MECH 6313 - Term Exam

Name: Jonas Wagner UTD ID: 2021531784

 $2021,\; April \; 30$

Contents

1	Pro	Problem 1		
	1.1	Part a		2
		1.1.1	Equilibrium Point Identification	2
		1.1.2	Stability of Equilibrium Points	3
	1.2	Part b		4
\mathbf{A}	MA	TLAB	Code:	5

1 Problem 1

Consider the system:

$$\tau \dot{x} = x - \frac{1}{3}x^3 - y$$

$$\dot{y} = x + \mu$$
(1)

where $\tau > 0$ and $\mu \ge 0$ are constants.

1.1 Part a

Problem: Determine the equilibrium points and classify their stability properties depending on the values of parameter μ .

Solution:

1.1.1 Equilibrium Point Identification

The equilibrium points exist whenever $\dot{x} = \dot{y} = 0$ and can be identified as follows:

$$\tau(0) = x - \frac{1}{3}x^3 - y$$

$$(0) = x + \mu$$
(2)

which becomes:

$$y = x - \frac{1}{3}x^3$$

$$x = -\mu$$
(3)

and can then substituted in as:

$$x_{eq} = -\mu$$

 $y_{eq} = -\mu - \frac{1}{3}(-\mu)^3$ (4)

This results in the equilibrium points being defined in terms of μ as:

$$x_{eq} = -\mu$$

$$y_{eq} = \frac{1}{3}\mu^3 - \mu$$
(5)

1.1.2 Stability of Equilibrium Points

The stability around an equalibrium point can be evaluated by looking at the linearized model, which can be found as follows:

Let the state-variables be defined as:

$$X = \begin{bmatrix} x \\ y \end{bmatrix}$$

The nonlinear state equation would then be defined as:

$$\dot{X} = f(x) = \left[\frac{x_1 - \frac{1}{3}x_1^3 - x_2}{\tau \\ x_1 + \mu} \right]$$
 (6)

Then the equilibrium point is described as

$$X_{eq} = \begin{bmatrix} -\mu \\ \frac{1}{3}\mu^3 - \mu \end{bmatrix}$$

and the jacobian can be computed as:

$$A = \frac{\mathrm{d}f}{\mathrm{d}X} = \begin{bmatrix} \frac{\mathrm{d}f_1}{\mathrm{d}x_1} & \frac{\mathrm{d}f_1}{\mathrm{d}x_2} \\ \frac{\mathrm{d}f_2}{\mathrm{d}x_1} & \frac{\mathrm{d}f_2}{\mathrm{d}x_2} \end{bmatrix}$$
 (7)

$$jj$$
 (8)

1.2 Part b

Problem: At which value of μ does a bifurcation occur and what type of bifurcation is it?

Solution:

A MATLAB Code:

All code I write in this course can be found on my GitHub repository: $\label{eq:https:/github.com/jonaswagner2826/MECH6313}$