Introduction to Week Five

Initial Value Problems

Systems of Differential Equations Initial Value Problems in MATLAB

Video: Adaptive Runge-Kutta

- Method | Lecture 54 13 min
- Reading: Example of Adaptive Integration
- Video: Integrating ODEs in MATLAB (Part A) | Lecture 55 15 min
- (Part B) | Lecture 56 7 min
- Ungraded External Tool: The Lorenz Equations

Boundary Value Problems

Quiz

Programming Assignment: The Two-Body Problem

Example of Adaptive Integration

Using the Dormand-Prince method, suppose that a user requests an error tolerance of $\varepsilon=10^{-6}$, and suppose the time step attempted was $\Delta t=0.01$ and that $e=|x_{n+1}-X_{n+1}|=1.1\times 10^{-6}$. Is the current time step accepted? What time step will be used next? Assume a safety factor of $0.9.\,$

✓ Completed		Go to next item			
△ Like	√ Dislike	e 📙 Report an issue			