نذيب 3.19g من كبريتات النحاس الثنائي CuSO₄ في الماء المقطر .

1 - احسب التركيز الكتلى للمحلول الناتج.

2 - احسب الكتلة المولية هذا المركب وكمية المادة في الكتلة السابقة.

3 - احسب التركيز المولى للمحلول الناتج .

4- نضيف الى المحلول السابق ml 300 من الماء المقطر :

١- كيف تؤثر إضافة الماء على المحلول ؟ وما اسم هذه العملية ؟

ب - احسب التركيز المولى الجديد للمحلول . وهاهو معامل التمديد ؟

Cu = 63.5(g/mol). O=16(g/mol) S=32(g/mol)

التمرين 2

التمرين لدينا الجدول التالي

	نموذج لويس	كمية المادة	الحجم (L)	الكتلة (g)	الكتلة المولية (g/mol)	
		n(mol)	0.06			.1. 11.11
ı			0.96			غاز البر وبان C H

غاز البر وبان (C_3H_8) موجود في درجة حرارة °20 و ضغط Pa في هذه البر وبان (C_3H_8) موجود في درجة حرارة ° $V_{\rm so}=24~{\rm L/mol}$ و في هذه الشر و ط الحجم المولى

الشروط الحجم المولي $V_{\rm m}=24~{\rm L/~mol}$ $V_{\rm m}=10$ الشروط الحجم المولي $V_{\rm m}=10$ المحدول (يجب كتابة العلاقات و إجراء الحسابات في ورقة الإجابة ثم بعد ذالك نملا الجدول)

2) إذا كانت لدينا عينة من غاز البوتان لها نفس حجم غاز البروبان (V= 0.96 L) و موجودة في نفس الشروط من الضغط و درجة الحرارة.

أ) استنتج كمية المادة الموجودة في العينة (دون إجراء الحسابات).

ب) إذا كانت كتلة العينة هي m= 2.32g أ.

أوجد الكتلة المولية الجّزئية للبوتان.

 C_xH_{2x+2} استنتج صيغته الجزئية المجملة، علما أنها من الشكل M(0)=16g/mol , M(H)=1 g/mol , M(c)=12g/mol يعطى يعطى

التمرين الثالث:

I / نحضر محلول (S) بإذابة كتلة m=31,9g من كبريتات النحاس اللامائية CuSO₄ في حجم 1L من الماء المقطر.

- 1- احسب التركيز الكتلى ثم التركيز المولى للمحلول (S)؟
- 2- ما هي الطريقة العملية المتبعة لتحضير هذا المحلول؟

II/ نحضر محاليلاً (S_1) ، (S_2) ، (S_3) ، (S_4) بنفس الطريقة، وذالك بإذابة كتل مختلفة من كبريتات النحاس اللامائية في حجوم مختلفة من الماء المقطر فنحصل على:

S ₄	S ₃	S ₂	S_1	المحلول
0,04	0,03	0,02	0,01	التركيز المولي (mol /L)
200	400	600	800	حجم المحلول (mL)

- - أ- ماذا نسمى هذه العملية؟ ما الهدف منها؟
 - ب- احسب تركيز المحلول الجديد؟
 - (S_3) نمز ج المحلول (S_2) مع المحلول (S_3) .

$$C = \frac{C_2V_2 + C_3V_3}{V_2 + V_3}$$
 : أ- اثبت أن تركيز المحلول الناتج يعطى بالعلاقة:

ب- احسبه؟

نريد الحصول على محلول تركيزه
$$C'=0,008 \text{ mol/L}$$
 انطلاقا من المحلول (S_4).

ما هو حجم الماء الواجب إضافته؟

التمرين 4

يريد مخبري تحضير محلول حجمه $mL: 500 \, mL: 0.10^{-1} \, mol. L^{-1}$ و ذلك باستعمال مادة صلبة هي هيدروكسيد الصوديوم NaOH و الماء المقطر

- أحسب الكتلة المولية الجزينية للمذاب.
- 2. مــاهي كتلة هيدروكسيد الصوديوم اللازمة لذالك ؟ $m V_{eau}$ نريد تخفيف المحلول السابق ليصبح تركيزه $m C_2=3.10^{-2}~mol.L^{-1}$. ماهو حجم الماء المقطر $m V_{eau}$ المضاف ؟

للحصول على محلول مائي لنترات الكالسيوم $Ca(NO_3)_2$ حجمه 500 m ، نذيب في الماء m=10g من نترات الكالسيوم ، يتم التحضير في حوجلة حجمها 500ml .

- 1- بين الخطوات التجريبية لتحضير المحلول مبينا الوسائل المستعملة بدقة.
 - 2- احسب الكتلة المولية لنترات الكالسيوم.
 - 3- احسب التركيز المولي للمحلول C.
 - 4- ما هي الأنواع الكيميائية الموجودة في المحلول؟
 - 5- احسب تراكيز هذه الأنواع. $_{\text{Ca}}$ -40.1g/mol ; M_{O} =16 g/mol ; M_{N} =14 g/mol ; M_{Ca} =40.1g/mol ; M_{O} =16 g/mol ; M_{N} =14 g/mol ;

التمرين 6

 $C_{20}H_6O_5Br_4Na_2$ الاييوزين لها خواص ملونة ، و مطهرة صيغتها المجملة هي

- 1) أحسب الكتلة المولية الجزئية للاييوزين.
- m = 70 g من الاييوزين في قارورة حجمها m = 70 g من الاييوزين في قارورة حجمها تحتوى على ماء مقطر.
 - أحسب كمية مادة الاييوزين المحتواة في الكتلة m
 - (3) بعد إذابة الابيوزين في كمية من ماء القارورة ، نكمل الحجم إلي الخط $500 \mathrm{ml}$ بالماء المقطر C_0 لهذا المحلول المحضر (ندعوه المحلول S_0)
- 4) نأخذ حجما قدره 20ml من المحلول السابق و ندخلها في قارورة مدرجة حجمها 200ml ثم نكمل الحجم بالماء المقطر إلي التدريجة 200ml فنحصل علي محلول (ندعوه S_1)
 - أ) كيف نسمي هذه العملية؟
 - (S_1) أحسب التركيز المولى (S_1) للمحلول
 - ت)أوجد معامل التمديد F
 - ث) أحسب التركيز الكتلي (t) للمحلول (S_1)

M (Na) = 23 g/mol M(Br) = 79.9 g/mol يعطى

التمرين 7

- $C_{27}H_{46}O$: الصيغة الجزئية للكولسترول هي
 - أحسب الكتلة المولية الجزئية له.
- 2) خلال تحليل طبي لحجم 1من الدم وجد أنه يحتوي علي $^{-3}$ mol من الكولسترول أ) عبر عن نتيجة التحليل بg/l:
 - علما أن النسبة العادية في الدم تتراوح ما بين (2.2g/l) (1.4g/l)
 1/ هل يكشف التحليل عن وجود زيادة من الكولسترول في الدم؟
 2/ بماذا تنصح هذا الشخص؟

- -1 فحمات الصوديوم مركب شاردي يتكون من شوارد الصوديوم -1 و شوارد الفحمات -1
 - 1 أكتب الصيغة الشاردية و الصيغة الإحصسانية لهذا المركب.
 - 2 احسسب كتلته المولية.
- اا نذیب كتلة m من فحمات الصودیوم في حجم 100cm³ من الماء قصد الحصول على محلول مائي تركیزه المسولي الحجمي 0,1mol / L.
 - 1 ما هي كمية مادة فحمات الصوديوم الواجب استخدامها؟
 - 2 استنتج قيمة الكتلسسة (m).
 - 3 احسب التركيز المولى الكتلسسى للمحلول الناتج.
- 4 كم يكون التركيز المولى الحجمى للمحلول لـو كان حجم الماء المستخدم سابقا يساوي L = 250 mL وك"> 250 سابقا يساوي
 - تعطيسي الكتل المولية الذرية: Na: 23g/mol , O: 16g/mol

التمرين 9

الخل هو عبارة عن المحلول الماني لحمض الإيثانويك (حمض الخل) ذي الصبغة الجزيئية: C2H4O2

1 - أعطى تمثيل لويس لحمض الخل وحند عند الأزواج الرابطة وغير الرابطة.

2 – احسب كتلة حمض الإيثانويك في Kg 1 من الخل برجة 60 مع العلم ان برجة حموضة الخل تمثل كتلة حمض الايثانويك النقى الموجودة في 100 من الخل ومقاسة بالغرام.

- 3 استنتج كمية المادة من حمض الإيثانويك الموجودة في محلوله
 - 4 احسب كمية المادة من حمض الإيثانويك في 1 L في الخال
 - استنتج التركيز المولي لحمض الإيثانويك في هذا الخل.

مع العلم أن : كثافة الخل : d= 1.05g.L-1 ، الكتلة الحجمية للماء : 1.000 g.L-1 مع العلم أن : كثافة الخل

 $M_0 = 16g.mol^{-1} \cdot M_H = 1g.mol^{-1} \cdot M_C = 12g.mol^{-1}$