电光学院本科生 2017—2018 学年第 2 学期《大学物理(一)》课程期末考试试卷(A卷)

专业:			年级:		学号:	姓	名:	成绩	:			
题号	_		=	四	五	六	七	八	九	+		
得分												
得分 一、填空题(本题共 10 分,每小题 1 分)												
1. 分别写出能够体现下列每个结论的麦克斯韦方程组普适(基本)方程积分形式: 变化的磁场可以产生电场:。 磁感应线是无头无尾的(磁力线总是闭合的):。 电荷总伴随着电场(电荷可以产生电场):。 变化的电场可以产生磁场:。												
	2. 一平行平板电容器,充电后与电源保持连接,然后使两极板间充满相对介电常数为 ε_r 的各向同性的均匀电介质,这时,两极板上的电荷是原来的											
	磁场都可以看作是电流激发的,而从本质上讲电流可以分为两类,一类是传导电流、运流电流及磁化电流,这类电流的微观本质是											
4. 写出	温差电效应	的两种主要	· 应用:			和			o			

草稿区

得 分

二. (10 分) 一物体自地球表面以速度 v_0 竖直上抛。假定空气对物体阻力值为 $F_{\tau} = kmv^2$,其中 m 为物体的质量,k 为正常量。求: (1) 该物体能上升的高度; (2) 物体返回地面时速度的值。(设重力加速度 g 为常量)

第 2 页, 共 10 页

得 分

三. (10 分) 如图所示,一质量为 m 的黏土块从高度 h 处自由下落,黏于半径为 R,质量为 M=2m 的均质圆盘的 P 点,并开始转动。已知 θ =60°,设转轴 0 光滑,求:

(1) 碰撞后的瞬间盘的角速度 ω_0 。

(2) P转到 x轴时,盘的角速度 ω 和角加速度 β 。

四、(10分)截面积为S的U型管,内装有密度为 ρ ,长度为I的液体柱,受到扰动后液体发生振荡,

造成管两边液柱面改变,一边上升 y,一边下降 y,如图所示,不计各种阻力。

(1) 证明:液体柱的运动是简谐振动;

(2) 求出振动的周期。

草稿区

五、(10分)图示为t=0时刻沿x轴正方向传播的平面简谐波的波形图。

- (1) 求原点处质元的振动方程;
- (2) 写出该平面波的波动方程;
- (3) 写出 P处质元的振动方程;

六、(10分)长为 2a 的直线段上均匀地分布着电荷量为 q 的电荷,P 点在线段的垂直平分面上,离线段的中点 0 的距离为 r。求:P 点的电势和 0P 方向上的电场强度分量。

- 七、**(10分)** 两个同心导体球面的半径分别为 R_1 和 R_2 , R_1 < R_2 ,各自带有电荷 Q_1 和 Q_2 ,在两球面间充满相对介电常数为 ε_r 的电介质。求:
- (1) 内球面内部、两球面之间、外球面外部的电场强度矢量分布;
- (2) 上述各区域电势分布;
- (3) 两球面间的电势差为多少?

八、(10分) 如图所示(横截面图),半径为 R 的无限长半圆柱面导体,沿长度方向流有强度为 I 的电流,电流在柱面上均匀分布。求半圆柱面轴线 00' 上任一点的磁感应强度。

九、(10 分)一无限长圆柱形导体,半径为 R_1 ,其中均匀地通过电流 I,方向如图。导体外紧包一层内外半径分别为 R_1 和 R_2 的圆柱筒顺磁介质,其相对磁导率为 μ_r 。试求:

- (1) 各区域磁场强度 \vec{H} 的分布;
- (2) 不同区域磁感应强度 \vec{B} 的分布;
- (3) 磁介质内磁化强度 \vec{M} 的分布;
- (4) 磁介质内、外表面的磁化面电流密度 i (导体的磁导率同真空)。

十、(10分)一个输电回路,可以看成如图所示的两条平行长直载流导线,其电流为 I,但是方向相反。 这两根导线与旁边的长和宽分别为 a 和 b 的导线框共面,导线框上有 N 匝导线。

(1) 试求两条平行长直载流导线输电回路与导线框之间的

(2) 设电流 $I = I_0 \sin \omega t$, 求导线框中的感应电动势 ϵ 。

互感系数 M;