Géométrie différentielle Résumé de cours (IV)

III. Champs scalaires - Champs de vecteurs dans \mathbb{R}^2

1. Définition

Champ scalaire dans
$$\mathbb{R}^2$$
: fonction $F: \begin{pmatrix} x \\ y \end{pmatrix} \to F(x, y)$

Exemple: Température en chaque point d'une surface plane.

Champ vectoriel dans
$$\mathbb{R}^2$$
: fonction $V: \begin{pmatrix} x \\ y \end{pmatrix} \to V(x,y) = \begin{pmatrix} P(x,y) \\ Q(x,y) \end{pmatrix}$ aussi notée $\vec{V} = \begin{pmatrix} P \\ Q \end{pmatrix}$

Exemple: Champ électrique entre les armatures d'un condensateur cylindrique

2. Circulation d'un champ de vecteurs

Soit $\gamma:[a,b]\to\mathbb{R}^2$ une courbe paramétrée de classe C^1 . On note $\gamma(t)=M(t)=\begin{pmatrix} x(t)\\y(t)\end{pmatrix}$.

Soit $\vec{V} = \begin{pmatrix} P \\ Q \end{pmatrix}$ un champ de vecteurs.

La circulation du champ \vec{V} le long de la courbe γ , est l'intégrale

$$\int_{\gamma} \vec{V} \, d\vec{l} = \int_{a}^{b} \vec{V} \, \frac{dM}{dt} dt = \int_{a}^{b} \left(P\left(x(t), y(t)\right) x'(t) + Q\left(x(t), y(t)\right) y'(t) \right) dt$$

On note aussi
$$\int_{\gamma} \vec{V} \, d\vec{l} = \int_{\gamma} P \, dx + Q \, dy$$

exemple : Si V est un champ de force, la circulation de V est le travail de cette force lorsque son point d'application se déplace sur la courbe.

Propriétés

Si
$$\|\vec{V}\| \leqslant k$$
, en appelant L la longueur de γ , on a $\left| \int_{\gamma_i} \vec{V} \, d\vec{l} \right| \leqslant k.L$

Si γ_1 et γ_2 sont 2 paramétrages équivalents de même sens, alors $\int_{\gamma_1} \vec{V} \, d\vec{l} = \int_{\gamma_2} \vec{V} \, d\vec{l}$

$$\int_{-\gamma} \vec{V} \, \vec{\mathrm{d}} \vec{l} = -\int_{\gamma} \vec{V} \, \vec{\mathrm{d}} \vec{l}$$

Si
$$\gamma = \gamma_1 + \gamma_2$$
, alors $\int_{\gamma} \vec{V} \, d\vec{l} = \int_{\gamma_1} \vec{V} \, d\vec{l} + \int_{\gamma_2} \vec{V} \, d\vec{l}$

Exemple
$$\int_{\gamma} \frac{(x-y)dx + (x+y)dy}{x^2 + y^2}$$
 sur le carré [[-1,-1],[+1,-1],[+1,+1],[-1,+1]]

3. Primitive d'un champ de vecteurs

$$F$$
 est une primitive de \vec{V} si et seulement si $\vec{V} = \operatorname{grad}(F)$, c'est-à-dire $P = \frac{\partial F}{\partial x}$ et $Q = \frac{\partial F}{\partial y}$

Condition nécessaire (mais pas suffisante) pour que \vec{V} de classe C^1 admette une primitive : $\left| \frac{\partial P}{\partial v} = \frac{\partial Q}{\partial x} \right|$

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Exemple : Primitives de
$$\omega = \frac{y}{x^2} dx - \frac{1}{x} dy$$

Propriété : Si F est une primitive de \vec{V} alors

1° pour toute courbe γ de classe C^1 par morceaux, $\int_{\gamma} \vec{V} \, d\vec{l} = F(M(b)) - F(M(a))$ notée F(B) - F(A)

2° pour toute courbe γ fermée (i.e. M(b) = M(a)) de classe C^1 , $\int_{\gamma} \vec{V} \, d\vec{l} = 0$

Exemple : $\int_{\gamma} -\frac{y}{x^2+y^2} dx + \frac{x}{x^2+y^2} dy$, où γ est composée de l'arc ABCD et du segment DA

4. Formule de Green-Riemann

Soit $\vec{V} = \begin{pmatrix} P \\ O \end{pmatrix}$ un champ de vecteurs de classe C^1 . Soit K un compact simple de \mathbb{R}^2 , limité par une courbe γ de classe C^1 par morceaux, orientée dans le sens trigonométrique.

$$\int_{\gamma} P \, dx + Q \, dy = \iint_{\kappa} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy$$

Exemple Aire de
$$K = \int_{\gamma} x \, dy = -\int_{\gamma} y \, dx = \int_{\gamma} \frac{x}{2} \, dy - \frac{y}{2} \, dx$$

Cas particulier : Si $f \ge 0$, si K est limité par la courbe y = f(x), l'axe des x et les droites x = a et x = b, alors Aire de $K = \int_{a}^{b} f(t) dt$

IV. Champs scalaires - Champs de vecteurs dans \mathbb{R}^3

1. Définitions

Champ scalaire dans
$$\mathbb{R}^3$$
: fonction $F: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow F(x, y, z)$

Champ scalaire dans
$$\mathbb{R}^3$$
: fonction $F: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \to F(x, y, z)$

$$\mathbb{R}^3 \to \mathbb{R}^3$$
Champ vectoriel dans \mathbb{R}^3 : fonction $V: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \to V(x, y, z) = \begin{pmatrix} P(x, y, z) \\ Q(x, y, z) \\ R(x, y, z) \end{pmatrix}$ aussi notée $\vec{V} = \begin{pmatrix} P \\ Q \\ R \end{pmatrix}$

Gradient d'un champ scalaire : grad
$$F = \begin{pmatrix} \frac{\partial F}{\partial x} \\ \frac{\partial F}{\partial y} \\ \frac{\partial F}{\partial z} \end{pmatrix}$$
 noté $\begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix}$ F ou ∇F avec $\nabla = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix}$ (nabla)

$$\frac{\partial}{\partial z} \qquad (\frac{\partial}{\partial z}) \qquad (\frac{\partial}{\partial z}) \qquad (\frac{\partial}{\partial z})$$
Divergence d'un champ vectoriel: div $V = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$ noté $\begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix}$. $\begin{pmatrix} P \\ Q \\ R \end{pmatrix}$ ou $\nabla . V$.

Rotationnel d'un champ vectoriel
$$\vec{V} = \begin{pmatrix} P \\ Q \\ R \end{pmatrix}$$
: $\operatorname{rot} V = \begin{pmatrix} \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \\ \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \\ \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \end{pmatrix}$ noté $\begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \wedge \begin{pmatrix} P \\ Q \\ R \end{pmatrix}$ ou $\nabla \wedge V$.

Propriétés : Si
$$F$$
 est de classe C^2 , $rot(grad F) = \vec{0}$
Si \vec{V} est de classe C^2 , $div(rot \vec{V}) = 0$

2. Circulation d'un champ de vecteurs le long d'une courbe

Soit
$$\gamma:[a,b] \to \mathbb{R}^3$$
 une courbe de classe C^1 , $\gamma(t) = M(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$ et $\overrightarrow{V} = \begin{pmatrix} P \\ Q \\ R \end{pmatrix}$ un champ de vecteurs.

La circulation du champ \vec{V} le long de la courbe γ , est l'intégrale $\int_{\gamma} \vec{V} \, d\vec{l} = \int_{a}^{b} \vec{V} \, \frac{dM}{dt} dt$

$$\int_{\gamma} \overrightarrow{V} \, d\overrightarrow{l} = \int_{a}^{b} \left(P\left(x(t), y(t), z(t)\right) x'(t) + Q\left(x(t), y(t), z(t)\right) y'(t) + R\left(x(t), y(t), z(t)\right) z'(t) \right) dt = \int_{\gamma} P \, dx + Q \, dy + R \, dz$$

3. Primitive d'un champ de vecteurs

$$F$$
 est une primitive de \vec{V} si et seulement si $\vec{V} = \operatorname{grad}(F)$, c'est-à-dire $P = \frac{\partial F}{\partial x}$, $Q = \frac{\partial F}{\partial y}$ et $R = \frac{\partial F}{\partial z}$

Condition nécessaire (mais non suffisante) pour que \vec{V} admette une primitive : $rot(\vec{V}) = \vec{0}$

Propriété : Si F est une primitive de \vec{V} alors

1° pour toute courbe
$$\gamma$$
 de classe C^1 par morceaux, $\int_{\gamma} \vec{V} \, d\vec{l} = F(M(b)) - F(M(a))$ notée $F(B) - F(A)$

 2° pour toute courbe γ fermée de classe C^{1} par morceaux, $\int_{\gamma} \vec{V} \, d\vec{l} = 0$

4. Flux d'un champ de vecteurs à travers une surface

Orientation conventionnelle d'une surface :

Surface fermée : Le vecteur normal est dirigé vers l'extéreur

Surface limitée par une courbe fermée :

Le vecteur normal est dirigé suivant la règle du tire-bouchon en suivant l'orientation de la courbe

Flux de \vec{V} à travers la surface \mathcal{S} : $\iint_{\mathcal{S}} \vec{V} \cdot \vec{dS} = \iint_{U} \vec{V} \cdot \vec{N} \, du \, dv = \iint_{U} \vec{V} \cdot \frac{\partial M}{\partial u} \wedge \frac{\partial M}{\partial v} \, du \, dv,$

où le paramétrage $(u,v) \in U \to M(u,v) \in \mathbb{R}^3$ de S est tel que S est "bien orienté".

5. Théorème de Gauss-Ostrogradski

Soient \vec{V} un champ de vecteurs, \mathcal{S} une surface fermée orientée vers l'extérieur et \mathcal{V} le volume limité par \mathcal{S} . $\iiint_{\mathcal{S}} \vec{V}.\vec{\mathrm{d}}\vec{S} = \iiint_{\mathcal{V}} \mathrm{div} \vec{V} du \, dv \, dw$

$$\iint_{\mathcal{S}} \overrightarrow{V} \cdot \overrightarrow{dS} = \iiint_{\mathcal{V}} \operatorname{div} \overrightarrow{V} du \, dv \, dw$$

6. Théorème de Stockes

Soient \overrightarrow{V} un champ de vecteurs, $\mathcal S$ une surface orientée limitée par une courbe fermée γ .

$$\boxed{\int_{\gamma} \vec{V} \, \vec{dl} = \iint_{\mathcal{S}} \text{rot } \vec{V} . \, \vec{dS}}$$