DIFERENCNE JEDNAČINE

Opšta diferencna jednačina I reda glasi: $F(n, a_n, a_{n+1}) = 0$

Opšta diferencna jednačina II reda glasi: $F(n, a_n, a_{n+1}, a_{n+2}) = 0$

•.....

Opšta diferencna jednačina k-tog reda glasi: $F(n, a_n, a_{n+1}, a_{n+2}, a_{n+k}) = 0$

Nas zanimaju linearne diferencne jednačine!

Opšta linearna diferencna jednačina (homogena)k-tog reda glasi:

$$\boxed{a_{n+k} + b_1 \cdot a_{n+k-1} + b_2 \cdot a_{n+k-2} + \dots + b_k \cdot a_n = 0} \quad \text{gde su } b_1, b_2, \dots, b_k \text{ realni brojevi (konstantni koeficijenti)}$$

Ovu jednačinu rešavamo smenom $a_n = t^n$ pa se diferencna jednačina svede na oblik:

$$\boxed{t^k + b_1 \cdot t^{k-1} + b_2 \cdot t^{k-2} + + b_k = 0}$$
 ovo je takozvana **karakteristična jednačina**

Da pojednostavimo stvari:

Kad uvodimo smenu ustvari vršimo zamene

$$a_n \rightarrow 1$$

$$a_{n+1} \rightarrow t$$

$$a_{n+2} \rightarrow t^2$$

$$a_{n+3} \rightarrow t^3$$

itd.

Dobijamo polinom koji rešavamo i u zavisnosti od rešenja zapisujemo opšte rešenje diferencne jednačine.

Evo par primera, pa će sve biti jasnije.

Primer 1. Rešiti diferencnu jednačinu $a_{n+1} - 5a_n = 0$

Rešenje:

Ovo je homogena diferencna jednačina I reda sa konstantnim koeficijentima.

Uzimamo smene:

$$a_n \rightarrow 1$$

$$a_{n+1} \rightarrow t$$

$$a_{n+1} - 5a_n = 0$$
 postaje: $t - 5 = 0 \rightarrow t = 5$

Sad još samo da zapišemo rešenje (opšte): $a_n = C_1 \cdot 5^n$ gde je C_1 proizvolna konstanta

Primer 2. Rešiti diferencnu jednačinu $a_{n+2} - 5a_{n+1} + 6a_n = 0$

Rešenje:

Ovo je homogena diferencna jednačina II reda sa konstantnim koeficijentima.

Uzimamo smene:

$$a_n \rightarrow 1$$

$$a_{n+1} \rightarrow t$$

$$a_{n+2} \rightarrow t^2$$

Onda dobijamo kvadratnu jednačinu (karakterističnu jednačinu)

$$t^2 - 5t + 6 = 0$$

$$t_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{5 \pm \sqrt{1}}{2} = \frac{5 \pm 1}{2} \rightarrow t_1 = 2 \land t_2 = 3$$

Sad rešenje zapisujemo u obliku $a_n = C_1 \cdot t_1^n + C_2 \cdot t_2^n$, odnosno za naš primer je opšte rešenje: $a_n = C_1 \cdot 2^n + C_2 \cdot 3^n$ C_1, C_2 su proizvoljne konstante

Primer 3. Rešiti diferencnu jednačinu $a_{n+2} - 4a_{n+1} + 4a_n = 0$

Rešenje:

Ovo je homogena diferencna jednačina II reda sa konstantnim koeficijentima.

Uzimamo smene:

$$a_n \rightarrow 1$$

$$a_{n+1} \rightarrow t$$

$$a_{n+2} \rightarrow t^2$$

Onda dobijamo kvadratnu jednačinu $t^2 - 4t + 4 = 0$ čija su rešenja $t_1 = t_2 = 2$

Ovde moramo voditi računa, jer smo dobili dvostruko rešenje!

U tom slučaju se opšte rešenje diferencne jednačine zapisuje u obliku: $a_n = C_1 \cdot t_1^n + C_2 \cdot n \cdot t_2^n$

Za ovaj naš primer bi opšte rešenje glasilo $a_n = C_1 \cdot 2^n + C_2 \cdot n \cdot 2^n$

Da izvučemo jedan zaključak za homogene diferencne jednačine II reda sa konstantnim koeficijentima:

i) ako su rešenja karakteristične jednačine različita $t_1 \neq t_2$, opšte rešenje zapisujemo $a_n = C_1 \cdot t_1^n + C_2 \cdot t_2^n$

ii) ako su rešenja karakteristične jednačine jednaka $t_1 = t_2$, opšte rešenje zapisujemo $a_n = C_1 \cdot t_1^n + C_2 \cdot n \cdot t_2^n$

Često se u zadacima traži i rešenje (partikularno) koje zadovoljava date uslove. To ustvari znači da moramo iz opšteg rešenja naći vrednosti za konstante C_1 i C_2 koje zadovoljavaju date uslove.

Primer 4. Odrediti partikularno rešenje diferencne jednačine $a_{n+2} - 4a_{n+1} + 3a_n = 0$ ako je $a_1 = 3$ i $a_2 = 9$

Rešenje:

Najpre nadjemo opšte rešenje zadate diferencne jednačine.

Uzimamo smene:

$$a_n \rightarrow 1$$

$$a_{n+1} \rightarrow t$$

$$a_{n+2} \rightarrow t^2$$

$$t^2 - 4t + 3 = 0 \rightarrow t_1 = 1 \land t_2 = 3$$

Opšte rešenje je: $a_n = C_1 \cdot 1^n + C_2 \cdot 3^n$

 $a_1 = 3$ znači da umesto n u opštem rešenju stavljamo 1, pa dobijamo $a_1 = C_1 \cdot 1^1 + C_2 \cdot 3^1 \rightarrow \boxed{C_1 + 3C_2 = 3}$

 $a_2 = 9$ znači da umesto n u opštem rešenju stavljamo 2, pa dobijamo $a_2 = C_1 \cdot 1^2 + C_2 \cdot 3^2 \rightarrow \boxed{C_1 + 9C_2 = 9}$

Sad odradimo sistem jednačina:

$$C_1 + 3C_2 = 3 \dots / *(-1)$$

$$C_1 + 9C_2 = 9$$

$$-C_1 - 3C_2 = -3$$

$$C_1 + 9C_2 = 9$$

$$6C_2 = 6 \rightarrow \boxed{C_2 = 1} \rightarrow \boxed{C_1 = 0}$$

Sad ove vrednosti zamenimo u opšte rešenje $a_n = C_1 \cdot 1^n + C_2 \cdot 3^n$ i dobijamo :

 $a_n = 0 \cdot 1^n + 1 \cdot 3^n \rightarrow \boxed{a_n = 3^n}$ a to je traženo partikularno rešenje!

Za homogene diferencne jednačine III reda sa konstantnim koeficijentima bi rešenja zapisivali:

i) Ako je $t_1 \neq t_2 \neq t_3$ onda je opšte rešenje $a_n = C_1 \cdot t_1^n + C_2 \cdot t_2^n + C_3 \cdot t_3^n$

ii) Ako je $t_1 = t_2 \neq t_3$ onda je opšte rešenje $a_n = C_1 \cdot t_1^n + C_2 \cdot n \cdot t_1^n + C_3 \cdot t_3^n$

iii) Ako je $t_1 = t_2 = t_3$ onda je opšte rešenje $a_n = C_1 \cdot t_1^n + C_2 \cdot n \cdot t_1^n + C_3 \cdot n^2 \cdot t_1^n$

Primer 5. Rešiti diferencnu jednačinu $a_{n+3} - 9a_{n+2} + 26a_{n+1} - 24a_n = 0$

Rešenje:

$$a_{n+3} - 9a_{n+2} + 26a_{n+1} - 24a_n = 0$$

 $a_n \rightarrow 1$

 $a_{n+1} \rightarrow t$

 $a_{n+2} \rightarrow t^2$

 $a_{n+3} \rightarrow t^3$

Dobijamo karakterističnu jednačinu:

$$t^3 - 9t^2 + 26t - 24 = 0$$

Njena rešenja su $t_1 = 2, t_2 = 3, t_3 = 4$ (podsetite se Bezuovog stava i polinoma iz **I godine**, da bi znali da rešite ovu jednačinu trećeg stepena)

Opšte rešenje je oblika : $a_n = C_1 \cdot t_1^n + C_2 \cdot t_2^n + C_3 \cdot t_3^n$, odnosno za naš primer $a_n = C_1 \cdot 2^n + C_2 \cdot 3^n + C_3 \cdot 4^n$

Primer 6. Rešiti diferencnu jednačinu $a_{n+3} - 3a_{n+1} + 2a_n = 0$

Rešenje:

 $a_n \rightarrow 1$

 $a_{n+1} \to t$ pazi, ovde u zadatku nema $a_{n+2} \to t^2$ pa to ne menjamo!

 $a_{n+3} \rightarrow t^3$

Karakteristična jednačina je:

 $t^3 - 3t + 2 = 0$ a njena rešenja $t_1 = t_2 = 1 \land t_3 = -2$

Opšte rešenje je oblika : $a_n = C_1 \cdot t_1^n + C_2 \cdot n \cdot t_1^n + C_3 \cdot t_3^n$ odnosno za naš primer $a_n = C_1 \cdot 1^n + C_2 \cdot n \cdot 1^n + C_3 \cdot (-2)^n$

Primer 7. Rešiti diferencnu jednačinu $a_{n+3} - 6a_{n+2} + 12a_{n+1} - 8a_n = 0$

Rešenje:

$$a_n \rightarrow 1$$

$$a_{n+1} \rightarrow t$$

$$a_{n+2} \rightarrow t^2$$

$$a_{n+3} \rightarrow t^3$$

$$t^3 - 6t^2 + 12t - 8 = 0$$
 ovo je ustvari $(t - 2)^3 = 0$ pa su rešenja $t_1 = t_2 = t_3 = 2$

Opšte rešenje je oblika $a_n = C_1 \cdot t_1^n + C_2 \cdot n \cdot t_1^n + C_3 \cdot n^2 \cdot t_1^n$ to jest za naš primer $a_n = C_1 \cdot 2^n + C_2 \cdot n \cdot 2^n + C_3 \cdot n^2 \cdot 2^n$

Primer 7. Rešiti diferencnu jednačinu $a_{n+2} - 5a_{n+1} + 6a_n = 8$

Rešenje:

Šta je ovde problem?

Ovo nije homogena jednačina! Ima rešenje 8.

U takvoj situaciji uzmemo odgovarajuću smenu (verovatno će Vam reći profesor koja je) kojom svedemo nehomogenu jednačinu na homogenu koju znamo da rešimo.

5

Ovde ćemo uzeti smenu $a_n = b_n + 4$

$$a_{n+2} - 5a_{n+1} + 6a_n = 8$$

$$(b_{n+2}+4)-5(b_{n+1}+4)+6(b_n+4)=8$$

$$b_{n+2} + 4 - 5b_{n+1} - 20 + 6b_n + 24 - 8 = 0$$

$$b_{n+2} - 5b_{n+1} + 6b_n = 0$$

Dobili smo homogenu jednačinu

 $t^2 - 5t + 6 = 0$ rešenja karakteristične jednačine su $t_1 = 2, t_2 = 3$ pa je opšte rešenje:

$$b_n = C_1 \cdot t_1^n + C_2 \cdot t_2^n$$

Sad još da vratimo smenu $a_n = b_n + 4 \rightarrow b_n = a_n - 4$

$$a_n - 4 = C_1 \cdot t_1^n + C_2 \cdot t_2^n \rightarrow a_n = C_1 \cdot t_1^n + C_2 \cdot t_2^n + 4$$