Poultry Disease Image Classification Web App

Overview

This project is a deep learning-based web application for classifying poultry diseases from images. It uses a MobileNetV2 model trained on poultry disease images and provides a user-friendly web interface for predictions.

Features

- Image classification for four poultry disease categories:
 - Coccidiosis
 - Healthy
 - New Castle Disease
 - Salmonella
- Flask web app for uploading images and viewing predictions
- REST API endpoint for programmatic predictions

Project Structure

Int_project/	
Poultry Disease Classifier/ train_image_model.py poultry_disease_image_model.h5 app.py	# Model training script # Trained Keras model # Flask backend (alternative location)
app.py templates/	# Flask web app (main)
index.html requirements.txt	# HTML template for web interface # Python dependencies

How It Works

1 M	ndel '	Trainin	Œ

The script 'Poultry Disease Classifier/train_ima	ge_model.py`	trains a MobileNetV2 mo	odel on poultry disease
images organized in subfolders by class.			

☐ The trained model is saved as `poultry disease image model.h5`.

2. Web Application

- ☐ The Flask app (`app.py`) loads the trained model and provides a web interface for image upload and prediction.
- ☐ Users can upload an image, and the app will display the predicted disease class.

3. API Endpoint

☐ The `/predict` endpoint accepts POST requests with an image file and returns the predicted class as JSON.

Usage

1. Install Requirements

pip install -r requirements.txt

2. Train the Model (if not already trained)

python Poultry Disease Classifier/train image model.py

3. Run the Web App

python app.py

- ☐ Open your browser and go to `http://127.0.0.1:5000/`
- ☐ Upload an image to get a prediction.

4. Use the API Endpoint

```
Send a POST request to '/predict' with an image file: bash curl -X POST -F "file=@path_to_image.jpg" http://127.0.0.1:5000/predict
```

Data Preparation

☐ Organize your dataset as follows:

Poultry Disease Classifier/data/data/

train/

Coccidiosis/

Healthy/

New Castle Disease/

Salmonella/

test/

Coccidiosis/

Healthy/

New Castle Disease/

Salmonella/

☐ Each subfolder should contain images for that class.

Requirements

- Python 3.8+
- TensorFlow
- Flask
- Pillow
- numpy

Notes

- The model expects images of size 224x224 pixels.
- The class order in `CATEGORIES` must match the order used during training.
- For production, use a production-ready WSGI server instead of Flask's built- in server.

Author

N. Sivani