TU Wien

Department of Logic & Computation

Master Degree in Artificial Intelligence and Computer Science

Thesis 2023-02-07

Proof of my AMOSUM:)

academic year 2023/2024

Contents

Contents 1

preliminars

Definition 1. Increment function

Given a set of literals L then a group function inc: $L \mapsto \mathbb{N}$ is a function that maps a literal l to its increment.

Definition 2. Group function

Given a set of literals L and a set of groups G then a group function group : $L \mapsto G$ is a function that maps a literal l to its group.

Definition 3. max_lit function

Given a group set G and a set of literals L of literals then $max_lit : \mathcal{P}(L) \times G \mapsto L$ is a function from a pair $(S,g) \in \mathcal{P}(L) \times G \mapsto l \in S$ such that l is the literal ,belonging to g, with the maximum increment, that is $max_lit(S,g) = \arg\max_{k \in S \cap g} inc(k)$.

Definition 4. Active literals

Given a set S of literals the set $A_S = \{l \in L | l = max_lit(S, g) \land g = group(l)\}$ is the set of active literals of S. If a literal $l \notin S$ then it is a non-active literal.

Definition 5. Below literal (blw) function

Given a literal $l \in L$ then $blw : L \times \mathcal{P}(L)$ is a function that given a literal $l \in L$ return all the literal below it, that is: $blw(l) = \{k \in group(l) | inc(k) \leq inc(l)\}.$

Definition 6. Sum function

Given a set of literals L then $sum(L) = \sum_{l \in A_L} inc(l)$.

Definition 7. Extension

A extension of a set S with a literal l, written as $S' = S \xrightarrow{ext} l$, is equal to $S' = S \cup blw(l)$.

Definition 8. Valid extension

A extension of a set S with a literal l is valid iff $S \cap g = \emptyset$, where g = group(l)

Lemma 1. Given a set of literals L, a literal $\ell \in L$ and a set $S_{\bar{\ell}} \subseteq L$ and $S_{\ell} \subseteq S$ and a sum s. Let $S_{\bar{\ell}}$ is the maximum cardinality subset giving s as sum with ℓ being an non-active literal and S_{ℓ} is the maximum cardinality subset with ℓ being an active literal giving s as sum.

Let
$$S = \arg\max_{X \in \{S_{\ell}, S_{\bar{\ell}}\}} |X|$$
.

Then $S \subseteq L$ is the maximum cardinality subset that gives as sum s with considering L literals.

Proof. Let's assume by contradiction that S is not the maximum cardinality subset that gives as sum s. So there exists a set $S' \subseteq L$ such that |S'| > |S|. If $\ell \not\in A_{S'}$ then $|S'| > |S_{\bar{\ell}}|$, that is $S_{\bar{\ell}}$ is not the maximum cardinality set with ℓ being a non-active literal giving as sum s, but this is a contradiction. So $\ell \in A_{S'}$ then $|S'| > |S_{\ell}|$, that is S_{ℓ} is not the maximum cardinality set with ℓ being a active literal giving as sum s, but this is a contradiction. So $\ell \in A_{S'} \cap \overline{A_{S'}}$ and this is a contradiction. \square

Definition 9. Maximum Subset Sum with Groups (MSG)

$$MSG_L = \{(S, s, n) \in \mathcal{P}(L) \times \mathbb{N} \times \mathbb{N} \mid sum(S) \leq s \land |S| \geq n\}$$

Definition 10. Decision problem

The Maximum Subset Sum with Groups (MSG) it the following decision problem: Given a set $S \subseteq L$ of literals and $s, c \in \mathbb{N}$ decide if $(S, s, c) \in MSG_L$.

Theorem 1. The algorithm is sound, that is $ALG_L \subseteq MSG_L$.

Proof. Let L be a set of literals and $s, c \in \mathbb{N}$ and n = |L|.

Let G is the sets of groups of the literals inside L.

Let $L_g = \{l \in L \mid group(l) = g\}$ and L_g is ordered w.r.t. the *inc* function, that is $L_g = \{l_{g,1}, l_{g,2}, \dots, l_{g,n_g}\}$ such that $inc(l_{g,1}) \leq inc(l_{g,2}) \leq \dots \leq inc(l_{g,n_g})$. Let $L_o = \bigcup_{g \in G} L_g$.

Let L_{o_j} being the first j literals of L_o . The algorithm constructs a matrix M of size $s \times n + 1$ where $Dom(M_{i,j}) = \mathcal{P}(L) \cup \{\Box\}$ where $'\Box'$ means that there are no subsets $S \subseteq L_{o_j}$ such that $sum(S) \le s$ and $|S| \ge c$ and $|\Box| = -1$.

The setup of this matrix is done in this way:

- $M_{0,0} = \{\}$
- $M_{0,j} = \{l | l \in L_{o_i} \land inc(l) = 0\} \quad \forall j \in \{1, \dots, n\}$
- $M_{i,0} = \square \quad \forall i \in \{1,\ldots,s\}$

After the setup is completed: $\forall i \in \{1, ..., s\}, j \in \{1, ..., n\}$

- if $inc(l_j) \leq i$ then $M_{i,j} = \arg \max\{|M_{i,j-1}|, |M_{(i-inc(l_j)),k} \xrightarrow{\text{ext}} l_j|\}$ where $k = \max\{d \mid d \in \{0, \dots, j-1\} \land M_{(i-inc(l_j)),d} \neq \square \land \nexists u \in group(l) \cap M_{(i-inc(l_j)),d}\}$. It is easy to see that $|M_{(i-inc(l_j)),k} \xrightarrow{\text{ext}} l_j|$ is a valid extension.
- if $inc(l_i) > i$ then $M_{i,j} = M_{i,j-1}$.

Now a claim has to be reach

• claim: $\forall i \in \{0, ..., s\}, j \in \{0, ..., n\}$ $M_{i,j}$ is the cardinality-maximal subset of L_{o_j} with $sum(M_{i,j}) \leq i$. From now on, to refer to the fact that $M_{i,j}$ is the cardinality-maximal subset of L_{o_j} with $sum(M_{i,j}) = i$ we will say that $M_{i,j}$ is correct.

• proof:

This proof is done by induction.

- Base case: $M_{0,j}$ is correct for $0 \le j \le n$ and $M_{i,0}$ is correct for $1 \le i \le s$
- Induction hypothesis: given a sum $0 \le i \le s$ and a $0 \le j \le n-1$ all the cells $M_{i',j'}$ are correct, with $0 \le i' \le i$ and $0 \le j' \le j$

This proof will explain how, given a $0 \le i \le s$ and $0 \le j \le n-1$, to construct the cell $M_{i,j+1}$ proving that it is also correct. Let $0 \le i \le s$ and $1 \leq j \leq n$. $M_{i,j-1}$ by I.H. it is correct, so it is the cardinality-maximum subset such that sum is s considering the first L_{o_i} literals and $l_j \in L_o$ is not present into $M_{i,j-1}$ so it is not active, that is $l_j \notin A_{M_{i,j-1}}$. $M_{(i-inc(l_i)),k}$ since $k = \max\{d \mid d \in \{0, \dots, j-1\} \land M_{(i-inc(l_i)),d} \neq \square \land \nexists u \in group(l) \cap \{0, \dots, j-1\} \land M_{(i-inc(l_i)),d} \neq \square \land \exists u \in group(l) \cap \{0, \dots, j-1\} \land M_{(i-inc(l_i)),d} \neq \square \land \exists u \in group(l) \cap \{0, \dots, j-1\} \land M_{(i-inc(l_i)),d} \neq \square \land \exists u \in group(l) \cap \{0, \dots, j-1\} \land M_{(i-inc(l_i)),d} \neq \square \land \exists u \in group(l) \cap \{0, \dots, j-1\} \land M_{(i-inc(l_i)),d} \neq \square \land \exists u \in group(l) \cap \{0, \dots, j-1\} \land M_{(i-inc(l_i)),d} \neq \square \land \{0, \dots, j-1\} \land \{0, \dots, j-1\}$ $M_{(i-inc(l_j)),d}$ and since by I.H. $M_{(i-inc(l_j)),k}$ is correct it means that it the cardinality-maximal subset such that $sum(M_{(i-inc(l_i)),k}) = i$ considering the first L_{o_k} literals and $l_j \in L_o$ is not present into $M_{i,k}$. The valid extension $S = M_{(i-inc(l_j)),k} \xrightarrow{\text{ext}} l_j$ is the cardinality-maximal subset such that sum is less the s considering the first L_{o_i} literals and $l_i \in L_o$ is active, that is $l_j \in A_{M_{(i-inc(l_i)),k}}$. If $inc(l_j) > i$ then $M_{i,j} = M_{i,j-1}$, since $inc(l_j)$ is greater than i it means that cannot be an active literal, otherwise the sum would be greater then s. Hence every subset considering j literals do not have l_j , in this case since $M_{i,j-1}$ is correct then is the cardinality-maximum subset of those subsets, so given that $M_{i,j} = M_{i,j-1}$ then $M_{i,j}$ is correct. On the other hand if $inc(l_j) \leq i$ then $M_{i,j} = \arg\max\{|M_{i,j-1}|, |M_{(i-inc(l_j)),k} \xrightarrow{\text{ext}} l_j|\}$ where k = $\max\{d \mid d \in \{0,\ldots,j-1\} \land M_{(i-inc(l_i)),d} \neq \Box \land \nexists u \in group(l) \cap M_{(i-inc(l_i)),d}\}.$ $M_{(i-inc(l_i)),k}$ is correct so $sum(M_{(i-inc(l_i)),k}) = i - inc(l_i)$, extending this set with l_j will generate $S = M_{(i-inc(l_j)),k} \xrightarrow{\text{ext}} l_j$. Since by construction $\nexists u \in group(l) \cap M_{(i-inc(l_i)),k}$ it means that the extension is a valid one, so

 $l_j \in A_S$. Thus $sum(S) = sum(M_{(i-inc(l_j)),k}) + inc(l_j) = i - inc(l_j) + inc(l_j) = i$ i. S is the cardinality-maximum subset of L_{o_i} where l_j is active. To see it, let's assume the contrary, that is: there is a subset S' of L_{o_i} such that |S'| > |S|, $sum(S') = i - inc(l_j)$ and $l_j \in A_{S'}$. In this case since $l_j \in A_S \cap A_{S'}$ then $|S' \setminus blw(l_j)| > |S \setminus blw(l_j)|$. Given that $S = M_{(i-inc(l_j)),k} \xrightarrow{\text{ext}} l_j =$ $M_{(i-inc(l_i)),k} \cup blw(l_j)$ then $S \setminus blw(l_j) = (M_{(i-inc(l_i)),k} \cup blw(l_j)) \setminus blw(l_j) =$ $M_{(i-inc(l_i)),k}$. Let $S'' = S' \setminus blw(l_i)$ Since S' cardinality-maximum subset of L_{o_j} where $sum(S') = i - inc(l_j)$ and $l_j \in A_{S'}$ then $sum(S' \setminus blw(l_j)) =$ sum(S') - inc(i) = i - inc(i). So, $S' \setminus blw(l_j)$ is the cardinality-maximum subset of L_{o_k} where $k = \max\{d \mid d \in 0, \dots, |L_o| and L_{o_d} \cap group(l_j) = \emptyset\}$. But is this case $M_{(i-inc(l_j)),k}$ would not be correct, but this is a contradiction. So, $M_{i,j-1}$ is the maximum cardinality subset giving s as sum with ℓ being an non-active literal and $M_{(i-inc(l_j)),k} \xrightarrow{\text{ext}} l_j$ is the maximum cardinality subset with ℓ being an active literal giving s as sum. By lemma 1 it implies that $M_{i_j} = max(M_{i,j-1}, M_{(i-inc(l_i)),k} \xrightarrow{\text{ext}} l_j)$ is the cardinality-maximal subset of L_{o_i} with $sum(M_{i,j}) = i$ so it is correct. \square

So every cell is correct, then taking the cardinality-maximum subset in the last column will give the cardinality-maximum subset with a sum less of equal to s, let S be such subset. Let a tuple $(S, s, v) \in ALG_L$ then $|S| \geq v$ and $sum(S) \leq s$. Since S is the cardinality-maximum subset with $sum(S) \leq s$ and $|S| \geq v$ then $(S, s, v) \in MSG$. Thus $ALG_L \subseteq MSG$.