حملات مقابلهای و خصمانه و مقایسه راههای مقابله با آن

استاد راهنما: دكتر محمدباقر شمس الهي

استاد درس: دکتر ترانه اقلیدس

ثنا امین ناجی

پاییز ۱۴۰۱

دانشگاه صنعتی شریف

رئوس مطالب

- تعریف شبکه یادگیری عمیق
- تعریف حمله متخاصم و مقابلهای
- بررسی مثالهای حملات و مقابله با آن
 - نتیجه گیری و زمینه پژوهشی
 - مراجع

شبکه یادگیری عمیق

- شبکه چند لایه پردازشی برای یادگیری و مدل سازی تجارب و وقایع دنیای واقعی.
- جایگزین مناسب برای شبکه های یادگیری معمول که توان محاسبه بالایی ندارند.
 - دو نوع مختلف:
 - DNN •
 - CNN •

شبکه یادگیری عمیق

حمله متخاصم و مقابلهای

■ دستکاری وزودیهای مجاز یک سیستم یادگیری عمیق که با چشم انسان قابل تشخیص نبوده اما باعث دستیابی به خروجی اشتباه میشود.

بررسی مثالهای حملات و مقابله با آن

- گامهای بررسی:
- توصیف کلی دیتاست و شبکه یادگیری استقاده شده برای طبقه بندی
 - توصیف شیوه یا شیوههای تولید حمله
 - تحلیل نوع دفاع و مقاوم سازی استفاده شده
 - مقابسه و تحلیل نتایج پیاده سازی

مثال اول: Denoiser

از آنجا که عمده حملات از طریق اضافه کردن یک نویز ناچیز به ورودیهای اولیه تولید میشوند در نتیجه یک راه مقابله با آنها استقاده از denoiser است:

مثال اول: Denoiser

Pixel guided denoiser(PGD)

$$L = ||x - \hat{\mathbf{x}}||$$

- (-): small perturbation is progressively amplified by deep neural networks
 →wrong prediction. Even if the denoiser can significantly suppress the
 pixel-level noise, the remaining noise may still distort the target model.
- High-level representation guided denoiser(HGD)

$$L = ||f_l(\hat{\mathbf{x}}) - f_l(\mathbf{x})||$$

مثال اول: Denoiser

دیتاست:

ImageNet •

شبکه:

The transferability of HGD to different model. Resnet is used as the target model.

Denoiser for	Clean	White	WhiteTestSet		TestSet
Resnet	Clean	$\epsilon = 4$	$\epsilon = 16$	$\epsilon = 4$	$\epsilon = 16$
NA	78.5%	63.3%	38.4%	67.8%	48.6%
IncV3 guided LGD	77.4%	75.8%	71.7%	76.1%	72.7%
Resnet guided LGD	78.4%	76.1%	72.9%	76.5%	74.6%

The transferability of HGD to different classes. The 1000 ImageNet classes are separated in training and test test.

Defense	Clean	WhiteTestSet		BlackTestSet	
Defense	Clean	$\epsilon = 4$	$\epsilon = 16$	$\epsilon = 4$	$\epsilon = 16$
NA	76.6%	15.4%	15.3%	61.5%	41.7%
LGD	76.3%	73.9%	65.7%	74.8%	72.2%

مثال اول: Denoiser

نتايج:

The relationship between dx^* and $d\hat{x}$ in PGD and HGD.

مثال دوم: detector subnetwork

- شبکه اصلی عمیق را با زیر شبکه های به نسبت کوچک تقویت میکنیم، این زیرشبکهها به صورت شاخهای از برخی لایههای شبکه اصلی می آبند.
 - است. $P_{adv} \in [0,1]$ است.
 - دو نوع ورودی:
 - ثابت
 - پويا

مثال دوم: detector subnetwork

دیتاست

- 32-layer Residual Network <-- CIFAR10
- pretrained VGG16 <-- 10-CLASS IMAGENET •

مثال دوم: detector subnetwork

نتایج:

st	Fast	0.97	0.96	0.92	0.71	0.75
Adversary test	Iterative (ℓ_{∞})	0.69	0.89	0.87	0.65	0.68
sar	Iterative (ℓ_2)	0.61	0.79	0.87	0.59	0.63
ver	DeepFool (ℓ_2)	0.61	0.69	0.76	0.82	0.80
Ad	DeepFool (ℓ_{∞})	0.68	0.80	0.80	0.78	0.79
		Fast	App. Iterative (ℓ_{∞})	$\frac{1}{2}$ Iterative (ℓ_2)	ty DeepFool (ℓ_2)	DeepFool (ℓ_∞)

يب	Fast	0.89	0.88	0.63	0.84	0.89
/ tes	Iterative (ℓ_{∞})	0.84	0.87	0.61	0.81	0.89
sary	Iterative (ℓ_2)	0.66	0.74	0.90	0.88	0.87
Adversary test	DeepFool (ℓ_2)	0.61	0.66	0.78	0.85	0.81
A	DeepFool (ℓ_{∞})	0.80	0.83	0.69	0.83	0.91
		Fast	Iterative (ℓ_∞)	sa. Iterative (ℓ_2)	$^{ m tit}$ DeepFool (ℓ_2)	DeepFool (ℓ_∞)

- هدف کلی: پایدار کردن پاسخ های سیستم به ورودی های نزدیکتر به هم. (برای یک همسایگی نزدیک به ورودی های معتبر.)
 - فرمول کلی برای تابع هزینه:

$$\min_{\theta} \widetilde{J}(\theta, x, y) = \min_{\theta} \sum_{i=1}^{m} \max_{\widetilde{x}_{i} \in U_{i}} J(\theta, \widetilde{x}_{i}, y_{i})$$

MNIST :۱ دیتاست

شبکه:

 two convolutional layers (containing 32 and 64 5×5 filters), max pooling (3×3 and 2×2) after every convolutional layer, and two fully connected layers (of sizes 200 and 10) on top.

تایج دیتاست ۱

Net	MNIST test set	\mathcal{A}_{mnist}
Baseline	99.09%	0%
Robust ℓ_1	99.16%	33.83%
Robust ℓ_2	99.28%	76.55%
Robust ℓ_{∞}	99.33%	79.96%

• دیتاست2: CIFAR-10

شبکه:

e VGG net, publicly available online

Net	CIFAR-10 test set	$\mathcal{A}_{ ext{cifar10}}$
Baseline	90.79%	0%
Robust ℓ_1	91.11%	56.31%
Robust ℓ_2	91.04%	59.92%
Robust ℓ_{∞}	91.36%	65.01%

■ تقطیر: به ظور کلی نوعی روش برای آموزش شبکه است. هدف آن طراحی یک شبگه ثانویه با تعداد کمتری پارامتر و بار محاسباتی پایین تر با استفاده از اطلاعات سیستم اولیه است.

$$F(X) = \left[\frac{e^{z_i \cdot (x)/T}}{\sum_{1=0}^{w-1} e^{z_l(x)/T}} \right]$$

شبکه:	Δ	ست	دىتا	
	7			

- MINST -
- CIFAR10 -
 - شبکه ها:

Parameter	MNIST Architecture	CIFAR10 Architecture
Learning Rate	0.1	0.01 (decay 0.5)
Momentum	0.5	0.9 (decay 0.5)
Decay Delay	-	10 epochs
Dropout Rate (Fully Con-	0.5	0.5
nected Layers)		
Batch Size	128	128
Epochs	50	50

Layer Type	MNIST Architecture	CIFAR10 Architecture
Relu Convolutional	32 filters (3x3)	64 filters (3x3)
Relu Convolutional	32 filters (3x3)	64 filters (3x3)
Max Pooling	2x2	2x2
Relu Convolutional	64 filters (3x3)	128 filters (3x3)
Relu Convolutional	64 filters (3x3)	128 filters (3x3)
Max Pooling	2x2	2x2
Relu Fully Connect.	200 units	256 units
Relu Fully Connect.	200 units	256 units
Softmax	10 units	10 units

نتایح:

Distillation Temperature	MNIST Adversarial Samples Success Rate (%)	CIFAR10 Adversarial Samples Success Rate (%)
1	91	92.78
2	82.23	87.67
5	24.67	67
10	6.78	47.56
20	1.34	18.23
30	1.44	13.23
40	0.45	9.34
50	1.45	6.23
100	0.45	5.11
No distillation	95.89	87.89

نتیجه گیری و زمینه پژوهشی

- شیوههای متنوع دفاع
- کارایی هر یک با توجه به دیتاستهای متفاوت
 - بررسی و پیاده سازی هریک از روشها

- Jan Hendrik Metzen, Tim Genewein, Volker Fischer, Bastian Bischoff, "On detecting adversarial perturbations", 2017
- 2. Uri Shaham, Yutaro Yamada, Sahand Negahban, "Increasing Local Stability of Neural Nets through Robust Optimization", 2016
- 3. Yan Zhou, Murat Kantarcioglu, Bowei Xi, "A survey of game theoretic approach for adversarial machine learning", 2018
- Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu†, Jun Zhu, "Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser", 2018
- Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami, "Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks", 2016
- Dongyu Meng, Hao Chen, "a Two-Pronged Defense against Adversarial Examples", 2017
- Negin Entezari, Saba A. Al-Sayouri, Amirali Darvishzadeh, Evangelos E. Papalexakis, "All You Need Is Low (Rank): Defending Against Adversarial Attacks on Graphs", 2020

سپاس از توجه شما