Portas Lógicas

Introdução a Programação

Objetivos de Aprendizagem

- Conhecer circuitos que representam funções booleanas elementares
- Escrever circuitos a partir de expressões

Agenda

- Portas lógicas
- Conversão de expressões lógicas em circuitos digitais

Portas Lógicas

Funções Booleanas

São representadas de várias formas:

- Tabelas verdade
- Expressões
- Formato Gráfico, circuitos eletrônicos ou portas lógicas

Portas Lógicas

- Representam mais do que simplesmente símbolos dos operadores lógicos
- Recursos físicos são associados
- Base da eletrônica digital

Eletrônica Digital

- Existem dois estados
 - Nível lógico 0 (Ausência de tensão)
 - Nível lógico 1 (Tensão 5V ou 12V)

Portas Lógicas

Gates

Circuitos eletrônicos que, de alguma maneira (circuito analógicos), realizam as funções booleanas existentes

Porta OR

Porta AND

Porta NOT

Porta NAND

NOT + AND

Porta NOR

NOT + OR

Circuitos Integrados

Um circuito integrado (CI), também conhecido como chip ou microchip, é um dispositivo que contém vários componentes eletrônicos, como transistores, resistores e capacitores, integrados em um único substrato semicondutor, geralmente silício.

Circuitos Integrados

São utilizados em uma vasta gama de dispositivos, desde computadores e *smartphones* até eletrodomésticos

Portas Lógicas em Cls

Integra diversas portas lógicas em um único circuito integrado. Facilita a implementação de aplicações reais. A mais comum atualmente é a TTL.

Circuitos TTL

TTL (*Transistor-Transistor Logic*) é um tipo de tecnologia de circuito digital que utiliza transistores bipolares para implementar funções lógicas. Foi amplamente utilizado em computadores e outros dispositivos eletrônicos antes da popularização de tecnologias mais avançadas, como CMOS (*Complementary Metal-Oxide-Semiconductor*).

TTL 7408

4 ANDs de duas entradas

'408 Quad 2-Input Positive-AND Gate

TTL 7432

4 ORs de duas entradas

7432 Quad 2-input positive-OR gates

TTL 7404 6 NOTs

7404 Hex Inverters

Portas TTL

Lista Completa

Escrever Circuitos a partir de Expressões

Circuito Lógico

Circuito Digital

- Dada uma equação Booleana qualquer, é possível desenhar o circuito lógico que a implementa
- O circuito lógico é composto das portas lógicas relacionadas às operações que são realizadas sobre as variáveis de entrada
- Os resultados das operações, as entradas e os valores intermediários são conduzidos por fios, os quais, no desenho, são representados por linhas simples

Como desenhar o circuito a partir de uma expressão?

Como desenhar o circuito a partir de uma expressão?

- 1. Identificar as variáveis independentes
- 2. Desenhar as portas lógicas que representam cada uma das subexpressões, seguindo a prioridade:
 - 1. Parênteses
 - 2. Operações AND
 - 3. Operações OR
- 3. Ligar com linhas as variáveis e as portas

Exemplos

$$S = A \cdot B + C \cdot \overline{D}$$

$$Z = (A+B)\cdot (A+\overline{B})$$

Perguntas

Exercícios

1

Escreva a expressão booleana executada pelos circuitos mostrados.

2

Dada a expressão booleana $Z = ABC + (A\overline{B}) \cdot (\overline{AB})$, qual o circuito lógico que a representa?

3

Simplifique a expressão da questão anterior. Qual o circuito lógico que a representa agora?

Referências

Simulador Circuit Verse

José Roberto Bezerra

■ jbroberto@ifce.edu.br

7 jbroberto76

Powered by Slidev

Cover image by harkei