Matric No.: 208651

Assigned Date: 16 December 2021

LAB 6: MULTIPLEXERS AND STATE MACHINE

1.0 Objectives

• Designing, implementing and testing a three-bit wide 5-to-1 multiplexer and a finite state machine for a sequence counter using Verilog entry.

2.0 Results and Simulation

A. Multiplexer

```
module fivemux (S, U, V, W, X, Y, M);
input [2:0] S;
input U, V, W, X, Y;
reg M;
output M;
//output [2:0] M;
//reg [2:0] M;
   always@(U or V or W or X or Y or S or M)
       if (S == 3'b000)
          M = U;
      else if (S == 3'b001)
M = V;
      else if (S == 3'b010)
          M = W;
      else if (S == 3'b011)
M = X;
       else if (S == 3'b100)
          M = Y;
      else M = 0;
endmodule
```

Figure 1: 5-to-1 Multiplexer Code

Table 1: Truth table obtained from 5-to-1 multiplexer

SE	LECT LIN	IES		OUTPUT				
S2	S1	S0	U	V	W	X	Y	M
[SW2]	[SW1]	[SW0]	[SW4]	[SW5]	[SW6]	[SW7]	[SW8]	[LED0]
0	0	0	1	0	0	0	0	1
0	0	1	0	1	0	0	0	1
0	1	0	0	0	1	0	0	1
0	1	1	0	0	0	1	0	1
1	0	0	0	0	0	0	1	1

Name: TABINA KAMAL Matric No.: 208651

Assigned Date: 16 December 2021

	tatu	From	То	Assignment Name	Value	Enabled	Entity	Comment	Tag
1	*		in_ S[1]	Location	PIN_AC12	Yes			
2	~		in_ S[2]	Location	PIN_AF9	Yes			
3	~		out M	Location	PIN_V16	Yes			
1	*		in_ U	Location	PIN_AD11	Yes			
5	*		in_ v	Location	PIN_AD12	Yes			
5	*		in_ w	Location	PIN_AE11	Yes			
7	*		in_ x	Location	PIN_AC9	Yes			
В	~		in_ Y	Location	PIN_AD10	Yes			
9	*		in_ S[0]	Location	PIN_AB12	Yes			

Figure 2: 5-to-1 Multiplexer Pin Assignments

Figure 3: 5-to-1 Multiplexer in Operation on Board

Matric No.: 208651

Assigned Date: 16 December 2021

B. Finite State Machine

```
module fsm_counter (clk, reset, outp);
     input clk, reset;
output [2:0] outp; //reg [2:0] outp;
     wire [2:0] outp;
     reg [2:0] c_state;
     //define all possible state
parameter s1 = 3'b000; parameter s2 = 3'b110;
parameter s3 = 3'b111; parameter s4 = 3'b011;
parameter s5 = 3'b010; parameter s6 = 3'b101;
     //your code here
     initial
begin
           c_state = s1;
end
     always@(posedge clk, posedge reset)
          begin
if(reset)
                   if(reset) //Set Counter to Zero
    c_state <= s1;
else if(c_state == 3'b000)
    c_state = s2;
else if(c_state == 3'b110)</pre>
                   c_state <= 3'b110'
c_state <= 33;
else if(c_state == 3'b111)
c_state <= s4;
else if(c_state == 3'b011)
                   c_state <= s5;
else if(c_state == 3'b010)
  c_state <= s6;</pre>
                       c_state <= 3'b000;
 assign outp = c_state;
endmodule
```

Figure 4: Finite State Machine Counter Code

	tatu	From	То	Assignment Name	Value	Enabled	Entity	Comment	Tag
1	*		in_ S[1]	Location	PIN_AC12	Yes			
2	~		in_ S[2]	Location	PIN_AF9	Yes			
3	~		out M	Location	PIN_V16	Yes			
4	✓		in_ U	Location	PIN_AD11	Yes			
5	~		in_ V	Location	PIN_AD12	Yes			
5	✓		in_ W	Location	PIN_AE11	Yes			
7	~		in_ X	Location	PIN_AC9	Yes			
8	~		in_ Y	Location	PIN_AD10	Yes			
9	~		in_ s[0]	Location	PIN_AB12	Yes			

Figure 5: Finite State Machine Counter Pin Assignment

Matric No.: 208651

Assigned Date: 16 December 2021

Figure 6: Finite State Machine Counter Functional Simulation

Figure 7: State Diagram

3.0 Conclusion

A. Multiplexer

Successfully compiled and demonstrated.

B. Finite State Machine

Successfully compiled and simulated.

Not yet implemented on the board.