Package 'breakaway'

August 1, 2019

Title Species Richness Estimation and Modeling

Version 4.6.10
Date 2018-08-01
Description Understanding the drivers of microbial diversity is an important frontier of microbial ecology, and investigating the diversity of samples from microbial ecosystems is a common step in any microbiome analysis. `breakaway` is the premier package for statistical analysis of microbial diversity. `breakaway` implements the latest and greatest estimates of species richness, as well as the most commonly used estimates.
License GPL-2
<pre>BugReports https://github.com/adw96/breakaway/issues</pre>
LazyData true
RoxygenNote 6.1.1
Depends R (>= $3.5.0$)
Imports MASS, stats, utils, phyloseq, graphics, magrittr, ggplot2, reshape2, R.rsp, testthat, tibble, dplyr
Suggests covr, DT, knitr, RCurl, rmarkdown, plyr
VignetteBuilder knitr
<pre>URL https://adw96.github.io/breakaway/</pre>
NeedsCompilation no
Author Amy Willis [aut, cre], Bryan D Martin [aut], Pauline Trinh [aut], Kathryn Barger [aut], John Bunge [aut]
Maintainer Amy Willis <adwillis@uw.edu></adwillis@uw.edu>
R topics documented:
alpha_estimate alpha_estimates apples betta betta_pic betta_random

36

Index

breakaway	9
breakaway_nof1	10
build_frequency_count_tables	12
chao1	12
chao1_bc	13
chao_bunge	14
chao_shen	14
check_format	15
convert	15
cutoff_wrap	16
good_turing	16
hawaii	17
kemp	17
make_design_matrix	19
make_frequency_count_table	19
objective_bayes_geometric	19
objective_bayes_mixedgeo	20
objective_bayes_negbin	21
objective_bayes_poisson	22
physeq_wrap	22
plot.alpha_estimates	23
poisson_model 2	24
proportions_instead	24
rnbinomtable	24
rztnbinomtable	25
sample_inverse_simpson	25
sample_richness	26
sample_shannon	26
sample_shannon_e	27
sample_simpson	27
sample_size_estimate	28
sample_size_figure	28
toy_metadata	29
	29
toy_taxonomy	30
true_gini	30
true_hill	31
true_inverse_simpson	31
true_shannon	32
true_shannon_e	32
true_simpson	33
wlrm_transformed	33
wlrm_untransformed	34

alpha_estimate 3

Description

Build objects of class alpha_estimate from their components. $alpha_estimate()$ is a constructor method

Usage

```
alpha_estimate(estimate = NULL, error = NULL, estimand = NULL,
  name = NULL, interval = NULL, interval_type = NULL, type = NULL,
  model = NULL, warnings = NULL, frequentist = NULL,
  parametric = NULL, plot = NULL, reasonable = NULL, other = NULL,
  ...)
```

Arguments

estimate	The estimate
error	The standard error in the estimate
estimand	What is the estimate trying to estimate? (richness, Shannon)
name	The name of the method
interval	An interval estimate
interval_type	Type of interval estimate
type	TODO(Amy): Deprecate?
model	What model is fit
warnings	Any warnings?
frequentist	Logical. Frequentist or Bayesian?
parametric	Logical. Parametric or not?
plot	A ggplot associated with the estimate
reasonable	Is the estimate likely to be reasonable?
other	Any other relevant objects

Value

An object of class alpha_estimate

Any other objects

4 apples

alpha_estimates

alpha_estimates

Description

Build objects of class alpha_estimates from their components. alpha_estimates() is a constructor method

Usage

```
alpha_estimates(...)
```

Arguments

... Objects of class alpha_estimate, or a list of objects of class alpha_estimate

Value

An object of class alpha_estimates

apples

(Data) Frequency count table of soil microbes in an apples orchard.

Description

(Data) Frequency count table of soil microbes in an apples orchard.

Usage

apples

Format

A data frame with 88 rows and 2 variables:

index an index variable

frequency number of taxa that were observed with this frequency ...

Source

```
http://onlinelibrary.wiley.com/doi/10.1111/biom.12332/abstract
```

References

Willis, A. and Bunge, J. (2015). Estimating diversity via frequency ratios. *Biometrics*, **71**(4), 1042–1049. http://onlinelibrary.wiley.com/doi/10.1111/biom.12332/abstract

Walsh, F. et al. (2014). (2014). Restricted streptomycin use in apple orchards did not adversely alter the soil bacteria communities. *Frontiers in Microbiology* **4**, 383.

betta 5

betta	Modelling total diversity with betta	
betta	Modelling total diversity with betta	

Description

This function tests for heterogeneity of total diversity (observed plus unobserved) across multiple sites. It can account or test for fixed effects that may explain diversity. It returns the significance of the covariates in explaining diversity and a hypothesis test for heterogeneity.

Usage

```
betta(chats, ses, X = NA)
```

Arguments

chats	A vector of estimates of total diversity at different sampling locations. 'breakaway' estimates are suggested in the high-diversity case but not enforced.
ses	The standard errors in 'chats', the diversity estimates.
Χ	A numeric matrix of covariates. If not supplied, an intercept-only model will be fit.

Value

lue	
table	A coefficient table for the model parameters. The columns give the parameter estimates, standard errors, and p-values, respectively. This model is only as effective as your diversity estimation procedure; for this reason please confirm that your estimates are appropriate and that your model is not misspecified. betta_pic may be useful for this purpose.
cov	Estimated covariance matrix of the parameter estimates.
ssq_u	The estimate of the heterogeneity variance.
homogeneity	The test statistic and p-value for the test of homogeneity.
global	The test statistic and p-value for the test of model explanatory power.
blups	The conditional expected values of the diversity estimates (conditional on the random effects). The authors propose that if the practitioner believes that information from one diversity estimator may inform the others, then using the 'condfits' as estimators of total diversity rather than 'Chats' may reduce variance of diversity estimates by "sharing strength" across the samples.
blupses	The estimated standard deviation (standard errors) in the blups.

Note

Ecologists who are interested in the way species richness varies with covariate information often run a regression-type analysis on the observed diversity using their covariate information as predictors. However, in many settings (especially microbial), rare and unobserved taxa play a hugely important role in explaining the subtleties of the ecosystem, however, a regression analysis on the observed diversity level fails to account for these unobserved taxa. By predicting the total level of diversity (for example, via breakaway) and estimating the standard error in the estimate, one can take account of these unobserved, but important, taxa. In order to account for the estimated nature of the

6 betta

response, a mixed model approach is taken, whereby the varying levels of confidence in the estimates contributes to a diagonal but heteroscedastic covariance matrix. Given covariates constitute the fixed effects in the mixed model, and significance of the random effect term "sigsq_u" reflects heterogeneity in the sample, that is, variability that cannot be explained by only the covariates. The authors believe this to be the first attempt at modelling total diversity in a way that accounts for its estimated nature.

Author(s)

Amy Willis

References

Willis, A., Bunge, J., and Whitman, T. (2015). Inference for changes in biodiversity. *arXiv* preprint. Willis, A. and Bunge, J. (2015). Estimating diversity via frequency ratios. *Biometrics*.

See Also

```
breakaway; breakaway_nof1; apples
```

```
betta(c(2000, 3000, 4000, 3000), c(100, 200, 150, 180), cbind(1, c(100, 150, 100, 50)))
## handles missing data
betta(c(2000, 3000, 4000, 3000), c(100, 200, 150, NA))
## A test for heterogeneity of apples diversity estimates vs butterfly estimates
betta(c(1552, 1500, 884), c(305, 675, 205), cbind(1, c(0, 0, 1)))
```

betta_pic 7

betta_pic

function for plotting total diversity

Description

A simple plotting interface for comparing total diversity across samples or a covariate gradient.

Usage

```
betta_pic(y, se, x = 1:length(y), ylimu = NULL, myy = NULL,
mymain = NULL, mycol = NULL, labs = NULL, mypch = NULL,
myxlim = NULL)
```

Arguments

У	A vector of estimates of total diversity. Other parameter estimates are accessible; this method may be used for plotting any parameter estimates
se	The standard errors in 'y', the diversity (or other parameter's) estimates.
X	A vector of covariates to form the x-coordinates of the intervals. If no argument is given, defaults to the order.
ylimu	The upper endpoint of the y-axis.
myy	Deprecated, for backwards compatibility
mymain	Deprecated, for backwards compatibility
mycol	Deprecated, for backwards compatibility
labs	Deprecated, for backwards compatibility
mypch	Deprecated, for backwards compatibility
myxlim	Deprecated, for backwards compatibility

Author(s)

Amy Willis

8 betta_random

References

Willis, A., Bunge, J., and Whitman, T. (2015). Inference for changes in biodiversity. arXiv preprint.

See Also

betta

Examples

```
betta_pic(c(1552, 1500, 884), c(305, 675, 205), mymain = "Example title")
```

betta_random

modelling total diversity with random effects

Description

This function extends betta() to permit random effects modelling.

Usage

```
betta_random(chats, ses, X = NA, groups)
```

Arguments

chats	A vector of estimates of total diversity at different sampling locations.
ses	The standard errors in 'chats', the diversity estimates.
X	A numeric matrix of covariates corresponding to fixed effects. If not supplied, an intercept-only model will be fit.
groups	A categorical variable representing the random-effects groups that each of the estimates belong to.

Value

table	A coefficient table for the model parameters. The columns give the parameter estimates, standard errors, and p-values, respectively. This model is only as effective as your diversity estimation procedure; for this reason please confirm that your estimates are appropriate and that your model is not misspecified. betta_pic may be useful for this purpose.
cov	Estimated covariance matrix of the parameter estimates.
ssq_u	The estimate of the heterogeneity variance.
ssq_g	Estimates of within-group variance. The estimate will be zero for groups with only one observation.
homogeneity	The test statistic and p-value for the test of homogeneity.
global	The test statistic and p-value for the test of model explanatory power.
blups	The conditional expected values of the diversity estimates (conditional on the random effects). Estimates of variability for the random effects case are unavailable at this time; please contact the maintainer if needed.

breakaway 9

Author(s)

Amy Willis

References

Willis, A., Bunge, J., and Whitman, T. (2015). Inference for changes in biodiversity. arXiv preprint.

See Also

betta;

Examples

breakaway

Species richness estimation with breakaway

Description

breakaway is a wrapper for modern species richness estimation for modern datasets

Usage

```
breakaway(input_data, cutoff = NA, output = NULL, plot = NULL,
answers = NULL, print = NULL, ...)
```

Arguments

input_data	An input type that can be processed by convert()
cutoff	The maximum frequency count to use for model fitting
output	Deprecated; only for backwards compatibility
plot	Deprecated; only for backwards compatibility
answers	Deprecated; only for backwards compatibility
print	Deprecated; only for backwards compatibility
	Additional arguments will be ignored; this is for backward compatibility

Value

An object of class alpha_estimate

10 breakaway_nof1

Note

'breakaway' presents an estimator of species richness that is well-suited to the high-diversity/microbial setting. However, many microbial datasets display more diversity than the Kemp-type models can permit. In this case, the log-transformed WLRM diversity estimator of Rocchetti et. al. (2011) is returned. The authors' experience suggests that some datasets that require the log-transformed WLRM contain "false" diversity, that is, diversity attributable to sequencing errors (via an inflated singleton count). The authors encourage judicious use of diversity estimators when the dataset may contain these errors, and recommend the use of breakaway_nof1 as an exploratory tool in this case.

Author(s)

Amy Willis

References

Willis, A. and Bunge, J. (2015). Estimating diversity via frequency ratios. *Biometrics*, **71**(4), 1042–1049.

See Also

```
breakaway_nof1; kemp; apples
```

Examples

```
breakaway(apples)
breakaway(apples, plot = FALSE, output = FALSE, answers = TRUE)
```

breakaway_nof1

species richness estimation without singletons

Description

This function permits estimation of total diversity based on a sample frequency count table. Unlike breakaway, it does not require an input for the number of species observed once, making it an excellent exploratory tool for microbial ecologists who believe that their sample may contain spurious singletons. The underlying estimation procedure is similar to that of breakaway and is outlined in Willis & Bunge (2014). The diversity estimate, standard error, estimated model coefficients and plot of the fitted model are returned.

Usage

```
breakaway_nof1(input_data, output = NULL, plot = NULL,
   answers = NULL, print = NULL)
```

Arguments

input_data	An input type that can be processed by convert()
output	Deprecated; only for backwards compatibility
plot	Deprecated; only for backwards compatibility
answers	Deprecated; only for backwards compatibility
print	Deprecated; only for backwards compatibility

breakaway_nof1 11

Value

An object of class alpha_estimate

code A category representing algorithm behaviour. 'code=1' indicates no nonlinear

models converged and the transformed WLRM diversity estimate of Rocchetti et. al. (2011) is returned. 'code=2' indicates that the iteratively reweighted model converged and was returned. 'code=3' indicates that iterative reweighting did not converge but a model based on a simplified variance structure was returned (in this case, the variance of the frequency ratios is assumed to be proportional to the denominator frequency index). Please peruse your fitted model

before using your diversity estimate.

name The "name" of the selected model. The first integer represents the numerator

polynomial degree and the second integer represents the denominator polyno-

mial degree. See Willis & Bunge (2014) for details.

para Estimated model parameters and standard errors.

est The estimate of total (observed plus unobserved) diversity.

seest The standard error in the diversity estimate.

full The chosen nonlinear model for frequency ratios.

Note

It is common for microbial ecologists to believe that their dataset contains false diversity. This often arises because sequencing errors result in classifying already observed organisms as new organisms. 'breakaway_nof1' was developed as an exploratory tool in this case. Practitioners can run 'breakaway' on their dataset including the singletons, and 'breakaway_nof1' on their dataset excluding the singletons, and assess if the estimated levels of diversity are very different. Great disparity may provide evidence of an inflated singleton count, or at the very least, that 'breakaway' is especially sensitive to the number of rare species observed. Note that 'breakaway_nof1' may be less stable than 'breakaway' due to predicting based on a reduced dataset, and have greater standard errors.

Author(s)

Amy Willis

References

Willis, A. (2015). Species richness estimation with high diversity but spurious singletons. *arXiv*. Willis, A. and Bunge, J. (2015). Estimating diversity via frequency ratios. *Biometrics*.

See Also

```
breakaway; apples
```

```
breakaway_nof1(apples[-1, ])
breakaway_nof1(apples[-1, ], plot = FALSE, output = FALSE, answers = TRUE)
```

12 chao1

```
build_frequency_count_tables
```

Build frequency count tables from an OTU table

Description

Build frequency count tables from an OTU table

Usage

```
build_frequency_count_tables(the_table)
```

Arguments

the_table An OTU table as a data frame or a matrix. Columns are the samples and rows

give the taxa.

Value

A list of frequency count tables corresponding to the columns.

chao1

Chao1 species richness estimator

Description

This function implements the Chao1 richness estimate, which is often mistakenly referred to as an index.

Usage

```
chao1(input_data, output = NULL, answers = NULL)
```

Arguments

output Deprecated; only for backwards compatibility answers Deprecated; only for backwards compatibility

Value

An object of class alpha_estimate, or alpha_estimates for phyloseq objects

Note

The authors of this package strongly discourage the use of this estimator. It is only valid when you wish to assume that every taxa has equal probability of being observed. You don't really think that's possible, do you?

chao1_bc

Author(s)

Amy Willis

Examples

chao1(apples)

chao1_bc

Bias-corrected Chaol species richness estimator

Description

This function implements the bias-corrected Chao1 richness estimate.

Usage

```
chao1_bc(input_data, output = NULL, answers = NULL)
```

Arguments

input_data An input type that can be processed by convert() or a phyloseq object

output Deprecated; only for backwards compatibility answers Deprecated; only for backwards compatibility

Value

An object of class alpha_estimate, or alpha_estimates for phyloseq objects

Note

The authors of this package strongly discourage the use of this estimator. It is only valid when you wish to assume that every taxa has equal probability of being observed. You don't really think that's possible, do you?

Author(s)

Amy Willis

```
chao1_bc(apples)
```

14 chao_shen

chao_bunge

Chao-Bunge species richness estimator

Description

This function implements the species richness estimation procedure outlined in Chao & Bunge (2002).

Usage

```
chao_bunge(input_data, cutoff = 10, output = NULL, answers = NULL)
```

Arguments

input_data An input type that can be processed by convert() or a phyloseq object

cutoff The maximum frequency to use in fitting.
output Deprecated; only for backwards compatibility
answers Deprecated; only for backwards compatibility

Value

An object of class alpha_estimate, or alpha_estimates for phyloseq objects

Author(s)

Amy Willis

Examples

chao_bunge(apples)

chao_shen

The Chao-Shen estimate of Shannon diversity

Description

The Chao-Shen estimate of Shannon diversity

Usage

```
chao_shen(input_data)
```

Arguments

input_data An input type that can be processed by convert()

Value

An object of class alpha_estimate

check_format 15

check_format

Run some basic checks on a possible frequency count table

Description

Run some basic checks on a possible frequency count table

Usage

```
check_format(output_data)
```

Arguments

output_data A matrix to test

Value

A checked frequency count table

convert

convert between different inputs for alpha-diversity estimates

Description

Inputs slated for development include phyloseq and otu_table

Usage

```
convert(input_data)
```

Arguments

input_data

Supported types include filenames, data frames, matrices, vectors...

Value

Frequency count able

16 good_turing

cutoff_wrap

Find a cut-off for estimates relying on contiguous counts

Description

Find a cut-off for estimates relying on contiguous counts

Usage

```
cutoff_wrap(my_data, requested = NA)
```

Arguments

my_data

Frequency count table

requested

The user-requested cutoff

Value

Cutoff value

good_turing

The Good-Turing estimate of species richness

Description

The Good-Turing estimate of species richness

Usage

```
good_turing(input_data)
```

Arguments

input_data

An input type that can be processed by convert() or a phyloseq object

Value

An object of class alpha_estimate, or alpha_estimates for phyloseq objects

hawaii 17

hawaii	(Data) Frequency count table of soil microbes in Hawaii.

Description

(Data) Frequency count table of soil microbes in Hawaii.

Usage

hawaii

Format

A data frame with 198 rows and 2 variables:

index an index variable

frequency number of taxa that were observed with this frequency ...

Source

```
http://onlinelibrary.wiley.com/doi/10.1111/biom.12332/abstract
```

References

Willis, A. and Bunge, J. (2015). Estimating diversity via frequency ratios. *Biometrics*, **71**(4), 1042–1049. http://onlinelibrary.wiley.com/doi/10.1111/biom.12332/abstract

kemp

Species richness estimation with Kemp-type models

Description

This function implements the species richness estimation procedure outlined in Willis & Bunge (2015). The diversity estimate, standard error, estimated model coefficients, model details and plot of the fitted model are returned.

Usage

```
kemp(input_data, cutoff = NA, output = NULL, plot = NULL,
answers = NULL, print = NULL, ...)
```

Arguments

cutoff The maximum frequency count to use for model fitting output Deprecated; only for backwards compatibility plot Deprecated; only for backwards compatibility answers Deprecated; only for backwards compatibility print Deprecated; only for backwards compatibility Additional arguments will be ignored; this is for backward compatibility	input_data	An input type that can be processed by convert()
plot Deprecated; only for backwards compatibility answers Deprecated; only for backwards compatibility print Deprecated; only for backwards compatibility	cutoff	The maximum frequency count to use for model fitting
answers Deprecated; only for backwards compatibility print Deprecated; only for backwards compatibility	output	Deprecated; only for backwards compatibility
print Deprecated; only for backwards compatibility	plot	Deprecated; only for backwards compatibility
	answers	Deprecated; only for backwards compatibility
Additional arguments will be ignored; this is for backward compatibility	print	Deprecated; only for backwards compatibility
		Additional arguments will be ignored; this is for backward compatibility

18 kemp

Value

An object of class alpha_estimate

code A category representing algorithm behaviour. 'code=1' indicates no nonlinear

models converged and the transformed WLRM diversity estimate of Rocchetti et. al. (2011) is returned. 'code=2' indicates that the iteratively reweighted model converged and was returned. 'code=3' indicates that iterative reweighting did not converge but a model based on a simplified variance structure was returned (in this case, the variance of the frequency ratios is assumed to be proportional to the denominator frequency index). Please peruse your fitted model

before using your diversity estimate.

name The "name" of the selected model. The first integer represents the numerator

polynomial degree and the second integer represents the denominator polynomial degree of the model for the frequency ratios. See Willis & Bunge (2015)

for details.

para Estimated model parameters and standard errors.

est The estimate of total (observed plus unobserved) diversity.

seest The standard error in the diversity estimate.

full The chosen nonlinear model for frequency ratios.

ci An asymmetric 95% confidence interval for diversity.

Author(s)

Amy Willis

References

Willis, A. and Bunge, J. (2015). Estimating diversity via frequency ratios. *Biometrics*, **71**(4), 1042–1049.

Rocchetti, I., Bunge, J. and Bohning, D. (2011). Population size estimation based upon ratios of recapture probabilities. *Annals of Applied Statistics*, **5**.

See Also

```
breakaway; breakaway_nof1; apples
```

```
kemp(apples)
kemp(apples, plot = FALSE, output = FALSE, answers = TRUE)
```

make_design_matrix 19

make_design_matrix

Make design matrix

Description

Make design matrix

Usage

```
make_design_matrix(phyloseq_object, variables)
```

Arguments

phyloseq_object

A phyloseq object

variables

variable names

```
make_frequency_count_table
```

Draw frequency count subtables from an OTU table

Description

Draw frequency count subtables from an OTU table

Usage

```
make_frequency_count_table(labels)
```

Arguments

labels

A vector of counts of the taxa; i.e. a vector giving the number of times each taxon was observed.

```
objective_bayes_geometric
```

Estimate species richness with an objective Bayes method using a geometric model

Description

Estimate species richness with an objective Bayes method using a geometric model

Usage

```
objective_bayes_geometric(data, output = TRUE, plot = TRUE,
   answers = FALSE, tau = 10, burn.in = 100, iterations = 2500,
   Metropolis.stdev.N = 75, Metropolis.start.theta = 1,
   Metropolis.stdev.theta = 0.3)
```

Arguments

data TODO(Kathryn)(Kathryn) output TODO(Kathryn)(Kathryn) plot TODO(Kathryn)(Kathryn) TODO(Kathryn)(Kathryn) answers tau TODO(Kathryn) burn.in TODO(Kathryn) iterations TODO(Kathryn) Metropolis.stdev.N TODO(Kathryn) Metropolis.start.theta TODO(Kathryn) Metropolis.stdev.theta TODO(Kathryn)

objective_bayes_mixedgeo

Objective Bayes species richness estimate with the mixed-geometric model

Description

Objective Bayes species richness estimate with the mixed-geometric model

Usage

```
objective_bayes_mixedgeo(data, output = TRUE, plot = TRUE,
  answers = FALSE, tau = 10, burn.in = 100, iterations = 2500,
  Metropolis.stdev.N = 100, Metropolis.start.T1 = 1,
  Metropolis.stdev.T1 = 2, Metropolis.start.T2 = 3,
  Metropolis.stdev.T2 = 2, bars = 3)
```

Arguments

data TODO(Kathryn) output TODO(Kathryn) TODO(Kathryn) plot TODO(Kathryn) answers tau TODO(Kathryn) TODO(Kathryn) burn.in TODO(Kathryn) iterations Metropolis.stdev.N TODO(Kathryn) Metropolis.start.T1 TODO(Kathryn)

```
Metropolis.stdev.T1
```

TODO(Kathryn)

Metropolis.start.T2

TODO(Kathryn)

Metropolis.stdev.T2

TODO(Kathryn)

TODO(Kathryn) bars

objective_bayes_negbin

Objective Bayes species richness estimate with the Negative Binomial

Description

Objective Bayes species richness estimate with the Negative Binomial model

Usage

```
objective_bayes_negbin(data, output = TRUE, plot = TRUE,
 answers = FALSE, tau = 10, burn.in = 1000, iterations = 5000,
 Metropolis.stdev.N = 100, Metropolis.start.T1 = -0.8,
 Metropolis.stdev.T1 = 0.01, Metropolis.start.T2 = 0.8,
 Metropolis.stdev.T2 = 0.01, bars = 5)
```

Arguments

data	TODO(Kathryn)	
output	TODO(Kathryn)	
plot	TODO(Kathryn)	
answers	TODO(Kathryn)	
tau	TODO(Kathryn)	
burn.in	TODO(Kathryn)	
iterations	TODO(Kathryn)	
Metropolis.stdev.N		
	TODO(Kathryn)	
Metropolis.star	t.T1	
	TODO(Kathryn)	
Metropolis.stdev.T1		
	TODO(Kathryn)	
Metropolis.star	rt.T2	
	TODO(Kathryn)	
Metropolis.stdev.T2		
	TODO(Kathryn)	
bars	TODO(Kathryn)	

physeq_wrap

```
objective_bayes_poisson
```

Objective Bayes species richness estimate with the Poisson model

Description

Objective Bayes species richness estimate with the Poisson model

Usage

```
objective_bayes_poisson(data, output = TRUE, plot = TRUE,
    answers = FALSE, tau = 10, burn.in = 100, iterations = 2500,
    Metropolis.stdev.N = 75, Metropolis.start.lambda = 1,
    Metropolis.stdev.lambda = 0.3, bars = 5)
```

Arguments

data	TODO(Kathryn)
output	TODO(Kathryn)
plot	TODO(Kathryn)
answers	TODO(Kathryn)
tau	TODO(Kathryn)
burn.in	TODO(Kathryn)
iterations	TODO(Kathryn)
Metropolis.stde	ev.N
	TODO(Kathryn)
Metropolis.star	t.lambda
	TODO(Kathryn)
Metropolis.stdev.lambda	
	TODO(Kathryn)
bars	TODO(Kathryn)

physeq_wrap

Wrapper for phyloseq objects

Description

Wrapper for phyloseq objects

Usage

```
physeq_wrap(fn, physeq, ...)
```

Arguments

fn alpha diversity estimator function with breakaway to be applied to physeq

physeq A phyloseq object, or an object of class otu_table

... Additional arguments for fn

plot.alpha_estimates 23

Value

Object of class alpha_estimates

Description

Plot function for alpha_estimates class

Usage

```
## S3 method for class 'alpha_estimates'
plot(x, physeq = NULL, measure = NULL,
    color = NULL, shape = NULL, title = NULL, trim_plot = FALSE, ...)
```

Arguments

X	Object of class alpha_estimates.
physeq	(Optional). Default NULL. Required object of class phyloseq if including a sample_data variable for color or shape.
measure	(Optional). If there are multiple richness measures included in x, this can be set to the desired measure to be plotted. Defaults to the measure of the first alpha diversity estimate.
color	(Optional). Default NULL. The sample variable to map to different colors. Can be a single character string of the variable name in sample_data or a custom supplied vector with length equal to the number of samples.
shape	(Optional). Default NULL. The sample variable to map to different shapes. Can be a single character string of the variable name in sample_data or a custom supplied vector with length equal to the number of samples.
title	(Optional). Default NULL. Character string. The main title for the graphic.
trim_plot	(Optional). Default FALSE. Boolean indicator for whether you want the plot to include the full confidence intervals.
	See details

Details

 \dots does not currently have any implemented options. Optional arguments currently include "trim_plot", a Optional

```
## Not run:
library(phyloseq)
data(GlobalPatterns)
alphas <- breakaway(GlobalPatterns)
plot(alphas)
## End(Not run)</pre>
```

24 rnbinomtable

Description

A model to estimate the number of missing taxa under a Poisson Model

Usage

```
poisson_model(input_data, cutoff = 10)
```

Arguments

input_data A frequency count table

cutoff The largest frequency to use for predicting f0. Defaults to 10.

Description

OTU table to relative abundances

Usage

```
proportions_instead(the_table)
```

Arguments

the_table An OTU table

 ${\it rnbinomtable} \qquad \qquad {\it Negative \ binomially \ distributed \ frequency \ count \ tables}.$

Description

Simulate a frequency count table based on a negative binomial model. Zero-truncated, obviously.

Usage

```
rnbinomtable(C, size, probability)
```

Arguments

C species richness

size size parameter for the negative binomial distribution probability parameter for the negative binomial distribution

Author(s)

Amy Willis

rztnbinomtable 25

rztnbinomtable

beta version: Zero-truncated negative binomially distributed frequency count tables.

Description

Simulate a frequency count table based on a negative binomial model. Zero-truncated, obviously.

Usage

```
rztnbinomtable(C, size, probability)
```

Arguments

C species richness

size size parameter for the negative binomial distribution

probability probability parameter for the negative binomial distribution

Author(s)

Amy Willis

```
sample_inverse_simpson
```

Plug-in Inverse Simpson diversity

Description

This function implements the plug-in Inverse Simpson diversity

Usage

```
sample_inverse_simpson(input_data)
```

Arguments

input_data

An input type that can be processed by convert() or a phyloseq object

Value

An object of class alpha_estimate, or alpha_estimates for phyloseq objects

```
sample_inverse_simpson(apples)
```

26 sample_shannon

sample_richness

Sample richness estimator

Description

This function implements the sample richness estimate, which is the number of non-zero taxa per sample.

Usage

```
sample_richness(input_data)
```

Arguments

input_data

An input type that can be processed by convert() or a phyloseq object

Value

An object of class alpha_estimate, or alpha_estimates for phyloseq objects

Examples

```
sample_richness(apples)
```

sample_shannon

Plug-in Shannon diversity

Description

This function implements the plug-in Shannon diversity

Usage

```
sample_shannon(input_data)
```

Arguments

 $input_data$

An input type that can be processed by convert() or a phyloseq object

Value

An object of class alpha_estimate, or alpha_estimates for phyloseq objects

```
sample_shannon(apples)
```

sample_shannon_e 27

sample_shannon_e

Plug-in Shannon's E ("Equitability")

Description

This function implements the plug-in Shannon's E

Usage

```
sample_shannon_e(input_data)
```

Arguments

input_data

An input type that can be processed by convert() or a phyloseq object

Value

An object of class alpha_estimate, or alpha_estimates for phyloseq objects

Examples

```
sample_shannon_e(apples)
```

sample_simpson

Plug-in Simpson diversity

Description

This function implements the plug-in Simpson diversity

Usage

```
sample_simpson(input_data)
```

Arguments

 ${\tt input_data}$

An input type that can be processed by convert() or a phyloseq object

Value

An object of class alpha_estimate, or alpha_estimates for phyloseq objects

```
sample_simpson(apples)
```

28 sample_size_figure

sample_size_estimate	Estimate the sample size needed to do an unpaired one-way test using
	betta

Description

Estimate the sample size needed to do an unpaired one-way test using betta

Usage

```
sample_size_estimate(control_group_est, se_est, diff = 5, alpha = 0.05,
    prop = 0.8, samples = 20, precision = 5)
```

Arguments

control_	_group_	_est

An estimate of the alpha diversity parameter for the control group

se_est An estimate of the (common) standard deviation

diff An estimate of the difference between the control and non-control groups

alpha Minimum significance level desired

prop Desired power

samples Number of bootstrap resamples used to estimate the sample size. Increase for a

more accurate estimate.

precision How much to increment the sample size as we try to increase the power

Value

An estimate of the necessary sample size and some details

sample_size_figure	Plot the power obtained with sample size

Description

Plot the power obtained with sample size

Usage

```
sample_size_figure(control_group_est, se_est, diff = 5, samples = 20)
```

Arguments

control_group_est

An estimate of the alpha diversity parameter for the control group

se_est An estimate of the (common) standard deviation

diff An estimate of the difference between the control and non-control groups

samples Number of bootstrap resamples used to estimate the sample size. Increase for a

more accurate estimate.

toy_metadata 29

Value

A plot of the power with the sample size

toy_metadata

(Data) Data frame of covariate information about toy_otu_table.

Description

(Data) Data frame of covariate information about toy_otu_table.

Usage

toy_metadata

Format

A data frame with 143 rows and 4 variables:

Years Year of sampling

bloom2 Did the sample correspond to a bloom event?

Period What season was sampled?

Site Where was the sample taken from? ...

toy_otu_table

(Data) A toy OTU table.

Description

Covariate info available in 'toy_metadata'. A data frame with 448 rows and 143 columns. Rows give the abundance of each taxon; columns give the samples

Usage

toy_otu_table

Format

An object of class data. frame with 448 rows and 143 columns.

30 true_gini

toy_taxonomy

(Data) The taxonomy of the OTUs in 'toy_otu_table'.

Description

(Data) The taxonomy of the OTUs in 'toy_otu_table'.

Usage

toy_taxonomy

Format

An object of class factor of length 448.

true_gini

Calculate the true Gini-Simpson index

Description

Calculate the true Gini-Simpson index

Usage

```
true_gini(input)
```

Arguments

input

A vector of proportions.

Value

The Gini-Simpson index of the population given by input.

Note

This function is intended for population-level data. If you are dealing with a microbial sample, use DivNet instead.

true_hill 31

true_hill

Calculate the true Hill numbers

Description

Calculate the true Hill numbers

Usage

```
true_hill(input, q)
```

Arguments

input A vector of proportions.

q The Hill number of interest. q = 0 corresponds to species richness, q = 2 corre-

sponds to inverse Simpson, etc.

Value

The Hill number of the population given by input.

true_inverse_simpson Calcu

Calculate the true Inverse Simpson index

Description

Calculate the true Inverse Simpson index

Usage

```
true_inverse_simpson(input)
```

Arguments

input

A vector of proportions.

Value

The inverse-Simpson index of the population given by input.

Note

This function is intended for population-level data. If you are dealing with a microbial sample, use DivNet instead.

32 true_shannon_e

true_shannon

Calculate the true Shannon index based on proportions

Description

Calculate the true Shannon index based on proportions

Usage

```
true_shannon(input)
```

Arguments

input

A vector of proportions.

Value

The Shannon index of the population given by input.

Note

This function is intended for population-level data. If you are dealing with a microbial sample, use DivNet instead.

true_shannon_e

Calculate the true Shannon's equitability index

Description

Calculate the true Shannon's equitability index

Usage

```
true_shannon_e(input)
```

Arguments

input

A vector of proportions.

Value

The Shannon E's of the population given by input.

Note

This function is intended for population-level data. If you are dealing with a microbial sample, use DivNet instead.

true_simpson 33

true_simpson	Calculate the true Simpson index
--------------	----------------------------------

Description

Calculate the true Simpson index

Usage

```
true_simpson(input)
```

Arguments

input A vector of proportions.

Value

The Simpson index of the population given by input.

Note

This function is intended for population-level data. If you are dealing with a microbial sample, use DivNet instead.

wlrm_transformed	The transformed weighted linear regression estimator for species rich-
	ness estimation

Description

This function implements the transformed version of the species richness estimation procedure outlined in Rocchetti, Bunge and Bohning (2011).

Usage

```
wlrm_transformed(input_data, cutoff = NA, print = NULL, plot = NULL,
    answers = NULL)
```

Arguments

input_data	An input type that can be processed by convert() or a phyloseq object
cutoff	Maximum frequency count to use
print	Deprecated; only for backwards compatibility
plot	Deprecated; only for backwards compatibility
answers	Deprecated; only for backwards compatibility

Value

An object of class alpha_estimate, or alpha_estimates for phyloseq objects

34 wlrm_untransformed

Note

While robust to many different structures, model is almost always misspecified. The result is usually implausible diversity estimates with artificially low standard errors. Extreme caution is advised.

Author(s)

Amy Willis

References

Rocchetti, I., Bunge, J. and Bohning, D. (2011). Population size estimation based upon ratios of recapture probabilities. *Annals of Applied Statistics*, **5**.

See Also

```
breakaway; apples; wlrm_untransformed
```

Examples

```
wlrm_transformed(apples)
wlrm_transformed(apples, plot = FALSE, print = FALSE, answers = TRUE)
```

The untransformed weighted linear regression estimator for species richness estimation

Description

This function implements the untransformed version of the species richness estimation procedure outlined in Rocchetti, Bunge and Bohning (2011).

Usage

```
wlrm_untransformed(input_data, cutoff = NA, print = NULL,
    plot = NULL, answers = NULL)
```

Arguments

input_data An input type that can be processed by convert() or a phyloseq object

cutoff Maximum frequency count to use

print Deprecated; only for backwards compatibility
plot Deprecated; only for backwards compatibility
answers Deprecated; only for backwards compatibility

Value

An object of class alpha_estimate, or alpha_estimates for phyloseq objects

wlrm_untransformed 35

Note

This estimator is based on the negative binomial model and for that reason generally produces poor fits to microbial data. The result is usually artificially low standard errors. Caution is advised.

Author(s)

Amy Willis

References

Rocchetti, I., Bunge, J. and Bohning, D. (2011). Population size estimation based upon ratios of recapture probabilities. *Annals of Applied Statistics*, **5**.

See Also

breakaway; apples; wlrm_transformed

Examples

wlrm_untransformed(apples)

Index

m : Jotopoto	
*Topic datasets	chao1_bc, 13
apples, 4	chao_bunge, 14
hawaii, 17	chao_shen, 14
toy_metadata, 29	check_format, 15
toy_otu_table, 29	convert, 15
toy_taxonomy, 30	cutoff_wrap, 16
*Topic diversity	1.6
betta, 5	good_turing, 16
betta_pic, 7	hawaii, 17
betta_random, 8	Hawaii, 17
breakaway, 9	kemp, <i>10</i> , 17
breakaway_nof1, 10	Kemp, 10, 17
kemp, 17	make_design_matrix, 19
wlrm_transformed, 33	make_frequency_count_table, 19
wlrm_untransformed, 34	make_rrequeriey_courte_cable, 17
*Topic error	objective_bayes_geometric, 19
breakaway_nof1, 10	objective_bayes_mixedgeo, 20
*Topic microbial	objective_bayes_negbin, 21
breakaway, 9	objective_bayes_poisson, 22
breakaway_nof1, 10	02300110_204900_p01000, 22
kemp, 17	physeq_wrap, 22
*Topic models	plot.alpha_estimates, 23
breakaway, 9	poisson_model, 24
breakaway_nof1, 10	proportions_instead, 24
kemp, 17	_ /
wlrm_transformed, 33	rnbinomtable, 24
wlrm_untransformed, 34	rztnbinomtable, 25
*Topic nonlinear	
breakaway, 9	<pre>sample_inverse_simpson, 25</pre>
breakaway_nof1, 10	sample_richness, 26
kemp, 17	sample_shannon, 26
	<pre>sample_shannon_e, 27</pre>
alpha_estimate, 3	<pre>sample_simpson, 27</pre>
alpha_estimates, 4	<pre>sample_size_estimate, 28</pre>
apples, 4, 6, 10, 11, 18, 34, 35	<pre>sample_size_figure, 28</pre>
betta, 5, 8, 9	toy_metadata, 29
betta_pic, 7	toy_otu_table, 29
betta_random, 8	toy_taxonomy, 30
breakaway, 5, 6, 9, 10, 11, 18, 34, 35	true_gini,30
breakaway_nof1, 6, 10, 10, 18	true_hill,31
<pre>build_frequency_count_tables, 12</pre>	<pre>true_inverse_simpson, 31</pre>
	true_shannon, 32
chao1, 12	true_shannon_e, 32

INDEX 37

```
true_simpson, 33 wlrm_transformed, 33, 35 wlrm_untransformed, 34, 34
```