Sztuka Trygopały

Agata Stępińska, Jan Kwieciński

08.12.2022

1 Definicja i podstawowe wzory

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 - - - \sin(\alpha) = \cos(\pi/2 - \alpha)$$

$$\sin(\alpha) = \sin(\pi - \alpha) - - \cos(\alpha) = -\cos(\pi - \alpha)$$

2 Wzory na sumy

- a) $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) \sin(\alpha)\sin(\beta)$
- b) $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$
- c) $tg(\alpha + \beta) = \frac{tg \alpha + tg \beta}{1 tg \alpha \cdot tg \beta}$

3 Twierdzenia do Pałowania

3.1 Pole trójkąta

Dla każdego trójkąta ABC zachodzi:

$$[ABC] = \frac{1}{2}ab \cdot \sin \gamma$$

3.2 Twierdzenie sinusów

Dla każdego trójkata ABC zachodzi:

$$\frac{AB}{\sin(\gamma)} = \frac{BC}{\sin(\alpha)} = \frac{CA}{\sin(\beta)} = 2R$$

3.3 Twierdzenie cosinusów

Dla każdego trójkata ABC zachodzi:

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

4 Przykłady

Przykład 0 Dany jest czworokąt wypukły ABCD, w którym $\not \subset B = \not \subset D = 90^\circ$. Punkt E jest rzutem prostokątnym D na prostą AB. Punkt F jest taki, że czworokąt DEBF jest prostokątem.

- 1. Wykazać, że trójkąty AED i CFD są podobne.
- 2. Niech $\alpha= \not \subset BAC$, $\beta= \not \subset CAD$ oraz a=DF, b=CF, c=AD. Wyznaczyć $\sin \alpha$, $\sin \beta$, $\cos \alpha$, $\cos \beta$, $tg \alpha$, $tg \beta$ w zależności od a,b,c.
- 3. Wykorzystując uzyskane zależności wyznaczyć: $\sin(\alpha + \beta)$, $\cos(\alpha + \beta)$, $tg(\alpha + \beta)$.

Przykład 1 Udowodnij, że w dowolnym trójkącie spełniona jest tożsamość:

 $tg \alpha + tg \beta + tg \gamma = tg \alpha \cdot tg \beta \cdot tg \gamma$

Przykład 2 Wykorzystując twierdzenie Cosinusów zbadaj jakimi trójkątami (ostrokątnymi, prostokątnymi, czy rozwartokątnymi) są trójkąty o bokach długości:

- (a) 2, 3, 4
- (b) 3, 4, 5
- (c) 4, 5, 6

Przykład 3 (74 OM I etap zadanie 3) Dany jest trójkąt ABC. Okrąg styczny do boku AC oraz do przedłużeń boków AB,BC ma promień długości r_1 . Okrąg styczny do boku BC oraz do przedłużeń boków AB,AC ma promień długości r_2 . Udowodnić, że jeżeli $r_1 + r_2 = AB$, to trójkąt ABC jest prostokątny.

Przykład 4 Udowodnij, że okręgi opisane na trójkątach ABC, ABH, BCH, CAH mają równe promienie, gdzie H to ortocentrum trójkąta ABC.

Przykład 5 (PreOM 2022 zadanie 20) Punkt P leży wewnątrz trójkąta równobocznego ABC, przy czym $\angle APC = 150^{\circ}$. Udowodnij, że z odcinków AP, BP, CP można zbudować trójkąt prostokątny.

5 Zadanka

Zadanie 1 Wykazać, że pole S trójkąta o bokach a,b,c i promieniu R okręgu opisanego wyraża się wzorem $S = \frac{abc}{4R}$ **Zadanie 2** Przekatne czworokata wypukłego ABCD przecinają się w punkcie E. Wykazać, iż

$$\sqrt{[ABE]} + \sqrt{[CDE]} \leqslant \sqrt{[ABCD]}$$

Zadanie 3 (73 OM I etap zadanie 8) Dany jest trójkąt ABC. Punkt D jest rzutem prostokątnym punktu A na prostą BC, a punkt E jest rzutem prostokątnym punktu D na prostą AC. Punkt M jest środkiem boku AB. Dowieść, że $\sqrt{2}*EM \le AB$. **Zadanie 4** W trójkącie ostrokątnym ABC poprowadzono wysokości AM i CN. [ABC] = 18, [MNB] = 2, $MN = 2\sqrt{2}$. Oblicz promień okręg opisanego na trójkącie ABC.

Zadanie 5 Niech O_1 i O_2 to środki okręgów stycznych wewnętrznie w punkcie A, których promienie to r_1 i r_2 . Prosta k przecina obydwa okręgi w punktach B i C (leżą po tej samej stronie prostej O_1O_2). Znajdź promień okręgu opisanego na trójkącie ABC.

Zadanie 6 (reguła równoległoboku) Udowodnij, że suma kwadratów długości przekątnych w równoległoboku jest równa sumie kwadratów wszystkich jego boków.

Zadanie 7 (wzór Stewarta) Dany jest trójkat ABC i D na odcinku BC. AD = d, BD = m, DC = n. Wtedy

$$d^{2} = \frac{1}{a}(b^{2}m + c^{2}n) - mn$$

Zadanie 8 Dany jest trójkąt ABC, w którym AC = 3AB. Punkt I jest środkiem okręgu wpisanego w ABC. Niech D będzie rzutem na AC środka łuku BAC okręgu opisanego na ABC. Dowieść, że D leży na okręgu opisanym na trójkącie BIC.

6 Wskazówki

Zadanie 1 z jakim twierdzeniem kojarzy Ci się ten wzór?

Zadanie 2 Skorzystaj ze wzoru na pole i przekształć tezę

Zadanie 3 Przedstaw AE korzystając tylko z AB i funkcji trygonometrycznych a następnie policz EM z twierdzenia cosinusów.

Zadanie 4 Trójkąty podobne, a dalej liczenie i wzorki

Zadanie 5 Oznacz przecięcie k z O_1O_2

Zadanie 6 i 7 Tw. cos

Zadanie 8 Módl się.