2022-2023 MP2I

À chercher pour lundi 10/10/2022, corrigé

Pour les exercices du TD 5, je vous invite à vous référer au corrigé du TD5. **TD 6 :**

Exercice 12. Pour $x \in \mathbb{R}$, on pose $f(x) = \arctan(x+1) - \arctan(x) - \arctan\left(\frac{1}{x^2 + x + 1}\right)$. f est dérivable sur \mathbb{R} comme somme et composée de fonctions dérivables sur \mathbb{R} . On a de plus pour x > 0:

$$f'(x) = 1 \times \frac{1}{1 + (x+1)^2} - \frac{1}{1 + x^2} + \frac{2x+1}{(x^2 + x + 1)^2} \times \frac{1}{1 + \frac{1}{(x^2 + x + 1)^2}}$$

$$= \frac{1 + x^2 - (x^2 + 2x + 2)}{(2 + 2x + x^2)(1 + x^2)} + \frac{2x+1}{1 + (x^2 + x + 1)^2}$$

$$= (2x+1)\left(-\frac{1}{x^4 + 2x^3 + 3x^2 + 2x + 2} + \frac{1}{1 + x^4 + x^2 + 1 + 2x^3 + 2x + 2x^2}\right)$$

$$= 0.$$

Puisque \mathbb{R} est un intervalle, on a donc f constante sur \mathbb{R} et $f(0) = \frac{\pi}{4} - 0 - \frac{\pi}{4} = 0$ donc f est nulle. On a donc bien l'égalité voulue.

On en déduit (en utilisant une somme télescopique) que pour $n \in \mathbb{N}^*$:

$$S_n = \sum_{k=0}^n \arctan\left(\frac{1}{k^2 + k + 1}\right)$$

$$= \sum_{k=0}^n \left(\arctan(k+1) - \arctan(k)\right)$$

$$= \arctan(n+1) - \arctan(0)$$

$$= \arctan(n+1).$$

On a donc par composition de limites que $\lim_{n\to+\infty} S_n = \frac{\pi}{2}$.

Exercice 16.

1) Le domaine de définition de cette équation est \mathbb{R}_+^* (pour avoir la puissance et la racine carrée bien définie). On a alors pour x>0:

$$x^{\sqrt{x}} = \sqrt{x}^x \Leftrightarrow e^{\sqrt{x}\ln(x)} = e^{x\ln(\sqrt{x})}$$

 $\Leftrightarrow \sqrt{x}\ln(x) = \frac{x}{2}\ln(x)$ (par injectivité de l'exponentielle).

On remarque donc que x=1 est solution. Si $x \neq 1$, on peut alors simplifier par $\ln(x)$ et diviser par \sqrt{x} (car $\sqrt{x} \neq 0$ pour obtenir une équation équivalente à $2 = \sqrt{x} \Leftrightarrow 4 = x$. L'équation a donc 2 solutions : x=1 et x=4.

2) L'équation est définie sur \mathbb{R} et on a :

$$2^{x^3} = 3^{x^2} \Leftrightarrow e^{x^3 \ln(2)} = e^{x^2 \ln(3)}$$

$$\Leftrightarrow x^3 \ln(2) = x^2 \ln(3)$$

$$\Leftrightarrow x^2 (x \ln(2) - \ln(3)) = 0.$$

Les solutions sont donc x = 0 et $x = \frac{\ln(3)}{\ln(2)}$.

3) Soient $x, y \in \mathbb{N}^*$. On remarque déjà que si x = y, alors on a bien $x^y = y^x$. Cherchons les solutions pour $x \neq y$. On a $x^y = y^x \Leftrightarrow e^{y\ln(x)} = e^{x\ln(y)}$. Ceci est équivalent à $y\ln(x) = x\ln(y)$, ce qui revient à f(x) = f(y) où f est la fonction $f: x \mapsto \frac{\ln(x)}{x}$. f est bien définie sur \mathbb{R}_+^* et dérivable et pour tout x > 0:

$$f'(x) = \frac{1 - \ln(x)}{x^2}.$$

On en déduit que f est strictement croissante sur]0,e] et strictement décroissante sur $[e,+\infty[$. Ceci entraine, puisque 2 < e < 3, les seules possibilités pour avoir f(x) = f(y) sont d'avoir x = 1 ou x = 2 (puisque si x et y sont distincts et strictement plus grand que 2, la fonction étant strictement décroissante, on ne peut pas avoir f(x) = f(y)). Si x = 1, on a f(x) = 0 et donc aucune solution à part y = x. On remarque de plus que f(2) = f(4). On en déduit que l'ensemble des solutions de l'équation est $S = \{(2,4),(4,2),(x,x), x \in \mathbb{N}^*\}$.

4) L'équation est bien définie sur \mathbb{R}_+^* . On a $x^{\sqrt{x}} = \frac{1}{2}$ si et seulement si $e^{\sqrt{x} \ln(x)} = e^{-\ln(2)}$, c'est à dire si et seulement si $\sqrt{x} \ln(x) = -\ln(2)$. On remarque alors que les éventuelles solutions sont dans]0,1[car on doit avoir $\ln(x) < 0$. On remarque que $x = \frac{1}{4}$ est solution. En étudiant les variations de $x \mapsto \sqrt{x} \ln(x)$, on remarque qu'il existe 2 solutions (la fonction étant décroissante puis croissante sur]0,1[). Il existe donc une deuxième solution. En cherchant encore avec des puissances de 2, on remarque que $x = \frac{1}{16}$ est la deuxième solution.

Exercice 20. Pour $x \in [0, +\infty[$, on pose $f(x) = \arctan(\operatorname{sh}(x)) - \arccos\left(\frac{1}{\operatorname{ch}(x)}\right)$. On a alors f dérivable sur \mathbb{R}_+^* comme somme et composée de fonctions dérivables. En effet, arctan et sh donc dérivables sur \mathbb{R} donc la première partie ne pose pas de souci. De plus, $\forall x \neq 0, 0 < \frac{1}{\operatorname{ch}(x)} < 1$ et arccos est dérivable sur] -1,1[. Par contre, en x=0, on a $\frac{1}{\operatorname{ch}(0)} = 1$ et arccos n'est pas dérivable en 1. En tout cas, f est bien dérivable sur \mathbb{R}_+^* . On a alors :

$$\forall x > 0, \ f'(x) = \frac{\operatorname{ch}(x)}{1 + \operatorname{sh}^{2}(x)} - \frac{-\operatorname{sh}(x)}{\operatorname{ch}^{2}(x)} \times \frac{-1}{\sqrt{1 - \frac{1}{\operatorname{ch}^{2}(x)}}}$$

$$= \frac{\operatorname{ch}(x)}{\operatorname{ch}^{2}(x)} - \frac{\operatorname{sh}(x)}{\operatorname{ch}^{2}(x)\sqrt{\frac{\operatorname{ch}^{2}(x) - 1}{\operatorname{ch}^{2}(x)}}}$$

$$= \frac{1}{\operatorname{ch}(x)} - \frac{\operatorname{sh}(x)}{\operatorname{ch}^{2}(x)\frac{|\operatorname{sh}(x)|}{|\operatorname{ch}(x)|}}$$

$$= \frac{1}{\operatorname{ch}(x)} - \frac{1}{\operatorname{ch}(x)}$$

$$= 0.$$

On a utilisé plusieurs fois l'égalité $\operatorname{ch}^2(x) - \operatorname{sh}^2(x) = 1$ et aussi le fait que $\sqrt{\operatorname{sh}^2(x)} = |\operatorname{sh}(x)| = \operatorname{sh}(x)$ car x > 0 (et $\sqrt{\operatorname{ch}^2(x)} = \operatorname{ch}(x)$ car $\operatorname{ch}(x) > 0$). Puisque \mathbb{R}_+^* est un intervalle, on a alors f constante sur \mathbb{R}_+^* .

On a de plus par composition de limites, $\lim_{x\to +\infty} f(x) = \frac{\pi}{2} - \arccos(0) = \frac{\pi}{2} - \frac{\pi}{2} = 0$. f est donc constante égale à 0 sur \mathbb{R}_+^* .

On traite à présent le cas particulier de x=0. On a $f(0)=\arctan(0)-\arccos(1)=0-0=0$. L'égalité demandée est donc bien vraie sur \mathbb{R}_+ .