

Lecture 7: Review of Markov Processes

Pasi Lassila

Department of Communications and Networking

Contents

- Markov processes theory recap
- Elementary queuing models for data networks
- Simulation of Markov processes

Markov process

- Consider a continuous-time and discrete-state stochastic process X(t)
 - with state space $S = \{0, 1, ..., N\}$ or $S = \{0, 1, ...\}$
- Definition: The process X(t) is a Markov process if

$$P\{X(t_{n+1}) = x_{n+1} \mid X(t_1) = x_1, \dots, X(t_n) = x_n\} = P\{X(t_{n+1}) = x_{n+1} \mid X(t_n) = x_n\}$$

for all $n, t_1 < ... < t_{n+1}$ and $x_1, ..., x_{n+1}$

- This is called the Markov property
 - Given the current state, the future of the process does not depend on its past (that is, how the process has evolved to the current state)
 - As regards the future of the process, the current state contains all the required information

Time-homogeneity, transition probabilities

• **Definition**: Markov process *X*(*t*) is **time-homogeneous** if

$$P{X(t+h) = y \mid X(t) = x} = P{X(h) = y \mid X(0) = x}$$

for all t, $h \ge 0$ and x, $y \in S$

- In other words, probabilities $P\{X(t+h) = y \mid X(t) = x\}$ are independent of t
- further, the conditional probability depends only on the difference of times, h

State transition rates

- Consider a time-homogeneous Markov process X(t)
- The state transition rates q_{ij} , where $i, j \in S$, are defined as follows:

$$q_{ij} := \lim_{h \downarrow 0} \frac{1}{h} P\{X(h) = j \mid X(0) = i\}$$

- Transition rate q_{ij} describes the rate of probability mass from state i to state j
- The initial distribution $P\{X(0) = i\}$, $i \in S$, and the state transition rates q_{ij} together determine the state probabilities $P\{X(t) = i\}$, $i \in S$, by the **Kolmogorov equations**
- Note that we will consider only time-homogeneous Markov processes

Dynamic behavior: Exponential holding times

- Assume that a Markov process is in state i
- During a short time interval (t, t+h], the conditional probability that there is a transition from state i to state j is $q_{ij}h + o(h)$ (independently of the other time intervals)
- Let q_i denote the total transition rate out of state i, that is:

$$q_i \coloneqq \sum_{j \neq i} q_{ij}$$

- Then, during a short time interval (t, t+h], the conditional probability that there is a transition from state i to any other state is $q_ih + o(h)$ (independently of the other time intervals)
- This is clearly a memoryless property
- Thus, the holding time in (any) state i is exponentially distributed with intensity q_i

Dynamic behavior: State transition probabilities

• Let T_i denote the holding time in state i and T_{ij} denote the (potential) holding time in state i that ends to a transition to state j

$$T_i \sim \text{Exp}(q_i), \ T_{ij} \sim \text{Exp}(q_{ij})$$

• T_i can be seen as the minimum of independent and exponentially distributed holding times T_{ii}

$$T_i = \min_{j \neq i} T_{ij}$$

 Let then p_{ij} denote the conditional probability that, when in state i, there is a transition from state i to state j (the state transition probabilities);

$$p_{ij} = P\{T_i = T_{ij}\} = \frac{q_{ij}}{q_i}$$

Transition rate matrix

• The state transition rates q_{ij} and q_i define the transition rate matrix Q

$$Q := (q_{ij}; i, j \in S)$$

where

$$q_{ii} := -q_i = -\sum_{j \neq i} q_{ij}$$

• Example: for $S = \{0,1,2\}$:

$$Q = \begin{pmatrix} -q_0 & q_{01} & q_{02} \\ q_{10} & -q_1 & q_{12} \\ q_{20} & q_{21} & -q_2 \end{pmatrix}$$

State transition diagram

- A time-homogeneous Markov process can be represented by a state transition diagram, which is a directed graph where
 - nodes correspond to states and
 - one-way links correspond to potential state transitions

link from state *i* to state
$$j \Leftrightarrow q_{ij} > 0$$

• Example: Markov process with three states, $S = \{0,1,2\}$

$$Q = \begin{pmatrix} -q_{01} & q_{01} & 0 \\ 0 & -q_{12} & q_{12} \\ q_{20} & q_{21} & -(q_{20} + q_{21}) \end{pmatrix}$$

$$Q = \begin{pmatrix} -q_{01} & q_{01} & 0 \\ 0 & -q_{12} & q_{12} \\ 0 & 0 & 0 \end{pmatrix}$$

Irreducibility

- **Definition**: There is a **path** from state i to state j ($i \rightarrow j$) if there is a directed path from state i to state j in the state transition diagram.
 - In this case, starting from state i, the process visits state j with positive probability (sometimes in the future)
- **Definition**: States i and j communicate $(i \leftrightarrow j)$ if $i \to j$ and $j \to i$.
- Definition: Markov process is irreducible if all states i ∈ S
 communicate with each other
 - Example: The Markov process presented in slide 9 is irreducible

Irreducible Markov processes and equilibrium distribution

- An irreducible Markov process X(t) with a finite state space has always a unique equilibrium distribution π .
 - Can be solved from the global balance equations (GBE) for each state together with the normalization condition (N)

$$\forall i, \quad \sum_{j \neq i} \pi_i q_{ij} = \sum_{j \neq i} \pi_j q_{ji} \ (GBE) \quad , \quad \sum_i \pi_i = 1 \quad (N)$$

The quilibrium distribution can be calculated numerically from

$$\pi = e \cdot (Q + E)^{-1}$$

where e is a vector of 1's and E is a matrix of 1's

Birth-death process

- Consider a continuous-time and discrete-state Markov process X(t)
 - with state space $S = \{0,1,...,N\}$ or $S = \{0,1,...\}$
- **Definition**: The process X(t) is a **birth-death process** (BD) if state transitions are possible only between neighbouring states, that is:

$$|i-j| > 1 \implies q_{ij} = 0$$

• In this case, we denote

$$\mu_i \coloneqq q_{i,i-1} \ge 0$$

$$\lambda_i \coloneqq q_{i,i+1} \ge 0$$

- In particular, we define $\mu_0 = 0$ and $\lambda_N = 0$ (if $N < \infty$)
- the rates are called the death and birth rates, respectively.

Irreducibility

- Proposition: A birth-death process is irreducible if and only if $\lambda_i > 0$ for all $i \in S \setminus \{N\}$ and $\mu_i > 0$ for all $i \in S \setminus \{0\}$
- State transition diagram of an infinite-state irreducible BD process:

State transition diagram of a finite-state irreducible BD process:

B-D processes and their equilibrium distribution

- Consider an irreducible birth-death process X(t)
- Equilibrium distribution $\pi = (\pi_i \mid i \in S)$ (if it exists) given by LBEs
- Local balance equations (LBE):

$$\pi_i \lambda_i = \pi_{i+1} \mu_{i+1} \tag{LBE}$$

Thus we get the following recursive formula:

$$\pi_{i+1} = \frac{\lambda_i}{\mu_{i+1}} \pi_i \quad \Rightarrow \quad \pi_i = \pi_0 \prod_{j=1}^i \frac{\lambda_{j-1}}{\mu_j}$$

Normalizing condition (N):

$$\sum_{i \in S} \pi_i = \pi_0 \sum_{i \in S} \prod_{j=1}^i \frac{\lambda_{j-1}}{\mu_j} = 1$$
 (N)

Contents

- Markov processes theory recap
- Elementary queuing models for data networks
- Simulation of Markov processes

BD-processes and Kendall's notation

- Birth-death processes are an important sub-class of Markov processes because they represent elementary queueing models
- Example:
 - Assume birth rate λ and death rate μ (both independent of state)

- Corresponds to a system where customers arrive at constant rate λ and they are served in FIFO order by a server with constant service rate μ
- In Kendall's notation this is the M/M/1 queueing model
 - Poisson arrivals (M), memoryless = exponential service times (M) and 1 server

A/B/n/p/k [Kendall (1953)]

- A refers to the arrival process.
 Assumption: IID interarrival times.
 Interarrival time distribution:
 - M = exponential (memoryless)
 - D = deterministic
 - G = general
- B refers to service times.
 Assumption: IID service times.
 Service time distribution:
 - M = exponential (memoryless)
 - D = deterministic
 - G = general
- n = nr of (parallel) servers
- p = nr of system places= nr of servers + waiting places

- k = size of customer population
- Default values (usually omitted):

-
$$p = \infty$$
, $k = \infty$

- Examples:
 - M/M/1
 - M/D/1
 - M/G/1
 - G/G/1
 - M/M/n
 - M/M/n/n+m
 - $M/M/\infty$ (Poisson model)
 - M/M/n/n (Erlang model)
 - M/M/k/k/k (Binomial model)
 - M/M/n/k (Engset model, n < k)

IID = independently

and identically

distributed

Packet level model for data traffic (1)

- Consider a single link in a data network (such as, IP network)
- Data traffic consists of packets
 - packets compete with each other for the processing and transmission resources (statistical multiplexing)
 - packet characterisation: length (in data units)
- Modelling of offered traffic:
 - packet arrival process (at which moments new packets arrive)
 - packet length distribution (how long they are)
- Link model: a single server queueing system
 - the service rate μ depends on the link capacity and the average packet length
 - when the link is busy, new packets are buffered, if possible, otherwise they are lost
 - Packets are served in FIFO manner

Packet level traffic process

Packet level model for data traffic (2)

- The link is modelled as a queueing system with a single server and (in)finite buffer
 - customer = packet
 - λ = packet arrival rate (packets per time unit)
 - *L* = average packet length (bits/bytes)
 - server = link, waiting places = finite buffer
 - *C* = link speed (bits per time unit)
 - service time = packet transmission time
 - $1/\mu = L/C$ = average packet transmission time (time units)

Traffic load

- The strength of the offered traffic is described by the traffic load ρ
- By definition, the **traffic load** ρ is the ratio between the arrival rate λ and the service rate $\mu = C/L$:

$$\rho = \frac{\lambda}{\mu} = \frac{\lambda L}{C}$$

- The traffic load is a dimensionless quantity
- By Little's formula, it tells the utilization factor of the server, which is the probability that the server is busy, if buffer is assumed infinite

Performance model (1)

- System capacity
 - C = link speed in kbps
- Traffic load
 - $-\lambda$ = packet arrival rate in pps (considered here as a variable)
 - L = average packet length in kbits
- Quality of service (from the users' point of view)
 - E[D] = mean delay (from arrival to departure)
- We can model this as an M/M/1 queue!

Performance model (2)

- The M/M/1 queueing system:
 - packets arrive according to a **Poisson process** (with rate λ)
 - packet lengths are i.i.d. according to the exponential distribution with mean L, server processes packets at rate C
 - Thus, service times are exponential with mean $1/\mu = L/C$
 - queuing discipline is FIFO , with 1 server and infinite queue size
- This is just a birth death process

- Mean delay E[D] is (due to Little)

$$E[D] = \frac{E[X]}{\lambda} = \frac{1}{\lambda} \frac{\rho}{1 - \rho} = \frac{1}{\mu - \lambda}$$

Flow level model for streaming CBR traffic (1)

- Consider a link between two routers
 - traffic consists of UDP flows carrying CBR traffic (like VoIP)
- Link model: an infinite system
 - customer = UDP flow = CBR bit stream
 - λ = flow arrival rate (flows per time unit)
 - service time = flow duration
 - $h = 1/\mu$ = average flow duration (time units)
- Bufferless flow level model:
 - when the total transmission rate of the flows exceeds the link capacity, bits are lost (uniformly from all flows)

Traffic process

Offered traffic

- Let r denote the bit rate of any flow
- The volume of offered traffic is described by average total bit rate *R*
 - By Little's formula, the average number of flows is

$$a = \lambda h$$

- This may be called traffic intensity (cf. slide 6)
- It follows that

$$R = ar = \lambda hr$$

Loss ratio

- Let N denote the number of flows in the system
- When the total transmission rate Nr exceeds the link capacity C, bits are lost with rate

$$Nr-C$$

The average loss rate is thus

$$E[(Nr-C)^{+}] = E[\max\{Nr-C,0\}]$$

• By definition, the loss ratio $p_{\rm loss}$ gives the ratio between the traffic lost and the traffic offered:

$$p_{\text{loss}} = \frac{E[(Nr - C)^{+}]}{E[Nr]} = \frac{1}{ar}E[(Nr - C)^{+}]$$

Performance model (1)

- System capacity
 - C = nr = link speed in kbps
- Traffic load
 - -R = ar = offered traffic in kbps
 - r = bit rate of a flow in kbps.
 - h = average duration of a flow
- Quality of service (from the users' point of view)
 - p_{loss} = loss ratio
- We can model this using the M/M/∞ model!

Performance model (2)

- Assume an M/M/∞ infinite system:
 - flows arrive according to a **Poisson process** (with rate λ)
 - flow durations are independent and identically distributed according to exponential distribution with mean h
- Again, this is just a BD-process!

 But to estimate the performance, one must record the amount of lost traffic (see earlier slide)

$$p_{loss} = \frac{1}{ar} E[(Nr - C)^{+}] = \frac{e^{-a}}{ar} \sum_{n=C/T+1}^{\infty} \frac{a^{n}}{n!} (nr - C)$$
 $\mu = 1/h$

Contents

- Markov processes theory recap
- Elementary queuing models for data networks
- Simulation of Markov processes

Simulation of a Markov process

- Given current state i, one simply needs to generate the time the process stays in state i and what is the next state j
- Basically 2 ways to implement
 - The methods follow directly from the dynamic behavior of the Markov process as described on slides 7-8
 - One can consider the next transition following from
 - Method 1. a minimum of exponentially distributed r.v.'s or
 - Method 2. time until next event and then using the branching probabilities
- Consider a finite state Markov process X(t) (does not have to be irreducible) with transition rate matrix Q and state space S=1,...,N

Method 1

- Aim: Simulate process X(t) with initial state x_0 for K transitions
- Initialize: state $x=x_0$, time t=0 and transition counter step=0
- Stopping condition: If step < K, then
 - Draw a sample $t_j(x)$ of times to next possible events in state x for all j=1,...,N, i.e., each $t_j(x) \sim \text{Exp}(q_{xj})$
 - The holding time (time to next transition) in state x, is given by min $(t_I(x),...,t_N(x))$
 - Time $t = t + \min(t_1(x), ..., t_N(x))$
 - Next state x where the process moves is $x = \arg\min(t_1(x),...,t_N(x))$
 - Increase step counter: step=step+1
- Note: there is no statistics collection here!

Method 2

- Aim: Simulate process X(t) with initial state x_0 for K transitions
- Initialize: state $x=x_0$ and transition counter step=0
- Stopping condition: If step < K, then
 - Holding time: draw a sample t(x) of time to next transition, i.e., $t(x) \sim \exp(q_x)$ (recall q_x is the sum of transition rates out from state x)
 - Time t = t + t(x)
 - Next state y is selected from the discrete distribution so that with probability q_{xy}/q_x the process moves to state y
 - Increase step counter: step=step+1
- Note: there is no statistics collection here!

Simulation of a Markov chain

- Markov chain is the discrete time counter part of the Markov process
 - That is, in addition to the state being discrete, also time is discrete
 - Can be used to model systems where time is slotted (e.g., cellular systems)
- Characterized by matrix P, where each element p_{ij} gives the probability to move from state i to state j in the next transition
- Simulation then just corresponds to simulating these "jumps" from one time step to the next