Esercizio 4.1 Sia $f(x)=4x^2-12x+1$. Determinare $p(x) \in \pi_4$ che interpola f(x) sulle ascisse i = i, i=0,...,4.

Soluzione Caso Lagrange:

Per prima cosa si calcolano gli $f(x_i)$ per ogni i=0,...,4:

- f(0) = 1
- f(1) = -7
- f(2) = -7
- f(3) = 1
- f(4) = 17

Adesso calcoliamo $L_{kn}(x)$ con k=0,...,4 e n=4: $L_{04} = \frac{(x-1)(x-2)(x-3)(x-4)}{24}$

$$L_{14} = \frac{(-x)(x-2)(x-3)(x-4)}{6}$$

$$L_{24} = \frac{(x)(x-1)(x-3)(x-4)}{4}$$

$$L_{34} = \frac{(-x)(x-1)(x-2)(x-4)}{6}$$

$$L_{44} = \frac{(x)(x-1)(x-2)(x-3)}{24}$$

A questo punto possiamo scrivere $p(x) \in \pi_4 = \frac{(x-1)(x-2)(x-3)(x-4)}{24} - 7\frac{(-x)(x-2)(x-3)(x-4)}{6} - 7\frac{(x)(x-1)(x-3)(x-4)}{4} + \frac{(-x)(x-1)(x-2)(x-4)}{6} + 17\frac{(x)(x-1)(x-2)(x-3)}{24}$

Eseguendo i calcoli, si ottiene il polinomio $p(x) = 4x^2 - 12x + 1$

Esercizio 4.14 Quali diventano le ascisse di Chebyshev, per un problema definito su un generico intervallo [a,b]?

Solutione

Nel caso a=-1 e b=1, la formula per il calcolo delle ascisse di Chebyshev à ": $x_i^{(k)} = cos(\frac{(2i+1)\pi}{2k})$ con k grado del polinomio e i=0,...,k. Nel caso generico, la formula diventa: $x_i^{(k)} = \frac{a+b}{2} + \frac{b-a}{2}cos(\frac{(2i+1)\pi}{2k})$ con k

grado del polinomio e i=0,...,k.