Proof of Taylor's Law for Exponential Growth Models with Migration

Dr. Ben Webb, Clark Brown, Sam Carpenter, Scout Callens

Presented by Clark Brown

BYU SRC February 27, 2021

An Application of Perron-Frobenius

Irreducibility of Transition Matrix

$$M = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}$$

Irreducibility of Transition Matrix

$$3 = \begin{bmatrix} 4 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

Irreducibility of Transition Matrix

$$A = M + B = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -3 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

$$\mathbf{N}'(t) = A\mathbf{N}(t)$$

Perron-Frobenius for Nonnegative Irreducible Matrices

Theorem. (Perron-Frobenius Theorem) Let $A \in \mathbb{R}^{n \times n}$ be nonnegative irreducible matrix. Then (a) $r = \rho(A)$ is a simple eigenvalue of A; and (b) any eigenvector \mathbf{x} corresponding to the eigenvalue r has strictly positive entries, i.e. $\mathbf{x} > 0$.

Although the Perron-Frobenius theorem is typically stated with more than parts (a) and (b) these are the only results of the theorem we will use to prove the following proposition.

Proposition. (Perron-Frobenius for Transition Matrices) Let $A \in \mathbb{R}^{n \times n}$ be an irreducible transition matrix so that $a_{ij} \geq 0$ for all $i \neq j$. Then there is an eigenvalue $\lambda_1 \in \sigma(A)$ such that

- (a) $\lambda_1 \in \mathbb{R}$ is simple;
- (b) $\lambda_1 > Re(\lambda_i)$ for all $\lambda_i \in \sigma(A)$ where $\lambda_i \neq \lambda_1$; and
- (c) the eigenvector \mathbf{x}_1 corresponding to λ_1 has strictly positive entries, i.e. $\mathbf{x}_1 > 0$.

$$A = Q + \operatorname{diag}[m, \dots, m]$$

$$m = \min_{1 < i < n} a_{ii}$$

Q is nonnegative and irreducible, so Perron-Frobenius gives us

$$\lambda \in \sigma(Q) \qquad \exists \ \mathbf{v} \in \mathbb{R}^n, \mathbf{v} \neq \mathbf{0}$$

$$Q\mathbf{v} = \lambda \mathbf{v}$$

$$A\mathbf{v} = (Q + mI)\mathbf{v} = \lambda\mathbf{v} + m\mathbf{v} = (\lambda + m)\mathbf{v}$$

$$\lambda + m \in \sigma(A)$$

$$A = \begin{bmatrix} 5 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 5 \end{bmatrix} + \begin{bmatrix} -3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$

$$\sigma(A) = \left\{ \sqrt{11}, 1, -\sqrt{11} \right\}$$

Notation for Proof

General Solution of N(t)

The spectrum of the transition matrix A is given by:

$$\sigma(A) = \{\lambda_1, \dots, \lambda_m, \alpha_{m+1} + \beta_{m+1}i, \alpha_{m+2} - \beta_{m+2}i, \dots, \alpha_{n-1} + \beta_{n-1}i, \alpha_n - \beta_ni\}$$

$$\overline{\alpha_j + \beta_j i} = \alpha_{j+1} - \beta_{j+1} i$$

With a generalized eigenbasis:

$$\mathbf{x}_1 \dots, \mathbf{x}_n$$

General Solution of N(t)

$$\mathbf{N}(t) = c_1 e^{\lambda_1 t} \mathbf{x}_1 + \sum_{j=2}^{m} c_j t^{p_j} e^{\lambda_j t} \mathbf{x}_j + \sum_{j=m+1}^{n} c_j t^{p_j} e^{\alpha_j t} T_j(\beta_j t) \mathbf{x}_j$$

$$T_j(t) = \begin{cases} \cos(t) & \text{for } j = m+1, m+3, \dots, n-1\\ \sin(t) & \text{for } j = m+2, m+4, \dots, n \end{cases}$$

$$c_i \in \mathbb{R}, \ p_i \in \mathbb{Z}^+$$

Example Solution of N(t)

$$\mathbf{N}(t) = c_1 e^{\sqrt{11}t} \mathbf{x}_1 + c_2 e^t \mathbf{x}_2 + c_3 e^{-\sqrt{11}t} \mathbf{x}_3$$

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ -3 + \sqrt{11} \\ 1 \end{pmatrix}, \mathbf{x}_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \mathbf{x}_3 = \begin{pmatrix} 1 \\ -3 + \sqrt{11} \\ 1 \end{pmatrix}$$

Taylor's Law in Exponential Model with Migration

Definition. We say that a vector $\mathbf{v} \in \mathbb{R}^{n \times 1}$ is diagonal if it is a scalar multiple of the vector $\mathbf{1} = [1 \ 1 \ \dots \ 1]^T$ with components all equal to 1.

Theorem. (Sufficient Conditions for Taylor's Law) Let $A \in \mathbb{R}^{n \times n}$ be a transition matrix and N be the solution to the associated EM model as given previously. If

- (a) the leading coefficient $c_1 \neq 0$;
- (b) the leading eigenvalue $\lambda_1 \neq 0$;
- (c) the leading eigenvector \mathbf{x}_1 is non-diagonal; and
- (d) A is irreducible

then this EM model satisfies Taylor's Law.

Proof of Taylor's Law in Exponential Model with Migration

Proof that leading eigenvalue dominates

We write:

$$\mathbf{N}(t) = e^{\lambda_1 t} (c_1 \mathbf{x}_1 + \mathbf{F}(t))$$

$$F_i(t) = \sum_{j=2}^{m} c_j t^{p_j} e^{(\lambda_j - \lambda_1)t} x_{ji} + \sum_{j=m+1}^{m} c_j t^{p_j} e^{(\alpha_j - \lambda_1)t} T_j(\beta_j t) x_{ji}$$

Proof that leading eigenvalue dominates

$$F_i(t) = \sum_{j=2}^{m} c_j t^{p_j} e^{(\lambda_j - \lambda_1)t} x_{ji} + \sum_{j=m+1}^{m} c_j t^{p_j} e^{(\alpha_j - \lambda_1)t} T_j(\beta_j t) x_{ji}$$

The Transition Matrix A is irreducible, so we have:

$$\lambda_j - \lambda_1 < 0, \ \forall j \neq 1$$

$$\alpha_j - \lambda_1 < 0, \ \forall j \geq m + 1$$

Proof that leading eigenvalue dominates

Hence:

$$\lim_{t \to \infty} F_i(t) = 0$$

Similarly:

$$\lim_{t \to \infty} F_i'(t) = 0$$

Proof that leading eigenvalue dominates (EX)

$$\mathbf{N}(t) = e^{\sqrt{11}t} \left(c_1 \mathbf{x}_1 + c_2 e^{(1-\sqrt{11})t} \mathbf{x}_2 + c_3 e^{-2\sqrt{11}t} \mathbf{x}_3 \right)$$

$$F_i(t) = c_2 e^{(1-\sqrt{11})t} x_{2i} + c_3 e^{-2\sqrt{11}t} x_{3i}$$

Proof that leading eigenvalue dominates (EX)

For various values of constants, we see that our F(t) approaches 0 in the limit of large t.

$$b(t) = \frac{d \log[\sum_{i < j} (N_i(t) - N_j(t))^2]}{d \log[\sum_{i=1}^n N_i(t)]}$$

We say Taylor's law holds if we observe the following power-law relationship:

$$\lim_{t \to \infty} b(t) = 2$$

$$b(t) = \frac{d \log[(\sum_{i < j} (N_i(t) - N_j(t))^2]}{d \log[(\sum_{i=1}^n (N_i))]}$$

$$= \frac{d \log[\left(e^{2\lambda_1 t} \sum_{i < j} ((c_1 x_{1i} + F_i(t)) - (c_1 x_{1j} + F_j(t)))^2\right]}{d \log[e^{\lambda_1 t} \left(\sum_{i=1}^n (c_1 x_{1i} + F_i(t))\right]}$$

$$= \frac{d(2\lambda_1 t + \log\left[\sum_{i < j}((c_1 x_{1i} + F_i(t)) - (c_1 x_{1j} + F_j(t)))^2\right])}{d(\lambda_1 t + \log\left[e^{\lambda_1 t}\left(\sum_{i=1}^n(c_1 x_{1i} + F_i(t))\right]\right)}$$

$$= \frac{2\lambda_1 + \frac{2\sum_{i < j}((c_1x_{1i} + F_i(t)) - (c_1x_{1j} + F_j(t)))(F_i'(t) - F_j'(t))}{\sum_{i < j}((c_1x_{1i} + F_i(t)) - (c_1x_{1j} + F_j(t)))^2}}{\lambda_1 + \frac{\sum_{i=1}^n F_i'(t)}{\sum_{i=1}^n (c_1x_{1i} + F_i(t))}}$$

$$\lim_{t \to \infty} b(t) = \frac{2\lambda_1 + \frac{0}{|c_1| \sum_{i < j} |x_{1i} - x_{1j}|^2}}{\lambda_1 + \frac{0}{|c_1| \sum_{i=1}^n |x_{1i}|}}$$

And from the hypotheses, we have:

$$\lambda_1 \neq 0, c_1 \neq 0, \exists i, j \text{ such that } x_{1i} \neq x_{1j}$$

$$\lim_{t \to \infty} b(t) = \frac{2\lambda_1}{\lambda_1} = 2$$

So Taylor's Law holds!

$$\lim_{t \to \infty} b(t) = \frac{2\sqrt{11} + \frac{0}{c_1^2 \sum_{i < j} (x_{1i} - x_{1j})^2}}{\sqrt{11} + \frac{0}{c_1 \sum_{i=1}^n x_{1i}}}$$

$$\lim_{t \to \infty} b(t) = \frac{2\sqrt{11}}{\sqrt{11}} = 2$$

Thank you

Q&A