Algebra Ph.D. Qualifying Exam

September 2013

Answer any **five** of the following eight questions.

You should state clearly any general results you use.

- 1. Classify all finite groups G with the following property: for any $g, h \in G$, either g is a power of h, or h is a power of g.
- 2. Show that any group of order $616 = 2^3 \cdot 7 \cdot 11$ is solvable.
- 3. Let R_1 and R_2 be commutative rings.
 - (a) Show that any ideal of $R_1 \times R_2$ is of the form $I_1 \times I_2$ where I_1 is an ideal of R_1 and I_2 is an ideal of R_2 .
 - (b) Show that any *prime* ideal of $R_1 \times R_2$ is either of the form $P_1 \times R_2$ or $R_1 \times P_2$ where P_1 is a prime ideal of R_1 and P_2 is a prime ideal of R_2 .
- 4. Let F be a field and let $F[X, X^{-1}]$ be the ring of "Laurent polynomials", i.e., all finite F-linear combinations $\sum_{i=-N}^{M} a_i X^i$ of integer powers of X, where negative powers are allowed. Show that $F[X, X^{-1}]$ is a PID.
- 5. (a) State the Tower law for finite field extensions.
 - (b) Suppose f and g are two irreducible polynomials over the field F and assume α is a root of f in some extension field. If deg f and deg g are relatively prime, show that g is irreducible in $F(\alpha)[X]$.
- 6. Let $f(X) = X^4 10X^2 + 21$. Find the Galois group of f over the fields
 - (a) \mathbb{F}_3 ,
 - (b) \mathbb{F}_5 ,
 - (c) \mathbb{O} .
- 7. Let A be a finitely generated Abelian group (with group operation written additively).
 - (a) If B is a subgroup of A such that A = B + pA for some prime p, show that B is of finite index in A.
 - (b) If B is a subgroup of A such that A = B + pA for all primes p, show that B = A.
- 8. Suppose A and B are two $n \times n$ matrices with complex entries with the same minimal polynomials and the same characteristic polynomials.
 - (a) If n = 3 show that A and B are similar.
 - (b) Give an example of non-similar A and B with this property and n > 3.