Математический анализ 1. Лекции 3 – 4. Предел последовательности (продолжение). Числовые функции. Предел функции

Э.Л. Хабина

ВШЭ, ФЭН, Москва

2025

Напоминание: предел последовательности

Окрестность точки $x\in\mathbb{R}$ – любой открытый интервал (a,b), содержащий точку x. Эпсилон-окрестность точки x: $O_{\varepsilon}(x)=(x-\varepsilon,x+\varepsilon)$, где $\varepsilon>0$.

Определение

$$\lim_{n\to\infty} a_n = c \Leftrightarrow (\forall \varepsilon > 0) (\exists N \in \mathbb{N}) (\forall n \geqslant N) |a_n - c| < \varepsilon,$$

равносильно

$$\lim_{n \to \infty} a_n = c \Leftrightarrow (\forall \varepsilon > 0) (\exists N \in \mathbb{N}) \{a_n : n \geqslant N\} \subseteq O_{\varepsilon}(c)$$

(в каждой окрестности числа c целиком лежит некоторый «хвост» последовательности a, где под «хвостом» последовательности a понимается множество всех ее членов, начиная с некоторого N).

Напоминание: основные свойства пределов

- 1. **Единственность предела.** Если $\lim_{n \to \infty} a_n$ существует, то он единственный.
- 2. Независимость предела от конечного числа членов последовательности. Существование и значение $\lim_{n \to \infty} a_n$ не зависит от любого конечного числа членов последовательности a. Это можно выразить следующим образом. Пусть $a_n = b_n$ для всех $n \in \mathbb{N}$, начиная с некоторого номера N. Тогда пределы $\lim_{n \to \infty} a_n$ и $\lim_{n \to \infty} b_n$ существуют и не существуют одновременно и, если эти пределы существуют, то они равны.
- 3. Ограниченность сходящейся последовательности. Если последовательность сходится (т.е. имеет предел), то она ограничена.
- 4. Равенство пределов последовательности и ее подпоследовательности. Если последовательность b есть подпоследовательность последовательности a и, при этом, существует $\lim_{n \to \infty} a_n$, то существует и $\lim_{n \to \infty} b_n$, причем $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$.
- 5. Существование пределов монотонных ограниченных последовательностей. Если последовательность a монотонно возрастает и ограничена сверху (или монотонно убывает и ограничена снизу), то существует $\lim_{n \to \infty} a_n$.

Второй замечательный предел

Теорема

Существует
$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$$
 (второй замечательный предел).

Доказательство. Достаточно показать, что последовательность $P_n = \left(1 + \frac{1}{n}\right)^n$ монотонно возрастает и ограничена сверху. Для доказательства этой теоремы нам понадобится формула *бинома Ньютона*:

$$(1+x)^n = C_n^0 + C_n^1 x^1 + C_n^2 x^2 + \ldots + C_n^n x^n = \sum_{k=0}^n C_n^k x^k,$$

где
$$C_n^k = \frac{n!}{k!(n-k)!}$$
 $(0 \leqslant k \leqslant n).$

Замечание

$$n! = 1 \cdot 2 \cdot \ldots \cdot n, \ 0! = 1.$$

Более наглядно формулу бинома Ньютона можно записать так:

$$(1+x)^n = 1 + \frac{n}{1!}x^1 + \frac{n(n-1)}{2!}x^2 + \ldots + \frac{n(n-1)\ldots 1}{n!}x^n.$$

Tогда $\left(\text{при } x = \frac{1}{n} \right)$

$$\begin{split} &\left(1+\frac{1}{n}\right)^n = 1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\frac{1}{3!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+\\ &+\frac{1}{4!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\left(1-\frac{3}{n}\right)+\ldots+\\ &+\frac{1}{n!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\ldots\left(1-\frac{n-1}{n}\right). \end{split}$$

При переходе от n к n+1 каждое слагаемое (начиная с третьего) увеличивается и, к тому же, добавляется еще одно (положительное!) слагаемое, следовательно,

$$P_n < P_{n+1},$$

последовательность строго возрастает.

Первая часть теоремы доказана.

Для доказательства ограниченности сверху последовательности P_n , заменим в предыдущем выражении каждый член вида $\left(1-\frac{k}{n}\right)$ единицей, а каждый член вида $\frac{1}{n}$ выражением $\frac{1}{n}$. Поскольку

$$\left(1-\frac{k}{n}\right)<1$$

И

$$\frac{1}{l!} = \frac{1}{1 \cdot 2 \cdot 3 \cdot \ldots \cdot l} \leqslant \frac{1}{1 \cdot 2 \cdot 2 \cdot \ldots \cdot 2} = \frac{1}{2^{l-1}},$$

мы только увеличим число P_n . Значит,

$$P_n < 2 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} = 2 + \frac{\frac{1}{2} - \frac{1}{2^n}}{1 - \frac{1}{2}} < 3.$$

(Здесь использована формула суммы геометрической прогрессии).

Теорема окончательно доказана.

Число e и его экономический смысл

Определение.
$$e=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n$$
 .
$$e=2,7182818284590452353602874713526624977572\dots$$

Экономический смысл числа e. Допустим, что некоторый банк выплачивает вкладчикам 100% годовых. Если вкладчик положит на счет 1 у.е., то через год сумма на счете составит 2 у.е.

Однако, если банк будет выплачивать проценты по вкладу дважды за год, а вкладчик будет капитализировать полученные за полгода средства, то через год сумма на счете составит:

$$1 \cdot \left(1 + \frac{1}{2}\right) \cdot \left(1 + \frac{1}{2}\right) = \left(1 + \frac{1}{2}\right)^2$$
 y.e.

Если же банк будет выплачивать (начислять) проценты по вкладу n раз за год, то через год на счете вкладчика окажется сумма $P_n = \left(1 + \frac{1}{n}\right)^n$.

C ростом n эта величина будет стремиться к числу e.

Экономический смысл числа e: предельное значение средств на счете вкладчика в банке, выплачивающем 100% годовых с неограниченной возможностью капитализации.

Замечание

Для практического вычисления пределов обычно используют следующие более сильные формы теоремы о втором замечательном пределе:

- $\lim_{n \to \infty} \left(1 + \frac{a}{n} \right)^n = e^a.$
- ightharpoonup Если $\lim_{n \to \infty} a_n = +\infty$, то $\lim_{n \to \infty} \left(1 + rac{a}{a_n}
 ight)^{a_n} = e^a$.
- lacktriangle Если $\lim_{n o \infty} a_n = +\infty$, то $\lim_{n o \infty} \left(1 + rac{1}{a_n}
 ight)^{b_n} = e^{\lim\limits_{n o \infty} rac{b_n}{a_n}}$.
- ightharpoonup Если $\lim_{n o \infty} a_n = 0$, то $\lim_{n o \infty} (1+a_n)^{b_n} = e^{\lim_{n o \infty} (b_n a_n)}.$

Пример

$$\lim_{n \to \infty} \left(1 + \frac{2}{2n-1} \right)^{3n+1} = e^{\lim_{n \to \infty} \frac{2(3n+1)}{2n-1}} = e^3.$$

Дальнейшие свойства пределов

6. Если $a_n=c$ для всех $n\in\mathbb{N}$, то предел $\lim_{n\to\infty}a_n$ существует и равен c.

Напоминания. Последовательность a называется бесконечно малой, если для любого числа $\varepsilon>0$ существует такой номер N, что $|a_n|<\varepsilon$ для всех $n\geqslant N$.

Последовательность a называется **бесконечно большой**, если для любого числа C существует такой номер N, что $|a_n|>C$ для всех $n\geqslant N$.

Последовательность a называется **ограниченной** (сверху и снизу), если множество $\{a_n:n\in\mathbb{N}\}$ ограничено (сверху и снизу), т.е. существует такое число C, что $|a_n|\leqslant C$ для всех n.

- 7. $\lim_{n\to\infty}a_n=c$ тогда и только тогда, когда $a_n=c+b_n$, где b есть бесконечно малая последовательность. В частности, последовательность a бесконечно малая тогда и только тогда, когда ее предел равен нулю.
- 8. Пусть a ограниченная последовательность, а b бесконечно малая последовательность. Тогда $\lim_{n\to\infty} a_n b_n$ существует и равен нулю.

Пусть a — ограниченная последовательность, а b — бесконечно большая последовательность. Тогда $\lim_{n \to \infty} \frac{a_n}{b_n}$ существует и равен нулю.

Пример

$$\lim_{n \to \infty} \frac{1}{n} \cdot \cos n = \lim_{n \to \infty} \frac{\cos n}{n} = 0.$$

9. Лемма "о двух полицейских". Пусть даны последовательности a,b,c, причем для всех $n\in\mathbb{N}$ выполнено

$$a_n \leqslant b_n \leqslant c_n$$
.

Пусть еще существуют пределы $\lim_{n \to \infty} a_n$ и $\lim_{n \to \infty} c_n$ и, кроме того,

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n.$$

Тогда существует $\lim_{n \to \infty} b_n$, причем $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n$.

Пример применения леммы о двух полицейских

Докажем, что

$$\lim_{n \to \infty} \sqrt[n]{2} = 1.$$

Для этого достаточно доказать, что последовательность

$$a_n = \sqrt[n]{2} - 1$$

бесконечно малая.

Из неравенства Бернулли имеем:

$$2 = (1 + a_n)^n \geqslant 1 + na_n > na_n,$$

значит,

$$a_n < \frac{2}{n}$$
.

С другой стороны, $a_n\geqslant 0$ поскольку $2\geqslant 1$. Таким образом, $0\leqslant a_n\leqslant \frac{2}{n},$ и, значит, $\lim_{n\to\infty}a_n=0$ по лемме о двух полицейских.

Аналогично, можно доказать, что $\lim_{n \to \infty} \sqrt[n]{a} = 1, (a > 0).$

Утверждение (показательная функция "забивает" степенную, а степенная – логарифм)

1. Пусть a>1, а $k\in\mathbb{R}$, тогда

$$\lim_{n \to \infty} \frac{n^k}{a^n} = 0.$$

2. Пусть a>0, $a\neq 1$, k>0, тогда

$$\lim_{n \to \infty} \frac{\log_a n}{n^k} = 0.$$

Пределы и алгебраические операции

Нижеприведенные равенства имеют следующий смысл: если определена правая часть равенства, то определена и левая, и тогда эти части равны.

1.
$$\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$$
.

2.
$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n.$$

3.
$$\lim_{n\to\infty} (a_n \cdot b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$$
.

4.
$$\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}.$$

5.
$$\lim_{n \to \infty} (a_n)^{b_n} = \left(\lim_{n \to \infty} a_n\right)^{\lim_{n \to \infty} b_n}$$
.

Практическое вычисление пределов

Используя найденные ранее пределы и свойства коммутирования предела и алгебраических операций, можно легко подсчитывать некоторые сложные (с виду!) пределы.

Пример. Вычислите предел

$$\lim_{n \to \infty} \frac{n^3 + 3n \sin 3n + \ln n}{(2n^2 - 1)(n+1)}.$$

Хотелось бы "протащить" сквозь алгебраические операции, но это не приведет к успеху: полученные пределы не существуют. Надо преобразовать выражение.

Интуитивно определяем порядок роста/убывания числителя и знаменателя. В данном случае это n^3 . Делим числитель и знаменатель на n^3 , "распределяя" n^3 между сомножителями в знаменателе:

$$\lim_{n \to \infty} \frac{n^3 + 3n\sin 3n + \ln n}{(2n^2 - 1)(n + 1)} = \lim_{n \to \infty} \frac{1 + \frac{3\sin 3n}{n^2} + \frac{\ln n}{n^3}}{\left(2 - \frac{1}{n^2}\right)\left(1 + \frac{1}{n}\right)}.$$

Теперь "протаскиваем" предел сквозь алгебраические операции. Равенство, однако, будет верным, только если все полученные пределы существуют, и знаменатель не окажется равным нулю.

$$\lim_{n \to \infty} \frac{1 + \frac{3\sin 3n}{n^2} + \frac{\ln n}{n^3}}{\left(2 - \frac{1}{n^2}\right)\left(1 + \frac{1}{n}\right)} \stackrel{?}{=} \frac{\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{3\sin 3n}{n^2} + \lim_{n \to \infty} \frac{\ln n}{n^3}}{\left(\lim_{n \to \infty} 2 - \lim_{n \to \infty} \frac{1}{n^2}\right)\left(\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{1}{n}\right)}.$$

Убеждаемся, что все полученные пределы существуют, и знаменатель не окажется равным нулю. Подставляем значения (теперь равенство настоящее!):

$$\lim_{n \to \infty} \frac{1 + \frac{3\sin 3n}{n^2} + \frac{\ln n}{n^3}}{\left(2 - \frac{1}{n^2}\right)\left(1 + \frac{1}{n}\right)} = \frac{1 + 0 + 0}{(2 - 0)(1 + 0)} = \frac{1}{2}.$$

Для того, чтобы провести рассуждение совсем строго, надо идти от конца к началу, начиная с существования и значений входящих в эту формулу простых пределов.

На практике детали можно опускать.

Замечания

 Иногда при вычислении пределов приходится изобретать преобразования совсем другого типа.

Пример.
$$\lim_{n\to\infty}(\sqrt{n+1}-\sqrt{n})=\lim_{n\to\infty}\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}+\sqrt{n}}==\lim_{n\to\infty}\frac{1}{\sqrt{n+1}+\sqrt{n}}=0.$$

 Для корректного и несложного вычисления пределов последовательностей полезны сведения о пределах функций действительного аргумента и о непрерывных функциях.
 Пример.

$$\begin{split} &\lim_{n \to \infty} (\sqrt{n^2 + n} - n) = \lim_{n \to \infty} \frac{(\sqrt{n^2 + n} - n)(\sqrt{n^2 + n} + n)}{\sqrt{n^2 + n} + n} = \\ &= \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + n} + n} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n} + 1}} \stackrel{?}{=} \\ &= \frac{\lim_{n \to \infty} 1}{\sqrt{\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} 1}} = \frac{1}{2}. \end{split}$$

Какой фрагмент вычислений на предыдущем слайде не был обоснован?

$$\lim_{n\to\infty}\sqrt{1+\frac{1}{n}}=\sqrt{\lim_{n\to\infty}1+\lim_{n\to\infty}\frac{1}{n}}=1.$$

Для того, чтобы эту цепочку равенств использовать без дополнительных (и не самых простых!) обоснований, нужно знать, что функция $y=\sqrt{x}$ непрерывна. Об этом будем говорить в разделе «пределы функций».

Не существует алгоритма вычисления пределов по заданной последовательности. Более того, не существует алгоритма распознавания сходимости/расходимости последовательности. Про некоторые (на первый взгляд!) простые последовательности неизвестно, сходятся они или нет. Например, неизвестно, существует ли предел

$$\lim_{n \to \infty} \frac{1}{n^3 \sin^2(n)}.$$

Пределы и неравенства

Частные случаи несуществования предела.

1. $\lim_{n\to\infty}a_n=+\infty$, если для

$$(\forall C \in \mathbb{R}) (\exists N \in \mathbb{N}) (\forall n \geqslant N) a_n > C.$$

2. $\lim_{n\to\infty}a_n=-\infty$, если для

$$(\forall C \in \mathbb{R}) (\exists N \in \mathbb{N}) (\forall n \geqslant N) a_n < C.$$

Если $\lim_{n\to\infty}a_n=\pm\infty$, то последовательность a бесконечно большая. Обратное, вообще говоря, неверно. Например, для последовательности $a_n=(-1)^n\cdot n$.

Теорема

Если $a_n\leqslant b_n$ для всех n (начиная с некоторого N), то $\lim_{n\to\infty}a_n\leqslant\lim_{n\to\infty}b_n.$

Теорема

Если $\lim_{n \to \infty} a_n < \lim_{n \to \infty} b_n$, то $a_n < b_n$ для всех n, начиная с некоторого N .

Предел функции

Напоминание. Окрестность точки $x\in\mathbb{R}$ – любой открытый интервал, содержащий точку x. Эпсилон-окрестность точки $O_{arepsilon}(x)=(x-arepsilon,x+arepsilon)$, где arepsilon>0.

Проколотая окрестность точки x – это любое множество

$$U = O \setminus \{x\},\$$

где O есть окрестность точки x. Проколотая ε -окрестность:

$$O_{\varepsilon}^{\circ}(x) = (x - \varepsilon, x) \cup (x, x + \varepsilon).$$

Окрестности плюс и минус бесконечности – это интервалы $(\varepsilon,+\infty)$ и $(-\infty,\varepsilon)$ соответственно (где $\varepsilon\in\mathbb{R}$). Окрестности плюс и минус бесконечности можно считать проколотыми.

Определение (предел функции по Коши)

Пусть b есть действительное число или один из символов $\pm\infty$, c есть действительное число, а f есть числовая функция, которая определена в некоторой проколотой окрестности точки b. Тогда $\lim_{x\to b}f(x)=c$, если для каждой окрестности $O_{\varepsilon}(c)$ найдется такая проколотая окрестность $O_{\delta}^{\circ}(b)$, что $f(x)\in O_{\varepsilon}(c)$ для всех $x\in O_{\delta}^{\circ}(b)$.

Эквивалентные формулировки.

 $lackbox{ }\lim_{x
ightarrow b}f(x)=c$ тогда и только тогда, когда

$$(\forall \varepsilon > 0) (\exists \delta > 0) (\forall x \in \mathbb{R}) 0 < |x - b| < \delta \Rightarrow |f(x) - c| < \varepsilon.$$

lacktriangledown $\lim_{x \to b} f(x) = c$ тогда и только тогда, когда для любой окрестности U точки c существует проколотая окрестность O° точки b, для которой

$$\{f(x): x \in O^{\circ}\} \subseteq U.$$

Замечание

Если допустить, что c также может принимать значение $+\infty$ и $-\infty$, мы определим смысл выражений $\lim_{x\to b} f(x) = +\infty$ и $\lim_{x\to b} f(x) = -\infty$. Однако эти два случая есть частные случаи несуществования предела.

Определение (предел функции по Гейне)

Пусть b есть действительное число или один из символов $\pm\infty$, c есть действительное число, а f есть числовая функция, которая определена в некоторой проколотой окрестности b. Тогда $\lim_{x\to b} f(x) = c$, если для каждой последовательности a

$$\lim_{n \to \infty} a_n = b \Rightarrow \lim_{n \to \infty} f(a_n) = c.$$

Предел по Коши и предел по Гейне – эквивалентные понятия (при некоторых предположениях о структуре числовых множеств).

Простейшие свойства пределов функций

- **Е**динственность предела. Если $\lim_{x \to b} f(x)$ существует, то он единственный.
- **Локальность предела.** Существование и значение $\lim_{x \to b} f(x)$ зависят только от поведения функции в любой сколь угодно малой проколотой окрестности точки b.

Это можно выразить следующим образом. Пусть f(x)=g(x) для всех x из некоторой проколотой окрестности точки b. Тогда пределы

$$\lim_{x\to b} f(x) \text{ u } \lim_{x\to b} g(x)$$

существуют и не существуют одновременно и, если эти пределы существуют, то они равны.

В частности, существование и значение $\lim_{x \to b} f(x)$ не зависит от определенности и значения функции f в точке b.

Пример. $\lim_{x\to 0} \frac{x}{x} = \lim_{x\to 0} 1 = 1.$ Под знаком предела некоторые некорректные сокращения становятся корректны!

▶ Пусть функция f определена в некоторой проколотой окрестности точки b. Она называется *ограниченной* в окрестности точки b, если существует такое (положительное) число $C \in \mathbb{R}$, что $|f(x)| \leqslant C$ для всех x из некоторой проколотой окрестности точки b.

Если существует (конечный) $\lim_{x \to b} f(x)$, то функция f ограничена в окрестности точки b.

▶ Лемма «о двух полицейских». Пусть даны функции f,g,h, причем для всех x из некоторой проколотой окрестности точки b выполнено

$$f(x) \leqslant g(x) \leqslant h(x)$$
.

Пусть еще существуют пределы $\lim_{x \to b} f(x)$ и $\lim_{x \to b} h(x)$ и, кроме того,

$$\lim_{x \to b} f(x) = \lim_{x \to b} h(x).$$

Тогда существует $\lim_{x \to b} g(x)$, причем

$$\lim_{x \to b} f(x) = \lim_{x \to b} h(x) = \lim_{x \to b} g(x).$$

Пределы и неравенства

- 1. Если $f(x)\leqslant g(x)$ для всех x из некоторой проколотой окрестности точки b, то $\lim_{x\to b}f(x)\leqslant \lim_{x\to b}g(x)$, если эти пределы существуют.
- 2. Если функции f и g определены в некоторой проколотой окрестности точки b и имеют в этой точке пределы, причем $\lim_{x \to b} f(x) < \lim_{x \to b} g(x)$, то f(x) < g(x) для всех x из некоторой проколотой окрестности точки b.
- 3. Если существует $\lim_{x\to b}f(x)=c\neq 0$, то существует такая проколотая окрестность O точки b, что f(x) имеет тот же знак, что и c для всех $x\in O$.

Вычисление пределов

- lacktriangle Если f(x)=c для всех x из некоторой (проколотой) окрестности точки b, то предел $\lim_{x\to b}f(x)$ существует и равен c.
- Функция f называется $\mathit{бесконечно}$ большой в окрестности точки b, если для любого (положительного) числа $C \in \mathbb{R}$ выполнено $|f(x)| \geqslant C$ для всех x из некоторой проколотой окрестности точки b. Функция f называется $\mathit{бесконечно}$ малой в окрестности точки b, если для любого положительного числа $\varepsilon \in \mathbb{R}$ выполнено $|f(x)| < \varepsilon$ для всех x из некоторой проколотой окрестности точки b.

Пусть f — ограниченная, а g — бесконечно большая функция в окрестности точки b. Тогда $\lim_{x\to b} \frac{f(x)}{g(x)}$ существует и равен нулю.

Пусть f – ограниченная, а g – бесконечно малая функция в окрестности точки b. Тогда $\lim_{x\to b}f(x)g(x)$ существует и равен нулю.

Примеры.
$$\lim_{x\to 0} \frac{1}{\ln|x|} = 0$$
; $\lim_{x\to 0} \frac{\cos x}{\ln|x|} = 0$.

▶ Замена переменных под знаком предела. Пусть

- 1) существует $\lim_{x \to b} f(x) = c$;
- 2) существует $\lim_{y \to c} g(y) = d;$
- 3) $f(x) \neq c$ в некоторой (проколотой) окрестности точки b.

Тогда существует $\lim_{x \to b} g(f(x))$, причем $\lim_{x \to b} g(f(x)) = \lim_{y \to c} g(y) = d$.

Пример.
$$\lim_{x \to \infty} \frac{1}{1 + \frac{1}{x}} = \lim_{y \to 1} \frac{1}{y} = 1$$
. Здесь $y = 1 + \frac{1}{x}, y \to 1$.

Пример. Пусть

$$g(y) = egin{cases} 0, \ ext{ec} \ ext{и} \ y
eq 0 \ 1, \ ext{ec} \ ext{и} \ y = 0 \end{cases}$$

и

$$f(x) \equiv 0 \Rightarrow g(f(x)) \equiv 1.$$

Тогда $\lim_{x\to 0}g(f(x))=1$, но $\lim_{y\to 0}g(y)=0$. Правило замены переменных не работает (нарушено условие 3).

Пределы и алгебраические операции. Нижеприведенные равенства имеют следующий смысл: если определена правая часть равенства, то определена и левая, и тогда эти части равны.

- 1. $\lim_{x \to b} (f(x) + g(x)) = \lim_{x \to b} f(x) + \lim_{x \to b} g(x)$.
- 2. $\lim_{x \to b} (f(x) g(x)) = \lim_{x \to b} f(x) \lim_{x \to b} g(x)$.
- 3. $\lim_{x \to b} (f(x) \cdot g(x)) = \lim_{x \to b} f(x) \cdot \lim_{x \to b} g(x).$
- 4. $\lim_{x \to b} \frac{f(x)}{g(x)} = \frac{\lim_{x \to b} f(x)}{\lim_{x \to b} g(x)}$.
- 5. $\lim_{x \to b} (f(x))^{g(x)} = \left(\lim_{x \to b} f(x)\right)^{\lim_{x \to b} g(x)}$.

«Базовые» пределы

- 1. $\lim_{x \to \infty} \frac{x^a}{h^x} = 0$, где b > 1.
- 2. $\lim_{a\to 0} x^a \log_b |x| = 0$, где a, b > 0, $b \neq 1$.
- 3. $\lim_{x\to 0} \frac{\sin x}{x} = 1$ (первый замечательный предел).
- 4. $\lim_{x \to \infty} \left(1 + \frac{a}{x}\right)^x = \lim_{y \to 0} \left(1 + ay\right)^{\frac{1}{y}} = e^a;$ если $\lim_{x \to b} g(x) = \infty$, то $\lim_{x \to b} \left(1 + \frac{1}{g(x)}\right)^{f(x)} = e^{\lim_{x \to b} \frac{f(x)}{g(x)}};$ если $\lim_{x \to b} g(x) = 0$, то $\lim_{x \to b} \left(1 + g(x)\right)^{f(x)} = e^{\lim_{x \to b} f(x)g(x)}.$
- 5. $\lim_{x \to 0} \frac{(1+x)^{\alpha}-1}{x} = \alpha$.
- 6. $\lim_{x\to 0} \frac{e^x-1}{x}=1$, $\lim_{x\to 0} \frac{a^x-1}{x}=\ln(a)$, где a>0.
- 7. $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$, $\lim_{x\to 0} \frac{\log_b(1+x)}{x} = \frac{1}{\ln b}$, где b>0, $b\neq 1$.
- 8. Функция называется непрерывной в точке b, если она определена в точке b, имеет предел в точке b и $\lim_{x\to b}f(x)=f(b)$. Если f элементарная функция и f определена в некоторой окрестности точки b, то она непрерывна в точке b.

Элементарная техника вычисления пределов

Примеры

$$\lim_{x \to 1} \frac{x^2 + 2x - 3}{3x^2 + x - 4} = \lim_{x \to 1} \frac{(x - 1)(x + 3)}{(x - 1)(3x + 4)} = \lim_{x \to 1} \frac{x + 3}{3x + 4} = \frac{4}{7}.$$

$$\lim_{x \to 3} \frac{\sqrt{2x+3} - \sqrt{x+6}}{x-3} = \lim_{x \to 3} \frac{x-3}{(x-3)(\sqrt{2x+3} + \sqrt{x+6})} = \frac{1}{6}.$$

$$\lim_{x \to 0} \frac{\cos 2x - \cos 4x}{x^2} = \lim_{x \to 0} \frac{2 \sin x \sin 3x}{x^2} = 2 \lim_{x \to 0} \frac{\sin x}{x} \cdot 3 \lim_{x \to 0} \frac{\sin 3x}{3x} = 6 \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{y \to 0} \frac{\sin y}{y} = 6.$$

$$\lim_{x \to 0} (\cos x)^{\frac{1}{x^2}} = \lim_{x \to 0} (1 + (\cos x - 1))^{\frac{1}{x^2}} = e^{\lim_{x \to 0} \frac{\cos x - 1}{x^2}} = e^{-\lim_{x \to 0} \frac{\sin^2 x}{x^2(1 + \cos x)}} = e^{-\lim_{x \to 0} \frac{\sin^2 x}{x^2} \cdot \lim_{x \to 0} \frac{1}{1 + \cos x}} = e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}}.$$

Связь пределов числовых функций и пределов последовательностей

Если существует $\lim_{x\to\infty}f(x)=c$ и $a_n=f(n)$, то предел $\lim_{n\to\infty}a_n$ существует и равен c. Обратное, вообще говоря, неверно. **Например,**

$$\lim_{n \to \infty} \sin(2\pi n) = \dots 0$$
, но $\lim_{x \to \infty} \sin(2\pi x)$... не существует.

СПАСИБО ЗА ВНИМАНИЕ!

