CHAPTER 3 TRENDS (趋势)

- 3.1 Deterministic Versus Stochastic Trends
- 3.2 Estimation of a Constant Mean
- 3.3 Regression Methods
- 3.4 Reliability and Efficiency of Regression Estimates
- 3.5 Interpreting Regression Output
- 3.6 Residual Analysis
- 3.7 Summary

3.1 Deterministic Versus Stochastic Trends

stochastic trends e.g., random walk
A second simulation of exactly the same process
might well show completely different "trends."

What is the different between the two concepts?

deterministic function
$$E(X_t) = 0$$
 for all t

deterministic trends $Y_t = \mu_t + X_t$

e.g., average monthly temperature series

the **reason** for the trend is **clear**.

trend applies forever

model:

$$Y_t = \mu + X_t$$

where $E(X_t) = 0$ for all t.

estimate of
$$\mu$$

$$\overline{Y} = \frac{1}{n} \sum_{t=1}^{n} Y_t$$

$$E(\overline{Y}) = \mu$$
 unbiased estimate

the precision of \overline{Y} as an estimate of μ ?

Suppose that $\{Y_t\}$, (or, equivalently, $\{X_t\}$) is a stationary time series with autocorrelation function ρ_k . Exercise 2.17

$$Var(\overline{Y}) = \frac{\gamma_0}{n} \left[\sum_{k=-n+1}^{n-1} \left(1 - \frac{|k|}{n} \right) \rho_k \right] = \frac{\gamma_0}{n} \left[1 + 2 \sum_{k=1}^{n-1} \left(1 - \frac{k}{n} \right) \rho_k \right]$$

Case 1:

the series $\{X_t\}$ is just white noise, then $\rho_k = 0$ for k > 0

$$Var(\overline{Y}) = \frac{\gamma_0}{n}$$

Case 2:

(stationary) moving average model $X_t = e_t - \frac{1}{2}e_{t-1}$ we find that $\rho_1 = -0.4$ and $\rho_k = 0$ for k > 1.

$$Var(\overline{Y}) = \frac{\gamma_0}{n} \left[1 + 2\left(1 - \frac{1}{n}\right)(-0.4) \right]$$

$$= \frac{\gamma_0}{n} \left[1 - 0.8 \left(\frac{n-1}{n} \right) \right] \approx 0.2 \frac{\gamma_0}{n}$$
 Why?

Negative correlation at lag 1 has **improved** the estimation of the mean compared with the estimation obtained in the white noise situation.

Case 3:

if $\rho_k \ge 0$ for all $k \ge 1$,

$$Var(\overline{Y}) = \frac{\gamma_0}{n} \left[1 + 2 \sum_{k=1}^{n-1} \left(1 - \frac{k}{n} \right) \rho_k \right] \ge \frac{\gamma_0}{n}$$

The **positive** correlations make estimation of the mean *more* difficult than in the white noise case.

For many stationary processes

$$\sum_{k=0}^{\infty} \left| \rho_k \right| < \infty \quad \implies \quad Var(\overline{Y}) \approx \frac{\gamma_0}{n} \left[\sum_{k=-\infty}^{\infty} \rho_k \right]$$

suppose that
$$\rho_k = \phi^{|k|}$$
 for all k

$$Var(\overline{Y}) \approx \frac{(1+\phi)^{\gamma_0}}{(1-\phi)^{\eta_0}}$$

For a nonstationary process (but with a constant mean), the precision of the sample mean as an estimate of μ can be strikingly different.

e.g., $\{X_t\}$ is a random walk process

$$Var(\overline{Y}) = \frac{1}{n^2} Var \left[\sum_{i=1}^{n} Y_i \right] = \frac{1}{n^2} Var \left[\sum_{i=1}^{n} \sum_{j=1}^{i} e_j \right]$$

$$= \frac{1}{n^2} Var(e_1 + 2e_2 + 3e_3 + \dots + ne_n) = \frac{\sigma_e^2}{n^2} \sum_{k=1}^{n} k^2$$

$$= \sigma_e^2 (2n+1) \frac{(n+1)}{6n}$$

the variance of estimate *increases* as the sample size *n* increases. **unacceptable**

3.3 Regression Methods

Linear and Quadratic Trends in Time

Cyclical or Seasonal Trends

Cosine Trends

Consider the deterministic time trend

$$\mu_t = \beta_0 + \beta_1 t$$

where the *slope* and *intercept*, β_1 and β_0 respectively, are unknown parameters.

classical least squares (or regression) method

minimize
$$Q(\beta_0, \beta_1) = \sum_{t=1}^{n} [Y_t - (\beta_0 + \beta_1 t)]^2$$

$$\hat{\beta}_{1} = \frac{\sum_{t=1}^{n} (Y_{t} - \overline{Y})(t - \overline{t})}{\sum_{t=1}^{n} (t - \overline{t})^{2}}$$

$$\hat{\beta}_{0} = \overline{Y} - \hat{\beta}_{1}\overline{t}$$

where $\overline{t} = (n + 1)/2$ is the average of 1, 2,..., n.

Example

Exhibit 2.1 Time Series Plot of a Random Walk

Example

Exhibit 3.1	Least Squares Regression Estimates for Linear Time Trend				
	Estimate	Std. Error	t value	Pr(> t)	
Intercept	-1.008	0.2972	-3.39	0.00126	
Time	0.1341	0.00848	15.82	< 0.0001	

> data(rwalk)

> model1=lm(rwalk~time(rwalk))

> summary(model1)

> win.graph(width=4.875, height=2.5,pointsize=8)

> plot(rwalk,type='o',ylab='y')

> abline(model1) # add the fitted least squares line from model1

seasonal trends

$$Y_t = \mu_t + X_t$$

where $E(X_t) = 0$ for all t.

Exhibit 1.7 Average Monthly Temperatures, Dubuque, Iowa

general assumption for μ_t with monthly seasonal data

$$\mu_t = \begin{cases} \beta_1 & \text{for } t = 1, 13, 25, \dots \\ \beta_2 & \text{for } t = 2, 14, 26, \dots \\ \vdots & & \\ \beta_{12} & \text{for } t = 12, 24, 36, \dots \end{cases}$$

This is sometimes called a **seasonal means** model.

图表 3-3	季节均	值模型	回归结果
--------	-----	-----	------

Market and the second s				
	估计	标准误差	t值	Pr(> t)
1月	16. 608	0. 987	16.8	<0.0001
2 月	20.650	0.987	20.9	<0.0001
3 月	32. 475	0.987	32.9	< 0.0001
4 月	46. 525	0.987	47.1	<0.0001
5 月	58.092	0.987	58.9	< 0.0001
6 月	67. 500	0.987	68. 4	<0.0001
7 月	71. 717	0.987	72.7	<0.0001
8月	69. 333	0.987	70. 2	<0.0001
9月	61.025	0.987	61.8	<0.0001
10 月	50. 975	0.987	51.6	<0.0001
11 月	36.650	0.987	37. 1	< 0.0001
12 月	23.642	0.987	24.0	<0.0001

> data(tempdub)

> month.=season(tempdub) # period added to improve table display

> model2=lm(tempdub~month.-1) # -1 removes the intercept term

> summary(model2)

图表 3-4	带截距项的季	节均值模型回归结果
--------	--------	-----------

PE 174 0	1 1 MAN X H 2 1 1 - 2		
估 计	标准误差	t 值	$\Pr(> t)$
16. 608	0. 987	16. 83	<0.0001
4.042	1.396	2.90	0.00443
15. 867	1.396	11. 37	<0.0001
29. 917	1. 396	21. 43	< 0.0001
41.483	1. 396	29.72	< 0.0001
50.892	1.396	36.46	<0.0001
55. 108	1. 396	39.48	<0.0001
52. 725	1.396	37.78	<0.0001
44.417	1.396	31.82	<0.0001
34. 367	1.396	24.62	<0.0001
20.042	1.396	14.36	< 0.0001
7.033	1. 396	5.04	<0.0001
	估计 16.608 4.042 15.867 29.917 41.483 50.892 55.108 52.725 44.417 34.367 20.042	估计标准误差 16.608 0.987 4.042 1.396 15.867 1.396 29.917 1.396 41.483 1.396 50.892 1.396 55.108 1.396 52.725 1.396 44.417 1.396 34.367 1.396 20.042 1.396	估计标准误差 t值 16.608 0.987 16.83 4.042 1.396 2.90 15.867 1.396 11.37 29.917 1.396 21.43 41.483 1.396 29.72 50.892 1.396 36.46 55.108 1.396 39.48 52.725 1.396 37.78 44.417 1.396 31.82 34.367 1.396 24.62 20.042 1.396 14.36

> model3=lm(tempdub~month.) # January is dropped automatically

> summary(model3)

Consider the cosine curve with equation

$$\mu_t = \beta \cos(2\pi f t + \Phi)$$

We call β (> 0) the *amplitude*, f the *frequency*, and Φ Φ the *phase* of the curve.

reparameterizes

$$\beta\cos(2\pi ft + \Phi) = \beta_1\cos(2\pi ft) + \beta_2\sin(2\pi ft)$$
where $\beta = \sqrt{\beta_1^2 + \beta_2^2}$, $\Phi = \tan(-\beta_2/\beta_1)$
and, conversely, $\beta_1 = \beta\cos(\Phi)$, $\beta_2 = \beta\sin(\Phi)$

The simplest such model for the trend would be expressed as

$$\mu_t = \beta_0 + \beta_1 \cos(2\pi f t) + \beta_2 \sin(2\pi f t)$$

Here the constant term, β_0 , can be meaningfully thought of as a cosine with frequencyzero.

In practical, we must be careful how we **measure time**, as our choice of time measurement will **affect** the values of the **frequencies** of interest.

Exhibit 1.7 Average Monthly Temperatures, Dubuque, Iowa

Coefficient	Estimate	Std. Error	<i>t</i> -value	Pr(> t)
Intercept	46.2660	0.3088	149.82	< 0.0001
$\cos(2\pi t)$	-26.7079	0.4367	-61.15	< 0.0001
$\sin(2\pi t)$	-2.1697	0.4367	-4.97	< 0.0001

> har.=harmonic(tempdub,1)

In this output, time is measured in years, with 1964 as the starting value and a frequency of 1 per year.

> model4=lm(tempdub~har.)

> summary(model4)

Exhibit 3.6 Cosine Trend for the Temperature Series


```
> win.graph(width=4.875, height=2.5,pointsize=8)
> plot(ts(fitted(model4),freq=12,start=c(1964,1)),
```

ylab='Temperature', type='l',
> ylim=range(c(fitted(model4), tempdub))); points(tempdub)

> # ylim ensures that the y axis range fits the raw data and the fitted values

We assume that the series is represented as $Y_t = \mu_t + X_t$, where μ_t is a deterministic trend of the kind considered above and $\{X_t\}$ is a zero-mean stationary process with autocovariance and autocorrelation functions γ_k and ρ_k , respectively.

the seasonal means

$$\hat{\beta}_{j} = \frac{1}{N} \sum_{i=0}^{N-1} Y_{j+12i}$$

$$Var(\hat{\beta}_j) = \frac{\gamma_0}{N} \left[1 + 2 \sum_{k=1}^{N-1} \left(1 - \frac{k}{N} \right) \rho_{12k} \right]$$

This is similar to the results of **estimation of constant mean.**

cosine trends

$$Y_t = \beta_0 + \beta_1 \cos(2\pi f t) + \beta_2 \sin(2\pi f t)$$

$$\hat{\beta}_{1} = \frac{2}{n} \sum_{t=1}^{n} \left[\cos\left(\frac{2\pi mt}{n}\right) Y_{t} \right],$$

$$\hat{\beta}_{2} = \frac{2}{n} \sum_{t=1}^{n} \left[\sin\left(\frac{2\pi mt}{n}\right) Y_{t} \right]$$

the correlations between the time series $\{Y_t\}$ and the cosine and sine waves with frequency m/n.

the fact that
$$\sum_{t=1}^{n} [\cos(2\pi mt/n)]^2 = n/2$$

$$Var(\hat{\beta}_1) = \frac{2\gamma_0}{n} \left| 1 + \frac{4}{n} \sum_{s=2}^{n} \sum_{t=1}^{s-1} \cos\left(\frac{2\pi mt}{n}\right) \cos\left(\frac{2\pi ms}{n}\right) \rho_{s-t} \right|$$

If $\{X_t\}$ is white noise, we get just $2\gamma_0/n$.

If $\rho_1 \neq 0$, $\rho_k = 0$ for k > 1, and m/n = 1/12,

$$Var(\hat{\beta}_1) = \frac{2\gamma_0}{n} \left[1 + \frac{4\rho_1}{n} \sum_{t=1}^{n-1} \cos\left(\frac{\pi t}{6}\right) \cos\left(\frac{\pi t + 1}{6}\right) \right]$$

How to **compare** the models? seasonal means or cosine trends?

The parameters themselves are not directly comparable, but we can compare the estimates of the trend at **comparable time points**. Why?

Consider the two estimates for the trend in January

seasonal means

$$Var(\hat{\beta}_{j}) = \frac{\gamma_{0}}{N} \left[1 + 2 \sum_{k=1}^{N-1} \left(1 - \frac{k}{N} \right) \rho_{12k} \right]$$
 for $j = 1$

cosine trend model

$$\hat{\mu}_1 = \hat{\beta}_0 + \hat{\beta}_1 \cos\left(\frac{2\pi}{12}\right) + \hat{\beta}_2 \sin\left(\frac{2\pi}{12}\right)$$

$$Var(\hat{\mu}_1) = Var(\hat{\beta}_0) + Var(\hat{\beta}_1) \left[\cos\left(\frac{2\pi}{12}\right) \right]^2 + Var(\hat{\beta}_2) \left[\sin\left(\frac{2\pi}{12}\right) \right]^2$$

Case 1: white noise.

$$Var(\hat{\mu}_1) = \frac{\gamma_0}{n} \left\{ 1 + 2 \left[\cos\left(\frac{\pi}{6}\right) \right]^2 + 2 \left[\sin\left(\frac{\pi}{6}\right) \right]^2 \right\} = 3 \frac{\gamma_0}{n}$$

the ratio of the standard deviation in the **cosine** model to that in the **seasonal means** model:

$$\sqrt{\frac{3\gamma_0/n}{\gamma_0/N}} = \sqrt{\frac{3N}{n}} \qquad n = 12N$$

Thus, in the cosine model, we estimate the January effect with a standard deviation that is **only half as** large as it would be if we estimated with a seasonal means model—a substantial gain.

simpler model with smaller variance

Case 2:
$$\rho_1 \neq 0$$
 but $\rho_k = 0$ for $k > 1$

seasonal means

$$Var(\hat{\beta}_j) = \frac{\gamma_0}{N}$$

cosine trend model

$$Var(\hat{\mu}_1) = \frac{\gamma_0}{n} \left\{ 1 + 2\rho_1 + 2\left[1 + 2\rho_1 \cos\left(\frac{2\pi}{12}\right)\right] \right\}$$

$$= \frac{\gamma_0}{n} \left\{ 3 + 2\rho_1 \left[1 + 2\cos\left(\frac{\pi}{6}\right) \right] \right\}$$

If
$$\rho_1 = -0.4$$
, then we have $0.814\gamma_0/n$,

the ratio of the standard deviation in the **cosine** model to that in the **seasonal means** model:

$$\sqrt{\left[\frac{(0.814\gamma_0)/n}{\gamma_0/N}\right]} = \sqrt{\frac{0.814N}{n}} = 0.26$$

a very substantial reduction indeed!

The cosine trend plus white noise model is the correct model?

linear time trends

$$\hat{\beta}_1 = \frac{\sum_{t=1}^n (t - \overline{t}) Y_t}{\sum_{t=1}^n (t - \overline{t})^2}$$

$$Var(\hat{\beta}_1) = \frac{12\gamma_0}{n(n^2 - 1)} \left[1 + \frac{24}{n(n^2 - 1)} \sum_{s=2}^{n} \sum_{t=1}^{s-1} (t - \overline{t})(s - \overline{t}) \rho_{s-t} \right]$$

Case: $\rho_1 \neq 0$ but $\rho_k = 0$ for k > 1

$$Var(\hat{\beta}_1) = \frac{12\gamma_0}{n(n^2 - 1)} \left[1 + 2\rho_1 \left(1 - \frac{3}{n} \right) \right]$$
$$= \frac{12\gamma_0 (1 + 2\rho_1)}{n(n^2 - 1)}$$

If $\rho_1 = -0.4$, then $1 + 2\rho_1 = 0.2$, and then the variance of $\hat{\beta}_1$ is only 20% of what it would be if $\{X_t\}$ were white noise.

3.5 Interpreting Regression Output

residual standard deviation

$$s = \sqrt{\frac{1}{n-p} \sum_{t=1}^{n} (Y_t - \hat{\mu}_t)^2}$$

$$\hat{\mu}_t$$
: the estimated trend for μ_t

the number of parameters estimated in μ_t

n-p: degrees of freedom for s

difficult to interpret

The value of s gives an absolute measure of the goodness of fit of the estimated trend— the smaller the value of s, the better the fit.

coefficient of determination (R-squared)

- the square of the sample correlation coefficient between the observed series and the estimated trend.
- the fraction of the variation in the series that is explained by the estimated trend.

unitless measure

Exhibit 3.7	Regression Output for Linear Trend Fit of Random Walk					
	Estimate	Std. Error	<i>t</i> -value	Pr(> t)		
Intercept	-1.007888	0.297245	-3.39	0.00126		
Time	0.134087	0.008475	15.82	< 0.0001		
Residual standard error Multiple <i>R</i> -Squared Adjusted <i>R</i> -squared <i>F</i> -statistic		1.137 0.812 0.809 250.3	with 58 degrees of with 1 and 58 df; p			

> model1=lm(rwalk~time(rwalk))

The adjusted R-squared is useful for comparing models with **different** numbers of parameters.

> summary(model1)

standard deviations of coefficients

The standard deviations of the coefficients labeled **Std. Error** on the output need to be interpreted carefully. They are appropriate only when **the stochastic component is white noise**—the usual regression assumption.

The important point is that these standard deviations assume a white noise stochastic component that will rarely be true for time series.

standard deviations of coefficients

$$Var(\hat{\beta}_1) = \underbrace{\frac{12\gamma_0}{n(n^2 - 1)}} \left[1 + \frac{24}{n(n^2 - 1)} \sum_{s=2}^{n} \sum_{t=1}^{s-1} (t - \overline{t})(s - \overline{t}) \rho_{s-t} \right]$$

$$\gamma_0 \text{ estimated by } s^2$$

$$0.008475 = \sqrt{\frac{12(1.137)^2}{60(60^2 - 1)}}$$

Exhibit 3.7	Regression Output for Linear Trend Fit of Random Walk				
	Estimate	Std. Error	<i>t</i> -value	Pr(> t)	
Intercept	-1.007888	0.297245	-3.39	0.00126	
Time	0.134087	0.008475	15.82	< 0.0001	
Residual standard error		1.137	with 58 degrees of freedom		
Multiple R-Squared		0.812			
Adjusted <i>R</i> -squared		0.809			
F-statistic		250.3	with 1 and 58 df; <i>p</i> -value < 0.0001		

> model1=lm(rwalk~time(rwalk))

> summary(model1)

t-values or t-ratios

The *t*-values or are just the estimated regression coefficients, each divided by their respective standard errors. If the stochastic component is normally distributed white noise, then these ratios provide appropriate test statistics for checking the significance of the regression coefficients.

Exhibit 3.7	Regression Output for Linear Trend Fit of Random Walk				
	Estimate	Std. Error	<i>t</i> -value	Pr(> t)	
Intercept	-1.007888	0.297245	-3.39	0.00126	
Time	0.134087	0.008475	15.82	< 0.0001	
Residual standard error		1.137	with 58 degrees of freedom		
Multiple <i>R</i> -Squared		0.812			
Adjusted R-	squared	0.809			
<i>F</i> -statistic		250.3	with 1 and 58 df; <i>p</i> -value < 0.0001		

> model1=lm(rwalk~time(rwalk))

> summary(model1)

residual

$$\hat{X}_t = Y_t - \hat{\mu}_t$$
 standard deviation standardized residuals \hat{X}_t / S

If the trend model is reasonably **correct**, then the residuals should **behave roughly like the true stochastic component**, and various assumptions about the stochastic component can be assessed by **looking at the residuals**.

Exhibit 1.7 Average Monthly Temperatures, Dubuque, Iowa


```
> win.graph(width=4.875, height=2.5,pointsize=8)
```

> data(tempdub); plot(tempdub,ylab='Temperature',type='o')

Exhibit 3.8 Residuals versus Time for Temperature Seasonal Means

> plot(y=rstudent(model3), x=as.vector(time(tempdub)),
 xlab='Time', ylab='Standardized Residuals', type='o')

no striking departures from randomness apparent

Exhibit 3.9 Residuals versus Time with Seasonal Plotting Symbols


```
> plot(y=rstudent(model3),x=as.vector(time(tempdub)),xlab='Time',
```

no apparent patterns relating to different months

> ylab='Standardized Residuals',type='l')

> points(y=rstudent(model3),x=as.vector(time(tempdub)),
 pch=as.vector(season(tempdub)))

Exhibit 3.10 Standardized Residuals versus Fitted Values for the Temperature Seasonal Means Model

Exhibit 3.11 Histogram of Standardized Residuals from Seasonal Means Model

> hist(rstudent(model3),xlab='Standardized Residuals')

Exhibit 3.12 Q-Q Plot: Standardized Residuals of Seasonal Means Model

nonnormality?

- > win.graph(width=2.5,height=2.5,pointsize=8)
- > qqnorm(rstudent(model3))

Shapiro-Wilk test: *p*-value of 0.6954

Independence?

runs test

Runs above or below their **median** are counted. A **small** number of runs would indicate that neighboring residuals are **positively** dependent. On the other hand, too **many** runs would indicate neighboring residuals are **negatively** dependent. So **either too few or too many** runs lead us to **reject independence**.

observed runs = 65, expected runs = 72.875, *p*-value = 0.216, cannot reject independence

Sample Autocorrelation Function

examining dependence

$$r_{k} = \frac{\sum_{t=k+1}^{n} (Y_{t} - \overline{Y})(Y_{t-k} - \overline{Y})}{\sum_{t=1}^{n} (Y_{t} - \overline{Y})^{2}}$$
 for $k = 1, 2, ...$

A plot of r_k versus lag k is often called a **correlogram**.

- > win.graph(width=4.875,height=3,pointsize=8)
- > acf(rstudent(model3))

none of the hypotheses $\rho_k = 0$ can be rejected

Exhibit 3.2 Random Walk with Linear Time Trend

- > win.graph(width=4.875, height=2.5,pointsize=8)
- > plot(rwalk,type='o',ylab='y')
- > abline(model1) # add the fitted least squares line from model1

Exhibit 3.14 Residuals from Straight Line Fit of the Random Walk

- > plot(y=rstudent(model1),x=as.vector(time(rwalk)),
 ylab='Standardized Residuals',xlab='Time',type='o')
 - 1. the residuals "hang together" too much for white noise
 - 2.more variation in the last third of the series

Exhibit 3.15 Residuals versus Fitted Values from Straight Line Fit

Fitted Trend Line Values

larger residuals associated with larger fitted values.

> acf(rstudent(model1))

This is not what we expect from a white noise process.

3.7 Summary

This chapter is concerned with describing, modeling, and estimating deterministic trends. Methods of estimating a constant mean were given but, more importantly, assessment of the accuracy of the estimates under various conditions was considered. Regression methods were then pursued to estimate trends that are linear or quadratic in time. Methods for modeling cyclical or seasonal trends came next, and the reliability and efficiency of all of these regression methods were investigated. The final section began our study of residual analysis to investigate the quality of the fitted model. This section also introduced the important sample autocorrelation function.

作业

用程序语言实现常均值模型、线性模型、二次模型、季节趋势模型、余弦趋势模型的参数估计,并使用教才中相应数据检验算法的正确性

基于上面的程序,完成3.5、3.7、3.11、3.14题