NE-150 - Introduction to Nuclear Reactor Theory

Spring 2018

Homework 1 (Review)

Due February 6, 2018

- 1. What are the types of spontaneous decays of radionuclides? Give short description of each decay type. Is there a radioactive decay in which a neutron can be emitted (other than fission)?
- 2. The radioactive decay constant of ¹²⁴Sb is 1.33·10⁻⁷ s⁻¹. How many years would be required for the activity of this isotope to decay to 0.1% of the initial value? How many half-lives does this represent?
- 3. How many grams of K are there in a 1 µCi source? (K natural composition: 93.26 atom% ³⁹K. 0.01 atom% ⁴⁰K. 6.73 atom% ⁴¹K)
- 4. Name and complete the following reactions:

 - (a) ${}^{16}_{8}O + n \rightarrow ... + p$ (b) ${}^{238}_{92}U \rightarrow {}^{234}_{90}Th + ...$ (c) ${}^{3}H \rightarrow ... + e^{-} + \overline{\nu}$

 - (d) $^{240}_{94}$ Pu + n \Rightarrow $^{241}_{94}$ Pu + ...
- 5. Determine the total binding energy and binding energy per nucleon for ¹¹B (mass = 11.009305 amu), ^{12}C and ^{14}N (mass = 14.003074 amu)).
- The density of UO_2 is 10.41 g/cm³. Uranium is enriched to 5 atom% in the isotope ²³⁵U. Compute the atom densities of ²³⁵U, ²³⁸U and O.
- 7. Radio carbon dating is based on the absorption by living material of ¹⁴C in the atmosphere, formed by cosmic rays. After death, absorption ceases and the ¹⁴C decays. Estimate the age of a sample of wood found to have 75% of the ¹⁴C concentration in living material.
- 8. Polonium-210 is alpha emitter with very high specific activity of 166500 TBq/kg (4500 Ci/g). Alpha particles energy is 5.3 MeV. How much energy in MeV and J will be deposited locally by one milligram of Po-210?
- 9. Which is the total energy released by a fission reaction (roughly)? Which is the average energy of neutrons born in a fission reaction?
- 10. The half-life of ²³⁸U is about 4.5•10⁹ years. The half-life of ²³⁵U is about 7.1•10⁸ years. Naturally-occurring uranium contains about 99.3 atom% ²³⁸U and 0.7 atom% ²³⁵U. Assuming no sources of either nuclide, what was the atomic fraction of ²³⁵U 6 billion years ago? How long ago was the enrichment 4%?