

Escuela Superior de Cómputo

Profesora: Consuelo Varinia García Mendoza

Profesora: Consueio varinia Garcia

- 1. Para esta práctica se utilizará los dataset iris.csv y emails.csv
 - En el dataset iris.csv
 - o Las primeras 4 columnas son las características de las instancias
 - La última columna es la clase
 - En el dataset emails.csv
 - La primera columna indica el id del correo
 - o La última columna indica si el correo es spam o no
 - El resto de las columnas (3,000) son las palabras más comunes en todos los correos
- 2. Para cada dataset
 - Mezcla los datos (random_state=0) y crea un conjunto de entrenamiento del 70% y 30% de prueba
 - Con el 70% de entrenamiento genera conjuntos de validación con el método de validación cruzada para k=3. Genera la información de la Tabla 1 utilizando las bibliotecas:
 - o sklearn.neighbors.KNeighborsClassifier
 - o sklearn.metrics.accuracy score
 - Selecciona las configuraciones que logran los mejores accuracy promedio para las pruebas finales y llena la Tabla 2. Genera la matriz de confusión y el reporte de clasificación utilizando las bibliotecas:
 - o sklearn.metrics.classification report
 - o sklearn.metrics.ConfusionMatrixDisplay
- 3. La salida del programa será la información de las tablas 1 y 2. De las pruebas finales de K-NN y Bayes se generarán las matrices de confusión y los reportes de clasificación

Nota: A la Tabla 2 se agregarán los resultados de las pruebas finales de la Práctica de Bayes

Tabla 1. Validación cruzada con $k=3\,$ para 1-NN y 10-NN

Dataset	Vecinos	Pesos	Pliegue	Accuracy
Iris.csv	1		1	
			2	
			3	
			Promedio	
	10	uniforme	1	
			2	
			3	
			Promedio	
	10	distancia	1	
			2	
			3	
			Promedio	
emails.cvs	1		1	
			2	
			3	
			Promedio	
	10	uniforme	1	
			2	
			3	
			Promedio	
	10	distancia	1	
			2	
			3	
			Promedio	

Tabla 2. Resultados de pruebas finales

Dataset	Clasificador	Vecinos	Pesos	Distribución	Accuracy
iris.cvs	Naïve Bayes				
	K-NN				
emails.csv	Naïve Bayes				
	K-NN				