EXAM QUESTIONS Chapter 10.1- Matter Question 1 2010:1:3

(3 marks)

Particles called *quarks* are the 'building blocks' of other sub-atomic particles. Table 1 lists the names of some quarks and two of their quantum numbers; charge q and strangeness S.

Table 1: Some properties of quarks

Quark	Charge, q	Strangeness, S
up	+2/3	0
down	- ¹ / ₃	0
charm	+2/3	0
strange	-1/ ₃	-1
top	+2/3	0
bottom	-1/3	0

When quarks combine their individual quantum numbers 'add'. For example, a fictitious particle, the Joton, made of two charm quarks and one top quark would have a charge of $+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}=\frac{6}{3}=2$ and a strangeness of 0+0+0=0.

Use Table 1 to determine the values of the charge and strangeness quantum numbers for the particles in Table 2.

Table 2: Properties of some sub-atomic particles

Particle	Quark composition	Charge, q	Strangeness, S
Lambda	up, down, strange		
Xi	up, strange, strange		
Sigma minus	down, down strange		

Question 2 2013:1:4

(3 marks)

Table of quarks

Name	Symbol	Electrostatic charge
Up	u	+ ² / ₃ e
Down	d	-⅓ e
Strange	S	-⅓ e
Charmed	С	+ ² / ₃ e
Bottom	b	-⅓ e
Тор	t	+ ² / ₃ e

Table of baryons

rable of baryone		
Particle	Composition	
p ⁺	u u d	
n	u d d	
Σ+	u u s	
Σο	u d s	
Σ-	d d s	
Ω-	SSS	

EXAM QUESTIONS Chapter 10.1 - Matter Question 2 continued

- (a) Use the information in the above tables to explain why the electrostatic charge on the Σ^0 particle is neutral. (2 marks)
- (b) It is possible for another baryonic particle to exist in nature with a positive electrostatic charge equal to that of the proton. What would its quark composition be, given that this particle contains two up quarks and is **not** a proton? (1 mark)

Question 3 2014:1

(2 marks)

An exotic hadron, initially seen over 40 years ago, has recently been confirmed at the European Organization for Nuclear Research (CERN). The Z(4430) particle consists of four quarks: a charm, an anti-charm, a down, and an anti-up.

Use the following table to show the calculation required to determine the charge of the Z (4430) particle.

Table of quarks				
Name	Symbol	Electrostatic charge		
Up	u	+ ⅔ e		
Down	d	-⅓ e		
Strange	S	-⅓ e		
Charm	С	+ 2/3 e		
Bottom	b	-⅓ e		
Тор	t	+ 2/3 e		