Gesture Recognition case study

We have started with data generator function. we have used two types of data generator. One without augmentation and other is with augmentation.

We have tried 6 types of models with the below changes:

- model based on Conv3d
- Conv2D+GRU
- > Transfer Learning using VGGNET-19, Mobilenet, ImageNet.

We have use Hyper-tuning parameter like:

- batch size
- optimizer
- > no of frame to sample
- learning rate
- Dropouts
- > Batch normalization
- add a greater number of dense layers
- > Activation function to achieve best model.

We have use affine type of augmentation inside in generator function.

Below is the table where we have captured data with multiple models.

Experiment Number	Model	Training Accuracy (in %)	Val Accuracy (in %)	Decision + Explanation
1	Conv3D	21.57	15	Tried with simple Conv3D model, with Batch size 20. SGD optimizer Learning rate is 0.01 Epoch = 35
2	Conv3D	46.06	67	Change Conv3D model, with below parameter Batch size 20. Adam optimizer Learning rate is 0.001 Epoch = 25
3	Conv2DVGGNettransfer Learning	95.48	80	As with the above two results are not good, so we decided to change model. The parameter is • Epoch = 35 • SGD optimizer

				• Learning rate is 0.01
4	Conv2DMobilenettransfer Learning +GRU	98.79	84	As with the VggNet the gap between Training and validation accuracy is approx. 16%, hence we change our model to mobile net with augmentation and found results are slightly better. The parameter is Epoch = 20 Batch size = 5 Adam optimizer Learning rate is 0.01
5	Conv2DMobilenettransfer Learning + GRU but training all layer	99.77	99	 Affine Augmentation The parameter is Epoch = 20 Batch Size = 5 Frame to sample = 16 Adam optimizer Learning rate is 0.01 Affine Augmentation Dropout = 0.25 But looks like overfitting.
Final Model	Conv2DMobilenettransfer Learning + GRU but training all layer	93.97	80	The parameter is Epoch = 25 Batch Size = 20 Frame to sample = 15 Adam optimizer Learning rate is 0.00001 Affine Augmentation Dropout = 0.15 This is our final model as, this model looks good, as per result of Training Accuracy and validation Accuracy.