EC2101: Microeconomic Analysis I

The Big Picture

$$\max_{x,y} U(x,y)$$

s.t. $p_x x + p_y y = M$

Market Equilibrium

Supply

$$\min_{L,K} LRTC = wL + rK$$
s.t. $f(L,K) = Q_0$

Partial Equilibrium Analysis: Market Structure

- Perfectly Competitive Markets
- Monopoly
- Monopolistic Competition
- Oligopoly

Lecture 10

Perfect Competition

- Accounting Profit vs. Economic Profit
- Perfect Competition in the Short Run
 - SR Profit-Maximizing Output Choice
 - SR Supply Curve
 - SR Market Equilibrium
 - Producer Surplus in the SR

Where are we?

Supply
Profit Maximization
Supply Curve

Competitive Market Equilibrium

Perfectly Competitive Markets

- The industry is fragmented.
 - Thus firms and consumers are price-takers.
- The product is homogeneous.
 - The products produced by different firms are identical.
- There is perfect information on prices.
 - Thus there is a single market price.
- Every firm has equal access to technology and inputs.
 - Thus the market is characterized by free entry (and exit).

Example: Catfish Farming Industry in the U.S.

- The industry is fragmented.
 - There are over 1,000 catfish farms.
- The product is homogeneous.
 - The catfish produced by different farms are indistinguishable.
- There is perfect information on prices.
 - All buyers and sellers know the prices charged by all sellers.
- Every firm has access to the same technology and inputs.
 - The production technology is well understood.

Short Run vs. Long Run

- In the short run:
 - At least one input is fixed.
 - Firms choose the level of output to maximize profit.
- In the long run:
 - All inputs are adjustable.
 - Firms choose the level of output to maximize profit.
 - Firms decide whether to enter or exit the market.

Accounting Profit vs. Economic Profit

Accounting Profit vs. Economic Profit

- Accounting Profit
 - = Total Revenue Explicit Costs
- Economic Profit
 - = Total Revenue (Explicit Costs + Implicit Costs)

Accounting Profit vs. Economic Profit: Example

- Suppose you own and run a small software development firm.
- In 2020, your total revenue was \$400,000.
- You incurred explicit costs of \$250,000 for wages, supplies, rent, utilities, etc.
- Your accounting profit is:
 - -\$400,000 \$250,000 = \$150,000

Accounting Profit vs. Economic Profit: Example

- Your best alternative is to work for Google for an annual salary of \$150,000.
 - I.e., your implicit cost is \$150,000.
- Your economic cost / opportunity cost is:
 - **\$250,000 + \$150,000 = \$400,000**
- Your economic profit is:
 - -\$400,000 \$400,000 = \$0
- The money you make running your own firm is the same as the money you could have made working for Google.

Economic Profit

Zero economic profit

All resources (entrepreneur's time, assets, capital)
are getting returns that are equivalent to
the returns from the best alternative.

Positive economic profit

 The business is delivering returns that are higher than the returns from the best alternative.

Negative economic profit

 The resources could be used somewhere else to generate higher returns.

Exercise 10.1

Accounting Profit vs. Economic Profit

The rent on office space has just decreased by \$500 a month. How does accounting profit change? How does economic profit change?

- (a) You rent your office space.
- (b) You own your office space.

Short-Run Profit-Maximizing Output Choice

Profit and Revenue

The firm chooses Q to maximize profit.

$$\pi(Q) = TR(Q) - TC(Q)$$

Total Revenue:

$$TR(Q) = P(Q) \cdot Q$$

Marginal Revenue:

$$MR(Q) = \frac{dTR(Q)}{dQ}$$

- The rate at which total revenue changes with output.
- The slope of the total revenue curve.

Profit Maximization

To maximize profit, we solve:

$$\max_{Q} \pi(Q) = TR(Q) - TC(Q)$$

First-order condition:

$$\pi'(Q) = 0$$

$$\frac{d\pi(Q)}{dQ} = 0$$

$$MR(Q) - MC(Q) = 0$$

Rearranging, we have:

$$MR(Q) = MC(Q)$$

Profit-Maximizing Condition in a Perfectly Competitive Market

- Firms take the market price p as given.
- Total revenue is linear in output:

$$TR(Q) = pQ$$

- The firm can sell as many units as it wants at the market price.
 - Thus marginal revenue equals price:

$$MR(Q) = p$$

To maximize profit:

$$MR(Q) = MC(Q)$$

$$p = MC(Q)$$

Profit Maximization: Example

Suppose the firm's short-run total cost curve is:

$$SRTC(Q) = 25 + Q^2$$

Therefore, the short-run marginal cost is:

$$SRMC(Q) = 2Q$$

To maximize profit,

$$p = SRMC(Q)$$
$$p = 2Q$$

• If p = 12, the profit-maximizing Q is:

$$12 = 2Q$$
$$Q = 6$$

There may be more than one output level at which p = SRMC

Second-Order Condition

 To ensure that we are indeed maximizing profit, we need the second-order condition:

$$\frac{d\left(\frac{d\pi(Q)}{dQ}\right)}{dQ} \le 0$$

$$\frac{d\left(MR(Q) - MC(Q)\right)}{dQ} \le 0$$

$$\frac{dMR(Q) - dMC(Q)}{dQ} \le 0$$

Second-Order Condition

Second-order condition:

$$\frac{dMR(Q)}{dQ} - \frac{dMC(Q)}{dQ} \le 0$$

• Since
$$MR(Q) = p$$
,
$$\frac{dMR(Q)}{dO} = 0$$

Therefore,

$$\frac{dMC(Q)}{dQ} \ge 0$$

There may be more than one output level at which p = SRMC

Profit Maximization: When p > SRMC

- Suppose p = 12, and the firm produces Q = 2.
- MR = p = 12
 - If the firm increases the production level,
 total revenue increases at a rate of 12.
- $SRMC = 2Q = 2 \cdot 2 = 4$
 - If the firm increases the production level,
 total cost increases at a rate of 4.
- When p > SRMC,
 total revenue increases faster than total cost
 as the production level increases.

Profit Maximization: When p < SRMC

- Suppose p = 12, and the firm produces Q = 8.
- MR = p = 12
 - If the firm decreases the production level,
 total revenue decreases at a rate of 12.
- $SRMC = 2Q = 2 \cdot 8 = 16$
 - If the firm decreases the production level,
 total cost decreases at a rate of 16.
- When p < SRMC, total revenue decreases slower than total cost as the production level decreases.

Profit Maximization

- If the firm can increase profit by either:
 - producing more when p > SRMC or
 - producing less when p < SRMC
 - Then the firm must be maximizing profit when producing at an output level such that p = SRMC.

Short-Run Profit-Maximizing Output Choice

Suppose a firm in a perfectly competitive market has a short-run total cost curve of $SRTC(Q) = \frac{1}{2}Q^2 - 10Q + 800$. The market price of the output is p = 20.

- (a) Write down the firm's profit-maximization problem.
- (b) What is the firm's optimal level of output?
- (c) Verify that your answer in (b) is indeed profit maximizing.
- (d) Calculate the firm's profit.

Short-Run Profit-Maximizing Output Choice

Short-Run Supply Curve

Non-Sunk Cost vs. Sunk Cost

- The fixed cost may or may not be sunk.
- Total Non-Sunk Cost (TNSC):
 - Variable Cost + Non-Sunk Fixed Cost
- Total Sunk Cost (TSC):
 - Sunk Fixed Cost
- If all of the fixed cost is non-sunk,

$$TNSC = VC + FC = SRTC$$

If all of the fixed cost is sunk,

$$TNSC = VC$$

SRMC intersects ANSC at the minimum point of ANSC

Should the firm produce at all?

If the firm does not produce any output,

$$\pi(Q=0)=0-TSC$$

If the firm produces output,

$$\pi(Q > 0) = TR(Q) - TNSC(Q) - TSC$$

The firm produces output only if

$$TR(Q) - TNSC(Q) - TSC \ge -TSC$$

$$TR(Q) \ge TNSC(Q)$$

Should the firm produce at all?

- Recall that:
 - TR(Q) = pQ
 - $TNSC(Q) = ANSC(Q) \times Q$
- The firm produces output only if

```
TR(Q) \ge TNSC(Q)
pQ \ge ANSC(Q) \times Q
p \ge ANSC(Q)
```

When should the firm stop producing?

Profit-Maximizing Conditions in the Short Run

- When $p \ge \min(ANSC)$, the firm should choose Q such that:
 - At that output level, p = SRMC(Q).
 - SRMC is non-decreasing in Q.
- When $p < \min(ANSC)$, the firm should choose Q = 0.

The Firm's Supply Curve when All of the Fixed Cost is Sunk

The Firm's Supply Curve when Part of the Fixed Cost is Non-Sunk

Deriving ANSC(Q) and Finding the Minimum

Refer to the graph on the previous slide. The short-run total cost curve is $SRTC(Q) = Q^2 + 25$ and the non-sunk fixed cost is 16.

(a) Verify that
$$ANSC(Q) = Q + \frac{16}{Q}$$
.

(b) Verify that at the minimum of ANSC(Q), Q = 4 and ANSC = 8.

Exercise 10.3

Deriving ANSC(Q) and Finding the Minimum

The Individual Firm's Supply Curve

 The short-run supply curve for an individual firm is the profit-maximizing quantity for the firm as a function of the market price.

```
Q_f(p)
```

- When $p < \min(ANSC)$:
 - The firm chooses Q = 0.
 - The supply curve is the vertical axis.
- When $p \ge \min(ANSC)$:
 - The firm chooses Q such that p = SRMC(Q).
 - The supply curve is the marginal cost curve.

The Firm's Short-Run Supply Curve in General

Short-Run Market Supply Curve

- The short-run market supply curve is the horizontal sum of all individual firms' supply curves.
- Suppose there are 100 identical firms in the market.
- Assuming all of the fixed cost is sunk, each firm has a supply curve:

$$Q_f = \frac{p}{2}$$

The market supply curve is:

$$S(p) = 100 \times \frac{p}{2} = 50p$$

Short-Run Market Equilibrium

Short-Run Market Equilibrium

- At the short-run market equilibrium price:
 - Total quantity demanded equals total quantity supplied.
 - Each firm produces at the profit-maximizing output level given the equilibrium market price.
 - Each consumer buys the utility-maximizing quantity given the equilibrium market price.

Short-Run Market Equilibrium: Example

- Recall that each firm's supply curve is $Q_f = \frac{p}{2}$ and that the market supply curve is S(p) = 50p.
- Suppose the market demand curve is:

$$D(p) = 560 - 20p$$

Therefore, the short-run equilibrium price is:

$$S(p) = D(p)$$

$$50p = 560 - 20p$$

$$p = 8$$

Short-Run Market Equilibrium: Example

- Recall that each firm's supply curve is $Q_f = \frac{p}{2}$ and that the market supply curve is S(p) = 50p.
- The short-run equilibrium price is p = 8.
- In equilibrium, the total quantity of output produced is:

$$S = 50p = 50 \cdot 8 = 400$$

Each firm produces:

$$Q_f = \frac{p}{2} = \frac{8}{2} = 4$$

Relationship between Profit and SRATC

- Suppose the market price is p, and at this price, the firm's optimal output level is Q_f .
- The firm's profit is:

$$TR - SRTC = pQ_f - (SRATC(Q_f) \times Q_f)$$
$$= (p - SRATC(Q_f))Q_f$$

- If p > SRATC(Q):
 - The firm's profit is positive at the output level Q_f .
- If p < SRATC(Q):
 - The firm's profit is negative at the output level Q_f .

Profit in the Short-Run Market Equilibrium

- Recall that:
 - The short-run equilibrium price is p = 8.
 - Each firm produces $Q_f = 4$.
 - Each firm's short-run total cost is $SRTC(Q_f) = 25 + (Q_f)^2$.
- Each firm's profit is:

$$TR - SRTC = pQ_f - SRTC(Q_f)$$
$$= 8 \cdot 4 - (25 + 4^2)$$
$$= -9$$

Profit in the Short-Run Market Equilibrium

Each firm's short-run average total cost is:

$$SRATC(Q_f) = \frac{SRTC(Q_f)}{Q} = \frac{25 + (Q_f)^2}{Q}$$

• At $Q_f = 4$:

$$SRATC(4) = \frac{25 + 4^2}{4} = 10.25$$

- Negative profit is possible in the short-run market equilibrium.
 - Firms do not consider sunk cost when deciding how many units of output to produce.

Short-Run Equilibrium

Comparative Statics: Increase in Demand

Comparative Statics: Increase in Wage

Summary SRATC, SRMC, ANSC

When does the firm consider:

- short-run average total cost (SRATC)
- short-run marginal cost (SRMC)
- average non-sunk cost (ANSC)

Producer Surplus in the Short Run

- Producer Surplus (PS) individual firm:
 - The difference between
 the amount that the firm receives
 for producing a certain quantity of output and
 the amount the firm has to receive
 in order to produce that quantity of output.
 - PS = Total Revenue Total Non-Sunk Cost
 - Graphically, the area below the price and above the supply curve.
- Producer Surplus (PS) market:
 - The sum of all individual firms' producer surplus.

- Total Revenue $(TR) = 20 \cdot 60 = 1,200$
- Total Non-Sunk Cost (TNSC):
 - *VC* when $Q_f = 60$ is $\frac{1}{2} \cdot 60 \cdot 20 = 600$.
 - *VC* is the area below the *SRMC* curve.
 - Non-Sunk Fixed Cost is 150.
 - *TNSC* for the first 30 units is $ANSC(30) \cdot 30 = 10 \cdot 30 = 300$.
 - But VC for the first 30 units is $\frac{1}{2} \cdot 30 \cdot 10 = 150$.
 - Therefore TNSC = 600 + 150 = 750
- PS = TR TNSC = 1,200 750 = 450
 - The area below the price and above the supply curve.

Part of the Fixed Cost is Non-Sunk (ANSC)

Refer to the graph on the next slide. The short-run total cost curve is $SRTC = Q^2 + 25$. Part of the fixed cost is non-sunk. Suppose p = 12.

- (a) Indicate the variable cost (VC) on the graph. Calculate VC.
- (b) Indicate the non-sunk fixed cost (*NSFC*) on the graph. Calculate *NSFC*.
- (c) Indicate the sunk fixed cost (SFC) on the graph. Calculate SFC.

Part of the Fixed Cost is Non-Sunk (ANSC)

All of the Fixed Cost is Sunk (ANSC)

Refer to the graph on the next slide. The short-run total cost curve is $SRTC = Q^2 + 25$. All of the fixed cost is sunk. Suppose p = 6.

- (a) Show that the short-run supply curve is Q = p/2.
- (b) What is the shaded area?

All of the Fixed Cost is Sunk (ANSC)

Exercise 10.6

All of the Fixed Cost is Sunk (SRATC)

Refer to the graph on the next slide. The short-run total cost curve is $SRTC = Q^2 + 25$. All of the fixed cost is sunk. The short-run supply curve is Q = p/2.

What is the shaded area?

All of the Fixed Cost is Sunk (SRATC)

