impor impor impor warni impor %matp from impor from from from	t xgboost as xgb t seaborn as sns tt sys tt warnings ings.filterwarnings("ignore") tt matplotlib.pyplot as plt blotlib inline IPython.display import Markdown, display tt sklearn sklearn import preprocessing sklearn.processing import StandardScaler sklearn.model_selection import train_test_split sklearn.metrics import mean_squared_error as MSE
from from from from from from from from	sklearn.model_selection import train_test_split
https://w Krótki o Zbiór za Opis na pclass	www.kaggle.com/c/titanic/data?select=test.csv (1309 osób i 14-ście informacji o każdej z nich) ppis zbioru: awiera informacje na temat pasażerów legendarnego Titanica. ajważniejszych zmiennych: - typ klasy pasażerskiej (1-najlepsza), - d czy przeżył (1-tak, 0-nie),
age - wi sbibsp parch - Klasyfik Atrybut Mamy d	
powyże mało ist df = displ df = df['a df['s print df = df	to ze zbioru usunąłem wiersze z kolumny <i>Age</i> , w których brakowało wartości. Następnie, pozostałe informacje o wieku pasażera zamieniłem na zera bądź jedynki (w zależności od tego czy osoba miała poniżej, c j 18 lat). Typom <i>male</i> i <i>female</i> z kolumny mówiącej o płci - również przypisałem 0 lub 1, żeby operować na samych zmiennych numerycznych. Natomiast reszte kolumn mających braki w danych i kolumn według totnych, takich jak np. cel podróży (<i>ang.</i> home_dest) - wyrzuciłem. pd.read_csv('titanic2.csv')
Y = d $X = d$ displ	If ['survived'] If (drop(['survived'], axis=1) Itay(df) polass survived mame sex age sibsp parch ticket fare cabin embarked boat body home_dest
4 1304 1305 1306 1307 1308	1 0 Allison, Mrs. Hudson J C (Bessie Waldo Daniels) female 25.0000 1 2 113781 151.5500 C22 C26 S NaN NaN Montreal, PQ / Chesterville, ON
pclass surviv name sex age sibsp parch ticket fare cabin embark boat body home_c	False False False False False False False False False True True True True True True True Tru
0 1 2 3 4 1301	1 1 0 1 0 0 1 1 1 0 1 2 1 0 0 1 2 1 0 1 1 2 1 0 0 1 1 2 3 0 1 1 0 0 3 0 0 0 1 0
Stosu:	n_X, test_X, train_Y, test_Y = train_test_split(X, Y,
print model XGBoos	<pre>test_size = 0.2, random_state = seed) model_train(model, train_X, test_X, train_Y, test_Y): model.fit(train_X, train_Y) model.predict(test_X) print ('Accuracy: ', accuracy_score(test_Y, pred)) c("XGBoost:") L_train(xgb.XGBClassifier(use_label_encoder =False, eval_metric='mlogloss'), train_X, test_X, train_Y, test_Y) c("\nRandomForest:") L_train(RandomForestClassifier(), train_X, test_X, train_Y, test_Y) st: acy: 0.8285714285714286</pre>
Accurate Przetes df = df = df['s df = df.dr	<pre>mForest: acy: 0.819047619047619 towałem również działanie klasyfikatorów na zbiorze bez zmiany wieku na 0/1 pd.read_csv('titanic2.csv') df.dropna(subset=['age']) sex'] = df['sex'].apply(lambda x: int(x == 'male')) df.dropna(axis=1) rop(['name', 'ticket'], axis=1, inplace=True) iff['survived'] iff.drop(['survived'], axis=1) n_X, test_X, train_Y, test_Y = train_test_split(X, Y,</pre>
print model print model XGBoos Accura	test_size = 0.2) C("XGBoost:") L_train(xgb.XGBClassifier(use_label_encoder =False, eval_metric='mlogloss'), train_X, test_X, train_Y, test_Y) C("\nRandomForest:") L_train(RandomForestClassifier(), train_X, test_X, train_Y, test_Y)
train def m p print model print	unek zbioru treningowego do testowego ustawiony na 7:3 n_X, test_X, train_Y, test_Y = train_test_split(X, Y, test_X, train_Y, test_Size = 0.3, random_state = seed) model_train(model, train_X, test_X, train_Y, test_Y): model_fit(train_X, train_Y) model = model.predict(test_X) print ('Accuracy: ', accuracy_score(test_Y, pred)) :("XGBoost:") train(xgb.XGBClassifier(use_label_encoder =False, eval_metric='mlogloss'), train_X, test_X, train_Y, test_Y) :("\nRandomForest:")
XGBoos Accura Random Accura Stosu	L_train(RandomForestClassifier(), train_X, test_X, train_Y, test_Y) st: acy: 0.7929936305732485 mForest: acy: 0.7898089171974523 unek zbioru treningowego do testowego ustawiony na 6:4 n_X, test_X, train_Y, test_Y = train_test_split(X, Y, test_Size = 0.4, random_state = seed) model_train(model, train_X, test_X, train_Y, test_Y):
print model print Model XGBoos Accura	model.fit(train_X, train_Y) pred = model.predict(test_X) print ('Accuracy: ', accuracy_score(test_Y, pred)) c("XGBoost:") L_train(xgb.XGBClassifier(use_label_encoder =False, eval_metric='mlogloss'), train_X, test_X, train_Y, test_Y) c("\nRandomForest:") L_train(RandomForestClassifier(), train_X, test_X, train_Y, test_Y)
Poza Ile os	chości od stosunku zbioru treningowego do testowego, ale też i od obserwacji wylosowanych do poszczególnych grup - wyniki klasyfikacji oscylują w okolicy 80% dokładności (_ang accuracy). A klasyfikacją przeanalizowałem cały zbiór za pomocą wykresów. Ób przeżyło, a ile zginęło: Set_palette("Set1") Catplot(data=df,
600 - 500 - 400 - 111 8 300 -	
100 - 0 - Czy k 1 - to ki	survived Klasa którą podróżowały osoby, miała wpływ na przeżycie? Jasa najwyższa (premium). Być może, osoby podróżujące tą klasą, miały priorytet przy ewakuacji, analogicznie do osób wsiadających do samolotu na lotnisku, a być może ich kajuty, były zlokalizowane w specyfi statku. Ułatwiającej lub utrudniającej ewakuację.
części s	statku. Ułatwiającej lub utrudniającej ewakuację. catplot(data=df,
250 - 250 - 150 - 100 -	survived 0 1
Czy v Widzimy Zapewn	viek osoby, miał wpływ na przeżycie? y, że większość dzieci przeżyła. Nie ma widocznej różnicy, dla osób po 20 roku życia. dzieci były traktowane priorytetowo. distplot(df[df['age'].notnull() & (df['survived']==1)]['age'],
	kde_kws={"label": "Not Survived"}, bins=10) show()
0.005 0.000 Czy p Kobiety	
500 - 400 -	hue = 'survived', kind='count') show()
200 - 100 -	
Zbió https://w	steryzacja r danych użyty do klasteryzacji: <i>multishapes.csv</i> www.rdocumentation.org/packages/factoextra/versions/1.0.7/topics/multishapes (1100 obserwacji i 3 zmienne) ppis zbioru: awierające klastry dowolnych kształtów.
x - wekt y - wekt shapes Algorytr	niennych: tor numeryczny zawierający współrzędne obserwacji x, tor numeryczny zawierający współrzędne obserwacji y, - wektor numeryczny odpowiadający numerowi klastra każdej obserwacji. my klasteryzacji wybrane przeze mnie. <i>KMeans</i> i <i>DBScan</i> odzi o obróbke danych to trzeba było je przeskalować, aby poszczególne pomiary nie dominowały w późniejszych obliczeniach.
ms_df ms_df scale scale scale	<pre>shapes = pd.read_csv("multishapes.csv") = multishapes[['x','y']] = ded_df = pd.DataFrame(preprocessing.scale(ms_df), index=multishapes['shape'], columns = ms_df.columns) ed_df.describe() ed_df</pre>
1 1 6 6 6	1.448907 0.844692 1.564203 0.298161 -1.041463 0.096855 1.222429 1.221561 1.609007 -1.572253 1.569755 -1.480985 1.644896 -1.711540
Przec	1.644896 -1.711540 1.866296 -1.695783 ws × 2 columns dstawienie zbioru w formie graficznej ot = scaled_df.plot.scatter(x='x',y='y',c='Black',title="Multishapes data",figsize=(11,8.5)) ot.set_xlabel("X") ot.set_ylabel("Y") show()
1.5 1.0 0.5	Multishapes data
≻ -0.5 -1.0 -1.5	
Do znal	eans ezienia 'optymalnej' liczby klastrów - ręcznie zapętliłem algorytm <i>KMeans</i> , aby później przedstawić jego wyniki na wykresie i wybrać najlepsze <i>n</i> . sklearn.metrics import silhouette_score es = [0]
plt.f plt.p plt.x plt.y	<pre>i in range(2,11): itx = KMeans(n_clusters=i, init='random', n_init=5, random_state=109).fit(scaled_df) score = silhouette_score(scaled_df, fitx.labels_) scores.append(score) figure(figsize=(11,8.5)) plot(range(1,11), np.array(scores), 'bx-') clabel('Number of clusters \$k\$') vlabel('Average Score') show()</pre>
- 4.0 Average Score	
0.1 -	z 4 6 8 10 Number of clusters k sugeruje za n przyjąć 2.
n_clu ms_km plt.f plt.s	<pre>sters = 2 means = KMeans(n_clusters=2, init='random', n_init=2, random_state=109).fit(scaled_df) figure(figsize=(10,10)) scatter(scaled_df['x'], scaled_df['y'], c=ms_kmeans.labels_); scatter(ms_kmeans.cluster_centers_[:,0],ms_kmeans.cluster_centers_[:,1], c='r', marker='h', s=100);</pre>
0.5 -	
-0.5 - -1.0 - -1.5 -	
ms_km	sters = 3 means = KMeans(n_clusters=3, init='random', n_init=3, random_state=109).fit(scaled_df) figure(figsize=(10,10)) scatter(scaled_df['y'], c=ms_kmeans.labels_); scatter(scaled_df['y'], scaled_df['y'], c=ms_kmeans.cluster_centers_[:,1], c='r', marker='h', s=100);
1.5 -	
-0.5 - -1.0 -	
ms_km	<pre>sters = 5 means = KMeans(n_clusters=5, init='random', n_init=5, random_state=109).fit(scaled_df) figure(figsize=(10,10)) scatter(scaled_df['x'], scaled_df['y'], c=ms_kmeans.labels_); scatter(scaled_df['x'], scaled_df['y'], c=ms_kmeans.cluster_centers_[:,1], c='r', marker='h', s=100);</pre>
plt.s plt.s	<pre>scatter(scaled_df['y'], scaled_df['y'], c=ms_kmeans.labels_); scatter(ms_kmeans.cluster_centers_[:,0],ms_kmeans.cluster_centers_[:,1], c='r', marker='h', s=100);</pre>
-0.5 - -1.0 -	
-2.0 - -2.5 -	ać na wykresach wybór odpowiedniej liczby klastrów jest bardzo ważny do prawidłowej klasteryzacji.
Zamiasi do N-teg from def p	t obserwować jak wartość <i>epsilon</i> wpływa na klastrowanie <i>DBScan</i> 'em w pętli (co byłoby czasochłonne i dla dużych, wysokowymiarowych danych złożone obliczeniowo), możemy sprawdzić, jak daleko każdy pur go najbliższego sąsiada: sklearn.neighbors import NearestNeighbors plot_epsilon(df, min_samples): "itted_neigbors = NearestNeighbors(n_neighbors=min_samples).fit(df) distances, indices = fitted_neigbors.kneighbors(df) dist_to_nth_nearest_neighbor = distances[:,-1] plot.plot(np.sort(dist_to_nth_nearest_neighbor)) plot.xlabel("Index\n(sorted by increasing distances)")
plot_ 0.6 - 0.5 - 0.4 -	olt.ylabel("Epsilon") olt.tick_params(right=True, labelright=True) epsilon(scaled_df, 3) -0.6 -0.5 -0.4
eps =	o 20 400 600 800 1000 Index (sorted by increasing distances) stawie wykresu $eps = 0.2$ będzie najefektywniejszy.
plt.f	Figure(figsize=(11,8.5)) cd_dbscan = DBSCAN(eps=0.1).fit(scaled_df) scatter(scaled_df['x'], scaled_df['y'], c=fitted_dbscan.labels_);
0.5 - 0.0 - -0.5 - -1.0 -	
-2.0 - -2.5 = eps =	= 0.2 Figure(figsize=(11,8.5)) Ed_dbscan = DBSCAN(eps=0.2).fit(scaled_df) Ed_scatter(scaled_df['y'], scaled_df['y'], c=fitted_dbscan.labels_);
1.5 - 1.0 - 0.5 -	
-0.5 - -1.0 - -1.5 -	
eps = plt.f fitte plt.s	-2 -1 0 i 2 : 0.6 Figure(figsize=(11,8.5)) ed_dbscan = DBSCAN(eps=0.6).fit(scaled_df) scatter(scaled_df['x'], scaled_df['y'], c=fitted_dbscan.labels_);
1.5 - 1.0 - 0.5 -	
-1.0 - -1.5 - -2.0 -	
	-2 -1 0 1 2 no tutaj słabo dobrany epsilon będzie dawał słabe wyniki, tak więc warto znać funkcje, dzięki którym z łatwością określimy najlepsze parametry.