

Algorithmique Avancée

Recherche de Motif dans une chaîne de caractères

Animé par : Dr. ibrahim GUELZIM

Email: ib.guelzim@gmail.com

Sommaire

- Rappels
 - Introduction et notions générales
 - Analyse et conception d'algorithmes
 - Complexité d'algorithmes classiques : 3 Tris de tableaux, 2 recherches dans un tableau,
 Schéma de Hörner
 - o Preuves d'algorithmes
- Autres algorithmes de tri :
 - o Tri par fusion
 - o Tri par Tas
- Complexité moyenne :
 - o Application au Tri rapide
 - O Structures de Données Probabilistes :
 - Notions sur les Tables de Hachage et Fonctions de Hachage,
 - Bloom Filter,
 - Count Min Sketch
- Programmation dynamique
- Traitements de chaines de Caractères :
 - o Recherche de motif dans une chaine de caractères
 - Compression de données

Recherche de chaîne de caractères : Algorithme naif

- Soit un motif P (En: Pattern) de taille m,
- Soit ch une chaine de caractères de taille n,
- Question: Ecq P apparait dans ch?
- Exemple:
 - P = 'GATTACA' (m = 7)
 - Ch = 'GTAGA ... GCGATTACA ...'
- Réponse 1 : Algorithme naif :
 - o Pour chaque s = 1, 2, ..., n m + 1: vérifier si P est sous chaine de ch
 - o ch[s..s+m-1] = P ?
 - \circ Complexité : $\Theta(m \times (n-m+1)) = \Theta(mn)$

Recherche de chaîne de caractères via fonctions de Hashage

- Réponse 2 : utilisation d'une Fonction de Hashage h (cf précèdent chap du cours) pour hasher le motif P
 - \circ h(P) = r
 - \circ Pour chaque s = 1, 2, ..., n m + 1:
 - Calculer q = h(ch [s..s+m-1])
 - Sir = q: comparer ch[s..s+m-1] à P
 - \circ Complexité pire des cas : $O(m \times (n-m+1)) = O(mn)$ n'est pas amélioré
- Réponse 3 : ≠ lors du calcul de q
 - o itération j :
 - ch = '... s_ms_{m-1}...s₂s₁s₀ ...'
 - $q = h(p, s_1) = p^{m-1}s_m + p^{m-2}s_{m-1}... + ps_2 + s_1 [M] // prendre M nbr premier$
 - o itération j+1:
 - ch = '... $s_m s_{m-1} ... s_2 s_1 s_0 ...$
 - $q' = h(p, s_0) = p^{m-1}s_{m-1} + p^{m-2}s_{m-2}... + ps_1 + s_0 [M]$
 - = $p * (h(s) p^{m-1}s_m)) + s_0[M]$
 - Tps: 2 multiplications, 1 soustraction, 1 addition

- Soit le schéma suivant représentant un traitement d'une chaine de caractères :
 - o Les lettres sur les arcs représentent des actions à mener :
 - En l'occurrence :
 - a : concaténer la lettre a à une chaine de caractère
 - b : concaténer la lettre b à une chaine de caractère
 - Ces actions sont appelées : transitions
 - o a,b représentent l'alphabet des actions qu'on peut mener
 - o Les sommets représentent des situations particulières qu'on nomme : états
 - o La flèche verticale sur l'état 1 signifie que c'est l'état de commencement : état initial
 - o L'état 2 entouré deux fois (ou avec une flèche sortante) :
 - Signifie que la chaine de caractère qui s'arrête dessus, est une chaine validée par le schéma
 - Appelé état final
 - o Ce schéma est appelé automate fini
 - o Il valide (reconnait) tous les mots contenant au moins un "b"

- Automate fini
 - \circ Un automate fini M est un quintuplet : (Q , q_0 , A , Σ , δ)
 - Q est un ensemble fini d'états,
 - $q_0 \in \mathbb{Q}$ est l'état initial,
 - $A \subseteq Q$ est un ensemble distingué d'états **terminaux**,
 - lacksquare Σ est un alphabet fini,
 - ullet δ est une fonction de Q × Σ vers Q, appelée fonction de transition de M.
 - \circ L'automate fini démarre à l'état q_0 et lit les caractères de la chaîne d'entrée un par un.
 - \circ Si l'automate se trouve dans l'état q et lit le caractère a, il passe (« effectue une transition ») de l'état q à l'état $\delta(q,a)$.
 - Chaque fois que l'état courant q appartient à A, on dit que la machine M a accepté la chaîne lue jusqu'à cet endroit.
 - o On dit d'une entrée qui n'est pas acceptée qu'elle est rejetée.
 - o La figure 1 illustre ces définitions à l'aide d'un automate simple à deux états.

- Automate fini : exemple
 - Un automate fini simple à deux états pour l'alphabet $\Sigma = \{a, b\},\$
 - o l'ensemble d'états Q = {0, 1}
 - o l'état initial $q_0 = 0$
 - \circ (a) Une représentation tabulaire de la fonction de transition δ .
 - o (b) Un diagramme équivalent de transitions d'état.
 - L'état 1 est le seul état d'acceptation (représenté en noir).
 - Les arcs représentent les transitions.
 - Par exemple, l'arc allant de l'état 1 à l'état 0 et étiqueté b indique $\delta(1, b) = 0$.
 - Cet automate reconnaît les chaînes qui se terminent par un nombre impair de a.
 - Plus précisément, une chaîne x est acceptée SSI x = yz avec y = ε ou y se termine par b, et z = a^k où k est impair.
 - Par exemple, la séquence d'états dans lesquels entre cet automate pour l'entrée abaaa (état initial compris) est 0, 1, 0, 1, 0, 1. Cette entrée est donc acceptée.
 - Pour l'entrée abbaa, la séquence d'états est 0, 1, 0, 0, 1, 0 et elle est donc rejetée.

- Exemples
 - o Langage des mots contenant au plus une fois la lettre a

o Langage des mots contenant un nombre pair de fois la lettre a

- Un automate fini M induit une fonction \mathbf{f} , appelée $\mathbf{fonction}$ $\mathbf{d'état}$ \mathbf{final} , de Σ^* vers Q telle que $\mathbf{f}(w)$ est l'état dans lequel est M après avoir traité la chaîne w.
- Donc, M reconnaît une chaîne w si et seulement si $f(w) \in A$.
- La fonction **f** est définie par la relation récursive :
 - \circ **f**(ε) = q_{\circ} ,
 - \circ $f(wa) = \delta(f(w), a)$ pour $w \in \Sigma^*$, $a \in \Sigma$

- Automates de recherche de motif :
 - \circ Il existe un automate de recherche pour chaque motif P;
 - Cet automate doit être construit à partir du motif lors d'une étape de pré traitement, avant de pouvoir être utilisé pour chercher le motif dans une chaîne textuelle.
 - \circ La figure suivante illustre cette construction pour le motif $P = \overline{ababaca}$.

- Dorénavant, nous supposerons que P est une chaîne donnée fixée à l'avance
- Pour alléger la notation, nous omettrons les références à P

 Automate de recherche du motif : ababaca

- (a) : Diagramme de transition d'état pour l'automate de recherche de chaîne qui accepte toutes les chaînes finissant par ababaca.
 - o L'état 0 est l'état initial et l'état 7 (en noir) est le seul état d'acceptation.
 - \circ Un arc étiqueté a, partant de l'état i et arrivant à l'état j, représente $\delta(i, a) = j$.
 - Les arcs dirigés vers la droite forment le « squelette » de l'automate (dessiné en trait épais sur la figure) et correspondent aux comparaisons réussies entre le motif et les caractères d'entrée.
 - o Les arcs dirigés vers la gauche correspondent aux comparaisons ayant échoué.
 - o Certains de ces arcs ne sont pas représentés ;
 - o Par convention, si un état i ne possède pas d'arc sortant étiqueté a pour un certain $a \in S$, alors $\delta(i, a) = 0$.
- (b) La fonction de transition d correspondante et le motif P = ababaca.
 - Les entrées correspondant à des comparaisons réussies entre le motif et les caractères d'entrée sont représentées en gris.
- (c) L'action de l'automate sur le texte T = abababacaba
 - \circ Sous chaque caractère T[i] du texte, on donne l'état f(Ti) de l'automate après traitement du préfixe Ti
 - O Une occurrence du motif est trouvée, qui se termine à la position 9.

- Notations et terminologie:
 - \circ Soit Σ^* , l'ensemble de toutes les chaînes de longueur finie utilisant les caractères de l'alphabet Σ (On ne s'intéresse qu'aux chaînes de longueur finie).
 - \circ La chaîne vide de longueur zéro, notée ε , appartient à Σ^* .
 - \circ La longueur d'une chaîne x est notée |x|.
 - La concaténation de deux chaînes x et y, notée xy, a pour longueur |x| + |y| et est composée des caractères de x suivis des caractères de y.
 - On dit que la chaîne w est un **préfixe** de la chaîne x, notée $w \subset x$, si $\exists y \in \Sigma^*$, x = wy
 - Notez que si $w \subset x$, alors $|w| \le |x|$
 - On dit que la chaîne w est un **suffixe** de la chaîne x, notée $w \supset x$, si $\exists y \in \Sigma^*$, x = yw
 - On déduit que | w | ≤ | x |
 - \circ La chaîne vide ϵ est à la fois suffixe et préfixe de toute chaîne.
- Exemples:
 - ab ⊂ abcca; cca ⊃ abcca
- À noter que, pour toutes chaînes x et y et pour tout caractère a, $x \supset y$ ssi $xa \supset ya$
- Notez également que ⊂ et ⊃ sont des relations transitives.

- Automates de recherche de motif :
 - \circ Pour spécifier l'automate correspondant à une chaîne P[1..m] donnée, on commence par définir une fonction auxiliaire σ , appelée **fonction suffixe** associée à P.
 - \circ La fonction σ est une application de Σ^* vers $\{0,1,\ldots,m\}$ telle que $\sigma(x)$ est la longueur du plus long préfixe de P qui est un suffixe de x
- La fonction suffixe σ est bien définie, car la chaîne vide P_0 = ϵ est un suffixe de n'importe quelle chaîne.
- Exemple, pour la chaîne P = ab on a :
 - $\circ \sigma(\varepsilon) = 0$
 - \circ $\sigma(ccaca) = 1$
 - \circ $\sigma(ccab) = 2$

- · Notation et terminologie: Pour alléger la notation,
 - On note P_k le préfixe de longueur k, P[1..k] de la chaîne de caractères P[1..m], d'où
 - $P_0 = \epsilon$
 - $P_{m} = P = P[1..m]$
 - On note T_k le préfixe de longueur k du texte T
 - Le problème de la recherche de caractères revient à trouver tous les décalages s dans l'intervalle $0 \le s \le n m$, $tq P \supset T_{s+m}$,

- Automates de recherche de motif :
 - \circ On définit comme suit l'automate de recherche qui correspond à une chaîne P[1..m] donnée.
 - L'ensemble des états Q est {0, 1, ..., m}.
 - \circ L'état initial q_0 est l'état 0 et l'état m est le seul état d'acceptation.
 - O La fonction de transition δ est définie par l'équation suivante : pour tout état q et tout caractère $a: δ(q, a) = σ(P_a a)$

• Exemple :

- \circ Dans l'automate de recherche du motif P = 'ababaca', on a $\delta(5, b)$ = 4.
- \circ On fait cette transition car, si l'automate lit un b dans l'état q=5,
- o alors P_qb = ababab et le plus long préfixe de P qui est aussi un suffixe de ababab est P_q = abab.

• RECHERCHE-AUTOMATE-FINI(T, δ , m)

```
\begin{array}{ll}
1 & n \leftarrow longueur[T] \\
2 & q \leftarrow 0 \\
3 & \textbf{pour} & i \leftarrow 1 & n \\
4 & \textbf{faire} & q \leftarrow \delta(q, T[i]) \\
5 & \textbf{si} & q = m & \textbf{alors} \\
6 & s \leftarrow i - m
\end{array}
```


7 afficher « Le motif apparaît à la position » s

CALCUL-FONCTION-TRANSITION δ (P, Σ)

```
1 m \leftarrow longueur[P]

2 pour q \leftarrow 0 à m

3 Pour chaque caractère x \in \Sigma faire k \leftarrow min(m+1, q+2)

5 répéter k \leftarrow k-1

6 jusqu'à P_k \supset P_q x

7 \delta(q, x) \leftarrow k

8 retourner \delta
```

• Complexité : $O(m^3 |\Sigma|)$;

• Exercice 1:

 \circ Construire l'automate de recherche du motif P = aabab et illustrer son action sur le texte

T = aaababaabaababaab

• Exercice 2:

- Écrire une fonction qui dit si une chaîne de caractères est suffixe d'une seconde chaîne de caractères
- o Ecrire un programme qui :
 - demande la longueur du motif, la longueur du texte, le motif (sur l'alphabet {a, b, c }) puis
 - génère un texte de façon aléatoire,
 - affiche les cent premiers caractères de ce texte puis,
 - indique le nombre d'occurrences du motif dans le texte, pour la méthode naïve d'abord et pour la méthode avec automate ensuite,
 - calcule le temps d'exécution en tics d'horloge

