Mathematics-II (MATH F112)

Finite Dimensional Vector Spaces Sec.\$1–Sec.\$5

Sangita Yadav

Department of Mathematics BITS Pilani, Pilani Campus, Rajasthan

Chapter: 4 (Finite Dimensional vector space)

- Introduction to Vector Spaces
- Subspaces
- Span
- Linear Independence
- Basis and Dimension

Vector Space: A nonempty set \mathcal{V} together with two operations **vector addition** (denoted as \oplus) and **scalar multiplication**(denoted as \odot) is said to be a (real) vector space if for every $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathcal{V} and for every $\mathbf{a}, \mathbf{b} \in \mathbb{R}$ the following properties hold:

- $\mathbf{0} \ \mathbf{u} \oplus \mathbf{v} \in \mathcal{V}$ (Closed under vector addition)
- $\mathbf{v} \oplus \mathbf{v} = \mathbf{v} \oplus \mathbf{u}$ (Commutativity)
- **1** There exists an element $0 \in \mathcal{V}$, called a **zero vector**, such that $\mathbf{u} \oplus 0 = \mathbf{u}$ (Existence of additive identity)

- For each $\mathbf{u} \in \mathcal{V}$, there is an element $-\mathbf{u} \in \mathcal{V}$ such that $\mathbf{u} \oplus (-\mathbf{u}) = 0$ (Existence of additive inverse)
- **1** $a \odot \mathbf{u} \in \mathcal{V}$ (Closed under scalar multiplication)
- \bullet $a \odot (\mathbf{u} \oplus \mathbf{v}) = (a \odot \mathbf{u}) \oplus (a \odot \mathbf{v})$ (Distributivity)

- **1** \odot **u** = **u**.

Note that the set $\mathcal{V} = \{0\}$ is a vector space with respect to

- vector addition $0 \oplus 0 = 0$
- scalar multiplication $a \odot 0 = 0$ for all $a \in \mathbb{R}$

The vector space $V = \{0\}$ is called the trivial vector space.

The set \mathbb{R} of real numbers is a vector space with respect to the following operations:

- $\mathbf{u} \oplus \mathbf{v} = \mathbf{u} + \mathbf{v}$ (vector addition)
- $a \odot \mathbf{u} = a\mathbf{u}$ (scalar multiplication)

for all $a, \mathbf{u}, \mathbf{v} \in \mathbb{R}$.

Question

Does the set \mathbb{R}^+ of positive real numbers form a vector space under the above defined vector addition and scalar multiplication?

The set \mathbb{R}^+ of a positive real numbers is a vector space with respect to the following operations:

- $\mathbf{u} \oplus \mathbf{v} = \mathbf{u}.\mathbf{v}$ (vector addition)
- $a \odot \mathbf{u} = \mathbf{u}^a$ (scalar multiplication)

for all $a \in \mathbb{R}$ and $\mathbf{u}, \mathbf{v} \in \mathbb{R}^+$.

Example 3

The set $\mathbb{R}^2 = \{[x_1, x_2] \mid x_1, x_2 \in \mathbb{R}\}$ is a vector space with respect to the following operations:

- $[x_1, x_2] \oplus [y_1, y_2] = [x_1 + y_1, x_2 + y_2]$ (vector addition)
- $a \odot [x_1, x_2] = [ax_1, ax_2]$ (scalar multiplication)

for all $a \in \mathbb{R}$ and $[x_1, x_2], [y_1, y_2] \in \mathbb{R}^2$

Soln. of Example 3: Let $\mathbf{u} = [x_1, x_2]$, $\mathbf{v} = [y_1, y_2]$ and $\mathbf{w} = [z_1, z_2] \in \mathbb{R}^2$ and $a, b \in \mathbb{R}$.

① Closure Property: $\mathbf{u} \oplus \mathbf{v} = [x_1, x_2] \oplus [y_1, y_2] = [x_1 + y_1, x_2 + y_2] \in \mathbb{R}^2.$

Commutative Property: $\mathbf{u} \oplus \mathbf{v} = [x_1 + y_1, x_2 + y_2] = [y_1 + x_1, y_2 + x_2]$ (commutativity of \mathbb{R} under addition)

$$(\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w} = [(x_1 + y_1) + z_1, (x_2 + y_2) + z_2]$$

= $[x_1 + (y_1 + z_1), x_2 + (y_2 + z_2)]$
(associativity of \mathbb{R} under addition)

$$= [x_1, x_2] \oplus [y_1 + z_1, y_2 + z_2] = [x_1, x_2] \oplus ([y_1, y_2] \oplus [z_1, z_2]) = \mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w})$$

Solution Existence of additive identity (zero vector): For any $\mathbf{u} = [x_1, x_2] \in \mathbb{R}^2$ there exists $0 = [0, 0] \in \mathbb{R}^2$ such that

$$\mathbf{u} \oplus 0 = [x_1, x_2] \oplus [0, 0] = [x_1 + 0, x_2 + 0] \\ = [x_1, x_2] \\ = \mathbf{u}$$

Solution Existence of additive inverse: For each $\mathbf{u} = [x_1, x_2] \in \mathbb{R}^2$ there exists $-\mathbf{u} = [-x_1, -x_2]$ such that

$$\mathbf{u} \oplus (-\mathbf{u}) = [x_1, x_2] \oplus [-x_1, -x_2] = [x_1 + (-x_1), x_2 + (-x_2)] = [0, 0] = 0$$

- Occident of the control of the co
 - $a \odot \mathbf{u} = a \odot [x_1, x_2] = [ax_1, ax_2] \in \mathbb{R}^2$. Thus, \mathbb{R}^2 is closed under scalar multiplication.
- Distributivity over vector addition:

$$a \odot (\mathbf{u} \oplus \mathbf{v}) = a \odot ([x_1, x_2] \oplus [y_1, y_2])$$

$$= a \odot [x_1 + y_1, x_2 + y_2]$$

$$= [a(x_1 + y_1), a(x_2 + y_2)]$$

$$= [ax_1 + ay_1, ax_2 + ay_2] \text{ (distributivity in } \mathbb{R})$$

$$= [ax_1, ax_2] \oplus [ay_1, ay_2]$$

$$= (a \odot [x_1, x_2]) \oplus (a \odot [y_1, y_2])$$

$$= (a \odot \mathbf{u}) \oplus (a \odot \mathbf{v})$$

Oistributivity over scalar addition:

(a + b)
$$\odot$$
 \mathbf{u} = $(a + b) \odot [x_1, x_2]$
= $[(a + b)x_1, (a + b)x_2]$
= $[ax_1 + bx_1, ax_2 + bx_2]$ (distributivity in \mathbb{R})
= $[ax_1, ax_2] \oplus [bx_1, bx_2]$
= $(a \odot [x_1, x_2]) \oplus (b \odot [x_1, x_2])$
= $(a \odot \mathbf{u}) \oplus (b \odot \mathbf{u})$
(ab) \odot \mathbf{u} = $(ab) \odot [x_1, x_2]$
= $[(ab)x_1, (ab)x_2]$
= $[a(bx_1), a(bx_2)]$
(associativity of \mathbb{R} under multiplication)
= $a \odot [bx_1, bx_2]$

$$= a \odot [bx_1, bx_2]$$

= $a \odot (b \odot [x_1, x_2])$
= $a \odot (b \odot \mathbf{u})$

Thus \mathbb{R}^2 is vector space under usual vector addition and scalar multiplication.

Question

Does \mathbb{R}^2 form a vector space under the above defined vector addition and the following scalar multiplication

$$a\odot[x_1,x_2]=[0,ax_2]$$

for all $a \in \mathbb{R}$ and $[x_1, x_2] \in \mathbb{R}^2$?

Answer: No as $1 \odot [x_1, x_2] = [0, x_2] \neq [x_1, x_2]$

The set $\mathbb{R}^n = \{[x_1, x_2, \dots, x_n] \mid x_i \in \mathbb{R}\}$ is a vector space with respect to the following operations:

•
$$[x_1, x_2, \dots, x_n] \oplus [y_1, y_2, \dots, y_n]$$

= $[x_1 + y_1, x_2 + y_2, \dots, x_n + y_n]$ (vector addition)

• $a \odot [x_1, x_2, \dots, x_n] = [ax_1, ax_2, \dots, ax_n]$ (scalar multiplication)

for all $a \in \mathbb{R}$ and $[x_1, x_2, \dots, x_n], [y_1, y_2, \dots, y_n] \in \mathbb{R}^n$.

The set

$$\mathcal{M}_{mn} = \{[a_{ij}]_{m \times n} \mid a_{ij} \in \mathbb{R}\}$$

of all $m \times n$ matrices with real entries is a vector space with respect to the following operations:

- $[a_{ij}]_{m \times n} \oplus [b_{ij}]_{m \times n} = [a_{ij} + b_{ij}]_{m \times n}$ (vector addition)
- $\alpha \odot [a_{ij}]_{m \times n} = [\alpha a_{ij}]_{m \times n}$ (scalar multiplication)

for all $\alpha \in \mathbb{R}$ and $[a_{ij}]_{m \times n}, [b_{ij}]_{m \times n} \in \mathcal{M}_{mn}$.

Let

$$\Phi = \{ f \mid f : \mathbb{R} \to \mathbb{R} \}$$

be the set of real-valued functions defined on \mathbb{R} . Define

$$f \oplus g = f + g$$
 (vector addition),

where
$$(f+g)(x) = f(x) + g(x) \ \forall x \in \mathbb{R}$$
.

and
$$a \odot f = af$$
 (scalar multiplication),

where
$$(af)(x) = af(x) \ \forall x \in \mathbb{R}$$
.

Then Φ is a vector space with respect to above defined vector addition and scalar multiplication.

Let \mathcal{P}_2 denote the set of all polynomials of degree ≤ 2 with real coefficients. Define addition and scalar multiplication in usual way i.e. if

$$p(x) = a_0 + a_1x + a_2x^2$$
 and $q(x) = b_0 + b_1x + b_2x^2$

are in \mathcal{P}_2 , then

$$p(x) \oplus q(x) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2$$

$$c\odot p(x)=ca_0+ca_1x+ca_2x^2.$$

Show that \mathcal{P}_2 is a vector space.

In general, for any fixed natural number n, the set \mathcal{P}_n of all polynomials of degree less than or equal to n is a vector space.

Question: Does the set of all polynomials of degree 7 form a vector space under the usual operation of addition and scalar multiplication?

Answer: No.

The set \mathcal{P} of all polynomials with real coefficients is a vector space under the usual operation of polynomial (term by term) addition and scalar multiplication.

Show that \mathbb{R}^2 forms a vector space with respect to the following operations:

- $[x_1, x_2] \oplus [y_1, y_2] = [x_1 + y_1 + 1, x_2 + y_2 2]$ (vector addition)
- $a \odot [x_1, x_2] = [ax_1 + a 1, ax_2 2a + 2]$ (scalar multiplication)

for all $a \in \mathbb{R}$ and $[x_1, x_2], [y_1, y_2] \in \mathbb{R}^2$.

Solution:

- Both the operations satisfy Closure property. (1st and 6th)
- Vector addition satisfy commutativity and associativity property. (2nd and 3rd)

• Existence of Identity Element for Addition(4th): Let [u, v] be the additive identity element $\mathbf{0}$.

$$[u, v] \oplus [x, y] = [u + x + 1, v + y - 2]$$

 $[x, y] = [u + x + 1, v + y - 2]$
 $\Rightarrow u = -1, v = 2.$

• Existence of Additive of Inverse(5th): Let the additive inverse of [x, y] be [x', y']. Then

$$[x, y] \oplus [x', y'] = [-1, 2]$$

 $[x + x' + 1, y + y, -2] = [-1, 2]$
 $\Rightarrow x' = -2 - x, y' = 4 - y$

Hence
$$[x', y'] = [-2 - x, 4 - y].$$

• Distributivity for scalars over vectors:

$$\alpha \odot ([x_1, y_1] \oplus [x_2, y_2])$$

$$= \alpha \odot [x_1 + x_2 + 1, y_1 + y_2 - 2]$$

$$= [\alpha(x_1 + x_2 + 1) + \alpha - 1, \alpha(y_1 + y_2 - 2) - 2\alpha + 2]$$

$$= [(\alpha x_1 + \alpha - 1) + (\alpha x_2 + \alpha - 1) + 1,$$

$$(\alpha y_1 - 2\alpha + 2) + (\alpha y_2 - 2\alpha + 2) - 2]$$

$$= [\alpha x_1 + \alpha - 1, \alpha y_1 - 2\alpha + 2] \oplus [\alpha x_2 + \alpha - 1, \alpha y_2 - 2\alpha + 2]$$

$$= \alpha \odot [x_1, y_1] \oplus \alpha \odot [x_2, y_2]$$

- Similarly Distributivity for vectors over scalars and associativity for scalar multiplication
- $1 \odot [x, y] = [x + 1 1, y 2 + 2] = [x, y].$

Theorem:

Let $\mathcal V$ be a vector space. Then for every $\mathbf v \in \mathcal V$ and $\alpha \in \mathbb R$, we have

- $\boldsymbol{\Omega} \cdot \boldsymbol{\alpha} \odot \boldsymbol{0} = \boldsymbol{0}$
- **2** $0 \odot v = 0$
- $(-1) \odot \mathbf{v} = -\mathbf{v}$
- **1** If $\alpha \odot \mathbf{v} = \mathbf{0}$, then $\alpha = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$.

Exercises:

- Does set of all $n \times n$ matrices \mathcal{M}_{nn} forms a vector space with matrix addition and scalar multiplication? Yes (Verify)
- What if above set is replaced by matrices of order nxn in RREF?
 No (Closure property does not hold)
- What if above set is replaced by non-singular matrices of order nxn?
 No (Closure property does not hold)
- What if above set is replaced by singular matrices of order nxn?
 No (Closure property does not hold)

Section 4.2 (Subspaces)

Subspace: A nonempty subset \mathcal{W} of a vector space \mathcal{V} is said to be a subspace of \mathcal{V} if \mathcal{W} is itself a vector space with respect to the same operations (vector addition and scalar multiplication) of \mathcal{V} .

Note that every vector space \mathcal{V} has at least two subspaces: $\{0\}$ and \mathcal{V} itself. The subspace $\{0\}$ is known as trivial subspace.

Example: The set

$$\mathcal{W} = \left\{ [x, y] \in \mathbb{R}^2 \mid y = 0 \right\}$$

forms a vector space with respect to usual vector addition and scalar multiplication in \mathbb{R}^2 . Thus, \mathcal{W} is a subspace of \mathbb{R}^2 .

Question: Does the set

$$\mathcal{W} = \left\{ [x, y] \in \mathbb{R}^2 \mid x \neq y \right\}$$

form a subspace of \mathbb{R}^2 ?

Theorem

A **nonempty** subset \mathcal{W} of a vector space \mathcal{V} is a subspace of \mathcal{V} if and only if the following conditions hold:

- $\mathbf{u} \oplus \mathbf{v} \in W$ for all $\mathbf{u}, \mathbf{v} \in \mathcal{W}$.
- $a \odot \mathbf{u} \in \mathcal{W}$ for all $a \in \mathbb{R}$, $\mathbf{u} \in \mathcal{W}$.

Remark: If W is a subspace of a vector space V, then $0 \in W$.

Exercise: Examine whether the following sets are subspaces of \mathbb{R}^3 .

- $W_1 = \{[x, y, z] \in \mathbb{R}^3 \mid x \ge 0\}$. No (Closure property for scalar multiplication).
- $W_2 = \{[x, y, z] \in \mathbb{R}^3 \mid x + y + z = 0\}.$ Yes (Verify).
- $W_3 = \{[x, y, z] \in \mathbb{R}^3 \mid x = y^2\}$. No (Closure property for vector adition).
- $W_4 = \{[x, y, z] \in \mathbb{R}^3 \mid x + y + z = 2\}$. No (Closure property for scalar multiplication).
- $W_5 = \{[x, y, z] \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$. No (Closure property for scalar multiplication).

Exercise: Examine whether the following sets are subspaces of \mathcal{M}_{22} under usual operations.

- W₁ = {A ∈ M₂₂ | A is singular}.
 No (Closure property for vector adition fails).
- $W_2 = \{A \in \mathcal{M}_{22} \mid A \text{ is nonsingular}\}.$ No (Closure property for vector adition fails).
- W₃ = {A ∈ M₂₂ | A is in RREF}.
 No (Closure property for scalar multiplication fails).
- $W_4 = \{A \in \mathcal{M}_{22} \mid A \text{ is symmetric}\}.$ Yes (Verify).
- $W_5 = \{A \in \mathcal{M}_{22} \mid A^2 = A\}$. No (Closure property for vector adition fails).

Exercise: Examine whether the following sets are subspaces of Φ (see Example 6).

- $W_1 = \{ f \in \Phi \mid f(-x) = f(x) \text{ for all } x \in \mathbb{R} \}.$ Yes.
- $W_2 = \{ f \in \Phi \mid f(-x) = -f(x) \text{ for all } x \in \mathbb{R} \}.$ Yes.
- $W_3 = \{ f \in \Phi \mid f(1) = 0 \}$. Yes (Verify).
- $W_4 = \left\{ f \in \Phi \mid f\left(\frac{1}{2}\right) = f(1) \right\}.$ Yes.
- $W_5 = \{ f \in \Phi \mid f(1) = \frac{1}{2} \}$. No (closure property for vector addition fails).

Result: Let W_1 and W_2 be two subspaces of vector space V. Then

- their intersection i.e. $W_1 \cap W_2$ is a subspace of V.
- their union $W_1 \cup W_2$ **need not** be a subspace of V.
- $W_1 \cup W_2$ is subspace of V if and only if either $W_1 \subset W_2$ or $W_2 \subset W_1$.
- their sum, defined as

$$W_1 + W_2 = \{w_1 + w_2 \mid w_1 \in W_1, w_2 \in W_2\},\$$

is a subspace of \mathcal{V} .

Section 4.3 (Span)

Question: Given a subset S of a vector space V, how to construct a subspace containing S?

Linear combination: Let \mathcal{V} be a vector space and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathcal{V}$. Then a vector $\mathbf{v} \in \mathcal{V}$ is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ if

$$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \cdots + a_k \mathbf{v}_k; \ a_i (1 \le i \le k) \in \mathbb{R}$$

Example: The vector [4,3] is a linear combination of [1,0] and [0,1] in \mathbb{R}^2 .

Note that

$$[4,3] = 2[1,1] + [2,1].$$

Thus, [4,3] is a linear combination of [1,1] and [1,2] also.

Span of a set: Let S be a nonempty subset of a vector space V. Then the span of S is the set of all possible (finite) linear combinations of the vectors in S and it is denoted by $\operatorname{span}(S)$ i.e.

$$\mathsf{span}(S) = \{a_1 \mathbf{v}_1 + \dots + a_k \mathbf{v}_k \mid \mathbf{v}_i \in S, a_i \in \mathbb{R}, 1 \leq i \leq k\}$$

- For a subset $S = \{[1,0],[0,1]\}$ of \mathbb{R}^2 , we have $\operatorname{span}(S) = \mathbb{R}^2$.
- For a subset $S = \{[1,0,0],[0,1,0],[0,0,1]\}$ of \mathbb{R}^3 , we have span $(S) = \mathbb{R}^3$.

Exercise: Let $V = \mathbb{R}^3$ and $S = \{[1, 1, 0], [0, 1, 1]\}$.

- Find span(S).
- Do [3, 4, 1] and [2, 5, 1] belong to span(S)?

Solution:

$$\mathsf{span}(S) = \{ a[1,1,0] + b[0,1,1] \mid a,b \in \mathbb{R} \}$$
$$= \{ [a,a+b,b] \mid a,b \in \mathbb{R} \}$$

Clearly, $[3,4,1] \in \text{span}(S)$ but $[2,5,1] \not\in \text{span}(S)$.

In this exercise **note that** span(S) is a subspace of \mathbb{R}^3 .

Theorem:

Let S be a nonempty subset of a vector space V. Then span(S) is the smallest subspace of V containing S.

• Convention: span(\emptyset) = {0}.

Remark:

Let S_1 , S_2 be two subsets of a vector space \mathcal{V} . If $S_1 \subset S_2$ then span (S_1) is a subset of span (S_2) .

Row space of a matrix: Let A be an $m \times n$ matrix. The row space of A, denoted by row(A), is the subspace of \mathbb{R}^n spanned by the rows of A.

Theorem: Let B be any matrix that is row equivalent to a matrix A. Then row(B) = row(A).

Corollary: For any matrix A, we have

$$row(A) = row(RREF(A))$$
.

Exercise: Let $\mathcal{V} = \mathbb{R}^3$ and

$$S = \{[1, 3, -1], [2, 7, -3], [4, 8, -7]\}.$$

Then find span(S) in simplified form.

Solution: To determine span(S) in simplified form consider

$$A = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 7 & -3 \\ 4 & 8 & -7 \end{bmatrix}$$

Note that span(S) = row(A) = row(RREF(A)).

Note that

$$\mathsf{RREF}(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

row(RREF(A))

$$= \{a[1,0,0] + b[0,1,0] + c[0,0,1] \mid a,b,c \in \mathbb{R}\}\$$

$$\mathsf{row}\left(\mathsf{RREF}(A)\right) = \mathsf{span}(S) = \{[a,b,c] \mid a,b,c \in \mathbb{R}\}$$

$$\mathsf{span}(S) = \mathbb{R}^3$$

Simplified Span Method: Let S be a finite subset of \mathbb{R}^n containing k vectors, with $k \geq 2$.

Step 1: Construct a matrix A of order $k \times n$ by using the vectors in S as the rows of A. Then span(S) = row(A).

Step 2: Find RREF(*A*).

Step 3: Then, the set of all linear combinations of the **nonzero rows** of RREF(A) gives a simplified form for span(S).

Exercise: For a given vector space V and a subset S of V, find a simplified general form of span(S) using Simplified Span Method:

- $\mathcal{V} = \mathcal{P}_2$, $S = \{x^2 + x + 1, x + 1, 1\}$.

Section 4.4 (Linear Independence)

Definition: A subset $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ of a vector space \mathcal{V} is said to be linearly dependent (LD) if there exist real numbers $a_1, a_2, \dots a_n$ not all zero such that

$$a_1\mathbf{v}_1+a_2\mathbf{v}_2+\cdots+a_n\mathbf{v}_n=0.$$

S is linearly independent (LI) if it not linearly dependent i.e. if

$$a_1\mathbf{v}_1+a_2\mathbf{v}_2+\cdots+a_n\mathbf{v}_n=0$$

Then

$$a_1 = a_2 = \ldots = a_n = 0.$$

Examples

- The subset $S = \{[1,0],[0,1]\}$ of \mathbb{R}^2 is linearly independent.
- The subset $S = \{[1, 2], [5, 10]\}$ of \mathbb{R}^2 is linearly dependent.
- The subset $S = \{[1, 0, 0], [0, 1, 0], [0, 0, 1]\}$ of \mathbb{R}^3 is linearly independent.

- The singleton set containing $0 \in \mathcal{V}$ i.e. $\{0\}$ is LD.
- For $\mathbf{v} \neq 0$ of \mathcal{V} , the set $\{\mathbf{v}\}$ is LI.
- Any set containing zero vector is linearly dependent.
- Let $S = \{\mathbf{v}_1, \mathbf{v}_2\}$ be a set of nonzero vectors of \mathcal{V} . Then S is linearly dependent iff one of a vector is scalar multiple of other.
- Let S be a finite set of nonzero vectors having at least two elements. Then S is LD if and only if some vector in S can be expressed as a linear combination of the other vector in S.

Exercise: For a given vector space V and a given subset S of V, check the linear independence of S in the following:

$$\mathcal{V} = \mathcal{P}_2$$
, $S = \{1 + x, x + x^2, 1 + x^2\}$.

•
$$V = \Phi$$
, $S = \{\sin^2 x, \cos^2 x, \cos 2x\}$.

Exercise: Show that

$$S = \{[3, 1, -1], [-5, -2, 2], [2, 2, -1]\}$$

is linearly independent subset of \mathbb{R}^3 .

Solution: Let $a, b, c \in \mathbb{R}$ such that

$$a[3,1,-1] + b[-5,-2,2] + c[2,2,-1] = 0$$

$$[3a, a, -a] + [-5b, -2b, 2b] + [2c, 2c, -c] = [0, 0, 0]$$

 $[3a - 5b + 2c, a - 2b + 2c, -a + 2b - c] = [0, 0, 0]$

To find $a, b, c \in \mathbb{R}$, we need to solve the following homogenous system:

$$3a - 5b + 2c = 0$$

 $a - 2b + 2c = 0$
 $-a + 2b - c = 0$

To solve above homogenous system, write augmented matrix

$$[A|0] = \begin{bmatrix} 3 & -5 & 2 & 0 \\ 1 & -2 & 2 & 0 \\ -1 & 2 & -1 & 0 \end{bmatrix}$$

reduced row echelon form of [A|0] is

$$\left[\begin{array}{cc|c}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]$$

Thus, we have a = 0, b = 0, c = 0. Hence, S is linearly independent subset of \mathbb{R}^3 .

Independence Test Method: Let S be a finite set of vectors in \mathbb{R}^n . To check whether S is LI, perform the following steps:

Step 1: Form a matrix A whose columns are the vectors in S.

Step 2: Find RREF(A).

Step 3: If there is a pivot in every column of RREF(A), then S is LI. Otherwise S is LD.

Exercise:

Consider a subset of \mathcal{P}_3

$$S = \{2x^3 - x + 3, 3x^3 + 2x - 2, x^3 - 4x + 8, 4x^3 + 5x - 7\}.$$

- (a) Show that S is linearly dependent.
- (b) Show that every three-element subset of S is linearly dependent.
- (c) Explain why every subset of S containing exactly two vectors is linearly independent. (Note:There are six possible two-element subsets.)

Theorem: If S is any subset of \mathbb{R}^n containing k distinct vectors, where k > n, then S is linearly dependent.

Exercise: Examine the linear independence of a subset $S = \{[2, -5, 1], [1, 1, -1], [0, 2, -3], [2, 2, 6]\}$ of \mathbb{R}^3 .

Result: Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a linearly independent subset of a vector space \mathcal{V} . If $\mathbf{v} \in \mathcal{V}$ and $\mathbf{v} \not\in \operatorname{span}(S)$, then $S_1 = \{\mathbf{v}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a linearly independent set.

Theorem: A nonempty finite subset S of a vector space V is LI iff every vector $\mathbf{v} \in \text{span}(S)$ can be expressed **uniquely** as a linear combination of the elements of S.

Definition: An **infinite** subset S of a vector space \mathcal{V} is linearly dependent if there is some finite subset T of S such that T is linearly dependent.

Example: The subset

$$S = \{A \in \mathcal{M}_{22} \mid A \text{ is nonsingular}\}$$

of vector space \mathcal{M}_{22} is linearly dependent.

Solution: Note that the finite subset $T = \{I_2, 2I_2\}$ of S is linearly dependent as $2I_2$ is scalar multiple of I_2 . Hence, S is linearly dependent.

Definition: An **infinite** subset S of a vector space \mathcal{V} is linearly independent if every finite subset of S is linearly independent.

Result: An infinite subset S of a vector space V is linearly independent if and only if no vector in S is a finite linear combination of other vector in S.

Example: The subset $S = \{1, x, x^2, x^3, x^4, \ldots\}$ of vector space \mathcal{P} is linearly independent.

Section 4.5, Basis and Dimension

Basis: A subset B of a vector space V is said to be a basis of V if

- B is LI, and
- \circ span $(B) = \mathcal{V}$.

Examples

- The subset $B = \{[1,0],[0,1]\}$ is a basis of \mathbb{R}^2 as B is LI and span $(B) = \mathbb{R}^2$. The subset B is called the **standard basis** of \mathbb{R}^2 .
- The subset $B = \{[1, 2], [3, 4]\}$ is a basis of \mathbb{R}^2 as B is LI (verify!) and span $(B) = \mathbb{R}^2$ (verify!).
- The subset $B = \{[1,0,0], [0,1,0], [0,0,1]\}$ is a basis of \mathbb{R}^3 as it is LI and span $(B) = \mathbb{R}^3$. The subset B is called the **standard basis** of \mathbb{R}^3 .

Think about some more basis of \mathbb{R}^2 and \mathbb{R}^3 .

- The subset $B = \{1, x, x^2, \dots, x^n\}$ is a basis of \mathcal{P}_n as B is LI (verify!) and span $(B) = \mathcal{P}_n$ (verify!).
- The subset

$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

is a basis of \mathcal{M}_{22} .

Verify that B is LI and span(B) = \mathcal{M}_{22} .

Example: Let $S = \{t+1, t-1, t^2+t\}$. Show that S is a basis of \mathcal{P}_2 .

Solution: For $span(S) = \mathcal{P}_2$: Can we find α , β and γ such that

$$at^{2} + bt + c = \alpha(t+1) + \beta(t-1) + \gamma(t^{2} + t)$$

for any a, b, c??

It gives the system of linear equations in $\alpha,\ \beta$ and γ as

$$\gamma = a,$$
 $\alpha + \beta + \gamma = b,$
 $\alpha - \beta = c.$

The augmented matrix is

$$\begin{bmatrix} 0 & 0 & 1 & a \\ 1 & 1 & 1 & b \\ 1 & -1 & 0 & c \end{bmatrix}$$

The RREF form is

$$\begin{bmatrix} 1 & 0 & 0 & \frac{b-a+c}{2} \\ 0 & 1 & 0 & \frac{b-a-c}{2} \\ 0 & 0 & 1 & a \end{bmatrix}$$

The system is consistent for any values of a, b, c. Therefore

$$span(S) = \mathcal{P}_2$$
.

For S is LI: Consider

$$\alpha(t+1) + \beta(t-1) + \gamma(t^2+t) = 0$$

which gives

$$\alpha - \beta = 0,$$

$$\alpha + \beta + \gamma = 0,$$

$$\gamma = 0.$$

The coefficient matrix is $\begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

and its RREF is
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

This means system will have only trivial solution

$$\alpha = \beta = \gamma = 0.$$

Therefor S is LI.

Hence S is a basis for \mathcal{P}_2 .

Theorem: Every vector space has a basis.

Theorem: If a vector space V has a finite basis, then all bases for V are finite and have the same number of elements.

Definition: The dimension of a vector space \mathcal{V} is the number of vectors in a basis of \mathcal{V} and it is denoted by $\dim(\mathcal{V})$.

The dimension of the trivial vector space $\{0\}$ is defined to be zero.

Definition: A vector space \mathcal{V} is said to be finite dimensional if it has a basis containing finite number of elements. If a vector space \mathcal{V} has no finite basis then \mathcal{V} is called infinite dimensional.

Examples

- $\dim(\mathbb{R}^2) = 2$.
- $\dim(\mathbb{R}^3) = 3$.
- $\dim(\mathbb{R}^n) = n$.
- $\dim(\mathcal{P}_n) = n + 1$.
- $\dim(\mathcal{M}_{mn}) = mn$.
- Since $\{1, x, x^2, x^3, \ldots\}$ is a basis of \mathcal{P} (the vector space of all polynomials with real coefficients), thus the vector space \mathcal{P} is infinite dimensional.

Exercise: Find a basis and the dimension of a subspace W of \mathbb{R}^3 , where

$$W = \{ [x, y, z] \in \mathbb{R}^3 \mid x - 3y + 4z = 0 \}.$$

Solution: The general solution of the equation x-3y+4z=0 is given by $\{[3t-4s,t,s]\mid t,s\in\mathbb{R}\}$. Thus

$$W = \{ [3t - 4s, t, s] \mid t, s \in \mathbb{R} \}$$

$$W = \{ s[-4, 0, 1] + t[3, 1, 0] \mid t, s \in \mathbb{R} \}$$

$$W = \text{span} (\{ [-4, 0, 1], [3, 1, 0] \}).$$

Note that the set $\{[-4, 0, 1], [3, 1, 0]\}$ is linearly independent (show it).

Hence, the subset $\{[-4,0,1],[3,1,0]\}$ is a basis of W and $\dim(W)=2$.

Exercise: Find a basis and the dimension of a subspace W of \mathcal{P}_4 , where

$$W = \{ \mathbf{p} \in \mathcal{P}_4 \mid \mathbf{p}(2) = 0 \}.$$

Exercise: Find the dimension of a subspace W of \mathcal{P}_2 consisting of all vectors of the form $ax^2 + bx + c$, where a = b + c.

Answer: dim(W)=2.

Theorem: Let W be a subspace of a finite dimensional vector space \mathcal{V} . Then

- W is also finite dimensional and $\dim W \leq \dim V$.
- $\dim W = \dim \mathcal{V}$ if and only if $W = \mathcal{V}$.

Notation: |A|-The number of elements in A.

Theorem: Let V be a finite dimensional vector space such that $\dim(V) = n$.

- Suppose S is a finite subset of $\mathcal V$ that spans $\mathcal V$. Then $|S| \geq n$. Moreover, |S| = n if and only if S is a basis of $\mathcal V$.
- Suppose T is a linearly independent subset of \mathcal{V} . Then T is finite and $|T| \leq n$. Moreover, |T| = n if and only if T is a basis for \mathcal{V} .

Exercise: For a given vector space V and a given subset B of V, determine which of following B form a basis of the respective vector space V:

- **1** $\mathcal{V} = \mathbb{R}^3$, $B = \{[3, 1, -1], [-5, -2, 2], [2, 2, -1]\}$.

- $\mathcal{V} = \mathcal{M}_{22},$

$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \right\}.$$

Exercise: Let $S = \{[4, 2, 1], [2, 6, -5], [1, -2, 3]\}$ be a subset of vector space \mathbb{R}^3 .

- Examine the linear independence of *S*.
- Find dim(span(S)).

Thank You