TEMA

Drum minim in graful ponderat. Algoritmul lui Ford pentru determinarea drumului minim.

Pentru un graf orientat $G = \langle X, U \rangle$ se va numi drum un şir de vârfuri $D = (x_0, x_1, ..., x_r)$ cu proprietatea că arcele (x_0, x_1) , $(x_1, x_2), ..., (x_{r-1}, x_r)$ aparțin lui U, deci sunt arce ale grafului şi extremitatea finală a arcului precedent coincide cu extremitatea inițială a arcului următor.

Vârfurile x_0 și x_r se numesc extremitățile drumului D. Lungimea unui drum este dată de numărul de arce pe care le conține.

Dacă vârfurile x_0 , x_1 ,..., x_r sunt distincte două câte două drumul D este elementar. Adeseori, fiecărui arc (muchii) i se pune în corespondență un număr real pozitiv, care se numește ponderea (identificat cu lungimea) arcului. Lungimea arcului (x_i , x_j) se va nota $P(i,j)=p_{ij}$, iar în cazul în care pe un arc este lipsă ponderea lui ea va fi considerată foarte mare (∞) (pentru calculator cel mai mare număr pozitiv posibil).

În cazul grafurilor cu arce ponderate (grafuri ponderate) $G = \langle X, U, P \rangle$, unde **P** este multimea ponderilor, se va considera lungime a unui drum suma ponderilor arcelor care formează acest drum.

Drumul care unește două vârfuri concrete și are lungimea cea mai mică se va numi *drum minim* iar lungimea drumului minim vom numi *distanță*.

Vom nota distanța dintre x și t prin d(x, t), evident, d(x,x)=0.

Algoritmul Ford (F) permite determinarea drumului minim dintrun vârf inițial x_1 (cu cel mai mic indice) până la careva vârf x_k al grafului G. Dacă prin $P(i,j)=p_{ij}$ se va nota ponderea arcului (x_i, x_j) atunci algoritmul conține următorii pași:

Pasul1.

Fiecărui vârf x_j al grafului G i se va atașa un număr foarte mare (numit *eticheta*, *sau marca*) Hj, unde Hj = $d(x_1, x_j)$. Vârfului inițial i se va atașa $H_1 = 0$, iar celelalte Hj= ∞ ,ceia ce este echivalent ca distanta $d(x_1, x_j)$ la moment nu este cunoscuta.

Pasul2.

Pentru fiecare arc (x_i, x_j) se calculeza diferențele dintre eticheta virfului final si cel initial Hj – Hi si aceasta diferenta este comparata cu ponderea Pij.

Sunt posibile trei cazuri:

- a) Hj Hi < Pij;
- b) Hi Hi = Pii;
- c) Hj Hi > Pij.

Cazurile a) si b) nu permit micsorarea distantei dintre vârful inițial și x_j , adica Hj, iar cazul "c" permite micșorarea distanței dintre vârful inițial și x_j , adica Hj prin modificarea:

Hj = Hi + Pij.

Pasul3.

Pasul 2 se va repeta de la inceput atâta timp pina cind nu va mai exista nici un arc pentru care are loc inegalitatea "c".

In final, etichetele Hi vor defini distanța (drumul minim) de la vârful inițial până la vârful dat x_i .

Daca Hj= ∞ , atunci nu exista drum din x_1 in x_j .

Daca Hj exista si este finit, atunci pentru stabilirea secvenței de vârfuri care va forma drumul minim trecem la pasul

Pasul4.

Se va pleca de la vârful final x_j spre cel inițial. Predecesorul lui x_j va fi considerat vârful x_i pentru care va avea loc Hj - Hi = Pij. Dacă vor exista câteva arce pentru care are loc această relație ele toate trbuie luate in considerare.

Apoi in top este virful cu cel mai mare indice **EXEMPLUL 1.**

Să se determine pentru graful din figura 1 drumul de valoare minimă între vârfurile x_1 și x_7 conform algoritmului lui Ford.

Fig.1

Rezolvare:

I.
$$H_1 = 0$$
;
II. $H_2 = \infty$; $H_2 = 5$
 $H_3 = \infty$; $H_3 = 3$
 $H_4 = \infty$; $H_4 = 5$
 $H_5 = \infty$; $H_5 = 6$ $H_5 = 5$;
 $H_6 = \infty$; $H_6 = 8$
 $H_7 = \infty$

III. Examinăm toate arcele care pleacă din vârful x_1 : $H_2-H_1 = \infty-0$ \Rightarrow H_2 se schimba: $H_2=H_1+P_{12}=0+5=5$

H₃-H₁=∞-0> P₁₃ = 3 ⇒ H₃ se schimba: H₃=H₁+P₁₃=0+3=3 H₃-3 H₄-H₁ =∞-0> P₁₄ =5 ⇒ H₄ se schimba: H₄=H₁+P₁₄=0+5=5 H₄=5 H₅-H₁=∞-0> P₁₅ = 6 ⇒ H₅ se schimba: H₅=H₁+P₁₅=0+6=6 H₅=6 H₆-H₁=∞-0> P₁₆= 8 ⇒ H₄ se schimba: H₆=H₁+P₁₆=0+8=8 H₆=8 (fig. 1) Examinăm toate arcele care pleacă din vârful
$$x_2$$
: H₄-H₂=5-5< P₂₄=1 ⇒ Eticheta H₄ la vârful x_4 nu se schimbă. Examinăm toate arcele care pleacă din vârful x_3 : H₅-H₂=6-5< P₂₅=4 ⇒ Eticheta H₅ la vârful x_5 nu se schimbă. Examinăm toate arcele care pleacă din vârful x_3 : H₅-H₃=6-3> P₃₅=2 ⇒ H₅ se schimba: H₅=H₃+P₃₅=3+2=5; H₅=5; Examinăm toate arcele care pleacă din vârful x_4 : H₅-H₄=5-5< P₄₆=3 ⇒ Eticheta H₅ la vârful x_5 nu se schimbă. Examinăm toate arcele care pleacă din vârful x_5 : H₆-H₄=8-5< P₅₆=4 ⇒ Eticheta H₆ vârful x_6 nu se schimbă. Examinăm toate arcele care pleacă din vârful x_5 : H₆-H₅=∞-5> P57=6 ⇒ H₇ se modifica : H₇=H₅+L₅7=5+6=11 H₇=11 Examinăm toate arcele care pleacă din vârful x_6 : H₇-H₆=11-8< L₆7=5 ⇒ Eticheta la vârful x_7 nu se schimbă.

Verificam inca odata diferentele de la inceput cu etichetele primite:

$$H_1 = 0$$
;

II.
$$H_2 = \infty$$
; $H_3 = 3$
 $H_4 = \infty$; $H_4 = 5$
 $H_5 = \infty$; $H_5 = 6$ $H_5 = 5$;
 $H_6 = \infty$ $H_6 = 8$
 $H_7 = \infty$ $H_7 = 11$
 $H_2 - H_1 = 5 - 0 = P_{12} = 5 \Rightarrow H_2$ nu se schimba
 $H_3 - H_1 = 3 - 0 = P_{13} = 3 \Rightarrow H_3$ nu se schimba
 $H_4 - H_1 = 5 - 0 = P_{14} = 5 \Rightarrow H_4$ nu se schimba
 $H_5 - H_1 = 5 - 0 < P_{15} = 6 \Rightarrow H_5$ nu se schimba
 $H_6 - H_1 = 8 - 0 = P_{16} = 8 \Rightarrow H_4$ nu se schimba
 $Examinăm toate arcele care iese din vârful x_2 :
 $H_4 - H_2 = 5 - 5 < P_{24} = 1 \Rightarrow Eticheta$ H_4 la vârful x_4 nu se schimbă.
 $Examinăm toate arcele care iese din vârful x_3 :
 $H_5 - H_3 = 5 - 3 = P_{35} = 2 \Rightarrow H_5$ nu se schimba;
 $Examinăm toate arcele care iese din vârful x_4 :
 $H_5 - H_4 = 5 - 5 < P_{45} = 3 \Rightarrow Eticheta$ H_5 la vârful x_5 nu se schimbă.
 $Examinăm toate arcele care iese din vârful x_5 nu se schimbă.
 $Examinăm toate arcele care iese din vârful x_6 nu se schimbă.
 $Examinăm toate arcele care iese din vârful x_6 nu se schimbă.
 $Examinăm toate arcele care iese din vârful x_6 nu se schimbă.
 $Examinăm toate arcele care iese din vârful x_6 nu se schimbă.
 $Examinăm toate arcele care iese din vârful x_6 nu se schimbă.
 $Examinăm toate arcele care iese din vârful x_6 nu se schimbă.
 $H_7 - H_5 = 11 - 5 = P_{57} = 6 \Rightarrow H_7$ nu se modifica
 $Examinăm toate arcele care iese din vârful x_6 :$$$$$$$$$$$

H₇-H₆=11-8< L₆₇=5 \Rightarrow Eticheta la vârful x_7 nu se schimbă. STOP

Rezolvarea problemei poate fi scrisă cu ajutorul unui tabel (fig.2)

	1	2	3	4	5	6	7
I	0	8	8	8	8	8	8
II_1		5	3	5	6	8	8
III_2							8
IV_3					5		∞
V_4							∞
VI ₅							11
VII ₆							
	0	5	3	5	5	8	11

Fig.2.

Fig.3.

$$l_{\min}(1-7)=11$$

IV. Determinăm drumul minim: Startam de la ultimul virf x_7 .

Observam ca $H_7 - H_5 = 11-5 = 6 = P_{57} \Rightarrow$ Inainte de x_7 se afla x_5 :

In top se afla virful x_5 si observam ca $H_5 - H_3 = 5-3 = 2 = P_{35} \implies$ Inainte de x_5 se afla x_3 ; In top se afla virful x_3 si observam ca

$$H_3 - H_1 = 3-0 = 3 = P_{13} \Rightarrow$$
 Inainte de x_3 se afla x_1
Drumul corespunzător valorii minime 11:

EXEMPLUL 2.

Să se determine pentru graful din figura 1 drumul de valoare minimă între vârfurile x_1 și x_7 conform algoritmului lui Ford.

Fig.4

<u>REZOLVARE</u> Întroducem etichetele

```
I. H_1 = 0;
     II. H_2 = \infty; H_2 = 4
         H_3 = \infty; H_3 = 5
         H_4 = \infty; H_4 = 6
         H_5 = \infty; H_5 = 8
                                               H_{6}=10
         H_6 = \infty
                                      H_7 = 10
         H_7 = \infty
         H_8 = \infty
     III. Examinăm toate arcele care pleacă din vârful x_1:
H_2-H_1 = \infty - 0 > P_{12} = 4 \implies H_2 \text{ se schimba} : H_2=H_1+P_{12}=0+4=4
H_3-H_1=\infty-0 > P_{13} = 5 \Rightarrow H_3 \text{ se schimba}: H_3=H_1+P_{13}=0+5=5
H_5-H_1 = \infty - 0 > P_{15} = 8 \implies H_5 \text{ se schimba} : H_5 = H_1 + P_{15} = 0 + 8 = 8
                                                                        H_5 = 8
     Examinăm toate arcele care pleacă din vârful x_2:
H_3-H_2=5-4< P_{23}=3 \Rightarrow Eticheta H_5 la vârful x_5 nu se schimbă.
H_4-H_2=\infty-4 > P_{24}=2 \Rightarrow H_4 \text{ se schimbă: } H_4=H_2+P_{24}=4+2=6.
                                                                         H_4=6
     Examinăm toate arcele care pleacă din vârful x_3:
H_4-H_3 = 6-5 < P_{34} = 2 \Rightarrow H_4 nu se schimba;
H_5-H_3 = 8-5 < P_{35} = 4 \Rightarrow H_5 nu se schimba;
H_7-H_3 = \infty - 5 > P_{37} = 5 \Rightarrow H_7 \text{ se schimba}; H_7 = H_3 + P_3 = 5 + 5 = 10
     Examinăm toate arcele care pleacă din vârful x_4:
H_5-H_4 = 8-6 < P_{45} = 4 \Rightarrow Eticheta H_5 la vârful x_5 nu se schimbă.
H_6-H_4=\infty-6>P_{46}=4\Rightarrow H_6 \text{ se schimbă}:H_6=H_4+P_{46}=6+4=10.
```

$$H_8$$
- H_4 = ∞ -6> P_{48} =7 \Rightarrow H_8 se schimbă: H_8 = H_4 + P_{48} =6+7=13 H_8 =13

Examinăm toate arcele care pleacă din vârful x_5 :

$$H_6$$
- H_5 = 10 - 8 = P_{56} = 2 \Rightarrow Eticheta H_6 la vârful x_6 nu se schimbă.

$$H_7$$
- H_5 =10-8< P_{57} =3 \Rightarrow H_7 nu se modifica

$$H_8$$
- H_5 = 13 - 8 = P_{58} = $5 \Rightarrow H_8$ nu se modifica

Examinăm toate arcele care pleacă din vârful x_6 :

$$H_8$$
- H_6 =13-10= P_{67} =3 \Rightarrow Eticheta la vârful x_8 nu se schimbă.

Examinăm toate arcele care pleacă din vârful x7:

$$H_8$$
- H_7 =13-10= P_{67} =3 \Rightarrow Eticheta la vârful x_8 nu se schimbă.

Verificam inca odata diferentele de la inceput cu etichetele primite:

$$H_1 = 0$$
;
 $H_2 = \infty$; $H_2 = 4$
 $H_3 = \infty$; $H_3 = 5$
 $H_4 = \infty$; $H_4 = 6$
 $H_5 = \infty$; $H_5 = 8$
 $H_6 = \infty$ $H_6 = 10$
 $H_7 = \infty$ $H_7 = 10$
 $H_8 = \infty$ $H_8 = 13$

III. Examinăm toate arcele care pleacă din vârful x_1 :

$$H_2-H_1 = 4-0 = P_{12} = 4 \implies H_2$$
 nu se schimba.
 $H_3-H_1 = 5-0 = P_{13} = 5 \implies H_3$ nu se schimba.
 $H_5-H_1 = 8-0 = P_{15} = 8 \implies H_5$ nu se schimba.

Examinăm toate arcele care pleacă din vârful x_2 :

 H_3 - H_2 =5-4< P_{23} =3 \Rightarrow Eticheta H_5 la vârful x_5 nu se schimbă.

 H_4 - H_2 =6-4= P_{24} =2 \Rightarrow H_4 nu se schimbă.

Examinăm toate arcele care pleacă din vârful x_3 :

 H_4 - H_3 =6-5< P_{34} =2 \Rightarrow H_4 nu se schimba;

 $H_5-H_3 = 8-5 < P_{35} = 4 \Rightarrow H_5 \text{ nu se schimba;}$

 H_7 - $H_3 = 10$ - $5 = P_{37} = 5 \Rightarrow H_7$ nu se schimba;

Examinăm toate arcele care pleacă din vârful x_4 :

 H_5 - H_4 =8-6< P_{45} =4 \Rightarrow Eticheta H_5 la vârful x_5 nu se schimbă.

 H_6 - H_4 =10-6= P_{46} =4 \Rightarrow H_6 nu se schimbă.

 H_8 - H_4 =13-6= P_{48} =7 \Rightarrow H_8 nu se schimbă.

Examinăm toate arcele care pleacă din vârful x_5 :

 H_6 - H_5 =10-8= P_{56} =2 \Rightarrow Eticheta H_6 la vârful x_6 nu se schimbă.

 H_7 - H_5 =10-8< P_{57} =3 \Rightarrow H_7 nu se modifica

 H_8 - H_5 =13-8= P_{58} =5 \Rightarrow H_8 nu se modifica

Examinăm toate arcele care pleacă din vârful x_6 :

 H_8 - H_6 =13-10= P_{67} =3 \Rightarrow Eticheta la vârful x_8 nu se schimbă.

Examinăm toate arcele care pleacă din vârful x₇:

 H_8 - H_7 =13-10= P_{67} =3 \Rightarrow Eticheta la vârful x_8 nu se schimbă. STOP.

Am obtinut rezultatele:

 $H_1 = 0$;

 $H_2 = 4$

 $H_3 = 5$

 $H_4=6$

 $H_5 = 8$

 $H_6 = 10$

 $H_7 = 10$

 $H_8 = 13$ Rezolvarea problemei poate fi scrisă cu ajutorul unui tabel

	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8
I	0	∞	8	8	∞	8	∞	∞
II_1		4	5		8			
III_2				6				
IV ₃							10	
V_4						10		13
VI ₅								
VII ₆								
	0	4	5	6	8	10	10	13

IV. Determinăm drumul minim:

Startam de la ultimul virf x₈.

Observam ca $H_8 - H_6 = 13-10 = 3 = P_{68} \Rightarrow$ Inainte de x_8 se afla x₆:

Observam ca H_8 - H_7 = 13-10 =3= p_{78} \Rightarrow Inainte de x_8 afla x₇;

Observam ca H_8 - H_5 = 13-8 =5= p_{58} \Rightarrow Inainte de x_8 se afla x_{5:}

Observam ca H_8 - H_4 = 13-6 =7= p_{48} \Rightarrow Inainte de x_8 se afla x_{4:}

In top se afla virful x₇ si observam ca $H_7 - H_3 = 10-5 = 5 = P_{37} \implies \text{Inainte de } x_7$ afla x_{3:}

In top se afla virful
$$x_6$$
 si observam ca
$$H_6 - H_5 = 10-8 = 2 = P_{56} \Rightarrow \text{Inainte de } x_6 \text{ se afla } x_5$$

afla x₅

$$H_6$$
- H_4 = 10 - 6 = 4 = P_{46} \Rightarrow Inainte de x_6 se afla x_4

In top se afla virful x₅ si observam ca $H_5-H_1=8-0=8=P_{15} \Rightarrow \text{Inainte de } x_5$ afla x₁ se In top se afla virful x₄ si observam ca $H_4-H_2=6-4=2=P_{24} \Rightarrow$ Inainte de x₄ afla x_{2.} se In top se afla virful x₃ si observam ca H_3 - H_1 =5-0 = 5= P_{13} = Inainte de x_3 afla x₁ se In top se afla virful x₂ si observam ca H_2 - H_1 =4-0 = 4= P_{12} \Rightarrow Inainte de x2 afla x₁ se Deci, am obtinut 5 drumuri minime: $d_1=(1,2,4,6,8);$ $d_2=(1,2,4,8);$ $d_3=(1,3,7,8);$ $d_4=(1,5,6,8);$ $d_5=(1,5,8);$

EXEMPLUL 3.(Alta Varianta)

Să se determine pentru graful din figura 4 drumul de valoare minimă între vârfurile x_1 și x_8 conform algoritmului lui Ford.

Rezolvare:

```
I. H_1 = 0;

II. H_2 = \infty;

H_3 = \infty;

H_4 = \infty;

H_5 = \infty;

H_6 = \infty

H_7 = \infty

H_8 = \infty
```

Pentru fiecare arc (x_i, x_j) se calculeza diferențele dintre eticheta virfului final si cel initial Hj - Hi si se compara cu ponderea Pij.

Sunt posibile trei cazuri:

- a) Hj Hi < Pij;
- b) Hi Hi = Pii;
- c) Hj Hi > Pij.

Cazurile a) si b) nu permit micsorarea distantei dintre vârful inițial și x_j , adica Hj, iar cazul "c" permite micșorarea distanței dintre vârful inițial și x_j , adica Hj prin modificarea:

$$Hj = Hi + Pij.$$

Ponde	rea Prima diferenta A	A doua difer
\mathbf{x}_{i} \mathbf{P}_{ij}	H_j - H_i	H _j -H _i
) 4	$H_2-H_1=\infty-0>P_{12}; H_2=H_1+P_{12}=0+4=4$	H_2 - H_1 =4-0= P_{12} ;
) 5	$H_3-H_1=\infty-0>P_{13}; H_3=H_1+P_{13}=0+5=5$	H_3 - H_1 =5-0= P_{13} ;
) 8	$H_5-H_1=\infty-0>P_{15}; H_5=H_1+P_{15}=0+8=8$	$H_5-H_1=8-0$ P_{15} ;
) 3	H_3 - H_2 =5-4< P_{23} ; H_3 nu se schimba	H_3 - H_2 =5-4< P_{23} ;
) 2	$H_4-H_2=\infty-4>P_{24}; H_4=H_2+P_{24}=4+2=6$	H_4 - H_2 =6-4= P_{24} ;
) 2	H ₄ -H ₃ =6-5< P ₃₄ ;H ₄ nu se schimba	H_4 - H_3 =6-5< P_{34} ;
) 4	H ₅ -H ₃ =8-5< P ₃₅ ;H ₅ nu se schimba	H_5 - H_3 = 8 - 5 < P_{35} ;
) 5	H_7 - H_3 = ∞ - $5>P_{37}$; H_7 = H_3 + P_{37} = 5 + 5 = 10	H_7 - H_3 =10-5= P_{37} ;
) 4	H ₅ -H ₄ =8-6< P ₄₅ ; H ₅ nu se schimba	H_5 - H_4 = 8 - 6 < P_{45} ;
) 4	$H_6-H_4=\infty-6>P_{46}; H_6=H_4+P_{46}=6+4=10$	H_6 - H_4 = 10 - 6 = P_{46} ;
) 7	$H_8-H_4=\infty-6>P_{48}; H_8=H_4+P_{48}=6+7=13$	H_8 - H_4 =13-6= P_{48} ;
) 2	$H_6-H_5=10-8=P_{56}$; H_6 nu se modifica	$H_6-H_5=10-8=P_{56}$;
) 3	H ₇ -H ₅ =10-8< P ₅₇ ; H ₇ nu se schimba	H_7 - H_5 =10-8 $=$ P_{57}
) 5	H_8 - H_5 =13-8= P_{45} ; H_8 nu se schimba	H_8 - H_5 =13-8 $=$ P_{58}
) 3	H ₈ -H ₆ =13-10=P ₆₈ ;H ₈ nu se schimba	H ₈ -H ₆ =13-10 P ₆₈
) 3	H ₈ -H ₇ =13-10=P ₇₈ ;H ₈ nu se schimba	H ₈ -H ₇ =13-10 P ₇₈ ;
	$\begin{array}{c cccc} G_{jj} & P_{ij} \\ \hline G_{jj} & P_{ij} \\ \hline O & 4 \\ \hline O & 5 \\ \hline O & 8 \\ \hline O & 2 \\ \hline O & 2 \\ \hline O & 2 \\ \hline O & 4 \\ \hline O & 5 \\ \hline O & 4 \\ \hline O & 7 \\ \hline O & 2 \\ \hline O & 3 \\ \hline O & 5 \\ \hline O & 3 \\ \hline O & 4 \\ \hline O & 5 \\ \hline O & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Procesul stopează.

Lunjimea drumului minim dintre x_1 şi x_8 coincide cu $H_8=13$

Pentru determinarea vârfurilor prin care trece drumul startăm din ultimul vârf x8

Înainte de x_8 este situat x_7 fiindeă are loc relația H_8 - H_7 =13-10 P_{78} Înainte de x_8 este situat și x_6 fiindeă are loc relația H_8 - H_6 =13-10 P_{68} Înainte de x_8 este situat și x_5 fiindeă are loc relația H_8 - H_5 =13-8 P_{45} Înainte de x_8 este situat și x_4 fiindeă are loc relația H_8 - H_4 =13-6 P_{48}

În top este situat vârful cu cel mai mare indice x_7 Înainte de x_7 este situat x_5 fiindcă are loc relația H_7 - H_5 =10-8 P_{57} Înainte de x_7 este situat și x_3 fiindcă are loc relația H_7 - H_3 =10-5 P_{37} ; În top este situat vârful cu cel mai mare indice x_6 Înainte de x_6 este situat x_5 fiindcă are loc relația H_6 - H_5 =10-8 P_{56} Înainte de x_6 este situat x_4 fiindcă are loc relația H_6 - H_4 =10-6 P_{46}

În top este situat vârful cu cel mai mare indice x_5 Înainte de x_5 este situat x_1 fiindcă are loc relația H_5 - H_1 =8-0 P_{15}

În top este situat vârful cu cel mai mare indice x_4 Înainte de x_4 este situat x_2 fiindcă are loc relația H_4 - H_2 =6-4 P_{24}

În top este situat vârful cu cel mai mare indice x_3 Înainte de x_3 este situat x_1 fiindcă are loc relația H_3 - H_1 =5-0 P_{13}

În top este situat vârful cu cel mai mare indice x_2 Înainte de x_2 este situat x_1 fiindcă are loc relația H_2 - H_1 =4-0 P_{12} Am obținut 5 drumuri minime distincte:

```
d_1=(1,3,7,8),

d_2=(1,5,8),

d_3=(1,5,6,8),

d_4=(1,2,4,6,8),

d_5=(1,2,4,8).
```

DRUM MAXIM (Algoritmul Ford)

Algoritmul Ford poate fi aplicat si pentru determinarea drumului maxim in graful ponderat, daca in graf nu exista cicluri. Fata de drumul minim exista doar doua modificari:

- 1) In etichetele initiale in loc de ∞ se introduce $(-\infty)$;
- 2) La calcularea diferentelor Hj Hi exista cazurile:
- a) Hj Hi < Pij;
- b) Hj Hi = Pij;
- c) Hj Hi > Pij.

Cazurile b) si c) nu permit marirea distantei dintre vârful inițial și x_j , adica Hj, iar cazul "a" permite marirea distanței dintre vârful inițial și x_j , adica Hj prin modificarea: Hj = Hi + Pij. **EXEMPLUL 4.** Folosind algoritmului lui Ford să se determine drumul de valoare maximă între vârfurile x_1 și x_7 ale grafului din figura 1.

Rezolvare:

I.
$$H_1 = 0$$
;

II.
$$H_i = -\infty$$
;

III. Examinăm toate arcele care iese din vârful x_1 :

$$\begin{array}{llll} H_2\text{-}H_1 \!\!<\!\! P_{12} & -\infty\text{-}0 \!\!<\!\! 5 \Longrightarrow & H_2 \!\!=\!\! H_1 \!\!+\!\! P_{12} \!\!=\!\! 0 \!\!+\!\! 5 \!\!=\!\! 5 \\ H_4\text{-}H_1 \!\!<\!\! P_{14} & -\infty\text{-}0 \!\!<\!\! 5 \Longrightarrow & H_4 \!\!=\!\! H_1 \!\!+\!\! P_{14} \!\!=\!\! 0 \!\!+\!\! 5 \!\!=\!\! 5 \\ H_6\text{-}H_1 \!\!<\!\! P_{16} & -\infty\text{-}0 \!\!<\!\! 8 \Longrightarrow & H_6 \!\!=\!\! H_1 \!\!+\!\! P_{16} \!\!=\!\! 0 \!\!+\!\! 8 \!\!=\!\! 8 \\ H_5\text{-}H_1 \!\!<\!\! P_{15} & -\infty\text{-}0 \!\!<\!\! 6 \Longrightarrow & H_5 \!\!=\!\! H_1 \!\!+\!\! P_{15} \!\!=\!\! 0 \!\!+\!\! 6 \!\!=\!\! 6 \\ H_3\text{-}H_1 \!\!<\!\! P_{13} & -\infty\text{-}0 \!\!<\!\! 3 \Longrightarrow & H_3 \!\!=\!\! H_1 \!\!+\!\! P_{13} \!\!=\!\! 0 \!\!+\!\! 3 \!\!=\!\! 3 \\ (\text{fig. 1.}) \end{array}$$

Examinăm toate arcele care iese din vârful x_2 :

$$\begin{array}{lll} H_4\text{-}H_2\!\!<\!\!P_{24} & 5\text{-}5\!\!<\!\!1 & \Longrightarrow & H_4\!\!=\!\!H_2\!\!+\!\!P_{24}\!\!=\!\!5\!\!+\!1\!\!=\!\!6 \\ H_5\text{-}H_2\!\!<\!\!P_{25} & 6\text{-}5\!\!<\!\!4 & \Longrightarrow & H_5\!\!=\!\!H_2\!\!+\!\!P_{25}\!\!=\!\!5\!\!+\!4\!\!=\!\!9 \end{array}$$

Examinăm toate arcele care iese din vârful x_3 :

 H_5 - H_3 > P_{35} 9-3>2 \Rightarrow Eticheta la vîrful x_5 nu se schimbă.

Examinăm toate arcele care iese din vârful x_4 :

 H_5 - H_4 = P_{45} 9-6=3 \Rightarrow Eticheta la vârful x_5 nu se schimbă.

$$H_6-H_4< P_{46}$$
 8-6<5 \Rightarrow $H_6=H_4+P_{46}=6+5=11$

Examinăm toate arcele care iese din vârful x_5 :

$$H_6-H_5 < P_{56}$$
 $11-9 < 4 \Rightarrow H_6=H_5+P_{56}=9+4=13$ $H_7-H_5 < P_{57}$ $-\infty-9 < 6 \Rightarrow H_7=H_5+P_{57}=9+6=15$

Examinăm toate arcele care iese din vârful x_6 :

$$H_7-H_6 < P_{67}$$
 $15-13 < 5 \Rightarrow H_7=H_6+P_{67}=13+5=18$

	1	2	3	4	5	6	7
I	0	-∞	-∞	-∞	-∞	-∞	-∞
II_1		5	3	5	6	8	-∞
III_2				6	9		8
IV_3							-∞
V_4						11	-∞
VI ₅						13	15
VII ₆							18

Fig.3.

$$l_{\text{max}}(1-7) = 18$$

IV. Determinăm drumul maxim:
$$H_7 - H_6 = L_{67}$$
, $18-13 = 5$ $H_6 - H_5 = L_{56}$, $13-9 = 4$ $H_5 - H_4 = L_{45}$, $9-6 = 3$ $H_5 - H_2 = L_{25}$, $9-5 = 4$ $H_4 - H_2 = L_{24}$, $6-5 = 1$ $H_2 - H_1 = L_{12}$, $5-0 = 5$

Drumurile corespunzătoare valorii maxime 18:

EXEMPLUL 5.

Să se determine pentru graful din figura 4 drumul de valoare maximă între vârfurile x_1 și x_8 conform algoritmului lui Ford.

Rezolvare:

I.
$$H_1 = 0$$
;

 $H_2 = -\infty$

 $H_3=-\infty$;

 $H_4=-\infty$;

 $H_5=-\infty$;

 $H_6=-\infty$;

 $H_7 = -\infty$

 $H_8=-\infty$

Pentru fiecare arc (x_i, x_j) se calculeza diferențele dintre eticheta virfului final si cel initial Hj - Hi si se compara cu ponderea Pij.

Sunt posibile trei cazuri:

- a) Hj Hi < Pij;
- b) Hi Hi = Pii;
- c) Hj Hi > Pij.

Cazurile b) si c) nu permit marirea distantei dintre vârful inițial și x_j , adica Hj, iar cazul "a" permite marirea distanței dintre vârful inițial și x_j , adica Hj prin modificarea: Hj = Hi + Pij.

Rezultatele le introducem in tabel

Arcul I	Pond	er. Prima diferenta A	doua diferenta
(x_i,x_j)	Pij	H_{j} - H_{i}	H _j -H _i
(1,2)	4	$H_2-H_1=-\infty-0 < P_{12}; H_2=H_1+P_{12}=0+4=4$	H_2 - H_1 =4-0= P_{12} ;
(1,3)	5	$H_3-H_1=-\infty-0 < P_{13}; H_3=H_1+P_{13}=0+5=5$	H_3 - H_1 =5-0= P_{13} ;
(1,5)	8	$H_5-H_1=-\infty-0 < P_{15}; H_5=H_1+P_{15}=0+8=8$	$H_5-H_1=13-0>P_{15};$
(2,3)	3	$H_3-H_2=5-4 < P_{23}; H_3=H_2+P_{23}=4+3=7$	H_3 - H_2 =7-4= P_{23} ;
(2,4)	2	$H_4-H_2=-\infty-4 < P_{24}; H_4=H_2+P_{24}=4+2=6$	H ₄ -H ₂ =9-4>P ₂₄ ;
(3,4)	2	H_4 - H_3 = 6 - 7 < P_{34} ; H_4 = H_3 + P_{34} = 7 + 2 = 9	$H_4-H_3=9-7=P_{34}$;
(3,5)	4	$H_5-H_3=8-5 < P_{35}; H_5=H_3+P_{35}=7+4=11$	H_5 - H_3 = 13 - 7 > P_{35} ;
(3,7)	5	$H_7-H_3=-\infty-7 < P_{37}; H_7=H_3+P_{37}=7+5=12$	H_7 - H_3 =16-7> P_{37} ;
(4,5)	4	$H_5-H_4=11-9 < P_{45}$; $H_5=H_4+P_{45}=9+4=13$	$H_5-H_4=13-9=P_{45};$
(4,6)	4	$H_6-H_4=-\infty-9 < P_{46}; H_6=H_4+P_{46}=9+4=13$	H ₆ -H ₄ =15-9>P ₄₆ ;
(4,8)	7	$H_8-H_4=-\infty-9< P_{48}; H_8=H_4+P_{48}=9+7=16$	H ₈ -H ₄ =19-9>P ₄₈ ;
(5,6)	2	$H_6-H_5=13-13 < P_{56}; H_6=H_5+P_{56}=13+2=1$	5 $H_6-H_5=15-13=P_{56}$;
(5,7)	3	$H_7-H_5=12-13 < P_{57}; H_7=H_5+P_{57}=13+3=16$	H_7 - H_5 = 16 - 13 = P_{57}
(5,8)	5	$H_8-H_5=16-13 < P_{58}; H_8=H_5+P_{58}=13+5=18$	H ₈ -H ₅ =19-13> P ₄₅
(6,8)	3	H ₈ -H ₆ =18-15=P ₆₈ ; H ₈ nu se modifica	H ₈ -H ₆ =19-15>P ₆₈
(7.8)	3	H_8 - H_7 = 18 - 16 < P_{78} ; H_8 = H_7 + P_{68} = 16 + 3 = 19	H ₈ -H ₇ =19-16 P ₇₈ ;

Procesul stopează.

Lunjimea drumului maxim dintre x_1 şi x_8 coincide cu $H_8=19$ Pentru determinarea vârfurilor prin care trece drumul startăm din ultimul vârf x_8

Înainte de x_8 este situat x_7 fiindcă are loc relația H_8 - H_7 =19-16= P_{78}

În top este situat vârful cu cel mai mare indice x_7 Înainte de x_7 este situat x_5 fiindcă are loc relația H_7 - H_5 =16-13 P_{57} În top este situat vârful cu cel mai mare indice x_5 Înainte de x_5 este situat x_4 fiindcă are loc relația H_5 - H_4 =13-9 P_{45} ;

În top este situat vârful cu cel mai mare indice x_4 Înainte de x_4 este situat x_3 fiindcă are loc relația H_4 - H_3 =9-7 În top este situat vârful cu cel mai mare indice x_3 Înainte de x_3 este situat x_1 fiindcă are loc relația H_3 - H_1 =5-0 P_{13} ; Am obținut drumu maxim: d_1 =(1,3,4,5,7,8),

TEMA

Drum minim in graful ponderat. Algoritmul Bellman-Kalaba pentru determinarea drumului minim.

<u>Algoritmul</u> <u>Bellman-Calaba</u> permite determinarea drumului de valoare minimă din orice vârf al grafului până la un vârf fixat, numit vârf final.

<u>Etapa I.</u> Construim matricea ponderată de adiacență a grafului dat G=(X,U): (fig. 4.)

- a) $m_{ij} = P_{ij}$, dacă există arcul (x_i, x_j) de pondere P_{ij} ;
- b) $m_{ij} = \infty$, unde ∞ este un număr foarte mare (de tip întreg maximal pentru calculatorul dat), dacă arcul (x_i, x_j) este lipsă; $(\infty$ reprezintă lungimea unui drum arbitrar de la vârful x_i până la vârful x_i);
 - c) $m_{ii} = 0$, dacă i = j.

Practic incepem cu introducerea zerourilor pe diagonala principala.

Etapa a II-a. Elaborăm in linia (n+1) un vector V^0 în felul următor:

- a) $V_i^0 = P_{in}$, dacă există arcul (x_i, x_n) , unde x_n este vârful final pentru care se caută drumul minim, P_{in} este ponderea acestui arc;
 - b) $V_i^0 = \infty$, dacă arcul (x_i , x_n) este lipsă;
 - c) $V_i^0 = 0$, dacă i = n.

Practic aceasta inseana sa transpinem in linia (n+1) valorile din coloana a n-a.

Etapa a III-a.

Calculăm iterativ vectorul *V* în conformitate cu următorul procedeu:

$$\begin{split} V_{(i)}^k &= \min \left\{ P_{ij} + V_{(j)}^{k-1} \right\}, & \text{unde} \\ i &= 1, 2, \dots, n-1, \ j = 1, 2, \dots, n; i \neq j \\ V_n^k &= 0 \ . & \\ \text{Dacă} \ V^k &= V^{k-1} \text{- STOP}. \end{split}$$

Componenta cu numărul i a vectorului V_i^k cu valoarea diferită de zero ne va da valoarea minimă a drumului dintre vârfurile x_i și x_n .

Etapa a IV-a. Determinăm drumul de la vârful x_i până la vârful x_n , care corespunde valorii minime:

$$V^{k} = P_{ij} + V^{k-1} \implies P_{ij} = V^{k} - V^{k-1}$$

EXEMPLUL 1.

Să se determine pentru graful din figura 1 drumul de valoare minimă între vârfurile x_1 și x_7 conform algoritmului lui Bellman-Kalaba in graful:

Fig.1

	1	2	3	4	5	6	7
1	0	5	3	5	6	8	8
2	8	0	8	1	4	8	8
3	8	8	0	8	2	8	8
4	8	8	8	0	3	5	8
5	8	8	8	8	0	4	6
6	8	8	8	8	8	0	5
7	8	8	8	8	8	8	0
$V_{(i)}^{0}$	8	8	∞	∞	6	5	0
$V_{(i)}^1$	12	10	8	9	6	5	0
$V_{(i)}^{2}$	11	10	8	9	6	5	0
$V_{(i)}^3$	11	10	8	9	6	5	0

Fig. 2.

Construim primele 7 linii ale matricei ponderate de adiacenta. In linia a 8-a intrdoducem valorile din coloana a 7-a, obtinind vectorul $V_{(i)}^0$.

In linia a 9-a construim vectorul $V_{(i)}^1$ conform etapei a 3-a cu componentele $V_{(i)}^1$:

$$\begin{split} V_{(1)}^1 &= \min \left\{ L_{12} + V_2^0, L_{13} + V_3^0, L_{14} + V_4^0, L_{15} + V_5^0, L_{16} + V_6^0, L_{17} + V_7^0 \right\} = \\ &= \min \left\{ 5 + \infty, 3 + \infty, 5 + \infty, 6 + 6, 8 + 5, \infty + 0 \right\} = 12 \\ V_{(2)}^1 &= \min \left\{ L_{21} + V_1^0, L_{23} + V_3^0, L_{24} + V_4^0, L_{25} + V_5^0, L_{26} + V_6^0, L_{27} + V_7^0 \right\} = \\ &= \min \left\{ \infty + \infty, \infty + \infty, 1 + \infty, 4 + 6, \infty + 5, \infty + 0 \right\} = 10 \\ V_{(3)}^1 &= \min \left\{ L_{31} + V_1^0, L_{32} + V_2^0, L_{34} + V_4^0, L_{35} + V_5^0, L_{36} + V_6^0, L_{37} + V_7^0 \right\} = \\ &= \min \left\{ \infty + \infty, \infty + \infty, \infty + \infty, 2 + 6, \infty + 5, \infty + 0 \right\} = 8 \\ V_{(4)}^1 &= \min \left\{ L_{41} + V_1^0, L_{42} + V_2^0, L_{43} + V_3^0, L_{45} + V_5^0, L_{46} + V_6^0, L_{47} + V_7^0 \right\} = \\ &= \min \left\{ \infty + \infty, \infty + \infty, \infty + \infty, 3 + 6, 5 + 5, \infty + 0 \right\} = 9 \end{split}$$

$$\begin{split} V_{(5)}^1 &= \min \left\{ L_{51} + V_1^0, L_{52} + V_2^0, L_{53} + V_3^0, L_{54} + V_4^0, L_{56} + V_6^0, L_{57} + V_7^0 \right\} = \\ &= \min \left\{ \infty + \infty, \infty + \infty, \infty + \infty, \infty + \infty, 4 + 5, 6 + 0 \right\} = 6 \\ V_{(6)}^1 &= \min \left\{ L_{61} + V_1^0, L_{62} + V_2^0, L_{63} + V_3^0, L_{64} + V_4^0, L_{65} + V_5^0, L_{67} + V_7^0 \right\} = \\ &= \min \left\{ \infty + \infty, \infty + \infty, \infty + \infty, \infty + \infty, \infty + 6, 5 + 0 \right\} = 5 \\ V_{(1)}^2 &= \min \left\{ L_{12} + V_2^1, L_{13} + V_3^1, L_{14} + V_4^1, L_{15} + V_5^1, L_{16} + V_6^1, L_{17} + V_7^1 \right\} = \\ &= \min \left\{ 5 + 10.3 + 8.5 + 9.6 + 6.8 + 5, \infty + 0 \right\} = 11 \end{split}$$

In linia a 10-a construim vectorul $V_{(i)}^2$ conform etapei a 3-a cu componentele $V_{(i)}^2$:

$$\begin{split} V_{(2)}^2 &= \min \left\{ L_{21} + V_1^1, L_{23} + V_3^1, L_{24} + V_4^1, L_{25} + V_5^1, L_{26} + V_6^1, L_{27} + V_7^1 \right\} = \\ &= \min \left\{ \infty + 12, \infty + 8, 1 + 9, 4 + 6, \infty + 5, \infty + 0 \right\} = 10 \\ V_{(3)}^2 &= \min \left\{ L_{31} + V_1^1, L_{32} + V_2^1, L_{34} + V_4^1, L_{35} + V_5^1, L_{36} + V_6^1, L_{37} + V_7^1 \right\} = \\ &= \min \left\{ \infty + 12, \infty + 10, \infty + 9, 2 + 6, \infty + 5, \infty + 0 \right\} = 8 \\ V_{(4)}^2 &= \min \left\{ L_{41} + V_1^1, L_{42} + V_2^1, L_{43} + V_3^1, L_{45} + V_5^1, L_{46} + V_6^1, L_{47} + V_7^1 \right\} = \\ &= \min \left\{ \infty + 12, \infty + 10, \infty + 8, 3 + 6, 5 + 5, \infty + 0 \right\} = 9 \\ V_{(5)}^2 &= \min \left\{ L_{51} + V_1^1, L_{52} + V_2^1, L_{53} + V_3^1, L_{54} + V_4^1, L_{56} + V_6^1, L_{57} + V_7^1 \right\} = \\ &= \min \left\{ \infty + 12, \infty + 10, \infty + 8, \infty + 9, 4 + 5, 6 + 0 \right\} = 6 \\ V_{(6)}^2 &= \min \left\{ L_{61} + V_1^1, L_{62} + V_2^1, L_{63} + V_3^1, L_{64} + V_4^1, L_{65} + V_5^1, L_{67} + V_7^1 \right\} = \\ &= \min \left\{ \infty + 12, \infty + 10, \infty + 8, \infty + 9, \infty + 6, 5 + 0 \right\} = 5 \end{split}$$

In linia a 11-a construim vectorul $V_{(i)}^3$ conform etapei a 3-a cu componentele $V_{(i)}^3$:

$$\begin{split} V_{(1)}^3 &= \min \left\{ L_{12} + V_2^2, L_{13} + V_3^2, L_{14} + V_4^2, L_{15} + V_5^2, L_{16} + V_6^2, L_{17} + V_7^2 \right\} = \\ &= \min \left\{ 5 + 10, 3 + 8, 5 + 9, 6 + 6, 8 + 5, \infty + 0 \right\} = 11 \\ V_{(2)}^3 &= \min \left\{ L_{21} + V_1^2, L_{23} + V_3^2, L_{24} + V_4^2, L_{25} + V_5^2, L_{26} + V_6^2, L_{27} + V_7^2 \right\} = \\ &= \min \left\{ \infty + 11, \infty + 8, 1 + 9, 4 + 6, \infty + 5, \infty + 0 \right\} = 10 \\ V_{(3)}^3 &= \min \left\{ L_{31} + V_1^2, L_{32} + V_2^2, L_{34} + V_4^2, L_{35} + V_5^2, L_{36} + V_6^3, L_{37} + V_7^3 \right\} = \end{split}$$

$$= \min \left\{ \infty + 11, \infty + 10, \infty + 9, 2 + 6, \infty + 5, \infty + 0 \right\} = 8$$

$$V_{(4)}^{3} = \min \left\{ L_{41} + V_{1}^{2}, L_{42} + V_{2}^{2}, L_{43} + V_{3}^{2}, L_{45} + V_{5}^{2}, L_{46} + V_{6}^{3}, L_{47} + V_{7}^{3} \right\} =$$

$$= \min \left\{ \infty + 11, \infty + 10, \infty + 8, 3 + 6, 5 + 5, \infty + 0 \right\} = 9$$

$$V_{(5)}^{3} = \min \left\{ L_{51} + V_{1}^{2}, L_{52} + V_{2}^{2}, L_{53} + V_{3}^{2}, L_{54} + V_{4}^{2}, L_{56} + V_{6}^{3}, L_{57} + V_{7}^{3} \right\} =$$

$$= \min \left\{ \infty + 11, \infty + 10, \infty + 8, \infty + 9, 4 + 5, 6 + 0 \right\} = 6$$

$$V_{(6)}^{3} = \min \left\{ L_{61} + V_{1}^{2}, L_{62} + V_{2}^{2}, L_{63} + V_{3}^{2}, L_{64} + V_{4}^{2}, L_{65} + V_{5}^{3}, L_{67} + V_{7}^{3} \right\} =$$

$$= \min \left\{ \infty + 11, \infty + 10, \infty + 8, \infty + 9, \infty + 6, 5 + 0 \right\} = 5$$
Observăm că am ajuns la $V_{i}^{3} = V_{i}^{2}$ - STOP (fig.1.)

	1	2	3	4	5	6	7
1	0	5	3	5	6	8	8
2	8	0	8	1	4	8	8
3	8	8	0	8	2	8	8
4	8	8	8	0	3	5	8
5	8	8	∞	∞	0	4	6
6	8	8	∞	∞	∞	0	5
7	8	8	∞	∞	∞	8	0
$V_{(i)}^{0}$	8	8	∞	∞	6	5	0
$V_{(i)}^1$	12	10	8	9	6	5	0
$V_{(i)}^{2}$	11	10	8	9	6	5	0
$V_{(i)}^3$	11	10	8	9	6	5	0

Fig. 1.

$$l_{\min}(1-7) = V_{(1)}^3 = 11$$

Determinăm drumul de valoare minimă:

$$L_{13} = V_1 - V_3 \Rightarrow L_{35} = V_3 - V_5 \Rightarrow L_{57} = V_5 - V_7 \Rightarrow$$

 $3 = 11 - 8$ $2 = 8 - 6$ $6 = 6 - 0$

Drumul corespunzător valorii minime 11: 1 3 5 7

EXEMPLUL 2.

Să se determine drumul de valoare minimă între vârfurile x_1 și x_8 conform algoritmului lui Bellman-Kalaba in graful:

Rezolvare

	1	2	3	4	5	6	7	8
1	0	4	5	8	8	8	8	8
2	8	0	3	2	8	8	8	8
3	8	8	0	2	4	8	5	8
4	8	8	8	0	4	4	8	7
5	8	8	8	8	0	2	3	5
6	8	8	8	8	8	0	8	3
7	8	8	8	8	8	8	0	3
8	8	8	8	8	8	8	8	0
$V_{(i)}^{0}$	8	8	8	7	5	3	3	0
$V_{(i)}^1$	13	9	8	7	5	3	3	0
$V_{(i)}^{2}$	13	9	8	7	5	3	3	0

$$\begin{array}{c} V_{(1)}^{2} - a_{12} = V_{(2)}^{2} \quad \Rightarrow x_{1} \rightarrow x_{2} \\ 13 - 4 = 9 \\ V_{(1)}^{2} - a_{13} = V_{(3)}^{2} \quad \Rightarrow x_{1} \rightarrow x_{3} \\ 13 - 5 = 8 \\ V_{(1)}^{2} - a_{15} = V_{(5)}^{2} \quad \Rightarrow x_{1} \rightarrow x_{5} \\ 13 - 8 = 5 \\ V_{(2)}^{2} - a_{24} = V_{(4)}^{2} \quad \Rightarrow x_{2} \rightarrow x_{4} \\ V_{(3)}^{2} - a_{37} \quad = V_{(7)}^{2} \quad \Rightarrow x_{3} \rightarrow x_{7} \\ V_{(4)}^{2} - a_{46} = \quad V_{(6)}^{2} \quad \Rightarrow x_{4} \rightarrow x_{6} \\ V_{(4)}^{2} - a_{48} = \quad V_{(8)}^{2} \quad \Rightarrow x_{4} \rightarrow x_{8} \\ V_{(5)}^{2} - a_{56} = V_{(6)}^{2} \quad \Rightarrow x_{5} \rightarrow x_{6} \\ V_{(5)}^{2} - a_{68} = \quad V_{(8)}^{2} \quad \Rightarrow x_{5} \rightarrow x_{8} \\ V_{(6)}^{2} - a_{68} = \quad V_{(8)}^{2} \quad \Rightarrow x_{7} \rightarrow x_{8} \\ V_{(7)}^{2} - a_{78} = V_{(8)}^{2} \quad \Rightarrow x_{7} \rightarrow x_{8} \\ \end{array}$$

Am obținut 5 drumuri minime distincte:

$$d_1=(1,3,7,8),$$

$$d_2=(1,5,8),$$

$$d_3=(1,5,6,8),$$

$$d_4=(1,2,4,6,8),$$

$$d_5=(1,2,4,8)$$
.

Rezultatele confirmă rezultatele obținute prin metoda Ford.

DRUMUL MAXIM.ALGORITMUL BELLMAN-KALABA(B-K)

Algoritmul B-K poate fi utilizat si pentru determinarea drumului maxim in graful ponderat aplicind urmatoarele doua modificari fata de determinarea drumului minim:

1)La etapa I, punctul b) $m_{ij} = -\infty$, unde $-\infty$ este un număr foarte mic (de tip întreg minimal pentru calculatorul dat), dacă arcul (x_i, x_j) este lipsă; $(-\infty$ reprezintă lungimea unui drum arbitrar de la vârful x_i până la vârful x_j);

2) La etapa III
$$V_{(i)}^k = \max \left\{ P_{ij} + V_{(j)}^{k-1} \right\}$$
, unde $i=1,2,...,n-1, j=1,2,...,n; i \neq j$
$$V_n^k = 0.$$
 Dacă $V^k = V^{k-1}$ - STOP.

Pentru graful din figura 1 să se determine drumul de valoare maximă între vârfurile x_1 și x_7 folosind algoritmul Bellman-

Rezolvare:

Calaba.

Etapa I. Construim matricea ponderată de adiacență a grafului dat G=(X,U):

- a) $m_{ij} = L_{ij}$, dacă există arcul (x_i, x_j) de pondere L_{ij} ;
- b) $m_{ij} = -\infty$, dacă arcul (x_i, x_j) este lipsă;
- c) $m_{ij} = 0$, dacă i = j.

Etapa a II-a. Elaborăm un vector V_0 în felul următor:

- a) $V_i^0 = L_{in}$, dacă există arcul (x_i , x_n), unde x_n este vârful final pentru care se caută drumul maxim, L_{in} este ponderea acestui arc;
 - b) $V_i^0 = -\infty$, dacă arcul (x_i, x_n) este lipsă;
 - c) $V_{i}^{0} = 0$, dacă i = n.

Etapa a III-a. Calculăm iterativ vectorul V în conformitate cu următorul procedeu:

$$V_{(i)}^k = \max \left\{ L_{ij} + V_{(j)}^{k-1} \right\},$$
 unde $i = 1,2,...,n-1, j = 1,2,...,n; i \neq j$ $V_n^k = 0$.

Dacă $V^k = V^{k-1}$ - STOP (fig. 3.12)

Componenta cu numărul i a vectorului V_i^k cu valoarea diferită de zero ne va da valoarea maximă a drumului dintre vârfurile x_i și x_n .

Etapa a IV-a. Determinăm drumul de la vârful x_i până la vârful x_n , care corespunde valorii maxime:

$$V^{k} = L_{ij} + V^{k-1} \implies L_{ij} = V^{k} - V^{k-1} \text{ (fig. 3)}$$

 $l_{\text{max}} (1-7) = 18$

Determinăm drumul de valoare maximă:

4	- ∞	- ∞	- ∞	0	3	5	- ∞
5	- 8	- 8	- 8	- ∞	0	4	6
6	8	8	8	- ∞	8	0	5
7	- ∞	- ∞	- ∞	- ∞	- ∞	- ∞	0
$V_{(i)}^{0}$	- ∞	- ∞	- ∞	- ∞	6	5	0
$V_{(i)}^1$	13	10	8	10	9	5	0
$V_{(i)}^{2}$	15	13	11	12	9	5	0
$V_{(i)}^3$	18	13	11	12	9	5	0
$V_{(i)}^4$	18	13	11	12	9	5	0

Fig. 3

Drumurile corespunzătoare valorii maxime 18:

