

Industrial Internet of Things TUGAS BESAR 2

Dr. Ir. Eko M. Budi, IPM

S1 Teknik Fisika ITB 2019

SISTEM KONTROL CAHAYA

Arsitektur Sistem

- Merah: Disediakan, terpusat
- Abu : Wemos semua regu
- Biru : Laptop masing-masing regu
- Kuning: laptop semua regu

MQTT Broker

- Disediakan
- IP: 192.168.1.100
- PORT MQTT: 1883
- Port WS: 3000

IOT Logger

- Laptop/komputer dengan
 - MySQL
 - NodeJS
 - MOSCA
- Logger
 - Merekam data ke database, namun hanya yang terdaftar
 - IP: internal 192.168.1.100
 - Port MySQL:

xx: nomor regu

y: nomor sensor / aktuator

IOT Node

- Wemos based
 - wifi
 - mqtt
- Sensor / Transmitter
 - Brigtness : CTxxy : analog
- Indicator
 - Saklar Mode : Ylxxy : digitalWarna LED : DI?xxy : analog
- Parameter dari komputer
 - Saklar Mode : YSxxy digitalWarna LED : DV?xxy analog
- Pengontrol
 - Kontrol Cahaya : CCxxy
- IP : internal 192.168.1.1xx
- Port MQTT : 1883

?: warna R/G/B xx: nomor regu

y: nomor sensor / aktuator

Sensor brightness harap dikalibrasi Sehingga dapat menunjukkan lux sekitar: 0 = total gelap 10.000 = terang dalam ruangan

Pengontrol:

Saat mode = 0 (manual)

Menyalakan LED sesuai DV

Saat mode=1 (auto)

Mengontrol LED dgn kontrol ON/OFF Nyala sesuai DV bila CT<CC

Mati bila CT>=CC

CC (set point) bisa diatur dari komputer

IOT Server

- Laptop/komputer dengan
 - MySQL
 - NodeJS
 - Express
- Server
 - Menyediakan web service, untuk aplikasi web
 - IP: internal 192.168.1.2xx
 - Port HTTP/WS: 8080

xx: nomor regu

y : nomor sensor / aktuator

HMI

- Layar index
 - Login + Monitor
- Setelah login, Menu user biasa:
 - Supervisory
 - Configuration
 - Profil
- Khusus untuk admin, ada layar
 - Users

HMI - Login

- Ada fasilitas login user + password
- Tampil data monitoring sederhana, node bisa dipilih salah satu saja:
 - Status Sensor Brightness
 - Status LED RGB

HMI - Supervisory

Rancang dan bangun HMI untuk fungsi-fungsi berikut (struktur dan komponen tampilan bebas)

- Mode 1 node
 - Ada fasilitas memilih node
 - Tampilan sensor-sensor pada node
 - Dapat menyala matikan LED RGB pada node
 - Dapat mengatur warna RGB pada node
- Mode group
 - Tampilan sensor brighness seluruh node
 - Tampilan status LED seluruh node
 - Dapat memilih group node untuk diubah, misalnya:
 - Semua
 - Kiri / kanan / tengah saja
 - Depan / tengah / belakang saja
 - Dapat mengubah mode kontrol seluruh group berbarengan
 - Dapat mengatur warna RGB seluruh group berbarengan
- Pengubahan dinamik
 - Sediakan satu tombol/menu untuk membuat nyala LED di seluruh node berubah dengan menarik,
 menjadi suatu atraksi multi-node, misalkan : menyala bergantian secara spiral, ombak warna, dll.

HMI - Configuration

- Layar CRUD Master Slave untuk mengubah
 - NODE
 - TAG
- NODE dapat diatur:
 - Posisinya
 - Hak publish / subscribe

HMI - Users

- Layar CRUD untuk mengubah
 - Users
 - Hak User

POSISI REGU

X/Y	1	2	3	4
1	NODE01	NODE05	NODE09	NODE13
2	NODE02	NODE06	NODE10	NODE14
3	NODE03	NODE07	NODE11	NODE15
4	NODE04	NODE08	NODE12	NODE16

Penilaian

- Alat langsung
 - Asisten ke meja, mencoba menjalankan aplikasi dengan form skenario uji
 - Mengajukan pertanyaan untuk dijawab per orang
- Presentasi 10 menit, memakai slide
 - Arsitektur dalam HMI & Server
 - Teknik / fitur kreatif yang diunggulkan