

Jogos Digitais Disciplina de Computação Gráfica Primitivas Geométricas - Linhas Aula 06

Professor: André Flores dos Santos

Reta

 Podemos definir uma reta como sendo uma sucessão de infinitos pontos, distintos, alinhados.

Reta

Equação geral da reta:

$$\circ ax + by + c = 0$$

Equação reduzida da reta:

$$y = mx + b$$
, onde

Com dois pontos pode-se calcular:

$$m = \frac{y2 - y1}{x2 - x1}$$

$$b = y - (m * x)$$

Coeficiente angular da reta = tangente do seu ângulo de inclinação → mede o grau de inclinação da reta em relação ao eixo x.

Coeficiente linear = é a ordenada do ponto onde a reta corta o eixo y

Rasterização

- Rasterização é o processo de conversão de uma imagem vetorial em uma imagem raster (pixeis) para uma saída de vídeo;
- Esse processo é necessário para o desenho de primitivas geométricas em um monitor, como por exemplo, de uma reta ou linha.

Rasterização de linhas

• Problema:

 como desenhar/rasterizar uma linha do ponto (2,1) até o ponto (8,5)?

Rasterização de linhas

Possíveis soluções?

Algumas soluções

- Algoritmo natural
- Algoritmo DDA

 O algoritmo mais simples para a rasterização de linhas é o algoritmo que faz uso da equação reduzida da reta:

$$y = mx + b$$

 Para isso, a partir de dois pontos, calcula-se a equação reduzida da reta, e a partir daí são definidos os pontos que devem ser plotados na tela.

- Funcionamento:
 - A partir de dois pontos $P_0(x_0,y_0)$ e $P_1(x_1,y_1)$, deseja-se rasterizar uma linha que vá de P_0 até P_1 . Para isso, devemos seguir os seguintes passos:
 - 1. Calculamos a diferença entre x's e y's dos dois pontos:

$$\Delta x = x_1 - x_0$$
$$\Delta y = y_1 - y_0$$

1. Se $\Delta x = 0$, significa $x_1 = x_0$, logo temos uma reta vertical, portanto, simplesmente pintamos todos os pixeis entre y_0 e y_1 :

for $(y=y_0; y<=y_1; y++)\{$ plota $(x_0,y);$

Funcionamento:

3. Caso $\Delta x \neq 0$, calculamos o coeficiente angular e linear da reta:

$$m = \frac{\Delta y}{\Delta x} \qquad b = y_0 - m * x_0$$

4. Então surgem dois possíveis cenários:

Cenário 1: $m \le 1$ ($\alpha \le 45^{\circ}$), significa que x cresce mais rápido que y na reta, portanto, precisamos calcular para cada x o valor de y correspondente a ser plotado;

Cenário 2: m > 1 ($\alpha > 45^{\circ}$), significa que y cresce mais rápido que x na reta, portanto, precisamos calcular para cada y o valor de x correspondente a ser plotado;

Possíveis cenários:

Cenário 1: $m \le 1$ ($\alpha \le 45^{\circ}$) x cresce mais rápido que y

Cenário 2: m > 1 ($\alpha > 45^{\circ}$) y cresce mais rápido que x

• Cenário 1: $m \le 1$

 Se x cresce mais rápido que y, calculamos para cada x no intervalo de x₀ e x₁ os valores de y a serem plotados, de acordo com a equação da reta:

```
for(x=x<sub>0</sub>; x<=x<sub>1</sub>;x++){
   //arredondamos pois precisamos de x's e y's inteiros
   y=round(m*x+b);
   plota(x,y);
}
```

• Cenário 1: $m \le 1$

• Ex:

$$P_0$$
 (2,1)
 P_1 (7,3)
 $m = \frac{3-1}{7-2} = \frac{2}{5} = 0.40$

$$b = 1 - 0.40 * 2 = 0.20$$

• Cenário 1: $m \le 1$

X	У	y (arredondado)
2	1.0	

$P_0(2,1)$	m = 0.40
$P_1(7,3)$	b = 0.20

Calculamos o valor de y para x=2: y=0.40*x+0.2=0.40*2+0.2=1.0

• Cenário 1: $m \le 1$

X	У	y (arredondado)
2	1.0	1

$P_0(2,1)$	m = 0.40
$P_1(7,3)$	b = 0.20

Arredondamos y e pintamos o ponto (2,1)

• Cenário 1: $m \le 1$

X	У	y (arredondado)
2	1.0	1
3		

$P_0(2,1)$	m = 0.40
$P_1(7,3)$	b = 0.20

Incrementamos x

• Cenário 1: $m \le 1$

X	У	y (arredondado)
2	1.0	1
3	1.4	

$$P_0$$
 (2,1) $m = 0.40$
 P_1 (7,3) $b = 0.20$

Calculamos o valor de y para x=3: y=0.40*x+0.2=0.40*3+0.2=1.4

• Cenário 1: $m \le 1$

У	Y (arredondado)
1.0	1
1.4	1
	1.0

$P_0(2,1)$	m = 0.40
$P_1(7,3)$	b = 0.20

Arredondamos y e pintamos o ponto (3,1)

• Cenário 1: $m \le 1$

X	У	Y (arredondado)
2	1.0	1
3	1.4	1
4	1.8	

P_0	(2,1)	m = 0.40
P_1	(7,3)	b = 0.20

Incrementamos x Calculamos o valor de y para x=4: y=0.40*x+0.2=0.40*4+0.2=1.8

• Cenário 1: $m \le 1$

X	У	Y (arredondado)
2	1.0	1
3	1.4	1
4	1.8	2

$P_0(2,1)$	m = 0.40
$P_1(7,3)$	b = 0.20

Arredondamos y e pintamos o ponto (4,2)

• Cenário 1: $m \le 1$

X	У	Y (arredondado)
2	1.0	1
3	1.4	1
4	1.8	2
5	2.2	

$P_0(2,1)$	m = 0.40
$P_1(7,3)$	b = 0.20

Incrementamos x Calculamos o valor de y para x=5: y=0.40*x+0.2=0.40*5+0.2=2.2

• Cenário 1: $m \le 1$

X	У	Y (arredondado)
2	1.0	1
3	1.4	1
4	1.8	2
5	2.2	2

$P_0(2,1)$	m = 0.40
$P_1(7,3)$	b = 0.20

Arredondamos y e pintamos o ponto (5,2)

• Cenário 1: $m \le 1$

X	У	Y (arredondado)
2	1.0	1
3	1.4	1
4	1.8	2
5	2.2	2
6	2.6	

P_0	(2,1)	m = 0.40
P_1	(7,3)	b = 0.20

Incrementamos x Calculamos o valor de y para x=6: y=0.40*x+0.2=0.40*6+0.2=2.6

• Cenário 1: $m \le 1$

X	У	Y (arredondado)
2	1.0	1
3	1.4	1
4	1.8	2
5	2.2	2
6	2.6	3

$P_0(2,1)$	m = 0.40
$P_1(7,3)$	b = 0.20

Arredondamos y e pintamos o ponto (6,3)

• Cenário 1: $m \le 1$

X	У	Y (arredondado)
2	1.0	1
3	1.4	1
4	1.8	2
5	2.2	2
6	2.6	3
7	3.0	

$P_0(2,1)$	m = 0.40
$P_1(7,3)$	b = 0.20

Incrementamos x Calculamos o valor de y para x=7: y=0.40*x+0.2=0.40*7+0.2=3.0

• Cenário 1: $m \le 1$

X	У	Y (arredondado)
2	1.0	1
3	1.4	1
4	1.8	2
5	2.2	2
6	2.6	3
7	3.0	3

$P_0(2,1)$	m = 0.40
$P_1(7,3)$	b = 0.20

Arredondamos y e pintamos o ponto (7,3)

• Cenário 1: $m \le 1$

X	У	Y (arredondado)
2	1.0	1
3	1.4	1
4	1.8	2
5	2.2	2
6	2.6	3
7	3.0	3

$P_0(2,1)$	m = 0.40
$P_1(7,3)$	b = 0.20

Fim do algoritmo, pois x chegou ao limite

• Cenário 1: $m \le 1$

• Cenário 2: m > 1

• Se y cresce mais rápido que x, calculamos para cada y no intervalo de y_0 e y_1 os valores de x a serem plotados, de acordo com a equação da reta:

```
for(y=y<sub>0</sub>; y<=y<sub>1</sub>;y++){
    x=round((y-b)/m);
    plota(x,y);
}
```

• Cenário 2: *m* > 1

• Ex:

$$m = \frac{7-1}{5-2} = \frac{6}{3} = 2$$

$$b = 1 - 2 * 2 = -3$$

• Cenário 2: *m* > 1

X	x (arredondado)	У
2.0		1

$$P_0$$
 (2,1) $m = 2.00$
 P_1 (5,7) $b = -3$

Calculamos o valor de x para y=1: x=(y-(-3))/2=(1+3)/2=2.0

• Cenário 2: *m* > 1

X	x (arredondado)	У
2.0	2	1

$$P_0$$
 (2,1) $m = 2.00$
 P_1 (5,7) $b = -3$

Arredondamos x e pintamos o ponto (2,1)

• Cenário 2: *m* > 1

X	x (arredondado)	У
2.0	2	1
2.5		2

$$P_0$$
 (2,1) $m = 2.00$
 P_1 (5,7) $b = -3$

Incrementamos y Calculamos o valor de x para y=2: x=(y-(-3))/2=(2+3)/2=2.5

• Cenário 2: *m* > 1

X	x (arredondado)	У
2.0	2	1
2.5	3	2

$P_0(2,1)$	m = 2.00
$P_1(5,7)$	b = -3

Arredondamos x e pintamos o ponto (3,2)

• Cenário 2: *m* > 1

X	x (arredondado)	У
2.0	2	1
2.5	3	2
3.0		3

$P_0(2,1)$	m = 2.00
$P_1(5,7)$	b = -3

Incrementamos y Calculamos o valor de x para y=3: x=(y-(-3))/2=(3+3)/2=3.0

• Cenário 2: *m* > 1

X	x (arredondado)	У
2.0	2	1
2.5	3	2
3.0	3	3

$$P_0$$
 (2,1) $m = 2.00$
 P_1 (5,7) $b = -3$

Arredondamos x e pintamos o ponto (3,3)

• Cenário 2: *m* > 1

X	x (arredondado)	У
2.0	2	1
2.5	3	2
3.0	3	3
3.5		4

$P_0(2,1)$	m = 2.00
P_1 (5,7)	b = -3

Incrementamos y Calculamos o valor de x para y=4: x=(y-(-3))/2=(4+3)/2=3.5

• Cenário 2: *m* > 1

X	x (arredondado)	У
2.0	2	1
2.5	3	2
3.0	3	3
3.5	4	4

$$P_0$$
 (2,1) $m = 2.00$
 P_1 (5,7) $b = -3$

Arredondamos x e pintamos o ponto (4,4)

• Cenário 2: *m* > 1

X	x (arredondado)	У
2.0	2	1
2.5	3	2
3.0	3	3
3.5	4	4
4.0		5

$$P_0$$
 (2,1) $m = 2.00$
 P_1 (5,7) $b = -3$

Incrementamos y Calculamos o valor de x para y=5: x=(y-(-3))/2=(5+3)/2=4.0

• Cenário 2: *m* > 1

X	x (arredondado)	У
2.0	2	1
2.5	3	2
3.0	3	3
3.5	4	4
4.0	4	5

$$P_0$$
 (2,1) $m = 2.00$
 P_1 (5,7) $b = -3$

Arredondamos x e pintamos o ponto (4,5)

• Cenário 2: *m* > 1

X	x (arredondado)	У
2.0	2	1
2.5	3	2
3.0	3	3
3.5	4	4
4.0	4	5
4.5		6

$$P_0$$
 (2,1) $m = 2.00$
 P_1 (5,7) $b = -3$

Incrementamos y Calculamos o valor de x para y=6: x=(y-(-3))/2=(6+3)/2=4.5

• Cenário 2: *m* > 1

X	x (arredondado)	У
2.0	2	1
2.5	3	2
3.0	3	3
3.5	4	4
4.0	4	5
4.5	5	6

$$P_0$$
 (2,1) $m = 2.00$
 P_1 (5,7) $b = -3$

Arredondamos x e pintamos o ponto (5,6)

• Cenário 2: *m* > 1

×	x (arredondado)	У
2.0	2	1
2.5	3	2
3.0	3	3
3.5	4	4
4.0	4	5
4.5	5	6
5.0		7

$$P_0$$
 (2,1) $m = 2.00$
 P_1 (5,7) $b = -3$

Incrementamos y Calculamos o valor de x para y=7: x=(y-(-3))/2=(7+3)/2=5.0

• Cenário 2: *m* > 1

X	x (arredondado)	У
2.0	2	1
2.5	3	2
3.0	3	3
3.5	4	4
4.0	4	5
4.5	5	6
5.0	5	7

$$P_0$$
 (2,1) $m = 2.00$
 P_1 (5,7) $b = -3$

Arredondamos x e pintamos o ponto (5,7)

• Cenário 2: *m* > 1

X	x (arredondado)	У
2.0	2	1
2.5	3	2
3.0	3	3
3.5	4	4
4.0	4	5
4.5	5	6
5.0	5	7

$$P_0$$
 (2,1) $m = 2.00$
 P_1 (5,7) $b = -3$

Fim do algoritmo, pois y chegou ao limite

• Cenário 2: *m* > 1

• Testar o algoritmo em python:

https://github.com/andreflores2009/ComputacaoGrafica_2025-01_JD/blob/main/Exercicios/Aula06/algoritmo_natural_linhas.py

Resultado

- O algoritmo DDA (Digital Differential Analyzer
 - Analisador Diferencial Digital) é um algoritmo utilizado para rasterização de linhas em um display de vídeo;
- Ele pode ser utilizado também para triângulos e polígonos;

Funcionamento:

- A partir de dois pontos $P_0(x_0,y_0)$ e $P_1(x_1,y_1)$, desejase rasterizar uma linha que vá de P_0 até P_1 . Para isso, devemos seguir os seguintes passos:
 - Calcular o coeficiente angular da reta formada P_0 e P_1 :

$$m = \frac{\Delta y}{\Delta x} = \frac{y1 - y0}{x1 - x0}$$

- Pintamos na tela o pixel da posição inicial (x_0,y_0) ;
- Para definir quais são os próximos pixeis (x,y) a serem pintados, surgem novamente os dois possíveis cenários a partir do valor obtido de m:

Possíveis cenários:

Cenário 1: $m \le 1$ X cresce mais rápido que y Cenário 2: m > 1 y cresce mais rápido que x

- Cenário 1: $m \le 1$
 - Se $m \le 1$, isso significa que x incrementa mais rápido de y na reta formada por P_0 e P_1 , portanto:
 - $x_{k+1} = x_k + 1;$
 - $y_{k+1} = y_k + m;$
 - Ao pintarmos o pixel na posição (x,y), precisamos sempre arredondar o valor de y para inteiro.

$$P_0$$
 (2,1)
 P_1 (9,3)
 $m = \frac{3-1}{9-2} = \frac{2}{7} = 0.30$

• Cenário 1: $m \le 1$

X	У	xPlot	yPlot
2	1		

• Cenário 1: $m \le 1$

X	У	xPlot	yPlot
2	1	2	1

Começamos pintando o ponto inicial Po

• Cenário 1: $m \le 1$

X	У	xPlot	yPlot
2	1	2	1
3			

Incrementamos x em 1

• Cenário 1: $m \le 1$

X	У	xPlot	yPlot
2	1	2	1
3	1.30		

O próximo y será y=1+0.30=1.30

• Cenário 1: $m \le 1$

X	У	xPlot	yPlot
2	1	2	1
3	1.30	3	1

O x a ser pintado será 3, e y será 1, pois precisamos arredondar

• Cenário 1: $m \le 1$

X	У	xPlot	yPlot
2	1	2	1
3	1.30	3	1
4			

Incrementamos x em 1

0

• Cenário 1: $m \le 1$

X	У	xPlot	yPlot
2	1	2	1
3	1.30	3	1
4	1.60		

O próximo y será y=1.30+0.30=1.60

• Cenário 1: $m \le 1$

X	У	xPlot	yPlot
2	1	2	1
3	1.30	3	1
4	1.60	4	2

O x a ser pintado será 4, e y será 2, pois precisamos arredondar

• Cenário 1: $m \le 1$

X	У	xPlot	yPlot
2	1	2	1
3	1.30	3	1
4	1.60	4	2
5	1.90		

Incrementamos x em 1 O próximo y será y=1.60+0.30=1.90

• Cenário 1: $m \le 1$

X	У	xPlot	yPlot
2	1	2	1
3	1.30	3	1
4	1.60	4	2
5	1.90	5	2

O x a ser pintado será 5, e y será 2, pois precisamos arredondar

• Cenário 1: $m \le 1$

X	У	xPlot	yPlot
2	1	2	1
3	1.30	3	1
4	1.60	4	2
5	1.90	5	2
6	2.10		

Incrementamos x em 1 O próximo y será y=1.90+0.30=2.10

• Cenário 1: $m \le 1$

X	У	xPlot	yPlot
2	1	2	1
3	1.30	3	1
4	1.60	4	2
5	1.90	5	2
6	2.10	6	2

O x a ser pintado será 6, e y será 2, pois precisamos arredondar

• Cenário 1: $m \le 1$

X	У	xPlot	yPlot
2	1	2	1
3	1.30	3	1
4	1.60	4	2
5	1.90	5	2
6	2.10	6	2
7	2.40		

Incrementamos x em 1 O próximo y será y=2.10+0.30=2.40

• Cenário 1: $m \le 1$

X	У	xPlot	yPlot
2	1	2	1
3	1.30	3	1
4	1.60	4	2
5	1.90	5	2
6	2.10	6	2
7	2.40	7	2

O x a ser pintado será 7, e y será 2, pois precisamos arredondar

• Cenário 1: $m \le 1$

X	У	xPlot	yPlot
2	1	2	1
3	1.30	3	1
4	1.60	4	2
5	1.90	5	2
6	2.10	6	2
7	2.40	7	2
8	2.70		

Incrementamos x em 1 O próximo y será y=2.40+0.30=2.70

• Cenário 1: $m \le 1$

X	У	xPlot	yPlot
2	1	2	1
3	1.30	3	1
4	1.60	4	2
5	1.90	5	2
6	2.10	6	2
7	2.40	7	2
8	2.70	8	3

O x a ser pintado será 8, e y será 3, pois precisamos arredondar

• Cenário 1: $m \le 1$

X	У	xPlot	yPlot
2	1	2	1
3	1.30	3	1
4	1.60	4	2
5	1.90	5	2
6	2.10	6	2
7	2.40	7	2
8	2.70	8	3
9	3.00		

Incrementamos x em 1 O próximo y será y=2.70+0.30=3.00

• Cenário 1: $m \le 1$

X	У	xPlot	yPlot
2	1	2	1
3	1.30	3	1
4	1.60	4	2
5	1.90	5	2
6	2.10	6	2
7	2.40	7	2
8	2.70	8	3
9	3.00	9	3

O x a ser pintado será 9, e y será 3.

• Cenário 1: $m \le 1$

X	У	xPlot	yPlot
2	1	2	1
3	1.30	3	1
4	1.60	4	2
5	1.90	5	2
6	2.10	6	2
7	2.40	7	2
8	2.70	8	3
9	3.00	9	3

Fim do algoritmo, pois x chegou a P₁

• Cenário 1: $m \le 1$

- Cenário 2: *m* > 1
 - Se m > 1, isso significa que y incrementa mais rápido de x na reta formada por P_0 e P_1 , portanto:

$$x_{k+1} = x_k + \frac{1}{m};$$

 $y_{k+1} = y_k + 1;$

Ao pintarmos o pixel na posição (x,y), precisamos sempre arredondar o valor de x para inteiro.

$$P_0$$
 (2,1)
 P_1 (5,7)
 $m = \frac{7-1}{5-2} = \frac{6}{3} = 2.00$

• Cenário 2: *m* > 1

X	У	xPlot	yPlot
2	1		

• Cenário 2: *m* > 1

X	У	xPlot	yPlot
2	1	2	1

Começamos pintando o ponto inicial P₀

• Cenário 2: *m* > 1

У	xPlot	yPlot
1	2	1
2.00		
	1	1 2

$$P_{0}(2,1)$$
 $x_{k+1} = x_{k} + \frac{1}{m};$ $y_{k+1} = y_{k} + 1;$ $m = 2.00$
 $P_{0}(2,1)$ $y_{k+1} = y_{k} + 1;$ $y_{k+1} = y_{k} + 1;$

Incrementamos y em 1

O próximo x será $x=2+\frac{1}{2}=2.50$

• Cenário 2: *m* > 1

X	У	xPlot	yPlot
2	1	2	1
2.50	2.00	3	2

O y a ser pintado será 2, e x será 3, pois precisamos arredondar

• Cenário 2: *m* > 1

X	У	xPlot	yPlot
2	1	2	1
2.50	2.00	3	2
3.00	3.00		

$$P_{0}(2,1)$$
 $x_{k+1} = x_{k} + \frac{1}{m};$ $y_{k+1} = y_{k} + 1;$ $m = 2.00$
 $P_{0}(2,1)$ $y_{k+1} = y_{k} + 1;$ $y_{k+1} = y_{k} + 1;$

Incrementamos y em 1

O próximo x será $x=2.5+\frac{1}{2}=3.00$

• Cenário 2: *m* > 1

X	У	xPlot	yPlot
2	1	2	1
2.50	2.00	3	2
3.00	3.00	3	3

O y a ser pintado será 3, e x será 3

• Cenário 2: *m* > 1

X	У	xPlot	yPlot
2	1	2	1
2.50	2.00	3	2
3.00	3.00	3	3
3.50	4.00		

$$P_{0}(2,1)$$
 $x_{k+1} = x_{k} + \frac{1}{m};$ $y_{k+1} = y_{k} + 1;$ $m = 2.00$
 $P_{0}(2,1)$ $y_{k+1} = y_{k} + 1;$ $y_{k+1} = y_{k} + 1;$

Incrementamos y em 1

O próximo x será $x=3.0+\frac{1}{2}=3.50$

• Cenário 2: *m* > 1

X	У	xPlot	yPlot
2	1	2	1
2.50	2.00	3	2
3.00	3.00	3	3
3.50	4.00	4	4

O y a ser pintado será 4, e x será 4, pois precisamos arredondar

• Cenário 2: *m* > 1

X	У	xPlot	yPlot
2	1	2	1
2.50	2.00	3	2
3.00	3.00	3	3
3.50	4.00	4	4
4.00	5.00		

$$P_{0}(2,1) \qquad x_{k+1} = x_{k} + \frac{1}{m};$$

$$P_{1}(5,7) \qquad y_{k+1} = y_{k} + 1;$$

$$m = 2.00$$
9
8
7
6
5
4
3
2
1
0
1 2 3 4 5 6 7 8 9

Incrementamos y em 1

O próximo x será $x=3.5+\frac{1}{2}=4.00$

• Cenário 2: *m* > 1

X	У	xPlot	yPlot
2	1	2	1
2.50	2.00	3	2
3.00	3.00	3	3
3.50	4.00	4	4
4.00	5.00	4	5

O y a ser pintado será 5, e x será 4

• Cenário 2: *m* > 1

X	У	xPlot	yPlot
2	1	2	1
2.50	2.00	3	2
3.00	3.00	3	3
3.50	4.00	4	4
4.00	5.00	4	5
4.50	6.00		

Incrementamos y em 1

O próximo x será $x=4.0+\frac{1}{2}=4.50$

• Cenário 2: *m* > 1

X	У	xPlot	yPlot
2	1	2	1
2.50	2.00	3	2
3.00	3.00	3	3
3.50	4.00	4	4
4.00	5.00	4	5
4.50	6.00	5	6

O y a ser pintado será 6, e x será 5, pois precisamos arredondar

• Cenário 2: *m* > 1

X	У	xPlot	yPlot
2	1	2	1
2.50	2.00	3	2
3.00	3.00	3	3
3.50	4.00	4	4
4.00	5.00	4	5
4.50	6.00	5	6
5.00	7.00		

$$P_{0}(2,1) \qquad x_{k+1} = x_{k} + \frac{1}{m};$$

$$P_{1}(5,7) \qquad y_{k+1} = y_{k} + 1;$$

$$m = 2.00$$

$$9$$

$$8$$

$$7$$

$$6$$

$$5$$

$$4$$

$$3$$

$$2$$

$$1$$

$$0$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

Incrementamos y em 1

O próximo x será $x=4.5+\frac{1}{2}=5.00$

• Cenário 2: *m* > 1

X	У	xPlot	yPlot
2	1	2	1
2.50	2.00	3	2
3.00	3.00	3	3
3.50	4.00	4	4
4.00	5.00	4	5
4.50	6.00	5	6
5.00	7.00	5	7

O y a ser pintado será 6, e x será 5

• Cenário 2: *m* > 1

X	У	xPlot	yPlot
2	1	2	1
2.50	2.00	3	2
3.00	3.00	3	3
3.50	4.00	4	4
4.00	5.00	4	5
4.50	6.00	5	6
5.00	7.00	5	7

Fim do algoritmo, pois y chegou a P₁

• Cenário 2: *m* > 1

- Testar o algoritmo em python:
- https://github.com/andreflores2009/ComputacaoGrafica_2025 01_JD/blob/a5797144be8d3f515334bf0f0dae94462414e4e4/Exercicios/Aula06/Rasterizacao_linhas_alg_dda.py

Referências e material de apoio

Material do Professor Guilherme Chagas Kurtz, 2023.

GOMES, Jonas; VELHO, Luiz. Computação gráfica. Rio de Janeiro: Impa, 1998.

HEARN, Donald; Baker, M. Pauline. Computer grafhics: C version. London: Prentice Hall, 1997.

HETEM JUNIOR, Annibal. Computação gráfica. Rio de Janeiro, RJ: LTC, 2006. 161 p. (Coleção Fundamentos de Informática).

HILL Jr, Francis S. Computer graphics using open GL. New Jersey: Prentice Hall, 2001.

WATT, Alan. 3D computer graphics. Harlow: Addison-Wesley, 2000

Thank you for your attention!!

Email: andre.flores@ufn.edu.br