練習問題1-1

- 下記の関数について、最急降下法を用いて最良解を探索せよ
 - 初期値は(x,y) = (5,5)、 $\eta = 0.1$ とする
 - 探索回数は3回とする

$$\bullet \ f(x) = x^2$$

$$\bullet \ f(x,y) = x^2 + y^2$$

•
$$f(x) = 3x^2 + (x - 5)^2$$

•
$$f(x) = (x-5)^2(x+5)^2$$

練習問題1-1

- 下記の関数について、最急降下法を用いて最良解を探索せよ
 - 初期値は(x,y) = (5,5)、 $\eta = 0.1$ とする
 - 探索回数は3回とする

$$f(x) = x^2$$
$$f'(x) = 2x$$

探索1回目:

$$x^{(1)} = x^{(0)} - \eta \left(\frac{\partial f(x)}{\partial x}\right)$$
$$= 5 - 0.1 \cdot 10$$
$$= 4$$

探索2回目:

$$x^{(2)} = 3.2$$

探索3回目:

$$x^{(3)} = 2.56$$

練習問題3-1

• 巡回セールスマン問題:

N個の都市があり、あるセールスマンが各都市を一度ずつ訪問しなければならない。 各都市の位置(あるいは各都市間の距離)はわかっている。このとき、巡回経路の 総距離が最小になるような巡回路を求めよ。

ナップザック問題:

N個の品物と、一定重量まで品物を入れることができるナップザックがある。各品物の重量及び価値はわかっている。このとき、ナップザックの重量制限を超えない範囲で、価値の和が最大になるように入れる品物を決定せよ。

上記の2つの最適化問題における

・決定変数: *x*

·目的関数: f(x)

・制約条件: $x \in F \subseteq X$

は、それぞれ何か

練習問題3-1

- 巡回セールスマン問題
 - → 決定変数 巡回経路
 - 目的関数 巡回経路の総距離
 - 制約条件 なし
- ナップザック問題
 - 決定変数 ナップザックに入れる荷物
 - 目的関数 ナップザック内の荷物の総価値
 - 制約条件 ナップザックの容量

練習問題5-1

• 以下の単純パーセプトロンを用いてAND回路を構築する際の $重みw_i$ としきい値 θ の値を一つ答えよ ただし、各入力値は0もしくは1とする

練習問題5-2

• 2入力の論理関数を考える

x_1	x_2	AND	OR	XOR
0	0	?	?	?
0	1	?	?	?
1	0	?	?	?
1	1	?	?	?

- ?はそれぞれ 0か1か
- 各関数は線形分離可能か

練習問題5-2

• 2入力の論理関数を考える

x_1	x_2	AND	OR	XOR
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

線形分離

可能、可能、不可能

練習問題6-1

$$\frac{1}{2}(1-x^2)^2$$
 を、合成関数の微分法を利用して微分しなさい

解答:

$$z = y^2$$
、 $y = 1 - x^2$ とおいて、
 $\frac{\partial}{\partial x} \cdot \frac{1}{2} (1 - x^2)^2 = \frac{1}{2} \cdot 2(1 - x^2) \cdot (-2x)$

練習問題12-1

カーブ半径=120m、速度=40km/hのとき、ルール1~4を 用いて加速度を計算せよ

練習問題12-1

● カーブ半径=120m どのようになるか

● カーブ半径=120m、速度=40km/hのとき、ルール1~4は

	カーブがきつい	速度が小さい	加速度0
ルール1	0.3	0.5	0.3
	カーブがきつい	速度が大きい	加速度-2
ルール2	0.3	0.5	0.3
	カーブがゆるい	速度が大きい	加速度2
ルール3	0.7	0.5	0.5
	カーブがゆるい	速度が小さい	加速度0
ルール4	0.7	0.5	0.5

練習問題12-1

カーブ半径=120m、速度=40km/hのとき、ルール1~4は どのようになるか

$$WA = \frac{0.3 \times (-2) + 0.5 \times 0 + 0.5 \times 2}{0.3 + 0.5 + 0.5} \approx 0.3$$

練習問題13-1

データ数10のデータ集合を3つ、2つ、5つに分類できる特徴がある

この時、平均情報量(エントロピー)はいくらか $(\log_2 \frac{10}{3} = 1.7, \log_2 \frac{10}{2} = 2.3, \log_2 \frac{10}{5} = 1)$

$$I\left(\frac{3}{10}, \frac{2}{10}, \frac{5}{10}\right) = \frac{3}{10}\log_2\frac{10}{3} + \frac{2}{10}\log_2\frac{10}{2} + \frac{5}{10}\log_2\frac{10}{5}$$
$$= 0.51 + 0.46 + 0.5$$
$$= 1.47$$

練習問題14-1

• Q学習を用いて以下の経路図のスタート (①) 地点からゴール地点 (⑫) を目指す

① \rightarrow ② \rightarrow ③ \rightarrow ⑦ \rightarrow ® \rightarrow ②という状態遷移を3回繰り返した後の0でないQ値をすべて答えよ

Q値の更新式はすべて前スライドのものを使用すること

練習問題14-1

```
一回目:
                  Q(8, down) \leftarrow 0 + 0.5[1 + 0.1 \times 0] = 0.5
二回目:
             Q(7, right) \leftarrow 0 + 0.5[0 + 0.1 \times 0.5] = 0.025
                  Q(8, down) \leftarrow 0.5 \times 0.5 + 0.5[1 + 0.1 \times 0]
                                     = 0.75
• \equiv \Box \equiv : Q(3, down) \leftarrow 0 + 0.5[0 + 0.1 \times 0.025]
                                      = 0.00125
                   Q(7, right) \leftarrow 0.5 \times 0.025 + 0.5[0 + 0.1 \times 0.75]
                                     = 0.05
                  Q(\otimes, down) \leftarrow 0.5 \times 0.75 + 0.5[1 + 0.1 \times 0]
                                     = 0.875
```