Chapitre 3 : Couches du modèle TCP/IP

3.1. Couche physique

Signaux

- Signaux analogiques
 - Variant de façon continue dans le temps

- Signaux numériques
 - Variant de façon discontinue dans le temps

■ En informatique signaux numériques binaires 0 ou 1

Transmission des bits

- Signaux binaires (suite de 0 et de 1)
- Codage des signaux
 - Permet de traduire en signal électrique (tension) les bits d'une suite numérique
 - Le principe consiste donc à associer à chaque bit 0 ou 1 un signal $S_0(t)$ ou $S_1(t)$ d'une durée égale à l'émission d'un temps bit
- Trois types de codage
 - Codage NRZ
 - Codage RZ
 - Codage Manchester
- Il existe d'autres codages

Code NRZ

- $0 \rightarrow Signal de OV$
- \square 1 \rightarrow Signal de 1V
- Pas de transitions lors de longues séquences 0 ou 1

Code RZ

- $0 \rightarrow Signal de OV$
- □ 1 → Signal de 1V et retour à 0 sur la demi-période
- Pas de transitions lors de longues séquences 0

Code Manchester

- □ 0 → Signal de 1V et retour à 0 sur la demi-période
- □ 1 → Signal de OV et montée à 1 sur la demi-période
- Transitions lors de longues séguences de 0 ou 1

Activité 1

- On considère le signal s(t) = 2t + 3 pour $t \in [2; 4]$ et $T_e = 0, 5$
 - Tracer la courbe s(t)
 - Calculer les valeurs de s(t)
 - Convertir ces valeurs en binaires et donner la séquence binaire à transmettre
 - Donner le code NRZ
- A la réception les bits 1, 8 et 12 sont faussés.
 - Donner les valeurs binaires en réception
 - □ Tracer le signal reçu et comparer par rapport à s(t)

3.2. Couche Liaison de données

Couche liaison de données

- Regroupe les bits reçus de la couche physique sous forme de trames
- Détecte et corrige, si possible, les erreurs dues au support physique et signale à la couche réseau les erreurs irrécupérables
 - Erreurs de bits erronées, duplication, perte
- Identification des sources et destinataires
 - □ Adressage MAC (hexadécimal → 6 octets)
 - Exemple: 0A-00-27-BD-53-A1
- Protocoles de couche liaisons de données
 - Ethernet filaire (IEEE 802.3)
 - Ethernet sans fil (IEEE 802.11)

Ethernet filaire et CSMA/CD

- Repose sur le principe du CSMA/CD (Carrier Sense Multiple Acces / Collision Detection)
- Carrier Sense Multiple Access
 - S'assurer que le support est libre
 - Transmission et réception sur le même support
- Collision Detection
 - Détecter une collision et stopper la transmission
 - Augmentation d'amplitude du signal (collision)

CSMA/CD : Collisions

Pour assurer qu'un paquet est transmis sans collision, un hôte doit être en mesure de détecter une collision avant la fin de la transmission

Événements:

t=0: Hôte A débute l'envoi d'un paquet. t=PROP--: juste avant que le premier bit atteigne B, l'hôte B teste la ligne, n'entend rien et commence à émettre

t=*PROP*-: Une collision se produit vers l'hôte B

t=*PROP*: L'hôte B reçoit des données alors qu'il est en train d'émettre, il détecte donc la collision t=2*PROP*-: L'hôte A reçoit des données alors qu'il est en train d'émettre, il détecte donc la collision.

Université de Thiès Réseaux locaux

Format d'une trame Ethernet

Préambule	Délimiteur de début	Adresse destination	Adresse source	Туре	Informations	FCS
7 octets	1 octet	6 octets	6 octets	2 octets	46 à 1500 octets	4 octets

- 1. Préambule: train de bit pour synchroniser le récepteur à l'horloge de l'émetteur
- 2. Délimiteur de début: indique le début de la trame
- 3. Adresse destination: 48-bit pour une adresse globale unique assignée par le constructeur :
- 4. Adresse source: Adresse source 48 bits
- 5. Type: Indique le protocole de la couche réseau encapsulé dans les données (e.g. IP = 0x0800)
- 6. Informations: Données utilisateurs
- 7. Frame CheckSum : code détecteur d'erreur. Si le FCS est faux alors la trame est rejetée

Université de Thiès Réseaux locaux

Ethernet sans fil et CSMA/CA

 Toute nouvelle station voulant émettre écoute le support radio

S'il est occupé la transmission est différée

 Si le support est/ou redevient libre, alors la transmission est autorisée

Il y a un risque de collisions

 La détection d'une collision est repérée :

 En cas de non réception d'un message appelé acquittement (ACK) au bout d'un certain temps (timeout)

Modes de communication

Deux modes de communication

- Mode ad hoc
 - Appelé aussi IBSS (Independant Basic Set Service)
 - Les machines communiquent directement entre elles sans l'intermédiaire d'un équipement
- Mode infrastructure
 - Appelé aussi BSS (Basic Set Service)
 - Les machines communiquent par l'intermédiaire d'un équipement d'interconnexion

3.3. Couche réseau

Couche réseau

- La couche réseau propose deux mécanismes :
 - L'adressage IP qui consiste à fournir à chaque équipement une adresse afin de l'identifier
 - Le routage qui est le processus permettant d'acheminer des informations d'une source vers une destination
 - Les données reçues de la couche liaison de données sont regroupés sous forme paquets
- Protocole de la couche réseau
 - IP (Internet Protocol)
- Equipements d'interconnexion
 - Routeurs

Adressage IP

- Adresses IP
 - Afin d'identifier les machines sur Internet
 - Constituée de 32 bits ou 4 octets
 - Chaque octet est représenté en par un entier dont la valeur maximale est 255
- Se décompose en deux grandes parties
 - Une partie qui identifie un réseau
 - Une partie qui identifie une machine dans un réseau

Il existe cinq (05) classes d'adresses IP

Classes d'@IP

Intervalles pour les classes d'@IP

- Classe A
 - □ De [1.0.0.0; 127.255.255.255]
 - Ex: 10.23.15.1
- Classe B
 - De [128.0.0.0; 191.255.255.255]
 - □ Ex: 134.214.145.24
- Classe C
 - De [192.0.0.0; 223.255.255.255]
 - □ Ex: 193.56.21.214
- Classe D pour le multicast
 - De [224.0.0.0; 239.255.255.255]
- Classe E réservée

Quelques adresses spéciales

- Il existe des plages d'adresses privées pour des utilisations spéciales
 - Adresses non utilisables sur Internet
 - Adresses pour réseaux locaux (non routables)

□ 10.0.0.1 à 10.255.255.254

□ 172.16.0.1 à 172.31.255.254

□ 192.168.0.1 à 192.168.255.254

- Adresses de tests

□ 127.0.0.1 à 127.255.255.255

- Obtenir l'@IP machine
 - □ Linux → ifconfig Windows → ipconfig)

Récapitulatif

Classe	Préfixe	Net-id	CIDR	Masque standard
Α	0	Bits de 1 à 8	/8	255.0.0.0
В	10	Bits de 1 à 16	/16	255.255.0.0
С	110	Bits de 1 à 24	/24	255.255.255.0
D	1110	Réservé		Réservé
E	1111	Réservé		Réservé

Masques de réseaux standards

- Une adresse IP est décomposée en deux parties
 - Une partie permettant d'identifier l'adresse du réseau (Net-id)
 - Un partie permettant d'identifier une machine ou une interface dans ce réseau (Host-id)
 - Deux machines ayant le même Net-id sont sur le même réseau physique

Net-id Host-id

- En fonction de la classe de l'adresse IP, on peut en déduire le nombre de bits dans la partie Net-id
- Le masque est obtenu en mettant tous les bits de la partie Net-id à 1 et ceux de la partie Host-id à 0

Adresse de réseau et de broadcast

- L'adresse de broadcast permet de contacter toutes les machines d'un réseau.
 - Elle est obtenue en mettant tous les bits de la partie Host-ID à 1
 - Exemple : Donner les adresses de broadcast
 - De 192.168.10.0/24
 - De 134.214.0.0/19
- L'adresse de réseau est obtenue en mettant tous les bits de la partie Host-ID à 0
 - Quelle est l'adresse de réseau de la machine 172.16.192.5 sachant que son masque de sous réseau est /18

Masques de sous réseaux

- Le masque de sous réseaux permettent de diviser des réseaux de classe A, B ou C en sous réseaux
- Des bits de la partie Host-ID sont empruntés pour un découpage en sous réseaux

Net-id Bits Host-id

- Ainsi on augmente le nombre de sous réseaux tout en diminuant le nombre de machines par sous réseaux
 - Les sous réseaux limitent les domaines de diffusion
 - Organisation plus structurée du réseau

Activité 2

- On considère l'adresse 134.214.15.0/24
 - Quelle est la classe de cette adresse ?
 - On désire créer 4 sous-réseaux. Combien de bits faut-il emprunter à la partie réseau?
 - Quel est le masque de chacun des sous-réseaux ?
 - Combien de machines peut-on avoir au maximum par sous-réseau?
 - Donner l'adresse des quatre sous-réseaux.
 - Remplir le tableau ci-dessus :

Adresse du SR	Première adresse utilisable	Adresse de diffusion du SR

Le routage

- L'équipement qui sert transmettre des informations entre une source et une destination au niveau de l'Internet est appelé : <u>le routeur</u>
- Un routeur peut posséder plusieurs ports.
 Le processus permettant de choisir le port de sortie en fonction de certaines informations est appelé <u>le routage</u>
- Lors du processus du routage seul la partie Netid (partie réseau) est analysée par le routeur
- Le routage sur l'Internet utilise la commutation de paquets
 - Division des messages en des petit paquets indépendants les uns des autres

Architecture interne d'un routeur

Routeur

Un problème simple !!!

C'est quoi « router »?

Algorithmes de routage

- Algorithme du routage statique
 - Indication manuelle (par l'administrateur) du chemin a emprunter vers le destinataire
- Algorithme de routage dynamique
 - Calcul automatique des meilleures routes vers le destinataire
 - Routage à vecteur de distance
 - Traverser les moins de routeurs possibles
 - Routage à états de liens
 - Dépend de la métrique du lien
 - Métrique
 - Valeur entière indiquant la qualité d'un lien. Plus cette valeur est faible plus la route est meilleure

Routage statique

RD: Vecteur de distance

En cas de panne de L1?

RD: Etats de lien

- $\square M\acute{e}trique(L_i) = \frac{100}{B(L_i)}$
- B(L1) = 2, B(L3) = 20, B(L6) = 50, B(L4) = 25,
 B(L2) = 10, B(L5) = 2
- □ Calcul des métriques ? Chemin emprunté de A→C ?

Activité 3

- Soit le réseau composé de 4 routeurs (A, B, C et D)
 - Les liaisons pondérées suivantes : p[AB] = 2, p[AC]
 = 3, p[BC] = 2, p[CD] = 3 et p[BD] = 3
 - Représenter la topologie du réseau.
- L'algorithme à vecteur de distance est utilisé :
 - Donnez les tables de routage de chacun des routeurs
 - Quelle modification observe-t-on si p[CD] = 10
- L'algorithme à état de lien est utilisé :
 - Donnez les tables de routage de chacun des routeurs
 - Quelle modification observe-t-on si p[CD] = 10
- Conclure.

3.4. Couche transport

Les protocoles TCP/UDP

- Ce sont des protocoles de la couche 4
 - (Couche Transport)
- Il existe deux principaux protocoles
 - TCP: Mode connecté
 - UDP : Mode non connecté
- Les protocoles de transport gèrent la perte des segments et leur réorganisation
- Elle se charge également de multiplexage : envoyer les données aux applications appropriées
- Un numéro de port permet de distinguer les applications utilisées

Port TCP/IP

- Un numéro de port associé à une application
 - Codé sur 16 bits
 - Combinaison @IP+port est appelé socket
- En résumé
 - Une adresse IP identifie une machine
 - Un port identifie une application particulière
- Ports
 - 0 à 1023 réservés à des applications serveurs
- Ports par défaut
 - FTP (21), Telnet (23), SMTP (25), DNS (53), HTTP (80)

Diagramme UDP vs TCP

UDP

- Envoi simple sans phase de connexion
- Pas de gestion de pertes des données (pas de détection d'erreurs possible, de retransmissions)

TCP

- Phase de demande de connexion DC
- Confirmation de connexion
- Envoi des données
- Une en-tête est ajoutée pour réorganiser les donnés (numéro de séquence)
- AcquittementACK
- Phase de demande de connexion DDC
- Confirmation de connexion

Activité 3

- On souhaite transférer 8 segments d'une source vers une destination. Les segments numéros 4 et 7 sont perdus durant leur transmission.
- Représenter le diagramme de transmission
 - Dans le cas d'une transmission UDP
 - Dans le cas d'une transmission TCP

3.5. Couche Application

Les services réseaux

- Ce sont des protocoles de la couche application
- Ce sont les applications de l'utilisateur
 - Le réseau est transparent pour l'utilisateur qui n'a pas connaissance des autres couches
- Intervention de trois acteurs
 - Client, Serveur et le Réseau
- Nous présenterons succintement
 - DHCP
 - DNS
 - HTTP
- Il existe d'autre protocoles applicatifs
 - □ TELNET, TFTP, IRC, ETC...

DHCP

- Protocole permettant de configurer automatiquement des stations IP
 - (@IP, masque, passerelle par défaut, serveurs DNS etc.)
 - Fonctionne avec UDP sur le port 67 et 68
- Les machines clientes émettent des requêtes
 DHCP en mode broadcast
- La machine serveur répond en envoyant son adresse IP pour que les machines puissent le localiser
- La machine cliente peut alors émettre une requête envers le serveur et obtenir ses paramètres de configuration

Fonctionnement DHCP

- Mécanisme client/serveur
- Déroule en quatre étapes

IP address: 192.168.10.15 Subnet mask: 255.255.255.0 Default gateway: 192.168.10.1 DNS servers: Lease Time: 3 days

DNS

- Protocole permettant de faire la résolution des noms des adresses en adresses IP
 - Fonctionne sur le port 53

Les requêtes sont envoyés à un ou plusieurs

Hiérarchie DNS

HTTP

- Protocole permettant de récupérer des pages web auprès de serveurs web
- Composantes
 - Client web (navigateur)
 - Serveur web (contenant les pages web à consulter)
- Le client émet des requêtes envoyés au serveur qui lui répond en lui rendant les pages demandées
- Fonctionne avec TCP sur le port 80 par défaut

