Ejercicios semanas 7 y 8

21 de marzo de 2017

1. Si

 $\psi:V\to W$

es un morfismo de representaciones, entonces

- $\ker(\psi) \subseteq V$ es G-invariante.
- $\operatorname{im}(\psi) \subseteq W$ es G-invariante.
- 2. Sea $W = \langle e_1, e_2, e_3 \rangle$ y considere a W como una S_3 representacion, donde la accion de S_3 son las premutaciones de los elementos e_1, e_2 y e_3 . Descomponga W en subespacios irreducibles.
- 3. Hacer los siguientes ejercicios de las notas "Invariant Theory with Applications" de Jan Draisma y Dion Gijswijt:
 - **4.2.1**
 - **4.2.4**
 - **4.2.3**
- 4. Hacer el siguiente ejercicio de las notas "Invariant Theory with Applications" de Jan Draisma y Dion Gijswijt:
 - **3.1.2**
- 5. Sean V, U un par de G-representaciones, v_1, \dots, v_n una base para V y el operador lineal

$$<,>: U^* \otimes V \to \text{hom}(U,V)$$

 $\phi \otimes v \mapsto (u \mapsto \phi(u)v).$

- . Demostrar lo siguiente:
- a) Usando la base anterior pruebe que $\rho^*(g) = \rho(g^{-1})^t$.
- $b) < \rho^*(g)(\phi), \rho(g)v > = <\phi, v >.$
- c) Sean A,B dos G-representaciones. Demuestre que $\hom(A,B)$ tambien es una representacion mediante

$$\overline{\rho}(g)(\phi) := \rho_B(g^{-1}) \circ \phi \circ \rho_A(g)$$

- d) Demuestre que $\overline{\rho}(g)$ es isomorfa como representacion a $A^* \otimes B$.
- e) Demuestre que si B=k (i.e. $\dim(B)=1$) entonces $\hom(A,B)\cong A^*$ como representaciones.
- 6. Sea $f:G\to\mathbb{C}$ una función. Si

$$\psi_V := \frac{1}{|G|} \sum_{g \in G} f(g) \rho(g)$$

es un morfismo de representaciones para todo V, entonces f es una funcion de clase.

7. Sea V una G-representacion irreducible, y defina

$$h_{i,j}: G \to \mathbb{C}$$

 $g \mapsto [\rho(g)]_{ij}.$

Demuestre que

$$\langle h_{ij} : 1 \le i, j \le \dim(V), \ V \in \operatorname{rep}(G) \rangle = \operatorname{Fun}(G, \mathbb{C}).$$

8. Construya geométricamente las $S_4\text{-representaciones}\ V$ y W que estan dadas por los caracteres

	е	$(1\ 2)$	$(1\ 2\ 3)$	$(1\ 2)(2\ 3)$	$(1\ 2\ 3\ 4)$
V	3	-1	0	-1	1
W	3	1	0	-1	1

9. Calcule la tabla de caracteres de S_5 .