

SSE Model

Model parameters

Sum of smooth exponentials

- But du modèle : modéliser des courbes de séries de dénombrement (ici les décès y_i) avec i l'indice pour l'âge
- Les décès y_i on une moyenne μ_i
- On décompose la moyenne en 3 composantes

$$\gamma_k$$
, $k = \{1,2,3\}$

• μ_i est la somme des trois composantes pondérée par l'exposition

$$\mu_{\rm i} = \sum_{k=1}^{3} e_i \gamma_{ik}$$

Chaque composante représente un intervalle d'âges et est modélisée par des B-splines

$$\gamma_{ik} = \exp\left(\sum_{j=1}^{J_k} B_{jk}(x_i)\alpha_{jk}\right)$$
 Element de la spline (fonction de l'âge x_i)

Model parameters

Sum of smooth exponentials

$$\gamma_{ik} = \exp\left(\sum_{j=1}^{J_k} B_{jk}(x_i)\alpha_{jk}\right)$$

Choix des composantes :

k	1	2	3
	γ _i 1	γ _{i2}	γ _{i3}
Âges	1 – 50	1 – 110	1 - 80
Nombre de splines J_k	2	25	25
Période	Mortalité	Mortalité	Accident hump
modélisée	infantile	senescente	

Model parameters

Sum of smooth exponentials

Equation du modèle :

$$\mu_i = e_i \left(\exp\left(\sum_{j=1}^2 B_{j1}(x_i) \alpha_{j1} \right) + \exp\left(\sum_{j=1}^{25} B_{j2}(x_i) \alpha_{j2} \right) + \exp\left(\sum_{j=1}^{25} B_{j3}(x_i) \alpha_{j3} \right) \right)$$

- Estimation des α_{ik} qui sont les paramètres de lissage \rightarrow Pas d'interprétation scientifique*
- Les splines sont contruites à partir des morceaux de polynômes joints à certaines valeurs de x, appelées les noeuds.
- Dans ce modèle : utilisation d'un grand nombre de noeuds et ajout de pénalités sur les coefficients pour lisser la courbe.
- Les pénalités sont estimées en régressant les points de données sur les B-splines.
 Méthode : optimisation de la variance pénalisée

^{*}Flexible smoothing with B-splines and penalties, Eilers & Marx, 1996

Sum of smooth exponentials

- Données France HMD:
 - De 1960 à 1990
 - Hommes et Femmes
- 52 coefficients répartis dans les 3 composantes estimés pour chaque année
- Graphique à droite : taux de mortalités estimés pour les Femmes (gauche) et les Hommes (droite)

Graphique des composantes $\beta_{ik}(x_i)$ en fonction de l'âge x_i .

Remarque 1 : Pas de variation en fonction de l'année.

Remarque 2 : Pas de variation en fonction du genre

Graphique des composantes $\beta_{jk}(x_i)$ en fonction de l'âge x_i .

Remarque 1 : Pas de variation en fonction de l'année.

Remarque 2 : Pas de variation en fonction du genre.

Remarque 3 : Dans les composantes 2 et 3 les splines sont égales deux à deux.

Sum of smooth exponentials

- Données Chili HMD :
 - De 1992 à 2007
 - Hommes et Femmes
 - 14 années complètes
- 52 coefficients répartis dans les 3 composantes estimés pour chaque année
- Graphique à droite : taux de mortalités estimés pour les Femmes (gauche) et les Hommes (droite)

Coefficients α_{jk} estimés pour les Femmes (en haut) et les Hommes (en bas), groupés par composante

Graphique des composantes $\beta_{jk}(x_i)$ en fonction de l'âge x_i .

Remarque 4 : Les Splines sont les mêmes que pour la France. Il n'y a donc pas de variation en fonction du pays ni de l'année ni du genre.

→ Avantage pour interpréter les coefficients alpha.

Déplacement des Splines

Est-ce que les Splines se déplacent de manière constante vers la droite? Le graphique représente le point maximum atteint par les Splines et l'âge auquel le maximum est atteint. Chaque point est une Spline et la couleur représente la composante. On confirme aussi l'égalité des Splines entre la composante 2 et 3.

Sensibilité des coefficients

Etude des sensibilités afin de sélectionner les paramètres pertinents et d'analyser leur comportement. Calcul des espérances de vie suite à des variations des coefficients uns à uns puis deux par deux. Les variations des coefficients sont calculées avec un choc sur le coefficient du montant du coefficient de variation ($CV=\sigma/\mu$).

Sensibilité des coefficients

Etude des sensibilités afin de sélectionner les paramètres pertinents et d'analyser leur comportement. Calcul des espérances de vie suite à des variations des coefficients uns à uns puis deux par deux. Les variations des coefficients sont calculées avec un choc sur le coefficient du montant du coefficient de variation ($CV=\sigma/\mu$).

IndiceComposante2	ΔΕχ2	IndiceComposante3	ΔΕχ3	ΔExBoth	Ex
14	0,092	39	0,175	0,644	73,39
15	0,110	40	0,089	0,592	73,44
13	0,070	38	0,175	0,515	73,52
16	0,124	41	0,020	0,370	73,66
	•••				
3	0,001	28	0,000	0,001	74,03
25	0,000	50	0,000	0,000	74,03
27	0,000	52	0,000	0,000	74,03
26	0,000	51	0,000	0,000	74,03

Sensibilité des coefficients

Etude des sensibilités afin de sélectionner les paramètres pertinents et d'analyser leur comportement. Calcul des espérances de vie suite à des variations des coefficients uns à uns puis deux par deux. Les variations des coefficients sont calculées avec un choc sur le coefficient du montant du coefficient de variation ($CV=\sigma/\mu$).

Remarque 1 : Les coefficients 1 et 2 font le plus varier l'espérance de vie :

	Ex	ΔEx
1	73,01	1,03
2	74,41	0,39

Explication 1 : Le coefficient 1 agit à tous les âges, la Spline 1 est constante et égale à 1 à tous les âges. En réduisant le coefficient 1 à 0, les taux ne sont plus compris en 0 et 1.

Explication 2: Le coefficient 2 agit seulement sur les âges jeunes, en le rendant nul on supprime la mortalité infantile. Le coefficient 2 va servir à piloter l'espérance de vie par la mortalité infantile.

Zoom sur les coefficients 1 et 2 et les Splines associée

Post 16-02 Avant 16-05 10-05 1

Pilotage de l'espérance de vie

Mortalité Infantile

Spline 2 correspondant au paramètre $lpha_2$

Test sur:

- Chili
- Année 2007
- Genre M

Dans le modèle SSE : la mortalité infantile est gouvernée par le coefficient α_2 de la composante 1 : les âges vont de 0 à \approx 10.

Pilotage de l'espérance de vie

Mortalité Infantile

Courbe de mortalité en fonction du paramètre alpha 2

Pilotage de l'espérance de vie

Mortalité Infantile

Espérance de vie en fonction du paramètre alpha 2

