# P.I.D.

•••

Club de Robótica Interactiva Taller Principiantes

#### Introducción

- Proporcional, integral, derivativo
- Un tipo de control en lazo cerrado
- Actúa de acuerdo al error (la diferencia entre el valor deseado y el valor del proceso)
- Uno de los algoritmos más usados
- Ejemplo: control de crucero



## Características de la respuesta a un paso



# Término proporcional

- Proporcional al error
- Reduce el tiempo de subida
- Presenta un error en estado estacionario
- Aumenta el sobrepaso
- No modifica el tiempo de asentamiento
- Analogía: reacción al presente del sistema

## Término integral

- Proporcional al área del error
- Reduce el tiempo de subida
- Aumenta el sobre paso
- Elimina el error en estado estacionario
- Aumenta el tiempo de asentamiento
- Analogía: reacciona de acuerdo al pasado de la planta

### Término derivativo

- Proporcional al ratio de cambio del error
- Aumenta el tiempo de subida
- Disminuye el sobrepaso
- Disminuye el tiempo de asentamiento
- No modifica el error en estado estacionario
- Analogía: reacciona de acuerdo al futuro del sistema

|    | RISE TIME | OVERSHOOTS | SETTLING TIME | STEADY STATE ERROR |
|----|-----------|------------|---------------|--------------------|
| Кр | DECREASE  | INCREASE   | SMALL CHANGE  | DECREASE           |
| Ki | DECREASE  | INCREASE   | INCREASE      | ELIMINATE          |
| Kd | INCREASE  | DECREASE   | DECREASE      | NO CHANGE          |

#### Resumen



### Sintonización

- Comenzamos con todas las ganancias igual a 0
- Incrementamos la ganancia del término proporcional hasta que el sistema oscile de forma estable
- Reducimos la ganancia del término proporcional a la mitad
- Incrementamos la ganancia del término integral hasta un tiempo de subida adecuado, evitando que el sistema oscile
- Incrementamos la ganancia del término derivativo hasta un valor de sobrepaso adecuado