DIGITALE SCHALTUNGEN

Robert Wille (robert.wille@jku.at)
Sebastian Pointner (sebastian.pointner@jku.at)

Institut für Integrierte Schaltungen Abteilung für Schaltkreis- und Systementwurf

INHALT DER VORLESUNG

■ Grundlagen

- Beschreibungen über "0" und "1" (Boolesche Algebra)
- Beschreibungen von Schaltungen

■ Speichern

- ☐ Sequentielle Schaltungen
- Speicherelemente

Steuern

- ☐ Endliche Automaten
- ☐ Synthese von Steuerwerken

■ Rechnen

- ☐ Darstellung von Zahlen
- Digitale Schaltungen für Addition, Subtraktion, Multiplikation

Entwerfen

- ☐ Synthese von allgemeinen Schaltungen
- Logikminimierung

INHALT DER VORLESUNG

- Grundlagen
 - Beschreibungen über "0" und "1" (Boolesche Algebra)
 - Beschreibungen von Schaltungen
- **■** Speichern
 - Sequentielle Schaltungen
 - Speicherelemente

- **■** Steuern
 - ☐ Endliche Automaten
 - ☐ Synthese von Steuerwerken

■ Rechnen

- ☐ Darstellung von Zahlen
- Digitale Schaltungen für Addition, Subtraktion, Multiplikation

Entwerfen

- ☐ Synthese von allgemeinen Schaltungen
- Logikminimierung

GRUNDLAGEN: BOOLESCHE ALGEBRA

Robert Wille (robert.wille@jku.at)
Sebastian Pointner (sebastian.pointner@jku.at)

Institut für Integrierte Schaltungen Abteilung für Schaltkreis- und Systementwurf

AUSSAGEN

- Aussagen haben einen Wahrheitswert
 - □ "10 ist eine gerade Zahl" (wahr)
 - ☐ "9 ist eine Primzahl" (falsch)
 - ☐ Aber: "Freds Schwester" ist keine Aussage
- Aussagen können durch Platzhalter symbolisiert werden (Aussagevariablen)
 - \square *a* = "10 ist eine gerade Zahl"
 - \square **b** = "9 ist eine Primzahl"
- Bezeichnungen für Wahrheitswerte
 - □ Wahr, w, true, 1
 - ☐ Falsch, f, false, 0
- Aussagen können miteinander verknüpft werden
 - → Aussagenlogik

■ Einstelliger Operator:

Negation

Umkehrung des Wahrheitswertes

- ☐ Symbol: ¬ oder Querstrich über der Aussage
- \square Beispiel: $\neg a$, \overline{b}
- <u>Zweistellige Operatoren:</u>

Und, Oder, Äquivalenz, Antivalenz, Implikation

■ Und-Verknüpfung

- ☐ Gesamtaussage ist wahr, wenn beide Teilaussagen wahr sind
- ☐ Symbol: ∧
- \square Beispiel: $a \wedge b$

■ Oder-Verknüpfung

- ☐ Gesamtaussage ist dann wahr, wenn mindestens eine der beiden Teilaussagen
 - wahr ist
- ☐ Symbol: ∨
- ☐ Beispiel: a ∨ b

■ Äquivalenz-Verknüpfung

- ☐ Gesamtaussage ist dann wahr, wenn beide Aussagen den gleichen Wahrheitswert haben
- \square Symbol: $\equiv \Leftrightarrow$
- □ Beispiel: $a \equiv b$

■ Antivalenz

- ☐ Gesamtaussage ist wahr, wenn genau eine Teilaussage wahr ist
- ☐ Symbol: ≠
- \square Beispiel: $a \neq b$

■ Negiertes Exklusives Oder (XNOR)

- ☐ Gesamtaussage ist dann wahr, wenn beide Aussagen den gleichen Wahrheitswert haben
- \square Symbol: $\equiv \Leftrightarrow$
- □ Beispiel: $a \equiv b$

■ Exklusives Oder (XOR)

- ☐ Gesamtaussage ist wahr, wenn genau eine Teilaussage wahr ist
- ☐ Symbol: ⊗
- \square Beispiel: $a \otimes b$

■ Implikation

- ☐ Gesamtaussage ist nur dann falsch, wenn erste Teilaussage wahr und zweite Teilaussage falsch ist
- ☐ Entspricht in etwa der umgangssprachlichen
 - Wenn-dann Formulierung
 - (ist aber exakter, z.B. wenn die erste Teilaussage falsch ist)
- ☐ Symbol: ⇒
- □ Beispiel: $a \Rightarrow b$
 - a = "ich bestehe die Prüfung"
 - b = "ich bin glücklich"
 - Kann ich glücklich sein ohne die Prüfung zu bestehen?
 - Kann ich die Prüfung bestehen ohne glücklich zu sein?

WAHRHEITSTABELEN

- Tabellarische Darstellung der Funktion
 - ☐ Alle möglichen Eingangskombinationen
 - ☐ Resultierende Funktionswerte

		Operator				
а	b	Und	Oder	Äquivalenz	Antivalenz	Implikation
0	0	0	0	1	0	1
0	1	0	1	0	1	1
1	0	0	1	0	1	0
1	1	1	1	1	0	1

REGELN #1

■ Kommutativität

- $\Box a \wedge b \equiv b \wedge a$
- ☐ Und, Oder, Äquivalenz und Antivalenz sind kommutativ
- ☐ Implikation ist nicht kommutativ

■ Assoziativität

- $\Box (a \wedge b) \wedge c \equiv a \wedge (b \wedge c)$
- ☐ Und, Oder, Äquivalenz und Antivalenz sind assoziativ
- ☐ Implikation ist nicht assoziativ
- ☐ Wichtig bei der Verknüpfung mehrerer Aussagen

REGELN #2

■ Tautologie

- ☐ Aussage, die immer wahr ist
- ☐ Beispiele:
 - a ∨ ¬a
 - \bullet ($a \Rightarrow b$) \lor ($b \Rightarrow a$)

■ Kontradiktion

- ☐ Aussage, die immer falsch ist
- ☐ Beispiel: a ∧ ¬a

BOOLESCHE ALGEBRA #1

- Spezielle Algebra (Komplementärer, distributiver Verband)
- Zahlenmenge (Körper) mit Addition und Multiplikation
 - ☐ Zahlenmenge z.B. Wahrheitswerte
 - □ Addition ≡ Oder-Verknüpfung
 - □ Multiplikation ≡ Und-Verknüpfung

BOOLESCHE ALGEBRA #2

Definition:

Eine Menge B von Elementen, über der zwei Operationen + und * erklärt sind, ist genau dann eine Boolesche Algebra (B; +, *), wenn für beliebige Elemente a, b, $c \in B = \{0,1\}$ folgende Axiome gelten:

(1)
$$a + b = b + a$$

 $a * b = b * a$

Kommutativität

(2)
$$0 + a = a$$

 $1 * a = a$

Nullelement 0 bzw. Einselelement 1 bzgl. + bzw. * existiert (neutrale Element)

(3)
$$(a + b) * c = (a * c) + (b * c)$$
 Distributivität einer Operation $(a * b) + c = (a + c) * (b + c)$ bezüglich einer anderen

$$(4) a + \neg a = 1$$

 $a * \neg a = 0$

Zu jedem Element $a \in B$ existiert ein komplementäres Element $\neg a \in B$

WEITERE GESETZE

- Assoziativitätsgesetz
- Idempotenz

$$\Box a + a = a$$

$$\Box a * a = a$$

■ Absorption

$$\Box$$
 (a + b) *a = a

$$\Box$$
 (a * b) + a = a

■ De Morgansche Regeln

$$\Box (\neg a * \neg b) = \neg (a + b)$$

$$\Box (\neg a + \neg b) = \neg (a * b)$$

DE MORGANSCHE REGELN

- Folgerung: Und und Oder lassen sich ineinander verwandeln
 - $\Box a + b = \neg (\neg a * \neg b)$ Variante (1) negieren
 - $\Box a * b = \neg(\neg a + \neg b)$ Variante (2) negieren
- Wird zur algebraischen Vereinfachung von Ausdrücken gebraucht

EINDEUTIGKEIT

■ Verschiedene algebraische Darstellungen der gleichen Funktion möglich:

$$\Box$$
 $y = b * a + \neg a$

$$\Box$$
 $Y = b + \neg a * \neg b$

- Beide Darstellungen sind nicht minimal:
 - $\Box y=b+\neg a$

	-	_	
Norr	mali	form	nen

- Verfahren zur Optimierung
 - □ Karnaugh-Veitch
 - ☐ Quine-McCluskey
 - □ Binäre Entscheidungsdiagramme
 - → Thema im Teil "Entwerfen"

а	b	у
0	0	1
0	1	1
1	0	0
1	1	1

BOOLESCHE AUSDRÜCKE

- Die Elemente 0 und 1 sind Boolesche Ausdrücke
- Die Symbole/Variablen $x_1, ..., x_n$ sind Boolesche Ausdrücke
- Sind *g* und *h* Boolesche Ausdrücke, so auch die **Disjunktion** (*g*+*h*), die **Konjunktion** (*g*·*h*) und die **Negation** (~*g*).
- Nichts sonst ist ein Boolescher Ausdruck.

Vereinbarung für das Schreiben

- 1. Negation ~ bindet stärker als Konjunktion ·
- 2. Konjunktion · bindet stärker als Disjunktion +
 - → Klammern können häufig weggelassen werden, ohne dass Mehrdeutigkeiten entstehen

GRUNDLAGEN: BESCHREIBUNG VON SCHALTUNGEN

Robert Wille (robert.wille@jku.at)
Sebastian Pointner (sebastian.pointner@jku.at)

Institut für Integrierte Schaltungen Abteilung für Schaltkreis- und Systementwurf

SCHALTERÄQUIVALENZ #1

- Verknüpfungen können durch spannungsgesteuerte Schalter dargestellt werden
- Wahr entspricht einer hohen Spannung

Und-Verknüpfung durch Reihenschaltung

Oder-Verknüpfung durch Parallelschaltung

SCHALTERÄQUIVALENZ #2

Negation

- Realisierung der Negation
 - □ Bei geöffnetem Schalter muss eine Spannung anliegen
 - □ Schließen des Schalters muss Spannung auf 0 senken

SCHALTERÄQUIVALENZ #3

- Variante mit Widerstand nicht günstig
- Stattdessen: Schalter, der schließt, wenn keine Spannung anliegt (an Stelle des Widerstands)
- In der Realität:
 - ☐ Feldeffekt-Transistoren als Schalter-Ersatz (funktionieren spannungsgesteuert)
 - □ Zwei Varianten verfügbar
 - NMOS-Transistor leitet bei hohem Potential
 - PMOS-Transistor leitet bei niedrigem Potential

DIN/IEC-SYMBOLE #1

freie Symbole	Schaltsymbole nach DIN 40 700 Teil 14		amerikanische Symbole	logische Darstellung
	seit 1976	bis 1976		
UND —	÷ & —			$\mathbf{x}_1 \wedge \wedge \mathbf{x}_n$
ODER	· · · ≥1			$\mathbf{x}_1 \lor \lor \mathbf{x}_n$
: Anti- : valenz	= 1			$\mathbf{X}_1 \neq \ldots \neq \mathbf{X}_n$
· NAND	· &			$\boxed{ \mathbf{x}_1 \wedge \mathbf{x}_2 \wedge \wedge \mathbf{x}_n }$
NOR —	· ≥1 o			$\boxed{ x_1 \vee x_2 \vee \vee x_n }$
— Negation —	1			X ₁

DIN/IEC-SYMBOLE #2

■ Negationssymbol darf auch am Eingang stehen

■ Darstellungsmöglichkeiten der Implikation

EXOR-REALISIERUNG

■ EXOR nicht als Basisfunktion vorhanden

а	b	Exor
0	0	0
0	1	1
1	0	1
1	1	0

- Realisierung mit Hilfe von Und und Oder
- Andere Realisierungen möglich (de Morgan)

SCHALTKREIS

- Hier: kombinatorische Schaltkreise
- Gerichteter, zyklenfreier Graph
- Knoten repräsentieren
 - □ Primäre Eingänge
 - □ Primäre Ausgänge
 - ☐ Gatter (i.d.R. basierend auf vorher festgelegter Gatterbibliothek)
- Kanten repräsentieren
 - □ Signale zwischen den Gattern bzw. primären Eingängen/Ausgängen
- Gängige Kostenmaße
 - □ Anzahl der Gatter (Größe)
 - ☐ Tiefe, d.h. Zahl der Gatter auf dem längsten Pfad von einem primären Eingang zu einem primären Ausgang (Geschwindigkeit)

SYNTHESE (SIMPEL)

■ Realisierung beliebiger Wahrheitstabellen durch Grundgatter möglich

- Vorgehen:
 - ☐ Für jede Zeile mit Ausgabewert 1: Und-Gatter mit passender Eingangsbeschaltung
 - □ Oder-Verknüpfung aller Und-Gatter

SYNTHESE (SIMPEL) – BEISPIEL

SYNTHESE (SIMPEL)

■ Realisierung beliebiger Wahrheitstabellen durch Grundgatter möglich

- Vorgehen:
 - ☐ Für jede Zeile mit Ausgabewert 1: Und-Gatter mit passender Eingangsbeschaltung
 - ☐ Oder-Verknüpfung aller Und-Gatter
- Funktioniert für alle Tabellen, aber
 - □ teuer und
 - □ nicht skalierbar

