Evolving Therapeutic Strategies in Polycythemia Vera (PV): Novel Agents in Focus

Alessandro Vannucchi, MD

Department of Experimental and Clinical Medicine
University of Florence
Florence, Italy

Natural History of PV

Myelofibrosis & leukemia

Survival in PV Is Significantly Reduced Compared to Control Population

PMF, primary myelofibrosis

Tefferi A, et al. Blood. 2014 July18. [Epub ahead of print]

Goals of Therapy in Patients With PV

Philadelphia-Negative Classical Myeloproliferative Neoplasms (MPN): Critical Concepts and Management Recommendations

- To avoid first occurrence and/or recurrence of thrombotic and bleeding complications
- To minimize the risk of acute leukemia and post-PV myelofibrosis
- To control systemic symptoms
- To treat complications (thrombosis and hemorrhage)
- To manage risk situations (eg, pregnancy, surgery)

Recommendations for First-Line Therapy

- Manage generic cardiovascular risk factors
- Low-dose aspirin to all

Low risk Phlebotomies only

High risk* Hydroxyurea (HU)** / interferon-α

± phlebotomies

Elderly* Busulfan

^{*} High risk patients are older than 60 yr and/or have a history of thrombotic events **Use with caution in young patients (<40 years)

ELN Criteria for Resistance / Intolerance to Hydroxyurea

Target -1	Target -2	Target -3	Toxicity	Dose / time	
Need of phleboton to maintain hemat				After 3 months of at least 2 g/d HU	
	Platelets (PLT) >400x10 ⁹ VBC >10x10 ⁹ /L	⁹ /L and		After 3 months of at least 2 g/d HU	
Spleen reduction by <50% or					
		No complete relief		After 3 months of at least 2 g/d HU	
			ANC <10 ⁹ /L or PLT <100x10 ⁹ /L or	At the lowest dose required to achieve	
			Hb <100g/L	complete or partial hematologic response (ELN)	
			Leg ulcers or other unacceptable HU-related toxicities*	At any dose of HU	

^{*}Mucocutaneous, gastrointestinal, pneumonitis, fever

Barosi G, et al. *Br J Haematol.* 2010;148(6):961-963.

Resistance to Hydroxyurea Adversely Affects Survival and Disease Progression in PV

- Resistance and intolerance to hydroxyurea occurred in 11% and 13% of 261 PV patients
- Resistance to hydroxyurea implied a 5.6 fold increase in the risk of death and 6.8 fold increase in the risk of transformation

Second-Line Therapy: Current Drug Options

- Interferon-α, if HU resistant/intolerant
- Hydroxyurea, if IFN-α resistant/intolerant
- [Pipobroman] busulfan [32P]

What Are the Novel Agents in Focus for PV, and for Whom?

- JAK inhibitors
 They inhibit signaling from activated JAK2 (either wild type [WT] and V617F mutated)

HDAC Inhibitor Givinostat (ITF2357) Has Direct Inhibitory Activity on JAK2 V617F Cells

- GVS is more cytotoxic on JAK2 V617 than JAK2 WT cell lines
- Low doses of GVS inhibit proliferation and erythroid differentiation of primary MPN cells
- GVS does not affect JAK2 mRNA levels but impairs JAK2 half-life
- Low doses of GVS impair JAK/STAT signaling by downregulating JAK2 and p-JAK2 levels

GVS, givinostat

A Pilot Study of Givinostat in Patients With JAK2 V617F Positive MPN

		Clinical response in PV / ET patients	
	Baseline	Week 12	Week 24
HCT >45%	5/13	5/12	4/11
Phlebotomy	7/13	2/12	2/11
Platelets ≥450 x10 ⁹ /L	11/13	6/12	6/11
Median (range)	865 (347-1458)	565 (279-1071)	453 (233-1602)
WBC ≥10 x10 ⁹ /L	11/13	7/12	7/11
Median (range)	16 (4.9-45)	11 (4-32)	13.3 (3.6-35)
Splenomegaly	8/13	3/12	3/11
Pruritus	11/13	2/12	1/11

Givinostat Synergizes With Hydroxyurea

- HU synergizes with GVS in reducing proliferation of JAK2 V617F-mutated cell lines
- Synergism occurs through caspase 3 activation and inhibition of p21CDKN1A induction

Amaru Calzada A, et al. Exp Hematol. 2013;41(3):253-260.

A Phase II Study of GVS in Combination With HU in PV Patients Unresponsive to HU Monotherapy

Finazzi G, et al. *Br J Haematol.* 2013;161(5):688-694.

Slide 13

editorial, please change die into day Sanneke Koekkoek, BSN, OCN; 14-10-2014 SKB07

SKB08

change die into day Sanneke Koekkoek, BSN, OCN; 14-10-2014

A Phase II Study of GVS in Combination With HU: Response and Safety

	50 mg/day	100 mg/day
Overall response	11 PR = 50%	1 CR + 9 PR = 45%
Hct normalization	28%	42%
WBC normalization	25%	36%
Platelets normalization	36%	20%
Spleen normalization	0%	7%
Pruritus > grade 2 normalization	64%	80%
AE ≥ grade 2	32%	36%
Drop out	9%	14%

PR, partial response; CR, complete response

Finazzi G, et al. *Br J Haematol.* 2013;161(5):688-694.

A Phase II Study of Vorinostat (MK-0683) in Patients With PV and ET

- <u>Primary objective</u>: Clinicohematological response per the ELN response criteria at the end of the intervention and observation period using vorinostat monotherapy
- <u>Second objective</u>: To investigate whether vorinostat influenced the JAK2 mutant allele burden

A Phase II Study of Vorinostat (MK-0683) in Patients With PV and ET: Clinical Responses

- End of intervention
 - Intention-to-treat (ITT) analysis: 35% responses
 (3 in CR, 19 in PR) according to ELN
- End of observation
 - ITT analysis: 9.5% responses (2 in CR, 4 in PR)
 (only patients treated with vorinostat in the intervention period)

A Phase II Study of Vorinostat (MK-0683): Effects on JAK2V617F Burden

CHANGES IN JAK2 V617F ALLELE BURDEN

- Sixty-five percent experienced a decrease in JAK2 V617F allele burden (P = .006). However, the median decrease was only 5.6%
- At end of observation period, no difference from baseline values
- No JAK2 positive patients experienced a major molecular response defined as undetectable JAK2V617F by qPCR

Andersen CL, et al. *Br J Haematol.* 2013;162(4):498-508.

Phase II Study of Ruxolitinib in Patients With Advanced PV

Eligibility criteria:

- Refractory or intolerant to HU or HU contraindicated
- Hct >45% or phlebotomy 2 times in last 6 months, with at least one phlebotomy in last 3 months

 Patients received ruxolitinib for a median of 152 weeks (range, 31-177 weeks)

Phase II Study of Ruxolitinib in Patients With Advanced PV: Main Results

- Hematocrit <45% without phlebotomy was achieved in 97% of patients by week 24
- Among patients with palpable splenomegaly at baseline, 44% and 63%, respectively, achieved nonpalpable spleen at weeks 24 and 144
- Thrombocytopenia and anemia were the most common adverse events. Thrombocytopenia of grade 3 or anemia of grade 3 occurred in 3 patients each (9%) (1 patient had both) and were managed with dose modification

Reduction in PV-Associated Symptoms With Ruxolitinib Therapy

Decline in *JAK2* V617F Allele Burden Over Time Under Ruxolitinib Treatment

RESPONSE Study Design

- Ruxolitinib-randomized patients were individually titrated for efficacy and safety (to a maximum of 25 mg BID)
- Investigator-selected best available therapy (BAT) as monotherapy (hydroxyurea, IFN/peg-IFN, anagrelide, pipobroman, IMIDs, or observation); BAT could be changed in case of lack of response or BAT-related toxicity requiring drug discontinuation

^aThe primary analysis occurred after all patients completed week 48.

Efficacy Measures and Endpoints

- Primary endpoint (composite): Percentage of patients who achieved both Hct control and spleen response at week 32
 - Hct control
 - Absence of phlebotomy eligibility from week 8 to 32, with only 1 postrandomization phlebotomy allowed prior to week 8
 - Phlebotomy eligibility defined as Hct >45% and ≥3% higher than baseline or >48%
 - Spleen response
 - ≥35% reduction from baseline in spleen volume as assessed by MRI
- Key secondary endpoints
 - % of patients who maintained primary response at week 48
 - % of patients who achieved complete hematologic remission (CHR) at week 32
 - CHR = Hct control, PLT count ≤400 x 10⁹/L, and WBC count ≤10 × 10⁹/L
- Other endpoints
 - Durability of CHR at week 48
 - Symptom improvement by MPN-SAF diary
 - Safety

Primary Response at Week 32

77% of patients randomized to ruxolitinib met at least 1 component of the primary endpoint

SV, spleen volume

Duration of Primary Response

Only 1 patient lost primary response 37.1 weeks after start of that response

The probability of maintaining primary response for 1 year was 94%

Complete Hematologic Remission at Week 32

88.5% of patients who achieved CHR had a durable response at week 48

CHR is defined as Hct control, PLT count ≤400 × 10⁹/L, and WBC count ≤10 × 10⁹/L.

^bP value, odds ratio and 95% CI were calculated using stratified exact Cochran-Mantel-Haenszel test by adjusting for the WBC/PLT status (abnormal vs normal) at baseline. WBC/PLT status was defined as abnormal if WBC count was >15 × 10⁹/L, and/or PLT count >600 × 10⁹/L.

Improvement in Symptoms (Week 32)

Percentage of patients with a ≥50% improvement in MPN-SAF symptom score at week 32^a

MPN-SAF, Myeloproliferative Neoplasm Symptom Assessment Form

RESPONSE: Additional Findings

- The rate of thromboembolic events was lower in the ruxolitinib group (1 thrombosis compared with 6 thromboses in the BAT arm)
- Ruxolitinib was generally well tolerated
 - 85% of patients in the ruxolitinib arm were still on treatment at a median follow-up of 81 weeks
 - Most adverse events were grade 1/2, and few patients developed grade 3/4 cytopenias
- The safety profile of ruxolitinib in this study is generally consistent with that observed in the phase III COMFORT studies^{1,2} of ruxolitinib for the treatment of MF

Concluding Key Points

- Limited choice of conventional treatments, but effective and well tolerated in most patients
- Role of IFN to be clearly assessed as studies in PV are underway
- In need of alternative treatments for selected categories of patients, including those resistant / refractory / intolerant to best available therapy
- JAK inhibitor(s) are promising therapies for selected patient categories