The mbbefd Package: A Package for handling MBBEFD exposure curves in R

Giorgio Alfredo Spedicato, Ph.D C.Stat ACAS

Abstract

The package models MBBEFD distribution providing density, quantile, distribution and random generation functions. In addition it provides exposure curves for the MBBEFD distribution family.

Keywords: mbbefd, exposure curves, reinsurance, non-life insurance.

1. Introduction

The **mbbefd** package provides function to use Maxwell-Bolzano, Bose-Einstein, Fermi-Dirac probability distributions, introduced by (BERNEGGER 1997), within R statistical software (R Core Team 2013).

Such kind of distributions are widely used in the pricing of non-life reinsurance contracts and yet they are not present in any R package.

The paper is structured as follows: Section 2 discusses review the theory (mathematics and actuarial application) of MBBEFD distributions, Section 3 shows the package's features, applied examples are shown in Section 4 while the issue of fitting MBBEFD curves to empirical data is discussed in Section 5.

2. Exposure curve review

Within actuarial jargon, an exposure curve is a distribution that shows the ratio between the expected limited loss at various limits and the expected unlimited loss. They are usually to rate large commercial risks' exposures and non-proportional reinsurance treaties. In mathematical notation, if IV is the insured value and d the ratio of loss x to IV the exposure curve G(d) is defined as Equation 1 displays.

$$G(d) = \frac{E\left[\min(d * IV, x)\right]}{E[x]} = \frac{\int_0^{d*IV} (1 - F(x)) dx}{\int_0^\infty x * f(x) dx} = \frac{\int_0^{d*IV} S(x) dx}{\int_0^\infty S(x) dx}$$
(1)

Whilst losses normally lie in the interval $0, \ldots, \infty$ for the rest of the paper it will be assumes x to represent a normalized loss in the interval $0, \ldots, PML$, being PML the so - called maximum probable loss (in other words, the maximum loss it is thought to can happen). Therefore

x would represent a percentage loss with respect to a maximum, i.e., a destruction rate.

BERNEGGER (1997) and ? provide a discussion on the actuarial theory regarding such curve. In particular, the curves discussed by BERNEGGER (1997) are of the form expressed by Equation 2.

$$\begin{cases}
G(x) = \frac{\ln(a+b^x) - \ln(a+1)}{\ln(a+b) - \ln(a+1)} \\
x \in [0,1]
\end{cases} \tag{2}$$

It can be shown that G(0) = 0, G(1) = 1, $dG(d) \ge 0$ and $ddG(d) \le 0$. Using some calculus on Equation 2 it can be shown that the expected value is equal to $\mu = \frac{1}{dG(0)}$.

The probability of a total loss, p, is expressed by Equation 3.

$$p = 1 - F(1^{-}) = \frac{1}{g} = \frac{dG(1)}{dG(0)} = \frac{(a+1) * b}{a+b}$$
(3)

3. The MBBEFD class and its related package

R> library(mbbefd)

The mbbefdExposure function evaluates the exposure curve for a given destruction rate x, given either a and b, or b and g. Figure 2 displays the destruction rate by level of x, for an exposure cuve of parameters a=0.2 and b=0.04

4. Applied examples

The curve can be use to price property coverage and associate reinsurance treaties. Suppose a property expected loss to be 40K, MPL to be 2MLN. An XL coverage is available with a retention of 1Mln. The exposure curve that characterize the property is the usual one. Therefore the percentage of loss net and ceded is determined as it follows

R> net<-mbbefdExposure(x=1/2, a=0.2,b=0.04)*40000
R> ceded<-40000-net</pre>

and the expected loss as a percentage of total insured value is

R> expectedLoss<-1/dG(x=0,a=0.2,b=0.04)*40000 R> expectedLoss

[1] 24000

The probability of a maximum loss for such exposure curve is obtained evaluating the survival function at $\mathbf{1}$

MBBEFD Exposure Curve for a=0.2, b=0.04

Figure 1: Exposure curve example

R> pTotalLoss<-1-pmbbefd(x=1,a=0.2,b=0.04)
R> pTotalLoss

[1] 0.2

Quantile functions, distribution functions and density functions are defined as well. For example, the 60th percentile of the distribution above defined (i.e., how bad can be in 60% of cases in terms of destruction rate) is

R > qmbbefd(p=0.6, a=0.2, b=0.04)

[1] 0.7153383

whilst a loss worse than 80% of IV could happen in

R > 100*(1-pmbbefd(x=0.8, a=0.2, b=0.04))

[1] 33.0895

cases out of 100.

It would be possible to simulate variates from the MBBEFD distribution using the random generation command rmbbefd.

R> simulatedLosses<-rmbbefd(n=10000,a=0.2,b=0.04)
R> mean(simulatedLosses)

[1] 0.597828

R> sum(simulatedLosses==1)/length(simulatedLosses)

[1] 0.1949

Finally another way to show the probability of total loss to be greater than zero is to show that the (numerical) integral between 0 and 1 of the density function is lower than 1, that is $1 - F(1^-)$.

R> integrate(dmbbefd,lower=0, upper=1, a=0.2, b=0.04)

0.8 with absolute error < 2.4e-13

5. Fitting MBBEFD curves

TO BE COMPLETED

References

Figure 2: Exposure curve example

BERNEGGER S (1997). "THE SWISS RE EXPOSURE CURVES AND THE MBBEFD DISTRIBUTION CLASS." Astin Bulletin, 27, 99–111.

R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Affiliation:

Giorgio Alfredo Spedicato StatisticalAdvisor Via Firenze 11 20037 Italy

