

TP3 – Heart rate + arrhythmias

DEI, IM / ICST

Jorge Henriques, Paulo de Carvalho November 2019

Planning

	Setembro		Outubro						Novembro			Dezembro		
Semana	12	19	3	LATADA	17	24	31	7	14	21	28	5	12	19
Teórica	introducao	HL7	HL7		DICOM	DICOM	Telem	Telem	PPG	Rui	PPG	ECG	ECG	ECG
Prática	introducao	Biosinais	HL7		HL7	DICOM	DICOM	HR	HR	PPG	PPG	PPG	ECG	ECG

21/11 - Theoretical class

Talk by *Eng. Rui Gomes* - Head of information systems - Centro Hospitalar e Universitário Coimbra

Summary

- **1** Objectives
- R peak detection + average beat
- PVC detection
- AF detection
- Datasets/validation & evaluation

1. Objectives

Detection of arrhythmias – ECG analysis

- 1. ECG Segmentation R peak
- 2. Arrhythmias detection
 - PVC Premature Ventricular contractions
 - AF Atrial fibrillation

1. ECG signal (today and next week)

- Physiology
- Heart rate detect R peaks
- Estimation of the average beat

2. Arrhythmias detection (next module)

- PVC detection
- AF detection

Summary

Objectives

2 R peak detection + average beat (today and next week)

PVC detection

AF detection

Datasets/validation & evaluation

R peak detection

- Physiology
- Detect R peaks segmentation of ECG beats
- Pan and Tompkins algorithms

Average beat

Normalization process

R peak detection

- Physiology
- Detect R peaks segmentation of ECG beats
- Pan and Tompkins algorithms

Average beat

Normalization process

1. Physiology – heart function

- Heart's role is basically to provide oxygen to the body organs.
 - How it works?
 - Myocardium, valves, septum, atria, ventricles, ...
 - Large circulation Systemic circuit
 - Small circulation Pulmonary circuit

1. Physiology – cardiac cycle

Systolic = contraction Diastolic = relaxation

iso-electric

ECG ?Register of the electrical activity of the heart

Conduction system

node

1. Physiology – main waves and intervals

Main waves

Atrial activity

P wave

Ventricular activity

- QRS complex
- T wave

Intervals:

Atrial activity

PR interval

Ventricular activity

• QRS, QT, ST intervals

1. Physiology – normal rhythm

Normal rhythm

- 60-100 beats / min
- P waves before the QRS complex
- PR interval [0.12 0:20] seconds, and approximately constant
- QRS interval [0.06 0.12]

Abnormal rhythm

R peak detection

- Physiology
- Detect R peaks segmentation of ECG beats
- Pan and Tompkins algorithms

Average beat

Normalization process

2. R peak detection

Typically involves the R peak detection

- Number of Rpeaks = number of beats
- Number of beats compute heart rate

Final goal

2. R peak detection

Detection of R peaks

- Can be done in several domains:
 - Time: typical parameters
 - Frequency: Fourier, ...
 - Time-frequency: wavelets

Several Algorithms/ techniques

- Based on derivatives
- Wavelets
- Neural networks
- Genetic algorithms
- Morphological operators
- ...
- Energy detection: Pan-Tompkins algorithm

Off-line / on-line (real-time)

- Pan Tompkins (1985)
- Key idea: detecting energy levels
 - Pan J. and J. Tompkins,
 - A Real-Time QRS Detection Algorithm,
 - IEEE Transactions Biomedical Engineering, 32, pp 230-236, 1985.

- Instants of higher energy R peak
- It consists of two phases
 - A. Signal energy estimation
 - B. Identification of energy values above a given threshold.

18

Main phases

{jh, carvalho}@dei.uc.pt

20

1. Band Pass Filter

- Filter frequency components in which the *QRS complex is more significant*
- Eliminate the influence of P and T waves, as well as other components (noise, for example)
- The range [5-15] Hz is a common option

- It requires the design of a digital filter
 - Digital filters (first class)

2i. Differentiation

- QRS peaks having the highest variation in the signal,
- Differentiation highlight the presence of the QRS complex

$$der(y(k) \approx y(k+1) - y(k)$$

- 2ii. Potentiation (square)
 - Nonlinear operator
 - Guarantee that data values are positive

$$y(k) \to y(k)^2$$

3. Moving Average

- Removes "multiple waves", so that only the most significant wave is taken into account
- Usually implemented with a digital filter!
 - Moving average

$$x(k) = \frac{1}{N} \sum_{i=0}^{N-1} x(k-i)$$

B - Threshold

- After determining the energy of the signal, a threshold should be established:
 - If energy is greater than the threshold **QRS detection**
 - If energy is lower than the threshold not a peak

■ 1. ECG

load ecg.dat

1. filter passband

■ 1. lowpass filter (wc = 25)

```
order = 4;
wc = 25;
fc = wc / (0.5 * fs);
[b, a]=butter(order, fc);
e1 = filter (b, a, ECG);
```


■ 1. High pass filter (wc = 5)

```
order = 4;
wc = 5;
fc = wc / (0.5 * fs);
[b,a] = butter(order fc, 'High')
e2 = filter (b, a, e1);
```


2. Differentiation + potentiation (square)

```
e3 = diff(e2);
e4 = e3.^2;
```


2. Differentiation + potentiation (square)

```
e3 = diff(e2);
e4 = e3.^2;
```


3. Moving Average

```
timeWindow = 0.2;
b = (1/N)*ones (1, N);
a = 1;
e5 = filter (b, a, e4);
```


Hypotheses / parameters

0.01 -

Threshold (Thresholds)

```
threshold = 0.7 * mean (e5)
```

Additional rules

From a physiological perspective it is impossible that a peak occurs before a certain time interval

pause = 0.3 seconds

Energy and detection threshold

- ECG / Signal energy
 - Note the delay!
 - Due to signal processing

Implication - Back search

- Filters necessarily introduce delays in the signal processing process
- Once detected the peak energy (in power signal) we need to search the QRS peak in the original ECG – considering a range of time before the energy peak

```
back = 0.2 seconds
```

• Alternative: use of filtfilt(.) matlab function insted filter(.)

- Finally
 - Beats / min =?
 - online: Average of the last R peaks (typically around last 5 or 7 beats)

■TP – final goal

++ main_ecgRpeak.m

Data sets

Data (Ecg's)

Collected in the first class.

DATPVC (250 Hz)

- DAT.ecg signal
- DAT.ind R peaks indexes

Validation

- **TP** true positive
- peak correctly detected
- **FP** false positive
- peak identified incorrectly
- FN false negative
- peak not identified

TN

- no sense!!!

++ main_RpeakAverage.m

Modifications/adaptations

- Several algorithms (<u>thousands</u>!) have been developed based on the detection of energy.
- The fundamental difference between them?
 - In specific parameters (filters, ...)
 - Mainly in determining the Limiar (Threshold)
 - The original algorithm (Pan & Tompkins) considers an adaptive thresholds!

Improvements

- Threshold can be computed considering N beats instead of all signal
- Sliding window approach

Other ideas ??

• Fell free to propose /test new ideas!

R peak detection

- Physiology
- Detect R peaks segmentation of ECG beats
- Pan and Tompkins algorithms

Average beat

Normalization process

{jh, carvalho}@dei.uc.pt

42

Estimate the average beat from a signal

- 1. Synchronization of all beats
 - Using R peak
- 2. Normalization
 - Duration
 - Amplitude
- 3. Average

Estimate the average beat from each signal

- 1. Synchronization R peak
- 2. Normalization
 - Same duration = mean of all beats duration (computed for all signal)
 - 1/3 auricular activity
 - 2/3 ventricular activity

Estimate the average beat of an individual from a signal

- 1. Synchronization R peak
- 2. Normalization
 - Amplitude

```
mean(beat) = 0
std(beat) = 1
```


Estimate the average beat of an individual from a signal

• 3. Average of all normalized beats

Improvements

- Iterative process
- Consider only the beats that are "more similar" with the average

Other ideas ??

• Fell free to propose /test new ideas!

Conclusions

- 1. R peak
 - Compute Rpeaks / heart beat
 - Validate with DATPVC

2. Average beat

NO SUBMISSION / EVALUATION
This work will be used in the arrhythmias