

Linear and Discrete Optimization

The geometry of linear programming

Linear and Discrete Optimization

The geometry of linear programming

Polyhedra

A set P of vectors in \mathbb{R}^n is a *polyhedron* if $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ for some matrix A and some vector b.

Polyhedra

A set P of vectors in \mathbb{R}^n is a *polyhedron* if $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ for some matrix A and some vector b.

Example: Soft-drink production

$$A = \begin{pmatrix} 3 & 6 \\ 8 & 4 \\ 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad b = \begin{pmatrix} 30 \\ 44 \\ 5 \\ 4 \\ 0 \\ 0 \end{pmatrix}$$

Polyhedra

A set P of vectors in \mathbb{R}^n is a *polyhedron* if $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ for some matrix A and some vector b.

Example:

$$P = 0$$

$$a \in \mathbb{R}^{n} \setminus \{0\}, \quad B \in \mathbb{R}$$

$$\{x \in \mathbb{R}^{n}: a^{T}. x \in B\} \quad \text{helf space}$$

$$\{x \in \mathbb{R}^{n}: a^{T}. x = B\} \quad \text{helps plane}$$

Valid and active inequalities

An inequality $a^Tx \leq \beta$ is *valid* for a <u>polyhedron P</u> if each $x^* \in P$ satisfies $a^Tx^* \leq \beta$. An inequality $a^Tx \leq \beta$ is *active* at $x^* \in \mathbb{R}^n$ if $a^Tx^* = \beta$.

Example: Soft-drink production

Quiz

Which of the following inequalities are valid for each polyhedron $P \subseteq \mathbb{R}^n$

►
$$x_1 \ge 0$$
 not valid for $P = \{ \begin{pmatrix} \vdots \\ \vdots \end{pmatrix} \}$

► $\mathbf{0}^T x \le -1$ \mathbb{Z}

► $\mathbf{0}^T x \le 1$ -> valid for soon P .

Suppose $P \subseteq \mathbb{R}^n$, $n \ge 2$ is a non-empty polyhedron containing **1** and suppose further that the inequalities $x_i \le 1$, $i = 1, \ldots, n$ are valid for P.

Which of the following inequalities are valid and active at 1:

▶
$$\mathbf{1}^T x \leqslant n$$
 \rightarrow $\sum_{i=1}^n x_i \leq n$ valid for P , active at A !

▶ $\mathbf{1}^T x \leqslant 1$ \rightarrow violated by A !

▶ $\mathbf{0}^T x \leqslant 1$ \rightarrow valid for P bout not active at A !

Vertices

A point $x^* \in P$ is a *vertex* of P if there exists an inequality $a^T x \leq \beta$ such that

- $a^T x \leq \beta$ is valid for P and
- ▶ $a^Tx \leq \beta$ is active at x^* and not active at any other point in P.

X*EP is a restor (=> I CEIR'S.A.

X* 15 unique optimal solution of the

Review program max dct. x: x e P3

Quiz

Suppose $P \subseteq \mathbb{R}^n$ is a polyhedron such that $x_i \le 1$ are valid for i = 1, ..., n. Is the following true:

If $x^* = (1, 1, ..., 1)^T$ is an element of P, then x^* is a vertex of P.

YES
$$\bigvee$$
 NO \bigvee

$$\sum_{i=1}^{n} \underbrace{x_i}_{\leq 1} \leq n$$
valid for P , active at $(1, ..., n)^T$
If $g^* \in P$, $g^* \neq x^*$, then
$$g^* \leq 1$$
, $c = 1, ..., n$

$$\exists j \quad g^*_j \leq 1$$
inactive at g^*

$$\sum_{i=1}^{n} g^*_i = \sum_{i=1}^{n} g^*_i + g^*_i \leq n$$
inactive at g^*