

RAPID SOIL FERTILITY SURVEY & SOIL TESTING INSTITUTE

Thokar Niaz Baig, Lahore Ph: +92 42 99233581 E-mail: director sfri@yahoo.com

No. 6351-8422 Dated 14-06-204

To

1. All SFOs and ASFOs, Soil Fertility Research Institute, Punjab, Lahore.

2. All Divisional and District Heads/Chemists and Assistant Chemists

Subject: SFRI-GUIDE-V: SOIL AND WATER DATA INTERPRETATION AND FERTILIZER RECOMMENDATIONS FOR VARIOUS CROPS(2021)

By the grace of Almighty Allah, who enabled us to write another excellent and much-needed booklet, "SFRI-GUIDE-V: SOIL AND WATER DATA INTERPRETATION AND FERTILIZER RECOMMENDATIONS FOR VARIOUS CROPS (2021)," which is the most pressing need of the hour and almost completely covers all aspects of Soil and Water data interpretation, which is desperately needed for every Agricultural Scientist, This booklet will benefit not only experts, but also university students studying Soil Science, Extension Field officers, and Advanced Growers, all of whom will contribute to the growth of modernized Agriculture. In order to eliminate all flaws in formulating fertilizer recommendations, the lab and field personnel under the Administrative control of the Soil Fertility Research Institute, Punjab Lahore, will strictly follow the guidelines for formulating fertilizer recommendations. This book serves as a *foundation for soil fertility*, which is a critical need of the hour.

You are required to distribute a copy of this booklet to each scientist working under your Administrative supervision, as well as to the Deputy and Assistant Directors of the Agriculture Extension wing, as well as to the University/ Department library in your respective region, in order to effectively communicate Soil and Water data interpretation and fertilizer recommendations for various crops. This would also be an attempt to bridge the gap between Scientists and Extension workers. It is advisable to provide an acknowledgement to this office in this regard, which will be evaluated during a review meeting or inspection.

You are required to follow all instructions according to guidelines in order to obtain consistent results with minimal variations for strict enforcement in order to improve the precision with which formulating fertilizer recommendations are made more efficient and authenticated which is our primary goal.

(DR MUHAMMAD AKRAM QAZI)
Chief Scientist/ Director

Soil Fertility Research Institute, Punjab, Lahore

CC.

1. PS to Additional Secretary (Admin), Agriculture Department, Punjab, Lahore.

- 2. Chief Scientist/Director General Agriculture (Research), AARI, Faisalabad with the request that it should be widely disseminated among the scientists affiliated with AARI, Faisalabad.
- 3. The Director General Agriculture (Ext & Adaptive Res.), Agriculture House, Davis Road, Lahore with the request to circulate widely among Field Officers of Extension & Adaptive Research working under your administrative control in order to increase awareness and knowledge of soil and water data interpretation and fertilizer recommendations for various crops.

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

SFRI-Guide-V	Soil and water data interpretation and fertilizer recommendations for	Issue on	13.06.2021	Revision	0
	various crops				

2021

SFRI-GUIDE-V

SOIL AND WATER DATA INTERPRETATION AND FERTILIZER RECOMMENDATIONS FOR VARIOUS CROPS

Compiled and edited by

Dr. Muhammad Akram Qazi Chief Scientist/Director Soil Fertility Research Institute Thokar Niaz Baig, Lahore

www.sfripunjab.gov.pk director_sfri@yahoo.com

Recommended Citation

M.A. Qazi, M.S.A. Khan, N. Iqbal, F. Ahmad (2021), *SFRI-Guide-V: Soil and water data interpretation and fertilizer recommendations for various crops*. Directorate of Soil Fertility Research Institute, Department of Agriculture, Punjab, Lahore

Important Disclaimer

Authors accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this guide, or any error, inaccuracy, or omission in the information.

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

SFRI-Guide-V	Soil and water data interpretation and fertilizer recommendations for	Issue on	13.06.2021	Revision	0
	various crops				

■ FOREWORD

Soil and water analysis data is meaningless unless it is interpreted correctly and crop-specific fertilizer doses and recommendations are established. It was also noted that there is some misunderstanding among the Soil and Water Testing Laboratories of Agriculture Department on the guidelines and standards required for evaluating soil and water analysis data and providing fertilizer recommendations. Furthermore, it is time consuming and difficult to interpret soil and water analysis data. The guide is intended to compile the criteria and standards necessary for making meaningful interpretations and fertilizer recommendations for various crops. Over the years, the Soil Fertility Research Institute (SFRI), Punjab, Lahore has established and authenticated these guidelines and standards.

It is critical to remember that, in addition to soil fertility, there are numerous other elements that influence plant growth. Crop yield can be hampered by poor drainage, insects, weeds, drought, disease, and other problems. As a result, all conceivable circumstances should be considered when making an interpretation. Although organic fertilizers have a part in modern agriculture, mineral fertilizers are the principal source of plant nutrition. As a result, the primary objective of this book is to make recommendations on mineral fertilizers. The recommendations and interpretations contained in this book are not intended to replace specialized professional advice on specific difficulties or issues and cannot be used to supersede it. Although this text has been meticulously compiled, any latest developments, flaws, or errors will be greatly welcomed.

I hope you find this SFRI-Guide-V informative, and any comments you have will be very appreciated if they help to improve it.

Chief Scientist/Director, Soil Fertility Research Institute, Punjab, Lahore

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

SFRI-Guide-V	Soil and water data interpretation and fertilizer recommendations for	Issue on	13.06.2021	Revision	0
	various crops				

■ ACKNOWLEDGEMENT

Syed Asad Rehman Gillani, Secretary Agriculture, Punjab deserves official privileges for his vision and dedication in enabling us to create a document that contains all of the necessary guidelines for interpreting soil and water data and making profitable fertilizer recommendations.

■ FUTURE WORK STRATEGY OF SFRI

- 1. To improve the efficiency of service delivery of all divisional and district labs.
- 2. In all labs, all laboratory tests will be performed in accordance with uniform standard test methods.
- 3. To improve the handling of fertilizer samples collected as part of an anti-adulteration campaign for accuracy, repeatability, and reliability.
- 4. By implementing reforms in the field wing, the institute's original mandate of formulating fertilizer recommendations will be made more efficient and authenticated. In Sha Allah

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

SFRI-Guide-V	Soil and water data interpretation and fertilizer recommendations for	Issue on	13.06.2021	Revision	0	
	various crops					

■ CONTENTS

Foreword	ii
Acknowledgements	iii
Future work strategy of SFRI	iii
Introduction	1
SFRI interpretation criteria for soil and water parameters derived from calibration experiments	2
Interpretation of soil texture	3
Interpretation of soil pH	4
Interpretation of soil salinity and sodicity	5
Interpretation of soil organic matter	6
Guidelines for evaluating soil fertility status	6
Guidelines for DTPA-extractable micronutrients	6
General guidelines for interpreting soil analysis data	7
Estimating fertilizer recommendations	7-8
Guidelines for interpreting water analysis data	8
SFRI guidelines and interpretation for irrigation water quality	10
Recommendations	10
Nutrient/ fertilizer requirement of different crops	12-20
Nutrient/ fertilizer requirement of different vegetables	21
Nutrient/ fertilizer requirement of oil seed crops	22
Nutrient/ fertilizer requirement of fruit crops	23
Fertilizer requirement of different vegetables (High and walk-in tunnels)	24
Micronutrient recommendations for tunnel crops	24
Micronutrient requirements of some crops	25
Nutrient contents in fertilizer material commonly available in Pakistan	26
Micronutrient contents in fertilizer material commonly available in Pakistan	26
References and related documents	27

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

SFRI-Guide-V	Soil and water data interpretation and fertilizer recommendations for	Issue on	13.06.2021	Revision	0
	various crops				

■ INTRODUCTION

Fertility is a dynamic and ever-changing property of soil. Nutrients are being lost through leaching and erosion, as well as by gaseous emissions into the atmosphere. Some nutrients, such as phosphorus and potassium, are bound up in soil clays. Soil organic matter decomposition first immobilizes and then releases nutrients to the soil. Crop yields also deplete nutrients. The repercussions of soil mining triggered by all of these factors may take many years to manifest. According to Justus von Liebig's 1862 " Law of the Minimum," a lack of any one critical plant nutrient can limit a plant's yield even though all other nutrients are available in appropriate proportions. As a result, it is critical to apply the appropriate type and quantity of fertilizer at the appropriate time in order to maintain or improve soil fertility. One of the aims of the Soil Fertility Research Institute (SFRI), Punjab, Lahore is to determine the fertilizer requirements for various crops across the province of Punjab in various agro ecological zones. This goal is accomplished through collaboration between SFRI's laboratory and field wings.

Although the Soil and Water Testing Laboratories under the control of SFRI are ISO 17025:2017 accredited by the Pakistan National Accreditation Council (PNAC) in Islamabad, this does not guarantee that the results interpretations or fertilizer recommendations based solely on soil analysis data are accurate. Without the field calibration on which the studies are based, it is impossible to interpret the results meaningfully. Local data and information on fertilizer response are critical when making fertilizer recommendations. This is why SFRI's field wing conducts calibration studies on farmers' fields and collects data on soil type, rainfall, crop monitoring throughout the growing season, and crop response to fertilizer application. All of this information has been utilized to develop validated interpretation criteria for each soil quality parameter and to make fertilizer recommendations over the years.

DR MUHAMMAD AKRAM QAZI Chief Scientist/Director, Rapid Soil Fertility Survey and Soil Testing Institute Thokar Niaz Baig, Lahore

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

SFRI-Guide-V	Soil and water data interpretation and fertilizer recommendations for	Issue on	13.06.2021	Revision	0
	various crops				

SFRI CRITERIA FOR THE INTERPRETATION OF SOIL AND WATER PARAMETERS OBTAINED FROM CALIBRATION EXPERIMENTS

A variety of chemical, physical, and biological criteria can be used to determine the quality of soil for sustainable agriculture. Chemical parameters include the electrical conductivity (EC) of the soil, the pH of the soil, and the nutrients available to the plants. The most frequently utilized physical measure for evaluating soil quality is soil texture.

■ SOIL PHYSICAL PARAMETERS

These soil characteristics are used to assess and forecast soil constraints on plant growth. Not only do soil physical characteristics explain the transport of plant nutrients through the soil, but they are also applied to make soil management decisions and carry out agronomic activities. These soil quality indicators should be interpreted in conjunction with other chemical measurements.

■ Soil Texture

Soil texture refers to the proportion of sand, silt, and clay in a soil. These are the soil's building blocks and have a significant impact on the soil's qualities. This parameter is typically used to determine the soil's capability to retain water and nutrients, as well as its subsurface compaction and erodibility. The percentage of soil saturated and the texture of the soil have a close relationship. Table 1 serves as a guide for determining the soil texture class based on the saturation percentage.

Table 1. Soil Textural Classification Based on Saturation (%)

Saturation (%)	Textural Class		
Up to 19	Sand	ريتلى	
20 - 30	Sandy Loam	ریتلی میرا	
31 - 45	Loam	میرا سے درمیانی بھاری میرا	
46 - 60	Clay Loam	بهاری میرا یا چکنی	
more than 60	Clay	چکنی	
Source: Malik et al., 1984			

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

SFRI-Guide-V	Soil and water data interpretation and fertilizer recommendations for	Issue on	13.06.2021	Revision	0
	various crops				

Table 2: Interpretation of Soil Texture

Texture	Interpretation	Recommendations
Sand	Slight physical restriction to root growth.	Chickpea, groundnuts, and millet can
	Soil moisture stress could be a problem	be grown successfully.
	because water is drained rapidly out of root	
	zone.	
Sandy	Root growth is not restricted. Soil water is	Chickpea, groundnuts, and millet can
Loam	available to most crops. Water drains from	be grown successfully
	the soil readily but not rapidly.	
Loam	Root growth is not restricted. It has	Almost all crops can be grown.
	moderate susceptibility to mechanical	
	compaction.	
Clay	Root growth is not restricted. It has	Suitable for sugarcane and rice crops
Loam	moderate susceptibility to mechanical	
	compaction.	
Clay	Root growth of most species is moderately	
	to severely restricted. Water drains very	
	slowly and my cause periodic water	
	logging.	
Source: (Malik <i>et al.</i> , 1984), (McDonald <i>et al.</i> , 1998)	

■ Particles with Coarse Differentiations and Stratifications

These are calcium carbonate, iron, or gypsum mineral depositions in soil. These particles come in a variety of shapes, sizes, and forms and they have a significant impact on the chemical and physical properties of soil. Calcium carbonate is most commonly seen as nodules, which can be confirmed with the addition of hydrochloric acid. Because the reaction between acid and calcium carbonate creates effervescence, this test is popularly referred to as the "fizz" test. A high concentration could impede water permeability and limit root growth. Alkaline conditions are created by high concentrations, which decrease the availability of some nutrients to plants.

Table 3: Interpretation of Calcium Carbonate Fragments in Soil

Calcium Carbonate	Interpretation
Proportion / Form	

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

SFRI-Guide-V	Soil and water data interpretation and fertilizer recommendations for	Issue on	13.06.2021	Revision	0
	various crops				

Calcium Carbonate	Interpretation
Proportion / Form	
Fine soil carbonate in clay, a few	It restricts the drainage and cause poor root growth.
calcrete fragments are present	
Sheet or boulder calcrete	It is hard and softens only after prolonged irrigation.
	Drainage and root growth is restricted in calcrete sheet
	however, boulder form exhibit good root growth.
Compact mixture of finely divided	Drainage and root growth is medium to poor.
carbonate, sandy loam to sandy clay	
loam. Contains < 30 % calcrete	
fragments	
Adopted and modified from Peverill et	al., 1999.

■ SOIL CHEMICAL PROPERTIES

Salinity, sodicity, and soil reaction (pH) all have a significant effect on plant development and agricultural production. Sufficient nutrient supply is facilitated by a suitable chemical environment.

■ Soil pH

The pH value indicates the acidity or alkalinity of the soil as determined by the activity of hydrogen ions (H⁺). It establishes the solubility and reactivity of soil elements. Soil pH is usually interpreted in conjunction with other soil data such as EC and soil texture. Table below summarizes the critical pH ranges when no other limiting factor for plant growth, such as salinity, exists.

Table 4: Generalized Interpretation of Soil pH Measured in Saturated Soil Paste

Soil pH	Amelioration
(Saturated Soil Paste)	
7 to 7.5	All nutrients are easily available to plant. Soils are likely to be most productive providing there is no nutrient deficiency.
7.6 to 8.0	The plant availability of Zn, Fe, and B decreases. Plants needs to be monitored.
8.1 to 8.5	Plant availability of phosphorous and micronutrients except Mo decreases significantly.
More than 8.5	It is possible that trace elements will be required. The soil may be saline if the EC is greater than 4 dS/m. If the EC is less than 4dS/m, sodicity is present, and gypsum should be used.

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

SFRI-Guide-V	Soil and water data interpretation and fertilizer recommendations for	Issue on	13.06.2021	Revision	0
	various crops				

Source: (Malik *et al.*, 1984)

■ Soil Salinity

Salinity is caused by the accumulation of water-soluble salts in soil. Generally, the level of soil salinity is determined by the electrical conductivity (EC) of saturated soil extract. The decisiemens per metre (dS/m) unit is used to express the EC of soil extracts and is numerically comparable to the millisiemens per centimetre (mS/cm) and millimho per centimetre (mmho/cm) units. One decisiemens per metre (dS/m) is equal to 1000 microsiemens per centimetre (S/cm).

Table 5: Salinity Levels for Soils Based on ECe

ECe (dS/m)	Salinity level	Effect on plant
Less than 2	Non-Saline	Salinity effects are mostly negligible
2-4	Slightly saline	Yield of sensitive crops can be affected
4.1 – 8	Moderately saline	Yield of most of the crops is affected
8.1 – 16	Highly saline	Tolerant crops are the only ones that produce satisfactorily.
More than 16	Extremely saline	Highly tolerant crops are the only ones that produce satisfactorily.
Source: (Malik et	al., 1984)	

■ Soil Sodicity

Sodicity is a term that refers to the amount of exchangeable sodium cations in soil. It is calculated using the sodium adsorption ratio (SAR), which is a measure of the activity of sodium ions in comparison to calcium and magnesium ions. Soils or water with a high sodium activity in comparison to calcium and magnesium will have a high ESP and be sodic. Although the pH value of the soil can be used to assess its amount of sodicity because there is a general relationship between sodicity and pH, other measures such as ECe, SAR, and ESP are also used to identify salt-affected soils.

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

SFRI-Guide-V	Soil and water data interpretation and fertilizer recommendations for	Issue on	13.06.2021	Revision	0
	various crops				

Table 6: Classification of Salt-Affected Soils

Parameter	Parameter Saline soil Nonsaline-Alkali/sodic soil						
Soil EC _e	≥ 4 mS/cm	Variable, mostly < 4 mS/cm	> 4 mS/cm				
Soil pH _s	< 8.5	≥ 8.5	≥ 8.5				
ESP	< 15	≥ 15	≥ 15				
SAR < 13.2 ≥ 13.2 ≥ 13.2							
Source: Adapted from (R	ichards, 1954) a	nd (Malik et al., 1984)					

■ Soil Organic Matter (SOM)

The term "soil organic matter" refers to the total amount of organic material, including dissolved, particulate, humus, and inert organic matter. The Walkley and Black (1934) method is used to estimate SOM at the soil and water testing laboratories of the agriculture department. The majority of analytical methods for estimating SOM, including the Walkley and Black technique, begin with the determination of soil organic carbon (SOC), which is then transformed to SOM using a conversion factor of 1.72.

SOM (g/Kg soil) = SOC (g/kg soil) x 1.72

It is critical to note that the SOM values in Table 7 are intended to be used as a guideline only, as SOM is composed of a variety of components. Organic fraction contributions have not yet been proven.

Table 7: Guidelines for Evaluating Soil Fertility Status

Soil quality parameter		Category				
Son quanty parameter	Poor	Medium	Adequate			
Soil organic matter (%)	< 0.86	0.87 - 1.29	>1.29			
Available Phosphorous (mg P/Kg)	<7	7 - 14	>14			
Available potassium (mg /Kg soil)	<80	80 - 180	>180			
Source: (Malik et al., 1984)						

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

SFRI-Guide-V	Soil and water data interpretation and fertilizer recommendations for	Issue on	13.06.2021	Revision	0
	various crops				

Table 8: Guidelines for Evaluating DTPA-Extractable Micronutrient Status

DTPA-extractable	Category				
Micronutrient (mg/Kg)	Poor	Medium	Adequate		
Zinc (Zn)	<0.5	0.5 - 1.0	>1.0		
Copper (Cu)	<0.1	0.1 - 0.2	>0.2		
Iron (Fe)	<2.0	2 - 4.5	>4.5		
Manganese (Mn)	<0.5	0.5 - 1.0	>1.0		
Boron (B)	<0.2	0.2 - 0.5	0.5 -1.0		
Source: Unpublished data of Rapid	Soil Fertility Su	rvey and Soil Testing Instit	tute, Punjab, Lahore		

■ General guidelines for Interpreting Soil Analysis Data

The recommendations made to farmers regarding the use of fertilizer to achieve a desired yield are predictive, and their utility is contingent on a variety of interrelated financial and agronomic factors. This section contains some guidelines for assessing soil data and providing recommendations.

- In some cases, different soil tests are employed to determine the availability of the same nutrient. Zinc, for instance, is extracted from soil using DTPA (diethylene triamine pent acetic acid) as well as AB-DTPA (ammonium bicarbonate-DTPA). Both tests have distinct zinc interpretation criteria. Such distinctions should be taken into account when interpreting and making recommendations.
- Criteria and recommendations of interpretation of fertilizer may vary with crop, soil, weather, seasonal duration (sowing time), etc. For example, a low concentration of extractable P, Fe, or other elements in one crop may not necessarily be low in another crop due to the roots system and rhizosphere chemistry being different. Similarly, crop response to fertilizer application may differ according on soil type (spatial variability). Similarly, meteorological conditions have an effect on plant nutrient uptake and utilization. As a result, local information is critical for making site-specific recommendations.

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

SFRI-Guide-V	Soil and water data interpretation and fertilizer recommendations for	Issue on	13.06.2021	Revision	0
	various crops				

- Generally, recommendations are based on surface soil (0-15cm) test findings; however, literature indicates that subsoil (15-30cm) can be a significant source of some plant nutrients. As a result, understanding of subsoil conditions would be beneficial.
- Take into account the cost of fertilizer and anticipate the market price of produce. This
 will decide the farm's return on investment in fertilizer. The primary goal should be to
 optimize financial returns on fertilizer investments by using efficient and sustainable
 nutrient management practices.

Using the soil test and crop nutrient requirements to calculate fertilizer recommendations

The soil test, a key soil test value or crop fertilizer demand, and the bulk density estimate of the soil test layer are all necessary for fertilizer recommendation. A key soil test value and fertilizer needs are estimated by constructing a link between crop yield and soil test value. Correlations can be extrapolated to regions with comparable soil and crop potential. The process of calculating is described as below.

- 1. Determine the soil rank based on the soil test result, such as low, medium, or adequate.
- 2. Determine the crop's nutrient need (Kg/acre) depending on the soil rank.
- 3. Convert the nutrient content of the soil sample (mg nutrient/kg soil) to available nutrient Kg per acre. If 1 acre-foot soil layer weighs 1 million kilogrammes, then mg/Kg equals Kg/acre.
- 4. Using the calculation below, determine the Kg nutrient per acre that is required.

Top-up plus maintenance fertilizer requirement (Kg nutrient/acre) = Fertilizer requirement of crop - Soil Test

Table 9: Illustration of estimating fertilizer recommendation for wheat (irrigated)

Crop	Soil P Test Ranking	Nutrient required** (kg/acre)	Minus	Nutrient Tested (assumed) (ppm or kg/acre)*	equals	Nutrient needed (Kg/acre)
Wheat	Poor < 7ppm	46 Kg P/acre	-	6 Kg P/acre	=	40 Kg P
(irrigated)	Medium 7-14	34 Kg P/acre	-	13 Kg P/acre	=	21 Kg P
(IIIIgatea)	Adequate >14	30 Kg P/acre	-	16 Kg P/acre	=	14 Kg P

^{*}The weight of 1 acre-foot soil layer is assumed as 1 million Kg

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

SFRI-Guide-V	Soil and water data interpretation and fertilizer recommendations for	Issue on	13.06.2021	Revision	0
	various crops				

^{**}Value calculated from correlation between yield and fertilizer applied.

■ Guidelines for Interpreting Water Analysis Data

Electrical Conductivity (EC), Total Soluble Salts (TSS), Sodium Adsorption Ratio (SAR), and Residual Sodium Carbonate (RSC) are some of the quality indicators for irrigation water.

■ Electrical Conductivity

The salinity status of irrigation water is estimated from its EC values.

Table 10: Guidelines for Interpreting Water Salinity

Water class	EC dS/m	EC mS/cm	EC μS/cm	EC	TDS (mg/L or ppm)						
				mmho/cm	assuming NaCl is major salt						
Non-saline	0 - 1	0 - 1	0 – 1000	0 – 1000	Up to 640						
Slightly saline	1 - 1.25	1 - 1.25	1001 - 1250	1001 - 1250	641 - 800						
Highly saline > 1.25 >1.25 >1250 >1250 >800											
Source: (Malik <i>et al.</i> , 1984)											

■ Total Soluble Salts

Previously, total soluble salts (TSS) were employed to determine the salinity of soil and water, and they are still cited in some studies. The TSS is represented in mg/L or ppm units. The number and nature of salts present in a water solution determines the conductivity of the solution. In general, bigger ions have lower conductivity than smaller, singly charged ions at the same concentration. As a result, depending on the type of salt present, the conversion TSS from EC values will differ. The conversion shown here is for a sodium chloride-dominated salt. As a result, the following table summarizes the general conversion of electrical conductivity to salt concentration or total dissolved solids (TDS).

Total Soluble Salts in water sample (ppm) = $0.7 \times EC (\mu S/cm)$ Total cation (or anion) concentration, mmol_c/L = $10 \times EC (dS/m)$

■ Sodium Adsorption Ratio

It is the relative proportion of Na to Ca + Mg and calculated by following formulae.

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

SFRI-Guide-V	Soil and water data interpretation and fertilizer recommendations for	Issue on	13.06.2021	Revision	0
	various crops				

$$SAR = \frac{Na}{[(Ca + Mg)/2]^{1/2}}$$

■ Residual Sodium Carbonate

It is calculated by subtracting Ca + Mg from CO₃+HCO₃ values

RSC me/L = $(CO_3 + HCO_3)$ - (Ca + Mg)

Table 11: SFRI guidelines and interpretation for irrigation water quality

Water Quality Indicator	Status	Guideline values	Interpretation					
	Suitable	< 1000	Water is suitable for irrigation. All crops can be grown.					
EC (μS/cm)	Marginal	1000 – 1250	It can be used along with canal water on alternate basis. Moderately salt tolerant crops such as wheat, rice, maize, tomato, potato, cabbage, carrot, peas, and onion can be grown.					
	Unsuitable	>1250	It can be used in sandy soils with additional soil management practices. Salt tolerant crops such as cotton, sugarcane and spinach can be grown.					
	Suitable	< 6	Water is suitable for irrigation. All crops can be grown.					
SAR	Marginal	6 – 10	This water will cause sodicity and water infiltration problems in soils having saturation percentage >50% (Clay loam and Clay)					
	Unsuitable	>10	This water can be used in soils having saturation percentage < 20 % (Sand)					
RSC	Suitable	< 1.25	Water is suitable for irrigation. All crops can be grown.					
(me/L)	Marginal	1.25 - 2.5	Moderately salt tolerant crops can be grown.					
, , ,	Unsuitable	>2.5	This water will cause sodicity and water infiltration problems.					
Cl ⁻¹	Suitable	<4.5	Water is suitable for irrigation.					
(me/L)	Unsuitable	> 4.5	Water is unfit for irrigation.					
Source: (Malik et al., 1984)								

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

SFRI-Guide-V	Soil and water data interpretation and fertilizer recommendations for	Issue on	13.06.2021	Revision	0
	various crops				

■ RECOMMENDATIONS

■Marginally saline water

- Irrigate below leaves: Leaves of some plants are more sensitive to water salinity than soil salinity, particularly when water is supplied directly to the leaves via a sprinkler. It is advised to irrigate below the leaves when using moderately saline water for sprinkler irrigation. It will prevent salts from being deposited on leaves.
- Irrigate during night times: Climate has an effect on how plants respond to salinity. Plants may withstand salt better in cool, humid weather than in hot, dry weather. Irrigate at night to minimize the quantity of salt left on leaves owing to evaporation, which may be greater during the day due to quick evaporation.
- On a rotating basis, use marginally fit water and canal water..

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

SFRI-Guide-V	Soil and water data interpretation and fertilizer	Issue on	13.06.2021	Revision	0
	recommendations for various crops				

NUTRIENT/ FERTILIZER REQUIREMENTS OF DIFFERENT CROPS

Sr. No.	Name of Crops	Details		Nutrien (kg/acro		В	Bags/acre		Dose and time of application without compost	Time and Dose of fertilizer with Compost on P ₂ O ₅ basis IPNM (20:80)***
	_		N	P ₂ O ₅	K ₂ O	Urea	DAP	SOP		
1	Wheat (Irrigated)	Poor soil	64	46	25	2.00	2.00	1.00	2 bags DAP + 1 bag Urea + 1 bag SOP at the time of sowing. One bag Urea at the time of 1 st or 2 nd irrigation	Compost=610 kg, 1.75 bags DAP + 1.00 bag Urea + 0.60 bag SOP at the time of sowing. 0.75 bag Urea at the time of 1st or 2nd irrigation
		Medium soil	54	34	25	1.75	1.50	1.00	1.5 bags DAP + 1.0 bags urea + 1 bag SOP at the time of sowing. 0.75 bag Urea at the time of 1 st or 2 nd irrigation.	Compost=450 kg, 1.2 bags DAP + 0.60 bags urea + 0.75 bag SOP at the time of sowing. 1.00 bag Urea at the time of 1st or 2nd irrigation.
		Fertile soil	46	30	25	1.50	1.25	1.00	1.25 Bag DAP + 0.50 bags Urea + 1 bag SOP at the time of sowing. 1.0 bag Urea at the time of 1 st or 2 nd irrigation.	Compost=400 kg, 1.0 Bag DAP + 0.50 bags Urea + 0.75 bag SOP at the time of sowing. 0.8 bag Urea at the time of 1st or 2nd irrigation.
	Wheat (Barani)	Low rainfall areas (<350mm)	34	23	12	1.00	1.00	0.50	1.0 bag DAP + 1.0 bag Urea + 0.50 bag SOP before sowing.	Compost=300 kg, 0.80 bag DAP + 1.0 bag Urea + 0.30 bag SOP before sowing.
		Medium rainfall areas (350-600mm)	40	28	12	1.25	1.25	0.50	1.25 bags DAP +1.25 bag Urea + 0.50 bag SOP before sowing.	Compost=370 kg, 1.0 bags DAP +1.1 bag Urea + 0.26 bag SOP before sowing.
		High rainfall areas (>600mm)	48	34	25	1.50	1.50	1.00	1.50 bags DAP +1.00 bag Urea + 0.50 bag SOP before sowing, 0.50 bag Urea at rainfall	Compost=450 kg, 1.2 bags DAP +1.30 bag Urea + 0.75 bag SOP before sowing, 0.30 bag at rainfall

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

Sr. No.	Name of Crops	Details		Nutrien (kg/acre		В	Bags/acre		Dose and time of application without compost	Time and Dose of fertilizer with Compost on P ₂ O ₅ basis IPNM (20:80)***
	_		N	P_2O_5	K ₂ O	Urea	DAP	SOP		
2	Rice (Coarse varieties)		69	41	32	2.25	1.75	1.25	1.0 bag urea + 1.75 bags DAP + 1.25 bags SOP at the time of puddling and 1.25 bags urea 30-35 days after transplanting	Compost=550 kg, 1.1 bag urea + 1.4 bags DAP + 1.0 bags SOP at the time of puddling and 1.0 bags urea 30-35 days after transplanting
	Rice (Basmati varieties)		55	36	25	1.75	1.50	1.00	1.00 bag urea + 1.50 bags DAP + 1.00 bag SOP at puddling, and 0.75 bag urea after 30-35 days of transplanting	Compost=480 kg, 0.60 bag urea + 1.25 bags DAP + 0.70 bag SOP at puddling, and 1.0 bag urea before 15th of August
3	BT Cotton, Markazi area*	Poor Soil	100	40	38	3.50	1.75	1.50	1 bag urea + 1.75 bags DAP+1.50 bag SOP at the time of sowing. 1.25 bag urea at first irrigation and 1.25 bag urea at flowering.	Compost=530 kg, 1 bag urea + 1.40 bags DAP+1.20 bag SOP at the time of sowing. 1.25 bag urea at first irrigation and 1.00 bag urea at flowering.
		Medium Soil	90	35	38	3.32	1.50	1.50	1.0 bag urea + 1.50 bags DAP+1.50 bag SOP at the time of sowing. 1.30 bag urea at first irrigation and 1.00 bag urea at flowering.	Compost=470 kg, 1.0 bag urea + 1.2 bags DAP+1.25 bag SOP at the time of sowing. 1.10 bag urea at first irrigation and 1.00 bag urea at flowering.
		Fertile Soil	80	30	38	2.97	1.30	1.50	1.0 bag urea + 1.25 bags DAP+1.50 bag SOP at the time of sowing. 0.75 bag urea at first irrigation and 0.75 bag urea at flowering.	Compost=400 kg, 0.80 bag urea + 1.0 bags DAP+1.25 bag SOP at the time of sowing. 1.0 bag urea at first irrigation and 1.0 bag urea at flowering.
	BT Cotton Sanvi Area**	Poor Soil	90	40	30	3.25	1.75	1.25	1.0 bag urea + 1.75 bags DAP+1.25 bag SOP at the time of sowing. 1.00 bag urea at first irrigation and 1.25 bag urea at flowering.	Compost=530 kg, 1.0 bag urea + 1.4 bags DAP+0.90 bag SOP at the time of sowing. 1.00 bag urea at first irrigation and 1.00 bag urea at flowering.

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

Sr. No.	Name of Crops	Details		Nutrien (kg/acro		В	Bags/acre		Dose and time of application without compost	Time and Dose of fertilizer with Compost on P ₂ O ₅ basis IPNM (20:80)***
	1		N	P_2O_5	K ₂ O	Urea	DAP	SOP		
		Medium Soil	80	35	30	3.00	1.50	1.25	1.0 bag urea + 1.50 bags DAP+1.25 bag SOP at the time of sowing. 1.00 bag urea at first irrigation and 1.00 bag urea at flowering.	Compost =470 kg, 0.70 bag urea + 1.20 bags DAP+0.90 bag SOP at the time of sowing. 1.00 bag urea at first irrigation and 1.00 bag urea at flowering.
		Fertile Soil	70	30	30	2.50	1.25	1.25	1 bag urea+1.25 bag DAP +1.25 bag SOP at sowing; 0.75 bag urea at 1 st irrigation; 0.75 bag urea at flowering.	Compost=400 kg, 0.9 bag urea+1.0 bag DAP +0.90 bag SOP at sowing; 0.75 bag urea at 1st irrigation; 0.75 bag urea at flowering.
4	Maize (Hybrid)	Poor Soil	119	69	50	4.00	3.00	2.0	3.0 bags DAP+2.0 bags SOP, 0.25 bag urea at the time of sowing, 0.5 bag urea at 5-6 leaves stage, 1.25 bag urea at 8-10 leave stage and 1.25 bag urea 15 days before flowering	Compost=920 kg, 2.4 bags DAP+1.4 bags SOP, 0.60 bag urea at the time of sowing, 1.0 bag urea at 5-6 leaves stage, 1.0 bag urea at 8-10 leave stage and 1.0 bag urea 15 days before flowering
		Medium Soil	92	58	37	3.00	2.50	1.50	2.5 bags DAP+1.50 bags SOP at the time of sowing, 1.0 bag urea at 5-6 leaves stage, 1.00 bag urea at 8-10 leave stage and 1.00 bag urea 15 days before flowering	Compost=770 kg, 2.0 bags DAP+1.00 bags SOP at the time of sowing, 0.70 bag urea at 5-6 leaves stage, 1.00 bag urea at 8-10 leave stage and 1.00 bag urea 15 days before flowering
		Fertile Soil	75	46	25	2.50	2.00	1.00	2.0 bags DAP+1.00 bags SOP at the time of sowing, 1.00 bag urea at 5-6 leaves stage, 0.75 bag urea at 8-10 leave stage and 0.75 bag urea 15 days before flowering	Compost=610 kg, 1.60 bags DAP+0.6 bags SOP at the time of sowing, 0.75 bag urea at 5-6 leaves stage, 0.75 bag urea at 8-10 leave stage and 0.75 bag urea 15 days before flowering
	Maize (Barani)	Low rainfall areas	34	23	12	1.00	1.00	0.50	1.1 bag urea+1 bag DAP +0.5 bag SOP at sowing	Compost=300 kg, 1.0 bag urea+0.8 bag DAP +0.3 bag SOP at sowing

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

Sr. No.	Name of Crops	Details		Nutrien (kg/acro		В	ags/acr	e	Dose and time of application without compost	Time and Dose of fertilizer with Compost on P ₂ O ₅ basis IPNM (20:80)***
1,00	010p3		N	P_2O_5	K ₂ O	Urea	DAP	SOP		(=====)
		High rainfall	46	34	25	1.50	1.50	1.00	1.5 bag urea+1.5 bag DAP +1.00 bag	Compost=450 kg, 1.25 bag urea+1.25
		areas							SOP at sowing	bag DAP +0.75 bag SOP at sowing
	Maize	Poor Soil	92	58	37	3.00	2.50	1.50	2.5 bags DAP+1.50 bags SOP at the	Compost=770 kg, 2.0 bags DAP+1.00
	(Composite								time of sowing, 1.00 bag urea at 5-6	bags SOP at the time of sowing, 0.70
	Non-								leaves stage, 1.00 bag urea at 8-10	bag urea at 5-6 leaves stage, 1.00 bag
	Hybrid)								leave stage and 1.00 bag urea 15	urea at 8-10 leave stage and 1.00 bag
									days before flowering	urea 15 days before flowering
		Medium Soil	80	46	37	2.75	2.00	1.50	2.0 bags DAP+1.50 bags SOP at the	Compost=610 kg, 1.60 bags
									time of sowing, 1.00 bag urea at 5-6	DAP+1.10 bags SOP at the time of
									leaves stage, 1.00 bag urea at 8-10	sowing, 0.45 bag urea at 5-6 leaves
									leave stage and 0.75 bag urea 15	stage, 1.00 bag urea at 8-10 leave
									days before flowering	stage and 1.0 bag urea 15 days before
		E .'1 G '1	70	25	25	2.50	1.50	1.00	1.50.1 DAD 1.00.1 COD	flowering
		Fertile Soil	70	35	25	2.50	1.50	1.00	1.50 bags DAP+1.00 bags SOP at	Compost=470 kg, 1.2 bags DAP+0.75
									the time of sowing, 1.00 bag urea at	bags SOP at the time of sowing, 0.75
									5-6 leaves stage, 0.75 bag urea at 8-10 leave stage and 0.75 bag urea 15	bag urea at 5-6 leaves stage, 0.75 bag urea at 8-10 leave stage and 0.75 bag
									days before flowering	urea 15 days before flowering
	Maize	Medium soil	43	23	12.5	1.50	1.00	0.50	1.00 bag urea+1.00 bag DAP, 0.5	Compost=300 kg, 0.80 bag DAP+
	(Fodder)	Wicdiani son	13	23	12.3	1.50	1.00	0.50	bag SOP at the time of sowing. 0.50	0.30 bag SOP+0.5 bag urea at the time
	(I odder)								bag Urea at 8-10 leaves stage	of sowing. 0.80 bag Urea at 8-10
									bug even at 6 10 leaves stage	leaves stage
5	Sugarcane	Poor Soil	120	69	50	4.00	3.00	2.00	Add 3 bag DAP, 2 bag SOP, 1 bag	Compost=920 kg, + 2.4 bag DAP, 1.5
	(Spring								Urea in furrows before sowing and	bag SOP, 0.7 bag Urea in furrows
	crop)								one bag urea each in April, May and	before sowing and one bag urea each
	•								end of June at earthing up.	in April, May and end of June at
										earthing up.
		Medium Soil	103	57	50	3.50	2.50	2.00	Add 2.5 bag DAP, 2 bag SOP, 1 bag	Compost=760 kg, Add 2.0 bag DAP,

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

Sr. No.	Name of Crops	Details		Nutrien (kg/acro		В	Bags/acre		Dose and time of application without compost	Time and Dose of fertilizer with Compost on P ₂ O ₅ basis IPNM (20:80)***
	_		N	P_2O_5	K ₂ O	Urea	DAP	SOP		
									urea in furrows before sowing and	1.5 bag SOP, 0.7 bag urea in furrows
									2.5 bags urea in three equal splits in	before sowing and 2.5 bags urea in
									April, May and End June at earthing	three equal splits in April, May and
									up.	End June at earthing up.
		Fertile Soil	87	46	50	3.00	2.00	2.00	Add 2.0 bag DAP, 2 bag SOP, 1 bag	Compost=610 kg, 1.60 bag DAP, 1.6
									Urea in furrows before sowing and 2	bag SOP, 0.75 bag Urea in furrows
									bags urea in three equal splits in	before sowing and 2 bags urea in three
									April, May and End June at earthing	splits in April, May and End June at
									up.	earthing up.
	Sugarcane	Poor Soil	156	69	50	5.50	3.00	2.00	2.00 bag urea+ 3.0 bag DAP+ 2.0	Compost=920 kg, 1.75 bag urea+ 2.40
	(Ratoon								bag SOP at first irrigation and 1.75	bag DAP+ 1.45 bag SOP at first
	crop)								bag urea each in April and June at	irrigation and 1.75 bag urea each in
									earthing up	April and June at earthing up
		Medium Soil	134	57	50	5.25	2.50	2.00	1.75 bag urea+ 2.5 bag DAP+ 2.0	Compost=760 kg, 1.5 bag urea+ 2.0
									bag SOP at first irrigation and 1.75	bag DAP+ 1.50 bag SOP at first
									bag urea each in April and June at	irrigation and 1.5 bag urea each in
									earthing up	April and June at earthing up
		Fertile Soil	113	46	50	4.10	2.00	2.00	1.50 bag urea+ 2.0 bag DAP+ 2.0	Compost=610 kg, 1.30 bag urea+ 1.60
									bag SOP at first irrigation and 1.3	bag DAP+ 1.60 bag SOP at first
									bag urea each in April and June at	irrigation and 1.3 bag urea each in
									earthing up	April and June at earthing up
6	Potatoes	-	100	50	50	3.50	2.25	2.00	2.25 bags DAP + 1.50 bag Urea + 2	Compost=670 kg, 1.75 bags DAP +
									bags SOP + 10 kg Zinc Sulphate	1.25 bag Urea + 1.6 bags SOP + 10 kg
									(21%) at the sowing. One bag Urea	Zinc Sulphate (21%) at the sowing.
									30 days after germination and 1 bag	One bag Urea 30 days after
									Urea 60 days after germination.	germination and 1 bag Urea 60 days
										after germination.
7	Sesame	-	34	24	12	1.00	1.00	0.50	1 bag DAP and 0.50 bag SOP at the	Compost=320 kg, 0.8 bag DAP and

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

Sr. No.	Name of Crops	Details		Nutrien (kg/acre		В	ags/acr	·e	Dose and time of application without compost	Time and Dose of fertilizer with Compost on P ₂ O ₅ basis IPNM (20:80)***
			N	P_2O_5	K ₂ O	Urea	DAP	SOP		
									time of sowing and 0.50 bag urea at first irrigation and 0.50 bag urea at the time of second irrigation	0.30 bag SOP at the time of sowing and 0.40 bag urea at first irrigation and 0.50 bag urea at the time of second irrigation
8	Mash	-	9	23	12	-	1.00	0.50	1.00 bag DAP and 0.50 bag SOP at sowing	Compost=300 kg, 0.8 bag DAP and 0.30 bag SOP at sowing
9	Mung	-	9	23	12	-	1.00	0.50	1.00 bag DAP and 0.50 bag SOP at sowing	Compost=300 kg, 0.8 bag DAP and 0.30 bag SOP at sowing
10	Lentil	-	13	23	12	0.25	1.00	0.50	0.25 bag urea+1.00 bag DAP, 0.50 bag SOP at the time of sowing.	Compost=300 kg, 0.8 bag DAP and 0.30 bag SOP at the time of sowing.
11	Groundnut	Low rainfall areas (<350mm)	6	12	6	0	0.75	0.25	0.5 bag DAP+0.25 bag SOP all at sowing	Compost=160 kg, 0.4 bag DAP+0.10 bag SOP all at sowing
		Medium rainfall areas (350-600mm)	8	24	8	0	1.00	0.33	1.0 bag DAP+0.33 bag SOP all at sowing	Compost=320 kg, 0.80 bag DAP+0.10 bag SOP all at sowing
		High rainfall areas (>600mm)	12	32	12	0	1.50	0.50	1.5 bag DAP+0.50 bag SOP all at sowing	Compost=430 kg, 1.1 bag DAP+0.20 bag SOP all at sowing
12	Gram	-	13	34	12	0	1.5	0.50	1.50 bag DAP+0.5 bag SOP at sowing	Compost=450 kg, 1.2 bag DAP+0.20 bag SOP at sowing
13	Sunflower	Poor Soil	60	40	25	2.00	1.75	1.00	1.75 bags DAP +1.00 bags SOP at the time of sowing. 0.50 bag Urea at first irrigation, 1.0 bags at second irrigation and 0.50 bag Urea at flowering.	Compost=530 kg, 1.4 bags DAP +0.7 bags SOP at the time of sowing. 0.50 bag Urea at first irrigation, 0.60 bags at second irrigation and 0.60 bag Urea at flowering.
		Medium Soil	48	34	25	1.50	1.50	1.00	1.50 bags DAP +1.00 bags SOP at the time of sowing. 0.50 bag Urea at	Compost=450 kg, 1.2 bags DAP +0.75 bags SOP at the time of sowing.

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

Sr. No.	Name of Crops	Crops			В	ags/acr	·e	Dose and time of application without compost	Time and Dose of fertilizer with Compost on P ₂ O ₅ basis IPNM (20:80)***	
	_		N	P_2O_5	K ₂ O	Urea	DAP	SOP		, ,
									first irrigation, 0.50 bags at second irrigation and 0.50 bag Urea at flowering.	0.30 bag Urea at first irrigation, 0.50 bags at second irrigation and 0.50 bag Urea at flowering.
14	Garlic	-	64	46	25	2.00	2.00	1.00	2.00 bag DAP + 1 bag SOP at sowing and 1.00 bag urea after 30 days of sowing, 1.0 bag urea at bulb formation	Compost=610 kg, 1.6 bag DAP + 0.6 bag SOP at sowing and 1.0 bag urea after 30 days of sowing, 0.75 bag urea at bulb formation
15	Onion	-	50	35	35	1.50	1.50	1.25	1.50 bag DAP + 1.25 bag SOP at sowing. 0.75 bag Urea after one month of transplanting and 0.75 bag urea at bulb formation	Compost=470 Kg, 1.25 bag DAP + 1.1 bag SOP at sowing. 0.70 bag Urea after one month of transplanting and 0.70 bag urea at bulb formation
16	Tomatoes	(Non-Hybrid)	58	23	32	2.10	1.00	1.25	0.60 bag urea + 1.00 bag DAP + 1.25 bag SOP at the time to sowing; 0.75 bag urea at earthing up and 0.75 bag urea 30 days after earthing up.	Compost=300 kg, 0.50 bag urea + 0.80 bag DAP + 1.1 bag SOP at the time to sowing; 0.75 bag urea at earthing up and 0.75 bag urea 30 days after earthing up.
		Hybrid	90	46	100	3.00	2.00	4.00	1.0 bag Urea +2.0 bags DAP +2.0 bags SOP + 20 kg Zinc Sulphate at sowing; 1.0 bag Urea + 1.0 bag SOP at earthing up; 1.0 bag Urea + 1.0 bag SOP one month after 2 nd dose	Compost=610 kg, 0.9 bag Urea +1.60 bags DAP +1.6 bags SOP + 20 kg Zinc Sulphate at sowing; 1.0 bag Urea + 1.0 bag SOP at earthing up; 1.0 bag Urea + 1.0 bag SOP one month after 2nd dose
17	Chilli	-	58	23	25	2.0	1.00	1.00	0.5 bag Urea+ 1.0 bag DAP + 1 bag SOP at the time of sowing / transplanting; 0.75 bag Urea after 30 DAT, 0.75 bag urea at flowering	Compost=300 kg, 0.5 bag urea+ 0.80 bag DAP + 0.8 bag SOP at the time of sowing / transplanting; 0.75 bag Urea after 30 DAT, 0.75 bag urea at flowering
18	Berseem	-	13	35	0	0	1.50	-	1.50 bags DAP at sowing, add	Compost=470 kg, 1.25 bags DAP at

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

Sr. No.	Name of Crops	Details		Nutrien (kg/acre		В	ags/acr	e	Dose and time of application without compost	Time and Dose of fertilizer with Compost on P ₂ O ₅ basis IPNM (20:80)***
			N	P_2O_5	K ₂ O	Urea	DAP	SOP		, ,
									further N after each cutting	sowing, add further N after each cutting
19	Lucern	-	23	35	0	0.50	1.50	-	0.50 bag Urea + 1.50 bags DAP at sowing	Compost=460 kg, 0.25 bag Urea + 1.25 bags DAP at sowing
20	Oats	-	60	36	25	2.00	1.50	1.00	1.00 bag Urea + 1.50 bags DAP + 1.00 bag SOP at the time of sowing. 1.00 bag Urea at first irrigation	Compost=480 kg, 0.80 bag Urea + 1.25 bags DAP + 0.70 bag SOP at the time of sowing. 1.00 bag Urea at first irrigation
21	Jowar / Sorghum	Seed	20	23	25	0.50	1.00	1.00	1.00 bag DAP + 1.00 bag SOP at the time of sowing; 0.50 bag Urea at the time of second irrigation.	Compost=300 kg, 0.75 bag DAP + 0.80 bag SOP at the time of sowing; 0.40 bag Urea at the time of second irrigation.
		Fodder	32	23	12	1.00	1.00	0.50	0.50 bag Urea + 1.00 bag DAP+0.50 SOP at sowing; 0.50 bag Urea at the time of second irrigation.	Compost=300 kg, 0.40 bag Urea + 0.75 bag DAP+0.30 SOP at sowing; 0.50 bag Urea at the time of second irrigation.
22	Sada Bahar (Fodder)	Fodder	20	23	12	1.50	1.00	0.50	0.50 bag Urea + 1.00 bag DAP+0.5 bag SOP at sowing, add additional N after every cutting.	Compost=300 kg, 0.4 bag Urea + 0.80 bag DAP+0.3 bag SOP at sowing, add additional N after every cutting.
23	Bajra	Single cut fodder	32	23	12	1.00	1.00	0.50	One bag DAP+0.5 bag SOP at sowing, one bag urea at 30 DAS.	Compost=300 kg, 0.8 bag DAP+0.3 bag SOP at sowing, 0.9 bag urea at 30 DAS.
		Multi cut fodder	20	23	12	0.50	1.00	0.50	One bag DAP+0.5 bag SOP at sowing, 0.5 bag urea after each cutting	Compost=300 kg, 0.8 bag DAP+0.3 bag SOP at sowing, 0.5 bag urea after each cutting
24	Guara		32	23	0	1.00	1.00	-	One bag DAP at sowing, one bag Urea at flowering	Compost=300 kg, 0.8 bag DAP at sowing, 0.90 bag Urea at flowering
25	Cowpeas		9	23	0	0	1.00		One bag DAP at sowing,	Compost=300 kg, 0.8 bag DAP at

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

SFRI-Guide-V Soil and water data interpretation and fertilizer Issue on 13.06.2021 Revision 0
recommendations for various crops

Sr. No.	Name of Crops	rops		re	Dose and time of application without compost	Time and Dose of fertilizer with Compost on P ₂ O ₅ basis IPNM (20:80)***				
	_		N	P_2O_5	K ₂ O	Urea	DAP	SOP		
										sowing,
26	Mot Grass		20	23	25	0.5	1.00	1.00	0.5 bag Urea + 1.0 bag DAP + One	Compost=300 kg, 0.4 bag Urea + 0.80
									bag SOP at sowing. One bag Urea	bag DAP + 0.8 bag SOP at sowing.
									after every cutting	One bag Urea after every cutting
27	Rhodes		20	23	25	0.5	1.00	1.00	0.5 bag Urea + 1.0 bag DAP + One	Compost=300 kg, 0.4 bag Urea + 0.80
	Grass								bag SOP at sowing. One bag Urea	bag DAP $+ 0.80$ bag SOP at sowing.
									after every cutting	One bag Urea after every cutting
28	Kallar		20	23	12	0.50	1.00	0.50	0.5 bag Urea + 1.0 bag DAP + 0.5	Compost=300 kg, 0.4 bag Urea + 0.80
	Grass								bag SOP at sowing. One bag Urea	bag DAP $+ 0.30$ bag SOP at sowing.
									after every cutting	One bag Urea after every cutting
29	Jantar		20	23	0	0.5	1.00	-	One bag DAP at sowing+ 0.5 bag	Compost=300 kg, 0.80 bag DAP at
									Urea at first irrigation	sowing+ 0.4 bag Urea at first
									-	irrigation
30	Cowpeas		9	23	-	-	1.00	-	One bag DAP at sowing	Compost=300 kg, 0.8 bag DAP at
	(Rawan)									sowing

 $[*]Markazi\ area\ for\ cotton = Multan,\ Khanewal,\ Vehari,\ Lodhran,\ Bahawalnagar,\ Bahawalpur,\ DG\ Khan,\ Rajanpur,\ Muzzafargarh,\ Layyah\ and\ Rahim\ Yar\ Khanewal,\ Sahawalnagar,\ Bahawalpur,\ DG\ Khan,\ Rajanpur,\ Muzzafargarh,\ Layyah\ and\ Rahim\ Yar\ Khanewal,\ Sahawalnagar,\ Sah$

NUTRIENT/FERTILIZER REQUIREMENTS OF DIFFERENT VEGETABLES

Sr.	Name of	Nutri	ients (kg/	/acre)		Bags/acre		Time and method of fertilizer application without compost	Time and Dose of fertilizer with Compost on P ₂ O ₅ Basis IPNM (20:80)***
No.	Crops	N	P_2O_5	K ₂ O	Urea	DAP	SOP	_	
1.	Bitter Guard	45	40	25	1.50	1.75	1.00	1.75 bag DAP+1.0 bag SOP +0.50 bag urea at	Compost=530 kg, 1.4 bag DAP+0.70 bag SOP at
								seed bed preparation; 0.50 bag urea at	seed bed preparation; 0.50 bag urea at flowering;
								flowering; 0.50 bag urea after each third	0.50 bag urea after each third picking
								picking	

^{**} Sanvi area for cotton = Faisalabad, Toba Tek Singh, Jhang, Chiniot, Sargodha, Bhakkar, Mianwali, Sahiwal, Okara and Pakpattan

^{***} Compost composition assumed=1.5% N, 1.5% P₂O₅, 1.5% K₂O

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

	SFRI-Guide-V	V	Soil			-		and fertilizer us crops	Issue on	13	.06.2021	Revision	0
2	Ghia Kaddu	53	35	25	1.75	1.50	1.00	1.0 bag urea+1.5 b seed bed preparati initial growth, initial picking	ion and 0.25 bag	urea at	0.75 bag SOP a	kg, 0.75 bag urea+1 at seed bed preparation tial growth, initial frucking	on and 0.25
3	Cucumber	36	36	25	1.00	1.50	1.00	1.50 bag DAP+1. preparation; 0.50 l	1.50 bag DAP+1.0 bag SOP at seed bed Compost preparation; 0.50 bag urea at flowering and at seed b			kg, 1.25 bag DAP+0 eparation; 0.25 bag ur 0.5 bag urea after each	ea at
4	Melon	55	23	25	2.00	1.00	1.00	1.0 bag DAP+ 1 preparation; 1 bag bag urea at flowering	urea at 5-6 leaves		seed bed prepa	kg, 0.8 bag DAP+ 0. ration; 0.9 bag urea a ea at flowering	
5	Water Melon	64	46	50	2.00	2.00	2.00	2 bag DAP+ 1.0 b urea+1bag SOP in	ag SOP at sowing;	; 2 bags	Compost=610	kg, 1.6 bag DAP+ 0.5 urea+1bag SOP in t	
6	Tinda	60	35	25	2.50	1.50	1.00	1.5 bag DAP+1.0 b urea after fruit form				kg, 1.25 bag DAP+0 bags urea after fruit f	
7	Baingan	59	36	0	1.50	1.50	0	0.5 bag urea+1.5 burea at earthing up every 3-4 pickings			sowing; 0.75 b	kg, 0.5 bag urea+1.2 ag urea at earthing up every 3-4 pickings	
8	Okra	26	35	25	0.50	1.50	1.00	0.5 bag urea+1.5 l sowing. Add 15-20			Compost=470	kg, 0.4 bag urea+1.2. SOP at sowing. Add	
9	Turmeric	120	50	80	4.00	2.00	3.25	2.0 bag DAP+3.25 sowing; 1 bag urea days after sowing			SOP+1 bag Ur	kg, 1.75 bag DAP+2 ea at sowing; 1 bag u d 120 days after sowi	rea each

NUTRIENT/FERTILIZER REQUIREMENTS OF OIL SEED CROPS

Sr.	Name of	Nutrients (kg/acre)				Bags/acı	e	Time and method of fertilizer application without compost	Time and Dose of fertilizer with Compost on P ₂ O ₅ Basis IPNM	
No.	Crops	N	P_2O_5	K ₂ O	Urea	DAP	SOP	upp	(20:80)***	

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

SFRI-Guide-V	Soil and water data interpretation and fertilizer	Issue on	13.06.2021	Revision	0
	recommendations for various crops				

					_			1	
1.	Super Raya, AARI Canola,	35	30	12	1	1.25	0.5	0.50 bag urea+1.25 bag DAP+0.5	Compost=400 kg, 0.4 bag
	Sarsoon DGL, Rohi Sarsoon							bag SOP at sowing; 0.5 bag urea at	urea+1.0 bag DAP+0.25 bag SOP
								flowering	at sowing; 0.5 bag urea at
								-	flowering
2	Toria	23	23	12	0.75	1.00	0.5	0.50 bag urea+1.0 bag DAP+0.5	Compost=300 kg, 0.25 bag
								bag SOP at sowing; 0.25 bag urea	urea+0.80 bag DAP+0.3 bag SOP
								at flowering	at sowing; 0.25 bag urea at
									flowering
3	Taramira	12	12	12	0.33	0.50	0.5	0.33 bag urea+0.50 bag	Compost=160 kg, 0.25 bag
								DAP+0.50 bag SOP at sowing	urea+0.40 bag DAP+0.40 bag SOP
									at sowing
4	Sandal Canola, PARC	35	35	25	1.00	1.50	1.0	0.5 bag urea+1.5 bag DAP+1.0	Compost=470 kg, 0.25 bag
	Canola hybrid, Super							bag SOP at sowing; 0.5 bag urea at	urea+1.25 bag DAP+0.75 bag SOP
	Canola, Other hybrids							flowering	at sowing; 0.5 bag urea at
	,								flowering
5	Chakwal Raya, Chakwal	34	23	12	1.00	1.00	0.5	0.50 bag urea+1.00 bag DAP+0.5	Compost=300 kg, 0.5 bag
	Sarsoon							bag SOP at sowing; 0.5 bag urea at	urea+0.8 bag DAP+0.3 bag SOP at
								flowering	sowing; 0.5 bag urea at flowering
6	Linseed	23	23	12	0.66	1.00	0.5	0.7 bag urea, 1.00 bag DAP, 0.5	Compost=300 kg, 0.5 bag urea,
								bag SOP	0.80 bag DAP, 0.3 bag SOP

NUTRIENT / FERTILIZER REQUIREMENTS OF FRUIT PLANTS

Sr. No.	Name of	Nutrients (K	g / Plant)	Fert	ilizer Kg	/Plant	Micronutrients (Grams / Plant) (Annual Dose)	Time and method of fertilizer application
110.	Crops	$N P_2O_5$	K ₂ O	Urea	DAP	SOP		

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

	SFRI-Guide-V Soil and water data interpretation recommendations for various								Issue on	13.06.2021	Revision	0
1.	Citrus (more than 10 years old)	1.00	0.50	0.50	1.74	1.10	1.00	Zinc Sulphate (3 Ferrous Sulphate Borax = 50 gram	e(20%) = 180 gran	n blossom stage in	ents, 1/3 N and 1/a end February; 1/a and 1/2 K during la	3 in April,
2	Mango (about 15 years old)	2.00	3.00	2.00	2.40	2.20	1.50	Ferrous Sulphate	(24%)=75 gram e (20%)= 250 gran hate ()=150 gram	July/August; 0.5 In February/March,	P+1.0 Kg K after fru Kg N+ Micronutrient 1.0 Kg K+ Fruit devo	ts in

FERTILIZER REQUIREMENTS OF DIFFERENT VEGETABLES (HIGH AND WALK IN TUNNEL FARMING)

Sr. No.	Name of crops	Time and method of fertilizer application (bags/acre)

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

SFRI-Guide-V	Soil and water data interpretation and fertilizer	Issue on	13.06.2021	Revision	0
	recommendations for various crops				

		• At Sowing = Urea=0.5, DAP=2, SOP=1.0
1.	Cucumber	• After 1/1.5 month, CAN=0.50, NP=0.75, SOP=0.50
1.	Cucumber	• After 2 months of sowing, CAN=1.0, SOP=0.50
		• Weekly during pickings, CAN=0.50, NP=0.50, SOP=0.50
		• At Transplanting, Urea=1.0, DAP=2.0, SOP=1.0
2	Tomato	• After 1 month, Urea=0.5, SOP=0.50
	Tomato	• After 2 months, 2bag CAN+SOP=0.50 bag
		• After every 15 days, CAN=1.0, NP=1.0, SOP=0.50 bag
		• At Transplanting Urea=1.0, DAP=2.0, SOP=1.0
3	Green Chilli / Shimla Mirch	• After 1 month Urea=0.50, SOP=0.50
3	Green Chini / Shinna Mirch	• After 2 months 2bag CAN+SOP=0.50 bag
		• After every 15 days CAN=1.0, NP=1.0, SOP=0.50 bag

MICRONUTRIENTS RECOMMENDATIONS FOR TUNNEL CROPS (TOMATO, CUCUMBER, CHILLIES, SHIMLA MIRCH)

Sr No	Dose for alternate years (Kg/acre of tunnel covered area)			
1	ZnSO ₄ . H ₂ O (33% Zn)= 6 kg/acre			
2	FeSO ₄ .7H ₂ O (20% Fe)=20 kg/acre			
3	Borax (11% B) = 2.4 kg/acre			
4	$CuSO_4.5H_2O$ (24% Cu) = 2.5 kg/acre			

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

SFRI-Guide-V	Soil and water data interpretation and fertilizer	Issue on	13.06.2021	Revision	0	
	recommendations for various crops					l

MICRONUTRIENT REQUIREMENTS OF SOME OF THE CROPS

Sr.	Name of Crops	Nutrients (Kg/acre)			Time and method of fertilizer application		
No.		Zn	Cu	Fe	Mn	В	
1.	Rice	2.0	-	4.0	-	0.50	All the micronutrients are applied at sowing
2	Wheat	2.0	-	4.0	4.0	0.50	/ transplanting
3	Cotton	2.0	2.0	-	-	0.50	
4	Maize	2.0	-	-	-	0.50	
5	Cucumber	2.0	-	-	-	-	
6	Tomato	2.0	-	-	-	0.50	
7	Potato	4.0	2.0	6.0	4.0	0.75	

Note: Micronutrient applications should be based on soil test basis. If micronutrient analysis is not available, follow the general recommendations for crops given above

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

SFRI-Guide-V Soil and water data interpretation and fertilizer Issue on 13.06.2021 Revision 0 recommendations for various crops

NUTRIENT CONTENTS IN FERTILIZER MATERIAL COMMONLY AVAILABLE IN PAKISTAN

Material	Minimum (%)			
	N	P_2O_5	K ₂ O	
Diammonium Phosphate (DAP)	18	46	0	
Triple Superphosphate (TSP)	0	46	0	
Ammonium Sulphate	21	0	0	
Ammonium Nitrate	26	0	0	
Nitrophos	20	22	0	
Urea	46	0	0	
Potassium Chloride (MOP)	0	0	60	
Potassium Sulphate (SOP)	0	0	50	
Single superphosphate	0	18	0	

MICRONUTRIENT CONTENTS IN FERTILIZER MATERIALS COMMONLY AVAILABLE IN PAKISTAN

Material	Minimum (%)
ZnSO ₄ .7H ₂ O	21% Zn
ZnSO ₄ .H ₂ O	33% Zn
MnSO ₄ .4H ₂ O	24% Mn
CuSO ₄ .5H ₂ O	25% Cu
FeSO ₄ .7H ₂ O	20% Fe
Borax (Na ₂ B ₄ O ₇ .10H ₂ O)	11% B
Boric Acid	17% B

AGRICULTURE DEPARTMENT, GOVERNMENT OF THE PUNJAB

Thokar Niaz Baig, Lahore. Email: director_sfri@yahoo.com

SFRI-Guide-V	Interpretation of soil & water data	Issue on	07.06.2021	Revision	1.0
	and fertilizer recommendations				

REFERENCES AND RELATED DOCUMENTS

- 1. Ghafoor A, Qadir M, Murtaza G. 2004. Salt-affected soils: Principles of management. Allied Book Centre.
- **2.** Hazelton P, Murphy B. 2016. Interpreting soil test results: What do all the numbers mean? CSIRO publishing.
- **3.** Malik D, Khan M, Chaudhry T. 1984. Analysis method for soil, plant, and water. *Soil fertility survey and soil testing institute, Punjab, Lahore, Pakistan.*
- **4.** McDonald R, Isbell R, Speight J, Walker J, Hopkins M. 1998. Australian soil and land survey field book (2nd edtn). CSIRO Canberra.
- **5.** Peverill K, Sparrow L, Reuter D. 1999. Soil analysis: An interpretation manual. CSIRO publishing.
- **6.** Price G. 2006. Australian soil fertility manual. CSIRO PUBLISHING.
- 7. Reuter D, Robinson J B. 1997. Plant analysis: An interpretation manual. CSIRO publishing.
- 8. Richards L A. 1954. Diagnosis and improvement of saline and alkali soils. LWW.