Projekt 6: Pakiet KWANT- symulacje transportu elektronowego w polu magnetycznym.

Kacper Połuszejko, 412183

1 Rozpraszanie na potencjale

Rys. 1: Relacja dyspersji (po lewej), oraz wykres konduktancji w funkcji energii (po prawej).

Rys. 2: Wykres funkcji falowej oraz gęstości prądu dla układu z potencjałem rozpraszania w postaci gau sowskiej zlokalizowanym w środku nanodrutu. Wykresy dla E=0.1eV.

Rys. 3: Wykres funkcji falowej oraz gęstości prądu dla układu z potencjałem rozpraszania w postaci gau sowskiej zlokalizowanym w środku nanodrutu. Wykresy dla E = 0.2eV.

Rys. 4: Wykres funkcji falowej oraz gęstości prądu dla układu z potencjałem rozpraszania w postaci gaussowskiej zlokalizowanym w środku nanodrutu. Wykresy dla E=0.3eV.

2 Kwantowy efekt Halla

Rys. 5: Relacje dyspersji w nanodrucie policzone dla $B_z=2T$ dla W=80,200nm.

Jak widać dla szerszego nanodrutu relacja dyspersji bardziej się wypłaszcza. Innymi słowy, znacznie większy udział w transporcie elektronów mają stany brzegowe. Elektrony dla niskich k mają zerową prędkość grupową. Już na podstawie tych wykresów możemy spodziewać się kwantowego efektu Halla.

Rys. 6: Wykres konduktancji w funkcji energii padającego elektronu dla $B_z=2T,\,W=200nm.$

...

Rys. 7: Funkcja falowa najniższego energetycznie stanu dla elektronu puszczonego z lewego i prawego kon taktu. Wyniki dla $B_z=2,\,W=200nm.$

Widzimy, że elektron jest "przyklejony"do krawędzi nanodrutu.

Rys. 8: Wykres konduktancji w funkcji energii padającego elektronu dla $B_z = 2T$, W = 200nm, w przypadku gdy umieszczono potencjał rozpraszania w górnym brzegu nanodrutu.

Rys. 9: Wykres funkcji falowej oraz gęstości prądu dla układu z potencjałem rozpraszania w postaci gausowskiej zlokalizowanym na brzegu nanodrutu. Wyniki Bz=2T i W=200nm. Wykresy kolejno w kolumnach dla elektronu puszczonego z lewego i prawego kontaktu.

Jak widać na powyższym rysunku, wykres konduktancji nie uległ zmianie, po przyłożeniu potencjału rozpraszania. Potwierdzają to równizę poniższe cztery rysunki. Płynący elektron "omija" przeszkodę w postaci potencjału rozpraszania i się nie rozprasza. Opór wbrew intuicji nie rośnie, co widać na wykresach konduktancji.

3 Efekt Aharonova-Bohma

Rys. 10: Relacje dyspersji w lewym kontakcie.

Rys. 11: Wykres konduktancji w funkcji pola B_z dla E=0.05 eV.

Rys. 12: Wykres funkcji falowej oraz gęstości prądu dla w minimum $(B_z = 1.7mT)$ oraz w maximum $(B_z = 3.5mT)$. Energia padającego elektronu E = 0.05eV.

Jak widać na powyższych rysunkach dla pola magnetycznego równego $B_z=17mT$ zachodzi destruktywna interferencja, natomiast dla pola $B_z=35mT$ konstruktywna interferencja.