Introdução à acessibilidade urbana

um guia prático em R

Rafael H. M. Pereira, Daniel Herszenhut

2022-10-11T00:00:00+00:00

Table of contents

Αı	presentação		5
	Organização do livro		6
	Código reproduzível		6
	Licença de uso		6
	Como citar o livro		7
	Agradecimentos		7
I	SEÇÃO 1: Introdução à acessibilidade urbana		8
1	O que é acessibilidade?		10
	1.1 Definição de acessibilidade urbana		10
	1.2 Diferença entre microacessibilidade e acessibilidade urbana		11
	1.3 Por que a acessibilidade urbana importa?		12
	1.4 Diferença entre acessibilidade e mobilidade	. . .	12
2	Medidas de acessibilidade		15
	2.1 Medidas baseadas em lugares		15
	2.1.1 Custo mínimo de viagem		16
	2.1.2 Medida de oportunidades cumulativas		16
	2.1.3 Medidas gravitacionais		17
	2.2 Medidas baseadas em pessoas		19
П	SEÇÃO 2: Calculando acessibilidade		20
3	Calculando acessibilidade urbana em R		22
	3.1 Cálculo da matriz de tempo de viagem		22
	3.1.1 Instalação do r5r		
	3.1.2 Dados necessários		
	3.1.3 Calculando a matriz de tempo de viagens		
	3.2 Cálculo de acessibilidade		27
	3.3 Cálculo de acessibilidade com o r5r		30
	3.4 Análises de acessibilidade		32

Ш	I SEÇÃO 3: Dados de transporte público	38		
4	Dados GTFS			
	4.1 Estrutura dos arquivos de GTFS	40		
	4.1.1 agency.txt	42		
	4.1.2 stops.txt	43		
	4.1.3 routes.txt	44		
	4.1.4 trips.txt	46		
	4.1.5 calendar.txt	47		
	4.1.6 shapes.txt	47		
	4.1.7 stop_times.txt	48		
	4.1.8 frequencies.txt	49		
	4.2 Onde encontrar GTFS de cidades brasileiras	51		
5	Manipulação e visualização de dados GTFS	52		
	5.1 Leitura e manipulação básica de arquivos GTFS	52		
	5.2 Cálculo de velocidade das linhas	55		
	5.3 Combinação e filtragem de feeds	56		
	5.4 Mapeamento do <i>headway</i> das linhas	69		
IV	/ SEÇÃO 4: Avaliação de impacto	74		
6	Comparando a acessibilidade entre dois cenários de transporte	76		
	6.1 Arquivos GTFS usados na análise	76		
	6.2 Cálculo das matrizes de tempo de viagem	77		
	6.3 Cálculo da acessibilidade nos cenários antes e depois	82		
	6.4 Análise dos níveis de acessibilidade antes e depois	86		
V	SEÇÃO 5: Dados do Projeto AOP	89		
VI	I Quais dados estão disponíveis?	91		
	Escopo dos dados:	92		
	Dados de população, empregos e serviços públicos:	92		
	Dados de acessibilidade urbana:	92		
_				
7	Dados de população e socioeconômicos	93		
	7.1 Download dos dados	93		
	7.2 Mapa de população total	94		
	7.3 Mapa de população por cor	95		
	7.4 Mapa de população por renda	96		

8	Dados de distribuição espacial de oportunidades			
	8.1	Download dos dados	98	
	8.2	Mapa de empregos	100	
	8.3	Mapa de escolas	100	
	8.4	Mapa de estabelecimentos de saúde	101	
	8.5	Mapa de CRAS	102	
9	Estimativas e mapas de acessibilidade			
	9.1	Download dos dados	104	
	9.2	Mapa do tempo para acessar o hospital mais próximo	110	
	9.3	Mapa da quantidade de oportunidades acessíveis	111	
	9.4	Desigualdades de acesso a oportunidades	113	
Re	eferêr	icias bibliográficas	118	

Apresentação

O objetivo deste livro é apresentar uma introdução sobre os conceitos e habilidades práticas necessárias para fazer estudos e avaliações de impacto sobre acessibilidade urbana. O livro começa dando uma visão geral sobre o conceito e indicadores de acessibilidade. Em seguida, ensina como analisar dados espaciais e de redes de transporte para se calcular estimativas de acessibilidade por diferentes modos de transporte e como visualizar esses resultados em mapas e gráficos. O livro também busca familiarizar o leitor com dados de redes de transporte público em formato GTFS e ensina como manipular e visualizar esse tipo de dado. Num dos seus principais capítulos, o livro ensina ainda como os dados e metodologia apresentados nos capítulos anteriores podem ser utilizados para avaliar o impacto de projetos de transporte sobre as condições de acesso a oportunidades da população. Por fim, o livro ensina como baixar, analisar e visualizar estimativas de acessibilidade já calculadas para cidades brasileiras e disponibilizadas pela equipe do Projeto Acesso a Oportunidades (AOP) do Ipea.

O tema da acessibilidade tem recebido cada vez mais atenção de agências de transporte, instituições de financiamento, tomadores de decisão e pesquisadores na área de planejamento urbano e de transportes (Papa et al. 2015; Boisjoly and El-Geneidy 2017). Com isso, existe um crescente número de artigos científicos (Miller 2018; Wee 2021) e livros (Levine, Grengs, and Merlin 2019; Levinson and King 2020) que trazem rico material para discussão e aprofundamento sobre questões relacionadas à acessibilidade urbana. No entanto, não existem na literatura livros ou artigos que sirvam simultaneamente de material didático introdutório sobre o tema e de manual prático de metodologia e análise de dados. A ausência desse tipo de material explica, ao menos em parte, porque diversas agências de transporte e analistas ainda enfrentam desafios em incorporar questões e indicadores de acessibilidade no seu dia-a-dia de planejamento e pesquisa (Silva et al. 2017; Büttner 2021).

Este livro foi escrito pensando nas necessidades de trabalho de gestores públicos, analistas, alunos e pesquisadores de planejamento e transporte urbano. Por isso, o livro tem caráter prático. Todo material do livro é apresentado com exemplos reproduzíveis e dados abertos utilizando-se programação em R. O objetivo é equipar seus leitores com os conceitos fundamentais e as ferramentas de análise e processamento de dados necessárias para realizar análises de acessibilidade urbana e conduzir avaliações do impacto de projetos e políticas de transporte a partir de dados e programas de código abertos.

Organização do livro

Este livro está dividido em 5 seções:

- Seção 1: A primeira seção apresenta o conceito de acessibilidade urbana, esclarece a diferença entre acessibilidade e mobilidade urbana, e apresenta os principais indicadores usados para medir a acessibilidade urbana.
- 2. Seção 2: A segunda seção ensina como calcular estimativas de acessibilidade urbana em R usando os pacotes {r5r} e {accessibility} a partir de dados públicos abertos.
- 3. Seção 3: A terceira seção apresenta o que é a especificação GTFS de dados de transporte público, e mostra como trabalhar e analisar dados de GTFS usando o pacote {gtfstools}.
- 4. Seção 4: A quarta seção mostra como o conhecimento dos capítulos anteriores pode ser utilizado para se avaliar o impacto de políticas urbanas sobre condições de acessibilidade urbana usando R.
- 5. Seção 5: Por fim, a quinta seção mostra como fazer download e analisar os dados do projeto Acesso a Oportunidades (AOP) para analisar a distribuição espacial e socioeconômica das condições de acesso a oportunidades nas cidades brasileiras.

Código reproduzível

Este livro traz diversos exemplos reproduzíveis de análise de dados em R. A maneira mais fácil de você rodar todo o código do livro no seu navegador (web browser) é utilizando o Binder. Clicando neste link, você será direcionado para uma sessão do RStudio dentro do seu navegador onde você poderá abrir e rodar os scripts de todos os capítulos do livro.

Este livro foi escrito e publicado com o sistema de publicação Quarto. Todo o código utilizado em seu preparo e na sua publicação do pode ser encontrado neste repositório.

Se você quiser rodar o conteúdo do livro localmente na sua máquina, você pode clonar o repositório do livro e ter o RStudio instalado. Após abrir o projeto intro_access_book.Rproj, basta rodar a função:

quarto::quarto_preview().

Licença de uso

É permitida a reprodução e a exibição para uso educacional ou informativo, desde que respeitado o crédito ao autor original e citada a fonte. Permitida a inclusão da obra em Repositórios ou Portais de Acesso Aberto, desde que fique claro para os usuários os termos

de uso da obra e quem é o detentor dos direitos autorais, o Instituto de Pesquisa Econômica Aplicada (Ipea). Proibido o uso comercial ou com finalidades lucrativas em qualquer hipótese. Proibida a criação de obras derivadas. Para imagens estáticas e em movimento (vídeos e audiovisuais), ATENÇÃO: os direitos de imagem foram cedidos apenas para a obra original, formato de distribuição e repositório. Esta licença está baseada em estudos sobre a Lei Brasileira de Direitos Autorais (Lei 9.610/1998).

Como citar o livro

Caso você use o material deste livro, pedimos por gentileza que você cite o livro utilizando a seguinte referência:

 Pereira, Rafael H. M. & Herszenhut, Daniel. (2022) Introdução à acessibilidade urbana um guia prático em R. Instituto de Pesquisa Econômica Aplicada.

Agradecimentos

Este livro foi elaborado pelo Instituto de Pesquisa Econômica Aplicada (Ipea) no âmbito da parceria entre Ipea e a Secretaria de Mobilidade e Desenvolvimento Regional e Urbano (SMDRU) do Ministério do Desenvolvimento Regional (MDR).

Part I

SEÇÃO 1: Introdução à acessibilidade urbana

Objetivo: O objetivo desta seção é (1) apresentar o conceito de acessibilidade urbana, esclarecendo a diferença entre acessibilidade e mobilidade, e (2) apresentar uma visão geral dos principais indicadores usados para medir acessibilidade.

Quantos postos de trabalho uma pessoa em um determinado local consegue alcançar em até uma hora de viagem usando transporte público? Quanto tempo essa pessoa leva para chegar até o posto de saúde ou a escola mais próxima de sua casa? As respostas a essas perguntas dependem diretamente das políticas locais de transporte e de desenvolvimento urbano. Essas políticas determinam os níveis de acessibilidade urbana em cada cidade - isto é, a facilidade com que cada indivíduo consegue acessar oportunidades de emprego, serviços de saúde e educação, atividades culturais e de lazer, entre outros tipos de atividade. A acessibilidade, portanto, é simultaneamente um resultado da conectividade e performance dos sistemas de transporte, da organização espacial das cidades em termos da distribuição da população, atividades econômicas e serviços públicos por seu território. Assim, a promoção da acessibilidade tem papel-chave para o desenvolvimento econômico, e para promoção de cidades mais sustentáveis e inclusivas. Ao longo desta seção vamos entender com mais detalhes o conceito de acessibilidade, por que ele é importante para entendermos o funcionamento das cidades e quais os indicadores mais comumente utilizados para medir a acessibilidade urbana.

1 O que é acessibilidade?

1.1 Definição de acessibilidade urbana

Acessibilidade é a facilidade com que as pessoas conseguem alcançar lugares e oportunidades – ou, inversamente, uma característica de lugares e oportunidades em termos do quão facilmente eles podem ser alcançados pela população (Geurs and van Wee 2004; Neutens et al. 2010).

As condições de acessibilidade são influenciadas tanto pela co-distribuição espacial da população e de atividades econômicas e serviços públicos quanto pela configuração e desempenho da rede de transportes. Nesse sentido, a acessibilidade urbana tem papel fundamental na capacidade das pessoas de se deslocarem para acessar oportunidades, como empregos, escolas, etc.

Os níveis de acessibilidade urbana são estabelecidos, portanto, por três componentes distintos:

- Infraestrutura: A facilidade de acessar atividades depende da infraestrutura e dos serviços de transporte existentes. Isso inclui, por exemplo, a capilaridade da rede de transporte público, a conectividade da rede viária, a existência de corredores de transporte de alta capacidade, como trens e metrôs, etc. Aqui, tanto a eficiência quanto a conectividade espacial e temporal da rede de transportes são de extrema importância.
- Uso do solo: O quão fácil atividades podem ser acessadas também depende da codistribuição espacial de pessoas e atividades, como escolas, serviços de saúde, áreas de lazer, etc. Esse componente diz respeito à proximidade geográfica entre pessoas e oportunidades: quanto mais longe, mais difícil é o acesso às atividades.
- Pessoas: Por fim, não podemos esquecer que a facilidade de acessar atividades também é afetada pelas características individuais de cada pessoa. Fatores como dificuldades motoras e cognitivas, idade, gênero, cor e renda, por exemplo, podem influenciar de maneira importante a capacidade das pessoas se locomoverem, de utilizarem determinados modos de transporte e de circularem pela cidade sem medo de algum tipo de violência ou descriminação.

A consideração desses fatores traz importantes informações para análises sobre equidade e inclusão social. No entanto, a sua influência sobre as condições acessibilidade das pessoas costuma ser melhor captada em análises qualitativas. Por conta de dificuldades operacionais e computacionais, essa dimensão da acessibilidade costuma receber pouca atenção de estudos de

larga escala de avaliação de impacto de projetos de transporte. Na seção Xx, nós ponderamos algumas vantagens e desvantagens de indicadores que conseguem captar essas três dimensões da acessibilidade urbana.

1.2 Diferença entre microacessibilidade e acessibilidade urbana

Para fins de esclarecimento de conceitos, é importante distinguir entre o que nós chamamos de acessibilidade urbana e o que em geral se entende por acessibilidade, em português.

O termo acessibilidade é comumente utilizado para se referir a questões de padrões e normas de design universal e de construção e planejamento para inclusão de pessoas com diferentes graus de dificuldades motoras e cognitivas. Isso é o que normalmente entende-se por **microacessibilidade**, pois abrange questões de acesso a serviços e atividades na escala micro - ou seja, como detalhes do planejamento de espaços públicos e privados, e a construção de veículos e equipamentos o, por exemplo, afetam a capacidade de cada indivíduo de conseguir acessar lugares, serviços, produtos, etc.

A acessibilidade urbana, por sua vez, pode ser entendida como macroacessibilidade, pois trata de questões de acesso de uma maneira mais ampla. Ou seja, quando falamos de acessibilidade urbana nos concentramos em como questões estruturais de planejamento e desenvolvimento urbano, como a disposição de corredores de transportes e a distribuição espacial de pessoas e atividades, afetam a capacidade das pessoas de acessar oportunidades. Ela trata de como a capacidade de acessar atividades considerando tanto as capacidades das pessoas utilizarem tecnologias de transporte quanto a distribuição espacial de atividades vis-à-vis a cobertura e conectividade da rede de transporte.

Notadamente, a microacessibilidade e a macroacessibilidade são elementos complementares de uma noção mais ampla de acessibilidade. Condições de microacessibilidade, por exemplo, afetam diretamente a capacidade de pessoas embarcarem e utilizarem diferentes modos de transporte, de se locomoverem com segurança sobre calçadas, de atravessarem ruas, etc. De pouco adianta um indivíduo morar em uma região atendida por uma grande oferta de modos de transporte se a pessoa é cadeirante, por exemplo, e a rede de transporte não é adaptada para pessoas com dificuldade de locomoção. Neste livro focaremos apenas em análises de acessibilidade urbana e muitas vezes utilizaremos o termo acessibilidade como um sinônimo de macroacessibilidade por uma questão de fluência do texto. É importante reconhecer, no entanto, que a macroacessibilidade de forma isolada não é suficiente para descrever as condições de acessibilidade de um indivíduo em sua totalidade, e que para tal precisaríamos olhar também para a microacessibilidade.

1.3 Por que a acessibilidade urbana importa?

O conceito de acessibilidade é central em estudos de transporte por diferentes razões. Primeiramente, este conceito articula de maneira explícita como políticas de transporte e políticas de desenvolvimento e uso do solo urbano interagem e impactam a capacidade das pessoas de se deslocarem nas cidades. Por sua vez, o acesso a oportunidades e atividades, como postos de trabalho e serviços de educação e de saúde, por exemplo, tem papel fundamental para a satisfação das necessidades individuais e sociais e para promoção da inclusão social (Pereira and Karner 2021; Luz and Portugal 2022). A promoção da acessibilidade também é uma condição necessária, embora não suficiente, para a expansão da liberdade de escolha das pessoas (Church, Frost, and Sullivan 2000; Lucas et al. 2016; van Wee 2022). O conceito de acessibilidade, portanto, serve como fio condutor para relacionar investimentos e políticas de transportes e uso do solo a questões relacionadas à exclusão social e qualidade de vida de indivíduos, como o potencial de satisfação de necessidades básicas e a liberdade.

Adicionalmente, a ideia de acessibilidade traz à tona a dimensão espacial de um problema central de justiça social, que é a desigualdade de oportunidades. Ela ajuda, portanto, a explicitamente incorporar a noção de espaço no desenho de políticas destinadas a enfrentar essas injustiças (Farrington and Farrington 2005; Pereira, Schwanen, and Banister 2017). Assim, a noção de acessibilidade se torna peça fundamental para se pensar a equidade de políticas públicas, e de se avaliar os aspectos distributivos de quais grupos sociais e quais bairros se beneficiam dessas políticas.

Como vimos anteriormente, os níveis de acesso a oportunidades numa cidade são resultado conjunto da capacidade de cada pessoa utilizar tecnologias de transporte e da integração entre a distribuição geográfica de atividades, a distribuição espacial da população na cidade e a conectividade espacial e temporal da rede de transportes (Miller 2018; Páez, Scott, and Morency 2012). O planejamento com foco na acessibilidade, desta forma, passa por um planejamento integrado entre o uso do solo e o sistema de transportes, buscando criar maior proximidade entre pessoas e atividades e reduzindo a dependência de modos de transporte motorizados (Banister 2011). Planejar as cidades e sistemas de transporte visando melhorar a acessibilidade, portanto, é essencial para o desenvolvimento de cidades inclusivas e sustentáveis.

1.4 Diferença entre acessibilidade e mobilidade

A diferença entre os conceitos de acessibilidade e mobilidade é frequentemente ignorada, mesmo por pesquisadores e planejadores que lidam com esses temas diariamente. Afinal de contas, existe uma grande intersecção temática entre a acessibilidade e o que se entende de por "mobilidade urbana" enquanto área de pesquisa e política pública: uma área que lida com os deslocamentos das pessoas, que está relacionada ao planejamento de sistemas de transporte coletivo e individual, com o planejamento de redes cicloviárias e de pedestres, etc. Neste contexto, não é raro, por exemplo, ouvir que um determinado grupo populacional "tem menos mobilidade" do

que outro, quando na verdade o que se quer dizer é que esse grupo apresenta piores condições de acessibilidade. Qual é, então, a diferença entre acessibilidade e mobilidade?

Na literatura científica de planejamento urbano e de transportes, o conceito de mobilidade diz respeito aos padrões de viagens que as pessoas efetivamente fazem no seu dia a dia — por exemplo, quantas viagens foram feitas, quais modos de transporte foram usados, qual a distância média das viagens, quanto tempo se gasta no deslocamento casa-trabalho, etc. Informações de mobilidade são tradicionalmente captadas por meio de pesquisas domiciliares origem-destino. Recentemente, com o surgimento de novas tecnologias digitais, dados de GPS de telefones celulares, de cartões de bilhetagem eletrônica, de radares e semáforos urbanos, entre outros, vêm também sendo usados com a finalidade de descrever os deslocamentos diários da população (Anda, Erath, and Fourie 2017; Kandt and Batty 2021). Dados e análises de mobilidade trazem informações sobre as condições diárias de uso do sistema de transportes e sobre os padrões de viagens de indivíduos de diferentes grupos socioeconômicos, o que permite captar aspectos importantes do desempenho econômico e ambiental das cidades e do bem-estar da população.

O conceito de acessibilidade, por sua vez, está intrinsecamente relacionado ao potencial que as pessoas têm de alcançar atividades e oportunidades. Enquanto uma análise de mobilidade foca, por exemplo, no que as pessoas levam no seu deslocamento diário de sua casa até o seu trabalho, uma análise de acessibilidade tenta identificar, digamos, se as pessoas conseguiriam alcançar seus empregos em um tempo de viagem tido como razoável ou qual a quantidade de empregos potencialmente alcançáveis dentro de um determinado custo de viagem. A acessibilidade trata do quão fácil/factível é alcançar um local, a mobilidade trata de como esse local foi alcançado. Níveis de acessibilidade são, portanto, medidas potenciais, ao passo que os dados de mobilidade descrevem padrões reais, realizados.

Tradicionalmente, o planejamento urbano e de transportes tem como foco a mobilidade, (Banister 2011; Vasconcellos 2018; Levinson and King 2020). Ainda hoje, o foco na mobilidade motiva políticas que priorizam a circulação de automóveis e visam aumentar a velocidade e a fluidez de trânsito para reduzir congestionamentos e, consequentemente, reduzir tempos de deslocamento [levine2019mobility]. Essas políticas, no entanto, tendem a dar um enfoque quantitativo na mobilidade: aumentar o número de viagens, aumentar a velocidade média, diminuir o tempo de congestionamento, etc. Neste contexto, portanto, a mobilidade é vista como um fim em si mesma, e "melhorar" a mobilidade dependeria de políticas como soluções puramente técnicas que deveriam "otimizar" os aspectos quantitativos mencionados anteriormente.

A mobilidade, no entanto, não pode ser encarada como uma finalidade em si. As pessoas raramente se deslocam pelo simples prazer de se deslocar. Ao contrário, na grande maioria das vezes as pessoas se deslocam como um meio para acessar as atividades no destino da viagem. Neste sentido, tem-se observado um crescente consenso entre pesquisadores e agências de transporte de que o objetivo de uma política de transportes é melhorar o acesso da população (Pereira, Schwanen, and Banister 2017; Martens 2012; Bertolini, le Clercq, and Kapoen 2005). Se o que as pessoas querem é acessar atividades, então é possível pensar em formas de

planejamento que facilitem seu acesso a tais atividades sem necessariamente promover o aumento da motorização e da velocidade no trânsito, que implicam no aumento de externalidades econômicas, ambientais, de saúde pública, entre outras.

Neste caso, há uma mudança de paradigma no planejamento urbano e de transportes: a busca por padrões de viagem mais sustentáveis implica na mudança do foco da mobilidade para a acessibilidade (Banister 2008). Políticas de aumento de velocidade nas vias e de expansão de faixas, por exemplo, podem ser substituídas por políticas de promoção de maior *mix* de uso do solo e de aproximação de pessoas e atividades, promovendo maior integração entre planejamento de transporte e uso do solo. Quando o foco da política muda da mobilidade para a acessibilidade urbana, abre-se um leque maior de possíveis instrumentos e ações de políticas públicas para promover um desenvolvimento urbano mais integrado e calcado na promoção da sustentabilidade e da inclusão social (Banister 2011; Levine, Grengs, and Merlin 2019).

2 Medidas de acessibilidade

A mudança de paradigma no planejamento urbano e de transportes para a promoção da acessibilidade traz com si diversos desafios. Entre eles está a necessidade de criar métodos que busquem medir as condições de acessibilidade nas cidades. A busca por estimativas de acessibilidade facilmente comunicáveis, metodologicamente robustas e pouco intensivas computacionalmente levou ao desenvolvimento de um grande número de diferentes medidas (Páez, Scott, and Morency 2012). Essas medidas podem ser divididas em dois grandes grupos: medidas baseadas em lugares e medidas baseadas em pessoas (Dijst, de Jong, and van Eck 2002).

2.1 Medidas baseadas em lugares

Medidas baseadas em lugares medem a acessibilidade como uma característica de um determinado local. Por simplificação, esses indicadores assumem que todas as pessoas que se encontram em um mesmo local têm as mesmas condições de acesso às atividades distribuídas pela cidade. Ou seja, se uma análise de acessibilidade utiliza uma medida baseada em lugares para calcular a acessibilidade e divide a área de estudo em uma grade quadriculada, cada célula dessa grade (um quadrado) terá a ela associado um nível de acessibilidade, que é posteriormente atribuído a todas as pessoas que residem dentro daquela célula. Essas medidas são sensíveis a fatores relacionados à distribuição espacial de atividades e à configuração e desempenho da rede de transporte, mas não levam em consideração as características individuais das pessoas.

As medidas desse tipo são as mais amplamente utilizadas por agências de transporte e pesquisadores Papa et al. (2015). Isto porque elas exigem menor quantidade de dados e tendem a ser consideravelmente mais fáceis de serem calculadas e interpretadas do que suas contrapartes baseadas em pessoas. Por este motivo, os exemplos e estudos de caso apresentados neste nos próximos capítulos deste livro focam somente neste grupo de medidas.

Medidas de acessibilidade baseadas em lugares associam a cada deslocamento um custo, usualmente expresso em termos de viagem (El-Geneidy et al. 2016; Venter 2016) - ou seja, se um local pode ser alcançado a partir de outro em meia hora, o custo para realizar essa viagem é de 30 minutos. Nada impede, no entanto, que outros tipos de custo, como a distância da viagem, seu custo monetário e a percepção de conforto dos usuários, por exemplo, sejam considerados (Arbex and Cunha 2020; Herszenhut et al. 2022). Nós apresentamos abaixo uma rápida descrição de algumas das medidas baseadas em lugares mais frequentemente utilizadas

na literatura científica e na prática de agências de transporte. O termo "custo" é utilizado aqui de maneira ampla, e pode se referir a qualquer tipo de unidade quantitativa utilizada para quantificar a impedância de uma viagem, seja ela tempo de viagem, custo monetário ou demais alternativas.

2.1.1 Custo mínimo de viagem

Uma das medidas de acessibilidade mais simples, a medida de custo mínimo de viagem indica qual é o menor custo de necessário para alcançar a oportunidade mais próxima a partir de uma determinada origem. Ela permite captar, por exemplo, qual é o tempo de viagem até o posto de saúde mais próximo a partir de cada quarteirão de uma cidade. O indicador é calculado com a seguinte fórmula:

$$A_i = min(c_{i1}, c_{i2}, \dots, c_{ij}, \dots, c_{i(n-1)}, c_{in}) \iff O_j \ge 1$$

em que A_i é a acessibilidade na origem i, c_{ij} é o custo de deslocamento entre a origem i e o destino j, n é o número total de destinos na área de estudo e O_j é o número de oportunidades no destino j.

Vantagens e desvantagens: Esta medida tem as vantagens de ser fácil de se calcular e exigir poucos dados, além de ser fácil de comunicar. Duas desvantagens, no entanto, são que ela não capta a quantidade de oportunidades acessíveis e nem aspectos de competição na demanda pela oportunidade. Por exemplo, uma pessoa pode morar muito perto de um hospital, mas essa proximidade pode não garantir um bom acesso aos serviços de saúde se esse for o único hospital da região e estiver sujeito a picos de demanda que sobrecarregam os serviços além de suas capacidades.

2.1.2 Medida de oportunidades cumulativas

A medida de oportunidades cumulativas mede a quantidade de oportunidades que pode ser alcançada dentro de um determinado limite de custo de viagem. Por exemplo, este indicador pode ser utilizado para medir a quantidade de empregos acessíveis por transporte público em até 60 minutos ou a quantidade de escolas acessíveis em até 30 minutos de viagem a pé. A medida é calculada com a seguinte fórmula:

$$A_i = \sum_{j=1}^n O_j \times f(c_{ij})$$

$$f(c_{ij}) = \begin{cases} 1 & \text{se } c_{ij} \leq C \\ 0 & \text{caso contrário} \end{cases}$$

em que A_i é a acessibilidade na origem $i,\,O_j$ é o número de oportunidades no destino $j,\,n$ é o número total de destinos na área de estudo, $f(c_{ij})$ é uma função binária que assume os valores 0 ou 1, a depender do custo de deslocamento c_{ij} entre a origem i e o destino j, e C é o limite de custo de deslocamento estabelecido.

Vantagens e desvantagens: A medida de oportunidades cumulativas também é fácil de se calcular, exige poucos dados, e é fácil de comunicar. Isso contribui para que este indicador seja um dos mais utilizados por agências de transporte e de financiamento em análises de acessibilidade (Papa et al. 2015; Boisjoly and El-Geneidy 2017). Entre as suas desvantagens estão o fato de que este indicador não considera a influência da competição sobre oportunidades e exige a escolha de um único ponto de corte como custo máximo de viagem. Além disso, esta medida assume que todas as oportunidades são igualmente desejáveis e alcançáveis pelas pessoas, desde que os custos de viagem estejam dentro do limite pré-estabelecido - ou seja, uma oportunidade a 10 minutos de viagem é igualmente acessível a outra que esteja a 40 minutos de viagem, por exemplo, se o custo limite for de 60 minutos.

2.1.3 Medidas gravitacionais

Mais do que um tipo de medida específica, podemos entender as medidas gravitacionais como uma família de medidas. Assim como no caso da medida de oportunidades cumulativas, esta família de métricas considera a soma das oportunidades que podem ser alcançadas a partir de um determinado local. A contagem de oportunidade, no entanto, é gradualmente descontada à medida que o custo da viagem aumenta. Assim, oportunidades mais fáceis de acessar têm uma importância maior, e o peso de cada oportunidade na soma total diminui com a sua dificuldade de acesso em relação à origem.

O ritmo de decaimento desse peso em função do custo da viagem é ditado por uma função de impedância, que pode ser definida de diferentes formas. Por exemplo, a **função de decaimento linear** considera que o peso de cada oportunidade diminui de maneira constante ao longo do trajeto até um determinado custo limite, onde ele passa a ser zero. Já a **função de decaimento exponencial negativa** considera que o peso de cada oportunidade é dividido por um fator que cresce exponencialmente, fazendo com que ele diminua rapidamente a custos de viagem baixos e se aproxime de 0 a custos altos. As fórmulas abaixo apresentam a formulação genérica de uma medida gravitacional e as funções de decaimento linear e exponencial negativa, mencionadas acima.

$$A_i = \sum_{j=1}^n O_j \times f(c_{ij})$$

$$f_{lin}(c_{ij}) = \begin{cases} 1 - c_{ij}/C & \text{se } c_{ij} \leq C \\ 0 & \text{caso contrário} \end{cases}$$

$$f_{exp}(c_{ij}) = e^{-\beta c_{ij}}$$

em que A_i é a acessibilidade na origem i, O_j é o número de oportunidades no destino j, n é o número total de destinos na área de estudo, $f(c_{ij})$ é uma função de decaimento cujo resultado varia com o custo de deslocamento c_{ij} entre a origem i e o destino $j, f_{lin}(c_{ij})$ é a função de decaimento linear, C é o limite de custo de deslocamento estabelecido, $f_{exp}(c_{ij})$ é a função de decaimento exponencial negativa e β é um parâmetro que dita a velocidade de decaimento.

Um sem-número de diferentes funções de decaimento podem ser utilizadas no cálculo de medidas gravitacionais. A medida de oportunidades cumulativas, por exemplo, pode ser pensada simplesmente como um caso especial de medida gravitacional em que o peso de cada oportunidade é ditado por uma função binária, em vez de decair gradualmente. Levinson and King (2020, 49) apresentam uma lista de funções de decaimento utilizadas por agências de transportes e pesquisadores em análises que envolvem medidas gravitacionais.

Vantagens e desvantagens: A principal vantagem de medidas gravitacionais é que o desconto do peso das oportunidades pelo custo da viagem reflete, de alguma maneira, a forma como as pessoas costumam perceber o acesso a oportunidades: serviços e atividades costumam ser mais atrativas quanto mais próximos eles estiverem, tudo mais constante. Este indicador, no entanto, tem ao menos duas desvantagens. A primeira delas é que os níveis de acessibilidade estimados são de difícil interpretação, pela forma como a contagem de oportunidades é descontada pelo custo de viagem. Além disso, para que esses níveis sejam mais representativos do comportamento de viagem das pessoas, o ritmo de decaimento da função de impedância (o parâmetro β da função exponencial negativa, por exemplo) precisa ser calibrado. Por isso, esta medida requer a disponibilidade de dados de comportamento de viagens ou outros dados que possam ser usados no processo de calibração, disponíveis, por exemplo, a partir de pesquisas tipo origem-destino, dados de telefone celular etc. ### Medidas de acessibilidade com competição: floating catchment area

Em muitos casos, o acesso a oportunidades é afetado não apenas por questões de proximidade geográfica e de custos de transporte, mas também pela competição de diferentes pessoas por uma mesma oportunidade. Isso é muito comum, por exemplo, em casos de acesso a serviços de saúde, escolas e empregos. Uma vaga de emprego só pode ser ocupada por uma pessoa de cada vez, e o mesmo vale para um leito de UTI ou uma vaga em uma escola.

Existe uma gama de medidas de acessibilidade que buscam incorporar essa competição pelas oportunidades na estimativa dos níveis de acessibilidade. Algumas das medidas de competição mais amplamente utilizadas são as do tipo floating catchment area (FCA, em tradução livre área de influência flutuante). A título de exemplo, esses indicadores tentam levar em consideração como uma mesma pessoa pode potencialmente acessar vários leitos de UTI e, simultaneamente, como cada leito de UTI pode ser acessado por diversas pessoas. Assim, o acesso de uma pessoa ao serviço de leito de UTI é influenciado simultaneamente tanto por questões de custos de transporte como também pela disponibilidade de leitos de UTI considerando a potencial concorrência na demanda por aqueles leitos.

Dentro da família de medidas de FCA, a mais comumente utilizada é a 2-Step Floating Catchment Area (2SFCA), proposta originalmente por Luo and Wang (2003). Uma limitação da 2SFCA é que ela contabiliza que uma mesma pessoa pode demandar várias oportunidades ao mesmo tempo e que, analogamente, um mesmo serviço pode ser utilizado por várias pessoas ao mesmo tempo. Esses fenômenos são conhecidos como problemas de inflação de demanda e de oferta, respectivamente, e podem gerar estimativas de acessibilidade enviesadas ou pouco precisas (Paez, Higgins, and Vivona 2019). Para lidar com esses problemas, Paez, Higgins, and Vivona (2019) propuseram a Balanced Floating Catchment Area (BFCA), uma das mais novas da família de medidas de FCA.

Vantagens e desvantagens: Diferentes medidas de FCA têm diferentes vantagens e desvantagens, em maior ou menor grau. No entanto, de maneira geral, a principal vantagem de medidas desta família é a sua capacidade de incorporar aspectos de competição em estimativas de acessibilidade. A principal desvantagem, por outro lado, é a difícil interpretação e comunicação dos seus resultados.

2.2 Medidas baseadas em pessoas

Medidas de acessibilidade baseadas em pessoas são sensíveis não apenas à distribuição espacial de atividades e à configuração e desempenho da rede de transporte. Indicadores desta categoria também levam em consideração como que características pessoais de cada indivíduo (como sexo, idade, deficiência física, etc.) e até questões como participação em atividades e compromissos pessoais podem afetar a facilidade de acesso de uma pessoa a determinadas atividades. Esta categoria inclui, por exemplo, medidas de acessibilidade baseadas em utilidade Miller (2018), indicadores baseadas em atividades (Dong et al. 2006) e medidas de espaço-tempo Neutens et al. (2012).

Vantagens e desvantagens: Embora indicadores desta categoria sejam mais sofisticados, eles costumam demandar grandes quantidades de dados, incluindo registros de diários de viagem, pesquisas domiciliares tipo origem-destino, etc. Por isso, o cálculo dessas medidas é computacionalmente mais intensivo e complexo, o que faz com que elas sejam menos utilizadas do que as medidas baseadas em lugares Miller (2018).

Part II

SEÇÃO 2: Calculando acessibilidade

Objetivo: O objetivo desta seção é mostrar como calcular estimativas de acessibilidade urbana em R usando os pacotes r5r e accessibility.

O cálculo dos níveis de acessibilidade em um determinado local compreende duas etapas principais: primeiro, nós precisamos calcular uma matriz de custo, geralmente o tempo de viagem, entre as origens e os destinos de uma determinada cidade ou região considerando um modo de transporte; feito isso, calculamos a acessibilidade em cada ponto de origem considerando os custos de transporte entre cada origem e o número de oportunidades em cada destino. Nesta seção nós aprenderemos mais sobre essas duas etapas usando R, quais dados são necessários para executá-las e quais as vantagens e desvantagens dos diferentes métodos que podem ser usados para isso.

3 Calculando acessibilidade urbana em R

3.1 Cálculo da matriz de tempo de viagem

Como comentado anteriormente, a primeira etapa necessária para calcular os níveis de acessibilidade de uma área urbana é calcular a matriz de custo de viagem entre as diversas origens e destinos que a compõem. Na literatura científica e na prática do planejamento de sistemas de transporte público, esse custo é mais frequentemente representado pelo tempo de viagem que separa dois pontos (El-Geneidy et al. 2016; Venter 2016), embora trabalhos recentes tenham considerado também outros fatores, como o dinheiro necessário para realizar uma viagem e o nível de conforto da viagem entre um ponto e outro (Arbex and Cunha 2020; Herszenhut et al. 2022). Pela prevalência deste tipo de matriz na literatura e na prática, porém, iremos nos focar em matrizes de tempo de viagem.

Atualmente, a forma mais fácil e rápida de gerar uma matriz de tempo de viagem em R é utilizando o pacote r5r (Pereira et al. 2021), desenvolvido pela equipe do Projeto Acesso a Oportunidades, do Ipea. O pacote utiliza, por trás dos panos, o *software* de roteamento multimodal de transporte público R5, desenvolvido pela Conveyal¹.

3.1.1 Instalação do r5r

A instalação do r5r funciona como a instalação de qualquer pacote no R.

```
install.packages("r5r")
```

Além do R, o pacote r5r requer também a instalação do Java 11². Se você não sabe qual versão do Java você tem instalada em seu computador, você pode checar essa informação rodando este código no console do R.

```
cat(processx::run("java", args = "-version")$stdout)
```

¹Disponível em https://www.pasfor.com.br/.

²Mais detalhes sobre o uso e a sintaxe do data.table podem ser lidos em https://rdatatable.gitlab.io/data.table/index.html.

3.1.2 Dados necessários

O uso do pacote r5r requer os seguintes dados:

- Rede viária (obrigatório): um arquivo com a rede viária e de infraestrutura de pedestres do *OpenStreetMap*, em formato .pbf;
- Rede de transporte público (opcional): um arquivo GTFS descrevendo a rede de transporte público da área de estudo;
- Topografia (opcional): um arquivo de dados em *raster* com o modelo digital de elevação em formato .tif, caso deseje-se levar em consideração os efeitos da topografia do local sobre os tempos de caminhada.

Aqui estão alguns lugares de onde você pode baixar estes dados:

- OpenStreetMap
 - osmextract, pacote de R
 - geofabrik, website
 - hot export tool, website
 - BBBike.org, website
- GTFS
 - tidytransit, pacote de R
 - transitland, website
 - No capítulo X desde livro (tabela xx) nós indicamos também onde baixar os dados de GTFS de algumas cidades brasileiras que compartilham seus dados publicamente.
- Topografia
 - elevatr, pacote de R
 - Nasa's SRTMGL1, website

Os arquivos destes dados devem ser salvos em uma mesma pasta que, preferencialmente, não contenha nenhum outro arquivo. Como se verá adiante, o r5r combina todos os dados salvos nesta pasta para criar uma rede de transporte multimodal que será utilizada para simulações de roteamento e cálculo das matrizes de viagem. Note que é possível ter mais de um arquivo GTFS na mesma pasta, nesse caso o r5r irá considerar as redes de transporte públicos de todos feeds. No entanto, a pasta deve conter um único arquivo de rede viária .pbf. Assumindo que os scripts de R estarão em uma pasta chamada R, a organização dos arquivos deverá seguir o esquema abaixo:

```
\-- r5
    +-- rede_transporte_publico.zip
    +-- rede_viaria.osm.pbf
    \-- topografia.tif
```

Para ilustrar as funcionalidades do r5r, nós vamos usar uma pequena amostra de dados para a cidade de Porto Alegre (Brasil). Esses dados estão disponíveis dentro do próprio pacote r5r na pasta system.file("extdata/poa", package = "r5r"):

```
/home/runner/work/intro_access_book/intro_access_book/renv/library/R-4.2/x86_64-pc-linux-gnu,
+-- poa.zip
+-- poa_elevation.tif
+-- poa_hexgrid.csv
+-- poa_osm.pbf
\-- poa_points_of_interest.csv
```

Esta pasta possui quatro arquivos que vamos usar agora:

- A rede viária do OpenStreetMap: poa_osm.pbf
- Dois feeds de GTFS das redes de ônibus e de trens: poa_eptc.zip e poa_trensurb.zip
- O dado de topografia: poa_elevation.tif
- Um arquivo poa_hexgrid.csv com coordenadas geográficas dos centróides de uma grade hexagonal regular cobrindo toda a área da amostra e com informações sobre o tamanho da população residente e o número de oportunidades (empregos, escolas e hospitais) em cada hexágono. Esses pontos serão utilizados como os pontos de origem e destino no cálculo da matriz de tempo de viagem.

3.1.3 Calculando a matriz de tempo de viagens

Antes de calcular a matriz de tempo de viagem, precisamos aumentar a memória disponível para o Java. Isto é necessário porque, por padrão, o R aloca apenas 512MB de memória para processos Java, o que não é suficiente para grandes consultas usando r5r. Para aumentar a memória disponível para 2GB, por exemplo, precisamos definir um valor para o parâmetro java.parameters no início do script antes de carregar as bibliotecas do R:

```
options(java.parameters = "-Xmx2G")
```

Pronto, agora vamos carregar as bibliotecas que vamos utilizar neste capítulo.

```
library(r5r)
library(accessibility)
```

```
library(sf)
library(data.table)
library(ggplot2)
library(aopdata)
```

Feito isso, o cálculo de uma matriz de tempo de viagens da sua área de estudo pode ser feito em dois passos. O primeiro passo é gerar a rede de transporte multimodal que será utilizada no roteamento. Para isso, nós utilizamos a função setup_r5(). Esta função baixa o software de roteamento R5 e o utiliza para criar a rede. A função setup_r5() recebe como input o caminho da pasta onde você armazenou seus dados. Além da função salvar na pasta alguns arquivos necessários para o roteamento, ela também retorna uma conexão com o R5, que neste exemplo nós chamamos de r5r_core, e que será utilizada no cálculo da matriz de tempo de viagem.

```
path <- system.file("extdata/poa", package = "r5r")

r5r_core <- setup_r5(path, use_elevation = TRUE, verbose = FALSE)

fs::dir_tree(path)</pre>
```

```
/home/runner/work/_temp/renv/cache/v5/R-4.2/x86_64-pc-linux-gnu/r5r/0.7.1/61db001154cd833466.
+-- network.dat
+-- poa.zip
+-- poa_elevation.tif
+-- poa_hexgrid.csv
+-- poa_osm.pbf
+-- poa_osm.pbf.mapdb
+-- poa_osm.pbf.mapdb.p
```

O passo final é usar a função para o cálculo da matriz de tempo de viagem, apropriadamente chamada de travel_time_matrix(). Como inputs básicos, a função recebe a conexão com o R5 criada acima, pontos de origem e destino em formato de data.frame com as colunas id, lon e lat, o modo de transporte a ser utilizado, o horário de partida, o tempo máximo de caminhada permitido da origem até o embarque no transporte público e do desembarque até o destino, e o tempo máximo de viagem a ser considerado.

```
points <- fread(file.path(path, "poa_hexgrid.csv"))

ttm <- travel_time_matrix(
   r5r_core,</pre>
```

\-- poa_points_of_interest.csv

```
origins = points,
destinations = points,
mode = c("WALK", "TRANSIT"),
departure_datetime = as.POSIXct(
   "13-05-2019 14:00:00",
   format = "%d-%m-%Y %H:%M:%S"
),
max_walk_dist = 800,
max_trip_duration = 120,
verbose = FALSE,
progress = FALSE
)
```

	fromId	toId	travel_time
1:	89a901291abffff	89a901291abffff	1
2:	89a901291abffff	89a901295b7ffff	41
3:	89a901291abffff	89a9012809bffff	43
4:	89a901291abffff	89a901285cfffff	35
5:	89a901291abffff	89a90e934d7ffff	71
1169147:	89a90166da7ffff	89a90129133ffff	58
1169148:	89a90166da7ffff	89a9012ac43ffff	93
1169149:	89a90166da7ffff	89a90129a47ffff	19
1169150:	89a90166da7ffff	89a90128883ffff	65
1169151:	89a90166da7ffff	89a90166da7ffff	0

Diversos outros *inputs* podem ser passados para o cálculo da matriz, como a velocidade de caminhada e o número máximo de pernas de transporte público permitido, entre outros. Para mais informações sobre cada um dos parâmetros, por favor consulte a documentação da função disponível no pacote ou no site do r5r aqui.

Na prática, o que a função travel_time_matrix() faz é encontrar qual a rota de viagem mais rápida partindo de cada ponto de origem para todos os possíveis pontos de destino considerando o modo de viagem, horário de partida e demais parâmetros passados pelo usuário. Para isso, o r5r considera tempos de viagem de porta-a-porta. No caso de uma viagem por transporte público, por exemplo, o tempo total de viagem inclui a) o tempo de caminhada até a parada de transporte público; b) o tempo de espera pelo veículo na parada; c) o tempo de deslocamento dentro do veículo; e d) o tempo de viagem a pé da parada de desembarque até o destino. Em casos em que mais de uma rota de transporte público é utilizada, o r5r também contabiliza o

tempo gasto nas conexões, considerando a caminhada entre paradas e o tempo de espera pelo próximo veículo.

A função travel_time_matrix() utiliza uma extensão do algoritmo de roteamento RAPTOR (Conway, Byrd, and van der Linden 2017), o que torna o R5 extremamente rápido. A depender da quantidade de pares de origem-destino, o r5r pode ser entre 6 e 200 vezes mais rápido do que softwares alternativos para calcular uma matriz de tempo de viagem (Higgins et al. 2022).

3.2 Cálculo de acessibilidade

Após calculada a matriz de tempo de viagem entre as origens e os destinos da área de estudo, nós precisamos utilizá-la para calcular os níveis de acessibilidade do local. Para isso, nós utilizaremos o pacote accessibility, também desenvolvido pela equipe do Projeto Acesso a Oportunidades, que contém diversas funções para vários indicadores de acessibilidade.

Como *input* básico, todas as funções requerem uma matriz de custo pré-calculada (no nosso caso, a matriz de tempo de viagem calculada na seção anterior) e dados de uso do solo, como o número de determinados tipos de oportunidades em cada ponto da área de estudo, por exemplo.

Medida cumulativa de acesso a oportunidades

O exemplo abaixo mostra uma simples aplicação da função cumulative_cutoff(), utilizada para calcular o número de oportunidades que pode ser alcançado em um determinado limite de custo de viagem. No exemplo abaixo, nós calculamos o número de postos de trabalho que podem ser alcançados em até 30 minutos de viagem a partir de cada origem presente em nossa matriz de tempo de viagem.

```
setnames(ttm, c("fromId", "toId"), c("from_id", "to_id"))

cumulative_access <- cumulative_cutoff(
   ttm,
   points,
   opportunity = "schools",
   travel_cost = "travel_time",
   cutoff = 30
)</pre>
cumulative_access
```

```
id schools
   1: 89a901291abffff
                            19
                             0
   2: 89a9012a3cfffff
   3: 89a901295b7ffff
                            15
   4: 89a901284a3ffff
                             0
  5: 89a9012809bffff
                            20
1223: 89a90129133ffff
                             4
1224: 89a9012ac43ffff
                             9
1225: 89a90129a47ffff
                            12
1226: 89a90128883ffff
                            31
1227: 89a90166da7ffff
                            15
```

Mínimo custo de viagem

A função cost_to_closest(), por sua vez, calcula o mínimo custo de viagem necessário para alcançar um determinado número de oportunidades. O código abaixo, por exemplo, calcula o tempo de viagem mínimo para alcançar o hospital mais próximo a partir de cada origem.

```
min_cost <- cost_to_closest(
   ttm,
   points,
   opportunity = "schools",
   travel_cost = "travel_time"
)
min_cost</pre>
```

	id	travel_time
1:	89a9012124fffff	0
2:	89a9012126bffff	16
3:	89a9012127bffff	11
4:	89a90128003ffff	7
5:	89a90128007ffff	20
1223:	89a90e934cbffff	13
1224:	89a90e934cfffff	9
1225:	89a90e934d3ffff	7
1226:	89a90e934d7ffff	0
1227:	89a90e934dbffff	23

Medidas gravitacionais de acessibilidade

A função gravity() calcula medidas gravitacionais de acessibilidade - ou seja, aquelas nas quais o peso de cada oportunidade diminui gradualmente com o aumento do custo de viagem. Existem, no entanto, uma gama de diferentes tipos de funções de decaimento que podem ser utilizadas, como funções de decaimento exponenciais negativas, de potências inversas, entre outras. Por isso, esta função recebe um *input* adicional: a função de decaimento a ser utilizada no cálculo. O exemplo abaixo apresenta o cálculo de acessibilidade a estabelecimentos de educação usando uma medida gravitacional exponencial negativa com parâmetro de decaimento igual a 0.2.

```
negative_exp_access <- gravity(</pre>
    ttm,
    points,
    opportunity = "schools",
    travel cost = "travel time",
    decay_function = decay_exponential(0.2)
  )
  negative_exp_access
                   id
                         schools
   1: 89a901291abffff 0.35892873
   2: 89a9012a3cfffff 0.00000000
   3: 89a901295b7ffff 0.52061269
   4: 89a901284a3ffff 0.00000000
   5: 89a9012809bffff 0.44769080
1223: 89a90129133ffff 0.02885676
1224: 89a9012ac43ffff 0.09138463
1225: 89a90129a47ffff 0.35857154
1226: 89a90128883ffff 1.86366449
1227: 89a90166da7ffff 0.40513107
```

Indicadores de acessibilidade com competição

Por fim, a função floating_catchment_area() calcula níveis de acessibilidade levando em consideração a competição por oportunidades usando diferentes indicadores do tipo floating catchment area. Como diversos métodos de FCA podem ser utilizados, a função requer que o método desejado seja explicitamente assinalado. E, assim como a função de acessibilidade gravitacional, a função de decaimento utilizada também deve ser definida pelo usuário. O código a seguir mostra um exemplo de cálculo de acessibilidade a oportunidades de emprego usando o método BFCA (Paez, Higgins, and Vivona 2019), levando em consideração os efeitos

de competição entre a população como um todo e uma função de decaimento exponencial com parâmetro de decaimento igual a 2.

```
bfca_access <- floating_catchment_area(</pre>
    ttm,
    points,
    opportunity = "schools",
    travel_cost = "travel_time",
    demand = "population",
    method = "bfca",
    decay_function = decay_exponential(0.05)
  bfca access
                   id
                           schools
   1: 89a901291abffff 0.0002574442
   2: 89a9012a3cfffff 0.0000000000
   3: 89a901295b7fffff 0.0002091911
   4: 89a901284a3ffff 0.0000000000
   5: 89a9012809bffff 0.0002276971
1223: 89a90129133ffff 0.0001352617
1224: 89a9012ac43ffff 0.0001416331
1225: 89a90129a47ffff 0.0001777023
1226: 89a90128883ffff 0.0002372291
1227: 89a90166da7ffff 0.0001957669
```

As funções apresentadas nesta seção podem receber também outros *inputs* não explicitamente mencionados aqui. Para mais informações sobre cada um dos parâmetros, por favor consulte a documentação do pacote accessibility no seu site.

3.3 Cálculo de acessibilidade com o r5r

Ao longo das duas seções anteriores, nós mostramos como calcular níveis de acessibilidade passo-a-passo. Para fins didáticos, é importante entender que o cálculo de estimativas de acessibilidade tem como primeiro passo a geração de uma matriz de custos de viagens a partir de simulações de roteamento, que posteriormente é utilizada para estimar níveis de acessibilidade.

No entanto, o r5r inclui também uma função chamada accessibility() que faz todo esse processamento com uma única chamada. De forma parecida com a função de cálculo de matriz de tempo de viagem, a função de acessibilidade também recebe como *inputs* uma conexão com o R5, as origens, os destinos, os modos de transporte, o tempo de partida, entre outros. Adicionalmente, devem ser listadas também quais oportunidades devem ser consideradas e a função de decaimento que deve ser utilizada (bem como o valor do limite de custo e de parâmetro de decaimento). O exemplo abaixo mostra uma aplicação desta função.

```
r5r access <- accessibility(
    r5r_core,
    origins = points,
    destinations = points,
    opportunities_colname = "schools",
    decay function = "step",
    cutoffs = 30,
    mode = c("WALK", "TRANSIT"),
    departure_datetime = as.POSIXct(
      "13-05-2019 14:00:00",
      format = "%d-%m-%Y %H:%M:%S"
    ),
    max_walk_dist = 800,
    max_trip_duration = 120,
    verbose = FALSE,
    progress = FALSE
  )
  r5r_access
              from_id percentile cutoff accessibility
   1: 89a901291abffff
                                      30
                               50
                                                     17
   2: 89a9012a3cfffff
                               50
                                       30
                                                      0
   3: 89a901295b7ffff
                               50
                                      30
                                                     13
   4: 89a901284a3ffff
                               50
                                      30
                                                      0
   5: 89a9012809bffff
                               50
                                      30
                                                     17
                                      30
1223: 89a90129133ffff
                               50
                                                      1
1224: 89a9012ac43ffff
                               50
                                      30
                                                      8
1225: 89a90129a47ffff
                               50
                                      30
                                                     10
1226: 89a90128883ffff
                               50
                                       30
                                                     30
```

1227: 89a90166da7ffff

Como podemos observar, o resultado desta função são os níveis de acessibilidade já calculados.

30

14

A informação "intermediária" de tempo de viagem entre origens e destinos, consequentemente, não fica disponível ao usuário com o uso da função. Ainda assim, este fluxo de trabalho pode ser uma boa alternativa para pessoas que estejam interessados puramente nos níveis de acessibilidade e não dependam do tempo de viagem em suas análises.

3.4 Análises de acessibilidade

Calculados os níveis de acessibilidade, procedemos então para sua análise. Existe uma grande variedade de análises que podem ser feitas usando esses dados, por exemplo de diagnóstico das condições de acessibilidade urbana de diferentes bairros, pesquisas sobre desigualdades de acesso a oportunidades entre diferentes grupos sociais, análises sobre exclusão social e accessibility poverty (insuficiência de acessibilidade, tradução livre), etc. Nesta seção, no entanto,nos restringiremos a apresentar duas análises relativamente simples e de fácil comunicação: a distribuição espacial da acessibilidade e sua distribuição entre diferentes grupos de renda.

Distribuição espacial de acessibilidade urbana

Para compreendermos a distribuição espacial da acessibilidade urbana de uma determinada cidade ou região, primeiro precisamos obter as informações espaciais dos pontos que foram utilizados como origens e destinos no cálculo da matriz. Os pontos que nós usamos nos exemplos anteriores, por exemplo, correspondem a células de uma grade hexagonal baseadas no índice H3, desenvolvido pela Uber (Brodsky 2018). O código e o mapa a seguir mostram a distribuição desses hexágonos na nossa área de estudo.

```
poa_grid <- read_grid("Porto Alegre")

poa_grid <- poa_grid[poa_grid$id_hex %in% points$id, ]

ggplot(poa_grid) + geom_sf()</pre>
```


Para visualizarmos os nossos dados de acessibilidade espacialmente, portanto, nós precisamos unir a nossa tabela com estimativas de acessibilidade com a tabela que contém os dados espaciais da grade usando a coluna de id dos hexágonos como nossa coluna-chave. Os comandos usados para isso, bem como o resultado da operação em formato de imagem, podem ser vistos no código e no mapa a seguir.

```
setDT(poa_grid)
poa_grid[cumulative_access, on = c(id_hex = "id"), schools_access := i.schools]

poa_grid_sf <- st_sf(poa_grid)

ggplot(poa_grid_sf) +
    geom_sf(aes(fill = schools_access), color = NA) +
    scale_fill_viridis_c(option = "inferno")</pre>
```


Como podemos ver, os níveis de acessibilidade tendem a se concentrar de forma mais acentuada no centro da cidade, onde existe maior concentração de empregos, e próximos aos grandes corredores de transportes da cidade. Pessoas que moram mais perto desses corredores tendem a gastar menos tempo no acesso a suas estações e conseguem acessar locais distantes relativamente rápido, por terem fácil acesso a modos de alta capacidade e velocidade. Pessoas que moram mais longe desses corredores, por sua vez, dependem de modos de menor velocidade operacional (como os ônibus municipais, por exemplo) e precisam gastar mais tempo para alcançar os corredores de média e alta capacidade. Como consequência, seus níveis de acessibilidade tendem a ser menores.

Distribuição socioeconômica de acessibilidade urbana

O mapa acima, embora revelador quanto aos locais em que estão dispostas as maiores concentrações de acessibilidade, nada diz sobre quais são os grupos socioeconômicos que possuem os maiores potenciais de acesso a oportunidades na região. Para isso, nós precisamos cruzar informações demográficas e econômicas de cada um dos nossos pontos de origem com os dados de acessibilidade previamente calculados. No exemplo abaixo, nós juntamos aos dados de acessibilidade a informação do decil de renda de cada uma das origens. Assim, nós conseguimos identificar se um hexágono é de baixa, média ou alta renda.

Os dados com as características socioeconômicas e perfil de renda que utilizamos no exemplo vêm do censo demográfico brasileiro de 2010, e foram agregados na grade espacial de dos hexágonos por Pereira, Herszenhut, et al. (2022). Aqui, nós acessamos os dados diretamente

de dentro do R usando o pacote aopdata, que será apresentado em mais detalhes no capítulo Xx.

```
poa_population <- read_population("Porto Alegre", showProgress = FALSE)</pre>
  poa_grid[
    poa population,
    on = "id_hex",
     `:=`(
      pop_count = i.P001,
      income_decile = i.R003
  ]
  poa_grid[, .(id_hex, schools_access, pop_count, income_decile)]
                id_hex schools_access pop_count income_decile
   1: 89a9012124fffff
                                    14
                                              733
   2: 89a9012126bffff
                                    13
                                             355
                                                               9
   3: 89a9012127bffff
                                             996
                                    14
                                                              10
   4: 89a90128003ffff
                                    34
                                             1742
                                                               4
   5: 89a90128007ffff
                                                               5
                                    15
                                             477
1218: 89a90e934cbffff
                                                               4
                                     7
                                             118
1219: 89a90e934cfffff
                                    12
                                             518
                                                               6
1220: 89a90e934d3ffff
                                     5
                                             846
                                                               6
1221: 89a90e934d7ffff
                                    12
                                             1615
                                                               7
1222: 89a90e934dbffff
                                     6
                                                0
                                                              NA
```

Como vocês podem perceber, nós também trouxemos a informação de contagem populacional em cada origem. Isto se dá porque nós iremos calcular a distribuição da acessibilidade de cada um dos decis de renda. Para isso, portanto, nós precisamos ponderar o nível de acessibilidade de cada origem pela quantidade de pessoas que residem ali. Desta forma, nós teremos a distribuição da acessibilidade das pessoas localizadas em origens de um determinado decil de renda. Caso optássemos por não ponderar, no entanto, nós teríamos a distribuição de acessibilidade não das pessoas localizadas em cada hexágono, mas dos hexágonos em si. Como em nossa análise nós nos importamos com as pessoas, e não com as células espaciais, precisamos fazer a ponderação. Nós podemos visualizar a distribuição de acessibilidade de cada decil usando um boxplot, como feito a seguir.

```
poa_grid[, income_decile := as.factor(income_decile)]

ggplot(poa_grid[!is.na(income_decile)]) +
  geom_boxplot(
    aes(
        x = income_decile,
        y = schools_access,
        color = income_decile,
        weight = pop_count
    )
    ) +
    labs(color="Decil de\nrenda", x="Decil de Renda", y="Número de escolas") +
    scale_color_brewer(palette = 'RdBu') +
    scale_x_discrete(labels=c("D1\n+Pobres", paste0('D', 2:9), "D10\n+Ricos")) +
    theme_minimal()
```


O gráfico é muito claro em seu conteúdo: pessoas de mais baixa renda tendem a ter níveis de acessibilidade muito menores do que as de alta renda. Isso é um padrão comum em praticamente todas as cidades brasileiras e em diversas cidades do mundo (Pereira et al. 2019). Isto ocorre, em larga medida, devido à localização espacial das comunidades de baixa e alta renda no território: os mais ricos costumam morar em áreas mais valorizadas, próximas das grandes concentração de empregos (e oportunidades de educação, saúde, lazer, etc., também) e com

maior oferta de transporte público de média e alta capacidade. Os mais pobres, por sua vez, tendem a morar em locais mais afastados, onde o valor da terra é menor. Consequentemente, tendem também a se afastar das grandes concentrações de oportunidades. Junta-se a isso o fato de, na maior parte dos casos, a oferta de serviços de transporte público de média e alta capacidade ser menor em locais com maior concentração de pessoas de baixa renda. Como consequência, seus níveis de acessibilidade são, em média, muito menores do que os dos mais ricos, como o gráfico deixa claro.

Part III

SEÇÃO 3: Dados de transporte público

Objetivo: O objetivo desta seção é (1) apresentar o que é a especificação de dados de transporte público em formato GTFS; e (2) apresentar como trabalhar e analisar dados de GTFS usando R.

Dados de transporte público são peças fundamentais no planejamento de transportes em geral, e em análises de acessibilidade em particular. Para serem usados de forma que se tenha segurança no resultado das análises, esses dados precisam ser confiáveis e de simples inspeção e interpretação.

Tentando satisfazer esses critérios, cada vez mais agências de transporte público, tomadores de decisão e pesquisadores têm buscado utilizar dados estruturados conforme especificações abertas e colaborativas - ou seja, cujo formato seja decidido por uma comunidade de atores interessados, incluindo partes que produzem esses dados (agências de transporte público, por exemplo) e que os consomem (pesquisadores, desenvolvedores de ferramentas de planejamento, etc.). Embora uma especificação aberta não necessariamente resolva o problema da qualidade e da confiabilidade dos dados por ela descritos, ela traz várias vantagens. O uso de um formato padrão de dados para transporte público permite o desenvolvimento e compartilhamento de ferramentas e programas computacionais para análise desses dados. Assim, um programa desenvolvido por agências de transporte para qualquer cidade no Brasil, Estados Unidos ou Japão pode ser facilmente utilizado para quaisquer cidades do mundo que também organizam seus dados naquele formato padrão. Além disso, quanto mais amplamente utilizado é esse formato padrão de dados, maior tende a ser tanto a confiabilidade da especificação em siquanto a facilidade inspeção dos dados e de sua interpretação, visto que múltiplos atores detêm o conhecimento necessário para tal.

A especificação de dados aberta e colaborativa mais amplamente utilizada no contexto do planejamento de transporte público é o formato GTFS, sigla para General Transit Feed Specification (Especificação Geral de Redes de Transporte Público, em tradução livre). Seus usos abrangem tanto o planejamento quanto a operação de sistemas de transporte público. Como visto no capítulo XX, os dados de GTFS também são uma peça fundamental para calcular estimativas de acessibilidade urbana por transporte público. Nesta seção nós iremos aprender em mais detalhe o que são os dados GTFS, como eles são estruturados e como trabalhar com esses dados no R.

4 Dados GTFS

O formato GTFS é uma especificação aberta e colaborativa que visa descrever os principais componentes de uma rede de transporte público. Atualmente, dados GTFS podem ser divididos em duas grandes categorias:

- GTFS Schedule, ou GTFS Static, que contém o cronograma estático de linhas de transporte público e informações espaciais sobre o itinerário de cada linha e suas paradas;
- GTFS Realtime, que contém informações de localização de veículos em tempo real e alertas de possíveis atrasos, de mudanças de percurso e de eventos que possam interferir no cronograma planejado.

Ao longo desta seção, nós focaremos no **GTFS Schedule**. Clique aqui para mais informações sobre o GTFS Realtime.

Por ser uma especificação aberta e colaborativa, o formato GTFS tenta abarcar em sua definição um grande número de usos distintos que agências de transporte e desenvolvedores de ferramentas possam dar a ele. No entanto, agências e *softwares* podem ainda assim depender de informações que não constem na especificação oficial. Surgem, dessa forma, extensões da especificação. Algumas dessas extensões podem eventualmente se tornar parte da especificação oficial, caso isto seja aceito pela comunidade de usuários do GTFS. Nesta seção nós focaremos em um subconjunto de informações presentes no formato GTFS Schedule "puro", e, portanto, não cobriremos suas extensões.

4.1 Estrutura dos arquivos de GTFS

Usualmente, refere-se a um arquivo no formato GTFS Schedule (daqui em diante chamado apenas de GTFS) como feed. Neste livro, nós utilizaremos os termos feed e arquivo GTFS como sinônimos.

Um feed é nada mais do que um arquivo comprimido em formato .zip que contém um conjunto de tabelas salvas em formato .txt com algumas informações sobre a rede de transporte público (e.g. localização das paradas, frequências das viagens, traçado das rotas etc). Como em uma base de dados relacional, as tabelas de um feed têm algumas colunas-chave que permitem vincular os dados rotas, viagens, tabelas de horários etc. O esquema geral do GTFS é mostrado na Figure 4.1, mostrando apenas algumas das principais tabelas e com as colunas-chave destacadas como os pontos finais das setas.

Figure 4.1: Esquema do formato GTFS

Ao todo, 22 tabelas compõem o formato GTFS¹. Nem todas, no entanto, são obrigatórias para que um feed seja considerado válido - sendo consideradas, portanto, opcionais. A especificação classifica cada tabela conforme sua obrigatoriedade em três possíveis categorias: obrigatórias, opcionais e condicionalmente obrigatórias (quando a obrigatoriedade de uma tabela depende da existência de uma determinada tabela, coluna ou valor). Para fins de simplicidade, neste livro nós consideraremos apenas as duas primeiras categorias e faremos comentários quanto à obrigatoriedade de cada tabela quando apropriado. Desta forma, ficam assim classificadas as tabelas:

- Obrigatórias: agency.txt, stops.txt, routes.txt, trips.txt, stop_times.txt, calendar.txt.
- Opcionais: calendar_dates.txt, fare_attributes.txt, fare_rules.txt, fare_products.txt, fare_leg_rules.txt, fare_transfer_rules.txt, areas.txt, stop_areas.txt, shapes.txt, frequencies.txt, transfers.txt, pathways.txt, levels.txt, translations.txt, feed_info.txt, attributions.txt.

Ao longo desta seção, nós aprenderemos a estrutura básica de um arquivo GTFS e das tabelas que o compõem. Portanto, vamos olhar apenas para as tabelas obrigatórias e para as tabelas opcionais mais frequentemente utilizadas por produtores e consumidores desses arquivos. Para mais informações sobre as tabelas e as colunas não abordadas nesta seção, por favor verifique a especificação oficial.

Nesta demonstração, nós utilizaremos um subconjunto de dados provenientes do feed da cidade de São Paulo criado pela SPTrans² e baixado em outubro de 2019. O feed contém as seis tabelas obrigatórias e mais duas tabelas opcionais bastante utilizadas, shapes.txt e frequencies.txt, o que permite uma boa visão geral sobre o formato GTFS.

4.1.1 agency.txt

Arquivo utilizado para descrever as operadoras de transporte que atuam no sistema descrito no arquivo GTFS. Embora o termo agency (agência) seja usado em lugar de operators (operadoras), por exemplo, fica a cargo do produtor do feed definir quais instituições serão listadas na tabela.

Por exemplo: múltiplas concessionárias de ônibus atuam em um determinado local, mas todo o planejamento de cronograma e de tarifa é realizado por uma instituição, em geral uma secretaria de transporte ou empresa pública específica. Esta instituição é também entendida pelos usuários do sistema como a operadora, de fato. Neste caso, devemos listar a instituição responsável pelo planejamento na tabela.

¹Disponível em https://www.pasfor.com.br/.

²Mais detalhes sobre o uso e a sintaxe do data.table podem ser lidos em https://rdatatable.gitlab.io/data.table/index.html.

Agora, imagine um sistema em que a agência de transporte público local transfere a responsabilidade da operação de um sistema multimodal a diversas empresas, por meio de concessões. Cada uma dessas empresas é responsável pelo planejamento de cronogramas e tarifas dos modos que operam, desde que sejam seguidos determinados parâmetros pré-estabelecidos em contrato. Neste caso, devemos listar as operadoras (concessionárias) na tabela, e não a agência de transporte público em si.

A Table 4.1 mostra o arquivo agency.txt do feed da SPTrans. Como vocês podem ver, os responsáveis pelo feed optaram por listar a própria empresa no arquivo, e não as concessionárias que operam os ônibus e o metrô da cidade.

Table 4.1: Exemplo de arquivo agency.txt

agency_id agency_nam@gency_url				_timezone	agency_	_lang
1	SPTRANS	http://www.sptrans.com.br/?versao	=01 Aloht9 ica	a/Sao_Pa	upot	

É necessário notar que, embora estejamos apresentando o agency.txt em formato de tabela, o arquivo deve ser formatado como se fosse salvo em formato .csv. Ou seja, os valores de cada célula da tabela devem ser separados por vírgulas, e cada linha da tabela deve constar em uma linha no arquivo. A tabela acima, por exemplo, é definida da seguinte forma:

```
agency_id,agency_name,agency_url,agency_timezone,agency_lang
1,SPTRANS,http://www.sptrans.com.br/?versao=011019,America/Sao_Paulo,pt
```

Por uma questão de comunicação e interpretação dos dados, ao longo desta seção sempre apresentaremos os exemplos em formato de tabela. É importante ter em mente, porém, que essas tabelas são internamente estruturadas como mostrado acima.

4.1.2 stops.txt

Arquivo usado para descrever as paradas de transporte público que compõem o sistema. Os pontos listados neste arquivo podem fazer menção a paradas mais simples (como pontos de ônibus), estações, plataformas, entradas e saídas de estações, etc. A Table 4.2 mostra o stops.txt do feed da SPTrans.

Table 4.2: Exemplo de arquivo stops.txt

stop_idstop_name	stop_desc	stop_lat stop_lon
706325 Parada 14	Viad. Dr. Plínio De Queiroz, 901	
Bis B/C		23.5559346.65011

stop_idstop_name	$stop_desc$	stop_lat stop_lon
810602 R. Sta. Rita,	Ref.: R. Bresser / R. João Boemer	
56	,	23.5333746.61229
910776 Av. Do	Ref.: Rua Dona Ana Néri	
Estado, 5854		23.5589646.61520
1010092Parada	Av. Rangel Pestana, 1249 Ref.: Rua Caetano	
Caetano	Pinto/rua Prof. Batista De Andrade	23.5461546.62218
Pinto		
1010093Parada	Av. Rangel Pestana, 1479 Ref.: Rua Monsenhor	
Piratininga	Andrade	23.5450946.62006
1010099R. Xavantes,	Ref.: Rua Joli	
612		23.5354546.61368

As colunas stop_id e stop_name servem como identificadores de cada parada, porém cumprem papéis distintos. O principal propósito da stop_id é identificar relações entre esta tabela e outras que compõem a especificação (como veremos mais à frente no arquivo stop_times.txt). Já a coluna stop_name serve como um identificador que seja facilmente reconhecido pelo usuário do sistema. Seus valores, portanto, costumam ser nomes de estações, nomes de pontos de interesse da cidade ou endereços (como no caso do feed da SPTrans).

A coluna stop_desc, presente no feed da SPTrans, é opcional e permite à agência de transporte adicionar alguma descrição de cada parada e do seu entorno para facilitar a sua identificação. As colunas stop_lat e stop_lon, por fim, são as responsáveis por associar cada parada a uma posição espacial, através de suas coordenadas geográficas de latitude e longitude.

Entre as colunas opcionais não presentes neste feed estão a location_type e a parent_station. A location_type é utilizada para denotar o tipo de localização a que cada ponto se refere. Quando ausente, todos os pontos são interpretados como paradas de transporte público, mas valores distintos podem ser usados para distinguir uma parada (location_type = 0) de uma estação (location_type = 1) ou uma área de embarque (location_type = 2), por exemplo. A coluna parent_station é utilizada para descrever relações de hierarquia entre dois pontos. Por exemplo, uma área de desembarque deve dizer a qual parada/plataforma ela pertence e uma parada/plataforma pode também, opcionalmente, listar a qual estação ela pertence.

4.1.3 routes.txt

Arquivo usado para descrever as linhas de transporte público que rodam no sistema descrito pelo arquivo GTFS, incluindo os modos de transporte utilizados em cada uma. A Table 4.3 mostra o routes.txt do feed da SPTrans.

Table 4.3: Exemplo de arquivo routes.txt

route_id	agency_id	route_short_name	route_long_name	route_type
CPTM	1	CPTM L07	JUNDIAI - LUZ	2
L07				
CPTM	1	CPTM L08	AMADOR BUENO - JULIO	2
L08			PRESTES	
CPTM	1	CPTM L09	GRAJAU - OSASCO	2
L09				
CPTM	1	CPTM L10	RIO GRANDE DA SERRA -	2
L10			BRÁS	
CPTM	1	CPTM L11	ESTUDANTES - LUZ	2
L11				
CPTM	1	CPTM L12	CALMON VIANA - BRAS	2
L12				

Assim como no caso do arquivo stops.txt, a tabela do routes.txt também possui diferentes colunas que apontam o identificador de cada linha (route_id) e o seu nome. Neste caso, no entanto, existem duas colunas de nome, a route_short_name e a route_long_name. A primeira diz respeito ao nome da linha, usualmente utilizado por passageiros no dia-a-dia, enquanto o segundo tende a ser um nome mais descritivo. A SPTrans, por exemplo, optou por destacar os pontos finais de cada linha nesta coluna. Podemos notar também que os mesmos valores se repetem nas colunas route_id e route_short_name, o que não é obrigatório e nem proibido - neste caso, o produtor do feed julgou que os nomes das linhas poderiam funcionar satisfatoriamente como identificadores por serem razoavelmente curtos e não se repetirem.

A coluna agency_id é a chave que permite relacionar a tabela das rotas com a tabela descrita no agency.txt. Ela faz menção a uma agência descrita naquele arquivo, no caso a agência de id 1 (a própria SPTrans). Esta coluna é opcional no caso de feeds em que existe apenas uma agência, porém é obrigatória no caso em que existem mais de uma. Imaginemos, por exemplo, um feed que descreve um sistema multimodal que conta com um corredor de metrô e diversas linhas de ônibus: uma configuração possível de routes.txt descreveria as linhas de metrô como de responsabilidade da operadora do metrô, e as de ônibus como de responsabilidade da empresa responsável pelo planejamento das linhas de ônibus, por exemplo.

A coluna route_type é utilizada para descrever o modo de transporte utilizado em cada linha. Esta coluna aceita diferentes números, cada um representando um determinado modo. Este exemplo descreve linhas de trem, cujo valor numérico correspondente é 2. Os valores válidos para esta coluna são listados na especificação.

4.1.4 trips.txt

Arquivo usado para descrever as viagens realizadas pelo sistema de transporte público descrito pelo feed. A viagem é a unidade básica de movimento do formato GTFS: ela associa diferentes partidas de cada linha de transporte público a um serviço que opera em determinados dias da semana (como veremos mais à frente no arquivo calendar.txt) e uma trajetória de viagem (como veremos mais à frente no arquivo shapes.txt). A Table 4.4 mostra o trips.txt do feed da SPTrans.

trip_id	$route_id$	service_id	trip_headsign	$direction_id$	shape_id
CPTM L07-0	CPTM	USD	JUNDIAI	0	17846
	L07				
CPTM L07-1	CPTM	USD	LUZ	1	17847
	L07				
CPTM L08-0	CPTM	USD	AMADOR	0	17848
	L08		BUENO		
CPTM L08-1	CPTM	USD	JULIO	1	17849
	L08		PRESTES		
CPTM L09-0	CPTM	USD	GRAJAU	0	17850
	L09				
CPTM L09-1	CPTM	USD	OSASCO	1	17851
	L09				

Table 4.4: Exemplo de arquivo trips.txt

A coluna trip_id identifica cada uma das viagens descritas na tabela. A route_id faz referência a uma linha de transporte público identificada no arquivo routes.txt. A coluna service_id identifica serviços que determinam os dias da semana em que cada uma das viagens opera (dias úteis, finais de semana, uma mistura dos dois, etc.), descritos detalhadamente no arquivo calendar.txt. A última coluna à direita na tabela acima é a shape_id, que identifica a trajetória espacial de cada uma das viagens, descrita em detalhes no arquivo shapes.txt.

As duas colunas restantes, trip_headsign e direction_id, são opcionais e devem ser utilizadas para descrever o sentido/destino da viagem. A primeira, trip_headsign, é utilizada para ditar o texto que aparece no letreiro de veículos (no caso de um ônibus, por exemplo) ou em painéis informativos (como em metrôs e trens) destacando o destino da viagem. Já a coluna direction_id é frequentemente utilizada em conjunto com a primeira para dar uma conotação de ida ou volta para cada viagem, onde 0 representa ida e 1 volta, ou vice-versa (assim como ida e volta são conceitos que mudam conforme o referencial, os valores 0 e 1 podem ser usados como desejado, desde que um represente um sentido e o outro o contrário). No caso do nosso exemplo, as duas primeiras linhas são viagens que fazem menção à mesma

rota de transporte público (CPTM L07), porém em sentidos opostos: uma corre em direção a Jundiaí, e a outra à Luz.

4.1.5 calendar.txt

Arquivo usado para descrever os diferentes tipos de serviço existentes no sistema de transporte público descrito pelo feed. Um serviço, neste contexto, denota um conjunto de dias da semana em que viagens são realizadas. Cada serviço também é definido pela data em que começa a valer e pela data a partir do qual ele não é mais válido. A Table 4.5 mostra o calendar.txt do feed da SPTrans.

saturday sunday start_date end_date service id monday tuesday wednesday thursday friday USD U US SDD S

Table 4.5: Exemplo de arquivo calendar.txt

A coluna service_id identifica cada um dos serviços descritos na tabela. Como mostrado anteriormente, este identificador é usado também no arquivo trips.txt, e é o responsável por associar cada viagem a um determinado serviço.

As colunas monday, tuesday, wednesday, thursday, friday, saturday e sunday (segunda-feira a domingo, em inglês) são utilizadas para delimitar os dias em que cada serviço funciona. Um valor de 1 significa que o serviço opera em um determinado dia, enquanto um valor de 0 significa que ele não opera. Como podemos ver no exemplo acima, o serviço USD opera em todos os dias da semana. Já o serviço U__ opera apenas em dias úteis.

Por fim, as colunas start_date e end_date delimitam o intervalo em que cada serviço é válido. As datas do formato GTFS são sempre formatadas segundo a regra YYYYMMDD - ou seja, os primeiros quatro números definem o ano, os dois subsequentes definem o mês e os últimos dois, o dia. O valor 20220428, por exemplo, representa o dia 28 de abril de 2022.

4.1.6 shapes.txt

Arquivo usado para descrever a trajetória espacial de cada viagem listada no feed. Este arquivo é opcional, mas fortemente recomendado que agências de transporte o incluam em seus arquivos de GTFS. A Table 4.6 mostra o shapes.txt do feed da SPTrans.

Table 4.6: Exemplo de arquivo shapes.txt

${\rm shape_id}$	$shape_pt_lat$	$shape_pt_lon$	$shape_pt_sequence$
17846	-23.53517	-46.63535	1
17846	-23.53513	-46.63548	2
17846	-23.53494	-46.63626	3
17846	-23.53473	-46.63710	4
17846	-23.53466	-46.63735	5
17846	-23.53416	-46.63866	6

A coluna shape_id identifica cada uma das trajetórias descritas na tabela. Como mostrado anteriormente, este identificador é usado também no arquivo trips.txt, e é o responsável por associar cada viagem à sua trajetória espacial. Diferentemente de todos os outros identificadores que vimos até então, no entanto, o identificador shape_id se repete em diversas observações da tabela. Isso porque o arquivo apresenta para cada shape_id uma série de pontos espaciais, cujas coordenadas geográficas são apresentadas nas colunas shape_pt_lat e shape_pt_lon. Por sua vez, a coluna shape_pt_sequence lista a sequência na qual cada ponto se conecta para formar a trajetória de cada shape_id. Os valores listados nesta coluna devem ser ordenados de forma crescente.

4.1.7 stop_times.txt

Arquivo usado para descrever o cronograma com tabela de horários de cada viagem, incluindo o horário de chegada e partida em cada uma das paradas. A formatação deste arquivo depende da existência ou não de um arquivo frequencies.txt, o qual cobriremos a seguir. Por enquanto olharemos para o stop_times.txt do feed da SPTrans, que também conta com um frequencies.txt, na Table 4.7.

Table 4.7: Exemplo de arquivo stop_times.txt

trip_id	arrival_time	departure_time	stop_id	stop_sequence
CPTM L07-0	04:00:00	04:00:00	18940	1
CPTM L07-0	04:08:00	04:08:00	18920	2
CPTM L07-0	04:16:00	04:16:00	18919	3
CPTM L07-0	04:24:00	04:24:00	18917	4
CPTM L07-0	04:32:00	04:32:00	18916	5
CPTM L07-0	04:40:00	04:40:00	18965	6

A viagem cujo cronograma está sendo descrito é identificada pela coluna trip_id. De forma análoga ao que acontece na tabela de trajetórias, um mesmo trip_id se repete em muitas

observações da tabela porque, assim como uma trajetória é composta por uma sequências de pontos espaciais, um cronograma é composto por uma sequência de diversos horários de partida/chegada e paradas de transporte público.

As colunas seguintes, arrival_time, departure_time e stop_id, são as responsáveis por descrever o cronograma em si, associando um horário de chegada e um horário de partida para cada uma das paradas visitadas na viagem. As colunas de horário são formatadas segundo a regra HH:MM:SS - ou seja, os dois primeiros números definem a hora, os dois subsequentes os minutos e os últimos dois, os segundos. É importante ainda comentar que esta formatação aceita valores de hora maiores do que 24. Isto quer dizer que uma viagem cuja última parada seja visitada às 1h da manhã do dia seguinte ao que começou a rodar (digamos que ela tenha partido do ponto inicial às 23h) deve ter como horário de chegada 25:00:00, e não 01:00:00. A coluna stop_id, por sua vez, associa a parada visitada à uma descrição feita no arquivo stops.txt. Por fim, a coluna stop_sequence lista a sequência na qual cada parada se conecta às demais para formar o cronograma da viagem. Seus valores devem ser sempre ordenados de forma crescente.

Vale destacar aqui a diferença entre os arquivos shapes.txt e stop_times.txt. Embora os dois descrevam uma viagem espacialmente, eles o fazem de forma diferente. O stop_times.txt descreve a sequência de paradas e horários que compõem um cronograma, mas nada diz sobre o trajeto percorrido pelo veículo entre cada uma das paradas. Já o shapes.txt traz a trajetória da viagem como um todo, mas não descreve em que ponto do espaço estão as paradas da viagem. Quando usamos os dois arquivos em conjunto, portanto, sabemos não apenas o cronograma de cada viagem, mas também a trajetória da viagem entre paradas.

4.1.8 frequencies.txt

Arquivo opcional usado para descrever a frequência de cada viagem dentro de um determinado período do dia. A Table 4.8 mostra o frequencies.txt do feed da SPTrans.

trip_id	$start_time$	end_time	headway_secs
CPTM L07-0	04:00:00	04:59:00	720
CPTM L07-0	05:00:00	05:59:00	360
CPTM L07-0	06:00:00	06:59:00	360
CPTM L07-0	07:00:00	07:59:00	360
CPTM L07-0	08:00:00	08:59:00	360
CPTM L07-0	09:00:00	09:59:00	480

Table 4.8: Exemplo de arquivo frequencies.txt

A viagem cuja frequência está sendo descrita é identificada pela coluna trip_id. Novamente, um mesmo id pode aparecer em várias observações da tabela. Isso porque a especificação

GTFS prevê que uma mesma viagem pode ter frequências diferentes ao longo do dia (como em horários de pico e fora-pico, por exemplo). Assim, cada linha da tabela descreve um período do dia que se inicia no horário descrito na coluna start_time e termina no horário assinalado na end_time.

Dentro do período especificado por essas duas colunas a viagem possui um *headway* detalhado na coluna headway_secs. O *headway* é o tempo que separa a passagem de dois veículos que operam a mesma linha de transporte público. No caso desta tabela, esse tempo deve ser especificado em segundos. Um valor de 720 entre 04:00h e 05:00h, portanto, significa que dentro deste período a viagem CPTM L07-0 ocorre de 12 em 12 minutos.

É importante entender, agora, como a presença da tabela frequencies.txt altera a especificação da tabela stop_times.txt. Como podemos ver no nosso exemplo, o horário de partida definido no stop_times.txt para a viagem CPTM L07-0 é 04:00h, e ela chega na segunda parada às 04:08h. O cronograma de chegada e saída de uma mesma parada de uma viagem, no entanto, não pode ser definido mais de uma vez na tabela. Como então definir o cronograma das viagens que partem às 04:12h, 04:24h, 04:36h, etc. (lembrem-se que o headway desta viagem é de 12 minutos)?

No caso em que a frequência de uma viagem é especificada no frequencies.txt, o cronograma (a tabela de horários) de uma viagem definido no stop_times.txt deve ser entendido como uma referência que descreve o tempo entre paradas. Isto é, os horários ali definidos não devem ser interpretados à risca. Por exemplo, o cronograma listado estabelece que o tempo de viagem entre a primeira e a segunda parada é de 8 minutos, e o tempo entre a segunda e a terceira também. Ou seja, a viagem que parte da primeira parada às 04:00h chega na segunda às 04:08h, e na terceira às 04:16h. A próxima viagem, que parte da primeira parada às 04:12h, por sua vez, chega na segunda parada às 04:20h, e na terceira às 04:28h.

Assumindo partidas de 12 em 12 minutos a partir das 04:00h, por exemplo, poderíamos descrever as mesmas viagens no stop_times.txt sem fazer uso do arquivo frequencies.txt. Para isso poderíamos adicionar um sufixo que identificasse cada uma das viagens referentes à linha (route_id) com identificador CPTM L07 ao longo do dia. A viagem (trip_id) com identificador CPTM L07-0_1, por exemplo, seria a primeira viagem do dia e partiria da primeira parada às 04:00h e chegaria na segunda parada às 04:08h. A viagem CPTM L07-0_2, por sua vez, seria a segunda viagem e partiria da primeira parada às 04:12h e chegaria na segunda às 04:20h, e daí em diante. Cada uma dessas viagens deveria ser também adicionada ao arquivo trips.txt e a quaisquer outros que possuam a coluna trip_id como identificador.

Outra variável que afeta a forma na qual o frequencies.txt afeta as tabelas de horários na tabela stop_times.txt é a coluna opcional exact_times. Um valor de 0 nesta coluna (ou quando ela está ausente do feed, como no caso do arquivo GTFS da SPTrans) indica que a viagem não necessariamente segue um cronograma fixo ao longo do período. Ao invés disso, operadores tentam se ater a um determinado headway durante o período. Naquele exemplo de uma viagem cujo headway é de 12 minutos entre as 04:00h e 05:00h, isto significaria que não necessariamente a primeira partida sairá exatamente às 04:00h, a segunda às 04:12h, e por aí

em diante. A primeira pode, por exemplo, sair às 04:02h. A segunda, às 04:14h ou 04:13h, etc. Caso desejemos definir um cronograma que é seguido à risca, obtendo o mesmo resultado de definir diversas viagens semelhantes partindo em diferentes horários no stop_times.txt (como mostrado anteriormente), devemos utilizar o valor 1 na coluna exact_times.

4.2 Onde encontrar GTFS de cidades brasileiras

No Brasil, existem dados de GTFS para diversas cidades. Em muitos casos, no entanto, esses dados são de propriedade de empresas operadoras e concessionárias de transporte, e não do poder público. Infelizmente, esses arquivos raramente são disponibilizados aberta e publicamente, contrariando boas práticas de gestão e compartilhamento de dados de interesse público. A Table 4.9 mostra as fontes dos dados GTFS de algumas das poucas cidades do Brasil que disponibilizavam seus feeds abertamente no momento desta publicação.

Table 4.9: Fontes de dados GTFS publicamente disponíveis no Brasil

Cidade	Fonte	Informações
Belo Horizonte	BHTrans	Dado aberto: transporte convencional; transporte suplementar.
Fortaleza	ETUFOR	Dado aberto.
Fortaleza	Metrofor	Dado aberto.
Porto Alegre	EPTC	Dado aberto.
Rio de Janeiro	SMTR	Dado aberto.
São Paulo	EMTU	Download neste link. Necessário cadastro.
São Paulo	SPTrans	Download neste link. Necessário cadastro.

Obs. Os dados de GTFS disponibilizados para Rio de Janeiro e Porto Alegre não necessariamente cobrem todos os modos de transporte público disponíveis nessas cidades.

5 Manipulação e visualização de dados GTFS

Usualmente, arquivos GTFS oriundos de bases oficiais são utilizados para desenvolver análises e pesquisas que possuem diversos elementos comuns. Visando facilitar a leitura, o processamento e a análise desses dados, a equipe do Projeto Acesso a Oportunidades vêm desenvolvendo o pacote de R gtfstools¹, que oferece diversas funções que facilitam a manipulação e a exploração de feeds.

Neste capítulo, nós iremos passar por algumas das funcionalidades mais frequentemente utilizadas do pacote. Para isso, vamos utilizar uma amostra do feed da SPTrans apresentado no capítulo anterior, disponível dentro do gtfstools.

5.1 Leitura e manipulação básica de arquivos GTFS

A leitura de arquivos GTFS com o gtfstools é feita com a função read_gtfs(), que recebe uma string com o caminho do arquivo. Um feed é representado como uma lista de data.tables, uma versão de alta performance da classe data.frame. Ao longo deste capítulo, nós vamos nos referir a esta lista de tabelas como um objeto GTFS. Por padrão, a função lê todas as tabelas .txt do feed:

Como podemos ver, cada data.table dentro do objeto GTFS é nomeado de acordo com a tabela que ele representa, porém sem a extensão .txt. Isso nos permite selecionar e manipular

¹Disponível em https://www.pasfor.com.br/.

cada uma das tabelas separadamente. O código abaixo, por exemplo, mostra os 6 primeiros registros da tabela *trips*:

```
head(gtfs$trips)
```

```
route_id service_id
                          trip_id trip_headsign direction_id shape_id
1: CPTM L07
                   USD CPTM LO7-0
                                         JUNDIAI
                                                             0
                                                                  17846
                   USD CPTM L07-1
2: CPTM L07
                                             LUZ
                                                             1
                                                                  17847
3: CPTM LO8
                   USD CPTM LO8-O AMADOR BUENO
                                                             0
                                                                  17848
4: CPTM L08
                   USD CPTM LO8-1 JULIO PRESTES
                                                             1
                                                                  17849
5: CPTM L09
                   USD CPTM L09-0
                                                             0
                                          GRAJAU
                                                                  17850
6: CPTM L09
                   USD CPTM L09-1
                                          OSASCO
                                                                  17851
```

As tabelas dentro de um objeto GTFS podem ser facilmente manipuladas usando a sintaxe de tabelas data.table. O pacote data.table oferece diversas funcionalidades úteis, como a edição de colunas por referência, filtros de linhas muito rápidos e agregação de dados eficiente². Para adicionar 100 segundos a todos os *headways* listados na tabela *frequencies* e reverter essa mudança em seguida, por exemplo, nós podemos usar o código abaixo:

```
# original
  original_headway <- gtfs$frequencies$headway_secs
  head(gtfs$frequencies, 3)
      trip_id start_time end_time headway_secs
1: CPTM L07-0
                04:00:00 04:59:00
2: CPTM L07-0
                05:00:00 05:59:00
                                            360
3: CPTM L07-0
                06:00:00 06:59:00
                                            360
  # modified
  gtfs$frequencies[, headway_secs := headway_secs + 100]
  head(gtfs$frequencies, 3)
      trip_id start_time end_time headway_secs
1: CPTM L07-0
                04:00:00 04:59:00
                                            820
2: CPTM L07-0
                05:00:00 05:59:00
                                            460
3: CPTM L07-0
                06:00:00 06:59:00
                                            460
```

²Mais detalhes sobre o uso e a sintaxe do data.table podem ser lidos em https://rdatatable.gitlab.io/data.table/index.html.

Ao final de edições de um objeto GTFS no R, frequentemente vamos querer usar o GTFS manipulado para fazer análises de diferentes tipos. Para isso, é comum que precisemos do arquivo GTFS em formato .zip novamente, e não da lista de tabelas dentro do R. O pacote disponibiliza a função write_gtfs() exatamente com a finalidade de transformar objetos GTFS que existem apenas dentro do R em arquivos GTFS salvos na memória de seu computador. Para usá-la, é necessário apenas listar o objeto e o endereço no qual ele deve ser salvo:

```
dest_path <- tempfile("new_gtfs", fileext = ".zip")</pre>
  file.exists(dest_path)
[1] FALSE
  write_gtfs(gtfs, dest_path)
  file.exists(dest_path)
[1] TRUE
  zip::zip_list(dest_path)[, c("filename", "compressed_size", "timestamp")]
         filename compressed size
                                              timestamp
1
       agency.txt
                               112 2022-09-29 20:34:16
2
     calendar.txt
                               129 2022-09-29 20:34:16
3 frequencies.txt
                              2381 2022-09-29 20:34:16
                               659 2022-09-29 20:34:16
4
       routes.txt
5
       shapes.txt
                            160470 2022-09-29 20:34:16
6
   stop_times.txt
                             7907 2022-09-29 20:34:16
7
        stops.txt
                             18797 2022-09-29 20:34:16
8
        trips.txt
                               717 2022-09-29 20:34:16
```

5.2 Cálculo de velocidade das linhas

Arquivos GTFS são frequentemente utilizados em estimativas de roteamento de transporte público e para informar passageiros sobre a tabela de horários das diferentes rotas que operam em uma região. Dessa forma, é extremamente importante que o cronograma das viagens e a velocidade operacional de cada linha estejam adequadamente descritos no feed.

O gtfstools disponibiliza a função get_trip_speed() para facilitar o cálculo da velocidade de cada viagem presente no feed. Por padrão a função retorna a velocidade (em km/h) de todas as viagens do GTFS, mas viagens individuais também podem ser especificadas:

```
speeds <- get_trip_speed(gtfs)</pre>
  head(speeds)
     trip_id origin_file
                              speed
1: 2002-10-0
                   shapes 8.952511
2: 2105-10-0
                   shapes 10.253365
3: 2105-10-1
                   shapes 9.795292
4: 2161-10-0
                   shapes 11.182534
5: 2161-10-1
                   shapes 11.784458
6: 4491-10-0
                   shapes 13.203560
  nrow(speeds)
[1] 36
  speeds <- get_trip_speed(gtfs, trip_id = c("CPTM L07-0", "2002-10-0"))</pre>
  speeds
      trip_id origin_file
                               speed
                    shapes 8.952511
   2002-10-0
2: CPTM L07-0
                    shapes 26.787768
```

Calcular a velocidade de uma viagem requer que nós saibamos o seu comprimento e em quanto tempo ela foi realizada. Para isso, portanto, a get_trip_speed() utiliza duas outras funções

do gtfstools por trás dos panos: a get_trip_length() e a get_trip_duration(). O funcionamento das duas é muito parecido com o mostrado anteriormente, retornando o comprimento/duração de todas as viagens por padrão, ou de apenas algumas selecionadas, caso desejado. Abaixo nós mostramos seus comportamentos padrões:

```
length <- get_trip_length(gtfs, file = "shapes")</pre>
  head(length)
      trip_id
                 length origin_file
1: CPTM L07-0 60.71894
                              shapes
2: CPTM L07-1 60.71894
                              shapes
3: CPTM L08-0 41.79037
                              shapes
4: CPTM L08-1 41.79037
                              shapes
5: CPTM L09-0 31.88906
                              shapes
6: CPTM L09-1 31.88906
                              shapes
  duration <- get trip duration(gtfs)</pre>
  head(duration)
     trip_id duration
1: 2002-10-0
                    48
2: 2105-10-0
                   108
3: 2105-10-1
                   111
4: 2161-10-0
                    94
5: 2161-10-1
                    93
6: 4491-10-0
                    69
```

Assim como a get_trip_speed() retorna velocidades em km/h por padrão, a get_trip_length() retorna os comprimentos em km e a get_trip_duration() retorna a duração em minutos. Essas unidades podem ser ajustadas com o argumento unit, presente em todas as funções.

5.3 Combinação e filtragem de feeds

Muitas vezes o processo de processamento e edição de arquivos GTFS é realizado, em grande medida, manualmente. Consequentemente, pequenas inconsistências podem passar batidas pelos responsáveis por esse processamento. Um problema comumente observado em feeds é

a presença de registros duplicados em uma mesma tabela. O feed da SPTrans, por exemplo, possui registros duplicados tanto no agency.txt quanto no calendar.txt:

gtfs\$agency

```
agency_id agency_name agency_url

1: 1 SPTRANS http://www.sptrans.com.br/?versao=011019

2: 1 SPTRANS http://www.sptrans.com.br/?versao=011019
    agency_timezone agency_lang

1: America/Sao_Paulo pt

2: America/Sao_Paulo pt
```

gtfs\$calendar

	service_id	monday	tuesday	${\tt wednesday}$	thursday	friday	saturday	sunday
1:	USD	1	1	1	1	1	1	1
2:	U	1	1	1	1	1	0	0
3:	US_	1	1	1	1	1	1	0
4:	_SD	0	0	0	0	0	1	1
5:	D	0	0	0	0	0	0	1
6:	_S_	0	0	0	0	0	1	0
7:	USD	1	1	1	1	1	1	1
8:	U	1	1	1	1	1	0	0
9:	US_	1	1	1	1	1	1	0
10:	_SD	0	0	0	0	0	1	1
11:	D	0	0	0	0	0	0	1
12:	_S_	0	0	0	0	0	1	0

start_date end_date

- 1: 2008-01-01 2020-05-01
- 2: 2008-01-01 2020-05-01
- 3: 2008-01-01 2020-05-01
- 4: 2008-01-01 2020-05-01
- 5: 2008-01-01 2020-05-01
- 6: 2008-01-01 2020-05-01
- 7: 2008-01-01 2020-05-01
- 8: 2008-01-01 2020-05-01
- 9: 2008-01-01 2020-05-01
- 10: 2008-01-01 2020-05-01
- 11: 2008-01-01 2020-05-01
- 12: 2008-01-01 2020-05-01

O gtfstools disponibiliza a função remove_duplicates() para remover essas duplicatas. Esta função recebe como *input* um objeto GTFS e retorna o mesmo objeto, porém sem registros duplicados:

```
no_dups_gtfs <- remove_duplicates(gtfs)</pre>
  no_dups_gtfs$agency
   agency_id agency_name
                                                           agency_url
                  SPTRANS http://www.sptrans.com.br/?versao=011019
1:
     agency_timezone agency_lang
1: America/Sao_Paulo
  no_dups_gtfs$calendar
   service_id monday tuesday wednesday thursday friday saturday sunday
1:
          USD
                    1
                             1
                                        1
                                                 1
                                                         1
                                                                   1
                                                                          1
2:
          U__
                    1
                             1
                                       1
                                                 1
                                                         1
                                                                   0
                                                                          0
3:
          US
                             1
                                       1
                                                 1
                                                         1
                                                                   1
                                                                          0
          _SD
                                       0
                                                 0
                                                         0
                                                                   1
4:
                    0
                            0
                                                                          1
5:
          __D
                    0
                                       0
                                                 0
                                                         0
                                                                   0
                                                                          1
                    0
                                                                   1
                                                                          0
6:
          _S_
   start_date
                 end_date
1: 2008-01-01 2020-05-01
2: 2008-01-01 2020-05-01
3: 2008-01-01 2020-05-01
4: 2008-01-01 2020-05-01
5: 2008-01-01 2020-05-01
6: 2008-01-01 2020-05-01
```

Frequentemente, também, lidamos com múltiplos feeds em uma mesma área de estudo. Neste caso, muitas vezes gostaríamos de uni-los em um único arquivo, diminuindo assim o esforço de manipulação e processamento dos dados. Para isso, o gtfstools disponibiliza a função merge_gtfs(). O exemplo abaixo mostra o resultado da combinação de dois feeds distintos, o da SPTrans (sem duplicatas) e o da EMTU, de Porto Alegre:

```
poa_path <- system.file("extdata/poa_gtfs.zip", package = "gtfstools")
poa_gtfs <- read_gtfs(poa_path)
poa_gtfs$agency</pre>
```

```
agency_id
                                               agency_name
                                                                        agency_url
1:
        EPTC Empresa Publica de Transportes e Circulação http://www.eptc.com.br
     agency_timezone agency_lang agency_phone
1: America/Sao_Paulo
                               pt
                                                    agency_fare_url
1: http://www2.portoalegre.rs.gov.br/eptc/default.php?p_secao=155
  no_dups_gtfs$agency
   agency_id agency_name
                                                         agency_url
1:
                 SPTRANS http://www.sptrans.com.br/?versao=011019
     agency_timezone agency_lang
1: America/Sao_Paulo
  combined_gtfs <- merge_gtfs(no_dups_gtfs, poa_gtfs)</pre>
  combined_gtfs$agency
   agency_id
                                               agency_name
                                                   SPTRANS
1:
2:
        EPTC Empresa Publica de Transportes e Circulação
                                  agency_url
                                                agency_timezone agency_lang
1: http://www.sptrans.com.br/?versao=011019 America/Sao_Paulo
2:
                     http://www.eptc.com.br America/Sao_Paulo
                                                                          pt
   agency_phone
                                                                  agency_fare_url
1:
            156 http://www2.portoalegre.rs.gov.br/eptc/default.php?p_secao=155
2:
Como podemos ver, os registros das tabelas de ambos os feeds foram combinados em uma
registros de uma mesma tabela (a agency, no exemplo). Caso apenas um dos objetos possua
```

única tabela. Este é o caso quando os dois (ou mais, caso desejado) objetos GTFS possuem uma das tabelas, o resultado da operação de combinação copia esta tabela para o resultado final. É o caso, por exemplo, da tabela frequencies, que existe apenas no feed da SPTrans, mas não no da EMTU:

```
names(poa gtfs)
[1] "agency"
                  "calendar"
                                "routes"
                                               "shapes"
                                                             "stop_times"
[6] "stops"
                  "trips"
```

```
names(no_dups_gtfs)
[1] "agency"
                   "calendar"
                                 "frequencies" "routes"
                                                               "shapes"
[6] "stop_times"
                  "stops"
                                 "trips"
  names(combined_gtfs)
[1] "agency"
                   "calendar"
                                 "frequencies" "routes"
                                                               "shapes"
[6] "stop_times"
                  "stops"
                                 "trips"
  identical(no_dups_gtfs$frequencies, combined_gtfs$frequencies)
```

Um outro tipo de operação muito utilizada no tratamento de arquivos GTFS é o de filtragem desses arquivos. Frequentemente, feeds são usados para descrever redes de transporte público de grandíssima escala, transformando sua edição, análise e transferência em operações complexas. Por esse motivo, pesquisadores e planejadores muitas vezes precisar trabalhar com um subconjunto de dados descritos nos feeds. Caso desejemos estimar a acessibilidade de uma determinada região no horário de pico da manhã, por exemplo, podemos filtrar o nosso arquivo GTFS de modo a manter apenas os registros referentes a viagens que ocorrem nesse intervalo

O pacote gtfstools também traz diversas funções para facilitar a filtragem de arquivos GTFS. São elas:

- filter_by_agency_id()
- filter_by_route_id()

[1] TRUE

do dia.

- filter_by_service_id()
- filter_by_shape_id()
- filter_by_stop_id()
- filter_by_trip_id()
- filter_by_route_type()
- filter_by_weekday()
- filter_by_time_of_day()
- filter_by_sf()

As seis primeiras (filter_by_agency_id(), filter_by_route_id(), filter_by_service_id(), filter_by_shape_id(), filter_by_stop_id() e filter_by_trip_id()) funcionam de forma muito similar. O usuário deve especificar uma vetor de identificadores, e a função mantém no objeto GTFS apenas os registros referentes a esses identificadores. O exemplo abaixo demonstra essa funcionalidade com a filter_by_trip_id():

```
lobstr::obj_size(gtfs)
770.22 kB
  head(gtfs$trips[, .(trip_id, trip_headsign, shape_id)])
      trip_id trip_headsign shape_id
1: CPTM L07-0
                    JUNDIAI
                                17846
2: CPTM L07-1
                        LUZ
                                17847
3: CPTM LO8-O AMADOR BUENO
                                17848
4: CPTM LO8-1 JULIO PRESTES
                                17849
5: CPTM L09-0
                     GRAJAU
                                17850
6: CPTM L09-1
                     OSASCO
                                17851
  smaller_gtfs <- filter_by_trip_id(gtfs, trip_id = c("CPTM LO7-0", "CPTM LO7-1"))</pre>
  lobstr::obj_size(smaller_gtfs)
61.62 kB
  head(smaller_gtfs$trips[, .(trip_id, trip_headsign, shape_id)])
      trip_id trip_headsign shape_id
1: CPTM L07-0
                    JUNDIAI
                                17846
2: CPTM L07-1
                        LUZ
                                17847
  unique(smaller_gtfs$shapes$shape_id)
[1] "17846" "17847"
```

O código acima mostra que a função não filtra apenas a tabela trips, mas também as outras tabelas que fazem referência aos identificadores especificados. Por exemplo, a trajetória das viagens CPTM L07-0 and CPTM L07-1 é descrita pelos shape_ids 17846 and 17847, respectivamente. Esses são, portanto, os únicos identificadores da tabela shapes mantidos no GTFS filtrado.

A função também funciona com o comportamento diametralmente oposto: em vez de definirmos os identificadores cujos registros devem ser *mantidos* no *feed*, especificamos os identificadores que devem ser *retirados* dele. Para isso, usamos o argumento keep com valor FALSE:

```
smaller_gtfs <- filter_by_trip_id(</pre>
    gtfs.
    c("CPTM L07-0", "CPTM L07-1"),
    keep = FALSE
  )
  head(smaller_gtfs$trips[, .(trip_id, trip_headsign, shape_id)])
      trip_id
                    trip_headsign shape_id
1: CPTM L08-0
                     AMADOR BUENO
                                       17848
2: CPTM L08-1
                     JULIO PRESTES
                                       17849
3: CPTM L09-0
                            GRAJAU
                                      17850
4: CPTM L09-1
                            OSASCO
                                      17851
5: CPTM L10-0 RIO GRANDE DA SERRA
                                       17852
6: CPTM L10-1
                              BRÁS
                                       17853
  head(unique(smaller_gtfs$shapes$shape_id))
[1] "17848" "17849" "17850" "17851" "17852" "17853"
```

Como podemos ver, as viagens especificadas, bem como suas trajetórias, não estão presentes no GTFS filtrado. A mesma lógica aqui demonstrada com a filter_by_trip_id() é válida para as funções que filtram objetos GTFS pelos identificadores agency_id, route_id, service_id, shape_id, stop_id e route_type.

Outra operação que recorrentemente aparece em análises que envolvem dados GTFS é a de manter serviços que funcionem apenas em determinados horários do dia ou dias da semana. Para isso, o pacote disponibiliza as funções filter_by_weekday() e filter_by_time_of_day().

A filter_by_weekday() recebe os dias da semana (em inglês) cujos serviços que neles operam devem ser mantidos. Adicionalmente, a função também inclui o argumento combine, que define como filtros de dois ou mais dias funcionam. Quando este recebe o valor "and", apenas serviços

que operam em todos os dias especificados são mantidos. Quando recebe o valor "or", serviços que operam em pelo menos um dos dias são mantidos:

```
smaller_gtfs <- filter_by_weekday(</pre>
    no_dups_gtfs,
    weekday = c("saturday", "sunday"),
     combine = "and"
  )
  smaller_gtfs$calendar[, c("service_id", "sunday", "saturday")]
   service_id sunday saturday
1:
           USD
                     1
2:
           SD
                     1
                               1
  smaller_gtfs <- filter_by_weekday(</pre>
    no_dups_gtfs,
    weekday = c("sunday", "saturday"),
     combine = "or"
  )
  smaller_gtfs$calendar[, c("service_id", "sunday", "saturday")]
   service_id sunday saturday
1:
           USD
                     1
2:
           \mathtt{US}_-
                     0
                               1
3:
           _{\mathtt{SD}}
                     1
                               1
           __D
                               0
4:
                     1
5:
           _S_
                     0
                               1
```

A filter_by_time_of_day(), por sua vez, recebe o começo e o final de uma janela de tempo e mantém os registros relacionados a viagens que rodam dentro dessa janela. O funcionamento da função depende da presença ou não da tabela frequencies no GTFS: o cronograma descrito na stop_times das viagens descritas na tabela frequencies não deve ser filtrado, pois, como comentado no capítulo anterior, ele serve como um modelo que dita o tempo de viagem entre uma parada e outra. Caso a frequencies esteja ausente, no entanto, a stop_times é filtrada segundo o intervalo de tempo especificado. Vamos ver como isso funciona com um exemplo:

```
smaller_gtfs <- filter_by_time_of_day(gtfs, from = "05:00:00", to = "06:00:00")</pre>
```

head(smaller_gtfs\$frequencies)

```
trip_id start_time end_time headway_secs
1: CPTM L07-0
                05:00:00 05:59:00
                                            360
2: CPTM L07-1
                05:00:00 05:59:00
                                            360
3: CPTM L08-0
                05:00:00 05:59:00
                                            480
4: CPTM L08-1
                05:00:00 05:59:00
                                            480
5: CPTM L09-0
                05:00:00 05:59:00
                                            480
6: CPTM L09-1
                05:00:00 05:59:00
                                            480
  head(smaller_gtfs$stop_times[, c("trip_id", "departure_time", "arrival_time")])
      trip_id departure_time arrival_time
1: CPTM L07-0
                    04:00:00
                                  04:00:00
2: CPTM L07-0
                    04:08:00
                                  04:08:00
3: CPTM L07-0
                    04:16:00
                                  04:16:00
4: CPTM L07-0
                    04:24:00
                                  04:24:00
5: CPTM L07-0
                    04:32:00
                                  04:32:00
6: CPTM L07-0
                    04:40:00
                                  04:40:00
  frequencies <- gtfs$frequencies
  gtfs$frequencies <- NULL
  smaller_gtfs <- filter_by_time_of_day(gtfs, from = "05:00:00", to = "06:00:00")
  head(smaller_gtfs$stop_times[, c("trip_id", "departure_time", "arrival_time")])
      trip_id departure_time arrival_time
1: CPTM L07-0
                    05:04:00
                                  05:04:00
2: CPTM L07-0
                                  05:12:00
                    05:12:00
3: CPTM L07-0
                    05:20:00
                                  05:20:00
4: CPTM L07-0
                    05:28:00
                                  05:28:00
5: CPTM L07-0
                    05:36:00
                                  05:36:00
6: CPTM L07-0
                    05:44:00
                                  05:44:00
```

O filtro da tabela stop_times pode funcionar de duas formas distintas. Uma opção é manter intactas todas as viagens que cruzam a janela de tempo especificada. A outra é manter apenas os segmentos de viagens que ocorrem dentro da janela (comportamento padrão da função). Este comportamento é controlado com o parâmetro full_trips, como mostrado a seguir (prestem atenção nos horários e nos segmentos presentes em cada exemplo):

```
smaller_gtfs <- filter_by_time_of_day(</pre>
    gtfs,
    "05:00:00",
    "06:00:00",
    full_trips = TRUE
  )
  head(
    smaller_gtfs$stop_times[
      c("trip_id", "departure_time", "arrival_time", "stop_sequence")
    ]
  )
      trip_id departure_time arrival_time stop_sequence
                    04:00:00
1: CPTM L07-0
                                 04:00:00
                                                       1
2: CPTM L07-0
                                                       2
                    04:08:00
                                 04:08:00
3: CPTM L07-0
                    04:16:00
                                04:16:00
                                                       3
4: CPTM L07-0
                                                       4
                    04:24:00
                                 04:24:00
5: CPTM L07-0
                    04:32:00
                                 04:32:00
                                                       5
6: CPTM L07-0
                    04:40:00
                                 04:40:00
                                                       6
  smaller_gtfs <- filter_by_time_of_day(</pre>
    gtfs,
    "05:00:00",
    "06:00:00",
    full_trips = FALSE
  )
  head(
    smaller_gtfs$stop_times[
      c("trip_id", "departure_time", "arrival_time", "stop_sequence")
    ]
  )
      trip_id departure_time arrival_time stop_sequence
1: CPTM L07-0
                    05:04:00
                                  05:04:00
                                                       9
2: CPTM L07-0
                                                      10
                    05:12:00
                                  05:12:00
3: CPTM L07-0
                    05:20:00
                                 05:20:00
                                                      11
```

```
4: CPTM L07-0 05:28:00 05:28:00 12
5: CPTM L07-0 05:36:00 05:36:00 13
6: CPTM L07-0 05:44:00 05:44:00 14
```

Por fim, o pacote também disponibiliza uma função que permite filtrar o objeto GTFS usando um polígono espacial. A filter_by_sf() recebe um objeto do tipo sf/sfc (representação espacial estabelecida pelo pacote sf), ou sua bounding box, e mantém os registros cujas viagens são selecionadas por uma operação espacial especificada pelo usuário. Embora aparentemente complicado, este processo de filtragem é muito facilmente compreendido quando apresentado visualmente. Para isso, vamos criar uma função auxiliar:

```
library(ggplot2)
plotter <- function(gtfs,
                      spatial_operation = sf::st_intersects,
                      keep = TRUE,
                      do_filter = TRUE) {
  if (do_filter) {
    gtfs <- filter_by_sf(gtfs, geom, spatial_operation, keep)</pre>
  }
  shapes <- convert_shapes_to_sf(gtfs)</pre>
  trips <- get_trip_geometry(gtfs, file = "stop_times")</pre>
  geom <- sf::st_as_sfc(geom)</pre>
  ggplot() +
    geom_sf(data = trips) +
    geom sf(data = shapes) +
    geom_sf(data = geom, fill = NA)
}
```

Esta função:

- Possui os mesmos parâmetros da filter_by_sf(), com a exceção do parâmetro do_filter, usado para mostrar os dados não filtrados;
- Condicionalmente filtra um objeto GTFS usando uma bounding box chamada geom;
- Gera a geometria das viagens usando as funções convert_shapes_to_sf() e get_trip_geometry();
- Cria um polígono a partir da bounding box;

Vamos usar como exemplo a filtragem usando a bounding box da trajetória de id 68962. O código abaixo apresenta a distribuição espacial dos dados não filtrados:

```
bbox <- sf::st_bbox(convert_shapes_to_sf(gtfs, shape_id = "68962"))
plotter(gtfs, bbox, do_filter = FALSE)</pre>
```


Notem aqui que nós usamos a função convert_shapes_to_sf(), que converte uma determinada trajetória descrita no GTFS em um objeto espacial do tipo sf, para obter a bounding box da trajetória. Por padrão, a filter_by_sf() (e a plotter(), consequentemente) mantém os dados relacionados aos registros de viagens cujas trajetórias possuem alguma interseção com o polígono espacial selecionado:

```
plotter(gtfs, bbox)
```


Nós podemos, no entanto, controlar a operação espacial usada no processo de filtragem. Por exemplo, o código abaixo mostra como nós podemos manter os dados relacionados a viagens que estão *contidas* dentro do polígono espacial:

```
plotter(gtfs, bbox, spatial_operation = sf::st_contains)
```


5.4 Mapeamento do headway das linhas

Como mostrado nas seções anteriores, o gtfstools disponibiliza uma grande caixa de ferramentas que podem ser usadas no processamento e na análise de arquivos GTFS. O pacote, no entanto, oferece diversas outras funções que não puderam ser apresentadas neste livro, por questões de espaço. A lista completa de funções disponíveis no pacote pode ser conferida no site do gtfstools.

A apresentação das funções feitas até aqui tem um importante caráter demonstrativo, porém não mostra como elas podem ser usadas de forma conjunta no desenvolvimento de uma análise de um arquivo GTFS. Esta seção preenche esta lacuna, mostrando como o pacote pode ser usado em uma análise simples, que visa responder a seguinte pergunta: como se distribuem espacialmente os tempos entre veículos de uma mesma linha (ou seja, o *headway*) no GTFS da SPTrans?

A primeira etapa é definir o escopo da nossa análise. A fim de exemplo, vamos considerar o headway no pico da manhã, entre 7h e 9h, em uma típica terça-feira de operação. Para isso, precisamos filtrar o nosso feed:

```
gtfs <- read_gtfs(path)
filtered_gtfs <- gtfs |>
```

```
remove_duplicates() |>
    filter_by_weekday("tuesday") |>
    filter_by_time_of_day(from = "07:00:00", to = "09:00:00")
  filtered_gtfs$frequencies[trip_id == "2105-10-0"]
     trip_id start_time end_time headway_secs
1: 2105-10-0
               07:00:00 07:59:00
2: 2105-10-0
               08:00:00 08:59:00
                                           1200
  filtered gtfs$calendar
   service_id monday tuesday wednesday thursday friday saturday sunday
          USD
1:
                   1
                            1
                                      1
                                                1
                                                       1
                                                                 1
                                                                        1
2:
          U__
                                                1
                                                                 0
                                                                        0
                            1
                                      1
                                                       1
   start_date
                end date
1: 2008-01-01 2020-05-01
2: 2008-01-01 2020-05-01
```

Em seguida, precisamos calcular o headway dentro do período estabelecido. Essa informação pode ser encontrada na tabela frequencies, porém há um elemento complicador: cada viagem está associada a mais de um headway, como podemos ver acima. Para resolver esta questão, portanto, vamos calcular o headway médio* neste período.

Os primeiros registros da tabela frequencies do GTFS da SPTrans parecem sugerir que os períodos do dia estão listados sempre de uma em uma hora, porém isto não é uma regra estabelecida na especificação GTFS e nem é a prática adotada em outros GTFS. Por isso, nós vamos calcular a média ponderada do headway no período especificado. Para isso, nós precisamos multiplicar cada headway pelo intervalo de tempo em que ele é válido, e dividir o total desta soma pelo intervalo de tempo total (duas horas). Para calcular o intervalo de tempo em que cada headway é válido, nós usamos a função convert_time_to_seconds() para calcular o começo e o fim do intervalo em segundos e subtraímos o valor do fim pelo do começo, como abaixo:

```
filtered_gtfs <- convert_time_to_seconds(filtered_gtfs)
filtered_gtfs$frequencies[trip_id == "2105-10-0"]</pre>
```

```
trip_id start_time end_time headway_secs start_time_secs end_time_secs
1: 2105-10-0 07:00:00 07:59:00 900 25200 28740
2: 2105-10-0 08:00:00 08:59:00 1200 28800 32340
```

```
filtered_gtfs$frequencies[, time_interval := end_time_secs - start_time_secs]
```

Em seguida, nós calculamos o headway médio:

```
avg_headway <- filtered_gtfs$frequencies[</pre>
    .(avg_headway = weighted.mean(headway_secs, w = time_interval)),
    by = trip_id
  avg_headway[trip_id == "2105-10-0"]
     trip_id avg_headway
1: 2105-10-0
                     1050
  head(avg_headway)
      trip_id avg_headway
1: CPTM L07-0
                       360
2: CPTM L07-1
                       360
3: CPTM L08-0
                       300
4: CPTM L08-1
                       300
5: CPTM L09-0
                       240
6: CPTM L09-1
                       240
```

Nós precisamos agora gerar a trajetória espacial de cada viagem e juntar esta informação à do headway médio. Para isso, nós vamos utilizar a função get_trip_geometry(), que, dado um objeto GTFS, retorna a trajetória espacial de suas viagens. Esta função nos permite especificar de quais viagens nós queremos as trajetórias, logo nós vamos calcular apenas as daquelas que estão presentes na tabela de headways médios:

```
selected_trips <- avg_headway$trip_id

geoms <- get_trip_geometry(
   filtered_gtfs,
   trip_id = selected_trips,
   file = "shapes"
)

head(geoms)</pre>
```

```
Simple feature collection with 6 features and 2 fields
Geometry type: LINESTRING
Dimension:
               XY
Bounding box:
               xmin: -46.98404 ymin: -23.73644 xmax: -46.63535 ymax: -23.19474
               WGS 84
Geodetic CRS:
     trip_id origin_file
                                                geometry
1 CPTM L07-0
                  shapes LINESTRING (-46.63535 -23.5...
2 CPTM L07-1
                  shapes LINESTRING (-46.87255 -23.1...
3 CPTM L08-0
                  shapes LINESTRING (-46.64073 -23.5...
4 CPTM L08-1
                  shapes LINESTRING (-46.98404 -23.5...
5 CPTM L09-0
                  shapes LINESTRING (-46.77604 -23.5...
6 CPTM L09-1
                  shapes LINESTRING (-46.69711 -23.7...
```

O objeto geoms está no formato sf, e não no data.table, que precisamos que ele esteja para juntarmos à tabela de *headways*. Depois de convertê-lo para o formato desejado adequado e juntá-lo à tabela de *headways*, nós precisamos apenas configurar o nosso mapa como desejado. No exemplo abaixo, nós usamos cores e espessuras de linhas que variam de acordo com o *headway* de cada viagem:

```
library(data.table)
library(sf)

setDT(geoms)
avg_headway[geoms, on = "trip_id", geometry := i.geometry]

ggplot(st_sf(avg_headway)) +
    geom_sf(aes(color = avg_headway, size = avg_headway))
```


Como podemos ver, o pacote gtfstools torna o desenvolvimento de análises de feeds de transporte público algo fácil e que requer apenas o conhecimento básico de pacotes de manipulação de tabela (como o data.table) para grande parte das etapas que as compõem. O exemplo apresentado nesta seção mostra como muitas de suas funções podem ser usadas conjuntamente para revelar aspectos importantes de sistemas de transporte público descritos no formato GTFS.

Part IV

SEÇÃO 4: Avaliação de impacto

Objetivo: O objetivo desta seção é mostrar como avaliar o impacto de políticas urbanas sobre acessibilidade urbana usando R.

Embora muito utilizado na literatura científica, o conceito de acessibilidade ainda não é tão utilizado no planejamento e operação de sistemas de transporte público por parte de agências de transportes e tomadores de decisão. Muito disto se dá pela dificuldade de incorporar análises de acessibilidade a métodos de avaliação de projetos comumente utilizados, como análises de custo e benefício, por exemplo. Esta seção apresenta um método de avaliação de impactos de projetos e investimentos de transporte que tem na acessibilidade sua principal ferramenta.

A aplicação do método envolve a edição de arquivos GTFS, o cálculo de matrizes de custo, a tomada de decisão por trás da escolha de qual medida de acessibilidade utilizar, a estimativa dos níveis de acessibilidade, a visualização espacial desses níveis e o cálculo e análise de indicadores de desigualdade. Engloba, portanto, muitos dos pontos abordados neste livro, e serve como uma aplicação prática dos conceitos até então apresentados.

[RAFA: mencionar que uma avaliação de um projeto ou política deve ser a mais abrangente possível, considerando desde aspectos de participação social no desenho do projeto até o seu impacto em termos mais amplos considerados aspectos ambientais, econômicos, sociais, etc. A análise de impacto de acessibilidade, da qual tratamos nesse capítulo, é uma dessas dimensões de impacto.

6 Comparando a acessibilidade entre dois cenários de transporte

Neste capítulo, avaliaremos o impacto de um cenário simplificado de um investimento de infraestrutura de transporte real: a implementação da Linha Leste do metrô de Fortaleza. O traçado da Linha Leste possui 7.3 km de extensão e liga o Centro de Fortaleza ao bairro Papicu, permitindo a integração das linhas de metrô Sul e Oeste com corredores de VLT e o terminal de ônibus no Papicu. É importante notar que a implementação deste investimento implica também em mudanças nas frequências das linhas de metrô Sul e Oeste e também no racionamento do sistema de ônibus municipais, conforme o Plano de Acessibilidade Sustentável de Fortaleza (Pasfor)¹. Essas mudanças adicionais no sistema de transporte público não foram incorporados aos nossos cenários. Para uma avaliação mais completa do impacto de acessibilidade da implementação da Linha Leste e das mudanças previstas no Pasfor, por favor veja (ref?).

Para isso, precisaremos comparar os níveis de acessibilidade antes e depois da implementação do novo corredor. Precisamos, portanto, utilizar diferentes arquivos GTFS para representar os cenários antes e depois, calcular duas matrizes de tempo de viagem distintas (uma antes e outra depois do investimento), calcular dois conjuntos de níveis de acessibilidade distintos e comparar esses conjuntos. Neste capítulo, vamos cobrir este passo-a-passo em detalhes, começando primeiro pelo detalhamento dos GTFS que vamos usar.

6.1 Arquivos GTFS usados na análise

Nesta análise, usaremos os arquivos GTFS da METROFOR e da ETUFOR, que descrevem o sistema de transporte público operante na cidade de Fortaleza. Como esses são arquivos grandes, somando quase 20 MB no total, eles não estão disponíveis dentro dos pacotes {r5r} e {gtfstools}, como até então era o caso das amostras de feeds que usamos nos exemplos. Precisamos, portanto, baixá-los para o nosso projeto:

```
metrofor_path <- tempfile("metrofor", fileext = ".zip")
etufor_path <- tempfile("etufor", fileext = ".zip")</pre>
```

¹Disponível em https://www.pasfor.com.br/.

```
httr::GET(
   "https://github.com/ipeaGIT/intro_access_book/releases/download/data_1st_edition/gtfs_fo
   httr::write_disk(metrofor_path)
)

httr::GET(
   "https://github.com/ipeaGIT/intro_access_book/releases/download/data_1st_edition/gtfs_fo
   httr::write_disk(etufor_path)
)
```

Para simularmos a operação da nova Linha Leste do metrô, precisamos também de um feed que descreva o funcionamento deste corredor. Este GTFS foi criado para o estudo de (ref?), que avalia o impacto de acessibilidade da implementação da Linha Leste, e será reutilizado neste exemplo. Assim como os feeds da ETUFOR e da METROFOR, este arquivo GTFS está disponível para download no repositório do livro no GitHub:

```
linha_leste_path <- tempfile("linha_leste", fileext = ".zip")

httr::GET(
    "https://github.com/ipeaGIT/intro_access_book/releases/download/data_1st_edition/gtfs_lintro:write_disk(linha_leste_path)
)</pre>
```

Esses três arquivos GTFS serão usados em conjunto para calcular a acessibilidade dos cenários antes e depois. No primeiro, apenas os feeds da METROFOR e da ETUFOR serão usados no roteamento de transporte público, representando a típica operação de transporte público antes da implementação do novo corredor. No cenário pós-implementação, incluiremos também o GTFS da Linha Leste, incorporando à análise a operação planejada desta linha após sua finalização.

6.2 Cálculo das matrizes de tempo de viagem

Tendo definido quais arquivos GTFS vamos usar em cada um dos cenários analisados, precisamos agora utilizá-los para calcular as matrizez de tempo de viagem, que por sua vez vamos usar para estimar os níveis de acessibilidade. Como apresentado na Section 3.1, para isso vamos utilizar a função travel_time_matrix(), do pacote {r5r}.

Antes de calcular as matrizes de fato, nós precisamos organizar os nossos arquivos na estrutura que o {r5r} requer. Cada um dos nossos cenários (antes e depois) deve ser representado por uma pasta contendo os arquivos necessários para o roteamento. Vamos criar uma pasta dentro da qual vamos botar as pastas do roteamento:

```
analysis_dir <- "impact_analysis"
dir.create(analysis_dir)</pre>
```

Dentro desta pasta, vamos criar as pastas de roteamento dos cenários antes e depois, contendo seus respectivos feeds:

```
dir before <- file.path(analysis dir, "before")</pre>
  dir_after <- file.path(analysis_dir, "after")</pre>
  dir.create(dir_before)
  dir.create(dir_after)
  file.copy(from = metrofor_path, to = file.path(dir_before, "metrofor.zip"))
  file.copy(from = metrofor_path, to = file.path(dir_after, "metrofor.zip"))
  file.copy(from = etufor_path, to = file.path(dir_before, "etufor.zip"))
  file.copy(from = etufor_path, to = file.path(dir_after, "etufor.zip"))
  file.copy(from = linha_leste_path, to = file.path(dir_after, "linha_leste.zip"))
  fs::dir_tree(analysis_dir)
impact_analysis
+-- after
   +-- etufor.zip
   +-- linha leste.zip
   \-- metrofor.zip
\-- before
    +-- etufor.zip
    \-- metrofor.zip
```

Para estimarmos o tempo de viagem na nossa área de estudo, precisamos ainda de um arquivo representando a rede viária do local, em formato .pbf, e opcionalmente iremos utilizar um arquivo representando a topografia local, em formato .tif. Esses arquivos, asssim como os GTFS, estão disponíveis para download no repositório do livro. Partindo do pressuposto que a implementação da Linha Leste não afetaria o traçado das ruas e calçadas na região, bem como a topografia local, podemos usar os mesmos arquivos nas duas matrizes de tempo de viagem:

```
pbf_path <- tempfile("street_network", fileext = ".osm.pbf")</pre>
  tif_path <- tempfile("topography", fileext = ".tif")</pre>
  httr::GET(
    "https://github.com/ipeaGIT/intro_access_book/releases/download/data_1st_edition/for_202
    httr::write_disk(pbf_path)
  httr::GET(
    "https://github.com/ipeaGIT/intro_access_book/releases/download/data_1st_edition/topogra
    httr::write_disk(tif_path)
  )
  file.copy(from = pbf_path, to = file.path(dir_before, "street_network.osm.pbf"))
  file.copy(from = pbf_path, to = file.path(dir_after, "street_network.osm.pbf"))
  file.copy(from = tif_path, to = file.path(dir_before, "topography.tif"))
  file.copy(from = tif_path, to = file.path(dir_after, "topography.tif"))
  fs::dir_tree(analysis_dir)
impact_analysis
+-- after
| +-- etufor.zip
  +-- linha_leste.zip
  +-- metrofor.zip
   +-- street_network.osm.pbf
   \-- topography.tif
\-- before
   +-- etufor.zip
   +-- metrofor.zip
   +-- street_network.osm.pbf
    \-- topography.tif
```

Finalmente, podemos começar o cálculo das matrizes. A primeira etapa é construir a rede de transporte multimodal usada pelo {r5r} no roteamento e criar uma conexão com o R5, o que é feito com o comando setup_r5():

```
options(java.parameters = "-Xmx4G")
library(r5r)

r5r_core_before <- setup_r5(dir_before, use_elevation = TRUE, verbose = FALSE)
r5r_core_after <- setup_r5(dir_after, use_elevation = TRUE, verbose = FALSE)</pre>
```

Tendo sido criada a conexão com o R5 para os dois cenários, prosseguimos agora para o cálculo da matriz, de fato. De forma a avaliar a expansão do metrô adequadamente, nós precisamos usar os mesmos parâmetros em ambos os cenários. Vamos considerar viagens a pé ou por transporte público, permitir até 800 metros nas pernas de acesso e egresso a paradas e limitar o tempo máximo de viagem em até 60 minutos. Vamos considerar o horário de partida de 07:00 em uma típica segunda-feira de operação. Como origens e destinos, vamos usar os centróides da grade de Fortaleza disponibilizada pelo pacote {aopdata} (mais detalhes sobre o pacote são apresentados na Seção 5):

```
library(data.table)
library(aopdata)
library(sf)
for_grid <- read_grid("for")</pre>
points <- st_centroid(for_grid)</pre>
setDT(points)
points <- points[, .(id = id_hex, geom)]</pre>
points[, setdiff(names(points), c("id", "geom")) := NULL]
points <- st_sf(points)</pre>
ttm before <- travel time matrix(</pre>
  r5r_core_before,
  origins = points,
  destinations = points,
  mode = c("WALK", "TRANSIT"),
  departure_datetime = as.POSIXct(
    "02-03-2020 07:00:00",
    format = "%d-%m-%Y %H:%M:%S"
  ),
  max_walk_dist = 800,
  max_trip_duration = 60,
  verbose = FALSE,
  progress = FALSE
```

```
)
  ttm_after <- travel_time_matrix(</pre>
    r5r_core_after,
    origins = points,
    destinations = points,
    mode = c("WALK", "TRANSIT"),
    departure_datetime = as.POSIXct(
      "02-03-2020 07:00:00",
      format = "%d-%m-%Y %H:%M:%S"
    ),
    max_walk_dist = 800,
    max_trip_duration = 60,
    verbose = FALSE,
    progress = FALSE
  ttm_before
                  fromId
                                     toId travel time
      1: 89801040323ffff 89801040323ffff
                                                    2
      2: 89801040323ffff 89801040327fffff
                                                   22
      3: 89801040323ffff 8980104032fffff
                                                   14
      4: 89801040323ffff 89801040333ffff
                                                    9
      5: 89801040323ffff 89801040337ffff
                                                   30
1665468: 8980107b6dbffff 8980107b6cbffff
                                                    8
1665469: 8980107b6dbffff 8980107b6cfffff
                                                   14
1665470: 8980107b6dbffff 8980107b6d3ffff
                                                    9
1665471: 8980107b6dbffff 8980107b6d7ffff
                                                   15
1665472: 8980107b6dbffff 8980107b6dbffff
                                                    0
  ttm_after
                  fromId
                                     toId travel_time
      1: 89801040323ffff 89801040323ffff
                                                    2
      2: 89801040323ffff 89801040327ffff
                                                   22
      3: 89801040323ffff 8980104032fffff
                                                   14
      4: 89801040323ffff 89801040333ffff
                                                   9
      5: 89801040323ffff 89801040337ffff
                                                   30
```

1671492: 8980107b6dbffff 8980107b6cbffff 8980107b6cbffff 14
1671494: 8980107b6dbffff 8980107b6d3ffff 9
1671495: 8980107b6dbffff 8980107b6d7ffff 15
1671496: 8980107b6dbffff 8980107b6dbffff 0

À primeira vista, nossas matrizes parecem iguais: todos os tempos de viagem na amostra de pares mostrados acima são idênticos. Isto ocorre porque muitos deslocamentos entre regiões da cidade de fato não são afetados pela implementação da nova linha de metrô, por serem realizados por outros modos de transporte público ou a pé. Se compararmos par a par, no entanto, veremos que vários dos tempos de viagens entre eles são impactados pela Linha Leste:

```
comparison <- merge(
  ttm_before,
  ttm_after,
  by = c("fromId", "toId"),
  suffixes = c("_before", "_after")
)

comparison[travel_time_after < travel_time_before]</pre>
```

	fromId	toId	travel_time_before	travel_time_after
1:	89801041b2fffff	8980104c14bffff	55	54
2:	89801041b2fffff	8980104c15bffff	55	53
3:	89801041b2fffff	8980104c397ffff	52	48
4:	8980104532bffff	8980104c13bffff	57	53
5:	89801045363ffff	8980104c13bffff	57	53
8283:	8980107b6dbffff	8980104c02fffff	58	52
8284:	8980107b6dbffff	8980104c13bffff	48	42
8285:	8980107b6dbffff	8980104c14bffff	57	54
8286:	8980107b6dbffff	8980104c15bffff	58	53
8287:	8980107b6dbffff	8980104c397ffff	58	48

6.3 Cálculo da acessibilidade nos cenários antes e depois

O cálculo da acessibilidade é muito simples, requerendo apenas um processamento básico dos nossos dados e a aplicação de uma das funções de acessibilidade do pacote {accessibility}.

Como tratamento dos dados, vamos juntar as matrizes dos dois cenários em uma única tabela, identificando cada cenário com a coluna scenario:

```
ttm <- rbind(ttm_before, ttm_after, idcol = "scenario")
ttm[, scenario := factor(scenario, labels = c("before", "after"))]
ttm</pre>
```

	scenario	fromId	toId	travel_time	
1:	before	89801040323ffff	89801040323ffff	2	
2:	before	89801040323ffff	89801040327ffff	22	
3:	before	89801040323ffff	8980104032fffff	14	
4:	before	89801040323ffff	89801040333ffff	9	
5:	before	89801040323ffff	89801040337ffff	30	
3336964:	after	8980107b6dbffff	8980107b6cbffff	8	
3336965:	after	8980107b6dbffff	8980107b6cfffff	14	
3336966:	after	8980107b6dbffff	8980107b6d3ffff	9	
3336967:	after	8980107b6dbffff	8980107b6d7ffff	15	
3336968:	after	8980107b6dbffff	8980107b6dbffff	0	

Para o cálculo da acessibilidade, vamos precisar de uma tabela com os dados de uso do solo da cidade de Fortaleza. Para isso, nós usamos a função read_landuse() do pacote {aopdata}:

```
for_data <- read_landuse("for", showProgress = FALSE)</pre>
```

Para fins de demonstração, vamos calcular a acessibilidade a postos de trabalho e a escolas públicas na nossa área de estudo. Os dados do total de empregos e escolas em cada hexágono estão listados nas colunas T001 e E001, respectivamente. Vamos renomeá-las para facilitar sua identificação e manter apenas as colunas necessárias na tabela de dados de uso do solo (vamos manter também as colunas P001, de população total em cada hexágono, e R003, do decil de renda em que cada hexágono se encontra, que serão úteis mais à frente):

```
cols_to_keep <- c("id", "jobs", "schools", "population", "decile")
setnames(
  for_data,
  old = c("id_hex", "T001", "E001", "P001", "R003"),
  new = cols_to_keep
)
for_data[, setdiff(names(for_data), cols_to_keep) := NULL]</pre>
```

	id	population	decile	jobs	schools
1:	89801040323ffff	30	1	0	0
2:	89801040327ffff	318	1	7	0
3:	8980104032bffff	0	NA	0	0
4:	8980104032fffff	103	1	98	0
5:	89801040333ffff	43	1	0	0
2558:	8980107b6cbffff	2575	4	124	0
2559:	8980107b6cfffff	2997	3	4	0
2560:	8980107b6d3ffff	1751	8	14	0
2561:	8980107b6d7ffff	2032	4	134	0
2562:	8980107b6dbffff	1896	9	193	1

A parte mais difícil do processo do cálculo de acessibilidade é a definição da medida a ser utilizada. É extremamente importante pesar as vantagens e desvantagens de cada uma e compreender quais medidas se adequam às oportunidades para quais se deseja calcular os níveis de acessibilidade. Neste exemplo, utilizaremos duas medidas distintas:

- No cálculo da acessibilidade a empregos, vamos usar a medida de oportunidades cumulativas. Esta métrica nos permite entender quantos empregos são acessíveis dentro de um determinado custo de viagem, representando, desta forma, a oferta de empregos aos habitantes de cada uma das células de nossa grade. Embora essa medida não leve em consideração a competição por empregos, sua principal vantagem é que ela é de muito simples comunicação e interpretação. Em nosso exemplo, vamos tomar como limite de custo um tempo de viagem de 30 minutos.
- No cálculo da acessibilidade a escolas públicas, vamos usar a medida de custo mínimo de viagem. Esta métrica é especialmente útil para avaliar a cobertura de serviços públicos essenciais, como educação e saúde básica, pois é desejado que a maior parte da população de uma cidade esteja a uma distância considerada razoável desses serviços.

Como mostrado anteriormente, na Section 3.2, o cálculo dessas medidas pode ser feito com as funções cumulative_cutoff() e cost_to_closest(), respectivamente, do pacote {accessibility}:

```
library(accessibility)
setnames(ttm, old = c("fromId", "toId"), new = c("from_id", "to_id"))
access_to_jobs <- cumulative_cutoff(</pre>
```

```
travel_matrix = ttm,
    land_use_data = for_data,
    opportunity = "jobs",
    travel_cost = "travel_time",
    cutoff = 60,
    group_by = "scenario"
  access_to_jobs
                  id scenario jobs
  1: 89801040323ffff before 46159
                       before 25499
  2: 89801040327ffff
  3: 8980104032bffff before
                                 118
  4: 8980104032fffff before 66513
  5: 89801040333ffff before 46159
5120: 8980107b6cbffff after 366197
5121: 8980107b6cfffff
                        after 256888
5122: 8980107b6d3ffff
                        after 324981
5123: 8980107b6d7ffff
                        after 338965
5124: 8980107b6dbffff
                        after 361967
  time_to_schools <- cost_to_closest(</pre>
    travel_matrix = ttm,
    land_use_data = for_data,
    opportunity = "schools",
    travel_cost = "travel_time",
    group_by = "scenario"
  time_to_schools
                  id scenario travel time
  1: 89801040323ffff
                       before
  2: 89801040323ffff
                      after
                                       25
                                       35
  3: 89801040327ffff
                       before
  4: 89801040327ffff
                       after
                                       35
  5: 8980104032bffff
                       before
                                      Inf
 ---
5120: 8980107b6d3ffff
                        after
                                        9
5121: 8980107b6d7ffff
                       before
                                       13
```

```
5122: 8980107b6d7ffff after 13
5123: 8980107b6dbffff before 0
5124: 8980107b6dbffff after 0
```

Como podemos ver, o resultado da função de custo mínimo de viagem inclui alguns valores Inf. As origens listadas com este valor não conseguem alcançar dentro de 120 minutos (limite de tempo de viagem imposto no cálculo da matriz) nenhum destino em que está localizada ao menos uma escola pública. O valor Inf, portanto, é utilizado para sinalizar esta condição.

6.4 Análise dos níveis de acessibilidade antes e depois

Agora que calculamos os níveis de acessibilidade em cada cenário, precisamos compreender como as mudanças na frequência das linhas de transporte público afetaram as condições de acessibilidade em nossa área de estudo. Uma boa forma de entender isso é olhando para a distribuição espacial dos níveis de acessibilidade. Vamos juntar usar as informações espaciais da nossa área de estudo, disponíveis no objeto for_grid, baixado do pacote {aopdata} anteriormente, às nossas tabelas de acessibilidade:

```
setDT(for_grid)
access_to_jobs[for_grid, on = c(id = "id_hex"), geom := i.geom]
time_to_schools[for_grid, on = c(id = "id_hex"), geom := i.geom]
```

Feito isso, apresentamos os resultados em formato de mapa:

```
library(ggplot2)

access_to_jobs_sf <- st_sf(access_to_jobs)

ggplot(access_to_jobs_sf) +
   geom_sf(aes(fill = jobs), color = NA) +
   facet_wrap(~ scenario, nrow = 1) +
   scale_fill_viridis_c(
      option = "inferno",
      label = scales::label_number(scale = 1/1000, suffix = "k")
)</pre>
```



```
time_to_schools_sf <- st_sf(time_to_schools)

ggplot(time_to_schools_sf) +
  geom_sf(aes(fill = travel_time), color = NA) +
  facet_wrap(~ scenario, nrow = 1) +
  scale_fill_viridis_c(option = "cividis", direction = -1)</pre>
```


Part V SEÇÃO 5: Dados do Projeto AOP

Objetivo: o objetivo deste capítulo é mostrar como fazer download e analisar os dados do projeto Acesso a Oportunidades (AOP) utilizando o pacote aopdata no R.

Nos capítulos anteriores, você aprendeu como calcular indicadores de acessibilidade. No entanto, em muitos casos, você não tem disponibilidade para calcular esses indicadores por conta própria e tudo o que você quer é analisar os resultados que já foram calculados por alguém.

O projeto Acesso a Oportunidades disponibiliza uma extensa base de dados com informações sobre a distribuição da população, atividades econômicas e serviços públicos, além de várias estimativas de acessibilidade urbana para diversos tipos de atividades. Essas estimativas de acessibilidade estão disponíveis para diferentes modos de transporte (caminhada, bicicleta, transporte público e automóvel), horários do dia (pico e fora-pico), grupos populacionais (segundo níveis de renda, cor, sexo e idade) e para diferentes atividades (empregos, escolas, serviços de saúde e centros de assistência social). Nesta versão, a base de dados traz essas informações para diversos anos (2017, 2018 e 2019), se apoiando em uma única metodologia consistente para as 20 maiores cidades do Brasil. Veja abaixo ?@tbl-tabela_dados_pop e ?@tbl-tabela_dados_access.

As metodologias utilizadas para gerar estes dados são apresentadas em detalhe em publicações separadas, para os dados populacionais e de uso do solo (Pereira, Herszenhut, et al. 2022), e para os dados de acessibilidade (Pereira, Braga, et al. 2022).

Part VI Quais dados estão disponíveis?

Escopo dos dados:

Dados de população, empregos e serviços públicos:

Tabela x. Informações socioeconômicas da população e de distribuição espacial de atividades, segundo ano e fonte de dados.

Dado	Informações
Características sociodemográficas da população	Quantidade de pessoas segundo sexo, faixa de idade e cor/ra
Estabelecimentos de educação	Quantidade de creches e escolas públicas segundo nível infan
Estabelecimentos de saúde	Quantidade de estabelecimentos de saúde que atendem pelo
Atividade econômica	Quantidade de empregos formais conforme o nível de instruç
Estabelecimentos de assistência social	Quantidade de CRAS

[:] Informações socioeconômicas da população e de distribuição espacial de atividades, segundo ano e fonte de dados {#tbl-tabela_dados_pop}

Dados de acessibilidade urbana:

Indicador (código)	Descrição
Tempo mínimo de viagem (TMI) Medida cumulativa ativa (CMA)	Tempo até a oportunidade mais próxima Quantidade de oportunidades acessíveis em um determinado limite de ter
Medida cumulativa passiva (CMP)	Quantidade de pessoas que acessam a localidade em um determinado limi

[:] Indicadores de acessibilidade calculados no Projeto Acesso a Oportunidades $\{\#tbl-tabela_dados_access\}$

Todas as bases de dados criadas pelo Projeto Acesso a Oportunidades (AOP) estão disponíveis para download no site do projeto ou pelo pacote de R aopdata. Nas próximas seções são apresentados exemplos de como baixar e visualizar esses dados em R.

7 Dados de população e socioeconômicos

7.1 Download dos dados

Para fazer o download dos dados do projeto AOP usando o pacote aopdata, você pode usar a função read_population(). Essa função baixa estimativas do Censo Demográfico de 2010 do IBGE sobre a distribuição espacial da população e suas características em termos de renda domiciliar per capita, cor, sexo e idade. Nesta função, o parâmetro city permite você indicar os dados de qual cidade serão baixados.

Os dados estão agregados espacialmente em uma grade de hexágonos H3 na resolução 9, na qual cada hexágono tem uma área de 0.11 km2, o que equivale a aproximadamente o tamanho de um quarteirão. Para baixar os dados com as informações espaciais de geometria da grade espacial, você deve usar o parâmetro geometry = TRUE.

Neste exemplo, abaixo, nós mostramos como baixar os dados de população do Censo de 2010 para Fortaleza.

Os dados da tabela tem essa aparência aqui:

```
head(df)
```

```
Simple feature collection with 6 features and 22 fields
```

Geometry type: POLYGON Dimension: XY

Bounding box: xmin: -38.50828 ymin: -3.889301 xmax: -38.4983 ymax: -3.878958

Geodetic CRS: WGS 84

```
id hex abbrev muni name muni code muni P001 P002 P003 P004 P005
  year
                                                               30
                                                                     8
                                                                          21
                                                                                 0
1 2010 89801040323ffff
                                  for Fortaleza
                                                    2304400
                                                                                      1
                                                                         233
2 2010 89801040327ffff
                                  for Fortaleza
                                                    2304400
                                                              318
                                                                    77
                                                                                 0
                                                                                      8
3 2010 8980104032bfffff
                                                                0
                                                                     0
                                                                           0
                                                                                 0
                                                                                      0
                                  for Fortaleza
                                                    2304400
4 2010 8980104032fffff
                                                                          77
                                                                                      2
                                  for Fortaleza
                                                    2304400
                                                              103
                                                                    24
                                                                                 0
                                                               43
                                                                          31
5 2010 89801040333ffff
                                  for Fortaleza
                                                    2304400
                                                                    11
                                                                                 0
                                                                                      1
6 2010 89801040337ffff
                                  for Fortaleza
                                                    2304400
                                                              348
                                                                    86
                                                                         252
                                                                                 0
                                                                                     10
  P006 P007 P010 P011 P012 P013 P014 P015 P016
                                                    R001 R002 R003
    17
                           2
                                                 1 168.6
1
         13
                3
                      4
                                 3
                                      8
                                            9
                                                              1
                                                                   1
   168
                                                12 202.6
2
        150
               30
                     50
                          26
                                38
                                     80
                                           82
                                                              1
                                                                   1
3
     0
           0
                0
                      0
                           0
                                 0
                                      0
                                            0
                                                 0
                                                       NA
                                                            NA
                                                                  NA
4
    53
         50
                                     25
                                                 4 245.6
               10
                     16
                           8
                                13
                                           27
                                                              1
                                                                   1
    22
                     7
         21
                4
                           3
                                 5
                                           12
                                                 1 187.3
                                                                   1
5
                                     11
                                                              1
   175
        173
                     54
                          27
                                     89
                                                14 168.6
                                                                   1
               34
                                41
                                           89
                          geometry
1 POLYGON ((-38.50232 -3.8858...
2 POLYGON ((-38.50527 -3.8840...
3 POLYGON ((-38.49932 -3.8841...
4 POLYGON ((-38.50227 -3.8824...
5 POLYGON ((-38.50237 -3.8893...
6 POLYGON ((-38.50532 -3.8875...
```

De imediato, se nota que os nomes das variáveis (colunas) da base de dados estão organizadas com códigos, como P001, P002...R001, R002 etc. A descrição completa do dicionário de variáveis está disponível aqui. A descrição de algumas dessas colunas é apresentada nas próximas seções, onde mostramos como fazer a visualização de alguns desses dados em mapas e gráficos.

7.2 Mapa de população total

Antes de visualizar os dados do aopdata, nós precisamos carregar algumas bibliotecas de visualização e manipulação de dados.

```
# load libraries
library(patchwork)
library(ggplot2)
library(scales)
library(sf)
```

Com um comando, é possível visualizar a distribuição espacial da população de Fortaleza. A figura mostra um mapa coroplético onde a cor de cada célula da grade espacial é preenchida com base na quantidade total de pessoas residentes (variável P001).

```
ggplot() +
  geom_sf(data=subset(df, P001>0), aes(fill=P001), color=NA, alpha=.8) +
  scale_fill_distiller(palette = "Y10rRd", direction = 1)+
  labs(title='Population distribution',
       subtitle = 'Fortaleza', fill="Total population") +
  theme_void()
```

Population distribution Fortaleza

7.3 Mapa de população por cor

Além da informação sobre a população total em cada célula, o dados do aopdata também permitem saber a quantidade de pessoas de diferentes cores (variáveis P002 a P005), sexo (variáveis P006 e P007) e faixas etárias (variáveis P010 à P016). O código abaixo ilustra como é simples calcular a proporção de pessoas negras e brancas em cada hexágono e visualizar esses dados num mapa.

```
pop_b <- ggplot() +
    geom_sf(data=subset(df, P001 >0), aes(fill=P003 / P001), color=NA, alpha=.8) +
    scale_fill_distiller(palette = "RdPu", direction = 1, labels = percent, limits=c(0, 1))+
    labs(title='Proportion of black population', fill="Black pop.") +
    theme_void()

pop_w <- ggplot() +
    geom_sf(data=subset(df, P001 >0), aes(fill=P002 / P001), color=NA, alpha=.8) +
    scale_fill_distiller(palette = "YlGnBu", direction = 1, labels = percent, limits=c(0, 1)
    labs(title='Proportion of white population', fill="White pop.") +
    theme_void()

# plot figure
    pop_b + pop_w
```


7.4 Mapa de população por renda

Os dados trazem também informação sobre a renda domiciliar per capita média de cada hexágono (R001), e sua classificação em termos de quintil (R002) e decil de renda (R003). Com esses dados, é possível visualizar com o comando abaixo a distribuição espacial dos diferentes níveis de renda da cidade.R

```
renda_c <- ggplot() +
    geom_sf(data=subset(df, P001 >0), aes(fill=R001), color=NA, alpha=.8) +
    scale_fill_distiller(palette = "YlOrRd", direction = 1)+
    labs(title='Renda domiciliar per capita média', fill="Renda em R$") +
    theme_void()

renda_d <- ggplot() +
    geom_sf(data=subset(df, !is.na(R002)), aes(fill=factor(R003)), color=NA, alpha=.8) +
    scale_fill_brewer(palette = "RdBu") +
    labs(title='Decils de renda domiciliar per capita', fill="Decil de renda") +
    theme_void() +
    theme(legend.key.size = unit(.3, 'cm'))

# plot figure
renda_c + renda_d</pre>
```


8 Dados de distribuição espacial de oportunidades

8.1 Download dos dados

O pacote aopdata também permite baixar, para todas cidades incluídas no projeto, dados anuais da distribuição espacial de empregos (de baixa, média e alta escolaridade), estabelecimentos de saúde (de baixa, média e alta complexidade), escolas pública (ensino infantil, fundamental e médio), e de centros de referência de assistência social (Cras).

Todos esses dados podem ser baixados com a função read_landuse(), que funciona da mesma maneira que a função read_population(). Você só precisa indicar nos parâmetros da função qual cidade (city) e ano (year) devem ser baixados, além de apontar se deseja que os dados contenham as informações espaciais dos hexágonos (geometry = TRUE).

Neste exemplo, abaixo, nós mostramos como baixar os dados de uso do solo no ano de 2019 para Belo Horizonte. Note que essa função automaticamente já baixa também os dados de população, automaticamente.

Downloading land use data for the year 2019

Downloading population data for the year 2010

head(df)

Simple feature collection with 6 features and 39 fields Geometry type: POLYGON Dimension: XΥ xmin: -43.87914 ymin: -19.86084 xmax: -43.85906 ymax: -19.82421 Bounding box: WGS 84 Geodetic CRS: id hex abbrev muni name_muni code_muni P001 P002 P003 P004 P005 1 89a881345a3ffff bho Belo Horizonte 2 89a881345a7ffff bho Belo Horizonte 3 89a881345b7ffff bho Belo Horizonte 4 89a88136103ffff bho Belo Horizonte 5 89a88136107ffff bho Belo Horizonte 6 89a8813610bffff bho Belo Horizonte P006 P007 P010 P011 P012 P013 P014 P015 P016 R001 R002 R003 year T001 T002 NA 2019 NANA NANANA 2019 NA NA 2019 NA 10 502.9 3 2019 9 491.8 3 2019 7 502.8 3 2019 T003 T004 E001 E002 E003 E004 M001 M002 M003 M004 S001 S002 S003 S004 C001 geometry 1 POLYGON ((-43.86011 -19.829... 2 POLYGON ((-43.86313 -19.827... 3 POLYGON ((-43.86321 -19.830... 4 POLYGON ((-43.8731 -19.8608... 5 POLYGON ((-43.87612 -19.859... 6 POLYGON ((-43.87001 -19.859...

Antes de visualizar os dados de uso do solo nas próxima seções, vamos carregar algumas bibliotecas de visualização e manipulação de dados.

load libraries
library(patchwork)
library(ggplot2)
library(scales)
library(sf)

8.2 Mapa de empregos

Como nos exemplos anteriores, é possível visualizar o mapa de distribuição espacial de empregos usando o pacote ggplot2 com o código abaixo:

Distribuição espacial de empregos Belo Horizonte

8.3 Mapa de escolas

As variáveis que indicam o número de escolas em cada célula são aquelas que começam com a letra E__. Neste exemplo abaixo, nós mapeamos a distribuição espacial de todas escolas de Belo Horizonte a partir da variável E001.

```
ggplot() +
  geom_sf(data=df, aes(fill=as.factor(E001)), color=NA, alpha=.9) +
```

Distribuição espacial de escolas Belo Horizonte

8.4 Mapa de estabelecimentos de saúde

Para analisar a distribuição espacial de estabelecimentos de saúde, você deve analisar as variáveis que começam com a letra S___. O código abaixo nos permite comparar a distribuição espacial de estabelecimentos de saúde de baixa complexidade (S002) e alta complexidade (S004).

Estabelecimentos de saúde Baixa complexidade Alta complexidade

8.5 Mapa de CRAS

Por fim, a distribuição espacial dos Centros de Referência de Assistência Social (Cras) pode ser analisada com a variável C001.

```
ggplot() +
  geom_sf(data=df, aes(fill=as.factor(C001)), color=NA, alpha=.9) +
  scale_fill_brewer(palette = "YlGnBu", direction = 1) +
  labs(title='Centros de Referência de Assistência Social (Cras)',
       subtitle = 'Belo Horizonte', fill="N. de Cras") +
  theme_void()
```

Centros de Referência de Assistência Social (Cras) Belo Horizonte

9 Estimativas e mapas de acessibilidade

9.1 Download dos dados

Finalmente, o pacote aopdata também permite baixar, para todas cidades incluídas no projeto, estimativas anuais de acesso a empregos, serviços saúde, educação e assistência social por modo de transporte

Todos esses dados podem ser baixados com a função read_access(), que funciona da mesma maneira que as funções read_population() e read_landuse() apresentadas nos capítulos anteriores. Aqui, no entanto, além de indicar a cidade (city) e o ano (year) de referência para baixar os dados, você também precisa informar qual o modo de transporte (mode) será baixado e se você quer estimativas de acessibilidade no horário de pico (peak = TRUE) ou forapico (peak = TRUE). Esses dados representam a acessibilidade mediana do período de pico (entre 6h e 8h) e fora-pico (entre 14h e 16h).

Neste exemplo, abaixo, nós mostramos como baixar os dados de uso de acessibilidade urbana no ano de 2019 para São Paulo no período de pico. Nesse exemplo, nós baixamos tanto as estimativas de acessibilidade por automóvel quanto por transporte público, e empilhamos os dados num único data.frame. Note que essa função automaticamente já baixa também os dados de população e de uso do solo, automaticamente.

```
library(aopdata)

# download aop accessibility data
df_pt <- read_access(
    city='São Paulo',
    mode='public_transport',
    year=2019,
    peak = TRUE,
    geometry = TRUE,
    showProgress = FALSE
)

df_car <- read_access(
    city='São Paulo',</pre>
```

```
mode='car',
    year=2019,
    peak = TRUE,
    geometry = TRUE,
    showProgress = FALSE
  )
  # row bind into a single data.frame
  df <- rbind(df_pt, df_car)</pre>
  head(df)
Simple feature collection with 6 features and 205 fields
Geometry type: POLYGON
Dimension:
Bounding box:
                xmin: -46.63863 ymin: -23.71413 xmax: -46.62834 ymax: -23.70485
Geodetic CRS:
                WGS 84
            id hex abbrev_muni name muni code_muni year P001 P002 P003 P004 P005
1 89a81000003ffff
                            spo Sao Paulo
                                              3550308 2019
                                                             322
                                                                   127
                                                                        190
                                                                                0
                                                                                      5
2 89a81000007ffff
                            spo Sao Paulo
                                              3550308 2019
                                                              16
                                                                     3
                                                                          13
                                                                                0
                                                                                      0
3 89a8100000bffff
                            spo Sao Paulo
                                              3550308 2019 2386 1142 1232
                                                                                2
                                                                                     10
                                                                   260
                                                                        622
                                                                                      3
4 89a8100000fffff
                            spo Sao Paulo
                                              3550308 2019
                                                             885
5 89a81000013ffff
                            spo Sao Paulo
                                              3550308 2019
                                                             725
                                                                   340
                                                                        380
                                                                                      5
6 89a81000017ffff
                            spo Sao Paulo
                                              3550308 2019
                                                             211
                                                                   110
                                                                         98
  P006 P007 P010 P011 P012 P013 P014 P015 P016 R001 R002 R003 T001 T002 T003
   158
        164
                    63
                               35
                                     85
                                          75
                                                 3 477.6
                                                                       72
               33
                          28
                                                             2
                                                                   3
                                                                             19
                                                                                  50
1
2
     9
          7
                2
                     2
                           2
                                      2
                                           5
                                                    65.7
                                                                        0
                                                                              0
                                                                                   0
                                3
                                                 0
                                                                   1
3 1216 1170
                                                                       52
              247
                   410
                         174
                              269
                                    682
                                         572
                                                32 377.2
                                                                              6
                                                                                  24
   460
        425
                   124
                          88
                              127
                                    175
                                         266
                                                 9 363.9
                                                                        0
                                                                              0
                                                                                   0
               96
5
   371
        354
               85
                   129
                          51
                               78
                                    196
                                         173
                                                13 503.5
                                                                   3
                                                                                   0
   104
        107
               20
                    33
                          16
                               25
                                     52
                                          59
                                                 6 687.9
                                                             3
                                                                      113
                                                                                  65
  T004 E001 E002 E003 E004 M001 M002 M003 M004 S001 S002 S003 S004 C001
1
     3
          0
                0
                     0
                           0
                                0
                                      0
                                           0
                                                 0
                                                       0
                                                            0
                                                                  0
                                                                       0
2
     0
                0
                     0
                           0
                                 0
                                      0
                                            0
                                                 0
                                                       0
                                                            0
                                                                  0
                                                                       0
                                                                             0
          0
3
    22
                                                                  0
                                                                       0
                                                                             0
          0
                0
                     0
                           0
                                 0
                                      0
                                            0
                                                 0
                                                       0
                                                            0
4
     0
          0
                0
                     0
                           0
                                 0
                                      0
                                           0
                                                 0
                                                       0
                                                            0
                                                                  0
                                                                       0
                                                                             0
5
     0
                0
                     0
                           0
                                 0
                                            0
                                                 0
                                                                  0
                                                                             0
          0
                                      0
                                                            0
    30
                           1 1477
                                      0 1168
                                               309
                                                            0
                                                                             0
               mode peak CMATT15 CMATB15 CMATM15 CMATA15 CMAST15 CMASB15
1 public_transport
                              315
                                        71
                                                175
                                                          69
                                                                    0
                                                                             0
                                                                                      0
                              313
                                        70
                                                174
                                                          69
                                                                    0
                                                                             0
                                                                                      0
2 public_transport
                        1
                                                                    2
                                                                             2
                                                                                      2
3 public_transport
                              229
                                        43
                                                161
                                                          25
                        1
4 public_transport
                              551
                                       123
                                                343
                                                          85
                                                                    3
                                                                             3
                                                                                      3
```

5	public_t	transport	t 1	421	90	262	69	2	2	2
6	public_t	transport	t 1	312	76	187	49	0	0	0
	CMASA15	CMAET15	CMAEI15	CMAEF15	CMAEM15	CMAMT15	CMAMI15	CMAMF15	CMAMM1	5
1	0	2	0	2	1	1477	0	1168	30	9
2	0	2	0	2	1	1477	0	1168	30	9
3	0	0	0	0	0	0	0	0		0
4	0	4	1	3	2	3132	460	1965	70	7
5	0	2	0	2	1	1477	0	1168	30	9
6	0	2	0	2	1	1477	0	1168	30	9
	CMACT15	CMPPT15	CMPPH15	CMPPM15	CMPPB15	CMPPA15	CMPPI15	CMPPN15	CMPP00	05I15
1	0	4895	2428	2467	2238	27	2	2628		505
2	0	4895	2428	2467	2238	27	2	2628		505
3	0	9537	4645	4892	4685	64	3	4785		872
4	0	13109	6331	6778	6453	61	8	6587		1088
5	0	4934	2452	2482	2368	48	0	2518		461
6	0	3199	1608	1591	1567	20	0	1612		317
	CMPP0614	4I15 CMPF	P1518I15	CMPP1924	4I15 CMP	2539115	CMPP4069	9I15 CMP	P70I15	CMATT30
1		809	371		566	1313		1247	84	4797
2		809	371		566	1313		1247	84	4228
3	-	1538	726	:	1138	2550	2539		174	2648
4	2	2012	967	:	1575	3383	3783		301	6200
5		749	373		587	1271	•	1372	121	5773
6		487	239		374	807		891	84	6608
	CMATB30	CMATM30	CMATA30	CMAST30	CMASB30	CMASM30	CMASA30	CMAET30	CMAEI3	0
1	1293	2789	715	5	5	5	0	18		5
2	1170	2452	606	4	4	4	0	13		4
3	714	1526	408	4	4	4	0	9		2
4	1598	3641	961	5	5	5	0	19		6
5	1589	3271	913	5	5	5	0	18		5
6	1821	3659	1128	6	6	6	0	22		5
	CMAEF30	CMAEM30	CMAMT30	CMAMI30	CMAMF30	CMAMM30	CMACT30	CMPPT30	СМРРНЗ	0
1	13	4	15148	2409	10765	1974	1	59041	2845	
2	9	3	10497	1949	6931	1617	1	40049	1939	2
3	7	3	7222	1069	5137	1016	1	59792	2897	4
4	13	5	15710	2527	10551	2632	2	101380	4870	9
5	13	4	15148	2409	10765	1974	1	81985	3947	3
6	17	5	19547	2409	14343	2795	1	83186	4011	
	CMPPM30	CMPPB30	CMPPA30	CMPPI30	CMPPN30	CMPP000	5I30 CMP	P0614I30	CMPP15	18I30
1	30584	28535	446	29	30031		5263	8809		4111
2	20657	19159	273	14	20603	;	3610	6061		2866
3	30818	28424	365	25	30978	ί	5376	9204		4241
4	52671	47601	955	66	52758	9	9076	15239		6971
5	42512	39784	695	49	41457	-	7189	12278		5675

6	43075	40359	728	51	42048		7302	1237		5749
	CMPP1924	130 CMPI						CMATB60		CMATA60
1	6	817	15664	16	6733	1644	96195	18711	54773	22711
2	4	1673	10486	1:	1274	1079	72810	14161	40949	17700
3	6	5927	15859	16	6646	1539	147237	26399	82208	38630
4	11	1658	27259	28	3303	2874	107938	21292	61768	24878
5	Ş	9311	21712	23	3351	2469	161353	28971	91687	40695
6	9	9459	22070	23	3710	2525	158016	28997	91280	37739
	CMAST60	CMASB60	CMASM60	CMASA60	CMAET60	CMAE16	O CMAEF	O CMAEMO	O CMAMTO	80
1	50	38	48	6	120	4	ło .	76 2	9 8776	31
2	40	34	39	2	108	3	36	38 2	8 7990)2
3	57	45	56	5	135	4	ł5 8	38 3	0 9395	8
4	56	43	54	6	128	4	12	32 3	1 9279	9
5	59	44	57	7	141	4	17	90 3	2 9792	25
6	56	43	54	6	139	4	17	37 3	9628	31
	CMAMI60	CMAMF60	CMAMM60	CMACT60	CMPPT60	СМРРН	O CMPPM	30 CMPPB6	O CMPPA6	60
1	15059	56558	16144	5	547471	25997	1 2875	00 27773	4 1113	34
2	14014	50455	15433	5	501558	23855	50 2630	08 24796	2 878	31
3	16318	61918	15722	6	633994	29945	3345	40 33906	4 1983	38
4	15615	60049	17135	5	689942	32556	3643	37857	1 2181	.0
5	16744	63838	17343	6	666492	31475	59 3517	33 36053	2 2066	31
6	16812	62265	17204	6	632529	29922	25 33330	04 33465	5 1795	57
	CMPPI60	CMPPN60	CMPP0005	5160 CMP	P0614I60	CMPP15	518I60 C	MPP1924I6	O CMPP25	39160
1	407	258196	44	1866	76195		34899	5939	3 1	.46870
2	383	244432	41	1903	71199		32501	5487	3 1	.34759
3	473	274619	49	9586	83666		38585	6729	8 1	69669
4	496	289065	53	3223	89680		41446	7235	4 1	.84045
5	483	284816	51	1720	87430		40333	7041	.8 1	78015
6	451	279466	49	9804	84545		38888	6745	8 1	.68928
	CMPP4069	9160 CMP1	P70I60 CN	MATT90 CI	МАТВ90 С	MATM90	CMATA90	CMAST90	CMASB90	CMASM90
1	162	2048	23200 13	168463	166686	577124	424653	169	111	160
2	146	361	19962 10	088120	153982	540566	393572	160	107	152
3	194	1234	30956 14	428750	211239	719220	498291	190	119	179
4	214	1049	35145 13	362473	191461	669950	501062	182	117	172
5	205	5504	33072 14	443193	211449	723001	508743	203	131	191
6	192	2822	30084 14	406215	203383	701014	501818	204	132	193
	CMASA90	CMAET90	CMAEI90	CMAEF90	CMAEM90	CMAMTS	O CMAMIS	O CMAMF9	O CMAMMS	90
1	42	337	107	207	92	21854	12 308	34 13152	6 5615	52
2	39	328	105	201	90	21396	3030	55 12891	7 5468	31
3	50	370	123	222	101	23212	26 3469	93 13806	5937	' 2
4	46	355	117	214	92	22349	92 327	79 13443	8 5627	' 5
5	51	415	136	248	114	26472	29 387	19 15825	2 6775	58
6	51	415	137	247	114	26694	16 395	78 15913	7 6823	31

	CMACT90 (смрртоо с	мррнал см	ррмоо с	MPPROO	CMPP	AOU GWEDI	ON CMPPNO	CMPP0005190
1				06544 1				36 502578	
2				63440 1				240 48711	
3			894649 10					302 55156	
4			978494 11)65 61488(
5			946208 10						
								'14 59998:	
6			910888 10			883 DOE 201		558 588150 3069190 CMI	
1	1834		87698	1654 1654		4541 4541		573567	121291
2	1762		84154	1578		4328		545306	113657
3	204:		97829	1870		5130		650643	140631
4	2258		107835	2050		5614		707435	150406
5	2188		104726	1984		5417		684520	145268
6	2128		101535	1914		5217		655761	137385
								CMASM120	
1	2136716	328724				357	235		82
2	2095040	321900				355	235		80
3	2203072	344047	1136019	7230	06	374	243		86
4	2494268	397258	1308021	7889	89	418	266	395	97
5	2275396	357833	1177979	7395	84	401	265	381	90
6	2195795	342423	1130056	7233	16	387	257	367	88
	CMAET120	CMAEI120	CMAEF120	CMAEM1	20 CMA	MT120	CMAMI120	CMAMF120	CMAMM120
1	821	288	481	2	21 5	18042	83000	313683	121359
2	815	288	479	2	16 5	16846	83610	313657	119579
3	855	293	508	2	30 5	32772	82410	323147	127215
4	976	340	576	2	60 6	10890	97742	369803	143345
5	948	333	559	2	51 6	00516	97066	367244	136206
6	942	334	554	2	54 6	04830	98765	368433	137632
	CMACT120	CMPPT120	CMPPH120	CMPPM1	20 CMP	PB120	CMPPA120	CMPPI120	CMPPN120
1	20	4018897	1890513	21283	84 25	40395	134426	4039	1340037
2	20	3860887	1814742	20461	45 24	45536	130803	3868	1280680
3	21	4320562	2032079	22884	83 27	45882	142238	4320	1428122
4	24	4752649	2234731	25179	18 30	37441	153875	5098	1556235
5	22	4351102	2049261	23018	41 27	35091	140022	4377	1471612
6	21					27575	136196	4172	1423773
	CMPP0005					CMPP19			20 CMPP4069I120
1		1477	467671		17602		408477	108479	
2		9676	448086		08699		391944	10413:	
3		1337	501274		33530		439651	116393	
4		0744	549438		56378		484187	127778	
5		7070	511736		37911		444278	117314	
6		7029	494835		29726		427661	112990	
-						т тмтғ		TMIEM TMIC	
									= =

1	258748	17	17	17	53	8.0	26	8.0	8.0	21
2	249978	21	21	21	55	9.0	28	9.0	9.0	23
3	280017	13	13	13	50	17.0	26	17.0	17.0	30
4	312933	13	13	13	53	7.0	13	7.0	7.0	28
5	275680	12	12	12	51	8.0	24	8.0	8.0	19
6	264329	16	16	16	49	5.8	22	5.8	5.8	16
geometry										
1]	POLYGON ((-46									
2 POLYGON ((-46.63552 -23.709										
3 POLYGON ((-46.62941 -23.709										
4]	POLYGON ((-46	6.63242	2 -23.	708						

Os nomes das variáveis (colunas) com estimativas de acessibilidade também estão organizadas com códigos, como CMAEF30, TMISB ou CMPPM60. O nome das colunas com estimativas de acessibilidade são a junção de três componentes: 1) Tipo de indicador de acessibilidade 2) Tipo de oportunidade / pessoas 3) Tempo limite

- 1) O **tipo de indicador** de acessibilidade é indicado pelas primeiras 3 letras. O projeto AOP atualmente inclui três tipos de indicadores:
- CMA Indicador de acessibilidade cumulativo ativo
- CMP Indicador de acessibilidade cumulativo passivo
- TMI Indicador de tempo mínimo até oportunidade mais próxima
- 2) O **tipo de atividade** é indicado pelas letras seguintes, no meio do nome da variável. O projeto AOP atualmente inclui diversos tipos de atividades:
- TT Todos empregos
- TB Empregos de baixa escolaridade

5 POLYGON ((-46.6326 -23.7141... 6 POLYGON ((-46.63561 -23.712...

- TM Empregos de média escolaridade
- TA Empregos de alta escolaridade
- ST Todos estabelecimentos de saúde
- SB Estabelecimentos de saúde de baixa complexidade
- SM Estabelecimentos de saúde de média complexidade
- SA Estabelecimentos de saúde de alta complexidade
- ... e assim por diante.

No caso do indicador de acessibilidade passiva (CMP), as letras do meio do nome da variável indicam qual o grupo populacional de referência.

• PT População total

- PH População de homens
- PM População de mulheres
- PB População branca
- PN População negra
- P1924I População de 19 a 24 anos de idade
- P2539I População de 25 a 39 anos de idade
- 3) O **tempo limite de viagem** é indicado pelos números no final do nome da variável. Esses números somente se aplicam para os indicadores de acessibildade cumulativa ativa (CMA) e passiva (CMP).

Exemplos:

CMAEF30: Número de escolas de ensino fundamental acessíveis em até 30 minutos

TMISB: Tempo de viagem até o estabelecimento de saúde mais próximo com serviços de baixa complexidade

CMPPM60: Quantidade de mulheres que conseguem acessar determinado hexágono em até 60 minutos

Lembre-se, a descrição completa do dicionário de variáveis está disponível no site to pacote aopdata.

A seguir, nós mostramos alguns exemplos de como visualizar essas estimativas de acessibilidade.

9.2 Mapa do tempo para acessar o hospital mais próximo

Neste exemplo, nós vamos comparar o nível de acessibilidade até hospitais entre modos automóvel vs transporte público. Para analisar qual o tempo mínimo de viagem (TMI) até um hospital de alta complexidade (SA), nós precisamos analisar a variável TMISA. Com o código abaixo, nós carregamos as bibliotecas para manipulação e visualização de dados, e visualizamos a distribuição espacial dos valores de TMISA para ambos modos de transporte.

Note, no entanto, que os tempos de viagem por transporte público costumam ser muito mais longos do que por automóvel. Então para facilitar a visualização dos resultados, nós truncamos a distribuição dos valores de TMISA em 60 minutos ou mais.

```
# load libraries
library(ggplot2)
library(data.table)
library(patchwork)
library(scales)
```

Tempo de viagem até hospital de alta complex. mais próximo São Paulo

9.3 Mapa da quantidade de oportunidades acessíveis

Uma vez que os dados já foram baixados do aopdata, é muito simples comparar por exemplo a quantidade de oportunidades acessíveis em diferentes tempos de viagem. O código abaixo

ilustra como visualizar num mapa o número de empregos acessíveis em até 60 e 90 minutos de viagem por transporte público, e como colocar esses mapas lado a lado para comparação.

```
# limits for legend scale
value_limits <- c(0, max(df_pt$CMATT90, na.rm=T)/1000)</pre>
# create maps
fig60 <- ggplot() +
          geom_sf(data=subset(df_pt, !is.na(mode)), aes(fill=CMATT60/1000), color=NA, alph
          scale_fill_viridis_c(option = 'inferno', limits = value_limits) +
          labs(subtitle = 'em até 60 min.', fill="Empregos") +
          theme_void()
fig90 <- ggplot() +
          geom_sf(data=subset(df_pt, !is.na(mode)), aes(fill=CMATT90/1000), color=NA, alph
          scale_fill_viridis_c(option = 'inferno', limits = value_limits) +
          labs(subtitle = 'em até 90 min.', fill="Empregos") +
          theme_void()
# plot figure
fig60 + fig90 +
  plot_layout(guides = 'collect') +
  plot_annotation(title = 'Quantidade de empregos acessíveis por transporte público',
                  subtitle = "São Paulo")
```

Quantidade de empregos acessíveis por transporte público São Paulo

9.4 Desigualdades de acesso a oportunidades

Existem diversas maneiras de se analisar quão desiguais são as condições de acesso a oportunidades a partir dos dados do aopdata. Nós apresentamos nesta subseção três exemplos de como esse tipo de análise pode ser realizada.

Desigualdade no tempo de acesso TMI

Neste primeiro exemplo, nós vamos comparar qual o tempo médio de viagem até o hospital mais próximo para pessoas de diferentes níveis de renda. Para isso, o código abaixo calcula o valor médio de TMISA ponderada pela população em cada hexágono. Essa ponderação é necessária porque o número de hexágonos pode variar muito entre hexágonos.

Antes disso, cabe observar que alguns hexágonos da cidade não conseguem acessar nenhum hospital em até 2h de viagem. Em casos como esse, o valor das variáveis TMI__ é infinito (Inf). Para lidar com esses casos, nós substituímos abaixo todos valores Inf por 120 minutos.

```
# copy data to new data.table
dt <- copy(df_pt)
setDT(dt)

# replace Inf travel time with 120</pre>
```

```
dt[, TMISA := fifelse(TMISA==Inf, 120, TMISA)]

# calculate average travel time by income
temp <- dt[, .(average = weighted.mean(x=TMISA, w=P001, na.rm=T)), by=R003]
temp <- na.omit(temp)

ggplot() +
   geom_col(data=temp, aes(y=average, x=factor(R003)), fill='#2c9e9e', color=NA) +
   scale_x_discrete(labels=c("D1\n+Pobres", paste0('D', 2:9), "D10\n+Ricos")) +
   labs(title = 'Média de tempo de viagem até o hospital mais proximo',
        subtitle = 'por transporte público em São Paulo',
        x='Decil de renda', y='Tempo de viagem\nem min.') +
   theme_minimal()</pre>
```

Média de tempo de viagem até o hospital mais proximo por transporte público em São Paulo

Desigualdade do número de oportunidades acessíveis CMA

Outra maneira de examinar a desigualdade de acesso a oportunidades é comparar a quantidade de oportunidades acessíveis por diferentes grupos populacionais considerando-se um mesmo modo de transporte e tempo de viagem. Nesse caso, nós analisamos o Indicador de acessibilidade cumulativo ativo (CMA).

Neste exemplo abaixo, nós utilizamos $box\ plots$ para comparar a quantidade de empregos acessíveis por transporte público em até $30\ \text{minutos}$ de viagem.

Distribução do número de empregos acessíveis em até 30 ı

Também é possível comparar como diferentes modos de transporte possibilitam diferentes níveis de acessibilidade, e como essa diferença pode variar muito entre cidades. Nesse exemplo, abaixo, nós vamos comparar a quantidade de empregos acessíveis em até 30 minutos de viagem a pé e de carro. O primeiro passo é baixar os dados de acessibilidade a pé e por automóvel para todas as cidades.

```
# download data
df_car <- read_access(city = 'all', mode='car', year = 2019, showProgress = FALSE)
df_walk <- read_access(city = 'all', mode='walk', year = 2019, showProgress = FALSE)</pre>
```

O próximo passo é calcular para cada cidade a média ponderada do número de empregos acessíveis em até 30 minutos (CMATT30) para cada um dos modos de transporte. Com esses

resultados prontos para cada modo, nós juntamos essas estimativas num único data.frame e calculamos a razão da acessibilidade por carro dividida pela acessibilidade à pé.

```
# calculate the average number of jobs accessible in 30min
  df_car2 <- df_car[, .(access_car = weighted.mean(CMATT30, w = P001, na.rm=T)), by=name_mum
  df_walk2 <- df_walk[, .(access_walk = weighted.mean(CMATT30, w = P001, na.rm=T)), by=name_</pre>
  # merge and get the ratio between walking and driving access
  df <- merge(df_car2, df_walk2)</pre>
  df[, ratio := access_car/access_walk]
  head(df)
        name_muni access_car access_walk
                                             ratio
1:
            Belem
                    155270.4
                                9392.235 16.53179
2: Belo Horizonte
                    529890.0 12464.233 42.51284
3:
         Brasilia
                    220575.9
                               4110.703 53.65892
```

Pronto, agora é só visualizar os resultados. Como esperado, a figura abaixo mostra que é possível acessar muito mais empregos em 30 min. por automóvel do que em caminhada. No entanto, essa diferença varia muito entre cidades. Em São Paulo e em Brasília, 30 minutos de viagem por automóvel permite acessar, em média, um número de empregos 54 vezes maior do que a pé. Em Belém, onde observamos a menor diferença, o automóvel ainda permite acessar 17 vezes mais empregos do que a caminhada.

6748.923 37.98133

4181.209 41.29919

10471.135 47.21331

4:

5:

6:

Campinas

Curitiba

Campo Grande

256333.1

172680.5

494376.9

Diferença da quantidade de empregos acessiveis por automóvel vs a pé

em até 30 min. de viagem

Referências bibliográficas

- Anda, Cuauhtemoc, Alexander Erath, and Pieter Jacobus Fourie. 2017. "Transport Modelling in the Age of Big Data." *International Journal of Urban Sciences* 21 (sup1): 19–42.
- Arbex, Renato, and Claudio B. Cunha. 2020. "Estimating the Influence of Crowding and Travel Time Variability on Accessibility to Jobs in a Large Public Transport Network Using Smart Card Big Data." Journal of Transport Geography 85 (May): 102671. https://doi.org/10.1016/j.jtrangeo.2020.102671.
- Banister, David. 2008. "The Sustainable Mobility Paradigm." *Transport Policy* 15 (2): 73–80. https://doi.org/10.1016/j.tranpol.2007.10.005.
- ———. 2011. "The Trilogy of Distance, Speed and Time." Journal of Transport Geography 19 (4): 950–59. https://doi.org/10.1016/j.jtrangeo.2010.12.004.
- Bertolini, L., F. le Clercq, and L. Kapoen. 2005. "Sustainable Accessibility: A Conceptual Framework to Integrate Transport and Land Use Plan-Making. Two Test-Applications in the Netherlands and a Reflection on the Way Forward." *Transport Policy* 12 (3): 207–20. https://doi.org/10.1016/j.tranpol.2005.01.006.
- Boisjoly, Geneviève, and Ahmed M. El-Geneidy. 2017. "How to Get There? A Critical Assessment of Accessibility Objectives and Indicators in Metropolitan Transportation Plans." Transport Policy 55 (April): 38–50. https://doi.org/10.1016/j.tranpol.2016.12.011.
- Brodsky, Isaac. 2018. "H3: Uber's Hexagonal Hierarchical Spatial Index." *Uber Engineering Blog.* https://eng.uber.com/h3/.
- Büttner, Benjamin. 2021. "Accessibility Tools for Transport Policy and Planning." International Encyclopedia of Transportation 6 (1).
- Church, A, M Frost, and K Sullivan. 2000. "Transport and Social Exclusion in London." Transport Policy 7 (3): 195–205. https://doi.org/10.1016/S0967-070X(00)00024-X.
- Conway, Matthew Wigginton, Andrew Byrd, and Marco van der Linden. 2017. "Evidence-Based Transit and Land Use Sketch Planning Using Interactive Accessibility Methods on Combined Schedule and Headway-Based Networks." Transportation Research Record: Journal of the Transportation Research Board 2653 (1): 45–53. https://doi.org/10.3141/2653-06.
- Dijst, Martin, Tom de Jong, and Jan Ritsema van Eck. 2002. "Opportunities for Transport Mode Change: An Exploration of a Disaggregated Approach." *Environment and Planning B: Planning and Design* 29 (3): 413–30. https://doi.org/10.1068/b12811.
- Dong, Xiaojing, Moshe E. Ben-Akiva, John L. Bowman, and Joan L. Walker. 2006. "Moving from Trip-Based to Activity-Based Measures of Accessibility." *Transportation Research Part A: Policy and Practice* 40 (2): 163–80. https://doi.org/10.1016/j.tra.2005.05.002.
- El-Geneidy, Ahmed, David Levinson, Ehab Diab, Genevieve Boisjoly, David Verbich, and

- Charis Loong. 2016. "The Cost of Equity: Assessing Transit Accessibility and Social Disparity Using Total Travel Cost." *Transportation Research Part A: Policy and Practice* 91 (September): 302–16. https://doi.org/10.1016/j.tra.2016.07.003.
- Farrington, John, and Conor Farrington. 2005. "Rural Accessibility, Social Inclusion and Social Justice: Towards Conceptualisation." *Journal of Transport Geography* 13 (1): 1–12. https://doi.org/10.1016/j.jtrangeo.2004.10.002.
- Geurs, Karst, and Bert van Wee. 2004. "Accessibility Evaluation of Land-Use and Transport Strategies: Review and Research Directions." *Journal of Transport Geography* 12 (2): 127–40. https://doi.org/10.1016/j.jtrangeo.2003.10.005.
- Herszenhut, Daniel, Rafael H. M. Pereira, Licinio da Silva Portugal, and Matheus Henrique de Sousa Oliveira. 2022. "The Impact of Transit Monetary Costs on Transport Inequality." Journal of Transport Geography 99 (February): 103309. https://doi.org/10.1016/j.jtrangeo. 2022.103309.
- Higgins, Christopher, Matthew Palm, Amber DeJohn, Luna Xi, James Vaughan, Steven Farber, Michael Widener, and Eric Miller. 2022. "Calculating Place-Based Transit Accessibility: Methods, Tools and Algorithmic Dependence." *Journal of Transport and Land Use* 15 (1). https://doi.org/10.5198/jtlu.2022.2012.
- Kandt, Jens, and Michael Batty. 2021. "Smart Cities, Big Data and Urban Policy: Towards Urban Analytics for the Long Run." *Cities* 109: 102992.
- Kim, Hyun-Mi, and Mei-Po Kwan. 2003. "Space-Time Accessibility Measures: A Geocomputational Algorithm with a Focus on the Feasible Opportunity Set and Possible Activity Duration." *Journal of Geographical Systems* 5 (1): 71–91. https://doi.org/10.1007/s101090300104.
- Levine, Jonathan, Joe Grengs, and Louis A Merlin. 2019. From Mobility to Accessibility: Transforming Urban Transportation and Land-Use Planning. Cornell University Press.
- Levinson, David, and David King. 2020. Transport Access Manual: A Guide for Measuring Connection Between People and Places. Committee of the Transport Access Manual, University of Sydney.
- Lucas, Karen, Giulio Mattioli, Ersilia Verlinghieri, and Alvaro Guzman. 2016. "Transport Poverty and Its Adverse Social Consequences." *Proceedings of the Institution of Civil Engineers Transport* 169 (6): 353–65. https://doi.org/10.1680/jtran.15.00073.
- Luo, Wei, and Fahui Wang. 2003. "Measures of Spatial Accessibility to Health Care in a GIS Environment: Synthesis and a Case Study in the Chicago Region." *Environment and Planning B: Planning and Design* 30 (6): 865–84. https://doi.org/10.1068/b29120.
- Luz, Gregorio, and Licinio Portugal. 2022. "Understanding Transport-Related Social Exclusion Through the Lens of Capabilities Approach." *Transport Reviews* 42 (4): 503–25.
- Martens, Karel. 2012. "Justice in Transport as Justice in Accessibility: Applying Walzer's 'Spheres of Justice' to the Transport Sector." *Transportation* 39 (6): 1035–53. https://doi.org/10.1007/s11116-012-9388-7.
- Miller, Eric J. 2018. "Accessibility: Measurement and Application in Transportation Planning." Transport Reviews 38 (5): 551–55. https://doi.org/10.1080/01441647.2018.1492778.
- Nassir, Neema, Mark Hickman, Ali Malekzadeh, and Elnaz Irannezhad. 2016. "A Utility-Based Travel Impedance Measure for Public Transit Network Accessibility." *Transportation*

- Research Part A: Policy and Practice 88 (June): 26–39. https://doi.org/10.1016/j.tra.2016.03.007.
- Neutens, Tijs, Matthias Delafontaine, Darren M. Scott, and Philippe De Maeyer. 2012. "An Analysis of Day-to-Day Variations in Individual Space—time Accessibility." *Journal of Transport Geography*, Special Issue on Time Geography, 23 (July): 81–91. https://doi.org/10.1016/j.jtrangeo.2012.04.001.
- Neutens, Tijs, Tim Schwanen, Frank Witlox, and Philippe De Maeyer. 2010. "Equity of Urban Service Delivery: A Comparison of Different Accessibility Measures." *Environment and Planning A: Economy and Space* 42 (7): 1613–35. https://doi.org/10.1068/a4230.
- Paez, Antonio, Christopher D. Higgins, and Salvatore F. Vivona. 2019. "Demand and Level of Service Inflation in Floating Catchment Area (FCA) Methods." Edited by Tayyab Ikram Shah. *PLOS ONE* 14 (6): e0218773. https://doi.org/10.1371/journal.pone.0218773.
- Páez, Antonio, Darren M. Scott, and Catherine Morency. 2012. "Measuring Accessibility: Positive and Normative Implementations of Various Accessibility Indicators." *Journal of Transport Geography* 25 (November): 141–53. https://doi.org/10.1016/j.jtrangeo.2012.03.016.
- Papa, Enrica, Cecilia Silva, Marco Te Brömmelstroet, and Angela Hull. 2015. "Accessibility Instruments for Planning Practice: A Review of European Experiences." *Journal of Transport and Land Use*, June. https://doi.org/10.5198/jtlu.2015.585.
- Pereira, Rafael H. M., Carlos Kaue Vieira Braga, Serra Bernardo, and Vanessa Nadalin. 2019. "Desigualdades Socioespaciais de Acesso a Oportunidades Nas Cidades Brasileiras, 2019." Texto para Discussão {IPEA} 2535. Brasilia: Instituto de Pesquisa Econômica Aplicada Ipea. http://www.ipea.gov.br/portal/images/stories/PDFs/TDs/td_2535.pdf.
- Pereira, Rafael H. M., Carlos Kauê Vieira Braga, Daniel Herszenhut, Marcus Saraiva, and Diego Bogado Tomasiello. 2022. "Estimativas de Acessibilidade a Empregos e Serviços Públicos via Transporte Ativo, Público e Privado Nas 20 Maiores Cidades Do Brasil Em 2017, 2018, 2019." Texto para Discussão {IPEA} 2800. Brasilia: Instituto de Pesquisa Econômica Aplicada Ipea. https://www.ipea.gov.br/portal/publicacao-item?id=11058/11345.
- Pereira, Rafael H. M., Daniel Herszenhut, Carlos Kauê Vieira Braga, João Bazzo, João Lucas Albuquerque Oliveira, João Parga, Marcus Saraiva, Luiz Pedro Silva, Diego Bogado Tomasiello, and Lucas Warwar. 2022. "Distribuição Espacial de Características Sociodemográficas e Localização de Empregos e Serviços Públicos Das Vinte Maiores Cidades Do Brasil." Texto Para Discussão IPEA 2772. http://repositorio.ipea.gov.br/handle/11058/11225.
- Pereira, Rafael H. M., and Alex Karner. 2021. "Transportation Equity." In *International Encyclopedia of Transportation*, edited by Roger Vickerman, 1st Edition, 1:271–77. Elsevier. https://doi.org/10.1016/B978-0-08-102671-7.10053-3.
- Pereira, Rafael H. M., Marcus Saraiva, Daniel Herszenhut, Carlos Kaue Vieira Braga, and Matthew Wigginton Conway. 2021. "R5r: Rapid Realistic Routing on Multimodal Transport Networks with R⁵ in R." *Transport Findings*, March, 21262. https://doi.org/10.32866/001c.21262.
- Pereira, Rafael H. M., Tim Schwanen, and David Banister. 2017. "Distributive Justice and

- Equity in Transportation." $Transport \ Reviews \ 37 \ (2): \ 170-91. \ https://doi.org/10.1080/01441647.2016.1257660.$
- Silva, Cecília, Luca Bertolini, Marco te Brömmelstroet, Dimitris Milakis, and Enrica Papa. 2017. "Accessibility Instruments in Planning Practice: Bridging the Implementation Gap." Transport Policy 53: 135–45.
- van Wee, Bert. 2022. "Accessibility and Equity: A Conceptual Framework and Research Agenda." Journal of Transport Geography 104 (October): 103421. https://doi.org/10.1016/j.jtrangeo.2022.103421.
- Vasconcellos, Eduardo Alcantara. 2018. "Urban Transport Policies in Brazil: The Creation of a Discriminatory Mobility System." Journal of Transport Geography 67.
- Venter, Christoffel. 2016. "Assessing the Potential of Bus Rapid Transit-Led Network Restructuring for Enhancing Affordable Access to Employment The Case of Johannesburg's Corridors of Freedom." Research in Transportation Economics 59 (November): 441–49. https://doi.org/10.1016/j.retrec.2016.05.006.
- Wee, GP van. 2021. "Transport Modes and Accessibility." International Encyclopedia of Transportation 5 (1).