

PROJECT PROBLEM

- The Data at hand is a Time-Series
- We look at 2 Cryptocurrencies
 - Bitcoin
 - Ethereum
- We use the Date and the Closing Price features
- We are able to forecast future prices that these Cryptocurrencies may take.

CRYPTOCURRENCY HISTORICAL DATASET

- This dataset has the historical price information of some of the top crypto currencies by market capitalization.
- The currencies included are Bitcoin (1517 rows) and Ethereum (928 rows)
- Daily data; spans from April 28, 2013 to February 20, 2018.
- Features:
 - DATE: Date of Observation
 - OPEN: Opening Price on the given day
 - HIGH: Highest Price on the given day
 - LOW: Lowest Price on the given day
 - CLOSE: Closest Price on the given day
 - VOLUME: Volume of the transaction on the given day
 - MARKET CAP: Market Capitalization in USD(\$)

AUTOREGRESSIVE INTEGRATED MOVING AVERAGES

What is ARIMA?

- ARIMA is a class of models that explain a given Time-Series based on its own passed values, that is, its own lags and the lagged forecast errors, so that the equation can be used to forecast future values.
- In layman terms it works by subtracting an observation from another observation at a previous time step in order to make the time series stationary, thus making it possible to forecast prices.

Why not Linear Regression?

 The main reason to not opt for regression for Time-Series Data is we are interested in predicting the future, which would be extrapolation (predicting outside the range of the data) for linear regression.

RESULTS FOR HYPOTHESIS TESTING

To ideally run the ARIMA model we our Time-Series must be stationary.

The statistical test we run to determine whether a Time-Series is stationary or not is done by Dickey Fuller Test. The Dickey-Fuller Test tests:

- Null Hypothesis: A unit root is present in an Autoregressive model.
- Unit Root Test: Tests whether a time series variable is non-stationary and possesses a <u>unit root</u>. If a series has a unit root, its shows a systematic pattern.
- Alternative Hypothesis: The time series is stationary.
- In our test our p-value < 0.05 thus we reject our Null Hypothesis, and run our model on our stationary data.

RESULTS OF ARIMA MODEL

Dep. Variable: Clos Model: ARMA(1, 3					1517 -10501.051	
Method:		css-m		of innovation	ons	245.029
Date: Wed,		d, 04 Dec 20	19 AIC			21014.102
Time:		21:26:	12 BIC			21046.049
Sample:			0 HQIC			21025.996
	coef	std err	z	P> z	[0.025	0.975]
const	1684.0996	3863.899	0.436	0.663	-5889.003	9257.202
ar.L1.Close	0.9984	0.002	500.671	0.000	0.994	1.002
ma.L1.Close	0.1077	0.026	4.079	0.000	0.056	0.160
ma.L2.Close	-0.0784	0.031	-2.536	0.011	-0.139	-0.018
ma.L3.Close	0.0249	0.029	0.870	0.385	-0.031	0.081

RESULTS OF ARIMA MODEL

PROJECT LEARNING

- Time Series Analysis Techniques
- AutoRegressive Integrated Moving Average
- Dickey Fuller Test
- Plotly Visualization
- Medium Articles

