- 1. Доказать, что в афинном пространстве \mathcal{C} , равном декартову произведению афинных пространств \mathcal{A} и \mathcal{B} , выполняется аксиома линейной независимости векторного пространства.
- 2. Рассмотрим афинное пространство \mathcal{A} и множество $\mathcal{A} * \mathbb{R}$. Сопоставим элементам этого множества прямые, которые проходят через начало координат и соответствующие точки. Докажите, что существует множество, биективное нашему, у которого выполняются свойства:
 - аксиоматики геометрии Римана
 - аксиоматики аффинного пространства (придумайте, что такое вектор, докажите, что всё хорошо. Видимо, можно сказать так: пусть у нас есть прямые p и q. Рассмотрим плоскость, задающуюся p, q и началом координат. Рассмотрим пересечение этой плоскости с плоскостью (\mathcal{A} , 1). Скажем, что это множество это вектор между p и q).

Нас ещё где-то обманули (?), я не понял, про что он

- 3. Докажите, что «считаем |ad| + |bc|, умножаем на 4ϵ . Считаем ad bc. Если первое число меньше второго, то мы можем посчитать знак определителя» работает для матриц произвольного размера.
- 4. \mathbb{R}^2 Дан треугольник a_1, a_2, a_3 (радиус-вектора) и точка q в нём. Докажите, что q лежит в треугольнике тогда и только тогда, когда коэффициенты в разложении q по базису $(a_3-a_1), (a_2-a_1), a_1$ неотрицательны.
- 5. Докажите, что в невыпуклом четырёхугольнике диагональ в невыпуклый угол хорошая. (что описанная окружность вокруг одного из треугольников не содержит противолежащей точки)
- 6. Докажите, что если мы, флипая, спустились в локальный минимум, и он не глобальный, тогда найдётся какое-то странное хорошее ребро, которое не хорошее?)
- 7. Как-нибудь красиво оцените величину $(1-p^k)^n (1-p^{k-1})^n$ так, чтобы матожидание этой величины по всем k было $\mathcal{O}(\log(n))$
- 8. Давайте посчитаем матожидание количества конфликтов при построении выпуклой оболочки.

$$E_c = \sum_{v \in CH} p * (c_{lv} + c_{rv}) = p * 2N$$

Докажите, что $E_c = \mathcal{O}(n \log n)$

- 9. Оцените число вершин в выпуклой оболочке, если они равномерно распределены
 - в квадрате
 - в окружности
 - на сфере
- 10. inplace convex hull for polygonal line in $\mathcal{O}(n)$
- 11. 3D Chan
- 12. Пусть все полуплоскости содержат точку p. Сдвинем p в (0,0,0). Покажите, что, после того, как вы посчитали выпуклую оболочку Грэхемом, то все полуплоскости оболочки смотрят в одну сторону (не надо мержить верхнюю и нижнюю огибающую)