Digital Electronics and Microprocessors

Class 12

CHHAYADEVI BHAMARE

Synthesis of a sequential circuits(Design Procedure)

- □ Design Procedure for sequential circuit
 - The word description of the circuit behavior to get a state diagram;
 - State reduction if necessary;
 - Assign binary values to the states;
 - Obtain the binary-coded state table;
 - Choose the type of flip-flops;
 - Derive the simplified flip-flop input equations and output equations;
 - Draw the logic diagram;

Design 1:- design a sequence detector to detect the sequence 1010 and say that overlapping is permitted i.e if input sequence is 01101010 the corresponding output is 00000101

- □ Step1:-word statement of a problem
 - Suppose we want to design a sequence detector to detect the sequence 1010 and say that overlapping is permitted i.e if input sequence is 01101010 the corresponding output is 00000101
- □ Step 2 and 3:- state diagram and state table

State diagram

State table

PS	NS	5 , Z	
	X=0	X=1	
A	A,0	В,0	
В	C,0	В,0	
С	A,0	D,0	
D	C,1	B,0	

Step 4:-state reduction

□ this machine is already in reduced standard form

Step 5:-state	assignment	and tra	nsition	and o/	p table
---------------	------------	---------	---------	--------	---------

PS	NS	5	O/P		
	X=0	X=1	X=0	X=1	
A → 00	00	01	0	0	
B → 01	10	01	0	0	
C → 10	00	11	0	0	
D → 11	10	01	1	0	

Step6:-Choose type of flip flop and form the excitation table

PS		I/P NS		IS	I/P toFF		O/P
Y1	Y2	X	Y 1	Y2	D1	D2	Z
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	0	1	0	0
0	1	1	0	1	0	1	0
1	0	0	0	0	0	0	0
1	0	1	1	1	1	1	0
1	1	0	1	0	1	0	1
1	1	1	0	1	0	1	0

expression

Z=Y1Y2X'

Step8:- implementation

Mealy machine

Shift register counters (7-21 T1)

- □ Ring counter
- □ Johnson counter

Ring counter

- a circular shift register w/ only one flip-flop being set at any particular time, all others are cleared (initial value = $1\ 0\ 0\ ...\ 0$)
- The single bit is shifted from one flip-flop to the next to produce the sequence of timing signals.

 A_2	A_2	A_1	A_0	
 1	0	0	0	1000
0	1	0	0	0001
0	0	1	0	
0	0	0	1	0010
1	0	0	0	

Ring counter

Johnson Counter

Ring counter vs. Switch-tail ring counter

- Ring counter
 - \Box a k-bit ring counter circulates a single bit among the flip-flops to provide k distinguishable states.
- Switch-tail ring counter (Johnson Counter)
 - is a circular shift register the complement output of the last flip-flop connected to the input of the first flip-flop
 - a k-bit switch-tail ring counter will go through a sequence of 2k distinguishable states. (initial value = $0 \dots 0$)

Johnson Counter

(a) Four-stage switch-tail ring counter

Cognopeo	Flip-flop outputs				
Sequence number	Ā	В	С	Ε	
1	0	0	0	0	
2	1	0	0	0	
3	1	1	0	0	
4	1	1	1	0	
5	1	1	1	1	
6	0	1	1	1	
7	0	0	1	1	
8	0	0	0	1	

Fig.
Construction of a Johnson counter

(b) Count sequence

SHIFT REGISTER VOCABULARY

- **REGISTER-** group of flip flops capable of storing data.
- SERIAL DATA TRANSMISSION- transfer of data from one place to another one bit at a time.
- PARALLEL DATA TRANSMISSION- simultaneous transfer of all bits of a data word from one place to another.
- SISO- SERIAL IN/SERIAL OUT- type of register that can be loaded with data serially and has only one serial output.
- SIPO- SERIAL IN/PARALLEL OUT- type of register that can be loaded with data serially and has parallel outputs available.
- PISO- PARALLEL IN/SERIAL OUT- type of register that can be loaded with parallel data and has only one serial output.
- PIPO- PARALLEL IN/PARALLEL OUT- type of register that can be loaded with parallel data and has parallel outputs available.