ЛЕКЦИЯ 2: АСТРОМЕТРИЯ

ВВЕДЕНИЕ В АСТРОФИЗИКУ. ВШЭ 2022/2023. БАКАЛАВРЫ, 4-Й МОДУЛЬ.

АНТОН БИРЮКОВ (АСТРОНОМИЧЕСКИЙ ИНСТИТУТ МГУ ИМ. М.В. ЛОМОНОСОВА И ВШЭ), К.Ф.-М.Н

АСТРОМЕТРИЯ

- > Астрометрия набор методов задания и измерения координат небесного тела относительно наблюдателя. А также скорости изменения этих координат (то есть относительной скорости движения небесного тела).
- Чаще всего имеются ввиду просто координаты нα небесной сфере, то есть два угла, задающих направление на небесное тело относительно начала координат. Но в общем случае используются трёхмерные системы координат.
- ▶ Небесная сфера это сфера произвольного радиуса, на поверхность которой спроецированы изображения всех источников.
- Психологически она возникает потому, что мозг не может оценить расстояние до небесных объектов, поэтому располагает всех их на «одинаковом расстоянии».

УГЛОВОЙ РАЗМЕР И УГЛОВОЕ РАССТОЯНИЕ

СФЕРИЧЕСКИЕ КООРДИНАТЫ

- Для задания координат на сфере необходимо задать плоскость «экватора» и плоскость «нулевого меридиана».
- В астрономии используются несколько сферических координатных систем. Они отличаются разным выбором этих двух основных плоскостей.
- Очевидно, эти системы могут быть сведены друг к другу при помощи соответствующего трёхмерного поворота.

ЭКВАТОРИАЛЬНАЯ СИСТЕМА КООРДИНАТ

- Базовая плоскость плоскость земного экватора (продолженная до пересечения с небесной сферой)
- Нулевой меридиан зафиксирован относительно звёзд. То есть эта система координат не вращается вместе с Землёй: она квази-инерциальна.
- ightharpoonup Координаты: **склонение** δ (как широта) и **прямое восхождение** α (как долгота).

ЭКВАТОРИАЛЬНАЯ СИСТЕМА КООРДИНАТ

Склонение отсчитывается в **градусах**: от **0** на экваторе до **+90** к северному полюсу мира и до **-90** к южному.

Прямое восхождение отсчитывается в часах от 0 до 24 с запада на восток.

Пример:

$$\alpha = 8^{\text{h}}23^{\text{m}}44.332^{\text{s}} \approx 8.395648^{\text{h}}$$

 $\delta = -44^{\circ}32'09.12'' \approx -44.53587^{\circ}$

Связь градусной и часовой меры угла:

$$1^{h} = 15^{\circ}$$
 $1^{\circ} \rightarrow 4m$
 $1^{m} = 15'$ $1' \rightarrow 4s$ ⁸
 $1^{s} = 15''$

ПРОЕКЦИЯ ХАММЕРА(-АИТОВА)

Псевдоцилидрическая равновеликая проекция. Используется в представлении астрономических данных, пожалуй, чаще всего.

КАРТЫ НЕБА

arXiv:1508.05842

www.iau.org

ЛЕКЦИЯ 2: ACTPOMETPИЯ

ГОРИЗОНТАЛЬНАЯ СИСТЕМА КООРДИНАТ

- Базовая плоскость плоскость горизонта для конкретного наблюдателя.
- ➤ Нулевой меридиан проходит через точки юга (S) и севера (N) на горизонте. Он называется небесным меридианом.
- ➤ Координаты: высота h и азимут A. Они измеряются в градусах.
- > Астрономический азимут отсчитывается от точки юга (S) в направлении запада (W).

ГОРИЗОНТАЛЬНАЯ СИСТЕМА КООРДИНАТ

- Плоскость горизонта касательная к Земле в данной точке.
- Отвесная линия

 (направление на зенит)
 проходит через центр
 Земли.
- ightharpoonup Высота северного полюса мира над горизонтом равна широте места наблюдения: $h_P = \varphi$

СУТОЧНОЕ ДВИЖЕНИЕ ЗВЁЗД

Сидерический период вращения Земли (в инерциальной системе отсчёта «относительно звёзд») равен $23h\ 56m\ 04s\ CH = 24h\$ звёздного времени.

Эклиптикой называют плоскость орбиты Земли или (чаще) большой круг на небесной сфере, вдоль которого Солнце перемещается среди звёзд в течение года. Каждый день Солнце смещается к востоку на $\approx 0.9^\circ$. От точки пересечения эклиптики и небесного экватора (точки весеннего равноденствия) отсчитывают прямые восхождения в экваториальной системе.

ПРЕЦЕССИЯ

Период прецессии земной оси равен 25772 года. Из-за чего каждый год момент весеннего равноденствия наступает примерно на 20m 24.5s раньше. Это «предварение равноденствий».

ЭКЛИПТИЧЕСКИЕ КООРДИНАТЫ

- ▶ Базовая плоскость плоскость эклиптики (наклонена на 23.5° к плоскости небесного экватора).
- Нулевой меридиан проходит через точку весеннего равноденствия.
- Координаты: эклиптическая широта β и
 эклиптическая долгота λ. Они измеряются в градусах.
- ▶ В эклиптических координатах удобно работать с телами Солнечной системы, так как они, по большей части, концентрируются к плоскости орбиты Земли.

ГАЛАКТИЧЕСКИЕ КООРДИНАТЫ

Млечный Путь (плоскость Галактики) задаёт отдельную систему координат, в которой удобно изучать распределение вещества в Галактике. Сам МП проходит не по большому кругу на небе, так как Солнце «приподнято» над плоскостью Галактики на ~50 световых лет.

ГАЛАКТИЧЕСКИЕ КООРДИНАТЫ

- Базовая плоскость плоскость галактического экватора. Это большой круг, выбранный так, что G имеет координаты $\alpha_{2000.0} \approx 192.9^\circ$ и $\delta_{2000.0} \approx 27.1^\circ$
- ightharpoonup Нулевой меридиан проходит через центр Галактики (в созвездии Стрельца). Эта точка отстоит от экватора на $l_0=32.9^\circ$ (дуга ВС)
- Координаты: галактическая широта b и галактическая долгота l. Они измеряются в градусах.

НЕМНОГО СФЕРИЧЕСКОЙ ГЕОМЕТРИИ

Сферический треугольник образован отрезками трёх больших кругов.

$$\cos c = \cos a \cos b + \sin a \sin b \cos C$$

 $\cos C = -\cos A \cos B + \sin A \sin B \cos c$
...

теоремы косинусов для сферического треугольника.

$$\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C}$$
 - теорема синусов.

$$m{n}_{\mathrm{A,B}} = egin{pmatrix} \cos \delta_{\mathrm{A,B}} \cos lpha_{\mathrm{A,B}} \ \cos \delta_{\mathrm{A,B}} \sin lpha_{\mathrm{A,B}} \ \sin \delta_{\mathrm{A,B}} \end{pmatrix}$$
 - единичный вектор в направлении на объект.

$$\cos \theta = \mathbf{n}_{A} \cdot \mathbf{n}_{B} = \sin \delta_{A} \sin \delta_{B} + \cos \delta_{A} \cos \delta_{B} \cos(\alpha_{A} - \alpha_{B})$$

- угловое расстояние между точками с известными координатами.

ИЗМЕНЕНИЕ КООРДИНАТ: СОБСТВЕННОЕ ДВИЖЕНИЕ

arXiv:1402.2380

Собственным движением называется скорость изменения небесных координат объекта. Например:

$$\mu_{lpha}=\dot{lpha}=rac{dlpha}{dt}$$
 и $\mu_{\delta}=\dot{\delta}=rac{d\delta}{dt}$

В приближении малых углов ($|\Delta \alpha| \ll 1$, $|\Delta \delta| \ll 1 \Rightarrow \theta \ll 1$):

$$1 - \frac{\theta^2}{2} \approx 1 - \frac{(\Delta \delta)^2}{2} - \cos \delta \cos(\delta + \Delta \delta) \cdot \frac{(\Delta \alpha)^2}{2} \Rightarrow$$

$$\Rightarrow \theta^2 \approx (\Delta \alpha)^2 \cos^2 \delta + (\Delta \delta)^2$$

И, значит, полное собственное движение:

$$\mu_{\text{tot}} = \dot{\theta} = \sqrt{\mu_{\alpha}^2 \cos^2 \delta + \mu_{\delta}^2}$$

ИЗМЕНЕНИЕ КООРДИНАТ: СОБСТВЕННОЕ ДВИЖЕНИЕ

- $ightharpoonup V_{
 m R}$: radial velocity **лучевая скорость** объекта (вдоль луча зрения).
- $ightharpoonup V_T$: transverse velocity поперечная скорость объекта (по небесной сфере или в картинной плоскости).

$$V_T \approx (4.74 \text{ km s}^{-1}) \cdot \left(\frac{\mu_{\text{tot}}}{1 \text{ arcsec} \cdot \text{yr}^{-1}}\right) \cdot \left(\frac{d}{\text{pc}}\right)$$

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ПАРАЛЛАКС

Астрономическая единица – средний радиус земной орбиты.

1 а.е. = 149 590 870 700 м (точно) $\approx 1.49 \cdot 10^{13}$ см

Парсек (пк, рс, **пар**аллакс-**сек**унда) — расстояние, при котором 1 а. е. видна под углом в I".

1 пк ≈ 3.08×10^{18} см ≈ $206\ 264,8$ а. е. ≈ $3.26\ \text{св.}$ года

Проксима Центавра (d = I.3 пк, p = I/d = 769 mas). Вид с Земли и с орбиты Плутона.

Звёзды фона

ГАЙЯ

arXiv:2208.00211

ПОЛНОЕ СОБСТВЕННОЕ ДВИЖЕНИЕ

TABLE 5
GMR A ASTROMETRIC PARAMETERS*

Parameter	Value						
Fit Quantities							
Epoch	2004.25 (MJD 53095.3)						
Right Ascension α_0	$5^{\rm h}35^{\rm m}11^{\rm s}80295404$						
Declination δ_0	$-5^{\circ}21'49''247452$						
$\mu_{\alpha}\cos\delta \; (\mathrm{mas}\;\mathrm{yr}^{-1})$	1.89 ± 0.12						
$\mu_{\delta} \; (\text{mas yr}^{-1})$	-1.67 ± 0.19						
Parallax π (mas)	2.57 ± 0.15						
D							
Derived Quantites							
Distance (pc)	389^{+24}_{-21}						
Transverse Velocity (km s^{-1})	4.65 ± 0.39						
Position Angle [†] (°)	131.5 ± 3.7						

^{*}All coordinates are listed in the J2000 equinox and measured in reference to the assumed position of J0541-0541: $5^{\rm h}41^{\rm m}38^{\rm s}.084106$, Dec. $-5^{\circ}41'49''42841$.

[†]The position angle of the proper motion, measured from North through East.

CELESTIAL REFERENCE SYSTEM/FRAME

- ▶ Небесная система отсчёта (celestial reference system) зафиксированная инерциальная декартова система с началом в барицентре (центре масс) Солнечной системы. Её ось Z направлена в сторону северного полюса мира, а ось X в сторону точки весеннего равноденствия.
- ➤ Небесная система координат (celestial reference frame) практическая реализация этой системы отсчёта.
- > CRF «держится» на каталогах фундаментальных источников: точечных объектов, которые не показывают значительного собственного движения, и координаты которых могут быть измерены с очень высокой точностью.
- Долгое время это были обычные звёзды. До 1999 года были выпущены шесть каталогов фундаментальных звёзд. Последний реально использовавшийся – FK5 (Fricke et al. 1988).

ЛЕКЦИЯ 2: ACTPOMETPИЯ 25

ФУНДАМЕНТАЛЬНЫЙ КАТАЛОГ ЗВЁЗД (FK5/FK6)

- Состоит из более чем 1500
 звёзд, координаты которых
 задают свою систему координат
 (свою плоскость небесного
 экватора и направление на точку
 равноденствия).
- ➤ С учётом неравномерности вращения Земли традиционно эту систему фиксируют на эпоху J2000.0 (12:00 TT 01.01.2000).

1	2		3		4			5			6		7		
FK6 No.	HIP No.	Nan	ne		lpha (S	SI) 2000 S		δ (SI) 2000 • , , ,			μ_{lpha*} (SI) 2000 [mas/yr]		μ_{δ} (SI) 2000 [mas/yr]		
904 1630 905 1001 1003	12 15 30 37 56	4 30 F 1 2 Ce 7 45 C	PSC		0 1 5 0 3 4 0 4 4	35.702 946 57.619 829 44.388 193 41.308 24 50.086 03	5	6 0 5 17 20 71 26	56.60 50.65 9.56 12.80 27.13	5534 5681 0871	+ 48 + 25 + 30	5.82 3.08 5.84 9.03 5.93	_ _ _ _	8 13	.98 .82 .55 .56 .33
	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
FK6 No.	T_{lpha} (SI)	$arepsilon_{lpha*}$ (SI)	$arepsilon_{\mu,lpha*}(ext{SI})$ [mas/yr]	T_{δ} (SI)	$arepsilon_{\delta}$ (SI) [mas]	$arepsilon_{\mu,\delta}$ (SI) [mas/yr]	p_{res} [mas]	$arepsilon_{p,res}$ [mas]	K_p	v_{rad} [km/s]	m_V	K_m	K_{bin}	$K_{\Delta\mu}$	K_{ae}
904 1630	91.18 91.13	0.40 0.80	0.37 0.29	91.21 91.51	0.39 0.39	0.33 0.24	14.77 7.86	0.47 0.94	H H	+ 23.7 - 11.8	4.78 4.37	2	11 33	1	3
905 1001 1003	91.45 91.20 91.27	0.82 0.45 0.70	0.27 0.42 0.46	91.42 91.28 91.40	0.40 0.41 0.41	0.25 0.36 0.35	14.31 5.70 25.59	0.92 0.53 0.75	H H H	- 5.0 - 3.0 + 3.1	4.55 5.59 6.19		29 19 29	2	1

Wielen et al. 1999

ЛЕКЦИЯ 2: ACTPOMETPИЯ **26**

ДИФРАКЦИОННОЕ ИЗОБРАЖЕНИЕ

- > Любой телескоп имеет конечные размеры!
- У Изображение, которое строит телескоп, есть результат дифракции излучения на входной апертуре.

КРИТЕРИЙ РЭЛЕЯ

 Два точечных источника разрешаются, если максимум диска Эйри одного источника лежит дальше первого минимума диска второго источника.

ЛЕКЦИЯ 2: ACTPOMETPИЯ 28

КАЧЕСТВО ИЗОБРАЖЕНИЯ

$$d_e = \underbrace{2.44 \frac{\lambda}{D}}_{\Theta_e} imes F_{\Phi}$$
 фокусное расстояние

$oldsymbol{\mathcal{L}}$ волны $oldsymbol{\lambda}$	$oldsymbol{\mathcal{L}}$ апертуры $oldsymbol{\mathcal{D}}$	Фокусное расстояние \emph{F}	Угловое разрешение $ heta_e$	Линейный размер пятна Эйри на фокальной плоскости
550 нм	6 м	24 M	0.05"	5.6 мкм
550 нм	0.65 м	35 M	0.42"	72 MKM
21 CM	64 м	27.4 M	27'	22 CM

INTERNATIONAL CELESTIAL REFERENCE FRAME

- С 2019 года основной системой координат в астрономии (и космонавтике) считается ICRF3.
- ➤ Её формируют 4536 радиоисточников, положения которых измерялись при помощи РСДБ-наблюдений. Средняя ошибка координат — 50 микросекунд дуги!
- Эпоха равноденствия каталога: J2015.0

30

ЛЕСТНИЦА РАССТОЯНИЙ

time delay

Sunyaev-Zel'dovich

kinematics

kinematics

Novae as

motions

Wesselink

Statistical parallax

Moving cluster

parallax

fitting

- Метод параллаксов основной прямой метод измерения расстояний в космосе.
- Внутри Солнечной системы можно ещё пользоваться радиолокацией (она точнее).
- Положение Земли на своей орбите относительно центра масс СС мы знаем с точностью не хуже нескольких сантиметров.

ИЗМЕРЕНИЕ ВРЕМЕНИ

- **TAI**: Базовая шкала времени для астрономических наблюдений атомная. Эта же шкала задаёт секунду СИ.
- ▶ UTC: В качестве рабочей шкалы используется Всемирное Координированное Время.
 UTC = TAI LS, где LS время координации (leap seconds). На сегодня LS = 37s.
- > TT = TDT: Земное (динамическое) время время идеальных часов на поверхности геоида. TT = TAI + 32.184s.
- **TDB:** Барицентрическое динамическое время. Связано с ТТ сложным релятивистским преобразованием.
- **ТСВ:** Барицентрическое координатное время. $TCB \approx TDB + 0.489 \text{ s yr}^{-1} \text{ (year } -1977.0 \text{)}.$

ИЗМЕРЕНИЕ ВРЕМЕНИ

 Соотношение между разными шкалами времени, в предположении, что TAI строго равномерно.

ЮЛИАНСКАЯ ДАТА

- ▶ JD принятая в наблюдательной астрономии система непрерывного счёта дней.
- ▶ JD = 0.0 соответствует I2h UT, I января 47I3 года до н.э.
- MJD Модифицированная Юлианская дата.
 MJD = JD 2400000.5.
 MJD = 0.0 соответствует 0h UT 17 ноября 1858 года.
- https://www.aavso.org/jd-calculator

ЛИТЕРАТУРА

- ➤ Кононович, Мороз. «Общий курс астрономии», §§ 1.4-1.12, 1.18
- > Жаров. «Сферическая астрономия», Гл. I, 2, 4.

ДОМАШНЕЕ ЗАДАНИЕ

В радионаблюдениях в режиме интерферометра со сверхдлинной базой (РСДБ-наблюдениях) было обнаружено, что от радиоисточника **3C 279** отлетают несколько сгустков светящегося вещества. Источник **3C 279** это *квазар*. А сгустки составляют струйный выброс (джет) вещества из его центральной части. Самый дальний сгусток имеет полное собственное движение $\mu = 0.25 \text{ mas yr}^{-1}$ – см. рисунок. Расстояние до **3C 279** составляет $d = 1.5 \cdot 10^9$ парсек (**I.5** Гпк).

Получите *нижний предел* для величины *полной* пространственной скорости дальнего сгустка *относительно наблюдателя*. Ответ выразите в единицах скорости света.

