Computing in the Post-Moore Era

by Andreas Olofsson

Talk Outline

- Moore's Law Primer
- Moore's Law Impact
- Predicting the Future (provided ASIS)

Moore's Law Definition

- All about the \$\$\$
- Since 1955 cost/xtor reduced by 10B
- Don't confuse with performance!
- Profound societal impact

Moore's Law in 1971

- Intel 4004
- 1 core
- 2,300 xtors
- 12mm²
- 740Khz
- 4-bit processor
- 10um process

Moore's Law in 2016

- Intel Broadwell
- 22 cores
- 7B xtors
- 456mm²
- 4 GHz
- 64-bit processor
- 14nm process (Picture shows Skylake)

Moore's Law Transistor Trend

Moore's Law Area Trend

Moore Effect: Performance

PROJECTED PERFORMANCE **DEVELOPMENT**

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Moore Effect: Cost

- 2 Billion people with Thinking machines in their pockets
 - 100 GFLOPS smart-phones possible
 - 5-50B transistors per phone
 - Exaflop level connected clouds

Moore Effect: Democratization

- Parallella: "An open \$99 supercomputer"
- "Raspberry Pi for parallel computing"
- 18 CPU cores on a credit card and @ 5W
- Democratized access to parallel computing
- \$898K raised on Kickstarter in Oct 2012
- First ever crowd funded chip!
- Almost 100 publications
- Over 10,000 shipped, available at Amazon & Digikey

Moore Effect: Casualties

Achronix	Brightscale	Cradle	Mathstar	Sandbridge
Adapteva	Calxeda	C-Switch	Mobileye	Silicon Sp.
Ambric	Chameleon	ElementCXI	Monarch	Stream Proc
Asocs	Clearspeed	Greenarrays	Octasic	Stretch
Aspex	Cognivue	lcera	Picochip	Tilera
Axis Semi	Coherent L.	Intellasys	Plurality	Transputer
Axis Semi BOPS	Coherent L. IBM-Cell	Intellasys IP-flex	Plurality PACT	Transputer XMOS

Chip Design 101

Chip Design Flow

- ~1 cent / million logic gates
- Arcane languages (Verilog / VHDL)
- 1 year compilation cycle
- \$1M / compiler seat
- \$1M / hardware bug
- Completely opaque and proprietary flow

Don't believe the hype!

Adapteva's Story...

- 4 chips in 2 years
- 1-3 engineers
- <\$2M spent</p>
- Complexity==\$\$\$

Real Chip Design Costs

Engineering	N*(\$150K/eng)
IP Licensing	\$1-10M
EDA Tools (Compilers)	\$1-10M
Tapeout (Tooling)	\$5M
Chip packaging	\$50K
Qualification	\$1M
TOTAL	\$1-\$1,000M

Moore's Law Economic Challenges

Challenge	Industry	Hurdle	Current	Future
Open source chip IP	\$5B	NIH	\$1M+	\$0
Open source EDA	\$6B	Complexity	\$1M+	\$0
Engineering	11111 22	Time	9 months	24hrs
Packaging	\$13B	Logistics	\$50K	\$0
Manufacturing	\$40B	Logistics	\$2M+	\$1,000*

Post-Moore Predictions

- Laws of physics prevail (again)
- Semiconductor goes 3D (again)
- Silicon efficiency becomes important (again)
- Optimization engineering becomes important (again)
- Programming gets hard (again)
- ASICs will make a comeback (again)
- Parallel architectures win!

Physics: Getting Harder!

- Digital Power ~= cap x voltage^2 x freq (derived)
- Switching Delay ~= resistance x capacitance
- Speed Limit = 3 x 10⁸ m/s (how far is one nanosecond?)
- Atomic Size Limit ~= 0.1nm
- Cooling ~= Area x dT x HC(v)
- Thermal Noise ~= FUNC(RES,temp, V)

3D: Easy! Plenty of Room at the Bottom

Rule	Value
Chip wire pitch	~0.1um
2.5D wire pitch	4um
Wirebond pitch	30um
2.5D Bump pitch	45um
Flip-chip pitch	170um
BGA pitch (advanced)	400um
Ethernet connector	~10,000um

Silicon Efficiency (REF: Brodersen)

Optimization Engineering

- 200,000 difference between unoptimized Java and assembly
- As things slow down, there is more time for optimization
- Engineers innovate when they have to (free lunch is over)
- Architecture convergence makes optimization effective
- Open source trend making a big difference

Programming Challenges

Metric	Chip Designer	Programmer
Correctness	Always	Always
Performance	Always	Sometimes*
Parallelism	Always	Sometimes*
Timing	Always	Sometimes
Size, Power	Always	Sometimes*
Fault-tolerance	Often	Rarely*

ASICs Making a Comeback

- Tail that wags the dog
- Can't leave 100X on the table
- Design cheaper than ever
- Cisco, Ericsson, Huawei
- Apple (A9x)
- Google (TPU)

The long tail of electronics

66 "Axiom: Big semiconductor companies only cares about big \$\$"

...but what about low volume designs (1-100K units)?

- Health (diagnostics, embedded)
- Robotics (smarter, smaller)
- Communication (free and pervasive)
- Special supercomputers (to answer really tough questions)

Parallel Computing Will Win Eventually!

(Computing normalized for silicon area at 14/16FF)

Metric	GPU	CPU	Epiphany Arch
Performance(FLOPS)	5,300	500	10,000
Area (mm^2)	610	456	600
Power(W)	300+150	150	120