CLAIMS

What is claimed is:

5

10

20

1. A method, a sensor array that employs a parameter to induce a time-varying phase angle φ on an optical signal that comprises a phase generated carrier with a demodulation phase offset β , the method comprising the step of:

calculating the phase angle φ independently of the demodulation phase offset β .

2. The method of claim 1, further comprising the step of:

sampling an output signal from the sensor array to obtain a plurality of samples S_n , wherein n=0 to x;

wherein the step of calculating the phase angle φ independently of the demodulation phase offset β comprises the step of:

calculating the phase angle ϕ independently of the demodulation phase offset β through employment of one or more of the plurality of samples S_n .

The method of claim 1, wherein the step of calculating the phase angle φ
independently of the demodulation phase offset β through employment of the one or more of the plurality of samples S_n comprises the steps of:

calculating one or more quadrature terms and one or more in-phase terms through employment of one or more of the plurality of samples S_n , wherein one or more of the one or more quadrature terms and one or more of the one or more in-phase terms are substantially independent from the demodulation phase offset β ; and

calculating the phase angle ϕ through employment of the one or more quadrature terms and the one or more in-phase terms.

4. The method of claim 2, wherein the output signal comprises a period T_{pulse} , wherein the step of sampling the output signal from the sensor array to obtain the plurality of samples S_n , wherein n = 0 to x comprises the step of:

sampling the output signal from the sensor array to obtain a plurality of samples S_n within a period T_s , wherein n = 0 to x, wherein T_s is less than or equal to $1.125 \times T_{pulse}$.

- 5. The method of claim 4, wherein T_s is less than or equal to T_{pulse} .
- 6. The method of claim 4, wherein the step of calculating the phase angle φ independently of the demodulation phase offset β through employment of the one or more of the plurality of samples S_n comprises the steps of:
- calculating one or more quadrature terms and one or more in-phase terms through employment of one or more of the plurality of samples S_n, wherein one or more of the one or more quadrature terms and one or more of the one or more in-phase terms are substantially independent from the demodulation phase offset β;

calculating the phase angle ϕ through employment of the one or more quadrature terms and the one or more in-phase terms.

15

7. The method of claim 6, wherein the step of calculating the one or more quadrature terms and the one or more in-phase terms through employment of the one or more of the plurality of samples S_n , wherein the one or more of the one or more quadrature terms and the one or more of the one or more in-phase terms are substantially independent from the demodulation phase offset β comprises the steps of:

calculating a set of quadrature terms Q_j and a set of in-phase terms I_k through employment of one or more of the plurality of samples S_n , wherein j=0 to y, wherein k=0 to z;

calculating a quadrature term Q_{ab} from a largest term of absolute values of the set of quadrature terms Q_j ;

calculating a constant C_1 and a constant C_2 ;

calculating a quadrature term $Q_s = C_1 \times \sqrt{\sum_{j=0}^{j=y} Q_j^2}$, wherein Q_s is substantially independent from the demodulation phase offset β ; and

calculating an in-phase term $I_s = C_2 \times \sqrt{\sum_{k=0}^{k=z} I_k^2}$, wherein I_s is substantially

independent from the demodulation phase offset β .

5

20

8. The method of claim 7, wherein the step of calculating the constant C_1 and the constant C_2 comprises the step of:

calculating the constant C_1 and the constant C_2 such that an amplitude of the quadrature term Q_s , an amplitude of the quadrature term Q_{ab} , and an amplitude of the inphase term I_s comprise a substantially same amplitude for a modulation depth M of an operating range for the phase generated carrier.

9. The method of claim 7, wherein x=7, y=3, z=1, wherein the step of calculating the set of quadrature terms Q_j and the set of in-phase terms I_k through employment of the one or more of the plurality of samples S_n , wherein j=0 to y, wherein k=0 to z comprises the steps of:

 $\begin{array}{ll} 5 & \text{calculating } Q_0 = S_0 - S_4; \\ \\ & \text{calculating } Q_1 = S_1 - S_5; \\ \\ & \text{calculating } Q_2 = S_2 - S_6; \\ \\ & \text{calculating } Q_3 = S_3 - S_7; \\ \\ & \text{calculating } I_0 = (\ S_0 + S_4\) - (\ S_2 + S_6\); \ \text{and} \\ \\ 10 & \text{calculating } I_1 = (\ S_1 + S_5\) - (\ S_3 + S_7\). \end{array}$

The method of claim 7, wherein x=15, y=7, z=3, wherein the step of calculating the set of quadrature terms Q_j and the set of in-phase terms I_k through employment of the one or more of the plurality of samples S_n , wherein j=0 to y, wherein k=0 to z comprises the steps of:

```
 \begin{array}{ll} 5 & \text{calculating } Q_0 = S_0 - S_8; \\ & \text{calculating } Q_1 = S_1 - S_9; \\ & \text{calculating } Q_2 = S_2 - S_{10}; \\ & \text{calculating } Q_3 = S_3 - S_{11}; \\ & \text{calculating } Q_4 = S_4 - S_{12}; \\ & \text{calculating } Q_5 = S_5 - S_{13}; \\ & \text{calculating } Q_6 = S_6 - S_{14}; \\ & \text{calculating } Q_7 = S_7 - S_{15}; \\ & \text{calculating } I_0 = (\ S_0 + S_8\ ) - (\ S_4 + S_{12}\ ); \\ & \text{calculating } I_1 = (\ S_1 + S_9\ ) - (\ S_5 + S_{13}\ ); \\ & \text{calculating } I_0 = (\ S_2 + S_{10}\ ) - (\ S_6 + S_{14}\ ); \ \text{and} \\ & \text{calculating } I_1 = (\ S_3 + S_{11}\ ) - (\ S_7 + S_{15}\ ). \end{array}
```

11. The method of claim 7, wherein the step of calculating the phase angle ϕ through employment of the one or more quadrature terms and the one or more in-phase terms comprises the steps of:

calculating a correction term ΔQ ;

calculating a quadrature term Q_m from the quadrature term Q_s and the correction term ΔQ ;

calculating a quadrature term Q from a magnitude of the quadrature term Q_m and one or more quadrature terms of the set of quadrature terms Q_i ;

calculating an in-phase term I from a magnitude of the in-phase term I_s and one or more in-phase terms of the set of in-phase terms I_k ; and

calculating the phase angle ϕ from an arctangent of a quantity Q / I.

12. The method of claim 11, wherein the step of calculating the correction term ΔQ comprises the step of:

calculating the correction term $\,\Delta Q = Q_{s} - Q_{ab}\,.$

15 13. The method of claim 11, wherein the step of calculating the quadrature term Q_m from the quadrature terms Q_s and ΔQ comprises the step of:

calculating a constant C₃; and

calculating
$$Q_m = Q_s + (C_3 \times \Delta Q)$$
.

- 14. An apparatus, a sensor array that employs a parameter to induce a time-varying phase angle φ on an optical signal that comprises a phase generated carrier with a demodulation phase offset β , the apparatus comprising:
- a processor component that calculates the phase angle ϕ independent from the demodulation phase offset β .
 - 15. The apparatus of claim 14, wherein the processor component obtains a plurality of samples S_n of an output signal from the sensor array, wherein n = 0 to x;

wherein the processor component employs one or more of the plurality of samples S_n to calculate the phase angle ϕ independent from the demodulation phase offset β .

- 16. The apparatus of claim 15, wherein the processor component employs one or more of the plurality of samples S_n of the output signal to calculate one or more quadrature terms and one or more in-phase terms, wherein one or more of the one or more quadrature terms and one or more of the one or more in-phase terms are substantially independent from the demodulation phase offset β of the phase generated carrier;
 - wherein the processor component employs the one or more quadrature terms and the one or more in-phase terms to calculate the phase angle ϕ .

15

20

- 17. The apparatus of claim 15, wherein the output signal comprises a period T_{pulse} , wherein the processor component obtains the plurality of samples S_n within a period T_s , wherein T_s is less than or equal to $1.125 \times T_{pulse}$.
 - 18. The apparatus of claim 17, wherein T_s is less than or equal to T_{pulse} .

19. The apparatus of claim 17, wherein the processor component employs one or more of the plurality of samples S_n of the output signal to calculate one or more quadrature terms and one or more in-phase terms, wherein one or more of the one or more quadrature terms and one or more of the one or more in-phase terms are substantially independent from the demodulation phase offset β of the phase generated carrier;

wherein the processor component employs the one or more quadrature terms and the one or more in-phase terms to calculate the phase angle ϕ .

5

10

15

20. The apparatus of claim 19, wherein the one or more of the one or more quadrature terms comprise a quadrature term Q_{ab} and a quadrature term Q_{s} , wherein the one or more of the one or more in-phase terms comprise an in-phase term I_{s} ;

wherein the processor component employs one or more of the plurality of samples S_n , the quadrature term Q_{ab} , the quadrature term Q_s , and the in-phase term I_s to calculate the phase angle ϕ .

21. The apparatus of claim 20, wherein the processor component employs the plurality of samples S_n to calculate a set of quadrature terms Q_j and a set of in-phase terms I_k , wherein j=0 to y, wherein k=0 to z;

wherein the processor component employs the set of quadrature terms Q_j to calculate the quadrature term $Q_{ab} = max(|Q_j|)$, wherein j=0 to y;

wherein the processor component employs the set of quadrature terms Q_j and the set Q_j of in-phase terms Q_j and the quadrature term Q_s , and the in-phase term Q_s .

22. The apparatus of claim 21, wherein the processor component calculates a constant C_1 and a constant C_2 , wherein the processor component calculates:

$$Q_s = C_1 \times \sqrt{\sum_{j=0}^{j=y} Q_j^2}$$
;

wherein the processor component calculates:

$$I_{s} = C_{2} \times \sqrt{\sum_{k=0}^{k=z} I_{k}^{2}};$$

10

15

wherein the processor component calculates the constant C_1 and the constant C_2 such that a magnitude of the quadrature term Q_s , a magnitude of the quadrature term Q_{ab} , and a magnitude of the in-phase term I_s comprise a substantially same magnitude at a modulation depth M of an operating range for the phase generated carrier.

23. The apparatus of claim 22, wherein the processor component employs the quadrature term Q_{ab} and the quadrature term Q_s to calculate a correction term $\Delta Q = Q_s - Q_{ab};$

wherein the processor component employs the quadrature term Q_s and the correction term ΔQ to calculate a quadrature term Q_m ;

wherein the processor component employs the quadrature term Q_m , the in-phase term I_s , the set of quadrature terms Q_j , and the set of in-phase terms I_k to calculate the phase angle ϕ .

24. The apparatus of claim 23, wherein the processor component employs the quadrature term Q_m and the set of quadrature terms Q_j to calculate a quadrature term Q_s , wherein the processor component employs the in-phase term I_s and the set of in-phase terms I_k to calculate an in-phase term I_s ;

wherein the processor component calculates:

$$Q = \pm Q_m$$
;

wherein the processor component calculates:

$$I = \pm I_s$$
;

wherein the processor component employs the set of quadrature terms Q_j to determine

10 a sign of Q;

5

20

wherein the processor component employs the set of in-phase terms I_k to determine a sign of I;

wherein the processor component calculates:

$$\varphi$$
 = arctangent (Q/I).

15 25. The apparatus of claim 24, wherein the processor component calculates a constant C₃, wherein the processor component calculates:

$$Q_{m} = Q_{s} + (C_{3} \times \Delta Q).$$

26. The apparatus of claim 25, wherein x = 7, y = 3, and z = 1;

wherein the processor component calculates:

$$Q_0 = S_0 - S_4$$
, $Q_1 = S_1 - S_5$, $Q_2 = S_2 - S_6$, and $Q_3 = S_3 - S_7$;

wherein the processor component calculates:

$$I_0 = (S_0 + S_4) - (S_2 + S_6)$$
; and

$$I_1 = (S_1 + S_5) - (S_3 + S_7).$$

27. The apparatus of claim 25, wherein x = 15, y = 7, and z = 3; wherein the processor component calculates:

$$Q_0 = S_0 - S_8$$
, $Q_1 = S_1 - S_9$, $Q_2 = S_2 - S_{10}$, $Q_3 = S_3 - S_{11}$,

$$Q_4 = S_4 - S_{12}$$
, $Q_5 = S_5 - S_{13}$, $Q_6 = S_6 - S_{14}$, and $Q_7 = S_7 - S_{15}$;

5 wherein the processor component calculates:

$$I_0 = (S_0 + S_8) - (S_4 + S_{12}), I_1 = (S_1 + S_9) - (S_5 + S_{13}),$$

$$I_2 = (S_2 + S_{10}) - (S_6 + S_{14})$$
, and $I_3 = (S_3 + S_{11}) - (S_7 + S_{15})$.

28. An article, a sensor array that employs a parameter to induce a time-varying phase angle φ on an optical signal that comprises a phase generated carrier with a demodulation phase offset β , the article comprising:

one or more computer-readable signal-bearing media;

5

10

15

20

means in the one or more media for calculating the phase angle ϕ independently of the demodulation phase offset $\beta.$

29. The article of claim 28, further comprising:

means in the one or more media for sampling an output signal from the sensor array to obtain a plurality of samples S_n , wherein n = 0 to x;

wherein the means in the one or more media for calculating the phase angle ϕ independently of the demodulation phase offset β comprises:

means in the one or more media for calculating the phase angle ϕ independently of the demodulation phase offset β through employment of one or more of the plurality of samples S_n .

30. The article of claim 29, wherein the means in the one or more media for calculating the phase angle φ independently of the demodulation phase offset β through employment of the one or more of the plurality of samples S_n comprises:

means in the one or more media for calculating one or more quadrature terms and one or more in-phase terms through employment of one or more of the plurality of samples S_n , wherein one or more of the one or more quadrature terms and one or more of the one or more in-phase terms are substantially independent from the demodulation phase offset β ; and

means in the one or more media for calculating the phase angle ϕ through employment of the one or more quadrature terms and the one or more in-phase terms.

31. The article of claim 29, wherein the output signal comprises a period T_{pulse} , wherein the means in the one or more media for sampling the output signal from the sensor array to obtain the plurality of samples S_n , wherein n = 0 to x comprises:

means in the one or more media for sampling the output signal from the sensor array to obtain the plurality of samples S_n within a period T_s , wherein n=0 to x, wherein T_s is less than or equal to $1.125 \times T_{pulse}$.

5

10

15

- 32. The article of claim 31, wherein T_s is less than or equal to T_{pulse} .
- 33. The article of claim 31, wherein the means in the one or more media for calculating the phase angle φ independently of the demodulation phase offset β through employment of the one or more of the plurality of samples S_n comprises:

means in the one or more media for calculating one or more quadrature terms and one or more in-phase terms through employment of one or more of the plurality of samples S_n , wherein one or more of the one or more quadrature terms and one or more of the one or more in-phase terms are substantially independent from the demodulation phase offset β ;

means in the one or more media for calculating the phase angle ϕ through employment of the one or more quadrature terms and the one or more in-phase terms.

* * * * *