Network: Transport Protocols

Jae Hyeon Kim

Reference

William Stalling, Data and Computer Communications 10/E, Prentice Hall

Transport Protocols

- End-to-end transport of data that shields the user from the details of the underlying communication systems
 - Reliable, connection oriented: has greater complexity, e.g. TCP
 - Best effort, connectionless : datagram, e.g. UDP
- Connection-oriented transport protocol mechanisms
 - Provides establishment, maintenance and termination of a logical connection between TS(Transport Service) users
 - Most common service for a wide variety of applications
 - Is reliable, but complex

Reliable Sequencing Network Service

- Transport service is a simple end to end protocol between two systems on the same network
- However, its situation on internet would be so complex
 - Because the below layer, so IP, provide a best-effort delivery
- Issues are:
 - Addressing
 - Multiplexing
 - Flow control
 - Connection establishment and termination

Addressing

- Transport protocol must be able to derive the following information from the TS user address
- User identification
 - A socket in TCP
 - Port represents a particular transport service user
 - Multiple users employ the same transport protocol and are distinguished by port numbers
- Transport entity identification (on host)
 - Specify transport protocol (TCP, UDP)
- Host address of attached network device
 - In the internet, a global internet address

3-layer Internet Addressing

cf) Domain Name

- Problem statement
 - Average brain can easily remember 7 digits
 - On average, IP addresses have 10.28 digits
- So, we need an easier way to remember IP addresses
 - Makes use of alphanumeric names to refer to hosts
 - Add a distributed, hierarchical protocol (called DNS)
 - Address resolution is to map between host names and IP add.
- Let's re-think our DN
 - <u>www.chonbuk.ac.kr</u> vs <u>www.jbnu.ac.kr</u>

Flow Control

- Complex at the transport layer:
 - Considerable delay in the comm. Of flow control information
 - The transmission delay may be highly variable, making it difficult to effectively use a timeout mechanism for retransmission of lost data
- Reasons for control:
 - User of the receiving transport entity cannot keep up with the flow
 - Receiving transport entity itself cannot keep up with the flow of segments

Alternative to Flow Control Requirements

- Do nothing
 - Segments that overflow are discarded
 - Sending transport entity will fail to get ACK and will retransmit
 - Thus further adding to incoming data
- Refuse to accept further segments from the network service
 - Relies on network service to do the work
 - clumsy
- Use a fixed sliding widow protocol
 - With a reliable network service this works quite well
- Use a credit scheme
 - A more effective scheme to use with an unreliable network service

An Example of the Fixed Sliding Window

Credit Scheme

- Decouples flow control from ACK
 - Then, credit scheme mainly rules the flow control
- Each octet has sequence number
- Each transport segment has sequence number (SN), Ack. Number (AN) and window size (W) in header
- Sends sequence number of first octet in segment
- ACK includes (AN=I, W=j) which means
 - All octets through SN=i-1 acknowledged, want I next
 - Permission to send additional window of W=j octets

Sending and Receiving Perspectives

Credit Allocation Mechanism

Connection Establishment and Termination

- Serves three main purpose:
 - Allow each end to assure that the other exists, and the other's intension to communicate with the initiator
 - Allows exchange or negotiation of optional parameters
 - Triggers allocation of transport entity resources
- By mutual agreement

Simple Connection State Diagram

Connection Establishment Scenario

(a) Active/Passive Open

(b) Active/Active Open

Unreliable Network Service

- More difficult case for transport protocol since
 - Segments may get lost and/or arrive out of order
- Examples include
 - Internetwork using IP
 - IEEE 802.3 with unacknowledged connectionless LLC service
- Issues:
 - Ordered delivery
 - Retransmission strategy
 - Duplication detection
 - Flow control
 - Connection establishment & termination
 - Crash recovery