Math 4301 Mathematical Analysis I Lecture 10

Topic: Continuous functions

• Continuous Functions

Definition Let $f: A \subseteq \mathbb{R} \to \mathbb{R}$ and $c \in A$ we say that f is continuous at c

- i) if c is an isolated point of A
- ii) if c is an accumulation point of A and $\lim_{x\to c} f(x) = f(c)$.

We say that f is continuous on A if f is continuous at each point $c \in A$.

Example: Let

$$A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \cup \{0\}$$

and $y_n \to y_0$ and $n \to \infty$.

Define $f: A \to \mathbb{R}$ by

$$f(x) = \begin{cases} y_n & if \quad x = \frac{1}{n} \\ y_0 & if \quad x = 0 \end{cases}$$

We show that f is continuous on A.

- Each point $\frac{1}{n} \in A$ is an isolated point of A, so f is continuous by the definition.
- We show that f is also continuous at c = 0.
- Notice that c = 0 is an accumulation point of A.
- It suffices to show that

$$\lim_{x \to 0} f(x) = y_0.$$

• Let $\epsilon > 0$ be given.

Since $y_n \to y_0$ as $n \to \infty$,

there is $N \in \mathbb{N}$, such that, for n > N,

$$|y_n - y_0| < \epsilon$$
.

- Let $\delta = \frac{1}{N} > 0$.
- Notice that, for every $x \in A$,

if $0 < |x - 0| < \delta$, then

$$x = \frac{1}{n} < \delta = \frac{1}{N}.$$

• Therefore, n > N, so

$$|f(x) - f(0)| = \left| f\left(\frac{1}{n}\right) - y_0 \right| = |y_n - y_0| < \epsilon.$$

1

• It follows that $\lim_{x\to 0} f(x) = y_0$.

- Therefore, f is continuous on A.
 - **Theorem** Let $f: A \subseteq \mathbb{R} \to \mathbb{R}$ and $c \in A$.
 - The function f is continuous at c iff
 - for every $\epsilon > 0$, there is $\delta > 0$, such that,
 - for all $x \in A$, if $|x c| < \delta$ then

$$|f(x) - f(c)| < \epsilon.$$

Proof. We show that both conditions are equivalent.

- Assume that f is continuous at $c \in A$ and let $\epsilon > 0$ be given.
- If c is an isolated point of A, then there is $\delta > 0$, such that

$$D(c, \delta) \cap A = \{c\}.$$

Example: $A = (1,2) \cup \{3\}$ then x = 3 is an isolated point.

• Therefore, for all $x \in A$, if $|x - c| < \delta$, then x = c, so

$$|f(x) - f(c)| = |f(c) - f(c)| = 0 < \epsilon.$$

- Assume that $x \in A'$ (i.e. c is an accumulation point of A).
- Since f is continuous at c,

$$\lim_{x \to c} f(x) = f(c),$$

there is $\delta > 0$, such that, for all $x \in A$, if

$$0 < |x - c| < \delta$$
,

then

$$|f(x) - f(c)| < \epsilon.$$

- Assume that $x \in A$ and $|x c| < \delta$.
- If $x \neq c$, then $0 < |x c| < \delta$, so

$$|f(x) - f(c)| < \epsilon.$$

• If x = c, then clearly,

$$|f(x) - f(c)| = |f(c) - f(c)| = 0 < \epsilon.$$

• We showed, that if f is continuous at c, then for all $\epsilon > 0$, we can find $\delta > 0$, such that, for every $x \in A$, if

$$|x - c| < \delta$$
,

then

$$|f(x) - f(c)| < \epsilon.$$

- Conversely, assume that the $(\epsilon \delta)$ condition holds.
- If c is an isolated point of A,
 then by the definition f is continuous at c.

- Assume that $c \in A' \cap A$ (i.e. c is an accumulation point of A that is also in A).
- We show that

$$\lim_{x \to c} f(x) = f(c).$$

• Let $\epsilon > 0$ be given.

Since $(\epsilon - \delta)$ condition holds, there is $\delta > 0$, such that, for all $x \in A$, if

$$|x - c| < \delta$$

then

$$|f(x) - f(c)| < \epsilon$$
.

• In particular, for all $x \in A$, if $0 < |x - c| < \delta$ then

$$|f(x) - f(c)| < \epsilon$$
.

 \bullet It follows that

$$\lim_{x \to c} f(x) = f(c).$$

This finishes our proof. \blacksquare

• Here is another topological reformulation of continuity.\

Theorem A function $f: A \subseteq \mathbb{R} \to \mathbb{R}$ is continuous at $c \in A$ iff for every neighborhood V of f(c), there is a neighborhood U of c, such that, for all $x \in A \cap U$,

$$f(x) \in V$$
.

Proof. We show that both conditions are equivalent.

- Assume that $f:A\subseteq\mathbb{R}\to\mathbb{R}$ is continuous at $c\in A$ and let V be a neighborhood of $f\left(c\right)$.
- Since V is a neighborhood and $f(c) \in V$, there is

$$D(f(c), \epsilon) = (f(c) - \epsilon, f(c) + \epsilon) \subseteq V.$$

• Since f is continuous at c, there is $\delta > 0$, such that, for all $x \in A$, if $|x - c| < \delta$ then

$$|f(x) - f(c)| < \epsilon$$
.

• Let

$$U = (c - \delta, c + \delta) = D(c, \delta).$$

• Then, for all, $x \in A \cap U$,

$$|x-c|<\delta$$
.

• Hence, for all $x \in A \cap U$,

$$|f(x) - f(c)| < \epsilon$$
.

• It follows that for all $x \in A \cap U$,

$$f(x) \in (f(c) - \epsilon, f(c) + \epsilon) \subseteq V.$$

• Since $(f(c) - \epsilon, f(c) + \epsilon) \subseteq V$, it follows that, for all $x \in A \cap U$,

$$f(x) \in V$$
.

• Conversely, assume that for every neighborhood V of f(c), there is a neighborhood U of c, such that, for all $x \in A \cap U$,

$$f(x) \in V$$
.

- We show that f is continuous at c.
- Since

$$V = (f(c) - \epsilon, f(c) + \epsilon)$$

a neighborhood of f(c), then there is a neighborhood U of c, such that, for all $x \in A \cap U$, $f(x) \in V$.

• Since U is a neighborhood of c, there is $\delta > 0$, such that

$$(c - \delta, c + \delta) \subset U$$
.

• Notice that: if $x \in A$ and $x \in (c - \delta, c + \delta)$ i.e. $|x - c| < \delta$, then

$$x \in (c - \delta, c + \delta) \cap A \subseteq U \cap A$$
.

• Therefore,

$$f(x) \in (f(c) - \epsilon, f(c) + \epsilon) = V,$$

so for all $x \in A$,

if $|x-c| < \delta$, then

$$|f(x) - f(c)| < \epsilon.$$

This finishes our proof. ■

• Example: Let $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = x^2 - 2x + 3.$$

We show that f is continuous at each $c \in \mathbb{R}$.

- Let $\epsilon > 0$ be given.
- If $|x-c| < \delta$, then

$$|f(x) - f(c)| = |(x^2 - 2x + 3) - (c^2 - 2c + 3)| = |x^2 - c^2 - 2x + 2c|$$
$$= |(x - c)(x + c) - 2(x - c)| = |x - c||x + c - 2|.$$

• If $|x-c| < \delta$, then

$$|x+c-2| = |x-c+2c-2| = |(x-c)+2(c-1)|$$

 $\leq |x-c|+2|c-1| \leq \delta + 2|c-1|.$

• Therefore, if $\delta < 1$,

$$|x+c-2| \le \delta + 2|c-1| < 1 + 2|c-1|$$
.

• It follows that, if $\delta < 1$, and $|x - c| < \delta$, then

$$|f(x) - f(c)| = |x - c| |x + c - 2| < \delta (1 + 2|c - 1|).$$

• If we take

$$\delta = \frac{1}{2} \min \left\{ 1, \frac{\epsilon}{1 + 2|c - 1|} \right\},\,$$

then for $x \in \mathbb{R}$, if $|x - c| < \delta$, then

$$\begin{split} |f\left(x\right)-f\left(c\right)| &= |x-c|\,|x+c-2| < \delta\left(1+2\,|c-1|\right) \\ &\leq \frac{\epsilon}{1+2\,|c-1|}\left(1+2\,|c-1|\right) = \epsilon. \end{split}$$

• Hence f is continuous at c.

Exercise: Show that $f: \mathbb{R} \to \mathbb{R}$,

$$f\left(x\right) = \sin\left(x\right)$$

is continuous at $c \in \mathbb{R}$.

Example: We show that

$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R},$$
 $f(x) = \frac{1}{x}$

is continuous at $c \in \mathbb{R} \setminus \{0\}$.

- We notice that, since $c \in \mathbb{R} \setminus \{0\}$, there is $\delta = |c| > 0$, such that, for all $x \in (c - \delta, c + \delta)$, $x \neq 0$.
- Assume that $|x-c| < \delta$, then

$$|f(x) - f(c)| = \left| \frac{1}{x} - \frac{1}{c} \right| = \frac{|x - c|}{|x| |c|}$$

• If $\delta < \frac{|c|}{2}$, then, for $x \in (c - \delta, c + \delta)$,

$$|x - c| < \delta < \frac{|c|}{2}$$

and

$$|x| = |(x-c) + c| \ge |c| - |x-c| > |c| - \delta > |c| - \frac{|c|}{2} = \frac{|c|}{2}.$$

• It follows that, if $x \in \mathbb{R} \setminus \{0\}$, $|x-c| < \delta$ and $\delta < \frac{|c|}{2}$, then

$$|f(x) - f(c)| = \left| \frac{1}{x} - \frac{1}{c} \right| = \frac{|x - c|}{|x| |c|} \le \frac{2|x - c|}{|c|^2} < \frac{2}{|c|^2} \delta.$$

• Therefore, if we take

$$\delta = \min\left\{\frac{|c|}{2}, \ \frac{|c|^2 \epsilon}{2}\right\} > 0,$$

• we see that, for $x \in \mathbb{R} \setminus \{0\}$, if $|x - c| < \delta$ then

$$|f(x) - f(c)| \le \frac{2|x - c|}{|c|^2} < \frac{2}{|c|^2} \delta \le \frac{2}{|c|^2} \frac{|c|^2}{2} = \epsilon.$$

Exercise: Show that $f:[0,\infty)\to\mathbb{R}$,

$$f\left(x\right) = \sqrt{x}$$

is continuous at $c \in [0, \infty)$.

- Let us remark on yet another equivalent conditions for continuity.
- Let $f: \mathbb{R} \to \mathbb{R}$, $c \in \mathbb{R}$ and $\delta > 0$ be given.
- Consider an open disk $D(c, \delta)$ and define the oscillation of f on $D(c, \delta)$ as follows

$$\omega_f(D(c,\delta)) = \sup \{|f(x) - f(y)| \mid x, y \in D(c,\delta)\}$$

and the oscillation of f at c by

$$\omega_f(c) = \inf \{ \omega_f(D(c, \delta)) \mid \delta > 0 \}.$$

Example: Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} -1 & \text{if} \quad x < 0\\ 2 & \text{if} \quad x \ge 0 \end{cases}$$

• Take $D(0,\delta) = (-\delta,\delta)$, then

$$x = -\frac{\delta}{2} \in (-\delta, \delta)$$
 and $y = \frac{\delta}{2} \in (-\delta, \delta)$

• Since x < 0 and y > 0,

$$f(x) = -1$$
 and $f(y) = 2$,

so

$$|f(x) - f(y)| = |-1 - 2| = 3$$

• Therefore,

$$3 \leq |f(x) - f(y)| \leq \sup\{|f(x) - f(y)| \mid x, y \in D(0, \delta)\}$$

= $\omega_f(D(0, \delta))$.

• One needs to show that

$$\omega_f(D(0,\delta)) \leq 3$$
 – Please think about it.

- Consider cases:
- **a**) x, y < 0,
- **b**) $x, y \ge 0$ **c**) $x < 0 \le y$ and compute |f(x) f(y)|...
- Therefore,

$$\begin{array}{lcl} \omega_{f}\left(D\left(0,\delta\right)\right) & = & \sup\left\{\left|f\left(x\right)-f\left(y\right)\right| \; \middle| \; x,y \in D\left(0,\delta\right)\right\} \\ & = & 3 \end{array}$$

so

$$\omega_f(0) = \inf \{ \omega_f(D(0,\delta)) \mid \delta > 0 \} = \inf \{ 3 \}$$

$$= 3$$

Proposition Function $f: \mathbb{R} \to \mathbb{R}$ is continuous at $c \in \mathbb{R}$ iff $\omega_f(c) = 0$.

Proof. We show that both conditions are equivalent.

- Assume that f is continuous at c.
- It is sufficient to show that for all $\epsilon > 0$,

$$0 \le \omega_f(c) < \epsilon$$
.

• Since

$$\omega_f(c) = \inf \{ \omega_f(D(c, \delta)) \mid \delta > 0 \},$$

• it is sufficient to show that, for $\epsilon > 0$, there is $\delta > 0$, such that

$$\omega_f\left(D\left(c,\delta\right)\right) < \epsilon.$$

• Since f is continuous at c, there is $\delta > 0$, such that, for all $x \in \mathbb{R}$, if $|x - c| < \delta$, then

$$|f(x) - f(c)| < \frac{\epsilon}{4}.$$

• That is, for all $x \in D(c, \delta)$,

$$|f(x) - f(c)| < \frac{\epsilon}{4}.$$

• Since, for all $x, y \in D(c, \delta)$,

$$\begin{aligned} |f\left(x\right) - f\left(y\right)| &= |f\left(x\right) - f\left(c\right) + f\left(c\right) - f\left(y\right)| \\ &\leq |f\left(x\right) - f\left(c\right)| + |f\left(y\right) - f\left(c\right)| \\ &< \frac{\epsilon}{4} + \frac{\epsilon}{4} = \frac{\epsilon}{2} \end{aligned}$$

• it follows that, for all $x, y \in D(c, \delta)$,

$$|f(x) - f(y)| < \frac{\epsilon}{2}.$$

• Therefore,

$$\omega_f\left(D\left(c,\delta\right)\right) = \sup\left\{\left|f\left(x\right) - f\left(y\right)\right| \mid x, y \in D\left(c,\delta\right)\right\} \le \frac{\epsilon}{2} < \epsilon,$$

so $\omega_f(D(c,\delta)) < \epsilon$.

• Hence, we showed that

$$\omega_f(c) = \inf \{ \omega_f(D(c, \delta)) \mid \delta > 0 \} < \epsilon$$

for all $\epsilon > 0$.

- It follows that $\omega_f(c) = 0$.
- Conversely, assume that $\omega_f(c) = 0$ and $\epsilon > 0$ be given.
- We show that f is continuous at x = c.
- Since

$$\omega_f(c) = \inf \{ \omega_f(D(c, \delta)) \mid \delta > 0 \} = 0,$$

• there is $\delta > 0$, such that

$$\omega_f (D(c, \delta)) < \omega_f (c) + \epsilon = \epsilon,$$

that is, there is $\delta > 0$, such that

$$\omega_f\left(D\left(c,\delta\right)\right) < \epsilon.$$

• Therefore, for all $x, y \in D(c, \delta)$,

$$|f(x) - f(y)| < \epsilon,$$

• In particular, for all

$$x \in D(c, \delta), |f(x) - f(c)| < \epsilon.$$

• That is, we showed, that for any $\epsilon > 0$, there is $\delta > 0$, such that for all $x \in \mathbb{R}$, if $|x - c| < \delta$, then

$$|f(x) - f(c)| < \epsilon.$$

• This shows that f is continuous at c.

This finishes our proof. \blacksquare

• Example: Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1 & if & x \in \mathbb{Q} \\ 0 & if & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}.$$

We show that f is not continuous at each $c \in \mathbb{R}$.

• Indeed, if $c \in \mathbb{R}$, for every $\delta > 0$,

$$D(c, \delta) = (c - \delta, c + \delta)$$

contains both rational and the irrational numbers, that is,

$$D(c,\delta) \cap \mathbb{Q} \neq \emptyset$$
 and $D(c,\delta) \cap (\mathbb{R}\backslash\mathbb{Q}) \neq \emptyset$.

• Let $x \in D(c, \delta) \cap \mathbb{Q}$ and $y \in D(c, \delta) \cap (\mathbb{R} \setminus \mathbb{Q})$, then

$$1 = |f(x) - f(y)| \le \omega_f(D(c, \delta)).$$

• It follows that,

$$\omega_f(c) = \inf \{ \omega_f(D(c, \delta)) \mid \delta > 0 \} \ge 1,$$

so f is not continuous at $c \in \mathbb{R}$.

Exercise: Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f\left(x\right) = \left\{ \begin{array}{ll} \frac{1}{q} & if \quad x = \frac{p}{q}, \ \gcd\left(p,q\right) = 1, \ p \in \mathbb{Z}, \ q \in \mathbb{N} \\ 0 & if \qquad \qquad x \in \mathbb{R} \backslash \mathbb{Q} \cup \{0\} \end{array} \right. .$$

Show that f is continuous at c iff $c \in \mathbb{R} \setminus \mathbb{Q}$.

We start by showing that f is **not continuous at each** $c \in \mathbb{Q} \setminus \{0\}$.

• Let $\delta > 0$, then for each $\frac{p}{q}$,

$$gcd(p,q) = 1, p, q \in \mathbb{Z}, q \neq 0,$$

disk $D\left(\frac{p}{q},\delta\right)$ and $\mathbb{R}\backslash\mathbb{Q}$ intersect non-empty, i.e.

$$D\left(\frac{p}{q},\delta\right)\cap\mathbb{R}\backslash\mathbb{Q}=\left(\frac{p}{q}-\delta,\frac{p}{q}+\delta\right)\cap\mathbb{R}\backslash\mathbb{Q}\neq\emptyset.$$

• Let $x \in D\left(\frac{p}{q}, \delta\right) \cap \mathbb{R} \setminus \mathbb{Q}$, then

$$\frac{1}{q} = \left| 0 - \frac{1}{q} \right| = \left| f(x) - f\left(\frac{p}{q}\right) \right| \le \omega_f \left(D\left(\frac{p}{q}, \delta\right) \right).$$

• It follows that

$$\omega_f\left(\frac{p}{q}\right) = \inf\left\{\omega_f\left(D\left(\frac{p}{q},\delta\right)\right) \mid \delta > 0\right\} \ge \frac{1}{q} > 0,$$

so f is not continuous at $\frac{p}{q}$.

- We show that f is continuous at $c \in \mathbb{R} \setminus \mathbb{Q}$.
- It suffices to show that, for $\epsilon > 0$,

$$\omega_f(c) < \epsilon$$
.

• Since by the definition

$$\omega_f(c) = \inf \{ \omega_f(D(c, \delta)) \mid \delta > 0 \},$$

it is sufficient to show that, there is, $\delta > 0$, such that,

$$\omega_f\left(D\left(c,\delta\right)\right) < \frac{\epsilon}{2}.$$

- Since $\frac{\epsilon}{2} > 0$, there is $n \in \mathbb{N}$, such that, $0 < \frac{1}{n} < \frac{\epsilon}{2}$.
- For each $1 \le q \le n$, let

$$S_q = \left\{ \frac{p}{q} : p \in \mathbb{Z} \text{ and } \gcd(p,q) = 1 \right\} \cap (c-1,c+1).$$

• We see that S_q must be **finite**, otherwise

$$c - 1 < \frac{p}{q} < c + 1,$$

for infinitely many $p \in \mathbb{Z}$, such that $\gcd(p,q) = 1$.

That is,

$$(c-1) q$$

for infinitely many $p \in \mathbb{Z}$, $\gcd(p,q) = 1$ which is impossible.

• It follows that

$$S = \bigcup_{q=1}^{n} S_q$$

is also finite.

• Since $c \in \mathbb{R} \setminus \mathbb{Q}$, for all $x \in S$,

$$|x - c| > 0.$$

• Therefore,

$$\delta = \min\left\{|x - c| : x \in S\right\} > 0.$$

and since $S \subset (c-1, c+1)$,

$$\delta < 1$$

• Consider

$$D(c, \delta) = (c - \delta, c + \delta).$$

• If $x \in \mathbb{R} \setminus \mathbb{Q} \cap D(c, \delta)$, then

$$f(x) = 0 < \epsilon$$
.

- Now, if $x = \frac{p}{q}$ then either $1 \le q \le n$ or q > n.
- If $1 \le q \le n$, then

$$x \notin D(c, \delta)$$

by the definition of $\delta > 0$.

• Therefore, q > n, so

$$f(x) = \frac{1}{q} < \frac{1}{n} < \frac{\epsilon}{2}.$$

• It follows that,

for all
$$x, y \in D(c, \delta)$$
, $|f(x) - f(y)| < \frac{\epsilon}{2}$

and hence

$$\omega_f\left(D\left(c,\delta\right)\right) < \frac{\epsilon}{2}.$$

• Therefore,

$$0 \le \omega_f\left(c\right) = \inf\left\{\omega_f\left(D\left(c,\delta\right)\right) \mid \delta > 0\right\} < \frac{\epsilon}{2} < \epsilon.$$

• We showed that, for every $\epsilon > 0$,

$$\omega_f(c) < \epsilon,$$

so
$$\omega_f(c) = 0$$
.

- It follows that f is continuous at $c \in \mathbb{R} \setminus \mathbb{Q}$.
- Finally, if c = 0, since

$$0 \le f(x) \le |x|$$

we have

$$0 \le \lim_{x \to 0} f(x) \le \lim_{x \to 0} |x| = 0$$

then

$$\lim_{x \to 0} f(x) = 0 = f(0),$$

so f is continuous at c = 0.

Proposition Let $f, g : A \subseteq \mathbb{R} \to \mathbb{R}$ be continuous at $c \in A$. Then

- i) $\alpha f + \beta g$ is continuous at c;
- ii) $f \cdot g$ is continuous at c;
- iii) $\frac{f}{g}$ is continuous at c provided that $g(c) \neq 0$.

Proof. The statement follows from theorem about limits

• **Proposition** If $f: A \subseteq \mathbb{R} \to \mathbb{R}$ and $g: B \subseteq \mathbb{R} \to \mathbb{R}$ are continuous and $f(A) \subseteq B$, then $g \circ f: A \to \mathbb{R}$ is continuous.

Proof. We show that, for every open subset $W \subseteq \mathbb{R}$, such that $(g \circ f)(c) \in W$, $(g \circ f)^{-1}(W)$ is open in A.

- Let $c \in A$.
- We see that if $W \subseteq \mathbb{R}$ is a neighborhood of $(g \circ f)(c)$, then since g is continuous, there is a neighborhood $V \subseteq \mathbb{R}$, such that $f(c) \in V$ and for every $y \in V \cap B$,

$$g(y) \in W$$
.

- Since $f(A) \subseteq B$ and $f(c) \in B$, then V is a neighborhood of f(c).
- Since f is continuous, there is a neighborhood U of c, such that, for all $x \in U \cap A$,

$$f(x) \in V \cap B$$
.

Therefore, $g(f(x)) \in W$.

• We showed that, for all $x \in U \cap A$,

$$(g \circ f)(x) \in W$$
.

• It follows that $g \circ f$ is continuous at each $c \in A$, so $g \circ f$ is continuous on A.

This finishes our proof. ■

• Exercise: Show that $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & if \quad x \neq 0\\ 0 & if \quad x = 0 \end{cases}$$

is continuous on $\mathbb{R}\setminus\{0\}$ and it is not continuous at c=0.

Let $\delta > 0$ and consider $D(0, \delta)$.

• We would like to find

$$\omega_f\left(D\left(0,\delta\right)\right)$$

Idea: Notice that

$$\sup \left\{ \sin \left(\frac{1}{x} \right) : x \in D(0, \delta) \right\} = 1 \text{ and}$$

$$\inf \left\{ \sin \left(\frac{1}{x} \right) : x \in D(0, \delta) \right\} = -1$$

• Therefore,

$$\omega_f(D(0,\delta)) \le |1 - (-1)| = 2$$

• Notice that,

$$x_n = \frac{1}{\frac{\pi}{2} + 2n\pi} \to 0 \text{ as } n \to \infty \text{ and}$$

 $y_n = \frac{1}{-\frac{\pi}{2} + 2n\pi} \to 0 \text{ as } n \to \infty$

- Therefore, there is $N \in \mathbb{N}$, such that $x_N, y_N \in (-\delta, \delta)$.
- Therefore,

$$2 = |1 - (-1)| = \left| \sin\left(\frac{\pi}{2} + 2N\pi\right) - \sin\left(-\frac{\pi}{2} + 2N\pi\right) \right|$$

$$= \left| \sin\left(\frac{1}{x_N}\right) - \sin\left(\frac{1}{y_N}\right) \right| = |f(x_N) - f(y_N)| \le \omega_f\left(D\left(0, \delta\right)\right)$$

We showed that

$$\omega_f(D(0,\delta)) = 2$$
, for every $\delta > 0$.

• Consequently, we see that

$$\omega_f(0) = \inf \{ \omega_f(D(0,\delta)) \mid \delta > 0 \}$$

= \inf \{2\} = 2 > 0.

- By theorem, f is not continuous at x = 0.
- To finish our proof, one shows that if $x \neq 0$, then $\omega_f(x) = 0$.
- We leave this part as an exercise.

Exercise: Show that $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & if \quad x \neq 0 \\ 0 & if \quad x = 0 \end{cases}$$

is continuous.

Remark We notice that using the oscillation ω_f of $f: \mathbb{R} \to \mathbb{R}$ we can define the set of its discontinuities as

$$D_f = \{x \in \mathbb{R} : \omega_f(x) > 0\}.$$

Definition Let $f: \mathbb{R} \to \mathbb{R}$ then, for every $\epsilon > 0$ the set

$$G_{\epsilon}(f) = \{x \in \mathbb{R} : \omega_f(x) < \epsilon\}$$

is open in \mathbb{R} .

Proof. We show that, for every $y \in G_{\epsilon}(f)$, there is $\delta > 0$, such that

$$D(y,\delta) \subseteq G_{\epsilon}(f)$$
.

- Let $y \in G_{\epsilon}(f)$.
- Then

$$\omega_f(y) = \inf \{ \omega_f(D(y, \delta)) \mid \delta > 0 \} < \epsilon.$$

- It follows that, there is $\delta > 0$, such that $\omega_f(D(y,\delta)) < \epsilon$.
- Let $z \in D(y, \delta)$, $z \neq y$ and

$$\eta = \delta - |y - z| > 0.$$

 \bullet Then

$$\begin{array}{ccc} D\left(z,\eta\right) &\subseteq & D\left(y,\delta\right), \text{ hence} \\ \omega_{f}\left(D\left(z,\eta\right)\right) &\leq & \omega_{f}\left(D\left(y,\delta\right)\right) < \epsilon. \end{array}$$

• It follows that

$$\omega_f(z) = \inf \{ \omega_f(D(z, \alpha)) \mid \alpha > 0 \} \le \omega_f(D(y, \delta)),$$

hence

$$\omega_f(z) \le \omega_f(y) < \epsilon$$
,

and therefore, $z \in G_{\epsilon}(f)$, for all $z \in D(y, \delta)$.

• Consequently, $D(y,\delta) \subseteq G_{\epsilon}(f)$, so $G_{\epsilon}(f)$ is open in \mathbb{R} .

This finishes our proof. ■

- Remark We note that if $A \subseteq \mathbb{R}$ is bounded then also its closure \overline{A} is bounded.
- Since A is bounded, there is R > 0, such that $A \subset R(0,R)$, so by the property of closure, we see that

$$\overline{A} \subseteq \overline{D(0,R)} = \{x \in \mathbb{R}^n : |x| \le R\}$$

• Since $\overline{D(0,R)}$ is bounded, then \overline{A} is also bounded.

Corollary Let $A \subseteq \mathbb{R}$ be bounded and $f: A \to \mathbb{R}$.

Define $\widetilde{f}: \mathbb{R} \to \mathbb{R}$, by

$$\widetilde{f}\left(x\right) = \left\{ \begin{array}{ccc} f\left(x\right) & if & x \in A \\ 0 & if & x \in \mathbb{R}\backslash A \end{array} \right.$$

Then the set

$$D_{\epsilon}\left(\widetilde{f}\right) = \left\{x \in \mathbb{R} : \omega_{\widetilde{f}}\left(x\right) \ge \epsilon\right\}$$

is compact in \mathbb{R} .