

Low Noise, Precision, 16 V, CMOS, Rail-to-Rail Operational Amplifiers

Data Sheet

AD8663/AD8667/AD8669

FEATURES

Low offset voltage: 175 μV maximum @ $V_{SY} = 5 V$ Low supply current: 275 μA maximum per amplifier

Single-supply operation: 5 V to 16 V

Low noise: 23 nV/√Hz

Low input bias current: 300 fA

Unity-gain stable

Small packages available

3 mm × 3 mm, 8-lead LFCSP

8-lead MSOP

Other packages

8-lead SOIC

14-lead SOIC

14-lead TSSOP

APPLICATIONS

DAC or REF buffers

Sensor front ends
Transimpedance amplifiers
Electrometer applications
Photodiode amplification
Low power ADC drivers
Medical diagnostic instruments
pH and ORP meters and probes

GENERAL DESCRIPTION

The AD866x are rail-to-rail output amplifiers that use the Analog Devices, Inc., patented DigiTrim* trimming technique to achieve low offset voltage. The AD866x feature an extended operating range with supply voltages up to 16 V. They also feature low input bias current, low input offset voltage, and low current noise.

The combination of low offset, very low input bias current, and a wide supply range makes these amplifiers useful in a wide variety of applications usually associated with higher priced JFET amplifiers. Systems using high impedance sensors, such as photodiodes, benefit from the combination of low input bias current, low noise, low offset, and wide bandwidth.

The ability to operate the device for single (5 V to 16 V) or dual supplies (± 2.5 V to ± 8 V) supports many applications. The rail-to-rail outputs provide increased dynamic range to drive low

PIN CONFIGURATIONS

Figure 1. 8-Lead SOIC (R-8)

Figure 2. 8-Lead LFCSP (CP-8-2)

Figure 3. 8-Lead MSOP (RM-8), 8-Lead SOIC (R-8)

Figure 4. 14-Lead SOIC (R-14), 14-Lead TSSOP (RU-14)

frequency data converters. The low bias current drift is well-suited for precision I-to-V converters. The combination of precision offset, offset drift, and low noise also make the op amps ideal for gain, dc offset adjust, and active filter in both instrumentation and medical applications. These low power op amps can be used in IR thermometers, pH and ORP instruments, pressure transducer front ends, and other sensor signal conditioning circuits that are used in remote or wireless applications.

The AD8663/AD8667/AD8669 are specified over the extended industrial temperature range of -40° C to $+125^{\circ}$ C. The single AD8663 is available in a narrow 8-lead SOIC package and a very thin, 8-lead LFCSP. The dual AD8667 is available in a narrow 8-lead SOIC package and an 8-lead MSOP. The quad AD8669 is available in a 14-lead SOIC and 14-lead small TSSOP.

TABLE OF CONTENTS

Features	Absolute Maximum Ratings5
Applications1	Thermal Resistance5
Pin Configurations	ESD Caution5
General Description	Typical Performance Characteristics6
Revision History	Outline Dimensions
Specifications	Ordering Guide
Electrical Characteristics	
REVISION HISTORY	
4/13—Rev. B to Rev. C	Changes to General Description1
Changes to Figure 2	Inserted Figure 3 and Figure 41
Added Exposed Pad Notation to Outline Dimensions 14	Changes to Table 1, Power Supply Section3
Changes to Ordering Guide	Changes to Table 24
	Reformatted Typical Performance Characteristics Section6
1/08—Rev. A to Rev. B	Changes to Figure 56
Added TSSOPUniversal	Changes to Figure 137
Change to Table 4	Changes to Figure 17 and Figure 208
Changes to Figure 8 and Figure 9	Inserted Figure 35 Through Figure 3911
Changes to Figure 23 and Figure 269	Inserted Figure 40 and Figure 41
Updated Outline Dimensions	Updated Outline Dimensions
Changes to Ordering Guide	Changes to Ordering Guide
10/07—Rev. 0 to Rev. A	7/07—Revision 0: Initial Version
Added AD8667 and AD8669Universal	
Changes to Features	

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

 $V_{SY} = 5.0 \text{ V}$, $V_{CM} = V_{SY}/2$, $T_A = 25^{\circ}\text{C}$, unless otherwise noted.

Table 1.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$V_{CM} = V_{SY}/2$		30	175	μV
		-40°C < T _A < +125°C			450	μV
Input Bias Current	I _B			0.3		pА
		-40 °C < T_A < $+85$ °C			45	pА
		-40°C < T _A < +125°C			105	pА
Input Offset Current	los			0.2		pA
		-40°C < T _A < +85°C			35	pA
		-40°C < T _A < +125°C			65	pA
Input Voltage Range			0.2		3.0	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0.2 \text{ V to } 3.0 \text{ V}$	76	100		dB
·		-40°C < T _A < +125°C	76	100		dB
Large Signal Voltage Gain	Avo	$R_L = 100 \text{ k}\Omega$, $V_{OUT} = 0.5 \text{ V to } 4.5 \text{ V}$	115	140		dB
		$R_L = 2 k\Omega, V_{OUT} = 0.5 V \text{ to } 4.5 V$	106	114		dB
Offset Voltage Drift	TCVos	-40°C < T _A < +125°C		1.5	5	μV/°C
OUTPUT CHARACTERISTICS						1
Output Voltage High	V _{OH}	I _L = 100 μA	4.95	4.97		V
. 5 5		-40°C < T _A < +125°C	4.90			V
Output Voltage High	V _{OH}	$I_L = 1 \text{ mA}$	4.65	4.80		V
		-40°C < T _A < +125°C	4.60			V
Output Voltage Low	V _{OL}	I _L = 100 μA		17	25	mV
		-40°C < T _A < +125°C			35	mV
Output Voltage Low	V _{OL}	$I_L = 1 \text{ mA}$		150	200	mV
, ,		-40°C < T _A < +125°C			250	mV
Short-Circuit Current	I _{sc}			±7		mA
Closed-Loop Output Impedance	Z _{оит}	$f = 100 \text{ kHz}, A_V = 1$		120		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{SY} = 5 \text{ V to } 16 \text{ V}$	95	105		dB
,,,,		-40°C < T _A < +125°C	95			dB
Supply Current per Amplifier	I _{SY}	$V_{OUT} = V_{SY}/2$		210	275	μA
117		-40°C < T _A < +125°C			325	μA
DYNAMIC PERFORMANCE						†
Slew Rate	SR	$R_L = 2 k\Omega$		0.26		V/µs
Gain Bandwidth Product	GBP	$C_L = 20 \text{ pF}$		520		kHz
Phase Margin	Фм	$C_L = 20 \text{ pF}$		60		Degrees
NOISE PERFORMANCE						3
Peak-to-Peak Noise	e _n p-p	f = 0.1 Hz to 10 Hz		2.5		μV р-р
Voltage Noise Density	e _n	f = 1 kHz		23		nV/√Hz
		f = 10 kHz		21		nV/√Hz
Current Noise Density	in	f = 1 kHz		0.05		pA/√Hz

 V_{SY} = 16.0 V, V_{CM} = $V_{SY}/2$, T_A = 25°C, unless otherwise noted.

Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$V_{CM} = V_{SY}/2$		40	300	μV
		-40°C < T _A < +125°C			500	μV
Input Bias Current	I _B			0.3		pА
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			45	pА
		-40°C < T _A < +125°C			120	pА
Input Offset Current	los			0.2		pА
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			35	pА
		-40°C < T _A < +125°C			65	pА
Input Voltage Range			0.2		14.5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0.2 \text{ V to } 14.5 \text{ V}$	87	109		dB
		-40°C < T _A < +125°C	87	109		dB
Large Signal Voltage Gain	Avo	$R_L = 100 \text{ k}\Omega$, $V_{OUT} = 0.5 \text{ V}$ to 15.5 V	115	140		dB
		$R_L = 2 \text{ k}\Omega$, $V_{OUT} = 0.5 \text{ V}$ to 15.5 V	106	111		dB
Offset Voltage Drift	TCVos	-40°C < T _A < +125°C		1.5	5	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$I_L = 100 \mu\text{A}$	15.95	15.98		V
		-40°C < T _A < +125°C	15.90			V
Output Voltage High	V _{OH}	$I_L = 1 \text{ mA}$	15.85	15.92		V
		-40°C < T _A < +125°C	15.80			V
Output Voltage Low	V _{OL}	$I_L = 100 \mu\text{A}$		17	25	mV
		-40°C < T _A < +125°C			35	mV
Output Voltage Low	V _{OL}	$I_L = 1 \text{ mA}$		70	100	mV
		-40°C < T _A < +125°C			125	mV
Short-Circuit Current	Isc			±50		mA
Closed-Loop Output Impedance	Z _{оит}	$f = 100 \text{ kHz}, A_V = 1$		100		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{SY} = 5 \text{ V to } 16 \text{ V}$	95	105		dB
		-40°C < T _A < +125°C	95			dB
Supply Current per Amplifier	Isy	$V_{OUT} = V_{SY}/2$		230	285	μΑ
		-40°C < T _A < +125°C			355	μΑ
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$		0.3		V/µs
Gain Bandwidth Product	GBP	$C_L = 20 \text{ pF}$		540		kHz
Phase Margin	Фм	C _L = 20 pF		64		Degrees
NOISE PERFORMANCE						
Peak-to-Peak Noise	e _n p-p	f = 0.1 Hz to 10 Hz		2.5		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		23		nV/√Hz
•		f = 10 kHz		21		nV/√Hz
Current Noise Density	in	f = 1 kHz		0.05		pA/√Hz

ABSOLUTE MAXIMUM RATINGS

Table 3.

1 4010 01	
Parameter	Rating
Supply Voltage	18 V
Input Voltage	-0.1 V to V _{SY}
Differential Input Voltage	18 V
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	−60°C to +150°C
Operating Temperature Range	−40°C to +125°C
Junction Temperature Range	−65°C to +150°C
Lead Temperature, Soldering (60 sec)	300°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 4. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{JA}$	θις	Unit
8-Lead SOIC (R-8)	121	43	°C/W
8-Lead LFCSP (CP-8-2)	75 ¹	18¹	°C/W
8-Lead MSOP (RM-8)	145	45	°C/W
14-Lead SOIC (R-14)	90	45	°C/W
14-Lead TSSOP (RU-14)	180	35	°C/W

¹ Exposed pad soldered to application board.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. Input Offset Voltage Distribution

Figure 6. Offset Voltage Drift Distribution

Figure 7. Input Offset Voltage vs. Common-Mode Voltage

Figure 8. Input Offset Voltage Distribution

Figure 9. Offset Voltage Drift Distribution

Figure 10. Input Offset Voltage vs. Common-Mode Voltage

Figure 11. Input Bias Current vs. Common-Mode Voltage at 125°C

Figure 12. CMRR vs. Frequency, $V_{SY} = 5 V$

Figure 13. Output Swing Saturation Voltage vs. Load Current

Figure 14. Input Bias Current vs. Common-Mode Voltage at 125°C

Figure 15. CMRR vs. Frequency, $V_{SY} = 16 V$

Figure 16. Output Swing Saturation Voltage vs. Load Current

Figure 17. Output Voltage Saturation vs. Temperature

Figure 18. Open-Loop Gain and Phase Shift vs. Frequency

Figure 19. Closed-Loop Gain vs. Frequency

Figure 20. Output Voltage Saturation vs. Temperature

Figure 21. Open-Loop Gain and Phase Shift vs. Frequency

Figure 22. Closed-Loop Gain vs. Frequency, $V_{SY} = 16 \text{ V}$

Figure 23. Closed-Loop Output Impedance vs. Frequency, $V_{SY} = 5 V$

Figure 24. PSRR vs. Frequency, $V_{SY} = 5 V$

Figure 25. Small-Signal Overshoot vs. Load Capacitance, $V_{SY} = 5 V$

Figure 26. Closed-Loop Output Impedance vs. Frequency, $V_{SY} = 16 \text{ V}$

Figure 27. PSRR vs. Frequency, $V_{SY} = 16 V$

Figure 28. Small-Signal Overshoot vs. Load Capacitance, $V_{SY} = 16 \text{ V}$

Figure 29. Large Signal Transient Response, $V_{SY} = \pm 2.5 V$

Figure 30. Small Signal Transient Response, $V_{SY} = \pm 2.5 V$

Figure 31. AD8663, Supply Current vs. Supply Voltage

Figure 32. Large Signal Transient Response, $V_{SY} = \pm 8 V$

Figure 33. Small Signal Transient Response, $V_{SY} = \pm 8 V$

Figure 34. AD8669, Supply Current vs. Supply Voltage

Figure 35. AD8667, Supply Current vs. Supply Voltage

Figure 36. Positive Overload Recovery

Figure 37. Negative Overload Recovery

Figure 38. Voltage Noise Density

Figure 39. Positive Overload Recovery

Figure 40. Negative Overload Recovery

Figure 41. Channel Separation vs. Frequency

Figure 42. Channel Separation vs. Frequency

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 43. 8-Lead Small Outline Package [SOIC_N] Narrow Body (R-8)

Dimensions shown in millimeters and (inches)

Figure 44. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD] 3 mm × 3 mm Body, Very Thin, Dual Lead (CP-8-2) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-187-AA

Figure 45. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012-AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 46. 14-Lead Small Outline Package [SOIC_N] Narrow Body (R-14)

Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MO-153-AB-1

Figure 47. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
AD8663ARZ	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8663ARZ-REEL	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8663ARZ-REEL7	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8663ACPZ-R2	-40°C to +125°C	8-Lead LFCSP_VD	CP-8-2	A1U
AD8663ACPZ-REEL	-40°C to +125°C	8-Lead LFCSP_VD	CP-8-2	A1U
AD8663ACPZ-REEL7	-40°C to +125°C	8-Lead LFCSP_VD	CP-8-2	A1U
AD8667ARZ	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8667ARZ-REEL	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8667ARZ-REEL7	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8667ARMZ	-40°C to +125°C	8-Lead MSOP	RM-8	A1E
AD8667ARMZ-REEL	-40°C to +125°C	8-Lead MSOP	RM-8	A1E
AD8669ARZ	-40°C to +125°C	14-Lead SOIC_N	R-14	
AD8669ARZ-REEL	-40°C to +125°C	14-Lead SOIC_N	R-14	
AD8669ARZ-REEL7	-40°C to +125°C	14-Lead SOIC_N	R-14	
AD8669ARUZ	-40°C to +125°C	14-Lead TSSOP	RU-14	
AD8669ARUZ-REEL	-40°C to +125°C	14-Lead TSSOP	RU-14	

 $^{^{1}}$ Z = RoHS Compliant Part.

NOTES

