Анализа 2 – основне идеје доказа важнијих теорема и тврђења

1 Диференцирање

1.1 Диференцирање у нормираним векторским просторима

Теорема. (Извод сложене функције) Нека су X, Y, и Z нормирани векторски простори, $V \subseteq X, W \subseteq Y$ отворени скупови, $f: V \to Y, g: W \to Z$ и $a \in V, f(a) \in W$. Тада важи:

$$f\mathcal{D}a \wedge g\mathcal{D}f(a) \implies g \circ f\mathcal{D}a$$

и при томе је

$$D(g \circ f)(a) = Dg(f(a)) \cdot Df(a)$$

 \mathcal{A} оказ. Доказ следи из дефиниције извода пресликавања и чињенице да је o(O(h)) = o(h).

Теорема. (Извод инверзне функције) Нека су X и Y нормирани векторски простори, $V \subseteq X$ отворен скуп, $a \in V$ и $f: V \to Y$ пресликавање са следећим својствима:

- 1) $f\mathcal{D}a$
- 2) Df(a) инвертибилан
- 3) у некој W околини тачке b := f(a) пресликавање f има инверзно
- 4) $f^{-1}Cb$

Тада је $f^{-1}\mathcal{D}b$ и важи:

$$(Df^{-1})(b) = (Df(a))^{-1}$$

Доказ. Нека је $b = f(a), a = f^{-1}(b)$. Показати да, пошто су транслације хомеоморфизми, важи f(a+h) = b+t и $f^{-1}(b+t) = a+h$. Из непрекидности f^{-1} у b закључити чему је једнако $f^{-1}(b+t) - f^{-1}(b)$. Из услова $f\mathcal{D}a$ закључити чему је једнако $(f'(a))^{-1}t$ као и да је o(h) = o(t). На основу претходних корака, и дефиниције извода, извести коначни закључак.

Тврђење. Ако је простор Банахов (комплетан нормиран векторски простор), скуп GL(X) је отворен у $\mathcal{L}(X;X)$.

Доказ. Посматрати $A \in GL(X)$ и $h \in \mathcal{L}(X;X)$. Доказати да је и $A+h \in GL(X)$ односно да постоји $(A+h)^{-1}$. Искористити комплетност домена као и дефинисаност норме.

Напомена. Претходно тврђење важи и у нешто општијем случају, за $\mathcal{L}(X;Y)$, уколико је X Банахов, а Y нормирани векторски простор.

Теорема. (Теорема о коначном прираштају) Нека су X и Y нормирани векторски простори, $V \in X$ отворен и $f: V \to Y$ непрекидно. Ако је

$$[a, a+h] = \{a+th \mid 0 \le t \le 1\} \subseteq V$$

и ако је пресликавање f диференцијабилно у свим тачкама скупа

$$|a, a + h| = \{a + th \mid 0 < t < 1\}$$

онда важи

$$||f(a+h) - f(a)|| \le \sup_{x \in]a, a+h[} ||f'(x)|| \cdot ||h||$$

Доказ. Доказати да теорема важи на сваком сегменту $[c_1, c_2] \subseteq]a, a+h[$. Претпоставити супротно,

 $\sup_{x \in [c_1, c_2]} \|f'(x)\| < \frac{\|\Delta f\|}{\|\Delta x\|}$

Поделити интервал $[c_1, c_2]$ на два подинтервала и применити помоћну лему на њих. Продужити поступак, формирати низ интервала. Поново применити помоћну лему. Извести контрадикцију.

Напомена. Помоћна лема из претходне теореме је следећа неједнакост:

Ако за $\alpha, \beta, \gamma, a, b, c \in \mathbb{R}_+$ важи $c \le a + b$ и $\gamma = \alpha + \beta$, онда је

$$\frac{c}{\gamma} \le \max\{\frac{a}{\alpha}, \frac{b}{\beta}\}$$

Теорема. (Ојлерова теорема) Нека је X нормирани векторски простор над \mathbb{R} . Диференцијабилна функција $f: X \to \mathbb{R}$ је хомогена степена k > 0 ако и само ако је

$$df(x) \cdot x = kf(x)$$

Доказ. Дефинишати помоћну функцију $\psi(t)=f(tx)-t^kf(x)$ и одатле доказати оба смера еквиваленције.

Тврђење. $\mathcal{L}(X;\mathcal{L}(X;Y))\cong\mathcal{L}(X,X;Y)$

 \mathcal{A} оказ. Нека је $L \in \mathcal{L}(X;\mathcal{L}(X;Y))$ произвољно. Дефинисати $\tilde{L}:X\times X\to Y$ као

$$\tilde{L}(\eta,\xi) := L(\eta)(\xi)$$

Доказати да је са $\varphi(L)=\tilde{L}$ добро дефинисан тражени изоморфизам. \square

Тврђење. $fD^n a \implies D^n f(a)$ је симетрично n-линеарно пресликавање.

Доказ. Приметити најпре да је довољно доказати за транспозиције, јер оне генеришу групу пермутација. Увести

$$F_{\zeta,\eta}(t) := f(a + t(\zeta + \eta)) - f(a + t\zeta) - f(a + t\eta) - f(a)$$

и доказати да је

$$D^{2}f(a)(\zeta,\eta) = \lim_{t \to 0} \frac{F_{\zeta,\eta}(t)}{t^{2}}.$$

Извести закључак из тога, чињенице да је F симетрично по ζ и η , као и

$$D^n f(a)(\zeta_1, \zeta_2, \dots, \zeta_n) = D_{\zeta_1} D_{\zeta_2} \dots D_{\zeta_n} f(a).$$

Теорема. Нека су X, Y нормирани векторски простори, $V \subseteq X$ отворен, $a \in V$, $f\mathcal{D}^{n-1}V$ и $f\mathcal{D}^n a$. Тада је

$$f(a+h) = f(a) + f'(a)h + \dots + \frac{1}{n!}f^{(n)}(a)h^n + o(\|h\|^n), h \to 0$$

Доказ. Доказ извести индукцијом по n коришћењем Последице 2. теореме о коначном прираштају и чињенице да је $(Lx^n)' = nLx^{n-1}$.

Теорема. (Теорема о имплицитној функцији) Нека су X,Y и Z нормирани векторски простори, при чему је Y комплетан, $x_0 \in X, \ y_0 \in Y$ и $W = B]x_0; \alpha[\times B]y_0; \beta[\subseteq X \times Y.$ Претпоставимо да пресликавање $F: W \to Z$ испуњава следеће услове:

- (1) $F(x_0, y_0) = 0$
- (2) $FC(x_0, y_0)$
- (3) $D_2 F$ дефинисано на W и непрекидно у тачки (x_0, y_0)
- (4) $\exists (D_2F(x_0, y_0))^{-1} \in \mathcal{L}(Z; Y)$

Тада постоје околине U и V тачака x_0 и y_0 и пресликавање $f:U\to Y$ са својствима:

- (a) $U \times V \subseteq W$
- (б) $[(x,y) \in U \times V \text{ и } F(x,y) = 0] \iff y = f(x)$
- (B) fCx_0

Доказ. Пошто су транслације хомеоморфизми, без умањења општости претпоставити да важи $x_0=0$ и $y_0=0$. Дефинисати помоћну функцију $g_x:B]0;\beta[\to Y]$ као

$$g_x(y) := y - (D_2 F(0,0))^{-1} F(x,y).$$

Користећи Теорему о коначном прираштају доказати да је g_x контракција и да слика неки комплетан скуп у себе. Применити Банахов став о фиксној тачки. Одатле извести закључак. \Box

Теорема. (Теорема о инверзној функцији) Нека су X, Y нормирани векторски простори, при чему је Y комплетан, нека је $V \subseteq Y$ отворен скуп, $y_0 \in V$ и $g: V \to X$ пресликавање које има следећа својства:

- (1) $g \in \mathcal{D}(V;X)$
- $(2) DgCy_0$
- $(3) \exists (Dg(y_0))^{-1} \in \mathcal{L}(X;Y)$

Тада постоје околина $V_0\subseteq Y$ тачке y_0 и околина $U_0\subseteq X$ тачке $x_0:=g(y_0)$ такве да је $g:V_0\to U_0$ бијекција, $g^{-1}\mathcal{D}x_0$ и важи

$$Dg^{-1}(x_0) = (Dg(y))^{-1}.$$

Доказ. Доказ следи из Теореме о имплицитној функцији примењене на функцију F(x,y) = x - g(y).

Теорема. (Теорема о рангу) Нека је $V \subseteq \mathbb{R}^k$ отворен и $f: V \to \mathbb{R}^l$ пресликавање класе C^n , такво да је за све $x \in V$ rangDf(x) = r. Тада у околини сваке тачке $x_0 \in V$ и њене слике $y_0 = f(x_0) \in \mathbb{R}^l$ постоје локалне координате класе C^n у којима f има запис

$$f:(s_1,\ldots,s_k)\to(s_1,\ldots,s_r,0,\ldots,0).$$

Краће речено, пресликавање константног ранга r локално изгледа као пројекција на \mathbb{R}^r .

$$oldsymbol{arDelta}$$
оказ.

Тврђење. Сваки дифеоморфизам класе C^1

$$\mathbb{R}^l \supseteq V \xrightarrow{f} f(V) \subseteq \mathbb{R}^l$$

може локално да се представи као композиција l простих дифеоморфизама.

Доказ. Индукцијом по k доказати да дифеоморфизам који мења највише k координата може локално да се представи као композиција k простих дифеоморфизама.

2 Многострукости

2.1 Подмногострукости у \mathbb{R}^n и условни екстремуми

Тврђење. За $M \subseteq \mathbb{R}^{k+l}$ следећа тврђења су еквивалента:

- (a) М је k димензиона подмногострукост класе C^p
- (б) $(\forall p \in M)$ постоје отворене околине $p \in V$ и $0 \in U$ у \mathbb{R}^{k+l} и дифеоморфизам $g: U \to V$ класе C^p такав да је $g(V \cap M) = U \cap (\mathbb{R}^k \times 0)$
- (в) $(\forall p \in M)$ постоје отворене околине $p \in V$ у \mathbb{R}^{k+l} и $0 \in U$ у \mathbb{R}^k и имерзија $h : D \to V$ класе C^p таква да је $h : D \to V \cap M$ хомеоморфизам у релативној топологији на $V \cap M$ наслеђеној из R^{k+l} .

 \mathcal{A} оказ. Како је k-дим подмногострукост у \mathbb{R}^{k+l} локално задата једначином f(x)=0, где је f сумбмерзија и rangDf(x)=l, из Теореме о рангу закључити да је могуће изабрати локалне координате у којима f има запис

$$f(x_1,\ldots,x_{k+l})=(x_1,\ldots,x_l).$$

Одатле директно закључити (б). Уз помоћ претходног, дефинисати тражену имерзију и закључити (в).

Тврђење. Нека је $h: D \to M$ локална параметризација околине тачке p = h(0) и нека је $f: V \to \mathbb{R}^l$ субмерзија таква да је $M \cap V = f^{-1}(0)$. Тада важи да је $T_pM = \ker Df(p)$.

Доказ. Диференцирањем $f(h(t)) \equiv 0$ у тачки t=0 и применом правила за извод композиције пресликавања закључити да је $T_pM \subseteq \ker Df(p)$. Одатле, применом Прве теореме о изоморфизму на пресликавање Df(p) закључити да важи једнакост.

Теорема. Нека је $V \in \mathbb{R}^n$ отворен скуп, $f: V \to \mathbb{R}$ функција класе C^1 и $M \subseteq V$ глатка подмногострукост. Да би тачка $p \in M$ била тачка условног локалног екстремума функције $f|_M$ неопходно је да буде испуњен бар 1 од следећих услова:

- (a) df(p) = 0 (тj. p је критична тачка за f)
- (б) $T_pM \subseteq T_pS$, где је $S := \{x \in V | f(x) = f(p)\}$

2.2 Апстрактне многострукости

Тополошки простор M је тополошка многострукост ако . . .