Trabajo Práctico Especial 2

Redes Neuronales

Q1-2014 ITBA

Grupo 5

Julián Gutierrez Alexis Medvedeff Javier Perez Cuñarro

Agenda

- 1. Problema a resolver
- 2. Variables
- 3. Resultados
- 4. Conclusiones

Problema

Estimar una función escalar a partir de un conjunto de puntos.

Conjunto de puntos samples8.txt

Solución

Implementar un perceptrón multicapa con aprendizaje supervizado.

Identificamos la red como [3 3]

¿Configuración óptima? Resultados

Variable 1

Cómo dividir los puntos de entrada para las fases de entrenamiento y de testeo.

Comparación entre porcentajes

División de datos de entrada	Error cuadrático medio, promedio en testeo	Porcentaje de aciertos con error menor a 10^-3
40% entrenamiento 60% testeo	0.8478%	48.6013%
60% entrenamiento 40% testeo	0.9522%	44.9101%
80% entrenamiento 20% testeo	0.7181%	41.1764%

Fase de entrenamiento: 0.8 Fase de testeo: 0.2

Variable 2

Qué función de activación es más apropiada.

Función tangente hiperbólica

$$f(x) = tanh(\beta x)$$
 $\beta = 1$

Función exponencial

$$g(x) = \frac{1}{1 + e^{(-2\beta x)}}$$
 $\beta = 2$

Comparación entre funciones

Función de activación	Error cuadrático medio, promedio en testeo	Porcentaje de aciertos con error menor a 10^-3
tanh beta=1	1.2850%	28.6863%
tanh beta=0.5	1.4006%	17.6470%
exp beta=1	1.3994%	32.6921%
exp beta=2	0.7794%	35.3346%

Comparación entre tangente hiperbólica y exponencial

Variable 3

Con qué arquitectura de red aprende mejor el perceptrón.

Comparación entre arquitecturas

Arquitectura	Error cuadrático medio, promedio en testeo	Porcentaje de aciertos con error menor a 10^-3
[20]	1.2924%	36.7647%
[15 15]	0.9339%	30.8823%
[10 20 30]	0.7181%	41.1764%
[2 4 8 16]	1.5001%	25.0000%

Variable 4

Cuáles de las mejoras al backpropagation impactan positivamente en los resultados.

Mejora n adaptativo

$$\Delta \eta = \left\{ \begin{array}{ll} +a & si \ \Delta E < 0 \ consistent emente \\ -b \eta & si \ \Delta E > 0 \\ 0 & en \ otro \ caso \end{array} \right.$$

a = 2,5% del η inicial b = 25% del η inicial se modifica η cada 5 épocas

Mejora momentum

$$\Delta w_{pq}(t+1) = -\eta \frac{\partial E}{\partial w_{pq}} + \alpha \Delta w_{pq}(t) \qquad 0 < \alpha < 1$$

$$a = 0.9$$

Comparación para backtracking

Mejoras aplicadas	Error cuadrático medio, promedio en testeo	Porcentaje de aciertos con error menor a 10^-3
Ninguna	1.5060%	26.4705%
	1.6598% (α=0.9)	26.4705% (α=0.9)
Momentum	1.5405% (α=0.1)	26.4705% (α=0.1)
η adaptativo	1.5187%	17.6470%
Momentum + η adaptativo	2.2648% (α=0.9)	8.8235% (α=0.9)
	1.6079% (α=0.1)	19.1176% (α=0.1)

Diferencia valor calculado y esperado Red [10 20 30]

Error cuadrático por época Red [10 20 30]

Conclusiones

La decisión de la cantidad de neuronas y capas no es decidible de forma teórica.

Es necesario realizar pruebas para ver si realmente conviene una forma o no por sobre otra. Lo mismo sucede con los distintos parámetros como puede ser el momentum o el eta y los parámetros de adaptación del mismo.

Conclusiones

La selección de la arquitectura y los parámetros depende de las condiciones del problema.

Conclusiones

Utilizar la función de activación exponencial puede llevar en algunos casos a estancarse en mínimos.

