KIIRA COLLEGE BUTIKI

Uganda Advanced Certificate of Education

PURE MATHEMATICS

Paper 1

LOCK DOWN REVISION QUESTIONS

SECTION A (40 marks)

1. Solve the inequality

$$\frac{x(x+2)}{x-3} \le x + 1 \tag{5 marks}$$

2. Show that the line $\frac{x-2}{2} = \frac{y-2}{-1} = \frac{z-3}{3}$

Is parallel to the plane 4x-y-3z=4 and find the perpendicular distance of the line from the plane. (5 marks)

3. Solve the equation

 $2\tan x-3\cot x=1$

For
$$0^{\circ} \le x \le 360^{\circ}$$
 (5 marks)

4. Calculate the co-ordinates of the point of the intersection of the curve

$$\frac{x}{y} + \frac{6y}{x} = 5 \text{ and } 2y = x - 2 \tag{5 marks}$$

- 5. The tangent to the curve $y = 2x^2 + ax + b$ at the point (-2,11) is perpendicular to the line 2y = x + 7. Find the value of a and b. (5 marks)
- 6. Evaluate $\int_0^{\frac{\pi}{3}} \cos 3x \cos 2x dx$ (5 marks)
- 7. Given that φ in a root of the equation $x^2 2x + 3 = 0$ show that $\varphi^3 = x 6$ (5 marks)
- 8. A spherical balloon is being inflated by gas being pumped at the constant rate of 200cm³ per second. What is the rate of increase of the surface area of the ballon when its radius is 100cm? (5 marks)

SECTION B (60 MARKS)

- 9. (a) If $(x + 1)^2$ is factor of $2x^4 + 7x^3 + 6x^2 + Ax + b$, find the value of A and B. (5 marks)
 - (b) Prove that, if the equations $x^2 + ax + b = 0$ and $cx^2 + 2ax 3b = 0$ have a common root and neither a and b is zero, then

$$b = \frac{5a^2(c-2)}{(c+3)^2}$$
 (7 marks)

- 10. (a) Given that $y = loge(\frac{3+4cosx}{4+cosx})$ find $\frac{dy}{dx}$ in the simplest form. (7 marks)
 - (b) If $y = e^{4x}\cos 3x$, prove that $\frac{d2y}{dx^2} 8\frac{dy}{dx} + 25y = o$ (7 marks)
- 11. (a) Given that $z = \cos\theta_{\sin\theta}$, where $\theta \neq \pi$, show that $\frac{2}{1+z} = 1 i\tan\frac{1}{2}\theta$. (6 marks)
 - (b) The polynomial $p(z) = z^4 3z^3 + 7z^2 + 21z 26$ has 2 + 3i as one of the roots. Find the other three roots of the equation p(z) = o (6 marks)
- 12. (a) A right circular cone with semi vertical angle θ is inscribed in a sphere of radius γ , with its vertex and rim of its base on the surface of the sphere.

 Prove that its volume is $\frac{8}{3}\pi r^3 cos^4 \theta sin^2 \theta$. (6 marks)
 - (b) If r in constant and θ varies, show that the limits within which this volume must lie is $0 < v < \frac{32\pi r^3}{81}1$ (6 marks)
- 13. (a) In any triangle ABC, prove that $tan \frac{1}{2}(B-C) = \left(\frac{b-c}{b+c}\right)tan \frac{1}{2}(B+C)$ (6 marks)
 - (b) In a particular triangle the angle A is 51° and b=3c. Find the angle B to the nearest degree. The area of this triangle in 0.47m². Find side a to three decimal places.
- 14. (a) The points A and B have position vector i-2jtk and 2ijk respectively. Given that $0c = \lambda OA + \mu OB$ and OC is perpendicular to OA, find the Ratio of λ to μ .

Write down the vector equation of the line, L through A which is perpendicular to OA. Find the position vector of P, the point of intersection of Land OB. (12 marks)

- 15. (a) Determine the equation of the normal to the eclipse $x \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at a point p(a cos θ , bsin θ . (6 marks)
 - (b) If the normal at p meets the x axis at A and the y axis at B, Find the locus of the midpoint of AB. (6 marks)
- 16. (a) Solve the differential equation $x \frac{dy}{dx} = y + x^2(\cos x + \sin x)$, given that $y = o \ when \ x \frac{\pi}{2}$ (5 marks)
 - (b) The rate of decay of a radioactive substance is proportional to the amount A remaining at any time t. If initially the amount was Ao and if the time taken for the amount of substance to become ½ Ao is T, find A at that time.

Find the time taken for the amount remaining to be reduced to $\frac{1}{20}$ *Ao* (7 marks)