Esercizi di teoria dei linguaggi

Indice

1.	Lezione 03	. 3
	1.1. Esercizio 01	
2.	Lezione 06	. 4
	2.1. Esercizio 01	. 4
	2.2. Esercizio 02	. 4
	2.3. Esercizio 03	. 5
	2.4. Esercizio 04	. 5
	2.5. Esercizio 05	. 6
	2.6. Esercizio 06	. 7

1. Lezione 03

1.1. Esercizio 01

Dimostrate che per il linguaggio L tutte le stringhe di lunghezza 3 sono distinguibili tra loro.

	aaa	aab	aba	abb	baa	bab	bba	bbb
aaa	-	a	ε	ε	arepsilon	ε	a	aa
aab	-	-	ε	ε	arepsilon	ε	bb	b
aba	-	-	-	b	a	aa	ε	ε
abb	-	-	-	-	aa	b	ε	arepsilon
baa	-	-	-	-	-	a	ε	arepsilon
bab	-	-	-	-	-	-	ε	ε
bba	-	-	-	-	-	-	-	a
bbb	-	-	-	-	-	-	-	-

2. Lezione 06

2.1. Esercizio 01

Scrivete un'espressione regolare per il linguaggio formato da tutte le stringhe sull'alfabeto $\{0,1\}$ che, interpretate come numeri in notazione binaria, rappresentano potenze di 2.

Imposto il sistema di equazioni:

$$\begin{cases} X_0 = 0X_0 + 1X_1 + \varepsilon \\ X_1 = 0X_1 + \varepsilon \end{cases}$$

$$\begin{cases} X_0 = 0X_0 + 10^* + \varepsilon \\ X_1 = 0^* \end{cases}$$

L'espressione regolare corrispondente é:

$$\begin{split} X_0 &= 0^*(10^* + \varepsilon) \\ X_0 &= 0^*10^*. \end{split}$$

2.2. Esercizio 02

Scrivete un'espressione regolare per il linguaggio formato da tutte le stringhe sull'alfabeto $\{0,1\}$ che, interpretate come numeri in notazione binaria, non rappresentano potenze di 2.

4

Imposto il sistema di equazioni:

$$\begin{cases} X_0 = 0X_0 + 1X_1 \\ X_1 = 0X_1 + 1X_2 \\ X_2 = 0X_2 + 1X_2 + \varepsilon \end{cases}$$

$$\begin{cases} X_0 = 0X_0 + 1X_1 \\ X_1 = 0X_1 + 1(0+1)^* \\ X_2 = (0+1)^* \end{cases}$$

$$\begin{cases} X_0 = 0X_0 + 10^*1(0+1)^* \\ X_1 = 0^*1(0+1)^* \end{cases}$$

L'espressione regolare corrispondente é:

$$X_0 = 0^*10^*1(0+1)^*.$$

2.3. Esercizio 03

Scrivete un'espressione regolare per il linguaggio formato da tutte le stringhe sull'alfabeto $\{a,b\}$ in cui le a e le b si alternano (come abab, bab, b, ecc). Disegnate poi un automa per lo stesso linguaggio.

Imposto il sistema di equazioni:

$$\begin{cases} X_0 = aX_1 + bX_2 + \varepsilon \\ X_1 = bX_2 + \varepsilon \\ X_2 = aX_1 + \varepsilon \end{cases}$$

$$\begin{cases} X_0 = aX_1 + b(aX_1 + \varepsilon) + \varepsilon \\ X_1 = b(aX_1 + \varepsilon) + \varepsilon \end{cases}$$

$$\begin{cases} X_0 = (a + ba)X_1 + b + \varepsilon \\ X_1 = baX_1 + b + \varepsilon \end{cases}$$

$$\begin{cases} X_0 = (a + ba)(ba)^*(b + \varepsilon) + b + \varepsilon \\ X_1 = (ba)^*(b + \varepsilon) \end{cases}$$

L'espressione regolare corrispondente é:

$$X_0 = (a + ba)(ba)^*b + (a + ba)(ba)^* + \varepsilon.$$

2.4. Esercizio 04

Scrivete un'espressione regolare per il linguaggio formato da tutte le stringhe sull'alfabeto $\{a,b\}$ nelle quali ogni a é seguita immediatamente da una b.

Imposto il sistema di equazioni:

$$\begin{cases} X_0 = bX_0 + aX_1 + \varepsilon \\ X_1 = bX_0 \end{cases}$$

$$\begin{cases} X_0 = bX_0 + abX_0 + \varepsilon \\ X_1 = bX_0 \end{cases}$$

$$\begin{cases} X_0 = (b+ab)X_0 + \varepsilon \\ X_1 = bX_0 \end{cases}$$

$$\begin{cases} X_0 = (b+ab)^* + \varepsilon \\ X_1 = bX_0 \end{cases}$$

L'espressione regolare corrispondente $\acute{\rm e}:$

$$X_0 = (b+ab)^* + \varepsilon$$

2.5. Esercizio 05

Scrivete un'espressione regolare per il linguaggio formato da tutte le stringhe sull'alfabeto $\{a,b\}$ che contengono un numero di a pari e un numero di b pari.

Imposto il sistema di equazioni:

$$\begin{cases} X_0 = aX_1 + bX_2 + \varepsilon \\ X_1 = aX_0 + bX_3 \\ X_2 = bX_0 + aX_3 \\ X_3 = aX_1 + bX_2 \end{cases} \\ \begin{cases} X_0 = aX_1 + bX_2 + \varepsilon \\ X_1 = aX_0 + b(aX_1 + bX_2) \\ X_2 = bX_0 + a(aX_1 + bX_2) \end{cases} \\ \begin{cases} X_0 = aX_1 + bX_2 + \varepsilon \\ X_1 = baX_1 + aX_0 + bbX_2 \\ X_2 = abX_2 + bX_0 + aaX_1 \end{cases} \end{cases} \\ \begin{cases} X_0 = aX_1 + b(ab)^*(bX_0 + aaX_1) + \varepsilon \\ X_1 = baX_1 + aX_0 + bb(ab)^*(bX_0 + aaX_1) \\ X_2 = (ab)^*(bX_0 + aaX_1) \end{cases} \\ \begin{cases} X_0 = aX_1 + b(ab)^*bX_0 + b(ab)^*aaX_1 + \varepsilon \\ X_1 = (ba + bb(ab)^*aa)X_1 + aX_0 + bb(ab)^*bX_0 \end{cases} \\ \begin{cases} X_0 = b(ab)^*bX_0 + (a + b(ab)^*aa)X_1 + \varepsilon \\ X_1 = (ba + bb(ab)^*aa)^*(a + bb(ab)^*b)X_0 \end{cases} \end{cases} \\ X_0 = b(ab)^*bX_0 + (a + b(ab)^*aa)^*(a + bb(ab)^*b)X_0 + \varepsilon \end{cases}$$

L'espressione regolare corrispondente é:

$$X_0 = \big(b(ab)^*b + (a+b(ab)^*aa)(ba+bb(ab)^*aa)^*\big(a+bb(ab)^*b\big)\big)^*.$$

2.6. Esercizio 06

Scrivete un'espressione regolare per il linguaggio formato da tutte le stringhe sull'alfabeto $\{4,5\}$ che, interpretate come numeri in base 10, rappresentano interi che non sono divisibili per 3.

Imposto il sistema di equazioni:

$$\begin{cases} X_0 = 0X_0 + 1X_1 + \varepsilon \\ X_1 = 0X_2 + 1X_0 \\ X_2 = 0X_1 + 1X_2 \end{cases}$$

$$\begin{cases} X_0 = 0X_0 + 1X_1 + \varepsilon \\ X_1 = 01^*0X_1 + 1X_0 \\ X_2 = 1^*0X_1 \end{cases}$$

$$\begin{cases} X_0 = 0X_0 + 1X_1 + \varepsilon \\ X_1 = (01^*0)^*1X_0 \end{cases}$$

$$X_0 = 0X_0 + 1(01^*0)^*1X_0 + \varepsilon$$

$$X_0 = (0 + 1(01^*0)^*1)X_0 + \varepsilon$$

L'espressione regolare corrispondente é:

$$X_0 = (0 + 1(01^*0)^*1)^*.$$