自习社

概率论课后习题 详解

版本号: 1.0

自习社研究部编

目录

第	;一章	3
	习题 1.1	3
	习题 1.2	3
	习题 1.3	3
	习题 1.4	4
	习题 1.5	4
	习题 1.6	5
	习题一	5
第	5二章	7
	习题 2.1	7
	习题 2.2	7
	习题 2.3	8
	习题 2.4	9
	习题 2.5	. 12
	习题二	. 13
第	;三章	. 16
	习题 3.1	16
	习题 3.2	. 17
	习题 3.3	. 18
	习题 3.4	. 19
	习题三	. 20
第	[四章	. 26
	习题 4.1	26
	习题 4.2	. 28
	习题 4.3	30
	习题 4.4	. 32
	习题四	. 33
第	五章	
	习题 5.1	
	78.1	. 39

习题 5.3	40
习题五	41
第六章	45
习题 6.1	45
习题 6.2	46
习题 6.3	48
习题 6.4	49
习题六	49
第七章	53
习题 7.2	53
习题 7.3	54
习题 7.4	56
习题七	57
第八章	60
习题 8.1	60
习题 8.2	62
习题 8.3	62
习题 8.4	62
习题八	62

第一章

习题 1.1

(由于第一节文字较多且原答案较丰富,所以直接复制过来了...)

- 1. 略;
- 2. 设 $ω_i$ 表示"出现 i 点" $(i = 1, 2, \dots, 6)$, 则
- (1) 样本点为 ω_1 , ω_2 , ω_3 , ω_4 , ω_5 , ω_6 ; 样本空间为 $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6\}$,
- $(2)A = \{\omega_2, \omega_4, \omega_6\}; B = \{\omega_3, \omega_6\}.$
- $(3)\overline{A} = \{\omega_1, \omega_3, \omega_5\}$,表示"出现奇数点"; $\overline{B} = \{\omega_1, \omega_2, \omega_4, \omega_5\}$,表示"出现的点数不能被3整除"; $A \cup B = \{\omega_2, \omega_3, \omega_4, \omega_6\}$,表示"出现的点数能被2或3整除"; $AB = \{\omega_6\}$,表示"出现的点数能被2整除且能被3整除"; $\overline{A \cup B} = \{\omega_1, \omega_5\}$,表示"出现的点数既不能被2整除也不能被3整除":
 - 3. (1) 设 ω_i 表示"点数之和等于i"($i = 3, 4, \dots, 18$), 则

$$\Omega = \{\omega_3, \omega_4, \cdots, \omega_{18}\};$$

$$A = \{\omega_{11}, \omega_{12}, \cdots, \omega_{18}\}; B = \{\omega_{3}, \omega_{4}, \cdots, \omega_{14}\}.$$

(2) 设 ω_{ik} 表示"出现号码为i, j, k" $(i, j, k = 1, 2, \dots, 5, i \neq j \neq k)$, 则

$$\Omega = \{\omega_{123}, \omega_{124}, \omega_{125}, \omega_{134}, \omega_{145}, \omega_{135}, \omega_{234}, \omega_{235}, \omega_{245}, \omega_{345}\}$$

$$C = \{\omega_{123}, \omega_{124}, \omega_{125}, \omega_{134}, \omega_{145}\}.$$

- 4. $(1)A_1A_2\cdots A_n$;
- (2) $\overline{A_1 A_2 \cdots A_n}$ 或 $\overline{A_1} \cup \overline{A_2} \cup \cdots \cup \overline{A_n}$;
- (3) $\overline{A_1}A_2 \cdots A_n \cup A_1 \overline{A_2} \cdots A_n \cup \cdots \cup A_1 A_2 \cdots \overline{A_n}$
- $(4)A_1 \cup A_2 \cup \cdots \cup A_n \ \overline{\otimes} \overline{A_1} \overline{A_2} \cdots \overline{A_n}.$

习题 1.2

- 1.
- (1) 自己看书,关系是 $\lim_{n\to\infty} f_n(A) = P(A)$
- (2) 自己看书
- 2. $: A \cap B = 0 : A \cap \overline{B} = A, : P(A\overline{B}) = 0.4$
- 3. $: P(A \cup B) = P(A) + P(B) + P(AB) = 0.3$ P(A) = 0.1, P(AB) = 0, : P(B) = 0.2
- 4. $P(A \cup B \cup C) = P(A) + P(B) + P(C) p(AB) p(BC) p(AC) + P(ABC) = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \frac{1}{3} + \frac{$

$$0 - 0 - \frac{1}{4} + 0 = 0.75$$

5.
$$P(A \cup B) = P(A) + P(B) - P(AB) = 0.8 + 0.6 - 0.48 = 0.92$$

习题 1.3

1. 自己看书

2.
$$P = \frac{C_{13}^5 C_{13}^3 C_{13}^3 C_{13}^2}{C_{52}^{13}} = 0.01293$$

3.
$$P = \frac{C_9^1 \cdot A_8^6 + C_9^1 \cdot C_6^1 \cdot A_7^5}{C_9^1 \cdot 10^6} = 0.0605$$

4.
$$P = \frac{C_{95}^{50} + C_{95}^{49} \cdot C_{5}^{1}}{C_{100}^{50}} = 0.181$$

5. 直白的说,夫妇中任何一个人身边一定坐着两个人,而只要他妻子出现在两侧即可,就 是 $P=\frac{2}{9}$

还可以说,我们可以给座位号标上 1-10,那么总共有 A_{10}^{10} 中排列,而夫妇在一起的情况有两种,一个 1 一个 10 或者是其他,1 个 1 一个 10 共有 $2 \times A_8^8$ 可能;其他情况是 $2 \times A_9^9$,

故P =
$$\frac{2 \times (A_8^8 + A_9^9)}{A_{10}^{10}} = \frac{2}{9}$$

6. 由几何概型可得

通过计算面积,可得 $p=\frac{3}{4}$

习题 1.4

1. 自己看书

4.
$$\Re: P(A) = \frac{C_4^1}{C_{10}^1} = 0.4, P(B) = \frac{4}{10} \cdot \frac{3}{9} = \frac{2}{15}, p(C) = \frac{6}{10} \cdot \frac{4}{9} = \frac{4}{15}, P(D) = P(B) \cdot \frac{2}{8} = \frac{1}{30}$$

5. **M**:
$$p = \frac{2}{5} \cdot \frac{3}{6} \cdot \frac{3}{7} \cdot \frac{4}{8} = \frac{3}{70}$$

习题 1.5

1. (1)—(6)略;(7)先验概率就是这件事没发生之前你去计算他的概率;后验概率就是这件事发生了你去校正他的概率。

2.
$$\text{M}: p = (X = 1,2,3,4 \text{ M} \approx \text{m})^{\frac{1}{4}} \cdot \left(0 + \frac{1}{2} + \frac{1}{2} + \frac{1}{4}\right) = \frac{13}{48}$$

3. 解:设A为硬币是正品,T为扔r次每次均出现国徽,则 $p(A|T) = \frac{P(AT)}{P(T)} =$

$$\frac{P(T|A)P(A)}{P(T|A)P)(A) + P(T|A)P(A)} = \frac{\frac{1}{2^{T}} \frac{m}{m+n}}{\frac{1}{2^{T}} \frac{m}{m+n} + \frac{n}{m+n}} = \frac{m}{m+n \cdot 2^{T}}$$

习题 1.6

1. 略

2.
$$M: p=0.9*0.8*0.7+0.1*0.8*0.7+0.9*0.2*0.7+0.9*0.8*0.3=0.902$$

3.
$$M: p = 0.3 + 0.7 * 0.2 * 0.2 = 0.328$$

4. **A**:
$$p = \frac{1}{5} + \frac{4}{5} \cdot \frac{1}{3} + \frac{4}{5} \cdot \frac{2}{3} \cdot \frac{1}{4} = \frac{3}{5}$$

5. 解:设A为飞机被击落,X为飞机被击中次数。

$$P{X = 0} = 0.6 \times 0.5 \times 0.3 = 0.09$$

$$P{X = 1} = 0.4 \times 0.5 \times 0.3 + 0.6 \times 0.5 \times 0.3 + 0.6 \times 0.5 \times 0.7 = 0.36$$

$$P\{X = 2\} = 0.4 \times 0.5 \times 0.3 + 0.4 \times 0.5 \times 0.7 + 0.6 \times 0.5 \times 0.7 = 0.41 \quad P\{X = 3\} = 0.14$$

则
$$P(A) = 0.2P\{X = 1\} + 0.6P\{X = 2\} + P\{X = 3\} = 0.458$$

6. 设做出正确决策为事件 A,做出正确决策的人数为 X则 $P\{X=k\}=C_9^k0.7^k0.3^{9-k}$,

$$P(A) = P\{X \ge 5\} = 0.901$$

7.
$$\mathbb{P}_{1}(1-p)^{n} \geq p, 1-p \geq (1-p)^{n}, n \geq 1$$
, 至少一次

习题一

一. 填空题

1.
$$\mathbf{M}: : \mathbf{A} \cap \mathbf{B} = \overline{\mathbf{A}} \cap \overline{\mathbf{B}} : : \mathbf{A} = \mathbf{B} \rightarrow \mathbf{B} \rightarrow \mathbf{B} \rightarrow \mathbf{B}$$

$$\therefore A \cup B = \Omega, AB = \phi$$

2.
$$M: (\overline{A} \cup B) \cap (A \cup B) = B \quad (A \cup \overline{B}) \cap (\overline{A} \cup \overline{B}) = \overline{B}$$

$$B \cap \bar{B} = \Phi$$

3. $\Re: P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(BC) - P(AC) + P(ABC) = \frac{1}{4} + \frac{1}{4} +$

$$\frac{1}{4} + \frac{1}{4} - \frac{1}{16} - \frac{1}{16} = \frac{5}{8}$$

$$P = 1 - \frac{5}{8} = \frac{3}{8}$$

二. 选择题

- 1. 解: :: P(A) = P(A|B) :: A 与 B 之间没有关系,即事件 A 与事件 B 相互独立
- 2. :: A, B 为两个互逆的事件, :: P(A|B) = P(B|A) = 0
- 3. 若事件 A 与事件 B 相互独立,则 $P(A|B) + P(\overline{A}|\overline{B}) = P(A) + P(\overline{A}) = 1$,符合条件

三. 计算题

1.
$$P = \frac{C_5^2 + C_5^1 C_2^1 C_4^1 C_3^1}{C_{10}^4} = \frac{13}{21}$$

- 2. (1)解:有两个实根的情况下,则 $p^2-4q\geq 0$,由几何概型可得 $p=\frac{13}{24}$ (2)在(1)的条件下,多出 $q\geq 0$,由几何概型解出 $p=\frac{1}{49}$
- 3. 解:设第一段长为 X,第二段长为 Y,第三段为 L-X-Y 由三角形三边关系可得

$$X+Y \ge 1 - X - Y, X + L - X - Y > Y, Y + L - X - Y > X$$

即
$$\begin{cases} x + y > \frac{l}{2} \\ x < \frac{l}{2} \\ y < \frac{l}{2} \end{cases}$$

由几何概型得 p=0.25

4.
$$mathred{M}$$
: $p = \frac{C_{18}^1 \cdot C_{17}^1 \cdot C_2^1 + C_{18}^1 \cdot C_2^1 \cdot C_1^1}{C_{20}^3} = 0.089$

6. 设事件 A(X=k)表示甲取 k 时大于乙数,事件 T 为甲取得的数大于乙取得的数,那么 $P(T) = \frac{1}{5}[P(A(X=2)) + P(A(X=4)) + P(A(X=6)) + P(A(X=8)) + P(A(X=10))]$ $= \frac{1}{5}[\frac{1}{5} + \frac{2}{5} + \frac{3}{5} + \frac{4}{5} + \frac{5}{5}] = \frac{15}{25} = 0.6$

7. 设击沉潜水艇为事件 A,击中导弹数目为 X,则

$$P\{X=0\} = \frac{1}{6^4} = \frac{1}{1296}, P\{X=1\} = C_4^1 \frac{5}{6} \frac{1}{6^3} = \frac{20}{6^4} = \frac{5}{324} \quad , \quad \text{则}$$

$$P(A) = 1 - P(\bar{A}) = 1 - [P\{X=0\} + \frac{3}{5}P\{X=1\}] = \frac{1283}{1296} \quad , \quad (\text{这里为什么是} \frac{3}{5} \text{而不}$$
 是 $\frac{1}{2}$ 是在已经击中的情况下,击伤的概率为 $\frac{3}{5}$

8.

已知
$$P(A \mid B) > P(A \mid \overline{B})$$
,则 $\frac{P(AB)}{P(B)} > \frac{P(A\overline{B})}{P(\overline{B})} = \frac{P(A) - P(AB)}{1 - P(B)} \Longrightarrow P(AB) > P(A)P(B)$

要证

$$P(B \mid A) > P(B \mid \overline{A}) \Rightarrow \frac{P(AB)}{P(A)} > \frac{P(B\overline{A})}{P(\overline{A})} = \frac{P(B) - P(AB)}{1 - P(A)} \Rightarrow \exists P \exists E P(AB) > P(A)P(B)$$

证毕。

(2)
$$P(A \mid B) = P(A \mid \overline{B}) \Leftrightarrow \frac{P(AB)}{P(B)} = \frac{P(A\overline{B})}{P(\overline{B})} = \frac{P(A) - P(AB)}{1 - P(B)}$$

 $\Leftrightarrow P(AB) = P(A)P(B) \Leftrightarrow A, B \Leftrightarrow \overline{D}.$

第二章

习题 2.1

1.

- (1)引入随机变量,使我们可以研究一个随机试验中的所有可能结果,特别是随机事件数有可列个数非常多或连续取值以至于无限时。
- (2) 若随机变量 X 所取的可能值是有限个或无限个可列个,则 X 称为离散型随机变量;若随机变量 X 所取的可能值不能逐个列举出来,则 X 为非离散型随机变量(连续型离散变量仅为其中一部分)。

2.
$$P{X = k} = q^{k-1}p, k = 1, 2...,$$
 $\ddagger pq = 1-p$

3.

(1)

Х	0	1	2	3	4
Р	0.4	0.24	0.144	0.0864	0.1296

(2) $P(X \le 2) = 0.4 + 0.24 + 0.144 = 0.784$

4. .a=0.1

Х	1	2	3	4
Р	0.1	0.2	0.3	0.4

习题 2.2

1.

(1) 为了更好地掌握某区间内的概率分布情况。

(2)

定义: X 是一个随机变量, x 是任意实数, 函数

$$F(x) = P\{X \le x\}, (-\infty < x < \infty)$$

称为随机变量 X 的分布函数。

此时要将 x 放在整个数轴上进行讨论。(特点自己感受吧...)

(3) 性质:

[1]有界性: $0 \le F(x) \le 1$

[2]
$$\lim_{x \to -\infty} F(x) = F(-\infty) = 0$$
, $\lim_{x \to +\infty} F(x) = F(+\infty) = 1$ [3] 单调性: $F(x)$ 是单调不减函数。 [4] $F(x)$ 是右连续的。 [5] 对每个 a, $P\{X=a\}=F(a)-F(a-0)$

(4)
$$F(x) = \sum P\{X \le x\}$$

2. 是(2)区间的分布函数(由题目1中(3)中分布函数的四个性质判断)

$$(1) \quad F(x) = \begin{cases} 0, x < 0 \\ \frac{1}{3}, 0 \le x < 1 \\ \frac{1}{2}, 1 \le x < 2 \\ 1, x \ge 2 \end{cases}$$
 (2) $P\{X \le \frac{1}{2}\} = \frac{1}{3}$

(3)
$$P\{\frac{1}{2} < X \le \frac{3}{2}\} = \frac{1}{6}$$

(4)
$$P\{1 \le X \le 2\} = \frac{2}{3}$$

习题 2.3

- (1) 略
 - (2) n 是随机试验的总次数, P 是单次发生某事件的概率

2.

设至少需要 n 次, 记每次抽出 0 的概率为 p, 则

$$P = 0.1$$

记事件 A 为 0 至少出现一次

$$A \sim B(n, p), P(A) = C_n^1 p (1-p)^{n-1} \ge 0.9$$

 $\text{## } n \ge 22$

3. P (至少两次击中目标) =1- C_{5000}^1 (0.001)(1 - 0.001)⁵⁰⁰⁰⁻¹- C_{5000}^0 (1 - 0.001)⁵⁰⁰⁰=0.95964

(1) (属于超几何分布,通式
$$P\{X=k\} = \frac{C_4^k C_{16}^{6-k}}{C_{20}^6}, k=0,1,2,3,4$$
)

Х	0	1	2	3	4
Р	0.2066	0.4508	0.2817	0.0578	0.0031

(2) (属于二项式分布,通式为 $P\{X=k\}=C_{20}^k0.2^k\times0.8^{20-k}, k=0,1,2,3,4,5,6$)

Х	0	1	2	3	4	5	6
Р	0.2621	0.3932	0.2458	0.089	0.0154	0.0015	0.0001

5. 用二项分布计算

$$P = C_{300}^4 (0.01)^4 (1 - 0.01)^{300-4} = 0.168031355$$

用•泊松分布计算

$$\lambda = np=3$$
 $P=\frac{3^4e^{-3}}{4!}=0.168031355$
相对误差: 5%

6. $P=C_5^3(0.3)^3(1-0.3)^2+C_5^4(0.3)^4(1-0.3)^1+C_5^5(0.3)^5=0.16308$

习题 2.4

1.

(1) 定义:

对于随机变量 X 的分布函数 F(x),存在非负函数 f(x),使对于任意实数 x,有

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

则称 X 为连续型随机变量,其中 f(x)为 X 的概率密度函数。

几何意义:分布函数的值表示概率密度函数图像中小于等于该值的左侧包裹的面积图像(说直白点就是小于等于该值的概率,非说成几何就是这样),密度函数相当于概率密度函数图像中等于该值长度为1矩形的面积

(2) 性质: (P63下一P64上)

 $[1] f(x) \ge 0$

$$[2] \int_{-\infty}^{+\infty} f(x) dx = 1$$

- [3] 对于任意实数 x1,x2(x1≤ x2),P{x1<X≤x2}=F(x2)-F(x1)= $\int_{x1}^{x2} f(x) dx$
- [4] 若 f (x) 在点 x 处连续,则有F'(x) = f(x)
- [5] 对于连续型随机变量 X 来说,因为其分布函数 F(x)是连续的,所以

$$P{X=a}=F(a)-F(a-0)=0$$

- (3) 均匀分布特点: X 落在平均分布的区间内的任意等长度的子区间内的可能性是相同的。
- (4) 指数分布特点:无记忆性 应用背景:作为某些等待时间的概率分布。

无记忆性: 如果一个随机变量呈指数分布

当
$$s,t \ge 0$$
时有 $P(T>s+t|T>t) = P(T>s)$

即,如果 T 是某一元件的寿命,已知元件使用了 t 小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少 s 小时的概率相等。

- (5) 正态分布: 可见 P68 页下。 标准正态分布: $\mu = 0$, $\sigma = 1$, 特点不详叙 标准正态分布是正态分布的一个特殊情况。
- (6) 3σ原则为

数值分布在 $(\mu-\sigma,\mu+\sigma)$ 中的概率为 0.6827

数值分布在 (μ-2σ,μ+2σ)中的概率为 0.9545

数值分布在 $(\mu-3\sigma,\mu+3\sigma)$ 中的概率为 0.9973

可以认为,Y 的取值几乎全部集中在(μ - 3σ , μ + 3σ)区间内,超出这个范围的可能性仅占不到 0.3%.

(7) 标准正态分布函数分位点:

设随机变量
$$X^{*}N$$
 $(0,1)$,若 $P(X>u_a)=a$ 则称 u_a 为此正态分布的 \mathbf{L} **a** 分位数 即

$$1-\phi(u_a) = a$$

 $\phi(u_a)=1-a$

(1)
$$\int_0^{+\infty} Ae^{-3x} dx = 1$$
, 解得 A=3

(2)
$$P\{X>0.1\}=\int_{0.1}^{+\infty} 3e^{-3x} dx=0.7480$$

(3)
$$F(x) = \begin{cases} 0(x < 0) \\ 1 - e^{-3x} (x \ge 0) \end{cases}$$

(1) 由:
$$\lim_{x \to +\infty} F(x) = 1$$
和 $\lim_{x \to +0} F(x) = 0$ 解得 **A=1,B=-1**

(2)
$$f(x) = \begin{cases} 0(x \le 0) \\ xe^{-\frac{x^2}{2}}(x > 0) \end{cases}$$

(3) P=F(2)-F(1)=0.4712

4. 设汽车刚开走是在 t_0 时刻,下一辆车到达时刻为 t_0 +5,乘客到达汽车站的时刻假定为 X,X 服从(t_0 , t_0 +5)的均匀分布,则有:

$$F(x) = \begin{cases} \frac{1}{5} (t_0 < x < t_0 + 5) \\ 0, \cancel{\#} t \end{aligned}$$

$$P\{t0+2 < X \le t0 + 5\} = \int_{t0+2}^{t0+5} \frac{1}{5} dt = 0.6$$

5. 设三个都不能使用 1000h 以上为事件 A, 至少有一个能使用 1000h 以上为事件 B

$$P(B) = 1 - P(A) = 1 - (\int_{0}^{1000} f(x)dx)^{3} = 0.638$$

6. 先写出概率密度函数,

$$f(x) = \frac{1}{2\sqrt{2\pi}} e^{-\frac{(x-1)^2}{2\times 4}}, -\infty < x < \infty$$

$$F(5) = \int_{-\infty}^{5} f(x)dx = 0.9772$$

$$P\{0 < X \le 1.6\} = \int_0^{1.6} f(x) dx = 0.3049$$

$$P\{|X-1| \le 2\} = P\{-1 \le X \le 3\} = \int_{-1}^{3} f(x)dx = 0.3049$$

7. 设 x 为获奖分数线,列出下列公式,

$$P\{X \ge x\} = P\{\frac{X - 65}{10} \ge \frac{x - 65}{10}\} = 1 - \Phi(\frac{x - 65}{10}) = 0.1$$

查表解得

$$x = 78$$

8.

(1)
$$P\{X < 89\} = P\{\frac{X - 90}{0.5} < -2\} = \Phi(-2) = 0.02275$$

(2) 要求

$$P\{X \ge 80\} \ge 0.99 \Rightarrow P\{X < 80\} < 0.01$$

则

$$P\{\frac{X-d}{0.5} < 2(80-d)\} < 0.01$$

查表可以解得, d≥81.1635

习题 2.5

1.

(1) $Y = Y_i$ 时,得到所有满足 $Y_i = g(X)$ 的X集合(不妨设为 $X_1, X_2, ... X_n$),那么

$$P{Y = Y_i} = \sum_{i=1}^{n} P{X = X_i}$$

(2)

法一: 利用下面的公式先求 Y 的分布函数

$$F_{Y}(Y \le y) = F_{X}(g(x) \le y) ,$$

然后求导得密度函数 $f_{y}(y)$

法二: 若 g(x)是严格单调函数,X 具有概率密度 $f_X(x)$, $-\infty < x < \infty$ 又设 g(x) 处处可导且有 g'(x) > 0 (或恒有 g'(x) < 0),则 Y = g(X) 是连续型随机变量,其概率密度为:

$$f_Y(y) = \begin{cases} f_X(h(y))|h'(y)'|, & \alpha < y < \beta \\ 0, \cancel{\#}\cancel{t}tt \end{cases}$$

其中 $\alpha = \min\{g(-\infty), g(\infty)\}, \beta = \max\{g(-\infty), g(\infty)\}, h(y)$ 是 g(x)的反函数。

(3) 服从, 详见 P79 页下例 2.5.6

2.

Υ	0	1	4	9
Р	1/5	7/30	1/5	11/30

3. 用上面 T1 (2) 中方法二得:

当 c>0 时,
$$f_Y(y) = \begin{cases} \frac{1}{c(b-a)}, ca+d \leq y \leq cb+d, \\ 0, 其他 \end{cases}$$

当 c<0 时,
$$f_Y(y) = \begin{cases} -\frac{1}{c(b-a)}, cb+d \le y \le ca+d, \\ 0, 其他 \end{cases}$$

4. 先写出,

$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

(1) 取了绝对值,实际上就是相当于正的部分乘了2倍,即

$$f_Y(y) = \begin{cases} \sqrt{\frac{2}{\pi}}e^{-\frac{y^2}{2}}, \ y > 0 \\ 0, \cancel{\sharp} \# \end{cases}$$

(2) 利用公式,

$$f_{Y}(y) = \begin{cases} f_{X}(h(y))|h'(y)'| = \frac{1}{\sqrt{2\pi}}e^{\frac{-(\ln y)^{2}}{2}} \cdot \frac{1}{y}, & 0 < y < +\infty \\ 0, \cancel{\sharp} \not\sqsubseteq \end{cases}$$

5.
$$F_{Y}(y) = P\{Y < y\} = P\{1 - 2 \mid X \mid < y\} = P\{X < -\frac{1 - y}{2} \overrightarrow{\mathbb{E}}X > \frac{1 - y}{2}\} = \frac{1}{\sqrt{2\pi}} \left[\int_{-\infty}^{\frac{y - 1}{2}} e^{-\frac{x^{2}}{2}} dx + \int_{\frac{1 - y}{2}}^{\infty} e^{-\frac{x^{2}}{2}} dx \right] , \quad \text{\vec{x} $\Bar{\oplus}$}, \quad \text{\vec{q}}$$

$$f_Y(y) = \frac{1}{\sqrt{2\pi}} \left[\frac{1}{2} e^{-\frac{(\frac{y-1}{2})^2}{2}} + \frac{1}{2} e^{-\frac{(\frac{y-1}{2})^2}{2}} \right]$$
$$f_Y(y) = \begin{cases} \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-1)^2}{8}}, & y \le 1\\ 0, & y > 1 \end{cases}$$

6. $X' = -\frac{1}{Y^2}$, 在 $(-\infty,0)$, $(0,\infty)$ 上单调,所以可以套用公式:

(以下解释请慎信,完全为了按照答案解释,有更好说法欢迎私戳) y=0 时,这个地方本应该是 0,但是概率密度函数趴,少一两个点,换一两个点也没影响,所以不如让整个表达式看起来连续,所以 $f_Y(y)=\frac{1}{\pi(1+y^2)}$, $-\infty < y < \infty$

习题二

- 一、填空题
- 1. 直接套吧, $F(x_0) F(x_0 0)$
- 2. $F(1) F(0) = \frac{1}{4}$
- 3. 先列出式子,

$$P\{\frac{1}{2} < x < \frac{5}{2}\} = P\{x = 1, 2\} = \frac{3}{4}A$$

又因为

$$A(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}) = 1$$

解得

$$A = \frac{16}{15}$$
 所以 $P\{\frac{1}{2} < x < \frac{5}{2}\} = P\{x = 1, 2\} = 0.8$

4. F(x)单调不减,函数 F(x)右连续,且 F (-∞) =0, F (+∞) =1

5. 不变。
$$g(\sigma) = P\{|X - a| < \sigma\} = P\{|\frac{X - a}{\sigma}| < 1\} = \Phi(1) - \Phi(-1)$$
,与 σ 无关

6.0.5。(因为整个图像关于 x=1 对称)

二、计算题

1

X	0	1	2
Р	$\frac{C_{13}^3}{C_{15}^3} = \frac{22}{35}$	$\frac{C_2^1 C_{13}^2}{C_{15}^3} = \frac{12}{35}$	$\frac{C_2^2 C_{13}^1}{C_{15}^3} = \frac{1}{35}$

2.

Х	1	2	3
Р	0.6	$0.4 \times 0.6 = 0.24$	1-0.6-0.24=0.16

3.

(1)
$$C_5^2(0.1)^2(0.9)^3 = 0.0729$$

(2)
$$C_5^3(0.1)^3(0.9)^2 + C_5^4(0.1)^4(0.9)^1 + (0.1)^5 = 0.00856$$

(3)
$$1 - C_5^4(0.1)^4(0.9)^1 - (0.1)^5 = 0.99954$$

$$(4) 1 - (0.9)^5 = 0.40951$$

4.
$$P\{X=k\}=(\frac{1}{4})^{k-1}\times \frac{3}{4}, (k = 1,2,3, \dots)$$

5. 用泊松分布计算,则
$$\lambda = np=3$$
, $P=\frac{3^4e^{-3}}{4!}=0.168031355$

6. 无实根则

$$16X^2 - 16(X+2) < 0 \Rightarrow \frac{1}{2} < X < \frac{7}{2}$$

又由题得:

$$f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & \# \ell \end{cases}$$

$$P = \int_{1/2}^{7/2} f(x) dx = 1 - e^{-2}$$

7. 有题目可以列出方程式,

$$\int_{2}^{3} f(x)dx = P=2 \int_{1}^{2} f(x)dx$$

且
$$P=\int_{1}^{3} f(x)dx=1$$

解得

$$\begin{cases} A = \frac{1}{3} \\ B = \frac{1}{6} \end{cases}$$

8.

(1) 证明:

F (-a) =
$$\int_{-\infty}^{-a} f(x) dx = \int_{\infty}^{a} f(-x) d(-x) = \int_{a}^{+\infty} f(x) dx = 1 - F(a)$$

$$F(-a) = \int_{a}^{+\infty} f(x)dx = \int_{0}^{+\infty} f(x)dx - \int_{0}^{a} f(x)dx = \frac{1}{2} - \int_{0}^{a} f(x)dx$$

(2)
$$P\{|X|>a\}=2P\{X>a\}=2[1-F(a)]$$

(3)
$$P\{|X| < a\} = 1 - 2[1 - F(a)] = 2F(a) - 1$$

9.先求出
$$a = \frac{1}{9}$$
, 然后对应于 $Y = 2(X - 2)^2$ 列表,

X	0	2	8	18
Р	1	1	11	1
	$\frac{\overline{3}}{3}$	$\frac{\overline{4}}{4}$	36	9

10. 因为
$$I = \sqrt{\frac{W}{2}}, I' = \frac{1}{2\sqrt{2W}}$$
单调,且

$$f_I(i) = \begin{cases} \frac{1}{2}, & 9 < i < 11 \\ 0, 其他 \end{cases}$$

$$F_{W}(w) = \begin{cases} \frac{1}{2} \times \frac{1}{2\sqrt{2w}} = \frac{1}{4\sqrt{2w}}, 162 < w < 242\\ 0, \text{ 其他} \end{cases}$$

11.
$$y = x^3$$
, $f_Y(y) = \begin{cases} f_X(\sqrt[3]{y}) \frac{1}{3y^{\frac{2}{3}}} = \frac{1}{3ay^{\frac{2}{3}}}, 0 < y < a^3 \\ 0, \sharp \& \end{cases}$,

12. 合格率表达式为

$$P\{|X - \mu| \le m\} = P\{|\frac{X - \mu}{\sigma}| \le \frac{m}{\sigma}\} = \Phi(\frac{m}{\sigma}) - \Phi(-\frac{m}{\sigma}) = 2\Phi(\frac{m}{\sigma}) - 1 = 0.95$$
$$\Phi(\frac{m}{\sigma}) = 0.975 = \Phi(1, 96) \Rightarrow m = 1.96\sigma$$

第三章

习题 3.1

1. 不是,我们来看,过了分界线x+2y=1,分布函数F(x,y)就从0变为1,那么可以说,

所有的 x, y 都满足 x+2y=1,那么这就不叫二元随机变量了,实质上只有一个随机变量,所以不是二维随机变量的联合分布函数。

- 2. 证明:他是不是二维随机变量的概率密度函数,首先我们确认他是不是概率密度函数,证明条件需要(参考 P90 的 4 个性质):(1) 非负性;(2) 归一性;(3) 对概率的计算;(4) 连续性
 - (1) 首先非负性很好确认,不加详述。

- (3) 这点,如果我们认为他是,那他就会有这个性质,无法证伪。
- (4) 我们看 g(x) 可以从 0 积到无穷远,那么根据可积的判断条件(连续或者有限个

第一类间断点), 判断 g(x) 连续, 那么 f(x, y) 也连续

所以可以是二维随机变量的概率密度函数。

(整个证明并不严谨,从性质出发并不好,欢迎有好办法私戳)

3. 如下

Y\X	0	1	2	3
0	0	0	$\frac{C_3^2}{C_7^4} = \frac{3}{35}$	$\frac{C_2^1}{C_7^4} = \frac{2}{35}$
1	0	$\frac{C_3^1 C_2^1}{C_7^4} = \frac{6}{35}$	$\frac{C_3^2 C_2^1 C_2^1}{C_7^4} = \frac{12}{35}$	$\frac{C_2^1}{C_7^4} = \frac{2}{35}$
2	$1/C_7^4 = \frac{1}{35}$	$\frac{C_3^1 C_2^1}{C_7^4} = \frac{6}{35}$	$\frac{C_3^2}{C_7^4} = \frac{3}{35}$	0

4.
$$Y = |X - (3 - X)| = |2X - 3|$$

Y\X	0	1	2	3	$P_{\scriptscriptstyle Y}$
1	0	$\frac{3}{8}$	$\frac{3}{8}$	0	$\frac{3}{4}$

3	$\frac{1}{8}$	0	0	$\frac{1}{8}$	$\frac{1}{4}$
P_{X}	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	

5.
$$f_{Z=|X-Y|}(Z) = \begin{cases} \int_0^{1-z} f_{X,Y}(Z+Y,Y) dy = \int_0^{1-z} dy = 1-z, X > Y \\ \int_0^{1-z} f_{X,Y}(X,Z+Y) dx = \int_0^{1-z} dx = 1-z, X \le Y \end{cases} = \begin{cases} 1-z, 0 \le z \le 1 \\ 0, \text{ i.e. } \end{cases}$$

6. 首先计算这个正方形域的面积: 边长为a, 面积为 a^2 , 那

(1)
$$f(X,Y) = \frac{1}{a^2}, (|x| + |y| \le \frac{a}{\sqrt{2}})$$

(2)

$$f_{X}(x) = \int_{-\infty}^{\infty} f(x, y) dy = \begin{cases} \int_{-\frac{a}{\sqrt{2}} + x}^{\frac{a}{\sqrt{2}} + x} f(x, y) dy = \frac{\sqrt{2}a + 2x}{a^{2}}, -\frac{a}{\sqrt{2}} \le x < 0 \\ \int_{-\frac{a}{\sqrt{2}} + x}^{\frac{a}{\sqrt{2}} - x} f(x, y) dy = \frac{\sqrt{2}a - 2x}{a^{2}}, 0 \le x \le \frac{a}{\sqrt{2}} \end{cases} = \begin{cases} \frac{\sqrt{2}a - 2|x|}{a^{2}}, |x| \le \frac{a}{\sqrt{2}} \\ 0, |x| > \frac{a}{\sqrt{2}} \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{\infty} f(x, y) dx = \begin{cases} \frac{\sqrt{2}a - 2|y|}{a^{2}}, & |y| \le \frac{a}{\sqrt{2}} \\ 0, & |y| > \frac{a}{\sqrt{2}} \end{cases}$$

习题 3.2

- 1. 如下
 - (1) 横着顺着累加就可以了

		0	` -	L	2	3
$P_{\scriptscriptstyle Y}$	-	<u>8</u> 27	$\frac{12}{27}$	$=\frac{4}{9}$	$\frac{6}{27} = \frac{2}{9}$	$\frac{1}{27}$
		1			2	3
$P_{\scriptscriptstyle X}$		$\frac{3}{27} = \frac{3}{27}$	<u>1</u> 9	_	$\frac{8}{7} = \frac{2}{3}$	$\frac{6}{27} = \frac{2}{9}$

(2)

X = 1.Y

X = 1, Y	0	1	2	3
$P_{\scriptscriptstyle Y X=1}$	$\frac{2}{3}$	0	0	$\frac{1}{3}$

$$Y = 0, X$$

Y = 0, X	1	2	3
$P_{X Y=0}$	$\frac{1}{4}$	$\frac{3}{4}$	0

(3)
$$P{X = 3 | Y = 2} = 0, P{Y = 2 | X = 3} = 0$$

2.
$$f_x = \int_{-x}^{x} f(x, y) dy = 2x, 0 < x < 1$$
 , $f_y = \int_{|y|}^{1} f(x, y) dx = 1 - |y|, -1 < y < 1$. $\mathbb{R} \angle x$

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_x(x)} = \begin{cases} \frac{1}{2x}, & -x < y < x, \quad 0 < x < 1 \\ 0, \text{ 其他} \end{cases}$$

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_{y}(y)} = \begin{cases} \frac{1}{1-|y|}, -x < y < x, & 0 < x < 1 \\ 0, \text{ 其他} \end{cases}$$

3.
$$f_X(x) = \int_x^1 f(x, y) dy = \int_x^1 f_{X|Y}(x \mid y) f_Y(y) dy = \int_x^1 15x^2 y dy = \frac{15}{2} (x^2 - x^4)$$
$$P(X > \frac{1}{2}) = \int_{\frac{1}{2}}^1 \frac{15}{2} (x^2 - x^4) dx = \frac{47}{64}$$

习题 3.3

1.

Y\X	2	5	8	$P_{\scriptscriptstyle Y}$
0.4	0.15	0.3	0.35	0.8
0.8	0.05	0.12	0.03	0.2
P_{X}	0.2	0.42	0.38	

不独立, 例子
$$P(y=0.4, x=2)=0.15 \neq P(y=0.4)P(x=2)$$

(1)
$$f(x,y) = \frac{\partial^2 F}{\partial x \partial y} = 0.0001e^{-0.01(x+y)}, f_X(x) = 0.01e^{-0.01x}, f_Y(y) = 0.01e^{-0.01y}$$

$$f_{x}(x)f_{y}(y) = f(x,y)$$
 , 相互独立

(2)
$$P{X > 120, Y > 120} = 1 - F(120, 120) = 2e^{-1.2} - e^{-2.4}$$
 (答案错了)

3.

(1) 均匀分布,这又是一块面积,所以我们先来算面积, $S = 2\int_0^1 \sqrt{x} dx = \frac{4}{3}$,那么

$$f(x,y) = \frac{1}{\frac{4}{3}} = \begin{cases} \frac{3}{4}, 0 \le x \le 1, y^2 \le x \\ 0, 其他 \end{cases}$$

(2)
$$f_X(x) = \int_{-\sqrt{x}}^{\sqrt{x}} f(x, y) dy = \frac{3}{2} \sqrt{x}, 0 \le x \le 1$$
$$f_Y(y) = \int_{y^2}^1 f(x, y) dx = \frac{3}{4} (1 - y^2), -1 \le y \le 1$$
$$f(x, y) \ne f_X(x) f_Y(y), \text{ 所以不独立}$$

(3)
$$P(X < \frac{1}{2}) = \int_0^{\frac{1}{2}} \frac{3}{2} \sqrt{x} dx = \frac{1}{2^{\frac{3}{2}}}, \quad P(Y < \frac{1}{2}) = \int_{-1}^{\frac{1}{2}} \frac{3}{4} (1 - y^2) dy = \frac{27}{32}$$
$$P(X < \frac{1}{2}, Y < \frac{1}{2}) = \frac{3}{4} S' = \frac{3}{4} \times \frac{1}{6} = \frac{1}{8}$$
$$(S' \text{ if } \text{ in } \text{ E } \text{ if } \text{ E } \text{ if } \text{ in } \text{ E } \text{ in } \text{ in$$

习题 3.4

1.

如下

Z = X + Y	2	3	4
$P_{Z=X+Y}$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

2. 如下

$Z = \max\{X, Y\}$	0	1
$P_{Z=\max\{X+Y\}}$	$\frac{1}{4}$	$\frac{3}{4}$

3.
$$f_{Z=X+Y}(z) = \begin{cases} \int_0^z f_X(z-y) f_Y(y) dy = e^{-\frac{1}{3}z} - e^{-\frac{1}{2}z}, z > 0 \\ 0, z \le 0 \end{cases}$$

4.
$$Z = \min\{X_1, X_2, X_3, X_4\}$$
, 其中 X_1, X_2, X_3, X_4 相互独立,那么

$$P(Z \ge 180) = P^{4}(X_{i} \ge 180) = \left(\frac{1}{\sqrt{2\pi}} \int_{\frac{180-160}{\sqrt{202}}}^{\infty} e^{-\frac{x^{2}}{2}} dx\right)^{4} = 0.00063$$

习题三

1.

(1)
$$\iint f(x,y)dxdy = a \int_0^1 dx \int_0^2 (3x^2 + xy)dy = 3a = 1, a = \frac{1}{3}$$

(2) 当x < 0或y < 0时, F(x, y) = 0;

(3) 通过画图我们可以确定积分区域嘛
$$P(X+Y \le 1) = \int_0^1 dx \int_0^{1-x} \frac{1}{3} (3x^2 + xy) dy = \frac{7}{72}$$

 $P(X+Y \le 2.3) = \int_0^{0.3} dx \int_0^2 f(x,y) dy + \int_{0.3}^1 dx \int_0^{2.3-x} f(x,y) dy = \frac{6}{125} + 0.6918 = 0.7398$

2.

(1)

$$f(x,y) = \begin{cases} \frac{1}{(b-a)(d-c)}, & a < x < b, c < x < d \\ 0, & 其他 \end{cases}, f_X(x) = \begin{cases} \frac{1}{b-a}, a < x < b \\ 0, & 其他 \end{cases}, f_Y(y) = \begin{cases} \frac{1}{d-c}, c < x < d \\ 0, & 其他 \end{cases}$$

(2) 相互独立

4. (1)
$$f_X = \begin{cases} \frac{1}{2}, 0 \le x \le 2 \\ 0,$$
其他 \end{cases} $f_Y = \begin{cases} \frac{1}{2}, 0 \le y \le 2 \\ 0,$ 其他 \end{cases} $f(x, y) = \begin{cases} \frac{1}{4}, 0 \le x \le 2, 0 \le y \le 2 \\ 0,$ 其他

(2) 因为本来就是均匀分布,就是一块面积,所以我们只要算符合要求的面积即可

$$P\{X+Y \le \frac{3}{2}\} = \frac{\frac{1}{2} \times \frac{3}{2} \times \frac{3}{2}}{4} = \frac{9}{32}$$

5. 我们可以列表格

(1) (先把已知为0的填进去,再把剩下的通过计算填入)

Y\X	-1	0	1	$P_{\scriptscriptstyle Y}$
0	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{2}$
1	0	$\frac{1}{2}$	0	$\frac{1}{2}$
P_{X}	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	

(2) 不独立, 举个例子,
$$P(X = -1.Y = 0) = \frac{1}{4} \neq P(X = -1)P(Y = 0)$$

6. 如右图

(1) 首先,
$$f(x,y) = \begin{cases} 1, y < x < 2 - y, y > 0 \\ 0, 其他 \end{cases}$$
 那么,

$$f_X(x) = \int f(x, y) dy = \begin{cases} x, 0 < x < 1 \\ 2 - x, 1 \le x < 2 \\ 0, \text{ \#} \text{ th} \end{cases}$$

$$f_{Y}(y) = \int f(x, y)dx = \begin{cases} 2 - y - y = 2 - 2y, 0 \le y \le 1 \\ 0, 其他 \end{cases}$$

$$f_{Y|X}(y \mid x = 1.5) = \begin{cases} \frac{f(x = 1.5, y)}{f_X(x = 1.5)} = 2, 0 < y < \frac{1}{2} \\ 0, \text{ 其他} \end{cases}$$

(3) 不独立,因为 $f(x,y) \neq f_X(x)f_Y(y)$

(4)
$$P(0.1 < Y \le 0.4 \mid x = 1.5) = \int_{0.1}^{0.4} f_{Y|X}(y \mid x = 1.5) dy = 0.6$$

(5)
$$F_{X|Y}(x|y) = \int_{-\infty}^{x} f_{X|Y}(x|y) dx = \begin{cases} 0, & x < y \\ \frac{x - y}{2 - 2y}, & y \le x < 2 - y \\ 1, & x \ge 2 - y \end{cases}$$

7. 首先我们要确定
$$A$$
、 B 、 C 的值, $F(\infty,\infty) = A(B + \frac{\pi}{2})(C + \frac{\pi}{2}) = 1$

$$F(-\infty, y) = A(B - \frac{\pi}{2})(C + \arctan\frac{y}{3}) = 0 \quad F(x, -\infty) = A(B + \arctan\frac{x}{2})(C - \frac{\pi}{2}) = 0$$

可以解出来 $B = \frac{\pi}{2}, C = \frac{\pi}{2}, A = \frac{1}{\pi^2}$

(1)
$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y} = \frac{1}{\pi^2} \frac{\frac{1}{2}}{1 + \frac{x^2}{4}} \frac{\frac{1}{3}}{1 + \frac{y^2}{9}} = \frac{6}{\pi^2 (4 + x^2)(9 + y^2)}$$

(2)
$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \frac{2}{\pi (4 + x^2)}, \exists \mathbb{E}, f_Y(y) = \frac{3}{\pi (9 + y^2)}$$

8. (1)
$$\iint f(x, y) dx dy = 1, \frac{A}{2} = 1, A = 2$$

(2)
$$F(X,Y) = \int_{-\infty}^{y} dy \int_{-\infty}^{x} f(x,y) dx = \begin{cases} (1 - e^{-2x})(1 - e^{-y}), & x > 0, y > 0 \\ 0, & \text{id} \end{cases}$$

$$(3) \Leftrightarrow Z = X - Y$$

$$f_{Z=X-Y}(z) = \int_{-\infty}^{\infty} f(y+z,y)dy = \int_{\max\{-z,0\}}^{\infty} 2e^{-2z-3y}dy = \frac{2}{3}e^{-2z-3\max\{0,-z\}} = \begin{cases} \frac{2}{3}e^{z}, & z < 0\\ \frac{2}{3}e^{-2z}z \ge 0 \end{cases}$$

$$P(X \le Y) = P(Z \le 0) = \int_{-\infty}^{0} f(z)dz = \frac{2}{3}$$
 (也可以直接)
$$\int_{0}^{\infty} dy \int_{0}^{y} 2e^{-2x-y}dx = \frac{2}{3}$$
)

9.

(1)
$$\iint_D f(x, y) dx dy = 1, 8k = 1, k = \frac{1}{8}$$

(2)
$$P(X < 1, Y < 3) = \int_0^1 dx \int_2^3 \frac{1}{8} (6 - x - y) dy = \frac{3}{8}$$

(3)
$$P\{X < 1.5\} = \int_0^{1.5} dx \int_2^4 f(x, y) dy = \frac{27}{32}$$

(4) (这里没有通过求 Z = X + Y 的方法是因为实测有点麻烦,所以直接算吧)

$$P\{X+Y \le 4\} = \int_0^2 dx \int_2^{4-x} \frac{1}{8} (6-x-y) dy = \frac{2}{3}$$

10.

(1)
$$f(x, y) = \begin{cases} \frac{1}{2} (e^{-\frac{y}{2}}), 0 < x < 1, y > 0 \\ 0, \text{ 其他} \end{cases}$$

(2) 即
$$P(4X^2 - 4Y \ge 0) = P(X^2 \ge Y)$$
,如图,那

$$\angle P\{X^2 \ge Y\} = \int_0^1 dx \int_0^{\sqrt{x}} \frac{1}{2} e^{-\frac{y}{2}} dy = 12e^{-\frac{1}{2}} - 7 \approx 0.278$$

(1)
$$\iint_{R} C(R - \sqrt{x^2 + y^2}) dx dy = 1, \frac{R^3 \pi}{3} C = 1, C = \frac{3}{\pi R^3}$$

(2)
$$P\{X^2 + Y^2 \le r^2\} = \iint_{R^2} f(x, y) dx dy = 3\frac{r^2}{R^2} - 2\frac{r^3}{R^3}$$

12. (题目印刷有问题,
$$f_Y(y) \to f(x,y)$$
) $f_X(x) = \begin{cases} \int_{-1}^1 \frac{1}{4} (1+xy) dy = \frac{1}{2}, |x| < 1 \\ 0, |x| \ge 1 \end{cases}$ 同

理
$$f_Y(y) = \begin{cases} \int_{-1}^1 \frac{1}{4} (1+xy) dx = \frac{1}{2}, |y| < 1 \\ 0, |y| \ge 1 \end{cases}$$
 $f(x,y) \ne f_X(x) f_Y(y)$,所以 $X = Y$ 不独立,

$$F_{U=X^2}(U \le u) = F_X(-\sqrt{u} \le X \le \sqrt{u}) = \begin{cases} 0, u < 0 \\ \frac{1+\sqrt{u}}{2} - \frac{1-\sqrt{u}}{2} = \sqrt{u}, & 0 \le u \le 1 \\ 1, u > 1 \end{cases}$$

$$F_{v=y^{2}}(V \le v) = F_{X}(-\sqrt{v} \le Y \le \sqrt{v}) = \begin{cases} 0, v < 0 \\ \frac{1+\sqrt{v}}{2} - \frac{1-\sqrt{v}}{2} = \sqrt{v}, & 0 \le v \le 1 \text{ } \mathbb{Z} \\ 1, v > 1 \end{cases}$$

$$F_{U = X^2, V = Y^2}(U \le u, V \le v) = F_{X, Y}(-\sqrt{u} \le X \le \sqrt{u}, -\sqrt{v} \le Y \le \sqrt{v})$$

$$= \begin{cases} 0, u \leq 0 & \text{if } v \leq 0 \\ \int_{-\sqrt{u}}^{\sqrt{u}} dx \int_{-\sqrt{v}}^{\sqrt{v}} f(x, y) dy = \sqrt{uv}, 0 < u < 1, 0 < v < 1 \\ \int_{-1}^{1} dx \int_{-\sqrt{v}}^{\sqrt{v}} f(x, y) dy = \sqrt{v}, u \geq 1, 0 < v < 1 \end{cases}, \quad \text{if } F_{U, v}(u, v) = F_{U}(u) F_{V}(v), \quad \sqrt{u}, v \geq 1, 0 < u < 1 \\ 1, v \geq 1, u \geq 1 \end{cases}$$

所以 X^2 、 Y^2 独立。

13.
$$f_{Z=X+2Y}(z) = \int_{-\infty}^{\infty} f(z-2y, y) dy = \begin{cases} \int_{0}^{\frac{z}{2}} 2e^{-z} dy = ze^{-z}, & z > 0 \\ 0, & z \le 0 \end{cases}$$

$$F(Z) = \begin{cases} 1 - e^{-z} - ze^{-z}, & z > 0 \\ 0, & z \le 0 \end{cases}$$

14. 咱们先写出联合分布, $f(x,y) = \begin{cases} 2,0 < x < 1,0 < y < x \\ 0,其他 \end{cases}$

(1)
$$f_{Z=XY}(z) = \int_{-\infty}^{\infty} \frac{1}{|y|} f(\frac{z}{y}, y) dy = \begin{cases} \int_{z}^{\sqrt{z}} 2\frac{1}{y} dy = -\ln z, 0 < z < 1 \\ 0, 其他 \end{cases}$$

(2)
$$f_{z=\frac{Y}{X}}(z) = \int_{-\infty}^{\infty} |\mathbf{x}| f(x, xz) dx = \begin{cases} \int_{z}^{1} 2x dx = 1, 0 < z < 1 \\ 0, \text{ i.e.} \end{cases}$$

15. 这里我们首先要注意到, $X \setminus Y$ 并不独立($P\{X \ge 0, Y \ge 0\} \ne P\{X \ge 0\}P\{Y \ge 0\}$)

$$P{\max\{(X,Y) \ge 0\} = 1 - P{X < 0, Y < 0}}$$
 我们可以列表格

 $(\frac{a}{b}$ 是原来有的数据, $\frac{a}{b}$ 是计算出来的)

X\Y	<i>Y</i> < 0	$Y \ge 0$	P_{X}
<i>X</i> < 0	2/7	1/7	3/7
$X \ge 0$	1/7	$\frac{3}{7}$	$\frac{4}{7}$
$P_{\scriptscriptstyle Y}$	3/7	$\frac{4}{7}$	

所以
$$P\{\max(X,Y) \ge 0\} = 1 - \frac{2}{7} = \frac{5}{7}$$

16. 直接选用答案给的表

X\Y	1	2	3	$P_{_{X}}$
1	$\frac{1}{9}$	0	0	$\frac{1}{9}$
2	$2 \times \frac{1}{3} \times \frac{1}{3} = \frac{2}{9}$	$\frac{1}{9}$	0	$\frac{3}{9}$
3	$2 \times \frac{1}{3} \times \frac{1}{3} = \frac{2}{9}$	$2 \times \frac{1}{3} \times \frac{1}{3} = \frac{2}{9}$	$\frac{1}{9}$	$\frac{5}{9}$
$P_{_{Y}}$	$\frac{5}{9}$	$\frac{3}{9}$	$\frac{1}{9}$	

$$P\{\xi=\eta\} = \frac{1}{9} + \frac{1}{9} + \frac{1}{9} = \frac{1}{3}$$

17.

- (1) 这里主要需要画图, $P\{Y>0|Y>X\}=\frac{3}{4}$
- (2) 从图中我们可以看出,满足条件的就是第一、二、四象限,则 $P\{M>0\} = \frac{1}{4}$

18.

(1)
$$C_n^m p^m (1-p)^{n-m}$$

(2)
$$P\{x=n\}=\frac{\lambda^n e^{-\lambda}}{n!}, P\{y=m \mid x=n\}=C_n^m p^m (1-p)^{n-m}, 0 \le m \le n, n=0, 1, 2. \text{ M}$$

$$P\{x=n, y=m\} = P\{y=m \mid x=n\}P\{x=n\} = C_n^m p^m (1-p)^{n-m} \frac{\lambda^n e^{-\lambda}}{n!}, 0 \le m \le n, n = 0, 1, 2...$$

19.
$$f_{z=\frac{X}{Y}}(z) = |y| \int_{\max\{1000,\frac{1000}{z}\}}^{\infty} f_X(zy) f_Y(y) dy = \frac{10^6}{2z^2} \frac{1}{(\max\{1000,\frac{1000}{z}\})^2} = \begin{cases} \frac{1}{2z^2}, z \ge 1\\ \frac{1}{2}, 0 < z < 1\\ 0, \ne \emptyset \end{cases}$$

20.

(1)
$$P\{X=2 \mid Y=2\} = \frac{0.05}{P\{Y=2\}} = \frac{1}{5} P\{Y=3 \mid X=0\} = \frac{1}{3}$$

(2) 这个就一个一个列出来趴

$$P{V = 0} = 0$$

$$P{V = 1} = 0.01 + 0.01 + 0.02 = 0.04$$

$$P{V = 2} = 0.01 + 0.03 + 0.05 + 0.04 + 0.03 = 0.16$$

$$P{V = 3} = 0.01 + 0.02 + 0.04 + ... + 0.05 = 0.28$$

$$p{V = 4} = 0.24$$

$$P{V = 5} = 0.28$$

(3) 同上,

$$P\{U=0\}=(第一列和第一行总和)=0.28$$

$$P\{U=1\}=(除去第一行第一列的第二行和第二列的总和)=0.3$$

$$P\{U=2\}=(除去上面的第三行和第三列的总和)=0.25$$

$$P{U = 3} = 0.17$$

(4) 还是直接找就行啦

$$P\{W = 0\} = 0$$

$$P{W = 1} = 0.02$$

$$P{W = 2} = 0.06$$

$$P{W = 3} = 0.13$$

$$P{W = 4} = 0.19$$

$$P{W = 5} = 0.24$$

$$P\{W = 6\} = 0.19$$

$$P{W = 7} = 0.12$$

$$P{W = 8} = 0.05$$

第四章

习题 4.1

1. $\frac{1}{2}$ $\frac{5}{4}$ 4

$$E(X) = (-1) \times \frac{1}{8} + 0 \times \frac{1}{2} + 1 \times \frac{1}{8} + 2 \times \frac{1}{4} = \frac{1}{2}$$

$$E(X^{2}) = (-1)^{2} \times \frac{1}{8} + 0 \times \frac{1}{2} + 1^{2} \times \frac{1}{8} + 2^{2} \times \frac{1}{4} = \frac{5}{4}$$

$$E(2X+3) = 2E(X) + 3 = 4$$

2. 4.125

易知,
$$3 \le X \le 5$$
,

Х	3	4	5
Р	$\left(\frac{1}{2}\right)^3 \times 2 = \frac{1}{4}$	$C_{3}^{2} \left(\frac{1}{2}\right)^{2} \times \frac{1}{2} \times \frac{1}{2} \times 2 = \frac{3}{8}$	$C_4^2 \left(\frac{1}{2}\right)^4 = \frac{3}{8}$
对 P 的注释	A、B都可能连胜三场	前三场有一个人赢了两	前四场每个人各赢了 2 场,而第五场不能结果 都会结束

$$E(X) = 3 \times \frac{1}{4} + 4 \times \frac{3}{8} + 5 \times \frac{3}{8} = 4.125$$

3. 0.4 \ 0.1 \ 0.5

$$p_1 + p_2 + p_3 = 1$$

可以列出三个方程, $E(X) = -p_1 + p_3 = 0.1$
 $E(X^2) = p_1 + p_3 = 0.9$

可以解得,
$$p_1 = 0.4, p_2 = 0.1, p_3 = 0.5$$

4. 答案

首先设X为故障的天数

_	, , , _ , .				
	Χ	0	1	2	≥3
	P(X)	$0.8^5 = 0.32768$	$C_5^1 0.2 \times 0.8^4 = 0.4096$	$C_5^2 0.2^2 \times 0.8^3 = 0.2048$	1 - 0.32768 - 0.4096 $-0.2048 = 0.05792$

$$E(X) = P(X = 0) \times 10 + P(X = 1) \times 5 - P(X \ge 3) \times 2 = 5.20896$$

5. 答案

(1)

X	0	1	2	3(不遇到红灯)
P	1	1 1 1	1 1 1 1	1 1 1 1
	$\overline{2}$	$\frac{1}{2}^{2} \frac{1}{2} \frac{1}{4}$	$\frac{2}{2} \times \frac{2}{2} \times \frac{2}{2} = \frac{8}{8}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{8}$

(2)
$$E\left(\frac{1}{1+X}\right) = \frac{1}{2} \times 1 + \frac{1}{4} \times \frac{1}{2} + \frac{1}{8} \times \frac{1}{3} + \frac{1}{8} \times \frac{1}{4} = \frac{67}{96}$$

(1)
$$E(U) = E(2X + 3Y + 1) = 2E(X) + 3 E(Y) + 1 = 10 + 33 + 1 = 44$$

(2)
$$E(V) = E(YZ - 4X) = E(YZ) - 4E(X) = E(Y)E(Z) - 4E(X) = 88 - 20 = 68$$

7. 独立

$$\Rightarrow E(XY) = E(X)E(Y)$$

$$E(X) = \int_0^1 x \cdot 2x dx = \frac{2}{3}$$

$$E(Y) = \int_5^\infty y \cdot e^{-(y-5)} dy = 6$$

$$E(XY) = 4$$

8. 证明:

$$E(X) = \sum_{k=0}^{\infty} kP(X = k)$$

$$P(X \ge k) = \sum_{j=k}^{\infty} P(X = j)$$

$$\sum_{k=1}^{\infty} P(X \ge k) = \sum_{k=1}^{\infty} \sum_{j=k}^{\infty} P(X = j) = \sum_{k=0}^{\infty} kP(X = k) = E(X)$$

(因为这里在 P(X=k)时一共出现了 k 次, 所以上述等式成立)

习题 4.2

1. 扫码给了 0.301、0.322, 不准确

Х	0	1	2	3	
Р	$\frac{9}{12} = \frac{3}{4}$	$\frac{3}{12} \times \frac{9}{11} = \frac{9}{44}$	$\frac{3}{12} \times \frac{2}{11} \times \frac{9}{10} = \frac{9}{220}$	$\frac{3}{12} \times \frac{2}{11} \times \frac{1}{10} = \frac{1}{220}$	
$E(X) = \frac{9}{44} \times 1 + \frac{9}{220} \times 2 + \frac{1}{220} \times 3 = \frac{3}{10}$ $E(X^{2}) = \frac{9}{2} \times 1 + \frac{9}{220} \times 4 + \frac{1}{220} \times 9 = \frac{9}{20}$					

$$E(X) = \frac{1}{44} \times 1 + \frac{1}{220} \times 4 + \frac{1}{220} \times 9 = \frac{1}{22}$$
$$D(X) = E(X^{2}) - E(X)^{2} = \frac{9}{22} - \frac{9}{100} = \frac{351}{1100}$$

2. 如下,

E(XY) = E(X)E(Y) = 0

$$D(X+Y) = D(X) + D(Y) = \frac{16}{3}$$
$$D(2X-3Y) = 4D(X) + 9D(Y) = 28$$

4. f(x)的概率密度为 $f(x) = 1, -\frac{1}{2} < x < \frac{1}{2}$

$$E(Y) = \int_0^{\frac{1}{2}} g(x) f(x) dx = \int_0^{\frac{1}{2}} \ln x dx = -\frac{1}{2} \ln 2 - \frac{1}{2}$$

$$E(Y^2) = \int_0^{\frac{1}{2}} \ln^2 x dx = \frac{1}{2} \ln^2 2 + \ln 2 + 1$$

$$D(Y) = E(Y^2) - E(Y)^2 = \frac{1}{4} \ln^2 2 + \frac{1}{2} \ln 2 + \frac{3}{4}$$

5. 如下, E(X) 不存在, D(X) 不存在

若存在, $E(X) = \int_{-\infty}^{\infty} \frac{x}{\pi(1+x^2)} dx$,不绝对收敛,所以不存在;同理D(X)不存在

(这里我们复习下连续随机变量的数学期望定义:)

设连续型随机变量 X 的概率密度为 f(x), 若积分

$$\int_{-\infty}^{\infty} x f(x) dx$$

绝对收敛,则称积分 $\int_{-\infty}^{\infty} x f(x) dx$ 的值为随机变量 X 的数学期望,记为 E (X).

6. (扫码答案不对) T_i 满足 $f_{T_i}(t) = \frac{1}{5}e^{-\frac{t}{5}}, t > 0$

$$f_{T=T_1+T_2}(t) = \int_{-\infty}^{\infty} f_{T_1}(t-t_2) f_{T_2}(t_2) dt_2 = \int_{0}^{t} \frac{1}{25} e^{-\frac{x+t-x}{5}} dx = \frac{1}{25} t e^{-\frac{t}{5}}, t \ge 0$$

$$E(T) = \int_0^\infty \frac{1}{25} t^2 e^{-\frac{1}{5}t} dt = 10, \quad D(T) = E(T^2) - E(T)^2 = 150 - 100 = 50$$

假设发生事件 A 的概率为 p,则

X	0	1
Р	1-P	Р

$$E(X) = P$$
, $D(X) = E(X^2) - E(X)^2 = P(1-P) \le \frac{1}{4}$

习题 4.3

1.
$$Cov(3X-2Y+1, X+4Y-3) = Cov(3X-2Y, X+4Y-3) + Cov(1, X+4Y-3)$$

$$= Cov(3X - 2Y, X + 4Y) + Cov(3X - 2Y, -3) + Cov(1, X + 4Y) + Cov(1, -3)$$

$$= Cov(3X, X) + Cov(3X, 4Y) + Cov(-2Y, X) + Cov(-2Y, 4Y) + Cov(3X, -3) + Cov(-2Y, -3) + Cov(1, X) + Cov(1, 4Y) + Cov(1, -3)$$

$$=3D(X)+10Cov(X,Y)-8D(Y)-8Cov(X,1)+10Cov(Y,1)-3Cov(1,1)$$

已知:
$$Cov(X,Y) = E(XY) - E(X)E(Y) = -1$$
,

$$D(X) = 2$$
, $D(Y) = 3$, $Cov(X,1) = E(X) - E(X)E(1) = 0 = Cov(Y,1)$, $Cov(1,1) = 0$

所以上述表达式
$$\Rightarrow$$
 3×2+10×(-1)-8×3=-28

2.

$$P(X = k) = C_n^k (\frac{1}{2})^n$$
, $E(X) = E(Y) = \frac{n}{2}$ (概率相同)

$$E(XY) = E(X(n-X)) = nE(X) - E(X^{2}),$$

其中,

$$E(X^{2}) = \sum_{i=0}^{n} i^{2} C_{n}^{i} (\frac{1}{2})^{n} = \sum_{i=1}^{n} i^{2} C_{n}^{i} (\frac{1}{2})^{n}$$

$$=\sum_{i=1}^{n}i^{2}\frac{n}{i}C_{n-1}^{i-1}(\frac{1}{2})^{n}=\sum_{i=1}^{n}inC_{n-1}^{i-1}(\frac{1}{2})^{n}=\sum_{i=2}^{n}(i-1)nC_{n-1}^{i-1}(\frac{1}{2})^{n}+\sum_{i=1}^{n}nC_{n-1}^{i-1}(\frac{1}{2})^{n}$$

$$=\sum_{i=2}^{n}n(n-1)C_{n-2}^{i-2}(\frac{1}{2})^{n}+\sum_{i=1}^{n}nC_{n-1}^{i-1}(\frac{1}{2})^{n}=n(n-1)2^{n-2}(\frac{1}{2})^{n}+n2^{n-1}(\frac{1}{2})^{n}$$

$$= \frac{n(n-1)}{4} + \frac{n}{2} = \frac{n(n+1)}{4}$$

所以,
$$E(XY) = \frac{n^2}{2} - \frac{n(n+1)}{4} = \frac{n^2 - n}{4}$$
, $D(X) = E(X^2) - E(X)^2 = \frac{n(n+1)}{4} - \frac{n^2}{4} = \frac{n}{4} = D(Y)$

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = \frac{E(XY) - E(X)E(Y)}{D(X)} = \frac{\frac{n^2 - n}{4} - \frac{n^2}{4}}{\frac{n}{4}} = -1$$

3. 如下

(1) 事件 A、B 独立
$$\Leftrightarrow$$
 $P(AB) = P(A)P(B) \Leftrightarrow \rho = 0$

(2) 即证明

$$P(AB) - P(A)P(B) \le \sqrt{P(A)[1 - P(A)]P(B)[1 - P(B)]}$$

$$P(A)^{2} P(B)^{2} - 2P(A)P(B)P(AB) + P(AB)^{2} \le P(A)^{2} P(B)^{2} - P(A)P(B)^{2} - P(A)^{2} P(B) + P(A)P(B)$$

$$P(AB)^{2} \le [1 - P(B) - P(A) + 2P(AB)]P(A)P(B)$$

4.
$$f(x) = \begin{cases} 0, x \le 0 \\ \frac{1}{2\pi}, 0 < x < 2\pi, \\ 0, x \ge 2\pi \end{cases}$$

 $Cov(Y, Z) = Cov(\sin X, \sin X \cos a + \cos X \sin a)$

 $=\cos aD(\sin X) + \sin aCov(\sin X,\cos X)$

其中,
$$D(Y) = D(\sin x) = E(\sin^2 x) - E(\sin x)^2 = \int_0^{2\pi} \frac{\sin^2 x}{2\pi} dx - (\int_0^{2\pi} \frac{\sin x}{2\pi} dx)^2 = \frac{1}{2}$$

$$D(Z) = D(\sin(x+a)) = E(\sin^2(x+a)) - E(\sin(x+a))^2 = \int_0^{2\pi} \frac{\sin^2(x+a)}{2\pi} dx - (\int_0^{2\pi} \frac{\sin(x+a)}{2\pi} dx)^2 = \frac{1}{2}$$

 $Cov(\sin X, \cos X) = E(\sin X \cos X) - E(\sin X)E(\cos X)$

$$= \int_0^{2\pi} \frac{\sin x \cos x}{2\pi} dx - \int_0^{2\pi} \frac{\sin x}{2\pi} dx \int_0^{2\pi} \frac{\cos x}{2\pi} dx = 0$$

所以,
$$Cov(Y,Z) = \frac{1}{2}\cos a, \rho_{YZ} = \frac{\frac{1}{2}\cos a}{\frac{1}{2}} = \cos a$$

当
$$a=\frac{\pi}{2},\frac{3\pi}{2}$$
时,Y、Z不相关,但也不独立; $a\neq\frac{\pi}{2},\frac{3\pi}{2}$ 时,Y、Z相关

5.
$$\rho_{XY} = 0 \Rightarrow Cov(X, Y) = 0 \Rightarrow E(XY) = E(X)E(Y)$$

$$\overrightarrow{\text{m}} E(X) = P(A), E(Y) = P(B), E(AB) = P(AB)$$

$$\Rightarrow P(XY) = P(X)P(Y) \Rightarrow$$
相互独立

6. 设这同一分布的数学期望为E(x),方差为D(x),则D(X) = nD(x),D(Y) = nD(x),

$$Cov(X,Y) = E(XY) - E(X)E(Y) = n^2 E(x^2) - n^2 E(x)^2 = n^2 D(x)$$

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = n$$

习题 4.4

1.
$$P(|X - \mu| \ge 3\sigma) \le \frac{\sigma^2}{9\sigma^2} = \frac{1}{9}$$

2.
$$\Leftrightarrow U = X - Y$$
, $\emptyset E(U) = E(X) - E(Y) = 0$,

$$D(U) = D(X) + D(Y) - 2Cov(X,Y) = D(X) + D(Y) - 2\rho_{XY}\sqrt{D(X)}\sqrt{D(Y)} = 4 + 1 - 2 = 3$$

$$P(|U - \mu| \ge 6) \le \frac{\sigma^2}{36} = \frac{1}{12}$$

3. 条件可以转换为 $\lim_{n\to\infty} D(\frac{1}{n}\sum_{i=1}^n X_i^2) = \lim_{n\to\infty} D(\bar{X}_n^2) = 0$,要证 $\{X_n\}$ 服从大数定理,即

$$\lim_{n\to\infty} P\{\mid \overline{X}_n - a_n \mid <\varepsilon\} = 1 \;, \;\; \text{ } \lim_{n\to\infty} \overline{X}_n - a_n = 0$$

4. 设总发生故障的设备台数为 X,则

$$P(X \ge 2) = P(\frac{X - 400 \times 0.02}{\sqrt{400 \times 0.02 \times 0.98}} \ge \frac{2 - 8}{\sqrt{8 \times 0.16 \times 6}} = -\frac{5}{4}\sqrt{3}) = \varphi(x \ge -\frac{5}{4}\sqrt{3}) = \varphi(x \le \frac{5}{4}\sqrt{3})$$

$$=\Phi(\frac{5}{4}\sqrt{3}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{5}{4}\sqrt{3}} e^{-\frac{t^2}{2}} dt = 0.9845$$

5. 设应供 A 瓦电力, 其中工作的机床数目为 X, 那么要求

$$P(X \le A) = P(\frac{X - 200 \times 0.6}{\sqrt{200 \times 0.6 \times 0.4}} \le \frac{A - 120}{4\sqrt{3}}) = \Phi(\frac{A - 120}{4\sqrt{3}}) = 99.9\%$$

$$\Phi(\frac{A-120}{4\sqrt{3}}) = 99.9\% = \Phi(3.175)$$
, $A = 142$ (这里我是根据答案套的)

6. 利用 Chebyshev 不等式,设 A 是抛掷的次数,X 是正面朝上的次数,则

$$P(|X - 0.5A| \le 0.1A) = 1 - \frac{\sigma^2}{(0.1A)^2} \ge 0.9$$
, $\sigma^2 = A \times \frac{1}{2} \times \frac{1}{2} \le 10^{-3} A^2$, $A \ge 250$

利用中心极限定理,那么

$$P(0.4A \le X \le 0.6A) = P(-\frac{1}{5}\sqrt{A} \le \frac{X - 0.5A}{0.5\sqrt{A}} \le \frac{1}{5}\sqrt{A}) = \Phi(\frac{1}{5}\sqrt{A}) - \Phi(-\frac{1}{5}\sqrt{A}) = 2\Phi(\frac{1}{5}\sqrt{A}) - 1 \ge 0.9$$

$$\Phi(\frac{1}{5}\sqrt{A}) \ge 0.95 = \Phi(1.65), A \ge 68$$
 (由答案靠近)

习题四

一. 填空题

1.
$$D(2X - Y) = 4D(X) + D(Y) = 36$$

2. 标准差为
$$\sqrt{np(1-p)}$$
, $p=\frac{1}{2}$ 时,标准差最大,为 5

3.
$$E[(X-1)(X-2)] = E(X^2 - 3X + 2) = E(X^2) - 3E(X) + 2 = D(X) + E(X)^2 - 3\lambda + 2$$

 $\lambda + \lambda^2 - 3\lambda + 2 = 1$ $\lambda = 1$

二. 计算题

1.

(1)
$$P = \iint_D f(x, y) dx dy = \iint_D f(x) f(y) dx dy = \iint_D \frac{1}{8\pi} e^{-\frac{x^2 + y^2}{8}} dx dy = e^{-\frac{1}{8}} - e^{-\frac{1}{2}}$$

(2)
$$E(Z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sqrt{x^2 + y^2} \frac{e^{-\frac{x^2 + y^2}{8}}}{8\pi} dx dy = \sqrt{2\pi}$$

2.

(1)
$$E(|X-Y|) = \int_0^1 \int_0^1 |x-y| f(x) f(y) dx dy = \int_0^1 \int_0^1 |x-y| dx dy = \frac{1}{3}$$

(2)
$$E(|X-Y|) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |x-y| f(x) f(y) dx dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |x - y| \frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}} dx dy = 2 \iint_{x > y} (x - y) \frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}} dx dy$$

$$\frac{1}{\pi} \int_0^\infty r e^{-\frac{r^2}{2}} r dr \int_{-\frac{3}{4}\pi}^{\frac{1}{4}\pi} (\cos \theta - \sin \theta) d\theta = \frac{2}{\sqrt{\pi}}$$

(1)
$$E(X) = -(a+0.1)+0+(0.4+c)=0.2, a-c=0.1$$

$$P(Y \le 0 \mid X \le 0) = \frac{P(Y = 0, X = 0) + P(Y = -1, X = 0) + P(Y = 0, X = -1) + P(Y = -1, X = -1)}{P(X = 0) + P(X = -1)}$$

$$=\frac{a+b+0.1}{a+b+0.2}=0.5, a+b=0,$$
 (不理解, 这里和答案有出入) 又因为

$$a+b+c+0.6=1$$
, $a+b+c=0.4$,由上述三式得, $a=0.2$, $b=0.1$, $c=0.1$

(2)

Z	-2	-1	0	1	2
P	0.2	0.1	0.3	0.3	0.1

(3)
$$P(X = Z) = P(Y = 0) = 0.4$$

4.
$$p = P(X > \frac{\pi}{3}) = \int_{\frac{\pi}{3}}^{\pi} \frac{1}{2} \cos \frac{x}{2} dx = \frac{1}{2}$$
,

Υ	0	1	2	3	4
Р	$(1-p)^4$	$C_4^1 p (1-p)^3$	$C_4^2 p^2 (1-p)^2$	$C_4^3 p^3 (1-p)$	p^4

$$E(Y^{2}) = C_{4}^{1} p (1-p)^{3} + 4 \times C_{4}^{2} p^{2} (1-p)^{2} + 9 \times C_{4}^{3} p^{3} (1-p) + 16 \times p^{4} = 5$$

5.

Х	1	2	 n
Р	p	(1-p)p	$(1-p)^{n-1}p$

$$E(X) = \sum_{k=1}^{\infty} k(1-p)^{k-1} p = -p\left[\sum_{k=1}^{\infty} (1-p)^{k}\right]^{k} = -p\left(\frac{1}{p}-1\right)^{k} = \frac{1}{p},$$

$$D(X) = E(X^{2}) - E(X)^{2} = \sum_{k=1}^{\infty} k^{2} (1-p)^{k-1} p - \frac{1}{p^{2}} = -p \left[\sum_{k=1}^{\infty} k (1-p)^{k} \right] - \frac{1}{p^{2}}$$

$$-p[\sum_{k=1}^{\infty}(k+1)(1-p)^{k}-(1-p)^{k}]^{'}-\frac{1}{p^{2}}=-p\{-[\sum_{k=1}^{\infty}(1-p)^{k+1}]^{'}-\sum_{k=1}^{\infty}(1-p)^{k}\}^{'}-\frac{1}{p^{2}}=\frac{1-p}{p^{2}}$$

6. 我们可以假设,工人修完某一台机,这台机器是第 k 个(在因为发生故障概率相同,所以 在 哪 一 台 机 器 是 均 匀 分 布 的), 那 么 走 向 下 一 台 机 器 的 距 离 为

$$E(Z_k) = \begin{cases} \sum_{i=1}^{n} (i-1)\frac{1}{n} = \frac{n-1}{2}, k = 1 \\ \sum_{i=1}^{k-1} (k-i)\frac{1}{n} + \sum_{i=k+1}^{n} (i-k)\frac{1}{n} = \frac{k^2}{n} - \frac{n+1}{n}k + \frac{n+1}{2}, 1 < k < n = \frac{k^2}{n} - \frac{n+1}{n}k + \frac{n+1}{2}, 1 \le k \le n \end{cases}$$

$$\sum_{i=1}^{n-1} (n-i)\frac{1}{n} = \frac{n-1}{2}, k = n$$

$$E(Z) = E(E(Z_k))a = \frac{1}{n} \left[\sum_{k=1}^{n} \frac{k^2}{n} - \frac{n+1}{n} k + \frac{n+1}{2} \right] a = \frac{1}{3} (n - \frac{1}{n})a$$

7.

(1)

$$P(X \ge 96) = P(\frac{X - 72}{\sigma} \ge \frac{24}{\sigma}) = 1 - \Phi(\frac{24}{\sigma}) = 0.023, \Phi(\frac{24}{\sigma}) = 0.977 = \Phi(2.00), \sigma = 12$$

$$P(60 \le X \le 84) = P(-1 \le \frac{X - 72}{12} \le 1) = \Phi(1) - \Phi(-1) = \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} e^{-\frac{t^2}{2}} dt = 0.6826$$

$$P(Y = K) = C_{100}^{k} 0.6826^{k} \times 0.3174^{100-k}, k = 0,1...100$$

(2)
$$E(Y) = np = 68.26, D(X) = np(1-p) = 21.6657$$

8.

(1)
$$E(X) = \int_{-\infty}^{0} \frac{1}{2} x e^{x} dx + \int_{0}^{+\infty} \frac{1}{2} x e^{-x} dx = 0$$
 (也因为 f (x) 关于 y 轴对称)
 $D(X) = E(X^{2}) - 0 = \int_{-\infty}^{0} \frac{1}{2} x^{2} e^{x} dx + \int_{0}^{+\infty} \frac{1}{2} x^{2} e^{-x} dx = 2$

(2)
$$Cov(X, |X|) = E(X |X|) - E(X)E(|X|) = E(X |X|)$$

令
$$Z = X \mid X \mid$$
, 那么 $z = \begin{cases} -x^2, x < 0 \\ x^2, x \ge 0 \end{cases}$, z 与 x 是单调的,可以套用P78的公式

$$f_{z}(z) = \begin{cases} f_{x}(-\sqrt{-z}) \frac{1}{2\sqrt{-z}} = \frac{1}{4\sqrt{-z}} e^{-\sqrt{-z}} z < 0 \\ f_{x}(\sqrt{z}) \frac{1}{2\sqrt{z}} = \frac{1}{4\sqrt{z}} e^{-\sqrt{z}} z \ge 0 \end{cases}$$
 (对称分布),那么

Cov(X, |X|) = E(Z) = 0,不相关。

(3) 首先我们得知道
$$f_{Y=|X|}(y)$$
,易得 $f_{Y=|X|}(y) = \begin{cases} e^{-y}, y \ge 0 \\ 0, y < 0 \end{cases}$ 所以

$$f_X(x)f_{|X|}(|x|) = \frac{1}{2}e^{-2|x|} \neq f_{X|X|}(x|x|)$$
,不独立

(写在最后:在本题里,X、|X| 显然是有关联的,所以Z=X |X| 用的是一个x ,但是 X、|X| 的分布却不同,所以造成上述结果)

9.
$$Cov(X,Y) = E(XY) - E(X)E(Y) = \int_{-\pi}^{\pi} \sin\theta \cos\theta d\theta - \int_{-\pi}^{\pi} \sin\theta d\theta \times \int_{-\pi}^{\pi} \cos\theta d\theta = 0$$
,

相关

$$E(XY) = 0 = E(X)E(Y)$$
, 不独立

10.

(1) 如下

X+Y	0	1	2	3
Р	0.10	0.40	0.35	0.15

(2)
$$E(Z) = 0 + \sin \frac{\pi}{2} \times 0.4 + \sin \pi \times 0.35 + \sin \frac{3}{2} \pi \times 0.15 = 0.25$$

(3)

Х	0	1	2
Р	0.25	0.45	0.3
Υ	0	1	
Р	0.5	0.5	

$$E(X) = 1.05, D(X) = E(X^{2}) - E(X)^{2} = 1.65 - 1.05^{2} = 0.5475$$

$$E(Y) = 0.5, D(Y) = E(Y^2) - E(Y)^2 = 0.5 - 0.5^2 = 0.25$$

$$Cov(X,Y) = E(XY) - E(X)E(Y) = 0.2 \times 1 + 2 \times 0.15 - (1 \times 0.45 + 2 \times 0.3) \times (1 \times 0.5) = -0.025$$

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)D(Y)}} = -0.0676$$

11.

(1)
$$E(Z) = \frac{1}{3}E(X) + \frac{1}{2}E(Y) = \frac{5}{6}$$
, (答案给 $\frac{1}{3}$)

$$D(Z) = \frac{1}{9}D(X) + \frac{1}{4}D(Y) + 2 \times \frac{1}{3} \times \frac{1}{2}Cov(X,Y) = 1 + 4 + \frac{1}{3}\rho_{XY}\sqrt{D(X)D(Y)} = 5 + \frac{1}{3} \times (-\frac{1}{2}) \times 3 \times 4 = 3$$

(2)

$$Cov(X,Z) = E(XZ) - E(X)E(Z) = E[X(\frac{X}{3} + \frac{Y}{2})] - \frac{5}{6} = \frac{E(X^2)}{3} + \frac{E(XY)}{2} - \frac{5}{6}$$

$$= \frac{D(X) + E(X)^2}{3} + \frac{Cov(X,Y) + E(X)E(Y)}{2} - \frac{5}{6} = 0, \rho_{XZ} = 0$$

(3)
$$E(XZ) = \frac{5}{6} = E(X)E(Z)$$
,相互独立

(1)
$$E(X) = \int_{-\infty}^{\infty} xf(x)dx = \frac{8}{3}a + \frac{56}{3}b + 6c = 2$$

$$\int_{-\infty}^{\infty} f(x)dx = 2a + 6b + 2c = 1$$

$$P(1 < X < 3) = \int_{1}^{3} f(x)dx = \frac{3}{2}a + \frac{5}{2}b + c = \frac{3}{4}$$

$$\text{解得, } a = \frac{1}{4}, b = -\frac{1}{4}, c = 1$$

$$(2) \quad D(X) = E(X^{2}) - E(X)^{2} = \int_{0}^{4} x^{2} f(x)dx - 4 = \frac{2}{3}$$

(3)
$$E(Y) = \int_0^4 e^x f(x) dx = \frac{(e^2 - 1)^2}{4}$$

$$D(Y) = E(Y^{2}) - E(Y)^{2} = \int_{0}^{4} e^{2x} f(x) dx - E(Y)^{2} = \frac{(e^{4} + 1)^{2}}{16} - \frac{(e^{2} - 1)^{4}}{16} = \frac{1}{4} e^{2} (e^{2} - 1)^{2}$$

13.(1)

(X_1, X_2)	(0,0)	(0,1)	(1,0)
P	0.1	0.1	0.8

(2)
$$D(X_1) = p(1-p) = 0.8 \times 0.2 = 0.16, D(X_2) = p(1-p) = 0.09$$

$$Cov(X_1, X_2) = E(X_1X_2) - E(X_1)E(X_2) = -0.8 \times 0.1 = -0.08$$

$$\rho_{X_1X_2} = \frac{-0.08}{0.4 \times 0.3} = -\frac{2}{3}$$

14. (完全不会, 求教)

15.
$$f_X(x) = \int_0^2 f(x, y) dy = \frac{x+1}{4}$$
, $E(X) = \int_0^2 x f_X(x) dx = \frac{7}{6}$,
$$D(X) = E(X^2) - E(X)^2 = \int_0^2 x^2 f_X(x) dx - \frac{49}{36} = \frac{11}{36}, \text{ figu},$$

$$f_Y(y) = \frac{y+1}{4}, E(Y) = \frac{7}{6}, D(Y) = \frac{11}{36}$$

$$Cov(X, Y) = E(XY) - E(X)E(Y) = \int_0^2 dx \int_0^2 \frac{1}{8} xy(x+y) dy - E(X)^2 = -\frac{1}{36},$$

$$\rho_{XY} = \frac{Cov(X, Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = \frac{-\frac{1}{36}}{\frac{11}{36}} = -\frac{1}{11}$$

$$D(X+Y) = D(X) + D(Y) + 2Cov(X,Y) = \frac{20}{36} = \frac{5}{9}$$

16.

(1) 都服从 $f(x) = e^{-x}$ 分布

$$F_X(x) = \int_0^x e^{-x} dx = 1 - e^{-x} \qquad , \qquad F_V(v) = 1 - [1 - F_X(v)][1 - F_Y(v)] = 1 - e^{-2v} \qquad ,$$

$$f_V(v) = (F_V(v))' = 2e^{-2v} \ v > 0$$
, $f_V(v) = 0 \ v \le 0$

(2)
$$F_U(u) = F_X(u)F_Y(u) = (1 - e^{-u})^2, f_U(u) = 2e^{-u} - 2e^{-2u}, u > 0$$

$$E(U+V) = E(U) + E(V) = \int_{-\infty}^{\infty} u f_U(u) du + \int_{-\infty}^{\infty} v f_V(v) dv = 2$$

17. 设治愈人数为 X,则

(1)
$$P(X > 75) = P(\frac{X - 80}{\sqrt{100 \times 0.8 \times 0.2}} > \frac{75 - 80}{4}) = \Phi(1.25) = 0.8944$$

(2)
$$P(X > 75) = P(\frac{X - 70}{\sqrt{100 \times 0.7 \times 0.3}} > \frac{75 - 70}{\sqrt{21}}) = 1 - \Phi(\frac{5}{\sqrt{21}}) = 0.1399$$

18.

(1)
$$P(X = K) = C_{100}^{k} 0.2^{k} \times 0.8^{100-k}, k = 0,1,2...100$$

(2)
$$P(14 \le X \le 30) = P(-\frac{6}{4} \le \frac{X - 0.2 \times 100}{\sqrt{0.2 \times 100 \times 0.8}} \le \frac{10}{4}) = \Phi(2.5) - \Phi(-1.5) = 0.927$$

19. 设要有 A 条外线才能满足, X 为需要使用外线通话的电话,则

$$P(X \le A) = P(\frac{X - 200 \times 0.05}{\sqrt{200 \times 0.05 \times 0.95}} \le \frac{A - 10}{\sqrt{9.5}}) = \Phi(\frac{A - 10}{\sqrt{9.5}}) = 0.9 = \Phi(1.3), A = 14$$

20.
$$P(T > 350) = P(\frac{T - 30 \times 10}{\sqrt{30} \times \sqrt{10^2}} > \frac{50}{10\sqrt{30}}) = 1 - \Phi(\frac{5}{\sqrt{30}}) = 0.18$$
(答案 0.1814,计算机

不强, 谅解谅解)

21. 如下

(1) 设 X 为相加的误差综合,

$$P(-15 \le X \le 15) = P(-\frac{3}{\sqrt{5}} \le \frac{X - 0}{\sqrt{1500} \times \sqrt{\frac{1}{12}}} \le \frac{3}{\sqrt{5}}) = \Phi(\frac{3}{\sqrt{5}}) - \Phi(-\frac{3}{\sqrt{5}}) = \frac{1}{\sqrt{2\pi}} \int_{-\frac{3}{\sqrt{5}}}^{\frac{3}{\sqrt{5}}} e^{-\frac{t^2}{2}} dt = 0.82$$

那么,
$$P(|X|>15)=1-0.82=0.18$$

(2) 设最多可有 A 个数相加,

$$P(-10 < X < 10) = P(-10\sqrt{\frac{12}{A}} < \frac{X}{\sqrt{\frac{A}{12}}} < 10\sqrt{\frac{12}{A}}) = 2\Phi(10\sqrt{\frac{12}{A}}) - 1 = 0.9$$

$$\Phi(10\sqrt{\frac{12}{A}}) = 0.95 = \Phi(1.65), A = 443$$

第五章

习题 5.1

1.
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = 3.59, S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = 2.881$$

2. 因为 μ 未知,所以(2)(5)并不能通过统计数据可得,所以不是统计量,其他四个都是

3.
$$f(x_1, x_2, x_3, x_4) = \prod_{i=1}^4 \frac{1}{\theta^4} e^{-\frac{1}{\theta} \sum_{i=1}^4 x_i}, x_i > 0; f(x_1, x_2, x_3, x_4) = 0, x_i \le 0$$

4.
$$E(\overline{X}) = \mu = \frac{a+b}{2}, D(\overline{X}) = \frac{\sigma^2}{n} = \frac{(b-a)^2}{12n}$$

5.
$$F_{(x)}^{*} = \begin{cases} 0, & x \le 1 \\ \frac{1}{8}, 1 < x \le 2 \\ \frac{3}{8}, 2 < x \le 3 \\ \frac{6}{8}, 3 < x \le 4 \\ \frac{7}{8}, 4 < x \le 5 \\ 1, & x > 5 \end{cases}$$

6. 如下

	[335,340)	[340,345)	[345,350)	[350,355)	[355,360)
计数	3	9	22	14	2

图就不画了

习题 5.2

1.

- (1) 查表
- (2) 查表

(1)
$$\frac{X_1 - X_2}{\sqrt{X_3^2 + X_4^2}} \sim \frac{N(0, 2)}{\sqrt{\chi^2(2)}} = \frac{N(0, 1)}{\sqrt{\frac{\chi^2(2)}{2}}} = t(2)$$

(2)
$$\frac{\sqrt{n-1}X_1}{\sqrt{\sum_{i=2}^n X_i^2}} \sim \frac{N(0,1)}{\sqrt{\frac{\chi^2(n-1)}{n-1}}} = t(n-1)$$

(3)
$$\frac{(n-3)\sum_{i=1}^{3}X_{i}^{2}}{3\sum_{i=4}^{n}X_{i}^{2}} \sim \frac{(n-3)\chi^{2}(3)}{3\chi^{2}(n-3)} = F(3, n-3)$$

3. 查表,
$$E(\chi^2(n)) = n, D(\chi^2(n)) = 2n$$

4.
$$P(\sum_{i=1}^{10} X_i^2 > 1.44) = P(\chi^2(10) > \frac{1.44}{0.09} = 16) = 0.1$$

5.
$$2X_1 - X_2 \sim N(0,10), 3X_3 + 4X_4 \sim N(0,50), Y = 10a\chi_a^2(1) + 50b\chi_b^2(1) = \chi^2(2), a = \frac{1}{10}, b = \frac{1}{50}$$
 公式里 $\chi_a^2(1)$, $\chi_b^2(1)$ 不同,故两者系数都必须为 1,和才是 χ^2 分布

6.
$$T = \frac{4(X-2)}{\sqrt{\sum_{i=1}^{4} Y_{i}^{2}}} \sim \frac{4N(0,1)}{\sqrt{4\chi^{2}(4)}} = \frac{N(0,1)}{\sqrt{\frac{\chi^{2}(4)}{4}}} = t(4), P(|T| > t_{0} = t_{\frac{a}{2}}(4)) = a = 0.01, t_{0} = 4.6041$$

习题 5.3

1.
$$E(\bar{X}) = \lambda, D(\bar{X}) = \frac{\lambda}{n}, E(S^2) = \lambda$$
 (详细的证明见书 P162 下例 5.1.5)

2.

(1)
$$P(\overline{X} > 13) = P(\frac{\overline{X} - 12}{2/\sqrt{5}} > \frac{\sqrt{5}}{2}) = 1 - \Phi(\frac{\sqrt{5}}{2}) \approx 0.1314$$

(2)
$$P{X > 10} = P{\frac{X - 12}{2} > -1} = 1 - \Phi(-1) = 0.8413$$
,

$$P\{X_{\min} > 10\} = P^5\{X > 10\} = 0.4215$$

(1)
$$\frac{nS_n^2}{\sigma^2} = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

(2)
$$\frac{\bar{X} - \mu}{S_n / \sqrt{n-1}} = \frac{\bar{X} - \mu}{\sqrt{S^2 / n}} = \frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$$

(3)
$$\frac{X-\mu}{\sigma} \sim N(0,1), (\frac{X-\mu}{\sigma})^2 \sim \chi^2(1) \Rightarrow \sum_{i=1}^n (\frac{X-\mu}{\sigma})^2 \sim \chi^2(n)$$

4.
$$P(|\bar{X} - \mu| > 3) = 1 - P(-3 \le \bar{X} - \mu \le 3) = 1 - P(-\frac{3}{2} \le \frac{\bar{X} - \mu}{20/\sqrt{100}} \le \frac{3}{2}) = 1 - \frac{1}{\sqrt{2\pi}} \int_{-\frac{3}{2}}^{\frac{3}{2}} e^{-\frac{x^2}{2}} dx = 0.1336$$

5.
$$P(\sum_{i=1}^{15} X_i^2 > 3.999) = P(\sum_{i=1}^{15} \frac{X_i^2}{0.4^2} > 24.99375) = P(Y > 24.99375), Y \sim \chi^2(15) \Rightarrow P = 0.05$$

习题五

(1)
$$P\{X_1 = x_1...X_n = x_n\} = \frac{\lambda^{\sum_{i=1}^{n} x_i}}{\prod_{i=1}^{n} x_i!} e^{-n\lambda}$$

(2)
$$P\{X_1 = x_1...X_n = x_n\} = p^{\sum_{i=1}^n x_i} (1-p)^{n^2 - \sum_{i=1}^n x_i} \prod_{i=1}^n C_n^{x_i}$$

2.
$$t(n) = \frac{N(0,1)}{\sqrt{\frac{\chi^2(n)}{n}}}, t^2(n) = \frac{\chi^2(1)}{\frac{\chi^2(n)}{n}} = F(1,n)$$

3.
$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n}), X_{n+1} - \bar{X} \sim N(0, \frac{n+1}{n}\sigma^2), (X_{n+1} - \bar{X})\sqrt{\frac{n}{n+1}} \sim N(0, \sigma^2),$$
 所以

$$T = \frac{X_{n+1} - \bar{X}}{S} \sqrt{\frac{n}{n+1}} \sim \frac{N(0, \frac{\sigma^2}{n}) \sqrt{n}}{S} = \frac{\bar{X} - \mu}{S / \sqrt{n}} = t(n-1)$$

4.
$$\alpha(\overline{X}-a)+\beta(\overline{Y}-b)\sim\alpha N(0,\frac{\sigma^2}{m})+\beta N(0,\frac{\sigma^2}{n})\sim N(0,(\frac{\alpha^2}{m}+\frac{\beta^2}{n})\sigma^2)$$

$$\frac{\alpha(\overline{X}-a)+\beta(\overline{Y}-b)}{\sigma\sqrt{\frac{\alpha^2}{m}+\frac{\beta^2}{n}}} \sim N(0,1)$$

$$\frac{mS_1^2}{\sigma^2} = \frac{(m-1)S^2}{\sigma^2} \sim \chi^2(m-1), \frac{nS_2^2}{\sigma^2} \sim \chi^2(n-1) \Rightarrow \frac{mS_1^2 + nS_2^2}{\sigma^2} \sim \chi^2(m+n-2) \quad \text{fi }$$

$$\frac{\alpha(\overline{X}-a)+\beta(\overline{Y}-b)}{\sigma\sqrt{\frac{\alpha^2}{m}+\frac{\beta^2}{n}}} / \sqrt{\frac{mS_1^2+nS_2^2}{\sigma^2}/m+n-2} \sim \frac{N(0,1)}{\sqrt{\frac{\chi^2(m+n-2)}{m+n-2}}} = t(m+n-2)$$

- 5. 不会
- 6. 不会
- 7. (题目表述有一定问题, 没有解释 X_i ,5 < i < n 的情况, 但可以做题)

$$Y = \left(\frac{n-5}{5}\right) \frac{\sum_{i=1}^{5} X_i^2}{\sum_{i=6}^{n} X_i^2} \sim \frac{\frac{\chi^2(5)}{5}}{\frac{\chi^2(n-5)}{n-5}} \sim F(5, n-5)$$

8.
$$P(1.4 < \overline{X} < 5.4) = P(-\frac{\sqrt{n}}{3} < \frac{\overline{X} - 3.4}{6/\sqrt{n}} < \frac{\sqrt{n}}{3}) \ge 0.95 \quad \frac{\sqrt{n}}{3} \ge z_{0.025}, n \ge 34.57, n \ge 35$$

9.

$$(1) \quad \bar{X} - \mu \sim N(0, \frac{\sigma^2}{n}) = \frac{\sigma}{\sqrt{n}} N(0, 1), Y = |\bar{X} - \mu|^2 \sim \frac{\sigma^2}{n} \chi^2(1) = \chi^2(\frac{\sigma^2}{n}) = \chi^2(\frac{4}{n})$$

$$E(\chi^2(\frac{4}{n})) = \frac{4}{n} \le 0.1, n \ge 40$$

(2)
$$P(|\bar{X} - \mu| \le 0.1) = P(-\frac{\sqrt{n}}{20} \le \frac{\bar{X} - \mu}{2/\sqrt{n}} \le \frac{\sqrt{n}}{20}) \ge 0.95, \exists \vec{x} \in \mathbb{R}$$

$$\frac{\sqrt{n}}{20} \ge 1.96, n \ge 1536.64, n \ge 1537$$

(1)
$$\exists \exists \frac{1}{\sigma^2} \sum_{i=1}^{20} (X_i - \mu)^2 \sim \chi^2(20)$$
, $\exists P(10.9 \le \chi^2(20) \le 37.6) = 0.94$

(2)
$$\exists \exists \frac{1}{\sigma^2} \sum_{i=1}^{20} (X_i - \bar{X})^2 = \frac{(n-1)}{\sigma^2} S^2 \sim \chi^2(19)$$
,

$$P(11.7 \le \chi^2(19) \le 38.6) = 0.895$$
 (计算结果直接摘录于答案)

11.
$$P(50.8 \le \overline{X} \le 53.8) = P(-\frac{8}{7} \le \frac{\overline{X} - 52}{6.3 / \sqrt{36}} \le \frac{12}{7}) = 0.83$$

12.
$$P(|\bar{X} - 80| > 3) = P(|\frac{\bar{X} - 80}{20/10}| > \frac{3}{2}) = 1 - P(-\frac{3}{2} \le \frac{\bar{X} - 80}{20/10} \le \frac{3}{2}) = 0.134$$

13.
$$P(|\bar{X} - \bar{Y}| > 0.3) = P(|\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{9}{10} + \frac{9}{15}}}| > \frac{\sqrt{6}}{10}) = 1 - \frac{1}{\sqrt{2\pi}} \int_{-\frac{\sqrt{6}}{10}}^{\frac{\sqrt{6}}{10}} e^{-\frac{x^2}{2}} dx = 0.806$$

14.
$$|\exists \bot$$
, $P(||\bar{X} - \bar{Y}| > 0.4) = P(||\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{9}{20} + \frac{9}{25}}}| > \frac{4}{9}) = 1 - \frac{1}{\sqrt{2\pi}} \int_{-\frac{4}{9}}^{\frac{4}{9}} e^{-\frac{x^2}{2}} dx = 0.657$

15.

(1)
$$P(|\bar{X} - \mu| > 1) = P(|\frac{\bar{X} - \mu}{2/\sqrt{5}}| > \frac{\sqrt{5}}{2}) = 0.264$$

(2) (这题目我为什么不算最大值、最小值的概率密度函数?因为正态分布的分布函数不好算)

$$P\{X \le 15\} = P\{\frac{X - 12}{2} \le \frac{3}{2}\} = 0.9332, P\{\max > 15\} = 1 - P^5\{X \le 15\} = 0.2923$$

$$P\{X < 10\} = P\{\frac{X - 12}{2} < 1\} = 0.8413, P\{\min < 10\} = P^5\{X < 10\} = 0.4216 \quad (与答案)$$

16. 我们首先应该将前 n 项和后 n 项合并(可以合并的理由是本身也是独立的),令

$$X_i + X_{i+n} = Y_i \sim N(2\mu, 2\sigma^2), i = 1...n$$
,则原来的 $\overline{X} = \frac{1}{2n} \sum_{i=1}^{2n} X_i$,则 $2\overline{X} = \frac{\sum_{i=1}^{n} Y_i}{n} = \overline{Y}$,则

$$E\{\sum_{i=1}^{n} (X_i + X_{n+i} - 2\bar{X})^2\} = E\{(n-1) \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}{n-1}\} = (n-1)2\sigma^2 = 2(n-1)\sigma^2$$

(1)
$$P(\frac{S^2}{\sigma^2} \le 2.041) = P(\frac{(16-1)\times S^2}{\sigma^2} \le 30.615) = P(Y \le 30.615),$$
其中 $Y \sim \chi^2(15)$ 则 $P(Y \le 30.615) = 0.01$ (直接摘录于答案)

(2)
$$D(S^{2}) = D(\frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}) = \frac{1}{(n-1)^{2}} D[\sigma^{2} \sum_{i=1}^{n} (\frac{X_{i} - \mu - (\overline{X} - \mu)}{\sigma})^{2}] = \frac{\sigma^{4}}{(n-1)^{2}} D[\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}]$$
其中, $Y_{i} \sim N(0,1)$,则原式

$$= \frac{\sigma^4}{(n-1)^2} D\left[\sum_{i=1}^n Y_i^2 - n\bar{Y}^2\right] = \frac{\sigma^4}{(n-1)^2} \left[D\left(\sum_{i=1}^n Y_i^2\right) + n^2 D(\bar{Y}^2) - nCov\left(\sum_{i=1}^n Y_i^2, \bar{Y}^2\right)\right]$$

$$\sharp \oplus$$

$$D\left(\sum_{i=1}^n Y_i^2\right) = 2n, n^2 D(\bar{Y}^2) = \frac{n^2}{n} = n, nCov\left(\sum_{i=1}^n Y_i^2, \bar{Y}^2\right) = n\left[E(\bar{Y}^2 \sum_{i=1}^n Y_i^2) - E(\sum_{i=1}^n Y_i^2)E(\bar{Y}^2)\right]$$

$$= n\left[nE(\bar{Y}^2 \bar{Y}^2)\right]$$

18

(1) $Y = 2\lambda X$ 单调,可以套用公式计算概率密度函数,

$$f_Y(y) = \begin{cases} f_X(h(y)) \mid h'(y) \mid = \frac{1}{2} e^{-\frac{y}{2}}, y > 0 \\ 0, y \le 0 \end{cases}$$

(2) 其实也就是 $2n\lambda \bar{X} = \sum_{i=1}^{n} Y_i \sim \chi^2(2n)$,由于 $\chi^2(n)$ 具有可加性,所以猜测证明

 $Y_i \sim \chi^2(2)$,我们翻到 P270 页找到

$$\chi^{2}(n): f(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}}\Gamma(n/2)} & , n = 2, f(x) = \begin{cases} \frac{1}{2}e^{-\frac{x}{2}}, x > 0 \\ 0, 其他 \end{cases}, \quad \text{正是} Y_{i} \text{的分布,所} \end{cases}$$

以
$$Y_i \sim \chi^2(2)$$
, $2n\lambda \overline{X} = \sum_{i=1}^n Y_i \sim \chi^2(2n)$ ($\Gamma(n) = (n-1)!, n$ 是整数)

19. 书上 P173 定理 5.3.2 提到过 \bar{X} 、 S^2 相互独立 $D(T) = D(\bar{X}^2) + \frac{1}{n^2}D(S^2)$, 其中

$$\overline{X} \sim N(0, \frac{1}{n}) = \frac{1}{\sqrt{n}} N(0, 1), S^2 \sim \frac{1}{n-1} t(n-1)$$
 则

$$D(T) = \frac{1}{n^2}D(\chi^2(1)) + \frac{1}{n^2(n-1)^2}D(t(n-1)) = \frac{2}{n^2} + \frac{\frac{n-1}{n-3}}{n^2(n-1)^2} = \frac{1}{n^2}(2 + \frac{1}{(n-1)(n-3)})$$

第六章

习题 6.1

1.
$$\hat{\mu} = \frac{\sum_{i=1}^{5} x_i}{5} = 52.84$$
 (答案有误), $\hat{\sigma}^2 = \frac{1}{5} \sum_{i=1}^{5} (x_i - \overline{x})^2 = 0.1304$

2. 服从正态分布的话,其实矩估计值我们已经知道了,同上, $\hat{\mu} = \frac{\sum_{i=1}^{3} x_i}{5} = 2809.4$,

$$\hat{\sigma}^2 = \frac{1}{5} \sum_{i=1}^{5} (x_i - \overline{x})^2 = 1170.64$$

- 3. 服从均匀分布:
 - (1) 未知参数只有两个,所以需要两阶:

$$\mu_{1} = E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{\theta_{1}}^{\theta_{1} + \theta_{2}} \frac{x dx}{\theta_{2}} = \frac{2\theta_{1} + \theta_{2}}{2}, A_{1} = \frac{\sum_{i=1}^{n} X_{i}}{n} = \overline{X}$$

$$\mu_{2} = E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f(x) dx = \int_{\theta_{1}}^{\theta_{1} + \theta_{2}} \frac{x^{2} dx}{\theta_{2}} = \frac{3\theta_{1}^{2} + 3\theta_{1}\theta_{2} + \theta_{2}^{2}}{3},$$

$$A_2 = rac{\displaystyle\sum_{i=1}^n X_i^2}{n} = E(X^2) = D(X) + E(X)^2 = S_n^2 + ar{X}^2$$
 连立方程, $\{ \mu_1 = A_1 \ \mu_2 = A_2 \}$ 解得, $\hat{\theta}_1 = ar{X} - \sqrt{3}S_n, \hat{\theta}_2 = 2\sqrt{3}S_n$

$$(2) \quad \mathbf{f}(\mathbf{x}) = \begin{cases} \frac{1}{\theta_2}, \theta_1 < \mathbf{x} < \theta_1 + \theta_2, \qquad L(\mathbf{x}_i; \theta_1, \theta_2) = \frac{1}{\theta_2^n} \end{aligned} ,$$

$$\ln L(\theta_2) = -n \ln \theta_2, \frac{d \ln L(\theta_2)}{d\theta_2} = -\frac{n}{\theta_2}$$
,不存在导数为 0

但是,我们从极大似然法的定义来看,要使 $L(\theta_2)$ 最大,则 θ_2 尽量小,又因为 $\theta_2+\theta_1\geq \max\{x_1,x_2...x_n\}$, $\theta_1\leq \min\{x_1,x_2...x_n\}$,所以

$$\hat{\theta}_2 + \hat{\theta}_1 = \max\{x_1, x_2 ... x_n\}, \quad \hat{\theta}_1 = \min\{x_1, x_2 ... x_n\} \;, \quad \mathbb{SP} \; \hat{\theta}_1 = X_{(1)}, \hat{\theta}_2 = X_{(n)} - X_{(1)} + X_{(n)} + X_{($$

4. 仅有一个参数

(1)
$$\mu_1 = \int_{-\infty}^{\infty} x f(x) dx = \frac{\theta + 1}{\theta + 2}, A_1 = \overline{X} \Rightarrow \hat{\theta} = \frac{1 - 2\overline{X}}{\overline{X} - 1}$$

(2)
$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = (\theta + 1)^n (\prod_{i=1}^{n} x_i)^{\theta}, \ln L(\theta) = n \ln(\theta + 1) + \theta \sum_{i=1}^{n} \ln x_i$$

$$\frac{d \ln L(\theta)}{d \theta} = \frac{n}{\theta + 1} + \sum_{i=1}^{n} \ln x_i = 0, \theta = -1 - \frac{n}{\sum_{i=1}^{n} \ln x_i}$$
 (与答案不同)

5. (摘抄书本 187 页)

$$f(x) = \begin{cases} \frac{1}{2\theta}, -\theta < x < \theta \\ 0, \cancel{\sharp} \cancel{t} t \end{cases}$$

$$L(x_i; \theta) = \frac{1}{(2\theta)^n}$$

$$\ln L(\theta) = -n \ln 2\theta, \frac{d \ln L(\theta)}{d\theta} = -\frac{n}{\theta}$$
 , 不存在导数为 0

但是,我们从极大似然法的定义来看,要使 $L(\theta)$ 最大,则 θ 尽量小,又因为

$$\theta \geq \max\{\mid x_1\mid,\mid x_2\mid...\mid x_n\mid\}$$
 ,所以 $\hat{\theta} = \max\{\mid x_1\mid,\mid x_2\mid...\mid x_n\mid\}$

习题 6.2

1. 仅有一个参数

(1)
$$\mu_1 = \int_0^1 x f(x;\theta) dx = \frac{1+2\theta}{4} = \overline{X}, \hat{\theta} = \frac{4\overline{X}-1}{2} = 2\overline{X} - \frac{1}{2}$$

(2)
$$E(4\bar{X}^2) = E[(2\bar{X})^2] = D(2\bar{X}) + E(2\bar{X})^2 > (\theta + \frac{1}{2})^2 > \theta^2$$
,不是无偏估计

2.
$$\mu_{\rm l} = \int_0^\infty x f(x) dx = \theta, \therefore \hat{\theta} = \bar{X}$$
 ,(第二题摘与浙大版 159 页)

$$Z = \min\{X_1, X_2, ...X_n\}$$

$$F(Z) = F_{\min}(x;\theta) = 1 - \prod_{i=1}^{n} \left(1 - \int_{0}^{x} \frac{1}{\theta} e^{-\frac{x}{\theta}} dx\right) = 1 - e^{-\frac{nx}{\theta}}$$
$$f(Z) = \frac{dF_{\min}(x)}{dx} = \frac{n}{\theta} e^{-\frac{nx}{\theta}}, \quad x > 0$$
$$E(nZ) = nE(Z) = n \cdot \frac{\theta}{n} = \theta$$

3. 如下,

$$\begin{split} \mu_1 &\sim N(\frac{1}{5}\mu + \frac{3}{10}\mu + \frac{1}{2}\mu, \frac{1}{25}\sigma^2 + \frac{9}{100}\sigma^2 + \frac{1}{4}\sigma^2) = N(\mu, \frac{38}{100}\sigma^2) \\ \mu_2 &\sim N(\mu, \frac{25}{72}\sigma^2) \\ \mu_2 &\sim N(\mu, \frac{7}{18}\sigma^2) \end{split}$$

由上面可知, μ_2 最有效

4.
$$F_{\max}(X) = \frac{x^3}{\theta^3}, f_{\max}(X) = \frac{3x^2}{\theta^3}; F_{\min}(X) = 1 - (1 - \frac{x}{\theta})^3 = \frac{x^3}{\theta^3} - 3\frac{x^2}{\theta^2} + 3\frac{x}{\theta}, f_{\min}(x) = \frac{3x^2}{\theta^3} - 6\frac{x}{\theta^2} + 3\frac{1}{\theta}$$

$$Y = \frac{4}{3} \max\{X_1, X_2, X_3\}, E(Y) = \frac{4}{3} \int_0^\theta x \cdot \frac{3x^2}{\theta^3} dx = \theta$$

$$Z = 4 \min\{X_1, X_2, X_3\}, E(Z) = 4 \int_0^\theta x (\frac{3x^2}{\theta^3} - 6\frac{x}{\theta^2} + 3\frac{1}{\theta}) dx = \theta$$

$$D(Y) = \frac{16}{9} D(\max\{X_1, X_2, X_3\}) = \frac{16}{9} [E(\max^2\{X_1, X_2, X_3\}) - E(\max\{X_1, X_2, X_3\})^2] = \frac{1}{15} \theta^2$$

$$D(Z) = 16D(\min\{X_1, X_2, X_3\}) = 16[E(\min^2\{X_1, X_2, X_3\}) - E(\min\{X_1, X_2, X_3\})^2] = \frac{3}{5} \theta^2$$
所以 $\frac{4}{3} \max\{X_1, X_2, X_3\}$ 更有效

5. (法一,用别的已证明的)
$$Y = \frac{12}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 = 12S^2$$
 是 $12\sigma^2$ 的无偏估计,而
$$\sigma^2 = \frac{1}{12}\theta^2$$
,所以 Y 是 σ^2 的无偏估计,那相合也是肯定的,因为用了已经证明了的。 (法二:自己写)
$$Y = \frac{12}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{12}{n-1} (\sum_{i=1}^{n} X_i^2 - n\bar{X}^2), E(Y) = \frac{12}{n-1} [E(\sum_{i=1}^{n} X_i^2) - nE(\bar{X}^2)] = \frac{12}{n-1} [\sum_{i=1}^{n} (\sigma^2 + \mu^2) - n(\frac{\sigma^2}{n} + \mu^2)] = 12\sigma^2 = \theta^2$$

要证相合性,就是 $\lim_{n\to\infty} P\{|\frac{12}{n-1}\sum_{i=1}^n(X_i-\bar{X})^2-\theta^2|<\varepsilon\}=1$,就要往辛钦大数定律凑,

构造 $Z_i = \frac{12n}{n-1}(X_i - \bar{X})^2$,目标是证明 $E(Z_i) = \theta^2$ 则大功告成,但是因为 \bar{X} 的存在工作不好开展,所以我不会……

习题 6.3

(本篇里面答案的值直接摘录于标准答案,如果有错实在抱歉,还请联系我)

1. 首先我们确认含锡量是不是越少越好,所以是单侧置信区间,置信区间是

$$(0, \bar{X} + \frac{\sigma}{\sqrt{n}} z_a)$$
,绝对误差不超过 2.5,就是 $\frac{\sigma}{\sqrt{n}} z_a \le 2.5, n \ge (\frac{4}{2.5} z_a)^2 = 6.88$,最小值

n 为 7 (答案给 10 是按双侧置信区间来的,这个仁者见之)

2.
$$\mu$$
的置信区间是 $(\overline{X} - \frac{S}{\sqrt{n}}t_{\frac{a}{2}}(16-1), \overline{X} + \frac{S}{\sqrt{n}}t_{\frac{a}{2}}(16-1))$,即(2.6895, 2.7205)

$$\sigma^2$$
的置信区间是($\frac{(n-1)S^2}{\chi_{\frac{a}{2}}^2(n-1)}$, $\frac{(n-1)S^2}{\chi_{\frac{1-a}{2}}^2(n-1)}$),即(4.59e-4, 0.00201) (与答案严重不

符)

3. 已知方差,
$$\bar{X} = 14.95$$
,方差已知,置信区间($\bar{X} - \frac{\sigma}{\sqrt{n}} Z_a, \bar{X} + \frac{\sigma}{\sqrt{n}} Z_a$),即(14.8,15.2)

4. 如下

(1)
$$(\bar{X} - \frac{\sigma}{\sqrt{n}} Z_{\frac{a}{2}}, \bar{X} + \frac{\sigma}{\sqrt{n}} Z_{\frac{a}{2}}) \Rightarrow (19,87,20.15)$$

(2)
$$(\bar{X} - \frac{S}{\sqrt{n}} t_{\frac{a}{2}}, \bar{X} + \frac{\sigma}{\sqrt{n}} t_{\frac{a}{2}}) \Rightarrow (19,87,20.17)$$

5. 已知方差,套用左边的公式,即
$$(\bar{X} - \bar{Y} - z_{\frac{a}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, \bar{X} - \bar{Y} + z_{\frac{a}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}})$$
,

(-0.899, 0.019)

6. 比较两个样本的,预计使用 F 模型,套用左边最后一个模型,

$$\left(\frac{S_X^2}{S_Y^2} \frac{1}{F_{\frac{a}{2}}(n_1 - 1, n_2 - 1)}, \frac{S_X^2}{S_Y^2} \frac{1}{F_{\frac{1-a}{2}}(n_1 - 1, n_2 - 1)}\right), (0.2217, 3.6008)$$

7. 含锡量越小越好,又是单侧置信上限,所以是 $ar{X}$ + $\dfrac{\sigma}{\sqrt{n}}Z_a$,即 183.3515

习题 6.4

1. 就同上 (題目的上面那道例题), $\hat{p}_1 = \frac{1}{2a}(-b - \sqrt{b^2 - 4ac}), \hat{p}_2 = \frac{1}{2a}(-b + \sqrt{b^2 - 4ac})$ 其中, $a = n + (z_{\frac{a}{2}})^2, b = -[2n\overline{x} + (z_{\frac{a}{2}})^2], c = n\overline{x}^2$,带入即可。

- 2. 同上
- 3. 同上

习题六

1.

(1) 一个参数,就只用算一阶矩,
$$\mu_1 = \sum_{i=0}^{3} iP(i) = 3 - 4\theta$$
, $A_1 = \bar{X} = 2$, $\therefore \hat{\theta} = \frac{1}{4}$

(2)
$$L(\theta) = (1 - 2\theta)^4 \cdot [2\theta(1 - \theta)]^2 \cdot \theta^2 \cdot \theta^2 = 4\theta^6 (1 - \theta)^2 (1 - 2\theta)^4$$
,

 $\ln L(\theta) = \ln 4 + 6 \ln \theta + 2 \ln(1 - \theta) + 4 \ln(1 - 2\theta),$

则,
$$\theta = \frac{7 - \sqrt{13}}{12}$$

2. 这 话 的 意 思 就 是 极 大 似 然 法 , 平 均 数 为 λ ,

$$L(\lambda) = \prod_{i=1}^{50} P(x=i) = \prod_{i=1}^{50} \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} = \frac{\lambda^{\sum_{i=1}^{50} x_i}}{2^{10} \times (3!)^2 \times (4!)} e^{-50\lambda}, \ln L(\lambda) = \sum_{i=1}^{50} x_i \ln \lambda - 50\lambda - \ln C$$

$$\frac{d \ln L(\lambda)}{d \lambda} = \frac{\sum_{i=1}^{50} x_i}{\lambda} - 50 = 0, \hat{\lambda} = \overline{x} = 1$$

(1)
$$L(\theta) = \theta^{2N_1} \cdot [2\theta(1-\theta)]^{N_2} \cdot (1-\theta)^{2N_3} = 2^{N_2} \theta^{2N_1+N_2} \cdot (1-\theta)^{N_2+2N_3}$$
$$\ln L(\theta) = N_2 \ln 2 + (2N_1 + N_2) \ln \theta + (N_2 + 2N_3) \ln(1-\theta)$$

$$\frac{d \ln L(\theta)}{d \theta} = \frac{2N_1 + N_2}{\theta} - \frac{N_2 + 2N_3}{1 - \theta} = 0, \hat{\theta} = \frac{2N_1 + N_2}{2(N_1 + N_2 + N_3)}$$

- (2) 帯入,得 λ=0.335
- 4. 两个参数,所以需要列两个方程

$$\mu_1 = np, A_1 = \overline{X}$$

$$\mu_2 = E(X^2) = D(X) + E(X)^2 = np(1-p) + n^2 p^2, A_2 = \frac{\sum_{i=1}^n X_i^2}{n} = \frac{\sum_{i=1}^n (X_i - \overline{X})^2 + n\overline{X}^2}{n} = S_n^2 + \overline{X}^2$$

连立方程,得,
$$\hat{p}=1-\frac{S_n^2}{\overline{X}}$$
, $\hat{N}=\frac{\overline{X}}{\hat{p}}$

5. 若 p = 0or1,那么 P(X = x) = 0,不满足归一化条件,所以不可能

(1) 矩估计: 仅有一个参数,
$$\mu_1 = \sum_{k=1}^{\infty} kp(1-p)^{k-1} = \frac{1}{p} = \overline{X}$$
, $\hat{p} = \frac{1}{\overline{X}}$

(2)
$$L(p) = p^{n}(1-p)^{\sum_{i=1}^{n} x_{i}-n}, \ln L(p) = n \ln p + (\sum_{i=1}^{n} x_{i}-n) \ln(1-p)$$

$$\frac{d \ln L(p)}{dp} = \frac{n}{p} - \frac{\sum_{i=1}^{n} x_i - n}{1 - p} = 0, \, \hat{p} = \frac{n}{\sum_{i=1}^{n} x_i}$$

6.
$$L(\theta) = \theta^N \cdot (1 - \theta)^{n-N}$$
, $\ln L(\theta) = N \ln \theta + (n - N) \ln(1 - \theta)$

$$\frac{d \ln L(\theta)}{d \theta} = \frac{N}{\theta} - \frac{n - N}{1 - \theta} = 0, \hat{\theta} = \frac{N}{n}$$

7.
$$E(\frac{1}{n}\sqrt{\frac{\pi}{2}}\sum_{i=1}^{n}|X_{i}-1|) = \frac{1}{n}\sqrt{\frac{\pi}{2}} \cdot 2\int_{0}^{\infty} \frac{nx}{\sqrt{2\pi}\sigma}e^{-\frac{x^{2}}{2\sigma^{2}}}dx = \frac{1}{n}\sqrt{\frac{\pi}{2}} \cdot \frac{2\sigma n}{\sqrt{2\pi}} = \sigma$$

8. 这里题目我自行补充一下,Y与X同方差,那么

$$S^{2} = \frac{1}{n+m-2} \left[\sum_{i=1}^{n} (X_{i} - \overline{X})^{2} + \sum_{i=1}^{m} (Y_{i} - \overline{Y})^{2} \right] = \frac{1}{n+m-2} \left[(n-1)S_{X}^{2} + (m-1)S_{Y}^{2} \right]$$

其中 S_X^2 、 S_Y^2 都是 σ^2 的无偏估计,那么 S^2 就是 $\frac{1}{n+m-2}[(n-1)\sigma^2+(m-1)\sigma^2]=\sigma^2$ 的无偏估计。

9.
$$E(\overline{X}) = \lambda$$
, $E(\overline{X}^2) = D(\overline{X}) + E(\overline{X})^2 = \frac{n\lambda}{n^2} + \lambda^2 \Rightarrow \lambda^2 = E(\overline{X}^2) - \frac{E(\overline{X})}{n}$ $\exists \overline{X}^2 - \frac{\overline{X}}{n}$

是 λ^2 的无偏估计。

10.

(1) 不会

(2)
$$\mu = E[(\bar{X})^2 - CS^2] = E(\bar{X}^2) - CE(S^2) = D(\bar{X}) + E(\bar{X})^2 - C(n-1)\sigma^2 = \frac{\sigma^2}{n} + \mu^2$$

11.
$$E(k\overline{X} + (1-k)S^2) = kE(\overline{X}) + (1-k)E(S^2) = k\lambda + (1-k)\lambda = \lambda$$

12.
$$E(Z) = aE(S_1^2) + bE(S_2^2) = a\sigma^2 + b\sigma^2 = \sigma^2$$
,又因为 X、Y 分布独立,所以 S_1^2 、 S_2^2 独立,不妨设 $D(S_1^2) = D(S_2^2) = \alpha^2$,所以

$$D(Z) = a^2 D(S_1^2) + b^2 D(S_2^2) = (a^2 + b^2)\alpha^2$$
, 在 $a = b = \frac{1}{2}$ 时最小

13.

$$(1) T_{1} = (m-1)S_{X}^{2} + (n-1)S_{Y}^{2}, \frac{T_{1}}{\sigma^{2}} = \frac{(m-1)S_{X}^{2}}{\sigma^{2}} + \frac{(n-1)S_{Y}^{2}}{\sigma^{2}} \sim \chi^{2}(m-1) + \chi^{2}(n-1) = \chi^{2}(m+n-2)$$

$$T_{2} = \sum_{i=1}^{m} (X_{i} - \overline{X} + \overline{X} - \mu)^{2} + \sum_{i=1}^{n} (Y_{i} - \overline{Y} + \overline{Y} - \mu)^{2}$$

$$= \sum_{i=1}^{m} [(X_{i} - \overline{X})^{2} + (\overline{X} - \mu)^{2}] + \sum_{i=1}^{n} [(Y_{i} - \overline{Y})^{2} + (\overline{Y} - \mu)^{2}] = T_{1} + m(\overline{X} - \mu)^{2} + n(\overline{Y} - \mu)^{2}$$

,其中,展开的乘积项
$$\sum_{i=1}^{m} 2(X_i - \bar{X}) \cdot (\bar{X} - \mu) = 2(\bar{X} - \mu)(\sum_{i=1}^{m} X_i - m\bar{X}) = 0$$
 , Y 同理

下面处理非
$$T_1$$
项,即 $\frac{m(\overline{X}-\mu)^2+n(\overline{Y}-\mu)^2}{\sigma^2}=(\frac{\overline{X}-\mu}{\sigma/\sqrt{m}})^2+(\frac{\overline{Y}-\mu}{\sigma/\sqrt{n}})^2=\chi^2(2)$,

所以
$$\frac{T_2}{\sigma^2} \sim \chi^2(m+n-2) + \chi^2(2) = \chi^2(m+n)$$

(2) 由 (1) 中信息以及
$$E[\chi^2(n)] = n$$
 可得 $C_1 = \frac{1}{n+m-2}$, $C_2 = \frac{1}{n+m}$,

(3)
$$D(T_1^*) = \frac{1}{(m+n-2)^2} \cdot 2(m+n-2) = \frac{2}{m+n-2} > \frac{2}{m+n}$$
, 所以 T_2^* 更优。

(1)
$$\frac{T}{\sigma^2} = \frac{(n-1)S^2}{\sigma^2} + \sum_{i=n+1}^{2n} \frac{(X_i - \mu)^2}{\sigma^2} \sim \chi^2(n-1) + \chi^2(n) = \chi^2(2n-1)$$

$$(2) \qquad P[\chi_{1-\frac{a}{2}}^{2}(2n-1) < \frac{T}{\sigma^{2}} < \chi_{\frac{a}{2}}^{2}(2n-1)] \ge 1-a, :: \sigma^{2} \in (\frac{T}{\chi_{\frac{a}{2}}^{2}(2n-1)}, \frac{T}{\chi_{1-\frac{a}{2}}^{2}(2n-1)})$$

15.
$$\sigma$$
 已知,直接套公式,置信区间长度为 $\frac{2\sigma}{\sqrt{n}}Z_{\frac{a}{2}} \le L, n \ge (\frac{2\sigma}{L}Z_{\frac{a}{2}})^2$

16. 同上題,
$$\frac{2\sigma}{\sqrt{n}}Z_{\frac{a}{2}}=0.658, Z_{\frac{a}{2}}=\frac{0.658\times10}{4}=1.645, a=0.1, 1-a=0.9$$

17.

$$(1) X = e^{Y}, Y \sim N(\mu, 1), E(X) = \int_{-\infty}^{\infty} e^{Y} \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-\mu)^{2}}{2}} dy = \frac{e^{\mu}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{Y-\mu} e^{-\frac{(y-\mu)^{2}}{2}} d(y-\mu)$$
$$= \frac{e^{\mu}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{Y-\frac{y^{2}}{2}} dy = \frac{e^{\mu}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(y-1)^{2}+1}{2}} dy = \frac{e^{\mu+\frac{1}{2}}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(y-1)^{2}}{2}} d(y-1) = e^{\mu+\frac{1}{2}}$$

(2)
$$\bar{Y} = \frac{\sum_{i=1}^{4} \ln X_i}{4} = 0, \therefore \mu$$
的置信区间($-\frac{\sigma}{\sqrt{n}} Z_{\frac{a}{2}}, \frac{\sigma}{\sqrt{n}} Z_{\frac{a}{2}}$),即($-0.98, 0.98$) (与答案不同)

(3) 题目说让我们利用上述结果,那我们就用呗, $(e^{-0.98+\frac{1}{2}},e^{0.98+\frac{1}{2}})=(0.619,4.393)$

18.
$$Y = D(\frac{X^2}{\sigma^2}) = D(\frac{(X - \mu)^2}{\sigma^2} - 2\mu \frac{X}{\sigma^2} + \frac{\mu^2}{\sigma^2}) = D(\frac{(X - \mu)^2}{\sigma^2} - 2\mu \frac{X}{\sigma^2})$$
 , 其中,
$$\frac{(X - \mu)^2}{\sigma^2} \sim \chi^2(1), \quad X \sim N(\mu, \sigma^2)$$

20. 如下:

(1) 套公式,这里
$$\sigma^2$$
未知,就套 $(\overline{x} - \frac{S}{\sqrt{n}} t_{\frac{a}{2}}(n-1), \overline{x} + \frac{S}{\sqrt{n}} t_{\frac{a}{2}}(n-1))$,为

(2.196,2.230) (与答案不同)

(2) 套公式,这里
$$\mu$$
未知, $(\frac{(n-1)S^2}{\chi_{\frac{a}{2}}^2(n-1)}, \frac{(n-1)S^2}{\chi_{\frac{1-a}{2}}^2(n-1)})$,即 $(1.73\times10^{-4}, 2.65\times10^{-3})$

21. 这里不知道
$$\sigma^2$$
,套 $(\overline{x} - \frac{S}{\sqrt{n}} t_{\frac{a}{2}}(n-1), \overline{x} + \frac{S}{\sqrt{n}} t_{\frac{a}{2}}(n-1))$,(750.5,849,5)

22. 同上,得(170.44,173.57)

- 23. 同上, \bar{X} = 1147,S = 87.06 得 (1084.72,1209.28)(与答案偏差在于小数位的取选)
- 24. 同上, (30.868,31.252)
- 25. 一万户指的是大样本的意思,那么<mark>很没有道理</mark>的利用书上 P150 页 4.4.3 第一段:"这种随机变量往往近似的服从正态分布"的一句话,我们也不妨假设其满足正态分布,那就好做了。区间估计为
- 26. 这就是没给 μ 、 σ^2 ,可以算出, $\bar{X} = 69.8, S^2 = 36.43$

(1)
$$(\bar{X} - \frac{S}{\sqrt{16}} t_{\frac{a}{2}}(15), \bar{X} - \frac{S}{\sqrt{16}} t_{\frac{a}{2}}(15))$$
,即 (66. 59, 73. 03) (小数保存不同)

(2)
$$\left(\frac{(n-1)S^2}{\chi_{\frac{a}{2}}^2(n-1)}, \frac{(n-1)S^2}{\chi_{\frac{1-a}{2}}^2(n-1)}\right)$$
, 取根号后,即(4.46,9.34) (显然不同)

27. 标准差已知,那么
$$(\overline{X} - \overline{Y} - z_{\frac{a}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, \overline{X} - \overline{Y} + z_{\frac{a}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}})$$
,即(-6.04, -5.96)

28.
$$\overline{X} = 130, S_y^2 = 58, \overline{Y} = 135, S_y^2 = 11.2, S_w = 5.36, \mathbb{R} \angle ()(-12.98, 2.98)$$

- 29. 同上 28 题,得(-0.002,0.006)(直接摘录于答案)
- 30. σ^2 未知, $\overline{x} \frac{S}{\sqrt{n}} t_a(n-1)$,即 40527(直接摘录)
- 31. σ^2 已知,所以单侧置信下限为 $ar{X}-rac{\sigma}{\sqrt{n}}z_a$,即 409.88,置信上限 $ar{X}+rac{\sigma}{\sqrt{n}}z_a$,即 420.12
- 32. 我唯一的想法就是,,近似服从正态分布......这样

$$\frac{\bar{X} - \lambda}{\lambda / \sqrt{100}} \sim N(0,1), \quad 则 - Z_{0.01} < \frac{\bar{X} - \lambda}{\lambda / 10} < Z_{0.01}, 计算得 \frac{\bar{X}}{Z_{0.01}} + 1 < \lambda < \frac{\bar{X}}{-Z_{0.01}} + 1, \\ 即3.24 < \lambda < 5.22$$

标准答案给的是(3.56,4,49) (欢迎会的同学私戳)

第七章

习题 7.2

1. 假设: H_0 : μ = 4.55 (无显著变化); H_1 : μ ≠ 4.55 (显著变化)。则拒绝域为

2. 同上,假设: H_0 : μ = 1277 (无明显偏差); H_1 : $\mu \neq$ 1277 (有明显偏差)。则拒绝域

为
$$P(|\frac{\overline{x}-1277}{S/\sqrt{5}}| \ge t_{\frac{a}{2}}(4)) = a$$
, 其中 $t_{\frac{a}{2}}(4) = 2.7764$, $|\frac{\overline{x}-1277}{S/\sqrt{5}}| = 3.37 > t_{\frac{a}{2}}(4)$, 拒绝

 $H_0: \mu = 1277$,所以有明显偏差。(和标准答案有明显差别)

3. 假设: $H_0:\sigma^2=\sigma_0^2$ (无显著变化); $H_1:\sigma^2\neq\sigma_0^2$ (有显著变化)拒绝域为

$$\frac{(n-1)S^2}{\sigma_0^2} > \chi_{\frac{a}{2}}^2(n-1) \cup \frac{(n-1)S^2}{\sigma_0^2} < \chi_{1-\frac{a}{2}}^2(n-1) \quad , \quad \not\exists \quad \ \, \forall \quad \chi_{\frac{a}{2}}^2(n-1) = 54.437 \quad \, ,$$

$$\chi_{1-\frac{a}{2}}^{2}(n-1)=21.336$$
, $\frac{(n-1)S^{2}}{\sigma_{0}^{2}}=51.84$, 不在拒绝域内,所以接受 $H_{0}:\sigma^{2}=\sigma_{0}^{2}$,

无显著变化

4. 同题 2,假设: $H_{_0}$: μ < 215 (未达到预期效果); $H_{_1}$: μ \geq 215 (达到效果)。则拒绝

域为
$$\frac{\overline{x} - 215}{S/\sqrt{16}} \ge t_a(15)$$
 其中 $t_a(15) = 1.7531$, $\frac{\overline{x} - 215}{S/\sqrt{16}} = -2.14 < t_a(15)$, 接受

 H_0 : μ < 215, 所以未达到效果。

5. 假设: H_0 : $\sigma^2 = \sigma_0^2$ (没有变劣); H_1 : $\sigma^2 > \sigma_0^2$ (变劣)拒绝域为 $\frac{(n-1)S^2}{\sigma_0^2} > \chi_a^2(n-1)$,

其中
$$\chi_a^2(n-1) = 24.996$$
, $\frac{(n-1)S^2}{\sigma_0^2} = 45.9 > \chi_a^2(n-1)$, 在拒绝域内,所以拒绝

$$H_0$$
: $\sigma^2 = \sigma_0^2$,显著变劣

习题 7.3

1. 假设: $H_0: \mu_1 - \mu_2 = 0; H_1: \mu_1 - \mu_2 \neq 0$, 拒绝域

$$|\frac{\overline{X}-\overline{Y}}{\sqrt{\frac{4}{5}+\frac{6}{5}}}|{\geq Z_{\underline{a}}},|\frac{\overline{X}-\overline{Y}}{\sqrt{\frac{4}{5}+\frac{6}{5}}}|{=1.84}< Z_{\underline{a}\over 2}=1.96\;,\; 所以接受 H_0: \mu_1-\mu_2=0\;,\; 没有差异$$

2. 假设: $H_0: \mu_1 - \mu_2 = 0; H_1: \mu_1 - \mu_2 \neq 0$, 拒绝域

$$\left|\frac{\overline{X}-\overline{Y}}{S_{w}\sqrt{\frac{1}{6}+\frac{1}{5}}}\right| \ge t_{\frac{a}{2}}(9)$$
, $\left|\frac{\overline{X}-\overline{Y}}{S_{w}\sqrt{\frac{1}{6}+\frac{1}{5}}}\right| = 1.237 < t_{\frac{a}{2}}(9) = 3.2498$,所以接受

 $H_0: \mu_1 - \mu_2 = 0$, 没有差异

3. 假设: $H_0: \sigma_1^2 < \sigma_2^2; H_1: \sigma_1^2 \ge \sigma_2^2$, 拒绝域

$$\frac{S_1^2}{S_2^2} > F_a(m-1,n-1)$$
, $F_a(m-1,n-1) = 3.48$, $\frac{S_1^2}{S_2^2} = 0.10813 < F_a(m-1,n-1)$,所以接

受 $H_0: \sigma_1^2 < \sigma_2^2$,新生女婴体重的方差冬季的比夏季的小。

4

(1) 假设: $H_0: \sigma_1^2 = \sigma_2^2; H_1: \sigma_1^2 \neq \sigma_2^2$, 拒绝域

$$\frac{S_1^2}{S_2^2} > F_{\frac{a}{2}}(m-1,n-1)$$
或者 $\frac{S_1^2}{S_2^2} < F_{\frac{1-\frac{a}{2}}{2}}(m-1,n-1)$, 其中

$$F_{\frac{a}{2}}(m-1,n-1) = 5.82, F_{1-\frac{a}{2}}(m-1,n-1) = \frac{1}{F_{\frac{a}{2}}(n-1,m-1)} = 0.172, \frac{S_1^2}{S_2^2} = 2.02$$

不在拒绝域内,所以接受 $H_0: \sigma_1^2 = \sigma_2^2$,无显著差异

(2) 说方差无变化,就是说 $\sigma_1^2 = \sigma_2^2 = \sigma^2$,假设: $H_0: \mu_1 - \mu_2 = 0; H_1: \mu_1 - \mu_2 \neq 0$,

拒绝域
$$|\frac{\overline{X}-\overline{Y}}{S_w\sqrt{\frac{1}{7}+\frac{1}{7}}}|\geq t_{\frac{a}{2}}(12)$$
, $|\frac{\overline{X}-\overline{Y}}{S_w\sqrt{\frac{1}{7}+\frac{1}{7}}}|=2.46>t_{\frac{a}{2}}(12)=2.1788$,所以拒绝

 $H_0: \mu_1 - \mu_2 = 0$,有显著变化

5. 假设: $H_0: \sigma_1^2 \le \sigma_2^2; H_1: \sigma_1^2 > \sigma_2^2$, 拒绝域

$$\frac{S_1^2}{S_2^2} > F_a(m-1,n-1), F_a(m-1,n-1) = 1.61, \frac{S_1^2}{S_2^2} = 1.6 < F_a(m-1,n-1)$$
,所以接受

$$H_0: \sigma_1^2 \leq \sigma_2^2$$

习题 7.4

1. (本题中列表的方法采用了浙大版教材中的方法,有兴趣可以参阅)按题意需检验假设

$$H_0: P(X=i) = \frac{1}{6}, i = 1...6$$
 ,列一个表

X	f_{i}	P_{i}	nP_i	f_i^2/np_i
1	8	1/6	10	6.4
2	8	1/6	10	6.4
3	12	1/6	10	14.4
4	11	1/6	10	12.1
5	9	1/6	10	8.1
6	12	1/6	10	14.4

$$\chi^2 = \sum_{i=1}^6 \frac{f_i^2}{np_i} - n = 1.8$$
, $\chi_a^2(6-1) = 11.07 \ge \chi^2$,接受 $H_0: P(X=i) = \frac{1}{6}, i = 1...6$,则这颗

骰子均匀、对称。

2. 按题意需检验假设

$$H_0: P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, k = 1...6$$

首先咱们先给
$$\lambda$$
 做极大似然估计, $\hat{\lambda}=\overline{x}=\frac{\displaystyle\sum_{i=0}^{7}f(n_{i})n_{i}}{100}=1$

X	f_i	P_{i}	nP_i	f_i^2/np_i
0	36	$\frac{\lambda^0 e^{-\lambda}}{0!} = \frac{1}{e}$	36.79	35.23
1	40	$\frac{1}{e}$	36.79	43.49
2	19	$\frac{1}{2e}$	18.39	19.63
3	2	$\frac{1}{3!}e$	8.03	3.11

4	0	_1_	
		4! e	
5	2	1	
		5! e	
6	1	1	
		6! <i>e</i>	
≥ 7	0	1 6 1	
		$1 - \frac{1}{e} \sum_{i=0}^{\infty} \frac{1}{i!}$	
		0	

$$\chi^2 = \sum_{i=1}^4 \frac{f_i^2}{np_i} - n = 1.46, \quad \chi_a^2 (100 - 1 - 1) = \frac{1}{2} (z_a + \sqrt{195})^2 \ge \chi^2, \quad \text{if } \Xi$$

$$H_0: P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}, k=1...6$$
,则一页的错误个数服从泊松分布。

习题七

1. 假设 $H_0: \mu \leq 30$; $H_1: \mu > 30$,(这里在选取 H_0 时候想想:把不符合要求的当作符合要求的问题比把符合要求的舍弃问题更大,所以应该避免前一种错误,即避免在 $H_0: \mu \leq 30$ 的时候拒绝,认为 $\mu > 30$) σ 未知,则拒绝域为

$$\frac{\bar{X}-\mu_0}{S/\sqrt{n}} > t_a(n-1), \frac{\bar{X}-\mu_0}{S/\sqrt{n}} = -1.73 < t_a(n-1) = 2.015 \text{ , 所以拒绝} H_0: \mu \leq 30 \text{ , 有理由接受符合要求。}$$

2. 假设 $H_0: \mu = 66; H_1: \mu \neq 66$, σ 其实是未知的,因为你不知道生病的影响,则拒绝域为 $|\frac{\overline{X} - \mu_0}{S/\sqrt{n}}| > t_{\frac{a}{2}}(n-1), \frac{\overline{X} - \mu_0}{S/\sqrt{n}} = 2.066 < t_{\frac{a}{2}}(n-1) = 2.1315$,所以接受 $H_0: \mu = 66$,可以断定脉搏的速度没有变化。衡量他有没有恢复,不仅要看平均的频率,还要看稳定性。假设 $H_0: \sigma = 5; H_1: \sigma \neq 5$,则接受域为 $\chi^2_{1-\frac{a}{2}}(n-1) \leq \chi^2 = \frac{(n-1)S^2}{\sigma_0^2} \leq \chi^2_{\frac{a}{2}}(n-1)$, $5.629 \leq \chi^2 \leq 26.119, \frac{(n-1)S^2}{\sigma_0^2} = 21.0$ 所以接受 $H_0: \sigma = 5$,可以断定脉搏的稳定性

没有变化。综上,身体已经恢复到受伤前状态。

(1)
$$\sigma^2$$
已知,则 μ 的双侧置信区间为 $(\bar{X}-\frac{\sigma}{\sqrt{n}}z_{\frac{a}{2}},\bar{X}+\frac{\sigma}{\sqrt{n}}z_{\frac{a}{2}})$,即(2.11,2.14)

(2) 不在上面的置信区间内,所以认为平均长度与 μ_0 =2.15有明显差异。

4.

(1)
$$\sigma^2$$
已知,则单侧上限为 $\bar{X} + \frac{\sigma}{\sqrt{n}} z_a = 69.6$

(2) $\mu = 72$ 不在 a = 0.05 的置信区间内,所以认为明显低于一般健康成年男子。

5.
$$\sigma_1^2$$
、 σ_2^2 已知,假设: $H_0: \mu_1 - \mu_2 = 0; H_1: \mu_1 - \mu_2 \neq 0;$ 则拒绝域为

$$|\frac{\overline{X}-\overline{Y}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}| \geq z_{\underline{a}}, |\frac{\overline{X}-\overline{Y}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}| = 2.39 < z_{\underline{a}} = 2.57 \; , \; 则接受 \; H_{0}: \mu_{1}-\mu_{2}=0 \; , \; 含灰率平$$

均值没有显著差异。

6. σ_1^2 、 σ_2^2 未知, $\sigma_1^2 = \sigma_2^2$,假设: $H_0: \mu_1 - \mu_2 > 0; H_1: \mu_1 - \mu_2 \le 0$;则拒绝域为

$$\frac{\overline{X} - \overline{Y}}{S_w \sqrt{\frac{1}{m} + \frac{1}{n}}} \leq -t_a (\text{m+n-2}) , \frac{\overline{X} - \overline{Y}}{S_w \sqrt{\frac{1}{m} + \frac{1}{n}}} = 10.8 > -t_a (\text{m+n-2}) \approx -z_a = -1.64 , \text{ Diff}$$

 H_0 : $\mu_1 - \mu_2 > 0$,甲方案明显高于乙种方案。

7. 假设: $H_0: \sigma_1^2 = \sigma_2^2; H_1: \sigma_1^2 \neq \sigma_2^2$ 则接受域为

 $F_{1-\frac{a}{2}}(m-1,n-1) \le \frac{S_1^2}{S_2^2} \le F_{\frac{a}{2}}(m-1,n-1)$ (为什么我在这里会写接受域?因为这是接受

域比拒绝域好写一点,看个人意愿,标准是拒绝域),即

$$F_{1-\frac{a}{2}}(m-1,n-1) \le \frac{S_1^2}{S_2^2} \le F_{\frac{a}{2}}(m-1,n-1)$$
,(这里我没有查到

 $F_{0.025}(49,51), F_{0.975}(49,51)$ 的值,遂直接套用答案),拒绝 $H_0: \sigma_1^2 = \sigma_2^2$,认为有差异。

(1) 拒绝域:
$$|\frac{\bar{X}-5}{4/2}| > Z_{\frac{a}{2}}, 即 \bar{X} < 1.08$$
或 $\bar{X} > 8.92$

(2) 第二类错误即
$$\mu = 6, 1.08 < \overline{X} < 8.92$$
 即 $P(-2.46 < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < 1.46) = 0.92$

9. 我们先来算假设的接受域(其实就是置信区间)
$$(\mu_0 - \frac{\sigma}{\sqrt{n}} z_{\frac{a}{2}}, \mu_0 + \frac{\sigma}{\sqrt{n}} z_{\frac{a}{2}})$$
,然后在

$$\mu = \mu_1 < \mu_0$$
 时,

$$\begin{split} &P(\mu_{0}-\frac{\sigma}{\sqrt{n}}z_{\frac{a}{2}}<\bar{X}<\mu_{0}-\frac{\sigma}{\sqrt{n}}z_{\frac{a}{2}})=P(\frac{\mu_{0}-\mu_{1}}{\sigma/\sqrt{n}}-z_{\frac{a}{2}}<\frac{\bar{X}-\mu_{1}}{\sigma/\sqrt{n}}<\frac{\mu_{0}-\mu_{1}}{\sigma/\sqrt{n}}+z_{\frac{a}{2}})\\ &=\Phi(\frac{\mu_{0}-\mu_{1}}{\sigma/\sqrt{n}}+z_{\frac{a}{2}})-\Phi(\frac{\mu_{0}-\mu_{1}}{\sigma/\sqrt{n}}-z_{\frac{a}{2}}) \end{split}$$

(为什么和答案不一样?)答案对假设检验问题的接受域认为是 $(\mu_0 - \frac{\sigma}{\sqrt{n}} z_a, \infty)$ (其实就

是根据了后面的情况,默认如果 $\mu \neq \mu_0$,那就是 $\mu < \mu_0$,笔者觉得这样是不合理的)

10. 这里实际上是给了一个暗含的东西 (笔者觉得这样不好) H_0 : $\mu \ge 20$; H_1 : $\mu < 20$ 内马

尔接受域
$$\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \ge -z_a$$
, $\bar{X} \ge \mu - \frac{z_a}{\sqrt{n}}\sigma$ 犯第二类错误 $\mu \le 18$, 在接受域内

$$\overline{X} \geq \mu_{\rm l} - rac{z_a}{\sqrt{n}} \sigma$$
,(这里加注 $\mu_{\rm l}$ 指的是这个 $\mu_{\rm l} \geq 20$)

$$P(\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \ge \frac{\mu_1 - \mu_0}{\sigma / \sqrt{n}} - z_a) \le 0.025, \frac{\mu_1 - \mu_0}{\sigma / \sqrt{n}} - z_a \ge z_\beta, n \ge (\frac{z_a + z_\beta}{\mu_1 - \mu_0} \sigma)^2 \ge 24.01, n \ge 25$$

(这里加注 μ_0 指的是这个 $\mu_0 \leq 18$)

11. 犯第一类错误的概率应该是在 $\mu = 1$ 时, 却 $\bar{X} > 1$, $P(\frac{\bar{X} - \mu}{\sigma / n} > 0) = \frac{1}{2}$ 。 而第二类错误

就是在
$$\mu = 2$$
时,在接受域 $\bar{X} \le 1$, $P(\frac{\bar{X} - 2}{1/3} \le \frac{1 - 2}{1/3}) = \Phi(-3) = 0.0013$

12. 按题意需检验假设

 H_0 :服从该指数分布,列一个表

A_{i}	f_{i}	P_{i}	nP_i	f_i^2/np_i
$A_{\rm l} (0 \le t \le 100)$	121	0.393	117.9	124.18
$A_2(100 < t \le 200)$	78	0.239	71.7	84.85

$A_3(200 < t \le 300)$	43	0.145	43.5	42.5
$A_4(t > 300)$	58	0.223	66.9	50.28

$$\chi^2 = \sum_{i=1}^4 \frac{f_i^2}{np_i} - n = 1.81$$
, $\chi_a^2(4-1) = 7.815 \ge \chi^2$,接受 H_0 :服从该指数分布

13. 列一个表

A_i	f_{i}	P_{i}	nP_i	f_i^2/np_i
$A_{1}(X=0)$	1	$\frac{1}{56}$	2(和下面合并)	
$A_2(X=1)$	31(合并前) 32(合并后)	$\frac{15}{56}$	30(合并前) 32(合并后)	32
$A_3(X=2)$	55	$\frac{15}{28}$	60	50.42
$A_4(X=3)$	25	$\frac{5}{28}$	20	31.25

$$\chi^2 = \sum_{i=1}^3 \frac{f_i^2}{np_i} - n = 1.67$$
, $\chi_a^2(3-1) = 5.991 \ge \chi^2$, 接受 H_0 :红球个数为 5

第八章

习题 8.1

1.
$$\hat{b} = \frac{L_{XY}}{L_{XX}} = 0.058, \hat{a} = \overline{y} - \hat{b}\overline{x} = 24.628, \quad \hat{Y} = 24.628 + 0.058x$$

2.
$$\exists \hat{Y} = 0.1426 + 0.8662x$$

3.

先求一些数据,
$$L_{XX}=438, L_{XY}=-1643, L_{YY}=6278$$
,那么
$$\hat{b}=\frac{L_{XY}}{L_{XX}}=-3.751, \hat{a}=\overline{y}-\hat{b}\overline{x}=480.1945, \quad \hat{Y}=480.1945-3.751x$$

(2)
$$\hat{\sigma}^2 = \frac{1}{n-2} (L_{yy} - \hat{b}L_{xy}) = 19.1845$$

(1) 假设: $H_0: b=0; H_1: b \neq 0;$ 那么利用 T 检验去求拒绝域:

$$|T| \ge t_{\frac{a}{2}}(n-2), |T| = \frac{|\hat{b}|}{\hat{\sigma}^*} \sqrt{L_{xx}} = 17.92 > t_{\frac{a}{2}}(n-2) = 3.7074$$
,回归效果显著

(2) 为了对 b 进行估计, 我们直接选用 P246 页定理 8.1.1 中 (4):

$$t = \frac{\hat{b} - b}{\hat{\sigma}} \sqrt{L_{xx}} \sim t(n-2), \quad \text{Middiff}, \quad b \in (b_0 - \frac{t_{0.025}(8-2)\hat{\sigma}}{\sqrt{L_{xx}}}, b_0 + \frac{t_{0.025}(8-2)\hat{\sigma}}{\sqrt{L_{xx}}})$$

即(-4.2631,-3.2389)

(3) 这里就直接套用 P248 页下面的结论,

$$Y \in (\hat{Y}_0 - t_{\frac{a}{2}}(n-2) \cdot \hat{\sigma}\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{L_{xx}}}, \hat{Y}_0 + t_{\frac{a}{2}}(n-2) \cdot \hat{\sigma}\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{L_{xx}}})$$

$$\hat{Y}_0 = 198.8695, t_{\frac{a}{2}}(6) = 2.4469, \hat{\sigma} = 4.3800$$
代入得Y \in (187.1582, 210.5808)

5. 套用 P246 页公式, $\hat{b} \sim N(b, \frac{\sigma^2}{L_{xx}})$,那么 $\hat{\overline{b}} \sim N(b, \frac{\sigma^2}{L_{xx}n})$,置信区间

$$(b-\frac{\sigma/\sqrt{L_{xx}}}{\sqrt{n}}z_{\frac{a}{2}},b+\frac{\sigma/\sqrt{L_{xx}}}{\sqrt{n}}z_{\frac{a}{2}})$$
,即

(1) 同上, 先求一些数据,

$$\overline{x}=0.543, \overline{Y}=20.771, L_{xx}=0.532, L_{xY}=6.678, L_{YY}=84.034$$
,则

$$\hat{b} = \frac{L_{xy}}{L_{yy}} = 12.55, \hat{a} = \overline{y} - \hat{b}\overline{x} = 13.96, \quad \hat{Y} = 13.96 + 12.55x$$

(2)
$$\hat{\sigma}^{*2} = \frac{1}{7-2} (L_{yy} - \hat{b}L_{xy}) = 0.045$$

(3) 利用简单的 t 检验 $|T| \ge t_{\frac{a}{2}}(n-2), |T| = \frac{|\hat{b}|}{\hat{\sigma}^*} \sqrt{L_{xx}} = 43.15 > t_{\frac{a}{2}}(n-2) = 2.5706$, 回归效果显著

(4)
$$(\hat{a} + \hat{b}x - \delta(x), \hat{a} + \hat{b}x - \delta(x)), \delta(x) = t_{\frac{a}{2}}(n-2) \cdot \hat{\sigma}^* \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{L_{xx}}} = 0.584,$$

区间为(19.651,20.819) (与答案的误差都来源于对小数位数的选取)

习题 8.2

- 1. $\ln Y = \ln a \frac{b}{x}$, 令 $Y' = \ln Y$, $x' = \frac{1}{x}$, $a' = \ln a$, b' = -b, 则 Y' = a' + b' x', 对表格数据进行处理,最后得 $\hat{Y} = 1.73e^{\frac{-0.146}{x}}$
- 2. $\ln Y = \ln a + \text{bt}$, 令 $Y' = \ln Y$, Y' = a + bt, 对数据 Y 进行处理,然后即可得 $\hat{y}' = 5.9665 0.2179t$
- 3. $\frac{1}{y} = b + \frac{a}{x}$, $\text{My'} = \frac{1}{y}$, $x' = \frac{1}{x}$ MPT.

习题 8.3

- 1. 提出假设: H_0 : $\mu_1=\mu_2=\mu_3$,(这里详细的数据处理我就不做了,我利用 excel 帮大家 检查一下答案好了) $F=3.188 < F_{0.05}(3,9)=3.862$,认为没有显著差异
- 2. 同上, $F = 5.004 > F_{0.05}(2, 13) = 3.885$,有差异
- 3. $F = 1.17 < F_{0.1}(4, 20) = 2.25$, 没有显著差异

习题 8.4

- 1. 提出假设: H_{01} : $\alpha_1=\alpha_2=\alpha_3=0$; H_{02} : $\beta_1=\beta_2=\beta_3=0$; $F_A=0.917 < F_{Aa}=5.14; F_B=0.43 < F_{Ba}=4.76$,所以都没有显著差异。
- 2. $F_A = 0.405 < F_{Aa} = 3.84; F_B = 0.449 < F_{Ba} = 4.46$,所以都没有显著差异。
- 3. $F_A = 70.047 > F_{Aa} = 5.143; F_B = 21.924 > F_{Ba} = 4.757$,所以都没有显著差异。

习题八

略(同质化过于严重,笔者实在不想做了)