End Term (Even) Semester Examination May-June 2025

Roll no.

Name of the Program and semester: B. Tech IV

Name of the Course: Design and Analysis of Algorithms

Course Code: TCS 409

Duration: 3-hour Maximum Marks: 100

Note:

- (i) All the questions are compulsory.
- (ii) Answer any two sub questions from a, b and c in each main question.
- (iii) Total marks for each question are 20 (twenty).
- (iv) Each sub-question carries 10 marks.

Q1	(20 marks)			
(a)	Solve the following Recurrence relation: (A) $T(n) = 36T(n/6) + n^2$ (B) $T(n) = \sqrt{2T(n/2) + \log n}$	CO1			
(p)	Write the code to solve Tower of Hanoi and find its complexity using recurrence relation.				
(c).	Write a program to implement Binary search recursively. How is binary search different from linear search? Discuss the best- and worst-case time complexities for both algorithms.				
Q2	(20 marks)				
(a)	Consider an empty max heap, insert the following keys in the given order: 19, 22, 5, 17, 86, 13, 44, 53, 80 Show each step clearly and circle the final max heap.	CO2			
(b)•	Apply Kruskal's algorithm on the following graph, show each step clearly.	CO5			
(c).	Write a program to implement DFS using adjacency list? void dfs(int src, vector <vector<int>> adj){ //your code here } Is topological sort same as DFS? Support your answer with a suitable example.</vector<int>	соз			

End Term (Even) Semester Examination May-June 2025

Q3			(20 marks)	CO2.	
(a)	What do you understand by in-place sorting, stable sorting, external sorting, and online sorting? Explain with proper example of at least one algorithm in each of the above-mentioned sorting type.				
(b),	Give the difference between fractional knapsack and 0/1 knapsack. Solve the given instance using fractional and 0/1 knapsack both for capacity = 6.				
	Item	Weight	Value		
	1	3	9		
	2	2	6		
	3	1	5		
	4	5	14		
	5	4	4		
(c)	Write an algorithm for insertion sort. Explain its working with an example. Why is insertion sort a better choice than quick sort for an almost sorted array?				
Q4	(20 marks)				
(a)	What is Rabin Karp Algorithm? Explain its working with an example. How is Rabin Karp Algorithm different from naïve string-matching algorithm?				
(b)	How will you find a cycle in a graph using disjoint set data structure? Explain with a help of a suitable example and write the algorithm for the same:				
c) •	Explain Bellman Ford algorithm with code. Differentiate between Bellman Ford and Djikstra.				
25			(20 marks)		
a) .	Explain P, NP, NP-hard and NP-Complete with proper examples. Using a diagram show the relation among these classes.				
(b) .	Define Hashing. Consider a hash table to the following keys in order (36, 55, 90, table for:	using hash function 69, 101, 19, 22, 60)	h(x) = x mod 11, insert Draw the resulting hash		
	(i) Linear probing (ii) Quadratic probing (iii) Chaining				
(c)	Complete the following function for calchain multiplication using dynamic prog		no. of operation for matrix		
		i ai i i i i i i i i i i i i i i i i i			
	int matrixChainMultiplication(int *p, in	nt i, int j);		CO5	
	int matrixChainMultiplication(int *p, in p is the array having information about where n is the number of matrices.	nt i, int j);	rices, i = 1 and j = n-1	CO5	