Sorting in linear time

Counting Sort

Sont in linear time an away A of positive integens if the muximum value k in A k = O(h)

How? any Idea?

As 1 3 4 5 5 6

k = 6

terrible opproach (A)

for i: • to k

Scum A to counti

(-) (k.n) time

Counting Sort
$$*$$
 (A, k)

Let C (O, k) be a new amony

for $i = 0$ to k

(CA) = 0

For $i = 1$ to A. Length

 C (AC) $i = 1$

Por $i = 0$ to k

Por $i = 0$ to k

Por $i = 0$ to k
 C (AC)

 $i = 0$
 $i = 0$

Radix Sout

CS sorts in
$$\Theta(n)$$
 if $k = O(n)$

RS sorts in $\Theta(n)$ if $k = O(n^c)$

for some constant c
 $CS \mid RS$
 $1000 \mid 1000$
 $K \mid 3000 \mid (1000)^{4}$

process digits from most to least significant intuitive but
$$10^{d}$$
 different group to deal with $\frac{329}{457}$ $\frac{329}{457}$ $\frac{329}{457}$ $\frac{355}{457}$ $\frac{436}{457}$ $\frac{436}{457}$ $\frac{436}{457}$ $\frac{436}{457}$ $\frac{657}{720}$ $\frac{657}{720}$ $\frac{720}{355}$ $\frac{720}{355}$

the digits from beast to most significal.

no groups!

839 657

355

formul proof is by induction on the number of eights

Rudix Sort (A, d)Number $\frac{[3]4|2|y|7}{ic 54321}$ Por i = 1 + 6d

839

on 1 = 1 to 2

use a stubble sonting algorithm

to sort A on digit i

RS take $\Theta(d(n+k))$ time where k is maximum value for a digit

REAL LIFE
3664 6140

64 bits number 16 bits each digit

4 Founds of counting sort array C has size $2^{16} = 65536$ $\Theta(n + 655)6)$ time for each counting sort $= \Theta(n)$