Kapitel 5.

Vektorbündel

Betrachte TM als glatte Mannigfaltigkeit durch

$$\underbrace{\pi^{-1}(U)}_{=\mathrm{T}\,M|_U} \to \underbrace{\varphi(U) \times \mathbb{R}^m}_{\cong U \times \mathbb{R}^m} \qquad \underbrace{\sum_{i} \xi^i \left. \frac{\partial}{\partial x^i} \right|_p}_{=X_p} \mapsto (\varphi(p), \xi).$$

Fasern: $T_p M = \pi^{-1}(p)$ m-dimensionaler Vektorraum und $X_p = \sum \xi^i \frac{\partial}{\partial x^i}\Big|_p \mapsto \xi$ ist ein linearer Isomorphismus.

Definition 5.1 Ein glattes reelles Vektorbündel vom Rang k über einer glatten Mannigfaltigkeit M ist eine glatte Mannigfaltigkeit E, der sogenannte **Totalraum** des Bündels, zusammen mit einer glatten Abbildung $\pi \colon E \to M$, der Projektion, sodass für jedes $p \in M$ gilt:

- (i) Die Faser $E_p = \pi^{-1}(p)$ trägt die Struktur eines k-dimensionalen reellen Vektorraumes.
- (ii) Es existiert eine Umgebung U von p in M und ein Diffeomorphismus

$$\tau \colon E|_U = \pi^{-1}(U) \to U \times \mathbb{R}^k,$$

so dass die Einschränkung

$$\tau_p \colon E_p \to \mathbb{R}^k \quad (\cong \{p\} \times \mathbb{R}^k)$$

ein linearer Isomorphismus ist. Ein solches τ heist **Bündelkarte**.

Beispiel (1) $E = M \times \mathbb{R}^k \text{ mit } \pi \colon E \to M, (p, x) \mapsto p.$

- (2) Das Tangentialbündel TM auf M.
- (3) Ist $E \xrightarrow{\pi} M$ ein Vektorbündel über M und $U \subseteq M$ offen (oder eine Untermannigfaltigkeit), so ist $E|_{U} = \pi^{-1}(U)$ ein Vektorbündel über U.

Ein **Vektorbündelmorphismus** zwischen zwei Vektorbündeln $E \xrightarrow{\pi} M$ und $E' \xrightarrow{\pi'} N$ ist eine glatte Abbildung $F: E \to E'$, so dass eine glatte Abbildung f existiert für die das folgende Diagramm kommutiert

$$\begin{array}{cccc} E & & & F & & E' \\ \pi & & \# & & \downarrow \pi' \\ M & & & N & \end{array}$$

und ferner für $p \in M$ die Abbildung $E_p \xrightarrow{F} E'_{f(p)}$ linear ist.

Gilt M=N so ist ein M-Vektorbündelmorphismus F von E nach E' eine glatte Abbbildung $F\colon E\to E'$, so dass das folgende Diagram kommutiert und F faserweise linear ist.

Die Vektorbündel E, E' über M heisen **isomorph**, wenn ein M-Vektor-bündel-morphismus G existiert mit $G \circ F = \mathrm{id}_E$ und $F \circ G = \mathrm{id}_{E'}$. Dies ist genau dann der Fall, wenn F faserweise ein Inverses besitzt. (Der Beweis dieser Aussage sei als Übungsaufgabe überlassen.)

Ein Vektorbündel $E \xrightarrow{\pi} M$ heišt **trivial**, wenn es einen Vektorbündelisomorphismus von E auf $M \times \mathbb{R}^k$ gibt. Jedes

$$\tau \colon E|_U \to U \times \mathbb{R}^k$$

ist ein Vektorbündelisomorphismus. Die Bündelkarten werden daher auch **lokale Trivialisierungen** genannt.

Es sei $(\tau_{\alpha}, U_{\alpha})_{\alpha \in \mathcal{I}}$ eine Familie lokaler Trivialisierungen von E mit $M = \bigcup_{\alpha \in \mathcal{I}} U_{\alpha}$. Der Diffeomorphismus

$$\tau_{\alpha} \circ \tau_{\beta}^{-1} \colon (U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{k} \to (U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{k}$$

definiert die sogenannten Übergangsfunktionen

$$g_{\alpha\beta} \colon U_{\alpha} \cap U_{\beta} \to \operatorname{GL}_k(\mathbb{R})$$

durch

$$\tau_{\alpha} \circ \tau_{\beta}^{-1}(p,x) = (p, g_{\alpha\beta}(p)x).$$

Die Übergangsfunktionen sind glatt und für alle $p \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$ gilt:

$$g_{\alpha\gamma}(p) = g_{\alpha\beta}(p) \cdot g_{\beta\gamma}(p),$$

denn

$$(p, g_{\alpha\gamma}(p)x) = \tau_{\alpha} \circ \tau_{\gamma}^{-1}(p, x)$$

$$= \tau_{\alpha} \circ \tau_{\beta}^{-1} \circ \tau_{\beta} \circ \tau_{\gamma}^{-1}(p, x)$$

$$= (\tau_{\alpha} \circ \tau_{\beta}^{-1})(p, g_{\beta\gamma}(p)x)$$

$$= (p, g_{\alpha\beta}(p) \cdot g_{\beta\gamma}(p)x).$$

Beispiel Die Übergangsfunktionen von TM sind gegeben durch

$$D(\psi \circ \varphi^{-1}) = \left(\partial_i(\psi^j \circ \varphi^{-1})\right)_{i,j \le m}.$$

Satz 5.2 Es sei M eine glatte Mannigfaltigkeit mit einer offenen Überdeckung $\{U_{\alpha}\}_{{\alpha}\in\mathcal{I}}$ und einer glatten Abbildung

$$g_{\alpha\beta}\colon U_{\alpha}\cap U_{\beta}\to \mathrm{GL}_k(\mathbb{R})$$

so dass für alle $\alpha, \beta, \gamma \in \mathcal{I}$ und $p \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$ gilt:

$$g_{\alpha\gamma}(p) = g_{\alpha\beta}(p)g_{\beta\gamma}(p).$$

Dann ist

$$E = \bigcup_{\alpha \in \mathcal{I}} U_{\alpha} \times \mathbb{R}^k /_{\sim},$$

wobei $(p,x)_{\alpha} \sim (q,y)_{\beta}$ genau dann gilt, wenn p=q und $x=g_{\alpha\beta}(p)y$, ein glattes Vektorbündel.

Der Beweis sei erneut als Aufgabe überlassen.

Korollar Ist E ein glattes Vektorbündel über M mit Übergangsfunktionen $\{g_{\alpha\beta}\}$, so ist das oben konstruierte Vektorbündel isomorph zu E.

Es sei $E \xrightarrow{\pi} N$ ein Vektorbündel und $\Phi \colon M \to N$ glatt. Das längs Φ zurückgezogene Bündel ('pullback') ist definiert durch den Totalraum

$$E' = \Phi^* E = \{ (p, x) \mid x \in E_{\Phi(p)} \} \subseteq M \times E,$$

die Projektion π' : $\Phi^*E \to M, (p, x) \mapsto p$ und die folgenden Bündelkarten: Es sei $p \in M$ und (τ, U) eine Bündelkarte von E um $\Phi(p)$, sowie (φ, V) eine Karte von M um p mit $\Phi(V) \subseteq U$. Dann definiert

$$\Phi^* E|_V \to V \times \mathbb{R}^k$$
 $(p, x) \mapsto (p, \tau_{\Phi(p)}(x))$

eine Bündelkarte.

Sind $E \xrightarrow{\pi} M$, $E' \xrightarrow{\pi'} N$ Vektorbündel, dann ist $E \times E' \xrightarrow{\pi \times \pi'} M \times N$ mit lokalen Trivialisierungen $\tau \times \tau'$ ebenfalls ein Vektorbündel. Insbesondere ist im Falle M = N $E \times E'$ ein Bündel über $M \times M$. Es sei $\Delta \colon M \to M \times M$, $p \mapsto (p,p)$.

$$E \oplus E' = \Delta^*(E \times E') \longrightarrow E \times E'$$

$$\downarrow \qquad \qquad \downarrow$$

$$M \xrightarrow{\Delta} M \times M$$

Das längs Δ zurückgezogene Bündel $E \oplus E' = \Delta^*(E \times E')$ heist die **Whitneysumme** von E und E'. Faserweise gilt

$$(E \oplus E')_p = E_p \oplus E'_p.$$

Überlege: Hom(E,E'), sowie $E\otimes E', \bigotimes E$ und $\bigwedge^p E, \bigwedge E$ sind "vernünftige" Bündel.

1. Intermezzo: Multilineare Algebra

Es seien V und W K-Vektorräume. Das **Tensorprodukt** $V \otimes W$ ist der von den Elementen $v \otimes w$ mit $v \in V$, $w \in W$, $\lambda \in K$ und den Relationen

- (i) $(v + v') \otimes w = v \otimes w + v' \otimes w$
- (ii) $v \otimes (w + w') = v \otimes w + v' \times w'$
- (iii) $(\lambda v) \otimes w = \lambda(v \otimes w) = v \otimes (\lambda w)$

erzeugte Vektorraum.

Eigenschaften: (1) Die Abbildung $b: V \times W \to V \otimes W, (v, w) \mapsto v \otimes w$ ist bilinear.

- (2) $v \otimes w = 0 \Leftrightarrow v = 0 \text{ oder } w = 0$
- (3) $V \otimes K \cong V$
- (4) $V \otimes W \cong W \otimes V$
- (5) $V^* \otimes W \cong \text{Hom}(V, W)$ vermöge $(\varphi \otimes w)(v) = \varphi(v) \cdot w$ wobei V^* der Dualraum zu V ist
- (6) Sind $\{v_i\}_{i\in\mathcal{I}}$ und $\{w_j\}_{j\in\mathcal{J}}$ Basen von V und W, so ist $\{v_i\otimes w_j\}_{(i,j)\in\mathcal{I}\times\mathcal{J}}$ eine Basis von $V\otimes W$. Insbesondere gilt für Vektorräume endlicher Dimension, dass $\dim(V\otimes W)=\dim V\cdot\dim W$

Universelle Eigenschaft: Ist U ein Vektorraum und β eine bilineare Abbildung von $V \times W$ in U. Dann existiert genau eine lineare Abbildung $\varphi : V \otimes W \to U$ mit $\beta = \varphi \circ b$.

$$V \times W \xrightarrow{\beta} U$$

$$\downarrow b \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$

Diese Eigenschaft bestimmt $(V \otimes W, b)$ eindeutig bis auf Isomorphie.

Das Bilden von Tensorprodukten ist bis auf Isomorphie assoziativ. Man schreibt daher

$$\bigotimes^p V = \underbrace{V \otimes \cdots \otimes V}_{p\text{-mal}}$$

Setzt man $\bigotimes^0 V = K$, so wird $\bigotimes V = \bigoplus_{p=0}^{\infty} \bigotimes^p V$ mit dem durch die Zuordnungen

$$(v_1 \otimes \cdots \otimes v_{p+1} \otimes \cdots \otimes v_{p+q}) \mapsto v_1 \otimes \ldots \otimes v_{p+q} \in \bigotimes^{p+q} V$$

induzierten Produkt zu einer graduierten Algebra.

Das p-fach **äusere Produkt** $\bigwedge^p V$ ist der von den Elementen $v_1 \wedge \cdots \wedge v_p$, $v_i \in V$ und den Relationen

- (i) $v_1 \wedge \cdots \wedge v_i \wedge v_{i+1} \wedge \cdots \wedge v_p = -v_1 \wedge \cdots \wedge v_{i+1} \wedge v_i \wedge \cdots \wedge v_p$ (Schiefsymmetrie)
- (ii) $(v_1 + w_1) \wedge \cdots \wedge v_p = v_1 \wedge \cdots \wedge v_p + w_1 \wedge v_2 \wedge \cdots \wedge v_p$
- (iii) $(\lambda v_1) \wedge \cdots \wedge v_p = \lambda (v_1 \wedge \cdots \wedge v_p)$

erzeugte Vektorraum.

Eigenschaften: (1) Die Abbildung $s: V \times \cdots \times V \to \bigwedge^p V$, $(v_1, \ldots, v_p) \mapsto v_1 \wedge \cdots \wedge v_p$ ist multilinear und schief.

- (2) Es gilt $v_1 \wedge \cdots \wedge v_p = 0$ genau dann wenn v_1, \dots, v_p linear abhängig sind.
- (3) Ist $\{e_i\}_{i\leq n}$ eine Basis von V, so ist $\{e_{i_1}\wedge\cdots\wedge e_{i_p}\mid i_1< i_2<\cdots< i_p\}$ eine Basis von $\bigwedge^p V$, es gilt also dim $\bigwedge^p V=\binom{n}{p}$. Insbesondere ist $\bigwedge^p V=0$ falls p>n und dim $\bigwedge^n V=1$ und für $v_i=\sum \alpha_i^j e_j$ gilt:

$$v_1 \wedge \cdots \wedge v_p = \det(\alpha_i^j) \cdot e_1 \wedge \cdots \wedge e_n$$

Universelle Eigenschaft: Ist U ein Vektorraum und σ eine schiefsymmetrische multilineare Abbildung $\underbrace{V \times \cdots \times V}_{p\text{-mal}} \to U$, so existiert genau eine lineare Abbildung $\varphi : \bigwedge^p V \to U$ mit $\sigma = \varphi \circ s$.

Die Isomorphieklasse von $(\bigwedge^p V, s)$ ist durch diese Eigenschaft eindeutig bestimmt.

Setzt man $\bigwedge^0 V = K$, so wird $\Lambda V = \bigoplus_{p=0}^{\infty} \bigwedge^p V$ mit dem durch

$$(v_1 \wedge \cdots \wedge v_p, v_{p+1} \wedge \cdots \wedge v_{p+q}) \mapsto v_1 \wedge \cdots \wedge v_{p+q}$$

induzierten Produkt zu einer assoziativen, graduiert kommutativen Algebra: $v \in \bigwedge^p V$, $w \in \bigwedge^q V$, $v \wedge w = (-1)^{p \cdot q} w \wedge v$. Sind V_1 , V_2 , W_1 , W_2 Vektorräume und $\varphi \in \operatorname{Hom}(V_1, W_1)$, $\psi \in \operatorname{Hom}(V_2, W_2)$, so definiert die Fortsetzung von

$$\varphi \otimes \psi(v_1 \otimes v_2) = (\varphi(v_1)) \otimes (\psi(v_2))$$

ein Element $\varphi \otimes \psi \in \text{Hom}(V_1 \otimes V_2, W_1 \otimes W_2)$. Sind V, W Vektorräume und $\varphi_1, \dots, \varphi_p \in \text{Hom}(V, W)$, so induzieren diese eine lineare Abbildung

$$\varphi_1 \otimes \cdots \otimes \varphi_p : \bigoplus^p V \to \bigoplus^p W$$

und

$$\varphi_1 \wedge \dots \wedge \varphi_p : \bigwedge^p V \to \bigwedge^p W$$

2. Bündelkonstruktion

Es seien E und E' Vektorbündel vom Rang k und l. Es bezeichnen stets τ und τ' lokale Trivialisierungen mit dem gleichen Trivialisierungsgebiet U sowie $g_{\alpha\beta}$ und $g'_{\alpha\beta}$ die Übergangsfunktionen von E beziehungsweise E'. Das **Tensorprodukt** $E \otimes E'$ von E und E' ist das Vektorbündel mit den Fasern $(E \otimes E')_p = E_p \otimes E'_p$, also $E \otimes E' = \bigcup_{p \in M} E_p \otimes E'_p \to M$ mit lokalen Trivialisierungen

$$\sigma: \left\{ \begin{array}{ll} (E \otimes E')|_{U} = \bigcup\limits_{p \in U} E_{p} \otimes E'_{p} & \to & U \times (\mathbb{R}^{k} \otimes \mathbb{R}^{l}) \cong U \times \mathbb{R}^{kl} \\ E_{p} \otimes E'_{p} \ni w = \sum v_{i} \otimes u_{i} & \mapsto & (p, \sum \tau_{p}(v_{i}) \otimes \tau'_{p}(u_{i})) \end{array} \right.$$

das heist dass $\sigma = (\pi, \tau_p \otimes \tau_p')$ ist. Wie in Kapitel 4 zeigt man dass $E \otimes E'$ ein Bündel ist. Alternativ lässt sich $E \otimes E'$ mit Satz 5.2 durch die Übergangsfunktion definieren:

$$E \otimes E' = \dot{\bigcup} U_{\alpha} \times (\mathbb{R}^k \otimes \mathbb{R}^l) /_{\sim}$$
$$h_{\alpha\beta} = g_{\alpha\beta} \otimes g'_{\alpha\beta}$$

Die Relation \sim ist durch $h_{\alpha\beta}$ wie in Satz 5.2 definiert. Analog definiert man höhere Tensorprodukte $\bigotimes^p E$, die Tensoralgebra $\bigotimes E$ und äusere Produkte $\bigwedge^p E$ und ΛE . Das **duale Bündel** E^* hat die Fasern $E_p^* = \operatorname{Hom}(E_p, \mathbb{R})$ und lokale Trivialisierungen:

$$\sigma : E^*|_U \to U \times \mathbb{R}^k$$

$$v^* \in E_p^* : \sigma(v^*) = (p, v^* \circ \tau_p^{-1})$$

$$= (p, (\tau_p^{-1})^*(v^*))$$

Die Übergangsfunktionen von E^* sind die transponierten Inversen der Übergangsfunktionen von E:

$$h_{\alpha\beta} = (g_{\alpha\beta}^{-1})^*$$

Das Bündel

$$\mathbf{T}_s^r E = \underbrace{E \otimes \cdots \otimes E}_r \otimes \underbrace{E^* \otimes \cdots \otimes E^*}_s$$

heist das (r, s)-**Tensorbündel** von E. Das Homomorphismenbündel $\text{Hom}(E, E^*)$ ist definiert durch

$$\sigma: \begin{cases} \operatorname{Hom}(E, E')|_{U} = \bigcup_{p \in U} \operatorname{Hom}(E_{p}, E'_{p}) \to U \times \operatorname{Hom}(\mathbb{R}^{k}, \mathbb{R}^{l}) \\ \varphi \in \operatorname{Hom}(E_{p}, E'_{p}) \mapsto (p, \tau'_{p} \circ \varphi \circ \tau_{p}^{-1}) \end{cases}$$

Zur Definition der Übergangsfunktionen schreibt man $\operatorname{Hom}(E, E') \cong E^* \otimes E'$ und definiert $h_{\alpha\beta} = (g_{\alpha\beta}^{-1})^* \otimes g'_{\alpha\beta}$.

Definition 5.3 Es sei $E \xrightarrow{\pi} M$ ein Vektorbündel über M. Ein **Schnitt** in E ist eine glatte Abbildung $S: M \to E$ mit $\pi \circ S = \mathrm{id}_M$, also $S(p) \in E_p = \pi^{-1}(p)$. Der Raum der Schnitte wird mit $\Gamma(E)$ bezeichnet. $\Gamma(E)$ ist ein $C^{\infty}(M)$ -Modul.

$$S_{i}^{-1}(p) = \tau^{-1}(p, e_{i})$$

$$S|_{U} : U \xrightarrow{\tau} E|_{U} \xrightarrow{\cong} U \times \mathbb{R}^{k}$$

$$p \longmapsto_{\text{Basis } \{e_{i}\} \text{ von } \mathbb{R}^{k}}$$

$$p \longmapsto_{(p, x)} (p, x)$$

$$p \longmapsto_{(p, e_{i})} (p, e_{i})$$

Die S_i bilden punktweise eine Basis der Fasern.

Die Schnitte des (r,s)-Tensorbündels $\Gamma(T_s^r(TM)) = \mathcal{T}_s^r(M)$ bezeichnet man als (r,s)-**Tensorfelder** auf M. Die (1,0)-Tensorfelder sind genau die Vektorfelder auf M; $\mathcal{T}_0^1(M) = \mathcal{V}(M)$. Es bezeichne $\mathcal{V}^*(M) = \mathcal{T}_1^0(M)$ den Raum der (0,1)-Tensorfelder.

Proposition 5.4 Die (r,s)-Tensorfelder auf M entsprechen genau den $C^{\infty}(M)$ multilinearen Abbildungen

$$\underbrace{\mathcal{V}^*(M) \times \cdots \times \mathcal{V}^*(M)}_{r-mal} \times \underbrace{\mathcal{V}(M) \times \cdots \times \mathcal{V}(M)}_{s-mal} \to C^{\infty}(M)$$

vermöge der linearen Forsetzung

$$p \mapsto X_1 \otimes \cdots \otimes X_r \otimes \omega_1 \otimes \cdots \otimes \omega_s(\eta_1, \dots, \eta_r, Y_1, \dots, Y_s)$$
$$= \eta_1(X_1)\eta_2(X_2)\cdots \eta_r(X_r)\cdot \omega(Y_1)\cdots \omega_s(Y_s)(p)$$

Der Beweis sei als Übung überlassen (siehe dazu auch Übungsblatt 5, Aufgabe 1).

Beispiel (1) Ist $f \in C^{\infty}(M)$, so ist durch sein Differential

$$\mathrm{d}f|_p(X_p) = X_p(f)$$

ein (0,1)-Tensorfeld gegeben.

(2) Die Lieklammer $[\cdot,\cdot]$ ist nicht $C^{\infty}(M)$ -linear, also kein Tensorfeld.

Ein Element von T_p^*M bezeichnet man als Kotangentialvektoren, T_p^*M als Kotangentialvektorraum und das Bündel T^*M als Kotangentialbündel.

Ist (φ, U) eine Karte von M, dann bilden die Differentiale $d\varphi^i = dx^i$ der Koordinatenfunktionen (punktweise) eine Basis von T_p^*M , denn

$$\mathrm{d}x^i|_p\left(\left.\frac{\partial}{\partial x^j}\right|_p\right) = \frac{\partial}{\partial x^j}(\varphi^i) = \delta^i_j.$$

Die $\mathrm{d} x^i$ sind also punktweise linear unabhängige (0,1)-Tensorfelder über dem Kartengebiet U.

Ist ψ eine weitere Karte und bezeichnen $\frac{\partial}{\partial y^i}$ beziehungsweise d y^i die entsprechenden Koordinaten(ko)tangentialvektoren, so gilt:

$$\mathrm{d}x^i = \sum \alpha^i_j \mathrm{d}y^j$$

 $_{
m mit}$

$$\alpha_j^i \stackrel{!}{=} \mathrm{d} x^i \left(\frac{\partial}{\partial y^j} \right) = \sum \alpha_k^i \underbrace{\mathrm{d} y^k \left(\frac{\partial}{\partial y^j} \right)}_{\delta_k^i}$$

denn

$$\alpha_j^i = \frac{\partial}{\partial y^j}(\varphi^i) = \frac{\partial \varphi^i}{\partial y^j} = \partial_j(\varphi^i \circ \psi^{-1})$$

Es gilt also $\alpha = D(\psi \circ \varphi^{-1})^{x^{-1}}$, vergleiche Satz 2.10.

$$\frac{\partial}{\partial x^i} = \sum \partial_i (\psi^j \circ \varphi^{-1}) \frac{\partial}{\partial u^j}.$$

Diese transponierten Inversen der Differentiale der Kartenwechsel sind genau die Übergangsfunktionen $h_{\alpha\beta}=(g_{\alpha\beta}^*)^{-1}$ in der Definition von $(T\,M)^*=T^*\,M$. Ist S ein Tensorfeld vom Typ (0,s) auf einer Mannigfaltigkeit N und $\Phi\colon M\to N$ eine glatte Abbildung.

$$\mathcal{T}_{s}^{0}(M) \longleftarrow^{\Phi^{*}} \mathcal{T}_{s}^{0}(N) \\
\downarrow \qquad \qquad \downarrow \\
M \longrightarrow^{\Phi} N$$

$$S: \quad \mathcal{V}(N) \times \dots \times \mathcal{V}(N) \quad \to \quad C^{\infty}(N)$$

$$\Phi^*S: \quad \mathcal{V}(M) \times \dots \times \mathcal{V}(M) \quad \to \quad C^{\infty}(M)$$

Dann ergibt

$$\Phi^* S(X_1, \dots, X_s) = S(\Phi_* X_1, \dots, \Phi_* X_s)$$

ein (0,s)-Tensorfeld auf M, das entlang Φ zurückgezogene Tensorfeld (**pullback**). Es gilt $\Phi^*(S \otimes T) = \Phi^*S \otimes \Phi^*T$ für $S \in \mathcal{T}_s^0(N), T \in \mathcal{T}_t^0(N)$. Ist $\Psi \colon P \to M$ glatt, so gilt

$$(\Phi \circ \Psi)^* = \Psi^* \circ \Phi^*.$$

Ist Φ ein Diffeomorphismus, so lässt sich Φ^* für beliebige Tensorfelder $S \in \mathcal{T}_s^r(M)$ definieren:

$$p \mapsto \Phi^* S(\omega_1, \dots, \omega_r, X_1, \dots, X_s)(p)$$
$$S((\Phi^*)^{-1}\omega_1, \dots, (\Phi^*)^{-1}\omega_r, \Phi_* X_1, \dots, \Phi_* X_s)(p)$$

mit

$$S: \quad \underbrace{\mathcal{V}^*(N) \times \cdots \times \mathcal{V}^*(N)}_{r\text{-mal}} \times \underbrace{\mathcal{V}(N) \times \cdots \times \mathcal{V}(N)}_{s\text{-mal}} \quad \rightarrow \quad C^{\infty}(N)$$

$$\Phi^*S: \quad \mathcal{V}^*(M) \times \cdots \times \mathcal{V}^*(M) \times \mathcal{V}(N) \times \cdots \times \mathcal{V}(N) \quad \rightarrow \quad C^{\infty}(M)$$

$$\omega \in \quad \mathcal{V}^*(M) = \mathcal{T}^0_1(M) \quad \rightarrow \quad C^{\infty}(M)$$

$$X \in \quad \mathcal{V}(M) = \mathcal{T}^0_1(M) \quad \rightarrow \quad C^{\infty}(M)$$

Insbesondere: $X \in \mathcal{T}^1_0(M) = \mathcal{V}(M) = \{\mathcal{V}^*(M) \to C^{\infty}(M)\}$

$$\Phi^*X(\omega)=X((\Phi^*)^{-1}\omega)=((\Phi^*)^{-1}\omega)(X)=\omega(\Phi_*^{-1}X)$$

also $\Phi^*X = \Phi_*^{-1}X$.

Beispiel (Anwendung) Es sei $(\varphi_{\alpha}, U_{\alpha})$ ein Atlas von M. Dann ist jedes φ_{α} ein Diffeomorphismus von U_{α} auf $\varphi_{\alpha}(U_{\alpha}) = V_{\alpha} \subset \mathbb{R}^{m}$. Ist $S \in \mathcal{T}_{s}^{r}(M)$, so ist

$$S_{\alpha} = (\varphi_{\alpha}^{-1})^* S|_{U_{\alpha}}$$

ein (r, s)-Tensorfeld auf V_{α} . Für alle α, β mit $U_{\alpha} \cap U_{\beta}$ gilt

$$(\varphi_{\alpha} \circ \varphi_{\beta}^{-1})^* S_{\alpha}|_{V_{\alpha} \cap V_{\beta}} = (\varphi_{\alpha} \circ \varphi_{\beta}^{-1})^* \left((\varphi_{\alpha}^{-1})^* S|_{U_{\alpha}} \right)|_{V_{\alpha} \cap V_{\beta}}$$

$$= (\varphi_{\beta}^{-1})^* \circ \varphi_{\alpha}^* \circ (\varphi_{\alpha}^{-1})^* S|_{U_{\alpha}}|_{V_{\alpha} \cap V_{\beta}}$$

$$= (\varphi_{\beta}^{-1})^* S|_{U_{\beta}}|_{V_{\alpha} \cap V_{\beta}}$$

$$= S_{\beta}|_{V_{\alpha} \cap V_{\beta}}$$

Ist umgekehrt S_{α} eine Familie von (r, s)-Tensorfeldern auf V_{α} mit obigem Transformationsverhalten, so definiert dies ein (r, s)-Tensorfeld auf M.

Definition 5.5 Es sei $X \in \mathcal{V}(M)$ mit dem Fluss γ und $S \in \mathcal{T}_s^r(M)$ ein glattes Tensorfeld auf M. Dann hei $\ddot{s}t$

$$\mathcal{L}_X S = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} (\gamma^{t*} S)$$

die Lieableitung von S in Richtung X.

Eigenschaften (1) $f \in \mathcal{T}_0^0(M) = C^{\infty}(M)$. Dann ist $\mathcal{L}_X f = \mathrm{d}f(X) = X(f)$. (2) $X, Y \in \mathcal{T}_0^1(M) = \mathcal{V}(M)$, so gilt

$$\mathcal{L}_X Y = [X, Y].$$

(3) Für $S \in \mathcal{T}_s^r(M), T \in \mathcal{T}_{s'}^{r'}(M)$ gilt:

$$\mathcal{L}_X(S \otimes T) = (\mathcal{L}_X S) \otimes T + S \otimes (\mathcal{L}_X T).$$

3. Differentialformen und die äusere Ableitung

Definition 5.6 Das Vektorbündel $\bigwedge^k(T^*M)$ wird mit $\bigwedge^k(M)$ bezeichnet und der Raum seiner Schnitte $\Gamma(\bigwedge^k(T^*M))$ mit $\Omega^k(M)$. Die Elemente von $\Omega^k(M)$ heisen **Differentialformen** vom Grad k oder kurz k-Formen auf M.

Ist (φ, U) eine Karte von M, so bilden die Differentiale der Koordinatenfunktionen $\mathrm{d} x^i = \mathrm{d} \varphi^i$ eine Basis von $\mathrm{T}^* M$. Diese sind (lokale) Schnitte in $\bigwedge^1(\mathrm{T}^* M)$, also lokal 1-Formen. Das Differential von $f \in C^\infty(M)$ ist eine 1-Form $\mathrm{d} f(X) = X(f)$. Lokal gilt $\mathrm{d} f = \sum f_i \mathrm{d} x^i$, wobei $f_i = \mathrm{d} f \left(\frac{\partial}{\partial x^i}\right) = \frac{\partial}{\partial x^i}(f) = \frac{\partial f}{\partial x^i}$.

Desweiteren sind (lokal) die $\binom{m}{k}$ k-Formen d $x^{i_1} \wedge \ldots \wedge dx^{i_k}$ mit $i_1 < \cdots < i_k$ eine Basis von Ω^k . Jede k-Form ω ist lokal von der Gestalt

$$\omega = \sum_{i_1 < \dots < i_k} f_{i_1,\dots,i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k}.$$

Jede k-Form definiert eine schiefsymmetrische $C^{\infty}(M)$ -multilineare Abbildung

$$\underbrace{\mathcal{V}(M) \times \cdots \times \mathcal{V}(M)}_{k \text{-mal}} \to C^{\infty}(M)$$

$$\omega(X_1,\ldots,X_k)(p) = \sum_{\sigma} \operatorname{sgn}(\sigma) f_{i_1,\ldots,i_k} dx^{i_1}(X_{\sigma(i_1)}|_p) dx^{i_2}(X_{\sigma(i_2)}|_p) \cdots$$

Analog zu Proposition 5.4 gilt, dass jede solche schiefe $C^{\infty}(M)$ -multilineare Abbildung eine k-Form definiert. Insbesondere gilt für

$$\omega = \sum f_{i_1,\dots,i_k} \mathrm{d}x^{i_1} \wedge \dots \wedge \mathrm{d}x^{i_k}$$

dass

$$\omega\left(\frac{\partial^{i_1 < \dots < i_k}}{\partial x^{i_1}}, \dots, \frac{\partial}{\partial x^{i_k}}\right) = \sum_{\sigma} \operatorname{sgn}(\sigma) f_{i_1, \dots, i_k} dx^i \left(\frac{\partial}{\partial x^{i_{\sigma(1)}}}\right) \dots dx^{i_k} \left(\frac{\partial}{\partial x^{i_{\sigma(k)}}}\right)$$

$$= \sum_{\sigma} \operatorname{sgn}(\sigma) f_{i_1, \dots, i_k} \frac{\partial x^{i_1}}{\partial x^{j_{\sigma(1)}}} \dots \frac{\partial x^{i_k}}{\partial x^{j_{\sigma(k)}}}$$

$$= \sum_{\sigma} \operatorname{sgn}(\sigma) f_{i_1, \dots, i_k} \delta^{i_1}_{j_{\sigma(1)}} \dots \delta^{i_k}_{j_{\sigma(k)}}$$

$$= f_{j_1, \dots, j_k}.$$

Sind $\omega \in \Omega^k(M)$ und $\eta \in \Omega^l(M)$, so definiert $\omega \wedge \eta$ (punktweise) eine (k+l)-Form auf M. Ist $\Phi \colon M \to N$ glatt und $\omega \in \Omega^k(N)$, so definiert $(\Phi^*\omega)(X_1, \ldots, X_k) = \omega(\Phi_*X_1, \ldots, \Phi_*X_k)$ ("push forward") eine k-Form auf M. Für $\eta \in \Omega^l(N)$ gilt $\Phi^*(\omega \wedge \eta) = \Phi^*\omega \wedge \Phi^*\eta$.

Damit ist für $\omega \in \Omega^k(M)$ und $X \in \mathcal{V}(M)$, γ der Fluss von X, die **Lieableitung** von ω längs X definiert:

$$\mathcal{L}_X \omega = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} (\gamma^{t*} \omega).$$

Es gilt

$$\mathcal{L}_X(\omega \wedge \eta) = (\mathcal{L}_X \omega) \wedge \eta + \omega \wedge (\mathcal{L}_X \eta).$$

Die 0-Formen sind die C^{∞} -Funktionen auf M, $\Omega^{0}(M) = C^{\infty}(M)$. Die 1-Formen sind genau die Schnitte des Kotangentialbündels von M.

Für eine C^{∞} -Funktion f auf M definiert df eine 1-Form auf M durch df(X) = X(f). In lokalen Koordinaten gilt damit d $f = \sum_i g_i dx^i$ mit $g_i = df \left(\frac{\partial}{\partial x^i}\right) = \frac{\partial}{\partial x^i}(f) = \frac{\partial f}{\partial x^i}$, also gilt d $f = \sum_i \frac{\partial f}{\partial x^i} dx^i$.

Die \mathbb{R} -lineare Abbildung d: $\Omega^0(M) \to \Omega^1(M)$ soll für beliebige Formen definiert werden. In lokalen Koordinaten definiert man für $\omega \in \Omega^k(M)$, $\omega = f dx^{i_1} \wedge \cdots \wedge dx^{i_k}$ durch Lineare Fortsetzung

$$d\omega = df \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_k}.$$

Es bleibt zu zeigen, dass diese Definition unabhängig von der Wahl der Karte ist. Man geht dabei entweder vor wie im Beispiel vor Definition 5.5 beschrieben oder verwendet den folgenden Satz.

Satz 5.7 Es seien $\omega \in \Omega^k(M)$ und $X_0, \ldots, X_k \in \mathcal{V}(M)$. Dann gilt:

$$d\omega(X_0, ..., X_k) = \sum_{i} (-1)^i X_i(\omega(X_0, ..., \hat{X}_i, ..., X_k)) + \sum_{i < j} (-1)^{i+j} \omega([X_i, X_j], X_0, ..., \hat{X}_i, ..., \hat{X}_j, ..., X_k).$$

Beweis Man zeigt zunächst, dass der Term auf der rechten Seite, welcher offensichtlich schief ist, auch $C^{\infty}(M)$ -linear ist. Es bezeichne dafür η den rechten Term und es seien $X_0, \ldots, X_k \in \mathcal{V}(M)$ und $f \in C^{\infty}(M)$. Dann gilt:

$$\eta(X_0, \dots, fX_l, \dots, X_k) = \sum_{i \neq l} (-1)^i X_i(f) \omega(X_0, \dots, \hat{X}_i, \dots, X_k)
+ \sum_{i \neq l} (-1)^i f X_i(\omega(X_0, \dots, \hat{X}_i, \dots, X_k))
+ (-1)^l f X_l(\omega(X_0, \dots, \hat{X}_l, \dots, X_k))
+ \sum_{i < j} (-1)^{i+j} f \omega([X_i, X_j], \dots)
+ \sum_{l < j} (-1)^{l+j} \omega([fX_l, X_j], \dots)
+ \sum_{i < l} (-1)^{i+l} \omega([X_i, fX_l], \dots)$$

Nebenrechnung (beziehungsweise Überlegung):

$$[fX, Y] = f[X, Y] - Y(f)X$$

Damit folgt weiter:

$$\eta(X_0, \dots, fX_l, \dots, X_k) = f\eta(X_0, \dots, X_k)
+ \sum_{i \neq l} (-1)^i X_i(f) \omega(X_0, \dots, \hat{X}_i, \dots, X_k)
- \sum_{l < j} (-1)^{l+j} X_j(f) \omega(X_l, X_0, \dots, \hat{X}_l, \dots, \hat{X}_j, \dots, X_k)
+ \sum_{i < l} (-1)^{i+l} X_i(f) \omega(X_l, X_0, \dots, \hat{X}_i, \dots, \hat{X}_l, \dots, X_k)
= f\eta(X_0, \dots, X_k)
+ \sum_{i \neq l} (-1)^i X_i(f) \omega(X_0, \dots, \hat{X}_i, \dots, X_k)
- \sum_{l < j} (-1)^j X_j(f) \omega(X_0, \dots, \hat{X}_l, \dots, \hat{X}_j, \dots, X_k)
- \sum_{l < l} (-1)^i X_i(f) \omega(X_0, \dots, \hat{X}_i, \dots, X_l, \dots, X_k)
= f\eta(X_0, \dots, X_k).$$

Somit ist η C^{∞} -linear, das heist definiert eine (k+1)-Form auf M. Im Folgenden kann man also annehmen:

$$d\omega = f dx^{i_1} \wedge \dots \wedge dx^{i_k}$$
$$X_l = \frac{\partial}{\partial x^{j_l}}, j_0 < \dots < j_k.$$

Damit verschwinden alle Lieklammern auf der rechten Seite. Es gilt

$$\eta(X_0, \dots, X_k) = \sum_{l} (-1)^l X_l \left(f \sum_{\sigma(0)=l} (-1)^l \operatorname{sgn}(\sigma) dx^{i_1}(X_{\sigma(1)}) \dots dx^{i_k}(X_{\sigma(k)}) \right)$$

$$= \sum_{\sigma} \operatorname{sgn}(\sigma) X_{\sigma(0)}(f) dx^{i_1}(X_{\sigma(1)}) \dots dx^{i_k}(X_{\sigma(k)})$$

$$= \sum_{\sigma} \operatorname{sgn}(\sigma) df(X_{\sigma(0)}) dx^{i_1}, \dots$$

$$= d\omega(X_0, \dots, X_k).$$

Definition 5.8 Es sei $\omega \in \Omega^k(M)$. Die (k+1)-Form d ω heist das (äusere) Differential der Form ω . Gilt d $\omega = 0$, so heist ω geschlossen. Existiert ein $\eta \in \Omega^{k-1}(M)$ mit d $\eta = \omega$, so heist ω exakt.

Beispiel (1) Für eine 1-Form ω ist d ω eine 2-Form:

$$d\omega(X,Y) = X(\omega(Y)) - Y(\omega(X)) - \omega([X,Y]).$$

(2) Für $f \in C^{\infty}(M)$ ist $df \in \Omega^{1}(M)$ und d(df) eine 2-Form:

$$d(df)(X,Y) = X(df(Y)) - Y(df(X)) - df[X,Y]$$

= X(Y(f)) - Y(X(f)) - [X,Y](f)
= 0

Betrachte alternativ in lokalen Koordinaten:

$$d(df) = d\left(\sum_{i} \frac{\partial f}{\partial x^{i}} dx^{i}\right)$$

$$= \sum_{i} d\left(\frac{\partial f}{\partial x^{i}}\right) \wedge dx^{i}$$

$$= \sum_{i,j} \underbrace{\frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}}_{\frac{\partial^{2} f}{\partial x^{j} \partial x^{i}}} \underbrace{dx^{j} \wedge dx^{i}}_{-dx^{i} \wedge dx^{j}}$$

$$= 0$$

(3) $\omega = xy dy \in \Omega^1(\mathbb{R}^2)$ ist nicht geschlossen, denn

$$d\omega = \frac{\partial xy}{\partial x} dx \wedge dy + \frac{\partial xy}{\partial y} \underbrace{dy \wedge dy}_{=0} = y dx \wedge dy \in \Omega^{2}(\mathbb{R}^{2}).$$

(4) $\omega = y dx + x dy \in \Omega^1(\mathbb{R}^2)$ ist exakt, denn für f(x, y) = xy gilt:

$$\mathrm{d}f = \frac{\partial f}{\partial x}\mathrm{d}x + \frac{\partial f}{\partial y}\mathrm{d}y = y\mathrm{d}x + x\mathrm{d}y = \omega.$$

Lemma 5.9 (i) d: $\Omega^k(M) \to \Omega^{k+1}(M)$ ist \mathbb{R} -linear. (ii) d($\omega \wedge \eta$) = d $\omega \wedge \eta + (-1)^k \omega \wedge d\eta$ für $\omega \in \Omega^k(M), \eta \in \Omega^l(M)$. (iii) d \circ d = 0.

(iv)
$$\Phi^*(d\omega) = d(\Phi^*\omega)$$
 für $\Phi \colon M \to N$ glatt und $\omega \in \Omega^k(M)$.

Beweis (i) Klar, nach Definition.

(ii)
$$\omega = f dx^{i_1} \wedge \cdots \wedge dx^{i_k}, \, \eta = g dx^{j_1} \wedge \cdots \wedge dx^{j_l}$$
. Dann gilt:

$$\omega \wedge \eta = fg dx^{i_1} \wedge \dots \wedge dx^{i_k} \wedge dx^{j_1} \wedge \dots \wedge dx^{j_l}.$$

$$d(\omega \wedge \eta) = (g df + f dg) \wedge dx^{i_1} \wedge \dots \wedge dx^{j_l}$$

$$= g df \wedge dx^{i_1} \wedge \dots \wedge dx^{j_l}$$

$$+ (-1)^k (f dx^{i_1} \wedge \dots \wedge dx^{i_k}) \wedge dg \wedge dx^{j_1} \wedge \dots \wedge dx^{j_l}$$

$$= d\omega \wedge \eta + (-1)^k \wedge d\eta.$$

(iii)
$$\omega = f dx^{i_1} \wedge ... \wedge dx^{i_k}, d\omega := df \wedge dx^{i_1} \wedge ... \wedge dx^{i_k}$$

$$d^2(\omega) = d(df \wedge dx^{i_1} \wedge ... \wedge dx^{i_k})$$

$$\stackrel{(ii)}{=} d^2 f \wedge dx^{i_1} \wedge ... \wedge dx^{i_k} + \sum_l df \wedge dx^{i_1} \wedge ... \wedge d^2 x^{i_l} \wedge ... \wedge dx^{i_k}.$$

(iv) $f \in C^{\infty}(N), X \in \mathcal{V}(M)$

$$(\Phi^* df)(X) = df(\Phi_* X) = (\Phi_* X)(f) = X(f \circ \Phi)$$
$$= X(\Phi^* f) = d(\Phi^* f)(X)$$

Damit gilt für $\omega = f dx^{i_1} \wedge \ldots \wedge d^{i_k}$:

$$\Phi^*(d\omega) = \Phi^*(df \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k})$$

$$= (\Phi^*df) \wedge \Phi^*(dx^{i_1}) \wedge \dots \wedge \Phi^*(dx^{i_k})$$

$$= d(\Phi^*f\Phi^*dx^{i_1} \wedge \dots \wedge \Phi^* \wedge x^{i_k}) = d(\Phi^*\omega)$$

Erinnerung: {geschlossene k-Formen} = Kern{d : $\Omega^k(M) \to \Omega^{k-1}(M)$ }, {exakte k-Formen} = Bild{d : $\Omega^{k-1}(M) \to \Omega^k(M)$ }, d o d = 0

Der Quotient $H^k_{\mathrm{dR}}(M) = \frac{\mathrm{Kern}\{\mathrm{d}:\Omega^k \to \Omega^{k+1}\}}{\mathrm{Bild}\{\mathrm{d}:\Omega^{k-1} \to \Omega^k\}}$ heist die k-te **deRahm-Ko-homologie-gruppe**. Ist $\Phi: M \to N$ glatt, so induziert Φ^* wegen Lemma 5.9 (iv) einen Homomorphismus $\Phi^*H^k_{\mathrm{dR}}(N) \to \Phi^*H^k_{\mathrm{dR}}(M)$. Ist $\Psi: P \to M$ glatt, so gilt

$$(\Phi \circ \Psi)^* = \Psi^* \circ \Phi^*$$

insbesondere gilt $\mathrm{id}_M^* = \mathrm{id}_{H^k_{\mathrm{dR}}}$ und ein Diffeomorphismus $M \to N$ induziert einen Isomorphismus von $H^k_{\mathrm{dR}}(N)$ nach $H^k_{\mathrm{dR}}(M)$.

Beispiel (1) $H^1_{dR}(\mathbb{R}^2) = \{0\}$, zu zeigen: $d\omega = 0 \Rightarrow \omega = dh$, $\omega \cap \Omega^1$ $\omega = f dx + g dy$ geschlossen

$$0 = d(\omega) = df \wedge dx + dg \wedge dy$$
$$= \frac{\partial f}{\partial y} dy \wedge dx + \frac{\partial g}{\partial x} dx \wedge dy$$
$$= \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) dx \wedge dy$$

Setzt man

$$h(x,y) = \int_0^x f(t,0)dt + \int_0^y g(x,t)dt$$

so gilt

$$\frac{\partial h}{\partial x}(x) = f(x,0) + \int_0^y \frac{\partial g}{\partial x}(x,t) dt$$
$$= f(x,0) + \int_0^y \frac{\partial f}{\partial y}(x,t) dt$$
$$= f(x,y)$$

Analog zeigt man, dass $\frac{\partial h}{\partial y}(x,y)=g(x,y).$ Damit gilt

$$\mathrm{d}h = \frac{\partial h}{\partial x}\mathrm{d}x + \frac{\partial h}{\partial y}\mathrm{d}y = f\mathrm{d}x + g\mathrm{d}y = \omega$$

Daraus folgt $H^1_{\mathrm{dR}}(\mathbb{R}^2) = \{0\}$

 $(2) \ H^1_{\mathrm{dR}}(\mathbb{R}^2 \setminus \{0\}) \neq \{0\}$

Die Form $\omega(x,y) = \frac{1}{x^2+y^2}(x\mathrm{d}y-y\mathrm{d}x)$ ist geschlossen. Wäre ω exakt, so gäbe es $h\in C^\infty(\mathbb{R}^2\setminus\{0\})$ mit $\mathrm{d}h=\omega$, das heišt

$$\frac{\partial h}{\partial x}(x,y) = \frac{-y}{x^2 + y^2} \qquad \qquad \frac{\partial h}{\partial y}(x,y) = \frac{x}{x^2 + y^2}$$

Dann wäre

$$0 = h(1,0) - h(1,0) = \int_0^{2\pi} \frac{\mathrm{d}}{\mathrm{d}t} h(\cos t, \sin t) \mathrm{d}t$$
$$= \int_0^{2\pi} -\sin t \frac{\partial h}{\partial x} (\cos t, \sin t) + \cos t \frac{\partial h}{\partial y} (\cos t, \sin t) \mathrm{d}t$$
$$= \int_0^{2\pi} \sin^2 t + \cos^2 t \mathrm{d}t = 2\pi$$

 ω ist geschlossen aber nichtexakt und definiert eine Klasse

$$0 \neq [\omega] \in H^1_{\mathrm{dR}}(\mathbb{R}^2 \setminus \{0\})$$

Insbesondere sind \mathbb{R}^2 und $\mathbb{R}^2 \setminus \{0\}$ nicht diffeomorph.