Chapter NLP:II

II. Text Models

- □ Text Preprocessing
- □ Text Representation
- □ Text Similarity
- □ Text Classification
- □ Language Modeling
- □ Sequence Modeling

Text can be similar in different ways:

- Spelling correction
- Retrieval of relevant web pages
- Detection of related documents
- Paraphrase recognition
- (Near-) Duplicate or text reuse detection
- Identification of counterarguments
- Clustering
- Evaluation of machine translation and summarization

... and many more

Text can be similar in different ways:

- 1. Lexical similarity describes the similarity of form, e.g.:
 - Language variation.

```
color VS. colour
```

Additional words.

```
This is shit. vs. This is the shit.
```

Spelling errors.

```
restaurant VS. westauwang
```

□ Similar spelling.

```
content VS. contempt
```

- 2. Semantic similarity describes the similarity of meaning, e.g.:
 - Synonymy.

```
content VS. satisfied
```

□ Paraphrase.

```
Biden visited the capital of France.
```

VS. The president was in Paris.

Similarity Measures

Depending on the kind of similarity to be measured, we must determine the

- □ level of text, token, sentence, document, ...
- text representation, strings, count vectors, word vectors, ...
- and similarity function.

Families of similarity functions:

- String-based: Lexical similarity of the form of words.
- Resource-based: Relations between tokens in knowledge graphs.
- Vector distance: Geometric similarity of vector representations in their space.
- □ Divergence: Similarity between word distributions of documents/corpora.
- Word vectors: Semantic similarity of sentences via word vectors.

String-based Similarity: Hamming Distance

Idea: Count the number of character positions where two strings s_1 and s_2 differ.

- □ The Hamming distance measures the number of substitutions required to transform a (bit) sequence into another.
- □ Can be applied to character sequences of equal length. Pad the shorter token.
- □ Vulnerable to character addition/removal. i.e. program vs programme

Hamming distance with aligned tokens.

$\overline{s_1}$	r	е	S	t	а	u	r	а	n	t	
S_2	W	е	S	t	а	u	W	а	n	g	
Distance	1	0	0	0	0	0	1	0	0	1	= 3

Hamming distance with character removal and padding.

$\overline{s_1}$	r	е	S	t	а	u	r	а	n	t	
S_2	r	е	S	t	u	r	a	n	t	[P]	
Distance	0	0	0	0	1	1	1	1	1	1	= 6

String-based Similarity: Levenshtein Distance

Idea: Count the minimum number of edit operations needed to transform s_1 into s_2 .

- □ Insertion: Add a character to s₁.
- Deletion: Remove a character from s₁.
- □ Substitution: Replace a character in s₁ with a different one.

Find the minimum cost by trying every combination of operations $(O(n^2))$:

Levenshtein(s_1, s_2)

- 1. IF $|\mathbf{s}_2| = 0$ THEN $return(|\mathbf{s}_1|)$ ENDIF // Do $|\mathbf{s}_1|$ deletions.
- 2. IF $|\mathbf{s}_1| = 0$ THEN *return*($|\mathbf{s}_2|$) ENDIF // Do $|\mathbf{s}_2|$ insertions.
- 3. IF $s_1[0] = s_2[0]$ THEN *return*(Levenshtein($s_1[1:], s_2[1:]$)) ENDIF
- 4. $\mathbf{l}_{del}=1+\text{Levenshtein}(\mathbf{s}_1[1:],\mathbf{s}_2)$ // Cost when doing a deletion.
- 5. $\mathbf{l}_{ins}=1+\text{Levenshtein}(\mathbf{S}_1,\mathbf{S}_2[1:])$ // Cost when doing an insertion.
- 6. $\mathbf{l}_{sub}=1+\text{Levenshtein}(\mathbf{s}_1[1:],\mathbf{s}_2[1:])$ // Cost when doing a substitution.
- 7. $return(min(l_{del}, l_{ins}, l_{sub}))$

String-based Similarity

Applications:

- □ Spelling correction. Find the most similar word in the vocabulary.
- □ Query processing. Replace spelling variants, ...
- □ Plagiarism detection. Find near-verbatim copies or longest common subsequences.
- □ De-noising. Correct corrputed texts.
- □ Evaluate translation or summarization. Compare to a ground truth.

Limitations:

- □ Semantically agnostic. Use resource-based methods for word-level semantic similarity.
- Very sensitive to word order or inserted text, more suited to short texts or word-by-word comparisons. Use vector distance methods for long sequences.

Remarks:

- There are several variations of Levenshtein distance that modify its behavior, commonly called edit distance.
 - Damerau-Levenshtein distance also allows transposition (swap two adjacent characters at the cost of one operation). This is desirable for spellcheckers.
 - Longest Common Subsequence allows only insertion and deletion, which is faster and can better utilize hashing.
 - Hamming distance allows only substitution.
 - Jaro distance allows only transposition.
- It is common to assign a cost to each operation and instead of counting the number of operations.
- \Box Edit distance can be computed in O(n+m) with the Wagner-Fischer dynamic programming algorithm.

Resource-based Similarity: Thesaurus relations [NLP:VI-2 ff.]

Idea: Calculate the shortest path through the graph of the semantic word relations found in a thesaurus like WordNet.

Common thesaurus relations used:

Synonymy: Two words that (in some context) have the same meaning.

```
couch \longleftrightarrow sofa big \longleftrightarrow large
```

Hypernymy: A word is included in the meaning of another. IS-A relation.

```
vehicle \overrightarrow{\text{Hypernym}} car vehicle \overrightarrow{\text{Hypernym}} ship
```

WordNet entry for nickel:

<u>S:</u> (n) nickel, Ni, atomic number 28 (a hard malleable ductile silvery metallic element that is resistant to corrosion; used in alloys; occurs in pentlandite and smaltite and garnierite and millerite)

- S: (n) nickel (a United States coin worth one twentieth of a dollar)
 - <u>direct hypernym</u> / <u>inherited hypernym</u> / <u>sister term</u>
 - S: (n) coin (a flat metal piece (usually a disc) used as money)

Resource-based Similarity

Applications:

□ Synonym search and lexical substitution. (cf. [NLP:VI-2 ff.])

Limitations:

- □ Thesauri do not cover phrases or sentences. Use word vector-based methods for semantic similarity of longer sequences.
- Thesauri cover only some word classes (i.e. nouns, verbs, adjectives, adverbs) and only some of the words in them.
- Verbs and adjectives are not as hierarchically structured as nouns.
- Thesauri are not available for all languages.

Vector Distance

Idea: If the text are in a numeric vector representation with ordinal dimensions (BoW or feature vectors), then a geometric similarity measure can be used.

Distance *d* of two texts **p** and **q** represented as *m*-length (BoW) vectors.

■ Manhattan distance The Manhattan distance is the sum of all absolute differences between two feature vectors.

$$\mathbf{d}_{\mathrm{Manhattan}}(\mathbf{p}, \mathbf{q}) = \sum_{i=1}^{m} |p_i - q_i|$$

Euclidean distance The Euclidean distance captures the absolute straight-line distance between two feature vectors.

$$\mathbf{d}_{\mathsf{Euclid}}(\mathbf{p}, \mathbf{q}) = \sqrt{\sum_{i=1}^{m} |p_i - q_i|^2}$$

Note that the indices *i* correspond to the same token or feature in both documents.

Vector Distance

Idea: If the text are in a numeric vector representation with ordinal dimensions (BoW or feature vectors), then a geometric similarity measure can be used.

Both distances can be transformed into a similarity metric:

- 1. Normalize all dimensions to [0, 1]
- 2. Normalize the distance for the vector size m
- 3. Invert the measure so larger is more similar.

$$sim_{\mathsf{Manhattan}}(\mathbf{p}, \mathbf{q}) = 1 - \frac{d_{\mathsf{Manhattan}}(\mathbf{p}, \mathbf{q})}{m}$$

- □ Vector distances (based on count vectors) are vulnerable to document length.
- A long document will be distant from a short one even if it just contains the same content multiple times.

Vector Similarity: Cosine Similarity

Idea: Measure the difference of the vector's direction and ignore its length.

Cosine similarity captures the cosine of the angle between two feature vectors.

$$\begin{aligned} \textit{sim}_{\text{Cosine}}(\mathbf{p}, \mathbf{q}) &= \frac{\mathbf{p} \cdot \mathbf{q}}{||\mathbf{p}|| \cdot ||\mathbf{q}||} \\ &= \frac{\sum_{i=1}^{m} p_i \cdot q_i}{\sqrt{\sum_{i=1}^{m} p_i^2} \cdot \sqrt{\sum_{i=1}^{m} q_i^2}} \end{aligned}$$

- □ The smaller the angle, the more similar the vectors. The cosine is maximal for 0°.
- |x| denotes the L2 norm of vector x.

Vector Similarity: Cosine Similarity

Geometric interpretation of the Cosine:

$$\mathbf{p} = \begin{pmatrix} \text{chrysler } 0.1 \\ \text{usa} & 0.4 \\ \text{cat} & 0.3 \\ \text{dog } & 0.7 \\ \text{mouse } & 0.5 \end{pmatrix}$$

$$\mathbf{q} = \begin{pmatrix} \text{chrysler } 0.2 \\ \text{usa} & 0.1 \\ \text{cat} & 0.5 \\ \text{ostrich } & 0.1 \\ \text{elephant } & 0.1 \end{pmatrix}$$

The angle φ between **p** and **q** is about 51°, $\cos(\varphi) \approx 0.63$.

Vector Similarity: Jaccard Similarity

Idea: If the size of the (element-wise) difference is not relevant, the set overlap can be used to measure similarity.

Jaccard similarity compares the size of the intersection of two sets to their union.

$$egin{aligned} \textit{sim}_{\mathsf{Jaccard}}(\mathbf{p},\mathbf{q}) &= rac{|\mathbf{p}\cap\mathbf{q}|}{|\mathbf{p}\cup\mathbf{q}|} \ &= rac{|\mathbf{p}\cap\mathbf{q}|}{|\mathbf{p}|+|\mathbf{q}|-|\mathbf{p}\cap\mathbf{q}|} \ &= rac{\sum_{p_i=q_i}1}{m+m-\sum_{p_i=q_i}1} \end{aligned}$$

 \Box The term $p_i = q_i$ assumes binary features.

Vector Similarity: Divergence

Idea: If the texts are represented as probability distributions (over a shared vocabulary), their divergence can be used to measure similarity.

□ Kullback–Leibler–Divergence (KLD) measures the distribution divergence with information gain. KLD is asymmetric and not a metric.

$$\mathbf{d_{KL}}(\mathbf{P} \parallel \mathbf{Q}) = \sum_{x \in \mathcal{X}} P(x) \log \left(\frac{P(x)}{Q(x)} \right)$$

Jenson-Shannon-Divergence (JSD) is a symmetric adaptation of the KLD.

$$\begin{aligned} \textit{sim}_{\mathsf{JSD}}(P(x) \parallel Q(x)) &= 1 - \left(\frac{1}{2}D_{\mathsf{KL}}(P(x) \parallel M(x)) + \frac{1}{2}D_{\mathsf{KL}}(Q(x) \parallel M(x))\right) \\ M(x) &= \frac{1}{2}(P(x) + Q(x)) \end{aligned}$$

Vector Similarity

Applications:

- □ Retrieval models in search. (cf. [IR:VI-92 ff.])
- Clustering documents. (cf. Data Mining)
- Language detection. Similarity between a document and corpus vectors.
- □ Plagiarism detection. Find candidate documents. Find passages more robustly.
- Authorship analysis. Are two documents written by the same author?

Limitations:

- Agnostic to word order, token semantics, and sentence semantics.
- □ Poor performance on short texts (sentences); they do not share many words.
- Poor performance on long texts (corpora); they approximate the language.
- □ Similarity scores and vector differences have no linguistic interpretation.

Remarks:

- □ Count vectors can be transformed into probability distributions (cf. Probability Mass Functions and [ML:VII-4 ff.])
- □ JSD and Cosine similarity are (roughly) equivalent for word distributions over a shared vocabulary (i.e. count vectors). However, using a geometric interpretation (cosine) makes little sense for distributions.
- Vector-based methods can be used to compare both document vectors and word vectors.
- ☐ If a vector encodes semantic information, then vector-based similarity functions measure semantic similarity.

Word Vector Similarity: Sentence Embeddings [lyyer et al. 2015]

Idea: Compute a sentence embedding based on a sequence of word vectors, compare the embeddings with a geometric measure (i.e. cosine similarity).

□ Vector Average Similarity compares the geometric average of the word vectors.

 \mathbf{S}^1 : Obama speaks to the media in Illinois

 \mathbf{S}^2 : The press is greeted by the President in Chicago

$$sim_{cosine}(\sum_{i=1}^{|s^1|} \frac{s_i^1}{|s^1|}, \sum_{i=1}^{|s^2|} \frac{s_i^2}{|s^2|})$$

Word Vector Similarity: Sentence Embeddings

[lyyer et al. 2015, Cer et al. 2018, Reimers et al. 2019]

Idea: Compute a sentence embedding based on a sequence of word vectors, compare the embeddings with a geometric measure (i.e. cosine similarity).

Deep Average Networks

Train a feed-forward neural network to predict the sentence embedding given the geometric average of the word vectors as input. Often trained on classification tasks (i.e. sentiment detection).

Universal Sentence Encoder and Sentence-BERT

Transformer-encoder can be trained so that their CLS-token embedding equivalates a sentence embedding, which can then be compared through i.e cosine similarity.

Word Vector Similarity: Word Mover Distance [Kusner et al. 2015]

Idea: For each (non-stop) word $i \in s^1$, find the closest word $j \in s^2$ in the word vector space. Sum their distances.

Simple case. There is an even number of (non-stop) word in both sentences. Find the best pairing.

 \mathbf{S}^1 : The President greets the press in Chicago

 S^2 : Obama speaks to the media in Illinois

press Illinois
Obama
media President
speaks
greets

Difficult case. There is an uneven number of word in both sentences. We assume that s¹ should be evenly distributed over s², so words must be split and combined.

 \mathbf{S}^1 : The President greets the press in Chicago

 s^2 : Obama speaks in Illinois

The Word Mover Distance (WMD) optimally (with minimal transportation cost) distributes the words of the source to fill the capacity of the sink.

Word Vector Similarity: Word Mover Distance [Kusner et al. 2015]

The Word Mover Distance finds the minimum cumulative transportation cost to move all words from $i \in s^1$ to words in $j \in s^2$ in an embedding space.

 \mathbf{s}^1 : The President greets the press in Chicago

 S^2 : Obama speaks to the media in Illinois

 S^3 : The band gave a concert in Japan

$$WMD(s^1, s^2) = 0.45 + 0.24 + 0.20 + 0.18 = 1.07$$

$$WMD(s^1, s^3) = 0.49 + 0.42 + 0.44 + 0.28 = 1.63$$

Word Vector Similarity: Word Mover Distance [Kusner et al. 2015]

The Word Mover Distance finds the minimum cumulative transportation cost to move all words from $i \in s^1$ to words in $j \in s^2$ in an embedding space.

$$\mathsf{WMD} = \min_{\mathbf{T} \geq 0} \sum_{i,j=1}^{n} \mathbf{T}_{i,j} \cdot c(i,j)$$

- \Box The cost $c(i,j) = \|\mathbf{x}_i \mathbf{x}_j\|_2$ is the euclidean distance.
- \Box The flow matrix $\mathbf{T}_{i,j}$ indicates which capacity of word i is moved to word j
- \Box The outgoing flow of i must expend the capacity d_i^1 : $\sum_{j=1}^n \mathbf{T}_{i,j} = d_i^1$

The incoming flow into j must fill the capacity d_j^2 : $\sum_{i=1}^n \mathbf{T}_{i,j} = d_j^2$

 $exttt{ iny The capacity is the term weight, i.e. } d_i^1 = rac{1}{\| extst{ extst{ iny S}}_1\|}.$

This problem definition is equivalent to the Earth Mover Distance, a common problem from transportation with has efficient solvers. [Pele and Werman, 2009]

Word Vector Similarity

Applications:

 Every time semantics is more important than form and sequences are (relatively) short.

Limitations:

- Often slower than count-vector based methods if sentence embeddings can not be pre-computed (ie. at index time).
- Often ineffective for document-length texts. Works best on sequences of similar length.
- Ignores all lexical aspects.