Equation Sheet

	pn Junction and Diodes			
Quantity	Relationship	Notes, Constants and Parameters for Intrinsic Si @ 290 K		
Diffusion current density (A·cm-2)	$J_{p} = -qD_{p} \frac{dp}{dx}$ $J_{n} = qD_{n} \frac{dn}{dx}$	$q = 1.6 \times 10^{-19} C$ $D_p = 11.5 \text{ cm}^2 \cdot \text{s}^{-1}$ $D_n = 34 \text{ cm}^2 \cdot \text{s}^{-1}$		
Drift current density (A'cm-2)	$J_{\rm drift} = q \big(p \mu_p + n \mu_n \big) E = \sigma E$	$\mu_p = 460 \text{ cm}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}$ $\mu_n = 1360 \text{ cm}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}$		
Conductivity (Ω·cm) ⁻¹	$\sigma = q(p\mu_p + n\mu_n)$			
Resistivity (Ω·cm)	$\sigma = q(p\mu_p + n\mu_n)$ $\rho = \frac{1}{\sigma} = \frac{1}{q(p\mu_p + n\mu_n)}$	μ_p and μ_n decrease with increase in doping concentration		
Ohm's Law (point form)	$J = \sigma E = E/\rho$			
Relationship between mobility and diffusivity	$J = \sigma E = E/\rho$ $\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = V_T$	$V_T = kT/q \cong 25 \text{ mV}$		
Carrier concentration in n-type silicon (cm ⁻³)	$n_{\text{no}} \cong N_{\text{D}}$ $p_{\text{no}} = n_{\text{i}}^2 / N_{\text{D}}$			
Carrier concentration in p-type silicon (cm ⁻³)	$p_{po} \cong N_A$ $n_{po} = n_i^2 / N_A$			
Junction built-in voltage	$V_{o} = V_{T} \ln \left(\frac{N_{A} N_{D}}{n_{i}^{2}} \right)$			
Width of depletion region (cm)	$P_{po} = N_A$ $n_{po} = n_i^2 / N_A$ $V_o = V_T \ln \left(\frac{N_A N_D}{n_i^2} \right)$ $\frac{x_n}{x_p} = \frac{N_A}{N_D}$ $W = x_p + x_n$ $= \sqrt{\frac{2\epsilon_{Si}}{q} \left(\frac{1}{N_A} + \frac{1}{N_D} \right) (V_o + V_R)}$	$\epsilon_{\rm Si} = 11.7\epsilon_0$ $\epsilon_0 = 8.854 \times 10^{-14} \text{F/cm}$		
Charge stored in depletion layer (C)	$Q_{J} = q \frac{N_{A}N_{D}}{N_{A}+N_{D}}AW$			
Forward current (A)	$\begin{split} I &= I_p + I_n \\ I_p &= qAn_i^2 \frac{D_p}{L_p N_D} \bigg(e^{\frac{V_D}{nV_T}} - 1 \bigg) \\ I_n &= qAn_i^2 \frac{D_n}{L_n N_A} \bigg(e^{\frac{V_D}{nV_T}} - 1 \bigg) \end{split}$			
Saturation current (A)	$I_{n} = qAn_{i}^{2} \frac{D_{n}}{L_{n}N_{A}} \left(e^{\frac{V_{D}}{nV_{T}}} - 1\right)$ $I_{S} = qAn_{i}^{2} \left(\frac{D_{p}}{L_{p}N_{D}} + \frac{D_{n}}{L_{n}N_{A}}\right)$			
i-v relationship	$I_D = I_S(e^{V_D/nV_T} - 1)$			

Material	m _n */m _o (-)	m_p^*/m_o (-)	E _G (eV)	μ_n, μ_p (cm ² ·V ⁻¹ ·s ⁻¹)	D _n , D _p (cm ² ·s ⁻¹)	N _C , N _V (cm ⁻³)	Lattice constant (Å)	atoms·cm ⁻³
Si	1.18	0.81	1.12	1360	34	$3.2 \cdot 10^{19}$	5.431	5.0.1022
				460	11.5	1.8·10 ¹⁹		
Ge	Ge 0.55 0.36	0.36	0.66	3900	97.5	$1.0 \cdot 10^{19}$	5.646	4.4.1022
de		0.00	1900	47.5	$5.4 \cdot 10^{18}$	5.040	7.7 10	
GaAs 0.0	0.066	0.066 0.52	1.42	8000	200	4.2.1017	5.654	4.42.1022
	0.000 0.52	1.42	320	8.0	$9.5 \cdot 10^{18}$	3.034	4.42.10-2	

Equation Sheet

Semiconductor Physics						
Quantity	Relationship	Notes, Constants and Parameters				
Density of States and Fermi Function	$\begin{split} g_c(E) &= \frac{{m_n^*}^{3/2} \sqrt{2(E-E_C)}}{\pi^2 \hbar^3} \text{, } E \geq E_C \\ g_v(E) &= \frac{{m_p^*}^{3/2} \sqrt{2(E_v-E)}}{\pi^2 \hbar^3} \text{, } E \leq E_V \\ f(E) &= \frac{1}{1+e^{(E-E_F)/kT}} \end{split}$					
Carrier Concentrations	$f(E) = \frac{1}{1 + e^{(E - E_F)/kT}}$ $n = \int_{E_C}^{\infty} g_C(E) f(E) dE$ $p = \int_{0}^{E_V} g_V(E) (1 - f(E)) dE$					
Carrier Concentrations, Effective Density of States	$n = N_{C}e^{-(E_{C}-E_{F})/kT}$ $n = n_{i}e^{(E_{F}-E_{i})/kT}$ $p = N_{V}e^{-(E_{F}-E_{V})/kT}$ $p = n_{i}e^{(E_{i}-E_{F})/kT}$ $N_{C,V} = 2\left[\frac{m_{n,p}^{*}kT}{2\pi\hbar^{2}}\right]^{3/2}$	assumes nondegenerate $E_V + 3kT \le E_F \le E_C - 3kT$				
n _i , n, np Product, and Charge Neutrality	$\begin{split} n_i &= \sqrt{N_C N_V} e^{-E_G/2kT} \\ np &= n_i^2 \\ 0 &= p - n + N_D - N_A \\ n &= \frac{N_D - N_A}{2} + \left[\left(\frac{N_D - N_A}{2} \right)^2 + n_i^2 \right]^{1/2} \end{split}$					
Carrier concentration in intrinsic Si (cm ⁻³)	$n_{\rm i} = BT^{3/2} e^{-E_g/2kT}$	$B = 7.3 \times 10^{15} \text{cm}^{-3} \text{K}^{-\frac{3}{2}}$ $E_g = 1.12 \text{ eV}$ $k = 8.62 \times 10^{-5} \frac{\text{eV}}{\text{K}}$ $n_i = 1.5 \times 10^{10} \text{ cm}^{-3^*}$				
Fermi Level Relationships	$\begin{split} E_F &= E_i + kT * ln \left(\frac{N_D}{n_i}\right) n \text{ type} \\ E_F &= E_i - kT * ln \left(\frac{N_A}{n_i}\right) \text{ p type} \\ E_i &= \frac{E_C + E_V}{2} + \frac{3}{4} kT \cdot ln \left(\frac{m_p^*}{m_n^*}\right) \end{split}$					
Equations of State	$\begin{split} \frac{\partial \Delta p_n}{\partial t} &= D_p \frac{\partial^2 \Delta p_n}{\partial x^2} - \frac{\Delta p_n}{\tau_p} + G_L \\ \frac{\partial \Delta n_p}{\partial t} &= D_n \frac{\partial^2 \Delta n}{\partial x^2} - \frac{\Delta n_p}{\tau_n} + G_L \\ p_n(x) &= p_{no} + p_{no} \left(e^{V_A/V_T} - 1 \right) e^{\left(-x + x_n \right)/L_p} \\ n_p(x) &= n_{po} + n_{po} \left(e^{V_A/V_T} - 1 \right) e^{\left(x + x_p \right)/L_n} \end{split}$	$\frac{\partial \Delta p_n}{\partial t} = \frac{\partial \Delta n_p}{\partial t} = 0 \text{ steady state}$ $G_L = 0 \text{ no light}$				
Minority Carrier Diffusion Length (cm)	$L_{n,p} = \sqrt{D_{n,p}\tau_{n,p}}$	$ au_{n,p}=1$ ns to 10^4 ns $L_{n,p}=1$ μm to 100 μm				

^{*}This number works out using T=300 K throughout, rather than kT = 25 meV or T=290 K.