I. INTRODUCTION

The ternary nitrides or carbides with the general formula AXM_3 (A: divalent or trivalent element; X: carbon or nitrogen; and M: transition metal) are already known for several decades ^{1–3}. These compounds crystalize in a cubic anti-perovskite structure (A: cube-corner position; X: body-center position; M: face-center position) and exhibit a wide range of interesting physical properties¹, such as giant magneto-resistance⁴ and nearly zero temperature coefficient resistivity⁵. They have renewedly attracted considerable attention due to the discovery of superconductivity at ~ 8 K in intermetallic compound MgCNi₃⁶.

Considering the Ni-rich composition, it is expected that the ferromagnetism could exist in MgCNi₃. However, the absence of ferromagnetism was observed in experiment⁶ for MgCNi₃. From the electronic structures obtained by the first-principles calculations^{7–10}, the nonferromagnetic ground state of MgCNi₃ is ascribed to a reduced Stoner factor that results from a strong hybridization between the Ni-3d and C-2p electrons. For other Ni-based ternary carbides ACNi₃ (e.g., A = Al, Ca, In, Zn, and Cd), the first-principles calculations^{10–14} also show that the ground states of these compounds are non-magnetic and the C-Ni bonding exhibits nearly same characteristics as the one in MgCNi₃. Therefore, this indicates that the change of composition A could not induce the ferromagnetism in ACNi₃. On the other side, it raises a question whether the change of composition X or M can lead to the appearance of ferromagnetism in AXM₃ or not.

Very recently, the antiperovskite-type compounds InN_yCo_3 and InN_yNi_3 ($y \sim 1.0$ and 0.8, respectively) have been synthesized by solid-gas reactions of metal powders with NH₃ and they have been reported to have spin-glass-like properties based on the measurements of temperature dependence magnetization.¹⁵ The recent first-principles calculations¹² showed that the non-stoichiometry could affect the magnetic properties of ACNi₃ (e.g., AlCNi₃ and GaCNi₃) and suggested that the tendencies toward magnetism found in experiments^{16–19} for these compounds should be explained by the deviation of the Ni/C atomic ratio from the ideal stoichiometry. To shed more light on the understanding on the magnetic properties of InNCo₃ and InNNi₃ reported in experiment¹⁵, it is of great importance to theoretically study the electronic structures of these two compounds as well as the nature of the N-Co and N-Ni bondings.

In order to completely understand the electronic structures and magnetic ground states of