Lecture 1 (30-07-2021)

30 July 2021 09:28

Automata on infinite words

· Let Σ be a finite nonempty set (called alphabet).

· A finite word (over Σ) is a finite sequence of letters from Σ .

 $\omega = a_0 a_1 \cdots a_n, \quad a_i \in \Sigma.$

E is the empty word.

 \geq^* is the set of all finite words (over ϵ).

An infinite word over Σ is an infinite sequence of letters from Σ . R = a.a.a..., an ∈ ≥ ∀n∈ No.

(Different formality: No = 20, L...) and a: No -> E."

Mus, w= No.

In general, given sets × and Y, y * denotes

the set of all functions x->Y $\Sigma^{\omega} = \text{all infinite words (on } \Sigma)$

Examples 0 Z = { a, b}

a = a b ab ab ···

or: $\alpha(n) \div \begin{cases} a & j & 2 \leq n \\ b & j & 2 \leq n \end{cases}$

(2) a = abb abb abb

 $\alpha(n) = \begin{cases} 3 \\ 1 \end{cases}$

 $\alpha = (abb)^{\omega}$ $\beta \quad \gamma : \omega \longrightarrow \{a, L\}$

 $y(n) = \begin{cases} a & j & n & is prime \\ b & j & otherwise \end{cases}$

V = bbaabababbba ...

()
$$\Sigma = \{a\}$$
, $\Sigma^{\omega} = \{\alpha^{\omega}\}$. ($|\Sigma^{\omega}| = 1$.)

But if $|\Sigma| > 1$, then Σ^{ω} is not a countable set.

OTOM, $\Sigma^{\#}$ is always a countable set. ($|\Sigma| < \infty$)

Automata:

A =
$$(Q, \Sigma, q_0, \Delta \subset Q \times \Sigma \times Q,$$
 "Acceptance condition")

\[\to \alpha \text{ finite set of states} \]

\[\to q, \in Q \to \text{ the initial state} \quad \text{(unique)} \]

\[\to \D \circ \Cappa \times \times \quad \text{ of the franction relation} \quad \quad \quad \quad \text{the franction here is fine} \]

Now, let $\alpha = \alpha \cdot \alpha_1 \alpha_2 \cdots \in \Sigma^{6}$ be given.

A run f of A on α is an infinite sequence of states

 $f = q_0 q_1 q_2 \cdots$ Such that "q." is indeed the initial state and $\forall i \in \omega : (q_i, a_i, q_{i+1}) \in \Delta$

In terms of functions: Given
$$\alpha: \omega \to \Sigma$$
, we have $\rho: \omega \to \Sigma$ sit: $\rho(0) = q_0$ and $(\rho(n), \alpha(n), \rho(n+1)) \in \Delta \ \forall n \in \omega$.

Example
$$\alpha = (ab)^{\omega}$$

$$\alpha = (ab)^{\omega}$$

$$\alpha = (ab)^{\omega}$$

$$\alpha = (ab)^{\omega}$$

"Acceptance condition": (Bichi automata)

d + input word g - a run of A on a

Inf(p) := the set of states which occur infinitely oftenalong p

= {q & Q : 3 = 1 & s+ g(i) = q}

(There are only finitely many states.) Obs. Inf (p) # Ø.

Büchi automaton (BA): fix G ⊆ Q called the "good states."

A rung is accepted by a BA if Inf(p) nG = Ø.

(Thus, some good state appears infinitely after.)

word $\alpha \in \Sigma^{\omega}$ is accepted by A if α has an accepting run & on the word a.

 $L(A) := \{ \alpha \in \Sigma^{\omega} : A \text{ accepts } \alpha^{3} \}$ Language of A

Rof. Let the right side loe L.

· L(A) & L:

Note that A is deterministic, thus α has a unique run β , which is accepted. $\rho = 90 9'_1 9'_2 9'_3 \cdots$

Thus, go appear inf. often above. Since it only receives 'a, we see that a appears inf. often.

· L & L(A) :

Let $\alpha \in L$. It has a unique run p.

Then, since α has inf mony 'a's, p will have inf. many 'qo's.

Con doo write $L = (b^*a)^{\omega}$ once we have defined what that means.

Question What about $L = \Sigma^{\omega} \setminus L$? Can that be accepted by a Birchi automaton?

Lecture 2 (04-08-2021)

04 August 2021 09:31

Note. We do NOT allow & transitions in this course.

then though we insisted on single initial states the expressive power does not change if we allow more. (It is simply for convenience.)

Examples (1) 4 over $\Sigma = \{a, L, 3\}$.

4 = every 'a' is eventually followed by a b'

(2) L2 = any two occurrences of 'a' are separated by even no. of other (b, c) letters

(3) \(\geq = \frac{1}{2}a, \text{b}^2\), \(L = \text{inf. many 'a's} \)

$$\rightarrow 0$$

Complement: $\bar{L} = E^{\omega} / L = finitely may 'a'$

Q What is a BA for I?

Q. Do we have a determinstic Bischi automator (DBA) for I?

Note that we had an DBA for L: - (2)

$$g^{2} = g^{2} g_{1}^{2} g_{2}^{2} ... \qquad --$$

$$[xe^{2}] = (g^{2})(g^{2})(g^{2})$$

a "product run" on
$$\alpha$$

Here we assume that each $\alpha \in \Xi^{\omega}$ has at lost one

run on both A: (Can always ensure this by adding a dead state)

With the above assurption,

the language as 1, vl2.

Lecture 3 (06-08-2021)

06 August 2021 09:39

Closure under intersection.

Do the same product construction as earlier and put $G = G_1 \times G_2$.

A = ALXA 2.

1. L(A) = L(A) 1 L(A).

(5) If $f = f_1 \times f_2$ is an accepting run, so f_1 and f_2 both one.

(2) let & EL(Ai) nU(A2).

Then there are accepting runs P: on Ai.

Put J = J, x /2.

But then it is not necessary that p is

accepting.

For example, S. has good stades at even positions

and Pe at odd.

As a converte example of above: $A_1 = 0$ $A_2 = 0$

Az = 8 - 02 b

Then (ab) E (L(A1) nL(A2)) \ L(A1 x A2).

Doesn't work! Slightly modified.

 $Q = Q_1 \times Q_2 \times f_1$, 2^2 , indicates the component being "searched" for a good $q_0 = (q_0^1, q_0^2, 1)$

$$\begin{pmatrix}
q_1, q_2, 1
\end{pmatrix} \xrightarrow{\alpha} \begin{pmatrix}
q'_1, q'_2, 2
\end{pmatrix} \xrightarrow{q_1 \xrightarrow{\alpha} q'_2} q_2 \xrightarrow{\alpha} q'_2 \\
q_1 \xrightarrow{\epsilon} q_1$$

similarly for
$$(,,2) \rightarrow (,2)$$

 $(,,2) \rightarrow (,1)$

 $G = G, \times Q_2 \times \{1\}.$

 $L(A) = L(A_1) \cap L(A_2).$

Closure under projection

 $\pi: \Sigma_1 \times \Sigma_2 \longrightarrow \Sigma_1$ induce $\pi: (\Sigma_1 \times \Sigma_1)^{\omega} \longrightarrow \Sigma_1^{\omega}$

If $L \subseteq (\Sigma_1 \times \Sigma_2)^{\omega}$ is ω -regular, so is $\pi(L)$. Lt A = (Q, q., \(\Sigma\), \(\Sigma\) be a BA with \((A) = L.\) Goal: Construct B s.t. L(B) = T(L).

Define $B = (0, q_0, \Sigma_1, \Lambda', G)$, where

$$\Delta' = \left\{ \begin{array}{c} q & \xrightarrow{\alpha} q' : \exists b \in \Xi_{i} \text{ s.t.} \\ q & \xrightarrow{\alpha, \omega} q' \text{ in} \end{array} \right\}.$$

(Take original automote and exace all the second components.)

USE, LSE, ULSE".

(The concat. of a finite wood followed by an infinite word is defined in the natural way.)

Nouseuse: Great: $\Sigma^{\omega} \times \Sigma^{\omega} \to \Sigma^{\omega}$ or Great: $\Sigma^{\omega} \times \Sigma^{*} \to \Sigma^{\omega}$.

MEA, LIANEU U⊆∑* regular Closure: A = (Q., Q., 5, A, F), L⊆∑ w-regular β = (Q', q', Σ', Δ', G'). Keep them disjoint and all possible transisitions of the form:

of a g' where 9f EF and $q' \rightarrow q'$ in δ Keep G as G! # U S S*, define $U^{\omega} = \begin{cases} x \in \Sigma^{\omega} : & \text{if } x \in \Sigma^{\omega} \end{cases}$ is a factorisation of the form K = 0, 0, 0, 0, 0, ... fr a EU. Closure If USE* is regular, then U" is w-regular. Let A = (Q, qo, E, A, F) recongnise U incoming transitions to go (Why Gu us do this?) Assume that there are and that 90 \$ F. (Also note U" = (U\ {\varepsilon})".)

~~ *``* ' ' ' '

(Also note U" = (U\ EED)".)

Add all possible transitions of the form: