Phase Plane

Speaker: Yichen Lu

 $\mathrm{June}\ 29,\ 2023$

Contents

- 1 Phase Portraits

The general form of a vector field on the phase plane is

$$\dot{x}_1 = f_1(x_1, x_2)$$

 $\dot{x}_2 = f_2(x_1, x_2)$

This system can be written more compactly in vector notation as

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$

where
$$\begin{cases} \mathbf{x} = (x_1, x_2) \\ \mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x})) \end{cases}$$

Figure 6.1.2

- Fixed Points: $\dot{\mathbf{x}} = 0$, A, B and C
- Closed orbits: $\mathbf{x}(t+T) = \mathbf{x}(t)$, D
- The arrangement of trajectories near the fixed points and closed orbits.
- The stability or instability of the fixed points and closed orbits.

$$\dot{x} = x + e^{-y}$$

$$\dot{y} = -y$$

- Fixed Points: $(x^*, y^*) = (-1, 0)$
- Stability: since the solution to y is $y(t) = y_0 e^{-t}$, $y(t) \to 0$ when $t\to\infty$. Hence $e^{-y}\to 1$, now $\dot{x}\approx x+1$, this has exponentially growing solutions, unstable.

nullclines: the curves where $\dot{x} = 0$ either or $\dot{y} = 0$.

Figure 6.1.3

Figure 6.1.4

Contents

- 1 Phase Portraits
- 2 Existence, Uniqueness, and Topological Consequences

3 Fixed Points and Linearization

Existence and Uniqueness Theorem: Consider the initial value problem $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}), \mathbf{x}(0) = \mathbf{x}_0$. Suppose that \mathbf{f} is continuous and that all its partial derivatives $\partial f/\partial x_j$, $i,j=1,\ldots,n$, are continuous for \mathbf{x} in some open connected set $D \subset \mathbf{R}^n$. Then for $\mathbf{x}_0 \in D$, the initial value problem has a solution $\mathbf{x}(t)$ on some time interval $(-\tau,\tau)$ about t=0, and the solution is unique.

Figure 6.2.1

Figure 6.2.2

Contents

- 3 Fixed Points and Linearization

$$\dot{x} = f(x, y)$$

$$\dot{y} = g(x, y)$$

Suppose that (x^*, y^*) is a fixed point, i.e.,

$$f(x^*, y^*) = 0, g(x^*, y^*) = 0$$

Small disturbance:

$$u = x - x^*, v = y - y^*$$

$$\dot{u} = \dot{x} \qquad \text{(since } x * \text{ is a constant)}$$

$$= f(x^* + u, y^* + v) \qquad \text{(by substitution)}$$

$$= f(x^*, y^*) + u \frac{\partial f}{\partial x} + v \frac{\partial f}{\partial y} + O(u^2, v^2, uv) \text{ (Taylor series expansion)}$$

$$= u \frac{\partial f}{\partial x} + v \frac{\partial f}{\partial y} + O(u^2, v^2, uv) \qquad \text{(since } f(x^*, y^*) = 0\text{)}.$$

$$\begin{pmatrix} \dot{u} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} + O(u^2, v^2, uv)$$

Jacobian matrix at the fixed point (x^*, y^*) :

$$A = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix}_{(x^*,y^*)}$$

linearized system:

$$\left(\begin{array}{c} \dot{u} \\ \dot{v} \end{array} \right) = \left(\begin{array}{cc} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{array} \right) \left(\begin{array}{c} u \\ v \end{array} \right)$$

The Effect of Small Nonlinear Terms

Is it really safe to neglect the quadratic terms?

Andronov et al.(1973) showed that the answer is yes:

as long as the fixed point for the linearized system is not one of the borderline cases (centers, degenerate nodes, stars, or non-isolated fixed points)

$$\dot{x} = -x + x^3$$

$$\dot{y} = -2y$$

$$A = \begin{pmatrix} -1 + 3x^2 & 0\\ 0 & -2 \end{pmatrix}$$

At
$$(0,0)$$
, $A = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$, stable node

At
$$(0,0)$$
, $A = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$, stable node
At $(\pm 1,0)$, $A = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$, both saddle points

$$\dot{x} = -y + ax(x^2 + y^2)$$
$$\dot{y} = x + ay(x^2 + y^2)$$

According to Linearization: $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, the origin is a center

Polar coordinates:
$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$$

$$r^2 = x^2 + y^2$$

$$r\dot{r} = x\dot{x} + y\dot{y}$$

$$= x(-y + ax(x^2 + y^2)) + y(x + ay(x^2 + y^2))$$

$$= a(x^2 + y^2)^2$$

$$= ar^4$$

$$\begin{cases} \dot{r} = ar^3 \\ \dot{\theta} = 1 \end{cases}$$

Figure 6.3.2

A phase portrait is **structurally stable** if its topology cannot be changed by an arbitrarily small perturbation to the vector field.

Figure 5.2.8

Robust cases:

Repellers (also called *sources*): both eigenvalues have positive real part. Attractors (also called *sinks*): both eigenvalues have negative real part. Saddles: one eigenvalue is positive and one is negative.

Marginal cases:

Centers: both eigenvalues are pure imaginary.

Higher-order and non-isolated fixed points: at least one eigenvalue is zero.