Classe 4: Contingut

- Especificació de càmera
- El procés de visualització projectiu
- Processament dels vèrtexs
 - · Retallat
 - · De coordenades de clipping a coordenades de dispositiu
- Rasterització
- Processament dels fragments: el fragment shader

Pas 3: Clipping i projecció

Pas 3.1: Clipping

Condició per a que un Vèrtex sigui interior al volum de visió:

$$-w_c \le x_c \le w_c$$

$$-w_c \le y_c \le w_c$$

$$-w_c \le z_c \le w_c$$

 $V_c = (x_c, y_c, z_c, w_c)$ on $w_c = 1$ en ortogonal $V_c = (x_c, y_c, z_c, w_c)$ on $w_c = -z_o$ en perspectiva

Pas 3.2: Projecció. Optica ortogonal (1)

$$V_c = (x_c, y_c, z_c, w_c)$$
 on $w_c = 1$

Pas 3.2: Projecció. Optica ortogonal (2)

$$V_c = (x_c, y_c, z_c, w_c)$$
 on $w_c = 1$

$$-1 \le x_c \le 1$$

 $-1 \le y_c \le 1$
 $-1 \le z_c \le 1$

Vèrtex projectat:

$$V_x$$
*= $V_{cx} V_y$ *= V_{cy}

$$V^* = V_c / W_c \rightarrow V_n$$

$$-1 \le x_n \le 1$$

 $-1 \le y_n \le 1$
 $-1 \le z_n \le 1$

V_z* per càlculs posteriors i indica distància a window

Pas 3.2: Projecció. Optica perspectiva

$$PM = \begin{pmatrix} 1/ra*a & 0 & 0 & 0 \\ 0 & 1/a & 0 & 0 \\ 0 & 0 & c & d \\ 0 & 0 & -1 & 0 \end{pmatrix} \begin{array}{c} a = tg \ (FOV/2) \\ c = (zf+zn)/(zn-zf) \\ d = 2*zn *zf /(zn-zf) \\ \end{pmatrix}$$

$$V_{c} = (x_{c}, y_{c}, z_{c}, w_{c}) \text{ on } w_{c} = -z_{o}$$

$$-w_{c} \le x_{c} \le w_{c}$$

$$-w_{c} \le y_{c} \le w_{c}$$

$$-w_{c} \le z_{c} \le w_{c}$$

Pas 3.2: Projecció. Optica perspectiva

Vèrtex projectat:

$$\mathbf{V}^* = \mathbf{V}_c / \mathbf{w}_c = -\mathbf{V}_c / \mathbf{z}_o$$

$$x^* = -x_c/z_o$$
 $y^* = -y_c/z_o$ $z^* = -z_c/z_o$

Inversament proporcional a distància a observador

$$V_{c} = (x_{c}, y_{c}, z_{c}, w_{c}) \text{ on } w_{c} = -z_{o}$$

$$-w_{c} \le x_{c} \le w_{c}$$

$$-w_{c} \le y_{c} \le w_{c}$$

$$-w_{c} \le z_{c} \le w_{c}$$

$$-1 \le x_n \le 1$$

$$-1 \le y_n \le 1$$

$$-1 \le z_n \le 1$$

$$V^* = V_c/W_c \rightarrow V_n$$

Pas 4: Transformació a coordenades de dispositiu

Pas 4: Transformació a coordenades de dispositiu

Processament de vèrtexs en OpenGL 3.3 (3)

Classe 4: Contingut

- Especificació de càmera
- El procés de visualització projectiu
- Processament dels vèrtexs
 - · Retallat
 - · De coordenades de clipping a coordenades de dispositiu
- Rasterització
- Processament dels fragments: el fragment shader

Pintar/visualitzar en OpenGL 3.3

Pintar/visualitzar en OpenGL 3.3

Pintar/visualitzar en OpenGL 3.3

Processat de fragments: El fragment Shader

Fragment Shader

```
#version 330 core
in ...
out vec4 FragColor;

void main() {
   FragColor = vec4(0, 0, 0, 1);
}
```

Pintar/visualitzar en OpenGL 3.3 (resum)

3. Pinta_Model()

// Activa VAO i crida a glDrawArrays(...)

Classe 4: Conceptes i preguntes

- El procés de visualització projectiu: blocs funcionals que l'integren, ordre dels processos, sistemes de coordenades.
- Diferència entre vèrtex i fragment.
- Què cal fer, com a mínim, en el fagment shader?
- Què son les coordenades normalitzades?
- Què és i com funciona el retallat? Per què cal?
- Com i quan es passa a coordenades de dispositiu? Què són aquestes coordenades exactament?
- Què passa amb els out addicionals que puguem afegir al vertex shader? Com arriba aquesta informació al fragment shader?