Exam 2A Chem 1142 Spring 2019

Name:

MULTIPLE CHOICE. [2 pts ea.] Record the best response on the scantron sheet. [50 pts total.]

- Q1. Which version of the exam do you have?
 - (A)2A
 - B) 2B
 - C) 2C
 - D) 2D
- Q2. Given the chemical equation:

 $2SO_3(g) \rightarrow 2SO_2(g) + O_2(g)$

The reaction rate is equal to:

- A) + $\frac{1}{3}\Delta[SO_3]/\Delta t$
- $(B) + \frac{1}{2} \Delta [SO_2]/\Delta t$
 - C) $-\Delta[O_2]/\Delta t$
 - D) $-\Delta[O]/\Delta t$
- Q3. Given the chemical equation:

 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

If the hydrogen concentration decreases by 0.033 M over a 15.0 s period, the average rate of reaction is:

- A) 0.033 M/s
- B) 0.50 M/s
- C) $2.2 \times 10^{-3} \text{ M/s}$
- D) $7.3 \times 10^{-4} \,\text{M/s}$
- Q4. Given the chemical equation:

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$

The rate law is: (A) impossible to determine

B) rate = $k [CH_4][O_2]^2$

D) rate = $\frac{[CO_2][H_2O]^2}{[CH_2][O_2]^2}$

C) rate = $k [CO_2][H_2O]^2$

Q5. The units for the rate constant, k, for a first-order reaction are:

- A) M
- B) M-1-s-1
- C) M·s⁻¹
- D) s^{-1}

decrease in conc

- $at_1 = -\frac{1}{3} \frac{\Delta [H_2]}{\Delta E} = -\frac{1}{3} \times \frac{(-0.033M)}{15.05} = 7.3 \times 10^{-6} \frac{M}{5}$

must det experimentally (unless its an elementary step

)fist order, power = 1

Short Response.

Show ALL work to receive credit.

Q26. [12 pts.] A chemist is trying to determine the rate law for a reaction between $H_2(g)$ and NO(g). The chemical equation is:

$$H_2(g) + 2NO(g) \longrightarrow N_2(g) + H_2O_2(g)$$

The chemist decides to use the method of initial rates, whereby different experiments are carried out with different initial concentrations, and the rate at the beginning of the experiment is measured. The collected data looks like:

$[H_2]/M$	[NO]/M	initial rate / M·s ⁻¹				
0.10	0.20	3.2×10^{-5}				
0.20	0.20	1.28×10^{-4}				
0.10	0.35	3.2×10^{-5}				
	0.10	0.20 0.20				

From this data, determine the rate law, showing all work.

$$\frac{\text{rati}(2)}{\text{rati}(1)} = \frac{\text{k} [0.20\text{M}]^m [0.20\text{M}]^n}{\text{k} [0.10\text{M}]^m [0.20\text{M}]^n} \Rightarrow \frac{1.28 \times 10^{-4} \text{M·s}^{-1}}{3.2 \times 10^{-5} \text{M·s}^{-1}} = 4.0 = 2.0^m \Rightarrow m=2 \text{ (by inspeching)}$$

$$\frac{\text{rat.}(3)}{\text{rat.}(1)} = \frac{1}{K} \frac{[0.10M]^m [0.35M]^n}{[0.20M]^n} \Rightarrow \frac{3.2 \times 10^{-5} M \cdot s^{-1}}{3.2 \times 10^{-5} M \cdot s^{-1}} = 1.0 = 1.75^n \Rightarrow n = 0 \text{ (by inspechian)}$$

What is the overall order of this reaction?

What is the value of the rate constant, including units? 3.2x10 M s

$$K = \frac{\text{rat}}{\text{EHz}^2}$$
, find 1: $K = \frac{3.2 \times 10^{-5} \text{M·s}^{-1}}{\text{EO \cdot 10M}^2} = 3.2 \times 10^{-3} \text{ M}^{-1} \text{s}^{-1}$

Q27. [13 pts.] The chemical equation: $A(g) \rightarrow B(g)$ is found to have a rate law, $rate = k [A]^2$.

i) If the initial concentration of A is 0.25 M, and the rate constant is 0.011 M⁻¹s⁻¹, calculate how long it will take for the concentration to reach 0.0025 M.

$$2^{M} \text{ ordes}: \frac{1}{(A)t} = Kt + \frac{1}{(A)0} \implies t = \frac{1}{(A)t} - \frac{1}{(A)0} = \frac{1}{0.0025M} - \frac{1}{0.25M}$$

$$= \frac{396M^{2}}{0.011M^{3}s^{-1}} = 36,000 \text{ s} \quad (2sf.)$$

beraun [A]o decreams over L time

ii) What happens to the half-life for this reaction over time? Explain.

iii) A possible mechanism for the reaction is given below:

$$\begin{array}{ll} 2A(g) \longrightarrow C(g) + B(g) & \textit{slow} \\ C(g) + A(g) \longrightarrow 2A(g) & \textit{fast} \end{array}$$

Is this mechanism consistent with the rate law given at the beginning of this problem? What can you conclude (if anything) about this mechanism?

Q28. [12 pts.] Using complete and grammatically correct sentences, answer the following questions:

i) What is meant by the term: heterogenous catalyst?

A catalyst that is in a <u>different phase</u> as the reactails.

(A catalyst is a substance that speeds up a reaction without being consumed)

ii) What is a reaction intermediate?

A substance that is neither a reactant, nor a product, of the overall, stoichiometric chemical equation.

iii) What is an "Arrhenius plot?"

A graph of ln(k) vs. + . It's slope is - Eq., so the activation energy can be determined by: Eq = slopex-R

Give mathematical expressions for the following:

iv) Write the expression for K_c for the equilibrium:

 $H_2SO_4(aq) + 2H_2O(l) \rightleftharpoons 2H_3O^+(aq) + SO_4^{2-}(aq)$

v) Write the expression for K_p for the equilibrium

 $2NO_2(g) + 2H_2(g) \rightleftharpoons HNO_3(g) + NH_3(g) + \frac{1}{2}O_2(g)$

(note... [] means molar conc!)

$$H_2(g) + Br_2(g) \rightleftharpoons 2HBr(g)$$

has an equilibrium constant, $K_p = 64.0$ at 23 °C.

Qp = (PHBr) = 1.00 (Prz)(PBrz) Qp<Kp, so will shift to RHS!

If the initial pressure of all three gases (H2, Br2, and HBr) is 0.250 atm, calculate the final equilibrium pressures of each gas.

$$C -x -x +2x$$

$$T_{0.250} = 0.250$$
 $C_{-x} = -x + 2x$ (shift to RHS, since $Q < K$)

 $F_{(0.150-x)} = (0.250-x) = (0.250+2x)$

$$K_{p} = \frac{(P_{HBr})^{2}}{(P_{H2})(P_{Bi_{2}})} \Rightarrow 64.0 = \frac{(0.250+2x)}{(0.250-x)(0.250-x)}$$

$$=) \sqrt{64.0} = 8.00 = \frac{0.250 + 2x}{0.250 - x}$$

$$\Rightarrow$$
 2.00 - 8.00 x = 0.250 + 2x

$$\Rightarrow x = \frac{1.75}{10.00} = 0.175$$

So,
$$P_{HBr} = (0.250+2x) = 0.600 \text{ atm}$$
 } 3d.p.)
 $P_{Hz} = P_{Br_z} = 0.250 - x = 0.075 \text{ atm}$

BONUS Question:

What is the name given to the slowest step in a reaction mechanism?

Rate determining (or limiting) step

Periodic Table of the Elements

				, a.c	ub. 0 (J											
IA	li A											IIIA	ΙVΑ	VA	VIA	VIIA	VIIIA
1	ī																2
H																	He
1,01	2											13	14	15	16	17	400
3	4											5	6	7 7	8	9	10
Li	Be											B	Ċ	N	ò	F	Ne
6.94	9.01											1081	12.01	14 01	16 00	19 00	20 18
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	s	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28 09	30 97	32 07	35 45	39 95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55 85	58.93	58 69	63 55	65 39	69 72	72 61	74 92160	78 96	79 90	83 60
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[96]	101 07	102 91	108.42	107 87	112.41	114 82	11871	121 76	127.60	126 90	131 29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	55
Cs	Ba*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180 95	183 84	186 21	190 23	192 22	195 08	196 97	200 59	204 38	207 20	205 98	[216]	[210]	[222]
87	58	103	104	105	106	107	106	109	110	111	112	113	114	115	118	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt				l					
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]	L	[285]		[289]		[293]
																7	
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	1	
	•	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb		
		138.91	140 12	140.91	144.24	[145]	150.36	151 96	157.25	158 93	162 50	164 93	167 26	168 93	173 04	4	
		89	90	91	92	93	94	95	96	97	96	99	100	101	102		
	**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
		[227]	232 04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	1	

$$R = 8.3145 \frac{J}{\text{mol} \cdot \text{K}} = 0.08206 \frac{\text{atm} \cdot \text{L}}{\text{mol} \cdot \text{K}}$$

$$k = Ae^{-\frac{E_A}{RT}}$$

$$\ln k = -\frac{E_A}{R} \cdot \frac{1}{T} + \ln A$$

$$\ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

• 0-order:
$$[A]_t = -kt + [A]_0$$

$$t_{1/2} = \frac{\left[A\right]_0}{2k}$$

$$\ln[A]_t = -kt + \ln[A]_0$$

• 1-order:
$$\ln[A]_t = -kt + \ln[A]_0 \qquad \ln\left(\frac{|A|_t}{|A|_0}\right) = -kt$$

$$t_{1/2} = \frac{0.693}{k}$$

• 2-order:
$$\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$$

$$t_{1/2} = \frac{1}{\left[A\right]_0 k}$$

$$K_{\rm p} = K_{\rm c}(RT)^{\Delta n_{\rm g}}$$

Given:
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$