

FIG. 1

**Neutralization against HIV-1 primary isolates from clades A, B, C and E
after last DNA immunization**

Study groups	Animal no.	Clade B			Clade C			Clade A			Clade E	
		ADA	SF162	Bal	JRCSF	TVI	DU151	S007	DJ263	CM235	CM244	
Mono-valent	R101	0.0	34.2	10.9	21.2	0.0	0.0	40.0	0.0	0.0	0.0	
	R102	0.0	37.9	11.3	12.1	0.0	6.0	0.0	0.0	0.0	0.0	
	R104	16.0	76.0	15.0	34.0	43.6	0.0	13.8	44.9	0.0	0.0	
	R105	4.0	55.0	15.0	46.0	27.1	8.2	0.0	4.0	0.0	0.0	
	R106	16.9	59.6	4.0	30.0	31.6	17.6	11.3	39.0	0.0	2.4	
	R107	1.8	47.9	5.8	21.5	22.5	0.0	0.6	21.3	0.0	2.4	
	R109	0.0	38.6	0.0	18.9	14.2	33.8	0.0	32.0	0.0	29.9	
Poly-valent	R110	8.9	46.6	0.0	0.0	16.9	0.0	21.1	12.2	0.0	19.7	
	R301	0.0	71.8	17.9	45.6	0.0	0.0	0.0	0.0	0.0	0.0	
	R302	0.0	42.1	0.0	16.3	14.0	0.0	39.0	0.0	0.0	0.0	
	R801	0.0	63.5	5.2	40.7	26.0	1.0	0.0	3.0	0.0	0.0	
	R802	0.0	34.8	0.0	0.0	31.0	0.0	10.0	28.0	0.0	0.0	
	R001	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	6.0	
	Positive antibodies	Concentration										
HIVIG	10 mg/ml	96.8	99.1	98.9	98.8	98.1	96.4	100.1	98.4	95.3	98.1	
	1 mg/ml	44.6	95.6	84.1	83.1	19.0	58.6	69.9	75.0	29.3	35.2	
	50 µg/ml	74.9	92.9	86.7	93.2	76.5	29.0	39.2	27.9	91.2	86.4	
	5 µg/ml	43.4	67.8	52.6	76.4	29.0	16.6	17.5	10.8	65.2	61.4	
	50 µg/ml	32.7	59.2	75.9	77.9	28.2	5.5	2.3	90.1	4.7	0.0	
	5 µg/ml	20.3	43.6	53.3	57.9	15.7	16.0	9.0	77.0	0.0	6.0	

FIG. 2

Neutralization against HIV-1 primary isolates from clades A, B, C and E
after the first protein boost

Study groups	Animal no.	Clade B			Clade C			Clade A		Clade E	
		ADA	SF162	Bal	JRCSF	TV1	DU151	S007	D1263	CM235	CM244
Mono-valent	R101	0.0	80.4	58.9	70.4	21.0	0.0	47.0	24.0	0.0	0.0
	R102	0.0	74.6	63.9	57.0	14.0	0.0	0.0	0.0	0.0	0.0
	R104	31.5	95.0	81.0	69.0	59.7	0.0	5.4	57.7	0.0	0.0
	R105	6.0	46.5	88.0	84.0	81.2	0.0	0.0	41.5	0.0	0.0
	R106	10.8	47.4	31.1	30.0	20.4	15.4	27.5	42.7	0.0	0.0
	R107	2.7	54.0	0.0	6.2	39.5	0.0	7.0	16.7	0.0	26.2
	R109	13.0	35.1	0.0	19.7	40.3	1.3	0.0	44.4	0.0	8.5
Poly-valent	R110	10.5	31.9	0.0	0.0	34.8	4.9	34.3	36.5	0.0	28.4
	R301	11.5	93.6	93.6	90.5	89.0	23.0	0.0	14.0	0.0	0.0
	R302	0.0	91.5	79.6	84.2	87.0	33.0	54.0	55.0	0.0	27.0
	R801	0.0	84.8	61.6	73.9	68.0	23.0	31.0	36.0	0.0	0.0
	R802	0.0	73.0	13.5	41.4	74.0	0.0	13.0	65.0	0.0	0.0
	R001	0.0	33.5	0.2	24.1	0.0	0.0	36.0	0.0	0.0	6.0
	Positive antibodies	Concentration									
HIVIG	10 mg/ml	96.8	99.1	98.9	98.8	98.1	96.4	109.1	98.4	95.3	98.1
	1 mg/ml	44.6	95.6	84.1	83.1	19	58.6	69.9	75	29.3	35.2
2F5	50 µg/ml	74.9	92.9	86.7	93.2	76.5	29	39.2	27.9	91.2	96.4
	5 µg/ml	43.4	67.8	52.6	76.4	29	16.6	17.5	10.8	65.2	61.4
2G12	50 µg/ml	32.7	59.2	75.9	77.9	28.2	5.5	2.3	40.1	4.7	0
	5 µg/ml	20.3	43.6	53.3	57.9	15.7	16	9	77	0	6

FIG. 3

Neutralization against HIV-1 primary isolates from clades A, B, C and E
after the second protein boost

Study groups	Animal no.	Clade B			Clade C			Clade A			Clade E		
		ADA	SF162	Bal	JRCSF	TV1	DU151	S007	DJ263	CM235	CM244		
Mono-valent	R101	0.0	89.5	70.0	67.9	0.0	0.0	0.0	22.0	0.0	27.7		
	R102	1.0	77.3	56.0	49.4	52.8	0.0	0.0	56.4	0.0	17.0		
	R104	33.5	94.0	87.0	79.0	80.0	22.8	33.0	65.7	0.0	0.0		
	R105	37.0	92.0	84.0	84.0	81.9	34.9	0.0	49.5	0.0	0.0		
	R106	35.1	92.6	82.1	80.7	79.9	54.1	62.5	79.8	25.5	33.4		
	R107	26.1	92.1	76.6	82.3	90.0	0.0	66.8	68.5	0.0	45.3		
	R109	37.2	88.9	44.9	48.5	76.8	0.0	3.4	68.2	0.0	0.0		
	R110	11.3	26.3	0.0	52.6	77.6	43.7	59.1	70.0	0.0	28.4		
	R301	24.0	94.7	81.2	82.6	79.2	8.7	39.0	70.2	10.9	33.4		
	R302	13.0	93.2	75.2	67.1	47.3	0.0	44.0	64.0	16.1	23.7		
Poly-valent	R801	24.0	91.4	74.9	79.7	72.9	0.0	42.4	62.5	3.3	32.5		
	R802	29.0	89.3	69.5	73.8	83.8	1.2	3.7	79.7	15.2	37.6		
Control	R001	0.0	40.6	23.7	35.4	50.1	0.0	0.0	22.0	0.0	0.0		
Positive antibodies	Concentration												
HIVIG	10 mg/ml	96.8	99.1	98.9	98.8	98.1	96.4	100.1	98.4	95.3	98.1		
	1 mg/ml	44.6	95.6	84.1	83.1	19.0	58.6	69.9	75.0	27.9	35.2		
2F5	50 µg/ml	74.9	92.9	86.7	93.2	76.5	29.0	39.2	91.2	86.4			
	5 µg/ml	43.4	67.8	52.6	76.4	29.0	16.6	17.5	10.8	65.2	61.4		
2G12	50 µg/ml	32.7	59.2	75.9	77.9	28.2	5.5	2.3	90.1	4.7	0.0		
	5 µg/ml	20.3	43.6	53.3	57.9	15.7	16.0	9.0	77.0	0.0	6.0		

FIG. 4

Neutralization of HIV-1 clade B viruses

FIG. 5A

FIG. 5B

FIG. 5C

Animal groups

Anti-Env IgG responses after DNA priming
measured by ELISA

FIG. 6

FIG. 9

FIG. 10

FIG. 11

FIG. 12

Percent of Neutralization

FIG. 13A

FIG. 13B

FIG. 14

FIG. 15B

FIG. 15A

FIG. 15D

FIG. 15C

FIG. 15E

Anti-gp120 response in rabbits immunized intramuscularly with DP6-001

FIG. 16A

FIG. 16B

Anti-gp120 response in rabbits immunized intradermally with DP6-001

FIG. 17A

FIG. 17B

Anti-gag response in rabbits immunized intramuscularly with DP6-001

FIG. 18A
FIG. 18B

Anti-gag response in rabbits immunized intradermally with DP6-001

FIG. 19A
FIG. 19B

Antibody titers in macaques immunized with polyvalent DNA and gp120 protein

FIG. 20A

FIG. 20B

Antibody titers in macaques immunized with polyvalent DNA and gp120 protein

FIG. 20C

FIG. 20D

Antibody titers in macaques immunized with polyvalent DNA and gp120 protein

FIG. 20E

Reciprocal serum dilution

FIG. 21A

FIG. 21B

FIG. 21C

FIG. 22A

FIG. 22B

FIG. 22D

FIG. 22E

FIG. 22C

ENDPOINT ELISA TITER

FIG. 23A

FIG. 23B

FIG. 23C

一

三

FIG. 24A

FIG. 24B

FIG. 24C

FIG. 24J

FIG. 24L

Spots per million PBMCs

FIG. 24G

FIG. 241

FIG. 24P

FIG. 24R

Gag peptide pools

FIG. 25A

FIG. 25B

FIG. 26A

FIG. 26B

FIG. 26C

Envelope Peptide Pool

FIG. 26D

Wild type Gag-Czm DNA sequence:

ATGGGTGCCAGAGCCGTCATAATTAAAGAGGGGGAAATTAGATAAAATGGGAAAAAATTAGGCTAACGCCAGGGGGAAAGA
AACGCTATATGATAAAACACCTAGTATGGCAAGCAGGGAGCTGGAAAGATTGCGCTTAACCCCTGGCCTTTAGAAACAT
CAGAAGGGCTGTAACAAATAATGAAACAGCTACAACCAGCTCTCAGACAGGAACGGGAAACTTAGATCATTATACAACA
CAGTAGCAACTCTCATATGTGTACATGAAAGGGTAGAGGTACGAGAACCCAAGGGATAGAGGAAGCTTAGACAGGAAGAAGAA
CAAACAAATTCAAGCAAAATAACAGCAAAACACAGCAAGGGCAAATTGGTACACCCAGAAACTATCACCTAGAACTTGAATGCAATGGTAAAGAAGAAA
GCAGAAATCTCCAAGGGCAAATTGGTACACCCAGAAACTATCACCTAGAACTTGAATGCAATGGTAAAGAAGAAA
AAGCTTTAGGCCAGAGGTAATACCCATGTTACAGCATTATCAGAAGGGGCCACCCCCACAAGATTAAACACCACTGTAA
TACAGTGGGGGACATCAAGCAGCCATGCAAATGTTAAAGATACTATCAATGAGGAGGTGCAAGAATGGGATAGATTAC
ATCCAGTGCATGGCAGGGCCTATTGCAACAGGCCAATGAGGAACCAAGGGAAAGTGTATAATAGCAGGAACCTAGTACCC
TCCAAGAACAGATAAGCATGGATGACAAGTAATCCCCTATCCAGTGGAGACATCTATAAAAGATGGATAATTCTGGGT
TAAATAAAATAGTAAGAATGTATAAGCCCTGTCAGCATTTGGACATAAAACAAAGGGCCAAGGAACCCCTTAGAGACTATG
TAGACCCGGTCTTCAAAACCTTAAGGGCTACACAAGAACGGCTACACAAGAAGTAAAGTAAATTGGATGACAGCATGTC
AAAATGCAAACCCAGATTGCAAGACCATTTTAAAGGATTGGACCAAGGGCTACATTAGAAGAAATGATGACAGCATGTC
AAGGAGTGGGGAGGACCTAGCCACAAAGCAAGAGTGTGGCTGAGGAATGAGCCAATGAGCCAACAAACAAATAGTGTAAACATACTGATG
CAGAAAAGCAATTAAAGGAAATAAAAGAAATGGTTAAATGTGTTAAATGTGTTAACTGTGTAAGGAAGGGCACATAGCCAGAAATTG
AGGGCCCTAGGAAAAAGGGCTGTTGGAAATGTTGGAAAGGAGGACACCAAATGAAAGACTGTACTGAGAGGCAGGCTAA
TTTTTAGGGAAAATTGGCCTTCCACAAAGGGAGGGCAAGGGCAAGCCAGGAAACAGCCACAGCCAC
AGCAGAGAGGCTTCAGGTTCGAGGGAGGAGACAACCCCGCTCCGAAGCAGGGAAAGACAGGGAAAGACAGGGCAATAA
ATCACTCTTGGCAGCGACCCCTGTCICAATAA (SEQ ID NO:5)

FIG. 27

FIG. 28

Codon optimized Gag, Czm DNA sequence:

```
ATGGGAGCCAGGCCAGAACGCAATCCTGAGAGGAGCAAACACTGGACAAAGTGGAGAAGATTAGACTGC GG  
CCTGGAGGAAGAACGGTACATGATCAAGCACCTGGTGTGGCCAGCAGAGCTGGAGCGAC  
CACTGAATCCTGGCTCCCTGGAGAACCGAGCGAAGGGATGCAAACAGATCATGAAGCAGCTCCAACCAGC  
TCTGCAGACCGGGCACTGAGGGAAACTGAGAACGGCTGTACAACACCGTGGCCACCCCTGTACTGGTGAC  
GAGGGCGTGGAAAGTGGGGACACCAAGGAGGGCCCTGGACCGGATCGAGGAAGAGCAGAACAGATC  
CAGCAAAGATCCAGCAGAACCCAACAGGCCGCTGATGGAAGGGTGAACACTACCCCATC  
GTCCAGAACCTCCAGGGCCAGATGGTGCACCAAGAAGCTGAGCCCTCGGAACACTGAACGCCTGGTCA  
AGGTGATCGAAGAGAACGGCCCTTCAGGCCCTGAAAGTGTGATCCCCATGGTTCAACAGCTGAGCGAAGGGC  
CACTCCTCAGGACCTGAAACACCAATGCTGAAACACCGTGGAGGGCCACCAAGGCTGCAATGCGATGCTG  
AAGGACACCATCAACGAGGAAGCTGCCGAGTGGGACAGACTGCACTCCACCGGGACCCCATCG  
CTCTGGCCAATGCGGGAACCTAGAGGAAGGGATAATCGCTGGCACTACCTCCACCGTGCAGAGCA  
GATCGCTTGGATGACCAAGCAACCCCTATCCCCCTGGCGACATCTACAAAGGGATCATCCTGG  
GCCTGAACAAGATCGTGAAGAATGTAAGACTCTGAGAGCCGAGGACATCAAGGAAAGGACCTAAGGA  
GCCCTCAAGGACTACGTCGACCCGGTTCTTAAGACTCTGAGAGCCGAGGACATCCCTGAAG  
AAGAACCTGGATGACCCGACACTGCTGGTCCAGAACCGCAACCCCGACTGCAAGAACCCAGGAGGTG  
CTCTGGGACCCGGCCACACTGGGAAGAGATGACAGCATGCCAGTCGGGAGGACCAAGCCA  
CAAAGCAAGAGGTGCTGCCGAGGGCCATGAGCCAGAACCAACAGCTGTAATATCCTGATGCGAGAAGAGC  
AACTTCAAAGGCAACAAAGGGATGGTCAACTGTGGCAAGGGACACATCGCACCGGA  
ACTGCAGAGCTCCACGGAAAGGGCTGCTGGAAGTGGGCAAGGAAGGACACCAAGATGAAGGACT  
GCACAGAGGGCAAGCAAACCTCCCTCGGAAGATCTGGCCAAGGCCAACAGGGAAAGACCCGGCAATT  
CCTGCAGAACAGACCTGAGGCCACCGCCCCACCTGCTGAGAGCTCCGGGTTCGAAGAGAACACACCC  
GCCCAAGCAGGGAGAGCAAGGAAGCAAGAGACTGACCAAGCCTGAAAGAGCCTGTTGGCAGCGAT  
CCCCTGAGCCAGTGA (SEQ ID NO:6)
```

Wild type gp120 Bal DNA sequence:

TTGGGGTCACAGTCTATTATGGGGTACCTGTGAAAGAACCAACCAACTCTATTTGTGCAATCAGATGCTA
AAGCATATGATACAGGGTACATAATGTTGGCACACATGCCACAGACCCAAACCAAGAAG
TAGAATTGGAAAATGTGACAGAAAATTAAACATGTGGAAAATAACATGGTAGAACAGATGCATGAGGATA
ATCAGTTTATGGATCAAAGCCTAAAGCCATGTGTAaaaATTAACACTCCACTCTGTGTTACTTTAAATTGCACTGATT
GAGGAATGCTACTAATGGGAATGACACTAATACCAACTAGTAGTACGGAGGGAAATGATGGGGAGGAGAAAATGAA
AAAATTGCTCTTCAAATCACCAACAAATAAGAGGTAAAGTGGCAAGAAAAGAAATATGCACTTTTATGAACTTG
ATATAGTACCAATAGATAATAATAGATAATAATAGATAATAATAGTTGATAAGTTGTAACACCTCAGTCATTACAGG
CCTGTCCAAGAATATCCTTTGAGCCAATTCCCACACATTATGTGCCCGGCTGGGTTGCAATTAAAGTGTAA
GATAAGAAGTCAATGGAAAAGGACCAATTGTCACAGCACAGTACAATGTACACATGGGATTAGGCCAGTA
GTAATCAACTCAACTGCTGITAATGGCAATTAGCAGAAAGAGGTAGTAATTAGTCCGAAAATTTCGGGAC
AATGCTAAACCATAATAGTACAGCTGAAATGAAATCTGTAGAAATAATTGTACAAAGACCCAAACAAATACAAGA
AAAAGTATACATAAGGACCGGGAGGCAATTATACAAACAGGAGAAATAATAGGAGATAAAAGACAAGCACA
TTGTAACCTAGTAGAGCAAATGGAAATGACACTTAAATAAGAGATAAGTATAAAATAAGAGAAACAATTGGGAA
TAAAACAATAGTCITTAAGCATTCTCAGGGGGACCCAGAAATTGTGACGCCAGTTAATTGGAGGGGA
ATTTTCTACTGTAATTCAACACAACACTGTTAAATAGTACTGTTACTGAAAGAGTCAAATAACACTGTAGAA
ATAACACAAATCACACTCCCATTGAGAAATAACAAATTATAAAACATGTGGCAGAAAAGTAGGAAGAGCAATGTA
TGCCCCCTCCCATCAGAGGACAATTAGATGTTICATCAAATATTACAGGGCTGCTATTAAACAAGAGATGGGGCCA
GAGGCAAAACAAAGACCGAGGTCTCAGACCTGGAGGAGATAATGAGGGACAATTGGAGAAGTGAATTATAAA
ATATAAAAGTAGTAAAATTGAACCAATTAGGAGTAGCACCCACCAAGGAAAGAGTGGGGAGTAA (SEQ
ID NO:7)

FIG. 29

Codon optimized gp120.Bal DNA sequence:

FIG. 30

Wild type gp120.B DNA sequence:

TTGGGGTCACAGTCTTATTATGGGTACCTGTGGAAAGAAGCAAACACCACTCTATTGTCATCAGATGC
TAAAGCATATGATAACAGAGGTACATAATGTTGGGCCACACATGCCCTGTGTAACCCACAGACCCCCGATCCACAAAG
AAGTAGAAATTGGAAAATGTGACAGAAAATTAAACATGTGGAAAATAACATGGTAGAACAGATGCATGAGG
ATATAATTAGTTATGGGATCAAGCCTAAAGCCATGTGTTAAATTAAACCCCACACTCTGTGTTACTCTAAATTGC
ACCAATCTGAGGAATGTACTAATACCAACGAGGAATGTGACTAAATACCCACGAGTAGTGAGACAATGTGAGGAGG
AGGGAGAAATAAAAAATTGCTCTTCAATAATCACCAACAGCAATAAGAGATAAAGGTGCAAAAAGAAATTGGCACT
TTTTATAAACITGATGTAGTACCAATAAGAAATGATACTAGCTATAGGTGATAAGTGTGTAATACCTCAG
TCCCTACACAGGCCCTGCCCAAAAGGTATCCCTTTGAGCCAATTCCCATACATTGGCTGGCTGGTTTGCAA
TTCTAAAGTGTAAGGATAAGAAGTTCAATGGAAACAGGACCATGTACAATGTCAGCACAGTACAATGCAACACA
TGGAAATTAAAGCCAGTAGTGTATCAACTCAACTGCTGTAAAAGCAGTCTAGCAGAAGAAGGTTAGTAATTAGG
TCCGCCAATCTCGACAAATGCTAAACCCATAATTAGTACAGCTGTAATGAAATCTGTACAAATGAAATTGTACAG
ACCCAAACAATAACAAAGAAATTACATATGGACCAGGCAGGCAATTTTATACAAACAGGAGAAATAAT
AGGAGATAAAAGACAAGGACATGTGTAACCTTAGTAGAACAAAATGGAAATGAAACTTAAAAAGGATAGTTATA
AAATTAAAGAGAGCAATAATGAGAATAAAACAAATAGCTTTAAATCAATCCTCAGGAGGGACCCAGAAATTGTA
TGCTCAGCTTAATTGGGGAAATTCTACTGTAAATCAACAAAACCTGTTAATAGTACCTGGAAATGTA
CTGAGTCAAATAAACACAGGAGATGACCAATCGTACTCCCATGCGAAATAAAACAAGTTATAAACATGTGGCA
AGAAGTAGGAAAGCAATGTTGCCCTCCCATCAGGGACAAATTAGATGCTCATCAAATTACAGGACTG
CTATTAACAAAGAGATGGGAAACAGIAACGAGACCAATACCAACCTGAGCTCAGACCTGGGGAGGAAATA
TGAAGGACAATTGGGAAAGTGAATTATAAAAGTAGTAAGAACCTAGGAAATTAGGAAATTAGGAAATTAGGAA
CAGGGCAAAGAGAAGAGTGGGGAGTAA (SEQ ID NO:9)

FIG. 31

FIG. 32

Codon optimized gp120.B DNA sequence:

CTGTGGGTGACCGTCTACTATGGGGTGCCTGTGGGAAGGAGGGCCAAACACCAACTCTGACGCCCTAAGGCCTACGAT
ACCGAGGGTCACAATGTGTGGCCACCCCACGCCCTGTGGAGCTGGAGAACGCTGACCGA
AAACTCAACATGTGGAAAGATAACATGGTGGAGCAGATGCAATGAGGATATCATTAAGCCTGTGGACCAGGCCCTAAGGCCCTGCG
TGAAGCTGACCCCCCTGTGTGACTCTGAACCTGAGGAATGATACTAACACCAGGAACGCCACTAATACGACCA
GCAGGGAGACCATGATGGAGGGCGAGATCAAGAACCTGCTCTCAACATCACCCACGAGCATCAGAGACAAGGTGCAAGAGGA
GTTTGCCCCCTTCTATAAACTGTATGTGGTGCCTATCGAGAAATGACAACCTACTAGCTACAGGCTGATCAGCTGCAACACCCAGCCTCTG
ACACAGGGCTGCCCAAGGGTGTCCCTCGAGCCAATTCCCCATCCACTTGTGCCCCGGCTGGRTTGCCTCATCTAAAGTGCAAGGGATA
AGAAAGTTCAACGGCACCGGTTCTGTACCAATGTCAGCACCGTACAATGCAACCCACGGCATTAAAGCCCCGGTGGTGAACACTCACTGC
TGCTGAACGGCAGCTGGCCAGGAAGAGGGTGGTGAATTGCTCCGCCAACCTCTGACAATGCTAAGACATAATCGTGTGCAGCTGA
ACGAGTCTGTGCAGATGAACCTGCACAGGGCCAAACAACAAATACCAAGGAAGAGTATCCATATCGTCCCGGCAGGGCATTCTATACC
ACCGGGAGATCATGGCGACATCAGGCAGGGCCACTGTAAACCTAGCAGGACAAAGTGGAAACGAGACTCTGAAGAGGATCGTGAT
CAAGCTGAGGGAGCAGTACGGAGAACAGACCATCGTCRITAATCAATCCAGGGGGGACCCCTGAGATGTGATGCTGAGCTCA
ACTGCGGGTGGGGACTTCTACTGTAACCTAACCAAGGTGTTAATAGCAGCTGGAAACGGCAGTGTCTAACAAACACCCGGTGTGATG
ACCCCCATCTGTGCTGCCATGCAAGGATCAAGCAGGGTGTGATCAACATGTGGCAGGAAGTGGCAAGGCCATGTATGCCCTCCCCATCAGG
GGTCAGATTAGGTGCAAGCAGCAATTACCGGCCCTGCTACTGACCGCGACGGGGTAACAGCAACGAGACCAACACCCACCGAGAT
CTCAGGGCTGGGGCAACATGAAAGGACAATTGGAGGAGCGAGTTACAAATAAGGGTGGATTACAAATAAGGGCTCTGGTA
TCGCCCTCACAGGGCCAAGAGGGTGGTGCAGTAA (SEQ ID NO:10)

Wild type gp120.Czm DNA sequence:

TTGTGGGTCACAGTCTATTATGGGTACCTGTTGGAAAGCAAAAACACTACTCTTGTGCATCAGATGCTA
AATCATATGAGAAAGAAGTGCATAATGTCCTGGCTACACATGCCCTGTACAGACCCCCAACCAAGAAA
TAGTTTGGAAATGTAACAGAAAATTAAACATGTTGAAATGACATGGGGATCAGATGCGATGAGGATAAA
TCAGTTATGGATCAAAGCCTAAAGCCATGTTGAAAGTGACCTCTGTCACCTTAATTTGTCAGAGGT
TAATGTTACCGAAATGTTAATAATGGCTGGTTAATAATACCACAAAATGTTAATAATAGCATGAATGGAGACAT
GAAAATGCTCTTCAACATAACCAAGAACTAAAGATAAGAAAAGAATGTTATGGTATGGACCTTTTAAACTT
GATAATGTTACCTTAATGAGACTGACGACTCTGAGACTGGCAACTCTAGTAAATATATAGATTAATAATTGTA
ATACCTCAGCCCTAACACAAGCCTGTCCAAGGTCTCTTTGACCCAATTCCCTATACATTATGGTCTCCAGCTGGT
TATGCGATTCTAAAGTGTAAATAAGACATTCAATGGACAGGACCATGCCATAATGTCAGCACAGTACAATGT
ACACATGGAAATTAGCCAGTGGTATCAACTCAACTCTGTTAAATGGTAGCCTAGCAGAAGGGATAATAATT
AGATCTGAAAATCTGACAAACAAATGTCAAAACAAATAATAGTACATCTTAATAGATCTATAGAAATTGTTGTTGTA
AGACCCAAACAAATAACAAGACAAAGTATAAGAAATAGGACCAAGGACAAACATTCTATGCAACAGGGAGACATAAT
AGGAGACATAAGACAAAGCACATTGIAACATTAGTAGGACTAACIGGGACTAACGTTACGAGGGTAAGGAACA
AATTAAGAGAACACCTCCCTAATAAAACATAACATTTAACCATCCCTCAAGGGGACCTAGAAATTACAACAC
ATAGCTTAAATGTTAGGGAGAAATTCTTCTATTGCAATACATGGGCCCTGTTAGTATAATTACAGAAAATAA
TACAGATGGTACACCCATCACACTCCATGCGAAATAAGACAAATTATAAAATATGGCAGGAAGTAGGGACGAGC
AATGTAAGGCCCCTCCATTGAAGGAAACATAGCATGTAATACTACAGGCTACTATTGGTTCGGGATGG
AGGAAGGACAAATGACACAGATAAGCACAATAAAACACAGATAATTGACACCTGCAGGAGGAGATATGGGGACAATT
GGAGGAGTGAATTGTTAATGTTATAAGTATAAGCTGGTAGAAATTAGCCATTGGGAATAGCACCCTACTGAGGCAAAAGG
AGAGTGGAGTAA (SEQ ID NO:11)

FIG. 33

FIG. 34

Codon optimized gp120.Czm DNA sequence:

TGGGGCAAACCTGTGGGTGACCGTGTACTACGGCGTGGAAAGGAGGCCAAGAACCCCTGTTCTGGCCAGCG
ACGCCAAAGGCTACAGAGGAAGGGAGGTGACAACGCTGTGGCCACCCACGGCCTGGTGGCCACCCACGGGACCCCCAGGA
GATCGTGTGGCAACGTGACCGAGAACATTCAACATGTGGAAGAACAGACATGGTGGACATGGTGGACCTGTGACGAGGAACATCATC
AGCCTGTGGACCAAGGCCCTGGGTGAAGCTGACCCCTGTGCGTGAAGCTGACCCCTGTGCGTGAACACTGCACCGAGGTGAACGT
GACCCGCAACCGTGAACAACAGCGTGGTGAACAAACACCACCAACCGTGAAGGACAAGGAGCTGAAGGAGAACGAGCTGAAGGAGAACGAG
CAGCTTCACATCACCCACCGAGCTGAAGGACAAGGAGAACGAGCTGAAGGAGAACGAGCAACTACCGCCGTGATCAACTGCAACACCCAGGCCCTGA
CTGAAACGAGACCGACAGCAGCAGGACGGCAACAGCAGCAAGTGAAGTACTACCGCCGTGATCAACTGCAACACCCAGGCCCTGA
CCCAGGCCCTGGCCCAAGGTGAGCTTCACCACTCTCCCATCCCCATTCACCAACTTGCGCCCGCTGGCTAACGGCATCTGAAGTGC
AACAAACAAGACCTTCAACGGCACCGGCCCCCTGGCAACAACTGTGAGCACCGTGCAGTGCACCCACGGCATCAAGGCCCTGG
TGAGGCACCCAGCTGCTGCTGAACGGCAGCGCTGGCCAGGGGACATCATCTCGCAGCGAGAACCTGACCAACAACG
GAAGACCATCATCGTGACCTGAAACCGCAGCATCGAGATCGTGTGGCTGCGTGGCCACCAACAAACAACACCCGCAGAGC
CCCATCGGGGGCCAGACCTCTAGGCCACCGGGGACATCATCGGGGACATCCGGCACATCCGGCACAGCTGGGAGGACTCCCAACAAAGAACATCACCTTC
ACCAACTGGACCAAGACCTGGCGAGGTGGCAACAAAGCTGGGAGGACTCCCAACAAAGAACATCACCTTC
CCAGGAGGGGGGAGACCTGGAGATCACCAACCCACAGCTCAACTGCCGGGAGTTCTTACTGCAACACCCAGCG
CCCTGTTCAACTACACCCAGAACACCCGACGGCACCCCATCACCCCTGGCGATCCGGCACATCCGGCAGATCATCA
ACATGTGGCAGGAGGTGGGGCCCATGTACCCCTGGGCAACATCGGCTGCAAGAGCGACATCACCG
CTGCTGCTGGTGGCCGAGCGGGGAGACCAACAGACAGCAACACCCAGAACATCCGGGGGGG
GACATGCGCGACAACACTGGCGAGCGAGCTGTACAAGTACAAGGTGGAGATCAAGGCCCTGGCATCGCCCCACCG
AGGCCAACAGGCCGTGGTGGAGCGAGGAGCTGA (SEQ ID NO:12)

Wild type gp120.E DNA sequence

TTGTGGGTCACAGTCTATTATGGGTACCTGTGGAAAGATGCAGATAACCACCTATTGTGCATCAGATGCCAA
AGCACATGAGACAGAAGTGCACAATGTCTGGGCCACACATGCCAGACGCCAACCCAAAGAAATA
CACCTGGAAAATGTAAACAGAAAATTAAACATGTGGAAAATAAAATGGTAGGCAGATGCCAGGAGATGTAATC
AGTTTATGGGATCAAGTCTAAAGCCATGTGTAAGTTAAACTCCTCTGCGTTACTTGACTTGACCAATGCTACT
CTGAATTGTACCAATTIGACCAATTIGCCAATGGCAACTAATGTCCTAACATAATAGGAAATCTAACAGATGAAG
TAAGAAAACCTGTTCTTTCATATGACCAAGAACCTAACAGAAGATAAGGAGAAAGGTCTATGCACCTTTATAAGCTT
GATATAGTACAAATTAAATAGTAGTGTGAGTATAGGTTAATAATTGTAATACTTCAGTCATTAAGCAGGCTGTCCAAA
GATATCCTTGTATCCAATTCCATACATTGTACTCCAGCTGGTTATGCGATTTAAAGTGTATAATGATAAGAAATT
CAATGGACAGGGCCATGTAAAAATGTCAGTCTAGTACAATGCAACATGGAAATAAGCCAGTGGTATCAACTCAA
TTGCTGTTAAATGGCAGTCTAGCAGAAAGAGATAATAATCAGCTCTGAAAATCTCACAAACAAATGCCAAAACCA
TAATAGTGCACCTTAATAATCTGTGAGAATATCAGTGTGACCCCTCCACCAATAACAGAACAGTATAACGTAT
AGGACCAAGGACAAGTATCTATAGAACAGGGACATAACAGGAGATAATAAGAAAAGCATATTGTGAGATAATGA
AACAAAATGGAATGAAAGCTTAAACAGGTAGCTGGAAATAAAAGAACACTTTAATAAGACAATAATCTTCAA
CCACCCCTCAGGAGGAGATCTAGAAATTACAAATGCATCATTTAAATTGTAGAGGGGAATTTTCTATTGGCATACAC
ACAACTGTTAATAGAACCTGGGAGAAAATGAAACCAGAGGGGGCTAATATCACACTCCATGCAAGATAAA
GCAAATTGTAACATGTGGCAGGGAGCAGGGCAAGCAATGTATGCTCCATCAGTGGAAATAATTAAAGTGTGA
TCAAATTACAGGAATACTATTGACAAGAGATGGTGGTCTAAATTGAGACCTCTCAGACCTGGAG
GAGGAATATAAGGACAATTGGAGAAGTGTGAATTATAAAAGTAGTACAAATTGAAACCAACTAGGAATAG
CCCCACCAAGGGCAAAGAGAAGTGTGGAGTAA (SEQ ID NO:13)

FIG. 35

FIG. 36

Codon optimized gp120.E DNA sequence:

CTGGGTGACCGTGTACTACGGCGTGTGGAAAGGACGCCAACCCCTGTCGCCAGGACGGCAAGG
CCCACGAGACCGGAGGTGCACAACAGTGTGGCCACCCACGCCCTGCGTGCACCCAGGAGATCCACCT
GGAGAACGTTGACCGAGAACCTCAACATGTGGAAAGAACAGATGGTGAGCAGATGCAGGAGGTGATCAGCCTGT
GGGACCAAGGGCTGAAGGCTGCGTGAAGGCTGACCCCTGTGCGTGAACCTGACCTGACCCAAACCTGAACCTG
CACCAACCTGACCAACGGCAACAAAGAACCCACCAACGTTGAGCAACATCATCGGCAACCTGACCGAGGTGCGCAACTG
CAGCTTCCACATGACCAACCCACCGAGCTGCGGACAAGAAGGAGAAGGAGAAGGTGTACGCCCTGTCTACAAGGCTGGACATCGTGCA
ATCAACAGCAGCGAGTACCGCCCTGATCAACTGCAACACCACCGGTGATCAAGCAGGCCCTGCCAAAGATCAGCTTCGAC
CCATCCCCATCCACTACTGCACCCCCTGCTGGCTACGCCATCCCTGAAGTGCACCGACAAGAACCTCAACGGCACCGGACC
CTGCAAGAACGTTGAGCAGCGCTGCACTGCAACCCACGGCAATCAAGCCCCCTGGTGAAGGCCAGCTGCTGTGAACGGCAG
CCTGGCCGAGGGAGGAGATCATCATCAGCAGCGAGAACCTGACCCAAACAGCCAAGACCATCATCGTGCACTGTGAACCAA
GAGCGTGGAGATCAGCTGCACCTGCCCAAGGCCAACACCCGGACCAACACCGGACCCAGCATCCGCATCGGACCTGCCAGGGTGTCTAC
CGCACCGGGGACATCCGCAAGGGCTACTCGAGATCAACGGAGACCAAGTGGAAACGGGGGACCTGGAGATC
CAGGTGGCCGGACATCAGCTGCAAGGGGACTCTAACAAAGACCATCATCTCCAGCCCTCCAGGGGAGGGGACCTGGAGATC
ACCATGCACCACTTCAACTGCAGAGGGCAAGCTTCTACTGCGACACCAACCCAGCTGTTCAACGGCACCTGGGGCGAGA
ACGAGACCCCGGAGGGCAGGAACATCACCCCTGCAAGGATCGTGAACATGTTGAGGGAGCTGGC
AGGCCATGTTACGCCCAACCCATCAGGGCATCATCAAGTGGCTGAGCAACATCACCCGGCATCTCTGGTGAACCCGGGACGG
CGGTGCCAACAAACAGGCCAGGGAGACCTTCAGGCCAGGGGGTGGCAACATCAAGGACAACACTGGGCCAGGAGCTGTA
CAAGTACAAGGTGGTGCAGATGAGCCCTGGGATCGCCCCACTCGGCCAAGGCCACTCGGGGATGGTGGAGTAA (SEQ ID
NO:14)

FIG. 37

Wild type gp120 A DNA sequence:

TGTTGGGTACACAGTCTATTATGGGGTACCTGTGTGGAAAGATGCAGAGACTACCTTATTGTGCATCAGA
TGCGAAAGCATATGATAACAAGTGCATAATGTCTGGCTACCGCATGCTCTGTACCTACAGACCCAAC
CCACAAAGAAATATATGGAAATGTGACAGAAAGGTAAACATGTGGAAAAATAACATGGTAGAGCAG
ATGCATAACAGATAATACTCAGTCIATGGGACCAAGCCTAAAACCATGGTACAGTTAACCCCTCTCGCGT
TACTTGAATGGTAGCTATAACATCCAATAATAGCAACCAAATAGCTAGTAACATGA
GAGAAGAAATAAAACTGCTCTTCAATATGACCACAGAATAAGGGATAAGAAATCGGAAGGTATT
CACTTTTATAAAACTGTAGTGTAGTACAAATTAAATGGTAATAACAGTAGTAATCTGTATAGATTAA
AATTGTAATACCTCAGGCCCTTACACAGGCTGTCCAAAGGTAAACCTTCAACGGCTTACAGGCTTACGCCAATT
TGCCCCAGGTGGTTATGGGATTCTAAATGTAATGATAAGGGTCAATGGAAACAGGGCTATGCCAAAAAT
GTCAGCACAGTGCACATGGCACACATGGAAATCAGGCCAGTAGTATCAACTCAACTGCTGTAAATGGCAGTT
TAGCGAAGGAAGGTAAATGATTAGATCTGAAAATTCACAAACAAATGTCAAAACATAATAGTACAAAC
TIAACGAGACTGTAACAAATAATGTACCAACAAATAACAGAAAAGTGTACGTATAGGACC
AGGACAAACATTCTATGCAACAGGTGATAATAAGGAGATAAGACAAGCACATTGTAATGTCAAGTGG
GTCACAATGGAAATAGAGCTTTACACCAAGGTAGTTAGAAATTACAACACATAAGGAGAAATTTCCTA
TTAAAAAACCTCTCAGGAGGGATTAGAAATTACAACACATAAGTGTAAATTGAGGAGAAATTTCCTA
TTGTAATAACATCAGGCCCTGTAAATAGTAATTTGGACACATAATGACACTGCGCAGCATGAAACCAAAATGAC
ACTATAACACTCCCATTGAGAAATAAGGCAATTATAAAATATGTGGCAGAGGTAGGACAAGCAATATA
GCCCTCCCATTCAGGAGTAATAAGGTGTGAATCAAACATTACAGGACTAATTTAACAGAGATGGTG
GGGGTAACATCAATGCAAAGTCAAATCTCAGACCTGGAGGGAGATATGGGACAATTGGAGAAGTG
AATTATAAGTATAAGGTAGTAAGAATTGAACCAAGGGACTAGGAGTAGCACCACCAAGGCAAAGAGAAAG
TGGTGGAGTAA (SEQ ID NO:15)

FIG. 38

Codon optimized gp120.A DNA sequence:

CTGTGGGTGACCGTGTACTACGGCGTGGCCCGTAGGACGCCAGGGACCCCTGTTCTGGCCAGGGACGCCAAGGCC
TACGACACCGAGGTGCACAACGTTGCCCCACGGTGGGGCAACGGCTGGCTGCGTGGCCACCCGACCCGACCC
AACGTGACCGAGGATTCAACATGTGGAAGAACAAACATGGTGAGCAGATGCACACCGACATCATCGCTGTGGACCA
GAGCCTGAAAGCCCTGCGTGCAGCTGACCCCCCTGTGGCTGACCCCTGGACTGCAGCTAACACATCACCAAC
AGCATCACCAACAGCAGCGTGAACATGCGCGAGGAGATCAAGAACATGCAGCTAACATGACCCGAGCTGGGACAA
GAACCGCAAGGTGTACAGGCTGTTCTACAAGGCTGGACGTTGCAAGATCAACAAACGGCAACAAACAGGCAA
CCTGATCAACTGCAACACCAAGCCCTGACCCAGGCTCTGGCCAAAGGTGACCTTGAGGCCATCCCCATCCGCTACTGC
CCGGCGGCTACGCCATCCTGAAGTGCAACAGACAAGGAGGTCAACGGCACCCGGCTGTGCAAGAACGTGAGGCC
TGCACCCACGGCAACCGGCATCGGCCCCGTGTTGAGCACCCAGCTGCTGAACGGCAGCCIGGGAGGGCAAGGTGA
AGCGAGAACATCACCAACACGTTGAAAGAACATCATCGTGCAGCTGAACCGAGACCGTGACCATCAACTGCACCC
AACAAACACCCGCAAGAGCGTGCACATGGCCCCGGCAGACCTTCTACGCCACCGGGGACATCATCGGCACATCCGCC
GCCCACTGCAACCGTGAACGGCAGGCCAGTGGAAACGGCCCTGCACCAAGGTGGTGGCCAGCTGGCAGTA
ACCATCATCTICAAGAACAGCAGGGGGGAGATCACCAACGGCTGAGATCAACTGCGCGAGTCTCTACT
GCAACACCCAGGGCCCTGTTCAACAGCAACTGGACCCACAACGACACGGCCAGCATGAAGGCCAACGACACC
CCTGGCGCATCAAGCAGATCATCAACATGTGGCAAGGGCCAGGGCCATCTACGCCCTCCATCCAGGGCGTGA
CTGCGAGAGCAACATCACCGGCCTGATCCTGACCCGGGAGGGCAACATCAACAGAGGCCAGATCTICGCC
CGGGGACATGCGCGACAACGGCTGTTACAAGGTACAAGGAGCTGTCAGGGCCATCGAGCCCCCTGGGTGG
CACCAAGGCCAAGGCCAAGGGAGTGGAGTAA (SEQ ID NO:16)