Návrh bakalářské práce

Emergentní koalice v multi-agentním posilovaném učení

Moje bakalářská práce se zaměří na studium toho, zda explicitní koaliční bonus α za simultánní akce dvou či více agentů vede k lepší koordinaci a prostorové kohezi oproti standardnímu individuálnímu odměňování.

Simulační prostředí. V Python-Gym (Gymnasium) prostředí ArenaEnv vytvořím malý diskretní grid (10×10) se sbíratelnými zdroji (dřevo, ruda) a nepřátelskými moby a finálním bossem. Nasadím několik "přátelských" agentů, kteří mají akce move, gather, attack, idle a craft. Agenti mají plnou observabilitu; odlišujeme pouze jejich odměňování.

Sdílený týmový inventář.

- Všechny agenty spojuje jediný slovník team_resources = {wood : 0, ore : 0}.
- Jakýkoli agent, který provede gather, přidá buď dřevo, nebo rudu do této sdílené zásoby.
- Akce craft odebere z team_resources určité množství (dřeva i rudy) a buffuje zvoleného agenta na omezenou dobu.
- Tím se (teoreticky) podpoří přirozené rozdělení rolí (někdo sbírá, někdo bojuje).

Sběr a craftování (bez detailních čísel).

- Rudné node & stromy:
 - Solo sběr (1 agent) je pomalejší a dává menší množství suroviny.
 - Joint $sb\check{e}r$ (dvě a více agentů současně) proběhne rychleji a přinese bonus α oběma zúčastněným.
 - Solo i joint sběr dává odměnu za získanou surovinu; joint akce navíc vyvolají koaliční bonus α .
- Craftování a buffy:
 - Craftovací stanice (bench) jsou náhodně rozmístěny po mapě.
 - Pro vyvolání buffu agent spotřebuje určitý počet dřeva a rudy ze team_resources.
 - Buff dočasně zvyšuje HP a sílu útoku agenta na předem určenou dobu.
 - Odměna za craft je vyšší; v kooperativní politice existuje navíc proximity-bonus γ , pokud buffovaný agent má ve svém okolí další spolupracovníky.

Nepřátelští mobové & Boss.

- Easy mobové:
 - Lze je zabít v několika útocích; solo zabití přináší základní odměnu a šanci na drop surovin.
 - Jointzabití proběhne rychleji, každý z útočníků dostane odměnu $+\alpha$ navíc.

• Boss:

- Spawnuje se na pevné centrální pozici na začátku epizody. Začne být agresivní za určitý počet kroků od startu, nebo pokud na něj jeden z agentů zaútočí.
- Solo buffovaný agent ho může porazit (možná), ale je to riskantní a trvá výrazně déle.
- Joint útok dvou či více buffovaných agentů vede k rychlejšímu zabití s menším rizikem. Každý účastník navíc získá α za každý krok, kdy na bosse útočí.

Průběh epizody & stop-condition.

1. Teoretický průběh epizody:

- Na začátku se spawnou agenti, suroviny, mobové a boss.
- Agenti podle své politiky (kooperativní / konkurenční / random) vybírají akce ∈{move, gather, attack, idle, craft}.
- Během sběru se u jednotlivých politik rozhodují, zda agenti půjdou sólo nebo společně.
- Po craftu (dočasném buffu) se agenti shromáždí a pokoušejí se zabít bosse, buď sólo, nebo společně.

2. Ukončení epizody:

- Victory, pokud bosse zabije alespoň jeden agent a alespoň jeden přežije.
- Defeat, pokud všichni agenti padnou nebo překročíme maximum kroků.

3. Metriky:

- time_to_boss_kill = počet kroků do zabití bosse (nebo max přetrvání).
- time_to_first_buff = kdy proběhl první craft.
- $num_joint_mining_events = kolikrát \ge 2$ agenti sbírali ten samý node.
- num_joint_attack_events_boss = kolikrát ≥ 2 agenti zároveň útočili na bosse.
- num_crafts = počet craft akcí.
- survival_rate = poměr přeživších agentů.
- average_distance_between_agents = průměrná vzdálenost dvojic agentů.
- . . .

Politiky a jejich rozlišení

Kooperativní ($\alpha > 0$, $\beta > 0$, $\gamma > 0$) Agenti získávají bonus α za simultánní "jointgather" a "joint-attack", dále β za udržování blízkosti ostatních a γ při provedení craftu ve skupině. Odměny za individuální (solo) akce jsou oproti tomu nižší. Předpokládáme vyšší četnost společných akcí, zkrácené time_to_boss_kill a zvýšenou survival_rate.

Konkurenční ($\alpha=0,\ \beta=0,\ \gamma=0$) Žádné koaliční odměny; agenti jednají samostatně a soustředí se na vlastní zisk. Roztáhnou se po mapě, sbírají odděleně, craftují bez vzájemné spolupráce a postupně útočí na bosse. Očekáváme menší počet společných akcí, delší čas k zabití bosse a nižší míru přežití.

Random baseline Akce jsou vybírány náhodně z množiny {move, gather, attack, idle}. Agenti provádějí akce nezávisle na kontextu (stav ostatních agentů ani okolního prostředí). Výsledkem je téměř nulová kooperace a vysoká pravděpodobnost neúspěchu.

Očekávané přínosy & možné výsledky.

- *Hypotéza:* kooperativní shaping zkrátí time_to_boss_kill, zvýší survival_rate a počet společných akcí oproti konkurenční politice.
- Pokud obě politiky nakonec dosáhnou stejné úspěšnosti, zaměřím se na sample-efficiency: rychlost konvergence a stabilitu výkonu.
- V případě odporu hypotézy popíšu příčiny (např. ztráta času na hledání se navzájem) a navrhnu další směry (např. omezená observabilita, jiná hustota zdrojů).

Technologický stack

• Jazyk & RL:

- Python 3.10
- Gymnasium (vlastní ArenaEnv NumPy)
- Stable-Baselines3 (PPO + parameter-sharing, PyTorch + CUDA)

• Vizualizace:

- Matplotlib + FuncAnimation (rychlé animace, MP4/GIF)
- Streamlit (interaktivní replay-viewer: slider, play/pause, heatmapy)

• Analytika & Statistika:

- Pandas / SciPy (zpracování dat, t-test, Mann-Whitney U, ANOVA, Tukey)
- Matplotlib / Seaborn (boxploty, heatmapy, learning-curve)

Prostor pro rozšíření.

- Cástečná observabilita nebo jednoduchý komunikační kanál mezi agenty.
- Heterogenní role (např. tank, healer, DPS) s role-conditioned vstupy a případně individuálními inventáři.
- Porovnání alternativních algoritmů (COMA, QMIX/VDN, MAPPO) s koaličními bonusy i bez nich.
- Přechod na spojité prostředí agenti se pohybují v \mathbb{R}^2 se spojitými akcemi.

Obrázek 1: Náčrt herního prostředí Arena Env
 $(10\times10~\mathrm{grid},\,\mathrm{zdroje},\,\mathrm{mobov\acute{e}},\,\mathrm{boss},\,\mathrm{bench})$