多元函数积分学

二重积分的计算

1. 设闭区域
$$\sigma:(x-1)^2+(y-1)^2 \le 2$$
,则 $\iint_{\sigma}[\cos^2(x+y^2)+\sin^2(x^2+y)]d\sigma =$ ______

2 求
$$I = \iint_{\sigma} \sqrt{|y-x^2|} dxdy$$
, 其中 σ 由 $|x| \le 1$, $0 \le y \le 2$ 确定.

- 3 计算 $I = \iint_{\sigma} x[1 + \sin yf(x^2 + y^2)] dxdy$,其中 σ 由不等式 $x^2 + y^2 \le \pi^2$, $y \ge \sin x$ 确定, $f(t) \in C$.
- 4 计算积分 $I = \int_0^1 \frac{x-1}{\ln x} dx$.
- 5 计算二次积分

$$I = \int_0^a dx \int_{-x}^{-a+\sqrt{a^2-x^2}} \frac{1}{\sqrt{x^2+y^2}\sqrt{4a^2-x^2-y^2}} dy \ (a > 0).$$

6 设 f(x,y) 连续,且 $f(x,y) = xy + \iint_D f(x,y) dx dy$,其中 D 由曲线 $y = x^2$ 和直线 y = 0, x = 1 围成的区域,则 f(x, y) = (). (A) xy+1 (B) $xy+\frac{1}{3}$ (C) $xy+\frac{1}{8}$ (D) $xy-\frac{1}{12}$

(A)
$$xy+1$$

(B)
$$xy + \frac{1}{3}$$

(c)
$$xy + \frac{1}{8}$$

(D)
$$xy - \frac{1}{12}$$

7. 设 $\sigma: x^2 + y^2 \le 2$ $x \ge 1$. $I = \iint_{\mathbb{R}} f(x, y) d\sigma$ 把 I 表示为极坐标系下先对 θ 后对 r 的累

次积分是()

(A)
$$I = \int_{1}^{\sqrt{2}} r dr \int_{-\arccos\frac{1}{r}}^{\arccos\frac{1}{r}} f(r\cos\theta, \sin\theta) d\theta$$

(B)
$$I = \int_{1}^{\sqrt{2}} r dr \int_{0}^{\arccos \frac{1}{r}} f(r \cos \theta, r \sin \theta) d\theta$$

(C)
$$I = \int_{\frac{1}{\sqrt{D}}}^{1} r dr \int_{-\arccos\frac{1}{r}}^{\arccos\frac{1}{r}} f(r\cos\theta, r\sin\theta) d\theta$$

(D)
$$I = \int_{\frac{1}{\sqrt{2}}}^{1} r dr \int_{0}^{\arcsin r} f(r \cos \theta, r \sin \theta) d\theta$$

8 计算二重积分
$$I = \iint_{\sigma} y^2 dx dy$$
.

10 设
$$f(x) = \begin{cases} a, & 0 \le x \le 1 \\ 0, & 其他 \end{cases}$$
 , 且 D 为 $-\infty < x < +\infty$, $-\infty < y < +\infty$, 则
$$\iint_D f(y)f(x-y)dxdy = \underline{\hspace{1cm}}$$

11 设
$$f(u)$$
 为连续函数,且 $\int_0^1 f(r)dr = 1$,则 $\iint_{x^2+y^2 \le 1} f(x^2+y^2)dxdy =$ ______.

12.
$$\lim_{t \to 0^+} \frac{1}{t^2} \int_0^t dx \int_0^{t-x} e^{x^2 + y^2} dy = \underline{\hspace{1cm}}$$

13. 设 D 是 xoy 平面上以 (1,1), (-1,-1) 为顶点之三角形区域, D_1 是 D 在第一象限部分,则 $\iint_D (xy + \cos x \sin y) dx dy = ()$.

- (A) $2\iint_{D_1} \cos x \sin y dx dy$; (B) $2\iint_{D_1} xy dx dy$;
- (C) $4\iint_D (xy + \cos x \sin y) dxdy$; (D) 0.

14 设
$$D = \{(x,y) | x^2 + y^2 \le \sqrt{2}, x \ge 0, y \ge 0\}$$
, $[1+x^2+y^2]$ 表示不超过 $1+x^2+y^2$ 的最大整数,计算二重积分 $\iint_D xy[1+x^2+y^2]dxdy$.

15. 设 f(x,y) 在区域 D 内连续, $I = \iint\limits_D f(x,y) d\sigma$, D_1 为 D 在第一象限部分且 $D_1 = \frac{1}{4}D$,

则使
$$I = 4 \iint_{D_1} f(x, y) d\sigma$$
 成立的条件是 ().

- (A) f(x, y) 及 D 均关于原点对称;
- (B) D 关于 x, y 轴对称, f(x, y) 关于原点对称;
- (C) D 关于原点对称, f(x,y) 关于 x,y 轴对称;
- (D) D 和 f(x, y) 均关于 x, y 轴对称.
- 16. 设 f(x,y) 为连续函数,则 $\int_{0}^{\frac{\pi}{4}} d\theta \int_{0}^{1} f(r\cos\theta, r\sin\theta) r dr$ 等于 ().

(A)
$$\int_{0}^{\frac{\sqrt{2}}{2}} dx \int_{x}^{\sqrt{1-x^2}} f(x, y) dy$$
; (B) $\int_{0}^{\frac{\sqrt{2}}{2}} dx \int_{0}^{\sqrt{1-x^2}} f(x, y) dy$;

(B)
$$\int_{0}^{\frac{\sqrt{2}}{2}} dx \int_{0}^{\sqrt{1-x^2}} f(x, y) dy$$

(C)
$$\int_{0}^{\frac{\sqrt{2}}{2}} dy \int_{y}^{\sqrt{1-y^2}} f(x, y) dx$$

(C)
$$\int_{0}^{\frac{\sqrt{2}}{2}} dy \int_{y}^{\sqrt{1-y^2}} f(x, y) dx$$
; (D) $\int_{0}^{\frac{\sqrt{2}}{2}} dy \int_{0}^{\sqrt{1-y^2}} f(x, y) dx$.

17 \(\text{\frac{1}{3}} \int_0^a dx \int_0^b e^{\max\left\{b^2x^2,a^2y^2\right\}} dy \left(a > 0, b > 0\right).

题型 与二重积分相关的不等式

- 1 估计 $\iint_{\sigma} (\sin x^2 + \cos y^2) d\sigma$ 的值, 其中 σ 为正方形 $0 \le x, y \le 1$.

 $I_3 = \iint_{\substack{y^2+2y^2 < 1}} xy(x+y) dxdy$, 则它们的大小顺序为 () .

(A)
$$I_1 < I_2 < I_3$$

(B)
$$I_2 < I_3 < I_1$$

(C)
$$I_3 < I_1 < I_2$$

(D)
$$I_1 < I_3 < I_2$$

3、设f(x)在[0,1]上连续, $f(x) \ge 0$,且f(x)单调减少,试证

$$\frac{\int_{0}^{1} x f^{2}(x) dx}{\int_{0}^{1} x f(x) dx} \le \frac{\int_{0}^{1} f^{2}(x) dx}{\int_{0}^{1} f(x) dx}.$$

4. 平面区域
$$D = \{(x, y) | x^2 + y^2 \le 1\}$$
, 并设 $M = \iint_D (x + y)^3 dx dy$,

$$N = \iint_D \cos^2 x \cos^2 y dx dy$$
, $P = \iint_D [e^{-(x^2+y^2)} - 1] dx dy$, 则有().

- (A) M > N > P;
- (C) M > P > N; (D) N > P > M.

5、若 f(x), g(x) 皆连续, 且具有相同的单调性,

求证:
$$\int_0^1 f(x)g(x)dx \ge \int_0^1 f(x)dx \int_0^1 g(x)dx$$
,

6 设
$$f(x) \in C[a,b]$$
, 且 $f(x) > 0$, 证明

$$\int_{a}^{b} f(x) dx \cdot \int_{a}^{b} \frac{dx}{f(x)} \ge (b-a)^{2}.$$

题型 综合问题

1 设函数 f(x) 在 $(-\infty, +\infty)$ 内有连续导数,且满足

$$f(t) = 2 \iint_{x^2 + y^2 \le t^2} (x^2 + y^2) f(\sqrt{x^2 + y^2}) dx dy + t^4 \qquad (t \ge 0),$$

求f(t)。.

2 设
$$f(x)$$
 在 [0,1] 上连续,且 $f(x) = x + \int_{x}^{1} f(y) f(y-x) dy$, 求 $\int_{0}^{1} f(x) dx$.

3. 设
$$f(x, y)$$
 连续, 且 $f(x, y) = xy + \iint_D f(x, y) dx dy$, 其中 $D \oplus y = x^2, x = 1$ 及 $y = 0$ 围成,

则
$$f(x,y) =$$

4. 设 f(x,y) 在单位圆域 $x^2 + y^2 \le 1$ 内有连续偏导且在边界上取值为零,则

$$\lim_{\varepsilon \to 0^{+}} \frac{1}{2\pi} \iint_{\varepsilon^{2} \le x^{2} + y^{2} \le 1} \frac{xf'_{x} + yf'_{y}}{x^{2} + y^{2}} d\sigma = \underline{\hspace{1cm}}$$