Comments: 1. Use arrows on vectors. $\vec{a} = \text{vector}$ $\vec{a} = \text{scalar}$ 2. To show \vec{n}_1 is not parallel to \vec{n}_2 , either show $\vec{n}_1 \times \vec{n}_2 = \vec{o}$ or $\vec{n}_1 \neq \vec{c} \neq \vec{c}$ MATH 202 3. Be able to distinguish equations of lines from planes.

Name: Solutions

January 27, 2020

Instructions: Five points total.

1. (2 pts.) Find, in both degrees and radians, the angle θ between the vectors $\mathbf{v} = \langle 2, 2 \rangle$ and $\mathbf{w} = \langle -1 - \sqrt{3}, \sqrt{3} - 1 \rangle$.

$$\cos \theta = \sqrt[7]{10} = \frac{\langle 2,2 \rangle \cdot \langle -1-\sqrt{2}, \sqrt{3}-1 \rangle}{\sqrt{2^2+2^2} \sqrt{(-1-\sqrt{2})^2 + (\sqrt{3}-1)^2}} = \frac{-2-2\sqrt{3}+2\sqrt{3}-2\sqrt{3}}{\sqrt{8} \cdot \sqrt{1+2\sqrt{3}+3}+3\cdot 2\sqrt{3}+1}$$

$$= \frac{-4}{\sqrt{8}\sqrt{8}} = \frac{-4}{8} = \frac{-1}{2}$$

$$\Theta = \arccos\left(\frac{-1}{2}\right) = \boxed{\frac{2\pi}{3}} = 120^{\circ}$$

2. (3 pts.) Justify that the two planes

Plane 1:
$$y + 2z = 1$$

Plane 2: $x + 3y - z = 3$

are **NOT** parallel. Then find the equation of the line ℓ of intersection. (You can give your answer in either vector or parametric form.)

The normal vectors are $\vec{n}_1 = \langle 0,1,2 \rangle$ and $\vec{n}_2 = \langle 1,3,-17 \rangle$, Since $\vec{n}_1 \neq \vec{n}_2$ for any non-zero Scalar, these vectors, and Therefore the planes, are NOT parallel.

For the line l of intersection: By inspection, P(0,1,0) is on both planes. A direction vector \vec{v} is $\vec{v} = \vec{n}_1 \times \vec{n}_2 = |\vec{v}| \hat{\vec{J}} \hat{\vec{k}} = (-1-6)\hat{\vec{v}} = (0,-2)\hat{\vec{J}} + (0-1)\hat{\vec{k}}$

The vector equation of
$$l$$
 is $\langle -7t, 1+2t, -t \rangle$ for $t \in \mathbb{R}$

or the parametric equations are $x(t) = -7t$ $y(t) = 1+2t$ $\geq (t) = -t$ then