根据 2018 年 9 月 7 日星期五朱博文建议、对家户问题采取以下简化:

- 1. 简化 Auerbach & Kotlikoff 的 CES 效用函数,分离消费和闲暇(使得一阶可得到解析解)
- 2. 承认可能存在代际借贷 (个别人的 Wealth/Capital 在年轻时可以为负),只要保证总量为正即可。同时,这意味着国家可能通过借贷来支持年轻人消费
- 3. 债务软约束继续保留(截面条件)

1. 效用函数

$$u(c, l|q, \gamma, \alpha) = \frac{1}{1 - \gamma^{-1}} \Big[((1 - q)c)^{1 - \gamma^{-1}} + \alpha(l)^{1 - \gamma^{-1}} \Big]$$
$$\frac{\partial u}{\partial c} = (1 - q) \big((1 - q)c \big)^{-\gamma^{-1}}$$
$$\frac{\partial u}{\partial l} = \alpha l^{-\gamma^{-1}}$$

2. 缩写表示

$$\pi_{s} = \frac{z_{s}(\theta_{s} + \eta_{s})}{1 + z_{s}\eta_{s} + \zeta_{s}}$$

$$\pi_{s}^{M} = \frac{\phi_{s} + \zeta_{s}}{1 + z_{s}\eta_{s} + \zeta_{s}}$$

$$a_{s} = 1 - F_{s}, a_{s} \in [1, +\infty)$$

$$\theta_{s} = 1 - \sigma_{s} - \pi_{s} - \pi_{s}^{M}, \theta_{s} \in [0,1]$$

$$d_{s} = q_{s} \frac{p_{s} + (1 - cp_{s}^{B})}{1 + p_{s}}, d_{s} \in [0,1]$$

$$\theta_{s} = \frac{\phi_{s} + a_{s}\zeta_{s}}{1 + z_{s}\eta_{s} + \zeta_{s}}, \theta_{s} \in [0,1]$$

$$\theta_{s} = -\frac{q_{s}p_{s}}{1 + p_{s}}, \theta_{s} \in [0,1]$$

$$\theta_{s} = -\frac{q_{s}p_{s}}{1 + p_{s}}, \theta_{s} \in [0,1]$$

$$\theta_{s} = A_{s} + \theta_{s}, \theta_{s} \in [0,1]$$

$$\theta_{s} = A_{s} + P_{s}, \theta_{s} \geq 0$$

$$\theta_{s} = a_{s} + \Phi_{s}, \theta_{s} \geq 0$$

$$V_{s} = \prod_{1}^{s} (1 + r_{s})^{-1}, \frac{V_{m}}{V_{n < m}} = \prod_{n + 1}^{m} (1 + r_{s})^{-1}, \frac{V_{m}}{V_{m - 1}} = (1 + r_{m})^{-1}$$

$$\widetilde{\beta_{s}} = \frac{1 - F_{s}}{(1 + \delta)^{s - 1}}, \widetilde{\beta_{s}} \in \left[0, \frac{1}{(1 + \delta)^{s - 1}}\right], s = 1, \dots, s, F_{s = s} = 1$$

$$\frac{\widetilde{\beta_{s + 1}}}{\widetilde{\beta_{s}}} = \frac{1}{1 + \delta} \frac{1 - F_{s + 1}}{1 - F_{s}} \geq 0, s = 1, \dots, S - 1$$

3. 跨期预算约束

a) 个人资产 a_s

$$a_s a_{s+1} = (1 + r_s) a_s + b_s w_s (1 - l_s) - (1 - d_s) c_s, 1 \le s < S_r$$

$$a_s a_{s+1} = (1 + r_s) a_s + \Lambda_s - (1 - d_s) c_s, S_r \le s \le S$$

b) 个人医保 Φ_s

$$a_s \Phi_{s+1} = (1 + r_s) \Phi_s + f_s w_s (1 - l_s) + g_s c_s$$

$$a_s \Phi_{s+1} = (1 + r_s) \Phi_s + P_s + g_s c_s$$

c) 合并财富 $A_s = a_s + \Phi_s$

$$a_{s}\mathcal{A}_{s+1} = (1 + r_{s})\mathcal{A}_{s} + (\mathcal{E}_{s} + \mathcal{F}_{s})w_{s}(1 - l_{s}) - (1 - \mathcal{H}_{s})c_{s}$$

$$a_{s}\mathcal{A}_{s+1} = (1 + r_{s})\mathcal{A}_{s} + \mathcal{F}_{s} - (1 - \mathcal{H}_{s})c_{s}$$

4. 考虑到初始财富 A_1 大于等于 0 的收入流和支出流

收入流	支出流
工作期: $(\mathscr{E}_S + \mathscr{E}_S)w_S(1 - l_S)$	每一期: $(1-\hbar_s)c_s$
退休期: į s	
第1期: A ₁	

CAUTION! 由于每期存在意外死亡的遗产收入,所以所有现金流(收支皆如此,以及包括第一期的初始资产 \mathcal{A}_1)都要相应地除以当期等式左侧的 a_s 才是真正的现金流!

真正收入流	真正支出流
工作期: $(\mathcal{S}_s + \mathcal{f}_s)w_s(1 - l_s)\frac{1}{a_s}$	每一期: $(1-h_s)c_s\frac{1}{a_s}$
退休期: j s ¹ / _{as}	
第1期: $\mathcal{A}_1 \frac{1}{a_s}$	

定义净现金流函数(为标识方便多折现一期,折现到-1期即0岁,支出流减去收入流)

$$G(c_1, ..., c_S; l_1, ..., l_{S_r}) = \frac{V_1}{a_1} \mathcal{A}_1 + \sum_{S_s + 1}^{S} \frac{V_s}{a_s} \dot{p}_s + \sum_{1}^{S_r} \frac{V_s}{a_s} (\mathcal{E}_s + \mathcal{F}_s) w_s (1 - \mathbf{l}_s) - \sum_{1}^{S} \frac{V_s}{a_s} (1 - \mathcal{N}_s) \mathbf{c}_s$$

定义修正的折现因子 $\tilde{V}_s = \frac{V_s}{a_s}$,进而求得偏导:

$$\frac{\partial \mathcal{G}}{\partial c_s} = -\tilde{V}_s (1 - \ell k_s)$$

$$\frac{\partial \mathcal{G}}{\partial l_s} = -\tilde{V}_s (\ell k_s + \ell k_s) w_s$$

同时修正的折现因子有以下重要性质:

$$\frac{\tilde{V}_{S+1}}{\tilde{V}_S} = \frac{V_{S+1}}{V_S} \frac{a_{S+1}}{a_S} = (1 + r_{S+1})^{-1} \frac{1 - F_{S+1}}{1 - F_S}$$

5. 资源约束

$$l_s \ge 0.1 - l_s \ge 0.1 \le s \le S_r$$
$$c_s \ge 0$$

6. Lagrange Function:

$$\max_{c_s,l_s} L = \sum_{1}^{S} \widetilde{\beta_s} u_s - \lambda_0 \mathcal{G}$$

7. FOCs

$$\frac{\partial L}{\partial c_s} = \tilde{\beta}_s \frac{\partial u_s}{\partial c_s} - \lambda_0 \frac{\partial \mathcal{G}}{\partial c_s} = 0, s = 1, ..., S$$

$$\frac{\partial L}{\partial l_s} = \tilde{\beta}_s \frac{\partial u_s}{\partial l_s} - \lambda_0 \frac{\partial \mathcal{G}}{\partial l_s} = 0, s = 1, ..., S_r$$

$$\frac{\partial L}{\partial \lambda_0} = \mathcal{G} = 0$$

- 8. Euler Equation, C-L Transfer, Leisure Dynamics
 - a) Euler Equation

$$\begin{split} \tilde{\beta}_{s+1} \frac{\partial u_{s+1}}{\partial c_{s+1}} \left(\frac{\partial \mathcal{G}}{\partial c_{s+1}} \right)^{-1} &= \tilde{\beta}_s \frac{\partial u_s}{\partial c_s} \left(\frac{\partial \mathcal{G}}{\partial c_s} \right)^{-1}, s = 1, ..., S - 1 \\ & \frac{\partial u_{s+1}}{\partial c_{s+1}} \left(\frac{\partial u_s}{\partial c_s} \right)^{-1} &= \frac{\tilde{\beta}_s}{\tilde{\beta}_{s+1}} \frac{\partial \mathcal{G}}{\partial c_s} \left(\frac{\partial \mathcal{G}}{\partial c_s} \right)^{-1} \\ & \frac{1 - q_{s+1}}{1 - q_s} \frac{\left((1 - q_{s+1}) c_{s+1} \right)^{-\gamma^{-1}}}{\left((1 - q_s) c_s \right)^{-\gamma^{-1}}} = (1 + \delta) \frac{1 - F_s}{1 - F_{s+1}} \frac{\tilde{V}_{s+1} (1 - h_{s+1})}{\tilde{V}_s (1 - h_s)} \\ & \frac{\left((1 - q_{s+1}) c_{s+1} \right)^{-\gamma^{-1}}}{\left((1 - q_s) c_s \right)^{-\gamma^{-1}}} = (1 + \delta) \frac{1 - q_s}{1 - q_{s+1}} \frac{1 - F_s}{1 - F_{s+1}} \frac{(1 - h_{s+1})}{(1 - h_s)} (1 + r_{s+1})^{-1} \frac{1 - F_{s+1}}{1 - F_s} \\ & \frac{\left((1 - q_{s+1}) c_{s+1} \right)^{-\gamma^{-1}}}{\left((1 - q_s) c_s \right)^{-\gamma^{-1}}} = \frac{1 + \delta}{1 + r_{s+1}} \frac{1 - q_s}{1 - q_{s+1}} \frac{(1 - h_{s+1})}{(1 - h_s)} \\ & \frac{(c_{s+1})^{-\gamma^{-1}}}{(c_s)^{-\gamma^{-1}}} \left[\frac{1 - q_{s+1}}{1 - q_s} \right]^{-\gamma^{-1}} = \frac{1 + \delta}{1 + r_{s+1}} \frac{1 - q_s}{1 - q_{s+1}} \frac{(1 - h_{s+1})}{(1 - h_s)} \\ & \frac{c_{s+1}}{c_s} \frac{1 - q_{s+1}}{1 - q_s} = \left[\frac{1 + \delta}{1 + r_{s+1}} \frac{1 - q_s}{1 - q_{s+1}} \frac{(1 - h_{s+1})}{(1 - h_s)} \right]^{-\gamma} \end{split}$$

$$\begin{split} \frac{c_{s+1}}{c_s} &= \left[\frac{1+\delta}{1+r_{s+1}}\frac{(1-\hbar_{s+1})}{(1-\hbar_s)}\right]^{-\gamma} \left[\frac{1-q_s}{1-q_{s+1}}\right]^{1-\gamma} \\ \frac{c_{s+1}}{c_s} &= \left[\frac{1+r_{s+1}}{1+\delta}\frac{(1-\hbar_s)}{(1-\hbar_{s+1})}\right]^{\gamma} \left[\frac{1-q_s}{1-q_{s+1}}\right]^{1-\gamma}, s = 1, \dots, S-1 \end{split}$$

定义以下两个缩写:

$$\begin{split} \mathcal{P}_{s,s+1} &= \frac{1 + \frac{r_{s+1}}{1 + \delta} \frac{(1 - h_s)}{(1 - h_{s+1})}, s = 1, \dots, S - 1 \\ Q_{s,s+1} &= \frac{1 - q_s}{1 - q_{s+1}}, s = 1, \dots, S - 1 \end{split}$$

显然有: $\mathcal{P}_{s,s+1} \geq 0$, $Q_{s,s+1} \geq 0$ 从而对于常规的取值(各类政策参数和死亡率使得 \mathcal{P} ,Q有限 以下 Cobb-Douglas 形式的欧拉方程:

$$\frac{c_{s+1}}{c_s} = \mathcal{P}_{s,s+1}^{\gamma} \mathcal{Q}_{s,s+1}^{1-\gamma} \ge 0$$

从而显然可知最优路径上消费水平在岁间是非减的,并且可以很显然地求出消费对利率变化的弹性。

b) c-I Transfer

联立 Lagrange 函数对工作期消费和闲暇的 FOC 可以得到:

$$\tilde{\beta}_{s} \frac{\partial u_{s}}{\partial c_{s}} \left(\frac{\partial \mathcal{G}}{\partial c_{s}} \right)^{-1} = \tilde{\beta}_{s} \frac{\partial u_{s}}{\partial l_{s}} \left(\frac{\partial \mathcal{G}}{\partial l_{s}} \right)^{-1}$$

因为 $\tilde{\beta}_s$ 一定大于 0,且在工作期一定大于 0,所以两侧该项可以约掉:

$$\frac{\partial u_s}{\partial c_s} \left(\frac{\partial \mathcal{G}}{\partial c_s} \right)^{-1} = \frac{\partial u_s}{\partial l_s} \left(\frac{\partial \mathcal{G}}{\partial l_s} \right)^{-1}$$

$$\frac{(1-q_s)\big((1-q_s)c_s\big)^{-\gamma^{-1}}}{\tilde{V}_s(1-h_s)} = \frac{\alpha l^{-\gamma^{-1}}}{\tilde{V}_s(b_s+f_s)w_s}$$

因为 \tilde{V}_s (绝大多数情况下,只要利率不是-1)大于 0,且 $1-\Lambda_s$ 和 $(\delta_s+f_s)w_s$ 绝大多数情况下大于 0 $\frac{1}{s}$,所以可以约掉折现因子并重新整理:

$$\left[\frac{(1-q_s)c_s}{l}\right]^{-\gamma^{-1}} = \frac{1-h_s}{(\ell_s + f_s)w_s} \frac{\alpha}{1-q_s}$$

$$\frac{(1-q_s)c_s}{l_s} = \left[\frac{1-h_s}{(\ell_s + f_s)w_s} \frac{\alpha}{1-q_s}\right]^{-\gamma}$$

$$\frac{(1-q_s)c_s}{l_s} = \left[\frac{1-q_s}{\alpha} \frac{(\ell_s + f_s)w_s}{1-h_s}\right]^{\gamma}$$

定义一个缩写 $\mathcal{R}_s = \frac{1-q_s}{\alpha} \frac{(\theta_s + \theta_s) w_s}{1-\theta_s}$, $s=1,...,S_r$,可以绝大多数情况 3 下 $\mathcal{R}_s > 0$,从而有:

$$\frac{c_s}{l_s} = \frac{1}{1 - q_s} \mathcal{R}_s^{\gamma}$$

注意,虽然上面欧拉方程已经揭示了消费随年龄非减,但由于 q_s, \mathcal{R}_s 变化不确定,所以休闲不一定随年龄单调。

c) Leisure Dynamics

将 c-I Transfer Equation 代入欧拉方程:

¹ Validation Point

² Validation Points

³ Validation Point

$$\begin{split} &\left(\frac{\mathcal{R}_{s+1}}{\mathcal{R}_{s}}\right)^{\gamma} \frac{1 - q_{s}}{1 - q_{s+1}} \frac{l_{s+1}}{l_{s}} = \mathcal{P}_{s,s+1}^{\gamma} \mathcal{Q}_{s,s+1}^{1 - \gamma} \ge 0 \\ &\left(\frac{\mathcal{R}_{s+1}}{\mathcal{R}_{s}}\right)^{\gamma} \mathcal{Q}_{s,s+1} \frac{l_{s+1}}{l_{s}} = \mathcal{P}_{s,s+1}^{\gamma} \mathcal{Q}_{s,s+1}^{1 - \gamma} \ge 0 \\ &\left(\frac{\mathcal{R}_{s+1}}{\mathcal{R}_{s}}\right)^{\gamma} \frac{l_{s+1}}{l_{s}} = \mathcal{P}_{s,s+1}^{\gamma} \mathcal{Q}_{s,s+1}^{-\gamma} \ge 0 \end{split}$$

可以知道 $\frac{\mathcal{R}_{s+1}}{\mathcal{R}_s} = \frac{1-\hbar_s}{1-\hbar_{s+1}} \frac{1-q_{s+1}}{1-q_s} \frac{\ell_{s+1}+\ell_{s+1}}{\ell_s+\ell_s} \frac{w_{s+1}}{w_s} > 0$,又有 $\mathcal{P}_{s,s+1} = \frac{1+r_{s+1}}{1+\delta} \frac{(1-\hbar_s)}{(1-\hbar_{s+1})}$ 以及 $\mathcal{Q}_{s,s+1} = \frac{1-q_s}{1-q_{s+1}}$,纷纷代入得到:

$$\begin{split} \left[\frac{1-\ell_{s}}{1-\ell_{s+1}} \frac{1-q_{s+1}}{1-q_{s}} \frac{\ell_{s+1}+\ell_{s+1}}{\ell_{s}+\ell_{s}} \frac{w_{s+1}}{w_{s}}\right]^{\gamma} \frac{l_{s+1}}{l_{s}} &= \left[\frac{1+r_{s+1}}{1+\delta} \frac{(1-\ell_{s})}{(1-\ell_{s+1})}\right]^{\gamma} \mathcal{Q}_{s,s+1}^{-\gamma} \\ &= \left[\frac{1-q_{s+1}}{1-q_{s}} \frac{\ell_{s+1}+\ell_{s+1}}{\ell_{s}+\ell_{s}} \frac{w_{s+1}}{w_{s}}\right]^{\gamma} \frac{l_{s+1}}{l_{s}} &= \left[\frac{1+r_{s+1}}{1+\delta}\right]^{\gamma} \left[\frac{1-q_{s+1}}{1-q_{s}}\right]^{\gamma} \\ &= \left[\frac{\ell_{s+1}+\ell_{s+1}}{\ell_{s}+\ell_{s}} \frac{w_{s+1}}{w_{s}}\right]^{\gamma} \frac{l_{s+1}}{l_{s}} &= \left[\frac{1+r_{s+1}}{1+\delta}\right]^{\gamma} \\ &= \frac{l_{s+1}}{l_{s}} &= \left[\frac{1+r_{s+1}}{1+\delta} \frac{\ell_{s}+\ell_{s}}{\ell_{s+1}+\ell_{s+1}} \frac{w_{s}}{w_{s+1}}\right]^{\gamma} \end{split}$$

定义缩写 $S_{s,s+1}(r_{s+1},w_s,w_{s+1}) = \frac{1+r_{s+1}}{1+\delta} \frac{\ell_s + \ell_s}{\ell_{s+1} + \ell_{s+1}} \frac{w_s}{w_{s+1}},$ 从而得到:

$$\frac{l_{s+1}}{l_s} = S_{s,s+1}^{\gamma}(r_{s+1}, w_s, w_{s+1})$$

这样,我们也可以很轻松地计算出劳动供给对利率和工资的弹性了。

9. 路径求解

有了上面的三个动态:

$$\begin{split} \frac{c_{s+1}}{c_s} &= \mathcal{P}_{s,s+1}^{\gamma} \mathcal{Q}_{s,s+1}^{1-\gamma} \geq 0 \\ \frac{c_s}{l_s} &= \frac{1}{1 - q_s} \mathcal{R}_s^{\gamma} \\ \frac{l_{s+1}}{l_s} &= S_{s,s+1}^{\gamma} (r_{s+1}, w_s, w_{s+1}) \end{split}$$

我们现在可以导出每一期的消费和闲暇对于第1期消费 c_1 的关系式(因为实际上知道了 c_1 就能知道整条最优路径):

$$c_{s} = \left\{ \left[\prod_{i=1}^{s-1} \mathcal{P}_{i,i+1} \right]^{\gamma} \left[\prod_{i=1}^{s-1} \mathcal{Q}_{i,i+1} \right]^{1-\gamma} c_{1}, s = 2, \dots, S \right\}$$

$$l_{s} = \left\{ \left[\prod_{i=1}^{s-1} \mathcal{P}_{i,i+1} \right]^{\gamma} \left[\prod_{i=1}^{s-1} \mathcal{Q}_{i,i+1} \right]^{1-\gamma} (1 - q_{1}) \mathcal{R}_{1}^{-\gamma} c_{1} \right\}$$

定义缩写 $\mathcal{T}_{1 \to s} = \begin{cases} 1, s = 1 \\ \left[\prod_{i=1}^{s-1} \mathcal{P}_{i,i+1}\right]^{\gamma} \left[\prod_{i=1}^{s-1} \mathcal{Q}_{i,i+1}\right]^{1-\gamma}, s > 1 \end{cases}$ 上述关系式可以重新写成

$$\begin{split} c_s &= \mathcal{T}_{1 \to s} c_1, s = 1, \dots, S \\ l_s &= (1-q_s) \mathcal{R}_s^{-\gamma} \mathcal{T}_{1 \to s} c_1, s = 1, \dots, S_r \end{split}$$

然后我们将这样的一个关系带进最后一个 FOC,也就是预算约束中去,假设一定 meet 到边界(当然,也必须 meet 到):

$$\begin{split} \tilde{V}_{1}\mathcal{A}_{1} + \sum_{S_{r}+1}^{S} \tilde{V}_{S}\dot{f}_{S} + \sum_{1}^{S_{r}} \tilde{V}_{S}(\mathcal{E}_{S} + \mathcal{E}_{S})w_{S}(1 - \mathbf{l}_{S}) - \sum_{1}^{S} \tilde{V}_{S}(1 - \mathcal{H}_{S})c_{S} &= 0 \\ \sum_{1}^{S} \tilde{V}_{S}(1 - \mathcal{H}_{S})c_{S} &= \sum_{1}^{S_{r}} \tilde{V}_{S}(\mathcal{E}_{S} + \mathcal{E}_{S})w_{S} - \sum_{1}^{S_{r}} \tilde{V}_{S}(\mathcal{E}_{S} + \mathcal{E}_{S})w_{S}\mathbf{l}_{S} + \tilde{V}_{1}\mathcal{A}_{1} + \sum_{S_{r}+1}^{S} \tilde{V}_{S}\dot{f}_{S} \\ \sum_{1}^{S_{r}} \tilde{V}_{S}(\mathcal{E}_{S} + \mathcal{E}_{S})w_{S}\mathbf{l}_{S} + \sum_{1}^{S} \tilde{V}_{S}(1 - \mathcal{H}_{S})c_{S} &= \sum_{1}^{S_{r}} \tilde{V}_{S}(\mathcal{E}_{S} + \mathcal{E}_{S})w_{S} + \tilde{V}_{1}\mathcal{A}_{1} + \sum_{S_{r}+1}^{S} \tilde{V}_{S}\dot{f}_{S} \\ c_{1} \sum_{1}^{S_{r}} \tilde{V}_{S}(\mathcal{E}_{S} + \mathcal{E}_{S})w_{S}(1 - q_{S})\mathcal{R}_{S}^{-\gamma}\mathcal{T}_{1 \to S} + c_{1} \sum_{1}^{S} \tilde{V}_{S}(1 - \mathcal{H}_{S})\mathcal{T}_{1 \to S} &= \sum_{1}^{S_{r}} \tilde{V}_{S}(\mathcal{E}_{S} + \mathcal{E}_{S})w_{S} + \tilde{V}_{1}\mathcal{A}_{1} + \sum_{S_{r}+1}^{S} \tilde{V}_{S}\dot{f}_{S} \\ \left\{ \sum_{1}^{S_{r}} \tilde{V}_{S}(\mathcal{E}_{S} + \mathcal{E}_{S})w_{S}(1 - q_{S})\mathcal{R}_{S}^{-\gamma}\mathcal{T}_{1 \to S} + \sum_{1}^{S} \tilde{V}_{S}(1 - \mathcal{H}_{S})\mathcal{T}_{1 \to S} \right\} c_{1} &= \sum_{1}^{S_{r}} \tilde{V}_{S}(\mathcal{E}_{S} + \mathcal{E}_{S})w_{S} + \tilde{V}_{1}\mathcal{A}_{1} + \sum_{S_{r}+1}^{S} \tilde{V}_{S}\dot{f}_{S} \end{split}$$

定义缩写 $X_{1\rightarrow S}$, $Y_{1\rightarrow S}$, 可得到最终解⁴:

$$\mathcal{X}_{1\to S}\mathbf{c_1} = \mathcal{Y}_{1\to S}$$

10. Validation Methods

由于这里的最优路径实际上并没有将资源约束 $l_s \in [0,1], c_s > 0$ 纳入其中,所以我们要做一定的 validation,来确保算出来的路径满足这样的资源约束,否则就需要加以调整。

- 1. 首先最重要的,要确保 $c_1 > 0$ (这样才不会是 corner solution,即全 0 解),这意味着以下条件:
 - a) $X_{1\rightarrow S}, Y_{1\rightarrow S} \neq 0$ (几乎总是满足)
 - b) $\frac{y_{1\to S}}{x_{1\to S}} > 0$
- 2. 然后在路径上要有:
 - a) $\mathcal{T}_{1\rightarrow S} > 0$
 - b) $(1-q_1)\mathcal{R}_1^{-\gamma} > 0$,这意味 着 $\mathcal{R}_1 = \frac{1-q_1}{\alpha} \frac{(\ell_1 + \ell_1)w_1}{1-\ell_1} > 0$, $q_1 < 1$,这几乎总是满足的
- 3. 2.a 意味着:
 - a) $\prod_{i=1}^{s-1} \mathcal{P}_{i,i+1}$, $\prod_{i=1}^{s-1} \mathcal{Q}_{i,i+1} > 0$
- 4. 结合之前的分析,这等价于一个(看起来)更严格的表述:

a)
$$\mathcal{P}_{s,s+1} = \frac{1+r_{s+1}}{1+\delta} \frac{(1-h_s)}{(1-h_{s+1})} > 0$$
 for all $s = 1, ..., S-1$

b)
$$Q_{s,s+1} = \frac{1-q_s}{1-q_{s+1}} > 0$$
 for all $s = 1, ..., S-1$

- c) $r_s \neq -100\%$ for all s = 1, ..., S
- 5. 上面仍然保留的缩写是 $h_s = q_s \frac{1-cp_s^B}{1+p_s}$, 这个缩写要求的很简单,就是:
 - a) $h_s \in (0,1)$, 不能触及上下界

⁴ Validation Point, very important!

 $^{^5}$ 注意,同时还要让函数 x^γ 在 γ ∈ (0,1)上有定义,这意味着底数x一定要大于 0

⁶ 注意,这里牵扯到了以前遇到的一个问题,即 $F_{s=s}$ 究竟等于多少的问题。因为根据欧拉方程 $\frac{c_{s+1}}{c_s} = \mathcal{P}_{s,s+1}^{\gamma} \mathcal{Q}_{s,s+1}^{1-\gamma}$,最后一期时如果 $F_s=1$,那么最后一期一定不会有消费,这是不正常的。而正确的理解应当是 $F_{s=s}$ 意味着最后一岁年初存活的那批人活到年末(死亡时刻的前一刻)的死亡率。我们要将存活到年末和死亡两个事件分开对待,虽然我们假设这批人最后一年年末死亡,但这个过程应当理解成"最后一年年初存活的这群人全部活到了年底,然后集体退出经济体"。要知道,预算已经按照S的长度规划了,所以是死还是退出市场并不影响其花光所有的钱。从而最后一年的死亡率 $F_{s=s}$ 其实应当等于 0,即这一年的生存概率应当为 1。

- 6. 满足了以上所有条件后我们能够保证的是 $c_s>0$, $l_s>0$,但仍然有一个 $l_s\leq 1$ 的约束没有满足。若要满足这样一个约束,意味着:
 - a) $c_1(1-q_1)\mathcal{R}_1^{-\gamma}\mathcal{T}_{1\to s} \leq 1$ for all $s=1,...,S_r$ 。由于我们上面已经约束了 $c_1>0$ 和 $(1-q_1)\mathcal{R}_1^{-\gamma}>0$,所以这等价于:
 - b) $T_{1\to s} \leq \frac{\mathcal{R}_1^{\gamma}}{c_1(1-q_1)}$ for all $s=1,\ldots,S_r$ 。由于 $\mathcal{R}_1 = \frac{1-q_1}{\alpha} \frac{(\ell_1+\ell_1)}{1-\ell_1} w_1$ 只是第 1 岁工资水平的倍数,但 c_1 是一个成分很复杂的量,所以对于给定的一组参数&状态变量,这样一个上界的值是没有办法提前获得的,只能在先算出 c_1 ,在保证 c_1 合法的条件下再进行这一个上界检查
- 7. 这样一个上界检查是没有提前办法处理或只判断路径上个别点就完成的,必须先算出整条闲暇的路径然后再逐个点检查。这主要是因为 $\mathcal{T}_{\to s}$ 的结构太复杂,变数太多。

11.矫正方法

矫正方法指的是当最优路径 touch 甚至超过了资源约束时应当如何修正。由于 $c_s>0$ 的约束是否满足主要取决于输入的参数和状态变量的取值是否在较固定的范围内(如非负等),所以违背资源约束主要发生在闲暇 l_s 上。由于我们可以通过审查外生参数&状态变量来提前规避闲暇 l_s 的下界,所以约束违背仅仅只剩下闲暇超过上界,也就是闲暇超过了时间禀赋 1 的情形(比如收入水平太高,没必要工作时)。而这种情形下,为了保证跨期预算约束仍然满足(保证欧拉方程仍然成立),我们采取不再满足 c-l Transfer Equation 和 Leisure Dynamics 的方法来重新计算一条新的消费 c_s 。换句话说,我们相当于重新给定了一条完全外生的闲暇路径 \tilde{l}_s (意味着给定的收入),然后仅仅求解新的消费 c_s 。虽然我们不能保证这样得到的结果一定是约束下最优的,但由于新的闲暇路径 \tilde{l}_s 是基于无约束的、有明显休闲倾向的最优路径 l_s 修正得来的,所以可以近似认为是某种局部最优。同时要说明的一点是,之所以修正闲暇后欧拉方程仍然成立,是因为欧拉方程的推导过程不涉及任何关于闲暇的信息。当然,这种修正方式也适用于闲暇超出下界的情形(收入太低时还是有可能的,好吧,其实不可能,但写进程序里能够大大增强容错性)。

下面给出从无约束/违背约束上界/下界的闲暇最优路径 l_s 得到满足禀赋约束的修正闲暇路径 $ilde{l}_s$ 的方法:

1. 将 l_s 所有超过上界/下界的点都强行设为上界 1/下界 0,从而得到 \tilde{l}_s (非常简单哈哈)。如果原先算出来的 l_s 从第 1 岁开始就全部大于 1,那么修正后就意味着从来没有工作过。

然后基于 \tilde{l}_s ,我们重新求解一条新的消费。让我们从 Section 9 的预算约束开始重新推导之后的内容:

$$\begin{split} \tilde{V}_{1}\mathcal{A}_{1} + \sum_{S_{r}+1}^{S} \tilde{V}_{S}\dot{p}_{S} + \sum_{1}^{S_{r}} \tilde{V}_{S}(\mathcal{B}_{S} + \mathcal{H}_{S})w_{S}(1 - \tilde{l}_{S}) - \sum_{1}^{S} \tilde{V}_{S}(1 - \mathcal{H}_{S})c_{S} &= 0 \\ \sum_{1}^{S} \tilde{V}_{S}(1 - \mathcal{H}_{S})c_{S} &= \tilde{V}_{1}\mathcal{A}_{1} + \sum_{S_{r}+1}^{S} \tilde{V}_{S}\dot{p}_{S} + \sum_{1}^{S_{r}} \tilde{V}_{S}(\mathcal{B}_{S} + \mathcal{H}_{S})w_{S}(1 - \tilde{l}_{S}) \\ c_{1} \sum_{1}^{S} \tilde{V}_{S}(1 - \mathcal{H}_{S})\mathcal{T}_{1 \to S} &= \tilde{V}_{1}\mathcal{A}_{1} + \sum_{S_{r}+1}^{S} \tilde{V}_{S}\dot{p}_{S} + \sum_{1}^{S_{r}} \tilde{V}_{S}(\mathcal{B}_{S} + \mathcal{H}_{S})w_{S}(1 - \tilde{l}_{S}) \\ \left\{ \sum_{1}^{S} \tilde{V}_{S}(1 - \mathcal{H}_{S})\mathcal{T}_{1 \to S} \right\} c_{1} &= \sum_{1}^{S_{r}} \tilde{V}_{S}(\mathcal{B}_{S} + \mathcal{H}_{S})w_{S}(1 - \tilde{l}_{S}) + \tilde{V}_{1}\mathcal{A}_{1} + \sum_{S_{r}+1}^{S} \tilde{V}_{S}\dot{p}_{S} \end{split}$$

规定和之前类似的缩写 $\tilde{X}_{1\to S}$, $\tilde{Y}_{1\to S}$,得到新的 c_1 。然后使用欧拉方程拓展整条路径即可。如此的到的消费就是满足了闲暇约束的消费。

$$\widetilde{\mathcal{X}}_{1\to S} c_1 = \widetilde{Y}_{1\to S}$$

同样的,这样的一条消费路径也有必要检查 c_s 的合法性。如果不满足,则报错跳出(其实是可以继续修正的,但如何修正才效率最高是个麻烦的问题,可以留待以后讨论——如果确实在实际操作中出现了大量报错跳出的情形。理论上,因为至少存在一个 Corner solution 使得全部资产为 0 或只花不挣,所以求解决策问题不应当无解)

12.推导简化

由于推导时使用了大量的缩写,而在计算,尤其是连乘和求和时会导致大量变量被约掉,所以推导一下跨期的缩写(尤其是 $\mathcal{P}_{s,s+1}$, $\mathcal{Q}_{s,s+1}$) 能够降低浮点误差,并减轻工作量。如果读者是使用 Python 和 R 这类本身浮点误差在连续浮点计算时快速积累的工作环境,那么这样的工作还是很有益处的。但对于使用 Matlab 或笔者惯常使用的 Julia, C++等的人来说,则基本没有这种顾虑。当然,对于一个单独的决策问题求解来说,只要当前工作不关注于生命期消费/休闲的各类弹性等的精确估算,那么一定的浮点误差还是可以接受的。

13.分离 a_s , Φ_s

和之前一样,由于我们求解的是总财富 $A_s = a_s + \Phi_s$,所以在求解完成后,我们要根据 $A_1 = a_1 + \Phi_1$ 的初始值,和逐期的预算约束递推式求解出个人资产和个人医保账户的完整路径。切记。

14. Coding Assistant 1: Short-writing Levels

我们在推导时使用了大量的缩写,并且这些缩写很多都引用了其他缩写。那么在程序中定义中间变量时就要格外注意先后顺序。本节分层次,从输入的外生参数&状态变量作为底层开始,逐层给出不同深度的缩写定义。读者在编写程序时应当按照层次从低到高的顺序逐个定义缩写变量,并进行相应的 Validation。

	·	日按照压从外似却同的顺序处于定义缩与文	アとTJ ID Man Vallaction ()		
层次		变量/缩写定义		要求的合法性检查	备注
Level	•	长度为 S 的: q_s,p_s,cp_s^B,F_s	•	q_s , p_s , cp_s^B , F_s , z_s , $ heta_s$, η_s , ϕ_s , ζ_s , a_s 均要求	原始输入的
0	•	长度为 S_r 的: $z_s, heta_s, \eta_s, \phi_s, \zeta_s$, a_s		在0和1的开区间内	外生参数
	•	标量:α,δ,γ,σ	•	$\alpha > 0, \delta \neq -1, \gamma \in (0,1), \sigma \in (0,1)$	
			•	如果 $F_{s=s} \neq 0$,那么抛警告并强行修改	
				为 0	
Level	•	长度为 S 的: r_{s}	•	$r_s \neq -100\%$ for all $s = 1,, S$	原始输入的
0	•	长度为 S_r 的: w_s	•	$w_s > 0, \Lambda_s \ge 0, \mathbb{P}_s \ge 0$	经济体状态
	•	长度为 $S-S_r$ 的: Λ_s , \mathbb{P}_s			变量
Level		$z_s = z_s(\theta_s + \eta_s)$			直接由 Level
1		$\pi_S = \frac{z_S(\theta_S + \eta_S)}{1 + z_S \eta_S + \zeta_S}$			0 数据定义
		$-M = \phi_s + \zeta_s$			
		$\pi_s^M = \frac{\phi_s + \zeta_s}{1 + z_s \eta_s + \zeta_s}$			
Level		$a_s = 2 - \frac{1}{1 - F_c}, a_s \in [1, +\infty)$		$h_s = q_s \frac{1 - cp_s^B}{1 + n_s} \in (0, 1)$	由 Level 0 和
2		$u_s = 2 - \frac{1}{1 - F_s}, u_s \in [1, +\infty)$	•	$n_s = q_s \frac{1}{1 + p_s} \in (0, 1)$	Level 1 一起
	•	$\mathcal{E}_S = 1 - \sigma_S - \pi_S - \pi_S^M, \mathcal{E}_S \in [0,1]$	•	$\theta_s + \theta_s > 0$,否则抛警告因为工资收	定义
	•	$d_s = q_s \frac{p_s + (1 - cp_s^B)}{1 + p_s}, d_s \in [0,1)$		入全被缴纳了	
	•	$\mathcal{J}_S = \frac{\phi_S + a_S \zeta_S}{1 + z_S \eta_S + \zeta_S}, \mathcal{J}_S \in [0,1]$			
	•	$g_s = -\frac{q_s p_s}{1 + p_s}, g_s \in [0, 1]$			
	•	$h_s = d_s + g_s = q_s \frac{1 - cp_s^B}{1 + p_s}, h_s \in [0, 1]$			
	•	$\dot{\jmath}_s = \Lambda_s + \mathbb{P}_s, \dot{\jmath}_s \ge 0$			
	•	$V_s = \prod_{1}^{s} (1 + r_s)^{-1}$			
		$\tilde{V}_{S} = \frac{V_{S}}{\sigma_{S}}$			
		a_s			

				,
•	$\widetilde{\beta_S} = \frac{1 - F_S}{(1 + \delta)^{S - 1}}$			
	$1+r_{c+1} (1-h_c)$	•	$\mathcal{P}_{s,s+1} > 0$ for all $s = 1,, S - 1$	主要用于欧
• $\mathcal{P}_{s,s+1} = \frac{1}{1+\delta} \frac{1}{(1-h_{s+1})}, s = 1,, S-1$	•	$Q_{s,s+1} > 0$ for all $s = 1,, S - 1$	拉方程等动	
	$1-q_s$	•	$\mathcal{R}_{s} > 0$	态关系
•	$Q_{s,s+1} = \frac{1}{1 - q_{s+1}}, s = 1,, S - 1$	•	•	
	1 0 (8 18) 11		5,5+1	
•	$\mathcal{R}_{s} = \frac{1 - q_{s}}{\alpha} \frac{(\sigma_{s} + f_{s}) w_{s}}{1 - h_{s}}, s = 1, \dots, S_{r}$			
•	$S_{s,s+1}(r_{s+1}, w_s, w_{s+1}) =$			
	$\frac{1+r_{s+1}}{1+\delta} \frac{\vartheta_s + \vartheta_s}{\vartheta_{s+1} + \vartheta_{s+1}} \frac{w_s}{w_{s+1}}$			
	- [γς-1 -] ^γ [γς-1 -] ^{1-γ}	•	$T_{1\rightarrow S}>0$	用于积累的
•	$T_{1\to s} = [\prod_{i=1}^{s-1} \mathcal{P}_{i,i+1}] \cdot [\prod_{i=1}^{s-1} \mathcal{Q}_{i,i+1}] , s > 0$			消费/闲暇递
	1			推式
•	$\mathcal{X}_{1\to S} = \sum_{1}^{S_r} \tilde{V}_S(\mathscr{E}_S + \mathscr{E}_S) w_S(1 - $	•	$\mathcal{X}_{1\to S}, \mathcal{Y}_{1\to S} \neq 0$	用于无约束
	$q_s)\mathcal{R}_s^{-\gamma}\mathcal{T}_{1\to s} + \sum_1^s \tilde{V}_s(1-h_s)\mathcal{T}_{1\to s}$		$y_{1\rightarrow S} > 0$	的 c_1 求解
•	$\mathcal{Y}_{1\to S} = \sum_{1}^{S_r} \tilde{V}_S(\mathcal{S}_S + \mathcal{F}_S) w_S + \tilde{V}_1 \mathcal{A}_1 +$		$\frac{\chi_{1\to S}}{\chi_{1\to S}} > 0$	
	$\sum_{S_r+1}^S ilde{V}_S ilde{j}_S$			
•	$\widetilde{\mathcal{X}}_{1\to S} = \sum_{1}^{S} \widetilde{V}_{S} (1 - h_{S}) T_{1\to S}$	•	$\widetilde{\chi}_{1 \to S}, \widetilde{y}_{1 \to S} \neq 0$	用于不满足
•	$\tilde{Y}_{1\to S} = \sum_{1}^{S_r} \tilde{V}_S(\mathscr{E}_S + \mathscr{E}_S) w_S (1 - \tilde{l}_S) +$		$\tilde{\mathcal{Y}}_{1 o S}$. α	资源约束时
	$\widetilde{V}_1 \mathcal{A}_1 + \sum_{S_r+1}^S \widetilde{V}_S \dot{j}_S$	•	$\frac{\overline{z}-\overline{z}}{\widetilde{\chi}_{1\to S}} > 0$	的修正求解
	•	• $\mathcal{T}_{1 \to S} = \left[\prod_{i=1}^{S-1} \mathcal{P}_{i,i+1}\right]^{\gamma} \left[\prod_{i=1}^{S-1} \mathcal{Q}_{i,i+1}\right]^{1-\gamma}, s > 1$ • $\mathcal{X}_{1 \to S} = \sum_{1}^{S_r} \tilde{V}_S(\mathcal{E}_S + \mathcal{F}_S) w_S (1 - q_S) \mathcal{R}_S^{-\gamma} \mathcal{T}_{1 \to S} + \sum_{1}^{S} \tilde{V}_S (1 - \mathcal{H}_S) \mathcal{T}_{1 \to S}$ • $\mathcal{Y}_{1 \to S} = \sum_{1}^{S_r} \tilde{V}_S(\mathcal{E}_S + \mathcal{F}_S) w_S + \tilde{V}_1 \mathcal{A}_1 + \sum_{1}^{S} \tilde{V}_S \mathcal{F}_S $ • $\tilde{\mathcal{X}}_{1 \to S} = \sum_{1}^{S_r} \tilde{V}_S (1 - \mathcal{H}_S) \mathcal{T}_{1 \to S}$ • $\tilde{\mathcal{X}}_{1 \to S} = \sum_{1}^{S_r} \tilde{V}_S (1 - \mathcal{H}_S) \mathcal{T}_{1 \to S}$ • $\tilde{\mathcal{Y}}_{1 \to S} = \sum_{1}^{S_r} \tilde{V}_S (\mathcal{E}_S + \mathcal{F}_S) w_S (1 - \tilde{l}_S) + 1$	• $\mathcal{P}_{s,s+1} = \frac{1+r_{s+1}}{1+\delta} \frac{(1-h_s)}{(1-h_{s+1})}, s = 1,, S-1$ • $\mathcal{Q}_{s,s+1} = \frac{1-q_s}{1-q_{s+1}}, s = 1,, S-1$ • $\mathcal{R}_s = \frac{1-q_s}{\alpha} \frac{(\theta_s+\theta_s)w_s}{1-h_s}, s = 1,, S_r$ • $\mathcal{S}_{s,s+1}(r_{s+1}, w_s, w_{s+1}) = \frac{1+r_{s+1}}{1+\delta} \frac{\theta_s+\theta_s}{\theta_{s+1}+\theta_{s+1}} \frac{w_s}{w_{s+1}}$ • $\mathcal{T}_{1\to s} = \left[\prod_{i=1}^{s-1} \mathcal{P}_{i,i+1}\right]^{\gamma} \left[\prod_{i=1}^{s-1} \mathcal{Q}_{i,i+1}\right]^{1-\gamma}, s > 1$ • $\mathcal{X}_{1\to s} = \sum_{1}^{S_r} \tilde{V}_s (\theta_s + \theta_s) w_s (1-q_s) \mathcal{R}_s^{-\gamma} \mathcal{T}_{1\to s} + \sum_{1}^{S} \tilde{V}_s (1-h_s) \mathcal{T}_{1\to s}$ • $\mathcal{Y}_{1\to s} = \sum_{1}^{S_r} \tilde{V}_s (\theta_s + \theta_s) w_s + \tilde{V}_1 \mathcal{A}_1 + \sum_{1}^{S_r+1} \tilde{V}_s \hat{\theta}_s$ • $\tilde{\mathcal{X}}_{1\to s} = \sum_{1}^{S_r} \tilde{V}_s (\theta_s + \theta_s) w_s (1-\tilde{l}_s) + 1$ • $\tilde{\mathcal{X}}_{1\to s} = \sum_{1}^{S_r} \tilde{V}_s (\theta_s + \theta_s) w_s (1-\tilde{l}_s) + 1$	• $\mathcal{P}_{s,s+1} = \frac{1+r_{s+1}}{1+\delta} \frac{(1-h_s)}{(1-h_{s+1})}, s = 1,, s - 1$ • $\mathcal{Q}_{s,s+1} = \frac{1-q_s}{1-q_{s+1}}, s = 1,, s - 1$ • $\mathcal{Q}_{s,s+1} = \frac{1-q_s}{1-q_{s+1}}, s = 1,, s - 1$ • $\mathcal{R}_s = \frac{1-q_s}{a} \frac{(b_s+f_s)w_s}{1-h_s}, s = 1,, s_r$ • $\mathcal{R}_s = \frac{1-q_s}{a} \frac{(b_s+f_s)w_s}{1-h_s}, s = 1,, s_r$ • $\mathcal{R}_{s+1} = \frac{b_s+f_s}{a} \frac{w_s}{b_s+1}$ • $\mathcal{R}_{s+1} = \frac{b_s+f_s}{b_s+1} = \frac{b_s+f_s}{b_s+1}$ • $\mathcal{R}_{s+1} = \frac{b_s+f_s}{b_s+1} = \frac{b_s+f_s}{b_s+1}$ • $\mathcal{R}_{s+1} = \frac{b_s+f_s}{b_s+1} = \frac{b_s}{b_s+1}$ • $\mathcal{R}_{s+1} = \frac{b_s+f_s}{b_s+1} = \frac{b_s+f_s}{b_s+1} = \frac{b_s+f_s}{b_s+1}$ • $\mathcal{R}_{s+1} = \frac{b_s+f_s}{b_s+1} = \frac{b_s+f_s}{b$

在写代码时,所有缩写的命名都与其 LaTeX 代码保持一致。