

Radio Interferometric Studies of Cool Evolved Stellar Winds

Eamon O'Gorman

Trinity College Dublin November 15, 2013

Supervisor: Prof. Graham Harper

Overview

- Mass-loss across the HR diagram
- Mass-loss Diagnostics
- Stellar Radio Emission Mechanisms
- Red Supergiants vs. Red Giants
- 1) Winds of Red Supergiants
 - 1(a) mm study of Betelgeuse's CSE
 - 1(b) cm study of Betelgeuse's wind acceleration region
- 2) Winds of Red Giants
 - 2 (a) Multi-wavelength cm study
 - 2 (b) Thermal energy balance
- Concluding Remarks

Mass-loss Across the H-R Diagram

Image Credit: S. R. Cranmer

Traditional Diagnostics of Mass Loss

Radio Emission Mechanisms

1) Molecular Emission lines

- Line profiles are either flat-topped or parabolic
- Line full widths typically between 20 and 50 km s⁻¹
- CO: Both O-rich and C-rich stars. Stable.
- Excitation processes for CO: H₂ collisions. Photoexcitation of vibrational levels by IR photons.

1) Thermal Bremsstrahlung Emission

 \blacksquare Opacity is proportional to $\sim \lambda^2$

 $F_{\nu} = \frac{\pi k \phi^2 T_b}{2\lambda^2}$

Optically thick emission:

Stellar Radio Emission

Radio Sky at 4.85 GHz (300ft Green Bank)

Credit: NRAO/AUI

$$(P_{radio}/P_{optical})_{o} \sim 10^{-15}$$

 $S_{_{\upsilon=4.6~GHz}} \sim 40~\mu\text{Jy}$ at α Cen (not detectable with 'old' VLA!)

Red Supergiants vs. Red Giants

	Red Giants	Red Supergiants
Mass (M₀)	~ 0.4 → ~ 8	~8 → ~ 40
Radius (R₀)	~ 50	~ 500
Lifetime (yr)	~ 10 ⁹	~ 5x10 ⁵
dM/dt (Mo yr ⁻¹)	~ 10 ⁻¹⁰	~ 10 ⁻⁵
Total dM/dt (M₀)	~ 0.1	~ 5

$$V_{\text{teminal}} < V_{* \text{ escape}}$$
 $H_P/R \sim 10^{-2}$
 $T_{\text{wind}} < 10^4 \text{ K}$

No coronae. Insufficient dust opacity. Small pulsation amplitudes.

1) Winds of Red Supergiants

Betelgeuse (M2 lab)

(Decin et al., 2013)

Log(L/L _☉)	5.12
Distance	197 ± 45 parsec
Photospheric Radius	22.5 mas (950 R_{\odot})
Mass (current)	~15 - 18 M _o
Mass loss rate	$3 \times 10^{-6} M_{\odot} \text{ yr}^{-1}$
Photospheric Temperature	3,600 K (cool star)
Origin	O-type main sequence
Fate	Supernova Type II
¹² C/ ¹³ C	6 ± 1

1 (a): Betelgeuse: Circumstellar Environment

- At least two recent mass loss phases
- Two distinct shells spectrally resolved at 4.6 μm:
 - S2, moving at 17 km s⁻¹
 - S1, moving at 10 km s⁻¹
 - Spatial extent not directly determined

Page 7

1 (a): Betelgeuse: Circumstellar Environment

- At least two recent mass loss phases
- Two distinct shells spectrally resolved at 4.6 μm:
 - S2, moving at 17 km s⁻¹
 - S1, moving at 10 km s⁻¹
 - Spatial extent not directly determined
- Plez & Lambert (2002) appear to detect S2 shell at 50"
- IRAM 30 m (θ_{HPRW} ~12") fails to resolve S2 shell at 1.3 mm
- Single dish ¹²C¹⁶O mm-observations reveal only high velocity S2 shell.

1 (a): Betelgeuse: Circumstellar Environment

- At least two recent mass loss phases
- Two distinct shells spectrally resolved at 4.6 μm:
 - S2, moving at 17 km s⁻¹
 - S1, moving at 10 km s⁻¹
 - Spatial extent not directly determined
- Plez & Lambert (2002) appear to detect S2 shell at 50"
- IRAM 30 m (θ_{HPBW} ~12") fails to resolve S2 shell at 1.3 mm
- Single dish ¹²C¹⁶O mm-observations reveal only high velocity S2 shell.

Goal 1 (a): Measure both the spatial scales and the velocities of Betelgeuse's outflow region using $^{12}C^{16}O$ J = 2-1 line as a tracer to sort out puzzling evidence.

CARMA

- Combined Array for Research in Millimeter-wave Astronomy
- Cedar Flat, eastern California (~ 2,200 m)
- 15 element interferometer (9 x 6.1 m + 6 x 10.4 m antennas)
- Merger of two independent arrays: BIMA + OVRO (2007)
- 105 baselines (n(n-1)/2) with 5 configurations
- Three bands: 7 mm, 3 mm and 1.3 mm

Credit: John Carlstrom

1 (a): mm Observations

Date	Config	Time (hr)	Resolution (")	Max Scale (")
Jun 07	D	8.4	2.1	15
Jul 09	Е	3.2	4.4	19
Nov 09	С	8.4	0.9	6

1 (a): Individual Configurations

Theoretical Shell

Combined Configuration

Combined Configurations

S2 Flow

S2 flow not present at low absolute velocities.

$$r_{\text{chan}} = R_{\text{S2}} \sin \left[\cos^{-1} \left(\frac{v_{\text{chan}}}{V_{\text{S2}}} \right) \right]$$

S1 Flow

Conclusions

- The high spatial resolution C configuration resolves out extended emission leaving us with S1 emission profile.
- Multiple CARMA configurations provide the high spatial resolution needed to study the inner S1 shell while also ensuring that larger structures (i.e. S2 shell) are not resolved out.

ø

	S1	S2
Outflow Velocities (km s ⁻¹)	2.1	15
Maximum Spatial Extent (")	4 → 6	17
Age (yr)	400 → 600	1100

- Previous line profiles not horned shaped because:
 - S1 emission is also present
 - S2 emission weak at low absolute velocities

1 (b): Betelgeuse at cm w/ls: Wind Acceleration Region

$$F_{\nu} = \frac{\pi k \phi^2 T_b}{2\lambda^2}$$

1 (b): Betelgeuse with e-MERLIN (5.2 cm)

(Credit: MERLIN/VLBI national facility)

Two unresolved hot spots:

 $T_{e} > 3800 \text{ K}$

 $T_{g} > 5400 \text{ K}$

Where is the photosphere?

Goal 1 (b): Analyse high resolution archival cm data to search for signatures of hotspots.

1 (b): Betelgeuse with e-MERLIN (5.2 cm)

Astrometric solution of Harper et al., (2008)

- Hottest source at 4 R_{*}.
- \blacksquare At least ~3 times the predicted T_e .

1 (b): Betelgeuse with e-MERLIN (5.2 cm)

Astrometric solution of Harper et al., (2008)

- Hottest source at 4 R_{*}.
- At least ~3 times the predicted T_a.

Spherically symmetric semi-empirical model of Harper et al., (2001)

VLA

Pie Town Antenna

e-MERLIN

w/l (cm)	Resolution (")
5.2	80 x 60

VLA + Pie Town

w/l (cm)	Resolution (")
0.7	40 x 25
1.3	80 x 40
2.0	120 x 90
3.5	200 x 130
6.2	380 x 270

Variability 1998-2004

w/l (cm)	Variability
0.7	23%
1.3	27%
2.0	32%
3.5	21%
6.2	35%

Variability 1998-2004

w/l (cm)	Variability
0.7	23%
1.3	27%
2.0	32%
3.5	21%
6.2	35%

1.3 cm Map

- No clear signature of hot spots any in any maps.
 - Time dependence
 - Opacity $rac{ au_{5.2\,\mathrm{cm}}}{ au_{1.3\,\mathrm{cm}}} \simeq 20$

(Haubois et al., 2009)

(Lim et al., 1998)

Betelgeuse with VLA – Pie Town 1 (b):

25".60

(Haubois et al., 2009)

25".55

Q-band (0.7 cm) maps using uniform weighting

25".60

2004: Q-band, Uniform Weighting

2003: Q-band, Uniform Weighting

1 (b):

Conclusions

- e-MERLIN has revealed two unresolved *hotspots* separated by 90 mas (i.e., 4 R_{star})
- Cooler one may be at the position of photosphere
- VLA + Pie Town data in good agreement with the findings of Lim et al. (1998) (i.e., mean thermal profile, asymmetries at 0.7 cm)
- No clear signature of e-MERLIN hotspots in any of the VLA + Pie Town data
 - Time dependant?
 - Opacity?

2) Winds of Red Giants

- Currently cannot be spatially resolved at radio w/ls
- Wind & chromospheric properties (dM/dt, v_{ter}) generally determined by analysing strong chromospheric resonance lines.
- At cm/mm the thermal continuum Planck function depends linearly on T, unlike the UV.

α-Boo: Blue-shifted absorption component->outflow

Oontinuum flux measurements at cm/mm: opacity is proportional to $\sim \lambda^{2.1} \, n_e^{} n_{ion}^{}$.

Goal 2 (a): Observe two 'standard' red giants at all possible cm wavelengths to test existing models and possibly develop ones.

2a)

Red Giant Targets

	Arcturus (α Boo: K2 III)	Aldebaran (α Tau: K5 III)
Distance (pc)	11.3	20.4
Photospheric Radius (R _o)	25.4	44.2
Mass (${\rm M}_{\odot}$)	0.8	1.3
Mass loss rate (M _o yr ⁻¹)	2 x 10 ⁻¹⁰	1.6x 10 ⁻¹¹
T _{eff} (K)	4290	3970

- Single, non-dusty and non-pulsating
- Nearby, with well known stellar parameters
- Semi-empirical 1-D chromospheric and wind models that can be directly tested

2 (a): The Karl G. Jansky Very Large Array

Credit: NRAO

- 27 25 m antennas, New Mexico. Max baseline ~ 36 km
- Full frequency coverage between 1.0 and 50 GHz
- Continuum sensitivity improvement over the VLA by factors of 5 to 20
- Spectral Capability: A minimum of 16,384 and a maximum of 4,194,304 channels

Observations

Open Shared Risk Observing (OSRO)

- B config (128 MHz)
- \blacksquare α Boo: $S \rightarrow Q$ band (13th 22nd Feb 2011)
- \blacksquare α Tau: $S \rightarrow Q$ band (11th 13th Feb 2011)
- A unique dataset

Directors Discretionary Time (DDT)

- B config (2 GHz)
- **a** α Boo: S & L band (July 2012)

Red Giant Radio Maps

Example: Aldebaran X (3 cm), C (6 cm), and S (10 cm) band

2 (a): Spectral Energy Distribution – α Boo

2 (a): Spectral Energy Distribution – α Boo

2 (a):

Spectral Indices

If,
$$n_e \propto r^{-p}$$

$$T_e \propto r^{-n}$$

Then,
$$\alpha = f(p,n)$$

- α Tau: wind ~ wind optically thin
- **2** α Boo:

Assume constant velocity wind,

$$T_e \propto r^{-1.65}$$

2 (a): Spectral Energy Distribution – α Boo

2 (a): Spectral Energy Distribution – α Boo

2 (b): Thermal Energy Balance

- Olose to photosphere: $v^2(r) \ll v^2_{esc}(r)$
- To escape star: $v^2(r) > v^2_{esc}(r)$
- Energy added in the form of either heat or momentum

Goal 2 (b): Carry out a thermal energy balance to investigate possible heating mechanisms in Arcturus' inner outflow region.

2 (b): Thermal Energy Balance

- Olose to photosphere: $v^2(r) \ll v^2_{esc}(r)$
- To escape star: $v^2(r) > v^2_{esc}(r)$
- Energy added in the form of either heat or momentum

Goal 2 (b): Carry out a thermal energy balance to investigate possible heating mechanisms in Arcturus' inner outflow region.

Gas kinetic power law slope

2 (a) & (b)

Conclusions

- The most comprehensive set of multi-wavelength radio continuum observations of two *standard* red giants to date.
- Allows us to test theoretical and semi-empirical atmospheric models.
- Radio spectral indices allow flow properties to be investigated.
 - Optically thin wind for α Tau.
 - Rapidly cooling wind for α Boo.
- Analytical advection model used to develop new wind model for α Boo.
- Placed constraints on the heating produced by α Boo's mass-loss mechanism.

Concluding Remarks

- Betelgeuse has two unique outflows. Why?
 - Unique epochs of mass-loss in the last ~1100 years.
 - Change in outflow properties at certain distances.
- Evidence for assymetries in both S1 and S2 flows
 - Formed during outflow?
 - Or from mass-loss process?
- E-MERLIN hints at an episodic mass-loss mechanism in red supergiants. No signature in VLA data.
- Multi-wavelength radio continuum observations provide spatial information from point sources. Provide wind diagnostics and updated outflow models.
- Our understanding is improving and radio interferometry will continue to play a major role in future developments.