

Smoking D.A.R.T.S

Kai Dyer, Zach Kashef, Cassandra Penttila, Alon Trogan, Kyle Taubert Faculty Advisor: Prof. Russell Tessier

Abstract

Traditional darts consists of two players throwing darts at a dartboard and manually calculating their score over multiple throws. Smoking D.A.R.T.S. automates this scoring process and brings players together with an affordable system that enables users to play against one another without using the same board. Using a couple discreet cameras and a pressure sensor, Smoking D.A.R.T.S. achieves 96% accuracy in calculating a user's throw. A user's score is automatically updated and displayed in the mobile app.

System Overview

Hardware Diagram

Software Diagram

- □ Sensors: One piezo sensor behind the dartboard and two cameras placed on the sides facing the center
- □ Arduino Nano: Communicate data from the piezo sensor to the raspberry pi and coordinate the LED light array with the score calculated by the pi
- ☐ Raspberry Pi: Processes data from Arduino Uno and cameras, calculates the score of the dart, and sends score to app
- ☐ Communication: The score is sent to the phone from the raspberry pi
- Display: The app shows an image of the dartboard with the section of the board with the dart highlighted.
- ☐ Score: The score is updated by subtracting the dart score from the corresponding player

Specifications

Specification	Goal	Actual		
Accuracy	<2mm on 90% of throws	2.03mm on 96% of throws		
Optimal Throws	Optimal throws suggested	Optimal throws suggested in app		
Virtual Multiplayer	App registers score from two systems	App registers score from two systems		
Responsiveness	User rating of 10	User rating of 7		
App Information	Score displayed clearly to user	Displayed score and added corresponding virtual dartboard		
Game quality	System does not alter integrity of game	System uses regulation dartboard and steel tip darts		

Acknowledgements

Special thanks to our advisor Prof. Tessier and evaluators Prof. Parente and Prof. Krishna. Thank you to our course coordinators Prof. Christopher Hollot, Prof. Baird Soules, Shira Epstein, Wouter Schievink, Chuck Malloch and Qingchuan Wu.

Department of Electrical and Computer Engineering

ECE 415/ECE 416 – SENIOR DESIGN PROJECT 2023

College of Engineering - University of Massachusetts Amherst

SDP23

PCB/LED Array

- **□** Components:
 - □ Arduino Nano detects impact and communicates to pi via serial, pi responds with score
 - ☐ Piezoelectric element input for impact detection
 - **□** 5V 10A DC power supply to power LED strip, at max brightness each LED draws 60mA
- ☐ 105 individually addressable WS1228B LEDs in ring orientation
- Custom animations for boot up/bull/bullseye/zone illumination

App

- □ Primary method of communication with the system
- **□** Display:
 - **□** Score
 - Dart Location
 - ☐ Checkout throws
- ☐ User inputs:
 - □ Begin a game
 - ☐ Indicate next turn
 - Override score (in case of system error)
- Uses MQTT to send and receive messages from system
- ☐ Coded in Swift for iPhone

Cost

	0.			
Part	De	velopment	Pr	oduction (1000)
Piezo Element		1.60	\$	1.44
Arduino Nano Every		13.70	\$	13.70
WS1228B LED Strip		22.00	\$	7.70
HD 1080p Webcams		54.00	\$	54.00
PCB		10.00	\$	1.96
Resistors		0.20	\$	0.02
Capacitor		2.00	\$	0.79
Screw Terminals		1.80	\$	0.76
DC Power Jack		1.36	\$	0.78
DC Power Supply		22.00	\$	22.00
Ring Enclosure Materials		5.00	\$	2.00
Raspberry Pi 3B+		35.00	\$	35.00
Total		168.66	\$	140.15

From Image to Score

- ☐ Capture images
 - ☐ Calibrated so the center of the image is the center of the board
 - ☐ Cameras located at the sides of board and form a right angle with the bullseye
- ☐ Image processing
 - ☐ Isolate dart with structural similarity index measure (SSIM) and Otsu's threshold
 - □ Apply erosion and dilation to remove noise in image

- □ Acquire pixel coordinate of dart tip
 - □ Apply canny edge detection to image and select bottom most pixel of contour representing dart
- ☐ Calculate undistorted coordinates using non-linear mathematical model for radial distortion
- ☐ Convert pixel coordinate to location on board
 - ☐ Pixel coordinates tell us angle of dart to camera from center board
 - ☐ Use angles in slope-intercept formula to calculate polar coordinates
- Convert polar coordinates to score using region lookup table

Results

- ☐ Following results for 110 throws:
 - ☐ Average: 2.03 mm
 - ☐ Standard Deviation: 0.91 mm
 - □ Variance: 0.83 mm²
 □ Score Accuracy: 96%