PAPER

Compactness of Finite Union of Regular Patterns and Regular Patterns without Adjacent Variables

Naoto TAKETA[†], Nonmember, Tomoyuki UCHIDA[†], Takayoshi SHOUDAI^{††}, Satoshi MATSUMOTO^{†††}, Yusuke SUZUKI[†], and Tetsuhiro MIYAHARA[†], Members

A regular pattern is a string consisting of constant symbols and distinct variable symbols. The language L(p) of a regular pattern p is the set of all constant strings obtained by replacing all variable symbols in the regular pattern p with constant strings. \mathcal{RP}^k denotes the class of all sets consisting at most k ($k \ge 2$) regular patterns. For sets of regular patterns P and Q which are in the class \mathcal{RP}^k , we write $P \subseteq Q$ if for any regular pattern $p \in P$ there exits a regular pattern $q \in Q$ that is a generalization of p. In 1998 Sato et al.[1] showed that the finite set $S_2(P)$ of symbol strings is a characteristic set of $L(P) = \bigcup_{p \in P} L(p)$, where $S_2(P)$ is obtained from $P \in \mathcal{RP}^k$ by substituting variables with symbol strings of at most length 2. Sato et al.[1] also showed that \mathcal{RP}^k has compactness with respect to containment, if the number of constant symbols is greater than or equal to 2k - 1. In this paper, we check the results of Sato et al.[1] and correct the error of the proof of their theorem. Further, we consider the set \mathcal{RP}_{NAV} of all non-adjacent regular patterns, which are regular patterns without adjacent variables, and show that the set $S_2(P)$ obtained from a set P in the class \mathcal{RP}^k_{NAV} of at most k $(k \ge 1)$ non-adjacent regular patterns is a characteristic set of L(P). Further we show that \mathcal{RP}^k_{NAV} has compactness with respect to containment if the number of constant symbols is greater than or equal to k + 2. Thus we show that we can design an efficient learning algorithm of a finite union of pattern languages of non-adjacent regular patterns with the number of constant symbols which is smaller than the case of regular patterns.

key words: Regular Pattern Language, Compactness

1. Introduction

A pattern is a string consisting of constant symbols and variable symbols. For example, we consider constant symbols a,b,c and variable symbols x,y, then axbxcy is a pattern. \mathcal{P} denotes the set of all patterns. For a pattern $p \in \mathcal{P}$, the pattern language generated by p, denoted by L(p), or simply called a pattern language, is the set of all strings obtained by replacing all variable symbols with constant symbol strings, where the same variable symbol is replaced by the same constant string. For example the pattern language L(axbxcy) generated by the above pattern axbxcy denotes $\{aubucw \mid u \text{ and } w \text{ are constant strings that are not } \varepsilon\}$. A pattern where each variable symbol appears at most once is called a regular pattern. For example, a pattern axbxcy is not a regular pattern, but a pattern axbzcy with variable symbols x, y, z is a regular pattern. \mathcal{RP} denotes the set of

Manuscript received January 1, 2015.

Manuscript revised January 1, 2015.

†††Faculty of Science, Tokai University DOI: 10.1587/trans.E0.??.1

The results of this paper suggest efficient learning algorithms for the sets of regular patterns representing finite

all regular patterns. If a pattern $p \in \mathcal{P}$ is obtained from a pattern $q \in \mathcal{P}$ by replacing variable symbols in q with patterns, we say that q is a *generalization* of p and denote this by $p \leq q$. For example, a pattern q = axz is a generalization of a pattern p = axbxcy, because p is obtained from q by replacing the variable z in q with a pattern bxcy. So we write $p \leq q$. For patterns $p, q \in \mathcal{P}$, it is obvious that $p \leq q$ implies $L(p) \subseteq L(q)$. But, the converse, that is, the statement that $L(p) \subseteq L(q)$ implies $p \leq q$ does not always hold. With respect to this statement, Mukouchi[2] showed that if the number of constant symbols is greater than or equal to 3, for any regular pattern $p, q \in \mathcal{RP}$, $L(p) \subseteq L(q)$ implies $p \leq q$.

We denote by \mathcal{RP}^+ the class of all non-empty finite sets of regular patterns and by \mathcal{RP}^k the class of at most k ($k \ge 2$) regular patterns. For a set of regular patterns $P \in \mathcal{RP}^k$ we define $L(P) = \bigcup_{p \in P} L(p)$ and consider the class \mathcal{RPL}^k of regular pattern languages of \mathcal{RP}^k , where $\mathcal{RPL}^k = \{L(P) \mid$ $P \in \mathcal{RP}^k$ Let $P, Q \in \mathcal{RP}^k$ and $Q = \{q_1, \dots, q_k\}$. We denote by $P \sqsubseteq Q$ that for any regular pattern $p \in P$ there exists a regular pattern q_i such that $p \leq q_i$ holds. From definition, it is obvious that $P \subseteq Q$ implies $L(P) \subseteq L(Q)$. Then Sato et al.[1] shows that if $k \ge 3$ and the number of constant symbols is 2k-1 then the finite set $S_2(P)$ of constant symbols obtained from $P \in \mathcal{RP}^k$ by substituting variable symbols with constant strings of at most 2 length is a characteristic set of L(P), that is, for any regular pattern language $L' \in \mathcal{RPL}^k$, $S_2(P) \subseteq L'$ implies $L(P) \subseteq L'$. Thus they shows that the following three statements: (i) $S_2(P) \subseteq L(Q)$, (ii) $P \subseteq Q$ and (iii) $L(P) \subseteq L(Q)$ are equivalent. But the Lemma14 [1], which is used in this results, contains an error. In this paper we correct this lemma and give a correct proof showing the equivalence of the three statements shown in [1]. Sato et al.[1] shows that \mathcal{RP}^k has compactness with respect to containment if the number of constant symbols is greater than or equal to 2k - 1. On the contrary to this result, we show that the set $S_2(P)$ obtained from a set *P* in the class \mathcal{RP}_{NAV}^k of at most k ($k \ge 1$) regular patterns having non-adjacent variables is a characteristic set of L(P). Further, we show that if the number of constant symbols is greater than or equal to k + 2 then \mathcal{RP}_{NAV}^k has compactness with respect to containment. In Table 1 we summarize the all results in this paper.

[†]Graduate School of Information Sciences, Hiroshima City University

^{††}Department of Computer Science and Engineering, Fukuoka Institute of Technology

 Table 1
 The conditions of the number of constant symbols with respect to the compactness of inclusion

k	2	≥ 3
\mathcal{RP}^k	≥ 4	$\geq 2k-1$
\mathcal{RP}_{NAV}^k	$\geq k+2$	

unions of languages and the sets of regular patterns having non-adjacent variables.

This paper is organized as follows. In Sect.2 as preparations, we give definitions of pattern languages, regular pattern languages and compactness, and then introduce the results of Sato et al.[1]. In Sect.3, we show that $S_2(P)$ is a characteristic set of L(P) in \mathcal{RPL}^k and \mathcal{RP}^k has compactness with respect to containment. In Sect.4, we propose regular patterns having non-adjacent variables, show that $S_2(P)$ obtained from a set P in \mathcal{RP}^k_{NAV} is a characteristic set of L(P), and \mathcal{RP}^k_{NAV} has compactness with respect to containment.

2. Preliminaries

Let Σ be a non-empty finite set of constant symbols. Let Xbe an infinite set of variable symbols such that $\Sigma \cap X = \emptyset$ holds. Then, a *string* on $\Sigma \cup X$ is a sequence of symbols in $\Sigma \cup X$. Particularly, the string having no symbol is called the *empty string* and is denoted by ε . We denote by $(\Sigma \cup X)^*$ the set of all strings on $\Sigma \cup X$ and by $(\Sigma \cup X)^+$ the set of all strings on $\Sigma \cup X$ except ε , i.e., $(\Sigma \cup X)^+ = (\Sigma \cup X)^* \setminus \{\varepsilon\}$. A pattern on $\Sigma \cup X$ is a string in $(\Sigma \cup X)^*$. Note that the empty string ε is a pattern on $\Sigma \cup X$. A pattern p is said to be regular if each variable symbol appears at most once in p. The length of p, denote by |p|, is the number of symbols in p. Note that $|\varepsilon| = 0$ holds. The set of all patterns and regular patterns are denoted by \mathcal{P} and \mathcal{RP} , respectively. For a set S, we denote by $\sharp S$ the number of elements in S. Let p, q be strings. If p and q are equal as strings, we denote it by p = q. We denote by $p \cdot q$ the string obtained from p and q by concatenating q after p. Note that for a string pand the empty string ε , $p \cdot \varepsilon = \varepsilon \cdot p = p$. A substitution θ is a mapping from $(\Sigma \cup X)^*$ to $(\Sigma \cup X)^*$ such that (1) θ is a homomorphism with respect to string concatenation, i.e., $\theta(p \cdot q) = \theta(p) \cdot \theta(q)$ holds for patterns p and q, (2) $\theta(\varepsilon) = \varepsilon$ holds, (3) for each constant symbol $a \in \Sigma$, $\theta(a) = a$ holds, and (4) for each variable symbol $x \in X$, $|\theta(x)| \ge 1$ holds. Let x_1, \ldots, x_n are variable symbols and p_1, \ldots, p_n non-empty patterns. The notation $\{x_1 := p_1, \dots, x_n := p_n\}$ denotes a substitution that replaces each variable symbol x_i with a non-empty pattern p_i for $i \in \{1, ..., n\}$. For a pattern pand a substitution $\theta = \{x_1 := p_1, \dots, x_n := p_n\}$, we denote by $p\theta$ a new pattern obtained from p by replacing variable symbols x_1, \ldots, x_n in p with patterns p_1, \ldots, p_n according to θ , respectively. For a pattern p and q, the pattern q is a generalization of p, or p is an instance of q, denoted by $p \leq q$, if there exists a substitution θ such that $p = q\theta$ holds. If $p \leq q$ and $p \geq q$ hold, we denote it by $p \equiv q$. The notation $p \equiv q$ means that p and q are equal as strings except for variable symbols. For a pattern p, the pattern language

of p, denoted by L(p), is the set $\{w \in \Sigma^* \mid w \leq p\}$. For patterns p and q, it is clear that L(p) = L(q) if $p \equiv q$, and $L(p) \subseteq L(q)$ if $p \preceq q$. Note that $L(\varepsilon) = \{\varepsilon\}$. In particular, if p is a regular pattern, we say that L(p) is a regular pattern language. The set of all pattern languages and regular patterns languages are denoted by \mathcal{PL} and \mathcal{RPL} , respectively.

Lemma 1 (Mukouchi[2]): Let p and q be regular patterns. Then $p \le q$ if and only if $L(p) \subseteq L(q)$.

Next, we consider unions of pattern languages. The class of all non-empty finite subsets of \mathcal{P} is denoted by \mathcal{P}^+ , i.e., $\mathcal{P}^+ = \{P \subseteq \mathcal{P} \mid 0 < \sharp P < \infty\}$. For a positive integer k (k>0), the class of non-empty sets consisting of at most k patterns, i.e., $\mathcal{P}^k = \{P \subseteq \mathcal{P} \mid 0 < \sharp P \leq k\}$. We denote by \mathcal{PL}^k the class of unions of at most k pattern languages, i.e., $\mathcal{PL}^k = \{L(P) \mid P \in \mathcal{P}^k\}$, where $L(P) = \bigcup_{p \in P} L(p)$. In a similar way, we also define \mathcal{RP}^+ , \mathcal{RP}^k and \mathcal{RPL}^k . For P, Q in \mathcal{P}^+ , the notation $P \sqsubseteq Q$ means that for any $p \in P$ there is a pattern $q \in Q$ such that $p \preceq q$ holds. It is clear that $P \sqsubseteq Q$ implies $L(P) \subseteq L(Q)$. However, the converse is not valid in general.

Definition 1: Let C be a class of languages, L a language in C and S a non-empty finite subset of L. We say that S is a *characteristic* set of L within C if for any $L' \in C$, $S \subseteq L'$ implies $L \subseteq L'$.

Let n be a positive integer and p a regular pattern. We denote by $S_n(p)$ the set of all strings in Σ^* obtained by replacing all variable symbols in p with strings in Σ^+ of length at most n. Moreover, for a positive integer n and a set $P \in \mathcal{RP}^+$, let $S_n(P) = \bigcup_{p \in P} S_n(p)$. It is clear that $S_n(P) \subseteq S_{n+1}(P) \subseteq L(P)$ for any positive integer n.

Theorem 1 (Sato et al.[1]): Let k be a positive integer and $P \in \mathcal{RP}^k$. Then, there exists a positive integer n such that $S_n(P)$ is a characteristic set of L(P) within \mathcal{RPL}^k .

Sato et al.[1] showed that 2 is sufficient for the number n in the theorem above, under the assumption that the number of constants is not less than 2k - 1. Hence, in this paper, we consider a characteristic set $S_2(P)$ of L(P) within \mathcal{RPL}^k .

Theorem 2 (Sato et al.[1]): Let p, q, p_1 , p_2 , q_1 , q_2 , q_3 be regular patterns and x a variable symbol with $p = p_1 x p_2$ and $q = q_1 q_2 q_3$. Then $p \le q$ if the following three conditions are holds:

- (i) $p_1 \leq q_1 q_2$, (ii) $p_2 \leq q_2 q_3$,
- (iii) q_2 contains at least one variable symbol.

Lemma 2 (Sato et al.[1]): Suppose $\sharp \Sigma \geq 3$. Let p, p_1 , p_2 , q be regular patterns and x a variable symbol with $p = p_1 x p_2$. Let a, b and c be mutually distinct constant symbols. If $p_1 a p_2 \leq q$, $p_1 b p_2 \leq q$ and $p_1 c p_2 \leq q$, then $p \leq q$ holds.

Lemma 3 (Sato et al.[1]): Suppose $\sharp \Sigma \geq 3$. Let p_1, p_2, q_1, q_2 be regular patterns and x a variable symbol. Let a, b be constant symbols with $a \neq b$ and w a string in Σ^* . Let $p = p_1 AwxwBp_2$ and $q = q_1 AwBq_2$ be regular patterns that

satisfy the following three conditions:

- (i) $p_1 \leq q_1$,
- (ii) $p_2 \leq q_2$,
- (iii) $(A, B) \in \{(a, b), (b, a)\}.$

If $p\{x := a\} \le q$ and $p\{x := b\} \le q$, then we have $p \not \le q$.

From Lemma 2, the following lemma holds.

Theorem 3 (Sato et al.[1]): Let $\sharp \Sigma \geq 2k+1$, $P \in \mathcal{RP}^+$ and $Q \in \mathcal{RP}^k$. Then, the following (i), (ii) and (iii) are equivalent:

(i)
$$S_1(P) \subseteq L(Q)$$
, (ii) $P \sqsubseteq Q$, (iii) $L(P) \subseteq L(Q)$.

Example 1 in [1] is given as a counter-example of Theorem 3.

From Theorem 3,we have the following corollary.

Corollary 1 (Sato et al.[1]): Let $\sharp \Sigma \geq 3$ and p, q regular patterns. Then, the following (i), (ii) and (iii) are equivalent:

(i)
$$S_1(p) \subseteq L(q)$$
, (ii) $p \preceq q$, (iii) $L(p) \subseteq L(q)$.

3. Compactness for Sets of Regular Patterns

In this section, we define the compactness of sets of regular patterns, formally. Then, if $\sharp \Sigma \geq 2k-1$ holds, we show that \mathcal{RP}^k has compactness with respect to the containment.

Definition 2: Let C be a subset of \mathcal{RP}^+ . For any regular pattern $p \in \mathcal{RP}$ and any set $Q \in C$, the set C said to have *compactness with respect to containment* if there exists a regular pattern $q \in Q$ such that $L(p) \subseteq L(q)$ holds if $L(p) \subseteq L(Q)$ holds.

Lemma 4 (Sato et al.[1]): Let Σ be an alphabet with $\sharp \Sigma \geq 3$ and p,q regular patterns on Σ . Let D be the set of either (i) or (ii) of regular patterns on Σ below: Assume that $a \neq b$ and that a variable symbol y does not appear in p.

(i)
$$\{ay, by\}$$
 (ii) $\{ya, yb\}$.

Then, if $p\{x := r\} \leq q$ for all $r \in D$, then $p\{x := xy\} \leq q$.

Proof. It is obvious if no variable symbol appears in p. Therefore, let $p = p_1 x p_2$, where p_1, p_2 are regular patterns and x is a variable symbol. We assume that $p\{x := xy\} \not \leq q$ in order to derive the contradictions.

(i) Case of $D = \{ay, by\}$ $(a \neq b)$:

Since $p\{x := xy\} \not\preceq q$, $p_1ayp_2 \preceq q$ and $p_1byp_2 \preceq q$, there exist regular patterns q_1, q_2 on Σ such that $q = q_1ay_1wby_2q_2$ or $q = q_1by_1way_2q_2$ for some variable symbols y_1, y_2 ($y_1 \ne y_2$) and a constant string w ($|w| \ge 0$) from Theorem 2. When $q = q_1ay_1wby_2q_2$ holds, the following four conditions (1), (2), (1'), (2') holds:

- (1) $p_1 \leq q_1$
- (1') $p_2 \leq wby_2q_2 \text{ or } p_2 \leq y'wby_2q_2 \ (y' \in X)$

$$(2) p_1 \preceq q_1 a y_1 w$$

(2')
$$p_2 \leq q_2$$
 or $p_2 \leq y''q_2$ $(y'' \in X)$

From the above condition (2), there exist regular patterns p_1', p_1'' such that $p_1 = p_1'p_1'', p_1' \le q_1a$ and $p_1'' \le y_1w$ hold. Therefore, since $p = p_1xp_2 = p_1'p_1''xp_2$, if $p_2 \le wby_2q_2$ holds, $p \le q_1ap_1''xwby_2q_2 \equiv q\{y_1 := p_1''x\}$ holds. Otherwise $p_2 \le y'wby_2q_2$, $p \le q_1ap_1''xy'wby_2q_2 = q\{y_1 := p_1''xy'\}$ holds. Hence, $p \le q$ holds. This contradicts the assumption.

(ii) Case of $D = \{ya, yb\}$ $(a \neq b)$: By reversing the strings of p and q, we can prove that $p\{x := xy\} \leq q$ holds, in a similar way as (i).

Proposition 1: Let w be a string of constant symbols in Σ and a, b constant symbols in Σ . If

$$wa = bw \tag{1}$$

holds, then a = b holds.

Proof. If |w| = 0 or 1, it is trivial. We assume that for a string of constant symbols u with |u| < |w|, if ua = bu then a = b holds. When $|w| \ge 2$, since b is a prefix of w, there exists a string of constant symbols u such that w = bu. From bua = bbu, we have ua = bu. Thus, from the assumption, we have a = b.

Proposition 2: Let w be a string of constant symbols in Σ and a, b, c, d constant symbols in Σ . If

$$wda = bcw (2)$$

holds, then (b, c) = (a, d) or (b, c) = (d, a) hold.

Proof. We will prove this proposition by an induction on |w|. For i = 1, ..., |w|, we refer the *i*-th symbol of w as w[i-1].

- (i) |w| = 0: Directly from Eq. (2), (b, c) = (d, a) holds.
- (ii) |w| = 1: From w[0]da = bcw[0], we have w[0] = b, d = c, and a = w[0]. Thus, (b, c) = (a, d) holds.
- (iii) |w| = 2: From w[0]w[1]da = bcw[0]w[1], we have w[0] = b, w[1] = c, d = w[0], a = w[1]. Thus, (b,c) = (d,a) holds.
- (iv) |w| = 3: From w[0]w[1]w[2]da = bcw[0]w[1]w[2], we have w[0] = b, w[1] = c, w[2] = w[0], d = w[1], a = w[2]. Thus, (b, c) = (a, d) holds.
- (v) $|w| \ge 4$: We assume that for any string u with $0 \le |u| < n$, if uda = bcu holds, (b, c) = (a, d) or (b, c) = (d, a) hold. Since the string w has a prefix bc and a suffix da, there exists a string u with |u| = |w| 4 < |w| such that w = bcuda holds. Since wda = bcw, we have bcudada = bcbcuda, and then uda = bcu. Thus, from the assumption, we get (b, c) = (a, d) or (b, c) = (d, a).

From the above, we conclude that if wda = bcw holds, then (b, c) = (a, d) or (b, c) = (d, a) hold.

The conclusion from Proposition 2 shows that (a, d) = (b, c) or (a, d) = (c, b). Therefore, if the equation daw = wbd holds, we arrive at the same conclusion.

Proposition 3: Let w, w' be strings of constant symbols in Σ and a, b, c, d constant symbols in Σ . If

$$wdaw' = w'bcw (3)$$

holds, then (b, c) = (a, d) or (b, c) = (d, a) hold.

Proof. We will prove this proposition by an induction on |w| + |w'|. Without loss of generality, we assume that $|w| \ge |w'|$, because if |w| > |w'| holds, we arrive at the same conclusion: (a, d) = (b, c) or (a, d) = (c, b).

(i) $|w| \ge 0$ and |w'| = 0: Eq. (3) becomes wda = bcw. From Proposition 2, (b,c) = (a,d) or (b,c) = (d,a) hold.

We assume that for constant strings u and u' with |u| + |u'| < |w| + |w'|, if udau' = u'bcu holds, then (b, c) = (a, d) or (b, c) = (d, a) hold. We partition the relations between |w| and |w'| into the following four parts:

- (ii) $0 < |w'| \le |w| \le |w'| + 1$: When either |w| = |w'| or |w| = |w'| + 1, Eq. (3) is depicted as shown in Figs. 1 and 2, respectively. It When |w| = |w'|, (b, c) = (d, a) holds. When |w| = |w'| + 1, a = c and w = w'b = dw' hold. From Proposition 1, we get b = d. Therefore, (b, c) = (a, d) or (b, c) = (d, a) hold.
- (iii) $|w'| + 2 \le |w| \le 2|w'| 1$: On Eq. 3, since |wdaw'| =|w'bcw| = |w| + |w'| + 2, a suffix of w overlaps with a prefix of w as shown in Fig. 3. That is, there exists a constant string u of length 2|w| - (|w| + |w'| + 2) =|w| - |w'| - 2 such that u is a prefix and a suffix of w. Since uda is of length |w| - |w'|, uda is also a prefix of w. Similarly, bcu is also a suffix of w. Since $|w| - (|uda| + |bcu|) = 2|w| - |w'| \ge 1$, there exist a constant string u' of length 2|w'| - |w| such that w =udavbcu holds. Since w' is a suffix of w and |u'bcu| =(2|w'| - |w|) + 2 + (|w| - |w'| - 2) = |w'|, we have w' = u'bcu. Similarly, we have w' = udau'. Thus, we have a new equation u'bcu = udau'. Since |u| = $|w|-|w'|-2 \le |w|-3 < |w|$ and |u'|=2|w'|-|w|<|w|, i.e., |u| + |u'| < |w| + |w'| holds, from the induction hypothesis on |u| + |u'|, (b,c) = (a,d) or (b,c) =(d, a) hold.
- (iv) $2|w'| \le |w| \le 2|w'| + 3$: When |w| = 2|w'|, we easily see that w = w'w'. Therefore, w'da = bcw' holds as shown in Fig. 4. From Proposition 2, (b, c) = (a, d) or (b, c) = (d, a) hold. When |w| = 2|w'| + i (i = 1, 2, 3), Eq. (3) is depicted as shown in Figs. 5, 6, and 7. When |w| = 2|w'| + 2, trivially we have (b, c) = (d, a). When |w| = 2|w'| + 1 and |w| = 2|w'| + 3, from Proposition 1, (b, c) = (a, d) holds.
- (v) $2|w'| + 4 \le |w|$: Since the strings w'bc and adw' are a prefix and a suffix of w, respectively, and |w'bc| + |adw'| = 2|w'| + 4, there exists a string u with $|u| \ge 0$ such that w = w'bcudaw' holds. From Eq. (3), w'bcudaw'daw' = w'bcw'bcudaw', i.e., udaw' = w'bcu holds as shown in Fig. 8. Let u' = w'. Since |u| + |u'| = |w| (2|w'| + 4) + |w'| < |w| + |w'|, from the induction hypothesis on |u| + |u'|, (b, c) = (a, d) or

Fig. 1 Subcase |w'| = |w''| of (ii) of *Claim* 5 (Lemma 5)

w'		d	а	w''
w"	b	С		w'

Fig. 2 Subcase |w'| = |w''| + 1 of (ii) of Claim 5 (Lemma 5)

Fig. 3 Case $|w''| + 2 \le |w'| \le 2|w''| - 1$ of (iii) of *Claim* 5 (Lemma 5)

Fig. 4 Subcase |w'| = 2|w''| of (iv) of *Claim* 5 (Lemma 5)

Fig. 5 Subcase |w'| = 2|w''| + 1 of (iv) of Claim 5 (Lemma 5)

Fig. 6 Subcase |w'| = 2|w''| + 2 of (iv) of *Claim* 5 (Lemma 5)

Fig. 7 Subcase |w'| = 2|w''| + 3 of (iv) of *Claim* 5 (Lemma 5)

Fig. 8 Case $2|w''| + 4 \le |w'|$ of (v) of *Claim* 5 (Lemma 5)

$$(b,c) = (d,a)$$
 hold.

From the above, we conclude that if wdaw' = w'bcw, then (b, c) = (a, d) or (b, c) = (d, a) hold.

Lemma 5: Let Σ be an alphabet with $\sharp \Sigma \geq 3$ and p, q regular patterns on $\Sigma \cup X$. Let D be the following set of regular patterns on $\Sigma \cup X$. Then, if $p\{x := r\} \leq q$ for all $r \in D$, then $p\{x := xy\} \leq q$:

$$D = \{ya, bc, dy\} (b \notin \{a, d\} \text{ and } c \notin \{a, d\}).$$

Proof. It is obvious if no variable symbol appears in p. Thus, for a variable symbol $x \in X$, let $p = p_1 x p_2$, where each p_i (i = 1, 2) is a regular pattern on $\Sigma \cup X$ or an empty symbol. We assume that $p\{x := xy\} \not \leq q$ in order to derive the contradiction.

Since $p\{x := r\} \leq q$ for all $r \in D$, there are three strings of length 2 corresponding to ya, bc, dy in q. Note that the three strings may appear partly overlapping. The symbols appearing in D corresponds to a variable or a constant symbol in q. Let y_1, y_2, y_3 be variable symbols appearing in q. The strings ya and dy must correspond to the strings y_1a and dy_2 in q, respectively. There are the following three possibilities of strings in q that corresponds to bc in $p\{x := bc\}$.

(a)
$$bc$$
, (b) y_3c , (c) by_3 .

Suppose that there exists (b) y_3c in q that corresponds to bc in $p\{x := bc\}$, i.e., there exist regular patterns q_1 and q_2 such that (1) $p_1bcp_2 \leq q_1y_3cq_2$, (2) either $p_1 \leq q_1$ or $p_1 \leq q_3y_3'$ for some variable symbol $y_3' \in X$, and (3) $p_2 \leq q_2$. In this case, it is easy to see that $p\{x := yc\} = p_1ycp_2 \leq q_1y_3cq_2$ also holds. Thus, both $p\{x := ya\} \leq q$ and $p\{x := yc\} \leq q$ holds. Since $c \neq a$, from (ii) of Lemma 4, $p\{x := xy\} \leq q$ holds. This contradicts the assumption. Similarly, the case (c) derives a contradiction from (i) of Lemma 4. Therefore, in the following, we consider only the case of (a).

Since $p\{x := xy\} \not\preceq q$ and the condition $b \notin \{a, d\}$ and $c \notin \{a, d\}$, the regular pattern q can be expressed in one of the following forms: Let y_1, y_2 be distinct variable symbols in X and q_1, q_2, w, w' either an empty string or a regular pattern on $\Sigma \cup X$.

- (a1) $q = q_1 AwBw'Cq_2$, where $\{A, B, C\} = \{y_1 a, bc, dy_2\}$.
- (a2) $q = q_1 AwBq_2$, where $\{A, B\} = \{dy_1 a, bc\}$.
- (a3) $q = q_1 A w B q_2$, where $\{A, B\} = \{y_1 a y_2, bc\} (a = d)$.

Firstly, we will consider the case (a1).

Claim 1. $B \notin \{y_1a, dy_2\}$.

Proof of Claim 1. Suppose that $(A, B, C) = (dy_2, y_1a, bc)$. For some $y'_1, y'_2 \in X$, the following conditions hold:

(1)
$$p_1 \preceq q_1$$
 (1') $p_2 \preceq wy_1aw'bcq_2$ or $p_2 \preceq y_2'wy_1aw'bcq_2$ (2) $p_1 \preceq q_1dy_2w$ or $p_1 \preceq q_1dy_2wy_1'$ (2') $p_2 \preceq w'bcq_2$

(3) $p_1 \leq q_1 dy_2 w y_1 a w'$ (3') $p_2 \leq q_2$

When $p_2 \leq wy_1aw'bcq_2$ of (1') holds, let $q_1' = q_1dy_2$, $q_2' = wy_1aw'$, $q_3' = bcq_2$. Since $p_1 \leq q_1dy_2wy_1aw'$ holds from (3), $p_1 \leq q_1'q_2'$ and $p_2 \leq q_2'q_3'$ hold and q_2' contains a variable symbol. When $p_2 \leq y_2'wy_1aw'bcq_2$ of (1') holds,

let $q_1' = q_1d$, $q_2' = y_2wy_1aw'$, $q_3' = bcq_2$. Since $p_1 \le q_1dy_2wy_1aw'$ holds from (3), $p_1 \le q_1'q_2'$ and $p_2 \le q_2'q_3'$ hold and q_2' contains a variable symbol. In both cases, from Theorem 2, $p \le q$ holds. It contradicts the assumption that $p\{x := xy\} \npreceq q$.

Similarly, we can show that any case of $(A, B, C) = (y_1a, dy_2, bc)$, (bc, y_1a, dy_2) , (bc, dy_2, y_1a) contradicts the assumption. Therefore, we have $B \notin \{y_1a, dy_2\}$. (End of Proof of Claim)

Claim 2. $(A, B, C) = (y_1a, bc, dy_2)$.

Proof of Claim 2. From *Claim* 1, we have B = bc. Suppose that $(A, B, C) = (dy_2, bc, y_1a)$, i.e., $q = q_1dy_2wbcw'y_1aq_2$ holds. Then, the following conditions hold: for $y'_1, y'_2 \in X$,

(1)
$$p_1 \preceq q_1$$
 (1') $p_2 \preceq wbcw'y_1aq_2$ or $p_2 \preceq y_2'wbcw'y_1aq_2$ (2) $p_1 \preceq q_1dy_2w$ (2') $p_2 \preceq w'y_1aq_2$ (3) $p_1 \preceq q_1dy_2wbcw'$ or $p_1 \preceq q_1dy_2wbcw'y_1'$

From $p_1 \leq q_1 dy_2 w$ of (2), for some p_1' and p_1'' , p_1 is expressed as $p_1'p_1''$, where $p_1' \leq q_1 d$ and $p_1'' \leq y_2 w$. When $p_2 \leq wbcw'y_1aq_2$ of (1'), we have $p=p_1xp_2=p_1'p_1''xp_2 \leq q_1dp_1''xwbcw'y_1aq_2=q\{y_2:=p_1''x\}$. Thus, $p\{x:=xy\} \leq q\{y_2:=p_1''xy\}$ holds. It contradicts the assumption that $p\{x:=xy\} \nleq q$. When $p_2 \leq y_2'wbcw'y_1aq_2$ of (1'), we have $p=p_1xp_2=p_1'p_1''xp_2 \leq q_1dp_1''xy_2'wbcw'y_1aq_2=q\{y_2:=p_1''xy_2'\}$. Thus, $p\{x:=xy\} \leq q\{y_2:=p_1''xyy_2'\}$ holds. It also contradicts the assumption. Therefore, we have $(A,B,C)=(y_1a,bc,dy_2)$. (End of Proof of Claim)

From Claim 2, q is expressed as $q_1y_1awbcw'dy_2q_2$, where $b \notin \{a,d\}$ and $c \notin \{a,d\}$. If $p\{x := xy\} \npreceq q$ holds, we have the following conditions: for $y_1', y_2' \in X$,

(1)
$$p_1 \leq q_1 \text{ or } p_1 \leq q_1 y_1'$$
 (1') $p_2 \leq wbcw'dy_2q_2$
(2) $p_1 \leq q_1 y_1 aw$ (2') $p_2 \leq w'dy_2q_2$
(3) $p_1 \leq q_1 y_1 awbcw'$ (3') $p_2 \leq q_2 \text{ or } p_2 \leq y_2'q_2$

Claim 3. w and w' contains no variable symbol.

Proof of Claim 3. Let $q_1' = q_1y_1a$, $q_2' = wbcw'$, and $q_3' = dy_2q_2$. From (1') and (3), $p_1 \leq q_1'q_2'$ and $p_2 \leq q_2'q_3'$. If q_2' contains a variable symbol, from Theorem 2, $p \leq q$ holds. It contradicts the assumption. Therefore, w and w' contains no variable symbol. (*End of Proof of Claim*)

From Claim 3, w and w' are strings consisting of symbols in Σ . From (1') and (2'), wbcw'd and w'd are prefixes of p_2 , and from (2) and (3), awbcw' and aw are suffixes of p_1 . From these facts, if |w| = |w'|, b = d and a = c hold, and if |w| = |w'| + 1, a = b holds. If |w| = |w'| + 2, since awbcw' and aw are suffixes of p_1 , and since $|w| \ge 2$, a is a suffix of w. From (1') and (2'), since wbcw'd and w'd are prefixes of p_2 , we have w = w'da. Since awbcw' and aw are suffixes of p_1 , we have w = bcw'. Thus, w'da = bcw' holds. From Proposition 2, (b, c) = (a, d) or (b, c) = (d, a) hold. Therefore, these cases contradict the

conditions $b \notin \{a, d\}$ and $c \notin \{a, d\}$. From (2) and (3), if $|w| \ge |w'| + 3$, there exists a string w'' of length |w| - |w'| - 2 such that w = w''bcw' holds. Moreover, from (2) and (3), since |aw| < |wbcw'| and aw = aw''bcw', aw'' is a suffix of w. On the other hand, from (1') and (2'), w'd is a prefix of w. Since |w'd| + |aw''| = |w'| + |w''| + 2 = |w|, we have w = w'daw''. Therefore, w'daw'' = w''bcw' holds. From Proposition 3, we have (b, c) = (a, d) or (b, c) = (d, a). It contradicts the conditions $b \notin \{a, d\}$ and $c \notin \{a, d\}$.

From the above, we conclude that all cases of (a1) contradict the assertion that $p\{x := xy\} \not \leq q$ and that $b \notin \{a, d\}$ and $c \notin \{a, d\}$.

Secondly, for the case (a2), we suppose that $(A, B) = (dy_1a, bc)$, i.e., $q = q_1dy_1awbcq_2$ holds. Then, the following conditions hold: for $y'_1 \in X$,

(1)
$$p_1 \preceq q_1$$
 (1') $p_2 \preceq awbcq_2$ or $p_2 \preceq y_1'awbcq_2$ (2) $p_1 \preceq q_1d$ or $q_1 \preceq q_1dy_1'$ (3) $p_1 \preceq q_1dy_1aw$ (3') $p_2 \preceq q_2$

From $p_1 \leq q_1 dy_1 aw$ of (3), for some p_1' and p_1'' , p_1 is expressed as $p_1'p_1''$, where $p_1' \leq q_1 d$ and $p_1'' \leq y_1 aw$. When $p_2 \leq awbcq_2$ of (1'), we have $p = p_1 x p_2 = p_1'p_1'' x p_2 \leq q_1 dp_1'' xawbcq_2 = q\{y_1 := p_1''x\}$. Thus, $p\{x := xy\} \leq q\{y_1 := p_1''xy\}$ holds. It contradicts the assumption. When $p_2 \leq y_1' awbcq_2$ of (1'), we have $p = p_1 x p_2 = p_1'p_1'' x p_2 \leq q_1 dp_1'' x y_1' wbcq_2 = q\{y_1 := p_1'' x y_1'\}$. Thus, $p\{x := xy\} \leq q\{y_1 := p_1'' x y y_1'\}$ holds. It contradicts the assumption that $p\{x := xy\} \nleq q$. Similarly, we can show that the case $(A, B) = (bc, dy_1 a)$ contradicts the assumption.

Finally, we will prove that for the case (a3), $p\{x := xy\} \le q$ holds. Suppose that $(A, B) = (y_1ay_2, bc)$, i.e., $q = q_1y_1ay_2wbcq_2$ holds. Then, the following conditions hold: for $y_1' \in X$,

(1)
$$p_1 \leq q_1$$
 or $p_2 \leq y_2 w b c q_2$
 $p_1 \leq q_1 y'_1$
(2) $p_1 \leq q_1 d y_1$ (2') $p_2 \leq w b c q_2$ or $p_2 \leq y'_2 w b c q_2$
(3) $p_1 \leq q_1 y_1 a y_2 w$ (3') $p_2 \leq q_2$

Let $q_1' = q_1y_1a$, $q_2' = y_2w$, $q_3' = bcq_2$. From (3) and (1'), we have $p_1 \leq q_1'q_2'$ and $p_2 \leq q_2'q_3'$, respectively. Since q_2' contains a variable symbol, from Theorem 2, $p \leq q$ holds. It contradicts the assumption. Similarly, we can show that the case $(A, B) = (bc, y_1ay_2)$ contradicts the assumption.

From the above, we conclude that if $p\{x := r\} \leq q$ for all $r = \{ya, bc, dy\}$ ($b \notin \{a, d\}$ and $c \notin \{a, d\}$), then $p\{x := xy\} \leq q$ holds.

Lemma 6: Let Σ be an alphabet with $\sharp \Sigma \geq 3$ and p, q regular patterns on $\Sigma \cup X$. Let D be one of the following sets (i), (ii) of regular patterns on $\Sigma \cup X$. Then, if $p\{x := r\} \leq q$ for all $r \in D$, then $p\{x := xy\} \leq q$:

```
(i) D = \{ya, bc, dy\} (b \notin \{d\} and c \notin \{a, d\}),
```

(ii)
$$D = \{ya, bc, dy\}$$
 $(b \notin \{a, d\} \text{ and } c \notin \{a\}).$

Proof. It is obvious if no variable symbol appears in p. Therefore, let $p = p_1 x p_2$, where p_i (for i = 1, 2) is either a regular pattern or an empty string, and x is a variable symbol. We assume that $p\{x := xy\} \not\preceq q$ in order to derive a contradiction. In the case of (ii), by reversing the strings p and p, we can prove that the assumption $p\{x := xy\} \preceq q$ is contradicted, as in the case of (i). Therefore, in the following, we consider only the case of (i).

Let $D = \{ya, bc, dy\}$ ($b \notin \{d\}$ and $c \notin \{a, d\}$). Since $p\{x := r\} \leq q$ for all $r \in D$, there are three strings of length 2 corresponding to ya, bc, dy in q. Note that the three strings may appear partly overlapping. The symbols appearing in D corresponds to a variable or a constant symbol in q. Let y_1, y_2 be variable symbols appearing in q. The strings ya and dy must correspond to the strings y_1a and dy_2 in q. For the same reasons stated at the beginning of Lemma \sim 5, the string bc corresponds to the string bc in q as well.

Let A, B, C be regular patterns on $\Sigma \cup X$, where $\{A, B, C\} = \{y_1a, ac, dy_3\}$. Let $q = q_1AwBw'Cq_2$. Since $p\{x := xy\} \not\preceq q$, the regular pattern q can be expressed in one of the following forms: Let y_1, y_2 be distinct variable symbols in X and w, w' either an empty string or a regular pattern on $\Sigma \cup X$.

```
(a1) q = q_1 AwBw'Cq_2, where \{A, B, C\} = \{y_1 a, bc, dy_2\}.
```

(a2)
$$q = q_1 AwBq_2$$
, where $\{A, B\} = \{y_1 ac, dy_2\}$ $(b = a)$.

(a3)
$$q = q_1 AwBq_2$$
, where $\{A, B\} = \{y_1 ay_2, bc\}$ $\{a = d\}$.

(a4)
$$q = q_1 A q_2$$
, where $\{A\} = \{dy_1 ac\} (b = a)$.

In these cases, just like in cases (a2) and (a3) of Lemma 5, the cases (a3) and (a4) also lead to contradictions based on Theorem 2. Moreover, in the cases (a1) and (a2), just like in Lemma 5, it is shown that $q=q_1y_1awacw'dy_2q_2$ and $q=q_1y_1acwdy_2q_2$, respectively, and w,w' contain no variable symbol.

Firstly, we will prove that for the case (a1), $p\{x := xy\} \le q$ holds. Since $p\{x := r\} \le q$ for all $r \in \{ya, ac, dy\}$ and $p\{x := xy\} \not\preceq q$ hold, the following conditions hold: For $(A, B, C) = (y_1a, ac, dy_2)$,

(1)
$$p_1 \leq q_1$$
 (1') $p_2 \leq wBw'Cq_2$
(2) $p_1 \leq q_1Aw$ (2') $p_2 \leq w'Cq_2$
(3) $p_1 \leq q_1AwBw'$ (3') $p_2 \leq q_2$

Let $q_1' = q_1A$, $q_2' = wBw'$, $q_3' = Cq_2$. From (3) and (1'), we have $p_1 \leq q_1'q_2'$, $p_2 \leq q_2'q_3'$. From Lemma 2, if q_2' contains a variable, $p \leq q$ holds. Therefore, B must be bc. If $A = dy_3$, from (2), $p_1 \leq q_1 dy_3 w$ holds. Let $p_1 = p_1'p_1'', p_1' \leq q_1d$, and $p_1'' \leq y_3 w$. From (1'), we have $p = p_1xp_2 = p_1'p_1''xp_2 \leq q_1dp_1''xwbcw'y_1aq_2 = q\{x := p_1''x\}$. This shows that there is a substitution θ such that $p = q\theta$ holds, and this contradicts the assumption. Therefore, we only need to consider the case where $A = y_1a$, B = bc, and $C = dy_3$.

From the above, we consider two cases: one in which the symbols overlap and the other in which they do not.

Fig. 9 Substitutions for p and each correspondence to q.

- (a1) $q = q_1 y_1 a w a c w' d y_3 q_2,$
- (a2) $q = q_1 y_1 a c w d y_3 q_2 \ (a = b).$
- (a1) From the proof of Lemma 5, $p\{x := xy\} \le q$ holds. Therefore, it contradicts the assumption.
- (a2) Let $q = q_1y_1acwdy_3q_2$ (a = b). For this q, the following conditions hold:
 - (1) $p_1 \preceq q_1$ (1') $p_2 \preceq cwdy_3q_2$ (2) $p_1 \preceq q_1y_1$ (2') $p_2 \preceq wdy_3q_2$ (3) $p_1 \preceq q_1y_1acwdy_3$ (3') $p_2 \preceq q_2$
- If |w| = 0, from (1') and (2'), the prefix of p_2 is cd and d. Therefore, c = d. This contradicts the fact that $c \neq d$.

If |w| = 1, from (1') and (2'), the prefix of p_2 is cwd and wd. Therefore, w = c = d. This contradicts the fact that $c \neq d$.

If $|w| \ge 2$, then from (1') and (2'), prefixes of p_2 is cwd and wd. Let w be $w_1w_2w_3\cdots w_{n-1}w_n$ ($n\ge 2$, $w_i\in \Sigma$ for $i=1,\ldots,n$). From cw=wd, a prefix of w is c and a suffix of w is d. Therefore, we have $w=cw_2w_3\cdots w_{n-1}d$. Since $cw=cw_2w_3\cdots w_{n-1}d$, $wd=cw_2w_3\cdots w_{n-1}dd$, from cw=wd, $w_i=w_{i+1}$ holds for $i=2,\ldots,n-2$. Therefore, c=d. This contradicts the fact that $c\ne d$.

When the conditions of both Lemmas 5 and 6 are not satisfied, counterexamples exist as follows:

Proposition 4: Let Σ be an alphabet with $\sharp \Sigma \geq 3$. For a variable symbol y, let $D = \{ya, bc, dy\}$ (b = a and c = d). There exist regular patterns p and q on Σ such that $p\{x := r\} \leq q$ for any $r \in D$, but $p\{x := xy\} \not \leq q$.

Proof. We give an example which shows this proposition. Let a, b, c, d, e be constant symbols in Σ and x, y, y_1, y_2 variable symbols in X. Let

```
p = eabcbcadabcbcadaxbcadadabcbcadade,

q = y_1 abcbcadabcbcadabcbcadady_2  (b = a \text{ and } c = d).
```

Obviously $p\{x := xy\} \not\preceq q$ holds. For these p and q, the condition for Proposition 4 holds as follows (see also Fig. 9):

```
p \{x := ya\}
= (eabcbcadabcbcaday)abcadadabcbcadade
= q\{y_1 := eabcbcadabcbcaday, y_2 := e\}
\leq q,
```

```
p \{x := bc\}
= (eabcbcad)abcbcadabcbcadad(abcbcadade)
= q\{y_1 := eabcbcad, y_2 := abcbcadade\}
\leq q,
p \{x := dy\}
= eabcbcadabcbcadad(ybcadadabcbcadade)
= q\{y_1 := e, y_2 := ybcadadabcbcadade\}
\leq q.
```

In Lemma 14 (ii) of [1], they stated that, when $\sharp \Sigma \geq 3$, for regular patterns p,q, if $p\{x:=r\} \leq q$ for any $r \in D$, then $p\{x:=xy\} \leq q$ holds, where $D=\{a_1b_1,a_2b_2,a_3b_3\}$ $\{a_i \neq a_j \text{ and } b_i \neq b_j \text{ for each } i,j \ (i \neq j,1 \leq i,j \leq 3)\}$. Unfortunately, there exist the following counterexamples of Lemma 14 (ii) of [1].

Example 1: Assume that $a_1 = b_2$ and $a_3 = b_1$ hold.

- (1) Let $p = ca_1x'a_3c$ and $q = xa_1a_3y$. It is clear that $\{x := xy\} \not \preceq q$ holds. However, we can see that $p\{x' := a_1b_1\} \preceq q$, $p\{x' := a_2b_2\} \preceq q$ and $p\{x' := a_3b_3\} \preceq q$ hold, since $p\{x' := a_1b_1\} = ca_1a_1b_1a_3c = q\{x := ca_1, y := a_3c\}$, $p\{x' := a_2b_2\} = ca_1a_2b_2a_3c = q\{x := ca_1a_2, y := c\}$ and $p\{x' := a_3b_3\} = ca_1a_3b_3a_3c = q\{x := c, y := b_3a_3c\}$ hold.
- (2) Let $p = cb_2a_1b_1b_2x'a_1b_1b_2a_3c$ and $q = xb_2a_1b_1b_2a_3y$. It is clear that $p\{x := xy\} \not \leq q$ holds. However, we have $p\{x' := a_1b_1\} \leq q$, $p\{x' := a_2b_2\} \leq q$, and $p\{x' := a_3b_3\} \leq q$, since $p\{x' := a_1b_1\} = cb_2a_1b_1b_2a_1b_1a_1b_1b_2a_3c = q\{x := cb_2a_1b_1, y := b_2a_3c\}$, $p\{x' := a_2b_2\} = cb_2a_1b_1b_2a_2b_2a_1b_1b_2a_3c = q\{x := cb_2a_1b_1b_2a_2, y := c\}$, and $p\{x' := a_3b_3\} = cb_2a_1b_1b_2a_3b_3a_1b_1b_2a_3c = q\{x := c, y := b_3a_1b_1b_2a_3c\}$ hold.

Lemma 7: Let $D = \{a_1b_1, a_2b_2, a_3b_3\}$, where $a_i \neq a_j$ and $b_i \neq b_j$ for each i, j ($i \neq j, 1 \leq i, j \leq 3$), $b_1 \neq a_2$ and $b_2 \neq a_3$. Let p, q be regular patterns such that a variable symbol y does not appear in p. Then, if $p\{x := r\} \leq q$ for all $r \in D$, then $p\{x := xy\} \leq q$.

Proof. It is obvious if the variable symbol x does not appear in p. Therefore, let $p = p_1xp_2$, where p_1, p_2 are regular patterns. We assume that $p\{x := xy\} \not \le q$ in order to derive

the contradictions. Since $p\{x := r\} \leq q$ holds for any $r \in D$, the regular pattern q contains a_1b_1, a_2b_2 and a_3b_3 . We remark that a_i and b_j may be the same for $i, j (1 \leq i, j \leq 3)$. Since $p\{x := r\} \leq q$ for all $r \in D$ holds, there exist the following 10 cases (i)–(xv) for three regular patterns on Σ contained in q that correspond to three constant strings in D: Here, y_1, y_2, y_3 are variable symbols.

- (i) a_1b_1, a_2b_2, a_3b_3 (vi) a_1b_1, y_1b_2, y_2b_3 (ii) a_1b_1, a_2b_2, a_3y_1 (vii) y_1b_1, y_2b_2, y_3b_3 (iii) a_1b_1, a_2b_2, y_1b_3 (viii) y_1b_1, y_2b_2, a_3y_3 (iv) a_1b_1, y_1b_2, a_3y_2 (ix) y_1b_1, a_2y_2, a_3y_3
- (v) a_1b_1, a_2y_1, a_3y_2 (x) a_1y_1, a_2y_2, a_3y_3

For the case (iv), we can prove that $p\{x := xy\} \le q$ holds from Lemma 5. For the cases (v)–(x), we can prove that $p\{x := xy\} \le q$ holds from Lemma 4. Hence, for the cases (i)–(iii), we will prove that $p\{x := xy\} \le q$ holds.

(I) Case of (i), that are the cases that q contains a_1b_1 , a_2b_2 and a_3b_3 :

We consider the following four cases (I-1)-(I-4) of q for some regular patterns q_1, q_2 and some constant strings w, w' ($|w| \ge 0$ and $|w'| \ge 0$):

- (I-1) $q = q_1 a_1 b_1 w a_2 b_2 w' a_3 b_3 q_2$,
- (I-2) $q = q_1 a_1 b_1 a_3 b_3 q_2$ ($b_1 = a_2$ and $a_3 = b_2$),
- (I-3) $q = q_1 a_1 b_1 b_2 w a_3 b_3 q_2$ ($b_1 = a_2$),
- (I-4) $q = q_1 a_1 b_1 w a_2 b_2 b_3 q_2$ ($b_2 = a_3$).
- (I-1) Case of $q = q_1 a_1 b_1 w a_2 b_2 w' a_3 b_3 q_2$: Assume that the following six conditions (1),(2),(3),(1'),(2'),(3') are hold.
 - $(1) p_1 \leq q_1 \qquad \qquad (1') p_2 \leq w a_2 b_2 w' a_3 b_3 q_2$
 - (2) $p_1 \leq q_1 a_1 b_1 w$ (2') $p_2 \leq w' a_3 b_3 q_2$
 - (3) $p_1 \leq q_1 a_1 b_1 w a_2 b_2 w'$ (3') $p_2 \leq q_2$

If |w| = |w'| holds, $a_1b_1wa_2b_2w'$ and a_1b_1w are the suffix of p_1 from the above conditions (2) and (3). Then, $a_1b_1w = a_2b_2w'$. Hence, $a_1b_1 = a_2b_2$. This contracts the assumption of $a_1 \neq a_2$ and $b_1 \neq b_2$.

If |w|+1=|w'| holds, $wa_2b_2w'a_3b_3$ and $w'a_3b_3$ are the prefix of p_2 . If there exists a constant symbol w_1 such that $w'a_3b_3=ww_1a_3b_3$, then b_2 and a_3 are the same symbol from $wa_2b_2=ww_1a_3$. From the above conditions (2) and (3), $a_1b_1wa_2b_2w'$ and a_1b_1w are the suffix of p_1 . Then, there exists a constant symbol w_2 such that $w'=w_2w$, then b_2 and a_1 are the same symbol from $b_2w_2w=a_1b_1w$. Hence, from $b_2=a_3$, a_3 and a_1 are same symbol. This contradicts the assumption of $a_3 \neq a_1$.

If |w|+1 < |w'|, from the above (2) and (3), $a_1b_1wa_2b_2w'$ and a_1b_1w are the suffix of p_1 . If there exists a constant string w_1 ($|w_1| \ge 2$) such that $w' = w_1w$, then a_1b_1 is the suffix of w_1 . From the above conditions (1') and (2'), $wa_2b_2w'a_3b_3$ and $w'a_3b_3$ are the prefix of p_2 . If there exist constant strings w_1 and w_2 such that $w' = w_1w = ww_2$ holds, then a_2b_2 and a_3b_3 are the suffix of w_1 from $|w_1| = |w_2|$ and $|ww_2a_3b_3| = |wa_2b_2w_1|$. Hence, $a_1b_1 = a_3b_3$. This contradicts the assumption of $a_1 \ne a_3$ and $b_1 \ne b_3$.

If |w| > |w'|, we can prove the contradiction in a similar

way as $|w| \leq |w'|$.

(I-2) Case of $q = q_1a_1b_1a_3b_3q_2$ ($b_1 = a_2$ and $a_3 = b_2$): Assume that the following six conditions (1),(2),(3),(1'),(2'),(3') are hold.

(1) $p_1 \le q_1$ (1') $p_2 \le a_3b_3q_2$ (2) $p_1 \le q_1a_1$ (2') $p_2 \le b_3q_2$ (3) $p_1 \le q_1a_1b_1$ (3') $p_2 \le q_2$

From the above conditions (2) and (3), since a_1b_1 and a_1 are the suffix of p_1 , $b_1 = a_1$ holds. From the assumption of $b_1 = a_2$, $a_1 = a_2$. This contradicts the assumption of $a_1 \neq a_2$.

(I-3) Case of $q = q_1 a_1 b_1 b_2 w a_3 b_3 q_2$ ($b_1 = a_2$): Assume that the following six conditions (1),(2),(3),(1'),(2'),(3') are hold.

(1) $p_1 \le q_1$ (1') $p_2 \le b_2 w a_3 b_3 q_2$ (2) $p_1 \le q_1 a_1$ (2') $p_2 \le w a_3 b_3 q_2$ (3) $p_1 \le q_1 a_1 b_1 b_2 w$ (3') $p_2 \le q_2$

If |w| = 0, i.e., w is the empty string, then a_1 and $a_1b_1b_2$ are the suffix of p_1 from the above conditions (2) and (3) and $b_2a_3b_3$ and a_3b_3 are the prefix of p_2 from the above conditions (1') and (2'). Since $b_2 = a_1$ and $b_2a_3 = a_3b_3$, $a_1 = a_3$ holds. This contradicts the assumption of $a_1 \neq a_3$.

If $|w| \ge 1$, a_1 and $a_1b_1b_2w$ are the suffix of p_1 from the above conditions (2) and (3). Hence, the last symbol of w is a_1 . Moreover, $b_2wa_3b_3$ and wa_3b_3 are the prefix of p_2 from the above conditions (1') and (2'). Hence, the last symbol of w is a_3 . Therefore, $a_1 = a_3$ holds. This contradicts the assumption of $a_1 \ne a_3$.

(I-4) Case of $q = q_1 a_1 b_1 w a_2 b_2 b_3 q_2$ ($b_2 = a_3$): Assume that the following six conditions (1),(2),(3),(1'),(2'),(3') are hold.

- (1) $p_1 \preceq q_1$ (1') $p_2 \preceq w a_2 b_2 b_3 q_2$ (2) $p_1 \preceq q_1 a_1 b_1 w$ (2') $p_2 \preceq b_3 q_2$
- (3) $p_1 \leq q_1 a_1 b_1 w a_2$ (3') $p_2 \leq q_2$

If |w| = 0, i.e., w is the empty string, then a_1b_1 and $a_1b_1a_2$ are the suffix of p_1 from the above conditions (2) and (3) and $a_2b_2b_3$ and b_3 are the prefix of p_2 from the above conditions (1') and (2'). Since $b_1 = a_2$ and $a_2 = b_3$, then $b_1 = b_3$ holds. This contradicts the assumption of $b_1 \neq b_3$.

If $|w| \ge 1$, since a_1b_1w and $a_1b_1wa_2$ are the suffix of p_1 from the above conditions (2) and (3), the first symbol of w is b_1 . Moreover, since $wa_2b_2b_3$ and b_3 are the prefix of p_2 from the above conditions (1') and (2'), the first symbol of w is b_3 . Therefore, $b_1 = b_3$ holds. This contradicts the assumption of $b_1 \ne b_3$.

(II) Case of (ii) that q contains a_1b_1 , a_2b_2 and a_3y : Let A, B, C be distinct regular patterns in $\{a_1b_1, a_2b_2, a_3y\}$ such that $q = q_1AwBw'Cq_2$. Assume that the following six conditions (1),(2),(3),(1'),(2'),(3') are hold.

(1) $p_1 \leq q_1$ (1') $p_2 \leq wBw'Cq_2$ (2) $p_1 \leq q_1Aw$ (2') $p_2 \leq w'Cq_2$ (3) $p_1 \leq q_1AwBw'$ (3') $p_2 \leq q_2$

If |w| = |w'|, then Aw and AwBw' are the suffix of p_1 from the above conditions (2) and (3). Hence, Aw = Bw' holds. This contradicts the assumption of $A \neq B$.

If $|w| \neq |w'|$, then we consider the two cases $A = a_3y$ and $B = a_3y$. In the case of $A = a_3y$, without losing generality, we assume that $B = a_1b_1$ and $C = a_2b_2$. Then, there exist regular patterns p'_1, p''_1 such that $p_1 = p'_1p''_1, p'_1 \leq q_1a_3$ and $p''_1 \leq yw$ from the above condition (2). Moreover, from the above condition (1'), $p = p_1xp_2 = p'_1p''_1xp_2 \leq q_1a_3p''_1xwa_1b_1w'a_2b_2q_2 = q_1a_3ywa_1b_1w'a_2b_2q_2\{y := p''_1x\} = q\{y := p''_1x\}$ holds. Hence, $p \leq q$ holds. This contracts the assumption. In the case of $B = a_3y$, without losing generality, we assume that $A = a_1b_1$ and $C = a_2b_2$. Let $q'_1 = q_1a_1b_1$, $q'_2 = wa_3yw'$, and $q'_3 = a_2b_2q_2$ such that q'_2 contains at most one variable symbol. Then, the above conditions (3) and (1') are represented by $p_1 \leq q'_1q'_2$ and $p_2 \leq q'_2q'_3$, respectively. From Theorem 2, $p \leq q$ holds. This contradicts the assumption.

Next, in the case of $C = a_3 y$, we consider the following five cases (II-1)–(II-5):

(II-1) $q = q_1 a_1 b_1 w a_2 b_2 w' a_3 y q_2$,

(II-2) $q = q_1 a_1 b_1 b_2 y q_2$ ($a_2 = b_1$ and $a_3 = b_2$),

(II-3) $q = q_1 a_1 b_1 b_2 w a_3 y q_2$ ($b_1 = a_2$),

(II-4) $q = q_1 a_3 yw a_1 b_1 b_2 q_2$ ($b_1 = a_2$),

(II-5) $q = q_1 a_1 b_1 y w a_2 b_2 q_2$ ($b_1 = a_3$).

(II-1) Case of $q = q_1 a_1 b_1 w a_2 b_2 w' a_3 y q_2$: Assume that the following six conditions (1),(2),(3),(1'),(2'),(3') are hold.

(1)
$$p_1 \preceq q_1$$
 (1') $p_2 \preceq wa_2b_2w'a_3yq_2$
(2) $p_1 \preceq q_1a_1b_1w$ (2') $p_2 \preceq w'a_3yq_2$
(3) $p_1 \preceq q_1a_1b_1wa_2b_2w'$ (3') $p_2 \preceq q_2$

If |w|+1=|w'|, then $a_1b_1wa_2b_2w'$ and a_1b_1w are the suffix of p_1 from the above conditions (2) and (3). Since there exists a constant symbol w_1 such that $w'=w_1w$ and $b_2w_1w=a_1b_1w$ hold, then $b_2=a_1$. Moreover, $wa_2b_2w'a_3$ and $w'a_3$ are the prefix of p_2 from the above conditions (1') and (2'). Since there exists a constant symbol w_2 such that $w'=ww_2$ and $wa_2b_2=ww_2a_3$ hold, then $b_2=a_3$. Thus, $a_1=a_3$ holds. This contradicts the assumption of $a_1 \neq a_3$.

If |w|+1 < |w'|, then $a_1b_1wa_2b_2w'$ and a_1b_1w are the suffix of p_1 from the above conditions (2) and (3). Hence, a_1b_1 is the suffix of w. Moreover, $wa_2b_2w'a_3$ and $w'a_3$ are the prefix of p_2 from the above conditions (1') and (2'). Hence, there exist constant symbols w_1 and w_2 such that $w' = w_1w$, $w' = ww_2$ and $|a_2b_2w_1| = |w_2a_3| + 1$ hold. Thus, since the second-to-last symbol of w_1 is a_3 , $a_1 = a_3$ holds. This contradicts the assumption of $a_1 \neq a_3$.

If |w| = |w'| + 1, then $wa_2b_2w'a_3$ and $w'a_3$ are the prefix of p_2 from the above conditions (1') and (2'). Since there exists a constant symbol w_1 such that $w = w'w_1$ and $w'w_1 = w'a_3$ hold, then $w_1 = a_3$ holds. Moreover, since $a_1b_1wa_2b_2w'$ and a_1b_1w are the suffix of p_1 from the above

conditions (2) and (3), there exists a constant symbol w_2 such that $w = w_2w'$ and $|w_1a_2b_2w'| = |a_1b_1w_2w'|$ hold. Hence, $w_1 = a_1$ holds. Thus, $a_1 = a_3$ holds. This contradicts the assumption of $a_1 \neq a_3$.

If |w| > |w'| + 1, since $wa_2b_2w'a_3$ and $w'a_3$ are the prefix of p_2 from the above conditions (1') and (2'), there exists a constant string w_1 such that $w = w'w_1$ and the first symbol of w_1 is a_3 . Moreover, since there exists a constant string w_2 such that $w = w_2w'$ and $|w_1a_2b_2| = |a_1b_1w_2|$ hold, a_1b_1 is the prefix of w_1 . Thus, $a_3 = a_1$ holds. This contradicts the assumption of $a_1 \neq a_3$.

(II-2) Case of $q = q_1a_1b_1b_2yq_2$ ($a_2 = b_1$ and $a_3 = b_2$): Assume that the following six conditions (1),(2),(3),(1'),(2'),(3') are hold.

(1)
$$p_1 \preceq q_1$$
 (1') $p_2 \preceq b_2 y q_2$
(2) $p_1 \preceq q_1 a_1$ (2') $p_2 \preceq y q_2$
(3) $p_1 \preceq q_1 a_1 b_1$ (3') $p_2 \preceq q_2$

From the above conditions (2) and (3), a_1b_1 and a_1 are the suffix of p_1 . Hence, $b_1 = a_1$ holds. Thus, from the assumption of $b_1 = a_2$, $a_1 = a_2$ holds. This contradicts the assumption of $a_1 \neq a_2$.

(II-3) Case of $q = q_1 a_1 b_1 b_2 w a_3 y q_2$ ($b_1 = a_2$): Assume that the following six conditions (1),(2),(3),(1'),(2'),(3') are hold.

(1)
$$p_1 \le q_1$$
 (1') $p_2 \le b_2 w a_3 y q_2$
(2) $p_1 \le q_1 a_1$ (2') $p_2 \le w a_3 y q_2$
(3) $p_1 \le q_1 a_1 b_1 b_2 w$ (3') $p_2 \le q_2$

If |w| = 0, i.e., w is the empty string, then a_1 and $a_1b_1b_2$ are the suffix of p_1 from the above conditions (2) and (3). Hence, $a_1 = b_2$ holds. Moreover, since b_2a_3 and a_3 is the prefix of p_2 , $b_2 = a_3$ holds. Thus, $a_1 = a_3$ holds. This contradicts the assumption of $a_1 \neq a_3$.

If $|w| \ge 1$, since a_1 and $a_1b_1b_2w$ are the suffix of p_1 from the above conditions (2) and (3), the last symbol of w is a_1 . Moreover, since b_2wa_3 and wa_3 are the prefix of p_2 from the above conditions (1') and (2'), the last symbol of w is a_3 . Thus, $a_1 = a_3$ holds. This contradicts the assumption of $a_1 \ne a_3$.

(II-4) Case of $q = q_1 a_3 yw a_1 b_1 b_2 q_2$ ($b_1 = a_2$): Assume that the following six conditions (1),(2),(3),(1'),(2'),(3') are hold.

(1)
$$p_1 \preceq q_1$$
 (1') $p_2 \preceq w a_1 b_1 b_2 q_2$
(2) $p_1 \preceq q_1 a_3 y w$ (2') $p_2 \preceq b_2 q_2$
(3) $p_1 \preceq q_1 a_3 y w a_1$ (3') $p_2 \preceq q_2$

From the above condition (3), there exist regular patterns $p_1' \succeq p_1''$ such that $p_1 = p_1'p_1''$, $p_1' \preceq q_1a_3$ and $p_1'' \preceq ywa_1$ hold. Hence, since $p = p_1xp_2 = p_1'p_1''xp_2 \preceq q_1a_3p_1''xwa_1b_1b_2q_2 = q_1a_3yxwa_1b_1b_2q_2\{y := p_1''x\} = q\{y := p_1''x\}$, then $p \preceq q$ holds. Thus, this contradicts the assumption.

(II-5) Case of $q = q_1 a_1 b_1 y w a_2 b_2 q_2$ ($b_1 = a_3$): Assume that the following six conditions (1),(2),(3),(1'),(2'),(3') are hold.

(1)
$$p_1 \preceq q_1$$
 (1') $p_2 \preceq ywa_2b_2q_2$ (2) $p_1 \preceq q_1a_1$ (2') $p_2 \preceq wa_2b_2q_2$

(3)
$$p_1 \le q_1 a_1 b_1 y w$$
 (3') $p_2 \le q_2$

There exist regular patterns q_1', q_2', q_3' such that $q_1' = q_1 a_1 b_1$, $q_2' = yw$, $q_3' = a_2 b_2 q_2$, from the above condition (3) $p_1 \le q_1' q_2'$ and from the above condition (1') $p_2 \le q_2' q_3'$ hold. Moreover, since q_2' contains the variable symbol $y, p \le q$ holds from Theorem 2. This contradicts the assumption.

(III) Case of (iii) that q contains a_1b_1 , a_2b_2 and yb_3 : Let A, B, C be distinct regular patterns in $\{a_1b_1, a_2b_2, yb_3\}$ such that $q = q_1AwBw'Cq_2$. Assume that the following six conditions (1),(2),(3),(1'),(2'),(3') are hold.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

(1)
$$p_1 \le q_1$$
 (1') $p_2 \le wBw'Cq_2$
(2) $p_1 \le q_1Aw$ (2') $p_2 \le w'Cq_2$

(3)
$$p_1 \leq q_1 A w B w'$$
 (3') $p_2 \leq q_2$

XXXXXXXXXXXXXXXXXXXXXXXXXXX

Lemma 8: Let k be an integer with $k \ge 1$. Let Σ be an alphabet with $\sharp \Sigma = k + 2$. Let $p \in \mathcal{RP}$ in which a variable symbol x appears, and let $Q \in \mathcal{RP}^k$. If for any string $w \in \Sigma^*$ with |w| = 2, there exists a regular pattern $q_w \in Q$ such that $p\{x := w\} \le q_w$ holds, then there exists a regular pattern $q \in Q$ such that $p\{x := xy\} \le q$ holds, where y is a variable symbol that does not appear in q.

Proof. W.l.o.g., we suppose that $\sharp Q = k$ holds. Otherwise, for some regular pattern q already in Q, we can add a new regular pattern q' equivalent to q, i.e., $q' \equiv q$, to Q repeatedly until $\sharp Q = k$ is satisfied. For any $q \in Q$, we define the sets $A(q), B(q) \subseteq \Sigma$ as follows:

$$A(q) = \{ a \in \Sigma \mid p\{x := ay\} \le q, \ y \in X \},$$

$$B(q) = \{ b \in \Sigma \mid p\{x := yb\} \le q, \ y \in X \}.$$

If there exists $q \in Q$ such that $|A(q)| \ge 2$ or $|B(q)| \ge 2$, from Lemma 4, $p\{x := xy\} \le q$ holds. Below, we suppose that $|A(q)| \le 1$ and $|B(q)| \le 1$. Let \emptyset be a constant symbol that is not a member in Σ . We define the functions $\sigma_A : Q \to \Sigma \cup \{\emptyset\}$ and $\sigma_B : Q \to \Sigma \cup \{\emptyset\}$ as follows:

$$\sigma_A(q) = \begin{cases} a & \text{if } A(q) = \{a\}, \\ \varnothing & \text{if } A(q) = \emptyset. \end{cases}$$

$$\sigma_B(q) = \begin{cases} b & \text{if } B(q) = \{b\}, \\ \varnothing & \text{if } B(q) = \emptyset. \end{cases}$$

The inverse functions of σ_A and σ_B are denoted by σ_A^{-1} and σ_B^{-1} , respectively. That is, for $a,b\in\Sigma\cup\{\varnothing\}$, let $\sigma_A^{-1}(a)=$

 $\{q \in Q \mid \sigma_A(q) = a\}$ and $\sigma_B^{-1}(b) = \{q \in Q \mid \sigma_B(q) = b\}$. We give an example in Fig. 10.

A and B denotes the following subsets of Σ :

$$A = \bigcup_{q \in \mathcal{Q} \backslash \sigma_A^{-1}(\varnothing)} A(q), \quad B = \bigcup_{q \in \mathcal{Q} \backslash \sigma_B^{-1}(\varnothing)} B(q).$$

Then, let $A' = \Sigma \setminus A$ and $B' = \Sigma \setminus B$. For any $a, b \in \Sigma$, we use the following notations:

$$\ell_A = \sum_{a \in A} (\sharp \sigma_A^{-1}(a) - 1), \quad \ell_B = \sum_{b \in B} (\sharp \sigma_B^{-1}(b) - 1).$$

These ℓ_A and ℓ_B represent the numbers of excess duplicate symbols in A and B. We easily see the following claim: Claim 1.

(i)
$$\sharp A + \sharp A' = \sharp B + \sharp B' = k + 2$$
,
(ii) $\sharp A + \ell_A + \sharp \sigma_A^{-1}(\emptyset) = \sharp B + \ell_B + \sharp \sigma_B^{-1}(\emptyset) = k$.

Since $\sharp \Sigma = k + 2$ and $\sharp Q = k$, $\sharp A' \ge 2$ and $\sharp B' \ge 2$ hold. We partition Q into the following subsets:

$$\begin{split} &Q^{(\varnothing,\varnothing)} = \sigma_A^{-1}(\varnothing) \cap \sigma_B^{-1}(\varnothing), \\ &Q^{(\varnothing,\cdot)} = \sigma_A^{-1}(\varnothing) \cap (Q \setminus \sigma_B^{-1}(\varnothing)), \\ &Q^{(\cdot,\varnothing)} = (Q \setminus \sigma_A^{-1}(\varnothing)) \cap \sigma_B^{-1}(\varnothing), \\ &Q^{(\cdot,\cdot)} = (Q \setminus \sigma_A^{-1}(\varnothing)) \cap (Q \setminus \sigma_B^{-1}(\varnothing)). \end{split}$$

From the condition of this lemma, for any string $w \in \Sigma^*$ with |w|=2, there exists a regular pattern $q_w \in Q$ such that $p\{x:=w\} \preceq q_w$ holds. In particular, for $w=a'b' \in A' \cdot B'$, we must have $q_w \in Q$ that satisfies that $p\{x:=w\} \preceq q_w$ (Fig. 11). It is easy to see that if $w \in (A \cdot B) \cup (A' \cdot B) \cup (A \cdot B')$, there exists a regular pattern $q_w \in Q^{(\varnothing,\cdot)} \cup Q^{(\cdot,\varnothing)} \cup Q^{(\cdot,\cdot)}$ such that $p\{x:=w\} \preceq q_w$ holds. The following two claims are proven from Lemmas 4 and 7:

Claim 2. If there exist $q \in Q^{(\emptyset,\emptyset)}$ and distinct 5 strings $w_i \in A' \cdot B'$ $(1 \le i \le 5)$ such that $p\{x := w_i\} \le q$ holds $(1 \le i \le 5)$, then $p\{x := xy\} \le q$ holds.

Claim 3. If there exist $q \in Q^{(\emptyset,\cdot)} \cup Q^{(\cdot,\emptyset)}$ and distinct 3 strings $w_i \in A' \cdot B'$ $(1 \le i \le 3)$ such that $p\{x := w_i\} \le q$ holds $(1 \le i \le 3)$, then $p\{x := xy\} \le q$ holds.

If there exist a regular pattern $q \in Q^{(\varnothing,\varnothing)} \cup Q^{(\varnothing,\cdot)} \cup Q^{(\cdot,\varnothing)}$ and enough strings $w \in A' \cdot B'$ such that either of the conditions of *Claims* 2 and 3 is satisfied, this lemma holds. Then, we assume that it is not the case.

Assumption 1. There is no regular pattern $q \in Q^{(\varnothing,\varnothing)}$ and 5 strings $w \in A' \cdot B'$ such that the condition of *Claim* 2 is satisfied and there is no regular pattern $q \in Q^{(\varnothing,\cdot)} \cup Q^{(\cdot,\varnothing)}$ and 3 strings $w \in A' \cdot B'$ such that the condition of *Claim* 3 is satisfied.

Let $\mathcal{L}_1 = \sharp \{w \in A' \cdot B' \mid \exists q \in Q^{(\varnothing,\varnothing)} \cup Q^{(\varnothing,\cdot)} \cup Q^{(\neg,\varnothing)} \text{ s.t. } p\{x := w\} \preceq q\}$. Under *Assumption* 1, each $q \in Q^{(\varnothing,\varnothing)}$ has at most 4 strings $w \in A' \cdot B'$ such that the condition of *Claim* 2 is satisfied, and each $q \in Q^{(\varnothing,\cdot)} \cup Q^{(\cdot,\varnothing)}$ has at most 2 strings $w \in A' \cdot B'$ such that the condition of

Fig. 10 Let $\Sigma = \{a, b, c, d, e, f, g\}$, $Q = \{q_1, q_2, q_3, q_4, q_5\}$. We set $A(q_1) = \{a\}$ and $B(q_1) = \{a\}$, and then $\sigma_A(q_1) = a$ and $\sigma_B(q_1) = a$, and so on. For each regular pattern q_i (i = 1, ..., 5), we represent a string $w \in \Sigma \cdot \Sigma$ satisfying that $p\{x := w\} \preceq q_i$ by the line between the left (first) and right (second) symbols of w. For example, the leftmost figure shows that $p\{x := ay\} \preceq q_1$ and $p\{x := ya\} \preceq q_1$ for a variable symbol y. We note that these figures may contain more lines than those depicted. From these figures, we get $\ell_A = 1$, $\ell_B = 0$, and $Q^{(\emptyset,\emptyset)} = \{q_5\}$, $Q^{(\emptyset,\cdot)} = \{q_4\}$, $Q^{(\cdot,\emptyset)} = \{q_3\}$, $Q^{(\cdot,\cdot)} = \{q_1,q_2\}$.

Fig. 11 In the left figure, we aggregate all of the lines appearing in Fig. 10. For all $w = a'b' \in A' \cdot B'$, there must be a regular pattern q_i $(1 \le i \le 5)$ that satisfies that $p\{x := w\} \preceq q_i$.

Claim 3 is satisfied. Then, by Claim 1,

$$\mathcal{L}_{1} \leq 4 \sharp Q^{(\varnothing,\varnothing)} + 2 \sharp Q^{(\varnothing,\cdot)} + 2 \sharp Q^{(\cdot,\varnothing)}$$

$$= 2 (\sharp Q^{(\varnothing,\varnothing)} + \sharp Q^{(\varnothing,\cdot)}) + 2 (\sharp Q^{(\varnothing,\varnothing)} + \sharp Q^{(\cdot,\varnothing)})$$

$$= 2 \sharp \sigma_{A}^{-1}(\varnothing) + 2 \sharp \sigma_{B}^{-1}(\varnothing)$$

$$= 2 (k - \sharp A - \ell_{A}) + 2 (k - \sharp B - \ell_{B})$$

$$= 2 (\sharp A' - \ell_{A} - 2) + 2 (\sharp B' - \ell_{B} - 2)$$

$$= 2 (\sharp A' + \sharp B') - 2 (\ell_{A} + \ell_{B}) - 8.$$

Next, we partition $Q^{(\cdot,\cdot)}$ into the following two subsets:

$$\begin{split} Q_1^{(\cdot,\cdot)} &= \{q \in Q^{(\cdot,\cdot)} \mid \sigma_A(q) \in B \text{ or} \sigma_B(q) \in A\}, \\ Q_2^{(\cdot,\cdot)} &= \{q \in Q^{(\cdot,\cdot)} \mid \sigma_A(q) \in B' \text{ and } \sigma_B(q) \in A'\}. \end{split}$$

We show the next two claims on $Q_1^{(\cdot,\cdot)}$ and $Q_2^{(\cdot,\cdot)}$:

Claim 4. If there exist $q \in Q_1^{(\cdot,\cdot)}$ and a string $a'b' \in A' \cdot B'$ such that $p\{x := a'b'\} \leq q$ holds, then $p\{x := xy\} \leq q$ holds.

Proof of Claim 4. Suppose that both $\sigma_A(q) \in B$ and $\sigma_B(q) \in A$ hold. Then, since $a' \notin \{\sigma_A(q), \sigma_B(q)\} \subseteq A \cap B$ and $b' \notin \{\sigma_A(q), \sigma_B(q)\} \subseteq A \cap B$, from Lemma 5, $p\{x := xy\} \le q$ holds. Suppose that $\sigma_A(q) \in B$ and $\sigma_B(q) \in A'$. If

 $a' = \sigma_B(q)$, since $a' \in B$, $a' \neq b'$ holds. Since $\sigma_A(q) \in B$, $b' \neq \sigma_A(q)$ holds. That is, $a' = \sigma_B(q)$, $a' \neq \sigma_A(q)$, and $b' \notin \{\sigma_A(q), \sigma_B(q)\}$ hold. Therefore, from Lemma 6, $p\{x := xy\} \leq q$ holds. If $a' \neq \sigma_B(q)$, since $b' \neq \sigma_A(q)$, from Lemma 5, $p\{x := xy\} \leq q$ holds. Similarly, the case that $\sigma_A(q) \in B'$ and $\sigma_B(q) \in A$ is proven. (*End of Proof of Claim*)

Claim 5. If there exist $q \in Q_2^{(\cdot,\cdot)}$ and a string $a'b' \in A' \cdot B'$ such that $(a' \neq \sigma_B(q) \text{ or } b' \neq \sigma_A(q))$ and $p\{x := a'b'\} \leq q$ hold, then $p\{x := xy\} \leq q$ holds.

Proof of Claim 5. When a' = b', since $\sigma_A(q) \neq \sigma_B(q)$, from Lemma 5, this claim holds. Similarly, when $a' \neq b'$, from Lemma 5 or Lemma 6, this holds. (*End of Proof of Claim*)

If there exist a regular pattern $q \in Q_2^{(\cdot,\cdot)}$ and a string $w \in A' \cdot B'$ such that the condition of *Claim* 5 is satisfied, this lemma holds. Then, we also assume that it is not the case.

Assumption 2. There is no $q \in Q_2^{(\cdot,\cdot)}$ and a string $a'b' \in A' \cdot B'$ such that the condition of *Claim* 5 is satisfied.

Let $\mathcal{L}_2 = \sharp \{a'b' \in A' \cdot B' \mid \exists q \in Q_2^{(\cdot,\cdot)} \text{ s.t. } p\{x := a'b'\} \preceq q\}$. For any $a'b' \in A' \cdot B'$ and $q \in Q_2^{(\cdot,\cdot)}$, if $a' = \sigma_B(q)$ and $b' = \sigma_A(q)$ hold (it is the condition of Proposition 4), by considering the duplicate numbers ℓ_A and ℓ_B , we have the following inequality:

$$\mathcal{L}_2 \le \min\{\sharp A' + \ell_B, \sharp B' + \ell_A\}.$$

We show the last claim:

Claim 6.
$$\sharp A' \times \sharp B' - \mathcal{L}_1 - \mathcal{L}_2 \geq 2$$
.

Proof of Claim 6. First we prove the inequality when $\sharp A \leq k-1$ and $\sharp B \leq k-1$, i.e., $\sharp A' \geq 3$ and $\sharp B' \geq 3$ hold. Since $\mathcal{L}_2 \leq \frac{1}{2}(\sharp A' + \sharp B' + \ell_A + \ell_B)$,

$$\sharp A' \times \sharp B' - \mathcal{L}_1 - \mathcal{L}_2$$

$$\geq \sharp A' \times \sharp B' - (2(\sharp A' + \sharp B') - 2(\ell_A + \ell_B) - 8)$$

$$-\frac{1}{2}(\sharp A' + \sharp B' + \ell_A + \ell_B)$$

$$= \sharp A' \times \sharp B' - \frac{5}{2} (\sharp A' + \sharp B') + \frac{3}{2} (\ell_A + \ell_B) + 8$$
$$= (\sharp A' - \frac{5}{2}) (\sharp B' - \frac{5}{2}) + \frac{3}{2} (\ell_A + \ell_B) + \frac{7}{4} \ge 2.$$

When $\sharp A=k$ and $\sharp B\leq k$, i.e., $\sharp A'=2$ and $\sharp B'\geq 2$ hold, since $\ell_A=0$, $\mathcal{L}_1\leq 2\sharp B'-2\ell_B-4$ holds. Moreover, $\mathcal{L}_2\leq \min\{\sharp B',\ell_B+2\}$ holds. From *Claim* 1, $\ell_B+2=k-\sharp\sigma_B^{-1}(\varnothing)-\sharp B=\sharp B'-\sharp\sigma_B^{-1}(\varnothing)$ holds. Therefore, $\mathcal{L}_2\leq \ell_B+2$ holds. Thus,

$$\sharp A' \times \sharp B' - \mathcal{L}_1 - \mathcal{L}_2$$

 $\geq 2\sharp B' - (2\sharp B' - 2\ell_B - 4) - (\ell_B + 2)$
 $= \ell_B + 2 \geq 2.$

Similarly, the case when $\sharp A \leq k$ and $\sharp B = k$ is proven. (*End of Proof of Claim*)

Under Assumptions 1 and 2, from Claim 6, there exist at least two $w \in A' \cdot B'$ and a regular pattern $q \in Q_1^{(\cdot,\cdot)}$ such that the condition of Claim 4 is satisfied. Therefore, for such a regular pattern q, $p\{x := xy\} \leq q$ holds.

Lemma 9 (Sato et al.[1]): Let Σ be a finite alphabet with $\sharp \Sigma \geq 3$ and p,q regular patterns. If there exists a constant symbol $a \in \Sigma$ such that $p\{x := a\} \leq q$ and $p\{x := xy\} \leq q$, then $p \leq q$ holds, where g is a variable symbol that does not appear in g.

From the Lemma 8 and Lemma 9, we have the following theorem.

Theorem 4: Let $k \ge 3$, $\sharp \Sigma \ge 2k - 1$, $P \in \mathcal{RP}^+$ and $Q \in \mathcal{RP}^k$. Then, the following (i),(ii) and (iii) are equivalent:

(i)
$$S_2(P) \subseteq L(Q)$$
, (ii) $P \sqsubseteq Q$, (iii) $L(P) \subseteq L(Q)$.

Proof. it is clear that (ii) implies (iii) and (iii) implies (i). From Theorem3, if $\sharp \Sigma \geq 2k+1$, then (i) implies (ii). Let $\sharp Q = k, \ p \in P, \ \sharp \Sigma = 2k-1 \ \text{or} \ 2k$. Then, we show that (i) implies (ii). It suffices to show that $S_2(p) \subseteq L(Q)$ implies $P \subseteq Q$ for any regular pattern $p \in \mathcal{RP}$. The proof is done by mathematical induction on n, where n is the number of variable symbols appears in p.

In case n = 0, $S_2(p) = \{p\}$. By (i), we have $\{p\} = L(Q)$. Thus, $p \le q$ for some $q \in Q$.

For $n \ge 0$, we assume that it is valid for any regular pattern p with n variable symbols. Let p be a regular pattern such that n + 1 variable symbols appear in p and $S_2(p) \subseteq L(Q)$.

We assume that $p \not\sqsubseteq Q$, that is, $p \not\preceq q_i$ for any $i \in \{1, \ldots, k\}$. Let $Q = \{q_1, \ldots, q_k\}$ and p_1, p_2 regular patterns, x a variable symbol with $p = p_1 x p_2$. For $a, b \in \Sigma$, let $p_a = p\{x := a\}$ and $p_{ab} = p\{x := ab\}$. Both p_a and p_{ab} have n variable symbols, respectively. Thus, $S_2(p_a) \subseteq L(Q)$ and $S_2(p_{ab}) \subseteq L(P)$ hold. By the induction hypothesis, there exist $i, i' \in \{1, \ldots, k\}$ such that $p_a \preceq q_i$ and $p_{ab} \preceq q_{i'}$. Let $D_i = \{a \in \Sigma \mid p\{x := a\} \preceq q_i\}$ $(i = 1, \ldots, k)$. We assume that $\sharp D_i \geq 3$ for some $i \in \{1, \ldots, k\}$. By Lemma ??, we have $p \preceq q_i$. This contradicts the assumption. Thus,

we have $\sharp D_i \leq 2$ for any $i \in \{1, ..., k\}$. If $\sharp \Sigma = 2k - 1$, then $\sharp D_i = 2$ or $\sharp D_i = 1$ for any $i \in \{1, ..., k\}$. Moreover, If $\sharp \Sigma = 2k$, then $\sharp D_i = 2$ for any $i \in \{1, ..., k\}$. Since $k \geq 3$, $2k + 1 \geq k + 2$ holds. By Lemma 8, there exists $i \in \{1, ..., k\}$ such that $p\{x := xy\} \leq q_i$. Therefore, by Lemma 9, we have $p \leq q_i$. This contradicts the assumption. Thus, (i) implies (ii).

From Theorem 4, the following corollary holds.

Corollary 2: Let $k \ge 3$, $\sharp \Sigma \ge 2k - 1$ and $P \in \mathcal{RP}^+$. Then, $S_2(P)$ is a characteristic set for L(P) within \mathcal{RPL}^k .

Lemma 10 (Sato et al.[1]): Let $k \ge 3$ and $\sharp \Sigma \le 2k - 2$. Then, \mathcal{RP}^k does not have compactness with respect to containment.

Proof. Let $\Sigma = \{a_1, \dots, a_{k-1}, b_1, \dots, b_{k-1}\}$ and p, q_i regular patterns, $w_i \in \Sigma^*$ $(i = 1, \dots, k-1)$ defined in a similar way to Example $\ref{eq:condition}$?. Let $q_k = x_1 a_1 w_1 x y w_1 b_1 x_2$. Since $p\{x := a_i\} = x_1 a_1 w_1 a_i w_1 b_1 x_2 \preceq q_i$ and $p\{x := b_i\} = x_1 a_1 w_1 b_i w_1 b_1 x_2 \preceq q_i$ for any $i \in \{1, \dots, k-1\}$, we have $S_1(p) \subseteq \bigcup_{i=1}^{k-1} L(q_i)$. For any $w \in \{s \in \Sigma^+ \mid |s| \ge 2\}$, $p\{x := w\} = x_1 a_1 w_1 w w_1 b_1 x_2 \preceq q_k$. Thus, we have $L(p) \subseteq L(Q)$. By Theorem 1, since $p \not\preceq q_i$, $L(p) \not\subseteq L(q_i)$ for any $i \in \{1, \dots, k\}$. Therefore, \mathcal{RP}^k does not have compactness with respect to containment.

From Theorem 4 and Lemma 10, we have the following thorem.

Theorem 5: Let $k \ge 3$ and $\sharp \Sigma \ge 2k - 1$. Then, \mathcal{RP}^k has compactness with respect to containment.

In case k = 2, we have the following theorem.

Theorem 6: Let $\sharp \Sigma \geq 4$, $P \in \mathcal{RP}^+$ and $Q \in \mathcal{RP}^2$. The following (i), (ii) and (iii) are equivalent:

(i)
$$S_2(P) \subseteq L(Q)$$
, (ii) $P \sqsubseteq Q$, (iii) $L(P) \subseteq L(Q)$.

Proof. It is clear that (ii) implies (iii), and (iii) implies (i). Thus, we show that (i) implies (ii). It suffices to show that $S_2(p) \subseteq L(Q)$ implies $P \subseteq Q$ for any regular pattern $p \in Q$ \mathcal{RP} . Let $Q = \{q_1, q_2\}$. The proof is done by mathematical induction on n, where n is the number of variable symbols appearing in p. In case n = 0, $p \in \Sigma^+$. Since $S_2(p) =$ $\{p\} \subseteq L(Q)$, we have $p \leq q$ for some $q \in Q$. For $n \geq 0$, we assume that it is valid for any regular pattern p with n variable symbols. Let p be a regular pattern such that n+1 variable symbols appear in p, and $S_2(p) \subseteq L(Q)$. We assume that $p \not \leq q_i$ (i = 1, 2). Let p_1, p_2 be regular patterns and x a variable symbol with $p = p_1 x p_2$. For $a, b \in \Sigma$, let $p_a = p\{x := a\}$ and $p_{ab} = p\{x := ab\}$. Note that p_a and p_{ab} have n variable symbols. Thus, by the assumption, $S_2(p_a) \subseteq L(Q)$ and $S_2(p_{ab}) \subseteq L(Q)$ implies $p_a \leq q_i$ and $p_{ab} \leq q_{i'}$ for some $i, i' \in \{1, 2\}$. Let $D_i = \{a \in \Sigma \mid$ $p\{x := a\} \leq q_i\}$ (i = 1, 2). By Lemma ??, if $\sharp D_i \geq 3$ for some $i \in \{1,2\}$, then $p \leq q_i$. This contradicts that $p \not \leq q_i$ (i = 1, 2). Thus, we have $\sharp D_i \leq 2$ for any $i \in \{1, 2\}$. Since $\sharp \Sigma \geq 4$, We consider that $\sharp D_1 = 2$ and $\sharp D_2 = 2$. From Lemma 8, $p\{x := xy\} \leq q_i$ for some $i \in \{1, 2\}$.

From Lemma 9, we have $p \leq q_i$ for some $i \in \{1, 2\}$. This contradicts that $p \nleq q_i$ (i = 1, 2). Therefore, (i) implies (ii). \square

The next example is a counter-example of Theorem 6.

Example 2: Let $\Sigma = \{a, b, c\}$, p, q_1 , q_2 regular patterns and x, x', x'' variable symbols such that p = x'axbx'', $q_1 = x'abx''$ and $q_2 = x'cx''$. Let $w \in \Sigma^+$. If w contains c, then $p\{x := w\} \leq q_2$. On the other hand, if w does not contain c, then $p\{x := w\} \leq q_1$. Thus, $L(p) \subseteq L(q_1) \cup L(q_2)$. However, $p \not\leq q_1$ and $p \not\leq q_2$.

From Theorem 6, we have that following two corollaries.

Corollary 3: Let $\sharp \Sigma \geq 4$ and $P \in \mathcal{RP}^+$. Then, $S_2(P)$ is a characteristic set for L(P) within \mathcal{RPL}^2 .

Corollary 4: Let $\sharp \Sigma \geq 4$. Then, \mathcal{RP}^2 has compactness with respect to containment.

4. Regular Pattern without Adjacent Variable Symbols

A regular pattern p is said to be a non-adjacent variable regular pattern (NAV regular pattern) if p does not contain consecutive variable symbols. For example, the regular pattern p = axybc is not a NAV regular pattern because xy is appeared in p. Let \mathcal{RP}_{NAV} be the set of all NAV regular patterns. Let \mathcal{RP}_{NAV}^+ be the set of all finite subsets S of \mathcal{RP}_{NAV} such that S is not the empty set, i.e., $\mathcal{RP}_{NAV}^+ = \{S \subseteq \mathcal{RP}_{NAV} \mid \sharp S \leq 1\},\$ and \mathcal{RP}_{NAV}^k the set of all subsets P of \mathcal{RP}_{NAV}^+ such that P consists of at most k ($k \ge 1$) NAV regular patterns, i.e., $\mathcal{RP}_{NAV}^k = \{P \in \mathcal{RP}_{NAV}^+ \mid \sharp P \leq k\}.$ We can define the compactness with respect to containment for \mathcal{RP}_{NAV}^k in a similar way as Def.2. For any NAV regular pattern $p \in \mathcal{RP}_{NAV}$ and any set $Q \in \mathcal{RP}_{NAV}^k$ with $k \ (k \ge 1)$, the set \mathcal{RP}_{NAV}^k said to have compactness with respect to containment if there exists a NAV regular pattern $q \in Q$ such that $L(p) \subseteq L(q)$ holds if $L(p) \subseteq L(Q)$ holds. Then, we have the following Theorem

Theorem 7: For an integer k $(k \ge 2)$, let $\sharp \Sigma \ge k + 2$, $P \in \mathcal{RP}^+_{NAV}$, $Q \in \mathcal{RP}^k_{NAV}$. Then, the following (i), (ii) and (iii) are equivalent:

(i)
$$S_2(P) \subseteq L(Q)$$
, (ii) $P \sqsubseteq Q$, (iii) $L(P) \subseteq L(Q)$.

Proof. From the definitions of \mathcal{RP}^+_{NAV} and \mathcal{RP}^k_{NAV} , it is clear that (ii) implies (iii) and (iii) implies (i). Hence, we will show that (i) implies (ii) by mathematical induction on the number n of variable symbols that appear in a NAV regular pattern $p \in P$ as follows: If n = 0, then we have $S_2(\{p\}) = \{p\}$. Hence, $p \in L(Q)$. Therefore, there exists $q \in Q$ such that $p \preceq q$ holds.

If $n \ge 0$, we assume that the proposition holds for any regular *NAV* regular pattern containing $n \ge 0$ variable symbols. Let p be a *NAV* regular pattern containing n + 1 variable symbols such that $S_2(\{p\}) \subseteq L(Q)$ holds and p contains a variable symbol x. There exist two *NAV* regular

p = x'cadadaadacbadadaadaxadadaadacbadadaadabx'', $q_1 = x'$ cadadaadacbadadaadacx''.

 $q_2 = x'badadaadacx'',$

 $q_3 = x'aadadx''$.

Fig. 12 NAV regular patterns p, q_1 , q_2 , and q_3

patterns p_1, p_2 such that $p = p_1xp_2$ holds. By the induction hypothesis, for any constant string $w \in \Sigma^*$ with |w| = 2, $\{p\{x := w\}\} \leq Q$ holds because $p\{x := w\}$ contains n variable symbols. Hence, there exists a *NAV* regular pattern $q_w \in Q$ such that $p\{x := w\} \leq q_w$ holds. From Lemma 8, there exists a regular pattern $q \in Q$ such that $p\{x := xy\} \leq q$ holds, where y is a variable symbol that does not appear in q. This contradicts the condition $Q \in \mathcal{RP}^k_{NAV}$. Thus, we have that (i) implies (ii).

Corollary 5: Let $k \ge 2$, $\sharp \Sigma \ge k + 2$ and $P \in \mathcal{RP}^+_{NAV}$. Then, $S_2(P)$ is a characteristic set of \mathcal{RPL}^k_{NAV} .

Lemma 11: Let $k \ge 2$ and $\sharp \Sigma \le k + 1$. Then, \mathcal{RP}_{NAV}^k does not have compactness with respect to containment.

Proof. Let Σ be the set of k+1 constant symbols a_1,\ldots,a_{k+1} , i.e., $\Sigma=\{a_1,\ldots,a_{k+1}\}$. We assume that for $i=1,2,\ldots,k,\ p\{x:=a_iy\} \preceq q_i \text{ and } p\{x:=ya_{i+1}\} \preceq q_i \ (i=1,2,\ldots,k) \ \text{hold.}$ If $p\{x:=a_{k+1}a_1\} \preceq q_1 \ \text{holds, } S_2(p)\backslash S_1(p) \subseteq \bigcup_{i=1}^k L(q_i) \ \text{holds.}$ This show that $L(p)\subseteq L(Q)$ holds. However, for $i=1,2,\ldots,k$, since $p\not\preceq q_i$ holds, we have that $L(p)\not\subseteq L(q_i)$ holds. Hence, \mathcal{RP}^k_{NAV} does not have compactness with respect to containment.

Next, we give an example for Lemma 11 in Example 3.

Example 3: Let Σ be the set of four constant symbols a, b, c, d, i.e., $\Sigma = \{a, b, c, d\}$ and x, x', x'' three distinct variable symbols. Let p, q_1, q_2, q_3 be the *NAV* regular patterns given in Fig. 12. Then, we have $L(p) \subseteq L(q_1) \cup L(q_2) \cup L(q_3)$. This show that for $P = \{p\}, Q = \{q_1, q_2, q_3\}$, (iii) of Theorem 7 holds. However, since $p \not \preceq q_1, p \not \preceq q_2$ and $p \not \preceq q_3$ hold, we have $P \not \sqsubseteq Q$, that is, (ii) of Theorem 7 does not hold.

From Theorem 7 and Lemma 11, we have the following theorem.

Theorem 8: Let $k \ge 2$ and $\sharp \Sigma \ge k + 2$. Then, the set \mathcal{RPL}_{NAV}^k has compactness with respect to containment.

5. Conclusion

In this paper, for an integer k ($k \ge 2$), we have shown the conditions on the number of constant symbols in Σ , summarized in Table 2, required for the classes \mathcal{RP}^k of all the set of k regular pattern languages and \mathcal{RP}^k_{NAV} of all the set of k NAV regular patterns to have compactness with respect to containment.

Acknowledgements

This work was partially supported by Grant-in-Aid for Scientific Research (C) (Grant Numbers 19K12102, 19K12103, 20K04973, 21K12021, 22K12172) from Japan Society for the Promotion of Science (JSPS).

References

- M.Sato, Y.Mukouchi, D.Zheng, Characteristic Sets for Unions of Regular Pattern Languages and Compactness, in Proc. ALT '98, Springer LNAI 1501, pp.220-233, 1998.
- Y. Mukouchi, Characterization of Pattern Languages, in Proc. ALT '91, Ohmusha, pp.93-104, 1991.
- [3] K.Wright, Identification of Unions of Languages Drawn from an Identifiable Class, in Proc. COLT '89, Morgan Kaufmann, pp.328-333, 1989.
- [4] H. Arimura, T. Shinohara, S. Otsuki, Finding Minimal Generalizations for Unions of Pattern Languages and Its Application to Inductive Inference from Positive Data, in Proc. STACS '94, Springer LNCS 775, pp.649-660, 1994.
- [5] Y. Suzuki, T. Shoudai, T. Uchida and T. Miyahara, Ordered Term Tree Languages Which are Polynomial Time Inductively Inferable from Positive Data, Theoretical Computer Science, 350(1):63-90, 2006.
- [6] T. Uchida, T. Shoudai, S. Miyano, Parallel Algorithms for Refutation Tree Problem on Formal Graph Systems, IEICE Trans. Inf. & Syst., E78-D(2):99-112, 1995.

Table 2 The conditions on the number $\sharp \Sigma$ of constant symbols in Σ required for compactness with respect to containment.

Class	k = 2	$k \ge 3$	
\mathcal{RP}^k	$\sharp \Sigma \geq 4$	$\sharp \Sigma \geq 2k-1$	
$\mathcal{R}\mathcal{P}_{NAV}^{k}$	$\sharp \Sigma \geq k+2$		