Peer Review Assessment 2

Ali Unlu

6/10/2021

1 - Synopsis

In this report, we will analysis the data storm data provided by the Johns Hopkins University

My data analysis aims to address the following questions:

- 1. Across the United States, which types of events (as indicated in the **EVTYPE** variable) are most harmful with respect to population health?
- 2. Across the United States, which types of events have the greatest economic consequences?

2 - Data Processing

Data preperation

From a list of variables in storm.data, these are columns of interest:

Health variables:

FATALITIES: approx. number of deaths **INJURIES:** approx. number of injuries

Economic variables:

PROPDMG: approx. property damags

PROPDMGEXP: the units for property damage value

CROPDMG: approx. crop damages

 $\boldsymbol{CROPDMGEXP:}$ the units for crop damage value

Events - target variable:

EVTYPE: weather event (Tornados, Wind, Snow, Flood, etc..)

```
# we load the data from computer
raw.data <- read.csv(bzfile("StormData.csv.bz2"))

# required packages for this analysis
library(plyr)
library(dplyr)
library(ggplot2)
library(reshape2)</pre>
```

We kept only relevant variables for this analysis

```
# check out column names
names(raw.data)
                                   "BGN TIME"
                                                "TIME ZONE"
                                                              "COUNTY"
##
    [1] "STATE "
                      "BGN DATE"
    [6] "COUNTYNAME" "STATE"
                                   "EVTYPE"
                                                 "BGN_RANGE"
                                                              "BGN_AZI"
## [11] "BGN_LOCATI" "END_DATE"
                                   "END_TIME"
                                                "COUNTY_END" "COUNTYENDN"
## [16] "END_RANGE"
                                   "END_LOCATI" "LENGTH"
                     "END_AZI"
                                                              "WIDTH"
## [21] "F"
                      "MAG"
                                   "FATALITIES" "INJURIES"
                                                              "PROPDMG"
                                   "CROPDMGEXP" "WFO"
## [26] "PROPDMGEXP" "CROPDMG"
                                                              "STATEOFFIC"
## [31] "ZONENAMES"
                     "LATITUDE"
                                   "LONGITUDE" "LATITUDE_E" "LONGITUDE_"
## [36] "REMARKS"
                      "REFNUM"
# subset EVTYPE and cost related variables
raw.data <- raw.data[c(8, 23:28)]</pre>
# Only cases with fatalities or injuries occurred.
raw.data <- subset(raw.data, EVTYPE != "?" & INJURIES > 0 | FATALITIES > 0 | PROPDMG > 0 | CROPDMG > 0
```

3 - Converting the exponent columns (PROPDMGEXP and CROPDMGEXP)

```
# first, we will check the properties
table(raw.data$PROPDMGEXP)
##
##
                              0
                                             3
                                                                           7
                                                                                  В
                                                            5
                                                                    6
##
    11585
                       5
                            210
                                      1
                                             1
                                                           18
                                                                                  40
               1
##
               Η
                       K
##
                6 231428
                                 11320
table(raw.data$CROPDMGEXP)
##
##
                       0
                                                            М
## 152664
                      17
                                     21
                                        99932
                                                         1985
# some variables have lower case values
# we are now converting lower cases to uppercases in these variables
raw.data <- data.frame(lapply(raw.data, function(v) {</pre>
        if (is.character(v)) return(toupper(v))
        else return(v)
        }))
```

According to the previous tables, the CROPDMGEXP only contains a subset of these values. Most of the numerical exponents are missing. The factor is only calculated for the exponents provided in that variable.

```
There is some mess in units, so we transform those variables in one unit (dollar) variable by the following rule:

V_{\text{c}} = V_{\text
```

```
+ K or k: thousand dollars (10<sup>3</sup>)
+ M or m: million dollars (10<sup>6</sup>)
+ B or b: billion dollars (10<sup>9</sup>)
+ the rest would be consider as dollars
```

```
# for PROPDNGEXP
raw.data2 <- raw.data
raw.data2$PROPDMGEXP <- mapvalues(raw.data2$PROPDMGEXP,</pre>
                                     from = c("K","M","", "B", "m", "+", "0","5", "6", "?", "4", "2", "3", "h", "7","H", "-","1", "8
                                      \texttt{to} = \texttt{c}(10^{\circ}3, 10^{\circ}6, 10^{\circ}0, 10^{\circ}9, 10^{\circ}6, 10^{\circ}0, 10^{\circ}0, 10^{\circ}5, 10^{\circ}6, 10^{\circ}0, 10^{\circ}4, 10^{\circ}2, 10^{\circ}3, 10^{\circ}2, 10^{\circ}7, 10^{\circ}2, 10^{\circ}0, 10^{\circ}4, 10^{\circ}2, 10^{\circ}3, 10^{\circ}2, 10^{\circ}7, 10^{\circ}2, 10^{\circ}0, 10^{\circ}4, 10^{\circ}2, 10^{\circ}3, 10^{\circ}2, 10^{\circ}3, 10^{\circ}2, 10^{\circ}3, 10^{\circ}2, 10^{\circ}3, 10^{\circ
raw.data2$PROPDMGEXP <- as.numeric(as.character(raw.data2$PROPDMGEXP))</pre>
# total PROPDMGEXP
raw.data2$PROPDMGTOTAL <- (raw.data2$PROPDMG * raw.data2$PROPDMGEXP)/1000000000
# for CROPDMGEXP
raw.data2$CROPDMGEXP <- mapvalues(raw.data2$CROPDMGEXP,</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           "2"),
                                                                                                                                                                                                                                                                                                                                                                                                                                          "k".
                                                                                                                                                               from = c("", "M", "K",
                                                                                                                                                                                                                                                                                                   "m",
                                                                                                                                                                                                                                                                                                                              "B",
                                                                                                                                                                                                                                                                                                                                                                                                 "0".
                                                                                                                                                                                               c(10<sup>0</sup>, 10<sup>6</sup>, 10<sup>3</sup>, 10<sup>6</sup>, 10<sup>9</sup>, 10<sup>0</sup>,
                                                                                                                                                                                                                                                                                                                                                                                                    10^0.
                                                                                                                                                                                                                                                                                                                                                                                                                                          10^3.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           10^2)
raw.data2$CROPDMGEXP <- as.numeric(as.character(raw.data2$CROPDMGEXP))</pre>
# total CROPDMGEXP
raw.data2$CROPDMGTOTAL <- (raw.data2$CROPDMG * raw.data2$CROPDMGEXP)/1000000000
```

4 Results

Calculating Total Fatalities and Injuries

Table of public health problems by event type

```
##
     EVTYPE
                    total.fatalities total.injuries total.sum
##
     <chr>>
                                 <dbl>
                                                <dbl>
                                                           <dbl>
## 1 TORNADO
                                 5633
                                                91346
                                                           96979
## 2 EXCESSIVE HEAT
                                 1903
                                                 6525
                                                            8428
                                                            7461
## 3 TSTM WIND
                                  504
                                                 6957
## 4 FLOOD
                                  470
                                                 6789
                                                            7259
## 5 LIGHTNING
                                                 5230
                                                            6046
                                  816
```

Top 10 US Weather Events that are Most Harmful to Population

The barchart shows that *Tornados* are the most harmful weather events for people's health.

Estimating the total of Property Cost and Crop Cost (Economic Impacts)

Top 10 US Storm Events causing Economic Consequences

The barchart shows that *Floods* cause the biggest economical damages.