EDEXCEL STATISTICS S1 (6683) - NOVEMBER 2002 PROVISIONAL MARK SCHEME

Question Number		Scheme	Marks	\$
1.	(a) (b)	Statistical models allow problems to be solved without the need to construct a full-scale physical model, saving time/expense. They allow parameters to be changed and refinements to be made quickly. (i) Normal; (ii) Discrete uniform	B2, 1, 0 B1, B1 (4 ma	(2) (2) arks)
2.	(a) (b)	$P(\text{all only arts}) = \frac{60}{125} \times \frac{59}{124} \times \frac{58}{123} = \frac{3422}{31775} = 0.10769$ $P(\text{exactly one only science}) = 3 \times \frac{40}{125} \times \frac{85}{124} \times \frac{84}{123}$ $= \frac{2856}{6355} = 0.44940$	B1 M1 A1 A1 B1 M1 A1 (7 ma	(3)
3.		$P(A \cap B) = P(A)P(B) = 0.25 \times 0.30 = 0.075$ $P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.25 + 0.30 - 0.075$ $= 0.475$ $P(A \mid B') = \frac{P(A \cap B')}{P(B')} = \frac{P(A) - P(A \cap B)}{1 - P(B)}$ $= \frac{0.25 - 0.075}{1 - 0.3}$ $= 0.25$	M1 A1 M1 A1 M1 A1ft A1 (8 ma	(2) (2) (4)

EDEXCEL STATISTICS S1 (6683) - Nov 2002 PROVISIONAL MARK SCHEME

Question Number		Scheme	Marks
4.	(a)	P(L > 50.98) = 0.025	B1
		$P\left(Z > \frac{50.98 - \mu}{0.5}\right) = 0.025$	M1 A1
		$\therefore \frac{50.98 - \mu}{0.5} = 1.96$	M1 A1 (5)
		$50.98 \qquad \therefore \mu = 50 (*)$	
		49.25 50.75	
		$L \sim N (50, 0.5^2)$	
	(b)	$P(49.25 < L < 50.75) = P\left(\frac{49.25 - 50}{0.5} < Z < \frac{50.75 - 50}{0.5}\right)$	M1
		= P(-1.5 < Z < 1.5) -1.5 & +1.5	A1
		$= 2\Phi(1.5) - 1$ = 0.8664	M1 A1 (4)
	(c)	$P(Both) = (1 - 0.8664)^2$	M1
		=0.01784	A1 (2) (11 marks)
5.	(a)	$S_{ss} = 108.07875$; $S_{st} = 129.1675$	B1; B1
		$q = \frac{S_{st}}{S_{ss}} = \frac{129.1675}{108.07875} = 1.1951239$	M1, A1
		$p = \frac{65.0}{8} - (1.951239) \times \frac{48.5}{8} = 0.879561$	M1, A1
	(1)	$\therefore t = 0.879561 + 1.1951259S$	A1 ft (7)
	(b)	y-20 = 0.879561 + 1.1951239(x-6) $\therefore y = 13.709 + 1.195x$	M1, A1 ft A1 (3)
	(c)	0.943; the pmcc is an index (no units) and is not affected by linear	B1; B1 (2)
		transformations of either/both variables	(12 marks)
			(12 marks)

EDEXCEL STATISTICS S1 (6683) - NOVEMBER 2002 PROVISIONAL MARK SCHEME

Question Number		Scheme	Marks
6.	(a)	$\alpha + \beta = 0.5$ $-2\alpha + 2\beta = -0.2$ $\alpha = 0.3, \beta = 0.2$	B1 M1 M1 A1; A1 (6)
	(b)	F(0.8) = 0.6	B1 ft (1)
	\ /	$E(X^2) = (4 \times 0.3) + + (4 \times 0.2), = 2.4$	M1, A1
		:. Var $(X) = 2.4 - (-0.2)^2$, = 2.36	M1, A1 (4)
	` /	E(3X-2) = 3E(X) - 2, = -2.6	M1, A1 ft (2)
	(e)	Var(2X+6) = 4 Var(X), = 9.44	M1, A1 ft (2) (15 marks)
7.	(a)	Mode = 78	B1 (1)
	\ /	$Q_1 = 56$; $Q_2 = 70$; $Q_3 = 78$	B1; B1; B1 (3)
	(c)	$(Q_3 - Q_1) = 22$	
		$Q_1 - 1.0(Q_3 - Q_1) = 34 \Rightarrow 31 & 31 \text{ are outliers}$	M1 A1
	(<i>d</i>)	$Q_3 + 1.0 (Q_3 - Q_1) = 100 \Rightarrow \text{no outliers}$ (accurate sketch on graph paper required)	A1 (3)
	<i>(a)</i>	boxplo	M1
		scales and labels	B1
		Q_1, Q_2, Q_3	A1
		30 40 50 60 70 80 90 100 Aptitude score 31, 32, 34 (39), 92	A1 (4)
	(e)	$\mu = \frac{3363}{50} = 67.26$	B1
		$\sigma^2 = \frac{238305}{50} - (67.26)^2 = 242.1924$	M1
		$\therefore \ \sigma = \sqrt{242.1924} = 15.56253$	A1 (3)
	<i>(f)</i>	$(Q_3 - Q_2) < (Q_2 - Q_1)$, i.e. $8 < 14 \implies$ negative skew	M1, A1
	-	Mean $<$ Median $<$ Mode, i.e. $67.26 < 70 < 78 \Rightarrow$ negative skew	M1, A1 (4)
			(18 marks)