Écrire sous la forme d'une seule puissance $16^{-14} \times 16^{-15}$

Question 2:

Dans une série de 3 h 17 min, il y a 67 min de dialogues.

Quel est le **pourcentage** de dialogues?

Question 3:

Développer l'expression suivante :

$$(-2)x^2((-2)x^2-(-6))$$

Réponses:

Écrire sous la forme d'une seule puissance $16^{-14} \times 16^{-15}$

Question 2:

Dans une série de 3 h 17 min, il y a 67 min de dialogues.

Quel est le **pourcentage** de dialogues?

Question 3:

Développer l'expression suivante :

$$(-2)x^2((-2)x^2-(-6))$$

Réponses:

1.
$$16^{-29}$$

Écrire sous la forme d'une seule puissance $16^{-14} \times 16^{-15}$

Question 2:

Dans une série de 3 h 17 min, il y a 67 min de dialogues.

Quel est le **pourcentage** de dialogues?

Question 3:

Développer l'expression suivante :

$$(-2)x^2((-2)x^2-(-6))$$

Réponses: 16^{-29}

- 34 %

Ecrire sous la forme d'une seule puissance $16^{-14} \times 16^{-15}$

Question 2:

Dans une série de 3 h 17 min, il y a 67 min de dialogues.

Quel est le **pourcentage** de dialogues?

Question 3:

Développer l'expression suivante :

$$(-2)x^2((-2)x^2-(-6))$$

Réponses:

- 1. 16^{-29}
- **2.** 34 %
- 3. $4x^4 12x^2$

Solution détaillée de la question 1 :

Écrire sous la forme d'une seule puissance
$$16^{-14} \times 16^{-15}$$

Selon la propriété des puissances : Pour multiplier des puissances de même base, on additionne les exposants :

$$16^{-14} \times 16^{-15} = 16^{-14 + (-15)}$$
$$= 16^{-29}$$

Solution détaillée de la question 2 :

Dans une série de 3 h 17 min, il y a 67 min de dialogues. Quel est le **pourcentage** de dialogues?

Dans la série, il y a 67 minutes de dialogues.

Tableau de proportionnalité		
Quantité	67	
		34
Total	197	100

Le pourcentage voulu est calculé par : $100 \times 67 \div 197$ Ainsi, 67 minutes de dialogues représentent 34 % de la série.

Solution détaillée de la question 3 :

Développer l'expression suivante :

$$(-2)x^2((-2)x^2-(-6))$$

On utilise la formule de **distributivité** :

$$\mathbf{a} \times (\mathbf{b} - \mathbf{c}) = \mathbf{a} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}$$

On utilise la formule de **distribu**

$$a \times (b - c) = a \times b - c$$

$$a = (-2)x^{2}$$

$$b = (-2)x^{2}$$

$$c = (-6)$$

$$(-2)x^2((-2)x^2-(-6))$$

$$(-2)x^2 - (-2)x^2$$

$$-(-2)x^2 \times (-6)$$

$$(-2)x - (-2)x \times (-6)$$

$$\frac{-2)x}{2} - \frac{(-2)x}{x} \times (-6)$$

$$\frac{-2jx}{2} = \frac{(-2jx)x}{x} = \frac{(-2jx)x}{x}$$

$$= (-2)x^{2} \times (-2)x^{2} - (-2)x^{2} \times (-6)$$

$$-4x^{4} - 12x^{2}$$