EPFL

Action Recognition for Self-Driving Cars

Semester Project (15 ECTS)

Student: Weijiang Xiong (Microengineering)

Supervisor: Prof. Alexandre Alahi, Lorenzo Bertoni, Dr. Taylor Mordan

Date: Jan. 12 2022

Introduction and Motivation

☐ Action Recognition

- Identify people's actions in a video/image sequence
- For self-driving cars: understand the environment, make safe decisions and plan reasonable paths

☐ Problem Description

- Input: a video or a sequence of images
- Output: the type of actions for every person inside

■ Motivation for Pose-Based Methods

- Human poses are light-weight but highly informative
- Successful work on pose estimation and pose-based vision (related work)

☐ Inflated 3D Convolution (I3D [1]) for video action recognition

☐ OpenPifPaf [2] and MonoLoco [3]

- [1] Joao Carreira and Andrew Zisserman. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. CVPR 2017
- [2] Sven Kreiss et al., OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association. IEEE T-ITS 2021
- [3] Lorenzo Bertoni et al., Monoloco: Monocular 3d pedestrian localization and uncertainty estimation. ICCV2019

Datasets and Evaluation

- ☐ TCG [4]: 3D body poses for Traffic Control Gesture

 550 sequences from different actors (cross-subject evaluation)
 observed from multiple view points (cross-view)
- ☐ TITAN [5]: 700 video clips captured with onboard camera Annotations include five groups of actions, from individual actions (e.g., standing) to those involving context (e.g., talking in group)
- □ CASR [6]: Cyclist Arm Signal Recognition

 178 collected videos, 8 additional videos from youtube (for testing only)
- Extract poses for TITAN and CASR with OpenPifPaf

sitting, biking, looking at phone

standing, talking in group

Left, Right, Alternative Right, Stop

^[4] Wiederer et al., Traffic Control Gesture Recognition for Autonomous Vehicles. IROS 2020

^[5] Malla Srikanth et al., Titan: Future forecast using action priors. CVPR 2020

^[6] Fang et al., Intention Recognition of Pedestrians and Cyclists by 2D Pose Estimation. arXiv:1910.03858

Poseact: Action Recognition with Human Poses

Base Network

Prediction heads

Action Recognition Results on TCG

Method	Cro	ss-subject (<mark>%</mark>)	Cross-view (%)		
Niemod	Accuracy	Jaccard	F1	Accuracy	Jaccard	F1
RNN	82.81	57.40	69.45	80.94	57.21	69.98
GRU	84.44	58.16	70.45	83.47	56.25	68.59
LSTM	83.23	56.32	68.59	79.58	52.02	64.62
Att-LSTM	85.67	50.70	61.87	85.30	59.87	71.20
Bi-GRU	86.80	57.25	68.95	87.37	55.55	67.68
Bi-LSTM	87.24	67.00	78.48	86.66	65.95	77.14
TCN	83.44	62.06	74.23	82.66	63.97	75.95
GCN	65.42	38.55	50.73	62.40	35.05	48.51
AAGCN [7]	91.13	-	85.81	90.22	-	85.21
Pham et al. [7]	91.09	-	86.26	90.64	-	85.52
Poseact	85.03	63.72	76.91	86.29	68.76	80.81
TempPoseact	87.31	69.15	81.15	87.74	70.11	81.89

 $Jaccard = \frac{TP}{TP + FP + FN}$ $F1 = \frac{2 * precision * recall}{precision + recall}$

Temporal info helps, but may not be crucial in TCG

Simple architecture, but still comparable to complicated ones

Baselines from TCG paper [4]

^[4] Wiederer et al., Traffic Control Gesture Recognition for Autonomous Vehicles. IROS 2020

^[7] Pham, et al., An Efficient Feature Fusion of Graph Convolutional Networks and Its Application for Real-Time Traffic Control Gestures Recognition. IEEE Access 2021.

Action Recognition Results on TITAN

- ☐ Classification Accuracy on Test Set
 - Poseact uses 2D poses from OpenPifpaf

Results from TITAN paper [5]

Method	I3D	3D ResNet	Poseact (Multitask)
Backbone	InceptionV1	ResNet50	
atomic	0.9219	0.7552	0.8001
simple context	0.5318	0.3173	0.4797
complex context	0.9881	0.9880	0.9780
communicative	0.8649	0.8648	0.8369
transportive	0.9080	0.9081	0.8980
overall	0.8429	0.7667	0.7985

Per-Class Recall (%) of Poseact (Multitask) on TITAN

action group	action type	Rec.	data%	action group	action type	Rec.	data%
,	looking into phone		6.05	atomic	none of the above	0	0.17
communicative	talking in group	0	6.99		biking	0.493	3.86
Communicative	talking on phone	0	3.21	1	cleaning an object	0	0.45
<u> </u>	none of the above	0.999	83.76	<u> </u>	closing	0	0.15
	getting in 4 wv	0.018	0.13	majority class	crossing legally	0.239	7.64
	getting off 2 wv	0	0.23		entering a building	0	0.67
	getting on 2 wv	0	0.12	simple	exiting a building	0.016	0.75
complex context	getting out of 4 wv	0	0.06		crossing illegally	0.038	7.22
Context	loading	0	0.20	context	motorcycling	0.3	0.09
	unloading	0.046	0.75		opening	0	0.22
	none of the above	0.992	98.50		waiting to cross	0.022	1.27
	bending	0.362	2.17		walking on the side	0.604	35.82
	jumping	0	0		walking on the road	0.703	25.34
	laying down	0	0		none of the above	0.269	16.54
atamia	running	0	0.92		carrying	0.009	6.33
atomic	sitting	0.527	4.37		pulling	0	0.88
	squatting	0	0.03	transporting	pushing	0.062	2.48
	standing	0.129	15.73		none of the above	0.992	90.32
	walking	0.978	76.60				

Class Imbalance Problem in TITAN Dataset

☐ Use F1 score as metric

Method	I3D	3D ResNet	Poseact (Multitask)	
Metric	Accuracy	Accuracy	Accuracy	F1
atomic	0.9219	0.7552	0.8001	0.3144
simple	0.5318	0.3173	0.4797	0.1927
complex	0.9881	0.9880	0.9780	0.1529
communicative	0.8649	0.8648	0.8369	0.2278
transportive	0.9080	0.9081	0.8980	0.2634
overall	0.8429	0.7667	0.7985	0.2302

unweighted average over the classes

low score if always predicts the majority class

- ☐ Focus on a suitable set of actions
 - Hard to learn context-dependent actions, especially with insifficient examples (less than 1%)

		walking	standing	sitting	bending	biking	Overall
original annotation	# Instances	43590	10311	304	1297	2057	57559
successful detection	# Detections	32864	6746	189	932	1696	42427
	Percentage	75.4%	65.4%	62.1%	71.8%	82.4%	73.7%

Experiments on Selected Actions

☐ F1 score on the selected actions

Method	walking	standing	sitting	bending	biking	Overall
Poseact (Multitask)	0.884	0.214	0.311	0.457	0.541	0.481
ResNet50 [8]	0.885	0.225	0.01	0.063	0.536	0.344
Poseact	0.919	0.553	0.771	0.621	0.839	0.741
TempPoseact	0.927	0.672	0.710	0.482	0.771	0.712

trained on all 5 action groups tested on selected actions

trained on selected actions, not multitask

☐ Recognition examples from Poseact

[8] He et al., Deep Residual Learning for Image Recognition. CVPR 2016

Effect of Preprocessing and Temporal Module

- ☐ Using Relative Keypoint Coordinates
 - 17 Absolute coordinates => 1 center location + 17 relative coordinates
 - Possible reason: multiple persons in an image, but their actions are not related with their absolute locations, only the body poses matter
- ☐ F1 score for each class
 - Relative coordinates >> absolute coordinates; center point is not very important
 - When using temporal models, we need object track ID to connect new poses to previous ones

Method	Walking	Standing	Sitting	Bending	Biking	Average
Poseact	0.919	0.553	0.771	0.621	0.839	0.741
Abs. Coord	0.887	0.263	0.685	0.478	0.582	0.579
Rm. Center	0.921	0.577	0.742	0.598	0.827	0.733
TempPoseact (GT)	0.927	0.672	0.710	0.482	0.771	0.712
TempPoseact (PifPaf)	0.923	0.653	0.575	0.467	0.761	0.676

use absolute coordinates
remove center point
groundtruth object track ID
PifPaf object track ID

Center Point

Explorative Experiments

- ☐ Project 3D poses in TCG onto the image plane of a "virtual camera" (acc 20% lower)
 - Possible reason: difficult to choose a proper camera pose to keep the actor in FOV

Pinhole camera geometry

Explorative Experiments

- ☐ Project 3D poses in TCG onto the image plane of a "virtual camera" (acc 20% lower)
 - Possible reason: difficult to choose a proper camera pose to keep the actor in FOV
- ☐ In TITAN, add phone related actions to selected action set (only ~25% F1)
 - Possible reason: these actions are context-dependent, body poses may not be sufficient

Explorative Experiments

- ☐ Project 3D poses in TCG onto the image plane of a "virtual camera" (acc 20% lower)
 - Possible reason: difficult to choose a proper camera pose to keep the actor in FOV
- ☐ In TITAN, add phone related actions to selected action set (only ~25% F1)
 - Possible reason: these actions are context-dependent, body poses may not be sufficient
- ☐ Apply the models to CASR dataset
 - Good performance on test set, but not on test videos from youtube
 - Possible reason: the dataset is collected seriously (standard arm signal), but people are more

casual in real-life (out-of-distribution problem)

Madhad	Tes	tset	Youtube Set		
Method	Acc	F1	Acc	F1	
Poseact	0.93	0.91	0.68	0.47	
TempPoseact	0.92	0.89	0.66	0.46	
Heuristics [9]	0.72	0.50	0.79	0.75	
Random Forest [6]	0.93	0.92	0.82	0.76	

none: GT: left

^[6] Fang et al., Intention Recognition of Pedestrians and Cyclists by 2D Pose Estimation. arXiv:1910.03858 [9] https://github.com/charlesbyll/monoloco

Discussions

☐ Project Summary

- Learned the recent progress of action recognition
- Created an evaluation code base for TCG, TITAN and CASR
- Experimented basic feed-forward model and temporal model for pose-based action recognition
- Explored preprocessing techniques and generalization applications

☐ Key Takeaways

- A basic feed forward model can recognize non-context-dependent actions from poses
- When multiple persons exist in a frame, it's better to use relative keypoint coordinates
- Take care of the out-of-distribution problem when transferring to different datasets

☐ Future Work

- Advanced models (graph-based, attention mechanism), additional features (speed, angular speed)
- Methods to promote out-of-distribution performance