0.1 Realisierung simplizialer Garben

Die Beschreibung der geometrischen Realsierung als Tensorprodukt von Funktoren eröffnet uns eine Reihe weiterer geometrischer Realisierungen, die diejenige simplizialer Mengen verallgemeinern.

Zunächst stellen wir fest, dass wir in unserer Konstruktion simpliziale Mengen immer als diskrete simpliziale topologische Räume betrachtet haben, und die Diskretheit genauso gut auch fallen lassen können. Wir erhalten die geometrische Realisierung $|X| = X \otimes R$ eines simplizialen topologischen Raums $X: \Delta^{\mathrm{op}} \to \mathrm{Top.}$

Beispiel 0.1. Wir betrachten den simplizialen topologischen Raum $X:\Delta^{\mathrm{op}}\to \mathrm{Top}$, den wir aus dem (kombinatorischen) Standard-1-Simplex Δ^1 erhalten, indem wir disjunkte Vereinigungen von Punkten durch disjunkte Vereinigungen von Intervallen I=[0,1] mit von den Identitäten induzierten Abbildungen ersetzen. Offenbar ist die geometrische Realiserung das Produnkt $I\times |\Delta^1|$. Ersetzen wir X_0 wieder durch zwei Punkte 0,1 mit beliebigen Degenerationen, so erhalten wir eine zu einer Kreisscheibe verdickte Linie zwischen den beiden Punkten als Realisierung. Ersetzen wir die höheren $X_n, n\geq 2$ ebenfalls wieder durch Punkte mit beliebigen Randabbildungen, so sorgen deren Identifikationen dafür, dass die geometrische Realisierung wieder $|\Delta^1|$ wird.

Weiter verallgemeinert die Konstruktion auch auf Diagrammkategorien. Ist I eine kleine Kategorie und $X:\Delta^{\mathrm{op}}\to\mathrm{Top}^I$ ein simpliziales I-System topologischer Räume, so erhalten wir eine geometrische Realisierung $|X| = X \otimes R$ von X,wenn wir $R:\Delta\to\operatorname{Top}\to\operatorname{Top}^I$ mittels des Funktors der konstanten Darstellung auf die Diagrammkategorie fortsetzen. Insbesondere erhalten wir eine geometrische Realisierung für die Kategorie der Paare topologischer Räume mit stetiger Abbildung, d. h. die Diagrammkategorie Top^I für I die von $\{\bullet \to \bullet\}$ erzeugte Kategorie. Eine Realisierung für Garben über topologischen Räumen erhalten wir so aber nicht: Sind in einem simplizialen Top^I alle Abbildungen étale, bedeutet das noch nicht, dass auch die induzierte Abbildung in der geometrischen Realisierung étale ist. Sind etwa alle Basisräume X_n einpunktig, so ist die Realisierung |X| ebenfalls einpunktig. Étale Räume $F_n \to X_n$ sind diskret, d. h. die geometrische Realisierung |F| ist die einer simplizialen Menge, also im Allgemeinen ein höherdimensionaler CW-Komplex. Ein solcher ist nicht diskret, also nicht étale über |X|. Wir erhalten die korrekte Realisierung für Ens/Top, indem wir den Kolimes in der Garbenkategorie statt in den topologischen Räumen bilden.

Proposition 0.2. Sei $F \in [\Delta^{\text{op}}, \operatorname{Ens}_{/\operatorname{Top}}]$ eine simpliziale Garbe über topologischen Räumen mit Morphismen und $R : \Delta \to \operatorname{Ens}_{/\operatorname{Top}}$ eine kosimpliziale Garbe über topologischen Räumen. Dann ist die Realisierung $F \otimes R \in \operatorname{Ens}_{/\operatorname{Top}}$ eine Garbe über der geometrischen Realisierung der Basisräume.

Beweis. Die Existenz der Realisierung folgt direkt aus der Beschreibung von Koenden als Kolimites ?? und der Kovollständigkeit von $\operatorname{Ens_{/Top}}$ nach 0.14. Dort wird auch der Basisraum des Kolimites zum Kolimes der Basisräume bestimmt.

Bemerkung 0.3. Eine kanonische Wahl für R ist etwa die konstant einelementige Garbe $|\Delta^n| \to |\Delta^n|$ oder ihre plumpe Variante $\blacktriangle^n \to \blacktriangle^n$.

Bemerkung 0.4. Diese geometrische Realisierung simplizialer Garben auf topologischen Räumen spezialisiert zu einer geometrischen Realisierung simplizialer Garben auf X: Ist $F: \Delta^{\mathrm{op}} \to \mathrm{Ens}_{/\mathrm{X}}$ eine simpliziale Garbe auf X, so ist ihre geometrische Realisierung aus 0.1 eine Garbe $|F| \in \mathrm{Ens}_{/\mathrm{X}}$, da die geometrische Realisierung des konstanten simplizialen topologischen Raums $X: [n] \to X$ selbst X ist.

Für Garben E_n auf diskreten Räumen D_n handelt es sich um die geometrische Realisierung eines Pfeils simplizialer Mengen. Die relative Version über X hiervon ist die folgende: für Garben E_n auf $X \times D_n$ für diskrete D_n und zu für $f:[m] \to [n]$ monoton von $D_n \to D_m$ induzierten Basen $D_n \times X \to D_m \times X$ der Garbenmorphismen ist die geometrische Realisierung eine Garbe über $X \times |D|$, für |D| die Realisierung der simplizialen Menge $[n] \mapsto D_n$.

Ziel unserer Überlegungen wird es sein, die Aussagen zu simplizial konstanten Garben auf der geometrischen Realisierung eines Simplizialkomplexes \mathcal{K} als Garben auf dem topologischen Raum \mathcal{K} auf die Situation simplizialer Mengen zu übertragen. Die angesprochenen Realisierungen in 0.1 und 0.4 sind dafür nicht geeignet. Das liegt daran, dass wir, um aus Garben auf der Realisierung wieder ein Diagramm von Garben zu erhalten, generisierende Randabbildungen benötigen. Im Fall einer simplizialen Garbe $\Delta^{\mathrm{op}} \to \mathrm{Ens}_{/\,\mathrm{Top}}$ sind die Randabbildungen im Garbensystem dagegen gegenläufig zu den generisierenden Einbettungen $|d_i|: |\Delta^{n-1}| \hookrightarrow |\Delta^n|$ der Basisräume.

Wir erklären eine neue Realisierung, die diesem Anspruch gerecht wird. Sei dazu $R:\Delta\to\operatorname{Ens}_{/\operatorname{Top}}$ eine kosimplizialer topologischer Raum und $F:\Delta^{\operatorname{op}}\to\operatorname{Ens}_{/\!/\operatorname{Top}}, [n]\mapsto F_n\in Ens_{/\!/X_n}$ eine simpliziale Garbe über topologischen Räumen mit Komorphismen. Für $f:[n]\to[m]$ monoton gibt es also eine stetige Abbildung $Ff:X_m\to X_n$ und einen Morphismus von Garben über $X_m\colon Ff^*F_n\to F_m$. Wir erhalten einen Funktor K von der Unterteilungskategorie $\operatorname{Sub}(\Delta)$ von Δ in die Garben über topologischen Räumen

Sub(
$$\Delta$$
) $[n]^{\S} \longleftarrow f^{\S} \longrightarrow [m]^{\S}$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Ens/Top \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X_n \times R[n] \longleftarrow X_m \times R[n] \longrightarrow X_m \times R[m], \qquad (1)$$

der für $f:[n]\to [m]$ in Δ auf Morphismen $f^\S\to [n]^\S$ vom universellen Morphismus $Ff^*F_n\to F_n$ über Ff induziert ist und auf Morphismen $f^\S\to [m]^\S$ durch die Morphismen $Ff^*F_n\to F_m$ in $\operatorname{Ens}_{/X_m}$ sowie Rf. Letzterer ist tatsächlich

ein Morphismus in Ens_{/Top}, denn es kommutiert

$$Ff^*F_n \times R[n] \longrightarrow F_m \times R[n] \longrightarrow F_m \times R[m]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X_m \times R[n] \longrightarrow X_m \times R[n] \longrightarrow X_m \times R[m].$$

Wir erhalten die folgende kovariante Realisierung:

Proposition 0.5. Sei $F \in [\Delta^{\mathrm{op}}, \mathrm{Ens}_{/\!/ \mathrm{Top}}]$ eine simpliziale Garbe über topologischen Räumen mit Komorphismen und $R : \Delta \to \mathrm{Top}$ ein kosimplizialer topologischer Raum. Dann ist der Kolimes |F| über den oben definierten zugehörigen Funktor $K : \mathrm{Sub}(\Delta) \to \mathrm{Ens}_{/\!/ \mathrm{Top}}$ eine Garbe über der geometrischen Realisierung $X \otimes R$ der Basisräume.

Bemerkung 0.6. Diese geometrische Realisierung simplizialer Garben auf topologischen Räumen mit Komorphismen spezialisiert zu einer geometrischen Realisierung simplizialer Garben auf X: Ist $F:\Delta^{\mathrm{op}}\to \mathrm{Ens}_{/\!/X}$ eine simpliziale Garbe auf topologischen Räumen mit Komorphismen und konstantem Basisraum X alias eine kosimpliziale Garbe $F^{\mathrm{op}}:\Delta\to\mathrm{Ens}_{/\mathrm{X}}$, so vereinfacht das Diagramm 1 zu

und ihre geometrische Realisierung aus 0.5 ist eine Garbe $|F| \in \text{Ens}_{/X}$, der Kolimes über den Funktor $\Delta \to \text{Ens}_{/\text{Top}}$, der $f:[n] \to [m]$ monoton auf den Morphismus

$$F_n \times R[n] \xrightarrow{F^{\text{op}} f \times |f|} F_m \times R[m]$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \times R[n] \longrightarrow X \times R[m]$$

schickt.

Sind alle X_n diskret, so bestimmt für $\sigma \in X_n$ der Halm $(F_m)_{\sigma}$ die konstante Garbe $(F_m)_{\sigma} \times R[n] \to \sigma \times R[n]$ und wir erhalten für monotones $f:[n] \to [m]$ Abbildungen $(F_n)_{f(\sigma)} \to (F_m)_{\sigma}$, die diese konstanten Garben verkleben. Insbesondere sind für Randabbildungen d_i die Verklebungen Generisierungen, die angeben, wie ein Element des Halms am Rand eines Simplex einen Schnitt über eine Umgebung dieses Punkts (auch im Inneren des Simplex) definiert. Wir werden diese Beobachtungen in ?? präzisieren und die zunächst seltsam anmutende Konstruktion als etwas natürlicher wahrnehmen.

Für die relative Version betrachten wir Basisräume $X_n=X\times D_n$ mit diskreten D_n und von $D_m\to D_n$ induzierten Abbildungen. Zu $\sigma\in D_n$ gehört dann

eine Garbe $F_{\sigma} := F_n|_{\sigma \times X} \in \operatorname{Ens}_{/X}$ und wir erhalten für monotones $f : [n] \to [m]$ Garbenmorphismen $F_{f(\sigma)} \to F_{\sigma}$, die diese Garben verkleben. Wieder sind diese generisierend, erlauben also die Ausweitung eines U-Schnitts von einem Randpunkt auf einen U-Schnitt im Inneren.

0.1.1 Die Dualität von Nerv und Realisierung

Wir suchen Rechtsadjungierte für unsere geometrischen Realisierungen. Für die Realisierung simplizialer Mengen gelingt uns das einfach.

Satz 0.7. Der Funktor der singulären Ketten $S: \text{Top} \to s \text{ Ens}, SY = \text{Top}(R \cdot, Y):$ $[n] \mapsto \text{Top}(|\Delta^n|, Y)$ ist rechtsadjungiert zur geometrischen Realisierung $|\cdot|: s \text{ Ens} \to \text{Top}.$

Beweis. Die Rand- und Degenerationsabbildungen von SY sind für $f:[n] \to [m]$ gegeben durch Vorschalten von $|f|:|\Delta^n|\to |\Delta^m|$. Wir berechnen

$$\operatorname{Top}(|X|, Y) = \operatorname{Top}(\operatorname{col}_{\Delta \downarrow r X} |\Delta^n|, Y)$$

$$\xrightarrow{\sim} \operatorname{col}_{\Delta \downarrow r X} \operatorname{Top}(|\Delta^n|, Y)$$

$$\xrightarrow{\sim} \operatorname{col}_{\Delta \downarrow r X} \operatorname{s} \operatorname{Ens}(\Delta^n, \operatorname{Top}(R \cdot, Y))$$

$$\xrightarrow{\sim} \operatorname{s} \operatorname{Ens}(\operatorname{col}_{\Delta \downarrow r X} \Delta^n, \operatorname{Top}(R \cdot, Y))$$

$$\xrightarrow{\sim} \operatorname{s} \operatorname{Ens}(X, SY)$$

mit der Definition der geometrischen Realisierung im ersten Schritt (Gl. ??), der Verträglichkeit von Hom: $C^{\text{op}} \times C \to \text{Ens}$ mit Limites im zweiten und vierten Schritt, unserer Bestimmung der n-Simplizes als Morphismenmenge (Gl. ??) im dritten Schritt und unserer Beschreibung einer simplizialen Menge als Kolimes über ihre Simplexkategorie (??) im letzten Schritt.

Während dieses Argument wieder ein sehr anschauliches ist, möchten wir wie in ?? erklärt, unser Argument mit den Begriffen und Techniken von Koenden führen, um es automatisch verallgemeinern zu können. Wir geben hier noch einmal die direkte Übersetzung obigen Beweises in die Sprache der Koenden an, und dann sofort die Verallgemeinerung.

Beweis. ([?], 3.2) Wir berechnen mit den Regeln des Koenden-Kalküls:

$$\operatorname{Top}(|X|, Y) = \operatorname{Top}\left(\int^{[n]} X[n] \times R[n], Y\right)$$

$$\xrightarrow{\sim} \int_{[n]} \operatorname{Top}\left(X[n] \times R[n], Y\right)$$

$$\xrightarrow{\sim} \int_{[n]} \operatorname{Ens}\left(X[n], \operatorname{Top}(R[n], Y)\right)$$

$$\xrightarrow{\sim} [\Delta^{\operatorname{op}}, \operatorname{Ens}]\left(X, \operatorname{Top}(R \cdot Y)\right)$$

$$= \operatorname{sEns}(X, SY).$$

Theorem 0.8 (Allgemeine Nerv-Realisierungs-Dualität, [?], 3.2). Seien C eine V-Kategorie mit Koexponentialen und ein Funktor $R: S \to C$ gegeben. Dann gibt es eine Adjunktion $(|\cdot|, N)$

$$C \stackrel{|\cdot|}{\longleftrightarrow} [S^{\mathrm{op}}, V]$$

mit

$$|\cdot|:X\mapsto \int^s X(s)\odot R(s)$$
 und
$$N:Y\mapsto C(R\cdot,Y).$$

Beweis. In wörtlicher Verallgemeinerung des Vorangegangenen:

$$\begin{split} C(|X|,Y) &= C\left(\int^s X(s)\odot R(s),Y\right) \\ &\xrightarrow{\sim} \int_s C\big(X(s)\odot R(s),Y\big) \\ &\xrightarrow{\sim} \int_s V\big(X(s),C(R(s),Y)\big) \\ &\xrightarrow{\sim} \sum_{??} \big[S^{\mathrm{op}},V\big]\big(X,C(R\cdot,Y)\big) \\ &= \big[S^{\mathrm{op}},V\big](X,NY). \end{split}$$

0.1.2 Die kartesisch abgeschlossene Struktur der Garben auf X

Für unsere allgemeine Dualität von Nerv und Realisierung 0.8 benötigen wir also eine bessere V-angereichterte Struktur auf C. Wenn wir uns auf $\operatorname{Ens}_{/X}$ beschränken, erhalten wir sogar die Struktur einer kartesisch abgeschlossenen Kategorie (engl. cartesian closed category), d. h. einer Kategorie mit endlichen Produkten, für deren kartesische monoidale Struktur es ein internes Hom gibt.

Proposition 0.9. Die Kategorie $\operatorname{Ens}_{/X}$ ist kartesisch abgeschlossen mit Produkt

$$(F \times G)(U) = F(U) \times G(U)$$

und internem Hom

$$(F \Rightarrow G)(U) = \operatorname{Ens}_{/U}(F|_U, G|_U)$$

jeweils mit den von den Restriktionen von F und G induzierten Restriktionen. Der étale Raum des Produkts ist gegeben durch das Faserprodukt über X:

$$\overline{F \times G} \xrightarrow{\sim} \overline{F} \times_X \overline{G}.$$

Beweis. Das Produkt erfüllt offenbar die universelle Eigenschaft in p ${\rm Ens}_{/{\rm X}}$ und ist eine Garbe, da Produkte mit dem Limes der Garbeneigenschaft vertauschen

(Spezialfall von $\ref{eq:condition}$). Das interne Hom besteht aus stetigen Abbildungen über U und erfüllt somit die Garbenbedingung, die ja sogar nach der Verklebbarkeit stetiger Abbildungen modelliert war. Für die Adjunktion müssen wir zeigen

$$\operatorname{Ens}_{/X}(F \times G, H) \xrightarrow{\sim} \operatorname{Ens}_{/X}(F, G \Rightarrow H).$$

Links stehen restriktionsverträgliche Systeme $F(U) \times G(U) \to H(U)$ alias $F(U) \to \operatorname{Ens}(G(U), H(U))$, rechts restriktionsverträgliche Systeme $F(U) \to \operatorname{Ens}_{/U}(G|_U, H|_U)$. Wir erhalten eine Abbildung von rechts nach links durch den globalen Teil $G(U) \to H(U)$ des Garbenmorphismus $G|_U \to H|_U$ und das Exponentialgesetz in Ens und von links nach rechts durch Ergänzen des globalen Teils $G(U) \to H(U)$ durch verträgliche $G(V) \to H(V)$ als die Bilder unter $F(U) \to F(V) \to \operatorname{Ens}(G(V), H(V))$. Diese Abbildungen sind zueinander invers.

Für den étalen Raum des Produkts erhalten wir nach der universellen Eigenschaft des Faserprodukts eine stetige Abbildung über X

$$\overline{F \times G} \to \overline{F} \times_X \overline{G}$$
.

Diese induziert auf den Halmen die Bijektionen

$$(F \times G)_x \xrightarrow{\sim} F_x \times G_x$$

aus dem Vertauschen endlicher Limites mit filtrierenden Kolimites.

Diese Struktur einer kartesisch abgeschlossenen Kategorie macht $\operatorname{Ens}_{/X}$ insbesondere zu einer über sich selbst tensorierten Kategorie im Sinne von \ref{Model} . Wir erhalten einen Nerv-Funktor für die geometrische Realisierung simplizialer Garben auf X aus 0.8.

Da es sich wieder um eine sehr allgemeine Aussage handelt, geben wir die Verallgemeinerung auf beliebige Prägarbenkategorien an.

Proposition 0.10. Ist C eine kleine Kategorie, so ist die Prägarbenkategorie $\operatorname{Ens}^{C^{\operatorname{op}}}$ kartesisch abgeschlossen.

Beweis. Nach der objektweisen Berechnung von Limites in Funktorkategorien ist das Prägarbenprodukt gegeben durch $(F \times G)(c) = F(c) \times G(c)$ für $F,G \in \operatorname{Ens}^{C^{\operatorname{op}}}$ und $c \in C$. Wir behaupten, dass das interne Hom in der Prägarbenkategorie die Prägarbe

$$(F \Rightarrow G)(c) := \operatorname{Ens}^{C^{\operatorname{op}}}(F \times C(\cdot, c), G),$$

ist, die auf Morphismen $f:c\to d$ durch Vorschalten von Transformationen $\mathrm{id}_F\times(\circ f)$ gegeben ist, mit $(\circ f):C(\cdot,c)\to C(\cdot,d)$ dem Nachschalten von f. Mit \ref{Mit} sind Morphismen in $\mathrm{Ens}^{C^{\mathrm{op}}}$ darstellbar als Ende

$$\operatorname{Ens}^{C^{\operatorname{op}}}(F,G) = \int_{c} \operatorname{Ens}(F(c), G(c))$$

und wir berechnen mit den Regeln des (Ko-) Endenkalküls für $F, G, H \in \operatorname{Ens}^{C^{\operatorname{op}}}$:

$$\operatorname{Ens}^{C^{\operatorname{op}}}(F,G\Rightarrow H) \xrightarrow{\sim} \operatorname{Ens}^{C^{\operatorname{op}}}(F,\operatorname{Ens}^{C^{\operatorname{op}}}(F\times C(\cdot,\bullet),G))$$

$$\xrightarrow{\sim} \int_{c} \operatorname{Ens}(F(c),\int_{d} \operatorname{Ens}(G(d)\times C(d,c),H(d)))$$

$$\xrightarrow{\sim} \int_{c} \int_{d} \operatorname{Ens}(F(c),\operatorname{Ens}(G(d)\times C(d,c),H(d)))$$

$$\xrightarrow{\sim} \int_{d} \int_{c} \operatorname{Ens}(F(c),\operatorname{Ens}(G(d)\times C(d,c),H(d)))$$

$$\xrightarrow{\sim} \int_{d} \int_{c} \operatorname{Ens}(F(c)\times G(d)\times C(d,c),H(d))$$

$$\xrightarrow{\sim} \int_{d} \operatorname{Ens}(\int^{c} F(c)\times G(d)\times C(d,c),H(d))$$

$$\xrightarrow{\sim} \int_{d} \operatorname{Ens}(F(d)\times G(d),H(d))$$

$$\xrightarrow{\sim} \operatorname{Ens}^{C^{\operatorname{op}}}(F\times G,H).$$

Die obere Aussage über Prägarben auf topologischen Räumen ergibt sich daraus durch die Beobachtung, dass $F|_U = F \times \mathrm{Off}_X(\cdot, U)$ ist, denn Off_X ist halbgeordnet durch Inklusionen. Wir erhalten auch die kartesisch abgeschlossene Struktur simplizialer Mengen, der Prägarbenkategorie auf Δ . Explizit ist für $X, Y \in \mathrm{sEns}$:

$$(X \times Y)_n = X_n \times Y_n$$

und

$$(X \Rightarrow Y)_n = \operatorname{sEns}(X \times \Delta^n, Y).$$

Auch die Rolle von Ens kann verallgemeinert werden. Wir erhalten:

Proposition 0.11. Sei E eine kartesisch abgeschlossene Kategorie und C eine kleine Kategorie. Dann ist die Kategorie der Prägarben $E^{C^{\text{op}}}$ angereichert über E und kartesisch abgeschlossen.

Beweis. Sind $F, G \in E^{C^{op}}$ Prägarben, so erhalten wir die angereicherte Struktur durch Übertragung der obigen Formulierung als Ens-Ende:

$$E^{C^{\text{op}}}(F,G) := \int_{C} E(F(c), G(c)) \in E,$$

für $E(\cdot,\cdot)$ das interne Hom in E. Damit funktioniert der Beweis oben auch für diesen Fall.

0.1.3 Kategorien von Garben über topologischen Räumen

Wir betrachten die Kategorienfaserungen $\operatorname{Ens}_{/\operatorname{Top}} \to \operatorname{Top}$ mit Morphismen den stetigen Abbildungen zwischen den étalen Räumen über der stetigen Abbildung

in der Basis sowie Ens // Top \to Top mit Opkomorphismen als Morphismen, d. h. für $F \in \text{Ens}_{/X}$ und $G \in \text{Ens}_{/Y}$:

$$\operatorname{Ens}_{/\!\!/\operatorname{Top}}(F,G) = \bigsqcup_{f:X \to Y} \operatorname{Ens}_{/X}(f^*G,F).$$

Wir möchten einen Nerv-Funktor nicht nur für die Realisierung simplizialer Garben über X finden, sondern auch für simpliziale Garben über variablen topologischen Räumen, also für simpliziale Objekte in $\mathrm{Ens}_{/\mathrm{Top}}$ und $\mathrm{Ens}_{//\mathrm{Top}}$ Dafür benötigen wir wieder eine monoidal abgeschlossene Struktur auf diesen Kategorien.

Die Kategorie $\operatorname{Ens_{/Top}}$ besitzt endliche Produkte, die algebraisch gegeben sind durch Rückzug und Produkt und topologisch durch Bilden der Produkträume. Konkret:

Proposition 0.12. Seien $F_{1,2} \in \operatorname{Ens}_{/X_{1,2}}$ Garben über topologischen Räumen X_1 und X_2 . Dann erfüllt die Garbe

$$F_1 \times F_2 := \operatorname{pr}_1^* F_1 \times \operatorname{pr}_2^* F_2 \in \operatorname{Ens}_{/X_1 \times X_2}$$

 $mit \ \mathrm{pr}_{1,2}: X_1 \times X_2 \to X_{1,2} \ den \ Projektionen \ die universelle \ Eigenschaft \ des \ Produkts \ von \ F_1 \ und \ F_2 \ in \ \mathrm{Ens}_{/ \ \mathrm{Top}}.$ Für ihren étalen Raum gilt:

$$\overline{F_1 \times F_2} = \overline{F_1} \times \overline{F_2}$$

und $\overline{F_1 \times F_2} \to X_1 \times X_2$ ist durch das Produkt der $\overline{F_{1,2}} \to X_{1,2}$ gegeben.

Beweis. Die Beschreibung von Ens/ $_{\text{Top}}$ als Paare topologischer Räume mit étaler Abbildung zeigt die Aussage über den étalen Raum des Produkts. Die induzierte Abbildung $\overline{F_1} \times \overline{F_2} \to X_1 \times X_2$ ist ein Homöomorphismus auf der Produktmenge der Umgebungen, auf denen $\overline{F_{1,2}} \to X_{1,2}$ Homöomorphismen sind.

Für die algebraische Beschreibung erhalten wir mit der Offenheit der Projektionen pr $_{1,2}$ und 0.9 für die Schnitte über Basismengen $U_1 \times U_2$:

$$(F_1 \times F_2)(U_1 \times U_2) \xrightarrow{\sim} (\operatorname{pr}_1^* F_1)(U_1 \times U_2) \times (\operatorname{pr}_2^* F_2)(U_1 \times U_2)$$

$$\xrightarrow{\sim} F_1(U_1) \times F_2(U_2).$$

Wir erhalten also einen Garbenmorphismus über $X_1 \times X_2$ von der algeraischen zur topologischen Beschreibung, indem einem Paar $(s,t) \in F_1(U_1) \times F_2 \times U_2$ der Schnitt $s \times t : U_1 \times U_2 \to \overline{F_1} \times \overline{F_2}$ zugeordnet wird. Dieser Morphismus induziert auf den Halmen die Bijektion $(F_1 \times F_2)_{x,y} \xrightarrow{\sim} (F_1)_x \times (F_2)_y$ aus dem Vertauschen von endlichen Produkten mit filtrierenden Kolimites.

Bemerkung 0.13. Auf ähnliche Weise kann man auch für $\operatorname{Ens}_{/\!/\operatorname{Top}}$ endliche Produkte konstruieren: es handelt sich (wegen der opponierten Fasern) um das Koprodukt der mit den Projektionen auf den Produktraum zurückgezogenen Garben

Auch dieses Verfahren können wir für beliebige Limites und Kolimites durchführen und so \ref{Model} übertragen:

Satz 0.14. Die Kategorie der Garben auf topologischen Räumen mit Morphismen Ens_{/ Top} ist vollständig und kovollständig.

Beweis. Die Kategorie der topologischen Räume Top ist vollständig und kovollständig mit der Initial- bzw. Finaltopologie für die Limes- bzw. Kolimesmengen. Sei $F_i \in \operatorname{Ens}_{/X_i}$ für eine kleine Kategorie I ein System von Garben auf topologischen Räumen. Wir erhalten für $\operatorname{pr}_i : \lim_i X_i \to X_i$ die Projektionen den Limes durch

$$\lim_{i} F_{i} := \lim_{i} \operatorname{pr}_{i}^{*} F_{i} \in \operatorname{Ens}_{\lim_{i} X_{i}}.$$

Für eine Garbe $G \in \operatorname{Ens}_{/Y}$ und einen Kegel $G \to F_i$ faktorisieren zunächst die Morphismen in der Basis $f_i : Y \to X_i$ eindeutig über $\operatorname{pr}_i : f_i = \operatorname{pr}_i \circ g_i$. Wir erhalten mit der universellen Eigenschaft des Rückzugs und der Adjunktion (f^*, f_*) :

$$\operatorname{Ens}_{/\operatorname{Top}}(G, F_i) \xrightarrow{\sim} \operatorname{Ens}_{/\lim_i X_i}(g_{i*}G, \operatorname{pr}_i^* F_i)$$

einen Kegel in $\mathrm{Ens}_{/\lim_i X_i},$ für den der angegebene Limes nach $\ref{eq:limes}$ das universelle Problem löst.

Für den Kolimes finden wir ebenfalls eine eindeutige Faktorisierung über den Kolimes in $_i: X_i \to \operatorname{col}_i X_i$ in der Basis und erhalten den Kolimes in $\operatorname{Ens}_{/\operatorname{Top}}$ als

$$\operatorname{col}_{i} F_{i} := \operatorname{col}_{i} \operatorname{in}_{i*} F_{i} \in \operatorname{Ens}_{/\operatorname{col}_{i} X_{i}}.$$

Man beachte, dass hierbei der Prägarbenkolimes garbifiziert wird. □

Wir könnten erwarten, dass wie das Produkt auch das interne Hom von EnsX in unsere relative Situation übertragen werden kann. Dies gelingt tatsächlich aber im Allgemeinen nicht, denn in diesem Fall erhielten wir durch Nachschalten des Faserfunktors $Ens_{/Top} \rightarrow Top$ bzw. $Ens_{//Top} \rightarrow Top$ ein zum kartesischen Produkt adjungiertes internes Hom in der Kategorie der topologischen Räume, was bekanntermaßen in dieser Allgemeinheit nicht möglich ist ([?]). Wir müssen uns also wieder auf eine bequeme Kategorie topologischer Räume mit internem Hom einschränken.

Die häufige Wahl CGHaus ist für uns ungeeignet, denn der étale Raum einer Garbe über einem kompakt erzeugten Hausdorffraum ist im Allgemeinen kein Hausdorffraum mehr (betrachte etwa die Garbe der stetigen Funktionen nach \mathbb{R}). Abhilfe schafft uns eine Konstruktion aus [?], die die den kompakt erzeugten Räumen zugrundeliegenden Gedanken verallgemeinert. Wir geben hier nur die Ergebnisse an.

Äquivalent zu unserer (der point-set-Topologie entspringenden) Definition kompakt erzeugter Räume ist die folgende Charakterisierung:

Lemma 0.15 (??, Variante). Ein topologischer Raum X ist kompakt erzeugt genau dann, wenn gilt: Eine Teilmenge $U \subset X$ ist offen genau dann, wenn ihr Urbild unter allen stetigen Abbildungen $K \to X$, K kompakt, offen ist.

Beweis. Unsere Bedingung besagt, dass X die Finaltopologie bezüglich des Systems der $K \to X$, K kompakt tragen soll. Die Bedingung aus der ursprünglichen Definition ist dieselbe für das System der Inklusionen kompakter

Mengen $K \subset X$. Da jede stetige Abbilung $K \to X$, K kompakt, über die Inklusion ihres kompakten Bilds faktorisiert, ist letzteres System in ersterem konfinal und die Finaltopologien stimmen überein.

Der in ?? angesprochene zur Inklusion Rechtsadjungierte $k: \text{Top} \to \text{CG}$ lässt sich nun auch beschreiben als das Versehen der X zugrundeliegenden Menge mit der genannten Finaltopologie. Der Raum kX ist dann sogar ein Kolimes über das System der $K \to X$, K kompakt, mitsamt den Morphismen über X ([?], 1.1).

Nun verallgemeinern wir ([?], 1): Sei \mathcal{I} eine nichtleere volle Unterkategorie von Top (für CG die kompakten Räume). Betrachte die Kategorie $\mathcal{I} \downarrow X$ und $kX := \operatorname{col}_{mathcalI \downarrow X} X$. Bezeichne die volle Unterkategorie der topologischen Räume X mit $kX \cong X$ mit \mathcal{K} . Dann ist $k : \operatorname{Top} \to \mathcal{K}$ ein Funktor und rechtsadjungiert zur Inklusion $\mathcal{K} \to \operatorname{Top}$. Es gilt $\mathcal{I} \subset \mathcal{K}$.

Bemerkung 0.16. Dual zu ?? heißt eine volle Unterkategorie mit zur Inklusion Rechtsadjungiertem koreflektiv, der Rechtsadjungierte heißt Koreflektor. Die Konstruktion, die zur vollen Unterkategorie $\mathcal{I} \subset \text{Top}$ eine koreflektive Unterkategorie $\mathcal{K} \subset \text{Top}$ liefert, welche \mathcal{I} umfasst, heißt auch Übergang zur koreflektiven Hülle. Es handelt sich tatsächlich um eine idempotente Operation ([?], Prop. 1.5).

Die koreflektive Hülle besitzt die folgenden Stabilitätseigenschaften:

Proposition 0.17. Die koreflektive Hülle K ist vollständig und kovollständig. Die Kolimites stimmen mit den Kolimites aus Top überein, die Limites entstehen durch Anwendung des Koreflektors k auf den Limes in Top.

Insbesondere ist K also stabil unter disjunkten Summen und Quotientenbildung.

Beweis. Das ist die duale Aussage zu ??. Die Vollständigkeit und Kovollständigkeit von Top durch Versehen der mengentheoretischen Limites bzw. Kolimites mit der Initial- bzw. Finaltopologie ist bekannt.

Im allgemeinen kann man keine Aussage darüber treffen, ob mit der Relativtopologie versehene Unterräume von Objekten in \mathcal{K} wieder zu \mathcal{K} gehören. Wir benötigen die folgende Eigenschaft:

1. Ist $U \odot X$ ein offener Unterraum eines Objekts $X \in \mathcal{I}$ versehen mit der Relativtopologie, so gilt $U \in \mathcal{K}$.

In diesem Fall gilt bereits für Objekte $X \in \mathcal{K}$, dass offene Unterräume $U \odot X$ wieder Objekte von \mathcal{K} sind. Dieselbe Aussage gilt, wenn man "offen" zweimal durch "abgeschlossen" ersetzt ([?], Prop. 2.4).

Wir nehmen nun an, dass \mathcal{I} die folgenden Axiome erfüllt ([?], Axiom 2):

2. \mathcal{I} ist abgeschlossen unter endlichen kartesischen Produkten (Produkten in Top).

3. Sind $X, Y \in \mathcal{I}$, so ist die Auswertungsabbildung

$$\operatorname{ev}_{X,Y} : \operatorname{Top}_{co}(X,Y) \times X \to Y, (f,x) \mapsto f(x)$$

stetig. Dabei ist $\text{Top}_{co}(X,Y)$ die Morphismenmenge Top(X,Y) versehen mit der kompakt-offen Topologie.

Dann besitzt \mathcal{K} die Struktur einer kartesisch abgeschlossenen Kategorie mit Produkten

$$X \otimes Y := k(X \times Y)$$

den "k-ifizierungen" der Produkte in Top und internem Hom

$$X \Rightarrow Y := k(\operatorname{Top}_{co}(X, Y))$$

([?], 3).

Definition 0.18. Ein topologischer Raum heißt *lokalkompakt* (im starken Sinne), wenn jeder Punkt eine Umgebungsbasis aus kompakten Mengen besitzt.

Bemerkung 0.19. Dies ist eine stärkere Bedingung als lokal kompakt (im schwachen Sinne) wie in ?? zu sein. Jene stimmt überein mit unserer Konvention für "lokal Eigenschaft" und wird daher getrennt geschrieben. Für Hausdorffräume stimmen beide Begriffe überein.

Proposition 0.20 ([?], 5). Die folgenden vollen Unterkategorien der Kategorie der topologischen Räume erfüllen die Axiome 1 - 3.

- (i) die Kategorie der kompakten Hausdorffräume \mathcal{I}_K ,
- (ii) die Kategorie der lokalkompakten topologischen Räume \mathcal{I}_L .

Für das Axiom 1 weisen wir das nach. Da es sich um eine lokale Eigenschaft handelt, gilt die Aussage im Fall der lokalkompakten Räume sofort. Für die kompakten Hausdorffräume bemerkt man, dass nach dem folgenden Lemma eine offene Teilmenge eines kompakten Hausdorffraums lokalkompakt ist und lokalkompakte Hausdorffräume mit den kompakt erzeugten Hausdorffräumen allgemein (vgl. ?? ??) in der koreflektiven Hülle der kompakten Hausdorffräume enthalten sind: in der Tat ist für diese das System der Inklusionen kompakter Teilmengen konfinal im System der von kompakten Hausdorffräumen ausgehenden stetigen Abbildungen, da das Bild von Kompakta unter stetigen Abbildungen kompakt ist. Die Bedingung, kompakt erzeugt zu sein, bedeutet aber gerade, die Finaltopologie bezüglich dieser Inklusionen zu tragen.

Lemma 0.21. Sei K ein kompakter Hausdorffraum und $U \subset K$ eine offene Teilmenge. Dann ist U mit der induzierten Topologie lokalkompakt.

Beweis. Sei $V \subset U$ eine offene Umgebung eines Punktes $x \in U$. Der Rand ∂V ist als abgeschlossene Teilmenge eines kompakten Hausdorffraums kompakt und kann somit durch endlich viele offene Mengen überdeckt werden, die disjunkt zu einer offenen Umgebung W_0 von x sind. Bezeichne die Vereinigung dieser Mengen mit W. Wegen $W \supset \partial V$ ist $V \setminus W = \overline{V} \setminus W$ abgeschlossen und somit eine kompakte Umgebung von x, die die offene Umgebung W_0 von x enthält. \square

Auch Axiom 2 sieht man direkt: ein Produkt von Hausdorffräumen ist bekanntermaßen wieder Hausdorffsch und ein Produkt kompakter Räume wieder kompakt. Mit dieser Aussage finden wir auch bei einem Produkt lokalkompakter Räume Umgebungsbasen aus Kompakta durch die Umgebungsbasen aus Produktmengen.

Für das Axiom 3 verweisen wir auf die Literatur, siehe etwa [?].

Korollar 0.22. Die koreflektiven Hüllen von \mathcal{I}_K und \mathcal{I}_L sind kartesisch abgeschlossen und enthalten mit jedem Objekt X auch alle offenen und alle abgeschlossenen Unterräume $Y \subset X$.

Damit können wir die für uns entscheidende Eigenschaft zeigen:

Proposition 0.23. Ist $X \in \mathcal{K}$ für \mathcal{K} die koreflektive Hülle von \mathcal{I}_K bzw. \mathcal{I}_L und $F \to X$ eine étale Abbildung, so gilt auch $F \in \mathcal{K}$.

Beweis. Wir können den étalen Raum $F \to X$ als Kolimes mittels der Schnitte F(U) über offene Mengen $U \odot X$ darstellen:

$$F \xrightarrow{\sim} \bigsqcup_{U \in X} F(U) \times U / \sim.$$

Dabei läuft das Koprodukt über alle offenen Teilmengen von X und ist die Äquivalenzrelation die Identifikation gleicher Keime, d. h.

$$(s,p) \sim (t,q) \Leftrightarrow p = q \text{ und } s_p = t_p.$$

Die étale Abbildung $F \to X$ ist dann von der Projektion auf die zweiten Faktoren induziert und wohldefiniert. Man erkennt leicht den Isomorphismus als die Koeinheit der Adjunktion (ét, S) aus [?], 2.1.24, eingeschränkt auf die Kategorie der étalen Räume über X.

Nach den Stabilitätseigenschaften von \mathcal{K} sind die offenen Teilmengen $U \subset X$ Objekte von \mathcal{K} und dann auch der Kolimes F bestehend aus Koprodukt und Koegalisator. Man beachte, dass es sich bei $F(U) \times U$ mit der diskreten Topologie auf F(U) formal um das Koprodukt $\bigsqcup_{F(U)} U$ handelt.

Wir können uns nun der Frage nach einer kartesisch abgeschlossenen Struktur auf $\mathrm{Ens}_{/\,\mathrm{Top}}$ zuwenden.

Proposition 0.24. Die Kategorie der Garben über topologischen Räumen mit Morphismen Ens_{/ Top} ist nicht kartesisch abgeschlossen.

Beweis. Wir erinnern daran, dass ein Morphismus in $\mathrm{Ens}_{/\,\mathrm{Top}}$ ein kommutatives Quadrat

$$\begin{array}{ccc} F & \longrightarrow G \\ \downarrow^p & & \downarrow^q \\ X & \longrightarrow Y \end{array}$$

ist. In diesem Beweis notieren wir Objekte in $\operatorname{Ens_{/Top}}$ mitsamt ihrer Basis als $F \to X$. Angenommen, es gibt ein internes Hom zum Produkt aus ?? in $\operatorname{Ens_{/Top}}$.

Wir wollen zeigen, dass dieses dann auch ein internes Hom in Top liefert, ein Widerspruch zu der bekannten Aussage, dass Top nicht kartesisch abgeschlossen ist ([?], Prop. 7.1.2).

Betrachte dazu die volltreuen Einbettungen Top \to Ens/Top durch faserweise initiale Garben $\iota: X \mapsto (\varnothing \to X)$ (konstant leer) und durch faserweise terminale Garben $\tau: X \mapsto (X \xrightarrow{\mathrm{id}} X)$ (konstant einelementig). Wir haben natürliche Bijketionen

$$\operatorname{Ens}_{/\operatorname{Top}}(\iota X, U \to L) \xrightarrow{\sim} C(X, L)$$
 und $\operatorname{Ens}_{/\operatorname{Top}}(\tau X, U \to L) \xrightarrow{\sim} C(X, U).$

durch Betrachten des unteren bzw. oberen Pfeils des kommutativen Quadrats.

Wir erhalten für $(U \to L) = (\tau Y \Rightarrow \tau Z)$ das interne Hom, dass wegen

$$C(X,U) \xrightarrow{\sim} \operatorname{Ens}_{/C}(\tau X, U \to L)$$
$$\xrightarrow{\sim} \operatorname{Ens}_{/C}(\tau X \times \tau Y, \tau Z)$$
$$\xrightarrow{\sim} C(X \times Y, Z)$$

U ein internes Hom in Top für Y und Z ist.

Da das einzige Problem die fehlende kartesisch abgeschlossene Struktur in der Basis war, schränken wir uns auf eine bequemere Kategorie \mathcal{K} ein. Zunächst betrachten wir den Fall von Paaren von \mathcal{K} -Räumen mit stetiger, aber nicht notwendigerweise étaler, Abbildung.

Lemma 0.25. Sei I die Pfeilkategorie $\bullet \to \bullet$ und $K \subset \text{Top eine koreflektive}$, kartesisch abgeschlossene Kategorie topologischer Räume. Dann ist K^I kartesisch abgeschlossen.

Beweis. Es handelt sich um eine Prägarbenkategorie auf I^{op} mit Werten in einer kartesisch abgeschlossenen Kategorie. Die Aussage folgt somit aus 0.11. Expliziter ist das interne Hom von $F \to X$ mit $G \to Y$ das Paar $\mathcal{K}(F,G) \times_{\mathcal{K}(F,Y)} \mathcal{K}(X,Y) \to \mathcal{K}(X,Y)$, das die Menge der kommutativen Quadrate mit einer Topologie ausstattet, mit der Projektion auf den zweiten Faktor als Abbildung. Die Adjunktion $\mathcal{K}^I((F \to X) \times (G \to Y), (H \to Z)) \xrightarrow{\sim} \mathcal{K}^I((F \to X), (G \to Y))$ für $(F \to X), (G \to Y), (H \to Z) \in \mathcal{K}^I$ ist dann die Bijektion von Faserprodukten

$$\mathcal{K}(F\times G,H)\times_{\mathcal{K}(F\times G,Z)}\mathcal{K}(X\times Y,Z)\xrightarrow{\sim}\mathcal{K}(F,\mathcal{K}(G,H)\times_{\mathcal{K}(G,Z)}\mathcal{K}(Y,Z))\times_{\mathcal{K}(F,\mathcal{K}(Y,Z))}\mathcal{K}(X,\mathcal{K}(Y,Z)).$$

Im allgemeinen ist das interne Hom in \mathcal{K}^I für $(F \to X)$ und $G \to Y)$ mit étalen Abbildungen nicht wieder étale. Wir können versuchen, es zu "étalisieren":

Lemma 0.26 ([?], 2.1.40). Für X einen topologischen Raum ist die volle Unterkategorie ét $\mathrm{Top}_X \hookrightarrow \mathrm{Top}_X$ koreflektiv. Der zur Inklusion Rechtsadjungierte heißt Étalisierung.

Beweis. ([?], 2.1.40) Wir erhalten die Étalisierung als die Verknüpfung ét oS für S den Funktor der Schnittgarbe und ét den Funktor des étalen Raums einer Garbe. Es handelt sich um die Verknüpfung von Adjunktionen

$$(\text{\'et}, S) \circ (S, \text{\'et}) = (\text{\'et} \circ S, \text{\'et} \circ S) : \text{Top}_X \rightleftarrows \text{Ens}_{/X} \rightleftarrows \text{\'et} \text{Top}_X,$$

wobei letztere Adjunktion sogar die bekannte Äquivalenz von Kategorien ist. \qed

Ist $\mathcal{K} \subset \text{Top}$ nun eine Kategorie topologischer Räume, die mit jedem Raum X auch jeden étalen Raum über X enthält (etwa wie in 0.23), so können wir die Kategorie der étalen Räume über \mathcal{K} als volle Unterkategorie von \mathcal{K}^I auffassen:

$$\operatorname{\acute{e}t} \mathcal{K}^I := \operatorname{Ens}_{/\mathcal{K}} \subset \mathcal{K}^I.$$

Gäbe es nun einen Koreflektor $^+:\mathcal{K}^I\to\operatorname{\acute{e}t}\mathcal{K}^I,$ so hätten wir für $F,G,H\in\operatorname{\acute{e}t}\mathcal{K}^I:$

mit der kartesisch abgeschlossenen Struktur aus 0.25 im zweiten Schritt. Die Produkte in \mathcal{K}^I und ét \mathcal{K}^I stimmen dabei nach dem folgenden Lemma überein. Umgekehrt ist, falls ein internes Hom $(G \Rightarrow H)^+$ in ét \mathcal{K}^I existiert, die Zuordnung $(G \Rightarrow H) \mapsto (G \Rightarrow H)^+$ ein partiell definierter Koreflektor. Unsere Aufgabe ist es nun zu zeigen, dass eine solche relative Form der Étalisierung nicht möglich ist.

Lemma 0.27. Ist $k : \text{Top} \to \mathcal{K}$ ein Koreflektor und $p : F \to X$ étale in Top, so ist $kp : kF \to kX$ étale.

Bemerkung 0.28. Die Bedingung, dass \mathcal{K} koreflektiv sei, ist hier nur eine sehr schwache Einschränkung, denn sie ist äquivalent dazu, dass \mathcal{K} unter Kolimites in Top abgeschlossen ist ([?], Thm. 37.3).

Beweis. Dass p étale ist, bedeutet, dass es für jedes $x \in F$ ein kommutatives Quadrat

$$\begin{array}{ccc} U & & & F \\ \downarrow \sim & & \downarrow p \\ p(U) & & & X \end{array}$$

gibt mit $U \subset F$ und $p(U) \subset X$. Anwendung von k ergibt das entsprechende Diagramm, in welchem kU und k(p(U)) offen sind, da der Koreflektor die Topologien höchstens verfeinert und die Abbildungen injektiv bleiben, da k die zugrundeliegenden mengentheoretischen Abbildungen erhält. Da k ein Funktor ist, kommutiert das Quadrat und $kU \xrightarrow{\sim} k(p(U)) = (kp)(KU)$ ist ein Homöomorphismus.

Das Übereinstimmen der Produkte in \mathcal{K}^I und ét \mathcal{K}^I ergibt sich nun daraus, dass für $(F \to X), (G \to Y) \in \text{\'et}\mathcal{K}^I$ zunächst das Produkt $(F \times G \to X \times Y)$ in Top étale ist, und dann nach dem Lemma auch das Produkt $k(F \times G) \to k(X \times Y)$ in \mathcal{K}^I étale und somit in ét \mathcal{K}^I ist.

Satz 0.29. Der partiell definierte Koreflektor $^+: \mathcal{K}^I \to \operatorname{\acute{e}t} \mathcal{K}^I$ ist nur auf $\operatorname{\acute{e}t} \mathcal{K}^I$ definiert.

Beweis. Dies liegt daran, dass die Testobjekte, mit denen wir Objekte in \mathcal{K}^I eindeutig festlegen können, bereits étale sind.

Konkret gelte also

$$\mathcal{K}^{I}((F \to X), (G \to Y)) \xrightarrow{\sim} \text{\'et}\mathcal{K}^{I}((F \to X), (G \to Y)^{+})$$
 (2)

für alle étalen $F \to X$. Ein Objekt $(H \to Z) \in \mathcal{K}^I$ ist nach dem Yoneda-Lemma (bis auf eindeutigen Isomorphismus) eindeutig festgelegt durch seine Yoneda-Einbettung $\mathcal{K}^I(\cdot,(H \to Z))$. Wir behaupten, dass sogar die Funktoren $\mathcal{K}^I(\iota\cdot,(H \to Z)) = \mathcal{K}(\cdot,Z)$ und $\mathcal{K}^I(\tau\cdot,(H \to Z)) = \mathcal{K}(\cdot,H):\mathcal{K} \to \text{Ens}$ und ihre aus $\iota \cdot \Rightarrow \tau \cdot$ entstehende Transformation ausreichen, um $H \to Z$ eindeutig festzulegen. In der Tat bestimmen die beiden Funktoren nach dem Yoneda-Lemma bereits die beteiligten Räume H und Z eindeutig und der Morphismus $H \to Z$ entspricht der Transformation. Nun sind $\iota X, \tau X \in \acute{\text{et}}\mathcal{K}^I$ für alle $X \in \mathcal{K}$, was den Beweis abschließt: dann müssen nämlich im Fall von 2 $(G \to Y)$ und $(G \to Y)^+$ isomorph sein und die Koreflektion ist genau dann definiert, wenn $(G \to Y)$ sowieso schon étale ist.

Korollar 0.30. Es gibt keine kartesisch abgeschlossene Struktur auf ét \mathcal{K}^I , falls \mathcal{K} nichtétale Abbildungen enthält.