1 Lecture 14 (April 29th)

Definition. (Convergence in measure) For measurable functions on E, we say $f_n \to f$ in measure on E provided that for every $\varepsilon > 0$,

$$\lim_{n \to \infty} m(\{x \in E \mid |f_n(x) - f(x)| > \varepsilon\}) = 0$$

Definition. (L^1 convergence) For $f_n \in L^1(E)$ and a measurable f on E, we say that $f_n \to f$ in $L^1(E)$ provided that

$$\lim_{n \to \infty} \int_{E} |f_n - f| \, dm = 0$$

Theorem. If $f_n \to f$ and $f_n \to g$ in measure (or in $L^1(E)$) in E, then f = g almost everywhere on E.

Proof. Suppose that $f_n \to f$ and $f_n \to g$ in measure. First note that

$$\{x \in E \, | \, |f(x) - g(x)| > 0\} = \bigcup_{n=1}^{\infty} \left\{ x \in E \, \Big| \, |f(x) - g(x)| \ge \frac{1}{n} \right\}$$

Meanwhile, for each n, due the triangle inequality,

$$|f(x) - f_k(x)| + |f_k(x) - g(x)| \ge |f(x) - g(x)| \ge \frac{1}{n}$$

and one of the two terms in the left must be greater than 1/2n. We now see the following inclusion for $x \in E$:

$$\left\{x\left|\left|f(x)-g(x)\right| \ge \frac{1}{n}\right\} \subset \left\{x\left|\left|f(x)-f_k(x)\right| \ge \frac{1}{2n}\right\} \cup \left\{x\left|\left|g(x)-f_k(x)\right| \ge \frac{1}{2n}\right\}\right\}$$

See how for each term, we can choose k_1 and k_2 such that they are measure zero, and we see that by taking $\max\{k_1, k_2\}$, their infinite union is measure zero too.

Example. To this point we have learned the following convergences:

- (i) $f_n \to f$ uniformly
- (ii) $f_n \to f$ pointwise almost everywhere on E
- (iii) $f_n \to f$ almost uniformly on E
- (iv) $f_n \to f$ in measure
- (v) $f_n \to f$ in $L^1(E)$

Consider the following sequences.

- (i) $f_n = \mathbf{1}_{(n,\infty)}$ (uniform, pointwise almost everywhere)
- (ii) $f_n = n \mathbf{1}_{(0,1/n)}$ or $f_n = \mathbf{1}_{(0,n)}/n$ (pointwise almost everywhere, almost uniformly, in measure) (uniformly, almost everywhere, almost uniformly, and in measure)
- (iii) $f_n = \mathbf{1}_{I_n}$ where

$$I_1 = [0, 1/2]$$
 $I_2 = [1/2, 1]$ $I_3 = [0, 1/3]$ $I_4 = [2/3, 1]$ $I_5 = [0, 1/4]$

and etcetera. (uniformly, almost everywhere, almost uniformly, and in measure)

Theorem. If $f_n \to f$ in measure on E, then there is a subsequence $\{f_{n_k}\}$ which converges pointwise almost everywhere to f.

Proof. If $f_n \to f$ in measure the following are both true.

(i) For every $\varepsilon > 0$ there is N such that if n > N then

$$m(\lbrace x \in E \mid |f_n(x) - f(x)| > \varepsilon \rbrace) < \varepsilon$$

(ii) For every $\varepsilon > 0$ there is N such that if n > N then

$$m(\lbrace x \in E \mid |f_n(x) - f(x)| > \varepsilon \rbrace) < \varepsilon^2$$

For all $k \in \mathbb{N}$ there exists n_k 's such that $n_{k+1} > n_k$ and

$$m(\{x \in E \mid |f_{n_k}(x) - f(x)| > 1/k\}) < 1/k^2$$

Let $E_k = \{x \in E \mid |f_{n_k}(x) - f(x)| > 1/k\}$. We will now show that $f_{n_k} \to f$ almost everywhere on E. Since $\sum_{n=1}^{\infty} m(E_k) \leq \sum_{k=1}^{\infty} 1/k^2 < \infty$, by the Borel-Cantelli lemma, almost all $x \in E$ belongs to at most finitely many E_k 's. So, f_{n_k} almost everywhere on E.

Theorem. (i) If $f_n \to f$ almost uniformly on E, then $f_n \to f$ in measure.

(ii) If $f_n \to f$ in $L^1(E)$ then $f_n \to f$ in measure.

Proof. We prove (ii) first. By Chebychev, for each ε ,

$$m(\lbrace x \in E \mid |f_n(x) - f(x)| \ge \varepsilon \rbrace) \le \frac{1}{\varepsilon} \int_E |f_n - f| \, dm$$

where the right hand side approaches 0 as $n \to \infty$.

Now for (i), suppose f_n doesn't converge to f in measure. Then there exists $\varepsilon, \delta > 0$ such that

$$m(\lbrace x \in E \mid |f_n(x) - f(x)| > \varepsilon \rbrace) \ge \delta$$

for infinitely many n's so that there is a subsequence $\{f_{n_k}\}$ such that

$$m(\lbrace x \in E \mid |f_{n_k}(x) - f(x)| > \varepsilon \rbrace) \ge \delta$$

for all $k \in \mathbb{N}$. There is no $A \subset E$ such that $m(A) < \delta/2$ and $f_{n_k} \to f$ uniformly on $A^c = E \setminus A$. Hence f_n does not converge to f almost uniformly on E.

2 Lecture 15 (May 8th)

Definition. A normed vector space is called complete if every Cauchy sequence in X converges (in X) with respect to the norm.

Definition. A Banach space is defined as a complete normed vector space. A norm is a function $||\cdot||: X \to [0,\infty)$ from a vector space of \mathbf{R} that satisfies the following properties:

- (i) (Nonnegativity) $||x|| \ge 0$ for all $x \in X$ and ||x|| = 0 if and only if $x = \mathbf{0}$ (that is, x is the zero vector)
- (ii) (Positive homogenity) $||\alpha x|| = |\alpha| ||x||$ for all $\alpha \in \mathbf{R}$ and $x \in X$
- (iii) (The triangle inequality) $||x+y|| \le ||x|| + ||y||$ for all x and y in X

Note that d(x,y) = ||x-y|| is a metric on X. Therefore, all normed vector spaces are a metric space.

Example. (Examples of normed vector spaces)

- (i) $C([0,1]) = \{f \mid f \text{ is continuous on } [0,1]\}$ maybe given the norm $||f|| = \max_{[0,1]} |f(x)|$ (this is called the uniform norm).
- (ii) C([0,1]) may also given the norm $||f|| = \int_0^1 |f(x)| dx$.

Proposition. C([0,1]) is a Banach space with respect to the uniform norm since a Cauchy sequence $\{f_n\}$ in C([0,1]) converges to some $f \in C([0,1])$.

Proof. Notice that

$$|f_n(x) - f_m(x)| \le ||f_n(x) - f_m(x)||$$

for all $x \in [0, 1]$, and that $\{f_n\}$ is uniformly Cauchy on [0, 1]. This means that the sequence converges uniformly to some f that is continuous.

Remark. C([0,1]) is not a Banach space with respect to the norm $||f|| = \int_0^1 |f(x)| dx$. For example, take $\{f_n\} = \{x_n\}$.

Remark. $C^1([0,1])$ is a normed vector space with the uniform norm but it is not complete. For example, take $f_n(x) = \sqrt{x+1/n}$. $f_n \to f(x) = \sqrt{x}$ uniformly on [0,1] which is not in $C^1([0,1])$.

Definition. For a measure space (E, X, m), the space $L^1(E)$ is the vector space of measurable functions endowed with the function $||f||_1 = \int_E |f| \, dm$. Notice that

$$\int_E |f|\,dm=0\quad\text{then}\quad f=0\quad\text{almost everywhere on }E$$

$$\int_E |\alpha f|\,dm=|\alpha|\int_E |f|\,dm\quad\text{for}\quad\alpha\in R, f\in L^1(E)$$

$$\int_E |f+g|\,dm\leq \int_E |f|\,dm+\int_E |g|\,dm\quad\text{for}\quad f,g\in L^1(E)$$

If $f, g : E \to \mathbf{R}$ satisfies $f, g \in L^1(E)$ and f = g almost everywhere on E, we define f = g as an element of $L^1(E)$. Then, $L^1(E)$ is a normed vector space with respect to the norm $||f||_1 = \int_E |f| \, dm$.

Definition. For $1 , we define <math>L^p(E)$ as the set of measurable functions of a measure space satisfying

$$\int_{E} |f|^p \, dm < \infty$$

If $f, g \in L^p(E)$ and f = g almost everywhere on E, then f and g are defined to be the same element of $L^p(E)$. To satisfy $||\alpha f||_p = |\alpha| ||f||_p$, we define

$$||f||_p = \left(\int_E |f|^p \, dm\right)^{1/p}$$

We will prove later on that $L^p(E)$ is a Banach space for $1 \le p \le \infty$.

Definition. If X and Y are normed vector spaces, $T: X \to Y$ is called a linear operator provided that $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for $\alpha, \beta \in \mathbf{R}$ and $x, y \in X$.

Theorem. If $T: X \to Y$ is a linear operator, then the following are equivalent.

- (i) T is continuous on X
- (ii) T is uniformly continuous on X
- (iii) T is continuous at $\mathbf{0}$

Definition. $T: X \to Y$ is called a bounded linear operator provided that T is linear and there is M > 0 such that

$$||T(x)||_Y \leq M||x||_X$$

for all $x \in X$. Intuitively, bounded linear operators are operators that do not "blow up" small imputs.

Proposition. If T is continuous at $\mathbf{0}$, then T is bounded linear.

Proof. By continuity, we see that for every $\varepsilon > 0$, there is $\delta > 0$ such that if $||x|| < \delta$ then $||T(x)|| < \varepsilon$. Take any $w \in X \setminus \{0\}$ and we see that the vector $\delta w/2||w|| \in X$ has a norm $\delta/2$. This implies that

$$||T\Big(\frac{\delta w}{2||w||}\Big)||<\varepsilon\quad\text{and}\quad T(w)\leq \frac{2\varepsilon}{\delta}||w||$$

for all $w \neq \mathbf{0}$.

3 Lecture 16 (May 13th)

Definition. If X and Y are normed vector spaces, we define $\mathcal{L}(X,Y)$ as the set of all bounded linear operators from X to Y. We call $X^* = \mathcal{L}(X,\mathbf{R})$ the dual of X. The elements of $X^* = \mathcal{L}(X,\mathbf{R})$ are called bounded linear functionals.

Theorem. For $T \in \mathcal{L}(X,Y)$, let norm of T be defined as $||T|| = \sup_{||x||=1} ||T(x)||$. If Y is a Banach space, then $\mathcal{L}(X,Y)$ is a Banach space. In particular, $X^* = \mathcal{L}(X,\mathbf{R})$ is a Banach space.

Remark. For $x \neq 0$, observe that

$$\left|\left|T\left(\frac{x}{||x||}\right)\right|\right| \leq ||T|| \implies ||T(x)|| \leq ||T|| \, ||x||$$

As $||T(x)|| \leq M ||x||$ we also have that

$$\left|\left|T\left(\frac{x}{||x||}\right)\right|\right| \leq M \implies ||T|| \leq M$$

This tells us the following equivalence of defintions,

$$||T|| = \inf(\{M \ge 0 \mid ||T(x)|| \le M \mid |x||\})$$

for every $x \in X$. This tells us that the norm measures how much a vector can be scaled and stretched.

Theorem. The proof that $\mathcal{L}(X,Y)$ is a normed vector space with the aforementioned norm and will be for now will be skipped. If Y is a Banach space, we'll show that $\mathcal{L}(X,Y)$ is a Banach space. Given a Cauchy sequence $\{T_n\}$, we have to show that there is $T \in \mathcal{L}(X,Y)$ such that $\lim_{n\to\infty} ||T_n - T|| = 0$.

Proof. We define the target linear operator pointwise. For each $x \in X$,

$$||T_n(x) - T_m(x)|| = ||(T_m - T_n)(x)|| < ||T_n - T_m|| ||x||$$

and we see that $\{T_n(x)\}\$ is a Cauchy sequence in Y. Since Y is complete, there is $y \in Y$ such that $\lim_{n\to\infty} T_n(x) = y$. Define y = T(x), that is, $T(x) = \lim_{n\to\infty} T_n(x)$ in Y. Then

$$T(\alpha x) = \lim_{n \to \infty} T_n(\alpha x) = \alpha \lim_{n \to \infty} T_n(x) = \alpha T(x)$$
$$T(x+y) = \lim_{n \to \infty} T_n(x+y) = T(x) + T(y)$$

and therefore T is linear. To show $T \in \mathcal{L}(X,Y)$ we need to still prove that T is bounded. Take any $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that if $n, m \ge N$ then $||T_n - T_m|| < \varepsilon$. This implies that, for such N, if $n \ge N$ then $||T_n|| \le ||T_N|| + \varepsilon$. Thus for each $x \in X$,

$$||T(x)|| = \lim_{n \to \infty} ||T_n(x)|| \le \lim_{n \to \infty} \left[||T_n|| \, ||x|| \right] \le \left[||T_N|| + \varepsilon \right] ||x||$$

Therefore, the norm of the target is bounded with

$$||T|| \le ||T_N|| + \varepsilon$$

Lastly, we prove that T is the limit of the Cauchy sequence. Take any $\varepsilon > 0$. Then, there exists an N such that if n > N,

$$||T_n(x) - T(x)|| = \lim_{m \to \infty} ||T_n(x) - T_m(x)|| \le \lim_{m \to \infty} ||T_n - T_m|| ||x|| \le \varepsilon ||x||$$

and $||T_n - T|| \le \varepsilon$. In sum, we have followed process of, for an arbitrary Cauchy sequence, finding a target, proving that the target is linear and bounded, and lastly proving that the target is indeed the limit of the Cauchy sequence.

Proposition. Lip_{α}([0,1]) is a Banach space for $0 < \alpha < 1$ where Lip_{α}([0,1]) is the set of all $f \in C([0,1])$ such that

$$M_f = \sup_{s \neq t} \frac{|f(s) - f(t)|}{|s - t|^{\alpha}} < \infty$$

with the norm $||f|| = |f(0)| + M_f$.

Corollary. If X is a normed vector space, then

$$X^* = \mathcal{L}(X, \mathbf{R})$$

is a Banach space with the operator norm.

Corollary. Let $L^p(E)$ denote the set of all measurable functions on E with

$$||f||_p = \left(\int_E |f|^p dm\right)^{1/p} < \infty$$

were we define $f, g \in L^p(E)$ to be equivalent if f = g almost everywhere on E.

Proof. To show that $L^p(E)$ is a normed vector space for $1 we simply need to prove that the function <math>||\cdot||_p$ is a norm. Note how

- (i) If $||f||_p = 0$ then f = 0 almost everywhere on E so that f is a zero vector in $L^p(E)$.
- (ii) If $f \in L^p(E)$ and $\alpha \in \mathbf{R}$, then

$$||\alpha f||_p = \left(\int_E |\alpha f|^p \, dm\right)^{1/p} = |\alpha| \left(\int_E |f|^p \, dm\right)^{1/p} = |\alpha| \, ||f||_p$$

(iii) If $f, g \in L^p(E)$ then $||f+g||_p \le ||f||_p + ||g||_p$ which is called the Minkowski inequality. Due to its difficulty, we omit the proof for now.

Lemma. For $a, b \ge 0$ and $0 < \lambda < 1$ the equality $a^{\lambda}b^{1-\lambda} \le \lambda a + (1-\lambda)b$ holds.

Proof. For $t \geq 0$, define $\phi(t) = \lambda t - t^{\lambda}$. The derivative is given as $\phi'(t) = \lambda - \lambda t^{\lambda-1} = \lambda(1-t^{\lambda-1})$. With a minimum at t=1 we know that $\phi(t) \geq \phi(1)$ for all t>0. Therefore,

$$\lambda t - t^{\lambda} \ge \lambda - 1$$
 so that $t^{\lambda} \le \lambda t + (1 - \lambda)$

for all $t \geq 0$. Notice that the equality holds when t = 1. Now put t = a/b to get

$$\left(\frac{a}{b}\right)^{\lambda} \le \lambda \left(\frac{a}{b}\right) + (1 - \lambda)$$

so that multiplying b on both sides yields the sought inequality.

Corollary. Let 1 satisfy <math>1/p + 1/q = 1. Put $\lambda = 1/p$, $a = A^p$, and $b = B^p$ for $A, B \ge 0$. Then,

$$a^{\lambda}b^{1-\lambda} \le \lambda a + (1-\lambda)b$$

becomes

$$AB \le \frac{A^p}{p} + \frac{B^q}{q}$$

where the equality holds when $A^p = B^q$.

Theorem. (Hölder's inequality) Let $1 \leq p < \infty$. If $f \in L^p(E)$ and $g \in L^q(E)$ with 1/p + 1/q = 1, then $fg \in L^1(E)$ and $||fg||_1 \leq ||f||_p ||g||_q$. That is,

$$\int_E |fg| \, dm \le \Big(\int_E |f|^p \, dm\Big)^{1/p} \Big(\int_E |g|^q \, dm\Big)^{1/q}$$

Proof. From $AB \leq A^p/p + B^q/q$ we put $A = |f(x)|/||f||_p$ and $B = |g(x)|/||g||_q$ for $x \in E$ to get

$$\frac{|f(x)g(x)|}{||f||_p||g||_q} \le \frac{1}{p} \frac{|f(x)|^p}{||f||_p^p} + \frac{1}{q} \frac{|g(x)|^q}{||g||_q^q}$$

then we integrate.

$$\begin{split} \frac{1}{||f||_p ||g||_q} \int_E |f(x)g(x)| \, dm(x) &\leq \frac{1}{p} \frac{1}{||f||_p^p} \int_E |f(x)|^p \, dm(x) + \frac{1}{q} \frac{1}{||g||_q^q} \int_E |g(x)|^q \, dm(x) \\ &= \frac{1}{p} + \frac{1}{q} = 1 \end{split}$$

This completes the proof.

Theorem. (Minkowski inequality) Let $1 \leq p < \infty$. If $f, g \in L^p(E)$ then $||f + g||_p \leq ||f||_p + ||g||_p$.

Proof. If $f, g \in L^p(E)$ then $|f(x) + g(x)| \le 2 \max(|f(x)|, |g(x)|)$ which implies that

$$\int_{E} |f + g|^{p} dm \le 2^{p} \int_{E} (|f|^{p} + |g|^{p}) dm < \infty$$

Then

$$\int_{E} |f+g|^{p} dm = \int_{E} |f+g| |f+g|^{p-1} dm \le \int_{E} (|f|+|g|) |f+g|^{p-1} dm$$
$$= \int_{E} |f| |f+g|^{p-1} dm + \int_{E} |g| |f+g|^{p-1} dm$$

where, from Hölder's inequality,

$$\int_{E} |f| |f + g|^{p-1} dm \le ||f||_{p} \Big[\int_{E} |f + g|^{(p-1)q} dm \Big]^{1/q} = ||f||_{p} \Big[\int_{E} |f + g|^{p} dm \Big]^{1/q}$$
$$= ||f||_{p} ||f + g||_{p}^{p/q}$$

For the justification of the use of the inequality, we must show that each is integrand are elements of L^p and L^q . Note that

$$\int_{E} \left[|f + g|^{p-1} \right]^{q} dm = \int_{E} |f + g|^{pq-q} dm = \int_{E} |f + g|^{p} dm < \infty$$

We now see that, in parallel,

$$\int_{F} |g| |f + g|^{p-1} dm \le ||g||_{p} ||f + g||_{p}^{p/q}$$

and therefore

$$||f+g||_p^p \le \left[||f||_p + ||g||_p\right] ||f+g||_p^{p/q}$$

Dividing both sides by $||f + g||_p^{p/q}$,

$$||f+g||_q^{p-p/q} \le ||f||_p + ||g||_p$$
 and $||f+g||_p \le ||f||_p + ||g||_p$

now we seen how for $p \ge 1$, $L^p(E)$ is a normed vector space. Next class, we show that, in addition to this, $L^p(E)$ is complete.

4 Lecture 17 (May 15th)

Theorem. Take $1 \leq p < \infty$. Then $L^p(E)$ is complete.

Proof. Let $\{f_n\}$ be a Cauchy sequence in $L^p(E)$. Then there is a subsequence $\{f_{n_k}\}$ such that

$$||f_{n_{k+1}} - f_{n_k}||_p < \frac{1}{k^2}$$

If so, we'll show that

- (i) f_{n_k} converges pointwise almost everywhere on E
- (ii) If $f(x) = \lim_{n \to \infty} f_{n_k}(x)$ almost everywhere then $f_n \to f$ in $L^p(E)$

(STEP 1) We know that $f \in L^+(E)$ and $\int_E f \, dm < \infty$ then $m(\{x \in E \mid f(x) = \infty\}) = 0$. Notice how

$$\sum_{i=1}^{k-1} (f_{n_{i+1}}(x) - f_{n_i}(x)) = f_{n_k}(x) - f_{n_1}(x)$$

Now define $g_n(x) = \sum_{k=1}^n [f_{n_{k+1}}(x) - f_{n_k}(x)]$ and $g(x) = \sum_{k=1}^\infty [f_{n_{k+1}}(x) - f_{n_k}(x)]$. Then by the Minkowski inequality,

$$||g_n||_p \le \sum_{k=1}^n \frac{1}{k^2} \le \sum_{k=1}^\infty \frac{1}{k^2} = \frac{\pi^2}{6} < 2$$

As $g_n \nearrow g$, we see that $g_n^p \nearrow g^p$, and due to the monotone convergence theorem,

$$\int_{E} |g|^{p} dm = \lim_{n \to \infty} \int_{E} |g_{n}|^{p} dm < 2^{p}$$

In otherwords, $m(\lbrace x \in E \mid g(x) = \infty \rbrace) = 0$ and it converges almost everywhere on E which implies that, by defintiion,

$$\sum_{k=1}^{\infty} (f_{n_{k+1}}(x) - f_{n_k}(x))$$

converges almost everywhere on E. Since

$$f_{n_k}(x) = f_{n_1}(x) + \sum_{i=1}^{k-1} (f_{n_{i+1}}(x) - f_{n_i}(x))$$

We see that $\lim_{k\to\infty} f_{n_k}(x)$ converges pointwise almost everywhere on E.

(STEP 2) Now define $f(x) = \lim_{k\to\infty} f_{n_k}(x)$ where it converges and 0 elsewhere. We'll show that $f \in L^p(E)$ and $\lim_{n\to\infty} ||f_n - f||_p = 0$. Notice how for some N, if $n \ge N$ then

$$\int_{E} |f - f_n|^p dm \le \liminf_{k \to \infty} \int_{E} |f_{n_k} - f_n|^p dm < \varepsilon^p$$

that is, if $n \geq N$ then $||f - f_n||_p < \varepsilon$. Additionally, for $n \geq N$, f can be expressed as

$$f = \underbrace{f - f_n}_{\in L^p} + \underbrace{f_n}_{\in L^p}$$

proving that $f \in L^p$.

Definition. $f \in L^{\infty}(E)$ provided that there is $M \geq 0$ such that $|f(x)| \leq M$ almost everywhere on E. The infimum of such M is denoted by $||f||_{\infty}$. If so, $f \in L^{\infty}(E)$ is called essentially bounded and measurable on E. $||f||_{\infty}$ is called the essential supremum of f on E.

Remark. (i) $|f(x)| \leq ||f||_{\infty}$ almost everywhere on E

(ii) If the zero vector of $L^{\infty}(E)$ is defined by zero function almost everywhere then $L^{\infty}(E)$ is a Banach space

Definition. $l^p(\mathbf{N})$ is the space $L^p(\mathbf{N})$ with respect to the counting measure λ . We show that elements in $l^p(\mathbf{N})$ are bounded sequences. For $f \in l^1(\mathbf{N}, \lambda)$ define

$$f_n(k) = \begin{cases} |f(k)| & 1 \le k \le n \\ 0 & n < k \end{cases}$$

such that $f_n(k)$ is a simple function in $L^+(\mathbf{N})$ with $f_n \nearrow |f|$. By MCT,

$$\int_{\mathbf{N}} |f| \, d\lambda = \lim_{n \to \infty} \int f_n(k) \, d\lambda = \lim_{n \to \infty} \sum_{k=1}^n |f(k)| = \sum_{k=1}^\infty |f(k)|$$

A sequence $\{a_n\}$ $(a_n = f(n))$ therefore belongs to $l^p(\mathbf{N})$ if

$$||\{a_n\}||_p = \left(\sum_{n=1}^{\infty} |a_n|^p\right)^{1/p} < \infty$$

and $|a_n|^p$ converges absolutely. As an extension, $\{a_n\} \in l^{\infty}(\mathbf{N})$ if

$$||\{a_n\}||_{\infty} = \sup_{n \in \mathbf{N}} |a_n| < \infty$$

and is a bounded sequence.

Definition. Let $\mathbf{x} = \{a_n\}$ be a sequence. $\mathbf{x} \in l^2(\mathbf{N})$ if $||\mathbf{x}||^2 = \sum_{k=1}^{\infty} |a_n|^2 < \infty$. Consider the sequence $\{e_n\} \subset l^2(\mathbf{N})$ (an orthonormal basis for $l^2(\mathbf{N})$) then

$$\begin{cases} ||e_n|| = 1\\ ||e_j - e_k|| = \sqrt{2} \quad j \neq k \end{cases}$$

this implies that $\{e_n\}$ is a bounded sequence in $l^2(\mathbf{N})$ but that there is no subsequence that is a Cauchy sequence. To summerise, $\{e_n\}$ is a

- (i) Bounded sequence with no convergence subsequence in $l^2(N)$
- (ii) Bounded infinite set with no limit point
- (iii) Closed and bounded but not compact

Example. (Unbounded linear operators) Consider $X:C^1([0,1])$ and $Y:C([0,\pi])$ both with the uniform norm

$$||f|| = \max_{[0,1]} |f(x)|$$

Let $T: X \to Y$ be defined by Tf = f' which is linear. Take

$$f_n(x) = x^n$$
 and $g_n(x) = \sin(nx)$

Then, $f_n, g_n \in X$ with $||f_n|| = 1$ and $||g_n|| = 1$ for all n. Note that $T(f_n)(x) = nx^{n-1}$ so that $||Tf_n|| = n$ and $T(g_n)(x) = n\cos nx$ so that $T(g_n)(0) = n$. Therefore, there is no M > 0 so that

$$n = ||Tf_n|| \le M||f_n|| = M$$

nor

$$n = ||Tg_n|| \le M||g_n|| = M$$

for all $n \in \mathbf{N}$.

Definition. (Separable) A normed vector space X is called separable if X has a countable dense subset.

Remark. For $1 \leq p < \infty$, $L^p(E)$ is separable but $L^{\infty}(E)$ is not separable.

Proof. Suppose that $\{f_n\}$ is a countable dense subset of $L^{\infty}([a,b])$. Then, for every a < x < b there is $f_{n(x)}$ such that

$$||\mathbf{1}_{[a,x]} - f_{n(x)}||_{\infty} < \frac{1}{2}$$

Suppose a < x < y < b satisfies $f_{n(x)} = f_{n(y)}$. Then,

$$1 = ||\mathbf{1}_{[a,x]} - \mathbf{1}_{[a,y]}||_{\infty}$$

$$= ||\mathbf{1}_{[a,x]} - f_{n(x)} + f_{n(y)} - \mathbf{1}_{[a,y]}||_{\infty}$$

$$\leq ||\mathbf{1}_{[a,x]} - f_{n(x)}||_{\infty} + ||f_{n(y)} - \mathbf{1}_{[a,y]}||_{\infty}$$

$$< \frac{1}{2} + \frac{1}{2} < 1$$

which is a contradiction. We thus found that all dense subsets of $L^{\infty}(E)$ are uncountable.

Remark. We define $C_c^{\infty}(E)$ as the space of smooth functions with a compact support inside E. By compact support we mean the closure of the set where $f(x) \neq 0$.

$$\operatorname{supp}(f) = \overline{\{x \in E \mid f(x) \neq 0\}}$$

We remark that $C_c^{\infty}(E)$ is dense in $L^p(E)$ for $1 \le p < \infty$.

5 Lecture 18 (May 20th)

Remark. Let $f: E \to \mathbf{R}$ be a measurable function. We have established the following.

- (i) For p > 0, if $\int_E |f|^p dm < \infty$ then $f \in L^p(E)$.
- (ii) If there is $M \geq 0$ such that $|f(x)| \leq M$ almost everywhere on E, then $f \in L^{\infty}(E)$.
- (iii) If $1 \le p \le \infty$ then $L^p(E)$ is a Banach space with $||\cdot||_p$ norm.
- (iv) If $0 then <math>L^p(E)$ is a complete metric space with $d(f,g) = \int_E |f g|^p dm$.

Theorem. If $m(E) < \infty$ and $1 then <math>L^{\infty}(E) \subset L^{q}(E) \subset L^{p}(E) \subset L^{1}(E)$.

Proof. If $||f||_{\infty} < \infty$ then $\int_{E} |f|^{p} dm \leq \int_{E} ||f||_{\infty}^{p} dm = ||f||_{\infty}^{p} \cdot m(E) < \infty$ such that $f \in L^{p}(E)$. Meanwhile, if p < q and $f \in L^{q}(E)$,

$$\int_{E} |f|^{p} dm = \int_{E} |f|^{p} \cdot 1 dm \le \left[\int_{E} (|f|^{p})^{q/p} \right]^{p/q} \left[\int_{E} 1 dm \right]^{c}$$
$$= ||f||_{q}^{p} \cdot m(E)^{c} < \infty$$

by taking p=q/p and using Hölder's inequality.

Theorem. If $m(E) < \infty$ and $f \in L^{\infty}(E)$ then $\lim_{p \to \infty} ||f||_p = ||f||_{\infty}$

Proof.

$$\int_{E} |f|^{p} dm \le \int_{E} ||f||_{\infty}^{p} dm = ||f||_{\infty}^{p} \cdot m(E)$$

so that

$$\left(\int_{E} |f|^{p} dm\right)^{1/p} \leq ||f||_{\infty} \cdot m(E)^{1/p} \quad \text{and} \quad \limsup_{p \to \infty} ||f||_{p} \leq ||f||_{\infty}$$

where the measure goes to 1 as $p \to \infty$. Take any $\varepsilon > 0$, we'll show that

$$\liminf_{p \to \infty} ||f||_p \ge ||f||_{\infty} - \varepsilon$$

Define

$$E_{\varepsilon} = \{ x \in E \, | \, |f(x)| > ||f||_{\infty} - \varepsilon \}$$

Then, $0 < m(E_{\varepsilon}) \le m(E) < \infty$ and

$$||f||_p = \left(\int_E |f|^p dm\right)^{1/p} = \left(\int_{E_{\varepsilon}} |f|^p dm\right)^{1/p} \ge \left(\int_{E_{\varepsilon}} (||f||_{\infty} - \varepsilon)^p\right)^{1/p}$$

$$= \left[[||f||_{\infty} - \varepsilon]^p m(E_{\varepsilon})\right]^{1/p} = (||f||_{\infty} - \varepsilon) m(E_{\varepsilon})^{1/p}$$

where $m(E_{\varepsilon})^{1/p}$ again goes to 1 as $p \to \infty$. Thus,

$$\liminf_{p \to \infty} ||f||_p \ge ||f||_{\infty} - \varepsilon$$

Theorem. Let $1 . If <math>f \in L^p(E)$ and $f \in L^r(E)$, then $f \in L^q(E)$. Furthermore, $||f||_q < \max(||f||_p, ||f||_r)$.

Proof. Let $q = \lambda p + (1 - \lambda)r$ for some $\lambda \in (0, 1)$. Then,

$$\int_{E} |f|^{q} dm = \int_{E} |f|^{\lambda p} \cdot |f|^{(1-\lambda)r} dm \le \left(\int_{E} \left[|f|^{\lambda p} \right]^{1/\lambda} dm \right)^{\lambda} \left(\int_{E} \left[|f|^{(1-\lambda)r} \right]^{1/(1-\lambda)} dm \right)^{1-\lambda}$$

$$= ||f||_{p}^{\lambda p} ||f||_{r}^{(1-\lambda)r} \le \left[\max(||f||_{p}, ||f||_{r}) \right]^{\lambda p + (1-\lambda)r} = \left[\max(||f||_{p}, ||f||_{r}) \right]^{p}$$

Remark. For p > 0,

$$\int_0^1 \frac{1}{x^p} \, dx < \infty \quad \text{iff} \quad 0 < p < 1 \quad \text{and} \quad \int_1^\infty \frac{1}{x^p} < \infty \quad \text{iff} \quad 1 < p$$

Example. Given a > 0, find f on $(0, \infty) = E$ such that $f \in L^p((0, \infty))$ if and only if $p \in (a, b)$.

Proof. Simply take

$$f(x) = \begin{cases} x^{-1/b} & x \in (0,1) \\ x^{-1/a} & x \in (1,\infty) \end{cases} = x^{-1/b} \mathbf{1}_{(0,1)} + x^{-1/a} \mathbf{1}_{(1,\infty)}$$

Example. Note how

$$\int_{1}^{\infty} \frac{1}{[x(1+\ln x)^{2}]^{p}} dx = \int_{0}^{\infty} \frac{e^{t(1-p)}}{(1+t)^{2p}} dt < \infty$$

if and only if $p \ge 1$, where we substituted $t = \ln x$. Also,

$$\int_0^1 \frac{1}{[x(1-\ln x)^2]^p} \, dx = \int_\infty^0 \frac{e^{t(p-1)}}{[1+t]^{2p}} \, (-dt) = \int_0^\infty \frac{e^{t(p-1)}}{(1+t)^{2p}} \, dt < \infty$$

if and only if $0 , with the substitution being <math>t = -\ln x$.

Example. Given a > 0, find f on $(0, \infty) = E$ such that $f \in L^p((0, \infty))$ if and only if $p \in [a, b]$ (0 < a < b).

Proof. Simply take this time

$$f(x) = \left[x(1-\ln x)^2\right]^{-1/b} \mathbf{1}_{(0,1)} + \left[x(1+\ln x)^2\right]^{-1/a} \mathbf{1}_{[0,\infty)}$$

Example. For $\alpha \in (0, \infty)$, find f so that $f \in L^p((0, \infty))$ if and only if $p = \alpha$. The f is given by the expression above with $\alpha = a = b$. We now find that there is a function that is $L^p((0, \infty))$ only when p is a given number. There is no subset relation when the measure of the space is infinite!

Theorem. For 1 and <math>1/p + 1/q = 1, let $T : L^p(E) \to \mathbf{R}$ be defined by

$$T(f) = \int_{E} fg \, dm$$

for some $g \in L^q(E)$. Then, T is a bounded linear functional on $L^p(E)$ with $||T|| = ||g||_p$.

Remark. First of all,

$$T(\alpha_1 f_1 + \alpha_2 f_2) = \int_E (\alpha_1 f_1 + \alpha_2 f_2) g \, dm = \alpha_1 \int_E f_1 g \, dm + \alpha_2 \int_E f_2 g \, dm = \alpha_1 T(f_1) + \alpha_2 T(f_2)$$

and by Holder's inequality,

$$|T(f)| = \Big| \int_E fg \, dm \Big| \le ||f||_p ||g||_q$$

so that $||T|| \leq ||g||_q$. We now want to prove that $||T|| \geq ||g||_q$. Let

$$f = \frac{|g|^q}{g}$$

we can easily see that $f \in L^p(E)$ (given $g \neq 0$ and if g = 0 we define f = 0). Now see that $fg = |g|^q$ and

$$T(f) = \int_{E} fg \, dm = \int_{E} |g|^{q} \, dm = ||g||_{q}^{q} = ||g||_{q} ||g||_{q}^{q-1} = ||f||_{p} ||g||_{q}$$

given the fact that

$$||g||_q^{q-1} = \Big(\int_E |g|^q \, dm\Big)^{(q-1)/q} = \Big(\int_E |f|^p \, dm\Big)^{1/p} = ||f||_p$$

We now see how

$$\left| T \left(\frac{f}{||f||_p} \right) \right| \ge ||g||_q$$

As the norm of an operator is defined by the supremum of which the left hand side is an element of,

$$||T|| \ge \left| T \left(\frac{f}{||f||_p} \right) \right| \ge ||g||_q$$

Finally, due to the previous remark, $||T|| = ||g||_q$.

Corollary. Let $T: L^1(E) \to \mathbf{R}$ be defined by

$$T(f) = \int_{E} fg \, dm$$

for some $g \in L^{\infty}(E)$. T is a bounded linear functional on $L^{1}(E)$ with $||T|| = ||g||_{\infty}$.

6 Lecture 19 (May 22nd)

Recall. We have seen how integral transforms of the form

$$T(f) = \int_{\mathcal{F}} fg \, dm$$

are bounded linear operators with a norm of $||T|| = ||g||_q$. We see that, suprisingly, all bounded linear operators can be realised to be of this form.

Theorem. (Riesz representation theorem) If $1 \leq p < \infty$ and T is a bounded linear

functional on $L^p(\mu)$, there is a unique $g \in L^q(\mu)$ (where q is the conjugate exponent of p) such that

$$T(f) = \int fg \, d\mu$$

for all $f \in L^p(\mu)$ and $||T|| = ||g||_q$. In particular, if μ is a σ -finite measure on X and T is a bounded linear functional on $L^1(\mu)$ then there is a unique $g \in L^{\infty}(\mu)$ such that

$$T(f) = \int_X fg \, d\mu$$

for all $f \in L^1(\mu)$ and $||T|| = ||g||_{\infty}$.

Definition. If μ is a counting measure on N, we define three vector spaces.

(i) $l^p(\mathbf{N})$ the set of sequence $\mathbf{x} = (x_1, x_2, \dots)$ with the norm

$$||\mathbf{x}||_p = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p}$$

for $p \ge 1$.

- (ii) $l^{\infty}(N)$ is the set of all bounded sequences with the supremum norm.
- (iii) $C_0(\mathbf{N})$ the sequence \mathbf{x} which converges to zero with the supremum norm.

Definition. A linear map $T: l^1(\mathbf{N}) \to \mathbf{R}$ is defined by

$$T(\mathbf{x}) = \sum_{n=1}^{\infty} x_n y_n$$

where $\mathbf{y} = (y_1, y_2, \ldots) \in l^{\infty}(\mathbf{N})$. We now try to show that the norm of \mathbf{y} is the norm of the linear operator. Observe that

$$|T(\mathbf{x})| \le ||y||_{\infty} \sum_{n=1}^{\infty} |x_n| = ||\mathbf{x}||_1 ||\mathbf{y}||_{\infty}$$

so that $||T|| \le ||\mathbf{y}||_{\infty}$. To show that $||T|| = ||\mathbf{y}||_{\infty}$, suppose $y = \{y_n\}$. Then we put

$$\mathbf{x} = \frac{|y_k|}{y_k} \mathbf{e}_k$$
 for $y_k \neq 0$ implying $||\mathbf{x}||_1 = 1$

and

$$T(\mathbf{x}) = \sum_{n=1}^{\infty} x_n y_n = |y_k|$$

This tells us that

$$|y_k| \leq ||T||$$

for every $k \in \mathbb{N}$ and $||T|| \ge ||\mathbf{y}||_{\infty}$.

Theorem. (Riesz representation theorem for $l^1(\mathbf{N})$) If T is a bounded linear functional on $l^1(\mathbf{N})$ then we'll show $\mathbf{y} = (y_1, y_2, \ldots) \in l^{\infty}(\mathbf{N})$ such that

$$T(\mathbf{x}) = \sum_{n=1}^{\infty} x_n y_n$$

with $||T|| = ||\mathbf{y}||_{\infty}$.

Proof. To do that just define $T(\mathbf{e}_k) = y_k$. Then by continuity and linearity of T,

$$T(\mathbf{x}) = T\left(\sum_{k=1}^{\infty} x_k \mathbf{e}_k\right) = \sum_{k=1}^{\infty} T(x_k \mathbf{e}_k) = \sum_{k=1}^{\infty} T(x_k \mathbf{e}_k) = \sum_{k=1}^{\infty} x_k T(\mathbf{e}_k) = \sum_{k=1}^{\infty} x_k y_k$$

To prove that uniqueness, do this again, and we'll find

$$T(\mathbf{x}) = \sum_{n=1}^{\infty} x_n y_n = \sum_{n=1}^{\infty} x_n z_n$$

and by putting $\mathbf{x} = \mathbf{e}_k$ we find $y_k = z_k$.

Remark. We have previously shown that, in the limited case of p = 1,

$$l^p(\mathbf{N})^* = l^q(\mathbf{N})$$

for $1 \le p < \infty$ and 1/p + 1/q = 1. Also, for the Lesbegue measure,

$$L^p(E)^* = L^q(E)$$

for 1/p + 1/q = 1 with $1 \le p < \infty$. We now show that

$$C_0(N)^* = l^1(N)$$

and also that

$$C_0(E)^* = M(E)$$

Notice that, importantly, the dual of $C_0(\mathbf{N})$ is $l^1(\mathbf{N})$ while the dual of $l^1(\mathbf{N})$ is $l^{\infty}(\mathbf{N})$. The dual of a dual is not itself!

Theorem. Recall that $C_0(\mathbf{N})$ is defined as the set of infinite sequences that converge to 0 provided the supremum norm. If $T: C_0(\mathbf{N}) \to \mathbf{R}$ is defined by

$$T(\mathbf{x}) = \sum_{n=1}^{\infty} x_n y_n$$

for some $\mathbf{y} = (y_1, \dots, y_n, \dots) \in l^1(\mathbf{N})$, then T is continuous and linear with $||T|| = ||\mathbf{y}||_1$.

Conversely, if T is a bounded linear functional, then there is a unique $\mathbf{y} \in l^1(\mathbf{N})$ such that

$$T(\mathbf{x}) = \sum_{n=1}^{\infty} x_n y_n$$

with $||T|| = ||\mathbf{y}||_1$. The latter converse follows from just defining $T(e_k) = y_k$.

Proof. T is obviously linear.

$$|T(x)| = \Big|\sum_{n=1}^{\infty} x_n y_n\Big| \le \sum_{n=1}^{\infty} |x_n| |y_n| \le ||\mathbf{x}||_{\infty} ||\mathbf{y}||_1$$

This implies that $||T|| \le ||y||_1$. Conversely, for each n, we define $\mathbf{x}_n \in C_0(\mathbf{N})$ as $\mathbf{x}_n = \{x_{n,k}\}_{k=1}^{\infty}$ where

$$x_{n,k} = \begin{cases} \frac{|y_k|}{y_k} & \text{if} \quad 1 \le k \le n \quad \text{and} \quad y_k \ne 0\\ 0 & \text{if} \quad k > n \quad \text{and} \quad y_k = 0 \end{cases}$$

Notice how $\lim_{k\to\infty} x_{n,k} = 0$. Then $||\mathbf{x}_n||_{\infty} = 1$ for each n, and

$$T(\mathbf{x}_n) = \sum_{k=1}^{\infty} x_{n,k} y_k = \sum_{k=1}^{n} |y_k|$$

Thus, $\sum_{k=1}^{n} |y_k| \leq ||T||$ for every $n \in \mathbb{N}$. Therefore, $||T|| \geq ||y||_1$. For the converse, we simply define $T(\mathbf{e}_k) = y_k$. Then by the continuity and linearity, $T(\mathbf{x}) = \sum_{n=1}^{\infty} x_n y_n$.

Example. We see another example where which a sequence that is bounded fails to have a subsequence that converges. Define $f_n(x) = \sin nx$ for $x \in [0, 2\pi]$. This implies that $|f_n(x)| \le 1$ for all $x \in [0, 2\pi]$ and for all $n \in \mathbb{N}$. Suppose $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ which converges pointwise on $[0, 2\pi]$. Then, $\lim_{k\to\infty} \sin n_k x = \lim_{k\to\infty} \sin n_{k+1} x$, that is,

$$\lim_{k \to \infty} (\sin n_{k+1} x - \sin n_k x) = 0$$

for all $x \in [0, 1]$. Or, equivalently, $\lim_{k \to \infty} (\sin n_{k+1} x - \sin n_k x)^2 = 0$. By LDCT,

$$\lim_{k \to \infty} \int_0^{2\pi} (\sin n_{k+1} x - \sin n_k x)^2 = 0$$

When this is actually computed, we have 2π for all k. To elaborate further, observe that the above is equal to

$$\int_0^{2\pi} (\sin^2 n_{k+1}x + \sin^2 n_k x - 2\sin n_{k+1}x \sin n_{kx}) dx$$

and that the first two terms become π each and the last term vanishes.

Definition. Simply put, weak* convergence is pointwise convergence (for a sequence of bounded linear operators). For $T_n \in X^*$ and $T \in X^*$, $T_n \to T$ weak* in X^* provided that $\lim_{n\to\infty} T_n(x) = T(x)$ for every $x \in X$.

Theorem. (Arzela-Ascoli theorem) (Important!) Let X be a separable normed vector space. Then every bounded sequence in X^* has a weak* convergent subsequence.

Corollary. The following is an application for the above theorem in $L^p(E) = L^q(E)^*$. For $1 \leq p < \infty$, let $f_n \in L^p(E)$ with $||f_n||_p \leq M$ for all $n \in \mathbb{N}$. Then $\{f_n\}$ is bounded in $L^q(E)^*$. Then there is $f \in L^p(X)$ and a subsequence $\{f_{n_k}\}$ such that $f_{n_k} \to f$ weak*. Notice that by the Riesz-representation theorem, there is a bounded linear functional

$$T(g) = \int_{E} gf \, dm$$

for $g \in L^q(E)$ so that

$$\lim_{k \to \infty} \int_E f_{n_k} g \, dm = \lim_{k \to \infty} T_{n_k}(g) = T(g) = \int_E fg \, dm$$

for all $g \in L^q(E)$.

7 Lecture 20 (May 27th)

Definition. A separable metric space X is a space that has a countable dense subset.

Definition. For $f_n: X \to \mathbf{R}$, $\{f_n\}$ is pointwise bounded on X provided that for every $x \in X$ there is $M_x > 0$ such that $|f_n(x)| \leq M_x$ for all $n \in \mathbf{N}$.

Example. Let X, Y be normed vector spaces. Let $T_n : X \to Y$ be a bounded linear map such that $||T_n|| \le M$ for all $n \in \mathbb{N}$. Then for every $x \in X$, we have

$$||T_n(x)|| \le ||T_n|| \, ||x|| \le M||x||$$

Thus $\{T_n\}$ is pointwise bounded on X.

Definition. $\{f_n\}$ is equicontinuous on X provided that for every $\varepsilon > 0$, there is $\delta > 0$ such that if $x, y \in X$ satisfies $d(x, y) < \delta$, then $|f_n(x) - f_n(y)| < \varepsilon$ for all $n \in \mathbb{N}$.

Example. Consider $f_n : \mathbf{R} \to \mathbf{R}$ where $f_n = nx$. As

$$|f_n(x) - f_n(y)| = n|x - y|$$

and each f_n is uniformly continuous on R. However, $\{f_n\}$ is not equicontinuous on R.

Example. The function $f_n(x) = \sin nx$ is not equicontinuous on $[0, 2\pi]$.

Example. Let $T_n: X \to Y$ be norm bounded, that is, $||T_n|| \leq M$ for all $n \in \mathbb{N}$. This implies that

$$||T_n(x) - T_n(y)|| = ||T_n(x - y)|| \le M||x - y||$$

so that $\{T_n\}$ is equicontinuous on X.

Theorem. (Arzela-Ascoli theorem) Consider a sequence in X^* , that is, $f_n : X \to \mathbf{R}$ for $n \in \mathbf{N}$ where X is a separable metric space. Take $\{f_n\}$ to be pointwise bounded and equicontinuous on X. Then, $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ which converges uniformly on all compact subsets of X.

Proof. Let $E = \{x_1, x_2, \ldots\}$ be a countable dense subset of X.

$$f_{1,1}, \quad f_{2,1} \quad f_{3,1}, \quad \dots$$
 $f_{1,2}, \quad f_{2,2} \quad f_{3,2}, \quad \dots$
 $\vdots \quad \vdots \quad \vdots \quad \vdots$
 $f_{1,k}, \quad f_{2,k} \quad f_{3,k}, \quad \dots$

(STEP 1) We construct a subsequence of $\{f_n\}$ which converges at every $x_k \in E$. This requires only pointwise boundedness. Note that $\{f_n(x_1)\}$ is a bounded sequence on \mathbf{R} , so that there is a subsequence $\{f_{n,1}\}$ of $\{f_n\}$ which converges at x_1 . Likewise, $\{f_{n,1}(x_2)\}$ is a bounded sequence in \mathbf{R} so that there is a subsequence $\{f_{n,2}\}$ of $\{f_{n,1}\}$ converges at x_2 (it also converges at x_1). Continuing, we find $\{f_{n,k}\}$ which converges at $\{x_{k+1}\}$ and also x_1, x_2, \ldots, x_k . Now, take the diagonal sequence $\{f_{n,n}\}_{n=1}^{\infty}$. Then we'll show that $\lim_{n\to\infty} f_{n,n}(x_k)$ converges at every $x_k \in E$. Take any $x_k \in E$ then $\{f_{n,n}\}_{n=k}^{\infty}$ is a subsequence of $\{f_{n,k}\}_{n=k}^{\infty}$.

Define $g_n = f_{n,n}$. Let K be any compact subset of X. We'll show that $\{g_n\}$ converges uniformly on K. Equivalently, we'll show that the sequence $\{g_n\}$ is uniformly Cauchy on K. Take any $\varepsilon > 0$, we will find $N \in \mathbb{N}$ such that if n, m > N then $|g_m(x) - g_n(x)| < \varepsilon$ for all $x \in K$.

(STEP 2) We show that the above subsequence converges uniformly on all compact subsets of X. This requires only equicontinuity. By equicontinuity of $\{g_n\}$, there is $\delta > 0$ such that if $d(p,q) < \delta$, then $|g_n(p) - g_n(q)| < \varepsilon/3$ for all $n \in \mathbb{N}$. Notice that

$$\mathcal{F} = \left\{ B\left(x, \frac{\delta}{2}\right) \,\middle|\, x \in K \right\}$$

is an open cover of K so that is a finite subcover $\{B_1, B_2, \ldots, B_M\}$ all with radius $\delta/2$. Recall that E was a countable dense subset in X such that there is a subsequence of $\{f_n\}$ that converges. Since $E = \{x_n\}$ is dense in X, for every $1 \le k \le M$, there is $x_k \in E \cap B_k$. Then there is $N \in \mathbb{N}$ such that if n, m > N then

$$|g_n(x_k) - g_m(x_k)| < \frac{\varepsilon}{3}$$

for $1 \le k \le M$. In sum, if n, m > N for some N and $x \in K$, then $x \in B_j$ for some $1 \le j \le M$ so that $d(x, y) < \delta$ if $y \in B_j$. We finally see that,

$$|g_{n}(x) - g_{m}(x)| = |g_{n}(x) - g_{n}(p_{j}) + g_{n}(p_{j}) - g_{m}(p_{j}) + g_{m}(p_{j}) - g_{m}(x)|$$

$$\leq |g_{n}(x) - g_{n}(p_{j})| + |g_{n}(p_{j}) - g_{m}(p_{j})| + |g_{m}(p_{j}) - g_{m}(x)|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

Remark. Let X be a normed vector space, and let X^* be the dual space $\mathcal{L}(X, \mathbf{R})$. There are three types of convergences in this book.

- (i) Norm convergence, both in X and X^*
- (ii) Weak convergence in X
- (iii) Weak* convergence in X^*

We now learn weak convergence in X.

Definition. Let $x_n \in X$ and $x \in X$. $x_n \to x$ weakly in X if

$$\lim_{n \to \infty} T(x_n) = T(x)$$

for every $T \in X^*$. On the other hand, $T_n \to T$ weak* if

$$\lim_{n \to \infty} T_n(x) = T(x)$$

for every $x \in X$. The latter is simply pointwise convergence in X.

Remark. For $1 \leq p < \infty$ and 1/p + 1/q = 1, by the Riesz representation theorem, $(L^p)^* = L^q$ and $(L^q)^* = L^p$. Let $f_n \in L^p(E)$. $f_n \to f$ weakly in $L^p(E)$ means that

$$\lim_{n\to\infty} \int_E f_n g\,dm = \int_E fg\,dm$$

for every $g \in L^q(E)$. Notice how this is the same as $f_n \to f$ weak* in $(L^q(E))^*$.

weak convergence in $L^p(E) = \text{weak}^*$ convergence in $(L^q(E))^*$!

Corollary. Let X be a separable normed vector space. Every bounded sequence in X^* has a weak* convergent subsequence.

Proof. If $\{T_n\}$ is a bounded sequence in X^* $(T_n: X \to \mathbf{R}, ||T_n|| \le M)$ then $\{T_n\}$ is a pointwise bounded and equicontinuous. Then, as every singleton set is compact, for every $x \in X$, there exists a subsequence $T_{n_k}(x)$ that converges. Define $T: X \to \mathbf{R}$ as $T(x) = \lim_{k \to \infty} T_{n_k}(x)$. Then, $T \in X^*$ and $\{T_n\}$ converges weak*.

Corollary. Assume $1 \le p < \infty$ and $||f_n||_p < \infty$. A bounded linear operator $T_n : L^q(E) \to \mathbb{R}$ is defined as

 $T_n(g) = \int_E f_n g \, dm$

where $||T_n|| = ||f_n||_p$. By the previous corollary, T_n has a weak* convergent subsequence where

$$\lim_{n\to\infty} T_{n_k}(g) = T(g)$$

for all $g \in L^q$. Then,

$$\lim_{k\to\infty}\int_E f_{n_k}g\,dm=\int_E fg\,dm$$

for some $f \in L^p(E)$. Therefore, if there is a sequence of $f_n \in L^p(E)$, there exists a subsequence f_{n_k} and $f \in L^p(E)$ such that

$$\lim_{k \to \infty} \int_E f_{n_k} g \, dm = \int_E f g \, dm$$

for all $g \in L^q(E)$.

8 Lecture 21 (May 29th)

Theorem. Take X to be a separable Banach space. Let $T_n \in X^*$ with $||T_n|| \leq M$ for all n. There is $\{T_{n_k}\}$ such that $\lim_{k\to\infty} T_{n_k}(x)$ converges for every $x\in X$. If we define $T:X\to \mathbf{R}$ by $T(x)=\lim_{k\to\infty} T_{n_k}(x)$ then obviously, T is linear in X and for ||x||=1,

$$|T(x)| = \lim_{k \to \infty} |T_{n_k}(x)| \le M$$

so that $||T|| \leq M$. Therefore, $T \in X^*$.

Theorem. (Fubini theorem) Let f(x,y) be measurable on $E \times F$. If

$$\int_{F} \int_{E} |f(x,y)| \, dm(x) \, dm(y) < \infty$$

or

$$\int_{E} \int_{F} |f(x,y)| \, dm(y) \, dm(x) < \infty$$

(meaning that $f \in L^1(E \times F, m \times m)$), then

$$\int_{E} \int_{E} f(x,y) \, dm(y) \, dm(x) = \int_{E} \int_{E} f(x,y) \, dm(x) \, dm(y)$$

If $f(x,y) \ge 0$, the result satisfies also.

Theorem. Take $f \in L^p(E)$, $1 \le p \le \infty$. An integral operator is defined as

$$Tf(x) = \int_{E} K(x, y)f(y) dm(y)$$

If there is c > 0 such that

$$\sup_{x \in E} \int_{E} \left| K(x,y) \right| dm(y) \leq c \quad \text{and} \quad \sup_{y \in E} \int \left| K(x,y) \right| dm(x) < c$$

then $||Tf||_p \le c||f||_p$ for all $f \in L^p(E)$.

Proof. For p = 1,

$$||Tf||_1 = \int_E \left| \int_E K(x, y) f(y) \, dm(y) \right| dm(x)$$

$$\leq \int_E \int_E |K(x, y)| \, |f(y)| \, dm(y) \, dm(x)$$

$$\leq c \int_E |f(y)| \, dm(y)$$

The case is identical for $p = \infty$. For 1 ,

$$\begin{split} |Tf(x)| & \leq \int_{E} |K(x,y)| \, |f(y)| \, dm(y) = \int_{E} |K(x,y)|^{1/p+1/q} |f(y)| \, dm(y) \\ & \leq \Big[\int_{E} |K(x,y)| \, dm(y) \Big]^{1/q} \Big[\int_{E} |K(x,y)| \, |f(y)|^{p} \, dm(y) \Big]^{1/p} \\ & \leq c^{1/q} \Big[\int_{E} |K(x,y)| \, |f(y)|^{p} \, dm(y) \Big]^{1/p} \end{split}$$

So that

$$\int_{E} |Tf(x)|^{p} dm(x) \le c^{p/q} \int_{E} \int_{E} |K(x,y)| |f(y)|^{p} dm(y) dm(x)$$

$$= c^{p/q} \int_{E} |f(y)|^{p} \int_{E} |K(x,y)| dm(x) dm(y)$$

$$\le c^{(p+q)/q} \int_{E} |f(y)|^{p} dm(y)$$

this implies that

$$||Tf||_p \le c||f||_p$$

Definition. Let f, g be measurable functions on R. We define f * g (convolution) by

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x - y)g(y) \, dy = \int_{-\infty}^{\infty} f(y)g(x - y) \, dy = (g * f)(x)$$

if it exists (note how it is commutative).

Theorem. If $f \in L^1(\mathbf{R})$ and $g \in L^p(\mathbf{R})$ for $1 \le p \le \infty$, then $||f * g||_p \le ||f||_1 ||g||_p$.

Proof. Define K(x-y) = f(x-y) in the previous theorem.

Remark. Consider

$$g(t) = \begin{cases} \exp\left(-\frac{1}{1-t^2}\right) & -1 < t < 1\\ 0 & |t| \ge 1 \end{cases}$$

which is C^{∞} with a support [-1,1]. Define

$$\phi(x) = \frac{g(x)}{\int_{-1}^{1} g(t) dt}$$

then $\phi \in C^{\infty}(\mathbf{R})$ with support [-1,1] with $\int_{-\infty}^{\infty} \phi(x) dx = 1$. Then

$$\phi_{\varepsilon}(x) = \frac{1}{\varepsilon} \phi\left(\frac{x}{\varepsilon}\right)$$

for $\varepsilon > 0$ supported $[-\varepsilon, \varepsilon]$ with

$$\int_{-\infty}^{\infty} \phi_{\varepsilon}(x) \, dx = 1$$

If $f \in L^p(\mathbf{R})$ with compact support then $f * \phi_{\varepsilon} \to f$ in L^p for $1 as <math>\varepsilon \to 0$. The convolution $f * \phi_{\varepsilon} \in C_c^{\infty}(\mathbf{R})$ and $C_c^{\infty}(\mathbf{R})$ is dense in $L^p(\mathbf{R})$ $(1 \le p < \infty)$.

Theorem. (Schur) If there is a non-negative measurable function h on E such that

$$\int_E |K(x,y)| h(y)^q dm(y) \le c_1 h(x)^q$$

and

$$\int_{E} |K(x,y)| h(y)^{p} dm(x) \le c_2 h(y)^{p}$$

then $||Tf||_p \le c_1^{1/q} c_2^{1/p} ||f||_p$ for 1 .

Proof. We provide a hint.

$$|Tf(x)| \le \int_E |K(x,y)| h(y)h(y)^{-1} |f(y)| dm(y)$$

Definition. Let H be a vector space over \mathbf{R} . If there is a function $\langle \cdot, \cdot \rangle : H \times H \to \mathbf{R}$ satisfying

- (i) $\langle x, y \rangle = \langle y, x \rangle$ for all $x, y \in H$
- (ii) $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$ for $x, y \in H$, $\alpha \in \mathbf{R}$
- (iii) $\langle x+z,y\rangle = \langle x,y\rangle + \langle z,y\rangle$ for $x,y,z\in H$
- (iv) $\langle x, x \rangle \geq 0$ for all $x \in H$ and $\langle x, x \rangle = 0$ if and only if $x = \mathbf{0}$.

Then, H is called an inner product space over \mathbf{R} . If we define $||x|| = \langle x, x \rangle^{1/2}$, we can show that ||x|| is a norm.

Example. (i) \mathbb{R}^n with the inner product $\langle x, y \rangle = \sum_{k=1}^n x_k y_k$

(ii) $L^2(\mu)$ with the inner product

$$\langle f, g \rangle = \int_X f g \, d\mu$$

(iii) C([0,1]) with the inner product

$$\langle f, g \rangle = \int_0^1 f(x)g(x) \, dx$$

Theorem. (Cauchy-Schwarz Inequality) For $x, y \in H$, $|\langle x, y \rangle| \leq ||x|| ||y||$

Proof. For every $t \in \mathbf{R}$, $||x - ty||^2 \ge 0$ and

$$||x - ty||^2 = \langle x - ty, x - ty \rangle = ||x||^2 - 2\langle x, y \rangle t + ||y||^2 t^2$$

If $y \neq 0$, then $D/4 \leq 0$ where $D/4 = \langle x, y \rangle^2 - ||x||^2 ||y||^2$.

Corollary. $||x + y|| \le ||x|| + ||y||$ for $x, y \in \mathbb{R}$.

Proof.

$$||x + y||^2 = \langle x + y, x + y \rangle = ||x||^2 + 2\langle x, y \rangle + ||y||^2$$

$$\leq ||x||^2 + 2||x|| ||y|| + ||y||^2$$

$$= (||x|| + ||y||)^2$$

We now have shown that $\langle x, x \rangle^{1/2}$ indeed satisfies a norm.

Definition. An inner product speae H is called a Hilbert space if it is complete with respect to the norm which is induced by the inner product.

Theorem. An Hilbert space is a Banach space.

Example. C([0,1]) is a Banach space and an inner product space but is not an Hilbert space with respect to the norm

$$\langle f, g \rangle = \int_0^1 f(t)g(t) dt$$

Technically speaking, an Hilbert space is a Banach space, not with the inner product, but satisfying the paralleogram law.

9 Lecture 22 (June 5th)

Theorem. (Parallelogram law) If $x, y \in H$, then

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

Proposition. If M is a subspace of H, then \overline{M} is a closed subspace of H.

Definition. (Convex subset) A convex subset of H is a subset where if $x, y \in E$ and $\lambda \in (0,1)$, we have $\lambda x + (1-\lambda)y \in E$.

Proposition. If E is a convex subset of H, then $x + E = \{x + y \mid y \in E\}$ is also convex.

Definition. (x^{\perp}) For $x \in H$, we define $x^{\perp} = \{y \in H \mid \langle x, y \rangle = 0\}$. This is a subspace of H. If we define $T: H \to \mathbf{R}$ by $T(y) = \langle x, y \rangle$, by the Cauchy Schwarz inequality, $|T(y)| \leq ||x|| \, ||y||$. That is, T is continuous and $x^{\perp} = \{y \in H \mid T(y) = 0\}$ is a closed subspace of H.

Definition. (M^{\perp}) If M is a subspace of H, we define

$$M^{\perp} = \{ y \in H \mid \langle x, y \rangle = 0 \} = \bigcap_{x \in M} x^{\perp}$$

which implies that M^{\perp} is a closed subspace of H.

Theorem. If E is a non-empty closed convex subset of a Hilbert space H, then E has a unique element of smallest norm.

Proof. Let $\delta = \inf\{||x|| \mid x \in E\}$. We'll show that there is a unique $x_0 \in E$ with $||x_0|| = \delta$.

Let $x, y \in E$. Then, $x/2, y/2 \in H$. Apply the parallelogram law and we have

$$\left| \left| \frac{x}{2} + \frac{y}{2} \right| \right|^2 + \left| \left| \frac{x}{2} - \frac{y}{2} \right| \right|^2 = 2 \left(\left| \left| \frac{x}{2} \right| \right|^2 + \left| \left| \frac{y}{2} \right| \right|^2 \right)$$

so that

$$||x - y||^2 = 2||x||^2 + 2||y||^2 - 4\left|\left|\frac{x}{2} + \frac{y}{2}\right|\right|^2$$

for $x, y \in E$. By the convexity of E, the last term is in E. We then know that

$$||x - y||^2 \le 2(||x||^2 + ||y||^2) - 4\delta^2$$

If $||x|| = ||y|| = \delta$, then $||x - y||^2 \le 0$ such that x = y. This tells us that x_0 is unique if it exists.

By definition of δ , there is a sequence $y_n \in E$ such that $\lim_{n\to\infty} ||y_n|| = \delta$. Put y_n, y_m in the inequality above and we have

$$||y_n - y_m||^2 \le 2(||y_n||^2 + ||y_m||^2) - 4\delta^2$$

so that $\{y_n\}$ is a Cauchy sequence in $E \subset H$. Since H is complete, there is $x_0 \in H$ such that $\lim_{n\to\infty} ||y_n - x_0|| = 0$. Since E is closed, $x_0 \in E$. Finally,

$$\lim_{n \to \infty} ||x_0|| = \lim_{n \to \infty} ||y_n|| = \delta$$

since $||\cdot||$ is continuous.

Example. In $L^1([0,1])$, define

$$E = \left\{ f \in L^1([0,1]) \, \middle| \, \int_0^1 f(x) \, dx = 1 \right\}$$

Notice that the set is convex as the integral of $g = \lambda f + (1 - \lambda)h$ is 1. In addition to this, E is closed. To see this, we ask whether for $f_n \in E$ and $\lim_{n\to\infty} ||f_n - f||_1 = 0$, $\int_0^1 f \, dx = 1$. this is true, as

$$\left| \int_{0}^{1} f_{n} dx - \int_{0}^{1} f dx \right| \leq \int_{0}^{1} |f_{n} - f| dx \to 0$$

Together, we now know that the set is a closed convex subset of $L^1([0,1])$ with infinitely many elements with the smallest norm.

Example. Consider $f_n \in C([0,1])$ with the uniform norm. Define

$$E = \left\{ f \in C([0,1]) \, \middle| \, \int_0^{1/2} f(x) \, dx - \int_{1/2}^1 f(x) \, dx = 1 \right\}$$

Obviously, this is a convex set. By LDCT, E is closed. The infinum of the norm is 1, while there is no single function that has this norm.

Theorem. (Orthogonal decomposition) (Big theorem) If M is a closed subspace of a Hilbert space H then every $x \in H$ can be uniquely expressed as $x = P_x + Q_x$ where $P_x \in M$ and $Q_x \in M^{\perp}$. Indeed, $P \in \mathcal{L}(H, M)$ and $Q \in \mathcal{L}(H, M^{\perp})$ are norm 1 linear operators with

$$||x||^2 = ||P_x||^2 + ||Q_x||^2$$

The key idea behind this theorem is that x + M is a closed convex subset of H.

Proof. $x + M = \{x + y \mid y \in M\}$ is a non-empty closed convex subset of H. Define Q_x as the unique element of x + M with the smallest norm. Then define $P_x = x - Q_x$, and by definition, $P_x \in M$.

We have to show that $Q_x \in M^{\perp}$ and that the decomposition is unique. The latter part is simple, as if we take x = p + q = p' + q', $x - x' = y' - y \in M \cap M^{\perp} = \{0\}$. To show that $Q_x \in M^{\perp}$, we need to show that $\langle Q_x, y \rangle = 0$ for all $y \in M$ or that $\langle Q_x, y \rangle = 0$ for all $y \in M$ with ||y|| = 1.

Take any $y \in M$ with ||y|| = 1. Then for every $\alpha \in \mathbb{R}$, $Q_x - \alpha y \in x + M$ so that

$$||Q_x||^2 \le ||Q_x - \alpha y||^2 = ||Q_x||^2 - 2\alpha \langle Q_x, y \rangle + |\alpha|^2$$

for all $\alpha \in \mathbf{R}$. Put $\alpha = \langle Q_x, y \rangle$ to get

$$||Q_x||^2 \le ||Q_x||^2 - \langle Q_x, y \rangle^2$$

or that $\langle Q_x, y \rangle^2 \leq 0$ and $\langle Q_x, y \rangle = 0$.

Corollary. If M is a closed subspace of H with $M \neq H$, then there is $x \in M^{\perp}$ with ||x|| = 1.

Theorem. (Riesz-representation theorem) If T is a bouned linear functional on a Hilbert space H, then there is a unique element $y \in H$ such that $T(x) = \langle x, y \rangle$ for all $x \in H$.

Proof. If T(x) = 0 for all $x \in H$ then put y = 0. If $T(x) \neq 0$ for some $x \in H$,

$$M = \{ x \in H \, | \, T(x) = 0 \}$$

is a closed subspace of H so that there is $z \in M^{\perp}$ with ||z|| = 1. Put y = T(z)z and the proof is over. Take any $x \in H$ and put u = T(x)z - T(z)x and T(u) = 0 so that $u \in M$. Hence $\langle u, y \rangle = 0$ as

$$\langle T(x)z - T(z)x, T(z)z \rangle = T(x) - \langle x, T(z)z \rangle$$