Introduction to Excel for Statistical Analysis

Garrett Morrow, Laura Johnson, and Cara Marta Messina
Development Economics
Silvia Prina
Fall 2019

Workshop Agenda

- Objectives
- About Excel
- Important Vocabulary and Functions
- Demonstration
- Activity: Practice Excel

Slides, handouts, and data available at

http://bit.ly/dti-dev-econ-fall2019

Workshop Objectives

- Understand the data structures of Excel
- Learn how to use basic Excel functions, such as =ADD and
 =SUM
- Learn how to analyze your data with pivot tables and charts
- Learn more advanced calculations like regression models

Excel

Excel is a program that is used to create and edit spreadsheets. In Excel, data are organized into rows and columns; data can be presented and analyzed using Excel's functions, such as pivot tables, charts, formulas, and more.

Why Excel?

Excel is an excellent way to store, organize, and analyze data. It is particularly useful for quantitative analysis because most of its functions are designed for numerical data.

Important Vocabulary

- Workbook: the overall Excel file that you are creating
- Sheet: the different sheets inside the workbook that can be renamed
- Row: the horizontal and numerical (horizontal) rows
- **Column**: the vertical and alphabetical (vertical) columns
- **Cell**: the boxes that each have an ID based on its row and column placement (A1, A2, A3, etc).

Anatomy of Excel

Northeastern University NULab for Texts, Maps, and Networks

Important Excel Features

- Function: Used to calculate and analyze numerical data using mean, median, standard deviation, addition, subtraction, and other forms of arithmetic
- Pivot Tables: Used to analyze and calculate numerical data and present different results based on functions and data chosen
- Charts: Used to visualize data with bar charts, scatter plots, and other formats.

How to Select Data

If you have a long dataset, it can be hard to drag your mouse down to the bottom of the dataset. Click

SHIFT + COMMAND/CONTROL + DOWN ARROW (or whatever direction)

The end of the data will be selected in the direction of the arrow you choose.

Basic Calculations

Using **pivot tables** or **functions**, you can find the:

- Average (Mean)
- Mode & Median
- Standard deviation
- Min/max values
- Correlation
- Results to other basic calculations such as addition, subtraction, division, multiplication

Functions for Excel

- In an empty cell, type = and then the proper calculation:
 - Correlation: CORREL(
 - Sum: SUM(
 - Average: AVERAGE(
 - Standard Deviation: STDEV(
- Select the range to calculate. If you are still in the function cell, the range will be automatically added for you as you select
 - Example: CORREL(B2:B20,C2:C20). B2:B20 is one range of values, while C2:C20 is another range.

Your Turn!

Use the data emailed to you (also available the bit.ly link below) to calculate these for the "agehh":

- Average
- Sum
- Median

Slides, handouts, and data available at

http://bit.ly/dti-dev-econ-fall2019

Pivot Tables for Calculations

- Select the data you want to be calculated (which can be more than one variable)
- Go to "Insert" > "Table" > "Pivot Table"
- Choose a new worksheet or add to your existing sheet. Creating a new worksheet is cleaner
- Go to "Pivot Table Analyze" to edit the table:
 - Go to "Field Settings" and choose the calculation (or right click the top of the table)

Example of Pivot Tables

Row Labels	Average of hhe	Sum of hhe
34	67.40711229	38530.49088
99	72.46467868	
Grand Total	70.05543796	

Pivot table with **one** variable (looking at the average, but you can look at other calculations)

Pivot table with **two** variables (comparing one variable's values to another variable's values). This pivot table shows the average "hhe" for each of the variables in the "local" row.

Your Turn! Create your own pivot table

Find the average variables of the column "agehh" for each of the variables in the "eduhh" columns.

- Select the two columns (Shift+Command/Cntrl+Down Arrow)
- Click "Insert" then "Pivot Table"
- Use the PivotTable Fields to select both the "agehh" and "eduhh" columns
- Make "educhh" the pivot table's rows and make the values the average of "agehh"

More Advanced Calculations - LINEST

LINEST is a statistical function that uses the least squares method to calculate a regression line. OLS Equation:

$$y = a + bx1...bxn$$

- y = expected value
- a = intercept
- bx1...bxn = beta-coefficient (b) * value (x)

LINEST Excel Syntax

=LINEST(y_values, x_values, constant, additional_statistics)

• Note: x_values, constant, and additional_statistics are OPTIONAL, but we almost always use them.

What is the relationship between variable "hhe" and variable "educhh?"

LINEST Steps

- 1. Select multiple rows + columns (2x2)
- 2. =Linest(D2:D551, G2:G551, TRUE, TRUE)
- 3. Control+Shift+Enter
- 4. =-2.0558007, 76.629212

Northeastern University
NULab for Texts, Maps, and Networks

Example

- 4	Α	В	С	D	E	F	G	Н	1	J	K	L	M
1	hhid	round	local	hhe	treatcom	agehh	educhh	hhsize	pscore	takeup			
2	15681	. 1	. 34	82.19051		1 53	3	3	865	0		-2.0558007	76.629212
3	15681	. 0	34	85.88746		1 52				0		0.50672529	2.07296412
4	15680	1	. 34	40.38055		1 51	2	7	602	1			
5	15680	0	34	40.68994		1 50	2	7	602	1			
6	15679	1	. 34	49.5274		1 43		5	653	1			
7	15679	0	34	67.08327		1 42	2	5	653	1			
8	15678	1	. 34	42.86265		1 29	4	3	619	1			
9	15678	0	34	65.08897		1 28	4	3	619	1			
10	15677	1	. 34	36.52134		1 46	5	6	525	1			
11	15677	0	34	47.16312		1 45	5	6	525	1			
12	15676	1	. 34	37.96223		1 27	5	4	686	1			
13	15676	0	34	53.53526	13	26	5	4	686	1			
14	15675	1	. 34	51.61393		1 22	6	3	622	1			
15	15675	0	34	58.82847		1 21	6	3	622	1			
16	15672	1	. 34	36.73437		1 41	4	7	635	1			
17	15672	. 0	34	39.0182		1 40	4	7	635	1			
18	15671	. 1	. 34	87.8801		1 53	3	2	735	1			
19	15671	. 0	34	85.22186		1 52	3	2	735	1			
20	15670	1	. 34	44.85114		1 31	0	5	549	1			
21	15670	0	34	44.4139		1 30	0	5	549	1			
22	15667	1	. 34	23.31059	1	1 45	3	2	667	1			
23	15667	0	34	74.36211		1 44	3	2	667	1			
24	15666	1	. 34	34.17051		1 42	0	4	594	1			
25	15666	0	34	59.11292	1	1 41	0	4	594	1			
26	15665	1	. 34	43.7287		1 36	3	6	513	1			
27	15665	0	34	43.28144		1 35	3	6	513	1			
28	15664	1	. 34	33.48979	1	1 32	0	5	542	1			

Northeastern University NULab for Texts, Maps, and Networks

Alternative Excel Regression Method

- Use the "Analysis ToolPak" Add-in
 - \circ Then Data \rightarrow Data Analysis \rightarrow Regression

SUMMARY OUTPUT									Regression	?
Regression St	tatistics								Input	OK
Multiple R	0.170762315								Input <u>Y</u> Range:	Cancel
R Square	0.029159768								Input <u>X</u> Range: \$G\$1:\$G\$551 <u>↑</u>	Carro
Adjusted R Square	0.027388162									<u>H</u> elp
Standard Error	30.32197098								☐ Constant is Zero	
Observations	550								Confidence Level: 95 %	
									Output options	
ANOVA									Output Range:	
	df	SS	MS	F	Significance F				New Worksheet Ply:	
Regression	1	15133.23292	15133.23292	16.45950844	5.69217E-05				O New Workbook	
Residual	548	503843.2142	919.4219238						Residuals	
Total	549	518976.4472							Residuals Residual Plots	
									Standardized Residuals Line Fit Plots	
111	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%	Normal Probability	
Intercept	76.62921204	2.072964121	36.96600981	5.6084E-151	72.55728372	80.70114036	72.55728372	80.70114036	Normal Probability Plots	
educhh	-2.055800695	0.506725288	-4.057031975	5.69217E-05	-3.051162374	-1.060439016	-3.051162374	-1.060439016		

Multivariate LINEST

What is the relationship between "hhe" and "educhh" + "hhsize"

Similar syntax: =LINEST(D2:D551, G2:H551, TRUE, TRUE)

Select rows & columns - you need 1 more column than the number of variables because of the constant

Then press "Control+Shift+Enter"

The return of statistics is in **reverse order**

Example

Northeastern University NULab for Texts, Maps, and Networks

Add-In Example

SUMMARY OUTPUT								
Regression S	tatisti <mark>cs</mark>							
Multiple R	0.498168082							
R Square	0.248171438							
Adjusted R Square	0.245422522							
Standard Error	26.70788953							
Observations	550							
ANOVA			200					
	df	SS	MS	F	Significance F			
Regression	2	128795.1314	64397.5657	90.27974178	1.3137E-34			
Residual	547	390181.3158	713.3113634					
Total	549	518976.4472						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	111.548207	3.314526878	33.65433774	2.3048E-135	105.0374477	118.0589663	105.0374477	118.0589663
educhh	-2.202133341	0.446479123	-4.932220179	1.08015E-06	-3.079156886	-1.325109797	-3.079156886	-1.325109797
hhsize	-6.328687118	0.501355454	-12.62315403	3.069E-32	-7.313504805	-5.343869431	-7.313504805	-5.343869431

Northeastern University NULab for Texts, Maps, and Networks

Charts

- Scatter plots: comparing **two** variables
- Bar charts/histograms: count of **one** variable
- Line charts: tracing **trends** of one or two variables

Inserting a Chart

- Similar to a pivot table, click the columns and variables you would like to include
 - For multiple columns, you may need to move the columns next to each other to be able to select multiple columns.
- Go to "Insert" and then "Charts" (often, "recommended charts" will suggest the option that you want)
- Use the "Chart Design" and "Format" toolbar at the top and/or the side toolbar to play with the formatting of the chart

Your Turn!

Create two charts.

- Histogram for "hhe"
- Scatterplot for "agehh" and "eduhh"

Slides, handouts, and data available at

http://bit.ly/dti-dev-econ-fall2019

Group Discussion

- First, does anyone have questions?
- How was using Excel? What are some easy features?
- What are some more difficult features, or aspects that you think will be challenging to work with?
- How might you use Excel in the future?

Thank you!

If you have any questions, contact us at:

Garrett Morrow

Digital Teaching Integration Research Fellow morrow.g@husky.neu.edu

Laura Johnson

Digital Teaching Integration NULab Coordinator johnson.lau@husky.neu.edu messina.c@husky.neu.edu

Cara Marta Messina

Digital Teaching Integration Assistant Director

Slides, handouts, and data available at http://bit.ly/dti-dev-econ-fall2019

Office Hours: Tuesdays from 1-3PM in 401 Nightingale Hall

