Autómatas y Lenguajes Formales Tarea 7

Alumnos: Torres Partida Karen Larissa Altamirano Niño Luis Enrique

11 de junio de 2020

- 1. Demuestre, usando el lema del bombeo, que $\{ww|w\in\{0,1\}^*\}$ no es un lenguaje libre de contexto.
 - 1) El adversario elige k en el paso 1.
 - 2) Consideramos $z = 0^k 1^k 0^k 1^k$. Sabemos que z pertenece al lenguaje y $|z| \ge k$.
 - 3) Ahora digamos que el adversario elige u, v, w, x, y tal que $z = uvwxy, vx \neq \varepsilon, y |vwx| \leq k$.
 - 4) Analicemos los siguientes casos.
 - 1) Dado que $|vwx| \le k$, vwx puede estar contenido dentro del primer bloque de 0's de z. Tomando i=2, tenemos que en uv^2wx^2y habremos introducido más 0's en la primera mitad de la cadena, por lo tanto uv^2wx^2y no pertenece al lenguaje.
 - 2) Es análogo para los casos donde vxw está contenido en el primer bloque de 1's, segundo bloque de 0's o en el segundo bloque de 1's
 - 3) Si vwx consiste 0's y 1's estando en la primera mitad z, tomando i=2, tenemos que en uv^2wx^2y habremos introducido más 1's en la izquierda que se mueven a la segunda mitad, por lo que no tiene la forma ww, es decir, no pertenece al lenguaje. Similarmente, si vwx está contenido en la segunda mitad de z, al hacer uv^2wx^2y mueve un 0 a la última posición de la primera mitad, por lo que tampoco forma parte del lenguaje.
 - 4) El último caso es cuando vwx figura en medio de z. Tomando ahora i = 0, uv^0wx^0y tiene la forma $0^k1^i0^j1^k$ donde i y j no pueden ser simultánemente iguales a k, por lo que tampoco forma parte del lenguaje.

Podemos encontrar valores del bombeo, i, tal que dada cualquier descomposición del adversario logramos que uv^iwx^iy no pertenece al lenguaje. Hemos exhibido una estrategia ganadora. Por el lema del bombeo, el lenguaje no es libre del contexto.

- 2. Decida si los siguientes lenguajes son libres de contexto y demuestre su respuesta.
 - a) $\{xyx|x,y \in \{a,b\} * y |x| \ge 1\}$

Supongamos que el lenguaje es libre de contexto. Entonces satisface el lema del bombeo. Sea k la constante del lema. Ahora consideremos $x=a^kb^k$ y $y=\varepsilon$. Entonces $z=a^kb^ka^kb^k$. Deben existir u, v,w,x,y tal que u=uvwxy tal que |vx|>0, $|vwx|\leq k$ y uv^iwx^iy pertenece al lenguaje. Analicemos lo siguientes casos:

- 1) vx consiste sólo de a's del primer grupo de a's en z o vx consiste sólo de b's del segundo grupo de b's en z. Entonces uv^2wx^2y o es igual a $a^{k+j}b^ka^kb^k$ o $a^kb^ka^kb^{k+j}$ para alguna $j \ge 1$. Ninguna de las dos pertenece al lenguaje, lo que es una contradicción.
- 2) vx contiene una b del primer grupo de b's en z o vx contiene una a del segundo grupo de a's en z. Entonces uv^0wx^0y o es $a^nb^la^mb^k$ o $a^kb^na^lb^m$ con $n,m \ge 1$ y l < k. Ninguna de las dos pertenece al lenguaje, lo que es una contradicción.

Por lo tanto siempre podemos llegar a una contradicción, por lo que el lenguaje no es un LLC.

- b) $\{a^ib^nc^n|i\leq n\}$
- 3. Indique si las siguientes afirmaciones son verdaderas o falsas. Si se declara verdadera, proporcione una demostración; si resulta ser falsa, dé un contraejemplo.

a) Si L no es un LLC y R es regular, entonces L - R no es un LLC.

Demostración.

Supongamos que L no es un LLC y R es regular, y para llegar a una contradicción supongamos que L-R es LLC, entonces $L-R=L\cap \overline{R}$ es LLC, entonces como R es regular, entonces \overline{R} es regular y entonces L es LLC, lo cual es una contradicción. Por lo tanto L-R no es un LLC.

b) Si L **no** es un LLC y F es finito, entonces $L \cup F$ **no** es un LLC.

Demostración.

Supongamos que L no es un LLC y F es finito, ahora para llegar a una contradicción supongamos que $L \cup F$ es un LLC, ahora como F es finito entonces F es regular, además \overline{F} es regular también, entonces como $L \cup F$ es LLC y \overline{F} es regular, entonces se cumple que $(L \cup F) \cap \overline{F} = (L \cap F) \cup (F \cap \overline{F}) = (L \cap F) \cup \emptyset = L \cap F$ es LLC, y cómo F es regular, entonces L es LLC, lo cuál es una contradicción. Por lo tanto $L \cup F$ no es LLC.

$$\delta(q_0, a) = (q_1, b, R); \quad \delta(q_0, \bot) = (q_f, \bot, R); \quad \delta(q_1, b) = (q_0, a, R)$$

Respuesta:

El lenguaje que se reconoce es $L(M) = \{(ab)^n | n \ge 0\}.$

5. Sea $M=(\{q_0,q_1,q_2,q_f\},\{a,b,c\},\{a,b,c,\sqcup\},\delta,q_0,\sqcup,\{q_f\}),$ dónde la función de transición δ se define por la siguiente tabla:

a) Dé la secuencia de ejecución, a través de configuraciones y de la relación \vdash , para la cadena aaaacbb.

Respuesta:

La secuencia de ejecución es:

$$q_0aaaacbb \vdash aq_1aaacbb \\ \vdash aaq_0aacbb \\ \vdash aaaq_1acbb \\ \vdash aaaaq_0cbb \\ \vdash aaaacq_2bb \\ \vdash aaaacbq_2b \\ \vdash aaaacbdq_2 \sqcup \\ \vdash aaaacbb \sqcup q_f \sqcup$$

2

b) Describa el lenguaje de las cadenas aceptadas por M.

Respuesta:

El lenguaje aceptado es $L(M)=\{a^icb^j\mid i=2k, k\geq 0, j\geq 0\}.$