Aula-09 Teoria Cinética dos Gases

Física Geral II - F 228 2º semestre, 2016

Estado de um Sistema

- Sistema Macroscópico: Fluido Homogêneo
- Em equilíbrio Termodinâmico
- Variáveis Macroscópicas de Estado: p, V, T,...

$$f(p,V,T,...)=0$$

O mol e o Número de Avogadro

1 mol =

Número de átomos em uma amostra de 12 g de carbono 12

Número de Avogadro:

 $N_A = 6.02 \times 10^{23} \text{ mol}^{-1} \text{ (moléculas por mol)}$

Número de mols num gás de N moléculas: $n = N/N_A$

Número de mols num gás de massa m: n = m/M

M : Massa molar = Massa de 1 mol

ou: $n = m/(m_o N_A)$

 m_o : Massa de 1 molécula do gás

Gases Ideais

 Interação entre as partículas é desprezível ↔ Gases reais no limite de baixas densidade.

Lei dos gases ideais:

$$pV = NkT = (nN_A)kT = nRT$$

 $k \text{ (ou } k_B) = 1.38 \times 10^{-23} \text{ J/K} \rightarrow \text{Constante de Boltzmann}$ $n \rightarrow \text{Número de mols}$ $N_A = 6.02 \times 10^{23} \text{ mol}^{-1} \rightarrow \text{Número de Avogrado}$ $R = N_A k = 8.31 \text{ J mol}^{-1}\text{K}^{-1} \rightarrow \text{Constante dos Gases Ideais}$

Para 1 mol de qualquer gás ideal:

$$\frac{pV}{T} = R \rightarrow V = R\frac{T}{p}$$
 $\begin{cases} p = 101300 \text{ Pa}; T = 273,15 \text{ K} \\ V_{Imol} = 0,0224 \text{ m}^3 = 22,4 \text{ } l \end{cases}$

Para *CNTP*:

Processos Isotérmicos

• T constante

$$p = \frac{nRT}{V} = \frac{cte}{V}$$

Processos Isotérmicos

$$W_{i\to f} = \int_{V_i}^{V_f} p \, dV$$

$$W_{i\to f} = \int_{V_i}^{V_f} \frac{nRT}{V} dV$$

$$W_{i \to f} = nRT \ln \left(\frac{V_f}{V_i} \right)$$

Processos Isotérmicos

$$W_{i \to f} = nRT \ln \left(\frac{V_f}{V_i}\right)$$

Se:

V cte: $V_f = V_i$; $W_{if} = nRT \ln(1) = 0$

Expansão: $V_f > V_i$; $W_{if} > 0$

Compressão: $V_f < V_i$; $W_{if} < 0$

Processos Isobáricos

• p constante

$$V = \frac{nRT}{p} = cte \times T$$

$$W_{i\to f} = \int_{V_i}^{V_f} p \, dV = p \, \Delta V$$

Processos Isocóricos

• V constante

$$p = \frac{nRT}{V} = cteT$$

$$W_{i\to f} = \int_{V_i}^{V_f} p \, dV = 0$$

Visão microscópica

Temperatura:

É diretamente proporcional à energia cinética média das partículas do gás.

• Pressão:

É a taxa média de variação do momento linear das partículas que colidem nas paredes do recipiente de gás, por unidade de área.

 n_i partículas por unidade de volume com componente x da velocidade dada por v_{ix} atingem a área sombreada num tempo dt

Cada partícula ao colidir com a parede sombreada sofre uma mudança de momento linear Δp_{ix} :

$$\Delta p_{ix} = -2mv_{ix}$$

Transfere: $+2mv_{ix}$

N_i partículas:

$$dp_{ix} = (2mv_{ix})n_i(v_{ix}dtds)$$
$$dp_{ix} = 2n_i mv_{ix}^2 dtds$$

$$dp_{ix} = 2n_i m v_{ix}^2 dt ds$$

Momento linear total (considerando todas v_i possíveis) transferido para a área ds no intervalo de tempo dt:

$$dp_x = \sum_{i|v_{ix}>0} 2n_i m v_{ix}^2 ds dt$$

Pressão:
$$P = \frac{dF_x}{ds} = \frac{d}{ds} \left(\frac{dp_x}{dt} \right) = \sum_{v_{ix} > 0} 2n_i m v_{ix}^2$$

$$P = \sum_{i|v_{ix}>0} 2n_i m v_{ix}^2$$

Isotropia do espaço:
$$v_{i(+x)}^2 = v_{i(-x)}^2 \Longrightarrow P = \sum n_i m v_{ix}^2$$

$$P = \sum_{i} n_{i} m v_{ix}^{2}$$

$$\langle v_x^2 \rangle = \frac{\sum_{i}^{n_i} v_{ix}^2}{\sum_{i}^{n_i}}$$
 \Longrightarrow Velocidade quadrática média

Isotropia do espaço
$$\Rightarrow$$
 $\langle v_x^2 \rangle = \langle v_y^2 \rangle = \langle v_z^2 \rangle = \frac{\langle v^2 \rangle}{3}$

$$P = m \sum_{i} n_{i} v_{ix}^{2} = m \langle v_{x}^{2} \rangle \sum_{i} n_{i} = m \langle v_{x}^{2} \rangle \frac{N}{V} = \frac{1}{3} \frac{N}{V} m \langle v^{2} \rangle$$

$$P = \frac{1}{3} \sqrt[N]{m \langle v^2 \rangle} = \frac{1}{3} \frac{nN_A}{V} m \langle v^2 \rangle = \frac{nM_{mol}}{3V} \langle v^2 \rangle \quad ; \quad n \to mols$$

Energia cinética de translação média
$$\Rightarrow \langle K \rangle = \frac{1}{2} Nm \langle v^2 \rangle \Rightarrow 2 \langle K \rangle = Nm \langle v^2 \rangle$$

Daí:
$$P = \frac{2}{3} \frac{\langle K \rangle}{V}$$
 \Longrightarrow $\langle K \rangle = \frac{3}{2} PV = \frac{3}{2} nRT = \frac{3}{2} NkT$ $T = \frac{2\langle K \rangle}{3Nk}$

$$T = \frac{2\langle K \rangle}{3Nk}$$

Para 1 partícula
$$(N = 1)$$
: $\langle K \rangle = \frac{1}{2} m \langle v^2 \rangle = \frac{3}{2} kT$

Independent da massa!

Para 1 mol $(n = 1)$: $\langle K \rangle = \frac{1}{2} N_A m \langle v^2 \rangle = \frac{3}{2} RT$

$$k = \frac{R}{N_A}$$

Velocidade média quadrática

$$\left|\frac{1}{2}(N_A m)\langle v^2 \rangle = \frac{3}{2}RT\right|$$

$$\langle v^2 \rangle = \frac{3RT}{mN_A}$$

$$\langle v^2 \rangle = \frac{3RT}{mN_A} \quad \Rightarrow \quad v_{rms} \equiv \sqrt{\langle v^2 \rangle} = \sqrt{\frac{3RT}{M_{mol}}} = \sqrt{\frac{3kT}{m}}$$

GÁS	Massa Molar	(m/c)	
(T = 300 K)	(10 ⁻³ kg/mol)	v _{rms} (m/s)	
H_2	2.02	1920	
He	4.0	1370	
H ₂ O (vapor)	18.0	645	
N_2	28.0	517	
O_2	32.0	438	
CO ₂	44.0	412	
SO ₂	64.1	342	

$$k = \frac{R}{N_A}$$

$$R = 8.31 \frac{J}{\text{mol.K}}$$

• Para um gás ideal, o número médio de partículas com energia $E(\mathbf{r}, \mathbf{v})$, numa posição entre \mathbf{r} e \mathbf{r} + d \mathbf{r} e velocidade entre \mathbf{v} e \mathbf{v} + d \mathbf{v} é dada por:

$$f(\mathbf{r}, \mathbf{v})d^3\mathbf{r}d^3\mathbf{v} = Ce^{-\frac{E(\mathbf{r}, \mathbf{v})}{kT}}d^3\mathbf{r}d^3\mathbf{v}$$
; $E(\mathbf{r}, \mathbf{v}) = \frac{1}{2}m\mathbf{v}^2$

• O termo exponencial é o fator de Boltzmann da distribuição canônica e C é uma constante a ser determinada pela condição de normalização: $C \int_{\mathbf{v}} e^{-\frac{m\mathbf{v}^2}{2kT}} d^3\mathbf{r} d^3\mathbf{v} = N$

$$\left\{ C \int_{(\mathbf{r})} \int_{(\mathbf{v})} e^{-\frac{m\mathbf{v}^2}{2kT}} d^3\mathbf{r} d^3\mathbf{v} = N \right.$$

onde N é o número total de partículas, com energia apenas cinética (translação), no volume:

$$V = \int_{(\mathbf{r})} d^3 \mathbf{r}$$

• Mas:

Mas:

$$\mathbf{v}^2 = v_x^2 + v_y^2 + v_z^2 \longrightarrow CV \left(\int_{-\infty}^{+\infty} e^{-\frac{mv_x^2}{2kT}} dv_x \right)^3 = CV \left(\frac{2\pi kT}{m} \right)^{\frac{3}{2}} = N \implies$$

$$C = n \left(\frac{m}{2\pi kT} \right)^{\frac{3}{2}}; \left| f(\mathbf{v}) d^3 \mathbf{r} d^3 \mathbf{v} = n \left(\frac{m}{2\pi kT} \right)^{\frac{3}{2}} e^{-\frac{mv^2}{2kT}} d^3 \mathbf{r} d^3 \mathbf{v} \right|; \quad n = \frac{N}{V}$$

• Notar que a função distribuição $f(\mathbf{v})$ não depende de \mathbf{r} ; depende somente do módulo de \mathbf{v} , ou seja, $f(\mathbf{v}) = f(v)$.

Expressando por unidade de volume: (Distribuição de velocidades)

$$f(\mathbf{v})d^3\mathbf{v} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}}e^{-\frac{mv^2}{2kT}}d^3\mathbf{v}$$

• O Nº médio de partículas por unidade de volume cujo módulo da velocidade,

ou rapidez (speed), está entre v e v + dv será:

$$F(v)dv = \int_{v}^{v+dv} f(v)d^{3}v = f(v)4\pi v^{2}dv$$

$$F(v) dv = n \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{mv^2}{2kT}} 4\pi v^2 dv$$

Normalização:
$$\int_{0}^{\infty} F(v) dv = n = \frac{N}{V}$$

Area =
$$4\pi v^2$$

$$v + dv$$

$$x$$

Probabilidade:
$$P_r(v) dv = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{mv^2}{2kT}} v^2 dv$$

• Velocidade mais provável (máximo!):

$$\frac{dF(v)}{dv} = \frac{d}{dv} \left[4\pi n \left(\frac{m}{2\pi kT} \right)^{\frac{3}{2}} e^{-\frac{mv^2}{2kT}} v^2 \right] = 0$$

$$2ve^{-\frac{mv^2}{2kT}} - v^2\left(\frac{m}{kT}v\right)e^{-\frac{mv^2}{2kT}} = 0 \quad \rightarrow \quad v_{mp}^2 = \frac{2kT}{m} \quad \rightarrow \quad v_{mp} = \sqrt{\frac{2kT}{m}}$$

• Velocidade média: $\overline{v} = \int_{0}^{\infty} v P_r(v) dv = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{1}{2}} \int_{0}^{\infty} e^{-\frac{mv^2}{2kT}} v^3 dv$

$$\overline{v} = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} \left[\frac{1}{2} \left(\frac{m}{2kT}\right)^{-2}\right] = \sqrt{\frac{8}{\pi} \frac{kT}{m}}$$

• Velocidade mais provável (*máximo!*):

$$v_{mp} = \sqrt{\frac{2kT}{m}}$$

• Velocidade média:
$$\bar{v} = \int_{0}^{\infty} v P_r(v) dv = \sqrt{\frac{8}{\pi} \frac{kT}{m}}$$

• Velocidade média quadrática:
$$\overline{v^2} = \int_0^\infty v^2 P_r(v) dv = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} \int_0^\infty e^{-\frac{mv^2}{2kT}} v^4 dv$$

$$\overline{v^2} = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} \left[\frac{3}{8}\sqrt{\pi} \left(\frac{m}{2kT}\right)^{-\frac{5}{2}}\right] = \frac{3kT}{m} = \frac{3RT}{M_{mol}} \implies v_{rms} = \sqrt{\frac{3RT}{M_{mol}}}$$

$$R = N_A k$$

$$P_r(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} v^2 \exp(-\frac{mv^2}{2kT})$$

$$F(v_1, v_2) = \int_{v_1}^{v_2} P_r(v) dv$$

$$\int_{0}^{\infty} P_r(v) dv = 1$$

$$F(v_1, v_2) = \int_{v_1}^{v_2} P_r(v) dv$$

$$\int_{0}^{\infty} P_r(v) \, dv = 1$$

Distribuição de velocidades de Maxwell

$$P(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} v^2 \exp(-\frac{mv^2}{2kT})$$

Fração de moléculas com módulo de velocidade entre v_1 e v_2 : $F(v_1, v_2) = \int_{-\infty}^{v_2} P(v) dv$

$$F(v_1, v_2) = \int_{v_1}^{v_2} P(v) dv$$

Condição de Normalização:

$$\int_{0}^{\infty} P(v) \, dv = 1$$

Velocidade média:

$$\langle v \rangle = v_{m\acute{e}dia} = \int_{0}^{\infty} vP(v) dv = \sqrt{\frac{8RT}{\pi M_{mol}}}$$

Velocidade média quadrática:

$$< v^{2} > = \int_{0}^{\infty} v^{2} P(v) dv = \frac{3RT}{M_{mol}} = v_{rms}^{2}$$

Energia interna

Gás ideal monoatômico

Energia interna (E_{int}) = Energia cinética total média < K >

$$E_{\rm int} = \langle K \rangle = \frac{3}{2} NkT = \frac{3}{2} nRT$$

$$R = N_A k$$

Capacidade térmica

1 mol

$$dQ = C dT$$

SE a pressão constante:

$$dQ_P = C_P dT$$

Calor específico molar a pressão constante

SE a volume constante:

$$dQ_V = C_V dT$$

Calor específico molar a volume constante

$$dV = 0$$

$$dE_{\rm int} = dQ_{\rm V} - dW$$

$$dE_{\rm int} = dQ_V = C_V dT$$

$$C_V = \frac{\partial E_{\text{int}}}{\partial T}$$

Então:
$$C_V = \frac{3}{2}R = 12,5 \text{ J/(mol \cdot K)}$$

• A Volume constante

Para 1 mol de gás ideal:

$$E_{\rm int} = \langle K \rangle = \frac{3}{2} N_A kT = \frac{3}{2} RT$$

$$R = N_A k$$

• A *Pressão* constante

$$dE_{\rm int} = dQ_p - dW$$

$$dE_{\rm int} = C_p dT - p dV$$

Mas dE_{int} pode ser expresso apenas em termos de dT, independendo do processo:

$$dE_{\rm int} = C_p dT - p dV = C_V dT \implies C_p dT - R dT = C_V dT$$

$$C_p = C_V + R$$

Usando (para 1 mol):

$$pV = RT \rightarrow pdV = RdT$$

$$C_P = C_V + R$$

• Para 1 mol de um gás ideal MONOATÔMICO:

$$C_{v} = \frac{3}{2}R$$

$$C_P = \frac{5}{2}R$$

$$C_{V} = \frac{3}{2}R$$
 $C_{P} = \frac{5}{2}R$ $\gamma = \frac{C_{P}}{C_{V}} = \frac{5}{3}$

• Onde γ é a razão entre os calores específicos molares do gás.

$$C_V = \frac{\partial E_{\text{int}}}{\partial T}$$

• A Volume constante

Monoatômicos Molécula C_V (J/mol.K) He 12,5 12,6

 $\approx \frac{3}{2}R = 12,5$

Diatômicos

atômicos

Poli-

20,7

20,8

 NH_4 29,0

29,7

$$\approx \frac{5}{2}R = 20.8$$

> 3R = 24,9!

Teorema da equipartição de energia (J. C. Maxwell)

AONO ATÔMICO

Graus de liberdade

Energia Interna (por molécula)

MONOATÔMICO

Gás ideal

Translação 3D: 3

 $E_{int} = 3\frac{1}{2}kT$

DIATÔMICO

Translação 3D: 3
Rotação 2 eixos: 2
Vibração 2 modos: 2
(em altas temperaturas!)

 \implies 5 ou 7 (T alta)

$$E_{int} = 5\frac{1}{2}kT$$

$$E = 7\frac{1}{2}kT$$

ou: $E_{int} = 7\frac{1}{2}kT$

POLIATÔMICO

q

$$E_{\rm int} = q \frac{1}{2} kT$$

• Efeitos Quânticos: $E_{\rm int}$ assume valores discretos acima de determinadas temperaturas.

• Generalizando para 1 mol de gás ideal, com q graus de liberdade:

$$E_{\rm int}(T) = \frac{1}{2} qRT$$

$$R = N_A k$$

$$R = N_A k$$

$$C_{V} = \left(\frac{\partial E_{\text{int}}}{\partial T}\right)_{V} \quad C_{p} = C_{V} + R \quad \gamma = \frac{C_{p}}{C_{V}}$$

$$C_p = C_V + R$$

$$\gamma = \frac{C_p}{C_V}$$

$$C_V = \frac{q}{2}R$$
, $C_P = \left[\frac{q}{2} + 1\right]R$, $\gamma = \frac{q+2}{q}$

Movimento aleatório das moléculas de um gás: há colisões entre as moléculas

Distância média entre colisões: Livre Caminho Médio

$$\overline{\ell} = \frac{1}{\sqrt{2\pi}d^2(N/V)}$$

Volume de exclusão

$$\frac{4}{3}\pi d^3 = 8\frac{4}{3}\pi \left(\frac{d}{2}\right)^3 = 8V_0$$

Trajetória do volume de exclusão

Seção transversal do tubo percorrido pelo volume de exclusão:

$$\sigma = \pi d^2$$

Volume varrido num tempo Δt :

$$V_{t} = \sigma \, \overline{v}_{rel} \Delta t$$

Espaço percorrido pelo centro da esfera

$$V_{t} = \sigma \, \overline{v}_{rel} \, \Delta t$$

Número médio de colisões: (por unidade de volume)

$$\eta = \frac{N}{V}V_{t} = \frac{N}{V}\sigma\overline{v}_{rel}\Delta t$$

Frequência média de colisões:
$$\bar{f} = \frac{\eta}{\Delta t} = \frac{N}{V} \sigma \bar{v}_{rel}$$

Livre Caminho Médio (supondo: $\overline{v} \approx \overline{v}_{rol}$):

$$\overline{\ell} = \overline{v} \left(\frac{\Delta t}{\eta} \right) = \frac{\overline{v} V}{N \sigma \overline{v}_{rel}} \approx \frac{1}{(N/V)\pi d^2} \quad \sigma = \pi d^2$$

$$\sigma = \pi d^2$$

$$\overline{\ell} = \overline{v} \left(\frac{\Delta t}{\eta} \right) = \frac{\overline{v} V}{N \sigma \overline{v}_{rel}} \approx \frac{1}{(N/V) \pi d^2}$$

Correção devida à velocidade relativa:

$$\overline{v}_{rel} = \sqrt{2} \, \overline{v}$$

$$\overline{\ell} = \frac{1}{(\sqrt{2})\pi d^2(N/V)}$$

$$\overline{\ell} = \frac{1}{(\sqrt{2})\pi d^2(N/V)} \frac{N}{V}$$

$$\frac{N}{V} = \frac{p}{kT} \qquad \qquad \overline{\ell} = \frac{kT}{(\sqrt{2})\pi d^2 p}$$

Gases a

T = 300 K

Pressão (Pa)	10⁻፡	10 ⁻³	1	10³	10⁵
Livre percurso médio	km	m	mm	μm	nm
Ar	6.8	6.8	6.8	6.8	68
Argon	7.2	7.2	7.2	7.2	72
CO ₂	4.5	4.5	4.5	4.5	45
Hidrogênio	12.5	12.5	12.5	12.5	125
Vapor de água	4.2	4.2	4.2	4.2	42
Hélio	19.6	19.6	19.6	19.6	196
Azoto	6.7	6.7	6.7	6.7	67
Neon	14.0	14.0	14.0	14.0	140
Oxigênio	7.2	7.2	7.2	7.2	72
Pressão (mbar)	10 ⁻⁸	10 ⁻⁵	10 ⁻²	10	1000

Chra Fácuo
Aho Fácuo
Acorio Fácuo
Bairo Fácuo
Antho

Processos adiabáticos

(Quase equilíbrio!)

$$dQ = 0 \longrightarrow dE_{\text{int}} = -dW = -p \, dV$$

$$n \text{ mols}: dE_{\text{int}} = nC_V dT \longrightarrow n dT = \frac{dE_{\text{int}}}{C_V} = -\frac{p}{C_V} dV$$

$$pV = nRT \implies pdV + Vdp = nRdT \implies n dT = \frac{pdV + Vdp}{R}$$

$$\frac{pdV + Vdp}{R} = \frac{-pdV}{C_V}$$

$$pdV + Vdp = -pdV(\gamma - 1)$$

$$C_p = C_V + R \implies \frac{R}{C_V} = \gamma - 1$$

Processos adiabáticos (Quase equilíbrio!)

$$\frac{dp}{p} = -\gamma \frac{dV}{V}$$

$$\ln p + \gamma \ln V = cte$$

$$pV^{\gamma} = p_0 V_0^{\gamma} = cte$$

Isolamento

$$p_{\scriptscriptstyle 1}V_{\scriptscriptstyle 1}^{\scriptscriptstyle \gamma}=p_{\scriptscriptstyle 2}V_{\scriptscriptstyle 2}^{\scriptscriptstyle \gamma}=Cte$$

Processos adiabáticos

(Quase equilíbrio!)

$$pV^{\gamma} = p_0 V_0^{\gamma} = cte$$

$$pV = nRT$$

$$TV^{\gamma-1} = cte^*$$

$$T p^{\frac{1-\gamma}{\gamma}} = cte^{**}$$

Processos adiabáticos

(Quase equilíbrio!)

$$p_i V_i^{\gamma} = p_f V_f^{\gamma} = C$$

$$W_{i \to f} = \int_{V_i}^{V_f} p dV = \int_{V_i}^{V_f} CV^{-\gamma} dV$$

$$W_{i \to f} = \left[\frac{CV^{-\gamma+1}}{-\gamma+1}\right]_{V_i}^{V_f}$$

$$W_{i \to f} = \frac{CV_f^{-\gamma+1} - CV_i^{-\gamma+1}}{-\gamma + 1} = \frac{p_f V_f - p_i V_i}{-\gamma + 1}$$

$$W_{i \to f} = -\frac{(p_f V_f - p_i V_i)}{\gamma - 1}$$

Expansão Adiabática de um Gás Ideal

Expansão Adiabática Livre:

$$\Delta T = T_f - T_i = 0$$

$$p_i V_i = p_f V_f$$

- Processo envolve situações fora de equilíbrio
- Não é descrito pela termodinâmica

Expansão Adiabática Lenta:

$$T_i V_i^{\gamma-1} = T_f V_f^{\gamma-1}$$

$$p_i V_i^{\gamma} = p_f V_f^{\gamma}$$

- Processo de quase equilíbrio
- É descrito pela termodinâmica