An intRoduction to R

Ottavia M. Epifania

Erasmus+ Q
Help seminar, Padova, July 2022

University of Padova (IT)

Table of contents

Who aRe you?

Get help

Be tidy

Working directories

Structures in R

The king of data structure: data frames

Data input and output

Programming

Graphics

R for statistical computing

Classical hypothesis testing in R

Generalized Linear Models (GLMs)

Simulations

Course material

NB: This material is based on the lessons by Prof. Florian Wickelmaier Let's all set:

set.seed(999)

Table of Contents

Who aRe you?

Get help

Be tidy

Working directories

Structures in R

The king of data structure: data frames

Data input and output

Programming

Graphics

R for statistical computing

Classical hypothesis testing in R

Generalized Linear Models (GLMs

Simulations

- R is an open source software for statistical computing, graphics, and so much more
- RStudio is the perfect IDE for $\mathtt{R} \to \mathrm{allows}$ for a better, easier use of \mathtt{R}
- R runs on Windows, MacOs, Unix

CalculatoR

```
3 + 2 \# plus
3 - 2 # minus
3 * 2 # times
3 / 2 # divide
sqrt(4) # square root
log(3) # natural logarithm
exp(3) # exponential
Use brackets as you would do in a normal equation:
(3 * 2) / sqrt(25 + 4) # Lokk at me!
R ignores everything after # (it's a comment)
```

Assign

The results of the operations can be "stored" into objects with specific names defined by the users.

To assign a value to an object, there are two operators:

- 1. $x = exp(2^2)$
- $2. X < -\log(2^2)$

The elements on the right are assigned to the object on the left

Careful! R is case sensitive: x and X are two different objects!!!

Variable names

Valid variable names are letters, numbers, dots, underscores (e. g., variable_name)

Variable names cannot start with numbers

Again, R is case sensitive

Table of Contents

Who aRe you?

Get help

Be tidy

Working directories

Structures in R

The king of data structure: data frames

Data input and output

Programming

Graphics

R for statistical computing

Classical hypothesis testing in R

Generalized Linear Models (GLMs

Simulations

R is open source and it used world wide \rightarrow there's a huge community ready to help you

Just copy & paste any error message or warning in Google or ask Google "how to [something] in r"

Ask R to help you! Type ? in your console followed by the name of the function:

?mean()

Will show you the help page of the mean() function

Table of Contents

Who aRe you?

Get help

Be tidy

Working directories

Structures in R

The king of data structure: data frames

Data input and output

Programming

Graphics

R for statistical computing

Classical hypothesis testing in R

Generalized Linear Models (GLMs)

Simulations

Organize your files

R projects are the best way to organize your files (and your workflow)

They allow you to have all your files in a folder organized in sub folders

You don't have to worry about the wording directories because it's all there!

By creating a new project, you can also initialize a Shiny app

Create a new R project

File \rightarrow New project and choose what is best for you (unless you have already initialized a directory for your project, select a new directory):

- R project "basic"
- R package
- Shiny project

and so much more

Take out the trash

The R environment should be always tidy

If it feels like you're losing it, just clean it up:

ls() # list objects in the envrinoment
rm(A) # remove object A from the environment
rm(list=ls()) # remove everything from the environment

Save the environment

It might be useful to save all the computations you have done:

save.image("my-computations.RData")

Then you can upload the environment back:

load("my-Computations.RData")

When to save the environment

The computations are slow and you need them to be always and easily accessible

The best practice is to save the script and document it in an RMarkdown file \rightarrow Reproducibilty!

Table of Contents

Who aRe you?

Get help

Be tidy

Working directories

Structures in R

The king of data structure: data frames

Data input and output

Programming

Graphics

R for statistical computing

Classical hypothesis testing in R

Generalized Linear Models (GLMs)

Simulations

If you choose not to use the $\tt R$ projects (what a bad, bad, bad idea), you need to know your directories:

getwd() # the working directory in which you are right now
dir() # list of what's inside the current working directory
Change your working directory:

setwd("C:/Users/huawei/OneDrive/Documenti/GitHub/RcouRse")

Table of Contents

Who aRe you?

Get help

Be tidy

Working directories

Structures in R.

The king of data structure: data frames

Data input and output

Programming

Graphics

R for statistical computing

Classical hypothesis testing in R

Generalized Linear Models (GLMs)

Simulations

Functions and arguments (pt. I)

Almost everything in R is done with functions, consisting of:

- a name: mean
- a pair of brackets: ()
- some arguments: na.rm = TRUE

```
mean(1:5, trim = 0, na.rm = TRUE)
```

[1] 3

Arguments may be set to default values; what they are is documented in ?mean

Functions and arguments (pt. II)

Arguments can be passed

- without name (in the defined order)
- with name (in arbitrary order) \rightarrow keyword matching mean(x, trim = 0.3, na.rm = TRUE)

No arguments? No problems, just brackets:

ls(), dir(), getwd()

Want to see the code of a function? Just type its name in the console without brackets:

chisq.test

Vectors

Vectors are created by combining together different objects

Vectors are created by using the c() function.

All elements inside the c() function must be separated by a comma

Different types of objects \rightarrow types of vectors:

• int: numeric integers

• num: numbers

• logi: logical

• chr: characters

• factor: factor with different levels

int and num

```
int: refers to integer: -3, -2, -1, 0, 1, 2, 3
months = c(5, 6, 8, 10, 12, 16)
[1] 5 6 8 10 12 16
num: refers to all numbers from -\infty to \infty: -0.2817402, -1.3125596,
0.795184, 0.2700705, -0.2773064, -0.5660237
weight = seq(3, 11, by = 1.5)
[1] 3.0 4.5 6.0 7.5 9.0 10.5
```

logi

Logical values can be TRUE (T) or FALSE (F)

v_logi = c(TRUE, TRUE, FALSE, FALSE, TRUE)

[1] TRUE TRUE FALSE FALSE TRUE

logical vectors are often obtained from a comparison:

months > 12

[1] FALSE FALSE FALSE FALSE TRUE

chr and factor

```
chr: characters: a, b, c, D, E, F
v chr = c(letters[1:3], LETTERS[4:6])
[1] "a" "b" "c" "D" "E" "F"
factor: use numbers or characters to identify the variable levels
ses = factor(c(rep(c("low", "medium", "high"), each = 2)))
[1] low low medium medium high high
Levels: high low medium
Change order of the levels:
ses1 = factor(ses, levels = c("medium", "high", "low"))
[1] low low medium medium high high
Levels: medium high low
```

25

Create vectors

Concatenate elements with c(): vec = c(1, 2, 3, 4, 5)

Sequences:

$$-5:5$$
 # vector of 11 numbers from -5 to 5

$$seq(-2.5, 2.5, by = 0.5)$$
 # sequence in steps of 0.5 from -2.5 to 2.

Repeating elements:

Create vectors II

```
rep(c("condA", "condB"), each = 3)
[1] "condA" "condA" "condA" "condB" "condB"
rep(c("on", "off"), c(3, 2))
[1] "on" "on" "on" "off" "off"
pasteO("item", 1:4)
[1] "item1" "item2" "item3" "item4"
```

Don't mix them up unless you truly want to

$$\begin{array}{l} {\rm int} + {\rm num} \to {\rm num} \\ \\ {\rm int/num} + {\rm logi} \to {\rm int/num} \\ \\ {\rm int/num} + {\rm factor} \to {\rm int/num} \\ \\ {\rm int/num} + {\rm chr} \to {\rm chr} \\ \\ {\rm chr} + {\rm logi} \to {\rm chr} \end{array}$$

Vectors and operations

Vectors can be summed/subtracted/divided and multiplied with one another

```
a = c(1:8)
а
[1] 1 2 3 4 5 6 7 8
b = c(4:1)
b
[1] 4 3 2 1
a - b
[1] -3 -1 1 3 1 3 5 7
```

If the vectors do not have the same length, you get a warning

Vectors and operations PT. II

The function is applied to each value of the vector:

```
sqrt(a)
```

[1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.6

The same operation can be applied to each element of the vector:

```
(a - mean(a))^2 # squared deviation
```

[1] 12.25 6.25 2.25 0.25 0.25 2.25 6.25 12.25

Matrices and arrays

```
Create a 3 \times 4 matrix:
A = matrix(1:12, nrow=3, ncol = 4, byrow = TRUE)
Label and transpose:
rownames(A) = c(paste("a", 1:3)) # colnames()
t(A) # transpose matrix
    a 1 a 2 a 3
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12
```

Matrices and arrays

Matrix can be created by concatenating columns or rows:

```
cbind(a1 = 1:4, a2 = 5:8, a3 = 9:12) # column bind rbind(a1 = 1:4, a2 = 5.8, a3 = 9:12) # row bind
```

Matrices and arrays

```
array(data, c(nrow, ncol, ntab))
my array = array(1:30, c(2, 5, 3)) # 2 x 5 x 3 array
, , 1
    [,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
, , 2
    [,1] [,2] [,3] [,4] [,5]
[1,] 11 13 15 17 19
[2,] 12 14 16 18 20
, , 3
```

33

Work with vectors, matrices, arrays

```
Index elements in vectors: vector_name[position]
weight[2] # second element in vector weight
weight[6] = 15.2 # replace sixth element of weight
weight[seq(1, 6, by = 2)] # elements 1, 3, 5
weight[2:6] # elements 2 to 6
weight[-2] # without element 2
Logic applies as well:
weight[weight > 7] # values greater than 7
weight[weight >= 4.5 & weight < 8] # values between 4.5
                                  # and 8
```

String processing

```
substr(x, start, stop)  # extract substring
grep(pattern, x)  # match pattern (poistion)
grep(pattern, x)  # match pattern (TRUE/FALSE)
gsub(pattern, replacement, x) # replace pattern
pattern = regular expression (?regex):
foo  # match pattern foo
    .*  # match arbitrary character zero or more times
[a-z0-9] # match alphanumeric character
```

Example

Match string that starts with a or b and replace it by its starting letter.

```
gsub("(^[ab]).*", "\\1", c("aaa", "bbc", "cba"))
[1] "a"  "b"  "cba"
```

Work with vectors, matrices, arrays II

```
Index elements in matrices: matrix_name[row, column]
A[2, 3] # cell in row 2 column 3
A[2, ] # second row
A[. 3] # third column
```

Work with vectors, matrices, arrays III

```
Index elements in arrays array_name[row, col, tab]
my_array[2, 1, 3] # cell in 2nd row 1st col of 3rd tab
my_array[, , 3] # 3rd tab
my_array[1, ,2] # 1st row in tab 2
```

Lists

Can store different objects (e.g., vectors, data frames, other lists):

```
my_list = list(w = weight, m = months, s = ses1, a = A)
```

The components of the list can be indexed with \$ or [[]] and the name (or position) of the component:

Extract months:

```
my_list[["m"]] # my_list$m
[1] 5 6 8 10 12 16
```

Extract weight:

```
my_list[[1]] # my_list$weight or my_list[["w"]]
[1] 3.0 4.5 6.0 7.5 9.0 10.5
```

Table of Contents

Who aRe you?

Get help

Be tidy

Working directories

Structures in R

The king of data structure: data frames

Data input and output

Programming

Graphics

R for statistical computing

Classical hypothesis testing in R

Generalized Linear Models (GLMs

Simulations

Data frames are lists that consist of vectors and factors of equal length. The rows in a data frame refer to one unit:

```
id = paste0("sbj", 1:6)
babies = data.frame(id, months, weight)
```

babies

	id	months	weight			
1	sbj1	5	3.0			
2	sbj2	6	4.5			
3	sbj3	8	6.0			
4	sbj4	10	7.5			
5	sbj5	12	9.0			
6	sbj6	16	10.5			

Working with data frames

Index elements in a data frame: babies\$months # column months of babies babies\$months[2] # second element of column months babies[, "id"] # column id babies[2,] # second row of babies (obs on baby 2) Logic applies: babies[babies\$weight > 7,] # all obs above 7 kg babies[babies\$id %in% c("sbj1", "sbj6"),] # obs of sbj1 # and sbj7

Working with data frames II

You can use these commands also on other R objects

Working with data frames III

```
str(babies) # show details on babies

'data.frame': 6 obs. of 3 variables:

$ id : chr "sbj1" "sbj2" "sbj3" "sbj4" ...

$ months: num 5 6 8 10 12 16

$ weight: num 3 4.5 6 7.5 9 10.5

summary(babies) # descriptive statistics
```

id		months			weight		
Length:6		${\tt Min.}$:	5.0	Min.	:	3.000
Class	:character	1st 0	Qu.:	6.5	1st Qu.	:	4.875
Mode	:character	Media	an :	9.0	Median	:	6.750
		Mean	:	9.5	Mean	:	6.750
		3rd 0	Qu.:1	1.5	3rd Qu.	:	8.625
		Max.	: 1	.6.0	Max.	:1	10.500

Sorting

```
order():
babies[order(babies$weight), ] # sort by increasing weight
   id months weight
1 sbj1 5 3.0
2 sbj2 6 4.5
3 sbj3 8 6.0
4 sbj4 10 7.5
5 sbj5 12 9.0
6 sbj6 16 10.5
babies[order(babies$weight, # sort by decreasing weight
           decreasing = T), ]
```

Multiple arguments in order:

```
babies[order(babies$weight, babies$months, decreasing = TRUE), \ensuremath{\left]_{45}}
```

Aggregating

Aggregate a response variable according to grouping variable(s) (e.g., averaging per experimental conditions):

```
# Single response variable, single grouping variable
aggregate(y ~ x, data = data, FUN, ...)
```

```
# Multiple response variables, multiple grouping variables
aggregate(cbind(y1, y2) ~ x1 + x2, data = data, FUN, ...)
```

Aggregating: Example

```
ToothGrowth # Vitamin C and tooth growth (Guinea Pigs)
   len supp dose
1 4.2 VC 0.5
2 11.5 VC 0.5
3 7.3 VC 0.5
. . . .
aggregate(len ~ supp + dose, data = ToothGrowth, mean)
 supp dose len
   OJ 0.5 13.23
2 VC 0.5 7.98
3
   OJ 1.0 22.70
4
  VC 1.0 16.77
5
   OJ 2.0 26.06
6
   VC 2.0 26.14
```

Reshaping: Long to wide

Data can be organized in wide format (i.e., one line for each statistical unit) or in long format (i.e., one line for each observation).

```
Indometh # Long format
```

48

Long to wide

```
# From long to wide
df.w <- reshape(Indometh, v.names = "conc", timevar = "time",</pre>
   idvar = "Subject", direction = "wide")
  Subject conc.0.25 conc.0.5 conc.0.75 conc.1 conc.1.25 conc.2 cor
1
             1.50
                    0.94
                            0.78 0.48
                                           0.37
                                                0.19
12
             2.03 1.63
                            0.71 0.70
                                          0.64 0.36
23
       3
             2.72 1.49
                            1.16 0.80
                                          0.80
                                                0.39
34
       4
             1.85 1.39 1.02 0.89 0.59
                                                0.40
45
       5
             2.05 1.04 0.81 0.39 0.30
                                                0.23
56
       6
             2.31 1.44
                            1.03 0.84
                                           0.64
                                                0.42
  conc.5 conc.6 conc.8
```

Reshaping: Wide to long

```
# From wide to long
df.l <- reshape(df.w, varying = list(2:12), v.names = "conc",</pre>
   idvar = "Subject", direction = "long", times = c(0.25, 0.5,
       0.75, 1, 1.25, 2, 3, 4, 5, 6, 8)
      Subject time conc
1.0.25 1 0.25 1.50
2.0.25 2 0.25 2.03
3.0.25 3 0.25 2.72
. . . .
df.1[order(df.1$Subject), ] # reorder by subject
      Subject time conc
1.0.25 1 0.25 1.50
1.0.5 1 0.50 0.94
1.0.75 1 0.75 0.78
```

50

Table of Contents

Who aRe you?

Get help

Be tidy

Working directories

Structures in R

The king of data structure: data frames

Data input and output

Programming

Graphics

R for statistical computing

Classical hypothesis testing in R

Generalized Linear Models (GLMs)

Simulations

Reading tabular txt files:

ASCII text files in tabular or spread sheet form (one line per observation, one column per variable) are read using read.table()

```
data = read.table("C:/RcouRse/file.txt", header = TRUE)
```

data is a data frame where the original numerical variables are converted in numeric vectors and character variables are converted in factors (not always).

Arguments:

- header: variable names in the first line? TRUE/FALSE
- sep: which separator between the columns (e.g., comma, \t)
- dec: 1.2 or 1,2?

Reading other files

Combine data frames

If they have the same number of columns/rows

```
all_data = rbind(data, data1, data2) # same columns
all_data = cbind(data, data1, data2) # same rows
```

If they have different rows/columns but they share at least one characteristic (e.g., ID):

```
all_data = merge(data1, data2,
by = "ID")
```

If there are different IDs in the two datasets \rightarrow added in new rows

all_data contains all columns in data1 and data2. The columns of the IDs in data1 but not in data2 (and vice versa) will be filled with NAs accordingly

Export data

Writing text (or csv) file:

```
write.table(data, # what you want to write
            file = "mydata.txt", # its name + extension
            header = TRUE, # first row with col names?
            sep = "\t", # column separator
            ....) # other arguments
R environment (again):
save(dat, file = "exp1 data.rda") # save something specific
save(file = "the earth.rda") # save the environment
load("the earth.rda")
                                  # load it back
```

Table of Contents

Who aRe you?

Get help

Be tidy

Working directories

Structures in R

The king of data structure: data frames

Data input and output

Programming

Graphics

R for statistical computing

Classical hypothesis testing in R

Generalized Linear Models (GLMs)

Simulations

Be ready to make mistakes (a lot of mistakes)

Coding is hard art

Think like a computer would think \rightarrow not one gigantic problem but a series of small problems leading to a big solution

Remember: You're not alone stackoverflow (or Google in general) is your best friend

ifelse()

Conditional execution:

```
Easy: ifelse(test, if true, if false)
ifelse(weight > 7, "big boy", "small boy")
[1] "small boy" "small boy" "big boy" "big boy"
```

Pros

- Super easy to use - Can embed multiple ifelse() cycles

Cons

- It works fine until you have simple tests

if () {} else {}

If you have only one condition:

```
if (test_1) {
   command_1
} else {
   command_2
}
```

if () {} else {}

Multiple conditions:

```
if (test 1) {
  command_1
} else if (test 2) {
  command 2
} else {
  command 3
}
test_1 (and test_2, if you have it) must evaluate in either TRUE or
FALSE
if(!is.na(x)) y <- x^2 else stop("x is missing")</pre>
```

Loops

```
for() and while()
Repeat a command over and over again:
# Don't do this at home
x \leftarrow rnorm(10)
y <- numeric(10) # create an empty container
for(i in seq_along(x)) {
y[i] \leftarrow x[i] - mean(x)
The best solution would have been:
y = x - mean(x)
```

Avoiding loops

Avoiding loops

```
Don't loop, apply()!
apply()
X <- matrix(rnorm(20),</pre>
             nrow = 5, ncol = 4)
apply(X, 2, max) # maximum for each column
for()
y = NULL
for (i in 1:ncol(X)) {
  y[i] = max(X[, i])
```

Avoiding loops

```
tapply() (t for table) may be used to do group-wise calculations on
vectors. Frequently it is employed to calculate group-wise means.
with (ToothGrowth.
     tapply(len, list(supp, dose), mean))
     0.5 1 2
OJ 13.23 22.70 26.06
VC 7.98 16.77 26.14
(You could have done it with aggregate())
```

Group-wise calculations: tapply()

Writing functions

```
Compute Cohen's d:
dcohen = function(group1, group2) { # Arguments
  mean 1 = mean(group1) ; mean 2 = mean(group2)
  var_1 = var(group1) ; var_2 = mean(group2) # body
  d = (mean_1 - mean_2)/sqrt(((var_1 + var_2)/2))
  return(d) # results
}
Use it:
dcohen(data$placebo, data$drug)
```

Named arguments

```
Take this function:
```

```
fun1 <- function(data, data.frame, graph, limit) { ... }
It can be called as:
fun1(d, df, TRUE, 20)
fun1(d, df, graph=TRUE, limit=20)
fun1(data=d, limit=20, graph=TRUE, data.frame=df)</pre>
```

Positional matching and keyword matching (as in built-in functions)

Defaults

Arguments can be given default values \rightarrow the arguments can be omitted!

It can be called as

```
ans <- fun1(d, df)
```

which is now equivalent to the three cases above, but:

```
ans <- fun1(d, df, limit=10)</pre>
```

which changes one of the defaults.

Methods and classes

The return value of a function may have a specified $class \rightarrow determines$ how it will be treated by other functions.

For example, many classes have tailored print methods.

methods(print)

- [1] print.acf*
- [2] print.AES*
- [3] print.all_vars*
- [4] print.anova*
- [5] print.any_vars*
- [6] print.aov*
- [7] print.aovlist*

. . . .

Define a print method!

```
... as another function:
print.cohen <- function(obj){</pre>
  cat("\nMy Cohen's d\n\n")
  cat("Effect size: ", obj$d, "\n")
  invisible(obj) # return the object
}
We have to change our dcohen function a bit:
dcohen = function(group1, group2) { # Arguments
  dvalue = list(d = d)
  class(dvalue) = "cohend"
  return(dvalue) # results
```

Example

```
Compute the Cohen's d between a test group and a control group:
set.seed(082022) # results equal for everyone
data <- data.frame(drug = rnorm(6, 10),
                   placebo = rnorm(6, 2)
my_d = dcohen(data$drug, data$placebo)
print.cohen(my_d)
My Cohen's d
```

Effect size: 5.477306

Debugging

```
Use the traceback() function:
foo <- function(x) { print(1); bar(2) }
bar <- function(x) { x + a.variable.which.does.not.exist }
Call foo() and...
foo() #
[1] 1
Error: object 'a.variable.which.does.not.exist' not found</pre>
```

Use traceback():

traceback() # find out where the error occurred

2: bar(2)

1: foo()

Note: traceback() appears as default

Table of Contents

Who aRe you?

Get help

Be tidy

Working directories

Structures in R

The king of data structure: data frames

Data input and output

Programming

Graphics

R for statistical computing

Classical hypothesis testing in R

Generalized Linear Models (GLMs

Simulations

- Traditional graphics
- Grid graphics & ggplot2

For both:

- High level functions \rightarrow actually produce the plot
- Low level functions \rightarrow make it looks better =)

Export graphics file

```
postscript() # vector graphics
pdf()
png()
                # bitmap graphics
tiff()
jpeg()
bmp()
Remember to run off the graphic device once you've saved the graph:
dev.off()
(You can do it also manually)
```

Traditional graphics I

High level functions

```
plot()
           # scatter plot, specialized plot methods
boxplot()
hist()
           # histogram
qqnorm()
           # quantile-quantile plot
barplot()
pie()
       # pie chart
pairs() # scatter plot matrix
persp() # 3d plot
contour() # contour plot
coplot() # conditional plot
interaction.plot()
```

demo(graphics) for a guided tour of base graphics!

Traditional graphics II

Low level functions

```
points()
               # add points
lines()
               # add lines
rect()
polygon()
abline()
               # add line with intercept a, slope b
arrows()
text()
               # add text in plotting region
mtext()
               # add text in margins region
axis()
               # customize axes
box()
               # box around plot
legend()
```

Plot layout

Each plot is composed of two regions:

- The plotting regions (contains the actual plot)
- The margins region (contain axes and labels)

A scatter plot:

Now add some text:

```
text(0.6, 0.6, "Text at (0.6, 0.6)")
abline(h=.6, v=.6, lty=2) # horizont. and vertic.
# lines
```

Margins region

Rome wasn't built in a day

and neither your graph

Display the interaction between the two factors of a two-factorial experiment:

```
dat <- read.table(header=TRUE, text="</pre>
A B rt
a1 b1 825
a1 b2 792
a1 b3 840
a2 b1 997
a2 b2 902
a2 b3 786
")
```

Force A and B to be factor:

```
dat[,1:2] = lapply(dat[,1:2], as.factor)
```

First: The plot

Mean reaction time (ms)

Difficulty 80

Populate the content

Plot the data points separately for each level of factor A.

Add axes and a legend.

Final result

- Error bars may be added using the arrows() function.
- Via par() many graphical parameters may be set (see ?par), for example par(mgp=c(2, .7, 0)) reduces the distance between labels and axes

Graphical parameters I

```
adj # justification of text
bty # box type for legend
cex # size of text or data symbols (multiplier)
col # color, see colors()
las # rotation of text in margins
lty # line type (solid, dashed, dotted, ...)
lwd # line width
mpg # placement of axis ticks and tick labels
pch # data symbol type
tck # length of axis ticks
type # type of plot (points, lines, both, none)
```

Graphical parameters II

ggplot2

ggplot2 (Grammar of Graphics plot, Wickman, 2016) is one of the best packages for plotting raw data and results:

install.packages("ggplot2") ; library(ggplot2)

```
The code for the previous plot:
ggplot(dat, aes(x = B, y = rt, group = A)) +
  geom point(pch=dat$A, size = 5) +
  geom_line(aes(linetype=A), size=1) + theme_classic() +
  ylab("RT") + scale_linetype_manual("Task", values =c(3,4),
                                labels = c("A1", "A2")) +
  scale_x_discrete(labels = c("B1", "B2", "B3")) +
  theme(legend.position="top",
        panel.background = element rect(fill = "#FAFAFA",
                                          colour = "#FAFAFA"),
```

plot.background = element rect(fill = "#FAFAFA"),

legend.key = element_rect(fill = "#FAFAFA"))

Raw data

```
ggplot(rock,
       aes(y=peri,x=shape, color =shape,
           size = peri)) + geom_point() +
  theme_bw() + theme(legend.position = "none")
               ped
```

Linear model

Multi Panel

Multi panel code

Different plots in the same panel

nrow=1) # plots forced to be the same row

use grid.arrange() function from the gridExtra package:

```
install.packages("grideExtra")
library(gridExtra)
murder raw = ggplot(states, # raw data
               aes(x = Illiteracy, y = Murder)) +
murder_lm = ggplot(states, # lm
               aes(x = Illiteracy, y = Murder)) +
           . . . . .
Combine the plots together:
grid.arrange(murder_raw, murder_lm,
```

Combine the plots together

Table of Contents

Who aRe you?

Get help

Be tidy

Working directories

Structures in R

The king of data structure: data frames

Data input and output

Programming

Graphics

R for statistical computing

Classical hypothesis testing in R

Generalized Linear Models (GLMs

Simulations

The stats package (built-in package in R) contains function for statistical calculations and random number generator see library(help=stats)

Table of Contents

Who aRe you?

Get help

Be tidy

Working directories

Structures in R

The king of data structure: data frames

Data input and output

Programming

Graphics

R for statistical computing

Classical hypothesis testing in R

Generalized Linear Models (GLMs

Simulations

Nominal data:

- binom.test(): exact test of a simple null hypothesis about the probability of success in a Bernoulli experiment
- chisq.test(): contingency table χ^2 tests

Metric response variable:

- cor.test(): association between paired samples
- t.test(): one- and two-sample t tests (also for paired data)
- var.test(): F for testing the homogeneity of variances

What is the p-value?

p-value:

conditional probability of obtaining a test stastic that is at least as extreme as the one observed, given that the null hyphothesis is

If $p < \alpha$ (i.e., the probability of rejecting the null hypothesis when it is true) \to the null hypothesis is rejected

Binomial test

Observations X_i must be independent

Hypotheses:

- 1. H_0 : $p = p_0$ H_1 : $p \neq p_0$
- 2. H_0 : $p = p_0$ H_1 : $p < p_0$
- 3. H_0 : $p = p_0$ H_1 : $p > p_0$

Test statistic:

$$T = \sum_{i=1}^{n} X_i, \ T \sim \mathcal{B}(n, p_0)$$

In R:

binom.test(5, 10, p = 0.25)

χ^2 test

Independence of observations

Hypothesis:

- H_0 : $P(X_{ij} = k) = p_k$ for all i = 1, ..., r and j = 1, ..., c
- H_0 : $P(X_{ij} = k) \neq P(X_{i'j} = k)$ for at least one $i \in \{1, ..., r\}$ and $j \in \{1, ..., c\}$

Test statistic:

$$\chi^2 = \sum_{i=1}^n \frac{(x_{ij} - \hat{x}_{ij})^2}{\hat{x}_{ij}}, \ \chi^2 \sim \chi^2(r-1)$$

In R:

tab <- xtabs(~ education + induced, infert)
chisq.test(tab)</pre>

Correlation test

Hypothesis:

- H_0 : $\rho_{XY} = 0$, H_1 : $\rho_{xy} \neq 0$
- H_0 : $\rho_{XY} = 0$, H_1 : $\rho_{xy} < 0$
- H_0 : $\rho_{XY} = 0$, H_1 : $\rho_{xy} > 0$

Test statistic:

$$T = \frac{r_{xy}}{\sqrt{1 - r_{xy}^2}} \sqrt{n - 2}, \ T \sim t(n - 2)$$

In R:

Two (indepdent) sample t test

Independent samples from normally distributions where σ^2 are unknown but homogeneous

- H_0 : $\mu_{x_1-x_2} = 0$, H_1 : $\mu_{x_1-x_2} \neq 0$
- H_0 : $\mu_{x_1-x_2} = 0$, H_1 : $\mu_{x_1-x_2} < 0$
- H_0 : $\mu_{x_1-x_2} = 0$, H_1 : $\mu_{x_1-x_2} > 0$

Test statistic:

$$T = \frac{\bar{x_1} - \bar{x_2}}{\sigma_{\bar{x_1} - \bar{y_2}}}, \ T \sim t(n_1 + n_2 - 2)$$

R function:

Two (depedent) sample t test

Observations on the same sample

Hypothesis:

- H_0 : $\mu_D = 0$, H_1 : $\mu_D \neq 0$
- H_0 : $\mu_D = 0$, H_1 : $\mu_D < 0$
- H_0 : $\mu_D = 0$, H_1 : $\mu_D > 0$

Test statistic:

$$T = \frac{d}{\sigma_d}, \ T \sim t(m-1)$$

R function:

Table of Contents

Who aRe you?

Get help

Be tidy

Working directories

Structures in R

The king of data structure: data frames

Data input and output

Programming

Graphics

R for statistical computing

Classical hypothesis testing in R

Generalized Linear Models (GLMs)

Simulations

Formulae

Statistical models are represented by formulae which are extremely close to the actual statistical notation:

in R	Model
y ~ 1 + x y ~ x	$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ (same but short)
y ~ 0 + x	$y_i = \beta_1 x_i + \varepsilon_i$
y ~ x_A * x_B	$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_j + (\beta_1 \beta_2) x_{ij} + \varepsilon_{ij}$

Linear models

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + \varepsilon$$

In R:

$$lm(y \sim x1 + x2 + ... + xk, data)$$

Extractor functions I

```
coef() # Extract the regression coefficients
summary() # Print a comprehensive summary of the results of
         # the regression analysis
anova() # Compare nested models and produce an analysis
resid() # Extract the (matrix of) residuals
plot() # Produce four plots, showing residuals, fitted
         # values and some diagnostics
model.matrix()
         # Return the design matrix
```

Extractor functions II

```
vcov()
         # Return the variance-covariance matrix of the
          # main parameters of a fitted model object
predict() # A new data frame must be supplied having the
          # same variables specified with the same labels
          # as the original. The value is a vector or
          # matrix of predicted values corresponding to
          # the determining variable values in data frame
step()
          # Select a suitable model by adding or dropping
          # terms and preserving hierarchies. The model
          # with the smallest value of ATC (Akaike's
          # Information Criterion) discovered in the
          # stepwise search is returned
```

Generalized linear models

$$g(\mu) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + \varepsilon$$

g() is the link functions that connects the mean to the linear combination of predictors.

A GLM is composed of three elements: The response distribution, the link function, and the linear combination of predictors

In R:

$$glm(y \sim x1 + x2 + ... + xk, family(link), data)$$

LM vs GLM

Families

A special link function to each response variable. In R some different link functions are available by default:

Family name Link functions

binomial logit, probit, log, cloglog

gaussian identity, log, inverse

Gamma identity, inverse, log

inverse.gaussian 1/mu^2, identity, inverse, log

poisson log, identity, sqrt

quasi logit, probit, cloglog, identity, inverse,

log, 1/mu^2, sqrt

Table of Contents

Who aRe you?

Get help

Be tidy

Working directories

Structures in R

The king of data structure: data frames

Data input and output

Programming

Graphics

R for statistical computing

Classical hypothesis testing in R

Generalized Linear Models (GLMs)

Simulations

Random numbers generation

Random numbers drawn from a statistical distribution \rightarrow the distribution name (see ??Distributions for an exhaustive list of distribution) prefixed by r (random)

Sampling (with or without replacement) from a vector:

```
sample(1:5, size = 10, replace = T)
[1] 5 1 1 2 5 4 4 1 2 5
```

Make the simulations replicable by seeding them:

```
set.seed(999) rpois(4, 5)
```

Bootstrap by resampling

- Compute the sample statistics on multiple bootstrap samples Bs drawn with replacement from the original data
- Assess the variability of the statistics via the distribution of the bootstrap replicates (i.e., the statics computed on the bootstrap samples)

Bootstrap confidence intervals

Percentile intervals are the $1-\alpha$ confidence intervals for the sample statistics with limits given by the quantiles of the bootstrap distribution

In R

```
# example taken from Prof. Wickelmaier
mouse <- data.frame(
   grp = rep(c("trt", "ctl"), c(7, 9)),
   surv = c(94, 197, 16, 38, 99, 141, 23, # trt
            52, 104, 146, 10, 50, 31, 40, 27, 46) # ctl
mean(mouse$surv[mouse$grp == "trt"]) #
[1] 86.85714
## Resampling
sam1 <- numeric(1000) # 1000 bootstrap replicates</pre>
for(i in seq_along(sam1)){
 trt <- sample(mouse$surv[mouse$grp == "trt"], 7, replace=T)</pre>
 sam1[i] <- mean(trt)</pre>
```

quantile(sam1, c(.025, .975))
2.5% 97.5%
43.14286 131.33929

Parametric bootstrap

For the likelihood ratio test:

- Fit a general (M_1) and a restricted model (M_0) to the original data x. Compute the original likelihood ratio s(x) between M_1 and M_0
- Simulate B bootstrap samples based on the stochastic part of the restricted model: These are observations for which H_0 is true
- For each sample, fit M_1 and M_0 and compute the bootstrap replicate of the likelihood ratio between them
- Assess the significance of the original likelihood ratio via the sampling distribution of bootstrap replicates

```
## Model fit to original data
lm0 <- lm(surv ~ 1, mouse) # H0: no difference between gr
lm1 <- lm(surv ~ grp, mouse) # H1: group effect</pre>
anova(lm0, lm1) # original likelihood ratio
[1] 1.257516
## Parametric bootstrap
sim1 <- numeric(1000)
for(i in seq along(sim1)){
  surv0 <- simulate(lm0)$sim 1 # simulate from null model</pre>
  m0 <- lm(surv0 ~ 1, mouse) # fit null model
 m1 <- lm(surv0 ~ grp, mouse) # fit alternative model
  sim1[i] <- anova(m0, m1)$F[2] # bootstrap likeli. ratio
  }
```

The bootstrap p-value is the proportion of bootstrap replicates that exceed the original likelihood ratio:

```
mean(sim1 >
anova(lm0, lm1)$F[2])
[1] 0.304
```

