Detecting Economic Crime using Deep Autoencoder Neural Network

A capstone project for the Data Science Immersive Course Conducted by General Assembly, Singapore

Amir Yunus

Economic Crime

Understanding the prevalence of fraud

49% of respondents said that their organisation has been a victim of fraud or economic crime in the past 24 months

The median loss of a single financial statement fraud case is USD 150,000.

The duration from the fraud perpetration till its detection was 18 months.

Association of Certified Fraud Examiners

Ex-Woodbridge Group CEO Gets 25 Years in \$ 1.3b Fraud 16 Oct 2019

Singaporean Faces 30 Years for \$5m Cryptocurrency Fraud 10 Oct 2019

Atlantic City Mayor Resigned for Stealing \$87k

Ex-Nissan CEO Charged with Fraud of \$140m 23 Sept 2019

Telemedicine CEO Pleads Guilty to \$424m Fraud Scheme 09 Sept 2019

Relationship of Actor and Victimised Organisation

Internal actors are the main perpetrators of fraud

Fraction of Internal Actors Conducting Economic Crime

Internal actors comitting fraud are becoming more common

Traditional Approach

Anomaly detection

Naïve Bayes

Bay, et al. & McGlohon, et al.

User Profiling

Kahn, et al. & Islam, et al.

Benford's Law

Debreceny and Gray & Poh-Sun, et al.

Univariate and Multivariate Clustering Jans, et al.

Euclidean Distance and Extreme Value Theory Argyrou, et al.

Deep Learning Approach

Anomaly detection

Replicator Neural Network Hawkins, et al. & Williams, et al.

Shallow Autoencoder Neural Network Zhou and Paffenroth

Deep Autoencoder for Image & Video Forgery Cozzolino and Verdoliva

Deep Autoencoder for Money Laundering Paula, et al.

Adversarial Autoencoder for Accounting Schreyer, et al.

Evaluate Dataset

Detecting anomalies

Architecture

Deep Autoencoder Neural Network

Layer (type)	Output	-	Param
input_1 (InputLayer)	(None,		0
dense_1 (Dense)	(None,	512)	316928
dense_2 (Dense)	(None,	256)	131328
dense_3 (Dense)	(None,	128)	32896
dense_4 (Dense)	(None,	64)	8256
dense_5 (Dense)	(None,	32)	2080
dense_6 (Dense)	(None,	16)	528
dense_7 (Dense)	(None,	4)	68
dense_8 (Dense)	(None,	2)	10
dense_9 (Dense)	(None,	4)	12
dense_10 (Dense)	(None,	16)	80
dense_11 (Dense)	(None,	32)	544
dense_12 (Dense)	(None,	64)	2112
dense_13 (Dense)	(None,	128)	8320
dense_14 (Dense)	(None,	256)	33024
dense_15 (Dense)	(None,	512)	131584
	/27	610)	317034

Model Loss Train Validation 0.0335 0.0330 0.0320 0.0315 0.0310 20 60 80 Epoch 100 120 140 40 160 Ó

Results for Deep Autoencoder

	Train Dataset	Test Dataset	Clean Dataset	
True Positive	100	6	0	
False Positive	6	0	6	
False Negative	0	0	0	
True Negative	532,903	33,308	33,301	
Recall	1.00	1.00	N/A	
Precision	0.943	1.00 N/A		
F ₁ -Score	0.971	1.00	N/A	

Baseline Evaluation

Comparing with Machine Learning

Deep Autoencoder vs. Unsupervised Machine Learning

	Deep Autoencoder	kMeans	Local Outlier Factor	
True Positive	100	0	15	
False Positive	6	330,243	92	
False Negative	0	100	85	
True Negative	532,903	202,666	532,817	
Recall	1.00	0.00	0.150	
Precision	0.943	0.00	0.140	
F₁-Score	0.971	0.00	0.145	

Anti-Fraud System

../data/train.csv

../data/test.csv

Ready for a fraud scan?

Quickly scan your dataset, run a full scan, or customise it the way you want

Quick Scan

Deep Scan

Custom Scan

Anti-Fraud System

Secure

../data/train.csv

../data/test.csv

Upload dataset

Supported formats (csv, txt)

Browse

Anti-Fraud System

Secure

Scan more datasets

../data/train.csv

../data/test.csv

Estimated time left 10 minutes

../data/train.csv

../data/test.csv

Scan completed

Review the following 6 journal entries

#	BELNR	WAERS	BUKRS	KTOSL	PRCTR	BSCHL	HKONT	DMBTR	WRBTR
21912	19163	C8	C83	C3	C33	A1	B2	53,035	0
9139	29752	C8	C80	C3	C33	A1	B2	815,939	0
14395	377133	C8	C88	C3	C33	A1	B2	5,689,666	0
2997	241104	C8	C81	C3	C32	A1	B2	28,312	0
22545	90486	C8	C84	C3	C33	A1	B2	1,059,803	50,640
13157	515582	C8	C87	C3	C32	A1	B2	860,034	56,881

Export Results

Done

../data/train.csv

../data/test.csv

Custom Scan

Anomaly probability

0.0002

Threshold score

0.019

Patience level

100

Restore Default

Apply and Scan

Thank You!

Let's Connect

Amir Yunus

linkedin.com/in/Amir-Yunus github.com/AmirYunus

Download the whitepaper at: bit.ly/amir-yunus-capstone

