机器学习导论 习题五

学号, 姓名, 邮箱 2024 年 6 月 18 日

作业提交注意事项

- 1. 作业所需的 LaTeX 及 Python 环境配置要求请参考: [Link];
- 2. 请在 LaTeX 模板中第一页填写个人的学号、姓名、邮箱;
- 3. 本次作业需提交的文件与对应的命名方式为:
 - (a) 作答后的 LaTeX 代码 HW5.tex;
 - (b) 由 (a) 编译得到的 PDF 文件 HW5.pdf;
 - (c) 第四题 AdaBoost 代码 AdaBoost.py;
 - (d) 第四题 Random Forest 代码 RandomForest.py;
 - (e) 第四题绘图代码 main.py.

请将以上文件**打包为 学号___姓名.zip** (例如 221300001 张三.zip) 后提交;

- 3. 若多次提交作业,则在命名 .zip 文件时加上版本号,例如 221300001_张三 _v1.zip"(批改时以版本号最高的文件为准);
- 4. 本次作业提交截止时间为 6 月 11 日 23:59:59. 未按照要求提交作业,提交作业格式不正确,作业命名不规范,将会被扣除部分作业分数;除特殊原因(如因病缓交,需出示医院假条)逾期未交作业,本次作业记 0 分;如发现抄袭,抄袭和被抄袭双方成绩全部取消;
- 5. 学习过程中, 允许参考 ChatGPT 等生成式语言模型的生成结果, 但必须在可信的信息源处核实信息的真实性; **不允许直接使用模型的生成结果作为作业的回答内容**, 否则将视为作业非本人完成并取消成绩;
- 6. 本次作业提交地址为 [Link], 请大家预留时间提前上交, 以防在临近截止日期时, 因网络等原因无法按时提交作业.

1 [25pts] Naive Bayesian

朴素贝叶斯是一种经典的生成式模型. 请仔细学习《机器学习》第七章 7.3 节, 并完成下题.

														14	
$X^{(1)}$	1	1	1	2	2	2	2	3	3	3	3	3	3	3	3
$X^{(2)}$	S	\mathbf{M}	L	\mathbf{S}	\mathbf{M}	L	\mathbf{S}	\mathbf{M}	L	\mathbf{S}	\mathbf{M}	\mathbf{L}	\mathbf{S}	\mathbf{M}	${\bf L}$
Y	1	1	-1	1	-1	-1	1	1	1	-1	1	1	-1	1	1

- (1) **[10pts]** 使用表 1的数据训练朴素贝叶斯模型. 给定新的输入 $x = (2, M)^{\top}$, 试计算 $\mathbb{P}(y = 1|x)$ 以及 $\mathbb{P}(y = -1|x)$, 并判断该样本应当被分为哪一类.
- (2) **[10pts]** 若使用 "拉普拉斯修正" 训练模型, 对于新输入 $x = (2, M)^{\top}$, 试计算此时的 $\mathbb{P}_{\lambda}(y = 1|x)$ 以及 $\mathbb{P}_{\lambda}(y = -1|x)$, 并判断此时该样本应当被分为哪一类.
- (3) [**5pts**] 根据以上结果, 试讨论在朴素贝叶斯模型中, 使用"拉普拉斯修正"带来的好处与影响.

Solution. (1) 首先, 由 $P(Y = c_k) = \frac{\sum_{i=1}^{N} 1(y_i = c_k)}{N}$, 计算各个类别的先验概率:

$$\begin{cases} P(Y=1) = \frac{10}{15} = \frac{2}{3} \\ P(Y=-1) = \frac{5}{15} = \frac{1}{3} \end{cases}$$

计算 Y = 1 时的条件概率:

$$\begin{cases} P\left(X^{(1)} = 1 \mid Y = 1\right) = \frac{2}{10} = \frac{1}{5} \\ P\left(X^{(1)} = 2 \mid Y = 1\right) = \frac{2}{10} = \frac{1}{5} \\ P\left(X^{(1)} = 3 \mid Y = 1\right) = \frac{6}{10} = \frac{3}{5} \\ P\left(X^{(2)} = S \mid Y = 1\right) = \frac{3}{10} \\ P\left(X^{(2)} = M \mid Y = 1\right) = \frac{4}{10} = \frac{2}{5} \\ P\left(X^{(2)} = L \mid Y = 1\right) = \frac{3}{10} \end{cases}$$

计算 Y = -1 时的条件概率:

$$\begin{cases} P\left(X^{(1)} = 1 \mid Y = -1\right) = \frac{1}{5} \\ P\left(X^{(1)} = 2 \mid Y = -1\right) = \frac{2}{5} \\ P\left(X^{(1)} = 3 \mid Y = -1\right) = \frac{2}{5} \\ P\left(X^{(2)} = S \mid Y = -1\right) = \frac{2}{5} \\ P\left(X^{(2)} = M \mid Y = -1\right) = \frac{1}{5} \\ P\left(X^{(2)} = L \mid Y = -1\right) = \frac{2}{5} \end{cases}$$

于是, 我们可以计算, 当输入为 $x = (2, M)^T$ 时:

$$\begin{cases} P(Y=1) \cdot P\left(X^{(1)} = 2 \mid Y = 1\right) \cdot P\left(X^{(2)} = M \mid Y = 1\right) = \frac{2}{3} \times \frac{1}{5} \times \frac{2}{5} = \frac{4}{75} \\ P(Y=-1) \cdot P\left(X^{(1)} = 2 \mid Y = -1\right) \cdot P\left(X^{(2)} = M \mid Y = -1\right) = \frac{1}{3} \times \frac{2}{5} \times \frac{1}{5} = \frac{2}{75} \end{cases}$$

可以算得 $P(y=1 \mid x) = \frac{2}{3}$, $P(y=-1 \mid x) = \frac{1}{3}$. 该输入将被模型标记为 1 类.

(2) 首先, 由 $P(Y=c_k) = \frac{\sum_{i=1}^{N} 1(y_i=c_k) + \lambda}{N+k\lambda}$, 计算各个类别的先验概率:

$$\begin{cases} P_{\lambda}(Y=1) = \frac{11}{17} \\ P_{\lambda}(Y=-1) = \frac{6}{17} \end{cases}$$

计算 Y = 1 时的贝叶斯估计:

$$\begin{cases} P_{\lambda} \left(X^{(1)} = 1 \mid Y = 1 \right) = \frac{3}{13} \\ P_{\lambda} \left(X^{(1)} = 2 \mid Y = 1 \right) = \frac{3}{13} \\ P_{\lambda} \left(X^{(1)} = 3 \mid Y = 1 \right) = \frac{7}{13} \\ P_{\lambda} \left(X^{(2)} = S \mid Y = 1 \right) = \frac{4}{13} \\ P_{\lambda} \left(X^{(2)} = M \mid Y = 1 \right) = \frac{5}{13} \\ P_{\lambda} \left(X^{(2)} = L \mid Y = 1 \right) = \frac{4}{13} \end{cases}$$

计算 Y = -1 时的贝叶斯估计:

$$\begin{cases} P_{\lambda} \left(X^{(1)} = 1 \mid Y = -1 \right) = \frac{2}{8} = \frac{1}{4} \\ P_{\lambda} \left(X^{(1)} = 2 \mid Y = -1 \right) = \frac{3}{8} \\ P_{\lambda} \left(X^{(1)} = 3 \mid Y = -1 \right) = \frac{3}{8} \\ P_{\lambda} \left(X^{(2)} = S \mid Y = -1 \right) = \frac{3}{8} \\ P_{\lambda} \left(X^{(2)} = M \mid Y = -1 \right) = \frac{2}{8} = \frac{1}{4} \\ P_{\lambda} \left(X^{(2)} = L \mid Y = -1 \right) = \frac{3}{8} \end{cases}$$

于是, 我们可以计算, 当输入为 $x=(2,M)^T$ 时:

$$\begin{cases} P_{\lambda}(Y=1) \cdot P_{\lambda} \left(X^{(1)} = 2 \mid Y=1 \right) \cdot P_{\lambda} \left(X^{(2)} = M \mid Y=1 \right) = \frac{11}{17} \times \frac{3}{13} \times \frac{5}{13} = \frac{165}{2873} \simeq 0.0574 \\ P_{\lambda}(Y=-1) \cdot P_{\lambda} \left(X^{(1)} = 2 \mid Y=-1 \right) \cdot P_{\lambda} \left(X^{(2)} = M \mid Y=-1 \right) = \frac{6}{17} \times \frac{3}{8} \times \frac{1}{4} = \frac{18}{544} \simeq 0.0331 \end{cases}$$

可以算得 $P(y=1 \mid x) \simeq 0.634$, $P(y=-1 \mid x) \simeq 0.366$. 该输入将被模型标记为 1 类.

(3) 酌情给分.

2 [25pts] Nearest Neighbor

假设数据集 $\{\mathbf{x}_1,...,\mathbf{x}_n\}$ 是从一个以 $\mathbf{0}$ 为中心的 p 维单位球中独立均匀采样而得到的 n 个样本点. p 维单位球可以表示为:

$$B = \{ \mathbf{x} : ||\mathbf{x}||^2 \le 1 \} \subset \mathbb{R}^p. \tag{2.1}$$

其中, $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$, $\langle \mathbf{x}, \mathbf{x} \rangle$ 是 \mathbb{R}^p 空间中向量的内积. 在本题中,我们将探究原点 O 与其最近邻 (1-NN) 的距离 d^* ,以及 d^* 与 p 之间的关系. O 与其 1-NN 之间的距离定义为:

$$d^* \coloneqq \min_{1 \le i \le n} \|\mathbf{x}_i\|,\tag{2.2}$$

不难发现 d^* 是一个随机变量,因为 \mathbf{x}_i 是随机产生的.

- (1) [**5pts**] 当 p = 1 且 $t \in [0,1]$ 时,请计算 $\mathbb{P}(d^* \leq t)$,即随机变量 d^* 的累积分布函数 (Cumulative Distribution Function, **CDF**).
- (2) **[7pts]** 请写出 d^* 的 **CDF** 的一般公式,即当 $p \in \{1, 2, 3, ...\}$ 时 d^* 对应的取值. (**Hint:** 半径为 r 的 p 维球体积是: $V_p(r) = \frac{(r\sqrt{\pi})^p}{\Gamma(p/2+1)}$, 其中, $\Gamma(1/2) = \sqrt{\pi}$, $\Gamma(1) = 1$,且有 $\Gamma(x+1) = x\Gamma(x)$ 对所有的 x > 0 成立;并且对于 $n \in \mathbb{N}^*$,有 $\Gamma(n+1) = n!$.)
- (3) [**8pts**] 请求解随机变量 d^* 的中位数, 请写成关于 n 和 p 的函数. (**Hint:** 即使得 $\mathbb{P}(d^* \le t) = 1/2$ 成立时的 t 值)
- (4) [**5pts**] 结合以上问题, 谈谈你关于 *n* 和 *p* 以及它们对 1-NN 的性能影响的理解.

Solution. (1) 当 p=1 时, 单位球退化为区间 [-1,1]. 那么此时的 CDF 有如下表示:

$$F_{n,1}(t) = \Pr(d^* \le t) = 1 - \Pr(d^* > t) = 1 - \Pr(||x_i|| > t, \text{ for } i = 1, 2, \dots, n).$$

因为 $\mathbf{x}_1, \ldots, \mathbf{x}_n$ 是独立的, 进而 CDF 就可以写成:

$$F_{n,1}(t) = 1 - \prod_{i=1}^{n} \Pr(\|\mathbf{x}_i\| > t) = 1 - (1-t)^n.$$

(2) 在一般情况下, 我们不妨假设 $p \in \mathbb{N}^*$. 那么很明显 CDF 也会有类似的表达形式:

$$F_{n,p}(t) = \Pr(d^* \le t) = 1 - \Pr(d^* > t)$$

$$= 1 - \Pr(\|\mathbf{x}_i\| > t, i = 1, 2, \dots, n)$$

$$= 1 - \prod_{i=1}^{n} \Pr(\|\mathbf{x}_i\| > t).$$

将半径为 t 的球体体积记为 $V_p(t)$, 又因为 \mathbf{x}_i 服从均匀分布, 上式可以被改写为:

$$F_{n,p}(t) = 1 - \left(\frac{V_p(1) - V_p(t)}{V_p(1)}\right)^n = 1 - \left(1 - \frac{V_p(t)}{V_p(1)}\right)^n.$$

显然, 最终可以得到 $F_{n,p} = 1 - (1 - t^p)^n$.

(3) 要找 d^* 的中间值, 我们只需要对 t 求解等式 $\Pr\left(d^* \leq t\right) = 1/2$:

$$P(d^* \le t) = \frac{1}{2} \Leftrightarrow F_{n,p}(t) = \frac{1}{2}$$
$$\Leftrightarrow 1 - (1 - t^p)^n = \frac{1}{2} \Leftrightarrow (1 - t^p)^n = \frac{1}{2}$$
$$\Leftrightarrow 1 - t^p = \frac{1}{2^{1/n}} \Leftrightarrow t^p = 1 - \frac{1}{2^{1/n}}.$$

因此, $t_{\text{med}}(n, p) = \left(1 - \frac{1}{2^{1/n}}\right)^{1/p}$.

(4) 酌情给分.

3 [25pts] K-means and EM Algorithm

EM (Expectation-Maximization) 算法是存在"未观测"变量的情况下估计参数隐变量的利器. 请仔细阅读《机器学习》第九章以及第七章 7.6 节, 回答以下问题.

3.1 [10pts] K-means and GMM

在《机器学习》9.4.3 节中,我们在聚类问题下推导了高斯混合模型 (GMM) 的 EM 算法,即高斯混合聚类. 沿用该小节中的记号,我们考虑一种简化后的高斯混合模型,其中高斯混合分布共由 k 个混合成分组成,且每个混合成分拥有相同的协方差矩阵 $\Sigma_i = \varepsilon^2 \mathbf{I}, i \in [k]$. 假设 $\exists \delta > 0$ 使得对于选择各个混合成分的概率有 $\alpha_i \geq \delta, \forall i \in [k]$,并且在高斯混合聚类的迭代过程中始终有 $\|\mathbf{x}_i - \mu_k\|^2 \neq \|\mathbf{x}_i - \mu_{k'}\|^2$ for $\forall i \in [n], k \neq k'$ 成立.

(1) **[10pts]** 请证明: 随着 $\varepsilon^2 \to 0$, 高斯混合聚类中的 **E** 步会收敛至 k 均值聚类算法中簇划分的更新规则, 即每个样本点仅指派给一个高斯成分. 由此可见, k 均值聚类算法是高斯混合聚类的一种特例.

3.2 [15pts] EM for Survival Analysis

生存分析 (Survival Analysis) 是一类重要的研究问题. 考虑如下图 1所示场景, 医院收集了病人接受治疗后的生存时间数据, 并在时刻 T=a 停止了收集. 假设病人接受治疗后的生存时间服从正态分布分布 $\mathcal{N}(\theta,1)$. 若一共有 m 个病人参与实验, 其中在 T=a 之前死亡的人数为 n, 收集其生存时间数据为 $\mathbf{X}=\{x_1,\cdots,x_n,a,\cdots,a\}$, 希望使用 EM 算法估计 θ .

图 1: 右删失 (right censored) 生存分析数据示意

- (2) [10pts] **E** $\not\equiv$: (**Hint:** observed dataset **X** implies that $z_i \geq a, i = 1, \dots, m n$.)
 - (a) [2pts] 记 $\mathcal{N}(0,1)$ 的 CDF 为 $\Phi(\cdot)$, 直接写出似然函数 $L(\mathbf{X};\theta)$.
 - (b) [3pts] 记未观测生存时间数据为 $\mathbf{Z} = \{z_1, \dots, z_{m-n}\}$. 试求对数似然函数 $\log L(\mathbf{X}, \mathbf{Z}; \theta)$.
 - (c) [**5pts**] 试求后验分布的概率密度函数 $f(z_i | \mathbf{X}, \theta_t)$, 并依此写出 $Q(\theta | \theta_t)$.
- (3) [**5pts**] **M** 步: 记 $\mathcal{N}(0,1)$ 的 PDF 为 $\phi(\cdot)$, 试求 θ 的更新公式 (使用 $\phi(\cdot)$, $\Phi(\cdot)$ 表示).

Solution. (1) GMM E 步计算每个样本属于每个高斯成分的后验概率 γ_{ji} , 代人 $\Sigma_i = \epsilon^2 \mathbf{I}$:

$$\gamma_{ji} = \frac{\alpha_i \cdot \exp\left(-\frac{\|\boldsymbol{x}_j - \boldsymbol{\mu}_i\|^2}{2\epsilon^2}\right)}{\sum_{l=1}^k \alpha_l \cdot \exp\left(-\frac{\|\boldsymbol{x}_j - \boldsymbol{\mu}_l\|^2}{2\epsilon^2}\right)}$$
$$= \frac{1}{1 + \sum_{l \neq i} \frac{\alpha_l}{\alpha_i} \exp\left(\frac{\|\boldsymbol{x}_j - \boldsymbol{\mu}_l\|^2 - \|\boldsymbol{x}_j - \boldsymbol{\mu}_l\|^2}{2\epsilon^2}\right)}.$$

下面进行分类讨论.

(a) $\|\boldsymbol{x}_{j} - \boldsymbol{\mu}_{i}\|^{2} \leq \|\boldsymbol{x}_{j} - \boldsymbol{\mu}_{l}\|^{2}, \forall l \neq i$. 随着 $\epsilon^{2} \rightarrow 0$, 我们有

$$\frac{\left\|\boldsymbol{x}_{j}-\boldsymbol{\mu}_{l}\right\|^{2}-\left\|\boldsymbol{x}_{j}-\boldsymbol{\mu}_{l}\right\|^{2}}{2\epsilon^{2}}\rightarrow-\infty,\quad\forall l\neq i,$$

于是可得

$$\gamma_{ji} = \frac{1}{1 + \sum_{l \neq i} \frac{\alpha_l}{\alpha_i} \exp\left(\frac{\|x_j - \mu_i\|^2 - \|x_j - \mu_i\|^2}{2\epsilon^2}\right)} \to \frac{1}{1 + 0} = 1.$$

(b) 存在混合成分 k', 使得 $\|x_i - \mu_i\|^2 > \|x_i - \mu_{k'}\|^2$. 那么对于该混合成分, 我们有

$$\exp\left(\frac{\left\|\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right\|^{2}-\left\|\boldsymbol{x}_{j}-\boldsymbol{\mu}_{k'}\right\|^{2}}{2\epsilon^{2}}\right)\to\infty$$
随着 $\epsilon^{2}\to0,$

结合题给假设 $\alpha_m \geq \delta > 0, \forall m \in [k],$ 可得

$$\gamma_{ji} \leq \frac{1}{1 + \frac{\alpha_{k'}}{\alpha_i} \exp\left(\frac{\|\boldsymbol{x}_j - \boldsymbol{\mu}_i\|^2 - \|\boldsymbol{x}_j - \boldsymbol{\mu}_{k'}\|^2}{2\epsilon^2}\right)} \to 0 \text{ } \tilde{\mathbf{m}}\tilde{\mathbf{f}}\epsilon^2 \to 0.$$

综上所述, 当 $\epsilon \to 0$ 时, 高斯混合聚类的 **E** 步规则会收敛至 k 均值算法中簇划分的更新规则, 即根据距离最近的均值向量确定样本的簇标记.

(2) (a)
$$L(\mathbf{X}; \theta) = \frac{1}{(2\pi)^{n/2}} \cdot \exp\left(-\frac{1}{2}\sum_{i=1}^{n}(x_i - \theta)^2\right) \cdot (1 - \Phi(a - \theta))^{m-n}$$

(b)
$$\log L(\mathbf{X}, \mathbf{Z}; \theta) = -\frac{m}{2} \log(2\pi) - \frac{1}{2} \sum_{i=1}^{n} (x_i - \theta)^2 - \frac{1}{2} \sum_{j=1}^{m-n} (z_j - \theta)^2$$
.

(c)
$$f(z_i \mid \mathbf{X}, \theta_t) = \frac{\exp(-\frac{1}{2}(z_i - \theta_t)^2)}{\sqrt{2\pi}(1 - \Phi(a - \theta_t))},$$

 $Q(\theta \mid \theta_t) = -\frac{m}{2}\log(2\pi) - \frac{1}{2}\sum_{i=1}^n (x_i - \theta)^2 - \frac{1}{2}\sum_{j=1}^{m-n} \int (z_j - \theta)^2 f(z_j \mid \mathbf{X}, \theta_t) dz_j.$

(3) 让 $Q(\theta \mid \theta_t)$ 对 θ 求偏导并化简, 可得:

$$\frac{\partial}{\partial \theta} Q(\theta \mid \theta_t) = -n \cdot \theta + \sum_{i=1}^n x_i - \frac{1}{2} \sum_{j=1}^{m-n} \frac{\partial}{\partial \theta} \int (z_j - \theta)^2 f(z_j \mid \mathbf{X}, \theta_t) dz_j$$

$$= -n \cdot \theta + \sum_{i=1}^n x_i - \sum_{j=1}^{m-n} \int (\theta - z_j) f(z_j \mid \mathbf{X}, \theta_t) dz_j$$

$$= -m \cdot \theta + \sum_{i=1}^n x_i + (m-n) \mathbb{E} [z_j \mid \mathbf{X}, \theta_t]$$

由
$$\mathbb{E}[z_j \mid \mathbf{X}, \theta_t] = \theta_t + \frac{\phi(a - \theta_t)}{1 - \Phi(a - \theta_t)}$$
 以及 $\frac{\partial}{\partial \theta}Q(\theta \mid \theta_t) = 0$, 可得:

$$\theta_{t+1} = \frac{1}{m} \sum_{i=1}^{n} x_i + \frac{m-n}{m} \cdot \left(\theta_t + \frac{\phi(a-\theta_t)}{1 - \Phi(a-\theta_t)} \right)$$

4 [25pts] Ensemble Methods

在本题中, 我们尝试使用 AdaBoost 与 Random Forest 这两种经典的集成学习的方法进行分类任务. 本次实验使用的数据集为 UCI 二分类数据集 Adult (Census Income). 关于编程题的详细说明, 请参考: 编程题指南.pdf.

- (1) [10pts] 请参考《机器学习》中对 AdaBoost 与 Random Forest 的介绍, 使用决策树作为基分类器, 实现 AdaBoost 分类器与 Random Forest 分类器.
- (2) [**10pts**] 请基于上述实现,通过 5-折交叉验证,探究基学习器数量对集成效果的影响. (请在报告中附上绘制的折线图,并简要论述分类器数量对分类效果的影响.)
- (3) [**5pts**] 请分别汇报最优超参数 (即:基学习器数量)下,两种模型在测试集上的 AUC 指标 (结果保留三位小数).

Solution. 此处用于写解答 (中英文均可)

- (1) 具体代码实现请见附件 AdaBoost_sol.py 与 RandomForest_sol.py. 其中, 根据《机器学习》的说明,一般选取 $k = \log_2 d$. 考虑到 Adult 数据集的特征维度 d=14, 可以选取 k=4. 这可以通过指定基学习器 sklearn.tree.DecisionTreeClassifier 的参数 max_features="log2" 或 max_features=4 实现.
- (2) 绘图代码请见附件 main_sol.py, 生成的折线图 evaluation.png 请见图 2. 从图中可以看出, 随着基学习器数量增加, 模型的 AUC 指标整体呈上升趋势. 但是, 当基学习器数量达到一定值后, 模型的 AUC 提升趋向停止. 此外, 在该数据集上, 两模型的表现没有较大差异, 但 AdaBoost 的表现略优于 Random Forest.
- (3) 取基学习器数量 20 时, AdaBoost 分类器取得测试集 AUC = 0.907; 取基学习器数量 20 时, Random Forest 分类器取得测试集 AUC = 0.897.

图 2: 基学习器数量与 AUC 的关系

Acknowledgments

允许与其他同样未完成作业的同学讨论作业的内容,但需在此注明并加以致谢;如在作业过程中,参考了互联网上的资料,且对完成作业有帮助的,亦需注明并致谢.