Pattern Recognition

Assignment 3

Speech Emotion Recognition

Done By:

Shimaa Ahmed 5556

Fagr Hesham 5886

Raghda Sallam 5837

Heidi Zamzam 5742

Mayar Abuzeid 5773

Link for our code:

https://colab.research.google.com/drive/1oBIPyoCSmaZGtwLmAn-atphKVXnjzwzy?usp=sharing

Code Explanation:

1. Download the Dataset

- First the Crema dataset is downloaded using the librosa.load function which returns the audio signals and the sampling frequency.
- Then we divided the audio signals into 5 sound states which are:
 'SAD', 'DISAPPOINTED', 'FEAR', 'HAPPY', 'NEUTRAL', 'ANGRY' where
 each state has a different label vector which has a 1 in the the
 corresponding state and 0 in the remaining states, one of these label
 vectors are appended to our main label vector y according to which
 sound it is.
- Audios for each state can be listened to and Spectrums are plotted as shown below.

2. Creating Feature Spaces for 1D

 In this section two feature spaces are created from the audio one for Zero-crossing rate and the other is for the Energy.

1-Zero-Crossing Rate

 Zero-Crossing is the rate the signal crosses the x-axis i.e the wave changes from +ve to -ve and vice versa. A very simple way for measuring smoothness of a signal is to calculate the number of zero-crossing within a segment of that signal. A voice signal oscillates slowly - for example, a 100 Hz signal will cross zero 100

- per second whereas an unvoiced fricative can have 3000 zero crossing per second.
- The zero crosses are brought using the function librosa.feature.zero_crossing_rate.
- Splitting and reshaping zero-crossing dataset. The data is splitted 70 % for the training set and 30% for the test set which is done using train_test_split function. This function is used again for the training and validation to have a 5% validation.
- 1D Model for Zero-crossing. The following layers are used Convolution, Maxpooling, Dropout, Flatten and Dense.
- Next the validation loss and training loss are plotted for Zerocrossing.
- Accuracy of test set of Zero-crossing is calculated.
- Confusion matrix of Zero-crossing is calculated and plotted.
- F-score of zero crossing is calculated using the built-in function f1 score which takes in as input the true and predicted labels.

Screenshots:

Splitting of Zero-crossing

```
print(zeroTraining.shape)
print(yzeroTraining.shape)
print(zeroValidation.shape)
print(yzeroValidation.shape)

(4948, 216, 1)
(4948, 6)
```

(4948, 216, 1) (4948, 6) (261, 216, 1) (261, 6)

Zero-crossing 1D Model

1D Models for Zero Crossing

```
[ ] input_layer=Input(shape=(zeroTraining.shape[1],1))
     model=Conv1D(64,kernel_size=(3), strides=1,padding = 'same')(input_layer)
model=Conv1D(64,kernel_size=(3), strides=1,padding = 'same')(model)
     model=MaxPooling1D(pool_size=(2), padding='same')(model)
     model=tf.keras.layers.BatchNormalization(axis=-1, momentum=0.99,epsilon=0.001)(model)
     model = tf.keras.layers.Dropout(.5)(model)
     model=Conv1D(128,kernel_size=(3), strides=1,padding = 'same')(model)
     model=ConvID(128,kernel_size=(3), strides=1,padding = 'same')(model)
model=MaxPooling1D(pool_size=(2),padding='same')(model)
     model=tf.keras.layers.BatchNormalization(axis=-1, momentum=0.99,epsilon=0.001)(model)
     model = tf.keras.layers.Dropout(.9)(model)
     model=Conv1D(256, kernel_size=(3), strides=1,padding = 'same')(model)
     model=Conv1D(256, kernel_size=(3), strides=1,padding = 'same')(model)
     model=MaxPooling1D(pool_size=(2), padding='same')(model)
     model=tf.keras.layers.BatchNormalization(axis=-1, momentum=0.99,epsilon=0.001)(model)
     model = tf.keras.layers.Dropout(.9)(model)
     flat=Flatten()(model)
     model=Dense(4096, activation='relu')(flat)
     model=tf.keras.layers.BatchNormalization(axis=-1, momentum=0.99,epsilon=0.001)(model)
     model = tf.keras.layers.Dropout(.9)(model)
     model=Dense(1000, activation='relu')(model)
     model=tf.keras.layers.BatchNormalization(axis=-1, momentum=0.99,epsilon=0.001)(model)
     model = tf.keras.layers.Dropout(.9)(model)
```

```
model=Conv1D(256, kernel_size=(3), strides=1,padding = 'same')(model)
model=Conv1D(256, kernel_size=(3), strides=1,padding = 'same')(model)
model=MaxPooling1D(pool_size=(2), padding='same')(model)
model=tf.keras.layers.BatchNormalization(axis=-1, momentum=0.99,epsilon=0.001)(model)
model = tf.keras.layers.Dropout(.9)(model)
flat=Flatten()(model)
model=Dense(4096, activation='relu')(flat)
model=tf.keras.layers.BatchNormalization(axis=-1, momentum=0.99,epsilon=0.001)(model)
model = tf.keras.layers.Dropout(.9)(model)
model=Dense(1000, activation='relu')(model)
model=tf.keras.layers.BatchNormalization(axis=-1, momentum=0.99,epsilon=0.001)(model)
model = tf.keras.layers.Dropout(.9)(model)
model=Dense(6, activation='softmax')(model)
main_model = Model(input_layer, model)
epochs=80
learning_rate = 0.001
decay_rate = learning_rate / epochs
sgd = SGD(lr=learning_rate, momentum=momentum, decay=decay_rate, nesterov=False)
main_model.compile(loss='categorical_crossentropy',optimizer=sgd,metrics='accuracy')
history = main_model.fit(x = zeroTraining, y =yzeroTraining,batch_size=32, verbose = 1,validation_data=(zeroValidation, np.array(yzeroValidation)) ,epochs=epochs)
print("History = "+str(history.history))
```

Output

```
Epoch 64/80
Epoch 65/80
155/155 [===
                            :====] - 67s 430ms/step - loss: 1.1439 - accuracy: 0.5561 - val_loss: 1.6816 - val_accuracy: 0.3985
Epoch 66/80
155/155 [==:
                      ========] - 67s 435ms/step - loss: 1.1734 - accuracy: 0.5325 - val loss: 1.6518 - val accuracy: 0.3908
Epoch 67/80
155/155 [==:
                     ========] - 66s 429ms/step - loss: 1.1492 - accuracy: 0.5375 - val_loss: 1.7020 - val_accuracy: 0.3793
Epoch 68/80
                   :=========] - 67s 435ms/step - loss: 1.1213 - accuracy: 0.5669 - val loss: 1.7372 - val accuracy: 0.3525
155/155 [====
Epoch 69/80
155/155 [==:
                              ===] - 66s 428ms/step - loss: 1.1184 - accuracy: 0.5540 - val_loss: 1.7096 - val_accuracy: 0.3946
Fnoch 70/80
155/155 [===
                     Epoch 71/80
155/155 [===========] - 66s 428ms/step - loss: 1.0745 - accuracy: 0.5846 - val_loss: 1.7750 - val_accuracy: 0.3793
Epoch 72/80
155/155 [===:
                 ==========] - 66s 428ms/step - loss: 1.0577 - accuracy: 0.5837 - val_loss: 1.7730 - val_accuracy: 0.3831
Epoch 73/80
155/155 [===
                     ========] - 66s 428ms/step - loss: 1.0540 - accuracy: 0.5927 - val_loss: 1.7919 - val_accuracy: 0.3985
Epoch 74/80
155/155 [===
                    =========] - 67s 429ms/step - loss: 1.0330 - accuracy: 0.6026 - val_loss: 1.8344 - val_accuracy: 0.3487
Epoch 75/80
155/155 [=====
            Epoch 76/80
                 ==========] - 66s 429ms/step - loss: 1.0059 - accuracy: 0.6208 - val_loss: 1.9560 - val_accuracy: 0.3755
Epoch 77/80
                    =========] - 66s 429ms/step - loss: 0.9892 - accuracy: 0.6230 - val loss: 1.8479 - val accuracy: 0.3755
155/155 [===
Epoch 78/80
155/155 [==
                              ===] - 67s 430ms/step - loss: 0.9518 - accuracy: 0.6417 - val_loss: 1.9702 - val_accuracy: 0.3678
Epoch 79/80
155/155 [===========] - 67s 431ms/step - loss: 0.9500 - accuracy: 0.6357 - val_loss: 1.9512 - val_accuracy: 0.4023
History = {'loss': [1.7901586294174194, 1.786758303642273, 1.7839961051940918, 1.7810691595077515, 1.7772750854492188, 1.771883845329284
```

Plot of validation and training loss for zero crossing

```
metrics = history.history
plt.plot(history.epoch, metrics['loss'], metrics['val_loss'])
plt.legend(['loss', 'val_loss'])
plt.show()
```


Test set accuracy of zero crossing

Confusion Matrix of Zero-crossing

F-score of Zero-crossing

8

array([0.36103896, 0.30548926, 0.20125786, 0.31025641, 0.31117825, 0.48205128])

2-Energy

- Energy is the sum of squares of the signal values, normalized by the respective frame length.
- The energy is brought using the function librosa.feature.rms.
- Splitting and reshaping Energy dataset. The data is splitted 70 % for the training set and 30% for the test set which is done using train_test_split function. This function is used again for the training and validation to have a 5% validation.
- 1D Model for Zero-crossing. The following layers are used Convolution, Maxpooling, Dropout, Flatten and Dense.
- Next the validation loss and training loss are plotted for Energy.
- Accuracy of test set of Energy is calculated.

- Confusion matrix of Energy is calculated and plotted.
- F-score of Energy is calculated using the built-in function
 f1_score which takes in as input the true and predicted labels.

Screenshots: Splitting of Energy

```
print(energyTraining.shape)
print(yenergyTraining.shape)
print(energyValidation.shape)
print(yenergyValidation.shape)

(4948, 216, 1)
(4948, 6)
(261, 216, 1)
(261, 6)
```

Screenshots of Energy 1D Model

1D Model for Energy

```
input_layer=Input(shape=(energyTraining.shape[1],1))
    model=Conv1D(216, kernel_size=(5), strides=1, padding = 'same')(input_layer)
    model=Conv1D(216,kernel_size=(5), strides=1,padding = 'same')(model)
    model=Conv1D(216,kernel_size=(5), strides=1,padding = 'same')(model)
    model=MaxPooling1D(pool_size=(3), padding='same')(model)
    model = tf.keras.layers.Dropout(.4)(model)
    model=Conv1D(108,kernel_size=(5),strides=1,padding = 'same')(model)
    model=Conv1D(108,kernel_size=(5),strides=1,padding = 'same')(model)
    model=Conv1D(108,kernel_size=(5),strides=1,padding = 'same')(model)
    model=MaxPooling1D(pool_size=(3), padding='same')(model)
    model = tf.keras.layers.Dropout(.5)(model)
    model=Conv1D(54, kernel_size=(5),strides=1,padding = 'same')(model)
    model=Conv1D(54, kernel_size=(5),strides=1,padding = 'same')(model)
    model=Conv1D(54, kernel_size=(5),strides=1,padding = 'same')(model)
    model=MaxPooling1D(pool_size=(3), padding='same')(model)
    model = tf.keras.layers.Dropout(.4)(model)
    model=Conv1D(27, kernel_size=(5),strides=1,padding = 'same')(model)
    model=Conv1D(27, kernel_size=(5),strides=1,padding = 'same')(model)
    model=Conv1D(27, kernel_size=(5),strides=1,padding = 'same')(model)
    model=MaxPooling1D(pool_size=(3), padding='same')(model)
    model = tf.keras.layers.Dropout(.3)(model)
    model=Conv1D(13, kernel_size=(5),strides=1,padding = 'same')(model)
    model=Conv1D(13, kernel_size=(5),strides=1,padding = 'same')(model)
    model=Conv1D(13, kernel_size=(5),strides=1,padding = 'same')(model)
    model=MaxPooling1D(pool_size=(3), padding='same')(model)
    model = tf.keras.layers.Dropout(.2)(model)
```

```
flat=Flatten()(model)
model=Dense(10000, activation='relu')(flat)
model=Dense(6, activation='softmax')(model)
main_model = Model(input_layer, model)
opt = tf.keras.optimizers.Adam(learning_rate=0.001)
main_model.compile(loss='categorical_crossentropy', optimizer=opt,metrics='accuracy')
main_model.summary()
history = main_model.fit(x = energyTraining, y =yenergyTraining,batch_size=50,verbose = 1,validation_data=(energyValidation, np.array(yenergyValidation)),epochs=30)
print("History = "+str(history.history))
```

Output

```
שני, אורכנ כי די אורכני שי אור - ססמניש : Ticker - מכעוניש : אור - ססמניש - אור - ססמניש : אורכני שי אורכ
     Fnoch 15/30
      99/99 [=========== ] - 55s 555ms/step - loss: 1.2420 - accuracy: 0.5093 - val_loss: 1.3670 - val_accuracy: 0.4215
Epoch 16/30
      99/99 [====
                                          ========] - 55s 554ms/step - loss: 1.2238 - accuracy: 0.5061 - val loss: 1.3656 - val accuracy: 0.4751
      Epoch 17/30
      99/99 [====
                                          ========] - 55s 553ms/step - loss: 1.2080 - accuracy: 0.5067 - val loss: 1.4172 - val accuracy: 0.4138
      Epoch 18/30
      99/99 [====
                                        =========] - 55s 557ms/step - loss: 1.1740 - accuracy: 0.5253 - val_loss: 1.4124 - val_accuracy: 0.4138
      Epoch 19/30
      Epoch 20/30
      99/99 [=========== ] - 55s 557ms/step - loss: 1.1444 - accuracy: 0.5386 - val_loss: 1.3841 - val_accuracy: 0.4674
      Epoch 21/30
      99/99 [============= - 55s 554ms/step - loss: 1.1032 - accuracy: 0.5557 - val_loss: 1.3138 - val_accuracy: 0.4789
      Epoch 22/30
      99/99 [=====
                                  Epoch 23/30
                                  ==========] - 54s 550ms/step - loss: 1.1025 - accuracy: 0.5565 - val_loss: 1.3649 - val_accuracy: 0.4751
      99/99 [=====
      Epoch 24/30
                                         :=======] - 55s 553ms/step - loss: 1.0246 - accuracy: 0.6009 - val_loss: 1.4090 - val_accuracy: 0.4751
      99/99 [=====
      Epoch 25/30
      99/99 [====:
                                        ========] - 55s 555ms/step - loss: 1.0174 - accuracy: 0.6052 - val_loss: 1.3629 - val_accuracy: 0.4713
      Epoch 26/30
      99/99 [====
                                      =========] - 55s 556ms/step - loss: 1.0017 - accuracy: 0.6065 - val_loss: 1.4918 - val_accuracy: 0.4636
      Epoch 27/30
      99/99 [=====
                             Epoch 28/30
      Epoch 29/30
      History = {'loss': [1.6018946170806885, 1.466667890548706, 1.435476541519165, 1.4109262228012085, 1.3962897062301636, 1.378288269042968
```

Plot of validation and training loss for zero crossing

```
metrics = history.history
plt.plot(history.epoch, metrics['loss'], metrics['val_loss'])
plt.legend(['loss', 'val_loss'])
plt.show()
```


Test set accuracy of Energy

Test set accuracy of Energy: 43%

Confusion Matrix of Energy

F-score of Energy

array([0.5011655 , 0.29765886, 0.30107527, 0.36437247, 0.46293888, 0.6005291])

3. Creating Feature Space for 2D

Mel Spectogram

- A spectrogram is a detailed view of audio, able to represent time, frequency, and amplitude all on one graph. A spectrogram can visually reveal broadband, electrical, or intermittent noise in audio, and can allow you to easily isolate those audio problems by sight. Because of its profound level of detail, a spectrogram is particularly useful in post production.
- The mel spectrogram is brought using the function mel(y=sound[i], sr=freq[i]).ssss
- This is done for 2D matrix and the padding with zeros here done for both rows and colomns.
- Extraction of Spectogram is then done.
- Splitting and reshaping zero-crossing dataset. The data is splitted 70 % for the training set and 30% for the test set which is done using train_test_split function. This function is used again for the training and validation to have a 5% validation.
- 2D Model of Spectogramis implemented which contains the following Convolution, Maxpooling, Dropout, Flatten and Dense.
- Next the validation loss and training loss are plotted for Mel-spectogram.
- Accuracy of test set of Mel-spectogram is calculated.
- Confusion matrix of Mel-spectogram is calculated and plotted.
- F-score of Mel-spectogram is calculated using the built-in function f1 score which takes in as input the true and predicted labels.

Screenshots: Screenshots of 8 mel Spectograms

Splitting of Mel Spectogram

```
print(np.array(melTraining).shape)
print(np.array(melValidation).shape)
print(np.array(ymelTraining).shape)
print(np.array(ymelValidation).shape)
```

(4948, 128, 216) (261, 128, 216) (4948, 6) (261, 6)

Screenshots of Mel spectrogram 2D Model

Models of 2D

```
#Reshaping
    MelTrainArray = np.array(melTraining)
    MelTrainArray=MelTrainArray.reshape((MelTrainArray.shape[0], MelTrainArray.shape[1], MelTrainArray.shape[2], 1))
    MelValArray = np.array(melValidation)
    melValArray = MelValArray.reshape(MelValArray.shape[0],MelValArray.shape[1], MelValArray.shape[2], 1)
    print(melValArray.shape)
    input_layer=Input(shape=(MelValArray.shape[1],MelValArray.shape[2],1))
    model=Conv2D(8, kernel_size=(3,3),strides=1, padding = 'same')(input_layer)
    model=Conv2D(8, kernel_size=(3,3),strides=1, padding = 'same')(model)
    model=MaxPooling2D(pool_size=(2, 2), strides=(2,2),padding = 'valid')(model)
    model=Conv2D(16, kernel size=(3,3), strides=1,padding = 'valid')(model)
    model=Conv2D(16, kernel size=(3,3), strides=1,padding = 'valid')(model)
    model=MaxPooling2D(pool_size=(2, 2), strides=(2,2),padding = 'valid')(model)
    model=Conv2D(32, kernel_size=(3,3), strides=1,padding = 'valid')(model)
    model=Conv2D(32, kernel size=(3,3), strides=1,padding = 'valid')(model)
    model=MaxPooling2D(pool_size=(2, 2), strides=(2,2),padding = 'valid')(model)
    model=Conv2D(64, kernel_size=(3,3), strides=1,padding = 'valid')(model)
    model=Conv2D(64, kernel_size=(3,3), strides=1,padding = 'valid')(model)
```

```
model=MaxPooling2D(pool_size=(2, 2), strides=(2,2))(model)
model=Flatten()(model)
model=Dense(120, activation='relu')(model)
model=Dense(6, activation='softmax')(model)
# opt = tf.keras.optimizers.Adam(learning_rate=0.001)
opt = tf.keras.optimizers.SGD(learning_rate=0.001)
main_model = Model(input_layer, model)
main_model.compile(loss='categorical_crossentropy', optimizer=opt,metrics='accuracy')
main_model.summary()
history = main_model.fit(x = MelTrainArray, y = np.array(ymelTraining),batch_size=8,verbose = 1,validation_data=(MelValArray, np.array(ymelValidation)),epochs=50)
print("History = "+str(history.history))
```

Output

```
619/619 [=============] - 160s 258ms/step - loss: 1.0304 - accuracy: 0.6157 - val_loss: 2.1860 - val_accuracy: 0.4291
Epoch 38/50
619/619 [================== ] - 159s 258ms/step - loss: 1.1314 - accuracy: 0.5853 - val_loss: 2.0127 - val_accuracy: 0.4521
Epoch 39/50
619/619 [====
          Epoch 40/50
619/619 [===========] - 160s 258ms/step - loss: 0.9299 - accuracy: 0.6470 - val_loss: 2.5688 - val_accuracy: 0.4444
Epoch 41/50
                  =========] - 160s 258ms/step - loss: 0.8770 - accuracy: 0.6560 - val_loss: 3.1316 - val_accuracy: 0.3870
619/619 [===
Epoch 42/50
                    =========] - 160s 258ms/step - loss: 0.9924 - accuracy: 0.6263 - val_loss: 2.8174 - val_accuracy: 0.3946
619/619 [===
Epoch 43/50
619/619 [===
                    =========] - 159s 257ms/step - loss: 0.9244 - accuracy: 0.6480 - val_loss: 2.3199 - val_accuracy: 0.4215
Epoch 44/50
619/619 [===:
                =========] - 159s 257ms/step - loss: 0.9145 - accuracy: 0.6495 - val_loss: 2.9012 - val_accuracy: 0.4368
Epoch 45/50
619/619 [====
            Epoch 46/50
619/619 [============] - 159s 257ms/step - loss: 0.8868 - accuracy: 0.6715 - val_loss: 2.4406 - val_accuracy: 0.3908
Enoch 47/50
619/619 [===
                    =========] - 159s 257ms/step - loss: 1.1389 - accuracy: 0.6233 - val_loss: 2.7544 - val_accuracy: 0.3448
Epoch 48/50
619/619 [===
                       ========] - 160s 258ms/step - loss: 1.1080 - accuracy: 0.5812 - val_loss: 2.2703 - val_accuracy: 0.3640
Epoch 49/50
619/619 [===
                       ========] - 159s 258ms/step - loss: 1.0687 - accuracy: 0.6133 - val_loss: 2.1857 - val_accuracy: 0.4023
                                                  loss: 0.9199
                                                              - accuracy: 0.6453
History = {'loss': [1.851027488708496, 1.5579965114593506, 1.510033369064331, 1.464797019958496, 1.4318299293518066, 1.4053725004196167, 1.:
4
```

Plot of validation and training loss for Mel Spectogram

```
metrics = history.history
plt.plot(history.epoch, metrics['loss'], metrics['val_loss'])
plt.legend(['loss', 'val_loss'])
plt.show()

30

loss
val_loss
25

20

15

10

20

30

40

50
```

Test set accuracy of Mel Spectogram

Test set accuracy of Spectogram: 38%

Confusion Matrix of Mel Spectogram

F-score of Mel Spectogram

array([0.50651769, 0.23606557, 0.16061185, 0.32284542, 0.40254777, 0.52759085])