

APRENDIZADO POR REFORÇO

Aula 3: Métodos Tabulares

Lucas Pereira Cotrim Marcos Menon José lucas.cotrim@maua.br marcos.jose@ maua.br

ESCLARECIMENTOS E1

Exercício E1 – Processos de Decisão de Markov (MDPs)

 Dado um ambiente do tipo Grid World composto por 6 casas em duas fileiras, conforme a figura abaixo:

Considere um robô móvel na posição s_0 do ambiente com capacidade de se movimentar nas 4 direções: $\mathcal{A} = \{N = \uparrow, E = \rightarrow, S = \downarrow, W = \leftarrow\}$. A posição de destino do robô é representada pela casa verde, enquanto a casa cinza representa um obstáculo (ambos são estados terminais, qualquer ação tomada mantém o agente no próprio estado). Uma Função de Recompensa \mathcal{R} que representa a tarefa de posicionamento do robô é ilustrada abaixo, indicando a recompensa obtida por um agente ao tomar qualquer ação na casa correspondente ($\mathcal{R}(s, \cdot)$):

Quando o robô executa uma ação, ele se move para a casa vizinha na direção escolhida em 90% das vezes, com 5% de chance de ocorrer um escorregamento em cada direção perpendicular à ação tomada. Se o robô fosse colidir com uma parede externa do ambiente ele em vez disso permanece na mesma posição.

Todas as ações podem ser tomadas em qualquer estado, somente após o agente escolher a ação tomada que a função de probabilidades de transição do ambiente $(\mathcal{P}_{se'}^a)$ determina o estado seguinte de acordo com o escorregamento.

- Todas as 4 ações {↑, ↓, →, ←} são possíveis em todos os 6 estados.
- O problema segue o seguinte ordem:
 - 1) Agente escolhe qual ação $a \in A$ tomar.
 - 2) Agente recebe recompensa r(s, a).
 - 3) Dinâmica de transição de estados $\mathcal{P}^a_{ss'}$ é aplicada.
 - 4) Possível colisão com parede é verificada.

ESCLARECIMENTOS E1

RELEMBRANDO ÚLTIMA AULA

Na última aula vimos:

• A representação de um ambiente de Aprendizado por Reforço como um MDP.

PROCESSO DE DECISÃO DE MARKOV (MDP)

31

Um **Processo de Decisão de Markov** (ou MDP) é uma tupla < S, \mathcal{A} , \mathcal{P} , \mathcal{R} , $\gamma >$, onde:

- S é um conjunto finito de estados.
- A é um conjunto finito de ações.
- \mathcal{P} é uma função \mathcal{P} : $\mathcal{S}x\mathcal{A}x\mathcal{S} \to [0,1] \subset \mathbb{R}$ de probabilidades de transições de estados.

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$$

- \mathcal{R} é uma função de recompensa $\mathcal{R}: \mathcal{S}x\mathcal{A} \to \mathbb{R}$ tal que $\mathcal{R}(s,a) = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
- $\gamma \in [0,1] \subset \mathbb{R}$ é um fator de desconto.

Um MDP é a extensão de um MRP onde estuda-se o processo de tomada de decisões de um agente que interage com o ambiente de modo a maximizar as recompensas obtidas.

RELEMBRANDO ÚLTIMA AULA

Na última aula vimos:

• Como relacionar os valores de estados com os valores de estados sucessores a partir da Equação de Bellman.

RELEMBRANDO ÚLTIMA AULA

Na última aula vimos:

Como avaliar uma política qualquer π para obter sua função Valor $V_{\pi}(s)$ por meio da solução analítica da Equação de Bellman.

EQUAÇÃO DE BELLMAN PARA MDP EM FORMA MATRICIAL (V_{π})

$$V_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}(s,a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} V_{\pi}(s') \right)$$

Utilizando o MRP induzido pela política π podemos escrever a Equação de Bellman em

forma matricial:

forma matricial:
$$\boldsymbol{v}_{\pi} = \boldsymbol{\mathcal{R}}^{(\pi)} + \gamma \boldsymbol{\mathcal{P}}^{(\pi)} \boldsymbol{v}, \quad \text{onde} \quad \begin{cases} \mathcal{P}_{ss'}^{(\pi)} = \sum_{a \in \mathcal{A}} \pi(a|s) \, \mathcal{P}_{ss'}^{a} \\ \mathcal{R}_{s}^{(\pi)} = \sum_{a \in \mathcal{A}} \pi(a|s) \, \mathcal{R}(s,a) \end{cases}$$

$$v_{\pi} = (I - \gamma \mathcal{P}^{(\pi)})^{-1} \mathcal{R}^{(\pi)}$$

TÓPICOS DA AULA

Em problemas práticos o MDP $< S, A, P, R, \gamma >$ associado ao problema pode ser muito complexo ou desconhecido.

Na aula de hoje veremos:

• Como resolver os problemas de previsão (obter V_{π}, Q_{π}) e controle (obter V^*, Q^*, π^*) de modo iterativo com Programação Dinâmica, quando conhecemos o modelo do MDP (Model-Based Prediction/Control).

• Como resolver o problema de previsão (obter V_{π}, Q_{π}) somente por experiência, quando o modelo do MDP é desconhecido (Model-Free Prediction).

TÓPICOS DA AULA

- Programação Dinâmica (DP)
 - Avaliação de Política (Policy Evaluation)
 - Iteração sobre Função Política (Policy Iteration)
 - Iteração sobre Função Valor (Value Iteration)

- Model-Free Prediction
 - Aprendizado por Métodos de Monte-Carlo
 - Aprendizado por Diferenças Temporais (Temporal-Difference Learning)

PROGRAMAÇÃO DINÂMICA (DP)

Programação Dinâmica (DP)

PROGRAMAÇÃO DINÂMICA: DEFINIÇÃO

Programação Dinâmica é um método geral para solução de problemas com as seguintes propriedades:

- Subestrutura Ótima
 - Princípio da Otimalidade
 - Solução Ótima pode ser decomposta em subproblemas
- Superposição de Subproblemas
 - Recorrência de subproblemas
 - Soluções podem ser armazenadas e reutilizadas

Processos de Decisão de Markov (MDPs) apresentam ambas propriedades devido à decomposição recursiva da **Equação de Bellman** e ao armazenamento de soluções em uma **Função Valor**

PLANEJAMENTO POR PROGRAMAÇÃO DINÂMICA

Programação Dinâmica constitui um conjunto de algoritmos que assumem conhecimento completo do MDP $M = < S, A, P, R, \gamma >$ e podem ser utilizados em tarefas de planejamento:

- Previsão
 - Input: MDP $M = <\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma > \text{e política } \pi \text{ (ou MRP } M' < \mathcal{S}, \mathcal{P}_{SS'}^{(\pi)}, \mathcal{R}_{S}^{(\pi)}, \gamma >)$
 - Output: Funções Valor V_{π} e Q_{π}
- Controle
 - Input: MDP $M = < S, A, P, R, \gamma >$
 - Output: Funções Valor e Política ótimas V^* , Q^* e π^* .

POLICY EVALUATION

Programação Dinâmica (DP)

Avaliação de Política (Policy Evaluation)

DP: POLICY EVALUATION

A Avaliação Iterativa de uma Função Política de Ações π consiste em obter funções valores sucessivas que se aproximam da Função Valor V_{π} :

$$V_0 \rightarrow V_1 \rightarrow \cdots \rightarrow V_{\pi}$$

Isso pode ser feito com Atualizações Síncronas (Synchronous Backups):

- Inicializa-se V_0 aleatoriamente.
- Repetimos para k = 0,1,...:
 - Para todos estados $s \in S$:
 - Obtemos $V_{k+1}(s)$ a partir de $V_k(s')$, onde s' é um estado sucessor de s.

Como atualizar $V_k \rightarrow V_{k+1}$? Equação de Bellman

DP: POLICY EVALUATION

Atualização de V_k para obter V_{k+1} :

$$V_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}(s,a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} V_{k}(s') \right)$$

Em forma matricial: $v_{k+1} = \mathcal{R}^{(\pi)} + \gamma \mathcal{P}^{(\pi)} v_k$

Percebe-se que, após convergência, a equação de Bellman de V_{π} é satisfeita:

$$V_{k+1}(s) = V_k(s), \forall s \in \mathcal{S} \Rightarrow V_{k+1}(s) = V_{\pi}(s)$$

onde
$$V_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}(s,a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} V_{\pi}(s') \right)$$

DP: POLICY EVALUATION

Algoritmo: Avaliação Iterativa de Política π para obtenção de V_{π} (Atualizações Síncronas)

Input: MDP $M = < S, A, P, R, \gamma > e$ política π a ser avaliada.

Parâmetro do Algoritmo: $\theta > 0$ para determinar precisão da estimativa.

Inicializar $V_0(s)$ arbitrariamente para todo $s \in S$, com $V_0(s_{term}) = 0$ para estados terminais.

```
k = 0
Repetir:
\Delta = 0
Repetir para cada s \in S:
V_{k+1}(s) \leftarrow \sum_{a \in \mathcal{A}} \pi(a|s) \left( \mathcal{R}(s,a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} V_{k}(s') \right)
\Delta \leftarrow \max\{\Delta; |V_{k+1}(s) - V_{k}(s)|\}
k \leftarrow k + 1
Até que \Delta < \theta
Retorna: V_{k+1}
```

Dado o seguinte *gridworld*, vamos definir o MDP $< S, A, P, R, \gamma >$:

- $S = \{[0,0], [0,1], [0,2], [0,3], [1,0], [1,1], [1,2], [1,3],$ $[2,0], [2,1], [2,2], [2,3], [3,0], [3,1], [3,2], [3,3]\}$
- $\mathcal{A} = \{\uparrow, \downarrow, \rightarrow, \leftarrow\}$
- \mathcal{P} é determinístico ($\mathcal{P}_{ss'}^a$ são matrizes binárias com $\sum_{s'} \mathcal{P}_{ss'}^a = 1, \forall s, a$) e o estado sucessor é o indicado pela ação. No caso de ações que levariam ao exterior do *gridworld* ou ações tomadas em estados terminais o agente permanece no mesmo estado.
- $\mathcal{R}(s,a) = -1$ para qualquer ação tomada em um estado em branco e $\mathcal{R}(s,a) = 0$ para qualquer ação tomada em um estado terminal (sombreado).
- $\gamma = 1$: MDP episódico não descontado.

[0,0]	[0,1]	[0,2]	[0,3]
[1,0]	[1,1]	[1,2]	[1,3]
[2,0]	[2,1]	[2,2]	[2,3]
[3,0]	[3,1]	[3,2]	[3,3]

Agente Aleatório:

$$\pi(\uparrow | s) = \pi(\downarrow | s) = \pi(\rightarrow | s)$$
$$= \pi(\leftarrow | s) = 0.25, \forall s \in \mathcal{S}$$

V_0	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0

V_1	0	-1	-1	-1
	-1	-1	-1	-1
	-1	-1	-1	-1
	-1	-1	-1	0

V_2	0	-1.75	-2	-2
	-1.75	-2	-2	-2
	-2	-2	-2	-1.75
	-2	-2	-1.75	0

Algoritmo: Avaliação Iterativa de Política π para obtenção de V_{π} (Atualizações Síncronas)

Input: MDP $M = \langle S, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$ e política π a ser avaliada.

Parâmetro do Algoritmo: $\theta > 0$ para determinar precisão da estimativa.

Inicializar $V_0(s)$ arbitrariamente para todo $s \in \mathcal{S}$, com $V_0(s_{term}) = 0$ para estados terminais. k = 0Repetir: $\Delta = 0$ Repetir para cada $s \in \mathcal{S}$: $V_{k+1}(s) \leftarrow \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}(s,a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a V_k(s')\right)$ $\Delta \leftarrow \max\{\Delta; |V_{k+1}(s) - V_k(s)|\}$

$$V_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}(s,a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} V_k(s') \right)$$

 $k \leftarrow k + 1$ Até que $\Delta < \theta$ **Retorna**: V_{k+1}

$$-1.75 = 0.25[-1 + 1(-1)] + 0.25[-1 + 1(-1)] + 0.25[-1 + 1(-1)] + 0.25[-1 + 1(0)]$$

V_3	0	-2.44	-2.94	-3
	-2.44	-2.87	-3	-2.94
•	-2.94	-3	-2.87	-2.44
	-3	-2.94	-2.44	0

V_{10}	0	-6.14	-8.35	-8.97
	-6.14	-7.74	-8.43	-8.35
•	-8.35	-8.43	-7.74	-6.14
	-8.97	-8.35	-6.14	0

V_{∞}	0	-14	-20	-22
	-14	-18	-20	-20
	-20	-20	-18	-14
	-22	-20	-14	0

$$V_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}(s,a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} V_{k}(s') \right)$$

DP_Methods.ipynb

POLICY EVALUATION

Programação Dinâmica (DP)

Iteração sobre Função Política (Policy Iteration)

DP: POLICY ITERATION

Vimos como utilizar Programação Dinâmica para avaliar uma política (obter $V_{\pi}(s)$).

Como descobrir a política ótima V^* ?

- Ideia: Encontrar uma política π' melhor que π a partir de V_{π} .
- Vamos partir de uma política π qualquer e melhorá-la iterativamente até encontrar π^* :

$$\pi_0, V_{\pi_0}, \pi_1, V_{\pi_1}, \pi_2, V_{\pi_2} \dots, \pi^*, V^*$$

• Métodos de DP que otimizam a política de ações desta forma são denominados *Policy Iteration*.

DP: POLICY ITERATION

Como melhorar uma Política de Ações?

Métodos de Iteração sobre Função Política (Policy Iteration) consistem em repetidamente avaliar a função valor V_{π} da política atual e melhorar esta política a partir de V_{π} :

• Avaliação de Política π (Policy Evaluation)

$$V_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \dots | S_t = s]$$

• Melhorar π por meio de comportamento greedy com relação a V_{π} (Policy Improvement)

$$\pi' = greedy(V_{\pi})$$

$$\pi_0 \to^E V_{\pi_0} \to^I \pi_1 \to^E V_{\pi_1} \to^I \pi_2 \to^E \cdots \to^I \pi^* \to^E V^*$$

Esse processo iterativo sempre converge para a política ótima π^* .

COMPORTAMENTO GREEDY

O comportamento greedy (guloso) com relação a uma Função Valor V_{π} consiste em sempre tomar ações que levam a estados de maior valor:

$$\pi'(a|s) = \begin{cases} 1, & se \ a = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \left[\mathcal{R}(s,a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} V_{\pi}(s') \right] \\ 0, & caso \ contrário \end{cases}$$

Ou seja, o agente toma sempre as ações que acredita serem as melhores dado seu conhecimento atual V_{π} (Exploitation).

COMO O COMPORTAMENTO GREEDY MELHORA A POLÍTICA π

- Considere a política determinística $\pi(s) = a$
- Seja π' a política obtida pelo comportamento greedy sobre V_{π} :

$$\pi'(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q_{\pi}(s, a)$$

• Temos que:

$$Q_{\pi}(s, a = \pi'(s)) = \max_{a \in \mathcal{A}} Q_{\pi}(s, a) \ge Q_{\pi}(s, a = \pi(s)) = V_{\pi}(s)$$

• Assim, a Função Valor necessariamente melhora $V_{\pi'}(s) \ge V_{\pi}(s)$:

$$\begin{split} V_{\pi}(s) &\leq Q_{\pi}\big(s, \pi'(s)\big) = \mathbb{E}_{\pi}[R_{t+1} + \gamma V_{\pi}(S_{t+1}) | S_{t} = s, A_{t} = \pi'(s)] \\ &\leq \mathbb{E}_{\pi'}\big[R_{t+1} + \gamma Q_{\pi}\big(S_{t+1}, \pi'(S_{t+1})\big) \big| S_{t} = s\big] \\ &\leq \mathbb{E}_{\pi'}\big[R_{t+1} + \gamma R_{t+2} + \gamma^{2} Q_{\pi}\big(S_{t+2}, \pi'(S_{t+2})\big) \big| S_{t} = s\big] \\ &\leq \mathbb{E}_{\pi'}\big[R_{t+1} + \gamma R_{t+2} + \cdots | S_{t} = s\big] \\ &\leq V_{\pi'}(s) \end{split}$$

CONVERGÊNCIA DA ITERAÇÃO SOBRE POLÍTICA

Quando há convergência o sinal de desigualdade da equação anterior é substituído por um sinal de igualdade:

$$Q_{\pi}(s,\pi'(s)) = \max_{a \in \mathcal{A}} Q_{\pi}(s,a) = Q_{\pi}(s,\pi(s)) = V_{\pi}(s)$$

Então a Equação de Bellman da Otimalidade é satisfeita:

$$V_{\pi}(s) = \max_{a \in \mathcal{A}} Q_{\pi}(s, a)$$

Portanto, $V_{\pi}(s) = V^*(s)$, $\forall s \in S$ e a política π é uma política ótima:

$$\pi = \pi^*$$

DP: POLICY ITERATION

- Policy Evaluation: Estimar V_{π} utilizando o algoritmo de Avaliação Iterativa da Política π .
- Policy Improvement: Obter $\pi' \ge \pi$ por meio de comportamento *greedy* sobre V_{π} .

Evaluation

Improvement

:

$$\pi^*$$
 \longleftarrow V^*

DP: POLICY ITERATION

Algoritmo: Iteração sobre Política π para obter π^* , V^* (Atualizações Síncronas)

```
Input: MDP M = < S, A, P, R, \gamma >.
Parâmetro do Algoritmo: \theta > 0 para determinar precisão da estimativa.
Inicializar: V_0(s) e \pi(s) arbitrariamente para todo s \in \mathcal{S}, com V_0(s_{term}) = 0 para estados terminais.
1) Policy Evaluation
k = 0
Repetir:
        \Delta = 0
        Repetir para cada s \in S:
                 V_{k+1}(s) \leftarrow \sum_{a \in \mathcal{A}} \pi(a|s) \left( \mathcal{R}(s,a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a V_k(s') \right)
                 \Delta \leftarrow \max\{\Delta; |V_{k+1}(s) - V_k(s)|\}
        k \leftarrow k + 1
Até que \Delta < \theta
2) Policy Improvement
policy_stable \leftarrow True
Repetir para cada s \in S:
        a_{old} \leftarrow \pi(s)
        \pi(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \left[ \mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} V_{k+1}(s') \right]
        Se a_{old} \neq \pi(s), então policy_stable \leftarrow False
Se policy_stable, Retorna \pi \approx \pi^*, V_{k+1} \approx V^*, caso contrário volta para 1)
```

1) Policy Evaluation

2) Policy Improvement

 V_{π} para política aleatória

Política greedy com relação a V_{π}

$$V_{\infty} = V_{\pi}$$

0	-14	-20	-22
-14	-18	-20	-20
-20	-20	-18	-14
-22	-20	-14	0

$$\pi' = greedy(V_{\pi})$$

	+	-	+
†	1	+	+
†	†	↓	+
+	→	→	

Aplicado ao exemplo do *gridworld* o algoritmo de Iteração sobre Política convergiu para a política ótima em apenas uma iteração:

$$\pi' = greedy(V_{\pi_{rand}}) = \pi^*$$

No caso geral podem ser necessárias iterações adicionais.

DP_Methods.ipynb

Vamos analisar a evolução da política *greedy* a cada iteração do algoritmo Policy Evaluation:

 V_k para política aleatória

Política greedy com relação a V_k

 V_0

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

 $\pi' = greedy(V_0)$

	+	+	+
+	+	+	+
+	+	+	+
+	+	+	

 V_1

0	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	0

 $\pi' = greedy(V_1)$

	↓	+	+
↑		+	+
+	+	+	+
+	+	→	

V_k para política aleatória

Política greedy com relação a V_k

V_2	0	-1.75	-2	-2
	-1.75	-2	-2	-2
	-2	-2	-2	-1.75
	-2	-2	-1.75	0

$$\pi' = greedy(V_2)$$

			7
↑	↑	+	+
↑	+		+
+	→	→	

Política Ótima é obtida a partir de k = 3

π'	=	$greedy(V_3)$

	ļ	Ţ	Ţ
†	1	Ţ*	+
†	1	Ļ	+
↑	→	→	

 V_{10}

0	-6.14	-8.35	-8.97
-6.14	-7.74	-8.43	-8.35
-8.35	-8.43	-7.74	-6.14
-8.97	-8.35	-6.14	0

$$\pi' = greedy(V_{10})$$

	+	-	-
†	1	—	+
↑	1	₽	+
1	1	-	

DP: EXTENSÕES DE POLICY ITERATION

Precisamos executar o algoritmo de Avaliação da Função Política até a convergência para V_{π} no passo de Policy Evaluation?

Em vez de calcular $V_0 \to V_1 \to \cdots \to V_\infty$ para somente depois melhorar a política π , podemos definir um critério de parada:

- ϵ -convergência da Função Valor: $|V_{k+1}(s) V_k(s)| < \epsilon, \forall s \in S$
- Parada após k iterações do algoritmo de Avaliação Iterativa da Política.

Se atualizarmos a política com $\pi' = greedy(V_{\pi})$ a cada iteração (parar após k=1), temos o Algoritmo de Iteração sobre Função Valor.

DP: VALUE ITERATION

Programação Dinâmica (DP)

Iteração sobre Função Valor (Value Iteration)

PRINCÍPIO DA OTIMALIDADE DE BELLMAN

O Princípio da Otimalidade de Bellman afirma que uma política $\pi(a|s)$ atinge o valor ótimo a partir do estado s, $V_{\pi}(s) = V^{*}(s)$, se e somente se:

- Para cada estado s' alcançável de s:
- π atinge o valor ótimo a partir de s', ou seja, $V_{\pi}(s') = V^*(s')$

Assim, uma política ótima pode ser dividida em dois componentes:

- Uma ação inicial ótima A*
- Seguida de uma política ótima a partir do estado sucessor S'

DP: VALUE ITERATION

Devido ao Princípio da Otimalidade de Bellman, se conhecemos a solução dos subproblemas $V^*(s')$, podemos determinar a solução $V^*(s)$ a partir de *one-step look ahead*:

$$V^*(s) \leftarrow \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}^a_{ss'} V^*(s') \right]$$

• A ideia por trás do algoritmo de Iteração sobre a Função Valor é aplicar a atualização acima recursivamente, de modo que as estimativas da função valor tendem à Função Valor Ótima: $V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V^*$

DP: VALUE ITERATION

A Iteração sobre Função Valor (Value Iteration) consiste em obter funções valores sucessivas que se aproximam da Função Valor Ótima V^* :

$$V_0 \rightarrow V_1 \rightarrow \cdots \rightarrow V^*$$

Isso pode feito com Atualizações Síncronas (Synchronous Backups) a partir da aplicação recursiva da Equação de Bellman da Otimalidade :

- Inicializa-se V_0 aleatoriamente.
- Repetimos para k = 0,1,...:
 - Para todos estados $s \in S$:
 - Obtemos $V_{k+1}(s)$ a partir de $V_k(s')$, onde s' é um estado sucessor de s.

Não há uma política explícita, a cada iteração a Função Valor V_k pode não corresponder à nenhuma política π .

DP: VALUE ITERATION

Atualização de V_k para obter V_{k+1} :

$$V_{k+1}(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} V_k(s') \right]$$

Em forma matricial: $\mathbf{v}_{k+1} = \max_{a \in \mathcal{A}} [\mathbf{R}^a + \gamma \mathbf{P}^a \mathbf{v}_k]$

Percebe-se que, após convergência, a equação de Bellman da Otimalidade é satisfeita:

$$V_{k+1}(s) = V_k(s), \forall s \in \mathcal{S} \Rightarrow V_{k+1}(s) = V^*(s)$$

onde
$$V^*(s) = \max_{a \in \mathcal{A}} [\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a V^*(s')]$$

DP: VALUE ITERATION

Input: MDP $M = \langle S, A, P, R, \gamma \rangle$.

Algoritmo: Iteração sobre Função Valor para obtenção de π^* , V^* (Atualizações Síncronas)

```
Parâmetro do Algoritmo: \theta > 0 para determinar precisão da estimativa.
Inicializar V_0(s) arbitrariamente para todo s \in \mathcal{S}, com V_0(s_{term}) = 0 para estados terminais.
k = 0
Repetir:
      \Delta = 0
      Repetir para cada s \in S:
             V_{k+1} \leftarrow (s) \max_{a \in \mathcal{A}} \left[ \mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} V_{k}(s') \right]
             \Delta \leftarrow \max\{\Delta; |V_{k+1}(s) - V_k(s)|\}
      k \leftarrow k + 1
Até que \Delta < \theta
Retorna: \pi = \operatorname{argmax} \left[ \mathcal{R}(s, a) + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a V_{k+1}(s') \right] \approx \pi^* \operatorname{e} V_{k+1} \approx V^*
```

DP: VALUE ITERATION - EXEMPLO

DP_Methods.ipynb

DYNAMIC PROGRAMMING: VISÃO GERAL DOS ALGORITMOS

Os Algoritmos de Programação Dinâmica estudados são caracterizados pelo problema que resolvem (Previsão ou Controle) e pela Equação de Bellman aplicada para atualizações sucessivas:

Problema	Equação de Bellman	Algoritmo
Previsão (determinar V_{π})	Bellman Expectation Equation	Policy Evaluation
Controle (determinar π^* , V^*)	Bellman Expectation Equation + Greedy Policy Improvement	Policy Iteration
Controle (determinar π^* , V^*)	Bellman Optimality Equation	Value Iteration

- Algoritmos são baseados na Função Valor dos Estados (V_{π} ou V^*).
- Complexidade $\mathcal{O}(mn^2)$, onde $|\mathcal{S}| = n$ e $|\mathcal{A}| = m$.

DP: ATUALIZAÇÕES ASSÍNCRONAS

Os algoritmos vistos até agora implementam Atualizações Síncronas:

- A cada iteração, armazena-se a Função Valor antiga V_k e a nova V_{k+1} , todos os estados são percorridos e atualiza-se $V_{k+1}(s)$ a partir de $V_k(s')$.
- Estados são atualizados em paralelo.

Programação Dinâmica com Atualizações Assíncronas possui as seguintes características:

- Estados são atualizados individualmente e em série, em qualquer ordem.
- A cada iteração, armazena-se apenas uma Função Valor V e atualiza-se o valor V(s) de um estado apenas.
- Tempo computacional consideravelmente reduzido.

DP: ATUALIZAÇÕES ASSÍNCRONAS

Iteração sobre Função Valor com Atualizações Síncronas

Para todo $s \in \mathcal{S}$:

$$V_{new}(s) \leftarrow \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} V_{old}(s') \right]$$

$$V_{old} \leftarrow V_{new}$$

Iteração sobre Função Valor com Atualizações Assíncronas

Para todo $s \in \mathcal{S}$:

$$V(s) \leftarrow \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} V(s') \right]$$

DP: FULL-WIDTH BACKUPS

Os Algoritmos de Programação Dinâmica implementam Atualizações de

Largura Completa (Full-Width Backups):

- Para cada atualização (síncrona ou assíncrona), todo estado sucessor e todas ações são consideradas.
- Isso é possível devido ao conhecimento do modelo $M = < S, A, P, R, \gamma >$ (Model-Based RL).

Programação Dinâmica é eficaz para problemas de tamanho médio (~Milhões de Estados).

Para problemas maiores, DP torna-se inviável (Curse of Dimensionality).

Outra limitação é a necessidade de conhecimento do modelo, a seguir vamos estudar algoritmos de aprendizado que se baseiam em **experiência amostrada** (**Model-Free**).

SAMPLE BACKUPS

Em seguida, vamos estudar métodos que utilizam Atualizações Amostradas (Sample Backups) e não dependem do conhecimento de um modelo (Model-Free).

- Esses métodos utilizam transições e recompensas (S, A, R, S') amostradas a partir de interação com o ambiente, sem o conhecimento explícito do modelo $M = < S, A, P, R, \gamma >$
- Vantagens:
 - Model-Free: Nenhum conhecimento do MDP é necessário.
 - Viável para espaços de estados maiores.

Torna-se necessário garantir exploração adequada do espaço de estados: ϵ -greedy

MODEL-FREE PREDICTION

Model-Free Prediction

MODEL-FREE PREDICTION: INTRODUÇÃO

Métodos de Programação Dinâmica possuem interesse teórico, mas em aplicações práticas o modelo do ambiente é desconhecido ou complexo demais.

• Model-Free Prediction: Como avaliar uma política de ações π exclusivamente a partir de interações com o ambiente?

[0,0]	[0,1]	[0,2]	[0,3]
[1,0]	[1,1]	[1,2]	[1,3]
[2,0]	[2,1]	[2,2]	[2,3]
[3,0]	[3,1]	[3,2]	[3,3]

Ambiente

MODEL-FREE PREDICTION: MÉTODOS DE MONTE-CARLO

Métodos de Monte-Carlo aprendem diretamente a partir de episódios completos de experiência do agente.

Ideia: O valor de um estado é dado pelo valor esperado dos retornos daquele estado.

$$V_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}|S_t = s\right]$$

- Aproximar o valor esperado por uma média empírica dos retornos obtidos naquele estado em todos episódios.
- Quanto maior o número de episódios, mais próximo esse valor é do valor real $V_{\pi}(s)$.

Desvantagem: Aplicável somente a problemas episódicos (horizonte finito T).

Seja π uma política a ser avaliada, M = < S, A, P, R, $\gamma >$ um MDP desconhecido e $\{(S_0^{ep}, A_0^{ep}, R_1^{ep}, S_1^{ep}, A_1^{ep}, R_2^{ep}, \dots)\}_{ep=1}^{N_{eps}} \sim \pi$ um conjunto de episódios de experiência obtidos ao seguir a política π em M.

- Para avaliar $V_{\pi}(s)$:
- No primeiro timestep t em que s é visitado em cada episódio:
- Incrementar contador $N(s) \leftarrow N(s) + 1$
- Incrementar Retorno Total $S_G(s) \leftarrow S_G(s) + G_t$
- Estimar valor do estado s como: $V_{\pi}(s) \approx \frac{S_G(s)}{N(s)} \to V_{\pi}(s), N(s) \to \infty$

Algoritmo: First-Visit Monte-Carlo Policy Evaluation for estimating V_{π}

```
Input: Política \pi e conjunto de episódios \{(S_0^{ep}, A_0^{ep}, R_1^{ep}, \dots, S_{T-1}, A_{T-1}, R_T)\}_{ep=1}^{N_{eps}} \sim \pi.
Inicializar N(s) = 0, S_G(s) = 0 para todo s \in S.
Repetir para ep = 1, ..., N_{ens}:
     G = 0
     Repetir para cada timestep t = T - 1, T - 2, ..., 0 do episódio ep:
           G \leftarrow \gamma G + R_{t+1}^{ep}
           Se S_t^{ep} não aparece em (S_0^{ep}, ... S_{t-1}^{ep}):
                 N(S_t^{ep}) \leftarrow N(S_t^{ep}) + 1
                 S_G(S_t^{ep}) \leftarrow S_G(S_t^{ep}) + G
```

Retorna:
$$V(s) = \frac{S_G(s)}{N(s)} \approx V_{\pi}(s), \forall s$$

Seja o seguinte ambiente do tipo Gridworld 3x3, com 2 estados terminais (s_1 e s_9) e 7 estados

não terminais $(s_2, ..., s_8)$.

S_1	s_2	s_3
S_4	<i>S</i> ₅	s_6
S ₇	<i>S</i> ₈	S_9

$$\mathcal{A} = \{\uparrow, \downarrow, \rightarrow, \leftarrow\}$$

Supondo que o objetivo de um agente neste ambiente é chegar a qualquer estado terminal o mais rápido possível. Podemos definir a seguinte função recompensa:

0	-1	-1
-1	-1	-1
-1	-1	0

$$\mathcal{R}(s,a) = \begin{cases} -1, & \forall a, se \ s \in \{s_2, \dots, s_8\} \\ 0, & \forall a, se \ s \in \{s_1, s_9\} \end{cases}$$

$$\forall a, se \ s \in \{s_2, \dots, s_8\}$$

 $\forall a, se \ s \in \{s_1, s_9\}$

Vamos amostrar episódios neste ambiente de acordo com a política aleatória π e estimar a

Função Valor dos Estados V_{π} .

$$Ep_1: (s_4, \rightarrow, -1, s_5, \uparrow, -1, s_2, \rightarrow, -1, s_3, \downarrow, -1, s_6, \downarrow, -1, s_9)$$

Aplicando Monte-Carlo por primeira visita para calcular $S_G(s_i)$ para cada estado:

$$S_G(s_1)=0,$$

$$S_G(s_2) = -2.71,$$
 $S_G(s_3) = -1.9$

$$S_G(s_3) = -1.9$$

$$S_G(s_4) = -4.68559,$$
 $S_G(s_5) = -3.439,$ $S_G(s_6) = -1,$

$$S_C(s_5) = -3.439$$

$$S_G(s_6) = -1,$$

$$S_G(s_7)=0,$$

$$S_G(s_8) = 0,$$
 $S_G(s_9) = 0$

$$S_G(s_9) = \mathbf{0}$$

s_1	s_2	s_3
s_4	s_5	<i>s</i> ₆
S ₇	<i>S</i> ₈	S ₉

Seja π a política aleatória e o ambiente dado pelo gridworld 3x3, onde r(s,a) = -1 para todo estado em branco e r(s, a) = 0 para estados terminais, com $\gamma = 0.9$. Seja o seguinte conjunto de episódios:

- $Ep_1: (s_4, \rightarrow, -1, s_5, \uparrow, -1, s_2, \rightarrow, -1, s_3, \downarrow, -1, s_6, \downarrow, -1, s_9)$
- $Ep_2: (s_7, \rightarrow, -1, s_8, \rightarrow, -1, s_9)$

s_1	s_2	s_3
s_4	s_5	<i>s</i> ₆
S_7	s_8	S ₉

Aplicando Monte-Carlo por primeira visita para calcular $S_G(s_i)$ para cada estado:

$$S_G(s_1)=0,$$

$$S_G(s_2) = -2.71, S_G(s_3) = -1.9$$

$$S_G(s_3) = -1.9$$

$$S_G(s_4) = -4.68559,$$
 $S_G(s_5) = -3.439,$ $S_G(s_6) = -1,$

$$S_C(s_5) = -3.439$$

$$S_G(s_6) = -1,$$

$$S_G(s_7) = 0 + (-1.9),$$
 $S_G(s_8) = 0 + (-1),$ $S_G(s_9) = 0 + 0$

$$S_G(s_8) = 0 + (-1)$$

$$S_G(s_9) = 0 + 0$$

Seja π a política aleatória e o ambiente dado pelo gridworld 3x3, onde r(s,a) = -1 para todo estado em branco e r(s, a) = 0 para estados terminais, com $\gamma = 0.9$. Seja o seguinte conjunto de episódios:

- $Ep_1: (s_4, \rightarrow, -1, s_5, \uparrow, -1, s_2, \rightarrow, -1, s_3, \downarrow, -1, s_6, \downarrow, -1, s_9)$
- $Ep_2: (s_7, \rightarrow, -1, s_8, \rightarrow, -1, s_9)$
- $Ep_3: (s_2, \downarrow, -1, s_5, \leftarrow, -1, s_4, \leftarrow, -1, s_4, \uparrow, -1, s_1)$

s_1	s_2	s_3
S_4	<i>S</i> ₅	<i>s</i> ₆
S ₇	s_8	S ₉

Aplicando Monte-Carlo por primeira visita para calcular $S_G(s_i)$ para cada estado:

$$S_G(s_1) = 0 + 0$$
,

$$S_G(s_2) = -2.71 + (-3.439),$$

$$S_G(s_3) = -1.9$$

$$S_G(s_4) = -4.68559 + (-1.9),$$
 $S_G(s_5) = -3.439 + (-2.71),$ $S_G(s_6) = -1,$

$$S_G(s_5) = -3.439 + (-2.71),$$

$$S_G(s_6) = -1,$$

$$S_G(s_7) = 0 + (-1.9),$$

$$S_G(s_8) = 0 + (-1),$$

$$S_G(s_9) = 0 + 0$$

Seja π a política aleatória e o ambiente dado pelo gridworld 3x3, onde r(s, a) = -1 para todo estado em branco e r(s, a) = 0 para estados terminais, com $\gamma = 0.9$. Seja o seguinte conjunto de episódios:

•
$$Ep_1: (s_4, \rightarrow, -1, s_5, \uparrow, -1, s_2, \rightarrow, -1, s_3, \downarrow, -1, s_6, \downarrow, -1, s_9)$$

•
$$Ep_2: (s_7, \rightarrow, -1, s_8, \rightarrow, -1, s_9)$$

•
$$Ep_3: (s_2, \downarrow, -1, s_5, \leftarrow, -1, s_4, \leftarrow, -1, s_4, \uparrow, -1, s_1)$$

• $Ep_4: (s_7, \uparrow, -1, s_4, \rightarrow, -1, s_5, \rightarrow, -1, s_6, \uparrow, -1, s_3, \leftarrow, -1, s_2, \leftarrow,$	$-1, s_1$)
--	-----------	---

Aplicando Monte-Carlo por primeira visita para estimar $V_{\pi}(s)$ temos:

$$S_G(s_1) = [0], S_G(s_2) = [(-2.71) + (-3.439) + (-1)], S_G(s_3) = [(-1.9) + (-1.9)]$$

$$S_G(s_4) = [(-4.68559) + (-1.9) + (-4.0951)], S_G(s_5) = [(-3.439) + (-2.71) + (-3.439)], S_G(s_6) = [(-1) + (-2.71)],$$

$$S_G(s_7) = [(-1.9) + (-4.68559)], S_G(s_8) = [(-1)], S_G(s_9) = [0 + 0]$$

Assim, dividindo os retornos totais S_G pelo números de primeiras visitas N em cada estado, temos:

$$V(s_1) = \frac{S_G(s_1)}{N(s_1)} = \frac{0}{1} = 0, V(s_2) = \frac{S_G(s_2)}{N(s_2)} = \frac{-7.149}{3}, V(s_3) = \frac{S_G(s_3)}{N(s_3)} = \frac{-3.8}{2}$$

$$V(s_4) = \frac{S_G(s_4)}{N(s_4)} = \frac{-10.68069}{3} = 0, V(s_5) = \frac{S_G(s_5)}{N(s_5)} = \frac{-9.588}{3}, V(s_6) = \frac{S_G(s_6)}{N(s_6)} = \frac{-3.71}{2}$$

$$V(s_7) = \frac{S_G(s_7)}{N(s_7)} = \frac{-6.58559}{2} = 0, V(s_8) = \frac{S_G(s_8)}{N(s_8)} = \frac{-1}{1}, V(s_9) = \frac{S_G(s_9)}{N(s_9)} = \frac{0}{2}$$

s_1	s_2	s_3
S_4	<i>S</i> ₅	<i>s</i> ₆
S_7	<i>S</i> ₈	S ₉

Os valores de cada estado são aproximadamente:

(para estimativas mais precisas é necessária uma quantidade maior de episódios)

0	-2.38	-1.9
-3.56	-3.20	-1.85
-3.29	-1	0

 $V \approx V_{\pi}$

Monte-Carlo (4 episódios)

$V \approx V_{\pi}$

0	-2.38	-1.9
-3.56	-3.20	-1.85
-3.29	-1	0

$$V(s_1) = \frac{S_G(s_1)}{N(s_1)} = \frac{0}{1} = 0, V(s_2) = \frac{S_G(s_2)}{N(s_2)} = \frac{-7.149}{3}, V(s_3) = \frac{S_G(s_3)}{N(s_3)} = \frac{-3.8}{2}$$

$$V(s_4) = \frac{S_G(s_4)}{N(s_4)} = \frac{-10.68069}{3} = 0, V(s_5) = \frac{S_G(s_5)}{N(s_5)} = \frac{-9.588}{3}, V(s_6) = \frac{S_G(s_6)}{N(s_6)} = \frac{-3.71}{2}$$

$$V(s_7) = \frac{S_G(s_7)}{N(s_7)} = \frac{-6.58559}{2} = 0, V(s_8) = \frac{S_G(s_8)}{N(s_9)} = \frac{-1}{1}, V(s_9) = \frac{S_G(s_9)}{N(s_9)} = \frac{0}{2}$$

Monte-Carlo (10k episódios)

$$V \approx V_{\pi}$$

V = S/N return V

0	-4.19	-5.26
-4.16	-4.77	-4.22
-5.21	-4.18	0

```
def first visit monte carlo policy evaluation(env,agent,N eps=1000):
    n = len(env.state space)
    # Initialize Sum of Returns S and State Visit Count N
    S = np.zeros(n)
                                                                         GridWorld: Value Function
    N = np.zeros(n)
                                                               -0.5
    # Loop over episodes
    for i in range(N_eps):
        episode = generate_episode(env,random_agent)
        G = 0
                                                                0.5
        T = len(episode)
        # Loop over timesteps on episode
        for t in range(T-1,-1,-1):
                                                                1.0
            transition = episode[t]
            G = env.gamma*G + transition.r
                                                                1.5
            visited_states = [e.s for e in episode[0:t]]
            if (first_visit(visited_states, transition.s)):
                                                                2.0 -
                s index = state index(transition.s)
                N[s_index] += 1
                S[s index] += G
                                                                  -0.5 0.0 0.5 1.0 1.5 2.0 2.5
    # Value Function Estimate V ~ S/N
```

EVERY-VISIT MONTE-CARLO POLICY EVALUATION

Seja π uma política a ser avaliada, M = < S, A, P, R, $\gamma >$ um MDP desconhecido e $\{(S_0^{ep}, A_0^{ep}, R_1^{ep}, S_1^{ep}, A_1^{ep}, R_2^{ep}, \dots)\}_{ep=1}^{N_{eps}} \sim \pi$ um conjunto de episódios de experiência obtidos ao seguir a política π em M.

- Para avaliar $V_{\pi}(s)$:
- Em cada timestep t em que s é visitado em cada episódio:
- Incrementar contador $N(s) \leftarrow N(s) + 1$
- Incrementar Retorno Total $S_G(s) \leftarrow S_G(s) + G_t$
- Estimar valor do estado s como: $V_{\pi}(s) \approx \frac{S_G(s)}{N(s)} \to V_{\pi}(s), N(s) \to \infty$

EVERY-VISIT MONTE-CARLO POLICY EVALUATION

Algoritmo: Every-Visit Monte-Carlo Policy Evaluation for estimating V_{π}

Input: Política π e conjunto de episódios $\{(S_0^{ep}, A_0^{ep}, R_1^{ep}, ..., S_{T-1}, A_{T-1}, R_T)\}_{ep=1}^{N_{eps}} \sim \pi$. **Inicializar** N(s) = 0, $S_G(s) = 0$ para todo $s \in S$.

Repetir para $ep = 1, ..., N_{eps}$:

$$G = 0$$

Repetir para cada timestep t = T - 1, T - 2, ..., 0 do episódio ep:

$$G \leftarrow \gamma G + R_{t+1}^{ep}$$

$$N(S_t^{ep}) \leftarrow N(S_t^{ep}) + 1$$

$$S_G(S_t^{ep}) \leftarrow S_G(S_t^{ep}) + G$$

Retorna: $V(s) = \frac{S_G(s)}{N(s)} \approx V_{\pi}(s), \forall s$

ATUALIZAÇÕES INCREMENTAIS DE MONTE-CARLO

Não é preciso realizar todos os episódios antes de estimar V_{π} , é possível realizar atualizações incrementais sobre a estimativa

$$V \approx V_{\pi}$$
 a cada episódio $S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T$:

$$N(S_t) \leftarrow N(S_t) + 1$$

$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} [G_t - V(S_t)]$$

Esse tipo de atualização permite a utilização de critérios de parada baseados na ϵ -convergência da Função Valor:

$$|V_{k+1}(s) - V_k(s)| < \epsilon$$

A média de uma sequência pode ser calculada de forma incremental:

$$\mu_{k} = \frac{1}{k} \sum_{j=1}^{k} x_{j}$$

$$= \frac{1}{k} \left(x_{k} + \sum_{j=1}^{k-1} x_{j} \right)$$

$$= \frac{1}{k} (x_{k} + (k-1)\mu_{k-1})$$

$$= \mu_{k-1} + \frac{1}{k} (x_{k} - \mu_{k-1})$$

MODEL-FREE PREDICTION: TEMPORAL-DIFFERENCE LEARNING TD(0)

Model-Free Prediction

Temporal-Difference Learning TD(0)

TEMPORAL-DIFFERENCE LEARNING

Assim como métodos de Monte-Carlo, métodos de aprendizado por diferenças temporais (Temporal-Difference Learning) utilizam exclusivamente interações com o ambiente, sem conhecimento do MDP (**Model-Free**).

- No entanto, métodos de Diferenças Temporais aprendem através de episódios incompletos, por meio de *Bootstrapping*.
- Em Temporal-Difference Learning, não é necessário esperar o fim do episódio para calcular os retornos G_t . Em vez disso, **estima-se os retornos** a partir do conhecimento atual da Função Valor V.

COMPARAÇÃO: MONTE-CARLO E TEMPORAL-DIFFERENCE LEARNING

Incremental Every-Visit Monte-Carlo Policy Evaluation

 $V(S_t)$ é atualizado na direção do retorno observado G_t :

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$

Métodos de Monte-Carlo são menos eficientes, pois precisam esperar até o final do episódio para atualizar V(s).

Apresentam convergência menos oscilatória.

Temporal-Difference Learning TD(0)

 $V(S_t)$ é atualizado na direção do retorno estimado $R_{t+1} + \gamma V(S_{t+1})$:

$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

TD Target: $R_{t+1} + \gamma V(S_{t+1})$

TD Error: $\delta_t = [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$

Métodos de aprendizado por diferenças temporais podem ser aplicados em problemas de horizonte infinito: $t = 1,2,3,... \rightarrow \infty$

BIAS VARIANCE TRADE-OFF

- O Retorno $G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$ é uma estimativa sem bias de $V_{\pi}(S_t)$.
- O TD target verdadeiro $R_{t+1} + \gamma V_{\pi}(S_{t+1})$ é uma estimativa **sem** bias de $V_{\pi}(S_t)$.
- Como não conhecemos V_{π} , TD target $R_{t+1} + \gamma V(S_{t+1})$ é uma estimativa **com** bias de $V_{\pi}(S_t)$.
- No entanto, o TD target $R_{t+1} + \gamma V(S_{t+1})$ apresenta menor variância:
 - O retorno G_t depende de múltiplas ações, transições e recompensas aleatórias.
 - O TD target depende de apenas uma ação, transição e recompensa.

Monte-Carlo: ↑ variância, ↓ bias

TD-Learning: ↓ variância, ↑ *bias*

TEMPORAL-DIFFERENCE LEARNING: TD(0) FOR POLICY EVALUATION

Algoritmo: TD(0) Policy Evaluation for estimating V_{π}

Input: Política π a ser avaliada

Parâmetro do Algoritmo: Taxa de aprendizado $\alpha \in (0,1]$.

Inicializar $V_0(s)$ arbitrariamente para todo $s \in S$, com $V_0(s_{term}) = 0$ para estados terminais.

Repetir para cada episódio

Inicializar estado inicial $S_0 \sim \mathbb{P}(S_0 = s), s \in S$

Repetir para cada timestep t = 0,1,2,...:

Amostrar ação da política $A_t \sim \pi(a|S_t)$

Executar ação A_t e observar R_{t+1} , S_{t+1}

$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

$$S_t = S_{t+1}$$

Até que S_t seja um estado terminal

Retorna: $V(s) \approx V_{\pi}(s), \forall s \in \mathcal{S}$

RANDOM WALK EXAMPLE: MC, TD(0)

Seja o seguinte MDP, em que o agente começa no estado C e recebe recompensas $\mathcal{R}(s,a) = 0, \forall s \in \{A, B, C, D, E\}, \forall a \in \{\leftarrow, \rightarrow\}$ com exceção de $\mathcal{R}(E, \rightarrow) = 1$.

Como a única recompensa r=1 corresponde a chegar no estado T_2 , temos que $V_{\pi}(s)$ é a probabilidade de terminar no estado T_2 dado que $S_0=s$

Qual é a função Valor dos Estados para uma política aleatória uniforme (para $\gamma = 1$)?

$$V_{\pi}(A) = 1/6, V_{\pi}(B) = 2/6, V_{\pi}(C) = 3/6, V_{\pi}(D) = 4/6, V_{\pi}(E) = 5/6$$

RANDOM WALK EXAMPLE: MC, TD(0)

RANDOM WALK EXAMPLE: MC, TD(0)

MC_TD0_Comparison_RandomWalk.ipynb

OPEN AI GYM LIBRARY

gym: Biblioteca desenvolvida pela OpenAI
 para benchmarking de algoritmos de

 Aprendizado por Reforço em centenas de
 ambientes diferentes.

fonte: https://openai.com/blog/gym-retro/

ROULETTE EXAMPLE: MC

gym_Roullete-v0.ipynb

ATUALIZAÇÕES DE PROGRAMAÇÃO DINÂMICA (DP)

ATUALIZAÇÕES DE MONTE-CARLO

ATUALIZAÇÕES DE DIFERENÇAS TEMPORAIS TD(0)

COMPARAÇÃO: DP, MC, TD

Programação Dinâmica (DP)

Model-Based, Calcula valor esperado de estimativas de retornos.

- Bootstrapping: ✓
- Sampling: *

Monte-Carlo (MC)

Model-Free, Amostra retornos reais e calcula sua média.

- Bootstrapping: *
- Sampling: ✓

Diferenças Temporais (TD)

Model-Free, Amostra estimativas de retornos e calcula sua média.

- Bootstrapping: ✓
- Sampling: ✓

VISÃO GERAL DE ALGORITMOS DE APRENDIZADO POR REFORÇO

MODEL-FREE PREDICTION: TEMPORAL-DIFFERENCE LEARNING $TD(\lambda)$

Model-Free Prediction

Temporal-Difference Learning $TD(\lambda)$

TEMPORAL-DIFFERENCE LEARNING: N-STEP LOOK-AHEAD

No algoritmo TD(0) o retorno era estimado por meio de 1-step look-ahead.

Podemos olhar *n* passos no futuro para estimar o retorno:

TEMPORAL-DIFFERENCE LEARNING: N-STEP LOOK-AHEAD

Podemos definir as seguintes estimativas de retornos com n-step look-ahead:

$$n = 1 (TD(0)) G_t^{(1)} = R_{t+1} + \gamma V(S_{t+1})$$

$$n = 2 G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 V(S_{t+2})$$

$$\vdots observado estimado$$

$$n G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

$$n \to \infty (MC) G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

Assim, os algoritmos de n-step Temporal-Difference Learning aplicam a estimativa do retorno com n-step look-ahead:

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t^{(n)} - V(S_t)]$$

TEMPORAL-DIFFERENCE LEARNING: N-STEP LOOK-AHEAD

Diferentes problemas apresentam diferentes valores ótimos do número de passos n par estimativa dos retornos.

Como escolher o melhor valor de n?

Ideia: Estimar o retorno como uma média

ponderada de $G_t^{(1)}, G_t^{(2)}, ..., G_t^{(n)}, ...$

Erro RMS médio sobre 19 estados para problema de Random Walk nos primeiros 10 episódios para diferentes valores de n e α .

TEMPORAL-DIFFERENCE LEARNING: RETORNO G_t^{λ}

• O Retorno G_t^{λ} combina todos retornos $G_t^{(n)}$ com uma média ponderada da seguinte forma:

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

onde
$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

• O algoritmo $TD(\lambda)$ possui a seguinte lei de atualização:

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t^{\lambda} - V(S_t)]$$

TEMPORAL-DIFFERENCE LEARNING: RETORNO G_t^{λ}

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

Ponderação dos retornos $G_t^{(n)}$ para cálculo de G_t^{λ} . Fonte: Sutton, R. and Barto, A. Reinforcement Learning: An Introduction, The MIT Press (2020)

TEMPORAL-DIFFERENCE LEARNING: FORWARD VIEW $TD(\lambda)$

 $V(S_t) \leftarrow V(S_t) + \alpha [G_t^{\lambda} - V(S_t)]$

- Atualiza a Função Valor V(s) na direção do Retorno G_t^{λ} .
- Olha para o futuro para determinar G_t^{λ} .
- Como em métodos de Monte-Carlo, só pode ser implementado em problemas de horizonte finito, a partir de episódios completos.

Como implementar $TD(\lambda)$ online, sem a necessidade de episódios completos?

TEMPORAL-DIFFERENCE LEARNING: BACKWARD VIEW $TD(\lambda)$

- $TD(\lambda)$, assim como MC, requer a simulação de episódios completos.
- Seria interessante atualizar a função valor a cada passo, não somente no final do episódio. De modo a aprender online.

Como implementar $TD(\lambda)$ online, sem a necessidade de episódios completos?

→ Eligibility Traces

TEMPORAL-DIFFERENCE LEARNING: ELIGIBILITY TRACES

Problema de Atribuição de Crédito: O sino ou a lâmpada causou o choque?

- Heurística Frequentista: Atribuir crédito a estados mais frequentes (sino)
- Heurística de Recência: Atribuir crédito a estados mais recentes (lâmpada)

Eligibility Traces: Combinam ambas abordagens:

$$E_0(s) = 0$$

$$E_t(s) = \gamma \lambda E_{t-1}(s) + 1(S_t = s)$$

TEMPORAL-DIFFERENCE LEARNING: BACKWARD VIEW $TD(\lambda)$

$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$

- Mantém registro de Eligibility Traces para cada estado *s*
- Atualiza Função Valor V(s) de acordo com TD-error δ_t e Eligibility Trace $E_t(s)$:

$$\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$$
$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$

• Quando $\lambda = 0$, somente o estado atual é atualizado, o que equivale a TD(0):

$$E_t(s) = 1 \implies V(S_t) \leftarrow V(S_t) + \alpha \delta_t$$

TEMPORAL-DIFFERENCE LEARNING: BACKWARD-VIEW $TD(\lambda)$ FOR POLICY EVALUATION

Algoritmo: Backward View $TD(\lambda)$ Policy Evaluation for estimating V_{π}

```
Input: Política \pi a ser avaliada

Parâmetro do Algoritmo: Taxa de aprendizado \alpha \in (0,1] e taxa de decaimento \lambda \in [0,1].

Inicializar V(s) arbitrariamente para todo s \in S, com V(s_{term}) = 0 para estados terminais.
```

Repetir para cada episódio:

Inicializar estado inicial $S_0 \sim \mathbb{P}(S_0 = s), s \in \mathcal{S}$

Inicializar Eligibility Traces $E(s) = 0, \forall s \in S$

Repetir para cada timestep t = 0,1,2,...:

Amostrar ação da política $A_t \sim \pi(a|S_t)$

Executar ação A_t e observar R_{t+1} , S_{t+1}

Atualizar Eligibility Traces: $E(s) \leftarrow \gamma \lambda E(s) + 1(S_t = s), \forall s \in S$

Calcular TD-error: $\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$

Para todo estado *s*:

$$V(s) \leftarrow V(s) + \alpha \delta_t E(s)$$

$$S_t = S_{t+1}$$

Até que S_t seja um estado terminal

Retorna: $V(s) \approx V_{\pi}(s), \forall s \in S$

Exercício E_2

• Tarefa a)

Implementar função env.step(s, a)

• Tarefa a)

Implementar função env.step(s, a)

Tarefa b)

policy_evaluation(env, policy, theta)

Tarefa a)
 Implementar função env. step(s, a)

Tarefa b)policy_evaluation(env, policy, theta)

• Tarefa c)
policy_iteration(env, theta)

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] Sutton, R. and Barto, A. Reinforcement Learning: An Introduction, The MIT Press (2020). [Cp. 4,5,6]
- [2] https://medium.com/@edu.pignatelli/iterative-policy-evaluation-33056f3f21a4
- [3] https://becomesentient.com/mdp-dynamic-programming/
- [4] https://zsalloum.medium.com/monte-carlo-in-reinforcement-learning-the-easy-way-564c53010511

DÚVIDAS

Muito obrigado a todos!

Dúvidas