MA 1140: Lecture 7 Linear transformations and matrices

Dipankar Ghosh (IIT Hyderabad)

February 22, 2019

Isomorphism of vector spaces

Definition

A linear map $T:V\to W$ is said to be an **isomorphism** if there is a linear map $S:W\to V$ such that

 $S \circ T = 1_V : V \to V$ (identity map) and $T \circ S = 1_W : W \to W$. If $T : V \to W$ is an isomorphism, we say that V and W are isomorphic, and we write $V \cong W$.

Example

Let A be an $n \times n$ matrix over \mathbb{R} . Consider $A : \mathbb{R}^n \to \mathbb{R}^n$ as a linear map. When does it invertible?

Answer: When there is an inverse linear map $B: \mathbb{R}^n \to \mathbb{R}^n$ such that $A \circ B = 1_{\mathbb{R}^n}$ and $B \circ A = 1_{\mathbb{R}^n}$, i.e., when there is an $n \times n$ matrix B over \mathbb{R} such that $AB = I_n$ and $BA = I_n$, i.e., when A is an invertible matrix.

Isomorphism of vector spaces

Theorem

Let $T: V \to W$ be a linear map. The following are equivalent:

- ① T is an isomorphism.
- 2 T is bijective (i.e., as a set map, it is injective and surjective).

Proof.

 $(1) \Rightarrow (2)$: Since T is an isomorphism, there is a linear map

 $S:W\to V$ such that $S\circ T=1_V$ and $T\circ S=1_W$.

Let T(u) = T(v) for some $u, v \in V$.

Apply S on this equality, to get u = v. So T is injective.

For surjectivity, note that T(S(w)) = w for every $w \in W$.

 $(2) \Rightarrow (1)$: Since T is bijective, there is an inverse SET map

 $S: W \to V$ such that $S \circ T = 1_V$ and $T \circ S = 1_W$.

All we need to show that $S: W \to V$ is a linear map.

You may try on your own. Otherwise, see the next slide.

Proof of the theorem contd...

```
(2) \Rightarrow (1): ... Let w_1, w_2 \in W. Want to show S(w_1 + w_2) = S(w_1) + S(w_2). Set v_1 := S(w_1) and v_2 := S(w_2). Hence, since T is inverse of S (as a set map), it follows that T(v_1) = w_1 and T(v_2) = w_2. So T(v_1 + v_2) = w_1 + w_2 because T is linear. Therefore S(w_1 + w_2) = v_1 + v_2 = S(w_1) + S(w_2). Similarly, one can prove that S(cw) = cS(w) for every scalar c \in \mathbb{R} and every vector w \in W.
```

Conditions for a linear transformation to be isomorphism

$\mathsf{Theorem}$

Let $T: V \to V$ be a linear map (or linear operator), where $\dim(V) = n < \infty$. Then the following statements are equivalent:

- T is an isomorphism (see the definition in the 1st slide).
- 2 T is bijective (as a set map).
- T is injective.
- Ker(T) = 0, i.e., { $T(v) = 0 \Rightarrow v = 0$ }, i.e., Null(T) = 0.
- **o** T is surjective.

Proof. We already proved $(1) \Leftrightarrow (2)$. The following implications ar trivial: $(2) \Rightarrow (3) \Rightarrow (4)$.

- (4) \Rightarrow (5): Since Null(T) = 0, nullity(T) = dim(Null(T)) = 0. Hence, by Rank-Nullity Theorem, rank(T) = dim(V).
- So Image(T) = V, i.e., T is surjective.
- (5) \Rightarrow (2): Since T is surjective, $\operatorname{rank}(T) = \dim(V)$, hence $\operatorname{nullity}(T) = 0$, i.e., $\operatorname{Ker}(T) = 0$. Then, by linearity, T is injective.

Conditions for a square matrix to be invertible

Theorem

Let A be an $n \times n$ matrix over \mathbb{R} . The following are equivalent:

- A is invertible.
- 2 The homogeneous system AX = 0 has only the trivial solution.
- **5** For every $b \in \mathbb{R}^n$, the system AX = b has a solution.
- \mathbb{R}^n is spanned by the column vectors of A.
- The column vectors of A are linearly independent.
- **6** \mathbb{R}^n is spanned by the row vectors of A.
- The row vectors of A are linearly independent.

Proof. Consider A as a linear map $A: \mathbb{R}^n \to \mathbb{R}^n$. Then (2) is same as $\operatorname{Null}(A) = 0$. Moreover (3) is same as A is surjective. Thus, by the previous theorem, we have (1), (2) and (3) are equivalent. Since AX is nothing but a linear combination of column vectors of A, it follows that (3) and (4) are equivalent.

Conditions for a square matrix to be invertible contd...

Theorem

Let A be an $n \times n$ matrix over \mathbb{R} . The following are equivalent:

- A is invertible.
- 2 The homogeneous system AX = 0 has only the trivial solution.
- **3** For every $b \in \mathbb{R}^n$, the system AX = b has a solution.
- \mathbb{R}^n is spanned by the column vectors of A.
- The column vectors of A are linearly independent.
- \bullet \mathbb{R}^n is spanned by the row vectors of A.
- The row vectors of A are linearly independent.

Proof. We already proved $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$.

- (4) \Leftrightarrow (5) and (6) \Leftrightarrow (7): Since dim(\mathbb{R}^n) = n, any collection of n vectors in \mathbb{R}^n is linearly independent if and only if it spans \mathbb{R}^n .
- (4) \Leftrightarrow (6): It follows from the above equivalences "(4) \Leftrightarrow (5) and
- (6) \Leftrightarrow (7)" and the fact that column rank(A) = row rank(A).

Ordered basis and coordinates

- Let V be a finite dimensional vector space, and $n = \dim(V)$.
- A finite sequence $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ of vectors is called an **ordered basis** of V if \mathcal{B} is linearly independent and spans V.
- Let $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ be an ordered basis of V, i.e., \mathcal{B} is a basis of V, together with the specified ordering.
- Let $v \in V$. Then there is a unique *n*-tuple $(x_1, \ldots, x_n) \in \mathbb{R}^n$ such that $v = x_1v_1 + \cdots + x_nv_n$. Why? Because \mathcal{B} is a basis.
- The *n*-tuple (x_1, \ldots, x_n) is called the **coordinate** of v with respect to the ordered basis \mathcal{B} if $v = x_1v_1 + \cdots + x_nv_n$.
- We denote the coordinate of v with respect to \mathcal{B} by $[v]_{\mathcal{B}}$.

A vector space over $\mathbb R$ of dimension n is isomorphic to $\mathbb R^n$

- Let V be a finite dimensional vector space, and $n = \dim(V)$.
- We will show that $V \cong \mathbb{R}^n$.
- Consider an ordered basis $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ of V.
- Define a map $T: V \to \mathbb{R}^n$ as follows:

$$T: V \longrightarrow \mathbb{R}^n$$

$$v \mapsto [v]_{\mathcal{B}} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

- Check that T is well defined. Moreover, T is a linear map.
- Is it an isomorphism?
 Ans: Yes, because T is bijective (prove it).
- Therefore $V \cong \mathbb{R}^n$.

Row rank and column rank

Let A be an $m \times n$ matrix over \mathbb{R} .

Definition

- The subspace of \mathbb{R}^m generated by all columns (column vectors) of A is called the **column space** of A.
- The dimension of the column space of A is called column rank of A.
- The subspace of \mathbb{R}^n generated by all rows (row vectors) of A is called the **row space** of A.
- The dimension of the row space of A is called **row rank** of A.

$\mathsf{Theorem}$

For an $m \times n$ matrix A over \mathbb{R} , row rank(A) = column rank(A).

Some observations to prove: row rank = column rank

- **①** Consider A as a linear map $A: \mathbb{R}^n \to \mathbb{R}^m$.
- ② An element of $\operatorname{Image}(A)$ looks like AX for some $X \in \mathbb{R}^n$.
- 3 But $AX = x_1A_1 + \cdots + x_nA_n$, where A_i is the *i*th column of A.
- Therefore Image(A) = Span{ $A_1, ..., A_n$ } = Column Sp.(A).
- Hence $rank(A) := dim(Image(A)) = column \ rank(A)$.
- **o** Rank-nullity theorem: $rank(A) + nullity(A) = dim(\mathbb{R}^n)$.
- **7** Therefore column rank(A) = n nullity(A).

So it is enough to show that

$$row rank(A) = n - nullity(A).$$

Elementary row operations preserve row space, hence rank

Theorem

Let A and B be row equivalent. Then A and B have the same row space. In particular, row rank(A) = row rank(B).

Proof. Note that A and B have the same order (say, $m \times n$). Let $R_1, \ldots, R_m \in \mathbb{R}^n$ be the row vectors of A. We observe that the elementary row operations preserve the row space:

- Effect of the **1st type** elementary row operation, e.g., $\operatorname{Span}\{R_1, R_2, R_3, \dots, R_m\} = \operatorname{Span}\{R_2, R_1, R_3, \dots, R_m\}.$
- ② Effect of the **2nd type** elementary row operation, e.g., $\operatorname{Span}\{R_1, R_2, R_3, \dots, R_m\} = \operatorname{Span}\{R_1, c \cdot R_2, R_3, \dots, R_m\}$, where $c \neq 0$ (important!).
- **③** Effect of the **3rd type** elementary row operation, e.g., $\operatorname{Span}\{R_1, R_2, R_3, \dots, R_m\} = \operatorname{Span}\{R_1, R_2 c \cdot R_1, R_3, \dots, R_m\}$, where $c \in \mathbb{R}$.

Elementary row operations preserve the nullity of a matrix

- **1** Let A and B be row equivalent matrices over \mathbb{R} .
- ② Then AX = 0 and BX = 0 are equivalent system.
- Hence AX = 0 and BX = 0 have the same solution set, i.e., Null(A) = Null(B).
- Therefore $\operatorname{nullity}(A) = \operatorname{nullity}(B)$.

Proof of "row rank(A) = n - nullity(A)"

- **1** Let A be an $m \times n$ matrix over \mathbb{R} .
- 2 Then A is row-equivalent to a row-reduced echelon matrix B.
- Since row rank(A) = row rank(B) and nullity(A) = nullity(B), it is enough to prove that

$$row rank(B) = n - nullity(B).$$

- 4 Let r be the number of non-zero rows of B.
- The proof is complete once we show that $\operatorname{row\ rank}(B) = r$ and $\operatorname{nullity}(B) = n r$.
- I leave it as an exercise to verify the last statement.

Example: row rank(A) = n - nullity(A)

$$A = \begin{pmatrix} 1 & -2 & 1 & 1 \\ 2 & 1 & 1 & 3 \\ 0 & 5 & -1 & 1 \end{pmatrix} \text{ is row-equivalent to } B = \begin{pmatrix} 1 & 0 & \frac{3}{5} & \frac{7}{5} \\ 0 & 1 & -\frac{1}{5} & \frac{1}{5} \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

- We shall show that $\operatorname{row\ rank}(B) = 4 \operatorname{nullity}(B)$.
- It can be observed that row rank(B) is the number of non-zero rows of B, i.e., the number of pivots of B.
 So row rank(B) = 2.
- Consider the system BX = 0. The pivot variables are x_1, x_2 . The free variables are x_3 and x_4 .

$$x_1 = -\frac{3}{5}x_3 - \frac{7}{5}x_4$$
$$x_2 = \frac{1}{5}x_3 - \frac{1}{5}x_4$$

 We see that nullity(B) is the number of free variables, because ...

How to solve BX = 0 when B is row-reduced echelon?

- Consider $B = \begin{pmatrix} 1 & 0 & \frac{3}{5} & \frac{f}{5} \\ 0 & 1 & -\frac{1}{5} & \frac{1}{5} \\ 0 & 0 & 0 & 0 \end{pmatrix}$, a row-reduced echelon matrix.
- The corresponding homogeneous system can be written as

$$\mathbf{x_1} = -\frac{3}{5}x_3 - \frac{7}{5}x_4$$
$$\mathbf{x_2} = \frac{1}{5}x_3 - \frac{1}{5}x_4$$

The solutions of the system are given by

$$\begin{pmatrix} -\frac{3}{5}x_3 - \frac{7}{5}x_4 \\ \frac{1}{5}x_3 - \frac{1}{5}x_4 \\ x_3 \\ x_4 \end{pmatrix} = x_3 \begin{pmatrix} -3/5 \\ 1/5 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -7/5 \\ -1/5 \\ 0 \\ 1 \end{pmatrix}$$

• $\operatorname{nullity}(B) = \dim(\operatorname{Null}(B)) = \text{the number of free variables}.$

Thank You!