Aufgabe 7

- (a) Da die Determinante ein Polynom mit reellen Koeffizienten ist und $\overline{a} + \overline{b} = \overline{a+b}$ sowie $\overline{a}\overline{b} = \overline{ab}$ gilt, muss det $\overline{H} = \overline{\det H}$ sein. Für eine hermitesche Matrix H gilt also det $H = \det H' = \det \overline{H} = \overline{\det H}$. Daraus folgt, dass det $H \in \mathbb{R}$ sein muss.
- (b) Gilt $H_2 = \mu H_1$ und $\overline{v}' H_1 v = 0$, so ist auch $\overline{v}' H_2 v = \mu 0 = 0$. Definieren nun H_1 und H_2 denselben Kreis, so gibt es eine Möbiustransformation, die H_1 auf H_2 abbildet, da die Möbiustransformationen transitiv auf den Kreisen in \hat{C} operieren. Da H_1 und H_2 denselben Kreis definieren. ist diese Möbiustransformation eindeutig gegeben durch das Einselement der Gruppe der Möbiustransformationen, die zu $\nu \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \nu \in \mathbb{C}^*$ assoziierte Möbiustransformation. Diese bildet H_1 auf $M\langle H \rangle = \overline{M}' \cdot H \cdot M = \overline{\nu} \nu H = |\nu|^2 H = \mu H_2$ mit $\mu \in \mathbb{R}^\times$ ab.