MA1522 Linear Algebra for Computing Lecture 4: Invertible Matrices and LU Decomposition

Yang Yue

Department of Mathematics National University of Singapore

3 February, 2025

Outline

Questions posed in Dr.Teo's Lectures

Further Questions (if time permits)

Question in Section 2.4

Consider the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

By row operations, we have:

$$\left(\begin{array}{ccc|c} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{array}\right) \xrightarrow{RREF} \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 & -1 \end{array}\right).$$

Is A invertible? If it is, what is its inverse?

Note this question was posed after Slide 83: If **A** is invertible, then we can find its inverse by

$$\left(\textbf{A} \mid \textbf{I} \right) \xrightarrow{\textit{RREF}} \left(\textbf{I} \mid \textbf{A}^{-1} \right).$$

Slide 115: Algorithm for Finding Inverse

Below is an algorithm to testing if a matrix is invertible, and finding its inverse if it is invertible.

Let **A** be an $n \times n$ matrix.

Step 1: Form the $n \times 2n$ (augmented) matrix $(\mathbf{A} \mid \mathbf{I}_n)$.

Step 2: Reduce the matrix ($\bf A \mid \bf I$) \longrightarrow ($\bf R \mid \bf B$) to its RREF (or REF).

Step 3: If RREF $\mathbf{R} \neq \mathbf{I}$ (or REF has a zero row), then \mathbf{A} is not invertible. If RREF $\mathbf{R} = \mathbf{I}$ (or REF has no zero row), \mathbf{A} is invertible with inverse $\mathbf{A}^{-1} = \mathbf{B}$.

Answer to Question in Section 2.4.

Q:

$$\left(\begin{array}{ccc|c} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{array}\right) \xrightarrow{RREF} \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 & -1 \end{array}\right).$$

Is **A** invertible? If it is, what is its inverse?

By Slide 115, we conclude that **A** is not invertible.

Question in Section 2.5

Find the inverse of this elementary matrix

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1/2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Slide 93: Elementary Matrices

Definition

A square matrix \mathbf{E} of order n is called an <u>elementary matrix</u> if it can be obtained from the identity matrix \mathbf{I}_n by performing a single <u>elementary row operation</u>

$$I_n \xrightarrow{r} E$$
,

where r is an elementary row operation. The elementary row operation is said to be the row operation corresponding to the elementary matrix.

Slide 94: Elementary Matrices and Elementary Row Operations

Let **A** be an $n \times m$ matrix and let **E** be the $n \times n$ elementary matrix corresponding to the elementary row operation r. Then the product **EA** is the resultant of performing the row operation r on **A**,

$$A \stackrel{r}{\rightarrow} EA$$
.

That is, performing elementary row operations is equivalent to premultiplying by the corresponding elementary matrix.

For example,
$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & -1 \\ 2 & 1 & 4 & 2 \end{pmatrix} \xrightarrow{R_2 + 2R_1} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 3 & 4 & 5 & -1 \\ 2 & 1 & 4 & 2 \end{pmatrix}$$
 corresponds to
$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & -1 \\ 2 & 1 & 4 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 3 & 4 & 5 & -1 \\ 2 & 1 & 4 & 2 \end{pmatrix}.$$

Slide 101: Inverse of Elementary Matrices

Theorem

Every elementary matrix \mathbf{E} is invertible. The inverse \mathbf{E}^{-1} is the elementary matrix corresponding to the reverse of the row operation corresponding to \mathbf{E} .

(i)

$$\mathbf{I}_n \xrightarrow{R_i + cR_j} \mathbf{E} \xrightarrow{R_i - cR_j} \mathbf{I}_n \quad \Rightarrow \quad \mathbf{E} : R_i + cR_j, \ \mathbf{E}^{-1} : R_i - cR_j.$$

(ii)

$$\mathbf{I}_n \xrightarrow{R_i \leftrightarrow R_j} \mathbf{E} \xrightarrow{R_i \leftrightarrow R_j} \mathbf{I}_n \Rightarrow \mathbf{E} : R_i \leftrightarrow R_j, \ \mathbf{E}^{-1} : R_i \leftrightarrow R_j.$$

(iii)
$$\mathbf{I}_{n} \xrightarrow{cR_{i}} \mathbf{E} \xrightarrow{\frac{1}{c}R_{i}} \mathbf{I}_{n} \quad \Rightarrow \quad \mathbf{E} : cR_{i}, \ \mathbf{E}^{-1} : \frac{1}{c}R_{i}.$$

Answer to Question in Section 2.5

Find the inverse of this elementary matrix

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1/2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Answer: By slide 101, the inverse is

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1/2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Question in Section 2.6.

Let **A** and **B** be $n \times m$ matrices. Show that **A** and **B** are row equivalent if and only if $\mathbf{B} = \mathbf{PA}$ for some invertible $n \times n$ matrix **P**.

Recall:

- Two matrices are row equivalent if we can obtain one matrix from the other by performing a series elementary row operations.
- Performing elementary row operations is equivalent to premultiplying by the corresponding elementary matrix.
- ► Every elementary matrix **E** is invertible. Product of invertible matrices is invertible.
- ▶ **A** is invertible iff **A** can be expressed as a product of elementary matrices.

Slide 117 of Ch.2

Theorem (Equivalent statements of invertibility)

Let **A** be a square matrix of order n. The following statements are equivalent.

- (i) A is invertible.
- (ii) \mathbf{A}^T is invertible.
- (iii) (left inverse) There is a matrix B such that BA = I.
- (iv) (right inverse) There is a matrix B such that AB = I.
- (v) The reduced row-echelon form of **A** is the identity matrix.
- (vi) A can be expressed as a product of elementary matrices.
- (vii) The homogeneous system $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (viii) For any **b**, the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution.

Answer to Question in Section 2.6.

Let **A** and **B** be $n \times m$ matrices. Show that **A** and **B** are row equivalent if and only if $\mathbf{B} = \mathbf{P}\mathbf{A}$ for some invertible $n \times n$ matrix **P**.

Proof of the "if" direction: Suppose that $\mathbf{B} = \mathbf{P}\mathbf{A}$ for some invertible $n \times n$ matrix \mathbf{P} . Then \mathbf{P} is a product of some elementary matrices, say

$$P=\mathsf{E}_m\mathsf{E}_{m-1}\cdots\mathsf{E}_1.$$

By the correspondence between elementary row operations and premultiplication of elementary matrices, \boldsymbol{B} is obtained from \boldsymbol{A} by performing the sequence of row operations corresponding to $\boldsymbol{E}_1,\boldsymbol{E}_2,\ldots,\boldsymbol{E}_m$ one by one. Thus, \boldsymbol{A} and \boldsymbol{B} are row equivalent.

Answer to Question in Section 2.6.

Let **A** and **B** be $n \times m$ matrices. Show that **A** and **B** are row equivalent if and only if $\mathbf{B} = \mathbf{P}\mathbf{A}$ for some invertible $n \times n$ matrix \mathbf{P} .

Proof of the "only if" direction: Suppose that **A** and **B** are row equivalent and **B** is obtained from **A** by performing the sequence of row operations r_1, r_2, \ldots, r_m . By the correspondence between elementary row operations and premultiplication of elementary matrices, $\mathbf{B} = \mathbf{E_m} \cdots \mathbf{E_2} \mathbf{E_1} \mathbf{A}$, where $\mathbf{E_k}$ is the elementary matrix corresponding to the row operation r_k . Note that each $\mathbf{E_k}$ is invertible and their product $\mathbf{E_m} \cdots \mathbf{E_2} \mathbf{E_1}$ is also an invertible $n \times n$ matrix \mathbf{P} . Thus, $\mathbf{B} = \mathbf{PA}$.

Question One in Section 2.7

- 1. What if we use other row operations that are not of the type $R_i + cR_j$ for some i > j and real number c? Is **L** still a unit lower triangular matrix?
- 2. Is it possible to reduce any matrix **A** to a row-echelon form with only the type of row operations mentioned above?

Question Two in Section 2.7

Let $\mathbf{A} = \mathbf{L}\mathbf{U}$ be an LU factorization of \mathbf{A} .

1. Show that the system $\mathbf{L}\mathbf{y} = \mathbf{b}$ has a unique solution for any \mathbf{b} .

2. Is every matrix LU factorizable? If not, provide a counter-example.

Slide 123: LU Factorization

Definition

A square matrix $\bf L$ is a <u>unit lower triangular</u> matrix if $\bf L$ is a <u>lower triangular</u> matrix with $\bf 1$ in the diagonal entries.

An <u>LU factorization</u> of an $m \times n$ matrix **A** is the decomposition

$$A = LU$$
,

where ${\bf L}$ is a unit lower triangular matrix, and ${\bf U}$ is a row-echelon form of ${\bf A}$.

If such LU factorization exists for **A**, we say that **A** is <u>LU factorizable</u>.

Slide 125: Algorithm to LU Factorization

Suppose $\mathbf{A} \xrightarrow{r_1,r_2,...,r_k} \mathbf{U}$, where each row operation r_i is of the form $R_i + cR_j$ for some i > j and real number c, and \mathbf{U} is a row-echelon form of \mathbf{A} . Let \mathbf{E}_i be the elementary matrix corresponding for r_i , for i = 1, 2, ..., k. Then

$$\mathbf{E}_k \cdots \mathbf{E}_2 \mathbf{E}_1 \mathbf{A} = \mathbf{U} \quad \Rightarrow \quad \mathbf{A} = \mathbf{E}_1^{-1} \mathbf{E}_2^{-1} \cdots \mathbf{E}_k^{-1} \mathbf{U} = \mathbf{L} \mathbf{U},$$

where $\mathbf{L} = \mathbf{E}_1^{-1}\mathbf{E}_2^{-1}\cdots\mathbf{E}_k^{-1}$. Then

$$\mathbf{A} = \mathbf{L} \mathbf{U} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ * & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ * & * & \cdots & 1 \end{pmatrix} \begin{pmatrix} * & & & \cdots & * \\ 0 & \cdots & 0 & * & \cdots & * \\ \vdots & & & & \vdots \\ 0 & \cdots & & & \cdots & * \end{pmatrix}$$

is an LU factorization of A.

In this case, we could obtain L quickly without computing $\mathbf{E}_1^{-1}\mathbf{E}_2^{-1}\cdots\mathbf{E}_k^{-1}$. For each row operation $r_l=R_i+c_lR_j$ for some i>j and real number c_l , we will put $-c_l$ in the (i,j)-entry of L.

Question One in Section 2.7, part 1

Q: What if we use other row operations that are not of the type $R_i + cR_j$ for some i > j and real number c? Is **L** still a unit lower triangular matrix?

Answer: The other types of row operations are:

- ▶ Exchanging two rows: $R_i \leftrightarrow R_j$.
- Multiply a nonzero constant a to a row: aR_i .
- ▶ It is of the type $R_i + cR_j$ but for some i < j.

We check one by one that $\bf L$ is no longer a unit lower triangular matrix, except the trivial cases when a=1 and when c=0.

Question One in Section 2.7, part 2

Q: Is it possible to reduce any matrix **A** to a row-echelon form with only the type of row operations mentioned above?

Answer: No. For example, let $\mathbf{A}=\begin{pmatrix}0&1\\1&0\end{pmatrix}$. Observe that the only row operations of the type mentioned above is R_2+cR_1 , and the resulting matrix is of the form

$$\begin{pmatrix} 0 & 1 \\ 1 & * \end{pmatrix}$$

which is not in REF.

Question Two in Section 2.7, part 1

Q: Let $\mathbf{A} = \mathbf{L}\mathbf{U}$ be an LU factorization of \mathbf{A} . Show that the system $\mathbf{L}\mathbf{y} = \mathbf{b}$ has a unique solution for any \mathbf{b} .

Answer: Observe that any unit lower triangular matrix is row equivalent to the identity matrix. Thus ${\bf L}$ is invertible.

(If you have reached section 2.10, you can use that $\det(\mathbf{L}) = 1 \neq 0$.)

Thus, by slide 117 item (viii), the system $\mathbf{L}\mathbf{y}=\mathbf{b}$ has a unique solution, which is $\mathbf{y}=\mathbf{L}^{-1}\mathbf{b}$.

Question Two in Section 2.7, part 2

Q: Is every matrix LU factorizable? If not, provide a counter-example.

Answer: No, we can use the same example $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ as before.

lf

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} \begin{pmatrix} b & c \\ 0 & d \end{pmatrix},$$

then we have b = 0 and ab = 1, which is impossible.

Extra Question 1

Suppose the $n \times n$ matrix **A** is not invertible. Let **b** be a $n \times 1$ vector. Which of the following statements is true?

- (a) Ax = b must have a unique solution.
- (b) $\mathbf{A}\mathbf{x} = \mathbf{b}$ may have a unique solution.
- (c) $\mathbf{A}\mathbf{x} = \mathbf{b}$ must have infinitely many solutions.
- (d) $\mathbf{A}\mathbf{x} = \mathbf{b}$ must be inconsistent.
- (e) None of the above statements are true.

You should read the word "must" as "for all \mathbf{b} , and "may" as "for some \mathbf{b} .

Extra Question 1, part (a)

Q: Suppose the $n \times n$ matrix **A** is not invertible. Let **b** be a $n \times 1$ vector. Which of the following statements is true?

(a) Ax = b must have a unique solution.

Recall (viii) of the theorem on Slide 117 says: $\bf A$ is invertible iff for any $\bf b$, the system $\bf Ax = \bf b$ has a unique solution.

Answer: Since **A** is not invertible, (a) is false.

Extra Question 1, part (b)

Q: Suppose the $n \times n$ matrix **A** is not invertible. Let **b** be a $n \times 1$ vector. Which of the following statements is true?

(b) $\mathbf{A}\mathbf{x} = \mathbf{b}$ may have a unique solution.

Answer: Since the square matrix $\bf A$ is not invertible, its row echelon form must have zero rows. When we follow the same reduction to the augmented matrix $(\bf A|\bf b)$, we will see the bottom of the rows like $(0,0,\ldots,0|c_i)$. If one of such c_i is nonzero, then $\bf Ax=\bf b$ has no solution; otherwise, it has infinitely many solutions. In any case, $\bf Ax=\bf b$ has no unique solution. The statement is false.

Note: This argument gives us a fact similar to (viii) of the theorem on Slide 117, namely: For square matrix $\bf A$, (viii) $\bf A$ is invertible iff for some $\bf b$, the system $\bf Ax = \bf b$ has a unique solution.

Extra Question 1, parts (c), (d) and (e)

Suppose the $n \times n$ matrix **A** is not invertible. Let **b** be a $n \times 1$ vector. Which of the following statements is true?

- (c) $\mathbf{A}\mathbf{x} = \mathbf{b}$ must have infinitely many solutions.
- (d) $\mathbf{A}\mathbf{x} = \mathbf{b}$ must be inconsistent.
- (e) None of the above statements are true.

Answer: Part (c) and (d) are false, as showed by the following examples, respectively:

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}. \quad \mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

Thus only statement (e) is true.

Extra Challenge

Suppose A_1 , A_2 ,..., A_k are $n \times n$ matrices such that

$$\mathbf{A}_1\mathbf{A}_2\cdots\mathbf{A}_k\mathbf{x}=\mathbf{0}$$

has nontrivial solutions. What can you conclude about the homogeneous system

$$\mathbf{A}_k \cdots \mathbf{A}_2 \mathbf{A}_1 \mathbf{x} = \mathbf{0}$$
?

Recall (vii) of the theorem on Slide 117 says: **A** is invertible iff the homogeneous system $\mathbf{A}\mathbf{x}=\mathbf{0}$ has only the trivial solution.

Also recall that (in Lecture 3) For square matrices **A** and **B**, if **AB** is invertible, then both **A** and **B** are invertible.

Solution of Extra Challenge

Suppose A_1 , A_2 ,..., A_k are $n \times n$ matrices such that

$$\mathbf{A}_1\mathbf{A}_2\cdots\mathbf{A}_k\mathbf{x}=\mathbf{0}$$

has nontrivial solutions. What can you conclude about the homogeneous system

$$\mathbf{A}_k \cdots \mathbf{A}_2 \mathbf{A}_1 \mathbf{x} = \mathbf{0}$$
?

Answer: We conclude that $\mathbf{A}_k \cdots \mathbf{A}_2 \mathbf{A}_1 \mathbf{x} = \mathbf{0}$ must also have nontrivial solutions.

If not, $\mathbf{A}_k \cdots \mathbf{A}_2 \mathbf{A}_1$ is invertible. Hence every \mathbf{A}_i is invertible. Thus $\mathbf{A}_1 \mathbf{A}_2 \cdots \mathbf{A}_k$ would be invertible. By (vii) again,

$$\mathbf{A}_1\mathbf{A}_2\cdots\mathbf{A}_k\mathbf{x}=\mathbf{0}$$

has only trivial solutions. Contradiction.

Extra Question 2

Let $\mathbf{A} = \mathbf{L}\mathbf{U}$ be a LU factorization of \mathbf{A} . Which of the following statements are true?

- (a) If **A** is $n \times n$, then **A** is invertible.
- (b) If **A** is $m \times n$, then $m \ge n$.
- (c) $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} .

Extra Question 2, part (a)

Q: Let $\mathbf{A} = \mathbf{L}\mathbf{U}$ be a LU factorization of \mathbf{A} . T or \mathbf{F} ?

(a) If **A** is $n \times n$, then **A** is invertible.

Note that we have argued \mathbf{L} , being unit lower triangular, must be invertible.

We only know that ${\bf U}$ is in REF, which may or may not be invertible.

Answer: False. For example, $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$ is not invertible, but has LU factorization

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}.$$

Extra Question 2, part (b)

Q: Let $\mathbf{A} = \mathbf{L}\mathbf{U}$ be a LU factorization of \mathbf{A} . T or F?

(b) If **A** is $m \times n$, then $m \ge n$.

Answer: False. For example,

$$\begin{pmatrix}1&1&1\\2&2&2\end{pmatrix}=\begin{pmatrix}1&0\\2&1\end{pmatrix}\begin{pmatrix}1&1&1\\0&0&0\end{pmatrix}.$$

Extra Question 2, part (c)

Let $\mathbf{A} = \mathbf{L}\mathbf{U}$ be a LU factorization of \mathbf{A} . T or \mathbf{F} ?

(c) $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} .

Answer: False. For example, let

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \end{pmatrix} \quad \text{and} \quad \mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Then

$$\begin{cases} x + y = 1 \\ 2x + 2y = 1 \\ 3x + 3y = 1 \end{cases}$$

is inconsistent, but

$$\begin{pmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}.$$