Dataset2 Friedman1 output 5

October 20, 2021

1 Dataset 2 - Friedman 1

1.1 Experiment Details

The aim of the experiment is to verify if the: 1. ABC_GAN model corrects model misspecification 2. ABC_GAN model performs better and converges faster than a simple C-GAN model

In the experiment we predict the distribution that represents the real data and simulate realistic fake data points using statistical mode, C-GAN and ABC-GAN model with 3 priors. We analyze and compare their performance using metrics like mean squared error, mean absolute error, manhattan distance and euclidean distance between y_{real} and y_{pred}

The models are as follows:

- 1. The statistical model assumes the distribution $Y = \beta X + \mu$ where $\mu \sim N(0,1)$
- 2. The Conditional GAN consists of
 - 1. Generator with 2 hidden layers with 100 nodes each and ReLu activation.
 - 2. Discriminator with 2 hidden layers with 25 and 50 nodes and ReLu activation. We use Adam's optimser and BCE Logit Loss to train the model. The input to the Generator of the GAN is (x,e) where x are the features and $e \sim N(0,1)$. The discriminator output is linear.
- 3. The ABC GAN Model consists of
 - 1. ABC generator is defined as follows:
 - 1. $Y = 1 + \beta_1 x_1 + \beta_2 x_2 + \beta_2 x_3 + ... + \beta_n x_n + N(0, \sigma)$ where $\sigma = 0.1$
 - 2. $\beta_i \sim N(0, \sigma^*)$ when $\mu = 0$ else $\beta_i \sim N(\beta_i^*, \sigma^*)$ where $\beta_i^* s$ are coefficients obtained from statistical model
 - 3. σ^* takes the values 0.01.0.1 and 1
 - 2. C-GAN network is as defined above. However the input to the Generator of the GAN is (x, y_{abc}) where y_{abc} is the output of the ABC Generator.

1.2 Import Libraries

```
[1]: import warnings
warnings.filterwarnings('ignore')

[2]: import train_test
import ABC_train_test
import regressionDataset
import network
```

```
import statsModel
import performanceMetrics
import friedman1Dataset
import dataset
import sanityChecks
import torch
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import norm
from torch.utils.data import Dataset,DataLoader
from torch import nn
```

1.3 Parameters

General Parameters

- 1. Number of Samples
- 2. Number of features

ABC-Generator parameters are as mentioned below: 1. mean : 1 ($\beta \sim N(\beta^*, \sigma)$ where β^* are coefficients of statistical model) or 1 ($\beta \sim N(0, \sigma)$ 2. std : $\sigma = 1, 0.1, 0.01$ (standard deviation)

```
[3]: n_features = 10
n_samples= 100

#ABC Generator Parameters
mean = 1
variance = 0.001
```

```
[4]: # Parameters
n_samples = 10
n_features = 10
mean = 0
variance = 0.01
```

1.4 Dataset

Friedman 1 Dataset

- $y(X) = 10 * sin(pi * X_0 * X_1) + 20 * (X_2 0.5) * *2 + 10 * X_3 + 5 * X_4 + noise * N(0, 1).$
- Only 5 features used to calculate y
- Noise is Gaussian
- 1000 datapoints and 10 features used in the following experiment

[5]: X, Y = friedman1Dataset.friedman1_data(n_samples,n_features)

```
XΟ
                  Х1
                                     ХЗ
                                               Х4
                                                        Х5
                                                                  Х6
0 0.320567
            0.407436
                    0.494248
                               0.887519
                                         0.687441
                                                  0.374252 0.701353
1 0.870573
            0.422217 0.096807
                               0.806529
                                         0.116306
                                                  0.620213
                                                            0.162936
2 0.121992 0.959921 0.026261
                               0.960916 0.240006 0.965835 0.699085
```

```
3 0.472821 0.948381 0.896898 0.968297 0.123775 0.322727 0.624299
4 0.145426 0.315487 0.690114 0.103206 0.009039 0.500428 0.583773
```

	X7	X8	Х9	Y
0	0.642739	0.971524	0.210137	16.443805
1	0.333939	0.039234	0.321735	21.249520
2	0.579075	0.164716	0.278566	18.907658
3	0.731854	0.738494	0.225107	23.201949
4	0.337531	0.525335	0.651208	3.343592

1.5 Stats Model

[6]: [coeff,y_pred] = statsModel.statsModel(X,Y)

No handles with labels found to put in legend.

OLS Regression Results

______ Dep. Variable: Y R-squared: 1.000 Model: OLS Adj. R-squared: nan Method: Least Squares F-statistic: nan Wed, 20 Oct 2021 Prob (F-statistic): Date: nan 20:05:04 Time: Log-Likelihood: 325.96 No. Observations: 10 AIC: -631.9Df Residuals: BIC: 0 -628.9

Df Model: 9
Covariance Type: nonrobust

========				=======	========	=======
	coef	std err	t	P> t	[0.025	0.975]
const	2.22e-16	inf	0	nan	 nan	nan
x1	0.3402	inf	0	nan	nan	nan
x2	0.8040	inf	0	nan	nan	nan
x 3	0.0220	inf	0	nan	nan	nan
x4	0.5338	inf	0	nan	nan	nan
x5	0.3440	inf	0	nan	nan	nan
x6	-0.1498	inf	-0	nan	nan	nan
x7	-0.3580	inf	-0	nan	nan	nan
x8	-0.2925	inf	-0	nan	nan	nan
x9	0.0163	inf	0	nan	nan	nan
x10	-0.1335	inf	-0	nan	nan	nan
Omnibus: 3.58		 3.588	 Durbin	======== -Watson:	========	2.073
Prob(Omnibus):		0.166	Jarque-Bera (JB):		1.116	
Skew:		-0.245	-	Prob(JB):		0.572
Kurtosis:		1.439	Cond. No.		25.0	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The input rank is higher than the number of observations.

Parameters: const 2.220446e-16 x1 3.401771e-01

x1x28.040467e-01 x32.195216e-02 x4 5.337661e-01 x5 3.440083e-01 -1.498168e-01 x6 x7 -3.579580e-01 -2.925108e-01 8x 1.631096e-02 x9

x10 -1.335153e-01

dtype: float64

Performance Metrics

Mean Squared Error: 2.8482192761553952e-30 Mean Absolute Error: 1.4932499681208355e-15 Manhattan distance: 1.4932499681208355e-14 Euclidean distance: 5.336871064730153e-15

1.6 Common Training Parameters (GAN & ABC_GAN)

```
[7]: n_epochs = 5000
error = 0.001
batch_size = n_samples//2
```

1.7 GAN Model

```
[8]: real_dataset = dataset.CustomDataset(X,Y)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
```

Training GAN for n_epochs number of epochs

```
[9]: generator = network.Generator(n_features+2)
discriminator = network.Discriminator(n_features+2)

criterion = torch.nn.BCEWithLogitsLoss()
gen_opt = torch.optim.Adam(generator.parameters(), lr=0.01, betas=(0.5, 0.999))
disc_opt = torch.optim.Adam(discriminator.parameters(), lr=0.01, betas=(0.5, 0.
→999))
```

```
[10]: print(generator) print(discriminator)
```

```
Generator(
   (hidden1): Linear(in_features=12, out_features=100, bias=True)
   (hidden2): Linear(in_features=100, out_features=100, bias=True)
   (output): Linear(in_features=100, out_features=1, bias=True)
   (relu): ReLU()
)
Discriminator(
   (hidden1): Linear(in_features=12, out_features=25, bias=True)
   (hidden2): Linear(in_features=25, out_features=50, bias=True)
   (output): Linear(in_features=50, out_features=1, bias=True)
   (relu): ReLU()
)
```

```
[11]: train_test.
```

- →training_GAN(discriminator,generator,disc_opt,gen_opt,real_dataset,batch_size,
- →n_epochs,criterion,device)

[12]: train_test.test_generator(generator,real_dataset,device)

Mean Square Error: 0.009363350902948004

Mean Absolute Error: 0.08371758110150695

Mean Manhattan Distance: 0.8371758110150694

Mean Euclidean Distance: 0.30583998132636514

[13]: sanityChecks.discProbVsError(real_dataset,discriminator,device)

Training GAN until mse of y_pred is > 0.1 or n_epochs < 30000

```
generator = network.Generator(n_features+2)
discriminator = network.Discriminator(n_features+2)
criterion = torch.nn.BCEWithLogitsLoss()
gen_opt = torch.optim.Adam(generator.parameters(), lr=0.01, betas=(0.5, 0.999))
disc_opt = torch.optim.Adam(discriminator.parameters(), lr=0.01, betas=(0.5, 0.999))
```

[15]: train_test.

→training_GAN_2(discriminator,generator,disc_opt,gen_opt,real_dataset,batch_size,error,crite

Number of epochs needed 30000

[16]: train_test.test_generator(generator,real_dataset,device)

Mean Square Error: 0.023195370538341045

Mean Absolute Error: 0.1313441815651953

Mean Manhattan Distance: 1.3134418156519532

Mean Euclidean Distance: 0.48097909851401455

2 ABC GAN Model

2.0.1 Training the network

Training ABC-GAN for n_epochs number of epochs

```
[17]: gen = network.Generator(n_features+2)
    disc = network.Discriminator(n_features+2)

    criterion = torch.nn.BCEWithLogitsLoss()
    gen_opt = torch.optim.Adam(gen.parameters(), lr=0.01, betas=(0.5, 0.999))
    disc_opt = torch.optim.Adam(disc.parameters(), lr=0.01, betas=(0.5, 0.999))
```

[18]: ABC_train_test.training_GAN(disc, gen,disc_opt,gen_opt,real_dataset,_u batch_size, n_epochs,criterion,coeff,mean,variance,device)

[19]: ABC_train_test.test_generator(gen,real_dataset,coeff,mean,variance,device)

Mean Square Error: 0.016549121208843404

Mean Absolute Error: 0.1108549439251423
Mean Manhattan Distance: 1.1085494392514228

Mean Euclidean Distance: 0.40680517100364105

Sanity Checks

[20]: sanityChecks.discProbVsError(real_dataset,disc,device)

Training GAN until mse of y_pred is > 0.1 or n_epochs < 30000

```
[21]: gen = network.Generator(n_features+2)
    disc = network.Discriminator(n_features+2)

    criterion = torch.nn.BCEWithLogitsLoss()
    gen_opt = torch.optim.Adam(gen.parameters(), lr=0.01, betas=(0.5, 0.999))
    disc_opt = torch.optim.Adam(disc.parameters(), lr=0.01, betas=(0.5, 0.999))
```

Number of epochs 30000

[23]: ABC_train_test.test_generator(gen,real_dataset,coeff,mean,variance,device)

Mean Square Error: 0.038680920402443836

Mean Absolute Error: 0.1630047065794468
Mean Manhattan Distance: 1.630047065794468

Mean Euclidean Distance: 0.6216597382299895

[]: