Experiment-4:

Design & implementation of XOR gate on silicon using ASCII design tools (DHCH2 & Microwind2).

Objective:

We have to create XOR gate layout diagram using DHCH2 and then run it on Microwind2 finally checking its validation of using Timing diagram on Microwind2.

Theory:

i. Truth Table For X-OR Gate:

Inputs		Output
Α	В	X
0	0	0
0	1	1
1	0	1
1	1	0

ii. Truth Table For X-OR:

Inputs		Output
A	В	X
0	0	1
0	1	0
1	0	0
1	1	1

iii. Schematic Diagram for X-OR:

iv. Schematic Diagram for X-NOR:

Procedure:

- 1. At first creating a Schematic Diagram on DHCH2/3.
- 2. Then save this file as '.sch' format from DHCH2/3.
- 3. Next in the 'File' option of DHCH2/3, choose 'Make Verilog File'.
- 4. Next in Microwind2 'File' option, choose 'Select Foundry' option and set the rule 'CMOS 025.RUL'.
- 5. Finally in Microwind2 'Compile' option, choose 'Compile Verilog File' option and run the '.sch' file that previously saved from DHCH2/3.
- 6. To see the 'Timing Diagram' press 'Run Simulation' option on Microwind2.

Result:

i. Layout Diagram for X-OR:

ii. Timing Diagram for CMOS-NAND

iii. Layout Diagram for X-NOR

iv. Timing Diagram for X-NOR

