

Measures of Location

Dr. John S. Butler

Measures of Locations

First moment

- Mean (average)
- 2. Median
- 3. Mode

Second Moment (Spread)

- 1. Standard deviation
- 2. Variance

Third Moment

1. Skewness

First Moment of Data (Middle)

Mean (average)

Definition

The point around which the sum of the deviations is o

$$-\sum_{i=1}^n (x_i - \bar{x}) = 0$$

https://youtu.be/ukqunhWvDQk

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Average (Mean): Pros and Cons

Pros

- Easy to calculate and well known and understood
- Uses all the data

Cons

- Is sensitive to extreme values
- For example
- **18**, 18, 18, 19, 19, 20, 20, 58
- Mean=23.111

Median

- Definition
- The median is the middle values of the ordered set of values
- 18, 18, 18, 18, **19**, 19, 20, 20, 58
- 9 values the median value is the fifth value
- If the is an even number of the median is usually the average of the two middle values
- 18, 18, 18, **18, 19**, 19, 20, 20
- **18.5**

Median: Pros and Cons

- Pros
- Median five the centre of the data very intuitive
- Not as sensitive to extreme values
- Cons
- Does not use all the data

Median: Irish Sign Language

Mode

- Definition
- The most commonly occurring value in the distribution
- **18, 18, 18, 18**, 19, 19, 20, 20, 58
- The mode is 18

Mode: Pros and Cons

Pros

Shows where the data is concentrated

Cons

- More than one Mode in a dataset
- Does not use the data

All in One Plot

Second Moment

The spread of the data

Variance

Is the spread of the data around the mean

•
$$Var(x) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

Standard deviation

 Measure of the average amount by which observations deviate from the mean. The square root of the variance.

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

Standard deviation: Pros and Cons

Pros

- Takes all data into account.
- Lends itself to computation of other stable measures (and is a prerequisite for many of them).

Cons

- Hard to interpret.
- Can be influenced by extreme scores.

Standard deviation - Plot

Standard Deviation - Irish Sign Language

Range

- Difference between the smallest and largest observations.
- Find the max and min of a range
- **•** [18, 58]

Range: Pros and Cons

Pros

- Very easy to compute.
- Scores exist in the data set.

Cons

- Value depends only on two scores.
- Very sensitive to outliers.
- Influenced by sample size (the larger the sample, the larger the range).

Range Plot

Interquartile Range

- The inter quartile range is Q3-Q1
- 50% of the observations in the distribution are in the inter quartile range.
- The following figure shows the interaction between the quartiles, the median and the inter quartile range.

Interquartile Range

Quartiles:

$$Q_1 = \frac{n+1}{4} th$$

$$Q_3 = \frac{3(n+1)}{4} th$$

Inter quartile:

$$IQR = Q_{3} - Q_{1}$$

Interquartile: Range Pros and Cons

Pros

- Fairly easy to compute.
- Scores exist in the data set.
- Eliminates influence of extreme scores.

Cons

Discards much of the data.

Interquartile - Plot

Mean and Standard Deviation

- Using the mean and standard deviation together:
 - Is an efficient way to describe a distribution with just two numbers.
 - Allows a direct comparison between distributions that are on different scales.

Mean and Standard Deviation

Coefficient of Variation

Uses both the mean and standard to describe the distribution

•
$$CV = \frac{standard\ deviation}{mean} = \frac{s}{\bar{x}} = \frac{\sigma}{\mu}$$

Pros

 It is unitless and therefore can be used to compare across different variables

Cons

Loses some meaning

Third Moment of Data (Skewness)

Pearson's Skewness Coefficient

It is a measure of symmetry (or not symmetry) of a distribution

$$\frac{mean-mode}{standard\ deviation} = \frac{\mu-mode}{\sigma}$$

or

■
$$3\frac{mean-median}{standard\ deviation} = 3\frac{\mu-median}{\sigma}$$

- o means no skewedness
- Negative numbers mean right skewed
- Positive numbers mean left skewed

No Skew

Guassian mean=o s.d.=3

No Skew

Histogram of a Uniform Distribution

Positive Skew (Beiber Concert)

Negative Skew (Andre Rieu)

All in One

Problems with Moments of location

