Lista de Exercícios - Geometria Analítica e Álgebra Linear - Geologia

1 Vetores

Exercício 1.1. Mostre que a relação de equipolência é uma relação de equivalência.

Exercício 1.2. Dê pelo menos um exemplo de relações que cumprem os sequintes casos:

- 1. Apenas simétrico;
- 2. Apenas reflexivo;
- 3. Apenas transitivo;
- 4. Simétrico e reflexivo;
- 5. Reflexivo e transitivo;
- 6. Equivalência;

Exercício 1.3. Mostre que:

- 1. Se os vetores \vec{u} e \vec{v} têm mesmo sentido, e o mesmo ocorre com \vec{v} e \vec{w} , então \vec{u} e \vec{w} têm mesmo sentido;
- 2. Se os vetores \vec{u} e \vec{v} têm sentido contrário, e o mesmo ocorre com \vec{v} e \vec{w} , então \vec{u} e \vec{w} têm mesmo sentido;
- 3. Se os vetores \vec{u} e \vec{v} têm mesmo sentido, e \vec{v} e \vec{w} têm sentido contrário, então \vec{u} e \vec{w} têm sentido contrário.

Exercício 1.4. Prove que

- a) Se $\vec{u} \neq \vec{0}$, então ||u|| > 0.
- b) $||\vec{u}|| = 0$ se, e somente se, $\vec{u} = \vec{0}$.
- c) $||-\vec{u}|| = ||\vec{u}||$.

Exercício 1.5. Em quais situações a seguinte igualdade é válida?

$$||\vec{u} + \vec{v}|| = ||\vec{u}|| + ||\vec{v}||$$

Exercício 1.6. Em quais situações a seguinte igualdade é válida?

$$||\vec{u} - \vec{v}|| = ||\vec{u}|| - ||\vec{v}||$$

Exercício 1.7. Mostre que a soma entre vetores é uma operação associativa e comutativa.

Exercício 1.8. Mostre que $\overrightarrow{BC} - \overrightarrow{BA} = \overrightarrow{AC}$

Exercício 1.9. Mostre que a lei do cancelamento para adição de vetores é verdadeira, isto é,

$$\vec{u} + \vec{x} = \vec{u} + \vec{y} \Rightarrow \vec{x} = \vec{y}$$
.

Exercício 1.10. No paralelepípedo abaixo, determine \overrightarrow{AG} e \overrightarrow{EC} em termos dos vetores \vec{u} , \vec{v} e \vec{w} .

Exercício 1.11. Mostre que um vetor não nulo qualquer é paralelo e de mesmo sentido que seu versor. Além disso, mostre que todo versor é unitário.

Exercício 1.12. Dado um vetor \vec{u} não nulo, determine um outro vetor \vec{v} que tenha norma igual a 6 e que seja paralelo e de mesmo sentido que o vetor \vec{u} .

Exercício 1.13. Mostre que a regra de sinais é válida para vetores, isto é,

$$(-\alpha)\vec{v} = -(\alpha\vec{v})$$

$$\alpha(-\vec{v}) = -(\alpha\vec{v})$$

$$(-\alpha)(-\vec{v}) = \alpha \vec{v}$$

Exercício 1.14. Mostre que

$$(-1)\vec{v} = -\vec{v}$$

Exercício 1.15. Mostre que se $\vec{v} \neq \vec{0}$, então $\alpha \vec{v} = \beta \vec{v} \Rightarrow \alpha = \beta$.

Exercício 1.16. Mostre que dois vetores não nulos \vec{u} e \vec{v} são paralelos se, e somente se, existe um escalar λ tal que $\vec{u} = \lambda \vec{v}$.