Prima prova in itinere - 02/05/2012 - Versione A

Tutti i calcoli devono essere riportati per la correzione, e le risposte devono essere giustificate.

Esercizio 1. (3+4+4) Siano date le matrici

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix} \qquad e \qquad B = \begin{pmatrix} 1 & 1 & -1 \\ -1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix},$$

e siano

$$T_A: \operatorname{Mat}(3,1;\mathbb{R}) \to \operatorname{Mat}(3,1;\mathbb{R}) \quad \text{e} \quad T_B: \operatorname{Mat}(3,1;\mathbb{R}) \to \operatorname{Mat}(3,1;\mathbb{R})$$

le applicazioni lineari definite come $T_A(X) = AX$ e $T_B(X) = BX$, con $X \in \text{Mat}(3,1;\mathbb{R})$.

- (1) Determinare una base e la dimensione di $Im(T_A)$.
- (2) Determinare una base e la dimensione di $\operatorname{Im}(T_A) \cap \ker(T_B)$.
- (3) Verificare che $\ker(T_A)$ è contenuto propriamente in $\ker(T_B \circ T_A)$.

Svolgimento. Sia
$$B = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
) la base naturale di $V = \text{Mat}(3, 1; \mathbb{R})$.

Dalla teoria, sappiamo che $\text{Im}(T_A)$ è generato dalle immagini dei vettori di B tramite T_A . Con facili calcoli, otteniamo che

$$\operatorname{Im}(T_A) = L\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix}).$$

Effettuando le operazioni elementari $C_2 + C_1 \rightarrow C_2$, $C_3 - C_2 \rightarrow C_3$ sulle colonne di A, si ottiene che il terzo generatore di $\text{Im}(T_A)$ è combinazione lineare dei primi due, e quindi dim $\text{Im}(T_A) = 2$, ed una sua base è

$$B' = \left(\left(\begin{array}{c} 1 \\ -1 \\ 1 \end{array} \right), \left(\begin{array}{c} 3 \\ 0 \\ 2 \end{array} \right) \right).$$

I vettori di im $(T_A) \cap \ker(T_B)$ sono i vettori della forma $a \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + b \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix}$ che verificano

BX = 0. Con facili calcoli, otteniamo

$$a \begin{pmatrix} -1\\1\\-1 \end{pmatrix} + b \begin{pmatrix} 1\\-1\\1 \end{pmatrix} = 0$$

equivalente al sistema lineare -a+b=0. In conclusione, dim $\operatorname{Im}(T_A) \cap \ker(T_B)=1$ ed una base del sottospazio analizzato è

$$B'' = \left(\left(\begin{array}{c} 4 \\ -1 \\ 3 \end{array} \right) \right)$$

ottenuto ponendo a = b = 1.

Se $X \in \ker(T_A)$, allora AX = 0 e quindi BAX = 0. In definitiva, $X \in \ker(T_B \circ T_A)$. Quindi, $\ker(T_A) \subseteq \ker(T_B \circ T_A)$. Dal Teorema del rango, si ottiene che dim $\ker(T_A) = 3 - \dim \operatorname{Im}(T_A) = 3 - 2 = 1$. La matrice BA descrive $T_B \circ T_A$ ed è uguale a

$$BA = \left(\begin{array}{ccc} -1 & 2 & 1\\ 1 & -2 & -1\\ -1 & 2 & 1 \end{array}\right).$$

È evidente che r(BA) = 1 e quindi dim $\ker(T_B \circ T_A) = 3 - 1 = 2$. Avendo dimensioni diverse, $\ker(T_A)$ non è uguale a $\ker(T_B \circ T_A)$ come volevamo dimostrare.

Esercizio 2. (6+3+2) Nello spazio vettoriale reale $V=\mathrm{Mat}(2,2;\mathbb{R})$ siano dati i vettori

$$X_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, X_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, X_3 = \begin{pmatrix} -1 & 2 \\ 3 & -1 \end{pmatrix}, X_4 = \begin{pmatrix} -2 & 2 \\ 4 & -2 \end{pmatrix}.$$

- (1) Verificare che X_1, X_2 sono linearmente indipendenti, che lo sono anche i vettori X_3, X_4 , e che $L(X_1, X_2) = L(X_3, X_4)$.
- (2) Detto U il sottospazio $L(X_1, X_2)$, siano $B' = (X_3, X_4)$ e $B'' = (X_1, X_2)$ due sue basi. Verificare che

$$U' = \{X \in U \mid [X]_{B'} = [X]_{B''}\}$$

è un sottospazio di V.

(3) Determinare una base e la dimensione di U'.

Svolgimento. Lavoriamo in componenti rispetto alla base $B = \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \right)$

 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ di $V = \text{Mat}(2, 2; \mathbb{R})$. Scrivendo le componenti di X_1 e X_2 rispetto a B si ottiene la matrice

$$\left(\begin{array}{ccc}
1 & 0 \\
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right)$$

che ha rango 2 e quindi X_1 e X_2 sono l.i.. Scrivendo le componenti di X_3 e X_4 si ottiene la matrice

$$\begin{pmatrix} -1 & -2 \\ 2 & 2 \\ 3 & 4 \\ -1 & -2 \end{pmatrix}$$

che ha ancora rango 2 come si osserva effettuando l' operazione $C_2 - c_1 \to C_2$. Quindi i sottospazi $L(X_1, X_2)$ e $L(X_3, X_4)$ hanno entrambi dimensione 2. Per verificare la loro uguaglianza, basta che uno dei due sia contenuto nell' altro. A tale scopo, basta verificare che X_3 e X_4 sono combinazioni lineari di X_1 ed X_2 . Scriviamo allora le componenti dei quattro vettori in una matrice ottenendo

$$\left(\begin{array}{cccc}
1 & 0 & -1 & -2 \\
1 & 1 & 2 & 2 \\
0 & 1 & 3 & 4 \\
1 & 0 & -1 & -2
\end{array}\right).$$

Effettuiamo le operazioni elementari $C_3 + C_1 \rightarrow C_3$, $C_4 + 2C_1 \rightarrow C_4$, $C_3 - 2C_2 \rightarrow C_3$, $c_4 - 4C_2 \rightarrow C_4$ si ottiene una matrice con le ultime due colonne nulle. Quindi, $L(X_1, X_2) = L(X_3, X_4)$.

Le componenti della matrice nulla sono la matrice nulla rispetto a qualunque base, e quindi $0 \in U'$. Siano poi $X, Y \in U'$, ed $a, b \in \mathbb{R}$. Verifichiamo che $aX + bY \in U'$: $[aX + bY]_{B'} = a[X]_{B'} + b[Y]_{B'} = a[X]_{B''} + b[Y]_{B''} = [aX + bY]_{B''}$ dove la prima e la terza uguaglianza discendono dalle proprietà delle componenti, e la seconda uguaglianza vale perché X e Y sono in U'. In conclusione, $aX + bY \in U'$ e quindi U' è un sottospazio.

Le matrici di U' verificano l' uguaglianza

$$aX_1 + bX_2 = aX_3 + bX_4.$$

Si ottiene un sistema lineare con infinite soluzioni della forma a=-b. Una base di U' è $(-X_1+X_2:=\begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix})$ e la dimensione di U' è uguale a 1.

Esercizio 3. (2+5+3+1) Siano dati i piani α_h , β_h e la retta r di equazioni rispettivamente

$$\alpha_h : x + hy - z = h, \quad \beta_h : hx - y + hz = 1, \quad r : \begin{cases} x + 2y + z = 1 \\ 2x - y - 2z = 2 \end{cases}.$$

- (1) Verificare che α_h e β_h hanno in comune una retta s_h , per qualunque valore di $h \in \mathbb{R}$.
- (2) Si determini la posizione reciproca di r ed s_h , al variare di $h \in \mathbb{R}$.
- (3) Si calcoli l' equazione del piano π contenente r e parallelo ad s_0 (ossia la retta s_h avendo posto h = 0).
- (4) Calcolare, se esiste, l'equazione di una retta complanare con tutte e tre le rette $s_h, h = -1, 0, 1$.

Svolgimento. Scriviamo un sistema lineare di due equazioni con le equazioni di α_h e β_h : se il sistema ha ∞^1 soluzioni allora i due piani hanno una retta in comune. La matrice completa del sistema è

$$(M|N) = \left(\begin{array}{cc|c} 1 & h & -1 & h \\ h & -1 & h & 1 \end{array}\right).$$

Con l'operazione elementare $r_2 - hr_1 \rightarrow r_2$ si ottiene la matrice

$$\left(\begin{array}{cc|cc} 1 & h & -1 & h \\ 0 & -1 - h^2 & 2h & 1 - h^2 \end{array}\right)$$

ridotta per ogni valore di $h \in \mathbb{R}$. Visto che $-1 - h^2 \neq 0$ per ogni $h \in \mathbb{R}$, si ha che r(M) = 2 = r(M|N) e quindi l'intersezione dei due piani è una retta, per ogni $h \in \mathbb{R}$.

Per studiare la posizione mutua di r ed s_h , scriviamo il sistema con le equazioni di tutte e due le rette, ottenendo la matrice completa

$$(A|B) = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & -1 & -2 & 2 \\ 1 & h & -1 & h \\ h & -1 & h & 1 \end{pmatrix}.$$

Effettuiamo le operazioni elementari $r_2-2r_1 \rightarrow r_2, r_3-r_1 \rightarrow r_3, r_4-hr_1 \rightarrow r_4, r_3-\frac{1}{2}r_2 \rightarrow r_3$ in sequenza, si ottiene la matrice

$$\begin{pmatrix}
1 & 2 & 1 & 1 \\
0 & -5 & -4 & 0 \\
0 & h + \frac{1}{2} & 0 & h - 1 \\
0 & -2h - 1 & 0 & 1 - h
\end{pmatrix}.$$

Se $h \neq -\frac{1}{2}$, possiamo effettuare $r_4 + 2r_3 \rightarrow r_4$ si ottiene l'ulteriore matrice

$$\left(\begin{array}{ccc|c}
1 & 2 & 1 & 1 \\
0 & -5 & -4 & 0 \\
0 & h + \frac{1}{2} & 0 & h - 1 \\
0 & 0 & 0 & -1 + h
\end{array}\right).$$

Se h = 1, si ha r(A) = r(A|B) = 3, e quindi r ed s_1 sono incidenti. Se $h \neq -\frac{1}{2}, 1$, allora r(A) = 3, r(A|B) = 4, e quindi r ed s_h sono sghembe. Se $h = -\frac{1}{2}$, sostituendo nella penultima matrice si ha che r(A) = 2, r(A|B) = 3 e quindi r e $s_{-1/2}$ sono parallele.

La retta s_0 ha equazione parametrica $x=t,y=-1,z=t,t\in\mathbb{R},$ mentre i piani di asse r hanno equazione

$$l(x+2y+z-1) + m(2x - y - 2z - 2) = 0.$$

Sostituendo l' equazione parametrica di s_0 nell' equazione del fascio di piani, dobbiamo avere che il coefficiente di t deve essere nullo: in tal modo o non ci sono soluzioni, oppure le soluzioni sono infinite,e quindi piano e retta s_0 sono paralleli. Con facili calcoli, si ha che il coefficiente di t è uguale a 2l e quindi l=0. L' equazione del piano è $\alpha: 2x-y-2z-2=0$.

Le rette s_1 e s_{-1} hanno equazioni parametriche s_1 : $x=1,y=t',z=t',t'\in\mathbb{R}$, e s_{-1} : $x=-1,y=t'',z=-t'',t''\in\mathbb{R}$. Un punto di s_0 è P(t,-1,t), uno di s_1 è Q(1,t',t'), mentre uno di s_{-1} è R(-1,t'',-t''). I vettori RQ e RP sono paralleli per t=0,t'=-1,t''=-1, e quindi una retta complanare con s_0,s_1,s_{-1} ha equazione parametrica $p:x=-1+2\tau,y=-1,z=1-2\tau,\tau\in\mathbb{R}$. Tale retta non è l' unica.

Prima prova in itinere - 02/05/2012 - Versione B

Tutti i calcoli devono essere riportati per la correzione, e le risposte devono essere giustificate.

Esercizio 1. (3+4+4) Siano date le matrici

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix} \qquad e \qquad B = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ -2 & -4 & -2 \end{pmatrix},$$

e siano

$$T_A: \operatorname{Mat}(3,1;\mathbb{R}) \to \operatorname{Mat}(3,1;\mathbb{R}) \quad \text{e} \quad T_B: \operatorname{Mat}(3,1;\mathbb{R}) \to \operatorname{Mat}(3,1;\mathbb{R})$$

le applicazioni lineari definite come $T_A(X) = AX$ e $T_B(X) = BX$, con $X \in Mat(3, 1; \mathbb{R})$.

- (1) Determinare una base e la dimensione di $Im(T_A)$.
- (2) Determinare una base e la dimensione di $\operatorname{Im}(T_A) \cap \ker(T_B)$.
- (3) Verificare che $\ker(T_A)$ è contenuto propriamente in $\ker(T_B \circ T_A)$.

Esercizio 2. (6+3+2) Nello spazio vettoriale reale $V=\mathrm{Mat}(2,2;\mathbb{R})$ siano dati i vettori

$$X_1 = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, X_2 = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}, X_3 = \begin{pmatrix} 2 & -1 \\ 1 & -3 \end{pmatrix}, X_4 = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}.$$

- (1) Verificare che X_1, X_2 sono linearmente indipendenti, che lo sono anche i vettori X_3, X_4 , e che $L(X_1, X_2) = L(X_3, X_4)$.
- (2) Detto U il sottospazio $L(X_1, X_2)$, siano $B' = (X_3, X_4)$ e $B'' = (X_1, X_2)$ due sue basi. Verificare che

$$U' = \{ X \in U \mid [X]_{B'} = [X]_{B''} \}$$

è un sottospazio di V.

(3) Determinare una base e la dimensione di U'.

Esercizio 3. (2+5+3+1) Siano dati i piani α_h, β_h e la retta r di equazioni rispettivamente

$$\alpha_h : hx + y - z = h, \quad \beta_h : x - hy - hz = -1, \quad r : \begin{cases} 2x + y + z = 1 \\ x - 2y - 2z = -2 \end{cases}$$

- (1) Verificare che α_h e β_h hanno in comune una retta s_h , per qualunque valore di $h \in \mathbb{R}$.
- (2) Si determini la posizione reciproca di r ed s_h , al variare di $h \in \mathbb{R}$.
- (3) Si calcoli l'equazione del piano π contenente r e parallelo ad s_0 (ossia la retta s_h avendo posto h = 0).
- (4) Calcolare, se esiste, l'equazione di una retta complanare con tutte e tre le rette $s_h, h = -1, 0, 1$.

Prima prova in itinere - 02/05/2012 - Versione C

Tutti i calcoli devono essere riportati per la correzione, e le risposte devono essere giustificate.

Esercizio 1. (3+4+4) Siano date le matrici

$$A = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 0 & -1 \\ 1 & 2 & 1 \end{pmatrix} \qquad e \qquad B = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & -1 \end{pmatrix},$$

e siano

$$T_A: \operatorname{Mat}(3,1;\mathbb{R}) \to \operatorname{Mat}(3,1;\mathbb{R}) \quad e \quad T_B: \operatorname{Mat}(3,1;\mathbb{R}) \to \operatorname{Mat}(3,1;\mathbb{R})$$

le applicazioni lineari definite come $T_A(X) = AX$ e $T_B(X) = BX$, con $X \in Mat(3, 1; \mathbb{R})$.

- (1) Determinare una base e la dimensione di $ker(T_B)$.
- (2) Determinare una base e la dimensione di $\operatorname{Im}(T_A) \cap \ker(T_B)$.
- (3) Verificare che $\operatorname{Im}(T_B)$ è uguale a $\operatorname{Im}(T_B \circ T_A)$.

Esercizio 2. (6+3+2) Nello spazio vettoriale reale $V=\mathbb{R}[x]_3$ siano dati i vettori

$$P_1 = x^3 + x + 1, P_2 = x^2 + x, P_3 = -x^3 + 3x^2 + 2x - 1, P_4 = -2x^3 + 4x^2 + 2x - 2.$$

- (1) Verificare che P_1, P_2 sono linearmente indipendenti, che lo sono anche i vettori P_3, P_4 , e che $L(P_1, P_2) = L(P_3, P_4)$.
- (2) Detto U il sottospazio $L(P_1, P_2)$, siano $B' = (P_3, P_4)$ e $B'' = (P_1, P_2)$ due sue basi. Verificare che

$$U' = \{ P \in U \mid [P]_{B'} = [P]_{B''} \}$$

è un sottospazio di V.

(3) Determinare una base e la dimensione di U'.

Esercizio 3. (2+5+3+1) Siano dati i piani α_h , β_h e la retta r di equazioni rispettivamente

$$\alpha_h : hx + y + z = h, \quad \beta_h : x - hy + hz = 1, \quad r : \left\{ \begin{array}{l} x + y - z = 0 \\ x - y - z = 1 \end{array} \right.$$

- (1) Verificare che α_h e β_h hanno in comune una retta s_h , per qualunque valore di $h \in \mathbb{R}$.
- (2) Si determini la posizione reciproca di r ed s_h , al variare di $h \in \mathbb{R}$.
- (3) Si calcoli l'equazione del piano π contenente r e parallelo ad s_0 (ossia la retta s_h avendo posto h = 0).
- (4) Calcolare, se esiste, l'equazione di una retta complanare con tutte e tre le rette $s_h, h = -1, 0, 1$.

Prima prova in itinere - 02/05/2012 - Versione D

Tutti i calcoli devono essere riportati per la correzione, e le risposte devono essere giustificate.

Esercizio 1. (3+4+4) Siano date le matrici

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ -1 & 3 & 1 \end{pmatrix} \qquad e \qquad B = \begin{pmatrix} 1 & 2 & 1 \\ -2 & -4 & -2 \\ 1 & 2 & 1 \end{pmatrix},$$

e siano

$$T_A: \operatorname{Mat}(3,1;\mathbb{R}) \to \operatorname{Mat}(3,1;\mathbb{R}) \quad \text{e} \quad T_B: \operatorname{Mat}(3,1;\mathbb{R}) \to \operatorname{Mat}(3,1;\mathbb{R})$$

le applicazioni lineari definite come $T_A(X) = AX$ e $T_B(X) = BX$, con $X \in Mat(3, 1; \mathbb{R})$.

- (1) Determinare una base e la dimensione di $ker(T_B)$.
- (2) Determinare una base e la dimensione di $\operatorname{Im}(T_A) \cap \ker(T_B)$.
- (3) Verificare che $\operatorname{Im}(T_B)$ è uguale a $\operatorname{Im}(T_B \circ T_A)$.

Esercizio 2. (6+3+2) Nello spazio vettoriale reale $V = \mathbb{R}[x]_3$ siano dati i vettori

$$P_1 = -x^2 + x - 1, P_2 = x^3 + x^2 - x - 1, P_3 = 2x^3 + x^2 - x - 3, P_4 = x^3 - 2.$$

- (1) Verificare che P_1 , P_2 sono linearmente indipendenti, che lo sono anche i vettori P_3 , P_4 , e che $L(P_1, P_2) = L(P_3, P_4)$.
- (2) Detto U il sottospazio $L(P_1, P_2)$, siano $B' = (P_3, P_4)$ e $B'' = (P_1, P_2)$ due sue basi. Verificare che

$$U' = \{ P \in U \mid [P]_{B'} = [P]_{B''} \}$$

è un sottospazio di V.

(3) Determinare una base e la dimensione di U'.

Esercizio 3. (2+5+3+1) Siano dati i piani α_h, β_h e la retta r di equazioni rispettivamente

$$\alpha_h : x + hy + z = h, \quad \beta_h : hx + y - hz = 1, \quad r : \left\{ \begin{array}{l} x - y - z = 0 \\ x - y + z = -1 \end{array} \right.$$

- (1) Verificare che α_h e β_h hanno in comune una retta s_h , per qualunque valore di $h \in \mathbb{R}$.
- (2) Si determini la posizione reciproca di r ed s_h , al variare di $h \in \mathbb{R}$.
- (3) Si calcoli l'equazione del piano π contenente r e parallelo ad s_0 (ossia la retta s_h avendo posto h = 0).
- (4) Calcolare, se esiste, l'equazione di una retta complanare con tutte e tre le rette $s_h, h = -1, 0, 1$.

Seconda prova in itinere - 29/06/2012 - Versione A

Tutti i calcoli devono essere riportati per la correzione, e le risposte devono essere giustificate.

Esercizio 1. (11 punti) Sia V uno spazio vettoriale reale di dimensione 3 e sia B = (i, j, k)una sua base, e sia dato l' endomorfismo $f_a: V \to V$ definito dalle condizioni

- (1) $f_a(\vec{i}) = \vec{i} + \vec{j} a \vec{k}$; (2) $f_a(\vec{j}) = 3 \vec{j} \vec{k}$; (3) $\vec{j} \vec{k}$ è autovettore per f_a relativo all' autovalore 1.

Dopo aver calcolato la matrice che rappresenta f_a rispetto alla base B, calcolare gli autovalori di f_a ed una base per ogni suo autospazio. Determinare quindi i valori di $a \in \mathbb{R}$ per cui f_a è diagonalizzabile. Posto poi $a = \frac{1}{2}$, e scelto un prodotto scalare su V per cui B è base ortonormale, calcolare l'angolo minimo tra autovettori di autospazi distinti.

Svolgimento. Essendo $\vec{j} - \vec{k}$ autovettore per f_a relativo all' autovalore 1, abbiamo $f_a(\vec{j} - \vec{k}) = \vec{j} - \vec{k}$. Usando la linearità di f_a , e l' uguaglianza $f_a(\vec{j}) = 3$ $\vec{j} - \vec{k}$, otteniamo $f_a(\vec{j}) - f_a(\vec{k}) = \vec{j} - \vec{k}$ da cui $f_a(\vec{k}) = 2$ \vec{j} . Quindi la matrice $M_{B,B}(f_a)$ che chiamiamo A per comodità, è uguale a

$$A = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 1 & 3 & 2 \\ -a & -1 & 0 \end{array}\right).$$

Il polinomio caratteristico di f_a è allora uguale a $p(t) = \det(A - tI) = -(t-1)^2(t-2)$. Le sue radici $t_1=1$ e $t_2=2$, essendo entrambe reali, sono anche autovalori per f_a , il primo di molteplicità 2, il secondo di molteplicità 1.

L' autospazio V(1) è dato dai vettori le cui componenti risolvono il sistema lineare omogeneo $(A-I)[\overrightarrow{v}]_B=0$. Riducendo la matrice A-I con le operazioni elementari $R_3 + \frac{1}{2}R_2 \rightarrow R_3$ otteniamo la matrice

$$\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 2 & 2 \\
-a + \frac{1}{2} & 0 & 0
\end{array}\right)$$

e quindi r(A-I)=2 se $a\neq\frac{1}{2}$, mentre r(A-I)=1 se $a=\frac{1}{2}$. Nel primo caso, otteniamo che una base è data da $B_1 = (\vec{j} - \vec{k})$, mentre nel secondo caso si ha $B_1 = (\vec{j} - \vec{k}, 2\vec{i} - \vec{k})$. In particolare, dim V(1) = 2 = m(1) se, e solo se, $a = \frac{1}{2}$.

Con simili calcoli, si ottiene che V(2) ha $B_2 = (-2 \stackrel{\rightarrow}{j} + \stackrel{\rightarrow}{k})$ come base, qualunque sia $a \in \mathbb{R}$.

In conclusione, f_a è diagonalizzabile se, e solo se, $a = \frac{1}{2}$.

Supponiamo ora che $a=\frac{1}{2}$ e che B sia una base ortonormale per V. Visto che V(1)ha dimensione 2 e V(2) ha dimensione 1, il minimo angolo tra autovettori di autospazi diversi è l'angolo tra il piano V(1) di equazione x + 2y + 2z = 0 e la retta parallela al vettore $-2\stackrel{\rightarrow}{j}+\stackrel{\rightarrow}{k}$. L' angolo α cercato verifica allora

$$\sin(\alpha) = \frac{|(\overrightarrow{i} + 2 \overrightarrow{j} + 2 \overrightarrow{k}) \cdot (-2 \overrightarrow{j} + \overrightarrow{k})|}{|\overrightarrow{i} + 2 \overrightarrow{j} + 2 \overrightarrow{k}| |-2 \overrightarrow{j} + \overrightarrow{k}|} = \frac{2}{3\sqrt{5}}.$$

Esercizio 2. (11 punti) Nel piano euclideo, sia dato il fascio di coniche di equazione

$$\Gamma_t : 2tx^2 + 2(t+1)xy + 2ty^2 - 2x - 2(t+1)y + 2 = 0.$$

- (1) Classificare le coniche del fascio al variare di $t \in \mathbb{R}$.
- (2) Calcolare una forma canonica, il cambio relativo di coordinate e disegnare la conica Γ_2 .

Svolgimento. Le matrici associate alla conica Γ_t sono

$$B_t = \begin{pmatrix} 2t & t+1 & -1 \\ t+1 & 2t & -t-1 \\ -1 & -t-1 & 2 \end{pmatrix} \qquad e \qquad A_t = \begin{pmatrix} 2t & t+1 \\ t+1 & 2t \end{pmatrix}.$$

Il determinate di B_t è uguale a $\det(B_t) = -2t(t^2 - 2t + 2)$ ed esso è nullo solo per t = 0. Il determinate di A_t è uguale a $\det(A_t) = (3t - 1)(t + 1)$ che è positivo per t < -1 oppure $t > \frac{1}{3}$. Infine, $\operatorname{tr}(A_t) \det(B_t) = -8t^2(t^2 - 2t + 2) < 0$ per ogni $t \neq 0$. In conclusione abbiamo: se t < -1 oppure $t > \frac{1}{3}$, Γ_t è un' ellisse reale, se t = -1 oppure $t = \frac{1}{3}$, Γ_t è una parabola, se $-1 < t < \frac{1}{3}$, $t \neq 0$

Posto t=2, $\Gamma=\Gamma_2$ è un' ellisse reale. Il polinomio caratteristico di A è uguale a $p_A(t)=(t-1)(t-7)$. Gli autovalori sono allora $t_1=1,t_2=7$ entrambi di molteplicità 1. Con facili calcoli, si ha che una base ortonormale di V(1) è $(\overrightarrow{e_1}=\frac{1}{\sqrt{2}}\overrightarrow{i}-\frac{1}{\sqrt{2}}\overrightarrow{j})$. La matrice ortogonale speciale P è allora uguale a

$$P = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}.$$

Il centro di simmetria di Γ ha coordinate che verificano il sistema

$$\begin{cases} 4x + 3y - 1 = 0 \\ 3x + 4y - 3 = 0 \end{cases}$$

e quindi è il punto di coordinate $(-\frac{5}{7}, \frac{9}{7})$. Il cambio di coordinate che riporta Γ in forma canonica è allora

$$\left(\begin{array}{c} x \\ y \end{array}\right) = P\left(\begin{array}{c} X \\ Y \end{array}\right) + \left(\begin{array}{c} -\frac{5}{7} \\ \frac{9}{7} \end{array}\right)$$

e l' equazione canonica di Γ è $\frac{X^2}{\frac{8}{2}} + \frac{Y^2}{\frac{8}{40}} = 1$.

Esercizio 3. (11 punti) Sia σ la sfera di centro l' origine e raggio 2, e sia α il piano di equazione $\sqrt{3}y + z - 2\sqrt{3} = 0$.

- (1) Calcolare centro e raggio della circonferenza $\gamma = \sigma \cap \alpha$.
- (2) Scrivere l'equazione del cono S di vertice V(0,0,1) avente γ come direttrice, e classificare quindi la conica Γ intersezione del cono S con il piano [xy].

Svolgimento. La retta ortogonale ad α per il centro di σ ha equazione parametrica $p: x=0, y=t\sqrt{3}, z=t$, ed interseca α per $t=\frac{\sqrt{3}}{2}$. Il punto C corrispondente ha coordinate $(0,\frac{3}{2},\frac{\sqrt{3}}{2})$ ed è il centro della circonferenza γ . Il raggio di γ è $R_{\gamma}=\sqrt{R_{\sigma}^2-d^2(O,\alpha)}=1$ essendo $R_{\sigma}=2$ e $d(O,\alpha)=\sqrt{3}$. L' equazione di γ è

$$\begin{cases} y\sqrt{3} + z - 2\sqrt{3} = 0\\ x^2 + y^2 + z^2 = 4. \end{cases}$$

Il cono richiesto ha equazione

$$\begin{cases} x = tx_0 \\ y = ty_0 \\ z = 1 + t(z_0 - 1) \\ y_0\sqrt{3} + z_0 - 2\sqrt{3} = 0 \\ x_0^2 + y_0^2 + z_0^2 = 4 \end{cases}.$$

Eliminando i parametri t, x_0, y_0, z_0 si ottiene l'equazione cartesiana

$$\mathcal{C}: (13 - 4\sqrt{3})x^2 + (4 - 4\sqrt{3})y^2 + 2(6 - 4\sqrt{3})yz + 8z^2 - 2(6 - 4\sqrt{3})y - 16z + 8 = 0.$$

Esso interseca il piano z=0 lungo la conica Γ di equazione

$$\begin{cases} z = 0 \\ (13 - 4\sqrt{3})x^2 + (4 - 4\sqrt{3})y^2 - 2(6 - 4\sqrt{3})y + 8 = 0 \end{cases}$$

Visto che $13-4\sqrt{3}>0$ mentre $4-4\sqrt{3}<0$ Γ è un' iperbole non degenere $(V\notin [xy])$.

Prova d' esame - 18/07/2012 - Versione A

Tutti i calcoli devono essere riportati per la correzione, e le risposte devono essere giustificate.

Esercizio 1. (11 punti) Sia $V = \mathbb{R}^3$ e si consideri la sua base B = ((1,0,0),(0,1,0),(1,1,1)). Sia poi data la matrice

$$A = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 1 & 0 & 1 \\ -2 & 2 & -1 \end{array}\right)$$

e sia $f: V \to V$ l' endomorfismo definito da $M_{B,B}(f) = A$

- (1) Calcolare gli autovalori di f.
- (2) Calcolare una base per ogni autospazio di f, ed una matrice invertibile P, se esiste, che diagonalizza A.
- (3) Usando poi il prodotto scalare standard di V, determinare un vettore \overrightarrow{u} non nullo di \mathbb{R}^3 tale che l'angolo tra \overrightarrow{u} e $f(\overrightarrow{u})$ sia ottuso. Ne esiste anche uno non nullo \overrightarrow{v} tale che l'angolo tra \overrightarrow{v} e $f(\overrightarrow{v})$ sia retto?

Svolgimento. Il polinomio caratteristico di f è $p(t) = \det(A - tI) = (1 - t)[(-t)(-1 - t) - 2] = -(t - 1)^2(t + 2)$. Essendo le sue radici reali, gli autovalori di f sono $t_1 = 1$ e $t_2 = -2$ di molteplicità m(1) = 2, m(-2) = 1, rispettivamente.

Calcoliamo ora l' autospazio V(1): i vettori \vec{v} che appartengono a tale autospazio hanno componenti $[\vec{v}]_B = {}^t(a,b,c)$ che risolvono il sistema lineare omogeneo avente

$$A - I = \left(\begin{array}{ccc} 0 & 0 & 0\\ 1 & -1 & 1\\ -2 & 2 & -2 \end{array}\right)$$

come matrice dei coefficienti delle incognite. Effettuando l' operazione elementare $R_3+2R_2\to R_3$ si ottiene una matrice ridotta per righe di rango 1, e quindi $\dim(V(1))=3-1=2=m(1)$. Sia $B_1=(\overrightarrow{v_1},\overrightarrow{v_2})$ una base di V(1). L' unica equazione da risolvere è a-b+c=0 e quindi b=a+c. Le componenti dei vettori $\overrightarrow{v_1},\overrightarrow{v_2}$ di B_1 sono, ad esempio, $[\overrightarrow{v_1}]_B={}^t(1,1,0)$ e $[\overrightarrow{v_2}]_B={}^t(0,1,1)$. Con facili calcoli si ottiene che $\overrightarrow{v_1}=(1,1,0)$ e $\overrightarrow{v_2}=(1,2,1)$.

Con procedimento analogo, si ha che V(-2) ha dimensione 1, e, detta $B_{-2} = (\vec{v_3})$ una sua base, le componenti di $\vec{v_3}$ sono $[\vec{v_3}]_B = {}^t(0, 1, -2)$. In conclusione, $\vec{v_3} = (-2, -1, -2)$.

Essendo le radici di p(t) tutte reali, ed avendo gli autospazi dimensione uguale alla molteplicità dell' autovalore relativo, f è diagonalizzabile, $E = (\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3})$ è una base di V di autovettori per f, ed una matrice P che diagonalizza A è

$$P = M_{E,B}(1) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & -2 \end{pmatrix}.$$

Consideriamo il vettore $\overrightarrow{w}=\overrightarrow{v_3}+t$ \overrightarrow{v} dove $\overrightarrow{v}=(1,0,-1)\in V(1)$ è ortogonale a $\overrightarrow{v_3}$. Usando la linearità di f, si ha che $f(\overrightarrow{w})=-2$ $\overrightarrow{v_3}+t$ \overrightarrow{v} , e quindi $\overrightarrow{w}\cdot f(\overrightarrow{w})=-2$ $\overrightarrow{v_3}\cdot \overrightarrow{v_3}-t$ $\overrightarrow{v}\cdot \overrightarrow{v_3}+t^2$ $\overrightarrow{v}\cdot \overrightarrow{v}=-18+2t^2$. Se $2t^2-18<0$, ossia -3< t<3, l'angolo tra \overrightarrow{w} e la sua immagine è ottuso, mentre se t=3 oppure t=-3, \overrightarrow{w} è ortogonale alla sua immagine.

Esercizio 2. (11 punti) In \mathbb{R}^4 , siano dati i sottospazi

$$V = L((1, 0, -1, 0), (0, -1, 2, 1))$$

е

$$W = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + 2y + z = 0, z - t = 0\}$$

e siano $f: \mathbb{R}^4 \to \mathbb{R}^4$ e $g: \mathbb{R}^4 \to \mathbb{R}^4$ applicazioni lineari tali che $V = \operatorname{Im}(f)$ e $W = \ker(g)$.

- (1) Determinare una base di $V \cap W$ e la sua dimensione.
- (2) Costruire un esempio esplicito di $f \in g$ in modo che $\ker(f \circ g) = W$.
- (3) Calcolare dim $\ker(g \circ f)$ e dedurre che $g \circ f$ ha un autovalore di molteplicità almeno 3.

Svolgimento. I vettori di V sono della forma a(1,0,-1,0)+b(0,-1,2,1)=(a,-b,-a+2b,b) con $a,b\in\mathbb{R}$. Sostituendo tale vettore nel sistema che definisce W, otteniamo il nuovo sistema lineare a-b=0 essendo la prima equazione identicamente soddisfatta. Abbiamo che le soluzioni sono infinite e tutte verificano a=b. Quindi, $V\cap W$ ha dimensione 1 ed una sua base è B=((1,-1,1,1)).

Il sottospazio W ha base $B_W = ((-2, 1, 0, 0), (-1, 0, 1, 1))$ che si ottiene con facili calcoli risolvendo il sistema che definisce W. Una base di \mathbb{R}^4 che completa la base di W è, ad esempio, B = ((-2, 1, 0, 0), (-1, 0, 1, 1), (1, 0, 0, 0), (0, 0, 0, 1)). Definiamo g ponendo

$$g(-2,1,0,0) = (0,0,0,0), g(-1,0,1,1) = (0,0,0,0),$$

$$g(1,0,0,0) = (1,0,0,0), g(0,0,0,1) = (0,0,0,1).$$

È evidente che Im(g) = L((1,0,0,0),(0,0,0,1)). Definiamo ora f ponendo

$$f(1,0,0,0) = (0,-1,2,1), f(0,0,0,1) = (1,0,-1,0),$$

$$f(0,1,0,0) = (0,0,0,0), f(0,0,1,0) = (0,0,0,0).$$

La composizione delle due applicazioni si calcola facilmente, ed abbiamo

$$(f \circ g)(-2, 1, 0, 0) = (f \circ g)(-1, 0, 1, 1) = (0, 0, 0, 0),$$

$$(f\circ g)(1,0,0,0)=(0,-1,2,1), (f\circ g)(0,0,0,1)=(1,0,-1,0)$$

ed è quindi evidente che $\ker(f \circ g) = W$ mentre $\operatorname{Im}(f \circ g) = V$.

Dal teorema del rango, sappiamo che $\dim(V) = \dim(\ker(g \circ f)) + \dim(\operatorname{Im}(g \circ f))$. Dalla definizione di applicazione composta, sappiamo che $\operatorname{Im}(g \circ f) = \operatorname{Im}(G)$ dove $G : \operatorname{Im}(f) \to V$ è la restrizione di g a $\operatorname{im}(f)$. Il nucleo di G è $\operatorname{Im}(f) \cap \ker(g) = V \cap W$ e quindi $\dim(\operatorname{Im}(G)) = \dim(\operatorname{Im}(f) = V) - \dim(V \cap W) = 1$. In conclusione, $\dim(\ker(g \circ f)) = 3$, e quindi $g \circ f$ ha l' autovalore 0 con autospazio V(0) di dimensione 3. Ne risulta che $m(0) \geq 3$.

Esercizio 3. (11 punti) Sia dato il piano $\alpha: x-y-1=0$, e sia Q la quadrica formata dai punti P che verificano

$$d(P,r) = \sqrt{\frac{2}{3}} \ d(P,\alpha)$$

dove r
in l' asse x.

- (1) Classificare Q dopo averne calcolato l' equazione.
- (2) Trovare una forma canonica della conica $Q \cap [yz]$ essendo [yz] il piano coordinato che contiene gli assi y ed z, ed il relativo cambio di coordinate.

Svolgimento. Sia P(x, y, z) un punto. La distanza di P dall' asse x è $d(P, r) = \sqrt{y^2 + z^2}$ visto che la proiezione ortogonale di P su tale retta ha coordinate (x, 0, 0). La distanza di P dal piano α è uguale a $d(P, \alpha) = |x - y - 1|/\sqrt{2}$. Sostituendo nella relazione che definisce Q, elevando al quadrato e semplificando, otteniamo l' equazione

$$Q: x^2 - 2xy - 2y^2 - 3z^2 - 2x + 2y + 1 = 0.$$

Le matrici associate a Q sono

$$B = \begin{pmatrix} 1 & -1 & 0 & -1 \\ -1 & -2 & 0 & 1 \\ 0 & 0 & -3 & 0 \\ -1 & 1 & 0 & 1 \end{pmatrix} \quad e \quad A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & -2 & 0 \\ 0 & 0 & -3 \end{pmatrix}.$$

Effettuando le operazione elementari $R_2 + R_1 \rightarrow R_2$, $R_4 + R_1 \rightarrow R_4$ sulle righe di B si ottiene una matrice ridotta con l' ultima riga nulla. Quindi, r(B) = 3 ossia Q è una quadrica singolare. Il polinomio caratteristico di A è $p(t) = (-3 - t)(t^2 + t - 3)$ e quindi A ha due autovalori negativi ed uno positivo. Di conseguenza, Q è un cono reale.

La conica $\Gamma=Q\cap[yz]$ ha equazione $x=0,2y^2+3z^2-2y-1=0.$ La matrice completa della conica è

$$B' = \left(\begin{array}{ccc} 2 & 0 & -1 \\ 0 & 3 & 0 \\ -1 & 0 & -1 \end{array}\right)$$

ed ha determinante $\det(B')=-9$. Quindi Γ è non degenere. In particolare, è un' ellisse, essendo gli autovalori di A' uguali a 2 e 3. Una sua forma canonica è

$$2Y^2 + 3Z^2 - \frac{9}{6} = 0$$

ed avendo Γ centro di simmetria in $(\frac{1}{2},0)$ il cambio di coordinate che la riporta in forma canonica è

$$\left(\begin{array}{c} y\\z\end{array}\right)=\left(\begin{array}{c} Y\\Z\end{array}\right)+\left(\begin{array}{c} \frac{1}{2}\\0\end{array}\right).$$

Prova d' esame - 18/07/2012 - Versione B

Tutti i calcoli devono essere riportati per la correzione, e le risposte devono essere giustificate.

Esercizio 1. (11 punti) Sia $V = \mathbb{R}^3$ e sia B = ((1, 1, 1), (0, 1, 0), (0, 0, 1)) una sua base. Sia poi data la matrice

$$A = \left(\begin{array}{rrr} -1 & 2 & -2 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{array}\right)$$

e sia $f: V \to V$ l' endomorfismo definito da $M_{B,B}(f) = A$.

- (1) Calcolare gli autovalori di f.
- (2) Calcolare una base per ogni autospazio di f, ed una matrice invertibile P, se esiste, che diagonalizza A.
- (3) Usando poi il prodotto scalare standard di V, determinare un vettore \overrightarrow{u} non nullo di \mathbb{R}^3 tale che l'angolo tra \overrightarrow{u} e $f(\overrightarrow{u})$ sia ottuso. Ne esiste anche uno non nullo \overrightarrow{v} tale che l'angolo tra \overrightarrow{v} e $f(\overrightarrow{v})$ sia retto?

Esercizio 2. (11 punti) In \mathbb{R}^4 , siano dati i sottospazi

$$V = L((0, 1, -1, 0), (-1, 0, 2, 1))$$

е

$$W = \{(x, y, z, t) \in \mathbb{R}^4 \mid 2x + y + z = 0, z - t = 0\}$$

e siano $f: \mathbb{R}^4 \to \mathbb{R}^4$ e $g: \mathbb{R}^4 \to \mathbb{R}^4$ applicazioni lineari tali che $V = \operatorname{Im}(f)$ e $W = \ker(g)$.

- (1) Determinare una base di $V \cap W$ e la sua dimensione.
- (2) Costruire un esempio esplicito di $f \in q$ in modo che $\ker(f \circ q) = W$.
- (3) Calcolare dim $\ker(g \circ f)$ e dedurre che $g \circ f$ ha un autovalore di molteplicità almeno 3

Esercizio 3. (11 punti) Sia dato il piano $\alpha: x-y-1=0$, e sia Q la quadrica formata dai punti P che verificano

$$d(P,r) = \sqrt{\frac{2}{3}} d(P,\alpha)$$

dove r è l' asse y.

- (1) Classificare Q dopo averne calcolato l' equazione.
- (2) Trovare una forma canonica della conica $Q \cap [xz]$ essendo [xz] il piano coordinato che contiene gli assi x ed z, ed il relativo cambio di coordinate.

TEMA D' ESAME DEL 07/09/2012

Tutti i calcoli devono essere riportati per la correzione, e le risposte devono essere giustificate.

Esercizio 1. (9 punti) Sia $V=\mathbb{R}^3$ spazio vettoriale euclideo rispetto al prodotto scalare standard, e sia $f:\mathbb{R}^3\to\mathbb{R}^3$ l'endomorfismo rappresentato, rispetto alla base canonica, dalla seguente matrice

$$A = \left(\begin{array}{rrr} 10 & 1 & -3 \\ 1 & 10 & 3 \\ -3 & 3 & 2 \end{array}\right).$$

- (1) Calcolare la dimensione degli autospazi di f, ed una base ortonormale per ognuno di essi.
- (2) Calcolare una matrice ortogonale P che diagonalizza A.
- (3) Usando i calcoli fatti, esibire le equazioni cartesiane del nucleo e dell' immagine di f.

Svolgimento. Il polinomio caratteristico di f è $P(t)=-t(t-11)^2$ e quindi gli autovalori di f (essendo A simmetrica, le radici di P(t) sono necessariamente reali) sono $t_1=0$ di molteplicità m(0)=1, e $t_2=11$ di molteplicità m(11)=2. Inoltre, dal Teorema Spettrale, sappiamo che f è diagonalizzabile, e che ogni autospazio ha dimensione uguale alla molteplicità dell' autovalore corrispondente. L' autospazio V(11) è definito dall' equazione -x+y-3z=0 con $[v]_C={}^t(x,y,z)$, e quindi V(0) ha $\left(\overrightarrow{e_1}=\left(-\frac{1}{\sqrt{11}},\frac{1}{\sqrt{11}},-\frac{3}{\sqrt{11}}\right)\right)$ come base (osserviamo che V(0) e V(11) sono l' uno il complemento ortogonale dell' altro, essendo f endomorfismo simmetrico). Inoltre, $\overrightarrow{e_2}=\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right)$ appartiene a V(11). Quindi, $\overrightarrow{e_3}=\overrightarrow{e_1} \wedge \overrightarrow{e_2}=\left(\frac{3}{\sqrt{22}},-\frac{3}{\sqrt{22}},-\frac{2}{\sqrt{22}}\right)$ è in V(11) ed una base ortonormale di V(11) è $(\overrightarrow{e_2},\overrightarrow{e_3})$. Ovviamente, una matrice ortogonale che diagonalizza A è

$$P = \begin{pmatrix} -\frac{1}{\sqrt{11}} & \frac{1}{\sqrt{2}} & \frac{3}{\sqrt{22}} \\ \frac{1}{\sqrt{11}} & \frac{1}{\sqrt{2}} & -\frac{3}{\sqrt{22}} \\ -\frac{3}{\sqrt{11}} & 0 & -\frac{2}{\sqrt{22}} \end{pmatrix}.$$

Infine, V(0) è il nucleo di f, e quindi le sue equazioni cartesiane sono 10x + y - 3z = 0, x + 10y + 3z = 0, mentre V(11) è l' immagine di f e la sua equazione cartesiana è -x + y - 3z = 0.

Esercizio 2. (9 punti) Nel piano euclideo, fissato un riferimento euclideo, si consideri la conica Γ di equazione

$$\Gamma: x^2 + 4xy + 3y^2 - 8x + 4y + 1 = 0.$$

Classificare Γ , fornirne una equazione canonica ed il relativo cambio di coordinate, e rappresentarla graficamente. Calcolare poi le equazioni delle eventuali rette tangenti a Γ per il punto (0,-1).

Svolgimento. Le matrici associate a Γ sono

$$B = \begin{pmatrix} 1 & 2 & -4 \\ 2 & 3 & 2 \\ -4 & 2 & 1 \end{pmatrix} \qquad \text{ed} \qquad A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}.$$

Visto che det(B) = -45 e det(A) = -1, abbiamo che Γ è un' iperbole. Gli autovalori di A sono $2 \pm \sqrt{5}$, e quindi un' equazione canonica per Γ è

$$(2 - \sqrt{5})X^2 + (2 + \sqrt{5})Y^2 + 45 = 0.$$

Il centro di simmetria di Γ ha coordinate (-16,10). Posto $a=\sqrt{10-2\sqrt{5}}$, una base ortonormale di $V(2-\sqrt{5})$ è $\left(\overrightarrow{e_1}=\frac{2}{a}\overrightarrow{i}+\frac{1-\sqrt{5}}{a}\overrightarrow{j}\right)$. In conclusione, la matrice di cambio base è

$$P = \begin{pmatrix} \frac{2}{a} & -\frac{1-\sqrt{5}}{a} \\ \frac{1-\sqrt{5}}{a} & \frac{2}{a} \end{pmatrix}$$

ed il cambio di coordinate è $\underline{x} = P\underline{X} + \underline{c}$, con ovvio significato dei simboli usati. Il punto (0,-1) appartiene a Γ e quindi esiste un' unica retta tangente a Γ per tale punto, ed essa ha equazione 6x + y + 1 = 0 come si ottiene facilmente usando la formula opportuna.

Esercizio 3. (9 punti) Nello spazio euclideo, sia Q il cilindro avente generatrici parallele alla retta r: x=y=z, e direttrice data da

$$\begin{cases} y = x^2 \\ z = 0. \end{cases}$$

- (1) Calcolare l'equazione di Q.
- (2) Scrivere l'equazione del piano di simmetria ortogonale di Q.

Svolgimento. L' equazione parametrica di Q è $x=x_0+t, y=y_0+t, z=z_0+t, z_0=0, y_0=x_0^2$ essendo $\overrightarrow{v}=\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{k}$ un vettore parallelo alla retta r. Eliminando $x_0,y_0,z_0,t,$ si ottiene $Q:(x-z)^2=y-z$. È evidente che Q rappresenta un cilindro parabolico,

essendo la direttrice una parabola. Il piano di simmetria ortogonale è parallelo a quello che contiene il vettore $\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{k}$ parallelo alle generatrici, ed il vettore \overrightarrow{j} parallelo all' asse della direttrice e quindi ha equazione della forma x-z+h=0. La retta ortogonale a tale piano e passante per l' origine ha equazione $x=t,y=0,z=-t,t\in\mathbb{R}$, ed incontra il cilindro Q nei punti (0,0,0) e $(\frac{1}{4},0,-\frac{1}{4})$. Il loro punto medio appartiene al piano che stiamo cercando, e quindi $h=-\frac{1}{4}$. In conclusione, il piano cercato ha equazione $x-z-\frac{1}{4}=0$.

TEMA D' ESAME 19/02/2013

Tutti i calcoli devono essere riportati per la correzione, e le risposte devono essere giustificate.

Esercizio 1. Si consideri la matrice

$$A = \left(\begin{array}{ccc} 1 & h & 1+h \\ h & 1 & 2 \\ 1 & 2-h & 1+h \end{array}\right),$$

con h parametro reale, e sia

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

l'applicazione lineare avente A come matrice associata rispetto alla base canonica.

- (1) Determinare, al variare di h in \mathbb{R} , il rango di A, e le dimensioni di $\ker(f)$ e di $\operatorname{Im}(f)$.
- (2) Posto h = 1, determinare nucleo ed immagine di f.
- (3) Determinare i valori di h per cui $(1,0,1) \in \ker(f)$.

Svolgimento. Effettuiamo le operazioni elementari $R_2 \to R_2 - hR_1, R_3 \to R_3 - R_1$ ed otteniamo la matrice

$$\left(\begin{array}{ccc}
1 & h & 1+h \\
0 & 1-h^2 & 2-h-h^2 \\
0 & 2-2h & 0
\end{array}\right)$$

che è ridotta per righe se $2-h-h^2\neq 0$ e $2-2h\neq 0$, ossia per $h\neq 1,-2$, oppure se $2-2h=2-h-h^2=0$, ossia se h=1. Se h=-2, effettuiamo l' ulteriore operazione $R_3\to R_3+2R_2$ ed otteniamo la matrice ridotta

$$\left(\begin{array}{ccc} 1 & -2 & -1 \\ 0 & -3 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

Se invece h = 1, la matrice ridotta che si ottiene è

$$\left(\begin{array}{ccc} 1 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

Il rango di A risulta allora

$$r(A) = \begin{cases} 1 & \text{se } h = 1 \\ 2 & \text{se } h = -2 \\ 3 & \text{altrimenti} \end{cases}.$$

Sapendo che dim Im(f) = r(A), e che dim ker(f) = 3 - dim Im(f), otteniamo

$$\dim \mathrm{Im}(f) = \left\{ \begin{array}{ll} 1 & \mathrm{se}\ h = 1 \\ 2 & \mathrm{se}\ h = -2 \\ 3 & \mathrm{altrimenti} \end{array} \right. \quad \dim \ker(f) = \left\{ \begin{array}{ll} 2 & \mathrm{se}\ h = 1 \\ 1 & \mathrm{se}\ h = -2 \\ 0 & \mathrm{altrimenti} \end{array} \right..$$

Posto h = 1, sappiamo che dim $\ker(f) = 2$, e che dim $\operatorname{Im}(f) = 1$. La prima colonna di A, per h = 1, è composta da tutti elementi uguali ad 1, e quindi f(1,0,0) = (1,1,1). In conclusione, $\operatorname{Im}(f) = L((1,1,1))$. Per calcolare $\ker(f)$, risolviamo il sistema A'X = 0 con

A' matrice ridotta ottenuta da A con h=1. L' unica equazione da risolvere è a+b+2c=0 le cui soluzioni sono a=-b-2c. Quindi $\ker(f)=L((-1,1,0),(-2,0,1))$.

Perché sia verificato $(1,0,1) \in \ker(f)$, deve risultare $A^{t}(1,0,1) = 0$, da cui si ottiene il sistema lineare h+2=0, la cui unica soluzione è h=-2.

Esercizio 2. Nel piano euclideo, si consideri la conica γ di equazione

$$3x^2 - 4xy + 3y^2 - 8x + 9 = 0.$$

- (1) Classificare γ e ridurla a forma canonica.
- (2) Determinare l'equazione della circonferenza γ_1 di raggio massimo contenuta in γ , e l'equazione della circonferenza γ_2 di raggio minimo contenente γ , nel caso in cui γ_1 e γ_2 abbiano lo stesso centro di γ .

Svolgimento. Le matrici associate a γ sono

е

$$B = \begin{pmatrix} 3 & -2 & -4 \\ -2 & 3 & 0 \\ -4 & 0 & 9 \end{pmatrix} \qquad e \qquad A = \begin{pmatrix} 3 & -2 \\ -2 & 3 \end{pmatrix}.$$

Con facili calcoli si ha che $\det(B) = -3$, $\det(A) = 5$, e $\operatorname{tr}(A) = 6$. Quindi, γ è un' ellisse $(\det(B) \neq 0, \det(A) > 0)$ con punti reali $(\det(B)\operatorname{tr}(A) < 0)$. L' equazione canonica di γ è della forma $aX^2 + bY^2 + c = 0$ con $c = \det(B)/\det(A) = -3/5$, ed a, b autovalori di A. Il polinomio caratteristico di A è $p(t) = t^2 - 6t + 5$, le cui radici sono $t_1 = 1, t_2 = 5$, entrambe di molteplicità 1. Poniamo a = 1, b = 5, e quindi l' equazione canonica di γ è

$$\frac{X^2}{\frac{3}{5}} + \frac{Y^2}{\frac{3}{25}} = 1.$$

L' autospazio V(1) contiene tutti e soli i vettori proporzionali a $\overrightarrow{i} + \overrightarrow{j}$ ed un versore di tale spazio è $\overrightarrow{e_1} = \frac{1}{\sqrt{2}} \overrightarrow{i} + \frac{1}{\sqrt{2}} \overrightarrow{j}$. Quindi la matrice P di rotazione è

$$P = \left(\begin{array}{cc} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array}\right).$$

Il centro di simmetria della conica ha coordinate che risolvono il sistema 3x - 2y - 4 = 0, -2x + 3y = 0 e quindi sono uguali a (12/5, 8/5). In conclusione, il cambio di riferimento è descritto dall' equazione

$$\left(\begin{array}{c} x \\ y \end{array}\right) = P\left(\begin{array}{c} X \\ Y \end{array}\right) + \left(\begin{array}{c} 12/5 \\ 8/5 \end{array}\right).$$

Le circonferenze γ_1 e γ_2 hanno centri in (12/5, 8/5) e raggi $R_1 = \frac{\sqrt{3}}{5}$ e $R_2 = \sqrt{\frac{3}{5}}$, rispettivamente. Quindi le loro equazioni sono

$$\gamma_1: x^2 + y^2 - \frac{24}{5}x - \frac{16}{5} + \frac{41}{5} = 0$$

 $\gamma_2: x^2 + y^2 - \frac{24}{5}x - \frac{16}{5} + \frac{193}{25} = 0.$

Esercizio 3. Nello spazio euclideo, si considerino il punto F(1,0,1) ed il piano π di equazione x-y=0.

(1) Calcolare l'equazione del luogo Q formato dai punti che verificano la condizione

$$d(P, F) = \sqrt{2}d(P, \pi).$$

- (2) Verificare che Q è una quadrica di rotazione, classificarla e calcolarne un' equazione canonica.
- (3) Determinare l'equazione dell'asse di rotazione della quadrica Q.

Svolgimento. Sia P(x, y, z). La condizione che definisce Q è

$$\sqrt{(x-1)^2 + y^2 + (z-1)^2} = \sqrt{2} \frac{|x-y|}{\sqrt{2}}.$$

Elevando al quadrato e semplificando, otteniamo

$$Q: 2xy + z^2 - 2x - 2z + 2 = 0.$$

Q è una quadrica perché l' equazione che la definisce è un polinomio di secondo grado. Le matrici associate a Q sono

$$B = \begin{pmatrix} 0 & 1 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & -1 & 2 \end{pmatrix} \qquad A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Abbiamo che det(B) = -1, e quindi Q è liscia, a punti ellittici. Gli autovalori di A sono le radici di $p(t) = det(A - tI) = -(t - 1)^2(t + 1)$, e quindi sono $t_1 = 1$ di molteplicità 2, e $t_2 = -1$, di molteplicità 1. L' equazione canonica di Q è allora

$$Q: X^2 + Y^2 - Z^2 + 1 = 0$$

e quindi Q è un iperboloide a due falde, di rotazione avendo un autovalore doppio. L' asse di simmetria di Q passa per il centro di simmetria C di Q, le cui coordinate risolvono il sistema y-1=0, x=0, z-1=0, ossia C(0,1,1), ed è parallelo all' autospazio $V(-1)=V(1)^{\perp}$. L' equazione che descrive V(1) è x-y=0 e quindi V(-1)=L((1,-1,0)). L' asse ha allora equazione parametrica x=t, y=1-t, z=1.