Санкт-Петербургский Государственный Университет

Факультет математики и компьютерных наук

Классический анализ

Конспект основан на лекциях Романа Викторовича Бессонова

17 сентября 2020 г.

Конспект основан на лекциях по классическому анализу, прочитанных Романом Викторовичем Бессоновым студентам Факультета математики и компьютерных наук Санкт-Петербургского государственного университета в осеннем семестре 2018–2019 учебного года.

В конспекте содержится материал 1-ого семестра курса математического анализа.

Редакторы:

Михаил Опанасенко Михаил Германсков

Наборщики:

Михаил Опанасенко Константин Челпанов Павел Гранин Мария Ханина Маргарита Лашина

Автор рисунков:

Вячеслав Тамарин

© 2020 г.

Распространяется под лицензией Creative Commons Attribution 4.0 International License, см. https://creativecommons.org/licenses/by/4.0/.

Последняя версия конспекта и исходный код:

https://www.overleaf.com/read/hbrfyfqbkckf

Сайт СПБГУ: https://spbu.ru. Сайт факультета МКН: https://math-cs.spbu.ru.

Оглавление

1	Вве	едение	1	
	1.1	Вещественные числа]	
	1.2	Верхние и нижние грани множеств	3	
	1.3	Натуральные числа	5	
	1.4	Сведения из топологии	7	
2	Непрерывность и пределы			
	2.1	Непрерывные отображения	13	
	2.2	Пределы числовых последовательностей	16	
	2.3	Начальные сведения о рядах	24	
	2.4	Пределы отображений в топологических пространствах	28	
	2.5	Пределы функций	29	
	2.6	Бесконечные пределы и пределы в бесконечности. О-символика	35	
3	Дис	фференциальное исчисление	38	
	3.1	Производная: определение и простейшие свойства	38	
	3.2	Производная суперпозиции и обратной функции	39	
	3.3	Экстремумы и теорема Лагранжа о среднем	4]	
	3.4	Формула Тейлора	42	
	3.5	Выпуклые функции	44	
	3.6	Обобщённая теорема Лагранжа и правило Лопиталя	46	
4	Интегральное исчисление			
	4.1	Интеграл Римана и критерий Лебега	49	
	4.2	Формула Ньютона-Лейбница	58	
	4.3	Формула Тейлора с интегральным остатком и остатком в форме Лагранжа	59	
	4.4	Равномерная сходимость и перестановка пределов	62	
5	Элементарные функции			
	5.1	Комплексные числа	67	
	5.2	Степенные ряды	69	
	5.3	Экспонента, логарифм и степень	72	
	5.4	Тригонометрические функции	77	
	5.5	Ряды Тейлора некоторых функций	85	
	5.6	Алгебраическая замкнутость $\mathbb C$	87	

6	Начала многомерного анализа и приложения интеграла		
	6.1	Функции ограниченной вариации	90
	6.2	Пространство \mathbb{R}^n и векторнозначные функции	91
	6.3	Длина пути в метрическом пространстве	96
	6.4	Несобственные интегралы	97
	6.5	Некоторые асимптотические формулы	103

Глава 1

Введение

1.1 Вещественные числа

Основным объектом, изучаемым в данном курсе, является *поле вещественных чисел*, а именно, четвёрка $(\mathbb{R}, +, \cdot, \ge)$, где + и \cdot — бинарные операции на \mathbb{R} , то есть функции из $\mathbb{R} \times \mathbb{R}$ в \mathbb{R} ; \ge — отношение на \mathbb{R} , то есть подмножество $\mathbb{R} \times \mathbb{R}$; удовлетворяющие приведённым ниже аксиомам.

Аксиомы поля:

(1)
$$\exists 0 \in \mathbb{R} \ \forall x \in \mathbb{R} : x + 0 = x$$
;

(2)
$$\forall x \in \mathbb{R} \ \exists (-x) \in \mathbb{R} : x + (-x) = 0;$$

(3)
$$\forall x, y \in \mathbb{R} : x + y = y + x$$
;

(4)
$$\forall x, y, z \in \mathbb{R} : (x + y) + z = x + (y + z);$$

$$(5) \ \exists 1 \in \mathbb{R} \setminus \{0\} : x \cdot 1 = 1 \cdot x = x;$$

(6)
$$\forall x \in \mathbb{R} \setminus \{0\} \ \exists (x^{-1}) \in \mathbb{R} : x \cdot x^{-1} = 1;$$

(7)
$$\forall x, y \in \mathbb{R} : x \cdot y = y \cdot x$$
;

(8)
$$\forall x, y, z \in \mathbb{R} : (x \cdot y) \cdot z = x \cdot (y \cdot z);$$

(9)
$$\forall x, y, z \in \mathbb{R} : x \cdot (y + z) = x \cdot y + x \cdot z$$
.

Аксиомы порядка:

(10)
$$\forall x \in \mathbb{R} : x \geqslant x$$
;

(11)
$$\forall x, y \in \mathbb{R} : (x \ge y \land y \ge x) \rightarrow x = y;$$

(12)
$$\forall x, y, z \in \mathbb{R} : (x \leq y \land y \leq z) \rightarrow x \leq z$$
;

(13)
$$\forall x, y \in \mathbb{R} : x \ge y \lor y \ge x$$
.

Аксиомы связи порядка с алгебраическими операциями:

- (14) $\forall x, y, z \in \mathbb{R} : x \geqslant y \rightarrow x + z \geqslant y + z$;
- (15) $\forall x, y \in \mathbb{R} : (x \ge 0 \land y \ge 0) \rightarrow x \cdot y \ge 0.$

Аксиома полноты:

(16) Для любой пары непустых множеств (A, B), где $A, B \subset \mathbb{R}$, удовлетворяющих условию

$$\forall a \in A \ \forall b \in B \ (a \leq b),$$

(то есть когда A «левее» B) выполняется следующее условие:

$$\exists x \in \mathbb{R} \ \forall a \in A \ \forall b \in B \ (a \leq x \leq b).$$

Пара множеств (A, B) из условия аксиомы полноты называется *щелью*.

Мы не будем доказывать существование и единственность (с точностью до изоморфизма) и поля \mathbb{R} .

Приведём некоторые элементарные свойства поля вещественных чисел.

Утверждение 1.1.1 (элементарные свойства \mathbb{R}).

- (1) $x \cdot 0 = 0$ для любого $x \in \mathbb{R}$;
- (2) $(-1) \cdot x = -x$ для любого $x \in \mathbb{R}$;
- (3) 1 > 0, то есть $1 \ge 0$ и $1 \ne 0$;
- (4) для любых $x, y, z, t \in \mathbb{R}$

$$x \ge y, z \ge t \implies x + z \ge y + t$$
.

Доказательство.

- (1) $x \cdot 0 = x \cdot (0+0) = x \cdot 0 + x \cdot 0 \implies x \cdot 0 = 0$.
- (2) Заметим, что если $y_1 + x = 0$ и $y_2 + x = 0$, то $y_1 = y_2$, поскольку

$$y_1 = y_1 + 0 = y_1 + (y_2 + x) = (y_1 + x) + y_2 = y_2.$$

Значит, $(-1)x + x = (-1+1)x = 0 \cdot x = 0$. В частности, $(-1) \cdot (-1) = -(-1) = 1$.

(3) $1 \neq 0$ по аксиоме (5). Предположим, что 0 > 1. Тогда

$$-1 > 1 + (-1) \implies -1 > 0 \implies (-1)(-1) > 0 \implies 1 > 0,$$

что приводит к противоречию.

(4) Надо дважды воспользоваться аксиомой (14) и транзитивностью ≽:

$$x \ge y \implies x + z \ge y + z$$

$$z \ge t \implies y + z \ge y + t$$

$$\implies x + z \ge y + z \ge y + t.$$

1.2 Верхние и нижние грани множеств

Определение. Множество $X \subset \mathbb{R}$ называется:

- (1) *ограниченным сверху*, если существует такое $c \in \mathbb{R}$, что для любого $x \in X$ выполнено $x \leq c$;
- (2) *ограниченным снизу*, если существует такое $c \in \mathbb{R}$, что для любого $x \in X$ выполнено $x \ge c$:
- (3) ограниченным, если оно ограничено сверху и ограничено снизу.

Определение. Пусть множество $X \subset \mathbb{R}$ ограничено сверху. Тогда любое число $c \in \mathbb{R}$, большее всех элементов X, называется *верхней гранью* множества X (аналогично определяется *нижняя грань*).

Утверждение 1.2.1. Пусть множество $X \subset \mathbb{R}$ ограничено сверху. Определим *множество верхних граней Е* множества X:

$$E := \{c \in \mathbb{R} \mid x \leqslant c$$
 для всех $x \in X\}$.

Тогда E имеет минимальный элемент, то есть существует такое $c_0 \in E$, что для любого $c \in E$ верно $c_0 \le c$. Более того, этот элемент единственен.

Доказательство. Очевидно, что (X, E) — щель. Значит, по аксиоме полноты

$$\exists c_0 \in \mathbb{R} \ \forall x \in X \ \forall c \in E : x \leqslant c_0 \leqslant c. \tag{\dagger}$$

По определению c_0 лежит в E, а по (†) c_0 является минимальным элементом E. Предполагая, что существует другой минимальный элемент $c_0' \in E$, получаем

$$c_0 \leqslant c_0' \leqslant c_0$$

откуда $c_0 = c_0'$, что показывает единственность.

Определение. Пусть множество $X \subset \mathbb{R}$ ограничено сверху. Тогда минимальный элемент множества верхних граней, определённый в утверждении 1.2.1, называется *точной верхней гранью* X или *супремумом* X и обозначается через

$$\sup X$$
.

Аналогично, максимальная нижняя грань ограниченного снизу множества называется mочной нижней гранью X или инфимумом X и обозначается через

 $\inf X$.

Будем также считать, что $\sup \emptyset = -\infty$, $\inf \emptyset = +\infty$,

 $\sup X = +\infty$, если X не ограничено сверху, $\inf X = -\infty$, если X не ограничено снизу.

Утверждение 1.2.2. Пусть $X \subset \mathbb{R}$ ограничено сверху, $c \in \mathbb{R}$. Тогда следующие условия эквивалентны:

- (1) $c = \sup X$;
- (2) $\forall \varepsilon > 0 \ \exists x \in X : x \ge c \varepsilon$.

Доказательство. Пусть $c = \sup X$. Предположим (от противного), что существует такое $\varepsilon > 0$, что для любого $x \in X$ справедливо $x < c - \varepsilon$. Тогда $c - \varepsilon$ — верхняя грань X, причем $c - \varepsilon < c$. Противоречие.

Пусть теперь выполнено условие (2). Предположим, что существует c' — верхняя грань X, причём c' < c. Рассмотрим $\varepsilon := (c-c')/2$. Тогда существует такое $x \in X$, что

$$x \geqslant c - \left(\frac{c - c'}{2}\right) = \frac{c + c'}{2} > c',$$

но это противоречит тому, что c' — верхняя грань.

Утверждение 1.2.3. Если x_0 является верхней гранью X и $x_0 \in X$, то $\sup X = x_0$.

Доказательство. Очевидно.

Теорема 1.2.4 (лемма Кантора о вложенных отрезках). Пусть $\{[a_{\gamma},b_{\gamma}]\}_{\gamma\in\Gamma}$ — множество таких отрезков, что для любой пары $[a_{\gamma_1},b_{\gamma_1}],\ [a_{\gamma_2},b_{\gamma_2}]$ верно

либо
$$[a_{\gamma_1},b_{\gamma_1}]\subset [a_{\gamma_2},b_{\gamma_2}],$$
 либо $[a_{\gamma_1},b_{\gamma_1}]\supset [a_{\gamma_2},b_{\gamma_2}].$

Тогда

$$\bigcap_{\gamma\in\Gamma}[a_{\gamma},b_{\gamma}]\neq\varnothing.$$

Кроме того, если для любого $\varepsilon>0$ найдётся такое $\gamma\in\Gamma$, что $b_{\gamma}-a_{\gamma}<\varepsilon$, то существует такой $x\in\mathbb{R}$, что

$$\bigcap_{\gamma\in\Gamma}\left[a_{\gamma},b_{\gamma}\right]=\{x\}.$$

Доказательство. Пусть $\gamma_1, \gamma_2 \in \Gamma$. Покажем, что $a_{\gamma_1} \leq b_{\gamma_2}$. Пусть это не так. Тогда $a_{\gamma_2} \leq b_{\gamma_2} < a_{\gamma_1} \leq b_{\gamma_1}$, то есть отрезки не пересекаются, а это невозможно. Рассмотрим теперь два множества

$$A := \{a_{\gamma} \mid \gamma \in \Gamma\},\$$

$$B := \{b_{\gamma} \mid \gamma \in \Gamma\}.$$

По предыдущему рассуждению, (A,B) — щель. Применяя аксиому полноты, получаем такое $c \in \mathbb{R}$, что

$$a_{\gamma_1} \leqslant c \leqslant b_{\gamma_2} \quad (\forall \gamma_1, \gamma_2 \in \Gamma).$$

Отсюда нетрудно видеть, что

$$c \in \bigcap_{\gamma \in \Gamma} [a_{\gamma}, b_{\gamma}],$$
 а потому $\bigcap_{\gamma \in \Gamma} [a_{\gamma}, b_{\gamma}] \neq \emptyset.$

Покажем единственность точки, если существуют отрезки сколь угодно малой длины. Пусть числа $c, c' \in \mathbb{R}$ таковы, что $c, c' \in [a_{\gamma}, b_{\gamma}]$ для всех $\gamma \in \Gamma$. Тогда $|c - c'| \leq b_{\gamma} - a_{\gamma}$ для всех $\gamma \in \Gamma$. Зафиксируем $\varepsilon = |c - c'|/2$. Получаем, что

$$\exists \gamma \in \Gamma: b_{\gamma} - a_{\gamma} < \varepsilon \implies |c - c'| < \frac{1}{2}|c - c'| \implies |c - c'| = 0 \implies c = c',$$

что и требовалось.

1.3 Натуральные числа

Определение. Множество $X \subset \mathbb{R}$ называется индуктивным, если

$$x \in X \implies x + 1 \in X$$
.

Определение. Определим множество натуральных чисел $\mathbb N$ как пересечение всех индуктивных множеств в $\mathbb R$, содержащих единицу, то есть

$$\mathbb{N} := \bigcap_{\substack{\text{Ind } X \\ 1 \in X}} X.$$

Также мы можем определить целые числа:

$$\mathbb{Z} := \{ x \in \mathbb{R} \mid x \in \mathbb{N} \lor -x \in \mathbb{N} \lor x = 0 \};$$

и рациональные числа:

$$\mathbb{Q} := \{ x \in \mathbb{R} \mid \exists p \in \mathbb{N} \cup \{0\}, q \in \mathbb{Z} \setminus \{0\} : x = p/q \}.$$

Определение. Пусть $x \ge 0$. *Целой частью х* называется число

$$[x] := egin{cases} 0, & ext{если } x < 1, \ \sup\{n \in \mathbb{N} \mid n \leqslant x\}, & ext{если } x \geqslant 1. \end{cases}$$

Определение. Определим функцию возведения в натуральную степень:

$$x^n : \mathbb{R} \to \mathbb{R}, \quad x \mapsto \underbrace{x \cdot x \cdot \ldots \cdot x}_{n \text{ раз}}, \quad \text{где } n \in \mathbb{N}.$$

Лемма 1.3.1 (неравенство Бернулли). Для всех $x \ge -1$ выполнено неравенство

$$(1+x)^n \geqslant 1 + nx.$$

Доказательство. Доказываем принципом математической индукции: при n=1 утверждение очевидно. Пусть утверждение выполнено для n=k>1. Тогда

$$(1+x)^{k+1} = (1+x)(1+x)^k$$

$$\ge (1+x)(1+kx)$$

$$= 1+x+kx+kx^2$$

$$= 1+(k+1)x+kx^2$$

$$\ge 1+(k+1)x,$$

поскольку $kx^2 \ge 0$.

Лемма 1.3.2. Для всех $0 \le x \le 1$ выполнено неравенство

$$(1+x)^n \le 1 + 4^n x.$$

Доказательство. Делаем аналогично предыдущему: при n=1 получаем неравенство $1+x\leqslant 1+4x$ равносильно $3x\geqslant 0$, что верно при $x\geqslant 0$. Переход: пусть верно для n=k>1. Тогда:

$$(1+x)^{k+1} = (1+x)(1+x)^k$$

$$\leq (1+x)(1+4^kx)$$

$$= 1+4^kx+x+4^kx^2$$

$$\leq 1+2\cdot 4^kx+x$$

$$= 1+x(2\cdot 4^k+1)$$

$$\leq 1+4\cdot 4^kx.$$

что и требовалось.

Утверждение 1.3.3. Если a > 0 и $a^n \le 1$, где $n \in \mathbb{N}$, то $a \le 1$.

Доказательство. Пусть это не так и a > 1, то есть $a = 1 + \varepsilon$, где $\varepsilon > 0$. Тогда

$$(1+\varepsilon)^n = 1+b.$$

где b — некоторая сумма произведений, составленных из единицы и ε , откуда нетрудно видеть, что b>0. Противоречие.

Теорема 1.3.4. Для любого $x \ge 0$ и любого $n \in \mathbb{N}$ существует единственное $c \ge 0$ такое, что $c^n = x$. Число c называется *корнем n-ой степени* из x и обозначается через $\sqrt[n]{x}$.

Доказательство. В случае x=0 очевидно, что c=0. Пусть теперь x>0. Рассмотрим множества

$$A := \{s > 0 \mid s^n < x\},\$$

 $B := \{s > 0 \mid s^n > x\}.$

Множество A непусто, поскольку либо $x \in A$ (в случае x < 1), либо $\frac{1}{2} \in A$. Множество B непусто, поскольку $x + 1 \in B$. Заметим теперь, что

$$\forall s_1 \in A \ \forall s_2 \in B : s_1^n \leqslant x \leqslant s_2^n \implies \frac{s_1^n}{s_2^n} \leqslant 1 \implies \left(\frac{s_1}{s_2}\right)^n \leqslant 1 \implies \frac{s_1}{s_2} \leqslant 1 \implies s_1 \leqslant s_2.$$

Из этого следует, что (A, B) — щель. Применяя аксиому полноты, получаем, что существует такое $c \in \mathbb{R}$, что для любых $s_1 \in A$ и $s_2 \in B$ выполнено неравенство

$$s_1 \leq c \leq s_2$$
.

Покажем, что $c^n = x$. Для этого предположим, что это не так, и придём к противоречию.

(1) Предположим, что $c^n < x$. Покажем, что существует такое $\varepsilon > 0$ такое, $(c+\varepsilon)^n < x$. Обозначим $\delta := x - c^n$, $\delta > 0$. Тогда по лемме 1.3.2:

$$\frac{\varepsilon}{c} \leq 1 \implies (c+\varepsilon)^n = c^n \left(1 + \frac{\varepsilon}{c}\right)^n$$

$$\leq c^n \left(1 + 4^n \frac{c}{\varepsilon}\right)$$

$$= c^n + 4^n c^{n+1} \varepsilon^{-1}$$

$$= x - \left((x - c^n) - 4^n c^{n+1} \varepsilon^{-1}\right)$$

$$= x - \delta + 4^n c^{n+1} \varepsilon^{-1}.$$

Скажем, что

$$4^n c^{n+1} \varepsilon^{-1} \leqslant \frac{\delta}{2} \iff \varepsilon \leqslant \frac{2 \cdot 4^n c^{n+1}}{\delta}, \quad \varepsilon = \min \left(\frac{c}{2}, \frac{2 \cdot 4^n c^{n+1}}{\delta} \right).$$

Тогда

$$(c+\varepsilon)^n \leqslant x-\delta+4^nc^{n+1}\varepsilon^{-1} \leqslant x-\frac{\delta}{2} < x,$$

что и требовалось. Отсюда получаем, что $c + \varepsilon \in A$. Однако по выбору числа c выполнено $c + \varepsilon \leqslant c$, то есть $\varepsilon \leqslant 0$, что неверно. Значит, $c^n \geqslant x$.

(2) Аналогичным образом через неравенство Бернулли легко показывается, что из $c^n > x$ следует, что существует $\varepsilon > 0$, для которого верно $(c - \varepsilon)^n > x$.

Осталось показать единственность: пусть существует такое d>0, что $d^n=x$. Тогда

$$\left(\frac{c}{d}\right)^n = \frac{x}{x} = 1 \implies c = d,$$

что и требовалось.

1.4 Сведения из топологии

Топологические пространства

Определение. *Топологией* на множестве X называется набор подмножеств $\mathcal{T} \subset 2^X$, обладающий следующими свойствами:

(1) \emptyset и X лежат в \mathcal{T} ;

- (2) объединение всех элементов любого подмножества \mathcal{T} лежит в \mathcal{T} ;
- (3) пересечение элементов любого конечного подмножества ${\mathcal T}$ лежит в ${\mathcal T}$.

Множество X с заданной на нём топологией $\mathcal T$ называется топологическим пространством.

Множества, лежащие в \mathcal{T} , называются *открытыми*. Множество $F \subset X$ называется *замкнутым*, если его дополнение открыто.

Упражнение. Пересечение произвольного числа замкнутых множеств замкнуто. Объединение конечного числа замкнутых множеств замкнуто.

Определение. Открытое в \mathbb{R} множество U называется *окрестностью* точки x, если $x \in U$. Множество

$$U_{\varepsilon}(x) := (x - \varepsilon, x + \varepsilon) = \{ y \in \mathbb{R} \mid x - \varepsilon < y < x + \varepsilon \},$$

называется ε -окрестностью точки $x \in \mathbb{R}$. Множество

$$\dot{U}_{\varepsilon}(x) \coloneqq U_{\varepsilon}(x) \setminus \{x\}.$$

называется проколотой ε -окрестностью точки x.

Определение. Стандартной топологией на \mathbb{R} называется множество

$$\mathcal{T}_{\mathbb{R}} := \{ X \subset \mathbb{R} \mid \forall x \in X \ \exists \varepsilon > 0 : U_{\varepsilon}(x) \subset X \}.$$

Нетрудно проверить, что это действительно топология.

Определение. Пусть (X,\mathcal{T}) — топологическое пространство. Если $Y\subset X$, то семейство множеств

$$\mathcal{T}_Y = \{ Y \cap U \mid U \in \mathcal{T} \}$$

является топологией на Y и называется индуцированной топологией. Множество Y с такой топологией называется топологическим подпространством X, а его открытые множества — это точности все пересечения Y с открытыми множествами в X.

Предельные точки, замыкание

Определение. Внутренностью множества $E \subset X$ называется наибольшее по включению открытое множество в E; оно обозначается через Int E.

Замыканием множества $E\subset X$ называется наименьшее по включению замкнутое множество, содержащее E; оно обозначается через $\operatorname{Cl} E$ или \overline{E} .

Определение. Пусть $E \subset X$. Тогда точка $x \in X$ называется:

• npedeльной точкой множества E, если для любой окрестности U точки x выполнено

$$E \cap (U \setminus \{x\}) \neq \emptyset$$
;

• изолированной точкой множества E, если существует такая окрестность U точки x, что

$$U \cap E = \{x\}.$$

Утверждение 1.4.1. Пусть $E \subset X$. Тогда E замкнуто в том и только том случае, когда содержит все свои предельные точки.

Доказательство. См. конспект по общей топологии.

Теорема 1.4.2. Пусть множество $E \subset \mathbb{R}$ ограничено сверху и замкнуто. Тогда

$$\sup E \in E$$
.

Доказательство. Как мы помним, $x = \sup E$ в том и только том случае, когда $x \geqslant y$ для каждого $y \in E$, и для всех $\varepsilon > 0$ существует такой $y \in E$, что $x - \varepsilon \leqslant y$.

Докажем, что x — предельная точка E (тогда теорема будет доказана в силу замкнутости E и одного из предыдущих утверждений). Действительно, так как U открыто и $x \in U$, то для некоторого $\varepsilon > 0$

$$U_{\varepsilon}(x) \subset U$$
,

и тогда элемент $y \in E$, для которого выполнено $x - \varepsilon \leqslant y$, лежит в $U_{\varepsilon}(x) \subset U$, что и требовалось.

Плотность

Определение. Пусть $E_1, E_2 \subset X$ и $E_1 \subset E_2$. Говорят, что E_1 *плотно* в E_2 , если любая окрестность U точки x в E_2 пересекается с E_1 (то есть $U \cap E_1 \neq \emptyset$).

Теорема 1.4.3. Множество рациональных чисел \mathbb{Q} плотно в \mathbb{R} .

Доказательство. По определению плотность $\mathbb Q$ в $\mathbb R$ равносильна условию

$$\forall a < b \ \exists q \in \mathbb{Q} : q \in (a,b) \iff (na,nb) \cap \mathbb{Q} \neq \emptyset$$

для некоторого $n \in \mathbb{N}$. Выберем $n \in \mathbb{N}$ такое, что $n(b-a) \geqslant 2$ (оно существует по принципу Архимеда). Пусть $q = [nb] - 1 \in \mathbb{Z} \subset \mathbb{Q}$. Покажем, что $q \in (na, nb) : q < [nb] \leqslant nb$;

$$\lceil nb \rceil + 1 > nb$$
, $nb - na \ge 2 \implies \lceil nb \rceil + 1 > na + 2 \implies q > na$.

Значит na < q < mb, $q \in (na, nb)$, что и требовалось.

Компактность

Определение. Пусть $E \subset X$. Тогда семейство открытых множеств $\{U_{\gamma}\}_{\gamma \in \Gamma}$ называется *открытым покрытием* множества E, если

$$E\subset\bigcup_{\gamma\in\Gamma}U_{\gamma}.$$

Определение. Множество $E \subset X$ называется *компактным* подмножеством X, если для любого открытого покрытия этого множества можно выбрать конечное подпокрытие.

Теорема 1.4.4. Множество $E \subset \mathbb{R}$ компактно тогда и только тогда, когда оно замкнуто и ограничено.

Доказательство. Пусть E компактно. Тогда $\{(-n,n)\}_{n\in\mathbb{N}}$ — открытое покрытие E, а значит можно выбрать конечное подпокрытие, то есть $E\subset (-N,N)$ для некоторого $N\in\mathbb{N}$ и E ограничено. Пусть теперь $x\in\mathbb{R}$ — предельная точка для E. Предположим, что $x\notin E$. Тогда

$$\left\{ \left(-\infty, x - \frac{1}{n} \right) \cup \left(x + \frac{1}{n}, +\infty \right) \right\}_{n \in \mathbb{N}}$$

— открытое покрытие. Поскольку E компактно, найдётся такое $N \in \mathbb{N}$, что

$$E \subset \left(-\infty, x - \frac{1}{N}\right) \cup \left(x + \frac{1}{N}, +\infty\right).$$

Но тогда $\dot{V}_{\varepsilon}(x) \cap E = \emptyset$ для, например, $\varepsilon = 1/2N$, что противоречит определению предельной точки. Значит, все предельные точки лежат в E, то есть E замкнуто.

Пусть теперь E замкнуто и ограничено. Будем доказывать от противного; рассмотрим открытое покрытие $\{U_\gamma\}_{\gamma\in\Gamma}$ множества E, из которого нельзя выбрать конечное подпокрытие. Поскольку E ограничено, $E\subset [a_0,b_0]$ для некоторого отрезка $[a_0,b_0]\subset\mathbb{R}$. Построим рекуррентную последовательность отрезков следующим образом:

• если множество $[\frac{a_n+b_n}{2},b_n]\cap E$ не имеет конечного подпокрытия, то

$$[a_{n+1},b_{n+1}] := \left[\frac{a_n + b_n}{2},b_n\right];$$

• в противном случае

$$[a_{n+1}, b_{n+1}] := \left[a_n, \frac{a_n + b_n}{2}\right].$$

Очевидно, что на каждом шаге пересечение отрезка с E нельзя покрыть объединением конечного числа множеств из $\{U_\gamma\}_{\gamma\in\Gamma}$. Обозначим $I_n=[a_n,b_n]$. Тогда $\{I_n\}_{n\in\mathbb{N}}$ — семейство вложенных отрезков, причём в нём есть отрезки сколь угодно малой длины. По лемме Кантора о вложенных отрезках $\bigcap_{n\in\mathbb{N}}I_n=\{x\}$, где $x\in\mathbb{R}$.

Покажем, что $x \in E$. По построению $I_n \cap E \neq \emptyset$ для всех $n \in \mathbb{N}$, то есть x — предельная или изолированная точка для E. В любом случае, из этого следует, что $x \in E$.

Найдём в исходном покрытии окрестность точки x, скажем, U_{γ} . По определению стандартной топологии, $U_{\varepsilon}(x)\subset U_{\gamma}$ для некоторого $\varepsilon>0$. Найдём такое n, что

$$\frac{b_0 - a_0}{2^n} < \frac{\varepsilon}{4}.$$

Тогда $I_n \subset U_{\varepsilon}(x)$, то есть I_n покрывается конечным множеством из $\{U_{\gamma}\}_{{\gamma} \in \Gamma}$. Противоречие. Значит, E — компактно.

Следствие 1.4.5. Отрезок [0,1] — компактное множество.

Доказательство. В силу предыдущей теоремы достаточно доказать, что [0,1] — замкнутое и ограниченное множество. Очевидно, что оно ограничено, скажем, числом 2. Рассмотрим произвольную точку $x \notin [0,1]$. Если x>1, то $[0,1] \cap U_{\varepsilon}(x)=\emptyset$ для $\varepsilon=\frac{x-1}{2}$, а если x<0, то $[0,1] \cap U_{\varepsilon}(x)=\emptyset$ для $\varepsilon=\frac{-x}{2}$. Таким образом, отрезок [0,1] содержит все свои предельные точки, то есть он замкнут. ■

Следствие 1.4.6 (лемма Больцано–Вейерштрасса). Любое бесконечное ограниченное подмножество $\mathbb R$ имеет предельную точку.

Доказательство. Пусть $E \subset [a,b]$ и это множество не имеет предельных точек. Тогда для всех $x \in [a,b]$ существует такое $\varepsilon_x > 0$, что множество $U_{\varepsilon_x} \cap E$ содержит лишь конечное число точек. Очевидно, что $\{U_{\varepsilon_x}(x)\}_{x \in [a,b]}$ — открытое покрытие [a,b]. Значит, можно выделить конечное подпокрытие $\{U_{\varepsilon_{x_k}}(x_k)\}_{1 \leqslant k \leqslant n}$, при этом для всех k множество $U_{\varepsilon_{x_k}}(x_k) \cap E$ конечно, то есть множество

$$\bigcup_{1 \leq k \leq n} \left(U_{\varepsilon_{x_k}}(x_k) \cap E \right) = \left(\bigcup_{1 \leq k \leq n} U_{\varepsilon_{x_k}}(x_k) \right) \cap E$$

конечно. Но тогда E конечно, что противоречит условию.

Связность и промежутки

Определение. Топологическое пространство (X, \mathcal{T}) называется *связным*, если в нем нет открыто-замкнутых множеств. Множество $E \subset X$ называется связным, если топологическое пространство (E, \mathcal{T}_E) связно.

Определение. Множество $E \subset \mathbb{R}$ называется *промежутком*, если из того, что $x \in E$, $y \in E$ и $x \le z \le y$ следует, что $z \in E$. В символьной записи,

$$\forall x, y, z \in \mathbb{R} : x \in E \land y \in E \land x \leqslant z \leqslant y \implies z \in E. \tag{1.4.1}$$

Определение. Каждый промежуток в ℝ имеет один из следующих видов:

$$[a,b], [a,b), (a,b], (a,b), (a,+\infty), [a,+\infty), (-\infty,a), (-\infty,a], (-\infty,+\infty),$$

где $a, b \in \mathbb{R}$.

Доказательство. Очевидно, что каждое из перечисленных множеств удовлетворяет по определению условию (1.4.1).

Рассмотрим случай, когда Е ограничено. Обозначим

$$a := \inf E$$
, $b := \sup E$, $E \subset [a, b]$.

Для каждого $\varepsilon > 0$ можно найти такие $a_1, b_1 \in E$, что

$$a_1 < a + \varepsilon$$
 и $b_1 > b - \varepsilon$,

причём $[a_1, b_1] \subset E$, $[a_1, b_1] \supset (a + \varepsilon, b - \varepsilon)$, а значит

$$\bigcup_{\varepsilon>0}(a+\varepsilon,b-\varepsilon)=(a,b).$$

Таким образом, $(a,b) \subset E \subset [a,b]$, то есть E — промежуток. Аналогичным образом доказывается для неограниченных множеств (достаточно выкинуть одну из переменных).

Теорема 1.4.7. Множество $E \subset \mathbb{R}$ связно тогда и только тогда, когда E — промежуток.

Доказательство. Предположим, что E связно, однако

$$\exists x, y \in E, z \notin E : x < z < y.$$

Рассмотрим множество $A := E \cap (-\infty, z)$. Ясно, что $A \neq \emptyset$, так как $x \in A$. $A \neq E$, поскольку $y \notin A$. Заметим, что в \mathcal{T}_E множество A замкнуто. Тогда E не связно. Противоречие.

Пусть E — промежуток. Предположим, что существует такое открыто-замкнутое в индуцированной топологии множество A, что $A \neq \emptyset$, $A \neq E$. Множество $B := E \setminus A$ тоже открыто-замкнуто. Пусть $a \in A$, $b \in B$. Не умаляя общности, можно считать, что a < b. Рассмотрим множества

$$\widetilde{A} := [a, b] \cap A,$$
 $\widetilde{B} := [a, b] \cap B.$

Заметим, что $[a, b] \subset E$, поскольку E — промежуток. Поэтому

$$\widetilde{A} \cup \widetilde{B} = [a, b] \cap (A \cup B) = [a, b] \cap E = [a, b].$$

Множества \widetilde{A} и \widetilde{B} замкнуты в стандартной топологии. Значит, если $x=\sup \widetilde{A}$, то $x\in \widetilde{A}$, и $x\neq b$, так как $A\cap B=\varnothing$. Поскольку $\widetilde{A}\cup \widetilde{B}=[a,b]$, имеем $(x,b]\subset \widetilde{B}$, то есть x — предельная точка для \widetilde{B} . Так как \widetilde{B} замкнуто, $x\in \widetilde{B}$, то есть $\widetilde{A}\cap \widetilde{B}\supset \{x\}$. Противоречие.

Глава 2

Непрерывность и пределы

2.1 Непрерывные отображения

Определение. Пусть X, Y — топологические пространства, $f: X \to Y, E \subset X, F \subset Y$. *Образом E* называется множество

$$f(E) := \{ y \in Y : \exists x \in E : f(x) = y \},$$

а прообразом F множество

$$f^{-1}(F) := \{ x \in X \mid f(x) \in F \}.$$

Определение. Функция $f: X \to Y$ между топологическими пространствами называется *непрерывной*, если прообраз каждого открытого множества в Y открыт в X.

Часто рассматриваются функции $f \colon E \to Y$, где $E \subset X$. В этом случае подразумевается, что f непрерывна в индуцированной топологии.

Утверждение 2.1.1. Функция f непрерывна тогда и только тогда, когда прообраз замкнутого множества замкнут.

Доказательство. Очевидно.

Теорема 2.1.2. Пусть X и Y — топологические пространства, $f: X \to Y$. Тогда следующие утверждения эквивалентны:

- (1) f непрерывна;
- (2) для каждого $x \in X$ и каждой окрестности V точки f(x) существует такая окрестность U точки x, что $f(U) \subset V$.

Если выполняется условие (2), то говорят, что f непрерывна в точке x.

Доказательство. (1) \Longrightarrow (2). Пусть $x \in X, V$ — окрестность f(x). Тогда множество $U = f^{-1}(V)$ — окрестность точки x, причём $f(U) \subset V$.

(2) \Longrightarrow (1). Пусть V — открытое подмножество $Y, x \in f^{-1}(V)$. Тогда $f(x) \in V$. По предположению существует окрестность $U_x \ni x$ такая, что $f(U_x) \subset V$. Ясно, что $U_x \subset f^{-1}(V)$. Отсюда следует, что $f^{-1}(V)$ можно представить как объединение открытых множеств U_x . Следовательно, $f^{-1}(V)$ открыто.

Утверждение 2.1.3. Если E — подпространство X, то вложение $j: E \to X$, $x \mapsto x$, непрерывно.

Доказательство. Если U открыто в X, то $j^{-1}(U) = U \cap A$, а это множество открыто в A по определению топологии подпространства.

Утверждение 2.1.4. Если функции $f: X \to Y$ и $g: Y \to Z$ непрерывны, то отображение $g \circ f: X \to Z$ также непрерывно.

Доказательство. Если U открыто в Z, то g(U) открыто в Y и $f^{-1}(g^{-1}(U))$ открыто в X. Осталось заметить, что

$$f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U).$$

Утверждение 2.1.5. Пусть $f: X \to Y$ непрерывна, E — подпространство X. Тогда функция $f|_E: A \to Y$ непрерывна.

Доказательство. Функция $f|_E$ равна композиции двух отображений: включения $j: E \to X$ и отображения $f: X \to Y$, оба из которых непрерывны.

Теорема 2.1.6. Непрерывный образ компакта — компакт.

Доказательство. Пусть X — компакт, отображение $f: X \to Y$ непрерывно, \mathcal{A} — открытое покрытие f(X). Тогда семейство

$$\{f^{-1}(A)\mid A\in\mathcal{A}\}$$

является покрытием X. Эти множества открыты по непрерывности f. Значит, X можно покрыть конечным набором таких множеств, скажем,

$$f^{-1}(A_1),\ldots,f^{-1}(A_n).$$

Тогда $\{A_i\}_{i=1}^n$ — покрытие f(X).

Теорема 2.1.7. Образ связного пространства при непрерывном отображении связен.

Доказательство. Пусть $f: X \to Y$ — непрерывное отображение, X связно. Хотим показать, что его образ Z = f(X) связен. Так как отображение, полученное из f сужением области значений на Z, также непрерывно, то достаточно рассмотреть случай с непрерывным сюръективным отображением $g: X \to Z$.

Пусть $Z = A \cup B$ — разбиение Z. Тогда $g^{-1}(A)$ и $g^{-1}(B)$ — тоже непересекающиеся множества, чьё объединение равно X. Они открыты в X, поскольку g непрерывно, и непусты, так как g сюръективно. Таким образом, они образуют разделение X, что противоречит связности X.

Теорема 2.1.8 (Вейерштрасса о максимальном значении). Пусть $f \colon [a,b] \to \mathbb{R}$ — непрерывная функция. Тогда существуют такие точки $c,d \in [a,b]$, что

$$f(c) \le f(x) \le f(d)$$
 для всех $x \in X$.

Доказательство. Поскольку f непрерывно и отрезок [a,b] компактен, образ A=f([a,b]) компактен. В частности, A ограничено, то есть супремум и инфимум этого множества конечны. Кроме того, они лежат в A, так как A замкнуто, то есть содержит свои предельные точки.

Теорема 2.1.9 (Больцано–Коши о среднем значении). Пусть функция $f: E \to \mathbb{R}$ непрерывна, E — промежуток. Тогда для всех $x_0, x_1 \in E$ существует такое $x \in E$, что

$$f(x_0) \leqslant f(x) \leqslant f(x_1).$$

Доказательство. Очевидное следствие того, что образ связного множества связен и того, что любое связное множество в \mathbb{R} — промежуток.

Теорема 2.1.10 (ε - δ определение непрерывной функции). Пусть $f: E \to \mathbb{R}$, где $E \subset \mathbb{R}$. Тогда непрерывность f равносильна тому, что для любого $x \in X$ и $\varepsilon > 0$ существует такое $\delta > 0$, что

$$|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$$
.

Доказательство. Пусть f непрерывно. Выбрав x и ε , рассмотрим множество

$$f^{-1}(U_{\varepsilon}(f(x))).$$

Оно открыто в X и содержит x. Тогда оно содержит некоторый δ -шар B с центром в x. Если $y \in B$, то $f(y) \in U_{\varepsilon}(f(x))$, что и требовалось.

Обратно, предположим, что ε - δ условие выполняется. Пусть $\mathbb R$ открыто в Y. Покажем, что $f^{-1}(V)$ открыто в E. Пусть $x \in f^{-1}(V)$. Так как $f(x) \in V$, существует такое $\varepsilon > 0$, что $U_{\varepsilon}(f(x)) \subset V$. По ε - δ условию найдётся такая δ -окрестность $U_{\delta}(x)$, что

$$f(U_{\delta}(x)) \subset U_{\varepsilon}(f(x)).$$

Тогда $U_{\delta}(x)$ — окрестность x, содержащаяся в $f^{-1}(V)$. Таким образом, множество $f^{-1}(V)$ открыто.

Определение. Функция $f: E \to \mathbb{R}$ называется равномерно непрерывной, если

$$\forall \varepsilon > 0 \ \exists \delta := \delta(\varepsilon) \ \forall x, y \in E : |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon.$$

Теорема 2.1.11. Пусть $E \subset \mathbb{R}$ — компакт, функция $f \colon E \to \mathbb{R}$ непрерывна. Тогда f равномерно непрерывна.

Доказательство. Функция f непрерывно, поэтому можно для каждого x зафиксировать функцию $\delta_x(\varepsilon)$ такую, что

$$\forall y \in E : |x - y| < \delta_x(\varepsilon) \implies |f(x) - f(y)| < \frac{\varepsilon}{2}.$$

Будем писать $V_x := V_{\frac{\delta_X(\varepsilon)}{2}}(x)$. Заметим, что V_x — открытое множество для всех x. Тогда $\bigcup_{x \in E} V_x \supset E$ — открытое покрытие E. Поскольку E — компакт, $\exists x_1, x_2, \dots, x_n \in E$:

 $\bigcup_{1 \leqslant k \leqslant n} V_{x_k} \supset E$. Определим

$$\delta(\varepsilon) := \min\left(\frac{\delta_{x_1}(\varepsilon)}{2}, \frac{\delta_{x_2}(\varepsilon)}{2}, \dots, \frac{\delta_{x_n}(\varepsilon)}{2}\right).$$

Покажем, что $\delta(\varepsilon)$ подходит под определение равномерной непрерывности. Пусть $x,y\in E, |x-y|<\delta(\varepsilon)$. Найдём такое $k\in\mathbb{N}$, что $x\in V_{x_k}$, то есть $|x-x_k|<\frac{\delta_{x_k}}{2}$.

$$|y-x_k| \leq |x-x_k| + |x-y| < \frac{\delta_{x_k}}{2} + \delta \leq \delta_{x_k}.$$

Тогда по определению δ_{x_k} :

$$|f(x) - f(y)| \le |f(x) - f(x_k)| + |f(x_k) - f(y)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

2.2 Пределы числовых последовательностей

Определение. Последовательностью элементов X называется функция $f: \mathbb{N} \to X$. Последовательность часто обозначается через $\{x_n\}_{n\geqslant 1}$ или просто $\{x_n\}$, где $x_n:=f(n)$.

Определение. Говорят, что последовательность точек $\{x_n\}$ произвольного топологического пространства X сходится к точке $L \in X$, если для каждой окрестности U точки L существует такое натуральное N, что $x_n \in U$ для любого n > N.

Определение. Топологическое пространство X называется xаусdор ϕ овыm, если для любых двух различных точек $x_1, x_2 \in X$ существуют непересекающиеся окрестности U_1 и U_2 точек x_1 и x_2 соответственно.

Теорема 2.2.1. Если X — хаусдорфово пространство, то любая последовательность точек X сходится к не более чем одной точке.

Доказательство. Предположим, что $\{x_n\}_{n\in\mathbb{N}}\subset X$ — последовательность точек, сходящихся к L_1 . Пусть $L_2\neq L_1$, а U и V — непересекающиеся окрестности точек L_1 и L_2 соответственно. Так как U содержит x_n для всех n кроме конечного числа значений, то множество V может содержать лишь конечное число x_n . Следовательно, последовательность $\{x_n\}_{n\in\mathbb{N}}$ не может сходиться к L_2 .

Если последовательность $\{x_n\}_{n\in\mathbb{N}}$ хаусдорфова пространства X сходится к точке $L\in X$, будем писать

$$x_n \to L$$
, $x_n \xrightarrow[n \to \infty]{} L$ или $\lim_{n \to \infty} x_n = L$

и называть L пределом последовательности $\{x_n\}$. При этом также говорят, что $\{x_n\}$ — cxodsumascs последовательность.

Пример 2.2.1. Пространство \mathbb{R} хаусдорфово, так как для данных точек $x,y\in\mathbb{R}$ окрестности $U_{\varepsilon}(x)$ и $U_{\varepsilon}(y)$ будут не пересекаться при, например, $\varepsilon=\frac{|x-y|}{4}$.

Утверждение 2.2.2. Пусть $\{x_n\} \subset \mathbb{R}, L \in \mathbb{R}$. Тогда следующие условия эквивалентны:

- (1) $\{x_n\}$ сходится к L;
- (2) для любого $\varepsilon > 0$ найдётся такое натуральное число $N := N(\varepsilon) \in \mathbb{N}$, что

$$|x_n - L| < \varepsilon \quad (\forall n > N).$$

Доказательство. Если $x_n \to L$, то беря в определении сходимости $U := U_{\varepsilon}(L)$ получаем в точности условие (2).

Наоборот, предположим, что условие (2) выполнено. Пусть U открыто и $L \in U$. Тогда найдётся такое $\varepsilon > 0$, что $U_{\varepsilon}(L) \subset U$. Найдём по условию (2) такое $N \in \mathbb{N}$, что $|x_n - L| < \varepsilon$ для всех n > N. Но тогда $x_n \in U_{\varepsilon}(L) \subset U$, то есть $x_n \in U$ для всех n > N, что и требовалось.

Утверждение 2.2.3. Пусть $\{x_n\}$ — сходящаяся последовательность в \mathbb{R} . Тогда $\{x_n\}$ ограничена.

Доказательство. Положим $\varepsilon := 1, N := N(1)$. Тогда для любого n > N имеем

$$|x_n - L| < 1$$
, то есть $|x_n| < 1 + |L|$.

Тогда нетрудно понять, что если

$$c := \max(1 + |L|, |x_1|, \dots, |x_n|),$$

то $|x_n| \le c$ для всех $n \in \mathbb{N}$.

Утверждение 2.2.4. Пусть $\{x_n\}, \{y_n\} \subset \mathbb{R}$. Если $x_n \to L_1$ и $y_n \to L_2$, то

$$x_n + y_n \rightarrow L_1 + L_2$$
.

Иначе говоря, предел суммы равен сумме пределов.

Доказательство. Найдём такие $N_1, N_2 \in \mathbb{N}$, что $|x_n - L_1| < \frac{\varepsilon}{2}$ для всех $n > N_1$ и $|x_n - L_2| < \frac{\varepsilon}{2}$ для всех $n > N_2$. Положим $N := \max(N_1, N_2)$. Тогда

$$|x_n + y_n - (L_1 + L_2)| \le |x_n - L_1| + |y_n - L_2| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

для всех n > N, что и требовалось.

Утверждение 2.2.5. Пусть $\{x_n\}$, $\{y_n\} \subset \mathbb{R}$. Если $x_n \to L_1$ и $y_n \to L_2$, то

$$x_n y_n \to L_1 L_2$$
.

Другими словами, предел произведения равен произведению пределов.

Доказательство. Если $y_n = 0$ для всех $n \in \mathbb{N}$, то утверждение очевидно. Если $L_1 = 0$, то утверждение следует из ограниченности последовательности y_n . В противном случае,

$$\exists N_1 \in \mathbb{N} : |x_n - L_1| < \frac{\varepsilon}{2 \sup |y_n|} \quad (\forall n > N_1),$$

$$\exists N_2 \in \mathbb{N} : |y_n - L_2| < \frac{\varepsilon}{2|L_1|} \quad (\forall n > N_2).$$

Положим $N := \max(N_1, N_2)$. Тогда для всех n > N имеем

$$|x_n y_n - L_1 L_2| = |(x_n - L_1) y_n + L_1 (y_n - L_2)|$$

 $\leq |x_n - L_1| \cdot \sup |y_n| + |L_1| \cdot |y_n - L_2|$
 $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$

то есть $x_n y_n \rightarrow L_1 L_2$.

Утверждение 2.2.6. Пусть $\{x_n\}$ — последовательность в \mathbb{R} , $x_n \to L$. Если $L \neq 0$, то

$$\frac{1}{x_n} \to \frac{1}{L}$$
.

Доказательство. Будем считать, что $x_n \neq 0$ для всех $n \in \mathbb{N}$, так как отбрасывание первых членов последовательности не влияет на ее предел, а нулей может быть лишь конечное число. Найдём такое $N_1 \in \mathbb{N}$, что $|L - x_n| < |L|/2$ для всех $n > N_1$. Отсюда следует, что

$$\left| \frac{1}{x_n} - \frac{1}{L} \right| = \frac{|L - x_n|}{|x_n L|} = \frac{|L - x_n|}{|L||L - (L - x_n)|} \le \frac{|L - x_n|}{|L| \cdot ||L| - |L - x_n||} \le \frac{2|L - x_n|}{|L|^2}.$$

Кроме того, существует такое $N_2\in\mathbb{N}$, что для всех $n>N_2$ верно $|L-x_n|<\frac{\varepsilon|L|^2}{2}$. Полагая $N:=\max(N_1,N_2)$, получаем, что

$$\left|\frac{1}{x_n} - \frac{1}{L}\right| < \varepsilon \quad (\forall n > N).$$

Утверждение 2.2.7. Пусть $x_n \to L_1, y_n \to L_2$ и $L_2 \neq 0$. Тогда

$$\frac{x_n}{y_n} \to \frac{L_1}{L_2}.$$

(Предел частного равен частному пределов.)

Доказательство. По предыдущему утверждению

$$\frac{x_n}{y_n} = x_n \cdot \left(\frac{1}{y_n}\right) \to L_1 \cdot \frac{1}{L_2} = \frac{L_1}{L_2}.$$

Утверждение 2.2.8. Пусть $x_n \to L_1$, $y_n \to L_2$ и $L_1 < L_2$. Тогда найдётся такое $N \in \mathbb{N}$,

что

$$x_n < y_n \qquad (\forall n > N).$$

 \mathcal{A} оказательство. Положим $\varepsilon \coloneqq \frac{L_2-L_1}{2}$. Найдём такие натуральные $N_1,N_2,$ что

$$|x_n - L_1| < \varepsilon$$
, $(\forall n > N_1)$,
 $|x_n - L_2| < \varepsilon$, $(\forall n > N_2)$.

Возьмём $N := \max(N_1, N_2)$. Тогда при n > N выполнено

$$x_N < L_1 + \varepsilon$$
, $y_n > L_2 - \varepsilon$,

а значит

$$x_n < L_1 + \frac{L_2 - L_1}{2} = \frac{L_1 + L_2}{2},$$

 $y_n > L_2 - \frac{L_2 - L_1}{2} = \frac{L_1 + L_2}{2},$

то есть $x_n < y_n$, что и требовалось.

Утверждение 2.2.9. Пусть $x_n \to L_1, \ y_n \to L_2, \ x_n \leqslant y_n \ \forall n \in \mathbb{N}.$ Тогда $L_1 \leqslant L_2.$

Доказательство. Если это не так, приходим к противоречию с предыдущим утверждением. ■

Утверждение 2.2.10 (теорема о двух милиционерах). Если $x_n \to L, y_n \to L,$ и

$$x_n \leq z_n \leq y_n \quad (\forall n \in \mathbb{N}),$$

To $z_n \to L$.

Доказательство. Найдём такие N_1, N_2 , что

$$|x_n - L| < \varepsilon \quad (\forall n > N_1),$$

 $|y_n - L| < \varepsilon \quad (\forall n > N_2),$

и положим $N := \max(N_1, N_2)$. Тогда для всех n > N имеем

$$L - \varepsilon \leq x_n \leq z_n \leq v_n \leq L + \varepsilon$$
,

то есть $|z_n - L| < \varepsilon$.

Определение. Последовательность $\{x_n\}$ называется фундаментальной или последовательностью Коши, если для любого $\varepsilon > 0$ найдётся такое $N := N(\varepsilon) \in \mathbb{N}$, что

$$|x_n - x_m| < \varepsilon \quad (\forall n, m > N).$$

Утверждение 2.2.11 (критерий сходимости Коши). Последовательность $\{x_n\}$ сходится тогда и только тогда, когда она фундаментальна.

Доказательство. Предположим, что $\{x_n\} \to L$. Тогда

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N : |x_n - L| < \frac{\varepsilon}{2},$$

а значит

$$|x_n-x_m| \leq |x_n-L|+|L-x_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad (\forall n,m>N),$$

то есть последовательность $\{x_n\}$ фундаментальна.

В обратную сторону, предположим, что $\{x_n\}$ — последовательность Коши. Докажем сначала, что $\{x_n\}$ ограничена. Пусть $\varepsilon=1$. Найдём такое $N\in\mathbb{N}$, что

$$|x_n - x_m| < 1 \quad (\forall n, m > N).$$

В частности, для всех m>N имеем $|x_N-x_m|<1$, то есть $|x_m|<|x_N|+1$. Отсюда следует, что

$$|x_n| \leq \max(|x_N| + 1, |x_1|, |x_2|, \dots, |x_{N-1}|).$$

Рассмотрим теперь последовательности

$$a_n = \inf_{k \geqslant n} x_k, \quad b_n = \sup_{k \geqslant n} x_k.$$

Они существуют, так как последовательность ограничена. Заметим, что

$$a_n \leqslant a_{n+1} \leqslant b_n \quad (\forall n \in \mathbb{N}),$$

то есть $\{[a_n,b_n]\}_{n\in\mathbb{N}}$ — система вложенных отрезков. По лемме Кантора о вложенных отрезках существует точка $L\in\bigcap_{n\geqslant 1}[a_n,b_n]$. Покажем, что L — предел $\{x_n\}$. Для этого оценим следующую разность:

$$b_n - a_n = b_n - x_k + x_k - x_m + x_m - a_n$$
.

Зафиксируем $\varepsilon>0$ и найдём такое $N\in\mathbb{N}$ (по определению последовательности Коши), что

$$|x_k-x_m|<\frac{\varepsilon}{3}\quad (\forall k,m>N).$$

Кроме того, по свойствам инфимума и супремума мы можем найти такие k, m > N, что

$$|b_N-x_k|<rac{arepsilon}{3}$$
 и $|x_m-a_N|<rac{arepsilon}{3}.$

Тогда

$$b_n - a_n = b_n - x_k + x_k - x_m + x_m - a_n$$

$$\leq |b_n - x_k| + |x_k - x_m| + |x_m - a_n|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Таким образом, $|b_n - a_n| < \varepsilon$ для всех n > N, так как отрезки вложены. Осталось заме-

тить, что для фиксированного $\varepsilon > 0$ и любого n > N

$$\left. \begin{array}{l} a_n \leq L \leq b_n \\ a_n \leq x_n \leq b_n \\ b_n - a_n < \varepsilon \end{array} \right\} \implies |L - x_n| < \varepsilon.$$

Это и значит, что $x_n \to L$.

Определение. Пусть $\{x_n\}_{n\geqslant 1}$ — последовательность (в произвольном топологическом пространстве),

$$n_1 < n_2 < n_3 < \cdots < n_k < n_{k+1} < \ldots$$

где $n_k \in \mathbb{N}$ для всех $k \in \mathbb{N}$. Тогда $\{x_{n_k}\}_{k \geqslant 1}$ называется подпоследовательностью $\{x_n\}$.

Лемма 2.2.12. Если $\{x_n\} \to L$, то $\{x_{n_k}\} \to L$.

Доказательство. Пусть $\varepsilon>0$. Найдём такое $N\in\mathbb{N},$ что $|x_n-L|<\varepsilon$ для всех n>N. Тогда

$$|x_{n_k}-L|<\varepsilon \quad (\forall k>N),$$

так как $n_k \geqslant k$ для всех $k \in \mathbb{N}$.

Определение. Пусть $\{x_n\}$ — последовательность в \mathbb{R} , $\{x_{n_k}\}$ — сходящаяся подпоследовательность $\{x_n\}$. Тогда число

$$L = \lim_{k \to \infty} x_{n_k}$$

называется частичным пределом $\{x_n\}$.

Определение. Будем писать $x_n \to +\infty$ и говорить, что x_n *сходится* κ *(плюс) бесконечности*, если для любого числа M>0 существует такое $N:=N(M)\in\mathbb{N}$, что

$$x_n > M \quad (\forall n > N).$$

Аналогично определяется $x_n \to -\infty$ (сходимость к минус бесконечности).

Отметим, что последовательности, сходящиеся к $\pm \infty$, считаются не сходящимися.

Упражнение. Докажите, что для любых числовых последовательностей $\{x_n\}$, $\{y_n\}$ выполнены следующие свойства.

1.
$$x_n \to +\infty$$
, $y_n \to +\infty \implies x_n + y_n \to +\infty$;

2.
$$x_n \to +\infty$$
, $y_n \to +\infty \implies x_n \cdot y_n \to +\infty$;

3.
$$x_n \to +\infty$$
, $y_n \to -\infty \implies x_n \cdot y_n \to -\infty$;

4.
$$x_n \to +\infty$$
, $x_n \subset (0, \infty) \iff \frac{1}{x_n} \to 0$;

5.
$$x_n \to L$$
, $L > 0$, $y_n \to +\infty \implies x_n \cdot y_n \to +\infty$.

Определение. Последовательность $\{x_n\}$ называется:

- (1) возрастающей , если $x_n \leq x_{n+1}$ для всех $n \in \mathbb{N}$;
- (2) строго возрастающей, если $x_n < x_{n+1}$ для всех $n \in \mathbb{N}$;
- (3) убывающей, если $x_n \ge x_{n+1}$ для всех $n \in \mathbb{N}$;
- (4) *строго убывающей*, если $x_n > x_{n+1}$ для всех $n \in \mathbb{N}$;
- (5) монотонной, если она убывает или возрастает.

Утверждение 2.2.13. Если последовательность $\{x_n\}$ возрастает и ограничена сверху, то она сходится и

$$\lim_{n\to\infty}x_n=\sup_{n\in\mathbb{N}}\{x_n\}.$$

Аналогично, если последовательность $\{x_n\}$ убывает и ограничена снизу, то она сходится и

$$\lim_{n\to\infty}x_n=\inf_{n\in\mathbb{N}}\{x_n\}.$$

Доказательство. Докажем только первое утверждение. Пусть $L = \sup_{n \in \mathbb{N}} \{x_n\}$. Зафиксируем $\varepsilon > 0$. По свойствам супремума найдётся такое $\exists N \in \mathbb{N}$, что $|x_N - L| < \varepsilon$. В силу возрастания x_n отсюда следует, что $|x_n - L| < \varepsilon$ для всех n > N, а это и есть определение предела.

Замечание. Для неограниченных последовательностей утверждение 2.2.13 тоже верно, поскольку супремум неограниченного множества мы считаем равным $+\infty$.

Определение. Пусть $\{x_n\}$ — последовательность в \mathbb{R} . Тогда *верхний предел* $\{x_n\}$ определяется следующим образом:

$$\overline{\lim_{n \to \infty}} \, x_n := egin{cases} \lim \sup_{n \to \infty} x_k, & \text{если } \{x_n\} \text{ ограничена сверху,} \ +\infty, & \text{иначе.} \end{cases}$$

Аналогично, нижний предел определяется по правилу

$$\underline{\lim}_{n \to \infty} x_n \coloneqq egin{cases} \lim\inf_{n \to \infty} x_k, & \text{если } \{x_n\} \text{ ограничена снизу,} \\ -\infty, & \text{иначе.} \end{cases}$$

Иногда верхний и нижний пределы обозначаются через lim sup и lim inf соответственно.

Отметим, что последнее определение корректно, так как последовательности $\{\sup_{k\geqslant n} x_k\}_{n\geqslant 1}$ и $\{\inf_{k\geqslant n} x_k\}_{n\geqslant 1}$ монотонны, а у монотонных последовательностей всегда есть предел (возможно, бесконечный).

Таким образом, верхний и нижний пределы существуют всегда.

¹Существует другая терминология, в которой говорят о *неубывающих* и возрастающих последовательностях. Нам кажется, что при такой терминологии гораздо проще запутаться, поэтому не будем её использовать.

Утверждение 2.2.14. Пусть $\{x_{n_k}\}$ — сходящаяся подпоследовательность в $\{x_n\}$, причём

$$\lim_{n\to\infty}x_{n_k}=L,$$

где $L \in \mathbb{R}$. Тогда

$$\underline{\lim_{n\to\infty}} x_n \leqslant L \leqslant \overline{\lim_{n\to\infty}} x_n,$$

если считать, что

$$-\infty < L < +\infty \quad (\forall L \in \mathbb{R}).$$

Доказательство. Пусть последовательность $\{x_n\}$ ограничена сверху — в противном случае её верхний предел равен +∞, и неравенство $L \leq +\infty$ выполнено по нашему соглашению. Покажем, что

$$L \leqslant \overline{\lim}_{n\to\infty} x_n$$
.

Для этого рассмотрим вспомогательные последовательности

$$y_{n_k} = \sup_{m \geqslant k} x_{n_m}, \quad \widetilde{y}_{n_k} = \sup_{m \geqslant n_k} x_m.$$

Нетрудно понять, что

$$x_{n_k} \leqslant y_{n_k} \leqslant \widetilde{y}_{n_k} \quad (\forall k \in \mathbb{N}),$$

откуда $L \leq \lim_{k \to \infty} \widetilde{y}_{n_k}$. Осталось заметить, что

$$\lim_{k\to\infty}\widetilde{y}_{n_k}=\lim_{n\to\infty}\sup_{k\geqslant n}x_k=\overline{\lim_{n\to\infty}}x_n.$$

Доказательство для нижнего предела аналогично.

Утверждение 2.2.15. Пусть $\{x_n\}$ — ограниченная сверху последовательность. Тогда в $\{x_n\}$ существует такая сходящаяся подпоследовательность $\{x_{n_k}\}_{k\geqslant 1}$, что

$$\lim_{k\to\infty}x_{n_k}=\overline{\lim}_{n\to\infty}x_n.$$

Доказательство. Построим некоторые последовательности чисел $n_k, m_k \in \mathbb{N}$, такие что

$$m_1 = n_1 = 1$$
, $m_1 = n_1 < m_2 \le n_2 < m_3 \le \dots$

Если построены n_k, m_k , где $k \ge 1$, то выбираем такое m_{k+1} , что

$$|y_{m_{k+1}} - L| < \frac{1}{k+1},$$

где $L = \limsup_{n \to \infty} x_n, \ y_{m_{k+1}} = \sup_{n \geqslant m_{k+1}} x_n, \ \mathsf{H}$

$$|x_{n_m} - L| \le |x_{n_m} - y_{n_m}| + |y_{n_m} - L| < \frac{1}{k} + \frac{1}{k} = \frac{2}{k} < \varepsilon.$$

Таким образом, $\{x_{n_m}\}$ сходится к L.

Утверждение 2.2.16. Если последовательность $\{x_n\}$ не ограничена сверху, то суще-

ствует такая подпоследовательность $\{x_{n_k}\}$, что

$$\lim_{k\to\infty}x_{n_k}=+\infty.$$

Доказательство. Очевидно.

Утверждение 2.2.17. Последовательность $\{x_n\}$ сходится тогда и только тогда, когда

$$\underline{\lim}_{n\to\infty} x_n = \overline{\lim}_{n\to\infty} x_n = L,$$

где $L \in \mathbb{R}$. В этом случае $\lim_{n \to \infty} x_n = L$.

Доказательство. Если

$$\lim_{n\to\infty}x_n=\overline{\lim}_{n\to\infty}x_n=L,$$

то $\lim_{n\to\infty} x_n = L$ по теореме о двух милиционерах.

Наоборот, если $x_n \to L$, то можно найти такую подпоследовательность $\{x_{n_k}\}$, что

$$\lim_{k\to\infty} x_{n_k} = \overline{\lim_{n\to\infty}} x_n = \lim_{n\to\infty} x_n = L.$$

(Аналогично с нижним пределом).

2.3 Начальные сведения о рядах

Обозначение. Пусть $\{a_n\}_{n\in\mathbb{N}}$ — последовательность в \mathbb{R} . Тогда символ $\sum_{n\in\mathbb{N}} a_n$ обозначает $p n \partial$, составленный из элементов a_n .

Определение. Говорят, что ряд $\sum a_n$ *сходится*, если существует конечный предел $\lim_{n\to\infty} s_n = S$, где

$$s_n = \sum_{k=1}^n a_k.$$

Число S называется суммой ряда. Если такого предела не существует, то ряд называется расходящимся.

Замечание. Последовательности $\{a_n\}$ и $\sum a_n$ полностью определяется частичными суммами. Действительно, $a_1=s_1$, $a_2=s_2-s_1$, $a_3=s_3-s_2$ и так далее.

Теорема 2.3.1 (критерий Коши сходимости рядов). Ряд $\sum a_n$ сходится тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} \ \forall m, n > N(\varepsilon) : \left| \sum_{k=m}^{n} a_k \right| < \varepsilon.$$

Доказательство. Применим критерий Коши для последовательности $s_n = \sum_{i=1}^n a_i$ — сходимость ряда равносильна тому, что для любого $\varepsilon > 0$ существует такое $M(\varepsilon)$, что

для любых $M(\varepsilon) < m < n$ выполнено

$$\varepsilon > |s_n - s_m| = \left| \sum_{i=m}^n a_i \right|.$$

Пример 2.3.1. Докажем следующее равенство (телескопический ряд):

$$\sum_{n\in\mathbb{N}}\frac{1}{n(n+1)}=1.$$

Доказательство. Прямое вычисление:

$$\sum_{n \in \mathbb{N}} \frac{1}{n(n+1)} = \sum_{n \in \mathbb{N}} \frac{1}{n} - \frac{1}{n+1} = \lim_{n \to \infty} s_n$$

$$= \lim_{N \to \infty} \left(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \dots - \frac{1}{N+1} \right)$$

$$= \lim_{N \to \infty} \left(1 - \frac{1}{N+1} \right) = 1,$$

что и требовалось доказать.

Пример 2.3.2. Гармонический ряд

$$\sum_{n\in\mathbb{N}}\frac{1}{n}$$

расходится.

Доказательство. Пусть $N \in \mathbb{N}$. Рассмотрим число $s_{2N} - s_N$:

$$s_{2N} - s_N = \sum_{n=N+1}^{2N} \frac{1}{n} \ge (2N - N) \frac{1}{2N} = \frac{1}{2}.$$

Тогда для $\varepsilon=\frac{1}{4}$ не существует подходящего $M(\varepsilon)$ по критерию Коши.

Утверждение 2.3.2. Пусть ряд $\sum a_n$ сходится. Тогда

$$\lim_{n\to\infty}a_n=0.$$

Доказательство. Зафиксируем $\varepsilon > 0$. Найдем $M(\varepsilon)$ из критерия Коши и подставим $m = n > N(\varepsilon)$. Тогда $|a_n| < \varepsilon$, то есть для последовательности $\{a_n\}$ мы нашли $N(\varepsilon)$ из определения сходимости последовательности, равное $M(\varepsilon)$.

Следствие 2.3.3. Ряд $\sum (-1)^n$ расходится.

Утверждение 2.3.4. Ряд $\sum a_n$, где $a_n \ge 0$ для всех $n \in \mathbb{N}$, сходится тогда и только тогда, когда $\sup_{N \ge 1} \sum_{n=1}^N a_n < +\infty$. Более того, в этом случае

$$\sum_{n=1}^{\infty} a_n = \sup_{N \geqslant 1} \sum_{n=1}^{N} a_n.$$

Доказательство. Так как $a_n \ge 0$, последовательность $\{s_n\}$ частичных сумм является возрастающей последовательностью. Применив утверждение 2.2.13, получаем то, что требовалось доказать.

Утверждение 2.3.5 (признак сравнения). Пусть $|a_n| \le b_n$ для всех $n \in \mathbb{N}$. Если ряд $\sum b_n$ сходится, то и ряд $\sum a_n$ сходится.

Доказательство. Найдём $M(\varepsilon)$ из критерия Коши для ряда $\sum b_n$, выберем $n>m>M(\varepsilon)$ и оценим:

$$\left|\sum_{k=m}^{n} a_k\right| \leqslant \sum_{k=m}^{n} |a_k| \leqslant \sum_{k=m}^{n} b_k < \varepsilon.$$

Тогда мы нашли $M(\varepsilon)$ из критерия Коши для ряда $\sum a_n$, из чего следует сходимость этого ряда.

Утверждение 2.3.6. Ряд

$$\sum_{n\in\mathbb{N}}\frac{1}{n^p}$$

сходится тогда и только тогда, когда p > 1.

Доказательство. По признаку сравнения, из того, $\sum \frac{1}{n}$ расходится, следует, что $\sum \frac{1}{n^p}$ при $p \leqslant 1$ расходится. Пусть теперь p > 1. Так как $\frac{1}{n^p} \geqslant 0$ для любого $n \in \mathbb{N}$, достаточно проверить, что

$$\sup_{n\in\mathbb{N}}\sum_{n=1}^N\frac{1}{n^p}<+\infty.$$

Пусть $N \in \mathbb{N}, N > 2$. Найдём такое $j \in \mathbb{N}$, что $2^j \leq N < 2^{j+1} - 1$. Тогда

$$\begin{split} \sum_{n=1}^{N} \frac{1}{n^{p}} &\leqslant \sum_{n=1}^{2^{j+1}-1} \frac{1}{n^{p}} \\ &= 1 + \left(\frac{1}{2^{p}} + \frac{1}{3^{p}}\right) + \dots + \left(\frac{1}{(2^{j})^{p} + \dots + (2^{j+1} - 1)^{p}}\right) \\ &\leqslant 1 + \frac{2}{2^{p}} + \frac{4}{4^{p}} + \dots + \frac{2^{j}}{2^{jp}} \\ &= 1 + \frac{1}{2^{p-1}} + \frac{1}{(2^{p-1})^{2}} + \dots + \frac{1}{(2^{p-1})^{j}} \\ &= \frac{1 - q^{j+1}}{1 - q} \\ &\leqslant \frac{1}{1 - q}, \end{split}$$

где $q = 2^{1-p} < 1$.

Упражнение. Пусть q>0. Тогда $\sum_{n=0}^{\infty}q^n$ сходится тогда и только тогда, когда q<1, причём в этом случае

$$\sum_{n=1}^{\infty} q^n = \frac{1}{1-q}.$$

Утверждение 2.3.7 (преобразование Абеля). Пусть $\{a_n\}, \{b_n\} \subset \mathbb{R}$ и $m \geqslant n \geqslant 2$. Тогда

$$\sum_{k=n}^{m} a_k b_k = \sum_{k=n}^{m-1} s_k (b_k - b_{k+1}) + s_m b_m - s_{n-1} b_n,$$

где $s_k = \sum_{n=1}^k a_n$. Также эту формулу называют *суммированием по частям*.

Доказательство. Прямое вычисление:

$$\sum_{k=n}^{m} (s_k - s_{k-1})b_k = \sum_{k=n}^{m} s_k b_k - s_{k-1} b_l$$

$$= \sum_{k=n}^{m} s_k b_k - \sum_{k=n-1}^{m-1} s_k b_{k+1}$$

$$= \sum_{k=n}^{m-1} s_k (b_k - b_{k+1}) + s_m b_m - s_{n-1} b_n.$$

Утверждение 2.3.8 (признак Дирихле). Пусть $\{a_k\}, \{b_k\} \subset \mathbb{R}$, причём:

- (1) $\sup_{k\geqslant 1}|s_k|=M<+\infty$, где $s_k=\sum_{l=1}^ka_l;$
- (2) $\lim_{k\to\infty} b_k = 0$, и при этом $\{b_k\}$ неотрицательная убывающая последовательность.

Тогда ряд $\sum_{k\geq 1} a_k b_k$ сходится.

Доказательство. Пусть $m \ge n \ge 2$. Тогда:

$$\left| \sum_{k=n}^{m} a_k b_k \right| \leq \sum_{k=n}^{m} |s_k| (b_k - b_{k+1}) + M \cdot b_m + M \cdot b_n$$

$$\leq M \left(\sum_{k=n}^{m} (b_k - b_{k+1}) + b_m + b_n \right)$$

$$= M (b_n - b_{m+1} + b_n + b_m)$$

$$\leq M \cdot 4b_n.$$

Зафиксируем $\varepsilon>0$ и найдём $N(\varepsilon)\in\mathbb{N}$ такое, что $|b_k|<rac{arepsilon}{4M}$ для всех $k\in\mathbb{N}.$ Тогда

$$\left| \sum_{k=n}^{m} a_k b_k \right| \leqslant M \cdot 4b_n < M \cdot \frac{4\varepsilon}{4M} = \varepsilon.$$

Следствие 2.3.9 (признак Лейбница). Пусть последовательность $\{c_n\}$ монотонно стремится к нулю. Тогда ряд $\sum (-1)^n c_n$ сходится.

Доказательство. Действительно, взяв $a_n = (-1)^n$ и $b_n = c_n$, мы получим, что ряд

$$\sum_{n\in\mathbb{N}} a_n b_n = (-1)^n c_n$$

сходится по признаку Дирихле.

Утверждение 2.3.10 (признак Абеля). Пусть $\{a_n\}, \{b_n\} \subset \mathbb{R}$, причём:

- 1. Последовательность $\{b_n\}$ ограничена и монотонна;
- 2. Ряд $\sum a_n$ сходится.

Тогда ряд $\sum a_n b_n$ сходится.

Доказательство. Оставляется в качестве упражнения.

2.4 Пределы отображений в топологических пространствах

Определение. Пусть X, Y — топологические пространства, $E \subset X$, $a \in X$ — предельная точка E. Элемент $L \in Y$ называется *пределом отображения* $f : E \to Y$ в точке a, если для любой окрестности V точки L в Y существует окрестность U точки a в X, такая что

$$f(\dot{U} \cap E) \subset V$$
,

где $\dot{U} = U \setminus \{a\}$.

Обозначение. То, что функция f в точке a имеет предел L обычно обозначается одним из следующих способов:

- $f(x) \xrightarrow[x \to a]{} L;$
- $\lim_{x\to a} f(x) = L$.

Утверждение 2.4.1. Если L_1, L_2 — пределы $f: E \to Y$ в точке $a \in E$, где Y — хаусдорфово пространство, то $L_1 = L_2$.

Доказательство. Пусть $L_1 \neq L_2$. Найдём $V_1 \in \mathcal{T}_Y$, $V_2 \in \mathcal{T}_Y$ такие, что $V_1 \cap V_2 = \emptyset$. Теперь по определению непрерывности в точке выберем окрестности точки $a \in U_1, U_2 \in \mathcal{T}_X$ такие, что

$$f(\dot{U}_1 \cap E) \subset V_1$$
 $f(\dot{U}_2 \cap E) \subset V_2$.

Так как $V_1 \cap V_2 = \emptyset$, верно

$$f(\dot{U}_1 \cap \dot{U}_2 \cap E) \subset V_1 \cap V_2 = \emptyset.$$

Однако $U_1 \cap U_2 \in \mathcal{T}_X$ и $a \in U_1 \cap U_2$, а значит $U = U_1 \cap U_2$ — окрестность a. Точка a — предельная, поэтому $\dot{U} \cap E \neq \emptyset$, то есть $f(\dot{U} \cap E) \neq \emptyset$. Противоречие.

2.5 Пределы функций

Обозначение. Пусть $a \in \mathbb{R}$, $\varepsilon > 0$. Множество $\{x \in \mathbb{R} : |x - a| < \varepsilon\}$ обозначается $U_{\varepsilon}(a)$. Это множество иногда называют ε -окрестностью точки a. Множество $\dot{U}_{\varepsilon}(a) := U_{\varepsilon}(a) \setminus \{a\}$ называют проколотой ε -окрестностью точки a.

Теорема 2.5.1. Пусть $E \subset \mathbb{R}, \ a \in \mathbb{R}$ — предельная точка $E, f : E \to \mathbb{R}$. Тогда следующие условия равносильны:

- 1. Существует предел $\lim_{x\to a} f(x) = L$ в топологии $\mathcal{T}_{\mathbb{R}}$;
- 2. Для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что для любого числа a такого, что $a \in \dot{U}_{\delta}$ верно, что $|f(x) L| < \varepsilon$.

Доказательство. Докажем, что из первого условия следует второе. Пусть $\varepsilon > 0$ Рассмотрим $U \in \mathcal{T}_{\mathbb{R}}$ такое, что $a \in U$ и $f(\dot{U} \cap E) \subset U_{\varepsilon}(L)$. Поскольку $U \in \mathcal{T}_{\mathbb{R}}$ и $a \in U$, существует $\delta > 0$ такое, что $U_{\delta}(a) \subset U$. Но тогда если $x \in \dot{U}_{\delta}(a)$, то $|f(x) - a| < \varepsilon$, что мы и хотели получить.

Теперь докажем что второе условие влечёт первое. Пусть $V \in \mathcal{T}_{\mathbb{R}}, L \in V$, тогда существует $\varepsilon > 0$ такое, что $U_{\varepsilon}(L) \subset V$. Найдем δ для ε из второго условия. Тогда заметим, что $f(\dot{U}_{\delta}(a)) \subset U_{\varepsilon}(L) \subset V$, то есть мы нашли U из первого условия.

Утверждение 2.5.2 (предел сужения совпадает с пределом функции). Пусть $E \subset \mathbb{R}$, $A \subset E$, a — предельная точка A, функция $f : E \to \mathbb{R}$ такова, что существует предел $\lim_a f(x) = L$, где $x \in E$ Тогда существует предел

$$\lim_{x \to a} f(x) = L, \quad x \in A.$$

Доказательство. Очевидным образом следует из ε - δ определения.

Утверждение 2.5.3. Пусть $E \subset \mathbb{R}$, $E = E_1 \cup E_2$, a — предельная точка $E_1, E_2, f : E \to \mathbb{R}$. Тогда

$$\lim_{\substack{x \to a \\ x \in E}} f(x) = L \iff \lim_{\substack{x \to a \\ x \in E_1}} f(x) = L \text{ if } \lim_{\substack{x \to a \\ x \in E_2}} f(x) = L.$$

Доказательство. Докажем импликацию слева направо. Применим предыдущее утверждение для множеств $E_1 \subset E$ и $E_2 \subset E$;

Теперь докажем справа налево. Для фиксированного ε выберем подходящие δ_1 для E_1 и δ_2 для E_2 из определения предела функции в точке. Тогда для E подходит $\delta := \min(\delta_1, \delta_2)$.

Определение. Пусть $E \subset \mathbb{R}$, a — предельная точка E. Обозначим $E_+ := E \cap (a, +\infty)$ и $E_- := E \cap (-\infty, a)$. Тогда, если a — предельная точка для E_+ , то

$$\lim_{x \to a} f(x), \quad x \in E_+$$

называется *пределом справа* в точке a, аналогично,

$$\lim_{x \to a} f(x), \quad x \in E_{-}$$

называется пределом слева в точке а.

Утверждение 2.5.4. Пусть $f: E \to \mathbb{R}$, a — предельная точка E, E_-, E_+ . Тогда

$$\lim_{\substack{x \to a \\ x \in E}} f(x) = L \iff \lim_{\substack{x \to a \\ x \in E_{-}}} = \lim_{\substack{x \to a \\ x \in E_{+}}} f(x) = L.$$

Доказательство. Следует из утверждения 2.5.3, поскольку $E = E_1 \cup E_2 \cup \{a\}$ (точка a не имеет значения, поскольку исключается в определении предела).

Теорема 2.5.5. Пусть $E \subset \mathbb{R}$, a — предельная точка E, $f: E \to \mathbb{R}$. Тогда следующие условия эквивалентны:

- 1. Существует предел $\lim_a f(x) = L, x \in E$.
- 2. Для любой последовательности $\{x_n\}\subset \dot{E}=E\setminus\{a\}$, стремящейся к a верно, что $f(x_n)\to L$.

Доказательство. Выведем из первого условия второе. Пусть $\{x_n\} \subset \dot{E}$ и $\lim x_n = a$. Рассмотрим $\varepsilon > 0$. Тогда существует $\delta(\varepsilon)$ такое, что если $x \in U_{\delta}(a)$, то $f(x) \in U_{\varepsilon}(L)$. Поскольку $x_n \to a$, существует $N(\delta(\varepsilon))$ такое, что для любого n > N верно, что $|x_n - a| < \delta(\varepsilon)$. Тогда для любого n > N верно, что $|f(x_n) - L| < \varepsilon$, то есть $\lim_{n \to \infty} f(x_n) = L$.

Теперь докажем импликацию в другую сторону. Предположим, что первое не выполнено. Тогда существует такое $\varepsilon>0$, что для любого $\delta>0$ можно выбрать $x\in E$, $x\neq a$ так, чтобы было выполнено $|x-a|<\delta$ и $|f(x)-L|\geqslant \varepsilon$. Построим последовательность $\{x_n\}\subset \dot{E}$ такую, чтобы для любого $n\in\mathbb{N}$ точка x_n была бы любой, удовлетворяющей условиям $|x_n-a|<1/n$ и $|f(x_n)-L|\geqslant \varepsilon$. По построению $\lim x_n=a$, также $\{x_n\}\subset \dot{E}$, а значит должно быть верно, что $\lim f(x_n)=L$, однако это противоречит предположению.

Следствие 2.5.6. Пусть $E \subset \mathbb{R}$, a — предельная точка E, даны функции $f: E \to \mathbb{R}$, $g: E \to \mathbb{R}$ такие, что существуют пределы $\lim_{x\to a} f(x) \lim_{x\to a} g(x)$. Тогда:

- 1. Существует предел $\lim_a \alpha f(x) = \alpha \lim_a f(x), \ \alpha \in \mathbb{R};$
- 2. Существует предел $\lim_a (f(x) + g(x)) = \lim_a f(x) + \lim_a g(x)$;
- 3. Существует предел $\lim_a (f(x) \cdot g(x)) = \lim_a f(x) \cdot \lim_a g(x)$;
- 4. Существует предел $\lim_a g(x) \neq 0 \implies \exists \lim_a \left(\frac{f(x)}{g(x)}\right) = \frac{\lim_a f(x)}{\lim_a g(x)}$.

Доказательство. Следует из предыдущей теоремы и арифметических свойств пределов. ■

Следствие 2.5.7. Пусть $E_1, E_2 \subset \mathbb{R}$, точка a — предельная для E_1, b — для E_2 , функции $f: E_1 \to E_2, g: E_2 \to \mathbb{R}$ таковы, что существуют пределы $\lim_a f(x) = b, x \in E_1$ и $\lim_b g(x) = L, x \in E_2$. Также существует проколотая окрестность $\dot{U}(a)$ такая , что $b \notin f(\dot{U}(a))$. Тогда существует предел $\lim_a g(f(x)) = L$.

Доказательство. Зафиксируем произвольную последовательность $\{x_n\} \subset E_1 \setminus \{a\}$ такую, что $\lim x_n = a$. Существует предел $\lim_a f(x) = b$, $x \in E_1$, а значит существует предел $\lim f(x_n) = b$. Из условия о том, что существует проколотая окрестность $\dot{U}(a)$ со свойством $b \notin f(\dot{U}(a))$ следует, что существует $N \in \mathbb{N}$ такое, что для любого n > N верно $f(x_n) \neq b$. Тогда множество $\{f(x_n)\}_{n>N}$ содержится в $E_2 \setminus \{b\}$. Существует предел $\lim_b g(x) = L$, $x \in E_2$, следовательно существует предел $\lim g(f(x_n)) = L$. Получается, что для любой последовательности $\{x_n\} \subset E_1 \setminus \{a\}$:

$$\lim_{n\to\infty} x_n = a \implies \lim_{n\to\infty} g(f(x_n)) = L.$$

Значит существует предел $\lim_a g(f(x)) = L$.

Теорема 2.5.8. Пусть $E \subset \mathbb{R}, a \in E$ — предельная точка для $E, f : E \to \mathbb{R}$. Тогда следующие условия эквивалентны:

- 1. f непрерывна в точке a;
- 2. Существует предел $\lim_a f(x) = f(a), x \in E$.

Доказательство. Согласно теореме ?? непрерывность в точке a равносильна тому, что для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что если $|x - a| < \delta$ и $x \in E$, то $|f(x) - f(a)| < \varepsilon$. А по теореме 2.5.1 мы знаем, что для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что если $0 < |x - a| < \delta$ и $x \in E$, то $|f(x) - \lim_a f(x)| < \varepsilon$. Но так как $\lim_a f(x) = a$, мы можем брать одинаковые $\delta(\varepsilon)$ в обоих условиях.

Следствие 2.5.9. Пусть $E \subset \mathbb{R}$, $f \colon E \to \mathbb{R}$. Тогда f непрерывна на E тогда и только тогда, когда для каждого предельной точки a множества E существует $\lim_x f(x) = f(a)$.

Доказательство. Рассмотрим два случая:

- 1. Пусть a предельная точка E. Тогда по предыдущей теореме f непрерывна в a тогда и только тогда, когда существует предел $\lim_{x\to a} f(x) = f(a), x\in E$.
- 2. Пусть a изолированная точка. Тогда f непрерывна в a по определению, то есть, для любого $\varepsilon > 0$ достаточно взять δ такое, что $U_{\delta}(a) \cap E = \{a\}$.

Следствие 2.5.10. Если функции f, g непрерывны на E, то:

- 1. Функция $\alpha f(x)$ непрерывна на E;
- 2. Функция f(x) + g(x) непрерывна на E;
- 3. Функция $f(x) \cdot g(x)$ непрерывна на E;
- 4. Пусть $g(x) \neq 0$, тогда функция f(x)/g(x) непрерывна на E.

Доказательство. Очевидным образом следует из предыдущей теоремы.

Пример 2.5.1. Рассмотрим функцию sgn: $\mathbb{R} \to \mathbb{R}$,

$$sgn(x) := \begin{cases} 1, & x > 0, \\ 0, & x = 0, \\ -1, & x < 0. \end{cases}$$

Она не является непрерывной.

Доказательство. Рассмотрим прообраз открытого множества $\operatorname{sgn}^{-1}(-1/2, 1/2) = \{0\}$. Это множество не является открытым в стандартной топологии на \mathbb{R} .

Пример 2.5.2. Функция Римана $f: [0,1] \to \mathbb{R}$:

$$f(x) = \begin{cases} 0, & x \in [0,1] \setminus \mathbb{Q}; \\ \frac{1}{n}, & x = \frac{m}{n}. \end{cases}$$

разрывна в $[0,1] \cap \mathbb{Q}$.

Лемма 2.5.11. Пусть $E \subset \mathbb{R}$, a — предельная точка множества E, функция $f: E \to \mathbb{R}$ такова, что $\lim_a f(x) = L$, $x \in E$. Тогда существует проколотая окрестность $\dot{U}(a)$ точки a такая, что $\sup\{f(x): x \in \dot{U}(a) \cap E\} < \infty$.

 \mathcal{L} оказательство. Возьмем $\varepsilon=1$. Найдем $\delta(\varepsilon)$ из определения предела функции в точке. Пусть $\dot{U}(a)\coloneqq \dot{U}_{\delta}(a)$. Тогда $\sup\{f(x):x\in\dot{U}(a)\cap E\}\leqslant |L|+1$.

Лемма 2.5.12. Пусть $E \subset \mathbb{R}$, a — предельная точка множества E, функция $f : E \to \mathbb{R}$ такова, что $\lim_a f(x) = L$, $x \in E$, и $L \neq 0$. Тогда существует проколотая окрестность $\dot{U}(a)$ такая, что для любого $x \in \dot{U}(a) \cap E$ выполнено $|f(x)| \geqslant \frac{|L|}{2}$.

Доказательство. Пусть $\varepsilon = \frac{|L|}{2}$. Найдем $\delta(\varepsilon)$ из определения предела функции в точке. Тогда возьмём $\dot{U}(a) := \dot{U}_{\delta}(a)$. Тогда очевидно верно, что если $x \in \dot{U}_{\delta}(a) \cap E$, то

$$|L - f(x)| \in U_{L/2}(L) \implies |f(x)| \geqslant |L|/2.$$

Утверждение 2.5.13 (критерий Коши для функций). Пусть $E \subset \mathbb{R}$, a — предельная точка множества $E, f: E \to \mathbb{R}$. Тогда существование предела $\lim_a f(x)$ равносильно тому, что для любого $\varepsilon > 0$ существует $\delta := \delta(\varepsilon)$ такое, что для любых $x_1, x_2 \in \dot{U}_{\delta}(a) \cap E$ верно $|f(x_1) - f(x_2)| < \varepsilon$.

Доказательство. Зафиксируем $\varepsilon > 0$. Тогда существование предела $\lim_a f(x)$, $x \in E$ означает, что для $\varepsilon/2$ можно выбрать $\delta > 0$ так, чтобы из того, что $x \in \dot{U}_{\delta}(a) \cap E$ следовало, что $|f(x) - \lim_a f(x)| < \varepsilon/2$. Тогда для любых $x_1, x_2 \in \dot{U}_{\delta}(a) \cap E$ верно

$$|f(x_1) - f(x_2)| \le \left| f(x_1) - \lim_{x \to a} f(x) \right| + \left| \lim_{x \to a} f(x) - f(x_2) \right| \le \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Построим последовательность $\{\delta_n\}_{n\in\mathbb{N}}$ следующим образом:

$$\delta_n < \frac{1}{n} : x_1, x_2 \in \dot{V}_{\delta_n}(a) \implies |f(x_1) - f(x_2)| < \frac{1}{n}.$$

Тогда для любого $n\in\mathbb{N}$ выполнено вложение $\dot{V}_{\delta_{n+1}}(a)\subset\dot{V}_{\delta_n}(a)$. Выберем произвольно $\xi_n\in\dot{V}_{\delta_n}(a)\cap E$. Тогда $\xi_n\to a$, так как $|x_n-a|<1/n$. Последовательность $\{f(\xi_n)\}$ является последовательностью Коши, поскольку для любого $\varepsilon>0$ существует $n_0\in\mathbb{N}$ такое, что $1/n_0<\varepsilon$, а значит если $k,m>n_0$, то $|f(\xi_k)-f(\xi_m)|\leqslant 1/n_0$, так как $\xi_k,\xi_m\in\dot{U}_{\delta_s}$, где $s:=\min(k,m)$. Значит, найдётся $L\in\mathbb{R}$ такое, что существует предел $\lim_{\epsilon\to 0}f(\xi_n)=L$. Докажем, что существует $\lim_{\epsilon\to 0}f(\xi_n)=L$. Рассмотрим $\varepsilon>0$ и выберем N так, чтобы было верно $1/N<\varepsilon/2$ и для всякого n>N выполнялось

$$|f(\xi_n) - L| < \varepsilon/2.$$

Тогда справедлива следующая оценка:

$$|f(x)-L| \leq |f(x)-f(\xi_n)| + |f(\xi_n)-L| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \quad \forall x \in \dot{U}_{\delta_N}(a) \cap E,$$

а значит существует предел $\lim f(x) = L$.

Утверждение 2.5.14. Пусть $f: E \to \mathbb{R}$ — возрастающая и ограниченная сверху функция. Тогда для каждой предельной точки a множества $E_- := E \cap (-\infty, a)$ существует предел $\lim_a f(x)$ и, более того, $\lim_a f(x) = \sup\{f(x) : x \in E_-\}$, где предел берётся по множеству E_- .

Доказательство. Пусть $c=\sup\{f(x):x\in E_-\}$. По свойствам супремума для любого $\varepsilon>0$ существует $x_0\in E_-$ такое, что $|f(x_0)-c|<\varepsilon$. Обозначим $\delta\coloneqq |x_0-a|/2$. Тогда для всех $x\in E_-\cap \dot{U}_\delta(a)$ таких, что $x\geqslant x_0$ верно

$$c \geqslant f(x) \geqslant f(x_0)$$
,

и поэтому

$$|f(x) - c| < |f(x_0) - c| < \varepsilon$$

для всех $x \in E \cap \dot{U}_{\delta}(a)$ а значит $\lim_a f(x) = c$.

Утверждение 2.5.15. Пусть $E \subset \mathbb{R}$, a — предельная точка для $E, f : E \to \mathbb{R}$, функция f ограничена,

$$F = \{c \in \mathbb{R} : \exists \{x_n\} \subset E \setminus \{a\}, x_n \to a, f(x_n) \to c\},\$$

тогда F имеет максимальный элемент.

Доказательство. Нужно проверить, что $F \neq \emptyset$ и, поскольку F ограничено из ограниченности f, что $\exists x_n \subset E : f(x_n) \to \sup F$.

• Проверим, что $F \neq \emptyset$. Рассмотрим последовательность $\{x_n\} \subset E$ такую, что $x_n \to a$, $x_n \neq a$ ни для какого $n \in N$. Последовательность $f(x_n)$ ограничена сверху, а значит существует

$$\limsup_{n\to\infty} f(x_n) = c.$$

Покажем, что $c \in F$. По определению верхнего предела существует $\{x_{n_k}\}$ — подпоследовательность $\{x_n\}$ такая, что $\lim f(x_{n_k}) = c$. Значит $c \in F$, то есть $F \neq \emptyset$.

• Докажем, что $\sup F \in F$. Построим $\{x_n\}$ следующим образом: найдем

$$\{c_n\} \in F, c_n \to c$$

так чтобы $|c_n - c| < 1/n$ для любого n. Для каждого c_n найдем

$$\{y_{m,n}\}_{m\in\mathbb{N}}\subset E\setminus\{a\},\ y_{m,n}\xrightarrow{m\to\infty}a,\ f(y_{m,n})\xrightarrow{m\to\infty}c_n.$$

Далее для каждого n выберем $m_0 := m_0(n)$ такое, что

$$|y_{m_0,n}-a|<\frac{1}{n}$$
 и $|f(y_{m_0,n})-c_n|<\frac{1}{n}$

и положим $x_n = y_{m_0,n}$. Тогда для любого $n \in \mathbb{N}$ справедлива следующая оценка:

$$|f(x_n) - c| \le |f(x_n) - c_n| + |c_n - c| < \frac{2}{n},$$

откуда получается, что $\{f(x_n)\} \to c$. Значит, $c \in F$.

Определение. Пусть $E \subset \mathbb{R}$, a — предельная точка множества E, функция $f : E \to \mathbb{R}$ такова, что она ограничена на $E \cap \widehat{U}(a)$ для некоторой окрестности $\widehat{U}(a)$ точки a. тогда число

$$A = \limsup_{x \to a} f(x), \qquad x \in E$$

называется верхним пределом f в точке a. По предыдущему утверждению, A — наибольший элемент множества

$$F = \{c \in \mathbb{R} : \exists \{x_n\} \subset E \setminus \{a\}, \ x_n \to a, \ f(x_n) \to c\}.$$

Аналогично вводится нижний предел.

Теорема 2.5.16. Пусть $E \in \mathbb{R}$, $a \in \mathbb{R}$ — предельная точка $E, f : E \to \mathbb{R}$. Следующие утверждения равносильны:

- 1. Существует предел $\lim_a f(x) = L$, где $x \in E$.
- 2. Функция f ограничена в некоторой окрестности $a \in U(a)$ и

$$\liminf_{\substack{x \to a \\ x \in E}} f(x) = \limsup_{\substack{x \to a \\ x \in E}} f(x) = L.$$

Доказательство. Докажем, что первое условие влечёт второе. По лемме 2.5.11 существует U(a) такая, что для любого $x \in U(a)$ верно |f(x)| < |L| + 1 Пусть $c = \limsup_a f(x)$, где $x \in E$. Тогда существует последовательность $\{x_n\} \subset E$ стремящаяся к a, такая, что

для любого $n \in N$ $x_n \neq a$, и есть сходимость $f(x_n) \to c$, где $c = \limsup_a f(x)$ (для нижнего предела аналогично). Но так как $\lim_a f(x) = L$, по теореме 2.5.5 получаем c = L.

Теперь докажем импликацию в обратную сторону. Рассмотрим произвольную последовательность $\{x_n\} \subset E$ такую, что $x_n \to a$ и $x_n \ne a$ и $f(x_n) \to L$. Пусть $c := \limsup f(x_n)$. Тогда существует подпоследовательность $\{x_{n_k}\}$ такая, что

$$L \leqslant c = \lim_{k \to \infty} f(x_{n_k}) \implies c \leqslant \limsup_{x \to a} f(x).$$

Аналогично можно показать, что

$$\liminf_{x \to a} f(x) \le L.$$

Тогда мы показали, что

$$\liminf_{x \to a} f(x) = L = \limsup_{x \to a} f(x),$$

То есть L не зависит от выбора последовательности, сходящейся к a, а значит существует предел функции в точке a по теореме 2.5.5.

Упражнение. Пусть $E \subset \mathbb{R}$, a — предельная точка множества $E, f : E \to \mathbb{R}$, пусть $\delta > 0$, тогда определим

$$F(\delta) := \sup \{ f(x) : x \in \dot{E} \cap (a - \delta, a + \delta) \}.$$

Тогда $\limsup_a f(x) = \lim F(\delta)$ при $\delta > 0$ и $\delta \to 0$. Так можно определить предел $+\infty$.

2.6 Бесконечные пределы и пределы в бесконечности. О-символика

Определение. Будем считать, что $V = (M, +\infty)$ — окрестность символа $+\infty$, $V = (-\infty, M)$ — окрестность символа $-\infty$, где $M \in \mathbb{R}$.

Определение. Обозначим $\mathbb{R} := \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$. Пусть $a \in \mathbb{R}$, $L \in \mathbb{R}$, $E \subset \mathbb{R}$. В этом параграфе будем говорить, что a — *предельная точка множества* E, если она предельная для множества E в стандартной топологии на \mathbb{R} и $a \in \mathbb{R}$; если E не ограничено сверху и $a = +\infty$; если E не ограничено снизу и $a = -\infty$. Пусть нам дана функция $f: E \to \mathbb{R}$. Будем писать

$$\lim_{\substack{x \to a \\ x \in E}} f(x) = L,$$

если для любой окрестности $L \in V(L)$ существует окрестность U(a) точки a такая, что $f(\dot{U})(a) \subset V(L)$..

Замечание. Для $a, L \in \mathbb{R}$ вышеприведенное определение предела соответствует определению предела функции из предыдущего параграфа, $E = \mathbb{N}$ соответствует определению предела последовательности. Для других символов пределы также можно определить на ε - δ языке (смотрим следующее определение).

Определение. Напишем ε - δ определение только для $+\infty$, другое определение устроено аналогично

$$\lim_{x \to a} f = +\infty \iff \forall M > 0 \ \exists \delta > 0 : 0 < |x - a| < \delta, \ x \in E \implies f(x) > M.$$

Замечание. Нетрудно убедиться, что для пределов бесконечности и бесконечных пределов верны аналогичные обычным пределам свойства, в которых не происходит сложению бесконечностей разных знаков.

Определение. Пусть $E \subset \mathbb{R}$, a — предельная точка $E, f : E \to \mathbb{R}, g : E \to \mathbb{R}$. Тогда:

- f = O(g) в точке a, если существует число c > 0 и окрестность U(a) точки a, такая, что для любого $x \in U(a) \cap E$ выполнено $|f(x)| \le c \cdot |g(x)|$;
- f = O(g) на E, если существует c > 0 такое, что $|f(x)| \le c \cdot |g(x)|$ для всех $x \in E$;
- f = o(g) в точке a, если существует такая окрестность U(a) точки a, что $f(x) = g(x)\alpha(x)$ для всех точек $x \in \dot{U}(a) \cap E$ и $\alpha(x) \to 0$ при $x \to a$;
- $f \sim g$ в точке a, если существует такая окрестность U(a) точки a, что $f(x) = g(x)\alpha(x)$ для всех точек $x \in \dot{U}(a) \cap E$, причем $\alpha(x) \to 1$ при $x \to a$.

Примеры 2.6.1.

- 1. В точке $x = +\infty$ верно $x = o(x^2)$, $\alpha(x) = 1/x$;
- 2. В точке 0 верно $x^2 = o(x)$, $\alpha(x) = x$;
- 3. В точке $x = +\infty$ верно $c_n x^n + ... + c_1 x + c_0 = O(x^n)$;
- 4. $f(x) \to 0$ при $x \to 1$ тогда и только тогда , когдаf = o(1) в точке 1;
- 5. $x^2 + 1 \sim x^2$ в точке +∞;
- 6. В точке 0 верно $x^2 + 1 \sim 1$.

Утверждение 2.6.1.

- Если f = O(q), а q = O(h), то f = O(h);
- Если f = o(g), то f = O(g);
- $f \sim g$ тогда и только тогда, когда $g \sim f$;
- Если f = o(g) и g = o(h), то f = o(h);
- $f \sim q$ и $q \sim h$, то $f \sim h$;
- $f_1 \sim g_1$ и $f_2 \sim g_2$, то $f_1 f_2 \sim g_1 g_2$.

Доказательство. Арифметические свойства пределов.

Определение. Функция $\alpha: E \to \mathbb{R}$ называется *бесконечно малой* на E в точке a, если $\alpha = o(1)$ при $x \to a$, иными словами $\lim_a \alpha(x) = 0$. Говорят, что α — бесконечно малая порядка k > 0 в точке a, если $\alpha \sim c(x-a)^k$, где $c \neq 0$ и $x \to a$, $x \in E$.

Утверждение 2.6.2. Пусть $p(x) = c_0 + c_1 x + \ldots + c_n x^n$ и $c_n \neq 0$. Тогда $p(x) \sim c_n x^n$ при $x \to \infty$.

Доказательство. Запишем равенство:

$$p(x) = c_n x^n \left(1 + \frac{c_{n-1}}{c_n x} + \ldots + \frac{c_0}{c_n x^n} \right),$$

тогда $p(x) = c_n x^n \cdot \alpha(x)$, где

$$\alpha(x) = 1 + \frac{c_{n-1}}{c_n x} + \ldots + \frac{c_0}{c_n x^n}.$$

Очевидно, что $\alpha(x) \to 1$ при $x \to +\infty$, то есть мы доказали то, что требовалось.

Утверждение 2.6.3. Пусть q > 1. Тогда для любого $m \in \mathbb{N}$ верно, что $n^m = o(q^n)$ при $n \to \infty$. Иными словами, показательная функция с показателем большим единицы растёт быстрее любого многочлена.

Доказательство. Достаточно показать, что $n^m/q^n \to 0$ при $n \to \infty$. Запишем равенство:

$$rac{n^m}{q^n} = \left(rac{n}{\widetilde{q}^n}
ight)^m \,, \quad$$
 где $\widetilde{q} = \sqrt[m]{q} > 1.$

Таким образом, достаточно показать, что

$$\lim_{n\to\infty}\frac{n}{\widetilde{q}^n}=0.$$

Скажем, что $\widetilde{q}=(1+\varepsilon)^2$, где $\varepsilon>0$. Тогда:

$$0 \leqslant \frac{n}{\widetilde{q}^n} = \frac{n}{(1+\varepsilon)^n (1+\varepsilon)^n} \leqslant \frac{n}{(1+n\varepsilon)(1+n\varepsilon)} \leqslant \frac{n}{(n\varepsilon)^2} = \frac{1}{\varepsilon^2 n} = \frac{1}{\varepsilon^2 n} \to 0.$$

Глава 3

Дифференциальное исчисление

3.1 Производная: определение и простейшие свойства

Определение. Пусть $E \subset \mathbb{R}$, x_0 — предельная точка E. Функция $f : E \to \mathbb{R}$ называется дифференцируемой в точке x_0 , если существует конечный предел

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0).$$

Если у множества E нет изолированных точек, и f дифференцируема в любой его точке, то функция $x_0 \mapsto f'(x_0)$, где $x_0 \in E$, называется n производной f на E.

Определение. Пусть $E \subset \mathbb{R}$. Обозначим через $C^1(E)$ семейство непрерывно дифференцируемых функций на E, то есть множество таких функций $f: E \to \mathbb{R}$, что в любой точке $x_0 \in E$ существует производная $f'(x_0)$, и функция f' непрерывна на E.

Аналогично можно ввести класс $C^k(E)$, где $k \in \mathbb{N}$, $k \ge 2$, в котором лежат такие функции $f: E \to \mathbb{R}$, что $f' \in C^{k-1}(E)$.

Семейство непрерывных функций на E будем обозначать через C(E). Ясно, что имеет место цепочка включений

$$C^1(E) \supseteq C^2(E) \supseteq \cdots \supseteq C^k(E) \supseteq C^{k+1}(E) \supseteq \cdots$$

Определение. Гладкой функцией на E называется функция, дифференцируемая бесконечное число раз. Множество гладких обозначается через $C^{\infty}(E)$. Нетрудно понять, что

$$C^{\infty}(E) = \bigcap_{k \in \mathbb{N}} C^k(E).$$

Утверждение 3.1.1. Пусть функция $f: E \to \mathbb{R}$ дифференцируема в точке $x_0 \in E$. Тогда она непрерывна в ней.

Доказательство. При x, достаточно близких к x_0 , имеем следующую оценку:

$$|f(x) - f(x_0)| = \left| \frac{f(x) - f(x_0)}{x - x_0} \right| \cdot |x - x_0| \le |x - x_0| \cdot |f'(x_0) + 1|.$$

Следовательно, при $|x-x_0| \leqslant \frac{\varepsilon}{|f'(x_0)+1|}$ получаем $|f(x)-f(x_0)| \leqslant \varepsilon$, а это и есть определение непрерывности.

Утверждение 3.1.2. Пусть функции f, g дифференцируемы в точке x_0 . Тогда функции f+g, fg, а также f/g при условии, что $g(x_0) \neq 0$, дифференцируемы в x_0 , причём

$$(f+g)'(x_0) = f'(x_0) + g'(x_0),$$

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0),$$

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}.$$

Доказательство. По определению производной имеем следующее:

$$(f+g)'(x_0) = \lim_{x \to x_0} \frac{f(x) + g(x) - f(x_0) - g(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0}$$

$$= f'(x_0) + g'(x_0).$$

Для произведения:

$$(fg)'(x_0) = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x)}{x - x_0} + \lim_{x \to x_0} \frac{f(x_0)g(x) - f(x_0)g(x_0)}{x - x_0}$$

$$= f'(x_0)g(x_0) + f(x_0)g'(x_0).$$

Наконец, по непрерывности и отделённости от нуля

$$\left(\frac{1}{g}\right)'(x_0) = \lim_{x \to x_0} \frac{\frac{1}{g(x)} - \frac{1}{g(x_0)}}{x - x_0} = -\lim_{x \to x_0} \frac{g(x) - g(x_0)}{(x - x_0)g(x)g(x_0)} = -\frac{g'(x_0)}{g^2(x_0)},$$

из чего по формуле производной произведения получаем

$$\left(\frac{f}{q}\right)'(x_0) = -f(x_0)\frac{g'(x_0)}{q^2(x_0)} + \frac{f'(x_0)}{g(x_0)} = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{q^2(x_0)},$$

что и требовалось.

3.2 Производная суперпозиции и обратной функции

Теорема 3.2.1. Пусть $E_1, E_2 \subset \mathbb{R}, f: E_1 \to E_2, g: E_2 \to \mathbb{R}$ — функции, x_0 — предельная точка $E_1, y_0 = f(x_0) \in E_2$ — предельная точка E_2, f дифференцируема в x_0, g дифференцируема в y_0 . Тогда функция h(x) = g(f(x)) дифференцируема в точке x_0 , причём

$$h'(x_0) = g'(y_0)f'(x_0). (3.2.1)$$

Доказательство. Введём следующие обозначения:

$$E_{11} := \{ x \in E_1 \mid f(x) = f(x_0) \},$$

$$E_{12} := \{ x \in E_1 \mid f(x) \neq f(x_0) \}.$$

Ясно, что $E_1 = E_{11} \cup E_{12}$.

Рассмотрим два случая. Если x_0 — предельная точка E_{11} , то

$$f'(x_0) = \lim_{x \to x_0, x \in E_{11}} \frac{f(x) - f(x_0)}{x - x_0} = 0.$$

Кроме того, при $x \in E_{11}$ верно равенство

$$\lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{x - x_0} = 0,$$

и в этом случае равенство доказано.

Пусть теперь x_0 — предельная точка E_{12} , и последовательность $\{x_n\}_{n\in\mathbb{N}}\subset E_{12}$ стремится к x_0 . Тогда имеем равенство

$$h'(x_0) = \lim_{n \to +\infty} \frac{g(f(x_n)) - g(f(x_0))}{x_n - x_0}$$

$$= \lim_{n \to +\infty} \frac{g(f(x_n)) - g(f(x_0))}{f(x_n) - f(x_0)} \lim_{n \to +\infty} \frac{f(x_n) - f(x_0)}{x_n - x_0}$$

$$= g'(y_0) f'(x_0).$$

Таким образом, равенство (3.2.1) выполнено всегда.

Утверждение 3.2.2. Пусть $f:[a,b] \to [c,d]$ — непрерывная биекция, f дифференцируема в точке $x_0 \in [a,b]$, $f(x_0) = y_0$, $f'(x_0) \neq 0$. Пусть $g:[c,d] \to [a,b]$ — обратное к f отображение, тогда g — дифференцируема в y_0 , и

$$g'(y_0) = \frac{1}{f'(x_0)}. (3.2.2)$$

Доказательство. Пусть $\{x_n\}_{n\in\mathbb{N}}\subset [a,b], y_n=f(x_n)\in [c,d]$. Докажем, что

$$x_n \to x_0 \iff y_n \to y_0.$$

Следствие слева вправо выполнено по непрерывности, докажем обратное. Пусть $x_n \to x_0$ и $y_n \to y_0$. Тогда по определению предела существует такое $\delta > 0$, что бесконечно многих x_n выполнено неравенство $|x_n - x_0| > \delta$. Так как последовательность $\{x_n\}$ ограничена, то из неё можно выбрать сходящуюся подпоследовательность $\{x_{n_k}\}$. Пусть x_1 — её предел. Очевидно, что $x_1 \neq x_0$, и поэтому $f(x_1) \neq f(x_0)$. Тогда получаем, что $f(x_{n_k}) \to f(x_1)$, но при этом $f(x_{n_k}) \to f(x_0)$. Противоречие.

Пусть
$$\{y_n\} \subset [c;d], y_n \to y_0, y_n = f(x_n)$$
. Тогда

$$g'(y_0) = \lim_{n \to +\infty} \frac{g(y_n) - g(y_0)}{y_n - y_0} = \lim_{n \to +\infty} \frac{x_n - x_0}{f(x_n) - f(x_0)} = \frac{1}{f'(x_0)}.$$

Замечание. Если же $f'(x_0) = 0$, то теорема неверна. Например, для $f(x) = x^3$ имеем f'(0) = 0, $g(x) = \sqrt[3]{x}$, но при этом g не дифференцируема в нуле.

3.3 Экстремумы и теорема Лагранжа о среднем

Определение. Пусть $E \subset \mathbb{R}$, a — предельная точка E, $f: E \to \mathbb{R}$. Говорят, что f достигает локального максимума в точке a, если существует окрестность $U \ni a$ такая, что $f(x) \geqslant f(a)$ при всех $x \in U \cap E$. Аналогично, f достигает локального минимума в точке a, если существует окрестность $U \ni a$ такая, что $f(x) \leqslant f(a)$ при $x \in U \cap E$. Аналогично определяется строгий локальный максимум и минимум — в неравенствах соответствующий знак будет строгим.

Определение. Точка $a \in E$ называется точкой внутреннего локального экстремума для функции f, если a — точка локального экстремума для f, и a — предельная точка для множеств $E \cap (a, +\infty)$ и $E \cap (-\infty, a)$.

Утверждение 3.3.1. Пусть $E \subset \mathbb{R}$, $f \colon E \to \mathbb{R}$, a — точка внутреннего локального экстремума для f, и f дифференцируема в этой точке. Тогда f'(a) = 0.

Доказательство. По определению производной можно записать

$$f(x) - f(a) = (x - a)(f'(a) + \alpha(x)),$$

где $\alpha(x) \to 0$ при $x \to a$. Предположим, что f'(a) > 0 (случай f'(a) < 0 аналогичен). В этом случае выберем окрестность $U \ni a$ такую, что $|\alpha(x)| < \frac{f'(a)}{239}$. Тогда в ней $f'(a) + \alpha(x) > 0$, а x - a может принимать любой из знаков в зависимости от того, справа или слева от a находится x. Следовательно, выражение $(x - a)(f'(a) + \alpha(x))$ может принимать значения обоих знаков, однако f(x) - f(a) принимает значения только одного знака так как a - точка внутреннего локального экстремума. Противоречие.

Теорема 3.3.2 (Ролль). Пусть $f: [a,b] \to \mathbb{R}$ - непрерывная на [a,b] функция, f дифференцируема на (a,b) и f(a) = f(b). Тогда существует такая точка $c \in (a,b)$, что f'(c) = 0.

Доказательство. Если f — константа, то доказывать нечего. Иначе на (a,b) существует точка минимума x_1 и точка максимума x_2 . По предыдущему утверждению $f'(x_1) = f'(x_2) = 0$.

Теорема 3.3.3 (Лагранж). Пусть $f: [a,b] \to \mathbb{R}$ — непрерывная на [a,b] функция, f дифференцируема на (a,b). Тогда существует точка $c \in (a,b)$ такая, что $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Доказательство. Отметим, что в случае f(a) = f(b) это утверждение совпадает с теоремой Ролля. Рассмотрим функцию

$$g(x) = \frac{f(a)(x-b)}{a-b} + \frac{f(b)(x-a)}{b-a}.$$

Это линейная функция, и для неё выполнена теорема Лагранжа(можно взять любую точку). Тогда для функции f - g выполнены условия теоремы Ролля. Значит существует $c \in [a, b]$ такая, что (f - g)'(c) = 0. Но тогда

$$f'(c) = g'(c) = \frac{f(a) - f(b)}{a - b},$$

что и требовалось.

Следствие 3.3.4. Если f дифференцируема на (a,b) и f'(x) = 0 на (a,b), то $f \equiv \text{const.}$

Доказательство. Если f дифференцируема на (a,b), то она непрерывна на любом подотрезке $[x_1,x_2]\subset (a,b)$. По теореме Лагранжа существует точка $c\in (x_1,x_2)$ такая, что $f'(c)=\frac{f(x_2)-f(x_1)}{x_2-x_1}=0$, то есть $f(x_1)=f(x_2)$ для любых двух точек $x_1,x_2\in (a,b)$. Значит, f постоянна на (a,b).

Определение. Пусть E — множество без изолированных точек, $F, f : E \to \mathbb{R}$. Говорят, что F является первообразной f, если F'(x) = f(x) для любой точки $x \in E$.

Следствие 3.3.5. Если F_1 , F_2 — первообразные f на (a,b), то они отличаются на константу.

Утверждение 3.3.6. Пусть $f:(a,b)\to \mathbb{R}$ — дифференцируемая на (a,b) функция.

Тогда f (нестрого) возрастает на $(a,b) \iff f'(x) \geqslant 0$ на (a,b) (в случае убывания знак противоположный). Для строгого возрастания аналогично, но в неравенстве знак строгий.

Доказательство. Пусть f возрастает на (a, b). По определению производной

$$f'(x_0) = \lim_{x \to x_0 +} \frac{f(x) - f(x_0)}{x - x_0}.$$

При $x > x_0$ имеем $f(x) \ge f(x_0)$, значит выражение под пределом неотрицательно, т.е. $f'(x_0) \ge 0$.

Пусть $f'(x) \ge 0$ на (a,b). Применим теорему Лагранжа к подотрезку $[x_1,x_2] \subset (a,b)$: существует точка $c \in (x_1,x_2)$ такая, что

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1) \ge 0,$$

т.е. $f(x_1) \le f(x_2)$, что и требовалось.

3.4 Формула Тейлора

Определение. Пусть $E \subset \mathbb{R}$ — множество без изолированных точек, функция $f : E \to \mathbb{R}$ n раз дифференцируема в точке $x_0 \in E$. Определим многочлен Тейлора функции f c центром в точке x_0 порядка n:

$$P_{n,f,x_0}(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

Определение. Пусть $f \in C^{\infty}(a,b), x_0 \in (a,b)$. Рядом Тейлора функции f с центром в точке x_0 называется ряд

$$\sum_{k=0}^{\infty} \frac{f^k(x_0)}{k!} (x - x_0)^k$$

Лемма 3.4.1. Пусть функции $f_1, f_2, \ldots, f_n \in C^{\infty}(\mathbb{R})$, тогда $f_1 f_2 \ldots f_n \in C^{\infty}(\mathbb{R})$ и

$$(f_1 f_2 \dots f_n)' = f_1' f_2 \dots f_n + \dots + f_1 f_2 \dots f_n'.$$

Доказательство. Простая индукция по n (база n=2 была доказана ранее).

Лемма 3.4.2. Пусть $x_0 \in \mathbb{R}$, $n, k \in \mathbb{N}$, $k \le n$. Тогда $(x - x_0)^n \in C^{\infty}(\mathbb{R})$ и

$$((x-x_0)^n)^{(k)} = n(n-1)\dots(n-k+1)(x-x_0)^{n-k}.$$

Доказательство. Простая индукция по k.

Замечание. При k > n имеем $((x - x_0)^n)^{(k)} = 0$.

Лемма 3.4.3. Пусть функция f $n \in \mathbb{N}$ раз дифференцируема в точке $x_0 \in \mathbb{R}$. Тогда для $0 \le k \le n$ выполнено равенство $f^{(k)}(x_0) = (P_{n,f,x_0})^{(k)}(x_0)$.

Доказательство. При k=0 равенство выполнено. Если же $1 \le k \le n$, то по предыдущей лемме первые k слагаемых k-ой производной многочлена Тейлора обнулятся, (k+1)-ое слагаемое будет равно $\frac{f^{(k)}(x_0)}{k!}k(k-1)\dots 1=f^{(k)}(x_0)$, остальные же слагаемые равны положительной степени $(x-x_0)$ с коэффициентом, и в точке x_0 они обнуляются.

Теорема 3.4.4. Пусть функция $f:(a,b)\to \mathbb{R}$ (n-1) раз непрерывно дифференцируема на (a,b) и существует n-ая производная f в точке $x_0\in (a,b)$. Тогда при $x\to x_0$ верно равенство

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n).$$

Доказательство. Рассмотрим функцию $g(x) = f(x) - P_{n,f,x_0}(x)$. По предыдущей лемме имеем

$$g(x_0) = g'(x_0) = \cdots = g^{(n)}(x_0) = 0.$$

Будем доказывать, по индукции, что если $g \in C^{n-1}(a,b)$ и $g(x_0) = g'(x_0) = \cdots = g^{(n-1)}(x_0) = 0$ и существует $g^{(n)}(x_0) = 0$, то $g(x) = o((x-x_0)^n)$ при $x \to x_0$.

База n=1: $g\in C(a,b),$ $g(x_0)=g'(x_0)=0,$ по определению

$$0 = g'(x_0) = \lim_{x \to x_0} \frac{g(x)}{x - x_0},$$

т.е. $g(x) = o(x - x_0)$ при $x \to x_0$.

Пусть теперь $g(x) = o((x - x_0)^n)$ при $n \le N, g \in C^N(a, b)$,

$$g(x_0) = g'(x_0) = \cdots = g^{(N)}(x_0) = 0$$

и существует $g^{(N+1)}(x_0) = 0$. Обозначим $\varphi(x) = g'(x)$, тогда

$$\varphi(x_0) = \varphi'(x_0) = \cdots = \varphi^{(N)}(x_0) = 0,$$

откуда по индукционному предположению следует, что $\varphi(x) = o((x-x_0)^N)$ при $x \to x_0$. По теореме Лагранжа для некоторой промежуточной точки ξ_x имеем

$$\begin{split} g(x) &= g(x) - g(x_0) = g'(\xi_x)(x - x_0) = \\ &= \varphi(\xi_x)(x - x_0) = \psi(\xi_x)(\xi_x - x_0)^N (x - x_0) = \\ &= \psi(\xi_x) \left(\frac{\xi_x - x_0}{x - x_0}\right)^N (x - x_0)^{N+1}, \end{split}$$

где $\psi(t) \to 0$ при $t \to x_0$. Обозначим теперь

$$\overline{\alpha}(t) = \psi(\xi_x) \left(\frac{\xi_x - x_0}{x - x_0} \right)^N.$$

При $\xi_x \to x_0$ имеем, что $\left(\frac{\xi_x - x_0}{x - x_0}\right)^N$ ограничен сверху единицей, а $\psi(\xi_x) \to 0$. Поэтому

$$g(x) = \overline{\alpha}(x)(x - x_0)^{N+1} = o((x - x_0)^{N+1}),$$

что и требовалось.

3.5 Выпуклые функции

Определение. Функция $f:(a,b)\to\mathbb{R}$ называется *выпуклой*, если для любых $\alpha_1,\alpha_2\geqslant 0:\alpha_1+\alpha_2=1$ и для любых $x_1,x_2\in(a,b)$ выполнено неравенство

$$f(\alpha_1 x_1 + \alpha_2 x_2) \leqslant \alpha_1 f(x_1) + \alpha_2 f(x_2).$$

Определение. Функция $f:(a,b)\to\mathbb{R}$ называется *строго выпуклой*, если для любых $\alpha_1,\alpha_2\geqslant 0:\alpha_1+\alpha_2=1$ и для любых $x_1\neq x_2\in(a,b)$ выполнено неравенство

$$f(\alpha_1 x_1 + \alpha_2 x_2) < \alpha_1 f(x_1) + \alpha_2 f(x_2).$$

Утверждение 3.5.1 (Йенсен). Функция $f:(a,b)\to\mathbb{R}$ выпукла на $(a,b)\Longleftrightarrow$ для любых $\alpha_1,\ldots,\alpha_n\geqslant 0:\sum_{i=1}^n\alpha_i=1$ верно неравенство

$$f(\alpha_1 x_1 + \dots + \alpha_n x_n) \leq \alpha_1 f(x_1) + \dots + \alpha_n f(x_n).$$

В случае строгой выпуклости неравенство будет строгим.

Доказательство. Заметим, что $\alpha_1 x_1 + \cdots + \alpha_n x_n \in (a, b)$.

Справа налево очевидно, потому что при n=2 это просто определение выпуклой функции.

Докажем теперь импликацию слева направо. Индукция: база n=2 — просто определение выпуклой функции. Переход: пусть для n неравенство верно, доказываем для n+1. Пусть $x_1,\ldots,x_{n+1}\in(a,b),\,\alpha_1,\ldots,\alpha_{n+1}\geqslant 0:\sum_{i=1}^{n+1}\alpha_i=1$. Применим базу следующим образом:

$$f(\alpha_{1}x_{1} + \dots + \alpha_{n}x_{n} + \alpha_{n+1}x_{n+1}) =$$

$$= f\left((\alpha_{1} + \dots + \alpha_{n})\left(\frac{\alpha_{1}}{\alpha_{1} + \dots + \alpha_{n}}x_{1} + \dots + \frac{\alpha_{n}}{\alpha_{1} + \dots + \alpha_{n}}x_{n}\right)\right) + f(\alpha_{n+1}x_{n+1}) \leq$$

$$\leq (\alpha_{1} + \dots + \alpha_{n})f\left(\frac{\alpha_{1}}{\alpha_{1} + \dots + \alpha_{n}}x_{1} + \dots + \frac{\alpha_{n}}{\alpha_{1} + \dots + \alpha_{n}}x_{n}\right) + \alpha_{n+1}f(x_{n+1})$$

По индукционному предположению первое слагаемое можно оценить следующим образом:

$$(\alpha_{1} + \dots + \alpha_{n}) f\left(\frac{\alpha_{1}}{\alpha_{1} + \dots + \alpha_{n}} x_{1} + \dots + \frac{\alpha_{n}}{\alpha_{1} + \dots + \alpha_{n}} x_{n}\right) \leq$$

$$\leq (\alpha_{1} + \dots + \alpha_{n}) \left(\frac{\alpha_{1}}{\alpha_{1} + \dots + \alpha_{n}} f(x_{1}) + \dots + \frac{\alpha_{n}}{\alpha_{1} + \dots + \alpha_{n}} f(x_{n})\right) =$$

$$= \alpha_{1} f(x_{1}) + \dots + \alpha_{n} f(x_{n}),$$

из чего мы получаем требуемое неравенство

$$f(\alpha_1 x_1 + \dots + \alpha_{n+1} x_{n+1}) \le \alpha_1 f(x_1) + \dots + \alpha_{n+1} f(x_{n+1}).$$

Утверждение 3.5.2 (о трёх хордах). Функция $f:(a,b)\to\mathbb{R}$ выпукла на $(a,b)\iff$

$$\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x) - f(x_2)}{x - x_2}$$

для любых $x \in (a, b)$, $a < x_1 < x_2 < b$. В случае строгой выпуклости в неравенстве будет строгий знак.

Доказательство. Пусть f выпукла на (a,b). Если $x_1 < x < x_2$, то, записав x в виде $\alpha x_1 + (1-\alpha)x_2$, получим $\alpha = \frac{x_2-x}{x_2-x_1}$. По определению выпуклости имеем неравенство

$$f(x) \le \frac{x_2 - x}{x_2 - x_1} f(x_1) + \frac{x - x_1}{x_2 - x_1} f(x_2),$$

из которого после домножения на $(x_2 - x_1)$ и переписывания в другом виде получаем

$$(x_2 - x)(f(x) - f(x_1)) \le (x - x_1)(f(x_2) - f(x)).$$

Делим на $(x-x_1)(x_2-x)$ и получаем требуемое неравенство. Если же $(x-x_1)(x-x_2)>0$, то аналогично.

То же самое рассуждение, но в обратную сторону.

Теорема 3.5.3. Пусть $f:(a,b) \to \mathbb{R}$ дифференцируема на (a,b). Тогда f (строго) выпукла на (a,b) в том и только том случае, когда f' (строго) возрастает на (a,b).

Доказательство. Пусть f выпукла на (a,b). Тогда по предыдущей теореме для любого $x \in (a,b)$ и любых $a < x_1 < x_2 < b$ имеем неравенство

$$\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x) - f(x_2)}{x - x_2}.$$

Переходя к пределу при $x \to x_1$, получаем

$$f'(x_1) \leqslant \frac{f(x_2) - f(x_1)}{x_2 - x_1},$$

а при $x \to x_2$ получаем

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le f'(x_2),$$

откуда $f'(x_1) \le f'(x_2)$, что и требовалось.

Пусть f' возрастает на (a,b). Рассмотрим произвольные точки $x \in (a,b)$ и $a < x_1 < x < x_2 < b$. Для каждого из промежутков (x_1,x) и (x,x_2) можно применить теорему Лагранжа: существуют точки $c_1 \in (x_1,x)$ и $c_2 \in (x,x_2)$ такие, что

$$f'(c_1) = \frac{f(x) - f(x_1)}{x - x_1};$$
 $f'(c_2) = \frac{f(x) - f(x_2)}{x - x_2},$

а т.к.
$$f'(c_1) \leqslant f'(c_2)$$
, то $\frac{f(x) - f(x_1)}{x - x_1} \leqslant \frac{f(x) - f(x_2)}{x - x_2}$, что и требовалось.

Утверждение 3.5.4. Пусть $f:(a,b)\to\mathbb{R}$ — дважды дифференцируема на (a,b). Тогда f выпукла на $(a,b)\iff f''\geqslant 0$ на (a,b)

Доказательство. Утверждение равносильно тому, что f' возрастает на (a,b), а это равносильно тому, что $f'' \ge 0$ на (a,b).

3.6 Обобщённая теорема Лагранжа и правило Лопиталя

Теорема 3.6.1 (Коши, Лагранж). Пусть функции $f,g \in C[a,b]$, дифференцируемы на (a,b) и $g'(x) \neq 0$ на (a,b). Тогда $g(a) \neq g(b)$ и существует точка $c \in (a,b)$ такая, что выполнено равенство

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Доказательство. Если g(a) = g(b), то по теореме Ролля существует промежуточная точка, в которой g' обнуляется, противоречие. Значит, $g(a) \neq g(b)$. Рассмотрим теперь функцию

$$h(x) = (f(b) - f(a)) \cdot g(x) - (g(b) - g(a)) \cdot f(x).$$

Эта функция непрерывна на [a,b] и дифференцируема на (a,b). Нетрудно проверить, что h(a)=h(b). Значит, к этой функции можно применить теорему Ролля: существует точка $c\in(a,b)$ такая, что

$$h'(c) = (f(b) - f(a))g'(c) - (g(b) - g(a))f'(c) = 0 \iff \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)},$$

что и требовалось.

Обозначение. Будем писать $x \nearrow L$, если $x \to L$ и $x \leqslant L$. Аналогично будем писать $x \searrow L$, если $x \to L$ и $x \geqslant L$.

Теорема 3.6.2 (Лопиталь). Пусть $b \in \mathbb{R} \cup \{\pm \infty\}$, $a \in \mathbb{R}$, a < b, функции $f, g \colon (a, b) \to \mathbb{R}$ дифференцируемы на (a, b), $g'(x) \neq 0$ на (a, b) и существует предел

$$\lim_{x \nearrow b} \frac{f'(x)}{g'(x)} = L.$$

Тогда:

1. Если
$$\exists \lim_{x \nearrow b} f(x) = \lim_{x \nearrow b} g(x) = 0$$
, то $\exists \lim_{x \nearrow b} \frac{f(x)}{g(x)} = L$;

2. Если
$$|g(x)| \to +\infty$$
 при $x \nearrow b$, то $\exists \lim_{x \nearrow b} \frac{f(x)}{g(x)} = L$.

В частности существует такое $\tilde{a} \in \mathbb{R}$, что $g(x) \neq 0$ при $x \in (\tilde{a}, b)$.

Доказательство. Заметим, что на (a,b) не более одного корня g, т.к. иначе возникнет противоречие с теоремой Ролля. Если корней нет, то положим $\tilde{a}=a$, иначе $\tilde{a}=t$, где $t\in(a,b)$ — такая точка, в которой g(t)=0.

Пусть сначала $\lim_{x\nearrow b} f(x) = \lim_{x\nearrow b} g(x) = 0$ и b — конечно. Тогда по теореме Коши–Лагранжа существует промежуточная точка $\xi_x \in (x,b)$ такая, что

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(b)}{g(x) - g(b)} = \frac{f'(\xi_x)}{g'(\xi_x)}$$

При $x \to b$ будет выполнено $\xi_x \to b$, значит предел отношения самих функций будет тот же.

Теперь же предположим, что $b = +\infty$. Тогда имеем

$$\frac{f(x)}{g(x)} = \lim_{M \to +\infty} \frac{f(x) - f(M)}{g(x) - g(M)} = \lim_{M \to +\infty} \frac{f'(\Theta_{x,M})}{g'(\Theta_{x,M})}$$

Пусть U — окрестность точки L, тогда возьмём такое M_0 , что при $\Theta > M_0$ верно

$$f'(\Theta)/g'(\Theta) \in V$$
.

При $x > M_0$, $\Theta_{M,x} > M_0$ получаем требуемое.

Пусть теперь $\lim_{x\nearrow b}|g(x)|=+\infty$. В этом случае введём новую функцию

$$h(x) = f(x) - Lg(x).$$

Тогда $\lim_{x\nearrow b}h'(x)/g'(x)=0$. Зафиксируем $\varepsilon>0$ такое, что в окрестности $U_b\ni x$ верно неравенство $|h'(x)/g'(x)|<\varepsilon$. Пусть $x_0\in U_b,\,x_0\ne b,\,$ и $x\in (x_0,b)$. Применяя теорему Лагранжа, получаем

$$\frac{h(x) - h(x_0)}{g(x) - g(x_0)} = \frac{h'(\xi_x)}{g'(\xi_x)}$$

где $\xi_x \in (x_0, x)$. Таким образом,

$$\left|\frac{h(x)-h(x_0)}{g(x)-g(x_0)}\right|<\varepsilon.$$

С другой стороны,

$$\frac{h(x) - h(x_0)}{g(x) - g(x_0)} = \frac{h(x)}{g(x) - g(x_0)} - \frac{h(x_0)}{g(x) - g(x_0)} = \frac{h(x)}{g(x)} \cdot \frac{g(x)}{g(x) - g(x_0)} - \frac{h(x_0)}{g(x) - g(x_0)}.$$

Переходя к верхнему пределу при $x \to b$, получаем

$$\lim \sup_{x \to b, x \in (x_0; b)} \left| \frac{h(x)}{g(x)} \right| = \lim \sup_{x \to b, x \in (x_0; b)} \left| \frac{h(x) - h(x_0)}{g(x) - g(x_0)} \right| \le \varepsilon$$

Переходя к пределу при $\varepsilon \to 0$, получаем требуемое.

Следствие 3.6.3. Пусть $f \in C[a,b]$, дифференцируема на (a,b) и существует предел

$$\lim_{x \nearrow b} f(x) = L \in \mathbb{R}.$$

Тогда существует f'(b) = L.

Доказательство. Пусть $f_1(x) = f(x) - f(b), g_1(x) = x - b$. По правилу Лопиталя имеем

$$L = \lim_{x \to b} f'(x) = \lim_{x \to b} f'_1(x) = \lim_{x \to b} \frac{f(x) - f(b)}{x - b} = f'(b),$$

что и требовалось (неопределённость $\frac{0}{0}$ получается по непрерывности f в точке b).

Глава 4

Интегральное исчисление

4.1 Интеграл Римана и критерий Лебега

Определение. Разбиением отрезка [a,b] называется конечный набор точек

$$P = \{x_0, x_1, \dots, x_{n-1}, x_n\} : a = x_0 \le x_1 \le \dots x_{n-1} \le x_n = b.$$

Определение. Пусть $f:[a,b] \to \mathbb{R}$ — ограниченная на отрезке [a,b] функция, P — разбиение [a,b]. Определим *верхнюю сумму Дарбу U*(f,P) функции f по разбиению P следующим образом:

$$U(f,P) = \sum_{k=0}^{n-1} (x_{k+1} - x_k) \sup_{x \in [x_k, x_{k+1}]} f(x)$$

Аналогичным образом определим нижнюю сумму Дарбу L(f, P) функции f по разбиению P:

$$L(f,P) = \sum_{k=0}^{n-1} (x_{k+1} - x_k) \inf_{x \in [x_k, x_{k+1}]} f(x)$$

Определение. Определим верхний и нижний интегралы Дарбу следующим образом:

$$\overline{I}(f) = \inf_{P} U(f, P); \ \underline{I}(f) = \sup_{P} L(f, P).$$

Определение. Функция $f:[a,b] \to \mathbb{R}$ называется интегрируемой по Риману, если

$$\overline{I}(f) = \underline{I}(f).$$

В этом случае это число называется *интегралом Римана* и обозначается $\int a^b f$. $\mathcal{R}[a,b]$ — класс интегрируемых по Риману функций на отрезке [a,b].

Утверждение 4.1.1. Пусть P_1, P_2 — разбиения отрезка [a, b], причём $P_1 \subset P_2$. Тогда выполнены неравенства:

1.
$$U(f, P_1) \ge U(f, P_2)$$
;

2.
$$L(f, P_1) \leq L(f, P_2)$$
.

Доказательство. Достаточно рассмотреть случай $P_2 = P_1 \cup \{x^*\}, x^* \notin P_1, x^* \in [x_k; x_{k+1}].$ Тогда имеем равенство

$$U(f, P_2) - U(f, P_1) = (x^* - x_k) \sup_{[x_k, x^*]} f(x) + (x_{k+1} - x^*) \sup_{[x^*, x_{k+1}]} f(x)$$
$$- (x_{k+1} - x_k) \sup_{[x_k, x_{k+1}]} f(x)$$

Требуемое неравенство следует из того, что супремум на подотрезке не больше, чем на исходном отрезке. Для инфимума доказательство аналогично. ■

Утверждение 4.1.2. Пусть P_1, P_2 — разбиения отрезка [a, b]. Тогда верно неравенство

$$L(f, P_1) \leq U(f, P_2).$$

Доказательство. Пусть $P = P_1 \cup P_2$. Тогда по предыдущему утверждению

$$L(f, P_1) \leq L(f, P);$$
 $U(f, P) \leq U(f, P_2),$

а $L(f,P) \leq U(f,P)$ по определению. Требуемое неравенство получено.

Утверждение 4.1.3. Функция $f \in \mathcal{R}[a,b]$ тогда и только тогда, когда $\varepsilon > 0$ существует P — разбиение [a,b] такое, что

$$U(f,P) - L(f,P) < \varepsilon$$
.

Доказательство. Пусть A — множество всех верхних сумм Дарбу для функции f по всем разбиениям, а B - множество нижних сумм Дарбу функции f по всем разбиениям. Тогда (A,B) — щель. Если $\sup B \neq \inf A$, то для любого разбиения верхняя сумма будет отличаться от нижней на не меньше, чем на $\inf A$ — $\sup B$ - противоречие. Значит, $\sup B = \inf A$, а это и есть определение интегрируемости по Риману.

Пусть $f \in \mathcal{R}[a,b]$. Тогда существуют разбиения P_1, P_2 такие, что выполнены неравенства

$$U(f,P_1)-\int\limits_a^bf<rac{arepsilon}{2};\qquad \int\limits_a^bf-L(f,P_2)<rac{arepsilon}{2},$$

откуда следует неравенство

$$U(f, P_1) - L(f, P_2) < \varepsilon$$
.

Пусть $P = P_1 \cup P_2$, тогда

$$U(f,P) - L(f,P) \le U(f,P_1) - L(f,P_2) < \varepsilon$$

что и требовалось.

Определение. Множество $E \subset [a,b]$ называется множеством меры нуль, если $\forall \varepsilon > 0$ существует не более чем счётный набор интервалов $\{I_k\}_{k\in\mathbb{N}}$ такой, что $\bigcup_{k\in\mathbb{N}}I_k\supset [a,b]$ и $\sum_{k\in\mathbb{N}}|I_k|<\varepsilon$.

Упражнение. Докажите, если в определении множества меры нуль брать вместо интервалов отрезки, то получившееся определение останется равносильным старому.

Примеры 4.1.1.

- 1. Множество из конечного числа точек является множеством меры нуль.
- 2. Множество из счётного числа точек является множеством меры нуль. В самом деле, для каждой точки x_n возьмём интервал $(x_n \frac{\varepsilon}{2^{n+1}}, x_n + \frac{\varepsilon}{2^{n+1}})$. Тогда сумма их длин равна

$$\frac{\varepsilon}{2} + \frac{\varepsilon}{4} + \dots = \varepsilon.$$

3. Канторово множество является множеством меры нуль.

Замечание. Счётное объединение множеств $\{A_n\}n \in \mathbb{N}$ меры нуль является множеством меры нуль. Действительно, рассмотрим покрытие A_n отрезками суммарной длины не больше $\varepsilon/2^n$. Тогда объединив такие покрытия, получим покрытие $\cup A_n$ отрезками суммарной длины не больше ε .

Утверждение 4.1.4. Отрезок [0,1] не является множеством меры нуль.

 \mathcal{A} оказательство. Предположим противное. Рассмотрим покрытие $\{I_k\}_k$ такое, что

$$\sum_{k\in\mathbb{N}}|I_k|<\frac{1}{2}.$$

Поскольку отрезок компактен, то можно извлечь конечное подпокрытие

$$I_{n_1},\ldots,I_{n_k}$$
.

Но в таком случае

$$|I_{n_1}|+\cdots+|I_{n_k}|\geqslant 1,$$

противоречие.

Теорема 4.1.5. Пусть функция $f:[a,b] \to \mathbb{R}$ ограничена. Тогда $f \in \mathcal{R}[a,b]$ в том и только том случае, когда множество её точек разрыва имеет меру ноль.

Доказательство. Пусть E — множество точек разрыва f. Предположим, что E — множество меры ноль. Для удобства обозначим

$$Var_{[a,b]}f = \sup_{[a,b]} f - \inf_{[a,b]} f.$$

Для каждого $\eta > 0$ положим

 $E_{\eta} \coloneqq \{x \in [a,b] \mid \operatorname{Var}_{[c,d]} f \geqslant \eta$ для всех подотрезков $[c,d] \subset [a,b]$, содержащих $x\}$.

Докажем, что $E_{\eta} \subset E$. Пусть $x \in E_{\eta}$, $x \notin E$. Возьмём $\varepsilon = \eta/3$ и рассмотрим отрезок $[x - \delta, x + \delta]$, где ε, δ — числа из определения непрерывности в точке x. По определению E_{η} получаем, что существуют точки y_1, y_2 из δ -окрестности точки x такие, что $|f(y_1) - f(y_2)| > 3\eta/4$. А с другой стороны

$$|f(y_1) - f(y_2)| \le |f(y_1) - f(x)| + |f(x) - f(y_2)| \le 2\eta/3.$$

Противоречие. Значит, $x \in E$ и $E_{\eta} \subset E$.

Теперь докажем, что E_{η} компактно. Для этого докажем, что оно замкнуто. Если x_0 — предельная точка E_{η} , то по определению множество $\dot{U}_s(x_0) \cap E_{\eta} \neq \emptyset$ для всех s > 0. Зафиксируем s > 0 и возьмём произвольный элемент $y \in \dot{U}_s(x_0) \cap E_{\eta}$. Найдём такое $\sigma > 0$, что $U_{\sigma}(y) \subset U_s(x_0)$, и такие $y_1, y_2 \in U_{\sigma}(y)$, что

$$|f(y_1) - f(y_2)| \geqslant \eta.$$

Тогда y_1 и y_2 подходят под определение E_η для x_0 , то есть $x_0 \in E_\eta$ в силу произвольности выбора s. Таким образом, замкнутость доказана. Кроме того, E_η ограничено, так как содержится в [a,b]. Значит, оно компактно.

Пусть $\mu > 0$, $\{I_{\mu,k}\}_{k \in \mathbb{N}}$ — набор открытых интервалов, такой, что

$$E_{\eta} \subset E \subset \bigcup_{k \in \mathbb{N}} I_{\mu,k}, \quad \sum_{k \in \mathbb{N}} |I_{\mu,k}| < \mu.$$

Такой набор существует, так как множество E имеет меру ноль. Выберем конечное подпокрытие E_{η} , состоящее из интервалов $I_{\mu,k}$. Можно считать, что E_{η} покрыто интервалами $\widetilde{I_{\mu,1}}, \widetilde{I_{\mu,2}}, \ldots, \widetilde{I_{\mu,N_{\mu}}}$ так, что для любых $k \neq m$ выполнено $\widetilde{I_{\mu,k}} \cap \widetilde{I_{\mu,m}} = \varnothing^1$, а также

$$\sum_{1 \le k \le N_n} |\widetilde{I}_{\mu,k}| < \mu.$$

Итак, для любого $\eta>0$ и любого $\mu>0$ множество E_{η} можно покрыть конечным числом непересекающихся открытых интервалов суммарной длины меньше μ . Дополнение до $\bigcup_{1\leqslant k\leqslant N_{\mu}}\widetilde{I}_{\mu,k}$ в [a,b] состоит из конечного числа отрезков, множество которых назовём $G_{\eta,\mu}$.

Тогда рассмотрим разбиение $P_{\eta,\mu}$ отрезка [a,b], состоящее из концов интервалов $\widetilde{I_{\mu,k}}$ и отрезков $G_{\eta,\mu}$. Тогда оценим

$$U(f, P_{\eta, \mu}) - L(f, P_{\eta, \mu}) \leq \sum_{k} \left| \widetilde{I_{\mu, k}} \right| \operatorname{Var}_{[a, b]} f + \sum_{\gamma \in G_{\eta, \mu}} |\gamma| \eta \leq \mu \cdot \operatorname{Var}_{[a, b]} f + (b - a) \cdot \eta$$

Но правая часть стремится к нулю при η и μ стремящимися к нулю. Значит, $f \in \mathcal{R}[a,b]$.

Теперь предположим, что функция f ограничена и $f \in \mathcal{R}[a,b]$. Пусть, как и рань-

 $[\]overline{\ \ \ }^{1}$ Компоненты связности объединения конечного числа открытых интервалов — открытые интервалы.

ше, E — множество её разрывов. Для каждого $\eta > 0$ обозначим

$$F_{\eta} = \{x \in [a,b] \mid \text{ для любого } s > 0 \text{ существует } y \in U_s(x) : |f(y) - f(x)| \geqslant \eta \}$$
 .

Очевидно, что множество $\bigcup_{\eta} F_{\eta}$ содержит E. Тогда достаточно доказать, что F_{η} — множество меры нуль для всякого $\eta > 0$.

Рассмотрим такое разбиение P отрезка [a, b], что

$$U(f,P) - L(f,P) < \eta \varepsilon$$
.

Тогда заметим, что сумма длин отрезков разбиения, которые покрывают точки из F_{η} , (обозначим это множество Γ) не превосходит ε . Действительно, если она превосходит ε , то

$$U(f,P) - L(f,P) \geqslant \sum_{\gamma \in \Gamma} |\gamma| (\sup_{\gamma} f - \inf_{\gamma} f) \geqslant \sum_{\gamma \in \Gamma} |\gamma| \eta \geqslant \varepsilon \eta,$$

противоречие. Значит, мы можем покрыть множество F_{η} отрезками сколь угодно малой суммарной длины, стало быть оно является множеством меры нуль.

Следствие 4.1.6. Пусть $f, g \in \mathcal{R}[a, b], \alpha, \beta \in \mathbb{R}, c \in (a, b), \chi_{[a, c]}$ — характеристическая функция отрезка [a, c]. Тогда:

- (1) $\alpha f + \beta g \in \mathcal{R}[a, b]$;
- (2) $fg \in \mathcal{R}[a,b]$;
- (3) $\chi_{[a,c]} f \in \mathcal{R}[a,b]$;
- (4) $|f| \in \mathcal{R}[a,b]$.

Доказательство. Пусть E(h) — множество разрывов функции h. Заметим, что

- (1) $E(\alpha f + \beta g) \subset E(f) \cup E(g)$;
- (2) $E(fg) \subset E(f) \cup E(g)$;
- (3) $E(\chi_{[a,c]}) f \subset E(f) \cup \{c\};$
- (4) $E(|f|) \subset E(f)$.

Так как $f, g \in \mathcal{R}[a, b]$, то E(f), E(g) — множества меры ноль. Значит, $E(f) \cup E(g)$ тоже имеет меру ноль, а потому выполняются пункты 1–4.

Следствие 4.1.7. Пусть $\varphi \colon [a,b] \to [c,d], \psi \colon \mathbb{R} \to \mathbb{R}$ — непрерывные функция. Тогда для любых $h \in C[c,d]$ и $f \in \mathcal{R}[c,d]$ выполнено

$$h(\varphi) \in \mathcal{R}[a, b], \quad \psi(f) \in \mathcal{R}[c, d].$$

Доказательство. Это так, поскольку $E(h(\varphi)) = \emptyset$ и $E(\psi(f)) = E(f)$.

Следствие 4.1.8. $C[a,b] \subset \mathcal{R}[a,b]$.

Утверждение 4.1.9. Пусть $f, g \in \mathcal{R}[a, b]$. Тогда

$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g.$$

Доказательство. Для любых двух разбиений P_1, P_2 отрезка [a, b] верно

$$\int_{a}^{b} (f+g) \leq U(f+g, P_1 \cup P_2) \leq U(f, P_1 \cup P_2) + U(g, P_1 \cup P_2) \leq U(f, P_1) + U(g, P_2),$$

а значит

$$\int_{a}^{b} (f+g) \leq \inf_{P_1} (U(f, P_1)) + \inf_{P_2} (U(g, P_2)) = \int_{a}^{b} f + \int_{a}^{b} g.$$

Аналогично показывается, что $\int_a^b (f+g)\geqslant \int_a^b f+\int_a^b g.$ Следовательно,

$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g,$$

что и требовалось.

Утверждение 4.1.10. Если $\alpha \geqslant 0$, то для любой функции $f \in \mathcal{R}[a,b]$ выполнено

$$\int_{a}^{b} \alpha f = \alpha \int_{a}^{b} f.$$

Доказательство.

$$\int_{a}^{b} \alpha f = \inf_{P} (U(\alpha f, P)) = \inf_{P} (\alpha U(f, P)) = \alpha \inf_{P} (U(f, P)) = \alpha \int_{a}^{b} f.$$

Утверждение 4.1.11. Для любой функции $f \in \mathcal{R}[a,b]$ справедливо равенство

$$\int_{a}^{b} f = -\int_{a}^{b} (-f).$$

Доказательство.

$$\int_{a}^{b} f = \inf_{P} (U(f, P)) = \inf_{P} (-L(-f, P)) = -\sup_{P} (L(-f, P)) = -\int_{a}^{b} (-f).$$

Обозначение. Обозначим через $P_{[a,b]}$ множество всех разбиений отрезка [a,b].

Утверждение 4.1.12. Пусть $f \in \mathcal{R}[a,b], c \in (a,b)$. Тогда $f \in \mathcal{R}[a,c], f \in \mathcal{R}[c,b]$, и, кроме того,

1.
$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$
,

2.
$$\int_{a}^{c} f = \int_{a}^{b} \chi_{[a,c]} f$$
,

3.
$$\int_{c}^{b} f = \int_{a}^{b} \chi_{[c,b]} f$$
.

Доказательство. Ясно, что свойства 2 и 3 влекут все остальные утверждения теоремы, поэтому будем доказывать только их.

$$\begin{split} \overline{\int\limits_{[a,c]} f} & f = \inf_{P_{[a,b]} \ni P} (U(f,P)) = \inf_{P_{[a,b]} \ni P : c \in P} (U(\chi_{[a,c]}f,P)) \\ & \leq \inf_{P_{[a,b]} \ni P} (U(\chi_{[a,c]}f,P)) = \overline{\int\limits_{[a,b]} \chi_{[a,c]}f}. \end{split}$$

Аналогично,

$$\frac{\int_{[a,c]} f \geqslant \int_{[a,b]} \chi_{[a,c]} f.}{\int\limits_{[a,b]} \chi_{[a,c]} f = \int\limits_{[a,b]} \chi_{[a,c]} f,}$$

так как $\chi_{[a,c]}f \in \mathcal{R}[a,b]$. Значит,

$$\int_{a}^{b} \chi_{[a,c]} f = \overline{\int_{[a,c]}} f = \int_{[a,c]} f = \int_{a}^{c} f.$$

Аналогично доказывается для [c, b].

Утверждение 4.1.13 (основные оценки интегралов).

1. Пусть $f, g \in \mathcal{R}[a, b], f \leq g$ на [a, b]. Тогда

$$\int_{a}^{b} f \leqslant \int_{a}^{b} g.$$

2. Если $f \in \mathcal{R}[a,b]$, то

$$\left| \int_{a}^{b} f \right| \leqslant \int_{a}^{b} |f| \leqslant (b - a) \sup_{[a,b]} |f|$$

Доказательство.

1. Это утверждение равносильно тому, что для любой неотрицательной функции $h \in \mathcal{R}[a,b]$ выполнено $\int_a^b h \geqslant 0$. Это так, поскольку

$$\int_{a}^{b} h = \overline{\int_{[a,b]}} h = \inf_{P} (U(f,P)) \geqslant 0,$$

где последнее неравенство верно, так как $U(f, P) \ge 0$.

2. Можем считать, что $\int_a^b f \ge 0$, иначе заменим f на -f. Неравенство $\int_a^b f \le \int_a^b |f|$ верно, так как $f \le |f|$ на [a,b]. Пусть $t = \sup |f|$. Тогда неравенство

$$\int_{a}^{b} |f| \leqslant (b - a)t$$

равносильно тому, что $\int_a^b |f| \leqslant \int_a^b t$, так как $\int_a^b t = (b-a)t$. А это неравенство выполнено, так как $|f| \leqslant \sup |f| = t$.

Утверждение 4.1.14. Если $f:(a,b)\to\mathbb{R}$ — монотонная функция, то множество точек её разрыва не более чем счётно.

Доказательство. Напомним, что E(f) — множество точек разрыва. Пусть E_{η} — такое же множество, как в теореме 4.1.5. Тогда $E(f) \subset \bigcup_{k \in \mathbb{N}} E_{1/k}(f)$. Достаточно проверить, что множество $E_{1/k}(f)$ конечно при дополнительном предположении, что $\sup_{[a,b]} |f| < \infty$. Если это так и $\sup |f|$ конечен, то E(f) лежит в объединении счётного числа конечных множеств $E_k(f)$, значит оно не более чем счётно. Если же $\sup |f| = \infty$, то рассмотрим функции $f_n = f|_{[a_n,b_n]}$, где $a < a_n < b_n < b$, $a_n \to a$, $b_n \to b$. В таком случае $E(f) \subset \bigcup_{n \in \mathbb{N}} E(f_n)$. При этом счётное объединение не более чем счётных множеств — не более чем счётное множество, то есть $\bigcup_{n \in \mathbb{N}} E(f_n)$ не более чем счётно. Значит и множество E(f) не более чем счётное.

Пусть $\sup |f| < \infty$. Покажем, что множество E_k конечно. Пусть это не так, тогда для любого $N \in \mathbb{N}$ найдутся $a < y_1 < y_1' < y_2 < y_2' < \ldots < y_N < y_N' < b$ такие, что

$$|f(y_m') - f(y_m)| \ge \frac{1}{k}$$

для всех m = 1, 2, ..., N. Заметим, что

$$|f(y_N') - f(y_1)| = |(f(y_N') - f(y_N)) + (f(y_N) - f(y_{N-1}')) + \ldots + (f(y_1') - f(y_1))| \ge \frac{N}{k},$$

так как все эти слагаемые одного знака. Значит

$$\frac{N}{k} \leqslant \sup_{x,y \in (a,b)} |f(x) - f(y)| \leqslant 2 \sup_{x \in (a,b)} |f(x)|.$$

Пришли к противоречию с предположением о конечности этого супремума, так как N может быть сколь угодно большим.

Следствие 4.1.15. Если f — монотонная функция на [a, b], то $f \in \mathcal{R}[a, b]$.

Доказательство. Множество точек разрыва не более чем счётно, а значит имеет меру ноль. ■

Определение. Пусть P — разбиение отрезка $[a,b], P = \{x_k\}_{k=1}^N, a = x_1 \leqslant x_2 \leqslant x_3 \leqslant \ldots \leqslant x_N = b$. Мелкостью разбиения P называется число

$$\mu(P) = \max_{1 \leqslant k < N} (x_{k+1} - x_k).$$

Определение. Пусть дана функция $f \colon [a,b] \to \mathbb{R}$ и P — разбиение отрезка [a,b], $P = \{x_k\}_{k=1}^N$. Пусть

$$\{y_k\}_{k=1}^{N-1} \subset [a,b] : y_k \in [x_k, x_{k+1}].$$

Тогда

$$S(f, P, \{y_k\}_{k=1}^{N-1}) = \sum_{k=1}^{N-1} f(y_k)(x_{k+1} - x_k)$$

называется суммой Римана f по Р.

Утверждение 4.1.16. Пусть $f \in C[a,b], \{P_k\}_{k \in \mathbb{N}}$ — разбиения отрезка $[a,b], P_k = \{y_{k_m}\}_{m=1}^{N_k}, \mu(P_k) \to 0$ при $k \to \infty$. Тогда существует

$$\lim_{k \to \infty} S(f, P_k, \{y_{k_m}\}_{1 \le m < N_k}) = \int_a^b f.$$

Доказательство. Возьмём $\varepsilon>0$, по равномерной непрерывности найдём $\delta(\varepsilon)>0$ такое, что

$$\forall x,y \in [a,b]: |x-y| < \delta(\varepsilon) \implies |f(x)-f(y)| < \varepsilon.$$

Возьмём $l=l(\varepsilon)$ такое, что $\mu(P_l)<\delta(\varepsilon)$. Тогда $L\left(f,P_l\right)\leqslant\int_a^bf\leqslant U\left(f,P_l\right).$

$$\begin{split} U\left(f,P_{l}\right) - L\left(f,P_{l}\right) &= \sum_{k=1}^{N_{l}-1} (x_{k+1} - x_{k}) \left(\sup_{[x_{k},x_{k+1}]} f - \inf_{[x_{k},x_{k+1}]} f\right) \\ &= \sum_{k=1}^{N_{l}-1} (x_{k+1} - x_{k}) \max_{x,y \in [x_{k},x_{k+1}]} |f(x) - f(y)| \leqslant \sum_{k=1}^{N_{l}-1} (x_{k+1} - x_{k}) \varepsilon = \varepsilon(b-a). \end{split}$$

По определению

$$L(f, P_l) \leq S(f, P_l, \{y_k\}_{k=1}^{N_l-1}) \leq U(f, P_l),$$

а значит

$$\left| S\left(f, P_l, \{y_k\}_{k=1}^{N_l-1}\right) - \int_a^b f \right| < \varepsilon(b-a).$$

Это верно для всех l таких, что $\mu(P_l) < \delta(\varepsilon)$, а значит это неравенство выполнено для любого ε при любых $l \geqslant l(\varepsilon)$. Это равносильно тому, что существует

$$\lim_{k \to \infty} S\left(f, P_k, \{y_{k_m}\}_{m=1}^{N_k}\right) = \int_a^b f.$$

4.2 Формула Ньютона-Лейбница

Утверждение 4.2.1. Пусть $f \in \mathcal{R}[a,b]$, f непрерывна в точке $x_0 \in (a,b)$. Тогда функция $F(x) = \int_a^x f$ дифференцируема в точке x_0 и $F'(x_0) = f(x_0)$.

Доказательство. Пусть $x > x_0$,

$$\frac{F(x) - F(x_0)}{x - x_0} - f(x_0) = \frac{1}{x - x_0} \int_{x_0}^{x} f - f(x_0) = \frac{1}{x - x_0} \int_{x_0}^{x} (f(x) - f(x_0)).$$

Применим основную оценку интеграла, получим

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| \le \frac{x - x_0}{x - x_0} \sup_{y \in [x_0, x]} |f(x_0) - f(x)|,$$

это выражение стремится к 0 при $x \to x_0$, так как f непрерывна в x_0 . Значит существует

$$\lim_{x \to x_0, x > x_0} \frac{F(x) - F(x_0)}{x - x_0} = f(x_0).$$

Аналогично получим, что левый предел существует и равен $f(x_0)$, а значит существует

$$\lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = f(x_0).$$

Следствие 4.2.2. Если функция $f \in C[a,b]$, то существует F на [a,b] такая, что F дифференцируема на [a,b] и F'(x) = f(x) при $x \in [a,b]$.

Доказательство. Пусть $F(x) = \int_a^x f$. Так как f непрерывна на [a,b], то F'(x) = f(x) на [a,b].

Соглашение. Пусть $a, b \in \mathbb{R}, f \in \mathcal{R}[a, b], a < b$. Будем обозначать

$$\int_{b}^{a} f = -\int_{a}^{b} f, \qquad F|_{a}^{b} = F(b) - F(a).$$

Утверждение 4.2.3 (формула Ньютона–Лейбница). Пусть $f \in C[a,b]$. Для любой

функции F — первообразной f, верно

$$\int_{a}^{b} f = F|_{a}^{b} = F(b) - F(a).$$

Доказательство. Пусть F — первообразная $f, G(x) = \int_a^x f$ для всех $x \in [a,b]$. Тогда G — первообразная f, а значит существует $c \in \mathbb{R}$ такое, что для любого $x \in [a,b]$ верно G(x) - F(x) = c. Значит $F\Big|_a^b = G\Big|_a^b = \int_a^b f$.

Утверждение 4.2.4. Пусть $u, v \in C^1[a, b]$. Тогда

$$\int_{a}^{b} uv' = uv \Big|_{a}^{b} - \int_{a}^{b} u'v.$$

Доказательство. uv — это первообразная для (uv)' = u'v + uv'. Значит

$$uv\big|_a^b = \int_a^b (u'v + v'u) = \int_a^b u'v + \int_a^b uv'.$$

Утверждение 4.2.5. Пусть функция $\varphi \in C^1[a,b]$, функция f непрерывна на $\varphi([a,b])$. Тогда

$$\int_{a}^{b} f(\varphi) \cdot \varphi' = \int_{\varphi(a)}^{\varphi(b)} f.$$

Доказательство. Пусть G — первообразная для f, $G(\varphi)' = f(\varphi)\varphi'$. Значит

$$\int_{a}^{b} f(\varphi)\varphi' = G(\varphi)\Big|_{a}^{b} = G(\varphi(b)) - G(\varphi(a)) = \int_{\varphi(a)}^{\varphi(b)} f.$$

4.3 Формула Тейлора с интегральным остатком и остатком в форме Лагранжа

Теорема 4.3.1 (интегральный остаток). Пусть $n \in \mathbb{N}, f \in C^n[a,b], x_0 \in (a,b)$. Тогда для любого $x \in [a,b]$ выполнено

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \ldots + \frac{f^{(n-1)}}{(n-1)!}(x - x_0)^{n-1} + \int_{x_0}^{x} f^{(n)}(y) \frac{(x - y)^{n-1}}{(n-1)!} dy.$$

Соглашение. $\int f(x,y) \, \mathrm{d}y$ — это интеграл функции g(y) = f(x,y) при фиксированном x.

Доказательство. Если n=1, то $f(x)=f(x_0)+\int_{x_0}^x f'(y)\,\mathrm{d}y$ — формула Ньютона-Лейбница. Будем доказывать по индукции. Пусть n>1 и формула доказана для n-1. Обозначим

$$u(y) = f^{(n-1)}(y),$$
 $v(y) = -\frac{(x-y)^{n-1}}{(n-1)!}.$

Тогда

$$f(x) = \sum_{k=0}^{n-2} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \int_{x_0}^x \frac{f^{(n-1)}(y)}{(n-2)!} (x - y)^{n-2} dy = \sum_{k=0}^{n-2} (\dots) + \int_{x_0}^x u(y)v'(y) dy$$

$$= \sum_{k=0}^{n-2} (\dots) + u(y)v(y)|_{x_0}^x - \int_{x_0}^x u'(y)v(y) dy$$

$$= \sum_{k=0}^{n-2} (\dots) + u(x)v(x) - u(x_0)v(x_0) - \int_{x_0}^x u'(y)v(y) dy = \sum_{k=0}^{n-1} (\dots) + \int_{x_0}^x \frac{f^{(n)}(y)}{(n-1)!} (x - y)^{n-1} dy.$$

Последнее равенство выполнено, поскольку

$$v(x) = 0,$$
 $u(x_0)v(x_0) = \frac{f^{(n-1)(x_0)}}{(n-1)!}(x-x_0)^{n-1}.$

Теорема 4.3.2 (интегральная теорема о среднем). Пусть $f \in C[a,b], g \in \mathcal{R}[a,b], g \geqslant 0$ на [a,b]. Тогда существует $t_0 \in [a,b]$ такое, что

$$\int_{a}^{b} f(x)g(x) dx = f(t_0) \int_{a}^{b} g(x) dx.$$

Доказательство. Рассмотрим

$$F(t) = \int_{a}^{b} (f(x) - f(t))g(x) dx, \qquad F(t) \in C[a, b].$$

Возьмём $t_{\min} \in [a,b]$ такое, что для любого $t \in [a,b]$ $f(t_{\min}) \leqslant f(t)$. Аналогично возьмём t_{\max} . Тогда $F(t_{\min}) \leqslant 0$, $F(t_{\max}) \geqslant 0$, а значит существует t_0 такое, что $F(t_0) = 0$, а это равносильно равенству

$$\int_{a}^{b} f(x)g(x) dx = f(t_0) \int_{a}^{b} g(x) dx.$$

Теорема 4.3.3 (формула Тейлора с остатком в форме Лагранжа). Пусть $n \in \mathbb{N}, f \in C^{n-1}[a,b], x_0 \in (a,b), f^{(n-1)}$ дифференцируема на (a,b). Тогда для любого $x \in (a,b)$

верно

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n)}(\xi)}{n!} (x - x_0)^n,$$

где $\xi := \xi(x) \in (a,b)$.

Доказательство. Доказываем по индукции.

База: n=1. $f(x)=f(x_0)+f'(\xi)(x-x_0)$ — это теорема Лагранжа о среднем значении.

Переход. Пусть n > 1, применим формулу Тейлора с интегральным остатком

$$f(x) = \sum_{k=0}^{n-2} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \int_{x_0}^x f^{(n-1)}(y) \frac{(x - y)^{n-2}}{(n-2)!} dy$$

$$= \sum_{k=0}^{n-2} (\dots) + \int_{x_0}^x \left(f^{(n-1)}(y) - f^{(n-1)}(x_0) \right) \frac{(x - y)^{n-2}}{(n-2)!} dy + f^{(n-1)}(x_0) \int_{x_0}^x \frac{(x - y)^{n-2}}{(n-2)!} dy$$

Отметим, что

$$\int_{x_0}^{x} \frac{(x-y)^{n-2}}{(n-2)!} \, \mathrm{d}y = -\frac{(x-y)^{n-1}}{(n-1)!} \bigg|_{x_0}^{x} = \frac{(x-x_0)^{n-1}}{(n-1)!},$$

$$\int_{x_0}^{x} \left(f^{(n-1)}(y) - f^{(n-1)}(x_0) \right) \frac{(x-y)^{n-2}}{(n-2)!} \, \mathrm{d}y = \int_{x_0}^{x} \frac{f^{(n-1)}(y) - f^{(n-1)}(x_0)}{y - x_0} \cdot (y - x_0) \frac{(x-y)^{n-2}}{(n-2)!} \, \mathrm{d}y$$

Заметим, что

$$\frac{f^{(n-1)}(y) - f^{(n-1)}(x_0)}{y - x_0} \in C[x_0, x], \quad (y - x_0) \frac{(x - y)^{n-2}}{(n-2)!} \in \mathcal{R}[a, b], \quad (y - x_0) \frac{(x - y)^{n-2}}{(n-2)!} \geqslant 0,$$

а значит можем воспользоваться интегральной теоремой о среднем.

Продолжим цепочку равенств

$$\sum_{k=0}^{n-2} \left(\dots \right) + \int_{x_0}^{x} \left(f^{(n-1)}(y) - f^{(n-1)}(x_0) \right) \frac{(x-y)^{n-2}}{(n-2)!} \, \mathrm{d}y + f^{(n-1)}(x_0) \int_{x_0}^{x} \frac{(x-y)^{n-2}}{(n-2)!} \, \mathrm{d}y$$

$$= \sum_{k=0}^{n-1} \left(\dots \right) + \frac{f^{(n-1)}(t_0) - f^{(n-1)}(x_0)}{t_0 - x_0} \int_{x_0}^{x} (y - x_0) \frac{(x-y^{n-2})}{(n-2)!} \, \mathrm{d}y.$$

Посчитаем отдельно интеграл

$$\int_{x_0}^{x} (y - x_0) \frac{(x - y^{n-2})}{(n-2)!} \, \mathrm{d}y = (x - x_0) \int_{x_0}^{x} \frac{(x - y)^{n-2}}{(n-2)!} \, \mathrm{d}y - \int_{x_0}^{x} \frac{(x - y)^{n-1}}{(n-2)!} \, \mathrm{d}y$$

$$=\frac{(x-x_0)^n}{(n-1)!}-\frac{(x-x_0)^n}{(n-2)!\cdot n}=\frac{(x-x_0)^n}{n!}.$$

Ещё раз вернёмся к нашей цепочке равенств

$$\ldots = \sum_{k=0}^{n-1} \left(\ldots\right) + \frac{f^{(n-1)}(t_0) - f^{(n-1)}(x_0)}{t_0 - x_0} \cdot \frac{(x - x_0)^n}{n!}.$$

При этом

$$\frac{f^{(n-1)}(t_0) - f^{(n-1)}(x_0)}{t_0 - x_0} = f^{(n)}(\xi), \ \xi \in (t_0, x_0).$$

4.4 Равномерная сходимость и перестановка пределов

Определение. Говорят, что f_n сходятся поточечно к f на множестве E, и пишут $f_n \to f$, если для любого $x \in E$ существует $\lim_{n \to \infty} f_n(x) = f(x)$. На $\varepsilon - \delta$ языке:

$$\forall \varepsilon > 0 \ \forall x \in E \ \exists N(\varepsilon, x) \in \mathbb{N} : \forall n > N(\varepsilon, x) \ |f_n(x) - f(x)| < \varepsilon.$$

Определение. Говорят, что f_n сходятся равномерно к f на множестве E и пишут $f_n \Rightarrow f$, если существует $\lim_{n\to\infty} \sup_{x\in E} |f_n(x) - f(x)| = 0$. На ε - δ языке:

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall x \in E \ |f_n(x) - f(x)| < \varepsilon.$$

Пример 4.4.1. Возьмём функцию f(x): $[0,1] \to \mathbb{R}$ такую, что f(1) = 1, а на [0,1) f равняется нулю. Последовательность функций $\{x^n\}_{n=1}^{\infty}$ сходится поточечно к f на отрезке [0,1], но не равномерно.

Теорема 4.4.1 (критерий Коши). Пусть $E \subset \mathbb{R}$, $f_n \colon E \to \mathbb{R}$. Следующие условия эквивалентны:

- 1. $f_n \Rightarrow f$ для некоторой $f: E \to \mathbb{R}$.
- 2. $\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : |f_n(x) f_m(x)| < \varepsilon, \ \forall n, m \ge N(\varepsilon) \ \forall x \in E.$

Доказательство. Докажем, что из первого условия следует второре. Возьмём $N(\varepsilon/2) \in \mathbb{N}$ такое, что

$$\forall n > N(\varepsilon/2) \ \forall x \in E \ |f_n(x) - f(x)| < \varepsilon/2.$$

Тогда при $n, m > N(\frac{\varepsilon}{2})$

$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| < \varepsilon.$$

Докажем, что второе условие влечёт первое. Для всякого $x \in E$ $f_n(x)$ — последовательность Коши, а значит существует $\lim_{n\to\infty} f_n(x)$, обозначим его за f(x). Рассмот-

рим $\varepsilon > 0$, а также $N(\varepsilon/2) \in \mathbb{N}$ такое, что

$$\forall n, m > N(\varepsilon/2) \ \forall x \in E : |f_n(x) - f_m(x)| < \frac{\varepsilon}{2}$$

Зафиксируем $n > N(\varepsilon/2)$ и перейдём к пределу по $m \to \infty$, получим

$$|f_n(x) - f(x)| \le \frac{\varepsilon}{2} < \varepsilon, \ \forall x \in E.$$

Определение. Ряд $\sum_{n\geqslant 0} f_n(x)$ сходится *поточечно* на E, если для любого $x\in E$ существует $\lim_{N\to\infty} S_N(x)$, где $S_N(x)=\sum_{k=0}^N f_k(x)$.

Ряд $\sum_{n\geqslant 0} f_n(x)$ сходится равномерно на E, если $\{S_N(x)\}_{N\in\mathbb{N}}$ сходится равномерно на E.

Утверждение 4.4.2 (критерий сходимости Коши). Пусть $f_n : E \to \mathbb{R}$. Следующие условия эквивалентны:

- 1. $\sum f_n(x)$ сходится равномерно на E.
- 2. $\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall N_1, N_2 > N(\varepsilon) \ \sum_{k=N_1}^{N_2} f_k(x) < \varepsilon, \ \forall x \in E.$

Утверждение 4.4.3 (признак Вейерштрасса). Пусть функции $f_n \colon E \to \mathbb{R}$ такие, что для любого x верно, что $f_n(x) < a_n$, и $\sum_{n \geqslant 0} a_n$ сходится. Тогда $\sum_{n \geqslant 0} f_n(x)$ сходится равномерно.

Доказательство. $\sum a_n$ сходится, значит

$$\forall \varepsilon \; \exists N(\varepsilon) : \forall m \geqslant n > N(\varepsilon) \; \sum_{k=n}^{m} a_k < \varepsilon,$$

тогда

$$\left|\sum_{k=n}^m f_k(x)\right| \leqslant \sum_{k=n}^m a_k < \varepsilon.$$

Осталось применить критерий Коши.

Теорема 4.4.4 (Стокса-Зейделя). Пусть функции $f_n: E \to \mathbb{R}$ такие, что для любого $n \in \mathbb{N}$ существует $\lim_{t\to a} f_n(t)$, где a — предельная точка множества E. Если $f_n \rightrightarrows f$, то существуют $\lim_{t\to a} \lim_{t\to a} f_n(t)$ и $\lim_{t\to a} \lim_{t\to a} f_n(t)$, и они равны между собой.

Доказательство. Положим $A_n = \lim_{t\to a} f_n(t)$.

$$|A_n - A_m| \le |A_n - f_n(t)| + |f_n(t) - f_m(t)| + |f_m(t) - A_m|.$$

Выберем N_1 такое, что

$$\forall n, m \ge N_1 |f_n(t) - f_m(t)| < \varepsilon/3, \ \forall t \in E.$$

Возьмём $t \in E$ такое, что $|A_n - f_n(t)| < \varepsilon/3$, $|A_m - f_m(t)| < \varepsilon/3$. Тогда $|A_n - A_m| < \varepsilon$ Для всех $n, m \geqslant N_1$, значит $\{A_n\}$ — последовательность Коши и существует $\lim_{n \to \infty} A_n = A = \lim_{n \to \infty} \lim_{t \to a} f_n(t)$.

Надо показать, что существует $\lim_{t\to a} f(t) = A$.

$$|f(t) - A| \le |f(t) - f_n(t)| + |f_n(t) - A_n| + |A_n - A|.$$

Возьмём N_1 так, что $|f(t)-f_n(t)|<\varepsilon/3$ для каждого $t\in E$. Выберем $N_2\geqslant N_1$ так, что для любого $n\geqslant N_2$ верно, что $|A-A_n|<\varepsilon/3$. Также выберем $\delta>0$ так, чтобы было верно $|f_{N_2}(t)-A_{N_2}|<\varepsilon/3$, для всех $t\in \dot{U}_\delta(a)$. Тогда для любого $t\in \dot{U}_\delta(a)$ выполнено $|f(t)-A|<\varepsilon$, а значит $\lim_{t\to a}f(t)=A$.

Следствие 4.4.5. Пусть функции $f_n : E \to \mathbb{R}$ непрерывны в точке $a \in E$, $f_n \rightrightarrows f$ на E. Тогда f непрерывна в точке a.

Доказательство. Если a — изолированная точка, то f в ней непрерывна, это очевидно. Если же a — предельная, то по непрерывности существует $\lim_{t\to a} f_n(t) = f_n(a)$. По теореме Стокса-Зейделя существует

$$\lim_{t\to a} f(t) = \lim_{n\to\infty} \lim_{t\to a} f_n(t) = \lim_{n\to\infty} f_n(a) = f(a).$$

Следствие 4.4.6. Пусть функции f_n непрерывны на $E, f_n \rightrightarrows f$. Тогда f непрерывна на E.

Следствие 4.4.7. Пусть $f_n \in \mathcal{R}[a,b], f_n \rightrightarrows f$. Тогда $f \in \mathcal{R}[a,b]$, при этом

$$\lim_{n\to\infty}\int_a^b f_n = \int_a^b \lim_{n\to\infty} f_n = \int_a^b f.$$

Доказательство. Пусть F_n — множество разрывов f_n , F — множество разрывов f. $F \subset \bigcup F_n$. Для любого $n \in \mathbb{N}$ множество F_n имеют меру ноль, а значит $\bigcup F_n$ имеет меру ноль, получается $f \in \mathcal{R}[a,b]$.

$$\left| \int_a^b f - \int_a^b f_n \right| \leqslant \int_a^b |f - f_n| \leqslant (b - a) \sup_{[a,b]} |f - f_n| = (b - a) \delta_n,$$

 $\delta_n \to 0$ при $n \to \infty$. Значит существует

$$\lim_{n \to \infty} \int_{a}^{b} f_n = \int_{a}^{b} f = \int_{a}^{b} \lim_{n \to \infty} f_n.$$

Утверждение 4.4.8. Пусть функции $f_n \colon [a,b] \to \mathbb{R}, f_n \to f, f_n$ дифференцируема на $[a,b], f_n' \in C[a,b], f_n' \rightrightarrows g$. Тогда $f \in C^1[a,b]$ и f' = g.

Доказательство. Сразу отметим, что $g \in C[a,b]$. $f_n(x) - f_n(a) = \int_a^x f_n'$, перейдём к пределу по $n \to \infty$, получим $f(x) - f(a) = \int_a^x g$, а значит для любого $x \in [a,b]$ существует f'(x) = g(x).

Пример 4.4.2 (Ван дер Варден). Существует функция $f \in C(\mathbb{R})$ такая, что она не дифференцируемая ни в какой точке прямой.

Доказательство. Рассмотрим 1-периодическую функцию u_0 , определённую на интервале [-1/2,1/2) по правилу

$$u_0(x) = |x|, \qquad x \in \left[-\frac{1}{2}, \frac{1}{2}\right);$$

и семейство функций u_k , выражающихся через u_0 :

$$u_k(x) = \frac{u_0(4^k x)}{4^k}, \qquad k \geqslant 1, \ x \in \mathbb{R}.$$

 $\sum_{k\geqslant 0}u_k(x)$ равномерно сходится по признаку Вейерштрасса, так как $u_k(x)\leqslant \frac{1}{4^k}$, а ряд $\sum_{k\geqslant 0}\frac{1}{4^k}$ сходится. Обозначим $f(x)=\sum_{k\geqslant 0}u_k(x)$, тогда $f\in C(\mathbb{R})$, так как это равномерный предел непрерывных функций.

Рис. 4.1: График функции $\sum_{k\geqslant 0} u_k(x)$

Рассмотрим $x_0 \in \mathbb{R}$, построим последовательность целых чисел $\{S_n\}_{n=0}^\infty$ так, что

$$\frac{S_n}{2\cdot 4^n} \le x_0 < \frac{S_n + 1}{2\cdot 4^n}.$$

Обозначим

$$\Delta_n = \left[\frac{S_n}{2 \cdot 4^n}, \frac{S_n + 1}{2 \cdot 4^n} \right].$$

Для каждого n найдём $t_n \in \Delta_n$ такое, что

$$|t_n - x_0| = \frac{|\Delta_n|}{2} = \frac{1}{2} \cdot \frac{1}{2 \cdot 4^k} = \frac{1}{4^{n+1}}.$$

Рассмотрим

$$\frac{f(t_n) - f(x_0)}{t_n - x_0} = \sum_{k=0}^{\infty} \frac{u_k(t_n) - u_k(x_0)}{t_n - x_0} = \sum_{k=0}^{n} \frac{u_k(t_n) - u_k(x_0)}{t_n - x_0},$$

последний переход верен из-за того, что u_k периодична с периодом $\frac{1}{4^k}$. Из строения u_k видно, что при $x,y\in\Delta_k$ $\frac{u_k(x)-u_k(y)}{x-y}\in\{0,1\}$. Заметим, что при $k\leqslant n$ $\Delta_n\subset\Delta_k$, а значит

$$\frac{u_k(t_n) - u_k(x_0)}{t_n - x_0} \in \{0, 1\}.$$

Предположим, что f дифференцируема в точке x_0 , тогда существует

$$\lim_{n\to\infty}\sum_{k=0}^{\infty}\frac{u_k(t_n)-u_k(x_0)}{t_n-x_0},$$

а значит существует

$$\lim_{n\to\infty}\sum_{k=0}^{2n}\frac{u_k(t_{2n})-u_k(x_0)}{t_{2n}-x_0}=\lim_{n\to\infty}\sum_{k=0}^{2n+1}\frac{u_k(t_{2n+1})-u_k(x_0)}{t_{2n+1}-x_0}.$$

При этом эти два предела — нечётное и чётное число соответственно. То есть, мы пришли к противоречию, значит производной в x_0 не существует.

Глава 5

Элементарные функции

5.1 Комплексные числа

Определение. Поле *комплексных чисел* \mathbb{C} — это множество \mathbb{R}^2 с бинарными операциями

- $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$
- $(x_1, y_1) \cdot (x_2, y_2) = (x_1x_2 y_1y_2, x_1y_2 + y_1x_2)$

Теорема 5.1.1. \mathbb{C} — поле.

Доказательство. $0_{\mathbb{C}} := (0,0), -(x,y) := (-x,-y), 1_{\mathbb{C}} := (1,0), (x,y)^{-1} := \left(\frac{x}{x^2+y^2}, \frac{-y}{x^2+y^2}\right).$ Остальные свойства проверяются тривиально.

Соглашение. Мы будем отождествлять $x \in \mathbb{R}$ и $(x,0) \in \mathbb{C}$. Тогда $\mathbb{R} \subset \mathbb{C}$, и сложение, умножение на \mathbb{R} , как на подмножестве \mathbb{C} , совпадают со стандартными.

Определение. i := (0,1) — мнимая единица.

Утверждение 5.1.2. Для любого $z \in \mathbb{C}$ существуют единственные $x, y \in \mathbb{R}$ такие, что z = x + iy.

Доказательство. $z \in \mathbb{C}$, а значит z = (x, y) = (x, 0) + (0, y) = x + iy.

Определение. Пусть z = x + iy. Тогда Re(z) := x — вещественная часть z, Im(z) := y — мнимая часть z, $\overline{z} := x - iy$ — сопряжённое к z комплексное число.

Утверждение 5.1.3. Для всякого $z \in \mathbb{C}$ верно

$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}, \operatorname{Im}(z) = \frac{z - \overline{z}}{2i}.$$

Определение. $|z| := \sqrt{(\text{Re}(z))^2 + (\text{Im}(z))^2}$ — модуль z.

Примеры 5.1.1.

1. $|z| \ge 0$. |z| = 0 тогда и только тогда, когда z = 0.

- 2. $|z| = |\overline{z}|$.
- 3. $|z|^2 = z \cdot \overline{z}$.
- 4. $|z_1 + z_2|^2 = |z_1|^2 + 2\operatorname{Re}(z_1\overline{z_2}) + |z_2|^2$, так как

$$(z_1 + z_2)(\overline{z_1} + \overline{z_2}) = |z_1|^2 + (z_1\overline{z_2} + \overline{z_1}\overline{z_2}) + |z_2|^2.$$

- 5. $|z_1||z_2| = |z_1z_2|$.
- 6. |z| = |-z|.
- 7. $|z_1 + z_2| \le |z_1|$. + $|z_2|$, так как

$$(|z_1| + |z_2|)^2 = |z_1|^2 + |z_2|^2 + 2|z_1z_2| \ge |z_1|^2 + |z_2|^2 + 2\operatorname{Re}(z_1z_2) = |z_1 + z_2|^2.$$

8.
$$|z_1 - z_3| \le |z_1 - z_2| + |z_2 - z_3|$$
.

Следствие 5.1.4. Определим расстояние между z_1 и z_2 как $d(z_1, z_2) = |z_1 - z_2|$, это расстояние является метрикой благодаря свойствам 1, 6, 8.

Определение. Определим стандартную топологию на $\mathbb{C} - T_{\mathbb{C}}$. Множество $E \subset \mathbb{C}$ будет открытым в этой топологии, если

$$\forall z \in E \ \exists \varepsilon > 0 : B(z, \varepsilon) \subset E$$

где
$$B(z, \varepsilon) = \{ \xi \in \mathbb{C} \mid |z - \xi| < \varepsilon \}.$$

Замечание. Топологическое пространство ($\mathbb{C}, T_{\mathbb{C}}$) хаусдорфово.

Определение. Пусть $z_n \in \mathbb{C}$. $\{z_n\}$ — последовательность Коши в \mathbb{C} , если

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n, m > N \ |z_n - z_m| < \varepsilon.$$

Утверждение 5.1.5. Пусть $z_n \in \mathbb{C}$. Последовательность $\{z_n\}$ сходится тогда и только тогда, когда $\{z_n\}$ является последовательностью Коши.

Доказательство. Для всяких $z_1 = (x_1, y_1), z_2 = (x_2, y_2)$ верно

$$\max(|x_1 - x_2|, |y_1 - y_2|) \le |z_1 - z_2| \le |x_1 - x_2| + |y_1 - y_2|,$$

а значит $\{z_n\}$ — последовательность Коши в $\mathbb{C} \iff \{\operatorname{Re}(z_n)\}, \{\operatorname{Im}(z_n)\}$ — последовательности Коши в $\mathbb{R} \iff \{\operatorname{Re}(z_n)\}, \{\operatorname{Im}(z_n)\}$ сходятся в \mathbb{R} . Если $x = \lim_{n \to \infty} x_n, y = \lim_{n \to \infty} y_n$, то $z_n \to x + iy$ при $n \to \infty$. Дополнительно можно заметить, что в \mathbb{C} верны все арифметические свойства пределов.

5.2 Степенные ряды

Определение. Степенной ряд с центром в $z_0 \in \mathbb{C}$ — это

$$\sum_{n\geqslant 0}c_n(z-z_0)^n,$$

где $\{c_n\}\subset\mathbb{C}$.

Определение. Радиус сходимости ряда

$$R = \frac{1}{\overline{\lim} \left(\sqrt[n]{|c_n|} \right)}.$$

В частности, $R = +\infty$, если $\overline{\lim} \left(\sqrt[n]{|c_n|} \right) = 0$.

Определение. Ряд $\sum_{n\geqslant 0} c_n (z-z_0)^n$ абсолютно сходится в точке z, если сходится ряд

$$\sum_{n>0} |c_n(z-z_0)^n|.$$

Лемма 5.2.1 (признак Коши сходимости рядов). Пусть $\{c_n\} \subset \mathbb{C}, q = \overline{\lim} \left(\sqrt[n]{|c_n|} \right)$. Тогда, если q < 1, то ряд $\sum_{n \ge 0} c_n$ сходится абсолютно, если q > 1, то расходится.

Доказательство. Если q<1, то существует \overline{q} такое, что $q<\overline{q}<1$ и

$$\exists N \in \mathbb{N} : \sqrt[n]{|c_n|} \leq \overline{q}, \ \forall n > N,$$

а значит $c_n \leqslant \overline{q}^n$, а значит $\sum_{n\geqslant 0} |c_n|$ сходится по признаку Вейерштрасса.

Если q>1, то существует подпоследовательность $\{c_{n_k}\}_{k\geqslant 0}\subset \{c_n\}_{c\geqslant 0}$ такая, что $\sqrt[n]{|c_{n_k}|}\geqslant 1$, а значит $|c_{n_k}| \to 0$, то есть ряд расходится.

Теорема 5.2.2 (формула Коши–Адамара). Пусть *R* — радиус сходимости ряда

$$\sum_{n>0} c_n (z-z_0)^n$$

, тогда этот ряд сходится абсолютно для любого z такого, что $|z-z_0| < R$, и расходится, если $|z-z_0| > R$.

 \mathcal{A} оказательство. Если $|z-z_0| < R$, то посмотрим на ряд $\sum_{n \geqslant 0} c_n (z-z_0)^n$.

$$\overline{\lim} \left(\sqrt[n]{|c_n(z-z_0)^n|} \right) = |z-z_0| \cdot \overline{\lim} \left(\sqrt[n]{|c_n|} \right) = \frac{|z-z_0|}{R} < 1.$$

Значит ряд сходится абсолютно по признаку Коши.

Если
$$|z-z_0| > R$$
, то $|c_n(z-z_0)^n| \rightarrow 0$, а значит ряд не сходится.

Теорема 5.2.3. Пусть $\{a_n\}_{n\in\mathbb{N}}\subset\mathbb{C}, \varphi\colon\mathbb{N}\to\mathbb{N}$ — биекция. Если $\sum_{n>1}|a_n|$ сходится, то $\sum_{n>0}|a_{\varphi(n)}|$ сходится, а так же $\sum a_n=\sum a_{\varphi(n)}.$

Доказательство. Возьмём $\varepsilon > 0$, выберем $N = N(\varepsilon) \in \mathbb{N}$ так, что $\sum_{n > N} |a_n| < \varepsilon$. Выберем $k \in \mathbb{N}$ такое, что среди $a_{\varphi(1)}, \ldots, a_{\varphi(k)}$ содержатся все члены a_1, \ldots, a_N . Тогда для любого $m \geqslant k$ верно

$$\left|\sum_{i=0}^m a_{\varphi(i)} - \sum_{i=0}^\infty a_i\right| \leq \left|\sum_{i=0}^m a_{\varphi(i)} - \sum_{i=0}^N a_i\right| + \left|\sum_{i=0}^N a_i - \sum_{i=0}^\infty a_i\right| < 2\varepsilon,$$

значит $\sum a_{\varphi(n)}$ сходится к $\sum a_n$.

То же рассуждение верно для модулей.

Утверждение 5.2.4. Пусть $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ — два абсолютно сходящихся ряда,

$$\Phi(i,j) = a_i \cdot b_j \quad (\forall i,j \in \mathbb{Z}_+),$$

 $arphi\colon \mathbb{Z}_+ o \mathbb{Z}_+ imes \mathbb{Z}_+$ — биекция. Тогда ряд $\sum_{n=0}^\infty \Phi(arphi(n))$ сходится абсолютно, и

$$\sum_{n=0}^{\infty} \Phi(\varphi(n)) = \left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right).$$

Доказательство. Пусть $N \in \mathbb{N}$. Выберем $K \in \mathbb{N}$ так, что $K \geqslant \max(i, j)$ для всех таких i, j, что $\varphi(n) = (i, j)$ для некоторого $n \leqslant N$. Тогда:

$$\sum_{n=0}^{N} |\Phi(\varphi(n))| \leq \sum_{0 \leq i,j \leq K} |a_i| \cdot |b_j| = \left(\sum_{i=0}^{K} a_i\right) \left(\sum_{j=0}^{K} b_j\right) < C.$$

Найдём такую биекцию $\psi\colon\mathbb{Z}_+\to\mathbb{Z}_+$, что $\varphi(\psi)$ — квадратная нумерация $\mathbb{Z}_+\times\mathbb{Z}_+$. Имеем

$$\sum_{n=0}^{\infty} \Phi(\varphi(n)) = \sum_{n=0}^{\infty} \Phi(\varphi(\psi(n))) = \lim_{s \to \infty} \sum_{n=0}^{N_s} \Phi(\varphi(\psi(n))),$$

где $\{N_s\}$ — такая последовательность целых неотрицательных чисел, что $\varphi(\psi(N_s))=(0,s)$. Значит,

$$\lim_{s \to \infty} \sum_{n=0}^{N_s} \Phi(\varphi(\psi(n))) = \lim_{s \to \infty} \sum_{0 \le i, j \le s} a_i \cdot b_j = \lim_{s \to \infty} \left(\sum_{i=0}^s a_i \cdot \sum_{j=0}^s b_j \right)$$
$$= \lim_{s \to \infty} \sum_{i=0}^s a_i \cdot \lim_{s \to \infty} \sum_{j=0}^s b_j = \left(\sum_{0}^\infty a_k \right) \left(\sum_{0}^\infty b_k \right),$$

что и требовалось.

Теорема 5.2.5. Пусть $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ — степенной ряд с радиусом сходимости R>0. Тогда функция

$$f(z)$$
: $z \mapsto \sum_{n=0}^{\infty} c_n (z - z_0)^n$

дифференцируема в открытом круге с центром z_0 и радиусом R, и, более того,

$$f'(z) = \sum_{n=1}^{\infty} n \cdot c_n (z - z_0)^{n-1},$$

причём радиус сходимости функции f'(z) равен R.

Замечание. Функция $f: \mathbb{C} \to \mathbb{C}$ дифференцируема в точке w, если существует предел

$$\lim_{z \to w} \frac{f(z) - f(w)}{z - w}.$$

Доказательство.

Лемма 5.2.6. Существует предел $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

Доказательство. Мы знаем, что для всех $k \in \mathbb{N}$ и q > 1 выполнено $n^k = o(q^n)$ при $n \to \infty$. Значит,

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N : n < (1 + \varepsilon)^n,$$

откуда $\sqrt[n]{n} < 1 + \varepsilon$ при n > N. В то же время $\sqrt[n]{n} \ge 1$ при всех $n \in \mathbb{N}$, а потому

$$1 \leq \lim \sqrt[n]{n} \leq \overline{\lim} \sqrt[n]{n} \leq 1 + \varepsilon \quad \forall \varepsilon > 0,$$

то есть $\lim_{n\to\infty} \sqrt[n]{n} = 1$, что и требовалось.

Следствие 5.2.7. Радиусы сходимости рядов

$$\sum_{n=0}^{\infty} c_n (z - z_0)^n, \quad \sum_{n=0}^{\infty} n \cdot c_n (z - z_0)^{n-1}$$

совпадают.

Доказательство. Действительно, радиусы сходимости этих рядов равны

$$\frac{1}{\overline{\lim} \sqrt[n]{c_n}}$$
 $\qquad \qquad \frac{1}{\overline{\lim} \sqrt[n]{nc_n}},$

соответственно, а по предыдущей лемме

$$\overline{\lim} \sqrt[n]{nc_n} = \overline{\lim} \sqrt[n]{n} \cdot \overline{\lim} \sqrt[n]{c_n} = \overline{\lim} \sqrt[n]{c_n}.$$

Значит, радиусы сходимости равны.

Наконец, доказываем теорему 5.2.5. Представим $f(z) = g(z-z_0)$ и рассмотрим g(z). Докажем, что функция $g: z \mapsto \sum_0^\infty c_n z^n$ дифференцируема в круге с центром в нуле и радиусом R. Для произвольного $R_1 < R$ рассмотрим такие w, z, что $|w|, |z| < R_1$. Тогда

$$\frac{g(z) - g(w)}{z - w} = \sum_{n=0}^{\infty} c_n \frac{z^n - w^n}{z - w} = \sum_{n=1}^{\infty} c_n \sum_{k=0}^{n-1} z^k w^{n-1-k},$$

$$\left|\sum_{n=1}^{\infty}|c_n|\cdot\left|\sum_{k=0}^{n-1}z^kw^{n-1-k}\right|\leq \sum_{n=1}^{\infty}|c_n|\cdot n\cdot R_1^{n-1}<\infty.\right|$$

Поясним последний переход: ряд $\sum_{n=1}^{\infty} c_n \cdot n \cdot z^{n-1}$ имеет радиус сходимости R по следствию из леммы 5.2.7, $R_1 < R$, а значит, ряд $\sum_{n=1}^{\infty} c_n \cdot n \cdot R_1^{n-1}$ сходится абсолютно. Таким образом, ряд

$$\sum_{n=1}^{\infty} c_n \sum_{k=0}^{n-1} z^k w^{n-1-k}$$

сходится равномерно. Осталось заметить, что

$$\lim_{z o w} rac{g(z) - g(w)}{z - w} = \lim_{z o w} \sum_{n=1}^{\infty} c_n \cdot \sum_{k=0}^{n-1} z^k w^{n-1-k}$$
 [Теорема Стокса-Зейделя] $= \sum_{n=1}^{\infty} c_n \cdot \lim_{z o w} \sum_{k=0}^{n-1} z^k w^{n-1-k}$ $= \sum_{n=1}^{\infty} c_n \cdot n \cdot w^{n-1}$.

Значит, функция g дифференцируема в точке w, и $g'(w) = \sum_{n=1}^{\infty} c_n \cdot n \cdot w^{n-1}$.

5.3 Экспонента, логарифм и степень

Определение. Экспонентой называется функция

$$\exp \colon \mathbb{C} \to \mathbb{C}, \quad z \mapsto \sum_{n=0}^{\infty} \frac{z^n}{n!}.$$

Утверждение 5.3.1. Радиус сходимости ряда $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ бесконечен.

Доказательство. Заметим, что

$$\frac{1}{\overline{\lim} \sqrt[n]{\frac{1}{n!}}} = +\infty \iff \overline{\lim} \sqrt[n]{\frac{1}{n!}} = 0.$$

Таким образом, достаточно доказать, что $\lim_{n\to\infty} \sqrt[n]{n!} = \infty$. Оценим:

$$n! = \left(1 \cdot 2 \cdot \ldots \cdot \frac{n-1}{2}\right) \cdot \left(\frac{n}{2} \cdot \ldots \cdot n\right) \geqslant \left(\frac{n}{2}\right)^{\frac{n}{2}}.$$

Значит,

$$\lim_{n\to\infty} \sqrt[n]{n!} \geqslant \lim_{n\to\infty} \sqrt{\frac{n}{2}} = +\infty,$$

что и требовалось.

Утверждение 5.3.2. Функция ехр *z* дифференцируема, и

$$(\exp z)' = \exp z \quad \forall z \in \mathbb{C}.$$

Доказательство. По теореме 5.2.5:

$$\left(\sum_{n=0}^{\infty} \frac{z^n}{n!}\right)' = \sum_{n=1}^{\infty} n \cdot \frac{z^{n-1}}{n!} = \sum_{n=1}^{\infty} \frac{z^{n-1}}{(n-1)!} = \exp(z).$$

Утверждение 5.3.3. $\exp(z_1 + z_2) = \exp z_1 \cdot \exp z_2$.

Доказательство. Нетрудно показать 1 , что для любых $a,b\in\mathbb{C}$ и $n\in\mathbb{N}$ выполнено равенство

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} \cdot a^k \cdot b^{n-k},$$

где $\binom{n}{k}$ — биномиальный коэффициент.

Рассмотрим диагональную нумерацию $\varphi_d \colon \mathbb{N} \to \mathbb{Z}_+ \times \mathbb{Z}_+$ и функцию

$$\Phi \colon (k,j) \mapsto \frac{z_1^k}{k!} \cdot \frac{z_2^j}{j!}.$$

Тогда

$$\exp z_1 \cdot \exp z_2 = \sum_{k,j=0}^{\infty} \frac{z_1^k}{k!} \cdot \frac{z_2^j}{j!} = \lim_{s \to \infty} \sum_{n=0}^{N_s} \Phi(\varphi_d(n)),$$

где $\varphi_d(N_s) = (0, s)$. При этом

$$\lim_{s \to \infty} \sum_{n=0}^{N_s} \Phi(\varphi_d(n)) = \lim_{s \to \infty} \sum_{k,j=0}^{k+j \leqslant s} \frac{z_1^k \cdot z_2^j}{k! j!} = \lim_{s \to \infty} \sum_{m=0}^{s} \sum_{k+j=m} \frac{z_1^k \cdot z_2^j}{k! j!}$$

$$= \lim_{s \to \infty} \sum_{m=0}^{s} \frac{1}{m!} \cdot \sum_{k=0}^{m} {m \choose k} z_1^k \cdot z_2^{m-k}$$

$$= \lim_{s \to \infty} \sum_{m=0}^{s} \frac{(z_1 + z_2)^m}{m!} = \exp(z_1 + z_2).$$

Что и требовалось доказать.

Утверждение 5.3.4. Функция $\exp(z) \neq 0$ на всём \mathbb{C} , причём $\exp(0) = 1$.

Доказательство. Значение $\exp(0)$ вычисляется по определению:

$$\exp(0) = \sum_{n=0}^{\infty} \frac{0^n}{n!} = \frac{1}{0!} = 1.$$

¹Оставляем это читателю в качестве упражнения.

Осталось заметить, что $1 = \exp(0) = \exp(z - z)$, и по утверждению 5.3.3

$$1 = \exp(z - z) = \exp(z) \cdot \exp(-z),$$

откуда $\exp(z) \neq 0$.

Определение. Число е определяется как значение экспоненты в точке 1:

$$e := \exp(1) = \sum_{n=0}^{\infty} \frac{1}{n!} \in \mathbb{R}.$$

Утверждение 5.3.5. Имеют место равенства

$$\exp(n) = e^n \qquad \forall n \in \mathbb{Z}_+,$$

$$\exp(\frac{1}{k}) = \sqrt[k]{e}, \qquad \forall k \in \mathbb{N}.$$

Доказательство. По утверждению 5.3.3

$$\exp(n) = \exp(1 + \dots + 1) = (\exp(1))^n = e^n,$$
$$(\exp(\frac{1}{k}))^k = \exp\left(\frac{1}{k} \cdot k\right) = \exp(1) = e.$$

Что и требовалось.

Утверждение 5.3.6. Функция $\exp(x)$ является возрастающей биекцией из \mathbb{R} на $(0, +\infty)$.

Доказательство. Заметим, что:

• $\exp(x) > 0$ на $[0, +\infty)$, так как

$$\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} \ge 1 \quad \forall x \ge 0;$$

• $\exp(x) > 0$ на всём \mathbb{R} , поскольку

$$\exp(-x) = \frac{1}{\exp(x)} > 0 \qquad \forall x > 0;$$

- $\exp(x)$ возрастает на \mathbb{R} , потому что $(\exp x)' = \exp(x) > 0$ на \mathbb{R} ;
- $\lim_{x\to +\infty} \exp(x) = +\infty$, так как $\exp(x) > x$ при $x \ge 0$;
- наконец, $\lim_{x\to -\infty} \exp(x) = 0$, поскольку $\exp(-x) = \frac{1}{\exp(x)}$.

Отсюда легко понять, что $\exp(x)$ — биекция из \mathbb{R} на $[0, +\infty)$.

Определение. *Логарифм* log определяется как обратная к $\exp|_{\mathbb{R}}$ функция. Таким образом, log определён на луче $(0, \infty)$ и принимает значения в \mathbb{R} .

Рис. 5.1: График экспоненты

Определение. Для любого a > 0 комплексная степень определяется по правилу

$$a^z := \exp(z \log(a)) \quad \forall z \in \mathbb{C}.$$

Утверждение 5.3.7. Выполнены равенства

$$a^{z_1+z_2} = a^{z_1} \cdot a^{z_2},$$
$$e^z = \exp z.$$

Доказательство.

• По определению $a^{z_1+z_2}=\exp((z_1+z_2)\log(a))$, а по основному свойству экспоненты 5.3.3

$$\exp((z_1 + z_2)\log(a)) = \exp(z_1\log(a)) \cdot \exp(z_2\log(a)) = a^{z_1} \cdot a^{z_2}.$$

• Так как $e = \exp(1)$, $\log e = 1$, а потому

$$e^{z} = \exp(z \log(e)) = \exp z.$$

Утверждение 5.3.8. $\log(x_1 \cdot x_2) = \log(x_1) + \log(x_2)$.

Доказательство. Так как ехр — биекция,

$$\log(x_1 \cdot x_2) = \log(x_1) + \log(x_2) \iff \exp(\log(x_1 \cdot x_2)) = \exp(\log(x_1) + \log(x_2))$$
$$\iff x_1 \cdot x_2 = \exp(\log(x_1)) \cdot \exp(\log(x_2)),$$

а последнее верно по определению.

Рис. 5.2: График логарифма

Утверждение 5.3.9. \log — дифференцируемая функция, причём $(\log x)' = \frac{1}{x}$.

Доказательство. Так как e^x — биекция из [a,b] на $[e^a,e^b]$, и $(e^x)'\neq 0$, то на $[e^a,e^b]$ существует производная $(\log y)'$, и по правилу дифференцирования обратной функции

$$(\log y)' = \frac{1}{(e^x)'} \bigg|_{x = \log(y)} = \frac{1}{y}.$$

Теорема 5.3.10. Для всех вещественных α выполняется:

- (1) $x^{\alpha} = o(e^x)$ при $x \to \infty$,
- (2) $\log x = o(x^{\alpha})$ при $x \to \infty$,
- (3) Существует предел $\lim_{x\to 0+} x^{\alpha} \log x = 0$,
- (4) Существует предел $\lim_{x\to\infty} (1+\frac{1}{x})^x = e$.

Доказательство.

(1) Достаточно показать, что $x^k = o(e^x)$ для натурального k (тогда для любого $\alpha \in \mathbb{R}$ будет доказано более сильное утверждение, а именно при k, равном $\lceil \alpha \rceil + 1$). Итак, пусть $k \in \mathbb{N}$, имеем:

$$x^k = o(e^x) \iff \lim_{x \to \infty} \frac{x^k}{e^x} = 0.$$

При $x \ge 0$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \ge \frac{x^{k+1}}{(k+1)!},$$

а потому

$$\frac{x^k}{e^x} \leqslant \frac{(k+1)!}{x} \xrightarrow[x \to +\infty]{} 0.$$

(2) По определению о малого,

$$\log x = o(x^{\alpha}) \iff \lim_{x \to \infty} \frac{\log x}{x^{\alpha}} = 0 \iff \lim_{x \to \infty} \frac{\log x^{\alpha}}{\alpha x^{\alpha}} = 0.$$

Обозначим $t := x^{\alpha}$. Хотим доказать, что $\lim_{t\to\infty} \log t/t = 0$. Так как exp — возрастающая биекция, это равносильно равенству

$$\lim_{s\to\infty}\frac{\log e^s}{e^s}=\lim_{s\to\infty}\frac{s}{e^s}=0,$$

то есть отношению $s = o(e^s)$ — а это первое утверждение теоремы.

(3) Заметим, что

$$\lim_{x \to 0} x^{\alpha} \log x = 0 \iff \lim_{x \to 0} \frac{x^{\alpha} \log x^{\alpha}}{\alpha} = 0.$$

Сделав замену $t:=x^{\alpha}$, получим $\lim_{t\to 0}\frac{1}{\alpha}\cdot t\log t=0$, что равносильно равенству $\lim_{t\to 0}t\log t=0$. Поскольку $\log t=-\log\frac{1}{t}$ по утверждению 5.3.8, это можно переписать как $\lim_{t\to 0}-t\log\frac{1}{t}=0$. Обозначим $y:=\frac{1}{t}$. Таким образом, требуется доказать, что $\lim_{y\to \infty}\frac{\log y}{y}=0$, или, что то же самое, что $\log y=o(y)$ — мы получили второе утверждение теоремы.

(4) По определению степени,

$$\left(1+\frac{1}{x}\right)^x = e^{x\log(1+\frac{1}{x})}.$$

Воспользуемся формулой Тейлора:

$$\log(1+t) = \log 1 + t \cdot (\log(1+t))' \mid_{t=0} + o(t) = t + o(t)$$
 при $t \to 0$.

Значит,

$$x \log \left(1 + \frac{1}{x}\right) = 1 + o(1)$$
 при $x \to \infty$.

Таким образом,

$$\lim_{x \to \infty} e^{x \log(1 + \frac{1}{x})} = e,$$

что и требовалось.

5.4 Тригонометрические функции

Определение. *Синусом* и *косинусом* называются функции, определённые формулами

$$\sin(z) := \frac{e^{iz} - e^{-iz}}{2i}, \quad \cos(z) := \frac{e^{iz} + e^{-iz}}{2}$$

соответственно.

Утверждение 5.4.1 (простейшие свойства тригонометрических функций).

- (1) $e^{ix} = \cos x + i \sin x$ для всех $x \in \mathbb{C}$.
- (2) $\sin^2 z + \cos^2 z = 1$ (основное тригонометрическое тождество).
- (3) $\sin z, \cos z$ бесконечно-дифференцируемые функции, причём

$$(\sin z)' = \cos z, \quad (\cos z)' = -\sin z.$$

(4) Формулы синуса и косинуса суммы:

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \sin \beta \cdot \cos \alpha,$$
$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta.$$

(5) Синус и косинус двойного угла:

$$\sin(2z) = 2\sin z \cdot \cos z,$$

 $\cos(2z) = \cos^2 z - \sin^2 z = 2\cos^2 z - 1 = 1 - 2\sin^2 z.$

(6) Синус и косинус принимают вещественные значения на \mathbb{R} .

Доказательство.

- (1) Очевидно.
- (2) Элементарные вычисления:

$$\frac{(e^{iz} + e^{-iz})^2}{4} - \frac{(e^{iz} - e^{-iz})^2}{4} = \frac{4e^{iz} \cdot e^{-iz}}{4} = 1.$$

(3) Достаточно воспользоваться простейшими правилами дифференцирования:

$$(\sin z)' = \frac{(e^{iz} - e^{-iz})'}{2i} = \frac{ie^{iz} + ie^{-iz}}{2i} = \frac{e^{iz} + e^{-iz}}{2} = \cos z,$$

$$(\cos z)' = \frac{(e^{iz} + e^{-iz})'}{2} = \frac{ie^{iz} - ie^{-iz}}{2} = \frac{-e^{iz} + e^{-iz}}{2i} = -\sin z.$$

(4) Возьмём правую часть и преобразуем её:

$$\begin{split} \sin\alpha \cdot \cos\beta + \sin\beta \cdot \cos\alpha &= \frac{e^{i\alpha} - e^{-i\alpha}}{2i} \cdot \frac{e^{i\beta} + e^{-i\beta}}{2} + \frac{e^{i\beta} - e^{-i\beta}}{2i} \cdot \frac{e^{i\alpha} + e^{-i\alpha}}{2} = \\ &= \frac{e^{i(\alpha+\beta)} - e^{-i(\alpha+\beta)}}{4i} + \frac{e^{i(\alpha-\beta)} - e^{-i(\alpha-\beta)}}{4i} + \frac{e^{i(\alpha+\beta)} - e^{-i(\beta-\alpha)}}{4i} + \frac{e^{i(\beta-\alpha)} - e^{-i(\beta-\alpha)}}{4i} = \\ &= \sin(\alpha+\beta). \end{split}$$

Формулу для косинуса можно вывести, например, так:

$$\cos(\alpha + \beta) = (\sin(\alpha + \beta))'|_{\alpha} = (\sin\alpha \cdot \cos\beta + \sin\beta \cdot \cos\alpha)'|_{\alpha}$$
$$= \cos\alpha \cdot \cos\beta + \sin\beta \cdot (-\sin\alpha)$$
$$= \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta.$$

- (5) Формулы двойного угла легко выводятся из формул для суммы (пункта 4), так как $\sin 2x = \sin(x+x)$ и $\cos 2x = \cos(x+x)$.
- (6) Действительно,

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i} = \frac{e^{ix} - \overline{e^{ix}}}{2i} = \operatorname{Im}(e^{ix}) \in \mathbb{R},$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2} = \frac{e^{ix} + \overline{e^{ix}}}{2} = \operatorname{Re}(e^{ix}) \in \mathbb{R},$$

что и требовалось.

Утверждение 5.4.2. Существует такое $x_0 > 0$, что $\cos x_0 = 0$ и $\cos x \neq 0$ на интервале $[0, x_0)$.

Доказательство. Пусть это не так. Тогда $\cos x$ положителен на \mathbb{R}_+ , следовательно, $\sin x$ строго возрастает на \mathbb{R}_+ так как $\sin' x = \cos x$. В частности, $\sin 1 > \sin 0 = 0$. По интегральной теореме о среднем значении 4.3.2, для любого $y \in [1, +\infty)$ существует такое $\xi \in [1, y]$, что

$$\int_{1}^{y} \sin x \, \mathrm{d}x = (y - 1) \sin \xi.$$

Так как $\sin x$ строго возрастает на \mathbb{R}_+ , имеем оценку

$$(y-1)\sin\xi \geqslant (y-1)\sin 1.$$

Наконец,

$$\sin^2 x + \cos^2 x = 1 \implies |\cos x| \le 1 \implies \left| \int_1^y \sin x \, dx \right| = \left(|-\cos x| \right) \Big|_1^y \le 2$$

Таким образом,

$$(y-1)\sin 1 \le 2$$
 $(\forall y \ge 1),$

что, очевидно, неверно. Противоречие.

Значит, множество $E := \{x \in \mathbb{R} \mid \cos x = 0\}$ непусто. Функция $\cos x$ непрерывна, поэтому E замкнуто, и, следовательно, множество $E \cap [0, \infty)$ тоже замкнуто, в частности, оно содержит минимум. Этот минимум и есть искомое x_0 .

Определение. *Числом* π называют удвоенное значение x_0 из предыдущего утверждения:

$$\pi := 2x_0.$$

Утверждение 5.4.3. $\cos \frac{\pi}{2} = 0$, $\sin \frac{\pi}{2} = 1$.

Доказательство. Равенство $\cos\frac{\pi}{2}=0$ выполнено по определению числа π . По основному тригонометрическому тождеству $\sin\frac{\pi}{2}=\pm 1$. Далее, $\cos x\neq 0$ на интервале $[0,\frac{\pi}{2})$ по определению π , в точках 0 и $\frac{\pi}{2}$ косинус неотрицателен. Поскольку косинус — непрерывная функция, отсюда следует, что $\cos x>0$ на $[0,\frac{\pi}{2})$. Так как $\cos x$ — производная $\sin x$, то $\sin x$ возрастает на $[0,\frac{\pi}{2})$, поэтому $\sin\frac{\pi}{2}\geqslant 0$. Таким образом, $\sin\frac{\pi}{2}=1$, что и требовалось.

Из предыдущего утверждения и формул двойного угла получаем:

$$\sin \pi = 2 \sin \frac{\pi}{2} \cdot \cos \frac{\pi}{2} = 0, \quad \sin 2\pi = 0,$$

 $\cos \pi = 2 \cos^2 \frac{\pi}{2} - 1 = -1, \quad \cos 2\pi = 0.$

Утверждение 5.4.4. $e^{z_1}=e^{z_2}$ тогда и только тогда, когда $z_1-z_2=i(2\pi k)$, где $k\in\mathbb{Z}$.

Доказательство. Ясно, что $e^{z_1}=e^{z_2}\iff e^{z_1-z_2}=1$. Таким образом, достаточно показать, что

$$e^z = 1 \iff z = 2\pi i k, k \in \mathbb{Z}.$$

Пусть $z = 2\pi i k$. Если k неотрицательное, имеем

$$e^z = e^{2\pi i k} = (\cos 2\pi + i \sin 2\pi)^k = 1.$$

Иначе получаем, что

$$e^{2\pi ik} = \overline{e^{-2\pi ik}} = \overline{1} = 1,$$

что и требовалось.

Наоборот, предположим, что $e^z = 1$. Тогда

$$|e^{z}| = |e^{\operatorname{Re} z + i \operatorname{Im} z}| = 1$$
, то есть $|e^{\operatorname{Re} z}| = 1$, $\operatorname{Re} z = 0$.

Таким образом, г имеет вид

$$z = ix$$
, $x \in \mathbb{R}$.

Мы уже выяснили, что $e^{2\pi ik}=1$ для всех целых k, откуда следует, что функция e^{ix} 2π -периодична. Поэтому, не умаляя общности, можно считать, что $x\in[0,2\pi)$. Если x=0, то утверждение доказано. Предположим, что $0< x<2\pi$. Положим $y:=\frac{x}{4},e^{iy}:=t_1+i\cdot t_2$. Так как $0< y<\frac{\pi}{2}$, то

$$t_1 = \cos y \neq 0, 1, \quad t_2 = \sin y \neq 0, 1.$$

В то же время

$$1 = e^{ix} = (e^{iy})^4 = (t_1 + i \cdot t_2)^4 = t_1^4 + t_2^4 - 6t_1^2t_2^2 + i \cdot 4t_1t_2(t_1^2 - t_2^2) \implies 4t_1t_2(t_1^2 - t_2^2) = 0.$$

Так как $t_1, t_2 \neq 0$, то из последнего равенства следует, что

$$t_1^2 = t_2^2 \implies 1 = 2t_1^4 - 6t_1^4 = -4t_1^4 \implies t_1^4 < 0.$$

Таких $t_1 \in \mathbb{R}$, для которых последнее неравенство верно, не существует. Противоречие. Значит, x=0, что и требовалось.

Утверждение 5.4.5. Синус и косинус 2π -периодичны, причём 2π — наименьший период, то есть

$$\cos(x+T) = \cos x \ \forall x \in \mathbb{R} \iff T = 2\pi k,$$
$$\sin(x+T) = \sin x \ \forall x \in \mathbb{R} \iff T = 2\pi k,$$

где $k \in \mathbb{Z}$.

Доказательство. Пусть $T=2\pi k$. По утверждению 5.4.4 верно $e^x=e^{x+T}$, откуда следует, что

$$\operatorname{Re}(e^{ix}) = \operatorname{Re}(e^{i(x+T)}), \quad \operatorname{Im}(e^{ix}) = \operatorname{Im}(e^{i(x+T)}) \quad \forall x \in \mathbb{R},$$

то есть

$$\cos x = \cos(x + T), \quad \sin x = \sin(x + T).$$

Если же $\cos x = \cos(x+T)$, то можно продифференцировать это равенство:

$$-\sin x = -\sin(x+T).$$

Следовательно,

$$e^{ix} = \cos x + i \sin x = \cos(x + T) + i \sin(x + T) = e^{i(x+T)}$$
.

Тогда по утверждению 5.4.4 получаем $T = 2\pi k$.

Утверждение 5.4.6. $\cos x, \sin x$ — биекции из $[0, \frac{\pi}{2}]$ на [0, 1].

Доказательство. Эти функции строго монотонны, непрерывны, и

$$\cos 0 = 1$$
, $\cos \frac{\pi}{2} = 0$;
 $\sin 0 = 0$, $\sin \frac{\pi}{2} = 1$.

Значит, они биективны.

Утверждение 5.4.7. e^{ix} — биекция полуинтервала $[0,2\pi)$ на окружность

$$\{z \in \mathbb{C} : |z| = 1\} = \mathbb{T}.$$

Доказательство.

• Все значения, которые принимает функция e^{ix} на множестве $[0,2\pi)$, лежат на единичной окружности \mathbb{T} .

Рис. 5.3: График синуса

- Пусть для каких-то $x_1, x_2 \in [0, 2\pi)$ имеет место равенство $e^{ix_1} = e^{ix_2}$. По утверждению 5.4.4 отсюда следует, что $(x_1 x_2) = 2\pi k$ для некоторого $k \in \mathbb{Z}$. Так как $x_1, x_2 \in [0, 2\pi)$, то имеем $x_1 = x_2$, то есть e^{ix} инъекция.
- Рассмотрим первую четверть единичной окружности

$$\mathbb{T}_{\frac{1}{4}} = \{ z \in \mathbb{C} : |z| = 1, \operatorname{Re} z > 0, \operatorname{Im} z > 0 \}.$$

Для произвольного $z \in \mathbb{T}_{\frac{1}{4}}$ посмотрим на $x := \operatorname{Re} z, y := \operatorname{Im} z$. Так как $z \in \mathbb{T}$, то есть |z| = 1, то $x^2 + y^2 = 1$, причём x > 0, y > 0, а значит 0 < x < 1. Далее, $\cos x$ — биекция $[0, \frac{\pi}{2})$ на [0, 1) по утверждению 5.4.6, в частности,

$$\exists \varphi \in [0, \frac{\pi}{2}) : \cos \varphi = x.$$

Итак,

$$\begin{cases} \cos^2 \varphi + \sin^2 \varphi = 1, \\ x^2 + y^2 = 1, \\ \cos \varphi = x. \end{cases}$$

Отсюда легко понять, что $y=\pm\sin\varphi$. Кроме того, $\sin\varphi>0$, так как $\varphi\in[0,\frac{\pi}{2})$ и y>0. Таким образом, $y=\sin\varphi$, поэтому

$$z = \cos \varphi + i \sin \varphi = e^{i\varphi}.$$

Таким образом, $\mathbb{T}_{\frac{1}{4}}$ содержится в образе e^{ix} . Из аналогичных рассуждений для остальных четвертей окружности получаем, что e^{ix} — сюръекция на \mathbb{T} .

Определение. Пусть даны функция $f \colon [a,b] \to \mathbb{R}$ и такие $a_1,b_1 \in \mathbb{R}$, что $a < a_1 < a_2 < a_3 < a_4 < a_4 < a_4 < a_5 < a_4 < a_5 < a_4 < a_5 < a_5 < a_5 < a_5 < a_6 < a_6 < a_6 < a_7 < a_7 < a_8 <$

Рис. 5.4: График косинуса

 $b_1 < b$. Секущая графика функции f в точках $(a_1, f(a_1)), (b_1, f(b_1))$ — это отображение

$$y: x \mapsto f(a_1) \cdot \frac{x - b_1}{a_1 - b_1} + f(b_1) \cdot \frac{x - a_1}{b_1 - a_1}.$$

Определение. Пусть имеются функция $f:[a,b]\to\mathbb{R}$ и точка $x_0\in[a,b]$. *Касательная* к графику функции f в точке $(x_0,f(x_0))$ — такое отображение

$$y: x \mapsto kx + b$$
,

что

$$y(x_0) = f(x_0), \quad y(x) - f(x) = o(|x - x_0|)$$
 при $x \to x_0$,

если оно существует.

Утверждение 5.4.8. Пусть $f: [a,b] \to \mathbb{R}$, график f имеет касательную y в точке $(x_0, f(x_0))$. Тогда функция f дифференцируема в точке x_0 , и касательная имеет вид

$$y = f'(x_0) \cdot (x - x_0) + f(x_0).$$

Наоборот, если функция f дифференцируема в точке x_0 , то она имеет касательную в точке $(x_0, f(x_0))$.

Доказательство. Прямая y(x) является касательной к графику функции f в точке $(x_0, f(x_0))$ тогда и только тогда, когда y имеет вид

$$y(x) = k(x - x_0) + f(x_0)$$
, и $y(x) - f(x) = o(|x - x_0|)$ при $x \to x_0$.

Другими словами,

$$\exists k \in \mathbb{R} : f(x_0) + k(x - x_0) - f(x) = o(|x - x_0|)$$
 при $x \to x_0$

Рис. 5.5: График тангенса

$$\iff \frac{f(x) - f(x_0)}{x - x_0} = k + o(1), \quad x \to x_0.$$

Значит, функция f дифференцируема в точке x_0 и $f'(x_0) = k$.

Утверждение 5.4.9. Если функция $\varphi \colon [a,b] \to \mathbb{R}$ выпукла, $\varphi \in C^1[a,b]$, то

$$\varphi(x_0) + \varphi'(x_0)(x - x_0) \leq^{(1)} \varphi(x) \leq^{(2)} \varphi(a) \frac{x - b}{a - b} + \varphi(b) \frac{x - a}{b - a}$$

для всех $x, x_0 \in [a, b]$.

Доказательство.

- (1) Утверждение равносильно тому, что $\frac{\varphi(x)-\varphi(x_0)}{x-x_0}\geqslant \varphi'(x_0).$
- (2) По определению выпуклости для всех таких $\lambda_1, \lambda_2 \in [0,1]$, что $\lambda_1 + \lambda_2 = 1$, справедливо неравенство

$$\varphi(\lambda_1 a + \lambda_2 b) \leq \lambda_1 \varphi(a) + \lambda_2 \varphi(b)$$
.

Подставив $\lambda_1 := \frac{x-b}{a-b}, \lambda_2 := \frac{x-a}{b-a},$ получим требуемое неравенство.

Утверждение 5.4.10.

- $\sin x \le x$ для всех $x \ge 0$;
- $e^x \ge x + 1$ на всём \mathbb{R} ;
- $\log(1+x) \le x$ при x > -1;
- $\sin x \geqslant \frac{2x}{\pi}$, если $x \in [0, \frac{\pi}{2}]$.

Доказательство.

• x — касательная к $\sin x$ в точке (0,0), $\sin x$ — вогнутая функция на отрезке $[0,\frac{\pi}{2}]$, тогда неравенство выполнено на отрезке $[0,\pi/2]$, на интервале $[\pi/2,+\infty]$ оно выполнено, потому что на нём

$$x \ge \pi/2 > 1 \ge \sin x$$
;

- 1 + x касательная к e^x в точке $(0, 1), e^x$ выпуклая функция;
- x касательная к $\log(1+x)$ в точке 0, а $\log(1+x)$ вогнутая функция на интервале (-1,0);
- $\frac{2x}{\pi}$ секущая $\sin x$ в точках (0,0) и $(\frac{\pi}{2},1)$.

5.5 Ряды Тейлора некоторых функций

Определение. Пусть $E \subset \mathbb{C}, a \in E, f \in C^{\infty}(E)$. Рядом Тейлора f в точке a называется ряд

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k.$$

Утверждение 5.5.1. Пусть $\sum_{n=0}^{\infty} c_n (z-a)^n$ — степенной ряд с радиусом сходимости R. Тогда ряд Тейлора функции $f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$ в точке a совпадает с самим рядом.

Доказательство. Обозначим $B(a,R):=\{z\in\mathbb{C}:|z-a|< R\}$ — открытый шар с центром в точке a и радиусом R. Тогда f бесконечно дифференцируема в B(a,R), а также верно, что

$$f^{(k)}(z) = k! \cdot c_k + (k+1) \cdot \dots \cdot 2 \cdot c_{k+1}(z-a) + \dots \Longrightarrow$$

$$f^{(k)}(a) = k! \cdot c_k \implies c_k = \frac{f^{(k)}(a)}{k!},$$

что и требовалось.

Утверждение 5.5.2. Справедливы следующие равенства:

1.
$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
,

2.
$$\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$

3.
$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$

Доказательство.

1. Выполняется по определению.

2. Действительно,

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = \frac{1}{2i} \sum_{n=0}^{\infty} \left(\frac{(iz)^n}{n!} - \frac{(-iz)^n}{n!} \right) = \frac{1}{i} \sum_{n=0}^{\infty} \frac{(iz)^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{-i^{2n+2}z^{2n+1}}{(2n+1)!}$$
$$= \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}.$$

3. Аналогично,

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{(iz)^n}{n!} + \frac{(-iz)^n}{n!} \right) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}.$$

Утверждение 5.5.3. Для всех действительных x, по модулю меньших единицы, верно

$$\log(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n}.$$

Доказательство. Заметим, что для любого $\delta < 1$ ряд $f(x) := \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n}$ сходится равномерно на отрезке $[-\delta, \delta]$ по признаку Вейерштрасса. В самом деле,

$$\left| \sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1} x^n}{n} \right| \le \sum_{n=1}^{\infty} \delta^n.$$

Аналогично, ряд $\sum_{n=1}^{\infty} (-1)^{n+1} x^{n-1}$ сходится равномерно на отрезке $[-\delta, \delta]$. Применим к f теорему 5.2.5:

$$f'(x) = \sum_{n=1}^{\infty} \left(\frac{(-1)^{n+1} x^n}{n} \right)' = \sum_{n=1}^{\infty} (-1)^{n+1} x^{n-1} = \frac{1}{1+x}.$$

Таким образом, функция f непрерывно-дифференцируема на интервале (-1,1), и

$$f'(x) = \frac{1}{1+x} = (\log(x))'.$$

Более того,

$$f(0) = 1 = \log(0)$$
.

Следовательно, $\log x = f(x)$ на всём интервале (-1, 1).

Пример 5.5.1. Рассмотрим функцию $f: x \mapsto \frac{1}{1+x^2}, x \in \mathbb{R}$,. Понятно, что

$$f(x) = \sum_{n=0}^{\infty} (-1)^n x^{2n}.$$

Тем не менее, радиус сходимости этого ряда равен 1, хотя функция непрерывна на всей вещественной оси.

Пример 5.5.2. Рассмотрим такую функцию f:

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Утверждение 5.5.4. $f \in C^{\infty}(\mathbb{R})$, ряд Тейлора функции сходится всюду, но не к f, за исключением точки x=0.

Доказательство. $\frac{1}{x^2}, e^{-x}$ дифференцируемы при $x \neq 0$, поэтому f(x) дифференцируема при $x \neq 0$ как композиция дифференцируемых. f'(0) = 0, поскольку

$$f'(0) = \lim_{x \to 0} \frac{e^{-\frac{1}{x^2}} - 0}{x} = 0 \iff \lim_{t \to \infty} e^{-t^2} t = 0 \iff \sqrt{t} = o(e^t),$$

а последнее справедливо по утверждению 5.3.10. Аналогично, для всех натуральных k существует $f^{(k)}(0) = 0$, следовательно, ряд Тейлора f в нуле равен нулю.

5.6 Алгебраическая замкнутость С

Теорема 5.6.1. Пусть p — многочлен с коэффициентами из $\mathbb C$ степени хотя бы 1. Тогда существует такое $z_0 \in \mathbb C$, что $p(z_0) = 0$.

Доказательство.

Лемма 5.6.2 (формула Муавра). Для любого $z \in \mathbb{C} \setminus \{0\}$ существуют и единственны такие $r \in (0, +\infty]$, и $\varphi \in [0, 2\pi)$, что выполнено $z = re^{i\varphi}$, и, более того, выполнено равенство

$$z^n = r^n(\cos n\varphi + i\sin n\varphi).$$

Доказательство. Так как $z \neq 0$, то $z = |z| \cdot \frac{z}{|z|}$. Тогда в качестве r возьмём |z|. Далее,

$$\left| \frac{z}{|z|} \right| = 1, \implies \exists ! \ \varphi \in [0, 2\pi) : \frac{z}{|z|} = e^{i\varphi}.$$
$$z = |z| \cdot \frac{z}{|z|} = r \cdot e^{i\varphi}.$$

Единственность проверяется тривиально.

Лемма 5.6.3. Пусть p — многочлен. Тогда существует такое $z_0 \in \mathbb{C}$, что для любого $z \in \mathbb{C}$

$$|P(z_0)| \le |P(z)|$$

 \mathcal{A} оказательство. Рассмотрим $M:=\inf_{z\in\mathbb{C}}|p(z)|$ и такую последовательность комплексных чисел $\{z_k\}_{k\in\mathbb{N}}$, что $|p(z_k)|\to M$ при $k\to\infty$. Заметим, что $\{z_k\}$ ограничена,

так как иначе выберем подпоследовательность $\{z_{k_n}\}$ такую , что $z_{k_n} \xrightarrow{n \to \infty} \infty$, и представим многочлен в виде $p(z) = \sum_{t=0}^s c_t z^t$, где $c_s \neq 0$. Тогда при $|z_{k_n}| > 1$

$$\begin{split} |p(z_{k_n})| &\geqslant |c_s||z_{k_n}^s| - \sum_{t=0}^{s-1}|c||z_{k_n}^t| \geqslant |c_s||z_{k_n}^s| - \left(\sum_{t=0}^{s-1}|c_t|\right) \cdot |z_{k_n}|^{s-1} \\ &= |z_{k_n}|^{s-1} \cdot \left(|c_s||z_{k_n}| - \sum_{t=0}^{s-1}|c_t|\right) \to \infty \text{ при } n \to \infty. \end{split}$$

Но с другой стороны последовательность $|p(z_{n_k})|$ ограничена, так как сходится к M. Так как $\{z_k\}$ ограничена, $x_k := \operatorname{Re} z_k$, $y_k := \operatorname{Im} z$ ограничены, то у них есть сходящиеся подпоследовательности. Последовательности $\{x_{k_n}\}, \{y_{k_n}\}$ сходятся, следовательно, $z_{k_n} \to z_0$ при $n \to \infty$ для некоторого z_0 . $p(z_{k_n}) \to p(z_0)$, с другой стороны, $p(z_{k_n}) \to M$, откуда следует, что $p(z_0) = M$, что и требовалось.

Доказываем теорему 5.6.1. Пусть p — многочлен, точка $z_0 \in \mathbb{C}$ такая, что

$$|p(z_0)| \le |p(z)|, \quad \forall z \in \mathbb{C}.$$

Предположим, $p(z_0) \neq 0$. Тогда рассмотрим многочлен

$$q(z) \coloneqq \frac{p(z+z_0)}{p(z_0)}.$$

Легко видеть, что q имеет корень тогда и только тогда, когда p имеет корень. Более того,

$$q(0) = 1, |q(z)| \ge 1 \quad (\forall z \in \mathbb{C}). \tag{*}$$

Пусть многочлен q записывается как $q(z)=1+a_kz^k+\ldots+a_nz^n$, причём $k\geqslant 1$ и $a_k\neq 0$. Также найдём такие $\varphi_k\in [0,2\pi)$ и $\rho_k>0$, что $a_k=\rho_k\cdot e^{i\varphi_k}$. Наконец, выберем $\varphi\in\mathbb{R}$ так, что $\varphi_k+k\varphi=\pi$ и рассмотрим многочлен

$$g(r) := q(r \cdot e^{i\varphi}) = 1 + \rho_k \cdot r^k \cdot e^{i(\varphi_k + k\varphi)} + r^{k+1}\widetilde{g}(r).$$

Из условия $\varphi_k + k\varphi = \pi$ следует, что

$$g(r) = 1 + \rho_k r^k e^{i\pi} + r^{k+1} \widetilde{g}(r) = 1 - \rho_k r^k + r^{k+1} \widetilde{g}(r) = 1 - r^k (\rho_k - r \widetilde{g}(r)).$$

Обозначим

$$\widetilde{M} := \max_{0 \le r \le 1} |\widetilde{g}(r)|,$$

и найдём такое $r'\in(0,1)$, что $\rho_k-r'\widetilde{g}(r')>\frac{\rho_k}{2}$ (например, возьмём $r':=\frac{\rho_k}{2\widetilde{M}}$, если $\widetilde{M}\neq0$; иначе подойдёт $r':=\frac{1}{2}$). Тогда

$$|q(r'e^{i\varphi})| = |1 - r^k(\rho_k - r\widetilde{g}(r))| \le 1 - r'^k(\rho_k - r'\widetilde{M}) < 1.$$

Значит, $|q(r'e^{i\varphi})| < 1$, что противоречит (\star).

Следствие 5.6.4. Для любого многочлена p с коэффициентами из $\mathbb C$ степени $n \geqslant 1$ существуют такие комплексные $\lambda_1, \ldots, \lambda_n, c$, что

$$p(z) = c(z - \lambda_1) \cdot \ldots \cdot (z - \lambda_n).$$

Доказательство. Индукция по n. База n=1 тривиальна. Далее, пусть n>1, тогда

$$p(z) = \frac{p(z) - p(z_0)}{z - z_0} \cdot (z - z_0),$$

где z_0 — корень p, существующий по теореме 5.6.1. А $\frac{p(z)-p(z_0)}{z-z_0}$ — многочлен степени n-1, так как является линейной комбинацией слагаемых вида $z^k-z_0^k$, которые в свою очередь делятся в на $z-z_0$ как многочлены. Тогда по предположению индукции он раскладывается на произведение линейных многочленов и константу.

Глава 6

Начала многомерного анализа и приложения интеграла

6.1 Функции ограниченной вариации

Определение. Пусть (X,d) — метрическое пространство, $f:[a,b] \to X$ для некоторых $a,b \in \mathbb{R}$. Вариацией функции f называется величина

$$\operatorname{var}(f, [a, b]) := \sup_{a \le t_1 \le \dots \le t_n \le b} \sum_{k=1}^{n-1} d(f(t_k), f(t_{k+1})).$$

Определение. Говорят, что f — ϕ ункция ограниченной вариации, если

$$var(f, [a, b]) < +\infty$$
.

Утверждение 6.1.1. Пусть функция $f:[a,b] \to X$ имеет ограниченную вариацию. Тогда для всех точек x на отрезке [a,b] имеют место следующие оценки:

- 1. $var(f, [a, x]) < +\infty$,
- 2. $var(f, [a, x]) \ge 0$,
- 3. var(f, [a, b]) = var(f, [a, x]) + var(f, [x, b]).

Доказательство. Очевидно.

Следствие 6.1.2. Если $f:[a,b]\to X$ — функция ограниченной вариации, то функция g, определённая по правилу

$$g(x) := \operatorname{var}(f, [a, x])$$

нестрого возрастает и ограничена.

Теорема 6.1.3. Пусть $f: [a, b] \to \mathbb{R}$. Следующие утверждения равносильны:

1.
$$var(f, [a, b]) < +\infty$$
,

2. Существуют такие возрастающие ограниченные функции f_1, f_2 , что $f = f_1 - f_2$. Доказательство. Можно считать, что f(0) = 0.

Представим f в виде вот такой разности:

$$f(x) = var(f, [a, x]) - (var(f, [a, x]) - f(x)).$$

 ${\rm var}(f,[a,x])$ возрастает по следствию 6.1.2, осталось доказать возрастание функции ${\rm var}(f,[a,x])-f(x)$. Рассмотрим произвольные $x_1,x_2\in[a,b]$, и пусть $x_1< x_2$. Имеем:

$$var(f, [a, x_1]) - f(x_1) \le var(f, [a, x_2]) - f(x_2) \iff f(x_2) - f(x_1) \le var(f, [a, x_2]) - var(f, [a, x_1]) = var(f, [x_1, x_2]),$$

где последнее неравенство верно по определению вариации.

Достаточно показать, что если f — ограниченная возрастающая функция, то $var(f,[a,b]) < +\infty$. Действительно, для монотонной функции

$$var(f, [a, b]) = |f(b) - f(a)|.$$

Следствие 6.1.4. Функции ограниченной вариации имеют не более, чем счётное число разрывов и интегрируемы по Риману.

6.2 Пространство \mathbb{R}^n и векторнозначные функции.

Определение. Рассмотрим стандартное *n*-мерное евклидово пространство

$$\mathbb{R}^n = \mathbb{R} \times \ldots \times \mathbb{R} = \{(x_1, \ldots, x_n) : x_i \in \mathbb{R}\}.$$

Понятно, что \mathbb{R}^n является линейным пространством. Определим на нём следующие операции над векторами:

• Сумма двух векторов $x=(x_1,\ldots,x_n)$ и $y=(y_1,\ldots,y_n)$ — вектор x+y, определённый по правилу

$$x + y = (x_1 + y_1, \dots, x_n + y_n).$$

• Умножение вектора $x=(x_1,\ldots,x_n)$ на скаляр $\alpha\in\mathbb{R}$ — такой вектор αx , что

$$\alpha x = (\alpha x_1, \dots, \alpha x_n).$$

• Скалярное произведение векторов $x = (x_1, ..., x_n)$ и $y = (y_1, ..., y_n)$ — вещественное число (x, y), удовлетворяющее равенству

$$\langle x, y \rangle = \sum_{k=1}^{n} x_k y_k.$$

• *Норма вектора x* — неотрицательное вещественное число ||x||, определённое по формуле

$$||x|| := \sqrt{\langle x, x \rangle} = \sqrt{\sum_{k=1}^{n} x_k^2}.$$

Утверждение 6.2.1. Скалярное произведение обладает следующими свойствами:

- 1. $||x|| \ge 0 \ \forall x \in \mathbb{R}^n$, а также $||x|| = 0 \iff x = 0$;
- 2. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$;
- 3. $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$;
- 4. $\langle x, y \rangle = \langle y, x \rangle$;
- 5. $|\langle x,y\rangle|\leqslant \|x\|\cdot \|y\|$ неравенство Коши-Буняковского-Шварца.

Доказательство. Свойства 1 – 4 очевидны, докажем свойство 5.

Нужно проверить, что для любых наборов $\{x_k\}_{1\leqslant k\leqslant n}, \{y_k\}_{1\leqslant k\leqslant n}$ выполняется неравенство

$$\left| \sum_{k=1}^{n} x_k y_k \right|^2 \le \sum_{k=1}^{n} |x_k|^2 \cdot \sum_{k=1}^{n} |y_k|^2.$$

Оценим:

$$\left| \sum_{k=1}^{n} x_k y_k \right|^2 \le \left(\sum_{k=1}^{n} |x_k| |y_k| \right)^2 = \left(\sum_{k=1}^{n} |x_k|^2 \frac{|y_k|}{|x_k|} \right)^2 = \left(\sum_{k=1}^{n} \frac{|x_k|^2}{\sum_{m=1}^{n} |x_m|^2} \frac{|y_k|}{|x_k|} \right)^2 \cdot \left(\sum_{m=1}^{n} |x_m|^2 \right)^2.$$

Обозначим

$$\lambda_k := \frac{|x_k|^2}{\sum_{m=1}^n |x_m|^2}.$$

Тогда, очевидно, $\lambda_k \in [0,1]$ и $\sum_{k=1}^n \lambda_k = 1$. Далее, так как x^2 — выпуклая функция, к ней можно применить неравенство Йенсена:

$$\begin{split} \left(\sum_{k=1}^{n} \lambda_{k} \frac{|y_{k}|}{|x_{k}|}\right)^{2} \cdot \left(\sum_{m=1}^{n} |x_{m}|^{2}\right)^{2} &\leq \left(\sum_{k=1}^{n} \lambda_{k} \left|\frac{y_{k}}{x_{k}}\right|^{2}\right) \cdot \left(\sum_{m=1}^{n} |x_{m}|^{2}\right)^{2} \\ &= \left(\sum_{k=1}^{n} \frac{|x_{k}|^{2}}{\sum_{m=1}^{n} |x_{m}|^{2}} \left|\frac{y_{k}}{x_{k}}\right|^{2}\right) \cdot \left(\sum_{m=1}^{n} |x_{m}|^{2}\right)^{2} \\ &= \sum_{m=1}^{n} |x_{m}|^{2} \cdot \sum_{k=1}^{n} |y_{k}|^{2}. \end{split}$$

Что и требовалось доказать.

Следствие 6.2.2. Для нормы выполнено неравенство треугольника:

$$||x + y|| \le ||x|| + ||y||, \quad \forall x, y \in \mathbb{R}^n.$$

Доказательство. По определению $||x+y||^2 = (x+y,x+y)$, распишем по линейности:

$$(x + y, x + y) = (x, x) + 2(x, y) + (y, y) \le ||x||^2 + ||y||^2 + 2||x|| ||y|| = (||x|| + ||y||)^2.$$

Следствие 6.2.3. Верно следующее неравенство:

$$||x - z|| \le ||x - y|| + ||y - z||, \quad \forall x, y, z \in \mathbb{R}^n.$$

Доказательство. x - z = (x - y) + (y - z), применим предыдущее следствие.

Замечание. Таким образом, \mathbb{R}^n — метрическое пространство с метрикой

$$d(x,y) = ||x - y||.$$

Топология, порождённая метрикой d называется $cmandapmnoй monoлогией на <math>\mathbb{R}^n$. С этой метрикой \mathbb{R}^n является nonnum mempuческим пространством , то есть выполнен критерий сходимости Коши.

Определение. Пусть $f\colon E\to\mathbb{R}^n, E\subset\mathbb{R}, a$ — предельная точка $E,a\in E$. Пусть также существует предел

$$f'(a) := \lim_{t \to a} \frac{f(t) - f(a)}{t - a}.$$

Тогда вектор f'(a) называется производной векторнозначной функции f.

Определение. Пусть $f:[a,b] \to \mathbb{R}^n$, функция раскладывается на координатные функции:

$$f(t) = (f_1(t), \dots, f_n(t)) \quad \forall t \in [a, b]$$

Здесь все $f_i : E \to \mathbb{R}$. Пусть $f_i \in R[a, b]$. Тогда можно определить *интеграл по Риману* векторнозначной функции f следующим образом:

$$\int_a^b f(t) dt := \left(\int_a^b f_1(t) dt, \dots, \int_a^b f_n(t) dt \right).$$

Утверждение 6.2.4 (Формула Ньютона-Лейбница).

$$\int_{a}^{b} f'(t) dt = f(b) - f(a)$$

Доказательство. Покоординатное применение одномерной формулы Ньютона–Лейбница. ■

¹См. курс топологии.

Теорема 6.2.5 (Основная оценка интеграла). Пусть функция $f:[a,b] \to \mathbb{R}^n$ интегрируема по Риману (то есть все $f_i \in R[a,b]$). Тогда

$$\left\| \int_a^b f(t) \, \mathrm{d}t \right\| \leqslant \int_a^b \|f(t)\| \, \mathrm{d}t.$$

Доказательство. Обозначим $\alpha_k\coloneqq\int_a^b f_k(t)\,\mathrm{d}t.$ Получим:

$$\left\| \int_{a}^{b} f(t) dt \right\|^{2} = \sum_{k=1}^{n} \left(\int_{a}^{b} f_{k}(t) dt \right)^{2} = \sum_{k=1}^{n} \alpha_{k} \int_{a}^{b} f_{k}(t) dt$$

$$= \int_{a}^{b} \left(\sum_{k=1}^{n} \alpha_{k} f_{k}(t) \right) dt$$

$$[KBIII] \leq \int_{a}^{b} \sqrt{\sum_{k=1}^{n} \alpha_{k}^{2}} \cdot \sqrt{\sum_{k=1}^{n} f_{k}^{2}(t)} dt$$

$$= \sqrt{\sum_{k=1}^{n} \alpha_{k}^{2}} \cdot \int_{a}^{b} \|f(t)\| dt$$

$$= \left\| \int_{a}^{b} f(t) dt \right\| \cdot \int_{a}^{b} \|f(t)\| dt.$$

После сокращения на $\left\| \int_a^b f(t) \, \mathrm{d}t \right\|$ остаётся неравенство $\left\| \int_a^b f(t) \, \mathrm{d}t \right\| \leqslant \int_a^b \|f(t)\| \, \mathrm{d}t.$

Теорема 6.2.6. Пусть $f\colon [a,b] \to \mathbb{R}^n$ — непрерывно дифференцируемая функция. Тогда

$$var(f, [a, b]) = \int_{a}^{b} ||f'(t)|| dt.$$

Доказательство. Пусть выбрано разбиение $a\leqslant t_1\leqslant\ldots\leqslant t_m\leqslant b$ отрезка [a,b]. Докажем неравенство $\mathrm{var}(f,[a,b])\leqslant\int_a^b\|f'(t)\|\,\mathrm{d}t.$ Оценим:

$$\sum_{k=1}^{m-1} \|f(t_k) - f(t_{k-1})\| = \sum_{k=1}^{m-1} \left\| \int_{t_k}^{t_{k+1}} f'(t) dt \right\| \le \sum_{k=1}^{m-1} \int_{t_k}^{t_{k+1}} \|f'(t)\| dt$$

$$= \int_{t_k}^{t_m} \|f'(t)\| dt \le \int_{t_k}^{t_k} \|f'(t)\| dt.$$

Следовательно, $\operatorname{var}(f,[a,b]) \leqslant \int_a^b \|f'(t)\| \, \mathrm{d}t.$

Осталось доказать неравенство в другую сторону:

$$var(f, [a, b]) \ge \int_a^b ||f'(t)|| dt.$$

Найдём δ для ε из определения равномерной непрерывности f' на отрезке [a,b]. Тогда если $|t-\widetilde{t}|<\delta$, то для любого $1\leqslant k\leqslant n$ выполнено

$$|f'_k(t) - f'_k(\widetilde{t})| \le \varepsilon.$$

Но тогда по неравенству треугольника верно неравенство

$$||f'(t) - f'(\widetilde{t})|| \le \sum_{k=1}^n |f'_k(t) - f'_k(\widetilde{t})| < n\varepsilon.$$

Если $c,d\in[a,b],c\leqslant d$ и $|d-c|<\delta$, то по интегральной теореме о среднем, так как функция $\|f'(t)\|$ непрерывна на отрезке [c,d], для некоторой точки $t_0\in[c,d]$ выполнено

$$\int_{c}^{d} \|f'(t)\| dt = (d-c)\|f'(t_0)\|$$

В то же время,

$$(d-c)\|f'(t_0)\| = \|(d-c)f'(t_0)\|$$

$$= \left\| \int_c^d f'(t_0) dt \right\|$$

$$\leq \left\| \int_c^d f'(t) dt \right\| + \left\| \int_c^d (f'(t_0) - f'(t)) dt \right\|$$

$$\leq \left\| \int_c^d f'(t) dt \right\| + (d-c)n\varepsilon$$

$$= \|f(d) - f(c)\| + (d-c)n\varepsilon.$$

Значит, для любого набора точек

$$a = t_1 \leqslant t_2 \leqslant \ldots \leqslant t_m = b$$

таких, что для всех $k \in \{2, ..., m\}$ верно $|t_k - t_{k-1}| < \delta$, имеем:

$$\int_{a}^{b} \|f'(t)\| dt = \sum_{k=1}^{m-1} \int_{t_{k}}^{t_{k+1}} \|f'(t)\| dt$$

$$\leq \sum_{k=1}^{m-1} \|f(t_k) - f(t_{k+1})\| + \sum_{k=1}^{m-1} (t_{k+1} - t_k) n\varepsilon$$

$$\leq \sum_{k=1}^{m-1} \|f(t_k) - f(t_{k+1})\| + (b - a) n\varepsilon$$

$$\leq \operatorname{var}(f, [a, b]) + (b - a) n\varepsilon.$$

Переходя к пределу при $\varepsilon \to 0$, получаем то, что требовалось:

$$\int_{a}^{b} \|f'(t)\| \, \mathrm{d}t \leqslant \mathrm{var}(f, [a, b]).$$

6.3 Длина пути в метрическом пространстве

Обозначение. (X, d) — метрическое пространство.

Определение. Путь в X — это непрерывное отображение $\gamma: [a,b] \to X$. Носителем пути γ называется множество $\gamma([a,b])$.

Пусть называется *простым*, если γ инъективно. Будем называть γ *простым* закмнутым путем, если $\gamma|_{[a,c]}$ — простой путь для любого $c \in [a,b)$, а также $\gamma(a) = \gamma(b)$.

Определение. Длиной пути $L(\gamma)$ определенного на отрезке [a,b] называется его вариация по этому отрезку:

$$L(\gamma) = \text{var}(\gamma, [a, b]).$$

Путь называется *спрямляемым*, если его длина конечна. Путь $\gamma:[a,b]\to\mathbb{R}^n$ называется *сладким*, если он является непрерывно-дифференцируемой функцией на отрезке [a,b]

Утверждение 6.3.1. Если γ — гладкий путь из [a,b] в \mathbb{R}^n , то γ — спрямляемый и

$$L(\gamma) = \int_{a}^{b} \|\gamma'(t)\| dt.$$

Утверждение 6.3.2. Пусть γ_1, γ_2 — простые пути, $\gamma_1 \colon [a_1, b_1] \to \mathbb{R}^n, \gamma_2 \colon [a_2, b_2] \to \mathbb{R}^n,$ такие, что их носители совпадают. Тогда $L(\gamma_1) = L(\gamma_2)$.

Доказательство. Можно считать, что $\gamma_1(a_1) = \gamma_2(a_2)$, $\gamma_1(b_1) = \gamma_2(b_2)$, так как иначе можно рассмотреть путь $\widetilde{\gamma}(t) = \gamma_1(a_2 - t + a_1)$, у которого длина, очевидно, не поменялась, а концы развернулись. Обозначим носитель через Γ . Так как γ_1 и g_2 — биективные отображения, то $h: t \to \gamma_2^{-1}(\gamma_1(t))$ — биекция из $[a_1, b_1]$ в $[a_2, b_2]$. Так как функция h непрерывна, она монотонно возрастает (упражнение). Пусть

 $a_1 = t_1 \leqslant \ldots \leqslant t_m = b_1$, тогда $a_2 = h(t_1) \leqslant \ldots h(t_n) = b_2$, и

$$\sum_{k=1}^{m-1} \|\gamma_1(t_k) - \gamma_2(t_{k+1})\| = \sum_{k=1}^{m-1} \|\gamma_2(h(t_k)) - \gamma_2(h(t_{k+1}))\| \le \operatorname{var}(\gamma_2, [a_2, b_2]).$$

Значит, $var(\gamma_1, [a_1, b_1]) \leq var(\gamma_2, [a_2, b_2])$. Обратное верно в силу симметрии.

Утверждение 6.3.3. Пусть γ — простой путь из [a,b] в \mathbb{R}^2 с носителем

$$\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1, y \ge 0\}$$

Тогда $L(\gamma) = \pi$.

Доказательство. Можем считать, что $\gamma:[0,\pi]\to\mathbb{R}^2, \gamma(t)=(\cos t,\sin t)$. Значит,

$$L(\gamma) = \int_{0}^{\pi} \|\gamma'(t)\| dt = \int_{0}^{\pi} \|-\sin t, \cos t\| = \int_{0}^{\pi} \sqrt{\sin^{2} t + \cos^{2} t} dt = \int_{0}^{\pi} 1 dt = \pi.$$

6.4 Несобственные интегралы

Определение. Пусть $a \in \mathbb{R} \cup \{-\infty\}$, $b \in \mathbb{R} \cup \{+\infty\}$, a < b, $f \colon (a,b) \to \mathbb{R}$, тогда *несобственным интегралом* f по промежутку [a,b] называется

$$\int_{a}^{b} f := \lim_{t \to a} \int_{t}^{c} f + \lim_{t \to b} \int_{c}^{t} f, \qquad c \in (a, b),$$

если оба предела существуют и $f \in \mathcal{R}[a_1, b_1]$ для всех $a < a_1 < b_1 < b$. Из последнего условия легко проверить, что определение не зависит от выбора точки c.

Пример 6.4.1.

$$\int_{1}^{\infty} \frac{dx}{x^{2}} = \lim_{t \to 1} \int_{t}^{2} \frac{dx}{x^{2}} + \lim_{t \to +\infty} \int_{2}^{t} \frac{dx}{x^{2}} = \lim_{t \to \infty} \left(-\frac{1}{x} \right) \Big|_{1}^{t} = 1 - \lim_{t \to \infty} \frac{1}{t} = 1$$

Замечание. Если $a \in \mathbb{R}$, $f \in \mathcal{R}[a,c]$ для всех c < b, то $\int_a^b f(x) \, \mathrm{d}x = \lim_{t \to b} \int_a^t f(x) \, \mathrm{d}x$.

Определение. Говорят, что интеграл $\int_a^{+\infty} f$ сходится условно, если существует $\lim \int_a^t f$ при $t \to +\infty$ и сходится абсолютно, если существует $\lim \int_a^t |f|$ при $t \to +\infty$, где $f \in \mathcal{R}[a,t]$, для всех t>a.

Теорема 6.4.1 (Критерий Коши). Следующие утверждения равносильны:

1. $\int_a^{+\infty} f$ сходится условно.

2. Для любого $\varepsilon>0$ существует $M(\varepsilon)>a$ такое, что для любых $s_1,s_2>M(\varepsilon),s_1< s_2$ выполнено

$$\left| \int_{s_1}^{s_2} f(x) \, \mathrm{d}x \right| < \varepsilon.$$

Доказательство. Обозначим

$$g(s) := \int_{a}^{s} f(x) \, \mathrm{d}x.$$

Тогда первое условие равносильно тому, что существует конечный предел g(s) при $s \to +\infty$. Но это равносильно критерию Коши для пределов функций, то есть для любого $\varepsilon > 0$ существует $M(\varepsilon) > 0$ такое, что если $M(\varepsilon) < s_1 < s_2$, то

$$\left| \int_{s_1}^{s_2} f(x) \, \mathrm{d}x \right| = |g(s_2) - g(s_1)| < \varepsilon,$$

что и требовалось доказать.

Теорема 6.4.2 (Критерий Коши, альтернативный). Пусть $f \in \mathcal{R}[t,1]$ для всех t > 0. Тогда следующие утверждения равносильны:

- 1. $\int_0^1 f$ сходится условно.
- 2. Для любого $\varepsilon > 0$ существует $M(\varepsilon) > 0$ такое, что для любых $0 < s_1 < s_2 < M(\varepsilon)$ верно

$$\left|\int_{S_1}^{S_2} f\right| < \varepsilon,$$

Доказательство. Доказательство аналогично предыдущему.

Теорема 6.4.3 (Признак Вейерштрасса). Пусть даны функции $f,g:[a,+\infty)\to \mathbb{R}$ со свойством $f,g\in \mathcal{R}[a,t]$ для всех t>a. Пусть также $g\geqslant 0$ на $[a,+\infty)$, интеграл $\int_a^{+\infty}g$ сходится, и $|f|\leqslant g$. Тогда $\int_a^{+\infty}f$ сходится абсолютно и условно.

Доказательство. Пусть e>0. Выберем $M(\varepsilon)$ из критерия Коши для интеграла функции g. Пусть $M(\varepsilon) < s_1 < s_2$, тогда

$$\left| \int_{s_1}^{s_2} f(x) \, \mathrm{d}x \right| \leqslant \int_{s_1}^{s_2} |f(x) \, \mathrm{d}x| \leqslant \int_{s_1}^{s_2} g(x) \, \mathrm{d}x \leqslant \varepsilon,$$

то есть для функций f и |f| выполняется критерий Коши.

Следствие 6.4.4. Абсолютная сходимость влечёт условную сходимость.

Доказательство. Достаточно взять g = |f| в признаке Вейерштрасса.

Утверждение 6.4.5. Интеграл $\int_{1}^{\infty} x^{-p} dx$ сходится тогда и только тогда, когда p > 1.

Доказательство. Разберём случаи:

Если p > 1, то

$$\int_{1}^{t} \frac{\mathrm{d}x}{x^{p}} = \frac{x^{1-p}}{1-p} \Big|_{1}^{t} = \frac{1}{t^{p-1} \cdot (1-p)} - \frac{1}{1-p}$$
$$= \frac{1}{1-p} \cdot \left(\frac{1}{t^{p-1}} - 1\right) \xrightarrow{t \to \infty} \frac{1}{p-1}.$$

• Если *p* = 1, то

$$\int_{1}^{t} \frac{\mathrm{d}x}{x} = \log x \Big|_{1}^{t} \xrightarrow{t \to \infty} \infty,$$

то есть интеграл расходится.

Если p < 1, то

$$\int_{1}^{t} \frac{\mathrm{d}x}{x} \leqslant \int_{1}^{t} \frac{\mathrm{d}x}{x^{p}},$$

из чего следует, что интеграл расходится.

Утверждение 6.4.6. $\int_0^1 x^{-p} \, \mathrm{d}x$ сходится тогда и только тогда, когда p < 1.

Доказательство. Разберём случаи:

Пусть p ≠ 1:

$$\int_{t}^{1} \frac{\mathrm{d}x}{x^{p}} = \frac{x^{1-p}}{1-p} \bigg|_{t}^{1} = \frac{1}{1-p} - \frac{t^{1-p}}{1-p},$$

Тогда нужно исследовать на сходимость функцию t^{p-1} при $t\to 0$. Но t^{1-p} стремится к нулю, если p<1 и к бесконечности, если p>1.

• Пусть *p* = 1:

$$\int_{t}^{1} \frac{\mathrm{d}x}{x} = \log x \Big|_{t}^{1} = -\log t = \log(1/t) \xrightarrow{t \to 0} +\infty.$$

Утверждение 6.4.7. Интеграл

$$\int_{2}^{+\infty} \frac{\mathrm{d}x}{x^{p} \cdot \log^{q} x}$$

сходится тогда и только тогда, когда p > 1, а q — любое или p = 1 и q > 1.

Доказательство. Разберём случаи:

• Если p>1, выберем \widetilde{p} такое, что $1<\widetilde{p}< p$. Тогда существует c:=c(q) такое, что

$$\frac{1}{x^p \cdot \log^q x} < \frac{1}{x^{\widetilde{p}}}$$

для любого $x \ge c$. Теперь напишем следующую оценку:

$$\int_{2}^{t} \frac{\mathrm{d}x}{x^{p} \cdot \log^{q} x} \leq \int_{2}^{c} \frac{\mathrm{d}x}{x^{p} \cdot \log^{q} x} + \int_{c}^{t} \frac{\mathrm{d}x}{x^{p}},$$

Но тогда первое слагаемое в правой части постоянно, а второе сходится по утверждению 6.4.5.

Пусть p = 1:

$$\int_{2}^{t} \frac{\mathrm{d}x}{x \cdot \log^{q} x} = \int_{2}^{t} \frac{(\log x)'}{\log^{q} x} \, \mathrm{d}x = \int_{\log 2}^{\log t} \frac{\mathrm{d}y}{y^{q}},$$

тогда снова по утверждению 6.4.5 правая часть сходится тогда и только тогда, когда q>1.

• Пусть p < 1, а q — любое. Тогда аналогично первому случаю существует c такое, что

$$\frac{1}{x^p \cdot \log^q x} \geqslant \frac{1}{x}, \qquad \forall x \geqslant c.$$

Но тогда хвост рассматриваемого интеграла растёт быстрее, чем хвост расходящегося интеграла, что означает его расходимость.

Теорема 6.4.8 (Интегральный признак сходимости). Пусть $f: [1, +\infty] \to \mathbb{R}, f \in \mathcal{R}[1, t]$, для всех t > 1, также существует число M такое, что

$$\operatorname{var}(f,[1,t]) < M, \quad \forall t > 1$$

Тогда ряд $\sum_{n\geqslant 1} f(n)$ сходится условно тогда и только тогда, когда $\int_1^\infty f(x)\,\mathrm{d}x$ сходится условно.

Доказательство. Нужно показать, что пределы $\lim \int_1^n f$ и $\lim \sum_{k=1}^n f(k)$ существуют и конечны одновременно. Рассмотрим

$$\int_{1}^{n} f(x) dx - \sum_{k=1}^{n-1} f(k) = \sum_{k=1}^{n-1} \int_{k}^{k+1} (f(x) - f(k)) dx.$$

Заметим, что $\sum_{k=1}^{\infty} \int_{k}^{k+1} (f(x) - f(k)) \, \mathrm{d}x$ сходится абсолютно, так как

$$\sum_{k=1}^{\infty} \left| \int_{k}^{k+1} (f(x) - f(k)) \, \mathrm{d}x \right| \le \sum_{k=1}^{\infty} \int_{k}^{k+1} \sup_{x \in [k, k_1]} |f(x) - f(k)| \, \mathrm{d}x \le \sum_{k=1}^{\infty} 2 \cdot |f(x_k) - f(k)|$$

где $x_k \in [k, k+1]$ выбраны таким образом, что

$$\sup_{[k,k+1]} |f(x) - f(k)| \le 2 \cdot |f(x_k) - f(k)|.$$

Ряд $\sum_{k=1}^{\infty} |f(x_k) - f(k)|$ сходится, так как для любого $N \in \mathbb{N}$ верно

$$\sum_{k=1}^{N} |f(x_k) - f(k)| \le \operatorname{var}(f, [1, N]) < M \implies \sum_{k=1}^{\infty} \left(\int_{k}^{k+1} (f(x) - f(k)) \, \mathrm{d}x \right) \le M,$$

то есть правая часть сходится условно. Значит, существует $\lim \left(\int_1^n f - \sum_1^{n+1} f(k) \right)$ Тогда $\sum_{k=1}^\infty f(k)$ сходится условно в том и только в том случае, когда существует предел $\lim \int_1^n f(x) \, \mathrm{d}x$.

Покажем теперь, что в условиях теоремы равносильны существования пределов $\lim \int_1^n f(x) \, \mathrm{d}x$, где $n \in \mathbb{N}$, и $\lim \int_0^t f(x) \, \mathrm{d}x$ при $t \to \infty$. Для этого рассмотрим последовательность $\{x_k\}$, стремящуюся к бесконечности и докажем, что

$$\lim_{k\to\infty}\int_{[x_k]}^{x_k}f(x)\,\mathrm{d}x=0.$$

Если это не выполнено, то для некоторого $\varepsilon>0$ существует подпоследовательность $\{x_{k_m}\}$ такая, что

$$\left| \int_{[x_{k_m}]}^{x_{k_{m+1}}} f \right| > \varepsilon, \qquad \forall m \in \mathbb{N},$$

однако

$$\left| \int_{[x_{k_m}]}^{[x_{k_m}]+1} f \right| \xrightarrow{m \to \infty} 0.$$

Значит, существуют числа $y_{k_m}\in([x_{k_m}],x_{k_m})$ такие, что $|f(y_{k_m})|>\varepsilon$, а также для любого $\widetilde{\varepsilon}>0$ существуют числа $\widetilde{y}_{k_m}\in([x_{k_m}],[x_{k_m}]+1)$ такие, что $|f(\widetilde{y}_{k_m})|<\widetilde{\varepsilon}$, значит

$$\operatorname{var}(f, [x_{k_N} - 1, x_{k_{\widetilde{N}}} + 1]) \ge \sum_{m = N}^{\widetilde{N}} |f(y_{k_m}) - f(\widetilde{y_{k_m}})| \ge \sum_{N}^{\widetilde{N}} (\varepsilon - \widetilde{\varepsilon}) = (\widetilde{N} - N)(\varepsilon - \widetilde{\varepsilon}),$$

Ho так как $\mathrm{var}(f,[1,+\infty]) < M$, выбирая $\widetilde{\varepsilon} = \varepsilon/2$, приходим к противоречию. ■

Следствие 6.4.9. Если f — неотрицательная убывающая функция на $[1, +\infty)$, то $\sum_{n=1}^{\infty} f(n)$ сходится тогда и только тогда, когда сходится $\int_{1}^{\infty} f(x) \, \mathrm{d}x$.

Доказательство. Вариация функции f, конечно же, ограничена числом f(1), а потому к функции f можно применить предыдущую теорему.

Следствие 6.4.10. Если $\int_1^\infty |f'(t)| \, \mathrm{d}t < \infty$, то $\sum_1^\infty f(n)$ сходится тогда и только тогда, когда $\int_1^\infty f(x)$ сходится.

Доказательство. По теореме 6.2.6

$$\operatorname{var}(f, [1, \infty]) = \int_{0}^{1} |f'(t)| \, \mathrm{d}t < \infty.$$

Но тогда мы можем применить интегральный признак сходимости.

Следствие 6.4.11. Ряд

$$\sum_{n \ge 2} \frac{1}{n^p \cdot \log^q n}$$

сходится тогда и только тогда, когда p > 1, q — любое или p = 1 и q > 1.

Теорема 6.4.12 (Признак сходимости Абеля–Дирихле). Пусть $f,g \in C^1[1,\infty), f = F'$. Также выполнено условие, что |F(x)| < M для любого $x \ge 1$, а g(x) монотонно убывает к нулю. Тогда $\int_1^\infty f(x)g(x)\,\mathrm{d}x$ — сходится.

Доказательство. Запишем равенство

$$\int_{1}^{t} f(x)g(x) dx = \int_{1}^{t} (F(x))'g(x) dx = F(t)g(t) - F(1)g(1) - \int_{1}^{t} F(x)g'(x) dx.$$
 (†)

Заметим, что $F(t)g(t) \to 0$ при $t \to \infty$, так как F ограничено, а g убывает к нулю. Также

$$\int_{1}^{t} |F(x)g'(x)| \, \mathrm{d}x < M \int_{1}^{t} (g'(x)) \, \mathrm{d}x = -M(g(t) - g(1)) \xrightarrow{t \to \infty} Mg(1).$$

Значит, $\int_1^\infty g' F -$ сходится абсолютно, но тогда сходится и условно. Следовательно наш интегал является суммой двух сходящихся слагаемых из правой части (†), стало быть, он и сам сходится.

Пример 6.4.2. Интеграл

$$\int_{1}^{\infty} \frac{\sin x}{x} \, \mathrm{d}x$$

сходится условно, но не абсолютно.

Доказательство. Так как $\sin x/x$ — непрерывная функция, интеграл $\int_0^\infty \frac{\sin x}{x} \, \mathrm{d}x$ сходится тогда и только тогда, когда интеграл $\int_1^\infty \frac{\sin x}{x} \, \mathrm{cxo}$ дится.

Возьмём $f = \sin x$, g = 1/x. Тогда производная $\sin x$, очевидно, ограничена, а 1/x убывает к нулю на бесконечности. То есть, в данном случае применим признак Абеля–Дирихле. Покажем, что

$$\lim_{t \to \infty} \int_{1}^{t} \left| \frac{\sin x}{x} \right| dx = +\infty.$$

Действительно, запишем неравенства:

$$\int_{1}^{t} \left| \frac{\sin x}{x} \right| dx \ge \int_{1}^{t} \frac{\sin^{2} x}{x} dx = \int_{1}^{t} \frac{1 - \cos 2x}{2x} dx$$
$$= \int_{1}^{t} \frac{dx}{2x} - \int_{1}^{t} \frac{\cos 2x}{2x} dx.$$

Тогда очевидно, что этот интеграл расходится, поскольку расходится $\int dx/2x$, а $\int \cos 2x/2x \, dx$ сходится по признаку Абеля–Дирихле.

Утверждение 6.4.13. Пусть (a,b) — промежуток, $f,g\in C^1(a,b)$. Предположим, что интеграл $\int_a^b f'g$ сходится условно и существуют пределы

$$\lim_{t \to a} f(t)g(t) \qquad \text{if } \lim_{t \to b} f(t)g(t).$$

Тогда интеграл $\int_a^b fg'$ сходится и, более того, верно

$$\int_a^b f'g = fg\big|_a^b - \int_a^b fg'.$$

Доказательство. Запишем равенство

$$\int_{a+t_1}^{b-t_2} f'g - fg\Big|_{a+t_1}^{b-t_2} = -\int_{a+t_1}^{b-t_2} fg'$$

Так как оба слагаемые в левой части сходятся при $t_1 \to 0$ и $t_2 \to 0$, то существует такой же предел в правой части, что и требовалось доказать.

Утверждение 6.4.14. Пусть ϕ — монотонная биекция из (a,b) в (c,d), $\phi \in C^1(a,b)$, тогда

$$\int_{a}^{b} f(\phi(x)) \cdot \phi'(x) dx = \int_{c}^{d} f(t) dt.$$

Доказательство. Доказательство аналогично предыдущему.

6.5 Некоторые асимптотические формулы

Теорема 6.5.1 (Формула Сонина). Пусть $f \in C^1[1, +\infty], n \in \mathbb{N},$ тогда

$$\sum_{k=1}^{n} f(k) = \int_{1}^{n} f(t) dt + \frac{f(n) + f(1)}{2} + \int_{1}^{n} \left(\{t\} - \frac{1}{2} \right) f'(t) dt,$$

где $\{t\} = t - [t]$.

Доказательство. Запишем цепочку неравенств:

$$\int_{1}^{n}f(t)\,\mathrm{d}t=\sum_{k=1}^{n-1}\int_{k}^{k+1}f(t)\,\mathrm{d}t=\sum_{k=1}^{n-1}\int_{k}^{k+1}(t-k)'f(t)\,\mathrm{d}t$$
 [интегрируем по частям]
$$=\sum_{k=1}^{n-1}\left((t-k)f(t)|_{k}^{k+1}-\int_{k}^{k+1}(t-k)f'(t)\,\mathrm{d}t\right)$$

$$=\sum_{k=1}^{n-1}\left(f(k+1)-\int_{k}^{k+1}f'(t)(t-k)\,\mathrm{d}t\right)$$
 [поскольку $t-k=\{t\}$]
$$=\sum_{k=2}^{n}f(k)-\int_{1}^{n}\{t\}f'(t)\,\mathrm{d}t$$

$$\left[\pm f(1)+\frac{1}{2}\int_{1}^{n}f'\right]=\sum_{k=1}^{n}f(k)-f(1)-\int_{1}^{n}\left(\{t\}-\frac{1}{2}\right)f'(t)\,\mathrm{d}t-\frac{1}{2}\int_{1}^{n}f'(t)\,\mathrm{d}t$$
 [ф. Ньютона–Лейбница]
$$=\sum_{k=1}^{n}f(k)-f(1)-\int_{1}^{n}\left(\{t\}-\frac{1}{2}\right)f'(t)\,\mathrm{d}t-\frac{f(n)-f(1)}{2}.$$

Отсюда легко следует то, что мы хотели доказать.

Утверждение 6.5.2. Существует число $\gamma > 0$ (константа Эйлера–Маскерони) такое, что

$$\sum_{k=1}^{n} \frac{1}{k} = \log n + \gamma + O\left(\frac{1}{n}\right).$$

Доказательство. Воспользуемся формулой Сонина:

$$\sum \frac{1}{k} = \int_{1}^{n} \frac{dt}{t} + \frac{\frac{1}{n} + 1}{2} - \int_{1}^{n} \left(\{t\} - \frac{1}{2} \right) \frac{1}{t^{2}} dt$$

$$= \log n + \frac{1}{2} + O\left(\frac{1}{n}\right) + \frac{1}{2} \int_{1}^{n} \frac{dt}{t^{2}} - \int_{1}^{n} \frac{\{t\}}{t^{2}} dt$$

$$= \frac{1}{2} + \log n + \frac{1}{2} \left(-\frac{1}{t} \right) \Big|_{1}^{n} - \left(\int_{1}^{\infty} \frac{\{t\}}{t^{2}} dt - \int_{n}^{\infty} \frac{\{t\}}{t^{2}} dt \right) + O\left(\frac{1}{n}\right)$$

$$= \frac{1}{2} + \log n + \frac{1}{2} - \int_{1}^{\infty} \frac{\{t\}}{t^{2}} dt + \int_{n}^{\infty} \frac{\{t\}}{t^{2}} dt + O\left(\frac{1}{n}\right)$$

$$= \gamma + \log n + \int_{n}^{\infty} \frac{\{t\}}{t^{2}} dt + O\left(\frac{1}{n}\right).$$

Осталось доказать, что $\int_n^\infty \frac{\{t\}}{t^2} \, \mathrm{d}t = O\left(\frac{1}{n}\right)$, тогда получится, что

$$\gamma = \frac{1}{2} + \frac{1}{2} - \int_{1}^{\infty} \frac{\{t\}}{t^2} dt \approx 0.57.$$

Действительно, оценим интеграл:

$$0 \leqslant \int_{n}^{\infty} \frac{\{t\}}{t^2} dt \leqslant \int_{n}^{\infty} \frac{dt}{t^2} = -\frac{1}{t} \Big|_{n}^{\infty} = \frac{1}{n} = O\left(\frac{1}{n}\right).$$

Теорема 6.5.3 (Формула Стирлинга). Существует константа c > 0 такая, что верно

$$n! = \sqrt{c \cdot n} \cdot \left(\frac{n}{e}\right)^n \cdot \left(1 + O\left(\frac{1}{n}\right)\right).$$

Доказательство. Воспользуемся формулой Сонина:

$$\log n! = \sum_{k=1}^{n} \log k = \int_{1}^{n} \log t \, dt + \frac{\log n}{2} + \int_{1}^{n} \left(\frac{\{t\} - 1/2}{t} \right) \, dt. \tag{*}$$

Покажем, что интеграл $\int_1^\infty (\{t\} - \frac{1}{2})/t \, \mathrm{d}t$ сходится. По критерию Коши для любого ε существует M такое, что для любых M < m < n верно

$$\left| \int_{m}^{n} \left(\frac{\{t\} - 1/2}{t} \right) \, \mathrm{d}t \right| < \varepsilon.$$

Так как

$$\max_{[n,n+1]} \left| \frac{\{t\} - 1/2}{t} \right| \xrightarrow{n \to \infty} 0,$$

то можно считать, что $n, m \in \mathbb{Z}$. Теперь оценим интеграл по единичному промежутку:

$$\int_{k}^{k+1} \left(\{t\} - \frac{1}{2} \right) \frac{dt}{t} = \int_{k}^{k+1} \left(\frac{t - k - \frac{1}{2}}{t} \right) dt$$

$$= 1 - \left(k + \frac{1}{2} \right) \cdot \log \frac{k+1}{k}$$

$$= 1 - \left(k + \frac{1}{2} \right) \cdot \log \left(1 + \frac{1}{k} \right)$$

$$= 1 - \left(k + \frac{1}{2} \right) \cdot \left(\frac{1}{k} - \frac{1}{2k^2} + O\left(\frac{1}{k^2} \right) \right)$$

$$= 1 - 1 + \frac{1}{2k} + O\left(\frac{1}{k^2} \right) - \frac{1}{2k} + O\left(\frac{1}{k^2} \right) = O\left(\frac{1}{k^2} \right)$$

$$= \frac{c_k}{k^2},$$

где $c_k = O(1)$, то есть $c_k < c$ для любого $k \in N$. Теперь вернёмся к критерию Коши:

$$\left| \int_{m}^{n} \left(\{t\} - \frac{1}{2} \right) \frac{\mathrm{d}t}{t} \right| = \left| \sum_{m}^{n-1} \frac{c_k}{k^2} \right| \leqslant c \cdot \sum_{m}^{n-1} \frac{1}{k^2} \leqslant c \cdot \sum_{m}^{\infty} \frac{1}{k^2} \xrightarrow{m \to \infty} 0.$$

Положим $\widetilde{c}=\int_1^\infty (\{t\}-\frac{1}{2})/t\,\mathrm{d}t$, Отметим, что

$$\int_{n}^{\infty} \left(\{t\} - \frac{1}{2} \right) \frac{\mathrm{d}t}{t} = \sum_{n}^{\infty} \int_{k}^{k+1} \left(\{t\} - \frac{1}{2} \right) \frac{\mathrm{d}t}{t} = O\left(\sum_{k=n}^{\infty} \frac{1}{k^2}\right) = O\left(\frac{1}{n}\right),$$

где последнее равенство остаётся в качестве упражнения. Также

$$\int_{1}^{n} \log t \, dt = (t \log t) \Big|_{1}^{n} = n \log n - n + 1.$$

Теперь вернёмся к равенству (★):

$$\sum_{k=1}^{n} \log k = \int_{1}^{n} \log t \, dt + \frac{\log n}{2} + \widetilde{c} - \int_{n}^{\infty} \left(\{t\} - \frac{1}{2} \right) \frac{dt}{t}$$
$$= n \log n - n + \frac{\log n}{2} + \widetilde{c_1} + O\left(\frac{1}{n}\right) = \log n!$$

Наконец, возьмём ехр() от обеих частей равенства:

$$n! = \exp\left(n\log n - n + \frac{\log n}{2}\right) \cdot \sqrt{\widetilde{c_2}} \cdot e^{O(1/n)}$$
$$= \frac{n^n}{e^n} \cdot \sqrt{cn} \cdot e^{O(1/n)}$$
$$= \sqrt{cn} \cdot \left(\frac{n}{e}\right)^n \cdot \left(1 + O\left(\frac{1}{n}\right)\right).$$

Что и требовалось доказать.

Теорема 6.5.4. Константа c из формулы Стирлинга равна 2π .

Лемма 6.5.5. Обозначим

$$\int_0^{\frac{\pi}{2}} \sin^n x \, \mathrm{d}x = I_n,$$

где $n \geqslant 0$. Тогда $I_0 = \pi/2$, $I_1 = 1$, и для всех $n \geqslant 2$ справедлива рекуррентная формула

$$I_n = \frac{n-1}{n} \cdot I_{n-2}.$$

Доказательство. Посчитаем I_0 :

$$\int_0^{\frac{\pi}{2}} 1 \, \mathrm{d}x = \frac{\pi}{2}.$$

Теперь вычислим I_1 :

$$\int_0^{\frac{\pi}{2}} \sin x \, \mathrm{d}x = -\cos x \Big|_0^{\frac{\pi}{2}} = 1.$$

Теперь докажем рекуррентную формулу:

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx = \int_0^{\frac{\pi}{2}} (-\cos x)' \sin^{n-1} x \, dx$$

$$= -\cos x \cdot \sin^{n-1} x \Big|_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \cos^2 x \cdot (n-1) \sin^{n-2} x \, dx$$

$$= (n-1) \cdot \int_0^{\frac{\pi}{2}} (1 - \sin^2 x) \sin^{n-2} dx = (n-1) \cdot (I_{n-2} - I_n)$$

Отсюда очевидно следует рекуррентная формула.

Обозначение.

$$\begin{cases} n!! = 1 \cdot 3 \cdot \dots \cdot n, & 2 \nmid n; \\ n!! = 2 \cdot 4 \cdot \dots \cdot n, & 2 \mid n. \end{cases}$$

Лемма 6.5.6. При всех $n \ge 1$ выполнено

$$I_n = \frac{(n-1)!!}{n!!} d_n, n \geqslant 1,$$

где $d_n=1$ при нечётных n, и $d_n=\pi/2$ при чётных n.

Доказательство. Предлагается проделать это упражнение самостоятельно, пользуясь рекуррентной формулой и значениями I_1 и I_2 .

Лемма 6.5.7. Существует предел

$$\lim_{n\to\infty}\frac{I_n}{I_{n+1}}=1.$$

Доказательство. Запишем равенство

$$\frac{I_n}{I_{n-2}} = \frac{n-1}{n} \underset{n \to \infty}{\longrightarrow} 1$$

Теперь пользуясь тем, что на отрезке $[0, \pi/2]$ верно

$$\sin^{n-2} x \geqslant \sin^{n-1} x \geqslant \sin^n x,$$

мы можем заключить, что

$$I_{n-1} \geqslant I_n \geqslant I_{n+1}$$
.

Это означает, по теореме о двух милиционерах, что предел из теоремы существует и равен единице.

Лемма 6.5.8. Существует предел

$$\lim \left(\frac{1}{n}\left(\frac{(2n)!!}{(2n-1)!!}\right)^2\right) = \pi.$$

Доказательство. Запишем, пользуясь леммой 6.5.6:

$$\frac{I_{2n}}{I_{2n+1}} = \frac{(2n-1)!!}{(2n)!!} \cdot \frac{\pi}{2} \cdot \frac{(2n+1)!!}{(2n)!!} = \frac{\pi}{2} \cdot \left(\frac{(2n-1)!!}{(2n)!!}\right)^2 \cdot (2n+1)$$

Следовательно,

$$\left(\frac{(2n-1)!!}{(2n)!!}\right)^2 \cdot \frac{1}{n} = \left(\frac{I_{2n}}{I_{2n+2}} \cdot \frac{2}{\pi} \cdot \frac{1}{2n+1}\right)^{-1} = \frac{I_{2n+1}}{I_{2n}} \cdot \frac{\pi}{2} \cdot \frac{2n+1}{n} \xrightarrow{n \to \infty} \pi,$$

что завершает доказательство.

Теперь докажем теорему 6.5.4.

Доказательство. Будем пользоваться, что

$$\frac{1}{n} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2 \to \pi \tag{\dagger}$$

Перепишем левую часть (†) как

$$\frac{1}{n} \cdot \frac{(2 \cdot 4 \cdot \dots \cdot 2n)^2}{(1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1))^2} = \frac{2^{4n}}{n} \cdot \frac{(n!)^4}{(2n!)^2}$$

$$\sim \frac{2^{4n}}{2} \cdot \frac{(\sqrt{c \cdot n} \cdot (n/e)^n)^4}{(\sqrt{2 \cdot c \cdot n} \cdot (2n/e)^{2n})^2}$$

$$= \frac{2^{4n}}{2} \cdot \frac{c^2 \cdot n^2}{c \cdot n^2 \cdot 2^{4n}} = \frac{c}{2}.$$

Поэтому $\pi = c/2$, то есть $c = 2\pi$.

Теорема 6.5.9 (Интеграл Эйлера-Пуассона). Верно следующее равенство

$$\int\limits_{\mathbb{D}}e^{-x^2}\,\mathrm{d}x=\sqrt{\pi}.$$

Доказательство. Вместо исходного интеграла будем считать $\int_0^\infty e^{-x^2} \, \mathrm{d} x$, пользуясь равенством

$$\int\limits_{\mathbb{R}} e^{-x^2} dx = 2 \cdot \int\limits_{0}^{\infty} e^{-x^2} dx.$$

Разобьём наш интеграл на 4 части:

$$\int_{0}^{\infty} e^{-x^{2}} = \int_{0}^{\sqrt[6]{n}} e^{-x^{2}} dx + \int_{\sqrt[6]{n}}^{\infty} e^{-x^{2}} dx$$

$$= \int_{0}^{\sqrt[6]{n}} e^{-x^{2}} - \left(1 - \frac{x^{2}}{n}\right)^{n} dx + \int_{0}^{\sqrt[6]{n}} \left(1 - \frac{x^{2}}{n}\right)^{n} dx + \int_{\sqrt[6]{n}}^{\infty} e^{-x^{2}} dx$$

$$= \int_{0}^{\sqrt[6]{n}} e^{-x^{2}} - \left(1 - \frac{x^{2}}{n}\right)^{n} dx + \int_{0}^{\sqrt{n}} \left(1 - \frac{x^{2}}{n}\right)^{n} dx - \int_{\sqrt[6]{n}}^{\sqrt{n}} \left(1 - \frac{x^{2}}{n}\right)^{n} dx + \int_{\sqrt[6]{n}}^{\infty} e^{-x^{2}} dx.$$

Теперь заметим, что

$$\int_{\sqrt[6]{n}}^{\infty} e^{-x^2} \, \mathrm{d}x \xrightarrow{n \to \infty} 0.$$

Также

$$\int\limits_{\sqrt[6]{n}}^{\sqrt{n}}\left(1-\frac{x^2}{n}\right)^n\leqslant \sqrt{n}\cdot\left(1-\frac{\sqrt[3]{n}}{n}\right)^n=\left[\text{ряд Тейлора для логарифма}\right]$$

$$=\sqrt{n}\cdot\exp(n\cdot(-\sqrt[3]{n}/n+o(1/n)))$$

$$=\sqrt{n}\cdot\exp(-\sqrt[3]{n}+o(1))\xrightarrow{n\to\infty}0.$$

Ещё одно слагаемое можно оценить так:

$$\left| \int\limits_0^{\sqrt[6]{n}} e^{-x^2} - \left(1 - \frac{x^2}{n}\right)^n \, \mathrm{d}x \right| \leqslant \sqrt[6]{n} \max_{x \in [0, \sqrt[6]{n}]} \left| e^{-x^2} - e^{n \log(1 - x^2/n)} \right|$$
 [ряд Тейлора для логарифма²] $\leqslant \sqrt[6]{n} \max_{x \in [0, \sqrt[6]{n}]} \left| e^{-x^2} \cdot \left(1 - \exp(-x^2/n + O(x^4/n^2) \cdot n)\right) \right|$ $\leqslant \sqrt[6]{n} \max_{x \in [0, \sqrt[6]{n}]} \left| e^{-x^2} \left(1 - \exp(O(x^4/n))\right) \right|$ $\leqslant \sqrt[6]{n} \left(1 - \exp\left(O\left(\frac{n^{4/6}}{n}\right)\right)\right) = \sqrt[6]{n} \cdot O\left(\frac{1}{\sqrt[3]{n}}\right)$ $= O\left(\frac{1}{\sqrt[6]{n}}\right) \to 0.$

Осталось сосчитать последнее слагаемое:

$$\int_{0}^{\sqrt{n}} \left(1 - \frac{x^2}{n} \right)^n dx = [x = \sqrt{n} \cdot y] = \sqrt{n} \int_{0}^{1} (1 - y^2)^n dy$$

$$[y = \cos t] = \sqrt{n} \int_{0}^{\frac{\pi}{2}} (1 - (\cos t)^{2})^{n} \sin t \, dt$$

$$= \sqrt{n} \int_{0}^{\frac{\pi}{2}} (\sin t)^{2n+1} \, dt = \sqrt{n} \cdot I_{2n+1}$$

$$= \sqrt{n} \cdot \frac{(2n+2)!!}{(2n+1)!!} \cdot \frac{1}{2n+2}$$

$$\sim \frac{1}{2} \sqrt{\left(\frac{1}{n} \cdot \frac{(2n+2)!!}{(2n+1)!!}\right)^{2}} \xrightarrow{n \to \infty} \frac{\sqrt{\pi}}{2}.$$

Это завершает доказательство теоремы.