

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11313476 A

(43) Date of publication of application: 09 . 11 . 99

(51) Int. Cl

H02K 41/03 H02K 1/12

(21) Application number: 10118358

(22) Date of filing: 28 . 04 . 98

(71) Applicant:

MATSUSHITA REFRIG CO LTD

(72) Inventor:

YAMAMOTO HIDEO SHIBUYA HIROMI

(54) LINEAR MOTOR

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a linear motor which is improved in motor efficiency and the manufacturing method which is simplified.

SOLUTION: A linear motor is constituted of prism-like inner yoke 1 and outer yoke 3 formed by laminating rectangular thin plates 2 having high magnetic permeability upon another, coils 12 wound around the central ones of three magnetic poles, so as to alternately form different magnetic poles in the axial direction 5 of the outer yoke 3, yoke blocks 10 respectively constituted by facing the surfaces of the outer yoke 3 having the magnetic poles to the inner yoke 1 through prescribed spaces, a plate-like base which holds the set of yoke blocks 10 in a facing state, and a mobile section which holds a pair of plate-like permanent magnets 14 and 15 in the spaces between the inner yoke 1 and outer yoke 3 at prescribed intervals in the axial direction, so that the directions of the magnetization of the magnets 14 and 15 are opposite to each other. Therefore, the core loss of the linear motor is reduced, and the motor efficiency of the motor is improved. In addition, the manufacture of the motor is simplified, and the manufacturing cost of the motor can

be also reduced.

COPYRIGHT: (C)1999,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-313476

(43)公開日 平成11年(1999)11月9日

(51) Int.Cl.⁶

酸別記号

FI

H02K 41/03

1/12

H 0 2 K 41/03

A

1/12

Α

審査請求 未請求 請求項の数12 〇L (全 11 頁)

(21)出願番号

特願平10-118358

(22)出願日

平成10年(1998) 4月28日

(71)出願人 000004488

松下冷機株式会社

大阪府東大阪市高井田本通4丁目2番5号

(72) 発明者 山本 秀夫

大阪府東大阪市髙井田本通4丁目2番5号

松下冷模株式会社内

(72)発明者 渋谷 浩洋

大阪府東大阪市高井田本通4丁目2番5号

松下冷機株式会社内

(74)代理人 弁理士 滝本 智之 (外1名)

(54) 【発明の名称】 リニアモータ

(57)【要約】

【課題】 モータ効率を向上し、製造の簡易化したリニアモータを提供する。

【解決手段】 略長方形状で透磁率が高い薄板2を積み 重ねて形成した角柱状のインナヨーク1及びアウタヨー ク3と、アウタヨーク3の軸方向5に異磁極を交互に形 成するように3個の磁極6,7,8の中央の磁極に巻き 付けたコイル12と、アウタヨーク3の磁極を有する面 をインナヨーク1に対向して所定空隙9を隔てて構成し たヨークブロック10と、1組のヨークブロック10を 対向させて保持する平板状のベースと、一対の平板状永 久磁石14,15を磁化の向きが逆向きになるように軸 方向に所定間隔を設けてインナヨーク1とアウタヨーク 3間の空隙9内に保持した可動部13とから構成してい る。従って、鉄損を低減し、モータ効率が向上すると共 に、モータの製造が簡易になり、コストも低減できる。 1 イ 2.4 薄 フ 3 を 3 を 5 9 で 10 コーク 12 か 12 か 14.15 18 軸受 18

【特許請求の範囲】

【請求項1】 略長方形状で透磁率が高い薄板を多数積 み重ねて形成した角柱状のインナヨークと、略長方形状 で透磁率が高い薄板を多数積み重ねて形成すると共に軸 方向にスロットを切り欠いたアウタョークと、前記アウ タョークの軸方向に異磁極を交互に形成するように3個 の磁極の中央の磁極に巻き付けたコイルと、前記アウタ ヨークの磁極を有する面をインナヨークに対向して所定 空隙を隔てて構成したヨークブロックと、1組のヨーク ブロックをインナヨーク側を所定間隔を設けて対向させ 10 て保持する平板状のベースと、両インナヨークの中心に 位置するようにベースに取り付けた軸受けと、前記イン ナョークとアウタヨークの対向する方向に磁化した一対 の平板状永久磁石を磁化の向きが逆向きになるように軸 方向に所定間隔を設けて前記インナョークとアウタョー ク間の空隙内に保持した可動部と、前記可動部と一体化 すると共に前記軸受けに挿入したシャフトから構成した リニアモータ。

【請求項2】 前記アウタヨークを3つの磁極を分割した3個のブロックから構成し、中央の磁極にコイルを挿入した後3個のブロックを合体した請求項1記載のリニアモータ。

【請求項3】 前記アウタヨークの磁極と反対面の角を 切り落とした請求項1記載のリニアモータ。

【請求項4】 前記ヨークブロックを保持するベースを 非磁性体で構成した請求項1記載のリニアモータ。

【請求項5】 前記ョークブロックを保持するベースを 非磁性体で且つ固有抵抗の高い素材で構成した請求項1 記載のリニアモータ。

【請求項6】 前記ベースに前記インナヨークとアウタ 30 ヨーク間の空隙幅に等しい幅の凸部を設け、インナヨーク及びアウタヨークを凸部に押し当てて固定した請求項1記載のリニアモータ。

【請求項7】 前記可動部を非磁性体で構成した請求項1記載のリニアモータ。

【請求項8】 前記可動部を非磁性体で且つ固有抵抗の 高い素材で構成した請求項1記載のリニアモータ。

【請求項9】 前記可動部を口型の一対の可動部ベースと、前記可動部ベースを支えて略立方体状に構成する複数の支柱と、略立方体状に構成された相対向する2面に 40 おいて、一対の可動部ベースに挟まれると共に所定間隔を設けて配置するためにスペーサを間に設けた一対の永久磁石と、前記インナヨーク間の空隙で可動部とシャフトを接続する支持部とから構成した請求項1記載のリニアモータ。

【請求項10】 前記インナョーク及びアウタョークの お互いに対向する面以外の面に密着した非磁性体からな る保持部材でインナョーク及びアウタョークを各々ベー スに固定した請求項6記載のリニアモータ。

【請求項11】 前記可動部ベースとスペーサを非磁性 50

体で且つ固有抵抗の高い素材で構成し、支持部を非磁性 体で構成した請求項9記載のリニアモータ。

【請求項12】 前記可動部ベース,支柱,スペーサ, 支持部を非磁性体で且つ固有抵抗の高いSUS等のネ ジ,ボルトで接続固定した請求項9記載のリニアモー タ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、可動磁石型のリニアモータに係わり、モータ効率の向上と製造の簡易化を 図るものである。

[0002]

【従来の技術】近年、リニアモータの開発が活発に行われつつある。従来から欧米では宇宙空間で用いるスターリングエンジン用のリニアモータが研究されていた。近年、米国SUNPOWER社は一般の環境下で用いるコンプレッサ用の可動磁石型リニアモータを開発した(Nicholas R. van der Walt、Reuven Unger:Linear compressors—amaturing technology、International Appliance Technical Conference, ppl -6, 1994)。

【0003】図8に従来のリニアモータの概要図を示す。リニアモータ100は、円筒状のインナヨーク101と、2個の磁極102,103を有するアウタヨーク104と、中心軸105の周りに巻いたコイル106と、円筒状の永久磁石107を有する可動子108より構成されている。

【0004】そして、コイル106に交流電流が供給されると、磁極102,103に軸方向に異磁極が交互に形成され、可動子108の永久磁石107との磁気的吸引,反発作用により、コイル106電流の大きさと永久磁石107の磁束密度に比例した推力が発生し、可動子108が交流電流の周波数に同期して往復動する。

[0005]

【発明が解決しようとする課題】モータの効率向上を阻害するのが渦電流損失,ヒステリシス損失等の鉄損である。渦電流損失は、ヨーク材の板厚の2乗に比例する特性を有しているため、ヨークを薄板を積層して構成することが有効である。しかし、従来のリニアモータの構成では、ヨークが円筒形状であり、製造において中心軸に向けて薄板を積層することが非常に困難であるという課題があった。

【0006】本発明は上記従来の課題を解消するものであり、鉄損の中の渦電流損失を低減し、モータ効率を向上すると共に、ヨークの製造が簡易なリニアモータを提供することを目的とする。

[0007]

【課題を解決するための手段】この課題を解決するため

に本発明のリニアモータは、略長方形状で透磁率が高い 薄板を多数積み重ねて形成したインナヨークと、略長方 形状で透磁率が高い薄板を多数積み重ねて形成すると共 に軸方向にスロットを切り欠いたアウタヨークと、前記 アウタヨークの軸方向に異磁極を交互に形成するように 3個の磁極の中央の磁極に巻き付けたコイルと、前記ア ウタヨークの磁極を有する面をインナヨークに対向して 所定空隙を隔てて構成したヨークブロックと、1組のヨ ークブロックをインナヨーク側を所定間隔を設けて対向 させて保持する平板状のベースと、前記インナヨークと アウタヨークの対向する方向に磁化した一対の平板状永 久磁石を磁化の向きが逆向きになるように軸方向に所定

【0008】これにより、インナヨーク,アウタヨークの鉄損を低減してモータ効率を向上すると共に、リニアモータの製造が簡易になる。

間隔を設けて前記インナヨークとアウタヨーク間の空隙

内に保持した可動部から構成している。

【0009】また、本発明は、前記アウタヨークを3つの磁極を分割した3個のブロックから構成し、中央の磁極にコイルを挿入した後3個のブロックを合体して構成している。

【0010】これにより、コイルの占積率が高まり、リニアモータが小型化できる。また、本発明は、前記アウタヨークの磁極と反対面の角を切り落とした構成である。

【0011】これにより、アウタヨークの不要な磁束が減少し、鉄損を低減してモータ効率を向上する。

【0012】また、本発明は、前記ヨークブロックを保持するベースを非磁性体で構成している。

【0013】これにより、ベースの鉄損を低減してモー 30 タ効率を向上する。また、本発明は、前記ヨークブロッ クを保持するベースを非磁性体で且つ固有抵抗の高い素 材で構成している。

【0014】これにより、ベースの鉄損を更に低減して モータ効率を向上する。また、本発明は、前記ベースに 前記インナヨークとアウタヨーク間の空隙幅に等しい幅 の凸部を設け、インナヨーク及びアウタヨークを凸部に 押し当てて固定して構成している。

【0015】これにより、インナョークとアウタョーク 間の空隙距離を精度良く確保できると共に、リニアモー 40 タの製造が簡易になる。

【0016】また、本発明は、前記可動部を非磁性体で構成している。これにより、可動部の鉄損を低減してモータ効率を向上する。

【0017】また、本発明は、前記可動部を非磁性体で且つ固有抵抗の高い素材で構成している。

【0018】これにより、可動部の鉄損を更に低減して モータ効率を向上する。また、本発明は、前記可動部を ロ型の一対の可動部ベースと、前記可動部ベースを支え て略立方体状に構成する複数の支柱と、略立方体状に構 50

成された相対向する2面において、一対の可動部ベースに挟まれると共に所定間隔を設けて配置するためにスペーサを間に設けた一対の永久磁石と、前記インナョーク間の空隙で可動部とシャフトを接続する支持部とから構成している。

【0019】これにより、可動部の強度が確保され、リニアモータの製造が簡易になる。また、本発明は、前記可動部ベースとスペーサを非磁性体で且つ固有抵抗の高い素材で構成し、支持部を非磁性体で構成している。

【0020】これにより、可動部の強度が確保され、リニアモータの製造が簡易になると共に、可動部の鉄損を 更に低減してモータ効率を向上する。

[0021]

【発明の実施の形態】本発明の請求項1に記載の発明 は、略長方形状で透磁率が高い薄板を多数積み重ねて形 成した角柱状のインナヨークと、略長方形状で透磁率が 高い薄板を多数積み重ねて形成すると共に軸方向にスロ ットを切り欠いたアウタヨークと、前記アウタヨークの 軸方向に異磁極を交互に形成するように3個の磁極の中 央の磁極に巻き付けたコイルと、前記アウタヨークの磁 極を有する面をインナヨークに対向して所定空隙を隔て て構成したヨークブロックと、1組のヨークブロックを インナヨーク側を所定間隔を設けて対向させて保持する 平板状のベースと、両インナョークの中心に位置するよ うにベースに取り付けた軸受けと、前記インナヨークと アウタョークの対向する方向に磁化した一対の平板状永 久磁石を磁化の向きが逆向きになるように軸方向に所定 間隔を設けて前記インナヨークとアウタヨーク間の空隙 内に保持した可動部と、前記可動部と一体化すると共に 前記軸受けに挿入したシャフトから構成したものであ り、インナヨーク、アウタヨークの鉄損を低減してモー タ効率を向上すると共に、リニアモータの製造が簡易に なるという作用を有する。

【0022】請求項2に記載の発明は、前記アウタヨークを3つの磁極を分割した3個のブロックから構成し、中央の磁極にコイルを挿入した後3個のブロックを合体して構成したものであり、コイルの占積率が高まり、リニアモータが小型化できるという作用を有する。

【0023】請求項3に記載の発明は、前記アウタヨークの磁極と反対面の角を切り落として構成したものであり、アウタヨークの不要な磁束が減少し、鉄損を低減してモータ効率を向上するという作用を有する。

【0024】請求項4に記載の発明は、前記ヨークブロックを保持するベースを非磁性体で構成したものであり、ベースの鉄損を低減してモータ効率を向上するという作用を有する。

【0025】請求項5に記載の発明は、前記ヨークブロックを保持するベースを非磁性体で且つ固有抵抗の高い素材で構成したものであり、ベースの鉄損を更に低減してモータ効率を向上するという作用を有する。

4

30

6

【0026】請求項6に記載の発明は、前記ベースに前記インナヨークとアウタヨーク間の空隙幅に等しい幅の凸部を設け、インナヨーク及びアウタヨークを凸部に押し当てて固定して構成したものであり、インナヨークとアウタヨーク間の空隙距離を精度良く確保できリニアモータの推力バラツキが低減できると共に、リニアモータの製造が簡易になるという作用を有する。

【0027】請求項7に記載の発明は、前記インナヨーク及びアウタヨークのお互いに対向する面以外の面に密着した非磁性体からなる保持部材でインナヨーク及びアウタヨークを各々ベースに固定して構成したものであり、インナヨークとアウタヨーク間の空隙距離を精度良く確保できると共に、リニアモータの製造が簡易になるという作用を有する。

【0028】請求項8に記載の発明は、前記可動部を非磁性体で構成したものであり、可動部の鉄損を低減してモータ効率を向上するという作用を有する。

【0029】請求項9に記載の発明は、前記可動部を非磁性体で且つ固有抵抗の高い素材で構成したものであり、可動部の鉄損を更に低減してモータ効率を向上するという作用を有する。

【0030】請求項10に記載の発明は、前記可動部を 口型の一対の可動部ベースと、前記可動部ベースを支え て略立方体状に構成する複数の支柱と、略立方体状に構 成された相対向する2面において、一対の可動部ベース に挟まれると共に所定間隔を設けて配置するためにスペ ーサを間に設けた一対の永久磁石と、前記インナヨーク 間の空隙で可動部とシャフトを接続する支持部とから構 成したものであり、可動部の強度が確保され、リニアモ ータの製造が簡易になるという作用を有する。

【0031】請求項11に記載の発明は、前記可動部ベースとスペーサを非磁性体で且つ固有抵抗の高い素材で構成し、支持部を非磁性体で構成したものであり、可動部の強度が確保され、リニアモータの製造が簡易になると共に、可動部の鉄損を更に低減してモータ効率を向上するという作用を有する。

【0032】請求項12に記載の発明は、前記可動部ベース,支柱,スペーサ,支持部を非磁性体で且つ固有抵抗の高いSUS等のネジ,ボルトで接続固定して構成したものであり、可動部の鉄損を更に低減してモータ効率 40を向上するという作用を有する。

[0033]

【実施例】以下、本発明の実施の形態について、図1から図20を用いて説明する。

【0034】(実施例1)図1は本発明によるリニアモータの第1実施例を示す平面図であり、図2は図1におけるA-A断面図である。

【0035】1はインナヨークであり、略長方形状で透 磁率の高い多数の薄板2を多数積み重ねて角柱状に形成 している。3はアウタヨークであり、略長方形状で透磁 50 率の高い多数の薄板 4 を多数積み重ねて角柱状に形成すると共に軸方向 5 にスロット 2 1, 2 2 を切り欠いて 3 つの磁極 6, 7, 8 を形成している。アウタヨーク 3 の磁極 6, 7, 8 を有する面をインナヨーク 1 に対向して所定空隙 9 を隔ててヨークブロック 1 0 を構成している。そして、1 組のヨークブロックをインナヨーク側を所定間隔を設けて対向させて平板状のベース 1 1 上に保持している。

【0036】アウタヨーク3の3つの磁極6,7,8に 異磁極を交互に形成するように、中央の磁極7の周りに コイル12が巻かれており、コイル12は2個のアウタ ヨーク3に個別に巻かれており、各々のコイル12は並 列に接続されている。

【0037】ここで、インナョーク1、アウタョーク3 を構成する多数の薄板2,4は無方向性の電磁鋼帯(新 日本製鐵製35H440等)を使用しており、薄板方向 の飽和磁束密度が高く、鉄損が低い特性を有していると 共に、表面は絶縁皮膜が施されている。

【0038】可動部13は、インナヨーク1とアウタヨーク3の対向する方向に磁化した一対の平板状永久磁石14,15と、永久磁石支持体16、シャフト17から構成している。永久磁石14,15はNd-Fe-B系の希土類磁石が望ましく、磁化の向きが交互に逆向きになるように軸方向に所定間隔を設けて永久磁石支持体16で固定され、インナヨーク1とアウタヨーク3間の空隙9内に配置されている。

【0039】シャフト17の往復動を円滑にする軸受18は、軸回転を規則すればどのような構成でも良いが、従来からあるリニアボールベアリング、含油メタル軸受等種々の構成が選択できる。

【0040】以上のように構成されたリニアモータにおいて、永久磁石15から発生した磁東19は、空隙9、インナヨーク1、空隙9、永久磁石14、アウタヨーク3、空隙9を通って永久磁石15に戻ると共に空隙9に静磁界を発生する。インナヨーク1、アウタヨーク3中では薄板2,4の平面内を循環する。

【0041】そして、コイル12に交流電流が供給されると、磁極6,7,8に軸方向に異磁極が交互に形成され、可動部13の永久磁石14,15との磁気的吸引,反発作用により、コイル12電流の大きさと永久磁石14,15の磁東密度に比例した推力が発生し、可動部13と共にシャフト17が交流電流の周波数に同期して往復動する。

【0042】ここで、永久磁石14,15から発生した磁束19は、インナヨーク1、アウタヨーク3中では薄板2,4の平面内を循環する。磁束19が薄板2,4の平面内を循環する時に、磁束19と交差する方向に渦電流20を発生しようとする。これは磁束密度の2乗に比例しヨーク材の板厚の2乗に比例する電流である。インナヨーク1及びアウタヨーク3を透磁率が高く表面が絶

40

縁された多数の薄板 2 を多数積み重ねて角柱状に形成したことにより、渦電流の発生を殆ど無くすことができ、 鉄損が大幅に低減する。従って、モータ効率を向上する ことができる。

【0043】また、インナヨーク1及びアウタヨーク3を薄板2,4を単純に多数積み重ねて角柱状に形成したことにより、リニアモータのヨークの製造が非常に簡易になる。

【0044】また、Nd-Fe-B系の希土類磁石は加工が難しく、円筒形状は加工が複雑になるためコストが高い。加工の単純な平板状永久磁石14,15としたことにより、磁石の製造が簡易になり、磁石コストの低減、即ちモータの低コスト化が図れる。

【0045】また、以上の説明ではアウタヨーク3にコイル12を巻いた例で説明したが、インナョーク1にコイル12を巻いた構成も可能である。

【0046】また、以上の説明では磁極が3個の例で説明したが、ヨーク及び磁石、コイルを軸方向に更に直列接続した構成も可能である。

【0047】以上のように本実施例のリニアモータは、 略長方形状で透磁率が高い薄板2を多数積み重ねて形成 した角柱状のインナヨーク1と、略長方形状で透磁率が 高い薄板4を多数積み重ねて形成すると共に軸方向にス ロットを切り欠いたアウタョーク3と、前記アウタョー ク3の軸方向5に異磁極を交互に形成するように3個の 磁極6,7,8の中央の磁極に巻き付けたコイル12 と、前記アウタヨーク3の磁極を有する面をインナヨー ク1に対向して所定空隙9を隔てて構成したヨークブロ ック10と、1組のヨークブロック10をインナヨーク 1側を所定間隔を設けて対向させて保持する平板状のベ 30 ースと、両インナョークの中心に位置するようにベース 11に取り付けた軸受け18と、前記インナヨーク1と アウタョーク3の対向する方向に磁化した一対の平板状 永久磁石14,15を磁化の向きが逆向きになるように 軸方向に所定間隔を設けて前記インナヨーク1とアウタ ヨーク3間の空隙9内に保持した可動部13と、前記可 動部13と一体化すると共に前記軸受け18に挿入した シャフト17から構成している。

【0048】従って、鉄損の中の渦電流損失を低減し、 モータ効率が向上すると共に、モータの製造が簡易にな り、コストも低減できる。

【0049】(実施例2)図3は本発明の第2実施例によるアウタョークの分解図である。リニアモータとしての全体構成は、前述の図1,図2と同様である。

【0050】図3において、アウタヨーク3は透磁率の高い多数の薄板4を多数積み重ねて形成すると共に、3つの磁極6,7,8を分割した3個のブロック23,24,25から構成している。中央のブロック24に別で巻いたコイル26を挿入した後、3個のブロックを溶接,勘合,カシメ等で合体する。

【0051】以上のように構成されたアウタヨーク3において、コイル26は別で機械を使って整列巻きで巻くため、占積率が向上するので、巻き数一定条件下でアウタヨーク3が小型になり、リニアモータが小型化できる。

【0052】尚、以上の説明ではヨークブロック10が 2個の構成で説明したが、ヨークブロック10は複数個 であればいくつでも良い。

【0053】また、インナョーク1、アウタョーク3が 円筒形状でも良い。以上のように本実施例のリニアモー タは、アウタョーク3を3つの磁極6,7,8を分割し た3個のブロック23,24,25から構成し、中央の 磁極7にコイル26を挿入した後3個のブロックを合体 して構成している。

【0054】従って、コイル12の占積率が高まり、リニアモータが小型化できる。(実施例3)図4は本発明の第3実施例によるアウタヨークの斜視図である。リニアモータとしての全体構成は、前述の図1,図2と同様である。

20 【0055】図4において、アウタョーク3は磁極6, 7,8と反対面の上下の角40,41を切り落として構成している。

【0056】以上のように構成されたリニアモータにおいて、永久磁石15から発生した磁東19は、空隙9、インナヨーク1、空隙9、永久磁石14、アウタヨーク3、空隙9を通って永久磁石15に戻ると共に空隙9に静磁界を発生する。インナヨーク1、アウタヨーク3中では薄板2,5の平面内を循環する。

【0057】ここで、アウタヨーク3においては磁束27の主たる流れはアウタヨーク3の内部から中心付近を流れるので、アウタヨーク3の上下の角28,29を切り落としたことにより磁束の流れを阻害することはない。中心付近の磁束が1.0Tの時、通常上下の角28,29における磁束は0.1T以下であることを確認している。また、上下の角28,29が存在すれば不要な鉄損を生じるものであり、上下の角28,29を切り落としたことによりアウタヨーク3で発生する鉄損を更に低減する効果がある。

【0058】尚、以上の説明ではヨークブロック10が 2個の構成で説明したが、ヨークブロック10は複数個 であればいくつでも良い。

【0059】また、インナョーク1、アウタョーク3が円筒形状でも良い。以上のように本実施例のリニアモータは、アウタョーク3の磁極と反対面の角28,29を切り落として構成している。

【0060】従って、アウタヨーク3の不要な磁束が減少し、鉄損を低減してモータ効率が向上する。

【0061】(実施例4)本発明の第4実施例のリニアモータの構成は、前述の図1、図2と同様である。

50 【0062】図1,図2において、インナヨーク1とア

8

ウタヨーク3を固定するためのベース11を非磁性体で 構成している。具体的には、比透磁率が1に近い素材が 望ましく、アルミ等が適当である。

【0063】以上のように構成されたリニアモータにおいて、永久磁石15から発生した磁東19は、空隙9、インナヨーク1、空隙9、永久磁石14、アウタヨーク3、空隙9を通って永久磁石15に戻ると共に空隙9に静磁界を発生する。インナヨーク1、アウタヨーク3中では薄板2,4の平面内を循環する。

【0064】インナヨーク1及びアウタヨーク3はベー 10 ス11と接しているが、ベース11を非磁性体で構成し ているので、インナヨーク1及びアウタヨーク3を流れ る磁束がベース11まで循環することはなく、ベース1 1において不要な渦電流による鉄損を発生することがな い。

【0065】尚、以上の説明ではヨークブロック10が2個の構成で説明したが、ヨークブロック10は複数個であればいくつでも良い。

【0066】また、インナョーク1、アウタョーク3が 円筒形状でも良い。以上のように本実施例のリニアモー 20 タは、ヨークブロック10を保持するベース11を非磁 性体で構成している。

【0067】従って、ベース11で鉄損を発生せずモータ効率を向上する。

(実施例5)本発明の第5実施例のリニアモータの構成は、前述の図1,図2と同様である。

【0068】図1,図2において、インナヨーク1とアウタヨーク3を固定するためのベース11を非磁性体で且つ固有抵抗の高い素材で構成している。具体的には、比透磁率が1に近く固有抵抗がアルミの10倍以上は大 30きい素材が望ましく、SUS或いはセラミック等が適当である。

【0069】以上のように構成されたリニアモータにおいて、永久磁石15から発生した磁東19は、空隙9、インナヨーク1、空隙9、永久磁石14、アウタヨーク3、空隙9を通って永久磁石15に戻ると共に空隙9に静磁界を発生する。インナヨーク1、アウタヨーク3中では薄板2、4の平面内を循環する。

【0070】インナヨーク1及びアウタヨーク3はベース11と接しているが、ベース11を非磁性体で且つ固 40 有抵抗の高い素材で構成しているので、インナヨーク1 及びアウタヨーク3を流れる磁束がベース11まで循環することはなく、ベース11において不要な渦電流による鉄損を発生することがない。

【0071】また、ベース11の固有抵抗が高いので、 インナヨーク1及びアウタヨーク3で発生した渦電流が ベース11へ漏洩しにくく、ベース11において不要な 渦電流による鉄損を発生することがない。

【0072】尚、以上の説明ではヨークブロック10が ラツキが低減されるため、磁束19のバラツキが低減さ 2個の構成で説明したが、ヨークブロック10は複数個 50 れ、リニアモータの推力の安定度が向上する。併せて、

であればいくつでも良い。

【0073】また、インナヨーク1、アウタヨーク3が 円筒形状でも良い。以上のように本実施例のリニアモー タは、ヨークブロック10を保持するベース11を非磁 性体で且つ固有抵抗の高い素材で構成している。

【0074】従って、ベース11で鉄損を発生せずモータ効率を向上する。

(実施例6)図5は本発明の第6実施例によるリニアモータの断面図である。

【0075】1はインナヨークであり、略長方形状で透磁率の高い多数の薄板2を多数積み重ねて角柱状に形成している。3はアウタヨークであり、略長方形状で透磁率の高い多数の薄板4を多数積み重ねて角柱状に形成すると共に軸方向5に3つの磁極6,7,8を有している。アウタヨーク3の磁極6,7,8を有する面をインナヨーク1に対向して所定空隙9を隔ててヨークブロック10を構成している。そして、1組のヨークブロックをインナヨーク側を所定間隔を設けて対向させて平板状のベース11上に保持している。

【0076】ベース11にはインナヨーク1とアウタヨーク3間の空隙9の幅に等しい幅の凸部30を設け、インナヨーク1及びアウタヨーク3を凸部30に押し当てて固定して構成している。

【0077】アウタヨーク3の3つの磁極6,7,8に 異磁極を交互に形成するように、中央の磁極7の周りに コイル12が巻かれており、コイル12は2個のアウタ ヨーク3に個別に巻かれており、各々のコイル12は並 列に接続されている。

【0078】可動部13は、インナヨーク1とアウタヨーク3の対向する方向に磁化した一対の平板状永久磁石14,15と、永久磁石支持体16、シャフト17から構成している。永久磁石14,15はNd-Fe-B系の希土類磁石が望ましく、磁化の向きが交互に逆向きになるように軸方向に所定間隔を設けて永久磁石支持体16で固定され、インナヨーク1とアウタヨーク3間の空隙9内に配置されている。

【0079】以上のように構成されたリニアモータにおいて、永久磁石15から発生した磁東19は、空隙9、インナヨーク1、空隙9、永久磁石14、アウタヨーク3、空隙9を通って永久磁石15に戻ると共に空隙9に静磁界を発生する。インナヨーク1、アウタヨーク3中では薄板2、4の平面内を循環する。

【0080】ここで、ベース11にインナヨーク1とアウタヨーク3間の空隙9の幅に等しい幅の凸部30を設け、インナヨーク1及びアウタヨーク3を凸部30に押し当てて固定して構成したことにより、インナヨーク1とアウタヨーク3間の空隙9の距離を精度良く確保できる。永久磁石14,15による磁束19の磁気回路のバラツキが低減されるため、磁束19のバラツキが低減され、リニアモータの推力の安定度が向上する。併せて、

(7)

インナヨーク1とアウタヨーク3間の空隙9の距離の精 度管理が容易になりリニアモータの製造が簡易になる。

【0081】以上のように本実施例のリニアモータは、ベース11にインナヨーク1とアウタヨーク3間の空隙9の幅に等しい幅の凸部30を設け、インナヨーク1及びアウタヨーク3を凸部30に押し当てて固定して構成している。

【0082】従って、インナョーク1とアウタョーク3 間の空隙9の距離を精度良く確保できリニアモータの推 力のバラツキが低減できると共に、リニアモータの製造 10 が簡易になる。

【0083】(実施例7)図6は本発明の第7実施例によるリニアモータの断面図である。

【0084】図6において、インナヨーク1及びアウタョーク3のお互いに対向する面以外の面に密着した非磁性体からなる保持部材31,32でインナヨーク1及びアウタヨーク3を各々ベース11に固定して、且つインナヨーク1及びアウタヨーク3を凸部30に押し当てて構成している。

【0085】リニアモータを組む際においては、インナ 20 ヨーク1及びアウタヨーク3を凸部30に押し当てて保持部材30,31でボルト締め等の方法で各々ベース11に固定する。その後、軸受け18をベースに取り付け、可動部13と一体化したシャフト17を、シャフト17を軸受け18に挿入すると同時に可動部13をインナヨーク1とアウタヨーク3間の空隙9に挿入して組み立てる。

【0086】以上のように構成されたリニアモータにおいて、インナヨーク1とアウタヨーク3間の空隙9の距離を精度良く確保できる。また、リニアモータを組む際30において、インナヨーク1及びアウタヨーク3は各々ベース11に予め固定しているので、永久磁石14,15の磁力により、インナヨーク1及びアウタヨーク3が傾いたりすることはなく、リニアモータの製造が簡易になる。

【0087】以上のように本実施例のリニアモータは、インナヨーク1及びアウタヨーク3のお互いに対向する面以外の面に密着した非磁性体からなる保持部材31,32でインナヨーク1及びアウタヨーク3を各々ベース11に固定して構成している。

【0088】従って、インナョーク1とアウタョーク3 間の空隙距離を精度良く確保できると共に、リニアモー タの製造が簡易になる。

【0089】 (実施例8) 本発明の第8実施例のリニアモータの構成は、前述の図1,図2と同様である。

【0090】図1,図2において、可動部13は、インナヨーク1とアウタヨーク3の対向する方向に磁化した一対の平板状永久磁石14,15と、永久磁石支持体16、シャフト17から構成している。そして、可動部13の永久磁石支持体16を非磁性体で構成している。具 50

体的には、比透磁率が1に近い素材が望ましく、アルミ 等が適当である。

【0091】以上のように構成されたリニアモータにおいて、永久磁石15から発生した磁束19は、空隙9、インナヨーク1、空隙9、永久磁石14、アウタヨーク3、空隙9を通って永久磁石15に戻ると共に空隙9に静磁界を発生する。インナヨーク1、アウタヨーク3中では薄板2、4の平面内を循環する。

【0092】磁東19は一部可動部支持体16をも通過 しようとするが、可動部支持体16を非磁性体で構成し ているので、磁東19は可動部支持体16を殆ど通過す ることなく、可動部支持体16において不要な渦電流に よる鉄損を発生することがない。

【0093】以上のように本実施例のリニアモータは、 可動部13を非磁性体で構成したものである。

【0094】従って、可動部の鉄損を低減してモータ効率を向上する。

(実施例9)本発明の第9実施例のリニアモータの構成は、前述の図1,図2と同様である。

【0095】図1,図2において、可動部13は、インナヨーク1とアウタヨーク3の対向する方向に磁化した一対の平板状永久磁石14,15と、永久磁石支持体16、シャフト17から構成している。そして、可動部13の永久磁石支持体16を非磁性体で且つ固有抵抗の高い素材で構成している。具体的には、比透磁率が1に近く固有抵抗がアルミの10倍以上は大きい素材が望ましい。また、可動部は軽量であることも求められるので、軽量セラミック、ヤング率の高い樹脂材料等が適当である。

【0096】以上のように構成されたリニアモータにおいて、永久磁石15から発生した磁東19は、空隙9、インナヨーク1、空隙9、永久磁石14、アウタヨーク3、空隙9を通って永久磁石15に戻ると共に空隙9に静磁界を発生する。インナヨーク1、アウタヨーク3中では薄板2,4の平面内を循環する。

【0097】磁東19は一部可動部支持体16をも通過 しようとするが、可動部支持体16を非磁性体で構成し ているので、磁東19は可動部支持体16を殆ど通過す ることなく、可動部支持体16において不要な渦電流に よる鉄損を発生することがない。

【0098】また、可動部支持体16の固有抵抗が高いので、磁束19が一部可動部支持体16を通過したとしても鉄損を発生することがない。

【0099】以上のように本実施例のリニアモータは、 可動部13を非磁性体で且つ固有抵抗の高い素材で構成 している。

【0100】従って、可動部の鉄損を更に低減してモータ効率を向上する。

(実施例10)図7は本発明の第10実施例による可動 部の斜視図である。リニアモータとしての全体構成は、

(8)

前述の図1、図2と同様である。

【0101】図7において、可動部13は口型の一対の可動部ベース33,34と、前記可動部ベース33,3 4を支えて略立方体状に構成する複数の支柱35と、略立方体状に構成された相対向する2面36,37において、一対の可動部ベース33,34に挟まれると共に所定間隔を設けて配置するためにスペーサ38を間に設けた一対の永久磁石14,15と、両インナヨーク1間の空隙で可動部13とシャフト17を接続する支持部39とから構成している。

【0102】以上のように構成された可動部は構造的な強度が確保され、且つ重量も軽いものであり、インナヨーク1とアウタヨーク3間の空隙9内に、一対の平板状永久磁石14,15を軸方向に所定間隔を設けて精度良く保持できるものである。また、可動部13とシャフト17を接続する支持部39を両インナヨーク1間の空隙に設けているので、可動部が小型になる。

【0103】以上のように本実施例のリニアモータは、可動部13を口型の一対の可動部ベース33,34と、前記可動部ベース33,34を支えて略立方体状に構成する複数の支柱35と、略立方体状に構成された相対向する2面36,37において、一対の可動部ベース33,34に挟まれると共に所定間隔を設けて配置するためにスペーサ38を間に設けた一対の永久磁石14,15と、前記インナヨーク1間の空隙で可動部13とシャフト17を接続する支持部39とから構成している。

【0104】従って、可動部の強度が確保され、リニア モータの製造が簡易になるという作用を有する。

【0105】(実施例11)本発明の第11実施例の可動部の構成は、前述の図7と同様であり、リニアモータとしての全体構成も、前述の図1,図2と同様である。

【0106】図7において、可動部13は口型の一対の可動部ベース33,34と、前記可動部ベース33,3 4を支えて略立方体状に構成する複数の支柱35と、略立方体状に構成された相対向する2面36,37において、一対の可動部ベース33,34に挟まれると共に所定間隔を設けて配置するためにスペーサ38を間に設けた一対の永久磁石14,15と、両インナヨーク1間の空隙で可動部13とシャフト17を接続する支持部39とから構成している。

【0107】ここで、永久磁石14,15に接する可動部ベース33,34とスペーサ38を非磁性体で且つ固有抵抗の高い素材で構成している。具体的には、比透磁率が1に近く固有抵抗がアルミの10倍以上は大きい素材が望ましい。また、可動部は軽量であることも求められるので、軽量セラミック、ヤング率の高い樹脂材料等が適当である。

【0108】また、永久磁石14,15に接しない支持部39については、比透磁率が1に近いアルミ等の素材が望ましい。

【0109】以上のように構成されたリニアモータにおいて、永久磁石15から発生した磁東19は、空隙9、インナヨーク1、空隙9、永久磁石14、アウタヨーク3、空隙9を通って永久磁石15に戻ると共に空隙9に静磁界を発生する。インナヨーク1、アウタヨーク3中では薄板2、4の平面内を循環する。

【0110】磁東19は一部可動部ベース33,34、スペーサ38、支持部39をも通過しようとするが、可動部ベース33,34、スペーサ38、支持部39を非磁性体で構成しているので、磁東19は可動部ベース33,34、スペーサ38、支持部39を殆ど通過することなく、可動部ベース33,34、スペーサ38、支持部39において不要な渦電流による鉄損を発生することがない。

【0111】また、永久磁石14,15に接する可動部ベース33,34、スペーサ38の固有抵抗が高いので、磁束19が一部可動部支持体16を通過したとしても鉄損を発生することがない。

【0112】以上のように本実施例のリニアモータは、 可動部ベース33,34とスペーサ38を非磁性体で且 つ固有抵抗の高い素材で構成し、支持部を非磁性体で構 成している。

【0113】従って、可動部の強度が確保され、リニア モータの製造が簡易になると共に、可動部の鉄損を更に 低減してモータ効率を向上するという作用を有する。

【0114】(実施例12)本発明の第12実施例の可動部の構成は、前述の図7と同様であり、リニアモータとしての全体構成も、前述の図1,図2と同様である。

【0115】図7において、可動部13は口型の一対の可動部ベース33,34と、前記可動部ベース33,3 4を支えて略立方体状に構成する複数の支柱35と、略立方体状に構成された相対向する2面36,37において、一対の可動部ベース33,34に挟まれると共に所定間隔を設けて配置するためにスペーサ38を間に設けた一対の永久磁石14,15と、両インナヨーク1間の空隙で可動部13とシャフト17を接続する支持部39とから構成している。

【0116】ここで、可動部ベース33,34、支柱35、スペーサ38、支持部39の接続固定に、非磁性体で且つ固有抵抗の高いSUS等のネジ,ボルトを使用している。

【0117】以上のように構成された可動部では、鉄損を更に低減する。以上のように本実施例のリニアモータは、可動部ベース33,34、支柱35、スペーサ38、支持部39を非磁性体で且つ固有抵抗の高いSUS等のネジ,ボルトで接続固定して構成している。

【0118】従って、可動部の鉄損を更に低減してモータ効率を向上するという作用を有する。

[0119]

50 【発明の効果】以上説明したように請求項1に記載の発

々ベースに固定して構成したことにより、インナョーク とアウタョーク間の空隙距離を精度良く確保できると共 に、リニアモータの製造が簡易になる。

16

【0126】また、請求項8に記載の発明は、請求項1 記載リニアモータにおいて、可動部を非磁性体で構成し たことにより、可動部の鉄損を低減してモータ効率を向 上する。

【0127】また、請求項9に記載の発明は、請求項1 記載リニアモータにおいて、可動部を非磁性体で且つ固 有抵抗の高い素材で構成したことにより、可動部の鉄損 を更に低減してモータ効率を向上する。

【0128】また、請求項10に記載の発明は、請求項 1記載リニアモータにおいて、可動部を口型の1組の可 動部上下ベースと、前記可動部上下ベースを支えて略立 方体状に構成する複数の支柱と、前記一対の永久磁石を 所定間隔を設けて配置するために永久磁石間に設けたス ペーサと、両インナョーク間の空隙で可動部とシャフト を接続する支持部とから構成したことにより、可動部の 強度が確保され、リニアモータの製造が簡易になる。

【0129】また、請求項11に記載の発明は、請求項 10記載リニアモータにおいて、可動部ベースとスペー サを非磁性体で且つ固有抵抗の高い素材で構成し、支持 部を非磁性体で構成したことにより、可動部の強度が確 保され、リニアモータの製造が簡易になると共に、可動 部の鉄損を更に低減してモータ効率を向上する。

【0130】また、請求項12に記載の発明は、請求項 10記載リニアモータにおいて、前記可動部ベース,支 柱,スペーサ,支持部を非磁性体で且つ固有抵抗の高い SUS等のネジ、ボルトで接続固定して構成したことに より、可動部の鉄損を更に低減してモータ効率を向上す る。

【図面の簡単な説明】

30

【図1】本発明の第1実施例のリニアモータの断面図

【図2】図1におけるA-A断面図

【図3】本発明の第2実施例のアウタヨークの分解図

【図4】本発明の第3実施例のリニアモータの斜視図

【図5】本発明の第6実施例のリニアモータの断面図

【図6】本発明の第7実施例のリニアモータの断面図

【図7】本発明の第10実施例の可動部の斜視図 【図8】従来例のリニアモータの断面図

【符号の説明】

- 1 インナヨーク
- 2, 4 薄板
- 3 アウタヨーク
- 5 軸
- 9 空隙
- 10 ヨークブロック
- 12 コイル
- 14,15 永久磁石

明は、略長方形状で透磁率が高い薄板を多数積み重ねて 形成した角柱状のインナヨークと、略長方形状で透磁率 が高い薄板を多数積み重ねて形成すると共に軸方向にス ロットを切り欠いたアウタョークと、前記アウタョーク の軸方向に異磁極を交互に形成するように3個の磁極の 中央の磁極に巻き付けたコイルと、前記アウタョークの 磁極を有する面をインナヨークに対向して所定空隙を隔 てて構成したヨークブロックと、1組のヨークブロック をインナヨーク側を所定間隔を設けて対向させて保持す る平板状のベースと、両インナョークの中心に位置する ようにベースを取り付けた軸受けと、前記インナヨーク とアウタヨークの対向する方向に磁化した一対の平板状 永久磁石を磁化の向きが逆向きになるように軸方向に所 定間隔を設けて前記インナヨークとアウタヨーク間の空 隙内に保持した可動部と、前記可動部と一体化すると共 に前記軸受けに挿入したシャフトから構成したことによ り、インナヨーク、アウタヨークの鉄損を低減してモー タ効率を向上すると共に、リニアモータの製造が簡易に なる。

【0120】また、請求項2に記載の発明は、請求項1 記載リニアモータにおいて、アウタヨークを3つの磁極 を分割した3個のブロックから構成し、中央の磁極にコ イルを挿入した後3個のブロックを合体して構成したこ とにより、コイルの占積率が高まり、リニアモータが小 型化できるという作用を有する。

【0121】また、請求項3に記載の発明は、請求項1 記載リニアモータにおいて、アウタョークの磁極と反対 面の角を切り落として構成したことにより、アウタヨー クの不要な磁束が減少し、鉄損を低減してモータ効率を 向上する。

【0122】また、請求項4に記載の発明は、請求項1 記載リニアモータにおいて、ヨークブロックを保持する ベースを非磁性体で構成したことにより、ベースの鉄損 を低減してモータ効率を向上する。

【0123】また、請求項5に記載の発明は、請求項1 記載リニアモータにおいて、ヨークブロックを保持する ベースを非磁性体で且つ固有抵抗の高い素材で構成した ことにより、ベースの鉄損を更に低減してモータ効率を 向上する。

【0124】また、請求項6に記載の発明は、請求項1 40 記載リニアモータにおいて、ベースに前記インナヨーク とアウタョーク間の空隙幅に等しい幅の凸部を設け、イ ンナョーク及びアウタョークを凸部に押し当てて固定し て構成したことにより、インナヨークとアウタヨーク間 の空隙距離を精度良く確保できると共に、リニアモータ の製造が簡易になる。

【0125】また、請求項7に記載の発明は、請求項6 記載リニアモータにおいて、インナョーク及びアウタョ ークのお互いに対向する面以外の面に密着した非磁性体 からなる保持部材でインナヨーク及びアウタヨークを各 50 17 シャフト (10)

18 軸受け

【図1】

17

1 インナヨーク 2.4 薄板 3 アウタヨーク 5 軸 9 空間 フロック 12 コイル 14.15 永々フト 18 軸受け

18

25

【図4】

