

LAKSHYA NEET 2025

ORGANIC REAGENTS

S. No.	Reagent	Function		
1.	PCl ₃ , PBr ₃	Alcohols into Alkyl halides		
2.	SOCl ₂ , PCl ₃ , PCl ₅	Alcohols into Alkyl chlorides & Carboxylic acids into Acid		
		Chlorides		
3.	HCl/ZnCl ₂ , HBr, HI	Alcohols into alkyl halides		
4.	Cl ₂ /Fe or Anhy. FeCl ₃ or AlCl ₃	Cl group substitution on benzene		
5.	NaNO ₂ /HCl 0-5°C	Diazotisation		
6.	CuCl, CuBr, CuCN, KI, H ₂ O, H ₃ PO ₂	Benzene Diazonium chloride into chloro benzene, Bromo		
		Benzene, Benzonitrile, Iodo Benzene, Phenol, Benze		
		respectively		
7.	HBF ₄ or NaBF ₄	Benzene Diazonium chloride into Fluoro Benzene		
8.	AgF or Hg ₂ F ₂ or SbF ₃ or CoF ₂	Alkyl halides into alkyl fluorides		
9.	Na/dry ether	Alkyl halides into alkanes		
10.	NaOH/623 K, 300 Bar	Chloro benzene to Phenol		
11.	Br ₂ /FeBr ₃	Bromination of Benzene		
12.	Cl ₂ /FeCl ₃	Chlorination of Benzene		
13.	CH ₃ Cl/AlCl ₃	Alkylation of Benzene and its derivatives		
14.	CH ₃ COCl/AlCl ₃	Acylation of Benzene and its derivatives		
15.	Conc. H ₂ SO ₄ /Conc. HNO ₃	Nitration of Benzene		
16.	Aq. KOH	Alkyl halide into alcohol		
17.	Fuming H ₂ SO ₄	Sulphonation of Benzene		
18.	H_2O/H^+	Alkenes into alcohols		
19.	BH ₃ /H ₂ O ₂ /OH ⁻	Alkenes into alcohols (Anti Markownikoff product)		
20.	NaBH ₄ /LiAlH ₄	Aldehydes, ketones, acids into alcohols, Nitro & Cynides,		
		Isocyanides into amines		
21.	H ₂ /Ni or H ₂ /Pd	Reduction of aldehydes, ketones and cynides		
22.	RMgX/H ₃ O ⁺	Aldehydes & ketones into alcohols		
23.	O ₂ /H ⁺	Cumene to phenol		
24.	Na	Alcohol or phenol into Sodium alkoxide/Phenoxide		
25.	Alcoholic KOH	Alkyl halide into alkene		
26.	Conc. H ₂ SO ₄ /443 K	Conversion of primary alcohols into Alkenes		
27.	Conc. H ₂ SO ₄ /413 K	Conversion of alcohols into Ethers		
28.	85% H ₃ PO ₄ /440 K	Secondary alcohol into alkene		
29.	20% H ₃ PO ₄ /358 K	Tertiary alcohol into alkene		
30.	CrO ₃ /KMnO ₄ or K ₂ Cr ₂ O ₇ in acidic	Oxidation of alcohols into acids		
	medium			
31.	Cu/573 K	Dehydrogenation of alcohols gives 1° alcohols into aldehydes		
		and 2° alcohols into ketones & 3° alcohols into alkenes		
32.	Dil. HNO ₃	Mono nitration of Phenol		
33.	Conc. HNO ₃	tri nitration of Phenol		
34.	Br ₂ /H ₂ O	tri bromination of Phenol		
35.	Br_2/CS_2	mono bromination of Phenol		
36.	NaOH /CO ₂ /H ⁺	Phenol to salicylic acid		

37.	CHCl ₃ /aq. NaOH/H ⁺	Phenol to salicylaldehyde			
38.	Zn dust	Phenol to Benzene			
39.	Na ₂ Cr ₂ O ₇ /H ₂ SO ₄ or air	Phenol to Benzoquinone			
40.	ZnO-Cr ₂ O ₃ /200 to 300 atm, 573-673K	CO & H ₂ into methanol			
41.	Invertase	Sucrose into Glucose & Fructose			
42.	Zymase	Glucose or Fructose into ethanol			
43.	HI	Ether into alcohol & alkyl halide			
44.	PCC	Alcohol to aldehyde			
45.	H ₂ /Pd-BaSO ₄	Acid chloride into aldehydes			
46.	SnCl ₂ /HCl/H ₃ O ⁺	Cyanides into aldehydes			
47.	AlH(i-Bu) ₂ /H ₂ O	Cyanides into aldehydes			
48.	DIBAL-H/H ₂ O	Esters into aldehydes			
49.	CrO ₂ Cl ₂ /H ₃ O ⁺	Toluene into Benzaldehyde			
50.	CrO ₃ /(CH ₃ CO) ₂ O/H ₃ O ⁺	Toluene into Benzaldehyde			
51.	Cl ₂ /hv	Chlorination on alkyl group of Benzene or alkane			
52.	CO, HCl anhydrous AlCl ₃	Benzene to Benzaldehyde			
53.	(CH ₃) ₂ Cd	Acid chloride into ketones			
54.	RMgX/H ₃ O ⁺	Cyanides into ketones			
55.	HCN	Carbonyl compound into cyanohydrin			
56.	NaHSO ₃	Addition to aldehyde and ketone			
57.	H ₂ NOH	Carbonyl compound into oxime			
58.	H ₂ N-NH ₂	Carbonyl compound into hydrazone			
59.	H ₂ N-NH-Ph	Carbonyl compound into Phenyl hydrazone			
60.	2, 4-DNP	Carbonyl compound into 2,4-dinitro phenyl hydrazone			
61.	H ₂ N-NH-CO-CH ₃	Carbonyl compound into semi carbazide			
62.	ROH/HCl	Aldehydes & ketones into hemiacetal and acetal			
63.	HO-CH ₂ -CH ₂ -OH/HCl	Aldehyde or ketone into ethylene glycol ketal			
64.	Zn-Hg/HCl	Carbonyl compound into alkane			
65.	H ₂ N-NH ₂ /KOH	Carbonyl compound into alkane			
66.	KMnO ₄ /OH ⁻ / K ₂ Cr ₂ O ₇	Ketones into mixture of carboxylic acids on prolonged oxidation			
67.	$[Ag(NH_3)_2]^+ + OH^-$	Tollen's test			
68.	Cu(OH) ₂	Fehling's test			
69.	NaOH + I ₂	Iodoform			
70.	Dil. NaOH or Ba(OH) ₂	Aldol condensation			
71.	Conc. KOH or NaOH	Cannizzaro reaction			
72.	KMnO ₄ /KOH	Toluene/alkyl Benzene into Benzoic Acid			
73.	H ₂ O/H ⁺	Cyanides into carboxylic acids, amides into carboxylic acids, esters into carboxylic acids and alcohols, acid chlorides or			
74.	NaOH	anhydrides into carboxylic acids Saponification of ester, acid into salt of acid			
74. 75.	Na ₂ CO ₃ or NaHCO ₃	Carboxylic acid test			
75. 76.	P ₄ O ₁₀ or P ₂ O ₅	·			
77.	ROH/conc. H ₂ SO ₄	Dehydration of acids into anhydride, amides into nitriles			
78.		Carboxylic acids into esters			
78. 79.	Cl ₂ /UV 500 K	Benzene into Benzene Hexachloride (BHC)			
	NH ₃ heating	Carboxylic acids into amides			
80.	NaOH/CaO	Decarboxylation (acids into alkanes)			

81.	LiAlH ₄	Carboxylic acids into alcohols, amides into amines		
82.	Cl ₂ /Red Phosphorus	HVZ reaction		
83.	Sn/HCl or Fe/HCl or H ₂ /Pd	Reduction of nitro compounds into amines		
84.	NH ₃	Alkyl halides into amines		
85.	H ₂ /Ni or H ₂ /Pd or LiAlH ₄	Amides into cyanides		
86.	KOH/R-X	Phthalimide into amine		
87.	NaOH/Br ₂	Hoffmann bromamide, amide into amine with one carbon less		
88.	KOH/CHCl ₃	1º Amines into Isocyanides or carbylamines		
89.	NaNO ₂ /HCl	1° Aliphatic amines into alcohols		
90.	NaNO ₂ /HCl 0-5 °C	Aniline into Benzene diazonium chloride		
91.	C ₆ H ₅ SO ₂ Cl	Distinguishing 1°, 2° & 3° amines		
92.	Br ₂ /H ₂ O	Aniline into tri bromo Aniline		
93.	Br ₂ /CH ₃ COCl/(CH ₃ CO) ₂ O	Aniline into bromo Aniline		

NAME REACTIONS

1.	Finkelstein	$CH_3Br + NaI \xrightarrow{Acetone} CH_3-I + NaBr$
2.	Swarts	$CH_3Br + AgF \longrightarrow CH_3F + AgBr$
3.	Friedel-Crafts Alkylation	$+ H_3C -Cl \xrightarrow{Anhydrous AlCl_3}$
4.	Friedel-Crafts Acylation	CH ₃ COCl Anhydrous AlCl ₃
5.	Wurtz	$H_3C - Cl + Cl - CH_3 \xrightarrow{2Na} H_3C - CH_3 + NaCl$
6.	Fittig	Cl Cl $2Na$ $+$ $NaCl$
7.	Wurtz-Fittig	$Cl + Cl - CH_3 \xrightarrow{2Na} CH_3 + NaCl$
8.	Kolbe's Reaction	$ \begin{array}{c} \text{OH} & \text{ONa} & \text{OH} \\ \hline & \text{NaOH} & \text{i) CO}_2 & \\ \hline & \text{ii) H}^+ & \text{COOH} \end{array} $

9.	Reimer-Tiemann	OH ONa OH
		CHO CHCl ₃ + aq. NaOH CHO
10.	Williamson Synthesis	$CH_3 - Br + CH_3 - ONa \longrightarrow CH_3 - O-CH_3 + NaBr$
11.	Stephen	$H_3C - CN + SnCl_2 + HCl \longrightarrow H_3C - CH = NH \xrightarrow{H_3O^+} H_3C - CHO$
12.	Etard	CH ₃ CHO
		$ \begin{array}{c} CrO_2Cl_2 \\ \hline H_3O^+ \end{array} $
13.	Gatterman-Koch	СНО
		CO/HCl Anhydrous AlCl ₃
14.	Rosenmund reduction	O O
		$\begin{array}{c c} & & & H_2 \\ \hline C & & \hline Pd/BaSO_4 \end{array} \longrightarrow \begin{array}{c} & & \parallel \\ C & & \\ H_3C \end{array} \longrightarrow \begin{array}{c} & & H_2 \\ \hline C & & \\ H_3C & & \\ \end{array}$
15.	Clemmensen reduction	O Zn-Hg
		H_3C CH_3
16.	Wolff-Kishner reduction	O i) NH ₂ NH ₂
		H_3C C CH_3 $ii) KOH / Ethylene glycol$ $H_3C-CH_2-CH_3$
17.	Tollen's test	$R-CHO + 2[Ag(NH_3)_2]^+ + 3OH^- \longrightarrow R-COO^- + 2Ag\downarrow + 2H_2O + 4NH_3$
18.	Fehling's test	$R-CHO + 2Cu^{2+} + 5OH^{-} \longrightarrow R-COO^{-} + Cu_{2}O\downarrow + 3H_{2}O$
19.	Iodoform	I ₂ /NaOH
		C CH_3 $CH_$
20.	Aldol condensation	ОН
		$2H_3C - CHO \xrightarrow{\text{dil NaOH}} H_3C - CH - CH_2 - CHO \xrightarrow{\Delta} CH_3 - CH = CHCHO$
21.	Cannizzaro	$HCHO + HCHO \xrightarrow{Conc. NaOH} HCOONa + H_3C - OH$
22.	Hell-Volhard-Zelinsky	$H_3C - COOH \xrightarrow{i)Cl_2/Red Phosphorus} H_2C - COOH$
	(HVZ)	$^{11)}$ H ₂ O 2 Cl
23.	Hoffmann bromamide	O
	degradation	$H_3C - C - NH_2 \xrightarrow{Br_2} H_3C - NH_2$
24.	Carbylamine	$R-NH_2 + CHCl_3 + 3KOH \xrightarrow{\Delta} R-NC + 3KCl + 3H_2O$
25.	Diazotization	NH_2 N_2^*Cl
		NaNO ₂ + Dil HCl
		273–278 K
	1	

26.	Sandmeyer	$ \begin{array}{c} N_2^+\text{Cl}^- \\ \text{CuCl} / \text{HCl} \end{array} + N_2 $
27.	Gatterman	$ \begin{array}{c c} N_2^+\text{Cl}^- & \text{Cl} \\ \hline & Cu / \text{HCl} \\ \hline & + N_2 \end{array} $
28.	Coupling	

Distinguish by a Single Chemical Test

1. All aldehydes (R–CHO) gives Tollen's Test and produce silver mirror.

$$RCHO + 2[Ag(NH_3)_2]^+ + 3OH^- \longrightarrow RCOO^- + 2 \ Ag \downarrow + 2H_2O + 4NH_3$$

Tollens' Reagent Silver ppt

Note: HCOOH (Methanoic acid) also gives this test. Ketones (RCOR) do not give this test.

2. All aldehydes (R–CHO) and ketones (RCOR) gives 2, 4-DNP test.

RCOR + 2, 4-DNP
$$\rightarrow$$
 Orange ppt

R-CHO + 2, $4-DNP \rightarrow Orange ppt$

3. Aldehydes and ketones having CH₃CO- (keto methyl) group give Iodoform Test. Alcohols having CH₃CH(OH)– group also give Iodoform Test.

$$CH_3CHO + 3I_2 + 4NaOH \rightarrow CHI_3 \downarrow + HCOONa + 3NaI + 3H_2O$$

Yellow ppt

4. **The following compounds give Iodoform Test:** Ethanol (C₂H₅OH), Propan-2-ol (CH₃CH(OH)CH₃),

Ethanal (CH₃CHO), Propanone (CH₃COCH₃), Butanone (CH₃COCH₂CH₃),

Pentan-2-one (CH₃COCH₂CH₂CH₃), Acetophenone (PhCOCH₃)

5. All carboxylic acids (R–COOH) gives Bicarbonate test.

$$RCOOH + NaHCO_3 \rightarrow RCOONa + CO_2 \uparrow + H_2O$$

effervescence

6. Phenol gives Neutral FeCl₃ Test.

$$C_6H_5OH + FeCl_3 \rightarrow (C_6H_5O)_3Fe + 3HCl$$

(neutral) (violet color)

7. All primary amines (R/Ar–NH₂) give Carbylamine Test.

$$R-NH_2 + CHCl_3 + 3KOH (alc.) \rightarrow R-NC + 3KCl + 3H_2O$$

offensive smell

8. Aniline gives Azo Dye Test. (Only for aromatic amines)

$$C_6H_5NH_2 + NaNO_2 + HCl \rightarrow C_6H_5N_2 + Cl^-;$$
 and then add β -Naphthol gives Orange red dye is produced.

9. All alcohols (ROH) give Na-metal test.

$$R-OH + Na \rightarrow R-ONa + H_2$$

bubbles

- 10. **For esters (RCOOR):** Hydrolyses first. Then see the product (acid & alcohol) and give a test to identify them.
- 11. All alkenes (C = C) and alkynes (C \equiv C) decolorizes Br₂ water from red to colourless.
- 12. Lucas Test to distinguish Primary, Secondary and Tertiary alcohols.

Lucas reagent: Anhy. ZnCl₂/HCl

- 3° Alcohol + Lucas reagent → immediate turbidity
- 2° Alcohol + Lucas reagent → turbidity after sometime
- 1° Alcohol + Lucas reagent → no turbidity

SCHEME-I: Conversions related to Alkyl Halides

SCHEME – II: Conversions related to Aryl Halides

SCHEME – III: Conversions related to Alcohols

SCHEME – IV: Conversions related to Phenols – I

SCHEME - V: Conversion related to Phenols - II

SCHEME – VI: Conversion related to Aldehydes

SCHEME - VII: Conversion related to Carboxylic Acids

SCHEME – VIII: Conversion related to Alkyl Amines

SCHEME – IX: Conversion related to Aryl Amines

ASCENDING SERIES

1. By Wurtz Reaction

$$R-X+2Na+X-R \xrightarrow{Dry \ ether} R-R+2NaX$$

$$R-X+2Na+X-R \xrightarrow{Dry \ ether} R-R+2NaX$$

2. By Using Cyanide

3. By using Grignard Reagent

4. By using Sodium Alkylnides

$$R - X + NaC \equiv C - R \longrightarrow R - C \equiv C - R + NaX$$

This reaction is used for terminal alkynes.

DESCENT OF SERIES

1. **Hoffmann Bromamide Degradation Reaction**

2. **Decarboxylation Reaction**

I $R - Cl vs R - Br vs R - I (R \equiv alkyl or aryl)$

S.No.	Test	R – Cl	R–Br	R–I
(a)	Dil AgNO ₃	$R - Cl \xrightarrow{AgNO_3} AgCl$ (White ppt)	$R - Br \xrightarrow{AgNO_3} AgBr$ (Pale yellow ppt)	$R - I \xrightarrow{AgNO_3} Agl$ (yellow ppt)
(b)	NH ₄ OH test	above ppt + liq. NH ₃ of AgCl or NH ₄ OH	above ppt + liq. NH ₃ of AgBr or NH ₄ OH	above ppt + liq. NH₃ of AgI
		ppt dissolves	ppt partially dissolves	ppt remain

II. Ethylidene chloride (Geminal) vs Ethylene Dichloride (Vicinal)

SNo.	Test	∠C1	$Cl - CH_2 - CH_2 - Cl$
		CH ₃ —CH	Ethylene dichloride
		Cl	
		(Ethylidene chloride)	
(a)	Aq. KOH test (Hydrolysis)	CH_3 — CH CH_3 — CH CH_3 — CH OH OH	CH ₂ —CH ₂ aq KOH
		H ₂ O CH ₃ -C H	O_2N \longrightarrow $NHNH_2$ NO_2
		$-H_2O$ O_2N $NHNH_2$	2, 4 dinitrophenyl hydrazine Von reaction
		NO ₂ 2,4 dinitrophenyl hydrazine	
		O_2N NHN = $CH - CH_3$	
		NO ₂ Yellow ppt	

III. CHCl₃ vs CH₃Cl/CCl₄/CH₃OH

SNo.	Test	CHCl ₃	CH ₃ Cl/CCl ₄ /CH ₃ OH
(a)	Carbylamine	(+Ve)	(–Ve)
	test	TVO	-ve
		$R-NH_2 + 3KOH + CHCl_3$	
		(1°amine) (aq)	
		$R-NC + 3KC1 + 3H_{2}O$	
		alkyl isocyanide	
		Pungent Smelling	

IV. $CH_3 - CH_2 - OH$ (Alcohol) vs $CH_3 - O - CH_3$ (Ether)

SNo.	Test	$CH_3 - CH_2 - OH$	$CH_3 - O - CH_3$
(a)	Na metal test	CH_3 - CH_2 - $OH+Na$ \longrightarrow CH_3 - CH_2 - ONa + $\frac{1}{2}$ H_2	—Ve
(b)	Iodoform test (for alcohols having CH ₃ -CH- OH)	CH ₃ CH ₂ OH + 6 NaOH + 4I ₂ $\xrightarrow{\Delta}$ CHI ₃ \downarrow + (iodoform) HCOONa + 5NaI + 5H ₂ O	_Ve

S.No.	Test	CH ₃ -CH ₂ -CH ₂		CH ₃ -CH-CH ₃	3	CH ₃		QН
		OH (1)	0)	П ОН (2°)	CH ₃ –C-	-CH	
		OH (1°	-	Alco			(3°)	(Phenol)
		Alco	onoi	1 22 0	1101	OI	Alcohol	
(a)	Lucas	Turbidity appears on	Tu	rbidity appears	Tu	rbidity	No appearar	nce of
	Test	heating	V	vithin in 5-10	aŗ	pears	Turbidity	
	(Conc.			min.	Imm	ediately	Ve	
	HCl +							
	anhyd							
	ZnCl ₂)	_	~~~	~~~			_	
(b)	Iodoform	(–Ve)	CH ₃ –0	CH–CH ₃ +	(-	-Ve)	(–Ve)	
	test		(ЭH	\			
			6Na	$OH + 4I_2 \longrightarrow$				
			CHI	(₃(↓) + HCOONa				
			Yello	$w + 5NaI + 5H_2O$				
(c)	Bromine	(–Ve)		(–Ve)	(-Ve)	OF 	I
	water				($3Br_2$
	test							H_2O
							OI	
							OI Da	Br
							Br) +3HBr
							 Br	
							(2,4,6-tribron	mophenol) white ppt

(d)	Neutral FeCl ₃ Test	_Ve	—Ve	_Ve	Ferric Phenoxide (Violet ppt.)
(e)	Litmus Test	_Ve)		_Ve	Turns blue litmus paper red.
			WEAK ACID		
(f)	Victor	CH ₃ CH ₂ CH ₂ OH	CH ₃ -CH-CH ₃	CH ₃	Vo
	Meyer	$P + I_2$	ОН	CH ₃ –C–OH	_ve
	Test	♥ CH₃CH₂CH₂I	$P + I_2$	CH ₃	
		$-\text{Agl} \mid \text{AgNO}_2$	↓ CH ₃ -CH-CH ₃	$P + I_2$	
		Tigi Tigi Vo ₂	CII ₃ -CII-CII ₃	▼	
		CH ₃ CH ₂ CH ₂ NO ₂	$-\text{Agl} \left \text{AgNO}_2 \right $	CH ₃	
		HNO_2		CH ₃ –C–I	
		$CH_3CH_2-C-NO_2$	CH ₃ -CH-CH ₃	CH ₃	
			NO_2	$-Agl AgNO_3$	
		NOH	HNO_2	ÇH ₃	
		Nitrolic Acid	▼ N=O	CH ₃ -C-NO ₂	
		NaOH	l H₃C–Ç–CH₃	CH ₃	
		Blood Red Colouration	NO ₂	HNO ₂	
			Pseudonitrol	No reaction	
			NaOH	1	
			↓	NaOH	
			Blue Colouration	Colourless	

VI.
$$OH$$
 $CH - CH_3$
 CH_2OH
 VS
 VS

S. No.	Test	ОН	OH I CH-CH ₃	CH ₂ OH
(a)	Litmus Test	Turns blue Litmus to red	_Ve	_Ve

(b)	Neutral FeCl ₃ test	FeCl ₃ Ferric Phenoxide +3HCl (Violet ppt)	_Ve)	_Ve)
(c)	Iodoform Test	-ve	$(-ve)$ $(-ve)$ $OH - CH_3 + 6NaOH$ $OH + 4I_2 COONa$ $(-Yellow)$ $ppt - 5NaI + 5H_2O$	—ve

VII. HCHO vs CH₃CHO

SNo.	Test	НСНО	CH ₃ CHO
(a)	Iodoform Test	_ve	(+ve)
			O \parallel $CH_3-C-H+4NaOH+3I_2\rightarrow CHI_3\downarrow$ (Yellow)
			+ HCOONa + 3NaI + 3H ₂ O

VIII.

SNo.	Test	$\begin{array}{c} \text{O} \\ \parallel \\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3 \end{array}$	CH₃CHO	О-сно	CH ₃ COCH ₂ CH ₃ or CH ₃ COCH ₃
		or O C C			or C-CH ₃ O

(a)	Iodoform Test	(-ve)	(+ve)	(-ve)	(+ve)
	Test		CH ₃ -CHO + 4NaOH +		o O
			$3I_2 \rightarrow CHI_3 \downarrow + HCOONa$		$\begin{array}{c} \parallel \\ \text{CH}_3\text{-C-CH}_2\text{-CH}_3 \end{array}$
			(Yellow)		or
			$+3NaI + 3H_2O$		O
					CH ₃ -C-CH ₃
					$CHI_3 + 3NaI + 3H_2O +$
					CH ₃ CH ₂ COONa or
					CH ₃ COONa or
					COONa
(b)	Tollen's reagent	–ve)	(+ve)	(+ve)	–ve)
	(amm. silver nitrate)		CH ₃ CHO+	(O)-CHO+	_
	mu ate)		$2[Ag(NH_3)_2)]^+$	$2[Ag(NH_3)_2]^+ +$	
			+2OH →	$2OH^{\ominus} \longrightarrow$	
			CH ₃ COO ⁻ +	⟨O⟩-coö	
			$NH_4^+ + 2Ag \downarrow +$	$NH_4^+ + 2Ag \downarrow +$	
			$H_2O + 3NH_3$	$H_2O + 3NH_3$	
(c)	Fehling's solution	(-ve)	(+ve)	(-ve)	(-ve)
	(copper	•	CH₃CHO+		
	sulphate + sodium		2[Cu(OH) ₂]+NaOH		
	potassium		↓		
	tartarate)		CH₃COO⁻ Na + Cu₂O + 3H₂O		
			Na + Cu2O + 3H2O (Red ppt)		

IX.

SNo.	Test	O H-C-OH	О СН ₃ -С-ОН	OH	COOH
a)	Tollen's Test	$ \begin{array}{c} \text{(+ve)} \\ \text{HCOOH} + \text{Ag}_2\text{O} \\ \longrightarrow \text{CO}_2 + \text{H}_2\text{O} + \\ 2\text{Ag} \downarrow \end{array} $	_ve	_ve	(-ve)

b)	Fehling's Solution Test	$\begin{array}{c} & \begin{array}{c} & \\ +\text{ve} \end{array} \\ \text{HCOOH} + 2\text{CuO} \\ \rightarrow \text{CO}_2 + \text{H}_2\text{O} + \\ \text{Cu}_2\text{O} \downarrow \\ \left(\begin{array}{c} \text{Reddish} \\ \text{Brown ppt} \end{array} \right) \end{array}$	(-ve)	(-ve)	(-ve)
c)	NaHCO ₃ Test	$\begin{array}{c} & + \text{ve} \\ \text{HCOOH} + \text{NaHCO}_3 \\ \rightarrow \text{HCOONa} + \\ \text{H}_2\text{O} + \text{CO}_2 \uparrow \\ \text{(Brisk Effervescence)} \end{array}$	(Brisk Effervescence)	(-ve)	$\begin{array}{c} & +\text{ve} \\ \hline \\ $
d)	Neutral FeCl ₃ Test	_ve	(-ve)	$ \begin{array}{c} (+\text{ve}) \\ OH \\ 3 \bigcirc + \text{FeCl}_3 \longrightarrow \\ ($	COOH $3 \bigcirc + FeCl_{3} \longrightarrow$ $COO \bigcirc \longrightarrow Fe + 3HCl$ $Brown ppt of ferric benzoate$

X.

$$R-NH_2$$
 vs OH vs OH

SNo.	Test	$R - NH_2$	$_{1}^{\mathrm{NH}_{2}}$	OH I
a)	Bromine water	(-ve)	$(+ve)$ NH_2 $+ 3Br_2 \longrightarrow$	$OH \longrightarrow +3Br_2 \longrightarrow$
			Br Br $+3HBr$ Br	OH Br +3HBr

			2, 4, 6-tribromo aniline (White ppt)	2, 4, 6-tribromo phenol (White ppt)
b)	Neutral FeCl ₃	(-ve)	–ve)	$ \begin{array}{c} $
c)	Carbylamine Test	$(+ve)$ $R - NH_2 + 3KOH +$ $(1^{\circ} \text{ amine}) \text{ (aq)}$ $CHCl_3 \longrightarrow RNC +$ alkyl isocyanide $(Pungent \text{ smelling})$ $3KCl + 3H_2O$	NH ₂ + 3KOH + CHCl ₃ (1° amine) NC + 3KCl + 3H ₂ O Phenyl Isocyanide (Pungent smelling)	_ve
d)	Azo Dye Test	Azo dye formed is unstable, so cannot be removed from solution.	$NH_{2} \xrightarrow{NaNO_{2}} O$ $-HCl O$ O O O O O O O O O	(+ve)

XI. $R - NH_2 \text{ vs } R_2NH \text{ vs } R_3N$

SNo.	Test	$R - NH_2$	R_2NH	R ₃ N
		(1° amine)	(2° amine)	(3° amine)
a)	Carbylamine	$R - NH_2 + CHCl_3 + 3KOH$	(-ve)	(-ve)
	Test	(aq)		
		V		
		R-NC + 3KC1 + 3H2O		
		alkyl		
		isocyanide		
		(Pungent smelling)		

			$\overline{}$	
b) c)	Nitrous Acid Test Hinsberg's	$R-NH_2 + HO - N = O$ $\rightarrow R-OH + N_2 \uparrow + H_2O$ Evolution of nitrogen	$R_2 - N - H + HO - N \equiv O$ $\rightarrow R_2N - N = O$ N-nitroso dialkyl amine (Yellow oily liquid) $+ Phenol \xrightarrow{Warm}$ Green Colour	$\begin{array}{c} R_3N + HNO_2 \xrightarrow{ Warm } R_3NHNO_2 \\ (Water Soluble) \end{array}$
	Test [Hinsberg's Reagent is a mixture of (i) Benzene sulphonyl chloride, (ii) KOH, and (ii) HCl	$R-NH_{2}+\bigcirc \bigcirc SO_{2}C1$ $Benzene$ $sulphonyl$ $chloride$ $\downarrow -HCl$ $R-N-SO_{2}-\bigcirc \bigcirc$ H $N-alkylbenzene$ $sulphonamide$ $(Insoluble)$ $-H_{2}O \downarrow KOH$ $\begin{bmatrix} O \\ R-N-S-\bigcirc \bigcirc \\ O \\ O \end{bmatrix}$ $R-N-S-\bigcirc \bigcirc$ K^{+} $Cl \downarrow HCl$ $R-N-S-\bigcirc \bigcirc$ $N-alkylbenzene$ $sulphonamide$ $(insoluble)$	R H - N - R + SO ₂ Cl Benzene sulphonyl chloride -HCl O R - N - S R N, N-dialkyl-benzene sulphonamide KOH No reaction (Insoluble) HCl No reaction (insoluble)	R-N-R+ SO ₂ Cl Benzene sulphonyl chloride No reaction (Insolube) HCl + R ₃ NHCl Trialkyl-ammonium chloride (Soluble in HCl)

XII.
$$\begin{array}{c} O \\ \parallel \\ R-C-NH_2 \end{array}$$
 vs $R-NH_2$

SNo.	Test	O	R – NH_2
		$R - \overset{\parallel}{C} - NH_2$	
(a)	Litmus Test	No response to litmus	Red litmus changes to Blue

(b)	Carbylamine test	(Va)	$R - NH_2 + CHCl_3 + 3 KOH (aq)$
	•	(-ve)	\longrightarrow RNC + 3KC1 + 3H ₂ O
			alkyl
			isocyanide
			Pungent Smelling

PW Web/App - https://smart.link/7wwosivoicgd4
Library- https://smart.link/sdfez8ejd80if