| ФИО | Группа | 1 | 2 | 3 | 4 | 5 | 6 | Σ | Оценка | Подпись |
|-----|--------|---|---|---|---|---|---|---|--------|---------|
|     |        |   |   |   |   |   |   |   |        |         |

Контрольный вопрос: Дать определение норме матрицы, подчиненной норме вектора.

1. (4) В ходе эксперимента получены следующие значения:

| $x_0$ | $x_1$ | $x_2$ | $x_3$ |
|-------|-------|-------|-------|
| 0.05  | 0.13  | 0.35  | 0.69  |

С какой точностью можно вычислить  $\frac{x_1}{x_0}$  и  $\sin(x_2+x_3)$ ? 2. (4) В приведенной ниже таблице представлены значения функции f(x) с шагом h=0.002, вычисленные на компьютере. Пусть известно, что  $\max |f^{(2)}(x)| \leq M_2 = 1$  и  $\max |f^{(3)}(x)| \leq M_3 = 1$ . Вычислить максимально точно значение первой производной функции f(x) в точке x=0.006. Дать оценку погрешности полученного результата при заданном x.

| x    | 0        | 0.002    | 0.004    | 0.006    | 0.008    | 0.01     | 0.012  | 0.014  | 0.016  | 0.018  | 0.020  |
|------|----------|----------|----------|----------|----------|----------|--------|--------|--------|--------|--------|
| f(x) | .1000E01 | .1000E01 | .1000E01 | .1000E01 | .1000E01 | .1000E01 | 0.9999 | 0.9999 | 0.9999 | 0.9998 | 0.9997 |

3. Функция f(x) задана на сетке:

- (2) Построить интерполяционный полином  $P_3(x)$  порядка не выше третьего методом неопределенных коэффициентов (в виде  $P_3(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ ).
- (2) Оценить погрешность интерполяции, если известно что  $|f^{IV}(x)| \le 7$  и  $\left|\prod_{n=0}^{N} (x-x_n)\right| \le 1$ на отрезке [-1, 2].
- 4. Дана матрица:

$$A = \begin{pmatrix} 0 & 2 & -1 \\ -3 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$

- (4) Вычислить число обусловленности в первой и второй норме.
- (6) В третьей норме.
- 5. (6) Построить интерполяционный полином для функции  $y = \arcsin(x)$  на отрезке [-1,1] с использованием 5 точек — экстремумов соответствующего полинома Чебышёва.
- 6. (6) Дана таблица функции y = sin(x)

Построить интерполирующий сплайн порядка 3 дефекта 1. Какие граничные условия для моментов сплайна лучше использовать?

| ФИО | Группа | 1 | 2 | 3 | 4 | 5 | 6 | Σ | Оценка | Подпись |
|-----|--------|---|---|---|---|---|---|---|--------|---------|
|     |        |   |   |   |   |   |   |   |        |         |

Контрольный вопрос: Существование и единственность задачи алгебраической интерполяции.

- 1. (4) Оценить погрешность в определении корней уравнения  $ay^2+d=0$ , если величины a=1 и d=4 заданы с точностью  $\Delta(a)=10^{-3}$  и  $\Delta(d)=10^{-3}$ .
- 2. (4) Для функции, заданной таблично на отрезке, вычислить вторую производную со вторым порядком точности в точке x=0, если известно, что на правой границе  $\frac{d^3f}{dx^3}\Big|_{104}=10$ .

| x    | 100 | 102 | 104 |
|------|-----|-----|-----|
| f(x) | 1   | 1   | 1   |

Пусть в двух произвольных точках функция задана с относительной погрешностью  $10^{-3}$ . Во всех остальных точках функция задана точно. Оценить ошибку округления при вычислении производной. Указать оптимальный шаг численного дифференцирования для формулы первого порядка точности в условиях данной задачи.

3. Функция f(x) задана на сетке:

| $x_n$ | 0 | 1 | 2 | 3 | 4  |
|-------|---|---|---|---|----|
| $f_n$ | 2 | 8 | 4 | 8 | 14 |

- (2) На отрезке [0,3] построить интерполяционный полином  $P_3(x)$  порядка не выше третьего методом Ньютона.
- (2) Оценить погрешность интерполяции. Для оценки  $|f^{IV}(x)|$  использовать конечную разность четвертого порядка. Известно, что  $\left|\prod_{n=0}^{N}(x-x_n)\right| \leq 2$  на отрезке [0,3].
- 4. Дана матрица:

$$A = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 3 & 0 \\ -1 & -2 & 2 \end{pmatrix}$$

- (4) Вычислить число обусловленности в первой и второй норме.
- (6) В третьей норме.
- 5. (6) На отрезке [4,7] для дробно-линейной функции  $y(x) = \frac{x-5.5}{x+\sqrt{3}-5.5}$  построить квадратичный интерполяционный полином в форме Ньютона на сетке из нолей полинома Чебышева. Оценить погрешность данного метода интерполяции.
- 6. (6) Дана таблица функции  $y = \cos(x)$

| x | 0 | $\pi/4$      | $\pi/2$ |
|---|---|--------------|---------|
| y | 1 | $\sqrt{2}/2$ | 0       |

Построить интерполирующий сплайн порядка 3 дефекта 1. Какие граничные условия для моментов сплайна лучше использовать?

| ФИО | Группа | 1 | 2 | 3 | 4 | 5 | 6 | Σ | Оценка | Подпись |
|-----|--------|---|---|---|---|---|---|---|--------|---------|
|     |        |   |   |   |   |   |   |   |        |         |

Контрольный вопрос: Норма вектора. Аксиомы нормы.

1. (4) В ходе эксперимента получены следующие значения:

| $x_0$ | $x_1$ | $x_2$ | $x_3$ |
|-------|-------|-------|-------|
| 0.11  | 0.32  | 0.39  | 0.40  |

С какой точностью можно вычислить  $x_1 \cdot x_0$  и  $tg(x_2 + x_3)$ ?

2. (4) В приведенной ниже таблице представлены значения функции f(x) с шагом h=0.002, вычисленные на компьютере. Пусть известно, что  $\max |f^{(2)}(x)| \leq M_2 = 1$  и  $\max |f^{(3)}(x)| \leq M_3 = 1$ . Вычислить максимально точно значение первой производной функции f(x) в точке x=0.0113. Дать оценку погрешности полученного результата при заданном x.

| x    | 0.0033 | 0.0053 | 0.0073 | 0.0093 | 0.0113 | 0.0133 | 0.0153 | 0.0173 | 0.0193 | 0.0213 | 0.0233 | 0.0253 | 0.0273 |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| f(x) | 1.0296 | 1.0297 | 1.0297 | 1.0297 | 1.0297 | 1.0298 | 1.0298 | 1.0298 | 1.0299 | 1.0299 | 1.0299 | 1.0300 | 1.0300 |

3. Функция f(x) задана на сетке:

| $x_n$ | -2 | 0 | 1 | 2 |
|-------|----|---|---|---|
| $f_n$ | 1  | 3 | 5 | 7 |

- (2) Построить интерполяционный полином  $P_3(x)$  порядка не выше третьего в форме Лагранжа.
- (2) Оценить погрешность интерполяции, если известно что  $|f^{IV}(x)| \le 2$  и  $\left|\prod_{n=0}^{N} (x-x_n)\right| \le 7$  на отрезке [-2,2].
- 4. Дана матрица:

$$A = \begin{pmatrix} 2 & 1 & 0 \\ -2 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$

- (4) Вычислить число обусловленности в первой и второй норме.
- (6) В третьей норме.
- 5. (6) построить интерполяционный полином для функции  $y = \arccos(x)$  с использованием 5 точек нолей соответствующего полинома Чебышёва.
- 6. (6) Дана таблица функции  $y = \cos(x)$

$$\begin{array}{c|cccc} x & 0 & \pi/4 & \pi/2 \\ \hline y & 1 & \sqrt{2}/2 & 0 \\ \end{array}$$

В качестве дополнительных краевых условий даны значения первой произодной на границе отрезка интерполяции y'(0) = 0,  $y'(\pi/2) = -1$ . Построить интерполирующий сплайн порядка 3 дефекта 1 в виде разложения по В-сплайнам.

| ФИО | Группа | 1 | 2 | 3 | 4 | 5 | 6 | Σ | Оценка | Подпись |
|-----|--------|---|---|---|---|---|---|---|--------|---------|
|     |        |   |   |   |   |   |   |   |        |         |

Контрольный вопрос: Интерполяция обобщенным полиномом.

- 1. (4) Вычислить относительную погрешность в определении значения функции  $u=xy^2$ , если известны приближенные значения  $x^*=9.89, y^*=37.1,$  и  $\Delta x^*=0.11,$   $\Delta y^*=0.1.$
- 2. (4) Для функции, заданной таблично на отрезке, вычислить вторую производную с третьим порядком точности в точке x=0, если известно, что на левой границе  $\frac{d^3f}{dx^3}\Big|_0=10, \frac{d^4f}{dx^4}\Big|_0=\frac{12}{7}.$

| x    | 15 | 17 | 19 |
|------|----|----|----|
| f(x) | 1  | 1  | 2  |

Пусть в двух произвольных точках функция задана с относительной погрешностью  $10^{-4}$ . Во всех остальных точках функция задана точно. Оценить ошибку округления при вычислении производной. Указать оптимальный шаг численного дифференцирования для формулы первого порядка точности в условиях данной задачи.

3. Функция f(x) задана на сетке:

| $x_n$ | -2 | -1 | 0 | 1 |
|-------|----|----|---|---|
| $f_n$ | 2  | 6  | 2 | 8 |

- (2) Построить интерполяционный полином  $P_3(x)$  порядка не выше третьего методом неопределенных коэффициентов (в виде  $P_3(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ ).
- (2) Оценить погрешность интерполяции, если известно что  $|f^{IV}(x)| \le 17$  и  $\left|\prod_{n=0}^{N} (x-x_n)\right| \le 1$  на отрезке [-2,1].
- 4. Дана матрица:

$$A = \begin{pmatrix} -2 & 0 & 3 \\ -2 & -1 & 0 \\ 1 & -2 & 0 \end{pmatrix}$$

- (4) Вычислить число обусловленности в первой и второй норме.
- (6) В третьей норме.
- 5. (6) На отрезке [2,5] для дробно-линейной функции  $y(x) = \frac{x-3.5}{x+\sqrt{3}-3.5}$  построить интерполяционный полином в форме Лагранда на сетке из экстремумов полинома Чебышева с тремя нолями на данном отрезке. Оценить погрешность этого метода интерполяции.
- 6. (6) Дана таблица функции  $y = \cos(x)$

$$\begin{array}{c|cccc} x & 0 & \pi/4 & \pi/2 \\ \hline y & 1 & \sqrt{2}/2 & 0 \\ \end{array}$$

В качестве дополнительных краевых условий даны значения первой произодной на границе отрезка интерполяции y'(0) = 0,  $y'(\pi/2) = -1$ . Построить интерполирующий сплайн порядка 2 дефекта 1 в виде разложения по B-сплайнам.

| ФИО | Группа | 1 | 2 | 3 | 4 | 5 | 6 | Σ | Оценка | Подпись |
|-----|--------|---|---|---|---|---|---|---|--------|---------|
|     |        |   |   |   |   |   |   |   |        |         |

**Контрольный вопрос:** Абсолютная и относительная погрешность при сложении n действительных чисел.

1. (4) В ходе эксперимента получены следующие значения:

| $x_0$ | $x_1$ | $x_2$ | $x_3$ |  |
|-------|-------|-------|-------|--|
| 0.21  | 0.31  | 0.44  | 0.73  |  |

С какой точностью можно вычислить  $\frac{x_3}{x_2}$  и  $\operatorname{ctg}(x_0+x_1)$ ? 2. (4) Для функции, заданной таблично

| x    | 1    | 2    | 4    | 8    |
|------|------|------|------|------|
| f(x) | 0.13 | 0.26 | 0.50 | 0.87 |

Вычислить значение третьей производной в точке x=8 с максимально возможной точностью. Воспользоваться методом неопределенных коэффициентов.

3. Функция f(x) задана на сетке:

| $x_n$ | 0 | 1 | 2 | 3  | 4 |
|-------|---|---|---|----|---|
| $f_n$ | 0 | 4 | 6 | 12 | 4 |

- (2) На отрезке [0,3] построить интерполяционный полином  $P_3(x)$  порядка не выше третьего методом Ньютона.
- (2) Оценить погрешность интерполяции. Для оценки  $|f^{IV}(x)|$  использовать конечную разность четвертого порядка. Известно, что  $\left|\prod_{n=0}^{N}(x-x_n)\right| \leq 2$  на отрезке [0,3].
- 4. Дана матрица:

$$A = \begin{pmatrix} 0 & -2 & -3 \\ -3 & 1 & 0 \\ 1 & 3 & 0 \end{pmatrix}$$

- (4) Вычислить число обусловленности в первой и второй норме.
- (6) В третьей норме.
- 5. (6) Дана таблица функции  $y = \sin(x)$

$$x$$
 0
  $\pi/6$ 
 $\pi/4$ 
 $y$ 
 0
  $1/2$ 
 $\sqrt{2}/2$ 

Известны значения первой производной на границе области интерполяции y'(0) = 1 и  $y'(\pi/4) =$  $\sqrt{2}/2$ . С помощью интерполяции вычислить  $\arcsin(\sqrt{2}/3)$ .

6. (6) Дана таблица функции

| x | 1 | 4 | 9 | 16 |
|---|---|---|---|----|
| y | 1 | 2 | 3 | 4  |

По этим значениям строится интерполяционный полином третьего порядка и свободный сплайн. Какая интерполяция позволяет точнее вычислить y(2)? Вычислить это значение двумя способами.

| ФИО | Группа | 1 | 2 | 3 | 4 | 5 | 6 | Σ | Оценка | Подпись |
|-----|--------|---|---|---|---|---|---|---|--------|---------|
|     |        |   |   |   |   |   |   |   |        |         |

**Контрольный вопрос:** Абсолютная и относительная погрешность при делении двух действительных чисел.

- 1. (4) Оценить погрешность в определении корней уравнения  $ay+\sin(d\cdot\frac{\pi}{12})=0$ , если величины a=0.1 и d=6 заданы с точностью  $\Delta(a)=10^{-3}$  и  $\Delta(d)=10^{-3}$ .
- 2. (4) Для функции, заданной таблично

| x    | 1    | 2    | 3    | 5    | 7    |
|------|------|------|------|------|------|
| f(x) | 0.50 | 0.25 | 0.25 | 0.20 | 0.10 |

Вычислить значение третьей производной в точке x=7 с максимально возможной точностью. Воспользоваться методом неопределенных коэффициентов.

3. Функция f(x) задана на сетке:

- (2) Построить интерполяционный полином  $P_3(x)$  порядка не выше третьего в форме Лагранжа.
- (2) Оценить погрешность интерполяции, если известно что  $|f^{IV}(x)| \le 5$  и  $\left|\prod_{n=0}^{N} (x-x_n)\right| \le 7$  на отрезке [-2,2].
- 4. Дана матрица:

$$A = \begin{pmatrix} -1 & 2 & 2 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix}$$

- (4) Вычислить число обусловленности в первой и второй норме.
- (6) В третьей норме.
- 5. (6) Дана таблица функции  $y = \cos(x)$

| x | 0 | $\pi/4$      | $\pi/2$ |
|---|---|--------------|---------|
| y | 1 | $\sqrt{2}/2$ | 0       |

Известны значения первой производной на границе области интерполяции y'(0) = 0 и  $y'(\pi/2) = -1$ . Найти такое значение x, при котором косинус принимает значение 0.2.

6. (6) Дана таблица функции  $y = \sin(x)$ 

| x | 0 | $\pi/4$      | $\pi/2$ | $3\pi/4$      | $\pi$ | $3\pi/2$ |
|---|---|--------------|---------|---------------|-------|----------|
| y | 0 | $\sqrt{2}/2$ | 1       | $-\sqrt{2}/2$ | 0     | -1       |

Построить интерполирующий сплайн порядка 3 дефекта 1 с периодическими граничными условиями. (Систему линейных уравнений для моментов можно не решать)

| ФИО | Группа | 1 | 2 | 3 | 4 | 5 | 6 | Σ | Оценка | Подпись |
|-----|--------|---|---|---|---|---|---|---|--------|---------|
|     |        |   |   |   |   |   |   |   |        |         |

Контрольный вопрос: Оптимальный шаг численного дифференцирования.

1. (4) В ходе эксперимента получены следующие значения:

| $x_0$ | $x_1$ | $x_2$ | $x_3$ |
|-------|-------|-------|-------|
| 0.05  | 0.07  | 0.35  | 0.08  |

С какой точностью можно вычислить  $\frac{x_3}{x_0}$  и  $e^{(x_1+x_2)}$ ? 2. (4) Для функции, заданной таблично на отрезке, вычислить вторую производную со вторым порядком точности в точке x=0, если известно, что на левой границе  $\frac{d^3f}{dx^3}\Big|_0=5$ .

| x    | 0    | 2    | 4    |
|------|------|------|------|
| f(x) | 0.50 | 0.25 | 0.25 |

Пусть в двух произвольных точках функция задана с относительной погрешностью  $10^{-4}$ . Во всех остальных точках функция задана точно. Оценить ошибку округления при вычислении производной. Указать оптимальный шаг численного дифференцирования для формулы первого порядка точности в условиях данной задачи.

3. Функция f(x) задана на сетке:

- (2) Построить интерполяционный полином  $P_3(x)$  порядка не выше третьего методом неопределенных коэффициентов (в виде  $P_3(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ ).
- (2) Оценить погрешность интерполяции, если известно что  $|f^{IV}(x)| \le 12$  и  $\left|\prod_{n=0}^{N} (x-x_n)\right| \le 2$ на отрезке [-2, 1].
- 4. Дана матрица:

$$A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 1 \\ -2 & 0 & 2 \end{pmatrix}$$

- (4) Вычислить число обусловленности в первой и второй норме.
- (6) В третьей норме.
- 5. (6) Дана таблица функции  $y = \sin(x)$

| x | 0 | $\pi/6$ | $\pi/4$      |
|---|---|---------|--------------|
| y | 0 | 1/2     | $\sqrt{2}/2$ |

Известны значения первой и второй производной на границе области интерполяции y'(0) = 1и y''(0) = 0. Построить алгебраическую интерполяцию данной функции. Какого порядка интерполяционный полином должен получиться?

6. (6) Дана таблица функции  $y = \sin(x)$ 

| x | 0 | $\pi/2$ | $\pi$ | $3\pi/2$ | $2\pi$ |
|---|---|---------|-------|----------|--------|
| y | 0 | 1       | 0     | -1       | 0      |

Построить интерполирующий сплайн порядка 3 дефекта 1, используя разложение по В-сплайнам.

| ФИО | Группа | 1 | 2 | 3 | 4 | 5 | 6 | Σ | Оценка | Подпись |
|-----|--------|---|---|---|---|---|---|---|--------|---------|
|     |        |   |   |   |   |   |   |   |        |         |

Контрольный вопрос: Остаточный член алгебраической интерполяции.

- 1. (4) Оценить погрешность вычисления значения  $\sum_{k=1}^{N} (-1)^k k p$ , если  $p=0.010, \, \Delta(p)=10^{-4}$ .
- 2. (4) Для функции, заданной таблично

| x    | 1    | 2    | 4    | 8    |
|------|------|------|------|------|
| f(x) | 0.13 | 0.26 | 0.50 | 0.87 |

Вычислить значение второй производной в точке x=4 с максимально возможной точностью. Воспользоваться методом неопределенных коэффициентов.

3. Функция f(x) задана на сетке:

- (2) На отрезке [-2,1] построить интерполяционный полином  $P_3(x)$  порядка не выше третьего методом Ньютона.
- (2) Оценить погрешность интерполяции. Для оценки  $|f^{IV}(x)|$  использовать конечную разность четвертого порядка. Известно, что  $\left|\prod_{n=0}^N (x-x_n)\right| \leq 2$  на отрезке [-2,1].
- 4. Дана матрица:

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 0 & -3 \\ 1 & 1 & -2 \end{pmatrix}$$

- (4) Вычислить число обусловленности в первой и второй норме.
- (6) В третьей норме.
- 5. (6) Дана таблица функции  $y = \cos(x)$

| x | 0 | $\pi/4$      | $\pi/2$ |
|---|---|--------------|---------|
| y | 1 | $\sqrt{2}/2$ | 0       |

Известны значения первой и второй производной на границе области интерполяции  $y'(\pi/2) = -1$  и  $y''(\pi/2) = 0$ . Построить алгебраическую интерполяцию данной функции. Какого порядка интерполяционный полином должен получиться?

6. (6) Дана таблица функции  $y = \sin(x)$ 

| x | 0 | $\pi/4$      | $\pi/2$ | $3\pi/4$      | $\pi$ | $3\pi/2$ |
|---|---|--------------|---------|---------------|-------|----------|
| y | 0 | $\sqrt{2}/2$ | 1       | $-\sqrt{2}/2$ | 0     | -1       |

Построить интерполирующий сплайн порядка 2 дефекта 1 с периодическими граничными условиями. Указание: использовать интерполяцию В-сплайнами.

# Ответы

# Вариант 1

1.  $P_3(x) = 2 - x - x^2 + x^3$ ;  $\Delta = \frac{7}{(3+1)!} \times 1 \approx 0.3$ .



2.

$$A = \begin{pmatrix} 0 & 2 & -1 \\ -3 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}, \quad A^{-1} = \frac{1}{12} \begin{pmatrix} 1 & -4 & 1 \\ 3 & 0 & 3 \\ -6 & 0 & 6 \end{pmatrix}, \quad A^* \times A = \begin{pmatrix} 9 & -3 & 0 \\ -3 & 9 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

$$\lambda_1 = 12, \lambda_2 = 6, \lambda_3 = 2$$

$$\xi_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \xi_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \xi_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$||A||_1 = 4$$
,  $||A^{-1}||_1 = 1$ ,  $\mu_1 = 4$ ;

$$||A||_2 = 5, \quad ||A^{-1}||_2 = \frac{5}{6}, \quad \mu_2 = \frac{25}{6};$$

$$||A||_3 = 2\sqrt{3}, \quad ||A^{-1}||_3 = \frac{1}{\sqrt{2}}, \quad \mu_3 = \sqrt{6}.$$

# Вариант 2

1.  $P_3(x) = 2 + 6x - 5x(x-1) + 3x(x-1)(x-2); \Delta = 1 \times 2 = 2.$ 



| $x_n$ | $f_n$ | $\int f_{nm}$ | $\int f_{nmk}$ | $f_{nmkl}$ | $\int f_{nmklo}$ |
|-------|-------|---------------|----------------|------------|------------------|
| 0     | 2     |               |                |            |                  |
|       |       | 6             |                |            |                  |
| 1     | 8     |               | -5             |            |                  |
|       |       | -4            |                | 3          |                  |
| 2     | 4     |               | 4              |            | -1               |
|       |       | 4             |                | -1         |                  |
| 3     | 8     |               | 1              |            |                  |
|       |       | 6             |                |            |                  |
| 4     | 14    |               |                |            |                  |

2.

$$A = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 3 & 0 \\ -1 & -2 & 2 \end{pmatrix}, \quad A^{-1} = \frac{1}{12} \begin{pmatrix} 6 & -8 & -6 \\ 0 & 4 & 0 \\ 3 & 0 & 3 \end{pmatrix}, \quad A^* \times A = \begin{pmatrix} 2 & 4 & 0 \\ 4 & 17 & 0 \\ 0 & 0 & 8 \end{pmatrix}$$

$$\lambda_1 = 18, \lambda_2 = 8, \lambda_3 = 1$$

$$\xi_1 = \begin{pmatrix} 1 \\ 4 \\ 0 \end{pmatrix}, \xi_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \xi_3 = \begin{pmatrix} -4 \\ 1 \\ 0 \end{pmatrix}$$

$$\|A\|_1 = 5, \quad \|A^{-1}\|_1 = \frac{5}{3}, \quad \mu_1 = \frac{25}{3};$$

$$\|A\|_2 = 7, \quad \|A^{-1}\|_2 = 1, \quad \mu_2 = 7;$$

$$\|A\|_3 = 3\sqrt{2}, \quad \|A^{-1}\|_3 = 1, \quad \mu_3 = 3\sqrt{2}.$$

# Вариант 3

1.

$$P_3(x) = \frac{x(x-1)(x-2)}{-24} + 3\frac{(x+2)(x-1)(x-2)}{4} + 5\frac{(x+2)x(x-2)}{-3} + 7\frac{(x+2)x(x-1)}{8}.$$

2.

$$A = \begin{pmatrix} 2 & 1 & 0 \\ -2 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}, \quad A^{-1} = \frac{1}{6} \begin{pmatrix} 1 & -1 & 1 \\ 4 & 2 & -2 \\ -2 & 2 & 4 \end{pmatrix}, \quad A^* \times A = \begin{pmatrix} 12 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

$$\lambda_1 = 12, \lambda_2 = 3, \lambda_3 = 1$$

$$\xi_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \xi_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \xi_3 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

$$\|A\|_1 = 4, \quad \|A^{-1}\|_1 = \frac{4}{3}, \quad \mu_1 = \frac{16}{3};$$

$$\|A\|_2 = 6, \quad \|A^{-1}\|_2 = \frac{7}{6}, \quad \mu_2 = 7;$$

$$\|A\|_3 = 2\sqrt{3}, \quad \|A^{-1}\|_2 = 1, \quad \mu_3 = 2\sqrt{3}.$$

# Вариант 4

1. 
$$P_3(x) = 2 - 2x + 5x^2 + 3x^3$$
;  $\Delta = \frac{17}{(3+1)!} \times 1 \approx 0.7$ .

2.

$$A = \begin{pmatrix} -2 & 0 & 3 \\ -2 & -1 & 0 \\ 1 & -2 & 0 \end{pmatrix}, \quad A^{-1} = \frac{1}{15} \begin{pmatrix} 0 & -6 & 3 \\ 0 & -3 & -6 \\ 5 & -4 & 2 \end{pmatrix}, \quad A^* \times A = \begin{pmatrix} 9 & 0 & -6 \\ 0 & 5 & 0 \\ -6 & 0 & 9 \end{pmatrix}$$

$$\lambda_1 = 15, \lambda_2 = 5, \lambda_3 = 3$$

$$\xi_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \xi_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \xi_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$\|A\|_1 = 5, \quad \|A^{-1}\|_1 = \frac{11}{15}, \quad \mu_1 = \frac{11}{3};$$

$$\|A\|_2 = 5, \quad \|A^{-1}\|_2 = \frac{13}{15}, \quad \mu_2 = \frac{13}{3};$$

$$\|A\|_3 = \sqrt{15}, \quad \|A^{-1}\|_3 = \frac{1}{\sqrt{3}}, \quad \mu_3 = \sqrt{5}.$$

1. 
$$P_3(x) = 4x - x(x-1) + x(x-1)(x-2); \Delta = 1 \times 2 = 2.$$

| $x_n$ | $f_n$ | $f_{nm}$ | $f_{nmk}$ | $f_{nmkl}$ | $f_{nmklo}$ |
|-------|-------|----------|-----------|------------|-------------|
| 0     | 0     |          |           |            |             |
|       |       | 4        |           |            |             |
| 1     | 4     |          | -1        |            |             |
|       |       | 2        |           | 1          |             |
| 2     | 6     |          | 2         |            | -1          |
|       |       | 6        |           | -3         |             |
| 3     | 12    |          | -7        |            |             |
|       |       | -8       |           |            |             |
| 4     | 4     |          |           |            |             |



$$A = \begin{pmatrix} 0 & -2 & -3 \\ -3 & 1 & 0 \\ 1 & 3 & 0 \end{pmatrix}, \quad A^{-1} = \frac{1}{30} \begin{pmatrix} 0 & -9 & 3 \\ 0 & 3 & 9 \\ -10 & -2 & -6 \end{pmatrix}, \quad A^* \times A = \begin{pmatrix} 10 & 0 & 0 \\ 0 & 14 & 6 \\ 0 & 6 & 9 \end{pmatrix}$$
$$\lambda_1 = 18, \lambda_2 = 10, \lambda_3 = 5$$
$$\begin{pmatrix} 0 \end{pmatrix} \qquad \begin{pmatrix} 1 \end{pmatrix} \qquad \begin{pmatrix} 0 \end{pmatrix}$$

$$\xi_1 = \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}, \xi_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \xi_3 = \begin{pmatrix} 0 \\ -2 \\ 3 \end{pmatrix}$$

$$||A||_1 = 5$$
,  $||A^{-1}||_1 = \frac{3}{5}$ ,  $\mu_1 = 3$ ;

$$||A||_2 = 6$$
,  $||A^{-1}||_2 = \frac{3}{5}$ ,  $\mu_2 = \frac{18}{5}$ ;

$$||A||_3 = 3\sqrt{2}, ||A^{-1}||_3 = \frac{1}{\sqrt{5}}, \mu_3 = 3\sqrt{\frac{2}{5}}.$$

1.

$$P_3(x) = 5\frac{(x+1)x(x-2)}{-8} + 2\frac{(x+2)x(x-2)}{3} + \frac{(x+2)(x+1)(x-2)}{-4} + 3\frac{(x+2)(x+1)x}{24}.$$

 $\Delta = \frac{5}{4!} \times 7 = \frac{35}{24} \approx 1.46.$ 



2.

$$A = \begin{pmatrix} -1 & 2 & 2 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix}, \quad A^{-1} = \frac{1}{12} \begin{pmatrix} -4 & 4 & 4 \\ 2 & -2 & 4 \\ 2 & 4 & -2 \end{pmatrix}, \quad A^* \times A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 8 & 4 \\ 0 & 4 & 8 \end{pmatrix}$$
$$\lambda_1 = 12, \lambda_2 = 4, \lambda_3 = 3$$

$$\xi_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \xi_2 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \xi_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{split} \|A\|_1 &= 5, \quad \left\|A^{-1}\right\|_1 = 1, \quad \mu_1 = 5; \\ \|A\|_2 &= 4, \quad \left\|A^{-1}\right\|_2 = \frac{5}{6}, \quad \mu_2 = \frac{10}{3}; \end{split}$$

$$||A||_3 = 2\sqrt{3}, \quad ||A^{-1}||_3 = \frac{1}{\sqrt{3}}, \quad \mu_3 = 2.$$

# Вариант 7

1.  $P_3(x) = 2x^2$ ;  $\Delta = \frac{12}{(3+1)!} \times 2 = 1.0$ .



2.

$$A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 1 \\ -2 & 0 & 2 \end{pmatrix}, \quad A^{-1} = \frac{1}{24} \begin{pmatrix} 6 & 0 & -6 \\ -2 & 8 & -2 \\ 6 & 0 & 6 \end{pmatrix}, \quad A^* \times A = \begin{pmatrix} 8 & 0 & 0 \\ 0 & 9 & 3 \\ 0 & 3 & 9 \end{pmatrix}$$

$$\lambda_1 = 12, \lambda_2 = 8, \lambda_3 = 6$$

$$\xi_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \xi_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \xi_3 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

$$\|A\|_1 = 4, \quad \|A^{-1}\|_1 = \frac{1}{2}, \quad \mu_1 = 2;$$

$$\|A\|_2 = 5, \quad \|A^{-1}\|_2 = \frac{7}{12}, \quad \mu_2 = \frac{35}{12};$$

$$\|A\|_3 = 2\sqrt{3}, \quad \|A^{-1}\|_3 = \frac{1}{\sqrt{6}}, \quad \mu_3 = \sqrt{2}.$$

# Вариант 8

1. 
$$P_3(x) = 4 + 2(x+2) + 3(x+2)(x+1) - 2(x+2)(x+1)x; \ \Delta = \frac{1}{4} \times 2 = \frac{1}{2}.$$

| $x_n$ | $f_n$ | $f_{nm}$ | $f_{nmk}$ | $f_{nmkl}$ | $f_{nmklo}$   |
|-------|-------|----------|-----------|------------|---------------|
| -2    | 4     |          |           |            |               |
|       |       | 2        |           |            |               |
| -1    | 6     |          | 3         |            |               |
|       |       | 8        |           | -2         |               |
| 0     | 14    |          | -3        |            | $\frac{1}{4}$ |
|       |       | 2        |           | -3         |               |
| 1     | 16    |          | -12       |            |               |
|       |       | -22      |           |            |               |
| 2     | -6    |          |           |            |               |



$$A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 0 & -3 \\ 1 & 1 & -2 \end{pmatrix}, \quad A^{-1} = \frac{1}{6} \begin{pmatrix} 3 & 0 & 3 \\ -3 & -4 & 3 \\ 0 & -2 & 0 \end{pmatrix}, \quad A^* \times A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & -4 \\ 0 & -4 & 17 \end{pmatrix}$$

$$\lambda_1 = 18, \lambda_2 = 2, \lambda_3 = 1$$

$$\xi_1 = \begin{pmatrix} 0 \\ -1 \\ 4 \end{pmatrix}, \xi_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \xi_3 = \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix}$$

$$\|A\|_1 = 4, \quad \|A^{-1}\|_1 = \frac{5}{3}, \quad \mu_1 = \frac{20}{3};$$

$$\|A\|_2 = 7, \quad \|A^{-1}\|_2 = 1, \quad \mu_2 = 7;$$

$$\|A\|_3 = 3\sqrt{2}, \quad \|A^{-1}\|_3 = 1, \quad \mu_3 = 3\sqrt{2}.$$