# Introduction to Machine Learning Assignment 3

Name: Vivekanand Reddy Malipatel

CWID: A20524971

# **Question 1 Answer:**

a) (The Python code for this is in the file: 1\_a.py)

# Output Screenshot:

```
===
['Student', 'Unknown', 'Blue Collar']
['Lawyer', 'Professional', 'Home Maker', 'Clerical', 'Doctor', 'Manager']
0.71258825573726
       High Sc']
School', 'Bachelors', 'Masters', 'PhD']
94998377932
```

```
RightBranch:

CAT/UPE Commercial Private All

CARLUSE Commercial Private All

CARLUSE Commercial Private All

CARLUSE Commercial Private All

CARLUSE STATE STATE
```

#### Answer:

Description of the leaf nodes of the classification tree:

| LEAF | Splitting Criterion (Predictors)                                          |                                                      |                                     | Number of    | Predicted Probabilities |            | Predicted           |                     |
|------|---------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------|--------------|-------------------------|------------|---------------------|---------------------|
|      | Occupation                                                                | Education                                            | CarType                             | Observations | Commercial              | Private    | CAR_USE<br>Category | Split Entropy Value |
| (    | {'Blue Collar',<br>'Student',<br>'Unknown'}                               | ['Below High Sc']                                    |                                     | 823          | 0.262454                | 0.737546   | Private             | 0.6670195           |
| 1    | {'Blue Collar',<br>'Student',<br>'Unknown'}                               | ['High School',<br>'Bachelors',<br>'Masters', 'PhD'] |                                     | 3029         | 0.844833                | 0.155167   | Commercial          |                     |
| 2    | ['Lawyer', 'Manager', 'Professional', 'Home Maker', 'Clerical', 'Doctor'] |                                                      | ['Sports Car', 'SUV', 'Minivan']    | 4594         | 0.0065302569            | 0.99346974 | Private             | 0.327445005         |
| 3    | ['Lawyer', 'Manager', 'Professional', 'Home Maker', 'Clerical', 'Doctor'] |                                                      | ['Pickup', 'Van',<br>'Panel Truck'] | 1856         | 0.53017241              | 0.46982759 | Commercial          |                     |

# b) Answer:

As per the Above classification output, The predicted CAR\_USE probability for the The person works in a *Professional* occupation, has an education level of *Doctors*, and owns a *Minivan* is "**Private**".

Probabilities: ['Commercial' 'Private'] = ['0.006530' '0.993470']

### c) Answer:

As per the Above classification output, The predicted CAR\_USE probability for The person is a *Student*, has a *Below High School* level of education, and owns a *Sports Car* is "Private".

Probabilities: ['Commercial' 'Private'] = ['0.262454' '0.737546']

d) (The Python code for this is in the file: 1\_d.py)

Histogram:



e) (The Python code for this is in the file: 1 e.py)

# Output Screenshot:

Misclassification Rate is: 15.414482624733061

#### Answer:

The misclassification rate of the Classification Tree model is 15.414482624733061.

# **Question 2 Answers:**

a) (The Python code for this is in the file: 2\_a.py)

Output Screenshot:

```
Probability of each class:
['Commercial' 'Private']
[0.36779266 0.63220734]
```

#### Answer:

```
['Commercial' 'Private']
[0.36779266 0.63220734]
```

b) (The Python code for this is in the file: 2 b.py)

The Below screenshot has the frequency counts and the row probabilities in each label class.

### Output Screenshot:

```
Frequency
CAR_TYPE
               Minivan Panel Truck Pickup
                                                   SUV Sports Car Van
                                                  555
2328
Commercial
                                   853
                                            1068
                                                                   200 560
979 361
Private
Row Fraction Table: CAR_TYPE Miniva
                Minivan Panel Truck
                                              Pickup
                                                              SUV Sports Car
                                                                                         Van
CAR_USE
                              0.225125 0.281869 0.146477
0.000000 0.108092 0.357439
                                                                     0.052784 0.147796
0.150315 0.055428
Commercial 0.145949
Frequency Table:
OCCUPATION Blue Collar Clerical Doctor Home Maker Lawyer Manager Professional Student Unknown
CAR_USE
Commercial
                                   285
1305
                                              0
321
                                                             57
786
                                                                     0
1031
                                                                                                              452
Row Fraction Table:

OCCUPATION Blue Collar Clerical
                                              Doctor Home Maker
                                                                         Lawyer Manager Professional Student Unknown
CAR_USE
                 0.457904 0.075218 0.000000
0.084907 0.200368 0.049286
                                                                                 0.081288
                                                         0.015044 0.000000
                                                                                                   0.096068 0.117973 0.156506
                                                         0.120682 0.158299
Private
                                                                                 0.145709
                                                                                                   0.160295 0.069400 0.011055
Frequency Table:
EDUCATION Bachelors Below High Sc High School Masters PhD
CAR_USE
                    1191
1632
                                      326
1189
                                                      1438
1514
                                                                 532 302
1546 632
Commercial
Private
Row Fraction Table:
EDUCATION Bachelors Below High Sc High School
                                                               Masters
                                                                                  PhD
CAR_USE
               0.314331
                                 0.086039
                                                 0.379520 0.140406 0.079704
0.232458 0.237371 0.097037
Commercial
Private
```

c) (The Python code for this is in the file: 2\_c.py)

**Output Screenshot:** 

Predicted Probability: ['Commercial' 'Private']\_[[0.11280832 0.88719168]]

#### Answer:

The car usage probabilities are ['Commercial' 'Private'] [[0.11280832 0.88719168]]

d) (The Python code for this is in the file: 2\_d.py)

**Output Screenshot:** 

Predicted Probability: ['Commercial' 'Private'] [[0.14065359 0.85934641]]

### Answer:

The car usage probabilities are ['Commercial' 'Private'] [[0.14065359 0.85934641]]

e) (The Python code for this is in the file: 2\_e.py)

Histogram of the predicted probabilities of CAR\_USE = *Private*:



f) (The Python code for this is in the file: 2\_f.py)

Output Screenshot:

Misclassification Rate:
0.12803339157445157

Answer:

the misclassification rate of the Naïve Bayes model is 0.12803339157445157.