

Figure 1

Reaction Microarrays

Figure 2

Chemical ligation as a chemoselective method of thiol incorporation for printing

Figure 3

Reagents and conditions: step 1) BocHNCH(R)CO₂H, PyAOP, 'Pr₂NEt, DMF, step 2) Ac₂O, pyridine; step 3) 10% CF₃CO₂H and 10% Et₃SiH in CH₂Cl₂, then 3% Et₃N in CH₂Cl₂; step 4) Pentafluorophenyl diphenylphosphinate, 'Pr₂NEt, 1:1 mixture of **1** and **2**, DMF, -20 °C.

Figure 4

Attachment of amino acids as their allyl amides to selenyl bromide-functionalized microspheres

Figure 5

Attachment of amino acids as their allyl amides to nitro-functionalized microspheres

Figure 6

Synthesis of Indocarbocyanine and Indodicarbocyanine Fluorophores

Figure 7

Synthesis of Cy3 Fluorophore Conjugates by ^tBu-Protected Amino Acids

Figure 8

Synthesis of Cy5 Fluorophore Conjugates by ^tBu-Protected Amino Acids

Figure 9

Synthesis of Amino Acid Substrates for Printing

Figure 10

Solid Phase Synthesis of Cyanine-Amino Acid Conjugates

Figure 11

Figure 12

Figure 13

Entry	Amino Acid	Actual %ee										Glycine											
		D-enantiomer	90	80	70	60	50	40	30	20	10												
1	Gly	●	●	●	●	●	●	●	●	●	●	H ₂ N—CO ₂ H											
2	Ala	100	91	80	67	63	55	39	32	21	12	0	12	24	32	42	61	60	71	76	90	100	Alanine
3	Val	100	89	79	71	58	52	39	31	20	12	0	13	25	34	42	53	57	76	77	92	100	Valline
4	Ileu	100	90	80	70	60	50	36	30	20	12	0	16	30	35	47	54	62	73	79	80	100	Ieucine
5	Pro	100	93	92	73	65	61	45	35	25	14	0	6	21	31	42	43	67	75	85	93	100	Proline
6	Ser	100	91	77	65	55	49	40	37	27	13	0	4	4	4	4	4	4	4	4	4	4	Serine
7	Cys	100	84	73	79	73	60	46	49	41	-1	0	-1	40	32	46	54	65	68	77	83	100	S-Acetamidomethyl cysteine

Figure 14

Figure 15