	<u>TP4 Debit - Fabri Vernhet</u>	Pt		Α	ВС	D	Note	
I.	Préparation							
1	Compléter le schéma TI pour faire apparaître la boucle de régulation.	1	В				0,75	
2	Donner le nom de la grandeur réglée, réglante et d'une grandeur perturbatrice. Placer ces grandeurs sur le schéma TI.	1	Α				1	
3	Donner et procéder au câblage du régulateur, pour un fonctionnement en régulation de débit.	1	Α				1	
4	Régler la consigne à 50%.	1	Α				1	
5	Compte tenu de l'appareillage utilisé, déterminer le sens d'action du régulateur et le justifier.	1	D				0,05	
E	Régler le sens d'action du régulateur. On donnera le nom du paramètre modifié.	1	Α				1	
7	Réaliser un échelon de commande (en boucle ouverte). La commande passera de 0 à 50%.	2	Α				2	
8	Le procédé est-il naturellement stable ou intégrateur ? Justifiez votre réponse.	1	Α				1	
II.	Réglage de la boucle							
1	Déterminer le modèle de Broïda de votre procédé à l'aide de la fiche d'identification fournie. Fournir l'enregistrement obtenu avec toutes les constructions nécessaires à l'identification, ainsi que la fiche complétée.	3	А				3	Il faut penser à changer d'échelle sur le graphique.
2	Donner l'équation H(p) de votre modèle.	1	Α				1	
3	Déterminer les réglages de votre régulateur, ie Xp, Ti et Td. On utilisera la fiche fournie en annexe.	3	В				2,25	
	Donner alors la fonction de transfert C(p).	1	Α				1	
5	Commande à 50% à t=0, représenter l'allure de la commande Y en réponse à un échelon de mesure de 4% jusqu'à sa saturation.	1	D				0,05	
III.	Performances							
1	Mesurer les performances de votre réglage. Tous les calculs et constructions devront apparaître sur l'enregistrement utilisé. (temps de réponse à ±5%, erreur statique et dépassement).	1	В				0,75	
2	Optimiser votre réglage, puis mesurer les nouvelles performances obtenues.	1	В				0,75	
	Note: 16,6/20							

1/

2/Grandeur régler :le débit, Grandeur réglante :pourcentage d'ouverture de la vanne, Grandeur perturbatrice :pression a l'entrée.

Si l'on augmente la consigne alors la vanne s'ouvre et le débit augmente les sens d'action du procédé est donc direct et le régulateur est réglé en inverse.

6/ On modifie le paramètre Act du régulateur.

	Nom	Description	Adresse	Valeur
	PV	Variable de process	1	71.71
Ø	tSP	Consigne cible	2	50.00
Ø	юP	Puissance de sortie cible sou	3	50.00
	W_SP	Consigne de travail	5	50.00
Ø	R_IP	Entrée déportée lecture/écrit	26	999.90
Ø	VP_OP	Sortie manuelle VP	60	0
	SP	Consigne cible souhaitée <à	484	50.00
Ø	m-A	Sélection auto/manuel	273	MAN (1) 💌
	WUP	Sortie de Travail	4	50.00
Ø	Cid	Identificateur défini par l'utilis	629	50
Op	erator.MAIN	- 14 paramètres		

8/ Le procédé est naturellement stable car nous avons une mesure qui est stable en fin de progression.

II. Réglage de la boucle

1/

Modèle de Broïda – Réglages de Dindeleu

[Remplacer les par votre réponse]

Le système est approximé à un modèle du premier ordre avec retard pur :

Y signal d'entrée du procédé. X signal de sortie du procédé. $H(p) = \frac{X(p)}{Y(p)} = \frac{K e^{-Tp}}{1 + \tau p}$

Cette méthode s'applique-t-elle à un procédé stable ou instable ? Stable L'essai se fait-il en boucle ouverte ou en boucle fermée ? Boucle ouverte

À partir d'un essai, mesurer :

$$\Delta Y = 50$$
et $\Delta X = 72$

En déduire la valeur du gain statique K = 72/50=1,44

Mesurer:

t1 (pour X1 = 28 %) = 8s voir graphique si-dessus

t2 (pour X2 = 40%) = 11s voir graphique si-dessus

En déduire :

$$T = 2.8t1-1.8t2 = 2.6$$

$$\tau = 5.5(t2-t1) = 16.5$$

Tableau des réglages :

$\frac{\tau}{T}$ -	autre	2 I	PID 5	PI	10	P 20	Tout ou rien
		P	PI série	PI //	PID série	PID //	PID mixte
	A	0,8 t KT	0,8 t KT	0,8 τ KT	0,85 t KT	$\frac{\frac{\tau}{T} + 0.4}{1.2 \mathrm{K}}$	$\frac{\frac{\tau}{T} + 0.4}{1.2 \mathrm{K}}$
	T _i	Maximum	τ	KT 0,8	τ	$\frac{\text{KT}}{0,75}$	τ+0,4T
	$T_{\mathbf{d}}$	0	0	0	0,4т	0,35 ^t K	$\frac{\tau T}{T+2,5\tau}$

Indiquer le type de régulateur que vous utilisez : ((16,5/2,6)+0,4)/1,2*1,44=3,9 avec un régulateur PID Mixte (que ce type de régulateur dans la salle)

Déterminer les valeurs :

- de la bande proportionnelle : Xp = 100/3,9=25,65%
- du temps intégral : Ti = 16,5+0,4*2,6=17,54s
- du temps dérivé : Td = (16,5*2,6)/(2,6+(2,5*16,5))=1s

que vous allez prendre comme base pour vos réglages.

$$H(p) = \frac{X(p)}{Y(p)} = \frac{K e^{-Tp}}{1 + \tau p}$$

$$H(p) = \frac{1,44 * e^{(2,6*p)}}{1 + 16,5 * p}$$

H(p)=
$$\frac{1,44*e^{(2,6*p)}}{1+16,5*p}$$

3/

COM1.ID00	1-2408 - Exploration des para	amètres (O _l	perator.PID)	_[
$\tau \Rightarrow \tau$	<u> </u>			
Nom	Description	Adresse	Valeur	
🖊 SET	N° du Jeu de PID actif	72	PID.1 (0) ▼	
⊘ PB	Bande proportionnelle jeu 1	6	25.65	
🥖 Ti	Temps d'intégrale jeu 1	8	17s 54ms ···	
/ Td	Temps de dérivée jeu 1	9	1s ···	
∕ rES	Intégrale manuelle Jeu 1	28	0.00	
🕖 Hcb	Cutback haut jeu 1	18	AUTO (0) ▼	
🖊 Lcb	Cutback bas jeu 1	17	AUTO (0) ▼	
√ Pb2	Bande proportionnelle jeu 2	48	0.10	
🥖 Ti2	Temps d'intégrale jeu 2	49	ARRET (0) ····	
√ Td2	Temps de dérivée jeu 2	51	ARRET (0) ····	
√ rES2	Intégrale manuelle Jeu 2	50	0.00	
✓ Hcb2	Cutback haut jeu 2	118	AUTO (0) ▼	
Lcb2	Cutback bas jeu 2	117	AUTO (0) ▼	
			<u> </u>	
Operator.PID	- 19 paramètres			

4/

C(p)=A*
$$\frac{1+Ti*p+Ti*Td*p^2}{Ti*p}$$

C(p)=3,9*
$$\frac{1+17,54*p+17,54*1*p^2}{17,54*p}$$

III. Performances

On a un temps de réponse de 16 secondes a + ou – 5%, un premier dépassement de 6%, l'erreur statique est nul.

2/

Nous n'avons pas réussi a optimiser nos réglage car en changeant les paramètres la mesure a des variations toujours plus grandes et donc un temps de réponse plus long un dépassement plus grand.