

DIMENSION REDUCTION (PCA):

Introduction:

Dimension reduction is a method in machine learning aimed at reducing the number of features or variables in a dataset while preserving its essential information. This technique is employed to simplify the dataset, making it more manageable and efficient for subsequent analyses. In this context, dimension reduction can enhance the computational efficiency and interpretability of the data, ultimately facilitating a more streamlined and effective modeling process. The dataset under consideration for this dimension reduction task is derived from the PCA+India+Data_Census.xlsx file.

Data Description:

Name Description
State State Code
District District Code

Name Name

TRU1 Area Name

No_HH No of Household

TOT_M Total population Male

TOT_F Total population Female

M_06 Population in the age group 0-6 Male

F_06 Population in the age group 0-6 Female

M SC Scheduled Castes population Male

F_SC Scheduled Castes population Female

M_ST Scheduled Tribes population Male

F_ST Scheduled Tribes population Female

M_LIT Literates population Male

F_LIT Literates population Female

M_ILL Illiterate Male

F_ILL Illiterate Female

TOT_WORK_M Total Worker Population Male

TOT_WORK_F Total Worker Population Female

MAINWORK_M Main Working Population Male

MAINWORK_F Main Working Population Female

MAIN_CL_M Main Cultivator Population Male

MAIN_CL_F	Main Cultivator Population Female
MAIN_AL_M	Main Agricultural Labourers Population Male
MAIN_AL_F	Main Agricultural Labourers Population Female
MAIN_HH_M	Main Household Industries Population Male
MAIN_HH_F	Main Household Industries Population Female
MAIN_OT_M	Main Other Workers Population Male
MAIN_OT_F	Main Other Workers Population Female
MARGWORK_M	Marginal Worker Population Male
MARGWORK_F	Marginal Worker Population Female
MARG_CL_M	Marginal Cultivator Population Male
MARG_CL_F	Marginal Cultivator Population Female
MARG_AL_M	Marginal Agriculture Labourers Population Male
MARG_AL_F	Marginal Agriculture Labourers Population Female
MARG_HH_M	Marginal Household Industries Population Male
MARG_HH_F	Marginal Household Industries Population Female
MARG_OT_M	Marginal Other Workers Population Male
MARG_OT_F	Marginal Other Workers Population Female
MARGWORK_3_6_	M Marginal Worker Population 3-6 Male
MARGWORK_3_6_	F Marginal Worker Population 3-6 Female
MARG_CL_3_6_M	Marginal Cultivator Population 3-6 Male
MARG_CL_3_6_F	Marginal Cultivator Population 3-6 Female
MARG_AL_3_6_M	Marginal Agriculture Labourers Population 3-6 Male
MARG_AL_3_6_F	Marginal Agriculture Labourers Population 3-6 Female
MARG_HH_3_6_M	Marginal Household Industries Population 3-6 Male
MARG_HH_3_6_F	Marginal Household Industries Population 3-6 Female
MARG_OT_3_6_M	Marginal Other Workers Population Person 3-6 Male
MARG_OT_3_6_F	Marginal Other Workers Population Person 3-6 Female
MARGWORK_0_3_	M Marginal Worker Population 0-3 Male
MARGWORK_0_3_	F Marginal Worker Population 0-3 Female
MARG_CL_0_3_M	Marginal Cultivator Population 0-3 Male
MARG_CL_0_3_F	Marginal Cultivator Population 0-3 Female
MARG_AL_0_3_M	Marginal Agriculture Labourers Population 0-3 Male
MARG_AL_0_3_F	Marginal Agriculture Labourers Population 0-3 Female
MARG_HH_0_3_M	Marginal Household Industries Population 0-3 Male
MARG_HH_0_3_F	Marginal Household Industries Population 0-3 Female
MARG_OT_0_3_M	Marginal Other Workers Population 0-3 Male
MARG_OT_0_3_F	Marginal Other Workers Population 0-3 Female
NON_WORK_M	Non Working Population Male

5 rows = 81 columns

Step 1: Data Loading and Overview:

Loaded the dataset using pandas and displayed the first and last few rows to understand the data structure.

PCA India Data_Census.xlsx dataset is loaded into the dataframe.

Data Frame printing rows with Head (Prints top 5 rows) function as below:

#top roms
off-head()

State Dist.Code State Area Name Re_HE TOT R TOT F M 96 F 96 M 3C ... MARG CL B 3 F MARG AL B 3 F MARG M B 3 F MARG OF B MARG AL B 3 F MARG M B 3 F MARG OF B MARG AL B 3 F MARG M B 3 F MARG OF B MARG AL B 3 F MARG M B 3 F MARG OF B MARG AL B 3 F MARG M B 3 F MARG OF B MARG AL B 3 F MARG M B 3 F MARG OF B MARG AL B 3 F MARG M B 3 F MARG OF B MARG AL B 3 F MARG M B 3 F MARG OF B MARG AL B 3 F MARG M B 3 F MARG OF B MARG AL B 3 F MARG M B 3 F MARG M B 3 F MARG OF B MARG AL B 3 F MARG M B 3 F

Data Frame printing rows with Tail (Prints last 5 rows) function as below:

f.te	(1)															
	State Code	Dist.Code	State	Area Name	No. 100	101_8	101_2	1,00	£_06	K,SC	 KANG_CL_0_1_R	AMRS_CL_0_1_F	MRS_AL_0_1_5	NMG_RL_0_3_F	NGS_91,0,3,6	MAGENTAL SE
35	34	636	Publishery	Matte	3333	8154	11781	2146	1203	21	32	47				
36	34	637	Pubshery	Kenkel	10612	12366	21691	1544	1533	2234	155	337	3	14	36	130
air	36	638	Andaman & Nicobar Island	Nobes	1275	1545	2630	ZEI	225		104	154	9	4	2	6
138	36	619	Andeman 8.Nicobar Mand		3792	5200	8012			0	136	172	24	44	п	21
39	*	540	Andaman & Nicober bland	South Anderson	7975	11577	10045	1470	1358	. 0	173	122	6	.2	17	.97

Checking the shape of Dataset

640, 61)

There are 640 Rows and 61 Columns.

Below is the Info of Dataset

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 640 entries, 0 to 639
Data columns (total 61 columns):

#	Column	Non-Null Count	Dtype
0	State Code	640 non-null	int64
1	Dist.Code	640 non-null	int64
2	State	640 non-null	object
3	Area Name	640 non-null	object
4	No HH	640 non-null	int64
5	TOTM	640 non-null	int64
6	TOT F	640 non-null	int64
7	м 0 6	640 non-null	int64
8	F_06	640 non-null	int64
9	M_SC	640 non-null	int64
10	F_SC	640 non-null	int64
11	M_ST	640 non-null	int64
12	F_ST	640 non-null	int64
13	M_LIT	640 non-null	int64
14	F_LIT	640 non-null	int64
15	M_ILL	640 non-null	int64
16	F_ILL	640 non-null	int64
17	TOT_WORK_M	640 non-null	int64
18	TOT_WORK_F	640 non-null	int64
19	MAINWORK_M	640 non-null	int64
20	MAINWORK_F	640 non-null	int64
21	MAIN_CL_M	640 non-null	int64
22	MAIN_CL_F	640 non-null	int64
23	MAIN_AL_M	640 non-null	int64
24	MAIN_AL_F	640 non-null	int64
25	MAIN_HH_M	640 non-null	int64
26	MAIN_HH_F	640 non-null	int64
27	MAIN_OT_M	640 non-null	int64
28	MAIN_OT_F	640 non-null	int64
29	MARGWORK_M	640 non-null	int64

```
640 non-null
30 MARGWORK F
31 MARG_CL_M
32 MARG_CL_F
33 MARG_AL_M
34 MARG_AL_F
                 640 non-null
                                int64
                 640 non-null
                                 int64
                 640 non-null
                                 int64
                                 int64
                 640 non-null
35 MARG HH_M
                                 int64
                 640 non-null
36 MARG_HH_F
                 640 non-null
                                 int64
37 MARG_OT_M 640 non-null
38 MARG_OT_F 640 non-null
                                 int64
39 MARGWORK 3 6 M 640 non-null
                                 int64
                                 int64
40 MARGWORK 3 6 F 640 non-null
41 MARG_CL_3_6_M 640 non-null
                                 int64
42 MARG CL 3 6 F 640 non-null int64
43 MARG AL 3 6 M 640 non-null int64
44 MARG AL 3 6 F 640 non-null int64
45 MARG HH 3 6 M 640 non-null int64
46 MARG HH 3 6 F 640 non-null int64
47 MARG OT 3 6 M 640 non-null
                                int64
48 MARG_OT_3_6_F 640 non-null
                                 int64
49 MARGWORK 0 3 M 640 non-null
                                int64
50 MARGWORK_0_3_F 640 non-null
                                 int64
51 MARG_CL_0_3_M 640 non-null int64
52 MARG CL 0 3 F 640 non-null int64
53 MARG AL 0 3 M 640 non-null
                                 int64
54 MARG AL 0 3 F 640 non-null
                                 int64
55 MARG HH 0 3 M 640 non-null
56 MARG HH 0 3 F 640 non-null
                                 int.64
57 MARG OT 0 3 M 640 non-null
                                 int64
58 MARG_OT_0_3_F 640 non-null
                                 int64
59 NON_WORK_M 640 non-null int64 60 NON_WORK_F 640 non-null int64
```

dtypes: int64(59), object(2)
memory usage: 305.1+ KB

There are 'No duplicate values' and 'No Null values' in to the dataset.

Using Describe Function:

	State Code	Dist.Code	No_101	TOT_M	TOT_F	M_06	F_86	M_SC	F_SC	H_ST	***	HWAG_CL_0_3_H	HUNG_CL_0_3_F
count	640.000000	640.000000	640.000000	640.000000	646.000000	640.000000	640.000000	640 000000	640.000000	640.000000		640,000000	640 000000
mean	17.114062	320 500000	51222.671875	79940 576563	122372.084375	12309.098438	11942.300000	13820 546875	29778 392188	6151.887813		1352 973438	2757.050000
hte	9.426486	184.896367	48135.405475	73304,511114	113600 717282	11500.905861	11326.294567	14426,373130	21727.087713	9912.008940		1489 707952	2788.776676
min	1.000000	1.000000	350.000000	391.000000	598,000000	56 000000	56 000000	0.000000	0.000000	8 800000		4 900000	30 000000
25%	9.000000	160.750000	19484 000000	36228 (00000)	46517.750000	4733.758000	4672.250000	3466.250000	5603.250000	293.750000		489.500000	967.250000
50%	18.000000	320.500000	35837.000000	58339 000000	87724.500000	9159.000000	8663 000000	9591 500000	13709.000000	2333.500000		949 000000	1928.000000
75%	24.000000	480.250000	68892 000000	107918.500000	164251.750000	16520 250000	15942.250000	19429.750000	29180.000000	7658,000000		1714.000000	3699.760000
max	35.000000	640.000000	310450.000000	485417 000000	750392.000000	96223 000000	95129.000000	103307.000000	156429 000000	96785 888000		9875 000000	21611.000000

Step 2: EDA

• Feature Selection

We Selected ('No_HH', 'TOT_M', 'TOT_F', 'M_06', 'F_06') Variables for further analysis..

I have picked 5 Variables such as: ['No_HH', 'TOT_M', 'TOT_F', 'M_06', 'F_06'].

TOT_M	Total population Male
TOT_F	Total population Female
No_HH	No. of House Holds
M_06	Males below 6 years
F_06	Females below 6 years

Summary statistics for selected variables:

	No_HH	TOT_M	TOT_F	M_06	F_06
count	640.000000	640.000000	640.000000	640.000000	640.000000
mean	51222.871875	79940.576563	122372.084375	12309.098438	11942.300000
std	48135.405475	73384.511114	113600.717282	11500.906881	11326.294567
min	350.000000	391.000000	698.000000	56.000000	56.000000
25%	19484.000000	30228.000000	46517.750000	4733.750000	4672.250000
50%	35837.000000	58339.000000	87724.500000	9159.000000	8663.000000
75%	68892.000000	107918.500000	164251.750000	16520.250000	15902.250000
max	310450.000000	485417.000000	750392.000000	96223.000000	95129.000000

Step 3: Data Scaling and Covariance Matrix:

We Selected Numeric columns and applied z-score normalization using the StandardScaler. Then we calculated covariance matrix and obtained eigenvalues and eigenvectors .

Numerical Columns

Find below Covariance Matrix for scaled dataset

```
array([[1.00156495, 0.91760364, 0.97210871, ..., 0.53769433, 0.76357722, 0.73684378],
[0.91760364, 1.00156495, 0.98417823, ..., 0.5891007, 0.84621844, 0.71718181],
[0.97210871, 0.98417823, 1.00156495, ..., 0.572748, 0.82894851, 0.74775097],
...,
[0.53769433, 0.5891007, 0.572748, ..., 1.00156495, 0.61052325, 0.52191235],
[0.76357722, 0.84621844, 0.82894851, ..., 0.61052325, 1.00156495, 0.88228018],
[0.73684378, 0.71718181, 0.74775097, ..., 0.52191235, 0.88228018, 1.00156495]])
```

Eigen Vectors

```
[ eigenvectors
```

```
array([[-1.56020579e-01+0.j, 1.26346525e-01+0.j, -2.69025037e-03+0.j,
            ..., 8.59813362e-14+0.j, -1.76746604e-13+0.j,
             1.08099785e-13+0.j],
           [-1.67117635e-01+0.j, 8.96765481e-02+0.j, 5.66976191e-02+0.j,
            ..., 5.28021877e-02+0.j, -1.10854618e-01+0.j,
             2.72794503e-02+0.j],
           [-1.65553179e-01+0.j, 1.04912371e-01+0.j, 3.87494746e-02+0.j,
            ..., 2.04945480e-01+0.j, -2.01549789e-01+0.j,
            1.06371673e-01+0.j],
           [-1.32192245e-01+0.j, -5.08133220e-02+0.j, -7.87198691e-02+0.j,
            ..., 5.02777797e-03+0.j, 2.99863496e-03+0.j,
            5.44284135e-05+0.j],
           [-1.50375578e-01+0.j, 6.53645529e-02+0.j, 1.11827318e-01+0.j,
            ..., -3.00935627e-02+0.j, -1.48422322e-02+0.j,
            9.62462558e-02+0.j],
           [-1.31066203e-01+0.j, 7.38474208e-02+0.j, 1.02552501e-01+0.j,
           ..., 2.84776742e-02+0.j, -5.59381919e-02+0.j,
            1.00243536e-01+0.j]])
```

Eigen values

Step 4: Scree Plot and Optimal Number of Principal Components:

Data before z-score scaling is as below

	count	mean	std	min	25%	50%	75%	max
Ad - Length	23066.0	3.851631e+02	2.336514e+02	120.0000	120.000000	300.000000	7.200000e+02	728.00
Ad- Width	23066.0	3.378960e+02	2.030929e+02	70.0000	250.000000	300.000000	6.000000e+02	600.00
Ad Size	23066.0	9.667447e+04	6.153833e+04	33600.0000	72000.000000	72000.000000	8.400000e+04	216000.00
Available_Impressions	23066.0	2.432044e+06	4.742888e+06	1.0000	33672.250000	483771.000000	2.527712e+06	27592861.00
Matched_Queries	23066.0	1.295099e+06	2.512970e+06	1.0000	18282.500000	258087.500000	1.180700e+06	14702025.00
Impressions	23066.0	1.241520e+06	2.429400e+06	1.0000	7990.500000	225290.000000	1.112428e+06	14194774.00
Clicks	23066.0	1.067852e+04	1.735341e+04	1.0000	710.000000	4425.000000	1.279375e+04	143049.00
Spend	23066.0	2.706626e+03	4.067927e+03	0.0000	85.180000	1425.125000	3.121400e+03	26931.87
Fee	23066.0	3.351231e-01	3.196322e-02	0.2100	0.330000	0.350000	3.500000e-01	0.35
Revenue	23066.0	1.924252e+03	3.105238e+03	0.0000	55.365375	926.335000	2.091338e+03	21276.18
CTR	23066.0	7.366054e-02	6.700065e-02	0.0001	0.003400	0.073661	1.219000e-01	1.00
CPM	23066.0	7.672045e+00	5.777778e+00	0.0000	1.850000	7.672045	1.134000e+01	81.56
CPC	23066.0	3.510606e-01	3.060619e-01	0.0000	0.100000	0.351061	4.700000e-01	7.26

Here, I have applied z-score method and I got the below output.

	count	mean	std	min	25%	50%	75%	max
Ad - Length	23066.0	1.281478e-16	1.000022	-1.134891	-1.134891	-3.644957e-01	1.433093	1.467332
Ad- Width	23066.0	-1.182903e-16	1.000022	-1.319110	-0.432797	-1.865987e-01	1.290590	1.290590
Ad Size	23066.0	2.464381e-17	1.000022	-1.024985	-0.400970	-4.009697e-01	-0.205965	1.939086
Available_Impressions	23066.0	-1.971505e-17	1.000022	-0.512788	-0.505688	-4.107866e-01	0.020171	5.305072
Matched_Queries	23066.0	-5.914515e-17	1.000022	-0.515377	-0.508102	-4.126727e-01	-0.045524	5.335208
Impressions	23066.0	-1.971505e-17	1.000022	-0.511050	-0.507761	-4.183138e-01	-0.053138	5.331990
Clicks	23066.0	-3.943010e-17	1.000022	-0.615311	-0.574454	-3.603704e-01	0.121894	7.628089
Spend	23066.0	-3.943010e-17	1.000022	-0.665372	-0.644432	-3.150323e-01	0.101964	5.955310
Fee	23066.0	6.703117e-16	1.000022	-3.914682	-0.160285	4.654474e-01	0.465447	0.465447
Revenue	23066.0	7.886020e-17	1.000022	-0.619693	-0.601863	-3.213727e-01	0.053809	6.232161
CTR	23066.0	9.857525e-18	1.000022	-1.097932	-1.048677	-2.071337e-16	0.720001	13.826128
СРМ	23066.0	-9.611087e-17	1.000022	-1.327883	-1.007683	-1.537265e-16	0.634852	12.788576
CPC	23066.0	-9.857525e-17	1.000022	-1.147050	-0.820311	0.000000e+00	0.388621	22.574160

Scaling can increase the computational complexity of algorithms, as it involves additional computations to transform the data.

Step 4: Hierarchical Clustering - Dendrogram:

Dendrogram performed for Hierarchical using WARD and Euclidean Distance on the Scaled Data such as "data1_scaled".

In this Dendrogram, value of P = 10, which means that only the last 10 merged clusters are shown.

Hierarchical clustering with a dendrogram provides a visual representation of potential clusters, aiding in the selection of an optimal number of clusters for subsequent KMeans analysis.

Step 5: KMeans Clustering:

Elbow Plot

We created an Elbow plot (n=10) and identified optimum number of clusters for k-means algorithm.

For checking the Optimal number of clusters we use WSS (Within Sum Of Square)

As per the check

When we move from K=1 to K=2, We see that there is a significant drop in the value. Also when we move from k=2 to k-3, k=3 to k=4, k=4 to k=5 there is a significant drop aswell. k=5 to k=6, the drop in values reduces significantly.

Hence In this case, the WSS is not significantly dropping beyond 5, so 5 is optimal number of clusters.

The Elbow Plot helps determine the optimal number of clusters by identifying the point where adding more clusters does not significantly reduce the within-cluster sum of squares (WSS).

Silhouette score:

Then we Printed silhouette scores for up to 10 clusters and identified optimum number of clusters.

Silhouette scores for up to 10 clusters:


```
Number of Clusters (k) = 2: Silhouette Score = 0.602856419557812

Number of Clusters (k) = 3: Silhouette Score = 0.3652575679239419

Number of Clusters (k) = 4: Silhouette Score = 0.46072044314349486

Number of Clusters (k) = 5: Silhouette Score = 0.5135883146481809

Number of Clusters (k) = 6: Silhouette Score = 0.48271573962694464

Number of Clusters (k) = 7: Silhouette Score = 0.44997366925914933

Number of Clusters (k) = 8: Silhouette Score = 0.45584674165165107

Number of Clusters (k) = 9: Silhouette Score = 0.45983041055564045

Number of Clusters (k) = 10: Silhouette Score = 0.45726048689932824
```

Optimal number of clusters: 5

I have calculated Silhouette Score for scaled data using the silhouette_score() function. The Silhouette Score is a measure of how similar an object is to its own cluster compared to other clusters, and it ranges from -1 to 1, with higher values indicating better clustering.

As per Elbow plot/scree-plot, we concluded that the optimal number of clusters should be 5. Because 2 would be very less number of clusters.

Step 6: Conclusion:

- There are 23066 rows, and 19 columns into the Dataset.
- There are no duplicate values in dataframe.
- There are 4636 Null values in CTR, CPM, and CPC Columns.
- I have treated missing values in CPC, CTR, and CPM columns using the given formula
- It seems that there are Outliers into the Dataset
- We treated outliers using IQR method
- I have applied z-score method on the dataframe for scaling.
- I have plotted Dendrogram for value of P = 10
- Plotted elbow plot and got optimum value is 5
- As per Elbow plot/scree-plot, we concluded that the optimal number of clusters should be 5.
- I have created 5 clusters for the Dataset.

Conclusion after Clustering:

- When Click on Ads gets increases then Revenue also increases.
- When amount of money spent on specific ad variations within a specific campaign or ad set is increases then Revenue also increases.
- When impression count of the particular Advertisement increases then Revenue also increases

References:

The dataset "PCA+India+Data_Census.xlsx" utilized in this dimension reduction project was sourced from DataSpace.

Webiste: https://dataspace.mobi/

https://dataspace.mobi/dataset/pca-census-2011

Scikit-Learn Documentation on PCA

[Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(Oct), 2825-2830.]

Towards Data Science - Understanding PCA (Principal Component Analysis

Author: Will Badr

Reference: Published on Towards Data Science, a Medium publication.

• Reduce Data Dimensionality using PCA – Python – GFG

These references guided the application of dimension reduction techniques and contributed to the methodology employed in the project.