16.3 The Fundamental Theorem for Line Integrals.

Recall.
$$\int_a^b F'(x) dx = F(b) - F(a)$$

$$\int_{a}^{b} \overrightarrow{\varphi} \cdot \overrightarrow{r}'(t) dt = \int_{a}^{b} \frac{1}{12} \frac{z'(t) + fy y'(t)}{\frac{1}{at}(t)} dt$$

$$= \int_{a}^{b} \frac{1}{4t} (t) dt$$

2 Theorem Let C be a smooth curve given by the vector function $\mathbf{r}(t)$, $a \le t \le b$. Let f be a differentiable function of two or three variables whose gradient vector ∇f is continuous on C. Then

$$\int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

Remarks.

1. In 2D. $(a) = A(x_1, y_1)$

$$\int_C \vec{\nabla} \cdot d\vec{r} = f(\alpha_{r_1} y_r) - f(\alpha_{r_1} y_r).$$

2. In 3D.

$$\mathbf{F}(\mathbf{x}) = -\frac{mMG}{|\mathbf{x}|^3}\mathbf{x}$$

in moving a particle with mass m from the point (3, 4, 12) to the point (2, 2, 0) along a piecewise-smooth curve C. (See Example 16.1.4.)

Conservative vector fields: P= Pt, some f.

If
$$f(x_1, y_1, z) = mMG$$
, then $\overrightarrow{7}f = \overrightarrow{F}$

$$\int_{C} \vec{r} \cdot d\vec{r} = \int_{C} \vec{r} \cdot d\vec{r}$$

$$\int_{C} \vec{P} \cdot d\vec{r} = \int_{C} \vec{r} \cdot d\vec{r} = \frac{1}{2(2.7.0)} - \frac{1}{2(2.7.0)} = m HG \left(\frac{1}{2(2.7.0)} - \frac{1}{13} \right)$$

Definition. 1) Path: piece-wise smooth curve.

2) Independent of Path: \overrightarrow{F} is ind. of path if for any two paths C_1 & C_2 starting at A and ending at B, then $\int_{C_1} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{C_2} \overrightarrow{F} \cdot d\overrightarrow{r} . \qquad (Example 4 in 16.2, not true)$

Theorem $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D if and only if $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path C in D.

(3) Clused path: a path with the same starting d ending points.

Theorem Suppose **F** is a vector field that is continuous on an open connected region D. If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D, then **F** is a conservative vector field on D; that is, there exists a function f such that $\nabla f = \mathbf{F}$.

4) open

open connected:

not separated.

Dillinix not connected

Theorem Let $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$ be a vector field on an <u>open simply-connected</u> region D. Suppose that P and Q have <u>continuous first-order partial derivatives</u> and

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \qquad \qquad \text{throughout D}$$

Then $\ \mathbf{F}$ is conservative. The converse also holds.

6) Simply-ronnecled: No holes!

EXAMPLE 2 Determine whether or not the vector field

$$\mathbf{F}(x, y) = (x - y)\mathbf{i} + (x - 2)\mathbf{j}$$

is conservative.

$$P_y = -1$$
 $Q_x = 1$
 $P_y = -1 \neq 1 = Q_x - D$ hot conservative!

EXAMPLE 3 Determine whether or not the vector field

$$\mathbf{F}(x, y) = (3 + 2xy)\mathbf{i} + (x^2 - 3y^2)\mathbf{j}$$

P(x,y) = 3 + 7xy $Q(x,y) = x^2 - 3y^2$.

is conservative.

$$P_y = 2\pi$$
 $Q_x = 2\pi$
 $Q_x = 2\pi$
 $Q_x = 2\pi$
 $Q_x = 2\pi$
 $Q_x = 2\pi$

EXAMPLE 4

- (a) If $\mathbf{F}(x, y) = (3 + 2xy)\mathbf{i} + (x^2 3y^2)\mathbf{j}$, find a function f such that $\mathbf{F} = \nabla f$.
- (b) Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the curve given by

$$\mathbf{r}(t) = e^t \sin t \, \mathbf{i} + e^t \cos t \, \mathbf{j} \qquad 0 \le t \le \pi$$

(a)
$$f = \vec{r}$$
 -> $\langle f_{z}, f_{y} \rangle = \langle 3 + 2xy, 2^{2} - 3y^{2} \rangle$
-> $0 + z = 3 + 2xy = 2^{2} - 3y^{2}$

1st Rig. One.

Int. w.r.t.
$$\approx -0$$
 I fix $dx = \int \frac{3 + 2xy}{2} dz = 3x + \frac{2xy}{2} + \frac{y}{2}(y)$

Der. wr.l.
$$y \to fy = x^2 + g'(y) = x^2 - 3y^2$$

 $\Rightarrow fg'(y) = (-3y^2 \Rightarrow g(y) = -y^3 + C$

 $\frac{2^{nd} \text{ method}}{f(x_1,y_1)} = \int f(x_1,y_2) = \int \frac{3+7x_1y_1}{2x_2} dx = \int \frac{3+7x_2y_2}{2x_2} dx = \int \frac{3}{2} + \frac{3}{2} +$

(b) F7LI -0
$$\int_{C} \vec{P} \cdot d\vec{P} = \int_{C} \vec{\nabla} \cdot d\vec{P} = \int_{C} \vec{\nabla} \cdot d\vec{P} = \int_{C} \vec{\nabla} \cdot (\vec{P}(0)) \cdot$$

EXAMPLE 5 If $\mathbf{F}(x, y, z) = y^2 \mathbf{i} + (2xy + e^{3z}) \mathbf{j} + 3ye^{3z} \mathbf{k}$, find a function f such

that
$$\nabla f = F$$
.

Goal

 $\overrightarrow{\nabla} f = \overrightarrow{F}$
 $\iff \langle f_{\alpha}, f_{y}, f_{z} \rangle = \overrightarrow{F} \iff f_{\alpha} = y^{2}, f_{y} = 2xy + e^{3z}, f_{z} = 3ye^{3z}$

$$f(x,y,z) = \int fx dx = \int y^2 dx = y^2 x$$

$$\frac{\text{Thegrate } v \cdot v \cdot y}{\text{f(x,y,z)''= "ffy dy = f}^{2}} = \int 2xy + e^{3z} dy = xy^{2} + ye^{3z}$$

$$f(x,y,z)=f(z)=3ye^{3z}dz=ye^{3z}$$

Find expression.
$$f(x_1,y_1,z) = xy^2 + ye^{3z} + C$$

Conservation of Energy.

Conservation of Energy.

Newton's 2nd law:

$$P(P(t)) \cdot dP$$

$$\Rightarrow W = \frac{m}{2} \int_{0}^{b} \frac{d}{dt} \left(\ddot{r}'(4) \cdot \ddot{r}'(4) \right) dt = \frac{m}{2} \left. \ddot{r}'(t) \cdot \ddot{r}'(t) \right|_{0}^{b}$$

=>
$$W = \frac{m}{2} r'(h) \cdot r'(h) - \frac{m}{2} r'(a) \cdot r'(a)$$

=)
$$W = \frac{m}{2} |\vec{r}'(b)|^2 - \frac{m}{2} |\vec{r}'(a)|^2$$

$$W = \frac{m}{2} \left[\frac{|Y'(b)|^2}{|Y'(b)|^2} - \frac{m}{2} |Y'(a)|^2 \right] + \frac{m}{2} |Y'(b)|^2 - \frac{m}{2} |Y'(a)|^2$$

$$W = \frac{m}{2} |Y'(b)|^2 - \frac{m}{2} |Y'(b)|^2$$

$$W = \frac{m}{2} |Y'(b)|^2$$

$$\vec{r}$$
 conservative $\Rightarrow \vec{r} = \vec{r} + \vec{r}$ for some \vec{r} .

50,
$$W = \int_C \vec{r} \cdot d\vec{r} = -\int \vec{r} \vec{r} \cdot d\vec{r} = -\left(P(B) - P(A)\right) = R(A) - P(B)_{4/4}$$

k(B)-k(A) = W = P(A)-P(B)

 $\Rightarrow P(A) + K(A) = P(B) + K(B)$

law of Conservation of many.