产品规格书

A21-模组

产品型号: DYP-A21-V1.0

文件版本: V1.0

文件密级:外发

目录

1	产品介	·绍	2
	1.1	概述	2
	1.2	功能摘要	2
	1.3	产品优点	3
	1.4	适用范围	3
	1.5	基本参数	4
	1.6	机械特性	5
		接口定义	
2	极限参	>数	<i>6</i>
	2. 1	额定环境条件	<i>6</i>
	2. 2	额定电气条件	<i>6</i>
3	输出格	5式	7
	3. 1	UART 自动输出说明	7
	3. 2	UART 受控输出说明	8
	3. 3	PWM 输出说明	. 10
	3. 4	开关量输出说明	11
	3. 5	RS485 输出说明	. 13
	3.6	Modbus 协议说明	. 13
	3. 7	IIC 输出说明	. 17
4	模组选	型说明	21
5	有效揼	到范围参考图	. 22
6	注意事	环	25
7	包装规	7范	25

1 产品介绍

1.1 概述

A21-模组是一款基于机器人自动控制应用而设计的超声波避障传感器,针对目前市场上超声波传感器盲区大、测量角度小、响应时间长、安装适配性差等问题而着重设计,A21-模组具备了盲区小、测量角度大、响应时间短、过滤同频干扰、安装适配性高、防尘防水、寿命长、可靠性高等一系列优点。

我司自主研发的智能声波处理技术,能识别并过滤干扰声波,输出数据更加稳定可靠,使得 A21-模组在一定程度上降低了超声波同频干扰的概率,满足了用户对于机器人自动控制领域复杂环境的应用需求。

A21-模组以下简称"模组"加以说明。

1.2 功能摘要

- •宽电压供电,工作电压 3.3~24V:
- •3cm 标准盲区(产品盲区最小可达 2.5cm);
- •最远量程可设置,可通过指令设置 50cm、150cm、250cm、350m、500cm 共 5 级量程等级;
- 多种输出方式可选, UART 自动/受控、PWM 受控、开关量 TTL 电平(3.3V)、RS485、IIC 等,输出方式不一样但功能完全一致; (UART 受控和 PWM 受控可支持超低休眠功耗,休眠功耗≤10uA);
- •默认波特率为115200,可支持修改为4800、9600、14400、19200、38400、57600、76800;
- •mS 级响应时间,数据输出时间最快可达 13mS;
- •单、双角度可选,双角度测量区域范围更广;单角度可支持40°、45°、55°、65°共4级角度等级设置,以适用不同应用场景;双角度水平角度可支持45°、50°、55°、65°共4级角度等级设置,双角度垂直角度可支持60°、65°、70°、80°共4级角度等级设置,以适用不同应用场景;
- 内置降噪功能,可支持 5 级降噪等级设置,适用电池供电、短/长距离 USB 供电、开关电源供电以及较大噪声电源供电:
- •智能声波处理技术,内置智能算法过滤干扰声波;当检测环境存在同频干扰时输出"FFFE" 数据以做提示,能识别干扰声波并自动执行过滤,同频干扰环境下正确率提升80%;
- •防水结构设计, 防水等级 IP67;
- •安装适配性强,开孔式安装设计,安装方式简便、稳固可靠;
- 超宽温度设计,工作温度-25℃到+65℃;
- •静电防护设计,输入、输出接口加入静电防护器件,符合 IEC61000-4-2 标准。

1.3 产品优点

- •供电电压宽
- •盲区小
- •输出方式可选
- •支持量程修改
- •支持波特率修改
- •支持地址修改
- •支持角度设置
- •支持电源降噪等级设置
- •有效降低同频干扰概率
- •防水等级高
- •安装方式简便
- •工作温度宽
- •抗静电强
- •待机超低功耗
- •测量精度高
- •测量数据稳定可靠

1.4 适用范围

- •机器人避障、自动控制
- •水平测距
- •停车管理系统
- •物体接近与存在察觉

1.5 基本参数

参数项	UART 自动	UART 受控	PWM 脉宽	开关量	RS485	IIC	单位	备注
工作电压	3.3~24V	3.3~24V	3.3~24V	3.3~24V	3.3~24V	3.3~24V	V	DC
待机电流	_	≤10	≤10	_	_	-	uA	(1)
平均工作电流	≪6	≪6	≪6	≤6	≤10	≤10	mA	(2)
盲区距离	€3	€3	€3	€3	€3	€3	ст	
平面物体量程	3~500	3~500	3~500	3~500	3~500	3~500	ст	(3)
输出响应时间	<140	13~140	<15	300~ 1500	15~750	100~140	ms	(4)
上电工作时间	≤1000	≤1000	≤1000	≤1000	≤1000	≤1000	ms	
工作周期	140	受控	受控	100	受控	受控	ms	
输出方式	自动	受控	受控	自动	受控	受控	-	
常温测量 精度	1+(S*0.3	1+(S*0.3 %)	1+(S*0.3	1+(S*0. 3 %)	1+(S*0.3 %)	1+(S*0. 3 %)	cm	(3)
温度补偿	有	有	有	有	有	有	-	
单角度	40~65	40~65	40~65	40~65	40~65	40~65	0	(5)
	水平	水平	水平	水平	水平	水平	0	(c)
77 名 庇	40~65	40~65	40~65	40~65	40~65	40~65		(6)
双角度	垂直	垂直	垂直	垂直	垂直	垂直	0	(7)
	60~80	60~80	60~80	60~80	60~80	60~80		(1)

- 备注: (1)模组超过 5S 未收到控制指令会进入低功耗休眠状态,此时的功耗电流为待机功耗电流;
 - (2)温度 25℃,湿度 65% RH,供电 12V,100ms 工作周期测试所得到的典型数据;
 - (3)温度 25℃,湿度 65% RH,被测对象为 50cm×60cm 平面纸箱,换能器需尽可能垂直被测物体,S表示测量距离;
 - (4)输出响应时间默认为5米量程测试所得,量程越短响应时间快。
 - (5) 单角度模组的测试数据,被测对象为 ϕ 7. 5×100 cm 白色 PVC 管,距离 100 cm 处测试所得参考数据:
 - (6) 双角度模组两探头的中心连线与地面呈水平布置测试所得,被测对象为φ7.5×100cm 白色 PVC 管,距离 100cm 处测试所得参考数据;
 - (7) 双角度模组两探头的中心连线与地面呈垂直布置测试所得,被测对象为 ϕ 7. 5×100 cm 白色 PVC 管,距离 100 cm 处测试所得参考数据。

1.6 机械特性

产品结构尺寸:

线材规格: 2464 4C*24AWG 外被黑色PVC 芯线: 红黑黄白 OD:4.0 有印字体

单位: mm

安装开孔建议:

网址: http://www.dypsensor.com

1.7 接口定义

引线编号	引线名称	引线描述	备注
1	VCC	电源输入引线	
2	GND	电源接地引线	
3	RX/B	功能引线	(1)
4	TX/A	功能引线	(1)

备注: (1)引线、引脚功能和产品型号的输出方式一一对应,不能和其他输出方式并存。

2 极限参数

2.1 额定环境条件

项目	最小值	典型值	最大值	单位	备注
存贮温度	-30	25	80	$^{\circ}\!\mathbb{C}$	
存贮湿度		65%	90%	RH	(1)
工作温度	-25	25	65	$^{\circ}\!\mathbb{C}$	
工作湿度		65%	80%	RH	(1)

备注: (1) a、环境温度在 0-39℃时,湿度最高值为 90%(不凝露)

2.2 额定电气条件

参数项		规格		单位	备注
多 数坝	最小值	典型值	最大值	半班	台 往
工作电压	3. 3	12	24	V	
峰值电流			150	mA	
输入纹波			50	mV	峰峰值
输入噪声			100	mV	峰峰值
ESD			$\pm 4\text{K}/\pm 8\text{K}$	V	(1)

备注: (1)连接引线、引脚符合 IEC61000-4-2 标准。

b、环境温度在 40-50℃时,湿度最高为当前温度下自然界最高湿度(不凝露)

3 输出格式

3.1 UART 自动输出说明

3.1.1 输出引线定义

引线编号	引线名称	引线描述	备注
1	VCC	电源输入引线	
2	GND	电源接地引线	
3	RX	处理值和实时值输出选择引线	(1)
4	TX	UART 输出引线	(1)

备注: (1)引线、引脚功能和产品型号的输出方式一一对应,不能和其他输出方式并存。

3.1.2 UART 通信说明

当触发输入引线 "RX"悬空或者输入高电平时,模块按照处理值输出,数据更稳定,响应时间为 100-500ms; 当输入低电平时模块按照实时值输出,响应时间为 100-170ms(注意: "RX"电平检测仅在上电 800ms 内检测有效,之后将不做电平检测)。

UART	数据位	停止位	奇偶校验	波特率
TTL 电平	-8	1	无	115200bps

3.1.3 UART 输出格式

帧数据	说明	字节
帧头	固定为 OXFF	1字节
Data_H	距离数据的高8位	1字节
Data_L	距离数据的低 8 位	1字节
SUM	通讯校验和	1字节

注意: 根据 modbus 寄存器 0x0209 的参数值,数据输出单位有区别, mm 或 us 单位。

3.1.4 UART 输出举例

帧头	Data_H	Data_L	SUM
0XFF	0X07	OXA1	OXA7

注:校验和只保留累加数值的低8位;

SUM = (帧头+ Data_H+ Data_L)&0x00FF = (0XFF + 0X07 + 0XA1)&0x00FF = 0XA7;

距离值= Data H*256+ Data L=0X07A1;

转换成十进制等于1953;

当modbus寄存器0x0209的参数值为0x00时,单位为mm,表示当前测量的距离值为 1953mm;

当modbus寄存器0x0209的参数值为0x01时,单位为us,表示当前测量的距离回波时 间值为1953us,此值除以5.75得mm单位的距离值=1953/5.75~340mm。

3.2 UART 受控输出说明

3.2.1 输出引线定义

引线编号	引线名称	引线描述	备注
1	VCC	电源输入引线	
2	GND	电源接地引线	
3	RX	触发输入引线	(1)
4	TX	UART 输出引线	(1)

备注: (1)引线、引脚功能和产品型号的输出方式一一对应,不能和其他输出方式并存。

3.2.2 UART 通信说明

当触发输入引线"RX" 接收到一个有下降沿的触发脉冲或任意一个串口数据,下降沿 会触发模块工作一次,输出引线"TX"将输出一次测量数据,模块的触发周期必须大于150ms。

当超过5秒未收到"RX"脚的触发脉冲,模组将进入休眠状态,功耗最低。当休眠时收 到"RX"触发脉冲,将立即唤醒工作,但响应时间会比未休眠时增加12ms。

UART	数据位	停止位	奇偶校验	波特率
TTL 电平	8	1	无	115200bps

3.2.3 时序图

注: T1>T2+15ms; T2=36~140ms; 在未休眠模式下测得。

3.2.4 UART 输出格式

帧数据	说明	字节
帧头	固定为 OXFF	1 字节
Data_H	距离数据的高8位	1 字节
Data_L	距离数据的低8位	1 字节
SUM	通讯校验和	1字节

3.2.5 UART 输出举例

帧头	Data_H	Data_L	SUM
OXFF	0X07	OXA1	OXA7

注:校验和只保留累加数值的低8位;

SUM = (帧头+ Data_H+ Data_L) & 0x00FF = (0XFF + 0X07 + 0XA1) & 0x00FF = 0XA7;

距离值= Data_H*256+ Data_L=0X07A1;

转换成十进制等于1953;

当modbus寄存器0x0209的参数值为0x00时,单位为mm,表示当前测量的距离值为1953mm;

当modbus寄存器0x0209的参数值为0x01时,单位为us,表示当前测量的距离回波时间值为1953us,此值除以5.75得mm单位的距离值=1953/5.75≈340mm。

3.3 PWM 输出说明

3.3.1 输出引线定义

引线编号	引线名称	引线描述	备注
1	VCC	电源输入引线	
2	GND	电源接地引线	
3	RX	触发输入引线	(1)
4	TX	PWM 输出引线	(1)

备注: (1)引线、引脚功能和产品型号的输出方式一一对应,不能和其他产品的输出方式并存。

3.3.2 PWM 触发说明

当触发输入引线"RX" 接收到一个有下降沿的触发脉冲,下降沿会触发模组工作一次,输出引线"TX"将输出一次TTL电平的PWM高电平脉宽信号,模组的触发周期必须大于70ms,如果模组没有检测到物体,输出引线"TX"将输出约30ms的固定脉宽(量程等级5)。

当超过5秒未收到 "RX" 脚的触发脉冲,模组将进入休眠状态,功耗最低。当休眠时收到 "RX" 触发脉冲,将立即唤醒工作,但响应时间会比未休眠时增加12ms。

3.3.3 时序图

注: $T1=5\sim10ms$ (在未休眠模式下测得); $T2=0.18\sim30ms$ (PWM高电平脉宽时间); 检测到同 频干扰输出约10us的脉宽。

3.3.4 计算方式

公式: S=T*V/2(S为距离值, T为PWM高电平脉宽时间, V为声音在空气中的传播速度)。 在常温下得声速V为348M/S,可简化公式得S=T/57.5(此时距离S单位为厘米,时间T单位 为微秒)。

举例: 当输出引线 "TX"的PWM高电平脉宽时间T3为10000us时,

得S= T/57.5=10000/57.5≈173.9(cm),表示当前测量的距离值为173.9cm。

3.4 开关量输出说明

3.4.1 输出引线定义

引线编号	引线名称	引线描述	备注
1	VCC	电源输入引线	
2	GND	电源接地引线	
3	RX	处理值和实时值输出选择引线、通讯接 收线	(1)
4	TX	开关量输出引线	(1)

备注:(1)引线功能和产品型号的输出方式一一对应,不能和其他产品的输出方式并存。

3.4.2 工作说明

模块出厂会设定一个门限值,默认为1.5米,模块每170ms(量程等级5)进行一次测距工作。

为了提高稳定性,出厂默认模组RX引线悬空或者输入高电平时,模组按照处理值输出,连续15次检测到目标距离小于门限值则TX引线输出高电平,即响应时间约为2.5s;连续25次检测到目标距离小于门限值则TX引线输出低电平,即保持时间约为4.2。当RX引线输入低电平时,模组按照实时值输出,响应时间约为0.5s,保持时间约为0.8s。

门限值和输出极性参数均可设置,如输出极性为正输出(0x01)时,当检测到目标的距离值小于设定的门限值,输出高电平,当前检测的距离值大于设定的门限值,输出低电平。负输出(0x00)时,则电平逻辑相反。(注意: RX引线电平检测仅在上电800ms内检测有效,之后将不做电平检测。模组TX引线只输出高低电平信号,无驱动能力。如有特殊要求需要修改门限值或其他设定,采购时需特别说明)

3.4.3 设置门限阀值与输出极性

(1) 通讯线连接

将模组引线的 RX、TX 分别与主机端 TXD、RXD 相连,可进行串口通讯。

(2)通信串口设置

UART	数据位	停止位	奇偶校验	波特率
TTL 电平	8	1	无	115200bps

只在模块上电期间设置有效(上电后 800ms 内),间隔 100 ms,重复发送指令,直到模块应答即可。

(3)修改门限值数据格式

用户机为主机设备,本模组为从机设备。

主机发送:

名称	帧头	命令码	门限值高位	门限值低位	校验和
字节	固定 OXFB	固定 0X05	1字节	1字节	1 字节

电应普 Best sensor

(编号:)

密级: □绝密 □机密 □秘密 ■普通

从机回应:

名称	帧头	命令码	门限值高位	门限值低位	状态位	校验和
字节	固定 OXFB	固定 0X85	1字节	1字节	设置成功: 0X00	1字节
					设置失败: 0X01	

注: 校验和=(帧头+命令码+门限值高位+门限值低位+状态位)&0x00FF

举例 1:

主机: FB 05 03 E8 EB(校验和=(0XFB+0X05+0X03+0XE8)&0X00FF=0XEB)

从机: FB 85 03 E8 00 6B

说明设置成功,将开关量距离设置为1000mm。

门限值设定范围: 30~5000mm。

(4)修改开关量极性数据格式

用户机为主机设备,本模组为从机设备。

主机发送:

	_				
名称	帧头	命令码 保留		输出极性	校验和
字节	固定 OXFB	固定 0X06	0X00	0x00: 负输出,小于门限值输出低电平; 0x01: 正输出,小于门限值输出高电平	1字节

从机回应:

名称	帧头	命令码	保留	输出极性	/状态位	校验和
字节	固定 OXFB	固定 0X86	0X00	高电平: 0X01	设置成功: 0X00	1字节
				低电平: 0X00	设置失败: 0X01	

注: 校验和=(帧头+命令码+输出极性+状态位)&0x00FF

举例 1:

主机: FB 06 00 01 02(校验和=(0XFB+0X06+0X00+0X01)&0X00FF=0X02)

从机: FB 86 00 01 00 82

说明设置成功为 0X01,将模组设置为探测到有物体时,"TX"引线输出高电平,"RX"引线输出低电平。

举例 2:

主机: FB 06 00 00 01 (校验和=(0XFB+0X06+0X00+0X00)&0X00FF=0X01)

从机: FB 86 00 00 00 81

说明设置成功,将模组设置为探测到有物体时,"TX"引线输出低电平,"RX"引线输出高电平。

3.5 RS485 输出说明

3.5.1 RS485 输出引线定义

引线编号	引线名称	引线描述	备注
1	VCC	电源输入引线	
2	GND	电源接地引线	
3	В	485 通讯反相端	(1)
4	A	485 通讯同相端	(1)

备注: (1)引线功能和产品型号的输出方式一一对应,不能和其他产品的输出方式并存。

3.5.2 RS485 接口参数

接口	数据位	停止位	奇偶校验	波特率
RS485 电平	8	1	无	115200bps(默认)

3.5.3 RS485 接口协议

采用 Modbus 协议,请参照"Modbus 协议说明"章节。

3.6 Modbus 协议说明

UART 受控、PWM 受控、开关量输出仅在上电 800ms 内支持串口 Modbus 协议,UART 自动、RS485 输出方式没有此局限,上电后可持续通讯。

3.6.1 Modbus 协议参数

模式	校验	传感器地址	读功能码	写功能码
Modbus-RTU	CRC-16/MODBUS	可设置,默认 0x01	0x03	0x06

3.6.2 Modbus 协议格式

用户机为主机设备,本模组为从机设备。

主机发送(读):

名称	设备地址	功能码 0x03	寄存器地址	寄存器数量	CRC16 校验
长度(Byte)	1	1	2	2	2

(编号:)

密级: □绝密 □机密 □秘密 ■普通

从机回应(读):

名称	设备地址	功能码 0x03	返回字节数	数据区	CRC16 校验
长度(Byte)	1	1	1	N	2

主机发送(写):

名称	设备地址	功能码 0x06	寄存器地址	数据区	CRC16 校验
长度(Byte)	1	1	2	2	2

从机回应(写):

J,	人机 <u>回</u> 应 (与):					
	名称	设备地址	功能码 0x06	寄存器地址	数据区	CRC16 校验
	长度(Byte)	1	1	2	2	2

3.6.3 Modbus 寄存器

寄存器数据为高字节在前,低字节在后。

1)Modbus 寄存器表一

权限	地址	功能	数据类型	说明
只读	0x0100	处理值	无符号整 型,16位	收到指令后启动测距,经算法处理后,输出距离值,单位:mm,响应时间约300~750ms(量程不同而有差异)
只读	0x0101	实时值	无符号整 型,16位	模组收到指令后启动测距一次,输出实时 距离值,单位: mm,响应时间约 40~ 140ms(量程不同而有差异)
只读	0x0102	温度	有符号整型,16位	单位: 0.1℃,分辨率: 0.5℃,响应时间 约 40~140ms(量程不同而有差异)
只读	0x010A	回波时间	无符号整 型,16位	模组收到指令后启动测距一次,输出实时回波时间,单位: us,此值除以 5.75 即得到 mm 单位的距离值,响应时间约 40~140ms(量程不同而有差异)

注释:以上测试数据为5米量程测所得,量程越短响应时间越快。

2) Modbus 寄存器表二

	-7						
权限	地址	功能	数据类型	说明			
读写	0x0200	从机地址	无符号整 型,16位	范围: 0x01~0xFE(默认 0x01), 0xFF 为广 播地址			
读写	0x0201	波特率	无符号整 型,16位	串口波特率(默认 115200),单位: bps, 设置后立即生效,寄存器值对应的波特率			

			(細方:)	る次: □地名 □机名 □恢备 ■百吨
				如下:
				0x0002:4800, 0x0003:9600,
				0x0004:14400, 0x0005:19200,
				0x0006:38400, 0x0007:57600,
				0x0008:76800, 0x0009:115200
		T V. E &	アケロお	设置开关量输出极性,仅开关量模式有效;
读写	0x0205	开关量输出	无符号整	0x00: 负输出,小于门限值输出低;
		极性	型, 16位	0x01: 正输出,小于门限值输出高(默认)
		设置开关量	无符号整	している。 设置开关量门限值,单位:mm,范围:30~
读写	0x0206	门限值	型,16位	5000mm,仅开关量模式有效
		1314.		角度等级可设置为1~4级,(默认第4
				级);等级越大,检测角度越大,感应越灵
				敏,反之越小。
				1-单角度约 40°, 双角度水平角度约
			_/	45°, 垂直角度约 60°;
读写	0*0208	检测角度等	无符号整型,16位	2-单角度约 45°, 双角度水平角度约
以	0x0208	级		50°,垂直角度约65°;
				3-单角度约 55°, 双角度水平角度约
				55°, 垂直角度约 70°;
				4-单角度约 65°, 双角度水平角度约
			77	65°, 垂直角度约 80°;
				受控/自动输出协议距离值单位,0x00-mm,
		 输出距离值	无符号整	0x01-us(此值除以 5.75 即得到 mm 单位的
读写	0x0209		7 - 1	距离值),
		数据单位	型,16位	仅对 UART 自动和 UART 受控模式有效
				电源降噪等级分为1~5级(默认为1),以
				电源牌噪等级分为 1~5 级(款认为 1),以 适用于不同电源供电的场景;等级越高,
				超用丁不问电源供电的场景; 等级越高,
				內噪声抑制越入,內內登怀用及也会受影
				啊,等级越尚用及文影啊情况更入。个问 等级说明:
		电源降噪等	 无符号整	等级说明: 1-适用于电池供电的场合;
读写	0x021A		九付亏釜 型, 16 位	1-50用丁电池供电的场管; 2-50用于 USB 供电等有一定高频噪音的
		级	全,10 位	2- 垣用丁 USB 供电等有一定高频噪音的
				^{勿 □ ;} 3-适用于较长距离 USB 供电的场合;
				3
				4-超用了开关电源供电的场台; 5-适用于开关电源供电、环境干扰复杂的
				场合,一般不推荐使用;

电应普 Best sensor

(编号:)

密级: □绝密 □机密 □秘密 ■普通

				测距量程等级 1~5(默认为 5),量程范围:
		量程等级		1-约 50cm
)±.47	\http://www.anananananananananananananananananan		无符号整	2-约 150cm
读写	0x021F		型,16位	3-约 250cm
				4-约 350cm
				5-约 500cm

3.6.4 Modbus 通讯举例

例1: 读取处理值数据

主机: 01 03 01 00 00 01 85 F6 从机: 01 03 02 02 F2 38 A1

说明: 传感器地址为0x01,处理距离值为0x02F2,转换成十进制为754mm。

例2: 读取实时值数据

主机: 01 03 01 01 00 01 D4 36 从机: 01 03 02 02 EF F8 A8

说明:传感器地址为0x01,实时距离值为0x02EF,转换成十进制为751mm。

例3: 读取温度值数据

主机: 01 03 01 02 00 01 24 36 从机: 01 03 02 01 2C B8 09

说明:传感器地址为0x01,实时温度值为0x012C,转换成十进制为30.0℃。

例4:修改从机地址

主机: 01 06 02 00 00 05 48 71 从机: 01 06 02 00 00 05 48 71 说明:传感器地址由0x01修改为0x05。

例5: 读取波特率

主机: 01 03 02 01 00 01 D4 72 从机: 01 03 02 00 03 F8 45

说明:读取波特率,读取到的波特率是:9600bps

例6:设置波特率

主机: 01 06 02 01 00 03 99 B3 从机: 01 06 02 01 00 03 99 B3 说明:设置波特率为 9600bps

3.7 IIC 输出说明

3.7.1 输出引线定义

引线编号	引线名称	引线描述	备注
1	VCC	电源输入引线	
2	GND	电源接地引线	
3	RX	IIC 时钟线 SCK	
4	TX	IIC 数据线 SDA	

3.7.2 IIC 模组参数

本模组为从机设备,支持多个并联。通讯线 SDA 与 SCK 需用户外部并接上拉电阻,推荐大小范围为: 3K~10K。

通讯电平:等于 VCC

通讯速率: 10~100kbit/s

广播地址: 0x00 默认地址: 0xE8

本文表述的 8 位从机地址由 7 位地址左移一位得到,如 0xE8 对应的 7 位地址表述为 0x74。 用户可以将地址修改为 20 种地址中的任何一个: 0xD0, 0xD2, 0xD4, 0xD6, 0xD8, 0xDA, 0xDC, 0xDE, 0xE0, 0xE2, 0xE4, 0xE6, 0xE8, 0xEA, 0xEC, 0xEE, 0xF8, 0xFA, 0xFC, 0xFE。

3.7.3 IIC 时序图

1)读1个字节的数据

注: 时序上方蓝色部分为从机产生的信号, 时序下方红色部分为主机产生的信号。

2) 读 2 个字节的数据, 高八位在前, 低八位在后

3)写1个字节的数据

注意: 当通讯速率超过 $40 \mathrm{kbit/s}$ 时,在 SCK 第 9 个时钟的下降沿之后 (即 ACK 位之后),均需增加 $20 \mathrm{us}$ 的 延时。

3.7.4 IIC 寄存器

寄存器数据为高字节在前, 低字节在后。

1) IIC 寄存器表一

权限	寄存器	功能	数据类型	说明
只读	0x00~0x01	程序版本标识	无符号整型, 16位	模组软件版本号标识
只读	0x02~0x03	距离值	无符号整型, 16 位	输出实时距离值,根据触发指令决定输出单位,数据有 mm 和 us 单位; 建议触发测距后,延时相应的时长后以上再读取距离值
读写	0x05	从机地址	无符号整型, 8位	8 位的从机设备地址,默认 0xE8,0x00 为广播地址; 可写入设置 20 种地址中的任何一个: 0xD0,0xD2,0xD4,0xD6,0xD8,0xDA, 0xDC,0xDE,0xE0,0xE2,0xE4,0xE6, 0xE8,0xEA,0xEC,0xEE,0xF8,0xFA, 0xFC,0xFE
读写	0x06	电源降噪等 级	无符号整型, 8位	电源降噪等级(默认为 1),以适用于不同电源供电的场景;等级越高,对噪声抑制越大,同时可能会测不到较小信号的被测物,不同等级说明: 1-适用于电池供电的场合; 2-适用于 USB 供电等有一定高频噪音的场合; 3-适用于较长距离 USB 供电的场合; 4-适用于开关电源供电的场合; 5-适用于开关电源供电、环境干扰复杂的场合,一般不推荐使用

读写	0x07	角度等级	无符号整型, 8位	级);等级越大,检测角度越大,感应越灵敏,反之越小。 1-单角度约 40°,双角度水平角度约 45°,垂直角度约 60°; 2-单角度约 45°,双角度水平角度约 50°,垂直角度约 65°; 3-单角度约 55°,双角度水平角度约 55°,垂直角度约 70°; 4-单角度约 65°,双角度水平角度约 65°,垂直角度约 80°;
只读	0x09	保留		V V A
只读	0x0A~0x0B	温度	有符号整型, 16 位	单位: 0.1℃,分辨率: 0.5℃,触发测距 后可读取
只写	0x10	指令控制	无符号整型, 8位/16位	请见表二说明

备注: 0x04~0x07 寄存器参数设置后可掉电保存,修改成功后蓝色 LED 将会点亮一小段时间。

2) IIC 寄存器表二,控制指令

权限	寄存器	指令	功能	说明
				指定测距范围为量程等级 1 (约 50cm),返
	4			回 mm 单位距离值;
只写	0x10	0xBD	触发测距一次	测量耗时约 100ms;请在测距完成后再读
		_' /		取距离值,过早读取 0x02 寄存器将应答
				0xFFFF
ПЕ	010	0xBC	秦山华河山 居 、龙	指定为量程等级 2(约 150cm),返回 mm 单
只写	0x10	OXBC	触发测距一次	位距离值,测量耗时约 115ms
	010	0xB8	春山 生 2回1月日 - 2万	指定为量程等级 3(约 250cm),返回 mm 单
只写	0x10	UXB8	触发测距一次	位距离值,测量耗时约 120ms
	010	OD4	春山 生 2回1月日 - 2万	指定为量程等级 4(约 350cm),返回 mm 单
只写	0x10	0xB4	触发测距一次	位距离值,测量耗时约 130ms
	010	ODO	春山 生 2回1月日 - 2万	指定为量程等级 5(约 500cm),返回 mm 单
只写	0x10	0xB0	触发测距一次	位距离值,测量耗时约 170ms
				指定测距范围为量程等级 1 (约 50cm),返
				回 us 单位的回波时间值,除以 5.75 即得
只写	0x10	0x05	触发测距一次	到 mm 单位距离值;
				测量耗时约 100ms;请在测距完成后再读
				取距离值,过早读取 0x02 寄存器将应答

电应普

t sensor (编号:)

宓奶.	□绝密	口扣宓	口私家	■普通
治 纵 :	口细流			百地

\(\text{\colored}\)				
				0xFFFF
		0x0A	触发测距一次	指定为量程等级 2(约 150cm),返回 us 单
只写	0x10			位的回波时间值,测量耗时约115ms
		0x0F	舳岩淵語—次	指定为量程等级 3(约 250cm),返回 us 单
只写	0x10			位的回波时间值,测量耗时约 120ms
	0x10	0x10 0xB2	触发测距一次	指定为量程等级 4(约 350cm),返回 us 单
只写				位的回波时间值,测量耗时约130ms
只写	0x10 0xB9 触发测距一2			指定为量程等级 5(约 500cm),返回 us 单
		触发测距一次 	位的回波时间值,测量耗时约170ms	
只写	0x10	0x5A+0xA5	重启传感器	从机收到指令后立即重启

3.7.5 通讯举例

例1: 读取模组软件版本号,操作步骤为:

地址(写)	0x00	地址(读)	0x00	0x01
16개 (국)	UXUU	地址(医)	0.000	0.01

模组由软件版本号标识为 0x0001。

例2: 触发模组按照5米量程测距,并读取实时距离值,操作步骤如下。

① 发送触发测距指令:

地址(写)	0x10	0xB0	

- ② 延时等待 50ms
- ③ 读取距离值:

地址(写)	0x02	地址(读)	0x04	0xE9
-------	------	-------	------	------

实时距离值为 0x04E9, 转换成十进制为 1257mm。

例3: 主机修改模组IIC地址,操作步骤为:

	+	· ·
原地址 0xE8(写)	0x05	新地址 0xD0

模组由原地址 0xE8 改为新地址 0xD0, 保存并生效,设置成功后蓝色 LED 将点亮一小段时间。

例4: 修改模组检测角度,操作步骤为:

地址(写)	0x07	0x04

模组由检测角度等级修改为第4级。

4 模组选型说明

此系列测距模组的输出格式分六种、角度分两种,用户可根据实际应用选择相对应的型号。如有特殊要求需要修改响应时间、角度、通讯协议等,采购时需和我司 FAE 工程师沟通。

序号	A21 系列型号	特征	输出方式	备注
1	DYP-A21AYYUW-V1.0	单角度	UART 自动输出	
2	DYP-A21AYYTW-V1.0	单角度	UART 受控输出	
3	DYP-A21AYYMW-V1.0	单角度	PWM 脉宽输出	
4	DYP-A21AYYGDW-V1.0	单角度	开关量输出	
5	DYP-A21AYYCW-V1.0	单角度	IIC 输出	
6	DYP-A21AYY4W-V1.0	单角度	RS485 输出	
7	DYP-A21BYYUW-V1.0	双角度	UART 自动输出	
8	DYP-A21BYYTW-V1.0	双角度	UART 受控输出	
9	DYP-A21BYYMW-V1.0	双角度	PWM 脉宽输出	
10	DYP-A21BYYGDW-V1.0	双角度	开关量输出	
11	DYP-A21BYYCW-V1.0	双角度	IIC 输出	
12	DYP-A21BYY4W-V1.0	双角度	RS485 输出	

5 有效探测范围参考图

(1)单角度系列探测范围:被测试物体为 PVC 材质白色圆柱管,高为 100cm、直径为 7.5cm。

(2) 双角度系列探测范围:被测试物体为 PVC 材质白色圆柱管,高为 100cm、直径为 7.5cm。 ①水平角度:两探头的中心连线与地面呈水平布置。

①垂直角度: 两探头的中心连线与地面呈垂直布置。

6 注意事项

- 1、公司保留对此文档更改的权利,功能更新,恕不另行通知;
- 2、设计时请注意结构公差,不合理的结构设计有可能引起模块功能短暂性异常;
- 3、设计时请注意电磁兼容性评估,不合理的系统设计有可能引起模块功能异常;
- 4、涉及产品极限参数边界应用时,可联系本司 FAE 确认相关注意事项。
- 5、本产品响应时间和同频干扰为常用场景下配置,在特殊场景下还可提升,可联系本司 FAE 沟通相关事项。

7 包装规范

- 1、默认为电应普常规包装方式;
- 2、可根据客户 IQC 相关标准定制包材;
- 3、集装箱运输方式需采用交错拼箱方式,同时需在单栈外缘使用裹膜搭配加强角板的方式 以提供足够的支撑。