

Combined effects of burrowing crabs and tides on carbon fluxes in sediments

Moritz Klaassen^{1,2,3)} – Nils Moosdorf^{1,4)} – Martin Zimmer^{1,2)}

1) Leibniz Centre for Tropical Marine Research, ZMT Bremen – 2) Universität Bremen, FB02 Biologie/Chemie – 3) current affiliation: Instituto Gulbenkian de Ciência, IGC Oeiras - 4) Christian-Albrechts-Universität zu Kiel martin.zimmer@leibniz-zmt.de

The impact of burrowing crabs on carbon storage and stocks in mangrove systems is complex.

- The **burial of leaves** by crabs may lead to enhanced carbon storage in mangroves (1).
- Burrows increase the sediment-air interface, enhancing CO₂ fluxes from the sediment, potentially counteracting the effect of burial (2).
- Further, burrows can act as preferential flow paths, facilitating tidal export of carbon (3,4)

Objective:

Assess the combined impact of burrowing crabs and tides on carbon storage in mangroves.

APPROACH

Experimental Design:

- fully crossed design to examine effects of crabs and tides on dissolved organic carbon (DOC) and CO₂ flux:
 - Neosarmatium africanum present vs. absent under
 "mesotidal" vs. "microtidal" regime

Sampling & Analysis:

- Pore-water samples collected and analyzed for DOC content
- CO₂ flux measured using NDIR sensors

KEY FINDINGS

- DOC concentrations (A,B)
 higher and increasing over time
 in mesotidal treatments
- Total outflowing DOC (C,D) increasing over time in both tidal treatments
- No effects of crab presence on DOC dynamics and fluxes
- CO₂ flux rates similar across tidal treatments
- CO₂ flux rates significantly higher without crabs than with crabs in both tidal treatments

TAKE HOME

Previous studies commonly reported higher CO₂ fluxes in crab burrows; our findings contradict these observations:

Lower CO₂ fluxes when crabs present:

leaf fragments trapped inside sediment upon burial and burrow collapse, reducing CO₂ emission from the sediment-air interface

Consider temporal variability of **burrow stability**: collapse can impact the positive coupling between burrowing crabs and CO₂ fluxes

Significant impact of tidal regime on **porewater DOC**: higher concentrations under microtidal conditions

Duration of submergence of POM:

Higher tidal flushing under mesotidal conditions compensates for lower DOC concentrations, resulting in similar DOC export under different tidal regimes

