

Class Name : MATH 1050/1051 Fall 2018 Instructor Name : Nguyen

Student Name : _____ Instructor Note :

1. Below is the graph of $y = 4^x$.

Translate it to become the graph of $y = 4^{x-3} - 1$.

- 2. Rewrite each equation as requested.
 - (a) Rewrite as an exponential equation.

$$\log_3 \frac{1}{81} = -4$$

(b) Rewrite as a logarithmic equation.

$$8^1 = 8$$

- (a) =
- (b) log___=_

- 3. Rewrite each equation as requested.
 - (a) Rewrite as a logarithmic equation.

$$e^6 = y$$

(b) Rewrite as an exponential equation.

$$\ln x = 4$$

4. Evaluate each expression.

(a)
$$\log_6 \frac{1}{6} = []$$

(b)
$$\log_4 64 =$$

5. Solve for x.

$$\log_{1000} x = \frac{1}{3}$$

Simplify your answer as much as possible.

6. Below is the graph of $y = \log_2 x$.

Translate it to become the graph of $y = \log_2(x - 1) + 2$.

7. Find the domain of the function.

$$f(x) = \log_3\left(1 - x^2\right)$$

Write your answer as an interval or union of intervals.

8. Fill in the missing values to make the equations true.

(a)
$$\log_9 7 + \log_9 4 = \log_9 \boxed{}$$

(b)
$$\log_7 3 - \log_7 \boxed{\ } = \log_7 \frac{3}{8}$$

(c)
$$\log_2 \frac{1}{81} = -4\log_2$$

9. Use the properties of logarithms to expand the following expression.

$$\log \sqrt{xy^7z^3}$$

Each logarithm should involve only one variable and should not have any radicals or exponents.

You may assume that all variables are positive.

10. Write the expression as a single logarithm.

$$7\log_a(y-6) - 4\log_a(y+6)$$

11. Solve for *x*.

$$\log_2(-3x + 4) = 4$$

12. Solve for *x*.

$$\log_2(x+7) = 3 - \log_2(x+5)$$

13. Solve for x.

$$3^{12x} = 81^{2x+1}$$

14. Solve for *x*.

$$\log_2(x+3) - \log_2 11 = \log_2 5$$

Obj. 9 #5 Answers for class MATH 1050/1051 Fall 2018

1.

2. (a)
$$3^{-4} = \frac{1}{81}$$

(b)
$$\log_8 8 = 1$$

3. (a)
$$\ln y = 6$$

(b)
$$e^4 = x$$

4.

(a)
$$\log_6 \frac{1}{6} = -1$$

(b)
$$\log_4 64 = 3$$

5.
$$x = 10$$

6.

7. Domain: (-1, 1)

8.

(a)
$$\log_9 7 + \log_9 4 = \log_9 28$$

(b)
$$\log_7 3 - \log_7 8 = \log_7 \frac{3}{8}$$

(c)
$$\log_2 \frac{1}{81} = -4\log_2 3$$

9.
$$\log \sqrt{xy^7z^3} = \frac{1}{2}\log x + \frac{7}{2}\log y + \frac{3}{2}\log z$$

10.
$$\log_a \left(\frac{(y-6)^7}{(y+6)^4} \right)$$

11.
$$x = -4$$

12.
$$x = -3$$

- **13.** x = 1
- **14.** x = 52