### **Interest Points: Corners**

Slides adapted from Alyosha Efros, Lana Lazebnik, Richard Szeliski

# Interest Points (or Image Features)

- Story so far...
  - Not all pixels are created equal
  - Some are more "interesting" than others
- Previously...
  - Pixels that lie on edges are interesting
- Today: Corners



## Corners



## Image Feature Motivation

- Panorama stitching
  - We have two images how do we combine them?





## Image Feature Motivation

- Panorama stitching
  - We have two images how do we combine them?



Step 1: find features

Step 2: match features (we'll cover later)

## Image Feature Motivation

- Panorama stitching
  - We have two images how do we combine them?



Step 3: align images (we'll cover later)

# Characteristics of good features





#### Repeatability

The same feature can be found in several images despite geometric and photometric transformations

#### Saliency

- Each feature has a distinctive description
- Compactness and efficiency
  - Many fewer features than image pixels

#### Locality

 A feature occupies a relatively small area of the image; robust to clutter and occlusion

Corners form the basis form many modern image features

## **Applications**

- Feature points are used for:
  - Image alignment
  - 3D reconstruction
  - Motion tracking
  - Robot navigation
  - Indexing and database retrieval
  - Object recognition







#### Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity



"flat" region: no change in all directions



"edge":
no change
along the edge
direction



"corner":
significant
change in all
directions

## Corner Detection: Mathematics

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$





## Corner Detection: Mathematics

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$





#### Corner Detector: Mathematics

Change in appearance for the shift [u,v]:



However, we are not actually going slide this window around for every (u,v) at each pixel (x,y) to calculate E. We will solve this analytically.

### Harris Detector: Mathematics

 First-order Taylor approximation for small motions [u, v]:

$$I(x+u, y+v) \approx I(x, y) + I_x u + I_y v$$

• Let's plug this into E(u,v):

$$\begin{split} E(u,v) &= \sum_{(x,y) \in W} [I(x+u,y+v) - I(x,y)]^2 \\ &\approx \sum_{(x,y) \in W} [I(x,y) + I_x u + I_y v - I(x,y)]^2 \\ &= \sum_{(x,y) \in W} [I_x u + I_y v]^2 = \sum_{(x,y) \in W} I_x^2 u^2 + 2I_x I_y u v + I_y^2 v^2 \end{split}$$

#### Harris Detector: Mathematics

The bilinear approximation simplifies to

$$E(u,v) \approx [u \ v] M \begin{bmatrix} u \\ v \end{bmatrix}$$

where *M* is a **second moment matrix** computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

#### Corners as distinctive interest points

$$M = \sum w(x, y) \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix}$$

2 x 2 matrix of image derivatives (averaged in neighborhood of a point).







$$I_x \Leftrightarrow \frac{\partial I}{\partial x}$$



$$I_y \Leftrightarrow \frac{\partial I}{\partial y}$$



$$I_x I_y \Leftrightarrow \frac{\partial I}{\partial x} \frac{\partial I}{\partial y}$$

## Interpreting the 2<sup>nd</sup> Moment Matrix

The surface E(u,v) is locally approximated by a quadratic form. Let's try to understand its shape.

$$E(u,v) \approx [u \ v] \ M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$M = \sum \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$



## Interpreting the 2<sup>nd</sup> moment matrix

First, consider the axis-aligned case (gradients are either horizontal or vertical)

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

If either  $\lambda$  is close to 0, then this is **not** a corner, so look for locations where both are large.

#### **General Case**

Since M is symmetric, we have  $M = R^{-1} \begin{vmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{vmatrix} R$ 

We can visualize *M* as an ellipse with axis lengths determined by the eigenvalues and orientation determined by *R* 

Ellipse equation:

$$\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$



## Interpreting the eigenvalues

Classification of image points using eigenvalues

of M:



## Corner response function

$$R = \det(M) - \alpha \operatorname{trace}(M)^{2} = \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

 $\alpha$ : constant (0.04 to 0.06)



## Harris Corner Detector: Steps

- 1. Compute Gaussian derivatives at each pixel
- 2. Compute second moment matrix *M* in a Gaussian window around each pixel
- 3. Compute corner response function *R*
- 4. Threshold R
- 5. Find local maxima of response function (nonmaximum suppression)

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u>

Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

## Harris Detector: Steps



Harris Detector: Steps Compute corner response R



Harris Detector: Steps
Find points with large corner response: *R*>threshold



#### Harris Detector: Steps

Take only the points of local maxima of R



#### Harris Detector: Results



## Invariance and covariance

- We want corner locations to be *invariant* to photometric transformations and *covariant* to geometric transformations
  - Invariance: image is transformed and corner locations do not change
  - Covariance: if we have two transformed versions of the same image, features should be detected in corresponding locations



# Harris Detector: Affine Intensity Change



- ✓ Only derivatives are used => invariance to intensity shift  $I \rightarrow I + b$
- ✓ Intensity scale:  $I \rightarrow a I$





Partially invariant to affine intensity change

### Harris Detector: Translation



Derivatives and window function are shift-invariant

Corner location is covariant to image translation

#### Harris Detector: Rotation



2<sup>nd</sup> moment Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is covariant to image rotation

## Harris Detector: Scale Change



Not covariant to scaling!

#### Scale-invariant feature detection

- Goal: independently detect corresponding regions in scaled versions of the same image
- Need scale selection mechanism for finding characteristic region size that is covariant with the image transformation



# Next Time - Scale-invariant features: Blobs / Image Regions

