Cours Bases de Données Fouad DAHAK

CHAPITRE 3

LE MODÈLE RELATIONNEL

Fouad DAHAK. Ecole Nationale Supérieure d'Informatique. 2006-201

A la fin de ce chapitre, vous serez en mesure de :

- Connaître les bases théoriques du modèle relationnel.
- Concevoir un schéma relationnel en utilisant les DF et la théorie de la normalisation.

Fouad DAHAK. Ecole Nationale Supérieure d'Informatique. 2006-20:

Simplicité de la structure des données

Chapitre 03 : Le Modèle Relationnel Pourquoi un tel succès

Une base relationnelle est composée de tables. Dans une table, une ligne correspond à un enregistrement et une colonne à un champ de cet enregistrement.

Simplicité des opérateurs

Toute opération sur une table génère une nouvelle table, c'est-à-dire fonctionne sur un ensemble de données sans que l'on ait à se préoccuper de traiter successivement chacune des données récupérées par l'opération

ouad DAHAK. Ecole Nationale Supérieure d'Informatique. 2006-2016

Leçon N° 1

Concepts de base

Règle 1: Entité non faible

Une entité non faible E est représentée par une relation R dont les attributs simples sont les attributs de E Client(IDClt,NomClt,PrénomClt) et la clé de R est l'identifiant de E.

o IDCIt
NomClt
PrénomClt

Chapitre 03 : Le Modèle Relationnel De l'EA au relationnel		Diapo Leçon Nº 02
Règle 2: Relation 1 - N	ModèleAppartenir	1,1 Véhicule
Une association 1-N n'est pas	Désignation	Couleur

représentée, ses attributs migrent vers la relation représentant le fils et la clé du père migre vers le fils comme clé étrangère.

Modèle(<u>**1D**</u>,Désignation) Véhicule(Châssis, Couleur, ModèleID)

La Normalisation

uad DAHAK, Ecole Nationale Supérieure d'Informatique, 2006-201

La théorie de la normalisation est basée sur le concept de dépendances fonctionnelles (DF) qui permettent de décomposer l'ensemble des informations en diverses relations.

 $Enseignement (N^{\circ}Ens, NomEns, GradeEns, N^{\circ}Mod, LibMod, AnUniv, Niveau, \\ Section, Groupe, TypeEnseignement)$

R(A,B,C,D,E,F)

 $F=\{AB \rightarrow C, D \rightarrow C, D \rightarrow E, CE \rightarrow F, E \rightarrow A\}.$

A	В	C	D	E	F
	1		110		54
X	2	j	100	N	
w	1	i	110	M	54
	2		100		52

Une DF A \rightarrow B est **élémentaire**, s'il n'existe pas C, inclus dans A, qui assure lui-même une DF C \rightarrow B

Une DF A \rightarrow B est **directe**, s'il n'existe pas un attribut C qui engendrerait une DF transitive A \rightarrow C \rightarrow B.

Une DF est **triviale** si et seulement si le membre droit est un sousensemble du membre gauche.

Chapítre 03 : Le Moo	dèle Relationnel		Diapo 41
Axiomes d'Arm	strong	←◇ →	Leçon Nº 03
(i) Réflexivité (ii) Augmentation (iii) Transitivité	$Y \subseteq X \Rightarrow X \to Y$ $X \to Y \Rightarrow XZ \to YZ$ $X \to Y, Y \to Z \Rightarrow X \to Z$		
Projection	$X \to YZ \Rightarrow X \to Y$		

Chapitre 03 : Le Modèle Relationnel		Diapo	42
Axiomes d'Armstrong	■ ← 🍑 →	Leçon Nº 03	

Décomposition $X \to YZ \Rightarrow X \to Y, X \to Z$

Auto-Détermination $X \longrightarrow X$

Union (addition) $X \to Y, X \to Z \Rightarrow X \to YZ$ Pseudo-transitivité $X \to Y, WY \to Z \Rightarrow WX \to Z$

Composition $X\to Y, V\to Z\Rightarrow XV\to YZ$ Augmentation à gauche $X\to Y\Rightarrow XW\to Y$

- 1. Toute Relation qui n'est pas en 3NF n'est pas en BCNF
- 2. Toute relation en 3NF n'est pas forcement en BCNF.
- 3. Toute relation on BCNF est forcement on 3NF.

Fouad DAHAK. Ecole Nationale Supérieure d'Informatique. 2006-20

- 1. Isoler la DF problématique dans une nouvelle relation
- 2. Éliminer la cible de cette DF et la remplacer par sa source dans la relation initiale.

- 1. Quand on transforme un modèle E/A vers le relationnel il sera en quel forme normale ? Justifiez.
- 2. Doit-on toujours normaliser nos relations ou existe-t-il des cas où on est obligé de dénormaliser ?

Conception d'un schéma relationnel

uad DAHAK, Ecole Nationale Supérieure d'Informatique, 2006-201

Théorème de Heath: Toute relation R(X,Y,Z) est décomposable sans perte d'information en $R_1=\pi[X,Y]R$ et $R_2=\pi[X,Z]R$ s'il y a dans R une dépendance fonctionnelle de X vers Y ($X \longrightarrow Y$).

Fouad DAHAK. Ecole Nationale Supérieure d'Informatique. 2006-2016

Chapitre 03 : 4	e Modèle Relationnel		Diapo
Algorithme	e de décomposition		5 Leçon N° 04
Procédure Dé Début	écomposition(R:Relation universelle; F:	Ensemble des DF)	
Résul	tat = {R}		
SI (II e	existe R; de Résultat TQ R; n'est pas en	BCNF) Alors	
Débu	t		
	Chercher une DF non triviale X→Y on Décomposition((Résultat -R _i) U (R _i -Y		as une clé
Fin		, , ,,	

Pour tout $R_i(\Delta_i)$ et $R_j(\Delta_j)$ tq Δ_i **INCLUS** Δ_j dans Résultat **Faire** Supprimer(R_i) Retourner Résultat

Fin

