```
In [4]: import matplotlib
    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    from sklearn import linear_model
    from sklearn.preprocessing import StandardScaler
    from sklearn.metrics import mean_squared_error
    from math import sqrt
    import tensorflow as tf
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn.linear_model import Ridge
    from sklearn.linear_model import Lasso
    from sklearn.model_selection import train_test_split
    from sklearn.utils import resample
    scaler = StandardScaler()
```

1-1. Fit the data using linear (1st order) regression model (matrix form, gradient descent method).

Plot the data with the fitted line. Print optimized weights. Print Root Mean Squared Error (RMSE).

```
data1 = pd.read csv("ex2data1.csv")
In [198]:
          X 1 = data1.as matrix(columns=data1.columns[0:1])
          Y 1 = data1.as matrix(columns=data1.columns[1:])
          X 1 coloumn added = np.c_[np.ones((data1.shape[0], 1)), X_1]
In [10]: def weight optimizer(data, degree, Label, learn rate = .01, epochs = 100000,
          regularisation alpha=0):
              theta 1 = np.random.randn(degree+1,1)
              for epoch in range(epochs):
                  gradients = (2/data.shape[0])* (data.T.dot(data.dot(theta 1)- La
          bel)+regularisation alpha*theta 1)
                  theta 1 = theta 1 - learn rate * gradients
              return theta 1
In [11]: def rmse calculator(data, weights, actual label):
              predict y = data.dot(weights)
              rms = sqrt(mean squared error(actual label, predict y))
              return rms
```

```
In [12]: # Please input sorted data
         def graph plotter(X 1 poly dn scaled coloumn added, weights, actual label,
         graph label=None):
             X 1 poly dn scaled coloumn added sorted = X 1 poly dn scaled coloumn
         added [X 1 poly dn scaled coloumn added [:,1].argsort()]
             plt.plot(X_1_poly_dn_scaled_coloumn_added_sorted[:,1:2], actual_labe
         1, 'bo')
             y 1 dn plot = X 1 poly dn scaled coloumn added sorted.dot(weights)
             plt.plot(X 1 poly dn scaled coloumn added sorted[:,1:2], y 1 dn plot
         ,label=graph_label)
             legend = plt.legend(loc='upper right', shadow=True)
In [13]: def polynomial adder(data,degree):
             poly features = PolynomialFeatures(degree=degree, include bias=False
             X_1_poly_dn = poly_features.fit_transform(data)
             X 1 poly dn scaled = scaler.fit_transform(X 1 poly dn)
             X 1 poly dn scaled coloumn added = np.c [np.ones((data.shape[0], 1
         )), X_1 poly dn scaled]
             ## Sorting for graph plotting
             #X 1 poly dn scaled coloumn added = X 1 poly dn scaled coloumn added
```

Optimized Weight - Deg1

```
In [204]: theta_1 = weight_optimizer(X_1_coloumn_added,1,Y_1)
    print (theta_1)

[[ 1.07581132]
    [-1.1887203 ]]
```

[X 1 poly dn scaled coloumn added [:,1].argsort()]

return X 1 poly dn scaled coloumn added

RMSE - Deg1

```
In [205]: rms_1 = rmse_calculator(X_1_coloumn_added,theta_1,Y_1)
    print (rms_1)
    0.47624021947640577
```

Plot - Deg1

In [206]: graph_plotter(X_1_coloumn_added,theta_1,Y_1)

No handles with labels found to put in legend.

1-2. Fit the data using 2nd order polynomial regression model (matrix form, gradient descent method).

```
In [207]: X_1_poly_d2_scaled_coloumn_added = polynomial_adder(X_1,2)
```

Optimized Weight - deg2

RMSE

Plot - deg2

In [210]: graph_plotter(X_1_poly_d2_scaled_coloumn_added,theta_1_d2,Y_1)

No handles with labels found to put in legend.

1-3. Fit the data using 4th order polynomial regression model (matrix form, gradient descent method).

```
In [211]: X_1_poly_d4_scaled_coloumn_added = polynomial_adder(X_1,4)
```

Optimized Weight - deg4

RMSE Deg-4

Graph_Deg 4

In [214]: graph_plotter(X_1_poly_d4_scaled_coloumn_added,theta_1_d4,Y_1)

No handles with labels found to put in legend.

1-4. Fit the data using 16th order polynomial regression model (matrix form, gradient descent method).

```
In [215]: X_1_poly_d16_scaled_coloumn_added = polynomial_adder(X_1,16)
```

Optimized Weight - deg16

[[0.45269151] [0.90569215] [-0.63905604][0.58174172] [-2.18981068][-0.36381962][-0.48679136][0.03242304] [1.22399681] [1.3783914] [0.51790883] [0.54350124] [-1.12891568][0.26915691] [0.5333662] [-0.19490954][-1.39357019]]

RMSE - Deg4

```
In [217]: rms_1_d16 = rmse_calculator(X_1_poly_d16_scaled_coloumn_added,theta_1_d1
6,Y_1)
print (rms_1_d16)
0.2625062559634639
```

Graph_Deg 16

In [218]: graph_plotter(X_1_poly_d16_scaled_coloumn_added,theta_1_d16,Y_1)

No handles with labels found to put in legend.

1-5. Fit the data using 16th order polynomial regression model with ridge (L2 penalty) regularization (matrix form, gradient descent method).

You need to try at least 3 different L2 penalty (for example, λ = 0.1, 1, 10).

 $\lambda = 0.1$

Optimized weights $\lambda = 0.1$

```
In [219]:
          theta 1 d16 regularised 1 = weight optimizer(X 1 poly d16 scaled coloumn
           _added,16,Y_1,regularisation_alpha=0.1)
          print (theta_1_d16_regularised_1)
          [[ 0.45118755]
           [ 0.78496938]
           [-0.41986364]
           [-0.64770631]
           [-0.48516438]
           [-0.22691241]
           [ 0.00677979]
           [ 0.17744631]
           [ 0.27520327]
           [ 0.30862102]
           [ 0.28991242]
           [ 0.22673522]
           [ 0.12928467]
           [ 0.01020639]
           [-0.12850398]
           [-0.27605485]
           [-0.43514748]
```

RMSE - $\lambda = 0.1$

0.2693872247572115

$\lambda = 1$

Optimized weights $\lambda = 1$

```
In [221]:
          theta 1 d16 regularised 2 = weight optimizer(X 1 poly d16 scaled coloumn
          _added,16,Y_1,regularisation_alpha=1)
          print (theta_1_d16_regularised_2)
          [[ 0.43808856]
           [ 0.30532714]
           [-0.11714469]
           [-0.21555533]
           [-0.18959658]
           [-0.12931817]
           [-0.06945018]
           [-0.02187918]
           [ 0.01069068]
           [ 0.02911397]
           [ 0.03545038]
           [ 0.03198174]
           [ 0.02082246]
           [ 0.00379041]
           [-0.01760999]
           [-0.04215991]
           [-0.06888419]]
```

RMSE - $\lambda = 1$

0.30190806311237905

$\lambda = 10$

Optimized weights $\lambda = 10$

```
In [223]:
          theta 1 d16 regularised 3 = weight optimizer(X 1 poly d16 scaled coloumn
           _added,16,Y_1,regularisation_alpha=10)
          print (theta_1_d16_regularised_3)
          [[ 0.33951863]
            [ 0.05560105]
           [-0.02707079]
            [-0.0564417]
            [-0.06173571]
            [-0.05764355]
            [-0.05057775]
            [-0.04323712]
           [-0.03668487]
            [-0.03126116]
            [-0.02699188]
            [-0.02377544]
            [-0.02146823]
            [-0.01992273]
            [-0.01900323]
           [-0.01859114]
            [-0.01858551]
```

RMSE - λ = 10

0.34575123097106086

Graph Plot $\lambda = 0.1, 1, 10$

```
In [225]: graph_plotter(X_1_poly_d16_scaled_coloumn_added,theta_1_d16_regularised_ 1,Y_1,graph_label="\lambda = 0.1") graph_plotter(X_1_poly_d16_scaled_coloumn_added,theta_1_d16_regularised_ 2,Y_1,graph_label= "\lambda = 1") graph_plotter(X_1_poly_d16_scaled_coloumn_added,theta_1_d16_regularised_ 3,Y_1,graph_label= "\lambda = 10")
```


1-6. Fit the data using 16th order polynomial regression model with scikit-learn Ridge model.

You need to try at least 3 different L2 penalty (for example, $\lambda = 0.1$, 1, 10).

```
In [14]: def ridge optimized weight(data,label,alpha=0.1):
             ridge reg = Ridge(alpha=alpha, solver="cholesky")
             ridge mode1 = ridge reg.fit(data[:,1:], label)
             print ("Model-Intercept", ridge model.intercept )
             print ("Model-Co-ef",ridge_model.coef_.T)
             return ridge mode1
         def ridge lasso graph plotter(data,actual label,ridge model,graph label=
In [15]:
         None):
             X 1 poly dn scaled coloumn added sorted = data[data[:,1].argsort()]
             Y ridge model 1 predict = ridge model.predict(X 1 poly dn scaled col
         oumn added sorted[:,1:])
             plt.plot(X 1 poly dn scaled coloumn added sorted[:,1:2], actual labe
         1, 'bo')
             plt.plot(X 1 poly dn scaled coloumn added sorted[:,1:2], Y ridge mod
         e1_1_predict,label=graph label)
             legend = plt.legend(loc='upper right', shadow=True)
```

alpha = [0.1, 1, 10]

In [226]:

Optimized_Weights ridge $\lambda = 0.1$

```
In [230]: ridge model 1 = ridge optimized weight(X 1 poly d16 scaled coloumn added
           ,Y_1,0.1)
          Model-Intercept [0.45269151]
          Model-Co-ef [[ 0.78485691]
           [-0.41980483]
           [-0.6474652]
           [-0.48475686]
           [-0.22708056]
           [ 0.00646183]
           [ 0.17607267]
           [ 0.27503508]
           [ 0.30951311]
           [ 0.28986803]
           [ 0.22699526]
           [ 0.13087521]
           [ 0.01010497]
           [-0.12814542]
           [-0.27800671]
           [-0.43473061]]
```

RMSE ridge $\lambda = 0.1$

Optimized Weights Ridge $\lambda = 1$

```
In [232]:
          ridge model 2 = ridge optimized weight(X 1 poly d16 scaled coloumn added
           , Y_{1}, 1)
          Model-Intercept [0.45269151]
          Model-Co-ef [[ 0.30532714]
            [-0.11714469]
            [-0.21555533]
            [-0.18959658]
            [-0.12931817]
            [-0.06945018]
            [-0.02187918]
            [ 0.01069068]
            [ 0.02911397]
            [ 0.03545038]
            [ 0.03198174]
            [ 0.02082246]
            [ 0.00379041]
            [-0.01760999]
            [-0.04215991]
            [-0.06888419]]
```

RMSE ridge $\lambda = 1$

Optimized Weights Ridge $\lambda = 10$

```
ridge_mode1_3 = ridge_optimized_weight(X_1_poly_d16_scaled_coloumn_added
In [234]:
           ,Y_1,10)
          Model-Intercept [0.45269151]
          Model-Co-ef [[ 0.05560105]
            [-0.02707079]
            [-0.0564417]
            [-0.06173571]
            [-0.05764355]
            [-0.05057775]
            [-0.04323712]
            [-0.03668487]
            [-0.03126116]
            [-0.02699188]
            [-0.02377544]
            [-0.02146823]
            [-0.01992273]
            [-0.01900323]
            [-0.01859114]
            [-0.01858551]
```

DMSE ridge 1 - 10

```
In [235]: rms_ridge_3 = ridge_lasso_rmse(X_1_poly_d16_scaled_coloumn_added,Y_1,rid
    ge_mode1_3)
    print(rms_ridge_3)

0.3267044743318329
```

Graph Plot Ridge $\lambda = 0.1,1,10$

1-7. Fit the data using 16th order polynomial regression model with scikit-learn Lasso model.

```
In [17]: def lasso_optimized_weight(data,label,alpha=0.1):
    lasso_reg = Lasso(alpha)
    lasso_model = lasso_reg.fit(data[:,1:], label)
    print ("Model-Intercept",lasso_model.intercept_)
    print ("Model-Co-ef",lasso_model.coef_.T)
    return lasso_model
```

Optimized_Weights lasso $\lambda = 0.1$

```
In [238]: lasso model 1 = lasso optimized weight(X 1 poly d16 scaled coloumn added
           ,Y 1,0.1)
          Model-Intercept [0.45269151]
          Model-Co-ef [-0.
                                                             -0.
                                                 -0.
                                                                          -0.
            -0.37373874
                                                             -0.
                                                                          -0.
           -0.
                       -0.
                                    -0.
                                                 -0.
           -0.
                       -0.
                                    -0.
                                                 -0.
                                                            1
```

RMSE lasso $\lambda = 0.1$

Optimized_Weights lasso $\lambda = 1$

RMSE lasso $\lambda = 1$

Optimized_Weights lasso $\lambda = 10$

RMSE lasso $\lambda = 10$

0.5772554182087681

Graph Plot Lasso $\lambda = 0.1,1,10$

2.Polynomial regression with train/validation/test

You need to split the data into training/validation/testing data set as 60% / 20% / 20%.

Please use np.random.seed(1) to have consistent data for evaluation

2-1. Fit the data using linear (1st order) regression model (matrix form, gradient descent method).

```
In [245]:
          # def plot learning curves(model, X, y):
                X train, X val, y train, y val = train test split(X, y, test size=
          0.2)
          #
                train errors, val errors = [], []
          #
                for m in range(1, len(X train)):
          #
                    model.fit(X train[:m], y train[:m])
          #
                    y train predict = model.predict(X train[:m])
          #
                    y val predict = model.predict(X val)
          #
                    train errors.append(mean_squared_error(y_train_predict, y_trai
          n[:m]))
          #
                     val errors.append(mean squared error(y val predict, y val))
                plt.plot(np.sqrt(train errors), "r-+", linewidth=2, label="train")
          #
                plt.plot(np.sqrt(val_errors), "b-", linewidth=3, label="val")
          # lin reg = LinearRegression()
          # plot learning curves(lin reg, X, y)
          # from sklearn.pipeline import Pipeline
          # polynomial regression = Pipeline([
          #
                     ("poly features", PolynomialFeatures(degree=10, include bias=F
          alse)),
                    ("lin reg", LinearRegression()),
          #
          #
                 1)
          # plot learning curves(polynomial regression, X, y)
```

```
In [6]: data2 = pd.read_csv("ex2data2.csv")
    X_2 = data2.as_matrix(columns=data2.columns[0:1])
    Y_2 = data2.as_matrix(columns=data2.columns[1:])
    X_2_poly_d1_scaled = scaler.fit_transform(X_2)
    X_2_coloumn_added = np.c_[np.ones((data2.shape[0], 1)), X_2]
    X_2_poly_d1_scaled_coloumn_added = np.c_[np.ones((data2.shape[0], 1)), X_2]
    X_2_poly_d1_scaled]
```

/anaconda2/envs/carnd-term1/lib/python3.5/site-packages/sklearn/utils/v alidation.py:475: DataConversionWarning: Data with input dtype int64 was converted to float64 by StandardScaler.

warnings.warn(msg, DataConversionWarning)

In [7]: data2.head

011+171•	< bound	mothod	NDEr	amo hoad of	aaft livina	nriac
Out[7]:	0	method	430	ame.head of 80000.0	sqft_living	price
	1		460	247000.0		
	2		470	192500.0		
	3					
			490	150000.0		
	4		500	125000.0		
	5		520	82500.0		
	6		520	275000.0		
	7		520	330000.0		
	8		550	353000.0		
	9		560	299000.0		
	10		570	89950.0		
	11		580	220000.0		
	12		580	330600.0		
	13		590	156000.0		
	14		600	229000.0		
	15		620	175000.0		
	16		620	244900.0		
	17		630	148000.0		
	18		630	315000.0		
	19		630	430000.0		
	20		650	295000.0		
	21		660	100000.0		
	22		660	175000.0		
	23		660	225000.0		
	24		660	227450.0		
	25		670	240000.0		
	26		670	245000.0		
	27		670	279000.0		
	28		670	348000.0		
	29		680	110700.0		
	•••		•••			
	5374		5840	2200000.0		
	5375		5850	1530000.0		
	5376		5860	2400000.0		
	5377		5050	1600000.0		
	5378		5070	1550000.0		
	5379		5070	1570000.0		
	5380	(5200	3300000.0		
	5381	(5210	3200000.0		
	5382	(5240	2950000.0		
	5383	(5510	1900000.0		
	5384	(5530	1600000.0		
	5385	(5550	1500000.0		
	5386	(5640	4500000.0		
	5387	(5810	2480000.0		
	5388	(5900	1140000.0		
	5389		7000	3200000.0		
	5390	-	7050	3800000.0		
	5391	-	7100	3200000.0		
	5392	-	7120	900000.0		
	5393	-	7320	1140000.0		
	5394		7420	1950000.0		
	5395		7620	1680000.0		
	5396		7710	3300000.0		
	5397		7850	2700000.0		
	5398		7880	2420000.0		
			•			

```
      5399
      8000
      5350000.0

      5400
      8010
      5110000.0

      5401
      8670
      2890000.0

      5402
      12050
      7700000.0

      5403
      13540
      2280000.0
```

[5404 rows x 2 columns] >

```
In [247]: plt.hist(X_2)
```


(5404, 2) (4323, 2)

(3242, 2)

```
In [18]: def Mean_Square_Error_calculator(data,weights,actual_label):
    predict_y = data.dot(weights)
    rms = mean_squared_error(actual_label, predict_y)
    return rms
```

```
In [19]: def train val best model(X train, X val, y train, y val, degree):
             epochs = [1000,10000,100000]
             learning_rate = [.001,.01,.1]
             train_errors, val_errors = [], []
             counter = 1
             combination = {}
             for epoch in epochs:
                  for rate in learning rate:
                     weights = weight_optimizer(X_train,degree,y_train,learn_rate
          = rate,epochs = epoch,regularisation_alpha=0)
                     rmse train = rmse calculator(X train, weights, y train)
                      rmse val = rmse calculator(X val, weights, y val)
                     train errors.append(rmse train)
                     val errors.append(rmse val)
                      combination[counter] = (epoch, rate)
                      counter += 1
             plt.plot(train_errors, "r-+", linewidth=2, label="train")
             plt.plot(val errors, "b-", linewidth=3, label="val")
             legend = plt.legend(loc='upper right', shadow=True)
             ## Find the lowest validation error
             counter val error = list(enumerate(val errors, 1))
             counter_val_error_sorted = sorted(counter_val_error, key=lambda x:x[
         1])
             best model = combination[(counter val error sorted[0][0])]
             print(counter val error)
             print("Epoch and Learning Rate Combination", counter_val_error_sorted
         [0][0],best model)
             return best model
```

[(1, 257488.04094283126), (2, 249622.42769314421), (3, 249622.4277054363), (4, 249622.4276900577), (5, 249622.42770543642), (6, 249622.4277054363), (7, 249622.42770543747), (8, 249622.42770543642), (9, 249622.4277054363)]

Epoch and Learning Rate Combination 4 (10000, 0.001)

RMSE - Train, test Deg -1

```
In [252]: rmse_train_2 = rmse_calculator(X_2_train,weights_best_model_2,y_2_train)
    rmse_test_2 = rmse_calculator(X_2_test,weights_best_model_2,y_2_test)
    print("rmse_train",rmse_train_2)
    print("rmse_test",rmse_test_2)

rmse_train 275355.0256953383
    rmse_test 264311.94247884274
```

Graph Train Deg-1

In [253]: graph_plotter(X_2_train,weights_best_model_2,y_2_train,graph_label=None)

No handles with labels found to put in legend.

2-2. Fit the data using 2nd order polynomial regression model (matrix form, gradient descent method).

```
In [254]: X_2_poly_d2_scaled_coloumn_added = polynomial_adder(X_2,2)
```

[(1, 254082.7389780978), (2, 244029.3535573043), (3, 244071.5963589443 7), (4, 244029.2686895008), (5, 244071.5963589144), (6, 244071.59635907 054), (7, 244071.59635891087), (8, 244071.59635907042), (9, 244071.5963 5907054)]

Epoch and Learning Rate Combination 4 (10000, 0.001)

RMSE - Train, test Deg -2

```
In [257]: rmse_train_22 = rmse_calculator(X_22_train,weights_best_model_22,y_22_tr
ain)
    rmse_test_22 = rmse_calculator(X_22_test,weights_best_model_22,y_22_test
)
    print("rmse_train",rmse_train_22)
    print("rmse_test",rmse_test_22)
```

rmse_train 267719.7117411374 rmse test 254533.92847752557

Graph Train Deg-2

No handles with labels found to put in legend.

2-3. Fit the data using 4th order polynomial regression model (matrix form, gradient descent method).

In [259]: X_2_poly_d4_scaled_coloumn_added = polynomial_adder(X_2,4)

[(1, 254205.33656847285), (2, 243001.66458493247), (3, 243544.8531816557), (4, 243001.8240493743), (5, 243544.6655575537), (6, 243854.6229242246), (7, 243544.64619277278), (8, 243854.612717776), (9, 244304.69676459354)]

Epoch and Learning Rate Combination 2 (1000, 0.01)

RMSE - Train, test Deg -4

rmse_train 260919.45768952757 rmse test 251751.42950903866

No handles with labels found to put in legend.

2-4. Fit the data using 16th order polynomial regression model (matrix form, gradient descent method).

```
In [26]:
         def weight_optimizer_stoc_batch(data,degree,Label,learn_rate = .01,epoch
         s = 100000, regularisation alpha=0):
             theta 1 = np.random.randn(degree+1,1)
             data size = data.shape[0]
             #print (data size)
             batch size = data size // 16
             #print (batch size)
             for epoch in range(epochs):
                  for batch in range(batch size):
                      X batch, y batch = resample(data, Label, n samples=16, rando
         m state=0,replace=False)
                      gradients = (2/X batch.shape[0])* (X batch.T.dot(X batch.dot
         (theta 1)- y batch)+ \
                                                         regularisation alpha*thet
         a 1)
                      theta 1 = theta 1 - learn rate * gradients
             return theta 1
```

In [21]: def train val best model stoc batch(X train, X val, y train, y val, degre

```
e):
             epochs = [10000]
             learning_rate = [.001,.01,.1]
             train_errors, val_errors = [], []
             counter = 1
             combination = {}
             for epoch in epochs:
                  for rate in learning rate:
                     weights = weight optimizer_stoc_batch(X_train,degree,y_train
         ,learn rate = rate,epochs = epoch,regularisation alpha=0)
                      rmse train = rmse calculator(X train, weights, y train)
                     rmse_val = rmse_calculator(X_val,weights,y_val)
                      train errors.append(rmse train)
                     val errors.append(rmse val)
                     combination[counter] = (epoch, rate)
                      counter += 1
             plt.plot(train_errors, "r-+", linewidth=2, label="train")
             plt.plot(val_errors, "b-", linewidth=3, label="val")
             legend = plt.legend(loc='upper right', shadow=True)
             ## Find the lowest validation error
             counter_val_error = list(enumerate(val_errors, 1))
             counter_val_error_sorted = sorted(counter_val_error, key=lambda x:x[
         11)
             best model = combination[(counter val error sorted[0][0])]
             print(counter_val_error)
             print("Epoch and Learning Rate Combination", counter val error sorted
         [0][0], best model)
             return best model
In [22]: X 2 poly d16 scaled_coloumn_added = polynomial_adder(X_2,16)
```

```
lit(X_2_poly_d16_scaled_coloumn_added, Y_2, test_size=0.2,random_state=1
)
X_216_train, X_216_val, y_216_train, y_216_val = train_test_split(X_216_
train val, y 216 train val, test size=0.25,random state=1)
```

In [23]: X 216 train val, X 216 test, y 216 train val, y 216 test = train test sp

Implemented Mini-batch Gradient Descent as I was getting error with full batch

```
3242
202
3242
202
3242
202
[(1, 271431.84548393165), (2, 621086.9719878328), (3, 1715299.115724269
3)]
Epoch and Learning Rate Combination 1 (10000, 0.001)
3242
202
```


In [374]: rmse_train_216 = rmse_calculator(X_216_train,weights_best_model_216,y_21
6_train)
rmse_test_216 = rmse_calculator(X_216_test,weights_best_model_216,y_216_
test)
print("rmse_train",rmse_train_216)
print("rmse_test",rmse_test_216)

rmse_train 656156.7479793766 rmse test 274794.112255375 In [375]: graph_plotter(X_216_train,weights_best_model_216,y_216_train,graph_label =None)

WARNING:matplotlib.legend:No handles with labels found to put in legen d.

2-5. Fit the data using 16th order polynomial regression model with ridge (L2 penalty) regularization.

```
In [27]:
         def train val best model ridge stoc batch (X train, X val, y train, y val
         , degree):
             epochs = [10000]
             learning_rate = [.01]
             regularisation_alpa = [.1,1,10]
             train_errors, val_errors = [], []
             weights list = []
             counter = 1
             combination = {}
             for epoch in epochs:
                  for rate in learning rate:
                      for alpha in regularisation alpa:
                          weights = weight_optimizer_stoc_batch(X_train,degree,y_t
         rain, learn rate = rate, epochs = epoch, \
                                                     regularisation alpha=alpha)
                          weights_list.append(weights)
                          rmse_train = rmse_calculator(X_train,weights,y_train)
                          rmse_val = rmse_calculator(X_val,weights,y_val)
                          train errors.append(rmse train)
                          val errors.append(rmse val)
                          combination[counter] = (epoch, rate, alpha)
                          counter += 1
             weights_array = np.asarray(weights_list)
             print (weights array)
             plt.plot(train errors, "r-+", linewidth=2, label="train")
             plt.plot(val_errors, "b-", linewidth=3, label="val")
             legend = plt.legend(loc='upper right', shadow=True)
             ## Find the lowest validation error
             counter val error = list(enumerate(val errors, 1))
             counter val error sorted = sorted(counter val error, key=lambda x:x[
         1])
             best model = combination[(counter val error sorted[0][0])]
             print(best model)
             return best model, weights array
```

Implemented Mini-batch Gradient Descent as I was getting error with full batch

```
[[[529311.56308421]
  [140367.80182524]
  [-4546.74748686]
  [-28473.30732643]
  [-19788.63272868]
  [-15000.66415285]
  [-12895.44455603]
  [-11538.24832723]
  [-10566.67038328]
  [-9891.60090774]
  [-9426.90906073]
  [ -9097.26154915]
  [ -8850.68250377]
  [ -8655.58649547]
  [ -8493.84397512]
  [ -8355.19791351]
  [ -8233.75543243]]
 [[504369.59043868]
  [112854.12132627]
  [ 20818.52540674]
  [-23880.56066294]
  [-26120.99445878]
  [-19357.51087343]
  [-14465.9510496]
  [-11760.93642951]
  [-10310.04194258]
  [-9496.30495061]
  [ -9002.50480531]
  [ -8673.93636613]
  [ -8435.03414097]
  [-8248.08593394]
  [ -8093.69358333]
  [ -7961.51143409]
  [ -7845.77403797]]
[[333564.0674735]
  [ 66591.27018116]
  [ 11619.48500806]
  [-16917.22262927]
 [-18072.40431746]
  [-13199.53401866]
  [ -9722.42710617]
  [ -7830.67797699]
  [-6834.78228822]
  [-6285.08729544]
  [-5955.10514574]
  [ -5736.84789641]
  [ -5578.58986315]
  [ -5454.8830961 ]
  [ -5352.75811019]
  [ -5265.33509663]
  [ -5188.79119887]]]
(10000, 0.01, 0.1)
```

```
train
450000
                                                                val
425000
400000
375000
350000
325000
300000
275000
                0.25
                       0.50
                              0.75
                                     1.00
                                           1.25
                                                   1.50
```

```
In [34]: weights_array = weights_array.reshape(3,17)
In [51]: weights_array[:,1]
Out[51]: array([140367.80182524, 112854.12132627, 66591.27018116])
In [89]: def weights_plotter(weights_array):
    fig = plt.figure(figsize=(10,8))
    plt.ylabel('Weights')
    plt.xlabel('alpha')
    for i in range(1,weights_array.shape[1]):
        plt.plot([0.1,1,10],weights_array[:,i],'-+',label="degree % i" %
i)
    legend = plt.legend(loc='upper right', shadow=True)
```

In [90]: weights plotter(weights array)


```
In [383]: rmse_train_216_ridge = rmse_calculator(X_216_train,weights_best_model_21
6_ridge,y_216_train)
rmse_test_216_ridge = rmse_calculator(X_216_test,weights_best_model_216_
ridge,y_216_test)
print("rmse_train",rmse_train_216_ridge)
print("rmse_test",rmse_test_216_ridge)
```

rmse_train 415963.5773494703
rmse_test 321415.22175827075

WARNING: matplotlib.legend: No handles with labels found to put in legen d.

2-6. Fit the data using 16th order polynomial regression model with scikit-learn Ridge model.

```
In [64]: def train val best model_scikit_ridge(X_train, X_val, y_train, y_val):
             regularisation alpa = [0.1, 1, 10]
             train errors, val errors = [], []
             counter = 1
             combination = {}
             weights list = []
             for alpha in regularisation alpa:
                 ridge model = ridge optimized weight(X train,y train,alpha)
                 weights_list.append(ridge model.coef )
                 rmse train = ridge lasso rmse(X train,y train,ridge model)
                 rmse val = ridge lasso rmse(X val, y val, ridge model)
                 train errors.append(rmse train)
                 val_errors.append(rmse val)
                 combination[counter] = (alpha, ridge model)
                 counter += 1
             weights array = np.asarray(weights list)
             #print (weights array)
             plt.plot(train_errors, "r-+", linewidth=2, label="train")
             plt.plot(val errors, "b-", linewidth=3, label="val")
             legend = plt.legend(loc='upper right', shadow=True)
             ## Find the lowest validation error
             counter val error = list(enumerate(val errors, 1))
             counter_val_error_sorted = sorted(counter_val_error, key=lambda x:x[
         11)
             best model = combination[(counter val error sorted[0][0])]
             print("alpha", best model[0])
             return best model[1], weights array
```

In [65]: best_model_216_scikit_ridge,weights_array_scikit_ridge = train_val_best_
model_scikit_ridge(X_216_train, X_216_val, y_216_train, y_216_val)

```
Model-Intercept [547704.506878]
Model-Co-ef [[ 47149.02303585]
    97806.15914125]
 [ 494262.89050946]
 [-227237.60901432]
 [-422132.21976636]
 [-199882.87630559]
    64994.590638261
 [ 230729.38940244]
 [ 287757.59283936]
 [ 265072.70818138]
 [ 193352.45983527]
    95486.865004991
 [ -13592.57195474]
 [-124860.40617845]
 [-233169.41195629]
 [-335762.59926058]]
Model-Intercept [547718.99272249]
Model-Co-ef [[ -16344.34115262]
 [ 320155.60757134]
 [ 172666.68142153]
 [-173831.65937522]
 [-211992.23283438]
 [ -77256.72585303]
    64972.77614043]
 [ 152621.76687899]
 [ 180680.13409481]
 [ 162984.49861422]
 [ 115562.95467406]
   51361.296865431
 [ -20522.80095625]
 [ -94191.55415056]
 [-166059.86068628]
 [-234099.56514392]]
Model-Intercept [547547.03238267]
Model-Co-ef [[ 36166.43778387]
 [ 269023.40114305]
    77631.40011951]
 [ -81988.69738317]
 [ -71553.92749472]
    -5369.60495591]
    48807.038080621
    74843.22643076]
   76275.4587262 ]
    60869.185342661
    35528.32733298]
     5236.22544228]
 [-26747.06366153]
 [ -58427.80688802]
 [ -88665.61666554]
 [-116867.58253742]]
alpha 1
```


In [68]: weights_array_scikit_ridge = weights_array_scikit_ridge.reshape(3,16)

In [91]: weights_plotter(weights_array_scikit_ridge)


```
In [270]: rmse_train_216_scikit_ridge = ridge_lasso_rmse(X_216_train, y_216_train, best_model_216_scikit_ridge)
    rmse_test_216_scikit_ridge = ridge_lasso_rmse(X_216_test,y_216_test,best _model_216_scikit_ridge)
    print("rmse_train",rmse_train_216_scikit_ridge)
    print("rmse_test",rmse_test_216_scikit_ridge)

rmse_train_250700.05033093243
rmse_test_251065.74316573926
```

In [271]: ridge_lasso_graph_plotter(X_216_train,y_216_train,best_model_216_scikit_ridge,graph_label=" λ = 1")

2-7. Fit the data using 16th order polynomial regression model with scikit-learn Lasso model.

```
In [76]: def train val best model scikit lasso(X train, X val, y train, y val):
             regularisation alpa = [0.1,1,10]
             train_errors, val_errors = [], []
             counter = 1
             combination = {}
             weights list = []
             for alpha in regularisation alpa:
                 lasso model = lasso optimized weight(X train, y train, alpha)
                 weights_list.append(lasso_model.coef_)
                 rmse_train = ridge_lasso_rmse(X_train,y_train,lasso_model)
                 rmse_val = ridge_lasso_rmse(X_val,y_val,lasso_model)
                 train errors.append(rmse train)
                 val errors.append(rmse val)
                 combination[counter] = (alpha,lasso_model)
                 counter += 1
             weights_array = np.asarray(weights_list)
             plt.plot(train_errors, "r-+", linewidth=2, label="train")
             plt.plot(val_errors, "b-", linewidth=3, label="val")
             legend = plt.legend(loc='upper right', shadow=True)
             ## Find the lowest validation error
             counter val error = list(enumerate(val errors, 1))
             counter_val_error_sorted = sorted(counter_val_error, key=lambda x:x[
         1])
             best model = combination[(counter val error sorted[0][0])]
             print("alpha", best model[0])
             return best_model[1], weights_array
```

In [77]: best_model_216_scikit_lasso,weights_array_scikit_lasso = train_val_best_
model_scikit_lasso(X_216_train, X_216_val, y_216_train, y_216_val)

/anaconda2/envs/carnd-term1/lib/python3.5/site-packages/sklearn/linear_model/coordinate_descent.py:491: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.

ConvergenceWarning)

```
Model-Intercept [547780.08000696]
Model-Co-ef [-125318.97003623 666197.50707237 -261841.01303223 -18730
9.44448817
                   155957.01757717
   77160.31260774
                                    125786.49836694
                                                      69160.91493416
   19708.08956119
                  -14840.20562329
                                    -36093.17315681
                                                     -47445.45636661
  -52259.47895543 -52993.40874272 -51325.09359054
                                                     -48343.58909978]
Model-Intercept [547779.73592156]
Model-Co-ef [-124992.36217718 665263.70260852 -260753.01353071 -18734
0.17063375
   76345.133887
                   155967.41656718
                                   125762.63818031
                                                      69164.76212111
                   -14276.41829556
                                    -36175.49317507
   19900.84319741
                                                     -47521.03245514
  -52327.97275879 -53055.02152518 -51380.27127648
                                                     -48392.87104231]
Model-Intercept [547776.26865725]
Model-Co-ef [-121721.55990706 655932.64030426 -249919.8823818
2.71597435
                   156107.22185177
                                                      69166.91275706
   68214.49580173
                                    125530.49711011
   21367.94806767
                    -8139.49732978
                                    -37011.24562008
                                                     -48290.1479555
  -53026.14960449
                   -53683.77064736
                                   -51943.80255891
                                                     -48896.47767207]
alpha 0.1
```


In [79]: weights_plotter(weights_array_scikit_lasso)

In [274]: rmse_train_216_scikit_lasso = ridge_lasso_rmse(X_216_train, y_216_train,
 best_model_216_scikit_lasso)
 rmse_test_216_scikit_lasso = ridge_lasso_rmse(X_216_test,y_216_test,best
 _model_216_scikit_lasso)
 print("rmse_train",rmse_train_216_scikit_lasso)
 print("rmse_test",rmse_test_216_scikit_lasso)

rmse_train 251063.94309086326 rmse_test 250161.4085909059 In [80]:

3-1. Fit the training data using regression model with ridge (L2 penalty) regularization with scikit-learn Ridge model.

data3 = pd.read csv("ex2data3.csv")

```
In [92]:
           best model 3 scikit ridge, weights 3rddataset ridge = train val best mode
           l_scikit_ridge(X_3_train, X_3_val, y_3_train, y_3_val)
           Model-Intercept [2.07192364]
           Model-Co-ef [[ 0.82501033]
            [ 0.12438917]
            [-0.23245061]
            [ 0.2778601 ]
            [-0.00178963]
            [-0.03738571]
            [-0.9098153]
            [-0.88498937]]
           Model-Intercept [2.07192619]
           Model-Co-ef [[ 0.82499755]
            [ 0.12448827]
            [-0.23231252]
            [ 0.27766071]
            [-0.0017563]
            [-0.03738623]
            [-0.90885179]
            [-0.88401781]
           Model-Intercept [2.07195156]
           Model-Co-ef [[ 0.82484941]
            [ 0.12546401]
            [-0.23091504]
            [ 0.27566139]
            [-0.00142815]
            [-0.03739063]
            [-0.89934824]
            [-0.87443278]
           alpha 0.1
            0.728
                                                       train
            0.726
                                                        val
            0.724
            0.722
            0.720
            0.718
            0.716
            0.714
            0.712
                      0.25
                                         1.25
                 0.00
                           0.50
                                0.75
                                    1.00
                                              1.50
                                                   1.75
                                                        2.00
 In [94]:
          weights 3rddataset ridge = weights 3rddataset ridge.reshape(3,8)
          weights 3rddataset ridge.shape
In [102]:
Out[102]: (3, 8)
```

```
In [104]: fig = plt.figure(figsize=(10,8))
    plt.ylabel('Weights')
    plt.xlabel('alpha')
    labels = ["MedInc","HouseAge","AveRooms","AveBedrms","Population","AveOc
    cup","Latitude","Longitude"]
    for i in range(len(weights_3rddataset_ridge[1])):
        plt.plot([0.1,1,10],weights_3rddataset_ridge[:,i],'-+',label=labels[
i-1])
        legend = plt.legend(loc='upper right', shadow=True)
```


3-2. Fit the training data using regression model with lasso (L1 penalty) regularization with scikit-learn Lasso model.

In [105]: best_model_3_scikit_lasso,weights_3rddataset_lasso = train_val_best_mode
l_scikit_lasso(X_3_train, X_3_val, y_3_train, y_3_val)


```
In [106]: fig = plt.figure(figsize=(10,8))
    plt.ylabel('Weights')
    plt.xlabel('alpha')
    labels = ["MedInc","HouseAge","AveRooms","AveBedrms","Population","AveOc
    cup","Latitude","Longitude"]
    for i in range(len(weights_3rddataset_lasso[1])):
        plt.plot([0.1,1,10],weights_3rddataset_lasso[:,i],'-+',label=labels[i-1])
        legend = plt.legend(loc='upper right', shadow=True)
```


3-3. Fit the training data using regression model with ridge (L2 penalty) regularization using TensorFlow.

```
In [113]: epochs_list = [10000]
alpha_list = [.1,1,10]
```

```
learning rate list = [.01]
weights_list_tensor=[]
\#n \ epochs = 10000
#learning rate = 0.01
\#alpha = 0.1
tf.reset default graph()
X 3 = tf.placeholder(tf.float64)
Y 3 = tf.placeholder(tf.float64)
theta = tf.Variable(tf.random_uniform([data3.shape[1], 1], -1.0, 1.0, dt
ype=tf.float64, name="theta"))
learning rate = tf.placeholder(dtype=tf.float64)
alpha = tf.placeholder(dtype=tf.float64)
train_errors = []
val errors = []
counter = 1
combination = {}
y_pred_3 = tf.matmul(X_3, theta, name="predictions")
error = y pred_3 - Y_3
mse = tf.sqrt(tf.reduce mean(tf.square(error), name="mse"))
gradients = 2/tf.shape(X_3)[0] * (tf.matmul(tf.transpose(X_3), error)+al
pha*theta)
training op = tf.assign(theta, theta - learning rate * gradients)
init = tf.global variables initializer()
with tf.Session() as sess:
    sess.run(init)
    for n epochs in epochs list:
        for alpha_value in alpha list:
            for learning rate value in learning rate list:
                    for epoch in range(n epochs):
                                sess.run(training op, feed dict={X 3: X 3
_train, Y_3: y_3_train, \
                                                                 learning
_rate: learning_rate_value,alpha: alpha value})
                    train errors.append(sess.run(mse,feed dict={X 3: X 3
train, Y 3: y 3 train, \
                                                                learning
rate: learning_rate_value,alpha: alpha_value}))
                    val errors.append(sess.run(mse,feed dict={X 3: X 3 v
al, Y 3: y_3_val, \
                                                              learning ra
te: learning_rate_value,alpha: alpha_value}))
                    weights list tensor.append(theta.eval())
                    combination[counter] = (n_epochs,learning_rate_value
,alpha_value)
                    counter += 1
        ## Find the lowest validation error
    plt.plot(train errors, "r-+", linewidth=2, label="train")
    plt.plot(val errors, "b-", linewidth=3, label="val")
    legend = plt.legend(loc='upper right', shadow=True)
    counter val error = list(enumerate(val errors, 1))
    counter val error sorted = sorted(counter val error, key=lambda x:x[
```

[(1, 0.7112967302993075), (2, 0.7113041668913476), (3, 0.71138890232932 48)]

Epoch ,Learning Rate and alpha Combination (10000, 0.01, 0.1) train_error 0.727470627034165 test_error 0.7275337209461726


```
In [117]: weights_list_tensor_array = np.asarray(weights_list_tensor)
```

In [118]: weights_list_tensor_array = weights_list_tensor_array.reshape(3,9)

```
In [119]: fig = plt.figure(figsize=(10,8))
    plt.ylabel('Weights')
    plt.xlabel('alpha')
    labels = ["MedInc","HouseAge","AveRooms","AveBedrms","Population","AveOc
    cup","Latitude","Longitude"]
    for i in range(len(weights_list_tensor_array[1])):
        plt.plot([0.1,1,10],weights_list_tensor_array[:,i],'-+',label=labels
    [i-1])
        legend = plt.legend(loc='upper right', shadow=True)
```


3-4. Fit the training data using regression model with lasso (L1 penalty) regularization using TensorFlow.