CS262a Bayesian Networks

© Tingfeng Xia @ UCLA

Winter Quarter, 2022

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 4.0 International" license.

Preface

I shall organize everything based on the chapters later.

0.1 Principle Logical Forms

Inconsistent. Something that never holds; $Mods(\cdot) = Pr(\alpha) = 0$

Valid. Something that always holds; $Mods(\cdot) = \Omega$; $Pr(\alpha) = 1$

Equivalent. $Mods(\alpha) = Mods(\beta)$

Mutual Exclusive. $Mods(\alpha) \cap Mods(\beta) = \emptyset$

Exhaustive. $Mods(\alpha) \cup Mods(\beta) = \Omega$

Entailment / Implication. $\alpha \vDash \beta \triangleq \operatorname{Mods}(\alpha) \subseteq \operatorname{Mods}(\beta)$

0.2 Equivalent Forms

- $Mods(\alpha \wedge \beta) = Mods(\alpha) \cap Mods(\beta)$
- $Mods(\alpha \vee \beta) = Mods(\alpha) \cup Mods(\beta)$
- $\operatorname{Mods}(\neg \alpha) = \overline{\operatorname{Mods}(\alpha)}$

0.3 Instantiation Agreement

Two instantiation, each of which can cover a subset of different variables, are said to be compatible with each other if they argree on all common variables. Denoted as $\mathbf{x} \sim \mathbf{y}$.

0.4 Information Theory

Entropy.

$$ENT(X) = -\sum_{x} Pr(x) \log Pr(x)$$
 (0.1)

where $0 \log 0 = 0$ by convention. With a higher entropy, we say that it is more chaotic.

Conditional Entropy.

$$\operatorname{ENT}(X|Y) = \sum_{y} \Pr(y) \operatorname{ENT}(X|y) \quad \text{where} \quad \operatorname{ENT}(X|y) = -\sum_{x} \Pr(x|y) \log \Pr(x|y) \quad (0.2)$$

Conditioning never increases the entropy, i.e.

$$ENT(X|Y) \le ENT(X)$$
 (0.3)

Mutual Information

$$MI(X;Y) = \sum_{x,y} Pr(x,y) \log \frac{Pr(x,y)}{Pr(x)Pr(y)}$$
(0.4)

$$= ENT(X) - ENT(X|Y) \tag{0.5}$$

$$= ENT(Y) - ENT(Y|X) \tag{0.6}$$

Conditional Mutual Information

$$MI(X;Y|Z) = \sum_{x,y,z} Pr(x,y,z) \log \frac{Pr(x,y|z)}{Pr(x|z)Pr(y|z)}$$
(0.7)

$$= ENT(X|Z) - ENT(X|Y,Z)$$
(0.8)

$$= ENT(Y|Z) - ENT(Y|X,Z)$$
(0.9)

0.5 Bayesian Conditioning

Bayesian Condition is specified by the formula

$$\Pr(\alpha|\beta) = \frac{\Pr(\alpha \wedge \beta)}{\Pr(\beta)} \tag{0.10}$$

In particular, not to be confused with Bayesian inference (to be added later).

0.6 Independence and Notations

Independence.

$$\alpha \perp \!\!\!\perp \beta \iff \Pr(\alpha|\beta) = \Pr(\alpha) \vee \Pr(\beta) = 0$$
 (0.11)

$$\iff \Pr(\alpha \land \beta) = \Pr(\alpha)\Pr(\beta)$$
 (0.12)

Conditional Independence.

$$(\alpha \perp \!\!\! \perp \beta)|\gamma \iff \Pr(\alpha|\beta \wedge \gamma) = \Pr(\alpha|\gamma) \vee \Pr(\beta \wedge \gamma) = 0 \tag{0.13}$$

$$\iff \Pr(\alpha \land \beta | \gamma) = \Pr(\alpha | \gamma) \Pr(\beta | \gamma) \lor \Pr(\gamma) = 1 \tag{0.14}$$

Set Independence

$$I_{\Pr}(X, Z, Y) \iff (x \perp \!\!\!\perp y)|z, \quad \forall x, y, z \in X, Y, Z$$
 (0.15)