COT 2000 Foundations of Computing

Summer 2024

Lecture 10 – part 1

Lab 5
Homework 3 - Due: 06/14/24
Exam 2 - 06/21/24

Lecture 10 – part 2

Review

Review

- Predicates, Domain, Truth set
- Universal and Existential Quantifiers ∀, ∃
- Universal conditional statement
- Negation
- Contrapositive, Converse, Inverse with quantifiers
- The rule of universal instantiation
- Arguments with quantified statements
- Fallacies with quantified statements

Predicates

Predicate	Predicate Variable	Statements		
$P(x)$: " $x^2 > x$ "	X	$P(2)$: " $2^2 > 2$ "	$P(1/2)$: " $1/2^2 > 2$ "	
	Domain $x\in\mathbb{R}$	True	False	

Truth set of a Predicate

Let P(x): "n is a factor of 8. The domain of n is the set of all positive integers"

Truth Set =
$$\{x \in \mathbb{Z}^+ \mid P(x)\} = \{1, 2, 4, 8\}$$

Review

Universal Quantifier Statement

Counterexample

$$\forall x \in \mathbb{R}, \ x^2 > x.$$

False

$$x = \frac{1}{2}$$

Existential Quantifier Statement

Example

$$\exists x \in \mathbb{Z}^+, \ x^2 = x.$$
 True

$$x = 1$$

True

Universal Conditional Statement

$$\forall x \in \mathbb{R}, (x > 2 \to x^2 > 4).$$

Negation

$$\sim (\forall x \in D, Q(x)) \equiv \exists x \in D, \sim Q(x).$$

$$\sim (\exists x \in D, P(x)) \equiv \forall x \in D, \sim P(x).$$

$$\sim (\forall x \in D, P(x) \to Q(x)) \equiv \exists x \text{ such that } (P(x) \land \sim Q(x)).$$

Valid Argument Forms

Modus Ponens	$p \rightarrow q$		Elimination	a. $p \vee q$	b. $p \vee q$
	p			$\sim q$	$\sim p$
	∴ q			∴ p	$\therefore q$
Modus Tollens	$p \rightarrow q$		Transitivity	$p \rightarrow q$	
	$\sim q$			$q \rightarrow r$	
	∴ ~ <i>p</i>			$\therefore p \to r$	
Generalization	a. <i>p</i>	b. q	Proof by	$p \lor q$	
	$\therefore p \vee q$	$\therefore p \vee q$	Division into Cases	$p \rightarrow r$	
Specialization	a. $p \wedge q$	b. $p \wedge q$		$q \rightarrow r$	
	∴ p	∴ q		r	
Conjunction	p		Contradiction Rule	$\sim p \rightarrow c$	
	q			∴ p	
	$\therefore p \wedge q$				

Variants of Universal Conditional Statements

Definition

Consider a statement of the form: $\forall x \in D$, if P(x) then Q(x).

- 1. Its **contrapositive** is the statement: $\forall x \in D$, if $\sim Q(x)$ then $\sim P(x)$.
- 2. Its **converse** is the statement: $\forall x \in D$, if Q(x) then P(x).
- 3. Its **inverse** is the statement: $\forall x \in D$, if $\sim P(x)$ then $\sim Q(x)$.

The rule of universal instantiation

If some property is true of *everything* in a set, then it is true of *any particular* thing in the set.

The validity of this argument form follows immediately from the definition of truth values for a universal statement.

All men are mortal.

Socrates is a man.

∴ Socrates is mortal.

Universal instantiation is the fundamental tool of deductive reasoning.

Universal Modus Ponens

 $p \rightarrow q$ p $\therefore q$

The rule of universal instantiation can be combined with modus ponens to obtain the valid form of argument called **universal modus ponens**.

Universal Modus Ponens

Formal Version

 $\forall x$, if P(x) then Q(x).

P(a) for a particular a.

 $\therefore Q(a).$

Informal Version

If x makes P(x) true, then x makes Q(x) true.

a makes P(x) true.

 \therefore a makes Q(x) true.

Universal Modus Tollens

```
p \rightarrow q
\sim q
\therefore \sim p
```

Universal modus tollens is the heart of **proof of contradiction**, which is one of the most important methods of mathematical argument.

Universal Modus Tollens

Formal Version

Informal Version

```
\forall x, if P(x) then Q(x). If x makes P(x) true, then x makes Q(x) true. \sim Q(a), for a particular a. a does not make Q(x) true. a does not make a does
```

Fallacies

$$p \rightarrow q$$

$$q$$

$$\therefore p$$

$$p \rightarrow q$$

$$\sim p$$

$$\therefore \sim q$$

Converse Error (Quantified Form)

Formal Version

Informal Version

 $\forall x$, if P(x) then Q(x). If x makes P(x) true, then x makes Q(x) true.

Q(a) for a particular a. a makes Q(x) true.

 \therefore P(a). \leftarrow invalid conclusion \therefore a makes P(x) true. \leftarrow invalid conclusion

Inverse Error (Quantified Form)

Formal Version

Informal Version

 $\forall x$, if P(x) then Q(x).

If x makes P(x) true, then x makes Q(x) true.

 $\sim P(a)$, for a particular a.

a does not make P(x) true.

 $\therefore \sim Q(a)$. \leftarrow invalid conclusion

 \therefore a does not make Q(x) true. \leftarrow invalid conclusion

Lecture 10 – part 3

Logic Exercises

True Values

Negation

Conjunction

Disjunction

Exclusive OR

Conditional

Biconditional

Logical Equivalences

$$\begin{array}{lll} & \sim (p \wedge q) & \sim p \vee \nu q & \sim (p \wedge q) \equiv \sim p \vee \nu q & \text{Regans (aw)} \\ & p \vee (q \wedge r) & (p \vee q) \wedge (p \vee r) & p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r) & \text{Distributive} \\ & p \rightarrow q & \equiv \sim p \vee q & \text{Conditional Iduatity} \\ & \sim (p \rightarrow q) & \equiv p \wedge \nu q & \text{Negation of conditional} \\ & p \leftrightarrow q & \equiv (p \rightarrow q) \wedge (q \rightarrow p) & \text{Bi conditional iduatity} \\ & \sim (p \oplus q) \equiv p \leftrightarrow q & \end{array}$$

Logical Equivalences

Theorem 2.1.1 Logical Equivalences

Given any statement variables p, q, and r, a tautology \mathbf{t} and a contradiction \mathbf{c} , the following logical equivalences hold.

1. Commutative laws:
$$p \wedge q \equiv q \wedge p$$
 $p \vee q \equiv q \vee p$

2. Associative laws:
$$(p \land q) \land r \equiv p \land (q \land r)$$
 $(p \lor q) \lor r \equiv p \lor (q \lor r)$

3. Distributive laws:
$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$
 $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$

4. Identity laws:
$$p \wedge \mathbf{t} \equiv p$$
 $p \vee \mathbf{c} \equiv p$

5. Negation laws:
$$p \lor \sim p \equiv \mathbf{t}$$
 $p \land \sim p \equiv \mathbf{c}$

6. Double negative law:
$$\sim (\sim p) \equiv p$$

7. Idempotent laws:
$$p \wedge p \equiv p$$
 $p \vee p \equiv p$

8. Universal bound laws:
$$p \lor \mathbf{t} \equiv \mathbf{t}$$
 $p \land \mathbf{c} \equiv \mathbf{c}$

9. De Morgan's laws:
$$\sim (p \land q) \equiv \sim p \lor \sim q \qquad \sim (p \lor q) \equiv \sim p \land \sim q$$

10. Absorption laws:
$$p \lor (p \land q) \equiv p$$
 $p \land (p \lor q) \equiv p$

11. Negations of
$$\mathbf{t}$$
 and \mathbf{c} : $\sim \mathbf{t} \equiv \mathbf{c}$ $\sim \mathbf{c} \equiv \mathbf{t}$

Biconditional and Exclusive OR

$$P \oplus q \equiv (P \vee q) \wedge \sim (p \wedge q) \qquad \text{By definition}$$

$$(p \vee q) \wedge (\sim p \vee \sim q) \qquad \text{Movgan's Law}$$

$$\left[(p \vee q) \wedge \sim p \right] \vee \left[(p \vee q) \wedge \sim q \right] \qquad \text{Distributive Law}$$

$$\left[(p \wedge \sim p) \vee (q \wedge \sim p) \right] \vee \left[(p \wedge \sim q) \vee (q \wedge \sim q) \right] \qquad \text{Distributive Law}$$

$$\left[c \vee (q \wedge \sim p) \right] \vee \left[(p \wedge \sim q) \vee c \right] \qquad \text{Negation Law}$$

$$\left[q \wedge \sim p \right) \vee (p \wedge \sim q) \qquad \text{Identity Law}$$

$$P \oplus q \equiv (p \wedge \sim q) \vee (q \wedge \sim p) \qquad \text{Commutative Law}$$

$$P \leftrightarrow q \equiv P \rightarrow q \land q \rightarrow P$$
 By definition
$$\equiv (\sim p \lor q) \land (\sim q \lor p) (1)$$
 Conditional identity

$$P \oplus q = (p \wedge \sim q) \vee (q \wedge \sim P)$$

Since (1)=10, therefore

$$p \Leftrightarrow q = \sim (p \oplus q)$$

Exercise: Complete the logical equivalence

$$(p \land \sim q) \lor (p \land q) \equiv p \land (\sim q \lor q)$$
$$\equiv p \land (q \lor \sim q)$$
$$\equiv p \land t$$
$$\equiv p$$

Solution:

by (a) (a) Distributive Law

by (b) (b) Commutative Law

by (c) (c) Negation Law

by (d) (d) Identity Law

Exercise: Simplify $(p \land \sim q) \lor p$ using logical equivalences

$$(p \wedge vq) \vee p = p \vee (p \wedge vq)$$
 Conmutative
= p Absorption Law

$$(P \wedge vq) \vee P \equiv P \vee (P \wedge vq)$$
 Commutative
 $\equiv (P \wedge t) \vee (P \wedge vq)$ identity
 $\equiv P \wedge (t \vee vq)$ Distributive
 $\equiv P \wedge t$ Univ. Bound law
identity

Exercise: Rewrite $(pV \sim q \rightarrow r V q)$ only using \land and \sim .

$$(p \vee \sim q) \rightarrow (r \vee q)$$

$$\sim (p \vee \sim q) \vee (r \vee q)$$

$$(\nu p \wedge q) \vee \sim (r \vee q)$$

$$\sim (\nu p \wedge q) \vee \sim (\nu r \wedge \sim q)$$

$$\sim \left[\sim (\nu p \wedge q) \wedge (\nu r \wedge \sim q) \right]$$

$$\sim \left[\sim (\nu p \wedge q) \wedge (\nu r \wedge \sim q) \right]$$

Exercise: Is this argument valid:

$$p \lor q$$

$$p \to \neg q$$

$$p \to r$$

$$\therefore r$$

Solution:

p	q	r	$\neg q$	$p \vee q$	$p \to \neg q$	$p \rightarrow r$	r
T	${ m T}$	${ m T}$	F	Τ	F	T	${ m T}$
T	Τ	F	F	Т	F	F	F
${ m T}$	\mathbf{F}	${ m T}$	T	Τ	Τ	Т	${ m T}$
T	F	F	Τ	Τ	Τ	F	F
F	${ m T}$	${ m T}$	F	Т	Τ	Т	${ m T}$
F	${ m T}$	F	F	Τ	Τ	Т	F
F	F	${ m T}$	Τ	F	Τ	Т	\mathbf{T}
F	F	F	Τ	F	Τ	Т	F

Valid Argument Forms

Modus Ponens	$p \rightarrow q$		Elimination	a. $p \vee q$	b. $p \vee q$
	p			$\sim q$	$\sim p$
	∴ q			∴ p	$\therefore q$
Modus Tollens	$p \rightarrow q$		Transitivity	$p \rightarrow q$	
	$\sim q$			$q \rightarrow r$	
	∴ ~ <i>p</i>			$\therefore p \to r$	
Generalization	a. p	b. q	Proof by	$p \lor q$	
	$\therefore p \vee q$	$\therefore p \vee q$	Division into Cases	$p \rightarrow r$	
Specialization	a. $p \wedge q$	b. $p \wedge q$		$q \rightarrow r$	
	∴ p	∴ q		∴. <i>r</i>	
Conjunction	p		Contradiction Rule	$\sim p \rightarrow c$	
	q			∴. p	
	$\therefore p \wedge q$				

Find the conclusion.

- (a) $A \vee B$
- (b) $B \to (C \lor D)$
- $(c) \sim C$
- $\sim D$

- c) NC
- J) UP

$$\therefore$$
 e) $\nu \in \Lambda \nu p \equiv \nu (C \vee D)$ Conjuction

- $\mathsf{b})\quad \mathsf{B} \to (\mathsf{CVD})$
- e) ~((VD)
- :. f) NB

Modes Tollens

- AVB
- .. 9) A condusion

Elimination

Exercises

70, 74, 76, 77, 82, 87, 91, 106, 108, 118, 121...