U-Net: Convolutional Networks for Biomedical Image Segmentation

Olaf Ronneberger, Philipp Fischer, and Thomas Brox Slide by Dong Nie

Problem Definition

• Biomedical Image Segmentation

- Background/Motivation
- Method
- Experiments
- Conclusion

Challenging

- Visual complexity
 - Manual analysis is difficult
- Intensity differences are not notable
- Structure boundaries are not correlated with high image gradients
- Dataset is small

ISBI Challenge: Segmentation of neuronal structures in EM stacks

Tissue segmentation is very important

ISBI Challenge Rankings

Rank	Group name	Warping Error	Rand Error	Pixel Error	
1. 2. 3. 4.	** human values ** u-net DIVE-SCI IDSIA [1] DIVE	0.000005 0.000353 0.000355 0.000420 0.000430	0.0021 0.0382 0.0305 0.0504 0.0545	0.0010 0.0611 0.0584 0.0613 0.0582	Most are deep learning based methods
: 10.	IDSIA-SCI	0.000653	0.0189	0.1027	

Neural Network Example

Conventional Deep Models

- For patch: convolutional neural networks (CNN)
 - Classify a patch to label (FG/BG)
- For image: sliding-window based
 - Localization
 - Classification

Networks

- Slow!
- Highly depend on patch size

Existing problems

- Still slow to segment an image
- Cannot well tradeoff localization accuracy and use of context
- Dataset is still small

- Background/Motivation
- Method
 - Overview
 - FCN Introduction
 - Proposed Method
 - Some Strategies
- Experiments
- Conclusion

Method

- Form this problem as 2-category classification
- Use fully convolutional networks (FCN) to do pixel-wise segmentation
- Novelty in helping localization

- Background/Motivation
- Method
 - Overview
 - FCN Introduction
 - Proposed Method
 - Some Strategies
- Experiments
- Conclusion

Fully Convolutional Networks (FCN)

 Currently, FCN is widely used to do semantic segmentation and image prediction, and achieves excellent performance

A classification network

Becoming fully convolutional

Upsampling Output

Pixel-wise Prediction

- Background/Motivation
- Method
 - Overview
 - FCN Introduction
 - Proposed Method
 - Some Strategies
- Experiments
- Conclusion

FCN-based Segmentation

- Can be faster
- Can see broader view

Localization may be not good!!!

Proposed Model

Proposed Model

Contracting path

Expansive path

Proposed Model

- Background/Motivation
- Method
 - Overview
 - FCN Introduction
 - Proposed Method
 - Some Strategies
- Experiments
- Conclusion

Overlap-tile Strategy

Data Augmentation

- Elastic deformation
- Smooth deformation with random displacement vectors on a coarse
 3x3 grid

[1]. Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis

- Background/Motivation
- Method
- Experiments
 - Neuronal Structure Segmentation in Electron Microscopic Images
 - Cell Segmentation in Light Microscopic Images: PhC-U373
 - Cell Segmentation in Light Microscopic Images: DIC-HeLa
- Conclusion

Dataset

- EM segmentation challenge
- 30 images (512×512 pixels) with corresponding fully annotated ground truth segmentation map

http://brainiac2.mit.edu/isbi_challenge/

Metrics

- Warping error
 - a segmentation metric designed to account for topological disagreements [1]; it accounts for the number of neuron splits and mergers required to obtain the candidate segmentation from ground truth.
- Rand error
 - Rand error is the frequency with which the two segmentations disagree over whether a pair of pixels belongs to same or different objects

$$R(S,T) = {N \choose 2}^{-1} \sum_{i \neq j} |\delta(S_i, S_j) - \delta(T_i, T_j)|,$$

- Pixel error
 - Defined as $1 F_{pixel}$, where F_{pixel} represents the F_1 score of pixel similarity
 - [1]. Boundary Learning by Optimization with Topological Constraints

Experimental Results

Table 1. Ranking on the EM segmentation challenge [14] (march 6th, 2015), sorted by warping error.

Rank	Group name	Warping Error	Rand Error	Pixel Error
	** human values **	0.000005	0.0021	0.0010
1.	u-net	0.000353	0.0382	0.0611
2.	DIVE-SCI	0.000355	0.0305	0.0584
3.	IDSIA [1]	0.000420	0.0504	0.0613
4.	DIVE	0.000430	0.0545	0.0582
:				
10.	IDSIA-SCI	0.000653	0.0189	0.1027

- Background/Motivation
- Method
- Experiments
 - Neuronal Structure Segmentation in Electron Microscopic Images
 - Cell Segmentation in Light Microscopic Images: PhC-U373
 - Cell Segmentation in Light Microscopic Images: DIC-HeLa
- Conclusion

Dataset

- ISBI cell tracking challenge 2014/2015
- 35 annotated images

Glioblastoma-astrocytoma U373 cells

Experimental Results

Table 2. Segmentation results (IOU) on the ISBI cell tracking challenge 2015.

Name	PhC-U373	DIC-HeLa
IMCB-SG (2014)	0.2669	0.2935
KTH-SE (2014)	0.7953	0.4607
HOUS-US (2014)	0.5323	-
second-best 2015	0.83	0.46
u-net (2015)	0.9203	0.7756

Metric

IOU: intersection over union

- Background/Motivation
- Method
- Experiments
 - Neuronal Structure Segmentation in Electron Microscopic Images
 - Cell Segmentation in Light Microscopic Images: PhC-U373
 - Cell Segmentation in Light Microscopic Images: DIC-HeLa
- Conclusion

Dataset

- ISBI cell tracking challenge 2014/2015
- 35 annotated images

HeLa cells

Experimental Results

Table 2. Segmentation results (IOU) on the ISBI cell tracking challenge 2015.

Name	PhC-U373	DIC-HeLa
IMCB-SG (2014)	0.2669	0.2935
KTH-SE (2014)	0.7953	0.4607
HOUS-US (2014)	0.5323	-
second-best 2015	0.83	0.46
u-net (2015)	0.9203	0.7756

Metric

IOU: intersection over union

Conclusion

- U-net architecture achieves very good performance on several biomedical segmentation tasks
- Elastic deformation for data augmentation is helpful

