

# (6) Heterogeneous Treatment Effects

Causal Data Science for Business Analytics

Christoph Ihl

Hamburg University of Technology Monday, 27. May 2024





## Introduction

### **Treatment Effect Heterogeneity: Motivation**

- More comprehensive evaluation:
  - who wins or loses and by how much?
- This is useful along at least two dimensions:
  - Informs action:
    - More efficient allocation of public and private resources via targeting in the future:
      - Personalized policies, ads, medicine, ...
  - Understanding:
    - Heterogeneous effects can be suggestive for underlying mechanisms



#### **Treatment Effect Heterogeneity: Definition**

- ullet Expected treatment effect in the target subpopulation with characteristics  $X_i$  given by Conditional Average Treatment Effect (CATE):
- $X_i = H_i \cup C_i$ 
  - H<sub>i</sub>: motivated by the research question to understand specific effect heterogeneity in a pre-defined the target subpopulation.
  - C<sub>i</sub>: confounders that are required for identification.
- Randomized experiments no confounders:
  - lacktriangle CATE defined with respect to considered heterogeneity variables:  $X_i = H_i$
- Measured Confounding distinguish two types of CATEs:
  - Group ATE (GATE) for groups G defined by H:  $\tau(\mathbf{g}) = \mathbb{E}[Y_i(1) Y_i(0)|\mathbf{G_i} = \mathbf{g}]$
  - Individualized ATE (IATE = CATE):  $\tau(\mathbf{x}) = \mathbb{E}[Y_i(1) Y_i(0) | \mathbf{X_i} = \mathbf{x}]$ 
    - most flexible/ personalized/ individualized effect prediction
  - Estimation step is affected by whether we are interested in GATEs or IATEs.



### **Treatment Effect Heterogeneity: Identification**

- No need to establish new identification results:
  - $\, \blacksquare \,$  All target parameters can be thought of as special cases of conditioning ITE on some function  $f(X_i=x)$
  - And by the Law of Iterated Expectations (LIE):

$$\mathbb{E}[Y_i(1) - Y_i(0)|f(\mathbf{X_i}) = f(\mathbf{x})] = \mathbb{E}[\mathbb{E}[Y_i(1) - Y_i(0)|\mathbf{X_i} = \mathbf{x}, f(\mathbf{X_i} = \mathbf{x})]|f(\mathbf{X_i} = \mathbf{x})]$$
$$= \mathbb{E}[\mathbb{E}[Y_i(1) - Y_i(0)|\mathbf{X_i} = \mathbf{x}]|f(\mathbf{X_i} = \mathbf{x})]$$

- As  $\mathbf{X_i} = \mathbf{H_i} \cup \mathbf{C_i}$  is assumed to contain all confounders, the inner expectation  $\mathbb{E}[Y_i(1) Y_i(0) | \mathbf{X_i} = \mathbf{x}]$  is identified in randomized experiments or under measured confounding
- => All aggregations with respect to a function  $f(X_i)$  are also identified.



# **Group Average Treatment Effects**



#### **Group ATEs: Examples**

- Group ATE (GATE):  $\tau(g) = \mathbb{E}[Y_i(1) Y_i(0)|G_i = g]$
- Examples for subgroups of interest:
  - Mutually exclusive subgroups, e.g.: G = {female, male},
     G = {age < 50, age ≥ 50},</li>
     G = {age < 50 & female, age ≥ 50 & female, age ≥ 50 & male, ...}, ...</li>
  - Single or low-dimensional continuous variable, e.g.: G = age, G = income, ...
  - Other functions or small subsets of X<sub>i</sub>
- Groups should be pre-determined and not be the result of data snooping

#### **Group ATEs: Estimation**

- Three strategies:
  - 1. Stratify the data and rerun the analysis for each subgroup.
    - Downside: Requires a lot of data and computation, can lead to high variance estimates for small subgroups.
  - 2. Specify an interaction term in an OLS regression model:
    - $Y_i = \beta_0 + \tau T_i + \beta_{G_i} G_i + \beta_{T_i G_i} T_i G_i + \beta_{X_i} X_i + \epsilon_i$
    - Downside: Requires a correct model specification, can be sensitive to misspecification.
  - 3. Double Machine Learning with AIPW model to estimate the GATEs directly.



#### **Group ATEs: Double Machine Learning**

- Previous lecture: ATE (AIPW) can be estimated as mean of a pseudo-outcome:
  - $\tau_{ATE}^{AIPW} = \frac{1}{N} \sum_{i=1}^{n} \widetilde{\tau}_{iATE}^{AIPW}$
- Pseudo-outcome is given by:

$$\tilde{\tau}_{iATE}^{AIPW} = \mu(1, \mathbf{X_i}) - \mu(0, \mathbf{X_i}) + \frac{T_i(Y_i - \mu(1, \mathbf{X_i}))}{e_1^2(\mathbf{X_i})} - \frac{(1 - T_i)(Y_i - \mu(0, \mathbf{X_i}))}{e_0^2(\mathbf{X_i}))}$$

- Equivalent to a linear regression model with pseudo-outcome and constant:
  - $\tau_{i\,ATE}^{AIPW} = \alpha + \epsilon_{i}$  with  $\alpha = \tau_{ATE}^{AIPW}$
- Can be extended with heterogeneity variable(s) Gi:
  - $\widetilde{\tau}_{iATE}^{AIPW} = \alpha + \beta G_i + \epsilon_i$
  - => Modelling the level of the effect, not the level of the outcome.



#### **Group ATEs: Advantages of DML**

- Neyman-orthogonality of  $\widetilde{\tau}_{iATE}^{AIPW}$  allows to apply standard statistical inference (Semenova and Chernozhukov, 2021).
- Computationally less expensive than subgroup analyses
  - Only one additional OLS, no new nuisance parameters).
- More flexible than specifying interaction terms in a linear model, as we flexibly adjust for confounding by ML methods.
- As  $\widetilde{\tau_{i}}_{ATE}^{AIPW}$  is an unbiased signal, i.e.  $\mathbb{E}[\widetilde{\tau_{i}}_{ATE}^{AIPW}|G_{i}=g]=\tau(g)$ , to regress the pseudo-outcome  $\widetilde{\tau_{i}}_{ATE}^{AIPW}$  on low-dimensional  $G_{i}$  we can either use
  - OLS or series regression (Semenova and Chernozhukov, 2021).
  - Kernel regression (Fan et al., 2022; Zimmert & Lechner, 2019).



#### **Group ATEs: Proof of DML**

• Proof that  $\mathbb{E}[\widetilde{\tau_i}_{ATE}^{AIPW} + G_i = g] = \tau(g)$ :

$$\begin{split} \mathbb{E}[\widetilde{\tau}_{iATE}^{AIPW} \mid G_i &= g] = \mathbb{E}\left[\mu(1, \mathbf{X}_i) + \frac{T_i(Y_i - \mu(1, \mathbf{X}_i))}{e(\mathbf{X}_i)} - \mu(0, \mathbf{X}_i) - \frac{(1 - T_i)(Y_i - \mu(0, \mathbf{X}_i))}{1 - e(\mathbf{X}_i)} \middle| G_i &= g \right] \\ & \stackrel{LIE}{=} \mathbb{E}\left[\mathbb{E}\left[\mu(1, \mathbf{X}_i) + \frac{T_i(Y_i - \mu(1, \mathbf{X}_i))}{e(\mathbf{X}_i)} \mid \mathbf{X}_i &= \mathbf{x}\right] - \mathbb{E}\left[\mu(0, \mathbf{X}_i) + \frac{(1 - T_i)(Y_i - \mu(0, \mathbf{X}_i))}{1 - e(\mathbf{X}_i)} \mid \mathbf{X}_i &= \mathbf{x}\right] \middle| G_i &= g \right] \\ & = \mathbb{E}\left[\mathbb{E}[Y_i(1) \mid \mathbf{X}_i &= \mathbf{x}] - \mathbb{E}[Y_i(0) \mid \mathbf{X}_i &= \mathbf{x}] \middle| G_i &= g \right] \\ & \stackrel{LIE}{=} \mathbb{E}[Y_i(1) - Y_i(0) \mid G_i &= g] \\ & = \tau(g) \end{split}$$

• Law of Iterated Expectations uses that  $G_i$  is a function of  $X_i$ .

INTRO GROUP ATES METALEARNERS HTE EVALUATION OPTIMAL POLICY LEARNING



#### **Group ATEs: Example based on DML**

- Assess the effect of 401(k) program participation on net financial assets of 9,915 households in the US in 1991.
- First step (not shown): Estimate  $\tau_{ATE}^{AIPW}$  using DoubleML.

```
2 data$ate i <- dml irm forest[["psi b"]] # get numerator of score functi
          3 mean ate = mean(data$ate i) # mean of pseudo outcomes = ATE
          5 library(estimatr) # for linear robust post estimation
          6 summary(lm robust(ate i ~ hown, data = data))
Estimates and significance testing of the effect of target variables
     Estimate. Std. Error t value Pr(>|t|)
e401
                1106 7.421 1.16e-13 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lm robust(formula = ate i ~ hown, data = data)
Standard error type: HC2
Coefficients:
           Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper
                           711 4.890 1.025e-06
(Intercept)
                                                             4870 9913
                          1835 4.058 4.990e-05
                                                             11041 9913
hown
Multiple R-squared: 0.00106, Adjusted R-squared: 0.0009588
F-statistic: 16.47 on 1 and 9913 DF, p-value: 4.99e-05
```

```
1 library(np) # for kernel post estimation
2 age = data$age
3 ate_i = data$ate_i
4 np_model = npreg(ate_i ~ age) # kernel regression
5 plot(np_model) # plot the kernel regression
```



## Metalearners

### **Predicting Individualized ATEs**

- Group-level heterogeneity variables were hand-picked.
- ullet Now predict individualized treatment effects based on all covariates  $X_i$ :
  - Individualized ATE (IATE = CATE):  $\tau(\mathbf{x}) = \mathbb{E}[Y_i(1) Y_i(0) | \mathbf{X_i} = \mathbf{x}]$
  - Conditional expectation with unobserved outcome (counterfactuals)
- Given the assumptions of observed confounding, we can write the CATE as:

  - which can be approximated with ML.



#### S-Learner and T-Learner

#### • S-learner:

- 1. Use ML estimator of your choice to fit outcome model using  $X_i$  AND  $T_i$  in the full sample:  $\mu(T_i; X_i)$ .
- 2. Estimate CATE as  $\tau(\mathbf{x}) = \mu(1; \mathbf{X_i}) \mu(0; \mathbf{X_i})$ .

#### • T-learner:

- 1. Use ML estimator of your choice to fit model  $\mu(1; X_i)$  in treated subsample.
- 2. Use ML estimator of your choice to fit model  $\mu(0; X_i)$  in control subsample.
- 3. Estimate CATE as  $\tau(\mathbf{x}) = \mu(1; \mathbf{X_i}) \mu(0; \mathbf{X_i})$ .

INTRO GROUP ATES METALEARNERS HTE EVALUATION OPTIMAL POLICY LEARNING



#### S-Learner and T-Learner: Example

- Assess the effect of 401(k) program participation on net financial assets of 9,915 households in the US in 1991.
- Examples without proper cross-fitting.

```
1 library(hdm) # for the data
 6 data(pension)
 8 Y = pension$net tfa
10 T = pension p401
12 X = model.matrix(~ 0 + age + db + educ + fsize + hown + inc + male + max
15 TX = cbind(T,X)
16 rf = regression forest(TX,Y)
17 TOX = cbind(rep(0, length(Y)), X)
18 T1X = cbind(rep(1, length(Y)), X)
19 cate_sl = predict(rf,TlX)$predictions - predict(rf,T0X)$predictions
20 hist(cate sl)
 2 rfmu1 = regression forest(X[T==1,],Y[T==1])
 3 rfmu0 = regression forest(X[T==0,],Y[T==0])
 4 cate tl = predict(rfmul, X)$predictions - predict(rfmu0, X)$predictions
 5 hist(cate tl)
```





#### S-Learner and T-Learner: Disadvantage

- The prediction problems do not know of joint goal to approximate a difference:
  - $\mu(1; \mathbf{X_i})$  minimizes  $MSE(\mu(1; \mathbf{x})) = \mathbb{E}[(\mu(1; \mathbf{x}) \mu(1; \mathbf{X_i}))^2]$ .
  - $\mu(0; \mathbf{X_i})$  minimizes  $MSE(\mu(0; \mathbf{x})) = \mathbb{E}[(\mu(0; \mathbf{x}) \mu(0; \mathbf{X_i}))^2]$ .
  - BUT they should aim to minimize:

$$\begin{split} MSE(\tau(\mathbf{x}))) &= \mathbb{E}[(\tau(\mathbf{x})) - \tau(\mathbf{x})))^2] \\ &= \mathbb{E}[(\mu(1,\mathbf{x})) - \mu(0,\mathbf{x})) - (\mu(1,\mathbf{x})) - \mu(0,\mathbf{x})))^2] \\ &= \mathbb{E}[(\mu(1,\mathbf{x})) - \mu(1,\mathbf{x})))^2] + \mathbb{E}[(\mu(0,\mathbf{x})) - \mu(0,\mathbf{x})))^2] \\ &- 2\mathbb{E}[(\mu(1,\mathbf{x})) - \mu(1,\mathbf{x})))(\mu(0,\mathbf{x})) - \mu(0,\mathbf{x})))] \\ &= MSE(\mu(1,\mathbf{x}))) + MSE(\mu(0,\mathbf{x}))) - 2MCE(\mu(1,\mathbf{x})), \mu(0,\mathbf{x}))) \end{split}$$

- Lechner (2018) calls the additional term Mean Correlated Error (MCE): correlated errors matter less
- Example both make same error:  $\mu(1; \mathbf{X_i}) = \mu(1; \mathbf{X_i}) + 2$  and  $\mu(0; \mathbf{X_i}) = \mu(0; \mathbf{X_i}) + 2$ 
  - But their CATE would still be on point:  $MSE(\tau(\mathbf{x})) = 4 + 4 2(2 \cdot 2) = 0$
- Example errors go in different direction:  $\mu(1; \mathbf{X_i}) = \mu(1; \mathbf{X_i}) + 2$  and  $\mu(0; \mathbf{X_i}) = \mu(0; \mathbf{X_i}) 2$ 
  - But their CATE would be off:  $MSE(\tau(x)) = 4 + 4 2(2 \cdot (-2)) = 16$



#### **Two Approaches to Improvements**

- 1. Modify supervised ML methods to target causal effect estimation
  - Method specific, e.g.:
    - Causal tree (Athey and Imbens, 2016)

INTRO

- Causal forest (Athey, Tibshirani & Wager, 2019)
- Not covered here (does not scale very well to high-dimensional data)
- 2. Combine supervised ML methods to target causal effect estimation
  - Generic approach Metalearners, e.g.:
    - X-learner (Künzel et al., 2019)
      - not covered here; handles sample imbalance, but not doubly robust
    - R-learner
    - DR-learner

#### What are Metalearners?

- Metalearners combine multiple supervised ML steps in a pipeline that outputs predicted CATEs.
- The common ones require the following steps:
  - 1. Estimate nuisance parameters using suitable ML method.
  - 2. Plug them into a clever minimization problem targeting CATE.
  - 3. Solve the minimization problem using suitable ML method.
  - 4. Predict CATE using the model learned in 3.
- Most popular ML methods are suitable and can be applied in steps 1, 3 and 4.
- Like for standard prediction methods, **statistical inference is usually not** available.



#### R-learner: Idea

ullet Partially linear model, but now allowing for treatment effects that vary with X:

$$\begin{aligned} \bullet \ \ Y_i &= \tau(\mathbf{X_i}) T_i + g(\mathbf{X_i}) + \varepsilon_{Y_i}, \quad \mathbb{E}(\varepsilon_{Y_i} \big| T_i, \mathbf{X_i}) = 0 \\ \mu(\mathbf{X_i}) & e(\mathbf{X_i}) \end{aligned}$$

$$\blacksquare \Rightarrow Y_i - \mathbb{E}[Y_i \mid \boldsymbol{X_i}] = \tau(\boldsymbol{X_i})(T_i - \mathbb{E}[T_i \mid \boldsymbol{X_i}]) + \varepsilon_{Y_i}$$

outcome residual

treatment residual

- This motivates the R-learner of Nie and Wager, 2020:
  - $\tau_{RL}(\mathbf{x}) = \arg\min_{\tau} \sum_{i=1}^{n} (Y_i \mu(\mathbf{X_i}) \tau(\mathbf{X_i})(T_i e(\mathbf{X_i})))^2$
  - with cross-fitted high-quality nuisance parameters from first step.
  - But how to estimate it?



#### **R-learner with Linear ML-Methods**

• CATE as linear function  $\tau(X_i) = \beta' X_i$ :

$$\beta_{RL}^{\hat{}} = \underset{\beta}{\text{arg min}} \sum_{i=1}^{N} (Y_i - \mu(\mathbf{X}_i) - \beta'(T_i - e(\mathbf{X}_i))\mathbf{X}_i)^2$$

$$= \underset{\beta}{\text{arg min}} \sum_{i=1}^{N} (Y_i - \mu(\mathbf{X}_i) - \beta'\tilde{\mathbf{X}}_i)^2$$

- $\tilde{\mathbf{X}}_{\mathbf{i}} = (T_i e(\mathbf{X}_{\mathbf{i}}))\mathbf{X}_{\mathbf{i}}$  are modified / pseudo-covariates.
- $\hat{\tau}_{RL}(x) = \hat{\beta}_{RL}x \neq \hat{\beta}_{RL}\tilde{x}$  is the estimated CATE for a specific x.
- All linear shrinkage estimators (Lasso and friends) can be applied, nuisance parameters can still be estimated with nonlinear ML.



#### **R-learner with Generic ML-Methods**

• If we are not willing to impose linearity of the CATE, we can rewrite the R-learner:

$$\begin{split} \tau_{RL}^{\hat{}}(\mathbf{x}) &= \text{arg min}_{\tau} \sum_{i=1}^{n} (Y_{i} - \mu(\mathbf{X}_{i}) - \tau(\mathbf{X}_{i})(T_{i} - e(\mathbf{X}_{i})))^{2} \\ &= \text{arg min}_{\tau} \sum_{i=1}^{n} \frac{(T_{i} - e(\mathbf{X}_{i}))^{2}}{(T_{i} - e(\mathbf{X}_{i}))^{2}} (Y_{i} - \mu(\mathbf{X}_{i}) - \tau(\mathbf{X}_{i})(T_{i} - e(\mathbf{X}_{i})))^{2} \\ &= \text{arg min}_{\tau} \sum_{i=1}^{n} (T_{i} - e(\mathbf{X}_{i}))^{2} \left( \frac{Y_{i} - \mu(\mathbf{X}_{i}) - \tau(\mathbf{X}_{i})(T_{i} - e(\mathbf{X}_{i}))}{T_{i} - e(\mathbf{X}_{i})} \right)^{2} \\ &= \text{arg min}_{\tau} \sum_{i=1}^{n} (T_{i} - e(\mathbf{X}_{i}))^{2} \left( \frac{Y_{i} - \mu(\mathbf{X}_{i})}{T_{i} - e(\mathbf{X}_{i})} - \tau(\mathbf{X}_{i}) \right)^{2} \end{split}$$

- Supervised ML methods that can deal with weighted minimization (e.g. neural nets, random forest, boosting, ...) with
  - weights:  $(T_i e(X_i))^2$ .
  - pseudo-outcome:  $\frac{Y_i \mu(X_i)}{T_i e(X_i)}$ .
  - the unmodified covariates:  $X_i$ .

INTRO GROUP ATES METALEARNERS HTE EVALUATION OPTIMAL POLICY LEARNING



#### **DR-learner**

• Recall the pseudo-outcome of the AIPW-ATE from previous lecture and condition on  $X_i$  (same "trick" as for GATE estimation):

$$\begin{aligned} & \bullet \ \tau_{DR}(\mathbf{x}) = \mathbb{E}\left[ \underbrace{\mu(1,\mathbf{X_i}) - \mu(0,\mathbf{X_i}) + \frac{T_i(Y_i - \mu(1,\mathbf{X_i}))}{e_1^i(\mathbf{X_i})} - \frac{(1 - T_i)(Y_i - \mu(0,\mathbf{X_i})}{e_0^i(\mathbf{X_i}))} \, \middle| \mathbf{X_i} = \mathbf{x} \right] \\ & \quad \tilde{\tau}_{i,ATE}^{AIPW} \end{aligned}$$

- DR-learner by Kennedy (2020) uses  $\widetilde{\tau_{i}}_{ATE}^{AIPW}$  in a generic ML problem:

  - Cross-fitting: in 4 subsamples (1) train a model for  $e(\hat{X}_i)$ , (2) train a model for  $\mu(\hat{X}_i)$ , (3) construct  $\tilde{\tau}_{i\,\text{ATE}}^{\,\text{AIPW}}$  and regress on  $X_i$ , (4) predict  $\tau_{RL}(x)$ . Then rotate.

#### **DR-learner: Example**

• Assess the effect of 401(k) program participation on net financial assets of 9,915 households in the US in 1991.

```
1 library(hdm) # for the data
 2 library(causalDML) # generalized random forests, could also use mlr3
 6 data(pension)
 8 Y = pension$net tfa
10 T = pension p401
12 X = model.matrix(~ 0 + age + db + educ + fsize + hown + inc + male + max
        ml w = list(create method("forest grf")),
         ml tau = list(create method("forest grf"))
19 )
22 hist(dr$cates[,1])
```





# **HTE Evaluation**



#### **How to evaluate estimated CATEs?**

1. Descriptive: histogram, kernel density plots, box plots, etc. ...

INTRO

- 2. Inference: test whether effect heterogeneity is systematic or just noise.
- 3. Explore what drives the heterogeneous effects.
- Challenges with inference:
  - Unique to causal ML: Due to missing counterfactual, we cannot benchmark predicted against effect => no classic out-of-sample testing.
  - Shared with supervised ML: statistical inference for predicted CATE is not available or at least challenging.
- Approach to inference:
  - Rather than (consistent) estimation of & inference on the individual CATEs directly, derive summary statistics of their (noisy) distribution.
  - Test joint hypothesis that there is effect heterogeneity & the applied estimation method is able to detect it at least partially.
- We discuss the three methods proposed by Chernozhukov et al. (2017-2023):
  - Best Linear Predictor (BLP).
  - High-vs.-low Sorted Group Average Treatment Effect (GATES).
  - Classification Analysis (CLAN) to explore what drives the heterogeneous effects.

### **Best Linear Predictor (BLP) - Definition**

• BLP is defined as the solution of the hypothetical regression of the true CATE on the demeaned predicted CATE:

#### **Definition "Best Linear Predictor (BLP)"**

The best linear predictor of  $\tau(X_i)$  by  $\tau(X_i)$  is the solution to:

$$(\beta_1, \beta_2) = \underset{\widetilde{\beta_1}, \widetilde{\beta_2}}{\text{arg min}} \mathbb{E} \left[ \left( \tau(\mathbf{X_i}) - \widetilde{\beta_1} - \widetilde{\beta_2} \left( \tau(\mathbf{X_i}) - \mathbb{E}[\tau(\mathbf{X_i})] \right) \right)^2 \right]$$

- which, if exists, is defined as
  - $\blacksquare \mathbb{E}[\tau(\mathbf{X_i})|\tau(\mathbf{X_i})] := \beta_1 + \beta_2(\tau(\mathbf{X_i}) \mathbb{E}[\tau(\mathbf{X_i})])$

demeaned prediction

- where
  - $\beta_1 = \mathbb{E}[\tau(X_i)] = ATE$  (because of the demeaning)
  - $\beta_2 = \frac{\operatorname{Cov}[\tau(\mathbf{X_i}), \tau(\mathbf{X_i})]}{\operatorname{Var}[\tau(\mathbf{X_i})]}$



#### **BLP** - Interpretation

- $\beta_2 = \frac{\text{Cov}[\tau(\mathbf{X_i}), \tau(\mathbf{X_i})]}{\text{Var}[\tau(\mathbf{X_i})]} = 1 \text{ if } \tau(\mathbf{X_i}) = \tau(\mathbf{X_i}) \text{ (what we would like to see)}$
- $\beta_2 = 0$  if  $Cov[\tau(X_i), \tau(X_i)] = 0$ , which can have two reasons:
  - 1.  $\tau(X_i)$  is constant (no heterogeneity to detect).
  - ullet 2.  $au(X_i)$  is not constant but the estimator is not capable of finding it (bad estimator and/or not enough observations).
- Therefore, testing  $H_0$ :  $\beta_2 = 0$  is a joint test of
  - i. existence of heterogeneity and
  - ii. the estimators capability to find it.

## **BLP - Identification Strategy A**

Strategy A: Weighted residual BLP

• 
$$(\beta_1, \beta_2) = \underset{\widetilde{\beta_1}, \widetilde{\beta_2}}{\text{arg min}} \mathbb{E} \left[ \omega(\mathbf{X_i}) \left( Y_i - \widetilde{\beta_1} (T_i - e(X_i)) - \widetilde{\beta_2} (T_i - e(X_i)) (\tau(\mathbf{X_i}) - \mathbb{E}[\tau(\mathbf{X_i})]) - \alpha \mathbf{X_i^C} \right) \right]$$

- where:
  - $\bullet \omega(\mathbf{X_i}) = \frac{1}{e(\mathbf{X_i})(1 e(\mathbf{X_i}))}$
  - $\mathbf{X_i^C}$  is not required for identification, but contains optional functions of  $\mathbf{X_i}$  to reduce estimation noise, e.g.  $[1, \mu(0, \mathbf{X_i}), e(\mathbf{X_i}), e(\mathbf{X_i}) \tau(\mathbf{X_i})]$
- See Appendix A in Chernozhukov et al. (2017-2023) for a detailed derivation.



### **BLP - Identification Strategy B**

Strategy B: Horvitz-Thompson BLP

• 
$$(\beta_1, \beta_2) = \underset{\widetilde{\beta_1}, \widetilde{\beta_2}}{\text{arg min }} \mathbb{E}\left[\left(H_i Y_i - \widetilde{\beta_1} - \widetilde{\beta_2} \left(\tau(\mathbf{X_i}) - \mathbb{E}[\tau(\mathbf{X_i})]\right) - \alpha H_i \mathbf{X_i^C}\right)^{-2}\right]$$

- where:
  - $H_i = \frac{T_i e(X_i)}{e(X_i)(1 e(X_i))}$  are the Horvitz-Thompson (IPW) weights.
  - H<sub>i</sub>Y<sub>i</sub> serves as a pseudo-outcome.
  - $X_i^C$  is not required for identification, but contains optional functions of  $X_i$  to reduce estimation noise, e.g.  $[1, \mu(0, X_i), e(X_i), e(X_i)\tau(X_i)]$
- See Appendix A in Chernozhukov et al. (2017-2023) for a detailed derivation.

### Sorted Group Average Treatment Effect (GATES)

#### • Idea:

- slice the distribution of  $\tau(X_i)$  into K parts and compare the average treatment effect of individuals within each slice.
- if  $\tau(X_i)$  is a good approximation of  $\tau(X_i)$ , then we expect to observe the following monotonicity:

$$\gamma_1 \leq \gamma_2 \leq \ldots \leq \gamma_K$$
.



#### **Definition "Sorted Group Average Treatment Effect (GATES)"**

$$\gamma_k := \mathbb{E}[\tau(\mathbf{X_i})|G_k], k = 1, \dots, K$$

• where 
$$G_k = \{\tau(\mathbf{X_i}) \in I_k\}$$
 with  $I_k = [l_{k-1}\,,l_k)$  and  $-\infty = l_0 < l_1 < \cdots < l_K = \infty$ .



### **GATES - Identification**

#### Strategy A: Weighted residual GATES

$$\bullet \ \, (\gamma_1 \,, \ldots \,, \gamma_K) = \underset{\gamma_1 \,, \ldots \,, \gamma_{\tilde{K}}}{\text{min}} \ \, \mathbb{E} \left[ \omega(\boldsymbol{X_i}) \big( Y_i - \boldsymbol{\Sigma}_k \, \, \widetilde{\gamma_k} (T_i - e(\boldsymbol{X_i})) \mathbb{1}[\boldsymbol{G}_k] - \alpha \boldsymbol{X_i^C} \right)^{-2} \right]$$

• where  $\omega(\mathbf{X_i}) = \frac{1}{e(\mathbf{X_i})(1-e(\mathbf{X_i}))}$ .

#### Strategy B: Horvitz-Thompson GATES

$$\bullet \ \, (\gamma_1 \,, \ldots \,, \gamma_K) = \underset{\gamma_1^{\scriptscriptstyle \text{\tiny $1$}}, \ldots, \gamma_K^{\scriptscriptstyle \text{\tiny $K$}}}{\text{min}} \, \mathbb{E} \left[ \left( H_i \, Y_i - \sum_{k} \, \widetilde{\gamma_k} \mathbb{1}[G_k] - \alpha H_i \mathbf{X_i^C} \right)^{\, 2} \right]$$

- where  $H_iY_i$  serves as a pseudo-outcome and  $H_i = \frac{T_i e(X_i)}{e(X_i)(1 e(X_i))}$  being the Horvitz-Thompson (IPW) weights.
- $\mathbf{X_i^C}$  is not required for identification, but contains optional functions of  $X_i$  to reduce estimation noise, e.g.  $[1, \mu(0, \mathbf{X_i}), e(\mathbf{X_i}), e(\mathbf{X_i}), e(\mathbf{X_i})]$
- See Appendix A in Chernozhukov et al. (2017-2023) for a detailed derivation.

### Classification Analysis (CLAN)

Classification Analysis (CLAN) can be implemented by simple mean comparisons of covariates in extreme GATES groups:

#### **Definition "Classification Analysis (CLAN)"**

Classification Analysis (CLAN) compares the covariate values of the least affected group G1 with the most affected group GK defined for the GATES:

•  $\delta_{\rm K} - \delta_{\rm 1}$ 

where

• 
$$\delta_k = \mathbb{E}[X_i|G_k] = \frac{1}{n_k} \sum_{i=1}^n X_i \mathbb{1}[G_k].$$

### **BLP, GATES & CLAN - Implementation**

- R package GenericML by Welz, Alfons, Demirer, and Chernozhukov (2022).
- Algorithm:
  - IN:  $Data = (Y_i, X_i, T_i)_{i=1}^N$ , significance level  $\alpha$ , a suite of ML methods, number of splits S.
  - OUT: p values and  $(1 2\alpha)$  confidence intervals of point estimates of each target parameter in GATES, BLP, and CLAN.
  - 1. Compute propensity scores  $e(X_i)$ .
  - 2. Do S splits of  $\{1, \ldots, N\}$  into disjoint sets A and M of same size.
  - 3. for each ML method and each split s = 1, ..., S, do
    - a. Tune and train each ML method to learn  $\mu(0, X_i)$  and  $\tau(X_i)$  on A.
    - b. On M, use  $\mu(0, X_i)$  and  $\tau(X_i)$  to estimate the BLP, GATES, CLAN target parameters.
    - c. Compute some performance measures for the ML methods.
  - 4. Choose the best ML method based on the medians of the performance measures.
  - 5. Calculate the medians of the confidence bounds, p-values, and point estimates of each target parameter.
  - 6. Adjust the confidence bounds and p-values.

GROUP ATES METALEARNERS HTE EVALUATION

OPTIMAL POLICY LEARNING



### **More References**

#### CATE Prediction Methods:

- BART (Hahn, Murray & Carvalho, 2020).
- Causal Boosting/MARS, ... (Powers, Qian, Jung, Schuler, Shah, Hastie & Tibshirani, 2019).
- Dragonnet (Shi, Blei & Veitch, 20191).
- Modified Causal Forest (Lechner & Mareckova, 2022).

INTRO

- Orthogonal Random Forest (Oprescu, Syrgkanis & Wu, 2019).
- TARNet (Shalit, Johansson & Sontag 2019).
- X-learner (Künzel, Sekhon, Bickel & Yu, 2019).

#### HET Evaluation:

- Rank-Weighted Average Treatment Effect (RATE) (Yadlowsky et al., 2021).
- Calibration Error for Heterogeneous Treatment Effects (Xu & Yadlowsky, 2022).
- More on GATES in experiments (Imai & Li, 2022-2024).



# **Optimal Policy Learning**

INTRO

### **Optimal Policy Learning - Goal**

- From evaluation (What works for whom?) towards data-driven (personalized) treatment recommendations:
  - How to optimally treat whom?
- Notation:
  - Binary treatment indicator:  $T_i \in \{0, 1\}$
  - Potential outcome (PO) under treatment t: Y<sub>i</sub>(t)
  - Exogenous covariate(s): X<sub>i</sub>
  - Conditional Average PO:  $\mu_t(\mathbf{x}) := \mathbb{E}[Y(t) \mid \mathbf{X_i} = \mathbf{x}]$
  - Conditional Average Treatment Effect (CATE):  $\tau(\mathbf{x}) := \mu_1(\mathbf{x}) \mu_0(\mathbf{x})$
- Additional notation:
  - Policy rule for x (conditional treatment choice):  $\pi(X_i) \in \{0, 1\}$ .
  - PO under policy  $\pi(X_i)$ :  $Y_i(\pi(X_i))$ .
  - Value function (average PO under policy  $\pi(X_i)$ ):  $Q(\pi) := \mathbb{E}[Y_i(\pi(X_i))]$ .
- Goal: Find the optimal policy  $\pi^*$  that maximizes the value function  $Q(\pi)$ .

### **Optimal Policy Alternatives**

INTRO

- 1. Assign individuals to treatment with higher PO under treatment than without?
  - $\pi^* = \mathbb{1}[Y_i(1) > Y_i(0)] = \mathbb{1}[Y_i(1) Y_i(0) > 0] = \mathbb{1}[\tau_i > 0]$
  - Fundamental problem of causal inference: counterfactuals unknown.
- 2. Assign individuals to treatment with higher CATE than without?
  - $\pi^* = \mathbb{1}[Y_i(1) > Y_i(0) | X_i = x] = \mathbb{1}[\tau(X_i = x) > 0]$
  - Problem: minimizing  $MSE_{CATE} = \mathbb{E}[(\tau(\mathbf{x}) \tau(\mathbf{x})^2]$  does not necessarily improve downstream policy rule learning (Qian & Murphy, 2011).
  - Similar to the case where MSE minimization in treated and control groups separately is not the best strategy to minimize CATE MSE.
- 3. Instead:  $\pi^* = \arg\min \mathbb{E}[Y_i(\pi(X_i))] = \arg\min Q(\pi(X_i))$

### **Optimal Policy Objective Function**

- Objective function can have many different forms but one has proven very useful in the context of ML policy learning:
  - Comparing the value function against a benchmark policy that assigns treatments via fair coin flip:
    - $\circ$  50-50 chance of being treated:  $\pi^{coin} \sim Bernoulli(0,5)$ .

INTRO

$$\begin{split} \pi^* &= \arg\max_{\pi} \, Q(\pi) = \arg\max_{\pi} \, \mathbb{E}[Y(\pi)] = \arg\max_{\pi} \, \mathbb{E}[Y(\pi) - 0.5\mathbb{E}[Y(1)] + 0.5\mathbb{E}[Y(0)]] \\ &= \arg\max_{\pi} \, \mathbb{E}[\pi Y(1) + (1-\pi)Y(0)] - 0.5\mathbb{E}[Y(1)] - 0.5\mathbb{E}[Y(0)] \\ &= \arg\max_{\pi} \, \mathbb{E}[(\pi-0.5)Y(1)] + \mathbb{E}[(0.5-\pi)Y(0)] = \arg\max_{\pi} \, \mathbb{E}[(\pi-0.5)(Y(1)-Y(0))] \\ &= \arg\max_{\pi} \, 2\mathbb{E}[(\pi-0.5)(Y(1)-Y(0))] \\ &= \arg\max_{\pi} \, \mathbb{E}[(2\pi-1)(Y(1)-Y(0))] \\ &= \arg\max_{\pi} \, \mathbb{E}[(2\pi-1)(X_i)] \\ &= \arg\max_{\pi} \, \mathbb{E}[|\tau(X_i)| \mathrm{sign}(\tau(X_i))(2\pi(X_i) - 1)] \\ &= \arg\max_{\pi} \, \mathbb{E}[|\tau(X_i)| \mathrm{sign}(\tau(X_i))(2\pi(X_i) - 1)] \end{split}$$

• where  $(2\pi(\mathbf{X_i}) - 1) \in \{-1, 1\}$  is one if policy assigns treatment and minus one if not.

### **Optimal Policy Objective Function - Intuition**

- $A(\pi) := \mathbb{E}[|\tau(X_i)| sign(\tau(X_i))(2\pi(X_i) 1)]$  measures the advantage of a policy compared to random allocation:
  - If  $sign(\tau(X_i))(2\pi(X_i) 1) = 1$ , i.e. if the policy picks the better treatment for  $X_i$ , we earn the absolute value of the CATE.
  - If  $sign(\tau(X_i))(2\pi(X_i)-1)=-1$ , i.e. if the policy picks the worse treatment for  $X_i$ , we lose the absolute value of the CATE.
- We need to get it right for those with biggest CATEs, those with CATEs close to zero are negligible.
- This shows the difference to CATE MSE minimization, where we need to find good approximations everywhere.

INTRO



### **Optimal Policy Identification & Estimation**

- Potential outcomes or CATE functions unknown, need to be identified before optimization.
- Athey and Wager (2021) recommend the pseudo-outcome (again) because of all the nice properties:

$$\tilde{\tau}_{iATE}^{AIPW} = \mu(1, \mathbf{X_i}) - \mu(0, \mathbf{X_i}) + \frac{T_i(Y_i - \mu(1, \mathbf{X_i}))}{e_1^2(\mathbf{X_i})} - \frac{(1 - T_i)(Y_i - \mu(0, \mathbf{X_i}))}{e_0^2(\mathbf{X_i}))}$$

• Binary weighted classification problem: classify the sign of the CATE while favoring correct classifications with larger absolute CATEs.

$$\pi = \underset{\pi \in \Pi}{\text{arg max}} \left\{ \underbrace{\frac{1}{N} \sum_{i=1}^{N} \underbrace{|\hat{Y}_{i,ATE}| sign(\hat{Y}_{i,ATE})}_{\text{to be classified}} \underbrace{(2\pi(X_i) - 1)}_{\text{function to be learned}} \right\}$$

• Possible methods: e.g. decision trees/forests, logistic lasso, SVM, etc.



## Thank you for your attention!





- \*\* startupengineer.io/authors/ihl
- in christoph-ihl
- Christophihl
- **Inluminate**