THE CALCULUS OF COMPUTATION

HIDENORI SHINOHARA

1. Chapter 1

Exercise (1.1).

- (a) Assume that there is a falsifying interpretation I.
 - 1. $I \models P \land Q \rightarrow P \rightarrow Q$ (assumption)
 - 2. $I \models P \land Q$ (by 1 and semantics of \rightarrow)
 - 3. $I \not\models P \rightarrow Q$ (by 1 and semantics of \rightarrow)
 - 4. $I \models Q$ (by 2 and semantics of \land)
 - 5. $I \not\models Q$ (by 3 and semantics of \rightarrow)
 - 6. $I \models \bot$ (4 and 5 are contradictory)

There is only one branch and it is closed. Thus F is valid.

Exercise (1.2).

(a) To prove that $\top \Leftrightarrow \neg \bot$, we prove that $\top \leftrightarrow \neg \bot$ is valid. Assume that there is a falsifying interpretation I such that $I \not\models \top \leftrightarrow \neg \bot$. We apply the semantics of \leftrightarrow .

The first branch is:

- 1a. $I \models \top \land \neg(\neg\bot)$
- 2a. $I \models \neg(\neg\bot)$ (by 1a and semantics of \land)
- 3a. $I \not\models \neg \bot$ (by 2a and semantics of \neg)
- 4a. $I \models \bot$ (by 3a and semantics of \neg)

The second branch is:

- 1b. $I \models \neg \top \land \neg \bot$
- 2b. $I \models \neg \top$ (by 1b and semantics of \land)
- 3b. $I \not\models \top$ (by 2b and semantics of \neg)
- 4b. $I \models \top$ (Under any interpretation, \top has value true)
- 5b. $I \models \bot$ (3b and 4b are contradictory)

Thus both branches are closed, and thus $\top \leftrightarrow \neg \bot$ is valid.

Exercise (1.5).

- (a) By using the list of template equivalences on P.19, we can obtain the negation normal form of the original formula as following:
 - $\bullet \ F: \neg (P \to Q).$
 - $\bullet \ F' : \neg (\neg P \lor Q).$
 - $F'': \neg(\neg P) \land \neg Q$.
 - $F''': P \land \neg Q$.

The only connectives in F''' are \neg , \wedge , and \vee and the negations appear only in literals. Thus F''' is in NNF. Furthermore, F''' is actually in CNF and DNF since it is the disjunction of one conjunction, and it is the conjunction of two clauses.

Exercise (1.6).

- (a) $\bigwedge_{v \in V} \bigvee_{c \in C} P_v^c$.
- (b) $\bigwedge_{(v,w)\in E} \bigvee_{c_1\neq c_2\in C} (\neg P_v^{c_1} \vee \neg P_w^{c_2}).$
- (c) $\bigwedge_{(v,w)\in E} \bigvee_{c\in C} (\neg P_v^c \vee \neg P_w^c).$
- (d) No clue. The problem statement seems too ambiguous.
- (e) They are already in CNF. We have $N \cdot M$ variables and $N \cdot M + K \cdot M \cdot (M-1) + K \cdot M$ clauses in the encoding above.

Exercise (1.7).

- (a) $P_{(F)}$ contains 1 term. Each $\mathbf{En}(G)$ contains $1, 1, 2 \cdot 2 \cdot 3, 1, 1, 2 \cdot 2 \cdot 3, 3 \cdot 2 \cdot 2$ clauses. Thus the expansion would contain 1728 clauses, which is the product of the numbers of clauses.
- (b)
- (i) 2^n clauses.
- (ii) $\operatorname{\mathbf{Rep}}(F_n) = P_{F_n}$, so it is just one clause. We have the subformula set $S_{F_n} = \{Q_1, \dots, Q_n\} \cup \{R_1, \dots, R_n\} \cup \{Q_i \wedge R_i \mid 1 \leq i \leq n\}$. We will consider how many clauses $\operatorname{\mathbf{En}}(G)$ has for each $G \in S_{F_n}$.
 - For each Q_i and R_i , we have $\mathbf{En}(Q_i) = \mathbf{En}(R_i) = \top$. This adds 2n clauses to F'.
 - $\mathbf{En}(Q_i \wedge R_i)$ contains 3 clauses as defined on P.25. This adds 3n clauses to F'.

Therefore, in total, F' contains 1+2n+3n=5n+1 clauses. Note that 5n+1 < 30n+2 where 30n+2 is the upper bound described on P.26.

I am not sure if a subformula can be bigger. In other words, for instance, should $(Q_1 \wedge R_1) \vee (Q_2 \wedge R_2)$ be a subformula of F_3 ? It seems unnecessary to include such cases for the purpose of CNF conversion, but it seems to be more consistent with the definition of a subformula.

(iii) When $n \le 4$, 2^n is smaller than 5n + 1. For $n \ge 5$, 2^n is bigger than 5n + 1.