

PROFESSOR MADS GRÆSBØLL CHRISTENSEN AUDIO ANALYSIS LAB, AD:MT AALBORG UNIVERSITY

Introduction

- Feedback cancellation is concerned with solving the problem of feedback.
- The problem occurs when the output of a loudspeaker outputting the input from a microphone is fed back into the microphone.
- The system can become unstable and cause howling!
- It is a common problem for, e.g., singerns and guiitarists in live music (when using microphones and monitors/PA system).

The Idea

- Feedback cancellation is often solved using adaptive filters, like the LMS algorithm.
- Recently, is was shown that performance can be improved by using a model of the near-end signal.
- In this project, we will explore this further and also take into account that the acoustic feedback path is likely to be sparse.

The Project

- First, a near-end signal will be chosen (singing voice, guitar, etc.) and a model for that will be found.
- An estimator for this model has to be developed.
- The feedback path will then be simulated using, for example, the RIR Generator.
- A method for sparse adaptive filtering, using, for example, the principle of sparse linear prediction will be developed.
- The method should run in subbands, so a subband decomposition must be applied.
- It is critical that the sparse approximation method is fast, as it has to run for each sample at, say, 44.1 kHz sampling frequency! Maybe use iterative, greedy principles like matching pursuit.

Literature

- Sparse Adaptive Filters for Echo Cancellation, C. Paleologu, J. Benesty, and S. Ciochina, Synthesis Lectures on Speech and Audio Processing 2010 6:1, 1-124
- T. van Waterschoot and M. Moonen, "Fifty years of acoustic feedback control: state of the art and future challenges", Proc. IEEE, vol. 99, no. 2, Feb. 2011, pp. 288-327.
- D. Giacobello, M. G. Christensen, M. N. Murthi, S. H. Jensen, and M. Moonen, "Sparse linear prediction and its applications to speech processing," IEEE Trans. Audio, Speech, Language Process., vol. 20(5), pp. 1644–1657, 2012.
- Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx, Sep 2013.
- E.A.P Habets "Room Impulse Response Generator" May 31,2006.
 http://www.sps.ele.tue.nl/members/E.A.P.Habets/rir_generator/rir_generator.pdf

