Jianyu MA's DM Algebra

Jianyu MA

April 3, 2020

Question 1 (Changement de base). Soient

$$f: A \longrightarrow B$$

un morphisme d'anneaux commutatifs, M un A-module. Montrez que la règle

$$b \cdot (b' \otimes x) = bb' \otimes x$$

 $b, b' \in B, x \in M$ définit une structure d'un B-module sur $B \otimes_A M$.

My Solution. $B \otimes_A M$ is a A-module hence a Abel group. By the definition of ring B action over $B \otimes_A M$, $\forall b_1, b_2, b' \in B, x \in M$ and $1 \in B$ the multiplicative identity, we can check following properties:

- distributive law, this is included in how we define this action, $b \cdot (u+v) := b \cdot u + b \cdot v$, $\forall u, v \in B \otimes_A M$. And due to this property, we can check other properties only for tensor product of two elements in B and M.
- a monoid action, $(b_1b_2) \cdot (b' \otimes x) = b_1b_2b' \otimes x = b_1(b_2b') \otimes x = b_1 \cdot (b_2 \cdot (b' \otimes x)), 1 \cdot (b' \otimes x) = 1b' \otimes x = b' \otimes x$
- linearity, $(b_1+b_2)\cdot(b'\otimes x)=(b_1+b_2)b'\otimes x=b_1b'\otimes x+b_2b'\otimes x=b_1\cdot(b'\otimes x)+b_2\cdot(b'\otimes x)$

Question 2. Soient A un anneau commutatif, $S \subset A$ une partie multiplicative, d'où le morphisme d'anneaux canonique

$$i:A\longrightarrow A_S$$

Soit M un A-module, d'où un A_S -module $A_S \otimes_A M$, d'après Ex. 1. Définir un isomorphisme de A_S -modules

$$A_S \otimes_A M \xrightarrow{\sim} M_S$$

My Solution. Consider a bilinear map \tilde{f} from $A_S \times_A M$ to M_S ,

$$\tilde{f}: A_S \times_A M \to M_S$$

$$(\frac{a}{t}, x) \mapsto \frac{a \cdot x}{t}$$

we then get a uniquely determined map f from $A_S \otimes_A M$ to M_S which sends $\frac{a}{t} \otimes x$ to $\frac{a \cdot x}{t}$.

f is surjective since $f(\frac{1}{t} \otimes x) = \frac{x}{t}$. Assume that $\sum_{j} \frac{a_{j}}{t_{j}} \otimes x_{j}$ is an element in the kernel of f, where $a_{j} \in A, t_{j} \in S, x_{j} \in M$, then $\sum_{j} \frac{a_{j} \cdot x_{j}}{t_{j}} = 0$ in $S^{-1}M$ which means $\exists t \in S, t(\sum_{j} a_{j}x_{j} \prod_{i \neq j} t_{i}) = 0$, where i, j ranges over a given finite index set. Thus,

$$\sum_{j} \frac{a_j}{t_j} \otimes x_j = \sum_{j} \frac{1}{t_j} \otimes a_j \cdot x_j = \sum_{j} \frac{1}{t \prod_i t_i} \otimes t(a_j x_j \prod_{i \neq j} t_i)$$
$$= \frac{1}{t \prod_i t_i} \otimes t(\sum_{j} a_j x_j \prod_{i \neq j} t_i) = 0$$

we prove that f is injective since the kernel of f is trivial.

Hence f is a isomorphism from $A_S \otimes_A M$ onto M_S

Question 3. Soient A un anneau commutatif, M, N, L des A-modules. Définissons un morphisme des A-modules

$$\phi: \operatorname{Hom}_A(M \otimes_A N, L) \longrightarrow \operatorname{Hom}_A(M, \operatorname{Hom}_A(N, L))$$

par la régle suivante. Si $f \in \text{Hom}_A (M \otimes_A N, L)$ alors

$$\phi(f)(x)(y) = f(x \otimes y), x \in M, y \in N$$

Montrer que ϕ est un isomorphisme (définir le morphisme inverse).

My Solution. We prove it by defining an inverse morphism

$$\psi: \operatorname{Hom}_A(M, \operatorname{Hom}_A(N, L)) \longrightarrow \operatorname{Hom}_A(M \otimes_A N, L)$$
.

First, we define a $\tilde{\psi}$: $\operatorname{Hom}_A(M, \operatorname{Hom}_A(N, L)) \to \operatorname{Hom}_A(M \times N, L)$, if $g \in \operatorname{Hom}_A(M, \operatorname{Hom}_A(N, L))$ then $\tilde{\psi}(g)(x, y) := g(x)(y)$. $\tilde{\psi}(g)$ is a bilinear morphism, so we can define $\psi(g)$ as the unique morphism in $\operatorname{Hom}_A(M \times N, L)$ induced by $\tilde{\psi}$. Let's check that ψ and ϕ are inverse to each other.

If $f \in \text{Hom}_A (M \otimes_A N, L)$, for $x \in M, y \in N$,

$$\psi(\phi(f))(x \otimes y) = \tilde{\psi}(\phi(f))(x,y) = \phi(f)(x)(y) = f(x \otimes y)$$

so $\psi(\phi(f)) = f$ since both sides coincide with all $x \otimes y \in M \otimes N$. If $g \in \operatorname{Hom}_A(M, \operatorname{Hom}_A(N, L))$, for $x \in M, y \in N$,

$$\phi(\psi(g))(x)(y) = \psi(g)(x \otimes y) = \tilde{\psi(g)}(x,y) = g(x)(y)$$

so $\phi(\psi(g)) = g$.

Question 4 (Fonctorialité de Hom). Soient A un anneau commutatif, M, M', N, N' des A-modules. Un morphisme des A-modules

$$f: N \longrightarrow N'$$

induit le morphisme des A-modules

$$f_*: \operatorname{Hom}_A(M,N) \longrightarrow \operatorname{Hom}_A(M,N')$$

 $O\grave{u}$

$$f_*(h) := fh, \quad h \in \operatorname{Hom}_A(M, N)$$

De même, un morphisme des A -modules

$$g: M \longrightarrow M'$$

 $induit\ le\ morphisme\ des\ A\ -modules$

$$g^* : \operatorname{Hom}_A(M', N) \longrightarrow \operatorname{Hom}_A(M, N)$$

 $O\grave{u}$

$$q^*(h') = h'q, h' \in \operatorname{Hom}_A(M', N)$$

(i) Montrez que

$$\operatorname{Id}_{N*} = \operatorname{Id}_{\operatorname{Hom}_{A}(M,N)} = \operatorname{Id}_{M}^{*}$$

(ii) Montrer que si

$$N \xrightarrow{g} N' \xrightarrow{f} N''$$

sont des morphismes des A-modules alors

$$(fg)_* = f_*g_* : \operatorname{Hom}_A(M, N) \longrightarrow \operatorname{Hom}_A(M, N'')$$

(iii) Montrer que si

$$M \stackrel{g}{\longrightarrow} M' \stackrel{f}{\longrightarrow} M''$$

sont des morphismes des A-modules alors

$$(fg)^* = g^*f^* : \operatorname{Hom}_A(M'', N) \longrightarrow \operatorname{Hom}_A(M, N)$$

My Solution. (i) If $f \in \text{Hom}_A(M, N)$, then by definition

$$\operatorname{Id}_{N_*}(f) = \operatorname{Id}_N f = f = f \operatorname{Id}_M = \operatorname{Id}_M^*(f).$$

(ii) If $h \in \text{Hom}_A(M, N)$, then by definition

$$(fg)_*(h) = fgh = f(gh) = f_*g_*(h)$$

(iii) If $h \in \text{Hom}_A(M'', N)$, then by definition

$$(fg)^*(h) = hfg = (hf)g = g^*f^*(h)$$

Question 5. Montrer que

(a) une suite de morphismes de A-modules

$$0 \longrightarrow N' \stackrel{f}{\longrightarrow} N \stackrel{g}{\longrightarrow} N''$$

est exacte ssi pour tout A-module M la suite

$$0 \longrightarrow \operatorname{Hom}_{A}(M, N') \xrightarrow{f_{*}} \operatorname{Hom}_{A}(M, N) \xrightarrow{g_{*}} \operatorname{Hom}_{A}(M, N'')$$

est exacte (la partie "seulement" si a étée fait déjà);

(b) une suite de morphismes de A-modules

$$M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$$

est exacte ssi pour tout A-module N la suite

$$0 \longrightarrow \operatorname{Hom}_{A}(M'', N) \xrightarrow{g^{*}} \operatorname{Hom}_{A}(M, N) \xrightarrow{f^{*}} \operatorname{Hom}_{A}(M', N)$$

est exacte.

My Solution. (a) If we have an exact sequence

$$0 \longrightarrow N' \stackrel{f}{\longrightarrow} N \stackrel{g}{\longrightarrow} N''$$
.

then for $h \in \text{Hom}_A(M, N')$, fh = 0 is equivalent to h = 0

$$\operatorname{kernel}(f_*) = \{ h \in \operatorname{Hom}_A(M, N') | f_*h = fh = 0 \} = \{ h \in \operatorname{Hom}_A(M, N') | h = 0 \};$$

as for $\ker(g_*) = \{k \in \operatorname{Hom}_A(M, N') | g_*k = gk = 0\}$ it is obvious that $\operatorname{image}(f_*) \subset \operatorname{kernel}(g_*)$ and inversely for $k \in \operatorname{kernel}(g_*)$ and $x \in N'$ we define $f_k(x)$ as the only element in set $f^{-1}\{k(x)\}$. $f_k \in \operatorname{Hom}_A(M, N')$ since f and k are morphisms and $f_*(f_k) = k$, so $\operatorname{kernel}(g_*) \subset \operatorname{image}(f_*)$. Hence we prove the existence of the other exact sequence.

If we have an exact sequence

$$0 \longrightarrow \operatorname{Hom}_{A}(M, N') \xrightarrow{f_{*}} \operatorname{Hom}_{A}(M, N) \xrightarrow{g_{*}} \operatorname{Hom}_{A}(M, N''),$$

since $\operatorname{Hom}_A(M, \operatorname{kernel}(f)) \subset \operatorname{kernel}(f_*)$ we have $\operatorname{Hom}_A(M, \operatorname{kernel}(f)) = 0$ and hence $\operatorname{kernel}(f) = 0$; from $g_*f_* = (gf)_* = 0$ we know gf = 0, so $\operatorname{image}(f) = \operatorname{kernel}(g)$. Then we prove the other exact sequence.

(b) If we have an exact sequence

$$M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0.$$

then image(g) = M'' and hg = 0 implies h = 0

$$\operatorname{kernel}(g_*) = \{ h \in \operatorname{Hom}_A(M'', N) | g^*h = hg = 0 \} = 0;$$

moreover $\operatorname{kernel}(f^*) = \{k \in \operatorname{Hom}_A(M,N) | f^*k = kf = 0\}$, for $k \in \operatorname{kernel}(f^*)$ and $y \in M$ we define a g_k from $M'' = \operatorname{image}(f)$ to N such that $g_k(g(y)) = k(y)$. This is well-defined because if $g(y_1) = g(y_2)$ for $y_1, y_2 \in M$ then $y_1 - y_2 \in \operatorname{kernel}(g) = \operatorname{image}(f)$ and $k(y_1 - y_2) = k(y_1) - k(y_2) = 0$ which gives $g_k(g(y_1)) = g_k(g(y_2))$. By definition, we can check that $g_k \in \operatorname{Hom}_A(M, N')$ and $g^*(g_k) = k$. Therefore, $\operatorname{image}(g^*) = \operatorname{kernel}(f^*)$ and we get the other exact sequence.

Assume now we have an exact sequence

$$0 \longrightarrow \operatorname{Hom}_{A}(M'', N) \xrightarrow{g^{*}} \operatorname{Hom}_{A}(M, N) \xrightarrow{f^{*}} \operatorname{Hom}_{A}(M', N).$$

Consider the canonical projection $\pi: M'' \to M''/g(M)$, from $\pi g = 0$ we have $g^*\pi^* = (\pi g)^* = 0$ so $\pi^*(\operatorname{Hom}_A(M''/g(M), N)) \subset \operatorname{kernel}(g^*) = 0$. Then either $\operatorname{Hom}_A(M''/g(M), N) = 0$ or π is trivial, but both imply M''/g(M) = 0. In addition, $(fg)^* = g^*f^* = 0$ we have fg = 0 and hence get the other exact sequence.

Question 6. Soient

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} M'' \longrightarrow 0$$

une suite exacte de A -modules et N un A -module. Mg la suite

$$M'\otimes_A N \stackrel{f\otimes \operatorname{Id}_N}{\longrightarrow} M\otimes_A N \stackrel{g\otimes \operatorname{Id}_N}{\longrightarrow} M''\otimes_A N \longrightarrow 0$$

est exacte.

My Solution. For two A-module N, L, $\operatorname{Hom}_A(N, L)$ is another A-module N, so by functor property of Hom we have an exact sequence:

$$0 \longrightarrow \operatorname{Hom}_{A}\left(M'', \operatorname{Hom}_{A}\left(N, L\right)\right) \xrightarrow{g^{*}} \operatorname{Hom}_{A}\left(M, \operatorname{Hom}_{A}\left(N, L\right)\right) \xrightarrow{f^{*}} \operatorname{Hom}_{A}(M', \operatorname{Hom}_{A}\left(N, L\right)).$$

Since $\operatorname{Hom}_A(M, \operatorname{Hom}_A(N, L))$ is isomorphic to $\operatorname{Hom}_A(M \otimes_A N, L)$ we get:

$$0 \longrightarrow \operatorname{Hom}_{A}(M'' \otimes_{A} N, L) \xrightarrow{\psi g^{*}} \operatorname{Hom}_{A}(M \otimes_{A} N, L) \xrightarrow{\psi f^{*}} \operatorname{Hom}_{A}(M' \otimes_{A} N, L).$$

Use this functor property again, we finish the proof,

$$M' \otimes_A N \stackrel{f \otimes \operatorname{Id}_N}{\longrightarrow} M \otimes_A N \stackrel{g \otimes \operatorname{Id}_N}{\longrightarrow} M'' \otimes_A N \longrightarrow 0.$$

Question 7. Soit A un anneau commutatif, $\mathfrak{p} \subset A$ un idéal premier. Rappelons que $A_{\mathfrak{p}}$ désigne l'anneau de fractions A_S pour $S = A \backslash \mathfrak{p}$. De même, pour un A -module $M, M_{\mathfrak{p}}$ désigne M_S . Montrez que M = 0 ssi $M_{\mathfrak{p}} = 0$ pour tout $\mathfrak{p} \in \operatorname{Spec}(A)$.

My Solution. If M = 0, then obviously $M_{\mathfrak{p}} = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(A)$.

On the other hand, if $M_{\mathfrak{p}}=0$ then $A_{\mathfrak{p}}\otimes_A M=0$ for all $\mathfrak{p}\in\operatorname{Spec}(A)$ by the first question. Consider a morphism between two A-module A and M

$$v:A\to M$$

$$a\mapsto a\cdot 1_M$$

if $M \neq 0$ then $\operatorname{kernel}(v)$ is a proper ideal of A. Let \mathfrak{q} be the maximal ideal contains $\operatorname{kernel}(v)$. We have $\mathfrak{q} \in \operatorname{Spec}(A)$ and $A_{\mathfrak{q}} \otimes_A M \neq 0$ since $\frac{1}{1} \otimes_A 1_M \neq 0$ as its isomorphic image $\frac{1_M}{1}$ is not zero in $M_{\mathfrak{q}}$.