# Machine Learning Group Assignment

Angelo Barisano, Millie Zhu, JeanLuc Oudshoorn, Jaimy Lai



### Objective

The objective is to help a hotel predict whether a hotel booking will be canceled or not.

The owner of the hotel is hoping for an accuracy of at least **85%.** Besides the overall performance, they have expressed an interest in the ability of the model to **detect canceled bookings.** 

### Why a Machine-Learning Task?

- Data Availability
- Complexity & Nonlinearities

### **Advantages**

With this information, the hotel can optimize e.g. its planning and resources

- Better insights into the necessary staffing within a certain time period
- Optimize the inventories and costs
- In months with more cancellations, the hotel can e.g. do more marketing activities

#### **Data**

The dataset that will be used in this project consists of a training and test dataset. The training dataset includes 24,035 bookings and the test set contains 16,025 bookings and is collected throughout the same time. The dataset consists of 26 variables which consist of numerical and categorical variables and includes the target variable: is\_cancelled.



# Exploratory data analysis

### Performed EDA in order to understand the data and avoid poblems in modelling

- Summary statistics
  - summary table
  - skimr: summary statistics
- Graphs
  - o ggplot: see distributions, observe data imbalance, etc
  - o pairplots: understand relationships between variables, etc.

### Interesting finds examples

- People with booked parking spaces are not likely to cancel
- No missing values
- Most customers are from Portugal or Britain
- Arrival date week has a 53rd week
- Most big group bookings will be cancelled

| Statistic                       | N      | Mean      | St. Dev. | Min    | Max     |
|---------------------------------|--------|-----------|----------|--------|---------|
|                                 |        |           |          |        |         |
| lead_time                       | 24,035 | 92.740    | 97.601   | 0      | 737     |
| arrival_date_year               | 24,035 | 2,016.123 | 0.720    | 2,015  | 2,017   |
| arrival_date_week_number        | 24,035 | 27.117    | 13.968   | 1      | 53      |
| arrival_date_day_of_month       | 24,035 | 15.790    | 8.895    | 1      | 31      |
| stays_in_weekend_nights         | 24,035 | 1.195     | 1.149    | 0      | 16      |
| stays_in_week_nights            | 24,035 | 3.132     | 2.479    | 0      | 40      |
| adults                          | 24,035 | 1.868     | 0.754    | 0      | 55      |
| children                        | 24,035 | 0.129     | 0.442    | 0      | 3       |
| babies                          | 24,035 | 0.014     | 0.120    | 0      | 2       |
| is_repeated_guest               | 24,035 | 0.045     | 0.206    | 0      | 1       |
| previous_cancellations          | 24,035 | 0.104     | 1.357    | 0      | 26      |
| previous_bookings_not_cancelled | 24,035 | 0.148     | 0.999    | 0      | 30      |
| booking_changes                 | 24,035 | 0.284     | 0.707    | 0      | 16      |
| days_in_waiting_list            | 24,035 | 0.524     | 7.370    | 0      | 185     |
| adr                             | 24,035 | 94.575    | 61.169   | -6.380 | 450.000 |
| required_car_parking_spaces     | 24,035 | 0.138     | 0.347    | 0      | 3       |
| total_of_special_requests       | 24,035 | 0.618     | 0.813    | 0      | 5       |
|                                 |        |           |          |        |         |







### **Metrics**

### Stakeholder Demands & Context

- o Requested 85% Accuracy & focus on cancellation detection
  - Risks of Missing Cancellations (False Negatives) Stakeholder focus
    - Overstaffing & missed last-minute marketing potential, and overall revenue lost
  - Risks of Misclassifying Cancellations (False Positives) potentially neglected
    - Understaffing & overbooking







$$CA = \frac{TP + TN}{TP + TN + FP + FN}$$

$$F_1 = \frac{2TP}{2TP + FP + FN}$$



Task: Rebalance Stakeholders' expectation metric penalizing a complete focus on cancellation by the model

#### Central Evaluation Metrics

- F1 (Tuning Metric): Harmonic mean of the models' <u>Precision</u> & <u>Recall</u> Balance False Cancellation (FP) & False Non-Cancellations (FN)
  - Advantage: Accuracy only considers correct predictions and F1 penalizes excessive focus on Recall
  - F1 reflects both the stakeholder's demands and also the best choice from an engineering perspective
- AUC-ROC: (Complementary) A threshold (for classification) independent classifying metric; any value above 0.5 represents that the
  model is an improvement over a random classifier
  - Advantage: Provides summary for comparing models regardless of class imbalance (unequal number of outcomes) & versatility
- o **Accuracy:** Proportion of correct predictions made by the classifier out of all the predictions made
  - Advantage: Simple metric & required by Stakeholders



### Preprocessing

### Impactful Variable Preparation

- o "country" Null-Value conversions & Lump small-frequency (200) countries together in "Other"
- o "adr" (average daily rate) delete (impossible) negative values but keep "zero" values as possible gifts 1 dropped
- Remove "no-adult-bookings" 252 dropped
- Remove potentially risky variables (information leakage potential & uninformative variables) see update\_role()



General investigation for possible information leakage variables (derivates of outcome/ measured post hoc)

### • Feature Engineering (No Free Lunch Theorem)

- o "got\_assigned\_room" At the time of booking, did the customer receive the booked room; no information leakage
- "week\_day\_of\_week" Distinguishing between weekdays and weekend days
- "total\_visitors" Deriving total visitors to reduce noise

#### Workflow

- Step\_novel new factor levels for test\_set
- Step\_harmonic for date-related features
- Step\_impute\_mode impute country
- Step\_normalize boosting, regression, KNN
- Step\_dummy for categorical variables
- NO DOWNSAMPLING improve performance



### Logistic, ridge, lasso

#### Method

- Logistic regression as the baseline model: a linear model that uses a logistic function to model the probability of an event occurring
- Ridge: add a new term to the logistic function to reduce the variance of the model
- Lasso: add a new term to the logistic function to select a subset of the most important predictors

#### Goal

• Provide a benchmark to measure the performance of more complex models

### **Advantage**

- Simple to understand, computationally efficient
- Help prevent overfitting



### K-nearest neighbors (KNN)

### **Method**

- Find the k nearest data points to a given data point
- Use their class labels on the cancellation to make a prediction for the given data point

 Does not make strong assumptions on any functional form from the training data

#### Goal

• Flexibly classify a given data point

### **Advantage**

- Simple and fast
- robust to meaningless information in the data





### Random forest

#### **Method**

- Based on decision trees
- Trains every tree on a bootstrapped version of the training set
- Only considers a set number of predictors to split on at each node
- Averages predictions over all trees in the final model

#### Goal

Reduce variance while keeping bias low by constructing many uncorrelated trees

### **Advantages:**

- More stable and accurate predictions than simple decision trees
- Less sensitive to overfitting and changes in the data
- Requires little hyperparameter tuning (good out-of-the-box performance)
- Natively captures interaction effects between variables

On this dataset: Random Forest achieves the highest precision but recall is lacking which leads to a lower F1-score than other models. The overall accuracy and area under the ROC-curve are also slightly lower.





### Boosting

#### Method

- A single decision tree is fit and predicts the dataset
- Another tree is fit subsequently on the prediction residuals of the previous tree
- Base prediction is updated by adding the predictions of each subsequent tree
- This process is iterated many times

### Goal

Make increasingly accurate predictions by identifying and iteratively building trees that specialize in predicting hard cases

### **Advantages**

- Higher predictive accuracy than almost any other algorithm when tuned well
- Better at handling imbalanced data by iteratively fitting trees on the hard-to-predict class
- Better feature importance estimates
- Generally need fewer data to achieve good performance

### Two main differences between XGBoost and LightGBM

- Using a histogram for determining split points
- Leaf-wise versus level-wise tree building

On this dataset: XGBoost slightly outperforms the Random Forest on F1-score, but not on accuracy. LightGBM takes the crown with almost a full percentage point increase in F1-score as well as better accuracy and area under the ROC-curve than the Random Forest.







Preprocessing steps are performed on both the train and test data.

Steps that require some form of estimation (e.g.: scaling) are only estimated on the train set and applied to both the train and test set. (This way the mean of the train set is used for normalization on the test set)

The hyperparameters are picked according to cross-validation performance on the training set, after that the chosen model is evaluated on the test set just once to give a fair estimate of generalization error.

ROC- and PR-curves are used to evaluate models for different preferred levels of sensitivity, specificity, precision, and recall.





**Prediction** 

yes

no

yes

3488

961

no

630

10946

|                                      | KNN<br>confusion matrix     |      | Ridge<br>confusion matrix    |            | Lasso<br>confusion matrix         |       |            |      |       |
|--------------------------------------|-----------------------------|------|------------------------------|------------|-----------------------------------|-------|------------|------|-------|
| <b>Analysis of</b>                   |                             | Tr   | uth                          |            | Tr                                | uth   |            | Tr   | uth   |
| statistics                           | Prediction                  | yes  | no                           | Prediction | yes                               | no    | Prediction | yes  | no    |
|                                      | yes                         | 3270 | 1115                         | yes        | 2565                              | 718   | yes        | 2828 | 864   |
|                                      | no                          | 1179 | 10461                        | no         | 1884                              | 10858 | no         | 1621 | 10712 |
| Logistic Regression confusion matrix | XGBoost<br>confusion matrix |      | LightGBM<br>confusion matrix |            | Random Forest<br>confusion matrix |       |            |      |       |
| Truth                                |                             | Tru  | th                           |            | Trut                              | :h    |            | Tru  | th    |

**Prediction** 

yes

no

yes

3585

864 10827

no

749

**Prediction** 

yes

no

yes

2863

1586 10694

no

882

**Prediction** 

yes

no

yes

3629

820

no

734

10842



### Final result and model selection

| Model                 | F1                | Accuracy          | Precision              | Recall            | ROC AUC           |
|-----------------------|-------------------|-------------------|------------------------|-------------------|-------------------|
| Logistic (Base)       | 0.699             | 0.846             | 0.764                  | 0.643             | 0.910             |
| KNN                   | 0.740             | 0.857             | 0.746                  | 0.735             | 0.916             |
| Lasso                 | 0.695             | 0.845             | 0.766                  | 0.636             | 0.910             |
| Ridge                 | 0.663             | 0.838             | 0.781                  | 0.577             | 0.902             |
| Random forest         | 0.814             | 0.901             | 0.847                  | 0.784             | 0.957             |
| LightGBM              | 0.824             | 0.903             | 0.832                  | 0.816             | 0.961             |
| XGBoost               | 0.816             | 0.899             | 0.827                  | 0.806             | 0.958             |
|                       |                   |                   |                        |                   |                   |
| Best performing model | LightGBM<br>0.824 | LightGBM<br>0.903 | Random forest<br>0.847 | LightGBM<br>0.816 | LightGBM<br>0.961 |



## Final conclusion

Hoteliers want to increase the value of their hospitality services for their customers to have retention, and ultimately, increase revenue. For this case specifically, it is beneficial for staffing purposes to know how many bookings will be canceled in advance. The use of machine learning is beneficial in almost all industries as it optimizes processes and efficiency gains.

- **LightGBM** is the best-performing model across most metrics
- The data allows for a fairly accurate classification of cancellations and non-cancellations
- There is a good balance between over- and underprediction of cancellations

### **Further suggestions**

- Performance should be monitored for model rot
- Machine learning projects can be rolled out for predictive maintenance and price optimization



Best performing model