සିଥରୁ ଡ ଡିଡିଇଡି ଫ୍ରିମିଭି /(மୁପ୍ର୍ଡା ଧର୍ନାଧ୍ୟନିକାନ୍ୟକ୍ରା/All Rights Reserved)

(නව/පැරණි නිර්දේශය – புதிய/பழைய பாடத்திட்டம் – New/Old Syllabus)

் திலக දෙපාර්ත**து உலகு நடும்கு இருந்து இருந்து இது இ**லை අදහර්තමේන්තුව இ ලෙකා නිහාන දෙපාර්තමේන්තුව இலங்கைப் படி இருந்து அது அது அது இருந்து இரு இருந்து இருந்த

අධායයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2019

උසස් ගණිතය I உயர் கணிதம் Higher Mathematics I

2019.08.28 / 0830 - 1140

පැය තුනයි

மூன்று மணித்தியாலம் Three hours

- මිනිත්තු 10 යි අමතර කියවීම් කාලය மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time

- 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

උපදෙස්:

විභාග අංකය

මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ; A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස සියලුම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස පුශ්ත පහකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- st නියමිත කාලය අවසන් වූ පසු f A **කොටහෙගි** පිළිතුරු පතුය f B **කොටහෙගි** පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙනයාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

5,554	(11) උසස් ගණිතර	3 I
කොටස	උශ්න අංකග	ලකුණු
	1	
	2	AGU
	3	11/12
	4	19. m
	5	
	6	AUG. T. C. ST. C. ST.
A	7	
A	8	
	9	
	10	
	11	
	12	
	13	
	14	
В	15	
3-74-1	16	
	17	
	එකතුව	-240

	එකතුව
ඉලක්කමෙන්	
අකුරෙන්	

සංකේත අංක

උත්තර පතු පරීක්ෂක	
උතතර පති පදකයෙ	1
1 පරීක්ෂා කළේ:	
2	
අධීක්ෂණය කළේ:	

	A කොටස
1.	සාධකවලට වෙන් කරන්න: $a^2(b-c)^3+b^2(c-a)^3+c^2(a-b)^3$.
2.	(x^3-y^3) යන්න 7 න් බෙදෙයි නම් xRy මගින් $\mathbb Z$ නිබිල කුලකය මත අර්ථ දැක්වෙන සම්බන්ධය R යැයි ගනිමු. R යනු $\mathbb Z$ මත තුලාාතා සම්බන්ධයක් බව පෙන්වා, 0 හි තුලාාතා පන්තිය ලියා දක්වන්න.
	•••••••••••••••••••••••••••••••••••••••
	······································

A¥	/2019/	11/9.	MNE	w/oi	(.m)
/ 1	(ムリエブ)	II/D.	*#£14#5	**/ O	WD J

_	විභාග	ě
---	-------	---

	 	T		Г
භාග අංකය				

$f\Big(2f^{-1}(0)\Big)$	ę	සොයන්න.
-------------------------	---	---------

 	 	•••	 	٠		 ••	 	• •	•••	 	• • •	 			••	 •••		• • • •	 ٠	• •		 ٠	• •	• • • •	•••	• • • •		• • •	 • • •	• • •	
 	 		 		٠	 	 	••	• • •	 		 	••	•••	•••	 • • •	•••	• • • •	 	••	• • •	 • • •	••		•••	• • •	• • •	•••	 	••	 ••••

 •			
 	***************************************	•••••	

***************************************	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•••••

	_		

4.
$$\begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y \end{vmatrix} = 2 \begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z \end{vmatrix}$$
 බව ලෙපන්වන්න.

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 	

***************************************	,,	

***************************************	***************************************	
		•

	·	

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

5.	$AP=10a$ වන පරිදි වූ P ලක්ෂායක දී $y=rac{1}{3}x+3a$ රේබාව $y^2=4ax$ පරාවලය ස්ප මෙහි A යනු පරාවලයේ නාභියයි.	ර්ශ කරන බව පෙන්වන්න
	OAP තුිකෝණයේ වර්ගඵලය $3a^2$ බවත් පෙන්වන්න; මෙහි O යනු මූල ලක්ෂායයි.	

		•••••
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		•••••
		•••••
		• • • • • • • • • • • • • • • • • • • •
	······································	***************************************
6.	$a,b\in\mathbb{R}$ යැයි ද, $f\colon\mathbb{R} o\mathbb{R}$ යනු	
	$f(x) = \begin{cases} a\left(1 + e^{-\frac{1}{x}}\right) &, x > 0 \text{ නම,} \\ 2 &, x = 0 \text{ නම,} \end{cases}$ More	Doct Donors at
	f(x) = 2 , $x=0$ නම්, tan	Past Papers at nilguru.lk
	$\frac{\sqrt{1+bx}-1}{x} , x<0 \text{so@},$	9 4
	මගින් අර්ථ දැක්වෙන ශුිතය යැයි ද ගනිමු.	
	x=0 හි දී $f(x)$ සන්තතික බව දී ඇත. a හා b හි අගයන් සොයන්න.	
		•••••

7.	$f(x) = \begin{cases} x^2 + 3x + 3 &, & x \le 1 & \text{so}, \\ 5x + 2 &, & x > 1 & \text{so}, \end{cases}$
	යැයි ගනිමු. $x=1$ හි දී $f(x)$ අවකලා බව පෙන්වා x \in \mathbb{R} සඳහා $f'(x)$ ලියා දක්වන්න.
	f'(x) යන්න $x=1$ හි දී අවකලා වේ ද?
8.	$rac{\mathrm{d}y}{\mathrm{d}x}-y\cot x+3\sin^22x=0$ අවකල සමීකරණය, $x=rac{\pi}{4}$ වන විට $y=1$ අවශාතාව යටතේ විසඳත්න.
8.	$rac{\mathrm{d}y}{\mathrm{d}x}-y\cot x+3\sin^22x=0$ අවකල සමීකරණය, $x=rac{\pi}{4}$ වන විට $y=1$ අවශානාව යටතේ විසඳන්න.
8.	$rac{\mathrm{d}y}{\mathrm{d}x}-y\cot x+3\sin^22x=0$ අවකල සම්කරණය, $x=rac{\pi}{4}$ වන විට $y=1$ අවශානාව යටතේ විසඳන්න.
8.	$rac{\mathrm{d}y}{\mathrm{d}x}-y\cot x+3\sin^22x=0$ අවකල සමීකරණය, $x=rac{\pi}{4}$ වන විට $y=1$ අවශාතාව යටතේ විසඳන්න.
8.	$rac{\mathrm{d}y}{\mathrm{d}x}-y\cot x+3\sin^22x=0$ අවකල සමිකරණය, $x=rac{\pi}{4}$ වන විට $y=1$ අවශාතාව යටතේ විසඳත්න.
8.	$rac{\mathrm{d}y}{\mathrm{d}x}-y\cot x+3\sin^22x=0$ අවකල සමිකරණය, $x=rac{\pi}{4}$ වන විට $y=1$ අවශාතාව යටතේ විසඳත්න.
8.	$rac{\mathrm{d}y}{\mathrm{d}x}-y\cot x+3\sin^22x=0$ අවකල සමීකරණය, $x=rac{\pi}{4}$ වන විට $y=1$ අවශාතාව යටතේ විසඳන්න.
8.	$rac{\mathrm{d}y}{\mathrm{d}x}-y\cot x+3\sin^22x=0$ අවකල සමීකරණය, $x=rac{\pi}{4}$ වන විට $y=1$ අවශාතාව යටතේ විසඳන්න.
8.	$rac{\mathrm{d}y}{\mathrm{d}x}-y\cot x+3\sin^22x=0$ අවකල සමීකරණය, $x=rac{\pi}{4}$ වන විට $y=1$ අවශාතාව යටතේ විසඳන්න.
8.	$rac{\mathrm{d}y}{\mathrm{d}x}-y\cot x+3\sin^22x=0$ අවකල සම්කරණය, $x=rac{\pi}{4}$ වන විට $y=1$ අවශානාව යටතේ විසඳන්න.
8.	$rac{\mathrm{d}y}{\mathrm{d}x}-y\cot x+3\sin^22x=0$ අවකල සමීකරණය, $x=rac{\pi}{4}$ වන විට $y=1$ අවශාතාව යටතේ විසඳන්න.
8.	$rac{\mathrm{d}y}{\mathrm{d}x} - y\cot x + 3\sin^2 2x = 0$ අවකල සමීකරණය, $x = \frac{\pi}{4}$ වන විට $y = 1$ අවශානාව යටතේ විසඳන්න.
8.	$rac{\mathrm{d}y}{\mathrm{d}x} - y\cot x + 3\sin^2 2x = 0$ අවකල සම්කරණය, $x = \frac{\pi}{4}$ වන විට $y = 1$ අවශාතාව යටතේ විසඳන්න.
8.	$rac{\mathrm{d}y}{\mathrm{d}x} - y\cot x + 3\sin^2 2x = 0$ අවකල සමීකරණය, $x = \frac{\pi}{4}$ වන විට $y = 1$ අවශාතාව යටතේ විසඳන්න.
8.	$rac{\mathrm{d}y}{\mathrm{d}x}-y\cot x+3\sin^22x=0$ අවකල සමීකරණය, $x=rac{\pi}{4}$ වන විට $y=1$ අවශානාව යටතේ විසඳන්න.
8.	$rac{\mathrm{d}y}{\mathrm{d}x}-y\cot x+3\sin^22x=0$ අවකල සමීකරණය, $x=rac{\pi}{4}$ වන විට $y=1$ අවශාතාව යටතේ විසඳන්න.
8.	$rac{\mathrm{d}y}{\mathrm{d}x}-y\cot x+3\sin^22x=0$ අවකල සමීකරණය, $x=rac{\pi}{4}$ වන විට $y=1$ අවශාතාව යටතේ විසඳන්න.

9.	f හා g යනු $[0,2]$ පුාන්තරය මත අර්ථ දැක්වෙන f' හා g යන දෙකම $[0,2]$ මත සන්තතික හා සියලු x \in $[0,2]$
	සඳහා $xf'(x)=g(2-x)$ වන පරිදි වූ තාත්ත්වික අගයැති ශුිත යැයි ගනිමු. $f(2)=1$ ද $\int_{-2}^{2}f(x)\mathrm{d}x=3$ ද නම්
	$\int\limits_0^{\cdot} g(x) \mathrm{d}x$ මසායන්න.
	······
	······································
lO.	$r=2\cos heta$ හා $r\left(\cos heta+\sin heta ight)=1$ යන ධුැවක ඛණ්ඩාංක මගින් දෙනු ලබන වකුවල දළ සටහන්, එකම රූපයක අදින්න.
	ඒවායේ ඡේදන ලක්ෂාාවල ධුැවක බණ්ඩාංක සොයන්න.
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ថិយទ្ធ ២ សិមិជាមិ ជុះ៦ីប៉ីអ៊ី/(ហូយូប់ បង្វាប់ប្រៅសាល់បាសការអ្វា/All Rights Reserved)

I

(නව/පැරණි නිර්දේශය – பුනිய/பழைய பாடத்திட்டம் – New/Old Syllabus

NEW/OLD

n විතාන දෙපාර්ය**ල් උවේ.නා විජාග දෙදාවන්ගම් නවා**වාන දෙපාර්යමේන්තුව දී ලංකා විතාන දෙපාර්යමේන්තුව ඉහසිනසට පුදු කරන දිනානම් සිබුණ ඉදිදුවන්වේ ප්රදේශ දැනගැස්සමාව ඉදුරුවන්වේ ප්රදේශ දිනානාස්සමාව Department of **இலங்கை LSruff Look නියාත්තන් නියාත්තන්වේ** Sri Lanka Department of Examinations, Sri Lanka වේතන දෙපාර්යමේන්තුව දී සිට සිටුන් සිටුන් සිටුන් සිටුන් සිටුන් දෙපාර්යමේන්තුව දී ලංකා විතාන දෙපාර්යමේන්තුව ඉහසිනසට ප්රදේශ ප්රදේශ

අධායන පොදු සහතික පනු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

උසස් ගණිතය

உயர் கணிதம் Higher Mathematics

B කොටස

* පුශ්ත **පහකට** පමණක් පිළිතුරු සපයන්න.

- $11.(a)\ A,B$ හා C යනු S සර්වනු කුලකයක උපකුලක යැයි ගනිමු. ඔබ භාවිත කරන කුලක වීජයෙහි ඕනෑම පුතිඵලයක් පැහැදිලිව පුකාශ කරමින්,
 - (i) $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$,
 - (ii) $A \setminus (B \cap C) = (A \setminus B) \cap (A \setminus C)$

බව පෙන්වන්න.

උදාහරණයක් භාවිතයෙන්, $A \setminus (B \cup C) \neq (A \setminus B) \cup (A \setminus C)$ බව පෙන්වන්න.

(b) තරගයක දී, පාසලක් පහත දැක්වෙන පරිදි පුභේද තුනක් සඳහා පදක්කම් පුදානය කළේ ය.

නැටුම් සඳහා පදක්කම් 45 ක් පුදානය කරන ලදී.

ගායනා සඳහා පදක්කම් 21 ක් පුදානය කරන ලදී.

කීුඩා සඳහා පදක්කම් 27 ක් පුදානය කරන ලදී.

මුළු පදක්කම්ලාභීන් සංඛාාව 54 නම් හා පුද්ගලයින් 13 දෙනකුට පමණක් වර්ග තුනෙන්ම පදක්කම් ලැබුණේ නම්, කීදෙනකුට හරියටම වර්ග දෙකකින් පදක්කම් ලැබුණේ ද?

12.(a) $a,b,c\in\mathbb{R}^+$ යැයි ගනිමු.

සමාන්තර මධානයය - ගුණෝත්තර මධානයය අසමානතාව භාවිතයෙන්, $\frac{a}{b} + \frac{b}{a} \ge 2$ බව පෙන්වන්න.

ඒ නයින්,

(i)
$$\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} \ge 6$$
,

(ii)
$$x^2(1+y^2) + y^2(1+z^2) + z^2(1+x^2) \ge 6xyz$$

බව පෙන්වන්න.

(b) $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ පරිණාමනය මගින් xy-කලයේ ලක්ෂා x'y'-කලයේ ලක්ෂා බවට අනුරූපණය වේ. ඉහත පරිණාමනය යටතේ, y=mx+c, $(m\neq \frac{2}{3}$ හා $c\neq 0)$ රේඛාව අවිචලක වන පරිදි m හි අගය සොයන්න. $A\equiv (c,0)$ හා $B\equiv (0,c)$ යනු xy-කලයේ ලක්ෂා දෙකක් යැයි ගනිමු. මෙම පරිණාමනය යටතේ ඒවායේ පුතිබීම්බ වූ A' හා B' හි බණ්ඩාංක සොයා, A' හා B' ලක්ෂා x'+y'=c රේඛාව මත පිහිටන බව සතාාපනය කරන්න.

13. ධන නිඛ්ලමය දර්ශකයක් සඳහා **ද මුවාවර් පුමේශය** පුකාශ කර සාධනය කරන්න.

ද මුවාවර් පුමේයය භාවිතයෙන්,

(i)
$$\cos 5\theta = \cos^5 \theta - 10\cos^3 \theta \sin^2 \theta + 5\cos \theta \sin^4 \theta$$
 so

(ii)
$$\sin 5\theta = \sin^5 \theta - 10\cos^2 \theta \sin^3 \theta + 5\cos^4 \theta \sin \theta$$

බව පෙන්වන්න.

$$\tan 5\theta = \frac{\tan \theta (\tan^4 \theta - 10 \tan^2 \theta + 5)}{(1 - 10 \tan^2 \theta + 5 \tan^4 \theta)}$$
 බව **අපෝහනය** කරන්න.

$$0 < \theta < \frac{\pi}{2}$$
 සඳහා $\tan 5\theta = 0$ සමීකරණය විසඳා, $x^2 - 10x + 5 = 0$ සමීකරණයේ මූල $\tan^2\left(\frac{\pi}{5}\right)$ හා $\tan^2\left(\frac{2\pi}{5}\right)$ බව පෙන්වන්න.

ඒ නයින්,
$$\sec^2\left(\frac{\pi}{5}\right) + \sec^2\left(\frac{2\pi}{5}\right) = 12$$
 බව පෙන්වන්න.

14.(a) C_1 හා C_2 යනු $x\in\mathbb{R}$ සඳහා, $y=\frac{4x}{1+x}$ හා $y=\frac{2}{3}x^2$ මගින් දෙනු ලබන වකු යැයි ගනිමු. C_1 හා C_2 හි ඡේදන ලක්ෂාවල බණ්ඩාංක සොයන්න.

ස්පර්ශෝන්මුඛ හා හැරුම් ලක්ෂා (ඇත්නම්) පැහැදිලිව පෙන්වමින්, C_1 හා C_2 හි පුස්තාරවල දළ සටහන් එකම රූපයක අඳින්න. C_1 හා C_2 මගින් ආවෘත වර්ගඵලය සොයන්න.

 C_1 හා C_2 වකු මගින් ආවෘත වර්ගඵලය, x-අක්ෂය වටා ඍජුකෝණ 4 කින් පරිභුමණය කිරීමෙන් ජනනය වන ඝනයේ පරිමාවත් සොයන්න.

$$(b)$$
 $2x^2 \frac{dy}{dx} - 2xy + y^2 = 0$ අවකල සමීකරණය විසඳන්න.

15.(a) $I_n = \int\limits_0^{2\pi} \sin^n(x+\alpha) \mathrm{d}x$ යැයි ගනිමු; මෙහි α යනු තාත්ත්වික නියතයක් ද, n යනු $n \ge 2$ වන පරිදි වූ නිඛිලයක් ද වේ.

 $n \ge 2$ සඳහා, $n \ I_n = (n-1) \ I_{n-2}$ බව පෙන්වන්න.

ඒ නයින්,
$$\int\limits_0^{2\pi} \left(\sqrt{3}\sin x + \cos x\right)^6 \mathrm{d}x$$
 හි අගය සොයන්න.

(b) $y = \tan(e^{2x} - 1)$ යැයි ගනිමු.

$$\frac{d^2y}{dx^2} = 2\frac{dy}{dx} \left(1 + ye^{2x}\right)$$
 බව පෙන්වන්න.

ඒ නයින්, y හි මැක්ලෝරින් ශුේණි පුසාරණය x^4 අඩංගු පදය දක්වා, එයත් ඇතුළත්ව සොයන්න.

More Past Papers at tamilguru.lk

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ඉලිප්සයෙහි (x_1, y_1) ලක්ෂායෙහි දී ස්පර්ශකයේ සමීකරණය $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$ බව පෙන්වන්න.

ඉලිප්සයට විකේන්දික කෝණය θ වූ P ලක්ෂායෙහි දී ස්පර්ශකයේ සමීකරණය **අපෝහනය** කර, P හි දී ඉලිප්සයට අභිලම්බය, $(a\sec\theta)x-(b\csc\theta)y=a^2-b^2$ මගින් දෙනු ලබන බව පෙන්වන්න.

T හා $T^{'}$ යනු ස්පර්ශකයට පිළිවෙළින් OX හා OY අක්ෂ හමුවන ලක්ෂා යැයි ද N හා $N^{'}$ යනු අභිලම්බයට OX හා OY අක්ෂ හමුවන ලක්ෂා යැයි ද ගනිමු.

- (i) heta විචලනය වන විට NN^{\prime} හි මධා ලක්ෂායේ පථයෙහි සමීකරණය $4(a^2x^2+b^2y^2)=(a^2-b^2)^2$ බව පෙන්වන්න.
- $(ii)~TT^{\prime}$ හා NN^{\prime} රේඛා ඛණ්ඩාංක අක්ෂවලට සමානව ආනත වන විට $heta\left(0< heta<rac{\pi}{2}
 ight)$ විකේන්දික කෝණයෙහි අගය සොයන්න. මෙම අවස්ථාවේ දී, a හා b ඇසුරෙන් (TT^{\prime}) (NN^{\prime}) සොයන්න.
- 17.(a) $x \in \mathbb{R}$ සඳහා $f(x) = \frac{\sin 2x}{2 + \cos 2x}$ යැයි ගනිමු.
 - (i) $x \in \mathbb{R}$ සඳහා $-\frac{1}{\sqrt{3}} \le f(x) \le \frac{1}{\sqrt{3}}$ බව පෙන්වන්න.
 - (ii) $0 \le x \le \pi$ සඳහා y = f(x) හි පුස්තාරයෙහි දළ සටහනක් අදින්න.
 - (b) පහත දැක්වෙන වගුවේ දී ඇති e^{-x^2} හි අගයන් සහිතව **සිම්සන් නීතිය භාවිතයෙන්**, $\int\limits_0^1 e^{-x^2} {
 m d} x$ සඳහා ආසන්න අගයක් සොයන්න.

***************************************	х	0	0.25	0.50	0.75	1
	e^{-x^2}	1	0.9394	0.7788	0.5698	0.3679

 $\int_{-\infty}^{1} e^{(\ln 2 - 9x^2)} \mathrm{d}x$ සඳහා ආසන්න අගයක් **අපෝහනය** කරන්න.

ରିପତ୍ର ଡ ଷିଷିରତି ଫ୍ରମ୍ମିଡି /மୁழୁப் பதிப்புரிமைபுடையது/ $All\ Rights\ Reserved\}$

(නව/පැරණි නිර්දේශය – பුනිய/பழைய பாடத்திட்டம் – New/Old Syllabus)

	<u> Lang</u>			
1	PA.	V. V		AY
	עעו			

තා විභාග දෙපාර්ත**ිල් ලංකාවේගාන දෙපාර්තමේන්තුව**නා දෙපාර්තමේන්තුව ල් ලංකා විභාග දෙපාර්තමේන්තුව இණ්ණනේ පුළු ජිනාන්තිකුණ මුණුනෙන් පුළු දෙපාර්තමේන්තුව a Department of **2 බාමාන්තිය ප්රතියාවර වැඩිමා මෙන්න්**ම්ම S. S. Lanka Department of Examinations, Sri Lanka හි විභාග දෙ**ා පාට්තම්න් කියල් වර්තමේන්තුව වැඩිමාන් දෙපාර්තමේන්තුව ල් ලංකා විභාග දෙපාර්තමේන්තුව හි ඉහතින්වේ පුළු මුණුන්ත්වේ සිදුවෙන්වේ ප්රතියාවේ ප්රතියාවේ ප්රතියාවේ ප්රතියාවේ ප්රතියාවේන්තුව**

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2019

උසස් ඉණිතය II உயர் கணிதம் **II** Higher Mathematics **II**

2019.08.31 / 1300 - 1610

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

උපදෙස්:

විභාග අංකය

- * මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;
 - ${f A}$ කොටස (පුශ්න ${f 1}$ ${f 10}$) සහ ${f B}$ කොටස (පුශ්න ${f 11}$ ${f 17}$).
- * A කොටස

සීයලුම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

- * B කොටස
 - පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.
- * නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පනුයෙහි f B **කොටස පමණක්** විහාග ශාලාවෙන් පිටකට ගෙනයාමට ඔබට අවසර ඇත.
- 🗱 සංඛාහන වගු සපයනු ලැබේ.
- * g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.

(11) ക്ഷപ്പ് നതിരുടെ H

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

පුශ්න අංකය	ලකුණු
	~ ~ ~
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
16	
17	
එකතුව	
	1 2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17

	එකතුව	
ඉලක්කමෙන්		
අකුරෙන්		

	සංකේත අංක
උත්තර පතු පරීක්ෂක	0
් පරීක්ෂා කළේ: 2	
අධීක්ෂණය කළේ:	

A	L/2019/11/S-II(NEW/OLD) - 2 -
	A කොටස
1.	A,B හා C ලක්ෂා තුනක, O අවල මූලයකට අනුබද්ධයෙන් පිහිටුම් දෛශික පිළිවෙළින් ${f i}+2{f j}-{f k},2{f i}-{f j}+3{f k}$ හ
	$7\mathbf{i}+a\mathbf{j}+eta\mathbf{k}$ වේ. OC දෛශිකය OAB තලයට ලම්බ වන පරිදි a හා eta නියතවල අගයන් සොයන්න.
) .	විශාලත්වය $6\ N\ $ වූ \mathbf{F} බලයක් දෛශික සමීකරණය $\mathbf{r}=\mathbf{i}+2\mathbf{j}-4\mathbf{k}+\lambda\ (\mathbf{i}+2\mathbf{j}-2\mathbf{k})$ වූ රේඛාව දිගේ කිුයා කරයි; මෙහි λ යනු අදිශ පරාමිතියකි. දුර මීටරවලින් මනිනු ලැබේ නම්, මූල ලක්ෂාය වටා \mathbf{F} හි සූර්ණ දෛශිකය වූ \mathbf{M} , යන්න $4\sqrt{5}\ N\ m$ විශාලත්වයෙන් යුක්ත වන බව ද $\mathbf{M}\cdot\mathbf{k}=0$ බව ද පෙන්වන්න.

විභාග අංකය

3. දිග 4a හා ඝනත්වය ρ වූ ඒකාකාර AB දණ්ඩක් A කෙළවර දී, ඝනත්වය $\sigma\left(<\frac{4\rho}{3}\right)$ වූ සමජාතීය දුවයක නිදහස් පෘෂ්ඨයට a උසක් ඉහළින් පිහිටි අචල ලක්ෂායකට සුමට ලෙස අසව් කර ඇත. දණ්ඩ රූපයේ දැක්වෙන පරිදි යටි අත් සිරස සමග $\frac{\pi}{3}$ කෝණයක් සාදමින් සමතුලිතතාවේ තබා ඇත්තේ B කෙළවරට සම්බන්ධ කළ සිරස් B සැහැල්ලු අවිතනා තන්තුවක් මගිනි. තන්තුවේ ආතතිය සොයන්න.

වර දී, සක් $\frac{\pi}{3}$ a දණ්ඩ a සිරස් a වන්න.

4. අවල මූලයකට අනුබද්ධයෙන් t කාලයේ දී P අංශුවක පිහිටුම් දෛශිකය $\mathbf{r}=a~(\omega t-\sin\omega t)~\mathbf{i}+a~(\omega t-\cos\omega t)~\mathbf{j}$ මගින් දෙනු ලැබේ; මෙහි a හා ω ධන නියත වන අතර $0\leq\omega t\leq\pi$ වේ. t කාලයේ දී P හි පුවේග දෛශිකය \mathbf{v} හා ත්වරණ දෛශිකය \mathbf{f} සොයන්න. $\mathbf{v}\cdot\mathbf{f}=0$ වන කාලය සොයා, එම මොහොතේ දී P හි වේගය $a\omega\left(\sqrt{2}-1\right)$ බව පෙන්වන්න.

5.	ස්කන්ධ පිළිවෙළින් m හා $2m$ වූ P හා Q කුඩා සුමට ගෝල දෙකක් සුමට තිරස් මේසයක් මත චලනය වෙමින එකිනෙක සමග ගැටේ. ගැටුමට මොහොතකට පෙර P හා Q හි පුවේග, පිළිවෙළින් $2\mathbf{i}+\mathbf{j}$ හා $-2\mathbf{i}+3\mathbf{j}$ වේ. P හා Q
	අතර පුතාපාගති සංගුණකය $rac{1}{3}$ ක් වේ. ගැටුමට මොහොතකට පසු P හා Q හි පුවේග නිර්ණය කිරීමට පුමාණවත
	සමීකරණ ලියා දක්වන්න.
	••••••
	······································
6.	ස්කන්ධය m හා දිග a වූ ඒකාකාර AB දණ්ඩකට, ස්කන්ධය $2m$ a a
	හා දිග $2a$ වූ ඒකාකාර BC දණ්ඩක්, \hat{ABC} සෘජු කෝණයක් වන
	පරිදි දෘඪ ලෙස සම්බන්ධ කිරීමෙන් රාමුවක් සාදා ඇත. රාමුවට,
	B හරහා යන, රාමුවේ තලයට ලම්බ අචල සුමට ති්රස් අක්ෂයක් a
	වටා නිදහසේ භුමණය වීමට හැකි ය. BC ති්රස්ව හා B ට පහළින්
	A ඇති පිහිටීමේ රාමුව කබා නිශ්චලතාවයේ සිට මුදා හරිනු ලැබේ.
	තුමණ අක්ෂය වටා ABC රාමුවේ අවස්ථිති සූර්ණය $3ma^2$ බව
	උපකල්පනය කරමින්, B ට පහළින් C ඇතිව, BC සිරස් වන විට රාමුචේ කෝණික පුවේගය සොයන්න.

7.	පාටින් හැර අන් සෑම අයුරකින්ම සර්වසම වූ රතු පාට බෝල 10 ක් හා කොළ පාට බෝල 15 ක් පෙට්ටියක අඩංගුව ඇත. මෙම පෙට්ටියෙන්, සසම්භාවීව එකකට පසුව එකක් බැගින්, පුතිස්ථාපන සහිතව බෝල ඉවතට ගනු ලැබේ.
	(i) 3 වන ඉවතට ගැනීමේ දී හෝ ඊට පෙර පළමු රතු බෝලය ලැබීමේ සම්භාවිතාව ගණනය කරන්න.
	(ii) ඉවතට ගනු ලැබූ පළමු බෝල 5 රතු පාට ඒවා බව දී ඇති විට, 8 වන ඉවතට ගැනීමේ දී පළමු කොළ බෝලය ලැබීමේ අසම්භාවා සම්භාවිතාව ගණනය කරන්න.
	(i) හරියටම මුදුණ දෝෂ 1 ක්, (ii) අඩු තරමින් මුදුණ දෝෂ 3 ක් වත්
	තිබීමේ සම්භාවිතාව සොයන්න.

9.	$f(x) = $ $\begin{cases} kx(a-x^2), & 0 \le x \le 1 \\ 0, & $ අනෙක් විට,
	යැයි ගනිමු. 8 - xx
	මධානාසය $\frac{8}{15}$ වූ X සන්තතික සසම්භාවී විචලාසයක සම්භාවිතා ඝනත්ව ශිතය $f(x)$ වන පරිදි k හා a නියතවල අගයන් සොයන්න. X හි සම්මත අපගමනය $\frac{\sqrt{11}}{15}$ බව පෙන්වන්න.
	අගයන් සොයන්න. X හි සම්මත අපගමනය $rac{\sqrt{11}}{15}$ බව පෙන්වන්න.
U.	X විවික්ත සසම්භාවී විචලසයක සමුච්චිත වසාප්ති ශිතය, $F(x)$ යන්න $x=1,2,3,4$ සඳහා $F(x)=\frac{1}{16}\Big(8x-x^2\Big)$
	මගින් දෙනු ලැබේ. X හි සම්භාවිතා ස්කන්ධ ශුිතය ලබාගෙන $E\left(X ight)$ සොයන්න.
	······································

සියලු ම හිමිකම් ඇවිරිනි / மුழுப் பதிப்புரிமையுடையது /All Rights Reserved]

(නව/පැරණී නිර්දේශය – பුනිய/பழைய பாடத்திட்டம் – New/Old Syllabus)

NEW/OLD

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

උසස් ගණිතය

உயர் கணிதம் Higher Mathematics

II II cs II

B කොටස

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

11. O මූලයකට අනුබද්ධයෙන් පහත වගුවේ දී ඇති පරිදි පිහිටුම් දෛශික සහිත ලක්ෂාවල දී කිුිිියාකරන බල තුනකින් පද්ධතියක් සමන්විත වේ.

ලක්ෂපය	පිහිටුම් දෛශිකය	බලග
A_1	$\mathbf{r}_1 = 2\mathbf{i} - 4\mathbf{j}$	$\mathbf{F}_1 = \mathbf{i} + 4\mathbf{j} - \mathbf{k}$
A_2	$r_2 = j - 3k$	$\mathbf{F}_2 = -3\mathbf{i} + \mathbf{j} - 2\mathbf{k}$
A_3	$\mathbf{r}_3 = 2\mathbf{i} - \mathbf{j} + \mathbf{k}$	$\mathbf{F}_3 = -\mathbf{i} - \mathbf{j} + 2\mathbf{k}$

O මූලයෙහි දී, $\pm {f F}_s$, s=1,2,3 බල ඇතුළු කිරීමෙන් දෙන ලද පද්ධතිය O මූලයෙහි දී කියාකරන ${f R}=\sum_{s=1}^3 {f F}_s$ තනි බලයක් සමග දෛශික සූර්ණය ${f G}=\sum_{s=1}^3 {f r}_s imes {f F}_s$ වූ යුග්මයකට ඌනනය කළ හැකි බව පෙන්වන්න.

 ${f R}$ හා ${f G}$ දෛශික, ${f i}$, ${f j}$ හා ${f k}$ ඇසුරෙන් සොයන්න.

පද්ධතිය විශාලත්වය $\sqrt{26}$ වූ ${f R}$ තනි සම්පුයුක්ත බලයකට තුලා බව **අපෝහනය** කරන්න.

 ${f F}_1$ හා ${f F}_2$ හි කිුයා රේඛා ${f r}_0$ පිහිටුම් දෛශිකය සහිත එක්තරා A_0 ලක්ෂායක දී හමුවන බව පෙන්වන්න; මෙහි ${f r}_0$ යන්න නිර්ණය කළ යුතු වේ. ${f F}_3$ හි කිුයා රේඛාවත් A_0 ලක්ෂාය හරහා යන බව සතාපාපනය කරන්න.

 ${f R}$ තනි සම්පුයුක්ත බලයෙහි කිුිිිියා රේබාවේ සමීකරණය ${f r}={f r}_0+\gamma{f R}$ ආකාරයෙන් ලියා දක්වත්න.

මෙම රේඛාවට xy-තලය හමුවන ලක්ෂායේ පිහිටුම් දෛශිකය සොයන්න.

දෙන ලද බල පද්ධතිය පිහිටන තලයේ කාටිසීය සමීකරණය x+3z=0 ලෙස ලබාගත හැකි බව තවදුරටත් පෙන්වන්න.

12. AB යන්න DC ට සමාන්තර ද AB = 3a, DC = a හා $B\hat{A}D = A\hat{B}C = \frac{\pi}{4}$ ද වූ ABCD තුැපීසියමක ආකාරයෙන් වූ ආස්තරයක් සමජාතීය දුවයක, AB දුවයේ නිදහස් පෘෂ්ඨය මත වන පරිදි සිරස්ව ගිල්වනු ලැබේ. ABCD ආස්තරයෙහි පීඩන කේන්දුය AB හි මධා ලක්ෂාය වූ E සිට $\frac{3a}{5}$ දුරක් සිරස්ව පහළින් ඇති බව පෙන්වන්න.

ඉහත ABCD ආස්තරයේ හැඩය ඇති දොරක් AB තිරස්ව ද CD යන්න AB ට පහළින් ද ඇතිව ටැංකියක සිරස් පැත්තක් මත සාදනු ලැබේ. දොර, CD දිගේ සුමටව අසව් කර ඇත. ඝනත්වය ho වන සමජාතීය දුවයකින් AB හි මට්ටමට ටැංකිය පුරවනු ලැබේ. දුවය ටැංකිය තුළම රැඳෙන පරිදි දොර වසා තැබීමට E හි දී යෙදිය යුතු අඩුතම බලය සොයන්න.

- 13. එන්ජිම මගින් සෘජු තිරස් මාර්ගයක් දිගේ පුතිරෝධයකට එරෙහිව දුම්රියක් ඇදගෙන යන අතර, ඕනෑම වේලාවක පුතිරෝධය දුම්රියේ ගමාතාව මෙන් k ගුණයක් වේ; මෙහි k නියතයකි. එන්ජිම $9Mkv_0^2$ නියත ජවයකින් කිුයා කරයි; මෙහි M යනු එන්ජිමේ හා දුම්රියේ මුඑ ස්කන්ධයයි.
 - (i) දුම්රියට ලබාගත හැකි උපරිම චේගය $3v_{
 m 0}$ බවත්
 - (ii) වේගය v_0 සිට $2v_0$ දක්වා වැඩි කර ගැනීමට දුම්රිය ගන්නා කාලය $\frac{1}{2k}\ln\!\left(\!rac{8}{5}\!\right)$ බවත් පෙන්වන්න.

දුම්රිය U වේගයෙන් චලනය වන විට එහි ජවය විසන්ධි කරනු ලබන අතර, ඉහත පුතිරෝධයට අමතරව F නියත රෝධක බලයක් යොදනු ලැබේ. ජවය විසන්ධි කිරීමෙන් $\frac{1}{k}\ln\Bigl(rac{F+MkU}{F}\Bigr)$ කාලයකට පසු දුම්රිය නවතින බව පෙන්වන්න.

14. සුමට තිරස් මේසයක් මත නිසලව තිබෙන ස්කන්ධය m වූ P අංශුවක්, ස්වභාවික දිග a හා පුතාහස්ථතා මාපාංකය mg වූ සැහැල්ලු පුතාහස්ථ තන්තුවක් මගින් මේසය මත O අවල ලක්ෂායකට සම්බන්ධ කර ඇත. කාලය t=0 වන විට P අංශුව O සිට a දුරකින්, තන්තුව යම්තම් නොබුරුල්ව ඇති අතර, P අංශුව, තන්තුවේ ආරම්භක රේඛාවට ලම්බ දිශාවකට විශාලත්වය $U=2\sqrt{\frac{ga}{3}}$ වූ පුවේගයකින් මේසය දිගේ පුක්ෂේප කරනු ලැබේ.

ශක්ති සංස්ථිති මූලධර්මය හා O වටා කෝණික ගමාතා සංස්ථිති මූලධර්මය යෙදීමෙන්

$$\left(\frac{\mathrm{d}r}{\mathrm{d}t}\right)^2 = U^2 \left(1 - \frac{a^2}{r^2}\right) - \frac{g}{a}(r - a)^2$$

බව පෙන්වන්න.

- (i) තන්තුවේ උපරිම දිග 2a බව හා මෙම මොහොතේ දී තන්තුවේ ආතතිය m_{S} බව ද
- (ii) මෙම මොහොතේ දී අංශුවේ වේගය $rac{U}{2}$ බව ද

අපෝහනය කරන්න.

$$\frac{\mathrm{d}r}{\mathrm{d}t} \neq 0$$
 වන විට, r හා a ඇසුරෙන් $\frac{\mathrm{d}^2 r}{\mathrm{d}t^2}$ සොයන්න.

- **15.** (i) ස්කන්ධය M හා අරය a වූ ඒකාකාර කුහර වෘත්තාකාර සිලින්ඩරයක එහි අක්ෂය වටා අවස්ථිති ඝූර්ණය Ma^2 බව ද
 - (ii) ස්කන්ධය m හා අරය a වූ ඒකාකාර වෘත්තාකාර තැටියක, කේන්දය හරහා යන, එහි තලයට ලම්බ අක්ෂය වටා අවස්ථිති සූර්ණය $\frac{1}{2}ma^2$ බව ϵ පෙන්වන්න.

අරය a හා දිග 3a වූ සෘජු වෘත්තාකාර කුහර සිලින්ඩරයක දෙකෙළවරට එක එකක අරය a වූ ඒකාකාර වෘත්තාකාර තැටී දෙකක් සවී කිරීමෙන් සංවෘත C භාජනයක්, තුනී ඒකාකාර ලෝහ තහඩුවකින් සාදා ඇත. C භාජනයෙහි අක්ෂය වටා විහුමණ අරය k යන්න, $k^2=\frac{7}{8}a^2$ මගින් දෙනු ලබන බව පෙන්වන්න.

භාජනය, ති්රසට ආනතිය α වූ රළු තලයක උපරිම බෑවුම් රේඛාවලට ලම්බව අක්ෂය ති්රස්ව ඇතිව තලයේ පහළට, ලිස්සීමකින් තොරව පෙරළී යයි.

මෙම චලිතයේ දී C භාජනයේ f ත්වරණය $f=rac{8}{15}g\sinlpha$ මගින් දෙනු ලබන බවත්,

භාජනය හා තලය අතර ඝර්ෂණ සංගුණකය μ යන්න, $\mu>rac{8}{15} anlpha$ වන පරිදි විය යුතු බවත් පෙන්වන්න.

 ${f 16.}(a)\ X$ යනු මිනිත්තු පහක පුාත්තරයක දී එක්තරා රථ ගාලකින් ඉවතට යන රථ සංඛ ${f 8.}$ යායි ගනිමු. ${f X}$ ට පහත දැක්වෙන සම්භාවිතා ව ${f 8.}$ වනප්තිය ඇතැයි සිතමු.

х	1	2	3	4	5	6
P(X=x)	р	2p	3 <i>p</i>	3 <i>p</i>	2 <i>p</i>	p

p හි අගය හා X හි අපේක්ෂිත අගය E(X) සොයන්න.

X හි සම්මත අපගමනය $\dfrac{\sqrt{7}}{2}$ බව පෙන්වන්න.

Y යන සසම්භාවී විචලාසය Y=2X+3 මගින් අර්ථ දැක්වේ. Y හි අපේක්ෂිත අගය E(Y) හා Y හි සම්මත අපගමනය සොයන්න.

තව ද $P(Y \ge E(Y))$ හි අගය ද සොයන්න.

- (b) සියුම් සැත්කමකින් රෝගියකු සුව වීමේ සම්භාවිතාව $\frac{2}{5}$ ක් වේ. මෙම සැත්කමට භාජනය වූ රෝගීන් 5 දෙනකු අහඹු ලෙස අධීක්ෂණය කරන ලදී.
 - (i) අඩුතම වශයෙන් 3 දෙනකු සුව වීමේ
 - (ii) හරියටම 2 දෙනකු සුව වීමේ
 - (iii) කිසි කෙනකු සුව නොවීමේ සම්භාවිතාව සොයන්න.

17.(a) එක්තරා වර්ගයක විදුලි පහනක ආයු කාලය, පැය T,

$$f(t) = \left\{ egin{array}{ll} rac{1}{a}e^{-\left(rac{1}{b}
ight)t} &, & t \geq 0 \ 0 &, & ext{එසේ නොවන විට,} \end{array}
ight.$$

සම්භාවිතා ඝනත්ව ශිුතයෙන් ආදර්ශනය කළ හැකි ය; මෙහි a හා b ධන නියත වේ.

a = b බව පෙත්වන්න.

එම වර්ගයේ විදුලි පහන්වලින් 40% ක ආයු කාලය පැය 2000 කට වැඩි බව දී ඇත. a හා b හි පොදු අගය සොයන්න.

T හි වහාප්ති ශිුතය සොයා, **ජ නයින්**, $P\left(T>t+c\left|T>c\right.\right)=P\left(T>t\right)$ බව පෙන්වන්න; මෙහි $t\geq 0$ හා c ධන නියතයක් වේ.

- (b) අධිවේගී මාර්ගයක එක්තරා A ලක්ෂායක් පසු කර යන වාහනවල වේග පුමත ලෙස වාාාප්ත වී ඇති බවට සැලකිය හැකි ය. A ලක්ෂාය පසු කර යන වාහනවලින් 95% ක් $85~{
 m km}~{
 m h}^{-1}$ ට අඩු වේගයෙන් ගමන් කරන බවත්, 10% ක් $55~{
 m km}~{
 m h}^{-1}$ ට අඩු වේගයෙන් ගමන් කරන බවත් නිරීක්ෂණ පෙන්නුම් කරයි.
 - (i) A ලක්ෂාය පසු කර යන වාහනවල මධාන වේගය සොයන්න.
 - (ii) $70 \; \text{km h}^{-1}$ ට වැඩි වේගයෙන් ගමන් කරන වාහනවල පුතිශතය සොයන්න.

More Past Papers at tamilguru.lk