به نام خدا

پاسخ تمرین دوم

جبرخطی کاربردی - پاییز 1403

سوال ۱) درستی یا نادرستی عبارات زیر را تعیین کنید و در صورت درست بودن آن را اثبات کنید و در غیر این صورت، دلیل آن را توضیح دهید یا برای آنها مثال نقض بیاورید.

ران بر $n \times n$ باشد که فقط از 1 ± 1 تشکیل شده باشد، آنگاه دترمینان آن بر $n \times n$ بخش پذیر است.

درست - با استفاده از عملیات سطری تمام سطرها بجز سطر اول را منهای سطر اول کنید. حال تمام در ایههای سطرهای ۲ تا n، ۲ ، ۰ یا ۲ — هستند. پس کافی است از هر سطر، ۲ را فاکتور بگیریم که در این صورت داریم:

 $\det|A| = 2^{n-1} \det|B|$

ب) اگر دترمینان A صفر باشد، آنگاه دو ردیف یا دو ستون یکسان هستند یا اینکه یک ردیف یا یک ستون، صفر می باشد.

نادرست - برای اثبات غلط بودن آن، از مثال نقض زیر استفاده میکنیم:

$$A = \begin{bmatrix} \gamma & \varphi \\ \Lambda & \gamma \gamma \end{bmatrix}$$

پ) اگر دو ماتریس A و B معکوس پذیر و $n \times n$ باشند و $I = B^2$ و $I = A^2$ آنگاه $BA = (AB)^{-1}$

درست

$$I = A^{2} -> A^{-1} = A$$

 $I = B^{2} -> B^{-1} = B$
 $(AB)^{-1} = B^{-1}A^{-1} = BA$

ت) فضای سطری A همان فضای ستونی A^T است.

درست - زیرا طبق تعریف Transpose، سطر های A، همان ستونهای A^T هستند. A همچنین سطر های A^T ، نیز ستونهای $A = A^T$ هستند. در نتیجه فضای سطر ی A نیز با فضای ستونی A^T برابر می شود

ث) اگر ماتریس P یک ماتریس وارون پذیر باشد، رنک PA با رنک A برابر است.

A = [a, a, a] Suppose that rank A = k, so that k columns of
A are pivot columns.
PA = [Pa, Pa, Pan] Now we must show that PA
has k privat columns too. First we show that these k columns are
linearly independent; we call the pivot columns of A as by, by become
$c_{\lambda}(Pb_{\lambda}) \cdot c_{\lambda}(Pb_{\lambda}) \cdot \cdots \cdot c_{k}(Pb_{k}) = 0 \xrightarrow{P}$
C, b, b, c, h, 0 => C, - C2 = (k-0) because b b_n are tinearly independent
Pb, Pbz, Pbk are linerly independent
Then we show that every non-pivot columns has a corresponding column in
PA with the same attributes Let's call one of these non-piecet columns
of A m: c ₁ (Pb ₁) + c ₂ (Pb ₂) + + c ₄ (Pb _n)? Pm *P
c, b, + c, b, + c, b, = m -> And we know that m is in spen
by, by, bk So PA has k pivot columns too

سوال ۲) برای ماتریس داده شده ترکیب خطی بردارهای تشکیل دهنده null space و column space

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 1 & 0 & 1 & 1 \\ 3 & 6 & 9 & 12 \end{bmatrix}$$

A, [\	Y 7 E 8 REF (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	۲ , ۴	7 (, , ,		P
L×,		-1-1-1		- ba)	(F. 1616) (11100H)
	Do I Va			2 Colum Basi	n Space
N-11	space - An	20_>	[0	
->	n n ne he he		\$ 9 9/5 >> Sait 2 ct lax + 2 ct		0
n _c zt,	n 25	: 61h	ودن م و م	ج ۽ آئر	il i
U, 2	t-5 gN 2 -	t-las.	7 1/21	<u> </u>	5 [-1]
-> N	. II space Bas,	's 2 \) / -1,0		

سوال ۳) دترمینان ماتریس ضرایب دستگاه زیر را بدست آورید و با استفاده از قاعده کرامر آنرا حل کنید:

$$\begin{cases} 2x + y - z = 3 \\ -x + 3y + z = -1 \\ x + y + 2z = 4 \end{cases}$$

cofficient	matrix M	2 (-1 <u>]</u>		(F)
det(m);					
2 10+4+62	1/				
Mg z [E	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-9 det ((M _n) z ~	(Kx C-lx1)	
		- I(XX	(-1) -1xc)	-1(-1x)-9	5T)
= 14+4+15	~ ~ K				***************************************
My 2 []	1	, det(my) z Y ((XX(-1) - 1x9	٤)
	, -	- r(-1x	(Y (x ()	-1(-1x E	(-1)x
15 0	W				***************************************
= -1/+9+	120				
72 2 -	P -1 -	> det (M	2)2 7(6	-x~-(-1x1)	
	{			+ r((-1)x1	
z Y 4 T -	15210				
_	Sot(M-	1	Sot(My)		PE ,
3 2	det(M)	2 972	1+(1)	209 WZ	1/2

سوال ۴) مشخص کنید که هریک از مجموعه های زیر، یک زیرفضای برداری تشکیل میدهند یا خیر.

الف) مجموعه تمام چندجمله های به فرم $p(t)=at^2$ که a عضو a است، یک زیرفضای برداری برای a تشکیل میدهند.

یک زیرفضای برداری برای \mathbb{R}^4 میباشد. $egin{bmatrix} s+3t \ s-t \ 2s-t \ 4t \end{bmatrix}$ میباشد.

$oxed{4t}$
الن S. { P(t) = at² a ∈ R}
0 ∈ 5 ? => a. 0 => P(t) = 0
if P_1 , $P_2 \in S \stackrel{?}{=} P_1 \cdot P_2 \in S$ $a_1 t^2 + a_2 t^2 \cdot (a_1 \cdot a_2) t^2 \in S$
if PES? CPES CP. cat? . (ca)t2 ES
S is a subspace for P2
0 € V ⇒ s.o, t. o ✓
if γ , γ , $\in V \stackrel{?}{\Rightarrow} \gamma$, γ , $\in V$ $s_1 \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$, $t_1 \begin{bmatrix} \frac{3}{2} \\ \frac{1}{4} \end{bmatrix}$ $t_2 \begin{bmatrix} \frac{3}{2} \\ \frac{1}{4} \end{bmatrix}$
$= (s_1 + s_2) \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + (t_1 + t_2) \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix} \in V$
$ f v \in V \stackrel{?}{\Longrightarrow} cv \in V c(s[] + t[]) + (cs)[] + (ct)[] \in V$
V is a subspace for \mathbb{R}^4

 $p_3(t)=1+t-3t^2$ و $p_2(t)=t-3t^2$. $p_1(t)=1+t^2$ سوال ۵) اگر د نامد:

الف) نشان دهید که این چندجمله ای ها یک پایه برای \mathbb{P}_2 تشکیل میدهند. با نشان دهید که این چندجمله ای $\beta=\{p_1,p_2,p_3\}$ را بر حسب پایه $\beta=\{p_1,p_2,p_3\}$ به دست آلم در دست

سوال ۶) ثابت کنید که نگاشت مختصات (coordinate mapping)، یک تبدیل یک به یک و پوشا است.

Suppose that

$$[\mathbf{u}]_B = [\mathbf{w}]_B = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}.$$

By definition of coordinate vectors,

$$\mathbf{u} = \mathbf{w} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n.$$

Since \mathbf{u} and \mathbf{w} were arbitrary elements of V, the coordinate mapping is one-to-one.

Given $\mathbf{y} = (y_1, ..., y_n)$ in \mathbb{R}^n , let $\mathbf{u} = y_1 \mathbf{b}_1 + \cdots + y_n \mathbf{b}_n$. Then, by definition, $[\mathbf{u}]_B = \mathbf{y}$. Since \mathbf{y} was arbitrary, the coordinate mapping is onto \mathbb{R}^n .

$$b_2=\begin{bmatrix}-2\\5\end{bmatrix}$$
 و $b_1=\begin{bmatrix}-2\\3\end{bmatrix}$ سوال ۱۷) اگر S متوازی الاضلاع باشد که توسط بردارهای $A=\begin{bmatrix}6&-3\\-3&2\end{bmatrix}$ سوال ۲۷) اگر تحت تبدیل A را بیابید.

Since the parallelogram S is determined by the columns of $\begin{bmatrix} -2 & -2 \\ 3 & 5 \end{bmatrix}$, the area of S is

$$\left| \det \begin{bmatrix} -2 & -2 \\ 3 & 5 \end{bmatrix} \right| = |-4| = 4.$$
 The matrix A has $\det A = \begin{vmatrix} 6 & -2 \\ -3 & 2 \end{vmatrix} = 6$. By Theorem 10, the area of $T(S)$ is

 $|\det A| \{ \text{area of } S \} = 6 \cdot 4 = 24.$

Alternatively, one may compute the vectors that determine the image, namely, the columns of

$$A[\mathbf{b}_1 \quad \mathbf{b}_2] = \begin{bmatrix} 6 & -2 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} -2 & -2 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} -18 & -22 \\ 12 & 16 \end{bmatrix}$$

The determinant of this matrix is -24, so the area of the image is 24.