Machine Learning 2019 Spring - HW2 Report

學號: B06902029 系級: 資工二 姓名: 裴梧鈞

1. 請比較你實作的generative model、logistic regression 的準確率,何者較佳?

Model	Public Score	Private Score
Generative	0.84004	0.83540
Logistic Regression	0.85233	0.85136

Logistic Regression 有些微較高的正確率。

2. 請說明你實作的best model,其訓練方式和準確率為何?

Model	Public Score	Private Score
Gradient Boosting	0.87641	0.87483

我使用的 Model 是 Gradient Boosting

- 1. 在處理資料時,我有做 feature normalization,並把 fnlwgt 這項 feature 拿掉。
- 2. 在連續的 feature, 像是 "age", "capital_gain", "capital_loss", "hours_per_week", 我有加入二次及三次項
- 3. 我做 Gradient Boosting 的參數是

n_estimators: 173
learning_rate: 0.05

3. max_depth: 6

4. random state: 將我的名字 "Wu-Jun Pei" 做 sha256sum 轉成整數模 2^{32}

在選擇參數時,我有枚舉這些參數,並使用 cross_val_score 綜合選擇出最好的!

3. 請實作輸入特徵標準化(feature normalization)並討論其對於你的模型準確率的影響。

我在前三的實作(包含 Gradient Boosting、Logistic Regression、Generative Model)都是有實作 feature normalization 的。在此,我使用的是 Logistic Regression 的 model,在沒有調整任合參數(如 learning rate、optimizer 等)的情形下,比較 feature normalization 的影響。

Feature Normalization	Public Score	Private Score
True	0.85233	0.85136
False	0.85245	0.85149

可以看到 Feature Normalization 前的 Score 反而略高一些,我認為一種可能的原因是

- 1. 資料有相當多因為 one-hot encoding 而使用 0/1 作為 feature, 可以觀察到僅有 4 種 feature 是連續的, 他們的影響可能沒有很大
- 2. 我的 epochs 次數夠多,導致沒有 normalization 的 model 也走到一個不錯的最低點
- 4. 請實作 logistic regression 的正規化 (regularization),並討論其對於你的模型準確率的影響。

在這題,我使用的 Model 是 Logistic Regression,有使用 Feature Normalization,並使用 Adam 優化,epochs 次數則設成 10000。

$\log_{10}\lambda$	Training Accuracy	Public Score	Private Score
-2	0.85243	0.85233	0.85136
-1	0.85243	0.85233	0.85136
0	0.85236	0.85221	0.85149
1	0.85270	0.85282	0.85136
2	0.85141	0.85380	0.85050

我認為這次的作業,regularization 並沒有很大的影響,training accuracy 和 public score、private score 都沒有相差很多。在我測試的前四個例子中,regularization的影響可說是微乎其微;在第五個例子,可以看到這個 model 可能已經 underfit 了,training accuracy 和 private score 都相對顯著下降,而 public score 的上升我認為可以視為一種運氣、隨機因素,上升的幅度也不大。

5. 請討論你認為哪個 attribute 對結果影響最大?

和第四題一樣,這題我使用的 Model 是 Logistic Regression,有使用 Feature Normalization,並使用 Adam 優化,epochs 次數則設成 10000。

我有嘗試將 \mathbf{w} 印出來,並試著比較各自的差距,並使用各個 feature 的 $|\mathbf{w}_i|$ 排序,前五名結果如下:

- 2.3601675130281428, 'capital_gain'
- -0.7015782027960535, 'Never-married'
- -0.6903933475767674, ' Preschool'
 - 0.5954210921730702, 'Married-civ-spouse'
 - 0.4090251657216704, 'sex'

可以發現 capital_gain 佔有相當大的影響力