Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ»

Кафедра интеллектуальных информационных технологий	17	i	<u> </u>
	Кафедра интеллект	vальных информа	шионных технологии

Отчет по лабораторной работе №2 по курсу «МРЗвИС» на тему: «Реализация модели решения задачи на ОКМД архитектуре»

Выполнили студенты:Плявго Д. А.группа 821701Макарчук Е. В.

Проверил: Крачковский Д. Я.

МИНСК 2020

Цель:

Реализовать и исследовать модель решения на ОКМД архитектуре задачи вычисления матрицы значений.

Постановка задачи:

Дано: сгенерированные матрицы **A, B, E, G** заданных размерностей **pxm, mxq, 1xm, pxq** соответственно со значениями в диапазоне [-1;1].

$$c_{ij} = \bigwedge_{k} f_{ijk} * (3 * g_{ij} - 2) * g_{ij} + \left(\bigvee_{k} d_{ijk} + \left(4 * \left(\bigwedge_{k} f_{ijk} \right) - 3 * \bigvee_{k} d_{ijk} \right) - 3 * \bigvee_{k} d_{ijk} \right) * (1 - g_{ij})$$

$$f_{ijk} = \left(a_{ik} - b_{kj} \right) * (2 * e_{k} - 1) * e_{k} + \left(b_{kj} - a_{ik} \right) * \left(1 + \left(4 * \left(a_{ik} - b_{kj} \right) - 2 \right) * e_{k} \right) * (1 - e_{k})$$

$$d_{ijk} = a_{ik} \wedge b_{kj}$$

Вариант 11:

Получить: С - матрицу значений соответствующей размерности рхд.

Описание модели:

Была реализована модель решения на ОКМД архитектуре задачи вычисления матрицы значений. Возможность самостоятельно устанавливать все параметры, необходимые для работы модели, позволяет детально исследовать разработанную модель, установить зависимости между вышеуказанными параметрами.

- **T**₁ время выполнения программы на одном процессорном элементе. Данный параметр вычисляется следующим образом: подсчитывается количество вызовов той или иной операции, а затем полученное значение умножается на время данной операции. Данное действие повторяется для всех операций, в итоге все значения суммируются.
- **T**_n время выполнения программы на n-количестве процессорных элементов. Параметр вычисляется схожим путём, что и T₁: осуществляется поиск операций, которые можно считать на различных процессорах. Для подсчета времени на выполнение такой операции находится количество вызовов данной операции и делится на количество процессорных элементов.
- **К**_у **-** коэффициент ускорения равен ${}^{T_1}/{}_{T_n}$.

- **e** эффективность равна ${}^{K_y}/{}_n$.
- **D** коэффициент расхождения программы, $D = \frac{L_{\Sigma}}{L_{cp}}$. Где, L_{Σ} суммарная длина программы и равна T_n . L_{cp} средняя длина программы. Вычисляется путем подсчета количества вызовов операций на различных ветвях выполнения программы. Имея, количества вызовов операций, выполняющихся на ветвях программы, и их время выполнения, считаем данную величину.

Исходные данные:

- **p, m, q** размерность матриц;
- **n** количество процессорных элементов в системе;
- t_i время выполнения і операции над элементами матриц;
- матрицы **A, B, E, G,** заполненные случайными вещественными числами в диапазоне [-1;1].

Выполнение задания:

Рисунок 1. Результат работы программы

Построение графиков:

Обозначения:

- $K_{\nu}(\mathbf{n},\mathbf{r})$ коэффициент ускорения;
- e(n, r) эффективность;
- D(n,r) коэффициент расхождения программы;
- ${\bf n}$ количество процессорных элементов в системе (совпадает с количеством этапов конвейера);
- **r** ранг задачи (количество объектов, которые в процессе решения задачи могли бы обрабатываться параллельно);

Графики построены на практических значениях, полученных после последовательных выполнений программы с разными входными данными.

Ответы на вопросы:

<u> 1 Bonpoc:</u>

Проверить, что модель создана верно: программа работает правильно.

Ответ:

Проверка правильности работы программы:

Исходные данные				
Время о	пераций	<u>Значения п</u>	<u>еременных</u>	
Сумма	1	т	2	
Разность	1	р	2	
Произведение	1	q	2	
Сравнение	1	Кол-во	3	
Деление	1	процессорных элементов (п)		

A (p x m)		B (m x q)	
-0.6965	0.0351	0.8381	0.4418
0.5096	-0.53	0.0536	-0.1167
E (1 x m)		G (p x q)	
-0.3201	0.2708	0.5543	0.6251
		-0.7482	-0.0171

Полученная матрица				
C (p x q)				
0,169916	-0,182872			
3,4592	0,468755			

Вывод:

Программа работает верно.

2 Bonpoc:

Объяснить на графиках точки перегиба и асимптоты.

Ответ:

<u>Для графика зависимости коэффициента ускорения (К_V) от ранга задачи (r):</u>

Асимптотой является прямая $K_y = n$, такого значения она достигает в точках, где ширина векторного параллелизма становится кратной числу процессорных элементов. При фиксированном значении процессорных элементов и при устремлении ранга задачи к бесконечности, ОКМД архитектура будет работать быстрее не более, чем в n раз, по сравнению с последовательной системой.

<u>Для графика зависимости коэффициента ускорения (К_у) от количества</u> <u>элементов (п):</u>

Асимптотой графика, исходя из значений графика, является прямая, параллельная оси абсцисс, то есть прямая, заданная при $K_y = r$. Точки перегиба появляются тогда, когда ширина векторного параллелизма становится кратной числу процессорных элементов, при достижении этого значения коэффициент ускорения перестает расти.

<u>Для графика зависимости эффективности (е) от ранга задачи (r):</u>

Прямая e=1 будет являться асимптотой, так как эффективность не может быть больше 1 в данном случае, а при увеличении ранга задачи эффективность возрастает.

<u>Для графика зависимости эффективности (е) от количества элементов (п):</u>

Прямая e=0 будет являться асимптотой. Так как задача с фиксированным рангом содержит фиксированное количество операций, которые необходимо выполнить, а эффективность показывает долю работы одного процессорного элемента, то при большом количестве процессорных элементов эффективность стремится к нулю.

<u>Для графика зависимости коэффициента расхождения программы (D) от ранга</u> <u>задачи (r):</u>

При увеличении ранга задачи, значение расхождения программы увеличивается.

<u>Для графика зависимости коэффициента расхождения программы (D) от количества элементов (n):</u>

При увеличении количества элементов, значение расхождения программы стремится к 1.

3 Bonpoc:

Спрогнозировать, как изменится вид графиков при изменении параметров модели; если модель позволяет, то проверить на ней правильность ответа.

Ответ:

Если увеличивается ранг задачи r, то:

- *Коэффициент ускорения* увеличивается до определенного момента, пока не дорастет до своей асимптоты. Затем коэффициент остается постоянным.
- <u>Эффективность</u> возрастает.
- Коэффициент расхождения программы возрастает.

Если увеличивается количество процессорных элементов n, то:

- <u>Коэффициент ускорения</u> увеличивается до своей асимптоты, а именно $K_v = r$. Затем коэффициент остается постоянным.
- $3\phi\phi e k m u B h o c m b$ убывает до асимптоты e = 0.
- *Коэффициент расхождения программы* убывает до асимптоты D = 1.

Вывод:

В результате выполнения лабораторной работы была реализована и исследована ОКМД модель для решения задач вычисления матрицы значений. Реализованная модель была проверена на работоспособность и правильность получаемых результатов. Данная модель позволяет ускорить процесс вычисления результата для числовых векторов, по сравнению с последовательной системой. Были исследованы характеристики конвейерной архитектуры: коэффициент ускорения, коэффициент расхождения программы и эффективность.