- Домашнаяя работа

Выполнили студенты группы БПИ201:

- Клоков Станислав (номер 16 по списку)
- Попов Матвей (номер 29 по списку)
- Прокудин Максим (номер 31 по списку)

Вариант 31 (Томск: Томск)

Целевая выборка

Томск: Томск

```
import pandas as pd
import matplotlib as mpl
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
sns.set(palette='Set2')

table = pd.read_excel("data.xlsx")

location = "Tomck: Tomck"
table = table[table['psu'] == location]

display(table)
```

	idind	psu	status	age	male	industry	wage	public	internet
180	4202	Томск: Томск	Областной це	46	1	ТРАНСПОРТ, С	25000	0	0
181	4229	Томск: Томск	Областной це	38	0	СТРОИТЕЛЬСТВ	9000	1	1
182	4246	Томск: Томск	Областной це	55	0	ЮРИСПРУДЕНЦИ	90000	1	1

Номера 1 - 11

Tarrair Offication

Задание 1

Рассчитайте описательные статистики (минимум, максимум, среднее значение, стандартное отклонение, размах) для всех переменных в Вашей выборке кроме отрасли и номера региона.

```
desc = table.describe()
# removed extra
del desc['idind']
for id_ in range(1, 76):
    del desc['id' + str(id_)]
def map_var_to_description(raw):
    need = ['min', 'max', 'mean', 'std']
    for key in raw.keys():
        if key not in need:
            del raw[key]
    raw['range'] = raw['max'] - raw['min']
    return raw.to_string()
for [key, value] in desc.items():
    print(f'[--- {key} ---]', end='\n\n')
    print(map_var_to_description(value.copy()), end='\n\n\n')
     [--- age ---]
             42.835294
     mean
     std
             11.871181
     min
             18.000000
             60.000000
     max
     range 42.000000
     [--- male ---]
```

```
0.447059
mean
std
         0.500140
         0.000000
min
         1.000000
max
         1.000000
range
[--- wage ---]
         27481.176471
mean
std
        16093.635936
min
         3000.000000
max
         90000.000000
range
         87000.000000
[--- public ---]
        0.423529
std
         0.497050
min
         0.000000
         1.000000
max
range
        1.000000
[--- internet ---]
mean
         0.847059
std
         0.362067
min
         0.000000
         1.000000
max
range
         1.000000
[--- children ---]
mean
         1.294118
std
         0.985895
min
         0.000000
        6.000000
max
        6.000000
range
[--- urban ---]
         1.0
mean
```

std

Оцените квартили (25%, 50%, 75%) распределения для непрерывных переменных в выборке. Определите межквартильный размах.

```
desc = table.describe()
```

a a

```
def map var to quartile(raw):
    need = ['25%', '50%', '75%']
    for key in dict(raw).keys():
        if key not in need:
            del raw[key]
    raw['qurtile_range'] = raw['75%'] - raw['25%']
    return raw.to_string()
continuous = ['ln_wage', 'wage', 'age']
for key in continuous:
    print(f'[--- {key} ---]', end='\n\n')
    print(map_var_to_quartile(desc[key].copy()), end='\n\n\n')
     [--- ln wage ---]
     25%
                      9.11758
     50%
                      9.12751
     75%
                     9.13389
     qurtile range
                     0.01631
     [--- wage ---]
     25%
                      15000.0
     50%
                      25000.0
     75%
                      33000.0
     qurtile_range 18000.0
     [--- age ---]
     25%
                      31.0
                      46.0
     50%
                      53.0
     75%
     qurtile_range
                      22.0
```

Сравните среднее, медиану и моду для непрерывных переменных в выборке. Что можно сказать об их соотношении?

```
desc = table.describe()

def find_mod(arr):
    arr = list(arr)
    counter = list()
    was = set()
    for item in arr:
        if item in was:
```

```
continue
        was.add(item)
        counter.append((arr.count(item), item))
    counter.sort(reverse=True)
    return counter[0][1]
for key in continuous:
    print(f'[--- {key} ---]', end='\n\n')
    print('mean =', desc[key]['mean'])
    print('median =', table[key].median())
    print('mod =', find mod(table[key].values))
    print(end='\n\n\n')
     [--- ln_wage ---]
     mean = 9.125011058823528
     median = 9.12751
     mod = 9.14241
     [--- wage ---]
     mean = 27481.176470588234
     median = 25000.0
     mod = 30000
     [--- age ---]
     mean = 42.83529411764706
     median = 46.0
     mod = 57
```

Постройте box-plot для всех непрерывных переменных. Есть ли выбросы?

```
table.boxplot(column='wage', fontsize=12, figsize=(5, 5), color='blue')
# выбросы есть в районе 80000
```

<AxesSubplot:>

table.boxplot(column='ln_wage', fontsize=12, figsize=(5, 5), color='orange')

выбросов нет

<AxesSubplot:>

table.boxplot(column='age', fontsize=12, figsize=(5, 5), color='lime')

выбросов нет

<AxesSubplot:>

Задание 5

Постройте гистограммы распределения для непрерывных переменных в выборке. Что можно сказать о скошенности (асимметрии) и островершинности их распределений?

распределение слабо скошенно без учета выбросов и островершинно display(mpl.pyplot.hist(table['wage'], color='blue', bins=15))

распределение не скошено на отрезке от моды до максимума без учета выбросов display(mpl.pyplot.hist(table['ln_wage'], color='orange', bins=15))

распределение смещено в сторону максимлаьного значения display(mpl.pyplot.hist(table['age'], color='lime', bins=15))

Как распределены респонденты в Вашей выборке по уровню образования? Постройте гистограмму.

распределение смещено в сторону максимлаьного значения

display(mpl.pyplot.hist(table['educ'], histtype='stepfilled', color='black'))

(array([5., 0., 0., 20., 0., 0., 11., 0., 0., 49.]),
array([0., 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3.]),
[<matplotlib.patches.Polygon at 0x24df375a230>])

Постройте 95% и 99% доверительные интервалы для математического ожидания и стандартного отклонения генеральной совокупности для логарифма заработной платы.

```
# матожидание
data = table['ln_wage']

# test test
sns.lineplot(x=[1,2,3], y=[1,2,3], ci=95, color='blue')
sns.lineplot(x=[1,2,3], y=[2,3,6], ci=99, color='green')

<AxesSubplot:>

6

5

4

3
2
```

```
# стандартное отклонение
data = table['ln_wage']

# TODO

# test test
# sns.lineplot(x=[1,2,3], y=[1,2,3], ci=95, color='blue')
# sns.lineplot(x=[1,2,3], y=[2,3,6], ci=99, color='green')
```

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Задание 8

1.00

1.25

Постройте 90% и 95% доверительный интервал для доли женщин в генеральной

```
female = table['male'] == 0
bar X = len(female.values) / len(table.values)
S X = female.values.std()
N = len(table.values) # 85
perc1 = 90
perc2 = 95
alpha1 = (100 - perc1) / 100 # 0.10
alpha2 = (100 - perc2) / 100 # 0.05
student1 = 1.6629785
student2 = 1.9882679
left1 = bar_X - (student1 * S_X / np.sqrt(N - 1))
right1 = bar_X + (student1 * S_X / np.sqrt(N - 1))
left2 = bar_X - (student2 * S_X / np.sqrt(N - 1))
right2 = bar_X + (student2 * S_X / np.sqrt(N - 1))
print("90%\t:\t", (left1, right1), sep='')
print("95%\t:\t", (left2, right2), sep='')
# sns.lineplot(x=[1,2,3], y=[1,2,3], ci=90, color='blue')
# sns.lineplot(x=[1,2,3], y=[2,3,6], ci=95, color='green')
     90%
                     (0.9097870690471248, 1.0902129309528752)
                     (0.8921408335835261, 1.1078591664164739)
     95%
```

Задание 9

Проверьте гипотезу, что матожидание логарифма заработной платы равно 10.17 против двусторонней и правосторонней альтернативной гипотезы.

TODO

Задание 10

Проверьте гипотезу, что матожидание логарифма заработной платы женщин ниже матожидания логарифма заработной платы мужчин.

TODO

Проверьте гипотезу, что дисперсия логарифма заработных плат работников, пользующихся Интернетом выше, чем дисперсия логарифма заработной платы работников, не пользующихся Интернетом. Примечание: выберите иной бинарный признак (тип населенного пункта, пол и т.д.), если в Вашей выборке нет различий по переменной «Интернет».

TODO

Номера 12 - 14

	public	ln_wage	educ	urban	male	age	children	industry	internet
18	0 0	10.126631	1	1	1	46	1	ТРАНСПОРТ, С	0
18	1 1	9.104980	3	1	0	38	1	СТРОИТЕЛЬСТВ	1
18	2 1	11.407565	3	1	0	55	2	ЮРИСПРУДЕНЦИ	1

Задание №12

Пусть р - доля работников, имеющих одно ребенка. Необходимо проверить гипотезу:

 $H_0: p = 0.5$ $H_1: p < 0.5$ hat_p = data[data['children'] == 1].shape[0] / data.shape[0] print(f"Доля работников с 1 ребенком в выборке: {hat_p:.4f}") print(f"Размер выборки: {data.shape[0]}")

Доля работников с 1 ребенком в выборке: 0.3412 Размер выборки: 85

Таким образом, по нашей выборке: $\hat{p} = 0.3412$

$$Z=rac{\hat{p}-p_0}{\sqrt{rac{p_0q_0}{n}}}$$
, где $p_0=0.5$, $q_0=1-p_0=0.5$ и n - размер выборки.

 $\sqrt{-n}$ Тогда расчетное значение статистики: $Z(X^{(n)}) = \frac{0.3412 - 0.5}{\sqrt{rac{1}{4n}}} = -2.928$

$$Z \overset{D}{\longrightarrow} \mathcal{N}(0,1)$$
 при $n o \infty$ и справедливости гипотезы H_0

Тогда критическое значение статистики: $z_{cr} = \Phi^{-1}(0.05) = -1.65$

$$p_value = P(Z < Z(X^{(n)})|H_0) = 1 - P(Z \ge -2.928) = 0.002$$

Так как $p_value < 0.05$, то гипотеза H_0 отвергается в пользу альтернативной. То есть доля работников, имеющих одного ребенка не равна 0.5.

¬ Задание №13

<AxesSubplot:title={'center':'Корреляционная таблица'}>

print(f"Количество различных значений в колонке urban: {data['urban'].nunique()}")

Количество различных значений в колонке urban: 1

Так как в колонке urban все значения одинаковы, то корреляционная таблица не содержит значений для этой колонки.

Вывод: В данных не так много сильно скоррелированных признаков. Некоторые из них:

- 1. Корреляция между educ и internet достигает 0.46. Это, в целом, логично: образованные люди чаще пользуются интернетом, чем не образованные.
- 2. Корреляция между age и children также высока. Это отражает следющую логичную зависимость: чем старше человек, тем больше у него детей.

Задача №14

Предположительно 1n_wage может зависеть, например, от образования человека. Построим график, демонстрирующий это.

Также логарифм зараплаты, может зависеть от пола, построим и такой график.

fig, ax = plt.subplots(1, 2, figsize=(20, 10))

ax[0].set_title("Среднее значение логарифма зарплаты от уровня образования", fontsize=20) ax[0].set_ylabel("Логарифм зарплаты", fontsize=15) ax[0].set_xlabel("Уровень образования", fontsize=15) ax[0].bar(x=[0, 1, 2, 3], height=data.groupby('educ')['ln_wage'].mean() - 9, bottom=9) ax[1].set_title("Среднее значение логарифма зарплаты от пола", fontsize=20) ax[1].set_ylabel("Логарифм зарплаты", fontsize=15) ax[1].set_xlabel("Пол", fontsize=15) ax[1].bar(x=[0, 1], height=data.groupby('male')['ln_wage'].mean() - 9, bottom=9)

<BarContainer object of 2 artists>

