PSALTer results panel $\iiint \int (\frac{1}{6} \left(2 t_{1} \mathcal{A}^{\alpha_{i}} \mathcal{A}^{\theta}_{i} + 6 \mathcal{A}^{\alpha \beta \chi} \right) \sigma_{\alpha \beta \chi} + 6 f^{\alpha \beta} \tau (\Delta + \mathcal{K})_{\alpha \beta} - 4 t_{1} \mathcal{A}^{\theta}_{\alpha \theta} \partial_{i} f^{\alpha_{i}} + 4 t_{1} \mathcal{A}^{\theta}_{i} \partial_{i} f^{\alpha}_{\alpha} - 2 t_{1} \partial_{i} f^{\theta}_{\theta} \partial^{i} f^{\alpha}_{\alpha} - 2 t_{1} \partial_{i} f^{\alpha_{i}} \partial_{\theta} f^{\theta}_{\alpha} + 4 t_{1} \partial^{i} f^{\alpha}_{\alpha} \partial_{\theta} f^{\theta}_{i} - 8 r_{1} \partial_{\beta} \mathcal{A}_{\alpha_{i} \theta} \partial^{\theta} \mathcal{A}^{\alpha \beta_{i}} + 4 t_{2} \partial^{i} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}} - 2 t_{2} \partial_{\alpha_{i} \theta} \partial^{\alpha_{i} \theta} \partial^{\alpha$ $4r_{1}\partial_{\beta}\mathcal{R}_{\alpha\theta^{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta^{i}} - 16r_{1}\partial_{\beta}\mathcal{R}_{_{i}\theta\alpha}\partial^{\theta}\mathcal{R}^{\alpha\beta^{i}} - 4r_{1}\partial_{i}\mathcal{R}_{_{\alpha\beta\theta}}\partial^{\theta}\mathcal{R}^{\alpha\beta^{i}} + 4r_{1}\partial_{\theta}\mathcal{R}_{_{\alpha\beta_{i}}}\partial^{\theta}\mathcal{R}^{\alpha\beta^{i}} + 4r_{1}\partial_{\theta}\mathcal{R}_{_{\alpha\alpha\beta}}\partial^{\theta}\mathcal{R}^{\alpha\beta^{i}} + 6r_{1}\partial_{\alpha}\mathcal{R}_{_{\alpha\beta_{i}}}\partial^{\theta}\mathcal{R}^{\alpha\beta^{i}} + 6r_{2}\partial_{\alpha}\mathcal{R}_{_{\alpha\beta_{i}}}\partial^{\theta}\mathcal{R}^{\alpha\beta^{i}} + 6r_{2}\partial_{\alpha}\mathcal{R}_{_{\alpha\beta_{i}}}\partial^{\theta}\mathcal{R}^{_$ $6r_{.5}\partial_{\theta}\mathcal{R}_{_{i}\ \kappa}^{\ \kappa}\partial^{\theta}\mathcal{R}_{_{\alpha}}^{\alpha_{i}} - 6t_{.1}\partial_{\alpha}f_{_{i\theta}}\partial^{\theta}f^{\alpha_{i}} - 3t_{.1}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}} + 3t_{.1}\partial_{i}f_{_{\alpha\theta}}\partial^{\theta}f^{\alpha_{i}} + 3t_{.1}\partial_{\theta}f_{_{\alpha_{i}}}\partial^{\theta}f^{\alpha_{i}} + 3t_{.1}\partial_{\theta}f_{_{\alpha_{i}}}\partial^{\theta}f^{\alpha_{i}} + 3t_{.1}\partial_{\theta}f_{_{\alpha_{i}}}\partial^{\theta}f^{\alpha_{i}} + 3t_{.1}\partial_{\theta}f_{_{\alpha_{i}}}\partial^{\theta}f^{\alpha_{i}} + 6t_{.1}\mathcal{R}_{_{\alpha\theta_{i}}}(\mathcal{R}_{_{\alpha}}^{\alpha_{i}\theta} + 2\partial^{\theta}f^{\alpha_{i}}) - 3t_{.1}\partial_{\alpha}f_{_{\alpha}}\partial^{\theta}f^{\alpha_{i}} + 3t_{.1}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}} + 3t_{.1}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_$ $6r_{.5}^{\alpha}\partial_{\alpha}\mathcal{A}^{\alpha_{1}\theta}\partial_{\kappa}\mathcal{A}_{,\ \theta}^{\ \kappa}+12r_{.5}^{\alpha}\partial^{\theta}\mathcal{A}_{\alpha}^{\alpha_{1}}\partial_{\kappa}\mathcal{A}_{,\ \theta}^{\ \kappa}+6r_{.5}^{\alpha}\partial_{\alpha}\mathcal{A}^{\alpha_{1}\theta}\partial_{\kappa}\mathcal{A}_{\theta}^{\ \kappa}_{,\ \tau}-12r_{.5}^{\alpha}\partial^{\theta}\mathcal{A}_{\alpha}^{\alpha_{1}}\partial_{\kappa}\mathcal{A}_{\theta}^{\ \kappa}_{,\ \tau}))[t,\ x,\ y,\ z]\,dz\,dy\,dx\,dt$ **Wave operator**

${\stackrel{0^{+}}{\mathcal{A}}}^{\parallel \ 0^{+}} f^{\parallel \ 0^{+}} f^{\perp} \quad {\stackrel{0^{-}}{\mathcal{A}}}^{\parallel }$

· <i>f</i> " †	U	U	U	U										
^{0,+} <i>f</i> [⊥] †	0	0	0	0										
^{0⁻} Æ [∥] †	0	0	0	-t. 1	${}^{1^+}_{\boldsymbol{\cdot}}\mathcal{A}^{\parallel}{}_{\alpha\beta}$	$^{1.}^{+}\mathcal{H}^{\perp}{}_{lphaeta}$	$\overset{1^{+}}{\cdot}f^{\parallel}{}_{\alpha\beta}$	$^{1}\mathcal{A}^{\parallel}{}_{lpha}$	$^{1}\mathcal{H}^{\perp}{}_{lpha}$	$^{1}f^{\parallel}_{\alpha}$	$^{1}f_{a}^{\perp}$			
				$^{1\overset{+}{.}}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$k^{2} (2r_{1} + r_{1}) - \frac{t_{1}}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{i kt.}{\sqrt{2}}$	0	0	0	0			
				$^{1.^{+}}\mathcal{A}^{\scriptscriptstyle \perp}\dagger^{^{lphaeta}}$	$-\frac{\frac{t}{1}}{\sqrt{2}}$	0	0	0	0	0	0			
				$1.^+f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{\sqrt[6]{kt}}{\sqrt{2}}$	0	0	0	0	0	0			
				$^{1}\mathcal{F}^{\parallel}$ † lpha	0	0	0	$k^2 (r_1 + r_5) + \frac{t_1}{6}$		0	$\frac{i kt.}{3}$			
				$\frac{1}{2}\mathcal{A}^{\perp} \dagger^{\alpha}$	0	0	0	$\frac{\frac{t}{1}}{3\sqrt{2}}$	t. 1 3	0	$\frac{1}{3} i \sqrt{2} kt_1$			
				$f^{\parallel} \uparrow^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{2}f^{\perp}\uparrow^{\alpha}$	0	0	0	$-\frac{1}{3}ikt$	$-\frac{1}{3}i\sqrt{2}kt$	0	$\frac{2 k^2 t}{3}$	2 ⁺ <i>Ά</i> αβ	$2^+f^{\parallel}_{\alpha\beta}$	$^{2}\mathcal{A}^{\parallel}_{lphaeta\chi}$
											$^{2^{+}}\mathcal{R}^{\parallel}\dagger^{lphaeta}$	2	$-\frac{i k t_{1}}{\sqrt{2}}$	0
											$^{2^{+}}f^{\parallel}\uparrow^{\alpha\beta}$	$\frac{i kt.}{\sqrt{2}}$	$k^2 t$.	0
											$^{2}\mathcal{H}^{\parallel}\dagger^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$
Satu	ırat	ha:	nre	กกลตล	tor									

$0.^{-}\tau^{\perp}$ †	0	0	0	0											
^{0.} σ [∥] †	0	0	0	$-\frac{1}{t}$	$1.^+\sigma^{\parallel}_{\alpha\beta}$		$\overset{1^{+}}{\cdot}\tau^{\parallel}{}_{\alpha\beta}$	$^{1}\sigma^{\parallel}{}_{\alpha}$	$\frac{1}{2}\sigma_{\alpha}$	$1^{-}\tau^{\parallel}_{\alpha}$	$\frac{1}{\tau}$				
				$1.^+\sigma^{\parallel} \uparrow^{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1^2+k^2t_1^2}$	$-\frac{i\sqrt{2}k}{t\cdot +k^2t\cdot 1}$	0	0	0	0				
				$1.^+\sigma^{\perp}$ † $^{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2 k^2 (2 r_1 + r_5) + t_1}{(1+k^2)^2 t_1^2}$	$\frac{-2ik^3(2r.+r.)+ikt.}{(1+k^2)^2t.^2}$	0	0	0	0				
				$1.^+ \tau^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i\sqrt{2}k}{t.+k^2t.}$	$\frac{i(2k^{3}(2r.+r.)-kt.)}{(1+k^{2})^{2}t.^{2}}$	$\frac{-2 k^4 (2 r. + r.) + k^2 t.}{1 \cdot 5 \cdot 1} (1 + k^2)^2 t.^2$	0	0	0	0				
				$^{1}\sigma^{\parallel}$ † $^{\alpha}$	0	0	0	$\frac{1}{k^2 (r_1 + r_5)}$	$-\frac{1}{\sqrt{2} (k^2+2 k^4) (r_1+r_2)}$	0	$-\frac{i}{k(1+2k^2)(r_1+r_2)}$				
				$\frac{1}{2}\sigma^{\perp}\uparrow^{\alpha}$	0	0	0	$-\frac{1}{\sqrt{2} (k^2+2 k^4) (r_1+r_5)}$	$\frac{6 k^2 (r_1 + r_2) + t_1}{2 (k+2 k^3)^2 (r_1 + r_2) t_1}$	0	$\frac{i (6 k^2 (r + r) + t)}{\sqrt{2} k (1 + 2 k^2)^2 (r + r) t}$				
				$1^{-}\tau^{\parallel} + \alpha$	0	0	0	0	0	0	0				
				$\frac{1}{2}\tau^{\perp} + \alpha$	0	0	0	$\frac{i}{k(1+2k^2)(r_1+r_2)}$	$-\frac{i\left(6k^2(r_1+r_2)+t_1\right)}{\sqrt{2}k\left(1+2k^2\right)^2(r_1+r_5)t_1}$	· 0	$\frac{6 k^2 (r_1 + r_5) + t_1}{(1 + 2 k^2)^2 (r_1 + r_5) t_1}$	$^{2^{+}}\sigma^{\parallel}{}_{\alpha\beta}$	2. ⁺ τ αβ	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$	
											$\overset{2^+}{\cdot}\sigma^{\parallel} \uparrow^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t.}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
											$2^+_{} \tau^{\parallel} \uparrow^{\alpha\beta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t}$	$\frac{4k^2}{(1+2k^2)^2t.}$	0	
											$2 \cdot \sigma^{\parallel} + \alpha \beta \chi$	0	0	$\frac{2}{2 k^2 r. + t.}$	
Sou	rce	co	ns	traint	:S										

Spin-parity form	Covariant form	Multiplicities
⁰⁺ . σ == 0	$\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta} = 0$	1
$0^+_{\cdot} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} = 0$	1
$0^+_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1
$2ik 1\sigma^{\perp}^{\alpha} + 1\sigma^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1 τ α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$\bar{i} k 1^+_{\cdot} \sigma^{\perp}{}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta} + 2\partial_{\sigma}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\sigma}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = =$	3
	$\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	
$-2ik^{2^{+}_{.}}\sigma^{\parallel^{\alpha\beta}} + 2^{+}_{.}\tau^{\parallel^{\alpha\beta}} == 0$	$-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\chi}_{\chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\beta \chi} -$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha}+4ik^{\chi}\partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta}_{\delta}{}^{\epsilon}-6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon}-6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon}+6ik^{\chi}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\alpha\beta\delta}+$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} - 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha \beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta}) = 0$	
Total expected gauge g	enerators:	17

Massive spectrum

Massive particle

Pole residue:	$\frac{1}{r}$
Square mass:	$-\frac{t_{\cdot}}{2r_{\cdot}}$
Spin:	2
Parity:	Odd

Massless spectrum

	$\begin{array}{cccc} r.+r. & t.^2 \\ 1 & 5 & 1 \end{array}$	
Polarisations:	2	
Unitarity (conditions	

 $r_1 < 0 \&\& r_1 < -r_1 \&\& t_1 > 0$