Guru Nanak Dev Engineering College, Ludhiana

Department of Information Technology

B. Tech (IT) Scheme 2018

Subject Code: PCIT-114

Subject Name: Introduction to Machine Learning

Programme: B.Tech.	L: 3 T: 1 P: 0
Semester: 6	Teaching Hours: 48
Theory/Practical: Theory	Theory Credits: 4
Internal Marks: 40	Percentage of Numerical/DesignProblems:20%
External Marks: 60	Duration of End Semester Exam (ESE): 3 Hours
Total Marks: 100	Course Type: Professional Core Course

On Completion of the course, the student will have the ability to:

CO#	Course Outcomes
1	Apply Supervised Learning, Unsupervised learning, Deep Learning, Visualization
	Techniques.
2	Recognize and formalize a task as a machine learning problem.
3	Interpret and present the predicted model.
4	Identify suitable algorithms to tackle different machine learning problems.
5	Apply machine learning algorithms to real datasets.
6	Make powerful and accurate predictions.

Pre-requisites: Basics of Mathematics, AlgorithmsIntro-level algebra, Proficiency in programming basics.

Additional Material Allowed in ESE: NIL (Mention anything like graph, calculator etc, if required in exam)

Detailed Contents:

Part-A

Introduction to Machine Learning:

Difference between Machine Learning and traditional programming, Applications of Machine Learning, Why Machine Learning is the Future. [4L]

Regression:

Simple Linear Regression, Multiple Linear Regression, Polynomial Regression, Support Vector Regression, Decision Tree Regression, Random Forest Regression. [10L]

Classification:

Linear, Non-linear, Multi-class and Multi-label classification, Neural Networks: Introduction, Perceptron, Multilayer Perceptron, Logistic Regression, K-Nearest Neighbors (K-NN), Support Vector Machine (SVM), Naive Bayes, Decision Tree Classification, Random Forest Classification.

Part-B

Clustering:

Introduction to clustering, Hierarchical: AGNES, DIANA, Partitional: K-means clustering, K- Mode Clustering, Self-Organizing Map, Expectation Maximization, Gaussian Mixture Models. [12L]

Fuzzy Logic:

Introduction to Fuzzy Logic, Fuzzy Set, Fuzzification, Membership Functions: trimf, trapmf, gaussmf, gauss2mf,gbellmf, Defuzzification [12L]

Textbooks:

- 1. Jason Brownlee "Master Machine Learning Algorithms" Edition, v1.13, (2018).
- 2. Alpaydin E., Introduction to Machine Learning, MIT Press (2010).
- 3. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach "Deep Learning (Adaptive Computation and Machine Learning series)" MIT Press (2017).
- 4. Aurelien Geron, "Hands-On Machine Learning with Scikit-Learn and Tensor Flow: Concepts, Tools, and Techniques to Build Intelligent Systems", Shroff/O'Reilly; First edition (2017).

Reference Books:

- 1. Michie D., Spiegelhalter D. J., Taylor C. C., Machine Learning, Neural and Statistical Classification. Overseas Press (2009).
- 2. N. J. Nilson, Introduction to Machine Learning, Stanford, Online Link http://robotics.stanford.edu/people/nilsson/mlbook.html (Accessed on 30 July 2020)

Online Learning Material:

- 1. Machine Learning A-ZTM: Hands-On Python & R In Data Science Created by Kirill Eremenko, Hadelin de Ponteves, SuperDataScience Team, SuperDataScience Support https://www.udemy.com/machinelearning/ (Accessed on 30 July 2020)
- 2. The 5 Clustering Algorithms Data Scientists Need to Know https://towardsdatascience.com (Accessed on 03 July 2020)
- 3. Crash Cource on Machine Learning by Google https://developers.google.com/machine-learning/crash-course/ (Accessed on 03July 2020)

Guru Nanak Dev Engineering College, Ludhiana

Department of Information Technology

B. Tech (IT) Scheme 2018

Subject Code: LPCIT-114

Subject Name: Machine Learning Laboratory

Programme:B.Tech.	L: 3 T: 1 P: 0
Semester: 6	Teaching Hours: 24
Theory/Practical: Practical	Practical Credits: 1
Internal Marks:30	Percentage of Numerical/DesignProblems: 100%
External Marks: 20	Duration of End Semester Exam (ESE): 1.5Hours
Total Marks: 50	Course Type: Professional Core Course

On Completion of the course, the student will have the ability to:

CO#	Course Outcomes
1	Collect data and apply pre-processing techniques
2	Implement and compare the relevant algorithms
3	Make robust Machine Learning models
4	Use Machine Learning for personal purpose
5	Formulate business problems as Machine Learning problems
6	Make powerful analysis

Pre-requisites: Basic programming skills, working of various Gates and computer fundamentals

Detailed Contents:

- 1. Implement Simple Linear Regression.
- 2. Implement Random Forest Regression.
- 3. Implement Logistic Regression.
- 4. Implement Decision Tree classification algorithms.
- 5. Implement k-nearest neighbours classification algorithms.
- 6. Implement Naive Bayes classification algorithms.
- 7. Implement K-means clustering to Find Natural Patterns in Data.
- 8. Implement K- Mode Clustering.
- 9. Evaluating Machine Learning algorithm with balanced and unbalanced datasets.
- 10. Compare various Machine Learning algorithms based on various performance metrics.

Mini project: By using various concepts of syllabus students required to prepare a project in a group of two to three students. The group of students must submit a project report of 8 to 10 pages (approximately) and the team will have to demonstrate the project as well as must give a presentation of the same.

Some if the projects can be:

- Implement the classification Machine Learning models on the dataset (Amazon food reviews dataset) using hyper-parameter tuning.
- Implement the clustering algorithm on the dataset using hyper parameter tuning.

- Try to solve the titanic dataset problem which is publically available on Kaggle with the use of the performance metrics (confusion matrix, classification report, AUC Roc curve) alongwith the visualizations.
- Explainable AI (Take a dataset from kaggle.com and implement the Explainable AI using SHAP or LIME).
- Try to implement the some kaggle problem.

Note:

- Any Programming languages can also be used for implementation
- It is recommended that mini project allocation to students be done within two-three weeks of the start of the semester.
- This is only the suggested list of Practical's, Projects Instructor may also frame additional
- Practical's relevant to the course contents (if required)

Online Learning Material:

1. Virtual machine learning labs

http://vlabs.iitb.ac.in/vlabs-dev/labs/machine_learning/labs/index.php (Accessed 31 July 2020)

2. Tinker with a Neural Network Right Here in Your Browser

https://playground.tensorflow.org/

(Accessed 31 July 2020)

3. Machine Learning Playground

https://ml-playground.com/

(Accessed 31 July 2020)