1	Express each of the following in the form 4^n :

(i) $\frac{1}{16}$, [1] (ii) 64,

[1]

- [2] (iii) 8.
- (i) The curve $y = x^2$ is translated 2 units in the positive x-direction. Find the equation of the curve 2 [2] after it has been translated.
 - (ii) The curve $y = x^3 4$ is reflected in the x-axis. Find the equation of the curve after it has been [1] reflected.
- Express each of the following in the form $k\sqrt{2}$, where k is an integer: 3
 - [1] (i) $\sqrt{200}$,
 - (ii) $\frac{12}{\sqrt{2}}$, [1]
 - (iii) $5\sqrt{8} 3\sqrt{2}$. [2]
- Solve the equation $2x 7x^{\frac{1}{2}} + 3 = 0$. [5] 4
- Find the gradient of the curve $v = 8\sqrt{x} + x$ at the point whose x-coordinate is 9. [5] 5
- [3] (i) Expand and simplify (x-5)(x+2)(x+5). 6
 - (ii) Sketch the curve y = (x 5)(x + 2)(x + 5), giving the coordinates of the points where the curve crosses the axes.
- Solve the inequalities 7

(i)
$$8 < 3x - 2 < 11$$
, [3]

(ii)
$$y^2 + 2y \ge 0$$
. [4]

The curve $y = x^3 - kx^2 + x - 3$ has two stationary points. 8

(i) Find
$$\frac{dy}{dx}$$
. [2]

- (ii) Given that there is a stationary point when x = 1, find the value of k. [3]
- (iii) Determine whether this stationary point is a minimum or maximum point. [2]
- [3] (iv) Find the x-coordinate of the other stationary point.

4721/01 Jun08 @ OCR 2008

- 9 (i) Find the equation of the circle with radius 10 and centre (2, 1), giving your answer in the form $x^2 + y^2 + ax + by + c = 0$. [3]
 - (ii) The circle passes through the point (5, k) where k > 0. Find the value of k in the form $p + \sqrt{q}$.
 - (iii) Determine, showing all working, whether the point (-3, 9) lies inside or outside the circle. [3]
 - (iv) Find an equation of the tangent to the circle at the point (8, 9). [5]
- 10 (i) Express $2x^2 6x + 11$ in the form $p(x+q)^2 + r$. [4]
 - (ii) State the coordinates of the vertex of the curve $y = 2x^2 6x + 11$. [2]
 - (iii) Calculate the discriminant of $2x^2 6x + 11$. [2]
 - (iv) State the number of real roots of the equation $2x^2 6x + 11 = 0$. [1]
 - (v) Find the coordinates of the points of intersection of the curve $y = 2x^2 6x + 11$ and the line 7x + y = 14. [5]

© OCR 2008 4721/01 Jun08