Neural Networks Part 3

Kevin Sim

Slides courtesy of Prof. Emma Hart

RECAP

- Last week we looked at supervised learning using a multi-layer perceptron for classification
- Backpropagation
 - Finds a set of weights that gives good performance
 - Requires training data: input and output pairs
 - Iteratively reduces error at the output neurons
- For some applications:
 - Hard to generate the required training data (pairs)
 - We don't know what the output should be

Overview

- Unsupervised learning using NN
- Training a neural network with an evolutionary algorithm
 - i.e. use EA to find a set of weights
- Applications of this:
 - Robot control with a neural network
- NEAT: evolving topology & weights of a network with an EA

An Example: Minesweeper

- Objective is to collect mines
- Neural network controls the movement of a "robot" (minesweeper)
- From last week we know a NN requires inputs and outputs
- Inputs are sensory information obtained from the environment
- Output is direction of movement
- NN Controller is trained to direct the minesweeper towards mines

An Example: Minesweeper

- Objective is to collect mines
- EA used to evolve weights for the NN controller
- EA Requires a representation (chromosome genotype) and fitness function (more later)
- Example: Natural Motion

https://www.youtube.com/watch?v=ySRvKzZsDqw

- In robotics, inputs obtained by sensing the environment
- In real-robots, could be infra-red, acoustic, video etc.
- In simulation, we can 'sense' distance to an obstacle

- What information does it need?
 - Minesweepers position (x,y)
 - Position of closest mine (x,y)
 - Vector representing the heading (x,y)*
- 6 inputs in total

- Could use 6 inputs:
 - Fewer inputs: fewer weights
 - Fewer weights: faster training
 - Faster training:faster network

- Actual positions don't matter
- The relative direction between the mine and the current direction does
- Input can actually be represented by 2 vectors
- This only requires 4 inputs:
 - (x,y) for each vector

- NN require normalised data
- Good idea to standardize inputs:
 - Look-at vector is normalised to be of length 1
 - Closest-mine vector might be very large
 - We can normalize this too
- Both inputs then have similar emphasis
 - Actual distances and directions aren't important just relative difference between look at and closest mine

Minesweeper: Outputs

- The rotation and velocity are adjusted by activating one or both of the left and right tracks
- The NN needs two outputs:
 - Left track
 - Right track

Rotate by moving one track

Minesweeper: Outputs

- The rotation and velocity are adjusted by activating one or both of the left and right tracks
- The NN needs two outputs:
 - Left track
 - Right track

Move forward by activating both tracks

Digression:

- When we talked about simple perceptrons we used a step function that output 0/1
- More useful to have a neuron that can output any value
 - Probability
 - Distance
 - Angle

Step Function:

Activation value (weighted sum of inputs)

Threshold Functions

- Rather than a step activation function, it would be better to have one that varied:
 - Smoothly
 - Continuously
- Why ?
 - Can output a whole range of values
 - There is no abrupt change from one value to another
 - Imagine a car engine control system that allowed only 0 or maximum power

Minesweeper: Outputs

 The rotation and velocity are adjusted by adjusting the relative speed of the left and right tracks

- The NN needs two outputs:
 - Left track speed
 - Right track speed
 - Smooth transition from 0 (off) to 1 (maximum)
 - Allows the robot to turn while moving position

Threshold Functions

- There are lots of mathematical functions that might work
- This one is called a sigmoid function
 - Varies between 0 and 1
 - Shape can be 'flattened' if required
 - It is define as:

$$\frac{1}{1+e^{-\frac{a}{p}}}$$

The Sigmoid Function

a is the weighted sum

$$\sum w_i x_i$$

- e is a mathematical constant 2.7183
- p is a user controlled parameter usually set to 1
- (by changing p we can 'squash' the curve)

$$\frac{1}{1+e^{-\frac{a}{p}}}$$

The Minesweeper Neural Net

We need to assign each weight so that the network outputs the correct values for any set of possible inputs

Calculating the weights

- In this case, there are 72 weights to find
- For backpropagation, we need training data with input-output pairs:
 - Hard to obtain for this type of application:
- Another approach to training is to use an Evolutionary Algorithm to evolve the weights
 - A chromosome (length= number of weights) represents the weights in neural network

In-Game Training with an EA

- An EA needs a representation
 - Use floating point values, one for each weight we need
- -0.1 0.3 0.6 0.4 -0.8

- and a fitness function:
 - Allow the game to run for some number of frames
 - Monitor how many mines each sweeper found

Fitness = number of mines found in fixed time frame

The Flow of Control

Training with an EA

Flow of Control

Initialise a population of minesweepers each with its own neural network and its own chromosome representing the weights

Weights initially set to random values

While number of generations < maximum generations

- Run game (for a set amount of time)
- Record how many mines each sweeper detected
- Assign this value as the fitness of its chromosome
- Run the EA to evolve a new population of weights
 - Apply selection, crossover, mutation
- Insert new weights into each minesweepers NN

Repeat

Evolutionary Algorithm

- Generational EA (whole new generation produced each iteration)
- Differs from the steady state EA where typically 1 or 2 children are generated each generation

BEST Chromosome 1 Chromosome 2 Chromosome 3 Chromosome N

Generation

Copy best chromosome to new population (elitism)

While newPopSize < popSize Generate child

- Selection
- Crossover
- Mutation

Insert Child (no replacement)

Repeat

Evolutionary Algorithm

- In each generation:
 - Create new empty population
 - Copy best chromosome from current to new population (elitism)
 - Repeat until new population full:
 - Select two parents with roulette wheel selection from current population
 - Apply crossover to produce new child(ren)
 - Apply mutation to new child(ren)
 - Add child(ren) to new population
 - New population becomes current population

More details on the EA

Selection:

- Selection pressure is as a result of the selection stage only
- No replacement stage in a generational EA
- Best chromosome (could be more than 1. i.e. best 2) copied to new population each generation (elitism)
- Common to use Roulette Selection
 - Selection probability proportional to fitness

More details on the EA

Crossover:

Any kind of crossover will produce legitimate chromosomes (1pt etc.)

Two point or uniform crossover will work just as well

More details on the EA

- Mutation
 - Adds or subtracts a small value from each gene

change

Summary of EA+NN

Neural Network

Evolutionary Algorithm

- Inputs: 4
- Outputs: 2
- Hidden Layers: 1
- Hidden Neurons: 10

- Population Size: 30
- Selection Type: roulette
- Crossover type: 1 point
- Mutation Rate: 0.1
- Elitism: on
- Max Perturbation 0.3

Run for approx. 2000 generations to fully train networks

Some Improvements:

- We can reduce number of inputs even further
 - The important information is the angle between the two vectors
 - If we calculate the angle, we can just have one input to the network
 - How?

Inputs

 We can calculate the angle using the dot product

$$A.B = |A| |B| \cos \theta$$

$$A.B = a_x b_x + a_y b_y$$

$$a_1b_1 + a_2b_2 = |A| |B| \cos\theta$$

 $a_1b_1 + a_2b_2 = \cos\theta$ (if magnitude normalised to 1)

 We also need to know if the relative position of the mine to the heading (left or right): use a sign +/-, e.g.

$$-30 = 30$$
 degrees to left

More improvements

- Weights are listed in the chromosome per neuron
- 1pt (or 2pt) crossover makes a random cut
- This can break up the weights for a single neuron
- Better to choose crossover points that only occur at the boundaries of neurons
 - So this limits the number of cut points

Obstacle Avoidance with NNs

- Obstacle avoidance common requirement in game Al
 - while still exploring the environment
- To do this successfully, agents need to:
 - perceive environment
 - take action to avoid collisions
- Typically implemented by adding sensors to the robot/car/agent etc....

Obstacle Avoidance with NNs

- We can add sensors to each agent
- Adjust the number and range as required
- Each sensor returns:
 - -1 if there is no intersection between it and an obstacle
 - a value between 0 and 1 indicating the distance to the intersection otherwise
 - (closer to 0, closer to object)

Evolving an NN Controller

- Inputs to the NN are the readings from the 5 sensors
- Outputs again are the speeds of the left/right tracks
- Try one hidden layer at first
- Use an EA to evolve the correct weights

Inputs from sensors

The Evolutionary Algorithm

- The EA needs a fitness function:
- What is a 'good' controller?
 - Could record # collisions and penalise everytime it collides
 - Higher fitness = better minesweeper

- Could lead to negative scores
- Better:
 - Record number of frames passed without colliding
 - More frames, higher fitness
 - Doesn't lead to negative scores

The Fitness Function

- Does the fitness function look reasonable ?
 - Fitness: #frames passed without collision

if (!collided) fitness++;

The Fitness Function

- Does the fitness function look reasonable ?
 - Fitness: #frames passed without collision
- Robot will just rotate on the spot!!

if (!collided) fitness++;

The Fitness Function

- Does the fitness function look reasonable?
 - Fitness: #frames passed without collision
- Robot will just rotate on the spot!!
- How can we fix this?
 - Add extra reward for frames where there is zero (or little) rotation

```
if (!collided) fitness++;
if (rotation < rotationTolerance) fitness++;</pre>
```

Fitness Function

- Goal is to maximise fitness
- For each frame that passes:

```
if (!Collided){
    fitness +=1
}

if (abs(Rotation) < RotationTolerance){
    fitness += 1
}</pre>
```

Further improvements

- We want the robot to explore the environment
- Add memory:
 - Record how many times each square is visited
 - Evolve networks that favour unvisited cells
- The sensors can 'feel' how many times a square has been visited

	1	3	7	6	6
1	3	5		5,	7
		4	5	4	
		2	3	1	
		1			

Further improvements

- Readings from sensors converted to scaled value between 0 and 1 representing times visited
- Sliding scale important to give robot a sense of 'direction'

	1	3.	7	6	6
	•			1	
1	3	5		5	7
		4	5	4	
		2	3	1	
		1			

Fitness Function:

 We could combine the previous function with an extra factor:

Fitness = NoRotation + NoCollision + Cells visited

- But....can just use number of cells visited:
 - Automatically will avoid obstacles
 - Automatically will stop spinning
 - (both slow them down and reduce fitness)

Uses in "real games"

- Calculate aiming for the Al characters in Quake?
 - To prevent them being too accurate (...and therefore unrealistic)
- Network inputs:
 - Visibility (dark, foggy, bright)
 - Amount of target visible
 - Distance to target
 - Current weapon
- Output
 - Radius of distance from centre of target (bigger radius = less accurate)

Some additional thoughts

- In order to satisfy the fitness function many robot behaviours can emerge
 - Robot driving example
- You can also train a network to classify data using an EA
 - Fitness function = total error

Evolving Neural Network Topology

- As well as evolving weights, it makes sense to evolve topology as well
- A very well known technique is called <u>NEAT</u>:
 - Neuro-Evolution of Augmenting Topologies
 - Starts by using a population of networks with minimal technology that grow in complexity
- Generates neurons, connections, layers and weights

http://www.cs.ucf.edu/~kstanley/neat.html

NEAT genomes

NEAT Mutation operators

Example: NERO

<u>Video</u> <u>robot driving</u>

Comparison of Training Methods

Backpropagation

- Data needs to have input/output pairs
- Need plenty of data
- Careful data cleaning
- Training and testing required
- Lots of software packages available

Evolutionary Algorithm

- Good when you don't have training data in the form of input/outputs pairs
- Careful design of fitness functions required
- Lots of parameters: need to deal with EA parameters as well as NN design
- Can be slow....

Practical

Evolving Minesweeper controller

- Source Code and Executable supplied with initialisation file
- Adapt topology and parameters by changing values in initialisation file
 - Conduct experiments to evaluate effect
- Implement own evolutionary operators by modifying C++ Code
 - Selection
 - Mutation
 - Crossover
- Other possibilities
 - Try different activation functions

Summary

- We have looked at a number of uses of Neural Networks:
 - Classification
 - Prediction
 - Control
- Training a network can be performed by backpropagation or using an evolutionary algorithm
 - Stochastic process in both cases
- A lot of effort goes into cleaning and preparing data
- Testing with unseen data very important