第二次作业

张文韬

5.29

跟踪A*算法应用直线距离启发式求解从Lugoj到 Bucharest问题的过程。给出节点拓展的顺序和每 个节点的f,g,h值。

Figure 3.2 A simplified road map of part of Romania.

Figure 3.22

Arad	366	Mehadia	241	
Buchare	st 0	Neamt	234	
Craiova	160	Oradea	380	
Drobeta	242	Pitesti	100	
Eforie	161	Rimnicu Vilcea	193	
Fagaras	176	Sibiu	253	
Giurgiu	77	Timisoara	329	
Hirsova	151	Urziceni	80	
Iasi	226	Vaslui	199	
Lugoj	244	Zerind	374	

Values of h_{SLD} —straight-line distances to Bucharest.

Initially: L[0+244=244]

Step1:M[70+241=311], T[111+329=440]

Step2:L[140+244=384], D[145+242=387], T[111+329=440]

Step3:D[145+242=387], T[111+329=440],M[210+241=451], T[251+329=580]

Step4:C[265+160=425], T[111+329=440], M[210+241=451], M[220+241=461], T[251+329=580]

Step5:T[111+329=440],M[210+241=451],M[220+241=461], P[403+100=503],T[251+329=580],R[411+193=604],D[385+ 242=627] Step6:M[210+241=451],M[220+241=461],L[222+244=466],P[403+100=503],T[251+329=580],A[229+366=595],R[41 1+193=604],D[385+242=627]

Step7:M[220+241=461],L[222+244=466],P[403+100=503],L[280+244=524],D[285+242=527],T[251+329=580],A[229+366=595],R[411+193=604],D[385+242=627]

Step8:L[222+244=466],P[403+100=503],L[280+244=524], D[285+242=527],L[290+244=534],D[295+242=537],T[251 +329=580],A[229+366=595], R[411+193=604], D[385+242=627] Step9:P[403+100=503],L[280+244=524],D[285+242=527], M[292+241=533],L[290+244=534],D[295+242=537],T[25 1+329=580],A[229+366=595],R[411+193=604],D[385+24 2=627], T[333+329=662]

Step10:B[504+0=504], L[280+244=524], D[285+242=527], M[292+241=533], L[290+244=534], D[295+242=537], T[25 1+329=580], A[229+366=595], R[411+193=604], D[385+24 2=627], T[333+329=662], R[500+193=693], C[541+160=70 1]

启发式路径算法(Pohl, 1977)是一种最佳有限搜索,它的评估函数是f(n) = (2-w) * g(n) + w * h(n), 假设h是可采纳的。w取什么值能保证算法是完备的?当w=0, w=1, w=2时,分别是什么搜索算法?

完备性: 当问题有解时, 算法能否找到最优解?

Uniform-cost, A*搜索是完备的。

Greedy best-first search的树搜索版本是不完备的。

本题在0 <= w < 2 时, 算法是完备的。

设计一个启发函数,它在八数码问题中有时会估计过高,对某一特定问题它会求出次优解。证明:如果被高估的部分不超过c,A*算法返回的解代价比最优解代价多出的部分也不超过c.

一个例子: h(n) = 错位棋子数 + 曼哈顿距离

证明:设 $h^*(\cdot)$ 是到目标的实际代价。

对所有的结点n,有 $h(n) \leq h^*(n) + c$ 。设 C^* 是最优解代价。

对任意到最优解的路径上的结点m,有:

$$f(m) = g(m) + h(m)$$

$$\leq g(m) + h^*(m) + c$$

$$\leq C^* + c$$

$$(1)$$

这说明在A*搜索找到目标之前,不会有代价比C*高出c的结点被拓展。即A*返回的解代价比最优解多出的部分不超过c。

证明如果启发式是一致的,它一定是可采纳的。构造一个非一致的可采纳启发式。

证明:对任意结点n,其到目标结点G的最短路径记为 $\{n, n_1, n_2, \ldots, n_k, G\}$ 。

对于一致的启发式, $h(n) \le c(n, a, n') + h(n')$ 。有:

$$h(n) \le h(n_1) + d(n, n_1)$$

 $\le h(n_2) + d(n, n_1) + d(n_1, n_2)$

$$\leq d(n, n_1) + d(n_1, n_2) + \dots + d(n_k, G)$$

即h(n)不大于n到G的实际代价, h是可采纳的。

一个非一致的可采纳启发式:

$$\begin{array}{cccc}
 & 1 & & 2 \\
\hline
 & & B & & 2 \\
\hline
 & h(A) = 3 & & h(B) = 1
\end{array}$$