	10/30/19
HW5 due at start of Friday's class	
(Q3 will not be graded)	
Office hours: Thursday 3-4PM LGRT1235H	
Last Time?	
A composition of two rotations about points p & Q thro	sugh ongles 08 Ø
is another rotation about a point R through whole 0+0	_OR_atranslation
GPS Theorem: Given 3 points A,B,Cin the plane, not my point P in the plane is determined by the distance	tying on a line, 25. 19Al, 19BJ, 19GL.
Today: Isometries & Congruence:	
- 3 refletions theorem	
· Classification of isometries	
Cocollary: A,B,C. 3 points in the plane, not lying or T: R2 > R2 on isometry of the plane	saline
then I is uniquely determined by T(A) iT	(B),TCC).
Poof PER2 a point. We'd like to determine T	-P)
We know (because Tisanisometry):	*
1T(P)T(A) = 1PA),	
	· · · · · · · · · · · · · · · · · · ·
T(P)T(L) = 1PC1,	
So we know distances of TIP) from 3 points TRAIT	LBITCC)
GPS determines T(P) (Note: T(A), T(B), T(C).d	on't lie on aline,
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
theoren otherwise, using Tison	remy, find
theoren otherwise, using Tison	reary, find
theoren otherwise, using Tison A,B,C also lie on Line	reary, find
theoren otherwise, using Tison A,B,C also lie on Line	~\#_)
Argument used to snow isometries gend lines to line Alternatively, if T: R ² > R ² is an Isometry, have	r #) us. inverse
theoren otherwise, using Tison	r #) us. inverse

Three reflections theorem Any isometry T of the plane is a composite of at most 3 reflections. Post We could try to opposize previous post using earlier results about compositions to show <3 reflections suffice. Translation followed by rotation = votation = 2 reflection + additional reflection = 3 reflections, and we are done. Alternative Proof Exationagle A,B,C & consider T(A),T(B),T(C) =: A',B',C We want to show I is a composite of: 2.3 reflections, or equivalently , write down a composite of 53 reflections which sends A,B,C to A',B',C' (then = T by corollary). Idea: it A X A', reflect in perpendicular bisector of AA'. This sends $A \rightarrow A'$ ABC - A1, B46-IF Bi 7 B', then reflect in perp. bisector of BiB'. A + B + C -> A2 + B2 + C2 why? must have A lies on perp. bisector reflection is of 8,8' because A > A' Trometry 750metry. A1B, = [AB] = [A'B'] A' lies on perp. bisector of B,B'.... BY DABL ~ DABLLY ~ ALBECT. Finally, if (2 + C' reflect in perp. bisector

OF CZCI ~ DA3B3C3=DABC.

Now use 3 reflections theorem to classify isometries. isometry # reflections identity reflectiontonslation octotation glide reflection Lywill show next time.