Группа вращений трехмерного пространства

Рассмотрим все вращения трехмерного пространства вокруг фиксированной точки — начала координат. Под произведением двух вращений g_1 и g_2 будем понимать вращение g, состоящее в последовательном применении сначала g_2 и затем g_1 . Символически запишем это так: $g=g_1g_2$. Нетрудно проверить, что совокупность G всех вращений образует группу, т.е. что при таком определении умножения выполнены все групповые аксиомы. Единицей группы e, единичным вращением, является поворот на нулевой угол.

Описание группы вращений при помощи ортогональных матриц

Пусть x — некоторый вектор, исходящий из начала координат, вращение g переводит его в вектор x':

$$x' = gx \tag{1}$$

Рассмотрим ортогональную систему координат с центром в точке O, обозначим через e_1 , e_2 , e_3 единичные вектора, отложенные вдоль координатных осей. Вращение g переводит эту тройку векторов в тройку других взаимно ортогональных векторов, которые будем обозначать g_1 , g_2 , g_3 . Вектора g_k , k=1,2,3 задаются проекциями на оси e_i , i=1,2,3; обозначим через $g_{ik}=(g_k,e_i)$ проекцию вектора g_k на i-ую ось. Объединим проекции в матрицу

$$\begin{vmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{vmatrix}$$
 (2)

Будем обозначать эту матрицу так же g и называть ее матрицей вращения g. Выпишем соотношение (1) покоординатно

$$x_i' = \sum_{k=1}^{3} g_{ik} x_k, \tag{3}$$

где x_k – координаты вектора x, а x_i' – координаты вектора x'. Найдем, каким условиям должны удовлетворять числа g_{ik} . Так как вращение не меняет длин и углов, то оно не меняет скалярного произведения векторов. Таким образом, если x'=gx и y'=gy, то

$$\sum_{i=1}^{3} x_i' y_i' = \sum_{k=1}^{3} x_k y_k \tag{4}$$

Подставим в левую часть равенства (4) вместо x_i' и y_i' их выражения по формуле (3):

$$\sum_{i,k,l} g_{ik} g_{il} x_k y_l = \sum_k x_k y_k \tag{5}$$

Сравнивая коэффициенты при произведениях $x_k y_l$ в левой и правой частях, получаем:

$$\sum_{i=1}^{3} g_{ik} g_{il} = \delta_{kl}, \tag{6}$$

где δ_{kl} – кронекеровская дельта, определенная следующими соотношениями: $\delta_{kl}=1$, если $k=l,\,\delta_{kl}=0$, если $k\neq l$. Равенство (6) может быть записано в матричной форме:

$$g^{\mathsf{T}}g = e \tag{7}$$

ИЛИ

$$g^{\top} = g^{-1}. \tag{8}$$

Матрицы, удовлетворяющие равенствам (7), (8), называются ортогональными матрицами. Если взять детерминант обеих частей равенства (7), то получим $\det (g^{\top}) \det (g) = 1$, т.е. $|\det (g)|^2 = 1$, и

$$det(g) = \pm 1.$$
(9)

Итак, группа вращений G может быть реализована (представлена) как группа ортогональных матриц третьего порядка с единичным детерминантом.

Введение параметров в группу вращений

Так как каждое вращение есть вращение вокруг некоторой оси, то оно может быть полностью определено путем задания оси вращения и задания угла поворота вокруг нее. Так, вращение может быть задано вектором $\xi = (\xi_1, \xi_2, \xi_3)$, направленным вдоль оси вращения и равным по величине углу поворота. Направление вектора будем выбирать так, чтобы угол поворота не превосходил π . Координаты векторов, описывающих всевозможные вращения, будут удовлетворять условию $\xi_1^2 + \xi_2^2 + \xi_3^2 \leqslant \pi^2$, и, значит, заполнять шар радиуса π . Ясно, что различные внутренние точки шара описывают различные вращения, а две диаметрально противоположные точки на поверхности сферы – одно и то же вращение на угол π (поворот на угол π в двух противоположных направлениях приводит к одному и тому же результату).

Такой способ описания вращений выявил топологическую структуру группы вращений, а именно, эта группа топологически эквивалентна шару, у которого отождествлены диаметрально противоположные точки границы.

Представленные выше результаты показывают, что вращение g может быть описано при помощи девяти параметров, а именно элементами g_{ik} матрицы вращения g; однако эти параметры не являются независимыми, они связаны соотношениями (6). Примером описания вращения при помощи независимых параметров являются углы Эйлера.

Пусть вращение g переводит координатные оси Ox, Oy, Oz в оси Ox', Oy', Oz'. Обозначим линию пересечения плоскостей xOy и x'Oy' через Ol (ее принято называть nunue u y = y = y = 0). Придадим ей направление таким образом, чтобы наблюдатель, смотря вдоль заданного направления, видел угол между осями Oz и Oz' (меньше π), отложенным против часовой стрелки. Это условие задает направление линии узлов во всех ситуциях, за исключением тех, в которых угол между осями Oz, Oz' равен 0 или π .