

STUDENT IDENTIFICATION NO

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 3, 2018/2019

BOM2064 - QUALITY AND OPERATIONS MANAGEMENT (All Sections / Groups)

30 MAY 2019 9:00 AM – 11:00 AM (2 Hours)

INSTRUCTIONS TO STUDENT

- 1. This Question paper consists of 8 pages with FOUR (4) questions only. Relevant equations and normal distribution tables are provided in the Appendix.
- 2. Answer **ALL** questions. The distribution of the marks for each question is given at the end of each question.
- 3. Please write all your answers in the answer booklet provided.

a) Healthcare services such as hospitals focus predominantly on providing services whereas automobile manufacturing produces goods. Using hospitals and automobile manufacturing as references, explain any FIVE (5) differences between goods and services.

(15 marks)

b) A wallpaper company produced 2,000 rolls of wallpaper in a day. Standard price for the wallpaper is RM 1 per roll. There are 5 workers, each of them working 8-hour shift per day and the labor cost is RM 5 per hour. Material cost is RM 50, and overhead is 2 times labor cost. Determine the multifactor productivity.

(Note: Write your answers in nearest TWO decimal points)

(3 marks)

c) Jamal Abdin is CEO of Abdin Manufacturing, a producer of Go-Kart tires. Abdin makes 2000 tires per day with the following resources:

Labor:

400 hours @ RM 10 per hour

Raw material: 30,000 pounds per day @RM 1 per pound

Energy:

RM 5,000 per day

Capital:

RM 10,000 per day

(Note: Write your answers in nearest THREE decimal points)

i) What is the labor productivity for these tires at Abdin Manufacturing?

(2 marks)

ii) What is the multifactor productivity for these tires at Abdin Manufacturing?

(2 marks)

iii) What is the percent change in multifactor productivity if Abdin can reduce the energy bill by RM 2000 without cutting production or changing any other inputs?

(3 marks)

(Total: 25 marks)

a) Arnold is a second hand car dealer and he has 10 cars for sale. He decides to investigate the relationship between the age of the used cars and the mileage of cars. The data collected from the used cars are shown in the table below:

Age (years)	Mileage (thousands of miles)
2	22
2.5	34
3	33
4	37
4.5	40
4.5	45
5	49
3	30
6	58
6.5	58

(Note: Write your answers in nearest TWO decimal points)

Determine the linear regression equation for the data above.

(10 marks)

ii) Calculate the correlation coefficient. Explain the relationship between the variables.

(3 marks)

iii) Forecast the mileage of the used car if the age of the used car is 7 years.

(2 marks)

b) Determine FIVE (5) reasons for Apple's iPhone product redesign.

(10 marks)

(Total: 25 marks)

a) Ahmad had just purchased a new Proton X70 for his wife as a birthday present. Explain the FIVE (5) dimensions of product quality which Ahmad can use to evaluate his new car.

(10 marks)

b) Identify the TWO (2) types of variations that can be present in the output of a process. Provide examples to support your answers.

(6 marks)

c) Planet Café uses statistical process control to ensure that it's vegan sandwich loaves have the proper weight. Over the past few days, they have randomly selected and weighed six loaves and recorded the mean and range for each sample, which is given in the table below. Note that every sample consists of six loaves.

Sample	Sample Average	Sample Range
1	4.00	0.41
2	4.16	0.55
3	3.99	0.44
4	4.00	0.48
5	4.17	0.56
6	3.93	0.62

(Note: Write your answers in nearest TWO decimal points)

Calculate the control limits for both mean and range for this process.

(9 marks)

(Total: 25 marks)

a) Nestle S.A. is a Swiss multinational food and drink company and it's the largest food company in the world. Relate FIVE (5) challenges that Nestle faces as a global supply chain operator.

(10 marks)

b) The weekly demand for a stereo system at Maju Electronics Co. is normally distributed, with an average of 21 per week and a standard deviation of 3 units. The lead time for receiving a shipment of new stereos is 10 days and is fairly constant. The store is open seven days a week. The manager of the store desires a service level of 90 percent.

(Note: Write your answers in nearest TWO decimal points)

i) Determine the reorder point for Maju Electronics.

(4 marks)

ii) Calculate the amount of safety stock that is appropriate for the store.

ð.

iii) What is the percentage of stockout risk if the store decided not to have any safety stock?

(1 mark)

c) Explain the FOUR (4) elements of product design that make up the building blocks of a JIT system.

(8 marks)

(Total: 25 marks)

RELEVANT EQUATIONS

1)
$$CL = \overline{X}$$
, \overline{R}
 UCL , $LCL(X - bar) = \overline{X} \pm A_2 \overline{R}$
 $UCL(R) = D_4 \overline{R}$
 $LCL(R) = D_3 \overline{R}$

Table for X - bar & R'Charts

No of Observation	A2	D3	D4
In sub group n			104
2	1.88	0	3.27
3	1.02	0	2,57
4	0.73	0	2.28
5	0,58	0	2.11
6	0.48	0	2

2) UCL
$$c = \overline{c} + 3\sqrt{c}$$

LCL $c = \overline{c} - 3\sqrt{c}$

3)
$$\overline{p} = \text{Total No of Defective from All Samples/ (No of Samples X Sample Size)}$$

$$Sp = \sqrt{[p]{(1-p)/n}}$$

$$CL = \overline{p}$$

$$LCL = \overline{p} - 3 Sp$$

$$UCL = \overline{p} + 3 Sp$$

4) Capacity Utilization = Capacity Used / Best Operating Level

5)
$$r = \frac{n\sum XY - [\sum X\sum Y]}{\sqrt{\left[n\sum X^2 - (\sum X)^2\right]\left[n\sum Y^2 - (\sum Y)^2\right]}}$$

$$a = \overline{Y} - b\overline{X}$$

$$b = \frac{n\sum XY - \sum X\sum Y}{n\sum X^2 - (\sum X)^2}$$

6) Exponential smoothing

Forecast for the month t: $F_t = F_{t-1} + \alpha(A_{t-1} - F_{t-1})$

7) Inventory Management:

$$EOQ = Q^* = \sqrt{\frac{2DS}{H}} \qquad TC = \frac{Q}{2}H + \frac{D}{Q}S$$

$$EPQ = Q_0 = \sqrt{\frac{2DS}{H}} \sqrt{\frac{p}{p-u}} \qquad I_{max} = \frac{Q}{P} (p-u) \qquad TC = \frac{I_{max}}{2} H + \frac{D}{Q} S$$

$$SS = z \, (\sigma d) \sqrt{LT}$$
 $ROP = \bar{d} \, (LT) + z (\sigma d) \sqrt{LT}$

8) Lean Operations:

$$N = \frac{DT(1+X)}{C}$$

TABLE 4. THE NORMAL DISTRIBUTION FUNCTION

The function tabulated is $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^{2}} dt$. $\Phi(x)$ is

the probability that a random variable, normally distributed with zero mean and unit variance, will be less than or equal to x. When x < 0 use $\Phi(x) = 1 - \Phi(-x)$, as the normal distribution with zero mean and unit variance is symmetric about zero.

N	$\Phi(x)$		æ	$\Phi(x)$		æ	$\Phi(x)$	20	$\Phi(x)$,20	$\Phi(x)$	×	$\Phi(x)$
0.00		o	-40	Q-6554		0.80	0'7881	1.30	0.8849	I-60	1.5		
.oz	A 1		·41	-6591		-81		'2x		·6x	2 1 2 1	3.00	- 511-3
102	-5080		'42	-6628		.82		*22		-62	21-2 m	·ox	7211
.03	.2120		43	-6664		-83	1707	23			ידיניע	.03	21-3-
.04	,2160		'44	-6700		-84		.24	-	63	\$ 4 m.T	.03	p ,
dia . als ma				,		·	,,,,,	~4		¹6 ₄	19495	.04	197932
0.02	0.2100		45	0.6736		0.85	0.8023	1.25	0.8944	1.65	0.0202	2.05	0.97982
-06	5239		46	6772		-86	·8051	-26	8962	-66		.06	
.07	5279		47	.6808		.87	-8078	127	-898a	.67	20.0	107	98030
-08	5319		48	16844		,88	9018	128	-8997	-68	22-3	.08	98124
109	5359		49	.0879		-89	.8133	.29		-69	7000	.00	198169
O.LO	0.5308		50	0.6915								- /	3-109
.rr.	5438		51		'	0.00	0.8159	7.30	0.0032	x .70	0.9554	2.10	0.08214
12	5478		52	.6950		.9x	8186	.31	-9049	·7I	9564	'XX'	.98257
.13	5517		53	·6985 ·7019		.92	-8212	.32	·9066	-72	9573	.12	-98300
14	5557					.63	8238	.33	,30ga	.73	9582	·x3	·0834I
	3337		54	17054		'94	-8264	34	,8000	'74	19591	*14	98382
0.12	0.5596	O,	55	0.7088		0.02	0.8289	X:35	0'9115	-			
6۲,	5636	•	56	'7123		96	8315	.36	.0131	x.22	0'9599	2.12	0.08422
-27	5675		57	7157		.97	8340	.37	9147	.76	9608	.16	·9846x
8x,	5714		58	77290		.98	8365	-38	9162	'77	9616	117	.08200
.13	5753	*	59	.7224		.99	.8389	.39	9177	-78	9625	18	.08537
			_			-,-		39	9.77	'79	.9633	.19	.98574
0.20	0.5793		ба	0.7257	3	00.1	0.8413	I'40	0.0102	7.80	0.0641	2:20	0.08610
21	15832		6x	7291		OX	8438	41	9207	·8x	9649	'21	-08642
'22	.2821		62	7324		.03	·846I	42	9222	-82	9656	.22	198679
.53	.2910		63	7357		'03	8485	43	9236	.83	9664	-23	19079
.34	15948	*1	64	'7389		'04	-8508	44	9251	-84	9671	24	198745
0.25	A	1								7.4	9072	~4	90745
126	0.5987 •6026	0.0		9.7422	2	.02	0.8531	I'45	0.9265	x·85	0.0678	2.25	0.98778
'27	1606.4		56	'7454		.06	8554	'46	9279	-86	9686	26	.08800
28	10004		57	17486		.07	-8577	'47	9292	-87	19693	127	98840
29			58	7517		.08	·8599	.48	.0306	-88	19699	-28	.08820
29	-6141	7	9	7549		.09	18621	'49	'9319	-89	9706	129	298899 29470
0.30	0.6170								•		,,		30039
-		0.2		0.7580		.10	0.8643	1.20	0.5333	x-90	0.9713	2:30	0-98928
.3x	16217		X	7611		.II	·8665	.21	9345	·ox	'9719	,3x	.08020
.32 33	6255		72	7642		.13	8686	152	9357	.02	9726	'32	68083
	6293	:7		7673		.x3	:8708	.23	9370	.93	9732	.33	,00010-
'34	.6331	.3	4	7794		14	18729	'54	9382	.94	9738	'34	.99030
0.32	0.6368	0-7	5	0.7734	w	'IS	0.8749	au - ua					
36	.6406	• • • • • • • • • • • • • • • • • • • •		7764		16		1.22	0.0304	1.02	9'9744	2.35	0.000ex
.37	6443	ŕ		7794		17	·8770 ·8790	-56	9406	-96	9750	•36	99086
.38	6480	.7		7823		18	·8810	57	9418	97	9756	.37	.99111
.39	6517	.7		7852		10	8830	-58	9429	.98	19761	.38	99134
1	,		•			-9	0030	'59	'9441	.99	9767	.39	99158
0.40	0.6554	0.8	0	017881	x.	20	0.8849	r·60	019452	2.00	0.9772	2:40	0.99180

34

TABLE 4. THE NORMAL DISTRIBUTION FUNCTION

A.	$\Psi(x)$	<i>3</i> 2	$\Phi(x)$	æ	Φ(x)	M.	Φ(w)	Jrd.	(I)(x)	,xc	O (x)
2'40 '41 '43 '43 '44	0-95180 -95202 -95224 -95245 -95266	2-55 -56 -57 -58 -59	9'89461 '99477 '99493 - '99506 '99520	2:70 '71 '72 '73 '74	o-99653 -99664 -99674 -99683 -99693	2-85 -86 -87 -88 -89	999781 199783 199301 199807	3*00 *02 *03 *04	0.00862 0.0080 0.00874 0.00878 0.00882	3'z5 'x5 'x7' 'x8	
45 45 47 48 49	0.99286 199395 199324 199343 199361	2:60 -6x -62 -63 -64	°'09534 '99547' '9956 0 '99573 '99585	2:75 -76 -77 -78 -79	0*99702 *997## *997#0 *997#8 *997#6	2:90 -91 -92 -93 -94	6-60833 6-60833 6-60833 6-60833 6-60833 6-60833 6-60833 6-60833 6-6083 6	3.05 -06 -07 -08 -09	0-99986 288999 398899 398899 398999 39899 39899 39899 39899 39899 39899 39899 39899 39899 39899 39899 39899 39899 3989 399 39	3·20 *** *** *23 *24	**************************************
2'50 '5' '52 '53 '54	0.99379 199396 199433 199430 199446	2 65 66 67 68 69	99598 199692 199622 199632 199643	::-B0 -B2 -B3 -B4	0-99744 -99752 -99760 -99767 -99774	2.95 90 97 98 99	0-99842 -99846 -99852 -99855 -99862	3'20 'XX 'X3 'X3	,66814 ,66812 ,66812 ,66812	3 25 26 27 28 29	0-99942 199946 199948 199950
2.55	0199462	2.70	4.00023	2-8 <u>5</u>	0.00381	3.00	0 99865	3125	0-99978	3,30	0-99952

The critical table below gives on the left the range of values of x for which $\Phi(x)$ nikes the value on the right, correct to the last figure given; in critical cases, take the upper of the two values of $\Phi(x)$ indicated.

When x > 3.3 the formula $x = \Phi(x) + \frac{e^{-tx^2}}{x\sqrt{2\pi}} \left[x - \frac{1}{x^2} + \frac{3}{x^2} - \frac{25}{x^2} + \frac{105}{x^3} \right]$ is very accurate, with relative error less than $945/x^{10}$.

TABLE 5. PERCENTAGE POINTS OF THE NORMAL DISTRIBUTION

This table gives percentage points w(P) defined by the equation

If X is a variable, normally distributed with zero mean and unit variance, P/roo is the probability that $X \ni x(P)$. The lower P per cent points are given by symmetry as -x(P), and the probability that $|X| \ni x(P)$ is 2P/roo.

P	x(A)	p	x(P)	P	x(P)	20	st(P)	P	x(P)	در	x(P)
50 45 40 35 30	60000 61257 612533 613653 615244	5'0 4'8 4'6 4'4 4'2	1-6449 1-6646 1-6849 1-7060 1-7279	3 0 2 9 2 7 2 6	1-8868 1-8957 1-9110 1-9268 1-9431	± 0 1 8 1 7 1 6	2*0537 2*0740 2*0969 2*1291 2*1444	0.0 0.3 0.0 5.0	2°3203 2°3656 2°4659 2°4573 2°5121	0-10 0-09 0-07 0-06	3'0902 3'1214 3'1559 3'1947 3'2389
25 20 25 26 3	0.6745 0.8416 1.0364 1.2816 1.6449	4.0 3.6 3.4 3.2	1.7507 1.7744 1.7991 1.8250 1.8522	2·5 2·4 2·3 2·2	1,0000 1,0774 1,9954 2,0335	1.5 1.4 1.3 1.2	2.1904 2.1903 2.1903 2.1001	0.2 0.3 0.2 0.1	2-575B 2-652x 2-7478 2-878z 3-0902	0-05 0-01 0-005 0-006	3'2905 3'7100 3'8906 4'2649 4'4172

35

End of Page