Exercise 1 Let *L* be a lattice for which $\lambda_2(L)/\lambda_1(L) \geq (\gamma_2 + \varepsilon)^n$. Show that an instance of ε -LLL reduction on a basis for *L* will find a shortest vector.

Exercise 7

Discussion on 18/04/24

Exercise 2 Let q, n, m be integers with n < m, q prime and m even. Let $\gamma > \frac{\sqrt{2\pi e}}{q^{n/m} \sqrt[n]{\pi n}}$. Here we prove that for a lattice $L := \Lambda_q^{\perp}(\mathbf{A})$ where \mathbf{A} is a random matrix $\mathbf{A} \leftarrow \mathcal{U}(\mathbb{Z}_q^{n \times m})$, it holds except with probability at most γ^{-n} that:

$$\lambda_1^{(2)}(L) > \frac{q^{n/m} \gamma \sqrt[n]{\pi n} \sqrt{n}}{\sqrt{2\pi e}} - \frac{\sqrt{n}}{2}.$$

The proof is the same strategy as that of Lemma 6, except with different analysis of the number of elements of \mathbb{Z}^m with norm less than β . Use, without proof, that for even m = 2k, the volume of the Euclidean *m*-ball of radius 1 is $\frac{(\pi e)^k}{k^k \sqrt{2\pi k}}(1+o(1))$, where the little-oh is with respect to rising k.

i) Show that, when $\beta > \sqrt{m}/2$, we have

$$|\{\mathbf{x} \in \mathbb{Z}^m : \|\mathbf{x}\|_2 \le \beta\}| \le \frac{1}{\sqrt{2\pi k}} \left(\left(\beta + \sqrt{m}/2\right) \left(\sqrt{\frac{2\pi e}{m}}\right) \right)^m (1 + o(1)).$$

We once again have that for a given non-zero $\mathbf{x} \in \mathbb{Z}^m$,

$$\mathbb{P}_{\mathbf{A}}\left[\mathbf{A}\mathbf{x}=0 \mod q\right] = q^{-n}.$$

ii) Following the strategy from Lemma 5, prove that $\lambda_1^{(2)}(L) \geq \frac{(q/\gamma)^{n/m} \frac{2m}{\sqrt{m}} \sqrt{m}}{\sqrt{2\pi e}} - \frac{\sqrt{m}}{2}$ except with probability γ^{-n} .

Exercise 3 This exercise is about reductions to and from $SIS_{n,m,q,\beta}$.

- i) Give a reduction from $SIS_{n,m',q,\beta}$ to $SIS_{n,m,q,\beta}$ for integers m' < m. That is, show how to use an oracle that solves $SIS_{n,m,q,\beta}$ to solve $SIS_{n,m',q,\beta}$.
- ii) Recall from Section 2.2 that for a random q-ary lattice L, $\lambda_1(L) \approx q^{n/m}$. This means if $\beta \geq (\gamma_2 + \varepsilon)^m \cdot q^{n/m}$, the problem can be solved by running ε -LLL on the lattice L. Find the optimal m' to use in part i).

Exercise 4 The Merkle-Damgård (MD) construction we saw in the lecture was for an input of length lb, which is a multiple of the blocksize b. Consider the following MD construction for arbitrary length input.

As before, let $f: \mathcal{K} \times \{0,1\}^m \to \{0,1\}^n$ with m > n be any function. Let b = m - n > 0. For a message $\mu \in \mathcal{M}$ of length r, let $\mu' = (\mu | r | 0^s)$, where s is the smallest integer such that μ' has length that is a multiple of b. Such a string of 0's is called padding. Then let $\ell = \text{length}(\mu')/b$, and define

$$f_{MD}: \mathcal{K} \times \{0,1\}^{\ell \cdot b} \to \{0,1\}^n$$

$$f_{MD}(\mu') = f_k(\cdots f_k(f_k(f_k(0^n | \mu'_1) | \mu'_2) | \mu'_3) \cdots) | \mu'_\ell),$$

where $\mu' = (\mu'_1 \dots \mu'_\ell)$

i) Show that if f is collision resistant, then so too is f_{MD} .

ii) Can you think of a reason why we also include the message length in the message that is to be hashed?

Exercise 7

Exercise 5 (Generic Collision Attack) Let $(h_i)_{i\geq 1}$ be sampled independently and uniformly at random from a set of size *S*. Let *c* denote the first *collision index*, that is the smallest *c* such that their exists i < c with $h_i = h_c$.

- 1. Compute the probability that $c < \bar{c}$ for a given $\bar{c} \in \mathbb{N}$.
- 2. Deduce that $\mathbb{E}[c] \leq O(\sqrt{S})$.
- 3. Reach the same conclusion without the uniformity assumption.
- 4. Deduce a generic attack (i.e. a similar attack that would apply to any hash function) that runs in expected time $O(\sqrt{|\mathcal{H}|})$