Матан

Сергей Григорян

13 сентября 2024 г.

Содержание

1	§2. Предел последовательности	7
	1.1 Определение предела	7

Доказательство. Пусть $A \subset \mathbb{R}$ и ограничено сверху.

Рассм. $B = \{b \in \mathbb{R} : b$ - верх. грань $A\}$. Тогда $B \neq \emptyset$ и $\forall a \in A \forall b \in B (a \leq b)$. По аксиоме непр-ти $\exists c \in \mathbb{R} : \forall a \in A, \forall b \in B (a \leq c \leq b)$.

Из нер-ва $a \le c \Rightarrow c$ верх. грань A

Из правого нер-ва любое $c' < c \colon c' \not\in B$, т.е. c' не явл. верх. гранью A. Сл-но, $c = \sup A$.

Теорема 0.1 (аксиома Архимеда). Пусть $a,b \in \mathbb{R}, a > 0$. Тогда $\exists n \in \mathbb{N}, m. \ u. \ na > b$

Доказательство. Предположим, что $\forall n \colon na \leq b$. Тогда $A = \{na; n \in \mathbb{N}\}$ огр. сверху. По теореме $5.1 \; \exists c = \sup A$. Число c-a не явл. верх. гранью A (т. к. a>0)

Тогда $\exists n \in \mathbb{N} (na > c - a)$. Откуда:

$$na + a = (n+1)a > (c-a) + a = c$$

т. е. (n+1)a > c. Но $(n+1)a \in A$ (противоречие с тем, что c - верх. грань)!!!

Следствие. 1) $\forall b \in \mathbb{R}, \exists n \in \mathbb{N} (n > b), (a = 1)$

2)
$$\forall \varepsilon > 0, \exists n \in \mathbb{N}(\frac{1}{n} < \varepsilon) \ (\frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon})$$

Следствие.

 $\forall x \in \mathbb{R}, \exists ! m \in \mathbb{Z} (m \le x < m+1) (m$ - целая часть x)

Доказательство. (\exists) $x \geq 0$. Рассм. $S = \{n \in \mathbb{N} : n > x\}$. По аксиоме архимеда, это мн-во непусто. $\Rightarrow \exists p = min(S)$. Положим m = p - 1. Тогда m < x и m + 1 > x

x < 0 . По предыдущему пункту $\exists m' \in \mathbb{Z} (m' \le -x < m' + 1)$. Положим:

$$m = \begin{cases} -m', x = -m' \\ -m' - 1, x \neq -m' \end{cases} \Rightarrow m \le x < m + 1$$
 (1)

Единственность:

$$\begin{cases} m' \leq x < m'+1 \\ m'' \leq x < m''+1 \end{cases} \Rightarrow -1 < m'-m'' < 1, m'-m'' \in \mathbb{Z} \Rightarrow m'-m'' = 0 \Rightarrow m' = m''$$

Пример.

$$\left\lfloor \frac{3}{2} \right\rfloor = 1, \left\lfloor -\frac{3}{2} \right\rfloor = -2$$

Следствие.

$$\forall a, b \in \mathbb{R}, a < b, \exists r \in \mathbb{Q} (a < r < b)$$

Доказательство.

$$\exists n \in \mathbb{N}(\frac{1}{n} < b-a)$$

$$r = \frac{\lfloor na \rfloor + 1}{n}.$$
Тогда $r \in \mathbb{Q} \Rightarrow$
$$r > \frac{na-1+1}{n} = a, r \leq \frac{na+1}{n} = a + \frac{1}{n} < a + (b-a) = b$$

Обозначение.

$$n \in \mathbb{N} \cup \{0\} =: \mathbb{N}_0$$

Определение 0.1. Пусть $a \in \mathbb{R}$, тогда:

$$a^0 = 1$$
, $a^{n+1} = a^n a$

Обозначение. Пусть $m, n \in \mathbb{Z}$ и $m \le n$, положим:

$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + \dots + a_n$$

$$\prod_{k=m}^{n} = a_m * a_{m+1} * \dots * a_n$$

E c л u m > n.

Теорема 0.2 (Бином Ньютона).

$$\forall a, b \in \mathbb{R}, n \in \mathbb{N}$$
:

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}, \ \ \partial e \ C_n^k = \frac{n!}{k!(n-k)!}$$
$$0! = 1, (n+1)! = n! * (n+1)$$

Доказательство. Докажем по индукции:

- n = 1: Верно
- Предположим, что утв. верно для n:

$$(a+b)^{n+1} = (a+b)(a+b)^n = (a+b)\sum_{k=0}^n C_n^k a^k b^{n-k} =$$

$$= \sum_{k=0}^n C_n^k a^{k+1} b^{n-k} + \sum_{k=0}^n C_n^k a^k b^{n-k+1} = \sum_{k=0}^n C_n^k a^k b^{n+1-k} + \sum_{k=1}^{n+1} C_n^{k-1} a^k b^{n-k+1} =$$

$$= C_n^0 b^{n+1} + \sum_{k=1}^n (C_n^k + C_n^{k-1}) a^k b^{n+1-k} + C_n^n a^{n+1} = \left[C_n^k + C_n^{k-1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n-k+1)!} \right]$$

$$\left[\iff \frac{(n+1)!}{k!(n+1-k)!} = C_{n+1}^k \right] = \sum_{k=0}^{n+1} C_{n+1}^k a^k b^{n+1-k}$$

Ч. Т. Д.

Следствие. Пусть $a \ge 0, n, k \in \mathbb{N}, 1 \le k \le n$. Тогда:

$$(1+a)^n \ge 1 + C_n^k a^k$$

Обозначение.

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$$

- расширенная числовая прямая

Считают, что $\forall x \in \mathbb{R}(-\infty < x < +\infty)$ Введём допус. операции $x \in \mathbb{R}$

•
$$x + (+\infty) = x - (-\infty) = +\infty$$

•
$$x - (-\infty) = x + (-\infty) = -\infty$$

•
$$x * (\pm \infty) = \pm \infty, x > 0$$

•
$$x * (\pm \infty) = \mp \infty, x < 0$$

$$\bullet \ \ \frac{x}{\pm \infty} = 0$$

Кроме того:

- $(+\infty) + (+\infty) = +\infty$
- $(-\infty) + (-\infty) = -\infty$
- $(+\infty) * (+\infty) = (-\infty) * (-\infty) = +\infty$
- $(+\infty)(-\infty) = (-\infty)(+\infty) = -\infty$

НЕДОПУСТИМЫЕ операции:

- $(+\infty) (+\infty)$
- $(+\infty) + (-\infty)$
- $(-\infty) (-\infty)$
- $(-\infty) + (+\infty)$
- $0*\pm\infty$
- $\pm \infty * 0$
- ±∞

Соглащение: $E \subset \mathbb{R}, E \neq \emptyset$.

- Если E не огр. сверху, то $\sup E = +\infty$
- $\bullet\:$ Если E не огр. снизу, то $\inf E = -\infty$

Определение 0.2. $I\subset R$ называется промежутком, если $\forall a,b\in I, \forall x\in \mathbb{R} (a\leq x\leq b\Rightarrow x\in I)$

<u>Лемма</u> 0.3. Любой промежуток - одно из следующих мн-в:

- Ø
- \bullet \mathbb{R}
- $(a, +\infty)$

- $[a, +\infty)$
- $(-\infty,b)$
- $(-\infty, b]$
- [*a*, *b*]
- \bullet (a,b)
- [*a*, *b*)
- (*a*, *b*]

Доказательство. I - промежуток, $I \neq \emptyset$

$$a := \inf I, b := \sup I \Rightarrow a \le b$$

- Если a = b, то $I = \{a\}$
- \bullet Если a < b и a < x < b. По опр. точных граней $\exists x', x'' \in I \colon (x' < x < x'') \Rightarrow x \in I$

Итак, $(a,b) \subset I \subset [a,b]$

1 §2. Предел последовательности

1.1 Определение предела

Определение 1.1. $a: \mathbb{N} \to A$ - п-ть эл-ов мн-а A. Значение a(n) - наз-ся n-ым членом п-ти. (Обозначается a_n). Сама п-ть обозначается $\{a_n\}$ или $a_n, n \in \mathbb{N}$

Если $A=\mathbb{R}$ - то $\{a_n\}$ - числовая п-ть.

Пример. 1)

$$a:\mathbb{N}\to\{c\},c\in\mathbb{R}$$

Здесь постоянная n-ть $(a_n = c, \forall n \in \mathbb{N})$

- 2) $a_n = n^2, n \in \mathbb{N}$
- (3) $a_{n+2}=a_{n+1}+a_n, a_1=a_2=1$ n-ть Фиббоначи.

Определение 1.2. Число a наз-ся пределом п-ти $\{a_n\}$, если для любого $\varepsilon>0$ найдётся такой номер N, что $|a_n-a|<\varepsilon$ для всех $n\geq N$. Обозначается, как $\lim_{n\to\infty}a_n=a$

Определение 1.3 (В кванторах).

$$\lim_{n \to \infty} a_n = a \iff \forall \varepsilon > 0 \exists N \in \mathbb{N} \colon \forall n \in \mathbb{N} (n \ge N \Rightarrow |a_n - a| < \varepsilon)$$

Или, $a_n \to a \text{ (при } n \to \infty\text{)}$

Замечание.

$$\lim_{n\to\infty} a_n = a \iff \forall \varepsilon > 0, M = \{n \in \mathbb{N} : a_n \notin (a - \varepsilon, a + \varepsilon)\}, M - конечно$$

Определение 1.4. Если $\exists \lim_{n\to\infty} a_n$, то $\{a_n\}$ наз-ся сходящейся птью, иначе - расходящейся птью

Пример.

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

Зафикс. $\varepsilon > 0$. Рассмотрим $|\frac{1}{n} - 0| < \varepsilon \iff \frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon} \Rightarrow$ нам подойдёт $N = \left\lfloor \frac{1}{\varepsilon} \right\rfloor + 1$. Если $n \geq N \Rightarrow n > \frac{1}{\varepsilon} \Rightarrow |\frac{1}{n} - 0| < \varepsilon$

Теорема 1.1. (О единственности предела) Если $\lim_{n\to\infty} a_n = a \ u \lim_{n\to\infty} a_n = b$.

Доказательство. Зафикс. $\varepsilon>0$. По опред. предела $\exists N_1, \forall n\geq N_1(|a_n-a|<\frac{\varepsilon}{2})$ и $\exists N_2, \forall n\geq N_2(|a_n-b|<\frac{\varepsilon}{2}).$

 Π оложим $N = max(N_1, N_2)$:

$$|a-b| = |a-a_N + a_N - b| \le |a-a_N| + |b-a_N| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Т. к.
$$\varepsilon > 0$$
 - любое \Rightarrow , то $|a-b|=0$, т. е. $a=b$

Задача 1.1.

$$\lim_{n \to \infty} a_n = a \iff \lim_{n \to \infty} |a_n| = |a|$$

Определение 1.5. П-ть $\{a_n\}$ наз-ся ограниченной, если $\{a_n \colon n \in \mathbb{N}\}$ ограничено.

Теорема 1.2. (Об ограниченности сходящейся n-ти) Если $\{a_n\}$ сходит-ся, то она ограничена.

Доказательство. Пусть $\lim_{n\to\infty} a_n = a$. По опред. предела (для $\varepsilon = 1$) $\exists N, \forall n \geq N(a-1 < a_n < a+1)$. Положим $m = min\{a_1, \dots, a_{N-1}, a-1\}, M = max\{a_1, \dots, a_{N-1}, a+1\}$. Тогда $m \leq a_n \leq M$ для всех $n \in \mathbb{N}$. \square

Замечание. Обратное утв. неверно:

Пример.

$$a_n = (-1)^n, n \in \mathbb{N}$$

Предположим, что a_n сходится:

По опред. предела $(\varepsilon = 1)$ $\exists N, \forall n \geq N(a-1 < (-1)^n < a+1)$

- При чётном $n \Rightarrow 1 < a + 1$
- При нечётном $n \Rightarrow a-1 < -1$

 $\Rightarrow a < 0 \land a > 0!!!$ - противоречие

<u>Лемма</u> 1.3. Для всякого $m \in \mathbb{N}$ n- $mu \{a_n\}$ $u \{b_n\}$, где $b_n = a_{n+m}, \forall n \in \mathbb{N}$ имеют предел одновременно, u если имеют, m0 пределы равны.

Доказательство. Зафикс. $\varepsilon > 0 \Rightarrow$

$$\forall n \ge N_1 \colon (|a_n - a| < \varepsilon) \Rightarrow (\forall n \ge N_1 (|a_{n+m} - a| < \varepsilon))$$
$$(\forall n \ge N_2 (|a_{n+m} - a| < \varepsilon)) \Rightarrow (\forall n \ge N_2 + m(|a_n - a| < \varepsilon))$$
$$\Rightarrow \lim_{n \to \infty} a_n = a \iff \lim_{n \to \infty} b_n = a$$

Определение 1.6. П-ть $\{b_n\}$ об-ся $\{a_{n+m}\}$ и наз-ся m-ным хвостом $\{a_n\}$

<u>Теорема</u> 1.4 (О пределе в нер-вах). Если $a_n \leq b_n$ для всех $n \in \mathbb{N}$ и $\lim_{n\to\infty} a_n = a, \lim_{n\to\infty} b_n = b, \ mo \ a \leq b$

$$\exists N_1 \colon \forall n \ge N_1 (a - \frac{a - b}{2} < a_n)$$

$$\exists N_2 \colon \forall n \ge N_2(b_n < b + \frac{a-b}{2})$$

Положим $N = max(N_1, N_2)$, тогда:

$$\frac{a+b}{2} < a_N$$
 и $b_N < \frac{a+b}{2} \Rightarrow b_N < a_N!!!$

Замечание.

Пример.

$$0 < \frac{1}{2}$$
, $no \lim_{n \to \infty} \frac{1}{n} = 0$

Следствие. Eсли $\lim_{n\to\infty}a_n=a,\lim_{n\to\infty}b_n=b,a< b\Rightarrow \exists N, \forall n\geq N, \forall n\geq n$

Теорема 1.5 (О зажатой п-ти). Если $a_n \le c_n \le b_n, \forall n \in \mathbb{N}$ $u \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = a, \ mo \ \exists \lim_{n \to \infty} c_n = a$

Доказательство. Зафикс. $\varepsilon > 0$. По опр. предела:

$$\exists N_1, \forall n \geq N_1(a - \varepsilon < a_n)$$

$$\exists N_2, \forall n \geq N_2(b_n < a + \varepsilon)$$

Положим $N = max(N_1, N_2)$. Тогда при всех $n \ge N$ имеем:

$$a - \varepsilon < a_n \le c_n \le b_n < a + \varepsilon \Rightarrow |c_n - a| < \varepsilon$$

$$\Rightarrow \lim_{n\to\infty} c_n = a$$
. Ч. Т. Д.

Пример.

$$\lim_{n \to \infty} q^n = 0, |q| < 1$$

- q = 0: верно
- $q \neq 0 \Rightarrow \frac{1}{|q|} > 1 \Rightarrow \frac{1}{|q|} = 1 + \alpha, \alpha > 0$

$$\frac{1}{|q|^n} = (1+\alpha)^n \ge 1 + n\alpha > n\alpha$$

$$\Rightarrow 0 < |q|^n < \frac{1}{n\alpha} (\frac{1}{n\alpha} \to 0) \Rightarrow |q|^n \to 0$$

Теорема 1.6. (Арифметические операции с пределами) Пусть $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$. Тогда:

- 1) $\lim_{n\to\infty} (a_n + b_n) = a + b$
- 2) $\lim_{n\to\infty} (a_n b_n) = ab$
- 3) Если $b \neq 0$ и $b_n \neq 0, \forall n \in \mathbb{N}$, то

$$\frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n} = \frac{a}{b}$$

Доказательство. 1) Заф. $\varepsilon > 0$. По опр. предела:

$$\exists N_1, n \ge N_1(|a_n - a| < \frac{\varepsilon}{2})$$

$$\exists N_2, n \ge N_2(|b_n - b| < \frac{\varepsilon}{2})$$

Положим $N = max(N_1, N_2)$. Тогда $\forall n \geq N$:

$$|(a_n + b_n) - (a + b)| \le |(a_n - a) + (b_n - b)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

2) По теор. 2 п-ть $\{a_n\}$ огр., т. е.

$$\exists C > 0, \forall n \in \mathbb{N}(|a_n| \le C)|b| \le C$$

Заф. $\varepsilon > 0$. По опр. предела:

$$\exists N_1, \forall n \ge N_1(|a_n - a| < \frac{\varepsilon}{2C})$$

$$\exists N_2, \forall n \ge N_2(|b_n - b| < \frac{\varepsilon}{2C})$$

Тогда $\forall n > N = max(N_1, N_2)$:

$$|a_nb_n-ab|=|a_nb_n-a_nb+a_nb-ab|\leq |a_n||b_n-b|+|b||a_n-a|< C\frac{\varepsilon}{2C}+C\frac{\varepsilon}{2C}=\varepsilon$$