Zhen Huan

University of Illinois at Urbana-Champaign

April 1, 2017

Overview

Plan.

- The construction of quasi-elliptic cohomology
- The power operation
- The orthogonal *G*-spectra

An old idea of Witten

[Landweber]

The elliptic cohomology of a space X is related to the \mathbb{T} -equivariant K-theory of $LX=\mathbb{C}^{\infty}(S^1,X)$ with the circle \mathbb{T} acting on LX by rotating loops.

It's surprisingly difficult to make this precise.

Why?

In application, one needs to consider the case that a group G acts on X. In this case the loop space LX has rich structures as an orbifold.

An old idea of Witten

[Landweber]

The elliptic cohomology of a space X is related to the \mathbb{T} -equivariant K-theory of $LX=\mathbb{C}^{\infty}(S^1,X)$ with the circle \mathbb{T} acting on LX by rotating loops.

It's surprisingly difficult to make this precise.

Why?

In application, one needs to consider the case that a group G acts on X. In this case the loop space LX has rich structures as an orbifold.

An old idea of Witten

[Landweber]

The elliptic cohomology of a space X is related to the \mathbb{T} -equivariant K-theory of $LX=\mathbb{C}^{\infty}(S^1,X)$ with the circle \mathbb{T} acting on LX by rotating loops.

It's surprisingly difficult to make this precise.

Why?

In application, one needs to consider the case that a group G acts on X. In this case the loop space LX has rich structures as an orbifold.

An old idea of Witten

[Landweber]

The elliptic cohomology of a space X is related to the \mathbb{T} -equivariant K-theory of $LX=\mathbb{C}^{\infty}(S^1,X)$ with the circle \mathbb{T} acting on LX by rotating loops.

It's surprisingly difficult to make this precise.

Why?

In application, one needs to consider the case that a group G acts on X. In this case the loop space LX has rich structures as an orbifold.

Bibundles \sim "bimodules" in geometry

Bibundles combine several widely used notions, including smooth maps, Lie homomorphisms, and principal bundles.

A bibundle from \mathbb{H} to \mathbb{G}

Schommer-Pries] [Lerman

- a smooth manifold P together with
 - the structure maps:
 - $\tau: P \longrightarrow \mathbb{G}_0$:

- a surjective submersion $\sigma: P \longrightarrow \mathbb{H}_0$.
- ullet The action maps in $Man_{G_0 \times H_0}$
 - $\mathbb{G}_{1_s} \times_{\tau} P \longrightarrow P$;

$$\bullet \ P_{\sigma} \times_{t} \mathbb{H}_{1} \longrightarrow P$$

•
$$g_1 \cdot (g_2 \cdot p) = (g_1 g_2) \cdot p$$
; • $(p \cdot h_1) \cdot h_2 = p \cdot (h_1 h_2)$; • $g \cdot (p \cdot h) = (g \cdot p) \cdot h$

- $p \cdot u_H(\sigma(p)) = p$ and $u_G(\tau(p)) \cdot p = p$ for all $p \in P$.
- $\bullet \ \mathbb{G}_{1_S} \times_{_T} P \longrightarrow P_{_{\sigma}} \times_{_{\sigma}} P \qquad \qquad (g,p) \mapsto (g \cdot p,p) \text{ is an isomorphism}.$

Bibundles ~ "bimodules" in geometry

Bibundles combine several widely used notions, including smooth maps, Lie homomorphisms, and principal bundles.

A bibundle from \mathbb{H} to \mathbb{G}

Schommer-Pries] [Lerman

a smooth manifold P together with

- the structure maps:
 - $\tau: P \longrightarrow \mathbb{G}_0$;

- a surjective submersion $\sigma: P \longrightarrow \mathbb{H}_0$.
- The action maps in $Man_{G_0 \times H_0}$
 - $\mathbb{G}_{1_s} \times_{\tau} P \longrightarrow P$;

$$\bullet \ P_{\sigma} \times_{t} \mathbb{H}_{1} \longrightarrow P$$

•
$$g_1 \cdot (g_2 \cdot p) = (g_1 g_2) \cdot p$$
; • $(p \cdot h_1) \cdot h_2 = p \cdot (h_1 h_2)$; • $g \cdot (p \cdot h) = (g \cdot p) \cdot h$

- $p \cdot u_H(\sigma(p)) = p$ and $u_G(\tau(p)) \cdot p = p$ for all $p \in P$.
- $\bullet \ \mathbb{G}_{1_S} \times_{_T} P \longrightarrow P_{_{\sigma}} \times_{_{\sigma}} P \qquad \qquad (g,p) \mapsto (g \cdot p,p) \text{ is an isomorphism}.$

Bibundles ~ "bimodules" in geometry

Bibundles combine several widely used notions, including smooth maps, Lie homomorphisms, and principal bundles.

A bibundle from \mathbb{H} to \mathbb{G}

[Schommer-Pries] [Lerman]

- a smooth manifold P together with
 - the structure maps:
 - $\tau: P \longrightarrow \mathbb{G}_0$;

- a surjective submersion $\sigma: P \longrightarrow \mathbb{H}_0$.
- The action maps in $Man_{G_0 \times H_0}$
 - $\bullet \ \mathbb{G}_{1_{S}} \times_{\tau} P \longrightarrow P;$

$$\bullet \ P_{\sigma} \times_{t} \mathbb{H}_{1} \longrightarrow P$$

•
$$g_1 \cdot (g_2 \cdot p) = (g_1 g_2) \cdot p$$
; • $(p \cdot h_1) \cdot h_2 = p \cdot (h_1 h_2)$; • $g \cdot (p \cdot h) = (g \cdot p) \cdot h$

- $p \cdot u_H(\sigma(p)) = p$ and $u_G(\tau(p)) \cdot p = p$ for all $p \in P$.
- $\mathbb{G}_{1_S} \times_{\tau} P \longrightarrow P_{\sigma} \times_{\sigma} P$ $(g, p) \mapsto (g \cdot p, p)$ is an isomorphism.

Bibundles ~ "bimodules" in geometry

Bibundles combine several widely used notions, including smooth maps, Lie homomorphisms, and principal bundles.

A bibundle from \mathbb{H} to \mathbb{G}

[Schommer-Pries] [Lerman]

- a smooth manifold P together with
 - the structure maps:
 - $\tau: P \longrightarrow \mathbb{G}_0$;

- a surjective submersion $\sigma: P \longrightarrow \mathbb{H}_0$.
- The action maps in $Man_{G_0 \times H_0}$
 - $\mathbb{G}_{1} \times_{\tau} P \longrightarrow P$;

$$\bullet \ P_{\sigma} \times_{t} \mathbb{H}_{1} \longrightarrow P$$

- $g_1 \cdot (g_2 \cdot p) = (g_1g_2) \cdot p$; $(p \cdot h_1) \cdot h_2 = p \cdot (h_1h_2)$; $g \cdot (p \cdot h) = (g \cdot p) \cdot h$
- $p \cdot u_H(\sigma(p)) = p$ and $u_G(\tau(p)) \cdot p = p$ for all $p \in P$.
- $\mathbb{G}_{1_s} \times_{\tau} P \longrightarrow P_{\sigma} \times_{\sigma} P$ $(g, p) \mapsto (g \cdot p, p)$ is an isomorphism.

Bibundles \sim "bimodules" in geometry

Bibundles combine several widely used notions, including smooth maps, Lie homomorphisms, and principal bundles.

A bibundle from \mathbb{H} to \mathbb{G}

[Schommer-Pries] [Lerman]

- a smooth manifold P together with
 - the structure maps:
 - $\tau: P \longrightarrow \mathbb{G}_0$;

- a surjective submersion $\sigma: P \longrightarrow \mathbb{H}_0$.
- The action maps in $Man_{G_0 \times H_0}$
 - $\mathbb{G}_{1_s} \times_{\tau} P \longrightarrow P$;

$$\bullet P_{\sigma} \times_{t} \mathbb{H}_{1} \longrightarrow P$$

•
$$g_1 \cdot (g_2 \cdot p) = (g_1g_2) \cdot p$$
; • $(p \cdot h_1) \cdot h_2 = p \cdot (h_1h_2)$; • $g \cdot (p \cdot h) = (g \cdot p) \cdot h$

- $p \cdot u_H(\sigma(p)) = p$ and $u_G(\tau(p)) \cdot p = p$ for all $p \in P$.
- $\bullet \ \mathbb{G}_{1_{S} \times_{\tau}} P \longrightarrow P_{\sigma} \times_{\sigma} P \qquad \qquad (g,p) \mapsto (g \cdot p,p) \text{ is an isomorphism}.$

The Loop Space of Interest

Example $(Loop(X//G) := Bibun(S^1//*, X//G))$

Objects:

$$\mathcal{P} := \{ S^1 \stackrel{\pi}{\longleftarrow} P \stackrel{f}{\longrightarrow} X \}$$

• Morphisms:

$$S^{1} \stackrel{\pi}{\longleftarrow} P \stackrel{f}{\longrightarrow} X$$

$$\downarrow^{\alpha} \qquad \downarrow^{\alpha} \qquad \downarrow^{f'} \qquad \downarrow^{\rho'}$$

Example $(Loop^{ext}(X//G))$

The Loop Space of Interest

Example $(Loop(X//G) := Bibun(S^1//*, X//G))$

Objects:

$$\mathcal{P} := \{ S^1 \stackrel{\pi}{\longleftarrow} P \stackrel{f}{\longrightarrow} X \}$$

Morphisms:

Example $(Loop^{ext}(X//G))$

The Loop Space of Interest

Example $(Loop(X//G) := Bibun(S^1//*, X//G))$

Objects:

$$\mathcal{P} := \{ S^1 \stackrel{\pi}{\longleftarrow} P \stackrel{f}{\longrightarrow} X \}$$

Morphisms:

$$S^{1} \stackrel{\pi}{\longleftarrow} P \stackrel{f}{\longrightarrow} X$$

$$\downarrow^{\alpha} \qquad \qquad \downarrow^{\alpha} \qquad \qquad \downarrow^{f'}$$

$$P'$$

Example $(Loop^{ext}(X//G))$

The isotropy groups in $Loop^{ext}(X//G)$ may be infinite dimensional topological groups when G is not finite.

the subgroupoid $\Lambda(X//G)$ instead

$$\Lambda(X//G) := \coprod_{g \in G_{conj}^{tors}} X^g //\Lambda_G(g)$$

 G_{coni}^{tors} : a set of representatives of G-conjugacy classes in G^{tors} ;

$$\Lambda_G(g) = C_G(g) \times \mathbb{R}/\langle (g,-1) \rangle$$

QEII as equivariant K—theories

$$QEII_G(X) \cong \prod_{g \in G_{conj}^{tors}} K_{\Lambda_G(g)}(X^g)$$

$$QEll_G^*(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) \cong K_{Tate}^*(X//G).$$

The isotropy groups in $Loop^{ext}(X//G)$ may be infinite dimensional topological groups when G is not finite.

the subgroupoid $\Lambda(X//G)$ instead

$$\Lambda(X//G) := \coprod_{g \in G_{conj}^{tors}} X^g //\Lambda_G(g)$$

 G_{coni}^{tors} : a set of representatives of G-conjugacy classes in G^{tors} ;

$$\Lambda_G(g) = C_G(g) \times \mathbb{R}/\langle (g, -1) \rangle$$

QEII as equivariant K—theories

$$QEII_G(X) \cong \prod_{g \in G_{coni}^{tors}} K_{\Lambda_G(g)}(X^g)$$

$$QEll_G^*(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) \cong K_{Tate}^*(X//G).$$

The isotropy groups in $Loop^{ext}(X//G)$ may be infinite dimensional topological groups when G is not finite.

the subgroupoid $\Lambda(X//G)$ instead

$$\Lambda(X//G) := \coprod_{g \in G_{conj}^{tors}} X^g //\Lambda_G(g)$$

 G_{conj}^{tors} : a set of representatives of G-conjugacy classes in G^{tors} ;

$$\Lambda_G(g) = C_G(g) \times \mathbb{R}/\langle (g,-1) \rangle$$

QEII as equivariant K—theories

$$QEII_G(X) \cong \prod_{g \in G_{coni}^{tors}} K_{\Lambda_G(g)}(X^g)$$

$$QEll_G^*(X) \otimes_{\mathbb{Z}[q^{\pm 1}]} \mathbb{Z}((q)) \cong K_{Tate}^*(X//G).$$

The isotropy groups in $Loop^{ext}(X//G)$ may be infinite dimensional topological groups when G is not finite.

the subgroupoid $\Lambda(X//G)$ instead

$$\Lambda(X//G) := \coprod_{g \in G_{conj}^{tors}} X^g //\Lambda_G(g)$$

 G_{conj}^{tors} : a set of representatives of G-conjugacy classes in G^{tors} ;

$$\Lambda_G(g) = C_G(g) \times \mathbb{R}/\langle (g, -1) \rangle$$

QEII as equivariant K—theories

$$QEII_G(X) \cong \prod_{g \in G_{coni}^{tors}} K_{\Lambda_G(g)}(X^g)$$

$$QEII_G^*(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) \cong K_{Tate}^*(X//G).$$

Quasi-elliptic cohomology has power operations, which gives it the structure of an " H_{∞} -ring theory" [Ganter 06].

Atiyah's Power Operation

[Ganter

V: a vector bundle over $\Lambda(X//G)$.

 $P_n(V) := V^{\otimes_{\mathbb{Z}[q^{\pm}]}^n}$ defines an operation

$$P_n: QEII_G(X) \longrightarrow QEII_{G\wr \Sigma_n}(X^{\times n})$$

$$\begin{split} \mathbb{P}_{n} &= \prod_{(\underline{g},\sigma) \in (G \wr \Sigma_{n})^{tors}_{conj}} \mathbb{P}_{(\underline{g},\sigma)} : \\ & QEII_{G}(X) \longrightarrow QEII_{G \wr \Sigma_{n}}(X^{\times n}) = \prod_{(\underline{g},\sigma) \in (G \wr \Sigma_{n})^{tors}_{conj}} K_{\Lambda_{G \wr \Sigma_{n}}(\underline{g},\sigma)}((X^{\times n})^{(\underline{g},\sigma)}) \\ & \mathbb{P}_{(\underline{g},\sigma)} : QEII_{G}(X) \stackrel{U^{*}}{\longrightarrow} K_{orb}(\Lambda_{(\underline{g},\sigma)}(X)) \stackrel{() \land}{\longrightarrow} K_{orb}(\Lambda_{(\underline{g},\sigma)}^{var}(X)) \end{split}$$

Quasi-elliptic cohomology has power operations, which gives it the structure of an " H_{∞} -ring theory" [Ganter 06].

Atiyah's Power Operation

[Ganter]

V: a vector bundle over $\Lambda(X//G)$.

 $P_n(V) := V^{\widehat{\otimes}_{\mathbb{Z}[q^\pm]}{}^n}$ defines an operation

$$P_n: QEII_G(X) \longrightarrow QEII_{G\wr \Sigma_n}(X^{\times n})$$

$$\begin{split} \mathbb{P}_{n} &= \prod_{(\underline{g},\sigma) \in (G \wr \Sigma_{n})^{tors}_{conj}} \mathbb{P}_{(\underline{g},\sigma)} : \\ & QEll_{G}(X) \longrightarrow QEll_{G \wr \Sigma_{n}}(X^{\times n}) = \prod_{(\underline{g},\sigma) \in (G \wr \Sigma_{n})^{tors}_{conj}} K_{\Lambda_{G \wr \Sigma_{n}}(\underline{g},\sigma)}((X^{\times n})^{(\underline{g},\sigma)}) \\ & \mathbb{P}_{(\underline{g},\sigma)} : QEll_{G}(X) \xrightarrow{U^{*}} K_{orb}(\Lambda_{(\underline{g},\sigma)}(X)) \xrightarrow{()_{K}^{\wedge}} K_{orb}(\Lambda_{(\underline{g},\sigma)}^{var}(X)) \end{split}$$

Quasi-elliptic cohomology has power operations, which gives it the structure of an " $H_{\infty}-$ ring theory" [Ganter 06].

Atiyah's Power Operation

[Ganter]

V: a vector bundle over $\Lambda(X//G)$.

 $P_n(V) := V^{\widehat{\otimes}_{\mathbb{Z}[q^{\pm}]}^n}$ defines an operation

$$P_n: QEII_G(X) \longrightarrow QEII_{G\wr \Sigma_n}(X^{\times n})$$

$$\mathbb{P}_{n} = \prod_{(\underline{g},\sigma) \in (G \wr \Sigma_{n})_{conj}^{tors}} \mathbb{P}_{(\underline{g},\sigma)} :$$

$$QEII_{G}(X) \longrightarrow QEII_{G \wr \Sigma_{n}}(X^{\times n}) = \prod_{(\underline{g},\sigma) \in (G \wr \Sigma_{n})_{conj}^{tors}} K_{\Lambda_{G \wr \Sigma_{n}}(\underline{g},\sigma)}((X^{\times n})^{(\underline{g},\sigma)})$$

Zhen Huan (UIUC)

Quasi-elliptic cohomology has power operations, which gives it the structure of an " H_{∞} -ring theory" [Ganter 06].

Atiyah's Power Operation

[Ganter]

V: a vector bundle over $\Lambda(X//G)$.

 $P_n(V) := V^{\widehat{\otimes}_{\mathbb{Z}[q^{\pm}]}^n}$ defines an operation

$$P_n: QEII_G(X) \longrightarrow QEII_{G\wr \Sigma_n}(X^{\times n})$$

$$\begin{split} \mathbb{P}_{n} &= \prod_{(\underline{g},\sigma) \in (G \wr \Sigma_{n})^{tors}_{conj}} \mathbb{P}_{(\underline{g},\sigma)} : \\ & QEII_{G}(X) \longrightarrow QEII_{G \wr \Sigma_{n}}(X^{\times n}) = \prod_{(\underline{g},\sigma) \in (G \wr \Sigma_{n})^{tors}_{conj}} K_{\Lambda_{G \wr \Sigma_{n}}(\underline{g},\sigma)}((X^{\times n})^{(\underline{g},\sigma)}) \\ & \mathbb{P}_{(\underline{g},\sigma)} : QEII_{G}(X) \xrightarrow{U^{*}} K_{orb}(\Lambda_{(\underline{g},\sigma)}(X)) \xrightarrow{()^{\Lambda}_{k}} K_{orb}(\Lambda^{var}_{(\underline{g},\sigma)}(X)) \\ & \xrightarrow{\boxtimes} K_{orb}(d_{(\underline{g},\sigma)}(X)) \xrightarrow{f^{*}_{(\underline{g},\sigma)}} K_{\Lambda_{G \wr \Sigma_{n}}(\underline{g},\sigma)}((X^{\times n})^{(\underline{g},\sigma)}) \end{split}$$

$$QEII_G^*(X) = K_{\mathbb{T}}^*(X)$$
. For each $\sigma \in \Sigma_n$, $\mathbb{P}_{(\underline{1},\sigma)}(x) = \boxtimes_k \boxtimes_{(i_1,\cdots i_k)} (x)_k$. When $n = 2$,

$$QEII_{\Sigma_2}(X) \cong K(X)[q^{\pm}][1,s]/(s^2-1) \times K(X)[q^{\pm}][y]/(y^2-q)$$

$$\mathbb{P}_2(x) = (\mathbb{P}_{(\underline{1},(1)(1))}(x), \mathbb{P}_{(\underline{1},(12))}(x)) = (x \boxtimes x, (x)_2)$$

When
$$n = 3$$
, $\mathbb{P}_3(x) = (\mathbb{P}_{(\underline{1},(1)(1)(1))}(x), \mathbb{P}_{(\underline{1},(12)(1))}(x), \mathbb{P}_{(\underline{1},(123))}(x)) = (x \boxtimes x \boxtimes x, (x)_2 \boxtimes x, (x)_3).$

$$\begin{array}{l} \overline{P}_N: \mathit{QEII}_G(X) \xrightarrow{\mathbb{P}_N} \mathit{QEII}_{G\wr \Sigma_N}(X^{\times N}) \xrightarrow{\mathit{res}} \mathit{QEII}_{G\times \Sigma_N}(X^{\times N}) \xrightarrow{\mathit{diag}^*} \\ \mathit{QEII}_{G\times \Sigma_N}(X) \cong \mathit{QEII}_G(X) \otimes_{\mathbb{Z}[q^\pm]} \mathit{QEII}_{\Sigma_N}(\mathsf{pt}) \longrightarrow \\ \mathit{QEII}_G(X) \otimes_{\mathbb{Z}[q^\pm]} \mathit{QEII}_{\Sigma_N}(\mathsf{pt}) / \mathcal{I}_{tr}^{\mathit{QEII}} \end{array}$$

- analogous to the Adams operations of equivariant K-theories.
- but different and new.

$$QEII_G^*(X) = K_{\mathbb{T}}^*(X)$$
. For each $\sigma \in \Sigma_n$, $\mathbb{P}_{(\underline{1},\sigma)}(x) = \boxtimes_k \boxtimes_{(i_1,\cdots i_k)} (x)_k$. When $n = 2$,

$$QEII_{\Sigma_2}(X) \cong K(X)[q^{\pm}][1,s]/(s^2-1) \times K(X)[q^{\pm}][y]/(y^2-q)$$

$$\mathbb{P}_2(x) = (\mathbb{P}_{(\underline{1},(1)(1))}(x), \mathbb{P}_{(\underline{1},(12))}(x)) = (x \boxtimes x, (x)_2).$$

When
$$n = 3$$
, $\mathbb{P}_3(x) = (\mathbb{P}_{(\underline{1},(1)(1)(1))}(x), \mathbb{P}_{(\underline{1},(12)(1))}(x), \mathbb{P}_{(\underline{1},(123))}(x)) = (x \boxtimes x \boxtimes x, (x)_2 \boxtimes x, (x)_3).$

$$\begin{array}{l} \overline{P}_N: \mathit{QEII}_G(X) \xrightarrow{\mathbb{P}_N} \mathit{QEII}_{G\wr \Sigma_N}(X^{\times N}) \xrightarrow{res} \mathit{QEII}_{G\times \Sigma_N}(X^{\times N}) \xrightarrow{\mathit{diag}^*} \\ \mathit{QEII}_{G\times \Sigma_N}(X) \cong \mathit{QEII}_G(X) \otimes_{\mathbb{Z}[q^\pm]} \mathit{QEII}_{\Sigma_N}(\mathsf{pt}) \longrightarrow \\ \mathit{QEII}_G(X) \otimes_{\mathbb{Z}[q^\pm]} \mathit{QEII}_{\Sigma_N}(\mathsf{pt}) / \mathcal{I}_{tr}^{\mathit{QEII}} \end{array}$$

- analogous to the Adams operations of equivariant K-theories.
- but different and new.

$$QEII_G^*(X) = K_{\mathbb{T}}^*(X)$$
. For each $\sigma \in \Sigma_n$, $\mathbb{P}_{(\underline{1},\sigma)}(x) = \boxtimes_k \boxtimes_{(i_1,\cdots i_k)} (x)_k$. When $n = 2$,

$$QEII_{\Sigma_2}(X) \cong K(X)[q^{\pm}][1,s]/(s^2-1) \times K(X)[q^{\pm}][y]/(y^2-q)$$

$$\mathbb{P}_2(x) = (\mathbb{P}_{(\underline{1},(1)(1))}(x), \mathbb{P}_{(\underline{1},(12))}(x)) = (x \boxtimes x, (x)_2).$$

When n = 3, $\mathbb{P}_3(x) = (\mathbb{P}_{(\underline{1},(1)(1)(1))}(x), \mathbb{P}_{(\underline{1},(12)(1))}(x), \mathbb{P}_{(\underline{1},(123))}(x)) = (x \boxtimes x \boxtimes x, (x)_2 \boxtimes x, (x)_3).$

$$\begin{array}{l} \overline{P}_N: \mathit{QEII}_G(X) \xrightarrow{\mathbb{P}_N} \mathit{QEII}_{G \wr \Sigma_N}(X^{\times N}) \xrightarrow{\mathsf{res}} \mathit{QEII}_{G \times \Sigma_N}(X^{\times N}) \xrightarrow{\mathsf{diag}^*} \\ \mathit{QEII}_{G \times \Sigma_N}(X) \cong \mathit{QEII}_G(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathit{QEII}_{\Sigma_N}(\mathsf{pt}) \longrightarrow \\ \mathit{QEII}_G(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathit{QEII}_{\Sigma_N}(\mathsf{pt}) / \mathcal{I}_{\mathsf{tr}}^{\mathit{QEII}} \end{array}$$

- analogous to the Adams operations of equivariant K-theories.
- but different and new.

$$QEII_G^*(X) = K_{\mathbb{T}}^*(X)$$
. For each $\sigma \in \Sigma_n$, $\mathbb{P}_{(\underline{1},\sigma)}(x) = \boxtimes_k \boxtimes_{(i_1,\cdots i_k)} (x)_k$. When $n = 2$,

$$QEII_{\Sigma_2}(X) \cong K(X)[q^{\pm}][1,s]/(s^2-1) \times K(X)[q^{\pm}][y]/(y^2-q)$$

$$\mathbb{P}_2(x) = (\mathbb{P}_{(1,(1)(1))}(x), \mathbb{P}_{(1,(12))}(x)) = (x \boxtimes x, (x)_2).$$

When n = 3, $\mathbb{P}_3(x) = (\mathbb{P}_{(\underline{1},(1)(1)(1))}(x), \mathbb{P}_{(\underline{1},(12)(1))}(x), \mathbb{P}_{(\underline{1},(123))}(x)) = (x \boxtimes x \boxtimes x, (x)_2 \boxtimes x, (x)_3).$

$$\begin{array}{l} \overline{P}_N: \mathit{QEII}_G(X) \xrightarrow{\mathbb{P}_N} \mathit{QEII}_{G \wr \Sigma_N}(X^{\times N}) \xrightarrow{res} \mathit{QEII}_{G \times \Sigma_N}(X^{\times N}) \xrightarrow{diag^*} \\ \mathit{QEII}_{G \times \Sigma_N}(X) \cong \mathit{QEII}_G(X) \otimes_{\mathbb{Z}[q^\pm]} \mathit{QEII}_{\Sigma_N}(\mathsf{pt}) \longrightarrow \\ \mathit{QEII}_G(X) \otimes_{\mathbb{Z}[q^\pm]} \mathit{QEII}_{\Sigma_N}(\mathsf{pt}) / \mathcal{I}_{tr}^{\mathit{QEII}} \end{array}$$

- analogous to the Adams operations of equivariant K-theories.
- but different and new.

$$QEII_G^*(X) = K_{\mathbb{T}}^*(X)$$
. For each $\sigma \in \Sigma_n$, $\mathbb{P}_{(\underline{1},\sigma)}(x) = \boxtimes_k \boxtimes_{(i_1,\cdots i_k)} (x)_k$. When $n = 2$,

$$QEII_{\Sigma_2}(X) \cong K(X)[q^{\pm}][1,s]/(s^2-1) \times K(X)[q^{\pm}][y]/(y^2-q)$$

$$\mathbb{P}_2(x) = (\mathbb{P}_{(\underline{1},(1)(1))}(x), \mathbb{P}_{(\underline{1},(12))}(x)) = (x \boxtimes x, (x)_2).$$

When n = 3, $\mathbb{P}_3(x) = (\mathbb{P}_{(\underline{1},(1)(1)(1))}(x), \mathbb{P}_{(\underline{1},(12)(1))}(x), \mathbb{P}_{(\underline{1},(123))}(x)) = (x \boxtimes x \boxtimes x, (x)_2 \boxtimes x, (x)_3).$

$$\begin{array}{l} \overline{P}_N: \mathit{QEII}_G(X) \stackrel{\mathbb{P}_N}{\longrightarrow} \mathit{QEII}_{G \wr \Sigma_N}(X^{\times N}) \stackrel{\mathit{res}}{\longrightarrow} \mathit{QEII}_{G \times \Sigma_N}(X^{\times N}) \stackrel{\mathit{diag}^*}{\longrightarrow} \\ \mathit{QEII}_{G \times \Sigma_N}(X) \cong \mathit{QEII}_G(X) \otimes_{\mathbb{Z}[q^\pm]} \mathit{QEII}_{\Sigma_N}(\mathsf{pt}) \longrightarrow \\ \mathit{QEII}_G(X) \otimes_{\mathbb{Z}[q^\pm]} \mathit{QEII}_{\Sigma_N}(\mathsf{pt}) / \mathcal{I}_{tr}^{\mathit{QEII}} \end{array}$$

- analogous to the Adams operations of equivariant K-theories.
- but different and new.

 $QEII_G^*(X) = K_{\mathbb{T}}^*(X)$. For each $\sigma \in \Sigma_n$, $\mathbb{P}_{(\underline{1},\sigma)}(x) = \boxtimes_k \boxtimes_{(i_1,\cdots i_k)} (x)_k$. When n = 2,

$$QEII_{\Sigma_2}(X) \cong K(X)[q^{\pm}][1,s]/(s^2-1) \times K(X)[q^{\pm}][y]/(y^2-q)$$

$$\mathbb{P}_2(x) = (\mathbb{P}_{(\underline{1},(1)(1))}(x), \mathbb{P}_{(\underline{1},(12))}(x)) = (x \boxtimes x, (x)_2).$$

When n = 3, $\mathbb{P}_3(x) = (\mathbb{P}_{(\underline{1},(1)(1)(1))}(x), \mathbb{P}_{(\underline{1},(12)(1))}(x), \mathbb{P}_{(\underline{1},(123))}(x)) = (x \boxtimes x \boxtimes x, (x)_2 \boxtimes x, (x)_3).$

$$\begin{array}{l} \overline{P}_N: \mathit{QEII}_G(X) \stackrel{\mathbb{P}_N}{\longrightarrow} \mathit{QEII}_{G \wr \Sigma_N}(X^{\times N}) \stackrel{\mathit{res}}{\longrightarrow} \mathit{QEII}_{G \times \Sigma_N}(X^{\times N}) \stackrel{\mathit{diag}^*}{\longrightarrow} \\ \mathit{QEII}_{G \times \Sigma_N}(X) \cong \mathit{QEII}_G(X) \otimes_{\mathbb{Z}[q^\pm]} \mathit{QEII}_{\Sigma_N}(\mathsf{pt}) \longrightarrow \\ \mathit{QEII}_G(X) \otimes_{\mathbb{Z}[q^\pm]} \mathit{QEII}_{\Sigma_N}(\mathsf{pt}) / \mathcal{I}_{tr}^{\mathit{QEII}} \end{array}$$

- analogous to the Adams operations of equivariant K-theories.
- but different and new.

Finite Subgroups of Tate Curve

Theorem (Huan)

$$\textit{QEII}(\textit{pt}//\Sigma_\textit{N})/\mathcal{I}^\textit{QEII}_{tr} \cong \prod_{\textit{N}=\textit{de}} \mathbb{Z}[\textit{q}^{\pm}][\textit{q}'^{\pm}]/\langle \textit{q}^{\textit{d}} - \textit{q}'^{\textit{e}} \rangle,$$

where \mathcal{I}^{QEII}_{tr} is the transfer ideal and q' is the image of q under the power operation \mathbb{P}_N . The product goes over all the ordered pairs of positive integers (d,e) such that N=de.

Theorem (Huan)

The Tate K-theory of symmetric groups modulo a certain transfer ideal classifies finite subgroups of the Tate curve.

$$K_{Tate}(pt//\Sigma_N)/I_{tr}^{Tate} \cong \prod_{N=de} \mathbb{Z}((q))[q_s'^{\pm}]/\langle q^d - q_s'^e \rangle,$$

where I_{tr}^{Tate} is the transfer ideal and q_s' is the image of q under the stringy power operation P_N^{string} , the product goes over all the ordered pairs of positive integers (d,e) such that N=de.

Finite Subgroups of Tate Curve

Theorem (Huan)

$$\textit{QEII}(\textit{pt}//\Sigma_\textit{N})/\mathcal{I}^\textit{QEII}_{tr} \cong \prod_{\textit{N}=\textit{de}} \mathbb{Z}[\textit{q}^{\pm}][\textit{q}'^{\pm}]/\langle \textit{q}^{\textit{d}} - \textit{q}'^{\textit{e}} \rangle,$$

where \mathcal{I}^{QEII}_{tr} is the transfer ideal and q' is the image of q under the power operation \mathbb{P}_N . The product goes over all the ordered pairs of positive integers (d,e) such that N=de.

Theorem (Huan)

The Tate K-theory of symmetric groups modulo a certain transfer ideal classifies finite subgroups of the Tate curve.

$$K_{Tate}(pt//\Sigma_N)/I_{tr}^{Tate} \cong \prod_{N=de} \mathbb{Z}((q))[q_s'^{\pm}]/\langle q^d - q_s'^e \rangle,$$

where I_{tr}^{Tate} is the transfer ideal and q_s' is the image of q under the stringy power operation P_N^{string} , the product goes over all the ordered pairs of positive integers (d,e) such that N=de.

Goerss-Hopkins-Miller theorem constructs many example of E_{∞} -rings which represent elliptic cohomology theories, including Tate K-theory.

Question

Can we construct $E_{\infty} - G$ —Spectrum which represents equivariant elliptic cohomology theory (e.g. G—equivariant Tate K-theory)?

Orthogonal G-spectra of Quasi-elliptic cohomology

Huan

We construct a commutative \mathcal{I}_G -FSP $(E(G,-),\eta,\mu)$. For each faithful G-representation V, E(G,V) weakly represents $QEll_G^V(-)$ in the sense $\pi_k(E(G,V)) = QEll_G^V(S^k)$, for each k.

Can E(G, -) arise from an orthogonal spectrum?

No.

For a trivial G-representation V, the G-action on E(G, V) is not trivial.

Goerss-Hopkins-Miller theorem constructs many example of E_{∞} -rings which represent elliptic cohomology theories, including Tate K-theory.

Question

Can we construct $E_{\infty} - G$ —Spectrum which represents equivariant elliptic cohomology theory (e.g. G—equivariant Tate K-theory)?

Orthogonal *G*—spectra of Quasi-elliptic cohomology

[Huan

We construct a commutative \mathcal{I}_G -FSP $(E(G,-),\eta,\mu)$. For each faithful G-representation V, E(G,V) weakly represents $QEll_G^V(-)$ in the sense $\pi_k(E(G,V)) = QEll_G^V(S^k)$, for each k.

Can E(G, -) arise from an orthogonal spectrum?

No.

For a trivial G-representation V, the G-action on E(G, V) is not trivial.

Goerss-Hopkins-Miller theorem constructs many example of E_{∞} -rings which represent elliptic cohomology theories, including Tate K-theory.

Question

Can we construct $E_{\infty} - G$ —Spectrum which represents equivariant elliptic cohomology theory (e.g. G—equivariant Tate K-theory)?

Orthogonal G-spectra of Quasi-elliptic cohomology

[Huan]

We construct a commutative \mathcal{I}_G -FSP $(E(G,-),\eta,\mu)$. For each faithful G-representation V, E(G,V) weakly represents $QEll_G^V(-)$ in the sense

$$\pi_k(E(G,V)) = QEII_G^V(S^k)$$
, for each k .

Can E(G, -) arise from an orthogonal spectrum?

No.

For a trivial G-representation V, the G-action on E(G, V) is not trivial.

Goerss-Hopkins-Miller theorem constructs many example of E_{∞} -rings which represent elliptic cohomology theories, including Tate K-theory.

Question

Can we construct $E_{\infty} - G$ —Spectrum which represents equivariant elliptic cohomology theory (e.g. G—equivariant Tate K-theory)?

Orthogonal G-spectra of Quasi-elliptic cohomology

[Huan]

We construct a commutative \mathcal{I}_G -FSP $(E(G,-),\eta,\mu)$. For each faithful G-representation V, E(G,V) weakly represents $QEll_G^V(-)$ in the sense

$$\pi_k(E(G,V)) = QEII_G^V(S^k)$$
, for each k .

Can E(G, -) arise from an orthogonal spectrum?

No

For a trivial G-representation V, the G-action on E(G,V) is not trivial

Goerss-Hopkins-Miller theorem constructs many example of E_{∞} -rings which represent elliptic cohomology theories, including Tate K-theory.

Question

Can we construct $E_{\infty} - G$ —Spectrum which represents equivariant elliptic cohomology theory (e.g. G—equivariant Tate K-theory)?

Orthogonal G-spectra of Quasi-elliptic cohomology

[Huan]

We construct a commutative \mathcal{I}_G -FSP $(E(G,-),\eta,\mu)$. For each faithful G-representation V, E(G,V) weakly represents $QEll_G^V(-)$ in the sense

$$\pi_k(E(G,V)) = QEII_G^V(S^k)$$
, for each k .

Can E(G, -) arise from an orthogonal spectrum?

No.

For a trivial G-representation V, the G-action on E(G,V) is not trivial.

Global Homotopy Theory

[Schwede][May]

Observation: It has been noticed since the beginnings of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

 \Rightarrow global homotopy theory

Prominent examples: equivariant stable homotopy, equivariant K-theory, equivariant bordism.

Almost Global Homotopy Theory

[Huan

- an extension of global homotopy theory;
- classifies those theories that are almost "global";
- the restriction maps are equivariant weak equivalence.

We can define global quasi-elliptic cohomology.

[Huan]

Combining the orthogonal G-spectra $\{E(G, -)\}$, we get an ultra-commutative global ring spectrum in the new theory.

Global Homotopy Theory

[Schwede][May]

Observation: It has been noticed since the beginnings of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

 \Rightarrow global homotopy theory

Prominent examples: equivariant stable homotopy, equivariant K-theory, equivariant bordism.

Almost Global Homotopy Theory

Huan

- an extension of global homotopy theory;
- classifies those theories that are almost "global";
- the restriction maps are equivariant weak equivalence.

We can define global quasi-elliptic cohomology.

[Huan]

Combining the orthogonal G—spectra $\{E(G, -)\}$, we get an ultra-commutative global ring spectrum in the new theory.

Global Homotopy Theory

[Schwede][May]

Observation: It has been noticed since the beginnings of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

 \Rightarrow global homotopy theory

Prominent examples: equivariant stable homotopy, equivariant K-theory, equivariant bordism.

Almost Global Homotopy Theory

Huan

- an extension of global homotopy theory;
- classifies those theories that are almost "global";
- the restriction maps are equivariant weak equivalence.

We can define global quasi-elliptic cohomology.

[Huan]

Combining the orthogonal G-spectra $\{E(G, -)\}$, we get an ultra-commutative global ring spectrum in the new theory.

Global Homotopy Theory

[Schwede][May]

Observation: It has been noticed since the beginnings of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

 \Rightarrow global homotopy theory

Prominent examples: equivariant stable homotopy, equivariant K-theory, equivariant bordism.

Almost Global Homotopy Theory

[Huan]

- an extension of global homotopy theory;
- classifies those theories that are almost "global";
- the restriction maps are equivariant weak equivalence.

We can define global quasi-elliptic cohomology.

[Huan

Combining the orthogonal G—spectra $\{E(G, -)\}$, we get an ultra-commutative global ring spectrum in the new theory.

Global Homotopy Theory

[Schwede][May]

Observation: It has been noticed since the beginnings of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

 \Rightarrow global homotopy theory

Prominent examples: equivariant stable homotopy, equivariant K-theory, equivariant bordism.

Almost Global Homotopy Theory

[Huan]

- an extension of global homotopy theory;
- classifies those theories that are almost "global";
- the restriction maps are equivariant weak equivalence.

We can define global quasi-elliptic cohomology.

[Huan]

Combining the orthogonal G-spectra $\{E(G, -)\}$, we get an ultra-commutative global ring spectrum in the new theory.

Model Structure on the almost global spaces

We formulate several model structures and are formulating the one below.

Conjecture

There is a global model structure on the almost global spaces that is Quillen equivalent to the global model structure on the orthogonal spaces formulated by Schwede in Global Homotopy Theory.

Model Structure on the almost global spaces

We formulate several model structures and are formulating the one below.

Conjecture

There is a global model structure on the almost global spaces that is Quillen equivalent to the global model structure on the orthogonal spaces formulated by Schwede in Global Homotopy Theory.

Thank you.

Some references

http://www.math.uiuc.edu/~huan2/Zhen-AMS-2017-Slides.pdf

- Ando, "Isogenies of formal group laws and power operations in the cohomology theories E_n ", Duke J., 1995
- Ando, Hopkins, Strickland, "The sigma orientation is an H_∞ map", Amer. J. 2004; arXiv:math/0204053
- Adem, Leida, Ruan, "Orbifolds and stringy topology", Cambridge Tracts in Mathematics, 171. 2007.
- Atiyah, "K-theory", second edition, 1989. Notes by D.W.Anderson.
- Atiyah, "Power operations in K-theory", Quart. J. Math. Oxford Ser. (2) 17 1966.
- Atiyah," Equivariant K-theory and completion", J. Differential Geometry 3 1969.
- Berger, Moerdijk, "On an extension of the notion of Reedy category", Mathematische Zeitschrift, December 2011.
- Bröcker, Dieck, "Representation of Compact Lie Groups", Springer GTM 98 1985.
- Bruner, May, McClure, Steinberger, "H_∞ ring spectra and their applications", volume 1176 of Lecture Notes in Mathematics, 1986.
- Ganter, "Orbifold genera, product formulas, and power operations", Adv. Math, 2006; arXiv:math/0407021.
- Ganter, "Stringy power operations in Tate K-theory", Homology, Homotopy, Appl., 2013; arXiv:math/0701565
- Ganter, "Power operations in orbifold Tate K-theory"; arXiv:1301.2754
- Hirschhorn, "Model categories and their localizations", Mathematical Surveys and Monographs, 99. American Mathematical Society, 2003.
- Hopkins, Kuhn, Ravenel, "Generalized group characters and complex oriented cohomology theories", J. Am. Math. Soc. 13 (2000).
- Huan, "Quasi-Elliptic Cohomology and its Power Operations", arXiv:1612.00930.
- Landweber, "Elliptic Curves and Modular Forms in Algebraic Topology: proceedings of a conference held at the Institute for Advanced Study", Princeton, September 1986, Lecture Notes in Mathematics.
- Eugene Lerman, "Orbifolds as stacks", 2008. arXiv:0806.4160v1.
- Katz, Mazur, "Arithmetic moduli of elliptic curves", Annals of Mathematics Studies, vol. 108, 1985.
- Mandell, May, Schwede, Shipley, "Model categories of diagram spectra", Proc. London Math. Soc. 82(2001).
- May, "Equivariant homotopy and cohomology theory", CBMS Regional Conference Series in Mathematics, vol. 91, 1996.
- Rezk, "Quasi-elliptic cohomology", 2011.
- Schommer-Pries, "Central extensions of smooth 2-groups and a finite-dimensional string 2-group", Geom. Topol. 15
 (2011).
- Schwede, "Global Homotopy Theory", global.pdf.
- Strickland, "Morava E-theory of symmetric groups", Topology 37 (1998), no. 4.