

RME System Architecture Compliance Suite

Version: 0.7

Scenario Document

ConfidentialCopyright © 2023 Arm Limited (or its affiliates).
All rights reserved.

Issue 03 PJDOC-1505342170-664675

RME System Architecture Compliance Suite

Scenario Document

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue	Date	Confidentiality	Change
01	25-Apr-2023	Confidential	First release for v0.5
02	25-Aug-2023	Confidential	First release for v0.6
03	06-Nov-2023	Confidential	First release for v0.7

Product Status

The information in this document is for an Alpha product, that is a product under development.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language that can be offensive. Arm strives to lead the industry and create change. This document includes language that can be offensive. We will replace this language in a future issue of this document.

To report offensive language in this document, email terms@arm.com.

Contents

1.	Introduction	5	
1.1	Intended audience	5	
1.2	Conventions	5	
1.1.	Useful resources	5	
2.	About the Arm® RME system ACS	7	
2.1.	Abbreviations	7	
2.2.	Scope of this document	8	
2.3.	Introduction to RME system ACS	9	
3.	Test scenarios	10	
3.1.	PE	10	
Scer	nario ID: 1.1	10	
Scer	nario ID: 1.2	10	
Scer	nario ID: 1.3	11	
Scenario ID: 1.4		11	
Scenario ID: 1.5		11	
Scenario ID: 1.6		12	
Scenario ID: 1.7		12	
Scenario ID: 1.8		12	
Scer	nario ID: 1.9	13	
Scer	nario ID: 1.10	13	
Scer	nario ID: 1.11	13	
Scer	nario ID: 1.12	14	
Scenario ID: 1.13		14	
Scer	Scenario ID: 1.14		
Scer	Scenario ID: 1.15		
Scer	nario ID: 1.16	16	
Scenario ID: 1.17		16	
Scer	Scenario ID: 1.18		

Scena	ario ID: 1.19	17
Scena	ario ID: 1.20	17
Scena	ario ID: 1.21	17
Scena	ario ID: 1.22	18
Scena	ario ID: 1.23	18
Scena	ario ID: 1.24	18
3.2.	SMMU	18
Scena	ario ID: 2.1	18
Scena	ario ID: 2.2	19
3.3.	PAS Filters	19
Scena	ario ID: 3.1	19
Scena	ario ID: 3.2	19
Scena	ario ID: 3.3	19
3.4.	GIC	20
Scena	ario ID: 4.1	20
3.5.	System reset	20
Scena	ario ID: 5.1	20
Scena	ario ID: 5.2	20
Scena	ario ID: 5.3	21
Scena	ario ID: 5.4	21
Scena	ario ID: 5.5	21
Scena	ario ID: 5.6	21
3.6.	Exerciser	21
Scena	ario ID: 6.1	21
	Out of scope rules	
4.1.	System PMU counters	
4.2.	Debug	23
4.3.	Hardware enabled security	24
4.4.	RAS	
4.5.	RNVS	25
4.6.	Trusted System Control Processor	25
17	Miscellaneous	25

1. Introduction

1.1 Intended audience

This document is for engineers who are verifying an implementation of Arm® RME enabled System.

1.2 Conventions

The following subsections describe conventions used in Arm documents.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Typographic conventions

Convention	Use
italic	Citations.
bold	Highlights interface elements, such as menu names.
	Also used for terms in descriptive lists, where appropriate.
monospace	Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.
monospace	Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full command or option name.
monospace italic	Denotes arguments to monospace text where the argument is to be replaced by a specific
<and></and>	Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example:
	MRC p15, 0, <rd>, <crn>, <opcode_2></opcode_2></crn></rd>
SMALL CAPITALS	Used in body text for a few terms that have specific technical meanings, that are defined in the <i>Arm® Glossary</i> . For example, IMPLEMENTATION DEFINED , IMPLEMENTATION SPECIFIC , UNKNOWN , and UNPREDICTABLE .

1.1. Useful resources

This document contains information that is specific to this product. See the following resources for other relevant information.

- Arm Non-Confidential documents are available on **developer.arm.com/documentation**. Each document link in the tables below provides direct access to the online version of the document.
- Arm Confidential documents are available to licensees only through the product package.

Arm products	Document ID	Confidentiality
Arm® Realm Management Extension (RME) System Architecture	DEN0129H	Non-Confidential
Arm® System Memory Management Unit Architecture Specification	IHI0070	Non-Confidential

Arm architecture and specifications	Document ID	Confidentiality
Arm® Architecture Reference Manual for A-profile architecture	DDI0487	Non-Confidential
Arm® Generic Interrupt Controller Architecture Specification for GIC architecture version 3.0 and version 4.0	IHI0069C	Non-Confidential

Non-Arm resources	Document ID	Organization

Arm tests its PDFs only in Adobe Acrobat and Acrobat Reader. Arm cannot guarantee the quality of its documents when used with any other PDF reader.

Adobe PDF reader products can be downloaded at http://www.adobe.com.

2. About the Arm® RME system ACS

This chapter introduces you to the Arm® RME system Architecture Compliance Suite.

2.1. Abbreviations

The following table lists the abbreviations used in this document.

Table 2-1: Abbreviations and expansions

Abbreviation	Expansion
ACS	Architecture Compliance Suite
RNVS	Root Non-volatile Storage
PAL	Platform Abstraction Layer
MSD	Monitor Security Domain
PAS	Physical Address Space
SMEM	Shielded memory
RT	Root
RL	Realm
NS	Non-Secure
PA_(X)	(X) is access PAS encoding in S/NS/RT/RL

2.2. Scope of this document

This document describes the verification scenarios and the strategy that is followed for creating Architecture Compliance Suite (ACS) tests for Realm Management Extension (RME) System Architecture. The scenarios are referred from the Arm@Realm Management Extension (RME) System Architecture Specification.

2.3. Introduction to RME system ACS

RME System Architecture is an extension to the Armv9 A-profile architecture. It adds the following features:

- Two additional Security states, Root and Realm.
- Two additional physical address spaces, Root and Realm.
- The ability to dynamically transition memory granules between physical address spaces.
- Granule Protection Check mechanism.

The RME architecture defines the set of hardware features and properties that are required to comply with the Arm *Confidential Compute Architecture (CCA*) architecture. Implementations compliant with the RME System architecture must conform to the behavior described in the specification. The Architecture Compliance Suite (ACS) is a set of examples of the specified invariant behaviors. Use

this suite to verify that these behaviors are implemented correctly in your system.

3. Test scenarios

This chapter describes the execution flow control used for RME System ACS.

3.1. PE

Scenario ID: 1.1

Rules:

RBJVZS: An access to a Resource is associated with an Access PAS in accordance with the PAS Access Table.

RGDVSZ: A PA of an access to a memory-mapped peripheral is associated with a PAS until reaching the PAS filter assigned to protect the peripheral.

RDVPGT: A private PAS filter allows access to a register only if the Access PAS matches a Resource PAS that the register is associated with.

Scenario: All protected memory regions are accessible only when resource PAS and access PAS are same.

Note: If regions are protected only by GPC, then verify with GPC enabled.

Observation:

Accesses with same resource PAS and access PAS are successful otherwise generates fault.

Scenario ID: 1.2

Rules: RWFQKD: A PA that targets memory that can be cached is associated with a PAS until reaching the PoPA.

RFRMJJ: Where a PA is associated with a PAS, any PA compared operation includes the PAS.

Scenario ID: 1.2.a

A location PA1 is marked as "All Access Permitted" in GPT. Cacheable store to PA1_NS is not visible to PA1_RL, PA1_RT, PA1_S.

Scenario ID: 1.2.b

MP setup to validate snoop filter considers PAS:

PA1 is marked as Shareable in both PE0 & PE1.

PEO: PA1 marked as Root PAS.

PE1: PA1 marked as Realm PAS.

PE1 must not generate snoop access to PE0. As a result, update to PE0.

Scenario ID: 1.3

Rule: The first part of the rule below is validated in this scenario.

RMLFBL: External memory that is assigned to Secure PAS, Realm PAS, or Root PAS must be encrypted using a method that provides at least the following:

- A different encryption context for each PAS.
- A different address tweak for each encryption data block, such as a 128-bit memory block.
- If cryptographic memory integrity is not supported, an encryption mode ensures bit diffusion over an encryption data block.

Scenario:

Data is encrypted when written in memory/any shared cache beyond PoPA.

PA1 is marked as All Access Permitted.

Store DATA1 in PA1_RT; CMO till PoPA (for all PAS); Read using PA_S return DATA2; READ using PA_RL return DATA3; READ using PA_NS return DATA4.

Observation:

DATA1! = DATA2! = DATA3! = DATA4

Note: The third point of this rule is not validated in ACS.

Scenario ID: 1.4

Rule: The second part of the rule below is validated in this scenario.

RMLFBL: External memory that is assigned to Secure PAS, Realm PAS, or Root PAS must be encrypted using a method that provides at least the following:

- A different encryption context for each PAS.
- A different address tweak for each encryption data block, such as a 128-bit memory block.
- If cryptographic memory integrity is not supported, an encryption mode ensures bit diffusion over an encryption data block.

Scenario:

Data is encrypted with a different tweak in each 128-bit of data block.

Store DATA1 in PA1_S and (PA1_S + 16).

CMO to PoPA using S and NS PAS.

Read PA1_NS returns DATA2; Read PA1_NS+ 16 returns DATA3.

Observation:

DATA2 and DATA3 are different.

Scenario ID: 1.5

Rules:

RNXJLB: On an RME system reset MSD SMEM is either immediately assigned to the Root PAS or scrubbed and is available for access by the PE boot ROM as soon as it starts executing. RCSSDG: MSD SMEM is in the Root PAS.

Scenario:

MSD SMEM is in ROOT PAS. Access MSD SMEM with S, NS, RT & RL access PAS.

Observation:

Only RT accesses are successful.

Scenario ID: 1.6

Rules:

RCMMCZ: RMSD SMEM is in the Realm PAS.

RZQQSQ: SMEM that can be dynamically assigned to the Realm PAS, or the Secure PAS is either immediately assigned to the Root PAS or scrubbed on an RME system reset.

Scenario:

Verify that Realm SMEM is in realm PAS (if Realm SMEM is defined statically).

Observation:

Root, Secure and Non-secure access to Realm SMEM returns error.

Scenario ID: 1.7

Rule:

RGSRPS: All A-profile application PEs in the system implement the Realm Management Extension (RME).

Scenario:

All application PEs implement RME.

Observation:

Read of ID AA64PFRO EL1.RME returns >= 1 for all PEs.

Scenario ID: 1.8

Rules:

RXTSXB: An RME coherent interconnect supports cache maintenance operations to the PoPA. RLCXDB: Completion of a PoPA CMO for a given PA guarantees that:

- Any dirty cached or transient state associated with the PA before the PoPA has been cleaned to after the PoPA.
- Any cached or transient state associated with the PA before the PoPA has been invalidated.

Scenario:

Coherent interconnect supports CMO to PoPA. CMO to PoPA cleans dirty copy till PoPA and invalidates all cached copies.

Stimulus:

- PA1 is marked as All Access Permitted. PA1 is initialized with random data.
- VA1 is mapped to PA1 as secure PAS in MMU with cacheable attribute.
- VA2 is mapped to PA1 as nonsecure in MMU with cacheable attribute.
- Read VA1 returns data1.

- Read VA2 returns data2.
- Store data3 in VA1.
- Issue CMO to PoPA for PA1 secure and nonsecure.

Observation:

Read of VA2 must return data4 (! = data2) (ciphertext of data3).

Scenario ID: 1.9

Rules:

RFXQCD: A PoPA CMO applies to any cache before the PoPA, including system caches that are located beyond the Point of Coherency.

RQBNJF: A PoPA CMO applies to any cached copy in the system with the specified {PAS, PA} regardless of both:

- The shareability domain it was cached with.
- Whether the system supports a single or multiple Outer Shareable shareability domains.

Scenario:

repeat 1.8 with Non-Cacheable memory.

Scenario ID: 1.10

Rule:

RJRJSQ: An RME coherent interconnect complies with a Distributed Virtual Memory (DVM) version that supports Realm Translation Regimes and TLB Invalidate by PA operations.

Scenario:

Check interconnect supports TLBI PA operation by changing GPT entry. Stimulus:

- Map VA1 to PA1 as secure memory both in MMU and GPT.
- Access VA1.
- Change PA1 to non-secure using Undelegated algo.
 - o Issue TLBI PA as a part of undelegated algorithm.

Observation:

Access to VA1 will generate fault.

Internal Note: This scenario will be repeated in SMMU environment and default validation will be in MP environment.

Scenario ID: 1.11

Rule:

RQDPVN: Any PAS other than the Non-secure PAS must have encryption enabled.

Scenario:

Secure, Realm and Root PAS must have encryption enabled.

Stimulus:

- PA1 marked as all access permitted.
- PA1 is mapped as VA1_S, VA2_NS, VA3_RL, VA4_RT.
- Store data1 using VA2 NS.

Observation:

Read of VA1_S, VA3_RL, VA4_RT must return unique values (! =data1).

Scenario ID: 1.12

Rule:

RVSMPS: The decision to enable encryption for the Non-secure PAS is either hardwired or defined at boot and immutable once set.

Scenario: NSencryption(enable=1).

Once enabled then we cannot disable by calling NSencryption(enable=0).

Stimulus:

- Store data1 in PA1_NS.
- Read PA1 NS will return data1.
- CMO to PoPA for PA1.
- Enable NS encryption.
- CMO to PoPA for PA1.
- Read of PA1 NS will return data2 which is not same as data1.
- Disable NS encryption.
- CMO to PoPA.

Observation: Read of PA1 still returns data2.

Scenario ID: 1.13

Rule:

RJYMQD: Allocation and protection of the address range assigned to an MTE carve-out are controlled by either SSD or MSD.

Scenario:

MTE carve-out region is not accessible by NS/S/RL accesses.

Observation:

NS, S and RL accesses to MTE carve-out region generates fault (fault might not be generated).

Scenario ID: 1.14

Rule:

RSQMWT: Application PEs in an RME system do not have architectural differences unless this is explicitly permitted by this specification.

Scenario: Verify application PEs in an RME system do not have any architectural differences. Below registers list will be checked:

AARCH32 registers are checked when ARCH32 are supported at ELO.

Register Name	Register mask	Dependency
CCSIDR_EL1	0xFFFFF8	-
ID AA64PFRO EL1	-	
ID AA64PFR1 EL1	-	
ID AA64DFRO EL1	-	
ID AA64DFR1 EL1	-	
ID_AA64MMFR0_EL1	0xF	
ID_AA64MMFR1_EL1	-	
CTR_ELO	0xC000	
ID_AA64ISAR0_EL1	-	
ID_AA64ISAR1_EL1	-	-
MPIDR_EL1	0xFF3FFFFFF	-
MIDR_EL1	0x00F0FFFF	-
ID_DFR0_EL1	-	AARCH32
ID_ISARO_EL1	-	AARCH32
ID_ISAR1_EL1	-	AARCH32
ID_ISAR2_EL1	-	AARCH32
ID_ISAR3_EL1	-	AARCH32
ID_ISAR4_EL1	-	AARCH32
ID_ISAR5_EL1	-	AARCH32
ID_MMFR0_EL1	-	AARCH32
ID_MMFR1_EL1	-	AARCH32
ID_MMFR2_EL1	-	AARCH32
ID_MMFR3_EL1	_	AARCH32
ID_MMFR4_EL1	-	AARCH32
ID_PFR0_EL1	_	AARCH32
ID_PFR1_EL1	_	AARCH32
MVFRO_EL1	_	AARCH32
MVFR1_EL1	_	AARCH32
MVFR2_EL1	-	AARCH32
PMCEIDO_ELO	-	PMUV3
PMCEID1_EL0	-	PMUV3
PMCR_EL0	OxFFFF	PMUV3
PMBIDR_EL1	-	SPE
PMSIDR_EL1	-	SPE
ERRIDR_EL1	-	RAS
ERROFR_EL1	-	RAS
ERR1FR_EL1	-	RAS

Register Name	Register mask	Dependency
ERR2FR_EL1	_	RAS
ERR3FR_EL1	_	RAS
LORID_EL1	_	LOR

Scenario ID: 1.15

Rule:

RMLJVR: On an exit from a low power state in which system context is preserved, power control guarantees that MSD state is fully preserved. If MSD state is not preserved, power control applies an RME system reset.

Scenario ID: 1.15.a

Check MSD state is preserved after exit from low power state. PE will use WFI to enter a low power state.

Scenario ID: 1.15.b

Check MSD state is preserved after exit from PE Suspend.

Note:

- 1. The test will check granule protection control registers.
- 2. Sanity checks the content of GPT tables.
- 3. SMMU tables and controls are preserved.
- 4. MPF is enabled.

Scenario ID: 1.16

Rule:

RZNLSZ: Save/Restore operations for MSD state can only be done by MSD or a Trusted subsystem and use on-chip storage that is not accessible from Realm PAS, Secure PAS or Non-secure PAS.

Scenario:

MSD state save restore location not accessible via S/NS/RL accesses.

Scenario ID: 1.17

Rule:

RQCHPW: The system supports a method for permanently blocking write access from application PEs to all RNVS parameters.

Scenario:

RNVS programming functions (memory mapped) can only be accessed from Root PAS.

Observation:

Non-Root access to RNVS programming functions generate faults.

Note: Review PAL function after implementation. We can test mailbox is not accessible from non-Root PAS.

Scenario ID: 1.18

Rules:

RKXMHF: A system that contains RME components, which have the LEGACY_TZ_EN input, will drive a common tie-off input value into all components.

RCLKXF: A PE that supports the LEGACY_TZ_EN tie-off hides the RME capability if LEGACY_TZ_EN is TRUE and reverts all functionality defined by RME.

Scenario:

When Legacy TZ_EN=1 all components including PEs, SMMU hides RME features. System ACS tests will do ID register check.

Scenario ID: 1.19

Rules:

RZHBBL: The memory-mapped registers of a Root watchdog are in the Root PAS.

RVXGBP: A Root watchdog can trigger an RME system reset when predefined expiration conditions are met.

Scenario:

Programming of Root watchdog (if available) from ROOT state will be successful. The test will generate a watchdog interrupt.

Scenario ID: 1.20

Rules:

RZHBBL: The memory-mapped registers of a Root watchdog are in the Root PAS.

RVXGBP: A Root watchdog can trigger an RME system reset when predefined expiration conditions are met.

Scenario:

Programming of Root watchdog (if available) from non-ROOT state (From Non-secure EL2) will be unsuccessful.

Note: Root watchdog memory mapped registers are not accessible from secure PAS.

Scenario ID: 1.21

Rule:

RKGDVK: A Resource can be associated with a PAS using a Granule Protection Table if there is only a single PA within each PAS through which the Resource can be reached and the value of the PA is the same across all physical address spaces.

Scenario:

Check address range of resources are not physically aliased.

Scenario ID: 1.22

Rule:

RKGDVK: A Resource can be associated with a PAS using a Granule Protection Table if the Resource can be assigned to a PAS at page granularity.

Scenario:

Check address range of resources (needs to be protected by GPT) are aligned to page granularity.

Scenario ID: 1.23

Rule:

RHCGZN: If LEGACY_TZ_EN is TRUE, Root PAS is driven to secure PAS by any logic that enforces the PAS Access Table.

Scenario:

When Legacy_TZ_En = True, all Root registers (Interconnect registers SAM registers, DMC- DRAM memory controllers, Timer register) that controls global functionality must be accessible using secure PAS only.

Scenario ID: 1.24

Rule:

RQYRGG: MSD and RMSD are provided with a private interface for accessing a True Random Number Generator (TRNG) that meets the certification profile of the system.

Scenario:

Check that all application PEs support FEAT_RNG or FEAT_RNG_TRAP.

3.2. **SMMU**

Scenario ID: 2.1

Rule:

RNJRPC: An SMMU in an RME system complies with the Arm® System Memory Management Unit Architecture supplement - The Realm Management Extension (RME), for SMMUv3. (ARM IHI 0094) Arm Ltd.

Scenario:

SMMU must implement RME.

Scenario ID: 2.2

Rule:

RJDBCS: An MMU-attached PAS filter in a non-ACTIVE mode either continues to respond to GPT cache invalidations or invalidates any cached state when moving back to ACTIVE mode.

Scenario:

Change mode of PAS filter to In-Active (if supported). Verify that in In-active mode it responds to GPT cache invalidate.

Algorithm: PWR Down SMMU → Invalidate GPT → PWR UP SMMU. Observe new GPI value.

Note: This can be evaluated only when SMMU can be powered down.

3.3. PAS Filters

Scenario ID: 3.1

Rule:

RDQTSG: An MPE or a PAS filter in a non-ACTIVE mode in which context is not fully retained blocks its operation and does not service requests until it is in ACTIVE mode again.

Scenario:

Change ACTIVE mode of PAS filter (if supported). Access PA range that is monitored by PAS filter.

Observation:

Read of protected regions does not return data.

Scenario ID: 3.2

Rules:

RBJVZS: An access to a Resource is associated with an Access PAS in accordance with the PAS Access Table.

RYKVJK: A PAS filter enforces the PAS protection check by permitting access to a Resource only if the Access PAS matches a Resource PAS with which that the Resource is associated.

RGDVSZ: A PA of an access to a memory-mapped peripheral is associated with a PAS until reaching the PAS filter assigned to protect the peripheral.

Scenario: All protected memory regions are accessible only when resource PAS & access PAS are same.

Note: If Regions are protected by completer side PAS filter, then verify with GPC disabled.

Observation:

Accesses with same resource PAS and access PAS are successful.

Scenario ID: 3.3

Rule:

RGFGZM: If a requester-side Granular PAS filter is in reset state, any requester that is associated with it is either in reset state or blocked from accessing memory.

Scenario:

If SMMU is in reset state it blocks all memory access requests from the devices attached to it.

Observation:

DMA accesses from Exerciser is blocked.

3.4. GIC

Scenario ID: 4.1

Rule:

Scenario:

GIC ITS memory accesses are only to non-secure memory.

Program ITT table base with Root PA and generate access using ITS commands.

Observation:

Expect faults for all the above accesses.

3.5. System reset

Scenario ID: 5.1

Rule:

RCSSDG: MSD SMEM is in the Root PAS.

Scenario:

Access using Root access PAS to Root SMEM is successful after Reset.

Observation:

No fault occurred.

Scenario ID: 5.2

Rule:

RZQQSQ: SMEM that can be dynamically assigned to the Realm PAS, or the Secure PAS is either immediately assigned to the Root PAS or scrubbed on an RME system reset.

Scenario:

Verify Realm SMEM does not reveal old data after system reset.

Observation:

Returned data is not DATA1.

Scenario ID: 5.3

Rule:

RKKSQB: An RME system reset propagates to PEs as either a Cold reset, Warm reset, or Error recovery reset.

Scenario:

RME system reset propagates to all application PEs.

Stimulus: Write non-reset value to SCTLR_EL1/any other system register for all PEs. Apply system reset and check that the system register value is reset.

Scenario ID: 5.4

Rule:

RKQLKN: LEGACY_TZ_EN is not permitted to change value after RME system reset has been deasserted.

Scenario:

LEGACY_TZ_EN = enable does not take effect when system reset is de-asserted.

Scenario ID: 5.5

Rule:

RKQLKN: LEGACY_TZ_EN is not permitted to change value after RME system reset has been deasserted.

Scenario:

LEGACY TZ EN = enable take effect after a system reset asserted.

Scenario ID: 5.6

Rule: RNULL

Scenario:

In Realm state all system registers & general purpose registers are scrubbed after reset.

Note:

This scenario is identified in the investigation, so Rule ID, RNULL is used.

3.6. Exerciser

Scenario ID: 6.1

Rule:

RMZJXC: Every requester in the system is subjected to the PAS protection check.

Scenario:

PCiE devices are subject to PAS protection check.

Observation:

DMA transactions to secure, root and realm memory will generate fault.

4. Out of scope rules

4.1. System PMU counters

Rule:

RHRVJB: A system PMU counter that is accessible in the Secure PAS can only count events that are attributable to the Secure PAS or to the Non-secure PAS.

Rule

RBSZPN: A system PMU counter that is accessible in the Realm PAS can only count events that are attributable to the Realm PAS or to the Non-secure PAS.

Rule:

RTMSNN: A system PMU counter that is accessible in the Root PAS can count events that are attributable to any PAS.

Rule:

RMMPWY: A system PMU counter that is accessible in the Non-secure PAS can count events that are attributable to a specific PAS if there is a per-PAS authentication control that can permit events from that PAS to be counted.

Rule:

RPLXZB: A per-PAS authentication control can be driven by a debug authentication interface signal or by a register accessible in the corresponding PAS or in the Root PAS.

Rule:

RCFYKS: An event that is not explicitly associated with a PAS but can leak confidential information is implicitly associated with the Root PAS.

4.2. Debug

Rule

RQSXBZ: RMSD external debugging and Root external debugging are disabled by default on a Secured Arm CCA system.

Rule

RHLTLK: RMSD external debugging can only be authorized following an RME system reset and before RMSD firmware is loaded and cannot change state until a subsequent RME system reset.

Rule

RXVNFV: Root external debugging can only be authorized following an RME system reset and before MSD firmware is loaded and cannot change state until a subsequent RME system reset.

Rule:

RGTPGZ: When Root external debugging is enabled, the RNVS confidential parameters are either inaccessible, scrubbed, or populated with debug values.

Rule:

RRHGKX: Access to a Secured Arm CCA system through an external debug or test interface, including debug access ports, JTAG ports, and scan interfaces is disabled by default. Debug access can be enabled following validation of a debug certificate or password which is injected via an external debug interface.

Rule:

RQLPNL: When external debugging is enabled for any Security state, external requests to power-up a component within a level of the system hierarchy (PE, PE-Cluster, System) are permitted but must be executed by trusted power control.

4.3. Hardware enabled security

Rule:

RNWQBJ: If HES is hosted as a tenant within a multi-tenant Trusted subsystem, HES functionality must be isolated from other tenants, such that tenants must not be able to monitor HES functionality or impact HES functionality or integrity.

Rule:

RHJSSG: The HES implementation exposes a private interface to SSD components such as Trusted subsystems for requesting HES services.

Rule:

RCGDVX: The HES implementation exposes a programming interface in the Root PAS, shared by all application PEs, allowing MSD and PE Initial boot ROM to request for HES services.

Rule:

RBQPFG: HES has exclusive read and write access to RNVS confidential parameters.

Rule:

RBTWVY: A measurement register can be either extended using a secure hash algorithm, locked, or reset.

Rule:

RDFPJL: HES has exclusive access to extend, lock, and reliably obtain the value of a measurement register it owns.

Rule:

RFWSRF: Once locked, a measurement cannot be further extended until it is reset.

Rule

RWYSLK: An RME system reset is the only method to reset a measurement owned by HES.

Rule:

RXCRMH: On an RME system reset, HES state is reset to a known value, including all measurements and ephemeral cryptographic context.

4.4. RAS

Rule:

RGNGMB: Only SSD or MSD can control whether recording is performed for error records that might contain confidential information.

Rule:

RGZTVL: Critical Error Interrupts (CI) must be wired to a Trusted subsystem that will respond with an RME system reset.

Rule:

RLWVCX: An uncontainable error results in an RME system reset.

Rule:

RJNBWJ: Only SSD or MSD can enable or disable the generation of a CI.

Rule:

RXPCTR: Where an MPE provides support for integrity, if it detects an integrity error it can perform one of the following responses:

- Respond by returning poison back to the consumer and record the error as a deferred error.
- Respond with an in-band error response and record the error as an uncorrected error.

Rule:

RHSVLQ: Only SSD or MSD must be able to control the abilities of detecting, propagating, and reporting MPE integrity errors.

Rule:

RGZHTD: In addition to providing encryption and, where implemented, integrity capabilities, the MPE can pass poison information:

Note: If a requester above the MPE defers errors by writing poison, then the MPE must be able to pass this value through to the memory system below it as poison.

If a requester above the MPE consumes a memory location that has been marked as poison, either because of that access or a previous access, the MPE must pass that poison to consumer.

4.5. RNVS

Rule:

RWNPYD: A programming interface that allows read and write access to RNVS must be in the Root PAS.

Rule:

RLMSSL: The system supports a method for permanently blocking read access from application PEs to RNVS confidential parameters.

Rule:

RVXBYG: System support for any memory protection property reported in System Properties is immutable and applicable for all DRAM memory controllers in the system.

4.6. Trusted System Control Processor

Rule:

RSXCFK: A Trusted SCP is an on-chip control processor that is trusted by MSD and can access resources in the Root PAS.

Rule:

RZHJQJ: A Trusted SCP is considered a Trusted subsystem and must meet the applicable security requirements, for example, supporting Secure boot and having attestable firmware.

Rule:

RMZDXV: It is permitted for a Trusted SCP to have a mechanism to bypass a PAS filter which filters its transactions.

4.7. Miscellaneous

Rule:

RDFYXL: In an RME system, any access by a requester and any instruction executed by a PE is

associated with a single Security state.

Rule:

RQDWVC: Either SSD or MSD controls Association of a Resource with a Resource PAS.

Rule:

RSCDLL: Once assigned, the value of an Access PAS cannot be altered.

Rule:

RWRGTF: Access to the Root PAS is only permitted for Trusted requesters.

Rule:

RWJNMD: Granule Protection Check for on-chip Resources can only rely on Granule Protection Tables that are stored on-chip or are stored off-chip with equivalent level of integrity and replay protection.

Rule:

RGQCQT: A Granule Protection Check that applies to non-idempotent locations does not permit any access to be speculatively performed to a non-idempotent location before the Granule Protection Check for the access is complete.

Specification Rule:

RMYWVB: Data is encrypted before being written to external memory or to any shared cache that resides past the PoPA.

Rule:

RBNSQB: An ECC-scrubbing engine located after the PoPA must not leak confidential information, for example through error record registers.

Rule:

RRHBJN: The Security state of a non-PE requester that is not a Trusted subsystem can be either Secure or Non-Secure state.

Rule:

RMCMSH: A fully coherent non-PE requester, which is not part of the System Security Domain (SSD), will not observe coherent traffic for addresses in the Secure, Realm, or Root PAS.

Rule:

RRGQRT: If a programmable completer-side PAS filter can assign resources to all physical address spaces then:

- The registers that control the filter are in the Root PAS.
- On an RME system reset, Resources controlled by the filter are either assigned to the Root PAS or are reset to a known value.

Rule:

RGLLZY: If a programmable completer-side PAS filter assigns resources only to the Secure PAS and Non-secure PAS then:

- The registers that control the filter are in the Secure PAS or in the Root PAS.
- On an RME system reset, Resources controlled by the filter are either assigned to the Secure PAS or the Root PAS or are reset to a known value.

Rule:

RJSDVG: All RME structures and fields use little-endian convention.

Rule:

RSPLKT: The address ranges of MSD SMEM are either defined statically or defined by SSD following an RME system reset.

Rule:

RZVQGS: The address ranges of SMEM assigned to the Realm PAS and Secure PAS are either defined statically or by SSD or MSD.

Rule:

RZCJHY: The access control path that protects SMEM is not affected by state from non-shielded memory.

Rule:

RXBKYB: All bus and interconnect decoding components between the point where the Access PAS is assigned and the PoPA are PAS tag aware.

Rule:

RLCXDB: Completion of a PoPA CMO for a given PA guarantees that both:

- Any dirty cached or transient state associated with the PA before the PoPA has been cleaned to after the PoPA.
- Any cached or transient state associated with the PA before the PoPA has been invalidated.

Rule:

RCMMDG: For any cache before the PoPA, cache prefetching across granule-boundary is allowed only after querying the GPC for the PAS association of the next granule.

Rule:

RPSGCM: A cache maintenance operation performed on a clean cache entry never results with a write of entry content past the PoPA.

Rule:

RKSPKN: Encryption keys used by MPE are stored in registers that are reset to a known default value on an RME system reset.

Rule:

RYHXPH: An MPE integrity error is reported as an external abort to a software or hardware agent consuming the error.

Rule:

RYJDSJ: Any captured details of an MPE integrity error are only visible to MSD.

Rule

RLPQSN: An MPE property that is reported through the System Properties structure in Root Non-volatile Storage (RNVS) is supported for all external memory ports in the system.

Rule:

RVDFYZ: A register that is located outside of the Root PAS but can affect a service provided by MSD must be implemented as a measurable register.

Rule:

RYLVDB: A measurable register is a write-lockable register that MSD has a trusted method to obtain its value.

Rule:

RRFSYB: An RME system propagates a 2-bit MPAM_SP field to all MSCs that are either a Four-space MSC or have a PARTID space mapper.

Rule:

RCFYBJ: An IMPLEMENTATION DEFINED property of an architecture extension, or an IMPLEMENTATION DEFINED difference between application PEs must not create an exposure that could break the RME security guarantee.

Rule:

RXKBNZ: PE behavior is UNPREDICTABLE when the following are true:

An IMPLEMENTATION DEFINED difference between application PEs is visible to software, for example through different System register values across PEs.

There is a mismatch between the register value assumed by software running on a PE and the actual hardware value of the PE.

An example where such mismatch could occur, is if software obtained the value by reading it on a

different PE.

Rule:

RLRQXZ: A software-initiated power state transition in an RME system at any level of the system hierarchy (PE, PE-cluster, System) is validated by MSD or by a Trusted subsystem.

Rule:

RWJVRX: Save/Restore operations for MSD PE context can only be done by MSD or a Trusted subsystem and use storage that is not accessible from Realm, Secure and Non-secure states.

Rule:

RMVZHF: Save/Restore operations for RMSD PE context can only be done by RMSD, MSD, or a Trusted subsystem and use storage that is not accessible from Secure and Non-secure states.

Rule:

RRCLYM: Save/Restore operations for PE context of Secure state can only be done by MSD or a Trusted subsystem or software running in the Secure state and use storage that is not accessible from Realm and Non-secure states.

Rule:

RGVJYZ: Any register that affects a system power policy or a hardware power mode is implemented as an MSD-Protected Register (MPR).

Rule:

RKYXMR: Any power management operation that can affect MSD state or the RME security guarantee must be validated by MSD or a Trusted subsystem.

Rule:

RHJHRL: On an RME system reset, all Trusted requesters and Trusted subsystems are reset. Any Trusted subsystem state that might include MSD or RMSD confidential information is reset to known values.

Rule:

RHLKZP: An RME system reset might propagate to any component that implements RAS [6] as an Error recovery reset.

Rule:

RSSGMJ: The reset of a system component that affects the RME security guarantee can only be controlled by MSD or a Trusted subsystem or driven by an RME system reset.

Rule:

RCKBGZ: A legacy completer is attached to an RME IP by driving the NS signal of the completer from PAS [0] of the RME IP.

Rule:

RYKSSD: A legacy requester is attached to an RME IP by driving PAS [0] of the RME IP from the NS signal of the legacy requester and driving PAS [1] of the RME IP to 0b0.