Lecture 05 The Finite Volume Mesh

汪 洋

wangyangstayfoolish@gmail.com

July 2022

简介

▶ 有限体积法的关键是对几何的划分

▶ 通过一系列面将连续的区域分割成不重叠的单元,离散

▶ 通过边界面来确定物理边界

▶ 获得不同组件 (点、面、单元等) 的拓扑信息 (topology)

▶ 本章就是针对有限体积网格所需的几何和拓扑要求

几何离散 Domain Discretization

▶ 结构化网格 structured mesh/grid

▶ 非结构化网格 unstructured mesh/grid

▶ 梯度计算

$$\overline{\nabla \phi}_{C} = \frac{1}{V_{C}} \int\limits_{V_{C}} \nabla \phi dV = \frac{1}{V_{C}} \int\limits_{\partial V_{C}} \phi d\mathbf{S}$$

▶ 非正交

Non Orthogonal

▶ 梯度计算

$$\overline{\nabla \phi}_{C} = \frac{1}{V_{C}} \int\limits_{V_{C}} \nabla \phi dV = \frac{1}{V_{C}} \int\limits_{\partial V_{C}} \phi d\boldsymbol{S}$$

▶ 梯度离散

$$\overline{\nabla} \overline{\phi}_{C} = \frac{1}{V_{C}} \sum_{f} \int_{f} \phi d\mathbf{S} = \frac{1}{V_{C}} \sum_{f} \overline{\phi}_{f} \mathbf{S}_{f}$$

▶ 面心值 \(\overline{\phi} \) f

$$\overline{\phi}_{\mathrm{f}} = \mathrm{g}_{\mathrm{F}}\phi_{\mathrm{F}} + \mathrm{g}_{\mathrm{C}}\phi_{\mathrm{C}}$$

$$\mathrm{g}_{\mathrm{F}} = \frac{\mathrm{V}_{\mathrm{C}}}{\mathrm{V}_{\mathrm{C}} + \mathrm{V}_{\mathrm{F}}}$$

$$\mathrm{g}_{\mathrm{C}} = \frac{\mathrm{V}_{\mathrm{F}}}{\mathrm{V}_{\mathrm{C}} + \mathrm{V}_{\mathrm{F}}}$$

5/19

July 2022

▶ 例题 1

▶ 几何数据

index	\mathbf{S}_{f}	Volume	Field1	Field2
С	-	37.8	1	6
1	(-2.4 - 3.24)	-	1	10
2	(2.4 - 3.48)	-	1	9
3	(4.1 - 6.7)	-	1	5
4	$(2.2\ 3.7)$	-	1	3
5	$(-2.64\ 2.9)$	-	1	4
6	(-3.66 6.82)	-	1	8

▶ 1 求解

$$\overline{\nabla \phi}_{\rm C} =$$

▶ 2 求解

$$\overline{\nabla \phi}_{\mathbb{C}} =$$

结构网格 structured mesh/grid

结构网格 structured mesh/grid

10/19

非结构化网格 unstructured mesh/grid

非结构化网格 unstructured mesh/grid

▶ 9 单元的梯度值

$$\overline{
abla}\phi_9=rac{1}{V_0}\left(\overline{\phi}_{16}\mathbf{S}_{16}+\overline{\phi}_{22}\mathbf{S}_{22}-\overline{\phi}_{23}\mathbf{S}_{23}-\overline{\phi}_{15}\mathbf{S}_{15}-\overline{\phi}_{11}\mathbf{S}_{11}-\overline{\phi}_{10}\mathbf{S}_{10}
ight)$$

非结构化网格 unstructured mesh/grid

▶ 例题 2

▶ 三维网格 Tetrahedron, Hexahedron, Prism, Polyhedron

▶ 二维网格 Quadrilateral, Triangle, Pentagon

▶ 面积和面心

▶ 体积和体心

▶ 奇异 skewness

▶ 面积和面心

▶ 面积和面心, 几何中心

$$\textbf{x}_G = \frac{1}{k} \sum_{i=1}^k \textbf{x}_i$$

$$\mathbf{x}_{CE} = \frac{\sum_{i=1}^{k} \mathbf{x}_{i} * S_{i}}{\mathbf{S}}$$

▶ 奇异 skewness

▶ 奇异性 ff'