Homework: Regents exponent problems

1.

When b > 0 and d is a positive integer, the expression $(3b)^{\frac{2}{d}}$ is equivalent to

 $(3) \ \frac{1}{\sqrt{3b^d}}$

 $(2) \left(\sqrt{3b}\right)^d$

 $(4) \left(\sqrt[d]{3b}\right)^2$

The expression $\left(\frac{m^2}{\frac{1}{2}}\right)^{-\frac{1}{2}}$ is equivalent to

 $(1) -\sqrt[6]{m^5}$

 $(3) -m\sqrt[5]{m}$ $(4) \frac{1}{m\sqrt[5]{m}}$

3.

Which function represents exponential decay?

(1) $y = 2^{0.3t}$

 $(3) \quad y = \left(\frac{1}{2}\right)^{-t}$

(2) $y = 1.2^{3t}$

(4) $y = 5^{-t}$

4.

Jasmine decides to put \$100 in a savings account each month. The account pays 3% annual interest, compounded monthly. How much money, S, will Jasmine have after one year?

- (1) $S = 100(1.03)^{12}$
- (3) $S = 100(1.0025)^{12}$
- (2) $S = \frac{100 100(1.0025)^{12}}{1 1.0025}$ (4) $S = \frac{100 100(1.03)^{12}}{1 1.03}$

5. (hint: Graph both functions and solve for the intersection. Absolute value is under Option>Num>Abs)

If f(x) = 3|x| - 1 and $g(x) = 0.03x^3 - x + 1$, an approximate solution for the equation f(x) = g(x) is

(1) 1.96

(3) (-0.99, 1.96)

(2) 11.29

(4) (11.29, 32.87)

6.

A student studying public policy created a model for the population of Detroit, where the population decreased 25% over a decade. He used the model $P = 714(0.75)^d$, where P is the population, in thousands, d decades after 2010. Another student, Suzanne, wants to use a model that would predict the population after y years. Suzanne's model is best represented by

(1)
$$P = 714(0.6500)^y$$

$$(3) P = 714(0.9716)^y$$

(2)
$$P = 714(0.8500)^y$$

$$(4) P = 714(0.9750)^{y}$$

7.

Last year, the total revenue for Home Style, a national restaurant chain, increased 5.25% over the previous year. If this trend were to continue, which expression could the company's chief financial officer use to approximate their monthly percent increase in revenue? [Let *m* represent months.]

$$(1) (1.0525)^m$$

$$(3) (1.00427)^m$$

$$(2) \ (1.0525)^{\frac{12}{m}}$$

$$(4) (1.00427)^{\frac{m}{12}}$$

8.

Given $f^{-1}(x) = -\frac{3}{4}x + 2$, which equation represents f(x)?

(1)
$$f(x) = \frac{4}{3}x - \frac{8}{3}$$
 (3) $f(x) = \frac{3}{4}x - 2$

(3)
$$f(x) = \frac{3}{4}x - 2$$

(2)
$$f(x) = -\frac{4}{3}x + \frac{8}{3}$$
 (4) $f(x) = -\frac{3}{4}x + 2$

$$(4) \ f(x) = -\frac{3}{4}x + 2$$

9.

When $g(x) = \frac{2}{x+2}$ and $h(x) = \log(x+1) + 3$ are graphed on the same set of axes, which coordinates best approximate their point of intersection?

$$(1) (-0.9, 1.8)$$

$$(3)$$
 $(1.4,3.3)$

$$(2) (-0.9,1.9)$$

$$(4)$$
 $(1.4,3.4)$

10.

The solution to the equation $4x^2 + 98 = 0$ is

$$(1) \pm 7$$

(3)
$$\pm \frac{7\sqrt{2}}{2}$$

$$(2)$$
 $\pm 7i$

$$(4) \pm \frac{7i\sqrt{2}}{2}$$

BECA / Huson / 11.1 IB Math SL

9 January 2019

Homework: Regents exponent problems

16.

Graph $y = 400(.85)^{2x} - 6$ on the set of axes below.

Name:

BECA / Huson / 11.1 IB Math SL

17.

Using the formula below, determine the monthly payment on a 5-year car loan with a monthly percentage rate of 0.625% for a car with an original cost of \$21,000 and a \$1000 down payment, to the *nearest cent*.

$$P_n = PMT \left(\frac{1 - \left(1 + i\right)^{-n}}{i} \right)$$

 P_n = present amount borrowed

n = number of monthly pay periods

PMT =monthly payment

i = interest rate per month

The affordable monthly payment is \$300 for the same time period. Determine an appropriate down payment, to the *nearest dollar*.

BECA / Huson /	11.1	IΒ	Math	SL
0. Ianuamy 2010				

Name:

9 January 2019 Homework: Ro

Homework: Regents exponent problems

18.

Jim is looking to buy a vacation home for \$172,600 near his favorite southern beach. The formula to compute a mortgage payment, M, is $M = P \cdot \frac{r(1+r)^N}{(1+r)^N-1}$ where P is the principal amount of the loan, r is the monthly interest rate, and N is the number of monthly payments. Jim's bank offers a monthly interest rate of 0.305% for a 15-year mortgage.

With no down payment, determine Jim's mortgage payment, rounded to the nearest dollar.

Algebraically determine and state the down payment, rounded to the *nearest dollar*, that Jim needs to make in order for his mortgage payment to be \$1100.

19.

Graph $y = \log_2(x+3) - 5$ on the set of axes below. Use an appropriate scale to include both intercepts.

Describe the behavior of the given function as x approaches -3 and as x approaches positive infinity.