Semiparametric robust mean estimations based on the orderliness of quantile averages

Tuban Lee

20

24

27

31

34

This manuscript was compiled on June 30, 2023

semiparametric | mean-median-mode inequality | asymptotic | unimodal | Hodges—Lehmann estimator

Hodges–Lehmann inequality and γ -U-orderliness

The Hodges-Lehmann estimator stands out as a unique robust location estimator due to its definition being substantially dissimilar from conventional L-estimators, R-estimators, and M-estimators. In their landmark paper, Estimates of location based on rank tests, Hodges and Lehmann (1) proposed two methods for computing the H-L estimator: the Wilcoxon score R-estimator and the median of pairwise means. The Wilcoxon score R-estimator is a location estimator based on signedrank test, or R-estimator, (1) and was later independently discovered by Sen (1963) (2, 3). However, the median of 11 pairwise means is a generalized L-statistic and a trimmed 12 U-statistic, as classified by Serfling in his novel conceptualized study in 1984 (4). Serfling further advanced the understanding by generalizing the H-L kernel as $hl_k(x_1, ..., x_k) = \frac{1}{k} \sum_{i=1}^k x_i$, where $k \in \mathbb{N}$ (4). Here, the weighted H-L kernel is defined as $whl_k(x_1, ..., x_k) = \frac{\sum_{i=1}^k x_i \mathbf{w}_i}{\sum_{i=1}^k \mathbf{w}_i}$, where \mathbf{w}_i s are the weights applied to each element applied to each element.

By using the weighted H-L kernel and the L-estimator, it is now clear that the Hodges-Lehmann estimator is an LL-statistic, the definition of which is provided as follows:

$$LL_{k,\epsilon,\gamma,n} \coloneqq L_{\epsilon_0,\gamma,n}\left(\operatorname{sort}\left(\left(whl_k\left(X_{N_1},\cdots,X_{N_k}\right)\right)_{k=1}^{\binom{n}{k}}\right)\right),$$

where $L_{\epsilon_0,\gamma,n}(Y)$ represents the ϵ_0,γ -L-estimator that uses the sorted sequence, sort $\left(\left(whl_k\left(X_{N_1},\cdots,X_{N_k}\right)\right)_{N=1}^{\binom{n}{k}}\right)$, as input. The upper asymptotic breakdown point of $LL_{k,\epsilon,\gamma}$ is $\epsilon = 1 - (1 - \epsilon_0)^{\frac{1}{k}}$, as proven in DSSM II. There are two ways to adjust the breakdown point: either by setting k as a constant and adjusting ϵ_0 , or by setting ϵ_0 as a constant and adjusting k. In the above definition, k is discrete, but the bootstrap method can be applied to ensure the continuity of k, also making the breakdown point continuous. Specifically, if $k \in \mathbb{R}$, let the bootstrap size be denoted by b, then first sampling the original sample (1 - k + |k|)b times with each sample size of |k|, and then subsequently sampling $(1-\lceil k \rceil + k)b$ times with each sample size of $\lceil k \rceil$, $(1-k+|k|)b \in \mathbb{N}$, $(1-\lceil k \rceil +k)b \in \mathbb{N}$. The corresponding kernels are computed separately, and the pooled sorted sequence is used as the input for the L-estimator. Let \mathbf{S}_k represent the sorted sequence. Indeed, for any finite sample, X, when k = n, S_k becomes a single point, $whl_{k=n}(X_1,\ldots,X_n)$. When $\mathbf{w}_i=1$, the minimum of \mathbf{S}_k is $\frac{1}{k} \sum_{i=1}^{k} X_i$, due to the property of order statistics. The maximum of \mathbf{S}_k is $\frac{1}{k} \sum_{i=1}^k X_{n-i+1}$. The monotonicity of the order statistics implies the monotonicity of the extrema with respect to k, i.e., the support of \mathbf{S}_k shrinks monotonically. For

unequal \mathbf{w}_i s, the shrinkage of the support of \mathbf{S}_k might not be strictly monotonic, but the general trend remains, since all *LL*-statistics converge to the same point, as $k \to n$. Therefore, if $\frac{\sum_{i=1}^{n} X_i \mathbf{w}_i}{\sum_{i=1}^{n} \mathbf{w}_i}$ approaches the population mean when $n \to \infty$, all \overrightarrow{LL} -statistics based on such consistent kernel function approach the population mean as $k \to \infty$. For example, if $whl_k = BM_{\nu,\epsilon_k,n=k}, \ \nu \ll \epsilon_k^{-1}, \ \epsilon_k \to 0$, such kernel function is consistent. These cases are termed the LL-mean (LLM $_{k,\epsilon,\gamma,n}).$ By substituting the WA_{ϵ_0,γ,n} for the $L_{\epsilon_0,\gamma,n}$ in LL-statistic, the resulting statistic is referred to as the weighted L-statistic $(WL_{k,\epsilon,\gamma,n})$. The case having a consistent kernel function is termed as the weighted L-mean (WLM_{k, ϵ,γ,n}). The $w_i=1$ case of $WLM_{k,\epsilon,\gamma,n}$ is termed the weighted Hodges-Lehmann mean (WHLM_{k, ϵ,γ,n}). The WHLM_{k=1, ϵ,γ,n} is the weighted average. If $k \geq 2$ and the WA in WHLM is set as $\mathrm{TM}_{\epsilon_0},$ it is called the trimmed H-L mean (Figure ??, $k=2,\,\epsilon_0=\frac{15}{64}$). The THLM_{$k=2,\epsilon,\gamma=1,n$} appears similar to the Wilcoxon's onesample statistic investigated by Saleh in 1976 (5), which involves first censoring the sample, and then computing the mean of the number of events that the pairwise mean is greater than zero. The THLM $_{k=2,\epsilon=1-\left(1-\frac{1}{2}\right)^{\frac{1}{2}},\gamma=1,n}$ is the Hodges-Lehmann estimator, or more generally, a special case of the median Hodges-Lehmann mean $(mHLM_{k,n})$. $mHLM_{k,n}$ is asymptotically equivalent to the $MoM_{k,b=\frac{n}{k}}$ as discussed previously, Therefore, it is possible to define a series of location estimators, analogous to the WHLM, based on MoM. For example, the γ -median of means, $\gamma moM_{k,b=\frac{n}{L},n}$, is defined by

41

42

43

45

46

47

49

50

51

53

54

55

56

57

58

59

60

61

62

replacing the median in $\operatorname{MoM}_{k,b=\frac{n}{k},n}$ with the γ -median. The hl_k kernel distribution, denoted as F_{hl_k} , can be defined as the probability distribution of the sorted sequence $\operatorname{sort}\left((hl_k\left(X_{N_1},\cdots,X_{N_k}\right))_{N=1}^{\binom{n}{k}}\right)$. For any real value y, the cdf of the hl_k kernel distribution is given by: $F_{h_k}(y) = \Pr(Y_i \leq y)$, where Y_i represents an individual element from the sorted sequence. The overall hl_k kernel distributions possess a two-dimensional structure, encompassing n kernel distributions with varying k values, from 1 to n, where one dimension is inherent to each individual kernel distribution, while the other is formed by the alignment of the same percentiles across all kernel distributions. As k increases, all percentiles converge to \bar{X} , leading to the concept of γ -U-orderliness:

$$(\forall k_2 \geq k_1 \geq 1, \gamma m \text{HLM}_{k_2, \epsilon = 1 - \left(\frac{\gamma}{1 + \gamma}\right)^{\frac{1}{k_2}}, \gamma} \geq \gamma m \text{HLM}_{k_1, \epsilon = 1 - \left(\frac{\gamma}{1 + \gamma}\right)^{\frac{1}{k_1}}, \gamma}) \vee \\ (\forall k_2 \geq k_1 \geq 1, \gamma m \text{HLM}_{k_2, \epsilon = 1 - \left(\frac{\gamma}{1 + \gamma}\right)^{\frac{1}{k_2}}, \gamma} \leq \gamma m \text{HLM}_{k_1, \epsilon = 1 - \left(\frac{\gamma}{1 + \gamma}\right)^{\frac{1}{k_1}}, \gamma}),$$

where $\gamma m \text{HLM}_k$ sets the WA in WHLM as γ -median, with γ being constant. The direction of the inequality depends

T.L. designed research, performed research, analyzed data, and wrote the paper.

The author declares no competing interest.

¹ To whom correspondence should be addressed. E-mail: tl@biomathematics.org

on the relative magnitudes of $\gamma m HLM_{k=1,\epsilon,\gamma} = \gamma m$ and 71 $\gamma m \text{HLM}_{k=\infty,\epsilon,\gamma} = \mu$. The Hodges-Lehmann inequality can be 72 defined as a special case of the γ -U-orderliness when $\gamma = 1$. 73 When $\gamma \in \{0, \infty\}$, the γ -U-orderliness is valid for any dis-74 tribution as previously shown. If $\gamma \notin \{0, \infty\}$, analytically proving the validity of the γ -U-orderliness for a parametric distribution is pretty challenging. As an example, the 77 hl_2 kernel distribution has a probability density function 78 $f_{hl_2}(x) = \int_0^{2x} 2f(t) f(2x - t) dt$ (a result after the transformation of variables); the support of the original distribution is 80 assumed to be $[0, \infty)$ for simplicity. The expected value of the 81 H-L estimator is the positive solution of $\int_0^{\text{H-L}} (f_{hl_2}(s)) ds = \frac{1}{2}$. For the exponential distribution, $f_{hl_2,exp}(x) = 4\lambda^{-2}xe^{-2\lambda^{-1}x}$, λ is a scale parameter, $E[\text{H-L}] = \frac{-W_{-1}(-\frac{1}{2e})-1}{2}\lambda \approx 0.839\lambda$, 83 84 where W_{-1} is a branch of the Lambert W function which can-85 not be expressed in terms of elementary functions. However, 86 the violation of the γ -U-orderliness is bounded under certain 87 assumptions, as shown below.

Theorem .1. For any distribution with a finite second central moment, σ^2 , the following concentration bound can be established for the γ -median of means,

$$\mathbb{P}\left(\gamma moM_{k,b=\frac{n}{k},n} - \mu > \frac{t\sigma}{\sqrt{k}}\right) \leq e^{-\frac{2n}{k}\left(\frac{1}{1+\gamma} - \frac{1}{k+t^2}\right)^2}.$$

Proof. Denote the mean of each block as $\widehat{\mu_i}$, $1 \leq i \leq b$. Observe that the event $\left\{\gamma m \text{oM}_{k,b=\frac{n}{k},n} - \mu > \frac{t\sigma}{\sqrt{k}}\right\}$ necessitates the condition that there are at least $b(1-\frac{\gamma}{1+\gamma})$ of $\widehat{\mu}_i$ s larger 91 than μ by more than $\frac{t\sigma}{\sqrt{k}}$, i.e., $\left\{\gamma m o M_{k,b=\frac{n}{k},n} - \mu > \frac{t\sigma}{\sqrt{k}}\right\} \subset$ $\left\{\sum_{i=1}^{b} \mathbf{1}_{\left(\widehat{\mu_{i}}-\mu\right) > \frac{t\sigma}{\sqrt{k}}} \geq b\left(1-\frac{\gamma}{1+\gamma}\right)\right\}$, where $\mathbf{1}_{A}$ is the indicator of event A. Assuming a finite second central moment, σ^2 , it follows from one-sided Chebeshev's inequality that $\mathbb{E}\left(\mathbf{1}_{\left(\widehat{\mu_{i}}-\mu\right)>\frac{t\sigma}{\sqrt{k}}}\right) = \mathbb{P}\left(\left(\widehat{\mu_{i}}-\mu\right)>\frac{t\sigma}{\sqrt{k}}\right) \leq \frac{\sigma^{2}}{k\sigma^{2}+t^{2}\sigma^{2}}.$ Given that $\mathbf{1}_{\left(\widehat{\mu_{i}}-\mu\right)>\frac{t\sigma}{\sqrt{k}}} \in [0,1]$ are independent and identically distributed random variables, according to the aforementioned inclusion relation, the 99 sided Chebeshev's inequality and the one-sided 100 $\mathbb{P}\left(\gamma m \circ M_{k,b=\frac{n}{k},n} - \mu > \frac{t\sigma}{\sqrt{k}}\right)$ effding's inequality, 101 $\mathbb{P}\left(\sum_{i=1}^{b} \mathbf{1}_{\left(\widehat{\mu_{i}}-\mu\right) > \frac{t\sigma}{\sqrt{\tau}}} \ge b\left(1 - \frac{\gamma}{1+\gamma}\right)\right)$
$$\begin{split} & \mathbb{P}\left(\frac{1}{b}\sum_{i=1}^{b}\left(\mathbf{1}_{\left(\widehat{\mu_{i}}-\mu\right)>\frac{t\sigma}{\sqrt{k}}}-\mathbb{E}\left(\mathbf{1}_{\left(\widehat{\mu_{i}}-\mu\right)>\frac{t\sigma}{\sqrt{k}}}\right)\right) \geq \\ & \left(1-\frac{\gamma}{1+\gamma}\right)-\mathbb{E}\left(\mathbf{1}_{\left(\widehat{\mu_{i}}-\mu\right)>\frac{t\sigma}{\sqrt{k}}}\right) \right) \end{split}$$
 $-2b\left(\left(1-\frac{\gamma}{1+\gamma}\right)-\mathbb{E}\left(\left.\mathbf{1}_{\left(\widehat{\mu_{i}}-\mu\right)}\right>\frac{t\sigma}{\sqrt{h}}\right)\right)$ $e^{-2b\left(1-\frac{\gamma}{1+\gamma}-\frac{\sigma^2}{k\sigma^2+t^2\sigma^2}\right)^2} = e^{-2b\left(\frac{1}{1+\gamma}-\frac{1}{k+t^2}\right)^2}$

107 **Theorem .2.** Let $B(k, \gamma, t, n) = e^{-\frac{2n}{k} \left(\frac{1}{1+\gamma} - \frac{1}{k+t^2}\right)^2}$. If 108 $n \in \mathbb{N}, \ \gamma \geq 0, \ 0 \leq t^2 < \gamma + 1, \ and \ \gamma - t^2 + 1 \leq k \leq 109 = \frac{1}{2} \sqrt{9\gamma^2 + 18\gamma - 8\gamma t^2 - 8t^2 + 9 + \frac{1}{2}} \left(3\gamma - 2t^2 + 3\right)$, B is monotonic decreasing with respect to k.

Proof. Since
$$\frac{\partial B}{\partial k} = \left(\frac{2n\left(\frac{1}{\gamma+1} - \frac{1}{k+t^2}\right)^2}{k^2} - \frac{4n\left(\frac{1}{\gamma+1} - \frac{1}{k+t^2}\right)}{k(k+t^2)^2}\right)$$

$$e^{-\frac{2n\left(\frac{1}{\gamma+1} - \frac{1}{k+t^2}\right)^2}{k}} \quad \text{and} \quad n \in \mathbb{N}, \quad \frac{\partial B}{\partial k} \leq 0 \quad \Leftrightarrow \\ \frac{2n\left(\frac{1}{\gamma+1} - \frac{1}{k+t^2}\right)^2}{k^2} - \frac{4n\left(\frac{1}{\gamma+1} - \frac{1}{k+t^2}\right)}{k(k+t^2)^2} \leq 0 \quad \Leftrightarrow \\ \frac{2n(-\gamma+k+t^2-1)\left(k^2-3(\gamma+1)k+2kt^2+t^2\left(-\gamma+t^2-1\right)\right)}{(\gamma+1)^2k^2(k+t^2)^3} \leq 0 \quad \Leftrightarrow \\ \frac{2n(-\gamma+k+t^2-1)\left(k^2-3(\gamma+1)k+2kt^2+t^2\left(-\gamma+t^2-1\right)\right)}{(\gamma+1)^2k^2(k+t^2)^3} \leq 0 \quad \Leftrightarrow \\ \left(-\gamma+k+t^2-1\right)\left(k^2-3(\gamma+1)k+2kt^2+t^2\left(-\gamma+t^2-1\right)\right) \leq 0. \quad \text{When the factors are expanded, it yields a cubic inequality in terms of } k: k^3+k^2\left(3t^2-4(\gamma+1)\right)+3k\left(\gamma-t^2+1\right)^2+t^2\left(\gamma-t^2+1\right)^2 \leq 0. \quad \text{Assuming } 0 \leq t^2 < \gamma+1 \text{ and } \gamma \geq 0, \\ \text{using the factored form and subsequently applying the quadratic formula, the inequality is valid if } \gamma-t^2+1 \leq k \leq \frac{1}{2}\sqrt{9\gamma^2+18\gamma-8\gamma t^2-8t^2+9}+\frac{1}{2}\left(3\gamma-2t^2+3\right). \quad \Box$$

111

113

115

116

117

120

121

122

123

125

126

127

128

129

130

131

132

134

135

136

137

138

139

140

141

142

143

144

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

163

Let X be a random variable and $\overline{Y} = \frac{1}{k}(Y_1 + \cdots + Y_k)$ be the average of k independent, identically distributed copies of X. Applying the variance operation gives: $\operatorname{Var}(\overline{Y}) = \operatorname{Var}\left(\frac{1}{k}(Y_1 + \cdots + Y_k)\right) = \frac{1}{k^2}(\operatorname{Var}(Y_1) + \cdots + \operatorname{Var}(Y_k)) = \frac{1}{k^2}(k\sigma^2) = \frac{\sigma^2}{k}$, since the variance operation is a linear operator for independent variables, and the variance of a scaled random variable is the square of the scale times the variance of the variable, i.e., $\operatorname{Var}(cX) = E[(cX - E[cX])^2] = E[(cX - cE[X])^2] = E[(cX - cE[X])^2] = E[c^2(X - E[X])^2] = c^2\operatorname{Var}(X)$. Thus, the standard deviation of the hl_k kernel distribution, asymptotically, is $\frac{\sigma}{\sqrt{k}}$. By utilizing the asymptotic bias bound of any quantile for any continuous distribution with a finite second central moment, σ^2 ,(6), a conservative asymptotic bias bound of $\gamma m \operatorname{oM}_{k,b=\frac{n}{k}}$ can be estab-

lished as $\gamma moM_{k,b=\frac{n}{k}} - \mu \leq \sqrt{\frac{\gamma}{1+\gamma}} \sigma_{hl_k} = \sqrt{\frac{\gamma}{k}} \sigma$. That implies in Theorem .1, $t < \sqrt{\gamma}$, so when $\gamma = 1$, the upper bound of k, subject to the monotonic decreasing constraint, is $2 + \sqrt{5} < \frac{1}{2}\sqrt{9 + 18 - 8t^2 - 8t^2 + 9} + \frac{1}{2}\left(3 - 2t^2 + 3\right) \leq 6$, the lower bound is $1 < 2 - t^2 \leq 2$. These analyses elucidate a surprising result: although the conservative asymptotic bound of $\mathrm{MoM}_{k,b=\frac{n}{k}}$ is monotonic with respect to k, its concentration bound is optimal when $k \in (2 + \sqrt{5}, 6]$.

Then consider the structure within each individual hl_k kernel distribution. The sorted sequence S_k , when k = n - 1, has n elements and the corresponding hl_k kernel distribution can be seen as a location-scale transformation of the original distribution, so the corresponding hl_k kernel distribution is ν th γ -ordered if and only if the original distribution is ν th γ -ordered according to Theorem ??. Analytically proving other cases is challenging. For example, $f'_{hl_2}(x) = 4f(2x) f(0) + \int_0^{2x} 4f(t) f'(2x - t) dt$, the strict negative of $f'_{hl_2}(x)$ is not guaranteed if just assuming f'(x) < 0, so, even if the original distribution is monotonic decreasing, the hl_2 kernel distribution might be non-monotonic. Also, unlike the pairwise difference distribution, if the original distribution is unimodal, the pairwise mean distribution might be non-unimodal, as demonstrated by a counterexample given by Chung in 1953 and mentioned by Hodges and Lehmann in 1954 (7, 8). Theorem ?? implies that the violation of ν th γ -orderliness within the hl_k kernel distribution is also bounded, and the bound monotonically shrinks as k increases because the bound is in unit of the standard deviation of the

 hl_k kernel distribution. If all hl_k kernel distributions are ν th γ -ordered and the distribution itself is ν th γ -ordered and γ -U-ordered, then the distribution is called ν th γ -U-ordered. The following theorems highlight the significance of γ -symmetric distributions.

Theorem .3. Any γ -symmetric distribution is ν th γ -Uordered, provided that the γ is the same.

171
$$Proof.$$

The succeeding theorem shows that the whl_k kernel distribution is invariably a location-scale distribution if the original distribution belongs to a location-scale family with the same location and scale parameters.

Theorem .4.
$$whl_k (x_1 = \lambda x_1 + \mu, ..., x_k = \lambda x_k + \mu) = \lambda whl_k (x_1, ..., x_k) + \mu.$$

178 Proof.
$$whl_k (x_1 = \lambda x_1 + \mu, \dots, x_k = \lambda x_k + \mu) = \sum_{i=1}^k (\lambda x_i + \mu)w_i = \sum_{i=1}^k \frac{\lambda x_i w_i + \sum_{i=1}^k \mu w_i}{\sum_{i=1}^k w_i} = \lambda \frac{\sum_{i=1}^k x_i w_i}{\sum_{i=1}^k w_i} + \sum_{i=1}^k \frac{\mu w_i}{\sum_{i=1}^k w_i} = \lambda \frac{\sum_{i=1}^k x_i w_i}{\sum_{i=1}^k w_i} + \mu = \lambda whl_k (x_1, \dots, x_k) + \mu.$$

Data Availability. Data for Figure ?? are given in SI Dataset
 S1. All codes have been deposited in GitHub.

ACKNOWLEDGMENTS. I sincerely acknowledge the insightful comments from the editor which considerably elevated the lucidity and merit of this paper.

- J Hodges Jr, E Lehmann, Estimates of location based on rank tests. The Annals Math. Stat. 34,
 598–611 (1963).
- PK Sen, On the estimation of relative potency in dilution (-direct) assays by distribution-free methods. *Biometrics* pp. 532–552 (1963).
- M Ghosh, MJ Schell, PK Sen, A conversation with pranab kumar sen. Stat. Sci. pp. 548–564
 (2008).
 - 4. RJ Serfling, Generalized I-, m-, and r-statistics. The Annals Stat. 12, 76-86 (1984).
- A Ehsanes Saleh, Hodges-lehmann estimate of the location parameter in censored samples.
 Annals Inst. Stat. Math. 28, 235–247 (1976).
- L Li, H Shao, R Wang, J Yang, Worst-case range value-at-risk with partial information. SIAM J. on Financial Math. 9, 190–218 (2018).
- J Hodges, E Lehmann, Matching in paired comparisons. The Annals Math. Stat. 25, 787–791
 (1954).
- K Chung, Sur les lois de probabilité unimodales. COMPTES RENDUS HEBDOMADAIRES
 DES SEANCES DE L ACADEMIE DES SCIENCES 236, 583–584 (1953).

192