

T4. Organización de buses: Introducción, Arbitraje, y ejemplos

FUNDAMENTOS DE ARQUITECTURA DE COMPUTADORES

- Concepto de bus
- Jerarquía de buses
- Arbitraje de Buses
 - Introducción
 - Políticas
 - Hardware de arbitrio
- Ejemplos de buses del PC
- Bibliografía

- Concepto de bus
- Jerarquía de buses
- Arbitraje de Buses
 - Introducción
 - Políticas
 - Hardware de arbitrio
- Ejemplos de buses del PC
- Bibliografía

Concepto de Bus

- Todos los elementos que forman un computador y a cualquier nivel, necesitan interconectarse (tener interfaces) entre sí.
- Un **bus** será el conjunto de conexiones físicas (cables, placa de circuito impreso, etc.) que pueden compartirse con múltiples componentes de hardware para que se comuniquen entre sí.
- Con los buses se reduce el número de rutas necesarias para la comunicación entre los componentes: las comunicaciones se realizan a través de un solo canal de datos.
- Cada línea o camino es capaz de transmitir únicamente señales binarias representadas por 1 y 0: a priori, un bus tendrá varias líneas para trasmitir bloques de información.

Concepto de Bus (2)

- Ventajas de estructura
 - Versatilidad:
 - Sencillo esquema de conexión para añadir nuevos dispositivos.
 - Los periféricos se pueden compartir entre sistemas informáticos que utilizan el mismo tipo de bus.
 - Bajo Coste: un conjunto de cables es un camino múltiple compartido.

- Principal desventaja: cuello de botella de comunicación:
 - Limitan posiblemente la máxima productividad de las E/S.
 - El rendimiento estará condicionado a la velocidad del flujo de información.

Concepto de Bus (3)

- Existen varias razones que complican el diseño de un bus:
 - La consecución de diferentes objetivos: baja latencia, elevada anchura... pueden conducir a requerimientos de diseño conflictivos.
 - Necesidad de soportar un rango de dispositivos con velocidades de transferencia de datos y latencias que varían ampliamente hacen complicado el diseño del bus.
 - La velocidad máxima del bus está limitada por factores físicos: la longitud del bus y el número de dispositivos.
- Los computadores poseen distintos tipos de buses que proporcionan comunicación entre sus componentes a distintos niveles dentro de la jerarquía del sistema.

Estructura de Buses

- Tres tipos de líneas en el sistema que forman un bus:
 - **Bus de Datos**: mueve los datos e instrucciones entre los dispositivos del sistema (CPU, MEM y E/S).
 - **Bus de Direcciones**: trasmitir direcciones de memoria y de dispositivos a los que se va a acceder (read/write).
 - **Bus de Control**: transporta señales de estado de las operaciones hechas por CPU con las demás unidades.
 - Pueden existir líneas de alimentación para suministrar energía a los módulos conectados al bus.

- Concepto de bus
- Jerarquía de buses
- Arbitraje de Buses
 - Introducción
 - Políticas
 - Hardware de arbitrio
- Ejemplos de buses del PC
- Bibliografía

Jerarquía de buses

- Conectar un gran número de dispositivos al bus hace que las prestaciones disminuyan:
 - Retardo de propagación:
 - Este retardo determina el tiempo que necesitan los dispositivos para coordinarse en el uso del bus.
 - Si el control del bus pasa frecuentemente de un dispositivo a otro, los retardos de propagación pueden afectar sensiblemente a las prestaciones.
 - El bus puede convertirse en un cuello de botella a medida que las peticiones de transferencia acumuladas se aproximan a la capacidad del bus.

Jerarquía de buses (2)

- Los computadores actuales utilizan varios buses, organizados de forma jerárquica, que comunican todos los dispositivos de una forma óptima.
- Cuanto más rápido sea el dispositivo se debe ubicar más cerca del CPU.

Procesador Socket 478 FSB (800 MHz, 604 GB/sec) **DDR 400** AGP 8X Hub controlador (2.1 GB/sec) (3.2 GB/sec) Salida **DIMMs** Graphics (north bridge) CSA **DDR 400** (3.2 GB/sec) (0.266 GB/sec) 뫊 **Gbit Ethernet** Hublink 1.5 266 MB/sec) Paralelo ATA Serial ATA (150 MB/sec) (100 MB/sec) DVD Disco Duro CDIDVD Serial ATA Paralelo ATA (150 MB/sec) (100 MB/sec) Hub controlador I/O (south bridge) AC/97(1MB/sec) (20 MB/sec) USB 2.0 (60 MB/sec) 10/100 Mbit Ethernet **PCIbus** (132MB/sec)

Jerarquía de diversos buses en un equipo relativamente moderno: SATA, FSB, AGP, USB entre otros.

Jerarquía de buses (3)

- Chipset: Elemento central de la comunicación de la CPU con el sistema
- Pareja de microcontroladores: puente norte (principal) y puente sur..
- Buses principales de la jerarquía son:
 - Bus del sistema o bus local: la CPU intercambia información al resto del sistema.
 - Bus de memoria.
 - Bus gráfico (tarjeta de vídeo): una de las últimas incorporaciones en la jerarquía de buses.
 - Bus de expansión: se conectan las tarjetas controladoras de los periféricos.

Jerarquía de buses: Buses Internos

- Buses que conectan distintos elementos dentro de un dispositivo.
 - Buses realizados a medida dependiendo de los elementos a unir, anchura, velocidad, etc.
 - No suelen ser accesibles: poca documentación y en su caso muy esquemática.
 - Velocidad y la anchura superior a los demás
 - Distancias recorridas muy cortas.
- Buses dependientes del equipo: según la CPU o del chipset montado.
 - Ejemplo: Bus local (bus conectado directamente al micro) o bus del sistema (FSB).
- Buses **independientes** del equipo: buses de placa
 - Buses de expansión: conectan dispositivos en general (PCI).
 - Buses dedicados: Son aquellos que están dedicados a la interconexión de un dispositivo en concreto, p. ej: disco duro (IDE o SCSI) ó tarjeta gráfica (AGP).

Jerarquía de buses: Buses Externos

- Conectan dispositivos externos: un escáner, una impresora, un ratón, un ordenador con otro, etc.
- Ejemplos: interfaz paralelo, el serie, el bus USB, etc. o incluso una red local.
- Sus características son:
 - Suelen estar documentados.
 - La anchura de estos buses es más reducida, (ej. multiplexación serie).

- Concepto de bus
- Jerarquía de buses
- Arbitraje de Buses
 - Introducción
 - Políticas
 - Hardware de arbitrio
- Ejemplos de buses del PC
- Bibliografía

Arbitraje de buses: Introducción

- En cualquier equipo son varios los elementos que pueden necesitar tomar el control de un bus.
- Por ej. un módulo de E/S puede necesitar leer o escribir directamente en memoria, sin enviar el dato a la CPU.
- En un instante dado sólo un elemento puede transmitir a través del bus, se requiere algún método de arbitraje para decidir quien tomará el control del bus: máster del bus.
- La **secuencia de operaciones** de acceso genérico al bus será:
 - Petición de bus
 - Arbitraje
 - Direccionamiento
 - Transferencia de datos
 - Detección de errores

Arbitraje de buses: Introducción (2)

- Los esquemas de arbitraje tratan habitualmente de equilibrar dos factores al seleccionar el dispositivo al que ofrecen el bus.
 - 1. Cada dispositivo tiene una **prioridad de bus**, y el dispositivo de más prioridad debe ser servido primero.
 - 2. Es deseable que cualquier dispositivo, incluso aunque tenga prioridad baja adquiera alguna vez el bus. A esta propiedad se le denomina **imparcialidad**.
- Además de estos factores, los esquemas más sofisticados ambicionan <u>reducir el tiempo</u> necesario para arbitrar el bus.

- Concepto de bus
- Jerarquía de buses
- Arbitraje de Buses
 - Introducción
 - Políticas
 - Hardware de arbitrio
- Ejemplos de buses del PC
- Bibliografía

Esquema dinámico: Política de petición

- F.I.F.O. (First in, First out). El bus se concede a quien lleva más tiempo pidiéndolo.
- Prioridad. Cada tarjeta tiene una prioridad, concediéndose el bus a la tarjeta con más prioridad.
- Equidad: se garantiza que no se concede el bus dos veces al mismo elemento habiendo peticiones de otros elementos pendientes. Ejemplo: el algoritmo Round-Robin.
- Combinada: Típico en sistemas multiprocesador y de E/S.
 - Se usa la política de prioridad para tareas ocasionales y de corta duración y la política de equidad para tareas normales.
 - Por ejemplo: Atender las peticiones de E/S siguiendo la política de prioridad y a los procesadores cíclicamente.

Esquema dinámico: Política de liberación

- **R.O.R**: (Release On Request)
 - En esta política se libera el bus cuando haya otra petición.
 - Esta política se suele usar en sistemas monoprocesador.
- **R.W.D**: (Release When Done)
 - Esta política es típica de sistemas multiprocesador.
 - El master sólo usa el bus durante una transacción, si necesita usarlo durante más tiempo, debe volver a competir por él.

• PRE-EMPTION:

- Una transferencia en curso puede ser interrumpida por una petición de mayor prioridad.
- Esta política es típica en sistemas de paso de mensajes donde las transferencias de bloques de datos son relativamente largas.

- Concepto de bus
- Jerarquía de buses
- Arbitraje de Buses
 - Introducción
 - Políticas
 - Hardware de arbitrio
- Ejemplos de buses del PC
- Bibliografía

Hardware de Arbitrio

- Cada una de las políticas vistas anteriormente se implementan utilizando distintos tipos de hardware.
- Estos tipos de hardware van desde aquellos que son totalmente centralizados hasta aquellos que son totalmente distribuidos.
- Los esquemas hardware más importantes son:
 - Gestión centralizada y Daisy-chain
 - Gestión distribuida
- Para la comunicación existen tres líneas de control:
 - Bus Request (BR): petición del bus al arbitro
 - Bus Grant (BG): cesión por parte del arbitro
 - Bus Busy (BB): bus ocupado.

Hw de Arbitrio: Gestión centralizada

- Existe un módulo central de arbitrio, programado para implementar cualquier política de arbitrio.
- Las líneas BR y BG son independientes. BB es común a todos los dispositivos.
- En un ciclo normal los elementos activos que quieren pedir el bus activan BR.
- El arbitro, dependiendo de su política, (trasp.11) concede el bus a un elemento:
 - Este elemento activa BB y desactiva BR.
 - El ahora "master" realizará una transacción.
 - El arbitro normalmente espera a que se desactive BB y se retira BG.
 - Después se vuelve a conceder el bus.
- ¿Ventajas?¿Inconvenientes?

Hw de Arbitrio: Gestión centralizada

- Usado esencialmente en los buses procesador-memoria y en buses de E/S de alta velocidad (PCI).
- Ventajas:
 - Es un esquema muy flexible ya que se puede implementar prácticamente cualquier política.
 - Su velocidad de arbitraje es bastante buena, teniendo en cuenta que durante la transferencia en curso se arbitra el siguiente bus.
- Inconvenientes:
 - Tiene un coste importante pues se necesitan muchas líneas
 - Es difícilmente expandible a más de la capacidad del bus.

Hardware de Arbitrio: Daisy-Chain

- Prioridad por posición (cadena).
- BR es común y BG encadena a los dispositivos.
 - En ciclo normal varios elementos piden el bus.
 - El arbitro que observa BB desactivada concede el bus activando BG.
 - Si un elemento de la cadena no ha solicitado el bus, copia su BG entrante en su BG de salida.
 - El **primer elemento** de la cadena que haya pedido el bus se queda con el bus, activando BB.
 - Al terminar, desactiva BB. El árbitro desactiva BG y se vuelve empezar.

¿Ventajas?¿Inconvenientes?

Hw de Arbitrio: Daisy-Chain (2)

- Ventajas de esta técnica:
 - Simplicidad en la lógica de control.
 - Coste más bajo que el centralizado: menos líneas, módulo de arbitrio más simple.
 - Gran expansibilidad.
- Entre sus problemas destacan:
 - Inequidad al existir prioridad por cadena
 - Elementos a los que nunca se les conceda el bus (starvation).
 - Lentitud si hay muchos elementos: limita la longitud de la cadena.
 - Estático: para cambiar prioridades hay que cambiar orden de tarjetas
 - Sistema poco tolerante a fallos: problemas si se rompe la cadena.

Hw. de Arbitrio: Gestión distribuida

- La circuitería de arbitrio se distribuye entre los distintos elementos activos.
- No existe un árbitro central. Dos variantes de funcionamiento:
 - Por autoselección:
 - Cada dispositivo que requiere el bus pone en éste su prioridad,
 - Después y tras examinar todos las de los demás, el que más prioridad tenga se queda con el bus.
 - Por detección de colisiones:
 - Al igual que en una red Ethernet, cada dispositivo pide el bus independientemente.
 - Se producen colisiones, entrando en juego un esquema de selección para otorgar el bus.
 - Arbitraje a posteriori: uno de los dispositivos cede el bus durante un tiempo aleatorio.
 - Buen comportamiento con baja carga.

- Concepto de bus
- Jerarquía de buses
- Arbitraje de Buses
 - Introducción
 - Políticas
 - Hardware de arbitrio
- Ejemplos de buses del PC
- Bibliografía

Ejemplos: Tipos de buses del PC

- Bus del sistema:
 - FSB
 - Hypertransport
 - Quickpath interconnect
- Tarjetas internas
 - ISA
 - PCI
 - AGP
 - PCI-Express (PCIe)
- Conexión exterior
 - USB.
 - Firewire (IEEE 1394).
 - eSATA.

- LPT (paralelo) y RS-232 (serie).
- Almacenamiento
 - ATA o IDE.
 - SATA Está sustituyendo a ATA.
 - SCSI.
 - SAS.
 - USB y Firewire para almacenamiento.
- Gráficos:
 - VGA.
 - DVI.
 - HDMI.

Algunos Ejemplos: Front Side Bus

- El front-side bus es el bus que trasporta los datos entre la CPU y el puente norte.
- La frecuencia a la que trabaja la CPU está determinada por la aplicación de un multiplicador de reloj a la velocidad del FSB.
- Actualmente se usan otros tipos de buses:
 - Nuevos procesadores de Intel, desde Nehalem (Intel Core): *Intel QuickPath Interconnect*
 - En AMD (Opteron): *HyperTransport*.

Algunos Ejemplos: PCI

- Peripheral Component Interconnect: bus utilizado para la ampliación de tarjetas controladoras
- Eficacia en tecnología "plug and play".
- Proporciona una descripción detallada de todos los dispositivos PCI conectados a través del espacio de configuración PCI.
- Diferentes versiones y variantes
 - 1.0, 2.1, 2.2, 2.3 y 3.0
 - 32 o 64 bits
 - 33,33 MHz
 - 133 a 266 MB/seg
 - Actualmente en desuso.

Algunos Ejemplos: AGP

- Accelerated o Advanced Graphics Port.
- Puerto dedicado a **gráficos** exclusivamente: evitar la sobrecarga del PCI.

- 1x, 66MHz, 266MB/s, 3.3V
- ...
- 8x, 533MHz, 2GB/s, 0.7V
- Actualmente en desuso.

Algunos Ejemplos: PCI Express

- Sustituyendo tanto a PCI como a AGP.
- No confundir con PCI-X (evolución de PCI).
- Un controlador PCIe para todos los dispositivos: sustitución del sistema actual puentes norte y sur.
- Está basado en comunicación serie bidireccional
- Hasta 8 GB por seg
- Varias dimensiones (1x, 2x, 4x...) y versiones

Slots PCI Express (x4, x16, x1 y x16), comparado con PCI de 32 bits tradicional,

Ejemplos: USB, Firewire y eSata

- Universal Serial Bus
 - Rápido, sencillo (Plug and play), muy extendido
 - Diferentes versiones: 1.1 (12 Mb/s), 2.0 (480 Mb/s) y 3.0 (600 Mb/s).
- Firewire (IEEE 1394)
 - Especialmente pensado para videocámaras
 - Gran ancho de banda (400 MB/s)
- eSATA
 - Estandarizado en 2004 para competir con USB y firewire.
 - Hasta 2m. de longitud.
 - 375 Mb/s (version I) \rightarrow 700 Mb/s (futuro).
 - Requiere su propio conector de alimentación.
 - Compatible con el conector PCI (tarjeta de expansión).

Ejemplos: Conectores de Disco

- IDE (Integrated Device Electronics) o ATA (Advanced Technology for Attachment)
 - Para discos duros, y unidades de CD/DVD
 - Cables planos
 - Varias versiones (ultra-ata 133 MB/s)
- Serial ATA: Extensión del anterior.
 - Proporciona mayores velocidades.
 - Mejor aprovechamiento cuando hay varias unidades.
 - Mayor longitud del cable de transmisión de datos.
 - Capacidad para "hot swapping".
- Small Computer System Interface (scsi)
 - Más caro pero más eficiente.
 - Serial Attached SCSI (SAS): compatible con SATA.

Ejemplos: Conectores Gráficos

Video Graphics Array (VGA)

- Analógico. Señales específicas para RGB y sync. horizontal y vertical.
- Diseñado para monitores CRT: se ajusta la tensión con cada línea que emite para representar el brillo deseado

• Digital Visual Interface (DVI)

- En VGA el aspecto de cada píxel se ve afectado por píxeles adyacentes, ruido eléctrico y otras formas de distorsión analógica.
- En DVI, el brillo de los píxeles se transmite en forma de lista de números binarios: correspondencia directa entre buffer y pantalla.

High Definition Multimedia Interface (HDMI)

- Norma de audio y vídeo digital cifrado sin compresión apoyada por la industria para que sea el sustituto del euroconector.
- Permite el uso de vídeo computarizado, mejorado o de alta definición, así como audio digital multicanal en un único cable.
- Versión actual: 1.4: es posible enviar vídeo y audio de alta definición (resolución FullHD), además de datos y vídeo en 3D.

Algunos ejemplos: Resumen

- Concepto de bus
- Jerarquía de buses
- Arbitraje de Buses
 - Introducción
 - Políticas
 - Hardware de arbitrio
- Ejemplos de buses del PC
- Bibliografía

<u>Bibliografía</u>

- Patterson y Hennessy: Estructura y Diseño de Computadores. Capítulo 6 (Capítulo 8 del Vol. 2).
- Murdocca y Heuring: Principios de Arquitectura de Computadoras: Capítulo 8.
- Stallings: Organización y Arquitectura de Computadores. Capítulo 3.