

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Препода	ватель <u> Гург Л.В.</u>	Отчет принят
	<u>Paleel Apuce'm Inalunupole</u> Batena I <i>lann II</i> B	
	M3/02	К работе допущен

лабораторной работе № *3/2*

Organ sui spukeua.

- 1. Цель работы:
 - Исследование движения заряженных капель в электрическом и гравитационном полях.
 - Определение величины элементарного заряда.
- 2. Задачи, решаемые во время выполнения работы:
 - Измерение скоростей движения капель масла при различных напряжениях и направлениях электрического поля.
 - Определение радиуса и заряда капель.
- 3. Объект исследования.
 - Капли масла в электрическом поле.
- 4. Метод экспериментального исследования.
 - Изучение виртуальной лабораторной установки, проведение измерений.
- 5. Рабочие формулы и исходные данные.

$$r = C_r \sqrt{v_1 - v_2},$$
 $C_r = \frac{3}{2} \sqrt{\frac{\eta}{(\rho_o - \rho) g}}.$ $q = C_q \frac{(v_1 + v_2) \sqrt{v_1 - v_2}}{U},$

$$C_q = \frac{9}{2}\pi d\sqrt{\frac{\eta^3}{(\rho_o - \rho) g}}. \qquad \sigma_e = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (e_i - \langle e \rangle)^2} \qquad \langle e \rangle = \frac{1}{N} \sum_{i=1}^{N} e_i$$

- Ускорение свободного падения: g = 9,81 м/с2
- Плотность масла: *Qo* = 875,3 кг/м3

- Плотность воздуха: ϱ = 1,29 кг/м3
- Вязкость воздуха: $\eta = 1.81 \cdot 10^{\circ}(-5) \text{ H·c/м2}$
- Расстояние между обкладками конденсатора: d = 6 мм
- Расстояние горизонтальными штрихами: $\Delta y = 5,33 \cdot 10^{\circ}(-5)$ м.

6. Измерительные приборы:

Nº n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Хронометр		0,005 C

7. Схема установки:

8. Результаты прямых измерений и их обработки:

	U, B	t1, m	t2, m
1	100	8,5	20,75
2	110	7,68	13,3
3	120	6,5	9,21
4	130	7,9	11,65
5	140	6,68	8,03
6	150	7,22	19,38
7	160	5,97	8,23
8	170	6,01	21,23
9	180	8,83	81,62
10	190	4,78	6,3
11	200	5,32	12,22
12	210	2,22	2,23
13	220	5,17	17,96
14	230	5,6	17,13
15	240	4,68	8,35
16	250	4,13	6,27
17	260	4,07	6,15
18	270	4,55	13,68
19	280	4,82	8,02
20	290	4,28	6,27
21	300	6,6	42,93
22	310	4,64	9,92
23	320	9,37	21,47

9. Расчет результатов косвенных измерений:

v1, 10^(-5) m	v2, 10^(-5) m	r, 10^(-7)m	q, 10^(-19) KI	n	e
17,55764706	7,192289157	7,016652896	17,77481257	10	1,777481257
19,43229167	11,22105263	6,245140156	17,81264121	10	1,781264121
22,96	16,20412595	5,664722166	18,92285926	10	1,892285926
18,89113924	12,81030043	5,374271316	13,41393426	8	1,676741782
22,34131737	18,58530511	4,223780516	12,63805278	6	2,10634213
20,67036011	7,700722394	7,848772923	15,19453328	8	1,899316661
24,99832496	18,13365735	5,710151074	15,75534752	8	1,96941844
24,83194676	7,029674988	9,195504374	17,6398734	10	1,76398734
16,90147225	1,828473413	8,461311327	9,011615222	4	2,252903806
31,22175732	23,68888889	5,981609165	17,69383363	10	1,769383363
28,05263158	12,21276596	8,673883573	17,87378529	8	2,234223161
67,22522523	66,92376682	1,196607012	7,823851796	4	1,955962949
28,86653772	8,309576837	9,881373078	17,0906888	10	1,70906888
26,65	8,712200817	9,230440365	14,52562485	8	1,815703106
31,88888889	17,87305389	8,159195326	17,31547336	8	2,16443417
36,13559322	23,80223285	7,653825431	18,78194151	10	1,878194151
36,66830467	24,26666667	7,674982027	18,41075433	10	1,841075433
32,8	10,90935673	10,1968752	16,89579795	10	1,689579795
30,9626556	18,6084788	7,660281829	13,88086489	8	1,735108111
34,86915888	23,80223285	7,250222679	15,01345651	8	1,876682064
22,61212121	3,47635686	9,533683917	8,485729651	4	2,121432413
32,1637931	15,04435484	9,017426208	14,05525789	6	2,342542981
15,92742796	6,951094551	6,52961131	4,778221504	2	2,389110752

10. Расчет погрешностей для прямых и косвенных измерений:

- среднее значение элементарного заряда и его среднеквадратичное отклонение

<e></e>	1,940967078
бе	0,04063388857

11. Графики:

12. Окончательные результаты:

- Интервал радиуса капель: r ∈ [1.2, 10.2], 10^(-7)m
- Интервал значений зарядов: q ∈ [4.8, 18.9], 10[^](-19) KI
- Сравнение оценочного значения элементарного заряда с табличным:

13. Вывод:

- В процессе выполнения лабораторной работы были получены скорости движения капель масла при различном напряжении и направлении электрического поля. Также получена оценка элементарного заряда, результат которой превышает табличное значение на 17,45%. Это обусловлено округлениями при расчетах промежуточных значений и чередою погрешностей при снятии показаний. Погрешность при снятии показаний получилось минимизировать увеличением количества измерений для каждой отдельной капли и делением конечного значения на количество таких измерений, что давало более точные результаты.