

Walmart Sales Data Analysis

MySQL

Introduction:

This project aims to explore the Walmart Sales data to understand top performing branches and products, sales trend of different products, customer behaviour. The aims is to study how sales strategies can be improved and optimized.

Purpose of Project:

The major aim of the project is to gain insight into the sales data of Walmart to understand the different factors that affect sales of the different branches.

About Data:

This dataset contains sales transactions from a three different branches of Walmart, respectively located in Mandalay, Yangon and Naypyitaw. The data contains 17 columns and 1000 rows.

Column	Description	Data Type
invoice_id	Invoice of the sales made	VARCHAR(30)
branch	Branch at which sales were made	VARCHAR(5)
city	The location of the branch	VARCHAR(30)
customer_type	The type of the customer	VARCHAR(30)
gender	Gender of the customer making purchase	VARCHAR(10)
product_line	Product line of the product solf	VARCHAR(100)
unit_price	The price of each product	DECIMAL(10, 2)
quantity	The amount of the product sold	INT
VAT	The amount of tax on the purchase	FLOAT(6, 4)
total	The total cost of the purchase	DECIMAL(10, 2)
date	The date on which the purchase was made	DATE
time	The time at which the purchase was made	TIMESTAMP
payment_method	The total amount paid	DECIMAL(10, 2)
cogs	Cost Of Goods sold	DECIMAL(10, 2
gross_margin_percentage	Gross margin percentage	FLOAT(11, 9)
gross_income	Gross Income	DECIMAL(10, 2)
rating	Rating	FLOAT(2, 1)

Analysis:

- ➤ Product Analysis Conduct analysis on the data to understand the different product lines, the products lines performing best and the product lines that need to be improved.
- Sales Analysis This analysis aims to answer the question of the sales trends of product. The result of this can help use measure the effectiveness of each sales strategy the business applies and what modifications are needed to gain more sales.
- Customer Analysis This analysis aims to uncover the different customers segments, purchase trends and the profitability of each customer segment.

Create Database:

Create the database if it does not exist.

CREATE DATABASE IF NOT EXISTS sales_data;

USE sales_data;

Loaded the data using Table Data Import Wizard option

Select all records from the sales_data table to verify the data load select * from sales_data.walmartsalesdata;

Add a new column named `time_of_day` to give insight of sales in the Morning, Afternoon and Evening. This will help answer the question on which part of the day most sales are made.

SELECT time,

(CASE WHEN 'time' BETWEEN "00:00:00" AND "12:00:00" THEN "Morning"

WHEN `time` BETWEEN "12:01:00" AND "16:00:00" THEN "Afternoon"

ELSE "Evening" END) AS time_of_day

FROM sales_data.walmartsalesdata;

ALTER TABLE sales_data.walmartsalesdata ADD COLUMN Time_of_day varchar(20);

UPDATE sales_data.walmartsalesdata

SET time_of_day = (CASE WHEN `time` BETWEEN "00:00:00sales_data" AND "12:00:00" THEN "Morning"

WHEN 'time' BETWEEN "12:01:00" AND "16:00:00" THEN "Afternoon"

ELSE "Evening" END);

Add a new column named `day_name` that contains the extracted days of the week on which the given transaction took place (Mon, Tue, Wed, Thur, Fri). This will help answer the question on which week of the day each branch is busiest.

SELECT date, DAYNAME(date)

from sales_data.walmartsalesdata;

ALTER TABLE sales_data.walmartsalesdata ADD COLUMN day_name varchar(12);

UPDATE sales_data.walmartsalesdata

SET day_name = DAYNAME(date);

SELECT * FROM sales_data.walmartsalesdata;

Add a new column named `month_name` that contains the extracted months of the year on which the given transaction took place (Jan, Feb, Mar). Help determine which month of the year has the most sales and profit.

SELECT date, MONTHNAME(date)

from sales_data.walmartsalesdata;

ALTER TABLE sales_data.walmartsalesdata ADD COLUMN month_name varchar(12);

UPDATE sales_data.walmartsalesdata

SET month_name = MONTHNAME(date);

SELECT * FROM sales_data.walmartsalesdata;

Generic Question:

➤ How many unique cities does the data have?

SELECT DISTINCT city from sales_data.walmartsalesdata;

city	
Yangon	
Naypyitaw	
Mandalay	

➤ In which city is each branch?

SELECT DISTINCT city, branch FROM sales_data.walmartsalesdata;

city	branch
Yangon	Α
Naypyitaw	С
Mandalay	В

Product Analysis

➤ How many unique product lines does the data have?

SELECT COUNT(DISTINCT product_line) FROM sales_data.walmartsalesdata;

➤ What is the most selling product line?

SELECT SUM(quantity) AS qty, product_line FROM sales_data.walmartsalesdata GROUP BY product_line ORDER BY qty DESC;

qty	product_line	
1942	Electronic accessories	
1904	Food and beverages	
1840	Sports and travel	
1822	Home and lifestyle	
1804	Fashion accessories	
1708	Health and beauty	

Conclusions:- Electronic Accessories has most selling product whereas Health and Beauty has less selling.

➤ What is the total revenue by month

SELECT

sum(total) as total_revenue,

month_name as month

FROM sales_data.walmartsalesdata

GROUP BY month

ORDER BY total_revenue DESC;

total_revenue	month
116291.9	January
109455.5	March
97219.37	February

Conclusions: - January month generate highest revenue whereas February has lowest revenue.

➤ What month had the largest COGS?

SELECT
month_name AS month,
SUM(cogs) AS cogs
FROM sales_data.walmartsalesdata
GROUP BY month_name
ORDER BY cogs;

month	cogs
February	92589.88
March	104243.3
January	110754.2

Conclusions: - January month generate highest cogs whereas February has lowest cogs.

➤ What product line had the largest revenue?

SELECT product_line,
SUM(total) as total_revenue
FROM sales_data.walmartsalesdata
GROUP BY product_line
ORDER BY total_revenue DESC;

product_line	total_revenue
Food and beverages	112289.7
Sports and travel	110245.7
Electronic accessories	108675.1
Fashion accessories	108611.8
Home and lifestyle	107723.8
Health and beauty	98387.48

Conclusions: - Food and beverages has highest revenue followed by Sports and Travel whereas Health and Beauty has lowest.

➤ What is the city with the largest revenue?

SELECT branch,

city,

SUM(total) AS total_revenue

FROM sales_data.walmartsalesdata

GROUP BY city, branch

ORDER BY total_revenue;

branch	city	total_revenue
В	Mandalay	212395.3
Α	Yangon	212400.7
С	Naypyitaw	221137.4

➤ What product line had the largest TAX?

SELECT product_line,
AVG(tax) as avg_tax
FROM sales_data.walmartsalesdata
GROUP BY product_line
ORDER BY avg_tax DESC;

product_line	avg_tax
Home and lifestyle	16.03033
Sports and travel	15.81263
Health and beauty	15.41157
Food and beverages	15.36531
Electronic accessories	15.2206
Fashion accessories	14.52806

Fetch each product line and add a column to those product line showing "Good", "Bad". Good if its greater than average sales

SELECT

AVG(quantity) as avg_qnty FROM sales_data.walmartsalesdata;

SELECT

product_line,
case
when AVG(quantity) > 5.5100 then "Good"
else "Bad"
end as remark
from sales_data.walmartsalesdata
group by product_line;

product_line	remark
Health and beauty	Good
Electronic accessories	Good
Home and lifestyle	Good
Sports and travel	Good
Food and beverages	Bad
Fashion accessories	Bad

➤ Which branch sold more products than average product sold?

SELECT
branch,
SUM(quantity) AS qty
FROM sales_data.walmartsalesdata
GROUP BY branch
HAVING SUM(quantity) > (SELECT AVG(quantity) AS
avg_quantity FROM sales_data.walmartsalesdata);

branch	qty	
Α	3718	
С	3662	
В	3640	

➤ What is the most common product line by gender

SELECT
gender,
product_line,
COUNT(gender) AS total_cnt
FROM sales_data.walmartsalesdata
GROUP BY gender, product_line
ORDER BY total_cnt DESC;

gender	product_line	total_cnt
Female	Fashion accessories	192
Female	Food and beverages	180
Male	Health and beauty	176
Female	Sports and travel	176
Male	Electronic accessories	172
Female	Electronic accessories	168
Male	Food and beverages	168
Male	Fashion accessories	164
Male	Home and lifestyle	162
Female	Home and lifestyle	158
Male	Sports and travel	156
Female	Health and beauty	128

➤ What is the average rating of each product line

SELECT
ROUND(AVG(rating), 2) as avg_rating,
product_line
FROM sales_data.walmartsalesdata
GROUP BY product_line
ORDER BY avg_rating DESC;

avg_rating	product_line
7.11	Food and beverages
7.03	Fashion accessories
7	Health and beauty
6.92	Electronic accessories
6.91	Sports and travel
6.84	Home and lifestyle

Conclusions :- Food and beverages has highest average Rating Home and Lifestyle has lowest.

CUSTOMER ANALYSIS

➤ How many unique customer types does the data have?

SELECT
DISTINCT customer_type
FROM sales_data.walmartsalesdata;

customer_type
Member
Normal

➤ How many unique payment methods does the data have?

SELECT
DISTINCT payment_method
FROM sales_data.walmartsalesdata;

payment_method
Ewallet
Cash
Credit card

Which customer type buys the most?
 SELECT
 customer_type,
 COUNT(*)
 FROM sales_data.walmartsalesdata
 GROUP BY customer_type;

customer_type	COUNT
Member	1002
Normal	998

Conclusions: There is not a big difference, approximately same.

➤ What is the gender of most of the customers?

SELECT
gender,
COUNT(*) as gender_cnt
FROM sales_data.walmartsalesdata
GROUP BY gender
ORDER BY gender_cnt DESC;

gender	gender_cnt
Female	1002
Male	998

Conclusions: - There is not a big difference, approximately same.

➤ What is the gender distribution per branch?

SELECT gender,

COUNT(*) as gender_cnt

FROM sales_data.walmartsalesdata

WHERE branch = "C"

GROUP BY gender

ORDER BY gender_cnt DESC;er ORDER BY gender_cnt DESC;

gender	gender_cnt
Female	356
Male	300

Conclusions: Gender per branch is more or less the same hence, I don't think has an effect of the sales per branch and other factors.

➤ Which time of the day do customers give most ratings?

SELECT time_of_day, AVG(rating) AS avg_rating FROM sales_data.walmartsalesdata GROUP BY time_of_day ORDER BY avg_rating DESC;

time_of_day	avg_rating
Afternoon	7.03103
Morning	6.96021
Evening	6.92616

Conclusion: Looks like time of the day does not really affect the rating, its more or less the same rating each time of the day.

➤ Which time of the day do customers give most ratings per branch? SELECT

time_of_day, branch,

AVG(rating) AS avg_rating

FROM sales_data.walmartsalesdata

WHERE branch IN ("A", "B", "C")

GROUP BY time_of_day, branch

ORDER BY avg_rating DESC;

Conclusions:- Branch A and C are doing well in ratings, branch B needs to do a little more to get better ratings.

➤ Which day fo the week has the best avg ratings?

SELECT

day_name,

AVG(rating) AS avg_rating

FROM sales_data.walmartsalesdata

GROUP BY day_name

ORDER BY avg_rating DESC

Conclusions :- Sunday, Mon, Tue and Friday are the top best days for good ratings

time_of_day	branch	avg_rating
Afternoon	Α	7.18889
Evening	С	7.11818
Afternoon	С	7.06667
Morning	Α	7.00548
Morning	С	6.97458
Evening	Α	6.89291
Morning	В	6.88983
Afternoon	В	6.836
Evening	В	6.7723

day_name	avg_rating
Wednesday	6.8042
Thursday	6.88986
Saturday	6.90183
Tuesday	7.00316
Sunday	7.01053
Friday	7.07554
Monday	7.1528

➤ Which day of the week has the best average ratings per branch? SELECT

day_name, branch,

Avg(rating) as ARB

FROM sales_data.walmartsalesdata

WHERE branch in ("A", "B", "C")

GROUP BY day_name, branch

ORDER BY ARB DESC;

Conclusions: In Branch B Monday has highest Rating and Wednesday has Lowest Rating.
In Branch A Friday has highest Rating and Saturday has Lowest Rating.
In Branch C Friday has highest Rating and Thursday has Lowest Rating.

day_name	branch	ARB
Monday	В	7.33333
Friday	Α	7.312
Friday	С	7.27632
Saturday	С	7.22963
Monday	А	7.09792
Sunday	A	7.07885
Wednesday	С	7.064
Tuesday	Α	7.05882
Monday	С	7.03684
Sunday	С	7.02826
Tuesday	В	7.00189
Thursday	Α	6.9587
Tuesday	С	6.95185
Thursday	С	6.95
Wednesday	Α	6.91395
Sunday	В	6.88571
Thursday	В	6.75227
Saturday	А	6.746
Saturday	В	6.73667
Friday	В	6.69412
Wednesday	В	6.45

SALES ANALYSIS

➤ Number of sales made in each time of the day per weekday

SELECT

time_of_day,

COUNT(*) AS total_sales

FROM sales_data.walmartsalesdata

WHERE day_name = "Sunday"

GROUP BY time_of_day

ORDER BY total_sales DESC;

time_of_day	total_sales
Evening	58
Afternoon	53
Morning	22

Conclusions:- Evenings experience most sales, the stores are filled during the evening hours, followed by Afternoon and morning has less sales.

➤ Which of the customer types brings the most revenue?

SELECT

customer_type,

SUM(total) AS total_revenue

FROM sales_data.walmartsalesdata

GROUP BY customer_type

ORDER BY total_revenue;

customer_type	total_revenue
Normal ·	317486.6
Member	328446.9

Conclusions :- Member type generated more revenue as compare to Normal type.

➤ Which city has the largest tax/VAT percent?

SELECT

city,

ROUND(AVG(tax), 2) AS avg_tax_pct

FROM sales_data.walmartsalesdata

GROUP BY city

ORDER BY avg_tax_pct DESC;

city	avg_tax_pct
Naypyitaw	16:05
Mandalay	15.23
Yangon	14.87

Conclusions: Naypyitaw city has the largest tax % that is 16.05 and followed by Mandalay(15.23).

➤ Which customer type pays the most in VAT?

SELECT

customer_type,

AVG(tax) AS total_tax

FROM sales_data.walmartsalesdata

GROUP BY customer_type

ORDER BY total_tax;

customer_type	total_tax
Normal	15.14871
Member	15.60911

Conclusions :- Member pays more tax as compare to Normal.