

# Temperature And Humidity Monitor

**Syrine Abouda 2GT2** 





## **Table of contents**



# I. Project Presentation



An IoT device that measures temperature and humidity and shows the results in an Android application.



Google firebase console:as an online platform to showcase and store the data.



To develop the Android application I used MIT App inventor .



# Why Firebase console?

Quick way to keep sensory data collected at the device level.

works great with the Android APIs.



### **Multiple features:**

- Realtime Database.
- Authentication
- > Cloud
- Messaging Storage.
- **➤** Hosting.
- ➤ Test Lab.
- Analytics

## **II. Required Components And Platforms**



# **III. Steps of Creating the Project**





# Creating a Firebase Project



containers for your apps

X Créer un projet(Étape 1 sur 3)

# Commençons par donner un nom à votre projet®

Nom du projet

### **TemperatureHumidityMonitor**



- ✓ J'accepte les <u>Conditions d'utilisation de Firebase</u>
- Je confirme que je n'utiliserai Firebase que pour mes activités commerciales, mon entreprise, mes créations ou ma profession.

Continuer





TemperatureHumidityMonitor

✓ Votre nouveau projet est prêt

Continuer



# 02 Creating Real Time DataBase







→ We add three tags for storing the temperature, humidity, and LED data.





Making the APP With MIT Inventor

























# 04 Schematics





fritzing









# Programming NodeMCU





## **Install three Arduino libraries**



### **Call the required Libraries**

Temprature\_And\_Humidity\_Monitor | Arduino 1.8.18

Fichier Édition Croquis Outils Aide



```
Temprature_And_Humidity_Monitor

//FirebaseESP8266.h must be included before ESP8266WiFi.h
```

```
#include "FirebaseESP8266.h" // Install Firebase ESP8266 library
#include <ESP8266WiFi.h>
#include <DHT.h> // Install DHT11 Library and Adafruit Unified Sensor Library
```

## Adding your Firebase and WiFi credentials in the code

```
#define FIREBASE_HOST "temperaturehumiditymonit-5c412-default-rtdb.firebaseio.com" //Without http:// or https:// schemes
#define FIREBASE_AUTH "YKNfr3O9hURK7UwCX5MltZh1EJWKvoR6EwErDq7bs"
#define WIFI_SSID "TOPNET_C5B8"
#define WIFI_PASSWORD "efjnmyk1lp"
```

### Define the pin Number in which the DHT sensor and the LED are connected

```
#define DHTPIN 2  // Connect Data pin of DHT to D2
int led = D5;  // Connect LED to D5
```



## **Define And Initialize the Firebase connection**

```
//Define FirebaseESP8266 data object
FirebaseData firebaseData;
FirebaseData ledData;
FirebaseJson json;
void setup()
 Serial.begin (9600);
  dht.begin();
 pinMode (led, OUTPUT);
  WiFi.begin (TOPNET C5B8, efjnmyk1lp);
  Serial.print("Connecting to Wi-Fi");
  while (WiFi.status() != WL CONNECTED)
   Serial.print(".");
   delay(300);
  Serial.println();
  Serial.print("Connected with IP: ");
  Serial.println(WiFi.localIP());
  Serial.println();
  Firebase.begin (temperaturehumiditymonit-5c412-default-rtdb.firebaseio.com, YKNfr3O9hURK7UwCX5MltZh1EJWKvoR6EwErDq7bs);
  Firebase.reconnectWiFi(true);
```





## **Read Data**

```
void loop() {
  sensorUpdate();
  if (Firebase.getString(ledData, "/Monitor/Led")) {
    Serial.println(ledData.stringData());
    if (ledData.stringData() == "1") {
    digitalWrite (Led, HIGH);
  else if (ledData.stringData() == "0"){
    digitalWrite (Led, LOW);
  delay(100);
```





## **Store Data**

```
if (Firebase.setFloat(firebaseData, "/Monitor/Temperature", t))
 Serial.println("PASSED");
 Serial.println("PATH: " + firebaseData.dataPath());
 Serial.println("TYPE: " + firebaseData.dataType());
 Serial.println("ETag: " + firebaseData.ETag());
 Serial.println("-----");
 Serial.println();
else
 Serial.println("FAILED");
 Serial.println("REASON: " + firebaseData.errorReason());
 Serial.println("-----");
 Serial.println();
if (Firebase.setFloat(firebaseData, "/Monitor/Humidity", h))
 Serial.println("PASSED");
 Serial.println("PATH: " + firebaseData.dataPath());
 Serial.println("TYPE: " + firebaseData.dataType());
 Serial.println("ETag: " + firebaseData.ETag());
 Serial.println("-----");
 Serial.println();
else
 Serial.println("FAILED");
 Serial.println("REASON: " + firebaseData.errorReason());
 Serial.println("-----");
 Serial.println();
```





# IV. Final Results























# THANK YOU!

