

'From Data Collection To Action' Achieving Rapid Identification of Cyber Threats and Perpetrators

Joel Ebrahimi Solutions Architect Bivio Networks, Inc.

Data Retention Defined

- Key piece of comprehensive Cyber Security strategy
- Investigative tool: provides ability to look back in time
- Complements and enhances existing tools
 - Lawful Interception
 - Packet capture/re-play

A Transforming Network

- Explosion in usage, applications, devices, protocols
- Basic networking problems remain
 - Security
 - Information assurance
 - Cyber defense
 - Awareness
 - Control
- Network role transition from connectivity to policy

Exponential Growth in Mobile Devices

- Mobile Internet use is exploding
 - Information exchange
 - Entertainment
 - Social networking
 - Business productivity

All this access leads to new challenges...

Increasing Throughput

Performance of DPI functions significantly harder to maintain at 10Gbps speeds.

Network Applications drive overall network impact

Packet Capture Madness!

- 1 Hour 4500 GB
- 1 Day 100.5 TB
- 1 Month 3000 TB

Many Required Technologies

- Fast capture hardware/DPI technology
- Meta Data
- Storage Farm
- The ability to retrieve in a reasonable amount of time

What is Deep Packet Inspection?

Deep Packet Inspection (DPI) is a form of filtering that examines (inspects) both the payload and the header of a packet as it passes an inspection point.

DPI Hardware Implementations

Real-time Traffic Handling

Meta Data

What is required now?

- What capabilities / technical features are required by cyber analysts now (in order to have useful investigative information or evidence)?
 - Relationship of IP data flow to a specific person
 - Relationship of domain used to web activity
 - Relationship of time related to specific activities
 - Location of device/person at time of event
 - Secure/protected access, especially in multi-agency environments
 - Scalability of system solution

Storage

- Network Attached Storage
- Disk Arrays
- Store and Forward

Fast Retrieval

- Solid State Drives
- Properly formatted queries
- Indexed Databases

Data Retention

- Key piece of comprehensive Cyber Security strategy
- Investigative tool: provides ability to look back in time
- Complements and enhances existing tools
 - Lawful Interception
 - Packet capture/re-play

Network Probe

Context: Deep Packet Inspection Probing

- Far beyond legacy Layer 3/4 flow recording
- Far beyond protocol DPI
- Extraction of specific protocol or application info
- Enables vastly richer data mining and information set
- Enables run-time "user" identification through correlation

Deep Packet Inspection Probing

	No.	Time	Source	Destination	Protocol Info	
167	207 0.756202890	10.145.19.	66 10.14	l5.19.90 GTP <	HTTP> GET /img/2009/11/21/90x	9 0
			alg_ima	ge.jpg HTTP/1.1	-	e
						e
		Frame 167	207 (671 byte	es on wire, 671 byte	es captured)	_
Eth	ernet II, Src: Eric	sson_ed:81:	b0 (00:01:ec	:ed:81:b0), Dst: Ju	niperN_67:5f:f1 (00:23:9c:67:5f:f	i1) ^P
		802.	1Q Virtual LA	N, PRI: 0, CFI: 0, II	D: 202	_
	Internet Proto	col, Src: 65.	213.148.66 (6	5.213.148.66), Dst:	65.213.148.6 (65.213.148.6)	Α
	User Datag	gram Protoc	ol, Src Port:	blackjack (1025), D	Ost Port: gtp-user (2152)	р
			GPRS Tu	nneling Protocol		р
	Internet Prot	ocol, Src: 10	0.145.19.66 (1	0.145.19.66), Dst: '	10.145.19.90 (10.145.19.90)	!
Trans	mission Control F	Protocol, Sro	Port: 53585	(53585), Dst Port:	http (80), Seq: 1, Ack: 3683, Len	: 5 65
			Hypertext	Transfer Protocol		С
		GET /im	g/2009/11/21	/90x90-alg_image l	HTTP/1.1\r\n	а
	[Expert Info	(Chat/Seque	ence): GET /i	mg/2009/11/21/90x	90-alg_image.jpg HTTP/1.1\r\n]	t
	1]	/lessage: Gl	ET /img/2009	/11/21/90x90-alg_in	nage.jpg HTTP/1.1\r\n]	i
			[Se	verity level: Chat]		0
			-	roup: Sequence]		n
			•	est Method: GET		
		Reque	_	2009/11/21/90x90-a	<u> </u>	ı
			•	t Version: HTTP/1.		n
	User-Agent: Mo				5_2; en-us) AppleWebKit/525.18	s
				Version/3.1.1 Safar		р
					e/2010/01/01/2010-01-	Δ
01	_iconic_nyc_resta	urant_taver	n_on_the_gr	een_closes_its_do	oors_friday_after_a_finalhtml\r	\nc
				ccept: */*\r\n		t
			•	anguage: en-us\r\r		i
				oding: gzip, deflate		. 0
Cookie: WT_FPC=id=18.15.2.12-3609171504.30087201:lv=1277848799597:ss=1277848799597\r\n						
				ion: keep-alive\r\n		"
			Host: assets	s.nydailynews.com	\\r\n	
				\r\n		

Correlation Example

Correlation Example: Traditional DR

Bivio Data Retention: Correlation for

Context

Bivio Data Retention: Correlation for Context

Case Study: Bomb Threat Response

- 12.00 pm: Police noticed a menace message posted on a forum (about a bomb placed in central but unknown location)
- 12.20 pm: Secret Services engaged
- 12.30 pm: Contacted forum provider to determine the local user credential
- 12.30 pm: At the same time, contacted Bivio DRS administrator to retrieve data about sessions created toward the forum site
- 12.35 pm: Input query into the system "Which IP addresses accessed the forum site with the specific forum username?"
- 12.36 pm: Confirmed the carrier owning the SRC IP
- 12.36 pm: Input query into the system "To whom has the IP Address been assigned within the current timeframe?"
- 12.36 pm: Input query into the system "Which connection medium has the user used to access the network?"
- 12.37 pm: Result: IP -> subscriber ID -> BSID (Wimax) -> CPE Mac address -> user mac address
- 12.40 pm: CPE MAC correlated to CPE registration information, including name and address
 - User MAC correlated to hardware element, confirming the owner's laptop
 - BSID confirmed physical home address covered by the BSS quadrant
- 14.01 pm: Suspect caught!

Summary

- Data Retention an essential tool for Cyber Security
- Existing solutions focus on "retention" rather than enabling action and response
- Next generation DR systems must combine user context, correlation and coverage
- DR need to leverage DPI technology, Meta data, and storage and retrieval

Joel Ebrahimi

Contact: jebrahimi@bivio.net