Unit Cell

1 atom per unit cell

2 atoms per unit cell

4 atoms per unit cell

- 1. SC Simple Cubic
 - 1 atom per unit cell
- 2. BCC Body-Centered Cubic
 - 2 atoms per unit cell
- 3. FCC/CCP Face-Centered Cubic / Cubic Close Packing
 - 4 atoms per unit cell

Crystal Systems

	Crystal System	Lattice dimensions	Arity	Required Parameters
1	Cubic	$a = b = c$, $\alpha = \beta = \gamma = 90^{\circ}$	1	а
2	Tetragonal	$a = b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$	2	а, с
3	Orthorhombic	$a \neq b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$	3	a, b, c
4	Trigonal (Rhombohedral)	a = b = c, α = $β = γ ≠ 90°$	2	a, α
5	Hexagonal	a = b \neq c, α = β = 90°, γ = 120°	2	a, c
6	Monoclinic	$a \neq b \neq c$, $\alpha = \gamma = 90^{\circ} \neq \beta$	4	a, b, c, β
7	Triclinic	a ≠ b ≠ c, α ≠ β ≠ γ ≠ 90°	6	a, b, c, α, β, γ

- If the question askes "if the third axis is perpendicular, what crystal system is drawn?", then the answer must be: cubic, tetragonal, orthorhombic, or hexagonal.
- Otherwise, the answer must be rhombohedra, monoclinic, or triclinic.

Cubic

Tetragonal

Orthorhombic

Trigonal (Rhombohedral)

Hexagonal

Monoclinic

Triclinic

Density and Radius

- Density is mass over volume
- Avogadro's number: 6.022 × 10²³ atoms per mol
- $1 \text{ Å} = 10^{-10} \text{ m}$
- An element will change density at different temperatures and pressures, causing the crystalline structure to change.
- The radius of a BCC is found by using the body-diagonal of the cube.
- The radius of the CCP is found by using the face-diagonal of the cube.

Example

At 20°C, Fe is bcc, with a side length of $\mathbf{a} = 2.866 \, \text{Å}$. At 950 °C, Fe is ccp, with a side length of $\mathbf{a} = 3.43 \, \text{Å}$.

Steps for obtaining density:

- 1. Start with the atomic mass of Fe in grams per mol.

 Convert to grams per atom by using Avogadro's number.
- 2. Then to grams per unit cell by using the number of atoms per unit cell.
- 3. Then to grams per cubic angstrom, by using the cube of the value provided. At this point we've found density, but the value isn't in standard units.
- 4. Convert from cubic anstrom to cubic meters.
- 5. Convert from grams to kilograms.

Density @ 20°C

$$\frac{55.845\,\frac{g}{mol}}{6.022\times10^{23}\,\frac{atoms}{mol}}\times\frac{2~\text{atoms}}{\text{BCC}}\times\frac{\text{BCC}}{(2.866\,\mathring{A})^3}\times\frac{\mathring{A}^3}{(10^{-10}\,m)^3}\times\frac{1~kg}{1000~g}=7,879kg/m^3$$

Density @ 950°C

$$rac{55.845 rac{g}{mol}}{6.022 imes 10^{23} rac{atoms}{mol}} imes rac{4 ext{ atoms}}{ ext{BCC}} imes rac{ ext{CCP}}{(3.43 \, \mathring{A})^3} imes rac{\mathring{A}^3}{(10^{-10} \, m)^3} imes rac{1 \, kg}{1000 \, g} = 9,192 kg/m^3$$

Radius @ 20°C

- In a cube with a side of length a, its body diagonal has length $a\sqrt{3}$.
- There are 4 radii along the length of a body diagonal.

$$\frac{2.866 \, \mathring{A} \times \sqrt{3}}{4 \, \mathrm{radii}} = 1.241 \, \mathring{A}$$

Radius @ 950°C

- In a cube with a side of length a, its face diagonal has length $a\sqrt{2}$.
- There are 3 radii along the length of a face diagonal.

$$rac{3.43\,\mathring{A} imes\sqrt{2}}{3\,\mathrm{radii}}=4.85\,\mathring{A}$$

Point Groups

The decision tree for identifying a molecular point group. The symbols of each point refer to the symmetry elements.

1. Is the molecule linear?

Yes: Is there a center of inversion?

Yes: $D_{\infty h}$ (e.g. Carbon dioxide)

No: $C_{\infty h}$ (e.g.) (Hydrogen chloride)

2. Are there two or more C'_n where n > 2?

Yes: Is there a center of inversion?

Yes: Does it have a C₅ element?

Yes: Ih (e.g. Buckminsterfullerene)

No: O_h (e.g. Sulfur Hexafluoride, Cubane)

No: T_d (e.g. Methane)

3. Does C_n exist?

No: Is there a horiztonal mirror plane (σ_h) ?

Yes: Cs

No: Is there a center of inversion?

Yes: Ci

No: C₁

4. Select C_n with highest n, is there a C₂ axis perpendicular to that C_n?

Yes: Is there a horiztonal mirror plane (σ_h) ?

Yes: D_{nh}

No: Is there a dihedral mirror plane (σ_d)

Yes: D_{nd}

No: D_n

5. Is there a horiztonal mirror plane (σ_h)

Yes: C_{nh}

6. Is there a vertical mirror plane (σ_v) ?

Yes: C_{nv}

7. Is it S_{2n}?

Yes: S_{2n}

No: C_n

MO Diagram

- HOMO highest occupied molecular orbital
- LUMO lowest unoccupied molecular orbital

BH₃

 BH_3 is an acid because it's LUMO is an unfilled bonding orbital with $1\mathrm{a''}_2$ symmetry.

 NH_3 is a base because its HOMO is a filled bonding orbital with $2a_1$ symmetry, so it's more willing to donate electrons than it is to accept them.