Homework 3

1. (Page 37 of B&T) Let $S^n(r)$ be the sphere of radius r in \mathbb{R}^{n+1} . Let

$$\omega = \frac{1}{r} \sum_{i=1}^{n+1} (-1)^{i-1} x_i dx_1 \cdots \widehat{dx_i} \cdots dx_{n+1}$$

be an *n*-form. (The hat denotes omission, i.e. $dx_1\widehat{dx_2}dx_3=dx_1dx_3$.)

- (a) Compute $\int_{S^n(1)} \omega$. (There might be a clever way to do this but at some point you have to really compute an integral.) Use your computation to conclude that ω is not an exact form.
- (b) Think of r the radius function on $\mathbb{R}^{n+1} \setminus \{0\}$. Show that $dr \wedge \omega = dx_1 \dots dx_n$.
- (c) B&T claim that your answer to the first part gives you a generator of $H^2(S^2)$. Explain why and give a formula for the generator of $H^n(S^n)$.
- 2. (Page 38 of B&T) Show that the map π_* in the proof of the Poincarèlemma is a chain map.
- 3. Compute the cohomology groups (regular and compactly supported) of the cylinder $S^1 \times \mathbb{R}$ and the open Mobius strip, i.e. the twisted $S^1 \times \mathbb{R}$. Do not use a Künneth formula.
- 4. Let $f: \mathbb{R}^m \to \mathbb{R}^m$ be a proper map. In class showed that $\deg(f) = \sum_{p \in f^{-1}(q)} \pm 1$ where the signs depend on p.
 - (a) Show that if $f \simeq g$ then $\deg(f) = \deg(g)$ using differential forms.
 - (b) The <u>degree of f mod two</u> is $\deg(f) \mod 2$. Give another proof that the degree mod two is homotopy invariant as follows. Let F be a homotopy between f and g. Consider the restriction of F to $\mathbb{R}^m \times [0,1]$. Study $F^{-1}(q)$. (To get started: what sort of space is $F^{-1}(q) \cap \mathbb{R}^m \times \{t\}$ for $t \in [0,1]$?)
- 5. Degree examples:
 - (a) The unit circle in \mathbb{C} is the set ||z|| = 1. The map $z \mapsto z^k$ for $k \in \mathbb{N}$ induces a smooth map $S^1 \to S^1$. Compute the degree of this map.
 - (b) A complex polynomial p(z) induces a smooth map $\mathbb{C} \to \mathbb{C}$. Show that the degree of this map is the degree of the polynomial.
 - (c) (The linking number) Let M and N be disjoint manifolds in \mathbb{R}^{r+1} . (We haven't talked much about embedded manifolds. You can take M to be a subspace of \mathbb{R}^{r+1} so that each $p \in M$ has a neighborhood U so that $U \cap M$ is diffeomorphic to \mathbb{R}^m .) Define

$$\lambda \colon M \times N \to \mathbb{R}^{r+1}$$

by

$$\lambda(x,y) = \frac{x-y}{\|x-y\|}.$$

Verify that $\lambda(x,y)$ lands in the unit sphere in \mathbb{R}^{r+1} for any x and y. Show that $\lambda(x,y)=-\lambda(y,x)$.

6. Let M be a connected manifold of dimension n. A $\underline{\text{smooth curve in } M}$ is a smooth map $[0,1] \to M$. A $\underline{\text{smooth loop in } M}$ is a smooth map $\gamma \colon [0,1] \to M$ so that $\gamma(0) = \gamma(1)$. (Of course this is equivalent to a smooth map $S^1 \to M$.) Show that if M is simply-connected then $H^1(M) = 0$.