Análise Matemática para Engenharia

• Regra de Cadeia e derivada da função implícita

- 1. Determine $\frac{\partial w}{\partial r}$ e $\frac{\partial w}{\partial s}$ sabendo que $w = \sqrt{u^2 + v^2}$, onde $u = re^{-s}$ e $v = s^2e^{-r}$.
- **2.** Sendo $z=txy^2$ em que $x=t+\ln\left(y+t^2\right)$ e $y=e^t$, determine $\frac{dz}{dt}$.
- 3. Se z(x,y)=f(x-y) e f é diferenciável, mostre que z satisfaz a equação

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0.$$

4. Se $g(x,y)=f(x^2-y^2,y^2-x^2)$ e f é diferenciável, mostre que g satisfaz a equação

$$y\frac{\partial g}{\partial x} + x\frac{\partial g}{\partial y} = 0$$

(sugestão: faça $u=x^2-y^2$ e $v=y^2-x^2$).

5. Mostre que a equação

$$y\sin(x+y)=0$$

define, implicitamente, x como função de y em alguma vizinhança do ponto $(0,\pi)$ e calcule a derivada $\frac{dx}{dy}(\pi)$.

6. Considere a equação

$$x + 2y - z = \sin(3xyz)$$

- (a) Verifique que a equação define z como uma função de x e y numa vizinhança de (0,0,0)
- (b) Mostre que

$$\frac{\partial z}{\partial x}(0,0) = 1$$
 $\frac{\partial z}{\partial y}(0,0) = 2$

7. Considere a superfície \mathcal{S} de equação

$$\cos(xyz) + zye^{2x} = 2$$

e o ponto P = (0, 1, 1) pertencente a S.

- (a) Mostre que a equação define z como uma função de x e y numa vizinhança de (0,1,1).
- (b) Determine o plano tangente a S em P.