## PATENT SPECIFICATION

(11) 1 415 295

(21) Application Nos. 47926/71 and 47927/71

5

10

15

20

25

(23) Complete Specification filed 16 Oct. 1972

(22) Filed 14 Oct. 1971

(44) Complete Specification published 26 Nov. 1975

(51) INT CL<sup>2</sup> C07C 59/26; A61K 31/19, 31/215, 31/395; C07C 103/178, 131/00, 69/67; C07D 295/18

(52) Index at acceptance

C2C 1175 1341 1530 1532 1562 1626 1731 215 21X 220 221 225 226 227 22Y 246 250 251 252 255 25Y 280 281 282 28X 290 29X 29Y 30Y 311 313 314 31Y 323 327 32Y 338 339 342 345 346 34Y 351 354 355 35X 35Y 360 361 362 364 365 366 367 368 36Y 371 373 37Y 388 389 396 401 40Y 464 491 496 500 50Y 574 583 584 588 58X 593 596 612 613 620 623 624 625 628 62X 634 635 638 63X 650 657 658 65X 662 665 668 66X 675 694 699 701 718 719 740 776 790 79Y BG BT KN KR KW LQ LZ MF MV QT RE RV UJ UL UQ UR



5

10

15

20

25

(72) Inventor ANDRÉ MIEVILLE

#### (54) SUBSTITUTED PHENOXY-ALKYL-CARBOXYLIC ACIDS AND DERIVATIVES THEREOF

We, ORCHIMED S.A., a Swiss Body corporate of c/o Me. Gumy, 8 Bd. de Perolles, 1700 Fribourg, Switzerland, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be per-

This invention concerns p-carbonyl-phenoxy-carboxylic acids and derivatives thereof which result from transforming the p-oxo radical into oxime, acid, ester and amide radicals and from transforming the carboxylic acid radical into ester and amide radicals.

Our copending Patent Application Number 3085/70 (1 268 321) claims compounds having the formula

where Y is —OH, —OCH<sub>3</sub>, —OC<sub>2</sub>H<sub>5</sub>, —OC<sub>3</sub>H<sub>7</sub>, NHOH, NR<sub>1</sub>R<sub>2</sub>, A represents a single bond or a divalent straight- or branched-chain  $C_{1-3}$  hydrocarbon radical, R' is a hydrogen atom or a phenyl group, and either X is = O or = NOH and R is a hydrogen atom or a phenyl, halophenyl,  $C_{1-3}$  alkyl,  $C_{1-3}$   $\omega$ -haloalkyl, and if X = O, R is hydroxyl, methoxy, ethoxy, propoxy, —NHOH or —NR<sub>1</sub>R<sub>2</sub> group or R—CX represents a cyano group, each of R<sub>1</sub> and R<sub>2</sub> being a hydrogen atom or an alkyl or distribution of the dis ethylamino alkyl group or R1 and R2 forming, together with the nitrogen atom to which they are attached, a substituted or unsubstituted heterocyclic group.

The present invention provides compounds having the general formula

but excluding those claimed in the said copending application, in which R' and R" are identical or different and each represents H, CH<sub>3</sub>, C<sub>2</sub>H<sub>5</sub>, C<sub>6</sub>H<sub>5</sub>, p—F—C<sub>6</sub>H<sub>6</sub>, p—Cl—C<sub>6</sub>H<sub>6</sub>, —R"' and R"'', which may be identical or different, represent H, a halogen atom, preferably F, Cl or Br, a C<sub>1-5</sub> alkyl group, CF<sub>3</sub>, SCH<sub>3</sub>, SOCH<sub>3</sub>, SO<sub>2</sub>CH<sub>3</sub>, OCH<sub>3</sub>, CH<sub>a</sub>, CF<sub>a</sub> or halogen atoms, a cycloalkyl group, OH, a C<sub>1</sub> alkoxy group, an aryloxy

5

10

15

20

25

30

35

40

45

50

55

. . 60

. :

Examples of groups represented by NR<sub>3</sub>R<sub>4</sub> are amino, mono- and dialkylamino, morpholino, thiomorpholino, pyrrolidino, piperidino, azepino, N-p-chlorophenyl-piperazino, N- methylpiperazino, piperazino, 4-methylpiperidino, anilino, N-methylanilino, 2,3-dimethyl anilino, p-chloranilino, O-trifluoromethylanilino, p-trifluoromethyl anilino, cyclohexylamino and cyclopentylamino groups and analogues thereof.

The preferred halogen atoms are fluorine, chlorine and bromine.

The aryl group of R''', R', R, and R<sub>4</sub> can be substituted by one or more F, Cl,

Br, CF<sub>3</sub> and CH<sub>3</sub>. The preferred ones according to this invention are phenyl, p-chloro-

50

55

60

phenyl and p-fluorophenyl. Among the compounds corresponding to formula I two kinds of products can be distinguished:

1) the p-carbonyl-phenoxy-alkyl-carboxylic acids and derivatives thereof which result

a) from transforming the p-oxo group into oxime  $X = NOR_0$ , b) from transforming the carboxylic acid group into ester and amide groups, and,

c) from transforming both the p-oxo group into oxime and the carboxylic acid groups into ester and amide groups; and,

20

25

5

10

20

25

2) the p-carboxy-phenoxy-alkyl-carboxylic acids, hereafter called "diacids" and derivatives thereof which result from the transformation of one or the both carboxylic acid groups into ester and amide groups.

Among the compounds of the "p-carbonyl" type,  $R^{vi}$  represents H,  $C_1$ — $C_6$  alkyl, aryl preferably  $C_6H_5$ , p—Cl— $C_6H_4$  and p—F— $C_6H_4$ .

Among the "diacid" type  $R^{vi}$  represents OH,  $C_1$ — $C_6$  alkoxy, aryloxy preferably

Among the diacid type  $K^{\alpha}$  represents OH,  $C_1 - C_6$  alkoxy, aryloxy preferably phenoxy and p-chlorophenoxy, cycloalkyloxy preferably cyclopentyloxy, cyclohexyloxy,  $\Delta^{1,2}$ -cyclohexenyloxy,  $NR_3R_4$ ,  $NHCH_2CH_2NR_3R_4$ , or O-alkylene- $NR_3R_4$ . The para-carbonyl compounds of formula I in which X' is an oxygen atom and Y' is a hydroxy group or a  $C_{1-3}$  alkoxy group may be prepared by reacting a parahydroxybenzoyl compound of the formula

in which  $R^{\nu_i}$ ,  $R^{\prime\prime\prime}$  and  $R^{\prime\prime\prime\prime}$  are defined as above with a halogen compound of the formula

Hal—COY" (III) 15
$$R''$$

in which Hal represents a halogen atom, Y" is a hydroxy group or a C1-3 alkoxy group and R' and R" are as defined above, in an alkaline medium.

The carbonyl function >C=O may be converted into an oxime function or an ester or other ester or an amide function respectively, using a method known per-se for converting a carbonyl function to an oxime function or for converting a carboxylic or C<sub>1-8</sub> alkoxy ester function to an ester, other ester or amide function.

The following procedures may be used to prepare the compounds of formula I:

Preparation of acids, esters and amides of formula I, in which R" is a hydrogen atom and X' is an oxygen atom

a) A p-hydroxybenzoyl derivative having the formula

in which R<sub>5</sub> is a hydrogen atom or an alkyl or aryl group, particularly a p-chlorophenyl group, is reacted with an a-halogenated acid for the formula

$$R^{*}-CH(CI)-CO_{2}H$$
(IIIa)

or an α-halogenated ester of the formula

$$R^{\tau}$$
— $CH(Br)$ — $CO_zEt$  (IIIb)

in order to obtain respectively a compound of the formula

$$R_{S} = C + CO_{2}H$$

$$R_{S} = C + CO_{2}E$$

10

30

40

- b) When R<sub>s</sub> represents a hydrogen atom or an alkyl group, compound IVa may be esterefied using methyl or ethyl alcohol; the ester obtained may be condensed with an appropriate amine to produce a desired amide of formula I, or transesterified to synthesize an ester of formula I other than those already mentioned in procedures A (a) and A (b).
- 5
- c) When R<sub>5</sub> represents an aryl radical, compound IVa may be converted by means of SOCl<sub>2</sub> or PCl<sub>5</sub> into the corresponding acid chloride which may be reacted with an appropriate amine, alcohol or amino alcohol, in accordance with a method known per se, m order to obtain respectively a desired amide, ester or amino ester of formula I.
- d) Compound IVb may be condensed with an appropriate amine in accordance with a method known per se to produce a desired amide of formula I or compound IVb may be transesterified to prepare other esters of formula I.
- 10
- PROCEDURE  $A_i$ Preparation of acids, esters and amides of formula I in which  $R^v = R'' = CH_3$  and X' = 0
  - 15
  - a) An acetone-chloroform mixture or an  $\alpha$ -halogenated ester of the formula Br—C(CH<sub>3</sub>)<sub>2</sub>—CO<sub>2</sub>Et (V), is reacted with compound IIa in an alkaline medium, in order to obtain respectively a compound of the formula

$$R_{5}-C \xrightarrow{R^{(1)}} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{R^{(2)}} CH_{3} \xrightarrow{R$$

- b) Compound VIa can be esterified by means of a lower alcohol, for instance to give methyl, ethyl or iso-propyl ester, particularly when R<sub>s</sub> is an alkyl group.
  - 20
  - c) Ester VIb can be amidified or transesterified, in accordance with methods known per se to produce respectively an amide or other ester of the formula I.
- d) When R<sub>5</sub> is an aryl group, compound VIa may be converted into the corresponding acid chloride by means of SOCl<sub>2</sub> or PCl<sub>5</sub> and then, if desired, the acid chloride may be reacted with an appropriate amine, alcohol or amino-alcohol to produce an amide, ester or amino ester respectively of the formula I.
  - 25

# PROCEDURE B.

- Preparation of aldoximes and ketoximes of formula I, i.e. compounds of formula I in which X' = NOH or NOR<sub>o</sub>.
- 30
- a) The compounds of formula I in which X' = NOH may be prepared by treating corresponding compounds of the formula I in which X' = O with hydroxylamine hydrochloride in a basic medium, preferably a pyridinic medium.
- b) The compounds of the formula I in which X' = NOR<sub>0</sub> may be prepared:—
  by condensing corresponding compounds of the formula I in which X' = O in a basic
  (pyridine) medium, with a substituted hydroxylamine hydrochloride, such as:

#### H<sub>2</sub>N:-O-R<sub>0</sub>, HCl,

from the compound of the formula I, in which X' = NOH, by the following reactions:

$$-\text{NOH} \xrightarrow[\textbf{t.Bu OK}]{} -\text{NOK} \xrightarrow[\textbf{X R}_o]{} -\text{NOR}_o$$

The following examples are given to illustrate the invention and analogous methods of preparing compounds in accordance with the invention.

40

20

25

30

35

40

5

10

15

30

35

40

45

### EXAMPLE 1.

4-(p-chlorobenzoyl)-phenoxy-acetic acid

a) Preparation of 4-hydroxy-4'-chlorobenzophenone

Phenol and p-chlorobenzoyl chloride are successively added at 0°C to a solution of AlCl<sub>3</sub> in nitrobenzene (or a suspension of AlCl<sub>3</sub> in ligroine or dichloroethylene); the resulting mixture is kept warm to 25°C for 17 hours, and hydrolysed; 4-hydroxy-4'chlorobenzophenone is then isolated by extraction using dilute sodium hydroxide and washing with hexane.

b) 4-(p-chlorobenzoyl)-phenoxyacetic acid A mixture of 1 mole of 4-hydroxy-4'-chlorobenzophenone, 2.2 moles of NaOH, 1.2 10 moles of CICH2-CO2H and 1300 cc of water, is refluxed for 7 hours.

After acidification and extraction with NaHCO3 have been conducted and followed by a second acidification, 4-(p-chlorobenzoyl)-phenoxyacetic acid is isolated. Its melting point is 152°C.

EXAMPLE 2.

N-(p-propionyl-phenoxyacetyl)-morpholine. This example illustrates the procedures A(b) and A(d) described above.

a) Methyl p-propionyl-phenoxyacetate

1 mole of p-propionyl-phenoxyacetic acid is refluxed during 10 hours, with 100 cc of MeOH and 300 cc of CHCl3 or CH2Cl2 in the presence of sulfuric acid. The result-20 ing mixture is poured into water. The desired ester remains in the organic phase. It is washed once with dilute NaOH, then twice with water. Pure methyl p-propionylphenoxyacetate is thus isolated, with a yield of about 90%. MP: 59°C.

b)

2.5 1 mole of the ester obtained in step (a) is refluxed for 8 hours with 2.5 moles of morpholine. Then, 1 volume of water is added, and the product is left to crystallize in the cold state. The morpholinic amide is filtered off and recrystallized from alcohol (yield: 85%; melting point: 88°C).

By using the procedure described in example 2, original compounds listed in table III are prepared.

EXAMPLE 3.

N-(p-benzoylphenoxyacetyl)-piperidine This example illustrates procedure A (c) described above

The piperidinoamide of p-benzoylphenoxy acetic acid is obtained by treating 1 mole of p-benzoylphenoxy acetic acid chloride with 2 moles of piperidine in benzene.

By using the procedure described in example 3, original compounds listed in table IV are obtained.

EXAMPLE 4.

Para-propionhydroximoyl- phenoxy-acetyl-1-piperidine

1 mole of p-propionylphenoxyacetyl-1-piperidine is refluxed for 5 hours with 1.1 mole of NH2OH.HCl and 1.05 mole of pyridine. The desired oxime is precipitated in water and recrystallized from alcohol. Its melting point is 144°C.

45 By using the procedure described in example 4, original compounds listed in table V are obtained.

10

15

20

25

30

35

40

45

5

10

15

20

25

30

35

40

45

# EXAMPLE 5. Preparation of para-(4-chlorobenzoyl)-phenoxy-isobutyric acid

$$cl$$
- $co$ - $c(cH_3)_2$ - $co_2$ H

1 mole of 4-hydroxy-4'-chlorobenzophenone is dissolved in anhydrous acetone and then 5 moles of powdered sodium hydroxide is added. The corresponding sodium phenate precipitates. Refluxing is effected, and then, 1,5 mole of CHCl<sub>3</sub> diluted with anhydrous acetone is added and the resulting mixture is refluxed for 10 hours. After cooling, water is added, the acetone is evaporated, the aqueous phase is washed with ether and acidified and the organic phase is re-dissolved in ether and extracted into a solution of bicarbonate. The bicarbonate solution is then acidified to obtain the desired acid, having a melting point of 185°C, with a yield of 75%.

By using the procedure described in example 5, original compounds listed in table

Esters and amides of the phenoxy-isobutyric acids prepared in accordance with the procedure of example 5 are produced in accordance with procedure A<sub>1</sub> described above. Esters and amides prepared in this manner are listed in table VII.

The compounds listed in table VII can be prepared in a manner similar to that described in the following example.

EXAMPLE 6.
Iso-propyl p-(4-chlorobenzoyl)-phenoxy-isobutyrate

(Code No. 178)

1 mole of the acid obtained in example 6 is converted into its acid chloride using thionyl chloride (2,5 moles). 1 mole of the acid chloride is then condensed with 1,05 mole of isopropyl alcohol in the presence of 0,98 mole of pyridine in an inert solvent such as benzene.

Since traces of SO<sub>2</sub> (which has a bad smell) may be obtained from the thionyl chloride; it is preferable to avoid this disadvantage by carrying out the esterification directly.

Using procedure B described above, isobutyric acids, and esters and amides thereof prepared in example 5 are connected to the corresponding oxime compounds listed in

table VIII.

The compounds of formula I in which  $R^{vi}$  and Y' are both hydroxy groups may be prepared in accordance with the invention by a) reacting p-hydroxybenzoic acid which has the formula

HO COOH

with a halogeno carboxylic acid having the formula

in which Hal represents a halogen atom in an aqueous alkaline medium under reflux, and b) precipitating the resulting diacid in an acidic medium.

It is preferred to use one mole of p-hydroxy benzoic acid per mole of the halogeno

carboxylic acid.

The compounds of formula I in which at least one of Rvi and Y' is other than hydroxyl can be prepared in accordance with the invention by converting at least one of the acid functions of the diacid into an ester or amide function by a method known per-se for converting carboxylic acid groups to ester or amide groups.

15

20

25

The diacid, which has the formula

can be used directly:

- a) for the synthesis of a diester of the invention in which  $R^{vi} = Y'$ ,
- a) for the synthesis of a dieser of the invention in which a dieser or a diamide of the invention in which R' = Y' can be synthesized, or
  c) for the synthesis of a monoester of the invention; in this case the acid function carried by the oxyacetic chain, i.e. the group OCR'R"COOH, is esterified through the acid monochloride prepared with PCl<sub>0</sub> in C<sub>0</sub>H<sub>4</sub> at 0°C.

10 The monoesters of the formula 10

5

can be synthesized in accordance with method c) or else by the action of ethyl bromo-

on a para-carboxy-hydroxyphenone of the formula

15

in a heterogenous alkaline medium.

From the monoesters of the invention, particularly those of formula VIII above, there can be obtained, by using a method known per-se, monoamides of the invention, e.g. of the formula

20

or acid monochlorides, e.g. of the formula

The acid monochlorides can in turn be converted into symmetrical and asymmetrical diesters and amide-esters of the invention, e.g. of the formula

25

10

15

20

15

20

Finally, a symmetrical or asymmetrical diester of the invention, e.g. of the formula

can be converted to an amide ester of the invention, e.g. of the formula

By a simple modification of the reaction sequences described above it is possible to obtain the compounds of the invention in which one of R<sup>vi</sup> CO— and —COY' is an amino-ester group and the other of R<sup>vi</sup> CO— and —COY is an amide group, any substituents on the nitrogen atom of the amino-ester group being identical to or different from those on the nitrogen atom of the amide group. This is illustrated in the following reaction scheme in which

N<sub>1</sub> and N<sub>2</sub>

represent non-identical amino groups.

The following examples are given to illustrate the invention.

EXAMPLE 8. N-(p-carboxyphenoxy-acetyl)piperidine

H000- 0-CH2-00-N

A mixture of 1 mole of ethyl p-carboxy-phenoxy-acetate and 2,5 moles of piperidine is refluxed for 7 hours. Water is then added, and 1-p-carboxy-phenoxy-acetyl piperidine precipitates.

15

20

25

30

10

20

25

#### EXAMPLE 9.

Ethyl para-piperidinocarbonyl-phenoxy-acetate Operation is in accordance with the following reaction scheme:

$$\begin{array}{c|c} HO_2C- & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

5 The amide ester product can be reacted with any amine, in accordance with the procedure described in Example 8, to produce a diamide.

The substances indicated in Tables I and II are prepared in accordance with the

procedure described in Example 8 or Example 9.

The substances listed in Table I bis have been found to possess anti-tussive and

analgesic properties.

The following Examples illustrate particular procedures for preparing the compounds number 96 and 99 appearing in Tables I and II respectively.

EXAMPLE 10. N-(p-carboxyphenoxy-acetyl)-piperidine

coded as No. 96 15

a) Ethyl p-carboxyphenoxy-acetate

1 mole of ethyl bromoacetate is reacted with 1 mole of p-hydroxybenzoic acid in the presence of 2 moles of K2CO3 in acetone, methyl-ethylketone, dioxan or tetra-hydrofuran, for 48 hours, at the reflux temperature of the organic solvent to obtain ethyl pcarboxyphenoxy-acetate.

b) N-(p-carboxy-phenoxy-acetyl)piperidine

The preceding ester (1 mole) is heated under reflux with piperidine (3 moles) in a chlorinated solvent, for 6 hours. Water is added to precipitate N-(p-carboxy-phenoxy-acetyl)piperidine after condensation is complete.

EXAMPLE 11. N-(p-ethoxycarbonyl-phenoxy-acetyl)piperidine coded as No. 99

Ethyl p-carboxy-phenoxy-acetate is esterified in ethanol and chloroform in the presence of sulphuric acid. N-(p-ethoxycarbonyl-phenoxy-acetyl)piperidine is obtained by condensation of 1 mole of the resulting diester (ethyl p-ethoxycarbonyl-phenoxy-acetate) with 3 moles of piperidine in an inert solvent for 7 hours at the boil-30 ing temperature of said solvent.

| E I   | 14-0-0-A |
|-------|----------|
| TABLE |          |

|           | Activity<br>found             | Anti-inflammatory<br>Anti-tussive | :                | •                |                  | •                | ÷                |           |
|-----------|-------------------------------|-----------------------------------|------------------|------------------|------------------|------------------|------------------|-----------|
|           | , A                           |                                   | 000              | . 000            | 17 000<br>16 000 | 14 000<br>11 000 | 20 000<br>16 000 | 15 000    |
| U.V.      |                               | 19 000<br>16 000                  | 18 000<br>17 000 | 12 000<br>15 000 | 17               | 14               | 20               | 15        |
| D         | λ Μαχ.(πμ)                    | 209<br>248                        | 210              | 208<br>251       | 209              | 207              | 208              | 207       |
| ·m-1      | ν-C-Υ΄<br>  <br>              | 1660                              | 1640             | 1690             | 1640             | 1760             | 1660             | 1760      |
| I.R. cm-1 | ν-C-R <sup>vi</sup><br>Π<br>Ο | 1630                              | 1700             | 1640             | 1700             | 1630             | 1630             | 1620      |
|           | M.P.                          | 168                               | 190              | 265              | 183              | 06               | 181              | 116       |
|           | Υ',                           | Q                                 | Ç                | -NH <sub>2</sub> | ()               | -0C,H,           | <b>(</b> )       | й<br>500- |
|           | Β,"                           | н                                 | I                | Ħ                | н                | Ħ                | Ħ                | Ξ         |
|           | RV                            | Н                                 | ж                | Œ                | н                | エ                | <b></b>          | 二         |
|           | Rvi                           | -NH <sub>2</sub>                  | Н0-              | -NH <sub>2</sub> | но-              | Ç                | -NH,             | Ç         |
|           | Code<br>No.                   | 100                               | 96               | 106              | 112              | 116              | 138              | 145       |

. •

|                     |                       | Activity<br>found   | Anti-tussive,<br>ara:gesic,<br>cardiovascular | \$                                         | î                              | ÷                   | 2                      | ĵ                    |
|---------------------|-----------------------|---------------------|-----------------------------------------------|--------------------------------------------|--------------------------------|---------------------|------------------------|----------------------|
|                     |                       | Ų                   | 27 000<br>19 000                              | 16 000<br>20 000                           | 17 500<br>20 000               | 18 000<br>19 000    | 36 000<br>22 000       | 34 000<br>17 000     |
|                     | U.V.                  | λ Max.(mμ)          | 210<br>253                                    | 208<br>255                                 | 208<br>253                     | 207<br>254          | 213<br>252             | 217<br>256           |
|                     | cm <sup>-1</sup>      | , K-C-Y             | 1760                                          | 1760                                       | 1760                           | 1760                | 1770                   | 1760                 |
| ued)                | I.R. cm <sup>-1</sup> | v-C-R <sup>vi</sup> | 1710                                          | 1710                                       | 1710                           | 1710                | 1710                   | 1710                 |
| (Contin             |                       | M.P.                | 7.5                                           | 108                                        | 182                            | 169                 | 190                    | 140                  |
| TABLE I (Continued) |                       | λ,                  | -0C2Hs                                        | -0C,H,                                     | 0C <sub>2</sub> H <sub>5</sub> | -0C <sub>2</sub> H, | o-Org-Crg-n , funarate | -0-042-012-M         |
|                     |                       | χ,                  | H                                             | Е                                          | Ξ                              | ж                   | Ħ                      | н                    |
|                     |                       | %<br>%              | 五                                             |                                            | Ξ                              | <b></b>             | H                      | н                    |
|                     |                       | ۳.<br>دن            | -0-045-045-H                                  | -0-CH <sub>2</sub> -CH <sub>2</sub> -N HCl | -0-CH-CHP-H                    | 0-042-042-4         | o-Cro-cro-A            | 1421. ( H-910-610-0- |
|                     |                       | O de                | 199                                           | 200                                        | 201                            | 225                 | 293                    | 294                  |

| 7  | ; |
|----|---|
|    |   |
| į  | • |
| ٤  |   |
| -  | 4 |
| Ц  | 1 |
| AR |   |
| Z  | Ċ |
| -  |   |

|                                                  | >                          | ilar,<br>iant                               |               |                                                                         |
|--------------------------------------------------|----------------------------|---------------------------------------------|---------------|-------------------------------------------------------------------------|
|                                                  | Activity<br>found          | Antitussive, cardiovascular, normolipemiant | :             | :                                                                       |
|                                                  | v                          | 15 000<br>19 000                            | i             | 15 000<br>15 000                                                        |
| U.V.                                             | λ Мах.(πμ)                 | 210<br>253                                  | 1             | 209                                                                     |
| n-1                                              | ν-C-Υ'<br>Θ                | 1700                                        | 1760          | 1730                                                                    |
| I.R. cm <sup>-1</sup>                            | ν-C-R <sup>vi</sup> ν-C-Y' | 1690                                        | 1710          | 1710                                                                    |
|                                                  | M.P.                       | 175                                         |               | 136                                                                     |
|                                                  | Υ,                         | Н0-                                         | Сн, Сн, -0-сн | CH <sub>3</sub> CH <sub>3</sub> -o-ch <sub>2</sub> -ch <sub>2</sub> -th |
|                                                  | R."                        | £                                           | Ğ.            | СН,                                                                     |
|                                                  | RV                         | сн, сн,                                     | GH,           | СН,                                                                     |
| -                                                | R <sup>v</sup> i           | но-                                         | -0-CH         | -0-ch-ch-H                                                              |
| <del>                                     </del> | Code<br>No.                | 310                                         |               |                                                                         |

|          |                       | Activity<br>found          | Antitussive      | :                | î                | í.               | Antitussive,<br>analgesic,<br>cardiovascular | ٤                                          |
|----------|-----------------------|----------------------------|------------------|------------------|------------------|------------------|----------------------------------------------|--------------------------------------------|
|          |                       | ţ                          | 13 000<br>18 000 | 19 000<br>19 000 | 20 000<br>20 000 | 19 000<br>20 000 | 37 000<br>23 000                             | 23 000<br>21 000                           |
|          | U.V.                  | λ Μαχ.(πμ)                 | 216<br>267       | 210<br>253       | 209<br>252       | 209<br>252       | 210<br>255                                   | 209                                        |
|          | r_mc                  | ν-C-Υ'<br>Ε' Ο             | 1650             | 1650             | 1660             | 1660             | 1660                                         | 1660                                       |
| TABLE II | 1.R. cm <sup>-1</sup> | v-C-R <sup>vi</sup><br>≡ 0 | 1720             | 1710             | 1700             | 1710             | 1710                                         | 1720                                       |
| TABI     |                       | M.P.<br>O.                 | 61               | 104              | 72               | 110              | 162                                          | 85                                         |
| r) e     |                       | Υ, '                       | Ç                | Ç                |                  |                  |                                              | -N                                         |
|          |                       | R <sup>vi</sup>            | -0C,H,           | -осн,            | -0C,Hs           | -0CH,            | o-cn-cn-n                                    | -0-CH <sub>2</sub> -CH <sub>2</sub> -N HCl |
| -        |                       | Code<br>No.                | 66               | 105              | 120              | 139              | 205                                          | 204                                        |

- 1

| -             |
|---------------|
| ᡇ             |
| O             |
| =             |
| =             |
| Ξ.            |
| •             |
| _             |
| 0             |
| 7             |
|               |
| $\mathcal{L}$ |
| $\mathcal{L}$ |
| =             |
| =             |
| S             |
| ) !!          |
| =             |
| ) !!          |
| (E 11 (       |
| ) !!          |
| (E 11 (       |

|                       |                     |                                              |                         |                  |                                 |                    | 1                                                  |
|-----------------------|---------------------|----------------------------------------------|-------------------------|------------------|---------------------------------|--------------------|----------------------------------------------------|
|                       | Activity<br>found   | Antitussive,<br>analgesic,<br>cardiovascular | ·<br>•                  | :                | :                               | ÷                  | £                                                  |
|                       | ę                   | 30 000<br>20 000                             | 36 000<br>23 000        | 32 000<br>16 000 | 34 000<br>21 600                | 27 000<br>30 000   | 32 000<br>18 000                                   |
| U.V.                  | λ Μαχ.(πμ)          | 210<br>254                                   | 210<br>255              | 207<br>285       | 209                             | 211                | 212<br>250                                         |
| n-1                   | v-C-Y'              | 1660                                         | 1660                    | 1660             | 1660                            | 1660               | 1660                                               |
| I.R. cm <sup>-1</sup> | v-C-R <sup>vi</sup> | 1710                                         | 1710                    | 1710             | 1710                            | 1710               | 1710                                               |
|                       | A.P.                | 160                                          | 139                     | 100              | 138                             | 162                | 168                                                |
|                       | ,, λ                | Q <sub>v</sub> -                             | Ç                       |                  |                                 | Ç                  | NH-CH <sub>2</sub> -CH <sub>2</sub> -N<br>tumarate |
|                       | Rvi                 | o-cHo-CHq-M                                  | o-che-che-H<br>fumatate | 0-chg-chg-H      | $o$ - $cH_{2}$ - $OH_{2}$ - $h$ | -0-012-012-01-1013 | o-Org-Org-H                                        |
|                       | Code<br>No.         | 221                                          | 222                     | 228              | 235                             | 249                | 311                                                |

Antitussive, analgesic, cardiovascular Activity found : 30 000 20 000 31 000 22 000 30 000 22 000 30 000 23 000 U.V.  $\lambda \text{ Max.}(m\mu)$ 211 252 212 252 212 253 211 252 v-C-Y′ 1660 1660 1660 1660 -0 I.R. cm-1 v-C-R<sup>vi</sup> TABLE II (Continued) 1710 1710 1710 1710 M.P. 150 134 134 142 λ 0-CHZ-CH2-H fumatate  $R^{\underline{v}_{\underline{i}}}$ Code No. 313 314 312

|             |                 |     |      |    |            |      | I.R. cm-1              | -1                    | Ü.         | u.v.             |                                 |
|-------------|-----------------|-----|------|----|------------|------|------------------------|-----------------------|------------|------------------|---------------------------------|
| Code<br>No. | R <sup>vi</sup> | ጸ " | R "" | ₽~ | Υ,         | M.P. | v-C-<br>  <br>0 ketone | v-C-<br>  <br>O amide | л Мах.     | ę                | Activity<br>discovered          |
| 124         | CH,-(CH,),      | ×   | Ж    | Ħ  | Q-         | 82   | 1680                   | 1650                  | 213<br>267 | 18 000<br>18 000 | Antitussive and<br>psychotropic |
| 126         | CH,-(CH,),      | Ħ   | Ħ    | Ή  | $\bigcirc$ | 76   | 1680                   | 1650                  | 214<br>266 | 18 000<br>18 000 |                                 |
| 184         | CH,             | н   | Ж    | Ħ  |            | 130  | 1700                   | 1665                  | 210<br>263 | 18 000<br>24 000 | :                               |
| 134         | сн,-сн,         | Ħ   | I    | Ħ  | Ç          | 107  | 1680                   | 1660                  | 214<br>266 | 17 500<br>17 500 | :                               |
| 136         | CH,-CH,         | Ħ   | Ħ    | エ  |            | 88   | 1670 enl               | <br>enlarged peak<br> | 214 265    | 18 000<br>17 000 | :                               |
| 148         | H,C CH          | Н   | н    | Н  |            | 80   | 1660 enl               | enlarged peak         | 214        | 18 500<br>18 000 | £                               |

Antitussive and psychotropic Activity discovered : ; 19 000 18 000 000  $\begin{array}{c} 19 & 000 \\ 18 & 000 \end{array}$  $\frac{18}{18} 000$ 19 000 15 000 22 000 15 000 19 U.V. λ Мах. 214 267 214 268 214 267 213 267 211 257 214 266 || O amide enlarged peak 1650 1660 1640 1650 1650 7-C-I.R. cm<sup>-1</sup> O ketone TABLE III (Continued) 1670 1660 1670 1665 1680 1670 M.P. 94 75 73 86 134 66 , γ RV Η  $\Xi$ Ξ Η Ξ I R ""  $\Xi$  $\Xi$ I Ξ Ή Ξ K #  $\Xi$  $\Xi$ H  $\Xi$ I Ξ CH-CH, CH-CH, RVi  $CH_1-(CH_2)_1$  $CH_1-(CH_2)_1$ Br-CH, H,C H,C H,C Code No. 151 149 154 159 157 164



| _     |  |
|-------|--|
| ued   |  |
| Ë     |  |
| Š     |  |
| ت     |  |
| Ξ     |  |
| щ     |  |
| TABLE |  |
| Ľ     |  |
|       |  |
|       |  |

|                  |                               |                                                                        | :                                                                                                      |                                                                                                                                                                     |
|------------------|-------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24 000<br>18 500 | 14 000<br>17 500              | 14 000<br>16 000                                                       | 19 000<br>16 000                                                                                       |                                                                                                                                                                     |
| 212 268          | 215<br>268                    | 212<br>268                                                             | 210                                                                                                    |                                                                                                                                                                     |
| 1640             | 1630                          | 1645                                                                   | 1650                                                                                                   |                                                                                                                                                                     |
| 1670             | 1680                          | 1670                                                                   | 1670                                                                                                   |                                                                                                                                                                     |
| 170              | 167                           | 125                                                                    | 117                                                                                                    | 137                                                                                                                                                                 |
| MH CH3 CH3       | NH-NH2                        | $\overline{\ }$                                                        | $\bigcirc$                                                                                             | Ç                                                                                                                                                                   |
| E                | Ξ                             | H                                                                      | Ξ                                                                                                      | H                                                                                                                                                                   |
| Ξ                | н                             | Ħ                                                                      | I                                                                                                      | æ                                                                                                                                                                   |
| ж                | H                             | ж                                                                      | 3-CH,                                                                                                  | 3—осн,                                                                                                                                                              |
| ,<br>H           | ĊH,                           | CH,                                                                    | Ю                                                                                                      | СН,                                                                                                                                                                 |
| 216              | 218                           | 219                                                                    | 223                                                                                                    |                                                                                                                                                                     |
|                  | CH, H H H M 170 1670 1640 212 | CH, H H H M 170 1670 1640 212  CH, H H H NH-NH, 167 1680 1630 215  268 | CH, H H M 170 1670 1640 212  CH, H H H NH-NH, 167 1680 1630 215  CH, H H H M NH-NH, 2015 1670 1645 215 | CH, H H M 170 1670 1640 212  CH, H H H NH-NH, 167 1680 1630 215  CH, H H H M NH-NH, 167 1680 215  CH, H H H M NH-NH, 167 1680 216  CH, H H M M NH-NH, 1670 1645 212 |

Antitussive, psychotropic and analgesic Activity discovered ; : : 15 000 17 000 000 000 22 000 13 000 23 000 13 000 25 000 15 000 23 000 15 000 29 ( 27 U.V. А Мах. 214 268 210 262 245 273 244 270 214 267 214 267 213 268 O amide 1665 1660 1650 1660 1660 1660 1660 t Es d ketone I.R. 1670 1680 1705 1660 1660 1680 1660  $^{\rm M.P.}_{\rm C}$ 119 86 82 104 109 64 88 ×  $\mathbb{R}^{V}$  $\equiv$ Н  $\Xi$ Ξ ェ  $\Xi$ Ξ -3 CH<sub>3</sub> -5 CH, CH, CH, R ""  $\blacksquare$ Ξ  $\Xi$ 7 15 -2 CH<sub>3</sub> CH-2 CH3 -2 CH, Ж "  $\Xi$ 7 RVi CH,  $CH_3$  $CH_{3}$  $CH_{\mathbf{j}}$ CH, CH, CH, Code No. 246 263 256 287 254 260 286

TABLE III (Continued)

| ntinued)     |  |
|--------------|--|
| E III (Conti |  |
| TABLE III    |  |
|              |  |

| _         |                        |                                               |                  |                 |                    |            |                                  |                                  |
|-----------|------------------------|-----------------------------------------------|------------------|-----------------|--------------------|------------|----------------------------------|----------------------------------|
|           | Activity<br>discovered | Antitussive,<br>psychotropic<br>and analgesic | :                | <u>=</u>        | :                  | =          | :                                | :                                |
| u.v.      | ٤                      | 19 000<br>16 000                              | 20 000<br>17 000 | 15 000<br>9 000 | 40 000<br>16 000   | ſ          | l<br>———                         | 1                                |
| D         | λ Мах.                 | 21 <i>7</i><br>269                            | 209              | 264<br>302      | 249<br>27 <u>6</u> | I          | l<br>                            | I                                |
|           | v-C-                   | 1660                                          | 1660             | 1660            | 1650               | 1660       | 1660                             | 1650                             |
| I.R. cm-1 | ν−C−<br> <br>  ketone  | 1680                                          | 1680             | 1680            | 1670               | 1660       | 1660                             | 1670                             |
| <u> </u>  | M.P.                   | 29                                            | 107              | 125             | 128                | 130        | 95                               | 96                               |
|           | . Υ΄                   | Q-                                            |                  | Ç               |                    | $\bigcirc$ |                                  |                                  |
|           | R                      | Ħ                                             | Ξ                | Ħ               | Ħ                  | Н          | æ                                | н                                |
|           | R ""                   | н                                             | н                | I               | н                  | н          | 5 CH <sub>3</sub>                | –5 CH,                           |
|           | R" .                   | –2 CH,                                        | -2 CH,           | -3 OCH,         | –3 SCH,            | 3 SCH,     | -2 C <sub>2</sub> H <sub>8</sub> | -2 C <sub>2</sub> H <sub>8</sub> |
|           | R <sup>vi</sup>        | CH                                            | CH,              | сн,             | CH,                | СН,        | CH,                              | СН,                              |
|           | Code<br>No.            | 261                                           | 264              | 27.1            | 275                | 306        | 309                              | 318                              |

TABLE III (Continued)

|       |       |    |                   |           | I.R. cm <sup>-1</sup> |                               | ; <u> </u> | U.V.             |                                               | _ |
|-------|-------|----|-------------------|-----------|-----------------------|-------------------------------|------------|------------------|-----------------------------------------------|---|
|       |       |    |                   |           |                       |                               |            |                  |                                               |   |
| π""   | R ""  | Α, | λ,                | M.P.      | v-C-<br>ا<br>O ketone | ν-C-<br> <br>  0 amide λ Max. | λ Мах.     | y                | Activity<br>discovered                        |   |
| н     | <br>Н | Н  | NH-CH-CH,<br>CO,H | SH<br>140 | 1660                  | 1660                          | 215<br>265 | 13 000<br>17 000 | Antitussive,<br>psychotropic<br>and analgesic |   |
| -2 Br | <br>Ϊ | Ξ  | Ç                 | 06        | I                     | l                             | l          | ı                | <u>.</u>                                      |   |

-

| TABLE |
|-------|
|       |

|                       | Activity<br>discovered | Antitussive and<br>psychotropic | î                | £                | ÷                | :                | î                |
|-----------------------|------------------------|---------------------------------|------------------|------------------|------------------|------------------|------------------|
| U.V.                  | ų                      | 22 000<br>18 000                | 20 000<br>16 000 | 41 000<br>40 000 | 22 000<br>19 000 | 14 000<br>15 000 | 16 000<br>17 500 |
| U.                    | λ Мах.                 | 211<br>283                      | 211<br>283       | 211<br>255       | 245<br>280       | 210<br>282       | 210              |
| m-1                   | ν-C-<br>  <br>Ο amide  | 1650                            | 1650             | 1650             | 1650             | 1660             | <br>1650<br>     |
| 1.R. cm <sup>-1</sup> | ν-C-<br>  <br>O ketone | 1670                            | 1675             | 163              | 1680             | 1690             | 16.              |
|                       | M.P.<br>°C             | 104                             | 129              | 140              | 130              | 116              | 130              |
|                       | Υ'                     | Q-                              | <b>(</b> )       |                  |                  | ₩ HH             | \                |
|                       | R'"                    | Н                               | ж                | н                | Ħ                | Ħ                | н                |
|                       | R"'                    | н                               | Ħ                | Ħ                | н                | H                | н                |
|                       | R <sup>vi</sup>        | $\bigcirc$                      | $\bigcirc$       | $\bigcirc$       | $\bigcirc$       | $\bigcirc$       | $\bigcirc$       |
|                       | Code<br>No.            | 128                             | 129              | 131              | 168              | 167              | 174              |

TABLE IV (Continued)

|             |                 |     |     |            |            | I.R. cm <sup>-1</sup>   | 2m <sup>-1</sup> | n          | U.V              | 1                            |
|-------------|-----------------|-----|-----|------------|------------|-------------------------|------------------|------------|------------------|------------------------------|
| Code<br>No. | R <sup>vi</sup> | R." | R"" | , λ        | M.P.<br>°C | v-C-<br>  <br> 0 ketone | v-C-             | λ Мах.     | و                | Activity<br>discovered       |
| 237         |                 | Н   | Н   | Qu-        | 140        | 1665                    | 1645             | 208<br>288 | 25 000<br>18 000 | Antitussive and psychotropic |
| 248         |                 | н   | ж   | <b>(</b> ) | 130        | 1665                    | 1645             | 207<br>286 | 26 000<br>19 000 | ē                            |

\_

| TABLE V |
|---------|
|---------|

|           | Activity<br>discovered         | Sedative,<br>antiinflam-<br>matory,<br>analgesic<br>and anti-<br>tussive | :                | :                | 2                | :                |
|-----------|--------------------------------|--------------------------------------------------------------------------|------------------|------------------|------------------|------------------|
| U.V.      | ۶                              | 45 000<br>40 500                                                         | 22 000<br>18 000 | 26 000<br>16 000 | 19 500<br>16 000 | 22 000<br>18 000 |
| U.        | А Мах.                         | 211<br>255                                                               | 212<br>257       | 212<br>240       | 212<br>258       | 211 257          |
| I.R. cm-1 | ν-C-<br>  <br>  αmide   λ Max. | 1640                                                                     | 1645             | 1650             | 1645             | 1660             |
| I.R.      | v OH<br>oxime                  | 3250                                                                     | 3250             | 3250             | 3250             | 3300             |
|           | M.P.                           | 172                                                                      | 147              | 136              | 159              | 144              |
|           | Υ,                             | p V                                                                      |                  | Ç                | Ç                | Ç                |
|           | R                              | Н                                                                        | Œ                | H                | Н                | Н                |
|           | R'''                           | Ħ                                                                        | Ħ                | Ħ                | #                | н                |
|           | R."                            | Ж                                                                        | Ħ                | н                | Ħ                | ж                |
|           | R <sub>o</sub>                 | н                                                                        | <b>±</b>         | Œ                | н                | ж                |
|           | R <sup>vi</sup>                | 0                                                                        | CH,-CH,-CH,      | $\Diamond$       | 132 СН,—СН,—СН,  | CH,—CH,          |
|           | Code<br>No.                    | 125                                                                      | 127              | 130              | 132              | 135              |

|                     |           | Activity             | Sedative,<br>antiinflam- | matory,<br>19 000 analgesic<br>15 000 and anti- | ÷             | Ξ             | \$               | ÷                |
|---------------------|-----------|----------------------|--------------------------|-------------------------------------------------|---------------|---------------|------------------|------------------|
|                     | U.V.      | ,                    |                          | 19 000<br>15 000                                |               |               | 18 000<br>10 000 | 21 000<br>21 000 |
|                     |           | А Мах.               |                          | 212 268                                         |               |               | 212              | 213<br>266       |
|                     | I.R. cm-1 | ν-C-<br>∥<br>O amide | 1635                     | 1650                                            | 1635          | 1640          | 1635             | 1640             |
|                     | 1.R.      | ν OH<br>oxime        | 3300                     | 3350                                            | 3300          | 3300          | 3150             | 3200             |
| (F)                 |           | M.P.                 | 150                      | 144                                             | 124           | 147           | 142              | 132              |
| TABLE V (Continued) |           | , γ                  |                          | Ç                                               | Ç             |               | Ç.               |                  |
| TAB                 |           | ۶۲                   | Ξ                        | Ξ                                               | Ξ             | Ξ             | Ξ                | н                |
|                     |           | R.**                 | Ξ                        | E                                               | H             | н             | н                | Н                |
|                     |           | π,"                  | <b>=</b>                 | Ξ.                                              | ж             | ш             | Ξ                | н                |
|                     |           | Ro                   | Н                        | н                                               | ж             | н             | Œ                | н                |
|                     |           | R <sup>v</sup> i     | CH3-CH2                  | CH,-(CH <sub>2</sub> ),                         | н,с<br>Сн—Сн, | H,C<br>CH-CH, | H,C<br>CH        | CH,-(CH,),       |
|                     |           | Code<br>No.          | 1,47                     | 152                                             | 155           | 156           | 160              | 161              |

| ļ               |                       | Activity<br>discovered           | Sedative,<br>antiinflam-<br>matory,<br>analgesic<br>and anti- | tussive Analgesic, antitussive and anti- inflammatory | :                | 2                |                  | Active on<br>the CNS |
|-----------------|-----------------------|----------------------------------|---------------------------------------------------------------|-------------------------------------------------------|------------------|------------------|------------------|----------------------|
|                 | ۷.                    | ę                                | 18 000<br>10 000                                              | 29 000<br>16 000                                      | 27 000<br>19 000 | 25 000<br>18 000 | 15 000<br>15 000 | 29 000<br>17 500     |
|                 | .v.u                  | λ Мах.                           | 210<br>242                                                    | 215<br>259                                            | 212<br>238       | 210<br>264       | 240<br>263       | 209<br>254           |
|                 | I.R. cm <sup>-1</sup> | ν-C-<br>  <br>  O amide   λ Max. | 1660                                                          | 1630                                                  | 1630             | 1640             | 1640             | 1660                 |
|                 | I.R.                  | ν OH<br>oxime                    | 3350                                                          | 3350                                                  | 3350             | 3200             | 3250             | 3250                 |
|                 |                       | M.P.                             | 170                                                           | 182                                                   | 184              | 200              | 194              | 216                  |
| B V (Continued) |                       | Ř                                | Q                                                             | Q                                                     | Ç                | ₩ <sub>HM</sub>  | ₩.               | Sug Sug              |
| TABLE V         |                       | Α,                               | E                                                             | F                                                     | ェ                | Œ                | Ħ                | H                    |
|                 |                       | R.""                             | н                                                             | Ħ                                                     | H                | E                | I                | Ξ                    |
|                 |                       | Ά,                               | н                                                             | ж                                                     | Ħ                | Œ                | I                | Œ                    |
|                 |                       | ۳°                               | н                                                             | Ħ                                                     | н                | Ħ                | ##`<br>:         | ш                    |
|                 |                       | Rvi                              | н,с                                                           | Br-CH,                                                | $\Diamond$       | $\bigcirc$       | $\bigcirc$       | CH,                  |
| -               |                       | Code<br>No.                      | 177                                                           | 179                                                   | 181              | 183              | 185              | 214                  |

|                     |                       | Activity<br>discovered | Antitussive<br>and psycho-<br>tropic    |                  | :                | î                | :                  |                    | <u>.</u>         |
|---------------------|-----------------------|------------------------|-----------------------------------------|------------------|------------------|------------------|--------------------|--------------------|------------------|
|                     |                       | A<br>dis               | 24 000 Antitu<br>9 000 and ps<br>tropic | 23 000<br>21 000 | 21 000<br>19 000 | 25 000<br>17 000 | 22 000             | 40 000<br>15 000   | 30 000<br>30 000 |
|                     | U.V.                  | λ Мах.                 | 210 2                                   | 210 2<br>265 2   | 210 2<br>257 1   | 211 2 241 1.     | 211 2              | 212 4              | 208 31           |
|                     | I.R. cm <sup>-1</sup> | v-C-<br>∥<br>0 amide   | 1650                                    | 1620             | 1640             | 1640             | 1640               | 1630               | 1640             |
|                     | I.R.                  | ν OH .<br>oxime        | 3300                                    | 3200             | 3300             | 3300             | 3300               | 3250               | 3200             |
|                     |                       | M.P.                   | 142                                     | 130              | 162              | 202              | 133                | 164                | 153              |
| TABLE V (Continued) |                       | , γ                    |                                         |                  |                  |                  | Ç                  |                    | Ç.               |
| BLE                 |                       | \<br>><br>>            | ш                                       | н                | н                | H                | Æ                  | Ξ                  | I                |
| TA]                 |                       | R                      | ж                                       | =                | <b></b>          | <b>=</b>         | Ж                  | -6 СН,             | H                |
| _                   |                       | ž<br>ž                 | 3 CH <sub>3</sub>                       | ш                | Ξ                | Œ                | –3 CH <sub>3</sub> | –2 CH <sub>3</sub> |                  |
|                     |                       | . &                    | Щ                                       | ш                | æ                | н                | н                  | ж                  | н                |
|                     |                       | R <sup>v</sup> i       | СН,                                     | ж                | GH,              | $\bigcirc$       | ſ.                 | сн,                | сн,              |
|                     |                       | Code<br>No.            | 220                                     | 236              | 279              | 295              | 258                | 245                | 247              |



|  | (Continued) |
|--|-------------|
|  | >           |
|  | TABLE       |
|  |             |

| Activity<br>discovered | Antitussive<br>and psycho-<br>tropic                                                                                                                  | :                                                     | :                                                                                                               | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :                                                                                                                                                                                                                         | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                  | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| و                      | 27 000<br>29 500                                                                                                                                      | 28 000                                                | 24 000                                                                                                          | 27 000<br>17 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 000<br>17 000                                                                                                                                                                                                          | 25 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23 000                                             | 11 000<br>4 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| λ Мах.                 | 211<br>242                                                                                                                                            | 212                                                   | 212                                                                                                             | 212<br>258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 213<br>259                                                                                                                                                                                                                | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 223                                                | 245<br>282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                      | 1640                                                                                                                                                  | 1640                                                  | 1640                                                                                                            | 1640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1630                                                                                                                                                                                                                      | 1640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1640                                               | 1630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ν OH<br>oxime          | 3200                                                                                                                                                  | 3250                                                  | 3250                                                                                                            | 3250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3250                                                                                                                                                                                                                      | 3200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3250                                               | 3250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| M.P.                   | 166                                                                                                                                                   | 149                                                   | 166                                                                                                             | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 188                                                                                                                                                                                                                       | 163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 167                                                | 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Χ,                     | $\bigcirc$                                                                                                                                            | Ç                                                     | $\bigcirc$                                                                                                      | Ç                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                         | Ç                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Q</b>                                           | Ç                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| R                      | Ξ,                                                                                                                                                    | Ξ                                                     | Œ                                                                                                               | 出.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ж                                                                                                                                                                                                                         | Ħ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | н                                                  | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| R.""                   | H                                                                                                                                                     | -3 CH,                                                | -3 GR,                                                                                                          | . #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>E</b>                                                                                                                                                                                                                  | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b></b>                                            | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| R."                    | Q                                                                                                                                                     | –2 CH <sub>3</sub>                                    | -2 CH,                                                                                                          | -2 CH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2 CH3                                                                                                                                                                                                                    | -3 SCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3 SCH,                                            | -3 OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| w°.                    | Œ                                                                                                                                                     | н                                                     | Ħ                                                                                                               | ж                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н                                                                                                                                                                                                                         | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ħ                                                  | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1                      |                                                                                                                                                       |                                                       |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| R <sup>vi</sup>        | CH,                                                                                                                                                   | ÷                                                     | CH,                                                                                                             | . CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CH,                                                                                                                                                                                                                       | H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | њ                                                  | CH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        | $R''' \qquad R'' \qquad Y' \qquad OH \qquad V-C-$ $R''' \qquad R' \qquad Y' \qquad OC \qquad Oxime \qquad Oamide \qquad \lambda Max. \qquad \epsilon$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | R"" RV Y' OCH V-C- OCIME O amide A Max. 6  -c CH <sub>3</sub> -3 CH <sub>3</sub> H -A  149 3250 1640 212 28 000 | R" R" R' Y' $^{\circ}$ C oxime $^{\circ}$ O amide $^{\circ}$ A Max. $^{\epsilon}$ - $^{\epsilon}$ C Oxime $^{\circ}$ O amide $^{\circ}$ A Max. $^{\epsilon}$ - $^{\circ}$ C Oxime $^{\circ}$ O amide $^{\circ}$ A Max. $^{\epsilon}$ C Oxime $^{\circ}$ O amide $^{\circ}$ A Max. $^{\circ}$ C Oxime $^{\circ}$ O amide $^{\circ}$ A Max. $^{\circ}$ C Oxime $^{\circ}$ O amide $^{\circ}$ A Max. $^{\circ}$ C Oxime $^{\circ}$ O amide $^{\circ}$ A Max. $^{\circ}$ C Oxime $^{\circ}$ O amide $^{\circ}$ A Max. $^{\circ}$ C Oxime $^{\circ}$ O amide $^{\circ}$ A Max. $^{\circ}$ C Oxime $^{\circ}$ O amide $^{\circ}$ A Max. $^{\circ}$ C Oxime $^{\circ}$ O amide $^{\circ}$ A Max. $^{\circ}$ C Oxime $^{\circ}$ O amide $^{\circ}$ A Max. $^{\circ}$ C Oxime $^{\circ}$ O amide $^{\circ}$ A Max. $^{\circ}$ C Oxime $^{\circ}$ O amide $^{\circ}$ A Max. $^{\circ}$ C Oxime $^{\circ}$ O amide $^{\circ}$ A Max. $^{\circ}$ C Oxime $^{\circ}$ C Oxime $^{\circ}$ A Max. $^{\circ}$ C Oxime $^{\circ}$ C Oxime $^{\circ}$ A Max. $^{\circ}$ C Oxime $^{\circ}$ C Oxime $^{\circ}$ A Max. $^{\circ}$ C Oxime $^{\circ}$ C Oxime $^{\circ}$ A Max. $^{\circ}$ C Oxime $^{\circ}$ C Oxime $^{\circ}$ A Max. $^{\circ}$ C Oxime $^{\circ}$ | R" R" R' Y' OCH V-C- OC Oxime O amide λ Max. ε  -ε C H, -3 CH, H - N 149 3250 1640 212 24 000  -2 CH, -3 CH, H Λ 2 166 3250 1640 212 24 000  -2 CH, H Λ 2 166 3250 1640 212 24 000  -2 CH, H Λ 2 166 3250 1640 212 24 000 | $R^{m}$ $R^{m}$ $R^{v}$ $Y^{v}$ $Q^{c}$ | R ""       R " T T T T T T T T T T T T T T T T T T | $R''''$ $R'''$ $R'$ $Y'$ $\frac{h}{CC}$ $\frac{h}$ |

11 000 Antitussive 4 000 and psycho-tropic Activity discovered . 26 000 26 000 24 000 20 000 23 000 20 000 000 35 000 20 000 36 U.V. ν-C-|| | 0 amide λ Max. 213 245 283 213 213 213 263 210 260 211 262 1630 1640 1640 1620 1640 1640 1630 cm. I.R. oxime 3250 3250 3300 но 4 ı ı 1 140 146 125 110 153 130 125 TABLE V (Continued) λ, RV Ξ H Ξ 工 Η  $\Xi$  $\Xi$ -5 CH, -5 CH, <u>""</u> كا I  $\Xi$  ${\tt H}$ Ξ -3 OCH, -2 CH3 -2 CH; -3 CH, I  $\equiv$  ${\mathbb H}$ СН,-СНОН-СН,ОН  $R_{o}$  $\Xi$ Ή Ξ ) - 2(2H2)  $R^{vi}$  $CH_3$ CH,  $CH_{\mathbf{i}}$ CH, CH, CH, CH, Code No. 283 300 292 281 251 277 280

|                  | Activity<br>discovered     | Antitussive<br>and psycho-<br>tropic                  | :                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------|----------------------------|-------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .V.              | و                          |                                                       |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| U                | А Мах.                     |                                                       |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| cm <sup>-1</sup> | 4                          | 1630                                                  | 1660                                                   | 1620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| I.R.             | ν OH<br>oxime              | 3300                                                  | 1                                                      | 3250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  | M.P.                       | 195                                                   | 126                                                    | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | λ,                         |                                                       | $\bigcirc$                                             | N Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  | ۶<br>د                     | Ħ                                                     | Ξ                                                      | Ħ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  | R.""                       | –5 CH,                                                | H                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  | R""                        | -2 C2H5                                               | Ξ                                                      | . #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | <b>.</b>                   | н                                                     | CH,                                                    | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  | R vi                       | œ,                                                    | GH,                                                    | СН,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | Code<br>No.                | .317                                                  | 320                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | L.R. cm <sup>-1</sup> U.V. | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Ryi R, R, R, R, R, R, R, Y, $\frac{M.P.}{^{4}C}$ Oxime $\frac{1.R.  cm^{-1}}{^{4}}$ U.V. CH, H $\frac{-2  C_{2} H_{3}}{^{4}}$ L5 CH, H $\frac{A}{^{4}}$ H |

TABLE VI

|                       | Activity<br>discovered | Normolipemiant   | î                | ÷                  | ÷              | ÷                |
|-----------------------|------------------------|------------------|------------------|--------------------|----------------|------------------|
| U.V.                  | ۶                      | 13 000<br>19 000 | 13 000<br>17 000 | 15 000<br>17 000   | ı              | 13 000<br>16 000 |
| n                     | А Мах.                 | 215<br>269       | 259<br>294       | 222<br>271         | 1              | 258<br>294       |
| 1                     | v-C-<br>0 acid         | 1720             | 1710             | 1735               | 1710           | 1740             |
| I.R. cm <sup>-1</sup> | v-C-<br>  <br>  vetone | 1670             | 1640             | 1640               | 1660           | 1630             |
|                       | M.P.                   | 62               | 184              | 86                 | 106            | 140              |
|                       | R <sup>V</sup>         | CH,              | CH,              | CH,                | CH,            | C,H,             |
|                       | R."                    | н                | Ξ                | –3 CH <sub>3</sub> | Q <sub>1</sub> | н                |
|                       | R <sup>vi</sup>        | CH,-CH,-CH,      |                  | CH,                | . СН,          |                  |
|                       | Code<br>No.            | 198              | 153              | 243                |                | 305              |

| =        | λ− ὑ − ὑ<br>- ὑ<br>- ὑ<br>- ὑ<br>- ὑ  | ~°<br>0%<br>0% |
|----------|---------------------------------------|----------------|
| TABLE VI | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 9              |
| TA       | RV-C-LA                               | -o             |

|             |                 |     |                                 |                    | I.R. cm <sup>-1</sup> |                   |            |                  |                        |
|-------------|-----------------|-----|---------------------------------|--------------------|-----------------------|-------------------|------------|------------------|------------------------|
|             | -               |     |                                 |                    |                       | <u> </u>          | U.V.       | ٧.               |                        |
| Code<br>No. | R <sup>vi</sup> | R." | Υ,                              | B.P. or M.P.<br>°C | ketone                | ester or<br>amide | λ Мах.     | و                | Activity<br>discovered |
| 140         | CH,             | ж   | 0-сн,                           | M.P 62             | 1670                  | 1730              | 215<br>267 | 12 000<br>17 000 | Normolipemiant         |
| 162         | $\bigcirc$      | Ħ   | 0-сн,                           | M.P. = 89          | 1660                  | 1740              | 207<br>284 | 13 000<br>12 000 | <b>:</b>               |
| 163         |                 | Ħ   | 0-C <sub>1</sub> H <sub>3</sub> | M.P. = 79          | 1665                  | 1735              | 208<br>285 | 19 000<br>18 000 | :                      |
| 170         | $\bigcirc_{q}$  | Ħ   | Ç                               | M.P. = 160         | 1650                  | 1620              | 208<br>287 | 24 000<br>18 000 | :                      |
| 171         | $\bigcirc$      | I   | Ů                               | M.P. = 148         | 1650                  | 1640              | 210<br>285 | 25 000<br>20 000 | 2                      |
| 190         | $\bigcirc$      | ж   | O-CH, CH,                       | M.P. = 84          | 1660                  | 1730              | 207<br>284 | 18 500<br>18 000 | 2                      |

| tinued)  |  |
|----------|--|
| /II (Con |  |
| BLE VI   |  |
| ⋖        |  |

|                       |                       | Activity<br>discovered | Normolipemiant no and cardio- vascular | 00 Normolipemiant | 00 Normolipemiant<br>00 and cardio-<br>vascular | 00 Normolipemiant         | ź          | .:               |  |
|-----------------------|-----------------------|------------------------|----------------------------------------|-------------------|-------------------------------------------------|---------------------------|------------|------------------|--|
|                       | U.V.                  | 1 1                    | 44 000                                 | 32 000            | 33 000<br>17 000                                | 35 000<br>18 000          | 1          | 33 000<br>16 000 |  |
|                       |                       | А Мах.                 | 208                                    | 212 265           | 208                                             | 209                       | 1          | 207              |  |
|                       | 0<br>-<br>-           | ester or<br>amide      | 1740                                   | 1740              | 1740                                            | 1740                      | 1760       | 1745             |  |
|                       | I.R. cm <sup>-1</sup> | ketone                 | 1655                                   | 1670              | 1650                                            | 1660                      | 1645       | 1650             |  |
| TABLE VII (Continued) |                       | B.P. or M.P.           | M.P 118                                | M.P. = 134        | M.P. = 115                                      | M.P. = 62                 | M.P. = 135 | M.P. = 120       |  |
| TAB                   |                       | Υ'                     | 0-CH2-CH2-N<br>fumatate                | 0-CH2-CH2-H       | o-ch-ch-n                                       | $0-CH_2-CH_2-N$ , maleate |            | 0-CHg-CHg-K      |  |
|                       |                       | R."                    | н -                                    | ш                 | ж                                               | Ξ.                        | Н          | ж ,              |  |
|                       |                       | R <sup>vi</sup>        | $\bigcirc$                             | CH,               | $\bigcirc$                                      | $\bigcirc$                |            | $\Diamond_p$     |  |
|                       |                       | Code<br>No.            | 209                                    | 210               | 211                                             | 212                       | 217        | 229              |  |

|                       |                      | Activity<br>discovered | Normolipemiant                                  | <u>.</u>                                     |                                             | :                | £                | :                |
|-----------------------|----------------------|------------------------|-------------------------------------------------|----------------------------------------------|---------------------------------------------|------------------|------------------|------------------|
| •                     | ۷.                   | v                      | 22 000<br>17 500                                | 26 000<br>14 000                             | 12 000<br>16 000                            | 12 500<br>16 000 | 20 000<br>19 000 | 20 000<br>16 000 |
| :                     | U.V.                 | λ Мах.                 | 206<br>286                                      | 208                                          | 214                                         | 212<br>267       | 259<br>285       | 208<br>286       |
|                       | 0=0                  | ester or<br>amide      | 1730                                            | 1730                                         | 1740                                        | 1740             | 1740             | 1740             |
|                       | I.R. cm <sup>1</sup> | ketone                 | 1650                                            | 1645                                         | 1675                                        | 1675             | 1660             | 1645             |
| TABLE VII (Continued) |                      | B.P. or M.P.           | M.P. = 104                                      | M.P. = 116                                   | M.P. = 72                                   | M.P. = 118       | M.P. = 144       | M.P. = 145       |
| TABLE                 |                      | , λ,                   | O-CH <sub>2</sub> -CH <sub>2</sub> -N Bt<br>HCl | $o$ - $OP_{F}$ - $OP_{F}$ - $H$ , $flmatalk$ | 0-CH <sub>2</sub> -CH <sub>2</sub> -N , HCl | 0-04-04-1 N-1    | 0-042            | 0-CH2-CH2-H      |
| ,                     |                      | R."                    | Ħ                                               | ж                                            | æ                                           | Ħ                | <b>,</b> ##      | <b>±</b>         |
|                       |                      | R <sup>vi</sup> .      |                                                 | $\bigcirc$                                   | CH,-(CH,),                                  | CH,-(CH,),       | Ç                | $\bigcirc$       |
|                       |                      | Code<br>No.            | 230                                             | 231                                          | 232                                         | 233              | 238              | 239              |

Normolipemiant Activity discovered : ; : 17 000 15 500 17 000 16 200 22.700 18 000 17 000 16 500 16 000 16 200 l U.V. 208 267 208 267 208 211 257 207 284 1 ester or amide 1730 1740 1730 1740 1745 1720 I.R. cm-1 v-Cketone 1680 1660 1680 1680 1640 1650 TABLE VII (Continued) M.P. or B.P. B.P. 0.05 = 139 B.P. ... 132 B.P. o. os = 136 BP<sub>1</sub> = 198 M.P. ≈ 80 0-CH<sub>2</sub>-0<sub>2</sub>C-C-CH<sub>3</sub> CH, ĊH, CH,  $0-C_2H_5$ 0-CH3 λ 0-CH 0-CH 0-CH -3 CH, -3 CH; -3 CH, -3 SCH, –3 CH, R " Ξ  $R^{VI}$ CH,  $CH_3$  $CH_3$  $CH_3$ Code No. 240 242 253 297 241

| 1                     |                |              |                        |                |                 |
|-----------------------|----------------|--------------|------------------------|----------------|-----------------|
|                       |                |              | Activity<br>discovered | Normolipemiant | <b>:</b>        |
|                       |                | ۷.           | U                      | I              |                 |
|                       |                | U.V.         | λ Мах.                 |                | 1               |
|                       | √_C_<br>=      | <u></u> 0    | ester or<br>. amide    | 1720           | 1710            |
| (pa                   | I.R. cm 1 v-C- |              | ketone                 | 1690           | 1660            |
| TABLE VII (Continued) |                |              | M.P. or B.P.           | M.P. = 86      | M.P. = 95       |
| TAB                   |                |              | λ,                     | O-CH CH.       | CH <sub>3</sub> |
|                       |                | <del>N</del> | R.                     | -3 SO, CH,     | Ç               |
|                       |                |              | R <sup>vi</sup>        | CH,            | CH,             |
|                       |                |              | Code<br>No.            |                |                 |

|                       | Ų                            |                                 |       | 32 000<br>20 000 | 31 000<br>20 000 | ŀ           |
|-----------------------|------------------------------|---------------------------------|-------|------------------|------------------|-------------|
| U.V.                  | л Мах.                       |                                 |       | 210              | 211<br>246       | ſ           |
| I.R. cm <sup>-1</sup> | -C-ester<br>   or<br>O amide | 1730                            | 1730  | 1620             | 1620             | 1740        |
| I.R.                  | ν OH<br>oxime                | 3200                            | 3200  | 3260             | 3280             | 3300        |
|                       | M.P.                         | 106                             | 102   | 184              | 17.5             | 139         |
|                       | , X                          | 0-C <sub>2</sub> H <sub>5</sub> | 0-сн, | Ç                |                  | 0-CH2-CH2-H |
|                       | R <sup>vi</sup>              | CH,                             | CH,   |                  |                  | $\bigcirc$  |
|                       | Code<br>No.                  | 122                             | 146   | 172              | 173              | 289         |

10

15

20

25

30

35

40

45

50

55

5

10

15

20

25

30

35

40

45

50

55

We make no claim to the compounds claimed in the specification of our prior copending Application No. 3085/70 (1,268,321), which are defined at the beginning of the specification. Subject to this disclaimer,

WHAT WE CLAIM IS:— 1. A phenoxy-alkyl-carboxylic compound of the general formula:

RV-C-C-CO-YI

in which each of R" and R', which may be identical or different, is a hydrogen atom or a methyl, ethyl, phenyl, p-chlorophenyl or p-fluorophenyl group; each of R" and R"", which may be identical or different, is a hydrogen or halogen atom or a C1\_0 alkyl, CF<sub>3</sub>, SCH<sub>3</sub>, SOCH<sub>3</sub>, SO<sub>2</sub>CH<sub>3</sub>, OCH<sub>3</sub>, OH, C<sub>4</sub>H<sub>8</sub> or substituted phenyl group; R<sup>vi</sup> is a hydrogen atom, a C<sub>1-8</sub> alkyl group, an aryl group optionally containing one or more nuclear substituents selected from methyl and trifluoromethyl groups and halogen atoms, nuclear substituents selected from methyl and trinuoromethyl groups and halogen atoms, a cycloalkyl, hydroxyl or  $C_{1-4}$  alkoxy group, an aryloxy group optionally containing one or more nuclear substituents, or a cycloalkoxy, cycloalkenyloxy,  $NR_4R_4$ ,  $NHCH_2CH_2NR_4R_4$  or O-alkylene- $NR_4R_4$  group; Y' is a hydroxy,  $C_{1-4}$  alkoxy,  $-NR_4R_4$ ,  $-NHCH_2CH_2NR_4R_4$  or O-alkylene- $NR_3R_4$  group; X' represents O or  $NOR_0$ ;  $R_0$  is a hydrogen atom or a  $C_{1-5}$  alkyl,  $-CH_2CH_2NR_4R_4$  or  $-CH_2CHOHCH_2OH$  group; and each of  $R_4$  and  $R_4$ , which may be identical or different, is a hydrogen atom, a  $C_{1-5}$  alkyl or  $C_{3-7}$  cycloalkyl group or an aryl group optionally containing one or more nuclear substituents selected from halogen atoms and optionally containing one or more nuclear substituents selected from halogen atoms and methyl and trifluoromethyl groups, or R, and R, together with the nitrogen atom to which they are attached represent an optionally substituted 5- to 7-membered heterocyclic ring which may contain a second heteroatom selected from O, S and N, or radical of formula—NH(CH<sub>2</sub>)<sub>4</sub>CH(NH<sub>2</sub>)COOH or—NH—CH(COOH)—CH<sub>2</sub>SH, with the provisos that if R" and R" are not both hydrogen, then R" is methyl or p-chlorophenyl, and that if Y' is hydroxy or alkoxy,  $R^{vi}$  is hydrogen or  $C_{1-5}$  alkyl and one of R" and R' is hydrogen, the other of R" and R' is mathyl or attack. R" and R' is hydrogen, the other of R" and R' is methyl or ethyl.

2. A compound according to Claim 1, in which each of R" and R' is a hydrogen atom or a methyl or phenyl group, each of R" and R" is a hydrogen or chlorine atom

atom or a methyl or phenyl group, each of K." and K." is a hydrogen or chlorine atom or a methyl, trifluoromethyl or methoxy group, R<sup>11</sup> is a straight- or branched-chain C<sub>1-4</sub> alkoxy group or a hydroxyl, amino, monoalkylamino, di(C<sub>1-5</sub> alkyl)amino, piperidino, morpholino, azepino, pyrrolidino, piperazino, N'-p-chlorophenylpiperazino, aminoalkoxy, mono- or dialkylaminoalkoxy, piperidino alkoxy, morpholinoalkoxy, azepinoalkoxy, piperazinoalkoxy, aryloxy, p-chlorophenoxy cyclohexyloxy, A¹-cyclohexenyloxy, or NHCH<sub>2</sub>CH<sub>2</sub>NR<sub>3</sub>R<sub>4</sub>, group; Y' is a hydroxyl, C<sub>1-4</sub> alkoxy, NR<sub>2</sub>R<sub>4</sub>, -NHCH<sub>2</sub>CH<sub>2</sub>NR<sub>3</sub>R<sub>4</sub>, O—C<sub>1-6</sub> alkylene-NR<sub>3</sub>R<sub>4</sub> or cycloalkylamino group or an arylomino group optionally containing one or more nuclear substituents selected from amino group optionally containing one or more nuclear substituents selected from chlorine atoms and methyl and trifluoromethyl groups; X' represents O, and either each of  $R_s$  and  $R_s$  is a hydrogen atom or a  $C_{1-5}$  alkyl group, or  $R_s$  and  $R_s$ , together with the nitrogen atom to which they are attached, represent an optionally substituted 5- to 7- membered heterocyclic ring, which may contain a second heteroatom selected from O, S and N, or radical of formula NH(CH<sub>2</sub>)<sub>4</sub>CH(NH<sub>2</sub>)COOH or —NH—CH(COOH)—CH<sub>2</sub>SH.

3. A compound according to Claim 2, in which R'' is a phenoxy group.

4. A compound according to Claim 1, in which each of R'' and R' is a hydrogen atom or a methyl or phenyl group, each of R''' and R''' is a hydrogen or chlorine atom or a methyl, trifluoromethyl or methoxy group, R'' is a hydrogen atom, a straight or hydrogen atom, a straight or hydrogen atom, a straight or hydrogen atom, a straight- or branched-chain  $C_{1-3}$  alkyl group, or an aryl, p-chlorophenyl, cyclohexyl or Δ¹-cyclohexenyl group, Y' is a hydroxyl,  $C_{1-4}$  alkoxy, —NR<sub>2</sub>R<sub>4</sub>.

—NHCH<sub>2</sub>CH<sub>2</sub>NR<sub>3</sub>R<sub>4</sub>, O—C<sub>1-4</sub> alkylene-NR<sub>2</sub>R<sub>4</sub> or cycloalkylamino group or an arylamino group optionally containing one or more nuclear substituents selected from chlorine atoms and methyl and trifluoromethyl groups, Ro is a hydrogen atom or a C1-5 alkyl or CH2CH2NR2R4 group, and R3 and R4 are as defined in Claim 2, with the provisos set forth in Claim 1.

5. A compound according to claim 4, in which R" is a phenyl group. 6. A compound according to claim 1, in which each of R" and R" is a fluorine, chlorine or bromine atom.

7. A compound according to Claim 1 or 6, in which Y' is a C1\_4 alkoxy group.

|    | 8. A compound according to claim 1, 6 or 7, in which R <sub>o</sub> is a C <sub>1-3</sub> alkyl group.  9. A compound according to claim 1, 6, 7 or 8, in which NR <sub>3</sub> R <sub>4</sub> is amino, monoor dialkylamino, morpholino, thiomorpholino, pyrrolidino, piperidino, azepino, piperazino, N-p-chlorophenyl-piperazino, N-methylpiperazino, 4-methylpiperidino, anilino, |     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5  | 2,3-dimethylanilino, p-chloroanilino, O-trifluoromethylanilino, p-trifluoromethylanilino,                                                                                                                                                                                                                                                                                             | 5   |
|    | cyclohexylamino, cyclopentylamino or N-methylamilino.                                                                                                                                                                                                                                                                                                                                 | •   |
|    | 10. N-(p-propionyl-phenoxyacetyl)-morpholine.                                                                                                                                                                                                                                                                                                                                         |     |
|    | 11. N-(p-benzoyl-phenoxyacetyl)-piperidine.                                                                                                                                                                                                                                                                                                                                           |     |
|    | 12. N-(p-propionhydroximoyl-phenoxyacetyl)-piperidine.                                                                                                                                                                                                                                                                                                                                |     |
| 10 | 13. Isopropyl p-(4-chlorobenzoyl)-phenoxy-isobutyrate.                                                                                                                                                                                                                                                                                                                                | 10  |
|    | 14. p-(4-chlorobenzoyl)-phenoxy-isobutyric acid.                                                                                                                                                                                                                                                                                                                                      | • • |
|    | 15. N-(p-carboxyphenoxy-acetyl)-piperidine.                                                                                                                                                                                                                                                                                                                                           |     |
|    | 16. Ethyl p-piperidinocarbonyl-phenoxy-acetate.                                                                                                                                                                                                                                                                                                                                       |     |
|    | 17. N-(p-ethoxycarbonyl-phenoxy-acetyl)-piperidine.                                                                                                                                                                                                                                                                                                                                   |     |
| 15 | 18. An acid addition salt of a compound according to any one of claims 1—9.                                                                                                                                                                                                                                                                                                           | 15  |
|    | 19. A compound according to claim 1 or 18 substantially as hereinbefore described.                                                                                                                                                                                                                                                                                                    | ••  |
|    | 20. A therapeutical composition comprising a pharmaceutically effective amount                                                                                                                                                                                                                                                                                                        |     |
|    | of at least one compound according to any one of claims 1, 6—9, 18 and 19.                                                                                                                                                                                                                                                                                                            |     |
|    | 21. A therapeutical composition comprising a pharmaceutically effective amount                                                                                                                                                                                                                                                                                                        |     |
| 20 | of at least one compound according to any one of claims 2, 3 and 15-17.                                                                                                                                                                                                                                                                                                               | 20  |
|    | 22. A therapeutical composition comprising a pharmaceutically effective amount                                                                                                                                                                                                                                                                                                        |     |
|    | of at least one compound according to any one of claims 4, 5 and 10-14.                                                                                                                                                                                                                                                                                                               |     |

For the Applicants, D. YOUNG & CO., Chartered Patent Agents, 9 & 10 Staple Inn, London WC1V 7RD.

Printed for Her Majesty's Stationery Office by the Courier Press, Learnington Spa, 1975. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.