O teorema de Dilworth

Antes de enunciar o teorema, algumas definições.

1. Relações de ordem

1.1. Definições

Uma relação de ordem em A é uma relação \leq com as seguintes propriedades:

- Reflexiva: para todo $a \in A$, $a \leq a$.
- Anti-simétrica: para todos $a, b \in A$, $a \leq b$ e $b \leq a \implies a = b$.
- Transitiva: para todos $a, b, c \in A$, $a \leq b$ e $b \leq c \implies a \leq c$.

Se para todos $a, b \in A$ ocorre $a \leq b$ ou $b \leq a$, então dizemos que \leq é uma ordem total. Caso contrário, \leq é uma ordem parcial.

1.2. Exemplos

- A relação de divisibilidade | em inteiros positivos.
- A relação de inclusão ⊂ em conjuntos.
- As ordens \leq e \geq usuais.

1.3. Cadeias e anticadeias

Dada uma ordem \leq em A, uma cadeia é uma seqüência (a_1, a_2, \ldots, a_n) de elementos de A tais que $a_1 \leq a_2 \leq \ldots \leq a_n$. Uma cadeia pode ter um único elemento.

Além disso, uma anticadeia é um subconjunto B de A tal que se $b \neq c \in B$ então b e c são incomparáveis, ou seja, não ocorre $b \leq c$ e não ocorre $c \leq b$. Em outras palavras, $b \not\preceq c$ e $c \not\preceq b$.

2. Agora sim, o teorema

Teorema de Dilworth. Seja A um conjunto com a ordem parcial \leq . Então o número mínimo de cadeias que cobrem A é igual à maior cardinalidade de uma anticadeia de A.

Demonstração

Primeiro, seja B uma anticadeia de A, com k elementos. Então existem pelo menos k cadeias, pois se houvesse menos cadeias, dois elementos de B estariam em uma mesma cadeia e seriam comparáveis, contradição. Assim, se M é a maior quantidade de elementos de uma anticadeia e m é a menor quantidade de cadeias que cobrem A, $M \leq m$.

Assim, basta provar que existe uma anticadeia de tamanho m.

Seja $\mathcal{C} = \{c_1, c_2, \dots, c_m\}$ um conjunto de cadeias que cobrem A e seja o terminal k_i o maior termo da cadeia c_i segundo \leq . Dizemos que esse conjunto é minimal quando não existe outra cadeia com conjunto de terminais contido no conjunto de terminais de \mathcal{C} e com menos elementos.

Provaremos por indução sobre o número de elementos de A que para cada conjunto minimal de m cadeias que cobrem A existe uma anticadeia de tamanho m. Se fizermos isso, o teorema está provado. A base de indução é o caso em que a relação \leq é vazia: a quantidade de cadeias disjuntas que cobrem A, assim como o tamanho da maior anticadeia, é |A|. Suponha que o resultado vale para conjuntos A' com menos elementos do que A.

Seja $\mathcal{C} = \{c_1, c_2, \dots, c_m\}$ um conjunto minimal de cadeias que cobrem A e seja o terminal k_i o maior termo da cadeia c_i segundo \leq . Se não há $k_i \neq k_j$ com $k_i \leq k_j$, acabou pois $\{k_1, k_2, \dots, k_m\}$ é uma anticadeia. Então suponha, sem perda de generalidade, que $k_2 \leq k_1$. Note que c_1 não pode conter somente k_1 porque se isso ocorrer juntamos k_1 a c_2 e obtemos um conjunto de m-1 cadeias cobrindo A, com todos os terminais de \mathcal{C} exceto k_2 , o que contradiz a minimalidade de \mathcal{C} . Assim, seja k o termo imediatamente anterior a k_1 na cadeia c_1 .

Provemos que o conjunto de cadeias $\mathcal{C}' = \{c'_1, c_2, \dots, c_m\}$, com c'_1 sendo c_1 sem k_1 , é minimal em $A' = A \setminus \{k_1\}$. Suponha, por absurdo, que existe um conjunto de cadeias \mathcal{C}'' com menos de m cadeias e conjunto de terminais contido no conjunto $\{k, k_2, \dots, k_m\}$ de terminais de \mathcal{C}' que cobre A'. Se uma dessas cadeias termina com k_2 , podemos colocar k_1 nela, obtendo um conjunto de cadeias que cobre A com menos que m cadeias, todas com terminais do conjunto de terminais de \mathcal{C} ; absurdo, pois \mathcal{C} , por hipótese, é minimal. Se uma das cadeias de \mathcal{C}'' termina em k, mas não há alguma que termine em k_2 , junte a essa cadeia k_2 e k_1 , obtendo outra contradição. Por fim, se nenhum dos dois elementos k e k_2 é terminal, o conjunto de terminais de \mathcal{C}'' tem no máximo m-2 elementos. Junte a cadeia unitária $\{k_1\}$ e obtemos m-1 cadeias que cobrem A com conjunto de terminais contido no conjunto de terminais de \mathcal{C} . Contradição novamente.

Assim \mathcal{C}' é minimal. Pela hipótese de indução, existe uma anticadeia de m elementos, e a indução está completa.

3. Referência bibliográfica

[1] Diestel, R. Graph Theory.