

PCT

WELTOORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶ :	A2	(11) Internationale Veröffentlichungsnummer: WO 97/05258
C12N 15/61, 15/29, 15/62, 15/63, 1/21, C07K 14/415, C12N 9/90, G01N 33/53, C12Q 1/533, A61K 38/52		(43) Internationales Veröffentlichungsdatum: 13. Februar 1997 (13.02.97)
(21) Internationales Aktenzeichen:	PCT/AT96/00141	(74) Anwälte: CASATI, Wilhelm usw.; Amerlingstrasse 8, A-1061 Wien (AT).
(22) Internationales Anmeldedatum:	2. August 1996 (02.08.96)	
(30) Prioritätsdaten:	A 1320/95 2. August 1995 (02.08.95) AT	(81) Bestimmungsstaaten: AU, CA, JP, NO, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): BIOMAY PRODUKTIONS- UND HANDELSGESELLSCHAFT MBH [AT/AT]; Herrenstrasse 2, A-4020 Linz (AT).		Veröffentlicht <i>Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.</i>
(72) Erfinder; und		
(75) Erfinder/Anmelder (<i>nur für US</i>): FERREIRA, Fatima [BR/AT]; Würzenberg 35, A-5102 Anthering (AT). RICHTER, Klaus [AT/AT]; Huberbergstrasse 18, A-5162 Obertrum (AT). ENGEL, Edwin [AT/AT]; Karl im Hof Weg 6, A-8773 Kammer (AT). EBNER, Christof [AT/AT]; St. Elisabethplatz 4/13, A-1040 Wien (AT). JILEK, Alexander [AT/AT]; Gruberstrasse 51, A-4020 Linz (AT). RHEINBERGER, Hans-Jörg [LI/AT]; Mascagnigasse 20, A-5020 Salzburg (AT). KRAFT, Dietrich [AT/AT]; Montigasse 1, A-1170 Wien (AT). BREITENBACH, Michael [AT/AT]; Alfred Kubinstrasse 11/11, A-5020 Salzburg (AT).		

(54) Title: RECOMBINANT 60KDA VEGETABLE PANALLERGEN (CO-FACTOR-INDEPENDENT PHOSPHOGLYCERATE MUTASE; E.C. 5.4.2.1.)

(54) Bezeichnung: REKOMBINANTES 60 KDA PFLANZLICHES PANALLERGEN (KOFAKTOR-UNABHÄNGIGE PHOSPHOGLYCERATMUTASE; E.C. 5.4.2.1.)

(57) Abstract

The description relates to a recombinant DNA molecule which codes a polypeptide antigen property of the co-factor-independent phosphoglycerate mutase (E.C. 5.4.2.1.) of birch, mugwort or timothy grass pollen. This allergen in birch pollen is highly preserved on sequence and antigen property in all plants (but not in animal organisms). The amino acid sequence and the most important B and T-cell epitopes of the molecule are derived and demonstrated. The recombinant allergen was expressed in E. coli and binds the IgE serum of patients who are allergic to tree, grass and weed pollens and various foodstuffs. A monoclonal antibody (BIP 3) specifically bonds to said highly conserved protein from all plants tested. The significance of the co-factor-independent phosphoglycerate mutase (E.C. 5.4.2.1.) derives from the fact that it results in the cross-sensitisation of patients. The recombinant molecule and its partial peptides can be used in diagnostic and therapeutic methods based, for example, on antigen-antibody interaction, mediator release or T-cell reactivity.

(57) Zusammenfassung

Wir zeigen ein rekombinantes DNA Molekül, das für ein Polypeptid mit der Antigenität der Kofaktor-unabhängigen Phosphoglyceratmutase (E.C. 5.4.2.1.) des Birken-, Beifuß- oder Lieschgraspollen kodiert. Dieses Allergen des Birkenpollens ist in Sequenz und Antigenität in allen Pflanzen (aber nicht in tierischen Organismen) hoch konserviert. Die Aminosäuresequenz und die wichtigsten B-Zell- und T-Zell-Epitope des Moleküls werden abgeleitet und gezeigt. Das rekombinante Allergen wurde in Escherichia coli exprimiert und bindet Serum IgE von Patienten, die gegen Pollen von Bäumen, Gräsern und Unkräutern sowie gegen verschiedene Nahrungsmittel allergisch sind. Ein monoklonaler Antikörper (BIP 3) bindet spezifisch an dieses hochkonservierte Protein aus allen untersuchten Pflanzen. Die Bedeutung der Kofaktor-unabhängigen Phosphoglyceratmutase (E.C. 5.4.2.1.) liegt darin, daß sie zur Kreuzsensibilisierung von Patienten führt. Das rekombinante Molekül und seine Teilpeptide kann zu diagnostischen und therapeutischen Verfahren herangezogen werden, die z.B. auf Antigen-Antikörper Wechselwirkung, Mediatorfreisetzung, oder T-Zell-Reaktivität beruhen.

Plaque-lifts getestet mit Patientenserum und BIP 3
PLAQUE-LIFTS TESTED WITH PATIENT SERA AND BIP 3

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Armenien	GB	Vereinigtes Königreich	MX	Mexiko
AT	Österreich	GE	Georgien	NE	Niger
AU	Australien	GN	Guinea	NL	Niederlande
BB	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungarn	NZ	Neuseeland
BF	Burkina Faso	IE	Irland	PL	Polen
BG	Bulgarien	IT	Italien	PT	Portugal
BJ	Benin	JP	Japan	RO	Rumänien
BR	Brasilien	KE	Kenya	RU	Russische Föderation
BY	Belarus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kasachstan	SI	Slowenien
CH	Schweiz	LI	Liechtenstein	SK	Slowakei
CI	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal
CM	Kamerun	LR	Liberia	SZ	Swasiland
CN	China	LK	Litauen	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
EE	Estland	MG	Madagaskar	UG	Uganda
ES	Spanien	ML	Mali	US	Vereinigte Staaten von Amerika
FI	Finnland	MN	Mongolei	UZ	Usbekistan
FR	Frankreich	MR	Mauretanien	VN	Vietnam
GA	Gabon	MW	Malawi		

Rekombinantes 60 kDa pflanzliches Panallergen (Kofaktor-unabhängige Phosphoglyceratmutase; E.C. 5.4.2.1.)

BIP3 ist ein gegen ein Birkenpollenprotein gerichteter monoklonaler Antikörper, der, wie bereits früher gezeigt (1), ein Nebenallergen mit einem Molekulargewicht von 60 kDa erkennt. Eine Birkenpollen-cDNA-Expressionsbank wurde mit BIP3 als Probe gescreent und dabei eine cDNA kodierend für ein Pollenallergen mit dem Molekulargewicht 60 kDa isoliert. Dieses Allergen zeigt hohe Sequenzhomologie mit pflanzlichen Kofaktor-unabhängigen Phosphoglyceratmutasen. In weiterer Folge wurden cDNAs die für das gleiche Protein kodieren sowohl aus einer cDNA-Bank von Lieschgraspollen sowie von Beifußpollen isoliert.

Phosphoglyceratmutasen (PGM) katalysieren in der Glykolyse und Glukoneogenese die Umwandlung von 3-Phosphoglycerat zu 2-Phosphoglycerat. Diese Reaktion findet ubiquitär in prokaryotischen und eukaryotischen Organismen statt (2). Es gibt zwei Arten von PGM: Kofaktor-abhängige PGM (PGM-d), die 2,3-Bisphosphoglycerat als Kofaktor brauchen, und Kofaktor-unabhängige PGM (PGM-i), die 2,3-Bisphosphoglycerat nicht benötigen. PGM-d wurden in allen Vertebraten nachgewiesen, während Pflanzen PGM-i verwenden. In Prokaryoten und niederen Eukaryoten ist die Situation wesentlich komplizierter. PGM aus Hefe wurde als PGM-d charakterisiert, während PGM aus *Neurospora crassa*, die ebenso wie Hefe zu den Pilzen, und damit zu den niederen Eukaryoten zählt, zu der PGM-i Gruppe gehört. PGM von gram-positiven Bakterien (z.B. *Bacillus*) ist Kofaktor-unabhängig, gram-negative Bakterien (z.B. *Escherichia coli*) haben Kofaktor-abhängige PGM. PGM von Säugern ist ein Dimer, wobei die Untereinheiten ein Molekulargewicht von 30 kDa haben (2). Das Pflanzenenzym PGM-i ist ein Monomer mit einem Molekulargewicht von etwa 60 kDa (3). Bis jetzt wurden nur PGM-i Sequenzen von Mais (3), *Rhizinus* und Tabak (4) veröffentlicht. Es wurden keinerlei Sequenzhomologien zwischen PGM-i und PGM-d festgestellt, was den Schluß zuläßt, daß beide Enzyme - obwohl sie die gleiche Reaktion katalysieren - evolutionär unabhängig entstanden sind.

Häufig sind atopische Patienten empfindlich gegen verschiedene Allergene unterschiedlicher Herkunft. In früheren klinischen Studien wurden Allergiesyndrome beschrieben,

-2-

bei denen die Kreuzreakтивität der Patienten gegen Allergene verschiedener Herkunft (Pollenallergene von Bäumen, Gräsern und Unkräutern, sowie Nahrungsmittelallergene) eine charakteristische Rolle spielt (5,6,7).

Einige bestimmte Kombinationen der Allergenkreuzreakтивität scheinen häufiger aufzutreten. Zum Beispiel haben Patienten mit Birkenpollenallergie oft auch eine Intoleranz gegen eine Vielzahl von Früchten und Gemüsen, wie Apfel, Birne, Nüsse, Karotten, Kartoffel, Sellerie und viele andere pflanzliche Nahrungsmittel. Typische Symptome sind lokale Reaktionen der Schleimhäute des oberen respiratorischen bzw. Verdauungstrakts (Jucken, Entzündung, Angioödem), bei vielen Patienten treten aber auch systemische Symptome auf (Urticaria, Asthma, anaphylaktischer Schock).

In den letzten Jahren konnten durch cDNA Klonieren die abgeleiteten Aminosäuresequenzen vieler atopischer Allergene bestimmt werden. Mit Hilfe rekombinanter Allergene konnte in einigen Fällen gezeigt werden, welche allergenen Verbindungen für die Kreuzsensibilisierung verantwortlich sind. In einigen Fällen wurde die Kreuzsensibilisierung durch IgE Antikörper, die homologe Proteine in unterschiedlichen Allergenquellen erkennen, verursacht. Zum Beispiel scheint Bet v 2, das zu der Profilinfamilie gehört und ein Nebenallergen aus Birkenpollen ist (8), in pollenallergischen Patienten eine solche kreuzreaktive Verbindung zu sein. Profilin sind ubiquitäre, aktinbindende Proteine, die in allen eukaryotischen Zellen gefunden werden. Pflanzliche Profilin haben eine hohe Sequenzhomologie, wodurch die hochgradige Kreuzreakтивität mit Patienten-IgE verursacht wird. Als Folge sind Patienten, die gegen Profilin allergisch sind, empfindlich gegen viele pflanzliche Stoffe, wie z.B. Pollen, Früchte, Nüsse, Gemüse etc. Aus diesem Grund wird Profilin als Pflanzen Panallergen bezeichnet (9). Bet v 1, ein Hauptallergen aus Birkenpollen, ist ein anderes für Kreuzreaktionen verantwortliches Pollenallergen. Bet v 1 gehört zu der Familie der Pflanzen PR (pathogenesis related) Proteine (10), die in vielen Pflanzen vorkommen. Mit Bet v 1 homologe Proteine kommen in Pollen von verwandten Bäumen vor (Erle, Hasel, Hainbuche) (11,12,13) vor, was die Kreuzsensibilität von Baumpollen-allergischen Patienten erklärt. Mit Bet v 1 verwandte Proteine wurden auch in Früchten, Gemüse und Nüssen nachgewiesen (14). Das erklärt die klinische Beobachtung, warum pollenallergische Patienten häufig Symptome nach Einnahme bestimmter Früchte und Gemüse zeigen (7). Die Hauptallergene von Graspollen sind in vielen Grasfamilien konserviert (15), aber

-3-

bis jetzt wurden nur Profiline als kreuzreaktive Moleküle in Graspollen und pflanzlichen Nahrungsmitteln beschrieben (16). Kreuzreaktivitäten zwischen Katze, Hund und anderen tierischen Allergenquellen werden hauptsächlich dem Albumin zugeschrieben (17). Aus diesen Beobachtungen kann allgemein geschlossen werden, daß kreuzreagierende 5 Allergene hochkonservierte Proteine sind. Diese Beobachtungen führen dazu, daß das Konzept der Allergie gegen eine bestimmte Pflanzenspezies erweitert werden muß durch das Konzept der Allergie gegen ein bestimmtes hochkonserviertes Protein, das in vielen Pflanzenspecies vorkommt. Die genaue Identifizierung und Charakterisierung von kreuzreagierenden Allergenen ist von größter Wichtigkeit für die Diagnose und 10 mögliche Therapie von Typ I-Allergien.

In der folgenden Patentanmeldung wird gezeigt, daß die pflanzlichen Phosphoglycerat-mutasen (E.C.5.4.2.1.) hochkonservierte Pflanzenallergene (d.h. ein Panallergen) sind, die zu einer hochgradigen Kreuzreaktivität von Patienten führen, die gegen Baum-, Gras- und Unkrautpollen bzw. pflanzliche Nahrungsmittel, wie Sellerie und Apfel aller- 15 gisch sind.

Materialen und Methoden:

1. Herstellung der cDNA Banken:

20

Gesamt RNA wurde aus Birken-, Beifuß- sowie Lieschgraspollen (Allergon AB, Engelholm) mit der Guanidinium-Phenol-Extraktionsmethode isoliert. Poly(A)+ mRNA wurde mit oligo-dT magnetisierbaren Zellulosepartikeln (Serotec) nach Angaben des Herstellers isoliert. Die cDNA Synthese wurde mit dem Lambda-ZAP cDNA Synthese 25 Kit von Stratagene^{*} durchgeführt. Die Synthese des ersten Stranges wurde mit einem oligo(dT) Linker-primer, der eine XhoI Schnittstelle enthielt, gestartet. Nach der Synthese des zweiten Stranges wurden EcoRI Adaptoren an die cDNA ligiert. Die mit Xhol verdaute cDNA wurde dann an die vorverdauten Uni-ZAP XR Vektorarme ligiert und in vitro verpackt. In allen 3 Fällen wurden 1,0-1,5 x 10⁶ rekombinante Plaques erhalten.

30 Die Titer der amplifizierten Banken lagen bei 10¹⁰ pfu/ml.

-4-

2. Screening der cDNA Bank mit dem monoklonalen Antikörper BIP 3, *in vitro* Excision und DNA Sequenzanalyse.

Die cDNA Banken von Birken- und Lieschgraspollen wurden mit dem monoklonalen 5 Antikörper BIP 3 gescreent (1). Positive Plaques wurden auf nachfolgende Art sichtbar gemacht: Inkubation mit Kaninchen Antimaus IgG, dann mit ^{125}I -Esel Antikaninchen IgG. Abschließend wurde Autoradiographie durchgeführt. Positive Plaques wurden isoliert und durch neuerliches Screening isoliert. Nachfolgend wurden mit den gereinigten Phagen die *in vitro* Excision wie im Stratagene Handbuch beschrieben durchgeführt, 10 um sie in den pBluescript SK+^{*} Vektor (Stratagene) subklonieren zu können. Plasmide mit rekombinannten cDNA Inserts wurden isoliert, und die Inserts wurden nach der Sanger Methode (18) unter Verwendung des T7 Sequenzierkits (Pharmacia) sequenziert. Es wurden beide Stränge sequenziert.

15 3. Screening der cDNA-Bank mit radioaktiv markierter DNA

Aufgrund der großen Ähnlichkeit der isolierten cDNAs aus der Birken- und Lieschgrasbank wurde das Insert eines Lieschgrasklones (Phl1) isoliert und mittels der "random priming method" (19) radioaktiv markiert. Mit dieser radioaktiv markierten Sonde wurde ein 20 Screening der Beifuß cDNA-Bank durchgeführt (20). Die Hybridisierung der Nitrocellulosefilter erfolgte in 1M Salzlösung bei 60°C für 15-20 Stunden. Anschließend wurden die Filter 2x 30 min mit 5xSSPE 0,1% SDS bei 50°C gewaschen, dann getrocknet und expo- niert (1xSSPE= 150mM NaCl, 10 mM Na-phosphat pH 7,0, 1mM EDTA). Nach der Au- toradiographie wurden positive Phagen isoliert und durch mehrmaliges Ausplattieren bei geringer Plaquedichte und wiederholtem Screening gereinigt. Die *in vitro* Excision und Se- 25 quenzierung wurde wie unter Punkt 2 beschrieben durchgeführt.

4. Herstellung der Nitrocellulosefilter mit rekombinannten Birken-, Beifuß- sowie Lieschgraspollen PGM-i Allergene und IgE Detektion.

30 Rekombinante Lambda ZAP Phagen, die PGM-i Allergen cDNA exprimieren, wurden verwendet, um *E. coli*, Stamm XL-1 Blue, zu infizieren. Inkubation von *E. coli*

-5-

erfolgte in LB Medium mit 10 mM MgSO₄. Zur Expression des rekombinanten PGM-i Allergens wurden die Phagen induziert, indem auf die Platten in 10 mM Isopropyl-beta-thiogalaktosid (IPTG) getränktes Nitrozellulosefilter gelegt wurden. Die Nitrozellulosefilter wurden dann in Sektoren geschnitten und mit Sera von Patienten mit allergischen Symptomen gegen Pollen von Birke, Gras, Unkraut oder gegen pflanzliche Nahrung inkubiert. Gebundenes IgE wurde mit ¹²⁵I-Kaninchen Antihuman IgE (Pharmacia) nachgewiesen.

Ergebnisse

10

In diesem Teil wird gezeigt, daß es sich bei dem neu klonierten Allergen tatsächlich um ein hochkonserviertes Panallergen handelt, und daß es für eine verbesserte Diagnose und Therapie von Patienten mit einer Allergie gegen dieses Protein aus Pollen und pflanzlichen Nahrungsmitteln verwendet werden kann.

15

DNA- und Aminosäuresequenzen:

Fig. 1 zeigt die cDNA Sequenz und die abgeleitete Aminosäure Sequenz von Birkenpollen PGM-i. Fig. 7a, 7b zeigen die cDNA Sequenz und abgeleitete Aminosäure Sequenz von Lieschgraspollen PGM-i (Isoformen Ph11 und Ph15), die gleich Ergebnisse für Beifußpollen 20 PGM-i (Isoformen Art6 und Art17) zeigen die Fig. 10a, 10b.

Wie weiter unten gezeigt, binden diese Moleküle den monoklonalen Antikörper BIP 3 (Ref.1, Fig. 5a, Fig. 14a, Fig. 15a, Fig. 16a) und IgE von Patienten, die gegen Pollen und pflanzliche Nahrungsmittel empfindlich sind (Fig. 5b, Fig. 6, Fig. 14b, Fig. 15b, Fig. 16b).

25 Sequenzvergleich:

Fig. 2 zeigt die hohe Sequenzhomologie aller bisher bekannten pflanzlichen PGM-i (81% bis 87% Identität in allen paarweisen Kombinationen). Die drei bis jetzt bekannten pflanzlichen PGM-i wurden von den Autoren nicht als Allergene erkannt (3,4). Da die Sequenzhomologien so hoch sind, können wir aus dem Sequenzvergleich (Fig.2) schließen, daß in unserer cDNA-Sequenz der Birke die Kodons für die ersten 29 Aminosäuren (inklusive dem Start-Methionin) fehlen. Allerdings beeinflußt diese kurze N-terminale Deletion nicht die Antikörperbindung (Fig.6).

-6-

Fig. 13 zeigt die hohe Sequenzhomologie der von uns klonierten PGM-i aus Lieschgras (Phl1 und Phl5) und Beifuß (Art6 und Art17) sowie aus Birke (bvmut). Da die Sequenzhomologien sehr hoch sind konnte aus dem Sequenzvergleich geschlossen werden daß die gezeigten Sequenzen von Lieschgras und Beifuß vollständig sind. Die daraus berechneten paarweisen Distanzen sind: Birke/Beifuß 84% identische Aminosäuren, Birke/Lieschgras 83% und Lieschgras/Beifuß 82% identische Aminosäuren. Diese Zahlen zeigen, daß eine direkte immunologische Kreuzreaktion zwischen diesen Allergenen sehr wahrscheinlich ist. Um diese Kreuzreaktion direkt zu zeigen, sind Inhibitionsexperimente notwendig, die zur Zeit in unserem Laboratorium durchgeführt werden.

Die äußerst hohe Sequenzidentität der drei Phosphoglyceratmutasen (Birke, Beifuß und Lieschgras), und die dominante Bedeutung beim Beifuß und Lieschgras deuten auf die besondere Wichtigkeit dieser neuen Allergenfamilie hin. Hinsichtlich konventioneller Immuntherapie wäre hier zu sagen, daß dieses Allergen in seiner vollen Sequenzlänge nicht zur Immuntherapie verwendet werden sollte, weil die Gefahr der Induktion von allergischen Reaktionen besteht, die vorher beim Patienten nicht vorhanden waren. Sehr wohl können aber Teile oder Varianten dieses Moleküls zur Therapie benutzt werden. Der Grund, warum Phosphoglyceratmutase trotz seiner extrem hohen Konservierung in der Evolution keinen Anlaß zu Autoimmunreaktionen beim Menschen gibt (wie dies z.B. für die Superoxiddismutase, ein Hauptallergen von Aspergillus, gefunden wurde), besteht darin, daß es zwei Klassen von Phosphoglyceratmutasen gibt und die menschliche Phosphoglyceratmutase der anderen (Kofaktor-abhängigen) Klasse angehört.

Berechnung der B- und T-Zell Epitope:

Die B-Zell Epitope (Fig.3) von Birkenpollen PGM-i wurden mit "PepStructure", einem Teil des GCG Programmpakets berechnet. T-Zell Epitope (Fig.4) von Birkenpollen PGM-i wurden mit einem Programm von Margalit et al. (21) berechnet. Die B-Zell Epitope von Lieschgras- und Beifußpollen PGM-i (Fig.8a,8b; Fig. 11a,11b) sowie die T-Zell Epitope (Fig. 9a,9b; Fig. 12a,12b) von PGM-i aus beiden Pollen wurden in gleicher Weise berechnet.

Immunreaktivität

Fig.5A zeigt einen Immunoblot mit Pollenextrakten von Birke, Beifuß und Lieschgras, und Extrakten von Sellerie (Knollen- und Stangensellerie) und Apfel. Gezeigt ist das Autoradiogramm des mit BIP3 inkubierten Blots. Es ist bemerkenswert, daß der monoklonale Antikörper BIP 3 in allen diesen Materialien ein 60 kDa Protein erkennt, was auf eine hohe Konservierung der antigenen Epitope hinweist. Weiters werden (Fig.5B) 5 Immunoblots von BIP 3 -immunaffinitätsgereinigtem PGM-i aus Birkenpollen mit Birkenpollenextrakt als Kontrolle, gepröbt mit zwei Patientenserien (HP, HL) und nichtallergischem Normalhumanserum (NHS) gezeigt. Die beiden Patienten sind typische 10 Graspollenallergiker, die jedoch das gereinigte Panallergen und im Birkenpollenextrakt ausschließlich PGM-i erkennen. Auch dieses Experiment zeigt die hohe Konservierung von pflanzlichem PGM-i Allergen und seine Bedeutung für die Kreuzreaktivität der Patientenserien.

Fig.6 zeigt, daß Plaques, die das rekombinante Fusionsprotein bestehend aus der PGM- 15 i Sequenz (Fig.1) und 36 Aminosäuren der beta-Galaktosidase enthalten, tatsächlich BIP 3 binden. Die gleichen Plaquelifts wurden mit den Seren von 11 ausgewählten Patienten, die allergisch sind gegen Pollen von Bäumen (SS), Gräsern (CM, HL, HP, SE, MR, CF, BG, GP) oder Unkraut (KG,CW) bzw. Apfel (KG,CW) oder Sellerie (KG,CW), inkubiert. Als Kontrolle wurde Serum eines gesunden, nicht allergischen 20 Patienten verwendet (NHS). In gleicher Weise zeigen Fig. 14a, 15a, 16a die Bindung von BIP3 Antikörper an rekombinante Fusionsproteine die die PGM-i Sequenz aus Lieschgras (Fig. 14a,15a) und Beifuß (Fig.16a) enthalten. Die Fig. 14b, 15b, und 16b zeigen daß Plaquelifts der gleichen rekombinanten Fusionsproteine aus Lieschgras (Fig. 14b, 15b) sowie aus Beifuß (Fig. 16b) ebenso IgE Antikörper aus Seren von allergischen Patienten (SS, 25 HP, KG) binden.

Fig.5, Fig.6, Fig. 14, Fig. 15 und Fig. 16 zusammen zeigen, daß wir tatsächlich ein hoch-konserviertes Pflanzen Panallergen kloniert haben. Wir nehmen an, daß eine solch hohe Konservierung einer allergenen Sequenz bzw. Struktur große Bedeutung für die Diagnose und Therapie hat. Patienten, die dieses Molekül erkennen, sind wahrscheinlich kreuzreaktiv 30 mit vielen Pollen und pflanzlichen Nahrungsmitteln. Sie können aber andererseits durch konventionelle Immuntherapie gut behandelt werden, weil PGM-i aus Pflanzen hochkonserviert sind, aber gleichzeitig mit humanem oder tierischem PGM nicht verwandt sind.

SEQUENZ 1: Kofaktor-unabhängiger Phosphoglyceratmutase (E.C.5.4.2.1.)**ANGABEN ZU SEQ ID NO:1****5 (i) SEQUENZKENNZEICHEN:**

- (A) LÄNGE: 1593 Basenpaare / 531 Aminosäurereste
- (B) ART:Nukleinsäure / protein
- (C) STRANGFORM:ds
- (D) TOPOLOGIE:linear

10 (ii) ART DES MOLEKÜLS: cDNA zu mRNA / protein

- (iii) HYPOTHETISCH: nein
- (iv) ANTISENSE: nein
- (v) ART DES FRAGMENTS: Teilsequenz
- (vi) URSPÜNGLICHE HERKUNFT:

15 (A) ORGANISMUS: *Betula verrucosa*

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 1:

20	1 GGG GGC GAG GCC AAG CCC GAT CAG TAC AAC TGC ATC CAT GTG Gly Gly Glu Ala Lys Pro Asp Gln Tyr Asn Cys Ile His Val	42
	43 GCC GAG ACT CCC ACC ATG GAT TCC CTC AAA CAG GGT GCT CCT Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Gln Gly Ala Pro	84
25	85 GAG AAG TGG AGG TTG GTT AGG GCT CAT GGT AAG GCC GTA GGC Glu Lys Trp Arg Leu Val Arg Ala His Gly Lys Ala Val Gly	126
	127 CTT CCA ACA GAG GAT GAC ATG GGC AAC AGT GAA GTT GGT CAC Leu Pro Thr Glu Asp Asp Met Gly Asn Ser Glu Val Gly His	168
30	169 AAT GCA CTT GGA GCT GGT CGC ATC TTT GCC CAA GGT GCA AAG Asn Ala Leu Gly Ala Gly Arg Ile Phe Ala Gln Gly Ala Lys	210
	211 CTT GTT GAC TCT GCT CTT GCC TCT GGA AAA ATT TAT GAA GGA Leu Val Asp Ser Ala Leu Ala Ser Gly Lys Ile Tyr Glu Gly	252

-9-

253 GAA GGT TTT AAG TAC ATA AAG GAA TGT TTT GAA AAT GGC ACA 294
Glu Gly Phe Lys Tyr Ile Lys Glu Cys Phe Glu Asn Gly Thr

295 TTG CAT CTC ATT GGC TTA TTG AGT GAT GGT GGA GTC CAC TCC 336
5 Leu His Leu Ile Gly Leu Leu Ser Asp Gly Gly Val His Ser

337 AGG CTT GAT CAG TTG CAG TTA TTG CTT AAA GGA GCT AGT GAG 378
Arg Leu Asp Gln Leu Gln Leu Leu Leu Lys Gly Ala Ser Glu

379 CGT GGT GCA AAA AGA ATC CGT GTT CAT ATT CTT ACC GAT GGC 420
10 Arg Gly Ala Lys Arg Ile Arg Val His Ile Leu Thr Asp Gly

421 CGT GAT GTT TTG GAT GGT TCA AGT GTA GGA TTT GTT GAA ACT 462
Arg Asp Val Leu Asp Gly Ser Ser Val Gly Phe Val Glu Thr

463 CTT GAG AAT GAC CTT GCA AAA CTA CGT GAG AAG GGT GTT GAT 504
15 Leu Glu Asn Asp Leu Ala Lys Leu Arg Glu Lys Gly Val Asp

505 GCA CAG ATT GCA TCT GGT GGT CGC ATG TAT GTC ACA ATG 546
Ala Gln Ile Ala Ser Gly Gly Arg Met Tyr Val Thr Met

547 GAT CGT TAT GAG AAT GAC TGG GAA GTC ATC AAA CGA GGA TGG 588
20 Asp Arg Tyr Glu Asn Asp Trp Glu Val Ile Lys Arg Gly Trp

589 GAT GCC CAT GTT CTT GGT GAA GCC CCT TAC AAA TTT AAA AGT 630
Asp Ala His Val Leu Gly Glu Ala Pro Tyr Lys Phe Lys Ser

631 GCT GTT GAA GCT GTC AAG AAA CTG AGG GAG GAG CTA AAG GTC 672
25 Ala Val Glu Ala Val Lys Lys Leu Arg Glu Glu Leu Lys Val

673 AGT GAC CAG TAC TTG CCT CCA TTC GTC ATT GTT GAT GAC AAT 714
Ser Asp Gln Tyr Leu Pro Pro Phe Val Ile Val Asp Asp Asn

715 GGG AAG CCT GTT GGT CCT ATA GTT GAT GGT GAT GCT GTG GTT 756
30 Gly Lys Pro Val Gly Pro Ile Val Asp Gly Asp Ala Val Val

-10-

757 ACA ATC AAC TTC CGA GCA GAT CGT ATG GTT ATG ATT GCT AAG 798
Thr Ile Asn Phe Arg Ala Asp Arg Met Val Met Ile Ala Lys

799 GCA CTT GAA TAT GAA AAT TTT GAC AAG ATT GAT CGA GTT CGA 840
Ala Leu Glu Tyr Glu Asn Phe Asp Lys Ile Asp Arg Val Arg

5

841 TTC CCT AAA ATC CGT TAT GCT GGA ATG CTT CAA TAT GAT GGC 882
Phe Pro Lys Ile Arg Tyr Ala Gly Met Leu Gln Tyr Asp Gly

883 GAG TTG AAG CTC CCG AGC CAT TAC CTT GTT GAA CCT CCA GAG 924
Glu Leu Lys Leu Pro Ser His Tyr Leu Val Glu Pro Pro Glu

10

925 ATA GAG AGA ACG TCT GGT GAA TAT CTA GTG CAC AAT GGC GTC 966
Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val His Asn Gly Val

967 CGT ACT TTT GCT TGC AGT GAG ACT GTC AAA TTT GGT CAT GTC 1008
Arg Thr Phe Ala Cys Ser Glu Thr Val Lys Phe Gly His Val

15

1009 ACT TTC TTC TGG AAT GGA AAC CGC TCT GGA TAT TTC AAT TCA 1050
Thr Phe Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn Ser

1051 GAA CTG GAG GAA TAC GTG GAA ATT CCA AGT GAT AGT GGA ATT 1092
Glu Leu Glu Glu Tyr Val Glu Ile Pro Ser Asp Ser Gly Ile

20

1093 ACA TTC AAC GTC CAG CCA AAG ATG AAG GCA TTG GAG ATT GCT 1134
Thr Phe Asn Val Gln Pro Lys Met Lys Ala Leu Glu Ile Ala

1135 GAA AAA ACG AGA GAT GCT ATA CTT AGC GGA AAA TTT GAC CAG 1176
Glu Lys Thr Arg Asp Ala Ile Leu Ser Gly Lys Phe Asp Gln

25

1177 GTG CGT GTT AAC CTG CCA AAT GGT GAC ATG GTG GGG CAT ACA 1218
Val Arg Val Asn Leu Pro Asn Gly Asp Met Val Gly His Thr

1219 GGT GAT ATT GAG GAC ACA GTT GTG GCT TGC AAG GCT GCT GAT 1260
Gly Asp Ile Glu Asp Thr Val Val Ala Cys Lys Ala Ala Asp

30

1261 GAG GCT GAC AAG ATG ATC CTT GAT GCA ATA GAG CAA GTG GGT 1302
Glu Ala Asp Lys Met Ile Leu Asp Ala Ile Glu Gln Val Gly

-11-

1303 GGA ATT TAT GTT ACT GCG GAT CAT GGG AAT GCT GAG GAC 1344

Gly Ile Tyr Val Val Thr Ala Asp His Gly Asn Ala Glu Asp

1345 ATG GTG AAG AGG AAC AAG TCC GTG CAA CCT CTT CTT GAC AAG 1386

5 Met Val Lys Arg Asn Lys Ser Val Gln Pro Leu Leu Asp Lys

1387 AAT GGC AAT CTT CAA GTG CTC ACC TCT CAC ACC CTC CAA CCA 1428

Asn Gly Asn Leu Gln Val Leu Thr Ser His Thr Leu Gln Pro

1429 GTG CCA ATT GCA ATT GGA GGT CCT GCA TTG GCA AGT GGT GTC 1470

10 Val Pro Ile Ala Ile Gly Gly Pro Ala Leu Ala Ser Gly Val

1471 AGG TTC TGC AAG GAT CTT CCT GAT GGT GGG CTT GCC AAT GTT 1512

Arg Phe Cys Lys Asp Leu Pro Asp Gly Gly Leu Ala Asn Val

1513 GCT GCA ACT GTG ATC AAT CTA CAT GGG TTT GAG GCT CCT AGT 1554

15 Ala Ala Thr Val Ile Asn Leu His Gly Phe Glu Ala Pro Ser

1555 GAC TAT GAG CCA ACC CTC ATT GAA CTC GTT GAT AAC TAG 1593

Asp Tyr Glu Pro Thr Leu Ile Glu Leu Val Asp Asn *

ANGABEN ZU SEQ ID NO:2

20 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 12

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

25 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Betula verrucosa

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

30 Gly Gly Glu Ala Lys Pro Asp Gln Tyr Asn Cys Ile

-12-

ANGABEN ZU SEQ ID NO:3

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 26

5 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

10 (A) ORGANISMUS: *Betula verrucosa*

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 3:

Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Gln Gly Ala Pro Glu Lys Trp

1 5 10 15

Arg Leu Val Arg Ala His Gly Lys Ala

15 20 25

ANGABEN ZU SEQ ID NO:4

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 14

20 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

25 (A) ORGANISMUS: *Betula verrucosa*

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 4:

Leu Pro Thr Glu Asp Asp Met Gly Asn Ser Glu Val Gly His

1 5 10

30

ANGABEN ZU SEQ ID NO:5

(i) SEQUENZKENNZEICHEN:

-13-

(A) LÄNGE: 18

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

5 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Betula verrucosa

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:

10 Gly Lys Ile Tyr Glu Gly Glu Gly Phe Lys Tyr Ile Lys Glu Cys Phe Glu

1 5 10 15

Asn

18

ANGABEN ZU SEQ ID NO: 6

15 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 13

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

20 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Betula verrucosa

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:

25 Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Leu

1 5 10

ANGABEN ZU SEQ ID NO: 7

(i) SEQUENZKENNZEICHEN:

30 (A) LÄNGE: 12

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

-14-

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: *Betula verrucosa*

5 (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:

Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Val

1 5 10

10 ANGABEN ZU SEQ ID NO:8

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 13

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

15 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: *Betula verrucosa*

(C) ENTWICKLUNGSSTADIUM: Pollen

20 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:

Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val

1 5 10

ANGABEN ZU SEQ ID NO:9

25 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 16

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

30 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

-15-

(A) ORGANISMUS: *Betula verrucosa*

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 9:

Glu Thr Leu Glu Asn Asp Leu Ala Lys Leu Arg Glu Lys Gly Val Asp
5 1 5 10 15

ANGABEN ZU SEQ ID NO: 10

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 20

10 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

15 (A) ORGANISMUS: *Betula verrucosa*

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:

Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp Trp Glu Val Ile Lys Arg Gly
1 5 10 15
Trp Asp Ala
20 20

ANGABEN ZU SEQ ID NO: 11

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 16

25 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

30 (A) ORGANISMUS: *Betula verrucosa*

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:

-16-

Val Lys Lys Leu Arg Glu Glu Leu Lys Val Ser Asp Gln Tyr Leu Pro
 1 5 10 15

ANGABEN ZU SEQ ID NO:12

5 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 21

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

10 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Betula verrucosa

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 12:

15 Ala Leu Glu Tyr Glu Asn Phe Asp Lys Ile Asp Arg Val Arg Phe Pro Lys
 1 5 10 15
 Ile Arg Tyr Ala
 20

ANGABEN ZU SEQ ID NO:13

20 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 35

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

25 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Betula verrucosa

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 13:

30 Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu Pro Ser His Tyr Leu Val Glu
 1 5 10 15
 | Pro Pro Glu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val His Asn Gly Val

-17-

20 25 30

Arg

35

5 ANGABEN ZU SEQ ID NO:14

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 25

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

10 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Betula verrucosa

(C) ENTWICKLUNGSSTADIUM: Pollen

15 (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 14:

Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn Ser Glu Leu Glu Glu Tyr Val
1 5 10 15
Glu Ile Pro Ser Asp Ser Gly Ile
20 25

20 ANGABEN ZU SEQ ID NO:15

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 24

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

25 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Betula verrucosa

(C) ENTWICKLUNGSSTADIUM: Pollen

30 (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 15:

Ser Gly Lys Phe Asp Gln Val Arg Val Asn Leu Pro Asn Gly Asp Met Val
1 5 10 15

-18-

Gly His Thr Gly Asp Ile Glu
20

ANGABEN ZU SEQ ID NO:16

5 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 17

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

10 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Betula verrucosa

(C) ENTWICKLUNGSSTADIUM: Pollen

15

(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 16:

Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Ser Val Gln

1

5

10

15

ANGABEN ZU SEQ ID NO:17

20 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 13

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

25 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Betula verrucosa

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 17:

30 His Gly Phe Glu Ala Pro Ser Asp Tyr Glu Pro Thr Leu

1

5

10

-19-

ANGABEN ZU SEQ ID NO:18

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 13

(B) ART: protein

5 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Betula verrucosa

10 (C) ENTWICKLUNGSSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 18:

Tyr Asn Cys Ile His Val Ala Glu Thr Pro Thr Met Asp

1 5 10

15 ANGABEN ZU SEQ ID NO:19

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 06

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

20 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Betula verrucosa

(C) ENTWICKLUNGSSSTADIUM: Pollen

25 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 19:

Glu Lys Trp Arg Leu Val

1 5

ANGABEN ZU SEQ ID NO:20

(i) SEQUENZKENNZEICHEN:

30 (A) LÄNGE: 10

(B) ART: protein

-20-

- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:

5 (A) ORGANISMUS: *Betula verrucosa*

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 20:

Phe Ala Gln Gly Ala Lys Leu Val Asp Ser

1 5 10

10

ANGABEN ZU SEQ ID NO:21

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 11

(B) ART: protein

15 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: *Betula verrucosa*

(C) ENTWICKLUNGSSTADIUM: Pollen

20 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 21:

Glu Gly Glu Gly Phe Lys Tyr Ile Lys Glu Cys

1 5 10

ANGABEN ZU SEQ ID NO:22

25 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 04

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

30 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

-21-

(A) ORGANISMUS: *Betula verrucosa*

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 22:

Thr Leu Glu Asn

5 1 4

ANGABEN ZU SEQ ID NO:23

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 11

10 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

15 (A) ORGANISMUS: *Betula verrucosa*

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 23:

Asn Asp Trp Glu Val Ile Lys Arg Gly Trp Asp

1 5 10

20 ANGABEN ZU SEQ ID NO:24

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 09

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

25 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: *Betula verrucosa*

(C) ENTWICKLUNGSSTADIUM: Pollen

30 (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 24:

Val Glu Ala Val Lys Lys Leu Arg Glu

1 5

-22-

ANGABEN ZU SEQ ID NO:25

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 11

5 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

10 (A) ORGANISMUS: *Betula verrucosa*

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 25:

Glu Tyr Glu Asn Phe Asp Lys Ile Asp Arg Val

1 5 10

15 ANGABEN ZU SEQ ID NO:26

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 10

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

20 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: *Betula verrucosa*

(C) ENTWICKLUNGSSTADIUM: Pollen

25 (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 26:

Arg Thr Phe Ala Cys Ser Glu Thr Val Lys

1 5 10

ANGABEN ZU SEQ ID NO:27

30 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 11

(B) ART: protein

-23-

- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:

5 (A) ORGANISMUS: *Betula verrucosa*
 (C) ENTWICKLUNGSSTADIUM: Pollen

- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 27:

Ser Glu Leu Glu Glu Tyr Val Glu Ile Pro Ser
1 5 10

10 ANGABEN ZU SEQ ID NO:28

- (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 08

(B) ART: protein

15 (ii) ART DES MOLEKÜLS: peptide
 (iii) HYPOTHETISCH: nein
 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 (vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: *Betula verrucosa*

(C) ENTWICKLUNGSSTADIUM: Pollen

20 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 28:
His Thr Gly Asp Ile Glu Asp Thr
1 5

ANGABEN ZU SEQ ID NO:29

25 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 12

(B) ART: protein

- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein

30 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
(vi) URSPÜNGLICHE HERKUNFT:
(A) ORGANISMUS: *Betula verrucosa*

-24-

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 29:

Met Ile Leu Asp Ala Ile Glu Gln Val Gly Gly Ile
1 5 10

5

ANGABEN ZU SEQ ID NO:30

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 12

(B) ART: protein

10 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Betula verrucosa

(C) ENTWICKLUNGSSTADIUM: Pollen

15 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 30:

Ser Gly Val Arg Phe Cys Lys Asp Leu Pro Asp Gly Gly Leu Ala Asn Val

1 5 10 15

Ala Ala

18

20

ANGABEN ZU SEQ ID NO:31

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 09

(B) ART: protein

25 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Betula verrucosa

30 (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 31:

Asn Leu His Gly Phe Glu Ala Pro Ser

-25-

1

5

ANGABEN ZU SEQ ID NO: 32

(i) SEQUENZKENNZEICHEN:

5 (A) LÄNGE: 1671 Basenpaare / 556 Aminosäurereste
 (B) ART:Nukleinsäure / protein
 (C) STRANGFORM:ds
 (D) TOPOLOGIE:linear

(ii) ART DES MOLEKÜLS: cDNA zu mRNA / protein

(iii) HYPOTHETISCH: nein

10 (iv) ANTISENSE: nein

(v) ART DES FRAGMENTS: Gesamtsequenz

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense
 (C) ENTWICKLUNGSSTADIUM: Pollen

15 (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 32:

	1 ATG GCG ACC TCA TGG ACG CTG CCC GAC CAT CCC ACG CTC CCC	42
	Met Ala Thr Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro	
20	43 AAG GGC AAG ACG GTG GCC GTC ATC GTG CTC GAC GGA TGG GGC	84
	Lys Gly Lys Thr Val Ala Val Ile Val Leu Asp Gly Trp Gly	
	85 GAG GCC AGC GCT GAC CAG TAC AAC TGC ATC CAT CGT GCC GAG	126
	Glu Ala Ser Ala Asp Gln Tyr Asn Cys Ile His Arg Ala Glu	
25	127 ACG CCC GTC ATG GAT TCG CTC AAG AAT GGT GCT CCT GAG AAG	168
	Thr Pro Val Met Asp Ser Leu Lys Asn Gly Ala Pro Glu Lys	
	169 TGG ACA CTA GTG AAG GCT CAT GGA ACT GCT GTT GGT CTC CCT	210
	Trp Thr Leu Val Lys Ala His Gly Thr Ala Val Gly Leu Pro	
30	211 AGT GAT GAC GAC ATG GGC AAC AGT GAA GTT GGC CAC AAT GCT	252
	Ser Asp Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala	

-26-

253	CTT GGC GCT GGT CGG ATT TTT GCT CAA GGG GCG AAG TTG TTT Leu Gly Ala Gly Arg Ile Phe Ala Gln Gly Ala Lys Leu Phe	294
5	295 GAT GCT GCT CTT GCA TCT GGG AAG ATT TGG GAA GAC GAG GGT Asp Ala Ala Leu Ala Ser Gly Lys Ile Trp Glu Asp Glu Gly	336
10	337 TTC AAT TAC ATC AAA GAA TCT TTT GCC GAA GGT ACT CTG CAC Phe Asn Tyr Ile Lys Glu Ser Phe Ala Glu Gly Thr Leu His	378
15	379 CTT ATT GGT CTG TTG AGT GAT GGA GGC GTC CAC TCC CGG CTA Leu Ile Gly Leu Leu Ser Asp Gly Gly Val His Ser Arg Leu	420
20	421 GAC CAA GTG CAG TTG CTT GTG AAA GGT GCC AGT GAG AGG GGA Asp Gln Val Gln Leu Leu Val Lys Gly Ala Ser Glu Arg Gly	462
25	463 GCA AAA AGA ATT CGG CTT CAC ATT CTT ACC GAT GGG CGT GAT Ala Lys Arg Ile Arg Leu His Ile Leu Thr Asp Gly Arg Asp	504
30	505 GTC TTG GAT GGA AGC AGT GTT GGT TTC GTA GAG ACA CTA GAG Val Leu Asp Gly Ser Ser Val Gly Phe Val Glu Thr Leu Glu	546
35	547 AAT GAT CTT GCT CAG CTT CGT GAG AAG GGT GTT GAT GCA CAG Asn Asp Leu Ala Gln Leu Arg Glu Lys Gly Val Asp Ala Gln	588
40	589 GTT GCA TCT GGT GGA AGG ATG TAT GTT ACC ATG GAC CGC Val Ala Ser Gly Gly Arg Met Tyr Val Thr Met Asp Arg	630
45	631 TAT GAG AAT GAC TGG GAT GTG GTC AAG CGT GGG TGG GAT GCC Tyr Glu Asn Asp Trp Asp Val Val Lys Arg Gly Trp Asp Ala	672
50	673 CAG GTG CTT GGA GAA GCA CCA TAC AAA TTC AAA AGT GCA CTT Gln Val Leu Gly Glu Ala Pro Tyr Lys Phe Lys Ser Ala Leu	714
55	715 GAA GCT GTG AAA ACG CTA AGA GCA GAG CCC AAG GCC AAT GAT Glu Ala Val Lys Thr Leu Arg Ala Glu Pro Lys Ala Asn Asp	756
60	757 CAG TAC TTG CCT GCG TTT GTG ATA GTT GAT GAA AGT GGC AAA Gln Tyr Leu Pro Ala Phe Val Ile Val Asp Glu Ser Gly Lys	798

-27-

799 TCC GTT GGT CCT ATA GTA GAT GGC GAT GCA GTT GTG ATT TTC 840
Ser Val Gly Pro Ile Val Asp Gly Asp Ala Val Val Ile Phe

841 AAT TTC AGA GCT GAT CGC ATG GTT ATG CTT GCA AAG GCT CTT 882
5 Asn Phe Arg Ala Asp Arg Met Val Met Leu Ala Lys Ala Leu

883 GAG TTT GCT GAT TTT GAT AAA TTT GAC CGT GTT CGT GTA CCA 924
Glu Phe Ala Asp Phe Asp Lys Phe Asp Arg Val Arg Val Pro

925 AAA ATT AAG TAT GCT GGG ATG CTC CAG TAT GAT GGT GAG TTG 966
10 Lys Ile Lys Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu

967 AAG CTT CCA AAC AAA TTC CTT GTT TCC CCA CCC TTG ATA GAG 1008
Lys Leu Pro Asn Lys Phe Leu Val Ser Pro Pro Leu Ile Glu

1009 AGG ACA TCT GGT GAA TAC TTG GTA AAG AAT GGC GTT CGC ACA 1050
15 Arg Thr Ser Gly Glu Tyr Leu Val Lys Asn Gly Val Arg Thr

1051 TTT GCT TGC AGC GAG ACC GTG AAG TTT GGT CAT GTC ACA TTT 1092
Phe Ala Cys Ser Glu Thr Val Lys Phe Gly His Val Thr Phe

1093 TTC TGG AAT GGA AAC CGT TCT GGA TAC TTC GAT GAA ACC AAG 1134
20 Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asp Glu Thr Lys

1135 GAA GAG TAC ATA GAA ATT CCT AGT GAT AGT GGT ATC ACA TTC 1176
Glu Glu Tyr Ile Glu Ile Pro Ser Asp Ser Gly Ile Thr Phe

1177 AAT GAG CAG CCC AAA ATG AAG GCA CTT GAA ATT GCT GAG AAA 1218
25 Asn Glu Gln Pro Lys Met Lys Ala Leu Glu Ile Ala Glu Lys

1219 ACC CGG GAT GCT ATC CTC AGT GGA AAG TTT GAC CAG GTA CGT 1260
Thr Arg Asp Ala Ile Leu Ser Gly Lys Phe Asp Gln Val Arg

1261 ATT AAC CTG CCA AAT GGT GAT ATG GTG GGT CAC ACC GGT GAT 1302
30 Ile Asn Leu Pro Asn Gly Asp Met Val Gly His Thr Gly Asp

1303 ATT GAA GCC ACA GTC GTT GCC TGC AAG GCT GAT GAA GCA 1344

-28-

Ile Glu Ala Thr Val Val Ala Cys Lys Ala Ala Asp Glu Ala

1345 GTC AAG ATT GTT TTG GAT GCA GTG GAG CAA GTT GGT GGT ATT 1386
Val Lys Ile Val Leu Asp Ala Val Glu Gln Val Gly Gly Ile

5

1387 TAT CTT GTC ACT GCT GAT CAT GGA AAC GCA GAG GAT ATG GTG 1428
Tyr Leu Val Thr Ala Asp His Gly Asn Ala Glu Asp Met Val

1429 AAA AGA AAC AAA TCT GGC CAG CCT GCT CTT GAC AAG AGC GGT 1470
Lys Arg Asn Lys Ser Gly Gln Pro Ala Leu Asp Lys Ser Gly

10

1471 AGC ATC CAG ATT CTT ACC TCG CAT ACG CTT CAG CCA GTC CCT 1512
Ser Ile Gln Ile Leu Thr Ser His Thr Leu Gln Pro Val Pro

1513 GTT GCG ATC GGA GGC CCT GGT CTC CAC CCA GGA GTG AAG TTC 1554
Val Ala Ile Gly Gly Pro Gly Leu His Pro Gly Val Lys Phe

15

1555 AGG TCT GAT ATC AAC ACA CCT GGA CTC GCC AAT GTT GCC GCC 1596
Arg Ser Asp Ile Asn Thr Pro Gly Leu Ala Asn Val Ala Ala

1597 ACC GTG ATG AAC CTC CAT GGC TTC CAG GCC CCT GAT GAT TAT 1638
Thr Val Met Asn Leu His Gly Phe Gln Ala Pro Asp Asp Tyr

20

1639 GAG ACG ACG CTC ATT GAA GTT GCT GAC AAG TAA 1671
Glu Thr Thr Leu Ile Glu Val Ala Asp Lys *

25 ANGABEN ZU SEQ ID NO: 33
(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 15

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

30 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

-29-

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 33:

5	Ser	Trp	Thr	Leu	Pro	Asp	His	Pro	Thr	Leu	Pro	Lys	Gly	Lys	Thr
	1			5					10						15

ANGABEN ZU SEQ ID NO: 34

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 35

10 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

15 (A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 34:

20	Asp	Gly	Trp	Gly	Glu	Ala	Ser	Ala	Asp	Gln	Tyr	Asn	Cys	Ile	His	Arg
	1			5					10						15	

25	Ala	Glu	Thr	Pro	Val	Met	Asp	Ser	Leu	Lys	Asn	Gly	Ala	Pro	Glu	Lys
	20			25											30	

Trp Thr Leu

35

25

ANGABEN ZU SEQ ID NO: 35

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 19

30 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

-30-

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

5 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 35:

Leu Pro Ser Asp Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala
1 5 10 15

Leu Gly Ala

10

ANGABEN ZU SEQ ID NO: 36

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 18

(B) ART: protein

15 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

20 (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 36:

Gly Lys Ile Trp Glu Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe
1 5 10 15

25 Ala Glu

ANGABEN ZU SEQ ID NO: 37

(i) SEQUENZKENNZEICHEN:

30 (A) LÄNGE: 13

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

-31-

- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - 5 (C) ENTWICKLUNGSSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 37:

Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Val
1 5 10

10

ANGABEN ZU SEQ ID NO: 38

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 12
 - (B) ART: protein
- 15 (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - 20 (C) ENTWICKLUNGSSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 38:

Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Leu
1 5 10

25

ANGABEN ZU SEQ ID NO: 39

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13
 - (B) ART: protein
- 30 (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

-32-

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense
(C) ENTWICKLUNGSSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 39:

5

Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val
1 5 10

ANGABEN ZU SEQ ID NO: 40

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 17
10 (B) ART: protein
(ii) ART DES MOLEKÜLS: peptide
(iii) HYPOTHETISCH: nein
(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
(vi) URSPÜNGLICHE HERKUNFT:
15 (A) ORGANISMUS: Phleum pratense
(C) ENTWICKLUNGSSSTADIUM: Pollen
(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 40:

Glu Thr Leu Glu Asn Asp Leu Ala Gln Leu Arg Glu Lys Gly Val Asp Ala
20 1 5 10 15

ANGABEN ZU SEQ ID NO: 41

(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 26
25 (B) ART: protein
(ii) ART DES MOLEKÜLS: peptide
(iii) HYPOTHETISCH: nein
(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
(vi) URSPÜNGLICHE HERKUNFT:
30 (A) ORGANISMUS: Phleum pratense
(C) ENTWICKLUNGSSSTADIUM: Pollen
(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 41:

-33-

Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp

1 5 10 15

Trp Asp Val Val Lys Arg Gly Trp Asp Ala

5 20 25

ANGABEN ZU SEQ ID NO: 42

(i) SEQUENZKENNZEICHEN:

10 (A) LÄNGE: 9

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

15 (vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 42:

Glu Ala Pro Tyr Lys Phe Lys Ser Ala

20 1 5

ANGABEN ZU SEQ ID NO: 43

(i) SEQUENZKENNZEICHEN:

25 (A) LÄNGE: 14

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

30 (A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

-34-

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 43:

Thr Leu Arg Ala Glu Pro Lys Ala Asn Asp Gln Tyr Leu Pro
1 5 10

5

ANGABEN ZU SEQ ID NO: 44

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 7

(B) ART: protein

10 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

15 (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 44:

Asp Glu Ser Gly Lys Ser Val
1 5

20

ANGABEN ZU SEQ ID NO: 45

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 6

(B) ART: protein

25 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

30 (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 45:

-35-

Phe Arg Ala Asp Arg Met
1 5

5 ANGABEN ZU SEQ ID NO: 46

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 31

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

10 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 46:

15

Ala Asp Phe Asp Lys Phe Asp Arg Val Arg Val Pro Lys Ile Lys Tyr
1 5 10 15

Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu Pro Asn Lys
20 25 30

20

ANGABEN ZU SEQ ID NO: 47

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 18

(B) ART: protein

25

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

30

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 47:

-36-

Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Lys Asn Gly Val

1 5 10 15

Arg Thr

5

ANGABEN ZU SEQ ID NO: 48

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 36

10 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

15 (A) ORGANISMUS: Phleum pratense
(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 48:

Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asp Glu Thr Lys Glu Glu

1 5 10 15

20 Tyr Ile Glu Ile Pro Ser Asp Ser Gly Ile Thr Phe Asn Glu Gln Pro
20 25 30

Lys Met Lys Ala

35

25

ANGABEN ZU SEQ ID NO: 49

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 8

30 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

-37-

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSSTADIUM: Pollen

5 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 49:

Ile Ala Glu Lys Thr Arg Asp Ala

1 5

10 ANGABEN ZU SEQ ID NO: 50

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 24

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

15 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSSTADIUM: Pollen

20 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 50:

Ser Gly Lys Phe Asp Gln Val Arg Ile Asn Leu Pro Asn Gly Asp Met

1 5 10 15

Val Gly His Thr Gly Asp Ile Glu

25 20

ANGABEN ZU SEQ ID NO: 51

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 26

30 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

-38-

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSSTADIUM: Pollen

5 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 51:

Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Ser Gly

1 5 10 15

Gln Pro Ala Leu Asp Lys Ser Gly Ser Ile

10 20 25

ANGABEN ZU SEQ ID NO: 52

(i) SEQUENZKENNZEICHEN:

15 (A) LÄNGE: 8

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

20 (A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 52:

Leu Thr Ser His Thr Leu Gln Pro

25 1 5

ANGABEN ZU SEQ ID NO: 53

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 19

(B) ART: protein

30 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

-39-

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSSTADIUM: Pollen

5 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 53:

Gly Pro Gly Leu His Pro Gly Val Lys Phe Arg Ser Asp Ile Asn Thr
1 5 10 15

Pro Gly Leu

10

ANGABEN ZU SEQ ID NO: 54

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 14

(B) ART: protein

15 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSSTADIUM: Pollen

20 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 54:

Leu His Gly Phe Gln Ala Pro Asp Asp Tyr Glu Thr Thr Leu
1 5 10

25

ANGABEN ZU SEQ ID NO: 55

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 5

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

30 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

-40-

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense
(C) ENTWICKLUNGSSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 55:

5
Trp Gly Glu Ala Ser
1 5

10 ANGABEN ZU SEQ ID NO: 56

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 8
(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

15 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense
(C) ENTWICKLUNGSSSTADIUM: Pollen

20 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 56:

Met Asp Ser Leu Lys Asn Gly Ala
1 5

25 ANGABEN ZU SEQ ID NO: 57

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 10
(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

30 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

-41-

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 57:

5 Phe Ala Gln Gly Ala Lys Leu Phe Asp Ala
1 5 10

ANGABEN ZU SEQ ID NO: 58

(i) SEQUENZKENNZEICHEN:

10 (A) LÄNGE: 5

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

15 (vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 58:

20 Gly Lys Ile Trp Glu
1 5

ANGABEN ZU SEQ ID NO: 59

(i) SEQUENZKENNZEICHEN:

25 (A) LÄNGE: 4

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

30 (vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

-42-

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 59:

Thr Leu Glu Asn
1 4

5

ANGABEN ZU SEQ ID NO: 60

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 6

(B) ART: protein

10 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

15 (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 60:

Asn Asp Trp Asp Val Val
1 5

20

ANGABEN ZU SEQ ID NO: 61

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 7

(B) ART: protein

25 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

30 (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 61:

-43-

Leu Glu Ala Val Lys Thr Leu
1 5

ANGABEN ZU SEQ ID NO: 62

5 (i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 6
- (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

10 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

- (A) ORGANISMUS: Phleum pratense
- (C) ENTWICKLUNGSSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 62:

15 Leu Ala Lys Ala Leu Glu
1 5

ANGABEN ZU SEQ ID NO: 63

20 (i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 8
- (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

25 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

- (A) ORGANISMUS: Phleum pratense
- (C) ENTWICKLUNGSSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 63:

30 Phe Ala Cys Ser Glu Thr Val Lys
1 5

-44-

ANGABEN ZU SEQ ID NO: 64

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 11

5 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

10 (A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 64:

Leu Asp Ala Val Glu Gln Val Gly Gly Ile Tyr

1 5 10

15

ANGABEN ZU SEQ ID NO: 65

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 8

20 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

25 (A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 65:

Pro Gly Leu Ala Asn Val Ala Ala

1 5

30

ANGABEN ZU SEQ ID NO: 66

-45-

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 10

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

5 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

10 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 66:

Asn Leu His Gly Phe Gln Ala Pro Asp Asp
1 5 10

15 ANGABEN ZU SEQ ID NO: 67

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 1668 Basenpaare / 555 Aminosäurereste

(B) ART: Nukleinsäure / protein

(C) STRANGFORM: ds

(D) TOPOLOGIE: linear

20 (ii) ART DES MOLEKÜLS: cDNA zu mRNA / protein

(iii) HYPOTHETISCH: nein

(iv) ANTISENSE: nein

(v) ART DES FRAGMENTS: Gesamtsequenz

(vi) URSPÜNGLICHE HERKUNFT:

25 (A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 67:

30 1 ATG ACC TCA TGG ACG CTG CCC GAC CAC CCC ACG CTC CCC AAG 42
Met Thr Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro Lys

-46-

43	GGC AAG ACG GTG GCC GTC ATC GTG CTC GAC GGA TGG GGC GAG Gly Lys Thr Val Ala Val Ile Val Leu Asp Gly Trp Gly Glu	84
5	85 GCC AGC GCT GAC CAG TAC AAC TGC ATC CAT CGC GCC GAG ACG Ala Ser Ala Asp Gln Tyr Asn Cys Ile His Arg Ala Glu Thr	126
127	CCC GTC ATG GAT TCG CTC AAG AAT GGT GCT CCT GAG AAG TGG Pro Val Met Asp Ser Leu Lys Asn Gly Ala Pro Glu Lys Trp	168
10	169 ACA CTA GTG AAG GCT CAT GGA ACT GCT GTT GGT CTC CCT AGT Thr Leu Val Lys Ala His Gly Thr Ala Val Gly Leu Pro Ser	210
15	211 GAT GAC GAC ATG GGC AAC AGT GAA GTT GGC CAC AAT GCT CTT Asp Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala Leu	252
20	253 GGC GCT GGT CGG ATT TTC GCT CAA GGG GCG AAG TTG TTT GAT Gly Ala Gly Arg Ile Phe Ala Gln Gly Ala Lys Leu Phe Asp	294
15	295 GCT GCT CTT GCA TCT GGG AAG ATT TGG GAA GAT GAG GGT TTC Ala Ala Leu Ala Ser Gly Ile Trp Glu Asp Glu Gly Phe	336
20	337 AAT TAC ATC AAA GAA TCT TTT GCC GAA GGT ACT CTG CAC CTT Asn Tyr Ile Lys Glu Ser Phe Ala Glu Gly Thr Leu His Leu	378
25	379 ATT GGT CTG TTG AGT GAT GGA GGC GTC CAC TCC CGG CTA GAC Ile Gly Leu Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp	420
25	421 CAA GTG CAG TTG CTT GTG AAA GGT GCC AGT GAG AGG GGA GCA Gln Val Gln Leu Val Lys Gly Ala Ser Glu Arg Gly Ala	462
30	463 AAA AGA ATT CGG CTT CAC ATT CTT ACC GAT GGG CGT GAT GTC Lys Arg Ile Arg Leu His Ile Leu Thr Asp Gly Arg Asp Val	504
30	505 TTG GAT GGA AGC AGT GTT GGT TTC GTA GAG ACA CTA GAG AAT Leu Asp Gly Ser Ser Val Gly Phe Val Glu Thr Leu Glu Asn	546
30	547 GAT CTT GCT CAG CTT CGT GAG AAG GGT GTT GAT GCA CAG GTT Asp Leu Ala Gln Leu Arg Glu Lys Gly Val Asp Ala Gln Val	588

-47-

589	GCA TCT GGT GGT GGA AGG ATG TAT GTT ACC ATG GAC CGC TAT	630
	Ala Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr	
631	GAG AAT GAC TGG GAT GTG GTC AAG CGT GGG TGG GAT GCC CAG	672
	Glu Asn Asp Trp Asp Val Val Lys Arg Gly Trp Asp Ala Gln	
5		
673	GTG CTT GGA GAA GCA CCA TAC AAA TTC AAA AGT GCA CTT GAA	714
	Val Leu Gly Glu Ala Pro Tyr Lys Phe Lys Ser Ala Leu Glu	
715	GCT GTG AAA ACG CTA AGA GCA GAG CCC AAG GCC AAT GAT CAG	756
	Ala Val Lys Thr Leu Arg Ala Glu Pro Lys Ala Asn Asp Gln	
10	757 TAC TTG CCT GCG TTT GTG ATA GTT GAT GAA AGT GGC AAA TCC	798
	Tyr Leu Pro Ala Phe Val Ile Val Asp Glu Ser Gly Lys Ser	
799	GTT GGT CCT ATA GTA GAT GGC GAT GCA GTT GTG ACT TTC AAT	840
	Val Gly Pro Ile Val Asp Gly Asp Ala Val Val Thr Phe Asn	
15	841 TTC AGA GCT GAT CGC ATG GTT ATG CTT GCA AAG GCT CTT GAG	882
	Phe Arg Ala Asp Arg Met Val Met Leu Ala Lys Ala Leu Glu	
883	TTT GCT GAT TTT GAT AAA TTT GAC CGT GTT CGT GTA CCA AAA	924
	Phe Ala Asp Phe Asp Lys Phe Asp Arg Val Arg Val Pro Lys	
20	925 ATT AAG TAT GCT GGG ATG CTC CAG TAT GAT GGT GAG TTG AAG	966
	Ile Lys Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys	
967	CTT CCA AAC AAA TTC CTT GTT CCA CCC TTG ATA GAG AGG	1008
	Leu Pro Asn Lys Phe Leu Val Ser Pro Pro Leu Ile Glu Arg	
25	1009 ACA TCT GGT GAA TAC TTG GTA AAG AAT GGC GTT CGC ACA TTT	1050
	Thr Ser Gly Glu Tyr Leu Val Lys Asn Gly Val Arg Thr Phe	
1051	GCT TGC AGC GAG ACC GTG AAG TTT GGT CAT GTC ACA TTT TTC	1092
	Ala Cys Ser Glu Thr Val Lys Phe Gly His Val Thr Phe Phe	
30	1093 TGG AAT GGA AAC CGT TCT GGA TAC TTC GAT GAA ACC AAG GAA	1134
	Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asp Glu Thr Lys Glu	

-48-

1135 GAG TAC ATA GAA ATT CCT AGT GAT AGT GGT ATC ACA TTC AAT 1176
Glu Tyr Ile Glu Ile Pro Ser Asp Ser Gly Ile Thr Phe Asn

1177 GAG CAG CCC AAA ATG AAG GCA CTT GAA ATT GCT GAG AAA ACC 1218
Glu Gln Pro Lys Met Lys Ala Leu Glu Ile Ala Glu Lys Thr

5

1219 CGG GAT GCT ATC CTC AGT GGA AAG TTT GAC CAG GTA CGT ATT 1260
Arg Asp Ala Ile Leu Ser Gly Lys Phe Asp Gln Val Arg Ile

1261 AAC CTG CCA AAT GGT GAT ATG GTG GGT CAC ACC GGT GAT ATT 1302
Asn Leu Pro Asn Gly Asp Met Val Gly His Thr Gly Asp Ile

10 1303 GAA GCC ACA GTC GTT GCC TGC AAG GCT GCT GAT GAA GCA GTC 1344
Glu Ala Thr Val Val Ala Cys Lys Ala Ala Asp Glu Ala Val

1345 AAG ATT GTT TTG GAT GCA GTG GAG CAA GTT GGT GGT ATT TAT 1386
Lys Ile Val Leu Asp Ala Val Glu Gln Val Gly Gly Ile Tyr

15 1387 CTT GTC ACT GCT GAT CAT GGA AAC GCA GAG GAT ATG GTG AAA 1428
Leu Val Thr Ala Asp His Gly Asn Ala Glu Asp Met Val Lys

1429 AGA AAC AAA TCT GGC CAG CCT GCT CTT GAC AAG AGC GGT AGC 1470
Arg Asn Lys Ser Gly Gln Pro Ala Leu Asp Lys Ser Gly Ser

20 1471 ATC CAG ATT CTT ACC TCG CAT ACG CTT CAG CCA GTC CCT GTT 1512
Ile Gln Ile Leu Thr Ser His Thr Leu Gln Pro Val Pro Val

1513 GCG ATC GGA GGC CCT GGT CTC CAC CCA GGA GTG AAG TTC AGG 1554
Ala Ile Gly Gly Pro Gly Leu His Pro Gly Val Lys Phe Arg

25 1555 TCT GAT ATC AAC ACA CCT GGA CTC GCC AAT GTT GCC GCC ACC 1596
Ser Asp Ile Asn Thr Pro Gly Leu Ala Asn Val Ala Ala Thr

1597 GTG ATG AAC CTC CAT GGC TTC CAG GCC CCT GAT GAT TAT GAG 1638
Val Met Asn Leu His Gly Phe Gln Ala Pro Asp Asp Tyr Glu

30 1639 ACG ACG CTC ATT GAA GTT GCT GAC AAG TAA 1668
Thr Thr Leu Ile Glu Val Ala Asp Lys *

-49-

ANGABEN ZU SEQ ID NO: 68

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 16

5 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

10 (A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 68:

Met Thr Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro Lys Gly Lys

1 5 10 15

15

ANGABEN ZU SEQ ID NO: 69

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 35

20 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

25 (A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 69:

Asp Gly Trp Gly Glu Ala Ser Ala Asp Gln Tyr Asn Cys Ile His Arg

1 5 10 15

30 Ala Glu Thr Pro Val Met Asp Ser Leu Lys Asn Gly Ala Pro Glu Lys

20 25 30

-50-

Trp Thr Leu

35

ANGABEN ZU SEQ ID NO: 70

5 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 19

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

10 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 70:

15

Leu Pro Ser Asp Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala

1

5

10

15

Leu Gly Ala

20

ANGABEN ZU SEQ ID NO: 71

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 17

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

25

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

30 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 71:

Gly Lys Ile Trp Glu Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe

-51-

1

5

10

15

Ala

5 ANGABEN ZU SEQ ID NO: 72

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 13

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

10 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

15 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 72:

Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Val

1

5

10

20 ANGABEN ZU SEQ ID NO: 73

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 12

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

25 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

30 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 73:

30

Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Leu

1

5

10

-52-

ANGABEN ZU SEQ ID NO: 74

(i) SEQUENZKENNZEICHEN:

5 (A) LÄNGE: 13
 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

10 (A) ORGANISMUS: Phleum pratense
 (C) ENTWICKLUNGSSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 74:

Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val
15 1 5 10

ANGABEN ZU SEQ ID NO: 75

(i) SEQUENZKENNZEICHEN:

20 (A) LÄNGE: 17
 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

25 (A) ORGANISMUS: Phleum pratense
 (C) ENTWICKLUNGSSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 75:

Glu Thr Leu Glu Asn Asp Leu Ala Gln Leu Arg Glu Lys Gly Val Asp
30 1 5 10 15
 Ala

-53-

ANGABEN ZU SEQ ID NO: 76

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 26

5 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

10 (A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 76:

Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp

1 5 10 15

15

Trp Asp Val Val Lys Arg Gly Trp Asp Ala

20 25

ANGABEN ZU SEQ ID NO: 77

20 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 9

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

25 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 77:

30 Glu Ala Pro Tyr Lys Phe Lys Ser Ala

1

5

-54-

ANGABEN ZU SEQ ID NO: 78

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 14

5 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

10 (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 78:

Thr Leu Arg Ala Glu Pro Lys Ala Asn Asp Gln Tyr Leu Pro

1 5 10

15

ANGABEN ZU SEQ ID NO: 79

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 7

20 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

25 (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 79:

Asp Glu Ser Gly Lys Ser Val

1 5

30

ANGABEN ZU SEQ ID NO: 80:

-55-

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 7

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

5 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 80:

10

Asn Phe Arg Ala Asp Arg Met

1

5

15 ANGABEN ZU SEQ ID NO: 81

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 31

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

20 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 81:

25

Ala Asp Phe Asp Lys Phe Asp Arg Val Arg Val Pro Lys Ile Lys Tyr

1

5

10

15

Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu Pro Asn Lys

30

20

25

30

-56-

ANGABEN ZU SEQ ID NO: 82

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 18

(B) ART: protein

5 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

10 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 82:

Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Lys Asn Gly Val

1 5 10 15

15 Arg Thr

ANGABEN ZU SEQ ID NO: 83

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 36

20 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

25 (A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 83:

Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asp Glu Thr Lys Glu Glu

30 1 5 10 15

Tyr Ile Glu Ile Pro Ser Asp Ser Gly Ile Thr Phe Asn Glu Gln Pro

-57-

20

25

30

Lys Met Lys Ala

35

5

ANGABEN ZU SEQ ID NO: 84

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 8

(B) ART: protein

10 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

15 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 84:

Ile Ala Glu Lys Thr Arg Asp Ala

1

5

20

ANGABEN ZU SEQ ID NO: 85

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 24

(B) ART: protein

25 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

30 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 85:

Ser Gly Lys Phe Asp Gln Val Arg Ile Asn Leu Pro Asn Gly Asp Met

-58-

1

5

10

15

Val Gly His Thr Gly Asp Ile Glu
20

5

ANGABEN ZU SEQ ID NO: 86

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 26
(B) ART: protein

10 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense
(C) ENTWICKLUNGSSTADIUM: Pollen

15 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 86:

Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Ser Gly
1 5 10 15

20 Gln Pro Ala Leu Asp Lys Ser Gly Ser Ile
20 25

ANGABEN ZU SEQ ID NO: 87

(i) SEQUENZKENNZEICHEN:

25 (A) LÄNGE: 8
(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

30 (vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense
(C) ENTWICKLUNGSSTADIUM: Pollen

-59-

(vii) SEQUENZBESCHREIBUNG SEQ ID NO: 87:

Leu Thr Ser His Thr Leu Gln Pro

1 5

5

ANGABEN ZU SEQ ID NO: 88

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 19

(B) ART: protein

10 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

15 (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG SEQ ID NO: 88:

Gly Pro Gly Leu His Pro Gly Val Lys Phe Arg Ser Asp Ile Asn Thr

1 5 10 15

20 Pro Gly Leu

ANGABEN ZU SEQ ID NO: 89

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 14

25 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

30 (A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG SEQ ID NO: 89:

-60-

Leu His Gly Phe Gln Ala Pro Asp Asp Tyr Glu Thr Thr Leu

1 5 10

5 ANGABEN ZU SEQ ID NO: 90

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 5

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

10 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

15 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 90:

Trp Gly Glu Ala Ser

1 5

20 ANGABEN ZU SEQ ID NO: 91

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 8

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

25 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

30 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 91:

Met Asp Ser Leu Lys Asn Gly Ala

-61-

1 5

ANGABEN ZU SEQ ID NO: 92

5 (i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 10
(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

10 (vi) URSPÜNGLICHE HERKUNFT:
(A) ORGANISMUS: Phleum pratense
(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 92:

15 Phe Ala Gln Gly Ala Lys Leu Phe Asp Ala
1 5 10

ANGABEN ZU SEQ ID NO: 93

20 (i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 5
(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

25 (vi) URSPÜNGLICHE HERKUNFT:
(A) ORGANISMUS: Phleum pratense
(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 93:

30 Tyr Ile Lys Glu Ser
1 5

-62-

ANGABEN ZU SEQ ID NO: 94

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 4
5 (B) ART: protein
(ii) ART DES MOLEKÜLS: peptide
(iii) HYPOTHETISCH: nein
(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
(vi) URSPÜNGLICHE HERKUNFT:
10 (A) ORGANISMUS: Phleum pratense
(C) ENTWICKLUNGSSTADIUM: Pollen
(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 94:

Thr Leu Glu Asn

1 4

15

ANGABEN ZU SEQ ID NO: 95

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 6
20 (B) ART: protein
(ii) ART DES MOLEKÜLS: peptide
(iii) HYPOTHETISCH: nein
(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
(vi) URSPÜNGLICHE HERKUNFT:
25 (A) ORGANISMUS: Phleum pratense
(C) ENTWICKLUNGSSTADIUM: Pollen
(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 95:

Asn Asp Trp Asp Val Val

1 5

30

ANGABEN ZU SEQ ID NO: 96

-63-

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 7

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

5 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

10 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 96:

Leu Glu Ala Val Lys Thr Leu

1 5

15 ANGABEN ZU SEQ ID NO: 97

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 7

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

20 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

25 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 97:

Leu Ala Lys Ala Leu Glu Phe

1 5

30 ANGABEN ZU SEQ ID NO: 98

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 8

-64-

(B) ART: protein
(ii) ART DES MOLEKÜLS: peptide
(iii) HYPOTHETISCH: nein
(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
5 (vi) URSPÜNGLICHE HERKUNFT:
(A) ORGANISMUS: Phleum pratense
(C) ENTWICKLUNGSSTADIUM: Pollen
(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 98:

Phe Ala Cys Ser Glu Thr Val Lys
10 1 5

ANGABEN ZU SEQ ID NO: 99

(i) SEQUENZKENNZEICHEN:
15 (A) LÄNGE: 9
(B) ART: protein
(ii) ART DES MOLEKÜLS: peptide
(iii) HYPOTHETISCH: nein
(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
20 (vi) URSPÜNGLICHE HERKUNFT:
(A) ORGANISMUS: Phleum pratense
(C) ENTWICKLUNGSSTADIUM: Pollen
(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 99:

Leu Asp Ala Val Glu Gln Val Gly Gly
25 1 5

ANGABEN ZU SEQ ID NO: 100

(i) SEQUENZKENNZEICHEN:
30 (A) LÄNGE: 8
(B) ART: protein
(ii) ART DES MOLEKÜLS: peptide

-65-

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

5 (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 100:

Pro Gly Leu Ala Asn Val Ala Ala

1

5

10

ANGABEN ZU SEQ ID NO: 101

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 10

(B) ART: protein

15 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

20 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 101:

Asn Leu His Gly Phe Gln Ala Pro Asp Asp

1

5

10

25

ANGABEN ZU SEQ ID NO: 102

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 1674 Basenpaare / 557 Aminosäurereste

(B) ART: Nukleinsäure / protein

30 (C) STRANGFORM: ds

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: cDNA zu mRNA / protein

-66-

- (iii) HYPOTHETISCH: nein
- (iv) ANTISENSE: nein
- (v) ART DES FRAGMENTS: Gesamtsequenz
- (vi) URSPÜNGLICHE HERKUNFT:

5 (A) ORGANISMUS: *Artemisia vulgaris*
 (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 102:

1	ATG GGA AGC TCA GGA TTT TCA TGG AAG CTA GCG GAC CAC CCA	42
	Met Gly Ser Ser Gly Phe Ser Trp Lys Leu Ala Asp His Pro	
10		
	43 AAG CTG CCA AAG AAC AAG CTG GTA GCG ATG ATT GTG TTG GAC	84
	Lys Leu Pro Lys Asn Lys Leu Val Ala Met Ile Val Leu Asp	
15	85 GGA TGG GGT GAA GCT TCT CCT GAT AAA TAT AAC TGT ATC CAC	126
	Gly Trp Gly Glu Ala Ser Pro Asp Lys Tyr Asn Cys Ile His	
	127 GTG GCC GAG ACT CCT ACC ATG GAT TCT CTC AAA AAC GGC GCC	168
	Val Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Asn Gly Ala	
20	169 CCT GAT CAC TGG AGA TTG GTG AGG GCT CAT GGA ACT GCT GTT	210
	Pro Asp His Trp Arg Leu Val Arg Ala His Gly Thr Ala Val	
	211 GGG CTT CCC ACT GAA GAT GAC ATG GGA AAC AGT GAA GTC GGA	252
	Gly Leu Pro Thr Glu Asp Asp Met Gly Asn Ser Glu Val Gly	
25	253 CAC AAT GCT CTT GGT GCT GGA AGG ATC TTT GCT CAA GGT GCT	294
	His Asn Ala Leu Gly Ala Gly Arg Ile Phe Ala Gln Gly Ala	
	295 AAA CTC GTT GAT CAA GCA CTT GCC TCT GGG AGA ATT TAC GAA	336
	Lys Leu Val Asp Gln Ala Leu Ala Ser Gly Arg Ile Tyr Glu	
30	337 GAT GAA GGT TTC AAT TAC ATC AAG GAA TCA TTT GCC ACC AAC	378
	Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe Ala Thr Asn	
	379 ACC TTG CAT CTT ATT GGA TTG ATG AGT GAT GGT GGT GTT CAC	420
	Thr Leu His Leu Ile Gly Leu Met Ser Asp Gly Gly Val His	

-67-

421 TCA CGT CTT GAT CAG TTG CAG TTG CTT AAC GGA GCT AGT 462
Ser Arg Leu Asp Gln Leu Gln Leu Leu Asn Gly Ala Ser

463 GAG CGT GGT GCC AAG AAG ATC CGT GTT CAC GTG CTT ACT GAT 504
Glu Arg Gly Ala Lys Lys Ile Arg Val His Val Leu Thr Asp
5

5 505 GGT CGT GAT GTT TTG GAT GGT TCA AGT GTC GGT TTT GCT GAA 546
Gly Arg Asp Val Leu Asp Gly Ser Ser Val Gly Phe Ala Glu

547 ACA CTT GAA GCA GAA CTT GCA AGT CTC CGC AGC AAG GGC ATT 588
Thr Leu Glu Ala Glu Leu Ala Ser Leu Arg Ser Lys Gly Ile
10

589 GAT GCT CAG GTT GCT TCT GGT GGA GGA CGT ATG TAT GTC ACC 630
Asp Ala Gln Val Ala Ser Gly Gly Arg Met Tyr Val Thr

631 ATG GAT CGT TAC GAG AAT GAC TGG GAA GTT GTG AAA CTT GGA 672
Met Asp Arg Tyr Glu Asn Asp Trp Glu Val Val Lys Leu Gly

15 673 TGG GAT GCT CAG GTT CTT GGT GAA GCT CCA CAC AAG TTT AAA 714
Trp Asp Ala Gln Val Leu Gly Glu Ala Pro His Lys Phe Lys

715 AAT GTT GTT GAG GCT ATT AAG ACA CTC AGA CAA GCT CCT GGT 756
Asn Val Val Glu Ala Ile Lys Thr Leu Arg Gln Ala Pro Gly

20 757 GCT AAT GAC CAA TAC TTG CCT CCA TTT GTT ATC GTC GAT GAT 798
Ala Asn Asp Gln Tyr Leu Pro Pro Phe Val Ile Val Asp Asp

799 AGC GGC ACG CCT GTT GGT CCA GTC GTG GAT GGC GAT GCT GTT 840
Ser Gly Thr Pro Val Gly Pro Val Val Asp Gly Asp Ala Val

25 841 GTC ACT GTT AAC TTC CGT GCT GAT CGT ATG ACT ATG CTT GCC 882
Val Thr Val Asn Phe Arg Ala Asp Arg Met Thr Met Leu Ala

883 CAA GCT CTT GAA TAC GAG AAG TTT GAT AAG TTT GAC AGA GTG 924
Gln Ala Leu Glu Tyr Glu Lys Phe Asp Lys Phe Asp Arg Val

30 925 CGT TTC CCA AAA ATC CGT TAT GCT GGT ATG CTC CAG TAT GAT 966
Arg Phe Pro Lys Ile Arg Tyr Ala Gly Met Leu Gln Tyr Asp

-68-

967 GGA GAG TTG AAG CTT CCA AAC CAT TAC CTT GTT TCT CCC CCA 1008
Gly Glu Leu Lys Leu Pro Asn His Tyr Leu Val Ser Pro Pro

1009 TTG ATT GAC AGG ACA TCT GGC GAA TAT TTG GTG CAT AAT GGT 1050
Leu Ile Asp Arg Thr Ser Gly Glu Tyr Leu Val His Asn Gly
5

1051 GTC CGC ACT TTT GCT TGC AGT GAG ACT GTC AAA TTC GGT CAT 1092
Val Arg Thr Phe Ala Cys Ser Glu Thr Val Lys Phe Gly His

1093 GTC ACA TTT TTC TGG AAT GGA AAC CGC TCT GGT TAC TTC AAC 1134
Val Thr Phe Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn
10

1135 TCA GAG TTG GAA GAA TAT GTT GAA ATT CCA AGT GAT AGT GGT 1176
Ser Glu Leu Glu Glu Tyr Val Glu Ile Pro Ser Asp Ser Gly

1177 ATT ACC TTC AAC GTC AAA CCA AAG ATG AAA GCT TTG GAG ATT 1218
Ile Thr Phe Asn Val Lys Pro Lys Met Lys Ala Leu Glu Ile
15 1219 GGT GAG AAG ACC CGT GAT GCT ATC CTC AGC GGA AAG TTT GAC 1260
Gly Glu Lys Thr Arg Asp Ala Ile Leu Ser Gly Lys Phe Asp

1261 CAG GTA CGT GTG AAC ATA CCA AAC GGT GAC ATG GTT GGG CAC 1302
Gln Val Arg Val Asn Ile Pro Asn Gly Asp Met Val Gly His

20 1303 ACC GGT GAT GTT GAG GCT ACT GTC GTG GCC TGC AAG GCT GCT 1344
Thr Gly Asp Val Glu Ala Thr Val Val Ala Cys Lys Ala Ala

1345 GAT GAA GCT GTT AAG ATG ATC CTT GAT GCC GTA GAG CAA GTG 1386
Asp Glu Ala Val Lys Met Ile Leu Asp Ala Val Glu Gln Val

25 1387 GGT GGG ATA TAC GTT GTG ACT GCC GAT CAC GGT AAT GCT GAG 1428
Gly Gly Ile Tyr Val Val Thr Ala Asp His Gly Asn Ala Glu

1429 GAC ATG GTA AAG AGA AAC AAG AAG GGT GAG CCT CTT CTC AAG 1470
Asp Met Val Lys Arg Asn Lys Lys Gly Glu Pro Leu Leu Lys

30 1471 GAC GGC GAG GTC CAG ATT CTA ACA TCA CAC ACT CTT CAG CCG 1512
Asp Gly Glu Val Gln Ile Leu Thr Ser His Thr Leu Gln Pro

-69-

1513 GTG CCA ATT GCA ATT GGA GGT CCT GGG TTA TCC GCT GGT GTG 1554
 Val Pro Ile Ala Ile Gly Gly Pro Gly Leu Ser Ala Gly Val

1555 AGG TTC CGC AAG GAT GTA CCA AGT GGA GGA CTT GCA AAC GTA 1596
 Arg Phe Arg Lys Asp Val Pro Ser Gly Gly Leu Ala Asn Val

5

1597 GCA GCA ACT GTG ATG AAT CTT CAT GGG TTT GTG GCT CCT GAG 1638
 Ala Ala Thr Val Met Asn Leu His Gly Phe Val Ala Pro Glu

10

ANGABEN ZU SEQ ID NO: 103

(i) SEQUENZKENNZEICHEN:

15 (A) LÄNGE: 21

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

20 (vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 103:

Met Gly Ser Ser Gly Phe Ser Trp Lys Leu Ala Asp His Pro Lys Leu

25 1 5 10 15

Pro Lys Asn Lys Leu

20

30 ANGABEN ZU SEQ ID NO: 104

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 14

-70-

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

5 (vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 104:

Asp Gly Trp Gly Glu Ala Ser Pro Asp Lys Tyr Asn Cys Ile
10 1 5 10

ANGABEN ZU SEQ ID NO: 105

(i) SEQUENZKENNZEICHEN:

15 (A) LÄNGE: 25

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

20 (vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 105:

Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Asn Gly Ala Pro Asp His
25 1 5 10 15

Trp Arg Leu Val Arg Ala His Gly Thr
20 25

30 ANGABEN ZU SEQ ID NO: 106

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 19

-71-

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

5 (vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 106:

Leu Pro Thr Glu Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala
10 1 5 10 15

Leu Gly Ala

15

ANGABEN ZU SEQ ID NO: 107

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 20

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

20 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

25 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 107:

Gly Arg Ile Tyr Glu Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe
1 5 10 15

Ala Thr Asn Thr

30 20

-72-

ANGABEN ZU SEQ ID NO: 108

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 12

(B) ART: protein

5 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSSTADIUM: Pollen

10 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 108:

Met Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln

1 5 10

15

ANGABEN ZU SEQ ID NO: 109

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 12

(B) ART: protein

20 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSSTADIUM: Pollen

25 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 109:

Gly Ala Ser Glu Arg Gly Ala Lys Lys Ile Arg Val

1 5 10

30 ANGABEN ZU SEQ ID NO: 110

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 13

-73-

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

5 (vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 110:

Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val
10 1 5 10

ANGABEN ZU SEQ ID NO: 111

(i) SEQUENZKENNZEICHEN:

15 (A) LÄNGE: 10

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

20 (vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 111:

Ala Ser Leu Arg Ser Lys Gly Ile Asp Ala
25 1 5 10

ANGABEN ZU SEQ ID NO: 112

(i) SEQUENZKENNZEICHEN:

30 (A) LÄNGE: 19

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

-74-

- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - 5 (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 112:

Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp
1 5 10 15

10 Trp Glu Val

ANGABEN ZU SEQ ID NO: 113

- (i) SEQUENZKENNZEICHEN:
 - 15 (A) LÄNGE: 9
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - 20 (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 113:

Glu Ala Pro His Lys Phe Lys Asn Val
25 1 5

ANGABEN ZU SEQ ID NO: 114

- (i) SEQUENZKENNZEICHEN:
 - 30 (A) LÄNGE: 16
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide

-75-

- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - 5 (C) ENTWICKLUNGSSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 114:

Ile Lys Thr Leu Arg Gln Ala Pro Gly Ala Asn Asp Gln Tyr Leu Pro
1 5 10 15

10

ANGABEN ZU SEQ ID NO: 115

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
- 15 (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSSTADIUM: Pollen
- 20 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 115:

Asp Asp Ser Gly Thr Pro Val
1 5

25

ANGABEN ZU SEQ ID NO: 116

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
- 30 (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

-76-

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris
(C) ENTWICKLUNGSSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 116:

5

Asn Phe Arg Ala Asp Arg Met

1 5

ANGABEN ZU SEQ ID NO: 117

10 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 39

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

15 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 117:

20 Ala Leu Glu Tyr Glu Lys Phe Asp Lys Phe Asp Arg Val Arg Phe Pro
1 5 10 15

Lys Ile Arg Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu
20 25 30

25 Pro Asn His Tyr Leu Val Ser
35

ANGABEN ZU SEQ ID NO: 118

30 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 18

(B) ART: protein

-77-

- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:

5 (A) ORGANISMUS: Artemisia vulgaris
 (C) ENTWICKLUNGSSSTADIUM: Pollen

- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 118:

Pro Leu Ile Asp Arg Thr Ser Gly Glu Tyr Leu Val His Asn Gly Val
1 5 10 15
10 Arg Thr

ANGABEN ZU SEQ ID NO: 119

- (i) SEQUENZKENNZEICHEN:
 - 15 (A) LÄNGE: 46
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 20 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 119:

25 Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn Ser Glu Leu Glu Glu
1 5 10 15

Tyr Val Glu Ile Pro Ser Asp Ser Gly Ile Thr Phe Asn Val Lys Pro
20 25 30

30 Lys Met Lys Ala Leu Glu Ile Gly Glu Lys Thr Arg Asp Ala
35 45

-78-

ANGABEN ZU SEQ ID NO: 120

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 24

(B) ART: protein

5 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

10 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 120:

Ser Gly Lys Phe Asp Gln Val Arg Val Asn Ile Pro Asn Gly Asp Met
1 5 10 15

15 Val Gly His Thr Gly Asp Val Glu
20

ANGABEN ZU SEQ ID NO: 121

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 7

(B) ART: protein

20 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

25 (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 121:

Lys Ala Ala Asp Glu Ala Val
1 5

30

ANGABEN ZU SEQ ID NO: 122

-79-

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 25

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

5 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

10 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 122:

Ala	Asp	His	Gly	Asn	Ala	Glu	Asp	Met	Val	Lys	Arg	Asn	Lys	Lys	Gly
1					5					10					15

Glu	Pro	Leu	Leu	Lys	Asp	Gly	Glu	Val
15					20			25

ANGABEN ZU SEQ ID NO: 123

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 8

20 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

25 (A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 123:

Leu	Thr	Ser	His	Thr	Leu	Gln	Pro
1					5		

30							
----	--	--	--	--	--	--	--

-80-

ANGABEN ZU SEQ ID NO: 124

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 13

(B) ART: protein

5 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

10 (C) ENTWICKLUNGSSTADIUM: Pollen

10 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 124:

Gly Val Arg Phe Arg Lys Asp Val Pro Ser Gly Gly Leu

1 5 10

15

ANGABEN ZU SEQ ID NO: 125

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 10

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

20

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

25 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 125:

Val Ala Pro Glu Asp Tyr Glu Thr Thr Leu

1 5 10

30

ANGABEN ZU SEQ ID NO: 126

(i) SEQUENZKENNZEICHEN:

-81-

(A) LÄNGE: 5

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

5 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 126:

10 Ala Asp His Pro Lys

1 5

ANGABEN ZU SEQ ID NO: 127

15 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 16

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

20 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 127:

25 Tyr Asn Cys Ile His Val Ala Glu Thr Pro Thr Met Asp Ser Leu Lys

1 5 10 15

ANGABEN ZU SEQ ID NO: 128

30 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 7

(B) ART: protein

-82-

- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:

5 (A) ORGANISMUS: Artemisia vulgaris
(C) ENTWICKLUNGSSTADIUM: Pollen

- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 128:

Asp His Trp Arg Leu Val Arg
1 5
10

ANGABEN ZU SEQ ID NO: 129

- (i) SEQUENZKENNZEICHEN:

15 (A) LÄNGE: 10
(B) ART: protein
(ii) ART DES MOLEKÜLS: peptide
(iii) HYPOTHETISCH: nein
(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
(vi) URSPÜNGLICHE HERKUNFT:
20 (A) ORGANISMUS: Artemisia vulgaris
(C) ENTWICKLUNGSSTADIUM: Pollen
(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 129:

Phe Ala Gln Gly Ala Lys Leu Val Asp Gln
1 5 10
25

ANGABEN ZU SEQ ID NO: 130

(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 19
(B) ART: protein
30 (ii) ART DES MOLEKÜLS: peptide
(iii) HYPOTHETISCH: nein

-83-

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSSTADIUM: Pollen

5 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 130:

Glu Ala Pro His Lys Phe Lys Asn Val Val Glu Ala Ile Lys Thr Leu
1 5 10 15

Arg Gln Ala

10

ANGABEN ZU SEQ ID NO: 131

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 10

(B) ART: protein

15

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

20

(C) ENTWICKLUNGSSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 131:

Arg Thr Phe Ala Cys Ser Glu Thr Val Lys

1

5

10

25

ANGABEN ZU SEQ ID NO: 132

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 8

(B) ART: protein

30

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

-84-

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSSTADIUM: Pollen

5 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 132:

Ser Glu Leu Glu Glu Tyr Val Glu

1 5

10 ANGABEN ZU SEQ ID NO: 133

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 14

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

15 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSSTADIUM: Pollen

20 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 133:

Val Lys Met Ile Leu Asp Ala Val Glu Gln Val Gly Gly Ile

1 5 10

25 ANGABEN ZU SEQ ID NO: 134

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 8

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

30 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

-85-

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 134:

5 Gly Gly Leu Ala Asn Val Ala Ala
1 5

ANGABEN ZU SEQ ID NO: 135

(i) SEQUENZKENNZEICHEN:

10 (A) LÄNGE: 9

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

15 (vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 135:

Asn Leu His Gly Phe Val Ala Pro Glu
20 1 5

ANGABEN ZU SEQ ID NO: 136

(i) SEQUENZKENNZEICHEN:

25 (A) LÄNGE: 1683 Basenpaare / 560 Aminosäurereste

(B) ART: Nukleinsäure / protein

(C) STRANGFORM: ds

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: cDNA zu mRNA / protein

(iii) HYPOTHETISCH: nein

30 (iv) ANTISENSE: nein

(v) ART DES FRAGMENTS: Gesamtsequenz

-86-

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: *Artemisia vulgaris*

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 136:

5

1	ATG GGA AGC TCA GGA GAC AAA ACG ACA TGG AAA TTG GCA GAT	42
	Met Gly Ser Ser Gly Asp Lys Thr Thr Trp Lys Leu Ala Asp	
10	43 CAC CCA AAA CTA CCA AAA GGA AAA ATG ATC GCG GTT GTT GTT	84
	His Pro Lys Leu Pro Lys Gly Lys Met Ile Ala Val Val Val	
15	85 TTG GAC GGT TGG GGT GAA GCT TCT CCC GAC AAA TAT AAT TGT	126
	Leu Asp Gly Trp Gly Glu Ala Ser Pro Asp Lys Tyr Asn Cys	
15	127 ATC CAT GTT GCC CAA ACA CCC GTC ATG TAT TCT CTT AAA AAC	168
	Ile His Val Ala Gln Thr Pro Val Met Tyr Ser Leu Lys Asn	
169	169 AGT GCA CCT GAT CAC TGG AGA TTG GTG AGG GCA CAT GGT ACT	210
	Ser Ala Pro Asp His Trp Arg Leu Val Arg Ala His Gly Thr	
20	211 GCT GTG GGG CTT CCC ACA GAC GAT GAC ATG GGA AAC AGC GAA	252
	Ala Val Gly Leu Pro Thr Asp Asp Met Gly Asn Ser Glu	
253	253 GTT GGA CAT AAT GCT CTT GGA GCT GGT CGA ATT TAT GCC CAA	294
	Val Gly His Asn Ala Leu Gly Ala Gly Arg Ile Tyr Ala Gln	
25	295 GGT GCA AAA CTT GTG GAT CTT GCT CTT GCC TCT GGA AAG ATA	336
	Gly Ala Lys Leu Val Asp Leu Ala Leu Ala Ser Gly Lys Ile	
337	337 TAT GAC GAT GAA GGT TTT AAT TAC ATT AAG GAA TCT TTF GCA	378
	Tyr Asp Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe Ala	
30	379 AAT AAT ACA TTG CAC CTC ATT GGA TTG ATG AGT GAT GGG GGT	420
	Asn Asn Thr Leu His Leu Ile Gly Leu Met Ser Asp Gly Gly	
421	421 GTG CAC TCT CGC CTT GAT CAG TTA CAG CTG TTG CTC AAA ¹ GGT	462

-87-

Val His Ser Arg Leu Asp Gln Leu Gln Leu Leu Lys Gly
463 GCT AGT GAA CGT GGT GCC AAG AAG ATC CGT GTC CAC GTA CTT 504
Ala Ser Glu Arg Gly Ala Lys Lys Ile Arg Val His Val Leu
5 505 ACT GAT GGC CGT GAT GTT TTG GAT GGT TCA AGT GTA GGC TTT 546
Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val Gly Phe
547 GCA GAA ACA CTT GAA AAG GAC CTT GCA GAC CTA CGT AGC AAA 588
Ala Glu Thr Leu Glu Lys Asp Leu Ala Asp Leu Arg Ser Lys
10 589 GGT ATA GAT GCT CAG GTT GCT TCT GGT GGA GGT CGC ATG TAT 630
Gly Ile Asp Ala Gln Val Ala Ser Gly Gly Arg Met Tyr
631 GTC ACC ATG GAT CGT TAT GAG AAT GAT TGG GAT GTT GTG AAA 672
Val Thr Met Asp Arg Tyr Glu Asn Asp Trp Asp Val Val Lys
15 673 CGT GGT TGG GAT GCT CAG GTG CTT GGT GAA GCC CCA CAC AAA 714
Arg Gly Trp Asp Ala Gln Val Leu Gly Glu Ala Pro His Lys
715 TTC AAG AGT GCT GAG GCT ATC AAG AAG CTA AGG GAA GCT 756
Phe Lys Ser Ala Val Glu Ala Ile Lys Lys Leu Arg Glu Ala
757 CCA AAT GCT AAT GAT CAG TAC TTA CCC CCA TTT GTG ATT GTT 798
20 Pro Asn Ala Asn Asp Gln Tyr Leu Pro Pro Phe Val Ile Val
799 GAT GAG AGT GGG AAG CCT GTG GGT CCC ATA ATG GAC GGT GAT 840
Asp Glu Ser Gly Lys Pro Val Gly Pro Ile Met Asp Gly Asp
841 GCT GTT GTC ACA TTC AAC TTC CGA GCA GAT CGA ATG ACA ATC 882
25 Ala Val Val Thr Phe Asn Phe Arg Ala Asp Arg Met Thr Ile
883 CTT GCC CAG GCT CTT GAG TAT GAG AAG TTT GAT AAA TTT GAC 924
Leu Ala Gln Ala Leu Glu Tyr Glu Lys Phe Asp Lys Phe Asp
925 AGG GTG CGG TTC CCT AAA ATC CGC TAT GCT GGA ATG CTT CAA 966
30 Arg Val Arg Phe Pro Lys Ile Arg Tyr Ala Gly Met Leu Gln
967 TAT GAT GGG GAG TTG AAG CTA CCA AGT CGT TAC CTG GTT TCT 1008

-88-

Tyr Asp Gly Glu Leu Lys Leu Pro Ser Arg Tyr Leu Val Ser

1009 CCT CCA TTG ATA GAG AGG ACA TCT GGT GAA TAT CTA GTC AAT 1050
Pro Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Asn

5 1051 AAT GGT ATC CGC ACC TTT GCT TGT AGT GAA ACA GTA AAA TTT 1092
Asn Gly Ile Arg Thr Phe Ala Cys Ser Glu Thr Val Lys Phe

1093 GGT CAT GTT ACC TTC TTT TGG AAT GGG AAC CGC TCT GGA TAT 1134
Gly His Val Thr Phe Phe Trp Asn Gly Asn Arg Ser Gly Tyr

10 1135 TTT AAT TCA GAG TTG GAG GAA TAT GTA GAA ATT CCA AGT GAT 1176
Phe Asn Ser Glu Leu Glu Tyr Val Glu Ile Pro Ser Asp

1177 AAT GGA ATT TCC TTC AAT GTC CAA CCA AAG ATG AAG GCT TTG 1218
Asn Gly Ile Ser Phe Asn Val Gln Pro Lys Met Lys Ala Leu

15 1219 GAG ATT GGT GAG AAG GCC CGT GAT GCA ATT CTC AGT CGC AAA 1260
Glu Ile Gly Glu Lys Ala Arg Asp Ala Ile Leu Ser Arg Lys

1261 TTT GAC CAG GTA AGG GTG AAT ATA CCA AAT GGT GAC ATG GTT 1302
Phe Asp Gln Val Arg Val Asn Ile Pro Asn Gly Asp Met Val

1303 GGG CAT ACC GGT GAC ATT GAG GCA ACA GTC GTG GCA TGC AAG 1344

20 Gly His Thr Gly Asp Ile Glu Ala Thr Val Val Ala Cys Lys

1345 GCT GCT GAT GAT GCT GTT AAG ATG ATC CTT GAT GCA ATA AAG 1386
Ala Ala Asp Asp Ala Val Lys Met Ile Leu Asp Ala Ile Lys

25 1387 GAA GTA GGT GGA ATA TAT GTG GTG ACT GCG GAT CAT GGT AAT 1428
Glu Val Gly Ile Tyr Val Val Thr Ala Asp His Gly Asn

1429 GCA GAG GAC ATG GTG AAG AGA AAC AAG GAG GGA GAG CCC CTT 1470
Ala Glu Asp Met Val Lys Arg Asn Lys Glu Gly Glu Pro Leu

30 1471 CTT GAT AAG GAT GGC AAA GTT CAG ATC CTA ACC TCG CAC ACT 1512
Leu Asp Lys Asp Gly Lys Val Gln Ile Leu Thr Ser His Thr

-89-

1513 CTG CAG CCA GTA CCG GTT GCA ATT GGA GGT CCT GGG TTA GCA 1554
Leu Gln Pro Val Pro Val Ala Ile Gly Gly Pro Gly Leu Ala

1555 GCA GGT GTG AAA TTC CGC AAG GAT GTG CCA AAT GGT GGA CTA 1596
Ala Gly Val Lys Phe Arg Lys Asp Val Pro Asn Gly Gly Leu

5

1597 GCA AAT GTA GCA GCA ACA GTG ATG AAT CTG CAT GGT TTT GTG 1638
Ala Asn Val Ala Ala Thr Val Met Asn Leu His Gly Phe Val

1639 GCT CCT GAT GAC TAT GAG ACA ACC CTT ATT GAA GTT GTT GAT 1680
Ala Pro Asp Asp Tyr Glu Thr Thr Leu Ile Glu Val Val Asp

10

1681 TAA 1683

*

ANGABEN ZU SEQ ID NO: 137

15 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 23

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

20 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 137:

25

Met Gly Ser Ser Gly Asp Lys Thr Thr Trp Lys Leu Ala Asp His Pro

1 5 10 15

Lys Leu Pro Lys Gly Lys Met

20

30

ANGABEN ZU SEQ ID NO: 138

-90-

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 14

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

5 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

10 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 138:

Asp Gly Trp Gly Glu Ala Ser Pro Asp Lys Tyr Asn Cys Ile
1 5 10

15 ANGABEN ZU SEQ ID NO: 139

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 18

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

20 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

25 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 139:

25

Ser Leu Lys Asn Ser Ala Pro Asp His Trp Arg Leu Val Arg Ala His
1 5 10 15

Gly Thr

30

ANGABEN ZU SEQ ID NO: 140

-91-

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 19

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

5 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

10 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 140:

Leu Pro Thr Asp Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala

1 5 10 15

Leu Gly Ala

15

ANGABEN ZU SEQ ID NO: 141

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 21

(B) ART: protein

20 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

25 (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 141:

Gly Lys Ile Tyr Asp Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe

1 5 10 15

30 Ala Asn Asn Thr Leu

20

-92-

ANGABEN ZU SEQ ID NO: 142

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 13

5 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

10 (A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 142:

Met Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Leu

1 5 10

15

ANGABEN ZU SEQ ID NO: 143

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 12

20 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

25 (A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 143:

Gly Ala Ser Glu Arg Gly Ala Lys Lys Ile Arg Val

1 5 10

30

ANGABEN ZU SEQ ID NO: 144

-93-

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 13

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

5 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

10 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 144:

Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val
1 5 10

15 ANGABEN ZU SEQ ID NO: 145

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 17

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

20 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 145:

25

Glu Thr Leu Glu Lys Asp Leu Ala Asp Leu Arg Ser Lys Gly Ile Asp
1 5 10 15

Ala

30

ANGABEN ZU SEQ ID NO: 146

(i) SEQUENZKENNZEICHEN:

-94-

- (A) LÄNGE: 26
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 5 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 146:

10 Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp
1 5 10 15

Trp Asp Val Val Lys Arg Gly Trp Asp Ala
20 25

15

ANGABEN ZU SEQ ID NO: 147

- (i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 9
- (B) ART: protein
- 20 (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 147:

Glu Ala Pro His Lys Phe Lys Ser Ala
1 5

30

ANGABEN ZU SEQ ID NO: 148

- (i) SEQUENZKENNZEICHEN:

-95-

- (A) LÄNGE: 16
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 5 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 148:

10 Ile Lys Lys Leu Arg Glu Ala Pro Asn Ala Asn Asp Gln Tyr Leu Pro
1 5 10 15

ANGABEN ZU SEQ ID NO: 149

15 (i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 7
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 20 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 149:

25 Asp Glu Ser Gly Lys Pro Val
1 5

ANGABEN ZU SEQ ID NO: 150

30 (i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 7
- (B) ART: protein

-96-

- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - 5 (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 150:

Asn Phe Arg Ala Asp Arg Met
1 5
10

ANGABEN ZU SEQ ID NO: 151

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 39
 - 15 (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - 20 (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 151:

Ala Leu Glu Tyr Glu Lys Phe Asp Lys Phe Asp Arg Val Arg Phe Pro
1 5 10 15

25 Lys Ile Arg Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu
20 25 30

Pro Ser Arg Tyr Leu Val Ser
35

30

ANGABEN ZU SEQ ID NO: 152

-97-

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 17

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

5 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

10 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 152:

Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Asn Asn Gly Ile
1 5 10 15

Arg

15 ANGABEN ZU SEQ ID NO: 153

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 6

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

20 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

25 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 153:

Ser Glu Thr Val Lys Phe

1 5

30

ANGABEN ZU SEQ ID NO: 154

-98-

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 72

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

5 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

10 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 154:

Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn Ser Glu Leu Glu Glu
1 5 10 15

Tyr Val Glu Ile Pro Ser Asp Asn Gly Ile Ser Phe Asn Val Gln Pro
15 20 25 30

Lys Met Lys Ala Leu Glu Ile Gly Glu Lys Ala Arg Asp Ala Ile Leu
35 40 45

Ser Arg Lys Phe Asp Gln Val Arg Val Asn Ile Pro Asn Gly Asp Met
20 50 55 60

Val Gly His Thr Gly Asp Ile Glu
65 70

25 ANGABEN ZU SEQ ID NO: 155

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 26

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

30 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

-99-

(A) ORGANISMUS: *Artemisia vulgaris*

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 155:

5 Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Glu Gly
1 5 10 15

Glu Pro Leu Leu Asp Lys Asp Gly Lys Val
20 25

10 ANGABEN ZU SEQ ID NO: 156

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 8

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

15 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: *Artemisia vulgaris*

(C) ENTWICKLUNGSSTADIUM: Pollen

20 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 156:

Leu Thr Ser His Thr Leu Gln Pro
1 5

25 ANGABEN ZU SEQ ID NO: 157

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 12

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

30 (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT: |

-100-

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 157:

5 Val Lys Phe Arg Lys Asp Val Pro Asn Gly Gly Leu
1 5 10

ANGABEN ZU SEQ ID NO: 158

(i) SEQUENZKENNZEICHEN:

10 (A) LÄNGE: 10

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

15 (vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 158:

Val Ala Pro Asp Asp Tyr Glu Thr Thr Leu
20 1 5 10

ANGABEN ZU SEQ ID NO: 159

(i) SEQUENZKENNZEICHEN:

25 (A) LÄNGE: 6

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

30 (vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

-101-

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 159:

Leu Ala Asp His Pro Lys

1

5

5

ANGABEN ZU SEQ ID NO: 160

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 11

(B) ART: protein

10 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

15 (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 160:

Val Val Val Leu Asp Gly Trp Gly Glu Ala Ser

1

5

10

20

ANGABEN ZU SEQ ID NO: 161

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 7

(B) ART: protein

25 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

30 (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 161:

-102-

Asp His Trp Arg Leu Val Arg

1 5

ANGABEN ZU SEQ ID NO: 162

5 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 10

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

10 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 162:

15

Phe Ala Glu Thr Leu Glu Lys Asp Leu Ala

1 5 10

ANGABEN ZU SEQ ID NO: 163

20 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 6

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

25 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 163:

30

Asn Asp Trp Asp Val Val

1 5

-103-

ANGABEN ZU SEQ ID NO: 164

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 21
5 (B) ART: protein
(ii) ART DES MOLEKÜLS: peptide
(iii) HYPOTHETISCH: nein
(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
(vi) URSPÜNGLICHE HERKUNFT:
10 (A) ORGANISMUS: Artemisia vulgaris
(C) ENTWICKLUNGSSTADIUM: Pollen
(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 164:

Glu Ala Pro His Lys Phe Lys Ser Ala Val Glu Ala Ile Lys Lys Leu
1 5 10 15
15 Arg Glu Ala Pro Asn
20

ANGABEN ZU SEQ ID NO: 165

20 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 5
(B) ART: protein
(ii) ART DES MOLEKÜLS: peptide
(iii) HYPOTHETISCH: nein
25 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
(vi) URSPÜNGLICHE HERKUNFT:
(A) ORGANISMUS: Artemisia vulgaris
(C) ENTWICKLUNGSSTADIUM: Pollen
(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 165:

30 Lys Phe Asp Arg Val
1 5

-104-

ANGABEN ZU SEQ ID NO: 166

(i) SEQUENZKENNZEICHEN:

5 (A) LÄNGE: 14

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

10 (vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 166:

Asn Asn Gly Ile Arg Thr Phe Ala Cys Ser Glu Thr Val Lys

15 1 5 10

ANGABEN ZU SEQ ID NO: 167

(i) SEQUENZKENNZEICHEN:

20 (A) LÄNGE: 8

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

25 (A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 167:

Ser Glu Leu Glu Glu Tyr Val Glu

30 1 5

-105-

ANGABEN ZU SEQ ID NO: 168

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 16

(B) ART: protein

5 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

10 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 168:

Asp Asp Ala Val Lys Met Ile Leu Asp Ala Ile Lys Glu Val Gly Gly
1 5 10 15

15

ANGABEN ZU SEQ ID NO: 169

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 8

(B) ART: protein

20 (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

25 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 169:

Gly Gly Leu Ala Asn Val Ala Ala
1 5

30

ANGABEN ZU SEQ ID NO: 170

(i) SEQUENZKENNZEICHEN:

-106-

(A) LÄNGE: 9

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

5 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 170:

10 Asn Leu His Gly Phe Val Ala Pro Asp

1

5

15

20

25

30

-107-

Literaturzitate:

5 1. Jarolim, E., Tejkl, M., Rohac, M., Schlerka, G., Scheiner, O., Kraft, D., Breitenbach, M., Rumpold, H. (1989) Monoclonal antibodies against birch pollen allergens: Characterization by immunoblotting and use for single-step affinity purification of the major allergen Bet v 1. Int. Arch. Allergy Appl. Immunol. 90: 54-60.

10 2. Fothergill-Gilmore, L., Watson, H. (1989) Adv. Enzymol. 62: 227-313.

3. Graña, X., de Lecea, L., El-Maghrabi, M.R., Ureña, J.M., Caellas, C., Carreras, J., Puigdomenech, P., Pilkis, S.J., Climent, F. (1992) Cloning and sequencing of a cDNA encoding 2,3-bisphosphoglycerate-independent phosphoglycerate mutase from maize. Possible relationship to the alkaline phosphatase family. J. Biol. Chem. 267: 12797-12803.

4. Huang, Y., Blakeley, S.D., McAleese, S.M., Fothergill-Gilmore, L.A., Dennis, D.T. (1993) Higher-plant cofactor-independent phosphoglyceromutase: purification, molecular characterization and expression. Plant Mol. Biol. 23: 1039-1053.

5. Aalberse, R.C., Kosthe, V., Clemens, J.G.J. (1981) Immunoglobulin E antibodies that crossreact with vegetable foods, pollen, and hymenoptera venom. J. Allergy Clin. Immunol 68: 356-364.

25
6. Eriksson, N.E., Formgren, H., Svenonius, E. (1982) Food hypersensitivity in patients with pollen allergy. Allergy 37: 437-443.

7. Halmepuro, L., Vuontela, K., Kalimo, K., Björksten, F. (1984) Cross-reactivity of IgE antibodies with allergens in birch pollen, fruits and vegetables. Int. Arch. Allergy Appl. Immunol. 74: 235-240.

-108-

8. Valenta, R., Duchene, M., Pettenburger, K., Sillaber, C., Valent, P., Bettelheim, P., Breitenbach, M., Rumpold, H., Kraft, D., Scheiner, O. (1991) Identification of profilin as a novel pollen allergen; IgE autoreactivity in sensitized individuals. *Science* 253:557-560.

5

9. Valenta, R., Duchene, M., Ebner, C., Valent, P., Sillaber, C., Deviller, P., Ferreira, F., Tejkl, M., Edelmann, H., Kraft, D., Scheiner, O. (1993) Profilins constitute a novel family of functional plant pan-allergens. *J. Exp. Med.* 175:377-385.

10 10. Breiteneder, H., Pettenburger, K., Bito, A., Valenta, R., Kraft, D., Rumpold, H., Scheiner, O., Breitenbach, M. (1989) The gene coding for the major birch pollen allergen, Bet v I, is highly homologous to a pea disease resistance response gene. *EMBO J.* 8:1935-1938.

15 11. Breiteneder, H., Ferreira, F., Reikerstorfer, A., Duchene, M., Valenta, R., Hoffmann-Sommergruber, K., Ebner, C., Breitenbach, M., Kraft, D., Scheiner, O. (1992) Complementary DNA cloning and expression in *Escherichia coli* of Aln g I, the major allergen in pollen of alder (*Alnus glutinosa*). *J. Allergy Clin. Immunol.* 90:909-917.

20 12. Breiteneder, H., Ferreira, F., Hoffmann-Sommergruber, K., Ebner, C., Breitenbach, M., Rumpold, H., Kraft, D., Scheiner, O. (1993) Four recombinant isoforms of Cor a I, the major allergen of hazel pollen, show different IgE-binding properties. *Eur. J. Biochem.* 212:355-362.

25 13. Larsen, J.N., Stroman, P., Ipsen, H. (1992) PCR based cloning and sequencing of isogenes encoding the tree pollen major allergen Car b I from *Carpinus betulus*, hornbeam. *Mol. Immunol.* 29:703-711.

14. Ebner, C., Hirschwehr, R., Bauer, L., Breiteneder, H., Valenta, R., Ebner, H., Kraft, D., Scheiner, O. (1995) Identification of allergens in fruits and vegetables: IgE cross-reactivities with the important birch pollen allergens Bet v 1 and Bet v 2 (birch profilin). *J. Allergy Clin. Immunol.* 95: 962-969.

-109-

15. Valenta, R., Vrtala, S., Ebner, C., Kraft, D., Scheiner, O. (1992) Diagnosis of grass pollen allergy with recombinant timothy grass (*Phleum pratense*) pollen allergens. Int. Arch. Allergy Immunol. 97: 287-294.

5

16. Van Ree, R., Voitenko, V., Van Leeuwen, W.A., Aalberse, R.C. (1992) Profilin is a cross-reactive allergen in pollen and vegetable food. Int. Arch. Allergy Immunol. 98: 97-104.

10 17. Spitzauer, S., Schweiger, C., Sperr, W.R., Pandjaitan, B., Valent, P., Mühl, S., Ebner, C., Scheiner, O., Kraft, D., Rumpold, H., Valenta, R. (1993) Molecular characterization of dog albumin as a cross-reactive allergen. J. Allergy Clin Immunol. 93: 614-627.

15 18. Sanger, F., Nicklen, S., Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463-5468.

19. Feinberg, A.P. and Vogelstein, B. (1984) A technique for radiolabeling DNA restriction Endonuclease fragments to high specific activity. Anal. Biochem. 137:266-267.

20

20. Sambrook, J., Fritsch, E.F., Maniatis, T. (1989) Molecular Cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, New York, 2nd ed.

25

21. Margalit, H., Spogue, J.L., Cornette, J.L., Cease, K.B., Delisi, C., Berzofsky, J.A. (1987) Prediction of immunodominant helper T cell antigenic sites from the primary sequence. (1987) J. Immunol. 138: 2213.

Patentansprüche:

1. Rekombinante DNA Moleküle, dadurch gekennzeichnet, daß sie eine Nukleinsäuresequenz aufweisen, die mit den in Fig. 1, Fig. 7a,7b, Fig. 10a,10b dargestellten gesamten Sequenzen oder Teilbereichen derselben in homologer Weise übereinstimmen oder die durch Degeneration aus der in Fig. 1, Fig. 7a,7b, Fig. 10a,10b dargestellten Sequenzen ableitbar sind und für ein Polypeptid kodieren, das die Antigenität des Allergens "Kofaktor-unabhängige Phosphoglyceratmutase (E.C. 5.4.2.1.)" aus Birken-, Beifuß- oder Lieschgraspol-
len besitzt oder für ein Peptid, das mindestens ein Epitop dieser Allergene aufweist, sowie
10 eine Nukleinsäuresequenz, die mit den genannten Nukleinsäuresequenzen unter den stringenten Bedingungen hybridisiert, beispielsweise 1M Salz, 60°C und das Hybrid unter stringenten Waschbedingungen beispielsweise 2x 30min, 5x SSPE, 0,1% SDS bei 50°C stabil bleibt, insbesondere für die Kofaktor-unabhängige Phosphoglyceratmutase (E.C. 5.4.2.1.)
des Pollens von Birke, Hasel, Erle, Eiche, Buche, Hainbuche und Olive, von Gräsern, wie
15 Phleum pratense, Lolium perenne, Poa pratensis, Secale cereale, von Unkräutern wie Bei-
fuß sowie von pflanzlichen Nahrungsmitteln wie Apfel, Kartoffel, Banane, Kiwi, Sellerie,
Karotte, Birne, Kirsche, Pfirsich, Pflaume, Marille, Walnuß, Haselnuß, Erdnuß, Mandel,
Pistazien, Pfeffer, Kümmel und Koriander.
- 20 2. Rekombinante DNA-Moleküle nach Anspruch 1, dadurch gekennzeichnet, daß sie eine Nukleinsäuresequenz aufweisen, die für ein Polypeptid kodiert, das als Antigen kreuzreaktiv mit der Kofaktor-unabhängigen Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Birken-, Lieschgras- oder Beifußpollen ist, insbesondere mit allen pflanzlichen Kofaktor-unabhängigen Phosphoglyzeratmutasen (E.C. 5.4.2.1.), die zu den in Fig. 1, Fig. 7a,7b, Fig. 10a,
25 10b gezeigten Sequenzen eine hohe Homologie aufweisen.
- 30 3. Rekombinante DNA-Moleküle nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sie funktionell mit einer Expressions-Kontrollsequenz zu einem Expressionskonstrukt verbunden sind.
- 4 Wirtssystem, dadurch gekennzeichnet, daß es mit einem rekombinanten Expressions-
konstrukt nach Patentanspruch 3 transformiert ist.

-111-

5. Aus einem DNA-Molekül nach Anspruch 1 oder 2 abgeleitetes rekombinantes oder synthetisches Protein oder Polypeptid, dadurch gekennzeichnet, daß es die Antigenität von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Birken-, Lieschgras- oder Beifußpollen oder zumindestens eines Epitops davon aufweist und eine Aminosäuresequenz besitzt, die einer der in Fig. 1, Fig. 7a, 7b, Fig. 10a, 10b gezeigten Sequenzen im Ganzen oder in Teilen entspricht.
6. Rekombinantes oder synthetisches Protein oder ein Polypeptid nach Patentanspruch 4 oder 5, dadurch gekennzeichnet, daß es ein Fusionsprodukt darstellt, das die Antigenität der Kofaktor-unabhängigen Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Birken-, Lieschgras- oder Beifußpollen oder zumindestens eines Epitops davon aufweist und einen zusätzlichen Polypeptidanteil aufweist, wobei das gesamte Fusionsprodukt von der DNA eines Expressionskonstrukts gemäß Anspruch 5 kodiert wird.
- 15 7. Rekombinantes oder synthetisches Protein oder Polypeptid nach Patentanspruch 6, dadurch gekennzeichnet, daß der besagte zusätzliche Polypeptidanteil beta-Galaktosidase, eine Teilsequenz der beta-Galaktosidase oder ein anderes zur Fusion geeignetes Polypeptid ist.
- 20 8. Diagnostisches oder therapeutisches Reagens, dadurch gekennzeichnet, daß es ein synthetisches Protein oder Polypeptid gemäß einem der Patentansprüche 5 bis 7 enthält.
9. Verfahren zum in vitro Nachweis der Allergie eines Patienten gegen Kofaktor-unabhängige Phosphoglyceratmutase (E.C. 5.4.2.1.), dadurch gekennzeichnet, daß die Reaktion 25 der IgE Antikörper im Serum des Patienten mit einem rekombinanten oder synthetischen Protein oder Polypeptid nach einem der Patentansprüche 7 bis 10 gemessen wird.
10. Verfahren zum in vitro Nachweis der zellulären Reaktion auf Kofaktor-unabhängige Phosphoglyceratmutase (E.C. 5.4.2.1.), dadurch gekennzeichnet, daß ein rekombinantes oder synthetisches Protein oder Polypeptid nach einem der Patentansprüche 5 bis 7 zur Stimulation 30 oder Hemmung der zellulären Reaktion eingesetzt wird.

1/48

Fig. 1:

**cDNA Sequenz und abgeleitete Aminosäuresequenz von
Kofaktor-unabhängiger Phosphoglyceratmutase
5 (E.C. 5.4.2.1.)**

1 GGG GGC GAG GCC AAG CCC GAT CAG TAC AAC TGC ATC CAT GTG	42
Gly Gly Glu Ala Lys Pro Asp Gln Tyr Asn Cys Ile His Val	
43 GCC GAG ACT CCC ACC ATG GAT TCC CTC AAA CAG GGT GCT CCT	84
Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Gln Gly Ala Pro	
85 GAG AAG TGG AGG TTG GTT AGG GCT CAT GGT AAG GCC GTA GGC	126
Glu Lys Trp Arg Leu Val Arg Ala His Gly Lys Ala Val Gly	
127 CTT CCA ACA GAG GAT GAC ATG GGC AAC AGT GAA GTT GGT CAC	168
Leu Pro Thr Glu Asp Asp Met Gly Asn Ser Glu Val Gly His	
169 AAT GCA CTT GGA GCT GGT CGC ATC TTT GCC CAA GGT GCA AAG	210
Asn Ala Leu Gly Ala Gly Arg Ile Phe Ala Gln Gly Ala Lys	
211 CTT GTT GAC TCT GCT CTT GCC TCT GGA AAA ATT TAT GAA GGA	252
Leu Val Asp Ser Ala Leu Ala Ser Gly Lys Ile Tyr Glu Gly	
253 GAA GGT TTT AAG TAC ATA AAG GAA TGT TTT GAA AAT GGC ACA	294
Glu Gly Phe Lys Tyr Ile Lys Glu Cys Phe Glu Asn Gly Thr	
295 TTG CAT CTC ATT GGC TTA TTG AGT GAT GGT GGA GTC CAC TCC	336
Leu His Leu Ile Gly Leu Leu Ser Asp Gly Gly Val His Ser	
337 AGG CTT GAT CAG TTG CAG TTA TTG CTT AAA GGA GCT AGT GAG	378
Arg Leu Asp Gln Leu Gln Leu Leu Leu Lys Gly Ala Ser Glu	
379 CGT GGT GCA AAA AGA ATC CGT GTT CAT ATT CTT ACC GAT GGC	420
Arg Gly Ala Lys Arg Ile Arg Val His Ile Leu Thr Asp Gly	

2/48

Fig. 1: Fortsetzung

421 CGT GAT GTT TTG GAT GGT TCA AGT GTA GGA TTT GTT GAA ACT 462
 Arg Asp Val Leu Asp Gly Ser Ser Val Gly Phe Val Glu Thr

463 CTT GAG AAT GAC CTT GCA AAA CTA CGT GAG AAG GGT GTT GAT 504
 Leu Glu Asn Asp Leu Ala Lys Leu Arg Glu Lys Gly Val Asp

505 GCA CAG ATT GCA TCT GGT GGT CGC ATG TAT GTC ACA ATG 546
 Ala Gln Ile Ala Ser Gly Gly Arg Met Tyr Val Thr Met

547 GAT CGT TAT GAG AAT GAC TGG GAA GTC ATC AAA CGA GGA TGG 588
 Asp Arg Tyr Glu Asn Asp Trp Glu Val Ile Lys Arg Gly Trp

589 GAT GCC CAT GTT CTT GGT GAA GCC CCT TAC AAA TTT AAA AGT 630
 Asp Ala His Val Leu Gly Glu Ala Pro Tyr Lys Phe Lys Ser

631 GCT GTT GAA GCT GTC AAG AAA CTG AGG GAG GAG CTA AAG GTC 672
 Ala Val Glu Ala Val Lys Lys Leu Arg Glu Glu Leu Lys Val

673 AGT GAC CAG TAC TTG CCT CCA TTC GTC ATT GTT GAT GAC AAT 714
 Ser Asp Gln Tyr Leu Pro Pro Phe Val Ile Val Asp Asp Asn

715 GGG AAG CCT GTT GGT CCT ATA GTT GAT GGT GAT GCT GTG GTT 756
 Gly Lys Pro Val Gly Pro Ile Val Asp Gly Asp Ala Val Val

757 ACA ATC AAC TTC CGA GCA GAT CGT ATG GTT ATG ATT GCT AAG 798
 Thr Ile Asn Phe Arg Ala Asp Arg Met Val Met Ile Ala Lys

799 GCA CTT GAA TAT GAA AAT TTT GAC AAG ATT GAT CGA GTT CGA 840
 Ala Leu Glu Tyr Glu Asn Phe Asp Lys Ile Asp Arg Val Arg

841 TTC CCT AAA ATC CGT TAT GCT GGA ATG CTT CAA TAT GAT GGC 882
 Phe Pro Lys Ile Arg Tyr Ala Gly Met Leu Gln Tyr Asp Gly

883 GAG TTG AAG CTC CCG AGC CAT TAC CTT GTT GAA CCT CCA GAG 924
 Glu Leu Lys Leu Pro Ser His Tyr Leu Val Glu Pro Pro Glu

3/48

Fig. 1: Fortsetzung

925 ATA GAG AGA ACG TCT GGT GAA TAT CTA GTG CAC AAT GGC GTC 966
Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val His Asn Gly Val

967 CGT ACT TTT GCT TGC AGT GAG ACT GTC AAA TTT GGT CAT GTC 1008
Arg Thr Phe Ala Cys Ser Glu Thr Val Lys Phe Gly His Val

1009 ACT TTC TTC TGG AAT GGA AAC CGC TCT GGA TAT TTC AAT TCA 1050
Thr Phe Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn Ser

1051 GAA CTG GAG GAA TAC GTG GAA ATT CCA AGT GAT AGT GGA ATT 1092
Glu Leu Glu Glu Tyr Val Glu Ile Pro Ser Asp Ser Gly Ile

1093 ACA TTC AAC GTC CAG CCA AAG ATG AAG GCA TTG GAG ATT GCT 1134
Thr Phe Asn Val Gln Pro Lys Met Lys Ala Leu Glu Ile Ala

1135 GAA AAA ACG AGA GAT GCT ATA CTT AGC GGA AAA TTT GAC CAG 1176
Glu Lys Thr Arg Asp Ala Ile Leu Ser Gly Phe Asp Gln

1177 GTG CGT GTT AAC CTG CCA AAT GGT GAC ATG GTG GGG CAT ACA 1218
Val Arg Val Asn Leu Pro Asn Gly Asp Met Val Gly His Thr

1219 GGT GAT ATT GAG GAC ACA GTT GTG GCT TGC AAG GCT GCT GAT 1260
Gly Asp Ile Glu Asp Thr Val Val Ala Cys Lys Ala Ala Asp

1261 GAG GCT GAC AAG ATG ATC CTT GAT GCA ATA GAG CAA GTG GGT 1302
Glu Ala Asp Lys Met Ile Leu Asp Ala Ile Glu Gln Val Gly

1303 GGA ATT TAT GTT ACT GCG GAT CAT GGG AAT GCT GAG GAC 1344
Gly Ile Tyr Val Val Thr Ala Asp His Gly Asn Ala Glu Asp

1345 ATG GTG AAG AGG AAC AAG TCC GTG CAA CCT CTT GAC AAG 1386
Met Val Lys Arg Asn Lys Ser Val Gln Pro Leu Leu Asp Lys

1387 AAT GGC AAT CTT CAA GTG CTC ACC TCT CAC ACC CTC CAA CCA 1428
Asn Gly Asn Leu Gln Val Leu Thr Ser His Thr Leu Gln Pro

4/48

Fig. 1: Fortsetzung

1429 GTG CCA ATT GCA ATT GGA GGT CCT GCA TTG GCA AGT GGT GTC 1470
Val Pro Ile Ala Ile Gly Gly Pro Ala Leu Ala Ser Gly Val

1471 AGG TTC TGC AAG GAT CTT CCT GAT GGT GGG CTT GCC AAT GTT 1512
Arg Phe Cys Lys Asp Leu Pro Asp Gly Gly Leu Ala Asn Val

1513 GCT GCA ACT GTG ATC AAT CTA CAT GGG TTT GAG GCT CCT AGT 1554
Ala Ala Thr Val Ile Asn Leu His Gly Phe Glu Ala Pro Ser

1555 GAC TAT GAG CCA ACC CTC ATT GAA CTC GTT GAT AAC TAG 1593
Asp Tyr Glu Pro Thr Leu Ile Glu Leu Val Asp Asn *

Fig. 2:

5/48

Sequenzvergleich von PGM-i aus Birkenpollen (bvmut),
Rhizinus (rcmut), Mais (zmmut) und Tabak (ntmut)

Plurality: 2.00 Threshold: 1.00 AveWeight 1.00 AveMatch 0.54
AvMisMatch -0.40

PRETTY of: mut.msf{ *} July 22, 1995 19:13 ..

	1	50
mut.msf{bvmut}	g GEAKPQDQYNC IHVAETPtMD
mut.msf{rcmut}	...geFtWKL	aDHPKLPKGK TIAmVVLGw GEAKPQDQYNC IHVAETPtMD
mut.msf{zmmut}	MGSSGFsWtL	pDHPKLPKGK sVAVVVLDGw GEAaPQDQYNC IHVAqTPvMD
mut.msf{ntmut}	MGSSGdaWKL	kDHPKLPKGK TVAVIVLDGw GEAkPneFNa IHVAETPvMy
Consensus	-----	GEA-P---N- IHVA-TP-M-
	51	100
mut.msf{bvmut}	SLKqGAPEKW	RLVrAHGkAV GLPTEDDMGN SEVGHNALGA GRIFAQGAKL
mut.msf{rcmut}	SFKktAPErW	RLIKAHGTAV GLPTEDDMGN SEVGHNALGA GRIYAQGAKL
mut.msf{zmmut}	SLKNGAPEKW	RLVKAHGTAV GLPsDDDMGN SEVGHNALGA GRIFAQGAKL
mut.msf{ntmut}	SLKNGAPEKW	RLIKAHGnAV GLPTEDDMGN SEVGHNALGA GRIFAQGAKL
Consensus	S-K--APE-W	RL--AHG-AV GLP--DDMGN SEVGHNALGA GRI-AQGAKL
	101	150
mut.msf{bvmut}	VDsALASGKI	YEGERGFKYIK ECFEnGTLHL IGLLSDGGVH SRLDQLQLLL
mut.msf{rcmut}	VDLALASGKI	YEGERGFKYVK ECFDKGTLHL IGLLSDGGVH SRLDQLQLLL
mut.msf{zmmut}	VDqALASGKI	YDGDGFnYIK EsFEsGTLHL IGLLSDGGVH SRLDQLQLLL
mut.msf{ntmut}	VDLALASGKI	YEGERGFKYVK ECFEKGTLHL IGLLSDGGVH SRLDQvQLLL
Consensus	VD-ALASGKI	Y-G-GF-Y-K E-F--GTLHL IGLLSDGGVH SRLDQ-QQLL
	151	200
mut.msf{bvmut}	KGAsErGAKR	IRVHILTDGR DVLDGSSVGF VETLENDLAK LREKGVDaqI
mut.msf{rcmut}	KGAAehGAKR	IRVHVLTdGR DVidGtSVGF aETLEkDLen LREKGVDaqV
mut.msf{zmmut}	KGvsErGAKk	IRVHILTDGR DVLDGSSIGF VETLENDlIe LRaKGVDaqI
mut.msf{ntmut}	KGAakhGAKR	IRVHaLTdGR DVLDGSSVGF mETLENsLAq LREKGIDAqV
Consensus	KG---GAK-	IRVH-LTDGR DV-DG-S-GF -ETLE--L-- LR-KG-DAQ-

6/48

Fig. 2: Fortsetzung

	201	250
mut.msf{bvmut}	ASGGGRMYVT MDRYENDWEV IKRGWDAhVL GEAPYKFkSA VEAVKKLREE	
mut.msf{rcmut}	ASGGGRMYVT MDRYENDWnV VKRGWDAQVL GEAPYKFkSA VEAiKKLREE	
mut.msf{zmmut}	ASGGGRMYVT MDRYENDWDV VKRGWDAQVL GEAPYKFkSA 1EAVKtLRaq	
mut.msf{ntmut}	ASGGGRMYVT MDRYENDWDV VKRGWDAQVL GEAPhKFkdp VEAVKKLRqE	
Consensus	ASGGGRMYVT MDRYENDW-V -KRGWDA-VL GEAP-KFk-- EA-K-LR--	
	251	300
mut.msf{bvmut}	1KvsDQYLPP FVIVDDNGKP VGPIvDGDAV VTINFRADRM VMiAKALEYE	
mut.msf{rcmut}	PKANDQYLPP FVIVDENGKP VGPIvDGDAV VTINFRADRM VMLAKALEYE	
mut.msf{zmmut}	PKANDQYLPP FVIVDDsGna VGPV1DGDAV VTINFRADRM VMLAKALEYa	
mut.msf{ntmut}	PnANDQYLap FVIVDDNGKP VaaI1DGDAV VTINFRADRM VMLAKALEYE	
Consensus	----DQYL-P FVIVD-G- V---DGDAV VT-NFRADRM VM-AKALEY-	
	301	350
mut.msf{bvmut}	NFDKiDRVRf PKIRYAGMLQ YDGEKLPSH YLVePPEIER TSGEYLVHNG	
mut.msf{rcmut}	NFDtFDRVRf PKIhYAGMLQ YDGEKLPSH YLVSPPPEIER TSGEYLVHNG	
mut.msf{zmmut}	dFDnFDRVRv PKIRYAGMLQ YDGEKLPSr YLVSPPPEIDR TSGEYLVKNG	
mut.msf{ntmut}	NFDKFDRVRv PKIRYAGMLQ YhGELqLPSH YLVSPPPEIaR hSGEYLVrNG	
Consensus	-FD--DRVR- PKI-YAGMLQ Y-GEL-LPS- YLV-PPEI-R -SGEYLV-NG	
	351	400
mut.msf{bvmut}	VRTFACSETV KFGHVTFFWN GNRSGYFNsE LEEYVEIPSD SGITFNVQPK	
mut.msf{rcmut}	VhTFACSETV KFGHVTFFWN GNRSGYFNpE MEEYVEIPSD vGITFNVQPK	
mut.msf{zmmut}	IRTFACSETV KFGHVTFFWN GNRSGYFdat kEEYVEVPSD SGITFNVaPn	
mut.msf{ntmut}	VRTFACSETV KFGHVTFFWN GNRSGYFNek LEEYVEIPSD SGITFNVkPK	
Consensus	--TFACSETV KFGHVTFFWN GNRSGYF--- -EEYVE-PSD -GITFNV-P-	
	401	450
mut.msf{bvmut}	MKALEIAEkT RDAILSGKFD QVRVNLPNGD MVGHTGDIEd TVVACKAADE	
mut.msf{rcmut}	MKAiEIAEKa RDAILSGKFq QVRVNIPNGD MVGHTGDVEA TVVgCKAADE	
mut.msf{zmmut}	MKALEIAEKa RDAILSGKFD QVRVNLPNGD MVGHTGDIEA TVVACKAADE	
mut.msf{ntmut}	MKALEIAErT RDAILSGKFD QVRVNLPNGD MVGHTGDIkA T1eACKsADE	
Consensus	MKA-EIAE-- RDA-LSGKF- QVRVN-PNGD MVGHTGD--- T---CK-ADE	

7/48

Fig. 2: Fortsetzung

	451	500
mut.msf{bmut}	AdKMILODAIE QVGGIYvVTA DHGNAEDMVK RNKSvqPLLD KNGN1QVLTS	
mut.msf{rcmut}	AVKMIIDAIE QVGGIYvVTA DHGNAEDMVK RdKSGKPMaD KsGkIQILTS	
mut.msf{zmmut}	AVKiILDAVE QVGGIY1VTA DHGNAEDMVK RNKSGKPLLD KNdrIQILTS	
mut.msf{ntmut}	AVKMILEAIE QVGGIY1VTA DHGNAEDMVK RNKkGePaLD KNGNIQILTS	
Consensus	A-K-I--A-E QVGGIY-VTA DHGNAEDMVK R-K---P--D K---Q-LTS	
	501	550
mut.msf{bmut}	HTLQPVPIAI GGPaLASGVR FckD1PdGGL ANVAATViNL HGFEAPSDYE	
mut.msf{rcmut}	HTLQPVPIAI GGPGLtPGVR FRsDiPTGGL ANVAATVMNL HGFEAPSDYE	
mut.msf{zmmut}	HTLQPVPVAI GGPGLhPGVk FRnDiqTpGL ANVAATVMNL HGFEAPaDYE	
mut.msf{ntmut}	HTcePVPIAI GGPGLAPGVR FRqD1PTGGL ANVAATFMNL HGSEAPSDYE	
Consensus	HT--PVP-AI GGP-L--GV- F--D---GL ANVAAT--NL HG-EAP-DYE	
	551 560	
mut.msf{bmut}	PTLIE1VDN.	
mut.msf{rcmut}	PTLIEaVDN.	
mut.msf{zmmut}	qTLIEVaDN.	
mut.msf{ntmut}	PsLIEVVVDNm	
Consensus	--LIE--DN-	

Fig. 3:

8/48

B-Zell Epitope von Kofaktor-unabhängiger
Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Birkenpollen

Folgende B-Zell Epitope wurden bestimmt:

Epitop 1: Gly Gly Glu Ala Lys Pro Asp Gln Tyr Asn Cys Ile
(AS 1-12)

Epitop 2: Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Gln Gly Ala
Pro Glu Lys Trp Arg Leu Val Arg Ala His Gly Lys Ala
(AS 15-40)

Epitop 3: Leu Pro Thr Glu Asp Asp Met Gly Asn Ser Glu Val Gly
His (AS 43-56)

Epitop 4: Gly Lys Ile Tyr Glu Gly Glu Gly Phe Lys Tyr Ile Lys
Glu Cys Phe Glu Asn (AS 79-96)

Epitop 5: Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Leu
(AS 105-117)

Epitop 6: Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Val
(AS 123-134)

Epitop 7: Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val
(AS 137-149)

Epitop 8: Glu Thr Leu Glu Asn Asp Leu Ala Lys Leu Arg Glu Lys
Gly Val Asp (AS 153-168)

Epitop 9: Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp Trp Glu Val
Ile Lys Arg Gly Trp Asp Ala (AS 179-198)

Fig.3: Fortsetzung

9/48

Epitop 10: Val Lys Lys Leu Arg Glu Glu Leu Lys Val Ser Asp Gln
Tyr Leu Pro (AS 215-230)

Epitop 11: Ala Leu Glu Tyr Glu Asn Phe Asp Lys Ile Asp Arg Val
Arg Phe Pro Lys Ile Arg Tyr Ala (AS 267-287)

Epitop 12: Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu Pro Ser His
Tyr Leu Val Glu Pro Pro Glu Ile Glu Arg Thr Ser Gly Glu Tyr
Leu Val His Asn Gly Val Arg (AS 289-323)

Epitop 13: Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn Ser Glu Leu
Glu Glu Tyr Val Glu Ile Pro Ser Asp Ser Gly Ile
(AS 340-364)

Epitop 14: Ser Gly Lys Phe Asp Gln Val Arg Val Asn Leu Pro Asn
Gly Asp Met Val Gly His Thr Gly Asp Ile Glu (AS 387-410)

Epitop 15: Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn
Lys Ser Val Gln (AS 441-457)

Epitop 16: His Gly Phe Glu Ala Pro Ser Asp Tyr Glu Pro Thr Leu
(AS 512-524)

Fig. 4:

10/48

T-Zell Epitope von Kofaktor-unabhängiger Phosphoglycera
tmutase (E.C. 5.4.2.1.) aus Birkenpollen

Folgende T-Zell Epitope wurden bestimmt:

Epitop 1: Tyr Asn Cys Ile His Val Ala Glu Thr Pro Thr Met Asp
(AS 9-21)

Epitop 2: Glu Lys Trp Arg Leu Val (AS 29-34)

Epitop 3: Phe Ala Gln Gly Ala Lys Leu Val Asp Ser (AS 65-74)

Epitop 4: Glu Gly Glu Gly Phe Lys Tyr Ile Lys Glu Cys (AS 83-93)

Epitop 5: Thr Leu Glu Asn (AS 154-157)

Epitop 6: Asn Asp Trp Glu Val Ile Lys Arg Gly Trp Asp
(AS 187-197)

Epitop 7: Val Glu Ala Val Lys Lys Leu Arg Glu (AS 212-220)

Epitop 8: Glu Tyr Glu Asn Phe Asp Lys Ile Asp Arg Val
(AS 269-279)

Epitop 9: Arg Thr Phe Ala Cys Ser Glu Thr Val Lys (AS 323-332)

Epitop 10: Ser Glu Leu Glu Glu Tyr Val Glu Ile Pro Ser
(AS 350-360)

Epitop 11: His Thr Gly Asp Ile Glu Asp Thr (AS 405-412)

Epitop 12: Met Ile Leu Asp Ala Ile Glu Gln Val Gly Gly Ile
(AS 425-436)

Fig.4: Fortsetzung

11/48

Epitop 13: Ser Gly Val Arg Phe Cys Lys Asp Leu Pro Asp Gly Gly
Leu Ala Asn Val Ala Ala (AS 488-506)

Epitop 14: Asn Leu His Gly Phe Glu Ala Pro Ser (AS 510-518)

12/48

Fig.5A: BIP 3 Immunblot mit Pollenextrakten von Birke, Beifuß und Lieschgras, und Extrakten von Sellerie und Apfel.

Fig.5B: IgE Immunblots von BIP 3-immunaffinitätsgereinigtem PGM-i aus Birkenpollen (MU), Birkenpollenextrakt (BPEX). Sera von grapsollenallergischen Patienten (HP, HL), Normalhumanserum (NHS).

13/48

Fig.6: Plaque-lifts getestet mit Patientenserum und BIP 3

14/48

Fig.7a:

cDNA Sequenz und abgeleitete Aminosäuresequenz
von Kofaktor-unabhängiger Phosphoglyceratmutase
(E.C. 5.4.2.1.) aus Lieschgraspollen
(Isoform Ph11)

Sequence: a:\ph11cod.dna, Length: 1671, Range for analysis: 1-1671

1 ATG GCG ACC TCA TGG ACG CTG CCC GAC CAT CCC ACG CTC CCC	42
Met Ala Thr Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro	
43 AAG GGC AAG ACG GTG GCC GTC ATC GTG CTC GAC GGA TGG GGC	84
Lys Gly Lys Thr Val Ala Val Ile Val Leu Asp Gly Trp Gly	
85 GAG GCC AGC GCT GAC CAG TAC AAC TGC ATC CAT CGT GCC GAG	126
Glu Ala Ser Ala Asp Gln Tyr Asn Cys Ile His Arg Ala Glu	
127 ACG CCC GTC ATG GAT TCG CTC AAG AAT GGT GCT CCT GAG AAG	168
Thr Pro Val Met Asp Ser Leu Lys Asn Gly Ala Pro Glu Lys	
169 TGG ACA CTA GTG AAG GCT CAT GGA ACT GCT GTT GGT CTC CCT	210
Trp Thr Leu Val Lys Ala His Gly Thr Ala Val Gly Leu Pro	
211 AGT GAT GAC GAC ATG GGC AAC AGT GAA GTT GGC CAC AAT GCT	252
Ser Asp Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala	
253 CTT GGC GCT GGT CGG ATT TTT GCT CAA GGG GCG AAG TTG TTT	294
Leu Gly Ala Gly Arg Ile Phe Ala Gln Gly Ala Lys Leu Phe	
295 GAT GCT GCT CTT GCA TCT GGG AAG ATT TGG GAA GAC GAG GGT	336
Asp Ala Ala Leu Ala Ser Gly Lys Ile Trp Glu Asp Glu Gly	
337 TTC AAT TAC ATC AAA GAA TCT TTT GCC GAA GGT ACT CTG CAC	378
Phe Asn Tyr Ile Lys Glu Ser Phe Ala Glu Gly Thr Leu His	

15/48

Fig. 7a: Fortsetzung

379 CTT ATT GGT CTG TTG AGT GAT GGA GGC GTC CAC TCC CGG CTA	420
Leu Ile Gly Leu Leu Ser Asp Gly Gly Val His Ser Arg Leu	
421 GAC CAA GTG CAG TTG CTT GTG AAA GGT GCC AGT GAG AGG GGA	462
Asp Gln Val Gln Leu Leu Val Lys Gly Ala Ser Glu Arg Gly	
463 GCA AAA AGA ATT CGG CTT CAC ATT CTT ACC GAT GGG CGT GAT	504
Ala Lys Arg Ile Arg Leu His Ile Leu Thr Asp Gly Arg Asp	
505 GTC TTG GAT GGA AGC AGT GTT GGT TTC GTA GAG ACA CTA GAG	546
Val Leu Asp Gly Ser Ser Val Gly Phe Val Glu Thr Leu Glu	
547 AAT GAT CTT GCT CAG CTT CGT GAG AAG GGT GTT GAT GCA CAG	588
Asn Asp Leu Ala Gln Leu Arg Glu Lys Gly Val Asp Ala Gln	
589 GTT GCA TCT GGT GGA AGG ATG TAT GTT ACC ATG GAC CGC	630
Val Ala Ser Gly Gly Arg Met Tyr Val Thr Met Asp Arg	
631 TAT GAG AAT GAC TGG GAT GTG GTC AAG CGT GGG TGG GAT GCC	672
Tyr Glu Asn Asp Trp Asp Val Val Lys Arg Gly Trp Asp Ala	
673 CAG GTG CTT GGA GAA GCA CCA TAC AAA TTC AAA AGT GCA CTT	714
Gln Val Leu Gly Glu Ala Pro Tyr Lys Phe Lys Ser Ala Leu	
715 GAA GCT GTG AAA ACG CTA AGA GCA GAG CCC AAG GGC AAT GAT	756
Glu Ala Val Lys Thr Leu Arg Ala Glu Pro Lys Ala Asn Asp	
757 CAG TAC TTG CCT GCG TTT GTG ATA GTT GAT GAA AGT GGC AAA	798
Gln Tyr Leu Pro Ala Phe Val Ile Val Asp Glu Ser Gly Lys	
799 TCC GTT GGT CCT ATA GTA GAT GGC GAT GCA GTT GTG ATT TTC	840
Ser Val Gly Pro Ile Val Asp Gly Asp Ala Val Val Ile Phe	
841 AAT TTC AGA GCT GAT CGC ATG GTT ATG CTT GCA AAG GCT CTT	882
Asn Phe Arg Ala Asp Arg Met Val Met Leu Ala Lys Ala Leu	

16/48

Fig. 7a: Fortsetzung

883 GAG TTT GCT GAT TTT GAT AAA TTT GAC CGT GTT CGT GTA CCA 924
Glu Phe Ala Asp Phe Asp Lys Phe Asp Arg Val Arg Val Pro

925 AAA ATT AAG TAT GCT GGG ATG CTC CAG TAT GAT GGT GAG TTG 966
Lys Ile Lys Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu

967 AAG CTT CCA AAC AAA TTC CTT GTT TCC CCA CCC TTG ATA GAG 1008
Lys Leu Pro Asn Lys Phe Leu Val Ser Pro Pro Leu Ile Glu

1009 AGG ACA TCT GGT GAA TAC TTG GTA AAG AAT GGC GTT CGC ACA 1050
Arg Thr Ser Gly Glu Tyr Leu Val Lys Asn Gly Val Arg Thr

1051 TTT GCT TGC AGC GAG ACC GTG AAG TTT GGT CAT GTC ACA TTT 1092
Phe Ala Cys Ser Glu Thr Val Lys Phe Gly His Val Thr Phe

1093 TTC TGG AAT GGA AAC CGT TCT GGA TAC TTC GAT GAA ACC AAG 1134
Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asp Glu Thr Lys

1135 GAA GAG TAC ATA GAA ATT CCT AGT GAT AGT GGT ATC ACA TTC 1176
Glu Glu Tyr Ile Glu Ile Pro Ser Asp Ser Gly Ile Thr Phe

1177 AAT GAG CAG CCC AAA ATG AAG GCA CTT GAA ATT GCT GAG AAA 1218
Asn Glu Gln Pro Lys Met Lys Ala Leu Glu Ile Ala Glu Lys

1219 ACC CGG GAT GCT ATC CTC AGT GGA AAG TTT GAC CAG GTA CGT 1260
Thr Arg Asp Ala Ile Leu Ser Gly Lys Phe Asp Gln Val Arg

1261 ATT AAC CTG CCA AAT GGT GAT ATG GTG GGT CAC ACC GGT GAT 1302
Ile Asn Leu Pro Asn Gly Asp Met Val Gly His Thr Gly Asp

1303 ATT GAA GCC ACA GTC GTT GCC TGC AAG GCT GCT GAT GAA GCA 1344
Ile Glu Ala Thr Val Val Ala Cys Lys Ala Ala Asp Glu Ala

1345 GTC AAG ATT GTT TTG GAT GCA GTG GAG CAA GTT GGT GGT ATT 1386
Val Lys Ile Val Leu Asp Ala Val Glu Gln Val Gly Gly Ile

Fig.7a: Fortsetzung

17/48

1387 TAT CTT GTC ACT GCT GAT CAT GGA AAC GCA GAG GAT ATG GTG 1428
Tyr Leu Val Thr Ala Asp His Gly Asn Ala Glu Asp Met Val

1429 AAA AGA AAC AAA TCT GGC CAG CCT GCT CTT GAC AAG AGC GGT 1470
Lys Arg Asn Lys Ser Gly Gln Pro Ala Leu Asp Lys Ser Gly

1471 AGC ATC CAG ATT CTT ACC TCG CAT ACG CTT CAG CCA GTC CCT 1512
Ser Ile Gln Ile Leu Thr Ser His Thr Leu Gln Pro Val Pro

1513 GTT GCG ATC GGA GGC CCT GGT CTC CAC CCA GGA GTG AAG TTC 1554
Val Ala Ile Gly Gly Pro Gly Leu His Pro Gly Val Lys Phe

1555 AGG TCT GAT ATC AAC ACA CCT GGA CTC GCC AAT GTT GCC GCC 1596
Arg Ser Asp Ile Asn Thr Pro Gly Leu Ala Asn Val Ala Ala

1597 ACC GTG ATG AAC CTC CAT GGC TTC CAG GCC CCT GAT GAT TAT 1638
Thr Val Met Asn Leu His Gly Phe Gln Ala Pro Asp Asp Tyr

1639 GAG ACG ACG CTC ATT GAA GTT GCT GAC AAG TAA 1671
Glu Thr Thr Leu Ile Glu Val Ala Asp Lys *

Fig.7b:

18/48

cDNA Sequenz und abgeleitete Aminosäuresequenz von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus *S. Lieschgraspollen* (Isoform Ph15)

Sequence: a:\ph15cod.dna, Length: 1668, Range for analysis: 1-1668

1 ATG ACC TCA TGG ACG CTG CCC GAC CAC CCC ACG CTC CCC AAG 42
Met Thr Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro Lys

43 GGC AAG ACG GTG GCC GTC ATC GTG CTC GAC GGA TGG GGC GAG 84
Gly Lys Thr Val Ala Val Ile Val Leu Asp Gly Trp Gly Glu

85 GCC AGC GCT GAC CAG TAC AAC TGC ATC CAT CGC GCC GAG ACG 126
Ala Ser Ala Asp Gln Tyr Asn Cys Ile His Arg Ala Glu Thr

127 CCC GTC ATG GAT TCG CTC AAG AAT GGT GCT CCT GAG AAG TGG 168
Pro Val Met Asp Ser Leu Lys Asn Gly Ala Pro Glu Lys Trp

169 ACA CTA GTG AAG GCT CAT GGA ACT GCT GTT GGT CTC CCT AGT 210
Thr Leu Val Lys Ala His Gly Thr Ala Val Gly Leu Pro Ser

211 GAT GAC GAC ATG GGC AAC AGT GAA GTT GGC CAC AAT GCT CTT 252
Asp Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala Leu

253 GGC GCT GGT CGG ATT TTC GCT CAA GGG GCG AAG TTG TTT GAT 294
Gly Ala Gly Arg Ile Phe Ala Gln Gly Ala Lys Leu Phe Asp

295 GCT GCT CTT GCA TCT GGG AAG ATT TGG GAA GAT GAG GGT TTC 336
Ala Ala Leu Ala Ser Gly Lys Ile Trp Glu Asp Glu Gly Phe

337 AAT TAC ATC AAA GAA TCT TTT GCC GAA GGT ACT CTG CAC CTT 378
Asn Tyr Ile Lys Glu Ser Phe Ala Glu Gly Thr Leu His Leu

Fig.7b: Fortsetzung

19/48

379 ATT GGT CTG TTG AGT GAT GGA GGC GTC CAC TCC CGG CTA GAC 420
Ile Gly Leu Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp

421 CAA GTG CAG TTG CTT GTG AAA GGT GCC AGT GAG AGG GGA GCA 462
Gln Val Gln Leu Leu Val Lys Gly Ala Ser Glu Arg Gly Ala

463 AAA AGA ATT CGG CTT CAC ATT CTT ACC GAT GGG CGT GAT GTC 504
Lys Arg Ile Arg Leu His Ile Leu Thr Asp Gly Arg Asp Val

505 TTG GAT GGA AGC AGT GTT GGT TTC GTA GAG ACA CTA GAG AAT 546
Leu Asp Gly Ser Ser Val Gly Phe Val Glu Thr Leu Glu Asn

547 GAT CTT GCT CAG CTT CGT GAG AAG GGT GTT GAT GCA CAG GTT 588
Asp Leu Ala Gln Leu Arg Glu Lys Gly Val Asp Ala Gln Val

589 GCA TCT GGT GGT GGA AGG ATG TAT GTT ACC ATG GAC CGC TAT 630
Ala Ser Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr

631 GAG AAT GAC TGG GAT GTG GTC AAG CGT GGG TGG GAT GCC CAG 672
Glu Asn Asp Trp Asp Val Val Lys Arg Gly Trp Asp Ala Gln

673 GTG CTT GGA GAA GCA CCA TAC AAA TTC AAA AGT GCA CTT GAA 714
Val Leu Gly Glu Ala Pro Tyr Lys Phe Lys Ser Ala Leu Glu

715 GCT GTG AAA ACG CTA AGA GCA GAG CCC AAG GCC AAT GAT CAG 756
Ala Val Lys Thr Leu Arg Ala Glu Pro Lys Ala Asn Asp Gln

757 TAC TTG CCT GCG TTT GTG ATA GTT GAT GAA AGT GGC AAA TCC 798
Tyr Leu Pro Ala Phe Val Ile Val Asp Glu Ser Gly Lys Ser

799 GTT GGT CCT ATA GTA GAT GGC GAT GCA GTT GTG ACT TTC AAT 840
Val Gly Pro Ile Val Asp Gly Asp Ala Val Val Thr Phe Asn

841 TTC AGA GCT GAT CGC ATG GTT ATG CTT GCA AAG GCT CTT GAG 882
Phe Arg Ala Asp Arg Met Val Met Leu Ala Lys Ala Leu Glu

Fig.7b: Fortsetzung

20/40

883 TTT GCT GAT TTT GAT AAA TTT GAC CGT GTT CGT GTA CCA AAA 924
Phe Ala Asp Phe Asp Lys Phe Asp Arg Val Arg Val Pro Lys

925 ATT AAG TAT GCT GGG ATG CTC CAG TAT GAT GGT GAG TTG AAG 966
Ile Lys Tyr Ala Gly Met Leu Glu Tyr Asp Gly Glu Leu Lys

967 CTT CCA AAC AAA TTC CTT GTT TCC CCA CCC TTG ATA GAG AGG 1008
Leu Pro Asn Lys Phe Leu Val Ser Pro Pro Leu Ile Glu Arg

1009 ACA TCT GGT GAA TAC TTG GTA AAG AAT GGC GTT CGC ACA TTT 1050
Thr Ser Gly Glu Tyr Leu Val Lys Asn Gly Val Arg Thr Phe

1051 GCT TGC AGC GAG ACC GTG AAG TTT GGT CAT GTC ACA TTT TTC 1092
Ala Cys Ser Glu Thr Val Lys Phe Gly His Val Thr Phe Phe

1093 TGG AAT GGA AAC CGT TCT GGA TAC TTC GAT GAA ACC AAG GAA 1134
Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asp Glu Thr Lys Glu

1135 GAG TAC ATA GAA ATT CCT AGT GAT AGT GGT ATC ACA TTC AAT 1176
Glu Tyr Ile Glu Ile Pro Ser Asp Ser Gly Ile Thr Phe Asn

1177 GAG CAG CCC AAA ATG AAG GCA CTT GAA ATT GCT GAG AAA ACC 1218
Glu Glu Pro Lys Met Lys Ala Leu Glu Ile Ala Glu Lys Thr

1219 CGG GAT GCT ATC CTC AGT GGA AAG TTT GAC CAG GTA CGT ATT 1260
Arg Asp Ala Ile Leu Ser Gly Lys Phe Asp Glu Val Arg Ile

1261 AAC CTG CCA AAT GGT GAT ATG GTG GGT CAC ACC GGT GAT ATT 1302
Asn Leu Pro Asn Gly Asp Met Val Gly His Thr Gly Asp Ile

1303 GAA GCC ACA GTC GTT GCC TGC AAG GCT GAT GAA GCA GTC 1344
Glu Ala Thr Val Val Ala Cys Lys Ala Ala Asp Glu Ala Val

1345 AAG ATT GTT TTG GAT GCA GTG GAG CAA GTT GGT ATT TAT 1386
Lys Ile Val Leu Asp Ala Val Glu Glu Val Gly Gly Ile Tyr

Fig.7b: Fortsetzung

21/48

1387 CTT GTC ACT GCT GAT CAT GGA AAC GCA GAG GAT ATG GTG AAA 1428
Leu Val Thr Ala Asp His Gly Asn Ala Glu Asp Met Val Lys

1429 AGA AAC AAA TCT GGC CAG CCT GCT CTT GAC AAG AGC GGT AGC 1470
Arg Asn Lys Ser Gly Gln Pro Ala Leu Asp Lys Ser Gly Ser

1471 ATC CAG ATT CTT ACC TCG CAT ACG CTT CAG CCA GTC CCT GTT 1512
Ile Gln Ile Leu Thr Ser His Thr Leu Gln Pro Val Pro Val

1513 GCG ATC GGA GGC CCT GGT CTC CAC CCA GGA GTG AAG TTC AGG 1554
Ala Ile Gly Pro Gly Leu His Pro Gly Val Lys Phe Arg

1555 TCT GAT ATC AAC ACA CCT GGA CTC GCC AAT GTT GCC GCC ACC 1596
Ser Asp Ile Asn Thr Pro Gly Leu Ala Asn Val Ala Ala Thr

1597 GTG ATG AAC CTC CAT GGC TTC CAG GCC CCT GAT GAT TAT GAG 1638
Val Met Asn Leu His Gly Phe Gln Ala Pro Asp Asp Tyr Glu

1639 ACG ACG CTC ATT GAA GTT GCT GAC AAG TAA 1668
Thr Thr Leu Ile Glu Val Ala Asp Lys *

Fig. 8a:

22/48

B-Zell Epitope von Kofaktor-unabhängiger
Phosphoglyceratmutase (E.C. 5.4.2.1.) aus
Lieschgraspollen (Isoform Ph11)

Folgende B-Zell Epitope wurden bestimmt:

Epitop 1: Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro Lys Gly
Lys Thr (AS 4-18)

Epitop 2: Asp Gly Trp Gly Glu Ala Ser Ala Asp Gln Tyr Asn Cys
Ile His Arg Ala Glu Thr Pro Val Met Asp Ser Leu Lys
Asn Gly Ala Pro Glu Lys Trp Thr Leu (AS 25-59)

Epitop 3: Leu Pro Ser Asp Asp Asp Met Gly Asn Ser Glu Val Gly
His Asn Ala Leu Gly Ala (AS 69-87)

Epitop 4: Gly Lys Ile Trp Glu Asp Glu Gly Phe Asn Tyr Ile Lys
Glu Ser Phe Ala Glu (AS 105-122)

Epitop 5: Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Val
(AS 131-143)

Epitop 6: Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Leu
(AS 148-160)

Epitop 7: Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val
(AS 163-175)

Epitop 8: Glu Thr Leu Glu Asn Asp Leu Ala Gln Leu Arg Glu Lys
Gly Val Asp Ala (AS 179-195)

Epitop 9: Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr
Glu Asn Asp Trp Asp Val Val Lys Arg Gly Trp Asp Ala
(AS 199-224)

Fig. 8a: Fortsetzung

23/48

Epitop 10: Glu Ala Pro Tyr Lys Phe Lys Ser Ala (AS 229-237)

Epitop 11: Thr Leu Arg Ala Glu Pro Lys Ala Asn Asp Gln Tyr Leu
Pro (AS 243-256)

Epitop 12: Asp Glu Ser Gly Lys Ser Val (AS 262-268)

Epitop 13: Phe Arg Ala Asp Arg Met (AS 282-287)

Epitop 14: Ala Asp Phe Asp Lys Phe Asp Arg Val Arg Val Pro Lys
Ile Lys Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu
Lys Leu Pro Asn Lys (AS 297-327)

Epitop 15: Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Lys
Asn Gly Val Arg Thr (AS 333-350)

Epitop 16: Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asp Glu Thr
Lys Glu Glu Tyr Ile Glu Ile Pro Ser Asp Ser Gly Ile
Thr Phe Asn Glu Gln Pro Lys Met Lys Ala (AS 365-400)

Epitop 17: Ile Ala Glu Lys Thr Arg Asp Ala (AS 403-410)

Epitop 18: Ser Gly Lys Phe Asp Gln Val Arg Ile Asn Leu Pro Asn
Gly Asp Met Val Gly His Thr Gly Asp Ile Glu (AS 413-436)

Epitop 19: Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn
Lys Ser Gly Gln Pro Ala Leu Asp Lys Ser Gly Ser Ile
(AS 467-492),

Epitop 20: Leu Thr Ser His Thr Leu Gln Pro (AS 495-502)

Epitop 21: Gly Pro Gly Leu His Pro Gly Val Lys Phe Arg Ser Asp
Ile Asn Thr Pro Gly Leu (AS 509-527)

Epitop 22: Leu His Gly Phe Gln Ala Pro Asp Asp Tyr Glu Thr Thr
Leu (AS 537-550)

Fig. 8b:

24/48

B-Zell Epitope von Kofaktor-unabhängiger
Phosphoglyceratmutase (E.C. 5.4.2.1.) aus
Lieschgraspollen (Isoform Ph15)

Folgende B-Zell Epitope wurden bestimmt:

Epitop 1: Met Thr Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro
Lys Gly Lys (AS 1-16)

Epitop 2: Asp Gly Trp Gly Glu Ala Ser Ala Asp Gln Tyr Asn Cys
Ile His Arg Ala Glu Thr Pro Val Met Asp Ser Leu Lys
Asn Gly Ala Pro Glu Lys Trp Thr Leu (AS 24-58)

Epitop 3: Leu Pro Ser Asp Asp Asp Met Gly Asn Ser Glu Val Gly
His Asn Ala Leu Gly Ala (AS 68-86)

Epitop 4: Gly Lys Ile Trp Glu Asp Glu Gly Phe Asn Tyr Ile Lys
Glu Ser Phe Ala (AS 104-121)

Epitop 5: Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Val
(AS 130-142)

Epitop 6: Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Leu
(AS 148-159)

Epitop 7: Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val
(AS 162-174)

Epitop 8: Glu Thr Leu Glu Asn Asp Leu Ala Gln Leu Arg Glu Lys
Gly Val Asp Ala (AS 178-194)

Epitop 9: Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr
Glu Asn Asp Trp Asp Val Val Lys Arg Gly Trp Asp Ala
(AS 198-223)

Fig. 8b: Fortsetzung

25/4B

Epitop 10: Glu Ala Pro Tyr Lys Phe Lys Ser Ala (AS 228-236)

Epitop 11: Thr Leu Arg Ala Glu Pro Lys Ala Asn Asp Gln Tyr Leu
Pro (AS 242-255)

Epitop 12: Asp Glu Ser Gly Lys Ser Val (AS 261-267)

Epitop 13: Asn Phe Arg Ala Asp Arg Met (AS 280-286)

Epitop 14: Ala Asp Phe Asp Lys Phe Asp Arg Val Arg Val Pro Lys
Ile Lys Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu
Lys Leu Pro Asn Lys (AS 296-326)

Epitop 15: Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Lys
Asn Gly Val Arg Thr (AS 332-349)

Epitop 16: Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asp Glu Thr
Lys Glu Glu Tyr Ile Glu Ile Pro Ser Asp Ser Gly Ile
Thr Phe Asn Glu Gln Pro Lys Met Lys Ala (AS 364-399)

Epitop 17: Ile Ala Glu Lys Thr Arg Asp Ala (AS 402-409)

Epitop 18: Ser Gly Lys Phe Asp Gln Val Arg Ile Asn Leu Pro Asn
Gly Asp Met Val Gly His Thr Gly Asp Ile Glu (AS 412-435)

Epitop 19: Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn
Lys Ser Gly Gln Pro Ala Leu Asp Lys Ser Gly Ser Ile
(AS 466-491)

Epitop 20: Leu Thr Ser His Thr Leu Gln Pro (AS 494-501)

Epitop 21: Gly Pro Gly Leu His Pro Gly Val Lys Phe Arg Ser Asp
Ile Asn Thr Pro Gly Leu (AS 508-526)

Epitop 22: Leu His Gly Phe Gln Ala Pro Asp Asp Tyr Glu Thr Thr
Leu (AS 536-549)

Fig. 9a:

26/48

T-Zell Epitope von Kofaktor-unabhängiger
Phosphoglyceratmutase (E.C. 5.4.2.1.) aus
Lieschgraspollen (Isoform Ph1)

Folgende T-Zell Epitope wurden bestimmt:

Epitop 1: Trp Gly Glu Ala Ser (AS 27-31)

Epitop 2: Met Asp Ser Leu Lys Asn Gly Ala (AS 46-53)

Epitop 3: Phe Ala Gln Gly Ala Lys Leu Phe Asp Ala
(AS 91-100)

Epitop 4: Gly Lys Ile Trp Glu (AS 115-119)

Epitop 5: Thr Leu Glu Asn (AS 180-183)

Epitop 6: Asn Asp Trp Asp Val Val (AS 213-218)

Epitop 7: Leu Glu Ala Val Lys Thr Leu (AS 238-244)

Epitop 8: Leu Ala Lys Ala Leu Glu (AS 290-295)

Epitop 9: Phe Ala Cys Ser Glu Thr Val Lys (AS 351-358)

Epitop 10: Leu Asp Ala Val Glu Gln Val Gly Gly Ile Tyr
(AS 453-461)

Epitop 11: Pro Gly Leu Ala Asn Val Ala Ala (AS 525-532)

Epitop 12: Asn Leu His Gly Phe Gln Ala Pro Asp Asp
(AS 536-545)

Fig. 9b:

27/48

T-Zell Epitope von Kofaktor-unabhängiger
Phosphoglyceratmutase (E.C. 5.4.2.1.) aus
Lieschgraspollen (Isoform Ph15)

Folgende T-Zell Epitope wurden bestimmt:

Epitop 1: Trp Gly Glu Ala Ser (AS 26-30)

Epitop 2: Met Asp Ser Leu Lys Asn Gly Ala (AS 45-52)

Epitop 3: Phe Ala Gln Gly Ala Lys Leu Phe Asp Ala (AS 90-99)

Epitop 4: Tyr Ile Lys Glu Ser (AS 114-118)

Epitop 5: Thr Leu Glu Asn (AS 179-182)

Epitop 6: Asn Asp Trp Asp Val Val (AS 212-217)

Epitop 7: Leu Glu Ala Val Lys Thr Leu (AS 237-243)

Epitop 8: Leu Ala Lys Ala Leu Glu Phe (AS 289-295)

Epitop 9: Phe Ala Cys Ser Glu Thr Val Lys (AS 350-357)

Epitop 10: Leu Asp Ala Val Glu Gln Val Gly Gly (AS 452-460)

Epitop 11: Pro Gly Leu Ala Asn Val Ala Ala (AS 524-531)

Epitop 12: Asn Leu His Gly Phe Gln Ala Pro Asp Asp (AS 535-544)

Fig.10a:

28/48

cDNA Sequenz und abgeleitete Aminosäure-sequenz von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus 5 Beifußpollen (Isoform Art6))

Sequence: a:\art6cod.dna, Length: 1674, Range for analysis: 1-1674

1 ATG GGA AGC TCA GGA TTT TCA TGG AAG CTA GCG GAC CAC CCA 42
Met Gly Ser Ser Gly Phe Ser Trp Lys Leu Ala Asp His Pro

43 AAG CTG CCA AAG AAC AAG CTG GTA GCG ATG ATT GTG TTG GAC 84
Lys Leu Pro Lys Asn Lys Leu Val Ala Met Ile Val Leu Asp

85 GGA TGG GGT GAA GCT TCT CCT GAT AAA TAT AAC TGT ATC CAC 126
Gly Trp Gly Glu Ala Ser Pro Asp Lys Tyr Asn Cys Ile His

127 GTG GCC GAG ACT CCT ACC ATG GAT TCT CTC AAA AAC GGC GCC 168
Val Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Asn Gly Ala

169 CCT GAT CAC TGG AGA TTG GTG AGG GCT CAT GGA ACT GCT GTT 210
Pro Asp His Trp Arg Leu Val Arg Ala His Gly Thr Ala Val

211 GGG CTT CCC ACT GAA GAT GAC ATG GGA AAC AGT GAA GTC GGA 252
Gly Leu Pro Thr Glu Asp Asp Met Gly Asn Ser Glu Val Gly

253 CAC AAT GCT CTT GGT GCT GGA AGG ATC TTT GCT CAA GGT GCT 294
His Asn Ala Leu Gly Ala Gly Arg Ile Phe Ala Gln Gly Ala

295 AAA CTC GTT GAT CAA GCA CTT GCC TCT GGG AGA ATT TAC GAA 336
Lys Leu Val Asp Gln Ala Leu Ala Ser Gly Arg Ile Tyr Glu

337 GAT GAA GGT TTC AAT TAC ATC AAG GAA TCA TTT GCC ACC AAC 378
Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe Ala Thr Asn

Fig.10a: Fortsetzung

29/48

379 ACC TTG CAT CTT ATT GGA TTG ATG AGT GAT GGT GGT GTT CAC 420
 Thr Leu His Leu Ile Gly Leu Met Ser Asp Gly Gly Val His

421 TCA CGT CTT GAT CAG TTG CAG TTG TTG CTT AAC GGA GCT AGT 462
 Ser Arg Leu Asp Gln Leu Gln Leu Leu Asn Gly Ala Ser

463 GAG CGT GGT GCC AAG AAG ATC CGT GTT CAC GTG CTT ACT GAT 504
 Glu Arg Gly Ala Lys Lys Ile Arg Val His Val Leu Thr Asp

505 GGT CGT GAT GTT TTG GAT GGT TCA AGT GTC GGT TTT GCT GAA 546
 Gly Arg Asp Val Leu Asp Gly Ser Ser Val Gly Phe Ala Glu

547 ACA CTT GAA GCA GAA CTT GCA AGT CTC CGC AGC AAG GGC ATT 588
 Thr Leu Glu Ala Glu Leu Ala Ser Leu Arg Ser Lys Gly Ile

589 GAT GCT CAG GTT GCT TCT GGT GGA GGA CGT ATG TAT GTC ACC 630
 Asp Ala Gln Val Ala Ser Gly Gly Arg Met Tyr Val Thr

631 ATG GAT CGT TAC GAG AAT GAC TGG GAA GTT GTG AAA CTT GGA 672
 Met Asp Arg Tyr Glu Asn Asp Trp Glu Val Val Lys Leu Gly

673 TGG GAT GCT CAG GTT CTT GGT GAA GCT CCA CAC AAG TTT AAA 714
 Trp Asp Ala Gln Val Leu Gly Glu Ala Pro His Lys Phe Lys

715 AAT GTT GAG GCT ATT AAG ACA CTC AGA CAA GCT CCT GGT 756
 Asn Val Val Glu Ala Ile Lys Thr Leu Arg Gln Ala Pro Gly

757 GCT AAT GAC CAA TAC TTG CCT CCA TTT GTT ATC GTC GAT GAT 798
 Ala Asn Asp Gln Tyr Leu Pro Pro Phe Val Ile Val Asp Asp

799 AGC GGC ACG CCT GTT GGT CCA GTT GTG GAT GGC GAT GCT GTT 840
 Ser Gly Thr Pro Val Gly Pro Val Val Asp Gly Asp Ala Val

841 GTC ACT GTT AAC TTC CGT GCT GAT CGT ATG ACT ATG CTT GCC 882
 Val Thr Val Asn Phe Arg Ala Asp Arg Met Thr Met Leu Ala

Fig.10a: Fortsetzung

30/48

883 CAA GCT CTT GAA TAC GAG AAG TTT GAT AAG TTT GAC AGA GTG 924
Gln Ala Leu Glu Tyr Glu Lys Phe Asp Lys Phe Asp Arg Val

925 CGT TTC CCA AAA ATC CGT TAT GCT GGT ATG CTC CAG TAT GAT 966
Arg Phe Pro Lys Ile Arg Tyr Ala Gly Met Leu Gln Tyr Asp

967 GGA GAG TTG AAG CTT CCA AAC CAT TAC CTT GTT TCT CCC CCA 1008
Gly Glu Leu Lys Leu Pro Asn His Tyr Leu Val Ser Pro Pro

1009 TTG ATT GAC AGG ACA TCT GGC GAA TAT TTG GTG CAT AAT GGT 1050
Leu Ile Asp Arg Thr Ser Gly Glu Tyr Leu Val His Asn Gly

1051 GTC CGC ACT TTT GCT TGC AGT GAG ACT GTC AAA TTC GGT CAT 1092
Val Arg Thr Phe Ala Cys Ser Glu Thr Val Lys Phe Gly His

1093 GTC ACA TTT TTC TGG AAT GGA AAC CGC TCT GGT TAC TTC AAC 1134
Val Thr Phe Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn

1135 TCA GAG TTG GAA GAA TAT GTT GAA ATT CCA AGT GAT AGT GGT 1176
Ser Glu Leu Glu Glu Tyr Val Glu Ile Pro Ser Asp Ser Gly

1177 ATT ACC TTC AAC GTC AAA CCA AAG ATG AAA GCT TTG GAG ATT 1218
Ile Thr Phe Asn Val Lys Pro Lys Met Lys Ala Leu Glu Ile

1219 GGT GAG AAG ACC CGT GAT GCT ATC CTC AGC GGA AAG TTT GAC 1260
Gly Glu Lys Thr Arg Asp Ala Ile Leu Ser Gly Lys Phe Asp

1261 CAG GTA CGT GTG AAC ATA CCA AAC GGT GAC ATG GTT GGG CAC 1302
Gln Val Arg Val Asn Ile Pro Asn Gly Asp Met Val Gly His

1303 ACC GGT GAT GTT GAG GCT ACT GTC GTG GCC TGC AAG GCT GCT 1344
Thr Gly Asp Val Glu Ala Thr Val Val Ala Cys Lys Ala Ala

1345 GAT GAA GCT GTT AAG ATG ATC CTT GAT GCC GTA GAG CAA GTG 1386
Asp Glu Ala Val Lys Met Ile Leu Asp Ala Val Glu Gln Val

Fig.10a: Fortsetzung

31/48

1387 GGT GGG ATA TAC GTT GTG ACT GCC GAT CAC GGT AAT GCT GAG 1428
Gly Gly Ile Tyr Val Val Thr Ala Asp His Gly Asn Ala Glu

1429 GAC ATG GTA AAG AGA AAC AAG AAG GGT GAG CCT CTT CTC AAG 1470
Asp Met Val Lys Arg Asn Lys Lys Gly Glu Pro Leu Leu Lys

1471 GAC GGC GAG GTC CAG ATT CTA ACA TCA CAC ACT CTT CAG CCG 1512
Asp Gly Glu Val Gln Ile Leu Thr Ser His Thr Leu Gln Pro

1513 GTG CCA ATT GCA ATT GGA GGT CCT GGG TTA TCC GCT GGT GTG 1554
Val Pro Ile Ala Ile Gly Gly Pro Gly Leu Ser Ala Gly Val

1555 AGG TTC CGC AAG GAT GTA CCA AGT GGA GGA CTT GCA AAC GTA 1596
Arg Phe Arg Lys Asp Val Pro Ser Gly Gly Leu Ala Asn Val

1597 GCA GCA ACT GTG ATG AAT CTT CAT GGG TTT GTG GCT CCT GAG 1638
Ala Ala Thr Val Met Asn Leu His Gly Phe Val Ala Pro Glu

1639 GAC TAC GAG ACT ACT CTG ATC GAA GTT GTT GAG TAA 1674
Asp Tyr Glu Thr Thr Leu Ile Glu Val Val Glu *

Fig.10b:

32/48

cDNA Sequenz und abgeleitete Aminosäure-Sequenz von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus 5 Beifußpollen (Isoform Art17)

Sequence: a:\art17cod.dna, Length: 1683, Range for analysis: 1-1683

1 ATG GGA AGC TCA GGA GAC AAA ACG ACA TGG AAA TTG GCA GAT	42
Met Gly Ser Ser Gly Asp Lys Thr Thr Trp Lys Leu Ala Asp	
43 CAC CCA AAA CTA CCA AAA GGA AAA ATG ATC GCG GTT GTT GTT	84
His Pro Lys Leu Pro Lys Gly Lys Met Ile Ala Val Val Val	
85 TTG GAC GGT TGG GGT GAA GCT TCT CCC GAC AAA TAT AAT TGT	126
Leu Asp Gly Trp Gly Glu Ala Ser Pro Asp Lys Tyr Asn Cys	
127 ATC CAT GTT GCC CAA ACA CCC GTC ATG TAT TCT CTT AAA AAC	168
Ile His Val Ala Gln Thr Pro Val Met Tyr Ser Leu Lys Asn	
169 AGT GCA CCT GAT CAC TGG AGA TTG GTG AGG GCA CAT GGT ACT	210
Ser Ala Pro Asp His Trp Arg Leu Val Arg Ala His Gly Thr	
211 GCT GTG GGG CTT CCC ACA GAC GAT GAC ATG GGA AAC AGC GAA	252
Ala Val Gly Leu Pro Thr Asp Asp Asp Met Gly Asn Ser Glu	
253 GTT GGA CAT AAT GCT CTT GGA GCT GGT CGA ATT TAT GCC CAA	294
Val Gly His Asn Ala Leu Gly Ala Gly Arg Ile Tyr Ala Gln	
295 GGT GCA AAA CTT GTG GAT CTT GCT CTT GCC TCT GGA AAG ATA	336
Gly Ala Lys Leu Val Asp Leu Ala Leu Ala Ser Gly Lys Ile	
337 TAT GAC GAT GAA GGT TTT AAT TAC ATT AAG GAA TCT TTT GCA	378
Tyr Asp Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe Ala	

Fig.10b: Fortsetzung

33/48

379 AAT AAT ACA TTG CAC CTC ATT GGA TTG ATG AGT GAT GGG GGT 420
 Asn Asn Thr Leu His Leu Ile Gly Leu Met Ser Asp Gly Gly

421 GTG CAC TCT CGC CTT GAT CAG TTA CAG CTG TTG CTC AAA GGT 462
 Val His Ser Arg Leu Asp Gln Leu Gln Leu Leu Lys Gly

463 GCT AGT GAA CGT GGT GCC AAG AAG ATC CGT GTC CAC GTA CTT 504
 Ala Ser Glu Arg Gly Ala Lys Lys Ile Arg Val His Val Leu

505 ACT GAT GGC CGT GAT GTT TTG GAT GGT TCA AGT GTA GGC TTT 546
 Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val Gly Phe

547 GCA GAA ACA CTT GAA AAG GAC CTT GCA GAC CTA CGT AGC AAA 588
 Ala Glu Thr Leu Glu Lys Asp Leu Ala Asp Leu Arg Ser Lys

589 GGT ATA GAT GCT CAG GTT GCT TCT GGT GGA GGT CGC ATG TAT 630
 Gly Ile Asp Ala Gln Val Ala Ser Gly Gly Arg Met Tyr

631 GTC ACC ATG GAT CGT TAT GAG AAT GAT TGG GAT GTT GTG AAA 672
 Val Thr Met Asp Arg Tyr Glu Asn Asp Trp Asp Val Val Lys

673 CGT GGT TGG GAT GCT CAG GTG CTT GGT GAA GCC CCA CAC AAA 714
 Arg Gly Trp Asp Ala Gln Val Leu Gly Glu Ala Pro His Lys

715 TTC AAG AGT GCT GTT GAG GCT ATC AAG AAG CTA AGG GAA GCT 756
 Phe Lys Ser Ala Val Glu Ala Ile Lys Lys Leu Arg Glu Ala

757 CCA AAT GCT AAT GAT CAG TAC TTA CCC CCA TTT GTG ATT GTT 798
 Pro Asn Ala Asn Asp Gln Tyr Leu Pro Pro Phe Val Ile Val

799 GAT GAG AGT GGG AAG CCT GTG GGT CCC ATA ATG GAC GGT GAT 840
 Asp Glu Ser Gly Lys Pro Val Gly Pro Ile Met Asp Gly Asp

841 GCT GTT GTC ACA TTC AAC TTC CGA GCA GAT CGA ATG ACA ATC 882
 Ala Val Val Thr Phe Asn Phe Arg Ala Asp Arg Met Thr Ile

Fig.10b: Fortsetzung

34/48

883 CTT GCC CAG GCT CTT GAG TAT GAG AAG TTT GAT AAA TTT GAC 924
 Leu Ala Glu Ala Leu Glu Tyr Glu Lys Phe Asp Lys Phe Asp

925 AGG GTG CGG TTC CCT AAA ATC CGC TAT GCT GGA ATG CTT CAA 966
 Arg Val Arg Phe Pro Lys Ile Arg Tyr Ala Gly Met Leu Glu

967 TAT GAT GGG GAG TTG AAG CTA CCA AGT CGT TAC CTG GTT TCT 1008
 Tyr Asp Gly Glu Leu Lys Leu Pro Ser Arg Tyr Leu Val Ser

1009 CCT CCA TTG ATA GAG AGG ACA TCT GGT GAA TAT CTA GTC AAT 1050
 Pro Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Asn

1051 AAT GGT ATC CGC ACC TTT GCT TGT AGT GAA ACA GTA AAA TTT 1092
 Asn Gly Ile Arg Thr Phe Ala Cys Ser Glu Thr Val Lys Phe

1093 GGT CAT GTT ACC TTC TTT TGG AAT GGG AAC CGC TCT GGA TAT 1134
 Gly His Val Thr Phe Phe Trp Asn Gly Asn Arg Ser Gly Tyr

1135 TTT AAT TCA GAG TTG GAG GAA TAT GTA GAA ATT CCA AGT GAT 1176
 Phe Asn Ser Glu Leu Glu Tyr Val Glu Ile Pro Ser Asp

1177 AAT GGA ATT TCC TTC AAT GTC CAA CCA AAG ATG AAG GCT TTG 1218
 Asn Gly Ile Ser Phe Asn Val Glu Pro Lys Met Lys Ala Leu

1219 GAG ATT GGT GAG AAG GCC CGT GAT GCA ATT CTC AGT CGC AAA 1260
 Glu Ile Gly Glu Lys Ala Arg Asp Ala Ile Leu Ser Arg Lys

1261 TTT GAC CAG GTA AGG GTG AAT ATA CCA AAT GGT GAC ATG GTT 1302
 Phe Asp Glu Val Arg Val Asn Ile Pro Asn Gly Asp Met Val

1303 GGG CAT ACC GGT GAC ATT GAG GCA ACA GTT GTG GCA TGC AAG 1344
 Gly His Thr Gly Asp Ile Glu Ala Thr Val Val Ala Cys Lys

1345 GCT GCT GAT GAT GCT GTT AAG ATG ATC CTT GAT GCA ATA AAG 1386
 Ala Ala Asp Asp Ala Val Lys Met Ile Leu Asp Ala Ile Lys

Fig.10b: Fortsetzung

35/48

1387 GAA GTA GGT GGA ATA TAT GTG GTG ACT GCG GAT CAT GGT AAT 1428
Glu Val Gly Gly Ile Tyr Val Val Thr Ala Asp His Gly Asn

1429 GCA GAG GAC ATG GTG AAG AGA AAC AAG GAG GGA GAG CCC CTT 1470
Ala Glu Asp Met Val Lys Arg Asn Lys Glu Gly Glu Pro Leu

1471 CTT GAT AAG GAT GGC AAA GTT CAG ATC CTA ACC TCG CAC ACT 1512
Leu Asp Lys Asp Gly Lys Val Gln Ile Leu Thr Ser His Thr

1513 CTG CAG CCA GTA CCG GTT GCA ATT GGA GGT CCT GGG TTA GCA 1554
Leu Gln Pro Val Pro Val Ala Ile Gly Gly Pro Gly Leu Ala

1555 GCA GGT GTG AAA TTC CGC AAG GAT GTG CCA AAT GGT GGA CTA 1596
Ala Gly Val Lys Phe Arg Lys Asp Val Pro Asn Gly Gly Leu

1597 GCA AAT GTA GCA GCA ACA GTG ATG AAT CTG CAT GGT TTT GTG 1638
Ala Asn Val Ala Ala Thr Val Met Asn Leu His Gly Phe Val

1639 GCT CCT GAT GAC TAT GAG ACA ACC CTT ATT GAA GTT GTT GAT 1680
Ala Pro Asp Asp Tyr Glu Thr Thr Leu Ile Glu Val Val Asp

1681 TAA

1683

*

Fig.11a:

36/48**B-Zell Epitope von Kofaktor-unabhängiger
Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Beifußpollen (Isoform
Art6)**

Folgende B-Zell Epitope wurden bestimmt:

Epitop 1: Met Gly Ser Ser Gly Phe Ser Trp Lys Leu Ala Asp His
Pro Lys Leu Pro Lys Asn Lys Leu (AS 1-21)

Epitop 2: Asp Gly Trp Gly Glu Ala Ser Pro Asp Lys Tyr Asn Cys
Ile (AS 28-41)

Epitop 3: Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Asn Gly Ala
Pro Asp His Trp Arg Leu Val Arg Ala His Gly Thr
(AS 44-68)

Epitop 4: Leu Pro Thr Glu Asp Asp Met Gly Asn Ser Glu Val Gly
His Asn Ala Leu Gly Ala (AS 72-90)

Epitop 5: Gly Arg Ile Tyr Glu Asp Glu Gly Phe Asn Tyr Ile Lys
Glu Ser Phe Ala Thr Asn Thr (AS 108-127)

Epitop 6: Met Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln
(AS 134-146)

Epitop 7: Gly Ala Ser Glu Arg Gly Ala Lys Lys Ile Arg Val
(AS 152-163)

Epitop 8: Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val
(AS 166-178)

Epitop 9: Ala Ser Leu Arg Ser Lys Gly Ile Asp Ala (AS 189-198)

Epitop 10: Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr
Glu Asn Asp Trp Glu Val (AS 202-220)

Fig.11a: Fortsetzung

37/48

Epitop 11: Glu Ala Pro His Lys Phe Lys Asn Val (AS 232-240)

Epitop 12: Ile Lys Thr Leu Arg Gln Ala Pro Gly Ala Asn Asp Gln
Tyr Leu Pro (AS 244-259)

Epitop 13: Asp Asp Ser Gly Thr Pro Val (AS 265-271)

Epitop 14: Asn Phe Arg Ala Asp Arg Met (AS 284-290)

Epitop 15: Ala Leu Glu Tyr Glu Lys Phe Asp Lys Phe Asp Arg Val
Arg Phe Pro Lys Ile Arg Tyr Ala Gly Met Leu Gln Tyr
Asp Gly Glu Leu Lys Leu Pro Asn His Tyr Leu Val Ser
(AS 296-334)

Epitop 16: Pro Leu Ile Asp Arg Thr Ser Gly Glu Tyr Leu Val His
Asn Gly Val Arg Thr (AS 336-353)

Epitop 17: Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn Ser Glu
Leu Glu Glu Tyr Val Glu Ile Pro Ser Asp Ser Gly Ile
Thr Phe Asn Val Lys Pro Lys Met Lys Ala Leu Glu Ile
Gly Glu Lys Thr Arg Asp Ala (AS 368-413)

Epitop 18: Ser Gly Lys Phe Asp Gln Val Arg Val Asn Ile Pro Asn
Gly Asp Met Val Gly His Thr Gly Asp Val Glu (AS 416-439)

Epitop 19: Lys Ala Ala Asp Glu Ala Val (AS 446-452)

Epitop 20: Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn
Lys Lys Gly Glu Pro Leu Leu Lys Asp Gly Glu Val
(AS 470-494)

Epitop 21: Leu Thr Ser His Thr Leu Gln Pro (AS 497-504)

Epitop 22: Gly Val Arg Phe Arg Lys Asp Val Pro Ser Gly Gly Leu
(AS 517-529)

Fig.11a: Fortsetzung

38/48

Epitop 23: Val Ala Pro Glu Asp Tyr Glu Thr Thr Leu (AS 543-552)

Fig.11b:

39/48

B-Zell Epitope von Kofaktor-unabhängiger
Phosphoglyceratmutase (E.C. 5.4.2.1.) aus
Beifußpollen (Isoform Art17)

Folgende B-Zell Epitope wurden bestimmt:

Epitop 1: Met Gly Ser Ser Gly Asp Lys Thr Thr Trp Lys Leu Ala
Asp His Pro Lys Leu Pro Lys Gly Lys Met (AS 1-23)

Epitop 2: Asp Gly Trp Gly Glu Ala Ser Pro Asp Lys Tyr Asn Cys
Ile (AS 30-43)

Epitop 3: Ser Leu Lys Asn Ser Ala Pro Asp His Trp Arg Leu Val
Arg Ala His Gly Thr (AS 53-70)

Epitop 4: Leu Pro Thr Asp Asp Asp Met Gly Asn Ser Glu Val Gly
His Asn Ala Leu Gly Ala (AS 74-92)

Epitop 5: Gly Lys Ile Tyr Asp Asp Glu Gly Phe Asn Tyr Ile Lys
Glu Ser Phe Ala Asn Asn Thr Leu (AS 110-130)

Epitop 6: Met Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Leu
(AS 136-148)

Epitop 7: Gly Ala Ser Glu Arg Gly Ala Lys Lys Ile Arg Val
(AS 154-165)

Epitop 8: Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val
(AS 168-180)

Epitop 9: Glu Thr Leu Glu Lys Asp Leu Ala Asp Leu Arg Ser Lys
Gly Ile Asp Ala (AS 184-200)

Epitop 10: Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr
Glu Asn Asp Trp Asp Val Val Lys Arg Gly Trp Asp Ala
(AS 204-229)

Fig.11b: Fortsetzung

40/48

Epitop 11: Glu Ala Pro His Lys Phe Lys Ser Ala (AS 234-242)

Epitop 12: Ile Lys Lys Leu Arg Glu Ala Pro Asn Ala Asn Asp Gln
Tyr Leu Pro (AS 246-261)

Epitop 13: Asp Glu Ser Gly Lys Pro Val (AS 267-273)

Epitop 14: Asn Phe Arg Ala Asp Arg Met (AS 286-292)

Epitop 15: Ala Leu Glu Tyr Glu Lys Phe Asp Lys Phe Asp Arg Val
Arg Phe Pro Lys Ile Arg Tyr Ala Gly Met Leu Gln Tyr
Asp Gly Glu Leu Lys Leu Pro Ser Arg Tyr Leu Val Ser
(AS 298-336)

Epitop 16: Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Asn
Asn Gly Ile Arg (AS 338-354)

Epitop 17: Ser Glu Thr Val Lys Phe (AS 359-364)

Epitop 18: Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn Ser Glu
Leu Glu Glu Tyr Val Glu Ile Pro Ser Asp Asn Gly Ile
Ser Phe Asn Val Gln Pro Lys Met Lys Ala Leu Glu Ile
Gly Glu Lys Ala Arg Asp Ala Ile Leu Ser Arg Lys Phe
Asp Gln Val Arg Val Asn Ile Pro Asn Gly Asp Met Val
Gly His Thr Gly Asp Ile Glu (AS 370-441)

Epitop 19: Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn
Lys Glu Gly Glu Pro Leu Leu Asp Lys Asp Gly Lys Val
(AS 472-497)

Epitop 20: Leu Thr Ser His Thr Leu Gln Pro (AS 500-507)

Epitop 21: Val Lys Phe Arg Lys Asp Val Pro Asn Gly Gly Leu
(AS 521-532)

Epitop 22: Val Ala Pro Asp Asp Tyr Glu Thr Thr Leu (AS 546-555)

Fig. 12a:

41/48

T-Zell Epitope von Kofaktor-unabhängiger
Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Beifußpollen
(Isoform Art6)

Folgende T-Zell Epitope wurden bestimmt:

Epitop 1: Ala Asp His Pro Lys (AS 11-15)

Epitop 2: Tyr Asn Cys Ile His Val Ala Glu Thr Pro Thr Met
Asp Ser Leu Lys (AS 38-53)

Epitop 3: Asp His Trp Arg Leu Val Arg (AS 58-64)

Epitop 4: Phe Ala Gln Gly Ala Lys Leu Val Asp Gln (AS 94-103)

Epitop 5: Glu Ala Pro His Lys Phe Lys Asn Val Val Glu Ala
Ile Lys Thr Leu Arg Gln Ala (AS 232-250)

Epitop 6: Arg Thr Phe Ala Cys Ser Glu Thr Val Lys (AS 352-361)

Epitop 7: Ser Glu Leu Glu Glu Tyr Val Glu (AS 379-389)

Epitop 8: Val Lys Met Ile Leu Asp Ala Val Glu Gln Val Gly
Gly Ile (AS 452-465)

Epitop 9: Gly Gly Leu Ala Asn Val Ala Ala (AS 527-534)

Epitop 10: Asn Leu His Gly Phe Val Ala Pro Glu (AS 538-546)

Fig. 12b:

42/48

T-Zell Epitope von Kofaktor-unabhängiger
Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Beifußpollen
(Isoform Art17)

Folgende T-Zell Epitope wurden bestimmt:

Epitop 1: Leu Ala Asp His Pro Lys (AS 12-17)

Epitop 2: Val Val Val Leu Asp Gly Trp Gly Glu Ala Ser
(AS 26-36)

Epitop 3: Asp His Trp Arg Leu Val Arg (AS 60-66)

Epitop 4: Phe Ala Glu Thr Leu Glu Lys Asp Leu Ala
(AS 182-191)

Epitop 5: Asn Asp Trp Asp Val Val (AS 218-223)

Epitop 6: Glu Ala Pro His Lys Phe Lys Ser Ala Val Glu Ala
Ile Lys Lys Leu Arg Glu Ala Pro Asn (AS 234-254)

Epitop 7: Lys Phe Asp Arg Val (AS 306-310)

Epitop 8: Asn Asn Gly Ile Arg Thr Phe Ala Cys Ser Glu Thr
Val Lys (AS 350-363)

Epitop 9: Ser Glu Leu Glu Glu Tyr Val Glu (AS 381-388)

Epitop 10: Asp Asp Ala Val Lys Met Ile Leu Asp Ala Ile Lys
Glu Val Gly Gly (AS 451-466)

Epitop 11: Gly Gly Leu Ala Asn Val Ala Ala (AS 530-537)

Epitop 12: Asn Leu His Gly Phe Val Ala Pro Asp (AS 541-549)

Fig.13:

43/48

Sequenzvergleich von PGM-i aus Lieschgraspollen
 (Ph15, Ph11), Beifußpollen (Art6, Art17) und
 5 Birkenpollen (bvmut)

Plurality: 2.00 Threshold: 1.00 AveWeight 1.00 AveMatch 0.54 AvMis-Match -0.40

PRETTY of: pat.msf{*} July 28, 1996 22:24 ..

	1	50
pat.msf{Ph15}mTSW tLpDHptLPK GKtVAVIVLD GWGEASaDQY NCIHrAETPV	
pat.msf{ph11}maTSW tLpDHptLPK GKtVAVIVLD GWGEASaDQY NCIHrAETPV	
pat.msf{Art6}	MGSSG..fSW kLaDHPkLPK nK1VAmIVLD GWGEASPDKY NCIHVAETPV	
pat.msf{Art17}	MGSSGdkTtW kLaDHPkLPK GKmIAVVVLD GWGEASPDKY NCIHVAqTPV	
pat.msf{bvmut}gGEAKPDQY NCIHVAETPV	
Consensus	MGSSG--TSW -L-DHP-LPK GK-VAVIVLD GWGEASPDQY NCIHVAETPV	
	51	100
pat.msf{Ph15}	MDSLNGAPE KwTLVKAHGT AVGLPsDDDM GNSEVGNAL GAGRIFAQGA	
pat.msf{ph11}	MDSLNGAPE KwTLVKAHGT AVGLPsDDDM GNSEVGNAL GAGRIFAQGA	
pat.msf{Art6}	MDSLNGAPD hWLVLRAHGT AVGLPTEDDM GNSEVGNAL GAGRIFAQGA	
pat.msf{Art17}	MySLKNsAPD hWLVLRAHGT AVGLPTDDDM GNSEVGNAL GAGRIYAQGA	
pat.msf{bvmut}	MDSLKqGAPE KWRLVRAHGk AVGLPTEDDM GNSEVGNAL GAGRIFAQGA	
Consensus	MDSLNGAPE KWRLVRAHGT AVGLPTDDDM GNSEVGNAL GAGRIFAQGA	
	101	150
pat.msf{Ph15}	KLFDAALASG KIWEDEGFNY IKESFAeGTL HLIGLLSDGG VHSRLDQvQL	
pat.msf{ph11}	KLFDAALASG KIWEDEGFNY IKESFAeGTL HLIGLLSDGG VHSRLDQvQL	
pat.msf{Art6}	KLVDqALASG rIYEDEGFNY IKESFAtnTL HLIGLMSDGG VHSRLDQLQL	
pat.msf{Art17}	KLVD1ALASG KIYDDEGFNY IKESFAnnTL HLIGLMSDGG VHSRLDQLQL	
pat.msf{bvmut}	KLVDsALASG KIYEgEGFkY IKEcFenGTL HLIGLLSDGG VHSRLDQLQL	
Consensus	KLVDAAALASG KIYEDEGFNY IKESFA-GTL HLIGLLSDGG VHSRLDQLQL	
	151	200
pat.msf{Ph15}	LvKGASERGA KRIR1HILTD GRDVLDGSSV GFVETLENDL AQLREKGVD	

Fig.13: Fortsetzung

44/48

pat.msf{ph11}	LvKGASERGA KRIR1HILTD GRDVLDGSSV GFVETLENDL AQLREKGVDA
pat.msf{Art6}	LLnGASERGA KKIRVHLTD GRDVLDGSSV GFaETLEaEL AsLRsKGIDA
pat.msf{Art17}	LLKGASERGA KKIRVHLTD GRDVLDGSSV GFaETLEKDL AdLRsKGIDA
pat.msf{bvmut}	LLKGASERGA KRIRVHLTD GRDVLDGSSV GFVETLENDL AKLREKGVDA
Consensus	LLKGASERGA KRIRVHLTD GRDVLDGSSV GFVETLENDL AQLREKGVDA

201

250

pat.msf{Ph15}	QVASGGGRMY VTMDRYENDW DVVKRGWDAQ VLGEAPYKFK SATEAVKTLR
pat.msf{ph11}	QVASGGGRMY VTMDRYENDW DVVKRGWDAQ VLGEAPYKFK SATEAVKTLR
pat.msf{Art6}	QVASGGGRMY VTMDRYENDW EVVK1GWDAQ VLGEAPhKFK nvVEAIKTLR
pat.msf{Art17}	QVASGGGRMY VTMDRYENDW DVVKRGWDAQ VLGEAPhKFK SAVEAIKKLR
pat.msf{bvmut}	QIASGGGRMY VTMDRYENDW EVIKRGWDAh VLGEAPYKFK SAVEAVKKLR
Consensus	QVASGGGRMY VTMDRYENDW DVVKRGWDAQ VLGEAPYKFK SAVEAVKTLR

251

300

pat.msf{Ph15}	aEPKANDQYL PaFVIVDESG KsVGPIVDGD AVVTFNFRAD RMVMLAKALE
pat.msf{ph11}	aEPKANDQYL PaFVIVDESG KsVGPIVDGD AVViFNFRAD RMVMLAKALE
pat.msf{Art6}	qaPgANDQYL PPFVIVDDSG tPVGPVVDGD AVVTvNFRAD RMtMLAqALE
pat.msf{Art17}	eaPnANDQYL PPFVIVDESG KPVGPImDGD AVVTFNFRAD RMtLAqALE
pat.msf{bvmut}	eE1KvsDQYL PPFVIVDDnG KPVGPIVDGD AVVT1NFRAD RMVMiAKALE
Consensus	-EPKANDQYL PPFVIVDESG KPVGPIVDGD AVVTFNFRAD RMVMLAKALE

301

350

pat.msf{Ph15}	FadFDKFDRV RvPKIKYAGM LQYDGELKLP NkFLVSPPLI ERTSGEYLvk
pat.msf{ph11}	FadFDKFDRV RvPKIKYAGM LQYDGELKLP NKFLVSPPLI ERTSGEYLvk
pat.msf{Art6}	YEKFDFKDRV RFPKIRYAGM LQYDGELKLP NhYLVSPPLI DRTSGEYLvh
pat.msf{Art17}	YEKFDFKDRV RFPKIRYAGM LQYDGELKLP srYLVSPPLI ERTSGEYLvn
pat.msf{bvmut}	YE- FDKFDRV RFPKIRYAGM LQYDGELKLP shYLVePPeI ERTSGEYLvh
Consensus	YE-FDKFDRV RFPKIRYAGM LQYDGELKLP N-YLVSPPLI ERTSGEYLv-

351

400

pat.msf{Ph15}	NGVRTFACSE TVKFGHVTFF WNGNRSGYFd etkEEYIEIP SDSGITFNeQ
pat.msf{ph11}	NGVRTFACSE TVKFGHVTFF WNGNRSGYFd etkEEYIEIP SDSGITFNeQ
pat.msf{Art6}	NGVRTFACSE TVKFGHVTFF WNGNRSGYFn SELEEVVEIP SDSGITFNVk
pat.msf{Art17}	NGIRTFACSE TVKFGHVTFF WNGNRSGYFn SELEEVVEIP SDnGIIsFNVQ
pat.msf{bvmut}	NGVRTFACSE TVKFGHVTFF WNGNRSGYFn SELEEVVEIP SDSGITFNVQ

Fig.13:Fortsetzung

45/48

Consensus NGVRTFACSE TVKFGHVTFF WNGNRSGYFN SELEEVYEIP SDSGITFNVQ			
	401		450
pat.msf{Ph15}	PKMKALEIAE KTRDAILSGK FDQVRINLPN GDMVGHTGDI EATVVACKAA		
pat.msf{ph11}	PKMKALEIAE KTRDAILSGK FDQVRINLPN GDMVGHTGDI EATVVACKAA		
pat.msf{Art6}	PKMKALEIgE KTRDAILSGK FDQVRVNiPN GDMVGHTGDV EATVVACKAA		
pat.msf{Art17}	PKMKALEIgE KaRDAILSrK FDQVRVNiPN GDMVGHTGDI EATVVACKAA		
pat.msf{bmut}	PKMKALEIAE KTRDAILSGK FDQVRVNLPN GDMVGHTGDI EdTVVACKAA		
Consensus	PKMKALEIAE KTRDAILSGK FDQVRVNLPN GDMVGHTGDI EATVVACKAA		
	451		500
pat.msf{Ph15}	DEAVKivLDA VEQVGGIYIV TADHGNAEDM VKRNKSGQPa LDKsGSIQIL		
pat.msf{ph11}	DEAVKivLDA VEQVGGIYIV TADHGNAEDM VKRNKSGQPa LDKsGSIQIL		
pat.msf{Art6}	DEAVKMILDA VEQVGGIYVV TADHGNAEDM VKRNkGePL L.KdGeVQIL		
pat.msf{Art17}	DDAVKMILDA IKeVGGIYVV TADHGNAEDM VKRNKeGePL LDKdGkVQIL		
pat.msf{bmut}	DEAdKMILDA IEQVGGIYVV TADHGNAEDM VKRNKSvQPL LDKnGn1QVL		
Consensus	DEAVKMILDA VEQVGGIYVV TADHGNAEDM VKRNKSGQPL LDK-GS-QIL		
	501		550
pat.msf{Ph15}	TSHTLQPVPV AIGGPGLhpG VKFRsDInTp GLANVAATVM NLHGFqAPDD		
pat.msf{ph11}	TSHTLQPVPV AIGGPGLhpG VKFRsDInTp GLANVAATVM NLHGFqAPDD		
pat.msf{Art6}	TSHTLQPVPVI AIGGPGLsaG VrFRKDVPsG GLANVAATVM NLHGFvAPED		
pat.msf{Art17}	TSHTLQPVPV AIGGPGLaaG VKFRKDVPnG GLANVAATVM NLHGFvAPDD		
pat.msf{bmut}	TSHTLQPVPVI AIGGPaLasG VrFcKD1PdG GLANVAATVi NLHGFeAPsD		
Consensus	TSHTLQPVPV AIGGPGL--G VKFRKD-PTG GLANVAATVM NLHGF-APDD		
	551	561	
pat.msf{Ph15}	YETTLIEVaD K		
pat.msf{ph11}	YETTLIEVaD K		
pat.msf{Art6}	YETTLIEVVE .		
pat.msf{Art17}	YETTLIEVVD .		
pat.msf{bmut}	YEpTLIE1VD n		
Consensus	YETTLIEVVD K		

46/48

Fig. 14: Plaquelifts von Klon Ph11 codierend für Lieschgras PGM-i getestet mit Patientenserum (A) und BIP3 (B).
Sera von allergischen Patienten (SS, HP, KG)
Serum eines nicht-allergischen Donors (NHS)
Kontrollfilter ohne BIP3 (C)

A

SS

HP

KG

NHS

B

BIP3

C

47/48

Fig. 15: Plaquelifts von Klon Phl5 codierend für Lieschgras PGM-i getestet mit Patientenserum (A) und BIP3 (B).
Sera von allergischen Patienten (SS, HP, KG)
Serum eines nicht-allergischen Donors (NHS)
Kontrollfilter ohne BIP3 (C)

A

SS

HP

KG

NHS

B

BIP3

C

48/48

**Fig. 16: Plaquelifts von Klon Art17 codierend für Beifuß PGM-i getestet mit Patientenserum (A) und BIP3 (B).
Sera von allergischen Patienten (SS, HP, KG)
Serum eines nicht-allergischen Donors (NHS)
Kontrollfilter ohne BIP3 (C)**

A**B****C**