

To Lift Heavy or Not To

Lift Heavy

A Case Study in Olympic Weightlifting Strategy

Liam Rosengren and Malcolm Gaynor

King of JuCo, Eric Sim (The Athletic)

Table of Contents

Background Introduction of rules and strategy 3 **Logistic Regression/Decision Tree** Models to predict success probability

2

EDA

Diving into the data

4

Markov Chains

Simulating different potential strategies

Previous Research

- "Bayesian modelling of elite sporting performance with large databases" by Jim E. Griffin, Laurenţiu C. Hinoveanu and James G. Hopker
- Analyzed 100m sprinting and weightlifting
- Constructed a Bayesian model of individual performance progression, fitted by Markov chains Monte Carlo
- Specifically analyzed age of peak performance between men and women

Competition Rules

- Broken down by weight classes
- Two different lifts, totals added together
 - snatch
 - o clean and jerk
- Three attempts per lift, heaviest lift counts
- If you fail all three, you do not qualify

Caine Wilkes (AKA The Dragon)

- 36 year old American weightlifter from North Carolina
- Competes in the heaviest weight class (109kg+)
- Competed in the 2020 Tokyo Olympic games (finished 9th)
- Three time Pan-American champion

Caine Wilkes, Team USA

Hopes to compete in Paris in 2024...

Data

Data from the International Weightlifting Results Project (iwrp.net)

Date	Event type P	Dl	Place Nation	B.W	Snatch				Cl&Jerk						
		Place				2	3			2	3				Sincle
2024-03-31	XX		THA	160.08	170.0	175.0	175.0	18	208.0	214.0	221.0	11	384.0	11	388.4
2023-12-04		Doha	QAT	158.62	168.0	171.0	180.0	8	203.0	213.0		6	384.0	7	388.8
2023-09-04			KSA	156.32	165.0	170.0	175.0	18	203.0	211.0	216.0	17	386.0	16	391.6
2022-07-24			COL	148.20	168.0	173.0	174.0		205.0		211.0	3	373.0	4	381.5
2021-07-23	OG		JPN	151.15	173.0	178.0	180.0	12	212.0	217.0	224.0	8	390.0	9	397.6
2021-04-18		Santo Domingo	DOM	151.05	170.0	175.0	176.0	2	205.0	212.0		2	388.0	2	395.6
2019-09-18			THA	146.25	175.0	181.0	187.0	15	215.0	222.0	227.0	18	403.0	16	407.4

EDA- Clean and jerk attempt 1

CJ1.success. min median max mean sd n
0 211 212.0 215 212.6667 2.081666 3
1 125 206.5 221 198.3571 22.413974 28

EDA- Clean and jerk attempt 2

EDA- Clean and jerk attempt 3

CJ3.success. min median max mean sd n
0 135 219.0 236 211.4762 25.20837 21
1 177 217.5 230 209.9000 17.36823 10

Logistic Regression

Logistic Regression Results

- Best model: Clean and Jerk Att. 3 Success
 - o For Caine: 10 successes, 21 failures
 - Includes Att. weights and Success for CJ1 and CJ2
- 'Significant' Improvements!
 - Age at 99.9% level
 - o Bodyweight at 99% level
- Are these sensible?
 - Highly technical movements
 - For UHW class, strategic advantage to higher BW

```
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.67458
                      1.26822 -1.320 0.19968
CJ2a
            0.08098
                      0.06750 1.200 0.24250
CJ2s
            0.00546
                      0.25759
                                0.021 0.98327
CJ1a
           -0.04345
                      0.06410 -0.678 0.50461
CJ1s
           -0.48089
                      0.52633 -0.914 0.37037
CJ3a
           -0.04074
                      0.03169 -1.285 0.21142
                      0.04322 -2.921 0.00769 **
Age
           -0.12622
BW
            0.04714
                      0.01990
                                2.369 0.02659 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```


Ultra Heavyweight (109+ KG) Class

Bodyweight vs Rank

Bodyweight vs Total Weight Lifted

How does Caine Wilkes compare?

Caine's BW vs TWL

Caine's BW vs Place Finished (Rank)

Decision Tree

Decision Tree Results

- Only 3 variables taken into account:
 - Age (years)
 - Body weight in kilograms (BW)
 - Weight attempted in kilograms (CJa)
- Does not consider previous lifts that day, so attempt 1 is treated the same as attempt 3

Markov Chains

What is a Markov chain?

- Probabilistic modeling where the current state depends completely on the one previous state
- Can be represented as a matrix or as an image
- To calculate the probability distribution after n steps, take the initial position of the system, multiplied by the transition matrix to the power of n
 - The initial position is just which state you start in
- With initial position x and transition matrix P, you calculate the probability distribution after n steps with:

Simple Markov chain example

WEATHER TODAY	P(RAINY)	P(CLOUDY)	P(SUNNY)
rainy	0.6	0.3	0.1
cloudy	0.5	0.3	0.2
sunny	0.2	0.1	0.7

Markov chain for Caine Wilkescurrent strategy

- Each state is an attempt
- Transition probabilities calculated using decision tree model
- Assuming that if he fails a rep, he will try the exact same weight again
- If there is no arrow between two states, that transition probability is zero

Markov chain for Caine Wilkesmore aggressive strategy

- Each state is an attempt
- Transition probabilities calculated using decision tree model
- Assuming that if he fails a rep, he will try the exact same weight again
- If there is no arrow between two states, that transition probability is zero

Markov chain for Caine Wilkeshourglass strategy

- Each state is an attempt
- Transition probabilities calculated using decision tree model
- Assuming that if he fails a rep, he will try the exact same weight again
- If there is no arrow between two states, that transition probability is zero

Markov chain for Caine Wilkes-Gold medal strategy

- Each state is an attempt
- Transition probabilities calculated using decision tree model
- Assuming that if he fails a rep, he will try the exact same weight again
- If there is no arrow between two states, that transition probability is zero

Computations

• Translate the Markov Chains into the following Transition Matrices:

Current strategy

.05	.95	0	0
0	.62	.38	0
0	0	.80	.20
0	0	0	1

Aggressive strategy

.62	.38	0	0
0	.80	.20	0
0	0	.80	.20
0	0	0	1

Hourglass strategy

.05	.95	0	0	
0	.80	.20	0	
0	0	.80	.20	
0	0	0	1	

Gold medal strategy

.05	.95	0	0
0	.80	.20	0
0	0	.80	.20
0	0	0	1

Beginning at the initial state, compute 3 iterations (3 competition attempts)

Computation Results

Weight lifted	Current Strategy	Aggressive Strategy	Hourglass Strategy	Gold medal Strategy
0 kg (failed all attempts)	0.000125	0.238	0.000125	0.512
209 kg	0.397	0	0.648	0
217 kg	0.531	0.578	0	0
224 kg	0.072	0.169	0.314	.384
230 kg	0	0.0152	0.038	0.096
230+ kg	0	0	0	0.008

Conclusions

Bigger is Better; But maybe not for Caine

For 109+ Kg weightlifters, clear benefit to increased bodyweight, Wilkes' correlation was inverse

Riskier, nontraditional strategies could pay off

Plus. he was a double major in **English and Art at** Old Dominion. **Check it out!**

Future Work

Expand our analysis to all weightlifters

Caine Wilkes is a unique and interesting case study

Consider more robust strategies after rep failure

Lifters do not have to try the same weight again if they fail, they could (and usually do) increase or decrease

Look into more variables for predicting success

Our decision tree only considers age, body weight, and attempts, and ignores factors such as previous successes and failures that day

