Метод Штурма

- 1. Замену чисел $0 < a < b \in \mathbb{R}$ на числа a + t, b t, где $t \in [0, (b a)/2]$, назовём сближением с фиксированной суммой, а замену на числа ta, b/t, где $t \in [1, \sqrt{b/a}], -c$ ближением с фиксированным про-изведением. Пусть $n \in \mathbb{N}$. Как при сближении ведут себя (уменьшаются или увеличиваются) величины:

 (а) ab; (b) $\sqrt{a} + \sqrt{b}$; (c) $a^n + b^n$; (d) $1/a^n + 1/b^n$?
- 2. Сумма неотрицательные числа x_1, x_2, \ldots, x_n равна 1. Докажите, что $(1+x_1)(2+x_2)\ldots(n+x_n) \leq 2 \cdot n!$.
- 3. Для неотрицательных чисел a, b и c докажите, что верно неравенство $(a+b+c)^5 \ge 81abc(a^2+b^2+c^2)$.
- 4. Сумма неотрицательных чисел x, y и z равна 1. Докажите неравенства $0 \le xy + yz + zx - 2xyz \le \frac{7}{27}$.
- 5. Докажите, что из всех выпуклых n-угольников, вписанных в данную окружность, (a) наибольшую площадь; (b) наибольший периметр имеет правильный n-угольник.
- 6. Пусть $x_1, x_2, \ldots, x_n > 0$ и $x_1 + x_2 + \ldots + x_n = 1$. Докажите неравенство

$$\frac{(1-x_1)(1-x_2)\dots(1-x_n)}{x_1x_2\dots x_n} \ge (n-1)^n.$$

7. Для действительных чисел $x_1, x_2, \ldots, x_n \ge 1$ докажите неравенство

$$\frac{1}{1+x_1} + \frac{1}{1+x_2} + \ldots + \frac{1}{1+x_n} \ge \frac{n}{1+\sqrt[n]{x_1x_2\ldots x_n}}.$$