MATH214

Linear Algebra

Homework 2

Manuel — UM-JI (Spring 2023)

Reminders

- Write in a neat and legible handwriting or use LATEX
- Clearly explain the reasoning process
- Write in a complete style (subject, verb, and object)
- Be critical on your results

Questions preceded by a * are optional. Although they can be skipped without any deduction, it is important to know and understand the results they contain.

Ex. 1 — Vectors and bases

We consider the vector space \mathbb{R}^4 and define the vectors $a=(1,2,-1,-2),\ b=(2,3,0,-1),\ c=(1,3,-1,0),$ and d=(1,2,1,4) in its canonical basis.

- 1. Show that $\mathcal{B} = \{a, b, c, d\}$ is a basis for \mathbb{R}^4 .
- 2. Find the coordinates of (7, 14, -1, 2) in the basis \mathcal{B} .

Ex. 2 — Importance of the base field

Let $a = (1, 1, \alpha)$, $b = (1, \alpha, 1)$, and $c = (\alpha, 1, 1)$ be three vectors over a field \mathbb{K} . Let $S = \{a, b, c\}$.

- 1. If $\mathbb{K} = \mathbb{R}$, is S a basis for \mathbb{K}^3 ?
- * 2. We denote by $\mathbb{Z}/2\mathbb{Z}$ the set composed of the two elements $\{0,1\}$. Prove that this $(\mathbb{Z}/2\mathbb{Z},+,\cdot)$ is a field.
 - 3. If $\mathbb{K} = \mathbb{Z}/2\mathbb{Z}$, is S a basis for \mathbb{K}^3 ?

Ex. 3 — Equality of functions

Let V_1 and V_2 be two vector spaces over \mathbb{K} and p be a surjective linear map from V_1 to V_2 . If V is a finite dimensional vector space over \mathbb{K} , and f is a linear map from V to V_2 , then show the existence of a linear map φ defined from V to V_1 and such that $f = p \circ \varphi$.

Hint: use remark (2.22|2.84).

Ex. 4 — *Image and kernel*

Let V be a vector space.

- 1. Let u be an endomorphism of V such that $\ker u = \operatorname{im} u$ and S be such that $V = \operatorname{im} u \oplus S$.
 - a) Prove that for any $x \in V$, there is a unique pair $(y, z) \in S^2$, such that x = y + u(z). Let z = v(x) and y = w(x).
 - b) Show that v is linear and determine $u \circ v + v \circ u$.
 - c) Show that w is linear and determine $u \circ w + w \circ u$.
- 2. Let u be an endomorphism of V such that $u^2=0$. Show that if there exists $v\in\mathcal{L}(V)$ such that $u\circ v+v\circ u=\operatorname{Id}_V$, then $\ker u=\operatorname{im} u$.

- 3. Let $u \in \mathcal{L}(V)$, such that $u^2 = 0$ and $u \neq 0$. Show that even if there exists $w \in \mathcal{L}(V)$ such that $u \circ w + w \circ u = u$, then $\ker u \neq \operatorname{im} u$.
 - Hint. What is the most simple way to disprove a result?
- 4. Explain the difference between the results from questions 2 and 3.

* Ex. 5 — Challenging problem

Let V be a finite dimensional \mathbb{R} -vector space and V_1 and V_2 two subspaces of V which are distinct from V and $\{0\}$. Prove the existence of a basis of V containing no element from V_1 or V_2 .