Практическая работа №3

Машинное обучение. Способы машинного обучения. Типы решаемых задач. Метрики производительности.

Оглавление

Цель работы	1
Задачи работы	1
Перечень обеспечивающих средств	2
Общие теоретические сведения	2
Регрессия. Метрики производительности	2
Классификация. Метрики производительности	2
Кластеризация. Метрики производительности	3
Задание	4
Требования к отчету	5
Литература	

Цель работы

- Получить практические навыки расчёта метрик производительности для различных типов задач машинного обучения.
- На практическом примере разобрать различия между существующими метриками производительности для задачи классификации.

Задачи работы

- 1. Используя результаты работы моделей машинного обучения, решающих задачи регрессии, классификации и кластеризации, научиться вычислять значения основных метрик производительности.
- 2. Реализовать программный код для вычисления компонентов матрицы путаницы.
- 3. Для задачи бинарной классицикации провести и проанализировать эксперименты по применимости различных метрик.

Перечень обеспечивающих средств

- 1. **ПК**.
- 2. Учебно-методическая литература.
- 3. Задания для самостоятельного выполнения.

Общие теоретические сведения

Регрессия. Метрики производительности.

Среднеквадратичная ошибка:

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

где y_i - значение из данных, \hat{y}_i - результат работы модели.

Средняя абсолютная ошибка:

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

где y_i - значение из данных, \hat{y}_i - результат работы модели.

Классификация. Метрики производительности.

Матрица путаницы (ошибок):

	у = 1 (выборка)	у = 2 (выборка)
у = 1 (модель)	TP	FP
у = 2 (модель)	FN	TN

$$accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

$$F1 = 2 \frac{precision*recall}{precision+recall}$$

Кластеризация. Метрики производительности.

Коэффициент силуэта

Пусть для x_i среднее расстояние между элементами кластера равно a_i , а среднее расстояние до ближайшего кластера равно b_i .

Тогда коэффициент силуэта для x_i равен:

$$S(x_i) = \frac{b_i - a_i}{\max(a_i, b_i)}$$

 $S(x_i)$ принимает значения из отрезка [-1, 1].

В качестве метрики используем среднее значение $S(x_i)$ по всем x_i .

Задание

Пояснение

Для сохранения результатов данной работы вам понадобится два файла: doc/docx — для текста и ipynb — для кода. Назовите их одинаково: «Фамилия — задание 3».

Часть 1

• Некая модель, решающая задачу регрессии с помощью обучения с учителем, вернула следующие значения:

Описание объекта	Ожидаемый результат	Результат модели
1, 2, 3	0	-1
3, 5, 7	1	0
0, 0, 0	5	1
2, 8, 1	100	50

• Вычислите значения двух метрик регрессии для этой модели: среднеквадратичную ошибку и среднюю абсолютную ошибку. Сохраните результат в своём docx/doc-файле.

Часть 2

• Некая модель, решающая задачу бинарной классификации с помощью обучения с учителем, вернула следующие значения:

Описание объекта	Ожидаемый результат	Результат модели
1, 2, 3	0	0
3, 5, 7	0	1
0, 0, 0	1	0
2, 8, 1	1	1
4, 4, 4	1	0
3, 4, 6	1	1
7, 5, 2	1	0
8, 8, 6	1	1

• Вычислите значение следующих метрик классификации для обоих классов (0 и 1) этой модели: accuracy, precision, recall и F1. Сохраните результат в своём docx/doc-файле.

Часть 3

• Некая модель, решающая задачу кластеризации с помощью обучения без учителя, вернула следующие значения (для двух классов):

Описание объекта	Результат модели
1, 2, 3	1

3, 5, 7	0
0, 0, 0	0
2, 8, 1	1

• Вычислите значение метрики кластеризации для этой модели — коэффициент силуэта — для каждой из записей и их среднее значение. При расчете используйте евклидово расстояние между объектами. Сохраните результат в своём docx/doc-файле.

Часть 4

• Обновите свой репозиторий, созданный в практической работе №1, из оригинального репозитория: https://github.com/mosalov/Notebook For Al Main.

Часть 5

- Откройте свой репозиторий в Binder (https://mybinder.org/).
- Откройте файл «task3.ipynb».
- Используйте свою фамилию для инициализации генератора случайных чисел, используя код в файле в качестве примера.
- Напишите свой код в соответствиями с инструкциями, сохраните код в ipynb-файле. Необходимые пояснения опишите в своём docx/doc-файле.

Требования к отчету

Оба файла (doc/docs и ipynb) загрузите в свой репозиторий, созданный в практическом задании №1 по пути: «Notebook_For_Al_Main/2021 Осенний семестр/Практическое задание 3/» и сделайте пул-реквест.

Литература

- https://ru.wikipedia.org/wiki/Машинное обучение
- https://habr.com/ru/company/ods/blog/328372/
- https://ru.qwe.wiki/wiki/Silhouette (clustering)