

# VERA Common Input User Manual

Scott Palmtag Andrew Godfrey Mark Baird Erik Walker

July 31, 2019

This document was prepared under the ORNL VERA Quality Assurance Program in accordance with VERA-QA-003. The OFFICIAL COPY of this document is the electronic version in the VERA Documents Repository. Before using a printed copy, verify that it is the most current version by checking the Revision ID against the electronic version.

Approved for Public Release















#### DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect.

Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public from the following source:

National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 *Telephone* 703-605-6000 (1-800-553-6847) *TDD* 703-487-4639 *Fax* 703-605-6900 *E-mail* info@ntis.gov

Website http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source:

Office of Scientific and Technical Information PO Box 62
Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@osti.gov
Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of

authors expressed herein do not necessarily state or reflect those of

the United States Government or any agency thereof.



# **REVISION LOG**

| Revision | Date       | Affected<br>Sections | Revision Description                          |
|----------|------------|----------------------|-----------------------------------------------|
| 0        | 11/25/2013 | All                  | Original Version for RSICC 2013 release       |
| 1        | 03/31/2014 | All                  | Major revision for Milestone L3:PHI.VCS.P8.01 |
| 2        | 02/23/2015 | All                  | Minor Revision for RSICC release              |
| 3        | 07/31/2019 | All                  | Major revision for VERA version 4.0           |

# **Document pages that are:**

Unlimited All
Export Controlled None
IP/Proprietary/NDA Controlled None
Sensitive Controlled None

# **Requested Distribution:**

To:

Copy:



# VERA Common Input User Manual

| Approvals:                                     |      |  |
|------------------------------------------------|------|--|
| Scott Palmtag, VERAIO Product Software Manager | Date |  |
| Brendan Kochunas, Independent Reviewer         |      |  |



# CONTENTS

| FIGURES vii |                   |                                                                                                                                 |          |  |  |  |  |
|-------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|
| A           | CRO               | NYMS                                                                                                                            | iii      |  |  |  |  |
| 1           | Intr              | ${\bf oduction}  \dots $  | 1        |  |  |  |  |
|             | 1.1               | Introduction to CASL                                                                                                            | 1        |  |  |  |  |
|             | 1.2               | VERA Core Simulator                                                                                                             | 1        |  |  |  |  |
|             | 1.3               | Manual Organization                                                                                                             | 2        |  |  |  |  |
|             | 1.4               | Training Requirements                                                                                                           | 2        |  |  |  |  |
|             | 1.5               | Purpose and Functional Requirements                                                                                             | 3        |  |  |  |  |
|             | 1.6               | Code Capabilities and Limitations                                                                                               | 3        |  |  |  |  |
|             | 1.7               | Computer System Vulnerabilities                                                                                                 | 3        |  |  |  |  |
|             | 1.8               | Software Support                                                                                                                | 4        |  |  |  |  |
|             | 1.0               | Software Support                                                                                                                | 4        |  |  |  |  |
| 2           | Use               | r Manual                                                                                                                        | 5        |  |  |  |  |
|             | 2.1               | Input Syntax                                                                                                                    | 6        |  |  |  |  |
|             | 2.2               | Core Description                                                                                                                | 8        |  |  |  |  |
|             | 2.3               | *                                                                                                                               | 16       |  |  |  |  |
|             | 2.4               |                                                                                                                                 | 21       |  |  |  |  |
|             | 2.5               | v 1                                                                                                                             | 23       |  |  |  |  |
|             | $\frac{2.6}{2.6}$ | *                                                                                                                               | 24       |  |  |  |  |
|             | $\frac{2.0}{2.7}$ |                                                                                                                                 | 26       |  |  |  |  |
|             | 2.8               | •                                                                                                                               | 26<br>26 |  |  |  |  |
|             | $\frac{2.0}{2.9}$ | •                                                                                                                               | 20<br>27 |  |  |  |  |
|             | 2.9               | Coupling Description                                                                                                            | <u> </u> |  |  |  |  |
| 3           | Mat               | erials                                                                                                                          | 30       |  |  |  |  |
|             | 3.1               | Structural Materials                                                                                                            | 30       |  |  |  |  |
|             | 3.2               |                                                                                                                                 | 31       |  |  |  |  |
|             | 3.3               |                                                                                                                                 | 31       |  |  |  |  |
|             |                   |                                                                                                                                 | -        |  |  |  |  |
| 4           | Dep               | $\textbf{letion}  \dots $ | 35       |  |  |  |  |
|             | 4.1               | Depletion                                                                                                                       | 35       |  |  |  |  |
|             | 4.2               | Writing Restart Files                                                                                                           | 35       |  |  |  |  |
|             | 4.3               | Reading Restart Files                                                                                                           | 37       |  |  |  |  |
|             | 4.4               | Core Shuffling                                                                                                                  | 37       |  |  |  |  |
| _           | _                 |                                                                                                                                 |          |  |  |  |  |
| 5           | -                 | •                                                                                                                               | 13       |  |  |  |  |
|             | 5.1               |                                                                                                                                 | 14       |  |  |  |  |
|             | 5.2               |                                                                                                                                 | 14       |  |  |  |  |
|             | 5.3               |                                                                                                                                 | 61       |  |  |  |  |
|             | 5.4               |                                                                                                                                 | 76       |  |  |  |  |
|             | 5.5               |                                                                                                                                 | 33       |  |  |  |  |
|             | 5.6               |                                                                                                                                 | 37       |  |  |  |  |
|             | 5.7               |                                                                                                                                 | 39       |  |  |  |  |
|             | 5.8               |                                                                                                                                 | 92       |  |  |  |  |
|             | 5.9               | Block SHIFT                                                                                                                     | 94       |  |  |  |  |
|             | 5.10              | Block COBRATF                                                                                                                   | 15       |  |  |  |  |

# VERA User Manual



|   | 5.11                  | Block COUPLING                  |
|---|-----------------------|---------------------------------|
|   | 5.12                  | Block MPACT                     |
|   | 5.13                  | Block MAMBA                     |
|   | 5.14                  | Block RUN                       |
| _ | _                     |                                 |
| b | Exa                   | ${ m amples}$                   |
|   | 6.1                   | Example 1 – Full-Core           |
|   | 6.2                   | Example 2 – Single-Assembly     |
|   | 6.3                   | Example 3 – 2D Lattice Geometry |
| _ | <b>T</b> / <b>D</b> : | ${f RARun}$                     |
| 7 |                       |                                 |
|   | 7.1                   | Running a Case                  |
|   | 7.2                   | VERARun Output                  |
|   | 7.3                   | Input Errors                    |



# **FIGURES**

| 1 | Full, quarter, and octant symmetry regions for a core map | 9  |
|---|-----------------------------------------------------------|----|
| 2 | Core baffle and vessel (image courtesy of Andrew Godfrey) | 14 |
| 3 | PWR Fuel Assembly (source: Public internet)               | 16 |
| 4 | Pincell diagrams of a fuel rod and a guide tube           | 17 |



# **ACRONYMS**

CASL Consortium for Advanced Simulation of Light Water Reactors

BOC Beginning of Cycle BWR Boiling Water Reactor

CFD Computational Fluid Dynamics
CILC Crud-Induced Localized Corrosion

CIPS Crud-Induced Power Shift (also called AOA)

CTF COBRA-TF (Subchannel Code)
DNB Departure from Nucleate Boiling

EFPD Effective Full Power Days

EOC End of Cycle

GWd/MT Gigawatt-Days per Metric Ton Heavy Metal

HFP Hot Full Power
HZP Hot Zero Power
LWR Light Water Reactor
MOC Middle of Cycle

MWd/MT Megawatt-Days per Metric Ton Heavy Metal

PCI Pellet-Cladding Interaction

PCM Percent Mille  $(10^{-5})$ 

PPM Parts per Million (usually boron)

PWR Pressurized Water Reactor

QA Quality Assurance

RIA Reactivity Insertian Accident

VERA Virtual Environment for Reactor Applications



## 1. INTRODUCTION

## 1.1. INTRODUCTION TO CASL

The Consortium for Advanced Simulation of Light Water Reactors (CASL) is the first DOE Energy Innovation Hub, established in July 2010 for the purpose of providing advanced modeling and simulation (ModSim) solutions for commercial nuclear reactors.

CASL's vision is to predict, with confidence, the performance of nuclear reactors through comprehensive, science-based modeling and simulation technology that is deployed and applied broadly throughout the nuclear energy industry to enhance safety, reliability, and economics.

CASL's mission is to provide coupled, high-fidelity, usable modeling and simulation capabilities needed to address light water reactor operational and safety performance-defining phenomena.

CASL's foundational technology products include CASL solutions and CASL ModSim Technologies. CASL's ModSim technology, the Virtual Environment for Reactor Applications (VERA), provides higher-fidelity results than the current industry approach by incorporating coupled physics and science-based models, state-of-the-art numerical methods, modern computational science, integrated uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs), single-effect experiments, and integral tests.

CASL will address, through new insights afforded by its ModSim technology, key nuclear energy industry challenges to furthering power uprates, higher fuel burnup, and lifetime extension while providing higher confidence in enhanced nuclear safety and this cleaner energy source.

The CASL Team is a consortium that consists of ten core partners and numerous contributing members. The CASL organization is led by Oak Ridge National Lab, and CASL's research and development is executed in six technical teams called Focus Areas (FA) and one integrating technical area. This ground-breaking partnership provides unparalleled collective institutional knowledge, nuclear science and engineering talent, computational science leadership, and a record of LWR design and regulatory accomplishments!

More information on CASL can be found at the website www.casl.gov.

# 1.2. VERA CORE SIMULATOR

One component of VERA is the VERA Core Simulator (VERA-CS). The core simulator is the specific collection of multi-physics computer codes used to model and deplete a LWR core over multiple cycles. Examples of the separate physics modeled in the core simulator include cross section generation, neutron transport, isotopic depletion, thermal-hydraulics, and fuel performance.

The purpose of the core simulator is to deplete the reactor core and provide data and boundary conditions to model CASL Challenge Problems such as CIPS, CILC, DNB, PCI, and RIA analyses.



One important feature of the core simulator is that a single common input file is used to drive all of the different physics codes<sup>1</sup>. One benefit of using a single common input is that users only need to understand and be proficient with one input, instead of having to understand multiple inputs for multiple physics codes. Another benefit of using a single common input is that all codes work from a single geometry description, and this reduces errors due to inconsistent geometries in different codes.

The most up-to-date version of this document resides in the VERA Git repository file "VERAInExt/verain/docs/verain\_UM.pdf". Please refer to this location for the latest version of the input manual.

#### 1.3. MANUAL ORGANIZATION

This manual is organized into three main parts.

The first part, which includes Chapters 2 through 4, is the "User's Manual", which describes how a user would set up a typical input. This part of the manual gives the most common input cards that a user would need and describes how to use them. This part of the manual does not include a complete list of cards or show every available option.

The second part of the manual, Chapter 5, is a "Reference Manual" and includes a complete listing of every available input card.

The third part of the manual, Chapter 6, gives several example input decks. Additional example input files can be found in the code installation directory.

In addition, a description of the VERARun script, used to run VERA jobs, is given in Chapter 7.

Note that the VERA input processor (called VERAin) is an open source software project and can be found on the CASL Github website github.com/casl/verain. The open source input processor does not include any physics packages.

# 1.4. TRAINING REQUIREMENTS

There is no required training for running VERA, but users should have a basic understanding of LWR technology. Users who perform any engineering or safety related work with VERA should follow the procedures of their own organization.

Optional user training is periodically available from the VERA Users Group. Please contact support (contact information given below) to inquire about training opportunities.

<sup>&</sup>lt;sup>1</sup>The only exception to this is for CFD codes, which generally require a detailed CAD file to support mesh generation and perform meaningful analysis.



# 1.5. PURPOSE AND FUNCTIONAL REQUIREMENTS

The purpose and functional requirements of the VERA common input processor (VERAIn) are:

- 1. Read an ASCII input provided by the user (as described in this manual).
- 2. Perform basic error checking on the ASCII input. Additional error checking is performed by other VERA components.
- 3. Perform basic geometry processing, such as expanding input maps from octant to full geometry where applicable.
- 4. Create an XML output file that can easily be read by other VERA components.

The purpose of the VERA run script (VERARun) is to provide a single interface to run the VERA codes, usually in parallel computing environments. The specific functional requirements for VERARun are:

- 1. Run VERAIn to create an XML file that can be read by other VERA components.
- 2. Run any input preprocessors as necessary (such as XML2CTF or XML2Bison).
- 3. Submit jobs to parallel computing cluster.

# 1.6. CODE CAPABILITIES AND LIMITATIONS

The current code capabilities of VERAIn and VERARun are specified by the functional requirements listed above. Requirements not explicitly stated in this list are assumed to be limitations.

One general limitation in the input processor is that the input is limited to standard LWR designs. For example, the input processor does not support reactors with hexagonal or plate fuel or coolant that is not water.

Other VERA components may have limitations, and the user should refer to the documentation of the other VERA components for a listing.

## 1.7. COMPUTER SYSTEM VULNERABILITIES

Running VERAIn or VERARun on any machine is not known to expose the system to any security vulnerabilities at this time. VERAIn and VERARun should not be run with administrative level access permissions.



# 1.8. SOFTWARE SUPPORT

For specific questions about the use of VERAIn or VERARun, the licensing of the code, or to report bugs, users should send an email to casl-support@ornl.gov.

Additional user information may also be found on the CASL website www.casl.gov.



## 2. USER MANUAL

The VERA common input is an ASCII file and is designed to be modular. The input is split into separate modules (or blocks) to describe the different geometric objects in the core and to define specific modeling options for each of the physics codes.

Geometric objects are defined as the physical "parts" of the reactor core, which includes fuel assemblies, control rod assemblies, removable burnable poison assemblies, and detectors. By defining each geometric object as a separate block, the objects can be described independently of each other and rely on very little global information. The independent descriptions make quality assurance (QA) easier and allows objects to be defined in one cycle and be re-used in subsequent cycles without worrying about input conflicts. Another advantage of the module approach is that it makes it easier to shuffle fuel assemblies, and insert and withdraw "inserts" (such as control rods, detectors, and removable burnable poison assemblies) into the fuel assemblies as the core configuration changes.

Additional modules/blocks are used to define modeling options and parameters for each of the physics codes. Separating the geometry description from the modeling options allows all of the physics codes to share the same geometry description and also allows the same input to be used with multiple physics codes.

The VERA input blocks are:

**CASEID** This block contains an input title card.

**CORE** This block describes the core layout including core map, assembly locations, control rod locations, and assembly insert locations. The CORE block contains data that does not change during a cycle depletion.

**STATE** These blocks describes reactor core operating parameters (statepoint values) at a particular point in time. Parameters include inlet temperature, pressure, power, control rod positions, and others. STATE values can (and usually do) change at each statepoint.

**ASSEMBLY** These blocks contains the geometry and physical description of the nuclear fuel assemblies. The assembly descriptions do not include control rods, detectors, or inserts.

**INSERT** These blocks contain the geometry and physical description of the assembly inserts. An insert is a generic term used to describe a removable burnable poison assembly or a thimble plug assembly.

**CONTROL** This block contains the geometry and physical description of a control rod assembly. A control rod assembly is similar to an assembly insert, except that it can move during operations.

**DETECTOR** This block contains the geometry and physical description of a detector string.

**EDITS** This block contains information on what edits the code should produce.

**COUPLING** This block contains parameters for coupling different physics codes together.



In addition to the blocks listed above, there are additional code-specific blocks that contain options specific to each physics code. Examples of code-specific blocks are **COBRATF**, **MPACT**, and **SHIFT**. Additional code-specific input blocks can be added as new physics codes are added to the core simulator.

The following sections in this chapter describe the most common concepts and features of each input block. This section does not provide a comprehensive list of each input card or option on each card. Refer to Chapter 5 for a detailed listing of all input and options.

#### 2.1. INPUT SYNTAX

VERA input files are text files that contain standard printable ASCII characters. The data is organized in blocks with names and purpose as described in the introduction. The start of a block is denoted by the block name enclosed in square brackets, e.g. [STATE]. The file block structure is flat, so that there is no hierarchy in the block segments. A start of a new block also implies the end of the previous block. There can be multiple instances of [ASSEMBLY], [INSERT], and i[STATE] blocks. Other blocks, like [CORE] and the code-specific blocks, are unique, so that a new block with the same name of an existing block will overwrite the existing block data. There is no required order of the blocks in input file, except for the [STATE] blocks, in which each statepoint must be entered in chronological order.

The blocks contain input cards that are generally organized as keyword-value pairs or keyword-tagvalue triplets where tag denotes the keyword name tag that can be referenced in the other related commands. Keywords should not have blank spaces, as the spaces usually imply delimiters in the card data. A value can be a single or list entry. Input card value entries can contain different data types, depending on the card format. The data types are real numbers, integers, characters, and character strings. String entries that include spaces should be enclosed in single or double quote pairs.

The block, keyword and tag names are case sensitive. Therefore, it is recommended that users should not depend on the capitalization for differentiation between entries in the file.

In this manual, the convention used is that all input examples are shown in typewriter font. When input cards are used in the text (not in the examples), they are listed in *italic font*. All block names are listed with square brackets around them.

The exclamation mark, !, is a special character that makes everything from it to the end of line ignored for processing and is used for adding comments in an input file.

The keyword *include* can be used to insert the contents of another file into the input file.

Short commands are expected to complete within a single line. Longer commands, like input maps, can be split across multiple lines.

An example input fragment showing blocks, comments, and cards, is shown below.



! comments start with an exclamation point

```
[STATE]
                  ! block names are enclosed in square brackets
 power
         85.0
                  ! cards with parameters(s)
 flow
         80.0
                  ! cards and parameters are separated by one or more spaces
 rodbank A 228
                  ! cards can span more than one line
         B 228
         C 228
         D 228
[CORE]
                   ! start of second block
 title "Title must be enclosed in quotes if spaces are used"
```

Lists of values can be generated by using the following bracket nomenclature

$$< n..m \times i >$$

where n is the starting list number, m is the ending list number, x is a delimiter, and i is the step. If "xi" is ommitted, the step size is one. Examples of list generated list include:

```
<0..5> 0, 1, 2, 3, 4, 5
<10..16x2> 10, 12, 14, 16
<0..4x0.5> 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0
```

Additional list options can be found on the List::Maker webpage.



#### 2.2. CORE DESCRIPTION

The [CORE] block describes the nuclear reactor core configuration. This block describes the core layout, including the placement of nuclear fuel assemblies, control rods, detectors, inserts, and other core parameters that do not change during a cycle depletion.

The geometric objects inside the core are defined in separate input blocks; the [CORE] block simply describes how all of these objects are placed together.

# 2.2.1 Core Geometry

The reactor core geometry must be defined first. The overall *size* of the core is given by the number of assemblies across one major axis of the core. The assembly pitch (*apitch*) defines the width of each assembly, including the assembly gap. The distance from the top of the lower core plate to the bottom of the upper core plate is given by the parameter *height*. The assembly layout is given by the *core\_shape* map. Note that the core shape map is the only "square" core map in the input, and it must be of *size* assemblies by *size*. Once the core shape is defined, subsequent core maps only include entries for actual fuel assembly locations.

```
! number of assemblies across one axis
size 15
apitch 21.5
                   ! assembly pitch (cm)
                   ! distance from lower core plate to upper core plate (cm)
height 406.337
core_shape
 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0
 0 0 1 1 1 1 1 1 1 1 1 1 0 0
  0 1 1 1 1 1 1 1 1 1 1 1 1 0
  0 1 1 1 1 1 1 1 1 1 1 1 1 0
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
  0 1 1 1 1 1 1 1 1 1 1 1 1 0
 0 1 1 1 1 1 1 1 1 1 1 1 1 0
 0 0 1 1 1 1 1 1 1 1 1 1 0 0
  0 0 0 0 1 1 1 1 1 1 1 0 0 0 0
```

The *core\_shape* map is unique because it is square in shape and composed of the integers 1 and 0. The 1 represents a location with a fuel assembly, and a 0 is an unoccupied location. The purpose of this map is to define the shape for subsequent core maps.

Most physics codes support both calculations run in either full-core or quarter-core symmetry. If a calculation is run in quarter-core symmetry, the code must know if the symmetry is mirror





Figure 1. Full, quarter, and octant symmetry regions for a core map.

symmetric or rotationally symmetric. The type of quarter-core symmetry is defined with the  $bc\_sym$  input card. The symmetry option is ignored if the calculation is run in full-core.

bc\_sym mir ! define quarter-core symmetry as mirror

# 2.2.2 Core Maps

Core maps are used to define the location of geometry objects in the core. There are different core maps to define types and locations of assemblies, inserts, detectors, and control rods. The entries in the maps are composed of arbitrary length character strings. Even though the character strings can be any size, it is recommended to use compact names so the maps remain legible.

All of the maps require one entry for each assembly location defined in the *core\_shape* map. However, the input parser can be used to take advantage of core symmetry. If the core is symmetric, the user only needs to input the maps in quarter or octant symmetry, and the input parser will automatically



unfold the map to full-symmetry. The symmetry used in the core maps is independent of the symmetry used to run the actual calculations. For example, the user can enter all of the core maps in octant symmetry and still run the calculations in quarter or full symmetry. The quadrant and octant that the parser is expecting is shown in Figure 1.

If there is an empty location in the map (e.g. if there is no detector or no control rod in an assembly), enter a dash "-" for that location. The dash is significant and signifies an empty location in the core map. (The dash represents something is missing, but it is still a valid assembly location. The "0" in the *core\_shape* represents an invalid assembly location.)



The assm\_map shows where the assembly types are located within the core. In the example below, there are three assembly types which will be defined in [ASSEMBLY] block(s).

```
assm_map
               A3 A3 A3 A3 A3 A3
         A3 A3 A3 A1 A3 A1 A3 A1 A3 A3
      A3 A3 A2 A1 A2 A1 A2 A1 A2 A1 A2 A3 A3
      A3 A2 A2 A2 A1 A2 A1 A2 A1 A2 A2 A2 A3
   A3 A3 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A3 A3
   A3 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A3
   A3 A3 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A3 A3
   A3 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A3
   A3 A3 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A3 A3
   A3 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A3
   A3 A3 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A3 A3
      A3 A2 A2 A2 A1 A2 A1 A2 A1 A2 A2 A2 A3
      A3 A3 A2 A1 A2 A1 A2 A1 A2 A1 A2 A3 A3
         A3 A3 A3 A1 A3 A1 A3 A1 A3 A3
               A3 A3 A3 A3 A3 A3
```

The following map is equivalent to the previous map, but demonstrates the use of input with octant symmetry. Only values in the octant shown in Figure 1 are entered in the map and the parser automatically unfolds the map to full-symmetry.

```
assm_map
A1
A2 A1
A1 A2 A1
A2 A1
A2 A1 A2 A1
A2 A1 A2 A1
A1 A2 A1 A2 A2
A1 A2 A1 A2 A3
A1 A3 A1 A3 A3 A3

! assembly map with octant symmetry
```

The *insert\_map* is used to show where assembly inserts are located within the core. In the following qtr-symmetry example, the inserts are burnable poison assemblies with different numbers of pyrex rods. The *insert\_map* can also be used to place geometry objects such as thimble plugs. The geometry description of the inserts will be given in the [INSERT] block.

```
insert_map
          BP20
                        BP20
                                     BP20
                                                   BP12
   BP20
                 BP24
                              BP20
                                            BP24
          BP24
                        BP20
                                     BP16
                                             _
                                                   BP8
   BP20
                                            BP16
                 BP20
                              BP20
          BP20
                  _
                        BP20
                               _
                                     BP24
                                     BP12
   BP20
                 BP16
                         _
                              BP24
          BP24
                  _
                        BP16
                 BP8
   BP12
```



The *insert\_map* is optional if no inserts are present in the core. A dash "-" is used to specify assembly locations without an insert.

The det\_map is used to show where detectors are located in the core. The geometry description of the corresponding detector strings is given in the [DETECTOR] block. In this example, there is only one detector type denoted with a "1". Since the "1" occurs in a core map, it is treated as a character string. This example uses a full-symmetry map.

The *det\_map* is optional if no detectors are present in the core. A dash "-" is used to specify assembly locations without a detector.

The control rod assemblies are described with two maps. The  $crd\_map$  defines the control rod types and locations in the core. The  $crd\_bank$  map assigns control rod locations to control rod banks. The control rod maps are optional if no control rods are present in the core. In the following example, there is only one control rod type with label "1".



## 2.2.3 Core Baffle and Vessel

The core baffle (sometimes called the shroud) is a steel reflector that closely surrounds the fuel assemblies in the core. The barrel is a round steel structure that surrounds the baffle, and the vessel is the round outer pressure vessel. These structures are shown in Figure 2.

The *baffle* is defined with a single material, the size of the gap between the outer assembly and baffle, and the baffle thickness.

```
baffle SS304 0.19 1.26 ! material, gap (cm), and thickness (cm)
```

The barrel and vessel are defined with a *vessel* card. This card allows the user to enter any arbitrary number of rings surrounding a core by specifying the ring radii and the materials between the rings.

```
vessel mod 166.7 SS304 169.2 mod 175.0 SS304 176.0 ! materials and radii (cm)
```





Figure 2. Core baffle and vessel (image courtesy of Andrew Godfrey).



There is currently no input defined to specify the neutron pad.

## 2.2.4 Core Plates

The core plates are large steel plates at the top and bottom of the core that have various flow holes passing through them. All of the axial core heights are defined relative to the top of the bottom core plate and the total core *height* is defined as the distance between the top of the bottom core plate and the bottom of the top core plate.

The core plates are modeled in the neutronics codes as smeared materials. The upper and lower core plates are defined with a material composition, a thickness, and a volume fraction of the structural material. The remainder of the volume fraction is filled with coolant.

```
lower_plate SS304 5.0 0.5 ! material, thickness (cm), volume fraction upper_plate SS304 7.6 0.5 ! material, thickness (cm), volume fraction
```

# 2.2.5 Small Core Geometries

Even though the VERA input is designed for "real" core geometries, it can accommodate smaller problems as well. For example, if the user only wants to run a single-assembly calculation, they would define the core size as one assembly by one assembly, and all of the core maps would contain a single assembly.

```
size 1 ! core composed of a single-assembly core_shape 1
```

If the user wants to model a single fuel rod, they would define a core with one assembly and an assembly with one rod in it.





Figure 3. PWR Fuel Assembly (source: Public internet).

# 2.3. ASSEMBLY DESCRIPTION

The [ASSEMBLY] block contains the geometric description of a unique fuel assembly design (type). Multiple [ASSEMBLY] blocks are allowed to describe different assembly designs in the core.

If there are multiple assembly designs that are geometrically identical (i.e. everything is the same except the enrichments), then they can all be defined in a single [ASSEMBLY] block. Each assembly type will have a unique *axial* card with possibly unique axial levels and lattice types. Assemblies within a single reload typically have a design similar enough that they can share a single [ASSEMBLY] block.

If assembly designs are not geometrically identical (e.g. different vendors, different generations, etc.) they need to be defined in separate [ASSEMBLY] blocks. One advantage to having separate blocks for each assembly design is that each design can be modeled (and archived) independently without having to rely on global definitions.

A typical PWR assembly is shown in Figure 3. Refer to this figure in the following discussions.

A complete listing of all the input cards in the [ASSEMBLY] block is located in Chapter 5.





Figure 4. Pincell diagrams of a fuel rod and a guide tube.

#### 2.3.1 Initial Data

Each assembly block must contain a geometry description with the number of pins across the assembly and the pin pitch. An assembly block can also include an optional title card.

```
title "Westinghouse 17x17" ! assembly title
npin 17 ! number of pins across one side
ppitch 1.260 ! pin pitch (cm)
```

The number of pins *npin* must be the same for every assembly in a core.

The inter-assembly gap on each side of the assembly is calculated as [apitch - npin \* ppitch]/2

The fuel and structural materials are defined with the following cards. See Chapter 3 for a complete description of the material inputs.

# 2.3.2 Cell Descriptions

Cell cards are used to describe "pincells". A pincell is defined as a configuration of concentric cylinders (or rings) centered in a square region of coolant. Cell configurations can be used to model fuel rods or guide tubes, as shown in Figure 4.



The first parameter on the *cell* card is the cell ID. This is followed by a list of radii for each ring in the cell, followed by a slash. After the slash is a list of materials that compose each ring. The cell ID's are used in the rod maps described in the next section.

```
cell 1
           0.4096 0.418 0.475 / U31 he zirc4
cell GT
                  0.561 \ 0.602 \ / \ mod
                                        zirc4
                                                     ! guide tube
                  0.561 \ 0.602 \ / \ mod
cell IT
                                         zirc4
                                                    ! instrument tube
cell 7
                  0.418 0.475 / mod
                                        mod
                                                    ! empty location
cell 8
                  0.418 0.475 /
                                     he zirc4
                                                     ! plenum
cell 9
                         0.475 /
                                                     ! pincap
                                        zirc4
```

In this example, in cell "1", the material "U31" extends from radius 0 to 0.4096. The material "he" extends from a radius 0.4096 to 0.418. The materials "U31" and "he" are defined on *fuel* and *mat* cards, respectively. (Refer to Chapter 3 for a complete description of material definitions.)

The outside of each cell is automatically filled with the special material "mod", which refers to the moderator (or coolant). The composition of "mod" is calculated by the codes using the local T/H conditions and the soluble boron concentration, and cannot be specified by a user on a *mat* card.

In the example above, the guide tube (GT) and instrument tube (IT) descriptions use the special moderator material "mod" to define the moderator material on both the inside and outside of the tubes.

Large water rods that span more than one lattice cell can be specified by adding an optional keyword "large4" to the end of the *cell* card.

```
! large CE 16x16 water rod
ppitch 1.28524
cell WR cell WR 0.4096 0.418 0.475 / U31 he zirc
```

# 2.3.3 Lattice Descriptions

Once the cells are defined, they are placed into 2D "lattices" as shown below. Like the core maps, the lattice maps can be entered with either full-symmetry, qtr-symmetry, or octant-symmetry. The maps below are octant symmetric maps for 17x17 assembly designs.



```
rodmap FUEL1
   IT
    1 1
    1 1 1
   GT 1 1 GT
    1 1 1 1 1
    1 1 1 1 1 GT
   GT 1 1 GT 1 1 1
    1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1
    1 1 1 1 1 1 1 1 1
rodmap LGAP1
   ΙT
    7 7
    7 7 7
   GT 7 7 GT
    77777
    7 7 7 7 7 GT
   GT 7 7 GT 7 7 7
    7 7 7 7 7 7 7 7
    7 7 7 7 7 7 7 7 7
rodmap PLEN1
   IT
    8 8
    8 8 8
   GT 8 8 GT
    88888
    888 88 GT
   GT 8 8 GT 8 8 8
    888 88 888
    8 8 8 8 8 8 8 8
rodmap PCAP1
   IT
    9 9
    9 9 9
   GT 9 9 GT
    9 9 9 9 9
    9 9 9 9 GT
   GT 9 9 GT 9 9 9
    9 9 9 9 9 9 9
    9 9 9 9 9 9 9 9
```

Rod maps define each unique axial level in the assembly. The first parameter is the lattice name (e.g. FUEL1, PCAP1, etc.), followed by a map of the *cell* ID's.

Each entry in a rod map must be a valid cell ID.



# 2.3.4 Axial Descriptions

After rod maps are defined for each axial level, the lattices are "stacked" into an assembly using an axial card as shown below.

```
axial A1 6.050

LGAP1 10.281

PCAP1 11.951

FUEL1 377.711

PLEN1 393.711

PCAP1 395.381

LGAP1 397.501
```

The *axial* card tells the code how to place the lattices axially. The first parameter is the name of the assembly (A1), followed by a list of elevations and lattice types. For example, lattice "FUEL1" extends from 11.951 to 377.711 cm axially.

Multiple assembly types can be defined in a single [ASSEMBLY] block by using multiple axial cards, each with a unique assembly ID.

All axial elevations are defined relative to the top of the lower core plate.

# 2.3.5 Grid Spacer Descriptions

Grid cards are used to define unique grid spacer types. The following example defines two grid types, "END" and "MID".

```
grid END inc   3.866 1017 ! grid spacer material, height(cm), mass (g)
grid MID zirc4 3.810 875
```

The grid types are placed axially with the *grid\_axial* card:

```
grid_axial

END 13.884

MID 75.2

MID 127.4

MID 179.6

MID 231.8

MID 284.0

MID 336.2

END 388.2
```

The elevations are the midpoints of the spacer grid and are relative to the top of the lower core plate.



# Nozzle Descriptions

The assembly nozzles are modeled in the neutronics codes as smeared materials. This is a very good approximation since the nozzles are not in the active fuel region and are mostly composed of water, steel, and zirconium. The user only specifies a nozzle mass and a nozzle height. The total volume of the nozzle region is calculated from the assembly pitch and nozzle height. The volume of the nozzle is calculated from the nozzle mass and density. The volume of the coolant is then calculated as the total volume minus the volume of the nozzle. The coolant density is updated with the local T/H conditions.

```
lower_nozzle ss 6.05 6250.0 ! mat, height (cm), mass (g)
upper_nozzle ss 8.827 6250.0 ! mat, height (cm), mass (g)
```

Only a single material can be specified on a nozzle card. If the user wants to use more than one material to define a nozzle, they can define a custom material that is a mixture of the materials and then use the custom material in the nozzle card.

Note that the lower\_nozzle height should match the bottom elevation on the axial card. The upper\_nozzle height + the top elevation on the axial card must match the core height in the [CORE] block. The input parser does not currently perform a check to make sure the elevations are consistent. Therefore, this check should be performed in each of the individual physics codes.

## 2.4. CONTROL ROD ASSEMBLY DESCRIPTION

The [CONTROL] block contains the geometric description of a control assembly.

A control rod assembly is defined in a similar same way as fuel assembly is defined. The user specifies cells, lattices, and axial descriptions of the control rod assembly. The main difference between the control rod assembly and the fuel assembly is that the control rod assembly describes what is inside the guide tubes and the fuel assembly defines the guide tubes themselves.

Control rod positions change during operation, so the geometric description of a control rod should always be for a rod in the **fully inserted** position. In the example below, the bottom of the control rod in the fully inserted position is at an axial location of 15.46 cm.

21

```
title "B4C control rods with AIC tips"
npin 17
cell 1 0.382 \ 0.386 \ 0.484 / aic he ss
                                            ! AIC cell
cell 2 0.373 0.386 0.484 / b4c he ss
                                            ! B4C cell
rodmap AIC
```



The name of the control rod "CR1" refers to the control rod type in the *crd\_map* in the [CORE] block.

Control rods positions are assigned to a control rod bank with the  $crd\_bank$  map in the [CORE] block, and then the banks are positioned with the rodbank card in the [STATE] block.

Note that the locations of the control rod fingers must match the guide tube locations in the corresponding [ASSEMBLY] block descriptions. Furthermore, the outer radii of the control rod fingers must be smaller than the inner radii of the guide tubes. The input parser does not currently perform a check to make sure the control rod finger descriptions are consistent with the guide tube descriptions. This check should be performed in each of the individual physics codes.

The user can define materials in the [CONTROL] block. These materials only have scope in this block and are not accessible by other blocks. See Chapter 3 for details.

A complete listing of all the input cards in the [CONTROL] block is located in Chapter 5.

# 2.4.1 Control Rod Stroke

The difference between control rod descriptions and assembly descriptions is that the control rods move during operation. This movement is defined with a *stroke* card.

The first value on the *stroke* card is the total length of the control rod travel (stroke) from fully inserted to fully withdrawn.

The second value on the stroke card is the number of steps in the fully withdrawn position. Step 0



is the fully inserted position. The number of steps in the fully withdrawn position is specified by the user, but 228 steps is often used for typical Westinghouse PWR's.

stroke 360.0 228 ! stroke (cm), number of steps fully withdrawn

To position the control rods in percent withdrawn (%), the number of steps should be set to 100 and each step will signify 1% withdrawn.

The geometry description in the input is for a control rod in the fully inserted position (step 0).

# 2.4.2 Control Rod Position Example

From the *axial* card shown above, the bottom of the AIC at the fully-inserted position is 15.46 cm. From the *stroke* card, the total stroke is 360.0 cm and the number of steps in the fully withdrawn position is 228 steps. Therefore, the bottom elevation of the AIC lattice at step N will be

$$E(N) = 15.46 + \frac{360.0 \cdot N}{228} \tag{1}$$

Using this formula, the bottom elevation of the AIC lattice at the following step positions is:

- step 228 (fully withdrawn)= 15.46 + 360.0 \* 228 / 228 = 375.46 cm
- $\bullet$  step 100 = 15.46 + 360.0 \* 100 / 228 = 173.35 cm
- step 0 (fully inserted) = 15.46 + 360.0 \* 0 / 228 = 15.46 cm

#### 2.5. INSERT DESCRIPTION

An assembly insert is defined in the same way as a fuel assembly or control rod assembly is defined. The user defines the insert using cells, lattices, and axial descriptions.

The fuel assembly description should contain the guide tube descriptions and the insert description defines what is inserted in the guide tubes. Assembly inserts can be inserted and withdrawn during a core shuffle (by specifying a *insert\_map* card in the [CORE] block), but cannot be moved during a cycle depletion.

The insert and control rod descriptions are very similar, with the only difference being that the insert cannot change position axially during a cycle depletion and a control rod moves axially during operations.

The following example shows a definition of a Pyrex insert.



The name of the insert "INS24" refers to an insert type defined in the *insert\_map* in the [CORE] block.

The locations of the insert fingers must match the guide tube locations in the corresponding [ASSEMBLY] block descriptions. In addition, the outer radii of the insert fingers must be smaller than the inner radii of the guide tubes. The input parser does not currently perform a check to make sure the insert finger descriptions are consistent with the guide tube descriptions. This check should be performed in each of the individual physics codes.

As with [ASSEMBLY] blocks, multiple insert types can be defined in a single [INSERT] block by using multiple axial cards, each with a unique insert ID.

A complete listing of all the input cards in the [INSERT] block is located in Chapter 5.

## 2.6. DETECTOR DESCRIPTION

A detector string is defined in the same way that a fuel assembly or insert assembly is defined. The user defines cells, lattices, and axial descriptions for the detector string.

The insert and detector descriptions are very similar, with the difference being that detectors have special properties used to calculate instrumentation signals.

```
[DETECTOR]

title "Incore instrument thimble"

npin 17

mat he 0.0001786

mat ss 8.0
```



The name of the detector "D1" refers to a detector type defined in the  $det\_map$  in the [CORE] block. A complete listing of all the input cards in the [DETECTOR] block is located in Chapter 5.



#### 2.7. STATE DESCRIPTION

The [STATE] block defines the state of the core (power, flow, pressure, inlet temperature, rod positions, boron concentration, etc.) at a particular point in time. These values will typically change during a cycle depletion.

An example showing the most common input cards in the [STATE] block is shown below. A complete listing of all the input cards in the [STATE] block is located in Chapter 5.

```
[STATE]
                     ! % of rated power - rated values defined in [CORE] block
 power
         98.0
 flow
        100.0
                     ! % of rated flow
 pressure 2250.0
                     ! psia
 tinlet 557.33 F
 feedback on
                     ! turn on T/H feedback
                     ! initial boron ppmB
          1285
 boron
                     ! turn on boron search
 search boron
 sym qtr
                     ! run problem in qtr-symmetry
 rodbank SA 228
         SB 228
          SC 228
          SD 228
          A 228
          B 228
          C 228
          D 167
```

The sym card tells the code to run the calculation in full-core or qtr-core symmetry. If the calculation is run in qtr-core symmetry, the symmetry is either set to qtr-core rotational or qtr-core mirror by the  $bc\_sym$  card in the [CORE] block.

The *rodbank* card is used to position the control rods. The *rodbank* input includes pairs of bank names and bank positions. The bank names correspond to the *crd\_map* in the [CORE] block. The positions indicate the position of the control rod bank in steps. Step 0 is fully inserted. The number of steps for a rod to be completely withdrawn is set by the *stroke* card in the [CONTROL] block (see Section 2.4.1). For Westinghouse PWR's, a typical value of fully-withdrawn is 228 steps.

## 2.8. EDITS DESCRIPTION

The [EDITS] block is used to control the output edits.

One of the edits produced by the core simulator is the rod power. The user has the ability to specify the axial levels that the power is averaged over with the axial\_edit\_bounds card. The user



may choose to average power over uniform axial intervals (like most nodal codes), or to specify the edit intervals manually.

(Note: the edit options are under development and more options will be added in the future.)

A complete listing of all the input cards in the [EDITS] block is located in Chapter 5.

#### 2.8.1 CTF Nodalization

The axial\_edit\_bounds card is also used to set the axial nodalization when coupling the neutronics physics code to the CTF subchannel code.

When running CTF, there is a restriction that the grid boundaries must be explicitly included in the  $axial\_edit\_bounds$ . This can get a little complicated for the user. In the VERA input, spacer grids are defined in the [ASSEMBLY] block by specifying the grid heights on the grid card and the elevations of the grid midpoints on the  $grid\_axial$  card. From the grid heights and midpoints, the elevations at the top and bottom of the spacer grid can be calculated, and then the top and bottom elevations must be included in the  $axial\_edit\_bounds$ .

For example, if a grid is defined with a centerline at 75.0 and a height of 2.5, then the  $axial\_edit\_bounds$  must include the points  $75.0 \pm 1.25 = 73.75$  and 76.25.

The reason for this restriction is because the power is calculated on the *axial\_edit\_bounds*, so it is natural to use the same power distribution to couple to the CTF model as well. The grids must be explicitly included in the CTF boundaries so the loss coefficients are calculated correctly.

In the future, this restriction may be lifted and an additional edit bounds array may be added explicitly for CTF calculations.

## 2.9. COUPLING DESCRIPTION

The [COUPLING] block defines the relaxation parameters and convergence criteria to be used when coupling different physics codes. These values are used to determine convergence between physics



codes. Convergence criteria within a physics code is controlled by the code-specific block.

Refer to Chapter 5 for a complete listing of all the cards in the [COUPLING] block.

No code-specific information is included in the [COUPLING] block. All code-specific information is contained in the code-specific blocks. The [COUPLING] block is only used to define generic coupling parameters.

As an example, consider the following multi-physics code coupling:

- 1. Run T/H calculation
- 2. Run neutronics calculation
- 3. Check eigenvalue convergence
- 4. Check power convergence
- 5. Relax/dampen the power shape
- 6. If not converged, go to step 1.

The eigenvalue convergence in step 3 uses the card *epsk* to check the change in eigenvalue between coupled iterations. There are additional eigenvalue convergence criteria *within* the neutronics code, but the internal parameters are specified in the individual code blocks.

The power convergence in step 4 uses the card *epsp* to check the change in power between coupled iterations.

Additional convergence checks are made on the peak fuel temperature, maximum change in density, and change in boron concentration (if applicable).

The example shown above uses a Picard iteration to converge. Picard iterations usually need to apply a relaxation factor (also called a damping factor or under-relaxation factor) to one or more of the calculated quantities to converge. The relaxation factors are applied in the following manner:

$$x = \omega x^{\text{new}} + (1 - \omega)x^{\text{old}}$$
 (2)

where x is the calculated parameter and  $\omega$  is the relaxation factor. A relaxation factor of 1.0 signifies no relaxation is performed. A relaxation factor < 1.0 signifies under-relaxation.

Relaxation factors can be specified for the point-wise power, point-wise temperature, and/or point-wise density. The relaxation is applied to the transferred quantities sent between physics codes. The state variables within each physics code are not changed.

An example [COUPLING] input block is shown below.

```
[COUPLING]
epsk 5.0 ! eigenvalue convergence (pcm)
```



```
eps_temp 1.0 ! temperature convergence (deg C)
eps_boron 0.1 ! boron convergence (ppm)
rlx_power 0.5 ! power relaxation factor
rlx_tfuel 1.0 ! fuel temperature relaxation factor
rlx_den 1.0 ! density relaxation factor
maxiter 20 ! maximum number of coupled iterations
```

A complete listing of all the input cards in the [COUPLING] block is located in Chapter 5.



#### 3. MATERIALS

This chapter contains a description of the material input. There are two types of materials in the input file – structural materials (input with a mat card) and fuel materials (input with a fuel card).

Structural materials can be defined in either the [CORE] block, or in the geometry object blocks [ASSEMBLY], [INSERT], [CONTROL], and [DETECTOR]. If the materials are defined in the [CORE] block, they have global scope. If the materials are defined in the geometry object blocks, they only have scope in the block they are defined. The reason for this is to maintain the modularity of the geometry objects.

Fuel materials can only be defined in [ASSEMBLY] blocks.

Materials are used in many different input cards. They are used to define cells, nozzles, core plates, baffles, grids, reflectors, etc. Every material used in the input must be defined with either a *mat* card or a *fuel* card (see notes on the material "mod" below).

#### 3.1. STRUCTURAL MATERIALS

Structural materials are not fuel and do not deplete. Structural materials are defined with the following input card:

mat user-mat density (library-name<sub>i</sub>, frac<sub>i</sub>, i=1, I)

where:

- user-mat is a user-defined material name. The name is case sensitive. user-mat is used to define material names in other input cards such as cell, grid, nozzle, etc. (No default)
- density is the material density in g/cc (No default)
- *library-name* is a corresponding library name(s) for the user material. The library name must be defined in the cross section library. (Default = *user-mat*). Multiple library materials can be mixed to form a single user material.
- frac is the fraction of the library material in the user material. (Default=1.0 if there is only one library material in the user material).

There are two special user materials, "mod" and "vacuum". The user can use these materials in cell definitions, but the code will automatically determine the composition of these materials based on T/H feedback and soluble boron concentrations. The user is not allowed to define a user material named "mod" or "vacuum" on a *mat* card.

Some example material cards are shown below.



All of the material fractions must sum to either +1.0 or -1.0. If positive fractions are used, the fractions refer to weight fractions. If negative fractions are used, the fractions refer to atomic fractions.

#### 3.1.1 Search Order

Structural materials can be defined in either the [CORE] block or one of the geometry object blocks. When a material is referred to in a block, it will look for the material definition in the following order:

- 1. The code will first look for the material name in the local block ([ASSEMBLY], [INSERT], [CONTROL], or [DETECTOR])
- 2. If the material is not found in the local block, it will look in the [CORE] block

If materials are defined in the [CORE] block, they have global scope over the entire input. If materials are defined in other blocks, they only have scope over the local block. This means that two geometry object blocks can use different material definitions with the same name. One example of this is that two assemblies can be defined with the material "zirc", but the "zirc" can have different compositions in each of the assemblies.

#### 3.2. DEFAULT MATERIALS

There are many default files available to the users. The default materials and their compositions are defined on the initialization file CORE.ini. A list of default materials is given in Table 1.

### 3.3. FUEL MATERIALS

Fuel materials are defined with fuel cards. Fuel materials are heavy metal oxides which are usually  $UO_2$  with different U-235 enrichments. Fuel materials may also include MOX fuel, which consists of mixtures of uranium, plutonium and other actinides. Fuel materials may also contain integral burnable absorbers, such as gadolinia. Fuel materials are different from structural materials in that they deplete and have additional properties as described below.

Fuel can only be defined in [ASSEMBLY] blocks, and fuel materials can only be referenced by *cell* cards in the [ASSEMBLY] block they are defined in.



Table 1. Default Material List

| material   | density (g/cc) | Notes                 |
|------------|----------------|-----------------------|
| air        | 1.189E-03      | 110003                |
|            |                | .1 . 1. 1 .           |
| aic        | 10.2           | silver-indium-cadmium |
| al2o3      | 3.96           |                       |
| b2o3       | 2.55           |                       |
| b4c        | 1.7597         | boron carbide         |
| boron      | 2.37           |                       |
| cs         | 7.85           | carbon steel          |
| gad        | 7.407          |                       |
| gap        | 0.17860 E-03   |                       |
| he         | 0.17860E- $03$ |                       |
| inc        | 8.19           | inconel               |
| pyrex      | 2.34249        |                       |
| pyrex-vera | 2.24419        |                       |
| sio2       | 2.18           |                       |
| ss         | 8.0            | stainless steel       |
| tungsten   | 19.3           |                       |
| water      | 0.743          |                       |
| waba       | 3.65           |                       |
| zirc2      | 6.56           | Zircaloy-2            |
| zirc4      | 6.56           | Zircaloy-4            |
| clad       | 6.56           |                       |
| zirc4-xhf  | 6.55934        | Zircaloy-4 with no Hf |
| zr         | 6.506          | natural zirconium     |



Fuel materials are defined with the following input card:

**fuel** user-mat density thden / U-235\_enrichment {HM\_material\_=HM\_enrichment\_i, i=1, N} { / gad\_material=gad\_fraction }

Where:

- user-mat is a user-defined fuel name. It is case sensitive. (No default)
- density is the fuel material density in g/cc (No default). The density is used to calculate number densities.
- thden is the percent of theoretical density in the pellet (%) (No default). The theoretical density is only used to look up material properties in the fuel performance, it is not used to calculate number densities. There is no "double counting" between density and thden.
- U-235\_enrichment is the U-235 enrichment in the fuel in weight % (No default).
  - If U-234 and U-236 are not specified, they will automatically be added to the fuel by a pre-determined function (see below)
  - If the sum of the heavy metal (HM) enrichments does not equal 100%, the remainder of the HM composition will be assigned to U-238.
- *HM\_material*<sub>i</sub> is the material name for HM isotope *i* (Pu-239, Pu-241, etc.) (optional) The names of the HM materials must be valid library-names.
- HM\_enrichment; is the enrichment of HM isotope i in weight % (optional)
- gad\_material is the material name for gadolina (or other integral burnable absorber material) (optional). The gad material is usually a mixture defined on a separate mat card.
- qad\_fraction is the weight percent of the gad material relative to the total fuel mass (optional)

Oxygen should not be included on the *fuel* card. The correct amount of oxygen will automatically be added to the HM to create an oxide (either  $UO_2$  or  $(HM)O_2$ ).

The *density* is the "stack density" or "smeared density" and should include the volume of the pellet dishing and chamfers. It is calculated as the total mass of the fuel pellets divided by the total volume of the fuel

stack density = 
$$\frac{\text{(fuel mass)}}{\pi(\text{pellet radius})^2 \text{(fuel height)}}$$
 (3)

The *thden* refers to the actual theoretical density of the pellet. This quantity may be used in fuel performance codes to evaluate material properties.

If U-234 or U-236 enrichments are not included in the fuel definition, they are automatically added to the fuel with the following formulas:

$$W_{234} = 0.0089 \cdot W_{235} \tag{4}$$



$$W_{236} = 0.0046 \cdot W_{235} \tag{5}$$

Where  $W_{23x}$  is the enrichment of each of the uranium isotopes in percent<sup>2</sup>.

If a user specifically does NOT want U-234 or U-236, they should specify a U-234 and/or U-236 enrichment of zero.

Examples of typical *fuel* cards are shown below. The user only has to specify the U-235 enrichment and the code will automatically add U-234, U-236, U-238, and oxygen to the fuel.

An example of a *fuel* card with gadolinia burnable poison is shown next. In this example, the gadolinia oxide is first defined with a mat card and is mixed with the fuel as 5% gad oxide and 95%  $UO_2$  (weight percents).

```
mat gad5 7.407 gd2o3 1.0 ! define gad material separately fuel U49 10.111 94.5 / 1.8 / gad5=0.05 ! 1.8\% enriched fuel with 5\% gad
```

Some examples of MOX fuel cards are shown next. In these cards, the user specifies the U-235 enrichment (the U-235 enrichment is usually small in MOX fuel) and the plutonium isotope enrichments. The code will automatically add U-234, U-236, U-238, and oxygen.

```
fuel MOX1 10.11 94.5 / 0.16174 u-234 0 u-236 0 pu-238 0.40232 pu-239 10.42187 pu-240 4.78046 pu-241 1.77834 pu-242 1.22383 am-241 0.51632
```

Only oxide fuel can be defined on the *fuel* card. Metallic fuel is not supported.

<sup>&</sup>lt;sup>2</sup>Earlier versions of the code used a different formula for the default U-234 concentration.



#### 4. DEPLETION

This chapter describes depletion and working with restart files.

Depletion and restart files are only available with MPACT.

#### 4.1. DEPLETION

Depletion refers to taking a step in time and calculating the change in number densities (isotopics) in the core.

A problem is depleted by including a *deplete* card in the [STATE] block, as in the following example:

```
[STATE] deplete EFPD 0.0 1.0 10.0 30.0
```

The first parameter on the card is the units used in the depletion and can be "EFPD" for Effective Full-Power Days, "GWDMT" for Giga-Watt-days per metric ton of initial heavy metal, or "hours". Following the unit is a list of depletion steps to take. Each depletion step is referred to as a "statepoint" calculation. The first depletion step must always be zero.

Listing multiple depletion steps on a single deplete card will deplete with all of the other values in the [STATE] block held constant. If the user wants to change a state parameter between depletion steps (power, flow, etc.), they can split the depletion over multiple [STATE] blocks. In the following example, the code depletes three statepoints at 50% power, changes the power to 100%, and depletes for four more statepoints. The depletion step at 10 EFPD is run at both 50% and 100% power.

```
[STATE]
power 50.0
deplete EFPD 0.0 1.0 10.0
[STATE]
power 100.0
deplete EFPD 10.0 30.0 60.0 90.0
```

The automatic list generation feature described in Section 2.1 is especially useful when defining depletion cases. An example of a *deplete* card with automatic list generation is

```
deplete EFPD 0 1 5 <10..200x10>
```

#### 4.2. WRITING RESTART FILES

Often a user will want to run a depletion and save the isotopic data to a file that can be used to restart a calculation at a later time. This is useful if a calculation is long-running and needs to be



split into multiple cases. Other times a user may want to save certain statepoints so they can go back and run perturbation or flux map calculations at the saved points.

The restart file includes **only** includes isotopic data needed to restart a calculation and data from the [STATE] block that the file was saved. The restart file does not include the geometry description, so a regular input deck must also be used. A user should set up an input deck for a fresh core, and then use the restart file to overwrite the fresh isotopic concentrations with the isotopic concentrations on the restart file.

A restart file can be written at any statepoint by using a restart\_write card,

```
restart_write filename restart_label
```

Where "filename" is the name of the restart file, and "restart label" is an arbitrary user label used to differentiate multiple statepoints written to the same file. Examples of restart labels include "100EFPD", "HZP", "22.56", "100EFPD\_ARO", etc. A restart file can include multiple statepoints as long as each one uses a different restart label.

If a restart\_label card is used with a deplete card, the restart file is written at the last exposure step of the depletion.

In the following example, a depletion is performed and restart files are written at multiple statepoints.

```
[STATE]
 deplete EFPD 0.0
 restart_write restart_cyc12.h5 "BOC"
[STATE]
 deplete EFPD 20 40 80 100
! restart file is written at last exposure step on deplete card
 restart_write restart_cyc12.h5 "100EFPD"
[STATE]
 deplete EFPD 150 200
 restart_write restart_cyc12.h5 "200EFPD"
[STATE]
 deplete EFPD 250 300
 restart_write restart_cyc12.h5 "300EFPD"
[STATE]
 deplete EFPD 350 400
 restart_write restart_cyc12.h5 "400EFPD"
[STATE]
 op_date 1994/05/23
                           ! include shutdown date for EOC
 power 80.0
 deplete EFPD 423.4
 restart_write restart_cyc12.h5 "EFPD423_EOC"
```

Another application of restart files is to write the final isotopic information at the end of cycle (EOC) so the data can be shuffled to a new cycle. (Core shuffles will be discussed in a later section.) If writing a restart file at the EOC, the shutdown date should be included using the  $op\_date$  card.



The reason for including the shutdown date is so the code will be able to calculate the isotopic decay during the outage. An example of the  $op\_date$  card is shown in the last [STATE] block in the example above.

#### 4.3. READING RESTART FILES

A restart file can be read by including a restart\_read card in the [STATE] block.

```
restart_read filename restart_label
```

where "restart\_label" is the label that was used to write the restart file. The restart\_read card is used to restart an existing calculation, it is not used to do core shuffles.

In the following example, one of the restart files from the previous example is read and a new calculation is performed with a different power and boron concentration.

```
[STATE]
power 50.0
boron 800
restart_read restart_cyc12.h5 "200EFPD"
```

It is possible to write a statepoint in quarter-symmetry, then read the restart back in full-symmetry, or vice-versa.

There is currently a restriction that a user should not include a *deplete* card in any [STATE] block where a restart is read. Instead, the user should split the restart read and depletion into separate blocks, like the following example shows:

```
[STATE]
  restart_read restart_cycx.h5 "EFPD30" ! read restart at 30 EFPD
[STATE]
  deplete EFPD 60 90
```

#### 4.4. CORE SHUFFLING

A core shuffle occurs when fuel assemblies are rearranged in a core, and/or new fuel is added to the core. Fuel assemblies can be brought in from the fuel pool that were discharged in previous cycles. Fuel can even be added that was discharged from other units (cross-unit shuffle).

When performing a core shuffle, the user needs to specify the location where existing fuel assemblies were moved from, and what the new fuel assemblies look like.



When fuel isotopics are written to a restart file, the assembly locations are saved based on the *xlabel* and *ylabel* labels. The *xlabels* start on the left side of the map and run horizontally. The *ylabels* start at the top of the map and run down. For example, with the following labels defined:

```
[CORE]

xlabel R P N M L K J H G F E D C B A

ylabel 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
```

The assembly locations are defined as "xlabel dash ylabel":

```
L-01 K-01 J-01 H-01 G-01 F-01 E-01

N-02 M-02 L-02 K-02 J-02 H-02 G-02 F-02 E-02 D-02 C-02

P-03 N-03 M-03 L-03 K-03 J-03 H-03 G-03 F-03 E-03 D-03 C-03 B-03

P-04 N-04 M-04 L-04 K-04 J-04 H-04 G-04 F-04 E-04 D-04 C-04 B-04

R-05 P-05 N-05 M-05 L-05 K-05 J-05 H-05 G-05 F-05 E-05 D-05 C-05 B-05 A-05

R-06 P-06 N-06 M-06 L-06 K-06 J-06 H-06 G-06 F-06 E-06 D-06 C-06 B-06 A-06

R-07 P-07 N-07 M-07 L-07 K-07 J-07 H-07 G-07 F-07 E-07 D-07 C-07 B-07 A-07

R-08 P-08 N-08 M-08 L-08 K-08 J-08 H-08 G-08 F-08 E-08 D-08 C-08 B-08 A-08

R-09 P-09 N-09 M-09 L-09 K-09 J-09 H-09 G-09 F-09 E-09 D-09 C-09 B-09 A-09

R-10 P-10 N-10 M-10 L-10 K-10 J-10 H-10 G-10 F-10 E-10 D-10 C-10 B-10 A-10

R-11 P-11 N-11 M-11 L-11 K-11 J-11 H-11 G-11 F-11 E-11 D-11 C-11 B-11 A-11

P-12 N-12 M-12 L-12 K-12 J-12 H-12 G-12 F-12 E-12 D-12 C-12 B-12

P-13 N-13 M-13 L-13 K-13 J-13 H-13 G-13 F-13 E-13 D-13 C-13 B-13

N-14 M-14 L-14 K-14 J-14 H-14 G-14 F-14 E-14 D-14 C-14

L-15 K-15 J-15 H-15 G-15 F-15 E-15
```

The restart file also include the cycle number (which is stored as a label), so the combination of the cycle number and location can be used to uniquely define any assembly location in any cycle. For example "C3K-12" refers to location "K-12" of cycle "C3". If no cycle number is specified, the cycle label defaults to the previous cycle number (i.e. cycle N-1).

New, fresh assemblies are defined by using a plus sign followed by an optional string. (The string is not currently used for anything, but may refer to the fresh fuel assembly type in the future.) For example "+ASMA" signifies a fresh fuel.

Using these naming conventions, a new core loading pattern can be defined using a *shuffle\_label* map. The *shuffle\_label* map is a core map showing the previous assembly locations and new assembly fuel types.

The following example is the full-core loading pattern for cycle 2 of the BEAVRS benchmark. The cycle numbers are not used in the location labels because all of the assemblies were moved from the previous cycle (cycle 1), and the default behavior is to use the previous cycle number if no cycle label is specified.

38

```
[CORE]
  cycle C2
  op_date 1996/03/02   ! cycle startup date
```



```
[STATE]
 shuffle_label
                    L-10 +X34 +X32 +X34 +X32 +X34 E-10
          G-10 +X32 +X32 L-02 P-12 N-03 B-12 E-02 +X32 +X32 J-10
     F-09 +X34 N-02 N-10 +X32 D-11 R-10 M-11 +X32 C-10 C-02 +X34 K-09
     +X32 P-03 L-08 +X32 M-09 E-15 G-08 L-15 D-09 +X32 H-05 B-03 +X32
F-05 +X32 F-03 +X32 M-04 +X32 M-03 A-10 D-03 +X32 D-04 +X32 K-03 +X32 K-05
+X34 P-05 +X32 G-04 +X32 N-08 R-09 G-14 A-09 H-03 +X32 J-04 +X32 B-05 +X34
+X32 D-02 E-12 A-11 N-04 G-01 B-09 H-15 J-14 J-01 C-04 R-11 L-12 M-02 +X32
+X34 N-13 F-15 H-07 F-01 B-07 A-08 F-14 R-08 P-09 K-15 H-09 K-01 C-03 +X34
+X32 D-14 E-04 A-05 N-12 G-15 G-02 H-01 P-07 J-15 C-12 R-05 L-04 M-14 +X32
+X34 P-11 +X32 G-12 +X32 H-13 R-07 J-02 A-07 C-08 +X32 J-12 +X32 B-11 +X34
F-11 +X32 F-13 +X32 M-12 +X32 M-13 R-06 D-13 +X32 D-12 +X32 K-13 +X32 K-11
     +X32 P-13 H-11 +X32 M-07 E-01 J-08 L-01 D-07 +X32 E-08 B-13 +X32
     F-07 +X34 N-14 N-06 +X32 D-05 A-06 M-05 +X32 C-06 C-14 +X34 K-07
          G-06 +X32 +X32 L-14 P-04 C-13 B-04 E-14 +X32 +X32 J-06
                    L-06 +X34 +X32 +X34 +X32 +X34 E-06
```

The next example shows a quarter-core shuffle map. This map is not realistic, but it shows how fresh assemblies are inserted along with assemblies from cycles 8, 19, 20, and 21. The fresh assemblies all have fuel type "A12".

At this time, there is a restriction where the user must also include an  $assm\_map$  card in the input to specify the fresh fuel assemblies. This restriction will be removed in the future so that the fresh assembly types specified after the plus sign on the  $shuffle\_label$  card will be used.

In addition to the loading patterns, a list of restart files must be included to define the restart search path. The order of the restart files is important and they must be in reverse chronological order.

```
restart_shuffle
restart_file_12.h5 EOC12
restart_file_11.h5 EOC11
restart_file_10.h5 EOC10
restart_file_5.h5 EOC5
```



The first restart file is used to define the "previous" cycle number. The cycle number from this file will be used as the default cycle number in the shuffle map. The code will search for the assembly on the first file. If the assembly is not found, the code will go to the second restart file, and so on.

The next section gives an example of a core shuffle.

### 4.4.1 Core Shuffle Example

Consider an example of a core shuffle occurring at the beginning of cycle 3. There are two EOC restart files that have been written from cycles 1 and 2.

These examples are not complete, they only show the pertinant cards needed to perform the core shuffle.

The EOC 1 restart file was generated with the following input:

```
[CORE]
  cycle 1   ! could be any arbitrary string like CYC1, etc.
  xlabel R P N M L K J H G F E D C B A
  ylabel 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
[STATE]
  deplete EFPD ... 327.3  ! only last depletion date shown
  op_date "1993/03/01"   ! shutdown date
  restart_write restart_cyc1.h5 "EOC1"
[ASSEMBLY]
  ! this input includes a definition of assembly type ASMA
```

The EOC 2 restart file was generated with the following input:

```
cycle 2
xlabel R P N M L K J H G F E D C B A
ylabel 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
[STATE]
deplete EFPD ... 426.3
op_date "1994/03/05" ! shutdown date cycle 2
restart_write restart_cyc2.h5 "EOC_with_coastdown"
[ASSEMBLY]
! this input includes a definition of assembly type ASMB
! and ASMA from cycle 1
```

The following input is used to shuffle to Cycle 3:

```
[CORE]
  cycle 3
  op_date "1994/04/07" ! start-up date of cycle 3
```



```
R P N M L K J H G F E D C B A
 xlabel
 ylabel 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
[STATE]
 shuffle_label
  1H-10 +ASMC E-03 +ASMC E-13 G-02 G-08 N-04
  D-03 E-08 +ASMC M-04 +ASMC K-04 A-07
  +ASMC G-10 +ASMC P-08 +ASMC 0-06 B-06
   O-11 +ASMC D-11 +ASMC B-07 +ASMC
   B-09 F-05 +ASMC F-13 +ASMC L-06
   H-09 +ASMC D-09 F-02 M-07
   D-04 C-09 G-01
! One assembly was loaded from cycle 1 (in the center)
! This assembly had to have the cycle number prepended to it
! All of the other assemblies came from cycle 2. This is the default cycle,
! and the cycle number did not have to be prepended.
! restart using the EOC restart files from cycles 1 and 2
 restart_shuffle
    restart_cyc2.h5 EOC_with_coastdown
    restart_cyc1.h5 EOC1
[ASSEMBLY]
! include descriptions for ASMA, ASMB, ASMC if they are
! all used in cycle 3
```

#### 4.4.2 Shutdown Decay

When performing a core shuffle, a shutdown decay is performed on each assembly to account for the shutdown decay time. The shutdown decay calculation is important for calculating the decay and build-up of fission products, such as xenon and samarium.

The shutdown decay time is calculated using the shutdown date from when the assembly was discharged and the new cycle startup date. The discharge date is the  $op\_date$  on the restart file the assembly data was written. The cycle start-up date is the  $op\_date$  in the core shuffle deck.

#### 4.4.3 Cross Unit Shuffle

The shuffling methodology can support cross-unit shuffles.

To use cross-unit shuffling, the unit number must be specified in the [CORE] block.

```
unit 1 ! unit 1 of a 2 unit site
```



To read an assembly from a different unit, the unit label is prepended to the front of the location label in the *shuffle\_label* card using a colon. For example, "U2:C3G-04" is used to read the assembly from Unit "U2", cycle "C3" and location "G-04".

Once the location labels have been defined, the user can mix and match restart files from different units in the *restart\_shuffle* card:

```
restart_shuffle
restart_file_U1_12.h5 E0C12
restart_file_U2_5.h5 E0C
restart_file_U1_11.h5 E0C11
restart_file_U2_4.h5 E0C
restart_file_U1_10.h5 E0C10
restart_file_U2_3.h5 E0C
restart_file_U1_5.h5 E0C5
```

The only "trick" is to list the restart points in the right chronological order because an assembly could theoretically go from U2:CYC3 to U1:CYC10 then back to U2:CYC6. Therefore, the restarts must be in the correct chronological order. Remember that the cycle numbers are arbitrary strings, so there is no natural "order" to them. The order is defined by the order specified in the restart\_shuffle input.

The shutdown dates are written to each restart file so the shutdown decay will be correctly calculated for each assembly. It doesn't matter what unit the assembly came from, the right shutdown dates will be used.



## 5. INPUT CARD DESCRIPTIONS

This chapter contains a complete listing of the available input cards.

The input for each block is given in separate subsections.

In this chapter, input cards are given in **bold** text followed by the parameters on the card. Following each input card is a description of the parameters on that card.



## 5.1. BLOCK CASEID

## ${\bf title} \ {\bf case\_name}$

| case_name                 | Character String | Optional |
|---------------------------|------------------|----------|
| Units: N/A                |                  |          |
| Applicable Value(s):      |                  |          |
| Limitation(s): None       |                  |          |
| Description: Problem name |                  |          |
| Notes: None               |                  |          |

### 5.2. BLOCK STATE

### title state\_name

| state_name              | Character String | Optional |
|-------------------------|------------------|----------|
| Units: N/A              |                  |          |
| Applicable Value(s):    |                  |          |
| Limitation(s): None     |                  |          |
| Description: State name |                  |          |
| Notes: None             |                  |          |

## $op\_date \ {\rm operating\_date}$

| $operating\_date$                                                                                   | Character String | Optional |
|-----------------------------------------------------------------------------------------------------|------------------|----------|
| Units: N/A                                                                                          |                  |          |
| Applicable Value(s):                                                                                |                  |          |
| Limitation(s): Limited to "MM/DD/YYYY" or "YYYY/MM/DD"                                              |                  |          |
| Description: Operating date of this statepoint. Used when writing restart files. The operating      |                  |          |
| date must be entered for any restart file that is used in a core shuffle so that the isotopic decay |                  |          |
| can be calculated during an outage.                                                                 |                  |          |
| Notes: None                                                                                         |                  |          |

## power percent\_power

| percent_power                                 | Float | Optional |
|-----------------------------------------------|-------|----------|
| Units: Percent (default)                      |       |          |
| Applicable Value(s): 1e-8 (default), $>= 0$   |       |          |
| Limitation(s): None                           |       |          |
| Description: Percent of rated operating power |       |          |
| Notes: Cannot be zero when depleting          |       |          |



# $\mathbf{flow} \ \mathrm{percent\_flow}$

| percent_flow                                 | Float | Optional |
|----------------------------------------------|-------|----------|
| Units: Percent (default)                     |       |          |
| Applicable Value(s): 1e-8 (default), $>= 0$  |       |          |
| Limitation(s): None                          |       |          |
| Description: Percent of rated operating flow |       |          |
| Notes: None                                  |       |          |

## ${\bf flow\_dist}\ {\bf nominal\_flow\_multiplier}$

| nominal_flow_multiplier                                                                    | 2D Float Map | Optional |
|--------------------------------------------------------------------------------------------|--------------|----------|
| Units: N/A                                                                                 |              |          |
| Applicable Value(s): 1 (defar                                                              | alt), > 0    |          |
| Limitation(s): None                                                                        |              |          |
| Description: 2-D array that must match the shape of assm_map in [CORE]. Gives a multiplier |              |          |
| that will be applied to nominal inlet mass flow rate in each assembly.                     |              |          |
| Notes: This map is not norm                                                                | nally used.  |          |

## ${\bf pout\_dist} \ {\bf outlet\_pressure\_adder}$

| outlet_pressure_adder                                                                       | 2D Float Map      | Optional |
|---------------------------------------------------------------------------------------------|-------------------|----------|
| Units: psi (default)                                                                        |                   |          |
| Applicable Value(s): 0.0 (de                                                                | fault), Any float |          |
| Limitation(s): None                                                                         |                   |          |
| Description: 2-D array that must match the shape of assm_map in [CORE]. Gives an adder that |                   |          |
| will be added to nominal outlet pressure in each assembly.                                  |                   |          |
| Notes: This map is not norm                                                                 | nally used.       |          |

# ${\bf bypass}\ {\bf bypass\_percent}$

| bypass_percent                                                | Float | Optional |
|---------------------------------------------------------------|-------|----------|
| Units: Percent (default)                                      |       |          |
| Applicable Value(s): $0$ (default), $>= 0$                    |       |          |
| Limitation(s): None                                           |       |          |
| Description: Bypass flow fraction applied to the acutal flow. |       |          |
| Notes: None                                                   |       |          |

## $\mathbf{tinlet} \ \mathrm{inlet\_temperature} \ \mathrm{units}$

| inlet_temperature | Float | Optional |
|-------------------|-------|----------|
| Units: N/A, F, K  |       |          |



## $\verb"inlet_temperature", continued...$

| Applicable Value(s): 326.85 C (default), > 0                                   |
|--------------------------------------------------------------------------------|
| Limitation(s): None                                                            |
| Description: Core inlet temperature                                            |
| Notes: Required when couping to CTF. Examples of this card are 560 F or 600 K. |

## ${\bf tinlet\_dist} \ {\bf inlet\_temperature\_adder}$

| inlet_temperature_adder                                                                     | 2D Float Map | Optional |
|---------------------------------------------------------------------------------------------|--------------|----------|
| Units: C (default)                                                                          |              |          |
| Applicable Value(s): 0 (defa                                                                | ult)         |          |
| Limitation(s): None                                                                         |              |          |
| Description: 2-D array that must match the shape of assm_map in [CORE]. Gives an adder that |              |          |
| will be applied to nominal inlet temperature in each assembly.                              |              |          |
| Notes: This map is not norn                                                                 | nally used.  |          |

## $\mathbf{void}\ \mathrm{void\_distribution}$

| void_distribution                                               | Float | Optional |
|-----------------------------------------------------------------|-------|----------|
| Units: Percent (default)                                        |       |          |
| Applicable Value(s): $, > 0, <$                                 | < 100 |          |
| Limitation(s): None                                             |       |          |
| Description: Assembly-wise radial void distribution in percent. |       |          |
| Notes: BWR only.                                                |       |          |

# $\mathbf{tfuel} \ \mathbf{fuel\_temperature} \ \mathbf{units}$

| ${	t fuel_{	t -}}{	t temperature}$                       | Float                                                 | Optional |
|----------------------------------------------------------|-------------------------------------------------------|----------|
| Units: N/A, F, C                                         |                                                       |          |
| Applicable Value(s): 600 K (default), $> 0K$ , $< 1600K$ |                                                       |          |
| Limitation(s): None                                      |                                                       |          |
| Description: Fixed fuel temperatures.                    |                                                       |          |
| Notes: Only used if feedback                             | is turned OFF. Examples of this card are 900 K or 120 | 00 F.    |

# $\mathbf{modden} \ \mathrm{mod\_density}$

| ${\tt mod\_density}$                                       | Float          | Optional |
|------------------------------------------------------------|----------------|----------|
| Units: g/cc (default)                                      |                |          |
| Applicable Value(s): $0.743$ (default), $> 0.01$ , $< 1.2$ |                |          |
| Limitation(s): None                                        |                |          |
| Description: Fixed moderator density.                      |                |          |
| Notes: Only used if feedback                               | is turned OFF. |          |



#### $\mathbf{xenon} \ \mathbf{xenon\_treatment}$

| xenon_treatment                                                                        | Character String                                        | Optional |
|----------------------------------------------------------------------------------------|---------------------------------------------------------|----------|
| Units: N/A                                                                             |                                                         |          |
| Applicable Value(s): dep (de                                                           | fault), zero, equil                                     |          |
| Limitation(s): None                                                                    |                                                         |          |
| Description: Xenon treatmen                                                            | nt option:                                              |          |
| • zero — Sets I-135 and                                                                | Xe-135 number densities to zero.                        |          |
| • equil — Sets I-135 an                                                                | d Xe-135 number densities to calculated equilibrium val | ues.     |
| • dep — Treats I-135 and Xe-135 explicitly as other isotopes in transport calculation. |                                                         |          |
| Notes: None                                                                            |                                                         |          |

## $\mathbf{samar} \ \mathbf{samarium\_treatment}$

| samarium_treatment                             | Character String                                                     | Optional   |
|------------------------------------------------|----------------------------------------------------------------------|------------|
| Units: N/A                                     |                                                                      |            |
| Applicable Value(s): dep (de                   | efault), zero, equil, peak                                           |            |
| Limitation(s): None                            |                                                                      |            |
| Description: Samarium treat                    | tment option:                                                        |            |
| • zero — Sets Pm-149 a                         | and Sm-149 number densities to zero.                                 |            |
| • equil — Sets Pm-149                          | and Sm-149 number densities to calculated equilibrium $\dot{\gamma}$ | values.    |
| • dep — Treats Pm-149                          | and Sm-149 explicitly as other isotopes in transport calc            | ulation.   |
| • peak — Adds Pm-149<br>number density to zero | number density to Sm-149 number density and then see $\alpha$ .      | ets Pm-149 |
| Notes: None                                    |                                                                      |            |

## rlx\_xesm Xe-Sm\_relaxation

| Xe-Sm_relaxation                                           | Float | Optional |
|------------------------------------------------------------|-------|----------|
| Units: N/A                                                 |       |          |
| Applicable Value(s): 1.0 (default), $> 0$                  |       |          |
| Limitation(s): None                                        |       |          |
| Description: Xenon-samarium equilibrium relaxation factor. |       |          |
| Notes: Recommend value: 1                                  | .0.   |          |

## $\mathbf{pred\_order} \ \mathrm{predictor\_order}$

| predictor_order | Integer        | Optional |
|-----------------|----------------|----------|
|                 | continued on n | ext page |

47



#### predictor\_order, continued...

Units: N/AApplicable Value(s): 0 (default), >= 0

Limitation(s): None

Description: This card is used to specify the order of polynomial approximation to use for extrapolation of microscopic cross sections and fluxes over predictor depletion substeps.

Notes: The methodology employed for high order depletion is described in G. G. Davidson, et al., "Nuclide depletion capabilities in the Shift Monte Carlo code", Annals of Nuclear Energy, 114, pg 259-276 (2018). For any given timestep the code will attempt the highest polynomial order approximation, without exceeding the user specification, as is allowed by the thus far generated data. For example, if the user designates order 2, then on the first time step order 0 will be used since no previous time data is available. On the second step order 1 will be used since only one previous set of time data is available, and on the third and subsequent steps order 2 will be used since sufficient data from previous timesteps is available to perform an order 2 fit.

#### corr\_order corrector\_order

| corrector_order                                                                            | Integer                                   | Optional |
|--------------------------------------------------------------------------------------------|-------------------------------------------|----------|
| Units: N/A                                                                                 |                                           |          |
| Applicable Value(s): 0 (defa                                                               | ult), >= 0                                |          |
| Limitation(s): None                                                                        |                                           |          |
| Description: This card is used to specify the order of polynomial approximation to use for |                                           |          |
| interpolation of microscopic cross sections and fluxes over corrector depletion substeps.  |                                           |          |
| Notes: This follows the same                                                               | e methodology as described for pred_order |          |

### boron boron\_concentration

| boron_concentration                                       | Float          | Optional |
|-----------------------------------------------------------|----------------|----------|
| Units: ppm (default)                                      |                |          |
| Applicable Value(s): 0.0 (det                             | fault), $>= 0$ |          |
| Limitation(s): None                                       |                |          |
| Description: Soluble boron concentration in the moderator |                |          |
| Notes: None                                               |                |          |

#### **b10** b10\_fraction b10\_depletion

| b10_fraction                                   | Float | Optional |
|------------------------------------------------|-------|----------|
| Units: N/A, Atom fraction of B-10 in boron     |       |          |
| Applicable Value(s): $0.199$ (default), $>= 0$ |       |          |
| Limitation(s): None                            |       |          |
| Description: Boron-10 fraction in coolant      |       |          |
| Notes: None                                    |       |          |



| $b10_{-}$ depletion                                   | Boolean             | Optional |
|-------------------------------------------------------|---------------------|----------|
| Units: N/A                                            |                     |          |
| Applicable Value(s): False (default), True            |                     |          |
| Limitation(s): None                                   |                     |          |
| Description: Flag to enable B-10 depletion in coolant |                     |          |
| Notes: Required when using                            | input parameter b10 |          |

## $\mathbf{kcrit}\ \mathrm{target\_eigenvalue}$

| $target_eigenvalue$                                               | Float        | Optional |
|-------------------------------------------------------------------|--------------|----------|
| Units: N/A                                                        |              |          |
| Applicable Value(s): 1.0 (des                                     | fault), >= 0 |          |
| Limitation(s): None                                               |              |          |
| Description: Target eigenvalue used in boron search or rod search |              |          |
| Notes: None                                                       |              |          |

## $\mathbf{search} \cdot \mathbf{search} \cdot \mathbf{option}$

| search_option                                   | Character String Optional |  |
|-------------------------------------------------|---------------------------|--|
| Units: N/A                                      |                           |  |
| Applicable Value(s): keff (default), boron, rod |                           |  |
| Limitation(s): None                             |                           |  |
| Description: Search option                      |                           |  |
| Notes: None                                     |                           |  |

## $\mathbf{search\_bank}$ $\mathbf{rod\_search\_bank}$

| rod_search_bank                                                  | Character String | Optional |
|------------------------------------------------------------------|------------------|----------|
| Units: N/A                                                       |                  |          |
| Applicable Value(s):                                             |                  |          |
| Limitation(s): None                                              |                  |          |
| Description: Control rod bank to be moved in rod search problems |                  |          |
| Notes: Required when input parameter search is set to rod        |                  |          |

## $\mathbf{pressure} \ \mathrm{outlet\_pressure}$

| outlet_pressure               | Float | Optional |
|-------------------------------|-------|----------|
| Units: psia (default)         |       |          |
| Applicable Value(s): $, > 0$  |       |          |
| Limitation(s): None           |       |          |
| Description: Core exit pressu | re    |          |



## $\verb"outlet_pressure", continued...$

Notes: Required when coupling to CTF or when modeling a BWR reactor type. Must be set to 2250 psi when using internal or simplified T/H.

## ${\bf deplete} \ {\bf deplete\_units} \ {\bf depletion\_steps}$

| deplete                                                                               | Float                                                                    | Optional  |  |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------|--|
| Units: GWDMT (default), M                                                             | Units: GWDMT (default), MWDMT, EFPD, hours                               |           |  |
| Applicable Value(s): , deple                                                          | Applicable Value(s): , depletion_steps must be listed in ascending order |           |  |
| Limitation(s): None                                                                   |                                                                          |           |  |
| Description: Specification of a single or multiple depletion steps.                   |                                                                          |           |  |
| Notes: Recommended that depletion step sizes are less than 1 GWDMT, 1000 MWDMT, or 30 |                                                                          | MT, or 30 |  |
| EFPD.                                                                                 |                                                                          |           |  |

#### edit state\_edits

| state_edits                  | Character String                                         | Optional     |
|------------------------------|----------------------------------------------------------|--------------|
| Units: N/A                   |                                                          |              |
| Applicable Value(s):         |                                                          |              |
| Limitation(s): None          |                                                          |              |
| Description: A list of state | variables to be edited. By default, MPACT edits pin_p    | owers and    |
| pin_exposures. Aditionally,  | individual isotopes can be edited using pin_isotopes_f   | followed by  |
| the isotope in ZZ-AAA forms  | at. The edit flag pin_isotopes_all can be used to edit a | all isotopes |
| in the problem.              |                                                          |              |
| Notes: None                  |                                                          |              |

### $reset\_sol$ solution\_ $reset\_bool$

| solution_reset_bool                                         | Boolean Option |  |
|-------------------------------------------------------------|----------------|--|
| Units: N/A                                                  |                |  |
| Applicable Value(s): False (default), True                  |                |  |
| Limitation(s): None                                         |                |  |
| Description: Resets the initial guess of the flux in MPACT. |                |  |
| Notes: None                                                 |                |  |

## ${\bf rodbank}\ {\bf bank\_labels}\ {\bf bank\_pos}$

| bank_labels                                                 | Character String                                       | Optional    |
|-------------------------------------------------------------|--------------------------------------------------------|-------------|
| Units: N/A                                                  |                                                        |             |
| Applicable Value(s):                                        |                                                        |             |
| Limitation(s): None                                         |                                                        |             |
| Description: List of control i                              | rod banks to position. Labels correspond to crd map in | CORE block. |
| Notes: Every bank_label must have a corresponding bank_pos. |                                                        |             |



| bank_pos                    | Float                            |                  | Opt   | ion | ıal |
|-----------------------------|----------------------------------|------------------|-------|-----|-----|
| Units: N/A                  |                                  |                  |       |     |     |
| Applicable Value(s): $,>=0$ |                                  |                  |       |     |     |
| Limitation(s): None         |                                  |                  |       |     |     |
| Description: Steps withdraw | n for each bank in list          |                  |       |     |     |
| Notes: Every bank_pos must  | have a corresponding bank_label. | Example: rodbank | SA 22 | 8   | SB  |
| 50 SD 0 A 228               |                                  |                  |       |     |     |

## ${\bf feedback}\ {\bf feedback\_option}$

| feedback_option                                    | Character String | Optional |
|----------------------------------------------------|------------------|----------|
| Units: N/A                                         |                  |          |
| Applicable Value(s): off (default), on             |                  |          |
| Limitation(s): None                                |                  |          |
| Description: Flag to turn on and off T/H feedback. |                  |          |
| Notes: None                                        |                  |          |

# $\mathbf{crud} \ \mathbf{crud\_option}$

| crud_option                                                          | Character String | Optional |
|----------------------------------------------------------------------|------------------|----------|
| Units: N/A                                                           |                  |          |
| Applicable Value(s): off (default), on                               |                  |          |
| Limitation(s): None                                                  |                  |          |
| Description: Flag to turn on and off MAMBA CRUD deposition coupling. |                  |          |
| Notes: None                                                          |                  |          |

## ${\bf excore\_transport}\ {\bf excore\_transport\_option}$

| excore_transport_option                                               | Character String Options           |  |
|-----------------------------------------------------------------------|------------------------------------|--|
| Units: N/A                                                            |                                    |  |
| Applicable Value(s): off (def                                         | ault), on                          |  |
| Limitation(s): None                                                   |                                    |  |
| Description: Flag to turn on and off Shift excore transport coupling. |                                    |  |
| Notes: Additional SHIFT op                                            | tions are included in SHIFT block. |  |

# $\mathbf{thexp}\ \mathrm{thermal\_expansion\_option}$

| thermal_expansion_option                | Character String | Optional |
|-----------------------------------------|------------------|----------|
| Units: N/A                              |                  |          |
| Applicable Value(s): on (default), off  |                  |          |
| Limitation(s): None                     |                  |          |
| Description: Perform thermal expansion. |                  |          |



 $\verb|thermal_expansion_option|, continued...$ 

Notes: Additional thermal expansion options are given on other input cards.

## ${\bf thexp\_tfuel}\ {\bf fuel\_thermal\_expansion\_temperature}\ {\bf units}$

| fuel_thermal_expansion_temperature Float                                           | Optional    |
|------------------------------------------------------------------------------------|-------------|
| Units: N/A, F, C                                                                   |             |
| Applicable Value(s): 293 K (default)                                               |             |
| Limitation(s): None                                                                |             |
| Description: Temperature to use for thermal expansion of fuel. If not present, tfu | iel is used |
| instead. If both thexp_tfuel and tfuel are not specified, tinlet will be used.     |             |
| Notes: Example: 900 K                                                              |             |

## ${\bf thexp\_tclad}\ {\bf clad\_thermal\_expansion\_temperature}\ units$

| clad_thermal_expansion_temperature Float                                           | Optional   |
|------------------------------------------------------------------------------------|------------|
| Units: N/A, F, C                                                                   |            |
| Applicable Value(s): 293 K (default)                                               |            |
| Limitation(s): None                                                                |            |
| Description: Temperature to use for thermal expansion of clad. If not present, the | xp_tmod is |
| used instead. If both thexp_tfuel and thexp_tmod are not specified, tinlet will be | used.      |
| Notes: Example: 560 F                                                              |            |

### thexp\_tmod moderator\_thermal\_expansion\_temperature units

| moderator_thermal_expans ion_temperature Float                                      | Optional     |
|-------------------------------------------------------------------------------------|--------------|
| Units: N/A, F, C                                                                    |              |
| Applicable Value(s): 293 K (default)                                                |              |
| Limitation(s): None                                                                 |              |
| Description: Temperature to use for thermal expansion of moderator and structural m | aterials. If |
| not present, tinlet is used instead.                                                |              |
| Notes: Example: 560 F                                                               |              |

## $\mathbf{expand3D} \ 3D\_thermal\_expansion\_option$

| 3D_thermal_expansion_option               | Boolean                               | Optional                |
|-------------------------------------------|---------------------------------------|-------------------------|
| Units: N/A                                |                                       |                         |
| Applicable Value(s): false (default), tru | le                                    |                         |
| Limitation(s): None                       |                                       |                         |
| Description: Option to perform 3D them    | mal expansion. If set to false, therr | nal expansion will only |
| be performed in the radial direction. W   | hen set to true, both radial and a    | xial thermal expansion  |
| will be performed.                        |                                       |                         |



## ${\tt 3D\_thermal\_expansion\_option}, \ continued...$

Notes: None

## ${\bf thexp\_outfile}\ {\bf thermal\_expansion\_outfile}$

| thermal_expansion_outfile          | Character String                              | Optional            |
|------------------------------------|-----------------------------------------------|---------------------|
| Units: N/A                         |                                               |                     |
| Applicable Value(s):               |                                               |                     |
| Limitation(s): None                |                                               |                     |
| Description: The name of the th    | nermally expanded XML output. If the national | me of the outfile   |
| is the same as the XML input u     | used to execute MPACT, the input file wil     | ll be renamed to    |
| input_filename.bak and the therm   | nally expanded XML output will be in the o    | output file. If not |
| specified, no thermally expanded 2 | XML output file will be generated.            |                     |
| Notes: None                        |                                               |                     |

## ${\bf thexp\_info}\ {\bf thermal\_expansion\_info}$

| thermal_expansion_info                                                                         | Boolean       | Optional |
|------------------------------------------------------------------------------------------------|---------------|----------|
| Units: N/A                                                                                     |               |          |
| Applicable Value(s): false (d                                                                  | efault), true |          |
| Limitation(s): None                                                                            |               |          |
| Description: Logical flag to edit additional thermal expansion information to the output file. |               |          |
| Notes: None                                                                                    |               |          |

## ${\bf apitch\_tec}\ {\bf assembly\_pitch\_expansion\_coefficient}$

| assembly_pitch_expansion_coefficient Float                                               | Optional     |
|------------------------------------------------------------------------------------------|--------------|
| Units: K <sup>-</sup> 1 (default)                                                        |              |
| Applicable Value(s): $,>=0,<50.0e-6$                                                     |              |
| Limitation(s): None                                                                      |              |
| Description: Thermal expansion coefficient to be used when expanding the assemb          | olies in the |
| problem. If not specified, the expansion coefficient will be calculated internally assum | ning a core  |
| plate nominal density for SS 304.                                                        |              |
| Notes: None                                                                              |              |

## ${\bf ppitch\_tec}$ pin\_pitch\_expansion\_coefficient

| pin_pitch_expansion_coefficient      | Float | Optional |
|--------------------------------------|-------|----------|
| Units: K <sup>-</sup> 1 (default)    |       |          |
| Applicable Value(s): $,>=0,<50.0e-6$ |       |          |
| Limitation(s): None                  |       |          |



## ${\tt pin\_pitch\_expansion\_coefficient}, \ continued...$

Description: Thermal expansion coefficient to be used when expanding the pins in the problem. If not specified, the expansion coefficient will be calculated internally assuming Zircaloy-4 for grid materials.

Notes: None

#### axial\_tec

| axial_tec                      | Float                                                      | Optional     |
|--------------------------------|------------------------------------------------------------|--------------|
| Units: $K^{-1}$ (default)      |                                                            |              |
| Applicable Value(s): $, >= 0,$ | < 50.0e - 6                                                |              |
| Limitation(s): None            |                                                            |              |
| Description: Thermal expans    | ion coefficient to be used when expanding the axial dimer  | nsion of the |
| problem. If not specified, th  | e expansion coefficient will be calculated internally assu | ıming UO2    |
| thermal expansion coefficien   | at and the fuel temperature. This is only done if 3-D ex   | xpansion is  |
| enabled.                       |                                                            |              |
| Notes: None                    |                                                            |              |

### **sym** symmetry\_option

| symmetry_option                 | Character String                                           | Optional    |
|---------------------------------|------------------------------------------------------------|-------------|
| Units: N/A                      |                                                            |             |
| Applicable Value(s): full (de   | fault), qtr                                                |             |
| Limitation(s): None             |                                                            |             |
| Description: Option for spe     | ecifying the symmetry of the problem. The full optic       | n specifies |
| that the problem will be me     | odeled in full and that ray tracing will be performed a    | accross the |
| whole geometry. The qtr o       | ption will only model the south-east quarter of the geo    | ometry. In  |
| quarter-symmetry, the bound     | lary conditions along the symmetry boundary are determi    | ned by the  |
| bc_sym card.                    |                                                            |             |
| Notes: For multistate simul     | lations, if sym is not specified in the first state, any s | ym options  |
| specified in future states will | be ignored.                                                |             |

#### $kmul\_beta$ $kmul\_beta$

| kmul_beta                     |                                                              | Optional   |
|-------------------------------|--------------------------------------------------------------|------------|
| Units: N/A                    |                                                              |            |
| Applicable Value(s): 1.0 (de  | fault), Real numbers on the interval (0.0,1.0]               |            |
| Limitation(s): Cannot specif  | fy exactly 0.                                                |            |
| Description: This option is   | used to specify the direct multiplier on beta, the delayer   | ed neutron |
| fraction. This option is used | to apply conservatism to transient calculations specifically | y for RIA. |
| Notes: None                   |                                                              |            |

## $kmul\_doppler \ kmul\_doppler$



| kmul_doppler                  | double                                                     | Optional    |
|-------------------------------|------------------------------------------------------------|-------------|
| Units: N/A                    |                                                            |             |
| Applicable Value(s): 1.0 (det | fault), Real numbers on the interval (0.0,1.0]             |             |
| Limitation(s): Cannot specif  | fy exactly 0.                                              |             |
| Description: This option is   | used to specify the direct multiplier on the temperature   | difference  |
| that the fuel experiences whe | en evaluating cross sections. Used to apply conservatism t | o transient |
| calculations. Can be used in  | steady-state calculations to iterate to desired value.     |             |
| Notes: None                   |                                                            |             |

## $\mathbf{kmul\_modtemp} \ \mathrm{kmul\_modtemp}$

| kmul_modtemp                                                                                    | double                                                     | Optional |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------|
| Units: N/A                                                                                      |                                                            |          |
| Applicable Value(s): 1.0 (det                                                                   | fault), Real numbers on the interval (0.0,1.0]             |          |
| Limitation(s): Cannot specify exactly 0.                                                        |                                                            |          |
| Description: This option is used to specify the direct multiplier on the temperature difference |                                                            |          |
| that the moderator experiences when evaluating cross sections. Used to apply conservatism to    |                                                            |          |
| transient calculations. Can b                                                                   | be used in steady-state calculations to iterate to desired | value.   |
| Notes: None                                                                                     |                                                            | -        |

### $kmul\_crw$ $kmul\_crw$

| kmul_crw                                                                             | double                                                      | Optional   |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------|------------|
| Units: N/A                                                                           |                                                             |            |
| Applicable Value(s): 1.0 (de                                                         | fault), Real numbers on the interval (0.0,1.0]              |            |
| Limitation(s): Cannot specify exactly 0.                                             |                                                             |            |
| Description: This option is u                                                        | used to specify the direct multiplier on the critical rod w | orth. This |
| option is used to apply conservatism to transient calculations specifically for RIA. |                                                             |            |
| Notes: None                                                                          |                                                             |            |

## ${\bf scram\_type}\ {\bf scram\_type}\ {\bf scram\_rate}\ {\bf scram\_time}$

| scram_type                                                                                      | Free Form Character String, Pairs of doubles                | Optional    |  |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------|--|
| Units: false (default), true                                                                    |                                                             |             |  |
| Applicable Value(s):                                                                            |                                                             |             |  |
| Limitation(s): Can only be u                                                                    | sed for transient cases, and at least one "trip_" card must | be present  |  |
| to specify trip conditions.                                                                     |                                                             |             |  |
| Description: This option is used to specify the scram type (of which the only current option is |                                                             |             |  |
| "trip") and the scram bank r                                                                    | movement speed intervals. These are specified using rate/   | time pairs, |  |
| where each rate is accociated with the following time interval. The units are RUs/second and    |                                                             |             |  |
| seconds, respectively. At least                                                                 | st one time/rate pair must be present.                      |             |  |
| Notes: This card is only use                                                                    | d in transient calculations.                                |             |  |



#### bank\_wd bank\_wd

| bank_wd     |  |
|-------------|--|
| TT . AT / A |  |

Units: N/A

Applicable Value(s): , Any control rod bank label and real values > 0

Limitation(s): Currently only works for one control rod bank and for transient cases.

Description: This card is used to specify the position of a control rod bank at a specified time. There is no limit to the number of time and position pairs, and at least one pair must exist.

- bank\_label The bank to be withdrawn.
- time\_N The selected transient time that corresponds to the bank position.
- pos\_N The number of steps withdrawn at a given time step.

Notes: None

### scram\_lock bank\_label

| bank_label                    | List of Free Form Character Strings                       | Optional    |
|-------------------------------|-----------------------------------------------------------|-------------|
| Units: N/A                    |                                                           |             |
| Applicable Value(s): , true   |                                                           |             |
| Limitation(s): Requires scra  | m_type card.                                              |             |
| Description: This option is u | sed to specify the bank labels of the banks that will not | participate |
| in the scram. These banks w   | ill continue their normal movement. At least one bank lab | oel must be |
| specified.                    |                                                           |             |
| Notes: This card is only used | d in transient calculations.                              |             |

#### trip\_time trip\_time

| trip_time                                                                                      | double                       | Optional |
|------------------------------------------------------------------------------------------------|------------------------------|----------|
| Units: N/A                                                                                     |                              |          |
| Applicable Value(s): , true                                                                    |                              |          |
| Limitation(s): Requires scram_type card.                                                       |                              |          |
| Description: This option is used to specify the simulation time at which a trip will occur (in |                              |          |
| seconds) for scram functionality.                                                              |                              |          |
| Notes: This card is only use                                                                   | d in transient calculations. |          |

### trip\_power high\_power low\_power delay number\_detectors

| trip_power                               | double, double, double, integer | Optional |
|------------------------------------------|---------------------------------|----------|
| Units: N/A                               |                                 |          |
| Applicable Value(s): , true              |                                 |          |
| Limitation(s): Requires scram_type card. |                                 |          |



### trip\_power, continued...

Description: This option is used to specify the trip power conditions for scram functionality. The high and low power entries are in units of % fp. The delay entry is the specified time after delay before scram bank movement occurs (seconds). The last entry is the number of detectors required to meet these conditions before a trip occurs (currently, only the full core power can be assessed, with an option of 0).

Notes: This card is only used in transient calculations.

### ${\bf trip\_rate} \ {\bf upper\_power\_threshold} \ {\bf lower\_power\_threshold} \ {\bf delay} \ {\bf number\_detectors}$

| trip_rate                                                                                          | double, double, integer                                     | Optional     |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------|
| Units: N/A                                                                                         |                                                             |              |
| Applicable Value(s): , true                                                                        |                                                             |              |
| Limitation(s): Requires scra                                                                       | m_type card.                                                |              |
| Description: This option is used to specify the trip power rate change conditions for scram        |                                                             |              |
| functionality. The first two entries are the upper and lower power rate change thresholds in units |                                                             |              |
| of % fp/second. The delay e                                                                        | entry is the specified time after delay before scram bank   | movement     |
| occurs (seconds). The last $\epsilon$                                                              | entry is the number of detectors required to meet these     | conditions   |
| before a trip occurs (current                                                                      | ly, only the full core power can be assessed, with an opti- | on of $0$ ). |
| Notes: This card is only use                                                                       | d in transient calculations.                                |              |

#### restart\_jumpin target\_location restart\_file restart\_label source\_location

| ${\tt restart\_jumpin}$             | Array of Strings | Optional |
|-------------------------------------|------------------|----------|
| Units: N/A                          |                  |          |
| Applicable Value(s): None (default) |                  |          |
| Limitation(s): None                 |                  |          |

Description: This card is used to specify sets of assembly isotopic data for assembly batches that do not have a full simulation history. These assemblies have an approximated history so that a user can "jump in" to any later cycle without explicitly simulating all previous cycles. The user is required to specify all of the following parameters.

- target\_location Location to load isotopics in current model
- restart\_file The end time of perturbation
- restart\_label Restart label in restart file with assembly data
- source\_location core label coordinate for assembly positionwhen restart data was written

Notes: This is a multiline input so multiple entries may be given.

restart\_shuffle restart\_shuffle\_label



| restart_shuffle              | arrays of character strings                                 | Optional     |
|------------------------------|-------------------------------------------------------------|--------------|
| Units: N/A                   |                                                             |              |
| Applicable Value(s):         |                                                             |              |
| Limitation(s): None          |                                                             |              |
| Description: To perform a re | estart shuffle, the user is required to specify the restart | files to use |
| as well as the labels from w | rithin those files to use during the shuffle. They must be  | e listed in  |
| matching file-label pairs.   |                                                             |              |
| Notes: See Section 4.4 for m | ore information and examples.                               |              |

### restart\_read\_file restart\_read\_label

| restart_read                   | Character String                                               | Optional     |
|--------------------------------|----------------------------------------------------------------|--------------|
| Units: N/A                     |                                                                |              |
| Applicable Value(s):           |                                                                |              |
| Limitation(s): None            |                                                                |              |
| Description: To perform a re   | start, the user is required to specify the restart file to use | e as well as |
| the label from that file to us | e to begin the restart. They must be listed as a matchin       | g file-label |
| pair.                          |                                                                |              |
| Notes: See Section 4.4 for m   | ore information and examples.                                  |              |

### restart\_write\_file restart\_write\_label

| restart_write                                                                                            | Character String                                           | Optional     |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------|
| Units: N/A                                                                                               |                                                            |              |
| Applicable Value(s):                                                                                     |                                                            |              |
| Limitation(s): None                                                                                      |                                                            |              |
| Description: To write a restart file, the user is required to specify a restart file name to write to as |                                                            |              |
| well as a label to call that st                                                                          | ate in the restart. They must be listed as a matching file | -label pair. |
| Notes: See Section 4.4 for m                                                                             | ore information and examples.                              |              |

## $shuffle\_label$ shuffle\\_label

| shuffle_label                                                                                     | 2D map of character strings                            | Optional     |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------|
| Units: N/A                                                                                        |                                                        |              |
| Applicable Value(s):                                                                              |                                                        |              |
| Limitation(s): None                                                                               |                                                        |              |
| Description: The label of the assembly or assemblies to be used in the restart shuffle. The shape |                                                        |              |
| of the shuffle_label must                                                                         | match core_shape and any assembly that is not to be sl | nuffled uses |
| a - in place of the assembly                                                                      | label to maintain the core_shape                       |              |
| Notes: See Section 4.4 for m                                                                      | nore information and examples. More information about  | this input   |
| card is included in user man                                                                      | ual.                                                   |              |

## $insert\_shuffle\_label$ $insert\_shuffle\_label$



| insert_shuffle_label           | 2D map of character strings                                | Optional    |
|--------------------------------|------------------------------------------------------------|-------------|
| Units: N/A                     |                                                            |             |
| Applicable Value(s):           |                                                            |             |
| Limitation(s): None            |                                                            |             |
| Description: The label of the  | ne assembly inserts to be used in the restart shuffle. The | e shape of  |
| insert_shuffle_label must      | t match core_shape and any inserts that are not to be s    | huffled use |
| a - in place of the insert lab | el to maintain the core_shape                              |             |
| Notes: None                    |                                                            |             |

## ${\bf shuffle\_homog} \ {\bf shuffle\_homog}$

| shuffle_homog                | Character String                                              | Optional    |
|------------------------------|---------------------------------------------------------------|-------------|
| Units: N/A                   |                                                               |             |
| Applicable Value(s): none (c | lefault), center, all                                         |             |
| Limitation(s): None          |                                                               |             |
| Description: The homogenize  | ation option for quarter symmetric restart shuffle cases.     | By default, |
| no homogenization occurs.    | If the center option is used, the center assembly alo         | one will be |
| homogenized and then a quar  | ter of it is used in the calculation with reflective boundary | conditions. |
| The all option does not cur  | rently have a function.                                       |             |
| Notes: None                  |                                                               |             |

## ${\bf crud\_cleaning}\ {\bf crud\_cleaning\_map}$

| crud_cleaning_map                                                                         | 2D Float Map                                              | Optional   |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------|
| Units: N/A                                                                                |                                                           |            |
| Applicable Value(s):                                                                      |                                                           |            |
| Limitation(s): None                                                                       |                                                           |            |
| Description: 2-D array that must match the shape of assm map in [CORE]. Map specifies the |                                                           |            |
| assembly-wise crud cleaning                                                               | fractions. For any assemblies that are not to be cleaned, | use a dash |
| "-" in place of the cleaning fr                                                           | raction.                                                  |            |
| Notes: For shuffle only.                                                                  |                                                           |            |

## ${\bf crud\_removal}$ ${\bf crud\_removal}$

| crud_removal                                    | Float | Optional |
|-------------------------------------------------|-------|----------|
| Units: N/A                                      |       |          |
| Applicable Value(s): $, >= 0,$                  | <= 1  |          |
| Limitation(s): None                             |       |          |
| Description: Core-wide crud removal fraction.   |       |          |
| Notes: Does not carry over from state to state. |       |          |

59

## ${\bf cool\_chem}$ h\_conc li\_conc ni\_sol ni\_par fe\_sol



|                                                                           | DI .                                               | 0 11     |
|---------------------------------------------------------------------------|----------------------------------------------------|----------|
| cool_chem                                                                 | Float                                              | Optional |
| Units: N/A                                                                |                                                    |          |
| Applicable Value(s): $,>=0$                                               |                                                    |          |
| Limitation(s): None                                                       |                                                    |          |
| Description: Coolant chemis                                               | try concentrations to be used for crud formation:  |          |
| <ul> <li>h_conc — Dissolved hy</li> <li>li_conc — Coolant Line</li> </ul> | vdrogen in coolant [ppm] thium Concentration [ppm] |          |
| • ni_sol — Coolant Solu                                                   | uble Nickel Concentration [ppb]                    |          |
| • ni_par — Coolant Par                                                    | ticulate Nickel Concentration [ppb]                |          |
| • fe_sol — Coolant Solu                                                   | uble Iron Concentration [ppb]                      |          |

# vh2 h2\_specific\_volume

Notes: None

| h2_specific_volume                                                                     | Float | Optional |
|----------------------------------------------------------------------------------------|-------|----------|
| Units: N/A                                                                             |       |          |
| Applicable Value(s): $, >= 0$                                                          |       |          |
| Limitation(s): None                                                                    |       |          |
| Description: Specific volume of hydrogen in the coolant to be used for crud formation. |       | n.       |
| Notes: None                                                                            |       |          |

# $\mathbf{ni\_s} \ soluble\_ni\_concentration$

| soluble_ni_concentration                                                                | Float | Optional |
|-----------------------------------------------------------------------------------------|-------|----------|
| Units: N/A                                                                              |       |          |
| Applicable Value(s): $,>=0$                                                             |       |          |
| Limitation(s): None                                                                     |       |          |
| Description: Soluble nickel concentration in the coolant to be used for crud formation. |       | on.      |
| Notes: None                                                                             |       |          |

## $\mathbf{ni\_p} \ \mathrm{particulate\_ni\_concentration}$

| particulate_ni_concentra      | tion Float                                                | Optional |
|-------------------------------|-----------------------------------------------------------|----------|
| Units: N/A                    |                                                           |          |
| Applicable Value(s): $, >= 0$ |                                                           |          |
| Limitation(s): None           |                                                           |          |
| Description: Particulate nick | kel concentration in the coolant to be used for crud form | ation.   |
| Notes: None                   |                                                           |          |



# ${\bf cleanup\_flow} \ {\bf cleanup\_flow}$

| cleanup_flow                                               | Float        | Optional |
|------------------------------------------------------------|--------------|----------|
| Units: Percent (default)                                   |              |          |
| Applicable Value(s): $, >= 0$ ,                            | <=100        |          |
| Limitation(s): None                                        |              |          |
| Description: Percent of rated chemistry cleanup flow rate. |              |          |
| Notes: Only used when coup                                 | oled to CTF. |          |

## $\mathbf{temp\_pert} \ \ \mathbf{temp\_rature\_multiplier} \ \ \mathbf{temperature\_adder}$

| temp_pert                           | Float                                                                                  | Optional          |
|-------------------------------------|----------------------------------------------------------------------------------------|-------------------|
| Units: C(adder) (default)           |                                                                                        |                   |
| Applicable Value(s):                |                                                                                        |                   |
| Limitation(s): None                 |                                                                                        |                   |
| Description: A multiplier an        | d adder to be used to perform fuel temperature pe                                      | erturbations. The |
| variables are used in the following | $\operatorname{owing\ equation:}\ \operatorname{	extbf{perturbTemp=fuelTemp*multipl}}$ | ∟ier+adder        |
| Notes: This option is only u        | sed when using fuel temperature tables.                                                |                   |

### 5.3. BLOCK CORE

### name core\_name

| name                         | Character String | Optinoal |
|------------------------------|------------------|----------|
| Units: N/A                   |                  |          |
| Applicable Value(s):         |                  |          |
| Limitation(s): None          |                  |          |
| Description: Name of the rea | actor core.      |          |
| Notes: None                  |                  |          |

## $\mathbf{cycle}\ \mathrm{cycle\_num}$

| cycle                      | Character String | Optional |
|----------------------------|------------------|----------|
| Units: N/A                 |                  |          |
| Applicable Value(s):       |                  |          |
| Limitation(s): None        |                  |          |
| Description: Cycle number. |                  |          |
| Notes: None                |                  |          |

## $\mathbf{unit}$ unit



| unit                                                                                          | Character String | Optional |
|-----------------------------------------------------------------------------------------------|------------------|----------|
| Units: N/A                                                                                    |                  |          |
| Applicable Value(s):                                                                          |                  |          |
| Limitation(s): None                                                                           |                  |          |
| Description: Reactor plant unit name. Only used for multi-unit sites with cross-unit shuffle. |                  |          |
| Notes: None                                                                                   |                  |          |

## $\mathbf{op\_date} \ \mathrm{operation\_date}$

| op_date                                                | Character String | Optional |
|--------------------------------------------------------|------------------|----------|
| Units: N/A                                             |                  |          |
| Applicable Value(s):                                   |                  |          |
| Limitation(s): Limited to "MM/DD/YYYY" or "YYYY/MM/DD" |                  |          |
| Description: Start-up date of core reload.             |                  |          |
| Notes: Only used when performing core shuffle.         |                  |          |

## $\mathbf{size}$ core\_size

| core_size                                                                | Integer | Required |
|--------------------------------------------------------------------------|---------|----------|
| Units: N/A                                                               |         |          |
| Applicable Value(s): $, > 0$                                             |         |          |
| Limitation(s): None                                                      |         |          |
| Description: Number of assemblies across one axis in full-core geometry. |         |          |
| Notes: None                                                              |         |          |

## ${\bf rated\_power\ rated\_flow}$

| rated_power                                     | Float | Required |
|-------------------------------------------------|-------|----------|
| Units: N/A, MW                                  |       |          |
| Applicable Value(s): $, >= 0$                   |       |          |
| Limitation(s): None                             |       |          |
| Description: Rated thermal power at 100% power. |       |          |
| Notes: None                                     |       |          |

| rated_flow                                  | Float | Required |
|---------------------------------------------|-------|----------|
| Units: N/A, Mlbs/hr                         |       | ·        |
| Applicable Value(s): $,>=0$                 |       |          |
| Limitation(s): None                         |       |          |
| Description: Rated vessel flow at 100% flow |       |          |
| Notes: None                                 |       |          |

## $rcs\_volume rcs\_volume$



| rcs_volume                                         | Float      | Optional |
|----------------------------------------------------|------------|----------|
| Units: N/A, ft <sup>3</sup>                        |            |          |
| Applicable Value(s): $, > 0$                       |            |          |
| Limitation(s): None                                |            |          |
| Description: Volume of the Reactor Coolant System. |            |          |
| Notes: Only used with B-10                         | depletion. |          |

# apitch apitch

| apitch                       | Float | Required |
|------------------------------|-------|----------|
| Units: N/A, cm               |       |          |
| Applicable Value(s): $, > 0$ |       |          |
| Limitation(s): None          |       |          |
| Description: Assembly pitch. |       |          |
| Notes: None                  |       |          |

# ${\bf baffle} \ {\bf baffle\_mat} \ {\bf baffle\_gap} \ {\bf baffle\_thick}$

| baffle_mat                    | Character String | Optional |
|-------------------------------|------------------|----------|
| Units: N/A                    |                  |          |
| Applicable Value(s):          |                  |          |
| Limitation(s): None           |                  |          |
| Description: Baffle material. |                  |          |
| Notes: None                   |                  |          |

| baffle_gap                                                                     | Float | Optional |
|--------------------------------------------------------------------------------|-------|----------|
| Units: N/A, cm                                                                 |       |          |
| Applicable Value(s): $, >= 0$                                                  |       |          |
| Limitation(s): None                                                            |       |          |
| Description: Gap between outside assembly (including assembly gap) and baffle. |       |          |
| Notes: None                                                                    |       |          |

| baffle_thick                      | Float | Optional |
|-----------------------------------|-------|----------|
| Units: N/A, cm                    |       |          |
| Applicable Value(s): $,>=0$       |       |          |
| Limitation(s): None               |       |          |
| Description: Thickness of baffle. |       |          |
| Notes: None                       |       |          |

pad pad\_mat pad\_inner\_radius pad\_outer\_radius pad\_arc pad\_azi\_locs



| pad_mat                                                                      | Character String | Optional |
|------------------------------------------------------------------------------|------------------|----------|
| Units: N/A                                                                   |                  |          |
| Applicable Value(s):                                                         |                  |          |
| Limitation(s): None                                                          |                  |          |
| Description: This card defines the material to be used for all neutron pads. |                  |          |
| Notes: None                                                                  |                  |          |

| pad_inner_radius                                                                          | Float | Optional |
|-------------------------------------------------------------------------------------------|-------|----------|
| Units: cm (default)                                                                       |       |          |
| Applicable Value(s): $,>=0$                                                               |       |          |
| Limitation(s): None                                                                       |       |          |
| Description: This card defines the inner radius to be used to construct all neutron pads. |       |          |
| Notes: None                                                                               |       |          |

| pad_outer_radius                                                                          | Float | Optional |
|-------------------------------------------------------------------------------------------|-------|----------|
| Units: cm (default)                                                                       |       |          |
| Applicable Value(s): $,>=0$                                                               |       |          |
| Limitation(s): None                                                                       |       |          |
| Description: This card defines the outer radius to be used to construct all neutron pads. |       |          |
| Notes: None                                                                               |       |          |

| pad_arc                                                                                 | Float | Optional |
|-----------------------------------------------------------------------------------------|-------|----------|
| Units: degrees (default)                                                                |       |          |
| Applicable Value(s):                                                                    |       |          |
| Limitation(s): None                                                                     |       |          |
| Description: This card defines the arc length to be used to construct all neutron pads. |       |          |
| Notes: None                                                                             |       |          |

| pad_azi_locs                                                                                | Array of Floats | Optional |
|---------------------------------------------------------------------------------------------|-----------------|----------|
| Units: degrees (default)                                                                    |                 |          |
| Applicable Value(s):                                                                        |                 |          |
| Limitation(s): None                                                                         |                 |          |
| Description: Tis card defines the azimuthal angle location where each pad is located. These |                 |          |
| values should correspond to the centerpoint of each arc.                                    |                 |          |
| Notes: None                                                                                 |                 |          |

# ${\bf pad\_nonuniform\_arc}\ {\bf pad\_nonuniform\_arc}$

| pad_nonuniform_arc       | Array of Floats | Optional |
|--------------------------|-----------------|----------|
| Units: degrees (default) |                 |          |



#### pad\_nonuniform\_arc, continued...

Applicable Value(s):

Limitation(s): None

Description: This card is used to define the arc length for each corresponding neutron pad location defined in the pad card. Therefore, each pad can be of different arc lengths. If all pads are the same arc length, this card is not needed and the single pad\_arc value from the pad card will suffice

Notes: This card requires the pad card to be defined.

#### vessel\_mats vessel\_radii

| vessel_mats                    | Character String                        | Optional |
|--------------------------------|-----------------------------------------|----------|
| Units: N/A                     |                                         |          |
| Applicable Value(s):           |                                         |          |
| Limitation(s): None            |                                         |          |
| Description: Vessel materials. |                                         |          |
| Notes: Every vessel_mats m     | nust have a corresponding vessel_radii. |          |

| vessel_radii                  | Float                                  |            | Optio  | onal |
|-------------------------------|----------------------------------------|------------|--------|------|
| Units: N/A, cm                |                                        |            |        |      |
| Applicable Value(s): $, >= 0$ |                                        |            |        |      |
| Limitation(s): None           |                                        |            |        |      |
| Description: Vessel radii.    |                                        |            |        |      |
| Notes: Every vessel_radii     | must have a corresponding vessel_mats. | Example: v | ressel | mod  |
| 187.9 ss 193.7 mod 219.1      | ss 219.7 cs 241.3                      |            |        |      |

#### hole hole\_x hole\_y hole\_radius

| hole_x                       | Float                                                   | Optional   |
|------------------------------|---------------------------------------------------------|------------|
| Units: cm (default)          |                                                         |            |
| Applicable Value(s):         |                                                         |            |
| Limitation(s): None          |                                                         |            |
| Description: This card is us | sed to specify the x location of the centerpoint of the | hole being |
| defined.                     |                                                         |            |
| Notes: None                  |                                                         |            |

| hole_y                      | Float                                                   | Optional   |
|-----------------------------|---------------------------------------------------------|------------|
| Units: cm (default)         |                                                         |            |
| Applicable Value(s):        |                                                         |            |
| Limitation(s): None         |                                                         |            |
| Description: This card is u | sed to specify the y location of the centerpoint of the | hole being |
| defined.                    |                                                         |            |
| Notes: None                 |                                                         |            |



| hole_radius                                                                     | Float | Optional |
|---------------------------------------------------------------------------------|-------|----------|
| Units: cm (default)                                                             |       |          |
| Applicable Value(s):                                                            |       |          |
| Limitation(s): None                                                             |       |          |
| Description: This card is used to specify the radius of the hole being defined. |       |          |
| Notes: None                                                                     |       |          |

### ${\bf core\_shape} \ {\bf core\_shape}$

| core_shape                                                                                       | 2D Integer Map | Required |
|--------------------------------------------------------------------------------------------------|----------------|----------|
| Units: N/A                                                                                       |                |          |
| Applicable Value(s): , 0 or 1                                                                    |                |          |
| Limitation(s): None                                                                              |                |          |
| Description: Square map showing the fuel assembly locations. Enter 1 for fuel assembly locations |                |          |
| and 0 for empty locations.                                                                       |                |          |
| Notes: None                                                                                      |                |          |

#### $assm\_map$ $assm\_map$

| assm_map                                                                      | 2D Character String Map                              | Required    |
|-------------------------------------------------------------------------------|------------------------------------------------------|-------------|
| Units: N/A                                                                    |                                                      |             |
| Applicable Value(s):                                                          |                                                      |             |
| Limitation(s): None                                                           |                                                      |             |
| Description: Core map of the                                                  | e fuel assembly types. The assembly types correspond | to assembly |
| labels in the [ASSEMBLY] block. All fuel assemblies must have a type defined. |                                                      |             |
| Notes: None                                                                   |                                                      |             |

### ${\bf rotate\_map}\ {\bf rotate\_map}$

| rotate_map                                   | 2D Integer Map | Optional |
|----------------------------------------------|----------------|----------|
| Units: N/A                                   |                |          |
| Applicable Value(s): , 0, 1, 2               | , or 3         |          |
| Limitation(s): None                          |                |          |
| Description: Core map of assembly rotations. |                |          |
| Notes: None                                  |                |          |

## ${\bf insert\_rotate\_map} \ {\bf insert\_rotate\_map}$

| insert_rotate_map                    | 2D Integer Map | Optional |
|--------------------------------------|----------------|----------|
| Units: N/A                           |                |          |
| Applicable Value(s): , 0, 1, 2, or 3 |                |          |
| Limitation(s): None                  |                |          |



# insert\_rotate\_map, continued...

| Description: Core map of assembly insert rotations. |  |
|-----------------------------------------------------|--|
| Notes: None                                         |  |

### $insert\_map$ $insert\_map$

| insert_map                                                                             | 2D Character String Map                                   | Optional   |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------|------------|
| Units: N/A                                                                             |                                                           |            |
| Applicable Value(s):                                                                   |                                                           |            |
| Limitation(s): None                                                                    |                                                           |            |
| Description: Core map of the                                                           | he fuel insert types and locations. The insert types corr | respond to |
| insert labels in the [INSERT] block. Use a dash to specify assemblies with no inserts. |                                                           |            |
| Notes: None                                                                            |                                                           |            |

# $\mathbf{det\_map} \ \det \underline{\phantom{a}} \mathbf{map}$

| det_map                                                                                      | 2D Character String Map | Optional |
|----------------------------------------------------------------------------------------------|-------------------------|----------|
| Units: N/A                                                                                   |                         |          |
| Applicable Value(s):                                                                         |                         |          |
| Limitation(s): None                                                                          |                         |          |
| Description: Core map of the detector types and locations. The detector types correspond to  |                         |          |
| detector labels in the [DETECTOR] block. Use a dash to specify assemblies with no detectors. |                         |          |
| Notes: None                                                                                  |                         |          |

# $\mathbf{crd\_map}\ \mathbf{crd\_map}$

| crd_map                                                                                        | 2D Character String Map | Optional |  |
|------------------------------------------------------------------------------------------------|-------------------------|----------|--|
| Units: N/A                                                                                     |                         |          |  |
| Applicable Value(s):                                                                           |                         |          |  |
| Limitation(s): None                                                                            |                         |          |  |
| Description: Core map of the control rod types and locations. The control rod types correspond |                         |          |  |
| to control rod labels in the [CONTROL] block. Use a dash to specify assemblies with no control |                         |          |  |
| rods.                                                                                          |                         |          |  |
| Notes: None                                                                                    |                         |          |  |

## $crd\_bank \ crd\_bank$

| crd_bank                                                                                          | 2D Character String Map                                | Optional |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------|
| Units: N/A                                                                                        |                                                        |          |
| Applicable Value(s):                                                                              |                                                        |          |
| Limitation(s): None                                                                               |                                                        |          |
| Description: Core map of the control rod bank labels. These labels are used to position groups of |                                                        |          |
| control rods by bank label.                                                                       | Use a dash to specify assemblies with no control rods. |          |



# crd\_bank, continued...

Notes: None

# ${\bf lower\_plate}\ lower\_mat\ lower\_thick\ lower\_vfrac$

| lower_mat                               | Character String | Optional |
|-----------------------------------------|------------------|----------|
| Units: N/A                              |                  |          |
| Applicable Value(s):                    |                  |          |
| Limitation(s): None                     |                  |          |
| Description: Lower core plate material. |                  |          |
| Notes: None                             |                  |          |

| lower_thick                              | Float | Optional |
|------------------------------------------|-------|----------|
| Units: N/A, cm                           |       |          |
| Applicable Value(s): $,>=0$              |       |          |
| Limitation(s): None                      |       |          |
| Description: Lower core plate thickness. |       |          |
| Notes: None                              |       |          |

| lower_vfrac                     | Float                                                  | Optional    |
|---------------------------------|--------------------------------------------------------|-------------|
| Units: N/A                      |                                                        |             |
| Applicable Value(s): $, >= 0$ , | ,<= 1                                                  |             |
| Limitation(s): None             |                                                        |             |
| Description: Lower core pla     | te material volume fraction. Remainder of volume fract | ion will be |
| filled with coolant.            |                                                        |             |
| Notes: None                     |                                                        |             |

## upper\_plate upper\_mat upper\_thick upper\_vfrac

| upper_mat                               | Character String | Optional |
|-----------------------------------------|------------------|----------|
| Units: N/A                              |                  |          |
| Applicable Value(s):                    |                  |          |
| Limitation(s): None                     |                  |          |
| Description: Upper core plate material. |                  |          |
| Notes: None                             |                  |          |

| upper_thick                  | Float        | Optional |
|------------------------------|--------------|----------|
| Units: N/A, cm               |              |          |
| Applicable Value(s): $,>=0$  |              |          |
| Limitation(s): None          |              |          |
| Description: Upper core plat | e thickness. |          |



# upper\_thick, continued...

Notes: None

| upper_vfrac                     | Float                                                     | Optional        |
|---------------------------------|-----------------------------------------------------------|-----------------|
| Units: N/A                      |                                                           |                 |
| Applicable Value(s): $, >= 0$ , | <= 1                                                      |                 |
| Limitation(s): None             |                                                           |                 |
| Description: Upper core pla     | te material volume fraction. Remainder of volume fraction | raction will be |
| filled with coolant.            |                                                           |                 |
| Notes: None                     |                                                           |                 |

# $\mathbf{bc\_sym}\ \mathrm{bc\_sym}$

| bc_sym                        | Character String                      |             | Optional      |
|-------------------------------|---------------------------------------|-------------|---------------|
| Units: N/A                    |                                       |             |               |
| Applicable Value(s): , rot, m | ir                                    |             |               |
| Limitation(s): None           |                                       |             |               |
| Description: Symmetry flag    | for the core when using qtr-symmetry. | Flag is not | used in full- |
| symmetry.                     |                                       |             |               |
| Notes: None                   |                                       |             |               |

## $\mathbf{bc\_bot}$ bc\_bot

| bc_bot                                                    | Character String | Optional |
|-----------------------------------------------------------|------------------|----------|
| Units: N/A                                                |                  |          |
| Applicable Value(s): vacuum (default), reflecting         |                  |          |
| Limitation(s): None                                       |                  |          |
| Description: Bottom neutron transport boundary condition. |                  |          |
| Notes: None                                               |                  |          |

# $\mathbf{bc\_top}\ \mathrm{bc\_top}$

| bc_top                                                 | Character String | Optional |
|--------------------------------------------------------|------------------|----------|
| Units: N/A                                             |                  |          |
| Applicable Value(s): vacuum (default), reflecting      |                  |          |
| Limitation(s): None                                    |                  |          |
| Description: Top neutron transport boundary condition. |                  |          |
| Notes: None                                            |                  |          |

### $bc\_rad \ bc\_rad$



| bc_rad                                                    | Character String | Optional |
|-----------------------------------------------------------|------------------|----------|
| Units: N/A                                                |                  |          |
| Applicable Value(s): vacuum (default), reflecting         |                  |          |
| Limitation(s): None                                       |                  |          |
| Description: Radial neutron transport boundary condition. |                  |          |
| Notes: None                                               |                  |          |

#### **xlabel** xlabel

| xlabel                                               | Character Strings                                         | Optional    |
|------------------------------------------------------|-----------------------------------------------------------|-------------|
| Units: N/A                                           |                                                           |             |
| Applicable Value(s):                                 |                                                           |             |
| Limitation(s): None                                  |                                                           |             |
| Description: List of 2-charac                        | ter assembly position labels in x-direction. These values | are used in |
| the edit maps.                                       |                                                           |             |
| Notes: See Section 4.4 and Section 6.1 for examples. |                                                           |             |

# $\mathbf{ylabel}$ ylabel

| ylabel                     | Character Strings                                         | Optional         |
|----------------------------|-----------------------------------------------------------|------------------|
| Units: N/A                 |                                                           | ·                |
| Applicable Value(s):       |                                                           |                  |
| Limitation(s): None        |                                                           |                  |
| Description: List of 2-cha | racter assembly position labels in y-direction. These val | lues are used in |
| the edit maps.             |                                                           |                  |
| Notes: See Section 4.4 an  | d Section 6.1 for examples.                               |                  |

### ${\bf label\_format} \ {\bf label\_format}$

| label_format                                                | Character String | Optional |
|-------------------------------------------------------------|------------------|----------|
| Units: N/A                                                  |                  |          |
| Applicable Value(s): x-y (default), y-x, .x-y, .y-x         |                  |          |
| Limitation(s): None                                         |                  |          |
| Description: Format of label entries in shuffle_label card. |                  |          |
| Notes: None                                                 |                  |          |

# $\mathbf{height}$ height

| height                      | Float | Required |
|-----------------------------|-------|----------|
| Units: N/A, cm              |       |          |
| Applicable Value(s): $,>=0$ |       |          |
| Limitation(s): None         |       |          |



## height, continued...

Description: Total axial distance from bottom core plate to upper core plate. Distance does not include core plate thicknesses.

Notes: None

#### $\mathbf{mat}$ mat

| mat                                                                                  | Character Strings | Optional |
|--------------------------------------------------------------------------------------|-------------------|----------|
| Units: N/A                                                                           |                   |          |
| Applicable Value(s):                                                                 |                   |          |
| Limitation(s): None                                                                  |                   |          |
| Description: Refer to the detailed materials description given in the User's Manual. |                   |          |
| Notes: None                                                                          |                   |          |

#### lower\_ref lower\_refl\_mats lower\_refl\_thicks lower\_refl\_vfracs

| lower_refl_mats                         | Character String | Optional |
|-----------------------------------------|------------------|----------|
| Units: N/A                              |                  |          |
| Applicable Value(s):                    |                  |          |
| Limitation(s): None                     |                  |          |
| Description: Lower reflector materials. |                  |          |
| Notes: None                             |                  |          |

| lower_refl_thicks                         | Float | Optional |
|-------------------------------------------|-------|----------|
| Units: N/A, cm                            |       |          |
| Applicable Value(s): $,>=0$               |       |          |
| Limitation(s): None                       |       |          |
| Description: Lower reflector thicknesses. |       |          |
| Notes: None                               |       |          |

| lower_refl_vfracs                              | Float | Optional |
|------------------------------------------------|-------|----------|
| Units: N/A                                     |       |          |
| Applicable Value(s): $,>=0,<=1$                |       |          |
| Limitation(s): None                            |       |          |
| Description: Lower reflector volume fractions. |       |          |
| Notes: None                                    |       |          |

### upper\_ref upper\_refl\_mats upper\_refl\_thicks upper\_refl\_vfracs

| upper_refl_mats | Character String | Optional |
|-----------------|------------------|----------|
| Units: N/A      |                  |          |



upper\_refl\_mats, continued...

| Applicable Value(s):                    |
|-----------------------------------------|
| Limitation(s): None                     |
| Description: Upper reflector materials. |
| Notes: None                             |

| upper_refl_thicks                         | Float | Optional |
|-------------------------------------------|-------|----------|
| Units: N/A, cm                            |       |          |
| Applicable Value(s): $,>=0$               |       |          |
| Limitation(s): None                       |       |          |
| Description: Upper reflector thicknesses. |       |          |
| Notes: None                               |       |          |

| upper_refl_vfracs                              | Float | Optional |
|------------------------------------------------|-------|----------|
| Units: N/A                                     |       |          |
| Applicable Value(s): $,>=0,<=1$                |       |          |
| Limitation(s): None                            |       |          |
| Description: Upper reflector volume fractions. |       |          |
| Notes: None                                    |       |          |

### ${\bf reactor\_type}\ {\bf reactor\_type}$

| reactor_type                            | Character String | Optional |
|-----------------------------------------|------------------|----------|
| Units: N/A                              |                  |          |
| Applicable Value(s): PWR (default), BWR |                  |          |
| Limitation(s): None                     |                  |          |
| Description: Model reactor type.        |                  |          |
| Notes: None                             |                  |          |

# ${\bf source} \ {\bf mat\_id} \ {\bf iso\_id} \ {\bf iso\_scal} \ / \ {\bf spectrum(:)} \ / \ {\bf stt\_str} \ {\bf str\_mult}$

| mat_id                                                                       | Integer | Optional |
|------------------------------------------------------------------------------|---------|----------|
| Units: N/A                                                                   |         |          |
| Applicable Value(s):                                                         |         |          |
| Limitation(s): None                                                          |         |          |
| Description: An integer id corresponding to the material of external source. |         |          |
| Notes: None                                                                  |         |          |

| iso_id               | Integer | Optional |
|----------------------|---------|----------|
| Units: N/A           |         |          |
| Applicable Value(s): |         |          |



iso\_id, continued...

Limitation(s): None

Description: An integer value representing an isotope on whose absolute atom quantity the source strength will be scaled. Input should follow the formate ZZAAA. Omitting this value indicates that no isotope will be used and the user will provide an absolute strength flux spectrum

Notes: None

Units: N/A

Applicable Value(s):

Limitation(s): None

Description: A positive real corresponding to the scaling factor to use when scaling the fractional flux spectrum to its absolute strength. This scaling is in terms of the number of atoms of the scaling isotope which appears in a given FSR. Units are in neutrons per second per unit volume

(cc) per number of isotope atoms. This value is only required if the user provides iso\_id(i).

Notes: None

Notes: None

Spectrum Float Optional
Units: N/A

Applicable Value(s):
Limitation(s): None

Description: Positive real values corresponding to the either the fractional or absolute source spectrum. If scaling isotope information is provided this represents a fractional spectrum, otherwise it represents an absolute spectrum in units of neutrons per second per unit of volume (cc). The number of values much match the number of energy groups of the problem. Values cannot be negative and must sum to nearly 1.0 if the input corresponds to a fractional spectrum.

Units: N/A

Applicable Value(s):

Limitation(s): None

Description: A real greater than 0.0 less than or equal to 1.0 corresponding to the fractional starting strength of the source. This is how much of the source will be applied during the first external source iteration. If this value is not provided it will default to full strength.

Notes: None

| str_mult             | Optional |
|----------------------|----------|
| Units: N/A           |          |
| Applicable Value(s): |          |
| Limitation(s): None  |          |



#### str\_mult, continued...

Description: A real greater than 1.0 corresponding to the multiplicative increase of the source strength. If stt\_str is provided, then this value must be provided.

Notes: None

#### steam\_generator sg\_type sg\_alloy sg\_area sg\_plug\_frac

| sg_type                                                                                 | Character String | Optional |
|-----------------------------------------------------------------------------------------|------------------|----------|
| Units: none (default)                                                                   |                  |          |
| Applicable Value(s): , oncethrough, utube                                               |                  |          |
| Limitation(s): None                                                                     |                  |          |
| Description: Steam generator type.                                                      |                  |          |
| Notes: Used in the chemistry source term calculation to calculate coolant temperatures. |                  | res.     |

| sg_alloy                                                          | Integer                                                   | Optional  |
|-------------------------------------------------------------------|-----------------------------------------------------------|-----------|
| Units: none (default)                                             |                                                           |           |
| Applicable Value(s): , 600, 6                                     | 90, 800, 304                                              |           |
| Limitation(s): None                                               |                                                           |           |
| Description: Steam generator tubing stainless steel alloy number. |                                                           |           |
| Notes: Used in the chemistry                                      | y source term calculation to determine surface material p | roperties |

| sg_area                         | Float                                                      | Optional    |
|---------------------------------|------------------------------------------------------------|-------------|
| Units: m <sup>2</sup> (default) |                                                            |             |
| Applicable Value(s): $, >= 0$   |                                                            |             |
| Limitation(s): None             |                                                            |             |
| Description: Total surface ar   | rea of steam generator tubing.                             |             |
| Notes: Used in the chemistry    | source term calculation to determine amount of source term | rm created. |

| sg_plug_frac                                                                                      | Float                    | Optional |  |  |
|---------------------------------------------------------------------------------------------------|--------------------------|----------|--|--|
| Units: none (default)                                                                             | Units: none (default)    |          |  |  |
| Applicable Value(s): $, >= 0,$                                                                    | <= 1                     |          |  |  |
| Limitation(s): None                                                                               |                          |          |  |  |
| Description: Steam generato                                                                       | r plugged area fraction. |          |  |  |
| Notes: The effective area of the steam generator used in the chemistry source term calculation is |                          |          |  |  |
| $sg\_area*(1-plug\_frac).$                                                                        |                          |          |  |  |

### hot\_leg\_piping hot\_leg\_alloy hot\_leg\_area

| hot_leg_alloy                 | Integer      | Optional |
|-------------------------------|--------------|----------|
| Units: none (default)         |              |          |
| Applicable Value(s): , 600, 6 | 90, 800, 304 |          |



### hot\_leg\_alloy, continued...

Limitation(s): None

Description: Hot leg piping stainless steel alloy number.

Notes: Used in the chemistry source term calculation to determine surface material properties.

| hot_leg_area                                                                                     | Float | Optional |
|--------------------------------------------------------------------------------------------------|-------|----------|
| Units: m <sup>2</sup> (default)                                                                  |       |          |
| Applicable Value(s): $, >= 0$                                                                    |       |          |
| Limitation(s): None                                                                              |       |          |
| Description: Total surface area of hot leg piping.                                               |       |          |
| Notes: Used in the chemistry source term calculation to determine amount of source term created. |       |          |

#### cold\_leg\_piping cold\_leg\_alloy cold\_leg\_area

| cold_leg_alloy                                             | Integer                                                   | Optional   |
|------------------------------------------------------------|-----------------------------------------------------------|------------|
| Units: none (default)                                      |                                                           |            |
| Applicable Value(s): , 600, 690, 800, 304                  |                                                           |            |
| Limitation(s): None                                        |                                                           |            |
| Description: Cold leg piping stainless steel alloy number. |                                                           |            |
| Notes: Used in the chemistry                               | y source term calculation to determine surface material p | roperties. |

| cold_leg_area                   | Float                                                     | Optional   |
|---------------------------------|-----------------------------------------------------------|------------|
| Units: m <sup>2</sup> (default) |                                                           |            |
| Applicable Value(s): $,>=0$     |                                                           |            |
| Limitation(s): None             |                                                           |            |
| Description: Total surface as   | rea of cold leg piping.                                   |            |
| Notes: Used in the chemistry    | source term calculation to determine amount of source ter | m created. |

#### cleanup\_rated\_flow cleanup\_rated\_flow

| cleanup_rated_flow                                                | Float | Optional |
|-------------------------------------------------------------------|-------|----------|
| Units: kg/s (default)                                             |       |          |
| Applicable Value(s): $,>=0$                                       |       |          |
| Limitation(s): None                                               |       |          |
| Description: Rated flow rate of coolant chemistry cleanup system. |       |          |
| Notes: None                                                       |       |          |

### ${\bf material\_perturbation\_file} \ {\bf material\_perturbation\_file}$

| material_perturbation_file | Character String | Optional |
|----------------------------|------------------|----------|
| Units: N/A                 |                  |          |



### ${\tt material\_perturbation\_file, continued...}$

Applicable Value(s):
Limitation(s): None
Description: Name of the file to read in that contains material perturbation information in h5 format.
Notes: None

#### bioshield bioshield

| bioshield                    | Strings and doubles                                       | Optional   |
|------------------------------|-----------------------------------------------------------|------------|
| Units: N/A                   |                                                           |            |
| Applicable Value(s): None (c | default)                                                  |            |
| Limitation(s): None          |                                                           |            |
| Description: Bioshield mater | rials and radii beyond the vessel used to automatically g | enerate an |
| Omnibus excore input         |                                                           |            |
| Notes: Materials must be de  | fined in the Omnibus template input                       |            |

#### $\det \det$

| det                         | Strings and doubles                                 | Optional    |
|-----------------------------|-----------------------------------------------------|-------------|
| Units: N/A                  |                                                     |             |
| Applicable Value(s): None ( | default)                                            |             |
| Limitation(s): None         |                                                     |             |
| Description: Defined detec  | tor types for automatic generation of an Omnibus ex | core input. |
| Requires bioshield card.    |                                                     |             |
| Notes: Materials must be de | fined in the Omnibus template input                 |             |

#### $det\_locations$ $det\_locations$

| det_locations                 | Strings and doubles                                    | Optional    |
|-------------------------------|--------------------------------------------------------|-------------|
| Units: N/A                    |                                                        |             |
| Applicable Value(s): None (c  | default)                                               |             |
| Limitation(s): None           |                                                        |             |
| Description: Defined detector | or locations for automatic generation of an Omnibus ex | core input. |
| Requires bioshield and det c  | ards.                                                  |             |
| Notes: Materials must be de   | fined in the Omnibus template input                    |             |

## 5.4. BLOCK ASSEMBLY

#### title title

| title | Character String | Optional             |
|-------|------------------|----------------------|
|       | 0.0              | ntinued on next nece |



# title, continued...

| Units: N/A                                        |
|---------------------------------------------------|
| Applicable Value(s):                              |
| Limitation(s): None                               |
| Description: Long descriptive title for assembly. |
| Notes: None                                       |

# $\mathbf{npin} \,\, \mathrm{npin}$

| npin                                                           | Integer | Required |
|----------------------------------------------------------------|---------|----------|
| Units: N/A                                                     |         |          |
| Applicable Value(s): $, > 0$                                   |         |          |
| Limitation(s): None                                            |         |          |
| Description: The number of rods along the edge of an assembly. |         |          |
| Notes: None                                                    |         |          |

# $\mathbf{ppitch}$ ppitch

| ppitch                      | Float | Required |
|-----------------------------|-------|----------|
| Units: N/A, cm              |       |          |
| Applicable Value(s):        |       |          |
| Limitation(s): None         |       |          |
| Description: Pincell pitch. |       |          |
| Notes: None                 |       |          |

### $\mathbf{cell} \,\, \mathrm{cell}$

| cell                                                                   | Character Strings and Floats | Required |
|------------------------------------------------------------------------|------------------------------|----------|
| Units: N/A                                                             |                              |          |
| Applicable Value(s):                                                   |                              |          |
| Limitation(s): None                                                    |                              |          |
| Description: Refer to the cell description given in the User's Manual. |                              |          |
| Notes: See Section 2.3.2 for o                                         | examples.                    | _        |

#### lattice lattice

| lattice                       | Character String               | Required |
|-------------------------------|--------------------------------|----------|
| Units: N/A                    |                                |          |
| Applicable Value(s):          |                                |          |
| Limitation(s): None           |                                |          |
| Description: Obsolete alias f | or rodmap. Use rodmap instead. |          |
| Notes: None                   |                                |          |



# ${\bf rodmap} \ {\bf axial\_label} \ {\bf cell\_map}$

| axial_label                                              | Character String | Required |
|----------------------------------------------------------|------------------|----------|
| Units: N/A                                               |                  |          |
| Applicable Value(s):                                     |                  |          |
| Limitation(s): None                                      |                  |          |
| Description: Label for this axial elevation description. |                  |          |
| Notes: See Section 2.3.3 for                             | examples.        |          |

| cell_map                     | 2D Character String Map                                 | Required |
|------------------------------|---------------------------------------------------------|----------|
| Units: N/A                   |                                                         |          |
| Applicable Value(s):         |                                                         |          |
| Limitation(s): None          |                                                         |          |
| Description: Lattice map for | this axial elevation. Use a dash for an empty location. |          |
| Notes: See Section 2.3.3 for | examples.                                               |          |

### axial Label axial\_labels axial\_elevations

| Label                                                                                | Character String | Required |
|--------------------------------------------------------------------------------------|------------------|----------|
| Units: N/A                                                                           |                  |          |
| Applicable Value(s):                                                                 |                  |          |
| Limitation(s): None                                                                  |                  |          |
| Description: Label for this assembly. Label corresponds to assm_map in [CORE] block. |                  | ck.      |
| Notes: See Section 2.3.4 for examples.                                               |                  |          |

| axial_labels                  | Character Strings                                       | Required      |
|-------------------------------|---------------------------------------------------------|---------------|
| Units: N/A                    |                                                         |               |
| Applicable Value(s):          |                                                         |               |
| Limitation(s): None           |                                                         |               |
| Description: List of axial la | bels for this assembly description. Correspond to label | ls in lattice |
| maps.                         |                                                         |               |
| Notes: See Section 2.3.4 for  | examples.                                               |               |

| axial_elevations                                                     | Float     | R | Required |
|----------------------------------------------------------------------|-----------|---|----------|
| Units: N/A, cm                                                       |           |   |          |
| Applicable Value(s):                                                 |           |   |          |
| Limitation(s): None                                                  |           |   |          |
| Description: List of axial elevations for this assembly description. |           |   |          |
| Notes: See Section 2.3.4 for                                         | examples. |   |          |

# ${f modden}$ label material mass height



| label                                           | Character String | Optional |
|-------------------------------------------------|------------------|----------|
| Units: N/A                                      |                  |          |
| Applicable Value(s):                            |                  |          |
| Limitation(s): None                             |                  |          |
| Description: Grid label for a single grid type. |                  |          |
| Notes: See Section 2.3.5 for e                  | examples.        |          |

| material                                       | Character String | Optional |
|------------------------------------------------|------------------|----------|
| Units: N/A                                     |                  |          |
| Applicable Value(s):                           |                  |          |
| Limitation(s): None                            |                  |          |
| Description: Grid material for this grid type. |                  |          |
| Notes: See Section 2.3.5 for examples.         |                  |          |

| mass                                       | Float     | Optional |
|--------------------------------------------|-----------|----------|
| Units: N/A, g                              |           |          |
| Applicable Value(s): $, > 0$               |           |          |
| Limitation(s): None                        |           |          |
| Description: Grid mass for this grid type. |           |          |
| Notes: See Section 2.3.5 for               | examples. |          |

| height                                       | Float     | Optional |
|----------------------------------------------|-----------|----------|
| Units: N/A, cm                               |           |          |
| Applicable Value(s):                         |           |          |
| Limitation(s): None                          |           |          |
| Description: Grid height for this grid type. |           |          |
| Notes: See Section 2.3.5 for                 | examples. |          |

# $\mathbf{grid\_axial} \ \mathrm{grid\_map} \ \mathrm{grid\_elev}$

| grid_map                    | Character String                                        | Optional          |
|-----------------------------|---------------------------------------------------------|-------------------|
| Units: N/A                  |                                                         |                   |
| Applicable Value(s):        |                                                         |                   |
| Limitation(s): None         |                                                         |                   |
| Description: List of spacer | grid labels for all grids in an assembly. All labels mu | ist correspond to |
| grid card.                  |                                                         |                   |
| Notes: See Section 2.3.5 fo | or examples.                                            |                   |

| grid_elev      | Float | Optional |
|----------------|-------|----------|
| Units: N/A, cm |       |          |



### grid\_elev, continued...

Applicable Value(s):

Limitation(s): None

Description: List of spacer grid elevations for all grids in an assembly. Elevations refer to the grid midpoint.

Notes: See Section 2.3.5 for examples.

### ${\bf lower\_nozzle\_lower\_nozzle\_height\ lower\_nozzle\_mass}$

| lower_nozzle_comp           | Character String | Optional |
|-----------------------------|------------------|----------|
| Units: N/A                  |                  |          |
| Applicable Value(s):        |                  |          |
| Limitation(s): None         |                  |          |
| Description: Lower nozzle m | aterial.         |          |
| Notes: None                 |                  |          |

| lower_nozzle_height               | Float | Optional |
|-----------------------------------|-------|----------|
| Units: N/A, cm                    |       |          |
| Applicable Value(s): $, > 0$      |       |          |
| Limitation(s): None               |       |          |
| Description: Lower nozzle height. |       |          |
| Notes: None                       |       |          |

| lower_nozzle_mass             | Float                                          | Optional               |
|-------------------------------|------------------------------------------------|------------------------|
| Units: N/A, g                 |                                                |                        |
| Applicable Value(s): $, > 0$  |                                                |                        |
| Limitation(s): None           |                                                |                        |
| Description: Lower nozzle m   | nass. Code will calculate the volume of the no | ezzle given the nozzle |
| mass, and use coolant for ren | maining volume.                                |                        |
| Notes: None                   |                                                |                        |

### upper\_nozzle upper\_nozzle\_comp upper\_nozzle\_height upper\_nozzle\_mass

| upper_nozzle_comp                   | Character String | Optional |
|-------------------------------------|------------------|----------|
| Units: N/A                          |                  |          |
| Applicable Value(s):                |                  |          |
| Limitation(s): None                 |                  |          |
| Description: Upper nozzle material. |                  |          |
| Notes: None                         |                  |          |



| upper_nozzle_height               | Float | Optional |
|-----------------------------------|-------|----------|
| Units: N/A, cm                    |       |          |
| Applicable Value(s): $, > 0$      |       |          |
| Limitation(s): None               |       |          |
| Description: Upper nozzle height. |       |          |
| Notes: None                       |       |          |

| upper_nozzle_mass             | Float                                             | Optional            |
|-------------------------------|---------------------------------------------------|---------------------|
| Units: N/A, g                 |                                                   |                     |
| Applicable Value(s): $, > 0$  |                                                   |                     |
| Limitation(s): None           |                                                   |                     |
| Description: Upper nozzle n   | nass. Code will calculate the volume of the nozzl | le given the nozzle |
| mass, and use coolant for re- | maining volume.                                   |                     |
| Notes: None                   |                                                   |                     |

### **fuel** fuel

| fuel                         | Character String and Floats                             | Optional      |
|------------------------------|---------------------------------------------------------|---------------|
| Units: N/A                   |                                                         |               |
| Applicable Value(s):         |                                                         |               |
| Limitation(s): None          |                                                         |               |
| Description: Refer to the de | tailed fuel materials description given in the User's N | Manual and in |
| Section 3.3 of this document |                                                         |               |
| Notes: None                  |                                                         |               |

#### $\mathbf{mat} \,\, \mathrm{mat}$

| mat                           | Character Strings and Floats                               | Optional   |
|-------------------------------|------------------------------------------------------------|------------|
| Units: N/A                    |                                                            |            |
| Applicable Value(s):          |                                                            |            |
| Limitation(s): None           |                                                            |            |
| Description: Refer to the det | ailed materials description given in the User's Manual and | in Section |
| 3.1 of this document.         |                                                            |            |
| Notes: None                   |                                                            |            |

### **gap** gapw gapn

| gapw                        | Float | Optional |
|-----------------------------|-------|----------|
| Units: N/A, cm              |       |          |
| Applicable Value(s): $,>=0$ |       |          |
| Limitation(s): None         |       |          |
| Description: Wide-gap width | 1     |          |
| Notes: BWR only.            |       |          |



| gapn                          | Float | Optional |
|-------------------------------|-------|----------|
| Units: N/A, cm                |       |          |
| Applicable Value(s): $,>=0$   |       |          |
| Limitation(s): None           |       |          |
| Description: Narrow-gap width |       |          |
| Notes: BWR only.              |       |          |

### **channel\_box** chanmat chanth chanrad cornerth cornerlen

| chanmat                            | Character String | Optional |
|------------------------------------|------------------|----------|
| Units: N/A                         |                  |          |
| Applicable Value(s):               |                  |          |
| Limitation(s): None                |                  |          |
| Description: Channel box material. |                  |          |
| Notes: None                        |                  |          |

| chanth                              | Float | Optional |
|-------------------------------------|-------|----------|
| Units: N/A, cm                      |       |          |
| Applicable Value(s): $,>=0$         |       |          |
| Limitation(s): None                 |       |          |
| Description: Channel box thickness. |       |          |
| Notes: None                         |       |          |

| chanrad                                        | Float | Optional |
|------------------------------------------------|-------|----------|
| Units: N/A, cm                                 |       |          |
| Applicable Value(s): $,>=0$                    |       |          |
| Limitation(s): None                            |       |          |
| Description: Channel box inside corner radius. |       |          |
| Notes: None                                    |       |          |

| cornerth                                      | Float | Optional |
|-----------------------------------------------|-------|----------|
| Units: N/A, cm                                |       |          |
| Applicable Value(s): $,>=0$                   |       |          |
| Limitation(s): None                           |       |          |
| Description: Thickness of channel box corner. |       |          |
| Notes: Not yet functional.                    |       |          |

| cornerlen                   | Float | Optional |
|-----------------------------|-------|----------|
| Units: N/A, cm              |       |          |
| Applicable Value(s): $,>=0$ |       |          |
| Limitation(s): None         |       |          |



#### cornerlen, continued...

Description: Length of thick corners measured from the channel corner.

Notes: Not yet functional.

#### temptable table\_tag

| temptable                                                             | Character String | Optional |
|-----------------------------------------------------------------------|------------------|----------|
| Units: N/A                                                            |                  |          |
| Applicable Value(s):                                                  |                  |          |
| Limitation(s): requires a temperature table file to be included below |                  |          |

Limitation(s): requires a temperature table file to be included below

Description: This flag defines a temperature table in the assembly block that can be used in the cell definitions; each cell can have a separate table if desired.

Notes: Tables as generated through the Bison temperature table process, which define temptable\_boundary, temptable\_qprime, and temptable\_polynomial can be included after the tag is specified. See the below example for usage with specification in the cell flag:

temptable U26 include u26.tab temptable GAD include ug3.tab

cell 2 0.4096 0.418 0.475 / U26 he zirc4 / U26 cell 3 0.4096 0.418 0.475 / UG3 he zirc4 / GAD

#### 5.5. BLOCK CONTROL

#### title title

| title                                                            | Character String | Optional |
|------------------------------------------------------------------|------------------|----------|
| Units: N/A                                                       |                  |          |
| Applicable Value(s):                                             |                  |          |
| Limitation(s): None                                              |                  |          |
| Description: Long descriptive title for control rod description. |                  |          |
| Notes: None                                                      |                  |          |

#### $\mathbf{npin}\ \mathrm{num\_pins}$

| num_pins                                                       | Integer | ] | Required |
|----------------------------------------------------------------|---------|---|----------|
| Units: N/A                                                     |         |   |          |
| Applicable Value(s): $, > 0$                                   |         |   |          |
| Limitation(s): None                                            |         |   |          |
| Description: The number of rods along the edge of an assembly. |         |   |          |
| Notes: None                                                    |         |   |          |



# $\mathbf{stroke}$ stroke maxstep

| stroke                                                                                 | Float     | Required |
|----------------------------------------------------------------------------------------|-----------|----------|
| Units: N/A, cm                                                                         |           |          |
| Applicable Value(s):                                                                   |           |          |
| Limitation(s): None                                                                    |           |          |
| Description: Control rod stroke - distance between full-insertion and full-withdrawal. |           |          |
| Notes: See Section 2.4.1 for                                                           | examples. |          |

| maxstep                                                                        | Float     | Required |
|--------------------------------------------------------------------------------|-----------|----------|
| Units: N/A                                                                     |           |          |
| Applicable Value(s):                                                           |           |          |
| Limitation(s): None                                                            |           |          |
| Description: Total number of steps between full-insertion and full-withdrawal. |           |          |
| Notes: See Section 2.4.1 for                                                   | examples. |          |

### $\mathbf{cell} \,\, \mathrm{cell}$

| cell                                                                   | Character Strings and Floats | Required |
|------------------------------------------------------------------------|------------------------------|----------|
| Units: N/A                                                             |                              |          |
| Applicable Value(s):                                                   |                              |          |
| Limitation(s): None                                                    |                              |          |
| Description: Refer to the cell description given in the User's Manual. |                              |          |
| Notes: See Section 2.4 for ex                                          | amples.                      |          |

# lattice lattice

| lattice                                                     | Character String | Required |
|-------------------------------------------------------------|------------------|----------|
| Units: N/A                                                  |                  |          |
| Applicable Value(s):                                        |                  |          |
| Limitation(s): None                                         |                  |          |
| Description: Obsolete alias for rodmap. Use rodmap instead. |                  |          |
| Notes: None                                                 |                  |          |

## $\mathbf{rodmap}$ label $\mathbf{cell}$ \_map

| label                                                    | Character String | Required |
|----------------------------------------------------------|------------------|----------|
| Units: N/A                                               |                  |          |
| Applicable Value(s):                                     |                  |          |
| Limitation(s): None                                      |                  |          |
| Description: Label for this axial elevation description. |                  |          |
| Notes: See Section 2.4 for ex                            | amples.          |          |



| cell_map                                                                          | 2D Character String Map | Required |
|-----------------------------------------------------------------------------------|-------------------------|----------|
| Units: N/A                                                                        |                         | ·        |
| Applicable Value(s):                                                              |                         |          |
| Limitation(s): None                                                               |                         |          |
| Description: Lattice map for this axial elevation. Use a dash for no control rod. |                         |          |
| Notes: See Section 2.4 for ex                                                     | amples.                 |          |

### axial control\_label axial\_labels axial\_elevations

| control_label                 | Character String                                     | Required     |
|-------------------------------|------------------------------------------------------|--------------|
| Units: N/A                    |                                                      |              |
| Applicable Value(s):          |                                                      |              |
| Limitation(s): None           |                                                      |              |
| Description: Label for this   | control rod description. Label corresponds to crd_ma | ap in [CORE] |
| block.                        |                                                      |              |
| Notes: See Section 2.4 for ex | amples.                                              |              |

| axial_labels                  | Character Strings                      |                  | Required    |
|-------------------------------|----------------------------------------|------------------|-------------|
| Units: N/A                    |                                        |                  |             |
| Applicable Value(s):          |                                        |                  |             |
| Limitation(s): None           |                                        |                  |             |
| Description: List of axial la | bels for this control rod description. | Correspond to la | bels in rod |
| maps.                         |                                        |                  |             |
| Notes: See Section 2.4 for ex | tamples.                               |                  |             |

| $axial_elevations$                                                      | Float | Required |
|-------------------------------------------------------------------------|-------|----------|
| Units: N/A, cm                                                          |       |          |
| Applicable Value(s):                                                    |       |          |
| Limitation(s): None                                                     |       |          |
| Description: List of axial elevations for this control rod description. |       |          |
| Notes: See Section 2.4 for examples.                                    |       |          |

#### $\mathbf{mat} \,\, \mathrm{mat}$

| mat                           | Character Strings and Floats                               | Optional   |
|-------------------------------|------------------------------------------------------------|------------|
| Units: N/A                    |                                                            |            |
| Applicable Value(s):          |                                                            |            |
| Limitation(s): None           |                                                            |            |
| Description: Refer to the det | ailed materials description given in the User's Manual and | in Section |
| 3.1 of this document.         |                                                            |            |
| Notes: None                   |                                                            |            |



**blade** ntube tubecell bladespan bladeth bladerad bladesheath bladewing blademat

| ntube                                                 | Integer | Optional |
|-------------------------------------------------------|---------|----------|
| Units: N/A                                            |         |          |
| Applicable Value(s): $, > 0$                          |         |          |
| Limitation(s): None                                   |         |          |
| Description: Number of rodlets in control blade wing. |         |          |
| Notes: None                                           |         |          |

| tubecell                         | Character String | Optional |
|----------------------------------|------------------|----------|
| Units: N/A                       |                  |          |
| Applicable Value(s):             |                  |          |
| Limitation(s): None              |                  |          |
| Description: Cell ID for rodlet. |                  |          |
| Notes: None                      |                  |          |

| bladespan                                                | Float | Optional |
|----------------------------------------------------------|-------|----------|
| Units: N/A, cm                                           |       |          |
| Applicable Value(s): $, > 0$                             |       |          |
| Limitation(s): None                                      |       |          |
| Description: Control blade span from center to wing tip. |       |          |
| Notes: None                                              |       |          |

| bladeth                                    | Float | Optional |
|--------------------------------------------|-------|----------|
| Units: N/A, cm                             |       |          |
| Applicable Value(s): $, > 0$               |       |          |
| Limitation(s): None                        |       |          |
| Description: Control blade wing thickness. |       |          |
| Notes: None                                |       |          |

| bladerad                                  | Float | Optional |
|-------------------------------------------|-------|----------|
| Units: N/A, cm                            |       |          |
| Applicable Value(s): $, > 0$              |       |          |
| Limitation(s): None                       |       |          |
| Description: Radius of control blade tip. |       |          |
| Notes: None                               |       |          |

| bladesheath                  | Float | Optional |
|------------------------------|-------|----------|
| Units: N/A, cm               |       |          |
| Applicable Value(s): $, > 0$ |       |          |



# bladesheath, continued...

| Limitation(s): None                          |
|----------------------------------------------|
| Description: Control blade sheath thickness. |
| Notes: None                                  |

| bladewing                                         | Float | Optional |
|---------------------------------------------------|-------|----------|
| Units: N/A, cm                                    |       | ·        |
| Applicable Value(s): , > 0                        |       |          |
| Limitation(s): None                               |       |          |
| Description: Blade central structure wing length. |       |          |
| Notes: None                                       |       |          |

| blademat                               | Character String | Optional |
|----------------------------------------|------------------|----------|
| Units: N/A                             |                  |          |
| Applicable Value(s):                   |                  |          |
| Limitation(s): None                    |                  |          |
| Description: Sheath and wing material. |                  |          |
| Notes: None                            |                  |          |

## 5.6. BLOCK INSERT

# title title

| title                                                                | Character String | Optional |
|----------------------------------------------------------------------|------------------|----------|
| Units: N/A                                                           |                  |          |
| Applicable Value(s):                                                 |                  |          |
| Limitation(s): None                                                  |                  |          |
| Description: Long descriptive title for assembly insert description. |                  |          |
| Notes: None                                                          |                  |          |

## $\mathbf{npin} \ \mathrm{num\_pins}$

| num_pins                                                       | Integer | Required |
|----------------------------------------------------------------|---------|----------|
| Units: N/A                                                     |         |          |
| Applicable Value(s): $, > 0$                                   |         |          |
| Limitation(s): None                                            |         |          |
| Description: The number of rods along the edge of an assembly. |         |          |
| Notes: None                                                    |         |          |

### $\mathbf{cell} \,\, \mathrm{cell}$



| cell                                                                   | Character Strings and Floats | Required |
|------------------------------------------------------------------------|------------------------------|----------|
| Units: N/A                                                             |                              |          |
| Applicable Value(s):                                                   |                              |          |
| Limitation(s): None                                                    |                              |          |
| Description: Refer to the cell description given in the User's Manual. |                              |          |
| Notes: See Section 2.5 for examples.                                   |                              |          |

### lattice lattice

| lattice                       | Character String               | Required |
|-------------------------------|--------------------------------|----------|
| Units: N/A                    |                                |          |
| Applicable Value(s):          |                                |          |
| Limitation(s): None           |                                |          |
| Description: Obsolete alias f | or rodmap. Use rodmap instead. |          |
| Notes: None                   |                                |          |

# ${\bf rodmap}\ {\bf label}\ {\bf cell\_map}$

| label                                                   | Character String | Required |
|---------------------------------------------------------|------------------|----------|
| Units: N/A                                              |                  |          |
| Applicable Value(s):                                    |                  |          |
| Limitation(s): None                                     |                  |          |
| Description: Label for this axial elevation description |                  |          |
| Notes: See Section 2.5 for ex                           | amples.          |          |

| cell_map                      | 2D Character String Map                             | Required |
|-------------------------------|-----------------------------------------------------|----------|
| Units: N/A                    |                                                     |          |
| Applicable Value(s):          |                                                     |          |
| Limitation(s): None           |                                                     |          |
| Description: Lattice map for  | this axial elevation. Use a dash for no insert rod. |          |
| Notes: See Section 2.5 for ex | tamples.                                            |          |

### axial control\_label axial\_labels axial\_elevations

| control_label                 | Characte                     | r String                 | Required   |
|-------------------------------|------------------------------|--------------------------|------------|
| Units: N/A                    |                              |                          |            |
| Applicable Value(s):          |                              |                          |            |
| Limitation(s): None           |                              |                          |            |
| Description: Label for this   | assembly insert description. | Label corresponds to ins | ert_map in |
| [CORE] block.                 |                              |                          |            |
| Notes: See Section 2.5 for ex | camples.                     |                          |            |



| axial_labels                   | Character Strings                                    | Required         |
|--------------------------------|------------------------------------------------------|------------------|
| Units: N/A                     |                                                      |                  |
| Applicable Value(s):           |                                                      |                  |
| Limitation(s): None            |                                                      |                  |
| Description: List of axial lab | els for this assembly insert description. Correspond | to labels in rod |
| maps.                          |                                                      |                  |
| Notes: See Section 2.5 for ex  | amples.                                              |                  |

| axial_elevations                                                            | Float   | Required |
|-----------------------------------------------------------------------------|---------|----------|
| Units: N/A, cm                                                              |         |          |
| Applicable Value(s):                                                        |         |          |
| Limitation(s): None                                                         |         |          |
| Description: List of axial elevations for this assembly insert description. |         |          |
| Notes: See Section 2.5 for ex                                               | amples. |          |

#### $\mathbf{mat} \ \mathrm{mat}$

| mat                            | Character Strings and Floats                           | Optional       |
|--------------------------------|--------------------------------------------------------|----------------|
| Units: N/A                     |                                                        |                |
| Applicable Value(s):           |                                                        |                |
| Limitation(s): None            |                                                        |                |
| Description: Refer to the deta | ailed materials description given in the User's Manual | and in Section |
| 3.1 of this document.          |                                                        |                |
| Notes: None                    |                                                        |                |

# 5.7. BLOCK DETECTOR

#### title title

| title                                                         | Character String | Optional |
|---------------------------------------------------------------|------------------|----------|
| Units: N/A                                                    |                  |          |
| Applicable Value(s):                                          |                  |          |
| Limitation(s): None                                           |                  |          |
| Description: Long descriptive title for detector description. |                  |          |
| Notes: None                                                   |                  |          |

# $\mathbf{type} \ \mathrm{detector\_type}$

| detector_type                | Character String | Optional |
|------------------------------|------------------|----------|
| Units: N/A                   |                  |          |
| Applicable Value(s): , u235, | v, rh            |          |



# detector\_type, continued...

| Limitation(s): None                                                   |
|-----------------------------------------------------------------------|
| Description: Flag used to specify the type of detector to be modeled. |
| Notes: None                                                           |

# $\mathbf{npin} \ \mathrm{num\_pins}$

| num_pins                     | Integer                             | Required |
|------------------------------|-------------------------------------|----------|
| Units: N/A                   |                                     |          |
| Applicable Value(s): $, > 0$ |                                     |          |
| Limitation(s): None          |                                     |          |
| Description: The number of   | rods along the edge of an assembly. |          |
| Notes: None                  |                                     |          |

### $\mathbf{cell}$ $\mathbf{cell}$

| cell                          | Character Strings and Floats              | Required |
|-------------------------------|-------------------------------------------|----------|
| Units: N/A                    |                                           |          |
| Applicable Value(s):          |                                           |          |
| Limitation(s): None           |                                           |          |
| Description: Refer to the cel | l description given in the User's Manual. |          |
| Notes: See Section 2.6 for ex | tamples.                                  |          |

#### lattice lattice

| lattice                       | Character String               | Required |
|-------------------------------|--------------------------------|----------|
| Units: N/A                    |                                |          |
| Applicable Value(s):          |                                |          |
| Limitation(s): None           |                                |          |
| Description: Obsolete alias f | or rodmap. Use rodmap instead. |          |
| Notes: None                   |                                |          |

# ${\bf rodmap}\ {\bf label}\ {\bf cell\_map}$

| label                                                    | Character String | Required |
|----------------------------------------------------------|------------------|----------|
| Units: N/A                                               |                  |          |
| Applicable Value(s):                                     |                  |          |
| Limitation(s): None                                      |                  |          |
| Description: Label for this axial elevation description. |                  |          |
| Notes: See Section 2.6 for ex                            | camples.         |          |



| cell_map                      | 2D Character String Map                               | Required |
|-------------------------------|-------------------------------------------------------|----------|
| Units: N/A                    |                                                       |          |
| Applicable Value(s):          |                                                       |          |
| Limitation(s): None           |                                                       |          |
| Description: Lattice map for  | this axial elevation. Use a dash for no detector rod. |          |
| Notes: See Section 2.6 for ex | amples.                                               |          |

### axial control\_label axial\_labels axial\_elevations

| control_label                 |                      | Character String                    | Required    |
|-------------------------------|----------------------|-------------------------------------|-------------|
| Units: N/A                    |                      |                                     |             |
| Applicable Value(s):          |                      |                                     |             |
| Limitation(s): None           |                      |                                     |             |
| Description: Label for this d | etector description. | Label corresponds to det_map in [Co | ORE] block. |
| Notes: See Section 2.6 for ex | amples.              |                                     |             |

| axial_labels                   | Character Strings                                           | Required  |
|--------------------------------|-------------------------------------------------------------|-----------|
| Units: N/A                     |                                                             |           |
| Applicable Value(s):           |                                                             |           |
| Limitation(s): None            |                                                             |           |
| Description: List of axial lab | pels for this detector description. Correspond to labels in | rod maps. |
| Notes: See Section 2.6 for ex  | camples.                                                    |           |

| $axial_elevations$                                                   | Float    | Required |
|----------------------------------------------------------------------|----------|----------|
| Units: N/A, cm                                                       |          |          |
| Applicable Value(s):                                                 |          |          |
| Limitation(s): None                                                  |          |          |
| Description: List of axial elevations for this detector description. |          |          |
| Notes: See Section 2.6 for ex                                        | tamples. |          |

#### $\mathbf{mat} \,\, \mathrm{mat}$

| mat                           | Character Strings and Floats                               | Optional   |
|-------------------------------|------------------------------------------------------------|------------|
| Units: N/A                    |                                                            |            |
| Applicable Value(s):          |                                                            |            |
| Limitation(s): None           |                                                            |            |
| Description: Refer to the det | ailed materials description given in the User's Manual and | in Section |
| 3.1 of this document.         |                                                            |            |
| Notes: None                   |                                                            |            |

91



# 5.8. BLOCK EDITS

#### $axial\_edit\_bounds$ $axial\_edit\_bounds$

| axial_edit_bounds             | Float                                                    | Required    |
|-------------------------------|----------------------------------------------------------|-------------|
| Units: N/A, cm                |                                                          |             |
| Applicable Value(s):          |                                                          |             |
| Limitation(s): None           |                                                          |             |
| Description: The boundaries   | of the axial regions over which axial information should | be printed. |
| Notes: See Section 2.8 for ex | camples.                                                 |             |

# ${\bf axial\_edit\_mesh\_delta} \ {\bf axial\_edit\_mesh\_delta}$

| axial_edit_mesh_delta       | Float                                                | Optional      |
|-----------------------------|------------------------------------------------------|---------------|
| Units: N/A, cm              |                                                      |               |
| Applicable Value(s):        |                                                      |               |
| Limitation(s): None         |                                                      |               |
| Description: Produces a uni | form axial output grid (integrates pin powers over a | uniform axial |
| mesh).                      |                                                      |               |
| Notes: None                 |                                                      |               |

### points points\_type points\_dim1 points\_dim2 points\_dim3

| points_type                  | Character String                              | Optional |
|------------------------------|-----------------------------------------------|----------|
| Units: N/A                   |                                               |          |
| Applicable Value(s): , CART  | C,RTHETA                                      |          |
| Limitation(s): None          |                                               |          |
| Description: Type of coordin | nate system to be used to define point edits. |          |
| Notes: None                  |                                               |          |

| points_dim1                  | Float                                                  | Optional      |
|------------------------------|--------------------------------------------------------|---------------|
| Units: N/A, cm               |                                                        |               |
| Applicable Value(s):         |                                                        |               |
| Limitation(s): None          |                                                        |               |
| Description: First dimension | n in point edit. If points_type is CART, then dim1 rep | resents X. If |
| points_type is RTHETA, then  | dim1 represents R.                                     |               |
| Notes: None                  |                                                        |               |

| points_dim2               | Float         | Optional |
|---------------------------|---------------|----------|
| Units: N/A, cm(CART), deg | grees(RTHETA) |          |
| Applicable Value(s):      |               |          |
| Limitation(s): None       |               |          |



points\_dim2, continued...

Description: Second dimension in point edit. If points\_type is CART, then dim2 represents Y. If points\_type is RTHETA, then dim2 represents Theta.

Notes: None

| points_dim3                  | Float                                             | Optional            |
|------------------------------|---------------------------------------------------|---------------------|
| Units: N/A, cm               |                                                   |                     |
| Applicable Value(s):         |                                                   |                     |
| Limitation(s): None          |                                                   |                     |
| Description: Third dimension | n in point edit. If points_type is CART, then dir | n3 represents Z. If |
| points_type is RTHETA, then  | dim3 represents Z.                                |                     |
| Notes: None                  |                                                   |                     |

#### edit\_group edit\_group

| edit_group                     | Character String                                       | Optional    |
|--------------------------------|--------------------------------------------------------|-------------|
| Units: N/A                     |                                                        |             |
| Applicable Value(s):           |                                                        |             |
| Limitation(s): None            |                                                        |             |
| Description: A list of edits t | that can be turned on or off as a group using the edit | card in the |
| [STATE] block.                 |                                                        |             |
| Notes: None                    |                                                        |             |

#### edit\_scrape edit\_scrape

| $edit\_scrape$ | Table of string, doubles and ints. Each row in the | Optional |
|----------------|----------------------------------------------------|----------|
|                | table has length 8                                 |          |
| Units: N/A     |                                                    |          |

Applicable Value(s): , This card specifies an area on the specified rod surface over which a crud scrape is generated. The scrape location is specified as follows:

- <scrape\_id> String. Unique scrape identifier
- <asm\_col\_row> String. Assembly label. Dashed delimited ex: 'H-2'
- <pin\_row> Int. CTF pin row in assembly
- <pin\_col> Int. CTF pin column in assembly
- <min\_th> Float. Minimum azimuthal scrape angle in degrees. 0 degrees points due east.
- <max\_th> Float. Maximum azimuthal scrape angle in degrees.
- <min\_z> Float. Minimum axial scrape location in cm.
- <max\_z> Float. Maximum axial scrape location in cm.



### edit\_scrape, continued...

| Limitation(s): None                                              |
|------------------------------------------------------------------|
| Description: Crud scrape edit info                               |
| Notes: This is only needed for specifying crud scrape locations. |

### 5.9. BLOCK SHIFT

# $\mathbf{num\_threads} \ \mathbf{num\_threads}$

| num_threads                                  | integer     |  |
|----------------------------------------------|-------------|--|
| Units: N/A                                   |             |  |
| Applicable Value(s): 1 (default), $> 0$      |             |  |
| Limitation(s): None                          |             |  |
| Description: Number of threads per processor |             |  |
| Notes: Applicable to threade                 | ed machines |  |

#### $\mathbf{seed}$ seed

| seed                                                           | integer        |  |
|----------------------------------------------------------------|----------------|--|
| Units: N/A                                                     |                |  |
| Applicable Value(s): 121434                                    | (default), > 0 |  |
| Limitation(s): None                                            |                |  |
| Description: Initial seed for random number generator (global) |                |  |
| Notes: None                                                    |                |  |

# $\mathbf{ce\_lib\_path} \ \mathbf{ce\_lib\_path}$

| ce_lib_path                  | String               | Optional |
|------------------------------|----------------------|----------|
| Units: N/A                   |                      |          |
| Applicable Value(s): ce_v7.1 | endf.h5 (default)    |          |
| Limitation(s): None          |                      |          |
| Description: Path to SCALE   | CE data library file |          |
| Notes: None                  |                      |          |

#### transfer transfer

| transfer                                   | String                                                    | Optional |
|--------------------------------------------|-----------------------------------------------------------|----------|
| Units: N/A                                 |                                                           |          |
| Applicable Value(s): Depend                | ls on coupling (default), all, fiss_src, isotopics, temps |          |
| Limitation(s): None                        |                                                           |          |
| Description: What to transfer with VERA-CS |                                                           |          |
| Notes: None                                |                                                           |          |



# $\mathbf{temp\_transfer} \ \mathbf{temp\_transfer}$

| temp_transfer                                      | String | Optional |
|----------------------------------------------------|--------|----------|
| Units: N/A                                         |        |          |
| Applicable Value(s): all (default), all, none, pin |        |          |
| Limitation(s): None                                |        |          |
| Description: Which temperatures to couple with CTF |        |          |
| Notes: None                                        |        |          |

### verbosity verbosity

| verbosity                                                         | string |  | Optional |
|-------------------------------------------------------------------|--------|--|----------|
| Units: N/A                                                        |        |  |          |
| Applicable Value(s): none (default), none, low, medium, high      |        |  |          |
| Limitation(s): None                                               |        |  |          |
| Description: How often to print about particles being transported |        |  |          |
| Notes: None                                                       |        |  |          |

#### broaden\_xs broaden\_xs

| broaden_xs                                                    | bool |  | Optional |
|---------------------------------------------------------------|------|--|----------|
| Units: N/A                                                    |      |  |          |
| Applicable Value(s): false (default)                          |      |  |          |
| Limitation(s): None                                           |      |  |          |
| Description: Cross-section doppler broadening for temperature |      |  |          |
| Notes: None                                                   |      |  |          |

## ${\bf temperature\_tol} \ {\bf temperature\_tol}$

| temperature_tol                                                      | double      | Optional |
|----------------------------------------------------------------------|-------------|----------|
| Units: K (default)                                                   |             |          |
| Applicable Value(s): 4.0 (det                                        | ault, $> 0$ |          |
| Limitation(s): None                                                  |             |          |
| Description: Tolerance for reusing existing broadened cross sections |             |          |
| Notes: None                                                          |             |          |

## ${\bf union\_energy} \ {\bf union\_energy}$

| union_energy                        | bool | Optional |
|-------------------------------------|------|----------|
| Units: N/A                          |      |          |
| Applicable Value(s): true (default) |      |          |
| Limitation(s): None                 |      |          |



# union\_energy, continued...

| Description: Unionize lower and upper libration | ary temperature energy grids |
|-------------------------------------------------|------------------------------|
| Notes: None                                     |                              |

#### $\mathbf{delta}_{-}\mathbf{t}$ $\mathbf{delta}_{-}\mathbf{t}$

| delta_t                        | double                                                   | Optional    |
|--------------------------------|----------------------------------------------------------|-------------|
| Units: N/A                     |                                                          |             |
| Applicable Value(s): 1.0 (det  | fault), $> 0$                                            |             |
| Limitation(s): None            |                                                          |             |
| Description: Finite difference | ce grid spacing for Leal-Hwang temperature interpolation | on of cross |
| sections                       |                                                          |             |
| Notes: None                    |                                                          |             |

# $\mathbf{energy\_tol} \ \mathbf{energy\_tol}$

| energy_tol                                                               | double           | Optional |
|--------------------------------------------------------------------------|------------------|----------|
| Units: N/A                                                               |                  |          |
| Applicable Value(s): 1.0E-10                                             | (default), (0,1) |          |
| Limitation(s): None                                                      |                  |          |
| Description: Relative difference for considering two energy points equal |                  |          |
| Notes: None                                                              |                  |          |

### $\mathbf{dbrc}$ $\mathbf{dbrc}$

| dbrc                                                       | bool    |  | Optional |
|------------------------------------------------------------|---------|--|----------|
| Units: N/A                                                 |         |  |          |
| Applicable Value(s): false (d                              | efault) |  |          |
| Limitation(s): None                                        |         |  |          |
| Description: Apply doppler broadening resonance correction |         |  |          |
| Notes: None                                                |         |  |          |

## global\_log global\_log

| global_log                                                                                     | string | Optional |
|------------------------------------------------------------------------------------------------|--------|----------|
| Units: N/A                                                                                     |        |          |
| Applicable Value(s): info (default), debug, diagnostic, status, info, warning, error, critical |        |          |
| Limitation(s): None                                                                            |        |          |
| Description: Level of global log information                                                   |        |          |
| Notes: None                                                                                    |        |          |

# $\mathbf{local\_log}\ \mathrm{local\_log}$



| local_log                                                                                       | string | Optional |
|-------------------------------------------------------------------------------------------------|--------|----------|
| Units: N/A                                                                                      |        |          |
| Applicable Value(s): error (default), debug, diagnostic, status, info, warning, error, critical |        |          |
| Limitation(s): None                                                                             |        |          |
| Description: Level of local node log information                                                |        |          |
| Notes: None                                                                                     |        |          |

## $\mathbf{do\_micro\_tally} \ \mathbf{do\_micro\_tally}$

| do_micro_tally                                        | bool    | Optional |
|-------------------------------------------------------|---------|----------|
| Units: N/A                                            |         |          |
| Applicable Value(s): false (d                         | efault) |          |
| Limitation(s): None                                   |         |          |
| Description: Tally micro reactions in eigenvalue mode |         |          |
| Notes: Eigenvalue mode only                           | y       |          |

## $\mathbf{do\_transport} \ \mathbf{do\_transport}$

| do_transport                      | bool    | Optional |
|-----------------------------------|---------|----------|
| Units: N/A                        |         |          |
| Applicable Value(s): true (de     | efault) |          |
| Limitation(s): None               |         |          |
| Description: Perform MC transport |         |          |
| Notes: None                       |         |          |

# $\mathbf{do\_output} \ \mathbf{do\_output}$

| do_output                           | bool | Optional |
|-------------------------------------|------|----------|
| Units: N/A                          |      |          |
| Applicable Value(s): true (default) |      |          |
| Limitation(s): None                 |      |          |
| Description: Do Shift output        |      |          |
| Notes: None                         |      |          |

### ${f micro\_zaids}$ ${f micro\_zaids}$

| micro_zaids                                                       | Array of integers | Optional |
|-------------------------------------------------------------------|-------------------|----------|
| Units: N/A                                                        |                   |          |
| Applicable Value(s): 92235,                                       | 92238 (default)   |          |
| Limitation(s): None                                               |                   |          |
| Description: Nuclides to tally micro reactions in eigenvalue mode |                   |          |
| Notes: Eigenvalue mode only                                       | 7                 |          |



### $micro\_rxns$ $micro\_rxns$

| micro_rxns                                                     | Array of integers | Optional |
|----------------------------------------------------------------|-------------------|----------|
| Units: N/A                                                     |                   |          |
| Applicable Value(s): 18, 102                                   | (default)         |          |
| Limitation(s): None                                            |                   |          |
| Description: MT of micro reactions to tally in eigenvalue mode |                   |          |
| Notes: Eigenvalue mode only                                    | y                 |          |

## $\mathbf{gamma\_flux}$ $\mathbf{gamma\_flux}$

| gamma_flux                    | bool                   | Optional |
|-------------------------------|------------------------|----------|
| Units: N/A                    |                        |          |
| Applicable Value(s): false (d | efault)                |          |
| Limitation(s): None           |                        |          |
| Description: Tally the photo  | n flux in each pincell |          |
| Notes: None                   |                        |          |

## ${\bf lost\_particle\_error\_tol}\ {\bf lost\_particle\_error\_tol}$

| lost_particle_error_tol       | double                                | Optional |
|-------------------------------|---------------------------------------|----------|
| Units: N/A                    |                                       |          |
| Applicable Value(s): 1E-06 (  | default, $> 0$                        |          |
| Limitation(s): None           |                                       |          |
| Description: Fraction of lost | particles to tolerate before aborting |          |
| Notes: None                   |                                       |          |

## $\mathbf{num\_cycles} \ \mathbf{num\_cycles}$

| num_cycles                               | integer                        |  |
|------------------------------------------|--------------------------------|--|
| Units: N/A                               |                                |  |
| Applicable Value(s): 50 (defa            | $\operatorname{ault}$ ), $> 0$ |  |
| Limitation(s): None                      |                                |  |
| Description: Number of eigenvalue cycles |                                |  |
| Notes: None                              |                                |  |

# $\mathbf{num\_inactive\_cycles} \ \mathbf{num\_inactive\_cycles}$

| num_inactive_cycles         | integer      |
|-----------------------------|--------------|
| Units: N/A                  |              |
| Applicable Value(s): 10 (de | ault), $> 0$ |
| Limitation(s): None         |              |



# num\_inactive\_cycles, continued...

| Description: Number of inactive eigenvalue cycles |
|---------------------------------------------------|
| Notes: None                                       |

# $\mathbf{Np} \; \mathrm{Np}$

| Np                           | double             |
|------------------------------|--------------------|
| Units: N/A                   |                    |
| Applicable Value(s): 1000 (d | efault), $> 0$     |
| Limitation(s): None          |                    |
| Description: Number of part  | icles to transport |
| Notes: None                  |                    |

### ${\bf transport}\ {\bf transport}$

| transport                                 | string | Optional |
|-------------------------------------------|--------|----------|
| Units: N/A                                |        |          |
| Applicable Value(s): ce (default), ce, mg |        |          |
| Limitation(s): None                       |        |          |
| Description: Type of physics              |        |          |
| Notes: None                               |        |          |

# ${\bf problem\_mode} \ {\bf problem\_mode}$

| problem_mode                 | string                                    | Optional |
|------------------------------|-------------------------------------------|----------|
| Units: N/A                   |                                           |          |
| Applicable Value(s): eigenva | lue (default), cadis, eigenvalue, forward |          |
| Limitation(s): None          |                                           |          |
| Description: Run mode        |                                           |          |
| Notes: None                  |                                           |          |

### $\mathbf{mode} \ \mathrm{mode}$

| mode                                        | string                                 | Optional |
|---------------------------------------------|----------------------------------------|----------|
| Units: N/A                                  |                                        |          |
| Applicable Value(s): n (eigen               | nvalue), np (forward) (default), n, np |          |
| Limitation(s): None                         |                                        |          |
| Description: Type of particles to transport |                                        |          |
| Notes: None                                 |                                        |          |

# ${\bf output\_geometry} \ {\bf output\_geometry}$



| output_geometry               | bool                                                      | Optional    |
|-------------------------------|-----------------------------------------------------------|-------------|
| Units: N/A                    |                                                           |             |
| Applicable Value(s): true (de | efault)                                                   |             |
| Limitation(s): None           |                                                           |             |
| Description: Output HDF5      | files of raytraced geometry (initial) and compositions (e | each state) |
| Notes: None                   |                                                           |             |

# ${\bf output\_fission\_source} \ {\bf output\_fission\_source}$

| output_fission_source                                         | bool | Optional |  |  |
|---------------------------------------------------------------|------|----------|--|--|
| Units: N/A                                                    |      |          |  |  |
| Applicable Value(s): false (default)                          |      |          |  |  |
| Limitation(s): None                                           |      |          |  |  |
| Description: Output the initial fission source for each state |      |          |  |  |
| Notes: None                                                   |      |          |  |  |

# ${\bf output\_external\_source} \ {\bf output\_external\_source}$

| output_external_source                                 | bool | Optional |  |
|--------------------------------------------------------|------|----------|--|
| Units: N/A                                             |      |          |  |
| Applicable Value(s): false (default)                   |      |          |  |
| Limitation(s): None                                    |      |          |  |
| Description: Output the external source for each state |      |          |  |
| Notes: None                                            |      |          |  |

# output\_micro\_tally output\_micro\_tally

| output_micro_tally                         | bool | Optional |  |  |
|--------------------------------------------|------|----------|--|--|
| Units: N/A                                 |      |          |  |  |
| Applicable Value(s): false (default)       |      |          |  |  |
| Limitation(s): None                        |      |          |  |  |
| Description: Output micro reaction tallies |      |          |  |  |
| Notes: None                                |      |          |  |  |

### $\mathbf{output\_ww} \ \mathrm{output\_ww}$

| output_ww                                       | bool | Optional |  |
|-------------------------------------------------|------|----------|--|
| Units: N/A                                      |      |          |  |
| Applicable Value(s): false (default)            |      |          |  |
| Limitation(s): None                             |      |          |  |
| Description: Output the weight windows, if used |      |          |  |
| Notes: None                                     |      |          |  |



# ${\bf thermal\_energy\_cutoff}\ thermal\_energy\_cutoff$

| thermal_energy_cutoff                                 | double         | Optional |
|-------------------------------------------------------|----------------|----------|
| Units: eV (default)                                   |                |          |
| Applicable Value(s): 10.0 (de                         | efault), $> 0$ |          |
| Limitation(s): None                                   |                |          |
| Description: Cutoff for treatment of thermal neutrons |                |          |
| Notes: None                                           |                |          |

#### excore\_filename excore\_filename

| excore_filename                                                        | string | Optional |
|------------------------------------------------------------------------|--------|----------|
| Units: N/A                                                             |        |          |
| Applicable Value(s):                                                   |        |          |
| Limitation(s): None                                                    |        |          |
| Description: Name of Omnibus XML file with excore features and tallies |        |          |
| Notes: None                                                            |        |          |

### raytrace\_levels

| raytrace_levels                                       | array of doubles            | Optional |
|-------------------------------------------------------|-----------------------------|----------|
| Units: N/A                                            |                             |          |
| Applicable Value(s): midpoint                         | nt of active fuel (default) |          |
| Limitation(s): None                                   |                             |          |
| Description: Z levels to raytrace geometry and output |                             |          |
| Notes: None                                           |                             |          |

# ${\bf raytrace\_resolution} \ {\bf raytrace\_resolution}$

| $raytrace\_resolution$                        | integer        | Optional |
|-----------------------------------------------|----------------|----------|
| Units: N/A                                    |                |          |
| Applicable Value(s): 1024 (d                  | efault), $> 0$ |          |
| Limitation(s): None                           |                |          |
| Description: Resolution for geometry raytrace |                |          |
| Notes: None                                   |                |          |

## ${\bf vera\_pressure\_vessel} \ {\bf vera\_pressure\_vessel}$

| vera_pressure_vessel                 | bool | Optional |
|--------------------------------------|------|----------|
| Units: N/A                           |      |          |
| Applicable Value(s): false (default) |      |          |
| Limitation(s): None                  |      |          |



## ${\tt vera\_pressure\_vessel}, continued...$

| Description: Pull in the pressure vessel from the VERA geometry |
|-----------------------------------------------------------------|
| Notes: Applicable to excore only                                |

## ${\bf fiss\_src\_spectrum}\ {\bf fiss\_src\_spectrum}$

| fiss_src_spectrum                                       | String                                        | Optional |
|---------------------------------------------------------|-----------------------------------------------|----------|
| Units: N/A                                              |                                               |          |
| Applicable Value(s): nuclide.                           | _watt (default), u235_watt,mpact,nuclide_watt |          |
| Limitation(s): None                                     |                                               |          |
| Description: The type of fission source spectrum to use |                                               |          |
| Notes: None                                             |                                               |          |

# ${\bf use\_pole\_data}$ ${\bf use\_pole\_data}$

| use_pole_data                                                    | bool    | Optional |
|------------------------------------------------------------------|---------|----------|
| Units: N/A                                                       |         |          |
| Applicable Value(s): false (d                                    | efault) |          |
| Limitation(s): None                                              |         |          |
| Description: Use the pole data for on-the-fly doppler broadening |         |          |
| Notes: None                                                      |         |          |

### use\_fission\_source use\_fission\_source

| use_fission_source                                    | bool    | Optional |
|-------------------------------------------------------|---------|----------|
| Units: N/A                                            |         |          |
| Applicable Value(s): true (de                         | efault) |          |
| Limitation(s): None                                   |         |          |
| Description: Use the fission source provided by MPACT |         |          |
| Notes: None                                           |         |          |

### use\_external\_source use\_external\_source

| use_external_source                                    | bool    | Optional |
|--------------------------------------------------------|---------|----------|
| Units: N/A                                             |         |          |
| Applicable Value(s): true (de                          | efault) |          |
| Limitation(s): None                                    |         |          |
| Description: Use the external source provided by MPACT |         |          |
| Notes: None                                            |         |          |

# ${\bf hybrid\_tally\_names} \ {\bf hybrid\_tally\_names}$



| hybrid_tally_names                                   | array of strings | Required |
|------------------------------------------------------|------------------|----------|
|                                                      |                  | if       |
|                                                      |                  | problem  |
|                                                      |                  | mode is  |
|                                                      |                  | CADIS    |
| Units: N/A                                           |                  |          |
| Applicable Value(s):                                 |                  |          |
| Limitation(s): None                                  |                  |          |
| Description: Excore tally name to optimize for CADIS |                  |          |
| Notes: Applicable to hybrid                          | simulations      |          |

# ${\bf hybrid\_multiplier\_names} \ {\bf hybrid\_multiplier\_names}$

| hybrid_multiplier_names                                     | array of strings | Optional |
|-------------------------------------------------------------|------------------|----------|
| Units: N/A                                                  |                  |          |
| Applicable Value(s):                                        |                  |          |
| Limitation(s): None                                         |                  |          |
| Description: Excore tally multipliers to optimize for CADIS |                  |          |
| Notes: Applicable to hybrid                                 | simulations      |          |

## src\_disc\_l2\_error src\_disc\_l2\_error

| src_disc_l2_error                                               | double           | Optional |
|-----------------------------------------------------------------|------------------|----------|
| Units: N/A                                                      |                  |          |
| Applicable Value(s): 0.01 (de                                   | efault), $(0,1)$ |          |
| Limitation(s): None                                             |                  |          |
| Description: Maximum L2 error for point-sampling discretization |                  |          |
| Notes: Applicable to hybrid                                     | simulations      |          |

# ${\bf src\_disc\_samples\_per\_batch} \ {\bf src\_disc\_samples\_per\_batch}$

| src_disc_samples_per_batch    | integer                        | Optional |
|-------------------------------|--------------------------------|----------|
| Units: N/A                    |                                |          |
| Applicable Value(s): 1E05 (de | efault), $> 0$                 |          |
| Limitation(s): None           |                                |          |
| Description: Number of samn   | nples per point-sampling batch |          |
| Notes: Applicable to hybrid s | imulations                     |          |

# ${\bf src\_disc\_max\_samples} \ {\bf src\_disc\_max\_samples}$

| src_disc_max_samples         | integer       | Optional |
|------------------------------|---------------|----------|
| Units: N/A                   |               |          |
| Applicable Value(s): 1E10 (c | lefault), > 0 |          |



# src\_disc\_max\_samples, continued...

| Limitation(s): None                                   |
|-------------------------------------------------------|
| Description: Maximum number of discretization samples |
| Notes: Applicable to hybrid simulations               |

# $\mathbf{ww\_decomp} \ \mathbf{ww\_decomp}$

| ww_decomp                                                                | $\operatorname{string}$       | Optional |
|--------------------------------------------------------------------------|-------------------------------|----------|
| Units: N/A                                                               |                               |          |
| Applicable Value(s): separab                                             | le (default), full, separable |          |
| Limitation(s): None                                                      |                               |          |
| Description: Whether the weight window adjoint flux should be decomposed |                               |          |
| Notes: Applicable to hybrid                                              | simulations                   |          |

## $radial\_mesh$ $radial\_mesh$

| radial_mesh                       | array of doubles | Optional |
|-----------------------------------|------------------|----------|
| Units: N/A                        |                  |          |
| Applicable Value(s): vessel r     | adii (default)   |          |
| Limitation(s): None               |                  |          |
| Description: Radii for flux tally |                  |          |
| Notes: None                       |                  |          |

## $\mathbf{num\_theta}\ \mathrm{num\_theta}$

| num_theta                                                              | integer   | Optional |
|------------------------------------------------------------------------|-----------|----------|
| Units: N/A                                                             |           |          |
| Applicable Value(s): 1 (defa                                           | alt), > 0 |          |
| Limitation(s): None                                                    |           |          |
| Description: Number of theta divisions for flux tallies in $[0, 2\pi]$ |           |          |
| Notes: None                                                            |           |          |

## $num\_axial$ $num\_axial$

| num_axial                                            | integer   | Optional |
|------------------------------------------------------|-----------|----------|
| Units: N/A                                           |           |          |
| Applicable Value(s): 1 (defar                        | ult), > 0 |          |
| Limitation(s): None                                  |           |          |
| Description: Number of axial levels for flux tallies |           |          |
| Notes: None                                          |           |          |

### $n\_bounds$ $n\_bounds$



| n_bounds                                       | array of decreasing doubles | Optional |
|------------------------------------------------|-----------------------------|----------|
| Units: eV (default)                            |                             |          |
| Applicable Value(s):                           |                             |          |
| Limitation(s): None                            |                             |          |
| Description: Neutron energy bounds for tallies |                             |          |
| Notes: None                                    |                             |          |

## $p\_bounds$ $p\_bounds$

| $p_{-}$ bounds                                | array of decreasing doubles | Optional |
|-----------------------------------------------|-----------------------------|----------|
| Units: eV (default)                           |                             |          |
| Applicable Value(s):                          |                             |          |
| Limitation(s): None                           |                             |          |
| Description: Photon energy bounds for tallies |                             |          |
| Notes: None                                   |                             |          |

## $\mathbf{homog\_type} \ \mathrm{homog\_type}$

| homog_type                                                                 | string  | Optional |
|----------------------------------------------------------------------------|---------|----------|
| Units: N/A                                                                 |         |          |
| Applicable Value(s): , assem                                               | , rings |          |
| Limitation(s): None                                                        |         |          |
| Description: If using homogenization, homogenize each assembly or in rings |         |          |
| Notes: Experimental capabil                                                | ity     |          |

# $\mathbf{homog\_ring\_radii} \ \operatorname{homog\_ring\_radii}$

| homog_ring_radii                               |                                        | Optional |
|------------------------------------------------|----------------------------------------|----------|
| Units: cm (default)                            |                                        |          |
| Applicable Value(s): Depend                    | ls on create_unique_pins (default)     |          |
| Limitation(s): None                            |                                        |          |
| Description: Radii of rings for homogenization |                                        |          |
| Notes: Applicable if homog                     | type is rings; Experimental capability |          |

# $\mathbf{homog\_pin\_rings} \ \mathrm{homog\_pin\_rings}$

| homog_pin_rings                                                          | bool                                       | Optional |
|--------------------------------------------------------------------------|--------------------------------------------|----------|
| Units: N/A                                                               |                                            |          |
| Applicable Value(s): false (default)                                     |                                            |          |
| Limitation(s): None                                                      |                                            |          |
| Description: Homogenize according to pin locations or assembly locations |                                            |          |
| Notes: Applicable when hom                                               | nog_type is rings; Experimental capability |          |



# ${\bf homog\_explicit\_ring}\ {\bf homog\_explicit\_ring}$

| homog_explicit_ring                                                        | integer | ( | Optional |
|----------------------------------------------------------------------------|---------|---|----------|
| Units: cm (default)                                                        |         |   |          |
| Applicable Value(s): $, >= 0$                                              |         |   |          |
| Limitation(s): None                                                        |         |   |          |
| Description: Radius to homogenize within and have explicit pins outside of |         |   |          |
| Notes: Experimental capabil                                                | ity     |   |          |

### $bc\_bnd\_mesh$ $bc\_bnd\_mesh$

| bc_bnd_mesh                 | array of 6 strings                                 | Optional   |
|-----------------------------|----------------------------------------------------|------------|
| Units: N/A                  |                                                    |            |
| Applicable Value(s): vacuur | n, vacuum, vacuum, vacuum, vacuum, vacuum (default | ), vacuum, |
| reflect                     |                                                    |            |
| Limitation(s): None         |                                                    |            |
| Description: Boundary mesh  | boundary conditions on -x, +x, -y, +y, -z, +z      |            |
| Notes: None                 |                                                    |            |

## $x\_bnd\_mesh$ $x\_bnd\_mesh$

| x_bnd_mesh                               | array of 2 doubles | Optional |
|------------------------------------------|--------------------|----------|
| Units: cm (default)                      |                    |          |
| Applicable Value(s):                     |                    |          |
| Limitation(s): None                      |                    |          |
| Description: Boundary mesh x-axis limits |                    |          |
| Notes: None                              |                    |          |

# $\mathbf{y}\_\mathbf{bnd}\_\mathbf{mesh} \ y\_\mathbf{bnd}\_\mathbf{mesh}$

| y_bnd_mesh                               | array of 2 doubles | Optional |
|------------------------------------------|--------------------|----------|
| Units: cm (default)                      |                    |          |
| Applicable Value(s):                     |                    |          |
| Limitation(s): None                      |                    |          |
| Description: Boundary mesh y-axis limits |                    |          |
| Notes: None                              |                    |          |

# $z_bnd_mesh z_bnd_mesh$

| z_bnd_mesh           | array of 2 doubles | Optional |
|----------------------|--------------------|----------|
| Units: cm (default)  |                    |          |
| Applicable Value(s): |                    |          |
| Limitation(s): None  |                    |          |



# ${\tt z\_bnd\_mesh},\, continued...$

| Description: Boundary mesh z-axis limits |  |
|------------------------------------------|--|
| Notes: None                              |  |

### ${\bf core\_translate} \ {\bf core\_translate}$

| core_translate                                    | array of 3 doubles | Optional |
|---------------------------------------------------|--------------------|----------|
| Units: cm (default)                               |                    |          |
| Applicable Value(s): 0.0, 0.0, 0.0 (default)      |                    |          |
| Limitation(s): None                               |                    |          |
| Description: Position to translate center of core |                    |          |
| Notes: None                                       |                    |          |

# ${\bf create\_unique\_pins} \ {\bf create\_unique\_pins}$

| create_unique_pins                                 | bool | Optional |
|----------------------------------------------------|------|----------|
| Units: N/A                                         |      |          |
| Applicable Value(s): true (default)                |      |          |
| Limitation(s): None                                |      |          |
| Description: Make all pincells unique compositions |      |          |
| Notes: None                                        |      |          |

# ${\bf track\_isotopes} \ {\bf track\_isotopes}$

| track_isotopes                                    | string | Optional |
|---------------------------------------------------|--------|----------|
| Units: N/A                                        |        |          |
| Applicable Value(s): short (default), short, full |        |          |
| Limitation(s): None                               |        |          |
| Description: Which set of isotopes to transfer    |        |          |
| Notes: None                                       |        |          |

# $\mathbf{xs\_library}$ xs\\_library

| xs_library                                      | string      | Required |
|-------------------------------------------------|-------------|----------|
|                                                 |             | if       |
|                                                 |             | problem  |
|                                                 |             | mode is  |
|                                                 |             | CADIS    |
| Units: N/A                                      |             |          |
| Applicable Value(s):                            |             |          |
| Limitation(s): None                             |             |          |
| Description: Name of SCALE MG data library file |             |          |
| Notes: Applicable to hybrid                     | simulations |          |



# $\mathbf{mesh} \ \mathrm{mesh}$

| mesh                                          | integer     |  |
|-----------------------------------------------|-------------|--|
| Units: N/A                                    |             |  |
| Applicable Value(s): $, > 0$                  |             |  |
| Limitation(s): None                           |             |  |
| Description: Number of mesh cells per pincell |             |  |
| Notes: Applicable to hybrid                   | simulations |  |

## $refl\_mesh\_size$ $refl\_mesh\_size$

| refl_mesh_size                                 | double |
|------------------------------------------------|--------|
| Units: N/A                                     |        |
| Applicable Value(s): $, > 0.0$                 |        |
| Limitation(s): None                            |        |
| Description: Radial reflector region mesh size |        |
| Notes: Applicable to hybrid simulations        |        |

## $\mathbf{extend\_axial\_mesh\_size} \ \mathrm{extend\_axial\_mesh\_size}$

| extend_axial_mesh_size                     | double |
|--------------------------------------------|--------|
| Units: N/A                                 |        |
| Applicable Value(s): $, > 0.0$             |        |
| Limitation(s): None                        |        |
| Description: Axial excore region mesh size |        |
| Notes: Applicable to hybrid simulations    |        |

# $output\_adjoint \ output\_adjoint$

| ${\tt output\_adjoint}$       | bool                                                     | Optional  |
|-------------------------------|----------------------------------------------------------|-----------|
| Units: N/A                    |                                                          |           |
| Applicable Value(s): false (d | efault)                                                  |           |
| Limitation(s): None           |                                                          |           |
| Description: Output adjoint   | flux to Shift HDF5 file and adjoint source to a separate | HDF5 file |
| Notes: Applicable to hybrid   | simulations                                              |           |

# adjoint adjoint

| adjoint                             | bool  | Optional |
|-------------------------------------|-------|----------|
| Units: N/A                          |       |          |
| Applicable Value(s): true (default) |       |          |
| Limitation(s): None                 |       |          |
| Description: Perform adjoint        | solve |          |



# adjoint, continued...

Notes: Applicable to hybrid simulations

# $num\_blocks\_i$ num\\_blocks\\_i

| num_blocks_i                                                        | integer | Optional |
|---------------------------------------------------------------------|---------|----------|
| Units: N/A                                                          |         |          |
| Applicable Value(s): depends on number of processors (default), > 0 |         |          |
| Limitation(s): None                                                 |         |          |
| Description: Number of partitions (processors) in x                 |         |          |
| Notes: Applicable to hybrid simulations                             |         |          |

# $num\_blocks\_j$ num\\_blocks\\_j

| num_blocks_j                                                        | integer | Optional |
|---------------------------------------------------------------------|---------|----------|
| Units: N/A                                                          |         |          |
| Applicable Value(s): depends on number of processors (default), > 0 |         |          |
| Limitation(s): None                                                 |         |          |
| Description: Number of partitions (processors) in y                 |         |          |
| Notes: Applicable to hybrid simulations                             |         |          |

## $num\_z\_blocks$ $num\_z\_blocks$

| num_z_blocks                                        | integer | Optional |
|-----------------------------------------------------|---------|----------|
| Units: N/A                                          |         |          |
| Applicable Value(s): depends on mesh (default), > 0 |         |          |
| Limitation(s): None                                 |         |          |
| Description: Number of pipelining blocks in z       |         |          |
| Notes: Applicable to hybrid simulations             |         |          |

#### $num\_sets$ $num\_sets$

| num_sets                           | integer     | Optional |
|------------------------------------|-------------|----------|
| Units: N/A                         |             |          |
| Applicable Value(s): 1 (defa       | ult), > 0   |          |
| Limitation(s): None                |             |          |
| Description: Number of energy sets |             |          |
| Notes: Applicable to hybrid        | simulations |          |

### $\mathbf{num\_groups} \ \mathrm{num\_groups}$



| num_groups                              | integer | Required |
|-----------------------------------------|---------|----------|
|                                         |         | for      |
|                                         |         | hybrid   |
| Units: N/A                              |         | •        |
| Applicable Value(s): $, > 0$            |         |          |
| Limitation(s): None                     |         |          |
| Description: Number of energy groups    |         |          |
| Notes: Applicable to hybrid simulations |         |          |

### $max_delta_z max_delta_z$

| max_delta_z                         | double      | Optional |
|-------------------------------------|-------------|----------|
| Units: N/A                          |             |          |
| Applicable Value(s): $, > 0.0$      |             |          |
| Limitation(s): None                 |             |          |
| Description: Maximum mesh size in z |             |          |
| Notes: Applicable to hybrid         | simulations |          |

# ${\bf partition\_upscatter}\ {\bf partition\_upscatter}$

| partition_upscatter                                      | bool        | Optional |
|----------------------------------------------------------|-------------|----------|
| Units: N/A                                               |             | ·        |
| Applicable Value(s): false (c                            | lefault)    |          |
| Limitation(s): None                                      |             |          |
| Description: Partition energy over upscatter groups only |             |          |
| Notes: Applicable to hybrid                              | simulations |          |

## ${\bf store\_fulcrum\_string}\ {\bf store\_fulcrum\_string}$

| store_fulcrum_string                     | $\operatorname{string}$           | Optional |
|------------------------------------------|-----------------------------------|----------|
| Units: N/A                               |                                   |          |
| Applicable Value(s): true if             | using 35 nodes or fewer (default) |          |
| Limitation(s): None                      |                                   |          |
| Description: Save fulcrum string as file |                                   |          |
| Notes: Applicable to hybrid simulations  |                                   |          |

## ${\bf upscatter\_solver} \ {\bf upscatter\_solver}$

| upscatter_solver                                                 | string | Optional |
|------------------------------------------------------------------|--------|----------|
| Units: N/A                                                       |        |          |
| Applicable Value(s): gauss_seidel (default), gauss_seidel, gmres |        |          |
| Limitation(s): None                                              |        |          |



# upscatter\_solver, continued...

| Description: Which upscatter solver to use |
|--------------------------------------------|
| Notes: Applicable to hybrid simulations    |

## $within\_group\_solver \ within\_group\_solver$

| within_group_solver                           | string          | Optional |
|-----------------------------------------------|-----------------|----------|
| Units: N/A                                    |                 |          |
| Applicable Value(s): gmres (                  | default), gmres |          |
| Limitation(s): None                           |                 |          |
| Description: Which within group solver to use |                 |          |
| Notes: Applicable to hybrid                   | simulations     |          |

### $iterate\_downscatter \ iterate\_downscatter$

| iterate_downscatter                          | bool        | Optional |
|----------------------------------------------|-------------|----------|
| Units: N/A                                   |             |          |
| Applicable Value(s): false (d                | efault)     |          |
| Limitation(s): None                          |             |          |
| Description: Iterate over downscatter groups |             |          |
| Notes: Applicable to hybrid                  | simulations |          |

### downscatter downscatter

| downscatter                   | bool        | Optional |
|-------------------------------|-------------|----------|
| Units: N/A                    |             |          |
| Applicable Value(s): false (d | efault)     |          |
| Limitation(s): None           |             |          |
| Description: Downscatter only |             |          |
| Notes: Applicable to hybrid   | simulations |          |

# $\mathbf{Pn\_order}$ Pn\\_order

| Pn_order                      | integer     | Optional |  |
|-------------------------------|-------------|----------|--|
| Units: N/A                    | Units: N/A  |          |  |
| Applicable Value(s): 0 (defar | alt), > 0   |          |  |
| Limitation(s): None           |             |          |  |
| Description: Order of moments |             |          |  |
| Notes: Applicable to hybrid   | simulations |          |  |

# ${\bf upscatter\_subspace\_size} \ {\bf upscatter\_subspace\_size}$



| upscatter_subspace_size                                 | integer                                      | Optional |
|---------------------------------------------------------|----------------------------------------------|----------|
| Units: N/A                                              |                                              |          |
| Applicable Value(s): 100 if e                           | q_set is spn_fv, 30 otherwise (default), > 0 |          |
| Limitation(s): None                                     |                                              |          |
| Description: Maximum subspace size for upscatter solver |                                              |          |
| Notes: Applicable when upse                             | catter_solver is gmres                       |          |

# $within\_group\_subspace\_size \ within\_group\_subspace\_size$

| within_group_subspace_siz     | ze integer                        | Optional |
|-------------------------------|-----------------------------------|----------|
| Units: N/A                    |                                   |          |
| Applicable Value(s): 20 (defa | ault), > 0                        |          |
| Limitation(s): None           |                                   |          |
| Description: Maximum subs     | pace size for within group solver |          |
| Notes: Applicable when with   | nin_group_solver is gmres         |          |

# ${\bf upscatter\_max\_itr} \ {\bf upscatter\_max\_itr}$

| upscatter_max_itr                                             | integer            | Optional |
|---------------------------------------------------------------|--------------------|----------|
| Units: N/A                                                    |                    |          |
| Applicable Value(s): 1000 (d                                  | fefault, $fefault$ |          |
| Limitation(s): None                                           |                    |          |
| Description: Maximum number of iterations for upscatter solve |                    |          |
| Notes: Applicable to hybrid                                   | simulations        |          |

# $\mathbf{within\_group\_max\_itr} \ \mathbf{within\_group\_max\_itr}$

| within_group_max_itr                                             | integer    | Optional |
|------------------------------------------------------------------|------------|----------|
| Units: N/A                                                       | Units: N/A |          |
| Applicable Value(s): 1000 (default), > 0                         |            |          |
| Limitation(s): None                                              |            |          |
| Description: Maximum number of iterations for within group solve |            |          |
| Notes: Applicable to hybrid simulations                          |            |          |

## $\mathbf{eq\_set} \ \mathrm{eq\_set}$

| eq_set                                                         | $\operatorname{string}$ | Optional |
|----------------------------------------------------------------|-------------------------|----------|
| Units: N/A                                                     | Units: N/A              |          |
| Applicable Value(s): sc (default), bld, bld_2d, ld, sc, spn_fv |                         |          |
| Limitation(s): None                                            |                         |          |
| Description: Solution method or spatial discretization         |                         |          |
| Notes: Applicable to hybrid simulations                        |                         |          |



# ${\bf upscatter\_verbosity} \ {\bf upscatter\_verbosity}$

| upscatter_verbosity                                         | string     | Optional |  |
|-------------------------------------------------------------|------------|----------|--|
| Units: N/A                                                  | Units: N/A |          |  |
| Applicable Value(s): low (default), none, low, medium, high |            |          |  |
| Limitation(s): None                                         |            |          |  |
| Description: Solver verbosity                               |            |          |  |
| Notes: Applicable to hybrid simulations                     |            |          |  |

## within\_group\_verbosity within\_group\_verbosity

| within_group_verbosity        | string                          | Optional |
|-------------------------------|---------------------------------|----------|
| Units: N/A                    |                                 |          |
| Applicable Value(s): low (de  | fault), none, low, medium, high |          |
| Limitation(s): None           |                                 |          |
| Description: Solver verbosity |                                 |          |
| Notes: Applicable to hybrid   | simulations                     |          |

# $\mathbf{new\_grp\_bounds} \ \operatorname{new\_grp\_bounds}$

| new_grp_bounds                          | array of decreasing doubles | Optional |
|-----------------------------------------|-----------------------------|----------|
| Units: eV (default)                     |                             |          |
| Applicable Value(s): $, > 0.0$          |                             |          |
| Limitation(s): None                     |                             |          |
| Description: Collapsed group boundaries |                             |          |
| Notes: Applicable to hybrid             | simulations                 |          |

# ${\bf grp\_collapse\_src} \ {\bf grp\_collapse\_src}$

| grp_collapse_src                         | array of doubles          | Optional |
|------------------------------------------|---------------------------|----------|
| Units: N/A                               |                           |          |
| Applicable Value(s): depend              | s on xs_library (default) |          |
| Limitation(s): None                      |                           |          |
| Description: Source to do group collapse |                           |          |
| Notes: Applicable to hybrid              | simulations               |          |

## ${\bf quad\_type}$ ${\bf quad\_type}$

| quad_type                                                                  | string | Optional |
|----------------------------------------------------------------------------|--------|----------|
| Units: N/A                                                                 |        |          |
| Applicable Value(s): qr (default), qr, levelsym, galerkin, glproduct, ldfe |        |          |
| Limitation(s): None                                                        |        |          |



# quad\_type, continued...

| Description: Type of $S_N$ quadrature   |  |
|-----------------------------------------|--|
| Notes: Applicable to hybrid simulations |  |

## ${\bf polars\_octant}\ {\bf polars\_octant}$

| $polars\_octant$                                                    | integer                                      | Optional |
|---------------------------------------------------------------------|----------------------------------------------|----------|
| Units: N/A                                                          |                                              |          |
| Applicable Value(s): 6 (2 if a                                      | $\overline{\text{adjoint}}$ (default), $> 0$ |          |
| Limitation(s): None                                                 |                                              |          |
| Description: Number of polar angles per octant for $S_N$ quadrature |                                              |          |
| Notes: Applicable to hybrid                                         | simulations                                  |          |

### azimuthals\_octant azimuthals\_octant

| azimuthals_octant                                                       | integer                 | Optional |
|-------------------------------------------------------------------------|-------------------------|----------|
| Units: N/A                                                              |                         |          |
| Applicable Value(s): 8 (4 if a                                          | adjoint) (default), > 0 |          |
| Limitation(s): None                                                     |                         |          |
| Description: Number of azimuthal angles per octant for $S_N$ quadrature |                         |          |
| Notes: Applicable to hybrid                                             | simulations             |          |

## Sn\_order Sn\_order

| Sn_order                                          | integer     | Optional |
|---------------------------------------------------|-------------|----------|
| Units: N/A                                        |             |          |
| Applicable Value(s): 4 (defa                      | ult), > 0   |          |
| Limitation(s): None                               |             |          |
| Description: Level-symmetric quadrature set order |             |          |
| Notes: Applicable to hybrid                       | simulations |          |

# ${\bf upscatter\_tolerance} \ {\bf upscatter\_tolerance}$

| ${\tt upscatter\_tolerance}$                        | double            | Optional |
|-----------------------------------------------------|-------------------|----------|
| Units: N/A                                          |                   |          |
| Applicable Value(s): 1E-04 (                        | default), $(0,1)$ |          |
| Limitation(s): None                                 |                   |          |
| Description: Upscatter solver convergence tolerance |                   |          |
| Notes: None                                         |                   |          |

# $within\_group\_tolerance \ within\_group\_tolerance$



| within_group_tolerance                                 | double          | Optional |
|--------------------------------------------------------|-----------------|----------|
| Units: N/A                                             |                 |          |
| Applicable Value(s): 1E-04 (                           | default), (0,1) |          |
| Limitation(s): None                                    |                 |          |
| Description: Within group solver convergence tolerance |                 |          |
| Notes: None                                            |                 |          |

# ${\bf cell\_homogenize} \ {\bf cell\_homogenize}$

| cell_homogenize                           | bool    | Optional |
|-------------------------------------------|---------|----------|
| Units: N/A                                |         |          |
| Applicable Value(s): false (d             | efault) |          |
| Limitation(s): None                       |         |          |
| Description: Homogenize material in cells |         |          |
| Notes: None                               |         |          |

## Pn\_correction Pn\_correction

| Pn_correction                 | bool                                                      | Optional |
|-------------------------------|-----------------------------------------------------------|----------|
| Units: N/A                    |                                                           |          |
| Applicable Value(s): false (d | efault)                                                   |          |
| Limitation(s): None           |                                                           |          |
| Description: Use outscatter-  | corrected diffusion coefficient to reduce memory in solve |          |
| Notes: None                   |                                                           |          |

# $\mathbf{pin\_partitioning} \ \mathrm{pin\_partitioning}$

| pin_partitioning                          | bool    | Optional |
|-------------------------------------------|---------|----------|
| Units: N/A                                |         |          |
| Applicable Value(s): false (d             | efault) |          |
| Limitation(s): None                       |         |          |
| Description: Partition mesh over pincells |         |          |
| Notes: None                               |         |          |

## 5.10. BLOCK COBRATF

## $\mathbf{nfuel} \,\, \mathrm{nfuel} \,\,$

| nfuel                        | int                      | Optional |
|------------------------------|--------------------------|----------|
| Units: N/A                   |                          |          |
| Applicable Value(s): 10 (def | $\mathrm{ault}$ ), $> 0$ |          |



## nfuel, continued...

Limitation(s): None

Description: The number of rings in the fuel rod pellet (only effective when nc;0).

Notes: None

## $\mathbf{min\_steps} \ \mathrm{min\_steps}$

| min_steps                                                                    | int | Optional |
|------------------------------------------------------------------------------|-----|----------|
| Units: N/A                                                                   |     |          |
| Applicable Value(s): 4 (default), $\geq 0$                                   |     |          |
| Limitation(s): None                                                          |     |          |
| Description: The minimum number of iterations CTF should take during a solve |     |          |
| Notes: None                                                                  |     |          |

### $\mathbf{imox}$ $\mathbf{imox}$

| imox                                                                                       | $\inf$                 | Optional |
|--------------------------------------------------------------------------------------------|------------------------|----------|
| Units: N/A                                                                                 |                        |          |
| Applicable Value(s): 0 (defa                                                               | ult), 0, 1, 2, 3, 4, 5 |          |
| Limitation(s): None                                                                        |                        |          |
| Description: The fuel thermal conductivity model to use in CTF (only effective when nc¿0). |                        |          |
| Options are: 0 - MATPRO-11 1 - Modified NFI (UO2) 2 - Halden (UO2) 3 - Duriez/Modified     |                        |          |
| NFI (MOX) 4 - Halden (MC                                                                   | OX) 5 - Amaya (MOX)    |          |
| Notes: None                                                                                |                        |          |

#### nc nc

| nfuel                                                                                         | int                                                   | Optional       |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------|
| Units: N/A                                                                                    |                                                       |                |
| Applicable Value(s): 1 (defar                                                                 | ult), 0, 1, 2, 3                                      |                |
| Limitation(s): None                                                                           |                                                       |                |
| Description: The fuel rod conduction model. Options are: (0) No conduction, power is supplied |                                                       |                |
| as a surface heat flux (can                                                                   | lead to numerical stability issues), $(1)$ Conduction | in the radial  |
| direction only, (2) Conducti                                                                  | on in the radial and azimuthal directions, (3) Cond   | luction in the |
| radial, azimuthal and axial d                                                                 | lirections.                                           |                |
| Notes: None                                                                                   |                                                       |                |

### $\mathbf{chf}$ chf

| chf                                       | int | Optional |
|-------------------------------------------|-----|----------|
| Units: N/A                                |     |          |
| Applicable Value(s): 1 (default), 0, 1, 2 |     |          |
| Limitation(s): None                       |     |          |



### chf, continued...

Description: CHF model option. Options are: 0 - No CHF check during transient (post-sim check using W-3) 1 - Check CHF during transient using W-3 2 - No CHF check during or after simulation (set CHF to infinity) 3 - No CHF check during transient (post-sim check using Groeneveld lookup tables)

Notes: None

### debug debug

| debug                                                                                               | int                                                         | Optional     |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------|
| Units: N/A                                                                                          |                                                             |              |
| Applicable Value(s): 0 (defar                                                                       | ult), 0, 1, 2                                               |              |
| Limitation(s): None                                                                                 |                                                             |              |
| Description: Setting to 1 will cause CTF to print every power distribution it receives before doing |                                                             |              |
| the solve to a separate HDF                                                                         | 5 file. Setting to 2 will cause CTF to print every power of | listribution |
| it receives similar to Option                                                                       | 1, but will also print the solution after the solve. This c | an be used   |
| to run CTF standalone on a                                                                          | power distribution that causes it to crash or may be used   | to observe   |
| coupled convergence behavior                                                                        | or.                                                         |              |
| Notes: None                                                                                         |                                                             |              |

## $disable\_xml2ctf$ $disable\_xml2ctf$

| disable_xml2ctf                 | int                                                        | Optional    |
|---------------------------------|------------------------------------------------------------|-------------|
| Units: N/A                      |                                                            |             |
| Applicable Value(s): 0 (defar   | ult), 0, 1                                                 |             |
| Limitation(s): None             |                                                            |             |
| Description: Setting to 0 wi    | ll allow xml2ctf to run during code initialization and ge  | enerate the |
| CTF input file. This is the     | normal VERA behavior. If set to 1, xml2ctf will not r      | un. In this |
| case, it is up to the user to e | nsure a CTF input file called "deck.inp" is present in the | simulation  |
| directory and that that mod     | el is consistent with the MPACT model. This option is I    | provided so |
| that a user may customize the   | he CTF input file with options not provided through xm     | ıl2ctf.     |
| Notes: None                     |                                                            |             |

#### **irfc** irfc

| irfc                         | $\operatorname{int}$                               | Optional    |
|------------------------------|----------------------------------------------------|-------------|
| Units: N/A                   |                                                    |             |
| Applicable Value(s): 2 (defa | ult), 1, 2, 3, 4                                   |             |
| Limitation(s): None          |                                                    |             |
| Description: Friction model  | l: 1 - original CTF model 2 - new CTF model 3 - Co | lebrook 4 - |
| Sylvester                    |                                                    |             |
| Notes: None                  |                                                    |             |

# dhfrac dhfrac



| dhfrac                                                                            | float                | Optional |
|-----------------------------------------------------------------------------------|----------------------|----------|
| Units: N/A                                                                        |                      |          |
| Applicable Value(s): 0.026 (                                                      | default), $\geq 0.0$ |          |
| Limitation(s): None                                                               |                      |          |
| Description: Percentage of rod heat directly deposited into fluid (gamma heating) |                      |          |
| Notes: None                                                                       |                      |          |

# ${\bf guide\_tube\_coefficient} \ \ {\bf guide\_tube\_coefficient}$

| guide_tube_coefficient                                                                        | float                                                     | Optional    |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------|
| Units: N/A                                                                                    |                                                           |             |
| Applicable Value(s): 0.0 (def                                                                 | fault), $0.0 \le \text{guide\_tube\_coefficient} \le 1.0$ |             |
| Limitation(s): None                                                                           |                                                           |             |
| Description: Used to deter                                                                    | rmine the temperature rise in guide tubes using the       | following:  |
| $T_guide_tube(z) = (T_fluid(z)-T_inlet)*guide_tube_coefficient+T_inlet where T_guide_tube is$ |                                                           |             |
| the temperature in the guid                                                                   | e tube, T_fluid is the temperature in the channels adjace | cent to the |
| guide tube, and T_inlet is the                                                                | ne inlet temperature. 0.0 means the guide tube outlet te  | mperature   |
| will be the same as the inlet                                                                 | temperature and $1.0$ means it will be equal to the fluid | side outlet |
| temperature.                                                                                  |                                                           |             |
| Notes: None                                                                                   |                                                           |             |

### $beta\_htc$ beta\\_htc

| beta_htc                                                                                        | float                                                       | Optional     |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------|
| Units: N/A                                                                                      |                                                             |              |
| Applicable Value(s): 0.2 (def                                                                   | fault), > 0.0                                               |              |
| Limitation(s): None                                                                             |                                                             |              |
| Description: The boiling heat transfer coefficient under-relaxation coefficient. Because of the |                                                             |              |
| semi-implicit coupling of the                                                                   | e fluid and energy equations in the CTF numerical sol       | ution, it is |
| necessary to under-relax the                                                                    | e heat transfer coefficient in time for numerical stability | . For some   |
| boiling cases, it may be nece                                                                   | ssary to increase the under-relaxation.                     |              |
| Notes: None                                                                                     |                                                             |              |

# ${\bf rothcon\_temp\_beta} \ {\bf rothcon\_temp\_beta}$

| Units: N/A Applicable Value(s): 0.3 (default), > 0.0 and < 1.0 Limitation(s): None Description: The under-relaxation coefficient used when calculating rod surface temperatures on the rod surface coupling mesh set up by CTF for coupling to MAMBA. It may be necessary to reduce this value if many iterations are failing during the temperature reconstruction process when using the ROTHCON grid files. notes | rothcon_temp_beta             | float                                                            | Optional    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------|-------------|
| Limitation(s): None  Description: The under-relaxation coefficient used when calculating rod surface temperatures on the rod surface coupling mesh set up by CTF for coupling to MAMBA. It may be necessary to reduce this value if many iterations are failing during the temperature reconstruction process                                                                                                        | Units: N/A                    |                                                                  |             |
| Description: The under-relaxation coefficient used when calculating rod surface temperatures on the rod surface coupling mesh set up by CTF for coupling to MAMBA. It may be necessary to reduce this value if many iterations are failing during the temperature reconstruction process                                                                                                                             | Applicable Value(s): 0.3 (det | fault), $> 0.0$ and $< 1.0$                                      |             |
| the rod surface coupling mesh set up by CTF for coupling to MAMBA. It may be necessary to reduce this value if many iterations are failing during the temperature reconstruction process                                                                                                                                                                                                                             | Limitation(s): None           |                                                                  |             |
| reduce this value if many iterations are failing during the temperature reconstruction process                                                                                                                                                                                                                                                                                                                       | Description: The under-relax  | cation coefficient used when calculating rod surface temperature | eratures on |
|                                                                                                                                                                                                                                                                                                                                                                                                                      | the rod surface coupling mes  | sh set up by CTF for coupling to MAMBA. It may be no             | ecessary to |
| when using the ROTHCON grid files. notes                                                                                                                                                                                                                                                                                                                                                                             | reduce this value if many ite | erations are failing during the temperature reconstructi         | on process  |
|                                                                                                                                                                                                                                                                                                                                                                                                                      | when using the ROTHCON        | grid files. notes                                                |             |



## ${\tt rothcon\_temp\_beta}, \, {\rm continued}...$

Notes: NONE SPECIFIED

# $\mathbf{hgap}\ \mathrm{hgap}$

| hgap                          | float                                                     | Optional   |
|-------------------------------|-----------------------------------------------------------|------------|
| Units: W/m**2/K (default)     |                                                           |            |
| Applicable Value(s): 5678.3   | (default), > 0.0                                          |            |
| Limitation(s): None           |                                                           |            |
| Description: Sets the gap cor | nductance in the fuel rod gap (only applicable when using | a constant |
| gap conductance fuel rod mo   | odel).                                                    |            |
| Notes: None                   |                                                           |            |

### clad\_material clad\_material

| clad_material                 | string                                                      | Optional   |
|-------------------------------|-------------------------------------------------------------|------------|
| Units: N/A                    |                                                             |            |
| Applicable Value(s): zirc (de | efault), zirc, ss, sic                                      |            |
| Limitation(s): None           |                                                             |            |
| Description: Sets the clad ma | aterial properties. Currently has no effect in CTF. Claddin | g material |
| properties always default to  | Zircaloy.                                                   |            |
| Notes: None                   |                                                             |            |

### $\mathbf{epso} \ \mathrm{epso}$

| epso                          | float                                                   | Optional     |
|-------------------------------|---------------------------------------------------------|--------------|
| Units: N/A                    |                                                         |              |
| Applicable Value(s): 1e-4 (d  | efault), $> 0.0$                                        |              |
| Limitation(s): None           |                                                         |              |
| Description: Relative tolera  | nce for the linear solver (pressure matrix solve). Onl  | y applicable |
| when using an iterative solve | er. Setting too high can lead to numerical instability. |              |
| Notes: None                   |                                                         |              |

## $\mathbf{iitmax} \ \mathrm{iitmax}$

| iitmax                       | int                                                           | Optional      |
|------------------------------|---------------------------------------------------------------|---------------|
| Units: N/A                   |                                                               |               |
| Applicable Value(s): 160 (de | efault), $> 0$                                                |               |
| Limitation(s): None          |                                                               |               |
| Description: Maximum num     | ber of iterations to take in the linear solve (pressure ma    | trix solve).  |
| Only applicable when using a | an iterative solver. Setting too low can lead to numerical in | nstabilities. |
| Notes: None                  |                                                               |               |



# $\mathbf{dtmin}\ \mathrm{dtmin}$

| dtmin                         | float                                                      | Optional     |
|-------------------------------|------------------------------------------------------------|--------------|
| Units: s (default)            |                                                            |              |
| Applicable Value(s): 1e-6 (de | efault), $> 0$                                             |              |
| Limitation(s): None           |                                                            |              |
| Description: Sets the minimu  | m allowable timestep size. Used for both transients and s  | steady state |
| (because CTF solves a transi  | ent to get to steady state). If the timestep size needs to | be reduced   |
| smaller than this value, the  | code will crash with a "cannot reduce timestep size" err   | or.          |

Notes: None

### $\mathbf{dtmax}\ \mathrm{dtmax}$

| dtmax                         | float                                                                                            | Optional    |  |
|-------------------------------|--------------------------------------------------------------------------------------------------|-------------|--|
| Units: s (default)            |                                                                                                  |             |  |
| Applicable Value(s): 0.1 (def | fault), $> 0$                                                                                    |             |  |
| Limitation(s): None           |                                                                                                  |             |  |
| Description: Sets the maximu  | Description: Sets the maximum allowable timestep size. Used for both transients and steady state |             |  |
| (because CTF solves a trans   | ient to get to steady state). CTF uses dynamic timeste                                           | p selection |  |
| which is mainly a function of | f the Courant number. This puts a ceiling on the dynamic                                         | ic timestep |  |
| size to prevent numerical ins | tability.                                                                                        |             |  |
| Notes: None                   |                                                                                                  |             |  |

# $\mathbf{rtwfp}$ rtwfp

| rtwfp                         | float                                                       | Optional     |
|-------------------------------|-------------------------------------------------------------|--------------|
| Units: N/A                    |                                                             |              |
| Applicable Value(s): 100.0 (c | $default), \geq 1.0$                                        |              |
| Limitation(s): None           |                                                             |              |
| Description: Sets the ratio   | between the conduction and fluid timestep sizes. For st     | eady state   |
| problems, the timestep sizes  | of the conduction equation can be set larger than the flui  | id timestep  |
| sizes to reduce computationa  | l time. For transients, CTF will override this to be 1.0. S | Setting this |
| too high can lead to numeric  | eal instability.                                            |              |
| Notes: None                   |                                                             |              |

## $\mathbf{maxits} \ \mathrm{maxits}$

| maxits                           | int                                                                                                          | Optional |
|----------------------------------|--------------------------------------------------------------------------------------------------------------|----------|
| Units: N/A                       |                                                                                                              |          |
| Applicable Value(s): 10000 (     | $(default), \geq 1$                                                                                          |          |
| Limitation(s): None              |                                                                                                              |          |
| state solve. If the iterations g | um number of iterations CTF will take during any indigo over this maximum value, CTF will crash on an unable | •        |
| exception.                       |                                                                                                              |          |



## maxits, continued...

Notes: None

### courant courant

| courant                          | float                                                      | Optional     |
|----------------------------------|------------------------------------------------------------|--------------|
| Units: N/A                       |                                                            |              |
| Applicable Value(s): 0.8 (det    | fault), > 0.0                                              |              |
| Limitation(s): None              |                                                            |              |
| Description: Sets the Couran     | t number to use when setting timesteps size. Setting this  | value lower  |
| will lead to overall smaller t   | imestep sizes being used in CTF and setting it larger v    | vill lead to |
| overall larger timestep sizes b  | being used. It is not recommended that the user adjust the | nis value as |
| it typically is not an effective | e means of improving CTF convergence.                      |              |
| Notes: None                      |                                                            |              |

## $\mathbf{solver} \ \mathrm{solver}$

| solver                         | int                                                          | Optional     |
|--------------------------------|--------------------------------------------------------------|--------------|
| Units: N/A                     |                                                              |              |
| Applicable Value(s): 3/5 (de   | fault), 0, 3, 5, 6, 7, 8                                     |              |
| Limitation(s): None            |                                                              |              |
| Description: Selects the linea | r solver to use for the pressure matrix solve. Options are:  | 0 - Direct   |
| (Gaussian elimination) (serial | l runs only) 3 - Internal Krylov solver (BiCGStab) (serial   | l runs only, |
| default for serial run) 5 - PE | ETSc BiCGStab (default for parallel run) 6 - PETSc wit       | h pressure   |
| matrix reduced to root and s   | solved in serial (used only for parallel verification cases, | do not use   |
| for production parallel runs)  | 7 - PETSc BiCGStab using block Jacobi preconditioner 8       | - Trillinos  |
| BiCGStab solver                |                                                              |              |
| Notes: None                    |                                                              | ·            |

# parallel parallel

| parallel                                                           | int        |  | Optional |
|--------------------------------------------------------------------|------------|--|----------|
| Units: N/A                                                         |            |  |          |
| Applicable Value(s): 1 (defa                                       | ult), 0, 1 |  |          |
| Limitation(s): None                                                |            |  |          |
| Description: Instructs CTF to run in serial (0) or in parallel (1) |            |  |          |
| Notes: None                                                        |            |  |          |

# ${\bf global\_energy\_balance} \ {\bf global\_energy\_balance}$

| global_energy_balance         | float         | Optional |
|-------------------------------|---------------|----------|
| Units: percent (default)      |               |          |
| Applicable Value(s): 0.01 (de | fault), > 0.0 |          |



## global\_energy\_balance, continued...

Limitation(s): None

Description: Sets tolerance for energy balance (energy in minus energy out normalized to energy

in) for steady state runs.

Notes: None

### global\_mass\_balance global\_mass\_balance

| global_mass_balance             | float                                                   | Optional     |
|---------------------------------|---------------------------------------------------------|--------------|
| Units: percent (default)        |                                                         |              |
| Applicable Value(s): 0.01 (de   | efault), $> 0.0$                                        |              |
| Limitation(s): None             |                                                         |              |
| Description: Sets tolerance for | or mass balance (mass in minus mass out normalized to n | nass in) for |
| steady state runs.              |                                                         |              |
| Notes: None                     |                                                         |              |

### fluid\_energy\_storage fluid\_energy\_storage

| fluid_energy_storage                                                                               | float                                                        | Optional     |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------|
| Units: percent (default)                                                                           |                                                              |              |
| Applicable Value(s): 0.5 (det                                                                      | fault), > 0.0                                                |              |
| Limitation(s): None                                                                                |                                                              |              |
| Description: Sets tolerance for energy storage in the fluid (change in energy over a timestep) for |                                                              |              |
| steady state runs. Only applicable when using the storage-based convergence criteria (specify      |                                                              |              |
| fluid_energy_storage/solid_en                                                                      | $ m ergy\_storage/mass\_storage).$ See CTF User Manual for m | ore details. |
| Notes: None                                                                                        |                                                              |              |

### solid\_energy\_storage

| solid_energy_storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | float                                                         | Optional     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------|
| Units: percent (default)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               |              |
| Applicable Value(s): 0.5 (det                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | fault), > 0.0                                                 |              |
| Limitation(s): None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |              |
| Description: Sets tolerance for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or energy storage in the solid (change in energy over a tir   | nestep) for  |
| steady state runs. Only app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | olicable when using the storage-based convergence criter      | ria (specify |
| fluid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_energy_storage/solid_ene | $ m ergy\_storage/mass\_storage).$ See CTF User Manual for me | ore details. |
| Notes: None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |              |

## ${\bf mass\_storage} \ {\bf mass\_storage}$

| mass_storage             | float | Optional |
|--------------------------|-------|----------|
| Units: percent (default) |       |          |



mass\_storage, continued...

Applicable Value(s): 0.5 (default), > 0.0

Limitation(s): None

Description: Sets tolerance for mass storage in the fluid (change in mass in system over a timestep) for steady state runs. Only applicable when using the storage-based convergence criteria (specify fluid\_energy\_storage/solid\_energy\_storage/mass\_storage). See CTF User Manual for more details.

Notes: None

### pressure\_criteria pressure\_criteria

| pressure_criteria                                                                             | float                                                      | Optional      |  |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------|--|
| Units: N/A                                                                                    |                                                            |               |  |
| Applicable Value(s): 1e-4 (de                                                                 | efault), $> 0.0$                                           |               |  |
| Limitation(s): None                                                                           |                                                            |               |  |
| Description: Sets tolerance                                                                   | e on l-infinity of pressure change for steady state ru     | ins. Only     |  |
| applicable when using the change-based convergence criteria (specify pressure_criteria, pres- |                                                            |               |  |
| surea_criteria, Tcool_criteri                                                                 | a, Tcoola_criteria, Tsolid_criteria, Tsolida_criteria, vo  | oid_criteria, |  |
| vliq_criteria, vliqa_criteria,                                                                | vvap_criteria, vvapa_criteria, vdrop_criteria, vdro        | pa_criteria,  |  |
| void_criteria_l2, Tcool_crite                                                                 | eria_l2, Tcoola_criteria_l2, Tsolid_criteria_l2, Tsolida   | _criteria_l2, |  |
| pressure_criteria_l2, pressure                                                                | rea_criteria_l2, vliq_criteria_l2, vliqa_criteria_l2, vvap | _criteria_l2, |  |

vvapa\_criteria\_l2, vdrop\_criteria\_l2, vdropa\_criteria\_l2). Note that when using the change-based

criteria, all criteria are optional. See CTF User Manual for more details.

Notes: None

#### Tcool\_criteria Tcool\_criteria

| Tcool_criteria                               | float | Optional |
|----------------------------------------------|-------|----------|
| Units: N/A                                   |       |          |
| Applicable Value(s): 1e-3 (default), $> 0.0$ |       |          |
| Limitation(s): None                          |       |          |

Description: Sets tolerance on l-infinity of coolant temperature for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressurea\_criteria, Tcool\_criteria, Tcoola\_criteria, Tsolid\_criteria, Tsolida\_criteria, void\_criteria, vliq\_criteria, vliqa\_criteria, vvap\_criteria, vvapa\_criteria, vdrop\_criteria, vdropa\_criteria, void\_criteria\_l2, Tcool\_criteria\_l2, Tcoola\_criteria\_l2, Tsolid\_criteria\_l2, Tsolida\_criteria\_l2, pressure\_criteria\_12, pressurea\_criteria\_12, vliq\_criteria\_12, vliqa\_criteria\_12, vvap\_criteria\_12, vvapa\_criteria\_l2, vdrop\_criteria\_l2, vdropa\_criteria\_l2). Note that when using the change-based criteria, all criteria are optional. See CTF User Manual for more details.

Notes: None

#### Tsolid\_criteria Tsolid\_criteria

| Tsolid_criteria | float | Optional |
|-----------------|-------|----------|
| Units: N/A      |       |          |



#### Tsolid\_criteria, continued...

Applicable Value(s): 1e-3 (default), > 0.0

Limitation(s): None

Description: Sets tolerance on l-infinity of solid temperature for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressurea\_criteria, Tcoola\_criteria, Tsolida\_criteria, Tsolida\_criteria, void\_criteria, void\_criteria, void\_criteria, vvapa\_criteria, vvapa\_criteria, vdropa\_criteria, vdropa\_criteria, vdropa\_criteria\_12, Tsolida\_criteria\_12, Tsolida\_criteria\_12, pressure\_criteria\_12, vliqa\_criteria\_12, vliqa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vdropa\_criteria\_12). Note that when using the change-based criteria, all criteria are optional. See CTF User Manual for more details.

Notes: None

#### void\_criteria void\_criteria

| void_criteria                                | float | Optional |
|----------------------------------------------|-------|----------|
| Units: N/A                                   |       |          |
| Applicable Value(s): 1e-4 (default), $> 0.0$ |       |          |
| Limitation(s): None                          |       |          |

Description: Sets tolerance on l-infinity of void for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressure\_criteria, Tcool\_criteria, Tcool\_criteria, Tsolid\_criteria, Tsolid\_criteria, void\_criteria, void\_criteria, vuliq\_criteria, vuliq\_criteria, vvap\_criteria, vvap\_criteria, vvap\_criteria, vdrop\_criteria, vdrop\_criteria, void\_criteria\_12, Tsolid\_criteria\_12, Tsolid\_criteria\_12, Tsolid\_criteria\_12, pressure\_criteria\_12, vliq\_criteria\_12, vliq\_criteria\_12, vvap\_criteria\_12, vvap\_criteria\_13, vvap\_criteria\_14, vvap\_criteria\_15, vvap\_criteria\_16, vvap\_criteria\_16, vvap\_criteria\_17, vvap\_criteria\_18, vvap\_criteria\_19, vvap\_cri

Notes: None

#### vliq\_criteria vliq\_criteria

| vliq_criteria                                | float | Optional |
|----------------------------------------------|-------|----------|
| Units: N/A                                   |       |          |
| Applicable Value(s): 1e-3 (default), $> 0.0$ |       |          |
| Limitation(s): None                          |       |          |

Description: Sets tolerance on l-infinity of liquid velocity for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressurea\_criteria, Tcool\_criteria, Tcoola\_criteria, Tsolida\_criteria, void\_criteria, void\_criteria, void\_criteria, vvapa\_criteria, vvapa\_criteria, vdropa\_criteria, vdropa\_criteria, void\_criteria\_12, Tcoola\_criteria\_12, Tsolida\_criteria\_12, Tsolida\_criteria\_12, pressurea\_criteria\_12, vliq\_criteria\_12, vliqa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vdropa\_criteria\_12). Note that when using the change-based criteria, all criteria are optional. See CTF User Manual for more details.

Notes: None



#### vvap\_criteria vvap\_criteria

| vvap_criteria                                | float | Optional |
|----------------------------------------------|-------|----------|
| Units: N/A                                   |       |          |
| Applicable Value(s): 1e-2 (default), $> 0.0$ |       |          |
| Limitation(s): None                          |       |          |

Description: Sets tolerance on l-infinity of vapor velocity for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressure\_criteria, Tcool\_criteria, Tcool\_criteria, Tsolid\_criteria, Tsolid\_criteria, void\_criteria, void\_criteria, vliq\_criteria, vvapa\_criteria, vdrop\_criteria, vdropa\_criteria, void\_criteria\_12, Tsolid\_criteria\_12, Tsolida\_criteria\_12, pressure\_criteria\_12, vliq\_criteria\_12, vliqa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vdropa\_criteria\_12). Note that when using the change-based criteria, all criteria are optional. Not checked for single phase runs. See CTF User Manual for more details.

Notes: None

### vdrop\_criteria vdrop\_criteria

| vdrop_criteria                               | float | Optional |
|----------------------------------------------|-------|----------|
| Units: N/A                                   |       |          |
| Applicable Value(s): 1e-2 (default), $> 0.0$ |       |          |
| Limitation(s): None                          |       |          |
|                                              |       | 0 1      |

Description: Sets tolerance on l-infinity of droplet velocity for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressurea\_criteria, Tcool\_criteria, Tcoola\_criteria, Tsolida\_criteria, Vsolida\_criteria, void\_criteria, vviqa\_criteria, vvapa\_criteria, vvapa\_criteria, vdropa\_criteria, vdropa\_criteria, void\_criteria\_12, Tcoola\_criteria\_12, Tsolida\_criteria\_12, Tsolida\_criteria\_12, pressure\_criteria\_12, pressurea\_criteria\_12, vliq\_criteria\_12, vliqa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vdropa\_criteria\_12). Note that when using the change-based criteria, all criteria are optional. Not checked for single phase runs. See CTF User Manual for more details.

Notes: None

#### pressurea\_criteria pressurea\_criteria

| pressurea_criteria                           | float | Optional |
|----------------------------------------------|-------|----------|
| Units: bar (default)                         |       |          |
| Applicable Value(s): 1e-3 (default), $> 0.0$ |       |          |
| Limitation(s): None                          |       |          |



#### pressurea\_criteria, continued...

Description: Sets absolute tolerance on l-infinity of pressure for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressurea\_criteria, Tcool\_criteria, Tcoola\_criteria, Tsolid\_criteria, Tsolida\_criteria, void\_criteria, vliq\_criteria, vliqa\_criteria, vvapa\_criteria, vdrop\_criteria, vdropa\_criteria, void\_criteria\_12, Tsolida\_criteria\_12, Tsolida\_criteria\_12, pressure\_criteria\_12, vliqa\_criteria\_12, vliqa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vdropa\_criteria\_12). Note that when using the change-based criteria, all criteria are optional. See CTF User Manual for more details.

Notes: None

#### Tcoola\_criteria Tcoola\_criteria

| Tcoola_criteria               | Optional |
|-------------------------------|----------|
| Units: K (default)            |          |
| Applicable Value(s): 1e-3 (de |          |
| Limitation(s): None           |          |
| D                             |          |

Description: Sets absolute tolerance on l-infinity of coolant temperature for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressurea\_criteria, Tcoola\_criteria, Tsolida\_criteria, Tsolida\_criteria, void\_criteria, void\_criteria, vvapa\_criteria, vvapa\_criteria, vdrop\_criteria, vdropa\_criteria, vdropa\_criteria, void\_criteria\_12, Tsolida\_criteria\_12, Tsolida\_criteria\_12, pressure\_criteria\_12, pressurea\_criteria\_12, vliqa\_criteria\_12, vliqa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vdropa\_criteria\_12, vdropa\_criteria\_12). Note that when using the change-based criteria, all criteria are optional. See CTF User Manual for more details.

Notes: None

#### Tsolida\_criteria Tsolida\_criteria

| Tsolida_criteria                             | float | Optional |
|----------------------------------------------|-------|----------|
| Units: K (default)                           |       |          |
| Applicable Value(s): 1e-3 (default), $> 0.0$ |       |          |
| Limitation(s): None                          |       |          |

Description: Sets absolute tolerance on l-infinity of solid temperature for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressurea\_criteria, Tcoola\_criteria, Tsolid\_criteria, Tsolida\_criteria, void\_criteria, vilqa\_criteria, vvapa\_criteria, vvapa\_criteria, vvapa\_criteria, vdropa\_criteria, vdropa\_criteria, void\_criteria\_12, Tsolida\_criteria\_12, Tsolida\_criteria\_12, pressurea\_criteria\_12, vliqa\_criteria\_12, vliqa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vdropa\_criteria\_12). Note that when using the change-based criteria, all criteria are optional. See CTF User Manual for more details.

Notes: None

#### vliqa\_criteria vliqa\_criteria



| vliqa_criteria                | float           | Optional |
|-------------------------------|-----------------|----------|
| Units: m/s (default)          |                 |          |
| Applicable Value(s): 1e-3 (de | fault), $> 0.0$ |          |
| Limitation(s): None           |                 |          |

Description: Sets absolute tolerance on l-infinity of liquid velocity for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressurea\_criteria, Tcool\_criteria, Tcoola\_criteria, Tsolid\_criteria, Tsolida\_criteria, void\_criteria, vliqa\_criteria, vvap\_criteria, vvapa\_criteria, vdrop\_criteria, vdropa\_criteria, void\_criteria\_12, Tcoola\_criteria\_12, Tsolida\_criteria\_12, Tsolida\_criteria\_12, pressurea\_criteria\_12, vliqa\_criteria\_12, vliqa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vdropa\_criteria\_12). Note that when using the change-based criteria, all criteria are optional. See CTF User Manual for more details.

Notes: None

#### vvapa\_criteria vvapa\_criteria

| vvapa_criteria                | float                                                  | Optional   |
|-------------------------------|--------------------------------------------------------|------------|
| Units: m/s (default)          |                                                        |            |
| Applicable Value(s): 1e-2 (de | efault), $> 0.0$                                       |            |
| Limitation(s): None           |                                                        |            |
| Description: Sets absolute    | tolerance on l-infinity of vapor velocity for steady s | tate runs. |

Description: Sets absolute tolerance on l-infinity of vapor velocity for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressurea\_criteria, Tcoola\_criteria, Tcoola\_criteria, Tsolida\_criteria, Tsolida\_criteria, void\_criteria, vliqa\_criteria, vvapa\_criteria, vvapa\_criteria, vdropa\_criteria, vdropa\_criteria, void\_criteria\_l2, Tsolida\_criteria\_l2, Tsolida\_criteria\_l2, pressurea\_criteria\_l2, vliqa\_criteria\_l2, vliqa\_criteria\_l2, vvapa\_criteria\_l2, vvapa\_criteria\_l2, vdropa\_criteria\_l2, vdropa\_criteria\_l2). Note that when using the change-based criteria, all criteria are optional. Not used for single-phase runs. See CTF User Manual for more details.

Notes: None

#### vdropa\_criteria vdropa\_criteria

| vdropa_criteria                            | float | Optional |
|--------------------------------------------|-------|----------|
| Units: m/s (default)                       |       |          |
| Applicable Value(s): 1e-2 (default), > 0.0 |       |          |
| Limitation(s): None                        |       |          |



#### vdropa\_criteria, continued...

Description: Sets absolute tolerance on l-infinity of droplet velocity for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressurea\_criteria, Tcoola\_criteria, Tsolida\_criteria, Tsolida\_criteria, void\_criteria, void\_criteria, vvapa\_criteria, vvapa\_criteria, vdropa\_criteria, vdropa\_criteria, void\_criteria\_12, Tsolida\_criteria\_12, Tsolida\_criteria\_12, pressurea\_criteria\_12, vliqa\_criteria\_12, vliqa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vdropa\_criteria\_12). Note that when using the change-based criteria, all criteria are optional. Not used for single-phase runs. See CTF User Manual for more details.

Notes: None

#### pressure\_criteria\_l2 pressure\_criteria\_l2

| pressure_criteria_12          | float                                               | Optional |
|-------------------------------|-----------------------------------------------------|----------|
| Units: N/A                    |                                                     |          |
| Applicable Value(s): 1e-5 (de | efault), $> 0.0$                                    |          |
| Limitation(s): None           |                                                     |          |
| Description: Sets relative    | tolerance on l-2 of pressure for steady state runs. | Only ap- |

Description: Sets relative tolerance on l-2 of pressure for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressurea\_criteria, Tcool\_criteria, Tcoola\_criteria, Tsolida\_criteria, void\_criteria, void\_criteria, vviqa\_criteria, vvapa\_criteria, vvapa\_criteri

Notes: None

### Tcool\_criteria\_12 Tcool\_criteria\_12

| Tcool_criteria_12             | float                                                     | Optional   |
|-------------------------------|-----------------------------------------------------------|------------|
| Units: N/A                    |                                                           |            |
| Applicable Value(s): 1e-4 (d  | efault), $> 0.0$                                          |            |
| Limitation(s): None           |                                                           |            |
| Description: Sets relative to | plerance on l-2 of coolant temperature for steady state r | runs. Only |

Description: Sets relative tolerance on l-2 of coolant temperature for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressurea\_criteria, Tcool\_criteria, Tcoola\_criteria, Tsolid\_criteria, Tsolida\_criteria, void\_criteria, vliqa\_criteria, vvapa\_criteria, vvapa\_criteria, vdropa\_criteria, vdropa\_criteria, void\_criteria\_12, Tcoola\_criteria\_12, Tsolid\_criteria\_12, Tsolida\_criteria\_12, pressurea\_criteria\_12, vliqa\_criteria\_12, vliqa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vdropa\_criteria\_12). Note that when using the change-based criteria, all criteria are optional. See CTF User Manual for more details.

Notes: None

### Tsolid\_criteria\_12 Tsolid\_criteria\_12



|--|

Units: N/A

Applicable Value(s): 1e-4 (default), > 0.0

Limitation(s): None

Description: Sets relative tolerance on l-2 of solid temperature for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressure\_criteria, Tcool\_criteria, Tcool\_criteria, Tsolid\_criteria, Tsolid\_criteria, void\_criteria, void\_criteria, vliq\_criteria, vvap\_criteria, vvap\_criteria, vdrop\_criteria, vdrop\_criteria, void\_criteria\_12, Tsolid\_criteria\_12, Tsolid\_criteria\_12, Tsolid\_criteria\_12, pressure\_criteria\_12, vliq\_criteria\_12, vliq\_criteria\_12, vvap\_criteria\_12, vvap\_cr

Notes: None

#### void\_criteria\_l2 void\_criteria\_l2

| void_criteria_12 | float | Optional |
|------------------|-------|----------|
| Units: N/A       |       |          |

Applicable Value(s): 1e-5 (default), > 0.0

Limitation(s): None

Description: Sets absolute tolerance on l-2 of void for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressurea\_criteria, Tcoola\_criteria, Tsolida\_criteria, Tsolida\_criteria, void\_criteria, vliqa\_criteria, vvapa\_criteria, vdropa\_criteria, vdropa\_criteria, vdropa\_criteria, void\_criteria\_12, Tsolida\_criteria\_12, Tsolida\_criteria\_12, pressurea\_criteria\_12, vliqa\_criteria\_12, vliqa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vdropa\_criteria\_12). Note that when using the change-based criteria, all criteria are optional. Not used in single phase runs. See CTF User Manual for more details

Notes: None

#### vliq\_criteria\_l2 vliq\_criteria\_l2

| vliq_criteria_12                             | float | Optional |  |  |
|----------------------------------------------|-------|----------|--|--|
| Units: N/A                                   |       |          |  |  |
| Applicable Value(s): 1e-4 (default), $> 0.0$ |       |          |  |  |

Description: Sets relative tolerance on l-2 of liquid velocity for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressurea\_criteria, Tcool\_criteria, Tcoola\_criteria, Tsolid\_criteria, Tsolida\_criteria, void\_criteria, vliq\_criteria, vvapa\_criteria, vvapa\_criteria, vdropa\_criteria, vdropa\_criteria, void\_criteria\_l2, Tcoola\_criteria\_l2, Tsolid\_criteria\_l2, Tsolida\_criteria\_l2, pressure\_criteria\_l2, pressurea\_criteria\_l2, vliq\_criteria\_l2, vliqa\_criteria\_l2, vvapa\_criteria\_l2, vvapa\_criteria\_l2, vdropa\_criteria\_l2). Note that when using the change-based criteria, all criteria are optional. See CTF User Manual for more details.

continued on next page...

Limitation(s): None



## vliq\_criteria\_12, continued...

Notes: None

### vvap\_criteria\_l2 vvap\_criteria\_l2

| vvap_criteria_12                  | float                                                                       | Optional       |
|-----------------------------------|-----------------------------------------------------------------------------|----------------|
| Units: N/A                        |                                                                             |                |
| Applicable Value(s): 1e-4 (de     | efault), $> 0.0$                                                            |                |
| Limitation(s): None               |                                                                             |                |
| Description: Sets relative        | tolerance on l-2 of vapor velocity for steady state r                       | uns. Only      |
| applicable when using the         | change-based convergence criteria (specify pressure_cri                     | iteria, pres-  |
| surea_criteria, Tcool_criteri     | a, Tcoola_criteria, Tsolid_criteria, Tsolida_criteria, ve                   | oid_criteria,  |
| vliq_criteria, vliqa_criteria,    | vvap_criteria, vvapa_criteria, vdrop_criteria, vdro                         | opa_criteria,  |
| void_criteria_l2, Tcool_crite     | eria_l2, Tcoola_criteria_l2, Tsolid_criteria_l2, Tsolida                    | ı_criteria_l2, |
| pressure_criteria_l2, pressur     | $rea\_criteria\_12$ , $vliq\_criteria\_12$ , $vliqa\_criteria\_12$ , $vvap$ | criteria_l2,   |
| vvapa_criteria_l2, vdrop_crite    | eria_l2, vdropa_criteria_l2). Note that when using the ch                   | nange-based    |
| criteria, all criteria are option | nal. Not used for single-phase runs. See CTF User Manu                      | ial for more   |
| details.                          |                                                                             |                |
| Notes: None                       |                                                                             |                |

## $vdrop\_criteria\_l2$ $vdrop\_criteria\_l2$

| vdrop_criteria_12                 | float                                                      | Optional      |
|-----------------------------------|------------------------------------------------------------|---------------|
| Units: N/A                        |                                                            |               |
| Applicable Value(s): 1e-4 (de     | efault), $> 0.0$                                           |               |
| Limitation(s): None               |                                                            |               |
| -                                 | colerance on l-2 of droplet velocity for steady state r    | •             |
|                                   | change-based convergence criteria (specify pressure_cri    | , -           |
| surea_criteria, Tcool_criteri     | a, Tcoola_criteria, Tsolid_criteria, Tsolida_criteria, vo  | oid_criteria, |
| vliq_criteria, vliqa_criteria,    | vvap_criteria, vvapa_criteria, vdrop_criteria, vdro        | pa_criteria,  |
| void_criteria_l2, Tcool_crite     | eria_l2, Tcoola_criteria_l2, Tsolid_criteria_l2, Tsolida   | _criteria_l2, |
| pressure_criteria_12, pressure    | rea_criteria_l2, vliq_criteria_l2, vliqa_criteria_l2, vvap | _criteria_l2, |
| vvapa_criteria_l2, vdrop_crite    | eria_l2, vdropa_criteria_l2). Note that when using the ch  | ange-based    |
| criteria, all criteria are option | nal. Not used for single-phase runs. See CTF User Manu     | al for more   |
| details.                          |                                                            |               |
| Notes: None                       |                                                            |               |

# ${\bf pressure\_criteria\_l2} \ {\bf pressure\_criteria\_l2}$

| pressure_criteria_12                       | float | Optional |
|--------------------------------------------|-------|----------|
| Units: N/A                                 |       |          |
| Applicable Value(s): 1e-5 (default), > 0.0 |       |          |
| Limitation(s): None                        |       |          |



#### pressure\_criteria\_12, continued...

Description: Sets relative tolerance on l-2 of pressure for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressurea\_criteria, Tcool\_criteria, Tcoola\_criteria, Tsolida\_criteria, Vsolida\_criteria, void\_criteria, void\_criteria, vvapa\_criteria, vvapa\_criteria, vvapa\_criteria, vvapa\_criteria, vvapa\_criteria\_12, Tsolida\_criteria\_12, Tsolida\_criteria\_12, pressurea\_criteria\_12, vliqa\_criteria\_12, vliqa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_13, vvapa\_criteria\_14, vvapa\_criteria\_15, vvapa\_criteria\_15, vvapa\_criteria\_16, vvapa\_criteria\_16, vvapa\_criteria\_17, vvapa\_criteria\_18, vvapa\_criteria\_19, vvapa\_crite

Notes: None

#### Tcoola\_criteria\_l2 Tcoola\_criteria\_l2

| Tcoola_criteria_12            | float                                              | Optional    |
|-------------------------------|----------------------------------------------------|-------------|
| Units: K (default)            |                                                    |             |
| Applicable Value(s): 1e-5 (de | efault), $> 0.0$                                   |             |
| Limitation(s): None           |                                                    |             |
| Description: Sets absolute    | tolerance on l-2 of coolant temperature for steady | state runs. |
| 0 1 1 11 1                    | 1                                                  | •, •        |

Description: Sets absolute tolerance on l-2 of coolant temperature for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressurea\_criteria, Tcoola\_criteria, Tsolid\_criteria, Tsolida\_criteria, void\_criteria, void\_criteria, vviqa\_criteria, vvapa\_criteria, v

Notes: None

#### Tsolida\_criteria\_l2 Tsolida\_criteria\_l2

| Tsolida_criteria_12                        | float | Optional |
|--------------------------------------------|-------|----------|
| Units: K (default)                         |       |          |
| Applicable Value(s): 1e-5 (default), > 0.0 |       |          |
| Limitation(s): None                        |       |          |

Description: Sets absolute tolerance on l-2 of solid temperature for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressurea\_criteria, Tcool\_criteria, Tcoola\_criteria, Tsolid\_criteria, Tsolida\_criteria, void\_criteria, vliqa\_criteria, vvap\_criteria, vvapa\_criteria, vdrop\_criteria, vdropa\_criteria, void\_criteria\_12, Tcoola\_criteria\_12, Tsolid\_criteria\_12, Tsolida\_criteria\_12, pressure\_criteria\_12, vliqa\_criteria\_12, vliqa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_13, vvapa\_criteria\_14, vvapa\_criteria\_15, vvapa\_criteria\_16, vvapa\_criteria\_16, vvapa\_criteria\_17, vvapa\_criteria\_18, vvapa\_criteria\_19, vvap

Notes: None

#### vliqa\_criteria\_l2 vliqa\_criteria\_l2



vliqa\_criteria\_12 float Optional
Units: m/s (default)
Applicable Value(s): 1e-5 (default), > 0.0
Limitation(s): None

Description: Sets absolute tolerance on l-2 of liquid velocity for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressurea\_criteria, Tcool\_criteria, Tcoola\_criteria, Tsolida\_criteria, Tsolida\_criteria, void\_criteria, vliqa\_criteria, vvap\_criteria, vvapa\_criteria, vdrop\_criteria, vdropa\_criteria, void\_criteria\_12, Tcoola\_criteria\_12, Tsolida\_criteria\_12, Tsolida\_criteria\_12, pressure\_criteria\_12, vliqa\_criteria\_12, vliqa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vdropa\_criteria\_12, vdropa\_criteria\_12). Note that when using the change-based criteria, all criteria are optional. See CTF User Manual for more details.

Notes: None

Notes: None

#### vvpaa\_criteria\_l2 vvapa\_criteria\_l2

| vvapa_criteria_12                          | float | Optional |
|--------------------------------------------|-------|----------|
| Units: m/s (default)                       |       |          |
| Applicable Value(s): 1e-4 (default), > 0.0 |       |          |
| Limitation(s): None                        |       |          |

Description: Sets absolute tolerance on 1-2 of vapor velocity for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressurea\_criteria, Tcool\_criteria, Tcoola\_criteria, Tsolid\_criteria, Tsolida\_criteria, void\_criteria, vliq\_criteria, vliqa\_criteria, vvapa\_criteria, vvapa\_criteria, vdropa\_criteria, vdropa\_criteria, void\_criteria\_12, Tsolida\_criteria\_12, Tsolida\_criteria\_12, pressure\_criteria\_12, vliqa\_criteria\_12, vliqa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vdropa\_criteria\_12). Note that when using the change-based criteria, all criteria are optional. Not used for single-phase runs. See CTF User Manual for more details.

vdropa\_criteria\_l2 vdropa\_criteria\_l2

| vdropa_criteria_12                         | float | Optional |
|--------------------------------------------|-------|----------|
| Units: m/s (default)                       |       |          |
| Applicable Value(s): 1e-4 (default), > 0.0 |       |          |
| Limitation(s): None                        |       |          |



#### vdropa\_criteria\_12, continued...

Description: Sets absolute tolerance on l-2 of droplet velocity for steady state runs. Only applicable when using the change-based convergence criteria (specify pressure\_criteria, pressurea\_criteria, Tcoola\_criteria, Tsolida\_criteria, Tsolida\_criteria, void\_criteria, vliqa\_criteria, vvapa\_criteria, vvapa\_criteria, vdropa\_criteria, vdropa\_criteria, void\_criteria\_12, Tcoola\_criteria\_12, Tsolida\_criteria\_12, Tsolida\_criteria\_12, pressurea\_criteria\_12, vliqa\_criteria\_12, vliqa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vvapa\_criteria\_12, vdropa\_criteria\_12). Note that when using the change-based criteria, all criteria are optional. Not used for single-phase runs. See CTF User Manual for more details.

Notes: None

### use\_sol\_stop\_crit use\_sol\_stop\_crit

| use_sol_stop_crit              | $\inf$                                                  | Optional            |
|--------------------------------|---------------------------------------------------------|---------------------|
| Units: N/A                     |                                                         |                     |
| Applicable Value(s): 0 (defar  | ult), 0 1                                               |                     |
| Limitation(s): None            |                                                         |                     |
| Description: Selects the s     | stopping criteria to use for steady state run           | s. Options are:     |
| 0 - storage-based criteria (   | global_energy_balance, global_mass_balance, flu         | id_energy_storage,  |
| solid_energy_storage, mass     | s_storage) 1 - change-based criteria (glob              | al_energy_balance,  |
| global_mass_balance, press     | ure_criteria, pressurea_criteria, Tcool_criteria,       | , Tcoola_criteria,  |
| Tsolid_criteria, Tsolida_cri   | teria, void_criteria, vliq_criteria, vliqa_criter       | ia, vvap_criteria,  |
| vvapa_criteria, vdrop_criteria | , vdropa_criteria, void_criteria_l2, Tcool_criteria_l2, | Tcoola_criteria_l2, |

Tsolid\_criteria\_12, Tsolida\_criteria\_12, pressure\_criteria\_12, pressurea\_criteria\_12, vliq\_criteria\_12, vliq\_criteria\_12, vvapa\_criteria\_12, vvapa

ria are optional with defaults. notes

Notes: NONE SPECIFIED

#### proc\_per\_assem proc\_per\_assem

| proc_per_assem                                                                                    | $\operatorname{int}$                                   | Optional    |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------|
| Units: N/A                                                                                        |                                                        |             |
| Applicable Value(s): 0 (defar                                                                     | ult), 1 4 9 16                                         |             |
| Limitation(s): None                                                                               |                                                        |             |
| Description: Sets the number of domains to divide each full assembly into for parallel runs. Only |                                                        |             |
| applicable for parallel runs.                                                                     | The higher the number, the more cores CTF will use and | the faster  |
| it will run in a parallel mode                                                                    | d. However, the number of cores required by CTF must b | e less than |
| or equal to the number requi                                                                      | ired by VERA-CS and the number of cores available on t | he system.  |
| Notes: None                                                                                       |                                                        |             |

 $\mathbf{edit}_{-}\mathbf{gaps}$   $\mathbf{edit}_{-}\mathbf{gaps}$ 



| edit_gaps                        | int                                                        | Optional    |
|----------------------------------|------------------------------------------------------------|-------------|
| Units: N/A                       |                                                            |             |
| Applicable Value(s): 0 (defa     | ult), 0 1                                                  |             |
| Limitation(s): None              |                                                            |             |
| Description: Set to 1 to write   | e an output file from CTF specifying gap (lateral flow pat | h) solution |
| data. This file will be large to | for full-core models.                                      |             |
| Notes: None                      |                                                            |             |

# $\mathbf{edit\_main\_text\_output} \ \mathbf{edit\_main\_text\_output}$

| edit_main_text_output            | $\operatorname{int}$                                  | Optional    |
|----------------------------------|-------------------------------------------------------|-------------|
| Units: N/A                       |                                                       |             |
| Applicable Value(s): 0 (defa     | ult), 0 1                                             |             |
| Limitation(s): None              |                                                       |             |
| Description: Set to 1 to wri     | te the main text output file from CTF summarizing sol | ution data. |
| This file will be large for full | -core models.                                         |             |
| Notes: None                      |                                                       |             |

## ${\bf edit\_channels} \ {\bf edit\_channels}$

| edit_channels                    | int                                                     | Optional    |
|----------------------------------|---------------------------------------------------------|-------------|
| Units: N/A                       |                                                         |             |
| Applicable Value(s): 0 (defa     | ult), 0 1                                               |             |
| Limitation(s): None              |                                                         |             |
| Description: Set to 1 to writ    | e the channel text output file from CTF summarizing sol | ution data. |
| This file will be large for full | l-core models.                                          |             |
| Notes: None                      |                                                         |             |

## $\mathbf{edit\_rods}$ $\mathbf{edit\_rods}$

| edit_rods                     | int                                                     | Optional     |
|-------------------------------|---------------------------------------------------------|--------------|
| Units: N/A                    |                                                         |              |
| Applicable Value(s): 0 (defa  | ult), 0 1                                               |              |
| Limitation(s): None           |                                                         |              |
| Description: Set to 1 to writ | te rod data to the main text output file from CTF. This | file will be |
| large for full-core models.   |                                                         |              |
| Notes: None                   |                                                         |              |

## $\mathbf{edit\_dnb}$ $\mathbf{edit\_dnb}$

| edit_dnb                              | int | Optional |
|---------------------------------------|-----|----------|
| Units: N/A                            |     |          |
| Applicable Value(s): 0 (default), 0 1 |     |          |



## edit\_dnb, continued...

| Limitation(s): None                                               |
|-------------------------------------------------------------------|
| Description: Set to 1 to write DNB data to the VERA-CS HDF5 file. |
| Notes: None                                                       |

## $\mathbf{edit\_dnb\_text\_file} \ \mathbf{edit\_dnb\_text\_file}$

| edit_dnb_text_file                                                                              | int | Optional |  |
|-------------------------------------------------------------------------------------------------|-----|----------|--|
| Units: N/A                                                                                      |     |          |  |
| Applicable Value(s): 0 (default), 0 1                                                           |     |          |  |
| Limitation(s): None                                                                             |     |          |  |
| Description: Set to 1 to write the DNB text file. This file will be large for full core models. |     |          |  |
| Notes: None                                                                                     |     |          |  |

## ${\bf edit\_convergence} \ {\bf edit\_convergence}$

| edit_convergence                                                                 | int | Optional |
|----------------------------------------------------------------------------------|-----|----------|
| Units: N/A                                                                       |     |          |
| Applicable Value(s): 1 (default), 0 1                                            |     |          |
| Limitation(s): None                                                              |     |          |
| Description: Set to 1 to write the convergence information output file from CTF. |     |          |
| Notes: None                                                                      |     |          |

### $edit\_hdf5$ $edit\_hdf5$

| edit_hdf5                                                               | $\operatorname{int}$ | Optional |
|-------------------------------------------------------------------------|----------------------|----------|
| Units: N/A                                                              |                      |          |
| Applicable Value(s): 1 (default), 0 1                                   |                      |          |
| Limitation(s): None                                                     |                      |          |
| Description: Set to 1 to write CTF data to the VERA-CS HDF5 file. notes |                      |          |
| Notes: NONE SPECIFIED                                                   |                      |          |

## $edit\_native\_hdf5$ $edit\_native\_hdf5$

| edit_native_hdf5                                                                              | $\operatorname{int}$ | Optional |  |  |
|-----------------------------------------------------------------------------------------------|----------------------|----------|--|--|
| Units: N/A                                                                                    | Units: N/A           |          |  |  |
| Applicable Value(s): 0 (default), 0 1                                                         |                      |          |  |  |
| Limitation(s): None                                                                           |                      |          |  |  |
| Description: Set to 1 to write the CTF native HDF5 file. This file writes information for all |                      |          |  |  |
| pins in the model in a more arbitrary way than the VERA-CS HDF5 file, which is organized by   |                      |          |  |  |
| assembly and core location. This file contains more detailed information than the VERA-CS     |                      |          |  |  |
| HDF5 file. This file can currently only be printed for serial runs.                           |                      |          |  |  |
| Notes: None                                                                                   |                      |          |  |  |



# $\mathbf{edit\_fluid\_vtk} \ \mathbf{edit\_fluid\_vtk}$

| edit_fluid_vtk                                                                                    | $\operatorname{int}$ | Optional |  |
|---------------------------------------------------------------------------------------------------|----------------------|----------|--|
| Units: N/A                                                                                        |                      |          |  |
| Applicable Value(s): 0 (default), 0 1                                                             |                      |          |  |
| Limitation(s): None                                                                               |                      |          |  |
| Description: Set to 1 to write the CTF fluid VTK file. This allows the user to visualize solution |                      |          |  |
| results using a VTK reader, but this file will be large for full core models.                     |                      |          |  |
| Notes: None                                                                                       |                      |          |  |

### $\mathbf{edit\_rod\_vtk} \ \mathbf{edit\_rod\_vtk}$

| edit_rod_vtk                                                                                    | int | Optional |  |
|-------------------------------------------------------------------------------------------------|-----|----------|--|
| Units: N/A                                                                                      |     |          |  |
| Applicable Value(s): 0 (default), 0 1                                                           |     |          |  |
| Limitation(s): None                                                                             |     |          |  |
| Description: Set to 1 to write the CTF rod VTK file. This allows the user to visualize solution |     |          |  |
| results using a VTK reader, but this file will be large for full core models.                   |     |          |  |
| Notes: None                                                                                     |     |          |  |

### hi2lo\_sub\_axial hi2lo\_sub\_axial

| hi2lo_sub_axial                                                                                   | int | Optional |  |
|---------------------------------------------------------------------------------------------------|-----|----------|--|
| Units: N/A                                                                                        |     |          |  |
| Applicable Value(s): 1 (default), > 0                                                             |     |          |  |
| Limitation(s): None                                                                               |     |          |  |
| Description: Use to set the number of sub-levels to divide each CTF axial level into when forming |     |          |  |
| the coupling mesh with MAMBA. Only applicable when using ROTHCON to reconstruct rod               |     |          |  |
| surface temperatures and TI                                                                       | KE. |          |  |
| Notes: None                                                                                       |     |          |  |

## $hi2lo\_sub\_theta$ $hi2lo\_sub\_theta$

| hi2lo_sub_theta                                                                           | $\operatorname{int}$ | Optional |  |
|-------------------------------------------------------------------------------------------|----------------------|----------|--|
| Units: N/A                                                                                |                      |          |  |
| Applicable Value(s): 1 (default), $> 0$                                                   |                      |          |  |
| Limitation(s): None                                                                       |                      |          |  |
| Description: Use to set the number of sub-sectors to divide each CTF rod sector into when |                      |          |  |
| forming the coupling mesh with MAMBA. Only applicable when using ROTHCON to reconstruct   |                      |          |  |
| rod surface temperatures and                                                              | d TKE.               |          |  |
| Notes: None                                                                               |                      |          |  |

## model\_corrosion model\_corrosion



| model_corrosion              | int                                                    | Optional   |
|------------------------------|--------------------------------------------------------|------------|
| Units: N/A                   |                                                        |            |
| Applicable Value(s): 0 (defa | ult), 0 1                                              |            |
| Limitation(s): None          |                                                        |            |
| Description: Set to 1 to tur | rn on the clad corrosion model in CTF. Only applicable | e for crud |
| simulations.                 |                                                        |            |
| Notes: None                  |                                                        |            |

# $\mathbf{gap} \_ \mathbf{model} \ \mathrm{gap} \_ \mathbf{model}$

| gap_model                      | string                                                   | Optional    |
|--------------------------------|----------------------------------------------------------|-------------|
| Units: N/A                     |                                                          |             |
| Applicable Value(s): constar   | nt (default), constant dynamic                           |             |
| Limitation(s): None            |                                                          |             |
| Description: Sets the fuel roc | pellet/clad gap thermal conductivity model. Can either b | oe constant |
| (user-specified value) or dyn  | amic (CTF will calculate based on thermal expansion a    | nd burnup   |
| effects).                      |                                                          |             |
| Notes: None                    |                                                          |             |

# $boil\_ht\_cor\ boil\_ht\_cor$

| boil_ht_cor                   | $\operatorname{string}$                        | Optional |
|-------------------------------|------------------------------------------------|----------|
| Units: N/A                    |                                                |          |
| Applicable Value(s): thom (e  | default), chen thom                            |          |
| Limitation(s): None           |                                                |          |
| Description: Sets the boiling | heat transfer model. Options are chen or thom. |          |
| Notes: None                   |                                                |          |

# ${\bf property\_evaluations} \ {\bf property\_evaluations}$

| property_evaluations           | string                                                       | Optional    |
|--------------------------------|--------------------------------------------------------------|-------------|
| Units: N/A                     |                                                              |             |
| Applicable Value(s): iapws19   | 997_lookup (default), asme1968 iapws1997_direct iapws1       | 997_lookup  |
| flibe                          |                                                              |             |
| Limitation(s): None            |                                                              |             |
| Description: Sets the equation | on of state source to use for fluid properties. Options are: | asme1968 -  |
| ASME 1968 tabls iapws1997      | Ldirect - IAPWS 1997 standard using direct correlation of    | evaluations |
| (will be computationally slow  | wer) iapws<br>1997_lookup - IAPWS 1997 standard lookup t     | ables built |
| from the direct correlation e  | valuations during initialization (computationally faster t   | o evaluate) |
| flibe - Generic properties for | FLiBe salt coolant                                           |             |
| Notes: None                    |                                                              |             |

# $\mathbf{beta\_sp}$ beta\\_sp



| beta_sp                        | float                                                  | Optional       |
|--------------------------------|--------------------------------------------------------|----------------|
| Units: N/A                     |                                                        |                |
| Applicable Value(s): 0.005 (   | default), $\geq 0.0$                                   |                |
| Limitation(s): None            |                                                        |                |
| Description: Sets the strengt  | h of turbulent mixing causing lateral cross-flow in CT | F. The default |
| is currently 0.005, but it has | been found that 0.037 is more reasonable for bundle    | es with mixing |
| vane grids (will be updated i  | in the future).                                        |                |
| Notes: None                    |                                                        |                |

## $k\_void\_drift$ $k\_void\_drift$

| k_void_drift                   | float                                                      | Optional   |
|--------------------------------|------------------------------------------------------------|------------|
| Units: N/A                     |                                                            |            |
| Applicable Value(s): 1.4 (det  | $fault), \geq 0.0$                                         |            |
| Limitation(s): None            |                                                            |            |
| Description: Sets the equilibr | ium distribution weighting factor in the void drift model. | Decreasing |
| this value leads to less void  | drift and increasing it leads to more.                     |            |
| Notes: None                    |                                                            |            |

## $crud\_tool$ crud\_tool

| crud_tool                                                                           | string                    | Optional |
|-------------------------------------------------------------------------------------|---------------------------|----------|
| Units: N/A                                                                          |                           |          |
| Applicable Value(s): MAMB                                                           | A (default), MAMBA cicada |          |
| Limitation(s): None                                                                 |                           |          |
| Description: Sets the crud modeling tool. Only applicable during a crud simulation. |                           |          |
| Notes: None                                                                         |                           |          |

# ${\bf max\_crud\_step\_size} \ {\bf max\_crud\_step\_size}$

| max_crud_step_size                | Float                                                | Optional          |
|-----------------------------------|------------------------------------------------------|-------------------|
| Units: day (default)              |                                                      |                   |
| Applicable Value(s): $, > 0$      |                                                      |                   |
| Limitation(s): None               |                                                      |                   |
| Description: Maximum num          | ber of days in a crud grow. Setting this smaller the | han the depletion |
| step size will result in multiple | le crud grows being made during the depletion step   | with source term  |
| data being updated during e       | ach substep.                                         |                   |
| Notes: None                       |                                                      |                   |

## ${\bf crud\_dT\_feedback} \ {\bf crud\_dT\_feedback}$

| crud_dT_feedback | $\operatorname{int}$ | Optional |
|------------------|----------------------|----------|
| Units: N/A       |                      |          |



### crud\_dT\_feedback, continued...

Applicable Value(s): , 0, 1

Limitation(s): None

Description: Set to 0 to shut off the crud thermal resistance effect on the rod internal temperaure calculation. Note that the crud thermal resistance will still affect the corrosion growth calculation.

Defaults to 1.
Notes: None

#### cicada\_outer\_radial\_zone\_num\_cells\_r cicada\_outer\_radial\_zone\_num\_cells\_r

| cicada_outer_radial_zone_num_cells_r int                                            | Optional  |
|-------------------------------------------------------------------------------------|-----------|
| Units: N/A                                                                          |           |
| Applicable Value(s): 100 (default), $\geq 1$                                        |           |
| Limitation(s): None                                                                 |           |
| Description: Sets the number of rings in the oxide region of the clad for Cicada r  | uns. Only |
| applicable when Cicada used as the crud tool. Only applicable when cicada_dimension | n=3.      |
| Notes: None                                                                         |           |

#### cicada\_inner\_radial\_zone\_num\_cells\_r cicada\_inner\_radial\_zone\_num\_cells\_r

| cicada_inner_radial_zone_num_cells_r int                                            | Optional  |
|-------------------------------------------------------------------------------------|-----------|
| Units: N/A                                                                          |           |
| Applicable Value(s): 20 (default), $\geq 1$                                         |           |
| Limitation(s): None                                                                 |           |
| Description: Sets the number of rings in the clad region of the clad for Cicada r   | uns. Only |
| applicable when Cicada used as the crud tool. Only applicable when cicada_dimension | n=3.      |
| Notes: None                                                                         |           |

#### cicada\_outer\_radial\_zone\_thickness cicada\_outer\_radial\_zone\_thickness

| cicada_outer_radial_zone_thickness float                                           | Optional   |
|------------------------------------------------------------------------------------|------------|
| Units: m (default)                                                                 |            |
| Applicable Value(s): $100e-6$ (default), $> 0.0$                                   |            |
| Limitation(s): None                                                                |            |
| Description: Sets the thickness of the oxide modeling region of the clad. Only     | applicable |
| for crud simulations where Cicada is being used as the modeling tool. Only applied | cable when |
| cicada_dimension=3.                                                                |            |
| Notes: None                                                                        |            |

## cicada\_dimensions cicada\_dimension

| cicada_dimensions | $\operatorname{int}$ | Optional |
|-------------------|----------------------|----------|
| Units: N/A        |                      |          |



### cicada\_dimensions, continued...

Applicable Value(s): 1 (default), 1 3

Limitation(s): None

Description: Chooses the dimensions of the clad/oxide conduction solution in Cicada. Only applicable when doing a crud simulation using Cicada as the crud tool. Can either be 1 for radial conduction only or 3 for radial/axial/azimuthal conduction.

Notes: None

### enable\_corrosion\_lithium enable\_corrosion\_lithium

| enable_corrosion_lithium      | int                                                      | Optional    |  |
|-------------------------------|----------------------------------------------------------|-------------|--|
| Units: N/A                    |                                                          |             |  |
| Applicable Value(s): 0 (defa  | ult), 0 1                                                |             |  |
| Limitation(s): None           |                                                          |             |  |
| Description: Set to 1 to turn | n on the lithium effect on clad corrosion. Only has an e | effect when |  |
| modeling a crud simulation    | using MAMBA as the crud code.                            |             |  |
| Notes: None                   |                                                          |             |  |

# crud\_details crud\_details

| crud_details                  | $\operatorname{int}$                                   | Optional    |
|-------------------------------|--------------------------------------------------------|-------------|
| Units: N/A                    |                                                        |             |
| Applicable Value(s): 0 (defa  | ult), 0 1                                              |             |
| Limitation(s): None           |                                                        |             |
| Description: Set to 1 to turn | on additional edits to the VERA-CS HDF5 file related t | to the crud |
| simulation.                   |                                                        |             |
| Notes: None                   |                                                        |             |

## ${f rod\_details}\ {f rod\_details}$

| ${\tt rod\_details}$                  | int                                                  | Optional   |  |  |
|---------------------------------------|------------------------------------------------------|------------|--|--|
| Units: N/A                            | Units: N/A                                           |            |  |  |
| Applicable Value(s): 0 (default), 0 1 |                                                      |            |  |  |
| Limitation(s): None                   |                                                      |            |  |  |
| Description: Set to 1 to turn         | on additional edits to the VERA-CS HDF5 file related | to the rod |  |  |
| solution.                             |                                                      |            |  |  |
| Notes: None                           |                                                      |            |  |  |

## oxide\_thermal\_conductivity oxide\_thermal\_conductivity

| oxide_thermal_conductivity      | double                             | Optional |
|---------------------------------|------------------------------------|----------|
| Units: W/cm/K (default)         |                                    |          |
| Applicable Value(s): 1.5 (defau | ult), Greater than or equal to 0.0 |          |



# ${\tt oxide\_thermal\_conductivity}, continued...$

| Limitation(s): None                                           |
|---------------------------------------------------------------|
| Description: The thermal conductivity of the clad oxide layer |
| Notes: None                                                   |

# ${\bf clad\_corrosion\_model} \ {\bf clad\_corrosion\_model}$

| clad_corrosion_model           | int                                                         | Optional     |  |
|--------------------------------|-------------------------------------------------------------|--------------|--|
| Units: N/A                     |                                                             |              |  |
| Applicable Value(s): 1 (defa   | ult), 1 2 3                                                 |              |  |
| Limitation(s): None            |                                                             |              |  |
| Description: Selects the corre | osion model to use. The corrosion model is based on the cla | ad material. |  |
| Options include: 1 - Zirc 4 2  | 2 - M5 3 - ZIRLO                                            |              |  |
| Notes: None                    |                                                             |              |  |

## $trans\_dnb$ $trans\_dnb$

| trans_dnb                                                                                | $\operatorname{int}$ | Optional |  |  |
|------------------------------------------------------------------------------------------|----------------------|----------|--|--|
| Units: N/A                                                                               | Units: N/A           |          |  |  |
| Applicable Value(s): 0 (default), 0 1                                                    |                      |          |  |  |
| Limitation(s): None                                                                      |                      |          |  |  |
| Description: Set to 1 to enable the transient CHF model. Only applicable for transients. |                      |          |  |  |
| Notes: None                                                                              |                      |          |  |  |

# cross\_flow cross\_flow

| cross_flow                                                   | $\operatorname{int}$ | Optional |  |  |  |
|--------------------------------------------------------------|----------------------|----------|--|--|--|
| Units: N/A                                                   | Units: N/A           |          |  |  |  |
| Applicable Value(s): 1 (default), 0 1                        |                      |          |  |  |  |
| Limitation(s): None                                          |                      |          |  |  |  |
| Description: Set to 0 to shut off lateral cross flow in CTF. |                      |          |  |  |  |
| Notes: None                                                  |                      |          |  |  |  |

# 5.11. BLOCK COUPLING

# $\mathbf{epsk}$ epsk

| epsk                                         | Float | Optional |
|----------------------------------------------|-------|----------|
| Units: N/A, pcm                              |       |          |
| Applicable Value(s):                         |       |          |
| Limitation(s): > 0                           |       |          |
| Description: Eigenvalue converence criteria. |       |          |

141



# epsk, continued...

| No | otes: None |  |  |  |
|----|------------|--|--|--|
|    |            |  |  |  |

# $\mathbf{epsp} \,\, \mathrm{epsp} \,\,$

| epsp                                     | Float | Optional |
|------------------------------------------|-------|----------|
| Units: N/A, L2 norm                      |       |          |
| Applicable Value(s):                     |       |          |
| Limitation(s): > 0                       |       |          |
| Description: Power convergence criteria. |       |          |
| Notes: None                              |       |          |

# $\mathbf{eps\_temp} \ \mathrm{eps\_temp}$

| eps_temp                                       | Float | Optional |
|------------------------------------------------|-------|----------|
| Units: N/A, degrees F                          |       |          |
| Applicable Value(s):                           |       |          |
| Limitation(s): > 0                             |       |          |
| Description: Temperature convergence criteria. |       |          |
| Notes: None                                    |       |          |

# ctf\_iters\_max ctf\_iters\_max

| ctf_iters_max            | Integer                                      | Optional |
|--------------------------|----------------------------------------------|----------|
| Units: N/A               |                                              |          |
| Applicable Value(s):     |                                              |          |
| Limitation(s): > 0       |                                              |          |
| Description: Maximum num | ber of CTF time-steps per coupled iteration. |          |
| Notes: None              |                                              |          |

# $\textbf{ctf\_iters\_growth} \ \, \textbf{ctf\_iters\_growth}$

| ctf_iters_growth                                                      | Float | Optional |
|-----------------------------------------------------------------------|-------|----------|
| Units: N/A                                                            |       |          |
| Applicable Value(s):                                                  |       |          |
| Limitation(s): > 0                                                    |       |          |
| Description: Fractional change in ctf_iters_max by coupled iteration. |       |          |
| Notes: Value of 1 is no chan                                          | ge.   |          |

# $eps\_boron$ $eps\_boron$



| eps_boron                   | Float         | Optional |
|-----------------------------|---------------|----------|
| Units: N/A, ppm             |               |          |
| Applicable Value(s):        |               |          |
| Limitation(s): > 0          |               |          |
| Description: Boron converge | nce criteria. |          |
| Notes: None                 |               |          |

# $\mathbf{rlx\_power} \ \mathrm{rlx\_power}$

| rlx_power                             | Float | Optional |
|---------------------------------------|-------|----------|
| Units: N/A                            |       |          |
| Applicable Value(s):                  |       |          |
| Limitation(s): $> 0, <= 1$            |       |          |
| Description: Power relaxation factor. |       |          |
| Notes: Recommend 0.5.                 |       |          |

# ${\bf rlx\_tfuel} \ {\bf rlx\_tfuel}$

| rlx_tfuel                                        | Float | Optional |
|--------------------------------------------------|-------|----------|
| Units: N/A                                       |       |          |
| Applicable Value(s):                             |       |          |
| Limitation(s): > 0, <= 1                         |       |          |
| Description: Fuel temperature relaxation factor. |       |          |
| Notes: Recommend 1.0.                            |       |          |

# $\mathbf{rlx\_den} \ \mathrm{rlx\_den}$

| rlx_den                                 | Float | Optional |
|-----------------------------------------|-------|----------|
| Units: N/A                              |       |          |
| Applicable Value(s):                    |       |          |
| Limitation(s): > 0, <= 1                |       |          |
| Description: Density relaxation factor. |       |          |
| Notes: Recommend 1.0.                   |       |          |

## maxiter maxiter

| maxiter                                            | Integer | Optional |
|----------------------------------------------------|---------|----------|
| Units: N/A                                         |         |          |
| Applicable Value(s):                               |         |          |
| Limitation(s): > 0                                 |         |          |
| Description: Maximum number of coupled iterations. |         |          |
| Notes: None                                        |         |          |



# ${\bf read\_restart} \ {\bf read\_restart}$

| read_restart                  | Character String                                      | Optional |
|-------------------------------|-------------------------------------------------------|----------|
| Units: N/A                    |                                                       |          |
| Applicable Value(s):          |                                                       |          |
| Limitation(s): None           |                                                       |          |
| Description: Name of coupling | ng restart file. Leave blank for no coupling restart. |          |
| Notes: None                   |                                                       |          |

## 5.12. BLOCK MPACT

# ${\bf transport\_method}\ {\bf transport\_method}$

| transport_method            | Fixed Character String                                | Optional |
|-----------------------------|-------------------------------------------------------|----------|
| Units: N/A                  |                                                       |          |
| Applicable Value(s): MOC (  | default)                                              |          |
| Limitation(s): None         |                                                       |          |
| Description: This card is u | sed to specify whether Method of Characteristics, Sn, | or Nodal |
| Diffusion transport methods | are used for the global problem solution method.      |          |
| Notes: None                 |                                                       |          |

## $\mathbf{sn\_numcart} \ \operatorname{sn\_numcart}$

| sn_numcart                     | Integer                                                  | Optional    |
|--------------------------------|----------------------------------------------------------|-------------|
| Units: N/A                     |                                                          |             |
| Applicable Value(s): 1 (defa   | ult)                                                     |             |
| Limitation(s): None            |                                                          |             |
| Description: This card is use  | d to specify the number of X and Y sub-divisions in whic | h to divide |
| each pincell into for the Sn 7 | Transport sweeper.                                       |             |
| Notes: None                    |                                                          |             |

# ray\_spacing ray\_spacing

| ray_spacing                                                               | Floating-Point Real Number | Optional |
|---------------------------------------------------------------------------|----------------------------|----------|
| Units: cm (default)                                                       |                            |          |
| Applicable Value(s): 0.05 (default), Positive floating-point real numbers |                            |          |
| Limitation(s): None                                                       |                            |          |



### ray\_spacing, continued...

Description: This card is used to specify the characteristic ray spacing for the rays used in the MOC calculation. A finer spacing will permit a more-detailed calculation (with finer spatial features) at the cost of computing time. However, the decomposition of rays across multiple threads parallelizes very efficiently. Finally, one should be cognizant of minimum feature size (i.e., minimum flat-source region size) to ensure that there are an adequate number of rays traversing each region to have an accurate solution in that region. More information regarding the MOC methodology and implications of ray\_spacing on the overall calculation is available in the MPACT Theory Manual.

Notes: None

## shield\_ray\_spacing shield\_ray\_spacing shield\_ray\_spacing

| shield_ray_spacing                                                                                  | Floating-Point Real Number                                                | Optional    |  |  |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------|--|--|
| Units: cm (default)                                                                                 |                                                                           |             |  |  |
| Applicable Value(s): 0.05 (de                                                                       | Applicable Value(s): 0.05 (default), Positive floating-point real numbers |             |  |  |
| Limitation(s): None                                                                                 |                                                                           |             |  |  |
| Description: This card is u                                                                         | sed to specify the characteristic ray spacing for the ra                  | ys used in  |  |  |
| the MOC sheidling calculation. A finer spacing will permit a more-detailed calculation (with        |                                                                           |             |  |  |
| finer spatial features) at the cost of computing time. However, the decomposition of rays across    |                                                                           |             |  |  |
| multiple threads parallelizes very efficiently. Finally, one should be cognizant of minimum feature |                                                                           |             |  |  |
| size (i.e., minimum flat-source                                                                     | ce region size) to ensure that there are an adequate num                  | ber of rays |  |  |
| traversing each region to have an accurate solution in that region. More information regarding      |                                                                           |             |  |  |
| the MOC methodology and implications of ray_spacing on the overall calculation is available in      |                                                                           |             |  |  |
| the MPACT Theory Manual                                                                             | l.                                                                        |             |  |  |
| Notes: None                                                                                         |                                                                           |             |  |  |

#### log\_message log\_message

| log_message                                                                                         | Character String | Optional |
|-----------------------------------------------------------------------------------------------------|------------------|----------|
| Units: N/A                                                                                          |                  |          |
| Applicable Value(s): warn (default), debug, basic                                                   |                  |          |
| Limitation(s): None                                                                                 |                  |          |
| Description: This card is used to specify which type of messages should be written to the log file. |                  |          |
| Notes: None                                                                                         |                  |          |

## refl\_no\_added\_modules refl\_no\_added\_modules

| refl_no_added_modules                                                                            | Boolean        | Optional |
|--------------------------------------------------------------------------------------------------|----------------|----------|
| Units: N/A                                                                                       |                |          |
| Applicable Value(s): true (de                                                                    | efault), false |          |
| Limitation(s): None                                                                              |                |          |
| Description: This card is used to allow for additional reflector modules to be added to the core |                |          |
| geometry.                                                                                        |                |          |



# refl\_no\_added\_modules, continued...

Notes: None

# $\mathbf{refl\_highres} \ \mathrm{refl\_highres}$

| refl_highres                                                                                    | Boolean        | Optional |
|-------------------------------------------------------------------------------------------------|----------------|----------|
| Units: N/A                                                                                      |                |          |
| Applicable Value(s): false (d                                                                   | lefault), true |          |
| Limitation(s): None                                                                             |                |          |
| Description: This card is used to enable the reflector high resolution flag. If enabled, vessel |                |          |
| components are read as hole                                                                     | s instead.     |          |
| Notes: None                                                                                     |                |          |

# $moc\_kernel moc\_kernel$

| moc_kernel                                                                                 | Fixed Character String | Optional |
|--------------------------------------------------------------------------------------------|------------------------|----------|
| Units: N/A                                                                                 |                        |          |
| Applicable Value(s): MG (de                                                                | efault)                |          |
| Limitation(s): None                                                                        |                        |          |
| Description: This card is used to specify whether one-group or multi-group MOC kernels are |                        |          |
| used.                                                                                      |                        |          |
| Notes: None                                                                                |                        |          |

## shield\_moc\_kernel shield\_moc\_kernel

| shield_moc_kernel                                                                          | Fixed Character String       | Optional |
|--------------------------------------------------------------------------------------------|------------------------------|----------|
| Units: N/A                                                                                 |                              |          |
| Applicable Value(s): same va                                                               | alue as moc_kernel (default) |          |
| Limitation(s): None                                                                        |                              |          |
| Description: This card is used to specify whether one-group or multi-group MOC kernels are |                              |          |
| used for the shielding sweeper.                                                            |                              |          |
| Notes: None                                                                                |                              |          |

# $\mathbf{moc\_mg\_data\_passing} \ \mathbf{moc\_mg\_data\_passing}$

| moc_mg_data_passing                                                                            | Fixed Character String | Optional |
|------------------------------------------------------------------------------------------------|------------------------|----------|
| Units: N/A                                                                                     |                        |          |
| Applicable Value(s): true (de                                                                  | efault), false         |          |
| Limitation(s): None                                                                            |                        |          |
| Description: This card is used to specify whether one-group or multi-group MOC data passing is |                        |          |
| used.                                                                                          |                        |          |
| Notes: This is primarily to bypass the MPI issues observed with MGAngFlux and is only          |                        |          |
| applicable when using moc_l-                                                                   | $ ext{kernel} = MG. $  |          |



# ${\bf volume\_corr}\ {\bf volume\_corr}$

| volume_corr                 | Fixed Character String                                | Optional |
|-----------------------------|-------------------------------------------------------|----------|
| Units: N/A                  |                                                       |          |
| Applicable Value(s): INTEG  | RAL (default)                                         |          |
| Limitation(s): None         |                                                       |          |
| Description: This card is u | sed to specify the volume correction being applied to | the MOC  |
| segments.                   |                                                       |          |
| Notes: None                 |                                                       |          |

# $modular\_rays$ $modular\_rays$

| modular_rays                | Fixed Character String                                | Optional |
|-----------------------------|-------------------------------------------------------|----------|
| Units: N/A                  |                                                       |          |
| Applicable Value(s): TWO (  | default)                                              |          |
| Limitation(s): None         |                                                       |          |
| Description: This card is u | sed to specify the volume correction being applied to | the MOC  |
| segments.                   |                                                       |          |
| Notes: None                 |                                                       |          |

# ${\bf radial\_src\_order} \ {\bf radial\_src\_order}$

| radial_src_order                                                                 | Integer | Optional |
|----------------------------------------------------------------------------------|---------|----------|
| Units: N/A                                                                       |         |          |
| Applicable Value(s): 0 (default), 0,1                                            |         |          |
| Limitation(s): Zero or positive integers                                         |         |          |
| Description: This card is used to read the source order in the radial direction. |         |          |
| Notes: Currently only flat(0) and linear(1) are implemented.                     |         |          |

# $\mathbf{axial\_src\_order} \ \mathbf{axial\_src\_order}$

| axial_src_order                                                                 | Integer | Optional |
|---------------------------------------------------------------------------------|---------|----------|
| Units: N/A                                                                      |         |          |
| Applicable Value(s): 0 (default), 0,1                                           |         |          |
| Limitation(s): Zero or positive integers                                        |         |          |
| Description: This card is used to read the source order in the axial direction. |         |          |
| Notes: Currently only flat(0) and linear(1) are implemented.                    |         |          |

# $\mathbf{power\_edit} \ \mathrm{power\_edit}$

| power_edit                 | Fixed Character String                     | Optional |
|----------------------------|--------------------------------------------|----------|
| Units: N/A                 |                                            |          |
| Applicable Value(s): KAPPA | A-FISSION (default), FISSION,GAMMA-SMEARED |          |



#### power\_edit, continued...

Limitation(s): None

Description: This card is used to specify a cross section used for the "power" calculations KAPPA-FISSION is the standard power calculation whereas FISSION actually produces the normalized fission reaction rate distribution, and GAMMA-SMEARED calculates the normalized gamma smeared power distribution.

Notes: None

#### jagged jagged

| jagged                                                                                              | Fixed Character String                                     | Optional  |  |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------|--|
| Units: N/A                                                                                          | Units: N/A                                                 |           |  |
| Applicable Value(s): true (de                                                                       | efault), false                                             |           |  |
| Limitation(s): See Notes regarding potential inefficiencies when running a parallel-processing      |                                                            |           |  |
| simulation.                                                                                         |                                                            |           |  |
| Description: This card is used to specify whether the reflector region will be modeled using a      |                                                            |           |  |
| jagged (stair-step) representation or by filling the full square extent of the modeling domain with |                                                            |           |  |
| moderator material.                                                                                 |                                                            |           |  |
| Notes: When a jagged core                                                                           | is used care should be taken if the user elects to perform | rm manual |  |

Notes: When a jagged core is used, care should be taken if the user elects to perform manual parallel domain decomposition to ensure proper load balancing. Additional information is available regarding this is provided with the par\_file.

#### rod\_treatment rod\_treatment

| rod_treatment | Fixed Character String | Optional |
|---------------|------------------------|----------|
| Units: N/A    |                        |          |

Applicable Value(s): none (default), polynomial,1dcpm

Limitation(s): The pre-generated polynomials were generated using AIC, B4C, and Tungsten control rods for Watts Bar Unit 1. Materials with any other name will be ignored, and the results may not be improved as much for reactors other than Watts Bar Unit 1.

Description: This card toggles the use of volume-weighting for control rods in order to minimize the effect of control rod cusping on the calculated results.

Rod cusping is a calculational effect that occurs when a control rod is partially inserted into a calculational plane. This causes an artificial reduction in the local flux which in turn causes an error in the calculated eigenvalue and global power distribution. Enabling this rod treatment card will correct for these effects. The polynomial option uses pre-generated polynomials to reduce the volume fraction of the control rod material during the homogenization step, providing better solutions near the tip of the control rod. The 1dcpm method uses the 1d collision probabilities method to generate radial shape functions for rodded and unrodded regions, then uses these shape functions to flux-volume homogenize the cross-sections for the MOC calculations.



#### rod\_treatment, continued...

Notes: This card only has an effect when used in a 3D calculation (i.e., a calculation with axial planes). Options other than none and polynomial require that one of subplane\_max, subplane\_target, or num\_subplanes be used as well. All options requiring subplane to be enabled are considered experimental.

## ppm\_method ppm\_method

| ppm_method                                                                                                                  | Character String                                                                            | Optional |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------|--|--|
| Units: N/A                                                                                                                  |                                                                                             |          |  |  |
| Applicable Value(s): 2 (defau                                                                                               | Applicable Value(s): 2 (default), 1                                                         |          |  |  |
| Limitation(s): None                                                                                                         | Limitation(s): None                                                                         |          |  |  |
| Description: This card is us                                                                                                | Description: This card is used to specify which method should be used for computing soluble |          |  |  |
| boron in the critical boron search. The options are:                                                                        |                                                                                             |          |  |  |
| • 1 — This is the method suggested by nuclear vendors that just adds boron to water and does not conserve moderator density |                                                                                             |          |  |  |
| • 2 — This is the original MPACT method that conserves moderator density                                                    |                                                                                             |          |  |  |
| Notes: None                                                                                                                 |                                                                                             |          |  |  |

### valid\_on valid\_on

| valid_on                                                                                           | Boolean    | Optional |  |
|----------------------------------------------------------------------------------------------------|------------|----------|--|
| Units: N/A                                                                                         | Units: N/A |          |  |
| Applicable Value(s): false (default), true                                                         |            |          |  |
| Limitation(s): None                                                                                |            |          |  |
| Description: This card controls whether or not a secondary output will be generated. This output   |            |          |  |
| will be formatted for use in validation tests and is only ever needed for these tests.             |            |          |  |
| Notes: This card is for developers and is not intended for use by general users and is furthermore |            |          |  |
| marked for depracation.                                                                            |            |          |  |

#### $valid\_delim$ $valid\_delim$

| valid_delim                                                                                        | Character String | Optional |
|----------------------------------------------------------------------------------------------------|------------------|----------|
| Units: N/A                                                                                         |                  |          |
| Applicable Value(s): space (default), comma                                                        |                  |          |
| Limitation(s): None                                                                                |                  |          |
| Description: This card is used to set the delimeter used when valid_on is set to true.             |                  |          |
| Notes: This card is for developers and is not intended for use by general users and is furthermore |                  |          |
| marked for depracation.                                                                            |                  |          |

# ${\bf checkpoint\_mode}\ {\bf checkpoint\_mode}$



| checkpoint_mode | Fixed Character String | Optional |
|-----------------|------------------------|----------|
| Units: N/A      |                        |          |

Applicable Value(s): I (default), T, F, R, W, RW which correspond to:

- I specifies that a checkpoint file may be written through a user interrupt.
- T specifies that the case will be started from a checkpoint file.
- F disables initialization of the checkpoint file.
- R same as T.
- W specifies that a checkpoint file is to be written.
- RW same as T and R but after the checkpoint file is read it can be overwritten during the calculation.

Limitation(s): File system permissions must be configured such that MPACT can interact with files, as needed.

Description: This card is used to control whether the calculation is restarted from a checkpoint file.

The user can send the interrupt signal to MPACT after execution has begun by creating a file named "MPACT\_CHECKPOINT\_FILE" in the simulation's working directory. The existence of this file causes a checkpoint file to be written after every outer iteration. Likewise, the removal of "MPACT\_CHECKPOINT\_FILE" disables the writing of a checkpoint file.

See the checkpoint\_file card regarding checkpoint file naming.

Notes: None

checkpoint\_file

#### **checkpoint\_file** checkpoint\_file

| Units: N/A                                                                                           |
|------------------------------------------------------------------------------------------------------|
| Applicable Value(s): <caseid>.mcp (default)</caseid>                                                 |
| Limitation(s): The filename must be specified with characters valid for use on the computer          |
| system being executed on. As a general practice, one should avoid the use of "special" characters.   |
| Similarly, one must not specify a name that conflicts with other files that are (or will be) created |
| within the MPACT directory.                                                                          |

Free-form Character String

Description: If a checkpoint file will be used, then the user can optionally specify the name of this file of his or her choosing.

Notes: There is no strict limit on how many characters can be used to to specify the filename; however, good judgment should be used to keep the filename a reasonable length.

#### rst\_compress rst\_compress

| rst_compress | Free-form Character String | Optional |
|--------------|----------------------------|----------|
| Units: N/A   |                            |          |

continued on next page...

Optional



#### rst\_compress, continued...

Applicable Value(s): 5 (default), none and 0 through 9. "None" means the HDF5 Filter forgzip compression is NOT used when writing the restart file. The numeric value indicates the level of compression to use in gzip. The higher the number, the more aggressive the compression and the more resources used. See documentation of gzip for information.

Limitation(s): This only affects the WRITING of the restart file. restart\_read cases and textttrestart\_shuffle cases are not affected. notes

Description: NONE SPECIFIED

Notes: NONE SPECIFIED

#### vis\_edits vis\_edits

| vis_edits | Fixed Character String | Optional |
|-----------|------------------------|----------|
| Unite N/A |                        |          |

Applicable Value(s): core (default), none, fsr. These are described as:

- 1. core will print pin level edits of power for the full core
- 2. none will not print any visualization files
- 3. fsr will print all available edits in the code on a flat source region-basis which includes material boundaries, mesh identification indices, and group-wise scalar flux

Limitation(s): None

Description: This card is used to specify the type of visualization a outputs (edits). The visualization outputs are created in the form of the VTK legacy file format which is suitable for use with VisIt (https://wci.llnl.gov/simulation/computer-codes/visit/), or other suitable programs capable of reading the format.

Notes: The FSR edits will be very large and may consume considerable time to generate the visualization files.

#### rr\_edits rr\_edits

| rr_edits                                             | Fixed Character String                                                        | Optional |  |
|------------------------------------------------------|-------------------------------------------------------------------------------|----------|--|
| Units: N/A                                           | Units: N/A                                                                    |          |  |
| Applicable Value(s): none (d                         | Applicable Value(s): none (default), hdf5, out, both. These are described as: |          |  |
| 1. none — will not generate reaction rate edits      |                                                                               |          |  |
| 2. hdf5 — will generate reaction rate edits in hdf5  |                                                                               |          |  |
| 3. out — will print reaction rate in the output file |                                                                               |          |  |
| 4. both — will do both hdf5 and out                  |                                                                               |          |  |
| Limitation(s): None                                  |                                                                               |          |  |



#### rr\_edits, continued...

Description: This card is used to specify the type of reaction rate outputs (edits). The reaction rate of an isotope is currently smeared over the problem domain when being printed to the output file, but the hdf5 file contains full information of reaction rates in geometry mesh.

Notes: The reaction rate edits could be slow and memory-consuming for a large problem.

### $rr\_edits\_opt$ $rr\_edits\_opt$

| rr_edits_opt                                                                                      | Array of Pre-defined Format Strings | Optional |  |  |
|---------------------------------------------------------------------------------------------------|-------------------------------------|----------|--|--|
| Units: N/A                                                                                        | Units: N/A                          |          |  |  |
| Applicable Value(s): none (default), The user specified isotope and reaction pairs in a format    |                                     |          |  |  |
| isotope_reaction.                                                                                 |                                     |          |  |  |
| Limitation(s): This card can only be used if rr_edits is turned on.                               |                                     |          |  |  |
| Description: This card is used to specify the reaction rate edits for user-specified isotopes and |                                     |          |  |  |
| reactions. The isotope is in a format of xx-AAA, e.g., U-235 and Pu-239. The available reaction   |                                     |          |  |  |
| types are absorption, fission, nu*fission, inscatter, outscatter and selfscatter.                 |                                     |          |  |  |
| Notes: Select the important isotopes and reactions for edits can reduce the computing time and    |                                     |          |  |  |
| memory requirements for a large problem.                                                          |                                     |          |  |  |

#### $xe135m\_opt$ $xe135m\_opt$

| xe135m_opt                                                                                       | Fixed Character String                                                                        | Optional |  |  |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------|--|--|
| Units: N/A                                                                                       |                                                                                               |          |  |  |
| Applicable Value(s): ignore (default), ignore, combine, explicit. These are described as:        |                                                                                               |          |  |  |
| 1. ignore — will ignore 2                                                                        | 1. ignore — will ignore Xe-135m in transport calculation                                      |          |  |  |
| 2. combine — will combine                                                                        | 2. combine — will combine Xe-135m into Xe-135 in transport calculation                        |          |  |  |
| 3. explicit — will treat Xe-135m explicitly as other isotopes in transport calculation           |                                                                                               |          |  |  |
| Limitation(s): None                                                                              |                                                                                               |          |  |  |
| Description: This card is use                                                                    | Description: This card is used to specify the treatment of Xe-135m. By default, MPACT ignores |          |  |  |
| Xe-135m when performing transport calculation although depletion solver may consider it. When    |                                                                                               |          |  |  |
| combining Xe-135m into Xe-135, cross sections of the two isotopes are assumed the same. Explicit |                                                                                               |          |  |  |
| treatment can be enabled only for the latest MG library that has Xe-135m data based on TENDL     |                                                                                               |          |  |  |
| data.                                                                                            |                                                                                               |          |  |  |
| Notes: None                                                                                      |                                                                                               |          |  |  |

# $\mathbf{explicit\_erg\_deposit} \ \mathbf{explicit\_erg\_deposit}$

| explicit_erg_deposit                       | Fixed Character String | Optional |
|--------------------------------------------|------------------------|----------|
| Units: N/A                                 |                        |          |
| Applicable Value(s): false (default), true |                        |          |
| Limitation(s): None                        |                        |          |



## explicit\_erg\_deposit, continued...

Description: This card is used to specify if the explicit energy deposition is used. Explicit energy deposition will compute the energy deposited in all regions from neutron fission, capture and slowing-down.

Notes: Presently the capture kappa data are only available in simplified AMPX library. MPACT library uses the hard-coded values. Other libraries do not support this card.

## nodal\_edits nodal\_edits

| ${\tt nodal\_edits}$                                                                                                         | Fixed Character String | Optional      |
|------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------|
| Units: N/A                                                                                                                   |                        |               |
| Applicable Value(s): false (default), true, false. These are described as:                                                   |                        |               |
| <ol> <li>true — enables MPACT nodal cross section edits</li> <li>false — disables MPACT nodal cross section edits</li> </ol> |                        |               |
| Limitation(s): None                                                                                                          |                        |               |
| Description: This card is used to enable or disable MPACT's nodal cross section capability. I                                |                        | pability. If  |
| enabled, node-averaged cross sections, flux moments, kinetics data, TH data, discontinuity factors                           |                        | uity factors, |
| and other information will be written to each block of the HDF5 file.                                                        |                        |               |
| Notes: None                                                                                                                  |                        |               |

### nodal\_edits\_energy\_cutoff nodal\_edits\_energy\_cutoff

| nodal_edits_energy_cutoff                                                                      | Float                                                                                           | Optional              |  |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------|--|
| Units: eV (default)                                                                            |                                                                                                 |                       |  |
| Applicable Value(s): , Any ene                                                                 | ergy greater than 0.0 that is also an energy                                                    | gy boundary in the    |  |
| transport library used for the ca                                                              | alculation.                                                                                     |                       |  |
| Limitation(s): None                                                                            |                                                                                                 |                       |  |
| Description: This card is used to                                                              | Description: This card is used to set the energy cut-off between the two groups when generating |                       |  |
| nodal data. The default cut-off is the energy between the last group with no up-scatter and    |                                                                                                 | h no up-scatter and   |  |
| the first group with up-scatter. This value is library-dependent and automatically determined  |                                                                                                 | natically determined  |  |
| during the calculation. The user may specify any of the energy group boundaries defined by the |                                                                                                 | daries defined by the |  |
| transport library as an input to this card.                                                    |                                                                                                 |                       |  |
| Notes: None                                                                                    |                                                                                                 |                       |  |

## nodal\_data\_filename nodal\_data\_filename

| nodal_data_filename                                                                                              | Free-Form Character String, Max. Length $= 200$ | Optional |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------|
| Units: N/A                                                                                                       |                                                 |          |
| $Applicable\ Value(s);\ N/A\ (default),\ Filename\ of\ any\ valid\ HDF5\ file\ with\ user\ defined\ nodal\ data$ |                                                 |          |
| Limitation(s): This card must be present if using the Nodal transport method and nodal data                      |                                                 |          |
| must be provided for every s                                                                                     | state                                           |          |



#### nodal\_data\_filename, continued...

Description: This card is used to indicate the name of the file containing the nodal data for each state.

Notes: The format of the HDF5 file must follow the same format as the HDF5 output nodal edits. The head dataset of the file must contain STATE datasets following the STATE\_\*\*\*\* nomenclature, which are populated with NODAL\_XS datasets. NODAL\_XS must have within it ADF, CHI, KXSF, NXSF, XSF, XSRM, XSS, and XSTR. These nodal dataset must have the same shape as their as their corresponding output counterparts.

#### nodal\_edits\_adapt\_adf nodal\_edits\_adapt\_adf

| nodal_edits_adapt_adf | Fixed Character String | Optional |
|-----------------------|------------------------|----------|
| Units: N/A            |                        |          |

Applicable Value(s): false (default), true, false. These are described as:

- 1. true enables MPACT adaptive ADF calculations
- 2. false disables MPACT adaptive ADF calculations

Limitation(s): None

Description: This card is used to enable or disable MPACT's adaptive ADF calculations. When enabled, MPACT will adjust the outgoing current on vacuum boundaries until the ADF is equal to 1.0. The removal cross section will then be modified to preserve neutrons, and the diffusion cross section will be modified to be consistent with the removal cross section.

Notes: Has no effect if nodal\_edits is set to false.

#### grid\_treatment grid\_treatment

| grid_treatment | Fixed Character String | Optional |
|----------------|------------------------|----------|
| Units: N/A     |                        |          |

Applicable Value(s): homogenize (default), equal\_mass, equal\_thickness

- homogenize will take the mass specified in the grid card, calculate the moderator volume of the lattice where the grid is located, and use the two values to compute the density of the material. This option applies the grid material uniformly throughout the lattice.
- equal\_thickness uses the grid mass and the corresponding grid material density to compute the total grid volume for that lattice. The volume is then used to determine the thickness the grid would be within each pincell, and is modeled as an additional rectangular mesh around the perimeter of each pin cell in the lattice.
- equal\_mass similar to the equal\_thickness option, except that the thickness of the grid in each pin cell is changed throughout the lattice so that every pin cell has the same grid material mass in it.



## grid\_treatment, continued...

Limitation(s): For grids with a large mass that fall in a narrow (axially) lattice, there is a possibility that the grid will intersect one or more pins for the equal\_thickness and equal\_mass options. If this event occurs, MPACT will raise an error, and the user will need to change the axial meshing options, change the geometry of the lattice, or simply use the homogenize option for the grid\_treatment card.

Description: This card is used to indicate the method of applying the grid structure in a lattice on the mesh.

Notes: None

## axial\_buckling axial\_buckling

| axial_buckling                                              | Float | Optional |
|-------------------------------------------------------------|-------|----------|
| Units: N/A                                                  |       |          |
| Applicable Value(s):                                        |       |          |
| Limitation(s): None                                         |       |          |
| Description: Value used for critical buckling calculations. |       |          |
| Notes: None                                                 |       |          |

#### uniform\_crud uniform\_crud

| uniform_crud                                                                                                        | Floating-Point Real Numbers | Optional      |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|
| Units: microns, mg/cm <sup>2</sup> , mg/cm <sup>2</sup> (default)                                                   |                             |               |
| Applicable Value(s): 0.0, 0.0, 0.0 (default)                                                                        |                             |               |
| Limitation(s): None                                                                                                 |                             |               |
| Description: This card is used to define a uniform layer of CRUD on all fuel pins. The thickness                    |                             | thickness     |
| is the CRUD thickness in microns, the crud_mass is the surface mass density of Ni Fe <sub>2</sub> O <sub>4</sub> in |                             | $Fe_2 O_4$ in |
| $mg/cm^2$ , and the boron_mass is the surface mass density of Li B <sub>4</sub> O <sub>7</sub> in $mg/cm^2$ .       |                             |               |
| Notes: None                                                                                                         |                             |               |

### crud\_depletion flag crud\_depfrac

| flag                                                                | Boolean | Optional |
|---------------------------------------------------------------------|---------|----------|
| Units: N/A                                                          |         |          |
| Applicable Value(s): , true, false                                  |         |          |
| Limitation(s): None                                                 |         |          |
| Description: This card is used to enable or disable crud depletion. |         |          |
| Notes: None                                                         |         |          |

| crud_depfrac                | Float | Optional |
|-----------------------------|-------|----------|
| Units: N/A                  |       |          |
| Applicable Value(s): $,>=0$ |       |          |

meshing\_method



Optional

crud\_depfrac, continued...

Limitation(s): None

Description: This card is used to specify the fraction of crud to be depleted.

Notes: None

#### meshing\_method meshing\_method

| · · · · · · · · · · · · · · · · · · · |                      |                 | _                    |           |
|---------------------------------------|----------------------|-----------------|----------------------|-----------|
| Units: N/A                            |                      |                 |                      |           |
| Applicable Value(s): userax           | cialmesh (axial_mesh | card present) a | $r$ matbound (axial_ | mesh card |

Fixed Character String

Applicable Value(s): useraxialmesh (axial\_mesh card present) or matbound (axial\_mesh card not present) (default), nonfuel, all

- useraxialmesh Requires the use of the axial mesh card and no auto meshing is performed in this instance. This option will not use the values specified by the automesh\_bounds since it does not do any automeshing.
- matbound Calculates the axial mesh just at the axial material boundaries of the problem and uses the axial\_edit\_bounds as the mesh within the fuel regions. No further meshing is performed. This option will not use the values specified by the automesh\_bounds since it does not do any automeshing.
- nonfuel Will take the material boundaries and automesh the regions below and above the fuel. The minimum and maximum bounds (or default values) specified by the automesh\_bounds will be used to determine the sizing.
- all Will take the material boundaries and automesh all regions. The minimum and maximum bounds (or default values) specified by the automesh\_bounds will be used to determine the sizing. When using the all option, fuel regions will not be homogenized with non-fuel regions. Homogenization will only occur within those regions.

Limitation(s): Must be set in conjunction with the axial\_edit\_bounds card in the EDIT block of the VERA input when the option is not useraxialmesh. This data is required to set up the axial mesh for every input option except the useraxialmesh where it is separately specified.

Description: This card specifies the type of axial meshing to be used. If this card is not present, the method will default to useraxialmesh if the axial\_mesh card is present or it will default to matbound if the axial\_mesh card is not present.

Notes: When using the useraxialmesh option, it is possible to specify a mesh that does not conform or align with the problem's geometry. Warnings will be printed to the log file stating that the mesh does not match the geometry boundaries and those regions will be homogenzied.

#### $automesh\_bounds$ $automesh\_bounds$

| automesh_bounds     | Array of Floating-Point Real Numbers, Length $= 2$ | Optional |
|---------------------|----------------------------------------------------|----------|
| Units: cm (default) |                                                    |          |



#### automesh\_bounds, continued...

Applicable Value(s): 2.0 10.0, when automeshing is enabled. (default), Positive real numbers greater than zero. The maximum value must be at least 1.0 greater than the minimum value.

Limitation(s): None

Description: This card specifies the minimum and maximum desired axial mesh for the auto axial meshing. Any geometry or mesh region larger than the specified value will be broken up into smaller mesh regions that have a height between the maximum and minimum values. Any geometry or mesh region smaller than the specified value will be homogenized and added to a neighboring mesh region until the value is above the minimum and below the maximum.

Notes: The region where these values are applied is specified by the meshing\_method card. This card is ignored when the useraxialmesh and matbound method is specified.

It should also be noted that specifying min and max values that are close together will most likely result in more axial homogenization than may be desired by the user. It would mean that most of the material interfaces will be homogenized to some degree.

Also, this routine in no way optimizes the axial meshing for a given problem. It is primarily designed to reduce user burden from specifying a typically troublesome input parameter. It is best suited for problems with a large number of planes that vary in thickness. It is also useful for setting a problem up, if the user is unsure about the axial discretization. Using this card will save time spent on recalculating values whenever the axial mesh needs to be adjusted.

#### axial\_mesh axial\_mesh

| axial_mesh                                                                                 | Array of Floating-Point Real Numbers, Length = User | Optional |  |  |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------|----------|--|--|
|                                                                                            | Specified                                           |          |  |  |
| Units: cm (default)                                                                        |                                                     |          |  |  |
| Applicable Value(s): N/A (default), Array of positive real numbers.                        |                                                     |          |  |  |
| Limitation(s): The sum of the values specified within this card must be equal to the total |                                                     |          |  |  |
| geometric height of the prob                                                               | lem.                                                |          |  |  |

Description: This card is used to specify the axial mesh used in the 2-D/1-D simulation. The input is the thickness of each axial section the user wishes to model. This card is optional if the meshing\_method card specifies an option other than useraxialmesh. If the meshing\_method is useraxialmesh, then it is required.

Notes: If the array of axial meshes sums to less than the problem height, the geometry at the top will be truncated. If it sums to more than the problem height, the top geometry will be extended all the way to the upper mesh height. Therefore, it is very important to make sure the axial mesh is specified in accordance with the geometry.

#### pin\_cell\_mod\_mesh pin\_cell\_mod\_mesh

| pin_cell_mod_mesh   | Array of mixed types int and string, Length $= 2$ | Optional |
|---------------------|---------------------------------------------------|----------|
| Units: cm (default) |                                                   |          |



#### pin\_cell\_mod\_mesh, continued...

Applicable Value(s): num\_rings = 1, and pin\_cell\_type = fuel (default),

- num\_rings positive integers. Practially less than 10.
- pin\_cell\_type "fuel", "nonfuel", "both".

Limitation(s): This option does not work with explicit grid spacers. To use with grid spacers set the grid\_treatment option to homogenize.

Description: This card is used to specify the MOC flat source region mesh in moderator outside the defined cylindrical geometry in specified pin cells. The radius of the outermost moderator ring is fixed at 0.95\*sqrt(2)/2\*pitch This gives more refined meshing in the pin cell corners which improves accuracy of calculations at room temperature

Notes: When this card is not specified, the following value is used for the 1 default moderator radius:  $max_radii = 0.75*(pitch*0.5 - r_last)+r_last$ , When this card is specified, that value changes to the following:  $max_radii = 0.95*(0.5*pitch*sqrt(2))$ , which is equal to 95% of the way from the pin cell center to the corner.

#### crud\_mesh crud\_mesh

| crud_mesh                                                            | One Floating-Point Real and One Integer                                                     | Optional   |  |  |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------|--|--|
| Units: microns (default)                                             |                                                                                             |            |  |  |
| Applicable Value(s): N/A (d                                          | efault), Positive real numbers for max_rad and integers gr                                  | eater than |  |  |
| 0 for num_rad. The max_rad                                           | 0 for num_rad. The max_rad is the maximum thickness of the outermost CRUD region in microns |            |  |  |
| and num_rad is the number of radial subdivisions in the CRUD region. |                                                                                             |            |  |  |
| Limitation(s): None                                                  |                                                                                             |            |  |  |
| Description: This card is use                                        | ed to specify the radial mesh that is added for each cell                                   | to account |  |  |
| for CRUD build-up on the s                                           | urface of the fuel pins.                                                                    |            |  |  |
| Notes: None                                                          |                                                                                             |            |  |  |

#### quad\_type quad\_type

| $quad_type$                 |             | Fixed Characte            | er String                 | Required      |
|-----------------------------|-------------|---------------------------|---------------------------|---------------|
| Units: N/A                  |             |                           |                           |               |
| Applicable Value(s): Non-   | e (default) | , listed below            |                           |               |
|                             |             |                           |                           |               |
| Quadrature Name             | Type        | Order                     | Order $\Theta$            |               |
| CHEBYSHEV-CHEBYSHEV         | Product     | integers ¿ 0              | integers $\xi$ 0          |               |
| CHEBYSHEV-GAUSS             | Product     | integers ¿ 0              | integers ¿ 0              |               |
| CHEBYSHEV-BICKLEY           | Product     | integers ¿ 0              | 1, 2, 3,  or  4           |               |
| CHEBYSHEV-YAMAMOTO          | Product     | integers ¿ 0              | 1, 2, or 3                |               |
| LEVEL-SYMMETRIC             | General     | even integers in $[2,16]$ | N/A                       |               |
| QUADRUPLE-RANGE             | Product     | integers in $[1,37]$      | integers in [1,18]        |               |
| Limitation(s): None         |             |                           | <del></del>               |               |
| Description: This card is u | sed to spec | cify the name of the angu | lar quadrature to use for | r determining |

continued on next page...

the angles at which the rays are traced throughout the problem.



# ${\tt quad\_type},\, continued...$

Notes: None

# ${\bf shield\_quad\_type} \ {\bf shield\_quad\_type}$

| shield_quad_type                                                                                    |             | Fixed Characte            | er String          | Required |
|-----------------------------------------------------------------------------------------------------|-------------|---------------------------|--------------------|----------|
| Units: N/A                                                                                          |             |                           |                    |          |
| Applicable Value(s): Non                                                                            | e (default) | , listed below            |                    |          |
| On a duration of Name                                                                               | Т           | O., J.,                   | 0.10               |          |
| Quadrature Name                                                                                     | Type        | Order                     | Order $\Theta$     |          |
| CHEBYSHEV-CHEBYSHEV                                                                                 | Product     | integers ¿ 0              | integers ¿ 0       |          |
| CHEBYSHEV-GAUSS                                                                                     | Product     | integers ¿ 0              | integers ¿ 0       |          |
| CHEBYSHEV-BICKLEY                                                                                   | Product     | integers ¿ 0              | 1, 2, 3,  or  4    |          |
| CHEBYSHEV-YAMAMOTO                                                                                  | Product     | integers ; 0              | 1, 2,  or  3       |          |
| LEVEL-SYMMETRIC                                                                                     | General     | even integers in $[2,16]$ | N/A                |          |
| QUADRUPLE-RANGE                                                                                     | Product     | integers in [1,37]        | integers in [1,18] |          |
| Limitation(s): None                                                                                 |             |                           |                    |          |
| Description: This card is used to specify the name of the angular quadrature to use for determining |             |                           |                    |          |
| the angles at which the rays are traced throughout the problem for the shielding calculation.       |             |                           |                    |          |
| Notes: None                                                                                         |             |                           |                    |          |

## $azimuthals\_octant \ azimuthals\_octant$

| azimuthals_octant              | Integer                                                      | Required   |
|--------------------------------|--------------------------------------------------------------|------------|
| Units: N/A                     |                                                              |            |
| Applicable Value(s): None (c   | default), Column Order in the above table                    |            |
| Limitation(s): None            |                                                              |            |
| Description: This card is used | to specify the number of azimuthal angles per octant and $c$ | orresponds |
| to the Order column in the t   | table in quad_type card.                                     |            |
| Notes: None                    |                                                              |            |

# ${\bf polars\_octant}\ {\bf polars\_octant}$

| polars_octant                                                                                   | Integer                                                 | Required   |  |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------|--|
| Units: N/A                                                                                      |                                                         |            |  |
| Applicable Value(s): None (                                                                     | default), Column Order $\Theta$ in the above table      |            |  |
| Limitation(s): None                                                                             |                                                         |            |  |
| Description: This card is used to specify the number of polar angles per octant and corresponds |                                                         |            |  |
| to the Order $\Theta$ column in the                                                             | he quadrature table specified in quad_type card. Note t | he number  |  |
| of polar angles may be limited                                                                  | ed by the quadrature type used. Also, any non-product   | quadrature |  |
| types will not use this input                                                                   | card (i.e., in the only applicable case LEVEL-SYMMETRIC | ).         |  |
| Notes: None                                                                                     |                                                         |            |  |



# $shield\_azimuthals\_octant \ shield\_azimuthals\_octant$

| shield_azimuthals_octant     | Integer                                                | Required    |
|------------------------------|--------------------------------------------------------|-------------|
| Units: N/A                   |                                                        |             |
| Applicable Value(s): None (d | default), Column Order in the above table              |             |
| Limitation(s): None          |                                                        |             |
| Description: This card is us | sed to specify the number of azimuthal angles per oct  | ant for the |
| shielding sweeper and corres | ponds to the Order column in the table in quad_type ca | rd.         |
| Notes: None                  |                                                        |             |

# ${\bf polars\_octant} \ {\bf polars\_octant}$

| polars_octant                 | Integer                                                                                           | Required                                  |  |  |
|-------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|
| Units: N/A                    |                                                                                                   |                                           |  |  |
| Applicable Value(s): None (d  | default), Column Order $\Theta$ in the above table                                                |                                           |  |  |
| Limitation(s): None           |                                                                                                   |                                           |  |  |
| Description: This card is use | Description: This card is used to specify the number of polar angles per octant for the shielding |                                           |  |  |
| calculation and corresponds t | o the Order $\Theta$ column in the quadrature table specified in                                  | $\mathtt{quad}_{\mathtt{-}}\mathtt{type}$ |  |  |
| card. Note the number of      | polar angles may be limited by the quadrature type v                                              | ised. Also,                               |  |  |
| any non-product quadrature    | types will not use this input card (i.e., in the only appl                                        | icable case                               |  |  |
| LEVEL-SYMMETRIC).             |                                                                                                   |                                           |  |  |
| Notes: None                   |                                                                                                   |                                           |  |  |

# $\mathbf{xs\_type} \ \mathbf{xs\_type}$

| xs_type                                                                          | Fixed Character String | Optional |  |
|----------------------------------------------------------------------------------|------------------------|----------|--|
| Units: N/A                                                                       |                        |          |  |
| Applicable Value(s): NONE (default), ORNL or SIMPLIFIED_AMPX                     |                        |          |  |
| Limitation(s): None                                                              |                        |          |  |
| Description: This card is used to specify the type of cross-section file to use. |                        |          |  |
| Notes: None                                                                      |                        |          |  |

# **xs\_filename** xs\_filename

| $xs\_filename$                                                                       | Free-Form Character String, Max. Length $= 200$             | Required |  |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------|----------|--|
| Units: N/A                                                                           |                                                             |          |  |
| Applicable Value(s): No defa                                                         | ault value (default), filename of a supported cross section | library  |  |
| Limitation(s): None                                                                  |                                                             |          |  |
| Description: This card is used to specify the name of the cross-section file to use. |                                                             |          |  |
| Notes: None                                                                          |                                                             |          |  |

# $ce_filename$ $ce_filename$

Optional



| ce_filename                    | Free-Form Character String, Max. Length $= 200$              | Optional   |
|--------------------------------|--------------------------------------------------------------|------------|
| Units: N/A                     |                                                              |            |
| Applicable Value(s): No defa   | ault value (default), filename of an indexing file for CE li | brary      |
| Limitation(s): None            |                                                              |            |
| Description: This card is u    | sed to specify the name of the indexing file of continuous   | ous-energy |
| cross-section library to be us | sed when quasi_1D is toggled on.                             |            |
| Notes: None                    |                                                              |            |

# ${\bf shield\_method} \ {\bf shield\_method}$

 ${\tt shield\_method}$ 

| Units: N/A                                                                                       |
|--------------------------------------------------------------------------------------------------|
| Applicable Value(s): subgroup (default), essm                                                    |
| Limitation(s): The xs_shielder card must be enabled (default) in order to enable this card,      |
| otherwise unshielded cross section (infinite-dilute) will be used.                               |
| Description: This card is used to specify the method used to shield the cross sections.          |
| Notes: In general, subgroup is slower than essm (by a factor of 2 to 5 depending on the          |
| subgroup_set option). However, subgroup method has a few advantages over ESSM, such as           |
| a better representation of distributed self-shielding within the fuel and the resonance category |
| treatment (resonance isotopes are grouped into categories). Therefore, subgroup method is an     |
| option with better accuracy in the current version.                                              |

Fixed Character String

## ${\bf shield\_nbatch}$ ${\bf shield\_nbatch}$

| shield_nbatch                 | Integer                                                   | Optional   |
|-------------------------------|-----------------------------------------------------------|------------|
| Units: N/A                    |                                                           |            |
| Applicable Value(s): 5 (defa  | ult)                                                      |            |
| Limitation(s): None           |                                                           |            |
| Description: This card is use | d to specify the number of batches used to divide the pse | eudogroups |
| of the MG shielding sweeper   |                                                           |            |
| Notes: None                   |                                                           |            |

# xs\_shielder xs\_shielder

| xs_shielder                     | Fixed Character String                                        | Optional    |
|---------------------------------|---------------------------------------------------------------|-------------|
| Units: N/A                      |                                                               |             |
| Applicable Value(s): true (c    | default), false,t,f                                           |             |
| Limitation(s): None             |                                                               |             |
| Description: This card is used  | d to specify whether to shield the cross sections or not: tur | re-enabled, |
| false-disabled                  |                                                               |             |
| Notes: If shielder is disabled, | the infinite-dilute cross sections for the resonance energy   | groups are  |
| used.                           |                                                               |             |

# ${\bf spatial\_essm} \ {\bf spatial\_essm}$



| spatial_essm                   | Fixed Character String                                  | Optional    |
|--------------------------------|---------------------------------------------------------|-------------|
| Units: N/A                     |                                                         |             |
| Applicable Value(s): false     | (default), true,t,f                                     |             |
| Limitation(s): None            |                                                         |             |
| Description: This card is us   | sed to specify whether to perform the spatial essm corr | rection for |
| self-shielding calculation. Cu | irrently, this option can only be toggled on with essm. |             |
| Notes: None                    |                                                         |             |

# $quasi_1D$ $quasi_1D$

| quasi_1D                        | Fixed Character String                                    | Optional   |
|---------------------------------|-----------------------------------------------------------|------------|
| Units: N/A                      |                                                           |            |
| Applicable Value(s): false      | (default), true,t,f                                       |            |
| Limitation(s): None             |                                                           |            |
| Description: This card is used  | d to specify whether to perform the quasi-1D slowing-down | correction |
| for self-shielding calculation. | Currently, this option can only be toggled on with essm   | ı.         |
| Notes: None                     |                                                           |            |

# ${\bf res\_up\_scatter} \ {\bf res\_up\_scatter}$

| res_up_scatter                | Fixed Character String                                     | Optional   |
|-------------------------------|------------------------------------------------------------|------------|
| Units: N/A                    |                                                            |            |
| Applicable Value(s): false    | (default), true                                            |            |
| Limitation(s): None           |                                                            |            |
| Description: This card is use | ed to specify whether to use the resonance data that incor | orates the |
| epithermal upscattering mod   | lel. Currently, this option is only supported for ORNL li  | brary from |
| version 4 and thereafter.     |                                                            |            |
| Notes: None                   |                                                            |            |

# ${\bf subgr\_temp\_average} \ {\bf subgr\_temp\_average}$

| subgr_temp_average            | Fixed Character String                                     | Optional    |
|-------------------------------|------------------------------------------------------------|-------------|
| Units: N/A                    |                                                            |             |
| Applicable Value(s): plane (  | (default), pin                                             |             |
| Limitation(s): None           |                                                            |             |
| Description: This card is use | d to specify the fuel temperature averaging scheme for the | e subgroup  |
| temperature correction.       |                                                            |             |
| Notes: The averaged tempe     | rature is not directly used for cross section calculation. | It is used  |
| to correct the non-uniform t  | temperature effect in calculating the equivalence cross s  | ections for |
| subgroup method.              |                                                            |             |

# $\mathbf{dep\_filename}\ \mathbf{dep\_filename}$



| dep_filename                  | Free-Form Character String, Max. Length $= 200$             | Required    |
|-------------------------------|-------------------------------------------------------------|-------------|
| Units: N/A                    |                                                             |             |
| Applicable Value(s): No defa  | ault value (default), filename of a supported cross section | ı library   |
| Limitation(s): The format of  | f this file should be consistent with the standard MPACT    | Γ depletion |
| library file MPACT.dpl.       |                                                             |             |
| Description: This card is us  | sed to specify the depletion file to use, which provides a  | ll the data |
| required in addition to the d | lata in the transport library for depletion calculation.    |             |
| Notes: None                   |                                                             |             |

# $\mathbf{mats\_file} \ \mathrm{mats\_file}$

| mats_file                      | Free-Form Character String, Max. Length $= 200$            | Optional     |
|--------------------------------|------------------------------------------------------------|--------------|
| Units: N/A                     |                                                            |              |
| Applicable Value(s): No defa   | ault value (default), filename of a HDF5 material database | se file      |
| Limitation(s): None            |                                                            |              |
| Description: This card is use  | ed to specify the name of the HDF5 material database file  | e. This file |
| is used to overwrite the isoto | opic and weight fraction values for default VERA materia   | al.          |
| Notes: Marked for deprecation  | on, do not use!                                            |              |

# $mod\_mat \mod\_mat$

| mod_mat                       | Free-Form Character String, Max. Length $= 200$           | Optional |
|-------------------------------|-----------------------------------------------------------|----------|
| Units: N/A                    |                                                           |          |
| Applicable Value(s): mod (de  | efault), any user-defined name of the moderator material. |          |
| Limitation(s): None           |                                                           |          |
| Description: This card is use | ed to rename the moderator material.                      |          |
| Notes: None                   |                                                           |          |

# $\mathbf{subgroup\_set} \ \operatorname{subgroup\_set}$

| subgroup_set                   | Integer                                                     | Optional   |
|--------------------------------|-------------------------------------------------------------|------------|
| Units: N/A                     |                                                             |            |
| Applicable Value(s): 4 (defa   | ult), integers 1 through 9                                  |            |
| Limitation(s): The shield_     | method must be set to subgroup. ESSM ignores the sub        | group_set  |
| option.                        |                                                             |            |
| Description: This card is use  | ed to specify the subgroup set.                             |            |
| Notes: In most cases, 4 (the c | lefault) should be used. This option finds a good balance o | n accuracy |
| and computing time. In ger     | neral, the numbering is from 1 to 9, with 1 being the si    | mplest set |
| (fast), and 9 being the most   | explicit set (slow).                                        |            |

# ${\bf cat\_onegroup} \ {\bf cat\_onegroup}$



| cat_onegroup                   | Array of Integers, Length $=$ User Specified                | Optional              |
|--------------------------------|-------------------------------------------------------------|-----------------------|
| Units: N/A                     |                                                             |                       |
| Applicable Value(s): 3(if sub  | ogroup_set = 4) (default), any integer number               |                       |
| Limitation(s): The shield_     | method must be set to subgroup. ESSM ignores the cat        | onegroup              |
| option.                        |                                                             |                       |
| Description: This card is use  | ed to specify the categories that use one-group subgroup.   |                       |
| Notes: The user can specify    | the categories that will use one-group subgroup treatm      | ent, which            |
| means a fast and approxim      | ate subgroup calculation in that category. If subgrou       | $\mathtt{p\_set} = 4$ |
| (default), the default value o | f this option is 3 (clad category), otherwise no default ca | tegory will           |
| be assigned to one-group sub   | ogroup unless user speficies. User can also specify zero or | a negative            |
| integer number to use MG-s     | ubgroup for all categories.                                 |                       |

# shld\_range shld\_range

| shld_range                      | Array of Integers, Length $= 2$                      | Optional  |
|---------------------------------|------------------------------------------------------|-----------|
| Units: N/A                      |                                                      |           |
| Applicable Value(s): 1,ng (d    | efault), between 1 and ng                            |           |
| Limitation(s): Currently onl    | y simplified AMPX library supports this option       |           |
| Description: This card is u     | used to specify the beginning and ending groups that | resonance |
| self-shielding calculation will | be performed.                                        |           |
| Notes: None                     |                                                      |           |

# $\mathbf{k\_tol} \ \mathrm{k\_tol}$

| k_tol                                                                                            | Floating-Point Real Number | Optional      |
|--------------------------------------------------------------------------------------------------|----------------------------|---------------|
| Units: N/A                                                                                       |                            |               |
| Applicable Value(s): 1.0E-5                                                                      | (default), >0              |               |
| Limitation(s): None                                                                              |                            |               |
| Description: This card is used to specify the global tolerance on convergence of the eigenvalue. |                            | e eigenvalue. |
| Notes: None                                                                                      |                            |               |

## flux\_tolerance flux\_tolerance

| flux_tolerance                | Floating-Point Real Number                                 | Optional   |
|-------------------------------|------------------------------------------------------------|------------|
| Units: N/A                    |                                                            |            |
| Applicable Value(s): 1.0E-4   | (default), >0                                              |            |
| Limitation(s): None           |                                                            |            |
| Description: This card is use | ed to specify the tolerance on the convergence of the 2-n- | orm of the |
| flux.                         |                                                            |            |
| Notes: None                   |                                                            |            |

# $\mathbf{cmfd\_num\_outers} \ \mathrm{cmfd\_num\_outers}$



| cmfd_num_outers               | Integer                                                 | Optional    |
|-------------------------------|---------------------------------------------------------|-------------|
| Units: N/A                    |                                                         |             |
| Applicable Value(s): 20 (defa | ault), Any positive value.                              |             |
| Limitation(s): None           |                                                         |             |
| Description: This card is us  | sed to specify the number of outer eigenvalue power ite | erations to |
| perform during a CMFD acc     | eleration calculation.                                  |             |
| Notes: NONE SPECIFIED         |                                                         |             |

# cmfd\_num\_inners

| cmfd_num_inners               | Integer                                                   | Optional  |
|-------------------------------|-----------------------------------------------------------|-----------|
| Units: N/A                    |                                                           |           |
| Applicable Value(s): 100 (de  | fault), Any positive integer.                             |           |
| Limitation(s): None           |                                                           |           |
| Description: This card is use | ed to specify the max. number of linear solver iterations | per power |
| iteration during a CMFD ac    | celeration calculation.                                   |           |
| Notes: NONE SPECIFIED         |                                                           |           |

# $\mathbf{cmfd\_up\_scatter}\ \mathrm{cmfd\_up\_scatter}$

| cmfd_up_scatter                | Integer                                                    | Optional   |
|--------------------------------|------------------------------------------------------------|------------|
| Units: N/A                     |                                                            |            |
| Applicable Value(s): 2 (defar  | ult), Any positive integer.                                |            |
| Limitation(s): Only applies    | to 1gsweep CMFD solver.                                    |            |
| Description: This card is use  | d to specify the number of upscatter iterations when doin  | g 1gsweep  |
| CMFD. This can help to con-    | verge the scattering source in thermal energy groups befor | e updating |
| the fission source. In general | , this can be used to help optimize run time for a given   | problem.   |
| Notes: None                    |                                                            |            |

## num\_extsrc\_itrs

| num_extsrc_itrs                 | Integer                                                        | Optional     |
|---------------------------------|----------------------------------------------------------------|--------------|
| Units: N/A                      |                                                                |              |
| Applicable Value(s): num_ou     | iters (default), $\geq 1$                                      |              |
| Limitation(s): None             |                                                                |              |
| Description: This card is used  | to specify the number of outer iterations an external source   | ce strength  |
| iteration will perform before   | increasing the source strength. If the current outer iteration | tion value   |
| is equal to it, the source stre | engths will be increased by the strength multiplication f      | actor, and   |
| outer iterations started again  | from count zero. This will repeat until the source is at fu    | ll strength, |
| wherein the full num_outers     | value will be used for the full strength iterations.           |              |
| Notes: None                     |                                                                |              |

# $TL\_treatment$ $TL\_treatment$



| TL_treatment | Fixed Character String | Optional |
|--------------|------------------------|----------|
| TT 4. 3T / 4 |                        |          |

Units: N/A

Applicable Value(s): Iflat (default), flat. These are described as:

- 1flat checks the total / transport cross section. If the value is below the threshold, leakage will not be put into that region. This process is usually to avoid leakage in the fuel-clad gap. It will then redistribute the leakage to the other regions in that pin.
- flat does not perform leakage threshold checks.

Limitation(s): None

Description: This card is used to specify the type of spatial shape of the axial transverse leakage applied to the 2-D problem. Flat means it is constant over a pin cell. This is primarily used to ensure stability of the iteration.

Notes: None

#### trim\_Pn\_moments trim\_Pn\_moments

| trim_Pn_moments               | Boolean                                                   | Optional   |
|-------------------------------|-----------------------------------------------------------|------------|
| Units: N/A                    |                                                           |            |
| Applicable Value(s): true (de | efault), true, false                                      |            |
| Limitation(s): None           |                                                           |            |
| Description: This card is use | d to toggle the logic to trim unused scattering moments v | when using |
| Pn scattering techniques.     |                                                           |            |
| Notes: None                   |                                                           |            |

## boundary\_update boundary\_update

| boundary_update             | string                                       | Optional |
|-----------------------------|----------------------------------------------|----------|
| Units: N/A                  |                                              |          |
| A 1: 1-1 - W-1 (-) . DO (-1 | -flt) This and is and to such the CMED board | 1-4-     |

Applicable Value(s): P0 (default), This card is used to specify the CMFD boundary update method to accelerate convergence of problems using CMFD. The following options are available:

- NONE Use no boundary update.
- P0 Use CMFD scalar fluxes to scale transport angular fluxes (default).
- DPO Use CMFD partial currents to scale transport angular fluxes.
- P1 Use CMFD currents to scale transport angular fluxes.

### limitations

Limitation(s): NONE SPECIFIED

#### Description:

Notes: The DPO and P1 options are more complex and generally do no provide significant convergence improvement. The default option of PO is recommended.



### depl\_time\_method depl\_time\_method

| depl_time_method | Fixed Character String | Required |
|------------------|------------------------|----------|
| donl time method | Fixed Character String | Doguired |

Units: N/A

Applicable Value(s): p-c(predictor-corrector) (default), semip-c(semi-predictor-corrector) or postcorrector(semi-predictor-corrector-post-corrector)

Limitation(s): None

Description: This card is used to specify the time stepping method in depletion. The p-c method computes a predicted nuclide concentration based on the steady state flux condition at the beginning of time step, which is then averaged with the corrected nuclide concentration based on the steady state flux condition at the end of time step. Two steady-state eigenvlaue calcualtions are performed for each depletion time step. The p-c method is a well demonstrated method and it can be used for large time steps. The semip-c method simplifies the p-c method by skipping the second steady-state eigenvalue calculation and thus becomes more efficient in small time step depletion calculation. The postcorrector method is identical to semip-c method with the exception that the number densities used for the beginning of times step steady-state eigenvalue calculation are "post-corrected" so that they more closely represent the averaged number densities of the full p-c method. This allows for accuracy coparable to the full p-c method while still skipping the second steady-state eigenvalue calculation

Notes: The semip-c method can result in an inconsistency when restarting. However, the differences that arise from a semip-c restart are smaller in magnitude than the differences between semip-c and p-c. The inconsistency in the semip-c restart arises from an extra flux calculation that occurs on restart, so presumably the difference results in a more accurate solution.

#### depl\_origen\_solver depl\_origen\_solver

| depl_origen_solver            | Fixed Character String                              | Required   |
|-------------------------------|-----------------------------------------------------|------------|
| Units: N/A                    |                                                     |            |
| Applicable Value(s): cram(C   | RAM solver) (default), matrex(MATREX solver)        |            |
| Limitation(s): None           |                                                     |            |
| Description: This card is use | ed to specify the solver method used by ORIGEN when | nerforming |

Description: This card is used to specify the solver method used by ORIGEN when performing depletion calculations. The cram method is the Chebyshev Rational Approximation Method. The matrex method is a hybrid matrix exponential / linear chain method, and is the legacy ORIGEN solution method

Notes: Compared to the matrex solver, cram has similar runtimes but is more accurate and robust on a larger range of problems. Unlike matrex, the length of a step does not significantly affect the accuracy of cram, in the absence of substep power renormalization. Hence, it is recommended that cram be used for ORIGEN depletion solves

#### num\_space num\_space

| num_space                                                                                       | Integer | Optional |
|-------------------------------------------------------------------------------------------------|---------|----------|
| Units: N/A                                                                                      |         |          |
| Applicable Value(s): 1 (default), Integer greater than 0 and less than the number of CPU cores. |         |          |
| Limitation(s): None                                                                             |         |          |

167



#### num\_space, continued...

Description: This card is used to specify the number of spatial decomposition regions used in a parallel execution step. this value can be:

- 1. a subset of the number of planes in the model,
- 2. the total number of planes, or
- 3. a product of all of the planes and any number of radial regions comprised of groups of quarter assemblies.

The ability to decompose a problem by planes can be used with the DEFAULT partition method. Any partition that decomposes the problem radially requires the EXPLICITFILE partition method.

Notes: See description of card num\_angle for explanation of using spatial and angular decomposition in conjunction.

## num\_angle num\_angle

| num_angle                                                                                  | Integer                                               | Optional      |  |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------|--|
| Units: N/A                                                                                 |                                                       |               |  |
| Applicable Value(s): 1 (defau                                                              | ult), Integer greater than 0 and less than the number | of CPU cores. |  |
| Limitation(s): Specifying a value greater than 2*azimuthals_octant will cause an exception |                                                       |               |  |
| error.                                                                                     |                                                       |               |  |

Description: This input options specifies the number of parallel partitions used to decompose the problem based on the azimuthal angle (i.e. ray directions in the x-y plane). To get the 2D MOC solution for a single x-y plane, rays are traced through the domain in multiple azimuthal directions, as specified by the user in the option azimuthals\_octant (the user should note that the terms octant and quadrant are interchangable in the context of azimuthal angles).

The azimuthal angles are divided into num\_angle groups, and each groups is assigned to a parallel partition (i.e. process). If spatial decomposition is used in the same problem, then each spatial decomposition region is copied to num\_angle partitions. Therefore, the total number of parallel partitions is num\_angle\*num\_space.

Notes: The user is cautioned against using too many processes to decompose the problem. Due to the increase in inter-process communication with increased parallel decomposition, excessive parallelization will not yield speedup of the solution. The proper amount of parallelization will have to be determined on a case-by-case basis.

### $\mathbf{num\_energy} \ \mathbf{num\_energy}$

| num_energy                | Integer                                         | Optional |
|---------------------------|-------------------------------------------------|----------|
| Units: N/A                |                                                 |          |
| Applicable Value(s): , 1  |                                                 |          |
| Limitation(s): None       |                                                 |          |
| Description: Energy decor | mposition is not yet supported. MPACT will only | run with |
| ${\tt num\_energy}{=}1$   |                                                 |          |
| Notes: None               |                                                 |          |

Optional



#### num\_threads num\_threads

num\_threads

|                               | 9                                                          | 1 1        |
|-------------------------------|------------------------------------------------------------|------------|
| Units: N/A                    |                                                            |            |
| Applicable Value(s): 1 (defar | ult), Integer greater than 0 and less than the number of C | CPU cores. |
| Limitation(s): None           |                                                            |            |

Integer

Description: This card is used to specify the number of threads used in parallel execution. The number of threads specified are used only during the MOC transport sweep. For a given ray direction (i.e. angle), threads are used to sweep multiple rays in parallel.

Notes: It is recommended that num\_angle\*num\_space\*num\_threads does not exceed the total number of physical CPU cores. MPACT will still run if the user exceeds this limit, but the parallel performance will be degraded.

#### par\_method par\_method

| par_method                                                                                  | Fixed Character String                              | Optional |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------|----------|
| Units: N/A                                                                                  |                                                     |          |
| Applicable Value(s): DEFAUL                                                                 | T (default), EXPLICITFILE                           |          |
| Limitation(s): The EXPLICITFILE option may be used only if the user has created a partition |                                                     |          |
| file. For a description of the partition file, see the input option par_file.               |                                                     |          |
| Description: This card is use                                                               | ed to specify the method of parallel decomposition. |          |

- DEFAULT The parallelization is specified by three input options listed below: num\_angle, num\_space, num\_threads. The meanings of these input options are explained below. DEFAULT is the simpler method for parallelizing the problem, and is recommended for most users.
- ASSEMBLY The parallelization scheme for decomposing a problem spatially. The problem will be decomposed radially first, and if there are more processors, will then attempt to parallelize the problem axially. This process is done automatically, and only requires the user to specify the number of spatial processors available in the num\_space card described below. It is the recommended method for large problems.
- EXPLICITFILE For more advanced users who are running large problems, using the EXPLICITFILE option may enable the user to parallelize the problem more effectively. For a description of the EXPLICITFILE method, see the input option par\_file.

Notes: None

### par\_file par\_file

| par_file                                            | Free-Form Character String | Optional |
|-----------------------------------------------------|----------------------------|----------|
| Units: N/A                                          |                            |          |
| Applicable Value(s): partition.txt (default)        |                            |          |
| Limitation(s): No comments are allowed in the file. |                            |          |



#### par\_file, continued...

Description: This card is used to specify the parallel decomposition file if EXPLICITFILE is used. This is an advanced feature that is not recommended for most users. The MPACT domain is broken into a regular grid of ray trace modules; the partition file allows the user to specify the spatial decomposition of the domain by listing the ray trace modules in each spatial partition via their (x,y,z) indices (this is explained more in the following paragraphs). The partition file also allows the user to decompose the MPACT domain radially, which is not possible with the DEFAULT partition method.

The file structure itself has two header lines followed by the specification of the radial partition regions.

The first line has 3 values, the first is the number of MPACT ray trace modules in the x direction, the second is the number of ray trace modules in the y direction, and the third is the number of axial planes in the model.

The second line also has 3 values. The first two pertain specifically to how MPACT partitions ray trace modules in space, and these values should always be 0 and 1 respectively. The third value should be the number of radial partitions being subsequently specified.

The following lines should describe all radial partition regions for the problem including any regions that will be used with a jagged core. The input for each line is 6 integers. The first pair of integers are the starting and stopping module indices in the x direction, the second pair are the starting and stopping module indices in the y direction, and the last pair is for the z direction, but they are ignored currently and all radial partitions are assumed to be the same for each axial plane. The coordinate system point of origin when specifying the starting and stopping indices is the lower left (south-west) corner of the module. When specifying the starting and stopping indices, it is important to note that these are not necessarily the assembly positions. Typically, in the case of modeling a full reactor, the ray trace modules represent a quarter of an assembly. In this case, the number of ray trace modules in a given direction will be about twice the number of assemblies in that direction.

Notes: If the core is jagged, additional attention is required to keep track of the actual number of processors being used by MPACT. Even though the non-existent assemblies are "partitioned" in the explicit file, nothing there will be run. So the user cannot simply take the third value from the second line and multiply it by the third value from the first line to get the total number of spatial partitions for this case. In the example below, the third value in the second line must have the number of "jagged" partitions subtracted from it. In this case, the actual number of processors per plane becomes 49 - 8 = 41. That number can then be multiplied by the number of planes to get 2378 processors, which should be input into the num\_space card.

Also, it may be unclear to the user how many planes will be created in MPACT before the case is run. The output file has a summary of the axial mesh information, including the total number of planes. If the case crashes when using the partition file, check that the number of planes specified matches the value in the output file.

## par\_xdim par\_xdim

| par_xdim             | Integer | Optional |
|----------------------|---------|----------|
| Units: N/A           |         |          |
| Applicable Value(s): |         |          |
| Limitation(s): None  |         |          |



# par\_xdim, continued...

Description: This card specifies the x dimension of the model when using the par\_map option.

Notes: None

# $\mathbf{par\_ydim}$ $\mathbf{par\_ydim}$

| par_ydim                                                                                     | Integer | Optional |
|----------------------------------------------------------------------------------------------|---------|----------|
| Units: N/A                                                                                   |         |          |
| Applicable Value(s):                                                                         |         |          |
| Limitation(s): None                                                                          |         |          |
| Description: This card specifies the y dimension of the model when using the par_map option. |         |          |
| Notes: None                                                                                  |         |          |

#### par\_map par\_map

| par_map                                                                                        | 2D Integer Map                                          | Optional    |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------|
| Units: N/A                                                                                     |                                                         |             |
| Applicable Value(s):                                                                           |                                                         |             |
| Limitation(s): None                                                                            |                                                         |             |
| Description: If the EXPLICITRADIAL partition method is used and a file is not specified, then  |                                                         |             |
| a par_map must be provided.                                                                    | This multi-line map should contain the indexes each mod | dule should |
| be a part of. These domains must be contiguous (all modules in a domain must neighbor at least |                                                         |             |
| one other module in the dom                                                                    | nain) and have no concave boundaries.                   |             |
| Notes: None                                                                                    |                                                         |             |

# $\mathbf{graph\_part\_method}$ $\mathbf{graph\_part\_method}$

| $graph\_part\_method$                                                                            | Array of Fixed Character Strings | Optional |
|--------------------------------------------------------------------------------------------------|----------------------------------|----------|
| Units: N/A                                                                                       |                                  |          |
| Applicable Value(s): , 'RSB'                                                                     | , 'RIB', 'REB'                   |          |
| Limitation(s): None                                                                              |                                  |          |
| Description: This card is used to read the decomposition/partition algorithms which will be used |                                  |          |
| for spatial decomposition.                                                                       |                                  |          |
| Notes: None                                                                                      |                                  |          |

# ${\bf graph\_refn\_method}~{\bf graph\_refn\_method}$

| graph_refn_method                          | Array of Fixed Character Strings | Optional |
|--------------------------------------------|----------------------------------|----------|
| Units: N/A                                 |                                  |          |
| Applicable Value(s): , 'KL', 'SKL', 'None' |                                  |          |
| Limitation(s): None                        |                                  |          |



#### graph\_refn\_method, continued...

Description: This card is used to read the communication refinement algorithms which will be used during spatial decomposition.

Notes: Should be of size 1 or same size as GRAPH\_PART\_METHOD

#### graph\_cond graph\_cond

| graph_cond                                                                                   | Array of Integers         | Optional |
|----------------------------------------------------------------------------------------------|---------------------------|----------|
| Units: number of modules (c                                                                  | default)                  |          |
| Applicable Value(s):                                                                         |                           |          |
| Limitation(s): Positive                                                                      |                           |          |
| Description: This card reads inputs for smallest graph size (modules) for each decomposition |                           |          |
| method.                                                                                      |                           |          |
| Notes: Should be of size 1 le                                                                | ss than GRAPH_PART_METHOD |          |

#### coupling\_method coupling\_method

| coupling_method | Fixed Character String | Optional |
|-----------------|------------------------|----------|
| Units: N/A      |                        |          |

Applicable Value(s): simplified (if not configured with COBRA-TF) or ctf (if configured with COBRA-TF) (default), ctf\_external, textttuser\_defined, none

The simplified option uses MPACT's internal TH solver. The ctf option internally couples COBRA-TF to MPACT, and ctf\_external couples MPACT and COBRA-TF through the lime interface. The user\_defined option uses TH conditions defined in the HDF5 file specified by the textttuser\_defined\_th\_filename card in the textttMPACT block. The none option will use parameters from the STATE block: fuel temperatures will be constant and equal to tfuel, moderator temperatures will be constant and equal to moderator densities will be constant and equal to modden.

Limitation(s): The feedback card in the STATE block must be set to on for any of the TH coupling methods

Description: This card is used to indicate which TH coupling method should be used.

Notes: For either the ctf or ctf\_external options, MPACT must be configured with COBRA-TF. The internal option may regardless of whether MPACT was configured with COBRA-TF or not.

# $extend\_coupling\_mesh$ extend\\_coupling\\_mesh

| extend_coupling_mesh                                                                            | Logical | Optional |  |
|-------------------------------------------------------------------------------------------------|---------|----------|--|
| Units: N/A                                                                                      |         |          |  |
| Applicable Value(s): true (default), false                                                      |         |          |  |
| Limitation(s): None                                                                             |         |          |  |
| Description: This card is used to specify whether to enable coupling above and below the active |         |          |  |
| fuel when using CTF.                                                                            |         |          |  |



## extend\_coupling\_mesh, continued...

Notes: None

### $th\_nonlinear\_solver$ $th\_nonlinear\_solver$

| th_nonlinear_solver                                                                                | Fixed Character String | Optional |
|----------------------------------------------------------------------------------------------------|------------------------|----------|
| Units: N/A                                                                                         |                        |          |
| Applicable Value(s): picard (default), picard, anderson                                            |                        |          |
|                                                                                                    |                        |          |
| The picard option uses a direct underrelaxation of the power. The anderson option                  |                        |          |
| uses the Anderson acceleration method in Trilinos to accelerate on the power.                      |                        |          |
| Limitation(s): For anderson the anderson_options card should be used to set parameters.            |                        |          |
| Description: This card is used to indicate which nonlinear solver should be used for the coupling. |                        |          |
| Notes: For the anderson option, MPACT must be configured with Trilinos. The picard option          |                        |          |
| may regardless of how MPA                                                                          | CT is configured.      |          |

# ${\bf anderson\_options} \ {\bf anderson\_options}$

| anderson_options                                                                                  | Integer, Floating-Point Real Number, Integer | Optional |
|---------------------------------------------------------------------------------------------------|----------------------------------------------|----------|
| Units: N/A                                                                                        |                                              |          |
| Applicable Value(s): 2, 0.5, 1 (default), The depth can be any non-negative integer which         |                                              |          |
| represents depth of the Anderson solver. The mixing parameter must be greater than 0 and          |                                              |          |
| less than or equal to 1. The starting iteration must be a positive integer which represents       |                                              |          |
| how many iterations of picard to perform before starting anderson.                                |                                              |          |
| Limitation(s): None                                                                               |                                              |          |
| Description: This card is used to define the solver parameters for the Anderson nonlinear solver. |                                              |          |
| Notes: NONE SPECIFIED                                                                             |                                              |          |

#### **shielder\_th** shielder\_th

| shielder_th                                                                                      | Integer, Floating-Point Real Number, Floating-Point                                 | Optional   |  |  |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------|--|--|
|                                                                                                  | Real Number                                                                         |            |  |  |
| Units: {unitless, K, g/cm <sup>3</sup> }                                                         | (default)                                                                           |            |  |  |
| Applicable Value(s): 4, 25.0, 0                                                                  | 0.005 (default), or any positive integer and any 2 positive re                      | al numbers |  |  |
|                                                                                                  |                                                                                     |            |  |  |
| The first input is the max                                                                       | The first input is the maximum number of outer iterations for which MPACT will per- |            |  |  |
| form cross-section shielding calculations following a TH update. The second input is the minimum |                                                                                     |            |  |  |
| change in temperature for which MPACT will perform cross-section shielding calculations          |                                                                                     |            |  |  |
| following a TH update. The third and last input is the minimum change in moderator density for   |                                                                                     |            |  |  |
| which MPACT will perform                                                                         | cross-section shielding calculations following a TH update                          | e.         |  |  |
| Limitation(s): If the xs_shielder card is set to f or false, this card does nothing, since       |                                                                                     |            |  |  |
| cross-section shielding calcul                                                                   | lations will never be performed.                                                    |            |  |  |



#### shielder\_th, continued...

Description: This card is used to control how many cross-section shielding calculations are performed when using TH feedback. It sets a maximum number of iterations with shielding calculations, and also sets parameters to stop the shielding calculations earlier if the TH feedback effects on temperature and moderator density are small enough.

Notes: If multiple state points are performed in the calculation, the counter for the jshield\_max\_outers; input is reset for each state point.

If the xs\_shielder card is not set to f or false, shielding calculations will always be performed on the first iteration.

### outers\_per\_TH outers\_per\_TH

| outers_per_TH                 | Integer                                             | Optional   |
|-------------------------------|-----------------------------------------------------|------------|
| Units: N/A                    |                                                     |            |
| Applicable Value(s): 1 (defa  | ult), or any positive integer                       |            |
| Limitation(s): None           |                                                     |            |
| Description: This card is us  | ed to indicate how many outer iterations MPACT shou | ld perform |
| before performing an addition | onal TH update.                                     |            |
| Notes: None                   |                                                     |            |

## ${\bf average\_ftemp} \ {\bf average\_ftemp}$

| $average\_ftemp$                                                                                | Fixed Character String | Optional |
|-------------------------------------------------------------------------------------------------|------------------------|----------|
| Units: N/A                                                                                      |                        |          |
| Applicable Value(s): true (c                                                                    | lefault), false        |          |
| Limitation(s): None                                                                             |                        |          |
| Description: If true, this card applies a volume-avergaed fuel temperature to each fuel pin. If |                        |          |
| false, it applies a radially dependent fuel temperature to each fuel pin.                       |                        |          |
| Notes: None                                                                                     |                        |          |

#### radial\_power\_ctf\_coupling radial\_power\_ctf\_coupling

| radial_power_ctf_coupling                  | Fixed Character String                  | Optional           |
|--------------------------------------------|-----------------------------------------|--------------------|
| Units: N/A                                 |                                         |                    |
| Applicable Value(s): true (default), tr    | ue                                      |                    |
| Limitation(s): None                        |                                         |                    |
| Description: If true, this card calculates | s the radial power Zernike coefficients | to pass to CTF. If |
| false, no coefficients are calculated.     |                                         |                    |
| Notes: None                                |                                         |                    |

### radial\_burnup\_ctf\_coupling radial\_burnup\_ctf\_coupling



| radial_burnup_ctf_coupling               | Fixed Character String                     | Optional           |
|------------------------------------------|--------------------------------------------|--------------------|
| Units: N/A                               |                                            |                    |
| Applicable Value(s): true (default), t   | true                                       |                    |
| Limitation(s): None                      |                                            |                    |
| Description: If true, this card calculat | tes the radial burnup Zernike coefficients | to pass to CTF. If |
| false, no coefficients are calculated.   |                                            |                    |
| Notes: None                              |                                            |                    |

# ${\bf radial\_temp\_ctf\_coupling}\ {\bf radial\_temp\_ctf\_coupling}$

| radial_temp_ctf_coupling        | Fixed Character String                                      | Optional   |
|---------------------------------|-------------------------------------------------------------|------------|
| Units: N/A                      |                                                             |            |
| Applicable Value(s): true (d    | lefault), true                                              |            |
| Limitation(s): None             |                                                             |            |
| Description: If true, this care | d will use the radial fuel temperature Zernike coefficients | from CTF   |
| to set the fuel temps in MPA    | ACT. If false, the coefficents are not used and the volum   | e averaged |
| fuel temp is used in all fuel r | rings.                                                      |            |
| Notes: None                     |                                                             |            |

## ${\it ctf\_basename}$ ${\it ctf\_basename}$

| ctf_basename                   | Free-Form Character String, Max. Length $= 200$                                                       | Optional    |
|--------------------------------|-------------------------------------------------------------------------------------------------------|-------------|
| Units: N/A                     |                                                                                                       |             |
|                                | when COBRA-TF is run in serial) $or$ pdeck (when COB ay filename base for valid COBRA-TF input decks. | BRA-TF is   |
| Limitation(s): Filename mus    | et have ".inp" extension.                                                                             |             |
| Description: This card is used | to indicate the "basename" of the CTF input files for CT                                              | F coupling. |
| The "basename" is the section  | on of the CTF input filename(s) without any extensions.                                               |             |
| Notes: Absolute or relative p  | oaths to the file are both acceptable.                                                                |             |

## ${\bf sth\_dhfrac} \ {\bf sth\_dhfrac}$

| sth_dhfrac                                                                                  | Floating-Point Real Number                                  | Optional    |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------|
| Units: N/A                                                                                  |                                                             |             |
| Applicable Value(s): 0.02 (de                                                               | efault), 0.0–1.0                                            |             |
| Limitation(s): It is ignored if feedback is off or if coupling with COBRA-TF is being used. |                                                             |             |
| Description: This card is use                                                               | ed to set the fraction of the power which is directly depos | ited in the |
| moderator in internal TH ca                                                                 | lculations.                                                 |             |
| Notes: None                                                                                 |                                                             |             |

# ${\bf sth\_hgap}$ ${\bf sth\_hgap}$



| sth_hgap                                                                                      | Floating-Point Real Number | Optional |
|-----------------------------------------------------------------------------------------------|----------------------------|----------|
| Units: W/m <sup>2</sup> · K (default)                                                         |                            |          |
| Applicable Value(s): 4500.0 (default), or any positive real number                            |                            |          |
| Limitation(s): It is ignored if feedback is off or if coupling with COBRA-TF is being used.   |                            |          |
| Description: This card is used to set the gap conductance value for internal TH calculations. |                            |          |
| Notes: Typical values range from 1000 (very low) to 10000 (very high).                        |                            |          |

## ${\bf temptable\_filename} \ {\bf temptable\_filename}$

| temptable_filename                                                                                 | Free-Form Character String, Max. Length $= 200$                                               | Optional    |  |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------|--|
| Units: N/A                                                                                         |                                                                                               |             |  |
| Applicable Value(s): N/A (d                                                                        | efault), Filename of any valid fuel temperature table file                                    | ;           |  |
| Limitation(s): If the card is p                                                                    | present, temperature tables in the named file will be used t                                  | o calculate |  |
| fuel temperatures instead of                                                                       | fuel temperatures instead of the internal conduction solvers or COBRA-TF. If this card is not |             |  |
| present, then internal or COBRA-TF solvers are used.                                               |                                                                                               |             |  |
| Description: This card is used to indicate the name of the file containing the temperature tables. |                                                                                               |             |  |
| Notes: Temperature tables contain fuel temperature values as functions of power and burnup.        |                                                                                               |             |  |
| When depleting, the thermal properties of the fuel change significantly. Internal TH and COBRA-    |                                                                                               |             |  |
| TF do not know how these properties change when depleting, so temperature tables can be used       |                                                                                               |             |  |
| to more accurately perform TH calculations during depletion simulations using tabulated data       |                                                                                               |             |  |
| rather than fuel conduction                                                                        | solvers.                                                                                      |             |  |

# $\mathbf{sth\_tabletype} \ \mathbf{sth\_tabletype}$

| sth_tabletype                  | Character String                                        | Optional |
|--------------------------------|---------------------------------------------------------|----------|
| Units: N/A                     |                                                         |          |
| Applicable Value(s): ctf (def  | ault), simplified                                       |          |
| Limitation(s): It is ignored i | f feedback is off or if coupling with COBRA-TF is being | used.    |
| Description: This card is use  | ed to set the table type for internal TH calculations.  |          |
| Notes: None                    |                                                         |          |

## ${\bf temptable\_filename} \ {\bf temptable\_filename}$

| temptable_filename              | Free-Form Character String, Max. Length $= 200$              | Optional    |
|---------------------------------|--------------------------------------------------------------|-------------|
| Units: N/A                      |                                                              |             |
| Applicable Value(s): N/A (c     | lefault), Filename of any valid fuel temperature table file  |             |
| Limitation(s): If the card is p | present, temperature tables in the named file will be used t | o calculate |
| fuel temperatures instead of    | the internal conduction solvers or COBRA-TF. If this         | card is not |
| present, then internal or CO    | BRA-TF solvers are used.                                     |             |
| Description: This card is use   | d to indicate the name of the file containing the temperat   | ure tables. |

Optional



#### temptable\_filename, continued...

Notes: Temperature tables contain fuel temperature values as functions of power and burnup. When depleting, the thermal properties of the fuel change significantly. Internal TH and COBRATF do not know how these properties change when depleting, so temperature tables can be used to more accurately perform TH calculations during depletion simulations using tabulated data rather than fuel conduction solvers.

### temptable\_shape temptable\_shape

| temptable_shape                                                              | Boolean       | Optional |
|------------------------------------------------------------------------------|---------------|----------|
| Units: N/A                                                                   |               |          |
| Applicable Value(s): false (d                                                | efault), true |          |
| Limitation(s): None                                                          |               |          |
| Description: Logical to interpolate shape onto fuel temperature table value. |               |          |
| Notes: None                                                                  |               |          |

### temptable\_boundary temptable\_boundary

temptable\_boundary

| Units: N/A                                                                                            |
|-------------------------------------------------------------------------------------------------------|
| Applicable Value(s): N/A (default), Boundary for applying the temperature tables                      |
| Limitation(s): If the card is present, temperature tables in the named file will be used to calculate |
| fuel temperatures instead of the internal conduction solvers or COBRA-TF. If this card is not         |
| present, then internal or COBRA-TF solvers are used.                                                  |
| Description: This card is used to define boundary from which the table was generated and which        |
| should be used to apply the table.                                                                    |
| Notes: Temperature tables contain fuel temperature values as functions of power and burnup.           |
| When depleting, the thermal properties of the fuel change significantly. Internal TH and COBRA-       |
| TF do not know how these properties change when depleting, so temperature tables can be used          |
| to more accurately perform TH calculations during depletion simulations using tabulated data          |

Fixed Character String

### $temptable\_filename$ $temptable\_filename$

rather than fuel conduction solvers.

| temptable_filename              | Free-Form Character String, Max. Length $= 200$              | Optional    |
|---------------------------------|--------------------------------------------------------------|-------------|
| Units: N/A                      |                                                              |             |
| Applicable Value(s): N/A (d     | lefault), Filename of any valid fuel temperature table file  |             |
| Limitation(s): If the card is p | present, temperature tables in the named file will be used t | o calculate |
| fuel temperatures instead of    | the internal conduction solvers or COBRA-TF. If this         | card is not |
| present, then internal or CO    | BRA-TF solvers are used.                                     |             |
| Description: This card is use   | d to indicate the name of the file containing the temperat   | ure tables. |



#### temptable\_filename, continued...

Notes: Temperature tables contain fuel temperature values as functions of power and burnup. When depleting, the thermal properties of the fuel change significantly. Internal TH and COBRATF do not know how these properties change when depleting, so temperature tables can be used to more accurately perform TH calculations during depletion simulations using tabulated data rather than fuel conduction solvers.

### temptable\_qprime temptable\_qprime

| temptable_qprime                                     | Floating-Point Real Numbers                                  | Optional    |
|------------------------------------------------------|--------------------------------------------------------------|-------------|
| Units: N/A                                           |                                                              |             |
| Applicable Value(s): N/A (d                          | lefault), Heat flux used to generate the fuel temperatures   | 3           |
| Limitation(s): If the card is p                      | present, temperature tables in the named file will be used t | o calculate |
| fuel temperatures instead of                         | f the internal conduction solvers or COBRA-TF. If this       | card is not |
| present, then internal or COBRA-TF solvers are used. |                                                              |             |
| Description: This card is use                        | ed to define the heat flux used to generate fuel temperate   | ire tables. |
| Notes: Temperature tables                            | contain fuel temperature values as functions of power as     | nd burnup.  |
| When depleting, the thermal                          | properties of the fuel change significantly. Internal TH an  | d COBRA-    |
| TF do not know how these p                           | properties change when depleting, so temperature tables c    | an be used  |
| to more accurately perform                           | TH calculations during depletion simulations using tabu      | lated data  |
| rather than fuel conduction                          | solvers.                                                     |             |

### temptable\_polynomial temptable\_polynomial

temptable\_polynomial

Units: GWD/MT, K, K (default)

rather than fuel conduction solvers.

| Applicable Value(s): N/A (default), Fuel temperature table values                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Limitation(s): If the card is present, temperature tables will be used to calculate fuel temperatures                                                                                       |
| instead of the internal conduction solvers or COBRA-TF. If this card is not present, then internal                                                                                          |
| or COBRA-TF solvers are used.                                                                                                                                                               |
| Description: This card is used to indicate the data for temperature tables.                                                                                                                 |
|                                                                                                                                                                                             |
| Notes: Temperature tables contain fuel temperature values as functions of power and burnup.                                                                                                 |
| Notes: Temperature tables contain fuel temperature values as functions of power and burnup. When depleting, the thermal properties of the fuel change significantly. Internal TH and COBRA- |

to more accurately perform TH calculations during depletion simulations using tabulated data

Floating-Point Real Numbers

#### user\_defined\_th\_filename user\_defined\_th\_filename

| user_defined_th_filename             | Free-Form Character String, Max. Length $= 200$       | Optional   |
|--------------------------------------|-------------------------------------------------------|------------|
| Units: N/A                           |                                                       |            |
| Applicable Value(s): N/A (conditions | default), Filename of any valid HDF5 file with user d | lefined TH |

continued on next page...

Optional



#### user\_defined\_th\_filename, continued...

Limitation(s): If the card is present, TH conditions defined for each state and pincell will be used to set the TH variables of each pincell in the model instead of calculating the TH condition using the internal TH solver or CTF

Description: This card is used to indicate the name of the file containing the pin-wise TH conditions for each state.

Notes: The format of the HDF5 file must follow the same format as the HDF5 output edits. The head dataset of the file must contain STATE datasets following the  $STATE\_****$  nomenclature, which are populated with pin-wise data with the same names as their output edit counterparts. Currently supported dataset name are  $pin\_fuel\_temp$ ,  $pin\_clad\_temp$ ,  $pin\_mod\_temp$ ,  $pin\_mod\_temp$ ,  $pin\_mod\_temp$ ,  $pin\_gtube\_temp$ , and  $pin\_gtube\_dens$ . The TH datasets must have the same shape as their corresponding output counterparts. Users are not required to provide the TH conditions for all states and TH variables, and those which are absent will be populated based on the global state variables such as tinlet.

#### dep\_edit dep\_edit

| dep_edit                      | Fixed Character String                                       | Optional    |
|-------------------------------|--------------------------------------------------------------|-------------|
| Units: atomsvolume of pince   | ell (default)                                                |             |
| Applicable Value(s): true (c  | lefault), false                                              |             |
| Limitation(s): None           |                                                              |             |
| Description: This card is use | ed to specify if the depletion Isum and Pnum files are writ  | ten, which  |
|                               | sotope number densities. Isum prints the isotope summar      | •           |
| isotopes tracked in ASMesh a  | and Pnum file prints the particle number density file with a | an isotopes |

Notes: The option has excessive memory requirements and is not advised for general usage. Only use when absolutely necessary.

#### dep\_substep dep\_substep

in the depletion library.

| dep_substep                             | Integer                                | Optional |
|-----------------------------------------|----------------------------------------|----------|
| Units: N/A                              |                                        |          |
| Applicable Value(s): 1 (defa            | ult), Positive integers greater than 0 |          |
| Limitation(s): None                     |                                        |          |
| D ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' |                                        | D 1: 4   |

Description: This card is used to read the number of substep for the Depletion Predictor AND Corrector step. The substep method is applied to perform multiple depletion calculations between transport calculations. Substeps should be set to 1 if using CRAM and no High Order Depletion or substep renormalization. Since the depletion calculation typically takes less time than the transport calculation this with high order depletion or renormalization will often save computational time.

Notes: When not using the High Order Depletion Methodology or substep renormalization, 1 substep is recommended for CRAM and 3 substeps for MATREX or internal BATEMAN. This card is also valid in OPTION block.

#### dep\_substep\_pred dep\_substep\_pred



| dep_substep_pred               | Integer                                                   | Optional     |
|--------------------------------|-----------------------------------------------------------|--------------|
| Units: N/A                     |                                                           |              |
| Applicable Value(s): 1 (defar  | ult), Positive integers greater than 0                    |              |
| Limitation(s): None            |                                                           |              |
| Description: This card is use  | ed to read the number of substep for the Depletion Pre-   | dictor step. |
| The substep method is appl     | lied to perform multiple depletion calculations between   | transport    |
| calculations. Substeps should  | be set to 1 if using CRAM and no High Order Depletion     | or substep   |
| renormalization. Since the     | depletion calculation typically takes less time than the  | transport    |
| calculation this with high ord | der depletion or renormalization will often save computat | ional time.  |
| Notes: When not using the      | High Order Depletion Methodology or substep renorma       | alization, 1 |
| substep is recommended for     | CRAM and 3 substeps for MATREX or internal BATEI          | MAN. This    |

# $\mathbf{dep\_substep\_corr} \ \mathbf{dep\_substep\_corr}$

card is also valid in OPTION block.

| dep_substep_corr              | Integer                                                   | Optional     |
|-------------------------------|-----------------------------------------------------------|--------------|
| Units: N/A                    |                                                           |              |
| Applicable Value(s): 1 (defa  | ult), Positive integers greater than 0                    |              |
| Limitation(s): None           |                                                           |              |
| Description: This card is us  | ed to read the number of substep for the Depletion Corn   | rector step. |
| The substep method is app     | lied to perform multiple depletion calculations between   | transport    |
| calculations. Substeps should | l be set to 1 if using CRAM and no High Order Depletion   | or substep   |
| renormalization. Since the    | depletion calculation typically takes less time than the  | transport    |
| calculation this with high or | der depletion or renormalization will often save computat | ional time.  |
| Notes: When not using the     | High Order Depletion Methodology or substep renorma       | alization, 1 |
| substep is recommended for    | CRAM and 3 substeps for MATREX or internal BATEM          | MAN. This    |
| card is also valid in OPTIO   | N block.                                                  |              |

## $\mathbf{dep\_kernel}\ \mathrm{dep\_kernel}$

| dep_kernel                                                                                        | Fixed Character String | Required |
|---------------------------------------------------------------------------------------------------|------------------------|----------|
| Units: N/A                                                                                        |                        |          |
| Applicable Value(s): internal (MPACT's internal depletion kernel) (default), origen(coupled       |                        |          |
| origen kernel)                                                                                    |                        |          |
| Limitation(s): None                                                                               |                        |          |
| Description: This card is used to specify the depletion kernel to use. The MPACT internal         |                        |          |
| depletion kernel is based on the same methodology as origen, but uses simplified depletion chains |                        |          |
| and runs faster than origen                                                                       |                        |          |
| Notes: None                                                                                       |                        |          |

# $include\_depl\_mats \ include\_depl\_mats$

| include_depl_mats | Character Strings | Optional |
|-------------------|-------------------|----------|
| Units: N/A        |                   |          |



### include\_depl\_mats, continued...

Applicable Value(s):

Limitation(s): None

Description: This card is used to list the names of materials the user wishes to deplete. The

inputs for this card are a 1-D array of strings. The default value is an empty array.

Notes: None

### $exclude\_depl\_mats$ exclude\\_depl\\_mats

| exclude_depl_mats                                                                                | Character Strings | Optional |
|--------------------------------------------------------------------------------------------------|-------------------|----------|
| Units: N/A                                                                                       |                   |          |
| Applicable Value(s):                                                                             |                   |          |
| Limitation(s): None                                                                              |                   |          |
| Description: This card is used to list the names of materials the user does not wish to deplete. |                   |          |
| The inputs for this card are a 1-D array of strings. The default value is an empty array.        |                   | rray.    |
| Notes: None                                                                                      |                   |          |

#### $\mathbf{cmfd}$ cmfd

| cmfd       | Fixed Character String | Optional |
|------------|------------------------|----------|
| Units: N/A |                        |          |

Applicable Value(s): cmfd (default), cmfd, none described as:

- cmfd default CMFD method (currently adcmfd.)
- adcmfd artificially diffusive CMFD method. (same as cmfd)
- scmfd standard CMFD method.
- mlcmfd a multi-level (currently 2) cmfd method.
- msed same as adcmfd, but the CMFD system is now solved via the MSED method
- none disables CMFD and can only be used in 2-D problems.

Limitation(s): None

Description: This card is used to specify which CMFD method will be used.

Notes: CMFD must be present for every 3-D problem because it is the basis for the solution transfer between 2-D and 1-D.

#### multilevel multilevel

| multilevel                                          | Fixed Character String | Optional |
|-----------------------------------------------------|------------------------|----------|
| Units: N/A                                          |                        |          |
| Applicable Value(s): energy (default), energy,space |                        |          |
| Limitation(s): None                                 |                        |          |



#### multilevel, continued...

Description: This card is used to specify whether space or energy multilevel CMFD is used

Notes: Only active when mlcmfd is specified.

#### prolongation prolongation

| prolongation                                                                        | Character String | Optional |
|-------------------------------------------------------------------------------------|------------------|----------|
| Units: N/A                                                                          |                  |          |
| Applicable Value(s): flat (de                                                       | fault), linear   |          |
| Limitation(s): None                                                                 |                  |          |
| Description: Flag to indicate if flat or linear prolongation will be used for CMFD. |                  |          |
| Notes: None                                                                         |                  |          |

#### $cmfd\_solver cmfd\_solver$

| cmfd_solver | Fixed Character String | Optional |
|-------------|------------------------|----------|
| Units: N/A  |                        |          |

Applicable Value(s): mgnode (default), mgnode, mggroup described as:

- 1gsweep sweeps through all of the energy groups one by one using Gauss-Seidel iteration in energy.
- mgnode sets up a full multigroup CMFD matrix in node-major ordering (e.g. each node is a group-by-group block).
- mggroup sets up a full multigroup CMFD matrix in group-major ordering.
- 1grbsor sweeps through all of the energy groups one by one using Red-Black Successive Over-Relaxtion iteration.
- mgrbsor sets up a full multigroup CMFD matrix in node-major ordering (e.g. each node is a group-by-group block) and uses Red-Black Successive Over-Relaxtion iteration.
- reducedmg same as mgnode, except it solve the groups without an upscattering source one group at a time before forming a multigroup matrix with only the upscattering groups. DOES NOT WORK WITH WIELANDT SHIFT. k\_shift (or lambda\_shift) must be 0.

Limitation(s): None

Description: This card is used to specify how the CMFD linear system is setup and solved.

Notes: 1gsweep requires less memory than the others, but is generally slower to converge than mgnode.

### cmfd\_linear\_solver cmfd\_linear\_solver

| cmfd_linear_solver | Fixed Character String | Optional |
|--------------------|------------------------|----------|
| Units: N/A         |                        |          |



#### cmfd\_linear\_solver, continued...

Applicable Value(s): PETSC (default), PETSC or TRILINOS described as:

- PETSC Uses PETSC (ANL) for linear solver and SLEPC for eigenvalue problems.
- TRILINOS Uses Trilinos (SNL) solvers Belos for linear solves and Anasazi for eigenvalue problems.

Limitation(s): None

Description: This card is used to specify which linear solver package will be used.

Notes: CMFD must be present for every 3-D problem because it is the basis for the solution transfer between 2-D and 1-D.

### petsc\_linear\_solver\_method petsc\_linear\_solver\_method

| petsc_linear_solver_method              | Fixed Character String                  | Optional             |
|-----------------------------------------|-----------------------------------------|----------------------|
| Units: N/A                              |                                         |                      |
| Applicable Value(s): gmres (default)    | , gmres, bicgstab, or multigrid         |                      |
| Limitation(s): None                     |                                         |                      |
| Description: This card is used to sp    | ecify which linear solver from PETSc wi | ill be used. It does |
| nothing if Trilinos is chosen as the li | near solver.                            |                      |
| Notes: NONE SPECIFIED                   |                                         |                      |

### petsc\_linear\_solver\_method petsc\_linear\_solver\_method

| petsc_linear_solver_method          | Fixed Character String                         | Optional      |
|-------------------------------------|------------------------------------------------|---------------|
| Units: N/A                          |                                                |               |
| Applicable Value(s): gmres (defar   | ult), gmres, bicgstab, or multigrid            |               |
| Limitation(s): None                 |                                                |               |
| Description: This card is used to   | specify which linear solver from PETSc will be | used. It does |
| nothing if Trilinos is chosen as th | e linear solver.                               |               |
| Notes: NONE SPECIFIED               |                                                |               |

### multigrid\_cg\_solver multigrid\_cg\_solver

| multigrid_cg_solver                                                        | Fixed Character String | Optional |
|----------------------------------------------------------------------------|------------------------|----------|
| Units: N/A                                                                 |                        |          |
| Applicable Value(s): gmres (default), sor, bjacobi, gmres, bicgstab, or lu |                        |          |
| Limitation(s): None                                                        |                        |          |



### multigrid\_cg\_solver, continued...

Description: This card is used to control the solver used on the coarsest grid of multigrid. The options are:

- gmres Standard GMRES solver in PETSc, with a preconditioner that is ILU-like locally and Jacobi-like between processors.
- bicgstab Standard BiCGSTAB solver in PETSc, same preconditioner as GMRES.
- 1u Exact LU solver. In parallel, superLU package must be enabled to use this.
- Any of the options for the multigrid\_smoother card

Notes: **NONE SPECIFIED** 

### multigrid\_cg\_solver\_its multigrid\_cg\_solver\_its

| multigrid_cg_solver_its                                                                          | Integer                      | Optional |
|--------------------------------------------------------------------------------------------------|------------------------------|----------|
| Units: N/A                                                                                       |                              |          |
| Applicable Value(s): 15 (def                                                                     | ault), Any positive integer. |          |
| Limitation(s): NONE SPEC                                                                         | IFIED                        |          |
| Description: Number of cg_solver iterations to perform on coarsest grid of the multigrid solver. |                              |          |
| Notes: NONE SPECIFIED                                                                            |                              |          |

## $\mathbf{multigrid\_cg\_tol}$ $\mathbf{multigrid\_cg\_tol}$

| multigrid_cg_tol                                                              | Float | Optional |
|-------------------------------------------------------------------------------|-------|----------|
| Units: N/A                                                                    |       |          |
| Applicable Value(s): $, > 0$                                                  |       |          |
| Limitation(s): None                                                           |       |          |
| Description: Set the tolerance for the coarsest grid on the multigrid system. |       |          |
| Notes: None                                                                   |       |          |

### multigrid\_cg\_solver\_1G multigrid\_cg\_solver\_1G

| multigrid_cg_solver_1G                                                     | Fixed Character String | Optional |
|----------------------------------------------------------------------------|------------------------|----------|
| Units: N/A                                                                 |                        |          |
| Applicable Value(s): gmres (default), sor, bjacobi, gmres, bicgstab, or lu |                        |          |
| Limitation(s): None                                                        |                        |          |



### multigrid\_cg\_solver\_1G, continued...

Description: This card is used to control the solver used on the coarsest grid of multigrid. The options are:

- gmres Standard GMRES solver in PETSc, with a preconditioner that is ILU-like locally and Jacobi-like between processors.
- bicgstab Standard BiCGSTAB solver in PETSc, same preconditioner as GMRES.
- 1u Exact LU solver. In parallel, superLU package must be enabled to use this.
- Any of the options for the multigrid\_smoother card

Notes: NONE SPECIFIED

### multigrid\_cg\_solver\_its\_1G multigrid\_cg\_solver\_its\_1G

| multigrid_cg_solver_its_1                                                                        | G Integer                    | Optional |
|--------------------------------------------------------------------------------------------------|------------------------------|----------|
| Units: N/A                                                                                       |                              |          |
| Applicable Value(s): 15 (defa                                                                    | ault), Any positive integer. |          |
| Limitation(s): NONE SPECI                                                                        | (FIED                        |          |
| Description: Number of cg_solver iterations to perform on coarsest grid of the multigrid solver. |                              |          |
| Notes: NONE SPECIFIED                                                                            |                              |          |

## multigrid\_cg\_tol\_1G multigrid\_cg\_tol\_1G

| multigrid_cg_tol_1G                                                              | Float | Optional |
|----------------------------------------------------------------------------------|-------|----------|
| Units: N/A                                                                       |       |          |
| Applicable Value(s): , > 0                                                       |       |          |
| Limitation(s): None                                                              |       |          |
| Description: Set the tolerance for the coarsest grid on the 1G multigrid system. |       |          |
| Notes: None                                                                      |       |          |

### $multigrid\_smoother$ $multigrid\_smoother$

| multigrid_smoother                               | Fixed Character String | Optional |
|--------------------------------------------------|------------------------|----------|
| Units: N/A                                       |                        |          |
| Applicable Value(s): sor (default), sor, bjacobi |                        |          |
| Limitation(s): None                              |                        |          |



### multigrid\_smoother, continued...

Description: This card is only used when petsc\_linear\_solver\_method is set to multigrid, or if petsc\_linear\_solver\_method\_1G is set to set to multigrid, and the corresponding 1G quantity is not available. The same is true of any card beginning with "multigrid\_". This card is used to control the smoother used on all but the coarsest grid in multigrid. The options are:

- sor PCSOR from PETSc. It's not really SOR since we don't give it a relaxation parameter. It is Gauss-Seidel locally and Jacobi between processors.
- bjacobi Block Jacobi preconditioner where each proc is a block in the global matrix. Each block is partially inverted by an ILU iteration. (ILU locally, Jacobi globally)

Notes: NONE SPECIFIED

### multigrid\_num\_smooth multigrid\_num\_smooth

| multigrid_num_smooth                                                                             | Integer                        | Optional |
|--------------------------------------------------------------------------------------------------|--------------------------------|----------|
| Units: N/A                                                                                       |                                |          |
| Applicable Value(s): 1/0 (de                                                                     | efault), Any positive integer. |          |
| Limitation(s): None                                                                              |                                |          |
| Description: This card is used to control the number of smoother iterations used on each level   |                                |          |
| of the multigrid scheme except the the coarsest. If no value is given, it will do one smoother   |                                |          |
| iteration on the way down and no smoother iterations on the way up. If a value is given, it will |                                |          |
| do that many iterations on the way up and on the way down. The only way to achieve the default   |                                |          |
| behavior is to leave this entry blank.                                                           |                                |          |
| Notes: NONE SPECIFIED                                                                            |                                |          |

### multigrid\_smoother\_1G multigrid\_smoother\_1G

| Units: N/A                                                                                       |
|--------------------------------------------------------------------------------------------------|
| Applicable Value(s): sor (default), sor, bjacobi                                                 |
| Limitation(s): None                                                                              |
| Description: This card is only used when petsc_linear_solver_method_1G is set to multigrid This  |
| card is used to control the smoother used on all but the coarsest grid in multigrid. The options |
| are:                                                                                             |

Fixed Character String

- sor PCSOR from PETSc. It's not really SOR since we don't give it a relaxation parameter. It is Gauss-Seidel locally and Jacobi between processors.
- bjacobi Block Jacobi preconditioner where each proc is a block in the global matrix. Each block is partially inverted by an ILU iteration. (ILU locally, Jacobi globally)

Notes: NONE SPECIFIED

multigrid\_smoother\_1G

#### multigrid\_num\_smooth\_1G multigrid\_num\_smooth\_1G

Optional



| multigrid_num_smooth_1G | Integer | Optional |
|-------------------------|---------|----------|
| Units: N/A              |         |          |

Applicable Value(s): 1/0 (default), Any positive integer.

Limitation(s): None

Description: This card is used to control the number of smoother iterations used on each level of the multigrid scheme except the the coarsest. If no value is given, it will do one smoother iteration on the way down and no smoother iterations on the way up. If a value is given, it will do that many iterations on the way up and on the way down. The only way to achieve the default behavior is to leave this entry blank.

Notes: NONE SPECIFIED

## multigrid\_log\_flag multigrid\_log\_flag

| multigrid_log_flag            | Fixed Character String                                       | Optional    |
|-------------------------------|--------------------------------------------------------------|-------------|
| Units: N/A                    |                                                              |             |
| Applicable Value(s): false (d | efault), true or false                                       |             |
| Limitation(s): None           |                                                              |             |
| Description: This card mus    | et be set to true for PETSc to printout performance a        | nd logging  |
| information for the multigrid | solver. However, setting this to true is not sufficient. You | ı must also |
| provide MPACT with the co     | mmand line option -pc_mg_log at runtime.                     |             |
| Notes: NONE SPECIFIED         |                                                              |             |

## $multigrid\_log\_flag\_1G \ \operatorname{multigrid\_log\_flag\_1G}$

| multigrid_log_flag_1G                                                                    | Fixed Character String                                       | Optional    |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------|
| Units: N/A                                                                               |                                                              |             |
| Applicable Value(s): false (d                                                            | efault), true or false                                       |             |
| Limitation(s): None                                                                      |                                                              |             |
| Description: This card must be set to true for PETSc to printout performance and logging |                                                              |             |
| information for the multigrid                                                            | solver. However, setting this to true is not sufficient. You | ı must also |
| provide MPACT with the command line option -pc_mg_log at runtime.                        |                                                              |             |
| Notes: NONE SPECIFIED                                                                    |                                                              |             |

## $\mathbf{multigrid\_precond\_flag} \ \mathbf{multigrid\_precond\_flag} \ \mathbf{multigrid\_precond\_flag}$

| multigrid_precond_flag              | Fixed Character String                                     | Optional |
|-------------------------------------|------------------------------------------------------------|----------|
| Units: N/A                          |                                                            |          |
| Applicable Value(s): false (d       | lefault), true or false                                    |          |
| Limitation(s): None                 |                                                            |          |
| Description: Setting this care      | d to true makes the code use multigrid as a preconditioner | to GMRES |
| rather than as a standalone solver. |                                                            |          |
| Notes: NONE SPECIFIED               |                                                            |          |



# $\mathbf{multigrid\_precond\_flag\_1G} \ \mathbf{multigrid\_precond\_flag\_1G}$

| multigrid_precond_flag_1G             | Fixed Character String                        | Optional         |
|---------------------------------------|-----------------------------------------------|------------------|
| Units: N/A                            |                                               |                  |
| Applicable Value(s): false (default)  | , true or false                               |                  |
| Limitation(s): None                   |                                               |                  |
| Description: Setting this card to tru | ie makes the code use multigrid as a precondi | itioner to GMRES |
| rather than as a standalone solver.   |                                               |                  |
| Notes: NONE SPECIFIED                 |                                               |                  |

## $\mathbf{multigrid\_cg\_solver\_its} \ \mathbf{multigrid\_cg\_solver\_its}$

| multigrid_cg_solver_its                                                                          | Integer                      | Optional |
|--------------------------------------------------------------------------------------------------|------------------------------|----------|
| Units: N/A                                                                                       |                              |          |
| Applicable Value(s): 15 (def                                                                     | ault), Any positive integer. |          |
| Limitation(s): NONE SPEC                                                                         | IFIED .                      |          |
| Description: Number of cg_solver iterations to perform on coarsest grid of the multigrid solver. |                              |          |
| Notes: NONE SPECIFIED                                                                            |                              |          |

### $cmfd\_eigen\_solver \ cmfd\_eigen\_solver$

| cmfd_eigen_solver                                                                                                               | Fixed Character String                               | Optional |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------|
| Units: N/A                                                                                                                      |                                                      |          |
| Applicable Value(s): power (                                                                                                    | (default), JD, GD, Arnoldi SLEPc_power described as: |          |
| • power — Standard pow                                                                                                          | wer iteration.                                       |          |
| • JD — SLEPc Jacobi-D                                                                                                           | avidson Solver.                                      |          |
| $\bullet$ $\mathtt{GD}$ — <code>SLEPc</code> or Anasazi Generalized Davidson Solver depends on <code>cmfd_linear_solver.</code> |                                                      |          |
| • Arnoldi — SLEPc Ar                                                                                                            | noldi Solver.                                        |          |
| • SLEPc_power — SLEP                                                                                                            | c power iteration for comparison.                    |          |
| Limitation(s): None                                                                                                             |                                                      |          |
| Description: This card is use                                                                                                   | ed to specify which eigenvalue solver will be used.  |          |

#### k\_shift k\_shift

transfer between 2-D and 1-D.

| k_shift                       | Floating-Point Real Number | Optional |
|-------------------------------|----------------------------|----------|
| Units: N/A                    |                            |          |
| Applicable Value(s): 1.5 (det | fault)                     |          |

Notes: CMFD must be present for every 3-D problem because it is the basis for the solution

continued on next page...



#### k\_shift, continued...

Limitation(s): Can only be used with the mgnode CMFD solver. This card is irrelevant unless the constant option is used for the cmfd\_shift\_method card.

Description: This card is used to specify a shifted eigenvalue problem for the CMFD power iterations.

Notes: k\_shift should be larger than the eigenvalue of the system. Even a value of 2 would provide some enhanced convergence properties over not using k\_shift.

#### k\_shift\_1G k\_shift\_1G

| k_shift_1G                    | Floating-Point Real Number                                                                    | Optional   |  |
|-------------------------------|-----------------------------------------------------------------------------------------------|------------|--|
| Units: N/A                    |                                                                                               |            |  |
| Applicable Value(s): 1.5 (def | fault)                                                                                        |            |  |
| Limitation(s): Can only be    | used with the mgnode CMFD solver. This card is irreleven                                      | ant unless |  |
| the constant option is used   | the constant option is used for the cmfd_shift_method_1G card and the msed option is used for |            |  |
| the cmfd card.                |                                                                                               |            |  |
| Description: This card is use | ed to specify a shifted eigenvalue problem for the 1G CM                                      | IFD power  |  |
| iterations.                   |                                                                                               |            |  |
| Notes: k_shift_1G should be   | e larger than the eigenvalue of the system. Even a value                                      | of 2 would |  |
| provide some enhanced conv    | ergence properties over not using k_shift_1G.                                                 |            |  |

### cmfd\_relaxation cmfd\_relaxation

| cmfd_relaxation                    | Floating-Point Real Number | Optional |
|------------------------------------|----------------------------|----------|
| Units: N/A                         |                            |          |
| Applicable Value(s): 1.0 (default) |                            |          |
| Limitation(s): description         |                            |          |
| Description: NONE SPECIFIED        |                            |          |
| Notes: NONE SPECIFIED              |                            |          |

#### cmfd\_dhat\_relaxation

| cmfd_dhat_relaxation               | Floating-Point Real Number | Optional |
|------------------------------------|----------------------------|----------|
| Units: N/A                         |                            |          |
| Applicable Value(s): 1.0 (default) |                            |          |
| Limitation(s): None                |                            |          |



#### cmfd\_dhat\_relaxation, continued...

Description: This card is for specifying the relaxation parameter for the CMFD dHat update. The default value (1.0) corresponds to no relaxation of the update. Values below 1.0 under-relax the CMFD dHat update to provide stability for cases with very large flux gradients. For typical neutronics problems, no under-relaxation should be needed to achieve stability when using the CMFD option, and any under-relaxation will probably degrade the convergence rate. When running an external source driven problem, under-relaxation may be necessary to obtain convergence, In the most extreme cases, under-relaxation may be set to 0.0, which effectively removes the dHat correction coefficient in the CMFD calculation, and results in CMFD calculating a more traditional diffusion solution. When running with no dHat correction coefficient, the equivalence between CMFD and fine mesh transport solutions is no longer garuanteed!

Notes: NONE SPECIFIED

#### cmfd\_shift\_c0 cmfd\_shift\_c0

cmfd\_dhat\_relaxation

| cmfd_shift_c0                                                                                       | Floating-Point Real Number                                           | Optional      |  |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------|--|
| Units: N/A                                                                                          |                                                                      |               |  |
| Applicable Value(s): 0.02 val                                                                       | Applicable Value(s): 0.02 valuesapplicable (default), NONE SPECIFIED |               |  |
| Limitation(s): Can only be used with the mgnode CMFD solver. This card is irrelevant unless         |                                                                      |               |  |
| the adaptive, ileps, or ilaps shift is being used.                                                  |                                                                      |               |  |
| Description: This card is use                                                                       | ed to specify the c0 parameter used in the adaptive/ileps,           | /ilaps shift. |  |
| c0 is used to reduce the shift to ensure both a positive fission source and a subcritical diffusion |                                                                      |               |  |
| operator (i.e., to prevent overshifting).                                                           |                                                                      |               |  |
| Notes: None                                                                                         |                                                                      |               |  |

#### cmfd\_dhat\_relaxation cmfd\_dhat\_relaxation

| Units: N/A                                                                                       |
|--------------------------------------------------------------------------------------------------|
| Applicable Value(s): 1.0 (default)                                                               |
| Limitation(s): None                                                                              |
| Description: This card is for specifying the relaxation parameter for the CMFD dHat update.      |
| The default value (1.0) corresponds to no relaxation of the update. Values below 1.0 under-      |
| relax the CMFD dHat update to provide stability for cases with very large flux gradients. For    |
| typical neutronics problems, no under-relaxation should be needed to achieve stability when      |
| using the CMFD option, and any under-relaxation will probably degrade the convergence rate.      |
| When running an external source driven problem, under-relaxation may be necessary to obtain      |
| convergence, In the most extreme cases, under-relaxation may be set to 0.0, which effectively    |
| removes the dHat correction coefficient in the CMFD calculation, and results in CMFD calculating |
| a more traditional diffusion solution. When running with no dHat correction coefficient, the     |
| equivalence between CMFD and fine mesh transport solutions is no longer garuanteed!              |
| Notes: NONE SPECIFIED                                                                            |

Floating-Point Real Number

#### cmfd\_shift\_method\_1G cmfd\_shift\_method\_1G

Optional



| cmfd_shift_method_1G                                                                             | Fixed Character String                                                                         | Optional    |  |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------|--|
| Units: N/A                                                                                       |                                                                                                |             |  |
| Applicable Value(s): constant                                                                    | nt (default), none, adaptive, sdws-ileps, sdws-ilaps, sdws                                     | s-laps. See |  |
| textttcmfd_shift_method care                                                                     | textttcmfd_shift_method card for description. This card is only applicable if a 1G CMFD system |             |  |
| is being used to accelerate the MG CMFD system.                                                  |                                                                                                |             |  |
| Limitation(s): This card is c                                                                    | only used if the CMFD card is set to msed                                                      |             |  |
| Description: This card is used to specify which wielandt shift method will be used to accelerate |                                                                                                |             |  |
| the power iterations on the 1G CMFD problem.                                                     |                                                                                                |             |  |
| Notes: None                                                                                      |                                                                                                |             |  |

### $\mathbf{cmfd}_{\mathbf{ktol}}$ $\mathbf{cmfd}_{\mathbf{ktol}}$

| cmfd_ktol                     | Floating Point Number                                    | Optional    |
|-------------------------------|----------------------------------------------------------|-------------|
| Units: N/A                    |                                                          |             |
| Applicable Value(s): 1.e-6 (d | lefault), Any positive value.                            |             |
| Limitation(s): None           |                                                          |             |
| Description: This card is us  | sed to specify the tolerance for the convergence of k in | the overall |
| CMFD eigenavlue problem.      |                                                          |             |
| Notes: NONE SPECIFIED         |                                                          |             |

### cmfd\_rtol cmfd\_rtol

| cmfd_rtol                     | Floating Point Number                                      | Optional    |
|-------------------------------|------------------------------------------------------------|-------------|
| Units: N/A                    |                                                            |             |
| Applicable Value(s): 1.e-6 (d | lefault), Any positive value.                              |             |
| Limitation(s): None           |                                                            |             |
| Description: This card is us  | sed to specify the tolerance for the relative residual red | uction in a |
| CMFD linear system solved     | each power iteration.                                      |             |
| Notes: NONE SPECIFIED         |                                                            |             |

## $cmfd\_ktol\_1G$ cmfd\_ktol\_1G

| cmfd_ktol_1G                  | Floating Point Number                                  | Optional      |
|-------------------------------|--------------------------------------------------------|---------------|
| Units: N/A                    |                                                        |               |
| Applicable Value(s): 1.e-6 (d | lefault), Any positive value.                          |               |
| Limitation(s): None           |                                                        |               |
| Description: This card is use | d to specify the tolerance for the convergence of k is | n the 1G CMFD |
| eigenavlue problem in MSEI    | ).                                                     |               |
| Notes: NONE SPECIFIED         |                                                        |               |

191

## $cmfd\_flxtol\_1G$ cmfd\_flxtol\_1G



| cmfd_flxtol_1G                | Floating Point Number                                       | Optional  |
|-------------------------------|-------------------------------------------------------------|-----------|
| Units: N/A                    |                                                             |           |
| Applicable Value(s): 1.e-6 (d | lefault), Any positive value.                               |           |
| Limitation(s): None           |                                                             |           |
| Description: This card is use | ed to specify the tolerance for the convergence of the flux | in the 1G |
| CMFD eigenavlue problem i     | n MSED.                                                     |           |
| Notes: NONE SPECIFIED         |                                                             |           |

## $max_1G_eig_its max_1G_eig_its$

| max_1G_eig_its                | Integer                                                  | Optional    |
|-------------------------------|----------------------------------------------------------|-------------|
| Units: N/A                    |                                                          |             |
| Applicable Value(s): 20 (def  | ault), Any positive value.                               |             |
| Limitation(s): None           |                                                          |             |
| Description: This card is use | d to specify the maximum number of power power iteration | ons allowed |
| on the 1G CMFD system in      | MSED.                                                    |             |
| Notes: NONE SPECIFIED         |                                                          |             |

#### cmfd\_num\_inners

| cmfd_num_inners               | Integer                                                   | Optional    |
|-------------------------------|-----------------------------------------------------------|-------------|
| Units: N/A                    |                                                           |             |
| Applicable Value(s): 100 (de  | fault), Any positive integer.                             |             |
| Limitation(s): None           |                                                           |             |
| Description: This card is use | ed to specify the max. number of linear solver iterations | s per power |
| iteration during a CMFD ac    | celeration calculation.                                   |             |
| Notes: NONE SPECIFIED         |                                                           |             |

## ${\bf cmfd\_num\_inners\_1G} \ {\bf cmfd\_num\_inners\_1G}$

| cmfd_num_inners_1G                                                                               | Integer                       | Optional |  |
|--------------------------------------------------------------------------------------------------|-------------------------------|----------|--|
| Units: N/A                                                                                       |                               |          |  |
| Applicable Value(s): 100 (de                                                                     | fault), Any positive integer. |          |  |
| Limitation(s): None                                                                              |                               |          |  |
| Description: This card is used to specify the maximum number of linear solver iterations allowed |                               |          |  |
| per power iterations in the 1                                                                    | G CMFD system in MSED.        |          |  |
| Notes: NONE SPECIFIED                                                                            |                               |          |  |

### $linear\_solver\_tol$ $linear\_solver\_tol$

| linear_solver_tol | Floating Point Number | Optional |
|-------------------|-----------------------|----------|
| Units: N/A        |                       |          |



linear\_solver\_tol, continued...

Applicable Value(s): 1.e-10 (default), Any positive value.

Limitation(s): None

Description: This card is used to specify the tolerance of linear solver used at each power iteration during a CMFD acceleration calculation.

Notes: NONE SPECIFIED

#### linear\_solver\_tol\_1G linear\_solver\_tol\_1G

| linear_solver_tol_1G           | Floating Point Number                                          | Optional     |
|--------------------------------|----------------------------------------------------------------|--------------|
| Units: N/A                     |                                                                |              |
| Applicable Value(s): 1.e-10 (  | (default), Any positive value.                                 |              |
| Limitation(s): None            |                                                                |              |
| Description: This card is used | d to specify the tolerance of linear solver used at each power | er iteration |
| on the 1G system in MSED.      |                                                                |              |
| Notes: NONE SPECIFIED          |                                                                |              |

#### cmfd\_num\_outers

| cmfd_num_outers                                                                              | Integer                    | Optional |
|----------------------------------------------------------------------------------------------|----------------------------|----------|
| Units: N/A                                                                                   |                            |          |
| Applicable Value(s): 20 (defa                                                                | ault), Any positive value. |          |
| Limitation(s): None                                                                          |                            |          |
| Description: This card is used to specify the number of outer eigenvalue power iterations to |                            |          |
| perform during a CMFD acc                                                                    | relevation calculation.    |          |
| Notes: NONE SPECIFIED                                                                        |                            |          |

## $\mathbf{cmfd\_up\_scatter}\ \mathrm{cmfd\_up\_scatter}$

| cmfd_up_scatter                                                                                 | Integer                                                    | Optional   |  |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------|--|
| Units: N/A                                                                                      |                                                            |            |  |
| Applicable Value(s): 2 (defa                                                                    | ult), Any positive integer.                                |            |  |
| Limitation(s): Only applies to 1gsweep CMFD solver.                                             |                                                            |            |  |
| Description: This card is used to specify the number of upscatter iterations when doing 1gsweep |                                                            |            |  |
| CMFD. This can help to con-                                                                     | verge the scattering source in thermal energy groups befor | e updating |  |
| the fission source. In general                                                                  | l, this can be used to help optimize run time for a given  | problem.   |  |
| Notes: None                                                                                     |                                                            |            |  |

## ${\bf subplane\_target} \ {\bf subplane\_target}$

| subplane_target     | Floating-Point Real Number | Optional |
|---------------------|----------------------------|----------|
| Units: cm (default) |                            |          |



# ${\tt subplane\_target}, continued...$

Applicable Value(s): N/A (default), Positive real numbers

Limitation(s): None

Description: This card is used to designate the target thickness of axial meshes in the CMFD

system.

Notes: None

### subplane\_max subplane\_max

| subplane_max                  | Floating-Point Real Number                              | Optional |
|-------------------------------|---------------------------------------------------------|----------|
| Units: cm (default)           |                                                         |          |
| Applicable Value(s): N/A (d   | lefault), Positive real numbers                         |          |
| Limitation(s): None           |                                                         |          |
| Description: This card is use | d to designate the maximum thickness of axial meshes in | the CMFD |
| system. All MOC planes wi     | th thicknesses greater than this will be sub-divided in | the CMFD |
| system using the subplane_t   | target value.                                           |          |
| Notes: None                   |                                                         |          |

## $subgrid\_spacers$ $subgrid\_spacers$

| subgrid_spacers               | Logical                                                    | Optional    |
|-------------------------------|------------------------------------------------------------|-------------|
| Units: N/A                    |                                                            |             |
| Applicable Value(s): false (d | efault), true,false                                        |             |
| Limitation(s): None           |                                                            |             |
| Description: This card is use | d to designate whether or not spacer grids are used in sub | grid solver |
| setup                         |                                                            |             |
| Notes: None                   |                                                            |             |

## $num\_subplanes$ $num\_subplanes$

 $num\_subplanes$ 

| -                             | 9                                                       |             |
|-------------------------------|---------------------------------------------------------|-------------|
| Units: N/A                    |                                                         |             |
| Applicable Value(s): 1 (defar | ult), >0                                                |             |
| Limitation(s): None           |                                                         |             |
| Description: The card is use  | d to designate the number of subplanes used for each MO | C plane in  |
| the CMFD system. Every M      | MOC plane will be split into num_subplanes subplanes.   | This card   |
| overrides both the subplane   | _target and subplane_max cards. Any of these cards ma   | ay be used  |
| to control the subplane mes   | shing, but this card is recommended since the other two | o result in |
| parallel imbalance.           |                                                         |             |
| Notes: None                   |                                                         |             |

Integer

### $cmfd\_angle\_decomp$ $cmfd\_angle\_decomp$

Optional



| cmfd_angle_decomp                                                                  | Logical                                                   | Optional     |
|------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------|
| Units: N/A                                                                         |                                                           |              |
| Applicable Value(s): true (de                                                      | efault), false                                            |              |
| Limitation(s): If angle decomposition or CMFD is not used this card has no effect. |                                                           |              |
| Description: This card is use                                                      | d to specify whether or not the angular decomposition pro | ocessors for |
| MOC are to be used during                                                          | the CMFD setup/solve. The default for this treatment is   | true, and    |
| is recommended for better parallel efficiency.                                     |                                                           |              |
| Notes: None                                                                        |                                                           |              |

### $\mathbf{split}_{-}\mathbf{TL}$ $\mathbf{split}_{-}\mathbf{TL}$

| split_TL                      | Logical                                                    | Optional     |
|-------------------------------|------------------------------------------------------------|--------------|
| Units: N/A                    |                                                            |              |
| Applicable Value(s): true (de | efault), false                                             |              |
| Limitation(s): Only applies   | to 3-D models run with 2-D/1-D.                            |              |
| Description: This card is use | ed to specify whether transverse leakage splitting will be | enabled for  |
| a calculation using a 2-D/1-l | D method.                                                  |              |
|                               |                                                            |              |
| ,                             | ne axial transverse leakage is subtracted from the to      |              |
| and scattering sources, thus  | in regions with relatively large axial streaming sources   | s, the total |
| source may become negative    | a. To avoid nogative total sources the transverse leak     | ago ig galit |

and scattering sources, thus in regions with relatively large axial streaming sources, the total source may become negative. To avoid negative total sources the transverse leakage is split between the right hand side and left hand side of the 2-D transport equation, thus ensuring positivity of the total source and neutron balance.

Notes: None

## $\mathbf{split\_RTL}$ $\mathbf{split\_RTL}$

| split_RTL                                                | Logical                                                                                                                                                                                                                                               | Optional                    |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Units: N/A                                               |                                                                                                                                                                                                                                                       |                             |
| Applicable Value(s): true (de                            | efault), false                                                                                                                                                                                                                                        |                             |
| Limitation(s): Only applies                              | to 3-D models run with 2-D/1-D.                                                                                                                                                                                                                       |                             |
| Description: This card is us calculation using a 2-D/1-D | ed to specify whether radial leakage splitting will be enmethod.                                                                                                                                                                                      | abled for a                 |
| and scattering sources, thus source may become negative  | ne radial transverse leakage is subtracted from the to<br>in regions with relatively large radial streaming sources. To avoid negative total sources the radial leakage is spland side of the 1-D transport equation, thus ensuring parallel balance. | s, the total<br>lit between |

### $TL\_treatment$ $TL\_treatment$

Notes: None



| TL_treatment | Fixed Character String | Optional |
|--------------|------------------------|----------|
| Units: N/A   |                        |          |

Applicable Value(s): lflat (default), flat. These are described as:

- 1flat checks the total / transport cross section. If the value is below the threshold, leakage will not be put into that region. This process is usually to avoid leakage in the fuel-clad gap. It will then redistribute the leakage to the other regions in that pin.
- flat does not perform leakage threshold checks.

Limitation(s): None

Description: This card is used to specify the type of spatial shape of the axial transverse leakage applied to the 2-D problem. Flat means it is constant over a pin cell. This is primarily used to ensure stability of the iteration.

Notes: None

#### nodal\_method nodal\_method

| nodal_method                | Fixed Character String                                   | Optional    |
|-----------------------------|----------------------------------------------------------|-------------|
| Units: N/A                  |                                                          |             |
| Applicable Value(s): sp3 (d | efault), sanm, sn-0, sn-1, sn-2, sn-3, p1, p3, p5, hyp3, | fhp1, fhp3, |

none.

| Described as: |                                            |
|---------------|--------------------------------------------|
| Input Option  | Full Name                                  |
| SANM          | Semi-Analytic Nodal Method                 |
| NEM           | Nodal Expansion Method                     |
| NEM-MG        | Multi-Group Nodal Expansion Method         |
| SN-0          | Discrete Ordinates with 0th Spatial Moment |
| SN-1          | Discrete Ordinates with 1st Spatial Moment |
| SN-2          | Discrete Ordinates with 2nd Spatial Moment |
| SN-3          | Discrete Ordinates with 3rd Spatial Moment |
| P1            | Pn 1st Order with One-Node NEM             |
| P3            | Pn 3rd Order with One-Node NEM             |
| P5            | Pn 5th Order with One-Node NEM             |
| HYP3          | Hybrid Pn 3rd Order with NEM               |
| FHP1          | 1st Order with Full Height NEM             |
| FHP3          | 3rd Order with Full Height NEM             |
| NONE          | Finite-Difference Method                   |

Limitation(s): Only applies to 3-D models run with 2-D/1-D.

Description: This card is used to specify the type of nodal axial solver that will be used to solve the 1-D portion of the 2-D/1-D solution.

Notes: The Sn methods are the most computationally intensive. SP3 is recommended as the best balance of accuracy and speed. If convergence/stability issues are encountered with SP3, then try running with NEM.



## $\mathbf{sntype} \ \mathrm{sntype}$

| sntype                                                      | Character String                                           | Optional    |
|-------------------------------------------------------------|------------------------------------------------------------|-------------|
| Units: N/A                                                  |                                                            |             |
| Applicable Value(s): , isotro                               | pic, aziint, explicit, moment, p3-moment, none             |             |
| Limitation(s): Only applies to 3-D models run with 2-D/1-D. |                                                            |             |
| Description: This card is use                               | ed to specify the type of axial sn sweeper that will be us | ed to solve |
| the 1-D portion of the $2-D/1-D$ solution.                  |                                                            |             |
| Notes: None                                                 |                                                            |             |

# $\mathbf{rtltype}$ $\mathbf{rtltype}$

| rtltype                       | Character String                                       | Optional    |
|-------------------------------|--------------------------------------------------------|-------------|
| Units: N/A                    |                                                        |             |
| Applicable Value(s): , isotro | ppic, aziint, explicit, moment, p3-moment, p3-quad, p3 | -quadratic, |
| p3-even, sym, none            |                                                        |             |
| Limitation(s): None           |                                                        |             |
| Description: The type of rad  | lial transverse leakage to use.                        |             |
| Notes: None                   |                                                        |             |

# ${\bf atltype} \ {\bf atltype}$

| atltype                                                                   | Character String                                        | Optional |
|---------------------------------------------------------------------------|---------------------------------------------------------|----------|
| Units: N/A                                                                |                                                         |          |
| Applicable Value(s): , isotro                                             | pic, aziint, explicit, moment, azi, exp, mom, sym, none |          |
| Limitation(s): None                                                       |                                                         |          |
| Description: The type of angular transverse leakage treatment to be used. |                                                         |          |
| Notes: None                                                               |                                                         |          |

# $\mathbf{rtlmom}$ $\mathbf{rtlmom}$

| rtlmom                       | Integer                                          | Optional        |
|------------------------------|--------------------------------------------------|-----------------|
| Units: N/A                   |                                                  |                 |
| Applicable Value(s): $, > 0$ |                                                  |                 |
| Limitation(s): None          |                                                  |                 |
| Description: The number o    | f azimuthal Fourier Moments to be used in the ra | dial transverse |
| leakage construction         |                                                  |                 |
| Notes: None                  |                                                  |                 |

# $\mathbf{homtype} \ \mathrm{homtype}$

| homtype    | Character String | Optional |
|------------|------------------|----------|
| Units: N/A |                  |          |



homtype, continued...

Applicable Value(s): isotropic (default), polar, moment, explicit, symmetric, none

Limitation(s): None

Description: The homtype option specifies the type of homogenization to use for the 1D solver. ANGLE\_POL is polar polar-dependent homogenization. This can be used with the P3-MOMENT, MOMENT-MOMNET, or P3-EVENODD radial TL options. ANGLE\_MOM is not recommended because it is much slower. ANGLE\_EXP can be used with EXPLICIT-EXPLICIT radial TL. With all explicit options, the 2D/1D method uses exact angular TL and exact homogenized aniosotropic XS, which the most accurate (but expensive).

Notes: None

#### under\_relax under\_relax

| under_relax                                                        | Float | Optional |
|--------------------------------------------------------------------|-------|----------|
| Units: N/A                                                         |       |          |
| Applicable Value(s): $, > 0, < 2$                                  |       |          |
| Limitation(s): None                                                |       |          |
| Description: The underrelaxation factor to use when doing 2-D/1-D. |       |          |
| Notes: None                                                        |       |          |

#### mesh mesh

| mesh                                                                                             | Fixed Character String Followed by Two Arrays of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Required     |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                                                                                  | Integers Separated by a '/'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
| Units: N/A                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| Applicable Value(s): num_rae                                                                     | $d=3, 1 \text{ and } num\_azi=1, 8, 8, 8, 12 \text{ (default)}, For num\_relation for the second content of the second $ | ad, positive |
| integers greater than zero. F                                                                    | for $num\_azi$ , 1, 4, 8, 12, or 16. The length for $num\_rad$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the number   |
| of geometric radii, and the le                                                                   | ength for num_azi is the sum of the sub-divided radii.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| Limitation(s): None                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| Description: This card is use                                                                    | ed to specify the radial and azimuthal mesh for each cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Currently    |
| two cell types are used: fuel and gtube. Cells containing fuel materials are flagged to use the  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| fuel mesh and all other cells use the gtube meshing. For the inputs, num_rad is the number       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| of radial subdivisions in each ring specified in the cell and num_azi is the number of azimuthal |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| regions in each sub-divided r                                                                    | adial ring. The last azimuthal value applies to the region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | outside the  |
| pin.                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |



#### mesh, continued...

Notes: Currently insert, control, and detector rods have predefined mesh that cannot be overwritten.

In both cases, the last entry will be used for any remaining unspecified regions. For example, if a given fuel pin has 3 radial and material regions, and the fuel mesh had a num\_rad of 3,1 and num\_azi of 1,4,8, then the third ring in the fuel pin would have 1 radial sub-division, and the fourth subdivided radius to the end of the pin cell would have 8 azimuthal sub-divisions, including the region outside the pincell.

If the mesh is specified too finely, or rather, finer than the value for ray spacing, instabilities may occur where a ray is NOT traced through a flat source region and no flux is calculated for that region. The code will automatically adjust the azimuthal discretization if the given ray spacing value is too coarse (or because the azimuthal mesh is too fine). Another way to cause the above instability would be to specify a very large number of radial subdivisions for the first num\_rad value. That large number being the area of the first radius divided by the first num\_rad value would have to yield a radius that is smaller than the ray spacing. For a typical PWR fuel pin radius, the first num\_rad value needs to be well over 100 for this problem to arise, and this number is impractical given the memory it will consume.

### prompt prompt

| prompt                                                                                             | Fixed Character String | Required |
|----------------------------------------------------------------------------------------------------|------------------------|----------|
| Units: N/A                                                                                         |                        |          |
| Applicable Value(s): , true                                                                        |                        |          |
| Limitation(s): None                                                                                |                        |          |
| Description: This option is used to specify whether to use prompt kinetics calculation during      |                        |          |
| the transient solver. The default is true. For now, this option is set to be true, no matter which |                        |          |
| option is input.                                                                                   |                        |          |
| Notes: None                                                                                        |                        |          |

#### cmfd\_shift\_method\_1G cmfd\_shift\_method\_1G

| cmfd_shift_method_1G                                                                             | Fixed Character String                                     | Optional  |  |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------|--|
| Units: N/A                                                                                       |                                                            |           |  |
| Applicable Value(s): constant (default), none, adaptive, sdws-ileps, sdws-ilaps, sdws-laps. See  |                                                            |           |  |
| textttcmfd_shift_method card                                                                     | l for description. This card is only applicable if a 1G CM | FD system |  |
| is being used to accelerate the MG CMFD system.                                                  |                                                            |           |  |
| Limitation(s): This card is o                                                                    | only used if the CMFD card is set to msed                  |           |  |
| Description: This card is used to specify which wielandt shift method will be used to accelerate |                                                            |           |  |
| the power iterations on the                                                                      | 1G CMFD problem.                                           |           |  |
| Notes: None                                                                                      |                                                            |           |  |

#### 1gacceltr 1gacceltr



| 1gacceltr                                                                              | Boolean | Optional |
|----------------------------------------------------------------------------------------|---------|----------|
| Units: N/A                                                                             |         |          |
| Applicable Value(s): false (default), true                                             |         |          |
| Limitation(s): None                                                                    |         |          |
| Description: Flag for 1GCMFD acceleration for transport part of transient simulations. |         |          |
| Notes: None                                                                            |         |          |

# ${\bf 1gaccel}\,\,{\bf 1gaccel}\,\,$

| 1gaccel                                                             | Boolean | Optional |
|---------------------------------------------------------------------|---------|----------|
| Units: N/A                                                          |         |          |
| Applicable Value(s): false (default), true                          |         |          |
| Limitation(s): None                                                 |         |          |
| Description: Flag for 1GCMFD acceleration of transient simulations. |         |          |
| Notes: None                                                         |         |          |

## tml1gmg tml1gmg

| tml1gmg                                                                                   | Boolean       | Optional |
|-------------------------------------------------------------------------------------------|---------------|----------|
| Units: N/A                                                                                |               |          |
| Applicable Value(s): false (d                                                             | efault), true |          |
| Limitation(s): None                                                                       |               |          |
| Description: Flag for using 1GCMFD for fission source and MGCMFD for flux (true) or using |               |          |
| 1GCMFD for flux (false)                                                                   |               |          |
| Notes: None                                                                               |               |          |

# **delayenergy** delayenergy

| delayenergy                                                                                    | Fixed Character String                                 | Optional      |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------|
| Units: N/A                                                                                     |                                                        |               |
| Applicable Value(s): false (d                                                                  | lefault), true                                         |               |
| Limitation(s): None                                                                            |                                                        |               |
| Description: This option is u                                                                  | used to specify whether to use explicit delayed energy | kernel during |
| the transient solver. The default is false. The equilibrium delayed energy (about 7 percent of |                                                        |               |
| total fission energy including                                                                 | g delayed beta and gamma) is assumed in default.       |               |
| Notes: None                                                                                    |                                                        |               |

## kinetics\_data kinetics\_data

| kinetics_data | Fixed Character String | Optional |
|---------------|------------------------|----------|
| Units: N/A    |                        |          |



#### kinetics\_data, continued...

Applicable Value(s): library (default), scale, keepin, tuttle, jeff3, santamarina, library, spert70f, spert250f, spert500f. These are described as:

- 1. scale the 6-group transient data from SCALE
- 2. keepin the 6-group transient data from G. R. Keepin's paper
- 3. tuttle the 6-group transient data from R. J. Tuttle's paper
- 4. jeff3 the 8-group transient data from JEFF3 with uniform lambda
- 5. santamarina the 8-group transient data suggested by A. Santamarina (a slight modification of JEFF3)
- 6. library the 6-group transient data in MPACT cross section library from ENDF
- 7. spert70f, spert250f, spert500f the 6-group transient data measured in spert experiments

Limitation(s): None

Description: This card is used to specify the set of kinetics data used in transient calculation. This card is only applied to MPACT cross section library for now. By default, MPACT uses the 6-group transient data provided in MPACT MG cross section library.

Notes: None

#### kinetics\_lambda kinetics\_lambda

| kinetics_lambda | Fixed Character String | Optional |
|-----------------|------------------------|----------|
| Units: N/A      |                        |          |

Applicable Value(s): fissweight (default), isotopic, fissweight, precursorconsv. These are described as:

- 1. isotopic use exact isotope dependent lambdas
- 2. fissweight collapse isotopic lambdas by fission rate
- 3. precursorconsv collapse isotopic lambdas by preserving the initial precursors

Limitation(s): None

Description: This card controls the calculation of decay constant for each fissile region. The isotopic lambda is the exact approach, but can use a lot more memories. In general, it is recommended to use precursor conservation option rather than fission source weighting.

Notes: None

#### kinetics\_otfbeta kinetics\_otfbeta

| kinetics_otfbeta | Fixed Character String | Optional |
|------------------|------------------------|----------|
| Units: N/A       |                        |          |



### kinetics\_otfbeta, continued...

Applicable Value(s): false (default), true

Limitation(s): None

Description: This option specifies whether to compute the problem dependent nubar for on-the-fly calculation of beta. By default, problem-independent beta computed from a typical PWR spectrum is used.

Notes: None

### rx\_components rx\_components

| rx_components                                                                                     | Fixed Character String | Optional |
|---------------------------------------------------------------------------------------------------|------------------------|----------|
| Units: N/A                                                                                        |                        |          |
| Applicable Value(s): , true                                                                       |                        |          |
| Limitation(s): Can only be used when acceleration is enabled.                                     |                        |          |
| Description: This option is used to specify whether to calculate component reactivity values. The |                        |          |
| default is false. This option is ignored for steadystate calculations.                            |                        |          |
| Notes: None                                                                                       |                        |          |

## $sep_flux_comp$ $sep_flux_comp$

| $sep\_flux\_comp$                                                                           | Boolean       | Optional |
|---------------------------------------------------------------------------------------------|---------------|----------|
| Units: N/A                                                                                  |               |          |
| Applicable Value(s): false (d                                                               | efault), true |          |
| Limitation(s): None                                                                         |               |          |
| Description: When rx_components is set to true, this card is used for separating flux shape |               |          |
| reactivity.                                                                                 |               |          |
| Notes: None                                                                                 |               |          |

### summary\_edits

| ${	t summary\_edits}$        | Fixed Character String                                 | Optional     |
|------------------------------|--------------------------------------------------------|--------------|
| Units: N/A                   |                                                        |              |
| Applicable Value(s): , true  |                                                        |              |
| Limitation(s): Only used for | transient cases.                                       |              |
| Description: This option is  | s used to specify whether to print a summary file (;   | caseid¿.sum) |
| containing data for each tra | ansient timestep. The default is false. This option is | ignored for  |
| steadystate calculations.    |                                                        |              |
| Notes: None                  |                                                        |              |

## $\mathbf{split\_TL} \ \mathrm{split\_TL}$

| split_TL | Logical | Optional |
|----------|---------|----------|
|          |         | •        |



### split\_TL, continued...

Units: N/A

Applicable Value(s): true (default), false

Limitation(s): Only applies to 3-D models run with 2-D/1-D.

Description: This card is used to specify whether transverse leakage splitting will be enabled for a calculation using a 2-D/1-D method.

In the 2-D/1-D method the axial transverse leakage is subtracted from the total fission and scattering sources, thus in regions with relatively large axial streaming sources, the total source may become negative. To avoid negative total sources the transverse leakage is split between the right hand side and left hand side of the 2-D transport equation, thus ensuring positivity of the total source and neutron balance.

Notes: None

### tmllevel nCMFD nEPKE/n1GCMFD n1GCMFD/nEPKE

| nCMFD                                               | Integer                                                | Optional    |
|-----------------------------------------------------|--------------------------------------------------------|-------------|
| Units: N/A                                          |                                                        |             |
| Applicable Value(s): 5 (defa                        | ult), > 0                                              |             |
| Limitation(s): None                                 |                                                        |             |
| Description: The number of                          | CMFD acceleration steps taken for every transport time | ne step. Is |
| always the first entry in the /texttttmllevel card  |                                                        |             |
| Notes: Is only used when /texttttml is set to true. |                                                        |             |

| nEPKE                            | Integer                                                     | Optional     |
|----------------------------------|-------------------------------------------------------------|--------------|
| Units: N/A                       |                                                             |              |
| Applicable Value(s): 10 (defa    | ault), $> 0$                                                |              |
| Limitation(s): None              |                                                             |              |
| Description: The number of 1     | EPKE calculation steps taken for every transport time st    | ep. If there |
| are only 2 numbers listed in t   | the /texttttmllevel card, the second number should be /tex  | xtttnEPKE.   |
| If there are 3 numbers listed in | n the /texttttmllevel card, the third number should be /tex | kttnEPKE.    |
| Notes: Is only used when /te     | exttttml is set to true.                                    |              |

| n1GCMFD                                                                                    | Integer                                              | Optional           |
|--------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------|
| Units: N/A                                                                                 |                                                      |                    |
| Applicable Value(s): 0 (defar                                                              | ult), > 0                                            |                    |
| Limitation(s): None                                                                        |                                                      |                    |
| Description: The number of 1G CMFD acceleration steps taken for every transport time step. |                                                      |                    |
| This variable is only set if the                                                           | nere are 3 numbers listed in the /texttttmllevel car | ed. In which case, |
| the second number is /textttnEPKE.                                                         |                                                      |                    |
| Notes: Is only used when /texttttml is set to true.                                        |                                                      |                    |



# transmethod transmethod

| transmethod                                                                                                                                                                                                                                                                                                                                                                              | Fixed Character Array, Postive Real Number or | Optional |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                          | Integer. Length 1                             |          |
| Units: N/A                                                                                                                                                                                                                                                                                                                                                                               |                                               |          |
| Applicable Value(s): {theta 0.5} (default), The first option is used to specify time the discretization method, theta refers to theta method and BDF refer to BDF method. The <value> defines the option for the theta method [0.0,1.0] or the BDF method. For the BDF method, the value is an integer that ranges from 1 to 6. If only BDF is specified, the default order is 2</value> |                                               |          |
| Limitation(s): None                                                                                                                                                                                                                                                                                                                                                                      |                                               |          |
| Description:                                                                                                                                                                                                                                                                                                                                                                             |                                               |          |
| Notes: None                                                                                                                                                                                                                                                                                                                                                                              |                                               |          |

## $\mathbf{timestep} \ \mathrm{timestep}$

| timestep                              | Fixed double precision numbers. Length 3              | Optional |
|---------------------------------------|-------------------------------------------------------|----------|
| Units: seconds (default)              |                                                       |          |
| Applicable Value(s): ,                |                                                       |          |
| • <dt> — the standard t</dt>          | time step for transient calculation                   |          |
| • <dt_min> — the minim</dt_min>       | num time step for transient calculation               |          |
| • <t_max> — the end tin</t_max>       | ne for the transient                                  |          |
| Limitation(s): None                   |                                                       |          |
| Description: This is used for         | defining the time steps and transient simulation time | :        |
| Notes: Presently <dt_min> is</dt_min> | s ignored.                                            |          |

# $\mathbf{perturb}$ perturb

| perturb    | Array of String and doubles | Required |
|------------|-----------------------------|----------|
| Units: N/A |                             |          |



#### perturb, continued...

Applicable Value(s): , This card is used to specify the parameters for drive the transient. The options for perturbing the system are as follows:

- t1 The start time of perturbation
- t2 The end time of perturbation
- dt The time step of perturbation (optional)

For the option mat, its interpretation varies with the perturbation type.

- STEP For this perturbation type, the initial condition for the ith material is mat0(i), at time t2, it is turned into mat0 instantaneously.
- RAMP For this perturbation type, the initial condtion for the ith material is mat0(i). Then it changes gradualy from mat1(i) to mat2(i). This change is a fractional time weighted mixture of the two materials. The mixture at t1 is only mat1, halfway through the perturbation it is 0.5 (mat1) and 0.5 mat2. At the end of the perturbation, it is only mat2.
- CONST For this perturbation there are no changes to the system.
- MVCR This perturbation is for moving a bank of control rods. The rod positions are specified in [STATE] blocks corresponding to each time step occurring during the perturbation.

Limitation(s): None

Description:

Notes: None

#### mat\_emit\_src mat\_emit\_src

| mat_emit_src                                                                                       | Fixed Character String.                                  | Optional     |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------|
| Units: N/A                                                                                         |                                                          |              |
| Applicable Value(s): false                                                                         | (default), This option is used to specify whether or no  | ot neutron   |
| emission sources from the decay of model materials will be treated. The default is set to false.   |                                                          | t to false.  |
| Limitation(s): Should only be used for subcritical systems otherwise no steady state solution will |                                                          | olution will |
| ever be achieved                                                                                   |                                                          |              |
| Description: When just mat.                                                                        | _emit_src is input without true false, the option is set | to false.    |
| Notes: None                                                                                        |                                                          |              |

#### 5.13. BLOCK MAMBA

#### A\_NiFe2O4\_out surface\_prefactor

| A_NiFe204_out | Floating-point Real Number | Optional |
|---------------|----------------------------|----------|
|               | continued on r             | ext page |



# A\_NiFe204\_out, continued...

| Units: N/A                                        |
|---------------------------------------------------|
| Applicable Value(s): $, > 0$                      |
| Limitation(s): None                               |
| Description: Prefactor for NiFe2O4 surface growth |
| Notes: None                                       |

## $E\_NiFe2O4\_out \ surface\_activation\_energy$

| E_NiFe204_out                                             | Floating-point Real Number | Optional |
|-----------------------------------------------------------|----------------------------|----------|
| Units: N/A                                                |                            |          |
| Applicable Value(s): $, > 0$                              |                            |          |
| Limitation(s): None                                       |                            |          |
| Description: Activation energy for NiFe2O4 surface growth |                            |          |
| Notes: None                                               |                            |          |

## $A\_NiFe2O4\_in \ \mathrm{nucleation\_prefactor}$

| A_NiFe204_in                                  | Floating-point Real Number | Optional |
|-----------------------------------------------|----------------------------|----------|
| Units: N/A                                    |                            |          |
| Applicable Value(s): $, > 0$                  |                            |          |
| Limitation(s): None                           |                            |          |
| Description: Prefactor for NiFe2O4 nucleation |                            |          |
| Notes: None                                   |                            |          |

# ${\bf E\_NiFe2O4\_in} \ {\bf nucleation\_activation\_energy}$

| E_NiFe204_in                                          | Floating-point Real Number | Optional |
|-------------------------------------------------------|----------------------------|----------|
| Units: N/A                                            |                            |          |
| Applicable Value(s): $, > 0$                          |                            |          |
| Limitation(s): None                                   |                            |          |
| Description: Activation energy for NiFe2O4 nucleation |                            |          |
| Notes: None                                           |                            |          |

## $ksnb\_Fe2O4$ boiling\\_growth\\_rate

| ksnb_Fe204                                        | Floating-point Real Number | Optional |
|---------------------------------------------------|----------------------------|----------|
| Units: N/A                                        |                            |          |
| Applicable Value(s): $, > 0$                      |                            |          |
| Limitation(s): None                               |                            |          |
| Description: Boiling enhanced surface growth rate |                            |          |
| Notes: None                                       |                            |          |



# $\mathbf{D_Ni}$ diffusion\_coefficient

| D_Ni                                      | Floating-point Real Number | Optional |
|-------------------------------------------|----------------------------|----------|
| Units: $cm^2/s$ (default)                 |                            |          |
| Applicable Value(s): $, > 0$              |                            |          |
| Limitation(s): None                       |                            |          |
| Description: Diffusion coefficient for Ni |                            |          |
| Notes: None                               |                            |          |

### $\mathbf{D}_{-}\mathbf{Fe}$ diffusion\_coefficient

| D_Fe                                      | Floating-point Real Number | Optional |
|-------------------------------------------|----------------------------|----------|
| Units: $cm^2/s$ (default)                 |                            |          |
| Applicable Value(s): $, > 0$              |                            |          |
| Limitation(s): None                       |                            |          |
| Description: Diffusion coefficient for Fe |                            |          |
| Notes: None                               |                            |          |

### $D\_BOH3$ diffusion\_coefficient

| D_BOH3                                            | Floating-point Real Number | Optional |
|---------------------------------------------------|----------------------------|----------|
| Units: $cm^2/s$ (default)                         |                            |          |
| Applicable Value(s): $, > 0$                      |                            |          |
| Limitation(s): None                               |                            |          |
| Description: Diffusion coefficient for Boric Acid |                            |          |
| Notes: None                                       |                            |          |

## $\mathbf{D}_{-}\mathbf{Li}$ diffusion\_coefficient

| D_Li                                      | Floating-point Real Number | Optional |
|-------------------------------------------|----------------------------|----------|
| Units: $cm^2/s$ (default)                 |                            |          |
| Applicable Value(s): $, > 0$              |                            |          |
| Limitation(s): None                       |                            |          |
| Description: Diffusion coefficient for Li |                            |          |
| Notes: None                               |                            |          |

## $\mathbf{D}_{-}\mathbf{H2}$ diffusion\_coefficient

| D_H2                           | Floating-point Real Number | Optional |
|--------------------------------|----------------------------|----------|
| Units: $cm^2/s$ (default)      |                            |          |
| Applicable Value(s): $, > 0$   |                            |          |
| Limitation(s): None            |                            |          |
| Description: Diffusion coeffic | ient for H <sub>2</sub>    |          |



# $\mathtt{D\_H2}, \ \mathrm{continued...}$

Notes: None

# $\mathbf{CRUD\_porosity} \ \mathrm{porosity}$

| $\mathtt{CRUD}_{\mathtt{porosity}}$         | Floating-point Real Number | Optional |
|---------------------------------------------|----------------------------|----------|
| Units: N/A                                  |                            |          |
| Applicable Value(s): $0.7$ (default), $> 0$ |                            |          |
| Limitation(s): None                         |                            |          |
| Description: Initial porosity of CRUD layer |                            |          |
| Notes: None                                 |                            |          |

## $\mathbf{CRUD\_solid\_dens}$ density

| CRUD_solid_dens                       | Floating-point Real Number | Optional |
|---------------------------------------|----------------------------|----------|
| Units: g/cm <sup>3</sup> (default)    |                            |          |
| Applicable Value(s): $, > 0$          |                            |          |
| Limitation(s): None                   |                            |          |
| Description: Density of solid NiFe2O4 |                            |          |
| Notes: None                           |                            |          |

# $\mathbf{dep\_frac}$ fraction

| dep_frac                                                             | Floating-point Real Number | Optional |
|----------------------------------------------------------------------|----------------------------|----------|
| Units: N/A                                                           |                            |          |
| Applicable Value(s): 0.25 (default), > 0                             |                            |          |
| Limitation(s): None                                                  |                            |          |
| Description: Fraction of the B-10 reaction rate applied to depletion |                            |          |
| Notes: None                                                          |                            |          |

# ${\bf chimney\_htc}\ {\rm htc}$

| chimney_htc                                             | Floating-point Real Number | Optional |
|---------------------------------------------------------|----------------------------|----------|
| Units: W/cm <sup>2</sup> -K (default)                   |                            |          |
| Applicable Value(s): $, > 0$                            |                            |          |
| Limitation(s): None                                     |                            |          |
| Description: Heat transfer coefficient inside a chimney |                            |          |
| Notes: None                                             |                            |          |

# ${\bf chimney\_dens}\ {\bf dens}$



| chimney_dens                         | Floating-point Real Number | Optional |
|--------------------------------------|----------------------------|----------|
| Units: num/cm <sup>2</sup> (default) |                            |          |
| Applicable Value(s): $, > 0$         |                            |          |
| Limitation(s): None                  |                            |          |
| Description: Surface density         | of chimney                 |          |
| Notes: None                          |                            |          |

# chimney\_rad radius

| chimney_rad                  | Floating-point Real Number | Optional |
|------------------------------|----------------------------|----------|
| Units: cm (default)          |                            |          |
| Applicable Value(s): $, > 0$ |                            |          |
| Limitation(s): None          |                            |          |
| Description: Radius of avera | ge chimney                 |          |
| Notes: None                  |                            |          |

# $\mathbf{chimney\_vf} \ \mathrm{void\_fraction}$

| chimney_vf                      | Floating-point Real Number | Optional |
|---------------------------------|----------------------------|----------|
| Units: N/A                      |                            |          |
| Applicable Value(s): $, > 0, <$ | < 1                        |          |
| Limitation(s): None             |                            |          |
| Description: Void fraction of   | f steam exiting chimney    |          |
| Notes: None                     |                            |          |

## $\mathbf{CRUD\_therm\_cond}\ \mathrm{k\_crud}$

| CRUD_therm_cond                 | Floating-point Real Number     | Optional |
|---------------------------------|--------------------------------|----------|
| Units: W/cm-K (default)         |                                |          |
| Applicable Value(s): $, > 0$    |                                |          |
| Limitation(s): None             |                                |          |
| Description: Thermal conduction | ctivity of precipitate in CRUD |          |
| Notes: None                     |                                |          |

# $\mathbf{CRUD\_heat\_capacity}\ \mathrm{Cp}$

| CRUD_heat_capacity             | Floating-point Real Number | Optional |
|--------------------------------|----------------------------|----------|
| Units: J/g-K (default)         |                            |          |
| Applicable Value(s): $, > 0$   |                            |          |
| Limitation(s): None            |                            |          |
| Description: Heat capacity for | or the CRUD skelaton       |          |
| Notes: Currently Cp is unus    | ed                         |          |



# ${\bf tke\_scale} \ {\bf factor}$

| tke_scale                     | Floating-point Real Number     | Optional |
|-------------------------------|--------------------------------|----------|
| Units: N/A                    |                                |          |
| Applicable Value(s): 1.0E-12  | 2  (default), > 0              |          |
| Limitation(s): None           |                                |          |
| Description: Scaling factor t | o convert from TKE to errosion |          |
| Notes: None                   |                                |          |

# $\mathbf{src\_mult\_A}$ multiplier

| src_mult_A                                                  | Floating-point Real Number | Optional |
|-------------------------------------------------------------|----------------------------|----------|
| Units: N/A                                                  |                            |          |
| Applicable Value(s): 1.0 (det                               | fault), > 0                |          |
| Limitation(s): None                                         |                            |          |
| Description: Multiplier for prefactor for source term model |                            |          |
| Notes: None                                                 |                            |          |

# $\mathbf{src\_mult\_E}$ multiplier

| src_mult_E                                                           | Floating-point Real Number | Optional |
|----------------------------------------------------------------------|----------------------------|----------|
| Units: N/A                                                           |                            |          |
| Applicable Value(s): 1.0 (def                                        | fault), $> 0$              |          |
| Limitation(s): None                                                  |                            |          |
| Description: Multiplier for activitaion energy for source term model |                            |          |
| Notes: None                                                          |                            |          |

# ${\bf steam\_generator\_age} \ {\bf age}$

| steam_generator_age             | Floating-point Real Number                                | Optional   |
|---------------------------------|-----------------------------------------------------------|------------|
| Units: years (default)          |                                                           |            |
| Applicable Value(s): 0.0 (det   | $fault), \geq 0$                                          |            |
| Limitation(s): None             |                                                           |            |
| Description: Initial age of the | e steam generator                                         |            |
| Notes: This is only needed      | for the first cycle simulated or for a steam generator re | placement, |
| default behavior is to retriev  | e this data from the restart file.                        |            |

# $\mathbf{sg\_mult} \ \mathrm{multiplier}$

| sg_mult                                      | Floating-point Real Number | Optional |
|----------------------------------------------|----------------------------|----------|
| Units: N/A                                   |                            |          |
| Applicable Value(s): 1.0 (default), $\geq 0$ |                            |          |
| Limitation(s): None                          |                            |          |

continued on next page...



## sg\_mult, continued...

Description: Multiplier on steam generator source term

Notes: This is required to scale the source term model to smaller reactor geometries, i.e. single

asm.

## $mass\_mult$ multiplier

| mass_mult                     | Floating-point Real Number                              | Optional      |
|-------------------------------|---------------------------------------------------------|---------------|
| Units: N/A                    |                                                         |               |
| Applicable Value(s): 1.0 (det | $fault), \geq 0$                                        |               |
| Limitation(s): None           |                                                         |               |
| Description: Multiplier on co | rud deposition mass term in the mass balance            |               |
| Notes: This is required to so | ale the source term model to smaller reactor geometries | , i.e. single |
| asm.                          |                                                         |               |

## $\mathbf{piping\_age} \ \mathrm{age}$

| piping_age                      | Floating-point Real Number                                 | Optional      |
|---------------------------------|------------------------------------------------------------|---------------|
| Units: years (default)          |                                                            |               |
| Applicable Value(s): 0.0 (det   | $fault), \geq 0$                                           |               |
| Limitation(s): None             |                                                            |               |
| Description: Initial age of the | e hot and cold leg                                         |               |
| Notes: This is only needed for  | or the first cycle simulated, default behavior is to retri | eve this data |
| from the restart file.          |                                                            |               |

## ${\bf chem\_mass\_bal} \ {\rm option}$

| chem_mass_bal                                                                                                                                               | Integer | Optional |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|
| Units: N/A                                                                                                                                                  |         |          |
| Applicable Value(s): 0 (default), The options are:                                                                                                          |         |          |
| <ol> <li>0 — no mass balance enabled (user must specify particulate NiFe2O4 concentration)</li> <li>1 — Mass balance will be calculated by MAMBA</li> </ol> |         |          |
| Limitation(s): None                                                                                                                                         |         |          |
| Description: Option to select mass balance model                                                                                                            |         |          |
| Notes: None                                                                                                                                                 |         |          |

## $model\_erosion$ option

| model_erosion | Integer | Optional |
|---------------|---------|----------|
| Units: N/A    |         |          |

continued on next page...



### model\_erosion, continued...

Applicable Value(s): 2 (default), The options are:

1. 0 — no crud erosion model

2. 1 — calculate from shear so that average TKE is 0.1 J/kg

3. 2 — use the Bradshaw model to calculate TKE from shear

Limitation(s): None

Description: Option to select erosion model

Notes: None

### $li\_table$ boron lithium

| li_table                                                                                          | List of Two Floating-point Real Numbers | Optional |
|---------------------------------------------------------------------------------------------------|-----------------------------------------|----------|
| Units: ppm (default)                                                                              |                                         |          |
| Applicable Value(s): , > 0                                                                        |                                         |          |
| Limitation(s): None                                                                               |                                         |          |
| Description: Table of boron then lithium concentrations to define the lithium concentration based |                                         |          |
| on boron concentration                                                                            |                                         |          |
| Notes: None                                                                                       |                                         |          |

### 5.14. BLOCK RUN

### email list\_of\_emails

| email                                                                                          | Character String | Optional |
|------------------------------------------------------------------------------------------------|------------------|----------|
| Units: N/A                                                                                     |                  |          |
| Applicable Value(s): Default email is the users system email (default)                         |                  |          |
| Limitation(s): None                                                                            |                  |          |
| Description: Email that is used to inform user of job status. A list of emails can be input by |                  |          |
| comma seperating the emails.                                                                   |                  |          |
| Notes: None                                                                                    |                  |          |

### pmem memory per processor

| pmem                                                                      | Floating-point Number | Optional |
|---------------------------------------------------------------------------|-----------------------|----------|
| Units: GB (default)                                                       |                       |          |
| Applicable Value(s): System memory per processor (default), Greter than 0 |                       |          |
| Limitation(s): None                                                       |                       |          |
| Description: Memory per processor                                         |                       |          |
| Notes: None                                                               |                       |          |



## ${\bf ppn}$ processors per node

| ppn                                                                       | Integer | Optional |
|---------------------------------------------------------------------------|---------|----------|
| Units: N/A                                                                |         |          |
| Applicable Value(s): System processors per node (default), Greater than 0 |         |          |
| Limitation(s): None                                                       |         |          |
| Description: Number of processors that will be used per node              |         |          |
| Notes: None                                                               |         |          |

# walltime maximum expected runtime

| walltime                                                  | Floating-point Number | Optional |
|-----------------------------------------------------------|-----------------------|----------|
| Units: hours (default)                                    |                       |          |
| Applicable Value(s): 24 hours (default)                   |                       |          |
| Limitation(s): None                                       |                       |          |
| Description: The walltime that is used for pbs submission |                       |          |
| Notes: None                                               |                       |          |



### 6. EXAMPLES

This chapter includes several input examples. Additional examples can be found in the VERAIn Git repository.

#### 6.1. EXAMPLE 1 - FULL-CORE

The first example is a complete input for a full-core problem. This problem is Problem 7 of the CASL Progression Benchmark Problems and is based upon the publicly available description of the Watts Bar reactors.

More information on the CASL Progression Benchmark Problems can be found in the following CASL report:

• A. Godfrey, "VERA Core Physics Benchmark Progression Problem Specifications," CASL Technical Report: CASL-U-2012-0131-004, August 2014.

More details on Problem 7 can be found in:

• "Demonstration and Neutronics Coupled to Thermal-Hydraulics for a Full-Core Problem using VERA", CASL Technical Report: CASL-U-2013-0196-000, December 2013.



```
Sample Test case for Problem 7 (Full-Core HFP)
[CASEID]
 title 'CASL Progression Problem 7 - Watts Bar Unit 1 Cycle 1 - Public'
[STATE]
 power 100.0
                       ! % of rated power
 flow
                       ! % of rated flow
        100.0
 pressure 2250.0
                      ! pressure (psia)
 feedback on
 tinlet 565.0 K
                      ! inlet temperature
                      ! typical HFP value
 tfuel 900.0 K
 boron 1285
                       ! ppmB
 modden 0.743
                       ! g/cc
 sym qtr
 rodbank SA 230
         SB 230
         SC 230
         SD 230
          A 230
          B 230
          C 230
          D 167
[CORE]
                      ! assemblies across core
 size 15
 rated 3411 131.68 ! rated power and flow - MW, Mlbs/hr
 apitch 21.5
                       ! assembly pitch (cm)
 height 406.337
                      ! assembly height (cm)
 core_shape
   0 0 0 0 1 1 1 1 1 1 1 0 0 0 0
   0 0 1 1 1 1 1 1 1 1 1 1 0 0
   0 1 1 1 1 1 1 1 1 1 1 1 1 0
   0 1 1 1 1 1 1 1 1 1 1 1 1 0
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
   0 1 1 1 1 1 1 1 1 1 1 1 1 0
   0 1 1 1 1 1 1 1 1 1 1 1 1 0
   0 0 1 1 1 1 1 1 1 1 1 1 0 0
   0 0 0 0 1 1 1 1 1 1 1 0 0 0 0
 assm_map
   1
   2 1
   1 2 1
```



```
2 1 2 1
 1 2 1 2 2
 2 1 2 1 2 3
 1 3 1 3 3 3
 3 3 3 3
insert_map
 20 -
 - 24 -
 20 - 20 -
  - 20 - 20 -
 20 - 16 - 24 12
  - 24 - 16 - -
 12 - 8 -
crd_map
 1
 - -
 1 - 1
 - - - 1
 1 - - - 1
 - 1 - 1 - -
 1 - 1 - 1 -
 - - - -
crd_bank
 D - A - D - C -
 - - - - SB - -
 A - C - - B -
        A - SC - -
 D - - - D - SA
 - SB - SD - - -
 C - B - SA -
det_map
        1 - - 1 - - -
    1 - - - 1 - - 1 - 1 -
   - 1 - 1 - - 1 - - - - 1
   ---1--1--
 1 - - - 1 - - 1 - - 1
   ---1-1----
 - 1 - - - - - 1 - 1 - - - 1
 1 - 1 - 1 - 1 - 1 - 1 1 1 -
 ---1--1--1--
 1 - 1 - - 1 - 1 - - - - 1 -
 ---1--1-1-1--
   1 1 - - - - 1 - - - - -
   ----1-1-1-1
    1 - - 1 - 1 - - - -
        - - 1 - - 1 -
```

baffle ss 0.19 2.85 ! baffle material, gap, and thickness (cm)



```
vessel mod 219.71 cs 241.70
 lower_plate ss 5.0 0.5
                          ! mat, thickness, vol frac
 upper_plate ss 7.6 0.5
                          ! mat, thickness, vol frac
 lower_ref mod 20.0 1.0
                          ! mat, thickness, vol frac
 upper_ref mod 20.0 1.0
                          ! mat, thickness, vol frac
 xlabel RPNMLKJHGFEDCBA
 ylabel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
           0.0001786
 mat he
 mat inc 8.19
 mat ss 8.0
 mat zirc 6.56 zirc4
[ASSEMBLY]
 title "Westinghouse 17x17 Assembly"
 npin 17
                       ! number of pins across assembly
 ppitch 1.260
                       ! pin pitch (cm)
 fuel U21 10.257 94.5 / 2.110
 fuel U26 10.257 94.5 / 2.619
 fuel U31 10.257 94.5 / 3.100
 cell 1
           0.4096 0.418 0.475 / U21 he zirc
         0.4096 0.418 0.475 / U26 he zirc
 cell 2
 cell 3 0.4096 0.418 0.475 / U31 he zirc
 cell 4
                0.561 0.602 / mod zirc
                                                 ! guide/instrument tube
 cell 5
                0.418 0.475 / he zirc
                                                 ! plenum
 rodmap LAT21
      4
      1 1
      1 1 1
      4 1 1 4
      1 1 1 1 1
      1 1 1 1 1 4
      4 1 1 4 1 1 1
      1 1 1 1 1 1 1 1
      1 1 1 1 1 1 1 1 1
 rodmap LAT26
      4
      2 2
      2 2 2
      4 2 2 4
      2 2 2 2 2
      2 2 2 2 2 4
      4 2 2 4 2 2 2
      2 2 2 2 2 2 2 2
      2 2 2 2 2 2 2 2 2
 rodmap LAT31
```



```
4
        3 3
        3 3 3
        4 3 3 4
        3 3 3 3 3
        3 3 3 3 3 4
        4 3 3 4 3 3 3
        3 3 3 3 3 3 3 3
        3 3 3 3 3 3 3 3 3
   rodmap PLEN
        4
        5 5
        5 5 5
        4 5 5 4
        5 5 5 5 5
        5 5 5 5 5 4
        4 5 5 4 5 5 5
        5 5 5 5 5 5 5 5
        5 5 5 5 5 5 5 5 5
! define three assemblies with labels 1, 2, 3
   axial 1 11.951 LAT21 377.711 PLEN 393.711
   axial 2 11.951 LAT26 377.711 PLEN 393.711
   axial 3 11.951 LAT31 377.711 PLEN 393.711
   grid END inc 1017 3.866
                              ! grid mass (g) and thickness (cm)
   grid MID zirc 875 3.810
   grid_axial
                              ! axial grid positions - midpoints (cm)
       END 13.884
       MID 75.2
       MID 127.4
       MID 179.6
       MID 231.8
       MID 284.0
       MID 336.2
       END 388.2
   lower_nozzle ss 6.053 6250.0 ! mat, height, mass (g)
   upper_nozzle ss 8.827 6250.0 ! mat, height, mass (g)
  [INSERT]
   title "Pyrex"
   npin 17
   mat pyrx1 2.25 pyrex-vera
   cell 1 0.214 0.231 0.241 0.427 0.437 0.484 / he ss he pyrx1 he ss
   rodmap PY8
```



```
1 - - -
  - - - - -
   - - - - 1
  - - - - - - -
  _ _ _ _ _ _ _ _ _
rodmap PY12
  1 - - -
  - - - 1 - - -
rodmap PY16
  - -
  1 - - -
  - - - - -
  - - - - 1
rodmap PY20
  - - - - -
  - - - - 1
  1 - - 1 - - -
  - - - - - - -
   - - - - - - - -
rodmap PY24
  - - -
  1 - - 1
  - - - - 1
  1 - - 1 - - -
```

! define 5 insert types with labels 8, 12, 16, 20, and 24

\_ \_ \_ \_ \_ \_ \_ \_ \_



```
axial 8 15.761 PY8 376.441
 axial 12 15.761 PY12 376.441
 axial 16 15.761 PY16 376.441
 axial 20 15.761 PY20 376.441
 axial 24 15.761 PY24 376.441
[CONTROL]
 title "B4C with AIC tips"
 npin 17
 stroke 365.125 230
                       ! approx for 1.5875 step sizes and 230 max stroke
 mat aic 10.2
 mat b4c 1.76
 cell 1 0.382 \ 0.386 \ 0.484 / aic he ss
 cell 2 0.373 0.386 0.484 / b4c he ss
 rodmap AIC
    - - -
    1 - - 1
    1 - - 1 - - -
    _ _ _ _ _ _ _ _ _
 rodmap B4C
    2 - - 2
    - - - - -
    2 - - 2 - - -
    _ _ _ _ _ _ _ _
    _ _ _ _ _ _ _ _ _
 axial 1 17.031
        AIC 118.631
        B4C 377.711
[DETECTOR]
 title "Incore instrument thimble"
 npin 17
 mat he 0.0001786
 mat ss 8.0
 cell 1 0.258 0.382 / he ss
 rodmap LAT
    1
```



#### axial 1 0.0 LAT 406.337

#### [EDITS]

axial\_edit\_bounds 11.951 15.817 24.028 32.239 40.45 48.662 56.873 65.084 73.295 77.105 85.17 93.235 101.3 109.365 117.43 125.495 129.305 137.37 145.435 153.5 161.565 169.63 177.695 181.505 189.57 197.635 205.7 213.765 221.83 229.895 233.705 241.77 249.835 257.9 265.965 274.03 282.095 285.905 293.97 302.035 310.1 318.165 326.23 334.295 338.105 346.0262 353.9474 361.8686 369.7898 377.711

[COBRATF]

[COUPLING]



#### 6.2. EXAMPLE 2 - SINGLE-ASSEMBLY

The second example is a partial input for a single-assembly with T/H feedback. This problem is Problem 6 of the CASL Progression Benchmark Problems. See:

• A. Godfrey, "VERA Core Physics Benchmark Progression Problem Specifications," CASL Technical Report: CASL-U-2012-0131-004, August 2014.

A single-assembly is defined by creating a core with one assembly in it, as described in the small-core geometry discussion in Section 2.2.5.

This input is also used to demonstrate the modular structure of the input. The [ASSEMBLY], [EDITS], [COBRATF], and [COUPLING] blocks are identical to Example Problem 1, and show how blocks can be re-used in different input decks. These blocks are not included here, but can be copied directly from the first example problem if the user wishes to run this problem.



```
[CASEID]
 title 'CASL Benchmark Progression Problem 6'
! Sample input for Problem 6 (Single-assembly with T/H feedback)
[STATE]
 power 100.0
 tinlet 559.0 F
                    !
 boron 1300
                    ! ppmB
 pressure 2250
                    ! psia
 feedback on
 sym full
[CORE]
 size 1
                     ! 1x1 single-assembly
 ! The rated power and flow are scaled down for a single-assembly
 rated 17.67 0.6824 ! rated power and flow (MW, Mlbs/hr)
 apitch 21.5
                     ! assembly pitch (cm)
 height 406.328
                     ! core height (cm)
 core_shape
   1
                     ! core map with a single assembly
 assm_map
                     ! name of assembly
   Α1
 lower_plate ss 5.0 0.5
                        ! material, thickness (cm), vol frac
 upper_plate ss 7.6 0.5   ! material, thickness (cm), vol frac
 lower_ref mod 26.0 1.0 ! material, thickness (cm), vol frac
           mod 25.0 1.0 ! material, thickness (cm), vol frac
 upper_ref
 bc_rad reflecting
                        ! radial boundary condition
! Materials defined in the [CORE] block are global and can be accessed
! from any assembly, insert, etc.
 mat he
           0.0001786
 mat inc
           8.19
 mat ss
          8.0
 mat zirc 6.56 zirc4
include assembly.inc ! Include [ASSEMBLY] block from Example 1
include edits.inc ! Include [EDITS] block from Example 1
include cobratf.inc ! Include [COBRATF] block from Example 1
```



#### 6.3. EXAMPLE 3 - 2D LATTICE GEOMETRY

The third example is a complete input for a 2D lattice. This problem is Problem 2A of the CASL Progression Benchmark Problems. See:

• A. Godfrey, "VERA Core Physics Benchmark Progression Problem Specifications," CASL Technical Report: CASL-U-2012-0131-004, August 2014.

A single-assembly is defined by creating a core with a one assembly in it, as described in the small-core geometry description in Section 2.2.5.

The 2D lattice is defined by specifying an axial card with one level and defining reflective boundary conditions on the top and bottom of the core with the  $bc\_top$  and  $bc\_bot$  input cards.

This example problem also shows how multiple assembly, insert, and control types can be defined by using multiple *axial* cards in a single input block.



```
[CASEID]
 title 'CASL AMA Benchmark Problem 2A - Fuel Lattice - Public'
[STATE]
                           ! %
 power 0.0
                           !
 tinlet 557.33 F
 tfuel 565 K
                           !
 modden 0.743
                         ! g/cc
 boron 1300
                          ! ppm
 rodbank A 1
                           ! rod fully withdrawn
 sym qtr
[CORE]
 size 1
 apitch 21.50
 height 1.0
 rated 0.01 0.01
 core_shape
   1
 assm_map
   ASSY
 insert_map
 crd_map
   AIC
 crd_bank
   Α
 bc_rad reflecting
 bc_top reflecting
                     ! specify top reflective boundary conditions
 bc_bot reflecting  ! specify bottom reflective boundary conditions
[ASSEMBLY]
 npin 17
 ppitch 1.26
! material definitions in an ASSEMBLY block only have scope in this block
 fuel U31 10.257 94.5 / 3.1
 mat he 0.000176
 mat zirc 6.56 zirc4
 cell 1 0.4096 0.418 0.475 / U31 he zirc
 cell 2 0.561 0.602 / mod zirc
 lattice LAT
   2
   1 1
```



```
1 1 1
    2 1 1 2
    1 1 1 1 1
    1 1 1 1 1 2
    2 1 1 2 1 1 1
    1 1 1 1 1 1 1 1
    1 1 1 1 1 1 1 1 1
  axial ASSY 0.0 LAT 1.0
 [INSERT]
  title "Pyrex"
  npin 17
! material definitions in an INSERT block only have scope in this block
             0.0001786
  mat he
  mat pyrx1 2.25 pyrex-vera
  mat ss
            8.0
  cell 1 0.214 0.231 0.241 0.427 0.437 0.484 / he ss he pyrx1 he ss
! define multiple inserts corresponding to 8, 12, 16, 20, and 24 fingers
  lattice LAT8
     1 - - -
  lattice LAT12
     1 - - -
     - - - 1 - - -
     _ _ _ _ _ _ _ _ _ _
  lattice LAT16
     1 - - -
     - - - - -
     - - - - 1
```

- - - 1 - - -



```
_ _ _ _ _ _ _ _ _ _
 lattice LAT20
    - - -
    1 - - -
    - - - - 1
    1 - - 1 - - -
 lattice LAT24
    - - -
    1 - - 1
    - - - - 1
    1 - - 1 - - -
! multiple INSERT types can be defined by defining separate axial cards
 axial PY8 0.0 LAT8 1.0
 axial PY12 0.0 LAT12 1.0
 axial PY16 0.0 LAT16 1.0
 axial PY20 0.0 LAT20 1.0
 axial PY24 0.0 LAT24 1.0
[CONTROL]
 title "B4C and AIC RCCAs"
 npin 17
 stroke 1.0 1 ! 1 step for in/out
! material definitions in a CONTROL block only have scope in this block
 mat he 0.0001786
          8.0
 mat ss
 mat aic 10.2
 mat b4c 1.76
 cell 1 0.382 0.386 0.484 / aic he ss
 cell 2 0.373 0.386 0.484 / b4c he ss
 lattice LAT_AIC
    - - -
    1 - - 1
```



! include SHIFT and/or MPACT block here



#### 7. VERARUN

This chapter describes running cases with the VERARun script. VERARun is the driver script that runs the input processor and corresponding VERA component codes. VERARun also submits the job to the parallel job queue.

#### 7.1. RUNNING A CASE

VERARun is run by specifying verarun on the command line, followed by the name of the input file. There are additional command line options that are shown below.

```
verarun <input file>
```

For example, if you input deck is called "2a.inp", you would enter:

```
verarun 2a
```

Additional command line options can be found by typing **verarun** with no arguments. Doing so will return the following options.

Creates and optionally submits machine-specific VERA jobs.

```
positional arguments:
  input_path
                        path to VERA input (.inp) or XML (.xml) files
optional arguments:
  -x, --dry-run
                        dry run only, create but don't execute the PBS script
  -e email_addr, --email-addrs email_addr
                        comma-delimited list of email addresses to notify of
                        job completion, defaults to ${USER}@$(hostname)
  -h, --help
                        print detailed help
  -c config_file, --host-config-file config_file
                        override host configuration file, supercedes
                        --hostname and --vera-installs-dir
  -N job_name, --job-name job_name
                        name for the PBS job
  -1, --list-vera-versions
```



```
list available VERA versions
  -n nprocs, --np nprocs, --nprocs nprocs, --num-procs nprocs
                        total number of processors need for the job (mpiexec
                        -np param), defaults to value computed from input
  -0, --output-job-name
                        print the job name to stdout
  --ppn cpus_per_node, --pnode cpus_per_node
                        specify processors per node, by default this is
                        calculated
  -m mem_per_process, --pmem mem_per_process, --proc-memory mem_per_process
                        specify memory required per processor in GB, defaults
                        to undefined
  -s subdir, --subdir subdir
                        create subdir, a value of "." specifies automatically
                        generated subdir name
  -d vera_install_dir, --vera-dir vera_install_dir
                        path to VERA installation, superceding --vera-
                        installs-dir, --vera-version, and the host
                        configuration
  -v vera_version, --vera-version vera_version
                        name of VERA version to use
                        turn on verbose messaging
  --verbose
  -W
                        wait on job last submitted via verarun, overrides -W
  -w job_id, --wait-job-id job_id
                        ID of job which must complete before starting this job
  -t walltime, --wall-time walltime
                        wallclock execution time in floating point hours,
                        defaults to 24.0
advanced arguments:
  --chain, --chain-jobs
                        each case depends on its predecessor
  --debug
                        debug mode
  --hostname host
                        force the hostname
  -r {overwrite, readwrite}, --restart {overwrite, readwrite}
                        optional restart mode
  --vera-installs-dir vera_installs_dir
                        path to vera_installs directory containing VERA
                        versions
```

#### 7.2. VERARUN OUTPUT

Upon completion of a VERA job, several output files may be created depending on the code options used. Some typical outputs include:

- VERAIn XML file. This file is written upon the successful completion of VERAIn
- VERA HDF output file. This is a binary file with results that can be visualized in VERAView, or post-processed with user utility codes.



- MPACT output file. This file is written upon the successful completion of MPACT (if applicable).
- MPACT log File. This file is written upon the successful completion of MPACT (if applicable).
- MPACT summary File. This file is written upon the successful completion of MPACT (if applicable).
- Standard output file. This file is a log of all output written to the standard output.
- Standard error file. this file is a log of all output written to the standard error file.

#### 7.3. INPUT ERRORS

If the verarun command does not work, the user should make sure that it is in the path. The user may need to consult with the system administrator for the correct path.

The next step when looking for an error is to look at the standard error file. If the job ran successfully, the size of this file will be zero.

If there were any errors in the input processor (VERAIn), the errors will be written to the standard error file. Common errors from the input processor include

- 1. invalid keywords
- 2. invalid map sizes
- 3. invalid input options

If the input processor works correctly, an error may still occur in one of the VERA component codes. The user used look at the error message and consult the user manual for the component code.