# loT sensing and building

### Sensor based Human Activity Recognition

- Aim: Recognize actions
- Targets:
  - Agents' actions
  - Environmental conditions
- Main methods:
  - A series of observations
  - sensor networks

#### Interaction



Sensor deployment



### Data collection Server

Python & NodeJS server

Server programs run on Raspberry Pi

Python – Serial port

NodeJS – Bluetooth

### Data collection Arduino

- Data was transmitted by a wireless Zigbee module (DL20)
- Data collection process
  - 1. Arduinos wait for server's instructions
  - 2. server emits a character
  - 3. Arduinos receive the character and check
  - 4. A certain Arduino responds to server with data.

### Data collection Mobile

- Turn on Bluetooth service of iPhone
- Connecting to Raspberry pi server
- Send the accelerometer data

### Machine Learning

- Labeling and Export
  - Assign specific activities to data sets by manually update data entries in database in selected time zones
- Noise Remove
  - Environmental noise and sensor noise
  - Implement filters and calibrate sensors
  - Assign specific activities to data sets by manually update data entries in database in selected time zones

### Machine Learning

- Supervised Learning Methods
  - SVM:
    - 4 Models for each type of data(acc, sonar, motion and pressure)
    - Key parameters: C(regularization para), Kernel(RBF, LINEAR)
  - Decision Tree
    - Binary Tree
    - use optimized CART algorithm
    - Impurity measure: Gini index

### Evaluation SVM

#### **BASIC KNOWLEDGE**

Recall = TP/(TP+FN)

Precision = TP/(TP+FP)

$$f_{\beta} = (1 + \beta^2) \frac{PR}{(\beta^2 P) + R}$$

## Evaluation SVM

#### Accelerometer data

| Before feature selection<br>Features:[x,y,z] |          |        |         |  |
|----------------------------------------------|----------|--------|---------|--|
|                                              | SIT_MOVE | STATIC | WALKING |  |
| SIT_MOVE                                     | 0        | 14     | 3       |  |
| STATIC                                       | 0        | 663    | 0       |  |
| WALKING                                      | 3        | 76     | 23      |  |
| Recall                                       | 0        | 1      | 0.26    |  |
| Precition                                    | 0        | 0.88   | 0.89    |  |
| F1                                           | 0        | 0.99   | 0.36    |  |

| After feature selection<br>Features: standard deviation of x, y, z |          |        |         |  |
|--------------------------------------------------------------------|----------|--------|---------|--|
|                                                                    | SIT_MOVE | STATIC | WALKING |  |
| SIT_MOVE                                                           | 0        | 11     | 6       |  |
| STATIC                                                             | 0        | 662    | 0       |  |
| WALKING                                                            | 0        | 59     | 43      |  |
| Recall                                                             | 0        | 1      | 0.42    |  |
| Precition                                                          | 0        | 0.88   | 0.86    |  |
| F1                                                                 | 0        | 0.99   | 0.56    |  |

### Other type of data

### Evaluation SVM

| Window    |       |        |       |        |
|-----------|-------|--------|-------|--------|
|           | CLOSE | CLOSED | OPEN  | OPENED |
| CLOSE     | 3     | 4      | 0     | 1      |
| CLOSED    | 0     | 653    | 0     | 0      |
| OPEN      | 2     | 0      | 9     | 1      |
| OPENED    | 0     | 0      | 0     | 209    |
| Recall    | 0.375 | 1      | 0.75  | 1      |
| Precition | 0.6   | 0.994  | 1     | 0.991  |
| F1        | 0.462 | 0.997  | 0.857 | 0.995  |

| Sonar     |        |      |       |       |
|-----------|--------|------|-------|-------|
|           | CLOSED | OPEN | PASS  | SEMI  |
| CLOSED    | 707    | 0    | 0     | 0     |
| OPEN      | 0      | 90   | 0     | 0     |
| PASS      | 0      | 0    | 30    | 15    |
| SEMI      | 0      | 0    | 17    | 23    |
| Recall    | 1      | 1    | 0.667 | 0.575 |
| Precition | 1      | 1    | 0.638 | 0.605 |
| F1        | 1      | 1    | 0.652 | 0.590 |

### Other type of data

| DOOR      |       |       |      |  |
|-----------|-------|-------|------|--|
|           | CLOSE | NONE  | OPEN |  |
| CLOSE     | 5     | 3     | 0    |  |
| NONE      | 0     | 869   | 0    |  |
| OPEN      | 0     | 0     | 5    |  |
| Recall    | 0.625 | 1     | 1    |  |
| Precition | 1     | 0.997 | 1    |  |
| F1        | 0.770 | 0.998 | 1    |  |

### Evaluation SVM

| PRESSURE  |       |      |  |  |
|-----------|-------|------|--|--|
|           | CLOSE | NONE |  |  |
| SITTING   | 127   | 0    |  |  |
| STAND     | 0     | 756  |  |  |
| Recall    | 1     | 1    |  |  |
| Precition | 1     | 1    |  |  |
| F1        | 1     | 1    |  |  |

### Evaluation SVM

#### Problem and Reflection

- 1. Human error in labeling the data
- 2. The distribution of activities in training data and testing data is not balanced
- 3. Training samples are not representative

### Evaluation Decision Tree

#### Graphic structure of Decision Tree output

| FEATURES |             |             |  |  |
|----------|-------------|-------------|--|--|
| LUX      | TEMP_INSIDE | TEMP_WINDOW |  |  |
| SONAR    | MOVEMENT    | PRESSURE    |  |  |
| ACC_DOOR | ACC_WINDOW  | ACC_MOBILE  |  |  |

| ACTIVITIES                            |             |          |       |  |
|---------------------------------------|-------------|----------|-------|--|
| OPEN_DOOR HAND_MOBILE WALKING SITTING |             |          |       |  |
| CLOSE_DOOR                            | OPEN_WINDOW | SIT_MOVE | STAND |  |

#### OUTPUT

### Evaluation Decision Tree

value = ['SITTING', 'SIT\_MOVE', 'WALKING', 'CLOSEDOOR', 'OPEN\_WIN', 'STAND', 'HAND\_MOBILE', 'OPENDOOR']



#### Conclusion

- Training data determines the classification capability of models
- Feature selection takes effect in improving the performance of models
- Machine learning is feasible for human activities recognition

### Future development

- Improve data quality
  - Integrity of data during the transmission
  - Noise remove
- Different feature selection methods
- Other reliable sensors

### Questions?