Wykład 3

Twierdzenie 3.1 Zbiór rozwiązań układu równań liniowych nad ciałem K jest podprzestrzenią K^n wtedy i tylko wtedy gdy układ jest jednorodny.

Twierdzenie 3.2 Jeżeli W_i , $i \in I$ jest zbiorem podprzestrzeni to $\bigcap_{i \in I} W_i$ też jest podprzestrzenią.

Definicja 3.3 Niech X będzie podzbiorem przestrzeni V zaś $T = \{W \mid W \text{ jest podprzestrzenią } V \text{ zawierającą } X\}$. Symbolem

$$\lim(X) = \bigcap_{t \in T} W_t$$

oznaczać będziemy podprzestrzeń rozpiętą przez zbiór X.

Definicja 3.4 Niech V będzie przestrzenią liniową nad ciałem K. Podzbiór $B \subset V$ nazywamy bazą przestrzenią V jeżeli jest minimalnym podzbiorem rozpinającym V. To znaczy:

- 1) $\lim B = V$.
- 2) $\forall_{\alpha \in B} \ \text{lin} (B \setminus \{\alpha\}) \neq V$.

Definicja 3.5 Niech V będzie przestrzenią liniową nad ciałem K i niech $\alpha_1, \alpha_2, ..., \alpha_n \in V$. Kombinacją liniową wektorów $\alpha_1, \alpha_2, ..., \alpha_n$ o współczynnikach $a_1, a_2, ..., a_n \in K$ nazywamy wektor $\beta = a_1\alpha_1 + a_2\alpha_2 + ... + a_n\alpha_n = \sum_{i=1}^n a_i\alpha_i$.

Twierdzenie 3.6 Podprzestrzeń lin(X) jest zbiorem kombinacji liniowych wektorów z X lub $lin(X) = \{\theta\}$ gdy $X = \emptyset$.

Definicja 3.7 Niech V przestrzenią liniową nad ciałem K. Podzbiór $X \subset V$ nazywamy liniowo niezależnym jeżeli dla każdego ciągu $\alpha_1, \alpha_2, ..., \alpha_n$ różnych wektorów z X jedynym rozwiązaniem równania $x_1\alpha_1 + x_2\alpha_2 + ... + x_n\alpha_n = \theta$ jest $x_1 = 0 = x_2 = ... = x_n$.

Uwaga. Jeżeli $X = \emptyset$ to X jest liniowo niezależny i lin $X = \{\theta\}$.

Twierdzenie 3.8 Niech B będzie uporządkowanym podzbiorem przestrzeni liniowej V. Wówczas równoważne są warunki:

- 1) B jest bazą.
- 2) B jest zbiorem liniowo niezależnym rozpinającym V.
- 3) B jest maksymalnym zbiorem liniowo niezależnym w V.
- 4) Każdy wektor z V można jednoznacznie zapisać jako kombinację liniową wektorów z B.

Przykład 3.9 Bazą przestrzeni K^n nad K jest zbiór: $B = \{e_1 = (1, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, 0, \dots, 0, 1)\}.$ Baza ta zwana jest bazą standardową.

Przykład 3.10 Szukamy bazy W przestrzeni rozwiązań układu równań:

$$U = \begin{cases} x_1 + 3x_2 + x_3 - x_4 = 0\\ 2x_1 + 7x_2 + 3x_3 - 5x_4 = 0 \end{cases}$$

 $Budujemy\ macierz\ układu\ i\ sprowadzamy\ do\ postaci\ schodkowej\ zredukowanej.$

$$U = \begin{bmatrix} 1 & 3 & 1 & -1 \\ 2 & 7 & 3 & -5 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 3 & 1 & -1 \\ 0 & 1 & 1 & -3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & -2 & 5 \\ 0 & 1 & 1 & -3 \end{bmatrix}$$

 $U = \begin{bmatrix} 1 & 3 & 1 & -1 \\ 2 & 7 & 3 & -5 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 3 & 1 & -1 \\ 0 & 1 & 1 & -3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & -2 & 5 \\ 0 & 1 & 1 & -3 \end{bmatrix}$ $Parametrami \ sq \ zmienne \ x_3 \ i \ x_4. \ Wracamy \ do \ układu \left\{ \begin{array}{c} x_1 - 2x_3 + 5x_4 = 0 \\ x_2 + x_3 - 3x_4 = 0 \end{array} \right.$

 $i \ wyliczamy \left\{ \begin{array}{l} x_1 = 2x_3 - 5x_4 \\ x_2 = -x_3 + 3x_4 \end{array} \right. .$

Zatem każde rozwiązanie ma postać: $(2x_3 - 5x_4, -x_3 + 3x_4, x_3, x_4) =$ $(2x_3, -x_3+, x_3, 0) + (-5x_4, +3x_4, 0, x_4) = x_3(2, -1, 1, 0) + x_4(-5, 3, 0, 1).$

 $Bazq\ jest\ zbi\'{o}r\ B=\{(2,-1,1,0),(-5,3,0,1)\}.$ $Uzasadnienie:\ Ka\'{z}de$ rozwiązanie jest kombinacją liniową wektorów z B i zbiór B jest liniowo nieza $le\dot{z}ny.$

Uwaga Powyższy algorytm zawsze daje bazę przestrzeni rozwiązań.

Twierdzenie 3.11 Niech $X = \{x_1, x_2, \dots, x_n\}$ będzie skończonym zbiorem zaś K ciałem. Wówczas jedną z baz przestrzeni V wszystkich funkcji z w K jest zbiór $B = \{e_1, e_2, \dots, e_n\}$, gdzie e_i jest funkcją określoną wzorem:

$$e_j(x_i) = \left\{ \begin{array}{l} 1, \ i = j \\ 0, \ i \neq j \end{array} \right.$$

Wniosek 3.12 Bazą przestrzeni macierzy K_t^n nad K jest zbiór $B = \{e_{i,j} \mid i = 1, 2, \dots, t, j = 1, 2, \dots, n\}, \ \textit{gdzie} \ e_{i,j} \ \textit{jest macierzą mającą}$ same zera z wyjątkiem jedynki w i-tym wierszu i j-tej kolumnie. Elementy tej bazy nazywamy jedynkami macierzowymi.

Twierdzenie 3.13 Każda przestrzeń ma bazę.

Lemat 3.14 (Steinitza) Niech $B = (\alpha_1, \alpha_2, ..., \alpha_n)$ będzie bazą przestrzeni liniowej V nad ciałem K. Niech $\beta_1, \beta_2, ..., \beta_t$ będzie ciągiem liniowo niezależnym. Wówczas:

- 1) $t \leq n$.
- 2) $Ciaq \beta_1, \beta_2, ..., \beta_t$ można uzupełnić do n-elementowej bazy przestrzeni V $pewnymi\ wektorami\ z\ B.$

Twierdzenie 3.15 Dowolne dwie bazy przestrzeni V są równoliczne.

Definicja 3.16 Wymiarem przestrzeni V nad K nazywamy moc dowolnej $bazy \ i \ oznaczamy \ dim_K \ V \ lub \ dim \ V.$

Lemat 3.17

Niech $\mathcal{A} = (\alpha_1, \alpha_2, ..., \alpha_n)$ będzie ciągiem wektorów z przestrzeni V. Niech $\mathscr{B} = (\beta_1, \beta_2, ..., \beta_n)$ będzie ciągiem powstałym z \mathscr{A} przez operacje elementarne. Wówczas:

- 1) $\lim \mathscr{A} = \lim \mathscr{B}$.
- 2) $Ciag \mathscr{A} jest liniowo niezależny \Leftrightarrow ciąg \mathscr{B} jest liniowo niezależny,$
- 3) $Ciaq \mathscr{A} jest baza V \Leftrightarrow ciaq \mathscr{B} jest baza V$.

Lemat 3.18

Niech $\mathscr{A}=(\alpha_1,\alpha_2,...,\alpha_n)$ bęazie ciągiciii wome pisujemy te wektory w postaci macierzy $M=\begin{bmatrix} \alpha_1\\ \alpha_2\\ \vdots\\ \alpha_n \end{bmatrix}$. Jeżeli macierz M jest

w postaci schodkowej to niezerowe wektory z ciągu A tworzą zbiór liniowo niezależny.

Algorytm szukania bazy przestrzeni $\lim \mathscr{A}$.

- 1) Zapisujemy ciąg $\mathscr{A} = (\alpha_1, \alpha_2, ..., \alpha_n)$ w postaci macierzy M.
- 2) Operacjami elementarnymi sprowadzamy M do postaci schodkowej.
- 3) Niezerowe wiersze otrzymanej macierzy tworzą bazę $\lim \mathscr{A}$.

Przekształcenia liniowe.

Definicja 3.19 Niech V i W będą przestrzeniami nad tym samym ciałem K. $Przekształcenie\ f:V\to W\ nazywamy\ liniowym\ jeżeli\ zachowuje\ działania.$ To znaczy:

- 1) $f(\theta_V) = \theta_W$.
- 2) $\forall_{\alpha,\beta\in V} f(\alpha+\beta) = f(\alpha) + f(\beta)$.
- 3) $\forall_{\alpha \in V} \ \forall_{r \in K} \ f(r\alpha) = rf(\alpha)$.

Twierdzenie 3.20 Niech $f: V \to W$ będzie przekształceniem przestrzeni liniowych nad tym samym ciałem K. Wówczas równoważne są warunki:

- 1) f jest przekształceniem liniowym.
- 2) f zachowuje kombinacje liniowe.
- 3) $\forall_{\alpha,\beta \in V} \ \forall_{r,s \in K} \ f(r\alpha + s\beta) = rf(\alpha) + sf(\beta)$.