BUS41204: Week 5 Review Session

JungHo Lee

Variable Selection

Agenda:

- 1. Stepwise Selection Methods
- 2. Shrinkage Methods and Cross-Validation
- 3. Boruta Method

Why Select Variables?

- Performance: Predictive performance is often degraded as the number of uninformative predictors (noise) increases
- Interpretability: Simpler models are easier to interpret
- Computational ease: Simpler models require less computational resources
- Trade-off between interpretability/low variance for a small model vs. reducing bias/model error in the larger model.

Stepwise Selection Methods

We will use simulated data to see how backward elimination and forward selection can be implemented in practice. We can also combine the two (add a covariate, check if any can be removed, add another, etc).

Simulate our data:

```
set.seed(41204)

n = 30
p = 15 # total number of predictors (without the intercept)
s = 10 # true model size
X = scale(matrix(rnorm(n*p),n,p), center=FALSE) # covariate matrix

beta = numeric(p)
beta[1:s] = runif(s,-5,5)
y = X%*%beta + rnorm(n) # response
```

Backward Elimination

Backward elimination: Start with a model with all covariates, remove one at a time.

If we use p-value as our stopping criterion, at each step, we

• Remove the variable with the highest (least significant) p-value,

• Stop if all p-values are \leq threshold.

```
#' @param y: a vector of responses
#' @param X: covariate matrix
#' @param alpha: threshold p-value
#' Oreturn XS: matrix of selected covariates
run_backward_elimination = function(y, X, alpha){
  p = dim(X)[2]; S = 1:p
    while(TRUE){
    pvals = summary(lm(y~X[,S]))$coefficients[-1,4]
    # stopping criterion
    if(max(pvals) <= alpha){</pre>
      break
    }
    # remove var with highest p-val
        remove_ind = S[which.max(pvals)]
        S = setdiff(S,remove_ind)
    XS = X[,S,drop=FALSE]; colnames(XS) = S
    return(XS)
}
```

Run backward elimination with the threshold p-value of 0.1:

```
XS = run_backward_elimination(y, X, 0.1)
summary(lm(y~XS))$coefficients
```

```
Estimate Std. Error
                                    t value
                                               Pr(>|t|)
## (Intercept) -0.2833323  0.2335809  -1.212995  2.408112e-01
## XS1
              4.2855572 0.2149754 19.935103 1.018806e-13
              4.1100551 0.2468707 16.648612 2.224626e-12
## XS2
## XS3
              4.2201468 0.2797961 15.082937 1.175373e-11
## XS4
             -0.7169119 0.1976271 -3.627599 1.925272e-03
              3.6609668 0.2032968 18.007988 5.844390e-13
## XS5
## XS6
              2.1171880 0.1720068 12.308746 3.348967e-10
## XS7
             -2.7291292 0.1938002 -14.082181 3.689710e-11
## XS8
             -4.6479553 0.2149009 -21.628361 2.483644e-14
## XS9
              1.3244227 0.2756905 4.804021 1.421450e-04
## XS10
              2.4304440 0.1874281 12.967343 1.434512e-10
## XS13
```

Run backwards elimination with the threshold p-value of 0.01:

```
XS = run_backward_elimination(y, X, 0.01)
summary(lm(y~XS))$coefficients
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2351602 0.2517244 -0.9341972 3.619238e-01
```

```
## XS1
             4.2890745 0.2328243 18.4219390 1.411117e-13
## XS2
             ## XS3
             4.5618390 0.2447194 18.6411027 1.139851e-13
## XS4
            ## XS5
             3.6702672  0.2201292  16.6732449  8.449237e-13
## XS6
             2.1993166  0.1812732  12.1326077  2.151493e-10
## XS7
            -2.6935055 0.2090687 -12.8833501 7.735793e-11
            -4.4946894 0.2185087 -20.5698413 1.909890e-14
## XS8
## XS9
             1.0139362 0.2505604
                                4.0466734 6.887129e-04
## XS10
             2.3829594  0.2014708  11.8278128  3.305918e-10
```

Just by random chance, some of the covariates might come with a low p-value, more so when the number of predictors is large.

```
y_noise = rnorm(n)
XS = run_backward_elimination(y_noise, X, 0.1)
summary(lm(y_noise~XS))$coefficients
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.06345579 0.1522714 0.4167281 0.680054824
## XS -0.43975648 0.1548745 -2.8394367 0.008323167
```

How do we address this issue?

Bayesian Information Criterion (BIC) = deviance + log(n) * (length(variable) + 1) takes into account the size of the model.

Up to a constant, this is equal to $BIC(S) = n \log(RSS(\text{model }S)/n) + |S| log(n)$.

Apply the BIC to backward elimination:

```
#' Oparam y: a vector of responses
#' @param X: covariate matrix
#' Oreturn plots of RSS and BIC as a function of model size
run_backward_elimination_BIC = function(y, X){
   S = 1:p
   S_{in\_order} = rep(0,p)
   store RSS = rep(0,p+1)
    store_RSS[p+1] = sum((y-lm(y-X[,S])fitted.values)^2)
    for(i in 1:p){
        pvals = summary(lm(y~X[,S]))$coefficients[-1,4]
      remove_ind = S[which.max(pvals)]
        S_{in\_order[p+1-i]} = remove\_ind
        S = setdiff(S,remove_ind)
        if(length(S)>0){
          store_RSS[p+1-i] = sum((y-lm(y-X[,S]))fitted.values)^2)
        else{store_RSS[p+1-i] = sum((y-lm(y~1)$fitted.values)^2)}}
   BIC = n*log(store_RSS) + (0:p)*log(n)
   modelsize = which.min(BIC)-1
```

```
par(mfrow=c(1,2))
plot(0:p, store_RSS, xlab='Model Size', ylab='RSS')
plot(0:p, BIC, xlab='Model Size', ylab='BIC')
}
```

Run with signal:

```
run_backward_elimination_BIC(y, X)
```


run_backward_elimination_BIC(y_noise, X)

Forward Selection

Start with a model with no covariates, add in one at a time.

At each step,

- Select the variable that decreases the RSS the most
- Stop if all p-values are \geq threshold

```
#' @param y: a vector of responses
#' @param X: covariate matrix
#' Oreturn plots of RSS and BIC as a function of model size
run_forward_selection_BIC = function(y, X){
  S = store_RSS = c()
  p = dim(X)[2]
  for(i in 1:p){
        RSS = rep(0,p)
        for(j in 1:p){
          S0 = append(S, j)
          RSS[j] = sum((y-lm(y-X[,S0])fitted.values)^2)
        store_RSS[i+1] = min(RSS)
        ind = which.min(RSS)
        S = append(S, ind)
  }
    BIC = n*log(store_RSS) + (0:p)*log(n)
    modelsize = which.min(BIC)-1
        par(mfrow=c(1,2))
```

```
plot(0:p, store_RSS, xlab='Model Size', ylab='RSS')
plot(0:p, BIC, xlab='Model Size', ylab='BIC')
}
```

```
run_forward_selection_BIC(y, X)
```


Best Subset

Compares all models for each possible combination of the p predictors. Since there are 2^p models to compare, it cannot be applied when p is large.

```
library(bestglm)
data = cbind(X,y)
bestglm(as.data.frame(data), family = gaussian, IC = "BIC", method = "exhaustive")
## BIC
## BICq equivalent for q in (0.181806937963117, 0.542773421034033)
## Best Model:
                 Estimate Std. Error
                                                    Pr(>|t|)
                                        t value
## (Intercept) -0.2833323 0.2335809
                                      -1.212995 2.408112e-01
## V1
                4.2855572 0.2149754 19.935103 1.018806e-13
## V2
                4.1100551
                           0.2468707
                                      16.648612 2.224626e-12
                4.2201468
                                     15.082937 1.175373e-11
## V3
                           0.2797961
  ۷4
               -0.7169119
                           0.1976271
                                      -3.627599 1.925272e-03
##
                3.6609668
                                      18.007988 5.844390e-13
## V5
                           0.2032968
## V6
                2.1171880
                           0.1720068
                                     12.308746 3.348967e-10
                          0.1938002 -14.082181 3.689710e-11
## V7
               -2.7291292
               -4.6479553 0.2149009 -21.628361 2.483644e-14
## V8
```

Shrinkage Methods

Main idea: By shrinking the coefficient, we compromise some bias for less variance. As a result, we get better prediction performance.

Lasso and Ridge Methods

```
\mathbf{Lasso:} \ \hat{\beta} = \mathrm{argmin}_{\beta} \Big\{ \mathrm{deviance} + \lambda \|\beta\|_1 \Big\} \ \mathbf{Ridge:} \ \hat{\beta} = \mathrm{argmin}_{\beta} \Big\{ \mathrm{deviance} + \lambda \|\beta\|_2^2 \Big\}
```

```
ames = as.matrix(read.table('ames_data.txt', header=TRUE))

y_name = 'LotArea'

ind = which(ames[,colnames(ames)=='YearBuilt']>=2000) # only those built after 2000

X = ames[ind, colnames(ames)!=y_name]

y = ames[ind, colnames(ames)==y_name]

n = length(y); p = dim(X)[2]
```

colnames(X)

```
[1] "SalePrice"
                         "LotFrontage"
                                         "OverallQual"
                                                          "OverallCond"
    [5] "YearBuilt"
##
                         "YearRemod.Add" "MasVnrArea"
                                                          "BsmtFinSF1"
   [9] "BsmtFinSF2"
                         "BsmtUnfSF"
                                         "X1stFlrSF"
                                                          "X2ndFlrSF"
## [13] "LowQualFinSF"
                        "BsmtFullBath"
                                         "BsmtHalfBath"
                                                          "FullBath"
## [17] "HalfBath"
                         "BedroomAbvGr"
                                         "KitchenAbvGr"
                                                          "TotRmsAbvGrd"
## [21] "Fireplaces"
                         "GarageCars"
                                         "GarageArea"
                                                          "WoodDeckSF"
## [25] "OpenPorchSF"
                        "EnclosedPorch" "X3SsnPorch"
                                                          "ScreenPorch"
## [29] "PoolArea"
                         "MiscVal"
                                         "MoSold"
                                                          "YrSold"
## [33] "LotShape"
                         "LandSlope"
                                         "Railroad"
                                                          "ExterQual"
                                                          "BsmtExposure"
## [37] "ExterCond"
                         "BsmtQual"
                                         "BsmtCond"
## [41] "CentralAir"
                         "KitchenQual"
                                         "Functional"
                                                          "FireplaceQu"
## [45] "GarageFinish"
                        "GarageQual"
                                         "GarageCond"
                                                          "PavedDrive"
## [49] "Fence"
```

Ridge regression:

```
library(glmnet)
plot(glmnet(X, y, alpha=0), xvar = "lambda") # alpha = 0 is ridge penalty
```


Lasso regression:

plot(glmnet(X, y, alpha=1), xvar = "lambda") # alpha = 1 is lasso penalty

Cross-Validation

```
# default is 10-fold cv
cv_ridge = cv.glmnet(X, y, alpha=0) # ridge
cv_lasso = cv.glmnet(X, y, alpha=1) # lasso

par(mfrow=c(1,2))
plot(cv_ridge)
plot(cv_lasso)
```


coef(cv_ridge)

```
## 50 x 1 sparse Matrix of class "dgCMatrix"
## (Intercept)
                 -4.121003e+04
## SalePrice
                  1.994301e-03
## LotFrontage
                   1.051496e+01
## OverallQual
                  9.547285e+01
## OverallCond
                 -1.308557e+00
## YearBuilt
                   1.725133e+01
  YearRemod.Add
                  1.659878e+01
## MasVnrArea
                  7.022319e-01
## BsmtFinSF1
                  2.916358e-01
## BsmtFinSF2
                  8.545437e-02
## BsmtUnfSF
                  1.070839e-01
## X1stFlrSF
                  5.325704e-01
## X2ndFlrSF
                  2.180455e-01
## LowQualFinSF
                 -1.044580e+01
## BsmtFullBath
                  8.741627e+01
## BsmtHalfBath
                 -6.759623e+02
## FullBath
                  1.772554e+02
## HalfBath
                  2.183957e+02
## BedroomAbvGr
                  3.539865e+02
## KitchenAbvGr
                 -4.695120e+02
  TotRmsAbvGrd
                  1.987698e+02
## Fireplaces
                  1.918232e+02
## GarageCars
                  1.800561e+02
## GarageArea
                  1.020518e+00
## WoodDeckSF
                  9.336234e-01
## OpenPorchSF
                  2.143925e+00
## EnclosedPorch -1.552856e-01
## X3SsnPorch
                  3.291962e-01
                  2.424142e+00
## ScreenPorch
```

```
## PoolArea
                1.613713e+01
## MiscVal
                 2.386155e-01
## MoSold
                -4.291208e+00
## YrSold
                -1.267719e+01
## LotShape
                 4.431284e+02
## LandSlope
                -8.645766e+01
## Railroad
                  6.460126e+02
## ExterQual
                  1.330267e+02
## ExterCond
                 2.818435e+02
## BsmtQual
                 1.810896e+02
## BsmtCond
                  2.560575e+01
## BsmtExposure
                 6.913018e+01
## CentralAir
                -4.904661e+02
## KitchenQual
                 1.246437e+02
## Functional
                  3.322517e+01
## FireplaceQu
                  2.687281e+01
## GarageFinish 9.423348e+00
## GarageQual
                -8.755350e+01
## GarageCond
                -1.860231e+02
## PavedDrive
                -1.798139e+02
## Fence
                 2.051726e+01
```

coef(cv_lasso)

```
## 50 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept)
                 -520.3328559
## SalePrice
                   27.4219543
## LotFrontage
## OverallQual
## OverallCond
## YearBuilt
## YearRemod.Add
## MasVnrArea
## BsmtFinSF1
                    0.2040883
## BsmtFinSF2
## BsmtUnfSF
## X1stFlrSF
                    1.3843547
## X2ndFlrSF
## LowQualFinSF
## BsmtFullBath
## BsmtHalfBath
## FullBath
## HalfBath
## BedroomAbvGr
                  372.5190961
## KitchenAbvGr
## TotRmsAbvGrd
                  718.4876000
## Fireplaces
## GarageCars
## GarageArea
                    0.3962021
## WoodDeckSF
## OpenPorchSF
## EnclosedPorch
## X3SsnPorch
```

```
## ScreenPorch
## PoolArea
                   29.8705286
## MiscVal
## MoSold
## YrSold
## LotShape
                  907.6041627
## LandSlope
## Railroad
## ExterQual
## ExterCond
## BsmtQual
## BsmtCond
## BsmtExposure
## CentralAir
## KitchenQual
## Functional
## FireplaceQu
## GarageFinish
## GarageQual
## GarageCond
## PavedDrive
## Fence
# predict(cv_lasso, newdata)
```

Boruta Method

Stochastic wrapper procedure that uses random forest to compute variable importance measures

Overview of the Boruta algorithm:

- Adds randomness to data by creating shuffled copies of all features (shadow features)
- Train a random forest on the extended data set to compute feature importance
- Iteratively remove features that are less important than the best shadow features
- Stops when all features are confirmed or rejected or a specified limit of random forest runs is reached.

We import BankChurners.csv data from Kaggle. We then delete the last 2 variables suggested from Kaggle data description, and CLIENTNUM since it's Client's ID number which is unique and does not affect our prediction.

```
library(caret)

## Loading required package: ggplot2

## Loading required package: lattice

churners = read.csv('BankChurners.csv')
str(churners)

## 'data.frame': 10127 obs. of 23 variables:
## $ CLIENTNUM
```

```
## $ Attrition_Flag
## $ Customer_Age
## $ Gender
## $ Dependent_count
## $ Education_Level
## $ Marital_Status
## $ Income_Category
## $ Card_Category
## $ Months_on_book
## $ Total_Relationship_Count
## $ Months_Inactive_12_mon
## $ Contacts_Count_12_mon
## $ Credit_Limit
## $ Total_Revolving_Bal
## $ Avg_Open_To_Buy
## $ Total_Amt_Chng_Q4_Q1
## $ Total_Trans_Amt
## $ Total_Trans_Ct
## $ Total_Ct_Chng_Q4_Q1
## $ Avg_Utilization_Ratio
## $ Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Educati
## $ Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Educati
churners = churners [,-c(1,22,23)]
churners$Attrition_Flag = as.factor(churners$Attrition_Flag)
set.seed(41204)
n = dim(churners)[1]
ind = sample(n, floor(0.75*n))
train = churners[ind,]
test = churners[-ind,]
table(train$Attrition_Flag)
##
## Attrited Customer Existing Customer
                1206
table(test$Attrition_Flag)
##
## Attrited Customer Existing Customer
##
                                  2111
We use 30% of the training data to select the input variables by Boruta method.
library(Boruta)
inVars = sample(nrow(train), nrow(train)*.3)
(boruta = Boruta(Attrition_Flag~., data=train[inVars,], maxRuns=500, doTrace=0))
```

```
## Boruta performed 37 iterations in 9.617218 secs.
## 17 attributes confirmed important: Avg_Open_To_Buy,
## Avg_Utilization_Ratio, Contacts_Count_12_mon, Credit_Limit,
## Customer_Age and 12 more;
## 2 attributes confirmed unimportant: Card_Category, Education_Level;

plot(boruta, xlab="", xaxt="n")

lz = lapply(1:ncol(boruta$ImpHistory), function(i)
    boruta$ImpHistory[is.finite(boruta$ImpHistory[,i]),i])

names(lz) = colnames(boruta$ImpHistory)
lb = sort(sapply(lz, median))
axis(side=1, las=2, labels=names(lb), at=1:ncol(boruta$ImpHistory), cex.axis=0.5, font=4)
```


Variables with green boxes are more important than the ones represented with red boxes, and we can see the range of importance scores within a single variable in the graph.

selected_vars = names(boruta\$finalDecision)[boruta\$finalDecision %in% c("Confirmed", "Tentative")]
print(selected_vars)

```
[1] "Customer Age"
                                    "Gender"
##
                                    "Marital_Status"
    [3] "Dependent_count"
##
##
    [5] "Income_Category"
                                    "Months_on_book"
    [7] "Total_Relationship_Count"
                                    "Months_Inactive_12_mon"
##
    [9] "Contacts_Count_12_mon"
                                    "Credit_Limit"
   [11] "Total_Revolving_Bal"
                                    "Avg_Open_To_Buy"
##
   [13] "Total_Amt_Chng_Q4_Q1"
                                    "Total_Trans_Amt"
## [15] "Total_Trans_Ct"
                                    "Total_Ct_Chng_Q4_Q1"
## [17] "Avg_Utilization_Ratio"
```

length(selected_vars)

[1] 17

References

- $\bullet \ \, https://www.stat.cmu.edu/\sim cshalizi/mreg/15/lectures/26/lecture-26.pdf$
- $\bullet \ \, \rm https://bookdown.org/max/FES/selection.html$
- Lectures Notes from STAT34300: Applied Linear Statistical Methods by Prof. Rina Foygel Barber