Ottimizzazione non lineare vincolata

Si occupa di trovare il valore massimo o minimo di una funzione quando le variabili sono soggette a determinate condizioni, chiamate vincoli.

Possono essere di *uguaglianza* o *disuguaglianza*. Ci sono tre metodi per risolvere questi problemi.

Riduzione del numero di variabili libere

Se hai dei vincoli di **uguaglianza**, puoi usarli per esplicitare alcune variabili in funzione delle altre. Sostituendo queste espressioni nella funzione originale, il problema vincolato si trasforma in un *problema di ottimizzazione non vincolata* con un minor numero di variabili. Si può quindi risolvere con i metodi classici, come l'azzeramento del gradiente.

Es. Minimizzare $(x1-2)^2 + 2(x2-1)^2$, x1 + 4x2 = 3Esprimo come x1 = 3 - 4x2, e lo sostituisco nella funzione originale $-> (3-4x2-2)^2 + 2(x2-1)^2 = (-4x2+1)^2 + 2(x2-1)^2 = 16x2^2 + 1 + 8x^2 + 2(x^2+1+2x^2) = 16x^2 + 1 + 8x^2 + 2x^2 + 2 + 4x^2 = 18x^2 + 12x^2 + 3$ Non si può applicare se non si può esprimere univocamente una variabile (es. se hai $x1^2$).

Metodo dei moltiplicatori di Lagrange

Si introduce una nuova funzione chiamata **Lagrangiana**, che combina la funzione originale con i vincoli attraverso nuove variabili chiamate **moltiplicatori di Lagrange**.

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i \cdot g_i(x).$$

Nel punto di ottimo, il gradiente della funzione da ottimizzare (delta f(x)) e il gradiente del vincolo (delta g(x)) devono essere **paralleli**. Ci permette di trovare un punto in cui il gradiente della funzione originale è una combinazione lineare dei gradienti dei vincoli.

Risoluzione

Si cercano i punti stazionari della Lagrangiana, i punti in cui il suo gradiente è zero.

Si traduce in un sistema di equazioni che, una volta risolto, fornisce i punti candidati ad essere di massimo o minimo.

La risoluzione di questo sistema ti dà sia le coordinate del punto ottimo, sia i valori dei moltiplicatori di Lagrange.

Le condizioni ottenute azzerando il gradiente della Lagrangiana sono **necessarie** ma non **sufficienti** per garantire che un punto sia di minimo o massimo. Servono quindi delle condizioni del secondo ordine, che coinvolgono la matrice Hessiana della Lagrangiana.

Karush-Kuhn-Tucker (KKT)

Estende i moltiplicatori di Lagrange ai problemi con *vincoli di disuguaglianza* ($h(x) \le 0$) oltre a quelli di uguaglianza.

Quattro condizioni che devono essere soddisfatte in un punto di ottimo. Se un punto le soddisfa, è un candidato a essere un punto di ottimo, minimo o massimo.

Ammissibilità primale

Il punto x* deve rispettare tutti i vincoli, sia di uguaglianza che di disuguaglianza.

Condizione di stazionarietà

Nel punto di ottimo, il gradiente della Lagrangiana generalizzata deve essere nullo. Significa che il gradiente della funzione obiettivo è una combinazione lineare dei gradienti di tutti i vincoli attivi.

Ammissibilità duale

I moltiplicatori di Lagrange associati ai vincoli di disuguaglianza devono essere non negativi.

Condizioni di complementarietà

Per ogni vincolo di disuguaglianza, il prodotto del moltiplicatore di Lagrange per il vincolo stesso deve essere zero.

Questo implica che se un vincolo di disuguaglianza è **non attivo**, quindi < 0, il suo moltiplicatore di Lagrange deve essere zero. Quindi, quel vincolo non influenza la soluzione.

Se un vincolo è **attivo**, quindi = 0, il suo moltiplicatore può essere maggiore di zero.

win
$$f(x,y) = u(x-1)^2 + (y-2)^2$$

 $x+y \in 2$
 $x \ge -1$
 $y \ge -1$

PROB. Scrivere il problemo in ponno standard (vincoli &)
LAGRANGIANA per applicare KKT

FUNZIONE: OMBIND for objettivo e i vincoli con i undeplicatori LAGRANGIANA (i Lagrange (M1, M2, M3)

Ogni vincolo si moltiplica per un moltiplicatore di Lagrange

u. combinazioni = 2n (n=nunero vinesti) = 23:8 cubinazioni da anali22ave

	Vincoli stivi	Vincols was affici
Caso 1	Nessuno	Tuth e tre
Caso 2	Uno solo	Due
6 os a	Due	Uno salo
७ ८० ५	Tuttie the	Ness-uno

COMPLEMENTARIETA : per agin vincolo di disinguaglionza, il prodotto del COMPLEMENTARIETA : unoltiplicatore di Lagrange per il vincolo stesso è zero La MJ. hJ. hJ. (X)=0

Se un meolo non é attivo: vincolo saddispatto come disugna gliares

Shettz, quirel h_(X), il vincolo, non e zero. Quindi il moltiplicatore di lagrange = 0

se un vincolo e attivo: vincolo soddistato come ugueglianze, quindi hy(X), il vincolo, é zevo.
Quindi il moltiplicatore > 0

CASO 1: nersum vincolo attico, M1=M2=/43=0

→ Si unimimizza le La grangiana calcolando le derivate parciali vispetto a x e y, poneudole a zero.

 $f(x) = 4(x-1)^{2} + (y-2)^{2} + 4(x+y-2) - 42(x+1) - 43(y+1) = 4(x-1)^{2} + (y-2)^{2}$ $= 4(x-1)^{2} + (y-2)^{2}$

DL = ((x-λ)2:8(x-λ)=0 -08-8=0 →8X=8 → X=1

 $\frac{\partial L}{\partial y} = (y-2)^2 = 2(y-2) = 0 \Rightarrow 2y-4=0 \Rightarrow 2y=4 \Rightarrow y=2$ (1,2)

CASO 2: Uno solo attivo -> M, 30, H2=0 e M320

\$(x) = 4(x-1)2+ (y-2)2+M1(x+y-2)

<u> 21 = 8x - 8 + My 20</u> <u> 21 = 2y - 4 + My < 0</u> 2y 2y - 4 + My < 0

al = x+y-2=0

 $\begin{cases} x+y-2=0 \\ 2y-4+\mu_1=0 \end{cases} \begin{cases} x=2-y \\ 8(2-y)-8+\mu_1=0 \end{cases} \begin{cases} x=2-y \\ y=2-\mu_2 \\ 8(2-2+\mu_2)-8+\mu_1=0 \end{cases}$

$$\begin{cases} x = 2 - (2 - \mu_{1/2}) = 2 - (2 + \mu_{1/2}) = \mu_{1/2} \\ y = 2 - \mu_{1/2} \\ 48(\frac{\mu_{1/2}}{2}) - 8 + \mu_{1} = 0 \end{cases} = \mu_{1/2} \begin{cases} x = \mu_{1/2} \\ y = 2 - \mu_{1/2} \\ 4\mu_{1} - 8 + \mu_{1} = 0 \end{cases} \begin{cases} 5\mu_{1} = \frac{8}{5} \cdot 1.6 \\ x = \frac{\mu_{1/2}}{2} = 0.8 \\ y = 2 - \frac{1.6}{2} = 1.2 \end{cases}$$

VERLEICA: il punto x e y deve essere volido per gli oltri due vincoli, quindi x3-1 e y>-1

CASO 3: secondo vincolo atrivo

$$\frac{\partial L}{\partial x} = 8(x-1) - \mu_2$$
 $\frac{\partial L}{\partial y} = 2(y-2)$ $\frac{\partial L}{\partial H_2} = -(x+1) = -x-1$

VERIFICA

$$y = 2 > -1$$

$$y = 2 > -1$$

$$\mu_2 = 16 > 0$$

NON

NON

NON

NON

CASO 4: forzo vincolo attivo

$$\frac{2l}{2x} = 8(x-1)$$
 $\frac{2l}{2y} = 2(y-2)-M_3$ $\frac{2l}{2M_3} = -y-1$

$$\begin{cases} 8X-8=0 & \begin{cases} X-1=9-3X=1 \\ 2y-4-\mu_3=0 & \end{cases} & \begin{cases} y=-1 \\ -y-1=0 & \end{cases} & \begin{cases} x-1=9-3X=1 \\ y=-1 & \end{cases} & \begin{cases} y=-1 \\ -y=-1 & \end{cases} & \begin{cases} x-1=9-3X=1 \\ y=-1 & \end{cases} & \end{cases}$$

molt. negetive