Análisis Matemático III

2023, FaMAF - UNC

- 1. Calcular las siguientes integrales iteradas.
 - (a) $\int_0^0 dx \int_0^2 (x^2y^2 + xy^3) dy$.
 - (b) $\int_{0}^{2} dy \int_{1}^{3} |x 2| \sin y \, dx$.
- 2. Calcular las siguientes integrales iteradas en los dos órdenes posibles.

(a)
$$\int_0^2 \int_1^{e^x} dy dx$$
.

(b)
$$\int_{-2}^{1} \int_{x^2+4x}^{3x+2} dy dx$$
.

- **3.** Calcular $\int_0^2 \int_0^2 e^{x^2} dx dy$. (Ayuda: grafique la región de integración).
- **4.** Hacer un dibujo del conjunto B y calcular $\int_{B} f dA$, donde
 - (a) $f(x,y) = x^2 + 3y^2$, y B el disco $x^2 + y^2 \le 1$. [R= π]
 - (b) $f(x,y) = \frac{1}{x+y}$, y B la región acotada por las rectas y = x, x = 1, x = 2,
 - (c) $f(x,y) = x \operatorname{sen} xy$, y B el rectángulo $0 \le x \le \pi$, $0 \le y \le 1$. [R= π]
 - (d) $f(x,y) = x^2 y^2$, y B consiste de todos los (x,y): $0 \le x \le 1$, $x^2 y^2 \ge 0$.
 - (e) $f(x,y)=x^2$, y B la región definida por $x>0, x^2+y^2\leq 2, x^2+y^2\geq 1$, en los dos órdenes posibles.
- 5. Hallar el área del subconjunto de \mathbb{R}^2 acotado por
 - (a) $x^2 2x + 4y^2 8y + 1 = 0$. [R= 2π] (b) $x = y^2$, $x = 2y y^2$. (c) $x = y y^2$, x + y = 0.
- **6.** Encontrar el volumen bajo el gráfico de f sobre la región B, donde
 - (a) f(x,y) = x + y + 2, y B la región acotada por las curvas $y^2 = x$, x = 2.
 - (b) f(x,y) = |x+y|, y B el disco $x^2 + y^2 \le 1$. [R= $\frac{4}{3}\sqrt{2}$]
- 7. Hallar el volumen del sólido cuya base es la región del plano xy acotada por la parábola $y = 4 - x^2$ y la recta y = 3x, y cuya tapa es el plano z = x + 4
- 8. Calcular el volumen de la intersección entre los cilindros sólidos definidos por $x^2 + z^2 \le 1$ y $y^2 + z^2 \le 1$. [R= $\frac{16}{3}$]
- 9. Hallar el volumen del sólido cuya base es la región del plano xy acotada por el círculo $x^2 + y^2 = a^2$, y la tapa esta acotada por el paraboloide $az = x^2 + y^2$, con a > 0.
- 10. Hallar el volumen de los siguientes sólidos mediante una integral triple.

 (a) El tetraedro acotado por el plano $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, a, b, c positivos y los planos coordenados.
 - (b) La región en el primer octante limitada por el cilindro $x = 4 y^2$ y los planos $z = y, \ x = 0, \ z = 0.$
 - (c) El elipsoide de semiejes a, b, c.
 - (d) El volumen común de la esfera $x^2 + y^2 + z^2 = 4a^2$ y el cilindro $x^2 + y^2 = a^2$.

- Análisis Matemático III 2023, FaMAF - UNC
- (e) El volumen acotado por la esfera $x^2 + y^2 + z^2 = 2$ y el paraboloide $z = x^2 + y^2$.
- (f) El volumen acotado por el cilindro $y = \cos x$ y los planos z = y, x = 0, $x = \pi/2$, z = 0.
- (g) El volumen encerrado por las superficies $z = x^2 + y^2$ y $z = \frac{1}{2}(x^2 + y^2 + 1)$.
- **11.** Encontrar el área acotada por la lemniscata $(x^2 + y^2)^2 = a^2(x^2 y^2)$, pasando a coordenadas polares. [R= a^2]
- 12. Hallar el volumen de la porción de esfera $r^2 + z^2 = a^2$ que está dentro del cilindro $r = a \operatorname{sen} \theta$ $(r, \theta, z \operatorname{son} \operatorname{las} \operatorname{coordenadas} \operatorname{cilíndricas}).$
- 13. Hallar el volumen de los siguientes sólidos mediante coordenadas esféricas.
 - (a) El volumen que yace arriba del cono $z^2 = x^2 + y^2$ y debajo de la esfera $x^2 + y^2 + z^2 = 4z$.
 - (b) El volumen dentro de la esfera $x^2 + y^2 + z^2 = 2z$ y fuera del paraboloide $z = x^2 + y^2$.
- **14.** Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ definida por $(x, y) = T(u, v) = (u^2 v^2, 2uv)$, y sea $R_{uv} = \{(u, v) : u^2 + v^2 \le 1, u, v \ge 0\}$.
 - (a) Graficar la región $R_{xy} = T(R_{uv})$.
 - (b) Calcular

$$\iint_{R_{xy}} \frac{dx \ dy}{\sqrt{x^2 + y^2}}.$$

15. Encontrar el volumen del sólido que es imagen de una bola de radio a bajo la aplicación lineal dada por la matriz

$$\begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & 5 \\ 0 & 0 & 7 \end{pmatrix}.$$

Ejercicios de repaso. Los ejercicios marcados con * son de mayor dificultad.

- **16.** \star Usando la definición de la integral doble como límite de sumas de Riemann, calcular $\int_B f(x,y) dx dy$, donde f(x,y) = x + 4y y $B = \{(x,y) : 0 \le x \le 2, \ 0 \le y \le 1\}$. [R= 6]
- 17. Hallar el volumen del sólido acotado por la esfera $x^2+y^2+z^2=4a^2$ y el paraboloide $az=x^2+y^2,\ {\rm con}\ a>0.$
- **18.** Calcular la integral de f(x, y, z) = a sobre la semiesfera $x^2 + y^2 + z^2 \le 1$, $x \ge 0$. $[R=2/3\pi a]$
- 19. Calcular usando coordenadas cilíndricas $\iiint_{\substack{x^2+y^2\leq 1\\0\leq z<1}} x^2\ dx\ dy\ dz.$
- **20.** Utilizar una transformación lineal conveniente para calcular $\int_B f(x,y) dx dy$, donde $f(x,y) = \text{sen}(x+2y) \cos(x-2y)$ y $B = \{(x,y) \in \mathbb{R}^2 : x+2y=2\pi, \ x \geq 0, \ y \geq 0\}.$
- **21.** Demuestre que la transformación $(x_1, \ldots, x_n) = T(u_1, \ldots, u_n) = (u_1, u_1 + u_2, u_1 + u_2 + u_3, \ldots, u_1 + \cdots + u_n)$ no cambia volúmenes.
- 22. Determinar si la integral está definida o no, y en caso afirmativo calcular su valor.

(a)
$$\iint_{x^2+y^2 \le 1} \frac{dx \, dy}{\sqrt{x^2 + y^2}}.$$

(b)
$$\iiint_{x^2+y^2+z^2>1} \frac{dx \, dy \, dz}{xyz}$$
.

(c)
$$\iiint_C e^{-x-y-z} dx dy dz$$
, donde C es la columna infinita $\max(|x|, |y|) \le 1$, $z \ge 0$.

23. Es sabido, aunque difícil de demostrar, que una primitiva de la función e^{-x^2} no puede expresarse en términos de las funciones elementales usuales. Esto dificulta el cálculo de $\int_a^b e^{-x^2} dx$. Sin embargo, el siguiente truco notable permite calcular de manera simple la integral impropia

$$I = \int_{-\infty}^{\infty} e^{-x^2} dx = \lim_{a \to \infty} \int_{-a}^{a} e^{-x^2} dx.$$

- (a) Observar que $I^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)} dx dy$.
- (b) Calcular la integral de (a) como límite de integrales en círculos utilizando coordenadas polares.
- (c) Calcular $\int_{\mathbb{R}^n} e^{-(x_1^2 + \dots + x_n^2)} dx_1 \dots dx_n$.
- **24.** * Sea B la bola $\|\mathbf{x}\| \leq 1$ en \mathbb{R}^n . ¿Para qué valores de a existe $\int_B \frac{dV}{\|\mathbf{x}\|^a}$?
- 25. ★ (a) Sea B una bola de radio a con una densidad ρ en cada uno de sus puntos igual a la distancia del punto a un diámetro fijo. Encontrar la masa total de la bola. (Ayuda: calcular $\int_B \rho dV$ usando coordenadas esféricas).
 - (b) Sea B un cilindro de altura h y radio a con una densidad ρ en cada uno de sus puntos igual a la distancia del punto al eje del cilindro. Encontrar la masa total del cilindro.
- **26.** \star Se distribuye carga eléctrica en el disco unitario $x^2 + y^2 \le 1$ de manera que la densidad de carga en (x,y) es $\sigma(x,y) = 1 + x^2 + y^2$. Encuentre la carga total del disco.
- **27.** \star Encuentre la masa y el centro de masa de la lámina que ocupa la región descrita D y que tiene la función densidad ρ indicada.
 - (a) D es la región triangular con vértices (0,0),(2,1),(0,3); $\rho(x,y)=x+y.$
 - (b) D es la región del primer cuadrante limitada por la parábola $y=x^2$ y la recta $y=1;\ \rho(x,y)=xy.$
- **28.** \star Hallar el centro de masa de la pirámide homogénea cuya base es el cuadrado delimitado por las rectas $x=1,\ x=-1,\ y=1,\ y=-1,$ en el plano z=0 y cuyo vértice está en el punto (0,0,1).
- **29.** \star Una lámina ocupa la porción del disco $x^2 + y^2 \le 1$ comprendida en el primer cuadrante. Encuentre su centro de masa si la densidad en cualquier punto es proporcional a su distancia al eje x.