第一章 质点力学

1.1 找出下列表达式中的错误, 写出正确表达:	
$(1)\mathbf{r} = x + y$	
解答: $\mathbf{r} = x\mathbf{i} + y\mathbf{j}$	
$(2) \mathbf{v} = v_x i + v_y j$	
解答: $\boldsymbol{v} = v_x \boldsymbol{i} + v_y \boldsymbol{j}$	
$(3) v = v_x \mathbf{i} + v_y \mathbf{j}$	
解答: $\boldsymbol{v} = v_x \boldsymbol{i} + v_y \boldsymbol{j}$	
$(4) \boldsymbol{v} = \boldsymbol{v}_x \boldsymbol{i} + \boldsymbol{v}_y \boldsymbol{j}$	
解答: $\mathbf{v} = v_x \mathbf{i} + v_y \mathbf{j}$	
$(5) \mathbf{v} = (v_x^2 + v_y^2 + v_z^2)^{1/2}$	
解答: $v = (v_x^2 + v_y^2 + v_z^2)^{1/2}$	
1.2 已知 $r = 2ti - 4t^2j$,第 1 秒内的位移 $\Delta r = 2i - 4j$,任意时刻的	的速度 $\mathbf{v}(t) = \mathbf{2i} - 8t\mathbf{j}$, 加速度
$a(t) = -8j$, 轨迹方程为 $y = -x^2$	
1.3 平抛物体的运动学方程 $x=5t$, $y=5t^2$, 则任意时刻的位矢 ${m r}=\underline{5ti}$	$(t+5t^2\mathbf{j})$, 速度 $\mathbf{v}(t) = 5\mathbf{i} + 10t\mathbf{j}$
加速度 $a(t) = 10j$, 轨道方程为 $x^2 = 5y$	
1.4 直线运动的点,其速度 $v(t)=\mathrm{e}^{-t}$,初始位置为 $x_0=2$,则 $x(t)=\underline{z}$	$3 - e^{-t}$
解答: $x(t) = x_0 + \int_0^t e^{-t} dt = 2 + (-e^{-t})\Big _0^t = 2 + (-e^{-t} + 1)$	
1.5 从地面上抛一个物体, 其高度 $h=10t-5t^2$, 任意时刻的速度 $v(t)=0$	= 10 - 10t, 到达最高点的时刻
是 <i>t</i> = <u>1</u>	
解答 : 从物理角度来看,在最高点处,物体的速度为零 $v=\mathrm{d}h/\mathrm{d}t=10$	$-10t = 0$, θ $t = 1$.
从数学角度理解, $h(t)$ 是时间的函数,该函数取得极值的条件是 $\mathrm{d}h/\mathrm{d}t$	=0.
1.6 判定正误:	
(1)直线运动的物体达到最小速度时,加速度一定为零; ·····	· · · · · · · []
(2)直线运动的物体达到最大位置时,速度一定为零;	· · · · · · · []
1.7 选择: 若质点的位矢为 r , 速度为 v , 速率为 v , 路程为 s , 则必有【	B]
A. $ \Delta \mathbf{r} = \Delta s = \Delta r$	
B. $ \Delta \mathbf{r} \neq \Delta s \neq \Delta r$,当 $\Delta t \to 0$ 时,有 $ \mathrm{d}\mathbf{r} = \mathrm{d}s \neq \mathrm{d}r$	
C. $ \Delta \mathbf{r} \neq \Delta s \neq \Delta r$, 当 $\Delta t \rightarrow 0$ 时, 有 $ \mathrm{d}\mathbf{r} = \mathrm{d}r \neq \mathrm{d}s$	
D. $ \Delta \mathbf{r} \neq \Delta s \neq \Delta r$, 当 $\Delta t \to 0$ 时, 有 $ \mathrm{d}\mathbf{r} = \mathrm{d}r = \mathrm{d}s$	
1.8 选择:根据上题的符号,则必有【 C 】	
${ m A.} \ m{v} = v, \ m{\overline{v}} = \overline{v}$ ${ m B.} \ m{v} eq v, \ m{\overline{v}} eq$	$ eq \overline{v}$
C. $ \boldsymbol{v} =v, \ \overline{\boldsymbol{v}} \neq \overline{v}$ D. $ \boldsymbol{v} \neq v, \ \overline{\boldsymbol{v}} = v$	$=\overline{v}$
1.9 选择:质点在某瞬时位于位矢 $\mathbf{r} = (x, y)$ 处, 其速度大小 v 的计算错	持误的为【 A 】
A. $\frac{\mathrm{d}r}{\mathrm{d}t}$ B. $\left \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}\right $ C. $\frac{\mathrm{d}s}{\mathrm{d}t}$	D. $\sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2}$

1.10 直径为 40 cm 的定滑轮上缠绕着一条细钢丝绳,绳的另一端吊着一个重物,若某时刻重物下落的加速度为 1 m/s²,速度为 0.3 m/s,则此刻滑轮的角加速度为 $\frac{5}{1.5}$ rad/s²,角速度为 $\frac{1.5}{1.5}$

rad/s

解答:物体下落的距离等于滑轮边缘转动的距离,物体下落的速度就是滑轮边缘的线速度,物体下落的加速度等于滑轮边缘的切线加速度.

1.11 半径为 $0.1 \,\mathrm{m}$ 的轨道上有一个质点, 它的角位置 $\theta = \pi + t^2$, 则任意时刻的切线加速度 $a_{\mathrm{t}} = 0.2$ ______, 法线加速度 $a_{\mathrm{n}} = 0.4t^2$ _____

解答:
$$\omega = \frac{\mathrm{d}\theta}{\mathrm{d}t} = 2t$$
, $\beta = \frac{\mathrm{d}\omega}{\mathrm{d}t} = 2$, $a_{\mathrm{t}} = R\beta$, $a_{\mathrm{n}} = R\omega^2$

1.12 半径为1 m 的轨道上有一个质点, 它的路程 $s = 2t - 0.5t^2$, 则任意时刻的切线加速度 $a_t = -1$, 法线加速度 $a_n = (2-t)^2$

解答: $v = \frac{\mathrm{d}s}{\mathrm{d}t} = 2 - t$, $a_{\mathrm{t}} = \frac{\mathrm{d}v}{\mathrm{d}t} = -1$, $a_{\mathrm{n}} = \frac{v^2}{R}$

- 1.13 判定正误:
 - (1)以圆心为坐标原点的圆周运动满足 $\mathrm{d}r/\mathrm{d}t=0$ 且 $\mathrm{d}r/\mathrm{d}t\neq0$; · · · · · · · · · · · · · · · · · [✓]

 - (7)圆周运动中,若 a_t 是常量,则 a_n 也是常量; (x)
- 1.14 物体下落,受到重力 mg 以及空气阻力 f=kv,则终极速度 $v_{\rm T}=\underline{mg/k}$,若阻力 $f=kv^2$,则 终极速度 $v_{\rm T}=\sqrt{mg/k}$
- 1.15 判定正误:
- 1.16 选择:用水平力 F_N 把一个物体压着靠在粗糙的竖直墙面上保持静止,当 F_N 逐渐增大时,物体所受的静摩擦力 F_f 的大小【 A 】
 - A. 不为零, 但保持不变;

- B. 随 F_N 成正比地增大;
- C. 达到某一最大值后, 就保持不变;
- 1.17 选择:一段路面水平的公路, 转弯处轨道半径为 R, 汽车轮胎与路面间的摩擦因数为 μ , 要使汽车不至于发生侧向打滑, 汽车在该处的行驶速率【 $\mathbb C$ 】
 - A. 不得小于 $\sqrt{\mu g R}$;

B. 必须等于 $\sqrt{\mu g}R$;

C. 不得大于 $\sqrt{\mu gR}$;

- D. 还需汽车的质量m决定;
- 1.18 选择:小物体沿固定的圆弧形光滑轨道由静止下滑,在下滑过程中【B】
 - A. 它的加速度方向永远指向圆心, 速率不变;
- B. 轨道的支撑力的大小不断增加;
- C. 它受到的合外力大小变化, 方向永远指向圆心;
- D. 它受到的合外力大小不变, 速率不断增加;
- 1.19 在东北天坐标系中,A 车向东运动 $\mathbf{v}_{A}=2\mathbf{i}$ m/s,B 车向北运动, $\mathbf{v}_{B}=3\mathbf{j}$ m/s;则 B 相对于 A 的速度 $\mathbf{v}_{BA}=(3\mathbf{j}-2\mathbf{i})$ m/s
- 1.20 稳定的南风风速 $v_1=2~{
 m m/s}$, 某人向西快跑 , 速率 $v_2=4~{
 m m/s}$. 此人感受到的风速大小为 $\sqrt{2^2+4^2}=\sqrt{20}~{
 m m/s}$

速度,即 $m{v}_{m{m{arphi}}m{ar{arphi}}}=m{v}_{m{m{arphi}}}-m{v}_{m{ar{arphi}}}$, $v_{m{m{m{arphi}}}m{ar{arphi}}}=\sqrt{v_{m{m{arphi}}}^2+v_{ar{ar{ar{ar{\lambda}}}}}^2}$	
1.21 火车沿着直线铁路以30 m/s的速率匀速行驶,车厢内的一名乘务员从车头走向车尾,速率为1 m/s	s,
乘务员相对于地面的速度大小为_29 m/s	
1.22 飞船点火起飞时, 航天员会感受到大于其体重数倍的重力, 这个现象称为_超重; 在环绕地球	求
的太空舱内, 宇航员可以自由漂移, 这个现象叫做 <u>失重</u>	
1.23 质量为 2 kg 的质点沿直线运动, 速度由 1 m/s 增加至 3 m/s , 则外力的冲量大小为 $4 \text{ N} \cdot \text{s}$	
1.24 细绳将一个质量为 m 的小球悬挂在天花板下,球在水平面内匀速圆周运动,周期为 T ,在小球运行	亍
一周的过程中,重力的冲量为 $ m{I} =mgT$,动量的增量为 $ \Deltam{p} =0$	
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	为
$ \Delta \pmb{p} = mv_0 \sin 30^\circ$,重力的冲量为 $ \pmb{I} = mv_0/2$	
1.26 光滑的冰面上由两个物体 A, B, $m_{ m A}=3~{ m g}$, ${m v}_{ m A}=({m i}+2{m j})~{ m m}/{ m s}$, $m_{ m B}=5~{ m g}$, ${m v}_{ m B}=(9{m i}+2{m j})~{ m m}/{ m s}$, ${ m v}_{ m B}=1$	炳
物体碰撞后粘为一体,其共同速度 $oldsymbol{v}=(6oldsymbol{i}+2oldsymbol{j}) ext{ m/s}$	
1.27 直接用手按钉子, 很难将其钉入木头内; 若首先用 5 N 的力挥动锤子 2 s, 则锤子获得的动量大人	1/
为 $10 \mathrm{N \cdot s}$;若该运动的锤子敲击钉子,与钉子之间的相互作用持续 $2 \mathrm{ms}$,则锤子与钉子之间的作用	Ŧ
力大小为_ <u>5 kN</u> .	
1.28 升降梯将重 100 N 的物体从地面送达高为 10 m 的楼顶, 花费了 3 s 的时间. 在此过程中, 重力的//	中
量 $ I =300~\mathrm{N\cdot s}$,重力做功 $W=-1000~\mathrm{J}$,此物体的重力势能增加量 $\Delta E_\mathrm{p}=1000~\mathrm{J}$	
1.29 水平路面上两个点 $A \setminus B$ 的距离为 2 m ,某物体重 500 N ,与地面的摩擦系数为 0.2 ,物体由 A 运动 3	至
B. 若物体沿着直线以 $3\mathrm{m/s}$ 的速度运动,摩擦力做功 $W_\mathrm{f} = \underline{-200\mathrm{J}}$;若物体沿着直线以 $5\mathrm{m/s}$ 的速度	变
运动,摩擦力做功 $W_{ m f}=$ -200 $ m J$;若物体沿着长度为 4 $ m m$ 的曲线运动,摩擦力做功 $W_{ m f}=$ -400 $ m J$	_
1.30 海水中两个点 $A \setminus B$ 的距离为 2 m ,鱼受到正比于速度的阻力 $f = 0.1v$,由 A 运动至 B .若鱼沿着证	直
线以 $3~\mathrm{m/s}$ 的速度运动 , 流体阻力做功 W_f = $\0.6~\mathrm{J}$; 若鱼沿着直线以 $5~\mathrm{m/s}$ 的速度运动 , 流体阻力	
做功 $W_{ m f}=$ -1.0 $ m J$; 若鱼沿着长度为 4 $ m m$ 的曲线以 5 $ m m/s$ 的速度运动 , 摩擦力做功 $W_{ m f}=$ -2.0 $ m J$	
1.31 判定正误:	
(1)沿着闭合路径,保守力做功等于零; · · · · · · · · · · · · · · · · · · ·	1
(2)保守力做功与运动路径无关;[√	1
(3)保守力做正功, 系统的势能减小; ·····[√	1
(4)沿着保守力方向移动物体,物体的势能减小; ························[√	1
(5)非保守力的功一定为负值;[×	<]
1.32 质量为 2 kg 的质点, 速率由 1 m/s 增加至 2 m/s, 则外力做功的大小为 3 J	
1.33 外力的冲量等于质点系统 动量 的增量.	
所有作用力的功,等于系统 <u>动能</u> 的增量.	
保守力做的功,等于系统势能 的减少量.	
非保守力做的功,等于系统 机械能 的增量.	
1.34 判定正误:	
(1)保守力做负功,则系统的机械能一定减小;[×	<]
(2)非保守力做负功, 系统的势能一定增大;[×	<]
· (3)非保守力做负功, 系统的机械能一定减小; ····································	-
(4)一对相互作用内力能够改变系统的总动量;[×	<]
· (5)一对相互作用内力能够增加系统的总动能;····································	- 7
(3) 对相互作用的为配势相加示机的心功能,	

第二章 连续介质力学

2.1 刚体的基本运动形式有 平动 和
2.2 质量为 m 的质点沿着半径为 r 的圆周以角速度 ω 转动, 其转动惯量 $J = \underline{mr^2}$.
2.3 质量为 m , 半径为 r 的均匀圆盘绕垂直于盘面的中心轴转动, 转动惯量为 $\frac{1}{2}mr^2$
质量为 m , 长度为 l 的细棒, 对于过端点且垂直于棒的轴的转动惯量为 $\frac{1}{3}ml^2$;质量为
m , 长度为 l 的细棒, 对于过中点且垂直于棒的轴的转动惯量为 $\frac{1}{12}ml^2$.
2.4 转动惯量为 $25 \text{ kg} \cdot \text{m}^2$ 、半径为 0.5 m 的定滑轮绕中心轴转动, 其边缘受到 10 N 的切向
摩擦阻力,阻力矩的大小为 $_{5 \text{ N} \cdot \text{m}}$,其角加速度的大小为 $_{0.2 \text{ s}^{-2}}$.
2.5 判定正误:
(1)刚体受到的合外力不为零,则合外力矩一定不为零;[x]
(2)若外力穿过转轴,则它产生的力矩为零; ·····[√]
(3)若外力平行于转轴,则它对转轴的力矩为零; ·····[√]
2.6 判定正误:有两个力作用在一个有固定转轴的刚体上,则
(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; · · · · · · · · · [√
(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; · · · · · · · · · [√
(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;[×
(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零;[x]
2.7 质量 m 速率 v 的质点做半径为 r 的匀速率圆周运动,其角动量大小为 mvr
2.8 质量 m 速率 v 的质点沿着 x 轴做匀速率直线运动,它相对于坐标点 (x,y) 的角动量大小
为_ <i>mvy</i>
2.9 某恒星诞生之初的转动惯量为 J , 角速度为 ω . 当燃料耗尽之后坍塌为白矮星 , 转动惯
量为 $J/4$,此时其转动角速度为 4ω .
2.10 已知地球在近日点时距离太阳 r_1 ,速率 v_1 ,在远日点时距离太阳 r_2 ,则速率
$v_2 = v_1 r_1/r_2$.
2.11 判定正误:
(1)刚体内部的相互作用力不能改变刚体的角动量; · · · · · · · · · · · · · · [√
(2)若刚体的角动量守恒,则刚体所受合外力为零;[×
(3)若外力平行于转轴,则刚体的角动量守恒; ···········[√
(4)若外力的延长线穿过转轴,则刚体角动量守恒; ···········[√
2.12 判定正误:
(1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; · · · · · · · · [√
(2)一对作用力和反作用力对同一轴的力矩之和必为零; · · · · · · · · · · · [√
(3)质量相等而形状不同的两个刚体,受相同力矩,角加速度一定相同;[×

2.13 选择:均匀 过程中,则必有	ヲ细棒OA可绕O端自由转动, 億 ま【D】	吏棒人	人水平位置	置由静止开始	ì自由下摆	, 在下摆
A. 角速度从	小到大, 角加速度不变			,		
C. 用迷度不分	变, 角加速度为零	υ.	用迷度从	小到大, 角力	迷皮从人	到小
4	为 J , 角速度为 ω 的定轴转动	的刚	体, 其角	动量为 <u>Jω</u>	,车	专动能量
为 $\frac{1}{2}J\omega^2$						
2.15 转动惯量	为 9.0 kg · m² 的定滑轮受到 18]	$N \cdot m$	的力矩作	=用而转过了	3.1 rad,	则滑轮的
角加速度为_2.0	0 rad/s², 力矩做功 <u>56</u> _		J.			
2.16 某发动机	铭牌上标注转速为 4000 rpm 时	',输	出扭矩为	60.5 N·m,	则此刻发动	动机的功
率为_25.3	kW (rpm 的意思是 revolutions	s per i	minute).			
2.17 选择:假设	设卫星环绕地球中心作椭圆运动	,则征	生运动过程	涅中【B】		
A. 角动量守		В.	角动量守	恒, 机械能守	恒	
C. 角动量不 ⁴	守恒, 机械能守恒	D.	角动量守	恒,动量也与	恒	
E. 角动量不	守恒, 动量也不守恒					
2.18 杆件的变	形种类可以分为_伸缩、	剪切	<u>""</u>	弯曲	_、_扭转_	
种.						
2.19 用 10 N 的]拉力拽一条横截面为2 mm² fi	杓铁丝	丝,则铁丝	丝内部横截	面上的正原	立力大小
为 <u>5 MPa</u>						
2.20 长度为2 r	m、横截面积为 2 mm ² 的细钢丝	生, 受	到 300 N	的拉力后,长	度增加了	1.5 mm
则钢丝的正应变	变为 <u>7.5×10⁻⁴</u> , 正应力等于 <u>1</u> .	$.5 \times 1$	<u>10⁸ P</u> ạ 杨J	氏模量为 <u>2</u> >	(10 ¹¹ Pa.	
2.21 上海环球	金融中心大楼主体部分高度约4	:00 m	,其顶部	在大风中摇挡	罢的幅度约	J1m,若
将此视为剪切开	形变, 则剪切应变为 <u>2.5×10⁻³</u>	_•				
2.22 一段自来	:水管,前半截直径为4cm,污	流速	为 2 m/s	;后半截直往	圣为2cm ,	则流速
为 8 m/s						

第三章 静电场

3.1 近距作用观点认为, 电荷之间的相互作用力是通过 电场 来传递的.
3.2 真空中的直角坐标系上有三点 $\mathbf{A}(x_1,0)$ 、 $\mathbf{B}(0,y_2)$ 及 $\mathbf{C}(0,0)$,在 A 点放置点电荷 q_1 ,B 点放置点电荷
q_2 ,问 C 点处的场强大小为 $\dfrac{1}{4\pi arepsilon_0}\sqrt{q_1^2/x_1^4+q_2^2/y_2^4}$
3.3 在坐标 $(x,0)$ 处有一点电荷 q_1 ,在 $(0,y)$ 处有另一点电荷 q_2 ,则 q_1 与 q_2 之间的电场力大小
为 $rac{1}{4\piarepsilon_0}rac{q_1q_2}{x^2+\dot{y}^2}$
$\frac{4RE_0(x^2+y^2)}{3.4}$ 一根很细的均匀带电量为 $Q(Q>0)$ 的塑料棒弯成半径为 R 的圆环,接口处留有宽为 Δl 的空隙
$(\Delta l \ll R)$,求环心处电场强度的大小和方向.
解答: $\frac{Q\Delta l}{8\pi^2 \epsilon_0 R^3}$
$8\pi^2 \epsilon_0 R^6$ 3.5 在均匀电场 E 中放入一个面积为 A 的平板. 若电场与平板垂直, 则穿过平板的电通量大小
为 \underline{EA} ;若电场与平板平行,则电通量大小为 $\underline{0}$.
3.6 某带电直线长度为 $2h$, 电荷线密度为 $+\lambda$, 以直线的一个端点为中心, h 为半径作一个球面, 则通过
该球面的总电通量为 $d\lambda/\epsilon_0$.
3.7 电量为 q 的点电荷位于一立方体的中心, 立方体边长为 a , 则通过立方体一个面的电通量
是 $\underline{q/(6\epsilon_0)}$;如果把这个点电荷放到一个半球面的球心处,则通过半球面的电通量是 $\underline{q/(2\epsilon_0)}$.
3.8 均匀带电球面内部的场强大小为 $_{0}$;电荷面密度为 $_{\sigma}$ 的无限大均匀带电平面周围的场
强大小为 $\sigma/(2\epsilon_0)$;电荷线密度为 λ 的无限长带电直线周围,与直线距离为 r 的位置的场强大小
为 $_{\lambda/(2\piarepsilon_0 r)}$.
3.9 下列说法是否正确?为什么?
(1)闭合曲面上各点场强为零时,该曲面的电通量必为零; · · · · · · · · · · · · · · · · · $[✓]$
(2)闭合曲面的总电通量为零,该曲面上各点的场强必为零;[×]
(3)闭合曲面的总电通量为零,该曲面内必没有带电物体;[×]
(4)闭合曲面内没有带电物体, 曲面的总电通量必为零; · · · · · · · · · · · · · · [√]
(5)闭合曲面内净电量为零, 曲面的电通量必为零; ·····[√]
(6)闭合曲面的电通量为零,曲面内净电量必为零; · · · · · · · · · · · · · · · · · [√]
(7)闭合曲面上各点的场强仅由曲面内的电荷产生;[x]
(8)高斯定理的适用条件是电场必须具有对称性;[×]
(9)若电场线从某处进入闭合曲面,则该处的电通量为正值[×]
3.10 两块相互平行的金属板之间存在着均匀电场 E , 距离为 l , 则两金属板之间的电势差为 El .
3.11 与孤立点电荷 q 距离为 r 的点,其电势为 $q/4\pi\epsilon_0 r$;孤立的均匀带电球面半径为 R ,电量为 q ,其
内部空间的电势为 $q/4\pi\epsilon_0 R$.
3.12 在边长为 a 的正方体中心处放置一点电荷 Q ,设无穷远处为电势零点,则在正方体顶角处的电势为 Q
$2\sqrt{3\pi\epsilon_0 a}$
3.13 一对等量异号点电荷的电量分别为 $\pm q$,两者之间的距离为 $2l$,则它们连线中点的场强为 $\underline{q/2\pi\epsilon_0 l^2}$,
3.14 沿着电场线的正方向, 电势 <u>减小</u> , 正电荷的电势能 <u>减小</u> , 负电荷的电势能 <u>增加</u>
(填写"增加"或"减小").
3.15 在电压为 U 的两点之间移动电量为 Q 的电荷, 电场力做功 $ W = QU$

3.16 在夏季雷雨中,通常一次闪电过程中两点间的平均电势差约为 100 MV,通过的电量约为 30 C. 一
次闪电消耗的能量是 3×10^9 J .
3.17 真空中两个电量分别为 q_1, q_2 的点电荷, 距离为 l , 它们之间的相互作用电势能为 $\frac{q_1q_2}{4\pi\varepsilon_0l}$.
3.18 一个残缺的塑料圆环,携带净电量 q ,半径为 r ,环心处的电势为 $q/4\pi\epsilon_0 r$.
3.19 判定正误:
(1)电场强度相等的位置电势相等;[×]
(2)同一个等势面上的电场强度大小相等;[×]
(3)某区域内电势为常量,则该区域内电场强度为零; ·····[√]
(4)电势梯度大的位置电场强度大; · · · · · · · · · · · · · · · · · · ·
(5)电场线与等势面必然正交[√]
3.20 设真空电场中的电势分布用 U 表示,将一个电量为 q 的点电荷放入电场中,电势能用 $E_{\rm p}$ 表示,判定
下列说法的正误:
(1) 将电荷 q 从 A 点移动至无穷远,电场力做功等于 qU_{A} ; · · · · · · · · · · · · · · · · · ·
(2)将电荷 q 从无穷远处移动至 \mathbf{A} 点,电场力做功等于 E_{pA} ;
(3)将电荷 q 从 A 点移动至 B 点,电场力做功等于 qU_{AB} ; · · · · · · · · · · · · · · · · · · [√]
(4) 将电荷 q 从 A 点移动至 B 点,电场力做功等于 $E_{ m pB}$ $ E_{ m pA}$;
(5)缓慢移动电荷 q ,外力做的功等于电势能的减小量;
3.21 静电平衡时,导体内部任意一点的总电场强度大小为零,整个导体中任意位置的电势
都 <u>相等</u> ,导体上的电荷只能分布在 <u>表面上</u> .
都 <u>相等</u> ,导体上的电荷只能分布在 <u>表面上</u> . 3.22 地球可以看作是一个良好的导体,现在已知地球表面附近的电场强度近似为100 V/m,方向指向地
3.22 地球可以看作是一个良好的导体,现在已知地球表面附近的电场强度近似为 100 V/m,方向指向地
3.22 地球可以看作是一个良好的导体,现在已知地球表面附近的电场强度近似为 $100~V/m$,方向指向地球中心,则地球表面的电荷密度为 $_{-100\varepsilon_0}$
3.22 地球可以看作是一个良好的导体,现在已知地球表面附近的电场强度近似为 100 V/m,方向指向地球中心,则地球表面的电荷密度为100ε ₀ 3.23 判断正误: (1)实心导体内部空间是等电势体,但是表面不一定是等势面; [×] (2)空腔导体的内表面(空腔表面)上不会有净电荷; [×]
3.22 地球可以看作是一个良好的导体,现在已知地球表面附近的电场强度近似为 100 V/m,方向指向地球中心,则地球表面的电荷密度为100ε₀ 3.23 判断正误: (1)实心导体内部空间是等电势体,但是表面不一定是等势面; [×] (2)空腔导体的内表面(空腔表面)上不会有净电荷; [×] (3)若导体空腔内无电荷,则空腔与导体是等电势的; [√]
3.22 地球可以看作是一个良好的导体,现在已知地球表面附近的电场强度近似为 100 V/m,方向指向地球中心,则地球表面的电荷密度为100ε_0 3.23 判断正误: (1)实心导体内部空间是等电势体,但是表面不一定是等势面; [×](2)空腔导体的内表面(空腔表面)上不会有净电荷; [×](3)若导体空腔内无电荷,则空腔与导体是等电势的; [√](4)导体空腔表面的感应电荷量一定与空腔内部的总电荷量等值异号; [√]
3.22 地球可以看作是一个良好的导体,现在已知地球表面附近的电场强度近似为 100 V/m,方向指向地球中心,则地球表面的电荷密度为100ε₀ 3.23 判断正误: (1)实心导体内部空间是等电势体,但是表面不一定是等势面; [×] (2)空腔导体的内表面(空腔表面)上不会有净电荷; [×] (3)若导体空腔内无电荷,则空腔与导体是等电势的; [√]
3.22 地球可以看作是一个良好的导体,现在已知地球表面附近的电场强度近似为 100 V/m,方向指向地球中心,则地球表面的电荷密度为100ε_0 3.23 判断正误: (1)实心导体内部空间是等电势体,但是表面不一定是等势面; [×](2)空腔导体的内表面(空腔表面)上不会有净电荷; [×](3)若导体空腔内无电荷,则空腔与导体是等电势的; [√](4)导体空腔表面的感应电荷量一定与空腔内部的总电荷量等值异号; [√]
3.22 地球可以看作是一个良好的导体,现在已知地球表面附近的电场强度近似为 100 V/m,方向指向地球中心,则地球表面的电荷密度为100ε_0 3.23 判断正误: (1)实心导体内部空间是等电势体,但是表面不一定是等势面; [×] (2)空腔导体的内表面(空腔表面)上不会有净电荷; [×] (3)若导体空腔内无电荷,则空腔与导体是等电势的; [√] (4)导体空腔表面的感应电荷量一定与空腔内部的总电荷量等值异号; [√] (5)导体表面附近的电场线一定与表面正交. [√]
3.22 地球可以看作是一个良好的导体,现在已知地球表面附近的电场强度近似为 100 V/m,方向指向地球中心,则地球表面的电荷密度为100ε_0 3.23 判断正误: (1)实心导体内部空间是等电势体,但是表面不一定是等势面; [×] (2)空腔导体的内表面(空腔表面)上不会有净电荷; [×] (3)若导体空腔内无电荷,则空腔与导体是等电势的; [√] (4)导体空腔表面的感应电荷量一定与空腔内部的总电荷量等值异号; [√] (5)导体表面附近的电场线一定与表面正交. [√] 3.24 简答:静电屏蔽的含义是什么?有哪些类型的应用?
3.22 地球可以看作是一个良好的导体,现在已知地球表面附近的电场强度近似为 100 V/m ,方向指向地球中心,则地球表面的电荷密度为 $_{-100\varepsilon_0}$. 3.23 判断正误: (1)实心导体内部空间是等电势体,但是表面不一定是等势面;
3.22 地球可以看作是一个良好的导体,现在已知地球表面附近的电场强度近似为 100 V/m,方向指向地球中心,则地球表面的电荷密度为 $_{-100\varepsilon_0}$. 3.23 判断正误:
3.22 地球可以看作是一个良好的导体,现在已知地球表面附近的电场强度近似为 100 V/m ,方向指向地球中心,则地球表面的电荷密度为 $_{-100\epsilon_0}$ 。 3.23 判断正误: (1)实心导体内部空间是等电势体,但是表面不一定是等势面;
3.22 地球可以看作是一个良好的导体,现在已知地球表面附近的电场强度近似为 100 V/m ,方向指向地球中心,则地球表面的电荷密度为 $_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
3.22 地球可以看作是一个良好的导体,现在已知地球表面附近的电场强度近似为 100 V/m ,方向指向地球中心,则地球表面的电荷密度为 $_{-100\epsilon_0}$. 3.23 判断正误:
3.22 地球可以看作是一个良好的导体,现在已知地球表面附近的电场强度近似为 100 V/m ,方向指向地球中心,则地球表面的电荷密度为 $_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$

第四章 稳恒磁场

- 4.1 电量为 q 的粒子以角速度 ω 做圆周运动,它形成的等效电流强度 $I=\omega q/(2\pi)$.
- 4.2 无限长的直导线载有电流 I ,距离导线 x 处的磁感应强度大小为 $\frac{\mu_0 I}{2\pi x}$;沿着直线运动的电荷 其运动的正前方的磁感应强度大小为 0
- 4.3 相互平行的直导线之间距离为d;电流大小都是I,方向相反;则两导线中点位置的磁场 $B = \frac{2\mu_0 I}{\pi d}$.
- 4.4 半径为R的单匝环形导线载有电流I,环心处的磁感应强度大小为 $\frac{\mu_0 I}{2R}$;该电流的磁矩大小为 $\pi R^2 I$.
- 4.5 半径为 R 的两个单匝圆形线圈正交放置,其圆心重合.若两个线圈中的电流大小都是 I ,则圆心处的磁场 $B=\sqrt{2}\frac{\mu_0 I}{2R}$,两个电流环的总磁矩大小为 $\sqrt{2\pi R^2 I}$.
- 4.6 边长为 $0.1 \,\mathrm{m}$, 匝数为 1000 的正方形线圈, 通电 $0.5 \,\mathrm{A}$, 其磁矩大小为 $5 \,\mathrm{A} \cdot \mathrm{m}^2$.
- **4.7** 下图中两导线中的电流绝对值分别为 I_1 , I_2 , 写出下列环路积分的值

$$\oint_{L_1} \mathbf{B} \cdot d\mathbf{l} = \underline{\mu_0 I_1}$$

$$\oint_{L_2} \mathbf{B} \cdot d\mathbf{l} = \underline{-\mu_0 I_2}$$

$$\oint_{L_3} \mathbf{B} \cdot d\mathbf{l} = \underline{\mu_0 (I_2 - I_1)}$$

$$\underbrace{\begin{array}{c} \mathbf{I}_3 \\ \mathbf{O}I_1 \\ \mathbf{I}_2 \end{array}}_{L_1} \otimes_{I_2} L_2$$

4.8 如下图所示, 直线电流 I 从立方体的两个相对表面的中心穿过, 则下列积分分别等于

$$\oint_{\text{abcda}} \mathbf{B} \cdot d\mathbf{l} = \underline{0}$$

4.9 无限长的空心直螺线管, 线圈数密度为n, 横截面积为S, 载流I,则其管内的磁场 $B = \mu_0 n I$ _____, 横截面上的磁通量为 $\mu_0 n I S$ ____.

4.10 一个电子以速度 $\mathbf{v} = (5 \times 10^4 \mathbf{j}) \text{ m/s}$ 射入均匀磁场 $\mathbf{B} = (0.4\mathbf{i} + 0.5\mathbf{j}) \text{ T 中, 受到的洛仑兹力}$ $\mathbf{F} = \underline{3.2 \times 10^{-15} \mathbf{k}}$ N

- 4.11 判断正误:
 - (1)均匀磁场不会改变带电粒子的速率;······[✓]
 - (2)非均匀磁场的洛仑兹力能够对运动电荷做正功; [×]
 - (3)受到洛仑兹力后, 带电粒子的动能和动量都不变.[×]
- 4.12 判断正误:
 - (1)闭合载流线圈在均匀磁场中受到的总磁场力为零; · · · · · · · · · · · · · · [√]
 - (2)闭合载流线圈在均匀磁场中受到的磁力矩为零; [×]
 - (3)电流方向相同的平行直导线相互吸引; · · · · · · · · · · · · · · · · · [√]
- 4.13 磁介质按照磁化率可以分为_顺磁质___、抗磁质___、铁磁质___ 三类.
- 4.14 铁磁材料按照磁滞回线的形状可以分为 硬磁材料 、软磁材料 两类.

第五章 时变电磁场

5.1 如下图所示,导线回路 L 的形状不变,而其位置正在发生移动.根据楞次定律判定各回路中是否有感应电流;若有,请用箭头标记其环绕方向.

5.2 如下图所示,导线回路 L 的形状与位置皆不变.图(a)、图(b)中电流 I 正在增大;图(c)、图(d)中的磁棒正在运动.根据楞次定律判定各回路中是否有感应电流;若有,请用箭头标记其环绕方向.

5.3 边长 D = 0.1 m 的单匝正方形导线框绕其对角线以 3000 rev/min 的角速度转动, 均匀磁场 B = 1 mT 与其转轴垂直. 则导线框中的最大磁通量为 10^{-5} Wb, 最大电动势为 3.14 mV.

5.4 判定正误:

- (1)电动势可以由保守力来担当; [x]
- (3)在一个孤立的电池内部, 电动势与静电力的方向相反; ······[√]
- 5.5 感应电动势分为两类:导体在磁场中运动产生的电动势叫做<u>动生电动势</u>,磁场分布随时间变化引起的电动势称为<u>感生电动势</u>.
- 5.6 动生电动势的实质是运动电荷受<u>洛仑兹</u>力的结果;感生电动势则来源于感生电场,而感生电场 是由 变化的磁场所激发的.

5.8 判定正误:

- (2) 感生电场是保守场; [x]
- (3)空间中没有磁场的位置一定没有感生电场.[x]
- 5.9 条形磁铁平行于大块的金属平板移动,其N极朝向金属平板,定性的画出磁铁N极附近的涡流与磁铁运动方向之间的关系.
- 5.10 某电路的电流变化引发周围另外一个电路中产生电流, 此现象叫做 互感 .
- 5.11 自感系数为 L 的线圈, 通过电流 I, 则其储存的磁能是 $LI^2/2$.
- 5.12 有两个半径相接近的圆线圈,问如何放置方可使其互感最小?如何放置可使其互感最大?

解答: 共面同心放置互感大; 相互垂直放置互感为零.

- 5.13 用康铜丝绕成的标准电阻要求没有自感,问怎样绕制方能使其自感为零?试说明其理由.
- 5.14 位移电流的实质是什么?位移电流与传导电流有什么不同?

解答: 变化的电场;

第六章 振动和波动

6.1 已知某质点在	x 轴上运动, 用国际	单位制表示为 $x=2$ c	os($100\pi t + 1.5$),它的振幅为	I <u>2</u> ,角
频率为 <u>100π</u>	_, 频率为 <u>_50</u>	_, 初相位是 <u>1.5</u>	, 最大速率等于 <u>200</u> π	, 最大加速度
是_20000π ²				
解答:将已知等式	式与振动的一般形式对	比:		
	x = A	$\cos\left(\omega t + \varphi_0\right) = A\cos(\omega t + \varphi_0)$	$\sin(2\pi f t + \varphi_0)$	
	1	1	•	
	$v = \frac{\mathrm{d}x}{\mathrm{d}t}$	$\frac{d}{dt}, \ v_{ m m} = \omega A; a = rac{{ m d}}{{ m d}t}$	$rac{v}{t},\; a_{ m m}=\omega^2 A$	
62 时间 + — 1 时	$x - 2\cos(5t + 1) =$	$\delta y = 3\cos(7t+2)$ 的	相位美笔干 3	
	$x = 2\cos(6t+1)^{-3}$ $(5t+1) = (2t+1) _{t}$			
	· •	-	賽下振动, 周期为 π/50 s	
解答:				
		$T = \frac{2\pi}{\omega} = 2\pi\sqrt{\frac{2\pi}{3}}$	$\frac{nt}{k}$	
C / 少人国期 1 1	。如把我你孙博士协会	求上秒摆的摆长大约 为	. 1	
		, $l=T^2g/(4\pi^2)=1$	· ———	
_	, ,			
解答: $x = A/2$,	总能量 $E = \frac{1}{-kA^2}$,	势能 $E_n = \frac{1}{-kx^2} = \frac{1}{-kx^2}$	为 $rac{3:4}{kA^2}$,动能 $E_k=E-E_p=rac{5}{5}$	$\frac{3}{2}kA^2$
6.6 判定正误:	2	8	p {	3
(1)简谐振动的	的初相位角在第一象	限,则初速度为负;		[√]
(2)简谐振动的	的初相位角在第三象	限,则初速度为正;		[√]
(3)简谐振动的	的初位移为正,则初村	目位角在二、三象限;		[×]
(5)单摆简谐排	 辰动的角频率就是摆	线绕悬挂点的角速度	;	[×]
6.7 产生速度共振				
	率等于系统固有频率		. (Fo.) H	o Ful
			$=4\cos(50t+\varphi_{20}), 若\varphi_{10}$	
合振切的振幅 A $A = \underline{5}$	$=$ $\frac{1}{1}$; $\hat{\pi}$ $\hat{\varphi}$	$\phi_{10} - \phi_{20} = 3\pi$, where	$A = \underline{1} \qquad ; \ddot{\pi} \varphi_{10} - \varphi$	$\Omega_{20} = -90^{\circ}$, M
	$+A_2^2 + 2A_1A_2\cos\Delta$	<u> </u>		
			· 3 cos(2π498t+1.6);则拍频;	$f_{\text{best}} = 2$ Hz
	************	, , , , , , , , , , , ,		beat
6.10 频率相同的两	所个相互垂直的振动,	相位差是 90°, 则合	振动的轨迹一般是_椭圆	_
6.11 振动方向与传	卡播方向相同的波称 为	为 <u>纵波</u> ;振动方	5向与传播方向垂直的波称为	横波
6.12 一列横波的流	皮函数为 $y=0.05\mathrm{cos}$	$\mathrm{s}(10\pi t - 4\pi x)~\mathrm{SI}$,则	频率 $f = 5$ Hz, 波长	$\lambda = 0.5 \text{ m}$,
波速 $c = 2.5 \text{ m/s}$, 座标 $x = 2 \text{ m}$ 的	质点在 $t=1$ s 的相位	拉等于_2π rad	
6.13 空气中的声迹	೬ 约 $u=330~\mathrm{m/s}$,声	音频率 $f=1000~\mathrm{Hz}$,则波长 $\lambda = 0.33 \text{ m}$;若	水中的声波波长
$\lambda = 1.5 \mathrm{m}$,周期 T	T=1 ms,则水声波 i	東 $c = 1500 \mathrm{m/s}$		

6.14 真空中的电磁波波速 $c=3.0\times 10^8~\mathrm{m/s}$,可见光的波长按照"红橙黄绿青蓝紫"的顺序依次递减,范
围是 $760\sim400~\mathrm{nm}$, 计算可见光的频率范围 .
解答: $(4.0 \sim 7.5) \times 10^{14} \text{ Hz}$
6.15 波场中的介质都在参与简谐振动. 若锁定某个质元观察, 时间每增加一个周期 T , 该质元的相位增
加 $_{2\pi}$;若锁定某个时刻观察,沿着波传播的方向,距离每增大一个波长 λ ,相应质元振动的相位
减小_ 2 π
6.16 波动由 a 点传播到 b 点的时间是 Δt ,若 a 点的振动规律是 $f(t)$,那么 b 点的振动规律是 $\underline{f(t-\Delta t)}$
6.17 波动由 a 点传播到 b 点的距离是 l , 波长为 λ . 若 a 点的振动规律是 $A\sin(\omega t)$, 那么 b 点的振动规律
是 $A\sin(\omega t - 2\pi l/\lambda)$
6.18 判定正误:
(1)流体中不可以传播横波; · · · · · · · · · · · · · · · · · · ·
(2)固体中不可以传播纵波;[×]
(3)空气中的声波是纵波; · · · · · · · · · · · · · · · · · · ·
(4)水面波是横波;[×]
(5)介质的速度与波的速度是两个不同的物理量; · · · · · · · · · · · · · · · · · · [√]
(6)介质能够随着波动一起向远方传送;[×]
(7)波的传播速度由介质决定; · · · · · · · · · · · · · · · · · · ·
6.19 波动绕过障碍物传播的现象叫做
6.20 某种介质中的光速是真空光速的 $1/k$,则该介质的折射率是 k
6.21 驻波中静止不动的点叫做 <u>波节</u> ,振幅最大的点叫做 <u>波腹</u> ;两个波节之间的距离是波长
的 <u>0.5</u> 倍.
6.22 一段两端固定的琴弦, 长度为 0.5 m, 它的基波波长为 <u>1</u> m.
6.23 一支细长玻璃管的一端密封,另一端开口.在玻璃管中注入水,可以改变其中的空气柱长度.假设
空气中的声速为340 m/s, 想要在玻璃管中吹奏出基频为1000 Hz 的声波, 玻璃管中的空气柱长度应
为 <u>85</u> mm.
6.24 电磁波垂直穿过厚度为 e 折射率为 n 的玻璃,则玻璃中的波程为 ne
6.25 振幅相同的普通声波 (500 Hz) 和超声波 (50 000 Hz), 后者的声强是前者的 10000 倍, 后者的
声强级比前者多 <u>40</u> dB.
6.26 声强级增加 1 B,则声波的声强变成原来的 <u>10</u> 倍.
6.27 假设声速为330 m/s, 高速列车鸣笛的频率为1000 Hz, 而铁路边的执勤人员接收到的频率为
1500 Hz,则此时列车的速度为 <u>396</u> km/h.
6.28 据说俄罗斯的"米格-31"战斗机可以在高空加速到3.2马赫,这表示此飞机的速度可以达到声
速的3.2 倍. 如果某战斗机以2.0马赫的速度巡航,它在空气中激发的激波的半顶角大小
አ 30°

第七章 波动光学

7.1 双缝的间距为 0.15 mm, 在距离 1.0 m 处测得第 1 级暗纹和第 10 级暗纹之间的距离
36 mm,则相邻明条纹的间距为 <u>4</u> mm,光的波长等于 <u>600</u> nm.
7.2 在双缝中某一个缝的后面覆盖一片玻璃, 使得从此缝出射的光的光程增大5\(\lambda\),则屏幕
的干涉图案将整体平移_5个条纹.
7.3 判断正误:
(1)双缝的距离减小,则干涉条纹的间距增大; ·············[v
(2)光的波长增大,则双缝干涉条纹的间距变小;[
(3)接收屏的距离增大,则双缝干涉条纹的间距变小;[
(4)用白光进行双缝干涉,零级明纹是彩色的;[
(5)将整个双缝干涉装置从空气中搬到水中,干涉条纹的间距变小; · · · · · · [v
7.4 判断正误:
(1)光从空气中垂直入射到玻璃上, 其反射光存在半波损失;[v
(2)光从空气中垂直入射到玻璃上, 其折射光存在半波损失;
(3)光从水中垂直入射到空气中, 其反射光存在半波损失;[2
(4)光从水中垂直入射到空气中, 其折射光存在半波损失;
(5)雷达波从大气中近似平行入射到湖面上, 其反射波存在半波损失;[
(6)透镜的物点与像点之间的所有光线是等光程的[v
7.5 判断正误:
(1)若尖劈膜的顶角减小,则等厚干涉条纹的间距也减小;
(2)若尖劈膜的顶角减小,则等厚干涉条纹向顶尖方向移动;
(3)若尖劈膜的顶角增大,则顶尖处干涉条纹的明暗交替变化;
· (4)保持尖劈膜的倾角不变而使其厚度增大,则干涉条纹向着顶尖方向移动;·····[v
(5)保持尖劈膜的倾角不变而使其厚度增大,则干涉条纹间距不变; · · · · · · · [v
(6)"等厚干涉"就是厚度均匀的薄膜产生的干涉
7.6 增透膜的最小光学厚度是真空波长的 1/4 倍;增反膜的最小光学厚度是真空
长的 1/4 倍.
7.7 等厚干涉中,相邻明(暗)条纹对应的薄膜厚度之差为薄膜中的波长的_0.5 倍.
7.8 在反射光干涉中,空气尖劈顶尖处的干涉条纹是明还是暗?透射光形成的空气中的牛
环,中心点是明还是暗?
解答: 暗; 明
7.9 判断正误:
(1)若狭缝的宽度减小,则单缝衍射的中央明纹角宽度减小;
(2) 若波长减小,则单缝衍射中央明纹的角宽度减小;

(3)障碍物越小, 则衍射现象越明显; · · · · · · · · · · · · · · · · · [√]
(4)波长越小,则衍射现象越明显[×]
7.10 波长为 λ 的波在宽度为 a 的单缝上衍射,其中央明纹半角宽 $\Delta\theta = \frac{\lambda/a}{2}$;直径
$a=11~\mathrm{mm}$ 的凸透镜对于波长 $\lambda=550~\mathrm{nm}$ 的绿光的最小分辨角为 $\underline{6.1 \times 10^{-5}}$ rad .
7.11 某单色光垂直照射到光栅上,光栅常数为 d ,透光部分的宽度是 a ,总缝数为 N ,第一
级衍射明纹的角度为 θ ,则该光的波长为 $\underline{d\sin\theta}$
7.12 某光栅每毫米有 1000 条缝, 波长 700 nm 的光垂直入射, 能够形成 3 条光谱
线.
7.13 太阳光是自然光,将自然光通过偏振片后,变成线 偏振光;自然光在水面上
的反射光是 <u>部分</u> 偏振光;自然光折射进入透明介质中的是 <u>部分</u> 偏振光.
7.14 通过偏振片观察自然光, 当转动偏振片时, 透射光的强度 不变 ; 通过偏振片观察
线偏振光,将偏振片转动一周,光强最大会出现2次,完全变黑会出现2
次.
7.15 蹲在湖边拍摄水中的鱼, 如果太阳在镜头的前方, 可以用一偏振片滤掉水面的反光. 问
偏振片的透振方向应该是水平放置还是竖直放置?
解答:垂直
7.16 线偏振光的偏振面与偏振片的透振方向成 30° 角, 透射光的强度与入射光的强度之比
为 3/4

第八章 热 学

8.1 空气的等效摩尔质量 $\mu = 28.9 \text{ g/mol}$, 压强为 $1.013 \times 10^5 \text{ Pa}$ 且温度为20 °C时, 空气的密度 $\rho = 1.20 \text{ kg/m}^3$

解答:

$$pV = \frac{M}{\mu}RT \Rightarrow \rho = \frac{M}{V} = \frac{\mu p}{RT}$$

8.2 理想气体模型的基本假设是什么?理想气体的统计假设有哪些?

解答: 略

- 8.3 温度为T的平衡态气体中,单个氦气分子的平均动能是 $\frac{3}{2}kT$;单个氧气分子的平均平动动能是 $\frac{3}{2}kT$;单个氦气分子的平均平动动能力是 $\frac{3}{2}kT$;单个氦气分子的平均转动动能为 $\frac{3}{2}kT$,平均总动能为 $\frac{6}{2}kT$
- 8.4 温度为 $\overline{200}$ K 时, 1 mol 理想氢气分子的总平动动能为 2.494×10^3 , 总转动动能 1.663×10^3 , 汽体的 内能是 4.157 × 10³ J

解答: 平动自由度为 3,平动动能 $\frac{3}{2}RT$;转动自由度 2,转动内能 $\frac{2}{2}RT$;总内能 $\frac{5}{2}RT$.

8.5 某理想甲烷气体的压强为 p , 体积是 V , 则该系统的内能是 $3p\overline{V}$

解答: 甲烷分子的自由度 6, $E = \frac{6}{2} \nu RT = 3pV$

- 8.6 二氧化碳与乙炔都是直线状的分子. 二氧化碳分子 (CO_2) 的自由度是 5 , 乙炔分子 (C_2H_2) 的自由度是 5
- 8.7 在铁路上行驶的列车, 其自由度是 1 ;在海面上航行的船, 其自由度是 2
- 8.8 判定正误:

 - (3)在恒温的空气中,氧气分子与氮气分子的平均速率相同.[x]
- 8.9 若已知 f(v) 是麦克斯韦速率分布函数, N 为总分子数, 试说明下列各式的意义:
 - (1) f(v) dv: 分子速率分布在 $v \sim v + dv$ 范围内的概率
 - (2) Nf(v) dv: 速率分布在 $v \sim v + dv$ 范围内的分子数目
 - (3) $\int_{0}^{\infty} vf(v) dv : \underline{\text{分子速率的}}$ 平均值
 - (4) $\int_{0}^{\infty} v^{2} f(v) dv$: <u>分子速率平</u>方的平均值
- 8.10 设单个分子质量 m, 总分子数 N, 分子速率 v, 速率分布函数 f(v), 则分子的平动动能平均值 为 $\int_{-\infty}^{\infty} \frac{1}{2} m v^2 f(v) dv$
- 8.11 一定量的气体, 容积不变, 当温度增加时, 分子运动得更剧烈, 因而平均碰撞次数增多, 试问平均自 由程是否因此而减小?

解答: 否

8.12 气体内产生输运现象的原因是什么?有哪几种输运现象?从气体动理论的观点来看, 输运现象是怎 样实现的?分子热运动和分子间碰撞在迁移现象中起什么作用?

解答: 略

- 8.13 系统压强 p 不变,体积增加 ΔV ,则对外做功为 $p\Delta V$
- 8.14 在某个热力学过程中, 外界对系统做功|W|, 系统向外释放热量|Q|, 则系统内能增加量

为 $ W - Q $				
8.15 在等容过程中, 1 mol 氢气温度升	高2K,则内能	毕增加_41.6	_ J,吸热 <u>_41.6</u>	J ;
解答: $\Delta E = \frac{5}{2} \nu R \Delta T = \frac{5}{2} \times 1 \times R \times R$	2			
8.16 在绝热过程中, 理想气体对外做工	的的能量来自于	内能的减小量		<i>t</i> 1 9
8.17 分子自由度为 i 的理想气体,其等	容摩尔热容量	$C_V = \frac{i}{2}R$;等压摩尔热容	$C_p = \frac{i+2}{2}R$
8.17 分子自由度为 i 的理想气体,其等8.18 要使一热力学系统的内能增加,	可以通过 做功		两种方式, 5	或者两种方式兼用
来完成.				
8.19 判定正误:				
(1)始末状态相同的两个热力学过	程,其内能的变	变化量一定相等;		· · · · · [✓]
(2)始末状态相同的两个热力学过	程,对外做功-	一定相等;		[×]
(3)始末状态相同的两个热力学过				
(4)热力学第一定律本质上就是能	量守恒定律; ·			· · · · · [√]
8.20 选择:若在某个过程中,一定量的	J理想气体的内	能 E 与压强 p 成	正比,则该过程为	ı [C]
A. 等压过程 B. 等温过	:程	C. 等容过程	D. 绝	热过程
8.21 若理想气体在循环过程中从	高温热源吸煮	ぬ Q 1 . 向 低 温 耖	ぬ源放热 <i>Q₂</i> . 『	则 它 对 外 所 做 的
净功为 $Q_1- Q_2 $,循环的热机效图	运为 $1-\frac{ Q_2 }{ Q_2 }$,循环过程曲组	线在 p-V 图上所	包围的图形面积
为 $Q_1- Q_2 $	Q_1	_		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$N_{\frac{\sqrt{1}-\sqrt{2}}{2}}$ 8.22 空调机的制冷系数为 2, 则输入 V	7. 的由此 张锐	以安内吸丸 911/	白安从台	おお、211 7
8.23 某空调的能效标识牌上写着如下		//)(\(\frac{1}{2}\)/\(\frac{1}{2}\)/\(\frac{1}{2}\)	,四至77//	XXX <u>3W</u>
能效比 3.39, 输入功率(W) 3540, 制剂				
请解释这三个数字的含义.	p重(W) 12000	,		
解答:该空调每秒消耗的电能(转化	为由机做功);	5 3540 1. 毎秒り	(00 I. 向室外放势
(3540 + 12000) J,制冷系数 12000/35		, 0010 (), (4.07)	VII. V ////// 120	00 J 7 T J 7 T // N
8.24 工作在高温热源 600 K, 低温热源		所有热机 其效率	×不会超过 1 − −	$\frac{00}{0} = 50\%$
8.25 判定正误:	(000 II (C) () ()	771137111011, 27700	60	00
(1)循环过程曲线在 p - V 上所包围	的面积等干循	不过程所做的净T	h	[,/]
(2)卡诺热机的效率与工质无关, (
(3)真实热机的效率不可能超过理				
(4)热机的效率不能超过100%.				
(5)制冷机的制冷系数不能超过1				
8.26 判定对错:				[^]
(1)热量不可能自动地从低温物体	传向高温物体.			[√]
(2)自然界进行的涉及热现象的宏				
8.27 热力学第二定律有两种表述, 开约				[+]
克劳修斯表述为				
8.28 气体等温膨胀时, 系统吸收的热量		,这和热力学第一	二定律有没有矛盾	言?为什么?
解答:不矛盾		, . <u> </u>	, —, , , , , , , , , , , , , , , , , ,	
8.29 什么是熵和熵的增加原理?				

解答: 略

第九章 近代物理

9.1 根据狭义相对论, 判定正误:	
(1)在真空中, 光的速度与光的频率、光源的运动状态无关;	[√]
(2)在任何惯性系中, 光在真空中沿任何方向的传播速率都相同; · · · · · · · · · · · · · · · · · · ·	
(3)一切运动物体相对于观察者的速度都不能大于真空中的光速;	
(4)长度、时间的测量结果都随物体与观察者的相对运动状态而改变的;	[√]
9.2 长度为1 m的尺子沿着长度方向匀速运动,测得其长度收缩至0.5 m,则该尺子的运动设	1 率
$v/c = \sqrt{3/2}$.	
9.3 某个静止的细菌寿命为4s, 若该细菌匀速直线运动, 则测得其寿命为5s,则运动逐	巨率
v = 0.6c	
9.4 在某个惯性参照系中同一地点、同一时刻发生的两个事件,在其他惯性参照系中都是同时同地发	发生
的,对么?	
解答: 是正确的	
9.5 狭义相对论的两个基本假设是什么?	
9.6 两艘飞船相对于地球以 $0.5c$ 的速度相背而行, 在地面参照系中观察, 两船的分离速率为 c	
若以其中一艘飞船为参照物,另外一船的速率为 $0.8c$	
9.7 静质量为 m , 速率是 v 的粒子, 其动量大小为 $\frac{mv}{\sqrt{1-v^2/c^2}}$ 能量大小为 $\frac{mc^2}{\sqrt{1-v^2/c^2}}$ 动能力	て小
为 $\frac{mc^2}{\sqrt{1-v^2/c^2}}-mc^2$	
9.8 向一个绝热密闭的化工反应容器中通电 $1 \text{ kW} \cdot \text{h}$,则系统的质量增加 $4 \times 10^{-11} \text{ kg}$	
9.9 质子在加速器中被加速,当其动能为静能量的 4 倍时, $\sqrt{1-v^2/c^2} = \underline{5}$	
9.10 关于 "不确定关系", 判定正误:	
(1)粒子的动量不可能确定, 但坐标可以被确定;	[x].
(2)粒子的坐标不可能确定,但动量可以被确定;	
(3)粒子的动量和坐标不可能同时确定;	[/]
(4)不确定关系不仅适用于电子和光子,也适用于其他粒子;	
9.11 光量子的能量 E 与频率 ν 的关系为 $\underline{E}=h\nu$;光量子的动量 p 与波长 λ 的关系为 $p=h/\lambda$.	
9.12 量子力学的波函数的物理意义是什么?	
解答:	
9.13 根据不确定关系, 我们能不能不断地探测更小层次的物质结构?物质能否无限可分?如果粒子?	生有
限的区域内运动, 其动量能否等于零?	
解答:不能;不能;不能	
9.14 在书写薛定谔方程时,粒子的总能量 E 对应的微分算符是 $j\hbar \frac{\partial}{\partial t}$;粒子的动量 p_x 对应的	数分
算符是 $-\mathrm{j}\hbarrac{\partial}{\partial x}$.	
9.15 动量为 p 且沿着 x 正方向自由运动的粒子,其波函数 $\phi(x) = \underline{A} e^{\frac{j^2 k}{\hbar}x}$.	
9.16 宽度为 a 的无限深势阱的基态波函数的波长为 a ,第一激发态的波函数波长为 a	—·
9.17 频率为 ν 的谐振子, 其零点能为 $\frac{1}{2}h\nu$;相邻能级的能量差为 $h\nu$.	
9.18 氢原子基态的能量为 $-13.6~{\rm eV}$,则其第 $2~{\rm ft}$ 级的能量为 $-3.4~{\rm eV}$,第 $3~{\rm ft}$ 级的能量为 $-1.51~{\rm eV}$	
9.19 若原子中的电子的主量子数是 n ,则其角量子数可以取值 $\underline{0 \sim n-1}$;若角量子数为 l ,则磁量	子数
可取 $2l+1$ 个不同的值.	