

EJEMPLOS DE DIAGRAMAS POLARES Y APLICACIÓN DE CRITERIO DE NYQUIST A FUNCIONES DE TRANSFERENCIA TOTAL

<u>EJEMPLO 1</u> : Dada la siguiente función de transferencia total $F_{(P)}$, trace el diagrama polar y aplique criterio de Nyquist.

$$F_{(P)} = \frac{10 P + 20}{P^4 - 2P^3 + 5P^2}$$

Paso 1 : Origen del diagrama . Analizamos $F_{(P)}$ para $P \rightarrow 0$

 ${\color{red} {\bf Paso~2}}$: Final del diagrama . Analizamos $F_{(P)}$ para $P{\rightarrow}\infty$

 $F_{(P)|P\to 0} = F_{(P)|P\to \infty} =$

<u>**Paso 3**</u>: Cambiamos P \rightarrow j ω . Por lo tanto $F_{(P)} \rightarrow F_{(j\omega)}$

 $P_{(j\omega)} = \frac{40 \,\omega^4 - 100 \omega^2}{(\omega^4 - 5\omega^2)^2 + 4\omega^6} + j \,\frac{10 \,\omega^5 - 90 \omega^3}{(\omega^4 - 5\omega^2)^2 + 4\omega^6} + j \,\frac{10 \,\omega^5 - 90 \omega^3}{(\omega^4 - 5\omega^2)^2 + 4\omega^6}$

Paso 5: Hacemos igual a cero la parte Real.

 $|\omega|_{\mathrm{Re}=0}=$

<u>Paso 6</u>: Determinamos corte al eje imaginario, evaluando la parte imaginaria de $F(j\omega)$ con el valor de ω obtenido al hacer igual a cero la parte Real.

Paso 7: Hacemos igual a cero la parte Imaginaria.

 $\omega|_{\text{Im}=0} = \frac{\omega|_{\text{Im}=0}}{\omega}$ a parte Real de F(j\omega) con el valor de \omega

Paso 8: Determinamos corte al eje real, evaluando la parte Real de $F(j\omega)$ con el valor de ω obtenido al hacer igual a cero la parte Imaginaria. $|Im|\omega \rightarrow_{Re=0} =$

<u>Paso 9</u>: Trazamos el diagrama polar con los datos obtenidos.

Página 1 de 5

Paso 10: Cerramos el diagrama para $P \rightarrow 0$.

Paso 11: Cerramos el diagrama para $P \to \infty$.

Paso 12: Aplicamos criterio de Nyquist.

	,,
3 7 7 D	1 :
$\Lambda / = I - D = I$, !
N = I - I = I	· .
	1
	1 :

Conclusión:

<u>EJEMPLO 2</u>: Dada la siguiente función de transferencia total trace el diagrama polar y aplique criterio de Nyquist.

$$F_{(P)} = \frac{5 P + 30}{P^5 - 3 P^4 + 2 P^3}$$

Paso 1: Origen del diagrama . Analizamos $F_{(P)}$ para $P \rightarrow 0$

 $F_{(P)|P\to 0} =$

Paso 2: Final del diagrama . Analizamos $F_{(P)}$ para $P \rightarrow \infty$

 $F_{(P)}|_{P\to\infty} =$

Paso 3: Cambiamos $P \rightarrow j\omega$. Por lo tanto $F_{(P)} \rightarrow F_{(j\omega)}$

$$F_{(j\omega)} = \frac{5 \ j\omega + 30}{-3 \ \omega^4 + j(\omega^5 - 2\omega^3)}$$

$$\underline{\textbf{Paso 4}} : \text{Separamos } F_{(j\omega)} = \text{Re} + \text{j Im} \rightarrow F_{(j\omega)} = \frac{5\omega^6 - 100\omega^4}{9\omega^8 + (\omega^5 - 2\omega^3)^2} + j\frac{60\omega^3 - 45\omega^5}{9\omega^8 + (\omega^5 - 2\omega^3)^2}$$

<u>Paso 5</u>: Hacemos igual a cero la parte Real.

 $\omega|_{\mathrm{Re}=0}=$

Paso 6: Determinamos corte al eje imaginario, evaluando la parte imaginaria de $F(j\omega)$ con el valor de ω obtenido al hacer igual a cero la parte Real.

Paso 7: Hacemos igual a cero la parte Imaginaria.

 $|\omega|_{\text{Im}=0}=$

Paso 8: Determinamos corte al eje real, evaluando la parte Real de $F(j\omega)$ con el valor de ω obtenido al hacer igual a cero la parte Imaginaria. $Im|\omega \rightarrow_{Re=0} =$

Paso 9: Trazamos el diagrama polar con los datos obtenidos.

Paso 10: Cerramos el diagrama para $P \rightarrow 0$.

Paso 11: Cerramos el diagrama para $P \to \infty$.

<u>Paso 12</u>: Aplicamos criterio de Nyquist.

N = Z - P =

Conclusión:

