2004 — Problème 1

1) La fonction f n'est pas définie si x + 4 = 0, si bien que $D_f = \mathbb{R} - \{-4\}$.

donne l'asymptote oblique y=x-4 et la fonction $\delta(x)=\frac{16}{x+4}$ dont le signe indique la position du graphe de f par rapport à l'asymptote oblique :

4)
$$f'(x) = \frac{(x^2)'(x+4)-x^2(x+4)'}{(x+4)^2} = \frac{2x(x+4)-x^2 \cdot 1}{(x+4)^2} = \frac{2x^2+8x-x^2}{(x+4)^2} = \frac{x^2+8x}{(x+4)^2} = \frac{x(x+8)}{(x+4)^2}$$

-8 -4 0				
x	_	_	_	+
x + 8		+	+	+
x+4		_	+	+
x+4		_	+	+
f'	+	_	_	+
	7		\	7

5)
$$f(-8) = \frac{(-8)^2}{-8+4} = \frac{64}{-4} = -16$$
; le point $(-8; -16)$ est un maximum. $f(0) = \frac{0^2}{0+4} = 0$; le point $(0; 0)$ est un minimum.

b) Calcul des points d'intersection des graphes de
$$f$$
 et de g :
$$\frac{x^2}{x+4} = -x^2 - 3x \quad \text{implique que} \quad 0 = \frac{x^2}{x+4} + x^2 + 3x = \frac{x^2 + (x^2 + 3x)(x+4)}{x+4} = \frac{x^2 + x^3 + 4x^2 + 3x^2 + 12x}{x+4} = \frac{x(x^2 + 8x + 12)}{x+4} = \frac{x(x+2)(x+6)}{x+4} \quad \text{d'où l'on tire } x = -6 \text{ ou } x = -2 \text{ ou } x = 0.$$

Calcul de l'aire A + B:

$$\int_{-2}^{0} -x^2 - 3x \, dx = -\int_{-2}^{0} x^2 \, dx - 3\int_{-2}^{0} x \, dx = -\frac{1}{3}x^3 - \frac{3}{2}x^2 \Big|_{-2}^{0} = \left(-\frac{1}{3}0^3 - \frac{3}{2}0^2\right) - \left(-\frac{1}{3}(-2)^3 - \frac{3}{2}(-2)^2\right) = \frac{10}{3}$$

Calcul de l'aire A:

Le calcul de la division polynomiale en a3) donne l'égalité $x^2 = (x+4)(x-4) + 16$,

1

d'où l'on déduit, en divisant par x+4, l'égalité $\frac{x^2}{x+4}=x-4+\frac{16}{x+4}$. $\int_{-2}^{0}\frac{x^2}{x+4}\,dx=\int_{-2}^{0}x-4+\frac{16}{x+4}\,dx=\int_{-2}^{0}x\,dx-\int_{-2}^{0}4\,dx+16\int_{-2}^{0}\frac{1}{x+4}\,dx=\frac{1}{2}x^2-4x+16\ln(|x+4|)\Big|_{-2}^{0}=(0-0+16\ln(4))-(2-(-8)+16\ln(2))=16\ln(2^2)-10-16\ln(2)=32\ln(2)-10-16\ln(2)=16\ln(2)-10$ En conclusion, l'aire recherchée vaut : $\frac{10}{3}-(16\ln(2)-10)=\frac{40}{3}-16\ln(2)=2,24$

