1	6CC15	J
•	60.545	
	01.545	ı

TICNI					
USIN					

RV COLLEGE OF ENGINEERING $^{\otimes}$

Autonomous Institution affiliated to VTU IV Semester B. E. Fast Track Examinations July-19

Computer Science and Engineering OPERATING SYSTEMS

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer questions 2,7,8 and any one question from 3 and 4, and any one question from 5 and 6 from PART-B

PART A

1	1.1	Consider three processes (process id 0, 1, 2 respectively) with compute time	
1	1.1	bursts 2, 4 and 8 time units. All processes arrive at time zero. Consider the	
		longest remaining time first (LRTF) scheduling algorithm. In LRTF ties are	
		broken by giving priority to the process with the lowest process id.	
		Calculate average turnaround time.	02
	1.2	Analyze the program below and write it's output.	
		int main()	
		\{	
		if (fork () fork ())	
		fork ();	
		printf ("1 ");	
		return 0;	
		[}	
			02
	1.3	A counting semaphore was initialized to 8. Then 6 P (wait) operations and	
		4V (signal) operations were completed on this semaphore. Calculate the	00
	1 1	resulting value of the semaphore.	02
	1.4	If the total number of available frames is 50, and there are 2 processes one	
		of 10 pages and the other of 5 pages. Then how much of memory would be	02
	1 5	proportionally allocated to each of these processes?	02
	1.5	With a neat diagram briefly explain the layout of virtual address space of	02
	1.6	XV6 process Draw process state transition diagram and briefly explain each state.	02
	1.0 1.7	Briefly discuss starvation and aging in context of CPU scheduling.	02
	1.7	Assuming 1 KB page size and 32, 768 logical address space size, what are	02
	1.0	the page numbers and offsets for following address references.	
		i. 3275 ii. 19366	02
	1.9	Identify key differences between Internal and External memory	02
	1.9	fragmentation	02
	1.10	Consider a paging system with TLB. If it takes 20 ns to search TLB and 100	02
	1.10	ns to access the memory what is the effective memory access time with 98-	
		percent hit ratio?	02
		percent intrado.	02

2	а	Consider a multiprocessor system and a multithreaded program written using the many-to many threading model. Let the number of user-level threads in the program be greater than the number of processors in the system. Analyze and write the performance implications of the following scenarios.							
		 i. The number of kernel threads allocated to the program is less than the number of processors. ii. The number of kernel threads allocated to the program is equal to the number of processors. iii. The number of kernel threads allocated to the program is greater than the number of processors but less than the number of user level threads. 							
	b	Differe	entiate user	mode and ke	ernel mode of	f execution	on in an operating	06	
	c	Differentiate user mode and kernel mode of execution in an operating system. Discuss the microkernel and modular approach to OS design with an example.							
			1 1 011		•	1 .1 0	.1		
3	а		der the followin in millisecon		cesses with a l	length of	the CPU burst time		
			Process	Arrival Time	Burst Time	Priority			
			P1	0	8	3			
			P2	3	5	1			
			Р3	4	8	2			
			P4	4	2	2			
			P5	5	16	1			
		 i. Draw Gantt charts illustrating the execution of these processes using Preemptive SJF, Preemptive Priority and Round Robin (Time slice= 2ms). ii. Compute the average waiting time, average turn around time and number of context switches in each approach. 							
	b	Differe	entiate	J1 001100110 0 11 100	ap	oproder.		10	
			-	and non-preem nd Semaphores	-	_		06	
4	a				spect to coop		processes. Give an		
	b	_		tion approaches esses arrive for				04	
			Process	Arrival Time	Burst Time				
			P1	0	1.5				
			P2	1.5	3				
			Р3	3	1				
			P4	3	7.5				

		Draw a Gantt Chart and • FCFS scheduling	calculate wa	iting time a	and turnaround time for:					
		Preemptive SJF scheduling								
	c	Describe testandset() instruction and explain how it can be used to provide								
		mutual exclusion that satisfies bounded waiting for N processes.								
5	а	With help of pseudocode explain the solution to the Classical Reader –								
		Writer problem.				06				
	b	Consider the following snap-shot of a system								
			Allocation	Max	Available					
			АВС	АВС	АВС					
		P_0	1 0 1	8 4 4	3 3 2					
		P_1	100	222						
		P_2	2 1 1	222						
		P_3	202	902						
		P_4	1 2 2	5 5 3						
		i. What is the cont	tent of matri	x NEED						
					he SAFE sequence					
				l arrives for	(1 0 2), can the request be					
		granted immedia	ately?			10				
				OR		10				
6	a	Discuss the deadlock		_	ssical dining philosopher					
	•	synchronization.	2200 201010	.012 00 010.	societ aming bimosobile	08				
	b	Consider the following sn	ap-shot of a	system						
			Allocation	Request	Available					
			ABC	АВС	ABC					
		P_0	0 1 0	1 0 1	2 1 2					
		P_1	200	3 0 3						
		P_2	3 0 3	1 0 1						
		P_3	2 1 1	1 1 0						
		P_4	002	002						
		Using Bankers algorithm								
			_		give the safe sequence.					
				instance of	resource type C i.e (0 0 1),	00				
		is there a safe se	equences			08				
7	a	With help of neat diagram	n briefly dis	scuss the n	aging memory management					
•	۵.	scheme. Mention the mer				06				
	b				set model to detect system					
		thrashing? What can the			thrashing.	04				
	c	Consider the following pa	_							
			1,5,3,2,4,5		for IDII and Ontine 1					
		Calculate the number of page faults will occur for LRU and Optimal page replacement algorithms, assuming 4 free frames? Assume that all frames								
		are initially empty, so you	_			06				

8	a	Suppose that a disk drive has 5,000 cylinders, numbered through 0 to 4,999. The drive is currently serving a request at cylinder 2,150, and the previous request was at cylinder 1,805. The queue of pending requests, in FIFO order, is: 2,069 1,212 2,296 2,800 544 1,618 356 1,523 4,956 3,681 Starting from the current head position, what is the total distance (in cylinders) that the disk arm moves to satisfy all the pending requests for each of the following disk- scheduling algorithms?			
		a. SSTF c. SCAN d. LOOK e. C-SCAN	08		
	b	Explain the booting process steps of XV6 operating system.	04		
c Describe the different file access methods in a computer system.					