Løsning til mindstekravsopgaverne

Ask Madsen

December 12, 2024

1.1	Opgave 1		2
1.2	Opgave 2		3
1.3	Opgave 3		4
1.4	Opgave 4		5
1.5	Opgave 5		6
1.6	Opgave 6		7
1.7	Opgave 7		8
1.8	Opgave 8		9
1.9	Opgave 9	 . 1	10
1.10	Opgave 10	 . 1	1
1.11	Opgave 11		1
1.12	2 Opgave 12	 . 1	13
1.13	B Opgave 13	 . 1	14
1.14	l Opgave 14	 . 1	15
1.15	6 Opgave 15		
	6 Opgave 16		
	Opgave 17		20
	3 Opgave 18		
	Opgave 19		22
	Opgave 20		23
	Opgave 21		24
	P. Opgave 22		25
	3 Opgave 23		26
	l Opgave 24		27
	6 Opgave 25		
	6 Opgave 26		
	Opgave 27		31
	3 Opgave 28		33
	Opgave 29		34
	Opgave 30		35
	Opgave 31		36
	P. Opgave 32		38
	3 Opgave 33		39
1.34	4 Opgave 34	 . 4	10

Reduktion, procentegning og andre regneregler

1.1 Opgave 1

Nedenfor er et udtryk reduceret.

$$4 \cdot (5a - b) + b - 3a$$

$$= 20a - 4b + b - 3a$$

$$= 17a - 3b$$

Forklar hvert trin i reduktionen

Løsning

I det første trin ganger vi 4 ind i parentesen på hvert led således

$$4 \cdot (5a - b) = 4 \cdot 5a - 4 \cdot b = 20a - 4b$$

I det næste trin samler vi ledene som indeholder a og ledene som indeholder b således

$$20a - 4b + b - 3a = 20a - 3a - 4b + b = 17a - 3b$$

1.2 Opgave 2

Nedenfor er en ligning løst.

$$3x + 2(x + 1) + 7 = 5$$
$$3x + 2x + 2 + 7 = 5$$
$$5x + 9 = 5$$
$$5x = -4$$
$$x = -\frac{4}{5}$$

Forklar, hvad der er gjort i hvert trin.

Løsning

I det første trin ganger vi 2 tallet ind i parentesen på hvert led således

$$2(x+1) = 2x + 2$$

I det næste trin lægger vi ledene som indeholder x sammen og ledene som ikke indeholder x sammen.

$$3x + 2x + 2 + 7 = 5x + 9$$

I det næste trin trækker vi 9 fra på begge sider

$$5x + 9 - 9 = 5 - 9 \iff 5x = -4$$

I det sidste trin dividerer vi med 5

$$\frac{5x}{5} = -\frac{4}{5} \Longleftrightarrow x = -\frac{4}{5}$$

1.3 Opgave 3

Forklar, at værdien af $a^2 - (b+c)$ er 1, når a = -3, b = 6 og c = 2.

Løsning

Vi starter med at indsætte værdierne for a, b og c hvorefter vi beregner parentesen og potensen og trækker så resultaterne fra hinanden

$$(-3)^2 - (6+2) = 9 - 8 = 1$$

1.4 Opgave 4

Hvor mange procent udgør 30 ud af 260?

Løsning

For at bestemme hvor mange procent Tal1 udgør af Tal2 kan man bruge følgende formel

$$\frac{Tal1}{Tal2} \cdot 100\%$$

Hvis vi indsætter de kendte værdier Tal1= 30 og Tal2= 260 får vi

$$\frac{30}{260} \cdot 100 \approx 11.53\%$$

30udgør altså ca11.53~% af 260.

Løsning af ligninger

1.5 Opgave 5

Løs følgende to ligninger med to ubekendte

$$x = 6 - y$$
$$5y + x = 14$$

Løsning

Vi indsætter den første ligning x = 6 - y på x's plads i den anden ligning således

$$5y + (6 - y) = 14$$

I denne ligning isolerer vi så y

$$5y + (6 - y) = 14$$

$$5y - y + 6 = 14$$

$$4y + 6 = 14$$

$$4y = 14 - 6$$

$$4y = 8$$

$$4y = 8$$

$$4y = 8$$

$$y = 2$$

Indsætter nu y=2 i den første ligning og får

$$x = 6 - 2 = 4$$

Løsningen til de 2 ligninger er derfor x=4 og y=2.

1.6 Opgave 6

Bestem diskriminanten for andengradsligningen

$$3x^2 + 4x - 1 = 0$$

Løsning

Den generelle formel for diskriminanten er $d=b^2-4\cdot a\cdot c$. Vi ved at den generelle andengradsligning skrives på formen $ax^2+bx+c=0$. Vi aflæser nu a, b og c og får følgende $a=3,\ b=4,\ c=-1$. Diskriminanten bliver dermed

$$d = 4^2 - 4 \cdot 3 \cdot (-1) = 16 - (-12) = 16 + 12 = 28$$

1.7 Opgave 7

Løs denne ligning: $\frac{20}{x+2} = 4$

Løsning

Vi starter med at gange med (x + 2) på begge sider for at fjerne parentesen.

$$\frac{20}{(x+2)} \cdot (x+2) = 4 \cdot (x+2)$$

Nu ganger vi de 4 ind i parentesen (x+2) på højre siden.

$$20 = 4 \cdot x + 4 \cdot 2 \Leftrightarrow 20 = 4x + 8$$

Nu trækker vi 8 fra på begge sider og får

$$20 - 8 = 4x + 8 - 8 \Leftrightarrow 12 = 4x$$

Vi dividerer nu med 4 på begge sider så x kommer til at stå alene.

$$\frac{12}{4} = \frac{4x}{4} \Leftrightarrow 3 = x$$

Bytter vi om på højre og venstre siden får vi

$$x = 3$$

1.8 Opgave 8

Undersøg om x = 2 er en løsning til denne ligning: $x^2 - 5x + 6 = 0$.

Løsning

For at undersøge om x=2 er en løsning til ligningen indsætter vi2 på x's plads og ser om venstresiden giver 0.

$$2^2 - 5 \cdot 2 + 6 = 4 - 10 + 6 = 10 - 10 = 0$$

x=2 er altså en løsning til ligningen.

1.9 Opgave 9

To linjer er givet ved y=4x-1 og y=x+5. Bestem skæringspunktet mellem de to linjer.

Løsning

For at bestemme skæringspunktets x-koordinat mellem de to linjer kan vi sætte dem lig med hinanden og isolere for x.

$$4x - 1 = x + 5$$

$$4x - 1 + 1 = x + 5 + 1$$

$$4x = x + 6$$

$$4x - x = x - x + 6$$

$$3x = 6$$

$$3x = 6$$

$$\frac{3x}{3} = \frac{6}{3}$$

$$x = 2$$

Herefter indsætter vix=2 i en af de to linjers forskrift og bestemmer skæringspunktets y-koordinat

$$y = 2 + 5 = 7$$

Skæringspunktet mellem de to linjer er derfor (2,7)

1.10 Opgave 10

Isolér Ti ligningen $a\cdot T=\frac{R-T}{Q+a}.$

Løsning

Vi starter med at gange med (Q + a) på begge sider

$$a \cdot T \cdot (Q+a) = \frac{R-T}{Q+a} \cdot (Q+a) \Longrightarrow aQT + a^2T = R-T$$

Vi lægger nu T til på begge sider

$$aQT + a^2T + T = R$$

Nu sætter viTuden for en parentes så $(aQ+a^2+1)T=aQT+a^2T+T$

$$(aQ + a^2 + 1)T = R$$

Dividerer nu med $(aQ+a^2+1)$ på begge sider og får

$$T = \frac{R}{aQ + a^2 + 1}$$

T er hermed isoleret i ligningen.

Geometri og trigonometri

1.11 Opgave 11

Figuren viser en trekant ABC.

Følgende sidelængder er kendte: |AB| = 7, |BC| = 3 og |AC| = 6.

Bestem vinkel A.

Løsning

Da trekanten ikke er retvinkel kan vi bruge cosinusrelationen

$$a^2 = b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos(A)$$

Her isolerer vi først $\cos(A)$

$$a^{2} - b^{2} - c^{2} = -2 \cdot b \cdot c \cdot \cos(A)$$

$$\updownarrow$$

$$\frac{a^{2} - b^{2} - c^{2}}{-2 \cdot b \cdot c} = \cos(A)$$

$$\updownarrow$$

$$-\frac{a^{2} - b^{2} - c^{2}}{2 \cdot b \cdot c} = \cos(A)$$

Nu indsætter vi sidelængderne på a,
b og c's plads så $a=3,\ b=6$ og c=7

c s plads sa
$$u = 3$$
, $v = 6$ og $a = 3$

$$-\frac{3^2 - 6^2 - 7^2}{2 \cdot 6 \cdot 7} = \cos(A)$$

$$-\frac{9 - 36 - 49}{84} = \cos(A)$$

$$-\frac{-76}{84} = \cos(A)$$

$$\frac{76}{84} = \cos(A)$$

Nu bruger vi den inverse funktion til cos altså arccos for at bestemme vinklen A

$$A = \arccos\left(\frac{76}{84}\right) \approx 25.2^{\circ}$$

1.12 Opgave 12

To ensvinklede trekanter er vist på figuren.

Størrelsesforholdene er ikke korrekte.

Følgende sidelængder oplyses: |AC| = 6, |BC| = 8 og |DF| = 9

Bestem FE

Løsning

Da trekanterne er ensvinklede kan vi altså bestemme sidelængdernes størrelsesforhold. Hvis vi ser på sidelængderne |AC| og |DF| er den større trekants side 1.5 gange længere. Vi kan altså bestemme sidelængden $|FE|=1.5\cdot |BC|=1.5\cdot 8=12$.

1.13 Opgave 13

Figuren viser en trekant

Følgende størrelser i trekant ABC er kendte:

$$B = 96^{\circ}, \quad |AB| = 170 \quad \text{og} \quad C = 40^{\circ}$$

Bestem |AC|.

Løsning

For at bestemme længden af siden AC bruger vi sinusrelationen for en vilkårlig trekant

$$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$$

Her svarer sidelængen AB til c og sidelængden AC som vi skal finde svarer til b. Vi betragter den sidste lighed i sinusrelationen og isolerer b.

$$\frac{b}{\sin(B)} = \frac{c}{\sin(C)} \Longleftrightarrow b = \frac{c}{\sin(C)} \cdot \sin(B)$$

Indsætter nu $c=170, \quad C=40^{\circ}, \quad B=96^{\circ}$ og får

$$b = \frac{170}{\sin(40^\circ)} \cdot \sin(96^\circ) \approx 224.4$$

1.14 Opgave 14

En retvinklet trekant er skitseret på figuren.

Bestem længden S.

Løsning

For retvinklede trekanter gælder formlen

$$\sin(B) = \frac{c}{b}$$

Her er B vinklen $B=57.3^{\circ}$, c
 er længden af hypotinusen dvd c=131.5 og b
 er siden som i vores tilfælde svarer til s. Vi isolerer altså b
 og indsætter tallene

$$\sin(B) = \frac{b}{c} \iff b = \sin(B) \cdot c = \sin(57.3^{\circ}) \cdot 131.5 \approx 89.76$$

1.15 Opgave 15

Et punkt har koordinatsættet A(8,6).

En linje l har ligningen y = -x + 7.

Bestem afstanden mellem A og l.

Løsning

Her bruger vi formlen for afstand mellem et punkt og en linje som siger at afstanden fra et punkt (x_1, y_1) til en linje y = ax + b kan bestemmes ved

$$dist(P, m) = \frac{|ax_1 + b - y_1|}{\sqrt{a^2 + 1}}$$

Vi indsætter tallene og får

$$\operatorname{dist}(P, m) = \frac{|(-1) \cdot 8 + 7 - 6|}{\sqrt{(-1)^2 + 1}} = \frac{|-8 + 1|}{\sqrt{1 + 1}} = \frac{|-7|}{\sqrt{2}} = \frac{7}{\sqrt{2}} \approx 4.95$$

1.16 Opgave 16

En cirkel C og en linje l er bestemt ved ligningerne

$$C: (x-4)^2 + (y-5)^2 = 3^2$$
$$l: y = x - 2$$

a) Tegn cirklen og linjen i samme koordinatsystem.

Løsning

Vi starter med at aflæse cirklens centrumskoordinat og cirklens radius. Vi ved at cirklens generelle ligning er givet ved

$$(x-a)^2 + (y-b)^2 = r^2$$

Her er C(a,b) cirklens centrumskoordinat og r
 er cirklens radius. Hvis vi bruger dette kan vi aflæse centrumskoordinatet til C(4,5) og radius til r=3. Vi kan nu indtegne cirklen i et koordinatsystem

For at indtegne linjen skal vi aflæse linjens hældning, a og linjens skærings med y-aksen, b. Vi ved at en ret linje har den generelle form

$$y = ax + b$$

Aflæser vi nu den givne linje får vi hældningen a = 1 og skæringen med y-aksen b = -2. Ud fra disse oplysninger kan vi nu indtegne vores linje i koordinatsystemet

b) Bestem skæringspunkterne mellem cirklen og linjen

Løsning

Ud fra koordinatsystemet i opgave 16a kan vi se at cirklen og linjen skærer hinanden i 2 punkter. For at bestemme disse skæringspunkter sætter vi linjens ligning y = x - 2 ind på y's plads i cirklens ligning

$$(x-4)^2 + (x-2-5)^2 = 3^2$$

$$(x-4)^2 + (x-7)^2 = 9$$

Vi beregner nu de 2 parenteser ved at bruge reglen $(a-b)^2 = a^2 + 2 \cdot a \cdot (-b) + (-b)^2$

$$(x-4)^2 = x^2 + 2 \cdot x \cdot (-4) + (-4)^2 = x^2 - 8x + 16$$
$$(x-7)^2 = x^2 + 2 \cdot x \cdot (-7) + (-7)^2 = x^2 - 14x + 49$$

Indsætter vi dette får vi nu

$$(x-4)^{2} + (x-7)^{2} = 9$$

$$x^{2} - 8x + 16 + x^{2} - 14x + 49 = 9$$

$$x^{2} + x^{2} - 8x - 14x + 16 + 49 = 9$$

$$2x^{2} - 22x + 65 = 9$$

Vi trækker nu 9 fra på begge sider

$$2x^{2} - 22x + 65 - 9 = 9 - 9$$

$$2x^{2} - 22x56 = 0$$

Nu findes vi løsningerne til det ovenstående andengradsligning ved først at beregne determinanten

$$d = b^2 - 4ac = (-22)^2 - 4 \cdot 2 \cdot 56 = 36$$

Nu bestemmer vi løsningerne altså x-koordinatet til skæringen mellem cirklen og linjen

$$x_1 = \frac{-b + \sqrt{d}}{2a} = \frac{22 + \sqrt{36}}{2 \cdot 2} = \frac{22 + 6}{4} = \frac{28}{4} = 7$$
$$x_2 = \frac{-b - \sqrt{d}}{2a} = \frac{22 - \sqrt{36}}{2 \cdot 2} = \frac{22 - 6}{4} = \frac{16}{4} = 4$$

For at finde de tilsvarende skæringer med y-aksen indsætter vi de fundne x-værdier i linjens ligning

$$y_1 = x_1 - 2 = 7 - 2 = 5$$

 $y - 2 = x_2 - 2 = 4 - 2 = 2$

Vi har altså føgende skæringspunkter mellem linjen og cirklen

$$S_1 = (x_1, y_1) = (7, 5)$$

 $S_2 = (x_2, y_2) = (4, 2)$

Hvis vi sammenligner med tegningen vi får fra opgave 16a kan vi se at skærngspunkterne stemmer.

1.17 Opgave 17

En cirkel C er givet ved ligningen

$$C: (x-2)^2 + (y-3)^2 = 5^2$$

Bestem cirklens centrum og radius

Løsning

Hvis vi benytter os af den generelle formel for cirklens ligning fra opgave 16 kan vi aflæse cirklens centrum til C(2,3) og cirklens radius til r=5

1.18 Opgave 18

Undersøg om punktet (2,3) ligger på linjen bestemt ved 2x+y-7=0

Løsning

For at tjekke om et punkt ligger på en bestemt linje indsætter vi punktets x-koordinat på x'plads og punktets y-koordinat på y's plads.

$$2 \cdot 2 + 3 - 7 = 4 + 3 - 7 = 7 - 7 = 0$$

Da venstresiden af vores beregning stemmer med højresiden altså 0 kan vi konkludere at punktet (2,3) ligger på linjen.

1.19 Opgave 19

På figuren ses en linje i et koordinatsystem.

Bestem en ligning for linjen.

Løsning

Vi ved at en linje som denne har den generelle form y = ax + b. Her er a hældningen og b er skæringen med y-aksen. Vi aflæser skæringen med y-aksen på grafen til b = 4. For at bestemme hældningen a skal vi benytte os af følgende formel

$$a = \frac{y_2 - y_1}{x_2 - x_1}$$

Her er (x_1, y_1) og (x_2, y_2) to vilkårlige punkter på vores linje. For nemhedens skyld vælger vi punkterne til at være

$$(x_1, y_1) = (0, 4)$$

$$(x_2, y_2) = (2, 0)$$

Indsætter vi disse punkter i formlen bestemmer vi nu a

$$a = \frac{0-4}{2-0} = \frac{-4}{2} = -2$$

Linjens ligning er derfor

$$y = -2x + 4$$

Vektorer

1.20 Opgave 20

En vektor \vec{a} er bestemt ved

$$\vec{a} = \begin{pmatrix} -1\\4 \end{pmatrix}$$

Indtegn vektoren i et koordinatsystem, og bestem $|\vec{a}|$

Løsning

Hvis vi lader vores vektor starte i punktet (0,0) så fortæller vektorens koordinater os at vi skal bevæge os -1 hen ad x-aksen og 4 op ad y-aksen. Forbinder vi disse punkter og tegner en pil op for enden af stregen får vi følgende graf

1.21 Opgave 21

To vektorer \vec{a} og \vec{b} er givet ved

$$\vec{a} = \begin{pmatrix} -3\\4 \end{pmatrix} \text{ og } \vec{b} = \begin{pmatrix} 1\\3 \end{pmatrix}$$

Bestem vektor \vec{c} , når $\vec{c} = \vec{a} + 2\vec{b}$

Løsning

Vi kan bestemme vektor c bed følgende

$$\vec{c} = \vec{a} + 2\vec{b} = \begin{pmatrix} -3 \\ 4 \end{pmatrix} + 2\begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} -3 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \cdot 1 \\ 2 \cdot 3 \end{pmatrix} = \begin{pmatrix} -3 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ 6 \end{pmatrix} = \begin{pmatrix} -3 + 2 \\ 4 + 6 \end{pmatrix} = \begin{pmatrix} -1 \\ 10 \end{pmatrix}$$

1.22 Opgave 22

En vektor \vec{a} er bestemt ved

$$\vec{a} = \begin{pmatrix} 5 \cdot \cos(60^\circ) \\ 5 \cdot \sin(60^\circ) \end{pmatrix}$$

Forklar hvad tallene 5 og 60° fortæller om \vec{a}

Løsning

Tallet 5 fortæller os at \vec{a} har længden 5. Tallet 60° er vektorens retningsvinkel altså den vinkel der er mellem vektoren og x-aksen. Dette kan ses illustreret på følgende graf

1.23 Opgave 23

En vektor \vec{c} har længden 6 og retningsvinklen 127°

Bestem koordinaterne for \vec{c} .

Løsning

For at bestemme vektor c's koordinaterne gør vi bruge af følgende formel

$$\vec{c} = \begin{pmatrix} l \cdot \cos(v) \\ l \cdot \sin(v) \end{pmatrix}$$

Her er l
 vektorens længde og v er vektorens retningsvinkel. Indsætter vi de givne værdier får vi

$$\vec{c} = \begin{pmatrix} 6 \cdot \cos(127^{\circ}) \\ 6 \cdot \sin(127^{\circ}) \end{pmatrix} = \begin{pmatrix} -3.61 \\ 4.79 \end{pmatrix}$$

Vektoren er illustreret nedenfor

1.24 Opgave 24

På figuren nedenfor ses repræsentanter for vektorerne $\vec{a},\,\vec{b}$ og $\vec{c}.$

Indtegn en repræsentant for vektoren $\vec{a} + \vec{b} + \vec{c}$.

Løsning

Først aflæser vi vektorernes x og y komponenter. X komponenten af en vektor er hvor meget vi går hen ad x - aksen, og y komponent er hvor meget vi går op ad y aksen. Nedenstående figur illustrerer hvordan man kan aflæse en vektors x og y komponenter ud fra figuren.

De blå linjer er vektorernes x komponenter og de røde linjer er vektorernes y komponenter.

Vi har nu

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\vec{b} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

$$\vec{c} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$

Vi kan nu beregne summen af de 3 vektorer

$$\vec{a} + \vec{b} + \vec{c} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 3 \\ -1 \end{pmatrix} + \begin{pmatrix} 4 \\ 0 \end{pmatrix} = \begin{pmatrix} 1+3+4 \\ 2-1+0 \end{pmatrix} = \begin{pmatrix} 8 \\ 1 \end{pmatrix}$$

Nu indtegner vi vektoren $\binom{8}{1}$ ind i et koordinatsystem.

Funktioner

1.25 Opgave 25

På figuren nedenfor ses grafen for en funktion f.

Benyt figuren til at bestemme definitionsmængden og værdimængden for funktionen.

Løsning

Definitionsmængden for en funktion f (Dm(f)) er alle de tilladte x værdier som funktionen kan have. Kigger vi på figuren og går langs x-aksen støder vi først på punktet (-4;1). Den laveste x værdi funktionen f kan tage er derfor -4. Det sidste punkt vi støder på er punktet (5,5). Den højeste x værdi funktionen f kan tage er dermed 5.

Vi opskriver nu definitionsmængden for funktionen f som intervallet mellem dens laveste og højeste x værdi. Da det første punkt (-4; 1) var åbent hører den laveste x værdi ikke med og den første parentes er derfor åben (vender derfor udad)]. Da det sidste punkt (5; 5) bar lukket hører den højeste x værdi med og den sidste parentes er derfor lukket (vender indad)]. Vi får definitionsmængden

$$Dm(f) =]-4;5]$$

Værdimængden for en funktion f (Vm(f)) er alle de tilladte y værdier som funktionen kan have. Kigger vi på figuren og går langs y aksen fra bunden støder vi først på punktet (2; -7). Den laveste y værdi funktionen f kan tage er dermed -7. Det sidste punkt vi støder på er punktet (5; 5). Den højeste y værdi funktionen f kan tage er dermed 5.

Vi opskriver nu værdimængden for funktionen f som intervallet mellem dens lavest og højeste y værdi. Da begge punkterne (2; -7) og (5; 5) er lukkede er begge parenteserne i intervallet derfor lukkede. Vi får værdimængden

$$Vm(f) = [-7; 5]$$

1.26 Opgave 26

Tegn grafen for en funktion f, der opfylder følgende:

- definitionsmængden er Dm(f) = [-4; 5]
- funktionen har et maksimum i punktet (3;6)

Løsning

Når definitionsmængden er i det lukkede interval [-4, 5] betyder det at vores funktion har to lukkede punkter i x værdierne x=-4 of x=5. Derudover får vi at vide at funktionen har et maksimum i punktet (3;6). Det betyder at når funktionen f har x værdien x=3 skal dens y værdi være y=6 og på intet andet sted mellem x=-4 og x=5 må funktionen f have en y værdi der er større end eller lig med 6 ($y \ge 6$). Til de 2 lukkede punkter kan vi altså vælge en hvilket som helst y værdi som er skarpt mindre end 6 (y < 6). Jeg vælger y=1 i begge lukkede punkter og tegner nu de 3 punkter ind i et koordinatsystem. Forbinder man de 3 punkter med 2 rette linjer har vi nu tegnet en funktion som overholder kravene.

1.27 Opgave 27

En jernklods opvarmes og afkøles derefter af luften i lokalet. Afkølingen kan beskrives af funktionen

$$a(t) = 20 + 880 \cdot 0,95^t, t \ge 0$$

hvor afkølingen påbegyndes til t = 0 og a(t) er klodsens temperatur målt i °C til tiden t, målt i minutter.

a) Tegn grafen for funktionen.

Løsning

For at tegne grafen for funktionen kan vi opstille et sildeben for t værdierne 0, 3, 6, 9, 12.

Vi beregner nu a(t) for de forskellige t værdier i sildebenet

$$a(0) = 20 + 880 \cdot 0.95^{0} = 900.00$$

$$a(3) = 20 + 880 \cdot 0.95^{3} = 774.49$$

$$a(6) = 20 + 880 \cdot 0.95^{6} = 666.88$$

$$a(9) = 20 + 880 \cdot 0.95^{9} = 574.62$$

$$a(12) = 20 + 880 \cdot 0.95^{12} = 495.52$$

Udfylder vi sildebenet får vi

\mathbf{t}	0	3	6	9	12
a(t)	900	774,49	666,88	574,62	495,52

Nu kan vi så tage hver kolonne i sildebenet og indsætte dem som punkter i et koordinatsystem. Den første kolonne svarer altså til punktet (0, 900) den næste kolonne til punktet (3, 774,49) osv. Indsætter nu punkterne i et koordinatsystem og forbinder dem med en linje. Den indtegnede funktion kan ses på billedet nedenfor.

b) Bestem a(15)

Løsning

For at bestemme a(15) bruger vi funktionen a(t) og indsætter t=15. Vi beregner og får

$$a(15) = 20 + 880 \cdot 0,95^{15} = 427,70$$

Det betyder at efter t=15 minutter er klodsens temperatur a(15)=427,70 grader celcius.

1.28 Opgave 28

Funktionen f er bestemt ved

$$f(x) = -2 \cdot x + 4$$

Forklar hvilken betydning tallene -2 og 4 har for grafens udseende.

Løsning

Hvis vi sammenligner funktionen $f(x) = -2 \cdot x + 4$ for forskellige funktioners forskrifter kan vi se at det er en lineær funktion da den matcher med den generelle forskrift for en lineær funktion $f(x) = a \cdot x + b$.

Vi ved at a værdien for en lineær funktion er dens hældning, dvs når vi går en ud af x aksen, går funktionen hældningen op eller ned. b værdien er funktionens skæring med y aksen.

Det vil sige at de -2 er hældningen for funktionen f(x) og hver gang vi går 1 ud af x aksen går funktionen 2 ned.

Tallet 4 fortæller at funktionen f(x) skærer y aksen i y = 4.

Nedenfor er funktionen f(x) indtegnet i Geo Gebra hvor hældningen på -2 og skæringen med y aksen i y=4 er markeret.

1.29 Opgave 29

For en elektrisk komponent er den afsatte effekt P proportional med strømstyrken I. Det oplyses, at proportionalitetskonstanten er 12.

Opstil et udtryk for P som funktion af I.

Løsning

Når vi opstillet et udtryk for P som funktion af I skrives dette som P(I).

Vi får at vide at P er proportional med strømstyrken I, hvilket betyder at P er lig med I ganget med en proportionalitetskonstant. Da proportionalitetskonstanten er 12 får vi altså udtrykket

$$P(I) = 12 \cdot I$$

1.30 Opgave 30

På figuren ses grafen for et andengradspolynomium på formen $f(x) = a \cdot x^2 + b \cdot x + c$.

Bestem fortegnet for a, og bestem fortegnet for c.

Løsning

For et andengradspolynomium fortæller fortegnet af a om vores polynomie vender opad eller nedad. Da andengradspolynomiet på figuren vender nedad er fortegnet for a dermed negativt.

For et andengradspolynomium er c
 værdien der hvor polynomiet skærer y aksen. Da andengradspolynomiet på figuren skærer y aksen i
 y=1 er fortegnet for c dermed positivt.

1.31 Opgave 31

 ${\bf P} {\bf \mathring{a}}$ figuren ses grafen for den lineære funktion f.

a) Benyt figuren til at bestemme f(0)

Løsning

For at finde f(0) skal vi altså finde den y værdi vores funktion f
 har når vi står ved x værdien x=0. Aflæser vi y værdien får vi at f(0)=9. Dette kan ses på figuren neden
for

b) Benyt figuren til at løse lignignen f(x) = 0

Løsning

For at løse ligningen f(x) = 0 bliver vi bedt om at finde x værdien til funktionen f
 der hvor funktionen har y værdien 0 som er der hvor funktionen skærer x aksen. Vi aflæser løsningen til x = 3. Dette kan ses på figuren nedenfor

1.32 Opgave 32

På figuren ses graferne A, B og C for tre lineæra funktioner.

Det oplyses at funktionerne er bestemt ved forskrifterne

$$f(x) = 3x - 4$$
$$g(x) = 1, 5x - 2$$
$$h(x) = 1, 5x + 2$$

Afgør hvilken graf der hører til hvilken funktion. Begrund svaret.

Løsning

For en hver lineær funktion gælder det at dens b
 værdi er skæringen med y aksen. Da en lineær funktion har den generelle forskrift f(x) = ax + b kan vi altså se at b
 værdien for de 3 funktioner f(x), g(x), h(x) har forskellige b
 værdier og dermed forskellige skæringer med y aksen.

Da f(x) har b
 værdien b=-4 skærer den y aksen i y=-4 og svarer der
for til den røde lineære funktion B.

Da g(x) har b
 værdien b=-2 skærer den y aksen i y=-2 og svarer der
for til den blå lineære funktion C.

Da h(x) har b værdien b=2 skærer den y aksen i y=2 og svarer derfor til den grønne lineære funktion A.

1.33 Opgave 33

Figuren viser grafen for et andengradspolynomium f.

Benyt grafen til at løse ligningen f(x) = 6

Løsning

For at løse ligningen f(x) = 6 skal vi altså finde de steder funktionen har en y værdi på 6, og derefter aflæse de tilhørende x værdier.

Jeg tegner en vandret linje der går igennem y=6 og aflæser x værdierne til de steder hvor den vandrette linje skærer funktionen f.

Jeg få de 2 x værdier og dermed de 2 løsninger x=1 og x=5.

Løsningerne er illustreret på nedenstående figur.

1.34 Opgave 34

Figuren viser graferne for to eksponentialfunktioner f og g bestemt ved

$$f(x) = 0, 5^x$$
$$g(x) = 1, 5^x$$

Afgør hvilken graf, der hører til hvilken funktion.

Løsning

Vi ved at eksponentialfunktioner har den generelle forskrift

$$f(x) = a^x$$

Vi ved yderligere at for en eksponentialfunktion gælder det at

funktionen er aftagende når 0 < a < 1 funktionen er voksende når a > 1

Da funktionen f(x) har a værdien a=0,5 ved vi at den er aftagende og derfor svarer til den røde funktion A som er aftagende.

Da funktionen g(x) har a værdien a=1,5 ved vi at den er voksende og derfor svarer til den blå funktion B som er voksende.