Business Case

ML para gerenciamento de portifólio

Rafaela Medeiros

O desafio

- A partir de uma série histórica, criar modelos de previsão de valor de venda e tempo esperado até ela.
- Avaliar e selecionar o melhor modelo para previsão.
- Aplicar o resultado em um novo banco de dados (Df), gerando variáveis confiáveis para estimação.
- Implementar modelos para alocação de um portifólio de 150 milhões, otimizando o valor esperado do retorno por dia:

$$E_r = \frac{E_{valor} - V_{compra}}{E_{tempo}}$$

Estratégia de Investigação

Pressupostos

- Ambos os Dfs espelham movimentos causais.
- O mecanismo gerador é o mesmo.
- Existe um preço ótimo para venda por unidade.

Estratégia

- Análise exploratória.
- Definir uma teoria adequada para a modelagem.
- Preço-venda ótimo encontra-se próximo à mediana do tempo de venda.

Análise Exploratória

"The problem with confounding signal with noise is that noise is, by definition, unpredictable." (PRADO, 2019)

Signal Ratio

Variable	Simulation	Target
rooms	1.61E-16	-9.71E-17
garages	-1.83E-16	2.12E-17
useful area	-4.25E-17	-8.23E-17
latitude	1.11E-13	-3.45E-15
longitude	-1.04E-13	-7.40E-14
value	1.01E-16	5.72E-17
interior quality	7.56E-17	-1.63E-16
time on market	-6.77E-17	_
sold	-7.11E-02	_

Correlações

Implicações

Figura: 01 - ML procurando pelo sinal

Figura: 02 - Overfitting

Fatores - PCA

- Pode ser usado para selecionar variáveis.
 - Não disitingue entre noise e signal.

Métodos

- Três variáveis: estimadores mais precisos e menos overfitting.
- Cluterização: "localização"e "qualidade".
- Estimar tempo usando todas as obs. de simulação.
- Usar Kaplan-Meier para calcular o tempo ponderado pela prob. de venda para simulação.
- Estimar preço apenas para as obs. no intervalo de 90-150 dias.

Clusters Simulations - HDBSCAN

Rafaela Medeiros Business Case 14/24

Clusters Target - HDBSCAN

Clusters Price - HDBSCAN

Modelos

$$Time = area + quality + y$$

 $Price = area + quality + y$

• Kernel Nearest Neighbors, Decision Tree, Random Forest e XgBoost

Rafaela Medeiros Business Case 17 / 24

Comparação - Time

RMSE: 39.89 33.14 33.02 44.90

Comparação - Price

RMSE: 451,605.24 498,262.34 469,276.70 995,176.51

Resultados

Alocação de Portfólio

Condições

- Retorno esperado total maior que o RMSE estimado.
- Valor esperado sem reforma maior que o valor de compra.
- Diferença de preço positiva após reforma.
- Retorno/dia positivo

Conj. Selecionado

- 94 unidades
- Valor total de compra R\$115,640,476.00
- Retorno estimado
 R\$ 73,397,985.50
- Tempo médio para venda 58 dias

