$_{ m QCM}^{ m ALGO}$

1.	Un arbre dont les noeuds contiennent des valeurs est? (a) valué (b) étiqueté (c) valorisé (d) évalué
2.	Dans un arbre binaire, un noeud possédant 2 fils est appelé?
	(a) une racine
	(b) noeud interne
	(c) noeud externe
	(d) point double
	Dans un arbre, le chemin obtenu à partir de la racine en ne suivant que des liens gauches est?
	(a) le chemin droit
	(b) le bord gauche
	(c) la branche gauche
	(d) le chemin gauche
4.	Dans un arbre binaire, un noeud possédant juste 1 fils droit est appelé? (a) une racine (b) noeud interne (c) noeud externe à droite (d) point simple à droite
5.	Un arbre binaire vide est un arbre de taille?
	(a) -1
	(b) 0
	(c) 1
6.	La hauteur d'un arbre binaire réduit à un noeud racine est?
	(a) -1
	6 0
	(c) 1

7. Un arbre binaire parfait est un arbre binaire dont?

(b) tous les niveaux sont remplis sauf le dernier rempli de gauche à droite (c) tous les niveaux sont remplis sauf le dernier rempli de droite à gauche (d) tous les niveaux sont remplis sauf le dernier rempli aléatoirement

(a) tous les niveaux sont remplis

- 8. Un peigne droit est un arbre binaire?
 - (a) parfait
 - (b) complet
 - (c) localement complet
 - (d) filiforme
- 9. Si LC(B) défini la longueur de cheminement de B (un arbre binaire), alors PM(B) la profondeur moyenne de B est égale à?
 - (a) LC(B)/f avec f le nombre de feuilles de B
 - (b) LC(B)/n avec n le nombre de noeuds de B
 - (c) LC(B)/n avec n le nombre de noeuds internes de B
 - (d) LC(B).n avec n le nombre de noeuds internes de B
- 10. L'arbre défini par $B = \{E,0,1,00,01,10,11,000,001,010,011,101\}$ est?
 - (a) dégénéré
 - (b) parfait
 - (c) complet
 - d quelconque

QCM N°13

lundi 17 décembre 2012

Question 11

Soient $P \in \mathbb{R}[X]$ quelconque et $\alpha \in \mathbb{R}$ une racine d'ordre (exactement) 3 de P. Alors

a.
$$P(\alpha) = P'(\alpha) = P''(\alpha) = P'''(\alpha) = 0$$
 et $P^{(4)}(\alpha) \neq 0$

b.
$$P(\alpha) = P'(\alpha) = 0$$
 et $P''(\alpha) \neq 0$

c.
$$P(\alpha) = P'(\alpha) = P''(\alpha) = P'''(\alpha) = 0$$

d. rien de ce qui précède

Question 12

Soient $P \in \mathbb{R}[X]$ de degré supérieur ou égal à 3, a et b deux racines de P avec $a \neq b$. Alors $P \mid (X - a)(X - b)$.

- a. vrai
- (b) faux

Question 13

Soient $P \in \mathbb{R}[X]$ de degré $n \in \mathbb{N}^*$ et $a \in \mathbb{R}$. Alors

a.
$$P = \sum_{k=0}^{n} \frac{(X-a)^k}{k!}$$

b.
$$P = \sum_{k=0}^{n} \frac{(X-a)}{k!} P^{(k)}(a)$$

(c.)
$$P = \sum_{k=0}^{n} \frac{(X-a)^k}{k!} P^{(k)}(a)$$

d. rien de ce qui précède

Question 14

Soient $n \in \mathbb{N}^*$ et $(a, b) \in \mathbb{Z}^2$ tels que $a \equiv b[n]$. Alors

- (a) il existe $k \in \mathbb{Z}$ tel que a = b + kn
- $n \mid a b$
- \bigcirc a et b ont même reste dans la division euclidienne par n
- d. rien de ce qui précède

Question 15

Soit $n \in \mathbb{N}$ tel que $n \ge 2$. Alors il existe p premier tel que

- a. $n \mid p$
- (b). $p \mid n$
 - c. rien de ce qui précède

Question 16

Soit p premier. Le petit théorème de Fermat dit

- a. pour tout $n \in \mathbb{N}$, $n^p \equiv 1 [p]$
- b. pour tout $n \in \mathbb{N}$, $p^n \equiv 1 [p]$
- c. pour tout $n \in \mathbb{N}$, $p^n \equiv n[p]$
- d pour tout $n \in \mathbb{N}$, $n^p \equiv n[p]$
- e. rien de ce qui précède

Question 17

Soit $(a, b) \in \mathbb{N}^{*2}$. Alors

- a. $a \wedge b = 10 \iff \exists (u, v) \in \mathbb{Z}^2, \ au + bv = 10$
- (b) $a \wedge b = 10 \Longrightarrow \exists (u, v) \in \mathbb{Z}^2, \ au + bv = 10$
 - c. $\exists (u,v) \in \mathbb{Z}^2, \ au+bv=10 \Longrightarrow a \wedge b=10$
 - d. rien de ce qui précède

Question 18

Soit $(a, b, c) \in \mathbb{N}^{*3}$ tel que $c \mid ab$. Alors $c \mid a$ ou $c \mid b$.

a. vrai

Question 19

Soient p premier et $k \in \mathbb{N}$ tel que 0 < k < p. Alors $p \wedge k = 1$.

b. faux

Question 20

Soit $n \in \mathbb{N}$. Alors $3^n \equiv 5^n [2]$

b. faux

Q.C.M n°7 de Physique

- 21- La force de frottement dynamique se calcule en fonction de la composante normale de la réaction : R_N par la formule :
 - a) $f = R_N$
 - $b f = \mu_D R_N$
 - c) $f = \mu_S R_N$
 - $d) f = \frac{R_N}{\mu_D}$
- 22) La force magnétique $\vec{F}_m = q\vec{V} \wedge \vec{B}$, appliquée à une particule de charge q en mouvement avec une vitesse \vec{V} vérifie :
 - a) $\vec{F}_{\scriptscriptstyle m}$ est colinéaire au vecteur champ magnétique \vec{B} .
 - b) $\vec{F}_{\scriptscriptstyle m}$ est indépendante de la charge de la particule.
 - c) $\vec{F}_{\scriptscriptstyle m}$ est colinéaire au vecteur vitesse de la particule
 - (\vec{d}) \vec{F}_m est perpendiculaire au vecteur vitesse de la particule.
- 23- L'équation du principe fondamental de la dynamique de rotation est donnée par:
 - a) $\sum (\vec{F}_{ext}) = m\vec{a}$
 - - c) $\sum \vec{M} /_{\Delta} (\vec{F}_{ext}) = \vec{0}$
 - d) $\sum (\vec{F}_{ext}) = \vec{0}$
- 24) Le moment cinétique $\vec{L} = O\vec{M} \wedge m\vec{V}$ représente :
 - (a) le moment du vecteur quantité de mouvement \vec{p}
 - b) le moment de la masse m.
 - c) le moment de la force de frottement.
 - d) le moment du poids $\vec{P} = m\vec{g}$
- 25) Lorsqu'une balle arrive perpendiculairement sur un mur avec une quantité de mouvement \vec{p}_{balle} et rebondit dans la même direction, le vecteur quantité de mouvement transmis au mur s'écrit :
 - a) $\vec{p}_{mur} = \vec{p}_{balle}$
 - b) $\vec{p}_{mur} = \vec{0}$
 - c) $\vec{p}_{mur} = -\vec{p}_{balle}$
 - (d) $\vec{p}_{mur} = 2\vec{p}_{balle}$

26) La norme du moment cinétique d'une masse m, tournant autour du point O avec une vitesse angulaire constante ω est :

a)
$$\|\vec{L}\| = r^2 \omega$$

b)
$$\|\vec{L}\| = mr\omega$$

(c)
$$\|\vec{L}\| = mr^2 \omega$$

$$\mathrm{d}) \ \left\| \vec{L} \right\| = 0$$

- 27- Une force conservative est une force qui vérifie :
 - a) le travail de \vec{F} dépend du chemin suivi
 - b) \vec{F} est une force de frottement
 - $\stackrel{\frown}{\text{C}}$ Il existe une énergie potentielle élémentaire dE_p tel que $dE_p = -\delta W(\vec{F})$
 - d) Il existe une énergie potentielle élémentaire dE_p tel que $dE_p = \delta W(\vec{F})$
- 28- Le travail d'une force \vec{F} perpendiculaire au déplacement est :
 - a) strictement positif
 - (b) nul
 - c) strictement négatif
 - d) dépendant de la vitesse du mouvement
- 29- La variation d'énergie potentielle élastique (de A vers B) d'abscisses respectives x_A et x_B est : (On donne : $dE_{pe} = k.x.dx$; Où k est une constante).

a)
$$\Delta E_{pe} = k.x$$

(b)
$$\Delta E_{pe} = \frac{1}{2} k.(x_B^2 - x_A^2)$$

c)
$$\Delta E_{pe} = \frac{1}{2}k.(x_B - x_A)^2$$

d)
$$\Delta E_{pe} = 0$$

30- Le moment algébrique de la tension \vec{T} par rapport au point d'appui O de la poutre (de longueur L) est :

a)
$$T.\frac{L}{4}$$

$$b - T \cdot \frac{L}{4}$$

$$\bigcirc T.\frac{3L}{4}$$

d) T.L

QCM d'anglais Technique numéros 4, Questions are based upon the "Car to Car Communication" and "The future Race Car"

- 31. What answer is similar to "funding"?
 - (a.) Financial backing
 - b. Scholarship
 - c. Investing
 - d. Asset
- 32. What is the "DOT"
 - a. Departement Of Transport
 - (b) Department Of Transportation
 - c. Departement Of Transportation
 - d. Department Of Transports
- 33. In the article what is a fleet?
 - a. A group of warships
 - b. Most cars in the US
 - (c.) A group of vehicles owned as a unit
 - d. Most cars of the world
- 34. What does "traffic Backup" mean?
 - a. Data concerning road works
 - b. The global view of the region traffic
 - (c.) Traffic congestion
 - d. Numbering of Cars on a specific road.
- 35. "Oversee" doesn't mean what?
 - (a) Abroad
 - b. Control
 - c. Manage
 - d. Supervise
- 36. Choose the answer with the similar meaning of "Showcased"
 - a. Hidden from the rest
 - b. Covered rapidly
 - c. Shown secretly
 - d) Exposed prominently
- 37. How is "tremendous" used in the TED presentation:" The future Race Car"
 - a. Tiny
 - (b) Real
 - c. Far away
 - d. Technologically
- 38. What is a "glimpse"?
 - a. A detailed show
 - b. A spy
 - c. A stare
 - d.) A brief look
- 39. What is a "feat"?
 - a. Foot in the plural
 - b. Amazing surroundings
 - An act of skill
 - d. A large meal
- 40. What is correct translation for "granted"?
 - a. Ordonna
 - b. Exécuta
 - c. Prêta
 - d.) Accorda

Remplacez les pointillés par le mot ou le groupe de mots qui convient :

- 41. Il n'est pauvre, malheureux.
 - (a) ni
 - b n'y
- 42. a-t-il ?
 - a qui
 - (b) qu'y
- 43. choisir pour ce poste important?
 - (a) qui
 - b qu'y
- 44. Je pense jamais.
 - a ni
 - ⊕ n'y
- 45. Ta valise n'est pas faite, le train part dans deux heures.
 - a or
 - b hors
- 46. Il ne veut pas gagner d'argent
 - a davantage
 - b d'avantage
 - c d'avantages
- 47. Ils ont plus que nous.
 - a davantage
 - b d'avantage
 - (c) d'avantages
- 48. Je pense partant à six heures, c'est possible.
 - a quant
 - (b) qu'en
 - c quand
- 49. On n'est heureux vacances.

- a quant
- b qu'en
 - c quand

50. Je ne peux rien dire à son ardeur au travail.

- a quant
- b qu'en
- c quand

QCM Electronique - InfoSUP

Pensez à bien lire les questions ET les réponses proposées

- Q1. Pour appliquer le théorème de superposition : (2 réponses)
 - a- Les sources doivent être liées et le réseau linéaire.
 - (b-) Les sources doivent être indépendantes et le réseau, linéaire.
 - c- On annule les générateurs un par un en gardant tous les autres.
 - (d) On annule tous les générateurs sauf un à la fois.
- Q2. La valeur moyenne d'un courant variable i(t) est la valeur du courant continu I qui dissiperait, dans la même résistance, la même énergie (le même nombre de joules) que i(t), pendant la même durée.
 - a. Vrai

b) Faux

Soit une tension sinusoïdale $u(t) = U \cdot \cos(\omega t + \varphi)$

- Q3. Par convention, U est une grandeur réelle positive, sans unité.
 - a. VRAI

(b.) FAUX

Q4. φ correspond à

(-) b

(a) La phase à l'origine

c. La période du signal

b. La fréquence du signal

- d. La pulsation.
- Q5. Quelle relation est correcte ? T représente la période de u(t) et f, sa fréquence.

(a)
$$\omega = 2.\pi.f$$

c.
$$\omega = 2.\pi$$

b.
$$\omega f = 2.\pi$$

d.
$$\omega = \frac{2.\pi}{f}$$

Q6. La valeur efficace de u(t) est donnée par la relation :

(a.)
$$U_{eff} = \frac{U}{\sqrt{2}}$$

c.
$$U_{eff} = U^2$$

b.
$$U_{eff} = 0$$

$$\mathrm{d.}\ U_{eff}=U$$

Q7. L'amplitude complexe de u(t) est donnée par la relation :

a.
$$\underline{U} = \frac{U}{\sqrt{2}}$$

$$\underline{U} = Ue^{j\varphi}$$

b.
$$\underline{U} = Ue^{j\omega t}$$

d.
$$\underline{U} = Ue^{j(\omega t + \varphi)}$$

Q8. Quelle formule représente l'impédance complexe d'une bobine?

b.
$$\frac{1}{iL\omega}$$

c.
$$-jL\omega$$

d.
$$\frac{-j}{L\omega}$$

Q9. Dans un condensateur, quel est le déphasage du courant par rapport à la tension?

(a)
$$+\frac{\pi}{2}$$

b.
$$-\frac{\pi}{2}$$

c.
$$-\pi$$

d.
$$\pm \frac{\pi}{2}$$
 selon la fréquence

Q10. Une bobine et un condensateur sont en série. L'impédance équivalente à ces 2 composants vaut :

a.
$$Z = j(C\omega - L\omega)$$

b.
$$Z = j \left(C\omega - \frac{1}{L\omega} \right)$$

d.
$$Z = j\left(L\omega + \frac{1}{C\omega}\right)$$