Règles d'association

Exemple: Analyse du panier de la ménagère

Extraction d'informations sur le comportement de clients

• SI achat de riz + vin blanc ALORS achat de poisson (avec une grande probabilité)

Intérêt de l'information: peut suggérer ...

• Disposition des produits dans le magasin

• Quels produits mettre en promotion, gestion de stock, ...

Approche applicable dans d'autres domaines

• Cartes de crédit, e-commerce, ...

• Services des compagnies de télécommunication

• Services bancaires

• Traitements médicaux, ...

L. Jourdan – Aide à la décision

Règles d'associations

Recherche de règles d'association:

Découvrir des patterns, corrélations, associations fréquentes, à partir d'ensembles d'items contenus dans des base de données.

Compréhensibles: Facile à comprendre

Utiles: Aide à la décision

Efficaces: Algorithmes de recherche

Applications:

Analyse des achats de clients, Marketing, Accés Web, Design de catalogue, Génomique, etc.

Pègles d'associations Formats de représentation des règles d'association : • couches ⇒ bière [0.5%, 60%] • achète:couches ⇒ achète:bière [0.5%, 60%] • "SI achète couches ALORS achète bière dans 60% de cas. Les couches et la bière sont tous deux achetés dans 0.5% des transactions de la base de données." Autres représentations (utilisée dans l'ouvrage de Han) : • achète(x, "couches") ⇒ achète(x, "bière") [0.5%, 60%]

Description de la méthode

- Support et confiance ne sont pas toujours suffisants
- Ex : Soient les 3 articles A, B et C

ı	article	Α	В	С	A et B	A et C	B et C	A, B et C
	support	45%	42,5%	40%	25%	20%	15%	5%

- Règles à 3 articles : même support 5%

-Règle : Si A et B alors C = 0.20 -Règle : Si A et C alors B = 0.25 - Règle : Si B et C alors A = 0.33

L. Jourdan – Aide à la décision

Recherche de règles

- Soient une liste de n articles et de m achats.
- 1. Calculer le nombre d'occurrences de chaque article.
- 2. Calculer le tableau des co-occurrences pour les paires d'articles.
- 3. Déterminer les règles de niveau 2 en utilisant les valeurs de support, confiance et amélioration.
- 4. Calculer le tableau des co-occurrences pour les triplets d'articles.
- 5. Déterminer les règles de niveau 3 en utilisant les valeurs de support, confiance et amélioration

L. Jourdan – Aide à la décision

Complexité

- Soient :
 - n : nombre de transactions dans la BD
 - m : Nombre d'attributs (items) différents
- - Nombre de règles d'association : O(m.2^{m-1})
 - Complexité de calcul : O(n.m.2^m)

L. Jourdan – Aide à la décision

Réduction de la complexité

- n de l'ordre du million (parcours de la liste nécessaire)
- Taille des tableaux en fonction de m et du nombre d'articles présents dans la règle

	2	3	4
n	n(n-1)/2	n(n-1)(n-2)/6	n(n-1)(n-2)(n-3)/24
100	4950	161 700	3 921 225
10000	5.10 ⁷	1.7 10 ¹¹	4.2 10 ¹⁴

- Conclusion de la règle restreinte à un sous-ensemble de l'ensemble des articles vendus.
- Exemple : articles nouvellement vendues.
- Création de groupes d'articles (différents niveaux d'abstraction).
 Elagage par support minimum.

L. Jourdan – Aide à la décision


```
Recherche des k-itemsets fréquents (1)

Exemple

• I = {A, B, C, D, E, F}

• T = {AB, ABCD, ABD, ABDF, ACDE, BCDF}

• MINSUP = 1/2

Calcul de L1 (ensemble des 1-itemsets)

• C<sub>1</sub> = I = {A,B,C,D,E,F} // C1 : ensemble de 1-itemsets candidats

• s(A) = s(B) = 5/6, s(C) = 3/6, s(D) = 5/6, s(E) = 1/6, s(F) = 2/6

• L<sub>1</sub> = {A, B, C, D}

Calcul de L2 (ensemble des 2-itemsets)

• C<sub>2</sub> = L1xL1 = {AB,AC, AD, BC, BD, CD}

• s(AB) = 4/6, s(AC) = 2/6, s(AD) = 4/6, s(BC) = 2/6, s(BD) = 4/6, s(CD) = 3/6

• L<sub>2</sub> = {AB,AD, BD, CD}
```

```
Recherche des k-itemsets fréquents (2)

• Calcul de L₃ (ensemble des 3-itemsets)

- C₃ = {ABD} {ABC ∉ C₃ car AC ∉ L₂}

- s(ABD) = 3/6

- L₃ = {ABD}

• Calcul de L₄ (ensemble des 4-itemsets)

- C₄ = Φ

- L₄ = Φ

• Calcul de L (ensembles des itemsets fréquents)

- L = ∪Lᵢ = {A, B, C, D, AB, AD, BD, CD, ABD}
```

```
L'algorithme Apriori

L1 = {1-itemsets fréquents};
for (k=2; Lk-1≠ ∅; k++) do
Ck = apriori_gen(Lk-1);
forall instances t∈T do
Ct = subset(Ck,t);
forall candidats c ∈ Ct do
c.count++;
Lk = {c∈ Ck / c.count ≥ MINSUP}
L = ∪iLi;

L. Jourdan – Aide à la décision
```

```
La procédure Apriori_gen  \{ \text{Jointure L}_{k-1} * L_{k-1} ; k-2 \text{ eléments communs} \}  insert into C_k; select p.item_1, p.item_2, ..., p.item_{k-1}, q.item_{k-1} from L_{k-1p}, L_{k-1q} where p.item_1=q.item_1, ..., p.item_{k-2}=q.item_{k-2} , p.item_{k-1}< q.item_{k-1}
    forall itemsets c \in C_k do forall (k-1)-itemsets s \subset c do if s \not\in L_{k-1} then delete c from C_k;
```


Génération des règles à partir des itemsets

Pseudo-code:

- pour chaque itemset fréquent /
 - générer tous les sous-itemsets non vides s de l
- pour chaque sous-itemset non vide s de l
- produire la règle "s → (l-s)" si support(l)/support(s) ≥ min_conf", où min_conf est la confiance minimale
- Exemple : itemset fréquent I = {abc},
- Sous-itemsets s = {a, b, c, ab, ac, bc)
 - a ⇒ bc, b ⇒ ac, c ⇒ ab
 - ab ⇒ c, ac ⇒ b, bc ⇒ a

Génération des règles à partir des itemsets

Règle 1 à mémoriser :

- · La génération des itemsets fréquents est une opération coûteuse
- · La génération des règles d'association à partir des itemsets fréquents est rapide

Règle 2 à mémoriser :

- Pour la génération des itemsets, le seuil support est utilisé.
- Pour la génération des règles d'association, le seuil confiance est

Complexité en pratique ?

- A partir d'un exemple réel (petite taille) ...
- Expériences réalisées sur un serveur Alpha Citum 4/275 avec 512 MB de RAM & Red Hat Linux release 5.0 (kernel 2.0.30)

Apriori - Complexité

Phase coûteuse : Génération des candidats

- · Ensemble des candidats de grande taille
 - 10⁴ 1-itemset fréquents génèrent 10⁷ candidats pour les 2itemsets
 - Pour trouver un itemset de taille 100, e.x., {a1, a2, ..., a100}, on doit générer $2^{100} \approx 10^{30}$ candidats
- Multiple scans de la base de données :
 - Besoin de (n +1) scans, n est la longueur de l'itemset le plus

L. Jourdan – Aide à la décision

Apriori - Complexité

En pratique:

- Pour l'algorithme Apriori basique, le nombre d'attributs est généralement plus critique que le nombre de transactions
- 50 attributs chacun possédant 1-3 valeurs, 100.000 transactions
- 50 attributs chacun possédant 10-100 valeurs, 100.000 transactions (quite bad)
- 10.000 attributs chacun possédant 5-10 valeurs, 100 transactions (very bad...)
- Notons
 - Un attribut peut avoir plusieurs valeurs différentes
 - Les algorithmes traitent chaque paire attribut-valeur comme un attribut (2 attributs avec 5 valeurs → "10 attributs"

Quelques pistes pour résoudre le problème ...

L. Jourdan – Aide à la décision

Apriori – Réduction de la complexité

Suppression de transactions :

Une transaction qui ne contient pas de k-itemsets fréquents est inutile à traiter dans les parcours (scan) suivants

Partitionnement:

 Tout itemset qui est potentiellement fréquent dans une BD doit être potentiellement fréquent dans au moins une des partitions de la BD.

Echantillonage

 Extraction à partir d'un sous-ensemble de données, décroitre le seuil support

L. Jourdan – Aide à la décision

Apriori - Avantages

- Résultats clairs : règles faciles à interpréter.
- Simplicité de la méthode
- Aucune hypothèse préalable (Apprentissage non supervisé)
- Introduction du temps : méthode facile à adapter aux séries temporelles. Ex : Un client ayant acheté le produit A est susceptible d'acheter le produit B dans deux ans.

L. Jourdan – Aide à la décision

Apriori - Inconvénients

- Coût de la méthode : méthode coûteuse en temps
- Qualité des règles : production d'un nombre important de règles triviales ou inutiles.
- Articles rares : méthode non efficace pour les articles rares
- Adapté aux règles binaires
- · Apriori amélioré
 - Variantes de Apriori : DHP, DIC, etc.
 - Partition [Savasere et al. 1995]
 - Eclat et Clique [Zaki et al. 1997]

-...

L. Jourdan – Aide à la décision

Typologie des règles

- Règles d'association binaires
 - Forme : if C then P. C,P : ensembles d'objets
- Règles d'association quantitatives
- Forme : if C then P
 - C = terme1 & terme2 & ... & termen
 - P = termen+1
 - termei = <attributj, op, valeur> ou <attributj, op, valeur_de, valeur_a>
- Classes : valeurs de P
- Exemple : if ((Age>30) & (situation=marié)) then prêt=prioritaire
- Règles de classification généralisée
 - Forme : if C then P, P=p1, p2, ..., pm P: attribut but
- etc.

I Jourdan – Aide à la décision

Règles d'association - Résumé

- Probablement la contribution la plus significative de la communauté KDD
- Méthodes de recherche de règles :
 - -A-priori
 - -Algorithmes génétiques
- Plusieurs travaux ont été publiés dans ce domaine

L. Jourdan – Aide à la décision

Règles d'association - Résumé

Plusieurs issues ont été explorées : intérêt d'une règle, optimisation des algorithmes, parallélisme et distribution, ...

Directions de recherche:

 Règles d'associations pour d'autres types de données : données spatiales, multimedia, séries temporelles, ...

L. Jourdan – Aide à la décisior

Critères pour les règles

Mesure	Formule	Effet		
Support S	$\frac{C \text{ et } P}{N}$	% transactions qui contiennent C et P		
		Probabilité conditionnelle		
Intérêt I	$\frac{C \ et \ P}{C \times P}$	Privilégie les motifs rares (ayant un support faible)		
Conviction V	$\frac{C \times \overline{P}}{C \text{ et } \overline{P}}$	Mesure la faiblesse de (C, not P) V >> :: P se passe avec C		
Piatetsky- Shapiro's	C et $P - C \times P$	Mesure la dépendance		
Surprise R	$\frac{\left(C \ et \ P - C \ et \ \overline{P}\right)}{P}$	Cherche des règles étonnantes Mesure l'infirmation(C, NOT P)		

L. Jourdan – Aide à la décision