Package 'rMultiNet'

June 27, 2023

Julie 27, 2023
Title Multi-Layer Networks Analysis
Version 0.1
Description Provides two general frameworks to generate a multi-layer network. This also provides several methods to reveal the embedding of both nodes and layers. The reference paper can be found from the URL mentioned below. Ting Li, Zhongyuan Lyu, Chenyu Ren, Dong Xia (2023) <arxiv:2302.04437>.</arxiv:2302.04437>
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.2.3
Imports dbscan, geigen, glmnet, graphics, Matrix, plotly, rTensor, stats
NeedsCompilation no
Author Chenyu Ren [aut, cre] (https://orcid.org/0000-0001-5422-7903)
Maintainer Chenyu Ren <chenyu.ren@connect.polyu.hk></chenyu.ren@connect.polyu.hk>
Repository CRAN
Date/Publication 2023-06-27 16:30:02 UTC
R topics documented:
Community_cluster_dbscan Community_cluster_km Embedding_network GenerateMMLSM GenerateMMSBM InitializationLSM InitializationMMSBM PowerIteration ProjectedGD SpecClustering
Index 1

Community_cluster_dbscan

Title

Description

Title

Usage

```
Community_cluster_dbscan(embedding, type, eps_value = 0.05, pts_value = 5)
```

Arguments

embedding the embedding results from different methods type node embedding 'n' or network embedding 'N'

eps_value parameters for DBSCAN pts_value parameters for DBSCAN

Value

the embedding results

Examples

```
tnsr = GenerateMMSBM(200, 3, 10, 2, d = NULL, r = NULL)
U_list = InitializationMMSBM(tnsr, 3, 2, rank = NULL)
embed_list = PowerIteration(tnsr,3,2,rank=NULL,type="TUCKER",U_0_list=U_list)
em = embed_list[[2]]
Community_cluster_dbscan(em,"N")
```

Community_cluster_km Title

Description

Title

Usage

```
Community_cluster_km(embedding, type, cluster_number)
```

Arguments

embedding the embedding results from different methods type node embedding 'n' or network embedding 'N'

cluster_number the number of clusters for Kmeans

Embedding_network 3

Value

the embedding results

Examples

```
tnsr = GenerateMMSBM(200, 3, 10, 2, d = NULL, r = NULL)
U_list = InitializationMMSBM(tnsr, 3, 2, rank = NULL)
embed_list = PowerIteration(tnsr,3,2,rank=NULL,type="TUCKER",U_0_list=U_list)
em = embed_list[[2]]
Community_cluster_km(em,"N",5)
```

Embedding_network

Title

Description

Title

Usage

```
Embedding_network(network_membership, L, paxis = 2)
```

Arguments

```
network_membership
```

the number of types of the network or the number of groups of vertices

L the number of layers

paxis the number of eigenvectors to use in the plot

Value

a plot table If the number of eigenvectors is more than two or plot the image

```
tnsr = GenerateMMSBM(200, 3, 10, 2, d = NULL, r = NULL)
U_list = InitializationMMSBM(tnsr, 3, 2, rank = NULL)
embed_list = PowerIteration(tnsr,3,2,rank=NULL,type="TUCKER",U_0_list=U_list)
Embedding_network(embed_list[[2]],10,2)
```

4 GenerateMMLSM

 ${\tt GenerateMMLSM}$

Title

Description

Title

Usage

```
GenerateMMLSM(
    n,
    m,
    L,
    rank,
    U_mean = 0.5,
    cmax = 1,
    d,
    int_type = "Uniform",
    kernel_fun = "logit",
    scale_par = 1
)
```

Arguments

n	the number	of	vertices

m the number of types of the network

L the number of layers

rank the rank of latent position matrix U

U_mean the mean of the normal distribution of each entry of U

cmax the entrywise upper bound of core tensor C

d the average degree of the network

int_type represents the ways of generating tensor C ('Uniform' or 'Norm')

kernel_fun the link function of generating the adjacency tensor ('logit' or 'probit')

scale_par the scaling factor of the parameter tensor

Value

a list including an adjacency tensor and the generating parameters

```
GenerateMMLSM(200,3,10,2,d=NULL)
```

GenerateMMSBM 5

GenerateMMSBM

Title

Description

Title

Usage

```
GenerateMMSBM(n, m, L, K, d = NULL, r = NULL)
```

Arguments

n	the number of vertices	
m	the number of types of the network	
L	the number of layers	
K	the number of groups of vertices	
d	the average degree of the network	
r	the out-in ratio in each layer	

Value

a list including an adjacency tensor and the generating parameters

Examples

```
GenerateMMSBM(200, 3, 10, 2, d = NULL, r = NULL)
```

InitializationLSM

Title

Description

Title

Usage

```
InitializationLSM(
  gen_list,
  n,
  m,
  k,
  rank = NULL,
  perturb = 0.1,
  int_type = "warm"
)
```

6 InitializationMMSBM

Arguments

gen_list a list including the adjacency tensor and the parameter of the mixture multilayer

network

n the number of nodes

m the number of network typesk the number of groups of vertices

rank rank of U

perturb the upper bound of Uniform distribution

int_type the method to initialize U and W ('spec', 'rand' or 'warm')

Value

a list including the adjacency tensor, U0, W0 and tuning parameters

Examples

```
gen_list = GenerateMMLSM(200,3,10,2,d=NULL)
InitializationLSM(gen_list,200,3,2)
```

InitializationMMSBM

Title A function for initialization

Description

Title A function for initialization

Usage

```
InitializationMMSBM(tnsr, m, k, rank = NULL)
```

Arguments

tnsr the tensor of network

m the number of types of the networkk the number of groups of vertices

rank the rank of the core tensor calculated by the equation

Value

U_list a list including the core tensor Z, network embedding and node embedding

```
tnsr = GenerateMMSBM(200, 3, 10, 2, d = NULL, r = NULL)
U_list = InitializationMMSBM(tnsr, 3, 2, rank = NULL)
```

PowerIteration 7

PowerIteration

Title

Description

Title

Usage

```
PowerIteration(
    tnsr,
    m,
    k,
    rank = NULL,
    type = "TWIST",
    U_0_list,
    delta1 = 1000,
    delta2 = 1000,
    max_iter = 5,
    tol = 1e-05
)
```

Arguments

tnsr	the adjacency tensor of the network		
m	the number of types of the network		
k	the number of groups of vertices		
rank	the rank of the core tensor calculated by the equation		
type	specifies the iterative algorithm to run 'TWIST' or 'Tucker'		
U_0_list	InitializationMMSBM outputs		
delta1	tuning parameters for regularization in mode1		
delta2	tuning parameters for regularization in mode2		
max_iter	the max times of iteration		
tol	the convergence tolerance		

Value

a list including the core tensor Z, network embedding and node embedding

```
tnsr = GenerateMMSBM(200, 3, 10, 2, d = NULL, r = NULL)
U_list = InitializationMMSBM(tnsr, 3, 2, rank = NULL)
embed_list = PowerIteration(tnsr,3,2,rank=NULL,type="TUCKER",U_0_list=U_list)
```

8 ProjectedGD

ProjectedGD

Title

Description

Title

Usage

```
ProjectedGD(
    Ini_list,
    cmax = 1,
    eta_outer = 0.001,
    tmax_outer = 10,
    p_type = "logit",
    rd = "Non",
    show = TRUE,
    sgma = 1,
    sample_size = 500
)
```

Arguments

Ini_list the output of function InitializationLSM the upper limits for adding the coefficient constraint cmax the learning rate in gradient descent eta_outer the number of iterations in gradient descent tmax_outer the type of link function ('logit', 'probit' or 'poisson') p_type rd whether to use stochastic sampling ('rand' or 'Non') if print the ietation process show the link function parameter sgma sample_size the size of sampling

Value

the embedding results of nodes and layers

```
gen_list = GenerateMMLSM(200,3,5,2,d=NULL)
Ini_list = InitializationLSM(gen_list,200,3,2)
```

SpecClustering 9

Description

Title

Usage

```
SpecClustering(tnsr, rank, embedding_type = "Layer")
```

Arguments

tnsr the adjacency tensor

rank the number of columns of the output matrix U embedding_type SumAdj for 'Node' and M3SC for 'Layer'

Value

The embeddding result can be applied in cluster methods like kmeans.

```
tnsr = GenerateMMSBM(200, 3, 10, 2, d = NULL, r = NULL)
emb_result = SpecClustering(tnsr,3)
```

Index

```
Community_cluster_dbscan, 2
Community_cluster_km, 2
Embedding_network, 3
GenerateMMLSM, 4
GenerateMMSBM, 5
InitializationLSM, 5
InitializationMMSBM, 6
PowerIteration, 7
ProjectedGD, 8
SpecClustering, 9
```