Class notes on submodularity

Alfred Galichon

math+econ+code masterclass on equilibrium transport and matching models in economics Special lecture 3, October 15, 2021

1 Agenda

This class will introduce topics such as lattices, submodularity, Veinott's strong set ordering, and Topkis' theorem. This class is only meant to provide an bird's-eye view of topic.

2 Some references

Topkis' book: Topkis, Donald M. (1998). Supermodularity and Complementarity. Princeton University Press.

Veinott's lectute notes http://dl.icdst.org/pdfs/files/079ac78c59f5789ec9bbf319e5c9835c.pdf Galichon, The unreasonable effectiveness of optimal transport in economics. https://arxiv.org/abs/2107.04700

3 An introduction

3.1 Some examples

Question: consider

$$P(q) = \arg\max_{p} F(p, q) \tag{1}$$

when is P increasing in q?

Example 1: supply problem. Consider the producer's problem

$$Q\left(p\right) = \arg\max_{q} \left\{ p^{\top}q - C\left(q\right) \right\}$$

then letting the indirect profit of the producer as

$$C^{*}\left(p\right) = \max_{q} \left\{ p^{\top}q - C\left(q\right) \right\}$$

we have by convex duality that $Q = P^{-1}$ where P given by

$$P\left(q\right) = \arg\max_{p} \left\{ p^{\top}q - C^{*}\left(p\right) \right\}.$$

This has the same form as in (??) with $F(p,q) = p^{\top}q - C^*(p)$.

 $C^*\left(p\right) = \max_q \left\{ p^\top q - C\left(q\right) \right\}$

1) FOC – q as a function of p: $p_i = \partial c(q)/\partial q_i$ that is $p = \nabla C(q)$

2) Enveloppe theorem – p as a function of q. this gives $\nabla C^*(p) = q$.

Example 2: optimal transport. Consider the problem

$$\min_{u,v} \left\{ \sum_{x} n_x u_x + \sum_{y} m_y v_y : u_x + v_y \ge \Phi_{xy} \right\}$$

then setting $p = (u_x, -v_y)$ and $q = (-n_x, m_y)$ yields

$$P\left(q\right) = \arg\max_{p} \left\{ p^{\top}q - C\left(p\right) \right\}$$

where $C\left(p\right)=0$ if $p_{y}-p_{x}\leq-\Phi_{xy}$ for all xy and $+\infty$ otherwise.

Example 3: regularized optimal transport. Same as the above with

$$C(p) = \sigma \sum_{xy} \exp\left(\frac{\Phi_{xy} + p_y - p_x}{\sigma}\right).$$

Question: what is the response of the prices p to a change in quantities q? In particular, when is p isotone in q, i.e. $q \le q'$ implies $p \le p'$?

3.2 Le Châtelier principle

Informal discussion. Assume differentiability. Then

$$P\left(q\right)=\left\{ P\left(q\right)\right\} =\arg\max_{p}\left\{ F\left(p,q\right)\right\} ,$$

and we would like to explore when $D_q P \ge 0$ by which we mean that $\partial P_i(q) / \partial q_j \ge 0$.

Write down first order conditions

$$D_p F\left(P\left(q\right), q\right) = 0 \tag{2}$$

and second order conditions ensure that $D_{p}^{2}F\left(P\left(q\right) ,q\right) ,$ which is a symmetric matrix, is definite negative.

By differentiation of (??), we get

$$\left(D_{pp}^2 F\right) D_q P + D_{pq}^2 F = 0$$

and as a result

$$D_q P = -\left(D_{pp}^2 F\right)^{-1} \left(D_{pq}^2 F\right).$$

As a result, a sufficient condition for $D_qP\geq 0$ (termwise) is $-\left(D_{pp}^2F\right)^{-1}\geq 0$ and $D_{pq}^2F\geq 0$.

- $D_{pq}^2 F \geq 0$ is called increasing differences: means that $D_p F$ is increasing in q. This is satisfied for instance in the examples above when F(p,q) =
- $-(D_{nn}^2F)^{-1} \ge 0$ is related in a fundamental way to **gross substitutes**.

Gross substitutes and submodularity

Assume in this paragraph that $F\left(p,q\right)=p^{\top}q-C^{*}\left(p\right)$. Consider the supply function $Q\left(p\right)=P^{-1}\left(p\right)$.

We have $-D_{pp}^{2}F(p,q) = D^{2}C^{*}(p)$.

We have $Q(p) = \nabla C^*(p)$ by foc in $\arg \max_p \{p^\top q - C^*(p)\}$

Thus
$$D_p Q(p) = D^2 C^*(p) = -D_{pp}^2 F(p, Q(p)).$$

Thus $D_pQ\left(p\right)=D^2C^*\left(p\right)=-D_{pp}^2F\left(p,Q\left(p\right)\right).$ Gross substitutes expresses that when the price of i increases, the supply for good $j \neq i$ decreases. (Producers "substitute" i to j as it is becoming more attractive to produce i). Therefore gross substitutes is expressed by the **property that** D_pQ is a **Z-matrix**. That means that

$$\frac{\partial^2 C^* \left(p \right)}{\partial p_i \partial p_j} \le 0 \forall i \ne j.$$

Which is exactly submodularity of $C^*(p)$.

Gross substitutes is equivalent in this setting with the fact that $C^*(p)$ should be submodular – that is F is supermodular in p.

Submodularity, and Stieltjes matrices

Back to the general setting and simply assume that F is supermodular in p. We have

$$D_q P = -\left(D_{pp}^2 F\right)^{-1} D_{pq}^2 F.$$

We can assume that F is supermodular in p, i.e. $-(D_{pp}^2F)$ is a Z-matrix.

Can we conclude that $-\left(D_{pp}^2F\right)^{-1} \geq 0$ termwise?

In general (cf. previous lecture), A a Z-matrix does not imply $A^{-1} \ge 0$.

As we saw in the previous lecture, a Z-matrix A is such that $A^{-1} \ge 0$ if and only if it is a M-matrix, that is, if and only if it is nonreversing, that is if and only if $Au \leq 0$ and $u \geq 0$ imply u = 0.

Here we can rely on a bit more, which is second order conditions. We know by first order conditions that $-\left(D_{pp}^2F\right)^{-1}$ is symmetric negative positive. **Definition**. A Z-matrix which is symmetric positive definite is called a

Stieltjes matrix.

Remark. If a function g(p) is strict convex and submodular, then $D^2g(p)$ is a Stieljes matrix.

Property. A Stieltjes matrix is a M-matrix.

Proof. If A is a Stieltjes, it is a Z-matrix and thus we only need to verify that it is nonreversing. Assume $Au \leq 0$ and $u \geq 0$. Then $u^{\top}Au \leq 0$, but this implies u = 0 because A is symmetric positive definite.

As a result, $-D_{pp}^2 F$ is a Stieltjes matrix, and therefore $-\left(D_{pp}^2 F\right)^{-1} \geq 0$.

To summarize, we have assumed that

* increasing difference holds $\partial^2_{pq} F(p,q) \geq 0$ * F is supermodular $\partial^2_{p_i p_j} F(p,q) \geq 0$ for $i \neq j$ and we "concluded" that $\partial_p P(q) \geq 0$ termwise, that is P is isotone (ie monotone with respect to the componentwise order) with respect to q.

This is the essence of Topkis theorem.

Lattices, submodularity, increasing differences and Veinott's order

Consider the previous problem

$$P\left(q\right) = \arg\max_{p \in L} F\left(p, q\right)$$

and assume no differentiability whatsoever.

Here we are in R^d and $(p \lor p')_i = \max\{p_i, p'_i\}$ and $(p \land p')_i = \min\{p_i, p'_i\}$. Assume that L is a sublattice of R^d , that is $p, p' \in L$ implies $p \land p' \in L$ and

Claim: we can define supermodularity of q(p) as for all p and p',

$$q(p \wedge p') + q(p \vee p') > q(p) + q(p')$$

this is giving us

$$g(p \lor p') - g(p') \ge g(p) - g(p \land p')$$

which means that for $p = P + \epsilon e^i$ where $e_i^i = 1$ and $e_k^i = 0$ for $k \neq i$.

and $p' = P + \eta e^j$ and thus $p \vee p' = P + \epsilon e^i + \eta e^j$ and $p \wedge p' = P$. Thus above becomes

$$g\left(P+\epsilon e^{i}+\eta e^{j}\right)-g\left(P+\eta e^{j}\right)\geq g\left(P+\epsilon e^{i}\right)-g\left(P\right)$$

then letting $\epsilon \to 0$ yields

$$\partial_{p_i} g\left(P + \eta e^j\right) \ge \partial_{p_i} g\left(P\right)$$

hence

$$\partial_{p_i p_j}^2 g(P) \ge 0.$$

Second, we shall define increasing differences as $q \to F(p',q) - F(p,q)$ is nondecreasing in q as soon as $p' \ge p$.

Now for the interesting problem. What does it mean that $P\left(q\right)$ should be increasing. The answer is given by Veinott's strong set order.

Definition. $P \leq_V P'$ if given $p \in P$ and $p' \in P'$, then $p \wedge p' \in P$ and $p \vee p' \in P'$.

First thing is to verify that when P and P' are singletons, this coincides with the natural order.

Property 1. Assume $P = \{p\}$ and $P' = \{p'\}$, then $P \leq_V P'$ if and only if $p \wedge p' = p$ and $p \vee p' = p'$.

Hence that occurs if and only if $p \leq p'$.

Is \leq_V reflexive?

Property 2. $P \leq_V P$ if and only if P is a sublalttice of R^d that is iff $p, p' \in P$ imply $p \wedge p' \in P$ and $p \vee p' \in P$.

Property 3. Assume P and P' are sublattices of \mathbb{R}^d .

If $P \leq_V P'$ then inf $P \leq \inf P'$ and $\sup P \leq \sup P'$.

5 Topkis' theorem

Assume L is a lattice, F(p,q) is

supermodular in p and

has increasing differences in (p,q).

Then $q \to \arg \max_{p \in L(q)} F(p,q)$ is increasing in Veinott's order.

We need to show that if $q \leq q'$ and if $p \in \arg\max_{p} F(p,q)$ and $p' \in \arg\max_{p} F(p,q')$

then $p \wedge p' \in \arg \max_{p} F(p, q)$ and $p \vee p' \in \arg \max_{p} F(p, q')$.

Let's show this.

```
p \in \arg\max_{p} F(p,q) \text{ implies } F(p,q) \ge F(p \land p',q)
p' \in \arg\max_{p} F(p,q') \text{ implies } F(p',q') \ge F(p \lor p',q')
```

Take the second one; we get

 $0 \geq F\left(p \vee p', q'\right) - F\left(p', q'\right) \geq F\left(p \vee p', q\right) - F\left(p', q\right)$ because of increasing differences

This leads to

 $F(p',q) \ge F(p \lor p',q)$

add with the first one above, this yield

$$F(p',q) + F(p,q) \ge F(p \land p',q) + F(p \lor p',q)$$

Now because of supermodularity, this inequality can only hold as an equality.

Hence all the inequalities written above are in fact equalities

Hence

$$\begin{split} F\left(p,q\right) &= F\left(p \wedge p',q\right) \\ F\left(p',q'\right) &= F\left(p \vee p',q'\right) \\ \text{and QED.} \end{split}$$