Рассмотрим функцию $z=f(x,y)+100=(x-6)^2+(y+8)^2$. Понятно, что эта функция достигает минимума и максимума в тех же точках, что и f(x,y). Видно, что z постоянна на окружности с центром в точке (6,-8) и увеличивается с увеличением радиуса окружности, поэтому минимум достигается в ближней точке касания этой окружности с окружностью $x^2+y^2=5^2$, а максимум — в дальней.

Заметим, что через точки касания окружностей проходит прямая, соединяющая центры окружностей. Поэтому, достаточно найти точки пересечения окружности $x^2+y^2=5^2$ с прямой $y=-\frac{8x}{6}$. Получим (3,-4) и (-3,4). Им соответствуют значения z=25 и z=225. Тогда $\min(f(x,y))=-75$, а $\max(f(x,y))=125$.