TRƯỜNG ĐẠI HỌC PHENIKAA **KHOA CƠ KHÍ – CƠ ĐIỆN TỬ**

BÀI TẬP LỚN CHI TIẾT MÁY

Mã học phần: MEM703002

Mã đề: 1/P.MEM16.H1

Học kỳ 3 Năm học 2024-2025

Sinh viên thực hiện

Họ tên: Hoàng Trung An

Lóp: KTCĐT-N02

Khóa: K16

Mã lớp: MEM703002-1-1-24(N01)

Giảng viên hướng dẫn

PGS.TS.Vũ Lê Huy

HÀ NỘI, 12/2023

PHIẾU ĐÁNH GIÁ KẾT QUẢ BÀI TẬP LỚN HỌC PHẦN CHI TIẾT MÁY

Mã học phần: MEM703002

Họ và tên sinh viên: Hoàng Trung An

Mã số sinh viên:22010740 Mã đề: 1/P.MEM16.H1

STT	CĐR	Nội dung đánh giá	Điểm tối đa	Điểm	Ghi chú
		Thực hiện trình bày và nội dung tính toán đúng theo yêu cầu đề bài	2,0		
		Thực hiện tính toán trung thực, đúng thông số	3,0		
	Lựa chọn được các thông số hợp lý		3,0		
2	1.2	Vận dụng được kiến thức về cơ sở ngành và kiến thức bổ trợ trong tính toán thiết kế máy.	1,0		
3	2.1	Thực hiện được các bài toán về phân tích, nhận dạng, tính toán các chi tiết máy trong hệ thống cơ khí.			
	Tổng				

, ngày	tháng		năm	
--------	-------	--	-----	--

Giảng viên đánh giá

 $(K\circ v\mbox{\ensuremath{\mbox{\sc h}}}\mbox{\ensuremath{\mbox{\sc h}}}\mbox{\ensuremath{\mbox$

ĐỀ BÀI TẬP LỚN

Đề (bản gốc) có chữ ký của Giảng viên hướng dẫn đóng thay thế vào vị trí trang này

PHENIKAA UNIVERSITY

MINOR PROJECT

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 1/P.MEM16.H1

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 24000 \text{ (hour)}$

Number of shifts: 2 (shift)

The tilt angle of the center line of the belt drive: 40° (Dai det)

Load property: Va đập nhẹ Coupling force on the shaft: 49.74 (N)

Shaft Params	Motor		I		II Workin		cing	
P (kW)	0.6		0.564 0.5		42	0.5	31	
n (v/ph)	720		257.14		58.44		58.4	44
T (Nmm)	7958.3		2094	20946.6 885		71.2	8677	3.6
u		2.:	80	4	.40		1	

- Distances between the load positions are given by the formula as:

 $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 1 + Presenting the report on paper with A4 size.

Student: Hoàng Trung An......22010740 Class: K16-KTCDT_2

Instructor: Vũ Lê Huy

DEAN (sign and full name)

LECTURER (sign and full name)

Class code: Chi tiết máy-1-1-24(N01)

Semester: 2024.1

Mục lục

TÓM TẮT	2
Lời nói đầu	3
Chương 1: Tính thiết kế bộ truyền đai/xích (tùy theo đề)	4
1.1 Chọn đai	4
1.2 Tính toán và xác định đường kính bánh đai	4
1.3 Tính khoảng cách trục	4
1.4 Tính chiều dài đai	5
1.5 Xác định tiết diện đai	5
Chương 2: Tính thiết kế bộ truyền bánh răng trụ	9
2.1 Chọn vật liệu	9
2.2 Xác định ứng suất cho phép	9
2.3	9
2.4	9
2.5	9
Chương 3: Tính thiết kế trục	11
3.1 Chọn vật liệu chế tạo trục	11
3.2 Tính tải trọng tác dụng lên trục	11
3.3 Tính khoảng cách giữa các điểm đặt lực	11
3.4 Tính phản lực tại các gối đỡ	11
$3.5 \text{ Vẽ biểu đồ mômen uốn } M_x, M_y \text{và xoắn } T$	11
$3.6~{ m T\'{i}}$ nh mômen uốn tổng M_{ij} và mômen tương đương M_{tdij}	11
3.7 Thiết kế sơ bộ kết cấu trục	11
KÉT LUẬN	12
Tài liệu tham khảo	13

TÓM TẮT

Tóm tắt là một phác thảo ngắn gọn về bài tập lớn, mục đích và kết quả chính đạt được. Phần tóm tắt nên được viết sau khi hoàn thành bài tập lớn và thường khoảng 100-150 từ.

ABSTRACT

An abstract is an outline/brief summary of this minor project, target and main results obtained. Abstracts should be written after the full report is written, and are usually about 100-150 words.

Lời nói đầu

Sinh viên trình bày các nhận thức chung của bản thân về bài tập lớn của môn học này, vai trò và ý nghĩa của bài tập lớn, phân tích và trình bày cơ sở của sơ đồ hệ thống, lời gửi gắm, lời cảm ơn,

Chương 1: Tính thiết kế bộ truyền đai/xích (tùy theo đề)

Thông số tính toán thiết kế bộ truyền đai/xích:

- Công suất trên trực chủ động: $P_1 = 0.6 \text{ (kW)}$

- Mô men xoắn trên trục chủ động: $T_1 = 7958.3$ (N.mm)

- Số vòng quay trên trục chủ động: $n_1 = 720$ (vòng/phút)

- Tỉ số truyền của bộ truyền: u = 2.8

- Góc nghiêng bộ truyền so với phương nằm ngang: $\beta = 40^{\circ}$

- Bộ truyền làm việc 2 ca

- Tải trọng tĩnh, làm việc va đập nhẹ

1.1 Chọn đai

Do điều kiện làm việc chịu va đập nhẹ và tốc độ quay khá cao nên chọn đai dẹt chất liệu vải cao su.

1.2 Tính toán và xác định đường kính bánh đai

-Đường kính bánh đai nhỏ:

$$d_1 = (5.2 \dots 6.4).\sqrt[3]{T_1} \approx 103.82 \dots 127.78 \, m \, m$$

Chọn d_1 theo tiêu chuẩn $d_1 = 112$ mm

-Chọn hệ số trượt $\varepsilon = 0.02$;

-Đường kính bánh đai lớn

$$d_{_{2}} = d_{_{1}} \times u \times (1 - \varepsilon) = 112 \times 2.8 \times (1 - 0.02) \approx 307.328 \, m \, m$$

Chọn d₂ theo tiêu chuẩn d₂=315mm

- Tỉ số truyền mới theo giá trị tiêu chuẩn:

$$u = \frac{d_2}{d_1 \times (1 - \varepsilon)} = \frac{315}{112 \times (1 - 0.02)} = 2.87$$

1.3 Tính khoảng cách trục

-Khoảng cách trục:

$$a = (1.5 \div 2)(d_1 + d_2) = 640.5 \div 854 m m$$

Lấy a=750mm

1.4 Tính chiều dài đại

-Chiều dài đai:

$$l = 2a + \frac{\pi (d_1 + d_2)}{2} + \frac{(d_2 - d_1)^2}{4a}$$

$$l = 2 \times 750 + \frac{\pi (112 + 315)}{2} + \frac{(315 - 112)^2}{4 \times 750}$$

$$l \approx 2184.466 m m$$

Để nối đai chọn chiều dai dây l=2190mm

-Vân tốc đại:

$$v = \frac{\pi \times d_1 \times n_1}{60000} = \frac{\pi \times 112 \times 720}{60000} = 4.22 (m / s) < V_{\text{max}} \text{ (thoå mãn)}$$

-Số lần uốn của đai trong 1 giây:

$$i = \frac{v}{l} = \frac{4.22 \times 1000}{2190} \approx 1.927 < i_{\text{max}} = 3 \div 5 \text{ (thoả mãn)}$$

-Khoảng cách trục a theo l:

$$\lambda = l - \frac{\pi (d_1 + d_2)}{2} = 1519.269$$

$$\Delta = \frac{(d_2 - d_1)}{2} = 101.5$$

$$a = \frac{(\lambda + \sqrt{\lambda^2 - 8\Delta^2})}{4} = \frac{1519.269 + \sqrt{1519.269^2 - 8 \times 101.5^2}}{4} = 752.791 mm$$

Lấy a = 753mm

-Góc ôm a₁ trên bánh đai nhỏ:

$$a_1 = 180^{\circ} - \frac{(d_2 - d_1)57^{\circ}}{a} = 164.63 \text{ (a}_1 > 150^{\circ} \text{ thoå mãn)}$$

1.5 Xác định tiết diện đai

-Chiều dày tiêu chuẩn:

Tỉ số
$$\frac{d_1}{\delta}$$
 = 40 $\Rightarrow \delta$ = 2.8 chọn δ = 3 theo chuẩn.

Chọn loại đai BKHJ-65 có lớp lót, có số lớp =3 và chiều dày δ =3

-Tính các hê số C_i:

Hệ số ảnh hưởng đến góc ôm

$$C_{\alpha} = 1 - 0.003(180^{\circ} - \alpha_{1}) = 1 - 0.003(180^{\circ} - 164.63^{\circ}) = 0.954$$

Hệ số ảnh hưởng đến vận tốc

$$C_{v} = 1.04 - 0.0004 \times v^{2} = 1.04 - 0.0004 \times 4.22^{2} = 1.033$$

Hệ số ảnh hưởng của vị trí bộ truyền so với phương nằm ngang

$$\beta \leq 60^{\circ} (\beta = 40) \Rightarrow C_b = 1$$

-Úng suất có ích cho phép được xác định bằng thực nghiệm

Lấy ứng suất căng ban đầu $\sigma_0 = 1.8 MPa$

Theo bảng 4.9. Trị số của hệ số k_1 và k_2 với $\sigma_0 = 1.8 MPa$ có $k_1=2.5$,

 $k_2 = 10.0$

$$\left[\sigma_{F}\right]_{0} = k_{1} - \frac{k_{2} \times \delta}{d_{1}} = 2.5 - \frac{10 \times 3}{112} = 2.23 MPa$$

-Úng suất có ích cho phép ứng với khi cho đai làm việc với $\psi = \psi_0$

$$\left[\sigma_{F}\right] = \left[\sigma_{F}\right]_{0} \times C_{\alpha} \times C_{\nu} \times C_{b} = 2.23 \times 0.954 \times 1.033 \times 1 = 2.197 \, MPa$$

-Chiều rộng đai

Lấy $k_d = 1.2$ ($k_d = 1.1$ với động cơ loại I và thêm 0.1 làm việc 2 ca)

$$b = \frac{1000 \times P \times k_d}{\delta \times v \times [\sigma_F]} = \frac{1000 \times 0.6 \times 1.2}{3 \times 4.22 \times 2.197} = 25.886 \, m \, m$$

Theo chuẩn lấy b = 30mm

Chọn bề rộng bánh đai theo tiêu chuẩn B=

1.6 Xác định lực căng ban đầu và lực tác dụng lên trục

-Lực căng ban đầu : $F_0 = \sigma_0 \times \delta \times b = 1.8 \times 3 \times 30 = 162 N$

-Lực tác dụng lên trục:
$$F_r = 2 \times F_0 \times \sin(\frac{\alpha_1}{2}) = 2 \times 162 \times \sin(\frac{164.63}{2}) = 321.089 N$$

-Lực vòng có ích:
$$F_t = \frac{1000 \times P_1}{v_1} = \frac{1000 \times 0.6}{4.22} = 142.18 N$$

-Hệ số ma sát nhỏ nhất giữa đai và bánh đai:

Điều kiện để không xảy ra hiện tượng trượt tron

$$f_{\min} = \frac{1}{\alpha} \times \ln\left(\frac{2 \times F_0 + F_t}{2 \times F_0 - F}\right) = \frac{1}{50} \times \ln\left(\frac{2 \times 162 + 142.18}{2 \times 162 - 142.18}\right) = 0.0188$$

- -Úng suất lớn nhất trong dây đai:
- +Chọn p=1400kg/m³ (khối lượng riêng của vật làm dây đai)
- +Chọn E=350Mpa (môdun đàn hồi đối với dây vải cao su)

$$\sigma_{\text{max}} = \frac{F_0}{b \times \delta} + \frac{F_t}{2 \times b \times \delta} + p \times v^2 \times 10^{-6} + \frac{\delta}{d_1} \times E$$

$$\sigma_{\text{max}} = \frac{162}{30 \times 3} + \frac{142.1}{2 \times 30 \times 3} + 1400 \times 4.22^2 \times 10^{-6} + \frac{\delta}{d_1} \times 350$$

$$\sigma_{\text{max}} = 11.989 M P a$$

-Tuổi thọ đai:
$$L_h = \frac{\left(\frac{\sigma_r}{\sigma_{\text{max}}}\right)^m}{2.3600 \times i} \times 10^7 = 24000 h$$

.

Tổng hợp các thông số của bộ truyền xích:

Thông số	Ký hiệu	Giá trị
Loại xích		Xích ống con lăn
Bước xích	p	25,4 (mm)
Số mắt xích	х	118
Chiều dài xích	L	2997,2 (mm)
Khoảng cách trục	а	1014 (mm)
Số răng đĩa xích nhỏ	<i>Z</i> 1	25
Số răng đĩa xích lớn	<i>Z</i> 2	50
Vật liệu đĩa xích	Thép 45	$\left[\sigma_{H}\right] = 600 \text{ (M Pa)}$
Đường kính vòng chia đĩa xích nhỏ	d_1	202,66 (mm)
Đường kính vòng chia đĩa xích lớn	d_2	404,52 (mm)
Đường kính vòng đỉnh đĩa xích nhỏ	$d_{\mathrm{a}1}$	213,76 (mm)

Đường kính vòng đỉnh đĩa xích lớn	d_{a2}	416,42 (mm)
Bán kính đáy	R	8,03 (mm)
Đường kính chân răng đĩa xích nhỏ	d_{f1}	186,6 (mm)
Đường kính chân răng đĩa xích nhỏ	$d_{ m f2}$	388,46 (mm)
Lực tác dụng lên trục	$F_{\rm r}$	2257,62 (N)

Chương 2: Tính thiết kế bộ truyền bánh răng trụ

Thông số tính toán thiết kế bộ truyền bánh răng trụ răng thẳng/nghiêng:

- Mô men xoắn trên bánh chủ động: $T_1 = 28536,1$ Nmm
- Tốc độ bánh răng chủ động: $n_1 = 318,6 \text{ vòng/phút}$
- Tỉ số truyền của bộ truyền: u = 4
- Thời gian phục vụ: $L_{\rm h} = 13000$ giờ
- Bộ truyền làm việc 3 ca
- Tải trong tĩnh, làm việc va đập nhe

2.1 Chọn vật liệu

Chọn vật liệu làm bánh răng:

- Vật liệu bánh răng nhỏ:
 - Nhãn hiệu thép: 45
 - Chế độ nhiệt luyện: Thường hóa
 - Độ rắn: HB=170÷217 \Rightarrow chọn HB1= 190
 - Giới hạn bền σb1=600 (MPa)
 - Giới hạn chảy σch1=340 (MPa)
- Vật liệu bánh răng lớn:
 - Nhãn hiệu thép: 45
 - Chế độ nhiệt luyện: Thường hóa
 - Độ rắn: HB=170÷217 \Rightarrow chọn HB2=180
 - Giới hạn bền σb2=600 (MPa)
 - Giới hạn chảy σch2=340 (MPa)

2.2 Xác định ứng suất cho phép

2.3

. . .

2.4

...

2.5

...

.

Tổng hợp các thông số của bộ truyền bánh răng:

Thông số	Kí hiệu	Giá trị
Khoảng cách trục chia	а	115 (mm)
Khoảng cách trục	a_{w}	115 (mm)
Số răng	z_1	23
	Z_2	90
Đường kính vòng chia	d_1	46,84 (mm)
	d_2	183,16 (mm)
Đường kính vòng lăn	$d_{ m w1}$	46,84 (mm)
	$d_{ m w2}$	183,16 (mm)
Đường kính đỉnh răng	d_{a1}	50,84 (mm)
	d_{a2}	187,16 (mm)
Đường kính đáy răng	$d_{ m f1}$	41,84 (mm)
	$d_{ m f2}$	178,16 (mm)
Đường kính cơ sở	$d_{ m b1}$	44,02 (mm)
	$d_{ m b2}$	172,11 (mm)
Hệ số dịch chỉnh	x_1	0
	x_2	0
Góc profin gốc	α	20°
Góc profin răng	α_{t}	20,32°
Góc ăn khớp	α_{tw}	20,32°
Hệ số trùng khớp ngang	ε_{lpha}	1,68
Hệ số trùng khớp dọc	ε_{eta}	1,02
Môđun pháp	m	2 (mm)
Góc nghiêng của răng	β	10,58°
Bề rộng răng	$b_{ m w}$	35 (mm)

Chương 3: Tính thiết kế trục

Yêu cầu tính toán thiết kế truc:

- Trục yêu cầu: trục I/II
- Mô men xoắn trên trục: $T_{I/II} = 28536,1 \text{ Nmm}$

3.1 Chọn vật liệu chế tạo trục

Chọn vật liệu chế tao trục là thép 45 thường hóa có $\sigma_b=600$ (MPa), ứng suất xoắn cho phép $[\tau]=15...20$ (MPa)

Chọn
$$[\tau]_1=15$$
 MPa, $[\tau]_2=20$ MPa.

- 3.2 Tính tải trọng tác dụng lên trục
- 3.3 Tính khoảng cách giữa các điểm đặt lực
- .
- 3.4 Tính phản lực tại các gối đỡ
- .
- 3.5 Vẽ biểu đồ mômen uốn Mx, My và xoắn T
- .
- 3.6 Tính mômen uốn tổng M_{ij} và mômen tương đương M_{tdij}

Chỉ tính cho trục được yêu cầu tính chi tiết.

- .
- 3.7 Thiết kế sơ bộ kết cấu trục
- .

KÉT LUẬN

- Nêu tóm tắt kết quả đã đạt được
- Những vấn đề còn hạn chế.
- Kiến nghị.

Tài liệu tham khảo

- 1. Trịnh Chất, Lê Văn Uyển (2015). *Tính toán thiết kế hệ dẫn động cơ khí, Tập 1*. Nhà xuất bản Giáo dục. ISBN: 978-604-0-03754-1.
- 2. Trịnh Chất, Lê Văn Uyển (2015). *Tính toán thiết kế hệ dẫn động cơ khí, Tập 2*. Nhà xuất bản Giáo dục. ISBN: 978-604-0-06523-0.
- 3. Trần Văn Địch (2008). Công nghệ chế tạo máy. Nhà xuất bản khoa học và kỹ thuật.
- 4. Ninh Đức Tốn (2007). Dung sai lắp ghép. Nhà xuất bản Giáo dục.