

CLAIMS

What is claimed is

1. A method for making measurements during drilling of a borehole, the method comprising:
 - (a) making measurements continuously with a formation evaluation (FE) sensor on a bottom hole assembly (BHA) over a time period that includes during said drilling of said borehole;
 - (b) concurrently making quality control (QC) measurements while said FE measurements are being made, said QC measurements including at least one measurement not related to motion of said BHA;
 - (c) storing samples of said FE measurements in a working memory of a processor on said BHA;
 - (d) analyzing said QC measurements; and
 - (e) based on said analysis, storing selected samples of said FE measurements in a permanent memory of said processor.
 2. The method of claim 1 wherein said FE sensor comprises at least one hydrophone responsive to a seismic signal from a surface source.
 3. The method of claim 1 wherein said FE sensor comprises at least one geophone on a non-rotating sleeve of said BHA, said at least one geophone responsive to a seismic signal from a surface source.

4

1 4. The method of claim 1 wherein said at least one measurement is selected from (i)
2 a weight on bit (WOB), (ii) flow rate of a fluid in said borehole, (iii) a level of a
3 tube wave in said borehole, (iv) a level of motion of a non-rotating sleeve on said
4 BHA, and (v) a measurement made by a near bit accelerometer.

5

1 5. The method of claim 1 wherein said QC measurements further comprise a
2 measurement of motion of said BHA.

3

1 6. The method of claim 1 wherein said FE sensor comprises an accelerometer
2 responsive to a signal from a surface source.

3

1 7. The method of claim 1 wherein said FE sensor comprises an acoustic sensor
2 responsive to a signal from a source in another borehole.

3

1 8. A method for making measurements during drilling of a borehole, the method
2 comprising:-

3 (a) making quality control (QC) measurements using a sensor on a bottom
4 hole assembly BHA during drilling of said borehole, said QC
5 measurements including at least one measurement not related to a motion
6 of said BHA;
7 (b) analyzing said QC measurements;

- (c) predicting an initial time when measurements made by a formation evaluation (FE) sensor on said BHA are expected to be of acceptable quality; and
 - (d) making measurements with said FE sensor over a time interval that starts earlier than said initial time.

13

9. The method of claim 1 wherein said FE sensor comprises an acoustic sensor responsive to a signal from a source at at least one of (i) a surface location, and, (ii) in another borehole.

4

10. The method of claim 1 wherein said acoustic sensor is one of (i) a hydrophone, (ii) a geophone, and, (iii) an accelerometer.

3

11. The method of claim 8 wherein said predicting is based at least in part on measurements made by an axial accelerometer on the BHA.

3

12. The method of claim 8 wherein said predicting is based at least in part on monitoring of a mud flow in said borehole.