P99 CONF

How to Measure Latency?

Heinrich Hartmann

Principal Engineer @ **Zalando**

Motivation and Background

I have been talking about Statistics and Latency for the last years

State of the Histogram (SLOConf 2021) / Circlinist (paper) / Latency SLOs Done Right (FOSDEM 2019) / Statistics for Engineers (2014..2019)

Inspiration comes from series of talks from ~2013-15
Gil Tene - How (not) to measure Latency
Slides (London 2013) / Video (StrangeLoop 2015) / Blog - HighScalability 2015

azul

On Coordinated Omission - Ivan Prisyazhynyy
 Published two days ago on P99CONF.io

"It's slow" is the hardest problem you will ever debug.

Theo Schlossnagle @postwait

What is Latency?

How to Measure Latency?

```
t_start = time.now()
#
# operation you want to measure
#
latency = time.now() - t_start
```

Things to watch out for

- Capture early returns / exceptions
 - Use: try/catch/finally or defer
- Which clock is used?
 - Want: high-resolution, monotonic, system time (e.g. <u>time.monotonic()</u> in Python)
- Measurement Overhead
 - Measuring time takes time (<u>at least 30ns</u>, often >300ns)
 - OK for 0.1ms or more (I/O Latency)
 - Careful for 10us or lower (micro benchmarking)
- Abstracting time measurements in code
 - Write a @timed decorator. Use <u>tracing libraries</u> (@trace)

@HeinrichHartmann P99 C0

Measuring Latency over Time

The End

Where to Measure Latency?

Hidden Queues

Hidden Queues

A practical Queuing Model

@HeinrichHartmann P99 CON

Response Time vs. Service Time

@HeinrichHartmann P99 CON

Response Time vs. Service Time

Response Time

Service Time

Where to Measure Latency?

You can't measure Response Time on the Server.

SAD BUT TRUE

Request Time vs. Service Time

An Experiment

Simulation Setup

- 10 workers
- 10ms service time 1K rps capacity

Metrics

Request Rate (~ constant)

Arrival Rate

Concurrency (Active Requests)

Concurrency (Active Workers)

Response Time

Service Time (constant)

Queuing System at 50% Capacity

Queuing System at 90% Capacity

Queuing System at 99% Capacity

Queuing System at 100% Capacity

Queuing System at 101% Capacity

A Hockey Stick

A Stalled System

Coordinated Omission in Load Testing

Def. Coordination between Load Generator (Client) and Server that leads to confusing Service Time with Response times.

Examples

- Client backs off when server is falling behind
- Client is stalled when Server is stalled

This is surprisingly common (cf. Gil's talk, Ivan's blog)

How to Analyze Latency Data?

Best Practice: Histogram (Metrics)

P99 CONF Thank you!

Further Reading

- HeinrichHartmann.com/latency
- @HeinrichHartmann