PRINTABLE VERSION

Practice Test 3

Question 1

The graph of f(x) is shown. Find the x-value(s) where f'(x) = 0.

X= -2 or X=

b)
$$x = \{-2, 1\}$$

c)
$$= x = 0$$

d)
$$x = \{-2, 0, 1\}$$

e) $x = \{-2, 2\}$

Question 2

Find the intervals on which $f(x) = \frac{4x}{x^2 + 81}$ decreases.

The places

f has horizontal

tangent line

$$\begin{array}{ll}
\text{a)} & (-\infty, -9) \cup (9, \infty) \\
\text{b)} & (-\infty, -9) \cup (9, \infty)
\end{array}$$

$$\begin{array}{ll}
\text{f(x)} = & \frac{4(x^2+81) - 2x \cdot 4x}{(x^2+81)^2} & \frac{-4x^2+4\cdot81}{(x^2+81)^2} \\
\text{(x'ten)}^2
\end{array}$$

$$f(x) = (-\infty, \infty)$$

$$(-\infty, -9) \cup (0, 9) = \frac{-4(x^2-81)}{(x^2+81)^2} = \frac{-4x+9)(x-9)}{(x^2+81)^2}$$

d)
$$(9,\infty)$$

Suppose that c=1 is a critical number for a function f. Determine if f(c) is a local maximum, local minimum or neither if the graph of f'(x) is shown below.

d) Critical nos. 0 and ± 1 ; local min f(-1)=-1 and f(1)=-1; local max f(0)=1.

e) Critical nos. ± 1 ; local min f(1) = -1; local max f(-1) = -1.

Question 5
$$f(x)=8x+2=0$$
, $x=-4$

Find the critical numbers of $f(x) = 4x^2 + 2x + 1$ and classify all extreme values given $-1 \le x \le 0$.

a) Critical no. 0; local min f(0) = 1.

b) Critical no. $-\frac{1}{4}$; local and absolute min $f\left(-\frac{1}{4}\right) = \frac{3}{4}$; absolute max

c) No critical numbers, no extreme values

d) Critical nos. 0, $-\frac{1}{4}$; local and absolute min $f\left(-\frac{1}{4}\right) = \frac{3}{4}$; absolute max f(0) = 1

e) Critical no. $-\frac{1}{4}$; local max $f\!\left(-\frac{1}{4}\right)=\frac{3}{4}$; no absolute extreme.

Question 6

Read Carefully! The graph of f' (the derivative of f) is shown below. Classify the smallest critical number for f.

Smallest one => X=-3

Print Test

neither

Question 7

Describe the concavity of the graph of $f(x) = \frac{2x}{9x^2 - 16}$ and find the points of inflection (if anv).

a) \supseteq concave down on $\left(-\infty,\frac{4}{3}\right)$; concave up on $\left(\frac{4}{3},\infty\right)$; pt of inflection $\left(\frac{4}{3},0\right)$.

$$f(x) = \frac{-36x(9x^{2}-16)^{2}-2\cdot 18x(9x^{2}-16)\cdot (-18x^{2}-32)}{(9x^{2}-16)^{4}}$$

 $f(x) = \frac{z \cdot (9x^2 - (6) - 2x \cdot (18x))}{(9x^2 - (6)^2)^2}$

 $=\frac{-18x^2-32}{(9x^2-16)^2}$

 $= \frac{-36\times(9\times^{2}-16)[9\times^{2}-16-18\times^{2}-32]}{(9\times^{2}-16)^{4}} = \frac{-36\times[-9\times^{2}-48]}{(9\times^{2}-16)^{3}} = \frac{36\times(9\times^{4}+48)}{(9\times^{2}-16)^{3}}$

> X=0 has an point of inflection => (0,0)

- **b)** concave down on $(-\infty, \infty)$; no points of inflection
- c) concave up on $(-\infty, 0)$; concave down on $(0, \infty)$; pt of inflection (0,0).
- d) concave down on $\left(-\infty, -\frac{4}{3}\right)$ and $\left(0, \frac{4}{3}\right)$; concave up on $\left(-\frac{4}{3},0\right)$ and $\left(\frac{4}{3},\infty\right)$; pt of inflection (0,0)
- e) concave up on $\left(-\frac{4}{3}, \frac{4}{3}\right)$; concave down on $\left(-\infty, -\frac{4}{3}\right)$ and $\left(\frac{4}{3},\infty\right)$; pts of inflection $\left(=\frac{4}{3},0\right)$ and $\left(\frac{4}{3},0\right)$.

Ouestion 8

Find c so that the graph of $f(x) = cx^2 - 4x^{-2}$ has a point of inflection at (4, f(4)). $\Rightarrow f'(4) = 0$.

a)
$$c = \frac{3}{64}$$
 $f(x) = 2CX + 8X^{-3}$

a)
$$c = \frac{3}{64}$$
 $f(X) = 2CX + 8X^3$.
b) $c = \frac{3}{32}$ $f'(X) = 2C - 24X^4$.

c)
$$= -\frac{3}{64}$$
 $f'(4) = 0$ $\Rightarrow 2C - \frac{24}{(4)^4} = 0$

$$\mathbf{d}) \quad \bigcirc c = 0$$

e) $c = -\frac{3}{22}$

$$C = \frac{3}{64}$$

Question 9

The graph of f'(x) is shown below. Give the interval(s) where the graph of

03/23/2015 01:29 PM

f'increasing => f">0 > concave up

f'dereasing => f"<0 > concave down.

https://assessment.casa.uh.edu/Assessment/Print...

Print Test

f(x) is concave up.

a)
$$= (-2, 1)$$

b)
$$(-\infty,0)$$
 and $(1,\infty)$

c)
$$(0,\infty)$$

d)
$$(-\infty,0)$$

e)
$$(-\infty, -2)$$
 and $(1, \infty)$

Question 10

Given the graph of f'(x) below, where is f(x) increasing? $\Rightarrow f'(x) > 0$

https://assessment.casa.uh.edu/Assessment/Print...

- a) f(x) is increasing on the interval $(-5, \infty)$
- b) f(x) is increasing on the intervals $(-\infty 5)$ and (5, 7).
- c) f(x) is increasing on the interval $(-\infty, 7)$.
- d) f(x) is increasing on the intervals (-5,5) and $(7,\infty)$.
- e) f(x) is increasing on the interval (-5,7).

Question 11

Find the vertical and horizontal asymptotes of
$$f(x) = \frac{2x}{2x-3}$$
.
V.A. $f(x) \to f(x)$ as $x \to \frac{3}{2}(2x-3) = 0$.
H.A. $f(x) \to f(x) \to f(x)$ as $f(x) \to f(x) \to f(x)$.

 $\stackrel{\text{8 of } 15}{\Rightarrow} V.A. \Rightarrow X = \frac{3}{2}$ H.A = 4=1.

03/23/2015 01:29 PM

7 of 15

03/23/2015 01:29 PM

- a) vertical asymptote: $x = \frac{3}{2}$; no horizontal asymptote.
- **b)** vertical asymptote: x=1 ; horizontal asymptote: $y=\frac{3}{2}$
- c) vertical asymptote: $x = \frac{3}{2}$; horizontal asymptote: y = 0.
- d) vertical asymptote: $x=\frac{3}{2}$; horizontal asymptote: y=1 .
- e) one vertical asymptote; horizontal asymptote: y = 1.

Question 12

Determine whether or not the graph of $f(x)=2(x-4)^{4/5}$ has a vertical tangent or vertical cusp at x=4

- vertical tangent
- vertical cusp
- both
- neither

Question 13

f(x) has a point of inflection at the point (0, -4)

which of the following is true about the graph of $f(x) = 27x^2 - \frac{54}{4} - 4$?

CITICAL number: X=(-3/2, f(-3/2)) | f^2

f(x) is concave down on the interval $(0,\infty)$

f(x) has a vertical asymptote at x = 54. f(x) has a local minimum at the point (1,77).

f(x) is increasing on the interval $(-\infty,0)$.

Question 14

The graph of f'(x) is shown below. Which of the following could represent the graph of f(x)?

03/23/2015 01:29 PM

Question 15

Determine whether or not the given function is one-to-one and, if so, find the inverse. If f(x) = 6x - 2 has an inverse, give the domain of f^{-1} .

=(X=6>0 => Monotone =>17.

- a) Not one-to-one
- b) $f^{-1}(x) = 6x 2$; domain: $(-\infty, -2)$ (2) $\chi = 6y 2$
- c) $f^{-1}(x) = \frac{1}{6}x + \frac{1}{3}$; domain: $(-\infty, \infty)(3)$
- d) $f^{-1}(x) = 6x 2$; domain: $(-\infty, \infty)$ $f^{-1}(x) = 6x 2$
- e) $f^{-1}(x) = -\frac{1}{6}x \frac{1}{3}$; domain: $(-2, \infty)$ f(x) = x+2 and $p(f) = |R_e|$

Question 16

Suppose that f has an inverse and f(-2) = 3, $f'(-2) = \frac{6}{7}$. What is

Question 17

Suppose that $f(x) = 3x^3 + 6$ is differentiable and has an inverse and

- c) 288
- d) 144

Question 18

Suppose that $f(x) = 2x + 2\pi + \cos(x)$ is differentiable and has an inverse

for $0 < x < 2\pi$ and $f(1\pi) = 4\pi - 1$. Find $\left(f^{-1}\right)(4\pi - 1)$.

- e) 1

Question 19

https://assessment.casa.uh.edu/Assessment/Print.

Differentiate:
$$y = 4xe^{2x^3}$$
 (Product)
a) $y' = 4e^{2x^3} + 4xe^{2x^3}$ \Rightarrow $y' = 4e^{2x^3} + 4xe^{2x^3}$ \Rightarrow $y' = 4e^{2x^3} + 24x^3e^{2x^3}$ \Rightarrow $y' = 4e^{2x^3} + 24x^3e^{2x^3}$ \Rightarrow $y' = 4e^{2x^3} + 24x^3e^{2x^3}$ \Rightarrow $y' = 4e^{2x^3} + 24x^3e^{2x^3}$

a)
$$y' = 4e^{-x} + 4xe^{-x}$$

b)
$$y' = 4 e^{2 x^3} - 24 x^3 e^{2 x^3}$$

c)
$$y' = 4 e^{2 r^3}$$

d)
$$y' = 4e^{6x^2}$$

e)
$$y' = e^{2x^3} + 6x^3e^{2x^3}$$

Question 20

a)
$$y' = -\frac{4x}{(2x^2+3)^2}$$

b)
$$y' = \frac{2}{2x^2 + 3}$$

e)
$$y' = \frac{4x}{2x^2 + 3}$$

d)
$$y' = -\frac{1}{(2x^2+3)^2}$$

e)
$$y' = \frac{1}{2x^2 - 3}$$

Differentiate: $y = \ln(2x^2 + 3)$ a) $y' = -\frac{4x}{(2x^2 + 3)^2}$ $y = -\frac{4x}{(2x^2 + 3)^2}$

$$=\frac{4x}{2x^2+3}$$

15 of 15 03/23/2015 01:29 PM