直交変換

体 \mathbb{R}^n 上の計量空間において、内積を保つ線形変換を直交変換という

ref: 行列と行列式の基 礎 p77~82

■ 直交変換 体 \mathbb{R}^n 上の計量空間 V における線形変換 f が直交変換であるとは、任意の u, v $\in V$ に対し、

$$(f(\boldsymbol{u}), f(\boldsymbol{v})) = (\boldsymbol{u}, \boldsymbol{v})$$

が成り立つことである

直交変換は、ベクトルの長さを変えない変換でもある

 $oldsymbol{1}$ 直交変換とノルム保存性 計量空間 V における線形変換を f が直交変換であることと、任意の $oldsymbol{v} \in V$ に対し

$$||f(\boldsymbol{v})|| = ||\boldsymbol{v}||$$

が成り立つことは同値である

証明

f が直交変換 $\Longrightarrow f$ はノルムを保つ

直交変換の定義より、

$$(f(\boldsymbol{v}), f(\boldsymbol{v})) = (\boldsymbol{v}, \boldsymbol{v}) = \|\boldsymbol{v}\|^2$$

ここで、
$$\|f(oldsymbol{v})\| = \sqrt{(f(oldsymbol{v}),f(oldsymbol{v}))}$$
 であるから、 $\|f(oldsymbol{v})\| = \|oldsymbol{v}\|$

が成り立つ

f はノルムを保つ \Longrightarrow f は直交変換

任意の $\boldsymbol{v} \in V$ に対し、

$$||f(\boldsymbol{v})|| = ||\boldsymbol{v}||$$

が成り立つというのが仮定である

$$\|a + b\| = \|f(a) + f(b)\|$$

両辺を二乗して、

$$\|\boldsymbol{a} + \boldsymbol{b}\|^2 = \|f(\boldsymbol{a}) + f(\boldsymbol{b})\|^2$$

このとき、左辺は次のように展開できる

$$\|\mathbf{a} + \mathbf{b}\|^2 = (\mathbf{a} + \mathbf{b}, \mathbf{a} + \mathbf{b})$$

= $(\mathbf{a}, \mathbf{a}) + 2(\mathbf{a}, \mathbf{b}) + (\mathbf{b}, \mathbf{b})$
= $\|\mathbf{a}\|^2 + 2(\mathbf{a}, \mathbf{b}) + \|\mathbf{b}\|^2$

右辺も同様に、

$$||f(\mathbf{a}) + f(\mathbf{b})||^2$$

= $||f(\mathbf{a})||^2 + 2(f(\mathbf{a}), f(\mathbf{b})) + ||f(\mathbf{b})||^2$

さて、仮定より、 $\|f(\boldsymbol{a})\| = \|\boldsymbol{a}\|$ と $\|f(\boldsymbol{b})\| = \|\boldsymbol{b}\|$ が成り立つことから、

$$\|\boldsymbol{a} + \boldsymbol{b}\|^2 = \|f(\boldsymbol{a}) + f(\boldsymbol{b})\|^2$$

という等式の両辺を展開した結果、残る項は

$$2(a, b) = 2(f(a), f(b))$$

だけとなる

したがって、

$$(\boldsymbol{a}, \boldsymbol{b}) = (f(\boldsymbol{a}), f(\boldsymbol{b}))$$

が成り立つので、f は直交変換である