

OSTEOCLASTGENIC INHIBITORY AGENT

Background of the Invention

Field of the Invention

The present invention relates to an osteoclastgenic inhibitory agent comprising an interleukin-18 (hereinafter abbreviated as "IL-18") or its functional equivalent.

Description of the Prior Art

Osteoblasts' bone formation and osteoclasts' bone resorption are well balanced in healthy living bodies, and this keeps the bone tissues in normal conditions while old bone tissues are being replaced with fresh ones without altering the original bone shape. The phenomenon plays an important role in keeping living bodies' homeostasis such as the controlling of blood calcium concentration within a desired range. Once the balance is lost, especially when the bone resorption level exceeds the bone formation level, bone-related diseases and other diseases may be induced. Therefore, elucidation of the whole mechanism of bone resorption in living bodies, particularly, elucidation of osteoclasts is greatly highlighted due to scientific and clinical significance thereof.

However, the mechanism of osteoclast formation has not yet been completely elucidated even though interleukin 1 as a promoter and interleukin 4 as an inhibitor were found. This is because, similarly as various phenomena in living bodies, osteoclast formation in living bodies is controlled by the close and complicated relationship between promoters and inhibitors.

Summary of the Invention

The object of the present invention is to provide a novel and effective osteoclastgenic inhibitory agent. To solve the object the present inventors energetically studied for IL-18, i.e., one of cytokines as communication transferring substances in immune systems, which induces production of interferon- γ (hereinafter abbreviated as "IFN- γ "), an important biologically active substance for immunocompetent cells, and granulocyte/macrophage colony-stimulating factor (hereinafter abbreviated as "GM-CSF"), and augments cytotoxicity and induces formation of killer cells. At the finding, IL-18 was described as an interferon- γ -inducing factor as reported by Haruki OKAMURA in Japanese Patent Kokai Nos. 27,189/96 and 193,098/96, and in Nature, Vol. 378, No. 6,552, pp. 88-91 (1995), and then called IL-18 according to the proposal of Shimpei USHIO et al., in The Journal of Immunology, Vol. 156, pp. 4,274-4,279 (1996).

The present inventors found that a particular gene, capable of inhibiting osteoclast formation from osteoclastic precursor cells in vitro, is specifically expressed in quantities in stroma cells derived from mouse myeloma. Their further detailed analysis revealed that (i) the gene encodes IL-18 that includes SEQ ID NO: 7 as a core sequence, (ii) IL-18 and functional equivalents thereof effectively inhibit osteoclast

formation, and (iii) the inhibition is mainly due to the action of GM-CSF induced and produced by IL-18.

Based on these, the present inventors solved the present object by an osteoclastgenic inhibitory agent comprising IL-18 or its functional equivalent as an effective ingredient.

Brief Description of the Accompanying Drawings

FIG. 1 shows the structure of the recombinant DNA pKGFHH2.

FIG. 2 shows the structure of the recombinant DNA pCSHIGIF/MUT35.

FIG. 3 shows the structure of the recombinant DNA pCSHIGIF/MUT42.

FIG. 4 shows the structure of the recombinant DNA pBGHuGF.

FIG. 5 shows the structure of the recombinant DNA pKGFMH2.

In these figures, KGFHH2 cDNA means a cDNA encoding the IL-18 according to the present invention: IGIF/MUT35; a DNA encoding the IL-18 according to the present invention: IGIF/MUT42; a DNA encoding the IL-18 according to the present invention: HuIGIF; a chromosomal DNA encoding the IL-18 according to the present invention: KGFMH2 cDNA; a cDNA encoding the IL-18 according to the present invention: SS; a gene for 5S ribosomal RNA: Ptac; a tac promoter: rrnBT1T2; a termination region of a ribosomal RNA operon: AmpR; an ampicillin resistent gene: pBR322ori; a replication origin of

Escherichia coli: CMV; a cytomegalovirus promoter: IFNss; a nucleotide sequence encoding a signal peptide for subtype $\alpha 2b$ of human interferon- α .

Detailed Description of the Invention

The present invention relates to an osteoclastgenic inhibitory agent comprising IL-18 or its functional equivalent as an effective ingredient. The wording "IL-18" as referred to in the invention includes polypeptides with the above property independently of their sources and origins. For example, the IL-18 used in the present invention includes, as internal partial amino acid sequences, the amino acid sequences of SEQ ID NO: 1, SEQ ID NO: 2, and SEQ ID NO: 3, as well as SEQ ID NO: 4 and SEQ ID NO: 5, and includes the amino acid sequence of SEQ ID NO: 6 or SEQ ID NO: 7 as a whole. The wording "functional equivalent(s)" as referred to in the present invention includes (i) those wherein one or more amino acids in the amino acid sequence of IL-18 are replaced with different amino acids, (ii) those wherein one or more amino acids are added to the N- and/or C-termini of the amino acid sequence of IL-18, (iii) those wherein one or more amino acids are inserted into the internal sites of the amino acid sequence of IL-18, (iv) those wherein one or more amino acids in the N- and/or C-terminal regions of the amino acid sequence of IL-18 are deleted, and (v) those wherein one or more amino acids in the internal regions of the amino acid sequence of IL-18 are deleted; all of these modifications should be made within the range that does not

substantially lose the property of osteoclast formation by IL-18 among the inherent property of IL-18. Examples of such functional equivalents are described along with their detailed amino acid sequences in Japanese Patent Application No. 20,906/97 by the same applicant of the present applicant, i.e., polypeptides which are capable of inducing production of interferon-gamma by immunocompetent cells, wherein polypeptides contain either amino acid sequence wherein one or more cysteines are replaced with different amino acid(s) while leaving respective consensus sequences as shown in SEQ ID NOs: 1, 2 and 4 intact, or that wherein one or more amino acids are added, removed and/or replaced at one or more sites including those in the consensus sequences but excluding those of the replaced cysteine. The different amino acids to replace the cysteine(s) are not restricted to any types, as far as the resulting polypeptide, containing an amino acid sequence replaced with the different amino acid(s), exhibits an activity of inducing production of IFN-y by immunocompetent cells in the presence or absence of an appropriate cofactor, as the wild-type polypeptides containing SEQ ID NOs: 1, 2 and 4 as consensus partial amino acid sequences, and a stability significantly higher than that of the wild-type polypeptides. The different amino acids include serine, threonine, alanine, valine, leucine, isoleucine, histidine, tyrosine, phenylalanine, tryptophan, and methionine, among which the most preferable amino acid is serine or alanine. Embodiments of the amino acid sequences, containing SEQ ID NOs: 1, 2 and 4 as consensus partial amino acid sequences, in which one or more cysteines are to be replaced with different amino acid(s) are the wild-type polypeptides containing SEQ ID NO: 6 or 7. SEQ ID NO: 6 contains cysteines at the 38th, 68th, 76th, and 127th positions from the Nterminus. SEQ ID NO: 7 contains cysteines at the 7th, 75th, and 125th positions. The polypeptides include those containing the amino acid sequence of any one of SEQ ID NOs: 20-26, which are derived from the wild-type polypeptide containing SEQ ID NO: 6, those containing the amino acid sequence of SEQ ID NO: 27 or 28, which are derived from the wild-type polypeptide containing the amino acid sequence of SEQ ID NO: 7, and those containing an amino acid sequence derived from any one of SEQ ID NOs: 20-28 by adding, removing, and/or replacing one or more amino acids to and/or at position(s) excepting the positions where the cysteine(s) have been replaced while retaining the desired biological activities and stability. The wording "one or more amino acids" means the number of amino acids which conventional methods such as site-directed mutagenesis can usually add, remove or replace. The polypeptides containing any one of SEQ ID NOs: 20-28 possess both stability and biological activities significantly higher than those of the wild-type polypeptides.

The functional equivalents as referred to in the present invention further include glycosylated polypeptides of IL-18 and the above polypeptides. Any of these IL-18 and functional equivalents thereof, both of which are included to and referred to as "IL-18" in the present invention, unless specified otherwise, can be used in the present invention independently of their origins; those prepared by separating from natural sources such as cell cultures and from artificially

synthesized ones using recombinant DNA technology and peptide synthesis.

With economical viewpoint, methods of recombinant DNA technology are advantageously used; generally, desired IL-18 can be obtained by introducing DNAs encoding IL-18 into appropriate hosts derived from microorganisms, plants, and animals to form transformants, culturing the transformants in nutrient culture media in a conventional manner, and purifying the cultures by conventional methods used for purifying cytokines. Any DNAs can be used as the above DNAs as long as they contain a DNA encoding IL-18, and can be suitably selected depending on the purpose of the use of the present osteoclastgenic inhibitory agent or on the recombinant DNA technology used. For example, Japanese Patent Kokai Nos. 193,098/96, 231,598/96, and 27,189/96 by the same applicant of the present invention disclose in detail culturing transformed IL-18 by producing methods for microorganisms into which DNAs including a cDNA encoding mouse or human IL-18 are introduced; and Japanese Patent Application No. 185,305/96 by the same applicant of the present invention discloses in detail a method for producing IL-18 encoding human IL-18 by culturing transformed animal cells which have an introduced DNA that includes a chromosomal DNA encodes human IL-Japanese Patent Application No. 20,906/97 by the same 18. applicant of the present invention discloses in detail a method for producing IL-18 by culturing transformed animal cells having an introduced DNA which includes a DNA encoding a functional equivalent of human IL-18.

The aforesaid recombinant DNA technology has ar

economical advantage, but depending on the hosts and DNA sequences used, the IL-18 thus obtained may have somewhat different physicochemical property from those of IL-18 produced and functions in vivo. Japanese Patent Application No. 67,434/96 by the same applicant of the present invention discloses in detail a preparation of IL-18 using established human cell lines as natural sources, and Japanese Patent Application No. 213,267/96 by the same applicant also discloses in detail the preparation using an interleukin- 1β -converting The IL-18 obtained by those preparations can be enzyme. have substantially the estimated same to physicochemical property to that of IL-18 that is produced and functions in vivo, and the yield can be estimated to be slightly lower. However, such IL-18 has an advantage that it has a fewer effects when used as pharmaceuticals directed administering to warm-blooded animals in general and including When applying purification methods using monoclonal humans. antibodies specific to IL-18, as disclosed in Japanese Patent Application No. 231,598/96 by the same applicant of the present invention, a relatively-high purity IL-18 can be obtained in a minimum labor and cost.

The present osteoclastgenic inhibitory agent comprising the aforesaid IL-18 includes any types and forms usable to inhibit osteoclast formation both *in vivo* and *in vitro*. The present agent can be advantageously used as ingredients for cell culture media for animal cells, which satisfactorily inhibit osteoclast formation, maintain, proliferate, and/or differentiate the desired cells; components

of screening kits for bone-related therapeutic agents; boneresorption regulatory agents; and agents for osteoclast-related The bone-resorption regulatory agents include diseases. medicaments and health foods that exert an osteoclastgenic inhibitory activity in vivo, control bone resorption to normal conditions, and improve unfavorable physical conditions such as agents relatively-insignificant arthralgia. The for osteoclast-related diseases include medicaments used to prevent and/or treat diseases caused by an excessive osteoclast formation and/or its function. Examples of such diseases are hypercalcemia, osteoclastoma, Behçet's syndrome, osteosarcoma, arthropathy, chronic rheumatoid arthritis, deformity ostitis, primary hyperthyroidism, osteopenia, and osteoporosis. Varying depending on the types of agents and diseases to be treated, the present agent is usually formulated into a liquid, paste, or solid form which contains 0.000002-100 w/w %, preferably, 0.0002-0.5 w/w % of IL-18.

The present osteoclastgenic inhibitory agent can be IL-18 alone or compositions comprising IL-18 and one or more other ingredients such as carriers, excipients, diluents, adjuvants, antibiotics, and proteins such as serum albumin and gelatin as stabilizers; saccharides such as glucose, maltose, maltotriose, maltotetraose, trehalose, sucrose, isomaltose, lactose, panose, erlose, palatinose, lactosucrose, raffinose, fructooligosaccharide, galactooligosaccharide, lentinan, dextrin, pullulan, and sugar alcohols including sorbitol, maltitol, lactitol, and maltotriitol; buffers comprising phosphates or citrates mainly; and reductants such as 2-

mercaptoethanol, dithiothreitol, and reduced glutathione; and optionally biologically active substances such as interferon- α , interferon-y, interleukin-2, interleukin-3, interferon-β, interleukin-6, interleukin-12, TNF- α , TNF- β , GM-CSF, estrogen, progesterone, chlormadinone acetate, calcitonin, somatokine, factor, ipriflavone, somatomedin, insulin-like growth parathyroid hormone (PTH), norethisterone, busulfan, ancitabine, cytarabine, fluorouracil, tetrahydrofurfuryl fluorouracil, methotrexate, vitamin $\mathrm{D_2}$, active vitamin D , Krestin $^{\circledR}$ or polysaccharide K, L-asparaginase, and OK-432 or Picibanil $^{ ext{$\mathbb{R}$}}$; and calcium salts such as calcium lactate, calcium chloride, calcium monohydrogenphosphate, and L-calcium L-aspartate. When used as agents for administering to warm-blooded animals in general and including humans, i.e., agents for osteoclast-related diseases, the present agent can be preferably formulated into compositions by appropriately combining with one or more of the above physiologically-acceptable substances.

The present osteoclastgenic inhibitory agent includes medicaments in a unit dose form used for administering to warmblooded animals in general and including humans. The wording "unit dose form" means those which contain IL-18 in an amount suitable for a daily dose or in an amount up to four fold by integers or up to 1/40 fold of the dose, and those in a physically separated and formulated form suitable for prescribed administrations. Examples of such formulations are injections, liquids, powders, granules, tablets, capsules, troches, collyriums, nebulas, and suppositories.

The present agent as an osteoclastgenic inhibitory

agent effectively treat and prevent osteoclast-related diseases independently of oral and parenteral administrations. Varying depending on the types and symptoms of patients' diseases, the present agent can be administered to the patients orally, intradermally, subcutaneously, muscularly, or intravenously at a dose of about 0.5 μ g to 100 mg per shot, preferably, at a dose of about 2 μ g to 10 mg per shot of IL-18, 2-6 fold a day or 2-10 fold a week for one day to one year.

In the below, with reference to experiments, the preparation, physicochemical property, and biological activity of the IL-18 according to the present invention are described: Experiment 1

Preparation of human IL-18

According to the method in Japanese Patent Kokai No. 231,598/96 by the same applicant of the present invention, an autonomously-replicable recombinant DNA, pKGFHH2, linked to a cDNA encoding human IL-18, was prepared. Dideoxyribonucleotide sequencing analyzed that, as shown in FIG. 1, in the recombinant DNA, KGFHH2 cDNA containing the base sequence of SEQ ID NO: 8 was linked to the downstream of Ptac, a Tac promoter. The recombinant DNA pKGFHH2 contained the amino acid sequences of SEQ ID NOs: 1 to 5; these amino acid sequences were respectively encoded by nucleotides 46-63, 88-105, 400-420, 151-165, and 214-228 in SEQ ID NO: 8.

According to the method in Japanese Patent Kokai No. 231,598/96, the recombinant DNA pKGFHH2 was introduced into an Escherichia coli Y1090 strain, ATCC 37197, and the strain was cultured. The produced polypeptide was purified by

immunoaffinity chromatography to obtain a purified human IL-18 with a purity of at least 95% in a yield of about 25 mg/ ℓ culture. According to the method in Japanese Patent Kokai No. 193.098/96 by the same applicant of the present invention, the purified human IL-18 was analyzed for biological activity and physicochemical property as indicated below: When culturing human lymphocytes, collected by a conventional manner from a healthy donor, in the presence of the purified human IL-18, IFN- γ production was observed depending on the concentration of IL-18, resulting in a confirmation that IL-18 has an activity of inducing IFN-y production by lymphocytes as an immunocompetent In accordance with the method as reported by U. K. Laemmli in Nature, Vol. 227, pp. 680-685 (1970), the purified IL-18 was subjected to SDS-PAGE, resulting in a major band with an IFN-y inducing activity at a position corresponding to The IL-18 gave a pI of 4.9 ± 1.0 as 18,500±3,000 daltons. determined by conventional chromatofocusing. Conventional analysis using "PROTEIN SEQUENCER MODEL 473A", an apparatus of Applied Biosystems, Inc., Foster City, USA, revealed that the IL-18 had the amino acid sequence of SEQ ID NO: 9, i.e., the amino acid sequence of SEQ ID NO: 8 where a methionine residue was linked to the N-terminus.

Experiment 2

Preparation of human IL-18

According to the method in Japanese Patent Application No. 67,434/96 by the same applicant of the present invention, THP-1 cells, ATCC TIB 202, a human monocyte cell line derived from a male with acute monocytic leukemia, were inoculated to

the dorsum subcutaneous tissues of new born hamsters, followed by feeding the hamsters for three weeks. Tumor masses, about 15 g weight each, formed in the subcutaneous tissues of each hamster, were extracted, dispersed in media, and disrupted. The polypeptide obtained from the disrupted cells was purified by immunoaffinity chromatography to obtain a purified human IL-18 in a yield of an about 50 ng/head.

Similarly, according to the method in Japanese Patent Application No. 67,434/96, the purified human IL-18 was analyzed and determined for biological activity and physicochemical property as indicated below: It was confirmed that culturing lymphocytes, collected from healthy donors human conventional manner, in the presence of different concentrations of the human IL-18, resulted in an IL-18 dose-dependent IFN-y production. This revealed that the human IL-18 has a biological activity of inducing IFN-y production by lymphocytes as an immunocompetent cell. In accordance with the method as reported by U. K. Laemmli in Nature, Vol. 227, pp. 680-685 (1970), the purified human IL-18 was subjected to SDS-PAGE using 2 w/v % dithiothreitol as a reductant, resulting in a major band with IFN-y production inducing activity position at corresponding to 18,000-19,500 daltons. According to the peptide map disclosed in Japanese Patent Application No. 67,434/96, the human IL-18 was treated with clostripain commercialized by Sigma Chemical Company, Missouri, USA, to obtain polypeptide fragments, followed by subjecting the to high-performance fragments for fractionation chromatography (HPLC) using "ODS-120T", a column commercialized by Tosoh Corporation, Tokyo, Japan, and analyzing the amino acid sequences of the fragments from the N-terminus to reveal the following amino acid sequences of SEQ ID NOs: 10 to 13. These amino acid sequences were completely coincided with amino acids 148-157, 1-13, 45-58, and 80-96 in SEQ ID NO: 6. The data shows that the human IL-18 obtained in Experiment 2 has the amino acid sequence of SEQ ID NO: 6 and all the partial amino acid sequences of SEQ ID NO: 1 to 5.

Experiment 3

Preparation of functional equivalents

According to the method in Japanese Patent Application No. 20,906/97 by the same applicant of the present invention, it was prepared an autonomously-replicable recombinant DNA, pCSHIGIF/MUT35, was linked to a DNA encoding a functional equivalent of human IL-18 where cysteines 38, 68, and 76 in SEQ ID NO: 6 were respectively replaced with serine, serine, and alanine. Dideoxyribonucleotide sequence analysis revealed that as shown in FIG. 2, in the recombinant DNA, DNA IGIF/MUT35 with SEQ ID NO: 14 linked to the downstream of a base sequence encoding a signal peptide of subtype $\alpha 2b$ in human interferon- α in the same reading-frame, as reported by K. Henco et al., in Journal of Molecular Biology, Vol. 185, pp. 227-260 (1985), and had a stop codon for protein synthesis at further downstream. As shown in parallel in SEQ ID NO: 14, the amino acid sequence encoded by the recombinant DNA corresponded to SEQ ID NO: 6 where cysteines 38, 68, and 76 in SEQ ID NO: 6 were respectively replaced with serine, serine, and alanine. The recombinant DNA contained a nucleotide which encodes all the amino acid

sequences of SEQ ID NOs: 1 to 4 and the one of SEQ ID NO: 5 where cysteine at amino acid 5 in SEQ ID NO: 5 was replaced with alanine. These amino acid sequences were respectively encoded by nucleotides 46-63, 88-105, 400-420, 151-165, and 214-228 in SEQ ID NO: 14.

According to the method in Japanese Patent Application No. 20,906/97 by the same applicant of the present invention, the recombinant DNA pCSHIGIF/MUT35 was introduced into COS-1 cells, ATCC CRL 1650, an established cell line derived from SV40 transformed African Green monkey kidney, followed by culturing the transformed cells. The produced polypeptide in the culture was purified by immunoaffinity chromatography to obtain a purified functional equivalent of human IL-18 in a yield of about 40 ng/ml culture. According to the method in Japanese Patent Application No. 20,906/97, the purified functional equivalent was analyzed and determined for biological activity and physicochemical property as indicated below: When culturing KG-1 cells, ATCC CCL 246, an established cell line derived from human acute myelogenous leukemia, in the presence of different concentrations of the purified functional equivalent of human IFN-y production was observed depending on IL-18, concentration of the IL-18, revealing that the IL-18 has a biological activity of inducing IFN-y production by KG-1 cells as an immunocompetent cell. In accordance with the method as reported by U. K. Laemmli in Nature, Vol. 227, pp. 680-685 (1970), the purified functional equivalent was subjected to SDS-PAGE in the presence of 2 w/v % dithiothreitol as a reductant, resulting in a major band with an IFN-y production inducing

activity at a position corresponding to 18,000-19,500 daltons. Conventional analysis using "PROTEIN SEQUENCER MODEL 473A", an apparatus of Applied Biosystems, Inc., Foster City, USA, revealed that the N-terminal region of the functional equivalent had the amino acid sequence of SEQ ID NO: 15 which corresponded to the amino acid sequence in the N-terminal region as shown in parallel in SEQ ID NO: 14.

Experiment 4

Preparation of functional equivalent

According to the method in Japanese Patent Application No. 20,906/97 by the same applicant of the present invention, it was prepared an autonomously-replicable recombinant DNA, pCSHIGIF/MUT42, which was linked to a DNA encoding for a functional equivalent of human IL-18 where cysteines 38, 68, 76, and 127 in SEQ ID NO: 6 were respectively replaced with serine, serine, alanine, and serine. Dideoxyribonucleotide sequencing revealed that, as shown in FIG. 3, in the recombinant DNA, DNA IGIF/MUT42 with SEQ ID NO: 16 linked to the downstream of a base sequence encoding a signal peptide for subtype $\alpha 2b$ of human interferon- α in the same reading frame, as reported by K. Henco et al., in Journal of Molecular Biology, Vol. 185, pp. 227-260 (1985), and had a stop codon for protein synthesis at further downstream. As shown in parallel in SEQ ID NO: 16, the amino acid sequence encoded by the recombinant DNA corresponded to SEQ ID NO: 6 where cysteines 38, 68, 76, and 127 in SEQ ID NO: 6 were respectively replaced with serine, serine, alanine, and The recombinant DNA contained a nucleotide sequence which encodes all the amino acid sequences of SEQ ID NOs: 1 to

4 and the one of SEQ ID NO: 5 where cysteine 5 in SEQ ID NO: 5 was replaced with alanine. These amino acid sequences were respectively encoded by nucleotides 46-63, 88-105, 400-420, 151-165, and 214-228 in SEQ ID NO: 16.

According to the method in Japanese Patent Application No. 20,906/97 by the same applicant of the present invention, the recombinant DNA pCSHIGIF/MUT42 was introduced into COS-1 followed by culturing the cells. The produced cells, polypeptide in the culture was purified by immunoaffinity chromatography to obtain a purified functional equivalent of human IL-18 in a yield of about 20 ng/ml culture. According to the method in Japanese Patent Application No. 20,906/97, the purified functional equivalent was analyzed and determined for biological activity and physicochemical property as indicated When cultured KG-1 cells in the presence of different concentrations of the purified functional equivalent, a dosedependent IFN-y production was observed, and this revealed that the functional equivalent has a biological activity of inducing IFN- γ production by KG-1 cells as an immunocompetent cell. accordance with the method as reported by U. K. Laemmli in Nature, Vol. 227, pp. 680-685 (1970), the purified functional equivalent was subjected to SDS-PAGE in the presence of 2 w/v % dithiothreitol as a reductant, resulting in a major band with an IFN-y inducing activity at a position corresponding to 18,000-19,500 daltons. Conventional analysis using "PROTEIN SEQUENCER MODEL 473A", an apparatus of Applied Biosystems, Inc., Foster City, USA, revealed that the N-terminal region of the functional equivalent had the amino acid sequence of SEQ ID NO:

15 which completely corresponded to the amino acid sequence in the N-terminal region as shown in parallel in SEQ ID NO: 16.

Preparation of human IL-18

Experiment 5

According to the method in Japanese Patent Application No. 185,305/96 by the same applicant of the present invention, an autonomously-replicable recombinant DNA, pBGHuGF, linked to IL-18, was obtained. DNA encoding human chromosomal Dideoxyribonucleotide sequencing analysis revealed that as shown in FIG. 4, in the recombinant DNA, a chromosomal DNA, which encodes human IL-18, i.e., DNA HuIGIF with SEQ ID NO: 17, was linked to the downstream of a restriction site by a restriction enzyme, Hind III. As shown in SEQ ID NO: 17, the chromosomal DNA HuIGIF consists of 11,464 bp where the exon was fragmented by four introns positioning at nucleotides 83-1,453, 1,466-4,848, 4,984-6,317, and 6,452-11,224. Among the resting nucleotide sequence excluding these introns, nucleotides 3-11,443 from the 5'-terminus are the part that encodes a precursor of human IL-18, and nucleotides 4,866-4,983 are the part that encodes an active human IL-18. The chromosomal DNA contained nucleotides sequences encoding SEQ ID NOs: 1 to 5; amino acid sequences were respectively encoded by these nucleotides 4,911-4,928, 4,953-4,970, 11,372-11,392, 6,350-6,364, and 6,413-6,427 in SEQ ID NO: 17.

According to the method in Japanese Patent Application No. 185,305/96, the recombinant DNA pBGHuGF was introduced into CHO-K1 cells, ATCC CCL 61, an established cell line derived from Chinese hamster ovary, followed by culturing the cells. The

culture supernatant was contacted with a supernatant of cell disruptant prepared from a THP-1 cell culture to produce a polypeptide which was then purified by immunoaffinity chromatography to obtain a purified human IL-18 in a yield of about 15 mg/l culture. According to the method in Japanese Patent Application No. 185,305/96, the polypeptide was analyzed and determined for biological activity and physicochemical property as indicated below: It was confirmed that human lymphocytes, which were collected from a healthy donor, produced IFN-y depending on the purified human IL-18 concentration when cultured at different concentrations of the human IL-18, revealing that the human IL-18 has a biological activity of inducing IFN-y production by lymphocytes as an immunocompetent In accordance with the method as reported by U. K. cell. Laemmli in Nature, Vol. 227, pp. 680-685 (1970), the purified human IL-18 was subjected to SDS-PAGE in the presence of 2 w/v % dithiothreitol as a reductant, resulting in a major band with an IFN-y inducing activity at a position corresponding to 18,000-19,500 daltons. The N-terminal region of the human IL-18 contained the amino acid sequence of SEQ ID NO: 15 which completely corresponded to the amino acid sequence in the Nterminal region of SEQ ID NO: 17 for an active IL-18.

Experiment 6

Preparation of mouse IL-18

To a 0.5-ml reaction tube were added 8 μ l of 25 mM magnesium chloride, 10 μ l of 10 x PCR buffer, one μ l of 25 mM dNTP mix, one μ l of 2.5 units/ μ l of amplitaq DNA polymerase, one ng of a recombinant DNA, which encodes mouse IL-18 having the

nucleotide sequence of SEQ ID NO: 18 and the amino acid sequence of SEQ ID NO: 7, prepared from a phage DNA clone according to the method in Japanese Patent Kokai No. 27,189/96, and adequate amounts of a sense and antisense primers having nucleotide sequences represented by 5'-ATAGAATTCAAATGAACTTTGGCCGACTTCACTG-3' and 5'-ATAAAGCTTCTAACTTTGATGTAAGTT-3', respectively, which were chemically synthesized based on the amino acid sequences nearness to the N- and C-termini of SEQ ID NO: 7, and the mixture solution was brought up to a volume of 100 μ l with sterilized distilled water. The solution thus obtained was subjected in a usual manner to PCR reaction of the following three cycles of successive incubations at 94°C for one minute, 43°C for one minute, and 72°C for one minute.

The product obtained by the PCR reaction and "pCR-Script SK (+)", a plasmid vector commercialized by Stratagene Cloning Systems, California, USA, were in a conventional manner ligated together using a DNA ligase into a recombinant DNA which was then introduced into "XL-1 Blue MRF'Kan", an Escherichia coli strain commercialized by Stratagene Cloning Systems, California, USA., to obtain a transformant. The transformant was inoculated to L-broth (pH 7.2) containing 50 µg/ml ampicillin, followed by the incubation at 37°C for 18 hours under shaking conditions. The culture was centrifuged to obtain the proliferated transformants which were then treated with a conventional alkali-SDS method to isolate a recombinant DNA. A portion of the recombinant DNA isolated was analyzed by

dideoxyribonucleotide sequencing, revealing that the recombinant DNA contained restriction sites of Eco RI and Hind III at the 5'- and 3'-termini of SEQ ID NO: 18, respectively, and a DNA containing a methionine codon for initiating polypeptide synthesis and a TAG codon for terminating polypeptide synthesis, which were located in just before and after the N- and C-termini of the amino acid sequence as shown in parallel in SEQ ID NO: 18. The recombinant DNA contained the nucleotide sequences of SEQ ID NOs: 1 to 5. These amino acid sequences were encoded by nucleotides 46-63, 85-102, 394-414, 148-162, and 211-225 in SEQ ID NO: 18.

The remaining portion of the recombinant DNA was in a conventional manner cleaved with restriction enzymes of Eco RI and Hind II, and the resulting 0.1 µg of an Eco RI-Hind III DNA fragments, obtained by using "DNA LIGATION KIT VER 2", a DNA ligation kit commercialized by Takara Shuzo Co., Ltd., Tokyo, Japan, and 10 ng of pKK223-3, a plasmid vector commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, which had been cleaved with a restriction enzyme were linked together, by incubating at 16°C for 30 min to obtain an autonomouslyreplicable recombinant DNA, pKGFMH2. Using competent cell method, an Escherichia coli Y1090 strain, ATCC 37197, was transformed using the recombinant DNA pKGFMH2, and the resulting transformant, KGFMH2, was inoculated to L-broth (pH 7.2) containing 50 $\mu g/ml$ ampicillin, and cultured at 37 $^{\circ}$ C for 18 hours under shaking conditions. The culture was centrifuged to collect the proliferated transformants, followed by applying a conventional SDS-alkali method to a portion of the transformants to extract the recombinant DNA pKGFMH2. Dideoxyribonucleotide sequencing analysis revealed that, as shown in FIG. 5, KGFMH2 cDNA containing the nucleotide sequence of SEQ ID NO: 18 was linked to the downstream of the Tac promoter in the recombinant DNA pKGFMH2.

Ampicillin was added to L-broth (pH 7.2), which had been sterilized by autoclaving, to give a concentration of 50 ug/ml, cooled to 37°C, and inoculated with the transformant KGFMH2, followed by the culture at 37°C for 18 hours. Eighteen liters of a fresh preparation of the same culture medium was placed in a 20-1 jar fermenter, similarly sterilized as above, admixed with ampicillin, cooled to 37°C, and inoculated with one v/v % of the seed culture obtained in the above, followed by the culture at 37°C for 8 hours under aeration-agitation conditions. The resulting culture was centrifuged to collect the cultured cells which were then suspended in a mixture solution (pH 7.3) sodium chloride, 16 mΜ containing 150 mΜ sodium dihydrogenphosphate, hydrogenphosphate, and 4 mM disrupted by ultrasonication, and centrifuged to remove cell disruptant, and this yielded an about two liters of a supernatant.

To an about two liters of the supernatant was added 10 mM phosphate buffer (pH 7.3) containing ammonium sulfate to give a 40% ammonium saturation. The resulting sediment was removed by centrifugation, and the supernatant was mixed with ammonium sulfate to give an 85% ammonium saturation, allowed to stand at 4°C for 18 hours, and centrifuged at about 8,000 rpm for 30 min to obtain a newly formed sediment. The sediment thus

obtained was dissolved in 10 mM phosphate buffer (pH 6.6) containing 1.5 M ammonium sulfate to give a total volume of about 1,300 ml, and the solution was filtered, and fed to a column packed with about 800 ml of "PHENYL SEPHAROSE CL-6B", a gel commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, followed by washing the column with a fresh preparation of the same buffer and feeding to the column a linear gradient buffer of ammonium sulfate decreasing from 1.5 M to 0 M in 10 mM phosphate buffer (pH 6.6) at an SV (space velocity) 1.5. Fractions eluted at around 1 M ammonium sulfate were pooled, concentrated using a membrane filter, and dialyzed against 10 mM phosphate buffer (pH 6.5) at 4°C for 18 hours. The dialyzed solution was fed to a column packed with about 55 ml of "DEAE-5PW", a gel commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, which had been equilibrated with 10 phosphate buffer (pH 6.5). The column was washed with a fresh preparation of the same buffer, and fed with a linear gradient buffer of sodium chloride increasing from 0 M to 0.5 M in 10 mM $\,$ phosphate buffer (pH 6.5) at SV 5.5, followed by collecting fractions eluted at around 0.2 M sodium chloride. Thereafter, the fractions were pooled and concentrated similarly as above up to give an about nine milliliters, followed by dialyzing the concentrate against PBS (phosphate buffered saline) at 4°C for 18 hours, and feeding the dialyzed solution to a column packed with "SUPERDEX 75", a gel commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, which had been equilibrated with a fresh preparation of the same PBS. The column was fed with a fresh preparation of the same PBS to collect fractions

with an IFN- γ inducing activity, and the fractions were pooled and concentrated with a membrane filter to obtain a purified mouse IL-18 in a yield of about 350 $\mu g/\ell$ culture.

According to the method in Japanese Patent Kokai No. 27,189/96, the purified mouse IL-18 was analyzed and determined for biological activity and physicochemical property indicated below: Culturing mouse spleen cells, collected by a conventional manner, under different concentrations of the mouse IL-18 resulted in an IFN-y production depending on the concentrations of the mouse IL-18, and this revealed that the mouse IL-18 has an activity of inducing IFN-y production by spleen cells as an immunocompetent cell. In accordance with the method as reported by U. K. Laemmli in Nature, Vol. 227, pp. 680-685 (1970), the purified human IL-18 was subjected to SDS-PAGE under non-reducing conditions, resulting in a major band with an IFN-y inducing activity at a position corresponding to 19,000±5,000 daltons. The N-terminal region of the mouse IL-18 contained the amino acid sequence of SEQ ID NO: 19 which corresponded to the N-terminal region of SEQ ID NO: 18.

With reference to Experiment 7, the biological activity of the IL-18 according to the present invention will be described in more detail, and Experiment 8 describes the cytotoxicity of the IL-18:

Experiment 7

Biological activity

Experiment 7-1

Induction of GM-CSF production

Using a heparinized syringe, blood was collected from

a healthy volunteer and diluted two fold with serum-free RPMI 1640 medium (pH 7.4). The diluent was overlaid on a ficoll and centrifuged, and the collected lymphocytes were washed with RPMI 1640 medium (pH 7.4) supplemented with 10 v/v % fetal calf serum, and suspended in a fresh preparation of the same medium to give a cell density of 1 x 10^6 cells/ml, followed by distributing the cell suspension to a 12-well microplate by two ml/well.

Using RPMI 1640 medium (pH 7.4) supplemented with 10 v/v % fetal calf serum, an IL-18 preparation obtained by the method in Experiment 1 was prepared into a one μg/ml solution which was then distributed to the above microplate by 20-200 μl/well. To the microplate was further added a fresh preparation of the same buffer, supplemented with 500 μl/ml of Concanavalin A, by 10 μl/well, followed by the incubation at 37°C for 48 hours in a 5 v/v % CO₂ incubator. After completion of the culture, supernatants in each well were sampled by 0.1 ml/well, and determined for GM-CSF content using a conventional enzyme immunoassay. In parallel, a culture system free of IL-18 as a control was provided and treated similarly as above. The data is in Table 1:

Table 1

IL-18* (nM)	GM-CSF yield (pg/ml)
	510
0 7	2,150
0.7	3,050
2.8	3,950
5.6	

Note: The symbol "*" means that IL-18 was added to the culture system in the presence of 2.5 $\mu g/ml$ of Concanavalin A.

The results in Table 1 indicate that lymphocytes as an immunocompetent cell produced GM-CSF depending on the concentration of IL-18 when contacted with IL-18 in the presence of Concanavalin A as a cofactor. It was also confirmed that all of the IL-18 preparations and functional equivalents thereof, which were obtained by the methods in Experiments 2 to 5, induced GM-CSF production even when used alone similarly as above. An IL-18 preparation obtained by the method in Experiment 6 was tested in accordance with Experiment 7-1 except that the human lymphocytes used in the experiment were replaced with spleen cells prepared from mouse by a conventional manner, revealing that the IL-18 preparation also induced GM-CSF production.

Experiment 7-2

Inhibition of osteoclast formation

Experiment 7-2(a)

As reported by T. J. Martin and K. W. Ng in Journal of Cellular Biochemistry, Vol. 56, pp. 357-366 (1994), it is considered requisite for contacting osteoclastic precursor cells, derived from hematopoietic stem cells, with osteoblasts or bone marrow stromas to generally differentiate osteoclastic precursor cells into mature osteoclasts. As described by G. D. Roodman in Endocrine Reviews, Vol. 17, No. 4, pp. 308-332 (1996), it is generally recognized that osteoclasts have characters of multinucleated cells, tartaric acid-resistant acid

phosphatase (hereinafter abbreviated as "TRAP") activity, and a calcitonin receptor. In a co-culture system of osteoblasts and bone marrow cells as reported by Nobuyuki UDAGAWA et al., in Journal of Experimental Medicine, Vol. 182, pp. 1,461-1,468 these cells respond to factors such as (1995), $dihydroxyvitamin D_3$, prostaglandin E_2 , adrenocortical hormone, interleukin 1, interleukin 6, and interleukin 11, to form osteoclast-like cells (hereinafter may be abbreviated as "OCL"). formed OCL has characters of osteoclasts in vivo. The Therefore, the co-culture system well reflects in vitro the processes of osteoclast formation in vivo. Using this system, experiments for osteoclast formation and osteoclastgenic inhibitory agents can be carried out.

The osteoclastgenic inhibitory activity of the IL-18 according to the present invention was studied using the above co-culture system. The osteoblasts used in this experiment were prepared in a conventional manner by treating a newborn mouse calvaria with 0.1 w/v % collagenase commercialized by Worthington Biochemical Co., Freefold, Australia, and 0.2 w/v % dispase commercialized by Godo Shusei Co., Ltd., Tokyo, Japan. The bone marrow cells were prepared from a mature mouse in a conventional manner. As a negative control, 2 x 10^4 cells of a primary cell culture of osteoblasts and 5 x 10^5 cells of bone marrow cells were co-cultured in each well of a 48-well microplate containing 0.4 ml/well of α -MEM medium supplemented with 10 v/v % fetal calf serum (hereinafter designated as "Medium" throughout Experiment 4-2) at 37° C for seven days in a 5 v/v % Co_2 incubator. As a positive control, the above two-

types of cells were co-cultured similarly as in the negative control except that they were cultured in other wells containing 10^{-8} M of 1α , 25-dihydroxyvitamin D₃ commercialized by Wako Pure Japan, and $10^{-7}M$ of prostaglandin E_2 Chemicals, Tokyo, commercialized by Sigma Chemical Company, Missouri, USA. aforesaid two-types of cells were co-cultured similarly as in the positive control except that they were cultured in other wells containing $1\alpha, 25$ -dihydroxyvitamin D_3 commercialized by Tokyo, Japan, and prostaglandin E, Wako Pure Chemicals, commercialized by Sigma Chemical Company, Missouri, USA., in the same concentrations as used in the positive control, and a concentration of 0.01-10 ng/ml of an IL-18 preparation prepared by the method in Experiment 6. In every co-culture system, the media in each well were replaced with fresh preparations of the same media used in the co-culture systems on the 3rd day after the initiation of each culture. According to the method by Nobuyuki UDAGAWA in Journal of Experimental Medicine, Vol. 182, pp. 1,461-1,468 (1995), the cells on the 6th day after the initiation of each culture were fixed and stained based on TRAP activity, followed by counting the stained cells (hereinafter called "TRAP-positive cells") per well. Throughout Experiment 4-2, quadruplet wells under the same conditions were provided for each co-culture system, and the mean value for the TRAPpositive cells per well in each system was calculated. The results are in Table 2:

Table 2

Number of TRAP-positive cells per well*2	2	110	114	111	106	63	29	12	2	2	
Osteoclastgenic formation factor*1	ı	+	+	+	+	+	+	+	+	+	
IL-18 (ng/ml)	0	0	0.01	0.1	0.5	1	2	4	8	10	

 $\boldsymbol{E_2},$ respectively. It shows a mean value of the data from quadruplet wells cultured The symbols of "+" and "-" show co-culture systems with and without $10^{-6}M\ l\text{a},25\text{-dihydroxyvitamin}\ D_3$ and $10^{-7}M\ prostaglandin$ Note: *1:

under the same conditions. *2:

.

As shown in Table 2, the formation of TRAP-positive cells was not substantially observed in the negative control, but the distinct formation was observed in the positive control. In the co-culture systems, i.e., the positive control supplemented additionally with IL-18, the formation of TRAP-positive cells was inhibited depending on the concentration of IL-18, and the maximum inhibition, i.e., a level equal to that in the negative control, was found at eight ng/ml or more of IL-18. These data strongly indicates that IL-18 has a concrete activity of inhibiting OCL formation in vitro and also inhibits osteoclast formation.

Experiment 7-2(b)

As described hereinbefore, it was confirmed that there exist factors that induce the formation of osteoclast-like cells in the co-culture systems used throughout Experiment 7-2. Therefore, in this Experiment 7-2(b), it was studied whether the inhibitory activity of IL-18 on osteoclast formation observed in Experiment 7-2(a) was specific to some factors or not; the osteoclast-like cells were cultured by the same method as used in the negative control in Experiment 7-2(a) except for using a medium supplemented with 10^{-8} M 1α , 25-dihydroxyvitamin D_3 , 10^{-7} M prostaglandin E_2 , 200 ng/ml parathyroid hormone, 100 ng/ml interleukin 1, or 20 ng/ml interleukin 11. These culture systems were for positive controls. In parallel, the cells were cultured in other wells by the same method used in the positive controls except for using a medium containing 10 ng/ml of an IL-18 preparation obtained by the method in Experiment 6, in addition to any one of the above factors at the same

concentration. After completion of the cultures, TRAP-positive cells in each well were counted, and the numbers were compared similarly as in Experiment 7-2(a). The results are in Table 3:

	(concentration)		
(() B	1	94
Ü E	(W_ OT)	+	m
ţ	7.5-7.7	1	77
PGE_2	(W. OT)	+	3
E	(1-)	1	63
H H	(m/gn ooz)	+	3
F	(ı	84
11-11	11-11 (100 ng/m1)	+	3
- -	(1-) 00)	1	71
1 - 1 T	(m / gu 07)	+	3

prostaglandin E_2 , parathyroid hormone, interleukin-11, and interleukin-1 which were added to wells to give the concentrations as indicated in parentheses. The symbol "+" means that IL-18 was added to a well to give a concentration D_3 , PGE₂, PTH, IL-11, and IL-1 are respectively $1\alpha,25$ -dihydroxyvitamin D_3 ,

of $10~{\rm ng/ml}$, and the symbol "-" means that IL-18 was not added to. It shows a mean value of the data from quadruplet wells cultured under the same conditions. .. "3

As shown in Table 3, a distinct formation of TRAP-positive cells was observed in every positive control, but the formation was almost completely inhibited in the presence of IL-18. This strongly indicates that IL-18 has a wide and general activity of inhibiting osteoclast formation independently of osteoclast-formation-related factors.

Experiment 7-2(c)

It was studied whether the osteoclastgenic inhibition by IL-18, confirmed in Experiments 7-2(a) and 7-2(b), was caused by the action of the IL-18-induced GM-CSF. For positive and negative controls, the same co-culture systems employed in Experiment 7-2(a) were used. Using other wells, the co-culture of osteoblasts and bone marrow cells was carried out similarly as the method used for the positive controls except for using a medium supplemented with $1\alpha,25$ -dihydroxyvitamin D_3 and prostaglandin E_2 at the same concentrations used in the positive control, and with (i) 10 $\mu g/ml$ of an anti-mouse GM-CSF polyclonal antibody commercialized by R&D Systems, Minnesota, USA, (ii) 10 ng/ml of an IL-18 preparation obtained by the method in Experiment 6, (iii) (ii) plus 10 µg/ml of an antimouse polyclonal antibody, (iv) 0.1 ng/ml of a mouse GM-CSF commercialized by R&D Systems, Minnesota, USA, or (v) (iv) plus 10 µg/ml of an anti-mouse GM-CSF polyclonal antibody. After completion of the culture, TRAP-positive cells in each well were and the numbers were compared similarly as counted, Experiment 7-2(a). The data is shown in Table 4 where the symbols "i" to "v" coincide with those used in the co-culture systems other than the control systems.

N -	Culture system*1	Osteoclastgenic factor*2	IL-18*3	GM-CSF*4	Anti-GM-CSF antibody*5	<pre>IL-18*3 GM-CSF*4 Anti-GM-CSF Number of TRAP-positive antibody*5 cells per well*6</pre>
	z	1	ı	I	1	8
+ + + + + + + + + + + + + + + + + + + +	, Д	+	1	ı	1	122
1 + + + + + + + + + + + + + + + + + + +	न	+	ı	1	+	112
+ + + + + + + + + + + + + + + + + + + +	ii	+	+	ţ	I	3
+ +	iii	+	+	1	+	111
+	iv	+	I	+	ı	7
	>	+	1	+	+	106

to those in the five types co-culture systems used. $\mbox{^*2;}$ where the symbol "+" means that 1a,25-dihydroxyvitamin D_3 and prostaglandin E_2 were respectively added to a well to give respective concentrations of $10^{-8}M$ and $10^{-7}M$, and the symbol "-" means that these compounds were not added to.

The symbol "+" means that IL-18 was added to a well to give a concentration of 10 ng/ml, and the symbol "-" means that IL-18 was not added to.

concentration of 0.1 ng/ml, and the symbol "-" means that GM-CSF The symbol "+" means that GM-CSF was added to a well to give a was not added to.

The symbol "+" means that an anti-GM-CSF polyclonal antibody was symbol "-" means that the polyclonal antibody was not added to. added to a well to give a concentration of 10 µg/ml, and the

As shown in Table 4, the formation of TRAP-positive cells was almost completely inhibited by IL-18, cf., the co-culture system (ii), but the inhibition was almost completely inhibited by the addition of the anti-mouse polyclonal antibody, cf., the co-culture system (iii). Mouse GM-CSF exhibited an activity of inhibiting the formation of TRAP-positive cells similar to IL-18, cf., the co-culture system (iv), and the inhibition was almost completely inhibited by the addition of the anti-mouse GM-CSF polyclonal antibody, cf., the co-culture system (v). The sole use of the anti-mouse GM-CSF polyclonal antibody gave no influence on the formation of TRAP-positive cells, cf., the co-culture system (i). These data strongly indicates that the osteoclastgenic inhibition by IL-18 was due to the action of the IL-18-induced GM-CSF.

Experiment 8

Acute toxicity test

Eight-week-old mice were in a conventional manner injected percutaneously, orally, or intraperitoneally with either of IL-18 preparations obtained by the methods in Experiments 1 to 6. The results showed that these IL-18 preparations had an $\rm LD_{50}$ of about one mg/kg or more in mice independent of the route of administration. The data evidences that IL-18 can be incorporated into pharmaceuticals for warmblooded animals in general and including humans without causing no serious side effects.

As described in *Nikkei Biotechnology Annual Report* 1996, pp. 498-499 (1995), published by Nikkei BP Publisher, Tokyo, Japan (1995), the IL-18-induced GM-CSF has not yet been

clinically used in Japan, but applied clinically in USA and Europe. The fact would show that IL-18 has substantially no serious side effects. These facts indicate that the osteoclastgenic inhibitory agent according to the present invention can be successively administered to warm-blooded animals in general and including humans to induce osteoclast formation and exert a satisfactory therapeutic and/or prophylactic effect on osteoclast-related diseases without causing serious side effects.

The following Examples describe the present osteoclastgenic inhibitory agent according to the present invention:

Example 1

Liquid

Either of IL-18 preparations, obtained by the methods in Experiments 1 to 6, was dissolved in physiological saline containing one w/v % human serum albumin as a stabilizer to give a concentration of two mg/ml of the IL-18 preparation. The resulting solutions were in a conventional manner membrane filtered for sterilization into liquids.

The liquids have a satisfactory stability and can be arbitrarily used as ingredients for cell culture and agents in the form of an injection, ophthalmic solution, or collunarium for regulating bone resorption and for osteoclast-related diseases, directed to treat and/or prevent hypercalcemia, osteoclastoma, osteoporosis, etc.

Example 2

Dry agent

Fifty milligrams of either of IL-18 preparations, obtained by the methods in Experiments 1 to 6, was dissolved in 100 ml of physiological saline containing one w/v % purified gelatin as a stabilizer. The solutions thus obtained were in a conventional manner membrane filtered for sterilization, distributed to vials by one milliliter, lyophilized, and sealed with caps.

The products have a satisfactory stability and can be arbitrarily used as ingredients for cell culture and agents in the form of a dry injection for regulating bone resorption and for osteoclast-related diseases, directed to treat and/or prevent hypercalcemia, osteoclastoma, osteoporosis, etc.

Example 3

Dry agent

Fifty milligrams of either of IL-18 preparations, obtained by the methods in Experiments 1 to 6, was dissolved in 100 ml of physiological saline containing one w/v % trehalose as a stabilizer. The solutions were in a conventional manner membrane filtered for sterilization, distributed to vials by one milliliter, lyophilized, and sealed with caps.

The products have a satisfactory stability and can be arbitrarily used as ingredients for cell culture and agents in the form of a dry injection for regulating bone resorption and for osteoclast-related diseases, directed to treat and/or prevent hypercalcemia, osteoclastoma, osteoporosis, etc.

Example 4

Ointment

"HIVIS WAKO GEL $^{(\!R\!)}$ 104", a carboxyvinylpolymer

Commercialized by Wako Pure Chemical Industries, Ltd., Tokyo, Japan, and a high-purity trehalose were dissolved in a sterilized distilled water to give respective concentrations of 1.4 w/w % and 2.0 w/w %, and the solution was mixed to homogeneity with either of IL-18 preparations obtained by the methods in Experiments 1 to 6, and adjusted to pH 7.2 to obtain a paste containing about one mg of an IL-18 preparation per g of the product.

Each product thus obtained has a satisfactory spreadability and stability and can be arbitrarily used as an agent in the form of an ointment for regulating bone resorption and for osteoclast-related diseases, directed to treat and/or prevent hypercalcemia, osteoclastoma, osteoporosis, etc.

Example 5

Tablet

"FINETOSE®", an anhydrous crystalline α -maltose powder commercialized by Hayashibara Biochemical Laboratories, Inc., Okayama, Japan, was mixed to homogeneity with either of IL-18 preparations, obtained by the methods in Experiments 1 to 6, and "LUMIN" or 1-1'-1"-trihepthyl-11-chinolyl(4)·4·4'-penthamethinchynocyanine-1,1"-dijodide. The mixtures were in a conventional manner tabletted to obtain tablets, about 200 mg weight each, containing an about two milligrams of either of the IL-18 preparations and an about two milligrams of LUMIN per tablet.

The products have a satisfactory swallowability, stability, and cell-activating activity and can be arbitrarily used as agents in the form of a tablet for regulating bone

resorption and for osteoclast-related diseases, directed to treat and/or prevent hypercalcemia, osteoclastoma, osteoporosis, etc.

As described above, the osteoclastgenic inhibitory agent according to the present invention effectively inhibits osteoclast formation. Therefore, the agent can be arbitrarily used as an ingredient for cell culture and agents for regulating bone resorption and for osteoclast-related diseases, directed to treat and/or prevent hypercalcemia, osteoclastoma, osteoporosis, etc.

Thus the present invention with these useful activities and functions is a significant invention that would greatly contribute to this field.

While there has been described what is at present considered to be the preferred embodiments of the invention, it will be understood the various modifications may be made therein, and it is intended to cover in the appended claims all such modifications as fall within the true spirits and scope of the invention.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (1) APPLICANT: GILLISPIE, Matthew Todd HORWOOD, Nicole Joy UDAGAWA, Nobuyuki KURIMOTO, Masashi
 - (i1) TITLE OF INVENTION: OSTEOCLASTGENIC INHIBITORY AGENT
 - (ii:) NUMBER OF SEQUENCES: 28
 - (iy) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: BROWDY AND NEIMARK
 - (B) STREET: 419 Seventh Street, N.W., Suite 300
 - (C) CITY: Washington
 - (D) STATE: D.C.
 - (E) COUNTRY: USA
 - (F) ZIP: 20004
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: Patent In Release #1.0, Version #1.30
 - (V1) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 25-FEB-1998
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: JP 55,468/1997
 - (B) FILING DATE: 25-FEB-1997
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: BROWDY, Roger L.
 - (B) REGISTRATION NUMBER: 25,618
 - (C) REFERENCE/DOCKET NUMBER: GILLISPIE=1
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (202) 628-5197 (B) TELEFAX: (202) 737-3528
- INFORMATION FOR SEQ ID NO: 1: (2)
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (11) MOLECULE TYPE: peptide
 - (v) FRAGMENT TYPE: internal fragment
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

Asn Asp Gln Val Leu Phe 1 5

- INFORMATION FOR SEQ ID NO: 2: (2)
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: internal fragment

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2: Phe Glu Asp Met Thr Asp INFORMATION FOR SEQ ID NO: 3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (v) FRAGMENT TYPE: internal fragment (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: Phe Lys Leu Ile Leu Lys Lys 1 5 INFORMATION FOR SEQ ID NO: 4: (2) (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: internal fragment (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4: Met Tyr Lys Asp Ser 1 (2) INFORMATION FOR SEQ ID NO: 5: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (11) MOLECULE TYPE: internal fragment (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: Ser Thr Leu Ser Cys 1 (21)INFORMATION FOR SEQ ID NO: 6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 157 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6: Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn 1.0

Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp

25 Met Thr Asp Ser Asp Cys Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile 40 Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile

20

5.0 55 60 Ser Val Lys Cys Glu Lys Ile Ser Thr Leu Ser Cys Glu Asn Lys Ile 70 75 Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 95 85 90 Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys 100 105 110 Met Gln Phe Glu Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Cys Glu 115 120 125 Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 135 Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp 145 150 155

(2) INFORMATION FOR SEQ ID NO: 7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

Asn Phe Gly Arg Leu His Cys Thr Thr Ala Val Ile Arg Asn Ile [Asn Asp Gln Val Leu Phe Val Asp Lys Arg Gln Pro Val Phe Glu Asp Met 20 25 Thr Asp Ile Asp Gln Ser Ala Ser Glu Pro Gln Thr Arg Leu Ile Ile 35 40 Tyr Met Tyr Lys Asp Ser Glu Val Arg Gly Leu Ala Val Thr Leu Ser 55 Val Lys Asp Ser Lys Met Ser Thr Leu Ser Cys Lys Asn Lys Ile Ile 75 70 Ser Phe Glu Glu Met Asp Pro Pro Glu Asn Ile Asp Asp Ile Gln Ser 90 85 95 Asp Leu Ile Phe Phe Gln Lys Arg Val Pro Gly His Asn Lys Met Glu 100 105 110 Phe Glu Ser Ser Leu Tyr Glu Gly His Phe Leu Ala Cys Gln Lys Glu 115 120 125 Asp Asp Ala Phe Lys Leu Ile Leu Lys Lys Lys Asp Glu Asn Gly Asp 130 135 140 Lys Ser Val Met Phe Thr Leu Thr Asn Leu His Gln Ser 150

(2) INFORMATION FOR SEQ ID NO: 8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 471 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (G) CELL TYPE: liver
- (ix) FEATURE:
 - (A) NAME/KEY: mat peptide
 - (B) LOCATION: 1..471
 - (C) IDENTIFICATION METHOD: E
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

TAC TTT GGC AAG CTT GAA TCT AAA TTA TCA GTC ATA AGA AAT TTG AAT

Tyr 1	Phe	Gly	Lys	Leu 5	Glu	Ser	Lys	Leu	Ser 10	Val	Ile	Arg	Asn	Leu 15	Asn	
GAC	CAA	GTT	CTC	TTC	ATT	GAC	CAA	GGA	TAA	CGG	CCT	CTA	TTT	GAA	GAT	96
Asp	Gln	Val	Leu 20	Phe	Ile	Asp	Gln	Gly 25	Asn	Arg	Pro	Leu	Phe 30	Glu	Asp	
ATG	ACT	GAT	TCT	GAC	TGT	AGA	GAT	AAT	GCA	CCC	CGG	ACC	ATA	TTT	TTA	144
Met	Thr	Asp 35	Ser	Asp	Cys	Arg	Asp 40	Asn	Ala	Pro	Arg	Thr 45	Ile	Phe	Ile	
ATA	AGT	ATG	TAT	AAA	GAT	AGC	CAG	CCT	AGA	GGT	ATG	GCT	GTA	ACT	ATC	192
Ile	Ser 50	Met	Tyr	Lys	Asp	Ser 55	Gln	Pro	Arg	Gly	Met 60	Ala	Val	Thr	Ile	
TCT	GTG	AAG	TGT	GAG	AAA	ATT	TCA	ACT	CTC	TCC	TGT	GAG	AAC	AAA	ATT	240
Ser 65	Val	Lys	Cys	Glu	Lys 70	Ile	Ser	Thr	Leu	Ser 75	Cys	Glu	Asn	Lys	Ile 80	
TTA	TCC	TTT	AAG	GAA	ATG	AAT	CCT	CCT	GAT	AAC	ATC	AAG	GAT	ACA	AAA	288
Ile	Ser	Phe	Lys	Glu 85	Met	Asn	Pro	Pro	Asp 90	Asn	Ile	Lys	Asp	Thr 95	Lys	
AGT	GAC	ATC	ATA	TTC	TTT	CAG	AGA	AGT	GTC	CCA	GGA	CAT	GAT	AAT	AAG	336
Ser	Asp	Ile	Ile 100	Phe	Phe	Gln	Arg	Ser 105	Val	Pro	Gly	His	Asp 110	Asn	Lys	
ATG	CAA	TTT	GAA	TCT	TCA	TCA	TAC	GAA	GGA	TAC	TTT	CTA	GCT	TGT	GAA	384
Met	Gln	Phe 115	Glu	Ser	Ser	Ser	Tyr 120	Glu	Gly	Tyr	Phe	Leu 125	Ala	Cys	Glu	
AAA	GAG	AGA	GAC	CTT	TTT	AAA	CTC	ATT	TTG	AAA	AAA	GAG	GAT	GAA	TTG	432
Lys	Glu 13		Asp	Leu	Phe	Lys 135	Leu	Ile	Leu	Lys	Lys 140	Glu	Asp	Glu	Leu	
GGG	GAT	AGA	TCT	ATA	ATG	TTC	ACT	GTT	CAA	AAC	GAA	GAC				471
Gly	Asp	Arg	Ser	Ile	Met	Phe	Thr	Val	Gln	Asn	Glu	Asp				
145					150					155						

- (2) INFORMATION FOR SEQ ID NO: 9:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 (D) TOPOLOGY: linear
 - (:i) MOLECULE TYPE: peptide
 - (v) FRAGMENT TYPE: N-terminal fragment
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

Met Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser 1 10

- (2) INFORMATION FOR SEQ ID NO: 10:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A)LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (11) MOLECULE TYPE: peptide
 - (v) FRAGMENT TYPE: C-terminal fragment
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Ser Ile Met Phe Thr Val Gln Asn Glu Asp

- (2) INFORMATION FOR SEQ ID NO: 11:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 13 amino acids
 (B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(v) FRAGMENT TYPE: N-terminal fragment

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg

- (2) INFORMATION FOR SEQ ID NO: 12:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (y) FRAGMENT TYPE: internal fragment
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

Thr Ile Phe Ile Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg

- (2)INFORMATION FOR SEQ ID NO: 13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (11) MOLECULE TYPE: peptide
 - (v) FRAGMENT TYPE: internal fragment
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:
- Ile Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys
- (2) INFORMATION FOR SEQ ID NO: 14:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A)LENGTH: 471 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (1x) FEATURE:
 - (A) NAME/KEY: mat peptide (B) LOCATION: 1..471

 - (C) IDENTIFICATION METHOD: S
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

TAC TTT GGC AAG CTT GAA TCT AAA TTA TCA GTC ATA AGA AAT TTG AAT 48 Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn 10 15 GAC CAA GTT CTC TTC ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT 96 Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp 20 25

•												- 4				
			TCT													144
Met	Thr	Asp 35	Ser	Asp	Ser	Arg	Asp 40	Asn	Ala	Pro	Arg	Thr 45	Ile	Phe	Ile	
ATA	AGT	ATG	TAT	AAA	GAT	AGC	CAG	CCT	AGA	GGT	ATG	GCT	GTA	ACT	ATC	192
Ile	Ser 50	Met	Tyr	Lys	Asp	Ser 55	Gln	Pro	Arg	Gly	Met 60	Ala	Val	Thr	Ile	
TCT	GTG	AAG	TCT	GAG	AAA	ATT	TCA	ACT	CTC	TCC	GCT	GAG	AAC	AAA	TTA	240
Ser 65	Val	Lys	Ser	Glu	Lys 70	Ile	Ser	Thr	Leu	Ser 75	Ala	Glu	Asn	Lys	Ile 80	
			AAG													238
			Lys	85					90			-	-	95	4	
			ATA													3.3 €
Ser	Asp	Ile	Ile 100	Phe	Phe	Gln	Arg	Ser 105	Val	Pro	Gly	His	Asp 110	Asn	Lys	
			GAA													384
		115	Glu				120		-	-		125		_		
			GAC													432
	130		Asp			135					140		Asp	Glu	Leu	
			TCT													471
Gly 145	Asp	Arg	Ser	Ile	Met 150	Phe	Thr	Val	Gln	Asn 155	Glu	Asp				
(2)	INI	FORM	10IT	1 FOI	R SEÇ	Q ID	NO:	15:								
	(i)	SEQU	JENCI	E CHA	ARACI	reris	STICS	S :								
		(1	4) LE1	1GTH	10	amir	no ac	cids								
			3) TYI													
		(I	O) TOE	POLO	3Y:]	linea	ar									
	(i:	i) moi	LECUI	LE T	PE:	pept	ide									
	(v)	FRAC	SMENT	TYI	PE: 1	√-tei	cmina	al fi	cagme	ent						

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser 1 5 10

(2) INFORMATION FOR SEQ ID NO: 16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 471 base pairs
 - (B) TYPE: nucleic acid
 - (C)STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

- (A) NAME/KEY: mat peptide
- (B) LOCATION: 1..471
- (C) IDENTIFICATION METHOD: S

(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 16:

(2) INFORMATION FOR SEQ ID NO: 17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 11464 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: human
- (G) CELL TYPE: placenta

(ix) FEATURE:

- (A) NAME/KEY: 5■ UTR
- (B) LOCATION: 1..3
- (C) IDENTIFICATION METHOD: E
- (A) NAME/KEY: leader peptide
- (B) LOCATION: 4..82
- (C) IDENTIFICATION METHOD: S
- (A) NAME/KEY: intron (B) LOCATION: 83..1453
- (C) IDENTIFICATION METHOD: E
- (A) NAME/KEY: leader peptide
- (B) LOCATION: 1454..1465
- (C) IDENTIFICATION METHOD: S
- (A) NAME/KEY: intron
- (B) LOCATION: 1466..4848
- (C) IDENTIFICATION METHOD: E
- (A) NAME/KEY: leader peptide (B) LOCATION: 4849..4865
- (C) IDENTIFICATION METHOD: S
- (A) NAME/KEY: mat peptide
- (B) LOCATION: 4866..4983
- (C) IDENTIFICATION METHOD: S
- (A) NAME/FEY: intron
 (B) LOCATION: 4984..6317
- (C) IDENTIFICATION METHOD: E
- (A) NAME/KEY: mat peptide
- (B) LOCATION: 6318..6451
- (C) IDENTIFICATION METHOD: S
- (A) NAME/KEY: intron
- (B) LOCATION: 6452..11224
- (C) IDENTIFICATION METHOD: E
- (A) NAME/KEY: mat peptide
- (B) LOCATION: 11225..11443

(C) IDENTIFICATION METHOD: S
(A) NAME/KEY: 3 ■ UTR
(B) LOCATION: 11444..11464
(C) IDENTIFICATION METHOD: E

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

AAG ATG GCT GCT GAA CCA			4.8
Met Ala Ala Glu Pro	Val Glu Asp Asn Cys	Ile Asn Phe Val Ala	48
-35	-30	-25	
ATG AAA TTT ATT GAC AAT			98
Met Lys Phe Ile Asp Asn -20	-15	-10	
AGAACAAATA CCAGGTTCAG AT	_ -		158
ATTAAGTGAC TCTTTGTGTC AC			218
GTGGACCTCT AGAAATTAAC CA			279
GTCCTGGCAC TTTAATCAGC AG	TAGCTCAC TCTCCAGTTG	GCAGTAAGTG CACATCATGA	323
AAATCCCAGT TTTCATGGGA AA	ATCCCAGT TTTCATTGGA	TTTCCATGG AAAATCCL	399
GTACAAAACT GGGTGCATTC AG			458
AGAGATTCTC TAAATTTAGA GT			518
AGTAAAAATT GATTCTTTTT TT			578
CTCTGCTCAC TGCAACCTCC AC			638
AGTAGCTGGG ACTACAGGTG CA			658
GAGACAGGGT TTTGGCATGT TG			758
CCTGGCTCGG GCTCCCAAAG TG	CTGGGATT ACAGGCATGA	ACCACCACAC ATGGCCTAAA	918
AATTGATTCT TATGATTAAT CT	CCTGTGAA CAATTTGGCT	TCATTTGAAA GTTTGCCTTC	878
ATTTGAAACC TTCATTTAAA AG	CCTGAGCA ACAAAGTGAG	ACCCCATCTC TACAAAAAAC	928
TGCAAAATAT CCTGTGGACA CC	TCCTACCT TCTGTGGAGG	CTGAAGCAGG AGGATCACTT	998
GAGCCTAGGA ATTTGAGCCT GC	AGTGAGCT ATGATCCCAC	CCCTACACTC CAGCCTGCAT	1053
GACAGTAGAC CCTGACACAC AC	ACACAAAA AAAAACCTTC	ATAAAAAATT ATTAGTTGA!	1 5
TTTTCTTAGG TGACTTTCCG TT	TAAGCAAT AAATTTAAAA	GTAAAATCTC TAATTTTAGA	1173
AAATTTATTT TTAGTTACAT AT	TGAAATTT TTAAACCCTA	GGTTTAAGTT TTATGTCTAA	1238
ATTACCTGAG AACACACTAA GT			1298
ATAATATTCT GATGAAAGCC AA	GACAGACC CTTAAACCAT	AAAAATAGGA GTTCGAGAAA	1358
GAGGAGTAGC AAAAGTAAAA GC	TAGAATGA GATTGAATTC	TGAGTCGAAA TACAAAA'I'T'I'	1418
TACATATTCT GTTTCTCTCT TT	TTCCCCCT CTTAG CT	GAA GAT GAT G GTAAA	1470
	Ala -10	Glu Asp Asp Glu	
GTAGAAATGA ATTTATTTTT CT		CTTGAGACAC ATCTATCTCA	1530
CCATTGTCAG CTGAGGAAAA AA			1590
ATGTGGACTC AGTAGCACAG CT			1650
CTCTAGCAAA AGATGCTTCT CT	ATGCCTTA AAAAATTCTC	CAGCTCTTAG AATCTACAAA	1710
ATAGACTTTG CCTGTTTCAT TG	GTCCTAAG ATTAGCATGA	AGCCATGGAT TCTGTTGTAG	1775
GGGGAGCGTT GCATAGGAAA AA			1 - 3 0
CTCCTCTCAG AAATGCTTTG GG			1.45.0
GCAGAAAATT CTGGAAGTAG AG	GAGATAGG AATGGGTGGG	GCAAGAAGAC CACATTCAGA	1950
GGCCAAAAGC TGAAAGAAAC CA	TGGCATTT ATGATGAATT	CAGGGTAATT CAGAATGGAA	2010
GTAGAGTAGG AGTAGGAGAC TG	GTGAGAGG AGCTAGAGTG	ATAAACAGGG TGTAGAGCAA	2476
GAGGTTCTCT CACCCCAAGA TG			$23.3 \dot{\phi}$
TAAGCACAAT ATGTATTAGC TA			2190
ATACAGTAGC TGAATAAGAT AG			2250
AGAAGTAGTA TGGCTGGAAG CA	ACCTGATG ATATTGGGAC	CCCCAACCTT CTTCAGTCTT	2310
GTACCCATCA TCCCCTAGTT GT	TGATCTCA CTCACATAGT	TGAAAATCAT CATACTTCCT	2370
GGGTTCATAT CCCAGTTATC AA	GAAAGGGT CAAGAGAAGT	CAGGCTCATT CCTTTCAAAG	2420
ACTCTAATTG GAAGTTAAAC AC			2490
ACATGGCCAC ACCAAGTGCA AG			2550
ATGACTCTTT AAAATTCAGA AA	ATAAAATTTT TATATAAT.	TCATTCTGGC TTTGGTATAA	2610
AGAATTGATG GTGTGGGGTG AG	GAGGCCAA AATTAAGGGT	TGAGAGCCTA TTATTTAGT	21/50
TATTACAAGA AATGATGGTG TC	ATGAATTA AGGTAGACAT	AGGGGAGTGC TGATGAGGAG	2730
CTGTGAATGG ATTTTAGAAA CA	CTTGAGAG AATCAATAGG	ACATGATTTA GGGTTGGATT	2790
TGGAAAGGAG AAGAAAGTAG AA	AAGATGAT GCCTACATTT	TTCACTTAGG CAATTTGTAC	2850
CATTCAGTGA AATAGGGAAC AC			2910
ATGGATGACG CATTTCGTTT TG			2970
CACAAACTCT TCTACATGTG GT			3030
TATTGTAGGC TTATACATAG AA			3090
AGGAAATGTG TAAAGTGAGA GA			3150
TTAAAGGATG CAGTAGAAAG AA			3210

GAAGAAAAC CAAGAGAATT CCACCGACTC CCAGGAGAGC ATTTCAAGAT	TGAGGGGATA	3270
	TOTIOGGOATA	
GGTGTTGTGT TGAATTTTGC AGCCTTGAGA ATCAAGGGCC AGAACACAGC		3330
AGCAACAAGG AGTTTGGTGA TCTCAGTGAA AGCAGCTTGA TGGTGAAATG	GAGGCAGAGG	3390
CAGATTGCAA TGAGTGAAAC AGTGAATGGG AAGTGAAGAA ATGATACAGA		
CAGATIGCAA IGAGIGAAAC AGIGAAIGGG AAGIGAAGAA AIGATACAGA	TAATTCTTGC	3450
TAAAAGCTTG GCTGTTAAAA GGAGGAGAGA AACAAGACTA GCTGCAAAGT	GAGATTGGGT	3510
TGATGGAGCA GTTTTAAATC TCAAAATAAA GAGCTTTGTG CTTTTTTGAT		
IGAIGGAGCA GIIIIAAAIC ICAAAAIAAA GAGCTTTGTG CTTTTTTTGAT	TATGAAAATA	357:)
ATGTGTTAAT TGTAACTAAT TGAGGCAATG AAAAAAGATA ATAATATGAA	Ταααααπαρα	3630
ATAAAAACCA CCCAGAAATA ATGATAGCTA CCATTTTGAT ACAATATTTC	ET CT CECCE	
ATAAAAACCA CCCAGAAATA ATGATAGCTA CCATTITGAT ACAATATTTC	TACACTCCTT	3690
TCTATGTATA TATACAGACA CAGAAATGCT TATATTTTTA TTAAAAGGGA	TTGTACTATA	3750
CCTAAGCTGC TTTTTCTAGT TAGTGATATA TATGGACATC TCTCCATGGC	a a concentration	
CCTAAGCIGC TITTICIAGT TAGIGATATA TATGGACATC TCTCCATGGC	AACGAGTAAT	3310
TGCAGTTATA TTAAGTTCAT GATATTTCAC AATAAGGGCA TATCTTTGCC	CTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	3870
	CITITIATI	
AATCAATTCT TAATTGGTGA ATGTTTGTTT CCAGTTTGTT GTTGTTATTA	ACAATGTTCC	3930
CATAAGCATT CCTGTACACC AATGTTCACA CATTTGTCTG ATTTTTTCTT	これにはカサカカカカ	3990
CCCAGGAGGT AGAATTGCTG GGTTGATAGA AGAGAAAGGA TGATTGCCAA	ATTAAAGCTT	4050
CAGTAGAGGG TACATGCCGA GCACAAATGG GATCAGCCCT AGATACCAGA	A A TOCOCA COM	4110
TCTCATTTCC CCTTGGGACA AAAGGGAGAG AGGCAATAAC TGTGCTGCCA	GAGTTAAATT	4170
TGTACGTGGA GTAGCAGGAA ATCATTTGCT GAAAATGAAA ACAGAGATGA		
		4230
GTCCTGAAGA GAGCAAAGAA AATTTGAAAT TGCGGCTATC AGCTATGGAA	GAGAGTGCTG	4290
AACTGGAAAA CAAAAGAAGT ATTGACAATT GGTATGCTTG TAATGGCACC		4350
CTTGTGCCAT TGTTCACCAG CAGCACTCAG CAGCCAAGTT TGGAGTTTTG	TAGCAGAAAG	4410
ACADAMA ACE MACCOMMENTA AMAMCOMOCO CARAMACOMA ACADAMACA	amamar arma	
ACAAATAAGT TAGGGATTTA ATATCCTGGC CAAATGGTAG ACAAAATGAA	CTCTGAGATC	4470
CAGCTGCACA GGGAAGGAAG GGAAGACGGG AAGAGGTTAG ATAGGAAATA	CAAGAGTCAG	4530
	CTCTCTCTCTC	
GAGACTGGAA GATGTTGTGA TATTTAAGAA CACATAGAGT TGGAGTAAAA		4590
ACTAGAAGGG TAAGAGACCG GTCAGAAAGT AGGCTATTTG AAGTTAACAC	TTCAGAGGCA	4650
GAGTAGTTCT GAATGGTAAC AAGAAATTGA GTGTGCCTTT GAGAGTAGGT	TAAAAAACAA	4710
TAGGCAACTT TATTGTAGCT ACTTCTGGAA CAGAAGATTG TCATTAATAG	TTTTAGAAAA	4770
CTAAAATATA TAGCATACTT ATTTGTCAAT TAACAAAGAA ACTATGTATT	TTTTTTTTTT	
		4830
ATTTAATGTT TATTGTAG AA AAC CTG GAA TCA GAT TAC TTT GGC	AAG CTT	4880
		1000
Glu Asn Leu Glu Ser Asp Tyr Phe Gly	· Lys Leu	
- 5	5	
		16.00
GAA TCT AAA TTA TCA GTC ATA AGA AAT TTG AAT GAC CAA GTT		4928
Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn Asp Gln Val	Leu Phe	
10 15	20	
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT	TCT GAC	46.73
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT		4976
		4979
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp		4976
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35	Ser Asp	
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp	Ser Asp	4974 5032
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA	Ser Asp	
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp	Ser Asp	
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA	Ser Asp	
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40	Ser Asp	5032
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA	Ser Asp CTTCTTCCCA AAAGTCACAG	5032 5092
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40	Ser Asp CTTCTTCCCA AAAGTCACAG	5032
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG	5032 5092 5152
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA	5032 5092 5152 5212
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA	5032 5092 5152
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT	5032 5092 5152 5212 5272
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT	5032 5092 5152 5212 5272 5332
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT	5032 5092 5152 5212 5272
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG	Ser Asp CTTCTTCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG	5032 5092 5152 5212 5272 5332 5392
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG	Ser Asp CTTCTTCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC	5032 5092 5152 5212 5272 5332 5392 5452
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGTC TCTAAAATTA AAAAAAAAAA AAAAAAAAC CTTAGGAAAG	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC	5032 5092 5152 5212 5272 5332 5392
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGTC TCTAAAATTA AAAAAAAAAA AAAAAAAAC CTTAGGAAAG	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC	5032 5092 5152 5212 5212 5332 5392 5452 5512
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGTC TCTAAAATTA AAAAAAAAA AAAAAAAAC CTTAGGAAAG AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAAATATCA AAGTTAGGCT	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC	5032 5092 5152 5212 5272 5332 5392 5452 5512 5572
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGTC TCTAAAATTA AAAAAAAAA AAAAAAAAC CTTAGGAAAG AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAATATCA AAGTTAGGCT AGTGAATGTG CATTCTTTAA AAATACTGAA TACTTACCTT AACATATATT	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATTT	5032 5092 5152 5212 5212 5332 5392 5452 5512
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGTC TCTAAAATTA AAAAAAAAA AAAAAAAAC CTTAGGAAAG AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAATATCA AAGTTAGGCT AGTGAATGTG CATTCTTTAA AAATACTGAA TACTTACCTT AACATATATT	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATTT	5032 5092 5152 5212 5272 5332 53452 5512 5572 5632
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTACA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGTC TCTAAAATTA AAAAAAAAA AAAAAAAAAC CTTAGGAAAG AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAATATCA AAGTTAGGCT AGTGAATGTG CATTCTTTAA AAATACTGAA TACTTACCTT AACATATATT TATTTAGCAT TTAAAAGTTA AAAACAATCT TTTAGAATTC ATATCTTTAA	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATTT AATACTCAAA	5032 5092 5152 5212 5272 53392 53452 5512 5572 5632 5692
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGTC TCTAAAATTA AAAAAAAAA AAAAAAAAAA	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATTT AATACTCAAA TTTGTTTGAG	5032 5092 5152 5212 5272 5332 53452 5512 5572 5632
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTACA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGTC TCTAAAATTA AAAAAAAAA AAAAAAAAAC CTTAGGAAAG AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAATATCA AAGTTAGGCT AGTGAATGTG CATTCTTTAA AAATACTGAA TACTTACCTT AACATATATT TATTTAGCAT TTAAAAGTTA AAAACAATCT TTTAGAATTC ATATCTTTAA	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATTT AATACTCAAA TTTGTTTGAG	5032 5092 5152 5212 5272 53392 5452 5512 5632 5692 5752
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGTC TCTAAAATTA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG AAGTCTACTG TGCCTTCCAA ACCATGAATT CCAAATATCA AAGTTAGGCT AGTGAATGTG CATTCTTAA AAATACTGAA TACTTACCTT AACATATATT TATTTAGCAT TTAAAAGTTA AAAACAATCT TTTAGGAATTC ATATCTTTAA AAAGTTGCAG CGTGTGTGTT GTAATACACA TTAAACTGGG GGGTTGTTTG ATGCAGTTTC ACCTCTACC CCAGGCTGAA GTGCAGTGCA	Ser Asp CTTCTTCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATT AATACTCAAA TTTGTTTGAG GTGATCTCGG	5030 5090 5150 5210 5270 5330 5450 5511 5690 5750 5810
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Tys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATA ACTGTTTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGTC TCTAAAATTA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAAATATCA AAGTTAGGCT TATTTAGCAT TTAAAAGTTA AAATACTGAA TACTTACCTT AACATATATT TATTTAGCAT TTAAAAGTTA AAAACAATCT TTTAGAATTC ATATCTTTAA AAAGTTGCAG CGTGTGTGTT GTAATACACA TTAAACTGTG GGGTTGTTTG ATGCAGTTTC ACTCCACCTC CCACGTTCAA GCGATTCTCA TGCCTCAGTC	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATT AATACTCAAA TTTGTTTGAG GTGATCTGGG GTGATCTCGG TCCCGAGTAG	5032 5092 5152 5212 5272 53392 5452 5512 5632 5692 5752
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Tys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATA ACTGTTTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGTC TCTAAAATTA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAAATATCA AAGTTAGGCT TATTTAGCAT TTAAAAGTTA AAATACTGAA TACTTACCTT AACATATATT TATTTAGCAT TTAAAAGTTA AAAACAATCT TTTAGAATTC ATATCTTTAA AAAGTTGCAG CGTGTGTGTT GTAATACACA TTAAACTGTG GGGTTGTTTG ATGCAGTTTC ACTCCACCTC CCACGTTCAA GCGATTCTCA TGCCTCAGTC	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATT AATACTCAAA TTTGTTTGAG GTGATCTGGG GTGATCTCGG TCCCGAGTAG	5032 5092 5152 5272 5332 5452 5575 5632 5752 5872
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Tys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATA ACTGTTTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGTC TCTAAAATTA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG AAGTCTACTG TGCCTTCCAA ACATGAATT CCAAATATCA AAGTTAGGCT AGTGAATGTG CATTCTTTAA AAATACTGAA TACTTACCTT AACATATATT TATTTAGCAT TTAAAAGTTA AAAACAATCT TTTAAAAGTTC ATATCTTTAA AAAGTTGCAG CGTGTGTGTT GTAATACACA TTAAACTGTG GGGTTGTTTG ATGCAGTTTC ACCTCGCCCC CCACGTCAA GCGATTCTCA TGCCTCAGTC GTGGGATTAC AGGCATGCAC CCACGTTCAA GCGATTCTCA TGCCTCAGTC GTGGGATTAC AGGCATGCAC CCACGTTCAA GCGATTCTCA TGCCTCAGTC	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATT AATACTCAAA TTTGTTTGAG GTGATCTCGG TCCCGAGTAG AGTAGAGCTG	5030 5090 5150 5210 5210 5330 5450 5570 5630 5675 5630 5750 5870 5870 5930
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGTC TCTAAAATTA AAAAAAAAAA AAAAAAAAC CTTAGGAAAG AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAATATCA AAGTTAGCAT TATTTAGCAT TTAAAAGTTA AAACAATCT TTTAGCATT AACATATATT AAAGTTGCAG CGTGTGTTT GTAATACACA TTAAACTGTG GGGTTGTTTG ATGCAGTTC ACTCTGTCAC CCAGGCTGAA GTGCAGTGCA	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATTT AATACTCAAA TTTGTTTGAG GTGATCTCGG TCCCGAGTAG AGTAGAGCTG TCTGCCTGCC	5032 5092 5152 5272 5332 5452 5575 5632 5752 5872
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGTC TCTAAAATTA AAAAAAAAAA AAAAAAAAC CTTAGGAAAG AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAATATCA AAGTTAGCAT TATTTAGCAT TTAAAAGTTA AAACAATCT TTTAGCATT AACATATATT AAAGTTGCAG CGTGTGTTT GTAATACACA TTAAACTGTG GGGTTGTTTG ATGCAGTTC ACTCTGTCAC CCAGGCTGAA GTGCAGTGCA	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATTT AATACTCAAA TTTGTTTGAG GTGATCTCGG TCCCGAGTAG AGTAGAGCTG TCTGCCTGCC	5032 5092 5152 5272 5332 5452 5572 5692 56932 5932 5992
TET AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA TOTAAAAAATTG GATACAATA GAGATTTAAAAAATTG GATACACAATAGAAA TCACTATAGAAATTGACAATAGAAATTGACAATAGAAATTGACAATAGAAATTGACAATAGAAATTGACAATAGAAATTGACTAAAAAATTG GATACAATAAAAATTG GATACAATAAAAATTG GATACAATAAAAATTG GATACAATAAAAATTG GATACAATAAAAATTG GATACAATAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGCATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGCATGAATACCCAGCT TGTTACAGCT GAAAATGCTG ATAGTTTACA ACCTCTATAGAATACCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACA ACCTCTATAGAATCCTGAGACATGCAAAAAAAAAA	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATTT AATACTCAAA TTTGTTTGAG GTGATCTCGG TCCCGAGTAG AGTAGAGCTG TCTGCCTGCC ACACATGCTG	5032 5092 5152 5272 5272 5392 5452 55632 56952 58732 5992 6052
TET AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA TTAAAAAATTG GATACAATAGAAA TCCTCAGATGA AACCCCAGCTTT GAACCCAGC TTACATT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAATTG GATACAATAA GACATTGCATA ACTGTTTAAA ACCCCTATAGGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG GAATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGTC TCTAAAATTA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAAATACA AAGTTAGCAT AGTGAATGTG CATTCTTAA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG AAGTCTACTG CATTCTTAA AAAACAATCT TTTAGAATTC AACATATATT TATTTAGCAT TTAAAAGTTA AAAACAATCT TTTAGAATTC ATATCTTTAA AAAGTTGCAG CGTGTGTTT GTAATACACA TTAAACTGTG GGGTTGTTTG ATGCAGTTAC ACCCCTC CCACGCTCAA GCGATTCCA TGCCTCAGTC GTGGGATTAC AGGCATGCAC CACCTTCAA GCGATTCTCA TGCCTCAGTC GTGGGATTAC AGGCATGCAC CACCTTCAA GCGATTCTCA TGCCTCAGTC GTGGGATTAC AGGCATGCAC CACCTTCAA GCGATTCTCA TGCCTCAGTC GTGGGATTAC AGGCATGCAC CACCTTCAACC CGGCTAATTT TTGTATTTTT GGGTTTCACCC AAACAAACAA ACAACCCCAC AGTTTAATAT TTGTATTTTT GGGTTTCACC ATGTTGGCCA GCGTGGTCT AAACCCCTAA CCTCCAAGTGA TCAGCCTCCC AAACAAACAA ACAACCCCAC AGTTTAATAT GTGTTTACAAC CAACTTTTAT GAGTATTTA ATGATATAGA TTATAAAAGG TTGTTTTTAAA	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATT AATACTCAAA TTTGTTTGAG GTGATCTCGG TCCCGAGTAG AGTAGAGCTG TCTGCCTGCC ACACATGCTG CTTTTAAATG	5032 5092 5152 5272 5332 5452 5572 5692 56932 5932 5992
TET AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA TTAAAAAATTG GATACAATAGAAA TCCTCAGATGA AACCCCAGCTTT GAACCCAGC TTACATT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAATTG GATACAATAA GACATTGCATA ACTGTTTAAA ACCCCTATAGGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG GAATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGTC TCTAAAATTA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAAATACA AAGTTAGCAT AGTGAATGTG CATTCTTAA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG AAGTCTACTG CATTCTTAA AAAACAATCT TTTAGAATTC AACATATATT TATTTAGCAT TTAAAAGTTA AAAACAATCT TTTAGAATTC ATATCTTTAA AAAGTTGCAG CGTGTGTTT GTAATACACA TTAAACTGTG GGGTTGTTTG ATGCAGTTAC ACCCCTC CCACGCTCAA GCGATTCCA TGCCTCAGTC GTGGGATTAC AGGCATGCAC CACCTTCAA GCGATTCTCA TGCCTCAGTC GTGGGATTAC AGGCATGCAC CACCTTCAA GCGATTCTCA TGCCTCAGTC GTGGGATTAC AGGCATGCAC CACCTTCAA GCGATTCTCA TGCCTCAGTC GTGGGATTAC AGGCATGCAC CACCTTCAACC CGGCTAATTT TTGTATTTTT GGGTTTCACCC AAACAAACAA ACAACCCCAC AGTTTAATAT TTGTATTTTT GGGTTTCACC ATGTTGGCCA GCGTGGTCT AAACCCCTAA CCTCCAAGTGA TCAGCCTCCC AAACAAACAA ACAACCCCAC AGTTTAATAT GTGTTTACAAC CAACTTTTAT GAGTATTTA ATGATATAGA TTATAAAAGG TTGTTTTTAAA	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATT AATACTCAAA TTTGTTTGAG GTGATCTCGG TCCCGAGTAG AGTAGAGCTG TCTGCCTGCC ACACATGCTG CTTTTAAATG	5032 5032 5092 5152 5272 5392 5452 556952 56952 59992 6012
TECTTOTATA ACTOTAGA GACATGAA ACCOCAA ACCATAGAA ACCATATAG ACCATATAG ACCATATAG ACCATATAG ACCATATAG ACCATATAG ACCATATAG ACCATATAG ACCATAGAACAACAACAACAACAACAACAACAACAACAACAACAA	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATTT AATACTCAAA TTTGTTTGAG GTGATCTCGG TCCCGAGTAG AGTAGAGCTG TCTGCCTGCC ACACATGCTG AAATGTCTGA	5032 5032 5092 5152 5273 5399 55772 5695 5756 58752 5995 5995 6112 6172
TET AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA TTAAAAAATTG GATACAATAGAAA TCCTCAGATGA AACCCCAGCTTT GAACCCAGC TTACATT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAATTG GATACAATAA GACATTGCATA ACTGTTTAAA ACCCCTATAGGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG GAATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGTC TCTAAAATTA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAAATACA AAGTTAGCAT AGTGAATGTG CATTCTTAA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG AAGTCTACTG CATTCTTAA AAAACAATCT TTTAGAATTC AACATATATT TATTTAGCAT TTAAAAGTTA AAAACAATCT TTTAGAATTC ATATCTTTAA AAAGTTGCAG CGTGTGTTT GTAATACACA TTAAACTGTG GGGTTGTTTG ATGCAGTTAC ACCCCTC CCACGCTCAA GCGATTCCA TGCCTCAGTC GTGGGATTAC AGGCATGCAC CACCTTCAA GCGATTCTCA TGCCTCAGTC GTGGGATTAC AGGCATGCAC CACCTTCAA GCGATTCTCA TGCCTCAGTC GTGGGATTAC AGGCATGCAC CACCTTCAA GCGATTCTCA TGCCTCAGTC GTGGGATTAC AGGCATGCAC CACCTTCAACC CGGCTAATTT TTGTATTTTT GGGTTTCACCC AAACAAACAA ACAACCCCAC AGTTTAATAT TTGTATTTTT GGGTTTCACC ATGTTGGCCA GCGTGGTCT AAACCCCTAA CCTCCAAGTGA TCAGCCTCCC AAACAAACAA ACAACCCCAC AGTTTAATAT GTGTTTACAAC CAACTTTTAT GAGTATTTA ATGATATAGA TTATAAAAGG TTGTTTTTAAA	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATTT AATACTCAAA TTTGTTTGAG GTGATCTCGG TCCCGAGTAG AGTAGAGCTG TCTGCCTGCC ACACATGCTG AAATGTCTGA	5032 5032 5092 5152 5272 5392 5452 556952 56952 59992 6012
TECT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATGGTTTACA CTGTGAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGC	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATTT AATACTCAAA TTTGTTTGAG GTGATCTCGG TCCCGAGTAG ACTAGACCTG CCTTGCCTGCC ACACATGCTG AAATGTCTGA GGTGTTTAAATG AAATGTCTGA GGTGTTATAA	5032 5032 5092 5152 5273 5273 55773 5695 5755 5875 5875 5995 61173 6173
TECTACATACA AGACCTTGTC AGAGCTTACAT TATTTAGATACA AACATACATA AAGTTACAC AGACCTTACAC AGACCTTACAC AGACCTTACAC ACCORDAGA A	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAGTTGAAGC TTAAATATT AATACTCAAA TTTGTTTGAG GTGATCTCGG TCCCGAGTAG AGTAGAGCTG TCTGCCTGCC ACACATGCTG CTTTTAAATG AAATGTCTGA GGTGTATTAA CTAACTAGAG	5033 5033 5035 51512 5272 5339 54517 5569 5575 5787 5995 60173 60173 6029
TECT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATGGTTTACA CTGTGAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGC	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAGTTGAAGC TTAAATATT AATACTCAAA TTTGTTTGAG GTGATCTCGG TCCCGAGTAG AGTAGAGCTG TCTGCCTGCC ACACATGCTG CTTTTAAATG AAATGTCTGA GGTGTATTAA CTAACTAGAG	5032 5032 5092 5152 5273 5273 55773 5695 5755 5875 5875 5995 61173 6173
TET AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTAGGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG GTAATCCTAGC TGTTACAGCT GAAAATGCTG ATAGTTTACA ACCTCTATAG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CTGTGATCG ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGTC TCTAAAATTA AAAAAAAAAA AAAAAAAAAC CTTAAGGAAG AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAATATCA AAGTTAGGCT AGTGAATGTG CATTCTTAA AAATACTGAA TACTTACCTT AACATTATTA AAAGTTAGCAT TTAAAAGTTA AAAACAAATCT TTTAGAATTC AAGTTAGGCT ATGCAGTTTC ACCTGTGAC CCAGGCTGAA GTGCAGTGCA	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAGTTGAAGC TTAAATATT AATACTCAAA TTTGTTTGAG GTGATCTCGG TCCCGAGTAG AGTAGAGCTG TCTGCCTGCC ACACATGCTG CTTTTAAATG AAATGTCTGA GGTGTATTAA GGTGTATTAA CTAACTAGAG TTT ATT	5033 5033 5035 51512 5272 5339 54517 5569 5575 5787 5995 6017 6017 6029
TETTCATTTA ASP GAR G GATATTTT TAATTCGCA AACATAGAAA TGACTAGCTA 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAAGGCA TCCACGTTTT TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACA AGGTGTGGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGCC TGCTAAAATTA AAAAAAAAAAAAAAAAC CTTAGGAAAG CAAGTCTACTG TGCCTTCCAA AACATGAATT CAAAATACAA AGGTTAGGCT TATTTAGCAT TAAAAGTTA AAAACAAACA TACTAACCTT AACATATATT TATTTAGCAT TAAAAGTTA AAAACAAACCA TTAAACTGTG GGGTTGTTTG ATGCAGTTCC CCACGTCAA CCCACGTCAA GTGCAGTGGT CTCACTACAA ACCTGTACAC CCACGTCAA GTGCAGTGGT CTCACTACAA AGCATGAAC GTGCAGTGCA GTGCAGTGGT CTCACTACAA ACCTCGACCC CCACGTCAA GTGCAGTGGT CTCACTACAA AGCATGCAC CACTTACACC CGGCTAATTT TTGCATTTTT GGGTTTCACC AACACACAC ACACCCCAC AGTTTAAACT TTGTATTTTT GGGTTTCACC AACACAACAA ACAACCCCAC AGTTTAATAT TTGTATTTTT GGGTTTCACC AACACAACAA ACAACCCCAC AGTTTAATAT GTGTTACAAC CAACTTTTAT GAGTATTTA ATGATATAGA TTATAAAAGG TTGTTTTTAA CTGGGATTAC AGGCATGACC CACTTACACC CGGCTGAACT TTGTTTTTTAA CTGGGATTAC AGGCATGACC CACTTACACC CGGCTGAACT TTGTTTTTTAA CTGGGATTAC AGGCATGACC CACTTACACC CGGCTGAACT TTGTTTTTTAA CTGGGATTAC AGGCATGACC CACTTACACC CGGCTGAACT GTGTTTTTTAA CTGGGATTAC AGGCATGACC CACTTACACC AACCCCAA ACAACAACAA ACAACCCCAC AGTTTAATAT GTGTTTTTAA CTGGGATTAC AGGCATGACC CACTTACACC CACGTCAACT GTGTTTTTTAA CTGGGATTAC AGGCATGACC CACTTACACC CACGTTAAACAA ACAACCCCAC AGTTTAATAT GTGTTTTTTAA CTGGGATTAC AGGCATGACC CACTTACACC AACTTAAAACAA ACAACCCCAC AGTTTAATAT GTGTTTTTTAA CTGGGATTAC AGGCATGAC CACTTACACC AACTTAAAACAA ACAACCCAA ACAACCCAA ACAACCAAA ACAACCAAA ACAACCCAA ACAACCCAA ACAACCCAA ACAACCAAA ACAACCAA ACAACCCAAA ACAACCAAA ACAACA	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAGTTGAAGC TTAAATATT AATACTCAAA TTTGTTTGAG GTGATCTCGG TCCCGAGTAG AGTAGAGCTG TCTGCCTGCC ACACATGCTG CTTTTAAATG AAATGTCTGA GGTGTATTAA GGTGTATTAA CTAACTAGAG TTT ATT	5033 5033 5035 51512 5272 5339 54517 5569 5575 5787 5995 6017 6017 6029
TET AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATA ACTGTTTAAA ACCTCTATAGG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACA ACCTCTATAG GAACCTTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACA ACCTCTATAG GAACCTTGCT TCTAAAATTA ACCTGTAAAA ACCACTGTG GTAATCCTAG CTGTGATCGT ACCTGTGAAT ACCTGTAGAA AGCCTTGTC TCTAAAATTA AAAAAAAAA ACCACTGCAA AGACCTTGCT TCTAAAATTA AAAAAAAAAA ACCACTGCAA AGGCATACTG TCTAAAATTA AAAAAAAAAA ACCACTGCAA AGGTGAATGT CATTCTTAA AAAAAAAAAA ACCACTGCAA AGGTGAATGTG CATTCTTAA AAAAAAAAAA TACTTACCTT AACATATATT TATTTAGCAT TTAAAAGTTA AAAACAAACA TCTAAGAATC ATATCTTTAA AAAGTTGCAG CGTGTGTGTT GTAATACACA TTAAACTGTG GGGTTGTTTG ATGCAGTTCC CCAGGCTGAA GCGATTCCA TGCCTCAGTCC GTGGGATTAC AGGCATGCAC CACCTTC CCAGGCTGAA GCGATTCTCA TGCCTCAGTCC GTGGGATTAC AGGCATGCAC CACCTTC CCAGGCTGAA GCGATTCTCA TGCCTCAGTCC GAACATTTATT TGTATTTTT CTGAGCTTCAC AACAAACAA ACAACCCCAC AGTTTAATAC TTGTATTTTAA CTGGGATTAC AGGCATGAGC CACTTACAC CGGCTAATTT TTGTATTTTT CTGGGATTAC AGGCATGAGC CACTGCCA AGTTTAAAAGG TTGTTTTAAA CTGGGATTAC AGGCATGAGC CACTGCCAC CACCTCAA GCGCTCAAA CCAACCCCCAC AGGCTGAACT GTGTTTTTAA CTGGGATTAC AGGCATGAGC CACTTGCA AGGCATGCAC GGCCTGAACT GTGTTTTTAA CTGGGATTAC AGGCATGAGC CACTTGCA AGGCATGCAC GTGTTTTTAA CTGGGATTAC AGGCATGAGC CACTGCCA AGTTTAATACAC TTGTTTTAAA CTGGGATTAC AGGCATGAGC CACTGCCA AGTTTAATAC GTGTTTTTAAA CTGGGATTAC AGGCATGAGC CACTGCCA AGTTTAATAC GTGTTTTTAAA CTGGGATTAC AGGCATGAGC CACTGCCA AGTTTAATAC AGTGGGAACA CCACCCCAC AGTTTAATAC AGGCATGCAC AGGCTGAACT GTGTTTTTAAA CTGGGATTAC AGGCATGAGC CACTGCCC CAAGTCTCAA AGGAATTCTT TTCTCATTTA TTATATTTAT TTCCGCAAAT GTTCCTGGC AAGAATCTT TTCTCATTTA TTATATTTAT TTCCGCAAAT GTTCCTGTGC AAGAATCTT TTCTCATTTA TTATATTTAT TTCCGCAAAT GTTCCTGTGC AAGAATTCTT ASP ASN Ala Pro Arg Thr Ile	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATT AATACTCAAA TTTGTTTGAG GTGATCTCGG TCCCGAGTAG AGTAGAGCTG TCTGCCTGCC ACACATGCTG CTTTTAAATG AAATGTCTGA GGTGTATTAA GTAACTAGAG TTTAATTAA CTAACTAGAG TTT ATT Phe Ile	5033 5033 5035 51512 5272 5339 54517 5569 5575 5787 5995 6017 6017 6029
TET AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATA ACTGTTTAAA ACCTCTATAGG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACA ACCTCTATAG GAACCTTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACA ACCTCTATAG GAACCTTGCT TCTAAAATTA ACCTGTAAAA ACCACTGTG GTAATCCTAG CTGTGATCGT ACCTGTGAAT ACCTGTAGAA AGCCTTGTC TCTAAAATTA AAAAAAAAA ACCACTGCAA AGACCTTGCT TCTAAAATTA AAAAAAAAAA ACCACTGCAA AGGCATACTG TCTAAAATTA AAAAAAAAAA ACCACTGCAA AGGTGAATGT CATTCTTAA AAAAAAAAAA ACCACTGCAA AGGTGAATGTG CATTCTTAA AAAAAAAAAA TACTTACCTT AACATATATT TATTTAGCAT TTAAAAGTTA AAAACAAACA TCTAAGAATC ATATCTTTAA AAAGTTGCAG CGTGTGTGTT GTAATACACA TTAAACTGTG GGGTTGTTTG ATGCAGTTCC CCAGGCTGAA GCGATTCCA TGCCTCAGTCC GTGGGATTAC AGGCATGCAC CACCTTC CCAGGCTGAA GCGATTCTCA TGCCTCAGTCC GTGGGATTAC AGGCATGCAC CACCTTC CCAGGCTGAA GCGATTCTCA TGCCTCAGTCC GAACATTTATT TGTATTTTT CTGAGCTTCAC AACAAACAA ACAACCCCAC AGTTTAATAC TTGTATTTTAA CTGGGATTAC AGGCATGAGC CACTTACAC CGGCTAATTT TTGTATTTTT CTGGGATTAC AGGCATGAGC CACTGCCA AGTTTAAAAGG TTGTTTTAAA CTGGGATTAC AGGCATGAGC CACTGCCAC CACCTCAA GCGCTCAAA CCAACCCCCAC AGGCTGAACT GTGTTTTTAA CTGGGATTAC AGGCATGAGC CACTTGCA AGGCATGCAC GGCCTGAACT GTGTTTTTAA CTGGGATTAC AGGCATGAGC CACTTGCA AGGCATGCAC GTGTTTTTAA CTGGGATTAC AGGCATGAGC CACTGCCA AGTTTAATACAC TTGTTTTAAA CTGGGATTAC AGGCATGAGC CACTGCCA AGTTTAATAC GTGTTTTTAAA CTGGGATTAC AGGCATGAGC CACTGCCA AGTTTAATAC GTGTTTTTAAA CTGGGATTAC AGGCATGAGC CACTGCCA AGTTTAATAC AGTGGGAACA CCACCCCAC AGTTTAATAC AGGCATGCAC AGGCTGAACT GTGTTTTTAAA CTGGGATTAC AGGCATGAGC CACTGCCC CAAGTCTCAA AGGAATTCTT TTCTCATTTA TTATATTTAT TTCCGCAAAT GTTCCTGGC AAGAATCTT TTCTCATTTA TTATATTTAT TTCCGCAAAT GTTCCTGTGC AAGAATCTT TTCTCATTTA TTATATTTAT TTCCGCAAAT GTTCCTGTGC AAGAATTCTT ASP ASN Ala Pro Arg Thr Ile	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATT AATACTCAAA TTTGTTTGAG GTGATCTCGG TCCCGAGTAG AGTAGAGCTG TCTGCCTGCC ACACATGCTG CTTTTAAATG AAATGTCTGA GGTGTATTAA GTAACTAGAG TTTAATTAA CTAACTAGAG TTT ATT Phe Ile	5033 9020203395030303039555555555555555555555
TILE ASP GIN Gly ASN ATG PTO LEU Phe Glu ASP MET THY ASP 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAAATTG GATACAATAA GACATTGCATA ACTGTTTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATGCTCTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATGCTTACAC GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGCT TCTAAAATTA AAAAAAAAAA AAAAAAAAAC CTTAAGGAAG AAGTCTACTG TGCCTTCCAA ACATGAATT CCAAATATCA AAGTTAGGCT AGTGAATGT CATTCTTAA AAAAAAAAAA AAAAAAAAAC CTTAAGGAAG AAGTCTACTG TGCCTTCCAA AACATGAATT CAAATATACT AACATATATT TATTTAGCAT TTAAAAGTTA AAAACAATCT TTTAGAATTC ATATCTTTAA AAAGTTGCAG CGTGTGTGTT GTAATACACA TTAAAACTGG GGGTTGTTTG ATGCAGTTC CCCAGGCTGAA GTGCAGTGCG GTGCAGTGGT CTCACTACAA CCTCCACCTC CCACGTTCAA GCGATTCTCA TGCCTCAGTCG CTGGGATTAC AGGCATGCAC CACTTACACC CGGCTAATTT TTGTATTTTT GGGTTTCACC ATGTTGGCCA GGCTGGTCTC AAACCCCTAA CCTCCAGGTCG CTCAGCTCCC AAACAACAA ACAACCCCA AGTTTAAAAGT TGTTTTTAA CCAACTTTTAT AGGAATTAAAACAA ACAACCCCAA AGTTTAATAT TTGTATTTTT GGGTTTCACC ATGTTGGCCA GGCTGGTCT AAACCCCTAA CCTCCAAGTGA CCAACTTTTAT GAGTATTTA ATGATATAAA TTGTTTTTTA CAACTTTATA AGGCATGAC CACTTACAC CGGCTGAACT GTGTTTTTAA CCAGCTTCC AAACAACAA ACAACCCCA AGTTTAAAAAG TTGTTTTTTA CAACTTTTAT GAGTATTTA ATGATATAAA TTGTTTTTTAA CCAGCTTCC AAACAACAA ACAACCCCA AGTTTAAAAAG TTGTTTTTAA CCAGCTTCCT TTGGTTAAAT TTCCGCAAAT GTTCCTGTGC AAGAACTCTT TTCTCATTA TTATATTTAT TTCCGCAAAT GTTCCTTGAA GGACTTCCT TTGGTTAAAT TTCCGCAAAT GTTCCTTGAA CCAGCTTCCT TTGGTTAAAT TTCCGCAAAT GTTCCTTCAA AGGAATTCCT TTGGTTAAAT TTCCGCAAAT GTTCCTTGAA AGAAATTCTT TTCTCATTTA TTATATTTAT TTCAG AT AAT GCA CCC CGG ACC ATA ASP ASN Ala Pro Arg Thr Ile AO ATA AGT ATG TAT AAA GAT AGC CCT AGA GGT ATG GCT GTA	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATT AATACTCAAA TTTGTTTGAG GTGATCTCGG TCCCGAGTAG AGTAGAGCTG TCTGCCTGCC ACACATGCTG CTTTTAAATG AAATGTCTGA GGTGTATTAA GTAACTAGAG TTTAACTCAA TTTTAAATG ACTACTAGAG TTTAATT Phe Ile ACT ATC	5033 5033 5035 51512 5272 5339 54517 5569 5575 5787 5995 6017 6017 6029
TET AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATA ACTGTTTAAA ACCTCTATAGG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACA ACCTCTATAG GAACCTTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACA ACCTCTATAG GAACCTTGCT TCTAAAATTA ACCTGTAAAA ACCACTGTG GTAATCCTAG CTGTGATCGT ACCTGTGAAT ACCTGTAGAA AGCCTTGTC TCTAAAATTA AAAAAAAAA ACCACTGCAA AGACCTTGCT TCTAAAATTA AAAAAAAAAA ACCACTGCAA AGGCATACTG TCTAAAATTA AAAAAAAAAA ACCACTGCAA AGGTGAATGT CATTCTTAA AAAAAAAAAA ACCACTGCAA AGGTGAATGTG CATTCTTAA AAAAAAAAAA TACTTACCTT AACATATATT TATTTAGCAT TTAAAAGTTA AAAACAAACA TCTAAGAATC ATATCTTTAA AAAGTTGCAG CGTGTGTGTT GTAATACACA TTAAACTGTG GGGTTGTTTG ATGCAGTTCC CCAGGCTGAA GCGATTCCA TGCCTCAGTCC GTGGGATTAC AGGCATGCAC CACCTTC CCAGGCTGAA GCGATTCTCA TGCCTCAGTCC GTGGGATTAC AGGCATGCAC CACCTTC CCAGGCTGAA GCGATTCTCA TGCCTCAGTCC GAACATTTATT TGTATTTTT CTGAGCTTCAC AACAAACAA ACAACCCCAC AGTTTAATAC TTGTATTTTAA CTGGGATTAC AGGCATGAGC CACTTACAC CGGCTAATTT TTGTATTTTT CTGGGATTAC AGGCATGAGC CACTGCCA AGTTTAAAAGG TTGTTTTAAA CTGGGATTAC AGGCATGAGC CACTGCCAC CACCTCAA GCGCTCAAA CCAACCCCCAC AGGCTGAACT GTGTTTTTAA CTGGGATTAC AGGCATGAGC CACTTGCA AGGCATGCAC GGCCTGAACT GTGTTTTTAA CTGGGATTAC AGGCATGAGC CACTTGCA AGGCATGCAC GTGTTTTTAA CTGGGATTAC AGGCATGAGC CACTGCCA AGTTTAATACAC TTGTTTTAAA CTGGGATTAC AGGCATGAGC CACTGCCA AGTTTAATAC GTGTTTTTAAA CTGGGATTAC AGGCATGAGC CACTGCCA AGTTTAATAC GTGTTTTTAAA CTGGGATTAC AGGCATGAGC CACTGCCA AGTTTAATAC AGTGGGAACA CCACCCCAC AGTTTAATAC AGGCATGCAC AGGCTGAACT GTGTTTTTAAA CTGGGATTAC AGGCATGAGC CACTGCCC CAAGTCTCAA AGGAATTCTT TTCTCATTTA TTATATTTAT TTCCGCAAAT GTTCCTGGC AAGAATCTT TTCTCATTTA TTATATTTAT TTCCGCAAAT GTTCCTGTGC AAGAATCTT TTCTCATTTA TTATATTTAT TTCCGCAAAT GTTCCTGTGC AAGAATTCTT ASP ASN Ala Pro Arg Thr Ile	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATT AATACTCAAA TTTGTTTGAG GTGATCTCGG TCCCGAGTAG AGTAGAGCTG TCTGCCTGCC ACACATGCTG CTTTTAAATG AAATGTCTGA GGTGTATTAA GTAACTAGAG TTTAACTCAA TTTTAAATG ACTACTAGAG TTTAATT Phe Ile ACT ATC	5033 9020203395030303039555555555555555555555
THE ASP Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Tys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CCTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGTC TCTAAAATTA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAATATCA AAGTTAGCAT AAGTCAATG CATTCTTTAA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG AAGTGAATTG CATTCTTTAA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG AAGTGAATTG CATTCTTTAA AAAAAAAAA TACTTACCTT AACATATATT TATTTAGCAT TTAAAAGTTA AAACAATCT TTTAGAATTC ATATCTTTAA AAAATTCCAG CGTGTGTGT GTAAAACACA TTAAACTGG GGGTTGTTG ATGCAGTTTC CCCACCTC CCACGTCAA GCGATTCCTA TGCCTCAGTC GTGGATTAC AGGCATGCAC CACTTACACC CGGCTAATTT TTGTATTTTT GGGTTTCACC AACAAACAA ACAACCCCAC AGTTTAATAT TTGTATTTTT GGGTTTCACC AACAAACAA ACAACCCCAC AGTTTAATAT GTGTTACACC CAACTTTTATA AGGATATTA ATGATATAGA TTATAAAAGG TTGTTTTTTAA CTGGGATTAC AGGATAGTAC ACCTTGTCCA GGCTGAACT TTGTTTTTTAA CTGGGATTAC AGGATATTTA ATGATATAGA TTATAAAAGG TTGTTTTTTAA CTGGGATTAC AGGATATTAA ATGATATAGA TTATAAAAGG TTGTTTTTTAA CTGGGATTAC AGGATATTTA ATGATATAGA TTATAAAAAGG TTGTTTTTTAA CTGGGATTAC AGGATATTTA ATGATATAGA TTTCCCTGTGC AAGAAATCTT TTCTCATTTA TTATATTTAT TTCCGCAAAT GTTCCTTGTGC AAGAATTCTT TTCTCATTTA TTATATTTAT TTCCGCAAAT GTTCCTTGTGC AAGAATTCTT ASS ASN Ala Pro Arg Thr Ile 40 ATA AGT ATG TAT AA	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATT AATACTCAAA TTTGTTTGAG GTGATCTCGG TCCCGAGTAG AGTAGAGCTG TCTGCCTGCC ACACATGCTG CTTTTAAATG AAATGTCTGA GGTGTATTAA GTAACTAGAG TTTAACTCAA TTTTAAATG ACTACTAGAG TTTAATT Phe Ile ACT ATC	5033 9020203395030303039555555555555555555555
THE ASP Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Cys Arg Asp 40 TTCTGTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGGTGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGTC TCTAAAATTA AAAAAAAAAA AAAAAAAAC CTTAGGAAAG AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAATATCA AAGTTAGCAT TTAAAAATTA AAAAAAAAAA	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATTT AATACTCAAA TTTGTTTGAG GTGATCTCGG TCCCGAGTAG ACTAGACTG CCTTGCCTGCC ACACATGCTG CTTTTAAATG AAATGTCTGA GGTGTATTAA CTAACTAGAG TTT ATT Phe Ile ACT ATC Thr Ile	5033 5032 5032 5032 5032 5032 5032 5032
THE ASP Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA Tys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG CTGTAGTACA CCTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG AGACCTTGTC TCTAAAATTA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAATATCA AAGTTAGCAT AAGTCAATG CATTCTTTAA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG AAGTGAATTG CATTCTTTAA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG AAGTGAATTG CATTCTTTAA AAAAAAAAA TACTTACCTT AACATATATT TATTTAGCAT TTAAAAGTTA AAACAATCT TTTAGAATTC ATATCTTTAA AAAATTCCAG CGTGTGTGT GTAAAACACA TTAAACTGG GGGTTGTTG ATGCAGTTTC CCCACCTC CCACGTCAA GCGATTCCTA TGCCTCAGTC GTGGATTAC AGGCATGCAC CACTTACACC CGGCTAATTT TTGTATTTTT GGGTTTCACC AACAAACAA ACAACCCCAC AGTTTAATAT TTGTATTTTT GGGTTTCACC AACAAACAA ACAACCCCAC AGTTTAATAT GTGTTACACC CAACTTTTATA AGGATATTA ATGATATAGA TTATAAAAGG TTGTTTTTTAA CTGGGATTAC AGGATAGTAC ACCTTGTCCA GGCTGAACT TTGTTTTTTAA CTGGGATTAC AGGATATTTA ATGATATAGA TTATAAAAGG TTGTTTTTTAA CTGGGATTAC AGGATATTAA ATGATATAGA TTATAAAAGG TTGTTTTTTAA CTGGGATTAC AGGATATTTA ATGATATAGA TTATAAAAAGG TTGTTTTTTAA CTGGGATTAC AGGATATTTA ATGATATAGA TTTCCCTGTGC AAGAAATCTT TTCTCATTTA TTATATTTAT TTCCGCAAAT GTTCCTTGTGC AAGAATTCTT TTCTCATTTA TTATATTTAT TTCCGCAAAT GTTCCTTGTGC AAGAATTCTT ASS ASN Ala Pro Arg Thr Ile 40 ATA AGT ATG TAT AA	Ser Asp CTTCTTCCCA AAAGTCACAG TTAGTTGGGG CTGCCTTTGA TTGGATGCTT GCATCTATCT GACTTTGAGG GGTGATATAC GAAATTGATC GAGTTGAAGC TTAAATATTT AATACTCAAA TTTGTTTGAG GTGATCTCGG TCCCGAGTAG ACTAGACTG CCTTGCCTGCC ACACATGCTG CTTTTAAATG AAATGTCTGA GGTGTATTAA CTAACTAGAG TTT ATT Phe Ile ACT ATC Thr Ile	5033 9020203395030303039555555555555555555555

Ser Val Lys Cys Glu Lys Ile Ser Thr Leu Ser Cys Glu Asn Lys Ile ATT TCC TTT AAG GTAAG ACTGAGCCTT ACTTTGTTTT CAATCATGTT AATATAATCA 6496 Ile Ser Phe Lys ATATAATTAG AAATATAACA TTATTTCTAA TGTTAATATA AGTAATGTAA TTAGAAAACT 6556 CAAATATCCT CAGACCAACC TTTTGTCTAG AACAGAAATA ACAAGAAGCA GAGAACCATT AAAGTGAATA CTTACTAAAA ATTATCAAAC TCTTTACCTA TTGTGATAAT GATGGTTTTT CTGAGCCTGT CACAGGGGAA GAGGAGATAC AACACTTGTT TTATGACCTG CATCTCCTGA ACAATCAGTC TTTATACAAA TAATAATGTA GAATACATAT GTGAGTTATA CATTTAAGAA 6736 TAACATGTGA CTTTCCAGAA TGAGTTCTGC TATGAAGAAT GAAGCTAATT ATCCTTCTAT 6856 ATTTCTACAC CTTTGTAAAT TATGATAATA TTTTAATCCC TAGTTGTTTT GTTGCTGATC CTTAGCCTAA GTCTTAGACA CAAGCTTCAG CTTCCAGTTG ATGTATGTTA TTTTTAATGT TAATCTAATT GAATAAAAGT TATGAGATCA GCTGTAAAAG TAATGCTATA ATTATCTTCA 6976 7036 AGCCAGGTAT AAAGTATTTC TGGCCTCTAC TTTTTCTCTA TTATTCTCCA TTATTATTCT 7096 CTATTATTTT TCTCTATTTC CTCCATTATT GTTAGATAAA CCACAATTAA CTATAGCTAC 7156 AGACTGAGCC AGTAAGAGTA GCCAGGGATG CTTACAAATT GGCAATGCTT CAGAGGAGAA TTCCATGTCA TGAAGACTCT TTTTGAGTGG AGATTTGCCA ATAAATATCC GCTTTCATGC 7216 7276 CCACCCAGTC CCCACTGAAA GACAGTTAGG ATATGACCTT AGTGAAGGTA CCAAGGGGCA 7336 ACTTGGTAGG GAGAAAAAG CCACTCTAAA ATATAATCCA AGTAAGAACA GTGCATATGC AACAGATACA GCCCCAGAC AAATCCCTCA GCTATCTCC TCCAACCAGA GTGCCACCC TTCAGGTGAC AATTTGGAGT CCCCATTCTA GACCTGACAG GCAGCTTAGT TATCAAAATA 7396 7516 GCATAAGAGG CCTGGGATGG AAGGGTAGGG TGGAAAGGGT TAAGCATGCT GTTACTGAAC 7576 AACATAATTA GAAGGGAAGG AGATGGCCAA GCTCAAGCTA TGTGGGATAG AGGAAAACTC AGCTGCAGAG GCAGATTCAG AAACTGGGAT AAGTCCGAAC CTACAGGTGG ATTCTTGTTG AGGGAGACTG GTGAAAATGT TAAGAAGATG GAAATAATGC TTGGCACTTA GTAGGAACTG 7636 7696 7756 GGCAAATCCA TATTTGGGGG AGCCTGAAGT TTATTCAATT TTGATGGCCC TTTTAAATAA
AAAGAATGTG GCTGGGCGTG GTGGCTCACA CCTGTAATCC CAGCACTTTG GGAGGCCGAG
GGGGGCGGAT CACCTGAAGT CAGGAGTTCA AGACCAGCCT GACCAACATG GAGAAACCCC 7816 7876 7936 ATCTCTACTA AAAATACAAA ATTAGCTGGG CGTGGTGGCA TATGCCTGTA ATCCCAGCTA CTCGGGAGGC TGAGGCAGGA GAATCTTTTG AACCCGGGAG GCAGAGGTTG CGATGAGCCT AGATCGTGCC ATTGCACTCC AGCCTGGGCA ACAAGAGCAA AACTCGGTCT CAAAAAAAAA 8056 8116 8176 8236 8296 835€ 8416 CAGGCCAGGC ACAGTGGCTC ATGCCTATAA TCCCAGCACT TTGGGAGGGC AAGGCGAGTG
TCTCACTTGA GATCAGGAGT TCAAGACCAG CCTGGCCAGC ATGGCGATAC TCTGTCTCTA
CTAAAAAAAA TACAAAAATT AGCCAGGCAT GGTGGCATGC ACCTGTAATC CCAGCTACTC 8476 8596 GTGAGCCTGA GGCAGAAGAA TCGCTTGAAA CCAGGAGGTG TAGGCTGCAG TGAGCTGAGA TCGCACCACT GCACTCCAGC CTGGGCGACA GAATGAGACT TTGTCTCAAA AAAAGAAAAA GATACAACAG GCTACCCTTA TGTGCTCACC TTTCACTGTT GATTACTAGC TATAAAGTCC 8716 8776 TATAAAGTTC TTTGGTCAAG AACCTTGACA ACACTAAGAG GGATTTGCTT TGAGAGGTTA TATAAAGTTC TTTGGTCAAG AACCTTGACA ACACTAAGAG GGATTTGCTT TGAGAGGTTA
CTGTCAGAGT CTGTTCATA TATATACATA TACATGTATA TATGTATCTA TATCCAGGCT
TGGCCAGGGT TCCCTCAGAC TTTCCAGTGC ACTTGGGAGA TGTTAGGTCA ATATCAACTT
TCCCTGGATT CAGATTCAAC CCCTTCTGAT GTAAAAAAAA AAAAAAAAA GAAAGAAATC
CCTTTCCCCT TGGAGCACTC AAGTTTCACC AGGTGGGCT TTCCAAGTTG GGGGTTCTCC
AAGGTCATTG GGATTGCTTT CACATCCATT TGCTATGTAC CTTCCTATGA
ATGCCAACA TCAAAACTAG GAAAGCTACC CTCCTATGACT CTATCTGAA 8896 8956 9016 9136 9196 ATGTGCAATA AGTGTGATTA AAGAGATTGC CTGTTCTACC TATCCACACT CTCGCTTTCA 92156 ACTGTAACTT TCTTTTTTC TTTTTTCTT TTTTTCTTT TTTTTGAAAC GGAGTCTCGC TCTGTCGCCC AGGCTAGAGT GCAGTGGCAC GATCTCAGCT CACTGCAAGC TCTGCCTCCC GGGTTCACGC CATTCTCCTG CCTCACCCTC CCAAGCAGCT GGGACTACAG GCGCCTGCCA CCATGCCCAG CTAATTTTT GTATTTTAG TAGAGACGGG GTTTCACCGT GTTAGCCAGG 9376 9436 9496 ATGGTCTCGA TCTCCTGAAC TTGTGATCCG CCCGCCTCAG CCTCCCAAAG TGCTGGGATT ACAGGCGTGA GCCATCGCAC CCGGCTCAAC TGTAACTTTC TATACTGGTT CATCTTCCCC TGTAATGTTA CTAGAGCTTT TGAAGTTTTG GCTATGGATT ATTTCTCATT TATACATTAG 9616 ATTTCAGATT AGTTCCAAAT TGATGCCCAC AGCTTAGGGT CTCTTCCTAA ATTGTATATT GTAGACAGCT GCAGAAGTGG GTGCCAATAG GGGAACTAGT TTATACTTTC ATCAACTTAG 9736 9796 GACCCACACT TGTTGATAAA GAACAAAGGT CAAGAGTTAT GACTACTGAT TCCACAACTG ATTGAGAAGT TGGAGATAAC CCCGTGACCT CTGCCATCCA GAGTCTTTCA GGCATCTTTG AAGGATGAAG AAATGCTATT TTAATTTTGG AGGTTTCTCT ATCAGTGCTT AGGATCATGG 9856 9916 GAATCTGTGC TGCCATGAGG CCAAAATTAA GTCCAAAACA TCTACTGGTT CCAGGATTAA 10036 CATGGAAGAA CCTTAGGTGG TGCCCACATG TTCTGATCCA TCCTGCAAAA TAGACATGCT GCACTAACAG GAAAAGTGCA GGCAGCACTA CCAGTTGGAT AACCTGCAAG ATTATAGTTT 10096 10156 CAAGTAATCT AACCATTTCT CACAAGGCCC TATTCTGTGA CTGAAACATA CAAGAATCTG 10216 CATTTGGCCT TCTAAGGCAG GGCCCAGCCA AGGAGACCAT ATTCAGGACA GAAATTCAAG 10276

ACTACTA	ATGG	AACT	GGAGT	G C	rtgg	CAGG	AA E	GACA	GAGT	CAA	GAC'	rgc	CAAC	rgagcc	10336
AATACAG	GCAG	GCTT	ACACA	G G	AACC	CAGGO	G CC	TAGC	CCTA	CAA	CAAT	TAT	TGGG:	CTATT	10396
CACTGT	AAGT	TTTA	ATTTC	A G	GCTC	CACTO	AA E	AGAG'	TAAG	CTA	AGAT	rcc '	TGGC	ACTTTC	10456
TGTCTC	rctc	ACAG:	TTGGC	T C	AGAA	ATGAC	AA E	CTGG	rcag	GCC	AGGC	ATG	GTGG	CTTACA	10516
CCTGGA	ATCC	CAGC	ACTTT	G G	GAGG	CCGA	A GT	GGGA	GGGT	CAC	TGA	GC	CAGG	AGTTCA	10576
GGACCA													AAATA	TTTAA	10636
TAAAAAT	TTAG	CCAA	ATGTG	G T	GTG	TATAC	TT	ACAG	rccc	AGC	CACT	CAG	GAGG	CTGAGG	10696
CAGGGG										AGC	PATG			CACTGC	10756
ACTTCTC															10816
ACTAGC							_							TATAG	10876
AGGACA											rggaz			TAATC	10936
TTGAGC														STATAG	10996
GGGAAA														ATTCG	11056
GAGTTA											TTTT			CTCTTG	11116
AGAAGC														ATATTC	11176
AAATTG															11233
														Asn	
												85			
CCT CCT	r GAI	AAC	ATC	AAG	GAT	ACA	AAA	AGT	GAC	ATC	ATA	TTC	TTT	CAG	11281
Pro Pro	Asp	Asn	Ile	Lys	Asp	Thr	Lys	Ser	Asp	Ile	Ile	Phe	Phe	Glu	
	90			-	-	95	-		-		100				
AGA AG	r GTC	CCA	GGA	CAT	GAT	AAT	AAG	ATG	CAA	TTT	GAA	TCT	TCA	TCA	11329
Arg Sei	· Val	Pro	Gly	His	Asp	Asn	Lys	Met	Gln	Phe	Glu	Ser	Ser	Ser	
105	5		-		110		-			115					
TAC GA	A GGA	TAC	TTT	CTA	GCT	TGT	GAA	AAA	GAG	AGA	GAC	CTT	TTT	AAA	11377
Tyr Glu	ı Gly	Tyr	Phe	Leu	Ala	Cys	Glu	Lys	Glu	Arq	Asp	Leu	Phe	Lvs	
120	-	-		125		_		-	130		-			135	
CTC AT	r TTG	AAA ;	AAA	GAG	GAT	GAA	TTG	GGG	GAT	AGA	TCT	ATA	ATG	TTC	11425
Leu Ile	e Leu	Lvs	Lvs	Glu	Asp	Glu	Leu	Glv	Asp	Ara	Ser	Tle	Met	Phe	
		1 -	140		1-			145	[-	5			150		
ACT GT	CAA	AAC	GAA	GAC	TAGG	CTATI	CAA A	_	гсато	GC C					11464
Thr Val															
		155	514	-100											
		エンン													

(2) INFORMATION FOR SEQ ID NO: 18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 471 base pairs
- (B) TYPE: nucleic acid
- (C)STRANDEDNESS: double (D)TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA to mRNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: mouse
- (G) CELL TYPE: liver

(ix) FEATURE:

- (A) NAME/KEY: mat peptide
- (B) LOCATION: 1..471
- (C) IDENTIFICATION METHOD: S

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

	CGA Arg			-	_	 	 	 48
	CTC Leu 20		Lys	Gln				96
	GAT Asp							144
	AAA Lys							192

	50					55					60					
GTG	AAG	GAT	AGT	AAA	ATG	TCT	ACC	CTC	TCC	TGT	AAG	AAC	AAG	ATC	TTA	240
Val 65	Lys	Asp	Ser	Lys	Met 70	Ser	Thr	Leu	Ser	Cys 75	Lys	Asn	Lys	Ile	Ile 80	
TCC	TTT	GAG	GAA	ATG	GAT	CCA	CCT	GAA	TAA	TTA	GAT	GAT	ATA	CAA	AGT	288
Ser	Phe	Glu	Glu	Met 85	Asp	Pro	Pro	Glu	Asn 90	Ile	Asp	Asp	Ile	Gln 95	Ser	
							CGT									336
Asp	Leu	Ile	Phe 100	Phe	Gln	Lys	Arg	Val 105	Pro	Gly	His	Asn	Lys 110	Met	Glu	
TTT	GAA	TCT	TCA	CTG	TAT	GAA	GGA	CAC	TTT	CTT	GCT	TGC	CAA	AAG	GAA	384
Phe	Glu	Ser 115	Ser	Leu	Tyr	Glu	Gly 120	His	Phe	Leu	Ala	Cys 125	Gln	Lys	Glu	
GAT	GAT	GCT	TTC	AAA	CTC	ATT	CTG	AAA	AAA	AAG	GAT	GAA	AAT	GGG	GAT	432
Asp	Asp 130	Ala	Phe	Lys	Leu	Ile 135	Leu	Lys	Lys	Lys	Asp 140	Glu	Asn	Gly	Asp	
AAA	TCT	GTA	ATG	TTC	ACT	CTC	ACT	AAC	TTA	CAT	CAA	AGT				471
	Ser						Thr									

(2) INFORMATION FOR SEQ ID NO: 19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (v) FRAGMENT TYPE: N-terminal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

Asn Phe Gly Arg Leu His Cys Thr Thr 1

- (2) INFORMATION FOR SEQ ID NO: 20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn 10 Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp 2.0 25 Met Thr Asp Ser Asp Cys Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile 35 40 Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile 50 55 60 Ser Val Lys Ser Glu Lys Ile Ser Thr Leu Ser Cys Glu Asn Lys Ile 70 75 Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 90 85 Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys 100 105 110 Met Gln Phe Glu Ser Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Cys Glu 115 120 125 Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 130 135

(2) INFORMATION FOR SEQ ID NO: 21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids(B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn 10 Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp 2.0 25 Met Thr Asp Ser Asp Ser Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile 40 Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile 50 55 Ser Val Lys Ser Glu Lys Ile Ser Thr Leu Ser Cys Glu Asn Lys Ile 70 75 Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 85 90 Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys 100 105 110 Met Gln Phe Glu Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Cys Glu 120 125 Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 135 140 Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp 145 150

- (2) INFORMATION FOR SEQ ID NO: 22:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn 10 Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp 25 Met Thr Asp Ser Asp Cys Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile 40 Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile 55 Ser Val Lys Ser Glu Lys Ile Ser Thr Leu Ser Cys Glu Asn Lys Ile 75 Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 85 90 Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys 100 105 110 Met Gln Phe Glu Ser Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Ser Glu 120 Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 135 140 Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp 150

- (1) INFORMATION FOR SEQ ID NO: 23:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 157 amino acids(B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:
- Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn
- Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp 25
- Met Thr Asp Ser Asp Ser Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile 40
- Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile 55
- Ser Val Lys Ser Glu Lys Ile Ser Thr Leu Ser Cys Glu Asn Lys Ile 70
- Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 85 90
- Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys 100 105 110
- Met Gln Phe Glu Ser Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Ser Glu 120 125
- Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 135 140
- Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp 150
- (2) INFORMATION FOR SEQ ID NO: 24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:
- Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn
- Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp 20 25
- M÷t Thr Asp Ser Asp Ser Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile
- 35 40 Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile 55
- Ser Val Lys Ser Glu Lys Ile Ser Thr Leu Ser Ser Glu Asn Lys Ile 70 75
- Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 90
- Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys 100 105 110
- Met Gln Phe Glu Ser Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Ser Glu
 115 120 125
- Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 135 140
- Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp 150
- (2) INFORMATION FOR SEQ ID NO: 25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp 20 25 Met Thr Asp Ser Asp Ser Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile 35 40 Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile 50 Ser Val Lys Ser Glu Lys Ile Ser Thr Leu Ser Ala Glu Asn Lys Ile 70 75 Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 85 90 Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys 100 105 110 Met Gln Phe Glu Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Cys Glu 120 115 125 Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 135 140 Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp 150

- (2) INFORMATION FOR SEQ ID NO: 26:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn 10 Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp 20 25 Met Thr Asp Ser Asp Ser Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile 40 Iie Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile Ser Val Lys Ser Glu Lys Ile Ser Thr Leu Ser Ala Glu Asn Lys Ile 70 Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 90 Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys 100 105 Met Gln Phe Glu Ser Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Ser Glu 115 120 Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 130 135 Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp 150

- (2) INFORMATION FOR SEQ ID NO: 27:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

Asn Phe Gly Arg Leu His Ala Thr Thr Ala Val Ile Arg Asn Ile Asn

10 Asp Gln Val Leu Phe Val Asp Lys Arg Gln Pro Val Phe Glu Asp Met 25 Thr Asp Ile Asp Gln Ser Ala Ser Glu Pro Gln Thr Arg Leu Ile Ile Tyr Met Tyr Lys Asp Ser Glu Val Arg Gly Leu Ala Val Thr Leu Ser 55 Val Lys Asp Ser Lys Met Ser Thr Leu Ser Cys Lys Asn Lys Ile Ile 70 Ser Phe Glu Glu Met Asp Pro Pro Glu Asn Ile Asp Asp Ile Gln Ser 85 90 Asp Leu Ile Phe Phe Gln Lys Arg Val Pro Gly His Asn Lys Met Glu 100 105 110 Phe Glu Ser Ser Leu Tyr Glu Gly His Phe Leu Ala Cys Gln Lys Glu 115 120 125 Asp Asp Ala Phe Lys Leu Ile Leu Lys Lys Lys Asp Glu Asn Gly Asp 135 140 Lys Ser Val Met Phe Thr Leu Thr Asn Leu His Gln Ser 145 150

(2) INFORMATION FOR SEQ ID NO: 28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

Asn Phe Gly Arg Leu His Cys Thr Thr Ala Val Ile Arg Asn Ile Asn 10 Asp Gln Val Leu Phe Val Asp Lys Arg Gln Pro Val Phe Glu Asp Met 2.0 25 Thr Asp Ile Asp Gln Ser Ala Ser Glu Pro Gln Thr Arg Leu Ile Ile 35 4.0 45 Tyr Met Tyr Lys Asp Ser Glu Val Arg Gly Leu Ala Val Thr Leu Ser 55 60 Val Lys Asp Ser Lys Met Ser Thr Leu Ser Cys Lys Asn Lys Ile Ile 70 75 Ser Phe Glu Glu Met Asp Pro Pro Glu Asn Ile Asp Asp Ile Gln Ser 90 Asp Leu Ile Phe Phe Gln Lys Arg Val Pro Gly His Asn Lys Met Glu 105 110 Phe Glu Ser Ser Leu Tyr Glu Gly His Phe Leu Ala Ser Gln Lys Glu 115 120 Asp Asp Ala Phe Lys Leu Ile Leu Lys Lys Lys Asp Glu Asn Gly Asp 130 135 Lys Ser Val Met Phe Thr Leu Thr Asn Leu His Gln Ser