الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2010

امتحان بكالوريا التعليم الثانوي

الشعبة : علوم تجريبية

وزارة التربية الوطنية

المدة: 03 ساعات و نصف

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين

الموضوع الأول

التمرين الأول: (05 نقاط)

نعتبر في المستوي المنسوب إلى المعلم المتعامد المتجانس $(O; \vec{u}, \vec{v})$ النقطتين A و B االتين المحقتيهما على الترتيب: $z_B=3i$ و $z_A=1+i$

- z_B اكتب على الشكل الأسى: z_B و z_B .
- 2) ليكن z التشابه المباشر الذي يرفق بكل نقطة M لاحقتها z النقطة M ذات اللاحقة z حيث:

$$z' = 2iz + 6 + 3i$$

- أ) عين العناصر المميزة للتشابه المباشر S.
- ب) عين z لاحقة النقطة C صورة النقطة A بالتشابه المباشر C
 - ج) استنتج طبيعة المثلث ABC.
 - $\{(A;2),(B;-2),(C;2)\}$ مرجح الجملة D مرجع النكن النقطة النكن النقطة المرجع الجملة
 - أ) عين z لاحقة النقطة D.
 - ب) عين مع التبرير طبيعة الرباعي ABCD.
- لتكن M نقطة من المستوى تختلف عن B وعن D لاحقتها z ولتكن Δ مجموعة النقط Δ ذات Δ

اللاحقة z التي يكون من أجلها $\frac{z_B-z}{z_D-z}$ عندا حقيقيا موجبا تماما.

- . (Δ) النقطة $z_E=6+3i$ ذات اللاحقة ($z_E=6+3i$ ننتمي الى
- ب) أعط تفسير ا هندسيا لعمدة العدد المركب $\frac{z_B-z}{z_D-z}$. عين حيننذ المجموعة (Δ).

التمرين الثاني: (05 نقاط)

نعتبر في الغضاء المنسوب إلى المعلم المتعامد المتجانس $(O; \tilde{i}, \tilde{j}, \tilde{k})$ ، النقط C(-1; 2; -1) و B(2; 1; 1)

- 1) أ) بين أن النقط A، B و C ليست في استقامية.
- x + y z 2 = 0 هي: (ABC) هي: المعادلة الديكارتية للمستوي
 - 2) نعتبر المستويين (P) و (Q) اللذين معادلتيهما على الترتيب:

(Q):
$$2x + y - z - 1 = 0$$
 $(P): x + 2y - 3z + 1 = 0$

و المستقيم (D) الذي يشمل النقطة F(0;4;3) و F(0;4;3) شعاع توجيه له.

- $\cdot(D)$ اكتب تمثيلا وسيطيا للمستقيم
- $\cdot(D)$ ب تحقق أن تقاطع المستويين (P) و (Q) هو المستقيم
 - (Q) عين تقاطع المستويات الثلاث (ABC)، (P)، و (Q)

التمرين الثالث: (10 نقاط)

 $\cdot \left(O; \, \widetilde{i}, \widetilde{j} \, \right)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس وليكن $\left(C_{f} \, \right)$

- $\lim_{x \to \frac{1}{2}} f(x)$ و $\lim_{x \to +\infty} f(x)$ احسب (1
- 2) بيّن أن الدالة f متزايدة تماما على المجال I ثم شكل جدول تغيراتها.
- التي يكون فيها المماس موازيا للمستقيم (C_f) التي يكون فيها المماس موازيا للمستقيم (v = x) عين فاصلة النقطة من
 - : على الشكل f(x) على الشكل f(x) : يمكن كتابة f(x) على الشكل

عدان حقیقیان یطلب تعیینهما $f(x) = \ln(x+a) + b$

- ا استنتج أنه يمكن رسم (C_r) انطلاقا من (C) منحنى الدالة اللوغاريتمية النيبيرية الم ارسم (C_r) و (C_r) .
 - g(x)=f(x)-x نعتبر الدالة العددية g المعرفة على المجال I بــِ: g(x)=f(x)
 - $\lim_{x \to +\infty} g(x) = -\infty$ ثم بيّن أن $\lim_{x \to \frac{1}{2}} g(x)$ احسب (1
 - 2) ادرس اتجاه تغير الدالة g على 1 ثم شكل جدول تغيراتها.
- (3α) الحسب (3α) ثم بيّن أن المعادلة g(x) = 0 تقبل في المجال g(1) = 0 خدا α . $\alpha < 3$ تحقق أن $\alpha < 3$
 - ب) ارسم $\binom{C_g}{2}$ منحنى الدالة $\binom{g}{2}$ على المجال على المعلم السابق.
 - . (d) على المجال (C_f) بالنسبة إلى (d) على المجال I ثم حدّد وضعية المنحنى (d) بالنسبة إلى (d)
 - لرهن أنه من أجل كل عدد حقيقي x من المجال α [فإن: f(x) ينتمي إلى المجال α]1; α المجال α .]1; α
 - $u_n = f\left(1 + \frac{1}{2n}\right)$ نسمي (u_n) المتتالية العددية المعرفة على \mathbb{N}^* كما يأتي:
 - $u_n = 1 + 2\ln 3 3\ln 2$ عين قيمة العدد الطبيعي التي من أجلها يكون: n
 - $S_n = u_1 + u_2 + \dots + u_n$ المجموع S_n المجموع (2

www.mathonec.com

الموضوع الثاتي

التمرين الأول: (05 نقاط)

في المستوي المنسوب إلى معلم متعامد ومتجانس مثلنا المستقيمين (Δ) و (D) معادلتيهما على الترتيب:

$$y = \frac{1}{2}x + \frac{1}{3}$$
 $y = x$

ل المعتقلية (u_n) المعرقة على مجموعة الأعداد (1

 $u_{n+1} = \frac{1}{2}u_n + \frac{1}{3}$ ، $u_{n+2} = \frac{1}{2}u_n + \frac{1}{3}$ ، $u_{n+1} = \frac{1}{2}u_n + \frac{1}{3}$

- أ انقل الشكل ثمّ مثّل على محور الفواصل الحدود التالية: u_1 ، u_2 ، u_3 ، u_3 ، u_4 ، u_5 ، انقل الشكل ثمّ مثّل على محور الفواصل الحدود التالية: مبرز ا خطوط الرسم.
 - (D) و (Δ) ب عين إحداثيي نقطة تقاطع المستقيمين
 - (u_n) عط تخمينا حول اتجاه تغير المتتالية
 - $u_n > \frac{2}{3}$ ، n عدد طبیعی اثبت أنّه من أجل كل عدد طبیعی (2
 - $\cdot (u_n)$ استنتج اتجاه تغير المنتالية \cdot
 - $v_n = u_n \frac{2}{3}$: نعتبر المتتالية (v_n) المعرّفة من أجل كل عدد طبيعي $v_n = u_n \frac{2}{3}$ المعرّفة من أجل كل عدد المتتالية (v_n)
 - أ بين أنّ المتتالية (v_n) هندسية يطلب تحديد أساسها وحدها الأول.
 - u_n عبارة الحد العام v_n ، واستنتج عبارة n بدلالة n
 - $S_n' = v_0 + v_1 + ... + v_n$ واستنتج المجموع $S_n = v_0 + v_1 + ... + v_n$ ويثنج المجموع $S_n' = u_0 + u_1 + ... + u_n$

التمرين الثاني: (04 نقاط)

- 1) حل في مجموعة الأعداد المركبة $\mathbb C$ المعادلة $z^2-6z+18=0$ ، ثمّ اكتب الحلين على الشكل الأستى.
 - D و C ، B ، A النقط المتعامد والمتجانس (O ; u , v) و v

$$z_D = -z_B$$
 و $z_C = -z_A$ ، $z_B = \overline{z_A}$ ، $z_A = 3 + 3i$ و الترتيب: الاحقاتها على الترتيب

أ - بيّن أنّ النقط C ، B ، A و C تنتمي إلى نفس الدائرة ذات المركز O مبدأ المعلم،

B الذي النقطة A الذي مركزه O ويحوّل النقطة A إلى النقطة B

 $\cdot D$ و O ، B النقط O ، O و O في استقامية وكذلك النقط O

د - استنتج طبيعة الرباعي ABCD .

التمرين الثالث: (04 نقاط)

في الفضاء المنسوب إلى المعلم المتعامد والمتجانس $(O; \vec{i}, \vec{j}, \vec{k})$ نعتبر المستوي (\mathcal{P}) الذي معادلته: x - 2y + z + 3 = 0

$$\begin{cases} y=0 \\ z=0 \end{cases}$$
 يعرف بالجملة عن (0; \vec{i}) نذكّر أنّ حامل محور الغواصل (1

- عين إحداثيات A نقطة تقاطع حامل O; i مع المستوي (\mathfrak{P}) .

C(-1; -4; 2) و B(0; 0; -3) و B(0; 0; -3) و B(2; 0; -4; 2)

أ - تحقّق أنّ النقطة B تنتمى إلى المستوي (9).

ب - احسب الطول AB .

 (\mathcal{P}) والمستوي ((\mathcal{P}) والمستوي ((\mathcal{P})

3) أ - اكتب تمثيلا وسيطيا للمستقيم (Δ) المارّ بالنقطة C والعمودي على المستوي (\mathcal{P}) .

 \cdot حَقُق أَنّ النقطة A تنتمى إلى المستقيم (Δ) .

ج- احسب مساحة المثلث ABC

التمرين الرابع: (07 نقاط)

 $f(x) = x - \frac{1}{x^2 - 1}$ كما يلي: \mathbb{R}^* كما يلي: ألمعرفة على بعتبر الدالة العددية f

 (C_{j}, i, j) نرمز بـ (C_{j}) لتمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس

 $\lim_{x \to +\infty} f\left(x\right)$ و $\lim_{x \to +\infty} f\left(x\right)$ احسب (۱) الحسب ($\lim_{x \to +\infty} f\left(x\right)$ و النتيجة. النتيجة. $\lim_{x \to +\infty} f\left(x\right)$

2) ادرس اتجاه تغير الداللة أحر على كل مجال من مجالي تعريفها ثم شكل جدول تغيراتها.

3) أ) بيّن أن المنحنى (C_f) يقبل مستقيمين مقاربين مائلين (Δ) و (Δ') معادلتيهما على الترتيب: y = x + 1 y = x

 (Δ') بالنسبة إلى كل من (Δ) و (Δ')

 $\omega(C_f)$ هي مركز تناظر للمنحنى $\omega(0; \frac{1}{2})$ هي مركز الناظر المنحنى (4).

 $-1,4 < \beta < -1,3$ و α حيث: $\alpha < 1$ و α حيث $\beta = 0$ و $\beta = 0$ أ) بيّن أن المعادلة $\alpha = 0$ تقبل حلين α و α

 (C_r) هل توجد مماسات لـ (C_r) توازي المستقيم

 (C_f) أرسم (Δ)، (Δ) ثم المنحنى (Δ)

د) ناقش بيانيا حسب قيم الوسيط الحقيقي m عدد وإشارة حلول المعادلة: m-1) $e^{-x}=m$

www.mathonec.com

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2010

امتحان بكالوريا التعليم الثانوي

الشعبة : علوم تجريبية

المدة: 03 ساعات و نصف

اختبار في مادة: الرياضيات (خاص بالمكفوفين)

على المترشح أن يختار أحد الموضوعين التاليين

الموضوع الأول

التمرين الأول: (05 نقاط)

نعتبر في المستوي المنسوب إلى المعلم المتعامد المتجانس (O; u, v) النقطتين A و B اللتين لاحقتيهما على الترتيب: $z_R = 3i$ و $z_R = 1 + i$

- z_B اكتب على الشكل الأسى: z_B و z_B .
- 2) ليكن S التشابه المباشر الذي يرفق بكل نقطة M لاحقتها z النقطة M ذات اللاحقة z حيث:

$$z' = 2iz + 6 + 3i$$

- أ) عين العناصر المميزة للتشابه المباشر ٤.
- ب عين z_c لاحقة النقطة C صورة النقطة A بالتشابه المباشر C
 - ج) استنتج طبيعة المثلث ABC.
 - $\{(A;2),(B;-2),(C;2)\}$ مرجح الجملة مرجع الجملة (3
 - D عين z_D لاحقة النقطة D
 - ب) عين مع التبرير طبيعة الرباعي ABCD.
- لتكن M نقطة من المستوي تختلف عن B وعن D لاحقتها z ولتكن (Δ) مجموعة النقط M ذات Δ

اللاحقة z التي يكون من أجلها $\frac{z_B-z}{z_D-z}$ عددا حقيقيا موجبا تماما.

- $z_{E}=6+3i$ أ) تحقق أن النقطة E ذات اللاحقة
- ب) أعط تفسير ا هندسيا لعمدة العدد المركب $\frac{z_B-z}{z_D-z}$. عين حينئذ المجموعة (Δ).

التمرين الثاني: (05 نقاط)

A(1;1;0) النقط ($O;\vec{i},\vec{j},\vec{k}$) نعتبر في الفضاء المنسوب إلى المعلم المتعامد المتجانس ($O;\vec{i},\vec{j},\vec{k}$)، النقط ($O:i,\vec{j},\vec{k}$)، النقط ($O:i,\vec{j},\vec{k}$)

- .C(-1;2;-1) g(2;1;1)
- 1) أ) بين أن النقط A، B و C ليست في استقامية. x+y-z-2=0 هي: ABC هي: ABC بين أن المعادلة الديكارتية للمستوي
 - 2) نعتبر المستويين (P) و (Q) اللذين معادلتيهما على الترتيب:

(Q):
$$2x + y - z - 1 = 0$$
 $(P): x + 2y - 3z + 1 = 0$

و المستقيم $\vec{u}(-1;5;3)$ و F(0;4;3) الذي يشمل النقطة F(0;4;3) و المستقيم

- اً) اكتب تمثيلا وسيطيا للمستقيم (D).
- $\cdot(D)$ و (Q) هو المستقيم بنا بنا المستقيم (P)
 - (Q) عين تقاطع المستويات الثلاث (ABC)، و (Q)

التمرين الثالث: (10 نقاط)

$$f(x) = 1 + \ln(2x - 1)$$
 : بنكن $f(x) = 1 + \ln(2x - 1)$ التكن (I الدالة العددية المعرفة على المجال $f(x) = 1 + \ln(2x - 1)$

 $\cdot \left(O;\ \overline{i},\overline{j}\right)$ سنجاس البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس وليكن المعلم المتعامد المتجانس والمتحامد المتحامد الم

- $\lim_{x \to \frac{1}{2}} f(x)$ و $\lim_{x \to +\infty} f(x)$ احسب (1
- I بين أن الدالة f متزايدة تماما على المجال I
- 3) عين فاصلة النقطة من (C_f) التي يكون فيها المماس موازيا للمستقيم (d) ذي المعادلة y=x
 - : على الشكل f(x) من f(x) من f(x) على الشكل f(x) أثبت أنه من أجل كل f(x) من $f(x) = \ln(x+a) + b$ عددان حقیقیان یطلب تعیینهما.
- In با استنتج أنه يمكن رسم (C_r) انطلاقا من (C) منحنى الدالة اللوغاريتمية النيبيرية (C_r) الا يطلب رسم (C_r) و (C_r))
 - g(x)=f(x)-x نعتبر الدالة العددية g المعرفة على المجال I بـــ: (II $\lim_{x\to +\infty}g(x)=-\infty$ نم بيّن أن $\lim_{x\to +\infty}g(x)=-\infty$ احسب (1
 - 2) ادرس اتجاه تغير الدالة g على 1، ثم حدّد القيمة الحدّية لها.
 - - . (d) على المجال (C_r) استنتج إشارة (C_r) بالنسبة إلى (D_r) بالنسبة إلى (D_r)
- [x] .]1; α [المجال المجال [x] ينتمي إلى المجال عدد حقيقي [x] من المجال [x] ينتمي إلى المجال عدد حقيقي [x]

$$u_n = f\left(1 + \frac{1}{2n}\right)$$
 نسمي (u_n) المنتالية العددية المعرفة على \mathbb{N}^* كما يأتي:

- . $u_n = 1 + 2\ln 3 3\ln 2$ عيّن قيمة العدد الطبيعي n التي من أجلها يكون:
 - $S_n = u_1 + u_2 + ... + u_n$:حيث S_n المجموع (2

الموضوع الثاتي

التمرين الأول: (05 نقاط)

المعرّفة على مجموعة الأعداد الطبيعية \mathbb{N} المعرّفة على مجموعة الأعداد الطبيعية

$$u_{n+1} = \frac{1}{2}u_n + \frac{1}{3}$$
 ، $u_0 = 6$

 $u_4 \circ u_3 \circ u_2 \circ u_1 \circ u_1 - 1$ (1

(D) و (Δ) و المستوي المنسوب إلى معلم متعامد متجانس، عين إحداثيي نقطة تقاطع المستقيمين (Δ) و (Δ) و اللذين معادلتيهما على الترتيب x=x و $y=x+\frac{1}{2}$.

 $u_n > \frac{2}{3}$ ، n عدد طبیعی $u_n > \frac{2}{3}$ ، اثبت أنّه من أجل كل عدد طبیعی $u_n > \frac{2}{3}$. $u_n > \frac{2}$. $u_n > \frac{2}{3}$. $u_n > \frac{2}{3}$. $u_n > \frac{2}{3}$. u_n

 $v_n=u_n-rac{2}{3}$: نعتبر المتتالية (v_n) المعرّفة من أجل كل عدد طبيعي ($v_n=u_n$ المعرّفة المعرّفة المعرّفة عن المعرّفة ال

أ - بيِّن أنَّ المتقالية (v_n) هندسية يطلب تحديد أساسها وحدّها الأول.

 u_n عبارة الحد العام u_n واستنتج عبارة u_n بدلالة u_n

 $S_n' = u_0 + u_1 + ... + v_n$ واستنتج المجموع $S_n' = u_0 + v_1 + ... + v_n$ وستنتج المجموع $S_n' = u_0 + u_1 + ... + u_n$

التمرين الثاني: (04 نقاط)

1) حل في مجموعة الأعداد المركبة $\mathbb C$ المعادلة $z^2-6z+18=0$ ، ثمّ اكتب الحلين على الشكل الأستي.

D و C ، B ، A المنسوب إلى المعلم المتعامد والمتجانس (O ; u , v)، نعتبر النقط v

 $z_D=-z_B$ و $z_C=-z_A$ ، $z_B=\overline{z_A}$ ، $z_A=3+3i$ و $z_C=-z_B$

أ - بين أنّ النقط $C \cdot B \cdot A$ و $C \cdot B \cdot A$ نقس الدائرة ذات المركز O مبدأ المعلم.

B الذي مركزه O ويحول النقطة A إلى النقطة B

 $\cdot D$ و O ، B استقامیة و کذلك النقط O ، A و O

4 - استنج طبيعة الرباعي ABCD.

التمرين الثالث: (04 نقاط)

في الفضاء المنسوب إلى المعلم المتعامد والمتجانس $(O; \vec{i}, \vec{j}, \vec{k})$ نعتبر المستوي (\mathcal{P}) الذي معادلته : x-2y+z+3=0

$$\begin{cases} y=0 \\ z=0 \end{cases}$$
 نذكّر أنّ حامل محور الفواصل $O;\; \overline{i} \end{cases}$ يعرف بالجملة (1

 (\mathcal{P}) مع المستوي (\mathcal{P}) مع المستوي (\mathcal{P}) مع المستوي (\mathcal{P}) عيّن إحداثيات \mathcal{P}

www.mathonec.com

C(-1; -4; 2) و B(0; 0; -3) و B(0; 0; -3) و B(0; 0; -3)

أ - تحقّق أنّ النقطة B تنتمى إلى المستوى (\mathcal{P}) .

ب - احسب الطول AB.

(9) و المسافة بين النقطة (9) و المستوي

3) أ - اكتب تمثيلا وسيطيا للمستقيم (Δ) المارّ بالنقطة C والعمودي على المستوي (\mathcal{P}).

 Δ ب محقق أنّ النقطة Δ تنتمي إلى المستقيم Δ

- احسب مساحة المثلث ABC

التمرين الرابع: (07 نقاط)

. $f(x)=x-\frac{1}{e^x-1}$:نعتبر الدالة العددية f المعرفة على \mathbb{R}^* كما يلي

 $\cdot (O; \vec{i}, \vec{j})$ لتمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس (C_f) .

 $\lim_{x\to +\infty} f(x)$ و $\lim_{x\to -\infty} f(x)$ احسب (۱)

ب) احسب $\lim_{x \to 0} f(x)$ وفسر هندسیا النتیجة.

2) ادرس اتجاه تغير الدالة رح على كل مجال من مجالي تعريفها.

اً) بیّن آن المنحنی (C_f) یقبل مستقیمین مقاربین مائلین (Δ) و (Δ') معاداتیهما علی التر تیب y=x و y=x

 (Δ') و (Δ) بالنسبة إلى كل من (Δ) و (Δ')

 $\omega\left(C_f\right)$ هي مركز تناظر المنحنى $\omega\left(0\;;\;rac{1}{2}
ight)$ اثبت أن النقطة (4

-1,4<eta<-1,3 و $\alpha<\alpha<1$ و $\alpha<\alpha<1$ و β المعادلة β (α) = 0 و α حيث: β المعادلة β (α) = 0 و β حيث: β (α) أن المعادلة β (α) أن المعادلة β (α) تقبل حلين β تقبل حلين β (α) تقبل ألم (α) تقبل حلين β (α) تقبل حلين β (α) تقبل حلين α (α) تقبل حلين α

 $\frac{1}{e^{x}-1} = \frac{e^{-x}}{1-e^{-x}}$: فإن \mathbb{R}^{+} من أجل كل x من أجل كل أرو

f(x) = x + m ناقش جبريا حسب قيم الوسيط الحقيقي m عدد وإشارة حلول المعادلة:

حل بكالوريا :دورة جوان 2010

حل الموضوع الأول

التمرين الأول:

$$\left\{ egin{align*} \cos heta_1 = rac{1}{\sqrt{2}} = rac{\sqrt{2}}{2} \ \sin heta_1 = rac{1}{\sqrt{2}} = rac{\sqrt{2}}{2} \ . \end{array}
ight.$$
دينا: $\left| z_A \right| = \left| l + i \right| = \sqrt{2} \ . \right\}$ دينا: $\left| z_A \right| = \left| l + i \right| = \sqrt{2}$

 $. k \in \mathbb{Z}$. $k \in \mathbb{Z}$. α .

. $k \in \mathbb{Z}$ حيث ، $\theta_2 = \frac{\pi}{2} + 2\pi k$

 $z_B=3e^{i\frac{\pi}{2}}$: وبالتالي: z_B عمدة لـ z_B ، إذن الشكل الأسي لـ z_B هو

a=2i ميث ، z'=az+b هي من الشكل S هي المنابة المركبة للتشابه Sو b=6+3i إذن :مركزه النقطة ذات اللاحقة:

B اذن مركز التشابه S هو النقطة $\frac{b}{1-a} = \frac{6+3i}{1-2i} = \frac{6+3i}{1-2i} \times \frac{1+2i}{1+2i} = 3i = z_B$

 $arg(a) = arg(2i) = \frac{\pi}{2}$ ، وزاویته: |a| = |2i| = 2

 $z_{\scriptscriptstyle C}=2i\,(l+i\,)+6+3i$ ، ومنه: $z_{\scriptscriptstyle C}=2iz_{\scriptscriptstyle A}+6+3i$ ، معناه: $C=S\left(A
ight)$ $z_{c} = 4 + 5i$ ومنه:

BC = 2BA $(\overrightarrow{BA}; \overrightarrow{BC}) = \frac{\pi}{2}$: جـ / لدينا: C = S(A) ومنه من تعريف التشابه المباشر C = S(A)

المغنى في الرياضيات (علوم تجريبيت) ___ ص 40 كتاب الحوليات www.mathonec.com

ABC قائم في ABC ومنه: المثلث

$$z_D = 5 + 3i$$
 : بالحساب نجد: $z_D = \frac{2 \times z_A + (-2) \times z_B + 2 \times z_C}{2 - 2 + 2}$. أ الدينا: 3

. ومنه: $\boldsymbol{z}_{C}-\boldsymbol{z}_{D}=-\boldsymbol{I}+2\boldsymbol{i}$. ومن جهت: $\boldsymbol{z}_{B}-\boldsymbol{z}_{A}=-\boldsymbol{I}+2\boldsymbol{i}$. ومنه:

. وبالتالي الرباعي ABCD متوازي اضلاع ، $z_{\scriptscriptstyle B}-z_{\scriptscriptstyle A}=z_{\scriptscriptstyle C}-z_{\scriptscriptstyle D}$

ومن جهة اخرى: $\frac{\pi}{2}=(\overrightarrow{BA};\overrightarrow{BC})$ و $BC\neq BA$ لأن: BC=2BA ، وبالتالي متوازي الأضلاع ABCD مستطيل .

العدد $\frac{z_B-z_E}{z_D-z_E}$ عدد حقيقي موجب تماما ، لدينا: 4. أ / نبين أن العدد

. بالفعل: $\frac{z_B - z_E}{z_D - z_E} = \frac{3i - (6 + 3i)}{5 + 3i - (6 + 3i)} = \frac{-6}{-1} = 6$ عدد حقيقي موجب تماما.

$$arg\left(\frac{z_B-z}{z_D-z}\right)=(\overrightarrow{MD};\overrightarrow{MB}):$$
ب الدينا

 $arg\left(rac{z_B-z}{z_D-z}
ight)=2\pi k$:العدد المركب $\frac{z_B-z}{z_D-z}$ حقيقي موجب تماما إذا وفقط إذاكان

أي: $2\pi k = (\overline{MD}; \overline{MB})$ ، وبالتالي الشعاعان \overline{MB} و \overline{MD} مرتبطان خطيا ومن نفس الاتجاه ، ومنه: $(\Delta) = (BD) - (BD) - (BD)$ باستثناء القطعة المستقيمة (BD) = (BD) التمرين الثانى :

 $\frac{1}{-2} \neq \frac{1}{-1}$: غير مرتبطين خطيا لأن مثلا $\overrightarrow{AC}(-2;1;-1)$ و $\overrightarrow{AC}(1;0;1)$ غير مرتبطين خطيا لأن مثلا

ب / نبين أن إحداثيات النقط A ، B ، A تحقق المعادلة : x+y-z-2=0 ، بالفعل لدينا : من أجل A المساواة : 1+1-0-2=0 ، معققة .

من أجل B المساواة : 0 = 2 + 1 - 1 - 2 = 0 محققة.

من أجل C المساواة C المساواة C محققة.

مع
$$t$$
 عدد حقيقي هي تمثيل وسيطي $\begin{cases} x=t \\ y=4+5t \end{cases}$ ، أي : $t = 0+1 \times t \\ z=3+3t \end{cases}$ مع $t = 0+1 \times t \\ z=0+1 \times t \\ z=3+3 \times t$

(D) للمستقيم

ب / بتعويض التمثيل الوسيطي في معادلة المستوي (P) نجد المساواة :

محققة 0=0: -t+2(4+5t)-3(3+3t)+1=0 ، أي 0=0: -t+2(4+5t)-3(3+3t)+1=0 محققة مهما كان الوسيطى الحقيقى t

و بتعويض التمثيل الوسيطي في معادلة المستوي (Q) نجد المساواة :

محققة مهما 0=0: 5t-5t+4-4=0 ، أي 0=t+(4+5t)-(3+3t)-1=0 محققة مهما كان الوسيطى الحقيقي t .

إذن كل نقطة من المستقيم (D) تنتمي إلى كل من المستويين (P) و (Q) ، وهذا مايدل أن تقاطع المستويين (P) و (Q) هو المستقيم (D) .

الثلاثة (D) مع المستويين (P) و (Q) هو المستقيم (D) فإنه لتعيين تقاطع المستويات (ABC) . (ABC) مع المستوي (D) مع المستوي (D)

$$\begin{cases} x = -t...(1) \\ y = 4 + 5t...(2) \\ z = 3 + 3t...(3) \\ x + y - z - 2 = 0...(4) \end{cases}$$

بتعويض x ، y ، x من (1) و (2) و (3) في المساواة (4) نجد:

و (2) و (1) و (1) و (2) و (1) و (2) و (

التمرين الثالث:

 $\lim_{X \to +\infty} \ln X = +\infty$. وبما أن: $\lim_{X \to +\infty} \ln X = +\infty$ ، فإن: $\lim_{X \to +\infty} \ln X = +\infty$ ، فإن:

 $\lim_{x \to +\infty} f\left(x\right) = +\infty$. $\lim_{x \to +\infty} \left[1 + \ln(2x-1)\right] = +\infty$. $\lim_{x \to +\infty} \ln(x+1) = +\infty$

 $\lim_{x \xrightarrow{>} \frac{1}{2}} \ln(2x-1) = -\infty$. فإن: $\lim_{x \xrightarrow{>} \frac{1}{2}} \ln(2x-1) = 0^+$. وبما أن: $\lim_{x \xrightarrow{>} \frac{1}{2}} \ln(2x-1) = 0^+$. فإن: $\lim_{x \xrightarrow{>} \frac{1}{2}} \ln(2x-1) = 0^+$

 $\lim_{x \to \infty} f(x) = -\infty$: ومنه: $\lim_{x \to \infty} \left[1 + \ln(2x - 1) \right] = -\infty$

 $f'(x) = 0 + \frac{(2x-1)'}{2x-1} = \frac{2}{2x-1} > 0$ الدالة f تقبل الاشتقاق على المجال I ولدينا: f ومنه: الدالة f متزايدة تماما على المجال f ويكون جدول تغيراتها:

x	$\frac{1}{2}$ $+\infty$
f'(x)	+
f(x)	-∞ +∞

نحل المعادلة: f'(x) = 1 ، لكون معامل توجيه المستقيم (d) يساوي f'(x) = 1

من النقطة من
$$x=\frac{3}{2}$$
 ، أي: $2x-1=2$ ، أي: $2x-1=2$ ، إذن: فاصلة النقطة من $f'(x)=1$

$$rac{3}{2}$$
 التي يكون فيها المماس موازيا للمستقيم (C_f) هي المنحي (C_f)

الدينا: I من أجل كل x من أجل 4

الرسم:

: اِذَن،
$$f(x) = 1 + \ln(2x - 1) = 1 + \ln\left[2\left(x - \frac{1}{2}\right)\right] = 1 + \ln 2 + \ln\left(x - \frac{1}{2}\right)$$

.
$$b = 1 + \ln 2$$
 , $a = -\frac{1}{2}$: ومنه $f(x) = \ln \left(x - \frac{1}{2}\right) + 1 + \ln 2$

$$(C)$$
 بانطلاقا من (C_f) بمن المساواة (C_f) انطلاقا من (C_f) بمن المساواة (C_f) انطلاقا من (C_f)

 $\vec{u}\left(\frac{1}{2};l+\ln 2\right)$ منحنى الدالة اللوغاريتمية النيبيرية $\ln ln$ بالانسحاب الذي شعاعه

$$g(x) = f(x) - x = 1 - x + \ln(2x - 1)$$
 (II

$$\lim_{x \xrightarrow{>} \frac{1}{2}} [f(x) - x] = -\infty$$
 . ومنه: $\lim_{x \xrightarrow{>} \frac{1}{2}} f(x) = -\infty$. ومنه: 1

$$\lim_{x \xrightarrow{>} \frac{1}{2}} g(x) = -\infty$$
 إذن:

$$\lim_{x\to +\infty} g(x) = -\infty$$
 اثبات أن

$$g(x) = (2x - 1) \left[\frac{1 - x}{2x - 1} + \frac{\ln(2x - 1)}{2x - 1} \right]$$
 من أجل كل x من أجل كل x من أجل

$$\lim_{x \to +\infty} \frac{\ln(2x-1)}{2x-1}$$
 : نضع $\lim_{x \to +\infty} \frac{\ln \frac{1-x}{2x-1}}{2x-1} = \lim_{x \to +\infty} \frac{-x}{2x} = -\frac{1}{2}$: نضع

، ومنه:
$$u \to +\infty$$
 فيكون: $x \to +\infty$. ومنه:

$$\lim_{x \to +\infty} \left[\frac{ln(2x-1)}{2x-1} + \frac{ln(2x-1)}{2x-1} \right] = -\frac{1}{2}$$
 . ومنه: $\lim_{x \to +\infty} \frac{ln(2x-1)}{2x-1} = \lim_{u \to +\infty} \frac{lnu}{u} = 0$

$$\lim_{x \to +\infty} g(x) = -\infty$$
 فإن: $\lim_{x \to +\infty} (2x - 1) = +\infty$

2) الدالة g تقبل الاشتقاق على المجال I ولدينا:

$$3-2x$$
 هي نفس إشارة $g'(x)=f'(x)-(x)'=\frac{2}{2x-1}-1=\frac{3-2x}{2x-1}$ إشارة $g'(x)=g'(x)=0$ هي نفس إشارة ولاينا:

x	$\frac{1}{2}$	$\frac{3}{2}$		+∞
g'(x)	+	- 0	(3)9	

ومنه جدول تغيرات الدالة g:

			let Er		7
x	$\frac{1}{2}$		$\frac{3}{2}$		+∞
g'(x)		+	0	9 	
g(x)	/		$-\frac{1}{2} + \ln 2$		

$$g(1) = 1 - 1 + \ln(2 \times 1 - 1) = 0$$
 أ رادينا: 3

الدالة
$$g$$
 مستمرة ومتناقصة تماما على المجال $\frac{3}{2}$; + ∞ و تأخذ قيمها في المجال

ومنه حسب
$$0 \in \left] -\infty; -\frac{1}{2} + \ln 2 \right[$$
 فإن: $\left[-\infty; -\frac{1}{2} + \ln 2 \right] = 0$ ، ومنه حسب $\left[-\infty; -\frac{1}{2} + \ln 2 \right]$

مبرهنة القيم المتوسطة المعادلة $g\left(x\right)=0$ تقبل في المجال $\frac{3}{2}$; + ∞ حلا وحيدا $g\left(x\right)=0$ مبرهنة القيم المتوسطة المعادلة

.
$$2 < \alpha < 3$$
 فإن: $g(3) = -0,3905... < 0$ و $g(2) = 0,0986... > 0$

ب / الرسم: أنظر الشكل السابق.

4) من دراسة تغيرات الدالة g و السؤال g) نتحصل على إشارة g(x) على النحو التالي :

وتكون وضعية المنحني (C_f) بالنسبة إلى المستقيم (d) كما يلي :

$$[\alpha;+\infty[$$
 ، $] \frac{1}{2};I$ نحت المستقيم $[\alpha;+\infty[$ ، $] = (d$) على ڪل من المجالين $[C_f$) -

$$[1;lpha]$$
 فوق المستقيم ((d) على المجال.

.
$$B\left(\alpha;\alpha\right)$$
، $A\left(l;l\right)$ ي يقطع المستقيم (d) في النقطتين (C_{f}) .

ومنه: I متزايدة تماما على المجال I فإنها متزايدة تماما على المجال f ، ومنه:

. فإن:
$$g(\alpha) = 0$$
 ، لأن $f(\alpha) = \alpha$ ، ويما ان: $f(1) = 1$ ، ويما ان: $f(1) < f(\alpha)$

ينتمي إلى $I< f(x)< \alpha$ ، إذن:من أجل كل عدد حقيقي x من المجال I فإن $I< f(x)< \alpha$ المجال I . I

الله 1 (III) لدينا:

$$u_n = f\left(1 + \frac{1}{2n}\right) = 1 + \left[ln\left(2\left(1 + \frac{1}{2n}\right)\right) - 1\right] = 1 + ln\left(1 + \frac{1}{n}\right) = 1 + ln\left(\frac{n+1}{n}\right)$$

ومنه:
$$2 + \ln\left(\frac{n+1}{n}\right) = 1 + 2\ln 3 - 3\ln 2$$
 ومنه: $u_n = 1 + 2\ln 3 - 3\ln 2$ تڪافئ

: ومنه
$$\ln\left(\frac{n+1}{n}\right) = \ln\left(\frac{9}{8}\right)$$
 ، أي: $\ln\left(\frac{n+1}{n}\right) = \ln\left(\frac{9}{8}\right)$ ، ومنه $\ln\left(\frac{n+1}{n}\right) = \ln 9 - \ln 8$

. n = 8 ومنه: 9n = 8n + 8

: ومنه
$$u_n = l + ln\left(\frac{n+l}{n}\right) = l + ln(n+l) - ln n$$
 ومنه 2

$$\begin{cases} u_1 = 1 + \ln 2 - \ln 1 \\ u_2 = 1 + \ln 3 - \ln 2 \\ u_3 = 1 + \ln 4 - \ln 3 \end{cases}$$

، بجمع المساوايات طرفا إلى طرف نجد:

$$\begin{vmatrix} u_{n-1} = 1 + \ln n - \ln(n-1) \\ u_n = 1 + \ln(n+1) - \ln n \end{vmatrix}$$

$$\begin{split} S_n = & \left(1 + \ln 2 - \ln 1\right) + \left(1 + \ln 3 - \ln 2\right) + \left(1 + \ln 4 - \ln 3\right) + \dots \\ & + \left[1 + \ln n - \ln(n-1)\right] + \left[1 + \ln(n+1) - \ln n\right] \\ & = & (1 + 1 + 1 + \dots + 1) + \ln(n+1) = n \times 1 + \ln(n+1) \\ . S_n = & n + \ln(n+1) : \end{cases}$$

حل الموضوع الثاني

التمرين الأول:

 $\overline{1-1}$ نظر الرسم.

$$x = \frac{2}{3}$$
 ب) نضع $x = \frac{1}{2}x + \frac{1}{3}$ فنجد

.
$$I\left(\frac{2}{3};\frac{2}{3}\right)$$
 ومنه Δ ومنه D ومنه D ومنه D ومنه D ومنه التقالية D ومنه D ومنه ومنه D ومنه ومنه D

$$u_0>rac{2}{3}$$
 المرحلة I : من أجل $n=0$ لدينا $P\left(0
ight)$ محققة لأن $n=1$

$$u_{n+1}>rac{2}{3}:$$
 المرحلة 2 : نفرض صحة $p(n)$ أي $u_n>rac{2}{3}:$ و نبرهن صحة $p(n+1)$ أي $u_n>rac{2}{3}:$

$$u_{n+1} > \frac{2}{3} : u_n + \frac{1}{2}u_n + \frac{1}{3} > \frac{2}{3}$$
 ومنه $u_n > \frac{1}{2}u_n > \frac{1}{3}$ اي : لدينا

$$u_n > \frac{2}{3} : n$$
 الخلاصة: من أجل كل عدد طبيعي *

$$-\frac{1}{2}u_n<-\frac{1}{3}$$
 ب) لدينا : $u_n>\frac{2}{3}$ فإن $u_n>\frac{2}{3}$ وبما أن $u_n>\frac{1}{3}-u_n=\frac{1}{3}-\frac{1}{2}u_n$ فإن $u_n>\frac{1}{3}$

. ومنه :
$$0 - \frac{1}{3}$$
 ، أي $0 - u_n - u_n < 0$ ، إذن $\left(u_n\right)$ متناقصة .

: ومنه
$$v_n = u_n - \frac{2}{3}$$
 ومنه $v_n = u_n - \frac{2}{3}$

متتاليۃ هندسيۃ (
$$v_n$$
) متتاليۃ هندسيۃ ($v_{n+1} = u_{n+1} - \frac{2}{3} = \frac{1}{2}u_n + \frac{1}{3} - \frac{2}{3} = \frac{1}{2}\left(u_n - \frac{2}{3}\right) = \frac{1}{2}v_n$

$$v_0 = u_0 - \frac{2}{3} = 6 - \frac{2}{3} = \frac{16}{3}$$
 أساسها $\frac{1}{2}$ وحدها الأول

$$u_n = v_n + \frac{2}{3} = \frac{16}{3} \times \left(\frac{1}{2}\right)^n + \frac{2}{3}$$
 ومنه: $v_n = v_0 \times q^n = \frac{16}{3} \times \left(\frac{1}{2}\right)^n$ بر) لدينا:

ج) لدينا:

$$S_{n} = v_{0} + v_{1} + \dots + v_{n} = v_{0} \times \frac{1 - q^{n+1}}{1 - q} = \frac{16}{3} \times \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} = \frac{32}{3} \left(1 - \left(\frac{1}{2}\right)^{n+1}\right)$$

$$.S'_{n} = \left(v_{0} + \frac{2}{3}\right) + \left(v_{1} + \frac{2}{3}\right) + \dots + \left(v_{n} + \frac{2}{3}\right) = \left(v_{0} + v_{1} + \dots + v_{n}\right) + \frac{2}{3}(n+1)$$
 ومنه:

$$= \frac{32}{3} \left(1 - \left(\frac{1}{2} \right)^{n+1} \right) + \frac{2}{3} (n+1)$$

التمرين الثاني:

: ومنه المعادلة تقبل حلين مركبين مترافقين $\Delta = 36 - 72 = -36 = \left(6i\right)^2$ لدينا: 1

$$z_{2} = \overline{z_{1}} = 3 - 3i$$
 , $z_{1} = \frac{6 + 6i}{2} = 3 + 3i$

$$heta_{\scriptscriptstyle I}=rac{\pi}{4}:$$
 ومنه: $\left\{ egin{align*} \cos heta_{\scriptscriptstyle I}=rac{\sqrt{2}}{2} \ \sin heta_{\scriptscriptstyle I}=rac{\sqrt{2}}{2} \ \end{array}
ight.$ لدينا: $\left. eta_{\scriptscriptstyle I}=arg(z_{\scriptscriptstyle I}) \right.$ ومنه: $\left. \left| z_{\scriptscriptstyle I} \right|=3\sqrt{2} \right.$

. $z_2 = 3\sqrt{2}e^{-i\frac{\pi}{4}}$: وبالتالي: $z_1 = 3\sqrt{2}e^{i\frac{\pi}{4}}$

$$OA=OB=OC=OD=3\sqrt{2}$$
 . أ، لدينا: $2\sqrt{2}=|z_B|=|z_C|=|z_D|=3\sqrt{2}$. أ. كا دينا: $2\sqrt{2}=0$

0 ونصف القطر D ، و D وتنتمي إلى نفس الدائرة ذات المركز C ونصف القطر ومنه: النقط

$$e^{i\theta}=rac{z_{A}-z_{O}}{z_{B}-z_{O}}=rac{z_{A}}{z_{B}}=rac{3\sqrt{2}e^{irac{\pi}{4}}}{3\sqrt{2}e^{-irac{\pi}{4}}}=e^{-irac{\pi}{2}}$$
 ومنه: $z_{B}-z_{O}=e^{i\theta}(z_{A}-z_{O})=e^{i\theta}(z_{A}-z_{O})$ ب الدينا:

. R إذن: $\theta = -\frac{\pi}{2}$ هي زاوية الدوران

جـ / لدينا: $z_{c}=-z_{A}$ إذن: $z_{c}=-\overrightarrow{OA}$ وبالتالي النقط C و C في استقامية.

و لدينا: $z_D = -\overline{Z}_B$ إذن: $\overline{OD} = -\overrightarrow{OB}$ وبالتالي النقط D ، D و D في استقامية .

د / لدينا: النقط A ، O و C في استقامية وكذلك النقط B ، O و D و النقط C ، C ، C و C تنتمي إلى نفس الدائرة ذات المركز C أي C أي C أي C قطران في هذه الدائرة ، إذن الرباعي C متوازي أضلاع .

نستخلص أن متوازي الأضلاع ABCD قطراه متعامدان ومتقايسان فهو مربع.

التمرين الثالث

لدينا:
$$y=0$$
 و $y=0$ و $y=0$ و $y=0$ و $y=0$ الدينا: $y=0$ و $y=0$ و $y=0$ و $y=0$ الدينا: $y=0$ و $y=0$ الدينا: $y=0$ و $y=0$ الدينا: $y=0$

. $A\left(-3;0;0\right)$ ، ومنه x=-3 ، أي x+3=0 ، فجد ومنه $\left(P\right)$ نجد

و محققة. B أ – بتعويض إحداثيات النقطة B في معادلة المستوي (P) نجد B نجد ويض إحداثيات النقطة B

$$AB = \sqrt{(-3-0)^2 + (0-0)^2 + (0+3)^2} = \sqrt{18} = 3\sqrt{2}$$
 : ب-لدینا

$$d(C;(P)) = \frac{\left|-1+8+2+2\right|}{\sqrt{1+4+1}} = \frac{12}{\sqrt{6}} = 2\sqrt{6}$$
 : جــلاينا

 $C\left(-1;-4;2\right)$ اًـ المستقيم (Δ) يمربالنقطة (3

والشعاع $\overline{n}(1;-2;1)$ هو شعاع توجیه له ومنه الجملة:

والشعاع
$$n(1;-2;1)$$
 هو شعاع توجیه له ومنه الج $x=-1+t$, $x=-1+1 imes t$, $x=-1+1 imes t$, $x=-4+(-2) imes t$, $y=-4+(-2) imes t$, $z=2+1 imes t$

مع t عدد حقیقی هی تمثیل وسیطی للمستقیم (Δ).

$$-3=-1+t$$
 $0=-4-2t$:بتعويض إحداثيات النقطة A في التمثيل الوسيطي للمستقيم Δ نجد Δ نجد $0=2+t$

نقطتین من (A) و (A) نقطتین من (A) فإن المثلث ABC قائم في A ، إذا رمزنا ب: S إلى مساحة المثلث ABC ، فإن :

$$. S = \frac{AB \times AC}{2} = \frac{AB \times d(C; (P))}{2} = \frac{3\sqrt{2} \times 2\sqrt{6}}{2} = 6\sqrt{3}$$

التمرين الرابع:

ان:
$$\lim_{x\to -\infty} x = -\infty$$
 ، فإن: $\lim_{x\to -\infty} -\frac{1}{e^x-1} = 1$ ، ومنه $\lim_{x\to -\infty} e^x = 0$ ، فإن: $\lim_{x\to -\infty} f(x) = -\infty$

$$\lim_{x \to +\infty} x = +\infty$$
 . ومنه $\lim_{x \to +\infty} -\frac{1}{e^x-1} = 0$. ومنه $\lim_{x \to +\infty} e^x = +\infty$. ومنه $\lim_{x \to +\infty} f(x) = +\infty$. $\lim_{x \to +\infty} f(x) = +\infty$

$$\lim_{x \to 0} x = 0:$$
 ب لدينا: $\lim_{x \to 0} (e^x - 1) = 0$ ، ومنه $\lim_{x \to 0} (-\frac{1}{e^x - 1}) = -\infty$ ، ومنه $\lim_{x \to 0} (e^x - 1) = 0^+$ ، فإن: $\lim_{x \to 0} f(x) = -\infty$

كتاب الحوليات المغني في الرياضيات (علوم تجريبيۃ) ــ www.mathonec.com

$$\lim_{x \to 0} x = 0:$$
 لدينا: $\lim_{x \to 0} (e^x - 1) = +\infty$. ومنه $\lim_{x \to 0} (e^x - 1) = 0$. ومنه $\lim_{x \to 0} (e^x - 1) = 0$. $\lim_{x \to 0} (e^x - 1) = 0$. $\lim_{x \to 0} (e^x - 1) = 0$

بما أن: $mf(x)=+\infty$ و $\lim_{x\to 0} f(x)=+\infty$ ، نستنتج أن المنحني $\lim_{x\to 0} f(x)=+\infty$ يقبل المستقيم الذي أن :

x=0 . $+\infty$ محور التراتيب) کمستقيم مقارب بجوار x=0

: ولدينا $[0;+\infty[$ ، $]-\infty;0[$ ، الدالة [d] والدينا ولدينا ولدينا والدينا وا

ن متزايدة تماما على كل من
$$f'(x) = I - \frac{-e^x}{\left(e^x - I\right)^2} = I + \frac{e^x}{\left(e^x - I\right)^2} > 0$$

المجالين: $]0;+\infty[$ ، $]0;+\infty[$ ، $]-\infty;0[$ المجالين: المجالين: $]0;+\infty[$

x	-∞	0 +∞
f'(x)	+	+
f(x)	_∞ +∞	+∞

ومنه المستقيم
$$y=x$$
 مقارب . $\lim_{x\to +\infty} [f(x)-x] = \lim_{x\to +\infty} -\frac{1}{e^x-1} = 0$. ائل لـ (C_f) بجوار (C_f) مائل لـ (C_f) بجوار (C_f)

ولدينا:
$$\lim_{x \to -\infty} [f(x) - (x+1)] = \lim_{x \to -\infty} \left(-\frac{1}{e^x - 1} - 1 \right) = 0$$
 . ومنه:

. $-\infty$ المستقيم (C_f) بجوار (Δ') مقارب مائل لـ (Δ') بجوار

 $:(\Delta)$ بالنسبة لـ (C_f) بالنسبة ا

لدينا: $f(x)-x=-\frac{1}{e^x-1}$ ، إشارة الفرق f(x)-x موضعة في الجدول الموالي:

\boldsymbol{x}	-∞	0 +∞
$e^{x}-1$	_	+
f(x)-x	+	_

$$[0;+\infty[$$
 المجال (Δ) على المجال $]-\infty;0$ ويقع تحت (Δ) على المجال (Δ) على المجال (C_f) : وضعية (C_f) بالنسبة لـ (Δ') :

لدينا: $f(x) - (x+1) = -\frac{1}{e^x - 1} - 1 = -\frac{e^x}{e^x - 1}$ اشارة الفرق $f(x) - (x+1) = -\frac{1}{e^x - 1} - 1 = -\frac{e^x}{e^x - 1}$ موضعت في الجدول الموالى:

x	$-\infty$	0		$+\infty$
$e^{x}-1$		_	+	
f(x)-(x+1)		+		

 $[0;+\infty[$ يقع فوق (Δ') على المجال $[-\infty;0[$ ويقع تحت (Δ') على المجال $[0;+\infty[$ إذن (C_f)

$$.(C_f)$$
 هي مركز تناظر للمنعني $w\left(0;\frac{1}{2}\right)$ هي مركز تناظر النقطة . 4

من أجل كل x من \mathbb{R}^* فإن x من أجل كل

$$f(2\times 0 - x) + f(x) = f(-x) + f(x) = -x - \frac{1}{e^{-x} - 1} + x - \frac{1}{e^{x} - 1}$$
$$= \frac{e^{x} - 1}{e^{x} - 1} = 1 = 2 \times \frac{1}{2}$$

 $.ig(C_fig)$ ومنه: $w\left(0;rac{1}{2}
ight)$ هي مركز تناظر للمنحني

-1,4<eta<-1,3و $\ln 2<lpha<1$: و lpha حيث lpha<1 و lpha<-1,4 و f (x) = 0 المعادلة f (x) = 0 المعادلة أن المعادلة f (x) = x f

ولدينا: $]-\infty;0] = [-1,4;-1,3]$ ، إذن : f مستمرة ومتزايدة تماما على المجال [-1,4;-1,3] = [-1,4;-1,3] وبماأن : f $(-1,3) \approx 0,07 > 0$ و f $(-1,4) \approx -0,07 < 0$ ، فإنه حسب مبرهنة القيم المتوسطة المعادلة f (x) = 0 تقبل حلا وحيدا حلاوحيدا f $(\beta) = 0$.

 $\cdot 1 + \frac{e^x}{\left(e^x - 1\right)^2} = 1$: أي $\cdot f'(x) = 1$ ، ومنه نضع $\cdot 1 = 1$ ، ومنه نضع الستقيم $\cdot 1 = 1$

ومنه: $e^x = 0$ ، ومنه: $e^x = 0$

 $\cdot (\Delta)$ توازي المنعني $\left(C_{f}^{-}
ight)$ توازي المنعني

ج) الرسم:

$$m-1=me^x$$
 : أي: $(m-1)e^{-x} \times e^x = m \times e^x$ تكافئ $(m-1)e^{-x} = m$ ، أي: $f(x) = x + m$. ومنه: $x - \frac{1}{e^x - 1} = x + m$. ومنه: $m = -\frac{1}{e^x - 1}$.

حلول المعادلة (x)=m+1 هي فواصل نقاط تقاطع المنحني (C_f) مع المستقيم (Δ_m) الذي معادلة له : y=x+m ، إن المستقيم (Δ_m) يوازي كل من المستقيمين (Δ) و (Δ') ، والوسيط (Δ) هو الترتيب إلى المبدأ . إذن :

- . لا $m \in]-\infty; 0$ فيوجد حل وحيد موجب $m \in]-\infty; 0$
 - . لا توجد حلول $m \in [0;1]$ لا يا
 - . لا $J;+\infty$ فيوجد حل وحيد سالب $m\in J$