Intro to Machine Learning

Lecture 2

Adil Khan

Recap

- Machine learning
 - What is machine learning?
 - Why learn/estimate?
 - Predictors and response variables
 - Types of learning
 - Regression and classification
 - Parametric and non-parametric models
 - Bias and variance

Objectives

- What is linear regression?
- Why study linear regression?
- What can we use it for?
- How to perform linear regression?
- How to estimate its performance?
- What are its extensions?
- What are dummy variables?

Example (1)

	Unnamed: 0	TV	radio	newspaper	sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9
5	6	8.7	48.9	75.0	7.2

Example (2)

What we might want to know?

- Is there a relationship between advertising budget and sales?
- How strong is the relationship between advertising budget and sales?
- Which media contribute to sales?
- How accurately can we estimate the effect of each medium on sales?
- How accurately can we predict future sales?
- Is there synergy among the advertising media?

What we might want to know?

- Is there a relationship between advertising budget and sales?
- How strong is the relationship between advertising budget and sales?
- Which media contribute to sales?
- How accurately can we estimate the effect of each medium on sales?
- How accurately can we predict future sales?
- Is there synergy among the advertising media?

Example (3)

 $Sales = f(TV, Newspaper, Radio) + \epsilon$

Example (4)

 $Sales = f(TV, Newspaper, Radio) + \epsilon$

 $\widehat{Sales} \approx \widehat{f}(TV, Newspaper, Radio)$

What is linear regression?

- A simple supervised learning approach
- Assumes a linear relationship between the predictors and the response

$$Y = \beta_0 + \beta_1 X$$

Why study linear regression?

- Although it may seem overly simplistic, linear regression is extremely useful both conceptually and practically.
 - It is still a useful and widely used statistical learning method
 - ➤ It serves as a good jumping-off point for newer approaches:

What can we use it for?

- Is there a relationship between predictors and response?
- How strong is the relationship between?
- Which predictors contribute to response?
- How accurately can we estimate the effect of each predictors?
- How accurately can we predict response?
- Is there synergy among the predictors?

Example (5)

$$Sales = f(TV) + \epsilon$$
$$\widehat{Sales} \approx \hat{f}(TV)$$

Example (6)

$$Sales = \beta_0 + \beta_1 TV + \epsilon$$

Example (7)

Example (8)

How to find the optimum fit?

For our example

More formally – Least Squares

Estimating Parameters by Least Squares (1)

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

$$e_i = y_i - \hat{y}_i$$

Residual sum of squares

$$RSS = e_1^2 + e_2^2 + \dots + e_n^2$$

RSS =
$$(y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \dots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$

Estimating Parameters by Least Squares (2)

 The least squares approach chooses the parameters that minimize the RSS

The minimizing values can be found as

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2},$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

where $\bar{y} \equiv \frac{1}{n} \sum_{i=1}^{n} y_i$ and $\bar{x} \equiv \frac{1}{n} \sum_{i=1}^{n} x_i$ are the sample means.

Estimating Parameters by Least Squares (3)

Contour and three-dimensional plots of the RSS on the Advertising data, using sales as the response and TV as the predictor. The red dots correspond to the least squares estimates

Example (9)

$$\widehat{Sales} \approx \hat{\beta}_0 + \hat{\beta}_1 TV$$

Parameters	Values
Intercept	7.0326
TV	0.0475

Example (10)

As per this estimation, an additional \$1,000 spent on TV advertising is associated with selling approximately 47.5 additional units of the product.

Parameters	Values
Intercept	7.0326
TV	0.0475

Answering questions with LR (1)

- 1. Is there a relationship between sales (response) and TV (predictor)?
- Mathematically this corresponds to

$$H_0: \beta_1 = 0$$

verses

$$H_a$$
: $\beta_1 \neq 0$

Parameters	Values
Intercept	7.0326
TV	0.0475

Answering questions with LR (2)

- 1. Is there a relationship between sales (response) and TV (predictor)?
- Mathematically this corresponds to

$$H_0: \beta_1 = 0$$

verses

$$H_a$$
: $\beta_1 \neq 0$

But we do not have true values for these!!!!

Parameters	Values
Intercept	7.0326
TV	0.0475

Answering questions with LR (3)

- 1. Is there a relationship between sales (response) and TV (predictor)?
- Therefore, we calculate t-statistics

$$t = \frac{\hat{\beta}_1 - 0}{\text{SE}(\hat{\beta}_1)}$$

 Where SE is an estimate of how close the estimated parameter value is to its true value

Parameters	Values
Intercept	7.0326
TV	0.0475

Aside: SE

$$\mathrm{SE}(\hat{eta}_1)^2 = rac{\sigma^2}{\sum_{i=1}^n (x_i - ar{x})^2} \quad rac{s}{s}$$

Answering questions with LR (4)

- 1. Is there a relationship between sales (response) and TV (predictor)?
- Therefore, we calculate t-statistics

$$t = \frac{\hat{\beta}_1 - 0}{\text{SE}(\hat{\beta}_1)}$$

Parameters	Values	t-value
Intercept	7.0326	15.360
TV	0.0475	17.668

Answering questions with LR (5)

- 1. Is there a relationship between sales (response) and TV (predictor)?
- Finally, we calculate p-value
 - Probability of getting |t| assuming β_1 was 0

Parameters	Values	t-value
Intercept	7.0326	15.360
TV	0.0475	17.668

Answering questions with LR (6)

- 1. Is there a relationship between sales (response) and TV (predictor)?
- Finally, we calculate p-value
 - Probability of getting |t| assuming β_1 was 0

Parameter s	Values	t-value	p-value
Intercept	7.0326	15.360	< 0.0001
TV	0.0475	17.668	< 0.0001

Answering questions with LR (7)

• 2. What is the extent to which the model fits the data?

Parameter s	Values	t-value	p-value
Intercept	7.0326	15.360	< 0.0001
TV	0.0475	17.668	< 0.0001

Answering questions with LR (8)

• 2. What is the extent to which the model fits the data?

• This can judged using R^2 statistics

Parameter s	Values	t-value	p-value
Intercept	7.0326	15.360	< 0.0001
TV	0.0475	17.668	< 0.0001

Calculating R^2 statistics

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
.

$$TSS = \sum (y_i - \bar{y})^2$$

Answering questions with LR (9)

- 2. What is the extent to which the model fits the data?
- This can judged using R^2 statistics
- In this case, it is 0.612

Answering questions with LR (10)

- 3. Increasing the budget for TV will cause how much increase/decrease in sales?
- This can judged the value of the coefficient

Parameters	Values	t-value	p-value
Intercept	7.0326	15.360	< 0.0001
TV	0.0475	17.668	< 0.0001

Multiple Linear Regression (1)

- Simple linear regression is a useful approach for predicting a response on the basis of a single predictor variable.
- However, in practice we often have more than one predictor
 - Sales (TV, Radio, Newspaper)
 - Income (Years of education, Years of experience, Age, Gender)

Multiple Linear Regression (2)

Options

- 1. Fit p separate linear regressions (where p is the number of predictors)
- 2. Extend the simple linear regression model, so that it can directly accommodate multiple predictors

Multiple Linear Regression (3)

- Options
 - 1. Fit p separate linear regressions (where p is the number of predictors)
 - 2. Extend the simple linear regression model, so that it can directly accommodate multiple predictors

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

Multiple Linear Regression (4)

For p predictors,

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p$$

- The parameters are estimated using the same least squares approach that we saw in the context of simple linear regression
- The coefficients can be calculated using statistical packages

Multiple Linear Regression (5)

• For two predictors, the regression might look as follows

Multiple Linear Regression (6)

Parameters	Values	t-value	p-value
Intercept	2.939	9.42	< 0.0001
TV	0.46	32.81	< 0.0001
Radio	0.189	21.89	< 0.0001
Newspaper	-0.001	-0.18	< 0.8599

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times newspaper + \epsilon$$
.

For the Advertising data, least squares coefficient estimates of the multiple linear regression of number of units sold on radio, TV, and newspaper advertising budgets.

Multiple Linear Regression (7)

Parameters	Values	t-value	p-value
Intercept	2.939	9.42	< 0.0001
TV	0.46	32.81	< 0.0001
Radio	0.189	21.89	< 0.0001
Newspaper	-0.001	-0.18	< 0.8599

Compare the results for 'Newspaper' of **multiple regression (above)** to that of **linear regression** (above)

Parameters	Values	t-value	p-value
Intercept	12.351	19.88	< 0.0001
Newspaper	0.055	3.30	0.00115

Multiple Linear Regression (7)

Parameters	Values	t-value	p-value
Intercept	2.939	9.42	< 0.0001
TV	0.46	32.81	< 0.0001
Radio	0.189	21.89	< 0.0001
Newspaper	-0.001	-0.18	< 0.8599

Correlation matrix for TV, radio, newspaper, and sales for the Advertising data

	TV	radio	newspaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

Answering questions with MLR (1)

- 1. Is at least one of the predictors useful in predicting the response?
 - We might think that (just like LR) we can use p-value for this, but we are wrong

Parameters	Values	t-value	p-value
Intercept	2.939	9.42	< 0.0001
TV	0.46	32.81	< 0.0001
Radio	0.189	21.89	< 0.0001
Newspaper	-0.001	-0.18	< 0.8599

Answering questions with MLR (2)

- 1. Is at least one of the predictors useful in predicting the response?
 - Thus we use another measure called F-statistics

$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)}$$

Answering questions with MLR (3)

- 1. Is at least one of the predictors useful in predicting the response?
 - Thus we use another measure called F-statistics

Parameters	Values	t-value	p-value
Intercept	2.939	9.42	< 0.0001
TV	0.46	32.81	< 0.0001
Radio	0.189	21.89	< 0.0001
Newspaper	-0.001	-0.18	< 0.8599

F-statistics	570
--------------	-----

Since this is far larger than 1, it provides compelling evidence against the null hypothesis H0. In other words, the large F-statistic suggests that at least one of the advertising media must be related to sales

Answering questions with MLR (4)

- 1. Is at least one of the predictors useful in predicting the response?
 - But how far away from 0 F-statistics has to be?

Answering questions with MLR (5)

• 2. Do all the predictors help explain the response or is only a subset of them useful?

- > Forward selection
- ➤ Backward selection
- ➤ Mixed selection

Answering questions with MLR (6)

• 2. How well does the model fit the data?

➤ Same as LR (R-squared)

Example (1) – Dummy Variable

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

Example (2) – Dummy Variable

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3 + ???$$

Example (3) – Dummy Variable

Profit	R&D Spend	Admin	Marketing	State		New York	California
192,261.83	165,349.20	136,897.80	471,784.10	New York	Y		
191,792.06	162,597.70	151,377.59	443,898.53	California			
191,050.39	153,441.51	101,145.55	407,934.54	California)		
182,901.99	144,372.41	118,671.85	383,199.62	New York			
166,187.94	142,107.34	91,391.77	366,168.42	California			

Example (4) – Dummy Variable

Profit	R&D Spend	Admin	Marketing	State	New York	California
192,261.83	165,349.20	136,897.80	471,784.10	New York—		
191,792.06	162,597.70	151,377.59	443,898.53	California	0	
191,050.39	153,441.51	101,145.55	407,934.54	California	0	
182,901.99	144,372.41	118,671.85	383,199.62	New York—	1	
166,187.94	142,107.34	91,391.77	366,168.42	California	0	

Example (5) – Dummy Variable

Profit	R&D Spend	Admin	Marketing	State	New York	California
192,261.83	165,349.20	136,897.80	471,784.10	New York	1	0
191,792.06	162,597.70	151,377.59	443,898.53	California—	0	→ 1
191,050.39	153,441.51	101,145.55	407,934.54	California—	0	→ 1
182,901.99	144,372.41	118,671.85	383,199.62	New York	1	0
166,187.94	142,107.34	91,391.77	366,168.42	California—	0	→ 1

Example (6) – Dummy Variable

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

Dummy Variables

New York	California
1	0
0	1
0	1
1	0
0	1

Example (7) – Dummy Variable

Profit R&D Spend Admin Marketing State 192,261.83 165,349.20 136,897.80 471,784.10 New York 191,792.06 162,597.70 151,377.59 443,898.53 California California 191,050.39 153,441.51 101,145.55 407,934.54 182,901.99 144,372.41 118,671.85 383,199.62 New York California 166,187.94 142,107.34 91,391.77 366,168.42

Dummy Variables

New York	California
1	0
0	1
0	1
1	0
0	1

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3 + ???$$

Example (8) – Dummy Variable

Profit R&D Spend Admin Marketing State 165,349.20 136,897.80 471,784.10 New York 192,261.83 151,377.59 443,898.53 California 191,792.06 162,597.70 191,050.39 153,441.51 101,145.55 407,934.54 California 182,901.99 144,372.41 118,671.85 383,199.62 New York

91,391.77

166,187.94

142,107.34

Dummy Variables

New York	California
1	0
0	1
0	1
1	0
0	1

$$y = b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3 + b_4^*D_1 + b_5^*D_2$$

366,168.42

California

Dummy Variable Trap - Multicollinearity

Admin Marketing State **Profit** New York California R&D Spand 16 192,261.83 0 191,792.06 16 15 191,050.39 14 182,901.99 0 166,187.94 14 0 1

Dummy Variables

$$y = b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3 + b_4^*D_1 + b_5^*D_2$$

Dummy Variable Trap - Multicollinearity

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

Dummy Variables

New York	California
1	0
0	1
0	1
1	0
0	1

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3$$

$$+ b_4*D_1 + b_5*D_2$$

Always omit one dummy variable

Did we achieve today's objectives objectives?

- What is linear regression?
- Why study linear regression?
- What can we use it for?
- How to perform linear regression?
- How to estimate its performance?
- What are its extensions?
- What are dummy variables?