1. Лаб: Вложени цикли

Задачи за упражнение в клас и за домашно към курса "Основи на програмирането" @ СофтУни.

Тествайте решенията си в **Judge системата**: https://judge.softuni.bg/Contests/2385

1. Часовник

Напишете програма, която отпечатва **часовете в денонощието от 0:0 до 23:59**, всеки на отделен ред. Часовете трябва да се изписват във формат "**{час}:{минути}**".

Примерен вход и изход

Вход	Изход
(няма вход)	0:0
	0:1
	0:2
	0:3
	0:4
	0:5
	0:6
	0:7
	0:8
	0:9
	0:10
	23:50
	23:51
	23:52
	23:53
	23:54
	23:55
	23:56
	23:57
	23:58
	23:59

Насоки

1. Създайте 2 вложени for-цикъла, с които да итерирате през всяка една минута и час от денонощието:

```
for (int h = 0; h <= 23; h++)
{
    for (int m = 0; m <= 59; m++)
    {
        }
}</pre>
```

2. Отпечатайте резултата:


```
for (int h = 0; h <= 23; h++)
{
    for (int m = 0; m <= 59; m++)
    {
        Console.WriteLine($"{h}:{m}");
    }
}</pre>
```

2. Таблица за умножение

Отпечатайте на конзолата таблицата за умножение за числата от 1 до 10 във формат:

"{първи множител} * {втори множител} = {резултат}".

Примерен вход и изход

Вход	Изход
(няма вход)	1 * 1 = 1 1 * 2 = 2 1 * 3 = 3 1 * 4 = 4 1 * 5 = 5 1 * 6 = 6 1 * 7 = 7 1 * 8 = 8 1 * 9 = 9 1 * 10 = 10 10 * 1 = 10 10 * 2 = 20 10 * 3 = 30 10 * 4 = 40 10 * 5 = 50 10 * 6 = 60 10 * 7 = 70 10 * 8 = 80 10 * 9 = 90 10 * 10 = 100

Насоки

3. Създайте 2 вложени for-цикъла, с които да итерирате всяка възможна стойност на двата множителя от 1 до 10:


```
for (int x = 1; x <= 10; x++)
{
    for (int y = 1; y <= 10; y++)
    {
        }
}</pre>
```

4. Намерете произведението на двата множителя и отпечатайте резултата:

```
for (int x = 1; x <= 10; x++)
{
    for (int y = 1; y <= 10; y++)
    {
        int product = x * y;
        Console.WriteLine($"{x} * {y} = {product}");
    }
}</pre>
```

3. Комбинации

Напишете програма, която изчислява **колко решения в естествените числа** (включително и нулата) има уравнението:

x1 + x2 + x3 = n

Числото n е цяло число и се въвежда от конзолата.

Примерен вход и изход

Вход	Изход	Обяснения	Вход	Изход	Вход	Изход
25	351	Генерираме всички комбинации от 3 числа, като първата е: 0+0+0=0, но понеже не е равна на 25, продължаваме: 0+0+1=1 – също не е 25 и т.н. Стигаме до първата валидна комбинация: 0+0+25 = 25, увеличаваме броя на валидни комбинации с 1,втората валидна комбинация е: 0+1+24 = 25 Третата: 0+2+23 = 25 и т.н. След генериране на всички възможни комбинации, броят на валидните е 351.	20	231	5	21

Насоки

1. Прочетете входните данни – едно цяло число, въведено от потребителя и го запаметете в променлива:

```
int n = int.Parse(Console.ReadLine());
```

2. Създайте 3 вложени for-цикъла, с които да итерирате всяка възможна стойност на едно от 3те числа в уравнението:

```
int n = int.Parse(Console.ReadLine());
for (int x1 = 0; x1 <= n; x1++)
{
    for (int x2 = 0; x2 <= n; x2++)
    {
        for (int x3 = 0; x3 <= n; x3++)
        {
            }
        }
}</pre>
```

3. Направете проверка в най-вътрешния вложен цикъл за стойностите на **x1**, **x2**, **x3** във всяка една итерация. За да бъде валидно уравнението, техният сбор трябва да е равен на **n**. Създайте променлива **validCombinationsCount**, която да пази броя на валидните комбинации и добавяйте към нея всеки път, когато генерирате такава:

4. Накрая принтирайте броя на валидните комбинации (validCombinationsCount).

4. Сума от две числа

Напишете програма която проверява всички възможни комбинации от двойка числа в интервала от две дадени числа. На изхода се отпечатва, коя поред е комбинацията чиито сбор от числата е равен на дадено магическо число. Ако няма нито една комбинация отговаряща на условието се отпечатва съобщение, че не е намерено.

Вход

Входът се чете от конзолата и се състои от три реда:

- Първи ред начало на интервала цяло число в интервала [1...999]
- Втори ред край на интервала цяло число в интервала [по-голямо от първото число...1000]
- Трети ред магическото число цяло число в интервала [1...10000]

Изход

На конзолата трябва да се отпечата един ред, според резултата:

- Ако е намерена комбинация чиито сбор на числата е равен на магическото число
 - "Combination N:{пореден номер} ({първото число} + {второ число} = {магическото число})"
- Ако не е намерена комбинация отговаряща на условието
 - о "{броят на всички комбинации} combinations neither equals {магическото число}"

Примерен вход и изход

Вход	Изход	Обяснения	Вход	Изход
1 10 5	Combination N:4 (1 + 4 = 5)	Всички комбинации от две числа между 1 и 10 са: 1 1, 1 2, 1 3, 1 4, 1 5, 2 1, 2 2, 4 9, 4 10, 5 1 10 9, 10 10 Първата комбинация, чиито сбор на числата е равен на магическото число 5 е четвъртата (1 и 4)	88 888 1000	Combination N:20025 (112 + 888 = 1000)
Вход	Изход	Обяснения	Вход	Изход
23 24 20	4 combinations - neither equals 20	Всички комбинации от две числа между 23 и 24 са: 23 23, 23 24, 24 23, 24 24 (общо 4) Няма двойки числа, чиито сбор е равен на магическото 20	88 888 2000	641601 combinations - neither equals 2000

5. Пътуване

Ани обича да пътува и иска тази година да посети **няколко** различни дестинации. Като си избере дестинация, ще прецени **колко пари ще й трябват**, за да отиде до там и ще започне да **спестява**. Когато е спестила **достатъчно**, ще може да пътува.

От **конзолата всеки път ще се четат първо дестинацията и минималния бюджет**, който ще е нужен за пътуването.

След това ще се четат няколко суми, които Ани спестява като работи и когато успее да събере достатъчно за пътуването, ще заминава, като на конзолата трябва да се изпише:

"Going to {дестинацията}!"

Когато е посетила всички дестинации, които иска, **вместо дестинация ще въведе "End"** и програмата ще приключи.

Примерен вход и изход

Вход	Изход	Вход	Изход
Greece	Going to Greece!	France	Going to France!
1000	Going to Spain!	2000	Going to Portugal!
200		300	Going to Egypt!
200		300	
300		200	
100		400	
150		190	
240		258	
Spain		360	
1200		Portugal	
300		1450	
500		400	
193		400	
423		200	
End		300	
		300	
		Egypt	
		1900	
		1000	
		280	
		300	
		500	
		End	

6. Сграда

Напишете програма, която извежда на конзолата номерата на стаите в една сграда (в низходящ ред), като са изпълнени следните условия:

- На всеки четен етаж има само офиси
- На всеки нечетен етаж има само апартаменти
- Всеки апартамент се означава по следния начин : **А**{номер на етажа}{номер на апартамента}, номерата на апартаментите започват от **0**.
- Всеки офис се означава по следния начин : **О**{номер на етажа}{номер на офиса}, номерата на офисите също започват от 0.
- **На последният етаж винаги има апартаменти** и те са по-големи от останалите, за това **пред номера** им пише 'L', вместо 'A'. Ако има само един етаж, то има само големи апартаменти!

От конзолата се прочитат две цели числа - броят на етажите и броят на стаите за един етаж.

Примерен вход и изход

Вход	Изход	Обяснения
	• •	

6 4	L60 L61 L62 L63 A50 A51 A52 A53 O40 O41 O42 O43 A30 A31 A32 A33 O20 O21 O22 O23 A10 A11 A12 A13	Имаме общо <mark>6</mark> етажа, с по <mark>4</mark> стаи на етаж. Нечетните етажи имат само апартаменти, а четните само офиси.	
Вход	Изход	Вход	Изход
9 5	L90 L91 L92 L93 L94 080 081 082 083 084 A70 A71 A72 A73 A74 060 061 062 063 064 A50 A51 A52 A53 A54 040 041 042 043 044	4 4	L40 L41 L42 L43 A30 A31 A32 A33 O20 O21 O22 O23 A10 A11 A12 A13
	A30 A31 A32 A33 A34 O20 O21 O22 O23 O24 A10 A11 A12 A13 A14		

2. Примерна изпитна задача

7. *Билети за кино

Вашата задача е да напишете програма, която да изчислява процента на билетите за всеки тип от продадените билети: студентски(student), стандартен(standard) и детски(kid), за всички прожекции. Трябва да изчислите и колко процента от залата е запълнена за всяка една прожекция.

Вход

Входът е поредица от цели числа и текст:

- На първия ред до получаване на командата "Finish" име на филма текст
- На втори ред свободните места в салона за всяка прожекция цяло число [1 ... 100]
- За всеки филм, се чете по един ред до изчерпване на свободните места в залата или до получаване на командата "**End**":
 - Типа на закупения билет текст ("student", "standard", "kid")

Изход

На конзолата трябва да се печатат следните редове:

- След всеки филм да се отпечата, колко процента от кино залата е пълна
 - "{името на филма} {процент запълненост на залата}% full."
- При получаване на командата "Finish" да се отпечатат четири реда:
 - o "Total tickets: {общият брой закупени билети за всички филми}"
 - "{процент на студентските билети}% student tickets."
 - "{процент на стандартните билети}% standard tickets."
 - "{процент на детските билети}% kids tickets."

Примерен вход и изход

Вход	Изход	Обяснения
Taxi 10 standard	Taxi - 60.00% full. Scary Movie - 100.00% full. Total tickets: 12	Първи филм – Тахі, местата в залата са 10 Купуват се 3 стандарти, 2 студентски, 1 детски билет и получаваме командата End.

kid 66.67% student tickets. Общо 6 билета от 10 места -> 60% от залата е заета. 25.00% standard tickets. student Втори филм – Scary Movie, места в залата са 6 student 8.33% kids tickets. Купуват се 6 студентски билета и местата в залата standard свършват. standard End Общо 6 билета от 6 места -> 100% от залата е заета. Scary Movie Получаваме командата Finish Общо закупените билети за всички филми са 12. student За всички филми са закупени общо: student student 8 студентски билета. 8 билета от общо 12 е 66.67% student 3 стандартни билета. 3 билета от общо 12 е 25% student 1 детски билет. 1 билет от общо 12 е 8.33% student Finish Изход Обяснения Вход The Matrix The Matrix - 40.00% full. Първи филм – The Matrix, местата в залата са 20 20 The Green Mile - 35.29% full. Купуват се 2 стандартни, 4 студентски, 2 детски student Amadeus - 100.00% full. билета и получаваме командата End. Total tickets: 17 standard Общо 8 билета от 20 места -> 41.18% от залата е заета 41.18% student tickets. kid Втори филм - The Green Mile, местата в залата са 17 kid 47.06% standard tickets. Купуват се 3 стандартни, 3 студентски билета и 11.76% kids tickets. student получаваме командата End. student Общо 6 билета от 17 места -> 47.06% от залата е заета standard Трети филм – Amadeus, местата в залата са 3 student Купуват се 3 стандартни билета и местата в залата End свършват. The Green Mile Общо 3 билета от 3 места -> 100% от залата е заета. 17 Получаваме командата Finish student Общо закупените билети за всички филми са 17. standard За всички филми са закупени общо: standard student 7 студентски билета. 7 билета от общо 17 е 41.18% standard 8 стандартни билета. 8 билета от общо 17 е 47.06% 2 детски билета. 2 билета от общо 17 е 11.76% student Fnd Amadeus standard standard standard Finish