Network and Information Security Lecture 12

B.Tech. Computer Engineering Sem. VI.

Prof. Mrudang T. Mehta
Associate Professor
Computer Engineering Department
Faculty of Technology,
Dharmsinh Desai University, Nadiad

Transposition Ciphers

- A transposition cipher does not substitute one symbol for another, instead it changes the location of the symbols.
- A symbol in the first position of the plaintext may appear in the tenth position of the cipher text.
- A symbol in the eighth position in the plaintext may appear in the first position of the cipher text.
- A transposition cipher reorders (transposes) the symbols.

Keyless transposition ciphers

- There are two methods
- One: the text is written into a table column by column and then transmitted row by row.
- Second: the text is written into the table row by row and then transmitted column by column
- Example 1: Rail fence cipher
- Plain text is arranged in two lines as a zig zag pattern

- Plain text: Meet me at the park
- Cipher text: MEMATEAKETETHPR
- Bob receives the cipher text and divides it into half.
- First half forms the first row,
- Second half forms the second row
- Bob reads the result in zig zag.
- Cryptanalysis is easy. No key is used.

 Example 2: Alice and Bob can agree on the number of columns and use the second method. Alice writes the same plaintext, row by row, in a table of four columns.

	1	2	3	4
1	m	е	е	t
2	m	е	а	t
3	t	h	е	р
4	а	r	k	

- She then creates the cipher text MMTAEEHREAEKTTP by transmitting the characters column by column.
- Bob receives the cipher text and follows the reverse process.
- He writes the received message, column by column, and reads it row by row as the plaintext.
- Eve can easily decipher the message if she knows the number of columns.

- Length of the plaintext = 15
- Number of comumns = 4 (known to both alice and bob)
- Number of rows = | length/number of column |
 = 15/4 = 4
- Write text column by column
- Read it row by row

- Example 3
- The following shows the permutation of each character in the plaintext into the cipher text based on the position. (Example 2)

•	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	1	5	9	13	2	6	10	14	3	7	11	15	4	8	12

- The second character in the plaintext has moved to the fifth position in the cipher text
- The third character has moved to the ninth position, and so on.
- The pattern in the permutation (1,5,9,13), (2,6,10,14), (3,7,11,15), (8,12)
- In each section, the difference between the two adjacent numbers is 4.

Keyed transposition ciphers

- Divide the plaintext into groups of predetermined size, blocks, and then use a key to permute the characters in each block separately.
- Example 4
- Alice and Bob have agreed to divide the text into groups of five characters and then permute the characters in each group.

Plain text: enemy attac kston ightz

 The key used for encryption and decryption is a permutation key,

- The third character in the plain text block becomes the first character in the cipher text block;
- The first character in the plain text block becomes the second character in the cipher text block

EEMYN TAACT TKONS HITZG

 Bob divides the cipher text into 5- character groups and, using the key in the reverse order, finds the plain text. Encryption Key: 3,1,4,5,2

е	n	e	m	У
E	Е	М	Υ	Ν

а	t	t	а	С
Т	Α	Α	С	Т

k	S	t	0	n
Т	K	0	Ν	S

i	g	h	t	Z
Н	I	Т	Z	G

Cipher Text: EEMYN TAACT TKONS HITZG

3 1 4 5 2	
-------------------	--

1>	2>	3	4)	ب
1	2	3	4	5

2 5	1	3	4	
-----	---	---	---	--

Decryption Key: 2,5,1,3,4

E	E	Μ	Υ	Ν
е	n	е	m	У

Т	Α	Α	C	Т
a	t	t	a	С

Т	K	0	N	S
k	S	t	0	n

Н	I	Т	Z	G
i	g	h	t	Z

Plain Tex: enemy attac kston ightz

Combining Two Approaches:

 e n e m y a t t a c k s t o n i g h t z

 Encryption
 Write Row by Row (Step1)
 (Assume key = number of columns = 5)

	1	2	3	4	5
1	е	n	е	m	У
2	а	t	t	а	С
3	k	S	t	0	N
4	i	g	h	t	Z

- Step 2 Use key to permute columns
- 31452

е	е	m	У	n
t	а	а	С	t
t	k	0	n	S
h	i	t	Z	മ

Step 3 Read column by column
 ETTHEAKIMAOTYCNZNTSG

- At decryption side, number of columns are known
- Length=20, Number of columns are 5
- Number of rows = 20/5 = 4
- Step 1 Write column by column

	1	2	3	4	5
1	E	E	М	Υ	N
2	Т	А	А	С	Т
3	Т	К	0	N	S
4	Н	I	Т	Z	G

• Step 2: Use key 2,5,1,3,4 to permute the columns

	1	2	3	4	5
1	е	n	е	m	У
2	а	t	t	а	С
3	k	S	t	О	N
4	i	g	h	У	z

- Step 3: Read row by row
- enemy attackstonightz

Transposition Cipher Cryptanalysis

- Assume cipher text length is L
- We don't know the length of the key
- So, we can assume key length and then proceed
- Plain text: enigma
- Key 312
- PT: <u>e n i g m a</u>
- 312 312
- CT: I E N A G M

- Given, IENAGM
- We want to apply Bruteforce:
- Assume key length is 1
 - It is not possible because character is permuted by itself
 - No permutation
- Key length is 2
 - -(1,2),(2,1) {two possibilities }
 - (1,2) does not do any permutation
 - Apply (2,1) after dividing CT into blocks of 2 characters
 each, E I A N MG <= Does not mean anything

Next guess is Key length is 3.

```
3! = 6 Try 1, 3, 2
1,2,3 i e n a g m
1,3,2 Try
2,3,1 2, 3, 1
2,1,3 e n i g m a
3,1,2
```

3,2,1
 So, (2,3,1) is correct one for decryption.
 Note (3,1,2) is the encryption key but (2,3,1) is used for decryption because both can be obtained easily provided one is given.

- Brute force trials required
- 2! + 3! + 4! + 5!+.....+L!
- Where L = cipher text length
- ∑ i! (for i=2 to L)