國立

台北科技大學

NATIONAL TAIPEI UNIVERSITY OF TECHNOLOGY

高等數位影像處理 HW5

指導老師: 郭天穎

班級: 電機碩一

姓名: 蘇冠宇

學號: 108318047

實驗室: DIVL 212

1.2D-DFT

(a) myDFT

很固執地去改成先對 row 做 DFT 在對 col 做 DFT·結果原本可能要等 5 分鐘現在只要 20 幾秒,真的快很多,但是拆開來做卡在公式裡面的 cos 和 sin 也要展開。

- 在第一張圖因為白色部分是斜的,所以在經過 DFT 後,長邊的頻率圖會較短,短邊的 會較長,而成 45 度角對稱。
- 第二張圖的部分,因為呈現 sine 波,所以出來會只有一條線有頻率,線上的亮點是主頻。

(b) OpenCV_DFT

(c) IDFT

● IDFT 的部分,因為我是做兩次一維的 DFT,所以回去我也是做兩次一維,跟 DFT 一 樣遇到的問題就是公式拆開很麻煩,還有 IDFT 需要用到複數,所以在 DFT 完需要將 complex 存出來。而輸出結果部分,跟輸入一模一樣阿,根本完還原!

2. Filter in Frequency domain

(a) Ideal filter

Picture						
LPF						
	Ideal kernel	Magnitude spectrum	Ideal result			
5	•	•				
20	•	•				
60						

HPF					
	Ideal kernel	Magnitude spectrum	Ideal result		
5	•				
20	•				
60			Sold State of the		
Discussion					

● 在 Ideal 部分,因為 ideal 的遮罩周圍的值改變太大,所以會使頻率下降太快,造成圖形會有波紋產生。LPF 的部分,因未保留了低頻(變化較小的部分),所以在遮罩越來越大的狀況下會越來越明顯(加入越多高頻),而 HPF 的部分就是保留高頻(變化較大的部分如邊緣),所以邊緣部分會保留下來,遮罩越大代表更多頻率被遮掉,所以會使細節

的邊緣更加清楚。

(b) Gaussian filter

Gaussian HPF					
	kernel	Magnitude spectrum	result		
5	•				
20	•				
60	•				
Discussion					

● 在 Gaussian 的部分,因為不再像 ideal 的 kernel 頻率像降那麼快,所以在波紋的部分就少很多,然後在 kernel 部分,Gaussian 的 kernel 雖然值是 1~0,但是因為數值下降得很快,所以在跟原本的頻域圖紙會有點差距,在 hight 部分因為周圍還是有值,所以會造成看起來很

大,而在 low 部分因為中間並不是完全黑色,所以乘起來不會像 ideal 那麼明顯。

(c) Noising image

▶ 將雜訊圖轉為頻域後,發現有 8 個特別突出的點,我的作法是在八個點上做 Gaussian,

來吧雜訊遮掉,輸出的圖片把大部分的雜訊都消除了,但是圖片也變白了。可能是高斯的權重互相影響到所以才會這樣。

3. Watermark in Frequency domain

(a) Method i

方法一的部分,先將輸入圖片的頻遇圖取出來後,我的 f(.)作法是將原圖上位置
在"ADIP"字樣上的點座標值*0.3,在這部分我有式過如果把值改成變大(ex. *1.5)的
話會造成 IDFT 在計算時候造成某個頻率權重變大(頻率加重),所以會使的波紋更加明

顯·如果把倍率調成為下降的話則這種狀會就會明顯改變(還是有這個頻率的值·只是頻率的強度下降)。在最後測試結果部分·0.3 是最能清楚看到 ADIP 字樣跟 IDFT 回去也看不太出來(要看得很仔細)的結果。

(b) Method ii

- 在方法 2 的部分,我的作法是將 mark 的頻域圖*0.01,再去加上原圖的頻域圖,如果 倍數太大就會造成上面的圖的狀況,導致 ADIP 字樣太明顯,其他部分變暗,而如果 太小的話會根本看不出來有加上去。
- 在頻域圖的部分,原圖與加上 mark 的圖其實只變黑了一點點。

(c)Compare

Discussion

- 在方法一的部分,因為 ADIP 字樣是直接加在頻域圖上,所以很明顯就可以知道有被加入 加入 遮罩。
- 在方法二的狀況下,除非有遮罩不然其實根本看不出來,但如果方法二的 mark 在頻 域加得不好,在空間域上就會很明顯看的出來。