A network model of the neocortex accounting for its laminar structure

Friedrich Schüßler

September 21, 2015

Supervisor: Prof. Jens Timmer

Table of contents

Central goals

Theory

Results

Conclusion

Table of contents

Central goals

Theory

Results

Conclusion

Central goals of the thesis

Implement a spiking network model of the neocortex

Tobias C Potjans and Markus Diesmann.

The cell-type specific cortical microcircuit: Relating structure and activity in a full-scale spiking network model.

Cerebral cortex, 24(3): 785-806, 2014.

Develop a mean field theory for the neocortical model

Nicolas Brunel

Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. *Journal of computational neuroscience*, 8(3):183-208, 2000.

Central goals of the thesis

Implement a spiking network model of the neocortex

Tobias C Potjans and Markus Diesmann.

The cell-type specific cortical microcircuit: Relating structure and activity in a full-scale spiking network model.

Cerebral cortex, 24(3): 785-806, 2014.

Develop a mean field theory for the neocortical model

Nicolas Brunel.

Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. *Journal of computational neuroscience*, 8(3):183-208, 2000.

Table of contents

Central goals

Theory

Results

Conclusion

Layered structure

8 Populations of size N_a

Synapse numbers C_{ab}

External input of frequency $\nu_{\rm ext}$

Layered structure

8 Populations of size N_a

Synapse numbers C_{ab}

External input of frequency $\nu_{\rm ext}$

Layered structure

8 Populations of size N_a

Synapse numbers C_{ab}

External input of frequency $\nu_{\rm ext}$

Membrane dynamics

$$au_{\mathrm{m}} \frac{\mathrm{d}V_{i}(t)}{\mathrm{d}t} = -V_{i}(t) + \frac{ au_{\mathrm{m}}}{C_{\mathrm{m}}}I_{i}(t)$$

 $V_i(t)$ Membrane potential

 au_{m} Membrane time constant

C_m Membrane capacity

 $I_i(t)$ Input current

Membrane dynamics

$$au_{\mathrm{m}} \frac{\mathrm{d} V_{i}(t)}{\mathrm{d} t} = -V_{i}(t) + \frac{ au_{\mathrm{m}}}{C_{\mathrm{m}}} I_{i}(t)$$

 $V_i(t)$ Membrane potential

 au_{m} Membrane time constant

*C*_m Membrane capacity

 $l_i(t)$ Input current

If $V_i(t)$ reaches the threshold θ :

- ► Spike is emitted
- $ightharpoonup V_i(t) = V_r$ for refractory period $au_{\rm rp}$

Synapse dynamics

Single spike

$$I_{\text{syn}}(t) = w \exp\left(\frac{-t}{\tau_{\text{syn}}}\right)$$

W

Synaptic strength

 au_{syn}

Synaptic time constant

Example

Example

Example

Statistical description

Sparse network: $\epsilon = C/N \rightarrow 0$

Statistical description

Sparse network: $\epsilon = C/N \rightarrow 0$

Input current:

$$rac{ au_{
m m}}{C_{
m m}} I_i(t) = \mu(t) + \sigma(t) \sqrt{ au_{
m m}} \eta_i(t)$$

 $\mu(t)$ Average input

 $\sigma(t)$ Amplitude of fluctuation

 $\eta_i(t)$ Gaussian white noise

Statistical description

Sparse network: $\epsilon = C/N \rightarrow 0$

Input current:

$$rac{ au_{\mathsf{m}}}{C_{\mathsf{m}}} I_i(t) = \mu(t) + \sigma(t) \sqrt{ au_{\mathsf{m}}} \eta_i(t)$$

 $\mu(t)$ Average input

 $\sigma(t)$ Amplitude of fluctuation

 $\eta_i(t)$ Gaussian white noise

Uncorrelated input: $\langle \eta_i(t) | \eta_j(t') \rangle = \delta_{ij} | \delta(t-t')$

stochastic input

membrane potential distributions

Fokker-Planck equation

$$\tau_{\rm m} \frac{\partial P(V,t)}{\partial t} = \frac{\sigma^2(t)}{2} \frac{\partial^2 P(V,t)}{\partial V^2} + \frac{\partial}{\partial V} [(V - \mu(t))P(V,t)]$$

Fokker-Planck equation

$$\tau_{\rm m} \frac{\partial P(V,t)}{\partial t} = \frac{\sigma^2(t)}{2} \frac{\partial^2 P(V,t)}{\partial V^2} + \frac{\partial}{\partial V} [(V-\mu(t))P(V,t)]$$

Self-consistency equation

$$\frac{1}{\nu_a} = \tau_{rp} + \tau_{\mathsf{m}} \sqrt{\pi} \int_{\frac{V_r - \mu_a}{\sigma_s}}^{\frac{\theta - \mu_a}{\sigma_s}} \mathrm{e}^{u^2} \left(1 + \mathsf{erf}(u) \right) \mathsf{d}u$$

Self-consistency equation

$$\frac{1}{\nu_a} = \tau_{rp} + \tau_{m}\sqrt{\pi} \int_{\frac{V_r - \mu_a}{\sigma_a}}^{\frac{\theta - \mu_a}{\sigma_a}} e^{u^2} \left(1 + \operatorname{erf}(u)\right) du$$

Statistical input:

$$\mu_a = au_{\mathrm{m}} \sum_{b \in \mathrm{pop.}} C_{ab} J_{ab} \nu_b + au_{\mathrm{m}} (C_{\mathrm{ext}})_a J \nu_{\mathrm{ext}};$$

$$\sigma_a^2 = au_{\mathrm{m}} \sum_{b \in \mathrm{pop.}} C_{ab} J_{ab}^2 \nu_b + au_{\mathrm{m}} (C_{\mathrm{ext}})_a J^2 \nu_{\mathrm{ext}}$$

Predictions

Firing rates ν_a

Predictions

Firing rates ν_a

Membrane potential distribution $P_a(V)$

Predictions

Firing rates ν_a

Membrane potential distribution $P_a(V)$

Irregularity

= Coefficient of variation of interspike intervals

$$\mathsf{CV}_{\mathsf{ISI}} = rac{\sigma_{\mathsf{ISI}}}{\mu_{\mathsf{ISI}}}$$

Table of contents

Central goals

Theory

Results

Conclusion

Implementation of spiking network model

Statistical comparison

Statistical comparison

Single neuron activity

Applying mean field theory

Varying inhibitory synaptic strength g

Table of contents

Central goals

Theory

Results

Conclusion

Summary

Implementation successful

► Results of Potjans and Diesmann reproduced

Mean field model yields good results

▶ Deviations due to neglecting correlations?

Mean field model also applicable as a tool

► Computationally much less expensive than simulation

Summary

Implementation successful

► Results of Potjans and Diesmann reproduced

Mean field model yields good results

▶ Deviations due to neglecting correlations?

Mean field model also applicable as a tool

► Computationally much less expensive than simulation

Summary

Implementation successful

► Results of Potjans and Diesmann reproduced

Mean field model yields good results

► Deviations due to neglecting correlations?

Mean field model also applicable as a tool

► Computationally much less expensive than simulation

Outlook

Extension to more distinct neuron populations

Application to cortical computation, e.g. in the visual cortex

Temporal dynamics for rate based coding

Outlook

Extension to more distinct neuron populations

Application to cortical computation, e.g. in the visual cortex

Temporal dynamics for rate based coding

Outlook

Extension to more distinct neuron populations

Application to cortical computation, e.g. in the visual cortex

Temporal dynamics for rate based coding

Acknowledgements

Thanks to

- ▶ Jens Timmer
- ► Stefan Rotter
- ► Benjamin Merkt

Appendix

Population sizes and synapse numbers

Single neuron firing rate in Brunel's model

Mean input:

$$\mu(t) = \mu_I(t) + \mu_{\rm ext}$$
 with
$$\mu_I(t) = C_E J(1 - \gamma g) \nu(t - d) \tau_{\rm m}$$
 and
$$\mu_{\rm ext} = C_E J \nu_{\rm ext} \tau_{\rm m} \,.$$

Amplitude of fluctuations:

$$\sigma^2(t) = {\sigma_I}^2(t) + {\sigma_{\rm ext}}^2$$
 with
$${\sigma_I}^2(t) = C_E \, J^2(1 + \gamma g^2) \nu(t-d) \tau_{\rm m}$$
 and
$${\sigma_{\rm ext}}^2 = C_E J^2 \nu_{\rm ext} \tau_{\rm m} \, .$$

Stationary solution

Constraints

$$\begin{split} P(\theta,t) &= 0 \\ \frac{\partial P(\theta,t)}{\partial V} &= -\frac{2\nu(t)\tau_{\rm m}}{\sigma^2(t)} \\ \frac{\partial P(V_{\rm r}^+,t)}{\partial V} &- \frac{\partial P(V_{\rm r}^-,t)}{\partial V} = -\frac{2\nu(t-\tau_{\rm rp})\tau_{\rm m}}{\sigma^2(t)} \\ \lim_{V\to -\infty} P(V,t) &= 0 \; ; \qquad \lim_{V\to -\infty} VP(V,t) = 0 \; . \end{split}$$

Solution

$$P_{0}(V) = 2 \frac{\nu_{0} \tau_{m}}{\sigma_{0}} \exp\left(-\frac{(V - \mu_{0})^{2}}{\sigma_{0}^{2}}\right) \int_{\frac{V - \mu_{0}}{\sigma_{0}}}^{\frac{\theta - \mu_{0}}{\sigma_{0}}} \Theta\left(u - \frac{V_{r} - \mu_{0}}{\sigma_{0}}\right) e^{u^{2}} du$$

Self-consistency equation – derivation

Solution

$$\begin{split} P_0(V) &= 2 \frac{\nu_0 \tau_{\rm m}}{\sigma_0} \exp\left(-\frac{(V-\mu_0)^2}{\sigma_0^2}\right) \int_{\frac{V-\mu_0}{\sigma_0}}^{\frac{\theta-\mu_0}{\sigma_0}} \Theta\left(u - \frac{V_{\rm r} - \mu_0}{\sigma_0}\right) e^{u^2} \, \mathrm{d}u \\ &\int_{-\infty}^{\theta} P_0(V) \, \mathrm{d}V + p_r = 1 \,, \end{split}$$

where

$$p_r = \nu_0 \tau_{\rm rp}$$
.

$$\Rightarrow \frac{1}{\nu_a} = \tau_{rp} + \tau_{\rm m} \sqrt{\pi} \int_{\frac{V_{r-\mu_a}}{\sigma_a}}^{\frac{\theta-\mu_a}{\sigma_a}} e^{u^2} \left(1 + \operatorname{erf}(u)\right) du$$

Predicted P(V) and CV of ISI

Membrane potential distribution:

$$P_a(V) = 2 \frac{\nu_a \tau_{\rm m}}{\sigma_a} \exp\left(-\frac{(V - \mu_a)^2}{\sigma_a^2}\right) \int_{\frac{V - \mu_a}{\sigma_a}}^{\frac{\theta - \mu_a}{\sigma_a}} \Theta\left(u - \frac{V_{\rm r} - \mu_a}{\sigma_a}\right) e^{u^2} du.$$

Irregularity:

$$CV_{ISI}^2 = 2\pi \left(\frac{\nu_a}{\tau_m}\right)^2 \int_{\frac{V_r - \mu_a}{\sigma_a}}^{\frac{\theta - \mu_a}{\sigma_a}} e^{x^2} \int_{-\infty}^{x} e^{u^2} \left(1 + \operatorname{erf}(u)\right)^2 du \ dx$$

October 21, 2016

Different synapse dynamics

Current based synapses (spiking network model):

$$I_i(t) = \sum_j w_{ij} \sum_k \exp\left(\frac{t - t_j^k - d_{ij}}{\tau_{\text{syn}}}\right)$$

Voltage based synapses (mean field theory):

$$rac{ au_{
m m}}{C_{
m m}}I_i(t)= au_{
m m}\sum_{j}J_{ij}\sum_{k}\delta(t-t_j^k-d_{ij})$$

Effective weight for mean input μ :

$$RI_e(t) = \frac{\tau_m}{C_m} w e^{\frac{t}{\tau_m}}$$
 $RI_\delta(t) = \tau_m J \delta(t)$

exponential synapse delta synapse

Effective weight for mean input μ :

$$RI_e(t) = rac{ au_{
m m}}{C_{
m m}} \, w \, e^{rac{t}{ au_{
m m}}}$$
 exponential synapse $RI_\delta(t) = au_{
m m} \, J \, \delta(t)$ delta synapse

Matching the kernels (with $k_e(t) = e^{\frac{t}{\tau_m}}$):

$$\int_0^\infty \delta(t)\,\mathrm{d}t = 1 = \int_0^\infty a_\mu k_e(t)\,\mathrm{d}t = a_\mu \tau_\mathrm{S}$$

Effective weight for mean input μ :

$$RI_e(t)=rac{ au_{
m m}}{C_{
m m}}\,w\,e^{rac{t}{ au_{
m m}}}$$
 exponential synapse $RI_\delta(t)= au_{
m m}\,J\,\delta(t)$ delta synapse

Matching the kernels (with $k_e(t) = e^{\frac{t}{\tau_m}}$):

$$\int_0^\infty \delta(t) \, \mathrm{d}t = 1 = \int_0^\infty a_\mu k_e(t) \, \mathrm{d}t = a_\mu au_\mathrm{S}$$

Matching the synapses:

$$\int_{0}^{\infty} \tau_{m} J a_{\mu} k_{e}(t) dt = \int_{0}^{\infty} \frac{\tau_{m}}{C_{m}} w k_{e}(t) dt$$

$$\Rightarrow J = \frac{w \tau_{s}}{C_{m}}$$

Effective weight for fluctuations $\sigma^2(t)$ Matching squared kernels:

$$1 = a_{\sigma}^{2} \int_{0}^{\infty} (k_{e}(t))^{2} dt$$
$$= a_{\sigma}^{2} \frac{\tau_{s}}{2}$$
$$\Rightarrow \qquad a_{\sigma}^{2} = 2/\tau_{s}$$

Effective weight for fluctuations $\sigma^2(t)$ Matching squared kernels:

$$1 = a_{\sigma}^{2} \int_{0}^{\infty} (k_{e}(t))^{2} dt$$
$$= a_{\sigma}^{2} \frac{\tau_{s}}{2}$$
$$\Rightarrow \qquad a_{\sigma}^{2} = 2/\tau_{s}$$

Matching squared synapses:

$$\int_0^\infty (\tau_{\rm m} J a_{\sigma} k_{\rm e}(t))^2 dt = \int_0^\infty \left(\frac{\tau_{\rm m}}{C_{\rm m}} w k_{\rm e}(t)\right)^2 dt$$

$$\Rightarrow J_{\rm eff}^2 = \frac{w^2}{C_{\rm m}^2} \frac{\tau_{\rm s}}{2}$$

Resulting equation for μ_a and σ_a :

$$\mu_a = \sum_{b \in \text{pop.}} (M_{\text{local}})_{ab} \nu_b + (M_{\text{ext}})_a \nu_{\text{ext}};$$

$$\sigma_a^2 = \sum_{b \in \text{pop.}} (S_{\text{local}})_{ab} \nu_b + (S_{\text{ext}})_a \nu_{\text{ext}}.$$

where

$$egin{aligned} &(M_{\mathsf{local}})_{ab} := au_{\mathsf{m}} \ C_{ab} \ J_{ab} \,; \ &(M_{\mathsf{ext}})_a := au_{\mathsf{m}} \ (C_{\mathsf{ext}})_a \ J \,; \ &(S_{\mathsf{local}})_{ab} := au_{\mathsf{m}} \ (1 + \Delta_J^2) \ C_{ab} \ (J_{\mathsf{eff}}^2)_{ab} \,; \ &(S_{\mathsf{ext}})_a := au_{\mathsf{m}} \ (1 + \Delta_J^2) \ (C_{\mathsf{ext}})_a \ J_{\mathsf{eff}}^2 \,. \end{aligned}$$

Comparing synchrony

Synchrony = Fano factor
$$\left(\frac{\sigma^2}{\mu}\right)$$
 of PSTH

Comparing synchrony

Synchrony = Fano factor $\left(\frac{\sigma^2}{\mu}\right)$ of PSTH

