СИММЕТРИЧЕСКАЯ СПЕКТРАЛЬНАЯ ПРОБЛЕМА, 2 серия

Бибердорф Э.А.

Пример 1

$$S_k = \left(\begin{array}{cccc} d & b & & & 0 \\ b & d & b & & \\ & b & d & \ddots & \\ & & \ddots & \ddots & b \\ 0 & & & b & d \end{array} \right), \qquad \begin{array}{c} D_1(\lambda) = d - \lambda, \\ D_2(\lambda) = (d - \lambda)^2 - b^2, \\ & \ddots & \\ D_k(\lambda) = (d - \lambda)D_{k-1}(\lambda) - b^2D_{k-2}(\lambda). \end{array}$$

Разностные уравнения

$$D_k(\lambda) - (d - \lambda)D_{k-1}(\lambda) - b^2D_{k-2}(\lambda) = 0$$

начальные значения:

$$D_1(\lambda) = d - \lambda,$$

$$D_2(\lambda) = (d - \lambda)^2 - b^2.$$

Лекция 3

Решение разностных уравнений

$$au_{k+1} + bu_k + cu_{k-1} = 0 \implies u_k = \alpha q_1^k + \beta q_2^k,$$

 $\alpha,\,\beta=\mathrm{const};\,q_1$ и q_2 – корни характ. ур-я

$$aq^2 + bq + c = 0.$$

В нашем случае характ. ур-е:

$$q^2 - (d - \lambda)q + b^2 = 0,$$

его корни

$$q_{1,2} = |b| \left[(d - \lambda)/2|b| \pm i\sqrt{1 - ((d - \lambda)/2|b|)^2} \right]$$

$$T.к. \ \lambda - c. \text{3H. } S_k \ \ \Rightarrow \ \ d-2|b| \leq \lambda \leq d+2|b| \ \ \Rightarrow \ \ |d-\lambda|/2|b| \leq 1 \ \ \Rightarrow$$

$$q_{1,2} = |b|(\cos \varphi \pm i \sin \varphi)$$

Решение разностных уравнений

$$egin{aligned} u_k &= lpha q_1^k + eta q_2^k, \qquad q_{1,2} = |b| ig(\cos arphi \pm i \sin arphiig), \end{aligned}$$
 где $\cos arphi = (d-\lambda)/2|b| \Rightarrow$ $D_k = (lpha + eta)|b|^k \cos karphi + i(lpha - eta)|b|^k \sin karphi$

Из начальных условий

$$\begin{array}{c} D_1=d-\lambda=2|b|\cos\varphi,\\ D_2=(d-\lambda)^2-b^2=b^2(4\cos^2\varphi-1), \end{array} \Rightarrow \begin{cases} \alpha+\beta=1,\\ \mathrm{i}(\alpha-\beta)=\cos\varphi/\sin\varphi. \end{cases}$$

$$D_k=|b|^k(\cos k\varphi+\cos\varphi\sin k\varphi/\sin\varphi)=|b|^k\sin(k+1)\varphi/\sin\varphi.$$

$$\lambda \text{ c.3h. } S_k \Leftrightarrow D_k(\lambda)=0, \text{ t. e. } \varphi=n\pi/(k+1) \text{ } (n=1,2,\ldots,k) \\ M_3 D_1=d-\lambda=2|b|\cos\varphi\Rightarrow(d-\lambda)/2|b|=\cos n\pi/(k+1). \end{cases}$$

$$\lambda_n = d - 2|b|\cos\frac{n\pi}{k+1}$$
 $(n = 1, 2, \dots, k)$

Численный пример

При d=0, b=1/2 $D_k(-\lambda)$ – полиномы Чебышева второго рода

n	$\lambda_{ m n}^{ m [c]}({ m S}_{10})$	$\lambda_{ m n}({ m S}_{10})$	δ
1	-0.959492973614496	-0.959492973614497	10^{-16}
2	-0.841253532831179	-0.841253532831181	10^{-15}
3	-0.654860733945285	-0.654860733945285	10^{-16}
4	-0.415415013001885	-0.415415013001886	10^{-15}
5	-0.142314838273284	-0.142314838273285	10^{-16}
6	0.142314838273284	0.142314838273285	10^{-16}
7	0.415415013001885	0.415415013001886	10^{-15}
8	0.654860733945286	0.654860733945284	10^{-15}
9	0.841253532831180	0.841253532831181	10^{-16}
10	0.959492973614496	0.959492973614497	10^{-16}
ϵ_{λ}	$5.77316 \cdot 10^{-15}$		

Пример2: оператор Лапласа

Задача на собственные значения оператора Лапласа с уловиями Дирихле

$$\triangle \mathbf{u} = \lambda \mathbf{u}, \qquad \mathbf{u}|_{\Gamma_{\mathbf{D}}} = 0$$

в области $D=[0\leq x,y\leq 1]$

Дискретная модель:

$$U=R^s, \ s=(M-1)\times (N-1), \ u_{mn}=u\left(\frac{m}{M},\frac{n}{N}\right)$$

Шаги дискретизации: $h_x = \frac{1}{M}, \qquad h_y = \frac{1}{N}$

Дискретный оператор Лапласа $\mathrm{L}:\mathrm{U}
ightarrow \mathrm{U}$

$$v_{mn} = Lu_{mn} = \frac{u_{m-1,n} - 2u_{m,n} + u_{m+1,n}}{h_x^2} + \frac{u_{m,n-1} - 2u_{m,n} + u_{m,n+1}}{h_y^2},$$

Граничные условия:

$$u_{0n} = 0$$
, $u_{m0} = 0$, $u_{Mn} = 0$, $u_{mN} = 0$.

◆□▶◆圖▶◆臺▶◆臺▶ 臺 釣◎

Ортонормированный базис собственных функций

Собственные значения

$$\lambda^{(k,l)} = -4M^2 \sin^2\frac{k\pi}{2M} - 4N^2 \sin^2\frac{l\pi}{2N}$$

Собственные функции

$$u^{(k,l)} = 2\sin\frac{k\pi m}{M}\sin\frac{l\pi n}{N}, \qquad (1 \leq k \leq M-1, \ 1 \leq l \leq N-1)$$

Упражнение: проверить равенство

$$Lu^{(k,l)} = \left(-4M^2 \sin^2 \frac{k\pi}{2M} - 4N^2 \sin^2 \frac{l\pi}{2N}\right) u^{(k,l)}$$

Лекция 3

Задача в векторно-матричной форме

Пусть
$$M=N,\, \triangle=h_x=h_y=1/N\Rightarrow$$
 аппроксимация ур-я

$$\frac{u_{m-1,n} - 2u_{m,n} + u_{m+1,n}}{\triangle^2} + \frac{u_{m,n-1} - 2u_{m,n} + u_{m,n+1}}{\triangle^2} = \lambda u_{m,n}$$

$$Au = \lambda u, \qquad A = \left(\begin{array}{cccc} B_1 & C_1 & & & \\ C_1 & B_2 & C_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & C_{N-3} & B_{N-2} & C_{N-2} \\ & & & C_{N-2} & B_{N-1} \end{array} \right)$$

$$B_n = \begin{pmatrix} \frac{-4}{\triangle^2} & \frac{1}{\triangle^2} \\ \frac{1}{\Delta^2} & \frac{-4}{\triangle^2} & \frac{1}{\triangle^2} \\ & \ddots & \ddots & \ddots \\ & & \frac{1}{\triangle^2} & \frac{-4}{\triangle^2} & \frac{1}{\triangle^2} \\ & & & \frac{1}{\triangle^2} & \frac{-4}{\triangle^2} \end{pmatrix}$$

$$B_n = \begin{pmatrix} \frac{-4}{\Delta^2} & \frac{1}{\Delta^2} \\ \frac{1}{\Delta^2} & \frac{-4}{\Delta^2} & \frac{1}{\Delta^2} \\ & \ddots & \ddots & \ddots \\ & & \frac{1}{\Delta^2} & \frac{-4}{\Delta^2} & \frac{1}{\Delta^2} \\ & & & \frac{1}{\Delta^2} & \frac{-4}{\Delta^2} \end{pmatrix}, \qquad C_k = \begin{pmatrix} \frac{1}{\Delta^2} & & & \\ & \frac{1}{\Delta^2} & & & \\ & & & \ddots & \\ & & & \frac{1}{\Delta^2} & & \\ & & & & \frac{1}{\Delta^2} \end{pmatrix}$$

Результаты счета

n	$\lambda_{n}^{[c]}(A)$	$\lambda_{\mathrm{n}}(\mathrm{A})$	δ
1	-372.5898981088739	-372.5898981088741	10-16
2	-345.3969496365928	-345.3969496365929	10-16
3	-345.3969496365928	-345.3969496365929	10-16
4	-318.2040011643115	-318.2040011643117	10-16
5	-306.1020005821561	-306.1020005821559	10-16
6	-306.1020005821561	-306.1020005821559	$_{10}^{-16}$
7	-278.9090521098751	-278.9090521098746	10-16
8	-278.9090521098744	-278.9090521098746	10-16
9	-262.4878975267180	-262.4878975267182	10^{-16}
10	-262.4878975267180	-262.4878975267182	10^{-16}
11	-239.6141030554378	-239.6141030554376	10^{-16}
12	-235.2949490544369	-235.2949490544370	10-16
13	-235.2949490544369	-235.2949490544370	$_{10}^{-16}$
14	-223.1929484722815	-223.1929484722812	$_{10}^{-15}$
15	-223.1929484722815	-223.1929484722812	$_{10}^{-15}$
16	-196.0000000000003	-196.00000000000000	$_{10}^{-15}$
17	-196.0000000000003	-196.00000000000000	$_{10}^{-15}$
18	-196.0000000000003	-196.00000000000000	$_{10}^{-15}$
19	-195.9999999999996	-196.0000000000000	$_{10}^{-15}$
20	-195.9999999999996	-196.00000000000000	$_{10}^{-15}$
21	-195.9999999999996	-196.0000000000000	10^{-15}
22	-168.8070515277184	-168.8070515277188	10^{-15}
23	-168.8070515277184	-168.8070515277188	10-15

$$(M-1) = (N-1) = 6$$

Результаты счета

-156.7050509455630	-156.7050509455629	10-16
-156.7050509455630	-156.7050509455629	10-16
-152.3858969445621	-152.3858969445623	$_{10}-15$
-129.5121024732819	-129.5121024732817	$_{10}-15$
-129.5121024732819	-129.5121024732817	$_{10}-15$
-113.0909478901255	-113.0909478901252	$_{10}-15$
-113.0909478901255	-113.0909478901252	$_{10}-15$
-85.89799941784440	-85.89799941784410	$_{10}-15$
-85.89799941784374	-85.89799941784410	$_{10}^{-15}$
-73.79599883568837	-73.79599883568822	$_{10}^{-15}$
-46.60305036340722	-46.60305036340703	$_{10}^{-15}$
-46.60305036340722	-46.60305036340703	$^{10}^{-15}$
-19.41010189112606	-19.41010189112585	$_{10}^{-14}$
1.9126510^{-11}		
	-156.7050509455630 -152.3888969445621 -129.5121024732819 -113.0909478901255 -113.0909478901255 -158.89799941784440 -85.89799941784440 -73.7959983568837 -46.60305036340722 -46.60305036340722 -19.41010189112606	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Спектр кососимметрических матриц

Кососимметрические матрицы:

$$A^* = -A$$

Диагональные элементы кососимметрических матриц равны нулю:

$$a_{ii} = -a_{ii} = 0.$$

Lemma

Спектр кососимметрических матриц состоит из мнимых чисел:

$$\lambda(A) = \pm i|\lambda|$$

Доказательство. Пусть $\lambda(A) = \lambda = a + ib$. Тогда

$$\lambda(x, x) = (\lambda x, x) = (Ax, x) = (x, A^*x) = (x, -Ax) = (x, -\lambda x) = -\bar{\lambda}(x, x)$$

То есть a + ib = -a + ib, что возможно только когда

$$\operatorname{Re} \lambda(A) = 0$$

Что и требовалось доказать.

11 / 43

Трехдиагонализация

По полной аналогии с алгоритмом упрощения симметрических матриц можно привести кососимметрическую матрицу к трехдиагональному виду.

$$PAP^* = B = \begin{pmatrix} 0 & b_2 & & 0 \\ -b_2 & 0 & \ddots & \\ & \ddots & \ddots & b_n \\ 0 & & -b_n & 0 \end{pmatrix}$$

При этом собственные значения и векторы матриц A и B связаны соотношениями

$$Av = \lambda v$$
, $Bw = \lambda w$, $w = Pv$.

Сведение к симметрическому случаю (Принцип «выливания воды из чайника»)

Распишем поэлементно равенство Bw = λ w, учитывая, что $\lambda=\mathrm{i}\mu,\qquad \mu\in\mathbb{R}.$ Комплекснозначный собственный вектор w = u + iv

Итак

$$B(u + iv) = i\mu(u + iv).$$

Поэлементно это равенство выглядит следующим образом:

$$\begin{split} b_2(u_2+iv_2) &= i\mu(u_1+iv_1) \\ -b_2(u_1+iv_1) + b_3(u_3+iv_3) &= i\mu(u_2+iv_2) \\ -b_k(u_{k-1}+iv_{k-1}) + b_{k+1}(u_{k+1}+iv_{k+1}) &= i\mu(u_k+iv_k) \\ -b_N(u_{n-1}+iv_{n-1}) &= i\mu(u_n+iv_n) \end{split}$$

Сведение к симметрическому случаю

 $B(u + iv) = i\mu(u + iv)$ приравниваем отдельно вещественные и мнимые части равенства:

$$\begin{pmatrix} 0 & b_2 & & 0 \\ -b_2 & 0 & \ddots & \\ & \ddots & \ddots & b_n \\ 0 & & -b_n & 0 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} = -\mu \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix},$$

$$\begin{pmatrix} 0 & b_{2} & & 0 \\ -b_{2} & 0 & \ddots & & \\ & \ddots & \ddots & b_{n} \\ 0 & & -b_{n} & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{n} \end{pmatrix} = \mu \begin{pmatrix} u_{1} \\ u_{2} \\ \vdots \\ u_{n} \end{pmatrix}$$

То есть

$$Bv = \mu u, \quad -Bu = B^*u = \mu v$$

Сведение к симметрическому случаю

$$Bv = \mu u, \qquad -Bu = B^*u = \mu v$$

Составим из векторов и и v вектор в два раза большего размера, тогда объединение двух равенств представляет собой спектральную задачу для симметричной матрицы:

$$\mathcal{B} \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{B} \\ \mathbf{B}^* & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \end{pmatrix} = \mu \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \end{pmatrix}$$
$$\mathcal{B} = \mathcal{B}^*$$

Трехдиагонализация с помощью перестановок

Лекция 3 25 сентября, 2022

Сингулярные числа произвольных матриц

Сингулярное разложение $A=U\Sigma V^*$, где $UU^*=I,\ VV^*=I,\ \Sigma=\mathrm{diag}(\sigma_1,\ldots,\sigma_n),\ \sigma_j\geq 0.$ Пусть u_i,v_i — столбцы соответственно матриц U и V. Тогда из

сингулярного разложения следуют равенства

$$Av_i = \sigma_i u_i, \qquad A^* u_i = \sigma_i v_i.$$

При этом σ_j называются сингулярными числами, а u_j и v_j соответственно левыми и правыми сингулярными векторами матрицы A.

Сведение к симметрической спектральной задаче

Распространенный способ $A^*A = V\Sigma^2V^*$, то есть $\sigma_i^2(A) = \lambda_i(A^*A)$.

Замечание: способ недостаточно достоверен для матриц близких к вырожденной.

Другой способ:

$$\mathcal{A} \left(\begin{array}{c} \mathbf{u} \\ \mathbf{v} \end{array} \right) = \left(\begin{array}{cc} \mathbf{0} & \mathbf{A} \\ \mathbf{A}^* & \mathbf{0} \end{array} \right) \left(\begin{array}{c} \mathbf{u} \\ \mathbf{v} \end{array} \right) = \sigma \left(\begin{array}{c} \mathbf{u} \\ \mathbf{v} \end{array} \right)$$

Упражнение: Показать, что взаимосвязь спектра матрицы ${\cal A}$ и сингулярных чисел матрицы A выражается формулой

$$\lambda(\mathcal{A}) = \pm \sigma(A).$$

Сведение к симметрической спектральной задаче

Любая квадратная матрица может быть ортогональными преобразованиями P и Q приведена к двухдиагональному виду PAQ = D.

Упражнение: Показать, что сингулярные числа матриц A и D совпадают, а выражения для сингулярных векторов имеют вид $u_D = Pu_A -$ для левых векторов и $v_D = Q^*v_A -$ для правых.

T.o. задача сводится к вычислению собственных значений и векторов матрицы

$$\mathcal{D} = \left(\begin{array}{cc} 0 & D \\ D^* & 0 \end{array} \right),$$

где

$$D = \begin{pmatrix} d_1 & b_2 & & & 0 \\ & d_2 & b_3 & & & \\ & & d_3 & b_4 & & \\ & & & \ddots & \ddots & \\ & & & & d_{n-1} & b_n \\ 0 & & & & & d_n \end{pmatrix}.$$

Трехдиагонализация

Упражнение: Проверить, что:
$$\Pi\left(\begin{array}{c} u\\ v\\ \end{array}\right) = \Pi\left(\begin{array}{c} u_1\\ u_2\\ \vdots\\ u_n\\ v_1\\ v_2\\ \vdots\\ v_n\\ \end{array}\right) = \left(\begin{array}{c} v_1\\ u_1\\ v_2\\ u_2\\ \vdots\\ v_n\\ u_n\\ \end{array}\right),$$

$$\Pi \mathcal{D} \Pi^* = \mathcal{S} = \left(\begin{array}{cccc} 0 & d_1 & & & 0 \\ d_1 & 0 & b_2 & & & \\ & b_2 & 0 & d_2 & & \\ & & \ddots & \ddots & \ddots \\ & & & b_n & 0 & d_n \\ 0 & & & & d_n & 0 \end{array} \right).$$

Следствия теоремы Вейля

Theorem

Пусть A и $\widetilde{A}=A+\triangle A$ кососимметрические матрицы одинакового размера, причем A имеет собственные значения $\mathrm{i}\mu_{\mathrm{j}}\colon \mu_{1}\leq \mu_{2}\leq \cdots \leq \mu_{\mathrm{n}},$ а $\widetilde{A}=A+\triangle A$ — собственные значения $\mathrm{i}\widetilde{\mu}_{\mathrm{j}}\colon \widetilde{\mu}_{1}\leq \widetilde{\mu}_{2}\leq \cdots \leq \widetilde{\mu}_{\mathrm{n}}.$ Тогда справедливо неравенство

$$|\widetilde{\mu}_j - \mu_j| \le ||\triangle A||.$$

Theorem

Пусть A и $\widetilde{A}=A+\triangle A$ произвольные матрицы одинакового размера, причем A имеет сингулярные числа $\sigma_1\leq\sigma_2\leq\cdots\leq\sigma_n$, а $\widetilde{A}=A+\triangle A$ сингулярные числа $\widetilde{\sigma}_1\leq\widetilde{\sigma}_2\leq\cdots\leq\widetilde{\sigma}_n$. Тогда справедливо неравенство

$$|\widetilde{\sigma}_j - \sigma_j| \le ||\triangle A||.$$

Результаты вычислений

Пусть элементы главной диагонали $d_i=1,$ а элементы побочной диагонали $b_i=2.$

 $\mu = \sigma_{\sf max}/\sigma_{\sf min}$ — число обусловленности

n	σ_1	$\sigma_{ m n}$	$\mu(\mathrm{D_n})$
6	2.3461910^{-2}	2.91846	1.2439210^2
12	3.6621110^{-4}	2.97841	8.1330410^3
18	5.7220510^{-6}	2.99022	5.2257910^5
24	$8.94070\ 10^{-8}$	2.99445	3.3492310^7
30	1.3969910^{-9}	2.99643	2.1449310^9
36	2.1833610^{-11}	2.99750	1.3732410^{11}

$$T = \begin{pmatrix} d_1 & c_2 & & 0 \\ b_2 & d_2 & \ddots & \\ & \ddots & \ddots & c_n \\ 0 & & b_n & d_n \end{pmatrix}, \qquad b_j c_j > 0$$

Последовательность Штурма:

$$\begin{split} & \mathcal{P}_0(\lambda) - (\mathrm{d}_1 - \lambda) + |\mathrm{c}_2|/\mathcal{P}_1(\lambda) = 0, \\ & |\mathrm{b}_2|\mathcal{P}_1(\lambda) - (\mathrm{d}_2 - \lambda) + |\mathrm{c}_3|/\mathcal{P}_2(\lambda) = 0, \\ & \dots \\ & |\mathrm{b}_{\mathrm{n}-1}|\mathcal{P}_{\mathrm{n}-2}(\lambda) - (\mathrm{d}_{\mathrm{n}-1} - \lambda) + |\mathrm{c}_{\mathrm{n}}|/\mathcal{P}_{\mathrm{n}-1}(\lambda) = 0, \\ & |\mathrm{b}_{\mathrm{M}}|\mathcal{P}_{\mathrm{n}-1}(\lambda) - (\mathrm{d}_{\mathrm{n}} - \lambda) + 1/\mathcal{P}_{\mathrm{n}}(\lambda) = 0. \end{split}$$

Левосторонняя последовательность Штурма

Решение системы, удовлетворяющее левому краевому условию $\mathcal{P}_0(\lambda) = 0$, называется левосторонней рациональной последовательностью Штурма для трехдиагональной матрицы T и обозначается $\mathcal{P}_0^{(+)}(\lambda), \mathcal{P}_1^{(+)}(\lambda), \dots, \mathcal{P}_n^{(+)}(\lambda)$:

$$\begin{split} \mathcal{P}_{0}^{(+)}(\lambda) &= 0, \\ \mathcal{P}_{j}^{(+)}(\lambda) &= \frac{|c_{j+1}|}{d_{j} - \lambda - |b_{j}| \mathcal{P}_{j-1}^{(+)}(\lambda)} \quad (1 \leq j \leq n-1), \\ \mathcal{P}_{n}^{(+)}(\lambda) &= \frac{1}{d_{M} - \lambda - |b_{n}| \mathcal{P}_{n-1}^{(+)}(\lambda)}. \end{split}$$

Правосторонняя последовательность Штурма

Правосторонней рациональной последовательностью Штурма для матрицы T называют решение системы

$$\mathcal{P}_0^{(-)}(\lambda), \mathcal{P}_1^{(-)}(\lambda), \dots, \mathcal{P}_n^{(-)}(\lambda),$$

удовлетворяющее правому краевому условию $\mathcal{P}_n^{(-)}(\lambda) = +\infty$:

$$\begin{split} \mathcal{P}_{n}^{(-)}(\lambda) &= +\infty, \\ \mathcal{P}_{j}^{(-)}(\lambda) &= \frac{d_{j+1} - \lambda - |c_{j+2}|/\mathcal{P}_{j+1}^{(-)}(\lambda)}{|b_{j+1}|} & (n-1 \geq j \geq 1), \\ \mathcal{P}_{0}^{(-)}(\lambda) &= d_{1} - \lambda - |c_{2}|/\mathcal{P}_{1}^{(-)}(\lambda) \; . \end{split}$$

Двусторонняя последовательность Штурма

Так как

$$\mathcal{P}_{j}^{(+)}(\lambda) = \frac{|c_{j+1}|D_{j-1}(\lambda)}{D_{j}(\lambda)},$$

где $D_{j}(\lambda)$ – определитель j-го порядка, то верны следующие утверждения:

- 1) если $\lambda = \lambda_j(T)$ собственное значение матрицы T, то левосторонняя последовательность $\mathcal{P}_0^{(+)}(\lambda), \ \mathcal{P}_1^{(+)}(\lambda), \dots, \mathcal{P}_n^{(+)}(\lambda)$ является также правосторонней последовательностью Штурма.
- 2) если левосторонняя последовательность является также правосторонней $\mathcal{P}_{\rm n}^{(+)}(\lambda) = +\infty,$ то λ собственное значение матрицы ${\rm T}.$

Последовательность $\mathcal{P}_0(\lambda), \mathcal{P}_1(\lambda), \dots, \mathcal{P}_n(\lambda)$, удовлетворяющая одновременно двум краевым условиям

$$\mathcal{P}_0(\lambda) = 0, \qquad \mathcal{P}_n(\lambda) = +\infty,$$

называется двусторонней рациональной последовательностью Щтурма.

Двусторонняя

последовательность

Покомпонентная запись $Tv = \lambda v$

$$\begin{aligned} -(d_1 - \lambda) - \frac{c_2 v_2}{v_1} &= 0, \\ \dots \\ -b_j \frac{v_{j-1}}{v_j} - (d_j - \lambda) - \frac{c_{j+1} v_{j+1}}{v_j} &= 0 \\ \dots \\ -b_n \frac{v_{n-1}}{v_n} - (d_n - \lambda) &= 0. \end{aligned}$$

$$2 \leq j \leq n-1$$

Двусторонняя последовательность

$$\begin{aligned} -(d_1 - \lambda) + \frac{|c_2|}{\mathcal{P}_1(\lambda)} &= 0, \\ \dots \\ |b_j| \mathcal{P}_{j-1}(\lambda) - (d_j - \lambda) + \frac{|c_{j+1}|}{\mathcal{P}_j(\lambda)} &= 0, \\ \dots \\ |b_n| \mathcal{P}_{n-1}(\lambda) - (d_n - \lambda) &= 0. \end{aligned}$$

Покомпонентная запись $Tv = \lambda v$

$$\begin{aligned} -(d_1 - \lambda) + \frac{|c_2|}{\mathcal{P}_1(\lambda)} &= 0, \\ \dots \\ |b_j| \mathcal{P}_{j-1}(\lambda) - (d_j - \lambda) + \frac{|c_{j+1}|}{\mathcal{P}_j(\lambda)} &= 0, \\ \dots \\ |b_n| \mathcal{P}_{n-1}(\lambda) - (d_n - \lambda) &= 0. \end{aligned} \end{aligned} - (d_1 - \lambda) - \frac{c_2 v_2}{v_1} &= 0, \\ \dots \\ -b_j \frac{v_{j-1}}{v_j} - (d_j - \lambda) - \frac{c_{j+1} v_{j+1}}{v_j} &= 0 \\ \dots \\ -b_n \frac{v_{n-1}}{v_n} - (d_n - \lambda) &= 0. \end{aligned}$$

$$2 \leq j \leq n-1$$

$$\mathcal{P}_j(\lambda_k) = \frac{-\mathrm{sign}(c_{j+1})v_j}{v_{j+1}}$$

Таким образом, для определения отношений компонент собственного вектора v, соответствующего определенному $\lambda=\lambda_k$ собственному значению матрицы T, достаточно вычислить левосторонюю последовательность Штурма матрицы T, которая одновременно является двусторонней.

Вычисление двусторонней последовательности

$$\begin{split} S = \begin{pmatrix} d_1 & b_2 & 0 \\ b_2 & d_2 & b_3 \\ & b_3 & d_3 & b_4 \\ & \ddots & \ddots & \ddots \\ & & b_{n-1} & d_{n-1} & b_n \\ 0 & & b_n & d_n \end{pmatrix}, \quad b_j \neq 0 \\ & \lambda_k^{(-)} \leq \lambda_k(S) \leq \lambda_k^{(+)} \\ & \mathcal{P}_1^{(+)^{[c]}} = |b_2| \overline{\oslash} (d_1 \underline{\ominus}_0 \lambda_k^{(+)}), \\ & \dots \\ & \mathcal{P}_j^{(+)^{[c]}} = |b_{j+1}| \overline{\oslash} (d_j \underline{\ominus}_0 \lambda_k^{(+)} \underline{\ominus}_0 |b_j| \overline{\otimes} \mathcal{P}_{j-1}^{(+)^{[c]}}, \\ & \dots \\ & \mathcal{P}_n^{(+)^{[c]}} = 1 \overline{\oslash} (d_n \underline{\ominus}_0 \lambda_k^{(+)} \underline{\ominus}_0 |b_n| \overline{\otimes} \mathcal{P}_{n-1}^{(+)^{[c]}}). \end{split}$$

Вычисление двусторонней последовательности

$$\begin{split} \mathcal{P}_{n-1}^{(-)}{}^{[c]} &= (d_n \overline{\ominus}_0 \lambda_k^{(-)}) \overline{\oslash} |b_n|, \\ \dots \\ \mathcal{P}_{j}^{(-)[c]} &= (d_{j+1} \overline{\ominus}_0 \lambda_k^{(-)} \overline{\ominus}_0 |b_{j+2}| \underline{\oslash} \mathcal{P}_{j+1}^{(-)[c]}) \overline{\oslash} |b_{j+1}|, \\ \dots \\ \mathcal{P}_{0}^{(-)[c]} &= d_1 \overline{\ominus}_0 \lambda_k^{(-)} \overline{\ominus}_0 |b_2| \underline{\oslash} \mathcal{P}_{1}^{(-)[c]}. \end{split}$$

Lemma

Пусть $\varepsilon_1 \geq 2\gamma \max \left\{ \sqrt[4]{\varepsilon_0} \,,\, \sqrt[4]{\frac{2}{\varepsilon_\infty}} \right\},\, \frac{\varepsilon_1}{\gamma} \leq |d_i| \leq 1,\, \frac{\varepsilon_1}{\gamma} \leq |b_j| \leq 1,\, -3 \leq \lambda \leq 3.$ Тогда вычисления последовательности Штурма по формулам не приводят к ПЕРЕПОЛНЕНИЯМ:

$$\varepsilon_0 < \left| \mathcal{P}_j^{(+)^{[c]}} \right| < \varepsilon_\infty, \qquad \varepsilon_0 < \left| \mathcal{P}_j^{(-)^{[c]}} \right| < \varepsilon_\infty.$$

Тригонометрическая параметризация

Если $p_j^{(+)}$ – число неположительных элементов среди $\mathcal{P}_1^{(+)}, \, \mathcal{P}_2^{(+)}, \, \dots, \mathcal{P}_j^{(+)},$ то последовательность

$$\varphi_j^{(+)} = p_j^{(+)} \, \pi + \operatorname{arctan} \mathcal{P}_j^{(+)}$$

называется левосторонней тригонометрической последовательностью Штурма.

Пусть q_j — число неположительных элементов среди $\mathcal{P}_{j+1}^{(-)},\ \mathcal{P}_{j+2}^{(-)},\ \dots,\mathcal{P}_{n-1}^{(-)}$ и $p_j^{(-)}=n-1-q_j,$ тогда последовательность

$$\varphi_j^{(-)} = p_j^{(-)} \pi + \operatorname{arctan} \mathcal{P}_j^{(-)}$$

называется правосторонней тригонометрической последовательностью Штурма.

Свойства тригонометрических последовательностей

График $(0, \varphi_0)$, $(1, \varphi_1)$, $(2, \varphi_2)$,..., $(n-1, \varphi_{n-1})$, (n, φ_n) . Благодаря монотонности графики последовательностей $\varphi_j^{(+)}(\lambda_k^{(+)})$ и $\varphi_j^{(-)}(\lambda_k^{(-)})$ лежат выше графика $\varphi_j(\lambda_n)$.

Lemma (о пересечении графиков)

Пусть $\lambda_k^{(-)} \le \lambda_k \le \lambda_k^{(+)}$. Тогда

$$\varphi_0^{(-)}(\lambda_k^{(-)}) \ge \varphi_0^{(+)}(\lambda_k^{(+)}), \qquad \varphi_n^{(+)}(\lambda_k^{(+)}) \ge \varphi_n^{(-)}(\lambda_k^{(-)}).$$

Пересечение графиков означает, что для некоторого ${\bf J}$ имеют место неравенства

$$\varphi_{J-1}^{(+)}(\lambda_k^{(+)}) \leq \varphi_{J-1}^{(-)}(\lambda_k^{(-)}), \qquad \varphi_{J}^{(+)}(\lambda_k^{(+)}) \geq \varphi_{J}^{(-)}(\lambda_k^{(-)}).$$

Приближенная двусторонняя последовательность

$$\mathcal{P}_1^{(+)}, \mathcal{P}_2^{(+)}, \dots, \mathcal{P}_{J-1}^{(+)}, \mathcal{P}_J^{(-)}, \mathcal{P}_{J+1}^{(-)}, \dots, \mathcal{P}_{n-1}^{(-)}.$$

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ■ めぬぐ

Приближенная двусторонняя последовательность

 $\mathcal{P}_{1}^{(+)}, \mathcal{P}_{2}^{(+)}, \dots, \mathcal{P}_{J-1}^{(+)}, \mathcal{P}_{J}^{(-)}, \mathcal{P}_{J+1}^{(-)}, \dots, \mathcal{P}_{n=1}^{(-)}, \dots \in \mathbb{Z}$

Алгоритм

Дано: трехдиагональная симметричная матрица S размера n, k- номер собственного значения матрицы $1 \le k \le n.$

- 1. Определение границ собственного значения. $\lambda_k^{(-)} < \lambda_k(S) < \lambda_k^{(+)}$.
- 2. Вычисление последовательностей Штурма. Вычислить лево- и правостороннюю последовательности Штурма $\mathcal{P}_{j}^{(+)^{[c]}}$, $\mathcal{P}_{j}^{(-)^{[c]}}$ в граничных точках интервала $(\lambda_{k}^{(-)}, \lambda_{k}^{(+)})$.
- 3. "Склейка".

$$\varphi_j^{(+)[c]} = p_j^{(+)} \, \pi + \arctan \mathcal{P}_j^{(+)[c]}, \qquad \varphi_j^{(-)[c]} = p_j^{(-)} \, \pi + \arctan \mathcal{P}_j^{(-)[c]}.$$

Определить максимальное целое число J такое, что

$$\varphi_{J-1}^{(+)} \stackrel{[c]}{=} \leq \varphi_{J-1}^{(-)} \stackrel{[c]}{=}.$$

Составить последовательность

$$\mathcal{P}_{1}^{(+)[c]}, \, \mathcal{P}_{2}^{(+)[c]}, \, \dots, \, \mathcal{P}_{J-1}^{(+)[c]}, \, \mathcal{P}_{J}^{(-)[c]}, \, \mathcal{P}_{J+1}^{(-)[c]}, \, \dots, \, \mathcal{P}_{n-1}^{(-)[c]}.$$

25 сентября, 2022

Компоненты собственного вектора

Пример. Собственный вектор дискретного оператора Лапласа

Компоненты собственного вектора, соответствующего λ_5 .

			1 /
j	v _j ^[c] (A)	j	v _j ^[c] (A)
1	1,709199794591259310-1	19	$-1,234929566463478410^{-1}$
2	$-1,920269902873142910^{-1}$	20	$-3,803351930748611510^{-2}$
3	1,234935697671146310 ⁻¹	21	3,079871608460075810 ⁻¹
4	$-1,234935698197646010^{-1}$	22	$-3,079871608834020610^{-1}$
5	1,920269904095538710-1	23	3,8033519384512847 10 ⁻²
6	$-1,709199795688076410^{-1}$	24	1,234929566056568010-1
7	$-1,920267173994711410^{-1}$	25	1,9202671752171177 10-1
8	1,370671812837555610-1	26	$-1,370671814673169210^{-1}$
9	3,803302765516631410 ⁻²	27	$-3,803302754035584010^{-2}$
10	$-3,803302758058452910^{-2}$	28	3,8033027657611559 10 ⁻²
11	$-1,370671814673168310^{-1}$	29	1,370671812302886910-1
12	$1,920267175604038510^{-1}$	30	$-1,920267173431776710^{-1}$
13	1,234929565936974910-1	31	$-1,709199795688076110^{-1}$
14	$3,803351938206815010^{-2}$	32	$1,920269904482467010^{-1}$
15	$-3,079871608864756010^{-1}$	33	$-1,234935698875475110^{-1}$
16	$3,079871608460075210^{-1}$	34	$1,234935697790732310^{-1}$
17	$-3,803351926725717610^{-2}$	35	$-1,920269902310201310^{-1}$
18	$-1,234929567141308410^{-1}$	36	1,709199793864486210-1

Невязка уравнения $Av = \lambda v$ порядка 10^{-10} .

Пример. Алгоритм Ланцоша

$$\begin{split} A &= A^* \\ u &\in \mathbb{R} \\ h^{(1)} &= u/\|u\|, \\ d_1 &= (Ah^{(1)}, h^{(1)}), \\ v^{(2)} &= Ah^{(1)} - d_1 h^{(1)}, \\ b_2 &= \|v^{(2)}\|, \\ h^{(2)} &= v^{(2)}/b_2, \text{ если } b_2 \neq 0. \end{split}$$

$$\begin{aligned} d_i &= (Ah^{(i)}, h^{(i)}), \\ v^{(i+1)} &= Ah^{(i)} - d_i h^{(i)} - b_i h^{(i-1)}, \\ War i. \ b_{i+1} &= \|v^{(i+1)}\|, \\ h^{(i+1)} &= v^{(i+1)}/b_{i+1}, \text{ если } b_{i+1} \neq 0. \end{aligned}$$

Алгоритм Ланцоша, результаты расчетов

j	d_i	b_i	j	d_i	b_{j}	j	d_i	b_i	j	d_i	b_i
1	-23.552		51	-186.637	37.960	26	-102.753	42.134	76	-149.955	22.459
2	-66.775	11.251	52	-182.940	38.058	27	-281.951	47.467	77	-343.136	12.252
3	-117.027	41.155	53	-177.415	43.780	28	-160.025	53.119	78	-239.608	12.477
4	-125.815	45.162	54	-88.185	80.587	29	-237.493	57.418	79	-158.245	10.825
5	-125.404	70.378	55	-189.554	64.125	30	-197.959	50.263	80	-215.123	3.412
6	-231.417	77.149	56	-357.927	2.575	31	-224.476	32.581	81	-93.802	53.285
7	-184.780	84.609	57	-238.840	43.220	32	-227.040	55.214	82	-43.036	2.768
8	-241.779	89.594	58	-144.679	36.304	33	-196.498	60.676	83	-218.511	61.454
9	-233.926	70.514	59	-74.052	49.928	34	-210.601	22.953	84	-226.331	88.378
10	-236.845	70.344	60	-235.196	3.200	35	-240.639	24.752	85	-88.226	15.277
11	-203.267	80.781	61	-255.585	8.921	36	-189.674	19.577	86	-372.476	5.618
12	-214.559	87.826	62	-242.241	95.860	37	-208.568	41.002	87	-286.518	0.325
13	-229.170	56.088	63	-73.831	1.527	38	-190.688	4.649	88	-133.341	54.0988
14	-168.062	62.439	64	-184.103	0.559	39	-201.533	40.467	89	-264.016	26.465
15	-234.675	44.736	65	-219.983	114.766	40	-19.531	4.567	90	-60.881	54.409
16	-224.583	53.063	66	-39.319	0.145	41	-351.889	3.359	91	-310.665	3.359
17	-245.480	55.270	67	-204.400	51.433	42	-67.303	62.936	92	-231.031	62.936
18	-251.095	24.465	68	-181.363	91.385	43	-339.143	0.171	93	-234.697	4.240
19	-160.612	8.983	69	-293.575	21.643	44	-80.880	40.666	94	-202.333	24.641
20	-228.718	23.391	70	-363.328	9.826	45	-95.807	3.169	95	-177.568	56.826
21	-19.848	6.540 10 ⁻⁷	71	-210.582	35.702	46	-307.416	48.843	96	-50.854	7.837
22	-48.915	3.438	72	-231.190	17.674	47	-143.836	2.595	97	-137.653	60.527
23	-368.936	29.466	73	-99.648	49.210	48	-248.321	64.396	98	-178.222	3.024
24	-86.202	15.258	74	-181.413	70.516	49	-231.792	4.851	99	-135.094	78.951
25	-330.068	40.360	75	-162.721	33.056	50	-248.922	56.576	100	-254.870	14.074

Собственные значения

j	$\lambda_i(S)$	j	$\lambda_i(S)$	j	$\lambda_i(S)$	j	$\lambda_i(S)$
1	-372.589	26	-278.909	51	-195.999	76	-86.044
2	-372.589	27	-278.909	52	-195.999	77	-85.897
3	-372.589	28	-262.487	53	-168.818	78	-85.897
4	-372.589	29	-262.487	54	-168.807	79	-85.897
5	-372.589	30	-262.487	55	-168.807	80	-85.897
6	-372.589	31	-262.487	56	-168.807	81	-74.105
7	-345.396	32	-262.487	57	-168.796	82	-73.892
8	-345.396	33	-259.098	58	-156.712	83	-73.795
9	-345.396	34	-239.614	59	-156.705	84	-73.795
10	-345.396	35	-239.614	60	-156.705	85	-73.795
11	-345.396	36	-239.614	61	-156.705	86	-73.795
12	-345.396	37	-239.614	62	-152.386	87	-49.329
13	-318.204	38	-235.294	63	-152.385	88	-46.603
14	-318.204	39	-235.294	64	-152.385	89	-46.603
15	-318.204	40	-235.294	65	-152.385	90	-46.603
16	-318.204	41	-235.294	66	-129.712	91	-46.603
17	-318.204	42	-235.040	67	-129.512	92	-46.603
18	-306.102	43	-223.193	68	-129.512	93	-23.552
19	-306.102	44	-223.192	69	-129.512	94	-19.410
20	-306.102	45	-223.192	70	-129.512	95	-19.410
21	-306.102	46	-223.192	71	-113.106	96	-19.410
22	-306.102	47	-223.192	72	-113.090	97	-19.410
23	-278.909	48	-196.012	73	-113.090	98	-19.410
24	-278.909	49	-196.000	74	-113.090	99	-19.410
25	-278.909	50	-195.999	75	-113.090	100	-16.192

Двусторонние последовательности

Собственные векторы

Собственные векторы (логарифмы)

