Feedback - 作業二

Help Center

You submitted this quiz on **Thu 22 Oct 2015 11:59 PM PDT**. You got a score of **400.00** out of **400.00**. However, you will not get credit for it, since it was submitted past the deadline.

Question 1

Questions 1-2 are about noisy targets.

Consider the bin model for a hypothesis h that makes an error with probability μ in approximating a deterministic target function f (both h and f outputs $\{-1,+1\}$). If we use the same h to approximate a noisy version of f given by

$$P(\mathbf{x}, y) = P(\mathbf{x})P(y|\mathbf{x})$$

$$P(y|\mathbf{x}) = \begin{cases} \lambda & y = f(\mathbf{x}) \\ 1 - \lambda & \text{otherwise} \end{cases}$$

What is the probability of error that h makes in approximating the noisy target y?

Your Answer	Score	Explanation
$\bigcirc \lambda (1-\mu) + (1-\lambda)\mu$		
onone of the other choices		
$\bigcirc 1 - \lambda$		
$\bigcirc \mu$		
	20.00	
Total	20.00 / 20.00	

Question 2

Following Question 1, with what value of λ will the performance of h be independent of μ ?

Your Answer		Score	Explanation
0 or 1			
O 1			
O 0			
onone of the other choices			
● 0.5	~	20.00	
Total		20.00 / 20.00	

Question 3

Questions 3-5 are about generalization error, and getting the feel of the bounds numerically. Please use the simple upper bound $N^{d_{vc}}$ on the growth function $m_{\mathcal{H}}(N)$, assuming that $N \geq 2$ and $d_{vc} \geq 2$.

For an \mathcal{H} with $d_{vc}=10$, if you want 95% confidence that your generalization error is at most 0.05, what is the closest numerical approximation of the sample size that the VC generalization bound predicts?

Your Answer	Score	Explanation
480,000		
O 500, 000		
420,000		
● 460,000	20.00	
O 440, 000		
Total	20.00 / 20.00	

Question 4

There are a number of bounds on the generalization error ϵ , all holding with probability at least $1-\delta$. Fix $d_{\rm vc}=50$ and $\delta=0.05$ and plot these bounds as a function of N. Which bound is the tightest (smallest) for very large N, say N=10,000? Note that Devroye and Parrondo & Van den Broek are implicit bounds in ϵ .

Your Answer	Score	Explanation
Original VC bound: $\epsilon \leq \sqrt{\frac{8}{N} \ln \frac{4m_{\mathcal{H}}(2N)}{\delta}}$		
Rademacher Penalty Bound: $\epsilon \leq \sqrt{\frac{2 \ln(2Nm_H(N))}{N}} + \sqrt{\frac{2}{N} \ln \frac{1}{\delta}} + \frac{1}{N}$		
O Parrondo and Van den Broek: $\epsilon \leq \sqrt{\frac{1}{N} \left(2\epsilon + \ln \frac{6m_H(2N)}{\delta}\right)}$		
• Devroye: $\epsilon \leq \sqrt{\frac{1}{2N} \left(4\epsilon(1+\epsilon) + \ln \frac{4m_{\mathcal{H}}(N^2)}{\delta} \right)}$	✓ 20.00	
O Variant VC bound: $\epsilon \leq \sqrt{\frac{16}{N} \ln \frac{2m_{\mathcal{H}}(N)}{\sqrt{\delta}}}$		
Total	20.00 /	

Question 5

Continuing from Question 4, for small N, say N = 5, which bound is the tightest (smallest)?

Your Answer		Score	Explanation
Original VC bound			
Rademacher Penalty Bound			
Parrondo and Van den Broek	~	20.00	
○ Variant VC bound			
O Devroye			
Total		20.00 / 20.00	

Question 6

In Questions 6-11, you are asked to play with the *growth function* or VC-dimension of some hypothesis sets.

What is the growth function $m_{\mathcal{H}}(N)$ of "positive-and-negative intervals on \mathbb{R} "? The hypothesis set \mathcal{H} of "positive-and-negative intervals" contains the functions which are +1 within an interval $[\ell,r]$ and -1 elsewhere, as well as the functions which are -1 within an interval $[\ell,r]$ and +1 elsewhere. For instance, the hypothesis $h_1(x) = \mathrm{sign}(x(x-4))$ is a negative interval with -1 within [0,4] and +1 elsewhere, and hence belongs to \mathcal{H} . The hypothesis $h_2(x) = \mathrm{sign}((x+1)(x)(x-1))$ contains two positive intervals in [-1,0] and $[1,\infty)$ and hence does not belong to \mathcal{H} .

Your Answer		Score	Explanation
onone of the other choices.			
$\bigcirc N^2 + 1$			
$\bigcirc N^2$			
$\bigcirc N^2 + N + 2$			
$ \bigcirc N^2 - N + 2 $	~	20.00	
Total		20.00 / 20.00	

Question 7

Continuing from the previous problem, what is the VC-dimension of the "positive-and-negative intervals on \mathbb{R} "

Your Answer	Score	Explanation
O 5		
O 2		

O 4		
3	~	20.00
0 ∞		
Total		20.00 / 20.00

Question 8

What is the growth function $m_{\mathcal{H}}(N)$ of "positive donuts in \mathbb{R}^2 "? The hypothesis set \mathcal{H} of "positive donuts" contains hypotheses formed by two concentric circles centered at the origin. In particular, each hypothesis is +1 within a "donut" region of $a^2 \leq x_1^2 + x_2^2 \leq b^2$ and -1 elsewhere. Without loss of generality, we assume $0 < a < b < \infty$.

Your Answer		Score	Explanation
$\bigcirc N + 1$			
onone of the other choices.			
$\bigcirc \binom{N}{2} + 1$			
$\bigcirc \binom{N+1}{3} + 1$			
$\odot \binom{N+1}{2} + 1$	~	20.00	
Total		20.00 / 20.00	

Question 9

Consider the "polynomial discriminant" hypothesis set of degree D on \mathbb{R} , which is given by

$$\mathcal{H} = \left\{ h_{\mathbf{c}} \mid h_{\mathbf{c}}(x) = \operatorname{sign}\left(\sum_{i=0}^{D} c_{i} x^{i}\right) \right\}$$

What is the VC-Dimension of such an \mathcal{H} ?

Your Answer		Score	Explanation
○ ∞			
$\bigcirc D$			
⊙ <i>D</i> + 1	~	20.00	
onone of the other choices.			
$\bigcirc D + 2$			
Total		20.00 / 20.00	

Question 10

Consider the "simplified decision trees" hypothesis set on \mathbb{R}^d , which is given by

$$\mathcal{H} = \{ h_{\mathbf{t},\mathbf{S}} \mid h_{\mathbf{t},\mathbf{S}}(\mathbf{x}) = 2 \big[\mathbf{v} \in S \big] - 1, \text{ where } v_i = [x_i > t_i],$$

$$\mathbf{S} \text{ a collection of vectors in } \{0, 1\}^d, \mathbf{t} \in \mathbb{R}^d \}$$

That is, each hypothesis makes a prediction by first using the d thresholds t_i to locate \mathbf{x} to be within one of the 2^d hyper-rectangular regions, and looking up \mathbf{S} to decide whether the region should be +1 or -1. What is the VC-dimension of the "simplified decision trees" hypothesis set?

	Score	Explanation
~	20.00	
	20.00 / 20.00	
	✓	✓ 20.00

Question 11

Consider the "triangle waves" hypothesis set on \mathbb{R} , which is given by

$$\mathcal{H} = \{ h_{\alpha} \mid h_{\alpha}(x) = \operatorname{sign}(|(\alpha x) \bmod 4 - 2| - 1), \alpha \in \mathbb{R} \}$$

Here $(z \mod 4)$ is a number z - 4k for some integer k such that $z - 4k \in [0, 4)$. For instance, $(11.26 \mod 4)$ is 3.26, and $(-11.26 \mod 4)$ is 0.74. What is the VC-Dimension of such an \mathcal{H} ?

	Score	Explanation
~	20.00	
	20.00 / 20.00	
	*	✓ 20.00

Question 12

In Questions 12-15, you are asked to verify some properties or bounds on the growth function and VC-dimension.

Which of the following is an upper bound of the growth function $m_{\mathcal{H}}(N)$ for $N \geq d_{vc} \geq 2$?

Your Answer		Score	Explanation
$\bigcirc 2^{d_{vc}}$			
$\bigcirc m_{\mathcal{H}}\left(\lfloor \frac{N}{2} \rfloor\right)$			
onone of the other choices			
$ \underbrace{\min_{1 \le i \le N-1} 2^i m_{\mathcal{H}}(N-i)} $	~	20.00	
$\bigcirc\sqrt{N^{d_{vc}}}$			

Total 20.00 / 20.00

Question 13

Which of the following is not a possible growth function $m_{\mathcal{H}}(N)$ for some hypothesis set?

Your Answer	Score	Explanation
$\bigcirc N$		
onone of the other choices		
$\bigcirc 2^N$		
$\bigcirc N^2 - N + 2$		
	20.00	
Total	20.00 / 20.00	

Question 14

For hypothesis sets $\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_K$ with finite, positive VC dimensions $d_{vc}(\mathcal{H}_k)$, some of the following bounds are correct and some are not. Which among the correct ones is the tightest bound on the VC dimension of the **intersection** of the sets: $d_{vc}(\bigcap_{k=1}^K \mathcal{H}_k)$? (The VC dimension of an empty set or a singleton set is taken as zero)

Your Answer Score Explanation

$$\bigcirc 0 \le d_{vc}(\bigcap_{k=1}^K \mathcal{H}_k) \le \max\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K$$

$$\bigcirc \min\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K \leq d_{vc}(\bigcap_{k=1}^K \mathcal{H}_k) \leq \sum_{k=1}^K d_{vc}(\mathcal{H}_k)$$

$$\bigcirc 0 \leq d_{vc}(\bigcap_{k=1}^K \mathcal{H}_k) \leq \sum_{k=1}^K d_{vc}(\mathcal{H}_k)$$

 $\min\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K \le d_{vc}(\bigcap_{k=1}^K \mathcal{H}_k) \le \max\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K$

$ 0 \le d_{vc}(\bigcap_{k=1}^K \mathcal{H}_k) \le \min\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K $	✓ 20.00
Total	20.00 /
	20.00

Question 15

For hypothesis sets $\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_K$ with finite, positive VC dimensions $d_{vc}(\mathcal{H}_k)$, some of the following bounds are correct and some are not. Which among the correct ones is the tightest bound on the VC dimension of the **union** of the sets: $d_{vc}(\bigcup_{k=1}^K \mathcal{H}_k)$?

Your Answer		Score	Explanation
$\max\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K \le d_{vc}(\bigcup_{k=1}^K \mathcal{H}_k) \le K - 1 + \sum_{k=1}^K d_{vc}(\mathcal{H}_k)$	~	20.00	
$\bigcap \max\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K \leq d_{vc}(\bigcup_{k=1}^K \mathcal{H}_k) \leq \sum_{k=1}^K d_{vc}(\mathcal{H}_k)$			
$\bigcirc \min\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K \leq d_{vc}(\bigcup_{k=1}^K \mathcal{H}_k) \leq \sum_{k=1}^K d_{vc}(\mathcal{H}_k)$			
$\bigcirc 0 \leq d_{vc}(\bigcup_{k=1}^K \mathcal{H}_k) \leq K - 1 + \sum_{k=1}^K d_{vc}(\mathcal{H}_k)$			
$\bigcirc 0 \leq d_{vc}(\bigcup_{k=1}^K \mathcal{H}_k) \leq \sum_{k=1}^K d_{vc}(\mathcal{H}_k)$			
Total		20.00 / 20.00	

Question 16

For Questions 16-20, you will play with the decision stump algorithm.

In class, we taught about the learning model of "positive and negative rays" (which is simply one-dimensional perceptron) for one-dimensional data. The model contains hypotheses of the form:

$$h_{s,\theta}(x) = s \cdot \text{sign}(x - \theta).$$

The model is frequently named the "decision stump" model and is one of the simplest learning

models. As shown in class, for one-dimensional data, the VC dimension of the decision stump model is 2.

In fact, the decision stump model is one of the few models that we could easily minimize E_{in} efficiently by enumerating all possible thresholds. In particular, for N examples, there are at most 2N dichotomies (see page 22 of class05 slides), and thus at most 2N different E_{in} values. We can then easily choose the dichotomy that leads to the lowest E_{in} , where ties can be broken by randomly choosing among the lowest- E_{in} ones. The chosen dichotomy stands for a combination of some 'spot' (range of θ) and s, and commonly the median of the range is chosen as the θ that realizes the dichotomy.

In this problem, you are asked to implement such and algorithm and run your program on an artificial data set. First of all, start by generating a one-dimensional data by the procedure below:

- (a) Generate x by a uniform distribution in [-1, 1].
- [b) Generate y by $f(x) = \tilde{s}(x)$ + noise where $\tilde{s}(x) = \text{sign}(x)$ and the noise flips the result with 20% probability.

For any decision stump $h_{s,\theta}$ with $\theta \in [-1,1]$, express $E_{out}(h_{s,\theta})$ as a function of θ and s.

Your Answer		Score	Explanation
onone of the other choices			
$\bigcirc 0.3 + 0.5s(\theta - 1)$			
$\bigcirc 0.5 + 0.3s(1 - \theta)$			
$\bigcirc 0.3 + 0.5s(1 - \theta)$			
$ 0.5 + 0.3s(\theta - 1) $	~	20.00	
Total		20.00 / 20.00	

Question 17

Generate a data set of size 20 by the procedure above and run the one-dimensional decision stump algorithm on the data set. Record E_{in} and compute E_{out} with the formula above. Repeat the experiment (including data generation, running the decision stump algorithm, and computing E_{in} and E_{out}) 5, 000 times. What is the average E_{in} ? Choose the closest option.

Your Answer		Score	Explanation
0.25			
0.15	~	20.00	
0.45			
0.35			
0.05			
Total		20.00 / 20.00	

Question 18

Continuing from the previous question, what is the average E_{out} ? Choose the closest option.

Your Answer		Score	Explanation
0.05			
0.45			
0 .25	~	20.00	
0.15			
0.35			
Total		20.00 / 20.00	

Question 19

Decision stumps can also work for multi-dimensional data. In particular, each decision stump now deals with a specific dimension i, as shown below.

$$h_{s,i,\theta}(\mathbf{x}) = s \cdot \operatorname{sign}(x_i - \theta).$$

Implement the following decision stump algorithm for multi-dimensional data:

a) for each dimension $i=1,2,\cdots,d$, find the best decision stump $h_{s,i,\theta}$ using the one-dimensional decision stump algorithm that you have just implemented.

b) return the "best of best" decision stump in terms of E_{in} . If there is a tie, please randomly choose among the lowest- E_{in} ones.

The training data \mathcal{D}_{train} is available at:

https://d396qusza40orc.cloudfront.net/ntumlone%2Fhw2%2Fhw2_train.dat

The testing data \mathcal{D}_{test} is available at:

https://d396qusza40orc.cloudfront.net/ntumlone%2Fhw2%2Fhw2_test.dat

Run the algorithm on the \mathcal{D}_{train} . Report the E_{in} of the optimal decision stump returned by your program. Choose the closest option.

 ○ 0.35 ○ 0.45 ○ 0.15 ○ 0.25 ✓ 20.00 	our Answer	Score		Explanation	
○ 0.15○ 0.25✓ 20.00	0.35				
● 0.25✓ 20.00	0.45				
	0.15				
0.05	0.25	20.00			
\bigcirc 0.05	0.05				
Total 20.00 / 20.00	otal	20.00 / 2	20.00		

Question 20

Use the returned decision stump to predict the label of each example within the \mathcal{D}_{test} . Report an estimate of E_{out} by E_{test} . Choose the closest option.

Your Answer	Score	Explanation
0.45		
0.05		

0 .35	~	20.00	
0.25			
Total		20.00 / 20.00	