Statistics and Data Analysis

Evaluation Exercise for Unfolding Part

Simulate and solve an unfolding problem using the slides shown during the lectures (available at Unfolding_pdf) and the following steps:

- 1. Generate the input elements for the unfolding problem and compute non-regularized solutions:
 - (a) Consider equal range and number of bins (M = N) for the true (μ) and measured distributions (ν) , respectively. Construct the (square) migration matrix R by assuming a (e.g.) Gaussian estimator with no bias and a resolution of 2 times the width of the bins of μ .
 - (b) Construct the distribution μ using a true p.d.f. (f_{true}) given by (e.g.) the sum of two Gaussian functions.
 - (c) Construct the distribution ν by multiplying the migration R matrix to the vector μ .
 - (d) Generate randomly the distribution n by assuming uncorrelated Poisson distributed measurements and no background.
 - (e) Compute the exact solution μ_0 using the inverse of the migration matrix.
 - (f) Compute (numerically) the maximum likelihood or minimum least-squares solution and compare it to the exact solution.
 - (g) Compute a solution using the correction factors method.
 - (h) Compute the solution for f_{true} using the forward unfolding method (e.g. for the double-Gaussian case, the means, variances and normalizations are free parameters).
- 2. Using the elements obtained in Exercise 1, compute a regularized solution:
 - (a) Consider the migration matrix R and the distribution of measured values \boldsymbol{n} produced in Exercise 1 (as in a real experiment, we assume we do not know $\boldsymbol{\mu}$ or $\boldsymbol{\nu}$, but we are going to estimate them).
 - (b) Chose a regularization method (Tykhonov, maximum entropy,...).
 - (c) Maximize Equation 7 of the slides systematically for a set of values of α (in practice we maximize Equation 5 keeping one μ component dependent to the rest to keep condition $\nu_{\text{tot}}(\mu) = n_{\text{tot}}$).
 - (d) For each considered α value, compute the values of the four quantities used to chose the optimal α (MSE, MSE', χ^2_{eff} and χ^2_b). Plot them as a function of $\Delta \log L$.
 - (e) For each optimal α value, plot the estimated true distribution $\hat{\boldsymbol{\mu}}$ (with errors), together with the true distribution $\boldsymbol{\mu}$ and the measured distribution \boldsymbol{n} .
 - (f) For each optimal α value, plot the estimated biases for the $\hat{\mu}$ solution (with errors).