Lexical Translation Models 11

January 29, 2013

Last Time ...

$$p(Translation) = p(Alignment, Translation)$$
Alignment

Last Time ...

$$p(\textbf{Translation}) = \sum p(\textbf{Alignment}, \textbf{Translation})$$

$$Alignment$$

$$= \sum p(\textbf{Alignment}) \times p(\textbf{Translation} \mid \textbf{Alignment})$$
 Alignment

Last Time ...

$$p(\textbf{Translation}) = \sum p(\textbf{Alignment}, \textbf{Translation})$$

$$Alignment$$

$$p(\mathbf{e} \mid \mathbf{f}, m) = \sum_{\mathbf{a} \in [0,n]^m} p(\mathbf{a} \mid \mathbf{f}, m) \times \prod_{i=1} p(e_i \mid f_{a_i})$$

$$p(\mathbf{e} \mid \mathbf{f}, m) = \sum_{\mathbf{a} \in [0, n]^m} p(\mathbf{a} \mid \mathbf{f}, m) \times \prod_{i=1}^m p(e_i \mid f_{a_i})$$

$$\prod_{i=1}^m p(e_i \mid f_{a_i}, f_{a_{i-1}})$$

$$\prod_{i=1}^m p(e_i \mid f_{a_i}, f_{a_{i-1}})$$

$$\prod_{i=1}^m p(e_i \mid f_{a_i}, e_{i-1})$$

i=1

$$p(\mathbf{e} \mid \mathbf{f}, m) = \sum_{\mathbf{a} \in [0, n]^m} p(\mathbf{a} \mid \mathbf{f}, m) \times \prod_{i=1}^m p(e_i \mid f_{a_i})$$

$$\prod_{i=1}^{m} p(e_i \mid f_{a_i}, f_{a_{i-1}})$$

$$\prod_{i=1}^{m} p(e_i \mid f_{a_i}, f_{a_i-1})$$

$$\prod_{i=1}^{m} p(e_i \mid f_{a_i}, e_{i-1})$$

$$\prod_{i=1}^{m} p(e_i, e_{i+1} \mid f_{a_i})$$

What is the problem here?

$$p(\mathbf{e} \mid \mathbf{f}, m) = \sum_{\mathbf{a} \in [0, n]^m} p(\mathbf{a} \mid \mathbf{f}, m) \times \prod_{i=1}^m p(e_i \mid f_{a_i})$$

$$= \sum_{\mathbf{a} \in [0,n]^m} \frac{\prod_{i=1}^m \frac{1}{1+n}}{\prod_{i=1}^m p(e_i \mid f_{a_i})} \times \prod_{i=1}^m p(e_i \mid f_{a_i})$$

$$p(\mathbf{e} \mid \mathbf{f}, m) = \sum_{\mathbf{a} \in [0, n]^m} p(\mathbf{a} \mid \mathbf{f}, m) \times \prod_{i=1} p(e_i \mid f_{a_i})$$

$$= \sum_{\mathbf{a} \in [0,n]^m} \frac{1}{1+n} \times \prod_{i=1}^m p(e_i \mid f_{a_i})$$

$$p(\mathbf{a} \mid \mathbf{f}, m)$$

$$= \sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1}^m \frac{1}{1+n} p(e_i \mid f_{a_i})$$

$$p(\mathbf{e} \mid \mathbf{f}, m) = \sum_{\mathbf{a} \in [0, n]^m} p(\mathbf{a} \mid \mathbf{f}, m) \times \prod_{i=1} p(e_i \mid f_{a_i})$$

$$= \sum_{\mathbf{a} \in [0,n]^m} \frac{1}{1+n} \times \prod_{i=1}^m p(e_i \mid f_{a_i})$$

$$p(\mathbf{a} \mid \mathbf{f}, m)$$

$$= \sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1}^m \frac{1}{1+n} p(e_i \mid f_{a_i})$$

$$= \sum_{\mathbf{a}\in[0,n]^m} \prod_{i=1}^m p(a_i) \times p(e_i \mid f_{a_i})$$

$$p(\mathbf{e} \mid \mathbf{f}, m) = \sum_{\mathbf{a} \in [0, n]^m} p(\mathbf{a} \mid \mathbf{f}, m) \times \prod_{i=1} p(e_i \mid f_{a_i})$$

$$=\sum_{\mathbf{a}\in[0,n]^m}\prod_{i=1}^m\frac{1}{1+n}\times\prod_{i=1}^m p(e_i\mid f_{a_i})$$

Can we do something better here?

$$= \sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1}^m p(a_i) \times p(e_i \mid f_{a_i})$$

$$p(\mathbf{e} \mid \mathbf{f}, m) = \sum_{\mathbf{a} \in [0, n]^m} \prod_{i=1}^m p(a_i) \times p(e_i \mid f_{a_i})$$

$$p(\mathbf{e} \mid \mathbf{f}, m) = \sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1}^m p(a_i) \times p(e_i \mid f_{a_i})$$

Model 2 =
$$\sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1} p(a_i \mid i,m,n) \times p(e_i \mid f_{a_i})$$

Model 2 =
$$\sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1}^m p(a_i \mid i,m,n) \times p(e_i \mid f_{a_i})$$

- Model alignment with an absolute position distribution
- Probability of translating a foreign word at position a_i to generate the word at position i (with target length m and source length n)

$$p(a_i \mid i, m, n)$$

 EM training of this model is almost the same as with Model I (same conditional independencies hold)

Model 2 =
$$\sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1}^m p(a_i \mid i,m,n) \times p(e_i \mid f_{a_i})$$

natürlich ist das haus klein

Model 2 =
$$\sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1}^m p(a_i \mid i,m,n) \times p(e_i \mid f_{a_i})$$

Model 2 =
$$\sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1}^m p(a_i \mid i,m,n) \times p(e_i \mid f_{a_i})$$

Pros

- Non-uniform alignment model
- Fast EM training / marginal inference

Cons

- Absolute position is very naive
- How many parameters to model $p(a_i \mid i, m, n)$

Model 2 =
$$\sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1}^m p(a_i \mid i,m,n) \times p(e_i \mid f_{a_i})$$

How much do we know when we only know the source & target lengths and the current position?

Model 2 =
$$\sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1} p(a_i \mid i,m,n) \times p(e_i \mid f_{a_i})$$

How much do we know when we only know the source & target lengths and the current position?

Model 2
$$=\sum_{\mathbf{a}\in[0,n]^m}\prod_{i=1}^m p(a_i\mid i,m,n) imes p(e_i\mid f_{a_i})$$

How much do we know when we only know the source & target lengths and the current position?

How many parameters do we need to model this?

Model 2
$$=\sum_{\mathbf{a}\in[0,n]^m}\prod_{i=1}^m p(a_i\mid i,m,n) imes p(e_i\mid f_{a_i})$$

$$h(j, i, m, n) = -\left|\frac{i}{m} - \frac{j}{n}\right|$$

Model 2 =
$$\sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1} p(a_i \mid i,m,n) \times p(e_i \mid f_{a_i})$$

Model 2 =
$$\sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1} p(a_i \mid i,m,n) \times p(e_i \mid f_{a_i})$$

pos in target pos in source $h(j,i,m,n) = -\left|\frac{i}{m} - \frac{j}{n}\right|$

Model 2
$$=\sum_{\mathbf{a}\in[0,n]^m}\prod_{i=1}^m p(a_i\mid i,m,n) imes p(e_i\mid f_{a_i})$$

Model 2
$$=\sum_{\mathbf{a}\in[0,n]^m}\prod_{i=1}^m p(a_i\mid i,m,n) imes p(e_i\mid f_{a_i})$$

Model 2 =
$$\sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1} p(a_i \mid i,m,n) \times p(e_i \mid f_{a_i})$$

$$b(j \mid i, m, n) = \frac{\exp \lambda h(j, i, m, n)}{\sum_{j'} \exp \lambda h(j', i, m, n)}$$

Model 2 = $\sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1} p(a_i \mid i,m,n) \times p(e_i \mid f_{a_i})$

$$b(j \mid i, m, n) = \frac{\exp \lambda h(j, i, m, n)}{\sum_{j'} \exp \lambda h(j', i, m, n)}$$

$$p(a_i \mid i, m, n) = \begin{cases} p_0 & \text{if } a_i = 0\\ (1 - p_0)b(a_i \mid i, m, n) & \text{otherwise} \end{cases}$$

Tuesday, February 19, 13

Words reorder in groups. Model this!

$$p(\mathbf{e} \mid \mathbf{f}, m) = \sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1}^m p(a_i) \times p(e_i \mid f_{a_i})$$

Model 2 =
$$\sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1} p(a_i \mid i,m,n) \times p(e_i \mid f_{a_i})$$

$$p(\mathbf{e} \mid \mathbf{f}, m) = \sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1} p(a_i) \times p(e_i \mid f_{a_i})$$

Model 2 =
$$\sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1} p(a_i \mid i,m,n) \times p(e_i \mid f_{a_i})$$

$$\mathbf{HMM} = \sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1} p(a_i \mid a_{i-1}) \times p(e_i \mid f_{a_i})$$

HMM =
$$\sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1}^m p(a_i \mid a_{i-1}) \times p(e_i \mid f_{a_i})$$

- Insight: words translate in groups
- Condition on previous alignment position
- Probability of translating a foreign word at position a_i given that the previous position translated was a_{i-1}

$$p(a_i \mid a_{i-1})$$

 EM training of this model using forward-backward algorithm (dynamic programming)

HMM =
$$\sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1}^m p(a_i \mid a_{i-1}) \times p(e_i \mid f_{a_i})$$

Improvement: model "jumps" through the source sentence

$$p(a_i \mid a_{i-1}) = j(a_i - a_{i-1})$$

-4	0.0008
-3	0.0015
-2	0.08
-1	0.18
0	0.0881
I	0.4
2	0.16
3	0.064
4	0.0256

 Relative position model rather than absolute position model

HMM =
$$\sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1}^m p(a_i \mid a_{i-1}) \times p(e_i \mid f_{a_i})$$

 Be careful! NULLs must be handled carefully. Here is one option (due to Och):

$$p(a_i \mid a_{i-n_i}) = \begin{cases} p_0 & \text{if } a_i = 0\\ (1 - p_0)j(a_i - a_{i-n_i}) & \text{otherwise} \end{cases}$$

 n_i is the index of the first non-null aligned word in the alignment to the left of i.

HMM =
$$\sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1}^m p(a_i \mid a_{i-1}) \times p(e_i \mid f_{a_i})$$

HMM =
$$\sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1}^m p(a_i \mid a_{i-1}) \times p(e_i \mid f_{a_i})$$

$$j(\delta \mid f)$$

Condition the jump probability on the previous word translated

HMM =
$$\sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1}^m p(a_i \mid a_{i-1}) \times p(e_i \mid f_{a_i})$$

$$j(\delta \mid f)$$

Condition the jump probability on the previous word translated

$$j(\delta \mid f, e)$$

Condition the jump probability on the previous word translated, and **how** it was translated

HMM =
$$\sum_{\mathbf{a} \in [0,n]^m} \prod_{i=1}^m p(a_i \mid a_{i-1}) \times p(e_i \mid f_{a_i})$$

$$\frac{j(\delta \mid f)}{j(\delta \mid C(f))}$$

Condition the jump probability on the previous word translated

$$j(\delta \mid f, e)$$
 $j(\delta \mid \mathcal{A}(f), \mathcal{B}(e))$

Condition the jump probability on the previous word translated, and **how** it was translated

Fertility Models

- The models we have considered so far have been efficient
- This efficiency has come at a modeling cost:
 - What is to stop the model from "translating" a word 0, 1, 2, or 100 times?
- We introduce fertility models to deal with this

IBM Model 3

Fertility

- Fertility: the number of English words generated by a foreign word
- Modeled by categorical distribution $n(\phi \mid f)$
- Examples:

Unabhaengigkeitserklaerung zum = (zu + dem)

0	0.00008
I	0.1
2	0.0002
3	0.8
4	0.009
5	0

0	0.01
I	0
2	0.9
3	0.0009
4	0.0001
5	0

Haus

0	0.01
1	0.92
2	0.07
3	0
4	0
5	0

Fertility

- Fertility models mean that we can no longer exploit conditional independencies to write $p(\mathbf{a} \mid \mathbf{f}, m)$ as a series of local alignment decisions.
- How do we compute the statistics required for EM training?

Fertility

$$p(\mathbf{e} \mid \mathbf{f}, m) = \sum_{\mathbf{a} \in [0, n]^m} p(\mathbf{a} \mid \mathbf{f}, m) \times \prod_{i=1} p(e_i \mid f_{a_i})$$

- Fertility models mean that we can no longer exploit conditional independencies to write $p(\mathbf{a} \mid \mathbf{f}, m)$ as a series of local alignment decisions.
- How do we compute the statistics required for EM training?

EM Recipe reminder

- If alignment points were visible, training fertility models would be easy
 - We would _____ and _____

$$n(\phi = 3 \mid f = Unabhaenigkeitserklaerung) = \frac{\text{count}(3, Unabhaenigkeitserklaerung)}{\text{count}(Unabhaenigkeitserklaerung)}$$

But, alignments are not visible

EM Recipe reminder

- If alignment points were visible, training fertility models would be easy
 - We would _____ and _____

$$n(\phi = 3 \mid f = Unabhaenigkeitserklaerung) = \frac{\text{count}(3, Unabhaenigkeitserklaerung)}{\text{count}(Unabhaenigkeitserklaerung)}$$

But, alignments are not visible

$$n(\phi = 3 \mid f = Unabhaenigkeitserklaerung) = \frac{\mathbb{E}[\text{count}(3, Unabhaenigkeitserklaerung)]}{\mathbb{E}[\text{count}(Unabhaenigkeitserklaerung)]}$$

Expectation & Fertility

- We need to compute expected counts under $p(\mathbf{a} \mid \mathbf{f}, \mathbf{e}, m)$
- Unfortunately p(a | f,e,m) doesn't factorize nicely.:(
- Can we sum exhaustively? How many different a's are there?
 - What to do?

Sample Alignments

- Monte-Carlo methods
 - Gibbs sampling
 - Importance sampling
 - Particle filtering
- For historical reasons
 - Use model 2 alignment to start (easy!)
 - Weighted sum over all alignment configurations that are "close" to this alignment configuration
 - Is this correct? No! Does it work? Sort of.

Pitfalls of Conditional Models

IBM Model 4 alignment

Pitfalls of Conditional Models

IBM Model 4 alignment

Lexical Translation

- IBM Models 1-5 [Brown et al., 1993]
 - Model I: lexical translation, uniform alignment
 - Model 2: absolute position model
 - Model 3: fertility
 - Model 4: relative position model (jumps in target string)
 - Model 5: non-deficient model
- HMM translation model [Vogel et al., 1996]
 - Relative position model (jumps in source string)
- Latent variables are more useful these days than the translations
- Widely used Giza++ toolkit

A few tricks...

A few tricks...

p(e|f)

A few tricks...

p(e|f)

Announcements

- Upcoming language-in-10
 - Thursday:Weston 官话
 - Tuesday: Jon/Austin Русский
- Leaderboard is functional

Rank		Assignments				
	Handle	#0	#1 AER	#3 Spearman's	#2 model score	#4 BLEU
	oracle	8	0			
1	db	16	0.433932			
	baseline	10	0.434484			
2	zero	18	0.434484			
3	Victor	24	0.438705			
	default	9	0.788911			
4	НВН	10				