SEMANTIC-AWARE KNOWLEDGE PRESERVATION FOR ZERO-SHOT SKETCH-BASED IMAGE RETRIEVAL

JOHNS HOPKINS
UNIVERSITY

LE HUAWEI

Qing Liu¹ Lingxi Xie^{1,2} Huiyu Wang¹ Alan L. Yuille¹

¹Johns Hopkins University ²Noah's Ark Lab, Huawei Inc.

https://github.com/qliu24/SAKE

Benchmark Loss

$$-\log \frac{\exp(\boldsymbol{\alpha}_{y_i}^{\top} \mathbf{x}_i + \beta_{y_i})}{\sum_{k \in \mathcal{C}^{S}} \exp(\boldsymbol{\alpha}_{k}^{\top} \mathbf{x}_i + \beta_{k})}$$

Teacher Loss

$$\sum_{m \in \mathcal{C}^{O}} -q_{i,m}^{t} \log \frac{\exp(\boldsymbol{\zeta}_{m}^{\top} \mathbf{x}_{i} + \eta_{m})}{\sum_{l \in \mathcal{C}^{O}} \exp(\boldsymbol{\zeta}_{l}^{\top} \mathbf{x}_{i} + \eta_{l})}$$

SAKE Loss

$$\sum_{m \in \mathcal{C}^{O}} -q_{i,m} \log \frac{\exp(\boldsymbol{\zeta}_{m}^{\top} \mathbf{x}_{i} + \eta_{m})}{\sum_{l \in \mathcal{C}^{O}} \exp(\boldsymbol{\zeta}_{l}^{\top} \mathbf{x}_{i} + \eta_{m})}$$

More Analysis & Conclusion

- We investigate the problem of ZS-SBIR from the viewpoint of domain adaptation.
- SAKE helps preserve previously acquired knowledge while finetuning a pre-trained model to improve the model's transfer ability.
- The performance gain of SAKE is mainly from the more properly structured feature embedding for photo images.

QUANTITATIVE RESULTS

ZS-SBIR performance comparison of SAKE and existing methods.

Method	Dimension	TU-Berlin Ext.		Sketchy Ext.		Sketchy Ext. (Split2)	
Ivietitou	Difficitision	mAP@all	Prec@100	mAP@all	Prec@100	mAP@200	Prec@200
ZSH [Yang et al., 2016]	64†	0.139	0.174	0.165	0.217	_	_
ZSIH [Shen et al., 2018]	$64\dagger$	0.220	0.291	0.254	0.340	_	_
EMS [Lu et al., 2018]	512	0.259	0.369	_	_	_	_
	$64\dagger$	0.165	0.252	_	_	_	_
CAAE [Yelamarthi et al., 2018]	4096	_	_	0.196	0.284	0.156	0.260
CVAE [Yelamarthi et al., 2018]	4096	_	_	_	_	0.225	0.333
SEM-PCYC [Dutta and Akata, 2019]	64	0.297	0.426	0.349	0.463	_	_
	64†	0.293	0.392	0.344	0.399	_	_
CALE	512	0.475	0.599	0.547	0.692	0.497	0.598
SAKE	64†	$\boldsymbol{0.359}$	0.481	$\boldsymbol{0.364}$	0.487	0.356	0.477

• ZS-SBIR and ZS-PBIR mAP@all for different backbone models with different loss terms.

BackBone	ZS-SBIR				ZS-PBIR			
	pretrained	\mathcal{L}_{B}	$\mathcal{L}_{\mathrm{B}} + \mathcal{L}_{\mathrm{T}}$	$\mathcal{L}_{\mathrm{B}} + \mathcal{L}_{\mathrm{SAKE}}$	pretrained	\mathcal{L}_{B}	$\mathcal{L}_{\mathrm{B}} + \mathcal{L}_{\mathrm{T}}$	$\mathcal{L}_{\mathrm{B}} + \mathcal{L}_{\mathrm{SAKE}}$
AlexNet	0.074	0.267	0.275	0.275	0.386	0.393	0.427	0.432
ResNet-50	0.081	0.352	0.395	0.413	0.640	0.542	0.666	0.670
CSE-ResNet-50	0.068	0.353	0.426	0.434	0.635	0.558	0.673	0.683

ANALYSIS

Knowledge Preservation

	ImageNet Acc@1 for Deep Feature Linear Classifiers					
	pretrained	finetuned	SAKE			
AlexNet	56.29	45.54	51.39			
SE-ResNet-50	77.43	59.56	67.44			

Retrieval Examples

• t-SNE

