I pledge on my honor that in the solutions of homework assignments, I will NOT present anyone else's work in whole or in part. I will asswer the homework questions on my OWA, will NOT receive any monthorized assistance I also acknowledge that it is my responsibility to be aware of the university's regulations on plagiarism.

Omer obtay Gültekin 21901413 Math-230 Section 5

Answers:

1-a) Let A = { all physics books placed next to each $P(A) = \frac{n(A)}{n(S)}$, Find n(A) and n(S)

By fundamental counting principle, n(s)= 287654321=9! To find n(A), we can think the physics books together, then we have 6 items to arrange which can be find by 6 = 6!. Also we can change the places of the physics books among Also we can single

them $\Rightarrow P_{4} = 4! \Rightarrow P(A) = \frac{P(A)}{P(A)} = \frac{6! \cdot 4!}{9!} = \frac{1}{3887} = \frac{1}{21}$ b) Let $A = \xi$ no two math books placed next to each others. First, we can arranged other books in a $\beta = 6!$ ways.

place math books can come \Rightarrow $\binom{7}{3}$. 3! Recall that $P(A) = \frac{n(A)}{n(s)}$ where n(s) = 9!. $n(A) = 6! \cdot \binom{7}{3}$. $3! \Rightarrow P(A) = \frac{n(A)}{n(s)} = \frac{6!76s}{9!}$

$$=\frac{785}{3884} = \frac{5}{12}$$

C) Let A = { some subjects placed next to each other } We can think of the subjects together and arrange them, also we need to arrange subjects among them.

 $\Omega(A) = \frac{\rho}{3333444222} = 31.31.41.21$

Recall that $P(A) = \frac{n(A)}{n(s)}$ and n(s) = 9!

 $= > P(A) = \frac{3! \ 3! \ 4! \ 2!}{9!} = \frac{6.6.2}{32.8.7.6.5} = \frac{1}{210}$

 $\frac{2-a)}{\rho(A)} = \frac{1}{\rho(S)} + \frac{1}{\rho(S)} = \frac{1}{\rho(S)} + \frac{1}{\rho(S)} +$ red blue green

 $=) P(A) = \frac{153}{2 \frac{1211102}{32}} = \frac{3}{44} / 1$

b) Let A = { all the balls drawn will be different color} $P(A) = \frac{\Lambda(A)}{\Lambda(S)}$, $\Lambda(S) = \binom{12}{3}$, we need to select 1 ball from all colors => $\Lambda(A) = {3 \choose 1} {4 \choose 1} {5 \choose 1} = 3.4.5 \Rightarrow P(A) = \frac{3.4.5}{212} = \frac{3}{11}$

3-a) Let A = { Box 1 has exactly & balls} and P(A) = n(A) Balls can be in any box in sample space in other words, all balls have N box choices $\Rightarrow \Lambda(s) = NNNNN - N = N^n$. We can select k balls in

(1) ways to place in Box 1, (n-k) balls will be distributed into N-1 boxes => $\frac{N-1}{N-1} \frac{N-1}{N-1} \frac{N-1}{N-1} \frac{N-1}{N-1} => (N-1) \frac{(n-k)}{(k)} = n(A)$ $\Rightarrow P(A) = \frac{(2)(N-1)}{N^n}$ (2)

b) Let $A = \{Box \ Nis \ empty \}$, Recall that $P(A) = \frac{n(A)}{n(S)}$ and $n(S) = N^n$. $n(A) \Rightarrow 1'st$ ball has N-1 box options, 2' nod ball has N-1 box options. N-1 box options. By fundamental counting principles, $n(A) = (N-1)^n \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{(N-1)^n}{N^n}$

Let $A_i = \{ \text{ for the first time, some box has two balls}$ with adding i-th ball $\}$ $P(A_1) = 0$, since there is no ball.

 $P(A_2) = (1's + ball adding o k)$. (second adding into some box) = $\frac{\Gamma}{\Gamma}$. $\frac{1}{\Gamma}$ $P(A_3) = (1's + ball o k) (2'nd ball o k) (3'rd ball wrong) = \frac{\Gamma}{\Gamma} \cdot \frac{\Gamma-1}{\Gamma}$ $P(A_4) = \frac{\Gamma}{\Gamma} \cdot \frac{\Gamma-1}{\Gamma} \cdot \frac{\Gamma-2}{\Gamma} \cdot \frac{3}{\Gamma}$

 $P(A_{n}) = \frac{\Gamma}{\Gamma} \cdot \frac{\Gamma-1}{\Gamma} \cdot \frac{\Gamma-2}{\Gamma} \cdot \frac{\Gamma-(n-2)}{\Gamma} \cdot \frac{(n-1)}{\Gamma} \cdot \frac{(n-1)}{\Gamma} = \frac{\Gamma! \cdot (n-1)}{\Gamma! \cdot (n-1)!} = \frac{\Gamma! \cdot (n-1)}{\Gamma!} = \frac{\Gamma! \cdot (n-1$

5-a) $P(AIC) \cup P(AIC') = P(A)$ since P(C) and P(C') are complements of each other, in other words P(C) + P(C') = 1. In the same way, $P(BIC) \cup P(BIC') = P(B)$. Since $P(x) \ge 0$ for X be any event, we can take mion of $P(AIC) \ge P(BIC)$ and $P(AIC') \ge P(BIC')$ to get $P(AIC) \cup P(AIC') \ge P(BIC) \cup P(AIC') \ge P(BIC') \cup P(AIC')$

b) $1 \ge P(A) + P(B) \Rightarrow 1 \ge a + b \Rightarrow 0 \ge a + b - 1$. Since $b \ge 0$, dividing both sides with b don't change the direction of $\ge sign \Rightarrow 0 \ge \frac{a+b-1}{b}$. By definition, $P(A|B) \ge 0$. Then $P(A|B) \ge \frac{a+b-1}{b}$

6) If they are independent, the property P(AnB)=P(A)P(B) Must be satisfied. A = { HHT, HTH, THH, HHH}, B= { THH, TTH, THT, MTH, HTT, HHT3, AOB = {HHT, HTH, THH3 $P(A \cap B) = \frac{n(A \cap B)}{n(S)} \Rightarrow P(A) = \frac{4}{8} = \frac{1}{2}, P(B) = \frac{6}{8} = \frac{3}{4}$ $P(A \cap B) = \frac{3}{8} \Rightarrow P(A) \cdot P(B) = \frac{1}{2} \cdot \frac{3}{4} = \frac{3}{8} = P(A \cap B)$ 7) E and F be independent events means P(ENF)=P(E). P(F). Since $P(E) = 1 - P(E')'_{and} P(F) = 1 - P(F')$, we can write $P(E \cap F) = (1 - P(E')) \cdot (1 - P(F')) = 1 - P(F') - P(E') + P(E') P(F')$. We can use De Morgan's rules to find complement of $(E \cap F)$. =) (Enf) = E'UF'. Since P(x) + P(x')= 1 for any event x and its complement, P(EnF)+P(E'UF')=1=) P(Enf) = 1-P(E'UF'). Putting that into the equation x 1-P(E'UF') = 1-P(F)-P(E')+P(E')P(F') =) $P(E') + P(F') - P(E'UF') = P(E') P(F') \triangle$ Using Ven diagrams; P(E1) = C+di

a+b+c+d, P(F1) = a+d

a+b+c+d, $\frac{E \cdot a \cdot b \cdot c \cdot d}{a + b + c \cdot d} = \frac{P(E) + P(F') - P(E' \cup F') = C + d + a + d - c - d - a}{a + b + c + d} = \frac{C + d + a + d - c - d - a}{a + b + c + d} = \frac{d}{a + b + c + d}$ = P(E'nF'). Putting it into the equation A,

P(E'nF) = P(E')P(F') => E' and F' are independent.