Model in CADAM

Arthur Guillot - Le Goff Autumn semester 2021-2022 | Hydroelectric power

Model in CADAM

Our model Model results

Our model

Model results

Date:

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

Project: TD4 Dam location: FGG Analysis performed by:

30/11/2021

Dam: Owner: Example 1

Usual combination (effective stress analysis)

Arthur Guillot - Le Goff

Project engineer:

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

Dam location: FGG Analysis performed by: Project: Example 1 30/11/2021 Project engineer: Dam: Date: Arthur Guillot - Le Goff

Owner:

Owner:										
Usual combination (stability analysis)										
	Joint #	SSF (peak)	SSF (residual)	OSF (U/S <-)	OSF (-> D/S)	USF	Normal (kN)	Shear (kN)		Res. Pos. (% joint)
	1	> 100	> 100	> 100	> 100	> 100	-188,4	0,0	0,0	50,000
	2	> 100	> 100	> 100	> 100	> 100	-1130,1	0,0	0,0	50,000
	3	28,747	23,006	42,655	10,633	19,644	-1975,3	122,6	-322,7	48,144
	4	11,147	9,059	26,346	6,765	13,893	-3111,3	490,5	-3611,5	40,932
	5	7,285	6,068	23,399	5,260	12,545	-4688,8	1103,6	-7031,7	41,073
	6	5,731	4,883	22,862	4,502	12,173	-6707,7	1962,0	-10240,0	42,661
	7	4,918	4,271	22,935	4,058	12,126	-9168,0	3065,6	-12893,1	44,329
	8	4,427	3,905	23,168	3,772	12,205	-12069,8	4414,5	-14647,6	45,786
	9	4,100	3,663	23,428	3,574	12,336	-15413,1	6008,6	-15160,1	47,001
	10	3,869	3,494	23,676	3,429	12,485	-19197,8	7848,0	-14087,4	48,006
	11	3,695	3,366	23,898	3,320	12,636	-23423,9	9937,4	-11083,4	48,840
	12	3,541	3,250	24,101	3,233	12,784	-28091,5	12343,0	-5635,5	49,552
	13	3,402	3,143	24,294	3,158	12,925	-33200,6	15086,2	3037,4	50,187
	14	3,192	2,960	16,736	2,868	9,727	-37650,4	18167,1	24326,0	51,224
	15 _	3,014	2,804	13,284	2,652	8,015	-42374,9	21585,6	53329,6	52,216
		3,000	1,500	2,000	2,000	1,200				

Date:

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

Project: TD4 Dam location: FGG Analysis performed by:

30/11/2021

Dam: Owner: Example 1

Flood combination (effective stress analysis)

Arthur Guillot - Le Goff

Project engineer:

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

Dam location: FGG Analysis performed by: Project: Example 1 30/11/2021 Project engineer: Dam: Date: Arthur Guillot - Le Goff

Owner:

lood combination (stability analysis)										
	Joint #	SSF (peak)	SSF (residual)	OSF (U/S <-)	OSF (-> D/S)	USF	Normal (kN)	Shear (kN)	Moment (kN·m)	Res. Pos. (% joint)
	1	> 100	43,416	7,216	3,572	4,800	-149,1	4,9	54,0	54,523
	2	11,765	8,140	22,378	4,021	9,143	-1006,5	176,6	629,8	57,822
	3	5,633	4,447	23,850	2,629	8,929	-1848,2	593,5	1967,4	62,097
	4	4,189	3,374	21,385	2,602	8,683	-2966,5	1255,7	1991,3	55,24
	5	3,610	2,988	21,473	2,528	8,961	-4526,3	2163,1	3378,8	54,443
	6	3,313	2,812	22,010	2,482	9,363	-6527,6	3315,8	6473,2	54,768
	7	3,139	2,718	22,561	2,457	9,779	-8970,3	4713,7	11617,9	55,22
	8	3,026	2,663	23,036	2,445	10,171	-11854,4	6356,9	19156,2	55,61
	9	2,948	2,629	23,431	2,439	10,531	-15180,0	8245,3	29431,5	55,91
	10	2,891	2,607	23,756	2,438	10,856	-18947,0	10379,0	42787,2	56,13
	11	2,847	2,591	24,025	2,439	11,150	-23155,5	12762,6	59569,0	56,30
	12	2,800	2,568	24,256	2,440	11,414	-27805,5	15462,6	80290,0	56,44
	13	2,751	2,540	24,464	2,440	11,654	-32896,9	18500,1	105731,0	56,58
	14	2,630	2,437	17,356	2,296	9,052	-37329,0	21875,3	145282,6	57,37
	15	2,524	2,346	13,923	2,181	7,589	-42035,8	25588,1	194044,3	58,12
	_	2,000	1,300	1,100	1,100	1,100				

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

 Project:
 TD4
 Dam location:
 FGG
 Analysis performed by:

 Dam:
 Example 1
 Date:
 30/11/2021
 Project engineer:
 Arthur Guillot - Le Goff

Owner:

Seismic #1 combination - Peak accelerations (stress analysis) (effective stress analysis)

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

Project: Dam location: FGG Analysis performed by: 30/11/2021 Dam: Example 1 Date: Project engineer: Arthur Guillot - Le Goff

Owner:

Seismic, #1 combination - Peak accelerations (stress analysis) (stability analysis) Joint # SSF SSF (peak) (residual) USF Normal Moment Res. Pos. (U/S <-) (-> D/S) (kN) (kN) (kN·m) (% joint) 49,213 15,234 85,333 > 100 > 100 -200,9 -18,8 -9.4 49,414 46,484 20,897 15,234 14,222 > 100 > 100 -1205,5-113,0 -339,0 23.934 41,403 29.514 6.406 12,649 20.954 -2114.1 -126,2-1599.495,548 5,039 7,932 14,819 -3334,949,8 -6943,4 33,734 20.591 17.345 4,977 6,136 13,381 -5028.5 414,0 -13724,7 33,754 10,578 12,291 5,189 5,235 12,984 -7194,9 971,4 -21934,1 35,343 9,292 8,142 5,452 4,708 12,934 -9834,2 1725,0 -31543,4 37,066 7,769 6,908 5,708 4,367 13,019 -12946,3 2676,6 -42512,5 38,598 6,853 6,168 5,943 4,131 13,158 -16531,3 3827,7 -54792,6 39,895 10 6,245 5,677 6,155 3,957 13,317 -20589,1 5179,6 -68329,1 40,982 5,812 3,826 13,479 -25119,7 -83061,4 41,896 11 5,327 6,346 6734,4 12 5,454 5,035 6,516 3,720 13,636 -30123,2 8544,5 -98817,1 42,678 13 5,144 4,777 6,669 3,631 13,787 -35599,6 10642,6 -115155,4 43,371 14 4,756 4,432 6,063 3,294 10,375 -40448,1 13032,8 -122984,7 44,241 4,433 4,144 5,639 3,044 8,549 -45602,6 15717,4 -127489,9 45,078 1,100 1,300 1,000 1,100 1,100

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

Project: Dam location: FGG Analysis performed by: Example 1 30/11/2021 Dam: Date: Project engineer: Arthur Guillot - Le Goff

Owner:

Seismic #1 combination - Sustained accelerations (stability analysis) (effective stress analysis)

Date:

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

Project engineer:

Arthur Guillot - Le Goff

Project: Dam location: FGG Analysis performed by: 30/11/2021

Dam: Owner: Example 1

Seismic, #1 combination - Sustained accelerations (stability analysis) (stability analysis)

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

 Project:
 TD4
 Dam location:
 FGG
 Analysis performed by:

 Dam:
 Example 1
 Date:
 30/11/2021
 Project engineer:
 Arthur Guillot - Le Goff

Owner:

Seismic #2 combination - Peak accelerations (stress analysis) (effective stress analysis)

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

 Project:
 TD4
 Dam location:
 FGG
 Analysis performed by:

 Dam:
 Example 1
 Date:
 30/11/2021
 Project engineer:
 Arthur Guillot - Le Goff

Owner:

Seismic, #2 combination - Peak accelerations (stress analysis) (stability analysis) Joint # SSF SSF (peak) (residual) USF Normal Moment Res. Pos. (U/S <-) (-> D/S) (kN) (kN·m) (% joint) 48,260 14,281 80,000 > 100 > 100 -188,4-18,8 -9.4 49,375 14,281 13,333 > 100 > 100 -1130,1 -113,0 -339,0 46,250 19,945 22.363 6,015 -1975.3 -126,2 41,103 27.944 11,940 19.644 -1546.6 89,144 4,753 7,481 13,893 -3111,3 49,8 -6533,5 33,594 19.420 16.174 4,714 5,785 12,545 -4688.8 414,0 -12756,9 33,805 11,574 9,861 4,929 4,935 12,173 -6707,7 971,4 -20144,7 35,561 8,741 7,591 5,189 4,438 12,126 -9168,0 1725,0 -28605,9 37,419 7,301 6,440 5,441 4,116 12,205 -12069,8 2676,6 -38037,5 39,057 6,436 5,751 5,672 3,892 12,336 -15413,1 3827,7 -48328,3 40,440 10 5,862 5,293 5,879 3,729 12,485 -19197,8 5179,6 -59360,4 41,598 5,452 3,604 12,636 -23423,9 42,570 4,967 6,066 6734,4 -71010,9 4,695 3,505 43,401 12 5,115 6,232 12,784 -28091,5 8544,5 -83044,4 13 4,822 4,455 6,381 3,420 12,925 -33200,6 10642,6 -94957,2 44,139 14 4,450 4,126 5,803 3,103 9,727 -37650,4 13032,8 -97595,0 45,091

4,139

1,300

3,850

1,000

5,399

1,100

2,867

1,100

15717,4 -96080,0

46,008

-42374,9

1,100

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

 Project:
 TD4
 Dam location:
 FGG
 Analysis performed by:

 Dam:
 Example 1
 Date:
 30/11/2021
 Project engineer:
 Arthur Guillot - Le Goff

Owner:

Seismic #2 combination - Sustained accelerations (stability analysis) (effective stress analysis)

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

Project: Dam location: FGG Analysis performed by: 30/11/2021 Dam: Example 1 Date: Project engineer: Arthur Guillot - Le Goff

Owner:

Seismic, #2 combination - Sustained accelerations (stability analysis) (stability analysis) Joint # SSF SSF (peak) (residual) OSF (-> D/S) Moment Res. Pos. (U/S <-) (kN) (kN) (kN·m) (% joint) 96.521 28,563 > 100 > 100 > 100 -188,4-9,4 49,688 -4,728,563 > 100 > 100 -1130,1 -56,5 48,125 39,889 26,667 -169,5-1975.3 > 100 > 100 10,543 11,286 19.644 -1,8 -934.6 44,623 20.237 16,447 8,053 7,123 13,893 -3111,3 270,2 -5072,5 37,263 10.596 8.825 7.847 5,522 12,545 -4688.8 758,8 -9894.3 37,439 8,110 7,666 6,531 4,719 12,173 -6707,7 1466,7 -15192,3 39,111 6,295 5,466 8,464 4,248 12,126 -9168,0 2395,3 -20749,5 40,874 5,512 4,862 8,813 3,944 12,205 -12069,8 3545,5 -26342,5 42,422 5,009 4,476 9,133 3,733 12,336 -15413,1 4918,2 -31744,1 43,721 10 4,661 4,209 9,420 3,579 12,485 -19197,8 6513,8 -36723,7 44,802 4,405 4,013 3,462 12,636 -23423,9 8335,9 -41047,0 45,705 9,676 3,841 10443,8 -44339,6 46,477 12 4,185 9,903 3,369 12,784 -28091,5 13 3,989 3,686 10,107 3,289 12,925 -33200,6 12864,4 -45959,5 47,163 14 3,718 3,447 8,618 2,985 9,727 -37650,4 15600,0 -36634,0 48,157 3,488 3,245 7,678 2,760 -42374,9 18651,5 -21374,6 49,112 1,100 1,300 1,000 1,100 1,100

Arthur Guillot - Le Goff

Project engineer:

CADAM - Stability drawing

Date:

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

Project: TD4 Dam location: FGG Analysis performed by:

30/11/2021

Dam: Owner: Example 1

Usual combination (effective stress analysis)

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

Dam location: FGG Analysis performed by: Project: Example 1 30/11/2021 Project engineer: Dam: Date: Arthur Guillot - Le Goff

Owner:

Usual combina	tion (stability analysis)										
- 		Joint #	SSF (peak)	SSF (residual)	OSF (U/S <-)	OSF (-> D/S)	USF	Normal (kN)	Shear (kN)		Res. Pos. (% joint)
<u>_</u>		1	> 100	> 100	> 100	> 100	> 100	-188,4	0,0	0,0	50,000
=		2	> 100	> 100	> 100	> 100	> 100	-1130,1	0,0	0,0	50,000
		3	28,747	23,006	42,655	10,633	19,644	-1975,3	122,6	-322,7	48,144
		4	11,147	9,059	26,346	6,765	13,893	-3111,3	490,5	-3611,5	40,932
		5	7,285	6,068	23,399	5,260	12,545	-4688,8	1103,6	-7031,7	41,073
		6	5,731	4,883	22,862	4,502	12,173	-6707,7	1962,0	-10240,0	42,661
		7	4,918	4,271	22,935	4,058	12,126	-9168,0	3065,6	-12893,1	44,329
		8	4,427	3,905	23,168	3,772	12,205	-12069,8	4414,5	-14647,6	45,786
		9	4,100	3,663	23,428	3,574	12,336	-15413,1	6008,6	-15160,1	47,001
		10	3,869	3,494	23,676	3,429	12,485	-19197,8	7848,0	-14087,4	48,006
		11	3,695	3,366	23,898	3,320	12,636	-23423,9	9937,4	-11083,4	48,840
		12	3,541	3,250	24,101	3,233	12,784	-28091,5	12343,0	-5635,5	49,552
		13	3,402	3,143	24,294	3,158	12,925	-33200,6	15086,2	3037,4	50,187
		14	3,192	2,960	16,736	2,868	9,727	-37650,4	18167,1	24326,0	51,224
		15 —	3,014	2,804	13,284	2,652	8,015	-42374,9	21585,6	53329,6	52,216
			3,000	1,500	2,000	2,000	1,200				

Date:

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

Project: TD4 Dam location: FGG Analysis performed by:

30/11/2021

Dam: Owner: Example 1

Flood combination (effective stress analysis)

Arthur Guillot - Le Goff

Project engineer:

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

 Project:
 TD4
 Dam location:
 FGG
 Analysis performed by:

 Dam:
 Example 1
 Date:
 30/11/2021
 Project engineer:
 Arthur Guillot - Le Goff

Owner:

Flood combination (stability analysis)										
=	Joint #	SSF (peak)	SSF (residual)	OSF (U/S <-)	OSF (-> D/S)	USF	Normal (kN)	Shear (kN)	Moment (kN·m)	Res. Pos. (% joint)
	1	> 100	43,416	7,216	3,572	4,800	-149,1	4,9	54,0	54,523
	2	11,765	8,140	22,378	4,021	9,143	-1006,5	176,6	629,8	57,822
	3	5,633	4,447	23,850	2,629	8,929	-1848,2	593,5	1967,4	62,097
	4	4,189	3,374	21,385	2,602	8,683	-2966,5	1255,7	1991,3	55,244
	5	3,610	2,988	21,473	2,528	8,961	-4526,3	2163,1	3378,8	54,443
	6	3,313	2,812	22,010	2,482	9,363	-6527,6	3315,8	6473,2	54,768
	7	3,139	2,718	22,561	2,457	9,779	-8970,3	4713,7	11617,9	55,222
	8	3,026	2,663	23,036	2,445	10,171	-11854,4	6356,9	19156,2	55,611
	9	2,948	2,629	23,431	2,439	10,531	-15180,0	8245,3	29431,5	55,911
	10	2,891	2,607	23,756	2,438	10,856	-18947,0	10379,0	42787,2	56,137
	11	2,847	2,591	24,025	2,439	11,150	-23155,5	12762,6	59569,0	56,305
	12	2,800	2,568	24,256	2,440	11,414	-27805,5	15462,6	80290,0	56,445
	13	2,751	2,540	24,464	2,440	11,654	-32896,9	18500,1	105731,0	56,586
	14	2,630	2,437	17,356	2,296	9,052	-37329,0	21875,3	145282,6	57,371
	15	2,524	2,346	13,923	2,181	7,589	-42035,8	25588,1	194044,3	58,127
	_	2,000	1,300	1,100	1,100	1,100				

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

Project: Dam location: FGG Analysis performed by: Example 1 30/11/2021 Dam: Date: Project engineer: Arthur Guillot - Le Goff

Owner:

Seismic #1 combination - Peak accelerations (stress analysis) (effective stress analysis)

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

 Project:
 TD4
 Dam location:
 FGG
 Analysis performed by:

 Dam:
 Example 1
 Date:
 30/11/2021
 Project engineer:
 Arthur Guillot - Le Goff

Owner:

Seismiç #1 combination - Peak accelerations (stress analysis) (stability analysis)

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

Project: Dam location: FGG Analysis performed by: Example 1 30/11/2021 Dam: Date: Project engineer: Arthur Guillot - Le Goff

Owner:

Seismic #1 combination - Sustained accelerations (stability analysis) (effective stress analysis)

Date:

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

Project engineer:

Arthur Guillot - Le Goff

Project: TD4 Dam location: FGG Analysis performed by:

Dam: Owner: Example 1

Seismiç #1 combination - Sustained accelerations (stability analysis) (stability analysis)

30/11/2021

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

 Project:
 TD4
 Dam location:
 FGG
 Analysis performed by:

 Dam:
 Example 1
 Date:
 30/11/2021
 Project engineer:
 Arthur Guillot - Le Goff

Owner:

Seismic #2 combination - Peak accelerations (stress analysis) (effective stress analysis)

Date:

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

Project engineer:

Arthur Guillot - Le Goff

Project: TD4 Dam location: FGG Analysis performed by:

30/11/2021

Dam: Owner: Example 1

Seismiç #2 combination - Peak accelerations (stress analysis) (stability analysis)

By Martin Leclerc, M. Ing.

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

 Project:
 TD4
 Dam location:
 FGG
 Analysis performed by:

 Dam:
 Example 1
 Date:
 30/11/2021
 Project engineer:
 Arthur Guillot - Le Goff

Owner:

Seismic #2 combination - Sustained accelerations (stability analysis) (effective stress analysis)

By Martin Leclerc, M. Ing.

Owner:

NSERC / Hydro-Quebec / Alcan Industrial Chair on Structural Safety of Concrete Dams, École Polytechnique de Montréal, Canada

Project: TD4 Dam location: FGG Analysis performed by:

Dam:Example 1Date:30/11/2021Project engineer:Arthur Guillot - Le Goff

Seismiç #2 combination - Sustained accelerations (stability analysis) (stability analysis)

