

Additional Information | Albatross Energetics PS

Compressor Modeling:

- Nominal Volumetric Efficiency:95%
- Mechanical Efficiency: 92%
- Nominal Evaporating Temperature:5°C
- Nominal Evaporator Superheat:10K
- Nominal Condensing Temperature:50°C
- Nominal Condenser Subcooling:OK
- Inlet Area (Stub Suction 3/4"
 Dia): 2.85 cm²

Outlet Area (Stub Discharge - 1/2"
 Dia): 1.27 cm²

• Nominal Speed: 2900 RPM

	Scroll Compressor 1	Scroll Compressor 2	Scroll Compressor 3	Scroll Compressor 4
Suitable Refrigerants	R290	R134a, R407C, R513A, R454C, R1234yf	R134a, R407C, R450A, R513A	R410A
Isentropic Efficiency (%)	68.4%	68.8%, 69.1%, 67.5%, 67.9%, 64.8%	63.9%, 65.3%, 65.6%, 65.8%	65.1%
Displacement (at 50Hz, in cm³/rev)	33.1	45.5	33.1	22.8

Expansion Device Modeling:

- Nominal Mass Flow Rate = Volume
 Flow Rate x Nominal Density (use
 the density of the superheated
 refrigerant entering the
 compressor at nominal conditions)
- Nominal Evaporating Temperature:
 5°C
- Nominal (Static + Opening)
 Evaporator Superheat: 10K
- Nominal Condensing Temperature:
 50°C
- Nominal Condenser Subcooling:
 OK
- Static (Minimum) Evaporator Superheat: 2K
- Maximum Mass Flow Rate =
 Volume Flow Rate x Maximum
 Density (you may use the density
 of the superheated refrigerant
 entering the compressor at high
 load conditions)

Use default values for leakage flow fraction, smoothing factor, laminar flow pressure ratio, inlet phase change time constant.

Evaporator/Condenser Modeling:

- Flow Arrangement: Cross-flow (usually the case for fin-tube heat exchangers)
- Two-Phase Fluid 1
 - Fin here means the fin in contact with the refrigerant note that certain tubes may have fins internally. <u>Image 1</u>, <u>Image 2</u>
 - Usually in air conditioners, copper tubes used has no internal fins - in which case, total fin surface area = 0.
 - Fouling Factor: 0.1 K-m²/kW
 - Fin Efficiency: 75%
- Moist Air 2
 - Fin here means the fin in contact with the air.
 - Fouling Factor: 0.1 K-m²/kW
 - Fin Efficiency: 75%

Use default values for internal surface absolute roughness, laminar flow upper Reynold's number limit, turbulent flow lower Reynold's number limit, water vapor condensation time constant, water droplet evaporation time constant.