OS 1/16

$Reagan\ Shirk$

January 16, 2020

Computer Organization

- We should know all of the basic elements of a computer
 - Processor
 - * like the brain, controls the operations of the computer
 - \ast performs data processing functions
 - * nickname: CPU
 - Main memory
 - * Stores data and programs
 - * volatile (not permanent, lost after shutdown)
 - * nickname: real memory
 - I/O modules
 - * monitor
 - * keyboard
 - * mouse
 - * microphone
 - * camera
 - * storage
 - * communication
 - System bus
 - * provides communication for all components

CPU

- PC: program counter
 - Keeps track of which instruction you're on; has pointer to next instruction
- IR: instruction register
 - The instruction pointed to by the PC is loaded into the IR
- ALU: Arithmetic logic unit
 - does math- arithmetic based on the instruction
- MAR: memory address register
- MBR: memory buffer register
- I/O address register
- I/O buffer register
- These are called processors mainly because of the ALU thing, each machine has multiple
- Microprocessor
 - General purpose processor on a single chip
- GPU: Graphics Processing Unit
 - What makes a GPU different?
 - * Instead of having large system with memory on the outside, they have SIMD
 - SIMD: Single instruction multiple data

- * A grid where each cell in the grid has a piece of data associated with it, you can execute one instruction for each piece of data
- * Allows for one instruction to be sent out across multiple pieces of data, similar to parallel programming
- * ++MatrixMath is relavent here somehow...?
- DSP: Digital Signal Processing
 - * On the rave in 90's telecom business
 - * Allows small streaming operations specialized for a chip
 - * Seen in digital cameras, motems, any type of speech translator/synthesis, encryption stuff
- 2016 TPU: Tensor Processing Unit
 - * Grant's two cents: have some level of competence in machine learning and linear algebra for a successful career
 - * tensor: n-dimensional matrix (matrix is a 2 dimensional tensor)
 - * TPUs are similar to GPUs but they're optimized for bulk processing operations and matrix multiplication
- SoC: System on a Chip
 - * You have everything one one chip
 - · CPU, GPU, memory, I/O, cache (maybe not all of these but most)

Instructions

- Stages in a program:
 - Fetch: retreive next instruction, contains a start command
 - Execute: processor executes, contains a halt command
- Steps:
 - The processor fetches an instruction from memory, and at that moment:
 - PC counter is incremented
 - Fetched instruction is loaded onto the IR
 - * processor-memory
 - * processor I/O
 - * data processing
 - * control
- Quick aside:
 - $-10011_2 = 19_{10}$
 - -0 & 1 = 0
 - -0 & 0 = 0
 - -1 & 0 = 0
 - -1 & 1 = 1
 - -0 or 0 = 0
 - -0 or 1 = 1
 - -1 or 0 = 1
 - -1 or 1 = 1
 - -0 xor 0 = 0
 - -0 xor 1 = 1
 - -1 xor 0 = 1
 - -1 xor 1 = 0
 - $-2^1=2$
 - $-2^{10} = 1024 = 1K$
 - $-2^{20} = 1048576$
 - $-2^{30} = 1$ billion something, G
 - $-2^{40} = T$
 - $-\ 2^{12} = 4096 = 2^2 \times 2^{10} = 4K$
 - We should know all powers of 2 up through 2^{10} as well as the ones listed above

- Working Instruction Set Examples
 - What is the format of an instruction in the IR?
 - * I have a drawing of this I'll try to remember to add
 - In the integer format, what does the S mean?
 - * It is the sign of the integer (+/-)
 - · 1 is negative, 0 is positive
 - * If you have an IR with [1|0|1|1], the sign is negative and the magnitude is 3
 - Least significant bit is always the one all the way to the left (in a picture)
 - 1's and 2's complements: what's the difference?
 - * -1 in 1's complement: 1110
 - * -1 in 2's complement: 1111
 - * Need to make sure we know 1's and 2's complements
 - Remember: we have the program counter (PC), instruction register (IR), and accumulator (AC)
 - Operations:
 - * $0001 \rightarrow \text{load from AC}$
 - * $0010 \rightarrow \text{store AC memory}$
 - * $0101 \rightarrow \text{add AC from memory}$
 - Memory:
 - * 300: 1|9|4|0
 - * 301: 5|9|4|1
 - * 302: 2|9|4|1
 - * 940: 0|0|0|3
 - * 941: 0|0|0|2
 - How do we run the computer?
 - * PC = 300, we need a fetch operation
 - · We take the value of memory slot 300 and load it into the IR
 - · IR = 1940
 - * PC = 301, look at instruction register to find instruction from OpCode, in this case we need to lead from accumulator
 - · AC = 0003
 - \cdot 0003 was taken from memory slot 940 but I don't think I understand why, I took comporg a year ago and I was bad at it then too
 - · Fetch 301 from memory after the execute
 - · IR = 5941
 - * PC = 302, look at instruction register to find instruction from OpCode, we need to add AC from memory
 - $\cdot\,$ Last three digits of IR are 941, so we go to that spot in memory and add it to what is in the accumulator
 - \cdot AC = 0003, 941 = 0002, together = 0005
 - · AC = 0005
 - * PC = 303
 - · IR = 2941, store AC in memory
 - · Store 0005 in 941