Appli Poutres - Notes de développement

Paul LACORRE

Juin 2017

Table des matières

I							
	Modélisation physiqu Ł2 Hypothèses	2					
1.:	2Équations du problème	2					
	1.2.1 Calcul des efforts internes N et M	2					
	1.2.2 Calcul des déplacements horizontaux u	2					
	1.2.3 Calcul des déplacements verticaux v						
2	•						
	Implémentatio 24 Affichage de la poutre	4					
2.:	2.2Discrétisation des équations d'équilibre local						
2.:	3Détermination des efforts d'appui	4					
3							
	Bibliothèques et dépendances 4 Extensions possibles 7						
	Modélisation physique						

1 Hypothèses

- Poutre isostatique (vérifié avant chaque résolution)
- Petites déformations (la déformation n'induit pas de nouveaux efforts internes)
- Sections droites (indéformables)
- Poutres d'Euler-Bernoulli : les sections restent perpendiculaires à la ligne moyenne

2 Équations du problème

Les équations à résoudre sont :

$$\begin{cases} \frac{\mathrm{d}u}{\mathrm{d}x} &= \frac{1}{ES}N(x) \\ \frac{\mathrm{d}^2v}{\mathrm{d}x^2} &= \frac{1}{EI}M(x) \end{cases}$$

On doit avoir 1 CL sur u et 2 CL sur v.

Les deux problèmes sont clairement découplés.

2.1 Calcul des efforts internes N et M

méthode la coupur

de la sect

2.2 Calcul des déplacements horizontaux \boldsymbol{u}

On intègre la première équation entre 0 et x:

$$u(x) = u(0) + \int_0^x \frac{1}{ES} N(x) \, \mathrm{d}x$$

Cependant u(0) n'est pas forcément connu.

On pose

$$U(x) = \int_0^x \frac{1}{ES} N(x) \, \mathrm{d}x$$

ce qui est la solution lorsque u(0) = 0.

Via les données saisies par l'utilisateur, on connaît la position x_0 de la liaison qui empêche le déplacement horizontal. On impose alors de manière forte $u(x_0) = 0$:

$$u(x) = U(x) - U(x_0)$$

2.3 Calcul des déplacements verticaux v

à faire

Via les données saisies par l'utilisateur, on connaît les positions x_i de la ou des liaisons qui empêchent le déplacement vertical. On impose alors cette condition de manière forte.

Si on a une seule liaison en x_1 : la solution est définie à une constante près

$$v(x) = V(x) - V(x_1)$$

Si on a deux liaisons en x_1 et x_2 : la solution est définie à un polynôme près. On pose

$$\alpha = \frac{V(x_2) - V(x_1)}{x_2 - x_1}$$

$$v(x) = V(x) - \left(\alpha \times (x - x_1) + V(x_1)\right)$$

Implémentation

3 Affichage de la poutre

4 Discrétisation des équations d'équilibre local

On prend autant de points que la poutre fait de pixels à l'écran.

5 Détermination des efforts d'appui

On note \vec{R} , M les réactions des liaisons et \vec{F} , C les chargements. Le PFS donne :

$$\begin{cases} \vec{R} + \vec{F} = \vec{0} \\ M + C = 0 \end{cases}$$

$$\begin{cases} R_X = -F_X \\ R_Y = -F_Y \\ M = -C \end{cases}$$

L'unique CL sur u est introduite par un unique effort horizontal R_X . Les deux CL sur v et ses dérivées peuvent être appliquées par un effort vertical R_Y et par un autre effort vertical R_Y' ou un moment M.

$$\Rightarrow \begin{bmatrix} \dots & \dots & \dots \\ \dots & \dots & \dots \\ \dots & \dots & \dots \end{bmatrix} \begin{bmatrix} R_X \\ R_Y \\ R_Y' \text{ ou } M \end{bmatrix} = \begin{bmatrix} -\sum F_X \\ -\sum F_Y \\ -\sum C \end{bmatrix}$$

parler de la marge sur les co tés pour afficher l déformée Les efforts horizontaux ne génèrent pas de moments sur la poutre. Ainsi l'équilibre horizontal ne dépend que des efforts horizontaux. Il n'y a qu'une seule force de réaction horizontale.

$$R_X = -\sum F_X$$

Pour déterminer les autres efforts, on résout le système suivant par la méthode de Cramer :

$$\begin{bmatrix}
\dots & \dots \\
\dots & \dots
\end{bmatrix} \begin{bmatrix}
R_Y \\
R'_Y \text{ ou } M
\end{bmatrix} = \begin{bmatrix}
-\sum F_Y \\
-\sum C
\end{bmatrix}$$

Sur la première ligne, j-ième colonne : on a 1 si la j-ième inconnue est une force, 0 si c'est un moment. Sur la deuxième ligne, j-ième colonne : on a x la distance de la force à l'extrémité gauche de la poutre si la j-ième inconnue est une force, 1 si c'est un moment.

Exemples pour une poutre bi-appuyée (en x et x'):

$$\begin{bmatrix} 1 & 1 \\ x & x' \end{bmatrix} \begin{bmatrix} R_Y \\ R'_Y \end{bmatrix}$$

pour une poutre encastrée (en x):

$$\begin{bmatrix} 1 & 0 \\ x & 1 \end{bmatrix} \begin{bmatrix} R_Y \\ M \end{bmatrix}$$

Résolution

$$[A]\{R\} = \{F\} \Leftrightarrow \begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} \begin{bmatrix} R1 \\ R2 \end{bmatrix} = \begin{bmatrix} -\sum F_Y \\ -\sum C \end{bmatrix}$$

$$R1 = \frac{a_{01} \times \sum C - a_{11} \times \sum F_Y}{\det A}$$

$$R2 = \frac{a_{10} \times \sum F_Y - a_{00} \times \sum C}{\det A}$$

Bibliothèques	at dáman	
Bibliothedues	et debei	idances

	Nom	Version	Utilité	Source
	jQuery	3.2.1	Permet de manipuler facilement le DOM.	jquery.com
	jQuery UI	1.12.1	Permet de définir rapidement des composants d'interface	jqueryui.com
			(drag and drop, redimensionnement)	
	Touch Punch	0.2.3	Assure la compatibilité de jQuery UI avec les événements	touchpunch.furf.com
			tactiles.	
	Bootstrap	3.3.7	Framework d'interface et responsive design.	getbootstrap.com
Extensions possibles				

Extensions possibles

- Traction / compression
- Poutres hyperstatiques
- Vibrations