⊢ Sistemas deductivos

Paradigmas de Lenguajes de Programación

Departamento de Ciencias de la Computación Universidad de Buenos Aires

17 de septiembre de 2024

Vamos a ver

- Sistemas deductivos
- 祥 Deducción natural
- Lógica intuicionista vs clásica
- Proposition de Weakening por inducción en la derivación

Sistemas deductivos 1 / 11

Lógica proposicional

Sintaxis

$$\tau, \sigma ::= P \mid \neg \tau \mid \tau \land \sigma \mid \tau \lor \sigma \mid \tau \Rightarrow \sigma$$

Valuaciones

Una valuación es una función $v: \mathcal{V} \to \{V, F\}$.

Una valuación v satisface una proposición τ (y decimos que $v \vDash \tau$) cuando:

$$\begin{array}{ccccc} v \vDash P & \text{sii} & v(P) = V \\ v \vDash \neg \tau & \text{sii} & v \not\vDash \tau \\ v \vDash \tau \lor \sigma & \text{sii} & v \vDash \tau & \text{6} & v \vDash \sigma \\ v \vDash \tau \land \sigma & \text{sii} & v \vDash \tau & \text{y} & v \vDash \sigma \\ v \vDash \tau \Rightarrow \sigma & \text{sii} & v \not\vDash \tau & \text{6} & v \vDash \sigma \end{array}$$

Sistemas deductivos 2 / 11

Lógica proposicional

Valuaciones

Una valuación v satisface una proposición τ (y decimos que $v \vDash \tau$) cuando:

$$\begin{array}{cccccccc} v \vDash P & & \mathrm{sii} & & v(P) = V \\ v \vDash \neg \tau & & \mathrm{sii} & & v \not\vDash \tau \\ v \vDash \tau \lor \sigma & & \mathrm{sii} & & v \vDash \tau & \text{\'o} & v \vDash \sigma \\ v \vDash \tau \land \sigma & & \mathrm{sii} & & v \vDash \tau & \text{\'o} & v \vDash \sigma \\ v \vDash \tau \Rightarrow \sigma & & \mathrm{sii} & & v \not\vDash \tau & \text{\'o} & v \vDash \sigma \end{array}$$

Equivalencia de fórmulas

au es lógicamente equivalente a σ cuando $v \vDash \tau$ sii $v \vDash \sigma$ para toda valuación v.

Ejercicio 2

Mostrar que cualquier fórmula de la lógica proposicional que utilice los conectivos \neg (negación), \land (conjunción), \lor (disyunción), \Rightarrow (implicación) puede reescribirse a otra fórmula equivalente que usa sólo los conectivos \neg y \lor .

Sistemas deductivos 3 / 11

Sistemas deductivos

- Definidos por un conjunto de reglas
- Las reglas son de la forma:

$Premisa_1$	$Premisa_2$		$Premisa_n$	Nombre de
Conclusión				la regla

 \rightarrow Un caso particular: n=0

Conclusión Nombre de la regla

Por ejemplo,

Sistemas deductivos 4 / 11

Un sistema deductivo: deducción natural

Secuentes:

Fórmula₁,..., Fórmula_n \vdash Fórmula_{n+1}

Por ejemplo...

$$P,Q \vdash P \land Q$$

Una regla de deducción

$$\frac{\mathsf{Premisa}_1 \quad \mathsf{Premisa}_2 \quad \dots \quad \mathsf{Premisa}_n}{\mathsf{Conclusion}} \quad \underset{\mathsf{la \ regla}}{\mathsf{Nombre \ de}}$$

$$\frac{\Gamma \vdash \tau \quad \Gamma \vdash \sigma}{\Gamma \vdash \tau \land \sigma} \land_i \quad \frac{}{\Gamma, \tau \vdash \tau} \text{ ax}$$

intuitivamente se puede pensar que expresa:

$$\begin{array}{c}
\mathsf{Premisa}_1\\\mathsf{Premisa}_2\\\vdots\\\mathsf{Premisa}_n\end{array}
\right\} \implies \mathsf{Conclusión}$$

$$\left. \begin{array}{c} \Gamma \vdash \tau \\ \Gamma \vdash \sigma \end{array} \right\} \implies \Gamma \vdash \tau \land \sigma$$

$$\text{True} \implies \Gamma \cdot \tau \vdash \tau$$

La demostración de un secuente es un árbol formado por reglas de deducción:

$$\frac{\overline{P,Q \vdash P} \text{ ax } \overline{P,Q \vdash Q} \text{ ax}}{P,Q \vdash P \land Q} \stackrel{\text{ax}}{\land_i}$$

Sistemas deductivos 5 / 11

Deducción natural

Reglas básicas

$$\frac{\Gamma \vdash \tau \quad \Gamma \vdash \sigma}{\Gamma \vdash \tau \land \sigma} \land_{i} \qquad \frac{\Gamma \vdash \tau \land \sigma}{\Gamma \vdash \tau} \land_{e_{1}} \qquad \frac{\Gamma \vdash \tau \land \sigma}{\Gamma \vdash \sigma} \land_{e_{2}} \\ \frac{\Gamma}{\Gamma \vdash \tau} \Rightarrow \sigma \Rightarrow_{i} \qquad \frac{\Gamma \vdash \tau \Rightarrow \sigma \quad \Gamma \vdash \tau}{\Gamma \vdash \tau \Rightarrow \sigma} \Rightarrow_{e} \\ \frac{\Gamma \vdash \tau}{\Gamma \vdash \tau \lor \sigma} \lor_{i_{1}} \qquad \frac{\Gamma \vdash \sigma}{\Gamma \vdash \tau \lor \sigma} \lor_{i_{2}} \qquad \frac{\Gamma \vdash \tau \lor \sigma \quad \Gamma, \tau \vdash \rho \quad \Gamma, \sigma \vdash \rho}{\Gamma \vdash \rho} \lor_{e} \\ \frac{\Gamma}{\Gamma \vdash \tau} \vdash_{\neg \tau} \neg_{e} \\ \text{Lógica intuicionista (LJ)} \qquad \frac{\Gamma \vdash \neg \tau}{\Gamma \vdash \tau} \vdash_{e} \\ \frac{\Gamma \vdash \tau \quad \Gamma \vdash \neg \tau}{\Gamma \vdash \tau} \vdash_{e} \\ \frac{\Gamma \vdash \tau \quad \Gamma \vdash \neg \tau}{\Gamma \vdash \tau} \vdash_{e} \\ \frac{\Gamma \vdash \neg \tau}{\Gamma \vdash \tau} \vdash_{e} \\ \frac{\Gamma}{\Gamma} \vdash_{\tau} \qquad \neg_{e} \\ \frac{\Gamma$$

Sistemas deductivos 6 / 11

Reglas intuicionistas
$$\frac{\Gamma \vdash \tau}{\Gamma \vdash \neg \neg \tau} \neg \neg_i \qquad \frac{\Gamma \vdash \tau \Rightarrow \sigma \quad \Gamma \vdash \neg \sigma}{\Gamma \vdash \neg \tau} \text{ MT}$$
 Reglas clásicas
$$\frac{\Gamma, \neg \tau \vdash \bot}{\Gamma \vdash \tau} \text{ PBC} \qquad \frac{\Gamma}{\Gamma \vdash \tau \vee \neg \tau} \text{ LEM}$$

- $\stackrel{*}{\leftarrow}$ Veamos que las reglas $\neg \neg_e$, PBC y LEM son equivalentes.
- 🡬 Todas las reglas derivadas, incluyendo las que hayan probado en la guía de ejercicios, pueden usarse para resolver otros ejercicios y los parciales.

7 / 11 Sistemas deductivos

Deducción natural en lógica intuicionista

Ejercicio 6

Demostrar en deducción natural que las siguientes fórmulas son teoremas sin usar principios de razonamiento clásicos salvo que se indique lo contrario:

- \rightarrow Reducción al absurdo: $(P \Rightarrow \bot) \Rightarrow \neg P$
- \uparrow Introducción de la doble negación: $P \Rightarrow \neg \neg P$
- \rightleftharpoons Eliminación de la triple negación: $\neg\neg\neg P \Rightarrow \neg P$
- de Morgan (II): $\neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$ Para la dirección \Rightarrow es necesario usar principios de razonamiento clásicos.
- Arr Conmutatividad (\lor): $(P \lor Q) \Rightarrow (Q \lor P)$

Sistemas deductivos 8 / 11

Deducción natural

Ejercicio 7

Demostrar en deducción natural que vale $\vdash \sigma$ para cada una de las siguientes fórmulas. Para estas fórmulas es imprescindible **usar lógica clásica**:

- \rightleftarrows Absurdo clásico: $(\neg P \Rightarrow \bot) \Rightarrow P$
- Arr Ley de Peirce: $((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$
- \Rightarrow Análisis de casos: $(P \Rightarrow Q) \Rightarrow (\neg P \Rightarrow Q) \Rightarrow Q$

Sistemas deductivos 9 / 11

Debilitamiento o weakening

Ejercicio 8

Probar la siguiente propiedad:

Si $\Gamma \vdash \sigma$ es válido entonces $\Gamma, \tau \vdash \sigma$ es válido.

Tip: utilizar inducción sobre el tamaño de la derivación.

Por ejemplo,

$$\frac{\overline{P,Q \vdash P} \overset{\mathsf{ax}}{\xrightarrow{P,Q \vdash Q}} \overset{\mathsf{ax}}{\wedge_i}}{\underbrace{P,Q \vdash P \land Q} \vee_{i_1}} \overset{\mathsf{ax}}{\vee_i} \xrightarrow{P} \frac{\overline{P,Q,S \vdash P} \overset{\mathsf{ax}}{\xrightarrow{P,Q,S \vdash Q}} \overset{\mathsf{ax}}{\wedge_i}}{\underbrace{P,Q,S \vdash P \land Q} \vee_{i_1}} \overset{\mathsf{ax}}{\vee_{i_1}}$$

Para usar esta propiedad como regla en otras derivaciones:

$$\frac{\Gamma \vdash \sigma}{\Gamma, \tau \vdash \sigma}$$
 W

Sistemas deductivos $10 \ / \ 11$

