Computing Method Recitation Notes

Yu Xinrui

November 5, 2022

Knowledge Overview

- 1 Basic Notes about Arithmetric
- 2 Approximating Functions
 - Interpolation
 - Lagrange Interpolation
 - Newton Interpolation
 - Hermite Interpolation
 - spline
 - Fitting (Least-square fitting)
- 3 Solution of non-linear equation
 - Bisection
 - Newton's Iteration
 - Secant Method
 - Fixed-Point Iteration

Knowledge Overview

- 4 Solution of linear systems of equations
 - Elimination and Decomposition
 - Gauss Elimination
 - LU Decomposition
 - Iteration
 - Richardson
 - Jacobi
 - Gauss-Seidel
 - SOR
- 5 Numerical Differentiation and Integration
 - Numerical Differentiation
 - Newton Cotes
 - Gauss Integration

1. Basic Notes about Arithmetric

Absolute Error and Relative Error

Definition

Let x be a real number and x^* is its approximation, then the error is $x - x^*$. The absolute error is $\left| x - x^* \right|$ The relative error is $\left| \frac{x - x^*}{x} \right|$

Significant Digits

Definition

If the absolute error of x is no more than half of a certain digit, then the total number of digits from this digit to the first non-zero digit is called significance digits.

e.g.

1. Basic Notes about Arithmetric

Principle of value compututation:

- Avoid subtraction of nearly equal quantities.
- Minimize number of calculation.
- Avoid extremely small denominator.

Frequently used methods:

- Taylor expansion
- Sum to product formula
- Qin Jiu Shao Algorithm:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

$$=(\cdots(a_nx+a_{n-1})x+\cdots+a_1)x+a_0$$

Theorem on Polynomial Intepolation

If x_0, \dots, x_n are distinct real numbers, then for arbitrary values y_0, \dots, y_n , there is a unique polynomial p_n of degree at most n such that $p_n(x) = y_i, 0 \le i \le n$

Lagrange intepolation

A table of data pairs (x_i, y_i) , $0 \le i \le n$, the Lagrange interpolation polynomial of order n has the form:

$$p(x) = y_0 l_0(x) + y_1 l_1(x) + \cdots + y_n l_n(x) = \sum_{i=0}^n y_i l_i(x)$$

where the lagrange bases function:

$$l_i(x) = \prod_{j=0, j\neq i}^n \frac{x - x_j}{x_i - x_j}$$

Newton intepolation

$$p(x) = \sum_{k=0}^{n} f[x_0, x_1, \cdots, x_k] \prod_{j=0}^{k-1} (x - x_j)$$

 To calculate Newton interpolation polynomial, use Divided Difference Method

Theorem on Polynomial Intepolation Error

Let f be a function in $C^{n+1}[a,b]$, and let p be the polynomial of degree at most n that intepolates the function f at n+1 distinct points x_0, \dots, x_n in the interval [a,b]. To each x in [a,b] there corresponds a point ξ_x in (a,b) such that

$$f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) \prod_{i=0}^{n} (x - x_i)$$
 (1)

Hermite interpolation

Theorem on Hermite Interpolation

Let the nodes be x_0, x_1, \dots, x_n , and suppose that at node x_i these interpolation condition are given:

$$p^{(j)}(x_j) = c_{ij}, (0 \le j \le k_i - 1, = \le j \le n)$$

The total number of conditions on p is denoted by m+1, and therefore

$$m+1=k_0+k_1+\cdots,k_n$$

Then there exists a unique polynomial p in \prod_m satisfying the Hermite interpolation conditions.

 To calculate Hermite interpolation polynomial, use Divided Difference Method

• 3-spline

Suppose there are n+1 nodes on [a,b], to derive cubic polynomial on n intervals, we need 4n conditions. By definition of spline interpolation, we still need n+1 function values and 2 boundary conditions. To calculate M_i on n-1 inner nodes, there are two common cases:

(1) 给定 M_0, M_n 的值, 此时 n-1 个方程组有 n-1 个未知量 $\left\{M_i, i=1,2,\cdots,n-1\right\}$. 当 $M_0=0, M_n=0$ 时, 称为自然边界条件.

$$\begin{bmatrix} 2 & \lambda_1 & & & & \\ \mu_2 & 2 & \lambda_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & \lambda_{n-2} & 2 & \lambda_{n-2} \\ & & & \mu_{n-1} & 2 \end{bmatrix} \quad \begin{bmatrix} M_1 \\ M_2 \\ \vdots \\ M_{n-2} \\ M_{n-1} \end{bmatrix} = \begin{bmatrix} d_1 - \mu_1 M_0 \\ d_2 \\ \vdots \\ d_{n-2} \\ d_{n-1} - \lambda_{n-1} M_n \end{bmatrix}$$

(2) 给定 $S'(x_0)=m_0, S'(x_n)=m_n$ 的值, 将 $S'(x_0)=m_0, S'(x_n)=m_n$ 的值分 别代入 S'(x) 在 $[x_0,x_1]$, $[x_{n-1},x_n]$ 中的表达式, 得到另外两个方程:

$$2M_0 + M_1 = \frac{6}{h_0} [f[x_0, x_1] - m_0] = d_0$$

$$M_{n-1}+2M_n=\frac{6}{h_{n-1}}[m_n-f[x_{n-1},x_n]]=d_n$$

得到 n+1 个未知量, n+1 个方程组

$$\begin{bmatrix} 2 & 1 & & & & & \\ u_1 & 2 & \lambda_1 & & & & \\ & u_2 & 2 & \lambda_2 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & u_{n-2} & 2 & \lambda_{n-1} \\ & & & & 1 & 2 \end{bmatrix} \begin{bmatrix} M_0 \\ M_1 \\ M_2 \\ \vdots \\ M_{n-1} \\ M_n \end{bmatrix} = \begin{bmatrix} d_0 \\ d_1 \\ d_2 \\ \vdots \\ d_{n-1} \\ d_n \end{bmatrix}$$

$$\begin{split} \lambda_i &= \frac{h_i}{h_i + h_{i-1}}, \quad \mu_i = 1 - \lambda_i \\ d_i &= \frac{6}{h_i + h_{i-1}} \left(\frac{y_{i+1} - y_i}{h_i} - \frac{y_i - y_{i-1}}{h_{i-1}} \right) = 6 f(x_{i-1}, x_i, x_{i+1}) \end{split}$$

Then, use

$$S_i(x) = \frac{(x_{i+1} - x)^3}{6h_i} M_i + \frac{(x - x_i)^3}{6h_i} M_{i+1} + c(x_{i+1} - x) + d(x - x_i)$$

where $c = \frac{y_i}{h_i} - \frac{h_i M_i}{6}$, $d = \frac{y_{i+1}}{h_i} - \frac{h_i M_{i+1}}{6}$, $i = 0, 1, \dots, n-1$ to obtain interpolation polynomials.

2. Approximating Functions-Fitting

Least-Square problem on function fitting

Definition

Let f(x) is a function on [a,b], $x_{i=0}^m$ be m+1 distinct nodes on the [a,b], Φ be a given class of functions. Find function ϕ on Φ such that f(x) and $\phi(x)$ are closest on the m+1 nodes. If the distance is measured by 2-norm, then it is least-square problem. i.e. $R = \sqrt{\sum_{i=0}^m (\phi(x_i) - f(x_i))^2}$ is minimized.

• If Φ is polynomial space, it is the well-known polynomial fitting.

To find fitting polynomial in this way, we form the normal equation:

$$\begin{pmatrix} m & \sum_{i=1}^{m} x_{i} & \cdots & \sum_{i=1}^{m} x_{i}^{n} \\ \sum_{i=1}^{m} x_{i} & \sum_{i=1}^{m} x_{i}^{2} & \cdots & \sum_{i=1}^{m} x_{i}^{n+1} \\ \vdots & \vdots & & \vdots \\ \sum_{i=1}^{m} x_{i}^{n} & \sum_{i=1}^{m} x_{i}^{n+1} & \cdots & \sum_{i=1}^{m} x_{i}^{2n} \end{pmatrix} \begin{pmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{n} \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{m} y_{i} \\ \sum_{i=1}^{m} x_{i} y_{i} \\ \vdots \\ \sum_{i=1}^{m} x_{i} y_{i} \\ \vdots \\ \sum_{i=1}^{m} x_{i}^{n} y_{i} \end{pmatrix}$$

2. Approximating Functions-Fitting

Contradictory Equations and least-squqre solution

Explanation

A system of m equations of n unknows is: $A\alpha = Y$, if $m \ge n$, then it has no solution. The least-square solution of it is the x that minimizes $\|Y - A\alpha\|^2$. Such x is given by $A^*A\alpha = A^*Y$, which are normal equations.

$$A = \begin{pmatrix} 1 & x_1 & \cdots & x_1^n \\ 1 & x_2 & \cdots & x_2^n \\ \vdots & \vdots & & \vdots \\ 1 & x_m & \cdots & x_m^n \end{pmatrix}, \quad \alpha = \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

3. Solution of non-linear equations

- Bisection
- Newton's Iteration

Derived from Taylor's expansion, the form of Newton's Iteration writes:

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k)}$$

which is of 2-order convergence if x is simple root, and 1-order if x is multiple root in most cases. If x is of multiplicity p, then the form:

$$x_{k+1} = x_k - p \frac{f(x_k)}{f(x_k)}$$

is of 2-order.

Secant Method

To avoid use of f(x), replace newton's method by:

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

Fixed-point iteration

The iteration has the form:

$$x_{k+1} = \varphi(x_k)$$

Definition of Contractive Mapping

A mapping φ is called contractive if there exists $\lambda < 1$ such that $|\varphi(x) - \varphi(y)| \le \lambda |x - y|$ for all x,y in the domain of φ .

Theorem on contractive mapping

Let C be a closed set on real line. If φ is a contractive mapping of C into C, then it has a unique fixed point. And the fixed-point iteration is convergent from any starting point in C.

Remark: This is another way to describe the theorem 3.1 in the textbook.

- Gauss Elimination $-O(n^3)$
- LU Decomposition –Find lower triangular L and upper triangular U such that A=LU. (Not unique)

Doolittle: $l_{ii} = 1$. Crout: $u_{ii} = 1$. Cholesky: $U = L^T$

Theorem 1 (sufficient condition)

If all n leading principal minors of the $n\times n$ matrix A are nonsingular, then A has an LU-decomposition

Theorem 2

If A is a real, symmetric, and positive definite matrix, then it has a unique factorization, $A = LL^T$, in which L is lower triangular with a positive diagonal.

Remark: Gauss elimination is LU decomposition in essence.

Diagonally Diminant Matrices:

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|, (1 \le i \le n)$$

Theorem 3

Gauss elimination without pivoting preserves the diagonal dominance of a matrix.

Corollary

Every diagonally dominant matrix is nonsingular and has an LU-factorization

Vector norms:

$$\|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|$$

$$\|x\|_1 = \sum_{i=1}^n |x_i|$$

Matrix norms(Defined after vector norm):

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$

3
$$||A||_2 = \sqrt{\rho(A^T A)}$$

Condition number: $\kappa(A) = ||A|| ||A^{-1}||$

Theorem on bounds involving condition number

In solving systems of equations Ax=b, the condition number $\kappa(A)$, turbulence and solution satisfies:

$$\frac{1}{\kappa(A)} \frac{\|r\|}{\|b\|} \le \frac{\|e\|}{\|x\|} \le \kappa(A) \frac{\|r\|}{\|b\|}$$

Iteration method

Introduce splitting matrix Q, and the system of linear equations Ax = b can be written as: Qx = (Q - A)x + b. If Q is nonsingular, then there is iteration formula: $x^{(k+1)} = (I - Q^{-1}A)x^k + Q^{-1}b$ Generally, an iteration method has the form: $x^{(k+1)} = Gx^{(k)} + c$,

Theorem 4 (Sufficient Condition)

If $\|I - Q^{-1}A\| < 1$ then the iteration converges from any starting point $x^{(0)}$.(Proof)

Theorem 5 (Sufficient and necessary)

In order that the iteration formula:

$$x^{(k+1)} = Gx^{(k)} + c$$

produce a sequence converging to $(I-G)^{-1}c$, for any starting vector $x^{(0)}$, it is necessary and sufficient that $\rho(G) < 1$.

	Splitting mtx	Iteration mtx
Jacobi	D	$I - D^{-1}A = -D^{-1}(L + U)$
Gauss-Seidel	D+L	$-(D+L)^{-1}U$
SOR	$\frac{1}{\omega}D+L$	$(D+\omega L)^{-1}((1-\omega)D-\omega U)$

SOR Iteration

If we view Gauss-Seidel iteration as: $x^{(k+1)} = x^{(k)} - D^{-1}r^{(k)}$, then we want to modify the item $-D^{-1}r^{(k)}$, so that the formula can converge faster. Introduce ω , SOR iteration has the form:

$$x^{(k+1)} = x^{(k)} - \omega D^{-1} r^{(k)}$$

Jacobi:

$$\begin{cases} x_1^{(k+1)} = -\frac{1}{a_{11}} (a_{12} x_2^{(k)} + \dots + a_{1n} x_n^{(k)} - b_1) \\ x_2^{(k+1)} = -\frac{1}{a_{22}} (a_{21} x_1^{(k)} + a_{23} x_3^{(k)} + \dots + a_{2n} x_n^{(k)} - b_2) \\ x_3^{(k+1)} = -\frac{1}{a_{33}} (a_{31} x_1^{(k)} + a_{32} x_2^{(k)} + a_{34} x_4^{(k)} + \dots + a_{3,n} x_n^{(k)} - b_3) \\ \vdots \\ x_n^{(k+1)} = -\frac{1}{a_{2n}} (a_{n1} x_1^{(k)} + a_{n2} x_2^{(k)} + \dots + a_{n,n-1} x_{n-1}^{(k)} - b_n) \end{cases}$$

Gauss-Seidel:

$$\begin{cases} x_1^{(k+1)} = -\frac{1}{a_{11}}(a_{12}x_2^{(k)} + \dots + a_{1n}x_n^{(k)} - b_1) \\ x_2^{(k+1)} = -\frac{1}{a_{22}}(a_{21}x_1^{(k+1)} + a_{23}x_3^{(k)} + \dots + a_{2n}x_n^{(k)} - b_2) \\ x_3^{(k+1)} = -\frac{1}{a_{33}}(a_{31}x_1^{(k+1)} + a_{32}x_2^{(k+1)} + a_{34}x_4^{(k)} + \dots + a_{3,n}x_n^{(k)} - b_3) \\ \vdots \\ x_n^{(k+1)} = -\frac{1}{a_{an}}(a_{n1}x_1^{(k+1)} + a_{n2}x_2^{(k+1)} \dots + a_{n,n-1}x_{n-1}^{(k+1)} - b_n) \end{cases}$$

SOR:

$$\begin{cases} x_1^{(k+1)} = x_1^{(k)} - \frac{\omega}{a_{11}} (a_{11}x_1^{(k)} + a_{12}x_2^{(k)} + \dots + a_{1n}x_n^{(k)} - b_1) \\ x_2^{(k+1)} = x_2^{(k)} - \frac{\omega}{a_{22}} (a_{21}x_1^{(k+1)} + a_{22}x_2^{(k)} + a_{23}x_3^{(k)} + \dots + a_{2n}x_n^{(k)} - b_2) \\ x_3^{(k+1)} = x_3^{(k)} - \frac{\omega}{a_{23}} (a_{31}x_1^{(k+1)} + a_{32}x_2^{(k+1)} + a_{33}x_3^{(k)} + \dots + a_{3,n}x_n^{(k)} - b_3) \\ \vdots \\ x_n^{(k+1)} = x_n^{(k)} - \frac{\omega}{a_{2n}} (a_{n1}x_1^{(k+1)} + a_{n2}x_2^{(k+1)} \dots + a_{n,n-1}x_{n-1}^{(k+1)} + a_{nn}x_n^{(k)} - b_n) \end{cases}$$

Theorem on Convergence 1

If A is diagonally dominant, then Jacobi and Gauss-Seidel converges from any starting point.

Theorem on Convergence 2

If A is real, symmetric and positive definite, then SOR converges from any starting point for any 0 $<\omega<$ 2.(Including Gauss-Seidel)