Set Theory and Functions: Assignment

FYIMP 2025 Batch - First Semester

Submission Deadline: 23rd October 2025, 3:30 PM

Instructions: Answer all questions. Show all necessary working for computational problems.

I. Set Basics and Operations (18 Questions)

Part A: Definitions and True/False

- 1. **Define** the power set of a set A. (Short Answer)
- 2. If a set A has n elements, what is the cardinality of its power set P(A)? (Fill in the blank)
- 3. True or False: For any non-empty sets A and B, $A \cap B \subseteq A \cup B$.
- 4. True or False: If $A \subseteq B$ and $B \subseteq A$, then A = B.
- 5. True or False: The set $\{\emptyset\}$ is the same as the empty set \emptyset .
- 6. List all the subsets of the set $A = \{a, b\}$.

Part B: Computational Practice

```
Let U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} be the universal set.
Let A = \{1, 3, 5, 7, 9\}, B = \{2, 3, 4, 5, 6\}, and C = \{6, 7, 8, 9, 10\}.
```

- 7. Find the set $A \cap B$.
- 8. Find the set $B \cup C$.
- 9. Find the complement of A, A^c .
- 10. Find the set difference $A \setminus B$.
- 11. Find the set $(A \cup B)^c$.
- 12. Find the set $A \cap (B \setminus C)$.
- 13. Calculate the cardinality: $|A \cap C|$.

- 14. Calculate the cardinality: $|P(B \cap C)|$.
- 15. Draw a Venn Diagram to illustrate the set operation $(A \cap B)^c$.
- 16. Given sets $X = \{x \mid x \text{ is an even integer}\}$ and $Y = \{y \mid y \text{ is a prime number}\}$. Describe the set $X \cap Y$.
- 17. If a set S has 4 elements, how many non-empty proper subsets does S have?
- 18. Shade the region corresponding to $A \setminus (B \cap C)$ in a three-set Venn diagram.

II. Cartesian Products and Relations (7 Questions)

- 19. If $A = \{a, b\}$ and $B = \{1, 2, 3\}$, list all the elements of the Cartesian Product $A \times B$.
- 20. What is the cardinality of $B \times A$?
- 21. True or False: For any two sets A and B, $A \times B = B \times A$.
- 22. Let $A = \{1, 2, 3\}$. A relation R is defined on A as $R = \{(x, y) \mid x \text{ divides } y\}$. List the ordered pairs belonging to R.
- 23. For the relation $R = \{(1,5), (2,6), (3,7)\}$, state the **Domain** and the **Range**.
- 24. How many distinct relations can be defined from a set A with |A| = 2 to a set B with |B| = 3?
- 25. Given $S = \{2, 4, 6, 8\}$, define a relation R on S by xRy if $x + y \le 10$. List the ordered pairs in R.

III. Functions (20 Questions)

Part A: Function Definitions and Types

- 26. **Define** a function from set A to set B.
- 27. **Define** a **bijective** function.
- 28. Which of the following sets of ordered pairs represents a function from $\{1, 2, 3\}$ to $\{a, b, c\}$? (Select all that apply)
 - (a) $\{(1,a),(2,b),(1,c)\}$
 - (b) $\{(1,a),(2,b),(3,a)\}$
 - (c) $\{(1,a),(2,a)\}$
- 29. Consider the function $f: \mathbb{N} \to \mathbb{N}$ defined by f(x) = x+1. Is this function **one-to-one** (injective)? Justify your answer briefly.

- 30. Consider the function $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = x^2$. Is this function **onto** (surjective)? Justify your answer briefly.
- 31. Give an example of a function $f: \{1,2\} \to \{a,b,c\}$ that is **not surjective**.
- 32. Give an example of a function $g:\{1,2,3\} \to \{a,b\}$ that is **not injective**.
- 33. Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by f(x) = 2x. Is f a **bijection**? Why or why not?

Part B: Inverse and Composition

For questions 34-36, let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 4x - 5.

- 34. Find the **inverse function**, $f^{-1}(x)$.
- 35. Compute $f(f^{-1}(7))$.
- 36. Compute $f^{-1}(-1)$.

For questions 37-40, let f(x) = x + 2 and g(x) = 3x.

- 37. Find the **composition** $(f \circ g)(x)$.
- 38. Find the **composition** $(g \circ f)(x)$.
- 39. Compute $(f \circ g)(1)$.
- 40. Is $f \circ g = g \circ f$? (True/False)

For questions 41-43, consider $h(x) = \frac{1}{x+1}$ and $k(x) = x^2$.

- 41. Find the domain of the function h(x).
- 42. Compute $(h \circ k)(x)$.
- 43. Compute $(k \circ h)(0)$.

Part C: Simple Proofs

- 44. **Proof Skill:** Show that the function $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 5x + 2 is **injective** (one-to-one).
- 45. **Proof Skill:** Show that the function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3$ is **surjective** (onto).

— End of Assignment (Total: 45 Questions) —