ENHANCING THE RELIABILITY OF GENERAL-PURPOSE ALGORITHMS FOR APPROXIMATE BAYESIAN INFERENCE

Yu Wang November 20, 2024

Bayesian Approximation

$$\pi\left(\theta\mid\{Y_i\}_{i=1}^N\right) = \frac{\prod_{i=1}^N p(Y_i\mid\theta)\pi_0(\theta)}{Z}$$

ullet We want to learn about π , typically by calculating expectations

$$\mathbb{E}\{f(X)\} := \pi(f) := \int f(x)\pi(\mathrm{d}x).$$

Bayesian Approximation

$$\pi\left(\theta\mid\{Y_i\}_{i=1}^N\right)=\frac{\prod_{i=1}^N p(Y_i\mid\theta)\pi_0(\theta)}{Z}$$

ullet We want to learn about π , typically by calculating expectations

$$\mathbb{E}\{f(X)\} := \pi(f) := \int f(x)\pi(\mathrm{d}x).$$

However, in general, the expectations can't be done exactly.

Bayesian Approximation

$$\pi\left(\theta\mid\{Y_i\}_{i=1}^N\right)=\frac{\prod_{i=1}^N p(Y_i\mid\theta)\pi_0(\theta)}{Z}$$

• We want to learn about π , typically by calculating expectations

$$\mathbb{E}\{f(X)\} := \pi(f) := \int f(x)\pi(\mathrm{d}x).$$

- However, in general, the expectations can't be done exactly.
- Approximate inference: Markov chain Monte Carlo (MCMC) constructs a Markov chain Y_0, Y_1, Y_2, \ldots , such that $\rho_n \to \pi$

$$\sum_{n=1}^{N} f(Y_n)/N \stackrel{a.s.}{\to} \pi(f) \quad \text{for } N \to \infty.$$

Challenges in Modern Approximate Bayesian Inference

• Challenges:

- high-dimensional $\theta \in \mathbb{R}^D$, D is large.
- complex relationship $p(Y_i|\theta)$.
- large-sclae dataset $\{Y_i\}_{i=1}^N$.

Challenges in Modern Approximate Bayesian Inference

• Challenges:

- high-dimensional $\theta \in \mathbb{R}^D$, D is large.
- complex relationship $p(Y_i|\theta)$.
- large-sclae dataset $\{Y_i\}_{i=1}^N$.

Problems of MCMC:

- Slow convergence and mixing in high-dimensional spaces.
- Computational cost of likelihood evaluation is proportional to the dataset size.
- Diagnosing convergence is harder in high dimensions.

Challenges in Modern Approximate Bayesian Inference

Challenges:

- high-dimensional $\theta \in \mathbb{R}^D$, D is large.
- complex relationship $p(Y_i|\theta)$.
- large-sclae dataset $\{Y_i\}_{i=1}^N$.

Problems of MCMC:

- Slow convergence and mixing in high-dimensional spaces.
- Computational cost of likelihood evaluation is proportional to the dataset size.
- Diagnosing convergence is harder in high dimensions.

Mitigations:

- Variational Inference (VI).
- Subsampling methods (e.g. Stochastic Gradient Langevin Dynamics (SGLD)).

Overview

 A priori finite-time, finite-data guarantees:
 A Unifying Framework for Understanding General-purpose Bayesian Posterior Approximation Methods,
 Huggins, Kasprzak, Wang, Campbell, Broderick. In prep

Overview

- A priori finite-time, finite-data guarantees:
 A Unifying Framework for Understanding General-purpose Bayesian Posterior Approximation Methods,
 Huggins, Kasprzak, Wang, Campbell, Broderick. In prep
- A post hoc quality check for VI:
 A Targeted Accuracy Diagnostic for Variational Approximations (TADDAA), Wang, Kasprzak, Huggins. AISTATS 2023.
- Uncertainty quantification for Subsampling methods:
 Stationary Analysis of Fixed Learning Rate Stochastic Gradient Algorithms, Wang & Huggins. (Under Review)

TADDAA

Markov chain Monte Carlo (MCMC)

MCMC sampling methods provide a general-purpose framework for obtaining samples that are asymptotically exact.

- **Proposal distribution:** $Q_{\psi}(x, dy)$ parameterized by ψ with current state x and corresponding density $q_{\psi}(x, y)$.
- Metropolis–Hastings (MH) correction: to construct a Markov kernel with the desired stationary distribution π , a proposed state $Y \sim Q_{\psi}(x,\cdot)$ is accepted with probability

$$\alpha(x,Y) = \min \left\{ 1, \frac{\pi(Y)q_{\psi}(Y,x)}{\pi(x)q_{\psi}(x,Y)} \right\}.$$

Variational Inference (VI)

Variational inference (VI) provides a potentially faster alternative to MCMC when models are complex and/or the dataset size is large.

$$\hat{\pi} = \operatorname*{arg\,min} \mathcal{D}_{\pi}(\xi).$$

- Variational family Q: we are able to efficiently calculate expectations
 of interest (e.g. mean and variance).
- Measure of discrepancy $\mathcal{D}_{\nu}(\cdot)$: the canonical choice is Kullback-Leibler (KL) divergence out of convenience.

$$\mathcal{D}_{\pi}(\xi) = \mathrm{KL}(\xi \mid \pi) := \int \log \left(\frac{\mathrm{d}\xi}{\mathrm{d}\pi}\right) \mathrm{d}\xi.$$

Related Works

- Existing evaluation tools:
 - Evidence Lower Bound (ELBO).
 - Kernel Stein Discrepancy (KSD).
 - Pareto smoothed importance sampling (PSIS) \hat{k} .
- Problems:
 - Lack interpretability.
 - Not applicable in high-dimensional parameter spaces.
 - Don't support marginal checks.

TADDAA:Intuition

We want to quantify approximation error $\varepsilon^{(0)}(\mathcal{F}) := \mathcal{F}(\hat{\pi}^{(0)}) - \mathcal{F}(\pi)$ for a posterior functional of interest \mathcal{F} such as a mean or variance.

Figure 1: $\hat{\pi}^{(T)}$ significantly different from $\hat{\pi}^{(0)} \Rightarrow \hat{\pi}^{(0)}$ far from π .

For another approximation π̂^(T) closer to taget posteriror π,
 ε^(T)(F) := F(π̂^(T)) - F(π)

$$egin{aligned} arepsilon^{(0)}(\mathcal{F}) &\geq |\mathcal{F}(\hat{\pi}^{(0)}) - \mathcal{F}(\hat{\pi}^{(T)})| \ &\geq egin{cases} 0 & ext{if } \ell_{\mathcal{F}} \leq 0 \leq u_{\mathcal{F}} \ & ext{min}(|\ell_{\mathcal{F}}|,|u_{\mathcal{F}}|) & ext{otherwise} \end{cases} \ &= \mathbf{1}\left\{0 \notin (\ell_{\mathcal{F}},u_{\mathcal{F}})\right\} imes ext{min}(|\ell_{\mathcal{F}}|,|u_{\mathcal{F}}|) \ &=: B_{\mathcal{F}}. \end{aligned}$$

TADDAA:Input

- log density of the target π
- approximating distribution $\hat{\pi}^{(0)}$
- functional of interest F (e.g. marginal mean)
- transition kernel $K_h(x, dy)$ (e.g. Barker, HMC)
- number of Markov chains N
 and iterations T

TADDAA:Run MCMC with inter-chain adaptation (INCA)


```
\begin{aligned} & \textbf{for } t = 0 \text{ to } T - 1 \text{ do:} \\ & \textbf{for } j = 1 \text{ to } N \text{ do:} \\ & X_j^{(t+1)} \sim K_{h^{(t)}}(X_j^{(t)}, \cdot) \\ & \textbf{end for} \\ & \text{update step-size } h^{(t+1)} \text{ using INCA.} \\ & \textbf{end for} \end{aligned}
```

TADDAA: Compute error lower bounds and reliability check

- Compute correlation check $\rho_{\max}^2(T)$
- Compute a confidence interval $(\ell_{\mathcal{F}}, u_{\mathcal{F}})$ for $\mathcal{F}(\hat{\pi}^{(0)}) \mathcal{F}(\hat{\pi}^{(T)})$ based on $X_{1:N}^{(0)}$ and $X_{1:N}^{(T)}$
- Compute lower bound $B_{\mathcal{F}}$

Transition kernel $K_h(x, dy)$

Let $x \in \mathbb{R}^d$ denote the current state, $h \in \mathbb{R}_+$ the step size, and $G \in \mathbb{R}^{d \times d}$ a positive semi-definition preconditioning matrix.

- Random Walk Metropolis-Hasting (RWMH).
- Metropolis-adjusted Langevin algorithm (MALA).
- Hamiltonian Monte Carlo (HMC).
- Barker Proposal (recommended choice): robust to precise step size and acceptance rate.

Step size h

All four kernels rely on a step-size parameter $h^{(t)}$, to guarantee superior sampling efficiency when dimension d is large, $h^{(t)}$ should be adapted according to *inter-chain adaptation* (INCA) and *optimal scaling*.

- Step size adaption:
 - Generate proposals $Y_j^{(t+1)} \sim Q_{\psi^{(t)}}(X_j^{(t)},\cdot)$, then accept with probability $\alpha_j^{(t)}$.

$$\psi^{(t+1)} = \psi^{(t)} + rac{1}{\sqrt{t+1}} (ar{lpha}^{(t)} - ar{lpha}_*),$$

where $\psi^{(t)} = \log h^{(t)}$ and $\bar{\alpha}_*$ is optimal asymptotic acceptance.

Step size h

All four kernels rely on a step-size parameter $h^{(t)}$, to guarantee superior sampling efficiency when dimension d is large, $h^{(t)}$ should be adapted according to *inter-chain adaptation* (INCA) and *optimal scaling*.

- Step size adaption:
 - Generate proposals $Y_j^{(t+1)} \sim Q_{\psi^{(t)}}(X_j^{(t)},\cdot)$, then accept with probability $\alpha_j^{(t)}$.

$$\psi^{(t+1)} = \psi^{(t)} + \frac{1}{\sqrt{t+1}} (\bar{\alpha}^{(t)} - \bar{\alpha}_*),$$

where $\psi^{(t)} = \log h^{(t)}$ and $\bar{\alpha}_*$ is optimal asymptotic acceptance.

- Optimal initial step size $h^{(0)}$ and $\bar{\alpha}_*$:
 - RWMH: $h^{(0)} = 2.4^2/d$, $\bar{\alpha}_* = 0.234$.
 - MALA and Barker: $h^{(0)} = 2.4^2/d^{1/3}$, $\bar{\alpha}_* = 0.576$.
 - HMC: $h^{(0)} = 2.4^2/d^{1/4}$, $\bar{\alpha}_* = 0.4$.

Step size *h*

All four kernels rely on a step-size parameter $h^{(t)}$, to guarantee superior sampling efficiency when dimension d is large, $h^{(t)}$ should be adapted according to *inter-chain adaptation* (INCA) and *optimal scaling*.

- Step size adaption:
 - Generate proposals $Y_j^{(t+1)} \sim Q_{\psi^{(t)}}(X_j^{(t)},\cdot)$, then accept with probability $\alpha_j^{(t)}$.

$$\psi^{(t+1)} = \psi^{(t)} + \frac{1}{\sqrt{t+1}}(\bar{\alpha}^{(t)} - \bar{\alpha}_*),$$

where $\psi^{(t)} = \log h^{(t)}$ and $\bar{\alpha}_*$ is optimal asymptotic acceptance.

- Optimal initial step size $h^{(0)}$ and $\bar{\alpha}_*$:
 - RWMH: $h^{(0)} = 2.4^2/d$, $\bar{\alpha}_* = 0.234$.
 - MALA and Barker: $h^{(0)} = 2.4^2/d^{1/3}$, $\bar{\alpha}_* = 0.576$.
 - HMC: $h^{(0)} = 2.4^2/d^{1/4}$, $\bar{\alpha}_* = 0.4$.
- Problem: INCA introduces dependence between the Markov chains, which could invalidate the statistical tests and confidence intervals.

Number of Markov chains *N*

The number of Markov chains must be sufficiently large that the confidence intervals are small enough to detect meaningful errors. Hence, if the user's tolerance is δ_{mean} for relative mean error and δ_{var} for log variance error, then

$$N = \max(N_{\text{mean}}, N_{\text{variance}}),$$

where

$$\begin{split} & \textit{N}_{\mathsf{mean}} := \mathsf{min} \left\{ n \in \mathbb{N} : \frac{t_{n-1}(\alpha/2)}{\sqrt{n}} \leq \delta_{\mathsf{mean}} \right\}, \\ & \textit{N}_{\mathsf{variance}} := \mathsf{min} \left\{ n \in \mathbb{N} : \log \left(\frac{\chi_{n-1}^2(1-\alpha/2)}{\chi_{n-1}^2(\alpha/2)} \right) \leq \delta_{\mathsf{var}} \right\}. \end{split}$$

Number of iterations T

Markov chain requires $\Theta(d^{\gamma})$ iterations to mix according to theory of optimal scaling.

- For RWMH, MALA, Barker: $T = \lfloor cd^{1/3} \rfloor$.
- For HMC: $T = \lfloor cd^{1/4}/L \rfloor$, where L is the number of leapfrog steps in HMC.

¹Bhatia, Kush, et al. Statistical and computational trade-offs in variational inference: A case study in inferential model selection.

Number of iterations T

Markov chain requires $\Theta(d^{\gamma})$ iterations to mix according to theory of optimal scaling.

- For RWMH, MALA, Barker: $T = \lfloor cd^{1/3} \rfloor$.
- For HMC: $T = \lfloor cd^{1/4}/L \rfloor$, where L is the number of leapfrog steps in HMC.

Remark

- Based on our ablation studies, c = 50 is a reasonable choice.
- Theories ¹ suggest computational cost of TADDAA is comparable to VI:
 - Computational cost for VI: $\Theta(d^{1/3})$.
 - Computational cost for MALA and Barker: $\Theta(d^{1/3})$.
 - Computational cost for HMC: $\Theta(d^{1/4})$.

¹Bhatia, Kush, et al. Statistical and computational trade-offs in variational inference: A case study in inferential model selection.

A Reliability Check for the Diagnostic

The reliability of TADDAA depends on the mixing behavior of the Markov chains:

- If the Markov chains are mixing well, we expect the diagnostic results can be trusted.
- If the Markov chains are not mixing well, diagnosis of a poor approximation can still be trusted but diagnosis of a good approximation may not be reliable.

²In the latter case, we should consider increasing the length of Markov chains or otherwise improving the Markov kernel.

A Reliability Check for the Diagnostic (Continued)

• We propose to use the worst-case correlation coefficient $\rho_{\max}^2(T) := \max_i \rho_i^2(T)$, where

$$\rho_i^2(T) := \frac{\sum_{j=1}^N (X_{j,i}^{(0)} - \hat{\mu}_i^{(0)})(X_{j,i}^{(T)} - \hat{\mu}_i^{(T)})}{\sqrt{\sum_{j=1}^N (X_{j,i}^{(0)} - \hat{\mu}_i^{(0)})^2} \sqrt{(\sum_{j=1}^N X_{j,i}^{(T)} - \hat{\mu}_i^{(T)})^2}}.$$

• Check passes: $\rho_{\max}^2(T) < 0.1$.

Asymptotic Independence of Adapted Markov Chains

The Markov chains $X_{1:N}^{(t)}$ are not independent once t > 1, so the final samples $X_{1:N}^{(T)}$ violate the independence requirement of statistical tests.

Asymptotic Independence of Adapted Markov Chains

The Markov chains $X_{1:N}^{(t)}$ are not independent once t > 1, so the final samples $X_{1:N}^{(T)}$ violate the independence requirement of statistical tests.

Definition

Let $X_{N,1:N}=(X_{N,1},\ldots,X_{N,N})$ denote a random vector. The sequence of random vectors $\{X_{N,1:N}\}_{N=1}^{\infty}$ is $\bar{\nu}$ -chaotic if, for any $r\in\mathbb{N}$ and any bounded continuous real-valued functions g_1,g_2,\ldots,g_r ,

$$\lim_{N\to\infty}\mathbb{E}_{X_{N,1:N}}\left\{\prod_{i=1}^rg_i\left(X_{N,i}\right)\right\}=\prod_{i=1}^r\int g_i(x)\bar{\nu}(\mathrm{d}x).$$

Adapted Markov Chains are Chaotic

Assumption

- **1** The proposal probability density $q_h(y,x)$ is continuous with respect to (x,y,h).
- **2** The target distribution has a continuous probability density function $\pi(\cdot)$.
- **§** Samples generated from the Markov transition kernel $T(x, y, h, \cdot, \cdot)$ satisfy $\mathbb{E}||X_i^{(t)}||^2 < \infty$ and $\mathbb{E}||Y_i^{(t)}||^2 < \infty$ for any $t \in \mathbb{N}$.

Theorem

Under some mild assumptions, for any $t \in \mathbb{N}$, there exists a probability distribution $\bar{\nu}^{(t)}$ such that the sequence $\{X_{1:N}^{(t)}\}_{N=1}^{\infty}$ is $\bar{\nu}^{(t)}$ -chaotic.

Experiment: Neal-Funnel Shape Model

Neal's example has support for $\log(\sigma) \in \mathbb{R}$ and $x \in \mathbb{R}^{d-1}$. The parameterization of this model is given as follows:

$$\log(\sigma) \sim \mathcal{N}(0, \sigma_0^2), \quad x_i \sim \mathcal{N}(0, \sigma).$$

For illustrative purpose, let $\beta_1 = \log(\sigma)$ and $\beta_2 = x_1$. In our experiment, $\sigma_0 = 1$.

Experiment: Neal-Funnel Shape Model

Figure 2: Diagnostics for Neal-funnel shape model, where TADDAA uses the Barker proposal. Here μ_i and σ_i^2 denote, respectively, the mean and variance of X_i .

Experiment: Neal-Funnel Shape Model

Ablation study on d=30: the lower bounds become nearly constant at our proposed number of iterations T.

Experiment: Logistic Regression Using Horseshoe Prior

We use a logistic regression model with a sparsity-inducing horseshoe prior on

$$egin{aligned} y \mid eta &\sim \mathsf{Bern}(\mathsf{logit}^{-1}(Xeta)), \ eta_j \mid au, \lambda, c &\sim \mathcal{N}(0, au^2 ilde{\lambda}_j^2), \ \lambda_j &\sim \mathrm{C}^+(0, 1), \qquad au &\sim \mathrm{C}^+\left(0, au_0\right), \ c^2 &\sim \mathsf{InvGam}(2, 8), \end{aligned}$$

where y denotes the binary outcomes, $\tau > 0$ and $\lambda > 0$ are global and local shrinkage parameters.

- $X \in \mathbb{R}^{71 \times 100}$ is the features matrix.
- Parameter dimensionality is d = 203.

Experiment: Logistic Regression Using Horseshoe Prior

- Mean and variance confidence intervals: capture both accurate and inaccurate marginal estimates, provide quite precise lower bounds.
- Computational efficiency: use 28% as many gradient evaluations as VI.

Experiment: Logistic Regression Using Horseshoe Prior

Reliability check: Barker and MALA pass reliability check, RWMH and HMC chains fail to mix.

Stationary Analysis of Fixed Learning Rate Stochastic Gradient Algorithms

Stochastic optimization

Consider data $\{x_n\}_{n=1}^N$ with $x_n \in \mathbb{X}$. For a parameter $\theta \in \mathbb{R}^D$, observation-level differentiable loss $\ell: \mathbb{X} \times \mathbb{R}^D \to \mathbb{R}$, and regularizer $\mathcal{R}: \mathbb{R}^D \to \mathbb{R}$, we aim to minimize the loss function

$$\mathcal{L}(\theta) := N^{-1} \sum_{n=1}^{N} \ell(x_n, \theta) + N^{-1} \mathcal{R}(\theta).$$

• Gradient Descnet (GD):

$$\theta_t = \theta_{t-1} - \Lambda \nabla \mathcal{L}(\theta_{t-1})$$

Stochastic Gradient Descript (SGD):

$$\theta_t = \theta_{t-1} - \Lambda G_t(\theta_{t-1}),$$

where $G_t(\theta) := B^{-1} \sum_{n \in S_t} \nabla \ell(x_n, \theta) + N^{-1} \nabla \mathcal{R}(\theta)$ is the stochastic gradient.

Subsampling Markov chain Monte Carlo (SGLD)

SGLD is a Markov chain Monte Carlo (MCMC) algorithm equivalent to modifying SGD to include an additional Gaussian noise term

$$\theta_t = \theta_{t-1} - \Lambda G_t(\theta_{t-1}) + \sqrt{2\beta^{-1}\Lambda} \xi_{t-1},$$

- $\beta \in (0, \infty]$ is the inverse temperature (canonically set to $\beta = N$).
- $\xi_{t-1} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, I)$.

Goal

We would like to accurately estimate the stationary covariance structure

$$\Sigma_{\theta} := \lim_{t \to \infty} \mathsf{Cov}(\theta_t).$$

Characterizing the stationary covariance can help quantify

- Test loss.
- Escaping efficiency from a sharp minimal.

Related Work: Quadratic Loss

Current works assume that the loss is well-approximated by a quadratic function:

$$\mathcal{L}(\theta_t) \approx \tilde{\mathcal{L}}(\theta_t) := \frac{1}{2} (\theta_t - \hat{\theta}^{(N)})^{\top} \hat{H}(\theta_t - \hat{\theta}^{(N)}) + \text{const},$$

where $\widehat{H} := \nabla^2 \mathcal{L}(\widehat{\theta})$ is the Hessian of the loss (evaluated at $\widehat{\theta}$).

Related Work: Continuous-time Proxies

The most popular proxy approach is to replace discrete dynamics of the iterative algorithm by a continuous-time the Ornstein–Uhlenbeck (OU) process

$$\mathrm{d}\vartheta_t = -\Lambda \widehat{H}\vartheta_t \mathfrak{t} + \Lambda \widehat{C}^{1/2} \mathrm{d}W_t,$$

where W_t be a d-dimensional Brownian motion and $\widehat{C} = \text{Cov}(G_1(\widehat{\theta}))$ denotes the gradient noise covariance at the minimizer.

• The covariance matrix of the stationary distribution $\Sigma_{\vartheta} := \mathsf{Cov}(\pi_{\vartheta})$ satisfies

$$\Sigma_{\vartheta}\widehat{H} + \widehat{H}\Sigma_{\vartheta} = \Lambda\widehat{C}.$$

 Limitation: continuous-time proxies provide close approximation to SGD only for small learning rates.

Related Work: Discrete-time proxies

Assuming the loss is well-approximated by quadratic loss, the discrete-time proxy algorithm updates

$$\psi_t = \psi_{t-1} - \frac{\Lambda}{B} \sum_{n \in S_t} \widehat{H}_n(\psi_{t-1} - \widehat{\theta}),$$

where $\widehat{H}_n := \nabla^2 \ell(x_n, \widehat{\theta})$.

• *Implicit* characterization of Σ_{ψ} :

$$\Lambda \widehat{H} \Sigma_{\psi} + \Sigma_{\psi} \widehat{H} \Lambda = \Lambda \left(\overline{C}_{\psi} + \widehat{H} \Sigma_{\psi} \widehat{H} \right) \Lambda,$$

where $\Sigma_{\psi} := \text{Cov}(\pi_{\psi})$, and $\overline{C}_{\psi} := \mathbb{E}[\text{Cov}\{G_1(\psi_{\infty})\}]$ denotes the expected covariance of the gradient noise.

• For well-specified linear model and assume $X \sim \mathcal{N}(0, A)$:

$$\overline{C}_{\psi} pprox B^{-1} \left(A \Sigma_{\psi} A + \operatorname{Tr} \left[A \Sigma_{\psi} \right] A + \sigma^2 A \right).$$

Limitations of discrete-time proxies

- Assumptions often do not hold in practice:
 - Sample size N >> D.
 - Mean Squared Error (MSE) loss.
 - The model is well-specified.
- There is no guarantee that the proxy process $(\psi_t)_{t\geq 0}$ is close to the original process $(\theta_t)_{t\geq 0}$.

A New Proxy Algorithm for Analyzing SG(L)D

Our approach is to apply a second-order Taylor approximation to each loss term $\ell_n(\theta) := \ell(x_n, \theta)$:

$$\tilde{\ell}_n(\theta) := \ell_n(\hat{\theta}) + \nabla \ell_n^{\top}(\hat{\theta})(\theta - \hat{\theta}) + (\theta - \hat{\theta})^{\top} \nabla^2 \ell_n(\hat{\theta})(\theta - \hat{\theta}),$$

A New Proxy Algorithm for Analyzing SG(L)D

Our approach is to apply a second-order Taylor approximation to each loss term $\ell_n(\theta) := \ell(x_n, \theta)$:

$$\tilde{\ell}_n(\theta) := \ell_n(\widehat{\theta}) + \nabla \ell_n^\top(\widehat{\theta})(\theta - \widehat{\theta}) + (\theta - \widehat{\theta})^\top \nabla^2 \ell_n(\widehat{\theta})(\theta - \widehat{\theta}),$$

• Minimizer $\widehat{\theta}$ satisfies

$$abla \mathcal{L}(\widehat{\theta}) = \frac{1}{N} N^{-1} \sum_{n=1}^{N} \nabla \ell(x_n, \theta) + N^{-1} \nabla \mathcal{R}(\theta) = 0$$

• In general,

$$B^{-1}\sum_{n\in S_n}\nabla\ell(x_n,\widehat{\theta})+N^{-1}\nabla\mathcal{R}(\widehat{\theta})\neq 0.$$

Stationary Fluctuation

Our new proxy algorithm update as follows:

$$\psi_{t} = \psi_{t-1} - \frac{\Lambda}{B} \sum_{n \in S_{t}} \left\{ \nabla \ell_{n}(\widehat{\theta}) + \mathcal{J}_{n}(\psi_{t-1} - \widehat{\theta}) \right\}$$

$$- \frac{\Lambda}{N} \nabla \mathcal{R}(\psi_{t-1}) + \sqrt{2\beta^{-1}\Lambda} \, \xi_{t-1}.$$
(1)

Proposition

Assuming the iterates $(\psi_t)_{t\geq 0}$ have a well-defined stationary distribution, the stationary covariance Σ_{ψ} satisfies

$$\Lambda \widehat{H} \Sigma_{\psi} + \Sigma_{\psi} \widehat{H} \Lambda = \Lambda \big(\overline{C}_{\psi} + \widehat{H} \Sigma_{\psi} \widehat{H} \big) \Lambda + 2 \beta^{-1} \Lambda.$$

Stationary Gradient Noise

Theorem

For the proxy algorithm, if $\mathcal{R}(\theta) = \frac{1}{2}\theta^{\top}\Gamma\theta^{\top}$ and the mini-batches are sampled with replacement, then

$$\overline{C}_{\psi} = \frac{1}{B} \left(\mathcal{I} - \frac{1}{N^2} \Gamma \widehat{\theta} \widehat{\theta}^{\top} \Gamma^{\top} + \frac{1}{N} \sum_{n=1}^{N} \mathcal{J}_n \Sigma_{\psi} \mathcal{J}_n - \mathcal{J} \Sigma_{\psi} \mathcal{J} \right),$$

where $\mathcal{I} := \frac{1}{N} \sum_{n=1}^{N} \nabla \ell_n(\widehat{\theta}) \nabla \ell_n(\widehat{\theta})^{\top}$. If the mini-batches are sampled without replacement, the same result holds but with the right-hand side multiplied by (N-B)/(N-1).

Wasserstein Distance

How to assess the accuracy of our proxy algorithm? **Wasserstein Distance**

•

$$W_2(\pi, \tilde{\pi}) = \inf \mathbb{E}(\|\theta - \tilde{\theta}\|^2)^{1/2},$$

where the infimum is over all joint distributions of $(\theta, \tilde{\theta})$ such that $\theta \sim \pi$ and $\tilde{\theta} \sim \tilde{\pi}$.

• $W_2(\pi_{\theta}, \pi_{\psi}) \leq \varepsilon$ implies that

$$egin{aligned} |\sigma_{ heta,d} - \sigma_{\psi,d}| &\leq arepsilon \ (d = 1, \dots, D) \ \|\Sigma_{ heta} - \Sigma_{\psi}\| &\leq 2arepsilon (\|\Sigma_{ heta}\|^{1/2} \wedge \|\Sigma_{\psi}\|^{1/2} + arepsilon). \end{aligned}$$

Error Analysis

Theorem

Under standard assumptions and $\Lambda = \lambda I_D$ for some $\lambda \in (0,1/(2L))$, then, letting $\beta := 1 - \lambda \mu (1-2\lambda L)$, $\overline{M} := \{N^{-1} \sum_{n=1}^N M_n^2\}^{1/2}$, and $C_s := \mathbb{E}(\|\psi_s - \widehat{\theta}\|^4)$, for all $t = 1,2,\ldots$,

$$W_2^2(\pi_{\theta,t},\pi_{\psi,t})$$

$$\leq \beta^t W_2^2(\theta_0,\psi_0) + \lambda \overline{M} \left\{ \frac{\lambda \overline{M}}{2} + \frac{2}{\mu} \right\} \sum_{s=1}^t \beta^{t-s} C_{s-1}.$$

Corollary

Under the same assumptions stated above and with $\beta=\infty$ (i.e., for the case of SGD), if $\lambda < L/4$, then there exists an explicit constant A such that

$$W_2(\pi_{\theta},\pi_{\psi}) \leq A \frac{\lambda}{R}.$$

Experiments: Linear Regression

To validate our theory, we compare the predicted stationary covariance structure under the fixed learning rate obtained from other theory with others.

• Simulated misspecified data.:

$$y_n \sim \mathcal{N}(x_n^{\top}\theta_{\star}, 1 + ||x_i||_2^2),$$

where $\theta_{\star} \sim \mathcal{N}(0, I_D)$ is fixed and $x_n \stackrel{\text{iid}}{\sim} \mathcal{N}(0, I_D)$.

• Real-world dataset: Boston housing data.

Experiments: Linear Regression

Figure 3: Comparison of estimated stationary covariance structure for linear regression at 3σ confidence region on (left) simulated misspecified data with heteroskedastic noise and (right) the classic Boston housing dataset with $\lambda=0.1$ and B=32. Our theory provides more accurate stationary covariance predictions in both cases.

Experiments: Poisson Regression

• Simulated misspecified data.:

$$y_n \sim \text{Poisson}(\exp\{x_n^{\top}\theta_{\star}\}),$$

where $\theta_{\star} \sim \mathcal{N}(0, I_D)$ is fixed and $x_n \stackrel{\text{iid}}{\sim} \mathcal{N}(0, I_D)$.

• Real-world dataset: German credit data.

Experiments: Poisson Regression

Figure 4: Comparison of estimated stationary covariance structure for Poisson regression at 3σ confidence region with (left) simulated well-specified data and (right) the German credit data by setting batch size $\lambda=0.1$, and B=32.

Conclusion

Conclusion

- We propose a diagnostic tool for VI:
 - supports marginal checks and is applicable to high-dimensional parameter spaces
 - provides lower bounds on the error of specific posterior summaries
 - · is computationally efficient
 - can be validated using a simple correlation-based reliability check
- We propose tools for stationary covariance analysis of stochastic gradient algorithms:
 - has minimal checkable assumptions.
 - Nonasymptotic error analysis.

Acknowledgments

Supervisor

Committee

Э

Collaborator

