```
In [1]: # Import the packages
# read the data

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

path=r"C:\Users\omkar\OneDrive\Documents\Data science\Naresh IT\Datafiles\V:
visa_df=pd.read_csv(path)
visa_df.head(3)
```

Out[1]:

	case_id	continent	education_of_employee	has_job_experience	requires_job_training	no_
0	EZYV01	Asia	High School	N	N	
1	EZYV02	Asia	Master's	Υ	N	
2	EZYV03	Asia	Bachelor's	N	Υ	
4						

Steps in Outlier analysis

- Step-1: Find the Q1, Q2 and Q3
 - np.percentile(column data, q)
- Step-2: Calculate the IQR
 - IQR= Q3-Q1
- Step-3: Calculate lower boundary and upper boundary
 - lb: Q1-1.5IQR
 - ub: Q3+1.5IQR
- Step-4: Find the Outliersdf
 - c1: column data < lb
 - c2: column data > ub
 - c: apply the main condition
 - main data[c]

```
#####----- Step-1----#########
In [3]:
        Q1=np.percentile(visa_df['prevailing_wage'],25)
        Q2=np.percentile(visa_df['prevailing_wage'],50)
        Q3=np.percentile(visa_df['prevailing_wage'],75)
        #####----- Step-2----##########
        IQR=Q3-Q1
        #####----- Step-3----##########
        lb=Q1-1.5*IQR
        ub=Q3+1.5*IQR
        #####----- Step-4----##########
        c1=visa df['prevailing wage']<lb</pre>
        c2=visa_df['prevailing_wage']>ub
        con=c1 c2
        #####----- Step-5----##########
        outliers_df=visa_df[con]
        outliers_df
        #####----- Step-6----##########
        c1=visa_df['prevailing_wage']>lb
        c2=visa_df['prevailing_wage']<ub</pre>
        con=c1&c2
        non_outliers_df=visa_df[c1&c2]
        non_outliers_df
Out[3]:
                 case_id continent education_of_employee has_job_experience requires_job_trainin
            0
                 EZYV01
                             Asia
                                           High School
                                                                   Ν
            1
                 EZYV02
                             Asia
                                             Master's
                                                                   Υ
            2
                 EZYV03
                                            Bachelor's
                             Asia
                                                                   Ν
            3
                 EZYV04
                                            Bachelor's
                             Asia
                                                                   Ν
            4
                 EZYV05
                            Africa
                                             Master's
                                                                   Υ
```

Doctorate

Bachelor's

Master's

Master's

Bachelor's

Ν

Υ

Υ

Υ

Υ

Compare original data with non outliers data

Africa

Asia

Asia

Asia

Asia

will plot histogram and box plot of the both

25474 EZYV25475

25475 EZYV25476

25477 EZYV25478

25478 EZYV25479

25479 EZYV25480

25053 rows × 12 columns

```
In [5]: plt.hist(visa_df['prevailing_wage'])
   plt.hist(non_outliers_df['prevailing_wage'])
   plt.show()
```


In [6]: plt.boxplot(visa_df['prevailing_wage'])
 plt.boxplot(non_outliers_df['prevailing_wage'])
 plt.show()


```
In [13]: plt.figure(figsize=(10,8))
    plt.subplot(2,2,1)
    plt.hist(visa_df['prevailing_wage'],bins=40)
    plt.subplot(2,2,2)
    plt.boxplot(visa_df['prevailing_wage'])
    plt.subplot(2,2,3)
    plt.hist(non_outliers_df['prevailing_wage'],bins=40)
    plt.subplot(2,2,4)
    plt.boxplot(non_outliers_df['prevailing_wage'])
    plt.show()
```


In [17]: plt.figure(figsize=(10,8))
 plt.subplot(2,2,1).hist(visa_df['prevailing_wage'],bins=40)
 plt.subplot(2,2,2).boxplot(visa_df['prevailing_wage'])
 plt.subplot(2,2,3).hist(non_outliers_df['prevailing_wage'],bins=40)
 plt.subplot(2,2,4).boxplot(non_outliers_df['prevailing_wage'])
 plt.show()

How to deal outliers

Drop the outliers

- we can drop the outliers if outlier percentage < 2%
- But this is not recommended, we lost other columns data also

Impute with Median values

- · As we know that Median does not affect by outliers
- So it is good prcatice we can impute outliers with Median value

Cap with Q3 or Q1 value

- If outliers are presnt less than lower bound then fill with Q1
- If outliers are more than upper bound then fill with Q3

```
In [ ]: # Task 3
        # Read the each observation from prevailing wage
        # if that observation <lb or >ub : fill with median value
        # else: keep as it is
        # take empty list =[]
        # median= visa_df['pwage'].medain()
        # for i in visa_df['pwage']:
              if i<lb or i>ub:
                  emptylist.append(median)
              else:
        #
                  emptylist.append(i)
        # 25480
In [1]: # Import the packages
        # Read the data
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        path=r"C:\Users\omkar\OneDrive\Documents\Data science\Naresh IT\Datafiles\V
        visa_df=pd.read_csv(path)
        visa_df.head(3)
Out[1]:
            case_id continent education_of_employee has_job_experience requires_job_training
                                                                                    no_
         0 EZYV01
                        Asia
                                      High School
                                                               Ν
                                                                                 Ν
         1 EZYV02
                                         Master's
                                                               Υ
                        Asia
                                                                                 Ν
```

Bachelor's

2 EZYV03

Asia

Υ

Ν

```
Q1=np.percentile(visa_df['prevailing_wage'],25)
       Q2=np.percentile(visa_df['prevailing_wage'],50)
       Q3=np.percentile(visa_df['prevailing_wage'],75)
       #####----- Step-2----##########
       IQR=Q3-Q1
       ####----- Step-3----#########
       1b=Q1-1.5*IQR
       ub=Q3+1.5*IQR
       median=visa_df['prevailing_wage'].median()
       list1=[]
       for i in visa_df['prevailing_wage']:
          if i<lb or i>ub:
              list1.append(median)
          else:
              list1.append(i)
       visa_df['prevailing_wage_new']=list1
```

```
In [5]: plt.boxplot(visa_df['prevailing_wage_new'])
plt.show()
```



```
In [ ]: # Read the data again

path=r"C:\Users\omkar\OneDrive\Documents\Data science\Naresh IT\Datafiles\V:
    visa_df=pd.read_csv(path)
    visa_df.head(3)
```

- above replace one we use a traditional approach
- · for loop, list, if-else
- the same we can get by using np.where method

```
In [12]: dict1={'Name':['A','B','C','D'],
                'Num':[1,2,3,4]}
         d=pd.DataFrame(dict1)
         d['Num']>2
Out[12]: 0
              False
         1
               False
         2
               True
         3
               True
         Name: Num, dtype: bool
In [10]: # I want to replace with 100 num which has >2
         # other wise keep same number
         1=[]
         for i in d['Num']:
             if i>2:
                  1.append(100)
             else:
                  1.append(i)
         d['Num']=1
         d
         # How many condition i>2 if it is True ==== one value
         #
                                    if it is false ==== another
```

Out[10]: Name Num 0 A 1 1 B 2 2 C 100

3

np.where(con,True,False)

100

D

- Will take 3 arguments
 - Condition
 - o con= d['Num']>2
 - True value
 - t=100
 - False value
 - f= d['Num']

```
In [14]: l=np.where(d['Num']>2,100,d['Num'])

d['Num']=1
d
```

Out[14]:		Name	Num
	0	Α	1
	1	В	2
	2	С	100
	3	D	100

```
In [16]:
       Q1=np.percentile(visa_df['prevailing_wage'],25)
        Q2=np.percentile(visa_df['prevailing_wage'],50)
        Q3=np.percentile(visa_df['prevailing_wage'],75)
        #####----- Step-2----##########
        IQR=Q3-Q1
        #####-----Step-3-----###########
        1b=Q1-1.5*IQR
        ub=Q3+1.5*IQR
        median=visa_df['prevailing_wage'].median()
        c1=visa_df['prevailing_wage']<lb</pre>
        c2=visa_df['prevailing_wage']>ub
        con=c1 c2
        t=median
        f=visa_df['prevailing_wage']
        visa_df['prevailing_wage']=np.where(con,t,f)
        plt.boxplot(visa_df['prevailing_wage'])
        plt.show()
```



```
In [15]: dict1={'Name':['A','B','C','D'],'Num':[1,2,3,4]}
d1=pd.DataFrame(dict1)
d1
l=[]
for i in d1['Num']:
    if i >2:
        l.append(100)
    else:
        l.append(i)
d1['Num']=1
d1
```

```
Out[15]: Name Num

0 A 1

1 B 2

2 C 100

3 D 100
```

```
In [ ]:
```