

Applications of ANSYS/Multiphysics at NASA/Goddard Space Flight Center

Jim Loughlin

Mechanical Systems Analysis and Simulation

Branch

Code 542

May 15, 2007

Contributors to the GSFC MEMS Analysis Efforts

- Mindy Jacobson/formerly of 542
- Jonathan Kuhn/formerly of 542
- Jim Loughlin/542
- Dan Powell/540
- Apurva Varia/592

MEMS Structural Analysis

- Projects:
 - Micro-mirror Array for JWST
 - Micro-shutter Array for JWST
 - MEMS FP Tunable Filter
 - AstroE2 Micro-calorimeter
- Types of Analysis:
 - Electrostatic/Structural Interaction
 - Electromagnetic/Structural Interaction
 - Geometric and Material Nonlinear Analysis
- Software:
 - ANSYS Multiphysics

James Webb Space Telescope (JWST)

JWST Relative Size

Integrated Science Instrument Module (ISIM)

NIRSpec Instrument Layout

Micro-shutter Array

- The micro-shutter array is used as a transmissible filter in the Near Infrared Spectrometer.
- The shutter is etched from silicon nitride.
- The array grid is single crystal silicon
- Iron Cobalt is deposited onto the shutter paddle and is used for magnetic actuation.
- Aluminum is deposited onto the shutter as the ground electrode for electrostatic latching.

Micro-shutter Array

Early Micro-shutter Electrostatic Results

- 2D Structural/Electrostatic FEM Using ANSYS Multiphysics v5.7
- High voltage required for pure electrostatic actuation led to the shutter's magnetic actuation with electrostatic latching.

0 Volts

625 Volts

Micro-shutter Simulation

- animation created by Tim Carnahan/542

Micro-shutter Magnetic Actuation

Shutter is moved down as it is moved through magnetic field

Magnetic metal on shutter
is magnetized

Shutter is electrostatically captured and held in vertical position

Transparent electrode holds closed shutters closed

ANSYS Electromagnetic/Structural Model

ANSYS Electromagnetic/Structural Model

Magnetic Flux Lines from the Ansys Magnetic Solve


```
ANSYS 6.1
JUN 24 2003
16:23:39
NODAL SOLUTION
STEP=2
SUB =1
TIME=2
AZ
RSYS=0
SMN =-.001777
SMX =.001777
-.001755
-.00158
-.001404
-.001229
-.001053
-.834E-03
-.658E-03
-.483E-03
-.307E-03
-.132E-03
.877E-04
.263E-03
.439E-03
.614E-03
.790E-03
.001009
.001185
.00136
.001536
.001755
```


ANSYS Electromagnetic Results

ANSYS Electrostatic Results

Goddard Space Flight Center

Micro-Mirror Schematic

Artist's concept of the MMA

Artist's concept of a single mirror

Goddard Space Flight Center

Micro-Mirror-Array

Dry Release of the
Micro-Mirror-Array

Recent improvement
in the array size

3-D Micro-mirror Results

- 100 μm x 100 μm mirror electrostatically actuated at 50°K using nonlinear 1100 series Al properties

2-D Micro-mirror Electrostatic Snap-on and Release Voltages

micro-mirro snap-on voltge

MEMS Electrostatically Actuated Fabry-Perot Tunable Filter

Micro-Scale Fabry-Perot

- Current 3D FEM: Top Etalon Plate ($t=325\mu\text{m}$)
 - 11.000mm Aperture
 - 32.650mm O.D.
 - Spring Width = $800\mu\text{m}$
 - Optical Gap = $17.5\mu\text{m}$

Micro-Scale Fabry-Perot

- Static Non-Linear Force-Deflection FEA

$$F_{app} = 300\mu\text{N}/\text{pad} = 900\mu\text{N}; K_{mech} = \sim 630\mu\text{N}/\mu\text{m}$$

AstroE2 Micro-calorimeter

$300\mu\text{m}^2$ Si Pixel Body,
1.5 μm Thick

DRIE Etch From
385 μm Thick Frame

(c) Pre-Stressed Fundamental Mode Shape: $f_n = 6964$ Hz

Detailed Pixel Dynamics Analysis

- Prestressed Modal Analysis

(a) $f_n = 2823$ Hz; with 4 SU8 Tab Attachments to
Absorber

(c) Pre-Stressed Fundamental Mode Shape: $f_n = 6964$ Hz