# CV / VLM

Unit 1: Introduction to Computer
Vision (CV)



1.1.1

# Basics of Computer Vision

What is computer vision?



# What is Computer Vision?

- A branch of AI that teaches computers to see and understand visual data in a way that mimics human vision
- Utilizes algorithms to analyse and interpret visual inputs



Adapted from <u>viso.ai</u>



# Analog Comparison Human Vision vs Computer Vision







# What Computers See - Pixel Values

### What we see



Grayscale
(Black and White)

## What computers see

| -   | _     | _   | _   | _   | _   | _   | _   | _   | -   | _   | _   |
|-----|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 157 | 163   | 174 | 160 | 160 | 162 | 129 | 151 | 172 | 167 | 356 | 15  |
| 156 | 182   | 163 |     |     |     |     |     | 110 | 210 | 180 | 35  |
| 180 | 180   |     | 34  | 54  |     | 10  | 33  | 49  | 106 | 150 | 18  |
| 206 | 1 = 1 | 5   | 134 | 181 | 100 | 130 | 204 | 164 | 15  | 56  | 100 |
| 194 | *     | 187 | 251 | 287 | 299 | 239 | 228 | 227 |     |     | 20  |
| 172 | 100   | 207 | 233 | 283 | 214 | 220 | 259 | 228 | -   |     | 20  |
| 188 |       | 179 | 209 | 185 | 216 | 211 | 184 | 136 |     |     | 760 |
| 188 | **    | 166 | м   |     | 168 | 134 |     | 31  | 62  |     | Œ   |
| 198 | 168   | 191 | 165 | 156 | 227 | 178 | 143 | 102 | 110 | 26  | 19  |
| 205 | 174   | 188 | 252 | 236 | 291 | 149 | 176 | 228 | 43  | 16  | 23  |
| 190 | 216   | 114 | 149 | 236 | 187 | *   | 150 |     | 38  | 218 | 34  |
| 190 | 224   | 147 | 108 | 227 | 210 | 127 | 162 | 36  |     | 255 | 22  |
| 190 | 214   | 173 | 66  | 163 | 143 |     | 86  |     | 100 | 249 | 21  |
| 187 | 196   | 236 |     |     |     |     |     |     | 217 | 255 | 21  |
| 188 | 202   | 237 | 141 |     |     |     | 144 | 200 | 126 | 243 | 29  |
| 196 | 204   | 122 | 207 | 177 | 121 | 123 | 200 | 175 | 13  | -   | 211 |

| 157 | 163 | 174 | 168 | 150 | 162 | 129 | 151 | 172 | 161 | 155 | 156 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 166 | 182 | 163 | 74  | 75  | 62  | 33  | .17 | 110 | 210 | 180 | 164 |
| 180 | 180 | 50  | 14  | 34  | 6   | 10  | 33  | 48  | 106 | 159 | 181 |
| 206 | 109 | 5   | 124 | 131 | 111 | 120 | 204 | 166 | 16  | 56  | 180 |
| 194 | 68  | 137 | 261 | 237 | 239 | 239 | 228 | 227 | 87  | 71  | 201 |
| 172 | 106 | 207 | 233 | 233 | 214 | 220 | 239 | 228 | 56  | 74  | 204 |
| 188 | **  | 179 | 209 | 185 | 216 | 211 | 158 | 139 | 76  | 20  | 166 |
| 189 | 97  | 166 | 84  | 10  | 168 | 194 | 33  | 21  | 62  | 22  | 148 |
| 199 | 168 | 191 | 193 | 158 | 227 | 178 | 143 | 182 | 106 | 36  | 190 |
| 206 | 174 | 166 | 252 | 236 | 231 | 149 | 178 | 228 | 43  | 95  | 234 |
| 190 | 216 | 116 | 149 | 236 | 187 | 86  | 150 | 79  | 36  | 218 | 241 |
| 190 | 224 | 147 | 108 | 227 | 210 | 127 | 102 | ж   | 101 | 255 | 224 |
| 190 | 214 | 173 | 66  | 103 | 143 | 95  | 50  | 2   | 109 | 249 | 216 |
| 187 | 196 | 236 | 75  | 1   | #1  | 47  | 0   | 6   | 217 | 255 | 211 |
| 183 | 202 | 237 | 145 | 0   | 0   | 12  | 108 | 200 | 136 | 243 | 236 |
| 196 | 206 | 123 | 207 | 177 | 121 | 123 | 200 | 175 | 13  | 96  | 216 |

Array of Pixel values

Colored Images could be coded in RGB (Red, Green, Blue), HSL (Hue, Saturation, Lightness), etc, which would be channels (depth) of pixel value arrays.



# Motivation for CV

- Making computers see like us, allowing them to take vision as an input and respond accordingly.

## Automation

Allowing machine to aid in assessing rules and recognising objects, standardizing and formalising vision inputs.

## Interpretation

Allowing machine to take in vision as inputs, aid in classification, localizing and other vision tasks.



# Motivation for CV

Unlocking the power of images and videos:
 The world is full of data, and the
 majority of them are unstructured



Unstructured Data Video, Sound, Images



Structured Data
Tabular Data, Logs,
Forms

| Player | Minutes | Points | Rebounds | Assists |
|--------|---------|--------|----------|---------|
| Α      | 41      | 20     | 6        | 5       |
| В      | 30      | 29     | 7        | 6       |
| С      | 22      | 7      | 7        | 2       |
| D      | 26      | 3      | 3        | 9       |
| E      | 20      | 19     | 8        | 0       |
| F      | 9       | 6      | 14       | 14      |
| G      | 14      | 22     | 8        | 3       |
| 1      | 22      | 36     | 0        | 9       |
| J      | 34      | 8      | 1        | 3       |

# Motivation for CV Use Cases

Lung Disease Diagnosis
Predictions of Disease



Car Navigation
Auto-pilot, Recognising objects



Phone Security

FaceID





# History of CV Techniques and Tools

19X0s

1980s

2009

2012

2016

Present

- · 1960s: Camera-Computer Connection & **Edge Detection**
- · 1970s: Feature Extraction & Object Recognition
- · 1980s: Scale-Space Analysis & Shape Inference
- 1990s: Camera Calibration. 3D Reconstruction & Segmentation
- 1990s: OCR Machines Read Text

CNN (Convolutional neural network) is invented. Feature Extractions Shape Inference

#### **ImageNet**

Large Public Annotated Dataset for object classification

## Curated Data (Ingredients)



#### AlexNet

Showed how deep neural networks - Convolutional neural network (CNN) can be used for image classification tasks.

#### YOLO

Speed (45FPS) Detection accuracy Good generalization Open-source

### Widespread **Applications**

- · Self- Driving Cars,
- · Facial Recognitions
- Medical Imaging
- Industry 4.0

Architectual (Cookbook)

YOLO: You Only Look Once



