the overall accuracy on the test dataset for each dataset are as follows.

	Led	Nursery	Balance	Synthetic
Decision Tree	0.852	0.972	0.613	0.474
Random Forest	0.859	0.973	0.667	0.648

Classification method:

I use the Decision Tree with gini Index. For each value in each attribute, I split the current dataset and calculate the gini Index to find a best split. If all samples for a given node belongs to the same class, or there are no remaining attributes for split, or there are no samples left, then the tree can stop splitting. To classify a leaf which samples belong to more than one class, the majority voting is employed for prediction. For each testing sample, the tree will give a predicted value.

In Random Forest, I choose to use several Decision Tree to form a forest. I train each tree model using a subset of training set and a subset of attribute set. Models learn independently, and then use the vote majority to be the predicted value.

All model evaluation measures:

Decision Tree:

	Led		Nursery		Balance		Synthetic	
	train	test	train	test	train	test	train	test
accuracy	0.854	0.852	0.997	0.972	0.847	0.613	1.000	0.474
F1 score per class	0.767	0.765	0.995	0.959	0.448	0.0	1.000	0.472
	0.894	0.891	0.977	0.697	0.877	0.744	1.000	0.429
			0.997	0.982	0.869	0.644	1.000	0.495
			1.000	1.000			1.000	0.495
			0.666	0.000				

Random Forest:

	Led		Nursery		Balance		Synthetic	
	train	test	train	test	train	test	train	test
accuracy	0.859	0.859	0.998	0.973	0.872	0.667	1.000	0.648
F1 score per class	0.766	0.774	0.997	0.962	0.341	0.000	1.000	0.633
	0.899	0.860	0.978	0.719	0.896	0.728	1.000	0.607
			0.997	0.983	0.906	0.714	1.000	0.676
			1.000	1.000			1.000	0.670
			0.667	0.000				

Parameters:

The parameter I choose for Decision Tree:

No parameters.

The parameter I choose for Random Forest:

For the dataset 'synthetic.social', I choose to generate 20 trees, each tree will have a randomly sampled input which size is 90% of the original input. And each tree is randomly chosen 90 attributes for constructing. For other three datasets 'led', 'nursery', 'balance.scale', I choose to generate 10 trees, and each tree will have a randomly sampled input which size is 90% of the original input.

Reason: I think for larger dataset like 'synthetic.social', tree number should be more than the other three small dataset. And in order to save time, I choose to use 10 trees for three small datasets and 20 trees for synthetic dataset.

Conclusion:

The ensemble methods do improve the performance of the basic method I choose. Because ensemble methods add randomness, which can avoid the risk of overfitting compared with a single classification model. And with majority voting, multiple models together can to some extent rectify some prediction faults if one or some models have wrong prediction.