

Organización de Computadoras 2021

Clase 4

Temas de clase

- Circuitos Lógicos Combinacionales
- Circuitos Lógicos Secuenciales

Notas de clase 4

Circuitos Combinacionales o Combinatorios

- Responden a los valores lógicos en las entradas, la salida está determinada exclusivamente por los valores de las entradas en ese instante.
- Si cambia la entrada, cambia la salida.
- Los valores pasados de las entradas no influyen en los valores de las salidas.

Notas de clase 4

3

Puertas lógicas en un chip

Notas de clase 4

Circuitos Secuenciales

- Las salidas dependen tanto de las entradas como del estado interno del circuito.
 - ¿Qué es el estado interno del circuito?
- Tienen la característica de "almacenar" valores lógicos internamente.
- Estos valores se almacenan aunque las entradas no estén.

Notas de clase 4

11

¿Cómo se almacena un valor lógico?

- ► La salida es también entrada
- En ningún circuito combinatorio una salida transportaba información hacia la entrada
- ▶La ecuación lógica

M=M+P

Notas de clase 4

►Ahora P=0

$$M=M+P=1+0=1$$

➤ Una vez que la salida M toma el valor 1 no hay forma de volver a 0

Notas de clase 4

FLIP-FLOP SR(2)

- ► Aparece la salida Q_{n+1}
- ▶Q_n= salida anterior
- ightharpoonup S = Set = poner a 1
- ➤R = Reset = poner a 0
- ightharpoonup Las salidas Q y $\overline{\mathrm{Q}}$ son complementarias

Notas de clase 4

23

FLIP-FLOP SR(3)

Supongamos S y R = 0 y Q = 0

Notas de clase 4

FLIP-FLOP SR(4)

- ❖Supongamos S y R = 0 y Q = 1
 - ❖Por lo que "recuerda" cual era el estado anterior.

Notas de clase 4

25

FLIP-FLOP SR(5)

❖Si ahora S=1 y R=0

Notas de clase 4

Memoria

- Se puede construir con un flip-flop una memoria de 1 bit.
- Se llama biestable porque el circuito posee sólo 2 estados posibles de funcionamiento, se queda en cada uno de ellos, salvo que las entradas provoquen un cambio.

Notas de clase 4

27

Secuenciales - Clasificación

- Según la manera en que las salidas respondan a las señales lógicas presentes en la entrada, los biestables se clasifican en:
 - SR
 - J-K
 - D
 - T

Notas de clase 4

Secuenciales – Clasificación(2)

- Respecto del instante en que pueden cambiar dichas salidas, pueden ser:
 - Asincrónicos: cuando en la entrada se establece una combinación, las salidas cambiarán
 - Sincrónicos: la presencia de una entrada especial, determina "cuando" cambian las salidas acorde a las entradas

Notas de clase 4

29

Reloj: "señal especial"

- El orden en que ocurren los sucesos es importante.
- A veces los sucesos deben ocurrir simultaneamente.
- Reloj: es una señal de tiempo precisa que determina cuando se producen eventos.

Notas de clase 4

Tabla de comportamiento: SR sincrónico

CK	S	R	Q_{n+1}
1	0	0	Q _n
1	0	1	0
1	1	0	1
1	1	1	Prohibido
0	X	X	Q_n

Notas de clase 4

33

Flip-Flop D

➤ En el FF SR hay que aplicar 2 entradas diferentes para cambiar de estado.

➤ El FF D permite aplicar una sola entrada para cambiar la salida.

Notas de clase 4

Notas de clase 4

Flip Flop T

 La salida Q cambiará de 0 a 1 o 1 a 0 en cada pulso de la entrada T.

Notas de clase 4

37

Recordando un bit

- Con una señal (CK) se copia el valor de D en Q
- Sin esa señal, el valor de Q permanece igual

Puedo recordar un Bit

Notas de clase 4

Contador módulo 8 Enable (EN) MOD(8) COUNTER Q2 Q1 Q0 Q1 Timing behavior Notas de clase 4 A3

mayor información ...

- Operaciones Lógicas
 - Apunte 3 de Cátedra
- Circuitos Secuenciales
 - Apunte 5 de Cátedra
- Apéndice A: Lógica digital (A.3., A.4.)
 - Stallings, W., 5º Edición.

Notas de clase 4