CPU-Rollenspiel - Programm "Fibonacci-Zahlen"

Ausgangslage

Das **Programm** liegt im Speicher ab Speicherzelle 0 (Anfang)

Die Daten liegen im Speicher ab Speicherzelle 100:

OUT (102)

Speicherplatz mit Adresse 100 enthält die Anzahl der geplanten Durchläufe (z.B. die Zahl 3) Speicherplatz mit Adresse 101 enthält die Zahl 1 Speicherplatz mit Adresse 102 enthält die Zahl 1

Programm (Assemblersprache)

```
# Anzahl der geplanten Durchläufe aus Speicherzelle 100 holen
LOAD (100) ->D
#Sprungmarke (Speicheradresse merken)
loop:
# Die beiden vorherigen F-Zahlen aus dem Speicher (Zellen 101 und 102) holen
LOAD (101) -> A
LOAD (102) -> B
# Addieren der Register A und B, Resultat im Register C speichern
ADD A,B -> C
# Erste Fibonacci-Zahl mit der zweiten überschreiben
LOAD (102) -> A
LOAD A -> (101)
# register C als zweite Zahl speichern
LOAD C-> (102)
# Anzahl verbleibende Durchläufe um 1 reduzieren ("dekrementieren")
# wenn register D noch nicht gleich null -> zur Sprungmarke "loop" springen
JMPDNZ loop:
# Resultat ausgeben (z.B. auf Display)
```

Programm (Maschinensprache)

Adresse (Bin)	Adresse (Dec)	Inhalt (Bin)	Inhalt (Dec)
0000 0000	0	0000 0010	2
0000 0001	1	0110 0100	100
0000 0010	2	0000 0000	0
0000 0011	3	0110 0101	101
0000 0100	4	0000 0001	1
0000 0101	5	0110 0110	102
0000 0110	6	0000 0005	5
0000 0111	7	0000 0000	0
0000 1000	8	0110 0110	102
0000 1001	9	0000 0011	3
0000 1010	10	0110 0101	101
0000 1011	11	0000 0100	4
0000 1100	12	0110 0110	102
0000 1101	13	0000 0110	6
0000 1110	14	0000 0111	7
0000 1111	15	0000 0010	2
0001 0000	16	0000 1000	8
0001 0001	17	0110 0110	102

Daten (Anfangszustand)

0110 0100	100	0000 0011	3	
0110 0101	101	0000 0001	1	Erste Fibonacci-Zahl
0110 0110	102	0000 0001	1	Zweite Fibonacci-Zahl