Comparing deuteration curves

Krystyna Grzesiak

February 17, 2021

HDX: dynamics measurements of protein structure

- measurement of the mass of peptides coming from proteins incubated in the deuterated water
- the most exposed amide hydrogens tend to be replaced by deuters
- exchange rate is related to the position of the peptide in the structure of protein

Mass spectrum

Mass spectrum

Differences in deuteration levels

Main issue

What are we looking for?

a test based on semiparametric regression such that it can determine statistical significance of differences in deuteration levels

Existing methods

In general, differences in deuteration levels can be measured using two approaches:

- 1. based on linear models
 - single time-point analysis with time-point selection or multiple testing correction,
 - multivariate analysis with time as a variable,
- 2. based on geometrical properties of the curves
 - analysis of the area under the curve,
 - functional data analysis (functional ANOVA).

HDX-Analyzer

One of models was introduced in *HDX-Analyzer: a novel package for statistical analysis of protein structure dynamics* (2011) and included an interaction term for state and time. It is defined by the following formula

$$Y = \beta_T X_{Time} + \beta_G X_{Group} + \beta_{TG} X_{Time} \times X_{Group},$$

where Y denotes deuteration level, X_{Time} denotes exposure duration and X_{Group} is a protein state indicator.

HDX-Analyzer fit

GAM - Generalized Additive Model

Generalized additive model for response Y (along with link function g) and predictors x_1, \ldots, x_p can be represented by following formula

$$g(\mathbb{E}(Y)) = \beta_0 + f_1(x_1) + f_2(x_2) + \ldots + f_p(x_p),$$

where f_1, \ldots, f_p are some smooth functions.

An example basis for space of smooth functions is K-spline:

$$f(x_i) = \beta_0 + x_i \beta_1 + \sum_{k=1}^K u_k (x_i - \kappa_k)_+.$$

Example semiparametric fit

Rejection rate

Summary

Is there a room for improvement?

- choice of basis functions
- choice of K
- transformations making data more "semiparametric-friendly"
- random effects for parametric or non-parametric terms or both
- taking covariance structure into account

Papers

- Simple fitting of subject-specific curves for longitudinal data Durban, Harezlak, Wand Carroll (Stat in Med, 2005)
- HaDeX: an R package and web-server for analysis of data from hydrogen-deuterium exchange mass spectrometry experiments Weronika Puchała, Michał Burdukiewicz, Michał Kistowski, Katarzyna A Dabrowska, Aleksandra E Badaczewska-Dawid, Dominik Cysewski, Michał Dadlez (Bioinformatics, 2020)
- HDX-Analyzer: a novel package for statistical analysis of protein structure dynamics
 Sanmin Liu, Lantao Liu, Ugur Uzuner, Xin Zhou, Manxi Gu, Weibing Shi, Yixiang Zhang,
 Susie Y Dai & Joshua S Yuan (Bioinformatics, 2011)