ISEL - DEETC - LERCM

Processamento Digital de Sinais

 $1^{\rm o}$ Teste - Semestre Verão 2012/13 - 26/04/2012 - Duração: 1h30m

- 1. Considere os sinais contínuos, $x(t) = -1 + 2\cos(2\pi 4t \frac{\pi}{4})$ e $y(t) = x(t) 4\sin(2\pi 10t)$.
 - (a) $\{2v\}$ Represente graficamente x(t). Qual o período de x(t)?
 - (b) $\{2.5v\}$ Represente graficamente o espectro de amplitude, |X(f)| e de fase $\angle X(f)$ do sinal x(t).
 - (c) {2v} Qual a frequência fundamental de y(t)? Represente |X(f)| e $\angle X(f)$?
- 2. Considere que Y_k representa os coeficientes da série de Fourier de y(t)

$$Y_k = \begin{cases} 2 & , & k = 0 , k = 2 e - 2 \\ 5e^{j\frac{\pi}{3}} & , & k = 5 \\ 5e^{-j\frac{\pi}{3}} & , & k = -5 \end{cases}$$

- (a) $\{2.5v\}$ Represente graficamente em função de k, $|Y_k|$ e $arg(Y_k)$.
- (b) $\{2.5v\}$ Considerando que a frequência fundamental, f_0 , é 10Hz, determine a expressão analítica de y(t).
- (c) {2v} Utilizando o teorema de Parseval, calcule a potência de y(t).
- 3. Considere o sinal contínuo e periódico, z(t) de período T=0.1 s, do qual se representa um troço na figura.
 - (a) $\{2v\}$ Represente graficamente o espectro de amplitude e de fase de z(t).

- (b) Assumindo que a frequência máxima de z(t) é 1000Hz.
 - (i) {2v} qual é a menor frequência de amostragem que é necessária para digitalizar este sinal.
 - (ii) $\{2\mathbf{v}\}\$ Se cada amostra for codificada usando n=16bits qual o tamanho do ficheiro produzido quando z(t) tem uma duranção de 2 minutos e 30 segundos.