ANÁLISIS NUMÉRICO II — Práctico N°5 - 2023 Valores singulares y Autovalores

- 1. Demuestre que si $A \in \mathbb{R}^{m \times n}$ tiene valores singulares $\sigma_1 \geq \ldots \geq \sigma_n > 0$, entonces $\|(A^TA)^{-1}\|_2 = \sigma_n^{-2}, \|(A^TA)^{-1}A^T\|_2 = \sigma_n^{-1}, \|A(A^TA)^{-1}\|_2 = \sigma_n^{-1} \text{ y } \|A(A^TA)^{-1}A^T\|_2 = 1.$
- 2. Demuestre que dados $\varepsilon > 0$ y $A \in \mathbb{R}^{m \times n}$ de rango $r < \min\{m, n\}$, existe $A_{\varepsilon} \in \mathbb{R}^{m \times n}$ de rango $\min\{m, n\}$ tal que $||A A_{\varepsilon}||_2 < \varepsilon$.
- 3. Dada $A \in \mathbb{R}^{m \times n}$, defina $B(\lambda) = (A^T A + \lambda I)^{-1} A^T$ con $\lambda > 0$. Demuestre que si $p = \min\{m, n\}, \sigma_1 \geq \ldots \geq \sigma_r > \sigma_{r+1} = \ldots = \sigma_p = 0$ son los valores singulares de A y A^{\dagger} es su pseudo inversa, entonces

$$||B(\lambda) - A^{\dagger}||_2 = \frac{\lambda}{\sigma_r(\sigma_r^2 + \lambda)}.$$

Concluya que $B(\lambda) \to A^{\dagger}$ si $\lambda \to 0^+$.

NOTA: Para ejercicios 4 al 6 pueden obtener la descomposición SVD con Numpy (np.linalg.svd)

- 4. Implemente una función llamada cuad_min_svd que reciba una matriz A y un vector b y resuelva el problema de cuadrados mínimos min $||Ax b||_2^2$ mediante la descomposición SVD, dando como salida x y $||Ax b||_2$. Probar la implementación leyendo A y b desde $A_p5e4.txt$ y $b_p5e4.txt$, respectivamente. Comparar la norma b de esta solución, con la solución obtenida mediante cuadrados mínimos con b
- 5. Implemente una función llamada im_aprox_svd que reciba como entradas una matriz $A \in \mathbb{R}^{m \times n}$ y una tolerancia tol y que realice lo siguiente:
 - Obtener la descomposición SVD de A,
 - Para $k \in \{1, ..., \min\{m, n\}\}$, calcular la norma de $A A_k$, donde A_k es la aproximación hasta el valor singular k de A.
 - Detener este proceso si se consigue que $||A A_k||_{\infty}$ sea menor que tol (Nota: Este número puede no ser pequeño).
 - Mostrar ambas matrices en pantalla como imágenes (usar plt.imshow).
 - Probar la función implementada con la matriz en p5e5.txt, con tol= 2000.
- 6. Reducción de Dimensionalidad para Visualización: El archivo iris.data contiene un conjunto de datos de plantas de la familia Iris, donde la última columna indica a qué variedad de Iris pertenece la planta estudiada (0-setosa, 1-versicolour o 2-virginica). Para cada planta se obtuvieron 4 atributos (longitud y ancho del sépalo, longitud y ancho del pétalo, respectivamente). Conseguir la descomposición SVD de la matriz de los datos (sin la columna de la clase) y graficar los puntos formados por las primeras dos columnas de U (un punto por fila). Colorear cada punto de acuerdo a la clase que le corresponde.
- 7. **Implemente** una función llamada autjacobi, que utilice el método de Jacobi para hallar los autovalores de una matriz simétrica A. La función debe tener como entrada A, una tolerancia ϵ y una cantidad máxima de iteraciones m (por defecto, $\epsilon = 10^{-10}$ y m = 500).
- 8. Implemente una función llamada dvsingulares que utilice la función del ejercicio 7 y la descomposición QR con permutación de columnas para obtener la descomposición en valores singulares de una matriz A. Debe retornar U, Σ y V.
- 9. Implemente la siguientes funciones para encontrar un autovalor ρ con su autovector q utilizando método de las potencias. Deben tener como entrada una matriz A, un vector inicial q^0 , una tolerancia ϵ y una cantidad máxima de iteraciones m (por defecto, $\epsilon = 10^{-10}$ y m = 500).

- a) autpotenciasinf que utilice norma infinito.
- b) autpotencias2 que utilice norma 2.
- c) autrayleigh que utilice la iteración del cociente de Rayleigh.
- 10. **Dinámica Poblacional.** Sea n_i^t la cantidad de individuos en la faja etaria i al final del año t, s_i la porción de individuos de la faja i que pasan anualmente a la faja i+1 y f_i la tasa de fecundidad per cápita de la faja i. Entonces la dinámica de la población cumple con las siguientes ecuaciones:

$$n_1^{t+1} = f_1 n_1^t + \dots + f_p n_p^t$$

 $n_i^{t+1} = s_i n_{i-1}^t$ para $i = 2, \dots, p$.

De manera vectorial esta dinámica puede escribirse como $n^{t+1} = Ln^t$ donde L es llamada matriz de Leslie. Con el autovalor dominante λ_1 de esta matriz se obtiene que si $\lambda_1 < 1$ la población decrece exponencialmente, $\lambda_1 > 1$ la población crece exponencialmente y $\lambda_1 = 1$ la población es estable e igual al autovector asociado.

Determine el comportamiento de la población de esta especie:

11. Sea p un polinomio tal que $p(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$. Demuestre que las raíces de p son los autovalores de la matriz

$$A = \begin{bmatrix} -a_{n-1} & -a_{n-2} & \cdots & -a_1 & -a_0 \\ 1 & & & & \\ & & 1 & & & \\ & & & \ddots & & \\ & & & & 1 \end{bmatrix}.$$

- 12. Sea H Hessenberg superior tal que $H = Q^T A Q$. Demuestre que si A es simétrica entonces H es tridiagonal.
- 13. **Implemente** una función llamada **fhess** que retorne la forma de Hessenberg de una matriz. Debe tener como entrada una matriz $A \in \mathbb{R}^{n \times n}$ y $p \in \{0,1\}$. Como salida Q ortogonal y H Hessenberg superior tal que $H = Q^T A Q$. Si p = 0 reflexiones de Householder (por defecto), si p = 1 se usarán rotaciones de Givens.
- 14. **Implemente** una función llamada autqr, que ejecute el método de iteraciones QR para hallar los autovalores de $A \in \mathbb{R}^{n \times n}$, comenzando con una reducción en su forma de Hessenberg y utilizando luego rotaciones de Givens. Debe tener como entrada una matriz A, una tolerancia ϵ y una cantidad máxima de iteraciones m (por defecto, $\epsilon = 10^{-10}$ y m = 500).

2