COMBINATORIAL AUCTIONS WITH RESTRICTED COMPLEMENTS

An article by I. Abraham, M. Babaioff, S. Dughmi and T. Roughgarden

Hugo Boulier, Hugo Francon & Igor Martayan

November 8, 2021

INTRODUCTION

- Auction with n bidders and m items
- Some item groups gain added value when purchased together
- Modeled with hyperedges

CORE QUESTIONS

- 1. Polynomial approximation for planar graphs?
- 2. Polynomial approximation for hypergraphs?
- 3. Truthful version of this approximation?

POLYNOMIAL APPROXIMATION FOR

PLANAR GRAPHS

BAKER'S TECHNIQUE FOR POLYNOMIAL APPROXIMATION

Baker's decomposition [Baker, 1994]

A planar graph G can be partitioned into P_0, \ldots, P_k such that for each i, $G \setminus P_i$ has a treewidth $\leq 3k$.

 \hookrightarrow very useful for polynomial approximations

Generalization with minors [DeVos, 2004]

The same method can be applied for any graph that excludes a given minor *X*.

POLYNOMIAL-TIME APPROXIMATION FOR PLANAR GRAPHS

Algorithm

- 1. Partition G into P_0, \ldots, P_k such that each $G_i = G \setminus P_i$ has a fixed treewidth
- 2. Compute the tree decomposition of each G_i
- 3. Compute the optimal allocation A_i for each tree with dynamic programming
- 4. Return $A^* = \arg \max_{A_i} \sum_{j \in \{\text{bidders}\}} v_j(A_i^{-1}(j))$

 \hookrightarrow polynomial $(1+\varepsilon)$ -approximation

Truthfulness

Once combined with VCG payment, this mechanism is truthful.

APPROXIMATE WELFARE MAXIMIZATION ALGORITHM

We generalize to r-hypergraph with nonnegative hyperedge weight

Polynomial time r-approximation

The welfare maximization problem can be *r*-approximated in polynomial time.

Known lower bound [Trevisan, 2001]

There is no $r/2^{O(\sqrt{\log r})}$ -approximation.

2 step algorithm:

- · (real) linear programming
- randomized assignment

THE LINEAR PROGRAM

$$\text{maximize:} \sum_{i \in \{ \text{bidders} \}} \left(\sum_{j \in \{ \text{items} \}} w_{ij} \, x_{ij} + \sum_{e \in \{ \text{edges} \}_i} w_{ie} \, z_{ie} \right)$$

with

$$\sum_{i \in \{ \text{bidders} \}} x_{ij} = 1 \quad \text{ for all item } j$$

$$z_{ie} \leqslant x_{ij} \quad \text{ for all player } i \text{, edge } e \text{ and item } j$$

$$x_{ij} \geqslant 0 \quad \text{ for all player } i \text{ and item } j$$

$$z_{ie} \geqslant 0 \quad \text{ for all player } i \text{ and edge } e$$

THE RANDOMIZED ROUNDING ALGORITHM

Input: an optimal (real) solution (x^*, z^*) of the linear program

While there exists an unassigned item

- 1. choose a player i at random
- 2. choose a threshold $t \in [0, 1]$ at random
- 3. assign to i every unassigned item with $x_{ij}^{*}\geqslant t$

Probability that player i gets edge e greater than $\frac{z_{ie}^*}{|e|} \geqslant \frac{z_{ie}^*}{r} \hookrightarrow r$ -approximation

THE RANDOMIZED ROUNDING ALGORITHM

Input: an optimal (real) solution (x^*, z^*) of the linear program

While there exists an unassigned item

- 1. choose a player i at random
- 2. choose a threshold $t \in [0, 1]$ at random
- 3. assign to i every unassigned item with $x_{ij}^*\geqslant t$

Not Truthful

Probability that player i gets edge e greater than $\frac{z_{ie}^*}{|e|}\geqslant \frac{z_{ie}^*}{r}\hookrightarrow r$ -approximation

A TRUTHFUL APPROXIMATION MECHANISM

Algorithm

- 1. Compute an oracle in polynomial time
- 2. Solve a linear program of exponential size in polynomial time
- 3. Choose an integral solution from a set of feasible integral solutions
- 4. Random allocation similar to the precedent algorithm

- Expected value is optimal for the feasible solutions

 → truthful with VCG payments
- $\mathcal{O}(\log^r m)$ approximation

CONCLUSION

- First step for auctions with complements
- Polynomial time approximations
- · Truthful in some cases

Limits:

- Expensive complexity despite polynomial time : $n^{\mathcal{O}\left(\frac{1}{\varepsilon}\right)}$
- Limitation to nonnegative-weight hyperedges

APPENDIX

PLANAR GRAPHS CHARACTERIZATION WITH MINORS

Kuratowski's theorem

A graph is planar if and only if it does not contain K_5 or $K_{3,3}$ as a minor.

