MATH 3424 Tutorial

October 30, 2020

1 Review

Chapter 2 Sec 1 one categorical variable.

2 Exercises

Using the following data set

group									number	mean	variance
A_1	1600	1610	1650	1680	1700	1700	1780		n, 7	1674.286	3795.238
A_2	1500	1640	1400	1700	1750				re 5	1598	21020
A_3	1640	1550	1600	1620	1640	1600	1740	1800	ng 8	1648.75	6669.643
A_4	1510	1520	1530	1570	1640	1600			n á 6	1561.667	2616.667

The overall sample variance is 8633.385.

1. Write down a one-way classification model (a model in terms of population means of group) for the analysis of the above data set. Define the variables clearly.

Let
$$y_{ij}$$
 be the j^{th} observation in the j^{th} level. let y_{ij} experiment error. $y_{ij} = y_{i} + y_{i}$, $y_{i} = y_{i} + y_{i}$.

2. Estimate the unknown parameters in (1).

$$\hat{\mu}_{i} = \overline{y}_{i}.$$

$$RSS = \sum_{i=1}^{4} (n_{i}-1) \cdot S_{i}^{2} = 166622.3.$$

$$\hat{\sigma}^{2} = \frac{RSS}{26-4} = 7573.739.$$

3. Test all population means of groups are equal at $\alpha=0.05$. Write down the test statistic, the critical value and your conclusion clearly.

TSS =
$$(\Sigma n_i - i) \cdot S_y^2 = 215834.6$$
.

$$SSA = TSS - RSS = 49212.35$$

$$F_{obs} = \frac{SSA/3}{RSS/22} = 2.165921.$$

$$F_{0.05}(3,22) = 3.049125$$

4. Test population means of group A_1 and A_4 are equal at $\alpha = 0.05$. Write down the test statistic, the critical value and your conclusion clearly.

$$\hat{\mu}_1 - \hat{\mu}_4 = 112.619$$

$$\hat{V}_{ar}(\hat{\mu}_{i}-\hat{\mu}_{a})=\hat{\sigma}^{2}(\frac{1}{n_{i}}+\frac{1}{n_{4}})=2344.253$$

$$t_{obs} = \frac{\hat{\mu}_i - \hat{\mu}_a}{\text{sel}\hat{\mu}_i - \hat{\mu}_a} = 2.32 \text{ b}.$$

$$t_{0.025,23} = 2.073873.$$
 | $t_{0.025,22}$