

Standardization vs Normalization in ML

Both are feature scaling techniques used to rescale numeric data so that machine learning models perform better.

1. Standardization

Rescales features so they have a mean = 0 and standard deviation = 1.

Formula:

$$z = \frac{x - \mu}{\sigma}$$

Where:

- x = value
- µ\meu = mean of feature
- σ\sigma = standard deviation

Use When:

- Data has outliers or different units
- Works well for algorithms that assume normal distribution (e.g., Logistic Regression, SVM, Linear Regression)

2. Normalization

Rescales features to a **fixed range**, usually [0, 1].

Types of Normalization Techniques

1. Min-Max Scaling

Most common type of normalization

Formula:

$$x_{ ext{scaled}} = rac{x - x_{ ext{min}}}{x_{ ext{max}} - x_{ ext{min}}}$$

- All values are transformed to [0, 1]
- Sensitive to outliers

Example: Salary = [30K, 40K, 50K] → scaled to [0.0, 0.5, 1.0]

2. Mean Normalization

Formula:

$$x_{ ext{scaled}} = rac{x - \mu}{x_{ ext{max}} - x_{ ext{min}}}$$

- Centers data around 0
- Range is still [-1, 1] (roughly)

3. MaxAbs Scaling

Formula:

$$x_{ ext{scaled}} = rac{x}{|x_{ ext{max}}|}$$

- Scales data to range [-1, 1]
- Good for sparse data
- Keeps zero entries untouched

4. Robust Scaling

Formula:

$$x_{ ext{scaled}} = rac{x - ext{median}}{ ext{IQR}}$$

Where IQR = Interquartile Range (Q3 - Q1)

- Handles outliers well
- Centers around median instead of mean

5. L2 Normalization (also known as just Normalization in sklearn)

- Often used for text data or deep learning
- Scales rows (samples) to unit norm

Standardization vs Normalization - Key Differences

Feature	Standardization	Normalization (Min-Max)
Output Range	No fixed range (mean = 0, std = 1)	[0, 1] (or [-1, 1])
Sensitive to Outliers?	Less sensitive (uses mean & std)	Yes, especially Min-Max
Use Cases	Linear Models, SVM, PCA	Neural Networks, Image data
Scaling Method	Centered around 0	Scaled between 0 and 1
Transformation Based On	Mean and Standard Deviation	Min and Max values

Final Thought

- **Use Standardization** when your data has outliers or needs to be centered.
- **Use Normalization** when you want a bounded scale or are using algorithms like neural networks or kNN.