MDL Assignment 3 Part 1

Team Name: Trees.Love

Team Number: 5

Team Members:

Pulak Malhotra, 2019101050

Ashwin Rao, 2019101049

Belief Update

After reaching s', the agent observes $o \in \Omega$ with probability $O(o \mid s', a)$. Let b be a probability distribution over the state space S. b(s) denotes the probability that the environment is in state s. Given b(s), then after taking action a and observing o,

$$b'(s') = \eta O(o \mid s', a) \sum_{s \in S} T(s' \mid s, a) b(s)$$

where $\eta = 1/\Pr(o \mid b, a)$ is a normalizing constant γ

Calculations:

Move is R, Observation is G

Calculating b_prime[0]

- $T(0 \rightarrow 0,R) = 0.01$
 - On multiplying by b[0]=0.3333333 gives 0.0033333

•
$$T(1 \rightarrow 0,R) = 0.01$$

•
$$T(2 \rightarrow 0,R) = 0$$

•
$$T(3 \rightarrow 0,R) = 0$$

•
$$T(4 \rightarrow 0,R) = 0$$

Calculating b_prime[1]

•
$$T(0\rightarrow 1,R) = 0.99$$

•
$$T(1 \rightarrow 1,R) = 0$$

•
$$T(2\rightarrow 1,R) = 0.01$$

•
$$T(3 \rightarrow 1,R) = 0$$

•
$$T(4 \rightarrow 1,R) = 0$$

Calculating b_prime[2]

•
$$T(0 \rightarrow 2,R) = 0$$

•
$$T(1\rightarrow 2,R) = 0.99$$

•
$$T(2\rightarrow 2,R) = 0$$

•
$$T(3\rightarrow 2,R) = 0.01$$

- On multiplying by b[3]=0 gives 0.0
- $T(4 \rightarrow 2,R) = 0$
- $T(5 \rightarrow 2,R) = 0$

sum of transitions 0.0

 $b_prime[2] = 0.0 * 0.15 = 0.0$

Calculating b_prime[3]

•
$$T(0 \rightarrow 3,R) = 0$$

•
$$T(1 \rightarrow 3,R) = 0$$

•
$$T(2\rightarrow3,R) = 0.99$$

- On multiplying by b[2]=0.3333333 gives 0.33
- $T(3 \rightarrow 3,R) = 0$
- $T(4\rightarrow3,R) = 0.01$
 - On multiplying by b[4]=0 gives 0.0
- $T(5 \rightarrow 3,R) = 0$

sum of transitions 0.329999999999999

$$P(o=G|a=R,s'=3) = 0.9$$

$$b_prime[3] = 0.33 * 0.9 = 0.297$$

Calculating b_prime[4]

•
$$T(0 \rightarrow 4,R) = 0$$

•
$$T(1 \rightarrow 4,R) = 0$$

•
$$T(2 \rightarrow 4,R) = 0$$

•
$$T(3 \rightarrow 4,R) = 0.99$$

- On multiplying by b[3]=0 gives 0.0
- $T(4 \rightarrow 4,R) = 0$
- $T(5\rightarrow4,R) = 0.01$
 - On multiplying by b[5]=0.3333333 gives 0.0033333
 sum of transitions 0.003333333333333336

$$P(o=G|a=R,s'=4) = 0.9$$

b_prime[4]= 0.0033333 * 0.9 = 0.003

Calculating b_prime[5]

- $T(0 \rightarrow 5,R) = 0$
- $T(1 \rightarrow 5,R) = 0$
- $T(2 \rightarrow 5,R) = 0$
- $T(3 \rightarrow 5,R) = 0$
- $T(4 \rightarrow 5,R) = 0.99$
 - On multiplying by b[4]=0 gives 0.0
- $T(5 \rightarrow 5,R) = 0.99$

Not normalized numerator

Updated Beliefs

[0.00076923076923077, 0.46153846153846156, 0.0, 0.456923076923077, 0.00461538461538462, 0.07615384615384617]

Move is L, Observation is R

Calculating b_prime[0]

- $T(0 \rightarrow 0, L) = 0.99$
 - On multiplying by b[0]=0.0007692 gives 0.0007615
- $T(1\rightarrow0,L) = 0.99$
 - On multiplying by b[1]=0.4615385 gives 0.4569231
- $T(2 \rightarrow 0,L) = 0$
- $T(3 \rightarrow 0, L) = 0$

•
$$T(4 \rightarrow 0, L) = 0$$

•
$$T(5\rightarrow0,L) = 0$$

sum of transitions 0.4576846153846154
 $P(o=R|a=L,s'=0) = 0.85$
b_prime[0]= 0.4576846 * 0.85 = 0.3890319

Calculating b_prime[1]

•
$$T(0 \rightarrow 1, L) = 0.01$$

•
$$T(1 \rightarrow 1, L) = 0$$

•
$$T(2\rightarrow1,L) = 0.99$$

•
$$T(3 \rightarrow 1, L) = 0$$

•
$$T(4 \rightarrow 1, L) = 0$$

Calculating b_prime[2]

•
$$T(0 \rightarrow 2,L) = 0$$

•
$$T(1\rightarrow 2,L) = 0.01$$

•
$$T(2\rightarrow 2,L) = 0$$

•
$$T(3\rightarrow 2,L) = 0.99$$

•
$$T(4 \rightarrow 2,L) = 0$$

•
$$T(5\rightarrow 2,L) = 0$$

sum of transitions 0.45696923076923085

$$P(o=R|a=L,s'=2) = 0.85$$

b_prime[2]= 0.4569692 * 0.85 = 0.3884238

Calculating b_prime[3]

•
$$T(0 \rightarrow 3, L) = 0$$

•
$$T(1 \rightarrow 3, L) = 0$$

•
$$T(2\rightarrow3,L) = 0.01$$

• On multiplying by b[2]=0.0 gives 0.0

•
$$T(3 \rightarrow 3,L) = 0$$

•
$$T(4 \rightarrow 3,L) = 0.99$$

• On multiplying by b[4]=0.0046154 gives 0.0045692

Calculating b_prime[4]

•
$$T(0 \rightarrow 4,L) = 0$$

•
$$T(1 \rightarrow 4,L) = 0$$

•
$$T(2 \rightarrow 4,L) = 0$$

•
$$T(3\rightarrow4,L) = 0.01$$

• On multiplying by b[3]=0.4569231 gives 0.0045692

•
$$T(4 \rightarrow 4,L) = 0$$

•
$$T(5\rightarrow4,L) = 0.99$$

Calculating b_prime[5]

•
$$T(0 \rightarrow 5, L) = 0$$

- $T(1 \rightarrow 5, L) = 0$
- $T(2 \rightarrow 5,L) = 0$
- $T(3 \rightarrow 5, L) = 0$
- $T(4\rightarrow5,L) = 0.01$
 - On multiplying by b[4]=0.0046154 gives 4.62e-05
- $T(5 \rightarrow 5, L) = 0.01$
 - On multiplying by b[5]=0.0761538 gives 0.0007615 sum of transitions 0.0008076923076923086
 P(o=R|a=L,s'=5) = 0.85
 b_prime[5]= 0.0008077 * 0.85 = 0.0006865

Not normalized numerator

[0.3890319230769231, 7.692307692307705e-07, 0.38842384615384623, 0.0004569230769230773, 0.007996153846153846, 0.0006865384615384623] Denominator 0.786596153846154

Updated Beliefs

[0.494576436936166, 9.779233797032017e-07, 0.49380338850451067, 0.0005808864875437013, 0.010165513532014763, 0.000872796616385107]

Move is L, Observation is G

Calculating b_prime[0]

- $T(0 \rightarrow 0,L) = 0.99$
 - On multiplying by b[0]=0.4945764 gives 0.4896307
- $T(1 \rightarrow 0, L) = 0.99$
 - On multiplying by b[1]=1e-06 gives 1e-06
- $T(2 \rightarrow 0,L) = 0$
- $T(3 \rightarrow 0,L) = 0$
- $T(4 \rightarrow 0,L) = 0$
- $T(5\rightarrow0,L) = 0$ sum of transitions 0.4896316407109502

Calculating b_prime[1]

- $T(0\rightarrow 1,L) = 0.01$
 - On multiplying by b[0]=0.4945764 gives 0.0049458
- $T(1 \rightarrow 1, L) = 0$
- $T(2\rightarrow 1,L) = 0.99$
 - On multiplying by b[2]=0.4938034 gives 0.4888654
- $T(3 \rightarrow 1,L) = 0$
- $T(4 \rightarrow 1, L) = 0$
- $T(5\rightarrow1,L) = 0$ sum of transitions 0.49381111898882724 P(o=G|a=L,s'=1) = 0.9b_prime[1]= 0.4938111 * 0.9 = 0.44443

Calculating b_prime[2]

- $T(0 \rightarrow 2,L) = 0$
- $T(1\rightarrow 2,L) = 0.01$
 - On multiplying by b[1]=1e-06 gives 0.0
- $T(2 \rightarrow 2,L) = 0$
- $T(3\rightarrow 2,L) = 0.99$
 - On multiplying by b[3]=0.0005809 gives 0.0005751
- $T(4 \rightarrow 2,L) = 0$

Calculating b_prime[3]

• $T(0 \rightarrow 3, L) = 0$

- $T(1 \rightarrow 3, L) = 0$
- $T(2\rightarrow3,L) = 0.01$
 - On multiplying by b[2]=0.4938034 gives 0.004938
- $T(3 \rightarrow 3,L) = 0$
- $T(4\rightarrow3,L) = 0.99$
 - On multiplying by b[4]=0.0101655 gives 0.0100639
- $T(5\rightarrow3,L) = 0$ sum of transitions 0.015001892281739725 P(o=G|a=L,s'=3) = 0.9b_prime[3] = 0.0150019 * 0.9 = 0.0135017

Calculating b_prime[4]

- $T(0 \rightarrow 4, L) = 0$
- $T(1 \rightarrow 4, L) = 0$
- $T(2 \rightarrow 4,L) = 0$
- $T(3\rightarrow4,L) = 0.01$
 - On multiplying by b[3]=0.0005809 gives 5.8e-06
- $T(4 \rightarrow 4, L) = 0$
- $T(5 \rightarrow 4,L) = 0.99$
 - On multiplying by b[5]=0.0008728 gives 0.0008641 sum of transitions 0.000869877515096693 P(o=G|a=L,s'=4)=0.9 b_prime[4]= 0.0008699 * 0.9 = 0.0007829

Calculating b_prime[5]

- $T(0 \rightarrow 5, L) = 0$
- $T(1 \rightarrow 5, L) = 0$
- $T(2\rightarrow 5,L) = 0$
- $T(3 \rightarrow 5, L) = 0$

- $T(4 \rightarrow 5,L) = 0.01$
 - On multiplying by b[4]=0.0101655 gives 0.0001017
- $T(5 \rightarrow 5, L) = 0.01$

Not normalized numerator

[0.07344474610664255, 0.4444300070899445, 8.62631102853092e-05, 0.013501703053565753, 0.0007828897635870237, 1.6557465222599824e-05] Denominator 0.5322621665892476

Updated Beliefs

[0.13798603529775325, 0.8349832751365097, 0.00016206883693816877, 0.025366640541230053, 0.001470872462350284, 3.110772521875934e-05]