Two-dimensional simulation of viscoplastic Drucker-Prager free surface flows, application to granular collapse

Christelle Lusso^a, François Bouchut^b, Alexandre Ern^c, Ann

alussoc@lmd.ens.fr

^bLAMA, CNRS & Université Paris-Est, 5 boulevard Descartes, Champs-sur-Marne ^cCERMICS, Université Paris-Est, Ecole des Ponts, 6-8 avenue Blaise Pascal, Champs-sur-Marne

Drucker-Prager model

- 2-dimensional **viscoplastic** flow with free surface.
- Time dependant domain Ω_t .
- Incompressible non-Newtonian dynamics:

$$\rho(\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla_{\vec{X}})\mathbf{u}) - \operatorname{div}_{\vec{X}} \boldsymbol{\sigma} = \rho \boldsymbol{f} \quad \text{in } (0, T) \times \Omega_t,$$
$$\operatorname{div}_{\vec{X}} \mathbf{u} = 0 \quad \text{in } (0, T) \times \Omega_t,$$

where ${\bf u}$ is the material velocity, ${m f}$ an external force (gravity), ho>0 the mass density, and ${m \sigma}$ the total stress tensor defined by the Drucker-Prager rheology $\sigma = \sigma' - p \operatorname{Id}$, with the viscoplastic constitutive equation:

trace
$$(\boldsymbol{\sigma}') = 0$$
,
$$\begin{cases} \boldsymbol{\sigma}' = 2\eta D\mathbf{u} + \boldsymbol{\kappa} \frac{\boldsymbol{D}\mathbf{u}}{\|\boldsymbol{D}\mathbf{u}\|} & \text{if } D\mathbf{u} \neq 0, \\ \|\boldsymbol{\sigma}'\| \leq \kappa & \text{if } D\mathbf{u} = 0. \end{cases}$$

• The plasticity $\kappa \equiv \kappa(p)$ stands for the yield limit with a **Drucker-Prager** criterion:

$$\kappa(p) = \sqrt{2}\mu[p]_+,$$

with μ an internal friction coefficient.

ullet The force f is the gravity force acting on the material. Taking into account the slope heta, it is given by $f = (g \sin \theta, -g \cos \theta)$ in the coordinates (X, Z), with g the gravity constant.

 $\Gamma_{\ell t}$

 $\Gamma_{\ell,t}$

 $\Gamma_{b,t}$

Domain geometry and boundary conditions

- (a) periodic flow over an inclined bed:
- \bullet no-slip condition at the bottom Γ_b .
- periodicity condition on the lateral side $\Gamma_{l,t} \cup \Gamma_{r,t}$.
- (b) collapse of a granular mass over a rigid or erodible bed:
- ullet no-penetration condition on $\Gamma_{b,t} \cup \Gamma_{\ell,t}$.
- ullet Coulomb friction condition on $\Gamma_{b,t} \cup \Gamma_{\ell,t}$.
- (a)-(b)
- no-stress condition at the free surface $\Gamma_{f,t}$.
- kinematic condition at the free surface: $N_t + \vec{N} \cdot \mathbf{u}(t, \vec{X}) = 0$ on $\Gamma_{f,t}$.
- initial condition: $\mathbf{u}(0, \vec{X}) = \mathbf{u}_0(\vec{X})$.

Regularization and variational formulation

Regularized constitutive equation:

$$\sigma'_{\epsilon} = 2\eta D\mathbf{u} + \kappa(p) \frac{D\mathbf{u}}{\sqrt{||D\mathbf{u}||^2 + \epsilon^2}}, \quad \mathbf{0} < \epsilon \ll \mathbf{1}.$$

Associated variational formulation:

$$\int_{\Omega_{t}} \rho \left(\partial_{t} \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u}\right) \cdot \mathbf{v} + \int_{\Omega_{t}} 2\eta D \mathbf{u} : D \mathbf{v} + \int_{\Omega_{t}} \kappa(p) \frac{D \mathbf{u}}{\sqrt{||D \mathbf{u}||^{2} + \epsilon^{2}}} : D \mathbf{v} - \int_{\Omega_{t}} p \operatorname{div} \mathbf{v} \\
+ \int_{\Gamma_{b,t}} \frac{\mathbf{u}_{T} \cdot \mathbf{v}}{\sqrt{|\mathbf{u}_{T}|^{2} + \epsilon_{f}^{2}}} [p - \sigma'_{N}]_{+} + \int_{\Gamma_{\ell,t}} \frac{\mathbf{u}_{T} \cdot \mathbf{v}}{\sqrt{|\mathbf{u}_{T}|^{2} + \epsilon_{f}^{2}}} [p - \sigma'_{N}]_{+} = \int_{\Omega_{t}} \rho \mathbf{f} \cdot \mathbf{v} + \int_{\Gamma_{f,t}} \gamma C \mathbf{v} \cdot \vec{N},$$

$$\int_{\Omega_{t}} q \operatorname{div} \mathbf{u} = 0.$$

(a): $\mu_b = \mu_l = 0$.

Displacement of the domain: (w = mesh velocity)

$$-\operatorname{div}(D\mathbf{w}) = 0 \quad \text{in } \Omega_t,$$

boundary conditions in case (a)

$$(\mathbf{w} - \mathbf{u}) \cdot \vec{N} = 0$$
 on $\Gamma_b \cup \Gamma_{f,t}$, $\mathbf{w} \cdot \vec{N} = 0$ on $\Gamma_{\ell,t} \cup \Gamma_{r,t}$, $(D\mathbf{w}\vec{N})_T = 0$ on Γ .

boundary conditions in case (b)

$$(\mathbf{w} - \mathbf{u}) \cdot \vec{N} = 0$$
 on Γ , $(D\mathbf{w}\vec{N})_T = 0$ on Γ .

Discrete algorithm

Time discretization: semi-implicit finite difference scheme of first order.

Space discretization: $\mathbb{P}_2/\mathbb{P}_1$ finite element (Taylor-Hood).

Mesh mapping:

$$\mathcal{A}_{n,n+1}: \Omega_h^n \to \Omega_h^{n+1}$$
$$x \mapsto y = x + \Delta t_n \mathbf{w}_h^n(x)$$

Update algorithm:

References

- 1) We suppose that Ω_h^n , \mathbf{u}_h^n , p_h^n are known and we compute \mathbf{w}_h^n .
- 2) We move the nodes of the mesh according to $A_{n,n+1}$, thus we obtain Ω_h^{n+1} .
- 3) Finally, we compute $(\mathbf{u}_h^{n+1}, p_h^{n+1})$ on Ω_h^{n+1} .

Uniform flow with plug

ey, Maxime Farin, C

Evaluation of the accuracy of the 2-dimensional regularization method (case (a)):

- * We consider a test case with a 1-dimensional solution $U(t, \mathbf{Z})$ depending only on the normal variable \mathbf{Z} .
- \star The height of domain h is constant, the domain does not depend on time and the pressure is hydrostatic.

Comparaison between the 1-dimensional and the 2-dimensional solution:

- \star We evaluate the error between the 1-dimensional profile U and the longitudinal component of the 2-dimensional velocity $\mathbf{u}=(U,0)$, by extending the 1-dimensional solution on the 2-dimensional mesh.
- * We compute the relative error on the velocity in the L^2 -norm.

Numerical results:

- Convergence of order 1 in space and time.
- $\epsilon = 10^{-2}$: regularization error dominates.
- $\epsilon = 10^{-6}$: regularization error dominated by discretization error.

Figure 1: Velocity error with respect to ϵ .

Granular collapse: comparison with augmented Lagrangian [2]

Collapse of a trapezoidal mass over a rigid bed (case (b))

Static/flowing interface comparison:

Figure 2: Comparison of the static/flowing interface.

The regularization method leads to:

Freesurface comparison:

- very similar profiles (with respect to AL method),
- a slightly lower position of the interface.

Freesurface comparison:

The regularization method leads to:

- more decreasing thickness on the left side,
- a slightly faster front propagation (on the right),

Static/flowing interface comparison:

running 7 times faster.

Granular collapse: comparison with laboratory experiments

Collapse of a trapezoidal mass over a rigid bed (case (b))

Figure 4: Evolution of the free surface for a trapezoidal mass over a rigid bed. The regularization method leads to:

- more decreasing thickness on the left side,
- overestimated front position (on the right),
- the shape of the final deposit is very well reproduced.

Figure 5: Comparison of the static/flowing interface.

The regularization method leads to:

- pretty well predicted static/flowing interface,
- position underestimated on the top of the left side.
- Numerical simulations \Rightarrow faster dynamics than in experiments.

Collapse of a trapezoidal mass over an erodible bed (case (b),[3])

Goal: to model erosion process in nature. Simulation of a granular collapse

over an erodible bed made of the same material represented by a thin h_0 layer of thickness $h_e = 5$ mm under the trapezoidal column.

Figure 6: Evolution of the free surface for a trapezoidal mass over an erodible bed of thickness $h_e = 5$ mm

Mean: local surface tension effects.

- The regularization method with surface tension leads to:
- comparable profiles all along the simulation, • the final shape of the deposit is very well reproduced.

[2] I.R. IONESCU, A. MANGENEY, F. BOUCHUT, O. ROCHE, Viscoplastic modelling of granular column collapse with pressure dependent rheology, hal-01080456, (2014). [3] C. Lusso, F. Bouchut, A. Ern, A. Mangeney, M. Farin, O. Roche, Two-dimensional simulation of viscoplastic Drucker-Prager free surface flows by regularization, and application to granular collapse (2015).

[1] M. FARIN, A. MANGENEY, O. ROCHE, Fundamental changes of granular flow dynamics, deposition, and erosion processes at high slope angles: Insights from laboratory experiments, J. Geophys. Res. Earth Surf. 119 (2014).