

دانشگاه صنعتی امیرکبیر دانشکده مهندسی کامپیوتر

گزارش تکلیف اول درس یادگیری ماشین پیادهسازی یک رگرسیون خطی منظمشده

> دانشجو: سید احمد نقوی نوزاد ش-د: ۹۴۱۳۱۰۶۰

> > استاد: دکتر ناظرفرد

۱. رسم دادههای مسئله

۲. تابع فرضیه مربوط به چندجملهای درجهی ۳ و درجهی ۶

$$h(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

تابع فرضیه مربوط به چندجملهای درجهی ۳:

$$h(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4 + \theta_5 x^5 + \theta_6 x^6$$

تابع فرضیه مربوط به چندجملهای درجهی ۶:

٣. انتخاب تابع هزينه

در عبارت زیر:

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

در اینجا $\lambda \sum_{j=1}^n \theta_j^2$ ، عبارت تنظیمسازی (regularization term) نامیده شده و پارامتر $\lambda \sum_{j=1}^n \theta_j^2$ نیز پارامتر تنظیمسازی (Regularization Parameter) میباشد. کاری که λ انجام میدهد برقراری یک tradeoff میان دو هدف متفاوت است؛ هدف اول این است که میخواهیم مدل ما با دادههای آموزشی به خوبی fit شود و هدف دوم این است که میخواهیم پارامترهای مدل ما تا حد امکان کوچک باشند تا تخمین ما نسبتا ساده بوده و از overfitting اجتناب نمائیم و یا اثر feature های کماهمیت را کم کرده و یا ممان کوچک باشند تا تخمین ما نسبتا ساده بوده و از overfitting اجتناب نمائیم و یا اثر Residual Sums of Errors) RSS یا همان حتی آنها را حذف کنیم. به عبارتی به ازای λ های کوچک، تمرکز بر روی کمکردن $\lambda \in \mathbb{R}$ بوده و مدل به سمت overfitting رفته و در نتیجه دارای بایاس اندک و واریانس بالا خواهد بود؛ و نیز به $\sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^2$

ازای λ های بزرگ، تمرکز بر روی کم کردن اندازهی پارامترها بوده و مدل به سمت underfitting رفته و در نتیجه دارای بایاس بالا و واریانس اندک خواهد بود.

در اینجا ما پارامتر θ_0 را بنا به سنّت اصطلاحا جریمه ننموده و البته انجام یا عدم انجام این مسئله تغییر چندانی در نتایج نهائی ایجاد نمی نماید(بنا به گفتهی آقای Andrew Ng الله این است که در صورت شمول پارامتر θ_0 و البته بزرگبودن λ در عبارت تنظیمسازی، مقدار این پارامتر نیز منقبض (shrink) شده و تابع تخمین نهائی ما به سمت λ متمایل شده و این البته مطلوب ما نمیباشد. اما در صورت عدم شمول پارامتر λ و نیز بزرگبودن λ ، مدل ما به سمت حالتی میرود که مقدار تابع تخمین به ازای هر کدام از دادههای آموزشی برابر میانگین مقادیر مطلوب (target values mean) میباشد λ و این از حالت تابع تخمین λ به مراتب بهتر است.

۴. یافتن یارامترهای بهینه با استفاده از روش معادلهی نرمال

مقادیر heta بهینه برای سه حالت $\lambda=0$ ، $\lambda=1$ و $\lambda=1$ برای چندجملهای درجهی ۳ به شرح زیر است:

Cubic Polynomial				
λ=0		λ=1	λ=10	
$\theta_{\scriptscriptstyle 0}$	-0.4020	0.4261	1.3258	
$\theta_{_{ m l}}$	-0.7543	-0.4701	-0.1982	
θ_2	4.9125	2.8422	0.5930	
$\theta_{_{3}}$	0.0130	-0.2362	-0.1353	

مقادیر heta بهینه برای سه حالت $\lambda=0$ ، $\lambda=0$ و $\lambda=1$ برای چندجملهای درجهی ۶ نیز به شرح زیر است:

Sextic Degree Polynomial				
λ=0		λ=1	λ=10	
$ heta_0$	0.4646	0.3188	1.0909	
$ heta_{ ext{l}}$	0.6844	-0.4652	-0.1853	
θ_2	-1.3959	1.0289	0.4630	
θ_3	-5.9607	-0.2256	-0.1223	
θ_4	2.4826	1.4948	0.5379	
$\theta_{\scriptscriptstyle 5}$	4.7160	-0.0227	-0.0861	
$\theta_{\scriptscriptstyle 6}$	3.9786	1.7049	0.5601	

سایر موارد خواسته شده در صورت مسئله (چندجملهای به دست آمده به ازای λ های مختلف؛ اندازهی(نُرم) بردار θ بر حسب λ های مختلف؛ نمودار خطای MSE بر حسب λ های مختلف) در نمودارهای زیر برای دو حالت چندجملهای درجهی λ و λ قابل مشاهده است:

همانطور که از نمودارهای بالا قابل مشاهده است با توجه به پیچیدگی و ظرافتهای موجود در مجموعهی دادهی فعلی، $\lambda=0$ چندجملهای با درجهی ۳ نسبت به دادهها fit شده و حتی می توان دید که به ازای در چندجملهای با درجهی ۶ متنان دید که به ازای overfitting شده و مدل ما اصطلاحا دچار α

همینطور قابل مشاهده است که با افزایش اندازهی λ از پیچیدگیهای هر دو منحنی کاسته شده و مدل ما به سمت یک مدل ساده تر حرکت مینماید و اصطلاحا به ازای λ های کوچک مدل دچار overfitting شده و با افزایش اندازهی λ از این وضعیت دور می شویم.

می توان دید که با افزایش اندازه ی λ ، اندازه ی (نُرم) بردار θ در هر دو حالت چندجملهای درجه ی π و ۶ کاهش یافته و نیز میزان خطای MSE در هر دو مورد افزایش می یابد و این شاهد بر همان مطالبی است که در پاسخ سؤال سوم بیان شد که با افزایش اندازه ی Λ تمرکز مدل بر روی کمکردن اندازه ی پارامترهای مسئله می باشد، که در نتیجه ی آن مدل ما ساده تر شده و کمتر نسبت به دادههای Λ تمرکز مدل بر روی کمکردن اندازه ی پارامترهای مسئله می باشد، که در نتیجه ی آن مدل ما ساده تر شده و کمتر نسبت به دادههای آموزشی fit می شود و در نتیجه میزان خطای residual به ازای هر داده افزایش یافته و در نهایت خطای کل MSE بالا می رود.

۵. یاسخ بخش امتیازی

$$J(\overline{\theta}) = \frac{1}{2m} \left[\sum_{i=1}^{m} (y_i - h(x_i))^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right] =$$

$$\frac{1}{2m} \left[\sum_{i=1}^{m} (y_i - \overline{x_i}^T \overline{\theta})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right] =$$

$$\frac{1}{2m} \left[(\overline{y} - X \overline{\theta})^T (\overline{y} - X \overline{\theta}) + \lambda || \overline{\theta} ||_2^2 \right]$$

که در اینجا X یک ماتریس $m^*(n+1)$ میباشد که m تعداد دادههای آموزشی و n درجهی چندجملهای بوده و $m^*(n+1)$ نیز برداری $m^*(n+1)$ بیاد $m^*(n+1)$ شامل درایههای هر سطر ماتریس $m^*(n+1)$ میباشد ؛ $m^*(n+1)$ نیز یک بردار $m^*(n+1)$ هم یک بردار $m^*(n+1)$ میباشد. داریم:

$$\frac{\partial}{\partial \overline{\theta}} J(\overline{\theta}) = \frac{1}{2m} \left[-2X^{T} (\overline{y} - X \overline{\theta}) + 2\lambda \overline{\theta} \right] = 0 \implies \\
-X^{T} \overline{y} + X^{T} X \overline{\theta} + \lambda \overline{\theta} = 0 \implies \\
X^{T} X \overline{\theta} + \lambda \overline{\theta} = X^{T} \overline{y} \implies \\
(X^{T} X + \lambda I_{n}) \overline{\theta} = X^{T} \overline{y} \implies \\
\overline{\theta} = (X^{T} X + \lambda I_{n+1})^{-1} X^{T} \overline{y} = \\
\begin{pmatrix}
0 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
0 & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}_{(n+1)^{*}(n+1)}^{-1} X^{T} \overline{y} \implies \\
X^{T} \overline{y} \implies \therefore \text{ Proved!}$$