Contents

Preface			page xvii
PART	I INT	FRODUCTION	
1	Causa	ality: The Basic Framework	3
	1.1	Introduction	3
	1.2	Potential Outcomes	3
	1.3	Definition of Causal Effects	5
	1.4	Causal Effects in Common Usage	7
	1.5	Learning about Causal Effects: Multiple Units	8
	1.6	The Stable Unit Treatment Value Assumption	9
	1.7	The Assignment Mechanism: An Introduction	13
	1.8	Attributes, Pre-Treatment Variables, or Covariates	15
	1.9	Potential Outcomes and Lord's Paradox	16
	1.10	Causal Estimands	18
	1.11	Structure of the Book	20
	1.12	Samples, Populations, and Super-Populations	20
	1.13	Conclusion	21
		Notes	21
2	A Bri	ef History of the Potential Outcomes Approach to	
	Causa	al Inference	23
	2.1	Introduction	23
	2.2	Potential Outcomes and the Assignment Mechanism	
		before Neyman	24
	2.3	Neyman's (1923) Potential Outcome Notation in Randomized	
		Experiments	25
	2.4	Earlier Hints for Physical Randomizing	26
	2.5	Fisher's (1925) Proposal to Randomize Treatments to Units	26
	2.6	The Observed Outcome Notation in Observational Studies for	
		Causal Effects	27
	2.7	Early Uses of Potential Outcomes in Observational Studies in	
		Social Sciences	28

vii

viii Contents

	2.8	Potential Outcomes and the Assignment Mechanism in	
		Observational Studies: Rubin (1974)	29
		Notes	30
3	A Cla	assification of Assignment Mechanisms	31
	3.1	Introduction	31
	3.2	Notation	33
	3.3	Assignment Probabilities	34
	3.4	Restrictions on the Assignment Mechanism	37
	3.5	Assignment Mechanisms and Super-Populations	39
	3.6	Randomized Experiments	40
	3.7	Observational Studies: Regular Assignment Mechanisms	41
	3.8	Observational Studies: Irregular Assignment Mechanisms	42
	3.9	Conclusion	43
		Notes	43
PART	II CL	ASSICAL RANDOMIZED EXPERIMENTS	
4	A Tax	xonomy of Classical Randomized Experiments	47
	4.1	Introduction	47
	4.2	Notation	48
	4.3	Bernoulli Trials	48
	4.4	Completely Randomized Experiments	50
	4.5	Stratified Randomized Experiments	51
	4.6	Paired Randomized Experiments	52
	4.7	Discussion	53
	4.8	Conclusion	55
		Notes	56
5		r's Exact P-Values for Completely Randomized Experiments	57
	5.1	Introduction	57
	5.2	The Paul et al. Honey Experiment Data	59
	5.3	A Simple Example with Six Units	59
	5.4	The Choice of Null Hypothesis	63
	5.5	The Choice of Statistic	64
	5.6	A Small Simulation Study	72
	5.7	Interval Estimates Based on Fisher P-Value Calculations	74
	5.8	Computation of P-Values	75
	5.9	Fisher Exact P-Values with Covariates	78
	5.10	Fisher Exact P-Values for the Honey Data	80
	5.11	Conclusion	81
		Notes	81
6	-	nan's Repeated Sampling Approach to Completely	0.2
		omized Experiments	83
	6.1	Introduction The Dude Henre Byen Teacher Incentive Experiment Date	83
	6.2	The Duflo-Hanna-Ryan Teacher-Incentive Experiment Data	84
	6.3	Unbiased Estimation of the Average Treatment Effect	85

Contents ix

	6.4	The Sampling Variance of the Neyman Estimator	87
	6.5	Estimating the Sampling Variance	92
	6.6	Confidence Intervals and Testing	95
	6.7	Inference for Population Average Treatment Effects	98
	6.8	Neyman's Approach with Covariates	101
	6.9	Results for the Duflo-Hanna-Ryan Teacher-Incentive Data	102
	6.10	Conclusion	104
		Notes	104
		Appendix A Sampling Variance Calculations	105
		Appendix B Random Sampling from a Super-Population	109
7	Regre	ession Methods for Completely Randomized Experiments	113
	7.1	Introduction	113
	7.2	The LRC-CPPT Cholesterol Data	115
	7.3	The Super-Population Average Treatment Effects	116
	7.4	Linear Regression with No Covariates	118
	7.5	Linear Regression with Additional Covariates	122
	7.6	Linear Regression with Covariates and Interactions	125
	7.7	Transformations of the Outcome Variable	127
	7.8	The Limits on Increases in Precision Due to Covariates	128
	7.9	Testing for the Presence of Treatment Effects	129
	7.10	Estimates for LRC-CPPT Cholesterol Data	131
	7.11	Conclusion	133
		Notes	134
		Appendix	135
8		el-Based Inference for Completely Randomized Experiments	141
	8.1	Introduction	141
	8.2	The Lalonde NSW Experimental Job-Training Data	144
	8.3	A Simple Example: Naive and More Sophisticated Approaches	
	0.4	to Imputation	146
	8.4	Bayesian Model-Based Imputation in the Absence of Covariates	150
	8.5	Simulation Methods in the Model-Based Approach	163
	8.6	Dependence between Potential Outcomes	165
	8.7	Model-Based Imputation with Covariates	169
	8.8	Super-Population Average Treatment Effects	171
	8.9	A Frequentist Perspective	172
	8.10	Model-Based Estimates of the Effect of the NSW Program	174
	8.11	Conclusion	177
		Notes	177
		Appendix A Posterior Distributions for Normal Models	178
		Appendix B Analytic Derivations with Known Covariance	40:
		Matrix	181
9		ified Randomized Experiments	187
	9.1	Introduction	187
	9.2	The Tennesee Project Star Data	188

x Contents

	9.3	The Structure of Stratified Randomized Experiments	189
	9.4	Fisher's Exact P-Values in Stratified Randomized Experiments	192
	9.5	The Analysis of Stratified Randomized Experiments from	
		Neyman's Repeated Sampling Perspective	201
	9.6	Regression Analysis of Stratified Randomized Experiments	205
	9.7	Model-Based Analysis of Stratified Randomized Experiments	207
	9.8	Design Issues: Stratified versus Completely Randomized	
		Experiments	211
	9.9	Conclusion	212
		Notes	212
		Appendix A: Student-Level Analyses	213
		Appendix B: Proofs of Theorems 9.1 and 9.2	214
10	Pairv	vise Randomized Experiments	219
	10.1	Introduction	219
	10.2	The Children's Television Workshop Experiment Data	220
	10.3	Pairwise Randomized Experiments	220
	10.4	Fisher's Exact P-Values in Pairwise Randomized Experiments	222
	10.5	The Analysis of Pairwise Randomized Experiments from	
		Neyman's Repeated Sampling Perspective	224
	10.6	Regression-Based Analysis of Pairwise Randomized	
		Experiments	229
	10.7	Model-Based Analysis of Pairwise Randomized Experiments	231
	10.8	Conclusion	233
		Notes	234
		Appendix: Proofs	234
11	Case	Study: An Experimental Evaluation of a Labor Market	
	Progr	ram	240
	11.1	Introduction	240
	11.2	The San Diego SWIM Program Data	240
	11.3	Fisher's Exact P-Values	242
	11.4	Neyman's Repeated Sampling-Based Point Estimates and	
		Large-Sample Confidence Intervals	245
	11.5	Regression-Based Estimates	247
	11.6	Model-Based Point Estimates	250
	11.7	Conclusion	253
		Notes	253
PART	III R	REGULAR ASSIGNMENT MECHANISMS: DESIGN	
12			257
14	12.1	nfounded Treatment Assignment Introduction	257 257
	12.1	Regular Assignment Mechanisms	258
	12.2	Balancing Scores and the Propensity Score	238 266
	12.3	Estimation and Inference	268
		Design Phase	276
	14.3	DOMEST LIBOR	4/0

Contents xi

	12.6	Assessing Unconfoundedness	278
	12.7	Conclusion	279
		Notes	279
13	Estimating the Propensity Score		
	13.1	Introduction	281
	13.2	The Reinisch et al. Barbiturate Exposure Data	284
	13.3	E	285
	13.4	Choosing the Specification of the Propensity Score for	
		the Barbiturate Data	288
	13.5	Constructing Propensity-Score Strata	290
	13.6	Choosing Strata for the Barbiturate Data	294
	13.7	Assessing Balance Conditional on the Estimated	
		Propensity Score	296
	13.8	Assessing Covariate Balance for the Barbiturate Data	300
	13.9	Conclusion	306
		Notes	306
		Appendix: Logistic Regression	307
14		sing Overlap in Covariate Distributions	309
	14.1	Introduction	309
	14.2	Assessing Balance in Univariate Distributions	310
	14.3		313
	14.4	Assessing Balance in Multivariate Distributions Using the	
		Propensity Score	314
	14.5	Assessing the Ability to Adjust for Differences in Covariates	
		by Treatment Status	317
	14.6	Assessing Balance: Four Illustrations	318
	14.7	Sensitivity of Regression Estimates to Lack of Overlap	332
	14.8	Conclusion	336
		Notes	336
15		hing to Improve Balance in Covariate Distributions	337
	15.1		337
	15.2	The Reinisch et al. Barbiturate Exposure Data	339
	15.3	Selecting a Subsample of Controls through Matching to	
		Improve Balance	339
	15.4	An Illustration of Propensity Score Matching with Six	2.1.1
		Observations	344
	15.5	Theoretical Properties of Matching Procedures	345
	15.6	Creating Matched Samples for the Barbiturate Data	349
	15.7	Conclusion	358
		Notes	358
16		ming to Improve Balance in Covariate Distributions	359
	16.1	Introduction	359
	16.2	The Right Heart Catheterization Data	360
	16.3	An Example with a Single Binary Covariate	362

xii Contents

	16.4 16.5	Selecting a Subsample Based on the Propensity Score The Optimal Subsample for the Right Heart	366
		Catheterization Data	368
	16.6	Conclusion	373
		Notes	374
PART	IV R	EGULAR ASSIGNMENT MECHANISMS: ANALYSIS	
17	Subcl	assification on the Propensity Score	377
	17.1	Introduction	377
	17.2	The Imbens-Rubin-Sacerdote Lottery Data	378
	17.3	Subclassification on the Propensity Score and Bias Reduction	380
	17.4	Subclassification and the Lottery Data	385
	17.5	Estimation Based on Subclassification with Additional	
		Bias Reduction	386
	17.6	Neymanian Inference	388
	17.7	Average Treatment Effects for the Lottery Data	390
	17.8	Weighting Estimators and Subclassification	392
	17.9	Conclusion	399
		Notes	399
18	Match	ning Estimators	401
	18.1	Introduction	401
	18.2	The Card-Krueger New Jersey and Pennsylvania Minimum	
		Wage Data	404
	18.3	Exact Matching without Replacement	405
	18.4	Inexact Matching without Replacement	407
	18.5	Distance Measures	410
	18.6	Matching and the Card-Krueger Data	412
	18.7	The Bias of Matching Estimators	415
	18.8	Bias-Corrected Matching Estimators	416
	18.9	Matching with Replacement	424
	18.10	The Number of Matches	425
	18.11	Matching Estimators for the Average Treatment Effect for the	
		Controls and for the Full Sample	427
	18.12	Matching Estimates of the Effect of the Minimum Wage	
		Increase	428
	18.13	Conclusion	430
		Notes	431
19		neral Method for Estimating Sampling Variances for	
		ard Estimators for Average Causal Effects	433
	19.1	Introduction	433
	19.2	The Imbens-Rubin-Sacerdote Lottery Data	435
	19.3	Estimands	436

Contents xiii

	19.4	The Common Structure of Standard Estimators for Average Treatment Effects	441
	19.5	A General Formula for the Conditional Sampling Variance	445
	19.6	A Simple Estimator for the Unit-Level Conditional Sampling	115
		Variance	446
	19.7	An Estimator for the Sampling Variance of $\hat{\tau}$ Conditional on	
		Covariates	452
	19.8	An Estimator for the Sampling Variance for the Estimator for the	
		Average Effect for the Treated	452
	19.9	An Estimator for the Sampling Variance for the Population	
		Average Treatment Effect	454
	19.10	Alternative Estimators for the Sampling Variance	456
	19.11	Conclusion	460
		Notes	460
20	Inforo	ence for General Causal Estimands	461
20	20.1	Introduction	461
	20.1	The Lalonde NSW Observational Job-Training Data	462
	20.2	Causal Estimands	465
	20.3	A Model for the Conditional Potential Outcome	703
	20.4	Distributions	468
	20.5	Implementation	472
	20.6	Results for the Lalonde Data	473
	20.7	Conclusion	474
		Notes	474
PART	V RE	GULAR ASSIGNMENT MECHANISMS: SUPPLEMENTARY	
		NALYSES	
21		sing Unconfoundedness	479
	21.1	Introduction	479
	21.2	Setup	482
	21.3	Estimating Effects on Pseudo-Outcomes	482
	21.4	Estimating Effects of Pseudo-Treatments	485
	21.5	Robustness to the Set of Pre-Treatment Variables	487
	21.6	The Imbens-Rubin-Sacerdote Lottery Data	490
	21.7	Conclusion	495
		Notes	495
22	Sensit	ivity Analysis and Bounds	496
	22.1	Introduction	496
	22.2	The Imbens-Rubin-Sacerdote Lottery Data	497
	22.3	Bounds	497
	22.4	Binary Outcomes: The Rosenbaum-Rubin	
		Sensitivity Analysis	500

xiv Contents

	22.5	Binary Outcomes: The Rosenbaum Sensitivity Analysis	
		for P-Values	506
	22.6	Conclusion	509
		Notes	509
PART	VI R	EGULAR ASSIGNMENT MECHANISMS WITH	
	N	ONCOMPLIANCE: ANALYSIS	
23	Instru	mental Variables Analysis of Randomized Experiments with	
	One-S	Sided Noncompliance	513
	23.1	Introduction	513
	23.2	The Sommer-Zeger Vitamin A Supplement Data	516
	23.3	Setup	517
	23.4	Intention-to-Treat Effects	519
	23.5	Compliance Status	522
	23.6	Instrumental Variables	526
	23.7	Moment-Based Instrumental Variables Estimators	530
	23.8	Linear Models and Instrumental Variables	531
	23.9	Naive Analyses: "As-Treated," "Per Protocol,"	
		and Unconfoundedness	535
	23.10	Conclusion	539
		Notes	539
		Appendix	541
24		mental Variables Analysis of Randomized Experiments	
		Two-Sided Noncompliance	542
		Introduction	542
	24.2	The Angrist Draft Lottery Data	543
	24.3	Compliance Status	544
	24.4	Intention-to-Treat Effects	546
	24.5	Instrumental Variables	548
	24.6	Traditional Econometric Methods for Instrumental	
		Variables	556
	24.7	Conclusion	559
		Notes	559
25	Mode	l-Based Analysis in Instrumental Variable Settings:	
	Rando	omized Experiments with Two-Sided Noncompliance	560
	25.1	Introduction	560
	25.2	The McDonald-Hiu-Tierney Influenza Vaccination Data	561
	25.3	Covariates	567
	25.4	Model-Based Instrumental Variables Analyses for Randomized	
		Experiments with Two-Sided Noncompliance	568
	25.5	Simulation Methods for Obtaining Draws from the Posterior	
		Distribution of the Estimand Given the Data	574
	25.6	Models for the Influenza Vaccination Data	578

Contents

	25.7	Results for the Influenza Vaccination Data	581
	25.8	Conclusion	584
		Notes	584
PART	VII	CONCLUSION	
26	Conc	clusions and Extensions	589
	Notes	S	590
Refere	ences		591
Author Index			605
Subject Index			609