FORMULÁRIO DE CÁLCULO

 $(u, v, f \in g \text{ são funções}; a, b, c, m, n, p, A, B, C, D, \alpha, \beta, y \in k \text{ são constantes}, u \text{ é um vetor})$

Derivadas

1	(u ^a) '	$a \cdot u^{a-1} \cdot u'$
2	log _a (u) '	$\frac{u'}{u \cdot ln(a)}$
3	(a ") '	a ^u · ln (a) · u′
4	(u ^v) '	$u^{v} \cdot [v \cdot ln(u)]'$
5	sen (u) '	cos (u) · u′
6	cos (u) '	– sen (u) · u'
7	tg (u) '	$sec^{2}(u) \cdot u'$
8	cosec (u) '	$-\cos ec(u) \cdot \cot g(u) \cdot u'$
9	sec (u) '	sec (u) · tg (u) · u'
10	cotg (u) '	$-\cos ec^{2}(u) \cdot u'$

Regras de Derivação

(u + v)' = u' + v'	Regra da Soma
$(k \cdot u)' = k \cdot u'$	Regra da Constante
$(u \cdot v)' = u' \cdot v + u \cdot v'$	Regra do Produto
$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$	Regra do Quociente
$(u \circ v)' = u'(v) \cdot v'$	Regra da Cadeia
$v' = \frac{1}{u'(v)}$	sendo u e v funções inversas

Produtos notáveis

1	$(a \pm b)^2 = a^2 \pm 2 \cdot a \cdot b + b^2$
2	$a^2 - b^2 = (a + b) \cdot (a - b)$
3	$(a \pm b)^3 = a^3 \pm 3 \cdot a^2 \cdot b + 3 \cdot a \cdot b^2 \pm b^2$
4	$a^3 \pm b^3 = (a \pm b) \cdot (a^2 \mp a \cdot b + b^2)$

Identidades trigonométricas

	3
1	$tg(x) = \frac{sen(x)}{cos(x)}$
2	$cotg(x) = \frac{1}{tg(x)}$
3	$cosec(x) = \frac{1}{sen(x)}$
4	$sec(x) = \frac{1}{cos(x)}$
5	$sen^2(x) + cos^2(x) = 1$
6	$sen^{2}(x) = \frac{1 - cos(2x)}{2}$
7	$\cos^2(x) = \frac{1 + \cos(2x)}{2}$
8	$sec^{2}(x) - tg^{2}(x) = 1$
9	$cosec^{2}(x) - cotg^{2}(x) = 1$
10	$sen(2x) = 2 \cdot sen(x) \cdot cos(x)$
	$\cos(2x) = \cos^2(x) - \sin^2(x)$
11	$= 2 \cdot \cos^2(x) - 1$
	$= 1 - 2 \cdot sen^2(x)$
12	$tg(2x) = \frac{2 \cdot tg(x)}{1 - tg^2(x)}$
13	$sen (3x) = -sen^{3}(x) + 3 \cdot cos^{2}(x) \cdot sen (x)$ $= -4 \cdot sen^{3}(x) + 3 \cdot sen (x)$
	$cos (3x) = cos 3(x) - 3 \cdot sen 2(x) \cdot cos (x)$
14	$= 4 \cdot \cos^3(x) - 3 \cdot \cos(x)$
15	$tg(3x) = \frac{3 \cdot tg(x) - tg^3(x)}{1 - 3 \cdot tg^2(x)}$
	$1 - 3 \cdot tg^{2}(x)$
16	$sen(a) \cdot cos(b) = \frac{sen(a-b) + sen(a+b)}{2}$
17	$sen(a) \cdot sen(b) = \frac{cos(a-b) - cos(a+b)}{2}$
18	$\cos(a)\cdot\cos(b) = \frac{\cos(a-b)+\cos(a+b)}{2}$
19	$sen^{2}(x) \cdot cos^{2}(x) = \frac{1 - cos(4x)}{8}$
20	$sen(a \pm b) = sen(a) \cdot cos(b) \pm cos(a) \cdot sen(b)$
21	$cos(a \pm b) = cos(a) \cdot cos(b) \pm sen(a) \cdot sen(b)$
22	$tg(a \pm b) = \frac{tg(a) \pm tg(b)}{1 \mp tg(a) \cdot tg(b)}$
23	$sen(a) \pm sen(b) = 2 \cdot sen\left(\frac{a \pm b}{2}\right) \cdot cos\left(\frac{a \pm b}{2}\right)$
24	$cos(a) + cos(b) = 2 \cdot cos\left(\frac{a+b}{2}\right) \cdot cos\left(\frac{a-b}{2}\right)$
25	$cos(a) - cos(b) = 2 \cdot sen\left(\frac{a+b}{2}\right) \cdot sen\left(\frac{a-b}{2}\right)$
1	

Primitivas

1	$\int dx$ ou $\int 1 dx$	x + k
2	$\int x^a dx$	1) $\frac{x^{a+1}}{a+1} + k$, $(a \neq -1)$ 2) $\ln x + k$, $(a = -1)$
3	$\int a^x dx$	$\frac{a^{x}}{\ln(a)} + k$
4	$\int log_a(x) dx$	$x \cdot \log_a(x) - \frac{x}{\ln(a)} + k$
5	∫ sen (x) dx	$-\cos(x) + k$
6	$\int \cos(x) dx$	sen(x) + k
7	$\int tg(x) dx$	ln sec(x) + k
8	$\int sec(x) dx$	ln sec(x) + tg(x) + k
9	$\int cosec(x) dx$	ln cosec(x) - cotg(x) + k
10	$\int \cot g(x) dx$	ln sen (x) + k
11	$\int tg^2(x) dx$	tg(x) - x + k
12	$\int \sec^2(x)\ dx$	tg(x) + k
13	$\int cosec^2(x) dx$	$-\cot g(x) + k$
14	$\int \cot g^{2}(x) \ dx$	$-\cot g(x) - x + k$
15	$\int sec(x) \cdot tg(x) dx$	sec(x) + k
16	$\int cosec(x) \cdot cotg(x) dx$	$-\cos ec(x) + k$
17	$\int \frac{dx}{x^2 + a^2}$	$\frac{arctg\left(\frac{x}{a}\right)}{a} + k$
18	$\int \frac{dx}{x^2 - a^2}$	$\frac{\ln\left(\frac{x-a}{x+a}\right)}{2\cdot a} + k$
19	$\int \frac{dx}{a^2 - x^2}$	$\frac{\ln\left(\frac{x+a}{x-a}\right)}{2\cdot a} + k$
20	$\int \frac{dx}{\sqrt{x^2 \pm a^2}}$	$\ln \left x + \sqrt{x^2 \pm a^2} \right + k$
21	$\int \frac{dx}{\sqrt{a^2-x^2}}$	$arcsen\left(\frac{x}{a}\right) + k$
22	$\int \frac{dx}{x \cdot \sqrt{x^2 - a^2}}$	$\frac{arcsen \left \frac{x}{a} \right }{a} + k$

Regras de Integração

1	$\int [k \cdot f(x)] dx = k \cdot \int f(x) dx$
2	$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$
3	$\int u \cdot dv = u \cdot v - \int v \cdot du$

Fórmulas de Recorrência

$$\int \operatorname{sen}^{n} x \, dx = -\frac{\operatorname{sen}^{n-1} x \cdot \cos x}{n} + \frac{n-1}{n} \cdot \int \operatorname{sen}^{n-2} x \, dx$$

$$\int \cos^{n} x \, dx = \frac{\cos^{n-1} x \cdot \sin x}{n} + \frac{n-1}{n} \cdot \int \cos^{n-2} x \, dx$$

$$\int tg^{n} x \cdot \sec^{2} x \, dx = \frac{tg^{n+1} x}{n+1} + k$$

$$\int \operatorname{sec}^{n} x \cdot \sec x \cdot tg \, x \, dx = \frac{\operatorname{sec}^{n+1} x}{n+1} + k$$

$$\int tg^{n} x \, dx = \frac{tg^{n-1} x}{n-1} - \int tg^{n-2} x \, dx$$

$$\int \operatorname{sec}^{n} x \, dx = \frac{\operatorname{sec}^{n-2} x \cdot tg \, x}{n-1} + \frac{n-2}{n-1} \cdot \int \operatorname{sec}^{n-2} x \, dx$$

$$\int \cot g^{n} x \, dx = -\frac{\cot g^{n-1} x}{n-1} - \int \cot g^{n-2} x \, dx$$

$$\int \operatorname{cosec}^{n} x \, dx = -\frac{\operatorname{cosec}^{n-2} x \cdot \cot g \, x}{n-1} + \frac{n-2}{n-1} \cdot \int \operatorname{cosec}^{n-2} x \, dx$$

Funções parciais por funções racionais

$$\frac{mx+n}{(x-\alpha)(x-\beta)} = \frac{A}{x-\alpha} + \frac{B}{x-\beta}$$

$$\frac{mx^2 + nx + p}{(x-\alpha)(x-\beta)(x-\gamma)} = \frac{A}{x-\alpha} + \frac{B}{x-\beta} + \frac{C}{x-\gamma}$$

$$\frac{mx^2 + nx + p}{(x-\alpha)(x-\beta)^2} = \frac{A}{x-\alpha} + \frac{B}{x-\beta} + \frac{C}{(x-\beta)^2}$$

$$ax^2 + bx + c = (m \pm n)^2 + k$$

$$\frac{mx^2 + nx + p}{(x-\alpha)(ax^2 + bx + c)} = \frac{A}{x-\alpha} + \frac{Bx + D}{ax^2 + bx + c}$$

Coordenadas Polares

$$x = r \cdot \cos \theta \text{ e } y = r \cdot \sin \theta$$

$$r = \sqrt{x^2 + y^2} \text{ e } \theta = \operatorname{arctg}\left(\frac{y}{x}\right)$$

$$A = \frac{1}{2} \cdot \int_{a}^{b} r^2 d\theta$$

$$A = \frac{1}{2} \cdot \int_{a}^{b} \left[f(\theta)\right]^2 - \left[g(\theta)\right]^2 d\theta$$

$$L = \int_{a}^{b} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$$

Curvas de nível

1	$f(x, y) = k$, com $k \in Im(f)$
---	-----------------------------------

Superfícies de nível

Propriedades do limite

1	Se $f(x, y) \le g(x, y) \le h(x, y)$ para
	$\ (x, y) - (x_0, y_0)\ < r e$
	$\lim_{(x,y)\to(0,0)} f(x, y) = L = \lim_{(x,y)\to(0,0)} h(x, y),$
	então $\lim_{(x,y)\to(0,0)}g(x,y)=L$
2	Se $\lim_{(x,y)\to(a,b)} f(x,y) = 0$ e $ g(x,y) < M$, com
	$0 \le \ (x, y) - (a, b)\ \le R$, então $\lim_{(x, y) \to (a, b)} f \cdot g = 0$

Continuidade

A função
$$f(x, y)$$
 é contínua em (a, b) se
$$\lim_{(x, y) \to (a, b)} f(x, y) = f(a, b)$$

Derivadas parciais

	Para calcular as derivadas parciais de $f(x, y)$:
f_x	Considerar y constante e derivar em relação a x
f y	Considerar x constante e derivar em relação a y

Funções diferenciáveis

1.1	Se f é diferenciável, f é contínua	
1.2	Se f não é contínua, f não é diferenciável	
2	Se as derivadas parciais f_x e f_y existirem perto do	
	ponto (x_0, y_0) e forem contínuas em (x_0, y_0) , f	
	é diferenciável em (x_0, y_0)	
3	f é diferenciável em (x_0, y_0) se e somente se:	
3.1	f admite derivadas parciais em (x_0, y_0)	
3.2	$\lim_{(h, k) \to (0, 0)} \frac{E(h, k)}{\ (h, k)\ } = 0, \text{ com}$	
	$E(h, k) = f(x_0 + h, y_0 + k) - f(x_0, y_0)$	
	$- f_{x}(x_{0}, y_{0}) \cdot h - f_{x}(x_{0}, y_{0}) \cdot k$	

Regra da Cadeia

1	$\frac{dz}{dt} = \frac{\partial z}{\partial t} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$
2.1	$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial t}$
2.2	$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial s}$

Derivação implícita

1	$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}$
2	$\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}$

Derivada direcional

$$D \overline{u} f(x, y) = f_x(x, y) \cdot a + f_y(x, y) \cdot b$$

Vetor gradiente

1	$\nabla f(x, y) = \langle f_x(x, y), f_y(x, y) \rangle$
2	$\nabla f(x, y) = \langle f_x(x, y), f_y(x, y) \rangle$ $D\overline{u} f(x, y) = \nabla f(x, y) \cdot \overline{u}$

Plano tangente à superfície de nível

$$F_{x}(x_{0}, y_{0}, z_{0}) + F_{y}(x_{0}, y_{0}, z_{0}) + F_{z}(x_{0}, y_{0}, z_{0}) = 0$$

Reta normal à superfície de nível

$$\frac{x-x_0}{F_x(x_0,y_0,z_0)} = \frac{y-y_0}{F_y(x_0,y_0,z_0)} = \frac{z-z_0}{F_z(x_0,y_0,z_0)}$$