[CSED233-01] Data Structure Tree (2)

Jaesik Park

Recap: Tree Traversal

Types of traversals

- Preorder(T) = < n, Preorder(T_1), ..., Preorder(T_k)>
- Postorder(T_1) = < Postorder(T_1), ..., Postorder(T_k), $n > \infty$
- Inorder(T_1) = < Inorder(T_1), n, Inorder(T_2), ..., Inorder(T_k)>
 - No natural definition of *Inorder*

Binary Tree Traversals

- Passing through the tree & visit each of its nodes
- Depth-first search
 - Go down first
 - Recursive way via (call) STACK
 - 3 variations
 - Pre-order, Post-order, In-order

```
While True {
current node = stack.pop()
For the current node's child
    stack.push( child )
}
```


- Breadth-first search
 - Go across first (same level)
 - Implemented via QUEUE
 - No variation
 - Level-order

```
While True {
current node = queue.dequeue()
For the current node's child
        queue.enqueue( child )
}
```


O(n), where n = # of nodes in a tree

Question

- We don't know the exact structure of a binary tree,
- If we know the traversals of the binary tree, can we reconstruct the true structure of the tree?

Binary Tree

Traversals

- Inorder
- Postorder
- Preorder

Single Traversal

• Any single traversal sequence (*pre-, in-* or *post-order*) cannot describes the underlying tree uniquely

Binary Tree

• Inorder = <20,30,35,40,45,50,55,60,70>

• Postorder = <20,35,30,45,40,55,70,60,50>

Unique Binary Tree (by Two Traversals)

- We can identify the binary tree uniquely by two traversal sequences like:
 - (postorder & inorder), (preorder & inorder), (level-order & inorder)
 - *inorder*. to find Left & Right child/subtrees
 - postorder. to find the Root (the last in postorder)
 - preorder. to find the Root (the first/ in preorder)
 - level-order. to find the Root
- However, the other combinations leaves some ambiguity in the tree structure

Binary Tree (by Two Traversals)

• Example:

Binary Tree

Algorithm

- Algorithm (when Preorder & Inorder is given)
 - (1) *Root* = the first node in the preorder
 - (2) Find the left child:
 - Left subtree = all nodes that are left to the Root in the inorder
 - Left_child = the first node in the preorder of the Left_subtree
 - (3) In the same way, find the right child:
 - Right subtree = all nodes that are right to the Root in the inorder
 - Right_child = the first node in the preorder of the Right_subtree
 - (4) Repeat the steps 2 & 3 with each new node (until every node is not visited in preorder)

General Tree Implementations

- General k-ary tree is a tree in which each node has no more than k children
- Implementations
 - Simple array implementation
 - List-of-Children implementation
 - Left-Child/Right-Sibling implementation

•

- Again, there would be other implementations as well
- No rules here, they have their own pros/cons
- Let's analyze them now

Simple Approach

- Parent point representation
- Two linear arrays parallel to each other
 - Tree[k] = $m \Leftrightarrow \text{node } m \text{ is the parent of node } k$
 - Label[k] : the label (value, info) of node k

Of course, you can also use structure

Simple Approach: Time Complexity

- *Parent(k, T)*
 - What is the parent node of the node index k in the tree T?
 - Easy to compute: O(1)
- Leftmost_Child(k, 7)
 - What is the leftmost child of the node index k in the tree T?
 - Not well defined (no order of children)
 - ○(n)

Simple Approach: Time Complexity

- Create_m(v, T₁, T₂, ..., T_m)
 - Make a tree with a root v and subtrees T_1 , T_2 , ..., T_m

Simple Approach: Time Complexity

- Create_m(v, T₁, T₂, ..., T_m)
 - Quite hard to handle as we should change the tree indices for $T_2, ..., T_m$

List-of-Children Approach

- Similar to the simple approach, we have the tree and the value arrays
- But, we have an additional array
 - Linked list of children (for each non-terminal node: (a,b) in this example)
 - Idea: let's keep both parent and children information!
- Node array (for all tree nodes)

List-of-Children Approach: Combining Trees

- Create₂(v, T₁, T₂)
- If we saved two trees T_1 and T_2 in a single array
- How to combine them into one tree? T_2 root

Node array (for all trees)

List-of-Children Approach: Combining Trees

- Create₂(v, T₁, T₂)
 - Combining trees takes time complexity O(1) (in case of binary tree)
 - Change the parents of the subtrees' roots
 - Easier than the previous simple approach k La Pa Ch

Node array (for all trees)

List-of-Children Approach: Combining Trees

- However... If each tree is stored in a separate array
 - Combining trees is OK?: more cumbersome
 - If we want to make it as a single array after the operation, again the second subtree's indices should be changed, resulting O(n)...

List-of-Children Approach: Problems

- Additional problems
 - Difficult to access a node's right sibling
 - How to access y's sibling?
 - Access parent's children list
 - Duplication of nodes
 - Each node appears both in the node array & in the linked list of children
 - Node 2's information is in the original list as well as the children list of its parent

Left-Child/Right-Sibling Approach

Save left child and right sibling for each node

Left-Child/Right-Sibling Approach: Static

- Static implementation (using array)
 - Each node has pointers to its parent, leftmost child, & right sibling
 - Efficient for any # of children
 - (we don't need to store all the children)

Left-Child/Right-Sibling Approach: Dynamic

- Problem of static left-child/right-sibling approach
 - Using an array to store the collection of nodes
 - Fixed space for nodes (no dynamic space allocation)

Can we use linked implementation – dynamic one?

Left-Child/Right-Sibling Approach

• k-ary tree is a tree in which each node has no more than k children

• Any general k-ary tree can be implemented with left-child/right-sibling approach and this allows us to represent a k-ary tree with a binary tree ©

Don't need to know about the number of children a node has

• Easy to code as we have two children at most

Left-Child/Right-Sibling Approach

- Step-1: Convert a (forest of) general tree into a binary tree
 - Leftmost child → Left child
 - Right sibling → Right child (tree roots are assumed to be siblings)
 - Rotate the *left-child/right-sibling* tree clockwise by 45 degrees
- So-called, Knuth transform

• Step-2: Linked implementation of the converted binary tree

Donald Knuth

- Author of the multi-volume work The Art of Computer Programming
- Analysis of the computational complexity of algorithms & systematized formal mathematical techniques
- creator of the TeX computer typesetting system

Converting into a Binary Tree (1)

• Input: general trees

Leftmost child → Left child

Converting into a Binary Tree (2)

- Right sibling → Right child
 - Tree roots are assumed to be siblings

Remove the other links

Converting into a Binary Tree (3)

Rotate clockwise by 45°

Now ready for its linked implementation

Left-Child/Right-Sibling Tree: Linked Rep.

Traversal: Original vs. Converted Binary

Original general tree T

Converted binary tree T'

- Preorder = a b d e f c ←
- Inorder = d b e f a c d e b f a c
- Postorder = d e f b c a

- Preorder = a b d e f c
- Inorder = d e f b c a
- Postorder = f e d c b a

Question

How to convert a converted binary tree to a general tree?

References

- Further reading list and references
 - https://en.wikipedia.org/wiki/Donald_Knuth
 - https://en.wikipedia.org/wiki/Tree (data structure)
 - https://en.wikipedia.org/wiki/TeX
 - https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
 - https://en.wikipedia.org/wiki/Left-child_right-sibling_binary_tree
 - https://www.geeksforgeeks.org/left-child-right-sibling-representation-tree/
- Slide credit
 - Jaesik Park
 - Seung-Hwan Baek
 - Jong-Hyeok Lee