ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский

Нижегородский государственный университет им. Н.И. Лобачевского»

Радиофизический факультет Кафедра Общей физики

Направление «Радиофизика»

Отчет по практике

Численное моделирование морской поверхности

Руководитель практики Караев В.Ю.

Выполнил студент 4-го курса бакалавриата Понур К.А.

Содержание

1	Вве	едение	2
2 Теоретическая часть		ретическая часть	2
	2.1	Спектральное разложение случайных функций	2
	2.2	Небольшое введение в корреляционную теорию	4
	2.3	Реальное и модельное поля уклонов волнения	5

1. Введение

В настоящее время, существующая измерительная аппаратура не всегда позволяет получить достаточно полное представление о состоянии приповерхностного слоя океана, поэтому постоянно разрабатываются новые радиолокационные системы. Вместе с тем, для решения таких задач, как проверка качества диагностики состояния поверхности океана существующими радиолокаторами, тестирование и разработка алгоритмов восстановления океанографической информации, а также оценка возможностей новых радиолокаторов, вполне естественным является применение более экономных по времени и средствам методов, в частности численного моделирования. Однако, при моделировании одномерной морской поверхности, как правило, используется сумма большого числа гармоник, что приводит к значительным затратам машинного времени.

В связи с этим возникает необходимость в минимизации числа гармоник в спектре моделируемой морской поверхности при сохранении необходимой точности при решении различных задач оптики морской поверхности. Здесь возникает ряд нетривиальных вопросов об оптимальном разбиении частотной плоскости на участки и выборе оптимального положения дискретных спектральных компонент в пределах этих участков. Поиску ответов на эти вопросы и посвящена данная работа.

$$\frac{\partial U}{\partial t} \left(1 + \frac{\mathrm{d}\varphi}{\mathrm{d}\xi} \frac{\mathrm{d}V}{\mathrm{d}U} t \right) = -V(U) \frac{\mathrm{d}\varphi}{\mathrm{d}\xi},$$

2. Теоретическая часть

2.1. Спектральное разложение случайных функций

$$\zeta(t) = \int_{-\infty}^{\infty} e^{i\omega t} \, dC(\omega) \,, \tag{1}$$

где $\mathrm{d}C(\omega)$ - конечное или бесконечно малое приращение функции $C(\omega)$ на интервале $(\omega,\omega+\mathrm{d}\omega)$:

$$dC(\omega) = C(\omega + d\omega) - C(\omega). \tag{2}$$

Интеграл Фурье-Стилтьеса (1) охватывает случаи и непрерывного, и дискретного, и смешанного спектров. В чисто дискретном случае можно записать его в форму обобщенного ряда Фурье:

$$\zeta(t) = \sum_{n} c_n e^{i\omega_n t},\tag{3}$$

а при непрерывном спектре можно формально ввести плотность комплексной амплитуды $\mathrm{d}C(\omega)$:

$$dC(\omega) = c(\omega) d\omega, \qquad (4)$$

так что (1) примет вид обычного интеграла Фурье:

$$\zeta(t) = \int_{-\infty}^{\infty} e^{i\omega t} c(\omega) d\omega.$$
 (5)

Если ζ — случайная функция, то существование интеграла (1) надо понимать в смысле вероятностной сходимости. Случайные функции, представимые в виде (1), называются гармонизуемыми.

В пределах корреляционной теории, ограничивающейся моментами не выше второго порядка, естественно и целесообразно понимать существование интеграла (1) в среднем квадратичном. Необходимым и достаточным условием гармонизуемости случайной функции $\zeta(t)$ является тогда при любых t и t' двукратного интеграла Фурье-Стилтьеса

$$B(t,t') = \int_{-\infty}^{\infty} e^{i(\omega t - \omega' t')} d^2 \Gamma(\omega,\omega')$$
(6)

представляющего момент второго порядка $B(t,t') = \langle \zeta(t)\zeta^*(t')\rangle$ функции $\zeta(t)$. Иначе говоря, если интеграл (6) существует, то это означает, что существует случайная комплексная функция $C(\omega)$ такая, что интеграл (1) сходится в среднем квадратичном к ξ , причем двумерное приращение функции $\Gamma(\omega,\omega')$ есть

$$d^{2}\Gamma = \langle dC(\omega) dC^{*}(\omega') \rangle. \tag{7}$$

В частности, при t' = t имеем

$$\langle |\zeta(t)|^2 \rangle = B(t,t) = \int_{-\infty}^{\infty} e^{i(\omega - \omega')t} d^2\Gamma(\omega, \omega').$$
 (8)

Пусть $\zeta(t)$ в широком смысле стационарна. Тогда требование постоянства среднего значения $\langle \zeta(t) \rangle = \text{const}$ означает, согласно (1), что при всех $\omega \neq 0$ должно быть

$$\langle dC(\omega) \rangle = 0 \tag{9}$$

и тогда

$$\langle \zeta \rangle = \langle dC(0) \rangle. \tag{10}$$

Далее мы будем предполагать, что у рассматриваемых стационарных функций $\zeta(t)$ среднее значение $\langle \zeta \rangle = 0$ и, следовательно, смешанный момент совпадает с функцией корреляции ψ .

Условие стационарности функции корреляции может быть выполнено, как это видно из (6), только в том случае, если

$$d^{2}\Gamma(\omega,\omega') = \langle dC(\omega) dC^{*}(\omega') \rangle = 0 \text{ при } \omega \neq \omega', \tag{11}$$

т.е. «масса» распределена только на биссектрисе $\omega = \omega'$. Тогда приращение $d^2\Gamma(\omega,\omega')$ всегда вещественно и неотрицательно. Если воспользоваться дельта-функцией, то сказанное можно записать в виде

$$d^{2}\Gamma(\omega,\omega') = \langle dC(\omega) dC^{*}(\omega') \rangle = \delta(\omega - \omega') d\omega' dG(\omega), \qquad (12)$$

причем вещественное приращение $\mathrm{d}G(\omega)$ неотрицательно.

Подставив (12) в (6), получаем:

$$\iint_{\infty} e^{i(\omega t - \omega' t')} \langle dC\omega \, dC^*(\omega') \rangle = \int_{-\infty}^{\infty} dG(\omega) \int_{-\infty}^{\infty} e^{i(\omega t - \omega' t')} \delta(\omega - \omega') \, d\omega' =$$
(13)

$$\int_{-\infty}^{\infty} e^{i\omega(t-t')} dG(\omega) = \psi(t-t')$$
(14)

2.2. Небольшое введение в корреляционную теорию

Докажем стационарность этого процесса в выбранной нами точке (x_0, y_0)

$$\langle \zeta(x_0, y_0, t) \rangle = \langle A \rangle \cdot \langle \cos(\vec{k} \, \vec{r} - \omega t + \theta) \rangle =$$
 (15)

$$\langle A \rangle \left(\cos \left(\overrightarrow{k} \overrightarrow{r} - \omega t \right) \langle \cos \theta \rangle - \sin \left(\overrightarrow{k} \overrightarrow{r} - \omega t \right) \langle \sin \theta \rangle \right) \tag{16}$$

Независимость от $\langle \zeta(t) \rangle$ от t, т.е. равенство $\langle \zeta(t) = 0 \rangle$, можно обеспечить при $\langle A \rangle = 0$ или при $\langle \cos \theta \rangle = \langle \sin \theta \rangle = 0$. Первый случай нам не подходит, потому рассмотрим второй. Это равенство будет иметь место, если плотность вероятности фазы $w_{\theta}(\theta)$ ортогональна в интервале $(0, 2\pi)$ к $\cos \theta$ и $\sin \theta$, т.е. представима рядом Фурье, но в данной работе будет использоваться частный случай распределения $w_{\theta}(\theta) = \frac{1}{2\pi}$.

спустя ещё несколько строк рассуждений Таким образом , что случайная функция ζ является стационарной по Хинчкину, то есть её среднее значение постоянно $\zeta(t)=\langle \zeta \rangle=$ const, а момент второго порядка зависит только от $\tau=t_2-t_1$ и конечен при $\tau=0$.

Пространственно-временная корреляционная 1 функция возвышений по определяется выражением:

$$M_{\zeta}(\overrightarrow{r_1}, \overrightarrow{r_2}, t_1, t_2) = \langle \zeta(\overrightarrow{r_1}, t_1)\zeta(\overrightarrow{r_2}, t_2) \rangle \tag{17}$$

В соответствии с (??):

$$\begin{split} M_{\zeta}(\overrightarrow{r_1},\overrightarrow{r_2},t_1,t_2) &= \frac{1}{2}\operatorname{Re}\iint\limits_{\infty} \langle \operatorname{d}\dot{\zeta}(\overrightarrow{k}_1)\operatorname{d}\dot{\zeta}(\overrightarrow{k}_2)\rangle \exp\Bigl\{i(\overrightarrow{k}_1\overrightarrow{r}-\omega_1t_1+\overrightarrow{k}_2\overrightarrow{r}-\omega_1t_2)\Bigr\} + \\ &+ \langle \operatorname{d}\dot{\zeta}(\overrightarrow{k}_1)\operatorname{d}\dot{\zeta}^*(\overrightarrow{k}_2)\rangle \exp\Bigl\{i(\overrightarrow{k}_1\overrightarrow{r}-\omega_1t_1-\overrightarrow{k}_2\overrightarrow{r}+\omega_1t_2)\Bigr\} \end{split}$$

 $^{^{1}}$ Нужно разобраться с названиями, но судя по всему так далее называется смешанный момент

Поскольку двумерная плотность вероятности стационарного процесса зависит от t_1 и t_2 через разность $\tau = t_2 - t_1$, то смешанный момент второго порядка будет зависеть только от τ^2 . Аналогично можно сказать и про \vec{r}_1 и \vec{r}_2)2

Итак, для статически однородного и стационарного поля выполняется соотношение:

$$M_{\zeta}(\vec{r}_1, \vec{r}_2, t_1, t_2) = M_{\zeta}(\vec{\rho} = \vec{r}_2 - \vec{r}_1, \tau = t_2 - t_1)$$
 (18)

Чтобы это соотношение было справедливым в нашей задаче, необходимо потребовать выполнение условий

$$\frac{1}{2}\langle d\dot{\zeta}(\vec{k}_1) d\dot{\zeta}(\vec{k}_2)\rangle = 0 \quad \text{if} \quad \frac{1}{2}\langle d\dot{\zeta}(\vec{k}_1) d\dot{\zeta}^*(\vec{k}_2)\rangle = \tilde{S}(\vec{k}_1)\delta(\vec{k}_2 - \vec{k}_1) d\vec{k}_1 d\vec{k}_2. \tag{19}$$

где $\tilde{S}(\vec{k})$ – волновой спектр морской поверхности, $\delta(\vec{k}_2 - \vec{k}_1)$ – дельта-функция. Подставляя эти условия в (17), получим:

$$M_{\zeta}(\rho,\tau) = \iint_{\infty} S(\vec{k}) \cos(\vec{k} \vec{\rho} - \omega_k \tau) dk.$$
 (20)

Винеровский энергетический спектр определяется преобразованием Винера-Хинчкина функцией корреляции, описываемой (20)

$$\Phi_{\zeta}(\vec{k},\omega) = \iiint_{\infty} M_{\zeta}(\vec{\rho},\tau)e^{-i(\vec{k}\vec{\rho}+\omega t)} d\rho d\tau = 4\pi^{3} \left[\tilde{S}(\vec{k})\delta(\omega+\omega_{k}) + \tilde{S}(-\vec{k})\delta(\omega-\omega_{k}) \right]. \quad (21)$$

Из (21) следуют, как частные случаи, выражения для пространственного,

$$\Phi_{\zeta}(\vec{k}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi_{\zeta}(\vec{k}, \omega) d\omega = 2\pi^{2} \left[\tilde{S}(\vec{k}) + \tilde{S}(-\vec{k}) \right], \tag{22}$$

и временного спектров Винера.

Разобрать фундаментально всю теорию до этого момента.

2.3. Реальное и модельное поля уклонов волнения

Обратимся сначала к задаче моделирования случайного одномерного поля уклонов взволнованной поверхности.

Пусть реальное случайное поле уклонов имеет корреляционную функцию $M = \langle \zeta(r)\zeta(r+\rho)\rangle$, связанную с энергетическим спектром уклонов S соотношением, следующим из (10), (11) при $\varphi(\vartheta) = \delta(\vartheta)$:

$$M(\rho) = \int_{0}^{\infty} S(k) \cos(k\rho) \, \mathrm{d}k \,, \tag{23}$$

 $^{^2}$ доказать

Рис. 1: Спектр высот S(k) при фиксированном значении $\tilde{x}=20170$ и меняющейся скорости ветра

Рис. 2: Спектр высот S(k) при фиксированном значении скорости ветра $U=10~{\rm m/c}$ и меняющемся разгоне

Представим модельное поле уклонов в виде суммы N синусоид с детерминированными амплитудами a_i и случайными фазами φ_i :

$$\zeta(r) = \sum_{i=1}^{N} a_i \sin(k_i r + \varphi_i), \tag{24}$$

где фаза φ_i равномерно распределена в интервале $[0,2\pi]$. Соответствующая этому полю корреляционная функция имеет вид

$$\widetilde{M}(\rho) = \sum_{i=1}^{N} b_i \cos(k_i \rho), \tag{25}$$

где
$$b_i = \frac{a_i^2}{2}$$
.

Энергетический спектр модельного поля уклонов представляет собой набор дельтафункций, отличных от нуля в узлах k_i . Огибающей спектра является кривая, проходящая через точки с абсциссами k_i и ординатами b_i . Вопросам определения величин b_i и k_i посвящены следующие разделы работы.

Естественным способом размещения k_i будет являться следующий метод: необходимая область разбивается на N участков одинаковой ширины Δk , а узлы располагаются в точках $k_i = i\Delta k, i = 1, 2 \dots N$, т.е. эквидистантно. Амплитуды спектральных составляющих определяются следующим соотношением:

$$b_i = \int_{(i-1)\Delta k}^{i\Delta k} S(k) \, \mathrm{d}k \tag{26}$$

При этом, из (23) можно заметить, что сумма всех b_i равна дисперсии реального поля

$$M(0) = \sigma^2 = \int_0^\infty S(k) \, \mathrm{d}k \tag{27}$$

Однако, при таком способе моделирования корреляционная функция $\widetilde{M}(\rho)$ является периодической. Для иллюстрации на рис.() приведены примеры расчёта этой функции для скорости ветра $U=10\frac{\rm M}{\rm c}$ и N=256. Конечно, период этой функции может быть удлинён, но это достигается путём увеличения гармоник. Как видно из рис. 4 даже при не разумно большом числе гармоник период корреляционной функции недостаточно большой, что ставит под сомнение применимость такого метода моделирования.

Рис. 3: Корреляционные функции высот и уклонов при эквидистантном расположении узлов. $U=10\frac{\rm M}{c},~N=256$

Рис. 4: Корреляционные функции высот и уклонов при эквидистантном расположении узлов. $U=10\frac{\rm M}{c},~N=10^5$

Чтобы функция $\widetilde{M}(\rho)$ не была периодической, необходимо лишь неэквидистантно расположить узлы k_i на оси частот. Например, можно использовать различные детерминированные способы расположения узлов на оси частот.

Поскольку спектр частот (см. рис. 1) удобно представим в логарифмическом масштабе, то можно располагать узлы эквидистантно в логарифмическом масштабе. Очевидно, что такой способ значительно лучше, чем первый способ. Функция корреляции высот довольно быстро сходится к функции реального поля. С функцией корреляции наклонов проблем возникает больше, поскольку она быстро принимает шумовой характер.

Рис. 5: Корреляционные функции высот и уклонов при логарифмическом расположении узлов. $U=10\frac{\rm M}{c},~N=256$

Очевидно, что способов выбора узлов по детерминированному закону существует бесконечно много, но наилучшими следует считать те способы, которые обеспечивают наименьший уровень «шума» на «хвосте» корреляционной функции $\widetilde{M}(\rho)$.

Допустим что величины k_i не находятся в дробно-рациональных отношениях друг к другу. В этом случае можно полагать, что сложение гармонических составляющих с частотами k_i и амплитудами b_i при больших ρ происходит «некогерентным» образом. При этом мощность «шума» функции $\tilde{M}_q(\rho)$ определяется выражением $\sigma^2 = \sum_{i=1}^N \frac{b_i^2}{2}$. В области малых ρ , напротив, гармоники суммируются «когерентно» и соответствующая «мощность» равна $\tilde{M}_q^2(0) = \left(\sum_{i=1}^N b_i\right)^2$. Образуем величину $Q = \sigma^2/\tilde{M}_q(0)$, которая характеризует относительную мощность шумов. Минимум этой величины находится путём решения системы уравнений $\frac{\partial Q}{\partial b_i} = 0$, для $i = 1, 2, \ldots, N$. Результатом её решения является $b_1 = b_2 = \cdots = d_N$. Спектр модельного поля при этом имеет близкий к белому вид, а выравнивание амплитуд спектральных компонент реального поля S_q сводится к разбиению области определения спектра $[0,k_m]$ на участки Δk_i , интегралы по которым от функции $S_q(k)$ имеют одно и то же значения $b_i = b_0 = \sigma_q^2/N$.

Заметим теперь, что, рассуждая о способах разбиения интервала частот $[0,k_m]$ на

участки Δk_i , мы оставляли нерешенным вопрос о выборе собственно узлов спектра k_i внутри этих участков. Обычно узел k_i ставится у правой границы ячейки Δk_i . При этом, однако, оказывается, что модельная корреляционная функция плохо согласуется с реальной корреляционной функцией в области малых ρ . Для достижения такого согласия следует потребовать сопряжения всех производных (от первого до N-го порядка) функция $\tilde{M}_q(\rho)$ и $M_q(q)$ при $\rho=0$. Это условие эквивалентно требованию сопряжения моментов спектров модельного и реального полей уклонов, которое записывается в виде

$$\sum_{i=1}^{N} b_i k_i^{2p} = \int_{0}^{\infty} k^{2p} S \, \mathrm{d}k \,, \tag{28}$$

для p = 1, 2, ..., N.

Полученная система N уравнений для N неизвестных k_i не имеет общего решения и потому может анализироваться лишь численно, что тоже связано со значительными сложностями.

Оставим пока эту задачу за рамками данной работы.

Наиболее простое решение вопроса о выборе узлов заключается в том, чтобы потребовать выполнения облегченного, по сравнению с предыдущим, условия сопряжения вторых моментов модельного и реального спектров уклонов:

$$b_i k_i^2 = \int_{\Delta k_i} k^2 S(k) \, \mathrm{d}k \,. \tag{29}$$

Из него непосредственно следует правило нахождения узлов k_i . В частности, получаем

$$k_i = \sqrt{\frac{1}{b_0}} \int_{\Delta k_i} k^2 S \, \mathrm{d}k \,. \tag{30}$$

Такой способ выбора узлом, как нетрудно убедиться, обеспечивает сопряжения корреляционных функция реального и модельного полей по второй производной в нуле, или, иначе говоря, равенство дисперсий кривизн этих полей.

Список литературы

- [1] C.М. Pытов, Введение в статистическую радиофизику // Изд. 2-е, перераб. и доп. Москва : Наука, 1976. Ч. 1. Случайные процессы \S 14-18, 38-42
- [2] В.Ю.Караев, М.Б. Каневский, Г.Н. Баландина, Численное моделирование поверхностного волнения и дистанционное зондирование // Препринт №552 ИПФ РАН, 2002, С.1-10.
- [3] *В.Л. Вебер*, О моделировании случайного профиля морской поверхности // Изв. вузов. Радиофизика. 2017. Т. 60, № 4. С. 346.

[4] В.Ю.Караев, Г.Н. Баландина Модифицированный спектр волнения и дистанционное зондирование // Исследование Земли из космоса, 2000, N5, C.1-12.

Примечание. Модель написала на языке Python с использованием библиотек NumPy и SciPy, отчёт по практике и презентация к ней оформлены в издательской системе L^AT_EX с использованием пакета Beamer. Актуальную версию программы можно найти на Github'e:

