Übungsblatt LA 3

Computational and Data Science FS2025

Mathematik 2

Lernziele:

- Sie kennen die Begriffe Exponentialform einer komplexen Zahl, Eulersche Formel, Potenzgleichungen und deren Eigenschaften.
- Sie können komplexe Zahlen in der arithmetischen, trigonometrischen und Exponentialform darstellen und von einer in die andere Form umwandeln.
- Sie können die Grundrechenarten für die komplexen Zahlen anwenden.
- Sie können komplexe Zahlen sowohl potenzieren als auch aus ihnen die Wurzel ziehen.

1. Aussagen über die Exponentialform

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Jede komplexe Zahl lässt sich in Exponentialform darstellen.		
b) Jede komplexe Zahl lässt sich eindeutig in Exponentialform		
darstellen.		
c) Der Term $2e^{i\pi}$ ist die Exponentialform von -2 .		
d) Der Term $2e^{-i\pi}$ ist die Exponentialform von -2 .		
e) Der Term $-2e^{-i\pi}$ ist die Exponentialform von -2 .		

2. Konversion zwischen arithmetischer und Exponentialform

Wandeln Sie folgende komplexe Zahlen in Exponentialform bzw. in arithmetische Form um.

a)
$$4 - 4i$$

b)
$$-\sqrt{3} + i$$

c)
$$2e^{-i\pi/6}$$

d)
$$\sqrt{2}e^{i3\pi/4}$$

3. Umwandlung komplexer Zahlen

Berechnen Sie $2e^{-i\pi/3} - \sqrt{3} + i$ und geben Sie das Ergebnis sowohl in arithmetischer als auch in Exponentialform an.

4. Potenzen

Bestimmen Sie die Potenzen bzw. komplexen Wurzeln der folgenden Ausdrücke.

a)
$$z^2 = -49$$

b)
$$z^2 = i$$

c)
$$z^3 = -8$$

d)
$$z^3 = -27i$$

e)
$$z^3 = 1 - \sqrt{3}$$

f)
$$z^4 = -8 + 8\sqrt{3}i$$

g)
$$(-1 + \sqrt{3}i)^{12}$$

e)
$$z^{3} = 1 - \sqrt{3}i$$

h) $\left(\frac{1}{2}\sqrt{2} + \frac{1}{2}\sqrt{2}i\right)^{10}$

i)
$$\left(\frac{1}{\sqrt[5]{2}}(1-i)\right)^{25}$$

5. Komplexe Wurzeln

- a) Bestimmen Sie alle komplexen dritten Wurzeln aus 1.
- b) Bestimmen Sie mit Ihrem Ergebnis aus Aufgabenteil (a) alle komplexen Lösungen der Gleichung $(1+z)^3 = (1-z)^3$.

6. Aussagen über Potenzgleichungen

Gegeben sei die Potenzgleichung

 $z^n = w \text{ mit } w \in \mathbb{C}, n \in \mathbb{N}.$

Welche der folgenden Aussagen sind wahr und welche falsch?

		wahr	falsch
a)	Für jede Wahl von w hat die Gleichung mindestens 1 Lösung in		
	$\mathbb{C}.$		
b)	Für jede Wahl von w hat die Gleichung genau n Lösungen in \mathbb{C} .		
c)	Ist n gerade und z eine Lösung der Gleichung, dann ist auch $-z$		
	eine Lösung.		
d)	Sei $w \in \mathbb{R}$ und z eine Lösung der Gleichung, dann ist auch z^*		
	eine Lösung.		
e)	Alle Lösungen der Gleichung haben denselben Betrag.		
f)	Alle Lösungen der Gleichung haben dasselbe Argument.		

7. Aussagen über komplexe Zahlen

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Für alle $z \in \mathbb{R}$ gilt $Re(z) \in \mathbb{R}$.		
b) Es gilt $z = 1$ genau dann, wenn $Im(z) = Re(z) = 1$.		
c) Es gilt $z_1^* = z_2$ genau dann, wenn $z_2^* = z_1$.		
d) Es gibt ein $z \in \mathbb{C}$, so dass $z^2 = i$.		
e) Falls $ z_1 \le z_2 $, dann gilt auch $z_1 \le z_2$.		