Plot Fulfillment is in NP: Given an instance of the problem, and a proposed s-t path P, we can check that P is a valid path in the graph, and that it meets each set T_i .

Plot Fulfillment also looks like a covering problem; in fact, it looks a lot like the Hitting Set problem from the previous question: we need to "hit" each set T_i . However, we have the extra feature that the set with which we "hit" things is a path in a graph; and at the same time, there is no explicit constraint on its size. So we use the path structure to impose such a constraint.

Thus, we will show that Hitting Set \leq_P Plot Fulfillment. Specifically, let us consider an instance of Hitting Set, with a set $A = \{a_1, \ldots, a_n\}$, subsets S_1, \ldots, S_m , and a bound k. We construct the following instance of Plot Fulfillment. The graph G will have nodes s, t, and

$$\{v_{ij}: 1 \le i \le k, \ 1 \le j \le n\}.$$

There is an edge from s to each v_{1j} $(1 \le j \le n)$, from each v_{kj} to t $(1 \le j \le n)$, and from v_{ij} to $v_{i+1,\ell}$ for each $1 \le i \le k-1$ and $1 \le j, \ell \le n$. In other words, we have a layered graph, where all nodes v_{ij} $(1 \le j \le n)$ belong to "layer i", and edges go between consecutive layers. Intuitively the nodes v_{ij} , for fixed j and $1 \le i \le k$ all represent the element $a_j \in A$.

We now need to define the sets T_{ℓ} in the *Plot Fulfillment* instance. Guided by the intuition that v_{ij} corresponds to a_j , we define

$$T_{\ell} = \{v_{ij} : a_j \in S_{\ell}, \ 1 \le i \le k\}.$$

Now, we claim that there is a valid solution to this instance of *Plot Fulfillment* if and only if our original instance of *Hitting Set* had a solution. First, suppose there is a valid solution to the *Plot Fulfillment* instance, given by a path P, and let

$$H = \{a_j : v_{ij} \in P \text{ for some } i\}.$$

Notice that H has at most k elements. Also for each ℓ , there is some $v_{ij} \in P$ that belongs to T_{ℓ} , and the corresponding a_i belongs to S_{ℓ} ; thus, H is a hitting set.

Conversely, suppose there is a hitting set $II = \{a_{j_1}, a_{j_2}, \ldots, a_{j_k}\}$. Define the path $P = \{s, v_{1,j_1}, v_{2,j_2}, \ldots, v_{k,j_k}, t\}$. Then for each ℓ , some a_{j_q} lies in S_{ℓ} , and the corresponding node v_{q,j_q} meets the set T_{ℓ} . Thus P is a valid solution to the *Plot Fulfillment* instance.

 $^{^{1}}$ ex425.710.356