

INTERNATIONAL A-LEVEL MATHEMATICS MA03

(9660/MA03) Unit P2 Pure Mathematics

Mark scheme

June 2023

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordagaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

B Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

√ or ft Follow through from previous incorrect result

CAO Correct answer only

CSO Correct solution only

AWFW Anything which falls within

AWRT Anything which rounds to

ACF Any correct form

AG Answer given

SC Special case

oe Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

–x EE Deduct x marks for each error

NMS No method shown

PI Possibly implied

SCA Substantially correct approach

sf Significant figure(s)

dp Decimal place(s)

Q	Answer	Marks	Comments
1(a)(i)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x} = \right]kx^4(3x^5 - 4)^7$	M1	$oldsymbol{k}$ is an integer or product
	$\left[\frac{dy}{dx} = \right] 120x^4 (3x^5 - 4)^7$	A 1	Accept $5 \times 3 \times 8 \times x^4 (3x^5 - 4)^7$
		2	

Q	Answer	Marks	Comments
1(a)(ii)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x} = \right] \frac{p \times x^3 (7x - 5) - qx^4}{(7x - 5)^2}$	M 1	p, q integers
	$\left[\frac{dy}{dx} = \right] \frac{12x^3(7x-5) - 21x^4}{(7x-5)^2}$	A 1	oe
	or $\left[\frac{dy}{dx}\right] = px^4 (7x-5)^{-2} + qx^3 (7x-5)^{-1}$	(M1)	
	$\left[\frac{\mathrm{d}y}{\mathrm{d}x} = \right] 3x^4 (-1)(7)(7x-5)^{-2} + (7x-5)^{-1}12x^3$	(A1)	
	$\[\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{63x^4 - 60x^3}{(7x - 5)^2} \]$		
		2	

Q	Answer	Marks	Comments
1(a)(iii)	$\frac{2x}{x^2} + 2y\frac{dy}{dx} = y + x\frac{dy}{dx}$	M1	Correct differentiation of y^2 or xy
	x^2 dx dx	B1	Correct differentiation of $ln(x^2)$
	$\left[\frac{dy}{dx} = \right] \frac{y - \frac{2x}{x^2}}{2y - x}$ $\left[\frac{dy}{dx} = \frac{xy - 2}{x(2y - x)}\right]$	A 1	oe
		3	

Q	Answer	Marks	Comments
1(b)(i)	$\int \frac{x-6}{x^2 - 12x + 5} \mathrm{d}x = k \ln \left x^2 - 12x + 5 \right $	M1	$k \neq 0$
	$= \frac{1}{2} \ln \left x^2 - 12x + 5 \right \left[+c \right]$	A 1	oe Must be in terms of <i>x</i> condone brackets as moduli signs
		2	

Q	Answer	Marks	Comments
1(b)(ii)	$\left[\frac{\mathrm{d}}{\mathrm{d}x}(2x^2+3x-1)=\right]4x+3$	B1	PI
	$\left[\int \frac{8x+6}{(2x^2+3x-1)^3} dx = \int k(2x^2+3x-1)^{-2} dx \right]$	М1	$k \neq 0$
	$=\frac{-1}{\left(2x^2+3x-1\right)^2} [+c]$	A 1	oe Must be in terms of <i>x</i>
		3	

Q	Answer	Marks	Comments
2(a)(i)	$f(x) = 2^{-x} - 4 + 2x$ $f(1.8) = 2^{-1.8} - 4 + 3.6 = -0.1[12825]$ $f(1.9) = 2^{-1.9} - 4 + 3.8 = 0.06[794]$ Change of sign, 1.8 < \alpha < 1.9	M1 A1	Or reverse Both values rounded or truncated to at least 1sf Must have both statement and interval in words or symbols or comparing 2 sides: at 1.8, $2^{-1.8} = 0.2[871] < 0.4$; at 1.9, $2^{-1.9} = 0.26[79] > 0.2$ Accuracy as before (M1) Conclusion as before
		2	

Q	Answer	Marks	Comments
2(a)(ii)	$2x = 4 - 2^{-x}$		
	$2x = 4 - 2^{-x}$ $x = 2 - \frac{2^{-x}}{2}$ $x = 2 - 2^{-x-1}$ $x = 2 - 2^{-(x+1)}$		
	$x = 2 - 2^{-x-1}$		
	$x = 2 - 2^{-(x+1)}$	В1	AG Must be convincingly shown
		1	

Q	Answer	Marks	Comments
2(a)(iii)	$x_2 = 1.856$	B1	AWRT 1.856
	$x_3 = 1.862$	B1	CAO
		2	

Q		Answer	Marks	Comments
2(b)	x	у		
	1	$2^{-1} = 0.5$		
	1.75	$2^{-1.75} = 0.2973018$	B1	All five correct x values (and no extra used) PI by five correct y values
	2.5	$2^{-2.5} = 0.1767767$	М1	At least four correct <i>y</i> values in exact
	3.25	$2^{-3.25} = 0.1051121$		form or decimals, rounded or truncated to three dp or better (in table or formula)
	4.0	$2^{-4} = 0.0625$		(PI by AWRT correct answer)
	•	0.5+0.0625+4(0.2973018 121)+2×0.1767767]	m1	Correct sub into formula with $h = 0.75$ OE and at least four correct y values either listed, with + signs, or totalled. (PI by AWRT correct answer)
	0.6314		A1	CAO , must see this value exactly and no error seen
			4	

Question 2 Total	9	
------------------	---	--

Q	Answer	Marks	Comments
3(a)	Translation	B1	
	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$	B1	
	Stretch	В1	
	SF 0.5, parallel to <i>y</i> -axis	B1	
		4	

Q	Answer	Marks	Comments
3(b)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1	Correct shape and position Min at (–1, 0.5) may be written as coordinates or indicated on the diagram y-intercept as (0, 0.9) AWRT oe may be written as coordinates or indicated on the diagram
		3	

Q	Answer	Marks	Comments
3(c)(i)	$\left[\frac{\mathrm{d}x}{\mathrm{d}y}\right] = \frac{1}{2}\sec y \tan y$	B1	ое
		1	

Q	Answer	Marks	Comments
3(c)(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} \left[= \frac{2}{\sec y \tan y} \right] = \frac{2\cos^2 y}{\sin y}$	M1	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}y}}$
	$=\frac{2(1-\sin^2 y)}{\sin y}$	A 1	oe
		2	

Question 3 Total	10	
------------------	----	--

Q	Answer	Marks	Comments
4(a)	$[f(x)] \ge 0$	B1	Do not allow $x \ge 0$
		1	
Q	Answer	Marks	Comments
4(b)(i)	$fg(x) = \sqrt{1 - \frac{2}{x - 1}}$	B1	oe eg $\sqrt{\frac{x-3}{x-1}}$
		1	
Q	Answer	Marks	Comments
4(b)(ii)	$\left[1-\frac{2}{x-1}\geq 0\right]$		
	$ \begin{array}{c} x \ge 3 \\ x < 1 \end{array} $	B1 B1	oe oe
		2	
Q	Answer	Marks	Comments
4(b)(iii)	$1 - \frac{2}{x - 1} = 9 \qquad [x - 1 = -0.25]$	M1	Attempt to solve by eliminating square root.
	x = 0.75	A 1	only
		2	
Q	Answer	Marks	Comments
4(c)(i)	$x = \sqrt{1 - \frac{2}{y - 1}}$ $x^2 - 1$	M1	Interchange x and y
	$x^2 = 1 - \frac{2}{y - 1}$	M1	Attempt to solve
	$h(x) = \frac{3 - x^2}{1 - x^2}$	A 1	Allow $p = 3$, $q = 1$
		3	
Q	Answer	Marks	Comments
4(c)(ii)	$\left[9-3x^2=11-11x^2\right]$		
	$8x^2=2$	M1	
	$x = [\pm]0.5$	A 1	At least one correct
		2	

Question 4 Total 11	
---------------------	--

Q	Answer	Marks	Comments
5(a)	$[7\cos\theta + 24\sin\theta =]$ $R\cos\theta\cos\alpha + R\sin\theta\sin\alpha$	M1	PI
	<i>R</i> = 25	B1	
	$\alpha = 1.29$	A 1	AWRT
	$[7\cos\theta + 24\sin\theta = 25\cos(\theta - 1.29)]$		
		3	

Q	Answer	Marks	Comments
5(b)	$2\csc 4x + 2\cot 4x = \frac{2}{\sin 4x} + \frac{2\cos 4x}{\sin 4x}$		
	$= \frac{2 + 2(2\cos^2 2x - 1)}{2\sin 2x \cos 2x}$	M1	Correct use of both double angle formulae
	$= \frac{4\cos^2 2x}{2\sin 2x \cos 2x} = \frac{2\cos 2x}{\sin 2x}$	A1	
	$= \frac{\cos^2 x - \sin^2 x}{\sin x \cos x}$ $\cos x \sin x$	M1	Correct use of both double angle formulae
	$= \frac{\sin x}{\sin x} - \frac{\sin x}{\cos x}$ $= \cot x - \tan x$	A1	AG no errors seen
		4	

Q	Answer	Marks	Comments
5(c)	$5(\sec^2 Y - 1) = 7 - 4 \sec Y$	M1	Correct use of trig identity PI
	$5 \sec^{2} Y + 4 \sec Y - 12 = 0$ $(5 \sec Y - 6)(\sec Y + 2)[= 0]$ $\sec Y = -2, \frac{6}{5}$ $\left[\cos Y = \frac{5}{6}, -0.5\right]$	A 1	Both values correct
	<i>Y</i> = 0.585, -0.585, 5.697, 6.868, 2.094, 4.188, 8.377	A 1	For any of these values, or rounded or truncated to 2 dp PI
	<i>y</i> = 0.59, 1.35, 1.93, 2.69	B1	Sight of any of these values
		B1	All 4 correct and no extras in interval (ignore answers outside interval)
	or $5\frac{\sin^2 Y}{\cos^2 Y} = 7 - \frac{4}{\cos Y}$ $5(1 - \cos^2 Y) = 7\cos^2 Y - 4\cos Y$ $12\cos^2 Y - 4\cos Y - 5 = 0$ $(6\cos Y - 5)(2\cos Y + 1)[= 0]$ $\cos Y = \frac{5}{6}, -0.5$	[M1] [A1]	
		5	
	Question 5 Total	12	

Q	Answer	Marks	Comments
6(a)	$4(0.5)^{3} + a(0.5)^{2} + b \times 0.5 + c = 0$ $4(1.5)^{3} + a(1.5)^{2} + b \times 1.5 + c = 15$	M1	One correct substitution
	$4((1.5)^3 - (0.5)^3) + a((1.5)^2 - (0.5)^2) + b(1.5 - 0.5) = 15$	m1	Attempt to eliminate c
	or $a+2b+4c=-2$ $9a+6b+4c=6$		
	13 + 2a + b = 15 or $8a + 4b = 8$		
	leading to $2a+b=2$	A 1	AG no errors seen
		3	

Q	Answer	Marks	Comments
6(b)	$4(-0.5)^3 + a(-0.5)^2 + b \times (-0.5) + c = 9$	M1	Correct substitution
	$a-2b+4c=38$ $4b=-40 \implies b=-10$	m1	Attempt to solve simultaneous equations in a , b and c
	a = 6, c = 3	A 1	All 3 values correct
	$f(x) = 4x^3 + 6x^2 - 10x + 3$ $[f(-1.5)] = 18$		
	$\left[f(-1.5)\right] = 18$	B1	
		4	

Question 6 Total	7	
------------------	---	--

Q	Answer	Marks	Comments
7(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2t - 1 - 2t}{(2t - 1)^2} \text{or} (-t)(2t - 1)^{-2} + (2t - 1)^{-1}$	M1	oe Either derivative correct
	$\frac{\mathrm{d}t}{\mathrm{d}t} = 2 - \frac{1}{2\sqrt{t}}$ $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{(2t-1)^2(4\sqrt{t}-1)}{2\sqrt{t}}$	A 1	oe Both correct
	$\frac{dy}{dx} = -\frac{(2t-1)^2 (4\sqrt{t}-1)}{2\sqrt{t}}$	m1	
	$t = 1$, $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3}{2}$, $x = 1$, $y = 1$	A 1	All correct PI
	Equation of normal: $y-1=\frac{2}{3}(x-1)$	M1	Correct attempt to find <i>their</i> normal
	3y-2x=1	A 1	Allow $p = 3$, $q = -2$, $r = 1$,
			Allow integer multiples
		6	

Q	Answer	Marks	Comments
7(b)(i)	$x + y = 2e^{2m}$ $x - y = 2e^{-2m}$	M1	Both correct
	$x - y = 2e^{-2m}$		
	$x-y = 2e$ $\frac{x+y}{2} = \frac{2}{x-y}$ $x^2 = y^2 + 4$	m1	Attempt to eliminate <i>m</i>
	$x^2 = y^2 + 4$	A 1	
	or		
	$x^{2} = (e^{2m})^{2} + (e^{-2m})^{2} + 2$	[M1]	Either equation correct
	$x^{2} = (e^{2m})^{2} + (e^{-2m})^{2} + 2$ $y^{2} = (e^{2m})^{2} + (e^{-2m})^{2} - 2$ $x^{2} = y^{2} + 4$	[m1]	Both correct
	$x^2 = y^2 + 4$	[A1]	
		3	

Q	Answer	Marks	Comments
7(b)(ii)	$\begin{bmatrix} x+y=2e^{kn} & x-y=2e^{-kn} \\ \frac{x+y}{2} = \frac{2}{x-y} \end{bmatrix}$		
	$x^2 = y^2 + 4$	B1ft	oe
		1	

Q	Answer	Marks	Comments
7(c)	$x^{2} = a^{2} \sin^{2} \theta + b^{2} \cos^{2} \theta + 2ab \cos \theta \sin \theta$ $y^{2} = a^{2} \cos^{2} \theta + b^{2} \sin^{2} \theta - 2ab \cos \theta \sin \theta$	M1	Squaring one expression (condone one slip)
	$x^2 + y^2$		
	$= a^{2}(\sin^{2}\theta + \cos^{2}\theta) + b^{2}(\cos^{2}\theta + \sin^{2}\theta)$	m1	Attempt to eliminate $ heta$
	$x^2 + y^2 = a^2 + b^2$	A 1	oe
	or		
	$ax - by = \sin\theta \left(a^2 + b^2\right)$	[M1]	One expression in either $\sin heta$ or
	$ay + bx = \cos\theta (a^2 + b^2)$		$\cos heta$ (condone one slip)
	$\left[\left(\frac{ax - by}{a^2 + b^2} \right)^2 + \left(\frac{ay + bx}{a^2 + b^2} \right)^2 = 1$ $\left[\left(ax - by \right)^2 + \left(ay + bx \right)^2 = \left(a^2 + b^2 \right)^2 \right]$	[m1] [A1]	Attempt to eliminate $ heta$
		3	

Question 7 Tot	13	
----------------	----	--

Q	Answer	Marks	Comments
	$\frac{dP}{dt} = kP$ $[3000 = k \times 1000000]$ $\frac{dP}{dt} = 0.003P$	M1 A1	oe
	CII	2	

Q	Answer	Marks	Comments
8(b)	$2x\frac{\mathrm{d}y}{\mathrm{d}x} = 4 - y^2$		
	$\int \frac{\mathrm{d}y}{4 - y^2} = \int \frac{\mathrm{d}x}{2x}$	B1	PI Correctly separate variables
	$\frac{1}{4 - y^2} = \frac{A}{2 - y} + \frac{B}{2 + y}$	M 1	Using partial fractions
	1 = A(2+y) + B(2-y)		
	A = 0.25, B = 0.25	A 1	Both correct
	$\frac{1}{4} \int \frac{1}{2-y} + \frac{1}{2+y} dy = \frac{1}{2} \int \frac{dx}{x}$		
	$-\ln(2-y) + \ln(2+y) = 2\ln x + \ln A \text{ (or } +c)$	m1	Correct integration (at least 3 terms correct)
	$ \ln\frac{2+y}{2-y} = \ln Ax^2 $		$\int \frac{\mathrm{d}y}{4-y^2} = \frac{1}{4} \ln \left \frac{2+y}{2-y} \right \text{ scores M1A1m1}$
	$Ax^2 = \frac{2+y}{2-y}$	m1	Eliminating 'ln' from <i>their</i> equation – must have scored M1m1
	$(1,1) \Rightarrow A = 3$		or $(1,1) \Rightarrow c = \pm \frac{1}{4} \ln 3$
	$3x^{2}(2-y) = 2+y$		'
	$y = \frac{2(3x^2 - 1)}{(3x^2 + 1)}$	A 1	ACF
		6	

Q	Answer	Marks	Comments
9(a)	$\frac{dy}{dx} = Ax^{0.5}e^{-0.5x} + Bx^{-0.5}e^{-0.5x}$	M1	
	$\frac{dy}{dx} = x^{0.5}(-0.5)e^{-0.5x} + 0.5x^{-0.5}e^{-0.5x}$	A 1	
	$x^{0.5}(-0.5)e^{-0.5x} + 0.5x^{-0.5}e^{-0.5x} = 0,$ $0.5x^{0.5} = 0.5x^{-0.5}$	_	
	x = 1	m1	Equating to 0 and attempt to solve
	$(1, e^{-0.5})$	A 1	Allow $x = 1$, $y = e^{-0.5}$
		4	

Q	Answer	Marks	Comments
9(b)	$V = \pi \int_{1}^{2} \left(\sqrt{x} e^{-0.5x} \right)^{2} dx$	B1	PI by final answer
	$\int x e^{-x} dx = -x e^{-x} - \int -e^{-x} dx$	М1	Use of parts formula
	$=-xe^{-x}-e^{-x}$	A 1	
	$\int_{1}^{2} = [\pi] \left(-xe^{-x} - e^{-x} \right)_{1}^{2}$		
	$= [\pi] \Big(\Big(-2e^{-2} - e^{-2} \Big) - (-e^{-1} - e^{-1}) \Big)$	m1	Correct substitution of <i>their</i> 1, 2 into <i>their</i> expression in the form $axe^{-x}+be^{-x}$
	$=\pi\bigg(\frac{2}{e}-\frac{3}{e^2}\bigg)$	A 1	Allow $a = 2$, $b = -3$
		5	

Question 9 To

Q	Answer	Marks	Comments
10	$\frac{\mathrm{d}u}{\mathrm{d}\theta} = \cos\theta$	B1	oe PI
	$\left[\int \frac{\cos^3 \theta}{(1+\sin \theta)^{1.5}} d\theta = \int \frac{1-(u-1)^2}{(u)^{1.5}} du$	M1	All in terms of u , condone omission of du
	$\int \frac{2u - u^2}{(u)^{1.5}} \mathrm{d}u$		
	$= \int 2u^{-0.5} - u^{0.5} du$	A 1	Must see du here, or earlier
	$=4u^{0.5}-\frac{2}{3}u^{1.5}$ [+c]	M1	$Au^{0.5} + Bu^{1.5}$
	3	A1ft	Correct integration
	$\left[\theta\right]_{0}^{\frac{\pi}{2}} = \left[u\right]_{1}^{2}$ $\int_{0}^{\frac{\pi}{2}} \frac{\cos^{3}\theta}{(1+\sin\theta)^{1.5}} d\theta = \left(4u^{0.5} - \frac{2}{3}u^{1.5}\right)_{1}^{2}$	В1	Change of limits, maybe seen earlier (may change back to θ and not change limits)
	$= \left(4 \times 2^{0.5} - \frac{2}{3} \times 2^{1.5}\right) - \left(4 - \frac{2}{3}\right)$ $= \frac{8}{3} \times 2^{0.5} - \frac{10}{3}$	M1	Correct substitution of <i>their</i> limits into <i>their</i> expression of the form $Au^{0.5} + Bu^{1.5}$
	$=\frac{2}{3}(4\sqrt{2}-5)$	A 1	Allow $p = 4$, $q = -5$
		8	

|--|

Q	4Answer	Marks	Comments
11(a)	$f(x) = \frac{A}{(3-x)} + \frac{B}{(3-x)^2} + \frac{C}{(1-3x)}$		
	$7x^2 - 17x + 12 = A(3-x)(1-3x) + B(1-3x) + C(3-x)^2$	B1	Correctly eliminating fractions
	x = 3, $24 = -8B$, $B = -3$	M1	Attempt at finding one constant
	$x = \frac{1}{3}, \frac{64}{9} = \frac{64}{9}C, C = 1$ x = 0, 12 = 3A + B + 9C, A = 2	A1	Two constants correct
	$f(x) = \frac{2}{(3-x)} - \frac{3}{(3-x)^2} + \frac{1}{(1-3x)}$	A 1	Allow $A = 2$, $B = -3$, $C = 1$
			Allow equivalent methods
		4	

Q	Answer	Marks	Comments
11(b)	$(3-x)^{-1} = \frac{1}{3}(1-\frac{1}{3}x)^{-1}$	M1	
	$= \frac{1}{3} + \frac{1}{9}x + \frac{1}{27}x^2$	A1	
		2	

Q	Answer	Marks	Comments
11(c)	$(3-x)^{-2} = \left(\frac{1}{3}\right)^2 \left(1 + \frac{2}{3}x + \frac{1}{3}x^2\right)$	M1	oe either expansion correct
	$(1-3x)^{-1} = 1+3x+9x^2$	A 1	Both correct
	$f(x):$ $2(\frac{1}{3} + \frac{1}{9}x + \frac{1}{27}x^{2}) - 3 \times \frac{1}{9}(1 + \frac{2}{3}x + \frac{1}{3}x^{2}) + 1(1 + 3x + 9x^{2})$ $f(x) = \frac{4}{3} + 3x + \frac{242}{27}x^{2}$ $\left[\begin{bmatrix} 0 & 4 & 5 & 2 & 5 \\ 0 & 4 & 5 & 2 \end{bmatrix} \right]$	m1 A1	Correct substitutions of their expansions into their three term part (a)
	$D = \frac{4}{3}, E = 3, F = \frac{242}{27}$		
		4	

Question 11 Total 10

	Answer	Marks	Comments
12(a)	$\begin{bmatrix} l_1 : \mathbf{r} = \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} + \lambda \begin{bmatrix} 3 \\ -1 \\ -4 \end{bmatrix}$	B1	$\mathbf{oe} \ \begin{bmatrix} l_1 : \mathbf{r} = \end{bmatrix} \begin{bmatrix} 5 \\ -2 \\ -1 \end{bmatrix} + \lambda \begin{bmatrix} 3 \\ -1 \\ -4 \end{bmatrix}$
		1	

Q	Answer	Marks	Comments
12(b)(i)	$2+3\lambda = -2 - \mu$ $-1-\lambda = 5 - 2\mu$ $[7\lambda = -14 \implies \lambda = -2,] \mu = 2$ $[z: 3-4\times -2 = 11 = 7 + 2k] k = 2$	M1	Both equations correct, ft from (a)
	$\begin{bmatrix} 7\lambda = -14 \implies \lambda = -2, \end{bmatrix} \mu = 2$	A 1	
	$[z:3-4\times-2=11=7+2k]$ $k=2$	A 1	
		3	2

Q	Answer	Marks	Comments
12(b)(ii)	(-4, 1, 11)	B1	
		1	

Q	Answer	Marks	Comments
12(c)	Coords of $D(-2-d, 5-2d, 7+2d)$	B1ft	Ft their 'k' in (b)(i)
	$\overrightarrow{CD} = \begin{bmatrix} -5 - d \\ 1 - 2d \\ 3 + 2d \end{bmatrix}$	M1	oe Seen or used, Ft their 'D'
	$\begin{bmatrix} -5 - d \\ 1 - 2d \\ 3 + 2d \end{bmatrix} \begin{bmatrix} -1 \\ -2 \\ 2 \end{bmatrix} [= 0]$	m1	Correct use of dot product with their $\ensuremath{\textit{CD}}$ and their $\ensuremath{\textit{k}}$
	$9d = -9 \implies d = -1$	A 1	
	Coords of D (-1, 7, 5) $Dist = \sqrt{(-1-3)^2 + (7-4)^2 + (5-4)^2}$ $= \sqrt{26}$	M1 A1	Must have scored m1
	- V20	6	

Question 12 To	11	
----------------	----	--

MARK SCHEME –	INTERNATIONA	L A-LEVEL MA	THEMATICS - N	1A03 – JUNE 2	023