ECUACIONES DIFERENCIALES 2015 - RECUPERATORIO PRIMER PARCIAL

NOMBRECARRERA

EJERCICIO 1:

a)

i) ¿Cuando decimos que y' = f(x,y) es "autónoma"? ¿Qué supuesto/os se deben hacer para asegurar

existencia y unicidad de solución, cuando se dé una condición $y(x_0) = y_0$?

- ii) Presente un ejemplo de ecuación autónoma que tenga -1 y 3 como puntos críticos. Luego realice un retrato fase, clasifique los puntos críticos y grafique soluciones en cada región determinada.
- b) Demuestre que la ecuación diferencial no lineal de Bernoulli se transforma en lineal a través de una sustitución apropiada.

EJERCICIO 2:

- a) Defina ecuación diferencial de variables separables.
- b) Determine cuál ecuación es de variables separables y resuélvala:

i)
$$(1 + xy)dx + ydy = 0$$
 ii) $A + dA/dt = tAe^{t+2}$

c) Analice la verdad o falsedad de la siguiente afirmación: "Una ecuación separable es siempre exacta".

EJERCICIO 3:

a) Un circuito RC tiene una fuerza electromotriz dada (en voltios) por 400 $cos\ 2t$, una resistencia de 100 ohmios y una capacitancia de 10 $^{-2}$ faradios. Inicialmente no hay carga en el condensador. Hallar la corriente I(t) en el circuito cuando $t = \pi/2$ seg.

Ayuda: Recuerde que la ecuación que rige la cantidad de carga eléctrica q(t) en el condensador es

$$R\frac{dq}{dt} + \frac{1}{C}q = E(t)$$
 y que $I(t) = dq/dt$.

b) La ecuación diferencial de una familia de curvas está dada por $\frac{dy}{dx} = \frac{2xy}{x^2 - 3y^2}$. Encuentre aquella trayectoria ortogonal que pasa por el punto (1/2,0).

EJERCICIO 4:

- a) Deduzca cómo se obtiene la segunda solución linealmente independiente con $y_1(x) = e^{mx}$, cuando m es raíz repetida de una ecuación característica de segundo grado.
- b) Encuentre un conjunto fundamental de soluciones para y''' y'' + y = 0.
- c) Halle la solución particular correspondiente a b) que satisfaga: y(0) = y'(0) = 0, y''(0) = -2.