Chapter 7

Bilinear and Quadratic Forms

7.1 Notes

• Bilinear form: A function $L: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ such that 10/18:

$$L(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2, \mathbf{y}) = \alpha L(\mathbf{x}_1, \mathbf{y}) + \beta L(\mathbf{x}_2, \mathbf{y}) \qquad L(\mathbf{x}, \alpha \mathbf{y}_1 + \beta \mathbf{y}_2) = \alpha L(\mathbf{x}, \mathbf{y}_1) + \beta L(\mathbf{x}, \mathbf{y}_2)$$

$$- L(\mathbf{x}, \mathbf{y}) = (A\mathbf{x}, \mathbf{y}).$$

• Quadratic form: A bilinear form $L(\mathbf{x}, \mathbf{x})$.

 $-(\mathbf{x},\mathbf{x})$ is a polynomial of degree 2 in $\mathbf{x}_1,\ldots,\mathbf{x}_n$:

$$L(\lambda \mathbf{x}, \lambda \mathbf{x}) = (\lambda \mathbf{x}, \lambda \mathbf{x}) = \lambda^2(\mathbf{x}, \mathbf{x})$$

• We have that

$$(A\mathbf{x}, \mathbf{x}) = (A\lambda\mathbf{x}, \lambda\mathbf{x}) = \lambda^2(A\mathbf{x}, \mathbf{x}) = \sum_{j,i=1}^n \alpha_{j,i}\mathbf{x}_i\mathbf{x}_j$$

• The general form of a quadratic form:

- Can any quadratic form on \mathbb{R}^n be written as $(A\mathbf{x}, \mathbf{x})$?

10/20: • Bilinear forms are linear in each argument when keeping the other fixed.

• Quadratic forms $Q(\mathbf{x}) = L(\mathbf{x}, \mathbf{x})$ are quadratic polynomials in the coordinates of x.

- In particular, $Q(\lambda \mathbf{x}) = |\lambda|^2 Q(\mathbf{x})$.

• If Q quadratic is real, then $Q(\mathbf{x}) = (A\mathbf{x}, \mathbf{x})$ where A is some square matrix.

- If $\mathbf{e}_1, \dots, \mathbf{e}_n$ is an orthonormal basis of \mathbb{R}^n , then there exists a unique $A = A^*$ such that $(A)_{ij} =$

- Keeping $\mathbf{x} = \sum_{i=1}^{n} \mathbf{x}_i, \mathbf{e}_i$ foxed, we have

$$\begin{aligned} Q(\mathbf{x}) &= L(\mathbf{x}, \mathbf{x}) \\ &= L(\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{e}_{i}, \sum_{i=1}^{n} \mathbf{x}_{j} \mathbf{e}_{j}) \\ &= \sum_{i=1}^{n} \mathbf{x}_{i} L(\mathbf{e}_{i}, \sum_{i=1}^{n} \mathbf{x}_{j} \mathbf{e}_{j}) \\ &= \sum_{i,j=1}^{n} \mathbf{x}_{i} \mathbf{x}_{j} \underbrace{L(\mathbf{e}_{i}, \mathbf{e}_{j})}_{A_{ij}} \end{aligned}$$

• We have that

$$(A\mathbf{x}, \mathbf{x}) = (UDU^{-1}\mathbf{x}, \mathbf{x})$$

$$= (DU^{-1}\mathbf{x}, U^{-1}\mathbf{x})$$

$$= \sum_{i=1}^{n} \lambda_{i} (\underbrace{U^{-1}\mathbf{x}}_{\mathbf{y}_{i}})_{i} (\underbrace{U^{-1}\mathbf{x}}_{\mathbf{y}_{i}})_{i}$$

- Can we characterize the set $\{\mathbf{x}: (A\mathbf{x}, \mathbf{x}) = 1\}$?
 - Note that this set is equivalent to $\{\mathbf{y}:(D\mathbf{y},\mathbf{y})=1\}$ by teh above. This set is a rotation of the previous one. Ellipse?
- Positive quadratic form:
 - Q is positive definite if $Q(\mathbf{x}) > \mathbf{0}$ for all $\mathbf{x} \neq \mathbf{0}$ and Q is positive semidefinite if $Q(\mathbf{x}) \geq \mathbf{0}$ for all $\mathbf{x} \neq \mathbf{0}$.
 - Take a self-adjoint matrix $A = A^*$. It is positive definite if $Q(\mathbf{x}) = (A\mathbf{x}, \mathbf{x})$ is positive definite.
- Theorem: If $A = A^*$, then
 - 1. A is positive definite if and only if all eigenvalues of A are positive.
 - 2. A is positive semidefinite if and only if all eigenvalues of A are nonnegative.
 - 3. A is negative semidefinite if and only if all eigenvalues of A are nonpositive.
 - 4. A is negative definite if and only if all eigenvalues of A are negative.
 - 5. A is indefinite if and only if the eigenvalues of A have positive and negative values.
- Theorem: $A = A^*$ is positive definite iff det $A_k > 0$ for all k = 1, ..., n where A_k is the upper left $k \times k$ submatrix.
- Minimax representation of eigenvalues of a self-adjoint A.
 - Let E be a subspace of X where dim $X < \infty$. We define $\operatorname{codim}(E) = \dim E^{\perp}$.
 - Thus, $\dim E + \operatorname{codim} E = \dim X$.
 - Theorem: Let $A=A^*,\ \lambda_1\geq\cdots\geq\lambda_n$ eigenvalues of A. Then

$$\lambda_k = \max_{\substack{\text{E subspace} \\ \dim E = k}} \min_{\substack{\mathbf{x} \in E \\ \|\mathbf{x}\| = 1}} (A\mathbf{x}, \mathbf{x}) = \min_{\substack{\text{F subspace} \\ \operatorname{codim} F = k - 1}} \max_{\substack{\mathbf{x} \in F \\ \|\mathbf{x}\| = 1}} (A\mathbf{x}, \mathbf{x})$$

- Proof: A diagonal equals $(\lambda_1, \ldots, \lambda_n)$.
- An orthonormal basis of X such that dim E = k, codim F = k 1, dim F = n k + 1.
- There exists an $\mathbf{x}_0 \neq \mathbf{0}$ such that $\mathbf{x}_0 \in E \cap F$.
- Note that if $B = B^*$, then the max and min of $(B\mathbf{x}, \mathbf{x})$ over the unit sphere is the maximal and minimal eigenvalue of B.
- Thus,

$$\min_{\substack{\mathbf{x} \in E \\ \|\mathbf{x}\| = 1}} (A\mathbf{x}, \mathbf{x}) \leq (A\mathbf{x}_0, \mathbf{x}_0) \leq \max_{\substack{\mathbf{x} \in F \\ \|\mathbf{x}\| = 1}} (A\mathbf{x}, \mathbf{x})$$

- This is true for any E, F subspaces. dim E = k, codim F = k 1, $E_0 = \operatorname{span}(\mathbf{e}_1, \dots, \mathbf{e}_k)$ and $F_0 = \operatorname{span}(\mathbf{e}_k, \dots, \mathbf{e}_n)$.
- Thus,

$$\min_{\substack{E_0\\ \|\mathbf{x}\|=1}} (A\mathbf{x}, \mathbf{x}) = \lambda_k = \max_{\substack{F_0\\ \|\mathbf{x}\|=1}} (A\mathbf{x}, \mathbf{x})$$

■ Additionally,

$$\lambda_{k_1} \leq \max_{\dim E = k} \min_{\mathbf{x}} (A\mathbf{x}, \mathbf{x}) \leq \min_{\substack{F \ \text{codim } F = k-1}} \max_{\mathbf{x}} (A\mathbf{x}, \mathbf{x}) \leq \lambda_k$$

- Corollary: Let $A = A^* = (a_{jk})_{1 \leq j,k \leq n}$ with eigenvalues $\lambda_1, \ldots, \lambda_n$ listed in decreasing order. Let $\tilde{A} = (a_{j,k})_{1 \leq j,k \leq n-1}$ with eigenvalues μ_1, \ldots, μ_{n-1} listed in decreasing order. Then $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots \geq \mu_{n-1} \geq \lambda_n$.
 - Consider $(A\mathbf{x}, \mathbf{x})$ on $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$, but then restrict yourself to $\mathbf{x} \in \mathbb{R}^{n-1}$ on $\{\mathbf{e}_1, \dots, \mathbf{e}_{n-1}\}$.

7.2 Chapter 7: Bilinear and Quadratic Forms

From Treil (2017).

10/25:

- Bilinear form (on \mathbb{R}^n): A function $L(\mathbf{x}, \mathbf{y})$ of two arguments $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ that is linear in each argument.
 - Linearity in each argument:

$$L(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2, \mathbf{y}) = \alpha L(\mathbf{x}_1, \mathbf{y}) + \beta L(\mathbf{x}_2, \mathbf{y})$$
 $L(\mathbf{x}, \alpha \mathbf{y}_1 + \beta \mathbf{y}_2) = \alpha L(\mathbf{x}, \mathbf{y}_1) + \beta L(\mathbf{x}, \mathbf{y}_2)$

• If $\mathbf{x} = (x_1, \dots, x_n)^T$ and $\mathbf{y} = (y_1, \dots, y_n)^T$, then

$$L(\mathbf{x}, \mathbf{y}) = \sum_{j,k=1}^{n} a_{j,k} x_k y_j$$
$$= (A\mathbf{x}, \mathbf{y})$$
$$= \mathbf{y}^T A\mathbf{x}$$

where

$$A = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{pmatrix}$$

- -A is uniquely determined by L.
- Quadratic form (on \mathbb{R}^n): The diagonal of a bilinear form L, i.e., a bilinear form $Q[\mathbf{x}] = L(\mathbf{x}, \mathbf{x}) = (A\mathbf{x}, \mathbf{x})$.
 - Alternatively: A homogeneous polynomial of degree 2, i.e., a polynomial in x_1, \ldots, x_n with only ax_k^2 and cx_jx_k terms.
- There are infinitely many ways to write a quadratic form as $(A\mathbf{x}, \mathbf{x})$.
 - However, there is a unique representation $(A\mathbf{x}, \mathbf{x})$ where A is a (real) symmetric matrix.
- Quadratic form (on \mathbb{C}^n): A function of the form $Q[\mathbf{x}] = (A\mathbf{x}, \mathbf{x})$ where A is self-adjoint.
- Lemma 7.1.1: Let $(A\mathbf{x}, \mathbf{x})$ be real for all $\mathbf{x} \in \mathbb{C}^n$. Then $A = A^*$.
- To classify quadratic forms, consider the set of points $\mathbf{x} \in \mathbb{R}^n$ defined by $Q[\mathbf{x}] = 1$ for some quadratic form Q
 - If the matrix of Q is diagonal, i.e., $Q[\mathbf{x}] = a_1 x_1^2 + \cdots + a_n x_n^2$, then the set of points can easily be visualized.
- The standard method of diagonalizing a quadratic form is change of variables.
- Orthogonal diagonalization.

- Let $Q[\mathbf{x}] = (A\mathbf{x}, \mathbf{x})$ in \mathbb{F}^n .
- Suppose $\mathbf{y} = S^{-1}\mathbf{x}$ where S is an invertible $n \times n$ matrix. Then

$$Q[\mathbf{x}] = Q[S\mathbf{y}] = (AS\mathbf{y}, S\mathbf{y}) = (S^*AS\mathbf{y}, \mathbf{y})$$

so in the new variables \mathbf{y} , the quadratic form has matrix S^*AS .

- Thus, we can let $A = UDU^*$, choose $D = U^*AU$ as our new (diagonal) matrix, and let this matrix act on the variables $\mathbf{y} = U^*\mathbf{x}$.
- Non-orthogonal diagonalization:
 - Completing the square:
 - Eliminate all $x_i x_j$ terms by completing the square. Then substitute in a y_k for each squared term.
 - Row/column operations:
 - Augment (A|I). Row reduce A to D. Then $I \to S^*$.