Solutions to homework 2:

1. Let $a, b \in \mathbb{Z}$. Prove that if ab is odd, then a and b are both odd.

Proof by Contrapositive: Let $a, b \in \mathbb{Z}$. If a or b are even then ab must be even.

• Case 1: Assume that a is even. Then a must be of the form 2k for some $k \in \mathbb{Z}$. Consider the expression ab, so under the assumption that a is even

then ab=2kb, factoring 2 we see that 2kb=2(kb). Since the product of two integers is an integer, we see that 2(kb)=2i for some $i\in\mathbb{Z}$. Hence, ab is of the form 2i, thus ab is even.

• Case 2: Consider the first case, without loss of generality.

Hence by contrapositive, if ab is odd, then a and b are both odd.

2. Prove that if $a \in \mathbb{Z}$, then $4 \nmid a^2 - 3$.

Proof: Consider the cases $a \equiv 0 \pmod{4}$, $a \equiv 1 \pmod{4}$, $a \equiv 2 \pmod{4}$, and $a \equiv 3 \pmod{4}$.

- Case 1: Assume that $a \equiv 0 \pmod 4$. Then $a^2-3 \equiv 0^2-3 \pmod 4$. Thus, $a^2-3 \equiv -3 \pmod 4$.
- Case 2: Assume that $a\equiv 1(\bmod 4)$. Then $a^2-3\equiv 1^2-3(\bmod 4)$. Thus, $a^2-3\equiv -2(\bmod 4)$.
- Case 3: Assume that $a \equiv 2 \pmod{4}$. Then $a^2 3 \equiv 2^2 3 \pmod{4}$. Thus, $a^2 3 \equiv 1 \pmod{4}$.
- Case 4: Assume that $a \equiv 3 \pmod 4$. Then $a^2-3 \equiv 3^2-3 \pmod 4$. Thus, $a^2-3 \equiv 2 \pmod 4$.

Hence by the previous cases, if $a \in \mathbb{Z}$ then $4 \nmid a^2 - 3$

3. Let x be a positive real number. Prove that if $2x - \frac{1}{x} > 1$, then x > 1.

Proof: Assume that $2x - \frac{1}{x} > 1$ and x is a positive real number.

$$2x - \frac{1}{x} > 1$$

$$2x^{2} - 1 > x$$

$$2x^{2} - x - 1 > 0$$

$$(2x + 1)(x - 1) > 0$$

Under the assumption that x must be a positive real number, we know that (2x + 1) must be positive so we can multiply it out leaving the expression x - 1 > 0. Hence, x > 1.

4. Let $x \in \mathbb{R}$. Then, prove that $x^2 + |x - 6| > 5$.

Proof:

Consider:

$$|x - 6| = \begin{cases} x - 6 & \text{if } x \ge 6 \\ -x + 6 & \text{if } x < 6 \end{cases}$$

• Case 1: Let $x \in \mathbb{R}$ and assume that x < 6. Now consider the fact that $x^2 \ge 0$.

$$x^{2} \ge 0$$

$$x^{2} + 1 > 0$$

$$x^{2} - x + 1 > 0$$

$$x^{2} - x + 6 - 5 > 0$$

$$x^{2} - x + 6 > 5$$

$$x^{2} + |x - 6| > 5$$

• Case 2: Let $x \in \mathbb{R}$ and assume that $x \geq 6$. Now consider the fact that $x^2 \geq 0$.

$$x^{2} \ge 0$$

$$x^{2} + x > 0$$

$$x^{2} + x - 11 > 0$$

$$x^{2} + x - 6 > 5$$

$$x^{2} + |x - 6| > 5$$

Hence, If $x \in \mathbb{R}$ then $x^2 + |x - 6| > 5$

5. Let $n \in \mathbb{Z}$. Prove that if 5 is not a factor of $(n^2 - 1)(n^2 - 4)$ then 5|n.

Proof by Contrapositive: Let $n \in \mathbb{Z}$. If $5 \nmid n$ then 5 is a factor of $(n^2 - 1)(n^2 - 4)$.

- Case 1: Assume that $n \equiv 1 \pmod{5}$. So, when $n \equiv 1 \pmod{5}$ then $(n^2 1)(n^2 4) \equiv 0 \pmod{5}$. Thus, 5 is a factor of $(n^2 1)(n^2 4)$ when $n \equiv 1 \pmod{5}$.
- Case 2: Assume that $n \equiv 2 \pmod{5}$. So, when $n \equiv 2 \pmod{5}$ then $(n^2 1)(n^2 4) \equiv 0 \pmod{5}$. Thus, 5 is a factor of $(n^2 1)(n^2 4)$ when $n \equiv 2 \pmod{5}$.
- Case 3: Assume that $n \equiv 3 \pmod{5}$. So, when $n \equiv 3 \pmod{5}$ then $(n^2 1)(n^2 4) \equiv 40 \pmod{5} \equiv 0 \pmod{5}$. Thus, 5 is a factor of $(n^2 1)(n^2 4)$ when $n \equiv 3 \pmod{5}$.
- Case 4: Assume that $n \equiv 4 \pmod{5}$. So, when $n \equiv 4 \pmod{5}$ then $(n^2 1)(n^2 4) \equiv 160 \pmod{5} \equiv 0 \pmod{5}$. Thus, 5 is a factor of $(n^2 1)(n^2 4)$ when $n \equiv 4 \pmod{5}$.

Hence, 5 is a factor of $(n^2-1)(n^2-4)$ when $5 \nmid n$.

6. Let $x, y \in \mathbb{Z}$. Prove that $3 \nmid (x^3 + y^3)$ if and only if $3 \nmid (x + y)$.

Proof:

• Case 1: Proof by contrapositive. Let $x, y \in \mathbb{Z}$. If $3 \mid (x^3 + y^3)$ then $3 \mid (x + y)$. Assume that $3 \mid (x^3 + y^3)$ such that $(x^3 + y^3) \equiv 0 \pmod{3}$ and consider the following.

$$(x^3 + y^3) = (x + y)^3 - 3xy(x + y)$$
$$(x^3 + y^3) \equiv (x + y)^3 - 3xy(x + y) \pmod{3}$$
$$(x + y)^3 - 3xy(x + y) \equiv 0 \pmod{3}$$

Since $-3xy(x+y) \equiv 0 \pmod{3}$, then $(x+y)^3 \equiv 0 \pmod{3}$.

$$(x+y)^3 \equiv 0 \pmod{3}$$
$$(x+y) \equiv 0 \pmod{3}$$
$$x+y \equiv 0 \pmod{3}$$

Thus by by contrapositive, if $3 \mid (x^3 + y^3)$ then $3 \mid (x + y)$.

• Case 2: Proof by contrapositive. Let $x, y \in \mathbb{Z}$. If $3 \mid (x+y)$ then $3 \mid (x^3+y^3)$. Assume that $3 \mid (x+y)$ such that $(x+y) = 3\ell$ and consider the following.

$$\begin{split} \left(x^3 + y^3\right) &= (x+y)^3 - 3xy(x+y) \\ (x+y)^3 - 3xy(x+y) &= (3\ell)^3 - 3xy(3\ell) \\ (3\ell)^3 - 3xy(3\ell) &= 3\big(9\ell^3 - xy(3\ell)\big) \end{split}$$

Since the product and sum of an integer is an integer $3(9\ell^3 - xy(3\ell)) = 3k$ for some $k \in \mathbb{Z}$. Thus by by contrapositive, if $3 \mid (x+y)$ then $3 \mid (x^3+y^3)$.

Hence by the two cases, if $3 \nmid (x^3 + y^3)$ if and only if $3 \nmid (x + y)$.

7. Bézout's identity: Let $a, b \in \mathbb{Z}$ such that a and b are not both zero. Then there exists $x, y \in \mathbb{Z}$ such that $ax + by = \gcd(a, b)$.

For example, for a=5 and b=7, we see $\gcd(a,b)=1$ and we can take x=10 and y=-7.

Now, let $a, b, k \in \mathbb{Z}$ and assume that a, b are not both zero. Then, using Bézout's identity, show that if $k \nmid \gcd(a, b)$, then $k \nmid a$ or $k \nmid b$.

Proof by Contrapositive:

Let $a, b, k \in \mathbb{Z}$ and assume that a, b are not both zero. If $k \mid a$ and $k \mid b$ then $k \mid \gcd(a, b)$.

Bézout's identity: Let $a, b \in \mathbb{Z}$ such that a and b are not both zero. Then there exists $x, y \in \mathbb{Z}$ such that $ax + by = \gcd(a, b)$.

Assume that $a,b\in\mathbb{Z}$ and assume that a,b are not both zero. Assume that $k\mid a$ and $k\mid b$, such that a=kc and b=kd for some $c,d\in\mathbb{Z}$. By Bézout's identity, we know that there exists $x,y\in\mathbb{Z}$ such that $ax+by=\gcd(a,b)$. So $\gcd(a,b)=(kc)x+(kd)y=k(cx+dy)$. Since $c,d,x,y\in\mathbb{Z}$, then $cx+dy=\ell$ for some $\ell\in\mathbb{Z}$, thus, $k\mid \ell$. Hence, $k\mid\gcd(a,b)$.

Gabriel Amador Zarza Page 4 97852387