NATIONAL UNIVERSITY OF SINGAPORE

CS2105 – INTRODUCTION TO COMPUTER NETWORKS

Sample Exam Paper 1

Please DO NOT upload questions and answers onto the Internet.

Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This assessment paper contains 7 questions and comprises 8 printed pages, including this page.
- 2. This is a **CLOSED BOOK** assessment. You may bring in one piece A4 size help sheet.
- 3. Calculators are allowed, but not laptops, PDAs, or other electronic devices.

Q1. Multiple Choice Questions (MCQs)

1.1	Wł	nich of the following protocols run at the application layer?
		i. HTTP
		ii. UDP
		iii. DHCP
		iv. DNS
	A.	(i) and (iii) only
	В.	(i) and (iv) only
	C.	(i), (ii) and (iv) only
		(i), (iii) and (iv) only
	Ε.	None of the above
1.2		complement is used as checksum in Given two bytes 01010101 and 111111, the 1s complement checksum is
	A.	TCP but not UDP, 10101010
	В.	UDP but not TCP, 10101010
	C.	Both TCP and UDP, 10101010
		Both TCP and UDP, 01010101
	E.	None of the above
1.3		packets are continuously sent over a 1 Mbps link. Each packet is of 1,000 bits long d RTT is 10 ms. What is the throughput of the link?
	A.	511.856 bps
	В.	511.856 Kbps
		500 bps
		500 Kbps
	E.	666.667 Kbps
1.4	If t	he baud rate for n -PSK signal is 1000 and the bit rate is 5000, what is n ?
	A.	5
	В.	4
	C.	32
	D.	
	E.	None of the above

- 1.5 Which of the following statement about IP datagram is FALSE?
 - **A.** Routing protocols determine the routes that datagrams take between sources and destinations.
 - **B.** TTL field of IP header prevents a datagram from circulating in the network forever.
 - **C.** When a big datagram is fragmented into a series of smaller fragments, transport layer header will be replicated in each fragment.
 - **D.** On the Internet, datagrams from the same source may take different routes towards the destination.
 - **E.** MTU of the link-layer protocol places a limit on the length of a datagram.
- 1.6 In a subnet, the first IP address is 172.18.176.0 and the last IP address is 172.18.183.255. What is the length of network prefix of this subnet?
 - **A.** 28
 - **B.** 29
 - **C.** 21
 - **D.** 22
 - E. None of the above
- 1.7 A host uses a variety of protocols to discover information about the network it is connected to. Which of the following statements is FALSE?
 - **A.** To perform a DNS lookup, a host must first discover the IP address of its local DNS server using DHCP.
 - **B.** To send a packet outside the host's subnet, the host must first discover the IP address of its first-hop router using DHCP.
 - **C.** To send a packet outside the host's subnet, a host must first discover the IP address of the destination host using DNS.
 - **D.** To get an IP address assigned, a host must first discover the IP address of its DHCP server using DNS.
 - **E.** To send a packet to another host in the same subnet, a host must first discover the MAC address of the destination host using ARP.
- 1.8 An IP address block 192.168.208/20 can be further divided into x subnets, each supporting a maximum of y hosts. Which of the following is NOT a valid assignment?
 - **A.** x = 4 and y = 1022
 - **B.** x = 32 and y = 126
 - **C.** x = 64 and y = 62
 - **D.** x = 256 and y = 30
 - **E.** x = 1024 and y = 2

1.9 A device (D) is used to connect a sender (S) and a receiver (R). Transmission rates of the links between sender and the device and between the device and receiver are r_1 and r_2 ($r_1 > r_2$) respectively. Ignore other types of delay, what is the end-to-end delay to send a packet of length L?

- **A.** $\frac{Lr_1r_2}{r_1+r_2}$, if this device is a store-and-forward packet switch.
- **B.** $\frac{L}{2r_1} + \frac{L}{2r_2}$, if this device is a store-and-forward packet switch.
- **C.** $\frac{L(r_1+r_2)}{r_1r_2}$, if this device acts on individual bits and repeats every bit to receiver once receives it from sender.
- **D.** $\frac{L}{r_1} + \frac{1}{r_2}$, if this device acts on individual bits and repeats every bit to receiver once receives it from sender.
- **E.** $\frac{1}{r_1} + \frac{L}{r_2}$, if this device acts on individual bits and repeats every bit to receiver once receives it from sender.

Q2.

Suppose there is a 10 Mbps microwave link between a geostationary satellite and its base station on Earth, which are 3.6×10^7 meters apart. The satellite takes a digital photo once in a while and then sends it to the base station. Assume a propagation speed of 2.4×10^8 meters/second.

- (a) What is the propagation delay (in seconds) of the link?
- (b) Suppose the satellite takes a photo every 24 seconds and let x denote the size of the photo. What is the minimum value of x (in bits) for the microwave link to be fully utilized (i.e. always busy transmitting)?

Q3.

(a) The correct drawing of NRZ-L for bit pattern 11010011 is shown in the grid below. Is corresponding Manchester encoding correctly drawn? Answer "Yes" or "No".

1	1	0	1	0	0	1	1	
								NRZ-L
								Manchester

- (b) A channel has bandwidth in the range between 200 KHz 260 KHz, and a signal to noise ratio of 31. What is the Shannon capacity of the channel?
- (c) Suppose the propagation delay between furthest nodes is d and link rate is r. What is the minimal frame size L to ensure collision will always be detected in CSMA/CD protocol?
- (d) Source and destination are connected by a single link that has packet loss probability of p. If at most k (re)transmissions are allowed until the source gives up, what is the probability that a packet would be successfully delivered to destination?

Q4.

On **Sunfire** server, we type the command

dig -t a www.duke.edu +trace

and observe the following outputs:

```
; <<>> DiG 9.6-ESV-R8 <<>> www.duke.edu +trace
;; global options: +cmd
                           IN
                                   NS
                                            b.root-servers.net.
                   155852
                                   NS
                   155852
                           ΙN
                                            c.root-servers.net.
                                   NS
                                            d.root-servers.net.
                   155852
                          IN
                   155852
                           IN
                                   NS
                                            e.root-servers.net.
                   155852
                           ΙN
                                            f.root-servers.net.
                                   NS
                   155852
                           ΙN
                                   NS
                                            g.root-servers.net.
                   155852
                                   NS
                                            h.root-servers.net.
                          ΙN
                                   NS
                                            i.root-servers.net.
                   155852
                          IN
                   155852
                           ΙN
                                   NS
                                            i.root-servers.net.
                   155852
                           ΙN
                                   NS
                                            k.root-servers.net.
                   155852
                           IN
                                   NS
                                            1.root-servers.net.
                   155852
                           ΙN
                                   NS
                                            m.root-servers.net.
                   155852
                           ΙN
                                   NS
                                            a.root-servers.net.
;; Received 492 bytes from 137.132.85.2#53(137.132.85.2) in 13 ms
edu.
                                   NS
                                            a.edu-servers.net.
                   172800
                           ΙN
edu.
                                   NS
                                            f.edu-servers.net.
                   172800
edu.
                   172800
                           ΙN
                                   NS
                                            d.edu-servers.net.
edu.
                   172800
                                            c.edu-servers.net.
                           ΙN
                                   NS
edu.
                   172800
                                            g.edu-servers.net.
                           ΙN
                                   NS
edu.
                   172800
                           ΙN
                                   NS
                                            1.edu-servers.net.
;; Received 265 bytes from 192.33.4.12#53(192.33.4.12) in 182 ms
                                            avallone.stanford.edu.
duke.edu.
                   172800
                           ΙN
                                   NS
duke.edu.
                   172800
                           ΙN
                                   NS
                                            dns-auth-01.oit.duke.edu.
duke.edu.
                                   NS
                                            dns-auth-02.oit.duke.edu.
                   172800
                           ΙN
;; Received 194 bytes from 192.31.80.30#53(192.31.80.30) in 259 ms
```

www.duke.edu.	21600	IN	CNAME	duke.edu.
duke.edu.	21600	IN	Α	54.191.241.8
duke.edu.	21600	IN	Α	54.68.155.51
duke.edu.	21600	IN	NS	dns-auth-02.oit.duke.edu.
duke.edu.	21600	IN	NS	dns-auth-01.oit.duke.edu.

;; Received 164 bytes from 152.3.105.232#53(152.3.105.232) in 270 ms

Answer the following questions.

- (a) Write down one IP address of a local DNS server.
- (b) Write down one IP address of a root DNS server.
- (c) Write down one IP address of a top-level domain DNS server.
- (d) Write down one IP address of www.duke.edu.
- (e) What is the canonical name of www.duke.edu?
- (f) What port number does a DNS server listen to?

Q5.

Consider a datagram network using 8-bit IP addresses. Suppose a router uses longest prefix matching and has the following forwarding table:

Prefix Match	Interface
11	3
101	4
100	1
1101	2
otherwise	0

For each of the five interfaces, give the associated range of destination IP addresses and the number of destination IP addresses in that range.

Q6.

Host A sends 5 data packets to host B using TCP protocol. Each data packet contains 10 bytes of application data.

Answer the following 3 questions. They are independent of each other.

- (a) Suppose 5 data packets arrive in order and all are accepted by *B*. The last ACK packet sent by *B* has ACK number 99. What is the sequence number of the first data packet sent by *A*?
- (b) Suppose 5 data packets arrive at *B* out of order. Their sequence numbers (shown in the order of arrival) are 200, 240, 210, 230 and 220 respectively. Assume *B* will buffer out-of-order packets for later in-order delivery to application. Write down ACK numbers of the corresponding ACK packets sent by *B*.
- (c) Within 100 ms duration, *B* receives 5 in-order data packets and accepts all of them. How many ACK packets will *B* send out?

Q7.

10 students want to communicate with each other confidentially (i.e., messages between any two students shouldn't be understandable to a third student).

Answer the following 3 questions. They are independent of each other.

- (a) In symmetric key cryptography, how many secret keys are needed in total?
- (b) Suppose every student trusts the teacher. If a student needs to send a message to another, he first sends it to the teacher; the teacher then sends the message to the other student. The teacher is allowed to understand all messages sent to her. At a minimum how many keys are needed in total? State clearly if symmetric or public key cryptography is used.
- (c) Suppose every student has a pair of public/private keys, so does the teacher. Now the teacher has a short announcement for all the students. In no more than 80 words, write down the steps the teacher performs to ensure confidentiality and authenticity of this announcement.

=== END OF PAPER ===