MIMM4750G Detecting selection

Natural selection

- Variation in fitness that is associated with variation in the environment.
- Selection is responsible for the spread of drug resistance in pathogens.
- Host adaptation: a mutant allele of the Duffy blood-group antigen (Fy) that reduces risk of infection by *Plasmodium vivax* (vivax malaria) is near fixation in sub-Saharan Africa.

Types of selection

- Purifying selection: once the favored genetic variant has been "fixed" in the population, selection continues to remove all other variants.
- Most sites are under purifying selection ("if it ain't broke.")
- **Directional selection:** a specific genetic variant has a selective advantage and increases in frequency.
- Purifying selection is the end result of directional selection.
- Directional selection is difficult to observe; you must be at the right place at the right time.

Diversifying selection

- **Diversifying selection:** different genetic variants are favored in different environments.
- Directional selection depletes genetic variation; diversifying selection promotes variation.
- What causes diversifying selection in pathogens?
- Transmission of an infection from one host environment to another (host-specific immune responses).
- e.g., strong div. selection at cytotoxic T-lymphocyte epitopes in virus proteins.

How do detect selection?

Longitudinal data: track the frequencies of an allele over time.

Trajectory of I161N mutation in influenza A virus HA. Figure from Illingworth and Mustonen (2012) PLOS Pathog 8: e1003091.

- What if we don't know which allele is under selection? What if we don't have longitudinal data?
- Cross-sectional (comparative) methods: infer selection by comparing genetic sequences sampled at about the same time.

Protein evolution

- Infer selection by comparting relative rates of evolution.
- Requires a baseline/point of reference, e.g., "neutrally evolving" pseudogenes.
- A popular contrast is non-synonymous versus synonymous variation within protein-coding sequence.
- Non-synonymous = nucleotide substitution alters the amino acid encoded by the codon.
- Such approaches are generally called "dN/dS" methods.

dN/dS

- There are 9 possible nucleotide substitutions in a 3-nt codon.
- We assume that "nonsense" substitutions to a stop codon don't persist.
- The genetic code determines how many of these 9 nt changes would result in a non-synonymous change this is the number of NS sites.
- dN is the ratio between the numbers of observed NS substitutions and of NS sites.
- dS is the same ratio for synonymous substitutions and sites.

A simple example

- The codon ACG encodes threonine (T). It has 3 synonymous sites and 6 nonsynymous sites (e.g., ATG for methionine).
- Suppose we count 8 non-synonymous and 4 synonymous substitutions in the tree.
- We observed over twice as many non-synonymous substitutions! Is this evidence of strong diversifying selection at this codon?
- The ratio dN/dS is $\frac{8}{6} / \frac{4}{3} = 1$. This looks like neutral evolution.

Table 1
The Gene Groups on Which Positive Selection May Operate

Gene Group	Representative Species
Merozoite surface antigen (MSA2) gene	Malaria Plasmodium falciparum
Major surface protein $(msp1 \ \alpha)$ gene	Rickettsia Anaplasma marginale
Outer membrane protein (omp) gene	Chlamydia
env	Equine infectious anemia virus
Glycoprotein gH gene	Pseudorabies virus
<i>E</i> gene	Phages $G4$, $\phi X174$ and $S13$
Sigma-1 protein gene	Reovirus
Invasion plasmid antigen gene (ipaC)	Shigella
Invasion plasmid antigen gene (ipaD)	Shigella
Egg-laying hormone	Aplysia californica
Egg-laying hormone A peptide	Aplysia californica
ATP synthase F_0 subunit (atp-2) gene	Escherichia coli
Neomycin resistance protein gene	Escherichia coli
Virulence determinant gene (yadA)	Yersinia
Prostatic steroid binding protein	Rat
Neurotoxin	Snake
CDC6	Saccharomyces cerevisiae

Table from Endo, Ikeo and Gojobori. 1996, Mol Biol Evol 13: 685.

Using likelihood

- If we can model codon evolution like we did for nucleotides, then we can estimate dN/dS by maximum likelihood.
- There are a lot of parameters! (61 non-stop codons, $61 \times 60/2 = 1830$ rates.)
- Assumptions!:
 - 1. There is never more than one nucleotide substitution within a codon at a time (e.g., no simultaneous mutations).
 - 2. The codon context has no effect on nucleotide substitution rates.
 - 3. The dN/dS ratio does not care what amino acid is encoded by the codon, only whether the amino acid is *changed*.

The Goldman-Yang / Muse-Gaut models

- In 1994, very similar models were proposed in two ground-breaking papers (in the same journal, next to each other in the same issue).
- Using these assumptions, the GY and MG models enable us to specify a codon model using as few as two parameters.
- The main parameter is called ω or R, depending who you ask. It is simply the ratio of non-syn. and syn. rates.
- The minimal second parameter is the synonymous rate (Jukes-Cantor model).

Maximum likelihood (ML)

- We can use ML to reconstruct the tree best supported by the data.
- We can also use ML to fit one of these codon models to the tree.
- It is possible to simultaneously estimate both the tree and the codon model, but
- It is simpler to "fix" our analysis to a single tree when fitting the model.
- Methods to simultaneously fit the tree and codon model have only recently been developed, e.g., CodonPhyML.

Site-specific selection

- In the same year, Ziheng Yang described methods to allow dN/dS to change at different codon sites of a protein-coding gene.
- This was a critical improvement because it is often not the *entire gene* that is under diversifying selection.
- This allows us to pick out individual amino acids under strong selection, even if the rest of the gene is highly conserved.
- Implemented by Yang in 1997 into the software package PAML (Phylogenetic Analysis by Maximum Likelihood).

dN/dS in influenza A virus

- Influenza A virus (IAV) hemagglutinin (HA) is responsible for binding host cell receptor.
- HA binds sialic acids in upper respiratory tract name stems from clumping of blood cells.
- Major target for antibody-mediated immune response.
- Specific amino acids in HA protein under strong selection.

Figure from Meyer and Wilke (2015) PLOS Pathog 11: e1004940.

Random-effects likelihood

- Yang allows dN/dS (ω) to vary among sites by assuming that these values followed a gamma distribution.
- The gamma distribution is a *continuous* probability density function for values greater than zero, ideal for rates.
- To make easier to compute, Yang split the gamma distribution up into 5 rate categories of equal area (probability).
- This approach is still used for many models, and gamma is represented by a G or the symbol Γ .

Fixed-effects likelihood

- Also proposed by Yang, a fixed-effect model attempts to assign each codon site to one of multiple categories, each with its own estimated dN/dS rate.
- Random-effects models tend to have greater power (fewer parameters) but less flexible.
- Fixed-effects models tend to model rate variation more accurately (more flexible) but may require more data than REL.
- These methods basically give you the same results if you have enough data.

Episodic selection

- The previous models assume that differences in dN/dS are constant over time.
- What if selection at a specific site is driven by a change in the environment?
- Yang (again) and Nielsen (2002) proposed the branch-site method that assigns branches of the tree into two categories.
- Difficult to work more complex models because of over-fitting!

Ziheng Yang.

Detecting directional selection

- Directional selection is transient, making it difficult to "see".
- When selection brings a specific variant from low to high frequency in the population, there is a local depletion of genetic variation.
- This is called a "selective sweep".

Figure from RD Hernandez et al. 2011, Science 331: 920.

Selective sweeps

- Presently a very active area of research.
- Methods look for parts of the genome with reduced variation, patterns in linkage disequilibrium or the allele frequency distribution.

