1 Derivada 1

$4^{\underline{a}}$ Lista de Exercícios - Cálculo 1 - Ciências da Computação

1 Derivada

Exercício 1.1: Mostre por definição de derivada que:

- 1. Se f(x) = k é uma função constante então $f'(x) = 0, \ \forall x \in \mathbb{R}$.
- 2. Se $f(x) = x^n$ então $f'(x) = nx^{n-1}$, $\forall x \in \mathbb{R}$ e $\forall n \in \mathbb{N}$.
- 3. Se $f(x) = x^{-n}$ então $f'(x) = -nx^{-n-1}$, $\forall x \in \mathbb{R} \{0\}$ e $\forall n \in \mathbb{N}$.
- 4. Se $f(x) = e^x$ então $f'(x) = e^x$, $\forall x \in \mathbb{R}$.
- 5. Se f(x) = ln(x) então $f'(x) = \frac{1}{x}, \forall x \in \mathbb{R}$.
- 6. Se f(x) = sen(x) então $f'(x) = cos(x), \forall x \in \mathbb{R}$.
- 7. Se f(x) = cos(x) então $f'(x) = -sen(x), \forall x \in \mathbb{R}$.
- 8. Se f(x) = tg(x) então $f'(x) = sec^2(x), \forall x \in \mathbb{R}$.

Exercício 1.2: Calcule a derivada das seguintes funções:

- 1. $f(x) = sen(x) + 2x x^3$
- 2. $f(x) = cos(x) + e^x$
- 3. $f(x) = ln(x) + \frac{1}{x}$
- 4. f(x) = xsen(x)
- 5. $f(x) = \frac{sen(x)}{x^2-1}$
- 6. $f(x) = x^3 + 2x^2 x + 6$

Exercício 1.3: Verifique se:

- 1. $f(x) = \begin{cases} 2x+1 & \text{, se } x < 1 \\ -x+4 & \text{, se } x \ge 1 \end{cases}$ é uma função diferenciável em x = 1.
- 2. $f(x) = \begin{cases} x^2 + x & \text{, se } x < 1 \\ 2x + 1 & \text{, se } x \ge 1 \end{cases}$ é uma função diferenciável em x = 1.
- 3. $f(x) = \begin{cases} 2 & \text{, se } x \ge 0 \\ x^2 + 2 & \text{, se } x < 0 \end{cases}$ é uma função diferenciável em x = 0.

Exercício 1.4: Seja $f(x) = x^3$. Determine a equação da reta tangente ao gráfico de f no ponto de abscissa 1. Essa curva possui reta normal em x = 1? Se sim, determine-a.

Exercício 1.5: Seja $f(x) = \sqrt[3]{x}$. Determine a equação da reta tangente ao gráfico de f no ponto de abscissa 8. Essa curva possui reta normal em x = 8? Se sim, determine-a.

Exercício 1.6: Mostre que se f é uma função diferenciável em x_0 então f é contínua em x_0 . A recíproca é válida? Se sim, demonstre. Caso contrário, exiba um contra-exemplo.

2 Regra de L'Hospital

Exercício 2.1: Utilize a regra de L'Hospital para calcular os seguintes limites:

1.
$$\lim_{x \to -1} \frac{4x^3 + x^2 + 3}{x^5 + 1}$$

2.
$$\lim_{x \to 0^+} xe^{\frac{1}{x}}$$

3.
$$\lim_{x \to -1} \frac{4x^3 + x^2 + 3}{x^5 + 1}$$

$$4. \lim_{x \to +\infty} \frac{e^{2x}}{x^3}$$

$$5. \lim_{x \to +\infty} x^3 e^{-4x}$$

6.
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$$

7.
$$\lim_{x \to 0} x ln(x)$$

8.
$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1}$$

9.
$$\lim_{x \to 2} \sqrt{\frac{x^2 - 4}{x - 2}}$$

10.
$$\lim_{x \to -1} \frac{\sqrt[3]{x+2} - 1}{x+1}$$

11.
$$\lim_{x \to \infty} \frac{3x^2 + x - 1}{2x^2 - 2x}$$

$$12. \lim_{x \to \infty} \frac{x-1}{x^4}$$

13.
$$\lim_{x \to \infty} \frac{x^2}{x+1}$$