

- 1.实验报告如有雷同,雷同各方当次实验成绩均以0分计。
- 2. 当次小组成员成绩只计学号、姓名登录在下表中的。
- 3.在规定时间内未上交实验报告的,不得以其他方式补交,当次成绩按0分计。
- 4.实验报告文件以 PDF 格式提交。

院系	数据科学与计算机学院		班 级 <u>计科1班</u>		<u>দ</u>	组长	劳马东
学号	<u>16337113</u>		<u>16337100</u>		<u>16337102</u>		
学生	·生 <u>劳马东</u>		黄英桂		黄梓林		
	<u>实验分工</u>						
劳马东	劳马东 静态 NAT				黄英桂	动态 NAT	
黄梓林 <u>端口 NAT</u>							

【实验题目】NAT实验。

【实验目的】

配置网络地址变换,提供共享服务器的可靠外部访问。

【实验内容】

实验拓扑:

第二版

1. 完成实验 9.1 静态 NAT (P306)、9.2 动态 NAT (P308)、9.3 端口 NAT (P311)

第一版:

- 1. 完成实验 6.1 静态 NAT (P199)、6.2 动态 NAT (201)、6.3 端口 NAT (204)
- 2. 注意:实验中的 ISP 路由器不用配置默认路由(课本上是错的,因为配置了默认路由,就直接可以互相 ping 通,不需要 NAT 了)。

实验要求】

重要信息信息需给出截图, 注意实验步骤的前后对比。

【实验记录】(如有实验拓扑请自行画出)

一、 利用静态转换实现内外地址的转换

步骤 0:

- 1) 在远程主机 100.1.1.1 上建立一个用户和口令。 用户名、口令均为 123,将其加入 TelnetClients 组中。
- 2) 在完成步骤1后,验证整个网络连通性(需确认连通)


```
C:\Users\Administrator\ping 192.168.1.6

正在 Ping 192.168.1.6 具有 32 字节的数据:
来自 192.168.1.6 的回复: 字节=32 时间<1ms TTL=128

和 192.168.1.6 的 Ping 统计信息:
数据包: 已发送 = 4, 已接收 = 4, 丢失 = 0 <0% 丢失>,
往返行程的估计时间<以毫秒为单位>:
最短 = 0ms, 最长 = 1ms, 平均 = 0ms

C:\Users\Administrator\ping 100.1.1.2

正在 Ping 100.1.1.2 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
请求超时。
100.1.1.2 的 Ping 统计信息:
数据包: 已发送 = 4, 已接收 = 0, 丢失 = 4 <100% 丢失>,
```

处于同一子网的主机 A和B当然可以互相 ping 通;

主机 A(B)和 Internet 主机无法 ping 通是因为 ping 的响应报文在到达 ISP 路由器时,不知如何转发,ISP 路由器没有到 192. 168. 1. 0/24 路由表项。

3) 查看 NAT 表

8-RSR20-2(config)#sh ip nat tra
Pro Inside global Inside local Outside local Outside global
未配置之前,NAT 表为空。

步骤 1: 在路由器上配置 IP 路由选择和 IP 地址。

需要注意的是:

- A. ISP 路由器不能配置默认路由,否则 100.1.1.2 将可以直接 ping 通 192.168.1.5,因为数据报沿着默认路由发送到主机 A 而不是经由 NAT 路由器转换。
- B. ISP 路由器和 NAT 路由器需要加上对应静态路由,否则后续配置静态转换后主机之间也无法 收发数据报,即 ISP 路由器用 ip route 200. 1. 1. 0 255. 255. 255. 0, NAT 路由器用 ip route 100. 1. 1. 0 255. 255. 255. 0。

步骤 2: 配置静态转换。

192. 168. 1. 5 地址对应 200. 1. 1. 80, 192. 168. 1. 6 对应 200. 1. 1. 81。

步骤 3: 指定一个内部接口和一个外部接口。

步骤 4: 验证测试。

1) 在 ISP 端用 Telnet 登录远程主机 200.1.1.80 来测试 NAT 的转换。 用步骤 0 建立的用户和口令登录,是否可以登录?

C:\Users\Administrator>telnet 200.1.1.80

```
*-----Microsoft Telnet Server.
*-----C: Wsers\123>
```


2) 查看地址翻译的过程。

由于路由器不支持 debug 指令,未截到 debug 信息图。翻译过程大致如下:

主机 A (B) 用 Telnet 向 Internet 主机发送请求,在 NAT 路由器处,它的内部本地 ip 地址 192.168.1.5 (6) 被翻译为全局的 200.1.1.80 (81),端口号不变。

3) 查看 NAT 表

10-RSR20-2#show ip nat translations

 Pro Inside global
 Inside local
 Outside local
 Outside global

 tcp 100.1.1.2:1037
 100.1.1.2:1037
 200.1.1.80:23
 192.168.1.5:23

 udp 200.1.1.80:137
 192.168.1.5:137
 100.1.1.2:137
 100.1.1.2:137

10-RSR20-2#

4) 抓取数据包,分析 Telnet 时地址的转换情况。

Time	Source	Destination	Protocol	Length	Info
1 0.000000	100.1.1.2	200.1.1.80	TCP	66	1038 → 23 [SYN] S
2 0.035904	200.1.1.80	100.1.1.2	TCP	66	23 → 1038 [SYN, A
3 0.035983	100.1.1.2	200.1.1.80	TCP	54	1038 → 23 [ACK] S
4 0.899126	200.1.1.80	100.1.1.2	NBNS	92	Name query NBSTAT
5 0.899246	100.1.1.2	200.1.1.80	NBNS	199	Name query respon
6 5.401048	200.1.1.80	100.1.1.2	TELNET	75	Telnet Data
7 5.401799	100.1.1.2	200.1.1.80	TELNET	57	Telnet Data
Time	Source	Destination	Protocol	Length	Info
1 0.000000	100.1.1.2	192.168.1.5	TCP	66	1038 → 23 [SYN] 5
		10211001110	101	- 00	1030 → Z3 [31N] .
2 0.000031	192.168.1.5	100.1.1.2	TCP		23 → 1038 [SYN, /
2 0.000031 3 0.035255	192.168.1.5 100.1.1.2			66	
		100.1.1.2	TCP	66 60	23 → 1038 [SYN, /
3 0.035255	100.1.1.2	100.1.1.2 192.168.1.5	TCP TCP	66 60 92	23 → 1038 [SYN, A 1038 → 23 [ACK] !
3 0.035255 4 0.860254	100.1.1.2 192.168.1.5	100.1.1.2 192.168.1.5 100.1.1.2	TCP TCP NBNS	66 60 92 199	23 → 1038 [SYN, A 1038 → 23 [ACK] ! Name query NBSTA

第一张图为 Internet 主机抓到的包,第二章是主机 A。在 Internet 端,数据报端口是 100.1.1.2 和 200.1.1.80,而在主机 A,端口变成了 100.1.1.2 和 192.168.1.5。这是因为在 NAT 服务器处 ip 地址经过了转换。

【实验思考】

- A. 对于外部主机,它并不知道内部主机的外部地址。在这个实验中,Internet 主机 ping 或 Telnet 主机 A 都是在知道主机 A 的外部地址为 200.1.1.80 的前提下,而在实际情况中这很 难知道。
- B. 对于内部主机,它知道外部主机的外部地址,使用 ping 等命令的时候知道该用什么 ip 地址,但是当响应报文返回时,由于中间的路由器的路由表中可能没有到内部主机(比如主机 A) 所在子网(200.1.1.0/24)的路由表项,会直接丢弃响应报文,也就出现 ping 不通的情形。

二、 利用动态转换实现内外地址的转换(重复步骤和分析不再给出)

步骤 2: 定义一个 IP 访问列表

允许子网 192.168.1.0/24 的数据报通过。

步骤 3: 配置动态 NAT

创建一个 ip 地址范围为 200. 1. 1. 200 到 200. 1. 1. 210、名为 rui jie 的地址池; 配置动态 NAT 映射。

步骤 5: 验证测试

1) 用两台主机 Telnet 登录远程主机 100.1.1.2 来测试 NAT 的转换。由于两台主机处于对等地位,截图一样,故给出一张截图:

2) 查看地址翻译过程

由于路由器不支持 debug 指令,未截到 debug 信息图。

3) 查看 NAT 表

8-RSR20-2(config)#show ip nat translations

Pro Inside global Inside local Outside local Outside global tcp 200.1.1.205:1375 192.168.1.5:1375 100.1.1.2:23 100.1.1.2:23 tcp 200.1.1.206:1367 192.168.1.6:1367 100.1.1.2:23 100.1.1.2:23 8-RSR20-2(config)#

4) 抓取数据包,分析 Telnet 时地址转换情况

4	5 11.687260	200.1.1.205	100.1.1.2	TCP	62 1047 → 3389 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 SACK_PERM=1
	6 11.687309	100.1.1.2	200.1.1.205	TCP	62 3389 → 1047 [SYN, ACK] Seq=0 Ack=1 Win=8192 Len=0 MSS=1460 SACK_PERM=1
	7 11.718229	200.1.1.205	100.1.1.2	TCP	60 1047 → 3389 [ACK] Seq=1 Ack=1 Win=64240 Len=0
	8 11.726592	200.1.1.205	100.1.1.2	TLSv1	73 Ignored Unknown Record
	9 11.726642	100.1.1.2	200.1.1.205	TLSv1	73 Ignored Unknown Record
	10 11.962255	200.1.1.205	100.1.1.2	TCP	60 1047 → 3389 [ACK] Seq=20 Ack=20 Win=64221 Len=0
	11 21.009402	200.1.1.205	100.1.1.2	TLSv1	176 Client Hello
	12 21.009607	100.1.1.2	200.1.1.205	TLSv1	876 Server Hello, Certificate, Server Hello Done
	13 21.187309	200.1.1.205	100.1.1.2	TLSv1	380 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
Г	2 0.638318	192.168.1.5	100.1.1.2	TCP	62 1047 → 3389 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 SACK_PERM=1
	3 0.672050	100.1.1.2	192.168.1.5	TCP	62 3389 → 1047 [SYN, ACK] Seq=0 Ack=1 Win=8192 Len=0 MSS=1460 SACK_PERM=1
	4 0.672112	192.168.1.5	100.1.1.2	TCP	54 1047 → 3389 [ACK] Seq=1 Ack=1 Win=64240 Len=0
	5 0.672635	192.168.1.5	100.1.1.2	TLSv1	73 Ignored Unknown Record
	6 0.713590	100.1.1.2	192.168.1.5	TLSv1	73 Ignored Unknown Record

第一张图是 Internet 端的,可以看到序号 6 的信息,源是 100.1.1.2,而目的是 200.1.1.205,而在 第二张图是主机端的,序号 3 的信息,源是 100.1.1.2,而目的是 192.168.1.5。这是相对应的同一条报文,只是在经过了动态地址转换。

三、 端口地址转换的配置(重复步骤和分析不再给出)

步骤 3: 配置端口映射

创建一个 ip 地址范围为 200. 1. 1. 2 到 200. 1. 1. 2、名为 rui jie 的地址池;

步骤 5: 验证测试

2) 查看地址翻译过程

主机 A 和 B 的内部 IP 地址都被翻译为 200. 1. 1. 2,但是他们与 Internet 主机的通信被用不同端口(1607 和 1646)来区分。

3) 查看 NAT 表

#8-RSR20-2(config)#show ip nat translations

- 1		-F		
ı	Pro Inside global	Inside local	Outside local	Outside global
ı	tcp 200.1.1.2:1607	192.168.1.6:1607	100.1.1.2:23	100.1.1.2:23
ı	tcp 200.1.1.2:1646	192.168.1.5:1646	100.1.1.2:23	100.1.1.2:23
ı	8-RSR20-2(config)#			

4) 抓取数据包,分析 Telnet 时地址转换情况

No.		Time	Source	Destination	Protocol	Length Info
	19	11.010498	RuijieNe_27:c1:da	00:88:99:00:13:60	ARP	60 192.168.1.1 is at 58:69:6c:27:c1:da
	20	11.010553	192.168.1.5	100.1.1.2	ICMP	74 Echo (ping) request id=0x0001, seq=141/36096, ttl=128 (reply in 21)
	21	11.058830	100.1.1.2	192.168.1.5	ICMP	74 Echo (ping) reply id=0x0001, seq=141/36096, ttl=126 (request in 20)
	22	12.011219	192.168.1.5	100.1.1.2	ICMP	74 Echo (ping) request id=0x0001, seq=142/36352, ttl=128 (reply in 23)
	23	12.050504	100.1.1.2	192.168.1.5	ICMP	74 Echo (ping) reply id=0x0001, seq=142/36352, ttl=126 (request in 22)
	24	12.462837	RuijieNe_15:55:7c	LLDP_Multicast	LLDP	246 TTL = 121 System Name = 01-S3750-1 System Description = Ruijie Layer 3
	25	12.517986	192.168.1.6	192.168.1.255	UDP	1482 50056 → 1689 Len=1440
	26	12.854967	192.168.1.6	239.255.255.250	SSDP	175 M-SEARCH * HTTP/1.1
	27	13.012295	192.168.1.5	100.1.1.2	ICMP	74 Echo (ping) request id=0x0001, seq=143/36608, ttl=128 (reply in 28)
	28	13.050608	100.1.1.2	192.168.1.5	ICMP	74 Echo (ping) reply id=0x0001, seq=143/36608, ttl=126 (request in 27)
	29	14.013229	192.168.1.5	100.1.1.2	ICMP	74 Echo (ping) request id=0x0001, seq=144/36864, ttl=128 (reply in 30)
	30	14.050564	100.1.1.2	192.168.1.5	ICMP	74 Echo (ping) reply id=0x0001, seq=144/36864, ttl=126 (request in 29)
No.		Time	Source	Destination	Protocol	Length Info
	20	31.779543	200.1.1.2	100.1.1.2	ICMP	74 Echo (ping) request id=0x0001, seq=15/3840, ttl=126 (reply in 21)
	21	31.779609	100.1.1.2	200.1.1.2	ICMP	74 Echo (ping) reply id=0x0001, seq=15/3840, ttl=128 (request in 20)
	22	31.861935	fe80::4945:16f9:aad	ff02::1:2	DHCPv6	147 Solicit XID: 0x3e4302 CID: 000100012238e5f344334c0ece16
	23	32.499640	200.1.1.2	100.1.1.2	ICMP	74 Echo (ping) request id=0x0300, seq=137/35072, ttl=126 (reply in 24)
	24	32.499711	100.1.1.2	200.1.1.2	ICMP	74 Echo (ping) reply id=0x0300, seq=137/35072, ttl=128 (request in 23)
	25	32.775513	200.1.1.2	100.1.1.2	ICMP	74 Echo (ping) request id=0x0001, seq=16/4096, ttl=126 (reply in 26)
	26	32.775573	100.1.1.2	200.1.1.2	ICMP	74 Echo (ping) reply id=0x0001, seq=16/4096, ttl=128 (request in 25)
	27	33.499504	200.1.1.2	100.1.1.2	ICMP	74 Echo (ping) request id=0x0300, seq=138/35328, ttl=126 (reply in 28)
	28	33.499583	100.1.1.2	200.1.1.2	ICMP	74 Echo (ping) reply id=0x0300, seq=138/35328, ttl=128 (request in 27)
	29	33.775509	200.1.1.2	100.1.1.2	ICMP	74 Echo (ping) request id=0x0001, seq=17/4352, ttl=126 (reply in 30)
	30	33.775614	100.1.1.2	200.1.1.2	ICMP	74 Echo (ping) reply id=0x0001, seq=17/4352, ttl=128 (request in 29)
	31	34.503483	200.1.1.2	100.1.1.2	ICMP	74 Echo (ping) request id=0x0300, seq=139/35584, ttl=126 (reply in 32)
	32	34.503558	100.1.1.2	200.1.1.2	ICMP	74 Echo (ping) reply id=0x0300, seq=139/35584, ttl=128 (request in 31)
	33	34.779619	200.1.1.2	100.1.1.2	ICMP	74 Echo (ping) request id=0x0001, seq=18/4608, ttl=126 (reply in 34)
	34	34.779665	100.1.1.2	200.1.1.2	ICMP	74 Echo (ping) reply id=0x0001, seq=18/4608, ttl=128 (request in 33)
	35	35.503480	200.1.1.2	100.1.1.2	ICMP	74 Echo (ping) request id=0x0300, seq=140/35840, ttl=126 (reply in 36)
	36	35.503556	100.1.1.2	200.1.1.2	ICMP	74 Echo (ping) reply id=0x0300, seq=140/35840, ttl=128 (request in 35)
	50					

对抓取的数据包进行分析,可知,内部网络的主机在经过 NAT 路由器时,的确进行了端口地址转换(192. 168. 1. 5 以及 192. 168. 1. 6 转换成了 200. 1. 1. 2,但端口号不同)

学号	学生	自评分
16337113	劳马东	99
16337100	黄英桂	99
16337102	黄梓林	99