Sprawozdanie 6

Poszukiwanie pierwiastków równania nieliniowego metodą siecznych i Newtona.

1. Wstęp teoretyczny

1.1 Metoda siecznych

Metoda siecznych – metoda numeryczna, służąca do rozwiązywania równania nieliniowego z jedną niewiadomą, jest modyfikacją metody Regula Falsi (w metodzie tej wykorzystuje się założenie istnienia lokalnej liniowości funkcji). Polega na założeniu, że funkcja ciągła na dostatecznie małym odcinku w przybliżeniu zmienia się w sposób liniowy. Kolejne przybliżenia (x_{k+1}) wyznaczamy przeprowadzając prostą przez dwa ostatnie przybliżenia x_k i x_{k-1} (metoda dwupunktowa).

Wykres 1: Wykres ilustrujący ideę metody siecznych dla funkcji wypukłej Źródło: https://bit.ly/34D3T53, [dostęp: 15.04.2020].

Założenia są następujące:

- 1) w przedziale [a, b] funkcja ma tylko jeden pierwiastek pojedynczy,
- 2) $f(a) \cdot f(b) < 0$,
- 3) funkcja jest klasy C^2 ,
- 4) pierwsza i druga pochodna nie zmieniają znaku w przedziale [a, b].

Kolejne przybliżenia w metodzie siecznych wyznacza się według relacji rekurencyjnej:

$$x_{k+1} = x_k - \frac{f(x_k) \cdot (x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

Zbieżność metody jest większa niż w metodzie Regula Falsi. Rząd metody:

$$p = \frac{1}{2}(1 + \sqrt{5}) \approx 1.618$$

Należy dodatkowo przyjąć, że $|f(x_k)|$ mają tworzyć ciąg wartości malejących. Jeśli w kolejnej iteracji $|f(x_k)|$ zaczyna rosnąć, należy przerwać obliczenia i ponownie wyznaczyć punkty startowe zawężając przedział izolacji.

W zadaniu metoda siecznych zaimplementowana jest za pomocą pseudokodu:

```
inicjalizacja – 2 punkty startowe: x_0, x_1 for (k=1;\ k <= IT\_MAX;\ k++)\{ x_2 = x_1 - \frac{f(x_1) \cdot (x_1 - x_0)}{f(x_1) - f(x_0)} <- \text{ nowe przybliżenie} x_0 = x_1 <- \text{ zachowujemy dwa ostatnie przybliżenia} x_1 = x_2 }
```

W tej metodzie wykonujemy iteracyjne obliczenia do momentu gdy otrzymamy satysfakcjonujące wyniki. W praktyce możemy przyjąć kilka różnych warunków STOP-u:

1) wartość funkcji w wyznaczonym punkcie jest bliska 0:

$$|f(x_k)| \le \varepsilon$$

2) odległość pomiędzy kolejnymi przybliżeniami jest dość mała:

$$|x_{k+1} - x_k| \le \varepsilon$$

3) kryterium mieszane (punkty 1 i 2 jednocześnie).

1.2 Metoda Newtona

Metoda Newtona (zwana również metodą Newtona-Raphsona lub metodą stycznych) – algorytm iteracyjny wyznaczania przybliżonej wartości pierwiastka funkcji. Jest metodą jednopunktową, w której przyjmuje się następujące założenia dla funkcji f:

- 1) W przedziale [a, b] znajduje się dokładnie jeden pierwiastek.
- 2) Funkcja ma różne znaki na krańcach przedziału, tj. $f(a) \cdot f(b) < 0$.
- 3) Pierwsza i druga pochodna funkcji mają stały znak w tym przedziale.

Wykres 2: Wykres ilustrujący metodę Newtona (stycznych) Źródło: https://bit.ly/34D3T53, [dostęp: 15.04.2020].

Algorytm działania jest następujący:

- 1) z końca przedziału [a, b] w którym funkcja ma ten sam znak co druga pochodna należy poprowadzić styczną do wykresu funkcji y = f(x). W ten sposób wykonujemy jedną iterację mniej, bo zbliżamy się od pierwiastka z jednej strony, jak pokazano na *Wykresie* 2.
- 2) styczna przecina oś OX w punkcie X1 który stanowi pierwsze przybliżenie rozwiązania.
- 3) sprawdzamy czy $f(x_1) = 0$, jeśli nie to z tego punktu prowadzimy kolejną styczną.
- 4) druga styczna przecina oś OX w punkcie X₂ ktróry stanowi drugie przybliżenie.
- 5) kroki 3-4 powtarzamy iteracyjne aż spełniony będzie warunek:

$$|x_{k+1} - x_k| \le \varepsilon$$

Równanie stycznej poprowadzonej z punktu B:

$$y - f(b) = f'(b)(x - b)$$

Dla y = 0 otrzymujemy pierwsze przybliżenie:

$$x_1 = b - \frac{f(b)}{f'(b)}$$

Równanie stycznej w k-tym przybliżeniu:

$$y - f(x_k) = f'(x_k)(x - x_k)$$

Wzór iteracyjny na położenie k-tego przybliżenia pierwiastka równania nieliniowego:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 $(k = 1, 2, ...)$

Rząd zbieżności metody wynosi p = 2.

W zadaniu metoda Newtona zaimplementowana jest za pomocą pseudokodu:

inicjalizacja – punkt startowy:
$$x$$
 for $(k=1; k \le IT_MAX; k++)$ { $x=x-\frac{f(x)}{f'(x)} \le IT_MAX$ przybliżenie }

W tej metodzie wykonujemy iteracyjne obliczenia do momentu gdy otrzymamy satysfakcjonujące wyniki. W praktyce możemy przyjąć kilka różnych warunków STOP-u:

4) wartość funkcji w wyznaczonym punkcie jest bliska 0:

$$|f(x_k)| \leq \varepsilon$$

5) odległość pomiędzy kolejnymi przybliżeniami jest dość mała:

$$|x_{k+1} - x_k| \le \varepsilon$$

 $|x_{k+1} - x_k| \le \varepsilon$ 6) szacowany błąd jest dostatecznie mały:

$$\frac{M}{2m}(x_k - x_{k-1})^2 \le \varepsilon$$

M/2m jest współczynnikiem zbieżności.

7) kryterium mieszane (punkty 1 i 2 jednocześnie).

2. Problem

Naszym zadaniem było znalezienie punktów, w których funkcja $g_1(x) = sin(x)$ przecina się z $g_2(x) = x^2 / 8$. Ponieważ w tych punktach obie funkcje mają identyczne wartości, więc problem ten możemy zapisać w postaci pojedynczego równania:

$$f(x) = \sin(x) - \frac{x^2}{8} = 0$$

Powyższe rónwnanie z pewnością jest nieliniowe a jego rozwiązanie (przybliżone) można znaleźć numerycznie.

3. Wyniki

Wykres 3: Wykres trzech funkcji $g_1(x)$, $g_2(x)$ oraz f(x) w zakresie $x \in [-8, 8]$.

Położenia miejsc zerowych to punkt (0, 0) oraz punkt (2.366, 0.7).

Poniżej są przedstawione 10 kolejnych przybliżeń miejsca zerowego funkcji wyznaczonych metodą Newtona dla punktu startowego x = -8:

k	\mathcal{X}_k	$f(x_k)$	$f'(x_k)$
1	-3.152678	-1.231337	-0.211769
2	-8.967207	-10.493121	1.344673
3	-1.163736	-1.087574	0.686846
4	0.419697	0.385465	0.808288
5	-0.057194	-0.057572	1.012663
6	-0.000342	-0.000342	1.000085
7	-0.000000	-0.000000	1.000000
8	-0.000000	-0.000000	1.000000
9	0.000000	0.000000	1.000000
10	0.000000	0.000000	1.000000

Wynik otrzymano po 7 iteracji.

10 kolejnych przybliżeń miejsca zerowego funkcji wyznaczonych metodą Newtona dla punktu startowego x = 8:

k	\mathcal{X}_k	$f(x_k)$	$f'(x_k)$
1	4.732397	-3.799248	-1.163092
2	1.465892	0.725898	-0.261760
3	4.239030	-3.136213	-1.515636
4	2.169791	0.237404	-1.106260
5	2.384391	-0.023775	-1.322859
6	2.366419	-0.000152	-1.305904
7	2.366302	-0.000000	-1.305794
8	2.366302	-0.000000	-1.305794
9	2.366302	-0.000000	-1.305794
10	2.366302	-0.000000	-1.305794

Wynik otrzymano po 7 iteracji.

15 kolejnych przybliżeń miejsca zerowego funkcji wyznaczonych metodą siecznych dla punktów startowych $x_0 = -8$ i $x_1 = -8.1$:

k	\mathcal{X}_{k+1}	$f(x_k)$	$f(x_{k-1})$
1	-3.054857	-9.171140	-8.989358
2	-2.256385	-1.253146	-9.171140
3	-9.415569	-1.410456	-1.253146
4	-1.213272	-11.090826	-1.410456
5	-0.291223	-1.120770	-11.090826
6	0.042316	-0.297725	-1.120770
7	0.001012	0.042079	-0.297725
8	-0.000006	0.001012	0.042079
9	0.000000	-0.000006	0.001012
10	0.000000	0.000000	-0.000006
11	-0.000000	0.000000	0.000000
12	0.000000	-0.000000	0.000000
13	0.000000	0.000000	-0.000000
14	-nan	0.000000	0.000000
15	-nan	-nan	0.000000

Wynik otrzymano po 10 iteracji.

Po 14 iteracji znalazło się "-nan" spowodowane dzieleniem przez zero. Uniknąć tego pomoże zastosowanie jednego z warunków STOP-u wymienionych we wstępie teoretycznym.

15 kolejnych przybliżeń miejsca zerowego funkcji wyznaczonych metodą siecznych dla punktów startowych $x_0 = 8$ i $x_1 = 8.1$:

\boldsymbol{k}	x_{k+1}	$f(x_k)$	$f(x_{k-1})$
1	4.823717	-7.231360	-7.010642
2	0.983196	-3.902340	-7.231360
3	1.575400	0.711439	-3.902340
4	20.411886	0.689754	0.711439
5	1.826364	-51.080672	0.689754
6	2.024551	0.550569	-51.080672
7	2.491247	0.386457	0.550569
8	2.348479	-0.170328	0.386457
9	2.365543	0.023123	-0.170328
10	2.366307	0.000991	0.023123
11	2.366302	-0.000006	0.000991
12	2.366302	0.000000	-0.000006
13	2.366302	0.000000	0.000000
14	2.366302	-0.000000	0.000000
15	-nan	-0.000000	-0.000000

Wynik otrzymano po 12 iteracji.

4. Wnioski

Korzystając z metody siecznych oraz metody Newtona rozwiązaliśmy problem i wyliczyliśmy pierwiastki równania nieliniowego.

W celu uzyskania poprawnych obliczeń oraz uniknięcia błędów pasuje przyjmować warunki STOP-u, które zostały wymienione we wstępie teoretycznym.

Badane metody zwykle są szybko zbieżne do pierwiastka funkcji. Natomiast w metodzie siecznych trzeba uważać na zły dobór punktów początkowych, ponieważ może to spowodować niezbieżność obliczeń numerycznych. W tym przypadku można zastosować licznik kolejnych przybliżeń, po przekroczeniu zadanej liczby którego algorytm powinien zatrzymać się z błędem.

Jak widać we wstępie teoretycznym, rząd zbieżności metody Newtona (p=2) jest większy od rzędu metody siecznych ($p\approx 1.618$). Oznacza to, że metoda Newtona jest szybsza, jak i zaobserwowano w tabelkach wymienionych w wynikach.