

ALGORITHMS TO DETECT TRANSIENT ST SEGMENT EPISODES

- Basic stages of ECG signal processing
- True ischaemic ST segment morphology changes
- Myocardial ischaemia
- Detecting transient ischaemic ST segment episodes
- Problems of automated ischaemia analysis
- Derivation of time-domain diagnostic feature vectors
- Derivation of orthonormal function model transform-based morphologic feature vectors
- Time series of diagnostic and morphologic feature vectors
- Estimating performance of ST episode detection

Basic stages of ECG signal processing

- ECG filtering
- QRS complex detection
 - → (Wave delineation)
- QRS complex classification
 - → (Rhythm classification)
 - → Ischaemia detection (classifying ischaemic events, detecting transient ischaemic episodes, and their precise beginnings, extrema and ends)

True ischaemic ST segment morphology changes

Normal and ischaemic heart beat

True ischaemic ST segment morphology changes

Myocardial ischaemia

Myocardial ischaemia

ST segment level and heart frequency

Detecting transient ischaemic ST segment episodes

 Detect transient ischaemic ST segment episodes within time series of feature vectors

Problems of automated ischaemia analysis

• Shift of the mean electrical axis of the heart – body position change ST segment level and heart frequency

Derivation of time-domain diagnostic feature vectors

Heavileest disconnection and manufactures for trans-

Derivation of time-domain diagnostic feature vectors

• Heart rate, HR(j), ST segment level, $s_1(i,j)$, and ST segment slope, $s_2(i,j)$ i - the lead number, j - the heartbeat number

FP(j) - Fiducial Point

a(i,j) - amplitude of ST segment level at the point J+80ms

 $a_{20}(i,j)$ - amplitude of ST segment level at the point J+20ms

z(i,j) - isoelectric level

$$HR(j) = \frac{1}{FP(j) - FP(j-1)} \cdot 60 \text{ [beats min}^{-1}]$$

$$s_l(i,j) = a(i,j) - z(i,j)$$

$$s_s(i,j) = a(i,j) - a_{20}(i,j)$$

Derivation of time-domain diagnostic feature vectors

Heart rate, ST segment level, and ST segment slope

Heartbeat diagnostic and morphologic features

- The Karhunen-Loéve Transform (KLT)
 - The KLT is orthonormal transform (given morphology (pattern vector) is represented with uncorrelated KL basis functions)
 - Applying the KL basis functions on a pattern vector yields the KL feature vector (KL coefficients)
 - The KLT allows accurate representation of pattern vectors and their subtle features
 - The KLT allows optimal distinguishing between clean and noisy pattern vectors in the sense that the expected least mean squared error (MSE) obtained by approximating a given pattern of a random process using any given number of the first few coefficients is minimal in comparison to other suboptimal transforms

- The QRS complex KL basis functions spread:
 - from FP 96 ms to FP + 24 ms
- The ST segment KL basis functions spread:
 - from FP + 40 ms to FP + 160 ms

- Covariance matrix
- Basis functions are eigenvectors of covariance matrix, R,

$$\mathbf{R} = E \{ (\mathbf{x} - \boldsymbol{\mu}_0) (\mathbf{x} - \boldsymbol{\mu}_0)^T \}$$

where x is a pattern vector and the mean vector μo is defined as:

$$\mu_0 = E\{x\} \qquad \forall x$$

and eigenvalues, σ i, of the covariance matrix, R, are standard deviations of the coefficients

 Number of pattern vectors (744.840) taken from the European Society of Cardiology ST-T Database (ESC DB)

QRS complex KLT basis functions

ST segment KLT basis functions

• If the KLT is applied to the pattern vector **x**, then a new feature vector **y** is obtained:

$$y = \boldsymbol{\Phi}^T x$$

where Φ is the matrix of KLT basis functions (i.e., the matrix of eigenvectors of the covariance matrix R). Components of such a feature vector \mathbf{y} (of such a KLT feature vector) are termed as KLT coefficients.

Euclidean and Mahalanobis distance measures

$$E^{2}(Y,Z) = \sum_{i} (y_{i} - z_{i})^{2} \qquad d^{2}(Y,Z) = \sum_{i} (\frac{y_{i}}{\sigma_{i}} - \frac{z_{i}}{\sigma_{i}})^{2}$$

$$\sigma_{1} \geq \sigma_{2} \geq \dots \geq \sigma_{N} \geq \dots \geq \sigma_{M}$$

where σ_i are eigenvalues of the covariance matrix, R, i.e., standard deviations of the coefficients

Time series of diagnostic and morphologic feature vectors

Estimating performance of ST episode detection

(LTST DB, Protocol B, 908 combined ST segment episodes) (Time domain and KLT approach)

Se		Algorithm	
		ST epis	Other
Ref	ST epis	723	185
Ref	Other	-	-

+P		Algorithm	
		ST epis	Other
Ref	ST epis	750	_
Ref	Other	208	_

ST epis – Combined ST segment episodes

$$Se = 79.6\%$$
 +P = 78.3%