

DSI-SRI-MCW

Présenté par: Mme. BENAZZOU Salma

National 2019

1-a-Montrez que $\frac{\ln t}{t^3} = o(\frac{1}{t^2})$ au voisinage de $+\infty$

On a:

$$\lim_{t \to \infty} \frac{\frac{\ln t}{t^3}}{\frac{1}{t^2}} = \lim_{t \to \infty} \frac{\ln t}{t^3} \times t^2 = \lim_{t \to \infty} \frac{\ln t}{t} = 0 \text{ donc } \frac{\ln t}{t^3} = o(\frac{1}{t^2})$$

b-En déduire la nature de $\int_{1}^{+\infty} \frac{\ln t}{t^3} dt$

Rappel: Si f=o(g) au voisinage d'un point a alors $\lim_{a \to g} \frac{f}{g} = 0$ • $\lim_{t \to \infty} \frac{\ln t}{t^{\infty}} = 0$

On a $\frac{\ln t}{t^3} = o(\frac{1}{t^2})$ et $\int_1^{+\infty} \frac{1}{t^2} dt$ est convergente car c'est une integrale de Riemann $\alpha = 2 > 1$

Donc d'après le critère de négligence $\int_{1}^{+\infty} \frac{\ln t}{t^3} dt$ est convergente

Rappel du critére de negligence :

f=o(g) (ou bien $\lim_{a} \frac{f}{a} = 0$) au voisinage d'un point a

- Si $\int g$ converge alors $\int f$ converge
- Si $\int f$ diverge alors $\int g$ diverge

2-a-Verifier que $\frac{t \ln t}{(t^2+1)^2} \sim \frac{\ln t}{t^3}$ au voisinage de $+\infty$

Méthode 1	Méthode 2
On a $t^2+1 \sim t^2$ au voisinage de $+\infty$ Donc $(t^2+1)^2 \sim t^4$ alors $\frac{1}{(t^2+1)^2} \sim \frac{1}{t^4}$	$\lim_{t \to \infty} \frac{\frac{t \ln t}{(t^2 + 1)^2}}{\frac{\ln t}{t^3}} = \lim_{t \to \infty} \frac{t \ln t}{(t^2 + 1)^2} \times \frac{t^3}{\ln t} = \lim_{t \to \infty} \frac{t^4}{(t^2 + 1)^2} = \lim_{t \to \infty} \frac{t^4}{t^4} = 1$
Donc $\frac{t \ln t}{(t^2+1)^2} \sim \frac{t \ln t}{t^4}$ c'est-à-dire $\frac{t \ln t}{(t^2+1)^2} \sim \frac{\ln t}{t^3}$	$Donc \frac{t \ln t}{(t^2+1)^2} \sim \frac{\ln t}{t^3}$

b- En déduire la nature de $\int_1^{+\infty} \frac{t \ln t}{(t^2+1)^2} dt$

On a d'après la question 2-a : $\frac{t \ln t}{(t^2+1)^2} \sim \frac{\ln t}{t^3}$ et d'après la question 1-b $\int_1^{+\infty} \frac{\ln t}{t^3} dt$ est convergente alors d'après le **critére equivalence** $\int_1^{+\infty} \frac{t \ln t}{(t^2+1)^2} dt$ est convergente

Rappel du critére d'equivalence:

$$f \sim g$$
 (ou bien $\lim_{a} \frac{f}{g} = 1$) au voisinage d'un point a $\int g$ et $\int f$ sont de meme nature

National 2019:

1-a-DL2(0) de
$$x \to e^x$$
 et $x \to \ln(1+x)$

On sait que :
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n)$$

Alors
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + o(x^2) = 1 + x + \frac{x^2}{2} + o(x^2)$$

Et on a:
$$\ln(1+x) = x - \frac{x^2}{2} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n)$$

Alors
$$\ln(1+x) = x - \frac{x^2}{2} + o(x^2)$$

b- Déterminer le DL2(0) de la fonction f

$$f(x) = e^x \ln(1+x) - 1$$

$$e^{x} \ln(1+x) = (1+x+\frac{x^{2}}{2})(x-\frac{x^{2}}{2}) + o(x^{2}) = x - \frac{x^{2}}{2} + x^{2} + o(x^{2}) = x + (-\frac{1}{2}+1)x^{2} + o(x^{2}) = x + \frac{x^{2}}{2} + o(x^{2})$$

Donc
$$f(x) = e^x \ln(1+x) - 1 = -1 + x + \frac{x^2}{2} + o(x^2)$$

National 2019:

2) Equation de la tangente

On a:
$$f(x) = -1 + x + \frac{x^2}{2} + o(x^2)$$

Alors l'équation de la tangente au voisinage de 0 est y=-1+x

• La position de la courbe par rapport a la tangente:

On a : $f(x)-y=\frac{x^2}{2}+o(x^2)>0$ donc la courbe est au dessus de la tangente

National 2019:

1-La nature de
$$\sum_{n\geq 0} \frac{n^2}{2^n}$$

Je pose Un=
$$\frac{n^2}{2^n}$$

$$\frac{Un+1}{Un} = \frac{\frac{(n+1)^2}{2^{n+1}}}{\frac{n^2}{2^n}} = \frac{(n+1)^2}{2^{n+1}} \cdot \frac{2^n}{n^2} = \frac{(n+1)^2}{2^n \times 2} \cdot \frac{2^n}{n^2} = \frac{1}{2} \cdot \frac{(n+1)^2}{n^2}$$

$$\lim_{+\infty} \frac{Un+1}{Un} = \lim_{+\infty} \frac{1}{2} \cdot \frac{(n+1)^2}{n^2} = \lim_{+\infty} \frac{1}{2} \cdot \frac{n^2}{n^2} = \frac{1}{2} < 1$$

Alors d'après le critère de D'Alembert la série de terme générale Un est convergente.

2-La nature de $\sum_{n\geq 0} \frac{(-1)^n}{\sqrt{n+1}}$

Je pose Un=
$$\frac{(-1)^n}{\sqrt{n+1}}$$
= $(-1)^n \times \frac{1}{\sqrt{n+1}}$ et Vn= $\frac{1}{\sqrt{n+1}}$

- On a $\lim_{+\infty} V n = \lim_{+\infty} \frac{1}{\sqrt{n+1}} = 0$
- On a Vn+1= $\frac{1}{\sqrt{n+2}}$ or n+2>n+1 donc $\sqrt{n+2}$ > $\sqrt{n+1}$ (car x $\rightarrow \sqrt{x}$ est croissante)

Donc $\frac{1}{\sqrt{n+2}} < \frac{1}{\sqrt{n+1}}$ c'est-à-dire Vn+1<Vn donc (Vn) est décroissante

Alors d'après le critère spécial des séries alternées $\sum_{n\geq 0} \frac{(-1)^n}{\sqrt{n+1}}$ est convergente

Rappel du critére de d'Alembert:

Soit $\sum_{n\geq 0} U_n$ une série à termes positives tel que $\lim_{+\infty} \frac{U_{n+1}}{U_n} = a$.

- Si a<1 alors $\sum_{n\geq 0} U_n$ est convergente
- Si a>1 alors $\sum_{n\geq 0} U_n$ est divergente
- Si a=1 on ne peut rien conclure

Rappel du critére spécial des séries alternées:
Soit $Un=(-1)^nVn$ Si:

- (Vn) est décroissante
- $\lim_{+\infty} Vn = 0$

Alors la série de terme générale Un est convergente

	NATIONAL WILLIAM	- Contract		Sentence de Séni 2019.	1000
inta	Exercise 3	E1	orrest de	MATHEMATIQUES	PAD 2
	DARREICE A.				10

	DAL SIG-SICW	Sentine de Mai 2019.
Pirining	Exercice A.	Epressed MATHEMATIQUES
1	On considere les matrices suivantes :	The second second second
	$A = \begin{pmatrix} -5 & 6 \\ -3 & 4 \end{pmatrix} P = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$	at D= [1 0]
4	1/ Montrer que le polynôme caractéristique	de la matrice A est P (2) = (2 1)(2
1	2/ Montrer que P est inversible et que P	_(-1 2)
1	3/ Verifier que A = PDp-1	
	4/ On considére le système différentiel suivan	x'(t) = -5x(t) + 6y(t) $y'(t) = -3x(t) + 4y(t)$
1	On pose $X(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$ et $Y(t) = \begin{pmatrix} u(t) \\ v(t) \end{pmatrix}$	$= P^{-1} X(t)$
1 a/ Vérifier que $X'(t) = A(X(t))$, puis en déduire que $(S) \hookrightarrow Y$ b/ Exprimer $u(t) = u(t)$		
	b' Exprimer $u(t)$ et $v(t)$ en fonction de l	Y'(t) = DY(t)
	c/ En déduire $x(t)$ es $y(t)$ en fonction de	

1-Montrer que $P(\lambda) = (\lambda - 1)(\lambda + 2)$

On a A=
$$\begin{pmatrix} -5 & 6 \ -3 & 4 \end{pmatrix}$$

P(λ)=Det(A- λ I)= $\begin{vmatrix} -5 - \lambda & 6 \ -3 & 4 - \lambda \end{vmatrix}$ =(-5 - λ)(4 - λ)-6× (-3)
= -20+5 λ -4 λ + λ ²+18= λ ²+ λ -2
 Δ =1²-4.(-2)=9=3²
 λ 1= $\frac{-1-3}{2}$ =-2 et λ 2= $\frac{-1+3}{2}$ =1
Alors P(λ)=(λ -1)(λ +2)

Si
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Alors Det $A = ad$ -bc

$$P(X)=aX^2+bX+c$$

Si α et β deux racines de P alors
 $P(X)=(X-\alpha)(X-\beta)$

2-Montrer que P et inversible et que $P^{-1} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$

On a
$$P = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$

 $Det(P) = \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} = 1 - 2 = -1$
 $Donc P^{-1} = \frac{1}{-1} \begin{pmatrix} 1 & -2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$

On dit que $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est inversible si et seulement si Det $A \neq 0$ et on a

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

3-Verifier que $A=PDP^{-1}$

On a
$$\begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$$

P.D= $\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & -4 \\ 1 & -2 \end{pmatrix}$

$$\begin{pmatrix}
-1 & 2 \\
1 & -1
\end{pmatrix}$$

$$PD P^{-1} = \begin{pmatrix}
1 & -4 \\
1 & -2
\end{pmatrix} \qquad \begin{pmatrix}
-5 & 6 \\
-3 & 4
\end{pmatrix} = A$$

4-a-Verifier que X'(t)=A.X(t)

Le système est :
$$\begin{cases} x'(t) = -5x(t) + 6y(t) \\ y'(t) = -3x(t) + 4y(t) \end{cases}$$
 Avec $X(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$

La forme matricielle associé au système est :

$$\begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix} = \begin{pmatrix} -5 & 6 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

Alors X'(t)=A. X(t)

Déduire que Y'(t)=DY(t)

On a
$$Y(t) = P^{-1}X(t)$$

Alors $Y'(t) = P^{-1}X'(t)$ et d'après la question précédente X'(t) = A. X(t)

Donc Y'(t)= P^{-1} A. X(t) et A=PD P^{-1} (d'aprés la questions 3)

Donc Y'(t)=
$$P^{-1}$$
 PD P^{-1} . X(t)

Or
$$P^{-1}$$
 P=I

Alors Y'(t)=D
$$P^{-1}$$
. X(t)

C'est-à-dire Y'(t)=D
$$Y(t)$$

4-b-exprimer u(t) et v(t) en fonction de t

On a Y'(t)=DY(t) et Y(t)=
$$\begin{pmatrix} u(t) \\ v(t) \end{pmatrix}$$

Alors $\begin{pmatrix} u'(t) \\ v'(t) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} u(t) \\ v(t) \end{pmatrix} = \begin{pmatrix} u(t) \\ -2v(t) \end{pmatrix}$
 $\begin{cases} u'(t) = u(t) \\ v'(t) = -2v(t) \end{cases}$ alors $\begin{cases} u'(t) - u(t) = 0 \\ v'(t) + 2v(t) = 0 \end{cases}$
 $\begin{cases} u(t) = \alpha e^{-\int \frac{1}{1} dt} = \alpha e^t \\ v(t) = \beta e^{-\int \frac{2}{1} dt} = \beta e^{-2t} \end{cases}$

4-c-En déduire x(t) et y(t) en fonction de t

On a Y(t)=
$$P^{-1}$$
X(t) alors
X(t)=P.Y(t)
$${x(t) \choose y(t)} = {1 \choose 1} {u(t) \choose v(t)}$$

$$\begin{pmatrix} \alpha e^t \\ \beta e^{-2t} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$

$$\begin{cases} x(t) = \alpha e^t + 2\beta e^{-2t} \\ y(t) = \alpha e^t + \beta e^{-2t} \end{cases}$$

$$= \begin{pmatrix} \alpha e^t + 2\beta e^{-2t} \\ \alpha e^t + \beta e^{-2t} \end{pmatrix}$$

