FFT

Find k^{th} smallest element:

fxn select(A[0..n-1],k)
 if n=1, return A[0]
 pick some v=A[i]
 A< : entries < v, length n<
 A= : entries = v, length n=
 A> : entries > v, length n>
 if k < n<, select(A<,k)
 if n< <= k < n>, return v
 else select(A>,k-n<-n=)</pre>

PARALLEL COMPUTING

Essentially, you have O(work done * num of sequential levels + work done * num of parallelized levels). If you have $p \geq n$, then you do $\frac{f(n)}{p}$ work at each part at $\log p$ levels. If p < n, then you have $\frac{f(n)}{p}$ work at $\log p$ parallelized levels + $\frac{f(n)}{p}$ work done at $\log \frac{n}{p}$ sequential levels.

RECURRENCES

Given f(x), g(x): f = O(g) if $\frac{f}{g} \leq \text{constant}$ (has upper bound). This means that $g = \Omega(f)$. $f = \Theta(g)$ means that f = O(g) and g = O(f) (f and g differ by constant factor). n^a dominates n^b if a > b. Any exponential dominates any polynomial $3^n > n^5$. Any polynomial dominates any $\log (n > (\log n)^3, n^2 > n \log n)$. $f_1 = O(g_1)$ and $f_2 = O(g_2) \to f_1 + f_2 = O(g_1 + g_2)$ (same with multiplication). $\log(n) = O(n)$. if $\frac{f(n)}{g(n)} \to \text{finite nonzero constant as } n \to \infty$, then $f = \Theta(g)$. If $\frac{f(n)}{g(n)} \to 0$ as $n \to \infty$, then f = O(g) but not $\Omega(g)$. If you have confusing exponents, try taking the log of both sides.

$$T(n) = \begin{cases} \Theta(f(n)) & \text{if } f(n) = \Omega(n^d) \quad d > \log_b a \\ \Theta(f(n)\log n) & \text{if } f(n) = \Theta(n^d) \quad d = \log_b a \\ \Theta(n^{\log_b a}) & \text{if } f(n) = O(n^d) \quad d < \log_b a \end{cases}$$

Compare f(n) to $n^{\log_b a}$. This lets you know which one of these cases you want to choose d to fit.

SUMMATIONS

$$\sum_{i=0}^{n} = \frac{n(n+1)}{2} \sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \sum_{k=0}^{n-1} ar^k = a\frac{1-r^n}{1-r} \sum_{i=1}^{\log n} n = n\log n \sum_{i=1}^{n} \frac{1}{2^i} = 1 - \frac{1}{2^n}$$

When doing FFT, you evaluate your polynomial at the n^{th} roots of unity up to the closest power of 2: $\{1, i, -1, -i\}$ for F_4 . Do do the *inverse* FFT, evaluate it at the complex conjugate of that same vector: $\{1, -i, -1, i\}$ for F_4 . We do y = Fx to change polynomial from coefficients x to values y.

fxn FFT(A,w):

in: coefficient representation of polynomial

A(x) of degree <= n-1, w=nth root of unity
out: value representation A(w^0)..A(w^n-1)
if w=1, return A(1)
express A(x) in form A_e(x^2) + xA_0(x^2)

FFT(A_e,w^2) to evaluate A_e at even powers of w

FFT(A_o,w^2) to evaluate A_o at even powers of w

for j=0..n-1:

compute A(w^i) = A_e(w^2i)+w^i*A_o(w^2i)

compute $A(w^j) = A_e(w^2j)+w^j*A_o(w^2j)$ return $A(w^0)...A(w^n-1)$

FFT example on $P(x) = 2x^0 + 3x^1 + 4x^2 + 5x^3$. Rewrite as even and odd terms: $P(x) = (2x^0 + 4x^2) + x(3x^0 + 5x^2)$. To make a recursive call here, we need to have P(x) with degree < 2, because we're moving from F_4 to F_2 . We divide the exponents of $P_{\text{even,odd}}$ by 2, then plug in x^2 to preserve the polynomial. $P(x) = P_{\text{even}}(x^2) + xP_{\text{odd}}(x^2)$. Evaluate at the 2^{th} roots of unity 1, -1, then we can evaluate P(1, i, -1, -i) by using the fact that each of those squared is either 1 or -1.

GRAPHS

To find source, run DFS and the vertex w/ largest post[v] is in a source SCC. To find sink, do the same process on same graph w/ edges reversed. The source in G_R will be a sink in G.