Statistik Fragenkatalog - Ausarbeitung

January 22, 2018

Contents

L	\mathbf{Des}	kriptive Statistik	4
	1.1	Berechne für eine gegebene Stichprobe zu den Klassengrenzen alle relativen Häufigkeiten und zeichne ein skaliertes Histogramm mit relativen Häufigkeiten, wobei der Flächeninhalt der Balken	4
	1.2	den Häufigkeiten entsprechen soll	4
	1.3	den Modus	4
	T.7		
2	2.1	relation und Regression Berechne aus einer zweidimensionalen Stichprobe den Korrelationsko zienten und die Regressionsgerade (a,b) . Zeichne den Scatterplot	5 effi-
	2.2	und dort die Regressionsgerade ein	5
	2.3	linearen Regressionsmodell?	5
		$C_{k,l} = \sum_{i=1}^{n} f_k(x_i) f_l(x_i), \ b_k = \sum_{i=1}^{n} y_i f_k(x_i). \dots \dots \dots$	5
3	Ere : 3.1	ignis- und Wahrscheinlichkeitsraum Zeige, dass $(\Omega, \Sigma) = (1, 2, 3, 4, \emptyset, 1, 2, 3, 4, 1, 2, 3, 4)$ ein	6
	3.2	Ereignisraum ist	6
	3.3	dass (Ω, Σ, P) ein Wahrscheinlichkeitsraum ist	6 6
1	Kor	nbinatorik (Blatt 04)	7
	4.1		7
	4.2 4.3		7 7
5	Bed 5.1	lingte Wahrscheinlichkeit Beispiel zu totaler Wahrscheinlichkeit und Entscheidungsbaum	8
		(ähnlich zu Glühlampenkartons aus PS)	8
	5.2	Beispiel zu Bayes (Blatt 05)	8
	5.3	Formuliere und beweise den Satz von Bayes für Bedingung/Gegenbed $B, \bar{B}.$	lingun 8
3	Zufa	allsvariablen	9
	6.1	Erwartungswert und Varianz einer konkreten (neuen aber ein-	
	6.2	fachen) diskreten oder stetigen Verteilung ausrechnen Definiere die Binomial-/geometrische Verteilung und leite Er-	9
	6.2	wartungswert und Varianz her	9
	6.3	LI WALLUNGSWELL HELIELLEN TULL FOISSONVERTEILUNG $I_X(K) = \frac{1}{12}e^{-K}$.	9

	6.4	Erwartungswert herleiten für Normalverteilung. Hinweis: zuerst			
		Dichtefunktion differenzieren.	9		
	6.5	Definiere die Exponentialverteilung. Leite Verteilungsfunktion			
	0.0	und Erwartungswert her	9		
	6.6	Beispiel zur Poissonapproximation	9		
	6.7	Beispiel zur Normalapproximation	9		
	6.8	Definiere die Student- t/χ^2 /F-Verteilung. Welche Parameter besitzt die Verteilung? Wo wird diese Verteilung verwendet?	9		
	6.9	Beispiel ähnlich zu: Widerstände aus verschiedenen Schachteln	9		
		Definiere die Kovarianz zweier Zufallsvariablen. Für X und Y	Э		
	0.10	unabhängig mit der gleichen Verteilung, zeige: $V(X + Y) = 2$			
		V(X), aber $V(2X) = 4 V(X)$	9		
	6.11	X und Y unabhängig mit selber spezieller einfacher Dichtefunk-	J		
	J.11	tion. Berechne f_{X+Y}	9		
		V -			
7		traler Grenzwertsatz	10		
	7.1		10		
	7.2		10		
	7.3		10		
8	Schätzer				
	8.1		11 11		
	8.2		11		
	8.3		11		
9		fidenzintervalle	12		
	9.1		12		
	9.2		12		
	9.3		12		
10	Test	S	13		
		~	13		
	10.2		13		
	10.3		13		
11	\mathbf{Sim}	ulation	14		
			14		
			14		
	11.3		14		

1 Deskriptive Statistik

- 1.1 Berechne für eine gegebene Stichprobe zu den Klassengrenzen ... alle relativen Häufigkeiten und zeichne ein skaliertes Histogramm mit relativen Häufigkeiten, wobei der Flächeninhalt der Balken den Häufigkeiten entsprechen soll.
- 1.2 Gegeben ist eine Häufigkeitstabelle. Berechne das arithmetische Mittel, die Standardabweichung, den Median, das n. Quartil und den Modus.
- 1.3 Wie hängt das empirische Quantil mit der empirischen Verteilungsfunktion zusammen?

2 Korrelation und Regression

- 2.1 Berechne aus einer zweidimensionalen Stichprobe den Korrelationskoeffi- zienten und die Regressionsgerade (a,b). Zeichne den Scatterplot und dort die Regressionsgerade ein.
- 2.2 Was ist der Unterschied zwischen linearer Regression und einem linearen Regressionsmodell?
- 2.3 Zeige: Die Lösung einer linearen Regression ergibt sich aus der Lösung des li- nearen Gleichungssystems Ca=b, wobei a der Vektor der m Parameter $a_1,a_2,...$ ist, C eine mm Matrix und b ein m-Vektor ist mit

$$C_{k,l} = \sum_{i=1}^{n} f_k(x_i) f_l(x_i), \ b_k = \sum_{i=1}^{n} y_i f_k(x_i).$$

3 Ereignis- und Wahrscheinlichkeitsraum

- 3.1 Zeige, dass $(\Omega, \Sigma) = (1, 2, 3, 4, \emptyset, 1, 2, 3, 4, 1, 2, 3, 4)$ ein Ereignisraum ist.
- 3.2 Für (Ω, Σ) wie in 3.1 und P (1, 2) = 0.3, vervollständige P, so dass (Ω, Σ, P) ein Wahrscheinlichkeitsraum ist.
- 3.3 Beweise den Additionssatz.

- 4 Kombinatorik (Blatt 04)
- 4.1
- 4.2
- 4.3

5 Bedingte Wahrscheinlichkeit

- 5.1 Beispiel zu totaler Wahrscheinlichkeit und Entscheidungsbaum (ähnlich zu Glühlampenkartons aus PS).
- 5.2 Beispiel zu Bayes (Blatt 05).
- 5.3 Formuliere und beweise den Satz von Bayes für Bedingung/Gegenbedingung B, \bar{B} .

6 Zufallsvariablen

- 6.1 Erwartungswert und Varianz einer konkreten (neuen aber einfachen) diskreten oder stetigen Verteilung ausrechnen.
- 6.2 Definiere die Binomial-/geometrische Verteilung und leite Erwartungswert und Varianz her.
- 6.3 Erwartungswert herleiten für Poissonverteilung $f_X(k) = \frac{\lambda^k}{k!} e^{-\lambda}$.
- 6.4 Erwartungswert herleiten für Normalverteilung. Hinweis: zuerst Dichtefunktion differenzieren.
- 6.5 Definiere die Exponentialverteilung. Leite Verteilungsfunktion und Erwartungswert her.
- 6.6 Beispiel zur Poissonapproximation.
- 6.7 Beispiel zur Normalapproximation.
- 6.8 Definiere die Student- t/χ^2 /F-Verteilung. Welche Parameter besitzt die Ver- teilung? Wo wird diese Verteilung verwendet?
- 6.9 Beispiel ähnlich zu: Widerstände aus verschiedenen Schachteln ...
- 6.10 Definiere die Kovarianz zweier Zufallsvariablen. Für X und Y unabhängig mit der gleichen Verteilung, zeige: V(X+Y) = 2 V(X), aber V(2X) = 4 V(X).
- 6.11 X und Y unabhängig mit selber spezieller einfacher Dichtefunktion. Berechne f_{X+Y} .

7 Zentraler Grenzwertsatz

- 7.1
- 7.2
- 7.3

- 8 Schätzer
- 8.1
- 8.2
- 8.3

9 Konfidenzintervalle

- 9.1
- 9.2
- 9.3

10 Tests

10.1

10.2

10.3

11 Simulation

- 11.1
- 11.2
- 11.3