Solution Sheet #6

Advanced Cryptography 2021

Solution 1 A Special Discrete Logarithm

- 1. We show that $G = \{x \in \mathbb{Z}_{p^2} \mid x \equiv 1 \pmod{p}\}$ with the multiplication modulo p^2 is a group. Below, we prove the different conditions G should fulfill to be a group.
 - (Closure) Let $a, b \in G$. By definition of G, we have $a \equiv b \equiv 1 \pmod{p}$. Hence, $ab \equiv 1 \pmod{p}$, which means that $ab \in G$.
 - (Associativity) The associativity follows from the associativity of the multiplication in \mathbb{Z}_{n^2} .
 - (Neutral element) The neutral element $e \in G$ has to satisfy $a \cdot e = e \cdot a = a$ for any $a \in G$. The element $1 \in G$ satisfies this property since it is the neutral element in \mathbb{Z}_{p^2} .
 - (Inverse element) We have to show, that for any $a \in G$, there exists an element $b \in G$ such that $a \cdot b \equiv 1 \pmod{p}$. We can write a = 1 + kp for an integer k such that $0 \le k < p$. Similarly, we set $b = 1 + \ell p$ for an integer ℓ such that $0 \le \ell < p$. From the equation

$$(1+kp)\cdot (1+\ell p) \equiv 1 + (k+\ell)p \pmod{p^2},$$

we deduce that b is the inverse of a if and only if $k + \ell \equiv 0 \pmod{p}$. Thus, each element $a = 1 + kp \in G$ has b = 1 + (p - k)p as inverse.

Since the multiplication in \mathbb{Z}_{p^2} is commutative, note that G is commutative as well.

- 2. Any element a of \mathbb{Z}_{p^2} can be written in the unique form $a = a_1 + a_2 p$, where a_1 and a_2 are unique integers satisfying $0 \le a_1, a_2 \le p 1$. We can conclude the proof by noticing that any element a of \mathbb{Z}_{p^2} lies in G if and only if the corresponding integer $a_1 = 1$.
- 3. We show that $L: G \to \mathbb{Z}_p$ defined by $L(x) = \frac{x-1}{p} \mod p$ is a group isomorphism.
 - (Homomorphism) We first show that L is a group homomorphism. Let a = 1 + kp with $0 \le k < p$ and $b = 1 + \ell p$ with $0 \le \ell < p$ be elements of G. We have

$$L(a \cdot b) = L\left((1+kp)(1+\ell p) \bmod p^2\right)$$

$$= L(1+(k+\ell)p)$$

$$= \frac{1+(k+\ell)p-1}{p} \bmod p$$

$$= k+\ell \bmod p$$

and

$$L(a) + L(b) = \frac{1 + kp - 1}{p} + \frac{1 + \ell p - 1}{p} \mod p$$
$$= k + \ell \mod p.$$

• (Injectivity) Since L is an homomorphism, it suffices to show that its kernel contains only the neutral element. Let a = 1 + kp with $0 \le k < p$ such that L(a) = 0. This is equivalent to

$$\frac{1+kp-1}{n} = k = 0,$$

which shows that the kernel is trivial, i.e., is equal to $\{0\}$.

- (Surjectivity) The surjectivity simply follows from the injectivity, since the two sets G and \mathbb{Z}_p have the same finite cardinality.
- 4. We have to show that any element $a \in G$ can be written as a power of p + 1. Using the binomial theorem, we have

$$(p+1)^n \mod p^2 = \sum_{i=0}^n \binom{n}{i} p^i \mod p^2$$

= $1 + np$.

Thus, it is clear that p+1 generates G. For $y \in G$,

$$y = \log_{p+1}(x) \iff x = (p+1)^y \mod p^2.$$

Since $(p+1)^y \mod p^2 = 1 + py$, we finally obtain

$$y = \frac{x-1}{p} \bmod p = L(x).$$

This logarithm function plays an important role for the Okamoto-Uchiyama cryptosystem 1 . This cryptosystem is studied in the next exercise.

Solution 2 Okamoto-Uchiyama Cryptosystem

By Fermat's Little Theorem, we know that $g^{p-1} \equiv 1 \pmod{p}$ and that $c^{p-1} \equiv 1 \pmod{p}$. Therefore, $c^{p-1} \mod p^2 \in G$ and $g^{p-1} \mod p^2 \in G$, so that the decryption function is well defined.

Now, we show that the decryption works. First, we have

$$\begin{array}{ll} c^{p-1} \pmod{p^2} & \equiv & (g^m h^r)^{p-1} \pmod{p^2} \\ & \equiv & \left(g^m g^{p^2 q r}\right)^{p-1} \pmod{p^2} \\ & \equiv & \left(g^{p(p-1)}\right)^{pq r} g^{m(p-1)} \pmod{p^2} \\ & \equiv & 1 \cdot \left(g^{p-1}\right)^m \pmod{p^2}. \end{array}$$

¹U. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as factoring. In K. Nyberg, editor, Advances in Cryptology – Eurocrypt'98: International Conference on the Theory and Application of Cryptographic Techniques, Espoo, Finland, May/June 1998. Proceedings, volume 1403 of Lecture Notes in Computer Science, pages 308–318. Springer-Verlag, 1998.

Thus, we have

$$\frac{L\left(c^{p-1} \bmod p^2\right)}{L\left(g^{p-1} \bmod p^2\right)} \bmod p = \frac{L\left(g^{m(p-1)} \bmod p^2\right)}{L\left(g^{p-1} \bmod p^2\right)} \bmod p.$$

Since, L is a group homomorphism, we deduce that

$$L(g^{m(p-1)} \bmod p^2) = m \cdot L(g^{p-1} \bmod p^2) \bmod p.$$

Thus,

$$\frac{L\left(c^{p-1} \bmod p^2\right)}{L\left(q^{p-1} \bmod p^2\right)} \bmod p = m$$

which proves that the decryption function indeed recovers the original plaintext.

More details on the Okamoto-Uchiyama cryptosystem are given in the original article ².

Solution 3 Graph Colorability

We adopt some notations, as follows. Let $c_i = (c_i^1, c_i^2, c_i^3)$ denote the color of the node v_i , which is a 3-bit binary vector. We put the constraints

$$(c_i^1 c_i^2) \text{ OR } (c_i^1 c_i^3) \text{ OR } (c_i^2 c_i^3) = 0$$

 $c_i^1 \text{ OR } c_i^2 \text{ OR } c_i^3 = 1$

to describe that one and only one of the coordinate of c_i must equal one for each v_i . For each edge e_{ij} , we add the constraint

$$c_i^1 c_j^1 \text{ OR } c_i^2 c_j^2 \text{ OR } c_i^3 c_j^3 = 0$$

to describe that adjacent nodes must have different colors. Therefore, we can transform the above constraints into determining existence of a truth value of each literal such that the following expression is TRUE:

$$(c_1^1 \text{ OR } c_1^2 \text{ OR } c_1^3) \text{ AND}$$

$$(\neg c_1^1 \text{ OR } \neg c_1^2) \text{ AND}(\neg c_1^1 \text{ OR } \neg c_1^3) \text{ AND}(\neg c_1^2 \text{ OR } \neg c_1^3) \text{ AND}$$

$$\vdots$$

$$(c_n^1 \text{ OR } c_n^2 \text{ OR } c_n^3) \text{ AND}$$

$$(\neg c_n^1 \text{ OR } \neg c_n^2) \text{ AND}(\neg c_n^1 \text{ OR } \neg c_n^3) \text{ AND}(\neg c_n^2 \text{ OR } \neg c_n^3) \text{ AND}$$

$$\vdots$$

$$(\neg c_i^1 \text{ OR } \neg c_j^1) \text{ AND}(\neg c_i^2 \text{ OR } \neg c_j^2) \text{ AND}(\neg c_i^3 \text{ OR } \neg c_j^3) \text{ AND}$$

$$\vdots$$

It is therefore easy to see that if the decision version of the 3-SAT problem has a polynomial time algorithm, then so does the decision problem of the 3-colorability of a graph.

²U. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as factoring. In K. Nyberg, editor, Advances in Cryptology – Eurocrypt'98: International Conference on the Theory and Application of Cryptographic Techniques, Espoo, Finland, May/June 1998. Proceedings, volume 1403 of Lecture Notes in Computer Science, pages 308–318. Springer-Verlag, 1998.