Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №2.6

з дисципліни «Алгоритми і структури даних»

Виконала: Студентка групи IM-12 Миць Вікторія Ігорівна Номер у списку групи: 19 Перевірила: Молчанова А. А

Завдання:

 Представити зважений ненапрямлений граф із заданими параметрами так само, як у лабораторній роботі №1. Відміна: матриця А за варіантом формується за командами:

$$A = \mathbf{mulmr}((1.0 - n_3*0.01 - n_4*0.005 - 0.05)*T)$$

Матриця ваг W формується за наступним чином:

- Wt = roundm((randm(n,n)*100) ¤ A);
 де roundm це функція, що округляє кожен елемент матриці до найближчого цілого числа,
 символ «¤» поелементне множення;
- 2) одержується матриця \mathbf{B} , у якій $b_{ij}=0$, якщо $w_{ij}=0$, $b_{ij}=1$, якщо $w_{ij}>0$, $b_{ij}\in\mathbf{B}$, $w_{ij}\in\mathbf{Wt}$;
- 3) одержується матриця \mathbf{C} , у якій $c_{ij} = 1$, якщо $b_{ij} != b_{ji}$, та $c_{ij} = 0$ в іншому випадку;
- 4) одержується матриця **D**, у якій $d_{ij} = 1$, якщо $b_{ij} = b_{ji} = 1$, та $d_{ij} = 0$ в інших випадках;
- 5) Wt = (C + (D ¤ Tr)) ¤ Wt;
 де Tr верхній трикутник одиничної матриці (без головної діагоналі),
 + поелементна сума матриць;
- 6) одержується матриця ваг W шляхом симетризування матриці Wt.
- 2. Створити програму для знаходження мінімального кістяка за алгоритмом Краскала при n_4 парному і за алгоритмом Пріма при непарному. При цьому у програмі:
 - встановити функцію halt у точці додавання чергового ребра до кістяка,
- виводити зображення графа у графічному вікні перед кожною зупинкою по функції **halt**.
- 3. Під час обходу графа побудувати дерево його кістяка. Вивести побудоване дерево у графічному вікні. При зображенні як графа, так і його кістяка, вказати ваги ребер.

Варіант 19:

 $n_1 = 1$

 $n_2 = 2$

 $n_3 = 1$

 $n_4 = 9$

Число вершин п дорівнює 11

Розміщення вершин:

прямокутником (квадратом) з вершиною в центрі

Переглянути відео роботи програми

Код: Основний, Генерація матриці суміжності графа, Headers, README

Матриця суміжності:

0	0	1	1	0	1	0	0	0	0	1
0	1	0	0	1	0	1	0	0	1	0
1	0	0	0	1	0	0	1	1	0	1
1	0	0	0	0	0	1	0	1	1	1
0	1	1	0	0	1	0	1	1	0	1
1	0	0	0	1	1	0	0	1	1	0
0	1	0	1	0	0	1	1	1	1	1
0	0	1	0	1	0	1	0	0	0	0
0	0	1	1	1	1	1	0	0	1	0
0	1	0	1	0	1	1	0	1	0	1
1	0	1	1	1	0	1	0	0	1	1

Матриця ваг:

0 0 119 33 0 59 0 0 0 0 187 0 0 0 0 37 0 181 0 0 129 0 119 0 0 0 25 0 0 131 115 0 101 33 0 0 0 0 0 94 0 115 152 195 0 37 25 0 0 184 0 66 144 0 70 59 0 0 0 184 0 0 0 71 78 0 0 181 0 94 0 0 0 75 95 180 141 0 0 131 0 66 0 75 0 0 0 0 0 0 115 115 144 71 95 0 0 30 0 0 129 0 152 0 78 180 0 30 0 102 187 0 101 195 70 0 141 0 0 102 0

Дерево мінімального кістяка:

0	0	0	1	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	1	0	0
0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	1	0	0	1
0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0