

Introduction to Data Science

Homework Assignment 1 Cheat Sheet – Exploratory Data Analysis

Dr. Gail Gilboa-Freedman Dr. Naveh Eskinazi, Mr. Asaf Lev

PYTHON CODING

LIBRARY: PANDAS

Purpose	Command
Import Library	import pandas as pd
Assign the CSV file into a variable	datafile = 'filename.csv'
Read CSV file into a dataset	dataset = pd.read_csv(datafile)
Assign the dataset into a dataframe	dataframe = pd.DataFrame(dataset)
Show the dataframe content	dataframe
Number of unique values in a column	unique = len(pd.unique(dataframe['column_name']) /
	unique=dataframe['column_name'].nunique()
Show the data of range of rows	dataframe.iloc[index1:index2]
Create a list of cases that meet a criterion (result: true / false)	index = dataframe['column_name'] == criteria
Show the actual data of the cases	dataframe[index]
Show the descriptive statistics of all numerical columns within the dataframe	dataframe.describe()
Show the number of cases for each unique value in a column	dataframe['column_name'].value_counts()

Introduction to Data Science

Groupby - Group a dataframe by "x" and get statistic "metric" on "y"	dataframe.groupby("x")["y"].metric()
*Pay attention: X,Y and Metric should be replaced with the actual value	For example:
	find the mean of milk products sold by region in
	wholesale_data i.e., the data used in the tutorial):
	dataframe.groupby("Region")["Milk"].mean()
Create a bar chart based on a grouped dataframe (Note: Bar plot can be	grouped_dataframe.plot(kind='bar')
created also on a non-grouped data frame as shown later)	For example:
	Create a bar chart that will compare the mean of milk
	products sold in each region in wholesale_data:
	grouped_dataframe =
	dataframe.groupby("Region")["Milk"].mean()
	grouped_dataframe.plot(kind='bar')
	Optional: add titles to the axes and to the chart

LIBRARY: MATPLOTLIB

Purpose	Command
Import Library	Import matplotlib as plt
Import pyplot module	Import matplotlib.pyplot as plt
Visualize data of a column using Box & Whisker	dataframe.boxpot(column='column_name')
Create a histogram of a given column with bins defined as column's number	plt.hist(dataframe['column_name'], bins = unique)
of unique values	
Define x-axis data	x = dataframe ['column_name']
Define y-axis data	y = dataframe ['column_name']

Introduction to Data Science

Create a bar chart	plt.bar(x, y)
Define x-axis title	plt.xlabel('enter your text')
Define y-axis title	plt.ylabel('enter your text')
Define chart title	plt.title('enter your text')

Good Luck!