## Write clear logic and implement the following codes as per the instructions given

1) Write VHDL code for 3-bit adder/subtractor in structural modelling style. The adder/subtractor operation is controlled by signal 'm'.



Figure: Representation of Adder-Subtrator circuit

| m | Operation                 |  |  |
|---|---------------------------|--|--|
| 0 | a+b                       |  |  |
| 1 | a-b (2's complement form) |  |  |

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL; -- define the entity with ports
entity adsub_3bit is
port (a : in STD_LOGIC_VECTOR (2 downto 0);
b : in STD_LOGIC_VECTOR (2 downto 0);
m : in STD_LOGIC;
sum :out STD_LOGIC_VECTOR (2 downto 0);
cout : out STD_LOGIC_VECTOR (2 downto 0);
end adsub_3bit;
-----DEFINE THE ARCHITECTURE FOR ADDER_SUBTRACTOR
architecture rtl of adsub 3bit is
```

```
--DEFINE THE COMPONENT FULL ADDER USED----
/**** Write code here ****/
--DEFINE THE INTERMEDIATE SIGNALS IF REQUIRED----
/**** Write code here ****/
----DEFINE THE FUNCTIONALITY WITH STRUCTURAL MODELING
/**** Write code here ****/
end rtl;
--VHDL CODE FOR 1 bit full adder in dataflow must be written
in same VHDL file----
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
--Define input and output ports-
entity fulladder is
port(i1, i2, i3: in bit;
     o1, o2 : out bit);
end fulladder;
--Defining the architecture of full adder in dataflow modelling
style--
architecture b fa of fulladder is
Begin
o1 <= i1 xor i2 xor i3;
o2 \le (i1 \text{ and } i2) \text{ or } ((i1 \text{ xor } i2) \text{ and } i3);
end b fa;
```

2) Write VHDL code for ALU which performs following operation depending on selection lines



Figure: Representation of ALU based on 2-bit selector line

| ALU selector line 1 | ALU selector line 2 | Operation selected |
|---------------------|---------------------|--------------------|
| 0                   | 0                   | A + B              |
| 0                   | 1                   | А - В              |
| 1                   | 0                   | A bitwise and B    |
| 1                   | 1                   | A bitwise xor B    |

## ---3 -bit ALU using behavioral modeling ---

3) Write VHDL code for 4:2 priority encodes with active high enable pin



Figure: Representation of Priority encoder

| enable | in_0 | in_1 | in_2 | in_3 | out_0 | out_1 |
|--------|------|------|------|------|-------|-------|
| 0      | X    | X    | X    | X    | 0     | 0     |
| 1      | 1    | X    | X    | X    | 0     | 0     |
| 1      | 0    | 1    | X    | X    | 0     | 1     |
| 1      | 0    | 0    | 1    | Х    | 1     | 0     |
| 1      | 0    | 0    | 0    | 1    | 1     | 1     |

architecture behavioral of pri\_encoder is
/\*\*\*\* Write code here \*\*\*\*/
end behavioral;