Week 4 Quiz

TOTAL POINTS 9

1. Person 1 has hazard $h_1(t) = 1$, and Person 2 has hazard $h_2(t) = 2$. What is the probability of dying within the first year for each patient?

1 point

Hint:

The survival function S(t) in terms of the hazard function is:

$$S(t) = e^{-\int_0^t h(s)ds}$$

- 0.6, 0.6
- 0.63, 0.86
- 0.37, 0.14
- 2. Let T > 0.

1 point

For patient 1, let the survival function be $S_1(t)$ and the hazard function be $h_1(t)$.

For patient 2, let the survival function be $S_2(t)$ and the hazard function be $h_2(t)$

You see that $S_1(T) \ge S_2(T)$. The survival probability of patient 1 at time T is higher than the survival probability of patient 2 at time T.

Mhich of the	following ic truc	about the hazard	of notiont 1	and 2 at time Ta
vvilicii oi iiie	TOHOWITH IS THE	: about the nazaru	oi nan c iii t	anuzatiine is

Hint:

$$S(t) = e^{-\int_0^t h(s)ds}$$

- $h_1(T) > h_2(T)$
- $h_1(T) < h_2(T)$
- $h_1(T) = h_2(T)$
- None of the above
- 3. Now assume that the hazards for patient 1, h_1 and for patient 2, h_2 are proportional to each other. Also assume that $S_1(T) > S_2(T)$ for some T > 0.

1 point

Then which of the following is true about the hazards?

- $h_1(T) = h_2(T)$
- $h_1(T) > h_2(T)$
- $h_1(T) < h_2(T)$
- 4. You've fit a Cox model on 2 features: age and smoking status.

The coefficients of these features are:

1 point

$$\beta_{age}$$
 = 0.9 and β_{smoker} = 10.0.

What is the hazard ratio between Person 1, a 40 year old non-smoker, and Person 2, a 30 year old smoker?

Recall that Cox Proportional Hazards assumes a model of the form:

$$h(t) = \lambda_0(t)e^{(\beta_{age} \times Age + \beta_{smoker} \times Smoker)}$$

We're asking you to find the ratio:

 $\frac{h_1(t)}{h_2(t)}$

- 2.64
- 0.36
- 2.7
- 5. You've fit a cox model and have the following coefficients:

$$\beta_{female} = -1.0$$

$$\beta_{age} = 1.0$$
,

$$\beta_{BP} = 0.6$$

$$h(t) = \lambda_0(t)e^{((\beta_{female} \times female) + (\beta_{age} \times Age) + (\beta_{BP} \times BP))}$$

Which of the following interpretations is most correct?

1 point

	All other things held equal, being a female decreases your risk
	All other things held equal, having lower age increases your risk
	All other things held equal, having higher BP decreases your risk
3 .	Assume $h_1(t) = t$, and $h_2(t) = 1.0$. At which time $T > 0$ does $S_1(T) = S_2(T)$?
	None of the above
	2
	O 1
	O.5

7. Using the Nelson-Aalen estimator estimate H(7), the value of the cumulative hazard at t=7 for this dataset.

1 point

1 point

ID	Outcome
1	3
2	4
3	8
4	6+

The Nelson-Aalen estimator is:

$$H(t) = \sum_{i=0}^{t} \frac{d_i}{n_i}$$

- 8/11
- 7/12
- 5/9
- 8. Which risk assignments would make this pair **concordant**?

1 point

10

Patient 2

5+

0.3, 0.8

Т

- 0.5, 0.3
- 0.5, 0.5
- The pair is not permissible

ID	Outcome	Score
1	4	1.6
2	6+	1.2
3	5	0.8
4	7	0.1

Step 1: Find all the permissible pairs

Step 2: of the permissible pairs, determine which ones are concordant.

Step 3: of the permissible pairs, determine which ones are risk ties.

Harrell's c-index =
$$\frac{concordant+0.5 \times riskties}{permissible}$$

- 1.0
- 0.8
- 0.7

I, **Mirko Jerber Rodriguez Mallma**, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.