DFT with plane waves, pseudopotentials

Tutoriel CPMD/CP2K Paris, 6–9 avril 2010

François-Xavier Coudert

Basis sets

★ In quantum chemistry, the base objects are the wavefunctions:

$$h_{i}\left(\mathbf{r}_{m}\right)\phi_{i}\left(\mathbf{r}_{m}\right)+\left[V_{ee}-V_{ex}\right]\left(\mathbf{r}_{m}\right)\phi_{i}\left(\mathbf{r}_{m}\right)=\varepsilon_{i}\phi_{i}\left(\mathbf{r}_{m}\right) \qquad \left(-\frac{\hbar^{2}}{2m}\nabla^{2}+v_{\mathrm{eff}}(\mathbf{r})\right)\phi_{i}(\mathbf{r})=\varepsilon_{i}\phi_{i}(\mathbf{r}).$$

$$\phi_i = \sum_{\alpha} C_{i\alpha} \psi_{\alpha}$$

- This family has to be finite, limited in size
- It maps a continuous problem to linear algebra:
 - ✓ Wavefunctions are vectors
 - ✓ Operators are matrices
- ☆ The basis set should allow enough flexibility to represent the "real" wavefunctions

Atomic basis sets

- Also called "localized basis sets": centered on nuclei (or sometimes ghost atoms)
- Slater-types or Gaussian functions
- Matches the "linear combination of atomic orbitals" ansatz; also include "polarization" and "diffuse" orbitals
- ☆ Thus, choices are:
 - ✓ Function type
 - ✓ Number of orbitals per atom
 - ✓ Including polarisation/diffuse orbitals (and how many)?

Atomic basis sets — Pros and cons

- ★ Correspond to chemical picture
- ★ Describe well the atoms, even with few orbitals
- ★ No so much harder to describe inner electrons
- ★ Easily tunable
- ★ No implicit periodicity
- ★ Non-orthogonal
- ★ Depend on atomic positions
- ★ Basis set superposition error
- ★ So many parameters... how do you optimize?

We choose the basis functions as plane waves:

$$\varphi_{\alpha}(\vec{r}) = \frac{1}{\sqrt{\Omega}} e^{i\vec{G}_{\alpha} \cdot \vec{r}} \qquad \qquad \phi_{i}(\vec{r}) = \frac{1}{\sqrt{\Omega}} \sum_{\vec{G}} c_{i}(\vec{G}) e^{i\vec{G} \cdot \vec{r}}$$

☆ G is a vector of the reciprocal lattice.

For an orthorhombic unit cell:

$$\vec{G} = i \cdot \frac{2\pi}{L_x} \cdot \vec{x} + j \cdot \frac{2\pi}{L_y} \cdot \vec{y} + k \cdot \frac{2\pi}{L_z} \cdot \vec{z}$$

$$\mathbf{b_1} = 2\pi \frac{\mathbf{a_2} \times \mathbf{a_3}}{\mathbf{a_1} \cdot (\mathbf{a_2} \times \mathbf{a_3})}$$

$$\mathbf{b_2} = 2\pi \frac{\mathbf{a_3} \times \mathbf{a_1}}{\mathbf{a_2} \cdot (\mathbf{a_3} \times \mathbf{a_1})}$$

$$\mathbf{b_3} = 2\pi \frac{\mathbf{a_1} \times \mathbf{a_2}}{\mathbf{a_3} \cdot (\mathbf{a_1} \times \mathbf{a_2})}.$$

- ★ Infinite sum would be the Fourier series of the wavefunction
- ★ How many basis functions do we have?
 Ruled by one parameter, G_{max}

Plane-waves sets — Pros and cons

- ★ Orthogonal
- ★ Independent of atomic positions (no Pulay forces)
- ★ Improving is easy: increase the cutoff
- ★ Easy to use on any atomic type (no basis set optimization)
- ★ Use of Fast Fourier Transform
- Implicit periodicity
- ★ All-or-nothing description (no spot favored)
- ★ Large number of basis functions needed
- ★ How do you get back chemical information?
- ★ Inner wavefunctions vary too rapidly: Pseudopotentials are needed

Number of plane waves used: described by an energy cutoff

kinetic energy associated with each plane wave

$$-\frac{1}{2}\nabla^{2}\varphi_{\vec{G}}(\vec{r}) = \frac{1}{2}\|\vec{G}\|^{2}\varphi_{\vec{G}}(\vec{r})$$

$$E_{cutoff} = \frac{G_{max}^2}{2}$$

Volume of the sphere containing all PW:

$$V_{sphere} = \frac{4\pi}{3} G_{max}^3$$

Volume of occupied by 1 single PW:

$$V_{PW} = \frac{(2\pi)^3}{\Omega}$$

$$N_G \propto \Omega \, E_{cutoff}^{3/2}$$

★ Example of convergence

★ Example of convergence

k-point sampling

 \Rightarrow Bloch's theorem: eigenstates in a system under a periodic potential U(r) can be written as

$$\phi_i(\vec{r}; \vec{k}) = e^{i\vec{k}\cdot\vec{r}} u_i(\vec{r}; \vec{k})$$

□ ✓ Operators such as the HaminItonian are block-diagonal by k-point

$$\mathbf{H} = \begin{pmatrix} \mathbf{h}_{\mathbf{k_1}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{h}_{\mathbf{k_2}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{h}_{\mathbf{k_3}} \end{pmatrix}$$

- \Rightarrow What we described before: only the Γ point is sampled (k = 0)

k-point sampling

★ Example for silicon bulk

Si₈:

Point Γ : $E_{\rm Si}=3.90$ A.U.

4 points k: $E_{\rm Si} = 3.948$ A.U.

32 points k: $E_{\rm Si}=3.951$ A.U.

Si₆₄:

Point Γ : $E_{\rm Si}=3.943$ A.U.

4 points k: $E_{\rm Si} = 3.947$ A.U.

Fourier transforms

- ★ We use an auxiliary grid in real space for some calculations
- □ Discrete Fourier Transform:

$$f(\mathbf{r}) = \sum_{\mathbf{G}} \tilde{f}(\mathbf{G}) e^{i\mathbf{G} \cdot \mathbf{r}}$$

$$\tilde{f}(\mathbf{G}) = \frac{1}{\Omega} \int_{\Omega} d\mathbf{r} e^{-i\mathbf{G} \cdot \mathbf{r}} f(\mathbf{r})$$

$$= \frac{1}{N_{\mathbf{r}}} \sum_{\mathbf{r}_i \in \Omega} e^{-i\mathbf{G} \cdot \mathbf{r}_i} f(\mathbf{r}_i)$$

- \Rightarrow Moving from a grid in real space: $x = \{0, 1, ..., N\} * L/N$ to a grid in reciprocal space: $G = \{-N/2+1, ..., N/2\} * 2π/L$
- rransform is inversible if both have the same number of points.
- If N is a product of small prime numbers, use FFT (N log N) instead of DFT (N²)

Fourier transforms

Example of the use of Fourier transforms: calculating the Hartree potential

$$v_H(\mathbf{r}) = \int d\mathbf{r}' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

$$c_{ki}(\mathbf{G}) \xrightarrow{\mathsf{FFT}} u_{ki}(\mathbf{r})$$

$$\rho(\mathbf{r}) = \frac{1}{N_k} \sum_{ki} |u_{ki}(\mathbf{r})|^2$$

$$\tilde{\rho}(\mathbf{G}) \xrightarrow{\mathsf{FFT}} \rho(\mathbf{r})$$

$$\tilde{v}_H(\mathbf{G}) = 4\pi \frac{\tilde{\rho}(\mathbf{G})}{|\mathbf{G}|^2}$$

$$\tilde{v}_H(\mathbf{G}) \xrightarrow{\mathsf{FFT}} v_H(\mathbf{r})$$

Avoiding PBC?

- ★ How to describe an isolated system with a plane-waves basis set?
- Replicate the box, leave lots of space
- Or truncate the Coulombic interaction using a nearest-neighbor convention

★ Length scales of the core and valence electron orbitals:

- Rapidly varying functions (core states) require high PW cutoff

- Core electrons do not participate in bonding, excitations, conductivity
- □ Do not treat the core electrons explicitly any more
- Valence electrons will "feel" this pseudopotential

One-electron eigenstates energies (in a.u.)

- Arr Pseudopotentials are nonlocal operators, i.e. they are not simple functions $V_{ps}(r)$
- \Rightarrow Because they represent core states, they have s, p, d... components (we says "channels": they represent how they act on each symmetry-adapated projection of the valence electrons)

$$V_{ps-ion} = \sum_{l} v_{l}(r) \sum_{m} |lm\rangle < lm| = \sum_{l=0}^{l_{max}} [v_{l}(r) - v_{loc}] \sum_{m} |lm\rangle < lm| + v_{loc}(r)$$

 $v_l(r)$ - radial pseudopotential function for a given l-symmetry channel $v_{loc}(r)$ - outside the core will be just - Z_eff/r = - (Z-Z_core)/r

- \Rightarrow The valence states will thus be different around r = 0
- \Rightarrow Beyond a certain radius (r_{core}), valence states should be identical to allelectron results

- \Rightarrow The valence states will thus be different around r = 0
- \bowtie Beyond a certain radius (r_{core}), valence states should be identical to allelectron results

Carbon atom pseudopotentials

Pseudopotentials — Pros and cons

- ★ Smaller energy, smaller cutoff
- ★ Smaller number of electrons/wavefunctions to calculate (think lanthanides)
- ★ Can include scalar relativistic effects (think lanthanides again)
- ★ Can be extended to include spin-orbit interactions (heavy nuclei)
- ★ For atomic basis sets: use basis set optimized together with PP
- ★ If your core is too fat, you describe your system badly (polarization, core relaxation)
- ★ Choice of core radius
- ★ Core-valence overlap might become larger, e.g. at high pressure
- \star Cost of Y_{lm} projection operators (evaluated in real space)

Pseudopotentials — accuracy

Example: how do you choose a good core for an Fe atom?

Fe atom -> [Ne]
$$3s^23p^63d^64s^2 = [Ar] 3d^64s^2$$

1 c atom / [11c] 33 L3p 03a 013 L [/11] 3a 013 L			
	all-electron	[Ne]-core	[Ar]-core
E_HF [au]	-1262.444	-123.114	-21.387
E_VMC[au]	-1263.20(2)	-123.708(2)	-21.660(1)
σ_{VMC}^2 [au]	~ 50	1.5	0.16
efficiency = $\frac{1}{\sigma^2}$	$\frac{1}{T}$ 0.02	2.1	125
valence errors	decorr 0	< 0.1 eV	~ 0.5 eV !!!

Courtesy L. Mitas, NCSU

 \Rightarrow Another example: Na = [He] 2s² 2p⁶ 3s¹; and not Na = [Ne] 3s¹

Pseudopotentials: summary

- There are many families of pseudopotentials:
 - ✓ norm-conserving (conservative choice)
 - ✓ ultrasoft (lower energy cutoff)
- ★ Keep in mind:
 - ✓ pseudopotentials are technical, difficult topics
 - ✓ only an auxiliary concept
- ☆ But...
 - ✓ they save a lot of CPU time
 - allow calculations otherwise impossible
- They can mess up your calculation for good... (but all might still look unsuspicious)