Quenched topological susceptibility.

Jaime Fabián Nieto Castellanos

July 14, 2021

We show results of χ_T^{que} obtained by using the HMC algorithm for pure gauge theory. We used square lattices of dimensions $L \times L$. We also compare the values with χ_T^{que} computed in ref. [1] and with the analytic result by Seiler [2], which states that in infinite volume

$$\chi_T^{\text{que}} = \frac{g^2}{4\pi^2} = \frac{1}{4\beta\pi^2}.$$
 (1)

Figure 1: Quenched topological susceptibility. For $\beta=2$ and 3 we performed 10^4 measurements separated by 10 sweeps. For $\beta=4$ we performed 10^4 measurements separated by 10^2 sweeps. For $\beta=5,5.5,6,6.5,7,7.5$ and 8, 10^4 measurements separated by 10^3 sweeps were performed. For $\beta=8.5,9,9.5$ and $10,10^4$ measurements separated by 10^4 sweeps were performed.

β	$\chi_T^{ m que}eta$
2	0.0389(2)
3	0.0335(3)
4	0.0304(2)
5	0.0286(2)
5.5	0.0281(2)
6	0.0279(1)
6.5	0.0277(1)
7	0.02789(1)
7.5	0.0273(3)
8	0.0274(4)
8.5	0.0271(6)
9	0.0285(10)
9.5	0.0289(21)
10	0.0347(22)
	(/

Table 1: Results of $\chi_T^{\text{que}}\beta$ for different β values obtained with pure gauge theory simulations. The values of $\chi_T^{\text{que}}\beta$ are an average of the results shown in fig. 1.

A fit of the form $\chi_T^{\text{que}}\beta=a+b/\beta$, restricted to $10>\beta\geq 5$, yields $\chi_T^{\text{que}}\beta=0.0263(5)$ in the continuum, see fig. 2. In fig. 3 we show the autocorrelation time of the topological charge, for different β values and L=64.

Figure 2: $\chi_T^{\text{que}}\beta$ vs. $1/\beta$. We used the data from Table 1 to perform a fit of the form $\chi_T^{\text{que}}\beta = a + b/\beta$. The fit parameters are a = 0.0263(5), b = 0.0106(31).

Figure 3: Exponential and integrated autocorrelation times of the topological charge for different β values and L=64.

For $\beta = 8.5, 9, 9.5$ and 10, the autocorrelation times are much higher and we mention their values in Table 2, instead of plotting them.

β τ_{ovp} τ_{inc}	
eta $ au_{ m exp}$ $ au_{ m in}$	τ
8.5 37.365 41.1	79
9 54.598 73.1	86
9.5 316.522 200.4	184
10 1120.638 659.7	711

Table 2: Exponential and integrated autocorrelation times for $\beta = 8.5, 9, 9.5$ and 10.

References

- [1] I. Bautista, W. Bietenholz, A. Dromard, U. Gerber, L. Gonglach, C. P. Hofmann, H. Mejía, and M. Wagner, *Phys. Rev. D* **92** (2015)
- [2] E. Seiler, *Phys. Lett. B* **525** (2002).
- [3] S. Dürr and C. Hoelbling. *Phys. Rev. D* **71** (2005).