Titen HD® Heavy-Duty Screw Anchor

Titen HD Anchor Product Data — Mechanically Galvanized

Size	Model	Thread	Drill Bit	Wrench	Quantity		
(in.)	No.	Length (in.)	Diameter (in.)	Size (in.)	Box	Carton	
% x 3	THD37300HMG	21/2			50	200	
3% x 4	THD37400HMG	31/2	7	0/	50	200	
% x 5	THD37500HMG	41/2	3/8	⁹ / ₁₆	50	100	
3% x 6	THD37600HMG	51/2			50	100	
½ x 4	THD50400HMG	31/2			20	80	
½ x 5	THD50500HMG	41/2			20	80	
½ x 6	THD50600HMG	5½	1,	2/	20	80	
½ x 6½	THD50612HMG	51/2	1/2	3/4	20	40	
½ x 8	THD50800HMG	5½			20	40	
½ x 12	THD501200HMG	51/2			5	20	
% x 5	THDB62500HMG	41/2			10	40	
% x 6	THDB62600HMG	51/2	5/8	¹⁵ / ₁₆	10	40	
% x 6½	THDB62612HMG	5½	78	1916	10	40	
% x 8	THDB62800HMG	51/2			10	20	
3⁄4 x 5	THD75500HMG	41/2			5	20	
3/4 x 6	THDT75600HMG	41/2	3/4	11/	5	20	
3/4 x 81/2	THD75812HMG	51/2		11/8	5	10	
3/4 x 10	THD75100HMG	51/2			5	10	

Mechanical galvanizing meets ASTM B695, Class 65, Type 1. Intended for some pressure-treated wood sill plate applications. Not for use in other corrosive or outdoor environments. See p. 261 or visit strongtie.com/info for more corrosion information.

Titen HD Installation Information and Additional Data¹

	0	11-2-				Nor	minal And	hor Dian	neter, d _a	(in.)			
Characteristic	Symbol	Units	!	/4	3	/s	1	2	5	/8		3/4	
		,	Installa	tion Info	rmation		,		'		,		
Drill Bit Diameter	d _{bit}	in.	1	/4	3	/8	1,	/2	5,	/8		3/4	
Baseplate Clearance Hole Diameter	d_{c}	in.	3	/8	1,	/2	5	8	3	V ₄	7/8		
Maximum Installation Torque	T _{inst,max}	ftlbf	2	4 ²	5	O ²	6	5 ²	10)0 ²		150 ²	
Maximum Impact Wrench Torque Rating	T _{impact,max}	ftlbf	12	25 ³	150 ³ 340 ³ 340 ³ 385 ³								
Minimum Hole Depth	h _{hole}	in.	13/4	2%	23/4	31/2	33/4	41/2	41/2	6	41/2	6	63/4
Nominal Embedment Depth	h _{nom}	in.	1%	21/2	21/2	31/4	31/4	4	4	5½	4	51/2	61/4
Critical Edge Distance	Cac	in.	3	6	211/16	3%	3%16	41/2	41/2	6%	6	6%	75/16
Minimum Edge Distance	C _{min}	in.	1	1/2					13/4				
Minimum Spacing	Smin	in.	1	1/2				3			23/4		3
Minimum Concrete Thickness	h _{min}	in.	31/4	31/2	4	5	5	61/4	6	81/2	6	83/4	10
			Ad	ditional [)ata								
Anchor Category	Category	_						1					
Yield Strength	f _{ya}	psi	100	,000					97,000				
Tensile Strength	f _{uta}	psi	125	,000					110,000				
Minimum Tensile and Shear Stress Area	Ase	in ²	in ² 0.042 0.099 0.183 0.276 0.41				0.414						
Axial Stiffness in Service Load Range — Uncracked Concrete	β_{uncr}	lb./in.	./in. 202,000 672,000										
Axial Stiffness in Service Load Range — Cracked Concrete	β_{cr}	lb./in.	173,000 345,000										

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 and ACI 318-11 Appendix D.
- 2. T_{inst,max} is the maximum permitted installation torque for the embedment depth range covered by this table using a torque wrench.
- 3. T_{impact,max} is the maximum permitted torque rating for impact wrenches for the embedment depth range covered by this table.

Titen HD® Design Information — Concrete

Titen HD Tension Strength Design Data¹

Characteristic	Symbol	Units				Non	ninal And	hor Dia	meter, d _a	(in.)			
Gliai acteristic	Зунион	Ullits	1	1/4 3/8		1	/2	5	%		3/4		
Nominal Embedment Depth	h _{nom}	in.	1%	21/2	21/2	31/4	31/4	4	4	5½	4	5½	61/4
Steel Strength in	Tension -	— ACI 3	318-14	Section 1	17.4.1 or	ACI 318	-11 Sect	ion D.5.	1				
Tension Resistance of Steel	N _{sa}	lb.	5,1	5,195 10,890 20,130 30,360 45,540									
Strength Reduction Factor — Steel Failure	ϕ_{sa}	_						0.65 ²					
Concrete Breakout Strength in Tension ⁶ — ACI 318-14 Section 17.4.2 or ACI 318-11 Section D.5.2													
Effective Embedment Depth	h _{ef}	in.	1.19	1.94	1.77	2.40	2.35	2.99	2.97	4.24	2.94	4.22	4.86
Critical Edge Distance ⁶	c _{ac}	in.	3	6	211/16	3%	3%16	41/2	41/2	6%	6	6%	75/16
Effectiveness Factor — Uncracked Concrete	Kuncr	-	30				24				27	2	24
Effectiveness Factor — Cracked Concrete	k _{cr}							17					
Modification Factor	$\Psi_{c,N}$	7						1.0					
Strength Reduction Factor — Concrete Breakout Failure	ϕ_{cb}	_						0.657					
Pullout Strength i	n Tension	— ACI	318-14	Section	17.4.3 o	r ACI 318	3-11 Sec	tion D.5	.3				
Pullout Resistance, Uncracked Concrete (f'c = 2,500 psi)	N _{p,uncr}	lb.	3	3	2,7004	3	3	3	3	9,8104	3	3	3
Pullout Resistance, Cracked Concrete (f'c = 2,500 psi)	N _{p,cr}	lb.	3	1,9054	1,2354	2,7004	3	3	3,0404	5,5704	3	6,0704	7,1954
Strength Reduction Factor — Concrete Pullout Failure	ϕ_p	_						0.655					
Tension Strength for Seismi	c Applicat	tions —	- ACI 318	8-14 Sec	tion 17.	1.2.3.3 o	r ACI 31	8-11 Sec	ction D.3	.3.3			
Nominal Pullout Strength for Seismic Loads (f'c = 2,500 psi)	N _{p,eq}	lb. — 3 1,9054 1,2354 2,7004 — 3 — 3 3,0404 5,5704 3,8404 6,070				6,0704	7,1954						
Strength Reduction Factor — Breakout or Pullout Failure	ϕ_{eq}	_						0.655	•				

- The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 and ACI 318-11 Appendix D, except as modified below.
- 2. The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318-11 D.4.4. Anchors are considered brittle steel elements.
- 3. Pullout strength is not reported since concrete breakout controls.
- 4. Adjust the characteristic pullout resistance for other concrete compressive strengths by multiplying the tabular value by (f'c,specified / 2,500)015.
- 5. The tabulated value of ϕ_D or ϕ_{eq} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3.(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of ϕ must be determined in accordance with ACI 318-11 Section D.4.4(c).
- 6. The modification factor $\Psi_{CD,N} = 1.0$ for cracked concrete. Otherwise, the modification factor for uncracked concrete without supplementary reinforcement to control splitting is either:

(1)
$$\psi_{CD,N} = 1.0$$
 if $c_{a,min} \ge c_{ac}$ or (2) $\psi_{CD,N} = \frac{c_{a,min}}{c_{ac}} \ge \frac{1.5h_{ef}}{c_{ac}}$ if $c_{a,min} < c_{ac}$

The modification factor, $\Psi_{cp,N}$ is applied to the nominal concrete breakout strength, N_{cb} or N_{cbg} .

7. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318-11 D.4.4(c).

C-A-2021 @2021 SIMPSON STRONG-TIE COMPANY INC.

C-A-2021 @2021 SIMPSON STRONG-TIE COMPANY INC.

Titen HD® Design Information — Concrete

Titen HD Shear Strength Design Data¹

Characteristic	Cumbal	Unit	Nominal Anchor Diameter, d _a (in.)										
Graracteristic	Symbol	Onit	1	/4	3	/ 8	1	⁄2	5	/s		3/4	
Nominal Embedment Depth	h _{nom}	in.	1%	21/2	21/2	31/4	31/4	4	4	5½	4	5½	61/4
		,	Steel Str	ength in	Shear								
Shear Resistance of Steel	V _{sa}	lb.	2,0	2,020 4,460 7,45				155	10,	000	14,950	16,	840
Strength Reduction Factor — Steel Failure	ϕ_{sa}	_						0.60^{2}					
Concrete Breakout Strength in Shear													
Outside Diameter	da	in.	0.	25	0.3	375	0.5	500	0.625		0.750		
Load Bearing Length of Anchor in Shear	ℓ_e	in.	1.19	1.94	1.77	2.40	2.35	2.99	2.97	4.24	2.94	4.22	4.86
Strength Reduction Factor — Concrete Breakout Failure	ϕ_{cb}		0.70^{3}										
		Concr	ete Pryo	ut Strenç	gth in She	ear							
Coefficient for Pryout Strength	k _{cp}	lb.			1.0					2	.0		
Strength Reduction Factor — Concrete Pryout Failure	$\phi_{\it cp}$	_						0.704					
	Steel	el Strength in Shear for Seismic Applications											
Shear Resistance for Seismic Loads	V _{eq}	lb.	1,6	95	2,8	355	4,7	'90	8,0	000		9,350	
Strength Reduction Factor — Steel Failure	ϕ_{eq}	_						0.602			•		

- The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 and ACI 318-11 Appendix D, except as modified below.
- 2. The tabulated value of ϕ_{sa} and ϕ_{eq} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{sa} and ϕ_{eq} must be determined in accordance with ACI 318 D.4.4.
- 3. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318-11 D.4.4(c).
- 4. The tabulated value of ϕ_{CD} applies when both the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of ϕ_{CD} must be determined in accordance with ACI 318-11 Section D.4.4(c).

Titen HD Tension and Shear Strength Design Data for the Soffit of Normal-Weight or Sand-Lightweight Concrete over Steel Deck^{1,6,7}

		ol Units -				Nomina	l Anchor	Diamete	r, d _a (in.)			
Characteristic	Symbol				Lowe	Flute		Upper Flute				
Glaracterisuc	Syllibol	Units	Figu	jure 2 Figure 1		Figure 2		Figure 1				
			1	/4	3	%	1	/2	1	4	3%	1/2
Nominal Embedment Depth	h _{nom}	in.	1%	21/2	1%	21/2	2	31/2	15/8	21/2	1%	2
Effective Embedment Depth	h _{ef}	in.	1.19	1.94	1.23	1.77	1.29	2.56	1.19	1.94	1.23	1.29
Pullout Resistance, concrete on steel deck (cracked)2,3,4	N _{p,deck,cr}	lb.	420	535	375	870	905	2,040	655	1,195	500	1,700
Pullout Resistance, concrete on steel deck (uncracked) ^{2,3,4}	N _{p,deck,uncr}	lb.	995	1,275	825	1,905	1,295	2,910	1,555	2,850	1,095	2,430
Steel Strength in Shear, concrete on steel deck ⁵	V _{sa, deck}	lb.	1,335	1,745	2,240	2,395	2,435	4,430	2,010	2,420	4,180	7,145
Steel Strength in Shear, Seismic	V _{sa, deck,eq}	lb.	870	1,135	1,434	1,533	1,565	2,846	1,305	1,575	2,676	4,591

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 and ACI 318-11 Appendix D, except as modified below.
- Concrete compressive strength shall be 3,000 psi minimum. The characteristic pullout resistance for greater compressive strengths shall be increased by multiplying the tabular value by (f'_{c,specified} /3,000)^{0.5}.
- 3. For anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies, as shown in Figure 1 and Figure 2, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies N_{p,deck,cr} shall be substituted for N_{p,cr}. Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete N_{p,deck,uncr} shall be substituted for N_{p,uncr}.
- In accordance with ACI 318-14 Section 17.5.1.2(C) or ACI 318-11 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies V_{sa,deck} and V_{sa,deck,eq} shall be substituted for V_{sq}.
- 6. Minimum edge distance to edge of panel is 2h of
- 7. The minimum anchor spacing along the flute must be the greater of $3h_{\mathrm{eff}}$ or 1.5 times the flute width.

Titen HD® Design Information — Concrete

Titen HD Anchor Tension and Shear Strength Design Data in the Topside of Normal-Weight Concrete or Sand-Lightweight Concrete over Steel Deck

IBC	1	→	~ *
	CAR BAS	S22 525	

			Nominal Anchor	Diameter, d _a (in.)
Design Information	Symbol	Units	Figure 3	Figure 3
			1/4	¾ 8
Nominal Embedment Depth	h _{nom}	in.	1%	21/2
Effective Embedment Depth	h _{ef}	in.	1.19	1.77
Minimum Concrete Thickness	h _{min,deck}	in.	21/2	31/4
Critical Edge Distance	C _{ac,deck,top}	in.	3¾	71/4
Minimum Edge Distance	C _{min,deck,top}	in.	3½	3
Minimum Spacing	S _{min,deck,top}	in.	3½	3

- 1. For anchors installed in the topside of concrete-filled deck assemblies, as shown in Figures 2 and 3, the nominal concrete breakout strength of a single anchor or group of anchors in shear, V_{cb} or V_{cbg}, respectively, must be calculated in accordance with ACI 318-14 Section 17.5.2 or ACI 318-11 Section D.6.2, using the actual member thickness, h_{min,deck}, in the determination of A_{vc}.
- 2. Design capacity shall be based on calculations according to values in the tables featured on p. 84.
- 3. Minimum flute depth (distance from top of flute to bottom of flute) is 1 1/2" (see Figures 2 and 3).
- 4. Steel deck thickness shall be minimum 20 gauge.
- 5. Minimum concrete thickness ($h_{min,deck}$) refers to concrete thickness above upper flute (see Figures 2 and 3).

→ ← Max. 1° offset, typ.

Figure 1. Installation of %"- and ½"-Diameter Anchors in the Soffit of Concrete over Steel Deck

Figure 2. Installation of 1/4"-Diameter Anchors in the Soffit of Concrete over Steel Deck

Figure 3. Installation of 1/4"- and %"-Diameter Anchors in the Topside of Concrete over Steel Deck

C-A-2021 @2021 SIMPSON STRONG-TIE COMPANY INC.

Titen HD® Design Information — Masonry

Titen HD Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU

IBC	1		
	 200	1000	

_	_	
1.	10010	*
ш		
ш		

0:	D.:III D:A	Minimum	Critical Edge	Minimum Edge	Critical	Va	lues for 8" Lightwe or Normal-Weight	eight, Medium-Weig t Grout-Filled CMU	ght
Size in.	Drill Bit Diameter in.	Embedment Depth in.	Distance C _{crit}	Distance C _{min}	Spacing Distance in.	Tensio	n Load	Shear	r Load
(mm)	""	(mm)	in. (mm)	in. (mm)	(mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)
			Ancho	or Installed in t	he Face of the	CMU Wall (See Fig	ure 4)		
1/4 (6.4)	1/4	2½ (64)	4 (102)	1 1/4 (32)	4 (102)	2,050 (9.1)	410 (1.8)	2,500 (11.1)	500 (2.2)
3/8 (9.5)	3/8	2¾ (70)	12 (305)	4 (102)	6 (152)	2,390 (10.6)	480 (2.1)	4,340 (19.3)	870 (3.9)
½ (12.7)	1/2	3 ½ (89)	12 (305)	4 (102)	8 (203)	3,440 (15.3)	690 (3.1)	6,920 (30.8)	1,385 (6.2)
5% (15.9)	5/8	4 ½ (114)	12 (305)	4 (102)	10 (254)	5,300 (23.6)	1,060 (4.7)	10,420 (46.4)	2,085 (9.3)
3/4 (19.1)	3/4	5½ (140)	12 (305)	4 (102)	12 (305)	7,990 (35.5)	1,600 (7.1)	15,000 (66.7)	3,000 (13.3)

- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 2. Values for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.
- 3. The masonry units must be fully grouted.
- 4. The minimum specified compressive strength of masonry, $f'_{\it m_b}$ at 28 days is 1,500 psi.
- 5. Embedment depth is measured from the outside face of the concrete masonry unit.
- 6. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.
- 7. Refer to allowable load-adjustment factors for spacing and edge distance on pp. 90-91.

Figure 4. Shaded Area = Placement for Full and Reduced Allowable Load Capacity in Grout-Filled CMU

Titen HD Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Hollow CMU

IBC	★	→	

a:	B 111 B 11	Embedment Depth ⁴ in.	Minimum			U Loads Based Strength	
Size in. (mm)	Drill Bit Diameter in.			Edge Distance in.	Tensio	on Load	Shear
(11111)	""	(mm)	(mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)
		And	hor Installed in Fa	ce Shell (See Figur	re 5)		
3 % (9.5)	3/8	13/4 (45)	4 (102)	720 (3.2)	145 (0.6)	1,240 (5.5)	250 (1.1)
½ (12.7)	1/2	13/4 (45)	4 (102)	760 (3.4)	150 (0.7)	1,240 (5.5)	250 (1.1)
% (15.9)	5/8	13/4 (45)	4 (102)	800 (3.6)	160 (0.7)	1,240 (5.5)	250 (1.1)
3/4 (19.1)	3/4	13/4 (45)	4 (102)	880 (3.9)	175 (0.8)	1,240 (5.5)	250 (1.1)

- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC. Note: No installation within 4%" of bed joint of hollow masonry block wall.
- 2. Values for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.
- 3. The minimum specified compressive strength of masonry, f'm, at 28 days is 1,500 psi.
- 4. Embedment depth is measured from the outside face of the concrete masonry unit and is based on the anchor being embedded an additional 1/2"- through 1 1/4"-thick face shell.
- 5. Allowable loads may not be increased for short-term loading due to wind or seismic forces. CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.
- 6. Do not use impact wrenches to install in hollow CMU.
- 7. Set drill to rotation-only mode when drilling into hollow CMU.
- 8. The tabulated allowable loads are based on one anchor installed in a single cell.
- 9. Distance from centerline of anchor to head joint shall be a minimum of 4%".

C-A-2021 @2021 SIMPSON STRONG-TIE COMPANY INC.

C-A-2021 @2021 SIMPSON STRONG-TIE COMPANY INC.

Titen HD® Design Information — Masonry

Titen HD® Allowable Tension and Shear Loads in

8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU Stemwall

		Embed.	Minimum		Critical	8" Grou	ıt-Filled CMU Al	lowable Loads B	ased on CMU St	trength, f' _m = 1,	500 psi
in. Diameter D		Depth Edge Distance	Edge Distance		Spacing Distance	Tension		Shear Perpendicular to Edge		Shear Parallel to Edge	
		in. 55541 (mm) in. (mn		in. (mm)	in. (mm)	Ultimate Ib. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)
	Anchor Installed in Cell Opening or Web (Top of Wall) (See Figure 6)										
½ (12.7)	1/2	4 ½ (114)	13/4 (45)	8 (203)	8 (203)	2,860 (12.7)	570 (2.5)	800 (3.6)	160 (0.7)	2,920 (13.0)	585 (2.6)
% (15.9)	5/8	4½ (114)	1¾ (45)	10 (254)	10 (254)	2,860 (12.7)	570 (2.5)	800 (3.6)	160 (0.7)	3,380 (15.0)	675 (3.0)

- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 2. Values are for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.
- 3. The masonry units must be fully grouted.
- 4. The minimum specified compressive strength of masonry, f'm, at 28 days is 1,500 psi.
- 5. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied design loads.
- 6. Loads are based on anchor installed in either the web or grout-filled cell opening in the top of wall.

Figure 6.
Anchor Installed in Top of Wall at 134" Edge Distance

Titen HD® Allowable Tension and Shear Loads in 8" Medium-Weight and Normal-Weight Grout-Filled CMU Stemwall

		Embed.	Minimum	Minimum	Critical	8" Grout-Filled CMU Allowable Loads Based on CMU Strength, $f_m = 2,000$ psi					000 psi		
Size in.	Drill Bit Diameter	Depth	Edge Distance	End Distance	Spacing Distance	Distance lension Sn in. Ultimate Allowable		Tension 5		Shear Perpendicular to Edge		Shear Parallel to Edge	
(mm)	in.	in. (mm)	in. (mm)	in. (mm)				Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)		
				Anch	or Installed	in Cell Opening	(Top of Wall) (Se	ee Figure 7)					
½ (12.7)	1/2	41/2	3	12	12	5,800	1,160	2,750	550	7,500	1,500		
5% (15.9)	5/8		(76)	(305)	(305)	(25.8)	(5.2)	(12.2)	(2.5)	(33.4)	(6.7)		

- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 2. Values are for 8"-wide, medium-weight and normal-weight concrete masonry units.
- 3. The masonry units must be fully grouted.
- 4. The minimum specified compressive strength of masonry, f'm, at 28 days is 2,000 psi.
- 5. Allowable loads are not permitted to be increased for short-term loading due to wind or seismic forces.
- 6. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied design loads.
- 7. Loads are based on anchor installed in grout-filled cell opening in the top of wall.

Figure 7.
Anchor Installed in Top of Wall at 3" Edge Distance

Titen HD Allowable Tension Loads for 8" Lightweight, Medium-Weight and Normal-Weight CMU Chair Blocks Filled with Normal-Weight Concrete

$\overline{}$		
п	D6	
ш	Øυ	
	_	

Size in.	Drill Bit Diameter	Minimum Embedment	Minimum Edge Distance	Critical Spacing in.	8" Concrete-Filled CMU Chair Block Allowable Tension Loads Based on CMU Strength		
(mm)	(in.)	Depth in. (mm)	in. (mm)	in. (mm)	Ultimate Ib. (kN)	Allowable lb. (kN)	
% (9.5) %		2 3/8 (60)	13/4 (44)	9 ½ (241)	3,175 (14.1)	635 (2.8)	
	3∕8	3% (86)	13/4 (44)	13½ (343)	5,175 (23.0)	1,035 (4.6)	
		5 (127)	2 1/4 (57)	20 (508)	10,584 (47.1)	2,115 (9.4)	
1/2	1/2	8 (203)	2 1/4 (57)	32 (813)	13,722 (61.0)	2,754 (12.2)	
(12.7)		10 (254)	2 1/4 (57)	40 (1016)	16,630 (74.0)	3,325 (14.8)	
% (15.9)	5/8	5½ (140)	13/4 (44)	22 (559)	9,025 (40.1)	1,805 (8.1)	

^{1.} The tabulated allowable loads are based on a safety factor of 5.0.

C-A-2021 @ 2021 SIMPSON STRONG-TIE COMPANY INC.

^{2.} Values are for 8"-wide concrete masonry units (CMU) filled with concrete, with minimum compressive strength of 2,500 psi and poured monolithically with the floor slab.

^{3.} Center #5 rebar in CMU cell and concrete slab as shown in the illustration below.

Titen HD[®] Design Information — Masonry

Load-Adjustment Factors for Titen HD Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- The following tables are for reduced edge distance and spacing.
- Locate the anchor size to be used for either a tension and/or shear load application.
- Locate the embedment (E) at which the anchor is to be installed.
- Locate the edge distance (c_{act}) or spacing (s_{act}) at which the anchor is to be installed.
- 5. The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- Multiply the allowable load by the applicable load adjustment factor.
- Reduction factors for multiple edges or spacings are multiplied together.

Edge Distance Tension (fc)	Edae	Distance	Tension	(f_{c})
----------------------------	------	----------	---------	-----------

	Dia.	1/4	3/8	1/2	5/8	3/4		
	E	21/2	23/4	31/2	41/2	51/2		
c _{act} (in.)	c _{cr}	4	12	12	12	12		
(111.)	c _{min}	1.25	4	4	4	4		
	f _{cmin}	0.77	1.00	1.00	0.83	0.66		
1.25		0.77						
2		0.83						
3		0.92						
4		1.00	1.00	1.00	0.83	0.66		
6		1.00	1.00	1.00	0.87	0.75		
8		1.00	1.00	1.00	0.92	0.83		
10		1.00	1.00	1.00	0.96	0.92		
12		1.00	1.00	1.00	1.00	1.00		

See footnotes below.

c_{act} (in.)

1.25

2

3

4

6

8

10

12

Edge Distance Shear (f_c) Shear Load Parallel to Edge or End

1/4

21/2

4 1.25

0.58

0.58

0.69

0.85

1.00

1.00

1.00

1.00

1.00

Dia.

Ε

 c_{cr}

c_{min} f_{cmin}

, 01	LIIG		Control of the contro	PACCHA SECO
	3/8	1/2	5/8	3/4
	23/4	31/2	41/2	51/2
	12	12	12	12
	4	4	4	4
	0.77	0.48	0.46	0.44
	0.77	0.48	0.46	0.44
	0.83	0.61	0.60	0.58
	0.89	0.74	0.73	0.72

0.87

1.00

0.86

1.00

IBC 🚅 🛱 🚅

0.87

1.00

IBC 🚅 🚝 📮

See footnotes below.

Edge Distance Shear (f_c) Shear Load Perpendicular to Edge

Shear Load Perpendicular to Edge or End (Directed Towards Edge or End)							
Dia. 1/4 3/8							
	F	21/2	23/.	Г			

	Dia.	1/4	3/8	1/2	5/8	3/4
	E	21/2	23/4	3 1/2	4 1/2	5 1/2
c _{act} (in.)	c _{cr}	4	12	12	12	12
()	c _{min}	1.25	4	4	4	4
	f _{cmin}	0.71	0.58	0.38	0.30	0.21
1.25		0.71				
2		0.79				
3		0.89				
4		1.00	0.58	0.38	0.30	0.21
6		1.00	0.69	0.54	0.48	0.41
8		1.00	0.79	0.69	0.65	0.61
10		1.00	0.90	0.85	0.83	0.80
12		1.00	1.00	1.00	1.00	1.00

0.94

1.00

^{1.} E = embedment depth (inches).

^{2.} cact = actual end or edge distance at which anchor is installed (inches).

 $^{3.} c_{cr}$ = critical end or edge distance for 100% load (inches).

^{4.} c_{min} = minimum end or edge distance for reduced load (inches).

 $^{5.\,\}mathrm{f_{\it C}}\!=\!\,\mathrm{adjustment}$ factor for allowable load at actual end or edge distance.

^{6.} f_{ccr} = adjustment factor for allowable load at critical end or edge distance. f_{ccr} is always = 1.00.

^{7.} f_{cmin} = adjustment factor for allowable load at minimum end or edge distance.

^{8.} $f_c = f_{cmin} + [(1 - f_{cmin}) (c_{act} - c_{min}) / (c_{cr} - c_{min})].$

Titen HD® Design Information — Masonry

Load-Adjustment Factors for Titen HD Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads (cont.)

How to use these charts:

- The following tables are for reduced edge distance and spacing.
- Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- Locate the edge distance (c_{act}) or spacing (s_{act}) at which the anchor is to be installed.
- The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- Multiply the allowable load by the applicable load adjustment factor.
- Reduction factors for multiple edges or spacings are multiplied together.

Edge Distance Shear (f_c) Shear Load Perpendicular to Edge or End (Directed Away From Edge or End)

IBC 📑 🔚	Ü
---------	---

IBC 🚺 🖽 🖽

	Dia.	1/4	3/8	1/2	5/8	3/4
	E	21/2	23/4	3 1/2	4 1/2	5 1/2
c _{act} (in.)	c _{cr}	4	12	12	12	12
(111.)	c _{min}	1.25	4	4	4	4
	f _{cmin}	0.71	0.89	0.79	0.58	0.38
1.25		0.71				
2		0.79				
3		0.89				
4		1.00	0.89	0.79	0.58	0.38
6		1.00	0.92	0.84	0.69	0.54
8		1.00	0.95	0.90	0.79	0.69
10		1.00	0.97	0.95	0.90	0.85
12		1.00	1.00	1.00	1.00	1.00

Spacing Tension (f_s)

Spacing I	ension (i _s)				200 EV	2002000000
	Dia.	1/4	3/8	1/2	5/8	3/4
	E	21/2	23/4	3 1/2	4 1/2	5 1/2
s _{act} (in.)	S _C	4	6	8	10	12
(111.)	Smin	2	3	4	5	6
	f _{smin}	0.66	0.87	0.69	0.59	0.50
2		0.66				
3		0.83	0.87			
4		1.00	0.91	0.69		
5			0.96	0.77	0.59	
6			1.00	0.85	0.67	0.50
8				1.00	0.84	0.67
10					1.00	0.83
12						1.00

Spacing Shear (f_s)

s _{act} (in.)	Dia.	1/4	3/8	1/2	5/8	3/4
	E	21/2	23/4	3 1/2	4 1/2	5 1/2
	S _{CF}	4	6	8	10	12
	s _{min}	2	3	4	5	6
	f _{smin}	0.87	0.62	0.62	0.62	0.62
2		0.87				
3		0.93	0.62			
4		1.00	0.75	0.62		
5			0.87	0.72	0.62	
6			1.00	0.81	0.70	0.62
8				1.00	0.85	0.75
10					1.00	0.87
12						1.00

^{1.} E = embedment depth (inches).

^{2.} sact = actual spacing distance at which anchors are installed (inches).

^{3.} s_{cr} = critical spacing distance for 100% load (inches).

^{4.} s_{min} = minimum spacing distance for reduced load (inches).

 $^{5.\,}f_{\rm S}$ = adjustment factor for allowable load at actual spacing distance.

 $^{6.\,}f_{scr}$ = adjustment factor for allowable load at critical spacing distance. f_{scr} is always = 1.00.

^{7.} f_{smin} = adjustment factor for allowable load at minimum spacing distance.

^{8.} $f_s = f_{smin} + [(1 - f_{smin}) (s_{act} - s_{min}) / (s_{cr} - s_{min})].$