CACHE COHERENCE

Dr. Madhu Mutyam

Computer Architecture and Systems Laboratory
Department of Computer Science and Engineering
Indian Institute of Technology, Madras
madhu@cse.iitm.ac.in

http://www.cse.iitm.ac.in/~madhu

THE CACHE COHERENCE PROBLEM

- Processors will see different value for u after event 3
- Write-through caches: P₁ reads a stale copy
- Write-back caches: P₁ and P₂ read a stale copy
 - The value written back to main memory depends on which cache writes back and when

(c) CAS Lab, IIT Madras

CACHE-COHERENCE THROUGH BUS SNOOPING

EXAMPLE: WRITE-THROUGH CACHES WITH INVALIDATION-BASED PROTOCOL

SNOOPY PROTOCOL

- Cache block state transition diagram:
 - Each cache block has a state associated with it
 - FSM specifies how the state of a block changes
- Controller updates state of cache blocks in response to processor and snoop events and generates bus transactions
- A snooping protocol is a distributed algorithm represented by a collection of cooperating FSMs

(c) CAS Lab, IIT Madras

MESI WRITE-BACK INVALIDATION

- Add *exclusive* state
 - distinguish exclusive (writable) and owned (written)
 - main memory is up to date, so cache not necessarily owner
 - can be written locally
- States
 - I -- Invalid
 - E exclusive (only this cache has copy, but not modified)
 - S -- shared (two or more caches may have copies)
 - M -- modified (dirty)
- \circ I \rightarrow E on PrRd if no cache has copy
 - => How can you tell?

HARDWARE SUPPORT FOR MESI PROTOCOL

- All cache controllers snoop on BusRd
- During the address phase of bus transaction, caches which have a copy of the block assert the shared signal
- The controller making the request chooses between \$70 and E

MESI STATE TRANSITION DIAGRAM

THINGS TO BE DONE

- Write a simulator to implement MESI protocol for 4core shared memory system
- Input: Trace of a multi-threaded program in a file
- Assumption: 64B block, 4-way set-associative, 16KB L1 data cache
- Deliverables:
 - State transitions (NP, I, E, S, M) per 1000 data memory references
 - Number of coherence misses