Lorentz Transformations and The Lorentz Group

Ajay Uppili Arasanipalai - HLC International School Vikash Surya - AMM

Mentor: Dr. Prasanta K. Tripathy - Department of Physics, IITM

Overview

- 1. Rotations
- 2. Special Relativity
- 3. Lorentz Transformations
- 4. Lorentz Group
- 5. Poincare Group

Rotations

Rotations

- Keep the length of a vector unchanged
- Can be parameterised with 3 variables

$$R_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$

Rotation Matrices

In 3 Dimensions

Groups

A group is a set of elements with the following properties:

- 1. Identity element exists in group
- 2. Inverse element exists in group
- 3. The set is closed under some operation

Special Relativity - Recap

Special Relativity - Recap

```
t' = y't
```


$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Lorentz Transformations

Lorentz Transformations

Keeps the space-time interval invariant

$$ds^2 = c^2 dt^2 - dx^2 - dy^2 - dz^2$$

Satisfies the following property:

$$\Lambda \eta \Lambda^T = \eta$$

Satisfies the following property:

$$\Lambda \eta \Lambda' = \eta$$

$$\eta = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

The Lorentz Group

Proper Lorentz Group

$$det(\Lambda) = 1$$

Proper Orthochronous Lorentz Group

$$det(\Lambda) = \pm 1$$

$$\Lambda_{00} = + 1$$

Infinitesimal Generators

Infinitesimal Generators

An infinitesimal Lorentz boost can be written as:

$$\Lambda = I_4 + \xi_i K_i$$

K is called the boost generator

Poincare Group

Poincare Transformations

A Poincare transformation is of the following form:

$$x' = \Lambda x + a$$

It is an extension of the Lorentz transformation to include translations

Poincare transformation generators

The Poincare group has 10 generators, which can be written as:

$$P = \{P^1, P^2, P^3\}$$
 $J = \{M^{23}, M^{31}, M^{12}\}$
 $K = \{M^{01}, M^{02}, M^{03}\}$

These vectors correspond to momentum, and angular momentum, and boost respectively. P0 corresponds to energy

Recap

- Rotations are linear transformations that preserve the magnitude and the dot product of vectors
- Rotations form a group
- Lorentz transformations are used to move between inertial frames in relative motion
- Lorentz transformations form a group, with some interesting subgroups like proper orthochronous
- The Poincare group is a natural extension of the Lorentz group, and is used in quantum mechanics

Acknowledgements

We would like to thank the following people for their generous support, guidance, and feedback in making our project a wonderful and enlightening experience:

- Our mentor Dr. Prasanta K. Tripathy, for going through the mathematical details in all of his session with us
- The students who stayed up last night and provided valuable feedback on our presentation
- Prof. V. Balakrishnan, for his brilliant lecture on special relativity, which provided a strong foundation for our project
- The active physics/mathematics community online, for providing clear and concise learning material for free

References

Listed below are some of the key resources used in making this presentation:

- https://gdenittis.files.wordpress.com/2016/04/ayudantiavi.pdf
- https://www2.ph.ed.ac.uk/~s0948358/mysite/Poincare%20Chapters %201&2.pdf
- http://gamelab.mit.edu/research/openrelativity/

Lorentz Transformations and The Lorentz Group

Ajay Uppili Arasanipalai - HLC International School Vikash Surya - AMM

Mentor: Dr. Prasanta K. Tripathy - Department of Physics, IITM