Association Rule Mining

- · Useful when launching a new product
- Sell more butter by making a promotion for bread
- Association can be used to group words for search engine algorithms: Lebron + NBA --> Lebron James

Association in Classification

• Imputing the response to one question based on the response of another to make smaller surveys

Clustering

- Requires a vector space
- Basketball: (Points, Assists, Rebounds) --> Clusters: (High Assist, Low Points); (High Everything); (Low Assistants, High Points)

Supervised

Least Squares Linear Regression

- Minimizes the sum of squared residuals (SSQ), also called the residual sum of squares (RSS)
 - o Highly sensitive to outliers, which should be assessed for removal
- Mean squared error (MSE) = SSQ / |data points|

Residuals

- Counts by residual value should be normally distributed with mean zero
- Pattern-less across buckets of a variable

Consider a log transformation of a variable or piece-wise regression

1-Rule

Make a prediction based on the most likely response.

Ex:

	Front	Back
Male	2	20
Female	12	4

==> If Gender = M, then Front = No; If Gender = F then Front = Yes; 6 errors (Males in the front + Females in the back)

	Front	Back
Device	3	11
No Device	11	13

==> If Device, then Front = No; If No Device then Front = No; 14 errors (all people in front!)

Find all rules. Choose feature with the fewest total errors.

Naïve Bayes

$$P(A|\mathbf{B}) = \frac{P(A)P(\mathbf{B}|A)}{\sum P(E)P(B|E)}$$

$$Posterior = \frac{Prior \cdot Likelihood}{Evidence}$$

Example

Refund Marital Status	>	Cheat?
-----------------------	---	--------

Algorithm

Apply Bayes Rule:

$$P(cheat \mid r, m) = \frac{P(cheat) \ P(r, m \mid cheat)}{P(cheat) * P(r, m \mid cheat) + P(no \ cheat) P(r, m \mid no \ cheat)}$$

Assume independence of feature variables:

$$\frac{P(\textit{cheat}) \, P(r|\, \textit{cheat}) P(\textit{m}|\, \textit{cheat})}{P(\textit{cheat}) * P(r|\, \textit{cheat}) P(\textit{m}|\, \textit{cheat}) + P(\textit{no}\, \textit{cheat}) * P(r|\, \textit{no}\, \textit{cheat}) P(\textit{m}|\, \textit{no}\, \textit{cheat})}$$

Empirically derive.

Improvements

- Mitigate the issues with the independence assumption by appropriately clustering
- · Although not desired, highly correlated variables need to be removed through feature engineering

The loaded dice problem

A casino has a fair dice 80% of the time and a loaded dice that rolls a one with a 50% chance.

$$P(Loaded | \{1,1,1,1\}) = \frac{P(Loaded)P(\{1,1,1,1\}|Loaded)}{P(\{1,1,1,1\})} = \frac{0.2\left(\frac{1}{2}\right)^4}{0.2\left(\frac{1}{2}\right)^4 + 0.8\left(\frac{1}{6}\right)^4}$$

Denominator: How can four consecutive ones be rolled?

Numerator: Specify one of way the outcome can happen.

Prism Rules

For each feature:

For each distinct value:

Generate a rule if feature = value then outcome = <>

Algorithm

• Start with single feature for a given outcome:

0	If outlook = sunny	then play = no	(3/5)
0	If outlook = rainy	then play = no	(3/7)
0	If outlook = mild	then play = no	(2/3)

Numerator should add up to count of "no" Denominator should add up to full set

- Find the error of each feature-value rule
- Choose condition with the highest % accuracy
 - o In case of a tie, choose the one with the largest denominator
- Now we have the best choice for the first condition
- We have to examine the remaining ANDs
 - Repeat using remaining features
 - Stop at perfect accuracy
 - If Outlook=Sunny and Humidity=Low then Play=Yes (3/3)
- If a rule set is done, delete the records corresponding to it and restart to cover all data points

Entropy Decision Tree Learning

Entropy

• Say X is 1 with probably p₁ and 0 with probability p₂

$$H(X) = -p_1 \ln(p_1) - p_2 \ln(p_2)$$

Observations:

• **Certainty**: H(X) = 0 if the outcome of X is certain

• Patterns: $H(X) = n \cdot (1/n) \cdot \ln(n)$ for n equal outcomes

Example

	Refund	Marital Status
Cheat	Split 1 to evaluate	Split 2 to evaluate
No Cheat		

	Refund = Yes ==> $H(x) = 0$ Refund = No ==> $H(x) = 3/7\ln(7/3) + 4/7$	
Cheat = Yes	0/3	3/7
Cheat = No	3/3	4/7

	Single $==> H(x) = In(2)$	Married $==> H(x) = 0$	Divorced ==> ln(2)
Cheat = Yes	2/4	4/4	1/2
Cheat = No	2/4	0/4	1/2

At the root of the tree, we want the lowest entropy (as close to 0 as possible)

Use the weighted average entropy as a metric:

- Refund = (3/10)*0 + (7/10)...
- Marital status = (4/10)*In(2) + (4/10)*0 + (2/10)*In(2)

Comparison of Techniques

	Pros	Cons	Discussion
NB	- Probability of output	- Independence assumption	
	- Uses all features	- Must remove correlated features	
		- Not human-readable!	
EDT	- Interpretable	- Can be large	Tree pruning (trimming bottom) to reduce size
		- Only the best feature used each iteration	
1-R		- Too simple	Only the best feature has a voice
PRISM	- Every feature plays a part	- Model can be large	Create stopping rules to prevent over-fitting
		- Over-fits (100% accuracy and coverage)	

Outlier Detection

- By-product of regression (residuals) and clustering (far from given cluster's center)
- Data must be understood before removed

Evaluation

Quadratic Loss

For each record:

$$QL = \sum_{outcomes} [Probability - Actual]^2$$

• Ex: If record is M but model predicts: P(Y) = 0.2, P(N) = 0.45 P(M) = 0.35 --> QE = $(0-0.2)^2+(0-0.45)^2+(1-0.35)^2$

Confusion Matrix

• Deeply related to TP/TN and FP/FN table, but more detailed

	Predicted			
		Α	В	С
	Α	TP_A		
Actual	В		TP_B	
	С			TP_C

K-fold cross-validation

- 0. Set k (recommend k = 10)
- 1. Randomly split the labeled data into k folds
- 2. For each fold:
 - a. Use the fold for testing and all other folds for training
 - b. Record e
- 3. Find the average error

^{*}If k =the size of the dataset, we get "leave one out" cross-validation (since only 1 record is used for testing)

Challenges

- Interpretation
 - Stereotyping on only a subset of the population
- Validation
 - o How to pick the best data mining technique?
- Ethics
- Complexity
 - Example: all combinations of models
- Data skew

Down-sampling (not enough 1s): removing 0s to make the proportion equal

Up-sampling (not enough 0s): keep all the 1s, but sample with replacement to get 0s

Variable Selection

- Forward try each variable one by one and find the lowest SSE (not used in practice)
- **Backward** try all the variables; remove the worst one (used more often)
- Shrinkage LASSO: use matrix algebra to shrink coefficients to help eliminate variables

Important nuances

- Primary key over-fitting example
- Decision trees and prism rules can become too big;
 Naive Bayes may not be independent

Exploratory Analysis

• Mean, Median, Mode, Standard Deviation, Percentiles, Quintiles, Minimum, Maximum

Look for heavy-tailed or bimodal distributions

• Continuous: Histograms

• **Discrete**: Buckets for the most and least frequent values

Appendix: Naïve Bayes for Continuous Outcomes

Example

$$P(play \mid T) = \frac{P(play) \mathbf{P}(T \mid play)}{P(play) * \mathbf{P}(T \mid play) + \mathbf{P}(no \ play) P(T \mid no \ play)}$$

Model $P(T \mid play)$ and $P(T \mid no \ play)$ by using the dataset.

>> One solution is to treat **T** as normally distributed within each case (play and no play).