1.4307

Durch die Fortschritte in der Herstellung der rostfreien Stähle, besonders die Absenkung des Kohlenstoffgehaltes zu sehr niedrigen Werten, hat 1.4307 fast alle titanstabilisierten Güten vom Typ 1.4541 ersetzt. Die Beständigkeit gegen interkristalline Korrosion ist im Vergleich zu den titanstabilisierten Güten gleichwertig und der Werkstoff ist nicht von Messerlinienkorrosion betroffen. Im Gegensatz zu den titanstabilisierten Güten hat 1.4307 eine bessere Oberfläche und kann sowohl mechanisch- als auch elektropoliert werden. Aufgrund des Fehlens von Titan und den daraus resultierenden Ausscheidungen, ist 1.4307 wesentlich besser spanbar, was sich auch in höheren Werkzeuggeschwindigkeiten und längeren Werkzeugstandzeiten äußert.

		auindustrie, Chemische nemische Industrie, Leb					
					iiiiaiiiiiiuusiiie	, iviascriirieriba	u
Normen und Bezeichnungen	EN 10088-3	1.4307	X2CrNi1	18-9			
	AISI UNS	304L			4		
	BS	\$30403 304\$11					
	AFNOR	Z3CN19-09					
	SIS	2352					
Allgemeine	Korrosionsbeständigke						
Eigenschaften	Mechanische Eigensc						
	Schmiedbarkeit	Gut					
	Schweißeignung	Ausgezeichr	net				
	Spanbarkeit	Mittel					
Physikalische Eigenschaften	Dichte (kg/dm³)		7,90				
	Elektr. Widerstand bei 20 °C (Ω mm²/m) 0,73					6	
	Magnetisierbarkeit		Gering				
	Wärmeleitfähigkeit bei		15				
	Spez. Wärmekapazitä		500				·
	Mittlerer Wärmeausdehnungsbeiwert (10-6 K-1) 20 – 100 °C 16,0						
		20 – 100 ° 20 – 200 °					
		20 – 200 ° 20 – 300 °					
				Y A			
		20 – 400 ° 20 – 500 °	C 18,0		4		
Mechanische	Zu optimalen Eigenscl	20 – 400 ° 20 – 500 ° naften bezüglich Verarb	C 18,0 C 18,0 eitung und Ver	wendung führen e	ein Lösungsglül	hen bei 1000 °C	C – 1100 °C mit
	anschließendem rasch	20 – 400° 20 – 500° naften bezüglich Verarb nen Abkühlen an Luft oc	C 18,0 C 18,0 eitung und Ver der Wasser. Wä	ährend der Herste	llung und der V	Veiterverarbeitu	ıng muss der
	anschließendem rasch Temperaturbereich vo	20 – 400° 20 – 500° naften bezüglich Verarb nen Abkühlen an Luft oc n 450°C – 850°C vern	C 18,0 C 18,0 eitung und Ver der Wasser. Wä nieden werden,	ährend der Herste um die Gefahr ei	llung und der V ner Versprödur	Veiterverarbeitung möglichst ge	ıng muss der
	anschließendem rasch Temperaturbereich vo	20 – 400° 20 – 500° naften bezüglich Verarb nen Abkühlen an Luft oc	C 18,0 C 18,0 eitung und Ver der Wasser. Wä nieden werden,	ährend der Herste um die Gefahr ei	llung und der V ner Versprödur	Veiterverarbeitung möglichst ge	ıng muss der
Mechanische Eigenschaften	anschließendem rasch Temperaturbereich vo	20 – 400° 20 – 500° naften bezüglich Verarb nen Abkühlen an Luft oc n 450°C – 850°C vern	C 18,0 C 18,0 eitung und Ver der Wasser. Wä nieden werden, ür die mechanis	ährend der Herste um die Gefahr ei	llung und der V ner Versprödur ten (in Längsric	Veiterverarbeitung möglichst ge chtung):	ıng muss der
	anschließendem rasch Temperaturbereich vo	20 – 400° 20 – 500° naften bezüglich Verarb nen Abkühlen an Luft oc n 450°C – 850°C vern	C 18,0 C 18,0 eitung und Ver der Wasser. Wa nieden werden, ür die mechanis	ährend der Herste um die Gefahr ei schen Eigenschaf	llung und der V ner Versprödur ten (in Längsrid Typische W	Veiterverarbeitung möglichst ge chtung):	ıng muss der
	anschließendem rasch Temperaturbereich vo	20 – 400° 20 – 500° naften bezüglich Verarb nen Abkühlen an Luft oc n 450°C – 850°C vern	C 18,0 C 18,0 eitung und Ver der Wasser. Wä nieden werden, ür die mechanis	ährend der Herste um die Gefahr ei	llung und der V ner Versprödur ten (in Längsric	Veiterverarbeitung möglichst ge chtung):	ıng muss der
	anschließendem rasch Temperaturbereich vo	20 – 400° 20 – 500° naften bezüglich Verarb nen Abkühlen an Luft oc n 450°C – 850°C vern	C 18,0 C 18,0 eitung und Ver der Wasser. Wa nieden werden, ür die mechanis Norm längs	ährend der Herste um die Gefahr ei schen Eigenschaf quer	Ilung und der V ner Versprödur ten (in Längsrid Typische W längs	Veiterverarbeitung möglichst gechtung): Verte (ca.)	ing muss der ring zu halten. In
	anschließendem rasch Temperaturbereich vo diesem Zustand gelter	20 – 400° 20 – 500° naften bezüglich Verarb nen Abkühlen an Luft oc n 450°C – 850°C verm n die folgenden Werte fü	C 18,0 C 18,0 eitung und Ver der Wasser. Wä nieden werden, ür die mechanis Norm längs 1 – 160	ährend der Herste um die Gefahr ei schen Eigenschaf quer 16 – 250	llung und der V ner Versprödur ten (in Längsrid Typische W längs 1 – 20*	Veiterverarbeitung möglichst geschtung): Verte (ca.) 21 – 80	ing muss der ring zu halten. In > 80
	anschließendem rasch Temperaturbereich vo diesem Zustand gelter Streckgrenze (MPa)	20 – 400 ° 20 – 500 ° naften bezüglich Verarb nen Abkühlen an Luft oc n 450 °C – 850 °C verm n die folgenden Werte fü	C 18,0 C 18,0 eitung und Ver der Wasser. Wä nieden werden, ür die mechanis Norm längs 1 – 160 ≥ 175	ährend der Herste um die Gefahr ei schen Eigenschaf quer 16 – 250 ≥ 175	Illung und der V ner Versprödur ten (in Längsrid Typische W längs 1 – 20* 340	Veiterverarbeitung möglichst geschtung): Verte (ca.) 21 – 80 340	ing muss der ring zu halten. In > 80 345
	anschließendem rasch Temperaturbereich vo diesem Zustand gelter Streckgrenze (MPa) Zugfestigkeit (MPa)	20 – 400 ° 20 – 500 ° naften bezüglich Verarb nen Abkühlen an Luft och n 450 °C – 850 °C verm n die folgenden Werte fi	C 18,0 C 18,0 eitung und Ver der Wasser. Wä nieden werden, ür die mechanis Norm längs 1 – 160 ≥ 175 500 – 700	ährend der Herste um die Gefahr ei schen Eigenschaf quer 16 – 250 ≥ 175 500 – 700	Ilung und der V ner Versprödur ten (in Längsrid Typische W längs 1 – 20* 340 630	Veiterverarbeitung möglichst geschtung): Verte (ca.) 21 – 80 340 630	ing muss der ring zu halten. In > 80 345 650
	anschließendem rasch Temperaturbereich vo diesem Zustand gelter Streckgrenze (MPa) Zugfestigkeit (MPa) Bruchdehnung (%)	20 – 400 ° 20 – 500 ° haften bezüglich Verarb nen Abkühlen an Luft och n 450 °C – 850 °C verm n die folgenden Werte fi Rp0,2 Rm As	C 18,0 C 18,0 eitung und Ver der Wasser. Wä nieden werden, ür die mechanis Norm längs 1 – 160 ≥ 175 500 – 700 ≥ 45	ährend der Herste um die Gefahr ei schen Eigenschaf quer 16 – 250 ≥ 175 500 – 700 ≥ 35	Ilung und der V ner Versprödur ten (in Längsrid Typische W längs 1 – 20* 340 630 51	Veiterverarbeitung möglichst geschtung): Verte (ca.) 21 – 80 340 630 51	ing muss der ring zu halten. In > 80 345 650 48
	anschließendem rasch Temperaturbereich vo diesem Zustand gelter Streckgrenze (MPa) Zugfestigkeit (MPa) Bruchdehnung (%) Härte	20 – 400 ° 20 – 500 ° haften bezüglich Verarb nen Abkühlen an Luft och n 450 °C – 850 °C verm n die folgenden Werte fi Rp0,2 Rm As	C 18,0 C 18,0 eitung und Ver der Wasser. Wä nieden werden, ür die mechanis Norm längs 1 – 160 ≥ 175 500 – 700 ≥ 45	ährend der Herste um die Gefahr ei schen Eigenschaf quer 16 – 250 ≥ 175 500 – 700 ≥ 35	Ilung und der V ner Versprödur ten (in Längsrid Typische W längs 1 – 20* 340 630 51	Veiterverarbeitung möglichst geschtung): Verte (ca.) 21 – 80 340 630 51	ing muss der ring zu halten. In > 80 345 650 48
	anschließendem rasch Temperaturbereich vo diesem Zustand gelter Streckgrenze (MPa) Zugfestigkeit (MPa) Bruchdehnung (%) Härte Kerbschlagarbeit (J) 25 °C	20 – 400 ° 20 – 500 ° haften bezüglich Verarbnen Abkühlen an Luft och n 450 °C – 850 °C verm n die folgenden Werte filt Rp0,2 Rm As HB	C 18,0 C 18,0 eitung und Ver der Wasser. Wä nieden werden, ür die mechanis Norm längs 1 – 160 ≥ 175 500 – 700 ≥ 45 ≤ 215 ≥ 100	ährend der Herste um die Gefahr ei schen Eigenschaf quer 16 – 250 ≥ 175 500 – 700 ≥ 35 ≤ 215 ≥ 60	Ilung und der V ner Versprödur ten (in Längsrid Typische W längs 1 – 20* 340 630 51	Veiterverarbeitung möglichst geschtung): Verte (ca.) 21 – 80 340 630 51	ing muss der ring zu halten. In > 80 345 650 48
	anschließendem rasch Temperaturbereich vo diesem Zustand gelter Streckgrenze (MPa) Zugfestigkeit (MPa) Bruchdehnung (%) Härte Kerbschlagarbeit (J) 25 °C	20 – 400 ° 20 – 500 ° haften bezüglich Verarbnen Abkühlen an Luft och n 450 °C – 850 °C verm n die folgenden Werte filt Rp0,2 Rm As HB	C 18,0 C 18,0 C 18,0 eitung und Ver der Wasser. Wä nieden werden, ür die mechanis Norm längs 1 − 160 ≥ 175 500 − 700 ≥ 45 ≤ 215 ≥ 100 erfestigten Zus	dirend der Herste um die Gefahr ei schen Eigenschaf quer 16 – 250 ≥ 175 500 – 700 ≥ 35 ≤ 215 ≥ 60	Ilung und der V ner Versprödur ten (in Längsrid Typische W längs 1 – 20* 340 630 51 195	Veiterverarbeitung möglichst geschtung): Verte (ca.) 21 – 80 340 630 51 195	ing muss der ring zu halten. In > 80 345 650 48 200

Die Richtigkeit kann nicht garantiert werden.