

AIC8800D80系列射频测试说明

RF_TEST版本

版本号 v4.0

公司	爱科微半导体(上海) AIC Semiconductor (S	
版本信息	日期	Release note
V1.0	2023年2月2日	
V2.0	2023年7月19日	更新信道补偿方式
V3.0	2024年1月24日	发包间隔配置/增加 MAC 地址写入 Note
V4.0	2024年4月1日	增加 SRRC 指令,天线增益设置方式

成立。 地址写入Note 线增益设置方式 Continuetor

1 =
<u> </u>
レバ

一. 工具介绍	3
二. WIFI_TEST 测试指令	4
2.1 WIFI 部分	4
2.1.1 WiFi 测试指令	4
2.1.2 单 TONE 测试指令	5
2.1.3 SRRC 指令	5
2.1.4 晶体频偏校准指令	6
	7
2.1.6 TX power 设置	8
2.1.7 信道功率补偿	9
2.1.8 userconfig 使用	
2.1.9 天线增益设置	
三. WIFI_TEST 编译说明	
Semiconductor	

·. 工具介绍

适用于 linux (ubuntu /android)

fmacfw.bin用于正常模式,fmacfw_rf.bin用于测试模式

以下以ubuntu为例,用户界面输入测试命令: (以下命令均以 wlan0 为例,实际以 ifconfig 显示为准)格 式 wifi_test if_name command parameters

COMMAND:

ALC Semiconductor Confidential Relation Confidential Relationship Conf

二. WIFI_TEST测试指令

2.1 WIFI部分

2.1.1 WiFi测试指令

1. wifi_test wlan0 set_tx chan bw mode rate length interval(可省掉) \\ WiFi 发射测试开始

1-1-1: channel

	Chan_num
2.4G	ch1-ch13
5G	Ch36-ch165

1-1-2: bandwidth

	bw
0	20M
1	40M
2	80M

1-1-3: mode 和 rate 对应关系

1 1 3.	illout 7 H	rate /	能										
	mode		rate										
0	NON HT	0	1	2	3	4	5	6	7	8	9	10	11
		1M	2M	5.5M	11M	6M	9M	12M	18M	24M	36M	48M	54M
2	HT MF							0-7					
							m	cs0-7					
4	VHT							0-9					
							m	cs0-9					
5	HE SU						()-11					
							mo	cs0-11					

Length推荐值:

	20M	40M	80M
B/NON-HT	1024		
HT/VHT/HE	4096	8192	16384

Interval: (Note: 此参数根据实际使用配置。对发包间隔无要求的此参数话可不写,使用默认值即可。) 发包间隔:最小值50,单位: μ s

2. wifi_test wlan0 set_txstop

\\ WiFi发射测试停止

no parameter

3. wifi_test wlan0 set_rx chan_num bw

\\ WiFi接收测试开始

chan_num (见1-1-1 **channel**)

bw (见1-1-2 bandwidth)

eg: wifi_test wlan0 set_rx 1 0

\\ 2412MHz, bandwidth 20M

4. wifi_test wlan0 set_rxstop no parameter

\\ WiFi接收测试停止

5. wifi_test wlan0 get_rx_result

\\ WiFi 接收测试收到的包的个数

val: 0 关	nn0 set_txtone val 闭 l 打开(1后面的a	参数范围-20-19)	\\ tx单ton	ne 292/2012
0 关闭		no parameter		
1 打开	-201 负偏	0 中心偏点	1-19 正偏	
wifi_test wl	教测试时,打开 SF an0 set_srrc 1 an0 set_srrc 0	RC 指令 \\打开 \\关闭	正偏 向偏1M	
	emicond	JIC LOT		

2.1.4 晶体频偏校准指令

AIC8800D80 XTAL 电路内部提供了可变负载电容,支持负载电容为 9-11pF 的 crystal unit。

1. wifi_test wlan0 set_xtal_cap val

val: 十进制有符号数

eg: wifi_test wlan0 set_xtal_cap -2

2. wifi_test wlan0 set_xtal_cap_fine val

val: 十进制有符号数

eg: wifi_test wlan0 set_xtal_cap_fine 10

3. wifi_test wlan0 set_freq_cal val val 十六进制绝对值

eg: wifi_test wlan0 set_freq_cal 1a

4. wifi_test wlan0 set_freq_cal_fine val val: 十六进制绝对值

eg: wifi_test wlan0 set_freq_cal_fine 16

5. wifi_test wlan0 get_freq_cal no parameter

\\晶体频偏粗调,默认值16(0x10), 范围0-31(0x00~0x1F)

\\ 负向频偏,降低内部负载电容

晶体频偏细调,默认值31(0x1F), 范围0-63 (0x00~0x3F)

\\正向频偏,提高内部负载电容

\\ 写晶体频偏校准粗调值到efuse\flash

\\ 写晶体频偏校准粗调值 0x1A 到 efuse\flash

\\写晶体频偏校准细调值到efuse\flash

\写晶体频偏校准细调值0x16到efuse\flash

\\ 读频偏值

粗调校准流程:

- ①判断 frequency offset(Af)极性,Af>0,setxtalcap 4,反之,setxtalcap -4;
- ②判断 frequency offset (Af) 极性, Af>0, setxtalcap 2, 反之, setxtalcap -2;
- ③判断 frequency offset (Δf) 极性, $\Delta f > 0$,setxtalcap 1,反之,setxtalcap -1;细调校准流程:
- ①判断 frequency offset (Δf) 极性, Δf >0,setxtalcapfine 16,反之,setxtalcapfine -16;
- (2)判断 frequency offset (Δf) 极性, Δf>0, setxtalcapfine 8, 反之, setxtalcapfine -8;
- ③判断 frequency offset (Δf) 极性, Δf >0,setxtalcapfine 4,反之,setxtalcapfine -4;
- ④判断 frequency offset (Δf) 极性, Δf>0, setxtalcapfine 2, 反之, setxtalcapfine -2;
- ⑤判断frequency offset(Δ f)极性, Δ f>0,setxtalcapfine 1,反之,setxtalcapfine -1;

Note: 校准频偏指令对应参数均为十进制相对值,即相对默认值偏移值,输入指令后会返回配置后频偏实际参数,且以十六进制显示。写入efuse或flash的频偏校准值为十六进制绝对值

读写mac地址 2.1.5

1. wifi_test wlan0 set_mac_addr 复)

\\写WiFi MAC地址到efuse(2次)或flash(重

eg: wifi_test wlan0 set_mac_addr 88 00 11 22 33 44

\\写WiFi MAC地址

2. wifi_test wlan0 get_mac_addr no parameter

\\ 读WiFi MAC地址

3. wifi_test wlan0 set_bt_mac_addr

\\写BT MAC地址到efuse(2次)或flash(重复)

eg: wifi_test wlan0 set_bt_mac_addr 0A 1C 6B C6 96 7E \\写BT MAC地址

4. wifi_test wlan0 get_bt_mac_addr no parameter

\\ 读BT MAC地址

ALC Seminontuctor Note: 如果 wifi 还需要同时支持 p2p, softap, 两颗芯片的 mac 地址需要至少相差 4。

2.1.6 TX power设置

1. wifi_test wlan0 rdwr_pwrlvl band mod idx val val: 十进制

\\设置不同模式速率的功率

4-1-1: band

	band		mod
		11b+11a/g	0
2.4G	1	11n/11ac	1
		11ax	2
		11a/g	0
5G	2	11n/11ac	1
		11ax	2

2.4G Rate Group

Fmt\ldx	0	1	2	3	4	5	6	7	8	9	10	11
11b+11a/g	1M	2M	5.5M	11M	6M	9M	12M	18M	24M	36M	48M	54M
11n/ac	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9		
11ax	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11

5G Rate Group

Fmt\ldx	0	1	2	3	4	5	6	7	8	9	10	11
11a/g	NA	NA	NA	NA	6M	9M	12M	18M	24M	36M	48M	54M
11n/ac	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9		
11ax	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11

Note: 5G 11a/g 比较特殊,如果多个值同时写入,前面4个写-128,表示无效

pwrlvl 共有两种设置方法:

CSelli

- ▶ 设置其中一个 Rate 的方法:
 eg: wifi_test wlan0 rdwr_pwrlvl 1 0 3 18 \\设置2.4G 11b+11a/g模式11M的TX power为18dBm
- ▶ 设置一组中多个 Rate 的方法: eg. wifi_test wlan0 rdwr_pwrlvl 1 1 15 15 15 15 15 14 14 14 13 13 \\设置2.4G 11n/ac模式下 MCS0-MCS9的发射功率分为15dBm 15 dBm 15 dBm 15 dBm 14 dBm 14 dBm 14 dBm 13 dBm 13 dBm

Note: 多个Rate的设置方法时需要将改模式下的所有速率都设置进去。

2. wifi_test wlan0 rdwr_pwrlvl 0 \\读取功率增益档位,写0或不写均实现读功能

2.1.7 信道功率补偿

1. wifi_test wlan0 rdwr_pwrofst band rate ch ofst

\\ 设置信道补偿

5-1-1: band\rate\ch\ofst 对应关系表

	band		rate		ch	ofst
2.4G	1	11b	0	CH1~CH4	0	-7~7
				СН5~СН9	1	-7~7
				CH10~CH13	2	-7~7
		OFDM_highrate	1	CH1~CH4	0	-7~7
				СН5~СН9	1	-7~7
				CH10~CH13	2	-7~7
		OFDM_lowrate	2	CH1~CH4	0	-7~7
				СН5~СН9	1	-7~7
				CH10~CH13	2	-7~7
5G	2	OFDM_lowrate	0	CH36~CH50	0	-7~7
				CH51~CH64	1	-7~7
				CH98~CH114	2	-7~7
				CH115~CH130	3	-7~7
				CH131~CH146	4	-7~7
				CH147~CH166	5	-7~7
		OFDM_highrate	1	CH36~CH50	0	-7~7
				CH51~CH64	1	-7~7
				CH98~CH114	2	-7~7
				CH115~CH130	3	-7~7
				CH131~CH146	4	-7~7
				CH147~CH166	5	-7~7
		OFDM_midrate	2	CH36~CH50	0	-7~7
				CH51~CH64	1	-7~7
		~		CH98~CH114	2	-7~7
		Ox		CH115~CH130	3	-7~7
				CH131~CH146	4	-7~7
				CH147~CH166	5	-7~7

eg. wifi_test wlan0 rdwr_pwrofst 1 1 1 2

\\设置2.4G, OFDM_highrate,CH5~CH9信道补偿为2

ofst 为带符号偏移值, 步进为 1, 对应功率变化 0.5dbm, 最大 7, 最小-7, 可通过调整响应信道补偿值来优化信道功率差异。

Note: pwrofst 后面不带参数可直接显示当前发射功率增益档位配置信息。

Note:2.4G 分别在 11b_1M,11g_6M,11g_54M 校准 11b,ofdm_lowrate,ofdm_highrate 速率划分区间。在 ch1,ch7,ch13 校准信道划分区间。

5G 分别在 11a_6M,11a_54M,11ax_mcs11 校准 ofdm_lowrate, ofdm_midrate,ofdm_highrate 速率划分区间。在 ch42,ch58,ch106,ch122,ch138,ch155 校准信道划分区间。

2. wifi_test wlan0 rdwr_efuse_pwrofst band rate ch ofst \\ 写信道补偿值到efuse(2次)或flash(重复)

eg. wifi_test wlan0 rdwr_efuse_pwrofst 1 1 1 2 \\写 2.4G, OFDM_highrate,CH5~CH9 校准值到 efuse

Note: efpwrofst 0 或者后不加参数能读取 efuse 中信道功率补偿值。

OFDM Rate 分类

2.4G

	OFDM-L	OFDM-LowRate						OFDM-highRate							
	BPSK	BPSK	QPSK	QPSK	16QAM	16QAM	64QAM	64QAM	64QAM	256QAM	256QAM	1024QAM	1024QAM		
	1/2	3/4	1/2	3/4	1/2	3/4	2/3	3/4	5/6	3/4	5/6	3/4	5/6		
NON-HT	6M	9M	12M	18M	24M	36M	48M	54M							
HT	MCS0		MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7						
VHT	MCS0		MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9				
HE	MCS0		MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11		

5G

	OFDM-LowRate				OFDINI-m	OFDM-midRate					-highRate		
	BPSK 1/2	BPSK 3/4	QPSK 1/2	QPSK 3/4	16QAM 1/2	16QAM 3/4	64QAM 2/3	64QAM 3/4	64QAM 5/6	256QAM 3/4	256QAM 5/6	1024QA 3/4	1024QAI 5/6
N-HT	6M MCS0	9M	12M MCS1	18M MCS2	24M MCS3	36M MCS4	48M MCS5	54M MCS6	MCS7				\ <i>Y</i>
Т	MCS0 MCS0		MCS1 MCS1	MCS2 MCS2	MCS3	MCS4 MCS4	MCS5 MCS5	MCS6	MCS7 MCS7	MCS8	MCS9 MCS9	MCS10	MCS11
	IVICSU		IVICSI	IVIC32	IVIC33	WIC34	IVIC33	WIC30	IVICS7	IVICS	IVIC39	WICSTO	IVICSTI
											0	1	
											0		
										(
										A			
									•	.0			
									X				
								76	ر ک				
							S.	Y					
								Y					
							0),						
						Y							
					XC								
					C) >							
				21)	CXC								
				913	C								
			Â	Odi	C	,>							
			C	ndi)	C								
		•,		Ogio	C	, ·							
				ndi	C C								
				ndi	C								
	C	en		ndi)	C								
(eill		ndi									
~		o e in		ndi									
		Sein		ndi)									
		en		ndi)									
		eill											
		o e in		ndi									
		o em		ndio.									
		en		ndi)									

2.1.8 userconfig 使用

lvl_11n_11ac_mcs3_5g=18 lvl_11n_11ac_mcs4_5g=16

1. aic_userconfig.txt 文档使用:

随固件一起 cp 到 /lib/firmware/下,更改文档内参数后掉电重新上电生效 enable = 0 文档不生效, enable = 1 文档生效, 默认为1 (参数意义可以详见上述2.1.4、2.1.5)

```
onductor confidential application
# txpwr lvl
enable=1
lvl_11b_11ag_1m_2g4=18
lvl_11b_11ag_2m_2g4=18
lvl_11b_11ag_5m5_2g4=18
lvl_11b_11ag_11m_2g4=18
lvl_11b_11ag_6m_2g4=18
lvl_11b_11ag_9m_2g4=18
lvl_11b_11ag_12m_2g4=18
lvl_11b_11ag_18m_2g4=18
lvl_11b_11ag_24m_2g4=16
lvl_11b_11ag_36m_2g4=16
lvl_11b_11ag_48m_2g4=15
lvl_11b_11ag_54m_2g4=15
lvl 11n 11ac mcs0 2g4=18
lvl_11n_11ac_mcs1_2g4=18
lvl_11n_11ac_mcs2_2g4=18
lvl_11n_11ac_mcs3_2g4=18
lvl_11n_11ac_mcs4_2g4=16
lvl_11n_11ac_mcs5_2g4=16
lvl_11n_11ac_mcs6_2g4=15
lvl_11n_11ac_mcs7_2g4=15
lvl_11n_11ac_mcs8_2g4=14
lvl_11n_11ac_mcs9_2g4=14
lvl_11ax_mcs0_2g4=18
lvl_11ax_mcs1_2g4=18
lvl_11ax_mcs2_2g4=18
lvl_11ax_mcs3_2g4=18
lvl_11ax_mcs4_2g4=16
lvl_11ax_mcs5_2g4=16
lvl_11ax_mcs6_2g4=15
lvl_11ax_mcs7_2g4=15
lvl_11ax_mcs8_2g4=14
lvl_11ax_mcs9_2g4=14
lvl_11ax_mcs10_2g4=13
lvl_11ax_mcs11_2g4=13
lvl_11a_6m_5g=18
lvl_11a_9m_5g=18
lvl 11a 12m 5g=18
lvl_11a_18m_5g=18
lvl_11a_24m_5g=16
lvl_11a_36m_5g=16
lvl_11a_48m_5g=15
lvl_11a_54m_5g=15
lvl_11n_11ac_mcs0_5g=18
lvl_11n_11ac_mcs1_5g=18
lvl_11n_11ac_mcs2_5g=18
```


lvl_11n_11ac_mcs5_5g=16 lvl_11n_11ac_mcs6_5g=15 lvl_11n_11ac_mcs7_5g=15 lvl_11n_11ac_mcs8_5g=14 lvl_11n_11ac_mcs9_5g=14 ALC Semiconductor Confidential Manager lvl_11ax_mcs0_5g=18 lvl_11ax_mcs1_5g=18

2.1.9 天线增益设置

输出功率=目标功率(pwrlvl)-天线增益值

设置的天线增益值将降低目标功率,目标功率本身取决于国家/地区设置,请参阅国家/地区代码设 置。天线增益值并非适用于所有国家/地区。

若要设置天线增益值则需要在/firmware/aic8800/aic8800d80/aic userconfig 8800d80.txt 文件设置 2021 Aprilia txpwr loss

"# txpwr_loss

loss enable=0

loss value=2 "

loss enable=1 天线增益设置使能

loss enable=0 天线增益设置不使能

loss value 天线增益设置的值

Eg: 若需要 2.4G 11b 1M 的输出功率为 10db

aic userconfig 8800d80.txt 文件里面 txpwr lvl 11b 1M 配置如下:

"# txpwr lvl

enable=1

lvl_11b_11ag_1m_2g4=18 "

则 输出功率 10db 时 txpwr_loss 配置应改为:

"# txpwr loss

loss enable=1

loss value=-8 "

Output Power = (txpwr_lvl) - (txpwr_loss)

Semileonduction

三. WIFI TEST编译说明

- 1. sudo cp aic8800D80 /lib/firmware/-r
- 2. make 编译驱动
- 3. 插入 usb 板子, 按下 pwrkey
- 4. 输入 lsusb, 在 ubuntu 上能看到 ID 为a69c:8d80 的设备
- 5. sudo insmod aic_load_fw.ko testmode=1, sudo insmod aic8800_fdrv.ko(如果要从测试模式切换回正常模式,请rmmod wifi驱动后重新上电执行 sudo insmod aic_load_fw.ko testmode=0)
- 6. 运行 wifi test

例子1: 可以连上 cable 测试

set_tx 1 1 2 7 4096 // chan:1 bw:20m mode:2 rate:mcs7 length:4096byte

liruizhe@aic:~/android_driver/USB/driver_fw/drivers/aic8800\$ sudo wifi_test wlan0 set_tx 1 0 2 7 4096

set_tx:
done
liruizhe@aic:~/android_driver/USB/driver_fw/drivers/aic8800\$

例子 2: 可以连上 cable 测试

set_rx 14 1 // chan:14 bw:40m 开始接收

set_rxstop //停止接收

get_rx_result: // 1 秒内收到314个包,183 个正确

```
liruizhe@aic:~/android_driver/USB/driver_fw/drivers/aic8800$ sudo wifi_test wlan0 set_rx 14 1
set_rx:
done
liruizhe@aic:~/android_driver/USB/driver_fw/drivers/aic8800$ sudo wifi_test wlan0 set_rxstop
set_rxstop:
done
liruizhe@aic:~/android_driver/USB/driver_fw/drivers/aic8800$ sudo wifi_test wlan0 get_rx_result
get_rx_result:
done: getrx fcsok=183, total=314
```

例子3:

设置频偏校准:

set_xtal_cap 6 后晶体的寄存器值为 0x16, 设置为1 后晶体的值为 0x18, 经过校准后,最后一次显示的值就是校准完后需要配置的值。

```
liruizhe@aic:~/android_driver/USB/driver_fw/drivers/aic8800$ sudo wifi_test wlan0 set_xtal_cap 0
set_xtal_cap:
done:xtal_cap: 0x10
liruizhe@aic:~/android_driver/USB/driver_fw/drivers/aic8800$ sudo wifi_test wlan0 set_xtal_cap 6
set_xtal_cap:
done:xtal_cap: 0x16
liruizhe@aic:~/android_driver/USB/driver_fw/drivers/aic8800$ sudo wifi_test wlan0 set_xtal_cap 1
set_xtal_cap:
done:xtal_cap: 0x17
liruizhe@aic:~/android_driver/USB/driver_fw/drivers/aic8800$
```

将校准后的值设置到硬件 efuse 里去:

```
liruizhe@aic:~/android_driver/USB/driver_fw/drivers/aic8800$ sudo wifi_test wlan0 set_freq_cal 17
set_freq_cal:
done: freq_cal: 0x17 (remain:0)
liruizhe@aic:~/android_driver/USB/driver_fw/drivers/aic8800$
```

例子 4: mac 地址的 efuse 写,写完后读取一下:

```
liruizhe@aic:~/android_driver/USB/driver_fw/drivers/aic8800$ sudo wifi_test wlan0 get_mac_addr
get_mac_addr:
done: get macaddr = 00 : 00 : 00 : 00 : 00
    (remain:0)
liruizhe@aic:~/android_driver/USB/driver_fw/drivers/aic8800$
```


注 1:

以上是以 usb 平台为例, sdio 平台也类似, 需要将 driver/rwnx_drv/fullmac/Makefile 的 CONFIG_USB_SUPPORT=n, CONFIG_SDIO_SUPPORT=y。用户空间的 aicrf_test 在客户平台上运行即可。

注 2.

Ubuntu 平台建议做一下网络重命名规则,这样子 lsusb 后 aic8800 的芯片会显示成 wlan0,否则会用 mac 地址进行了重命名。

1 cp /lib/udev/rules.d/80-net-setup-link.rules /etc/udev/rules.d/

然后执行如下命令,修改刚才复制过来的80-net-setup-link.rules文件:

1 sudo vim /etc/udev/rules.d/80-net-setup-link.rules

如下图所示,将箭头所指的ID_NET_NAME改成ID_NET_SLOT即可。

```
# do not edit this file, it will be overwritten on update

SUBSYSTEM!="net", GOTO="net_setup_link_end"

IMPORT(builtin)="path_id"

ACTION=="remove", GOTO="net_setup_link_end"

IMPORT(builtin)="net_setup_link"

NAME=="", ENV(ID_NET_NAME)!="", NAME="$env(ID_NET_NAME)"

LABEL="net_setup_link_end"
```