Prova III (ANN0001/ CCI122-03U)

Prof. Helder G. G. de Lima¹

Nome do(a) aluno(a): Data: 0'	'/12	2/2	20)	1	-
-------------------------------	------	-----	----	---	---	---

- Identifique-se em todas as folhas.
- Mantenha o celular e os demais equipamentos eletrônicos desligados durante a prova.
- Justifique cada resposta com cálculos ou argumentos baseados na teoria estudada.
- ullet Utilize números decimais em vez de frações e arredonde as respostas finais com 4 casas após a vírgula.
- Resolva apenas os itens de que precisar para somar 10,0 pontos.
- 1. (1,0) Interprete geometricamente o método de Euler explícito e relacione essa interpretação com a fórmula recursiva utilizada pelo método.
- **2.** (3,0) Obtenha a reta que melhor se ajusta (por mínimos quadrados) aos seguintes pontos: A = (-1,1), B = (1,3), C = (2,2), D = (3,4), E = (5,2).
- **3.** (3,0) Identifique qual é o melhor e o pior método para estimar $I = \int_{-3}^{3} \cos(x) dx$ (em termos do erro relativo), dado que o valor exato é $2 \sin(3) \approx 0.2822400161$: (Configure sua calculadora para radianos)
 - (a) Trapézios repetido em 3 subintervalos
- (b) 3/8 de Simpson em um único intervalo
- (c) Gauss-Legendre com 4 pontos
- **4.** (3,0) Aplique o método de Romberg para obter uma estimativa $R_{4,4} \approx \int_{1}^{9} \ln(x) dx$, e o respectivo erro relativo percentual, considerando que o valor exato da integral é $9 \ln(9) 8$.
- **5.** (3,0) Considere a equação diferencial y'(t) = t/y(t). Use os métodos de Runge-Kutta de ordem 2 e 4 para estimar y(t) conforme t percorre o intervalo [0, 1.5] com passos de tamanho h = 0.5, dada a condição inicial y(0) = 0.1. Identifique o(s) ponto(s) onde ocorre o maior erro absoluto, levando em conta que a solução exata é $y(t) = \sqrt{t^2 + 0.01}$.

BOA PROVA E BOAS FÉRIAS!

 $^{^{1}}$ Este é um material de acesso livre distribuído sob os termos da licença Creative Commons Atribuição-Compartilha Igual 4.0 Internacional

Respostas

- 1. (Solução) Rever referências básicas de análise numérica e cálculo numérico.
- **2.** (Solução) Sejam $A = (x_1, y_1)$, $B = (x_2, y_2)$, $C = (x_3, y_3)$, $D = (x_4, y_4)$ e $E = (x_5, y_5)$ e denote $g_0(x) = 1$, $g_1(x) = x$. Para encontrar uma função da forma $f(x) = a_0g_0(x) + a_1g_1(x)$ que melhor se ajusta aos pontos (x_i, y_i) , basta resolver o sistema $A^TAX = A^TB$, em que

$$A = \begin{bmatrix} g_0(x_1) & g_1(x_1) \\ \vdots & \vdots \\ g_0(x_5) & g_1(x_5) \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_5 \end{bmatrix}, \quad X = \begin{bmatrix} a_0 \\ a_1 \end{bmatrix}, \quad B = \begin{bmatrix} y_1 \\ \vdots \\ y_5 \end{bmatrix},$$

$$A^{T}A = \begin{bmatrix} 5 & \sum_{i=1}^{5} x_i \\ \sum_{i=1}^{5} x_i & \sum_{i=1}^{5} x_i^{2} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -1 & 1 & 2 & 3 & 5 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 5 & 10 \\ 10 & 40 \end{bmatrix},$$

е

$$A^{T}B = \begin{bmatrix} \sum_{i=1}^{5} y_{i} \\ \sum_{i=1}^{5} x_{i} y_{i} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -1 & 1 & 2 & 3 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 2 \\ 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 12 \\ 28 \end{bmatrix}.$$

Então,
$$A^TAX = A^TB \Leftrightarrow \begin{bmatrix} 5 & 10 \\ 10 & 40 \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 12 \\ 28 \end{bmatrix} \Leftrightarrow \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1/5 \end{bmatrix}$$
. Portanto, a solução é $f(x) = 2 + \frac{x}{5} = 2 + 0.2x$.

3. (Solução) (a) Repetindo a regra dos trapézios em 3 subintervalos, obtém-se:

$$I \approx \frac{2}{2} \left(\cos(-3) + 2\cos(-1) + 2\cos(1) + \cos(3) \right) \approx \mathbf{0.18122}$$

$$\varepsilon_{rel} = |0.18122 - 0.28224| / |0.28224| \approx \mathbf{0.3579}$$

(b) Aplicando a regra 3/8 de Simpson em um único intervalo, tem-se:

$$I \approx \frac{3}{8} \cdot 2 \cdot (\cos(-3) + 3\cos(-1) + 3\cos(1) + \cos(3)) \approx \mathbf{0.94637}$$

$$\varepsilon_{rel} = |0.94637 - 0.28224|/|0.28224| \approx \mathbf{2.3531}$$

(c) Fazendo a mudança de variáveis x=3t obtém-se: $\int_{-3}^{3} \cos(x) dx = 3 \int_{-1}^{1} \cos(3t) dt$. Então, pela regra de Gauss-Legendre com 4 pontos, tem-se:

$$I \approx 3 \cdot [0.347855 \cdot \cos(3 \cdot (-0.861136)) + 0.652145 \cdot \cos(3 \cdot (-0.339981)) + 0.652145 \cdot \cos(3 \cdot 0.339981) + 0.347855 \cdot \cos(3 \cdot 0.861136)] \approx \mathbf{0.27771}$$

$$\varepsilon_{rel} = |0.27771 - 0.28224|/|0.28224| \approx \mathbf{0.0161}$$

Portanto, a pior estimativa é a do método 3/8 de Simpson e a melhor é a do de Gauss-Legendre.

4. (Solução) Calculando os termos $R_{k,j}$, obtêm-se:

$$\bullet R_{1,1} = \frac{8}{2}(\ln(1) + \ln(9)) = 8.788898$$

$$\bullet R_{2,1} = \frac{4}{2}(\ln(1) + 2\ln(5) + \ln(9)) = 10.832201$$

$$\bullet R_{2,2} = 10.832201 + \frac{10.832201 - 8.788898}{3} = 11.513302$$

$$\bullet R_{3,1} = \frac{2}{2}(\ln(1) + 2[\ln(3) + \ln(5) + \ln(7)] + \ln(9)) = 11.505145$$

$$\bullet R_{3,2} = 11.505145 + \frac{11.505145 - 10.832201}{3} = 11.729460$$

$$\bullet R_{3,3} = 11.729460 + \frac{11.729460 - 11.513302}{15} = 11.743871$$

$$\bullet R_{3,3} = 11.729460 + \frac{11.729460 - 11.513302}{15} = 11.743871$$

$$\bullet R_{4,1} = \frac{1}{2}(\ln(1) + 2[\ln(2) + \ln(3) + \ln(4) + \ln(5) + \ln(6) + \ln(7) + \ln(8)] + \ln(9)) = 11.703215$$

$$\bullet R_{4,2} = 11.703215 + \frac{11.703215 - 11.505145}{3} = 11.769238$$

$$\bullet R_{4,3} = 11.769238 + \frac{11.769238 - 11.729460}{15} = 11.771890$$

$$\bullet R_{4,4} = 11.771890 + \frac{11.771890 - 11.743871}{63} = 11.772335$$

$$\bullet R_{4,4} = 11.771890 + \frac{11.771890 - 11.743871}{63} = 11.772335$$

Os resultados anteriores são resumidos na tabela a seguir:

k	$ m R_{k,1}$	$R_{k,2}$	$ m R_{k,3}$	$ m R_{k,4}$	
1	8.788898				
2	10.832201	11.513302			
3	11.505145	11.729460	11.743871		
4	11.703215	11.769238	11.771890	11.772335	

Portanto, a aproximação $R_{4,4} = 11.772335$ tem um erro relativo percentual de -0.0228%.

5. (Solução) Pelo método de Runge-Kutta de ordem 2, obtêm-se:

i	t_i	k_1	k_2	y_i	$y_{exato}(t_i)$	$\varepsilon_i = y_i - y_{exato}(t_i)$
0	0.00	=	=	0.100000	0.100000	0.000000
1	0.5	0.000000	5.000000	1.350000	0.509902	0.840098
2	1.0	0.370370	0.651387	1.605439	1.004988	0.600451
3	1.5	0.622883	0.782521	1.956790	1.503330	0.453460

Já pelo método de Runge-Kutta de ordem 4, obtêm-se:

i	t_i	k_1	k_2	k_3	k_4	y_i	$y_{exato}(t_i)$	$\varepsilon_i = y_i - y_{exato}(t_i)$
0	0.0	-	-	-	-	0.100000	0.100000	0.000000
1	0.5	0.000000	2.500000	0.344828	1.835442	0.727092	0.509902	0.217190
2	1.0	0.687671	0.834251	0.801578	0.886618	1.130921	1.004988	0.125933
3	1.5	0.884235	0.924570	0.917725	0.943525	1.590284	1.503330	0.086954

Em ambos os casos pode-se observar que o erro absoluto diminui conforme t_i se afasta de t_0 . Portanto, o maior erro ocorre em $t_1 = 0.5$.