

SUBSTITUTE SPECIFICATION-CLEAN VERSION

JR-14,000-CON

PATENT

ISOLATED GENOMIC POLYNUCLEOTIDE FRAGMENTS FROM CHROMOSOME 7

5 PRIORITY CLAIM

This application claims priority under 35 U.S.C. §19(e) to provisional application serial no. 60/234,422, filed September 21, 2000 and is a continuation of application serial no. 09/957,956, filed September 21, 2001, the contents of which are incorporated herein by reference.

10 FIELD OF THE INVENTION

The invention is directed to isolated genomic polynucleotide fragments that encode human SNARE YKT6, human glucokinase, human adipocyte enhancer binding protein 1 (AEBP1) and DNA directed 50kD regulatory subunit (POLD2), vectors and hosts containing these fragments and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments.

15 The invention is further directed to methods of using these fragments to obtain SNARE YKT6, human glucokinase, AEBP1 protein and POLD2 and to diagnose, treat, prevent and/or ameliorate a pathological disorder.

BACKGROUND OF THE INVENTION

20 Chromosome 7 contains genes encoding, for example, epidermal growth factor receptor, collagen-1-Alpha-1-chain, SNARE YKT6, human glucokinase, human adipocyte enhancer binding protein 1 and DNA polymerase delta small subunit (POLD2). SNARE YKT6, human glucokinase, human adipocyte enhancer binding protein 1 and DNA polymerase delta small subunit (POLD2) are discussed in further detail below.

25

SNARE YKT6

SNARE YKT6, a substrate for prenylation, is essential for vesicle-associated endoplasmic reticulum-Golgi transport (McNew, J.A. et al. J. Biol. Chem. 272, 17776-17783, 1997). It has been found that depletion of this function stops cell growth and manifests a transport block at the 30 endoplasmic reticulum level.

Human Glucokinase

SUBSTITUTE SPECIFICATION-CLEAN VERSION

Human glucokinase (ATP:D-hexose 6-phosphotransferase) is thought to play a major role in glucose sensing in pancreatic islet beta cells (Tanizawa et al., 1992, Mol. Endocrinol. 6:1070-1081) and in the liver. Glucokinase defects have been observed in patients with noninsulin-dependent diabetes mellitus (NIDDM) patients. Mutations in the human glucokinase gene are thought to play a role in the early onset of NIDDM. The gene has been shown by Southern Blotting to exist as a single copy on chromosome 7. It was further found to contain 10 exons including one exon expressed in islet beta cells and the other expressed in liver.

Human Adipocyte Enhancer Binding Protein 1

The adipocyte-enhancer binding protein 1 (AEBP1) is a transcriptional repressor having carboxypeptidase B-like activity which binds to a regulatory sequence (adipocyte enhancer 1, AE-1) located in the proximal promoter region of the adipose P2 (aP2) gene, which encodes the adipocyte fatty acid binding protein (Muise et al., 1999, Biochem. J. 343:341-345). B-like carboxypeptidases remove C-terminal arginine and lysine residues and participate in the release of active peptides, such as insulin, alter receptor specificity for polypeptides and terminate polypeptide activity (Skidgel, 1988, Trends Pharmacol. Sci. 9:299-304). For example, they are thought to be involved in the onset of obesity (Naggert et al., 1995, Nat. Genet. 10:1335-1342). It has been reported that obese and hyperglycemic mice homozygous for the *fat* mutation contain a mutation in the CP-E gene.

Full length cDNA clones encoding AEBP1 have been isolated from human osteoblast and adipose tissue (Ohno et al., 1996, Biochem. Biophys Res. Commun. 228:411-414). Two forms have been found to exist due to alternative splicing. This gene appears to play a significant role in regulating adipogenesis. In addition to playing a role in obesity, adipogenesis may play a role in osteopenic disorders. It has been postulated that adipogenesis inhibitors may be used to treat osteopenic disorders (Nuttal et al., 2000, Bone 27:177-184).

DNA Polymerase Delta Small Subunit (POLD2)

DNA polymerase delta core is a heterodimeric enzyme with a catalytic subunit of 125 kD and a second subunit of 50 kD and is an essential enzyme for DNA replication and DNA repair (Zhang et al., 1995, Genomics 29:179-186). cDNAs encoding the small subunit have been cloned and sequenced.

The gene for the small subunit has been localized to human chromosome 7 via PCR analysis of a panel of human-hamster hybrid cell lines. However, the genomic DNA has not been isolated and the exact location on chromosome 7 has not been determined.

SUBSTITUTE SPECIFICATION-CLEAN VERSION

OBJECTS OF THE INVENTION

Although cDNAs encoding the above-disclosed proteins have been isolated, their location on chromosome 7 has not been determined. Furthermore, genomic DNA encoding these polypeptides 5 have not been isolated. Noncoding sequences can play a significant role in regulating the expression of polypeptides as well as the processing of RNA encoding these polypeptides.

There is clearly a need for obtaining genomic polynucleotide sequences encoding these polypeptides. Therefore, it is an object of the invention to isolate such genomic polynucleotide sequences.

10

SUMMARY OF THE INVENTION

The invention is directed to an isolated genomic polynucleotide, said polynucleotide obtainable from human chromosome 7 having a nucleotide sequence at least 95% identical to a sequence selected from the group consisting of:

15 (a) a polynucleotide encoding a polypeptide selected from the group consisting of human SNARE YKT6 depicted in SEQ ID NO:1, human glucokinase depicted in SEQ ID NO:2, human adipocyte enhancer binding protein 1 (AEBP1) depicted in SEQ ID NO:3 and DNA directed 50kD regulatory subunit (POLD2) depicted in SEQ ID NO:4;

20 (b) a polynucleotide selected from the group consisting of SEQ ID NO:5 which encodes human SNARE YKT6 depicted in SEQ ID NO:1, SEQ ID NO:6 which encodes human glucokinase depicted in SEQ ID NO:2, SEQ ID NO:8 which encodes human adipocyte enhancer binding protein 1 depicted in SEQ ID NO:3 and SEQ ID NO:7 which encodes DNA directed 50kD regulatory subunit (POLD2) depicted in SEQ ID NO:4;

25 (c) a polynucleotide which is a variant of SEQ ID NOS:5, 6, 7, or 8;

(d) a polynucleotide which is an allelic variant of SEQ ID NOS:5, 6, 7, or 8;

(e) a polynucleotide which encodes a variant of SEQ ID NOS:1, 2, 3, or 4;

(f) a polynucleotide which hybridizes to any one of the polynucleotides specified in (a)-(e);

30 (g) a polynucleotide that is a reverse complement to the polynucleotides specified in (a)-(f) and

(h) containing at least 10 transcription factor binding sites selected from the group consisting of AP1FJ-Q2, AP1-C, AP1-Q2, AP1-Q4, AP4-Q5, AP4-Q6, ARNT-01, CEBP-01,

SUBSTITUTE SPECIFICATION-CLEAN VERSION

CETS1P54-01, CREL-01, DELTAEF1-01, FREAC7-01, GATA1-02, GATA1-03, GATA1-04, GATA1-06, GATA2-02, GATA3-02, GATA-C, GC-01, GFII-01, HFH2-01, HFH3-01, HFH8-01, IK2-01, LMO2COM-01, LMO2COM-02, LYF1-01, MAX-01, NKX25-01, NMYC-01, S8-01, SOX5-01, SP1-Q6, SAEBP1-01, SRV-02, STAT-01, TATA-01, TCF11-01, USF-01, USF-C and USF-Q6

5 as well as nucleic acid constructs, expression vectors and host cells containing these polynucleotide sequences.

The polynucleotides of the present invention may be used for the manufacture of a gene therapy for the prevention, treatment or amelioration of a medical condition by adding an amount of a composition comprising said polynucleotide effective to prevent, treat or ameliorate said medical 10 condition.

The invention is further directed to obtaining these polypeptides by

(a) culturing host cells comprising these sequences under conditions that provide for the expression of said polypeptide and

(b) recovering said expressed polypeptide.

15 The polypeptides obtained may be used to produce antibodies by

(a) optionally conjugating said polypeptide to a carrier protein;

(b) immunizing a host animal with said polypeptide or peptide-carrier protein conjugate of step

(b) with an adjuvant and

(c) obtaining antibody from said immunized host animal.

20 The invention is further directed to polynucleotides that hybridize to noncoding regions of said polynucleotide sequences as well as antisense oligonucleotides to these polynucleotides as well as antisense mimetics. The antisense oligonucleotides or mimetics may be used for the manufacture of a medicament for prevention, treatment or amelioration of a medical condition. The invention is further directed to kits comprising these polynucleotides and kits comprising these antisense 25 oligonucleotides or mimetics.

In a specific embodiment, the noncoding regions are transcription regulatory regions. The transcription regulatory regions may be used to produce a heterologous peptide by expressing in a host cell, said transcription regulatory region operably linked to a polynucleotide encoding the heterologous polypeptide and recovering the expressed heterologous polypeptide.

30 The polynucleotides of the present invention may be used to diagnose a pathological condition in a subject comprising

SUBSTITUTE SPECIFICATION-CLEAN VERSION

(a) determining the presence or absence of a mutation in the polynucleotides of the present invention and

(b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or absence of said mutation.

5

DETAILED DESCRIPTION OF THE INVENTION

The invention is directed to isolated genomic polynucleotide fragments that encode human SNARE YKT6, human glucokinase, human adipocyte enhancer binding protein 1 and DNA directed 50kD regulatory subunit (POLD2), which in a specific embodiment are the SNARE YKT6, human glucokinase, human adipocyte enhancer binding protein 1 and DNA directed 50kD regulatory subunit (POLD2) genes, as well as vectors and hosts containing these fragments and polynucleotide fragments hybridizing to noncoding regions, as well as antisense oligonucleotides to these fragments.

As defined herein, a "gene" is the segment of DNA involved in producing a polypeptide chain; it includes regions preceding and following the coding region, as well as intervening sequences (introns) between individual coding segments (exons).

As defined herein "isolated" refers to material removed from its original environment and is thus altered "by the hand of man" from its natural state. An isolated polynucleotide can be part of a vector, a composition of matter or could be contained within a cell as long as the cell is not the original environment of the polynucleotide.

The polynucleotides of the present invention may be in the form of RNA or in the form of DNA, which DNA includes genomic DNA and synthetic DNA. The DNA may be double-stranded or single-stranded and if single stranded may be the coding strand or non-coding strand. The human SNARE YKT6 polypeptide has the amino acid sequence depicted in SEQ ID NO:1 and is encoded by the genomic DNA sequence shown in SEQ ID NO:5.

The genomic DNA for SNARE YKT6 gene is 39,000 base pairs in length and contains seven exons (see Table4 below for location of exons). As will be discussed in further detail below, the SNARE YKT6 gene is situated in genomic clone AC006454 at nucleotides 36,001-75,000.

The human glucokinase is depicted in SEQ ID NO:2 and is encoded by the genomic DNA sequence shown in SEQ ID NO:6.

30

SUBSTITUTE SPECIFICATION-CLEAN VERSION

The human glucokinase genomic DNA is 46,000 base pairs in length and contains ten exons (see Table 3 below for location of exons).

The human adipocyte enhancer binding protein 1 has the amino acid sequence depicted in SEQ ID NO:3 and is encoded by the genomic DNA sequence shown in SEQ ID NO:8. The 5 adipocyte enhancer binding protein 1 is 16,000 base pairs in length and contains 21 exons (see Table 2 below for location of exons). As will be discussed in further detail below, the human AEBP1 gene is situated in genomic clone AC006454 at nucleotides 137,041-end.

POLD2 has an amino acid sequence depicted in SEQ ID NO:4 and a genomic DNA sequence depicted in SEQ ID NO:7. The POLD2 gene is 19,000 base pairs in length and contains ten exons (see 10 Table 1 below for location of exons). As will be discussed in further detail below, the POLD2 gene is situated in genomic clone AC006454 at nucleotides 119,001-138,000.

The polynucleotides of the invention have at least a 95% identity and may have a 96%, 97%, 98% or 99% identity to the polynucleotides depicted in SEQ ID NOS:5, 6, 7 or 8 as well as the 15 polynucleotides in reverse sense orientation, or the polynucleotide sequences encoding the SNARE YKT6, human glucokinase, AEBP1, or POLD2 polypeptides depicted in SEQ ID NOS:1, 2, 3, or 4 respectively.

A polynucleotide having 95% "identity" to a reference nucleotide sequence of the present invention, is identical to the reference sequence except that the polynucleotide sequence may include on average up to five point mutations per each 100 nucleotides of the reference nucleotide sequence 20 encoding the polypeptide. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. The query sequence may be an entire sequence, the ORF (open reading frame), or any fragment specified 25 as described herein.

As a practical matter, whether any particular nucleic acid molecule or polypeptide is at least 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the presence invention can be determined conventionally using known computer programs. A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject 30 sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245). In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence

SUBSTITUTE SPECIFICATION-CLEAN VERSION

can be compared by converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identity are: Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence because of 5' or 3' deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5' and 3' truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5' or 3' ends, relative to the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5' and 3' of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identify, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only bases outside the 5' and 3' bases of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence are calculated for the purposes of manually adjusting the percent identity score.

For example, a 95 base subject sequence is aligned to a 100 base query sequence to determine percent identity. The deletions occur at the 5' end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignment of the first 10 bases at 5' end. The 10 unpaired bases represent 5% of the sequence (number of bases at the 5' and 3' ends not matched/total numbers of bases in the query sequence) so 5% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 95 bases were perfectly matched the final percent identity would be 95%. In another example, a 95 base subject sequence is compared with a 100 base query sequence. This time the deletions are internal deletions so that there are no bases on the 5' or 3' of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only bases 5' and 3' of the subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are made for purposes of the present invention.

A polypeptide that has an amino acid sequence at least, for example, 95% "identical" to a query amino acid sequence is identical to the query sequence except that the subject polypeptide sequence may include on average, up to five amino acid alterations per each 100 amino acids of the

SUBSTITUTE SPECIFICATION-CLEAN VERSION

query amino acid sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a query amino acid sequence, up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the referenced sequence or in one or more contiguous groups within the reference sequence.

A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Com. App. Biosci. (1990) 6:237-245). In a sequence alignment, the query and subject sequence are either both nucleotide sequences or both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB amino acid alignment are: Matrix=PAM 0, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Window Size=sequence length, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject amino acid sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence due to N- or C- terminal deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for N- and C- terminal truncations of the subject sequence when calculating global percent identity. For subject sequences truncated at the N- and C-termini, relative to the query sequence, the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N- and C-terminal residues of the subject sequence.

The invention also encompasses polynucleotides that hybridize to the polynucleotides depicted in SEQ ID NOS: 5, 6, 7 or 8. A polynucleotide “hybridizes” to another polynucleotide, when a single-stranded form of the polynucleotide can anneal to the other polynucleotide under the

SUBSTITUTE SPECIFICATION-CLEAN VERSION

appropriate conditions of temperature and solution ionic strength (see Sambrook et al., *supra*). The conditions of temperature and ionic strength determine the "stringency" of the hybridization. For preliminary screening for homologous nucleic acids, low stringency hybridization conditions, corresponding to a temperature of 42°C, can be used, e.g., 5X SSC, 0.1% SDS, 0.25% milk, and no
5 formamide; or 40% formamide, 5X SSC, 0.5% SDS). Moderate stringency hybridization conditions correspond to a higher temperature of 55°C, e.g., 40% formamide, with 5X or 6X SCC. High stringency hybridization conditions correspond to the highest temperature of 65°C, e.g., 50 %
10 formamide, 5X or 6X SCC. Hybridization requires that the two nucleic acids contain complementary sequences, although depending on the stringency of the hybridization, mismatches between bases are
15 possible. The appropriate stringency for hybridizing nucleic acids depends on the length of the nucleic acids and the degree of complementation, variables well known in the art. The greater the degree of similarity or homology between two nucleotide sequences, the greater the value of Tm for hybrids of nucleic acids having those sequences. The relative stability (corresponding to higher Tm) of nucleic acid hybridizations decreases in the following order: RNA:RNA, DNA:RNA, DNA:DNA.

15

Polynucleotide and polypeptide variants

The invention is directed to both polynucleotide and polypeptide variants. A "variant" refers to a polynucleotide or polypeptide differing from the polynucleotide or polypeptide of the present invention, but retaining essential properties thereof. Generally, variants are overall closely similar and
20 in many regions, identical to the polynucleotide or polypeptide of the present invention.

The variants may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. Nucleotide variants produced by silent substitutions due to the degeneracy of the genetic
25 code are preferred. Moreover, variants in which 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred.

The invention also encompasses allelic variants of said polynucleotides. An allelic variant denotes any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in polymorphism within
30 populations. Gene mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequences. An allelic variant of a polypeptide is a polypeptide encoded by an allelic variant of a gene.

SUBSTITUTE SPECIFICATION-CLEAN VERSION

The amino acid sequences of the variant polypeptides may differ from the amino acid sequences depicted in SEQ ID NOS:1, 2, 3 or 4 by an insertion or deletion of one or more amino acid residues and/or the substitution of one or more amino acid residues by different amino acid residues.

5 Preferably, amino acid changes are of a minor nature, that is conservative amino acid substitutions that do not significantly affect the folding and/or activity of the protein; small deletions, typically of one to about 30 amino acids; small amino- or carboxyl-terminal extensions, such as an amino-terminal methionine residue; a small linker peptide of up to about 20-25 residues; or a small extension that facilitates purification by changing net charge or another function, such as a poly-histidine tract, an
10 antigenic epitope or a binding domain.

Examples of conservative substitutions are within the group of basic amino acids (arginine, lysine and histidine), acidic amino acids (glutamic acid and aspartic acid), polar amino acids (glutamine and asparagine), hydrophobic amino acids (leucine, isoleucine and valine), aromatic amino acids (phenylalanine, tryptophan and tyrosine), and small amino acids (glycine, alanine, serine,
15 threonine and methionine). Amino acid substitutions which do not generally alter the specific activity are known in the art and are described, for example, by H. Neurath and R.L. Hill, 1979, *In, The Proteins*, Academic Press, New York. The most commonly occurring exchanges are Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Tyr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, as well as these in reverse.

20

Noncoding Regions

The invention is further directed to polynucleotide fragments containing or hybridizing to noncoding regions of the SNARE YKT6, AEBP1, human glucokinase and POLD2 genes. These include but are not limited to an intron, a 5' non-coding region, a 3' non-coding region and splice
25 junctions (see Tables 1-4), as well as transcription factor binding sites (see Table 5). The polynucleotide fragments may be a short polynucleotide fragment which is between about 8 nucleotides to about 40 nucleotides in length. Such shorter fragments may be useful for diagnostic purposes. Such short polynucleotide fragments are also preferred with respect to polynucleotides containing or hybridizing to polynucleotides containing splice junctions. Alternatively larger
30 fragments, e.g., of about 50, 150, 500, 600 or about 2000 nucleotides in length may be used.

SUBSTITUTE SPECIFICATION-CLEAN VERSION

Table 1: Exon/Intron Regions of Polymerase, DNA directed, 50kD regulatory subunit (POLD2) Genomic DNA

EXONS	LOCATION (<u>nucleotide no.</u>)	
	(Amino acid no.)	
5	1.	11546 ----- 11764 1 73
10	2.	15534 ----- 15656 74 114
	3.	15857 ----- 15979 115 155
15	4.	16351 ----- 16464 156 193
	5.	16582 ----- 16782 194 260
20	6.	17089 ----- 17169 261 287
	7.	17327 ----- 17484 288 339
25	8.	17704 ----- 17829 340 381
	9.	18199 ----- 18303 382 416
30	10.	18653 ----- 18811 417 469
	'tga' at 18812 - 14	

SUBSTITUTE SPECIFICATION-CLEAN VERSION

Poly A at 18885 – 90

Table 2: AEBP1 (adipocyte enhancer binding protein 1), vascular smooth muscle-type. Reverse strand coding.

5

	EXONS	LOCATION (<u>nucleotide no.</u>) (Amino acid no.)	
10	21.	1301 ----- 1966	
		1158	937
15	20.	2209 ----- 2304	
		936	905
20	19.	2426 ----- 2569	
		904	857
25	18.	2651 ----- 3001	
		856	740
30	17.	3238 ----- 3417	
		739	680
35	16.	3509 ----- 3706	
		679	614
40	15.	3930 ----- 4052	
		613	573
45	14.	4320 ----- 4406	
		572	544

SUBSTITUTE SPECIFICATION-CLEAN VERSION

	13.	4503 ----- 4646
		543 496
	12.	4750 ----- 4833
5		495 468
	11.	5212 ----- 5352
		467 421
10	10.	5435 ----- 5545
		420 384
	9.	6219 ----- 6272
15		383 366
	8.	6376 ----- 6453
		365 340
20	7.	6584 ----- 6661
		339 314
	6.	7476 ----- 7553
		313 288
25	5.	7629 ----- 7753
		287 247
	4.	7860 ----- 7931
30		246 223
	3.	8050 ----- 8121
		222 199
	2.	8673 ----- 9014

SUBSTITUTE SPECIFICATION-CLEAN VERSION

198 85

1. 10642 ----- 10893
 84 1

5

Stop codon 1298 - 1300

Poly A-site 1013 - 18

Table 3: Glucokinase

10	EXONS	LOCATION (<u>nucleotide no.</u>)	
		(Amino acid no.)	
	1.	20485 ----- 20523	
		1 13	
15	2.	25133 ----- 25297	
		14 68	
	3.	26173 ----- 26328	
		69 120	
20	4.	27524 ----- 27643	
		121 160	
	5.	28535 ----- 28630	
25		161 192	
	6.	28740 ----- 28838	
		193 225	
30	7.	30765 ----- 30950	
		226 287	
	8.	31982 ----- 32134	

SUBSTITUTE SPECIFICATION-CLEAN VERSION

	288	338
9.	32867 -----	33097
	339	415
5		
10.	33314 -----	33460
	416	464
	Stop codon 33461-3	

10 **Table 4: SNARE YKT6. Reverse strand coding.**

EXONS	LOCATION (<u>nucleotide no.</u>) (Amino acid no.)	
7.	4320 -----	4352
15	198	188
6.	5475 -----	5576
	187	154
20	5.	8401 ----- 8466
		153 132
4.	9107 -----	9211
	131	97
25		
3.	10114 -----	10215
	96	63

SUBSTITUTE SPECIFICATION-CLEAN VERSION

2. **11950 ----- 12033**

62 35

5 1. **15362 ----- 15463**

34 1

Stop codon at 4817 – 19

Poly A-site: 4245 – 4250

10 **TABLE 5: TRANSCRIPTION FACTOR BINDING SITES**

	BINDING SITES	SNARE YKT6 GLUCOKINASE	POLD2	AEBP1
	AP1FJ-Q2	11		11
15	AP1-C	15	15	7
	AP1-Q2	9		5
	AP1-Q4	7		4
	AP4-Q5	36		43
	AP4-Q6	17		23
20	ARNT-01	7		5
	CEBP-01	7		
	CETS1P54-01	6		
	CREL-01	7		
	DELTAEF1-01	64	12	5
25	FREAC7-01		4	50

SUBSTITUTE SPECIFICATION-CLEAN VERSION

	GATA1-02	19			
	GATA1-03	12			6
	GATA1-04	25	6		
	GATA1-06	8	5		
5	GATA2-02	10			
	GATA3-02	5			
	GATA-C	11	6		
	GC-01				4
	GFII-01	6			
10	HFH2-01	5			
	HFH3-01	10			
	HFH8-01	4			
	IK2-01	49			29
	LMO2COM-01	41	6		27
15	LMO2COM-02	31	5		7
	LYF1-01	10	13	6	
	MAX-01	4			
	MYOD-01	7			
	MYOD-Q6	32	19	7	12
20	MZF1-01	99	40	15	94
	NF1-Q6	5			7
	NFAT-Q6	43	8	7	8
	NFKAPPAB50-01		4		
	NKX25-01	13	14	5	
25	NMYC-01	12			8

SUBSTITUTE SPECIFICATION-CLEAN VERSION

	S8-01		30		4
	SOX5-01	21	20	4	4
	SP1-Q6				8
	SAEBP1-01	4			
5	SRV-02	5			
	STAT-01	6			
	TATA-01	8			
	TCF11-01	47	28	5	19
	USF-01	12	8	6	8
10	USF-C	16	12	12	8
	USF-Q6	6			

In a specific embodiment, such noncoding sequences are expression control sequences. These include but are not limited to DNA regulatory sequences, such as promoters, enhancers, repressors, terminators, and the like, that provide for the regulation of expression of a coding sequence in a host cell. In eukaryotic cells, polyadenylation signals are also control sequences.

In a more specific embodiment of the invention, the expression control sequences may be operatively linked to a polynucleotide encoding a heterologous polypeptide. Such expression control sequences may be about 50-200 nucleotides in length and specifically about 50, 100, 200, 500, 600, 1000 or 2000 nucleotides in length. A transcriptional control sequence is "operatively linked" to a polynucleotide encoding a heterologous polypeptide sequence when the expression control sequence controls and regulates the transcription and translation of that polynucleotide sequence. The term "operatively linked" includes having an appropriate start signal (e.g., ATG) in front of the polynucleotide sequence to be expressed and maintaining the correct reading frame to permit expression of the DNA sequence under the control of the expression control sequence and production of the desired product encoded by the polynucleotide sequence. If a gene that one desires to insert into a recombinant DNA molecule does not contain an appropriate start signal, such a start signal can be inserted upstream (5') of and in reading frame with the gene.

Expression of Polypeptides

SUBSTITUTE SPECIFICATION-CLEAN VERSION

Isolated Polynucleotide Sequences

The human chromosome 7 genomic clone of accession number AC006454 has been discovered to contain the SNARE YKT6 gene, the human glucokinase gene, the AEBP1 gene, and the POLD2 gene by Genscan analysis (Burge et al., 1997, J. Mol. Biol. 268:78-94), BLAST2 and 5 TBLASTN analysis (Altschul et al., 1997, Nucl. Acids Res. 25:3389-3402), in which the sequence of AC006454 was compared to the SNARE YKT6 cDNA sequence, accession number NM_006555 (McNew et al., 1997, J. Biol. Chem. 272:17776-177783), the human glucokinase cDNA sequence (Tanizawa et al., 1992, Mol. Endocrinol. 6:1070-1081), accession number NM_000162 (major form) and M69051 (minor form), , AEBP1 cDNA sequence, accession number NM_001129 (accession 10 number D86479 for the osteoblast type) (Layne et al., 1998, J. Biol. Chem. 273:15654-15660) and the POLD2 cDNA sequence, accession number NM_006230 (Zhang et al., 1995, Genomics 29:179-186).

The cloning of the nucleic acid sequences of the present invention from such genomic DNA can be effected, e.g., by using the well known polymerase chain reaction (PCR) or antibody screening of expression libraries to detect cloned DNA fragments with shared structural features. See, e.g., Innis 15 et al., 1990, *PCR: A Guide to Methods and Application*, Academic Press, New York. Other nucleic acid amplification procedures such as ligase chain reaction (LCR), ligated activated transcription (LAT) and nucleic acid sequence-based amplification (NASBA) or long chain PCR may be used. In a specific embodiment, 5' or 3' non-coding portions of each gene may be identified by methods including but are not limited to, filter probing, clone enrichment using specific probes and protocols 20 similar or identical to 5' and 3' "RACE" protocols which are well known in the art. For instance, a method similar to 5' RACE is available for generating the missing 5' end of a desired full-length transcript. (Fromont-Racine et al., 1993, Nucl. Acids Res. 21:1683-1684).

Once the DNA fragments are generated, identification of the specific DNA fragment containing the desired SNARE YKT6 gene, the human glucokinase gene, the AEBP1 gene, or POLD2 25 gene may be accomplished in a number of ways. For example, if an amount of a portion of a SNARE YKT6 gene, the human glucokinase gene, the POLD2 gene or AEBP1 gene, or its specific RNA, or a fragment thereof, is available and can be purified and labeled, the generated DNA fragments may be screened by nucleic acid hybridization to the labeled probe (Benton and Davis, 1977, Science 196:180; Grunstein and Hogness, 1975, Proc. Natl. Acad. Sci. U.S.A. 72:3961). The present invention provides 30 such nucleic acid probes, which can be conveniently prepared from the specific sequences disclosed herein, e.g., a hybridizable probe having a nucleotide sequence corresponding to at least a 10, and preferably a 15, nucleotide fragment of the sequences depicted in SEQ ID NOS:5, 6, 7 or 8. Preferably, a fragment is selected that is highly unique to the encoded polypeptides. Those DNA fragments with

SUBSTITUTE SPECIFICATION-CLEAN VERSION

substantial homology to the probe will hybridize. As noted above, the greater the degree of homology, the more stringent hybridization conditions can be used. In one embodiment, low stringency hybridization conditions are used to identify a homologous SNARE YKT6, the human glucokinase, the AEBP1, or POLD2 polynucleotide. However, in a preferred aspect, and as demonstrated 5 experimentally herein, a nucleic acid encoding a polypeptide of the invention will hybridize to a nucleic acid derived from the polynucleotide sequence depicted in SEQ ID NOS:5, 6, 7 or 8 or a hybridizable fragment thereof, under moderately stringent conditions; more preferably, it will hybridize under high stringency conditions.

Alternatively, the presence of the gene may be detected by assays based on the physical, 10 chemical, or immunological properties of its expressed product. For example, cDNA clones, or DNA clones which hybrid-select the proper mRNAs, can be selected which produce a protein that, e.g., has similar or identical electrophoretic migration, isoelectric focusing behavior, proteolytic digestion maps, or antigenic properties as known for the SNARE YKT6, the human glucokinase, the AEBP1, or POLD2 polynucleotide.

15 A gene encoding SNARE YKT6, the human glucokinase, the AEBP1, or POLD2 polypeptide can also be identified by mRNA selection, i.e., by nucleic acid hybridization followed by *in vitro* translation. In this procedure, fragments are used to isolate complementary mRNAs by hybridization. Immunoprecipitation analysis or functional assays of the in vitro translation products of the products 20 of the isolated mRNAs identifies the mRNA and, therefore, the complementary DNA fragments, that contain the desired sequences.

Nucleic Acid Constructs

The present invention also relates to nucleic acid constructs comprising a polynucleotide sequence containing the exon/intron segments of the SNARE YKT6 gene (nucleotides 4320-15463 of SEQ ID NO:5), human glucokinase gene (nucleotides 20485-33460 of SEQ ID NO:6), AEBP1 gene 25 (nucleotides 1301-13893 of SEQ ID NO:8) or POLD2 gene (nucleotides 11546-18811 of SEQ ID NO:7) operably linked to one or more control sequences which direct the expression of the coding sequence in a suitable host cell under conditions compatible with the control sequences. Expression will be understood to include any step involved in the production of the polypeptide including, but not limited to, transcription, post-transcriptional modification, translation, post-translational modification, 30 and secretion.

The invention is further directed to a nucleic acid construct comprising expression control sequences derived from SEQ ID NOS: 5, 6, 7 or 8 and a heterologous polynucleotide sequence.

SUBSTITUTE SPECIFICATION-CLEAN VERSION

"Nucleic acid construct" is defined herein as a nucleic acid molecule, either single- or double-stranded, which is isolated from a naturally occurring gene or which has been modified to contain segments of nucleic acid which are combined and juxtaposed in a manner which would not otherwise exist in nature. The term nucleic acid construct is synonymous with the term expression cassette when

5 the nucleic acid construct contains all the control sequences required for expression of a coding sequence of the present invention. The term "coding sequence" is defined herein as a portion of a nucleic acid sequence which directly specifies the amino acid sequence of its protein product. The boundaries of the coding sequence are generally determined by a ribosome binding site (prokaryotes) or by the ATG start codon (eukaryotes) located just upstream of the open reading frame at the 5' end

10 of the mRNA and a transcription terminator sequence located just downstream of the open reading frame at the 3' end of the mRNA. A coding sequence can include, but is not limited to, DNA, cDNA, and recombinant nucleic acid sequences.

The isolated polynucleotide of the present invention may be manipulated in a variety of ways to provide for expression of the polypeptide. Manipulation of the nucleic acid sequence prior to its

15 insertion into a vector may be desirable or necessary depending on the expression vector. The techniques for modifying nucleic acid sequences utilizing recombinant DNA methods are well known in the art.

The control sequence may be an appropriate promoter sequence, a nucleic acid sequence which is recognized by a host cell for expression of the nucleic acid sequence. The promoter sequence

20 contains transcriptional control sequences which regulate the expression of the polynucleotide. The promoter may be any nucleic acid sequence which shows transcriptional activity in the host cell of choice including mutant, truncated, and hybrid promoters, and may be obtained from genes encoding extracellular or intracellular polypeptides either homologous or heterologous to the host cell.

Examples of suitable promoters for directing the transcription of the nucleic acid constructs of

25 the present invention, especially in a bacterial host cell, are the promoters obtained from the *E. coli lac* operon, the prokaryotic beta-lactamase gene (Villa-Komaroff *et al.*, 1978, *Proc. Natl. Acad. Sci. USA* 75: 3727-3731), as well as the *tac* promoter (DeBoer *et al.*, 1983, *Proc. Natl. Acad. of Sciences USA* 80: 21-25). Further promoters are described in "Useful proteins from recombinant bacteria" in *Scientific American*, 1980, 242: 74-94; and in Sambrook *et al.*, 1989, *supra*.

30 Examples of suitable promoters for directing the transcription of the nucleic acid constructs of the present invention in a filamentous fungal host cell are promoters obtained from the genes encoding *Aspergillus oryzae* TAKA amylase, *Rhizomucor miehei* aspartic proteinase, *Aspergillus niger* neutral

SUBSTITUTE SPECIFICATION-CLEAN VERSION

alpha-amylase, *Aspergillus niger* acid stable alpha-amylase, *Aspergillus niger* or *Aspergillus awamori* glucoamylase (*glaA*), *Rhizomucor miehei* lipase, *Aspergillus oryzae* alkaline protease, *Aspergillus oryzae* triose phosphate isomerase, *Aspergillus nidulans* acetamidase, *Fusarium oxysporum* trypsin-like protease (WO 96/00787), NA2-tpi (a hybrid of the promoters from the genes encoding *Aspergillus niger* neutral alpha-amylase and *Aspergillus oryzae* triose phosphate isomerase), and mutant, truncated, and hybrid promoters thereof.

In a yeast host, useful promoters are obtained from the *Saccharomyces cerevisiae* enolase (ENO-1) gene, the *Saccharomyces cerevisiae* galactokinase gene (GAL1), the *Saccharomyces cerevisiae* alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase genes (ADH2/GAP), and the *Saccharomyces cerevisiae* 3-phosphoglycerate kinase gene. Other useful promoters for yeast host cells are described by Romanos *et al.*, 1992, *Yeast* 8: 423-488.

Eukaryotic promoters may be obtained from the genomes of viruses such as polyoma virus, fowlpox virus, adenovirus, bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and SV40. Alternatively, heterologous mammalian promoters, such as the actin promoter or immunoglobulin promoter may be used.

The constructs of the invention may also include enhancers. Enhancers are *cis*-acting elements of DNA, usually from about 10 to about 300 bp that act on a promoter to increase its transcription. Enhancers from globin, elastase, albumin, alpha-fetoprotein, and insulin enhancers may be used. However, an enhancer from a virus may be used; examples include SV40 on the late side of the replication origin, the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin and adenovirus enhancers.

The control sequence may also be a suitable transcription terminator sequence, a sequence recognized by a host cell to terminate transcription. The terminator sequence is operably linked to the 3' terminus of the nucleic acid sequence encoding the polypeptide. Any terminator which is functional in the host cell of choice may be used in the present invention.

The control sequence may also be a suitable leader sequence, a nontranslated region of an mRNA which is important for translation by the host cell. The leader sequence is operably linked to the 5' terminus of the nucleic acid sequence encoding the polypeptide. Any leader sequence that is functional in the host cell of choice may be used in the present invention.

The control sequence may also be a polyadenylation sequence, a sequence which is operably linked to the 3' terminus of the nucleic acid sequence and which, when transcribed, is recognized by

SUBSTITUTE SPECIFICATION-CLEAN VERSION

the host cell as a signal to add polyadenosine residues to transcribed mRNA. Any polyadenylation sequence which is functional in the host cell of choice may be used in the present invention.

The control sequence may also be a signal peptide coding region, which codes for an amino acid sequence linked to the amino terminus of the polypeptide which can direct the encoded

5 polypeptide into the cell's secretory pathway. The 5' end of the coding sequence of the nucleic acid sequence may inherently contain a signal peptide coding region naturally linked in translation reading frame with the segment of the coding region which encodes the secreted polypeptide. Alternatively, the 5' end of the coding sequence may contain a signal peptide coding region which is foreign to the coding sequence. The foreign signal peptide coding region may be required where the coding
10 sequence does not normally contain a signal peptide coding region. Alternatively, the foreign signal peptide coding region may simply replace the natural signal peptide coding region in order to obtain enhanced secretion of the polypeptide. However, any signal peptide coding region which directs the expressed polypeptide into the secretory pathway of a host cell of choice may be used in the present invention.

15 The control sequence may also be a propeptide coding region, which codes for an amino acid sequence positioned at the amino terminus of a polypeptide. The resultant polypeptide is known as a proenzyme or propolypeptide (or a zymogen in some cases). A propolypeptide is generally inactive and can be converted to a mature active polypeptide by catalytic or autocatalytic cleavage of the propeptide from the propolypeptide. The propeptide coding region may be obtained from the
20 *Bacillus subtilis* alkaline protease gene (*aprE*), the *Bacillus subtilis* neutral protease gene (*nprT*), the *Saccharomyces cerevisiae* alpha-factor gene, the *Rhizomucor miehei* aspartic proteinase gene, or the *Myceliophthora thermophila* laccase gene (WO 95/33836).

Where both signal peptide and propeptide regions are present at the amino terminus of a polypeptide, the propeptide region is positioned next to the amino terminus of a polypeptide and the
25 signal peptide region is positioned next to the amino terminus of the propeptide region.

It may also be desirable to add regulatory sequences which allow the regulation of the expression of the polypeptide relative to the growth of the host cell. Examples of regulatory systems are those which cause the expression of the gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound. Regulatory systems in
30 prokaryotic systems would include the *lac*, *tac*, and *trp* operator systems. In yeast, the ADH2 system or GAL1 system may be used. In filamentous fungi, the TAKA alpha-amylase promoter, *Aspergillus niger* glucoamylase promoter, and the *Aspergillus oryzae* glucoamylase promoter may be used as

SUBSTITUTE SPECIFICATION-CLEAN VERSION

regulatory sequences. Other examples of regulatory sequences are those which allow for gene amplification. In eukaryotic systems, these include the dihydrofolate reductase gene which is amplified in the presence of methotrexate, and the metallothionein genes which are amplified with heavy metals. In these cases, the nucleic acid sequence encoding the polypeptide would be operably linked with the regulatory sequence.

Expression Vectors

The present invention also relates to recombinant expression vectors comprising a nucleic acid sequence of the present invention, a promoter, and transcriptional and translational stop signals. The various nucleic acid and control sequences described above may be joined together to produce a recombinant expression vector which may include one or more convenient restriction sites to allow for insertion or substitution of the nucleic acid sequence encoding the polypeptide at such sites. Alternatively, the polynucleotide of the present invention may be expressed by inserting the nucleic acid sequence or a nucleic acid construct comprising the sequence into an appropriate vector for expression. In creating the expression vector, the coding sequence is located in the vector so that the coding sequence is operably linked with the appropriate control sequences for expression.

The recombinant expression vector may be any vector (*e.g.*, a plasmid or virus) which can be conveniently subjected to recombinant DNA procedures and can bring about the expression of the nucleic acid sequence. The choice of the vector will typically depend on the compatibility of the vector with the host cell into which the vector is to be introduced. The vectors may be linear or closed circular plasmids.

The vector may be an autonomously replicating vector, *i.e.*, a vector which exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, *e.g.*, a plasmid, an extrachromosomal element, a minichromosome, or an artificial chromosome. The vector may contain any means for assuring self-replication. Alternatively, the vector may be one which, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated. Furthermore, a single vector or plasmid or two or more vectors or plasmids which together contain the total DNA to be introduced into the genome of the host cell, or a transposon may be used.

The vectors of the present invention preferably contain one or more selectable markers which permit easy selection of transformed cells. A selectable marker is a gene the product of which provides for biocide or viral resistance, resistance to heavy metals, prototrophy to auxotrophs, and the like. Examples of bacterial selectable markers are the *dal* genes from *Bacillus subtilis* or *Bacillus*

SUBSTITUTE SPECIFICATION-CLEAN VERSION

5 *licheniformis*, or markers which confer antibiotic resistance such as ampicillin, kanamycin, chloramphenicol or tetracycline resistance. Suitable markers for yeast host cells are ADE2, HIS3, LEU2, LYS2, MET3, TRP1, and URA3. An example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the nucleic acids of the present invention, such as DHFR or thymidine kinase. An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., Proc. Natl. Acad. Sci. USA, 77:4216 (1980).

10 The vectors of the present invention preferably contain an element(s) that permits stable integration of the vector into the host cell genome or autonomous replication of the vector in the cell independent of the genome of the cell.

15 For integration into the host cell genome, the vector may rely on the polynucleotide sequence encoding the polypeptide or any other element of the vector for stable integration of the vector into the genome by homologous or nonhomologous recombination. Alternatively, the vector may contain additional nucleic acid sequences for directing integration by homologous recombination into the genome of the host cell. The additional polynucleotide sequences enable the vector to be integrated into the host cell genome at a precise location(s) in the chromosome(s). To increase the likelihood of integration at a precise location, the integrational elements should preferably contain a sufficient number of nucleic acids, such as 100 to 1,500 base pairs, preferably 400 to 1,500 base pairs, and most preferably 800 to 1,500 base pairs, which are highly homologous with the corresponding target 20 sequence to enhance the probability of homologous recombination. The integrational elements may be any sequence that is homologous with the target sequence in the genome of the host cell. Furthermore, the integrational elements may be non-encoding or encoding nucleic acid sequences. On the other hand, the vector may be integrated into the genome of the host cell by non-homologous recombination.

25 For autonomous replication, the vector may further comprise an origin of replication enabling the vector to replicate autonomously in the host cell in question. Examples of bacterial origins of replication are the origins of replication of plasmids pBR322, pUC19, pACYC177, and pACYC184 permitting replication in *E. coli*, and pUB110, pE194, pTA1060, and pAM δ 1 permitting replication in *Bacillus*. Examples of origins of replication for use in a yeast host cell are the 2 micron origin of 30 replication, ARS1, ARS4, the combination of ARS1 and CEN3, and the combination of ARS4 and CEN6. The origin of replication may be one having a mutation which makes its functioning temperature-sensitive in the host cell (see, e.g., Ehrlich, 1978, *Proceedings of the National Academy of Sciences USA* 75: 1433).

SUBSTITUTE SPECIFICATION-CLEAN VERSION

More than one copy of a polynucleotide sequence of the present invention may be inserted into the host cell to increase production of the gene product. An increase in the copy number of the polynucleotide sequence can be obtained by integrating at least one additional copy of the sequence into the host cell genome or by including an amplifiable selectable marker gene with the nucleic acid sequence where cells containing amplified copies of the selectable marker gene, and thereby additional copies of the nucleic acid sequence, can be selected for by cultivating the cells in the presence of the appropriate selectable agent.

The procedures used to ligate the elements described above to construct the recombinant expression vectors of the present invention are well known to one skilled in the art (see, e.g., Sambrook et al., 1989, *supra*).

Host Cells

The present invention also relates to recombinant host cells, comprising a nucleic acid sequence of the invention, which are advantageously used in the recombinant production of the polypeptides. A vector comprising a nucleic acid sequence of the present invention is introduced into a host cell so that the vector is maintained as a chromosomal integrant or as a self-replicating extra-chromosomal vector as described earlier. The term "host cell" encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication. The choice of a host cell will to a large extent depend upon the gene encoding the polypeptide and its source.

The host cell may be a unicellular microorganism, e.g., a prokaryote, or a non-unicellular microorganism, e.g., a eukaryote. Useful unicellular cells are bacterial cells such as gram positive bacteria including, but not limited to, a *Bacillus* cell, or a *Streptomyces* cell, e.g., *Streptomyces lividans* or *Streptomyces murinus*, or gram negative bacteria such as *E. coli* and *Pseudomonas* sp.

The introduction of a vector into a bacterial host cell may, for instance, be effected by protoplast transformation (see, e.g., Chang and Cohen, 1979, *Molecular General Genetics* 168: 111-115), using competent cells (see, e.g., Young and Spizizin, 1961, *Journal of Bacteriology* 81: 823-829, or Dubnau and Davidoff-Abelson, 1971, *Journal of Molecular Biology* 56: 209-221), electroporation (see, e.g., Shigekawa and Dower, 1988, *Biotechniques* 6: 742-751), or conjugation (see, e.g., Koehler and Thorne, 1987, *Journal of Bacteriology* 169: 5771-5278).

The host cell may be a eukaryote, such as a mammalian cell (e.g., human cell), an insect cell, a plant cell or a fungal cell. Mammalian host cells that could be used include but are not limited to human Hela, embryonic kidney cells (293), lung cells, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese Hamster ovary (CHO) cells.

SUBSTITUTE SPECIFICATION-CLEAN VERSION

These cells may be transfected with a vector containing a transcriptional regulatory sequence, a protein coding sequence and transcriptional termination sequences. Alternatively, the polypeptide can be expressed in stable cell lines containing the polynucleotide integrated into a chromosome. The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification 5 and isolation of the transfected cells.

The host cell may be a fungal cell. "Fungi" as used herein includes the phyla Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota (as defined by Hawksworth *et al.*, In, *Ainsworth and Bisby's Dictionary of The Fungi*, 8th edition, 1995, CAB International, University Press, Cambridge, UK) as well as the Oomycota (as cited in Hawksworth *et al.*, 1995, *supra*, page 171) and all 10 mitosporic fungi (Hawksworth *et al.*, 1995, *supra*). The fungal host cell may also be a yeast cell. ÒYeastÓ as used herein includes ascosporogenous yeast (Endomycetales), basidiosporogenous yeast, and yeast belonging to the Fungi Imperfeci (Blastomycetes). Since the classification of yeast may change in the future, for the purposes of this invention, yeast shall be defined as described in *Biology and Activities of Yeast* (Skinner, F.A., Passmore, S.M., and Davenport, R.R., eds, *Soc. App. Bacteriol. Symposium Series No. 9*, 1980). The fungal host cell may also be a filamentous fungal cell. 15 "Filamentous fungi" include all filamentous forms of the subdivision Eumycota and Oomycota (as defined by Hawksworth *et al.*, 1995, *supra*). The filamentous fungi are characterized by a mycelial wall composed of chitin, cellulose, glucan, chitosan, mannan, and other complex polysaccharides. Vegetative growth is by hyphal elongation and carbon catabolism is obligately aerobic. In contrast, 20 vegetative growth by yeasts such as *Saccharomyces cerevisiae* is by budding of a unicellular thallus and carbon catabolism may be fermentative.

Fungal cells may be transformed by a process involving protoplast formation, transformation of the protoplasts, and regeneration of the cell wall in a manner known *per se*. Suitable procedures for transformation of *Aspergillus* host cells are described in EP 238 023 and Yelton *et al.*, 1984, 25 *Proceedings of the National Academy of Sciences USA* 81: 1470-1474. Suitable methods for transforming *Fusarium* species are described by Malardier *et al.*, 1989, *Gene* 78: 147-156 and WO 96/00787. Yeast may be transformed using the procedures described by Becker and Guarente, In Abelson, J.N. and Simon, M.I., editors, *Guide to Yeast Genetics and Molecular Biology*, Methods in Enzymology, Volume 194, pp 182-187, Academic Press, Inc., New York; Ito *et al.*, 1983, *Journal of Bacteriology* 153: 163; and Hinnen *et al.*, 1978, *Proc. e Natl Acad. f Sci.s USA* 75: 1920. 30

Methods of Production

SUBSTITUTE SPECIFICATION-CLEAN VERSION

The present invention also relates to methods for producing a polypeptide of the present invention comprising (a) cultivating a host cell under conditions conducive for production of the polypeptide; and (b) recovering the polypeptide.

In the production methods of the present invention, the cells are cultivated in a nutrient medium suitable for production of the polypeptide using methods known in the art. For example, the cell may be cultivated by shake flask cultivation, small-scale or large-scale fermentation (including continuous, batch, fed-batch, or solid state fermentations) in laboratory or industrial fermentors performed in a suitable medium and under conditions allowing the polypeptide to be expressed and/or isolated. The cultivation takes place in a suitable nutrient medium comprising carbon and nitrogen sources and inorganic salts, using procedures known in the art. Suitable media are available from commercial suppliers or may be prepared according to published compositions (*e.g.*, in catalogues of the American Type Culture Collection). If the polypeptide is secreted into the nutrient medium, the polypeptide can be recovered directly from the medium. If the polypeptide is not secreted, it can be recovered from cell lysates.

The polypeptides may be detected using methods known in the art that are specific for the polypeptides. These detection methods may include use of specific antibodies, formation of an enzyme product, or disappearance of an enzyme substrate. In a specific embodiment, an enzyme assay may be used to determine the activity of the polypeptide. For example, AEBP1 activity can be determined by measuring carboxypeptidase activity as described by Muise and Ro, 1999, Biochem. J. 343:341-345. Here, the conversion of hippuryl-L-arginine, hippuryl-L-lysine or hippuryl-L-phenylalanine to hippuric acid may be monitored spectrophotometrically. POLD2 activity may be detected by assaying for DNA polymerase α activity (see, for example, Ng et al., 1991, J. Biol. Chem. 266:11699-11704).

The resulting polypeptide may be recovered by methods known in the art. For example, the polypeptide may be recovered from the nutrient medium by conventional procedures including, but not limited to, centrifugation, filtration, extraction, spray-drying, evaporation, or precipitation.

The polypeptides of the present invention may be purified by a variety of procedures known in the art including, but not limited to, chromatography (*e.g.*, ion exchange, affinity, hydrophobic, chromatofocusing, and size exclusion), electrophoretic procedures (*e.g.*, preparative isoelectric focusing, differential solubility (*e.g.*, ammonium sulfate precipitation), SDS-PAGE, or extraction (see, *e.g.*, *Protein Purification*, J.-C. Janson and Lars Ryden, editors, VCH Publishers, New York, 1989).

Antibodies

SUBSTITUTE SPECIFICATION-CLEAN VERSION

According to the invention, the SNARE YKT6, human glucokinase, AEBP1 or POLD2 polypeptides produced according to the method of the present invention may be used as an immunogen to generate any of these polypeptides. Such antibodies include but are not limited to polyclonal, monoclonal, chimeric, single chain, Fab fragments, and an Fab expression library.

5 Various procedures known in the art may be used for the production of antibodies. For the production of antibody, various host animals can be immunized by injection with the polypeptide thereof, including but not limited to rabbits, mice, rats, sheep, goats, etc. In one embodiment, the polypeptide or fragment thereof can optionally be conjugated to an immunogenic carrier, e.g., bovine serum albumin (BSA) or keyhole limpet hemocyanin (KLH). Various adjuvants may be used to
10 increase the immunological response, depending on the host species, including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and *Corynebacterium parvum*.

15 For preparation of monoclonal antibodies directed toward the SNARE YKT6, human glucokinase, AEBP1 or POLD2 polypeptide, any technique that provides for the production of antibody molecules by continuous cell lines in culture may be used. These include but are not limited to the hybridoma technique originally developed by Kohler and Milstein (1975, *Nature* 256:495-497), as well as the trioma technique, the human B-cell hybridoma technique (Kozbor et al., 1983,
20 *Immunology Today* 4:72), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al., 1985, in *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, Inc., pp. 77-96). In an additional embodiment of the invention, monoclonal antibodies can be produced in germ-free animals utilizing recent technology (PCT/US90/02545). According to the invention, human antibodies may be used and can be obtained by using human hybridomas (Cote et al., 1983, *Proc.
25 Natl. Acad. Sci. U.S.A.* 80:2026-2030) or by transforming human B cells with EBV virus *in vitro* (Cole et al., 1985, in *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, pp. 77-96). In fact, according to the invention, techniques developed for the production of "chimeric antibodies" (Morrison et al., 1984, *J. Bacteriol.* 159:870; Neuberger et al., 1984, *Nature* 312:604-608; Takeda et al., 1985, *Nature* 314:452-454) by splicing the genes from a mouse antibody molecule specific for the
30 SNARE YKT6, human glucokinase, AEBP1 or POLD2 polypeptide together with genes from a human antibody molecule of appropriate biological activity can be used; such antibodies are within the scope of this invention.

SUBSTITUTE SPECIFICATION-CLEAN VERSION

According to the invention, techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778) can be adapted to produce polypeptide-specific single chain antibodies. An additional embodiment of the invention utilizes the techniques described for the construction of Fab expression libraries (Huse et al., 1989, Science 246:1275-1281) to allow rapid and easy identification 5 of monoclonal Fab fragments with the desired specificity for the SNARE YKT6, AEBP1, human glucokinase or POLD2 polypeptides.

Antibody fragments which contain the idioype of the antibody molecule can be generated by known techniques. For example, such fragments include but are not limited to: the F(ab')2 fragment which can be produced by pepsin digestion of the antibody molecule; the Fab' fragments which can be 10 generated by reducing the disulfide bridges of the F(ab')2, fragment, and the Fab fragments which can be generated by treating the antibody molecule with papain and a reducing agent.

In the production of antibodies, screening for the desired antibody can be accomplished by techniques known in the art, e.g., radioimmunoassay, ELISA (enzyme-linked immunosorbent assay), "sandwich" immunoassays, immunoradiometric assays, gel diffusion precipitin reactions, 15 immunodiffusion assays, in situ immunoassays (using colloidal gold, enzyme or radioisotope labels, for example), western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays, etc. In one embodiment, antibody binding is detected by detecting a label on the primary antibody. In another embodiment, the primary antibody is detected by detecting 20 binding of a secondary antibody or reagent to the primary antibody. In a further embodiment, the secondary antibody is labeled. Many means are known in the art for detecting binding in an immunoassay and are within the scope of the present invention. For example, to select antibodies which recognize a specific epitope of a particular polypeptide, one may assay generated hybridomas for a product which binds to a particular polypeptide fragment containing such epitope. For selection of an 25 antibody specific to a particular polypeptide from a particular species of animal, one can select on the basis of positive binding with the polypeptide expressed by or isolated from cells of that species of animal.

Immortal, antibody-producing cell lines can also be created by techniques other than fusion, such as direct transformation of B lymphocytes with oncogenic DNA, or transfection with Epstein-Barr 30 virus. See, e.g., M. Schreier et al., "Hybridoma Techniques" (1980); Hammerling et al., "Monoclonal Antibodies And T-cell Hybridomas" (1981); Kennett et al., "Monoclonal Antibodies" (1980); see also U.S. Pat. Nos. 4,341,761; 4,399,121; 4,427,783; 4,444,887; 4,451,570; 4,466,917; 4,472,500; 4,491,632; 4,493,890.

SUBSTITUTE SPECIFICATION-CLEAN VERSION

Uses of Polynucleotides

Diagnostics

5 Polynucleotides containing noncoding regions of SEQ ID NOS:5, 6, 7 or 8 may be used as probes for detecting mutations from samples from a patient. Genomic DNA may be isolated from the patient. A mutation(s) may be detected by Southern blot analysis, specifically by hybridizing restriction digested genomic DNA to various probes and subjecting to agarose electrophoresis.

10 Polynucleotides containing noncoding regions may be used as PCR primers and may be used to amplify the genomic DNA isolated from the patients. Additionally, primers may be obtained by routine or long range PCR, that can yield products containing more than one exon and intervening intron. The sequence of the amplified genomic DNA from the patient may be determined using methods known in the art. Such probes may be between 10-100 nucleotides in length and may preferably be between 20-50 nucleotides in length.

Thus the invention is thus directed to kits comprising these polynucleotide probes. In a specific embodiment, these probes are labeled with a detectable substance.

15 Antisense Oligonucleotides and Mimetics

The invention is further directed to antisense oligonucleotides and mimetics to these polynucleotide sequences. Antisense technology can be used to control gene expression through triple-helix formation or antisense DNA or RNA, both of which methods are based on binding of a polynucleotide to DNA or RNA. A DNA oligonucleotide is designed to be complementary to a region 20 of the gene involved in transcription or RNA processing (triple helix (see Lee et al., Nucl. Acids Res., 6:3073 (1979); Cooney et al, Science, 241:456 (1988); and Dervan et al., Science, 251: 1360 (1991)), thereby preventing transcription and the production of said polypeptides.

25 The antisense oligonucleotides or mimetics of the present invention may be used to decrease levels of a polypeptide. For example, SNARE YKT6 has been found to be essential for vesicle-associated endoplasmic reticulum-Golgi transport and cell growth. Therefore, the SNARE YKT6 antisense oligonucleotides of the present invention could be used to inhibit cell growth and in particular, to treat or prevent tumor growth. POLD2 is necessary for DNA replication. POLD2 antisense sequences could also be used to inhibit cell growth. Glucokinase and AEBP1 antisense sequences may be used to treat hyperglycemia.

30 The antisense oligonucleotides of the present invention may be formulated into pharmaceutical compositions. These compositions may be administered in a number of ways depending upon whether

SUBSTITUTE SPECIFICATION-CLEAN VERSION

local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Parenteral administration includes

5 intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration.

Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be

10 necessary or desirable.

Compositions and formulations for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets or tablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable.

Compositions and formulations for parenteral, intrathecal or intraventricular administration
15 may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.

Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a
20 variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.

The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active
25 ingredients with the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, liquid syrups, soft gels, suppositories, and
30 enemas. The compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances which increase the

SUBSTITUTE SPECIFICATION-CLEAN VERSION

viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.

In one embodiment of the present invention, the pharmaceutical compositions may be formulated and used as foams. Pharmaceutical foams include formulations such as, but not limited to, emulsions, microemulsions, creams, jellies and liposomes. While basically similar in nature these formulations vary in the components and the consistency of the final product. The preparation of such compositions and formulations is generally known to those skilled in the pharmaceutical and formulation arts and may be applied to the formulation of the compositions of the present invention.

The formulation of therapeutic compositions and their subsequent administration is believed to be within the skill of those in the art. Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on EC50 as found to be effective in in vitro and in vivo animal models.

In general, dosage is from 0.01 ug to 10 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 years. Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01 ug to 10 g per kg of body weight, once or more daily, to once every 20 years.

Gene Therapy

As noted above, SNARE YKT6 is necessary for cell growth, POLD2 is involved in DNA replication and repair, AEBP1 is involved in repressing adipogenesis and glucokinase is involved in glucose sensing in pancreatic islet beta cells and liver. Therefore, the SNARE YKT6 gene may be used to modulate or prevent cell apoptosis and treat such disorders as virus-induced lymphocyte depletion (AIDS); cell death in neurodegenerative disorders characterized by the gradual loss of specific sets of neurons (e.g., Alzheimer's Disease, Parkinson's disease, ALS, retinitis pigmentosa, spinal muscular atrophy and various forms of cerebellar degeneration), cell death in blood cell disorders resulting from deprivation of growth factors (anemia associated with chronic disease, aplastic anemia, chronic

SUBSTITUTE SPECIFICATION-CLEAN VERSION

neutropenia and myelodysplastic syndromes) and disorders arising out of an acute loss of blood flow (e.g., myocardial infarctions and stroke). The glucokinase gene may be used to treat diabetes mellitus. The AEBP1 gene may be used to modulate or inhibit adipogenesis and treat obesity, diabetes mellitus and/or osteopenic disorders. POLD2 may be used to treat defects in DNA repair such as xeroderma pigmentosum, progeria and ataxia telangiectasia.

As described herein, the polynucleotide of the present invention may be introduced into a patient's cells for therapeutic uses. As will be discussed in further detail below, cells can be transfected using any appropriate means, including viral vectors, as shown by the example, chemical transfectants, or physico-mechanical methods such as electroporation and direct diffusion of DNA. See, for example, Wolff, Jon A, et al., "Direct gene transfer into mouse muscle in vivo," *Science*, 247, 1465-1468, 1990; and Wolff, Jon A, "Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs," *Nature*, 352, 815-818, 1991. As used herein, vectors are agents that transport the gene into the cell without degradation and include a promoter yielding expression of the gene in the cells into which it is delivered. As will be discussed in further detail below, promoters can be general promoters, yielding expression in a variety of mammalian cells, or cell specific, or even nuclear versus cytoplasmic specific. These are known to those skilled in the art and can be constructed using standard molecular biology protocols. Vectors have been divided into two classes:

- a) Biological agents derived from viral, bacterial or other sources.
- b) Chemical physical methods that increase the potential for gene uptake, directly introduce the gene into the nucleus or target the gene to a cell receptor.

Biological Vectors

Viral vectors have higher transaction (ability to introduce genes) abilities than do most chemical or physical methods to introduce genes into cells. Vectors that may be used in the present invention include viruses, such as adenoviruses, adeno associated virus (AAV), vaccinia, herpesviruses, baculoviruses and retroviruses, bacteriophages, cosmids, plasmids, fungal vectors and other recombination vehicles typically used in the art which have been described for expression in a variety of eukaryotic and prokaryotic hosts, and may be used for gene therapy as well as for simple protein expression. Polynucleotides are inserted into vector genomes using methods well known in the art.

Retroviral vectors are the vectors most commonly used in clinical trials, since they carry a larger genetic payload than other viral vectors. However, they are not useful in non-proliferating cells.

SUBSTITUTE SPECIFICATION-CLEAN VERSION

Adenovirus vectors are relatively stable and easy to work with, have high titers, and can be delivered in aerosol formulation. Pox viral vectors are large and have several sites for inserting genes, they are thermostable and can be stored at room temperature.

Examples of promoters are SP6, T4, T7, SV40 early promoter, cytomegalovirus (CMV) 5 promoter, mouse mammary tumor virus (MMTV) steroid-inducible promoter, Moloney murine leukemia virus (MMLV) promoter, phosphoglycerate kinase (PGK) promoter, and the like. Alternatively, the promoter may be an endogenous adenovirus promoter, for example the E1 a promoter or the Ad2 major late promoter (MLP). Similarly, those of ordinary skill in the art can construct adenoviral vectors utilizing endogenous or heterologous poly A addition signals.

10 Plasmids are not integrated into the genome and the vast majority of them are present only from a few weeks to several months, so they are typically very safe. However, they have lower expression levels than retroviruses and since cells have the ability to identify and eventually shut down foreign gene expression, the continuous release of DNA from the polymer to the target cells substantially increases the duration of functional expression while maintaining the benefit of the safety 15 associated with non-viral transfections.

Chemical/physical vectors

Other methods to directly introduce genes into cells or exploit receptors on the surface of cells include the use of liposomes and lipids, ligands for specific cell surface receptors, cell receptors, and 20 calcium phosphate and other chemical mediators, microinjections directly to single cells, electroporation and homologous recombination. Liposomes are commercially available from Gibco BRL, for example, as LIPOFECTIN™ and LIPOFECTACE™, which are formed of cationic lipids such as N-[1-(2,3 dioleyloxy)-propyl]-n,n,n-trimethylammonium chloride (DOTMA) and dimethyl dioctadecylammonium bromide (DDAB). Numerous methods are also published for making 25 liposomes, known to those skilled in the art.

For example, Nucleic acid-Lipid Complexes--Lipid carriers can be associated with naked nucleic acids (e.g., plasmid DNA) to facilitate passage through cellular membranes. Cationic, anionic, or neutral lipids can be used for this purpose. However, cationic lipids are preferred because they have been shown to associate better with DNA which, generally, has a negative charge. Cationic lipids have 30 also been shown to mediate intracellular delivery of plasmid DNA (Felgner and Ringold, Nature 337:387 (1989)). Intravenous injection of cationic lipid-plasmid complexes into mice has been shown to result in expression of the DNA in lung (Brigham et al., Am. J. Med. Sci.298:278 (1989)). See also,

SUBSTITUTE SPECIFICATION-CLEAN VERSION

Osaka et al., J. Pharm. Sci. 85(6):612-618 (1996); San et al., Human Gene Therapy 4:781-788 (1993); Senior et al., Biochemica et Biophysica Acta 1070:173-179 (1991); Kabanov and Kabanov, Bioconjugate Chem. 6:7-20 (1995); Remy et al., Bioconjugate Chem. 5:647-654 (1994); Behr, J-P., Bioconjugate Chem 5:382-389 (1994); Behr et al., Proc. Natl. Acad. Sci., USA 86:6982-6986 (1989);
5 and Wyman et al., Biochem. 36:3008-3017 (1997).

Cationic lipids are known to those of ordinary skill in the art. Representative cationic lipids include those disclosed, for example, in U.S. Pat. No. 5,283,185; and e.g., U.S. Pat. No. 5,767,099. In a preferred embodiment, the cationic lipid is N4 -spermine cholestryl carbamate (GL-67) disclosed in U.S. Pat. No. 5,767,099. Additional preferred lipids include N4 -spermidine cholestryl carbamate
10 (GL-53) and 1-(N4 -spermind) -2,3-dilaurylglycerol carbamate (GL-89).

The vectors of the invention may be targeted to specific cells by linking a targeting molecule to the vector. A targeting molecule is any agent that is specific for a cell or tissue type of interest, including for example, a ligand, antibody, sugar, receptor, or other binding molecule.

15 Invention vectors may be delivered to the target cells in a suitable composition, either alone, or complexed, as provided above, comprising the vector and a suitably acceptable carrier. The vector may be delivered to target cells by methods known in the art, for example, intravenous, intramuscular, intranasal, subcutaneous, intubation, lavage, and the like. The vectors may be delivered via *in vivo* or *ex vivo* applications. *In vivo* applications involve the direct administration of an adenoviral vector of the
20 invention formulated into a composition to the cells of an individual. *Ex vivo* applications involve the transfer of the adenoviral vector directly to harvested autologous cells which are maintained *in vitro*, followed by readministration of the transduced cells to a recipient.

In a specific embodiment, the vector is transfected into antigen-presenting cells. Suitable sources of antigen-presenting cells (APCs) include, but are not limited to, whole cells such as dendritic
25 cells or macrophages; purified MHC class I molecule complexed to §2-microglobulin and foster antigen-presenting cells. In a specific embodiment, the vectors of the present invention may be introduced into T cells or B cells using methods known in the art (see, for example, Tsokos and Nepom, 2000, J. Clin. Invest. 106:181-183).

The invention described and claimed herein is not to be limited in scope by the specific
30 embodiments herein disclosed, since these embodiments are intended as illustrations of several aspects of the invention. Any equivalent embodiments are intended to be within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will

SUBSTITUTE SPECIFICATION-CLEAN VERSION

become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.

Various references are cited herein, the disclosure of which are incorporated by reference in their entireties.