Логарифмические преобразования и вычисления

1. (*МГУ*, ДВИ, 2012.2) Вычислите $\log_2\log_{81}\frac{417}{139}$.

2-

2. (*МГУ*, ДВИ, 2013.2) Вычислите $\log_{12} 3 \cdot \log_9 12$.

<u>7</u>

 ${\bf 3.}~(OMMO,~2018)$ Докажите неравенство

$$\log_{2015} 2017 > \frac{\log_{2015} 1 + \log_{2015} 2 + \ldots + \log_{2015} 2016}{2016} \,.$$

4. (*МГУ*, *ВМК*, 1984) Известно, что $\log_a b = 7$. Найдите $\log_{\frac{a}{b}} (a^3 b)$.

 $-\frac{5}{8}$

5. (*МГУ*, филологич. ф-т, 1988) Вычислите:

$$\frac{\log_5 30}{\log_{150} 5} - \frac{\log_5 750}{\log_6 5} \, .$$

7

6. (*МГУ*, экономич. ф-т, 1989) Вычислите:

$$\frac{\log_2 70}{\log_{280} 2} - \frac{\log_2 560}{\log_{35} 2} \,.$$

8

7. (МГУ, биологич. ф-т, 1998) Известно, что $\log_a b = \sqrt{5}.$ Найдите

$$\log_{a^4\sqrt[5]{b^6}} \frac{b\sqrt[3]{b}}{\sqrt[5]{a}} \, .$$

20<u>\5-3</u>

8. (МГУ, физический ф-т, 1982) Известно, что $\log_b a = \sqrt{3}.$ Найдите

$$\log_{\frac{\sqrt{a}}{b}} \frac{\sqrt[3]{a}}{\sqrt{b}}.$$

 $-\frac{1}{\sqrt{3}}$

9. (*МФТИ*, 1996) Выразить $\log_{300} 120$ через a и b, где $a = \log_2 3$ и $b = \log_3 5$.

 $\frac{4n+n+8}{4n2+n+2}$

10. ($M\Phi T H$, 1996) Выразить $\log_{600} 900$ через a и b, где $a = \log_5 2$ и $b = \log_2 3$.

 $\frac{(4a+a+1)2}{4a+a8+2}$

11. ($M\Phi T H$, 1996) Выразить $\log_{140} 350$ через a и b, где $a = \log_7 5$ и $b = \log_5 2$.

 $\frac{qv+vz+1}{qvz+v+1}$

12. (*МГУ*, геологич. ф-т, 1989) Сравните $2\log_2 5$ и $3\log_{\frac{1}{8}} \frac{1}{24}$.

Первое число больше

13. (*МГУ*, *мехмат*, 1999-03.3) Известно, что для некоторой тройки чисел $x,\ y,\ z\ (x \neq y)$ выражения

 $\log_{(x^5y^2z)}\left(\frac{\sqrt[3]{x^2y}}{z}\right)$ и $\log_{(x^2y^5z)}\left(\frac{\sqrt{xy}}{z}\right)$

равны одному и тому же числу. Найти это число.

1 81

14. (*«Ломоносов»*, 2017) Выясните, какое из чисел больше: $11^{\lg 121}$ или $10 \cdot 10^{\lg^2 11} + 11$.

Первое

15. (*«Ломоносов»*, 2008) Какое наибольшее число раз можно последовательно взять логарифм по основанию 2 от числа 16^{64} (первый раз логарифм берётся от этого числа, а затем всякий раз — от числа, полученного в предыдущий раз)?

Песть раз

16. (*«Ломоносов»*, 2006) Вычислите

$$\log_2\log_8\underbrace{\sqrt{\sqrt{\ldots\sqrt{64}}}}_{39}$$

88-

17. («Ломоносов», 2007) Какие значения может принимать выражение

$$\log_{b_{21}b_{50}}b_1b_2\dots b_{70},$$

где b_1, b_2, \ldots геометрическая прогрессия?

35

18. («Покори Воробъёвы горы!», 2013) Выясните, какое из чисел больше:

 $\log_{2012} 2013$ или $\log_{2013} 2014$.

Первое

19. («Покори Воробъёвы горы!», 2013) Выясните, какое из чисел больше:

$$rac{\lg 2013}{2\lg 2}$$
 или $2\lg rac{2013}{2}$.

Второе

20. (*«Покори Воробъёвы горы!»*, 2013) Найдите все значения x, при каждом из которых выражения

$$\log_{2013} \left(\sqrt{1 + \lg^2 x} + \lg x \right)$$
 и $\log_{2012} \left(\sqrt{1 + \lg^2 x} - \lg x \right)$

равны друг другу.

 $\mathbb{Z} \ni u \text{ '} u \pi = x$

21. («Покори Воробъёвы горы!», 2010, 10–11) Положительные числа b_1 , b_2 , b_3 , b_4 , b_5 составляют геометрическую прогрессию. Сумма логарифмов по основанию 3 от этих чисел равна 10. Найдите эти числа, если $\log_3 b_1 \cdot \log_3 b_5 = 3$.

72 ,8\\0,9,9,6 ,8\\0,8

22. (ММО, 2018, 11.1) Решите уравнение

$$x^{3} + (\log_{2} 5 + \log_{3} 2 + \log_{5} 3) x = (\log_{2} 3 + \log_{3} 5 + \log_{5} 2) x^{2} + 1.$$

23. (*MMO*, 2015, 11.1) Сумма нескольких не обязательно различных положительных чисел не превосходила 100. Каждое из них заменили на новое следующим образом: сначала прологарифмировали по основанию 10, затем округлили стандартным образом до ближайшего целого числа и, наконец, возвели 10 в найденную целую степень. Могло ли оказаться так, что сумма новых чисел превышает 300?

 Aa

24. (Открытая олимпиада ИТМО, 2015, 11) Известно, что

$$\left(\log_x^2 y + \log_z^2 t\right) \left(\log_y^2 z + \log_x^2 t\right) = 37 \quad \text{if} \quad \log_y t + \log_t y = 5.$$

 $\text{Найдите } \log_x z + \log_z x.$

₹