity [4], this study integrates explainable AI techniques, notably SHAP (SHapley Additive exPlanations) [15], to clarify the decision-making processes of our models. By pinpointing critical features for botnet detection, we reveal the distinctive patterns that differentiate malicious from benign network flows, enhancing interpretability and trust in the results.

Additionally, this dissertation conducts a comparative analysis of network flow features from the CTU13 and CICIDS2017 datasets. Examining statistical properties—such as flow duration, packet counts, and inter-arrival times—we highlight differences between real and synthetic traffic. This analysis underscores the limitations of synthetic datasets in training NIDS models and emphasises the importance of addressing dataset biases in performance evaluations [25].

Through the use of Random Forest and SVM classifiers, this study provides a thorough evaluation of model transferability and generalisability. Performance comparisons, coupled with SHAP-based interpretation, offer valuable insights into the robustness and versatility of these algorithms in detecting botnet attacks across datasets, advancing their potential application in cybersecurity.

This dissertation is structured as follows: Section 2 introduces the CTU13 and CICIDS2017 datasets, machine learning classifiers, and explainable AI methods. Section 3 reviews existing literature on machine learning-based NIDS. Section 4 details the experimental framework's design, while Section 5 describes its implementation. Section 6 presents the evaluation results and their implications. Section 7 addresses the legal, social, ethical, and professional considerations of deploying machine learning in intrusion detection. Finally, Section 8 concludes with a summary of findings and recommendations for future research.

Chapter 2

Background

This chapter provides essential context for understanding the datasets, machine learning classifiers, and explainable AI techniques used in this dissertation. Section 2.1 overviews two benchmark datasets in network intrusion detection: CTU13 [11] and CICIDS2017 [24]. These datasets are widely employed to develop and evaluate machine learning-based Network Intrusion Detection Systems (NIDS). Understanding their characteristics, strengths, and limitations is crucial for designing robust and effective NIDS.

Section 2.2 discusses two prominent machine learning classifiers—Random Forest and Support Vector Machine (SVM)—commonly used in NIDS. Their strengths, limitations, and performance across different datasets are examined, highlighting the importance of selecting appropriate models for intrusion detection tasks.

Section 2.3 introduces explainable AI techniques, focusing on SHAP (SHapley Additive exPlanations) [15], which provides insights into the decision-making processes of machine learning models. These techniques are vital for validating model reliability and understanding the features that influence predictions of benign or malicious network flows.

2.1 CTU13 and CICIDS2017 Datasets

Representative and labelled datasets are fundamental for developing and evaluating machine learning-based NIDS. The CTU13 [11] and CICIDS2017 [24] datasets are two widely used benchmarks in this domain.

The CTU13 dataset, introduced by Garcia et al. [11], comprises real botnet traffic captured in a controlled environment. It includes 13 scenarios, each representing distinct botnet behaviours such as port scanning, DDoS attacks, click fraud, and spam. The dataset's creation involved a detailed methodology, including the use of actual botnet samples and a labelling process based on known botnet behaviour. Its realistic nature and diverse botnet scenarios have made it a popular choice among researchers. Table 2.1 presents the class distribution in CTU13.

Class	Count
Benign	213,326
Botnet	15,559

Table 2.1: CTU13 Dataset Class Breakdown

Sharafaldin et al. [24] developed the CICIDS2017 dataset, a more recent and comprehensive resource for evaluating NIDS. It encompasses a variety of modern attacks, including DoS, DDoS, brute force, XSS, SQL injection, and infiltration. The dataset was generated in a controlled lab environment that mimics real-world network infrastructure, using tools and scripts to create realistic benign and attack traffic. It features both manually and time-based labelled data, as shown in Table 2.2.

Class	Count
Benign	908,528
Botnet	745
DDoS	51,234
DoS GoldenEye	4,189
DoS Hulk	91,856
DoS Slowhttptest	2,191
DoS slowloris	$2,\!355$
FTP-Patator	3,184
Heartbleed	6
Infiltration	18
PortScan	63,633
SSH-Patator	2,342
Web Attack Brute Force	601
Web Attack SQL Injection	9
Web Attack XSS	260

Table 2.2: CICIDS2017 Dataset Class Breakdown

Comparing the datasets, botnet attacks in CTU13 share structural and behavioural similarities with several attack types in CICIDS2017, such as DDoS/DoS, web attacks, and bot attacks. These similarities suggest that machine learning models trained on CICIDS2017 may be transferable to detecting botnet attacks in CTU13. However, both datasets have limitations: synthetic datasets like CICIDS2017 may not fully capture the complexity and diversity of real-

world traffic, lacking crucial contextual information. More representative datasets that reflect operational and deployment challenges are needed to fully assess machine learning-based NIDS.

2.2 Machine Learning Classifiers

Machine learning classifiers are integral to NIDS, automating the distinction between malicious and benign traffic. Random Forest (RF) and Support Vector Machine (SVM) are two widely adopted classifiers in this domain due to their effectiveness in handling complex, high-dimensional data.

Random Forest, an ensemble method, combines multiple decision trees to produce a majority-vote classification [12]. Its strengths include handling high-dimensional data, robustness to noise and outliers, and the ability to model complex feature interactions—key advantages for detecting diverse network intrusions.

Support Vector Machine (SVM) identifies the optimal hyperplane to separate classes in highdimensional space [9]. It excels in scenarios with limited labelled data, a common challenge in NIDS, and can manage both linear and non-linear classification tasks via kernel functions. SVM's strong generalisation capabilities make it suitable for detecting novel attacks.

The selection of a classifier depends on factors such as dataset characteristics, attack types, and computational resources. Evaluating classifiers using metrics like accuracy, precision, and recall is essential for choosing the most effective model for intrusion detection.

2.3 Explainable AI Techniques

Despite their success, machine learning classifiers often operate as 'black boxes,' offering limited insight into their decision-making processes. Explainable AI techniques address this by providing interpretable explanations for model predictions.

SHAP (SHapley Additive exPlanations) [15] is a leading technique for model interpretation, rooted in cooperative game theory. It assigns importance scores to each feature, quantifying their contribution to a model's prediction for a given instance. In the context of NIDS, SHAP helps identify key features that influence the detection of specific attacks, enhancing transparency and trust in the model's outputs.

Insights from SHAP can validate model reliability, uncover dataset biases, and inform feature engineering. For network security practitioners, these explanations are invaluable for understanding the factors driving attack detection and refining defence strategies.

Chapter 3

Relevant Work

This chapter provides a comprehensive review of existing research in machine learning-based network intrusion detection. It covers state-of-the-art approaches for botnet detection using the CTU13 dataset, intrusion detection using the CICIDS2017 dataset, and the application of Random Forest and Support Vector Machines (SVM) for intrusion detection tasks. Additionally, it explores the use of explainable AI techniques, specifically SHAP, to interpret machine learning models in the context of intrusion detection. The chapter also addresses the challenges and limitations of synthetic datasets and the dynamic nature of network traffic, emphasising the importance of considering dataset biases and representativeness. Throughout, we highlight how this dissertation's focus on **transferability**—the ability of models trained on one dataset to perform well on another—distinguishes it from prior studies.

3.1 Botnet Detection using CTU13 Dataset

Several studies have utilised the CTU13 dataset to develop and evaluate botnet detection systems. Chowdhury et al. [8] proposed a graph-based approach, constructing a graph representation of communication patterns among botnet-infected hosts and applying graph analysis techniques to identify botnets. They extracted features such as in-degree, out-degree, and betweenness centrality and used them to train a Random Forest classifier, achieving high detection accuracy. Their work demonstrates the potential of graph-based features for botnet detection.

Pektaş and Acarman [20] applied deep learning techniques to the CTU13 dataset. They used a

convolutional neural network (CNN) to learn discriminative features from raw network traffic data, converting the traffic into greyscale images for input. Their CNN-based model achieved high accuracy, showcasing the effectiveness of deep learning in capturing complex botnet patterns.

While these studies focus on developing models tailored to the CTU13 dataset, this dissertation investigates the less explored area of **transferability**. Specifically, it assesses whether models trained on the CICIDS2017 dataset can detect botnets in CTU13, contributing to understanding the adaptability of machine learning models across diverse network environments. This focus on cross-dataset performance distinguishes our work from previous CTU13-specific studies.

Having reviewed botnet detection on CTU13, we now turn to intrusion detection research using the CICIDS2017 dataset, which offers a broader range of attack types.

3.2 Intrusion Detection using CICIDS2017 Dataset

The CICIDS2017 dataset has been widely used to evaluate intrusion detection systems. Ustebay et al. [27] proposed a multi-layer perceptron (MLP)-based system, performing extensive preprocessing and using recursive feature elimination with Random Forest for feature selection. Their approach demonstrated the potential of neural networks for intrusion detection.

Aksu and Aydin [2] conducted a comparative study of machine learning algorithms on CI-CIDS2017, evaluating decision trees, Random Forests, and SVMs. They found that Random Forests outperformed other algorithms, highlighting the effectiveness of ensemble methods.

This dissertation leverages CICIDS2017 to train classifiers and investigate their **transferability** to detect botnet attacks in CTU13. Unlike previous studies that focus on performance within CICIDS2017, our work explores the adaptability of models to a different dataset, providing insights into cross-dataset generalisation.

The following sections focus on Random Forest and SVM, two algorithms central to this dissertation's investigation of transferability.

3.3 Random Forest for Intrusion Detection

Random Forest has been widely applied to intrusion detection. Farnaaz and Jabbar [10] used Random Forest on the NSL-KDD dataset, employing feature selection via the Chi-square test. Their model demonstrated Random Forest's effectiveness in detecting various network attacks.

Belouch et al. [5] applied Random Forest to CICIDS2017, comparing it with other algorithms like Decision Tree and Naive Bayes. Their results confirmed Random Forest's superior performance, further validating its use in intrusion detection.

While these studies demonstrate Random Forest's effectiveness within single datasets, this dissertation explores its **transferability** by training on CICIDS2017 and testing on CTU13. This cross-dataset approach provides new insights into the algorithm's adaptability.

Similarly, the next section examines SVM's role in intrusion detection and its potential for transferability.

3.4 Support Vector Machines for Intrusion Detection

SVM has been extensively used for intrusion detection. Kabir et al. [13] proposed an SVM-based system on the NSL-KDD dataset, using a genetic algorithm for feature selection and grid search for parameter optimisation. Their work highlighted SVM's effectiveness in detecting diverse attacks.

Teng et al. [26] applied SVM with various kernel functions to CICIDS2017, emphasising the importance of kernel selection and parameter tuning for optimal performance.

In contrast to these studies, this dissertation focuses on the **transferability** of SVM models trained on CICIDS2017 to detect botnet attacks in CTU13. By investigating cross-dataset performance, we extend existing research on SVM's generalisation capabilities.

While Random Forest and SVM are effective for intrusion detection, understanding their decision-making processes is crucial for assessing transferability. The next section addresses this through explainable AI techniques.

3.5 Explainable AI Techniques for Intrusion Detection

Explainable AI techniques have gained attention for providing insights into machine learning models' decision-making. Warnecke et al. [28] evaluated explanation methods, including SHAP, for deep learning-based intrusion detection systems. They applied SHAP to a CNN trained on NSL-KDD, demonstrating its ability to identify influential features for specific attack types.

Amarasinghe et al. [3] used SHAP to interpret a deep neural network's predictions on NSL-KDD, highlighting its potential for explaining complex models.

Mane and Rao [17] applied SHAP to a Random Forest classifier on NSL-KDD, visualising feature contributions to understand the model's decisions.

While these studies use SHAP to interpret models within single datasets, this dissertation extends SHAP's application to analyse **cross-dataset transferability**. By employing SHAP to interpret Random Forest and SVM classifiers trained on CICIDS2017 and tested on CTU13, we provide novel insights into why models succeed or fail in new environments. This approach enhances the interpretability of transferability, revealing dataset-specific biases and feature importance across different network settings.

Having reviewed algorithmic and explainable AI approaches, we now discuss the challenges and limitations that motivate this dissertation's focus on transferability.

3.6 Challenges and Limitations

Despite the frequent use of CTU13 and CICIDS2017, their limitations must be acknowledged. Sommer and Paxson [25] critiqued synthetic datasets for failing to capture real-world network traffic's complexity and lacking contextual information. They emphasised the need for datasets that reflect operational challenges in intrusion detection.

This dissertation addresses these limitations by investigating **transferability** across datasets, providing insights into model performance in diverse environments. Additionally, by using SHAP, we mitigate dataset biases by identifying features that are consistently important across datasets.

Moreover, Sommer and Paxson [25] and Buczak and Guven [7] highlighted the challenges posed by evolving attack patterns and dynamic network traffic. To address this, our work focuses on transferability, assessing whether models trained on one dataset can adapt to new attack types in another, contributing to more robust intrusion detection systems.

These challenges underscore the importance of this dissertation's focus on transferability and explainable AI, which we summarise in the next section.

3.7 Summary and Positioning

This chapter has reviewed key studies in machine learning-based network intrusion detection, covering botnet detection (CTU13), intrusion detection (CICIDS2017), and the use of Random Forest, SVM, and SHAP. While prior research demonstrates the effectiveness of these techniques within single datasets, this dissertation investigates a novel aspect: the **transferability** of models across datasets.

Specifically, this work addresses two primary questions: 1. How effectively can Random Forest and SVM classifiers trained on CICIDS2017 detect botnet attacks in CTU13? 2. What insights can SHAP provide into the transferability of these models across datasets?

By focusing on cross-dataset performance and leveraging SHAP to interpret feature importance, this dissertation extends existing research. It provides valuable insights into the robustness and adaptability of machine learning models in diverse network environments, contributing to the development of practical intrusion detection solutions.

In summary, this chapter establishes the foundation for our investigation of transferability and explainable AI in network intrusion detection, emphasising the importance of dataset representativeness and model interpretability in addressing real-world cybersecurity challenges.

Chapter 4

Specification & Design

This chapter outlines the experimental design of this dissertation, which focuses on three classifiers: the Dummy Classifier, the Random Forest Classifier, and the Support Vector Machine (SVM) Classifier. Informed by a thorough literature review, the experiments address the following research questions:

- **RQ1** How well do machine learning models trained on one dataset transfer and generalise to another in the context of network intrusion detection?
- **RQ2** What is the impact of dataset biases and representativeness on the performance of machine learning-based intrusion detection systems?
- RQ3 How can explainable AI techniques, such as SHAP, provide insights into the transferability of learned patterns and the most relevant features for detecting specific attack types across datasets?

The experiments utilise the CTU13 and CICIDS2017 datasets, selected for their distinct properties and attack types, making them ideal for assessing transferability (RQ1). CTU13 contains real botnet traffic [11], while CICIDS2017 offers a comprehensive range of modern attacks [24]. Models are trained on CICIDS2017 and tested on CTU13 to evaluate cross-dataset performance. Detailed characteristics of these widely used datasets are provided in Chapter 2.

Pre-processing, implemented via Algorithms 2 and 1, standardises feature names and removes dataset-specific features to ensure consistency and mitigate biases (RQ2), aligning with best

practices from Chapter 3. The classifiers are evaluated using accuracy, recall, precision, F1

score, and confusion matrices, offering a robust assessment of performance and transferability.

SHAP (SHapley Additive exPlanations) [15] is employed to interpret predictions and identify

key features across datasets (RQ3), enhancing explainability as reviewed in Chapter 3, Sec-

tion 3.5.

A 60/40 training-testing split balances model training and evaluation, following recommenda-

tions by Buczak et al. [7]. Although neural networks were considered, Random Forest and

SVM were chosen for their interpretability and effectiveness with imbalanced, high-dimensional

data [10, 26].

4.1Experiments

The experiments involve training and testing the Dummy, Random Forest, and SVM Classifiers

on both CICIDS2017 and CTU13 datasets. This setup assesses within-dataset performance and

cross-dataset transferability (RQ1). The Dummy Classifier acts as a baseline, while Random

Forest and SVM are selected for their ability to handle large, imbalanced datasets, as detailed

in Chapter 2, Section 2.2.

Data Pre-processing 4.1.1

Pre-processing ensures compatibility by standardising feature names and removing unique fea-

tures (Algorithms 2 and 1). CICIDS2017 supports binary and multi-class tasks, while CTU13

is processed for binary classification (botnet vs. benign), aligning with the focus on botnet

detection.

Training and Testing Split 4.1.2

A 60/40 split is applied to each dataset. Classifiers are trained on the CICIDS2017 training

set and tested on both its testing set and the full CTU13 dataset to evaluate transferability

(RQ1).

4.1.3**Evaluation Metrics**

Performance is assessed using:

• Accuracy: Proportion of correct predictions.

15

- Recall: Ability to detect true positives.
- Precision: Accuracy of positive predictions.
- F1 Score: Harmonic mean of precision and recall.
- Confusion Matrix: Detailed classification breakdown.

These metrics, informed by Chapter 3, evaluate both within-dataset and cross-dataset performance.

4.1.4 Explainable AI

SHAP interprets classifier predictions, identifying critical features for attack detection across datasets (RQ3). This builds on prior work in explainable AI for cybersecurity (Chapter 3, Section 3.5).

4.2 Classifier Configurations

4.2.1 Dummy Classifier

The Dummy Classifier provides a baseline by randomly assigning labels based on class distribution (Figure 4.1).

Figure 4.1: Dummy Classifier Configuration

4.2.2 Random Forest and SVM Classifiers

Random Forest and SVM are trained on CICIDS2017 and tested on both datasets, with SHAP enhancing interpretability (Figure 4.2).

Figure 4.2: Random Forest and SVM Classifier Configuration

4.3 Transferability Evaluation

Transferability is evaluated by training classifiers on CICIDS2017 and testing on CTU13, using the metrics from Section 4.1.3. High performance across both datasets indicates strong transferability, while a decline suggests limitations (RQ1). SHAP values reveal feature importance consistency, addressing dataset biases (RQ2) and explainability (RQ3), and reflecting real-world adaptability as noted in Chapter 1.

4.4 Summary

This chapter details the experimental design for assessing classifier transferability in network intrusion detection. The Dummy, Random Forest, and SVM Classifiers are trained on CI-CIDS2017 and tested on both CICIDS2017 and CTU13, with pre-processing ensuring compatibility. Performance metrics and SHAP insights address RQ1–RQ3, providing a foundation for

the implementation in Chapter 5.

Chapter 5

Implementation

This chapter provides a comprehensive overview of the experiments conducted in this dissertation, detailing the experimental setup, dataset usage, and the design of each experiment. We also explore the implementation of key package modules, accompanied by relevant code excerpts highlighting essential functionality.

5.1 Experiment Implementation

The experiments in this dissertation involve training and evaluating three classifiers: a Dummy Classifier, a Random Forest Classifier, and a Support Vector Machine (SVM) Classifier. Each classifier is trained on both the CICIDS2017 [24] and CTU13 [11] datasets and tested on both the CICIDS2017 and CTU13 datasets to assess transferability and generalisation capabilities.

Initially, we set up the experiments using sci-kit-learn's classifier implementations. However, due to the extensive training times required for the CPU-based models, we decided to switch to CUML's GPU-accelerated models [21]. The CUML library provides GPU-accelerated machine learning algorithms, enabling faster training and inference times. By leveraging the power of GPUs, we can significantly accelerate the training process, making it more feasible to train complex models on large datasets. The benefits of using CUML's GPU-accelerated models include reduced training times, improved scalability, and the ability to handle larger datasets efficiently.

The choice of Random Forest and SVM classifiers is justified by their proven effectiveness in

handling large, high-dimensional datasets and unbalanced class distributions [10, 26], which are common in network traffic classification, as discussed in Chapter 2, Section 2.2. The CTU13 and CICIDS2017 datasets exhibit such class imbalances (Tables 2.1 and 2.2), making these classifiers well-suited for this study. We employ the SHAP library [15] for explainability due to its ability to provide insights into the decision-making process of machine learning models and identify essential features, as highlighted in Chapter 2, Section 2.3.

5.1.1 Data Pre-processing

Proper data preprocessing is crucial for ensuring the effectiveness of the trained classifiers. The relabelling scripts, relabelCICIDS2017.py (Algorithm 2) and relabelCTU13.py (Algorithm 1), standardise feature names and class labels across the datasets. This process involves mapping dataset features to a consistent naming convention, removing features unique to one dataset to avoid overfitting, and ensuring class labels are compatible, as described in Chapter 4, Section 4.1.1. For example, the CTU13 dataset's binary labels '0' and '1' are converted to 'Benign' and 'Botnet' to match the CICIDS2017 labelling scheme.

During the preprocessing stage, several data quality issues and inconsistencies were encountered, such as missing values and differing feature names across datasets. We address these issues through careful data cleaning, imputation, and feature mapping techniques to ensure the datasets' compatibility and integrity, aligning with the challenges discussed in Chapter 3, Section 3.6.

5.1.2 Experiment 1: Dummy Classifier

The Dummy Classifier from the scikit-learn library [19] serves as a baseline for evaluating the performance of the more advanced classifiers. It predicts the most frequent class in the training data. We train three Dummy Classifiers (Algorithm 3): one on the CTU13 dataset for binary classification and two on the CICIDS2017 dataset for binary and multiclass classification. The Dummy Classifiers use the same features as the Random Forest and SVM classifiers, and their performance metrics (accuracy, precision, recall, and F1 score) provide a baseline for comparison, as discussed in Chapter 4, Section 4.2.1.

5.1.3 Experiment 2: Random Forest Classifier

Random Forest, an ensemble learning method constructing multiple decision trees [12], is well-suited for handling large, high-dimensional datasets and unbalanced class distributions [10], which are common in network traffic classification. The CTU13 and CICIDS2017 datasets exhibit such class imbalances (Tables 2.1 and 2.2), as discussed in Chapter 2, Section 2.1.

Three Random Forest Classifiers are trained (trainRandomForest.ipynb, Algorithm 4): one on the CTU13 dataset and two on the CICIDS2017 dataset for binary and multiclass classification. The classifiers are evaluated on their respective datasets and then tested on the other dataset to assess transferability, addressing RQ1, as discussed in Chapter 4, Section 4.2.2. The SHapley Additive exPlanations (SHAP) library [15] is employed to explain the classifiers' predictions and identify the essential features, contributing to the interpretability and transparency of the models, as highlighted in Chapter 3, Section 3.5.

5.1.4 Experiment 3: Support Vector Machine Classifier

Support Vector Machines (SVMs) effectively handle large, high-dimensional, non-linear data [9, 22]. They have been successfully applied to network intrusion detection tasks [14, 26], as discussed in Chapter 3, Section 3.4.

The experimental setup for the SVM Classifiers (trainSVM.ipynb, Algorithm 5) mirrors that of the Random Forest Classifiers: we train three SVMs on the CTU13 and CICIDS2017 datasets, which are then evaluated on their respective datasets, and tested on the other dataset, addressing the transferability and generalisability aspects of RQ1, as discussed in Chapter 4, Section 4.2.2. SHAP is used to interpret the SVM predictions and identify essential features, contributing to the understanding of the transferability of learned patterns and the key characteristics distinguishing malicious and benign traffic, as highlighted in Chapter 3, Section 3.5.

5.1.5 Testing and Evaluation

A comprehensive testing and evaluation strategy is employed to ensure the robustness and reliability of the results. We assess the performance of the classifiers using various metrics, including accuracy, precision, recall, and F1 score, as discussed in Chapter 4, Section 4.1.3. We calculate these metrics for each classifier on their respective test sets and when evaluated on the other dataset for transferability analysis, addressing RQ1 and RQ3, as discussed in Chapter 4, Section 4.3.

5.1.6 Novelty and Originality

The novelty and originality of this research lie in the combination of the chosen datasets (CTU13 and CICIDS2017), classifiers (Random Forest and SVM), and the use of SHAP for explainability. This dissertation provides a unique perspective on network intrusion detection by investigating the transferability and generalisation of machine learning models across different datasets, as discussed in Chapter 3, Section 3.7.

The application of SHAP to interpret the predictions of the trained classifiers and identify the most relevant features for detecting specific types of attacks across datasets is a novel approach. This aspect of the research contributes to a deeper understanding of the transferability of learned patterns and the key characteristics distinguishing malicious and benign traffic, as highlighted in Chapter 3, Section 3.5.

5.1.7 Strengths and Limitations

The chosen methodology has several strengths. Random Forest and SVM classifiers are well-suited for handling the imbalanced and high-dimensional nature of the CTU13 and CICIDS2017 datasets. These classifiers have demonstrated their effectiveness in network intrusion detection tasks [10, 26], as discussed in Chapter 3, Sections 3.3 and 3.4. Using CUML's GPU-accelerated models significantly reduces training times and improves scalability, enabling the efficient handling of large datasets, as discussed in Section 5.1.

However, there are also limitations to consider. The potential impact of dataset biases and the training data's representativeness on the models' transferability is a concern, as discussed in Chapter 3, Section 3.6. The computational complexity of the SHAP explanations may also pose challenges when dealing with large-scale datasets, even with GPU acceleration, as highlighted in Chapter 8.

5.2 Package Implementation

This section elucidates the implementation details of the software packages developed as part of this project. It focuses on preprocessing scripts for the CTU13 and CICIDS2017 datasets, training modules for various classifiers, and a data visualisation tool. Each subsection is dedicated to a script or Jupyter Notebook, detailing its purpose, functionalities, and contribution to the overarching project goals.

5.2.1 relabelCTU13.py

Purpose: This Python script (Algorithm 1) is tasked with preprocessing the CTU13 dataset, ensuring its compatibility with the analysis framework. It specifically focuses on feature normalisation, class relabeling, and reordering of features to align with the structure of the CICIDS2017 dataset.

Functionality:

- Feature Renaming: Aligns the CTU13 dataset's feature names with those of CICIDS2017, facilitating direct comparison and joint analysis.
- Traffic Class Relabeling: Converts traffic classification labels to a unified schema shared with CICIDS2017, enabling consistent interpretation of traffic types across datasets.
- Feature Reordering: Adjusts the order of features in the CTU13 dataset to match that of CICIDS2017, ensuring that subsequent analysis scripts operate correctly without needing dataset-specific adjustments.

5.2.2 relabelCICIDS2017.py

Purpose: Similar to relabelCTU13.py, this script (Algorithm 2) prepares the CICIDS2017 dataset for analysis by renaming features, relabeling traffic classes, and reordering features. The adjustments ensure that the CICIDS2017 dataset's structure is compatible with CTU13, facilitating combined analyses.

Functionality:

- Mapping Feature Names: Transforms the feature names in CICIDS2017 to align with CTU13's nomenclature, ensuring consistency in feature interpretation.
- Traffic Class Relabeling and Identification: Updates the traffic class labels for compatibility and identifies common features between the datasets to focus on comparable data points.
- Feature Reordering: Modifies the feature order in CICIDS2017 to conform to CTU13's layout, simplifying cross-dataset analyses.

5.2.3 trainDummyClassifier.ipynb

Purpose: A Jupyter Notebook (Algorithm 3) dedicated to training baseline Dummy Classifiers on the CTU13 and CICIDS2017 datasets. It sets a foundational performance benchmark for comparing more sophisticated Random Forest and SVM classifiers.

Functionality:

- Training Process: Outlines the steps for training Dummy Classifiers, including data loading, preprocessing application, and classifier training.
- Performance Evaluation: Details the evaluation metrics used to assess the classifiers, providing a baseline for the effectiveness of subsequent, more complex models.

5.2.4 trainRandomForest.ipynb

Purpose: Trains and evaluates Random Forest classifiers (Algorithm 4) on both datasets using GPU-accelerated implementations. It explores the classifiers' transferability and employs the SHAP library for result interpretation.

Functionality:

- GPU-Accelerated Training: Leverages CUML's GPU-accelerated Random Forest implementation for efficient model training and evaluation.
- Transferability Testing: Assesses the model's performance on both the training and alternative datasets to examine transferability.
- Feature Importance Analysis: Utilises SHAP values to interpret the model's predictions and identify significant features, enhancing model transparency and understanding.

5.2.5 trainSVM.ipynb

Purpose: Similar to the Random Forest notebook, this Jupyter Notebook trains SVM classifiers (Algorithm 5) on the datasets, tests their transferability, and applies SHAP for interpretability.

Functionality:

- GPU-Accelerated SVM Training: Implements CUML's SVM for rapid model training, facilitating the handling of large datasets.
- Cross-Dataset Performance Evaluation: Evaluates SVM classifiers' performance across different datasets to test model generalizability.
- SHAP-Based Explanation: Applies SHAP to elucidate SVM classifiers' decision-making, spotlighting critical features that influence predictions.

5.2.6 plotData.ipynb

Purpose: This Script (Algorithm 6) provides visualisations of dataset characteristics and model performance metrics, supporting the analysis and discussion of the experimental results presented in Chapter 6.

Functionality:

- Dataset Visualisation: Generates descriptive statistics and visualisations of the CTU13 and CICIDS2017 datasets, providing insights into class distributions, feature distributions, and other relevant characteristics.
- Performance Metric Visualisation: Creates visualisations of the performance metrics obtained from the experiments, including accuracy, precision, recall, and F1 score, facilitating the comparison of different classifiers and their transferability across datasets.
- SHAP Value Visualization: Visualises the SHAP values obtained from the explainable AI
 analysis, highlighting the most important features contributing to the classifiers' predictions and their transferability across datasets.

The implementation of these software packages and the experimental setup and evaluation strategies align with the research objectives and methodology outlined in Chapter 4. The preprocessing scripts ensure the consistency and compatibility of the datasets. At the same time, the training modules and evaluation strategies address the research questions related to model transferability, dataset biases, and the insights provided by explainable AI techniques.

The use of GPU-accelerated implementations and the SHAP library for explainability reflects the state-of-the-art machine learning and cybersecurity research practices, as discussed in Chapter 3. The visualisations generated by the plotData.ipynb script support the analysis and interpretation of the experimental results, contributing to understanding the transferability of learned patterns and the key characteristics distinguishing malicious and benign traffic across different datasets.

Chapter 6

Evaluation

This chapter presents the findings and results from the experiments outlined in the specification & design chapter (4) as well as the implementation chapter (5). We evaluate the classifiers' performance, first on their respective datasets, then on the other dataset to assess transferability. We then explore the relevant SHAP values for each experiment, reasoning about the importance of the features in the models.

6.1 Performance Evaluation

As described in section (4.3), the classifiers are evaluated on their respective datasets and then on the other dataset to assess transferability. The performance metrics tested include accuracy, precision, recall, and F1 score, as discussed in Chapter 4, Section 4.1.3. The results are presented in Figures 6.1 and 6.4.

6.1.1 Performance on the Same Dataset

Figure 6.1: Classifiers' performance on the same datasets.

When testing the classifiers' performance on the same dataset they were trained on, we noted some promising results. The Random Forest model achieves high-performance metrics across the board on both the CTU13 and CICIDS2017 datasets for binary classification. An accuracy, precision, recall, and F1 score of 0.99 on CTU13 and similar scores on CICIDS2017 (accuracy=0.99, precision=0.96, recall=0.98, F1=0.97) indicate that the Random Forest classifiers are effectively learning patterns in the data to distinguish between benign and malicious traffic. These results align with the findings of previous studies that have demonstrated the effectiveness of Random Forest classifiers in detecting network attacks, as discussed in Chapter 3, Section 3.3.

For multi-class classification on CICIDS2017, the Random Forest model still performs respectably with an F1 score of 0.78 (accuracy=0.99, precision=0.90, recall=0.76). While there is room for improvement to reach deployment-level performance, the model demonstrates clear learning compared to the dummy classifier baseline of 0.66. Overall, the Random Forest classifiers consistently outperform the dummy baselines when tested on the same datasets that we trained them on, highlighting their ability to learn discriminative patterns in the data, as discussed in Chapter 2, Section 2.2.

In contrast, the SVM classifiers underperform compared to both the Random Forest models and even the dummy classifiers in most cases when evaluated on their training datasets. The binary SVM achieves an accuracy of 0.73, precision of 0.96, recall of 0.37, and F1 score of 0.53

on CTU13. We see similar results for the binary SVM on CICIDS2017 (accuracy=0.73, precision=0.96, recall=0.37, F1=0.65). The multi-class SVM on CICIDS2017 reaches an accuracy of 0.89 but has low precision (0.42), recall (0.32) and F1 (0.35). These results suggest that the current SVM implementations struggle to effectively learn distinguishing patterns, even on the datasets we trained them on. This contrasts with the findings of previous studies that have demonstrated the effectiveness of SVM classifiers in network intrusion detection, as discussed in Chapter 3, Section 3.4. Improvements to the models will likely be needed, as discussed further in Chapter 8.

6.1.2 Feature Importance Analysis on Same Dataset

To better understand how the Random Forest models are making their predictions, we analyse the SHAP (SHapley Additive exPlanations) values. SHAP is an explainable AI technique that assigns importance scores to each feature for a given prediction, providing insight into the model's decision-making process, as discussed in Chapter 2, Section 2.3. The appendix listing B provides a guide to interpreting the SHAP value graphs provided in this section.

Random Forest Model on CTU13

Figure 6.2: SHAP summary plot for the CTU13 random forest model tested against CTU13 data.

Figure 6.2 shows the SHAP summary plot for the Random Forest model trained and tested on the CTU13 dataset. The features are ranked in descending order of importance, with 'Bwd Packet Length Mean' and 'Flow IAT Min' having the highest impact on the model's predictions, which suggests that for detecting botnet traffic in CTU13, the size of packets in

the backward direction (from destination to source) and the minimum inter-arrival time between packets in a flow are the most informative attributes. Intuitively, this makes sense as botnets often exhibit abnormal communication patterns compared to benign traffic, as discussed in Chapter 2, Section 2.1.

Other important features include 'Fwd Packet Length Min', 'Fwd Packet Length Max', and 'Fwd IAT Min', indicating that the characteristics of packets in the forward direction (source to destination) also contribute to the model's decision-making. The mix of packet size and inter-arrival time features among the top ranks underscores the importance of both spatial and temporal attributes in identifying botnet behaviour, as highlighted in previous studies discussed in Chapter 3, Section 3.3.

Random Forest Model on CICIDS2017

Figure 6.3: SHAP summary plot for the CICIDS2017 random forest model tested against CICIDS2017 data.

Moving to the Random Forest model trained and evaluated on CICIDS2017 (Figure 6.3), we see a somewhat different ranking of important features. Here, 'Fwd Packet Length Max' and 'Average Packet Size' are the top two contributors, followed by 'Bwd Packet Length Std' and 'Flow Duration'. The emphasis on packet size attributes, especially in the forward direction, points

to the discriminative power of these spatial features for the types of attacks in CICIDS2017, as discussed in Chapter 2, Section 2.1.

The high rank of 'Average Packet Size' is particularly interesting, as it suggests that deviations from standard packet size profiles strongly indicate malicious activity in this dataset. The inclusion of 'Flow Duration' among the top features also highlights the relevance of temporal characteristics, as attack flows may exhibit abnormal durations compared to benign ones. These findings align with the observations from previous studies that have analysed the importance of different features in the CICIDS2017 dataset, as discussed in Chapter 3, Section 3.3.

The differences in feature importance between CTU13 and CICIDS2017 underscore the variability in discriminative attributes across datasets. This observation motivates the need to study model transferability, as the most informative features for one dataset may not directly translate to another, addressing RQ1 and RQ3, as discussed in Chapter 4, Section 4.3.

6.1.3 Performance on Different Datasets

Figure 6.4: Classifiers' Performance across datasets.

To assess the transferability of our trained models, we evaluate their performance when applied to a different dataset than the one we trained them on, as shown in Figure 6.4. We observed a substantial drop in performance across all metrics for the Random Forest model trained on CICIDS2017 and tested on CTU13. The accuracy falls to 0.58 and precision to 0.65, while recall and F1-score drop sharply to 0.02 and 0.04, respectively. These results indicate that the patterns learned by the Random Forest on CICIDS2017 do not directly translate to effective

botnet detection on CTU13, highlighting the challenges of transferring machine learning models across network intrusion datasets, as discussed in Chapter 3, Section 3.6.

The poor recall, in particular, suggests that the model is struggling to identify a significant fraction of the actual botnet traffic in CTU13 when applied out-of-context, which could be due to differences in the statistical profiles of attacks between the datasets, as well as potential overfitting of the Random Forest to CICIDS2017-specific patterns during training. These findings underscore the impact of dataset biases and the importance of representative training data for building robust intrusion detection models, addressing RQ2, as discussed in Chapter 4, Section 4.3.

Interestingly, the SVM models show better transferability in some instances, although they are still underperforming relative to their training dataset baselines. For instance, the SVM trained on CTU13 and evaluated on CICIDS2017 achieves an accuracy of 0.83, precision of 0.57, recall of 0.49, and F1 score of 0.53. While these metrics are lower than the corresponding dummy classifier results on CICIDS2017, they represent an improvement over the SVM's performance on its original CTU13 dataset.

According to the results, the SVM on CTU13 has learned decision boundaries more transferable to CICIDS2017 than the Random Forest model has learned for the opposite direction. Nevertheless, the performance score remains suboptimal, as evidenced by the precision-recall balance that shows many false positives and negatives. These findings highlight the challenges associated with the dynamic nature of network traffic and the evolution of attack patterns, as discussed in Chapter 3, Section 3.6.

These transferability results underscore the challenges of applying machine learning models trained on one network intrusion dataset to another. Differences in data distributions, attack types, and feature profiles can significantly degrade cross-dataset performance. Overcoming these limitations will require techniques such as transfer learning, domain adaptation, and more robust feature engineering to improve model generalisation, as discussed in Chapter 8, Section 8.

6.1.4 Feature Importance Analysis on Different Datasets

To gain further insight into the transferability challenges, we examine the importance of the SHAP feature for the models when applied to different datasets. The appendix listing B

provides a guide to interpreting the SHAP value graphs provided in this section.

Random Forest Model on CTU13 Tested on CICIDS2017

Figure 6.5: SHAP summary plot for the CTU13 random forest model tested against CI-CIDS2017 data.

Figure 6.5 shows the SHAP values for the Random Forest model trained on CTU13 when applied to CICIDS2017. Comparing this to the original feature importances on CTU13 (Figure 6.2), we

observe a notable shift in the top-ranked features. While 'Bwd Packet Length Mean' remains important, other attributes such as 'Init Win bytes backward' and 'Flow Packets/s' now have a higher impact on the model's predictions for CICIDS2017.

This shift suggests that the model relies on different features to make decisions on the new dataset, likely due to differences in the traffic's statistical profiles. The high rank of 'Init Win bytes backward', which represents the total number of bytes sent in the initial window in the backward direction, may indicate that this feature better discriminates between attack and benign flows in CICIDS2017 compared to CTU13.

Even with the features' altered importance due to the domain shift observed in CICIDS2017, the effectiveness of the model's classification remains uncertain. The changes merely highlight the model's decision-making process's susceptibility to disruption when applied to data that differs significantly from the training distribution. These findings underscore the importance of addressing transferability issues to enhance the robustness of machine learning models, as discussed in Chapter 8, Section 8.

Random Forest Model on CICIDS2017 Tested on CTU13

Figure 6.6: SHAP summary plot for the CICIDS2017 random forest model tested against CTU13 data.

Finally, Figure 6.6 presents the feature importances for the Random Forest trained on CI-CIDS2017 when tested on CTU13. Again, we see a reordering of the top features compared to the model's original dataset (Figure 6.3). 'Bwd Packet Length Std' and 'Fwd IAT Total' now have the highest impact, displacing 'Fwd Packet Length Max' and 'Average Packet Size'.

This reordering indicates that the model is picking up on different signals in the CTU13 data, emphasising backward packet length variation and forward inter-arrival times. However, as with the CTU13 model on CICIDS2017, these shifted importances align with poor overall performance, underscoring the challenge of directly applying models to new datasets, as discussed in Chapter 3, Section 3.6.

The analysis of SHAP values for models applied to different datasets provides valuable insights into the transferability of learned patterns and the most relevant features for detecting specific types of attacks across datasets, addressing RQ3, as discussed in Chapter 4, Section 4.3. The observed shifts in feature importance and the corresponding impact on model performance highlight the challenges posed by dataset biases and the limitations of directly applying models across datasets, as discussed in Chapter 3, Section 3.6.

These findings emphasise the need for more advanced techniques, such as transfer learning, domain adaptation, and robust feature engineering, to improve the transferability and generalisation capabilities of machine learning models in the context of network intrusion detection, as discussed in Chapter 8, Section 8. By addressing these challenges and developing more adaptable and interpretable models, we can work towards more practical and reliable machine learning-based network intrusion detection systems that effectively detect and respond to evolving cyber threats across diverse network environments.

Chapter 7

Legal, Social, Ethical and

Professional Issues

The British Computer Society (BCS) Code of Conduct [6] sets out the professional standards expected of BCS members. It promotes the highest levels of professional competence, conduct, and ethical practice. This research aims to adhere to these principles in its design, execution, and dissemination.

This chapter evaluates potential legal, social, ethical, and professional issues that may arise during the research process. It also explains how the research adheres to the British Computing Society's Code of Conduct.

7.1 Legal Considerations

The research utilises two publicly available datasets: CTU13[11] and CICIDS2017[24]. These datasets are accessible for research purposes and are not subject to legal restrictions. The research does not involve the use of personal data, as CICIDS2017 is a synthetic dataset, and CTU13 has excluded passive network flows that could potentially contain sensitive information. By avoiding the use of personal data, the research ensures compliance with the UK Data Protection Act 2018.

7.2 Ethical & Social Considerations

This research evaluates the transferability and generalisation of machine learning models across different datasets. The dissertation does not involve human subjects; the datasets are publicly available. Consequently, no direct ethical or social issues are associated with this research. However, it is vital to consider the broader implications of developing effective network intrusion detection systems. By enhancing the ability to detect and prevent cyber attacks, this research improves individuals' and organisations' overall security and privacy. Developing robust and transferable machine learning models for intrusion detection can help protect sensitive information, prevent data breaches, and mitigate the risks associated with malicious activities in networked environments.

On the other hand, using explainable AI techniques, such as SHAP, in network intrusion detection raises some ethical concerns. While SHAP provides valuable insights into the decision-making process of machine learning models, it can also potentially expose the most influential features for detecting specific types of attacks. If this information falls into the wrong hands, malicious actors could exploit it to evade detection by manipulating or spoofing the relevant features. Therefore, ensuring that the insights gained from SHAP are handled with utmost care and not disclosed to unauthorised parties is crucial. Proper security measures should be in place to protect the confidentiality and integrity of the explainability results.

Furthermore, developing highly effective intrusion detection systems may also have unintended consequences. For instance, it could lead to an overreliance on automated systems for security, potentially diminishing the role of human expertise and judgment. It is essential to balance leveraging machine learning models' capabilities and maintaining human oversight and intervention in decision-making. When considering intrusion detection systems, carefully evaluating the potential for false positives is crucial. These can cause unnecessary disruptions and result in the misallocation of resources, making it essential to take proactive steps to avoid them. Adequate safeguards and human review processes should be in place to mitigate the impact of false positives.

7.3 Professional Considerations

The research findings indicate that machine learning model transferability across different datasets is limited, which can be problematic for organisations relying on these models for cybersecurity purposes. The dissertation suggests that organisations exercise caution when deploying machine learning models across different environments. They must ensure that the models are better generalised to avoid potential issues. However, the explainability results provide insights into the reasons behind this limitation, paving the way for future work to improve the transferability of machine learning models.

From a professional perspective, this research highlights the importance of thoroughly evaluating and validating machine learning models in network intrusion detection. It emphasises the need for organisations to carefully consider the limitations and potential biases of the datasets used for training and testing these models. The findings underscore the significance of explainable AI techniques, such as SHAP, in providing insights into the decision-making process of machine learning models. These insights can aid in identifying the most relevant features for detecting specific types of attacks and guide the development of more robust and reliable intrusion detection systems.

However, professionals should also know the potential risks of using explainable AI techniques in cybersecurity. The insights gained from techniques like SHAP should be treated as sensitive information and protected from unauthorised access. Professionals have a crucial responsibility to ensure the ethical and responsible use of explainability results and to prevent any unintentional assistance to malicious actors in evading detection. Establishing clear guidelines and protocols for handling and sharing the insights derived from explainable AI techniques is crucial to minimising the risk of misuse.

Furthermore, professionals should actively engage in ongoing research and development efforts to improve the transferability and generalisability of machine learning models in the context of network intrusion detection. Collaborative efforts within the cybersecurity community can help address the limitations identified in this dissertation and contribute to developing more robust and adaptable intrusion detection solutions.

7.4 Societal Impact and Sustainability

The development of effective network intrusion detection systems has significant societal implications. In an increasingly interconnected world, the security and integrity of computer networks are crucial for maintaining public trust, protecting sensitive information, and ensuring the smooth functioning of critical infrastructure. This research contributes to developing

more robust and transferable machine learning models for intrusion detection, which can help safeguard against cyber attacks and minimise the potential for data breaches. By enhancing the security of networked systems, this research promotes a more sustainable and resilient digital environment.

From a sustainability perspective, the research findings can guide the development of more adaptable and scalable intrusion detection solutions. This research supports the long-term sustainability of cybersecurity measures by improving the transferability of machine learning models across different datasets and network environments. It enables organisations to leverage existing knowledge and models to detect and respond to emerging threats, reducing the need for extensive retraining and resource-intensive model development processes. This sustainability aspect is critical in the face of constantly evolving cyber attack landscapes and the increasing complexity of networked systems.

However, it is essential to acknowledge that developing advanced intrusion detection systems may also have unintended consequences for society. The increasing reliance on automated systems for cybersecurity could lead to a false sense of security and complacency. It is crucial to raise awareness among individuals and organisations about the limitations of these systems and the importance of maintaining vigilance and adopting a multi-layered approach to security. When considering intrusion detection systems, it is crucial to carefully weigh the potential societal impact of false positives they generate. False positives can cause unnecessary disruptions and erode trust in these systems, so it is crucial to minimise them, which may involve providing clear communication and redress mechanisms to help mitigate their impact on individuals and organisations.

7.5 British Computing Society Code of Conduct

This research is conducted with integrity and professionalism, following the Code of Conduct of the British Computing Society. We present the results accurately and transparently, using publicly available datasets without legal restrictions. The dissertation does not involve any direct ethical or social issues. The researchers present the findings clearly and understandably and acknowledge the dissertation's limitations.

The research aligns with the principles of the BCS Code of Conduct by promoting the responsible use of technology and contributing to the advancement of knowledge in the field of cybersecurity. The dissertation adheres to honesty, integrity, and objectivity in conducting research and disseminating findings. The research also demonstrates a commitment to the public interest by addressing the critical issue of network intrusion detection and working towards developing more effective and reliable security solutions.

Furthermore, the research acknowledges the importance of professional competence and the need for continuous learning and improvement. The dissertation builds upon existing knowledge in the field and seeks to advance the understanding of machine learning model transferability and explainability in the context of intrusion detection. The research findings provide valuable insights that can inform future research directions and contribute to the ongoing development of cybersecurity professionals.

However, the research also recognises the potential risks and ethical considerations of using explainable AI techniques in cybersecurity. In adherence to the BCS Code of Conduct, the research emphasises the need for responsible handling and protection of the insights gained from techniques like SHAP. It highlights the importance of establishing clear guidelines and protection to prevent malicious actors' misuse of explainability results. The research demonstrates alignment with the BCS Code of Conduct principles by addressing these ethical considerations and promoting the responsible use of AI in cybersecurity.

Chapter 8

Conclusion and Future Work

In this dissertation, we set out to investigate three key research questions related to the transferability and interpretability of machine learning models for network intrusion detection:

- 1. How well do machine learning models trained on one dataset transfer and generalise to another dataset in the context of network intrusion detection?
- 2. What is the impact of dataset biases and representativeness on the performance of machine learning-based intrusion detection systems?
- 3. How can explainable AI techniques, such as SHAP, provide insights into the transferability of learned patterns and the most relevant features for detecting specific types of attacks across different datasets?

We conducted experiments using the CTU13 and CICIDS2017 datasets to address these questions. We trained Random Forest and SVM classifiers on one dataset and evaluated their performance and transferability on the other. We also applied the SHAP explainable AI technique to interpret the models' predictions and identify the most essential features for detecting malicious traffic.

Our results highlight the challenges of transferring machine learning models across network intrusion datasets. The Random Forest classifiers achieved strong performance when trained and tested on the same dataset, with accuracy, precision, recall, and F1 scores above 0.99 for binary classification on CTU13 and CICIDS2017. However, their effectiveness significantly

degraded when we applied the models to a different dataset. For example, the Random Forest trained on CICIDS2017 and tested on CTU13 saw its accuracy drop to 0.58, precision to 0.65, recall to 0.02, and F1 score to 0.04.

The SVM classifiers exhibited similar transferability issues, although they also struggled to learn effective decision boundaries even on their training datasets. These findings underscore the impact of dataset biases and the importance of representative training data for building robust intrusion detection models.

The SHAP analysis provided valuable insights into the factors contributing to the transferability challenges. We observed notable shifts in feature importance when the models were applied to different datasets, indicating that the discriminative power of individual attributes can vary significantly depending on the data distribution. This variability makes it difficult for models to maintain effectiveness when deployed in new environments.

One limitation of this research was our inability to obtain SHAP values for the SVM classifiers due to the high computational cost of the kernelExplainer objects. Running the regular SHAP library on a CPU led to performance issues and memory constraints, while the GPU-accelerated version also encountered memory limitations due to insufficient dedicated GPU memory. Exploring SVM interpretability with more powerful hardware could be an exciting direction for future work.

In order to tackle the transferability challenges highlighted in this dissertation, further research could delve into various techniques such as transfer learning, domain adaptation, and robust feature engineering. Transfer learning methods, such as fine-tuning models on a subset of labelled target data, could aid in adapting learned patterns to novel environments. Moreover, unsupervised domain adaptation techniques could align feature distributions between source and target datasets, rendering the models more generalisable. Furthermore, developing feature learning methods that can identify dataset-invariant representations could enhance the transferability of intrusion detection models.

Another promising direction for future work is the development of more sophisticated explainable AI techniques tailored to the cybersecurity domain. While SHAP provided valuable insights into the importance of features, methods that can capture complex interactions and temporal dependencies in network traffic data are needed. Explainable AI techniques that provide more granular, contextualised explanations of model predictions could significantly

enhance the interpretability and trustworthiness of intrusion detection systems.

Furthermore, future research could explore integrating multiple data sources and modalities to build more comprehensive and robust intrusion detection models. Combining network traffic data with host-based logs, application-level events, and external threat intelligence could provide a more holistic view of the cybersecurity landscape and improve the accuracy and resilience of detection systems.

In conclusion, this dissertation highlights the importance of evaluating model transferability and interpretability in network intrusion detection. Our experiments demonstrate the challenges of applying machine learning models trained on one dataset to another, emphasising the need for representative training data and techniques to address dataset biases. The SHAP analysis provides valuable insights into the factors contributing to these challenges, including shifts in feature importance and potential overfitting to dataset-specific patterns.

We can work towards more practical and reliable machine learning-based network intrusion detection systems by advancing our understanding of these issues and developing more transferable and interpretable models. The results and insights presented in this dissertation lay the foundation for future research in this critical area, contributing to the ongoing efforts to safeguard our digital infrastructure against evolving cyber threats.

References

- [1] RAPIDS AI. Rapids download link. https://docs.rapids.ai/install.
- [2] Dogukan Aksu and M Ali Aydin. Detecting port scan attempts with comparative analysis of deep learning and support vector machine algorithms. In 2018 International congress on big data, deep learning and fighting cyber terrorism (IBIGDELFT), pages 77–80. IEEE, 2018.
- [3] Kasun Amarasinghe, Kevin Kenney, and Milos Manic. Toward explainable deep neural network based anomaly detection. In 2018 11th international conference on human system interaction (HSI), pages 311–317. IEEE, 2018.
- [4] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. Dos and don'ts of machine learning in computer security. In 31st USENIX Security Symposium (USENIX Security 22), pages 3971–3988, 2022.
- [5] Mustapha Belouch, Salah El Hadaj, and Mohamed Idhammad. Performance evaluation of intrusion detection based on machine learning using apache spark. *Procedia Computer* Science, 127:1–6, 2018.
- [6] British Computer Society. Bcs code of conduct. https://www.bcs.org/media/2211/bcs-code-of-conduct.pdf.
- [7] Anna L Buczak and Erhan Guven. A survey of data mining and machine learning methods for cyber security intrusion detection. *IEEE Communications surveys & tutorials*, 18(2):1153–1176, 2015.
- [8] Sudipta Chowdhury, Mojtaba Khanzadeh, Ravi Akula, Fangyan Zhang, Song Zhang, Hugh Medal, Mohammad Marufuzzaman, and Linkan Bian. Botnet detection using graph-based feature clustering. *Journal of Big Data*, 4:1–23, 2017.

- [9] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20:273– 297, 1995.
- [10] Nabila Farnaaz and MA Jabbar. Random forest modeling for network intrusion detection system. Procedia Computer Science, 89:213–217, 2016.
- [11] Sebastian Garcia, Martin Grill, Jan Stiborek, and Alejandro Zunino. An empirical comparison of botnet detection methods. *computers & security*, 45:100–123, 2014.
- [12] Trevor Hastie, Robert Tibshirani, Jerome Friedman, Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Random forests. The elements of statistical learning: Data mining, inference, and prediction, pages 587–604, 2009.
- [13] Md Reazul Kabir, Abdur Rahman Onik, and Tanvir Samad. A network intrusion detection framework based on bayesian network using wrapper approach. *International Journal of Computer Applications*, 166(4):13–17, 2017.
- [14] Dong Seong Kim and Jong Sou Park. Network-based intrusion detection with support vector machines. In Information Networking: International Conference, ICOIN 2003, Cheju Island, Korea, February 12-14, 2003. Revised Selected Papers, pages 747–756. Springer, 2003.
- [15] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances in neural information processing systems, 30, 2017.
- [16] Faisal Malik. Ctu13 csv files. https://github.com/imfaisalmalik/CTU13-CSV-Dataset.
- [17] Shraddha Mane and Dattaraj Rao. Explaining network intrusion detection system using explainable ai framework. arXiv preprint arXiv:2103.07110, 2021.
- [18] Mirco Marchetti, Fabio Pierazzi, Michele Colajanni, and Alessandro Guido. Analysis of high volumes of network traffic for advanced persistent threat detection. Computer Networks, 109:127–141, 2016.
- [19] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830, 2011.

- [20] Abdurrahman Pektaş and Tankut Acarman. A deep learning method to detect network intrusion through flow-based features. *International Journal of Network Management*, 29(3):e2050, 2019.
- [21] Sebastian Raschka, Joshua Patterson, and Corey Nolet. Machine learning in python: Main developments and technology trends in data science, machine learning, and artificial intelligence. arXiv preprint arXiv:2002.04803, 2020.
- [22] Bernhard Schölkopf and Alexander J Smola. Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press, 2002.
- [23] Iman Sharafaldin, Arash Habibi Lashkari, Ali A Ghorbani, et al. Cicids2017 csv files. http://205.174.165.80/CICDataset/CIC-IDS-2017/.
- [24] Iman Sharafaldin, Arash Habibi Lashkari, Ali A Ghorbani, et al. Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp, 1:108–116, 2018.
- [25] Robin Sommer and Vern Paxson. Outside the closed world: On using machine learning for network intrusion detection. In 2010 IEEE symposium on security and privacy, pages 305–316. IEEE, 2010.
- [26] Shaohua Teng, Naiqi Wu, Haibin Zhu, Luyao Teng, and Wei Zhang. Svm-dt-based adaptive and collaborative intrusion detection. *IEEE/CAA Journal of Automatica Sinica*, 5(1):108– 118, 2017.
- [27] Serpil Ustebay, Zeynep Turgut, and Muhammed Ali Aydin. Intrusion detection system with recursive feature elimination by using random forest and deep learning classifier. In 2018 international congress on big data, deep learning and fighting cyber terrorism (IBIGDELFT), pages 71–76. IEEE, 2018.
- [28] Alexander Warnecke, Daniel Arp, Christian Wressnegger, and Konrad Rieck. Evaluating explanation methods for deep learning in security. In 2020 IEEE european symposium on security and privacy (EuroS&P), pages 158–174. IEEE, 2020.

Appendix A

Algorithms

```
Algorithm 1 Relabeling CTU13 Dataset
Require: Raw CTU13 dataset
Ensure: Preprocessed CTU13 dataset with consistent feature names and class labels
 1: Import necessary libraries
 2: function LOADDATASET(datasetName)
 3:
       Load dataset specified by datasetName
       return Loaded dataset
 4:
 5: end function
 6: function RenameFeatures(dataset, mappingDict)
      for each feature in dataset do
 7:
 8:
          if the feature name exists in the mapping dictionary then
             Rename the feature using the corresponding value from the dictionary
 9:
10:
          end if
       end for
11:
12: end function
13: function ReplaceLabels(dataset, labelMappings)
14:
       for each labelMapping in labelMappings do
          Replace the class label in dataset using labelMapping
15:
       end for
16:
17: end function
18: function ReorderFeatures(dataset, desiredOrder)
       Reorder the features in dataset according to desiredOrder
19:
20:
       return Reordered dataset
21: end function
22: rawCTU13 ← LOADDATASET('CTU13')
23: mappingDict ← Define a dictionary for mapping feature names
24: RenameFeatures(rawCTU13, mappingDict)
25: labelMappings \leftarrow {'0': 'Benign', '1': 'Botnet'}
26: ReplaceLabels(rawCTU13, labelMappings)
27: desiredOrder \leftarrow Define the desired order of features based on the CICIDS2017 dataset
28: preprocessedCTU13 \leftarrow REORDERFEATURES(rawCTU13, desiredOrder)
29: Save the preprocessedCTU13 dataset
```

Require: Raw CICIDS2017 and preprocessed CTU13 datasets Ensure: Preprocessed CICIDS2017 dataset with consistent feature names and class labels 1: Import necessary libraries 2: **function** LOADDATASET(datasetName) Load dataset specified by datasetName 3: return Loaded dataset 4: 5: end function 6: function RenameFeatures(sourceDataset, targetDataset, mappingDict) for each feature in sourceDataset do 7: if the feature name exists in targetDataset then 8: 9: Rename the feature in targetDataset using the corresponding value from mappingDict end if 10: end for 11: 12: end function function ChangeLabels(dataset, oldLabel, newLabel) Change the label in dataset from oldLabel to newLabel 15: end function 16: **function** PreprocessDataset(sourceDataset, targetDataset) Get the list of columns in sourceDataset 17: Get the common columns between sourceDataset and targetDataset 18: Reorder and select the common columns in targetDataset 19: 20: return Preprocessed dataset 21: end function 22: $rawCICIDS2017 \leftarrow LoadDataset('CICIDS2017')$ 23: preprocessedCTU13 \leftarrow LoadDataset('CTU13')

24: mappingDict ← Define a dictionary for mapping feature names from CTU13 to CICIDS2017

28: preprocessedCICIDS2017 ← PREPROCESSDATASET(preprocessedCTU13, rawCICIDS2017)

25: RenameFeatures(preprocessedCTU13, rawCICIDS2017, mappingDict)

26: CHANGELABELS(rawCICIDS2017, '0', 'Benign') 27: CHANGELABELS(rawCICIDS2017, '1', 'Botnet')

29: Save the preprocessedCICIDS2017 dataset

Algorithm 2 Relabeling CICIDS2017 Dataset

Algorithm 3 Training Dummy Classifiers Require: Preprocessed CTU13 and CICIDS2017 datasets Ensure: Trained Dummy Classifiers and performance metrics 1: Import necessary libraries 2: Read preprocessed CTU13 and CICIDS2017 datasets 3: Define common features for training and testing 4: **function** TrainDummy(dataset, classificationType) Train Dummy Classifier on dataset ('classificationType') 5: Save the trained classifier 6: 7: end function 8: **function** EvaluateClassifier(classifier) Load the trained classifier 9: Test the classifier on its corresponding test set as well as the other dataset 10: 11: Calculate performance metrics (accuracy, precision, recall, F1 score) for each experiment 12: Save performance metrics for analysis and comparison 13: end function 14: for dataset in [CTU13, CICIDS2017] do if dataset is CTU13 then 15: TrainDummy(CTU13, 'binary classification') 16: else if dataset is CICIDS2017 then 17: TrainDummy(CICIDS2017, 'binary classification') 18: TrainDummy(CICIDS2017, 'multiclass classification') 19: end if 20: 21: end for 22: for each trained Dummy Classifier do EVALUATECLASSIFIER (classifier) 23: 24: end for

```
Algorithm 4 Training Random Forest Classifiers
Require: Preprocessed CTU13 and CICIDS2017 datasets
Ensure: Trained Random Forest Classifiers, performance metrics, and SHAP values
 1: Import necessary libraries
 2: Read preprocessed CTU13 and CICIDS2017 datasets
 3: Define common features for training and testing
 4: function TrainRandomForest(dataset, classificationType)
       Train Random Forest Classifier on dataset ('classificationType') using CUML
 5:
       Save the trained classifier
 6:
 7: end function
 8: function EvaluateClassifier(classifier)
       Load the trained classifier
 9:
10:
       Test the classifier on its corresponding test set as well as the other dataset
       Calculate performance metrics (accuracy, precision, recall, F1 score) for each experiment
11:
       Save performance metrics for analysis and comparison
12:
       Create a SHAP explainer object for the classifier using CUML
13:
       Calculate SHAP values for the test set
14:
       Save SHAP values for analysis and comparison
15:
16: end function
17: for dataset in [CTU13, CICIDS2017] do
       if dataset is CTU13 then
18:
          TrainRandomForest(CTU13, 'binary classification')
19:
       else if dataset is CICIDS2017 then
20:
          TrainRandomForest(CICIDS2017, 'binary classification')
21:
          TrainRandomForest(CICIDS2017, 'multiclass classification')
22:
       end if
23:
24: end for
25: for each trained Random Forest Classifier do
       EVALUATECLASSIFIER (classifier)
26:
27: end for
```

```
Algorithm 5 Training Support Vector Machine Classifiers
Require: Preprocessed CTU13 and CICIDS2017 datasets
Ensure: Trained SVM Classifiers, performance metrics, and SHAP values
 1: Import necessary libraries
 2: Read preprocessed CTU13 and CICIDS2017 datasets
 3: Define common features for training and testing
 4: function TrainSVM(dataset, classificationType)
 5:
       Train SVM Classifier on dataset (classificationType) using CUML
       Save the trained classifier
 6:
 7: end function
 8: function EvaluateClassifier(classifier)
       Load the trained classifier
 9:
10:
       Test the classifier on its corresponding test set as well as the other dataset
       Calculate performance metrics (accuracy, precision, recall, F1 score) for each experiment
11:
       Save performance metrics for analysis and comparison
12:
       Create a SHAP explainer object for the classifier using CUML
13:
       Calculate SHAP values for the test set
14:
       Save SHAP values for analysis and comparison
15:
16: end function
   for dataset in [CTU13, CICIDS2017] do
17:
       if dataset is CTU13 then
18:
          TrainSVM(CTU13, 'binary classification')
19:
       else if dataset is CICIDS2017 then
20:
          TrainSVM(CICIDS2017, 'binary classification')
21:
22:
          TrainSVM(CICIDS2017, 'multiclass classification')
       end if
23:
24: end for
25: for each trained SVM Classifier do
       EVALUATECLASSIFIER (classifier)
26:
27: end for
```

Algorithm 6 Plotting Performance Metrics and Classifier Generalisability

Require: Performance metrics for trained classifiers

Ensure: Plots comparing classifier performance and generalisability

- 1: function SetUpPlot
- 2: Import necessary libraries
- 3: Define classifiers and metrics
- 4: Set bar width and spacing
- 5: Create figures and axes with larger sise
- 6: Set positions of bars on the x-axis
- 7: end function
- 8: **function** PLOTMETRICS(data)
- 9: **for** each classifier in data **do**
- 10: Plot bars for performance metrics
- 11: end for
- 12: Set x-tick labels and positions
- 13: Add labels and title with a larger font size
- 14: Add a grid for better readability
- 15: Add legend outside the plot
- 16: Adjust the layout to make space for the legend
- 17: Display the plot
- 18: end function
- 19: Setupplot
- 20: Define data for classifier performance on the same dataset
- 21: for each classifier and dataset combination do
- 22: Store performance metrics in the corresponding data structure
- 23: end for
- 24: PLOTMETRICS(classifier performance data)
- 25: SetUpPlot
- 26: Define data for classifier generalisability across datasets
- 27: for each classifier and dataset transfer combination do
- 28: Store performance metrics in the corresponding data structure
- 29: end for
- 30: PLOTMETRICS(classifier generalisability data)

Appendix B

SHAP Feature List

This appendix lists the features used in the SHAP analysis for the Random Forest classifiers trained on the CTU13 and CICIDS2017 datasets. The features are listed in the order they appear for the models, which is also the order they are numbered in the SHAP summary plots. Use this table to reference the feature number to the corresponding feature name.

List of features:

1	. ACK Flag Count	11.	Bwd IAT Min
2	. Active Max	12.	Bwd IAT Std
3	. Active Min	13.	Bwd PSH Flags
4	. Active Std	14.	Bwd Packet Length Mean
5	. Average Packet Size	15.	Bwd Packet Length Min
6	. Avg Bwd Segment Size	16.	Bwd Packet Length Std
7	. Avg Fwd Segment Size	17.	Bwd Packets/s
8	. Bwd Header Length	18.	Down/Up Ratio
9	. Bwd IAT Max	19.	Flow Duration
10	. Bwd IAT Mean	20.	Flow IAT Max

21. Flow IAT Mean 35. Idle Min 22. Flow IAT Min 36. Idle Std 23. Flow IAT Std 37. Init_Win_bytes_backward 24. Flow Packets/s 38. Max Packet Length 25. Fwd Header Length 39. Min Packet Length 26. Fwd IAT Max 40. Packet Length Mean 27. Fwd IAT Mean 41. Packet Length Std 28. Fwd IAT Min 42. Packet Length Variance 29. Fwd IAT Std 43. RST Flag Count 30. Fwd Packet Length Max 44. SYN Flag Count 31. Fwd Packet Length Mean 45. Total Backward Packets 32. Fwd Packet Length Min 46. Total Fwd Packets 33. Fwd Packet Length Std 47. Total Length of Bwd Packets 34. Idle Max 48. act_data_pkt_fwd

Appendix C

User Guide

This user guide outlines the structure and requirements for running the provided source code, including file descriptions, directory structure, dataset sources, and setup instructions.

C.0.1 Source Code Files

The project includes the following Python scripts and Jupyter notebooks:

- 1. relabelCTU13.py (Algorithm 1): Script for relabeling the CTU-13 dataset.
- 2. relabelCICIDS2017.py (Algorithm 2): Script for relabeling the CICIDS2017 dataset.
- 3. trainDummyClassifier.ipynb (Algorithm 3): Notebook for training a dummy classifier.
- 4. trainRandomForest.ipynb (Algorithm 4): Notebook for training a RandomForest classifier.
- 5. trainSVM.ipynb (Algorithm 5): Notebook for training an SVM classifier.
- 6. plotData.ipynb (Algorithm 6): Notebook for plotting dataset statistics and results.

C.0.2 Directory Structure

The code is designed to work with the following directory structure:

• A root directory containing the source code files.

- Two subdirectories within the root:
 - CTU13 Contains the CTU-13 dataset files.
 - CICIDS2017 Contains the CICIDS2017 dataset files.

C.0.3 Datasets

The dataset files are available from the following sources:

- CTU-13 dataset: [16]
- CICIDS2017 dataset: [23]

Note: The CTU-13 CSV files are provided in the correct format. For CICIDS2017, download the dataset and use the CSV files in the ML directory.

C.0.4 Installation and Setup

Before running the code, ensure that your environment meets the following requirements:

- IDE can run Python and Jupyter notebooks (e.g., Visual Studio Code with the necessary extensions).
- Python version 3.10.14 (specifically, any 3.10.x version should suffice).
- A Nvidia GPU with CUDA support for running the CUML models.
- A valid RAPIDS AI environment. Follow the installation instructions at [1], choosing the RAPIDS version 24.02 with the CUDA 12 option.
- The following Python packages (compatible versions are listed):
 - pandas (2.2.1)
 - numpy (1.26.4)
 - cuml (24.02)
 - shap (0.45.0)
 - matplotlib (3.8.3)

- ipywidgets (8.1.2)

Install the required packages using the following conda command. It is better to install them all at the same time so conda can resolve dependencies correctly:

conda install

pandas=2.2.1 numpy=1.26.4 shap=0.45.0 matplotlib=3.8.3 ipywidgets=8.1.2

After setting up the directory structure and installing the necessary packages, run the code files in the order listed above to preprocess the datasets, train classifiers, evaluate their performance, and generate visualisations of the data and results.