

CLAIMS:

What is claimed is:

1 1. An apparatus comprising:
2 a transmitter, to generate a multiband ultra-wideband (MB-UWB) signal for transmission
3 via one or more antenna(e), wherein the generated MB-UWB signal is composed of a number
4 (N) of narrower band pulses in a number of different frequency bands, wherein the number (M)
5 of sequential or parallel pulses within a given narrower band is greater than one (1) pulse.

1
1 2. An apparatus according to claim 1, the transmitter comprising:
2 a front end, to encode received content for transmission through select ones of the
3 narrower band pulses of the generated multiband ultra-wideband signal.

1
1 3. An apparatus according to claim 2, the transmitter front end comprising:
2 one or more encoder(s), to receive the content and incorporate error correction
3 information therein.

1
1 4. An apparatus according to claim 3, wherein the one or more encoder(s) performs one or
2 more of Reed-Solomon encoding, punctured convolutional encoding, concatenated convolutional
3 encoding in combination with Reed-Solomon encoding, turbo coding and/or low density parity
4 check (LDPC) coding on the received content to enable the detection and correction of burst
5 errors within a received signal at a remote receiver.

1
1 5. An apparatus according to claim 2, the transmitter front end comprising:

2 one or more mapper(s), responsive to the encoder(s), to perform M-ary Binary
3 Orthogonal Keying (MBOK) on the encoded content.

I

1 6. An apparatus according to claim 5, the transmitter front end further comprising:
2 one or more interleaver(s), responsive to the binary-orthogonal mapper(s), to interleave
3 the encoded content across a number (N) of blocks of content.

I

1 8. An apparatus according to claim 7, the transmitter front end further comprising:
2 a combiner element(s), responsive to the interleaver(s), to receive interleaved content and
3 apply a pseudo-random noise (PN) mask thereto.

I

1 9. An apparatus according to claim 8, the transmitter front end further comprising:
2 a summing element(s), responsive to the combiner, to receive masked content and apply a
3 preamble thereto, wherein the preamble facilitates timing synchronization and channel
4 estimation in a receiver of the multiband ultra-wideband (MB-UWB) signals.

I

1 10. An apparatus according to claim 9, the transmitter further comprising:
2 an radio frequency (RF) backend, responsive to the transmitter front end, to receive the
3 encoded content from the front end, modulate the received content and prepare it for
4 transmission across a number (N) of pulses within relatively narrow bands of an ultra-wideband
5 (UWB) spectrum.

I

1 11. An apparatus according to claim 10, the RF backend comprising:

2 a multiband modulator(s), responsive to the transmitter front end, to receive the encoded
3 content and modulate the received content using quadrature phase shift-keying (QPSK).

1
1 12. An apparatus according to claim 10, wherein the multiband modulator(s) modulate the
2 received content using binary phase shift-keying (BPSK).

1
1 13. An apparatus according to claim 2, the transmitter front end further comprising:
2 one or more interleaver(s), responsive to the encoder(s), to interleave the encoded content
3 across a number (N) of blocks of content.

1
1 14. An apparatus according to claim 2, the transmitter front end further comprising:
2 a combiner element(s), responsive to the encoder(s), to receive encoded content and
3 apply a pseudo-random noise (PN) mask thereto.

1
1 15. An apparatus according to claim 2, the transmitter front end further comprising:
2 a summing element(s), responsive to the encoder(s), to receive encoded content and apply
3 a preamble thereto, wherein the preamble facilitates timing synchronization and channel
4 estimation in a receiver of the multiband ultra-wideband (MB-UWB) signals.

1
1 16. An apparatus according to claim 15, wherein the preamble is generated through a number
2 of instances of a CAZAC-16 sequence for at least a subset of the narrower bands of the ultra-
3 wideband signal.

1 17. An apparatus according to claim 1, the transmitter comprising:
1 an radio frequency (RF) backend, responsive to the transmitter front end, to receive the
2 encoded content from the front end, modulate the received content and prepare it for
3 transmission across a number (N) of pulses within relatively narrow bands of an ultra-wideband
4 (UWB) spectrum.

1
1 18. An apparatus according to claim 17, the RF backend comprising:
2 a multiband modulator(s), responsive to the transmitter front end, to receive the encoded
3 content and modulate the received content using quadrature phase shift-keying (QPSK).

1
1 20. An apparatus according to claim 1, further comprising:
2 a receiver, coupled with one or more antenna(e), to receive and demodulate each of a
3 number (N) of pulses spread across multiple narrower bands of an ultra-wideband spectrum to
4 recover content embedded therein.

1
1 21. An apparatus according to claim 1, further comprising:
2 one or more antenna(e), through which the apparatus can transmit and/or receive
3 multiband ultra-wideband signal(s).

1
1 22. An apparatus according to claim 21, wherein the apparatus employs frequency division
2 duplex (FDD) to enable simultaneous transmission and reception on separate frequencies using a
3 common antenna(e).

1 23. An apparatus according to claim 1, wherein the transmitter is the apparatus.

1

1 24. An apparatus according to claim 1, where the number (N) of narrower bands is between
2 two (2) and twenty (20), while the number of sequential or parallel pulses is between two (2) and
3 one hundred.

1

1 25. An apparatus according to claim 24, wherein the number of narrower bands of the ultra-
2 wideband spectrum is fifteen (15) or less, each band 500 megahertz (MHz) wide, supporting
3 500+ megabits per second (500+Mb/s).

1

1 26. An apparatus according to claim 24, wherein the number of sequential pulses within at
2 least a subset of the narrower bands is four (4) or less.

1

1 26. An apparatus comprising:

2 a receiver, responsive to one or more antenna(e), to receive an ultra-wideband (UWB)
3 signal comprised of a number (N) of pulses within narrower bands of an UWB spectrum,
4 wherein the number (M) of pulses within each of the narrower bands is one or more and is
5 dynamically controlled by the receiver and/or transmitter.

1

1 27. An apparatus according to claim 26, the receiver comprising:

2 a channel acquisition element, responsive to the one or more antenna(e), to detect energy
3 within any of the narrower bands of the UWB spectrum, perform timing
4 acquisition/synchronization and channel estimation.

1

1 28. An apparatus according to claim 27, the channel acquisition element comprising:
2 a timing acquisition element, responsive to the one or more antenna(e), to perform one or
3 more of coarse timing acquisition and/or fine timing acquisition based, at least in part, on
4 detection of preamble information within a select band of the number of narrower bands within
5 the UWB spectrum.

1

1 29. An apparatus according to claim 26, the receiver comprising:
2 a radio frequency (RF) front end, to receive signals within one or more of the number (N)
3 of multiple narrower bands of the ultra-wideband (UWB) spectrum, and to demodulate the
4 received signal(s).

1

1 30. An apparatus according to claim 29, wherein the demodulation performed by the RF front
2 end is complementary to the modulation performed by a remote transmitter of the received MB-
3 UWB signals.

1

1 31. An apparatus according to claim 29, the RF front end to perform quadrature phase shift-
2 keying (QPSK) demodulation of the received signals.

1

1 32. An apparatus according to claim 26, the receiver comprising:
2 a digital backend, to correct at least a subset of errors encountered during transmission
3 and to decode content embedded within a demodulated representation of the received MB-UWB
4 signals to produce a representation of content transmitted to the receiver from a remote
5 transmitter.

1

1 33. An apparatus according to claim 32, the digital backend comprising one or more of a feed
2 forward equalizer, a pseudo-noise mask generator, a combiner, a block de-interleaver, a detector,
3 a feedback equalizer, and/or a decoder, coupled to identify and correct at least a subset of errors
4 encountered during transmission of the MB-UWB signals, and to distinguish encoded content
5 embedded within the received signals intended for the receiver from those intended for other
6 receiver(s).

1
1 34. An apparatus according to claim 26, further comprising:
2 one or more antenna(e), coupled to the receiver, through which the receiver receives MB-
3 UWB signals.

1
1 35. An apparatus according to claim 34, wherein the apparatus employs frequency division
2 duplexing (FDD) to simultaneously transmit and receive MB-UWB signals via one or more
3 antenna(e).

1
1 36. An apparatus according to claim 26, further comprising:
2 a transmitter, to generate a multiband ultra-wideband (MB-UWB) signal for transmission
3 via one or more antenna(e), wherein the generated MB-UWB signal is composed of a number
4 (N) of narrower band pulses in a number of different frequency bands, wherein the number (M)
5 of sequential pulses within a given narrower band is greater than one (1) pulse.

1
1 37. An apparatus according to claim 26, wherein the apparatus is the receiver.

1 38. A method comprising:
2 encoding content for transmission via a multiband ultra-wideband (MB_UWB) signal
3 through application of a time-frequency code extension, wherein the time-frequency code
4 extension defines the number (M) of sequential pulses within any of the number (N) of narrower
5 bands comprising a multiband ultra-wideband (MB-UWB) signal.

1
1 39. A method according to claim 38, the encoding further comprising:
2 incorporating one or more error correction codes, multiple access codes, and/or
3 preambles into the content prior to said transmission.

1
1 40. A method according to claim 39, wherein the error correction codes include one or more
2 of a Reed-Solomon encoding, punctured convolutional coding, concatenated convolutional
3 coding in combination with Reed-Solomon encoding, turbo coding, and/or low density parity
4 check (LDPC) coding.

1
1 41. A method according to claim 38, the encoding further comprising:
2 applying M-ary binary orthogonal keying (MBOK) codes to the content; and
3 interleaving said MBOK encoded content.

1
1 42. A storage medium comprising content which, when executed by an accessing machine,
2 causes the machine to implement a method according to claim 38.

1
1 43. A communication device comprising:

2 memory having content available therein; and
3 a control logic, coupled with the memory, to selectively access and execute at least a
4 subset of the content available within the memory to implement a method according to claim 38.

1
1 44. A method comprising:

2 demodulating and decoding content received within a number (M) of sequential pulses
3 within a number (N) of narrower bands of a multiband ultra-wideband (UWB) signal, wherein
4 the number of sequential pulses (M) within any given narrower band is greater than one (1).

1
1 45. A method according to claim 44, further comprising:

2 detecting narrowband interference (NBI) associated with one or more bands of the
3 received MB-UWB signal; and
4 mitigating harmful effects of the detected NBI within the MB-UWB signal.

1
1 46. A method according to claim 45, wherein mitigating harmful effects of the NBI
2 comprises instructing a transmitter of the MB-UWB signal to avoid use of a band on which the
3 NBI was detected.

1
1 47. A method according to claim 44, further comprising:

2 analyzing a select band within the multiple bands of the MB-UWB spectrum to perform
3 channel clearance activity; and
4 acquiring timing synchronization based, at least, on preamble information identified
5 within a signal that exceeds a threshold within the select band.

6 48. A storage medium comprising content which, when executed by an accessing machine,
7 causes the machine to implement a method according to claim 44.

I

1 49. A communication device comprising:
2 a memory having content available therein; and
3 control logic, coupled with the memory, to selectively access the memory and execute at
4 least a subset of the content available therein to implement a method according to claim 44.