Aandrijftechniek maan casus

Jelmer Hemstra, 1810225, Flint Wardenaar, 1771881

29 maart 2024

Samenvatting

In dit document wordt de casus van de aandrijftechniek van de rover behandeld. Hierbij wordt gekeken naar de verschillende aandrijftechnieken en de voor- en nadelen van deze technieken.

1 Inleiding

In dit document wordt de casus van de aandrijftechniek van de rover behandeld.

2 Analyse

2.1 Onderzoeksvragen

Hoofdvraag:

Welke cobinatie van motor en overbrenging, van de familie "RE25 1187xx" en "Planetary Gearhead GP xx xx" respectievelijk, is het meest geschikt als aandrijving van de "Euro Moon Rover"?

Deelvragen:

- Wat is de statische last?
- Wat is de dynamische last?
- Wat is de meest voorkomende last?

2.2 Eisen

Uit de opdrachtsbeschrijving zijn de volgende eisen gehaald:

- 1. De rover moet een helling van 20° op en af kunnen rijden.
- 2. De rover moet kunnen versnellen met $0.7[m/s^2]$ en vertragen met $0.5[m/s^2]$.
- 3. De rover moet een topsnelheid hebben van ninstens 2.1[m/s].
- 4. De motor moet deel uitmaken van de "RE25 1187xx" familie en heeft een diameter van 25mm.
- 5. De overbrenging moet deel uitmaken van de "Planetary Gearhead GP xx xx" familie.

2.3 Gegevens

Uit de opdracht zijn de volgende gegevens gehaald:

- De massa van de de rover: m = 6[kg]
- De valversnelling op de maan: $g_m = 1.62[m/s^2]$
- \bullet De rolweerstandscoëfficiënt: $\mu_r=0.1$
- De straal van de wielen: r = 0.075[m]
- De massatraagheidvan de wielen: $J = 0.0021[kg \cdot m^2]$

Ook zijn de eisen genoteerd als gegevens:

- De maximale helling: $\theta_{max} = 20^{\circ}$
- De maximale versnelling: $a_{max} = 0.7[m/s^2]$
- De maximale snelheid: $v_{max} = 2.1[m/s]$

3 Onderzoek

Om te bepalen welk type motor het beste is voor de toepassing wordt er vooral gekeken naar de last die de motor moet verdragen. De last is opgedeeld in statische en dynamische last. De statische last is de last die de motor moet verdragen als de rover een vaste snelheid heeft. De dynamische last is de last die de motor moet verdragen als de rover versnelt of vertraagt.

3.1 Statische last

Er zijn twee onderdelen in de statische last, namelijk de zwaartekracht en de rolweerstand.

Zwaartekracht

Met de zwaartekracht wordt de kracht bedoeld die resulteerd uit de kracht die de rover omlaag duwt en de normaalkracht van het oppervlakte. Deze resulterende kracht is ervoor verantwoordelijk dat de rover de helling af "wil" rollen. Deze is te berekenen met de formule:

$$F_z = m \cdot g \cdot \sin(\theta) \tag{1}$$

- F_z is last die de zwaartekracht veroorzaakt in [N]
- m is de massa van de rover in [kg]
- g is de zwaartekracht in $[m/s^2]$
- θ is de hoek van de helling in [rad]

Rolweerstand

De rolweerstand is de kracht die het rollen tegenwerkt en is een gevolg van de frictie tussen de wielen en de grond. Deze kracht is te berekenen met de formule:

$$F_{rw} = u_r \cdot m \cdot g \cdot \cos(\theta) \tag{2}$$

- F_{rw} is de last die de rolweerstand veroorzaakt in [N]
- \bullet u_r is de rolweerstandscoëfficiënt
- g is de zwaartekracht in $[m/s^2]$
- θ is de hoek van de helling in [rad]

Totaal statische last

De totale statische last is dan de som van de zwaartekracht en de rolweerstand:

$$F_{stat} = F_z + F_{rw} \tag{3}$$

Om de motor te selecteren moet er gekeken worden naar de koppel. Om de koppel te berekenen per motor moet de volgende formule gebruikt worden:

$$T_{stat} = \frac{F_{stat} \cdot r}{4} \tag{4}$$

Let hierbij op dat de deze last **per wiel** geldt.

3.2 Dynamische last

De dynamische last volgt uit twee onderdelen: de massa van de rover en de massatraagheid van de wielen.

Massa

De last die volgt uit de massa van de rover is te berekenen met de formule:

$$T_m = m \cdot a \cdot r \tag{5}$$

- T_m is het koppel die nodig is om de rover te versnellen [Nm]
- m is de massa van de rover in [kg]
- a is de versnelling van de rover in $[m/s^2]$
- r is de straal van het wiel in [m]

massatraagheid

De massatraagheid van de wielen is te berekenen met de formule:

$$T_{inertiawielen} = \frac{I_{wielen} \cdot a}{r_{wiel}}$$

- $T_{inertiawielen}$ is de koppel die het kost om het wiel te versnellen [Nm]
- I_{wielen} is het traagheidsmoment van de wielen in $[kg \cdot m^2]$
- a is de versnelling van de rover in $[m/s^2]$
- r_{wiel} is de straal van het wiel in [m]

De totale dynamische koppel per wiel is dan de som van de massatraagheid van de rover en de massatraagheid van de wielen:

$$T_{dynamischperwiel}[Nm] = \frac{T_{inertiarover}[Nm]}{4} + T_{inertiawielen}[Nm] + T_{statischperwiel}[Nm]$$

3.3 Analyse van de motoren

3.3.1 gearbox?

4 Resultaten

Uitkomsten van de analyse, het onderzoek worden gepresenteerd. max 2 A4tjes

4.1 last

De statische en dynamische lasten zijn berekend voor verschillende hellingen. Uit deze berekeningen zijn de volgende resultaten gekomen:

Helling	-20°	-8.5°	0°	8.5°	20°
Statisch [mNm]	-45.20	-8.91	18.22	44.96	79.45
Dynamisch [mNm]	53.13	89.43	116.57	143.31	177.81

Tabel 1: Helling - Koppel

Dit is gedaan met de volgende formules:

$$T_{statisch} = \frac{r_{wiel}(m \cdot g \cdot sin(\theta) + u_r \cdot m \cdot g \cdot cos(\theta))}{4} = \frac{0.075(9.72 \cdot sin(\theta) + 0.972 \cdot cos(\theta))}{4}$$
$$T_{dynamisch} = T_{statisch} + \frac{m \cdot a \cdot r_{wiel}}{4} + \frac{I_{wielen} \cdot a}{r_{wiel}} = T_{statisch} + \frac{0.315}{4} + 0.0196$$

Deze formules zijn toegelicht in hoofdstuk 2.1.

4.2 Motor

De motor is gekozen aan de hand van de tabel in 3.1. Ook is er gekeken naar de gearbox daar geldt namenlijk dat hoe minder vertanding de gearbox hoeft te doen hoe efficienter deze is. Hierdoor is er gekozen voor een so traag mogelijke motor binnen de RE25 1187 serie. De motor die gekozen is is de RE25 118745. Deze motor heeft een No-load speed van 4790 [rpm], een maximale efficientie van 90 procent en een nominale koppel van 28.7 [mNm]. De nominale snelheid van de motor is 3710 [rpm].

4.3 gearhead

De gearbox is gekozen aan de hand van de motor. In de datasheet van de motor worden namenlijk een aantal gearboxes aangeraden. Een daarvan is degende die wij gekozen hebben, namenlijk de GP 26A 406757. Deze gearbox heeft een vertanding van 5.2:1. dit zorgt voor een Nominale snelheid van 710 [rpm] en een nominale koppel van 150 [mNm]. Dit is meer dan genoeg koppel om met een constante snelheid van 2.1 [m/s] te rijden op een helling van 20 graden.

5 Advies

De

M 1:2

Specifications Operating Range Comments Thermal data n [rpm] Continuous operation 17 Thermal resistance housing-ambient 14 K/W In observation of above listed thermal resistance 18 Thermal resistance winding-housing 19 Thermal time constant winding 3.1 K/W 12.5 s 10 W (lines 17 and 18) the maximum permissible winding temperature will be reached during continuous 118743 612 s 20...+85°C 20 Thermal time constant motor operation at 25°C ambient. 21 Ambient temperature 4000 = Thermal limit. 22 Max. winding temperature +100°C Mechanical data (ball bearings) Short term operation 5500 rpm 2000 23 Max. speed The motor may be briefly overloaded (recurring). 24 Axial play 0.05 - 0.15 mm 25 Radial play 0.025 mm Assigned power rating 3.2 N 64 N 26 Max. axial load (dynamic) 10 20 30 M [mNm] 27 Max. force for press fits (static) (static, shaft supported) 1.0 800 N İ[A] 16 N

429_KD 32

452-460_GP 32 S

Values listed in the table are nominal. Explanation of the figures on page 90.

Option

Preloaded ball bearings

 Sensor
 Motor Control

 510_Encoder MR 128-1000 CPT
 532_ESCON Module 24/2

 515_Encoder Enc 22
 532_ESCON Module 50/5

 518_Encoder HEDS 5540
 535_ESCON 50/5

 520_Encoder HEDL 5540
 535_ESCON 50/5

 527_DC-Tacho DCT 22
 541_EPOS4 Micro 24/5

 542_EPOS4 Module 24/1.5
 542_EPOS4 Module 50/5

 543_EPOS4 Compact 24/5 3-axes
 544_EPOS4 Compact 24/1.5

 545_EPOS4 Compact 50/5
 547_EPOS4 50/5

Details on catalog page 44

Planetary Gearhead GP 26 A Ø26 mm, 0.75-4.5 Nm

Technical Data							
Planetary Gearhead		straigh	nt teeth				
Output shaft	tput shaft stainless s						
Bearing at output		ed ball bearings					
Radial play, 5 mm from flan	max. 0.1 mm						
Axial play at axial load	< 6 N		0 mm				
	> 6 N	max. ().4 mm				
Max. axial load (dynamic)			120 N				
Max. force for press fits			120 N				
Direction of rotation, drive		=					
Max. continuous input spe-	8000 rpm						
Recommended temperatu	-30+100°C						
Extended range as option	n	-40	+100°C				
Number of stages	1	2	3				
Max. radial load, 12 mm							
from flange	70 N	110 N	140 N				

M 1:2

Standard program		Part Numbers										
	Special program (on request)		406757	406762	406764	406767	406128	406769	406770	406771	406092	
Gearhead Data												
1	1 Reduction		5.2:1	19:1	27:1	35:1	71:1	100:1	139:1	181:1	236:1	
2	Absolute reduction		57/11	3591/187	3249/121	1539/44	226233/3179	204687/2057	185193/1331	87723/484	41553/176	
3	Max. motor shaft diameter	mm	3	3	3	3	3	3	3	3	3	
4	Number of stages		1	2	2	2	3	3	3	3	3	
5	Max. continuous torque	Nm	0.75	2.25	2.25	2.25	4.5	4.5	4.5	4.5	4.5	
6	Max. intermittent torque at gear output	Nm	1.1	3.2	3.2	3.2	6.2	6.2	6.2	6.2	6.2	
7	Max. efficiency	%	90	80	80	80	70	70	70	70	70	
8	Weight	g	53	77	77	77	93	93	93	93	93	
9	Average backlash no load	•	0.5	0.7	0.7	0.7	0.8	0.8	0.8	0.8	0.8	
10	Mass inertia	gcm ²	0.96	0.54	0.54	0.54	0.31	0.31	0.31	0.31	0.31	
11	Gearhead length L1	mm	23.4	32.9	32.9	32.9	39.5	39.5	39.5	39.5	39.5	
13	Max. transmittable power (continuous)	W	60	35	35	35	20	20	20	20	20	
14	Max. transmittable power (intermittent)	W	90	50	50	50	30	30	30	30	30	

maxon Modular + Motor		+ Sensor/Brake	Page	Overallie	ngth [mm]	- Motor lor	ath + acor	head lengt	1 + leancar	/hrake) + or	seamhly no	rte	
+ Motor RE 25	Page 144/146		rage					-	•	/brаке) + аз 94.1			
			470	78.0	87.5	87.5	87.5	94.1	94.1		94.1	94.1	
RE 25	144/146		478	89.0	98.5	98.5	98.5	105.1	105.1	105.1	105.1	105.1	
RE 25	144/146		483	92.1	101.6	101.6	101.6	108.2	108.2	108.2	108.2	108.2	
RE 25		HED_ 5540	486/488	98.8	108.3	108.3	108.3	114.9	114.9	114.9	114.9	114.9	
RE 25		DCT 22	495	100.3	109.8	109.8	109.8	116.4	116.4	116.4	116.4	116.4	
RE 25, 20 W	145			66.5	76.0	76.0	76.0	82.6	82.6	82.6	82.6	82.6	
RE 25, 20 W	145	MR	478	77.5	87.0	87.0	87.0	93.6	93.6	93.6	93.6	93.6	
RE 25, 20 W	145	HED_ 5540	487	87.3	96.8	96.8	96.8	103.4	103.4	103.4	103.4	103.4	
RE 25, 20 W	145	DCT 22	495	88.8	98.3	98.3	98.3	104.9	104.9	104.9	104.9	104.9	
RE 25, 20 W	145	AB 28	535	100.6	110.1	110.1	110.1	116.7	116.7	116.7	116.7	116.7	
RE 25, 20 W	145	HED_5540/AB 28	487/535	117.8	127.3	127.3	127.3	133.9	133.9	133.9	133.9	133.9	
RE 25, 20 W	146	AB 28	535	112.1	121.6	121.6	121.6	128.2	128.2	128.2	128.2	128.2	
RE 25, 20 W	146	HED_ 5540/AB 28	488/535	129.3	138.8	138.8	138.8	145.4	145.4	145.4	145.4	145.4	
A-max 26	171-174			68.2	77.7	77.7	77.7	84.3	84.3	84.3	84.3	84.3	
A-max 26	171-174	MR	478	77.0	86.5	86.5	86.5	93.1	93.1	93.1	93.1	93.1	
A-max 26	171-174		483	82.6	92.1	92.1	92.1	98.7	98.7	98.7	98.7	98.7	
A-max 26		HED_ 5540	487/489	86.6	96.1	96.1	96.1	102.7	102.7	102.7	102.7	102.7	