

Estatística Básica

Distribuição de probabilidade

Professora Ma. Tainara Volan tainaravolan@gmail.com

Variável aleatória

Uma variável aleatória representa um possível resultado numérico de um evento incerto.

Assim, se o espaço amostral relativo ao "lançamento simultâneo de duas moedas" é S = {(Ca, Ca), (Ca, Co), (Co, Ca), (Co, Co)} e se X representa "o número de caras" que aparecem, a cada ponto amostral podemos associar um número para X.

Variável aleatória

PONTO AMOSTRAL	X
(Ca, Ca)	2
(Ca, Co)	1
(Co, Ca)	1
(Co, Co)	0

Consideremos a distribuição de frequências relativa ao número de acidentes diários em um estacionamento:

Número de acidentes	Frequências
0	22
1	5
2	2
3	1
	$\sum = 30$

Número de acidentes	Frequências
0	22
1	5
2	2
3	1
	$\sum = 30$

Em um dia a probabilidade de:

Não ocorrer acidente é:

$$p = \frac{22}{30} = 0,73$$

• Ocorrer um acidente é:

$$p = \frac{5}{30} = 0.17$$

• Ocorrerem dois acidentes é:

$$p = \frac{2}{30} = 0.07$$

• Ocorrerem três acidentes é:

$$p = \frac{1}{30} = 0.03$$

Número de acidentes	Frequências
0	22
1	5
2	2
3	1
	$\sum = 30$

Em um dia a probabilidade de:

Não ocorrer acidente é:

$$p = \frac{22}{30} = 0,73$$

• Ocorrer um acidente é:

$$p = \frac{5}{30} = 0.17$$

• Ocorrerem dois acidentes é:

$$p = \frac{2}{30} = 0.07$$

• Ocorrerem três acidentes é:

$$p = \frac{1}{30} = 0.03$$

Distribuição de probabilidade

Número de acidentes	Probabilidades
0	0,73
1	0,17
2	0,07
3	0,03
	$\sum = 1,00$

Seja X uma variável aleatória que pode assumir os valores de $x_1, x_2, x_3, ... x_n$. A cada valor x_i correspondem pontos do espaço amostral. Associamos, então, a cada valor x_i a probabilidade p_i de ocorrência de tais pontos no espaço amostral. Assim, temos:

$$\sum p_i = 1$$

Os valores $x_1, x_2, x_3, ... x_n$ e seus correspondentes $p_1, p_2, p_3, ... p_n$ definem uma distribuição de probabilidade.

Assim, voltando à Tabela de cara e coroa:

Ponto amostral	X	P(X)
(Ca, Ca)	2	$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$
(Ca, Co)	1	$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$
(Co, Ca)	1	$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$
(Co, Co)	0	$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$

Número de caras (X)	P(X)
2	1/4
1	2/4
0	1/4
	$\sum = 1$

Ao definir a distribuição de probabilidade, estabelecemos uma correspondência unívoca entre os valores da variável aleatória X e os valores da variável P. Essa correspondência define uma **função**; os valores x_i (i = 1, 2, ..., n) formam o **domínio da função** e os valores p_i (i = 1, 2, 3, ..., n), o seu **conjunto imagem**.

$$f(x) = P(X = x_i)$$

A função determina a distribuição de probabilidade da variável aleatória X.

Assim ao lançarmos um dado, a variável aleatória X, definida por "pontos de um dado", pode tomar os valores 1, 2, 3, 4, 5 e 6.

Como a cada um destes valores está associada uma e uma só probabilidade de realização e $\sum P(x_i) = 1$, fica definida uma função de probabilidade, da qual resulta a seguinte distribuição de probabilidade:

X	P(X)
1	P(X) 1/6 1/6
2	1/6
3	1/6
4	1/6 1/6
5	1/6 1/6
6	1/6
	$\sum = 1$

Distribuição binomial

Vamos considerar:

- O experimento deve ser repetido, nas mesmas condições, um número finito de vezes;
- As provas repetidas devem ser independentes, isto é, o resultado de uma não deve afetar os resultados das sucessivas;
- Em cada prova deve aparecer um dos dois possíveis resultados: sucesso e insucesso;
- No decorrer do experimento, a probabilidade $\bf p$ do sucesso e a probabilidade $\bf q$ (q = 1 p) do insucesso manter-se-ão constantes.

Distribuição binomial

$$f(X) = P(X = k) = \binom{n}{k} p^k q^{n-k}$$

Na qual:

P(X = k) é a probabilidade de que o evento se realize **k** vezes em **n** provas;

p é a probabilidade de que o evento se realize em uma só prova – **sucesso**;

q é a probabilidade de que o evento não se realize no decurso dessa prova – insucesso;

 $\binom{n}{k}$ é o coeficiente binomial de **n** sobre **k**, igual a $\frac{n!}{k!(n-k)!}$

Essa função, denominada LEI BINOMIAL, define a distribuição de frequência.

Uma moeda é lançada cinco vezes seguidas e independentes. Calcule a probabilidade de serem obtidas três caras nessas cinco provas.

Uma moeda é lançada cinco vezes seguidas e independentes. Calcule a probabilidade de serem obtidas três caras nessas cinco provas.

Resolução:

n (número de provas) = 5

k = 3

Usando a lei binomial:

$$P(X = k) = \binom{n}{k} p^k q^{n-k}$$

$$P(X = 3) = \binom{5}{3} p^3 q^{5-3}$$

$$P(X = 3) = \binom{5}{3} p^3 q^2$$

$$P(X=3) = \binom{5}{3} p^3 q^2$$

Se a probabilidade de obtermos "cara" numa só prova (sucesso) é p = ½ e a probabilidade de não obtermos "cara" numa só prova (insucesso) é q = $1 - \frac{1}{2} = \frac{1}{2}$, então temos:

$$P(X=3) = {5 \choose 3} \left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^2$$

$$P(X = 3) = \frac{5!}{3! \, 2!} \times \frac{1}{8} \times \frac{1}{4} =$$

$$P(X = 3) = \frac{5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times 2 \times 1} \times \frac{1}{8} \times \frac{1}{4} = \frac{5}{16}$$

$$P(X = 3) = \frac{5}{16}$$

$$P(X=3) = \frac{5}{16}$$

Dois tipos de futebol A e B, jogam entre si seis vezes. Encontre a probabilidade de o time A ganhar quatro jogos.

Dois tipos de futebol A e B, jogam entre si seis vezes. Encontre a probabilidade de o time A ganhar quatro jogos.

Resolução

$$n = 6$$

$$k = 4$$

Usando a lei binomial:

$$P(X = k) = \binom{n}{k} p^k q^{n-k}$$

$$P(X = 4) = \binom{6}{4} p^4 q^{5-4}$$

$$P(X = 4) = \binom{6}{4} p^4 q^2$$

$$P(X=4) = \binom{6}{4} p^4 q^2$$

Se a probabilidade do time A ganhar (sucesso) é p = 1/3 (perder, ganhar ou empatar) e a probabilidade de não ganhar (insucesso) é q = 1 - 1/3 = 2/3, então temos:

$$P(X=4) = \binom{6}{4} \left(\frac{1}{3}\right)^4 \left(\frac{2}{3}\right)^2$$

$$P(X = 4) = \frac{6!}{4! \, 3!} \times \frac{1}{81} \times \frac{4}{9} =$$

$$P(X = 3) = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1 \times 3 \times 2 \times 1} \times \frac{1}{81} \times \frac{4}{9} = \frac{20}{243} \qquad P(X = 4) = \frac{20}{243}$$