Show that this mathed
$$[x_{mn} = \frac{x_m + \alpha_1 x_m}{2}]$$
 is equivalent to the Newton's method $[x_{mn} = x_m - \frac{f(x)}{f(x)}]$

Our Guess

We want an f , such that $f(x) = x^2 - \alpha = 0$

or $x_{m+1} = x_m - \frac{x_m^2 - \alpha}{2x_m}$
 $x_{m+1} = \frac{2x_m^2 - x_m^2 + \alpha}{2x_m}$
 $x_{m+1} = \frac{2x_m^2 - x_m^2 + \alpha}{2x_m}$

$$\frac{1}{20} f(x-h) = f(x) - hf(x) + \frac{h^2}{2} f''(x) - \frac{h^2}{2} f'''(x) + \frac{h^2}{24} f''''(x-h)
f(x+h) + f(x-h) = 2f(x) + h^2 f''(x) + \frac{h^2}{24} [f'''(x_h) + f'''(x_h)]
f''(x) = \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} - \frac{h^2}{24} [f'''(x_h) + f''(x_h)]
00h^2$$