Working Memory (WM) Baseline To Peak (BTP) Report

Directory: Z:_Published Paper Analyses\Sanford_Dissertation_2019\ch4_1task\WM\fMRI \Automated Classifications

Study: Sanford Dissertation (2019)

Table of Contents

Summary: Peak Timebins	
Varimax Rotation	
Component #1 (C1_WM_Pos_90_1RESP_1.48)	3
Component #1: BTP Analysis	4
Component #2 (C2_WM_Pos_79_INIT_1.21)	11
Component #2: BTP Analysis	12
Component #3 (C3_WM_Neg_90_TDMN_1.50)	
Component #3: BTP Analysis	20

Summary: Peak Timebins

Component No.	Network	Group	Task Condition	Start	Peak	End	Sub-Zero Peak
1	1RESP	Length4	Delay0	4	6	7	8
1	1RESP	Length4	Delay4	6	8	10	-
1	1RESP	Length6	Delay0	3	5	7	8
1	1RESP	Length6	Delay4	3	7	10	-
2	INIT	Length4	Delay0	1	4	8	-
2	INIT	Length4	Delay4	1	4	6	-
2	INIT	Length6	Delay0	1	4	8	-
2	INIT	Length6	Delay4	1	4	7	-
3	TDMN	Length4	Delay0	1	5	10	-
3	TDMN	Length4	Delay4	1	7	10	-
3	TDMN	Length6	Delay0	1	5	10	-
3	TDMN	Length6	Delay4	1	7	10	-

Varimax Rotation

Component #1 (C1_WM_Pos_90_1RESP_1.48)

Figure 1: Bat (one sided if one-handed response). Orientation: Coronal, Slices: 116,126,136,146 (z = 1.41).

Figure 2: Thalamus kite surfer. Orientation: Coronal, Slices: 120,115,110,105,100 (z=1.62).

Figure 3: Butterfly (one sided if one-handed response). Orientation: Axial, Slices: 144,134,124,114 (z=1.50).

Figure 4: Compact crab claw. Orientation: Axial, Slices: 56,52,48,44 (z = 1.27).

Component #1: BTP Analysis

Component No.	Network	Group	Task Condition	Start	Peak	End	Sub-Zero Peak
1	1RESP	Length4	Delay0	4	6	7	8
1	1RESP	Length4	Delay4	6	8	10	-
1	1RESP	Length6	Delay0	3	5	7	8
1	1RESP	Length6	Delay4	3	7	10	-

HDR Plot

Figure 5: Component #1 (C1_WM_Pos_90_1RESP_1.48) Varimax HDR for the Working Memory (WM) Task (Length4_Length6) x Group (Delay0_Delay4).

SPSS Syntax

```
DO IF(Length4 Length6 = 1).
compute 1RESP 4L 0D start = 4.
compute 1RESP 4L 0D peak = 6.
compute 1RESP 4L 0D end = 7.
compute 1RESP 4L 0D subzero peak = 8.
compute 1RESP 4L 0D start pw = C1 Length4 Delay0 4.
compute 1RESP 4L 0D peak pw = C1 Length4 Delay0 6.
compute 1RESP 4L 0D end pw = C1 Length4 Delay0 7.
compute 1RESP 4L 0D subzero peak pw = C1 Length4 Delay0 8.
compute 1RESP 4L 4D  start = 6.
compute 1RESP 4L 4D peak = 8.
compute 1RESP 4L 4D \text{ end} = 9.
compute 1RESP 4L 4D subzero peak = -88.
compute 1RESP 4L 4D start pw = C1 Length4 Delay4 6.
compute 1RESP 4L 4D peak pw = C1 Length4 Delay4 8.
compute 1RESP 4L 4D end pw = C1 Length4 Delay4 9.
compute 1RESP 4L 4D subzero peak pw = -88.
compute 1RESP 4L 0D up = mean(C1 Length4 Delay0 4 TO C1 Length4 Delay0 6).
compute 1RESP 4L 4D up = mean(C1 Length4 Delay4 6 TO C1 Length4 Delay4 8).
compute 1RESP 4L 0D down = mean(C1 Length4 Delay0 7 TO C1 Length4 Delay0 7).
compute 1RESP 4L 4D down = mean(C1 Length4 Delay4 9 TO C1 Length4 Delay4 9).
compute 1RESP 4L 0D start to peak = 1RESP 4L 0D peak - 1RESP 4L 0D start.
compute 1RESP 4L 4D start to peak = 1RESP 4L 4D peak - 1RESP 4L 4D start.
compute 1RESP 4L 0D peak to end = 1RESP 4L 0D end - 1RESP 4L 0D peak.
```

```
compute 1RESP 4L 4D peak to end = 1RESP 4L 4D end - 1RESP 4L 4D peak.
compute 1RESP 4L 0D slope to suppress = 1RESP 4L 0D subzero peak -
1RESP 4L 0D end.
compute 1RESP 4L 4D slope to suppress = 1RESP 4L 4D subzero peak - 1.
EXECUTE.
ELSE IF (Length 4 Length 6 = 2).
compute 1RESP 6L 0D start = 3.
compute 1RESP 6L 0D peak = 5.
compute 1RESP 6L 0D end = 7.
compute 1RESP 6L 0D subzero peak = 8.
compute 1RESP 6L 0D start pw = C1 Length6 Delay0 3.
compute 1RESP 6L 0D peak pw = C1 Length6 Delay0 5.
compute 1RESP 6L 0D end pw = C1 Length6 Delay0 7.
compute 1RESP 6L 0D subzero peak pw = C1 Length6 Delay0 8.
compute 1RESP 6L 4D start = 3.
compute 1RESP 6L 4D peak = 7.
compute 1RESP 6L 4D end = 9.
compute 1RESP 6L 4D subzero peak = -88.
compute 1RESP 6L 4D start pw = C1 Length6 Delay4 3.
compute 1RESP 6L 4D peak pw = C1 Length6 Delay4 7.
compute 1RESP 6L 4D end pw = C1 Length6 Delay4 9.
compute 1RESP 6L 4D subzero peak pw = -88.
compute 1RESP 6L 0D up = mean(C1 Length6 Delay0 3 TO C1 Length6 Delay0 5).
compute 1RESP 6L 4D up = mean(C1 Length6 Delay4 3 TO C1 Length6 Delay4 7).
compute 1RESP 6L 0D down = mean(C1 Length6 Delay0 6 TO C1 Length6 Delay0 7).
compute 1RESP 6L 4D down = mean(C1 Length6 Delay4 8 TO C1 Length6 Delay4 9).
```

```
compute 1RESP_6L_0D_start_to_peak = 1RESP_6L_0D_peak - 1RESP_6L_0D_start.
```

compute 1RESP 6L 4D start to peak = 1RESP 6L 4D peak - 1RESP 6L 4D start.

compute 1RESP_6L_0D_peak_to_end = 1RESP_6L_0D_end - 1RESP_6L_0D_peak.

compute 1RESP 6L 4D peak to end = 1RESP 6L 4D end - 1RESP 6L 4D peak.

compute 1RESP_6L_0D_slope_to_suppress = 1RESP_6L_0D_subzero_peak 1RESP_6L_0D_end.

compute 1RESP 6L 4D slope to suppress = 1RESP 6L 4D subzero peak - 1.

END IF.

EXECUTE.

VARIABLE LABELS

1RESP_4L_0D_start 'time bin closest to where activity begins to increase for the Length4_Delay0 condition'

1RESP_4L_0D_peak 'time bin closest to HDR peak for the Length4 Delay0 condition'

1RESP_4L_0D_end 'time bin closest to where HDR returns to baseline level for the Length4 Delay0 condition'

1RESP_4L_0D_subzero_peak 'time bin closest to maximum suppression for the Length4_Delay0 condition'

1RESP_4L_0D_start_pw 'predictor weight for time bin closest to where activity begins to increase for the Length4_Delay0 condition'

1RESP_4L_0D_peak_pw 'predictor weight for time bin closest to HDR peak for the Length4 Delay0 condition'

1RESP_4L_0D_end_pw 'predictor weight for time bin closest to where HDR returns to baseline level for the Length4 Delay0 condition'

1RESP_4L_0D_subzero_peak_pw 'predictor weight for time bin closest to maximum suppression for the Length4 Delay0 condition'

1RESP_4L_0D_start_to_peak 'number of time bins from start to peak for Length4_Delay0 condition'

1RESP_4L_0D_peak_to_end 'number of time bins from peak to end for Length4_Delay0 condition'

1RESP_4L_0D_slope_to_suppress 'number of time bins from first time bin to subzero peak for Length4 Delay0 condition'

1RESP_4L_4D_start 'time bin closest to where activity begins to increase for the Length4_Delay4 condition'

1RESP 4L 4D peak 'time bin closest to HDR peak for the Length4 Delay4 condition'

1RESP_4L_4D_end 'time bin closest to where HDR returns to baseline level for the Length4_Delay4 condition'

1RESP_4L_4D_subzero_peak 'time bin closest to maximum suppression for the Length4_Delay4 condition'

1RESP_4L_4D_start_pw 'predictor weight for time bin closest to where activity begins to increase for the Length4_Delay4 condition'

1RESP_4L_4D_peak_pw 'predictor weight for time bin closest to HDR peak for the Length4 Delay4 condition'

1RESP_4L_4D_end_pw 'predictor weight for time bin closest to where HDR returns to baseline level for the Length4 Delay4 condition'

1RESP_4L_4D_subzero_peak_pw 'predictor weight for time bin closest to maximum suppression for the Length4 Delay4 condition'

1RESP_4L_4D_start_to_peak 'number of time bins from start to peak for Length4_Delay4 condition'

1RESP_4L_4D_peak_to_end 'number of time bins from peak to end for Length4_Delay4 condition'

1RESP_4L_4D_slope_to_suppress 'number of time bins from first time bin to subzero peak for Length4_Delay4 condition'

1RESP_6L_0D_start 'time bin closest to where activity begins to increase for the Length6_Delay0 condition'

1RESP 6L 0D peak 'time bin closest to HDR peak for the Length6 Delay0 condition'

1RESP_6L_0D_end 'time bin closest to where HDR returns to baseline level for the Length6 Delay0 condition'

1RESP_6L_0D_subzero_peak 'time bin closest to maximum suppression for the Length6_Delay0 condition'

1RESP_6L_0D_start_pw 'predictor weight for time bin closest to where activity begins to increase for the Length6 Delay0 condition'

1RESP_6L_0D_peak_pw 'predictor weight for time bin closest to HDR peak for the Length6_Delay0 condition'

1RESP_6L_0D_end_pw 'predictor weight for time bin closest to where HDR returns to baseline level for the Length6 Delay0 condition'

1RESP_6L_0D_subzero_peak_pw 'predictor weight for time bin closest to maximum suppression for the Length6 Delay0 condition'

1RESP_6L_0D_start_to_peak 'number of time bins from start to peak for Length6_Delay0 condition'

1RESP_6L_0D_peak_to_end 'number of time bins from peak to end for Length6_Delay0 condition'

1RESP_6L_0D_slope_to_suppress 'number of time bins from first time bin to subzero peak for Length6_Delay0 condition'

1RESP_6L_4D_start 'time bin closest to where activity begins to increase for the Length6_Delay4 condition'

1RESP_6L_4D_peak 'time bin closest to HDR peak for the Length6_Delay4 condition'

1RESP_6L_4D_end 'time bin closest to where HDR returns to baseline level for the Length6_Delay4 condition'

1RESP_6L_4D_subzero_peak 'time bin closest to maximum suppression for the Length6_Delay4 condition'

1RESP_6L_4D_start_pw 'predictor weight for time bin closest to where activity begins to increase for the Length6 Delay4 condition'

1RESP_6L_4D_peak_pw 'predictor weight for time bin closest to HDR peak for the Length6 Delay4 condition'

1RESP_6L_4D_end_pw 'predictor weight for time bin closest to where HDR returns to baseline level for the Length6 Delay4 condition'

1RESP_6L_4D_subzero_peak_pw 'predictor weight for time bin closest to maximum suppression for the Length6_Delay4 condition'

1RESP_6L_4D_start_to_peak 'number of time bins from start to peak for Length6_Delay4 condition'

1RESP_6L_4D_peak_to_end 'number of time bins from peak to end for Length6_Delay4 condition'

 $1RESP_6L_4D_slope_to_suppress \ 'number \ of \ time \ bins \ from \ first \ time \ bin \ to \ subzero \ peak \ for \ Length6_Delay4 \ condition'$

EXECUTE.

Component #2 (C2_WM_Pos_79_INIT_1.21)

Figure 6: Raised eyebrows. Orientation: Coronal, Slices: 52,57,62,67,72 (z=0.52).

Figure 7: When I'm 64. Orientation: Axial, Slices: 126,136,146 (z = 0.37).

Figure 8: De Divina Proportione front guy. Orientation: Axial, Slices: 132,127,122,117,112 (z = 0.48).

Component #2: BTP Analysis

Component No.	Network	Group	Task Condition	Start	Peak	End	Sub-Zero Peak
2	INIT	Length4	Delay0	1	4	8	-
2	INIT	Length4	Delay4	1	4	6	-
2	INIT	Length6	Delay0	1	4	8	-
2	INIT	Length6	Delay4	1	4	7	-

HDR Plot

Figure 9: Component #2 (C2_WM_Pos_79_INIT_1.21) Varimax HDR for the Working Memory (WM) Task (Length4_Length6) x Group (Delay0_Delay4).

SPSS Syntax

```
DO IF(Length4 Length6 = 1).
compute INIT 4L 0D start = 1.
compute INIT 4L 0D peak = 4.
compute INIT 4L 0D end = 8.
compute INIT 4L 0D subzero peak = -88.
compute INIT 4L 0D start pw = C2 Length4 Delay0 1.
compute INIT 4L 0D peak pw = C2 Length4 Delay0 4.
compute INIT 4L 0D end pw = C2 Length4 Delay0 8.
compute INIT 4L 0D subzero peak pw = -88.
compute INIT 4L 4D start = 1.
compute INIT 4L 4D peak = 4.
compute INIT 4L 4D \text{ end} = 6.
compute INIT 4L 4D subzero peak = -88.
compute INIT 4L 4D start pw = C2 Length4 Delay4 1.
compute INIT 4L 4D peak pw = C2 Length4 Delay4 4.
compute INIT 4L 4D end pw = C2 Length4 Delay4 6.
compute INIT 4L 4D subzero peak pw = -88.
compute INIT 4L 0D up = mean(C2 Length4 Delay0 1 TO C2 Length4 Delay0 4).
compute INIT 4L 4D up = mean(C2 Length4 Delay4 1 TO C2 Length4 Delay4 4).
compute INIT 4L 0D down = mean(C2 Length4 Delay0 5 TO C2 Length4 Delay0 8).
compute INIT 4L 4D down = mean(C2 Length4 Delay4 5 TO C2 Length4 Delay4 6).
compute INIT 4L 0D start to peak = INIT 4L 0D peak - INIT 4L 0D start.
compute INIT 4L 4D start to peak = INIT 4L 4D peak - INIT 4L 4D start.
compute INIT 4L 0D peak to end = INIT 4L 0D end - INIT 4L 0D peak.
```

```
compute INIT 4L 4D peak to end = INIT 4L 4D end - INIT 4L 4D peak.
compute INIT 4L 0D slope to suppress = INIT 4L 0D subzero peak - 1.
compute INIT 4L 4D slope to suppress = INIT 4L 4D subzero peak - INIT 4L 4D end.
EXECUTE.
ELSE IF (Length 4 Length 6 = 2).
compute INIT 6L 0D start = 1.
compute INIT 6L 0D peak = 4.
compute INIT 6L 0D end = 8.
compute INIT 6L 0D subzero peak = -88.
compute INIT 6L 0D start pw = C2 Length6 Delay0 1.
compute INIT 6L 0D peak pw = C2 Length6 Delay0 4.
compute INIT 6L 0D end pw = C2 Length6 Delay0 8.
compute INIT 6L 0D subzero peak pw = -88.
compute INIT 6L 4D start = 1.
compute INIT 6L 4D peak = 4.
compute INIT 6L 4D end = 7.
compute INIT 6L 4D subzero peak = -88.
compute INIT 6L 4D start pw = C2 Length6 Delay4 1.
compute INIT 6L 4D peak pw = C2 Length6 Delay4 4.
compute INIT 6L 4D end pw = C2 Length6 Delay4 7.
compute INIT 6L 4D subzero peak pw = -88.
compute INIT 6L 0D up = mean(C2 Length6 Delay0 1 TO C2 Length6 Delay0 4).
compute INIT 6L 4D up = mean(C2 Length6 Delay4 1 TO C2 Length6 Delay4 4).
compute INIT 6L 0D down = mean(C2 Length6 Delay0 5 TO C2 Length6 Delay0 8).
compute INIT 6L 4D down = mean(C2 Length6 Delay4 5 TO C2 Length6 Delay4 7).
```

```
compute INIT_6L_0D_start_to_peak = INIT_6L_0D_peak - INIT_6L_0D_start.
```

compute INIT_6L_4D_start_to_peak = INIT_6L_4D_peak - INIT_6L_4D_start.

compute INIT_6L_0D_peak_to_end = INIT_6L_0D_end - INIT_6L_0D_peak.

compute INIT_6L_4D_peak_to_end = INIT_6L_4D_end - INIT_6L_4D_peak.

compute INIT_6L_0D_slope_to_suppress = INIT_6L_0D_subzero_peak - INIT_6L_0D_end.

compute INIT 6L 4D slope to suppress = INIT 6L 4D subzero peak - INIT 6L 4D end.

END IF.

EXECUTE.

VARIABLE LABELS

INIT_4L_0D_start 'time bin closest to where activity begins to increase for the Length4_Delay0 condition'

INIT 4L 0D peak 'time bin closest to HDR peak for the Length4 Delay0 condition'

INIT_4L_0D_end 'time bin closest to where HDR returns to baseline level for the Length4_Delay0 condition'

INIT_4L_0D_subzero_peak 'time bin closest to maximum suppression for the Length4_Delay0 condition'

INIT_4L_0D_start_pw 'predictor weight for time bin closest to where activity begins to increase for the Length4 Delay0 condition'

INIT_4L_0D_peak_pw 'predictor weight for time bin closest to HDR peak for the Length4 Delay0 condition'

INIT_4L_0D_end_pw 'predictor weight for time bin closest to where HDR returns to baseline level for the Length4 Delay0 condition'

INIT_4L_0D_subzero_peak_pw 'predictor weight for time bin closest to maximum suppression for the Length4_Delay0 condition'

INIT 4L 0D start to peak 'number of time bins from start to peak for Length4 Delay0 condition'

INIT_4L_0D_peak_to_end 'number of time bins from peak to end for Length4_Delay0 condition'

INIT_4L_0D_slope_to_suppress 'number of time bins from first time bin to subzero peak for Length4_Delay0 condition'

INIT_4L_4D_start 'time bin closest to where activity begins to increase for the Length4_Delay4 condition'

INIT 4L 4D peak 'time bin closest to HDR peak for the Length4 Delay4 condition'

INIT_4L_4D_end 'time bin closest to where HDR returns to baseline level for the Length4_Delay4 condition'

INIT_4L_4D_subzero_peak 'time bin closest to maximum suppression for the Length4_Delay4 condition'

INIT_4L_4D_start_pw 'predictor weight for time bin closest to where activity begins to increase for the Length4_Delay4 condition'

INIT_4L_4D_peak_pw 'predictor weight for time bin closest to HDR peak for the Length4_Delay4 condition'

INIT_4L_4D_end_pw 'predictor weight for time bin closest to where HDR returns to baseline level for the Length4_Delay4 condition'

INIT_4L_4D_subzero_peak_pw 'predictor weight for time bin closest to maximum suppression for the Length4 Delay4 condition'

INIT_4L_4D_start_to_peak 'number of time bins from start to peak for Length4_Delay4 condition'

INIT 4L 4D peak to end 'number of time bins from peak to end for Length4 Delay4 condition'

INIT_4L_4D_slope_to_suppress 'number of time bins from first time bin to subzero peak for Length4 Delay4 condition'

INIT_6L_0D_start 'time bin closest to where activity begins to increase for the Length6_Delay0 condition'

INIT_6L_0D_peak 'time bin closest to HDR peak for the Length6_Delay0 condition'

INIT_6L_0D_end 'time bin closest to where HDR returns to baseline level for the Length6_Delay0 condition'

INIT_6L_0D_subzero_peak 'time bin closest to maximum suppression for the Length6_Delay0 condition'

INIT_6L_0D_start_pw 'predictor weight for time bin closest to where activity begins to increase for the Length6_Delay0 condition'

INIT_6L_0D_peak_pw 'predictor weight for time bin closest to HDR peak for the Length6 Delay0 condition'

INIT_6L_0D_end_pw 'predictor weight for time bin closest to where HDR returns to baseline level for the Length6 Delay0 condition'

INIT_6L_0D_subzero_peak_pw 'predictor weight for time bin closest to maximum suppression for the Length6_Delay0 condition'

INIT 6L 0D start to peak 'number of time bins from start to peak for Length6 Delay0 condition'

INIT_6L_0D_peak_to_end 'number of time bins from peak to end for Length6 Delay0 condition'

INIT_6L_0D_slope_to_suppress 'number of time bins from first time bin to subzero peak for Length6_Delay0 condition'

INIT_6L_4D_start 'time bin closest to where activity begins to increase for the Length6_Delay4 condition'

INIT_6L_4D_peak 'time bin closest to HDR peak for the Length6_Delay4 condition'

INIT_6L_4D_end 'time bin closest to where HDR returns to baseline level for the Length6_Delay4 condition'

INIT_6L_4D_subzero_peak 'time bin closest to maximum suppression for the Length6_Delay4 condition'

INIT_6L_4D_start_pw 'predictor weight for time bin closest to where activity begins to increase for the Length6 Delay4 condition'

INIT_6L_4D_peak_pw 'predictor weight for time bin closest to HDR peak for the Length6 Delay4 condition'

INIT_6L_4D_end_pw 'predictor weight for time bin closest to where HDR returns to baseline level for the Length6 Delay4 condition'

INIT_6L_4D_subzero_peak_pw 'predictor weight for time bin closest to maximum suppression for the Length6_Delay4 condition'

INIT_6L_4D_start_to_peak 'number of time bins from start to peak for Length6_Delay4 condition'

INIT_6L_4D_peak_to_end 'number of time bins from peak to end for Length6_Delay4 condition'

INIT_6L_4D_slope_to_suppress 'number of time bins from first time bin to subzero peak for Length6_Delay4 condition'

EXECUTE.

Component #3 (C3_WM_Neg_90_TDMN_1.50)

Figure 10: Snow Man Nose (Traditional). Orientation: Coronal, Slices: 148,153,158,163 (z = 1.49).

Figure 11: Medial Temporal Dots-Prominent (Traditional). Orientation: Coronal, Slices: 112,116,120,124,128 (z = 1.63).

Figure 12: T-bird (Traditional). Orientation: Coronal, Slices: 40,50,60,70,80,90 (z = 1.51).

Figure 13: Tripod (Traditional). Orientation: Axial, Slices: 66,76,86,96,106 (z = 1.58).

Figure 14: Mandibles (Traditional). Orientation: Axial, Slices: 25,30,35,40 (z=1.47).

Figure 15: Drooping Angel Wings-Muted (Traditional). Orientation: Axial, Slices: 52,62,72,82,92 (z=1.44).

Component #3: BTP Analysis

Component No.	Network	Group	Task Condition	Start	Peak	End	Sub-Zero Peak
3	TDMN	Length4	Delay0	1	5	10	-
3	TDMN	Length4	Delay4	1	7	10	-
3	TDMN	Length6	Delay0	1	5	10	-
3	TDMN	Length6	Delay4	1	7	10	-

HDR Plot

Figure 16: Component #3 (C3_WM_Neg_90_TDMN_1.50) Varimax HDR for the Working Memory (WM) Task (Length4_Length6) x Group (Delay0_Delay4).

SPSS Syntax

```
compute TDMN 4L 0D start = 1.
compute TDMN 4L 0D peak = 5.
compute TDMN 4L 0D end = 10.
compute TDMN 4L 0D subzero peak = -88.
compute TDMN 4L 0D start pw = C3 Length4 Delay0 1.
compute TDMN 4L 0D peak pw = C3 Length4 Delay0 5.
compute TDMN 4L 0D end pw = C3 Length4 Delay0 10.
compute TDMN 4L 0D subzero peak pw = -88.
compute TDMN 4L 4D start = 1.
compute TDMN 4L 4D peak = 7.
compute TDMN 4L 4D \text{ end} = 10.
compute TDMN 4L 4D subzero peak = -88.
compute TDMN 4L 4D start pw = C3 Length4 Delay4 1.
compute TDMN 4L 4D peak pw = C3 Length4 Delay4 7.
compute TDMN 4L 4D end pw = C3 Length4 Delay4 10.
compute TDMN 4L 4D subzero peak pw = -88.
compute TDMN 4L 0D up = mean(C3 Length4 Delay0 1 TO C3 Length4 Delay0 5).
compute TDMN 4L 4D up = mean(C3 Length4 Delay4 1 TO C3 Length4 Delay4 7).
compute TDMN 4L 0D down = mean(C3 Length4 Delay0 6 TO C3 Length4 Delay0 10).
compute TDMN 4L 4D down = mean(C3 Length4 Delay4 8 TO C3 Length4 Delay4 10).
compute TDMN 4L 0D start to peak = TDMN 4L 0D peak - TDMN 4L 0D start.
compute TDMN 4L 4D start to peak = TDMN 4L 4D peak - TDMN 4L 4D start.
compute TDMN 4L 0D peak to end = TDMN 4L 0D end - TDMN 4L 0D peak.
compute TDMN 4L 4D peak to end = TDMN 4L 4D end - TDMN 4L 4D peak.
```

```
compute TDMN 4L 0D slope to suppress = -88.
compute TDMN 4L 4D slope to suppress = -88.
compute TDMN 6L 0D start = 1.
compute TDMN 6L 0D peak = 5.
compute TDMN 6L 0D end = 10.
compute TDMN 6L 0D subzero peak = -88.
compute TDMN 6L 0D start pw = C3 Length6 Delay0 1.
compute TDMN 6L 0D peak pw = C3 Length6 Delay0 5.
compute TDMN 6L 0D end pw = C3 Length6 Delay0 10.
compute TDMN 6L 0D subzero peak pw = -88.
compute TDMN 6L 4D start = 1.
compute TDMN 6L 4D peak = 7.
compute TDMN 6L 4D end = 10.
compute TDMN 6L 4D subzero peak = -88.
compute TDMN 6L 4D start pw = C3 Length6 Delay4 1.
compute TDMN 6L 4D peak pw = C3 Length6 Delay4 7.
compute TDMN 6L 4D end pw = C3 Length6 Delay4 10.
compute TDMN 6L 4D subzero peak pw = -88.
compute TDMN 6L 0D up = mean(C3 Length6 Delay0 1 TO C3 Length6 Delay0 5).
compute TDMN 6L 4D up = mean(C3 Length6 Delay4 1 TO C3 Length6 Delay4 7).
compute TDMN 6L 0D down = mean (C3 Length6 Delay0 6 TO C3 Length6 Delay0 10).
compute TDMN 6L 4D down = mean(C3 Length6 Delay4 8 TO C3 Length6 Delay4 10).
compute TDMN 6L 0D start to peak = TDMN 6L 0D peak - TDMN 6L 0D start.
compute TDMN 6L 4D start to peak = TDMN 6L 4D peak - TDMN 6L 4D start.
```

compute TDMN_6L_0D_peak_to_end = TDMN_6L_0D_end - TDMN_6L_0D_peak.

compute TDMN_6L_4D_peak_to_end = TDMN_6L_4D_end - TDMN_6L_4D_peak.

compute TDMN 6L 0D slope to suppress = -88.

compute TDMN 6L 4D slope to suppress = -88.

END IF.

EXECUTE.

VARIABLE LABELS

TDMN_4L_0D_start 'time bin closest to where activity begins to increase for the Length4_Delay0 condition'

TDMN 4L 0D peak 'time bin closest to HDR peak for the Length4 Delay0 condition'

TDMN_4L_0D_end 'time bin closest to where HDR returns to baseline level for the Length4 Delay0 condition'

TDMN_4L_0D_subzero_peak 'time bin closest to maximum suppression for the Length4_Delay0 condition'

TDMN_4L_0D_start_pw 'predictor weight for time bin closest to where activity begins to increase for the Length4_Delay0 condition'

TDMN_4L_0D_peak_pw 'predictor weight for time bin closest to HDR peak for the Length4 Delay0 condition'

TDMN_4L_0D_end_pw 'predictor weight for time bin closest to where HDR returns to baseline level for the Length4 Delay0 condition'

TDMN_4L_0D_subzero_peak_pw 'predictor weight for time bin closest to maximum suppression for the Length4 Delay0 condition'

TDMN_4L_0D_start_to_peak 'number of time bins from start to peak for Length4_Delay0 condition'

TDMN_4L_0D_peak_to_end 'number of time bins from peak to end for Length4_Delay0 condition'

TDMN_4L_0D_slope_to_suppress 'number of time bins from first time bin to subzero peak for Length4 Delay0 condition'

TDMN_4L_4D_start 'time bin closest to where activity begins to increase for the Length4_Delay4 condition'

TDMN 4L 4D peak 'time bin closest to HDR peak for the Length4 Delay4 condition'

TDMN_4L_4D_end 'time bin closest to where HDR returns to baseline level for the Length4 Delay4 condition'

TDMN_4L_4D_subzero_peak 'time bin closest to maximum suppression for the Length4_Delay4 condition'

TDMN_4L_4D_start_pw 'predictor weight for time bin closest to where activity begins to increase for the Length4 Delay4 condition'

TDMN_4L_4D_peak_pw 'predictor weight for time bin closest to HDR peak for the Length4_Delay4 condition'

TDMN_4L_4D_end_pw 'predictor weight for time bin closest to where HDR returns to baseline level for the Length4 Delay4 condition'

TDMN_4L_4D_subzero_peak_pw 'predictor weight for time bin closest to maximum suppression for the Length4 Delay4 condition'

TDMN_4L_4D_start_to_peak 'number of time bins from start to peak for Length4_Delay4 condition'

TDMN_4L_4D_peak_to_end 'number of time bins from peak to end for Length4_Delay4 condition'

TDMN_4L_4D_slope_to_suppress 'number of time bins from first time bin to subzero peak for Length4_Delay4 condition'

TDMN_6L_0D_start 'time bin closest to where activity begins to increase for the Length6_Delay0 condition'

TDMN_6L_0D_peak 'time bin closest to HDR peak for the Length6_Delay0 condition'

TDMN_6L_0D_end 'time bin closest to where HDR returns to baseline level for the Length6_Delay0 condition'

TDMN_6L_0D_subzero_peak 'time bin closest to maximum suppression for the Length6_Delay0 condition'

TDMN_6L_0D_start_pw 'predictor weight for time bin closest to where activity begins to increase for the Length6 Delay0 condition'

TDMN_6L_0D_peak_pw 'predictor weight for time bin closest to HDR peak for the Length6 Delay0 condition'

TDMN_6L_0D_end_pw 'predictor weight for time bin closest to where HDR returns to baseline level for the Length6 Delay0 condition'

TDMN_6L_0D_subzero_peak_pw 'predictor weight for time bin closest to maximum suppression for the Length6 Delay0 condition'

TDMN_6L_0D_start_to_peak 'number of time bins from start to peak for Length6_Delay0 condition'

TDMN_6L_0D_peak_to_end 'number of time bins from peak to end for Length6_Delay0 condition'

TDMN_6L_0D_slope_to_suppress 'number of time bins from first time bin to subzero peak for Length6 Delay0 condition'

TDMN_6L_4D_start 'time bin closest to where activity begins to increase for the Length6_Delay4 condition'

TDMN 6L 4D peak 'time bin closest to HDR peak for the Length6 Delay4 condition'

TDMN_6L_4D_end 'time bin closest to where HDR returns to baseline level for the Length6 Delay4 condition'

TDMN_6L_4D_subzero_peak 'time bin closest to maximum suppression for the Length6_Delay4 condition'

TDMN_6L_4D_start_pw 'predictor weight for time bin closest to where activity begins to increase for the Length6_Delay4 condition'

TDMN_6L_4D_peak_pw 'predictor weight for time bin closest to HDR peak for the Length6_Delay4 condition'

TDMN_6L_4D_end_pw 'predictor weight for time bin closest to where HDR returns to baseline level for the Length6 Delay4 condition'

TDMN_6L_4D_subzero_peak_pw 'predictor weight for time bin closest to maximum suppression for the Length6 Delay4 condition'

TDMN_6L_4D_start_to_peak 'number of time bins from start to peak for Length6_Delay4 condition'

TDMN_6L_4D_peak_to_end 'number of time bins from peak to end for Length6_Delay4 condition'

TDMN_6L_4D_slope_to_suppress 'number of time bins from first time bin to subzero peak for Length6 Delay4 condition'

EXECUTE.