Einführung in die Grundlagen der Numerik

 $Vorlesungsmitschriften\ im\ Wintersemester\ 2018/19$

INHALTSVERZEICHNIS

1	Lineare Gleichungssysteme																1
	1.1	Orthogonalisierungsverfahren															1

VORWORT

Diese Vorlesungsmitschriften werden in der Vorlesung Einführung in die Grundlagen der Numerik von Prof. Ira Neitzel im Wintersemester 2018/19 an der Universität Bonn angefertigt.

Wir versuchen, diese immer unter https://pankratius.github.io zu aktualisieren.

1.1 Orthogonalisierungsverfahren

Betrachte $A \in GL_n(\mathbb{R})$, wobei A schlecht konditioniert sein kann. Wir wollen ein Gleichungssystem der Form Ax = b, mit $b \in {}^n$ gegeben, lösen. Dazu suchen wir eine Orthogonalmatrix $Q \in O_n(\mathbb{R})$ und eine obere Dreiecksmatrix $R \in n$ mit A = QR. Dann erhalten wir das äquivalente Problem

$$Ax = b \iff QRx = b \iff Rx = Q^Tb.$$

1.1.1 Eigenschaften orthogonaler Matrizen

Lemma 1.1.1. Sei $Q \in \mathcal{O}_m(\mathbb{R})$ orthogonal. Dann ist auch Q^T orthogonal und es gilt

$$Qx = Q^T x = x$$

Beweis. Es gilt

$$Qx^2 = x^T Q^T Qx = x^T x = x.$$

Genauso für Q^T .

Lemma 1.1.2. Sei $A \in GL_n(\mathbb{R})$ regulärn und $Q \in O_n(\mathbb{R})$ orthogonal. Dann gilt

$$\kappa_2(QA) = \kappa_2(A)$$

Beweis. Die Matrixnorm A ist durch die euklidsche Norm induziert, i.e.

$$A = \max_{x \neq 0} \frac{Ax}{x}.$$

Also folgt aus lemma 1.1.1, dass (QA) = (A) gilt. Betrachte jetzt

$$A^{-1}Q^T = \max_{x \neq 0} \frac{A^{-1}Q^Tx}{x} \qquad \qquad = \max_{x \neq 0} \frac{A^{-1}Q^Tx}{Q^Tx} \stackrel{y := Q^Tx}{=} \max_{y \neq 0} \frac{A^{-1}}{y} = A^{-1}$$

Also ist für das LGS $Rx = Q^Tb : \kappa_2(R) = \kappa_2(A)$. Also hat sich die Kondition des Problems nicht verschlechtert.

1.1.2 Anwendung: Lineare Ausgleichsgeraden Betrachte für gegebene
s $b\in \real^n$ und $A\in n$ das Optimierungsproblem

$$\min_{x \in n} Ax - b.$$

Dieses Problem ist äquivalent zur Optimierung von $Ax - b^2$.

Seien nun m Tupel $(y_i, f_i) \in^2 (1 \le i \le m)$ gegeben. Gesucht ist diejenige affine Gerade c + dy in 2 , so dass die Summe der Quadrate der Punkte von der Gerade minimal ist. Wir erhalten also das Optimierungsproblem

$$\min_{(c,d)\in^2} \left(\sum_{i=1}^m (c+dy_i - f_i)^2 \right) = \min_{(c,d)\in^2} \begin{pmatrix} 1 & y_1 \\ \vdots & \vdots \\ 1 & y_m \end{pmatrix} \cdot \begin{pmatrix} c \\ d \end{pmatrix} - \begin{pmatrix} f_1 \\ \vdots \\ f_m \end{pmatrix}.$$

Betrachte allgemeiner das Polynom

$$p(y) = \sum_{k=0}^{n-1} a_k y^k.$$

Gesucht sind jetzt die Koeffizienten $a_0,...,a_{n-1}$ mit

$$\sum_{j=1}^{m} (p(y_j) - f_j)^2$$

ist minimal. Schreibe dies ebenfalls als Optimierungsproblem:

$$\min_{a_0,\dots,a_{n-1}} \begin{pmatrix} y_1^0 & \dots & y_1^{n-1} \\ \vdots & \ddots & \vdots \\ y_m^0 & \dots & y_m \end{pmatrix} \cdot \begin{pmatrix} a_0 \\ \vdots \\ a_{n-1} \end{pmatrix} - \begin{pmatrix} f_1 \\ \vdots \\ f_m \end{pmatrix}^2.$$

Ende Vorlesung 1