Want more Updates: https://www.facebook.com/tanbir.ebooks

অটোমেটিক স্ক্রলের মাধ্যমে ই-বুক পড়া / রিড়ের জন্যঃ

আপনার ই-বুক বা pdf রিডারের Menu Bar এর View অপশনটি তে ক্লিক করে Auto /Automatically Scroll অপশনটি সিলেন্ট করুন (অথবা সরাসরি যেতে ⇒ Ctrl + Shift + H)। এবার ↑ up Arrow বা ↓ down Arrow তে ক্লিক করে আপনার পড়ার সুবিধা অনুসারে স্কুল স্পীড ঠিক করে নিন।

সরাসরি যেতে অধ্যায়ের নামের উপর ক্লিক করুনঃ

- 1. স্থির তড়িৎ (Electrostatics or Static Electricity)
- 2. তড়িৎ প্রবাহ ও বর্তনী (Electric Current and Circuit)
- 3. তড়িৎ প্রবাহের তাপীয় ও রাসায়নিক ক্রিয়া (Heating & Chemical Effect of Electric Current)
- 4. তড়িৎ প্রবাহের চৌম্বক ক্রিয়া (Magnetic Effect of Electric Current)
- 5. চৌম্বক পদার্থ ও ভূ-চুম্বকত্ব (Magnetic Material & Terrestrial Magnetism)
- 6. তড়িৎ চৌম্বক আবেশ ও দিকপরিবর্তী প্রবাহ(Electromagnetic Induction and Alternating Current)
- 7. তড়িৎ চুম্বকীয় তরঙ্গ (Electromagnetic Wave)
- 8. আলোর প্রতিফলন (Reflection Of Light)
- 9. আলোর প্রতিসরণ (Refraction Of Light)
- 10.আলোক যন্ত্ৰ (Optical Instrument)
- 11.আলোর তরঙ্গ তত্ত্ব (Wave Theory Of Light)
- 12.ইলেকট্রন ও ফোটন (Electron And Photon)
- 13.পরমাণু ; (Atom)
- 14.ইলেকট্রনিক (Electronics)
- 15.আপেক্ষিক তত্ত্ব ও জ্যোতিপদার্থবিদ্যা(Theory Of Relativity And Astro Physics)

facebook /gmail/skype: -tanbir.cox

Web: http://tanbircox.blogspot.com

Want more Updates: https://www.facebook.com/tanbir.ebooks

তড়িং (Electricity): খ্রিস্টপূর্ব 600 অব্দে গ্রীক দার্শনিক থেলস্ (Thales) লক্ষ্য করেন যে, অ্যাম্বারকে রেশমী কাপড় দ্বারা ঘর্ষন করলে তার মধ্যে একটি অদৃশ্য শক্তির উদ্ভব হয় এবং অম্বার আকর্ষণ গুণ প্রাপ্ত হয়। ফলে তা ছোট ছোট কাগজের টুকরা আকর্ষণ করে। এ অদৃশ্য শক্তিকে বিদ্যুৎ বা তড়িৎ বলে।

চার্জের সংজ্ঞা: যার উপস্থিতিতে কোন বস্তুতে স্থির বিদ্যুৎ, বৈদ্যুতিক ক্ষেত্র, স্থির বিদ্যুৎ শক্তির সঞ্চার হয় ও যখন বস্তুটি কাগজের টুকরার মত ছোট ছোট হালকা টুকরা আকর্ষণ করার সমর্থ রাখে ও যার গতিতে বিদ্যুৎ প্রবাহ, বৈদ্যুতিক ক্ষেত্র ও চৌম্বক ক্ষেত্রের উদ্ভব হয় তাকে চার্জ বলে। চার্জ দুই প্রকার যথাঃ ১। ধনাতাক চার্জ ২। ঋনাতাক চার্জ, চার্জের এক কুলম্ব।

কুলম্ব: কোন পরিবাহকের মধ্যদিয়ে 1 অ্যম্পিয়ার তড়িৎ প্রবাহ 1 সেকেন্ড চললে, এর যে কোন প্রস্থচ্ছেদ দিয়ে যে পরিমান চার্জ প্রবাহিত হয় তাকে 1 কুলম্ব চার্জ বলে।

বিদ্যুতের প্রকারভেদ (Types of electricity): বিদ্যুৎ দুই প্রকার যথা –

- (১) স্থির বিদ্যুৎ (Electrostatic or Static Electricity) ও
- (২) চল বিদ্যুৎ (Electrodynamics or Current Electricity)
- (১) স্থির বিদ্যুৎ: ঘর্ষনের ফলে যে বিদ্যুৎ উৎপন্ন হয়ে উৎপত্তি স্থলে থেকে যায় সেই বিদ্যুৎকে স্থির বিদ্যুৎ বলে।
- (২) **চল বিদ্যুৎ**: যখন চার্জ পরিবাহীর মধ্যদিয়ে অনবরত চলতে থাকে তখন তাকে চল বিদ্যুৎ বলে।

চার্জের প্রকৃতি (Kinds of Charge): চার্জ দুই প্রকার যথা-

(১) ধনাত্মক চার্জ (Positive Charge)ও (২) ঋনাত্মক চার্জ (Negative Charge)

<u>চার্জের ক্রিয়া বা ধর্ম (Action of Charge or Principles of Charge)</u>: সমধর্মী চার্জ পরস্পরকে বিকর্ষণ করে ও বিপরীত ধর্মী চার্জ পরস্পরকে আকর্ষণ করে। এ ছাড়াও চার্জিত বস্তু অচার্জিত বস্তুকেও আকর্ষণ করে।

বিদ্যুতের ইলেকট্রন মতবাদ (Modern Theory Or Electron Theory Of Electricity): এ মতবাদ অনুসারে প্রত্যেক পদার্থই অতি ক্ষুদ্র ক্ষ্মণ কণা দ্বারা গঠিত। এদের নাম পরমাণু (Atom)। প্রাচীন কালে বিজ্ঞানীদের ধারণা ছিল পরমাণু অবিভাজ্য। কিন্তু বোর, রাদারফোর্ড প্রমুখ বিজ্ঞানী প্রমান করেন যে, পরমাণুকে বিভক্ত করা যায়। কোন পদার্থের সকল পরমাণু সদৃশ, কিন্তু বিভিন্ন পদার্থের পরমানু বিভিন্ন। হাইড্রজেন ছাড়া প্রত্যেকটি পদার্থের পরমানু তিনটি কণিকা দ্বারা গঠিত। এ কণিকা তিনটির নাম ইলেকট্রন (Electron), প্রটোন (Proton), এবং নিউট্রন (Neutron)।

পরমানুর কেন্দ্রের নাম নিউক্লিয়াস। নিউক্লিয়াস প্রোটন ও নিউট্রন কণা দ্বারা গঠিত। প্রোটন ধন চার্জ বহন করে ও নিউট্রনে কোন চার্জ নেইন সুতরাং নিউক্লিয়াস ধনচার্জ বিশিষ্ট। প্রোটনের ভর হাইড্রোজেনের ভরের সমান। সূর্যের চারিদিকে নির্দিষ্ট কক্ষপথে যেমন গ্রহগুলো ঘুরে তেমনি নিউক্লিয়াসের চারিদিকে বিভিন্ন কক্ষে (Orbit) ইলেকট্রন বিভিন্ন দূরত্বে অবস্থান করে ঘুরে।

প্রত্যেক ইলেকট্রন ঋণ চার্জ বহন করে। একটি ইলেকট্রন বা একটি প্রোটনের চার্জই নূনতম চার্জ। একটি ইলেকট্রন বা একটি প্রোটনের চার্জের পরিমান = $1.6 \times 10^{-19} C$ । একটি ইলেকট্রনের

সোডিয়াম

ভর = $9.1 \times 10^{-31}~kg$ । বিভিন্ন মৌলের পরমাণুতে ইলেকট্রনের সংখ্যা বিভিন্ন। একই মৌলের পরমাণুতে ইলেকট্রন ও প্রাটনের সংখ্যা সমান। এর ফলে স্বাভাবিক অবস্থায় যে কোন পরমাণু চার্জ নিরপেক্ষ কারণ সমান সংখ্যক বিপরীত ধর্মী ইলেকট্রন ও প্রোটন পরস্পরের তড়িৎ ক্রিয়াকে প্রশমিত করে।

কোনও উপায়ে একটি পরমাণুর প্রোটন ও ইলেকট্রনের মধ্যে বৈষম্য সৃষ্টি করতে পারলে এতে এক জাতীয় কণিকার আধিক্য ঘটে। এ ক্ষেত্রে পরমানুটি চার্জিত হয়েছে বলা হয়। কোন পর মানুতে ইলেকট্রনের ঘাটতি হলে প্রোটনের আধিক্যের জন্য পরমাণুটি ধনাত্মক চার্জে চার্জিত হবে। আর পরমাণুতে ইলেকট্রনের আধিক্য ঘটলে ঋণাত্মক চার্জে চার্জিত হবে।

কোন পদার্থের পরমাণুতে প্রোটনগুলোর আকর্ষণে ইলেকট্রনগুলো পরমাণুর মধ্যে আবদ্ধ থাকে। বিভিন্ন পদার্থের পরমাণুতে

facebook /gmail/skype: -tanbir.cox

এই আকর্ষণ বলের পরিমান বিভিন্ন। দুটি পদার্থ যখন একত্রে ঘর্ষণ করা হয় তখন পদার্থ দুটির মধ্যে যার মধ্যে ইলেকট্রনের বন্ধন অপেক্ষাকৃত শিথিল তা থেকে কিছু ইলেকট্রন বিচ্ছিন্ন হয়ে অপরটিতে চলে যায়। এর ফলে যে বস্তু থেকে ইলেকট্রন বিচ্ছিন্ন হয় সেই বস্তুটিতে ইলেকট্রনের সংখ্যা কমে যাওয়ায় তা ধনাত্মক চার্জে চার্জিত হয় এবং অন্য বস্তুটিতে ইলেকট্রনের আধিক্য হওয়ায় এটি ঋনাত্মক চার্জে চার্জিত হয়। পদার্থের চার্জিতকরণের উপরোক্ত মতবাদকে তড়িতের ইলেকট্রনীয় মতবাদ বলে।

<u>চার্জ কোয়ান্টায়িত (Charge is Quantized)</u>: চার্জ নিরবিচ্ছিন্ন নয়। একটি ন্যূনতম মানের পূর্ণ সংখ্যক গুনিতক। এ ন্যূনতম চার্জ হচ্ছে একটি ইলেকট্রন বা একটি প্রোটনের চার্জ এবং এর মান 1.6×10^{-19} Coulomb। এ চার্জকে যদি e দ্বারা প্রকাশ করা হয় তবে কোন বস্তুর মোট চার্জ, q=ne লেখা যায়। এখানে n হচ্ছে একটি পূর্ণ সংখ্যা। কোন বস্তুতে চার্জের মান নিরবিচ্ছন্ন নয় অর্থাৎ চার্জ কোয়ান্টায়িত।

তড়িং মাধ্যম (Electric Medium): চার্জ বা তড়িং চলাচলের উপর ভিত্তি করে সকল মাধ্যমকে তিনটি শ্রেণীতে বিভক্ত করা হয়।

(ক) পরিবাহী (Conductor): যে-সব পদার্থের মধ্যদিয়ে তড়িং সহজেই চলাচল করতে পারে, তাদেরকে পরিবাহী বলে। যেমন-ধাতব পদার্থ, মানবদেহ, মাটি, এসিড, পারদ ইত্যাদি।

- <u>(খ) অর্ধপরিবাহী (Semiconductor)</u>: যে-সব পদার্থের মধ্যদিয়ে তড়িৎ আংশিক চলাচল করতে পারে তাদেরকে অর্ধ পরিবাহী বলে। যেমন- সিলিকন, জার্মেনিয়াম, কার্বন ইত্যাদি।
- <u>(গ) অন্তরক বা অপরিবাহী (Insulator or Non-conductor)</u>: যে-সব পুদার্থের মধ্যদিয়ে তড়িৎ কোন অবস্থায় চলাচল করতে পারে না, তাদেরকে অন্তরক বা অপরিবাহী বলে। যেমন- কাচ, রাবার, ইরোনাইট ইত্যাদি।

তড়িৎবিক্ষন যন্ত্র (Electroscope): যে যন্ত্রের সাহায্যে চার্জের উপস্থিতি, প্রকৃতি এবং পরিমান পরিমাপ করা যায় তাকে তড়িৎবিক্ষন যন্ত্র বলে। তড়িৎবিক্ষন যন্ত্র দুই প্রকার যথা- (১) পিথ বল তড়িৎবিক্ষন যন্ত্র ও (২) স্বর্ণপাত তড়িৎবিক্ষন যন্ত্র।

স্বৰ্ণপাত তড়িৎবিক্ষন যন্ত্ৰ (Gold Leaf Electroscope):

<u>গঠন:</u> স্বর্ণপাত তড়িৎবিক্ষন যন্ত্রে ধাতব দন্ডের উপর একটি ধাতব চাকতি D এবং ধাতব দন্ডের নিচের প্রান্তে দুটি হালকা স্বর্ণপাত (L,L) সংযুক্ত থাকে। পাত দুটি স্বর্ণের পরিবর্তে অন্য যে কোন ধাতুর হতে পারে। ধাতব চাকতিটিকে বাইরে রেখে স্বর্ণের পাতসহ দন্ডের নিচের অংশ অপরিবাহী পদার্থের ছিপি C এর মধ্যদিয়ে একটি কাচ পাত্রের মধ্যে প্রবেশ করানো থাকে। কাচপাত্রটি সোনার পাত দুটিকে ধুলাবালি ও বায়ু প্রবাহের হাত থেকে রক্ষা করে। সোনার পাত দুটির পাশে কাচপাত্রের গায়ে ভিতরের ও বাইরের পাশে একটি করে টিনের পাত লাগানো থাকে। এতে যন্ত্রের সুবিদিতা বাড়ে। পাত্রের মধ্যে বায়ুকে শুষ্ক রাখার জন্য পানি শোষক পদার্থ $CaCl_2$ রাখা হয়।

কার্যপ্রণালী:

<u>চার্জের অস্তিত্ব নির্ণয়</u> কোন বস্তুতে চার্জ আছে কিনা তা পরীক্ষা করার জন্য পরীক্ষাধীন বস্তুকে একটি অন্তরিত হাতলের সাহায্যে অচার্জিত স্বর্ণপাত যন্ত্রের চাকতির নিকট ধরলে যদি তড়িৎবিক্ষন যন্ত্রের সোনার পাতদ্বয় ফাঁক হয়ে যায় তবে বুঝতে হবে বস্তুটিতে চার্জ আছে আর যদি ফাঁক না হয় তবে বুঝতে হবে বস্তুটিতে চার্জ নাই।

চার্জের প্রকৃতি নির্ণয়ঃ প্রথমে একটি স্বর্ণপাত তড়িৎবিক্ষণ যন্ত্রকে ধনচার্জ বা ঋনচার্জে চার্জিত করা হয়। এরপর পরীক্ষাধীন বস্তুটিকে একটি অন্তরিত হাতলের সাহায্যে ধীরে ধীরে তড়িৎবিক্ষন যন্ত্রের পাকতির নিকট আনা হয়। যদি সোনার পাত দ্বয়ের ফাঁক বৃদ্ধিপায় তবে বুঝতে হবে পরীক্ষাধীন বস্তু ও তড়িৎবিক্ষণ যন্ত্র সম চার্জ চার্জিত আর পাত দুটির ফাঁক যদি কমে যায় তবে বুঝতে হবে পরীক্ষাধীন বস্তুটি তড়িৎবিক্ষন যন্ত্রের বিপরীতধর্মী চার্ঝে চার্জিত।

facebook /gmail/skype: -tanbir.cox

Web: http://tanbircox.blogspot.com

চার্জের পরিমান নির্ণয়ঃ পরীক্ষাধীন বস্তুটিকে একটি অন্তরিত হাতলের সাহায্যে অচার্জিত স্বর্ণপাত তড়িৎবিক্ষন যন্ত্রের চাকতির নিকট আনা হয়। তড়িৎবিক্ষন যন্ত্রের পাত দুটির বিচ্যুতি পরীক্ষাধীন বস্তুর চার্জের সমানুপাতিক। সুতরাং সোনার পাত দ্বয়ের ফাঁক বেশী হলে বুঝতে হবে বস্তুটিতে চার্জের পরিমান বেশী আর ফাঁক কম হলে বুঝতে হবে বস্তুটিতে চার্জের পরিমান কম।

তড়িৎ আবেশ: কোন চার্জিত বস্তুর নিকট অচার্জিত বস্তু রাখলে চার্জিত বস্তুর প্রভাবে অচার্জিত বস্তুটি সাময়িক ভাবে চার্জে পরিনত করার পদ্ধতিকে তড়িৎ আবেশ বলে।
ব্যখ্যা: একটি কাচ দন্ড C কে রেশম দিয়ে ভাল করে ঘষে ধনাত্মক ভাবে চার্জিত

করা হয়। অতঃপর একে অন্তরিত হাতলের সাহায্যে ধরে একটি পরিবাহী দন্ড AB এর নিকট আনা হয়। এতে দন্ডের A প্রান্তে বদ্ধ ঋনচার্জ ও B প্রান্তে মুক্ত ধন চার্জ আবিষ্ট হয়। C দন্ডের চার্জকে আবেশী চার্জ এবং A বা B বিন্দুর চার্জকে আবিষ্ট চার্জ বলে।

বদ্ধ চার্জ ও মুক্তচার্জ: আবিষ্ট পরিবাহকের যে প্রান্ত আবেশী পরিবাহকের নিকটে থাকে (উপরোক্ত চিত্রে A প্রান্ত) সেই প্রান্তে যে চার্জের সৃষ্টি হয় তাকে বদ্ধ চার্জ বলে। এ চার্জের প্রকৃতি আবেশী চার্জের বিপরীত হওয়ায়, এরা আবেশী চার্জের আকর্ষণের প্রভাবে স্থান ত্যাগ করতে পারে না তাই এরা বদ্ধ চার্জ। কিন্তু আবিষ্ট পরিবাহকের B প্রান্তের চার্জ আবেশী চার্জের সমধর্মী হওয়ায় বিকর্ষণ অনুভব করায় এরা যতদূর সম্ভব দূরে সরে যেতে পারে। এ চার্জের উপর অন্য কোন চার্জের আকর্ষন থাকেনা বলে এদরকে মুক্ত চার্জ বলে।

<u>ঘর্ষনের ফলে সম পরিমান বিপরীত চার্জ উৎপন্ন হয়:</u> একটি শুদ্ধ কাচদন্ডের মাথায় একটি রেশমের টুপি পরানো হয় এবং টুপির সাথে একটি রেশমী সুতা আটকানো হয় যাতে হাতের স্পর্শ ছাড়াই টুপিকে দন্ড হতে খুলে ফেলা যায়।

এবার রেশমের টুপি দিয়ে কাচ দশুকে ঘষলে চার্জ উৎপন্ন হবে। টুপিসহ কাচ দশুকে অচার্জিত স্বর্ণপাত তড়িৎবিক্ষন যন্ত্রের চাকতির নিকট ধরলে স্বর্ণ পাতদ্বয় ফাঁক হয় না। অর্থাৎ দশু ও টুপির মোট চার্জ শূন্য।

এবার সুতার সাহায্যে টুপিকে পৃথক করে উভয়কে বিদ্যুৎবিক্ষান যন্ত্রের সাহায্যে পরীক্ষা করলে দেখা যাবে যে, দন্তে ধনাত্মক চার্জ ও টুপিতে ঋনাত্মক চার্জ সৃষ্টি হয়েছে। এ দুটিতে সমান ও বিপরীত চার্জ থাকার কারণে একত্রিত অবস্থায় পরস্পরের চার্জকে নাকচ করে দেয় ফলে যন্ত্রে কোন প্রভাব দেখা যায় না। এ ঘটনা দ্বারা প্রমাণিত হয় যে, ঘর্ষনের ফলে সম পরিমান বিপরীত চার্জ উৎপন্ন হয়।

আবেশ প্রকৃয়ায় স্বর্ণপাত তড়িৎবিক্ষন যন্ত্রকে ধনাত্মক চার্জে চার্জিত করণ:

(১)স্বর্ণপাত তড়িৎবিক্ষণ যন্ত্রকে ধনাত্মক চীর্জে চার্জিত করার জন্য প্রথমে একটি শুষ্ক ইবোনাইট দন্ড A -কে শুষ্ক ফ্লানেলের টুকরো দিয়ে ঘষে দন্ডটিকে ঋণাত্মক চার্জে চার্জিত করা হয়। এবার ঐ চার্জিত ইবোনাইট দন্ডটিকে পরীক্ষাধীন তড়িৎবিক্ষন যন্ত্রের চাকতি D এর নিকট আনা হয় যেন দন্ডটি চাকতিকে স্পর্শ না করে (চিত্র-ক)। আবেশ প্রক্রিয়ায় চাকতিতে বদ্ধ ধন চার্জ এবং স্বর্ণপাত দুটিতে মুক্ত ঋণচার্জ উৎপন্ন হবে। পাত দ্বয়ে সমজাতীয় ঋণচার্জের সঞ্চার হওয়ায় উভয়ের মধ্যে বিকর্ষণের জন্য স্বর্ণপাত দুটি ফাঁক হবে। স্বর্ণপাতের ঋণাত্মক চার্জের প্রভাবে যন্ত্রের ভিতরের টিনের পাতে ধনাত্মক চার্জ উৎপন্ন হবে এতে স্বর্ণপাতের ফাঁক আরো বৃদ্ধি পাবে।

(২) এর পর A -কে স্ব -স্থানে রেখে তড়িৎবিক্ষন যন্ত্রের চাকতিকে অল্প সময়ের জন্য হাত দ্বারা স্পর্শ করলে বা ভূ-সংযুক্ত করলে পাতদ্বয়ের মুক্ত চার্জ মাটিতে চলে যাবে এবং চার্জহীন হবার জন্য স্বর্ণপাত দ্বয় পরপরস্পরের গায়ে লেগে যাবে (চিত্র-খ)।

facebook /gmail/skype: -tanbir.cox

Web: http://tanbircox.blogspot.com

- 4
- (৩) এবার দন্ড A কে স্ব স্থানে রেখে ভূ-সংযোগ বিচ্ছিন্ন করা হয় (চিত্র-গ)। এতে চাকতির ধন চার্জগুলো A দন্ডের ঋণচার্জের আকর্ষণে চাকতিতে অবস্থান করবে।
- (৪) পরিশেষে ইবোনাইট দন্ড A -কে চাকতির নিকট হতে সরিয়ে নিলে চাকতির ধন চার্জগুলো নিজেদের মধ্যে দন্ড পর্যন্ত ছড়িয়ে পড়বে। এতে ধনাত্মক চার্জে চার্জিত স্বর্ণপাতদ্বয় পরস্পরকে বিকর্ষণ করায় স্বর্ণপাতদ্বয়ের মধ্যে ফাঁকের সৃষ্টি হবে(চিত্র-ঘ)। এভাবে আবেশ প্রকৃয়ায় স্বর্ণপাত তড়িৎবিক্ষন যন্ত্রকে ধনাত্মক চার্জে চার্জিত করা হয়।

আবেশ প্রক্য়ায় স্বর্ণপাত তড়িৎবিক্ষন যন্ত্রকে ঋণাত্মক চার্জে চার্জিত করণ: (১) স্বর্ণপাত তড়িৎবিক্ষণ যন্ত্রকে ধনাত্মক চার্জে চার্জিত করার জন্য প্রথমে একটি শুষ্ক কাচ দন্ত A -কে শুষ্ক রেশমি কাপড় দিয়ে ঘষে দন্তটিকে ধনাত্মক চার্জে চার্জিত করা হয়। এবার ঐ চার্জিত কাচ দন্তটিকে পরীক্ষাধীন তড়িৎবিক্ষন যন্ত্রের চাকতি D এর নিকট আনা হয় যেন দন্তটি চাকতিকে স্পর্শ না করে (চিত্র-ক)। আবেশ প্রক্রিয়ায় চাকতিতে বদ্ধ ঋণ চার্জ এবং স্বর্ণপাত দুটিতে মুক্ত ধনচার্জ উৎপন্ন হবে। পাত দ্বয়ে সমজাতীয় ধনচার্জের সঞ্চার হওয়ায় উভয়ের মধ্যে বিকর্ষণের জন্য স্বর্ণপাতে দুটি ফাঁক হবে। স্বর্ণপাতের ধনাত্মক চার্জের প্রভাবে যন্ত্রের ভিতরের টিনের পাতে ঋণাত্মক চার্জ উৎপন্ন হবে এতে স্বর্ণপাতের ফাঁক আরো বৃদ্ধি পাবে।

- (২) এর পর A -কে স্ব -স্থানে রেখে তড়িৎবিক্ষন যন্ত্রের চাকতিকে অল্প সময়ের জন্য হাত দ্বারা স্পর্শ করলে বা ভূ-সংযুক্ত করলে পাতদ্বয়ের মুক্ত ধনাত্মক চার্জকে মাটি থেকে ঋণাত্মক চার্জ এসে প্রশমিত করবে। চার্জহীন হবার জন্য স্বর্ণপাত দ্বয় পরপরস্পরের গায়ে লেগে যাবে (চিত্র-খ)।
- (৩) এবার দন্ড A কে স্ব স্থানে রেখে ভূ-সংযোগ বিচ্ছিন্ন কর হয় (চিত্র-গ)। এতে চাকতির ঋণ চার্জগুলো A দন্ডের ধন চার্জের আকর্ষণে চাকতিতে অবস্থান করবে।
- (৪) পরিশেষে কাচ দন্ড A -কে চাকতির নিকট হতে সরিয়ে নিলে চাকতির ঋণ চার্জগুলো নিজেদের মধ্যে দন্ড পর্যন্ত ছড়িয়ে পড়বে। এতে ঋণাত্মক চার্জে চার্জিত স্বর্ণপাতদ্বয় পরস্পরকে বিকর্ষণ করায় স্বর্ণপাতদ্বয়ের মধ্যে ফাঁকের সৃষ্টি হবে(চিত্র-ঘ)। এভাবে আবেশ প্রকৃয়ায় স্বর্ণপাত তড়িৎবিক্ষন যন্ত্রকে ঋণাত্মক চার্জে চার্জিত করা হয়।

বিকর্ষণই তড়িংগ্রস্থতার নিশ্চিততর প্রমণি: একটি চার্জিত বস্তু অপর অচার্জিত বস্তুকে অকর্ষণ করে। আবার একটি বিপরীত ধর্মী চার্জে চার্জিত বস্তুকেও আকর্ষণ করে। সুতরাং আকর্ষণ দারা দিতীয় বস্তুটি চার্জিত কি অচার্জিত তা ঝো যায় না। কিন্তু সমধর্মী চার্জে চার্জিত দুটি বস্তু পরস্পরকে বিকর্ষণ করে। একটি চার্জিত ও অপর একটি অচার্জিত বস্তুর মধ্যে কখনও বিকর্ষণ পরিলক্ষিত হয় না। কাজেই বস্তুদ্বয়ের মধ্যে বিকর্ষণ বল পরিলক্ষিত হলে নিশ্চিত ভাবেই বলা যায় যে, বস্তুদ্বয় সমধর্মী চার্জে চার্জিত। ইহাই বিকর্ষণই তড়িংগ্রস্থতার নিশ্চিততর প্রমাণ।

চার্জের ক্ষেত্রে কুলম্বের সূত্র: কোন মাধ্যমে দুটি বিন্দুচার্জের মধ্যবর্তী আকর্ষণ বা বিকর্ষণ বলের মান চার্জন্বয়ের পরিমানের গুনফলের সমানুপাতিক এবং এদর মধ্যবর্তী দূরত্বের বর্গের ব্যাস্তানুপাতিক এবং এই বল চার্জ দ্বয়ের সংযোজক সরলরেখা বরাবর ক্রিয়া করে।

ব্যাখ্যা: মনে করি কোন মাধ্যমে A ও B দুটি বিন্দু চার্জ রয়েছে। চার্জ দ্বয়ের পরিমান যথাক্রমে Q_1 ও Q_2 এবং এদের মর্ধবর্তী দূরত্ব r। চার্জদ্বয়ের পারস্পরিক আকর্ষণ বল F হলে, কুলম্বের সূত্রানুসারে ক্রিয়াশীল বল $F \propto Q_1Q_2$ যখন r স্থির থাকে।

 $F \propto rac{1}{r^2}$ যখন $\mathrm{Q}_1,\,\mathrm{Q}_2$ স্থির থাকে। একত্র করে পাই,

$$F \propto rac{Q_1 Q_2}{r^2}$$
 যখন প্রতিটি রাশি পরিবর্তন শীল।

$$\Rightarrow F = C rac{Q_1 Q_2}{r^2}$$
 এখানে C একটি সমানুপাতিক ধ্রুবক। এই ধ্রুবকের মান সংশ্লিষ্ট

মাধ্যমের প্রকৃতি ও পরিমাপের এককের পদ্ধতির উপর নির্ভর করে। শূন্য মাধ্যমে এবং SI এককে $C=rac{1}{4\pi \ \epsilon}$ লেখা যায় এখানে, \in_0 - কে শূন্য মাধ্যমের ভেদনযোগ্যতা বলে । \in_0 এর মান $8.854 \times 10^{-12} C^2 N^{-1} m^{-2}$ । অর্থাৎ শূন্য মাধ্যমে ${
m SI}$ এককে কুলম্বের সূত্রের রূপ হল, $F = \frac{1}{4\pi} \frac{Q_1 Q_2}{r^2}$ এখানে, $\frac{1}{4\pi} = 9 \times 10^9 \, Nm^2 C^{-2}$ । শূন্য মাধ্যম ছাড়া Kপরাবৈদুতিক ধ্রুবক বিশিষ্ট অন্য মাধ্যমে কুলম্বের সূত্রের রূপ হবে, $F=rac{1}{4\pi \in K} \; rac{\mathcal{Q}_1\mathcal{Q}_2}{r^2}$

চার্জের একক: চার্জের SI এককের নাম কুলম্ব।

কুলম্ব: দুটি সমান ও সমধর্মী বিন্দুচার্জ শূন্য মাধ্যমে 1 মিটার দূরত্বে থেকে যদি এক অপ্রেকে 9×10^9 নিউটন বলে বিকর্ষণ করে তবে চার্জদ্বয়ের প্রত্যেকটিকে 1 কুলম্ব চার্জ বলে।

<u>তড়িৎক্ষেত্র:</u> একটি চার্জের চারপাশে যে স্থান ব্যাপিয়া ঐ চার্জটি প্রভাব বিস্তার করে তাকে ঐ চার্জের তড়িৎক্ষেত্র বলে।

তড়িৎক্ষেত্রের প্রাবল্য বা তীব্রতা: তড়িৎক্ষেত্রের কোন বিন্দুতে একটি একক ধন চার্জ স্থাপন করলে এটা যে বল অনুভব করে. তাকে ঐ ক্ষেত্রের উক্ত বিন্দুর তড়িৎ প্রাবল্য বলে। তড়িৎ ক্ষেত্র প্রাবল্যকৈ E দিয়ে প্রকাশ করা হয়।

Q পরিমান চার্জ তড়িৎক্ষেত্রের অভ্যন্তরে F বল অনুভব করলে উক্ত বিন্দুর তড়িৎ প্রাবল্যের মান হবে, $E=rac{F}{O}$ NC^{-1} ৷ তড়িৎক্ষেত্রের কোন বিন্দুর প্রাবল্য $2\times10^5NC^{-1}$ বুলুতে এই বুঝি যে, উক্ত বিন্দুতে 1C ধন চার্জ রাখলে এটা 2×10^5N বল অনুভব করে।

বিন্দু চার্জের জন্য তড়িৎক্ষেত্রের কোন বিন্দুর প্রবিল্যের রাশিমালা নির্ণয়: মনে করি K পরাবৈদ্যুতিক প্রুবক বিশিষ্ট কোন মাধ্যমে Aবিন্দুতে +q পরিমান চার্জ রয়েছে। A হতে χ দূরতে কোন বিন্দু P -এর তড়িৎ প্রাবল্য E নির্ণয় করতে হবে। P বিন্দুতে একক ধন চার্জের উপর ক্রিয়াশীল বলই উক্ত চার্জের জন্য ঐ বিন্দুর বৈদ্যুতিক প্রাবল্য।

$$E = \frac{1}{4\pi \in_0 K} \quad \frac{q \times 1}{r^2} = \frac{1}{4\pi \in_0 K} \quad \frac{q}{r^2}$$

 $E=rac{1}{4\pi \in_0 K} rac{q \times 1}{r^2} = rac{1}{4\pi \in_0 K} rac{q}{r^2}$ বায়ু মাধ্যমে K=I হলে প্রাবল্যের রাশি হবে, $E=rac{1}{4\pi \in_0} rac{q}{r^2}$ বৈদ্যুতিক প্রাবল্য একটি ভেক্টর রাশি। কারণ প্রাবল্যের মান ও দিক আছে। একক ধন চার্জ যে অভিমুখে বল অনুভব করে তা হবে ঐ বিন্দুতে প্রাবল্যের অভিমুখ।

এখন ঐ বিন্দুতে একক ধন চার্জের পরিবর্তে q_0 চার্জ স্থাপন করলে ক্রিয়াশীল বল $F=rac{1}{4\pi}$ $=rac{q imes q_0}{r^2}$ হবে। ফলে,

$$F=E\mathbf{q}_0$$
 অর্থাৎ, প্রাবল্য, $E=rac{F}{q_0}$

বিভব: অসীম দূরত্ব হতে একক ধনাত্মক চার্জকে তড়িৎ ক্ষেত্রের কোন বিন্দুতে আনতে যে পরিমান কাজ করতে হয় তাকে ঐ বিন্দুর তড়িৎ বিভব বলে। ধরা যাক, অসীম দূরত্ব হতে +q পরিমান চার্জ তড়িৎক্ষেত্রের কোন বিন্দুতে আনতে সম্পন্ন কাজের পরিমান W, সংজ্ঞানুসারে, ঐ বিন্দুর বিভব , $V=\frac{W}{a}$ বিভবের একক ভোল্ট। বিভবকে V দ্বারা প্রকাশ করা হয়।

বিভব হলো স্কেলার রাশি।

ভোলাটি: অসীম দূরত্ব হতে 1 কুলম্ব চার্জকে বৈদ্যুতিক কোন বিন্দুতে আনতে যদি 1 জুল কাজ হয় তাবে ঐ বিন্দুর বিভবকে 1 ভোলাটি বিভব বলে। কোন বিন্দুর বিভব 20 ভোলাটি বলতে এই বুঝি যে, অসীম দূরত্ব হতে 1 কুলম্ব চার্জকে বৈদ্যুতিক ক্ষেত্রের ঐ বিন্দুতে আনতে যদি 20 জুল কাজ সম্পাদিত হয়।

+q চার্জ থেকে r দূরত্বে বিভবের রাশি মালা নির্ণয়: মনে করি, K তড়িৎমাধ্যমাংক বিশিষ্ট কোন মাধ্যমের P বিন্দুতে একটি ক্ষুদ্র চার্জ +q অবস্থিত। P বিন্দুতে ক্ষুদ্র চার্জ +q এর জন্য সৃষ্ট তড়িৎ ক্ষেত্রে P হতে r দূরত্বে Q বিন্দুতে বিভব V নির্ণয় করতে হবে। PQ যোগ করে R পর্যন্ত বর্ধিত করা হল।

ধরা যাক, Q বিন্দুতে একটি এক একক ধনাত্বক চার্জ স্থাপন করা হলো। P বিন্দুতে +q চার্জের জন্য Q বিন্দুতে একক ধনাত্মক চার্জের উপর প্রযুক্ত বল অর্থাৎ তড়িৎ প্রাবল্য E হলে, $E=\frac{1}{4\pi \in _0} \frac{q}{r^2}$, QR বরাবর ক্রিয়া করবে। এখন Q বিন্দুর

একক চার্জকে বিন্দুর P দিকে QP বরাবর খুব ক্ষুদ্র দূরত্ব dr পরিমান সরিয়ে S বিন্দুতে আনতে কৃত কাজ, S ও Q বিন্দুর বিভব পার্থক্য dV এর সমান। সুতরাং dV= একক ধনাত্মক চার্জের উপর ক্রিয়াশীল বলু imes বলের দিকে সরণের উপাংশ।

বা, $dV = E \times dr \cos 180^\circ$ [বল ও সরণ পরস্পর বিপরীতমুখী বলে এদের অর্ভভূক্ত কোণ 180°] বা, dV = -E dr

 $\therefore dV = -\frac{1}{4\pi \in K} \frac{q}{r^2} dr$ এখন অসীম দূরত $r = \infty$ থেকে r = r পর্যন্ত সীমার মধ্যে উপরোক্ত সমীকরণকে

সমাকলন করে পাই, $\int_0^V dV = -\int_{-\infty}^{r} \frac{1}{4\pi \in_0 K} \frac{q}{r^2} dr$

$$\Rightarrow \left[dV \right]_0^V = -\frac{q}{4\pi \in K} \int_{\Gamma^2}^{\Gamma^2} dr$$

$$\Rightarrow V - 0 = -\frac{q}{4\pi \epsilon_0 K} \int_{\infty}^{r} r^{-2} dr$$

$$\Rightarrow V = -\frac{9}{4\pi \epsilon_0 K} \left[\frac{r^{-2+1}}{-1} \right]_{r}^{r}$$

$$\Rightarrow V = \frac{q}{4\pi \in K} \left[\mathbf{r}^{-1} \right]_{\infty}^{r}$$

$$\Rightarrow V = \frac{q}{4\pi \in_0 K} \left[\frac{1}{r} \right]_{\infty}^{r}$$

$$\Rightarrow V = \frac{q}{4\pi \in_{0} K} \left[\frac{1}{r} - \frac{1}{\infty} \right]$$

 $\therefore V = \frac{q}{4\pi \in K} \frac{1}{r}$ বায়ু বা শূন্য মাধ্যমে K=1, সেক্ষেত্রে বিভবের মান হবে,

$$V=rac{q}{4\pi \in _{0}}rac{1}{\mathrm{r}}$$
 ইহাই $+q$ চার্জ থেকে r দূরত্বে বিভবের রাশি মালা।

সুষম বৈদ্যুতিক ক্ষেত্র: কোন বৈদ্যুতিক ক্ষেত্রের মান ও দিক সর্বত্র সমান ও দিক সর্বত্র একই দিকে হলে তাকে সুষম বৈদুতিক ক্ষেত্র বলে।

₽.	
22	\rightarrow
	$\overline{}$
F	
22	\longrightarrow

বৈদ্যুতিক ক্ষেত্র: কোন বৈদ্যুতিক চার্জের চারিদিকে যে স্থান জুড়ে বৈদ্যুতিক চার্জের প্রভাব পরিলক্ষিত হয় তাকে বৈদ্যুতিক ক্ষেত্র বলে।

বৈদ্যুতিক বলরেখা:

- (ক) বৈদ্যুতিক বলরেখা বৈদ্যুতিক ক্ষেত্রের মধ্যে অঙ্কিত খোলা বক্র রেখা যার কোন বিন্দুতে অঙ্কিত স্পর্শক ঐ বিন্দুতে লব্ধি বলের দিক নির্দেশ করে।
- (খ) বৈদ্যুতিক ক্ষেত্রের বিভিন্ন বিন্দুতে বিচ্ছিন্ন একক ধন চার্জ ছেড়ে দিলে ঐ চার্জটি যে পথে আকৃষ্ট বা বিকৃষ্ট হয় তাকে বৈদ্যুতিক বললেখা বলে।

বৈদ্যুতিক বলরেখার ধর্ম: (১) বৈদ্যুতিক বল রেখা খোলা বক্র রেখা।

- (২) রেখাগুলো ধন চার্জ থেকে উৎপন্ন হয়ে ঋণ চার্জে শেষ হয়।
- (৩) দুটি বল রেখা পরস্পরকে ছেদ করে না।
- (8) বলরেখা গুলি লম্ব ভাবে বের হয় লম্ব ভাবে প্রবেশ করে।
- (৫) প্রত্যেক বল রেখার দুই প্রান্তে বিপরীত চার্জ থাকে।
- (৬) বলরেখা গুলি সুতার ন্যায় আচরণ করে।

ধারক: পরিবাহীতে চার্জ সংরক্ষণ করার যান্ত্রিক কৌশলকে ধারক বলে দুটি পরিবাহী পাতকে সামান্য দূরত্বে পাশাপাশি রেখে এদের মধ্যবর্তী স্থান অন্তরক পদার্থ (বায়ু, কাচ, প্লাস্টিক, মোম ইত্যাদি) দিয়ে পূর্ণকরে ধারক তৈরী করা হয়।

ধারকত্ব: কোন পরিবাহীর একক বিভব বৃদ্ধি করতে যে পরিমান চার্জ লাগে তাকে ঐ পরিবাহীর ধারকত্ব বলে। ধারকত্বকে C দ্বারা প্রকাশ করা হয়। কোন পরিবাহীর বিভব V পরিমান বৃদ্ধি করতে যদি Q পরিমান চার্জ লাগে তবে ঐ পরিবাহীর ধারকত্ব $C=rac{Q}{V}$ হবে। ধারকত্বের একক ফ্যারাড।

ফ্যারাড: কোন পরিবাহীর বিভব 1 ভোল্ট বৃদ্ধি করতে যদি 1 কুলম্ব চার্জ লাগে তবে ঐ পরিবাহীর ধারকত্বকে 1 ফ্যারাড ধারকত্ব বলে।

<u>মাইক্রোফ্যারাড:</u> কোন পরিবাহীর বিভব 1 ভোল্ট বৃদ্ধি করতে যদি 1 কুলম্ব চার্জ লাগে তবে ঐ পরিবাহীর ধারকত্বকে 1 ফ্যারাড ধারকত্ব বলে। 1 ফ্যারাডের 10 লক্ষ ভাগের এক ভাগকে 1 মাইক্রোফ্যারাড ধারকত্ব বলে। একে μF দ্বারা প্রকাশ করা হয়। $1\mu F = 10^{-6}~F$ ।

গোলাকার পরিবাহীর ধারকত্বের রাশিমালা নির্নয়: মনে করি, শূন্য বা বায়ু মাধ্যমে r ব্যাসার্ধ বিশিষ্ট একটি গোলাকার পরিবাহী A এর কেন্দ্র O এবং গোলকটিতে +Q পরিমান চার্জ রয়েছে। ধরি, গোলকের ধারকত্ব C এবং পৃষ্ঠের বিভব V। অতএব ধারকত্বের

সংজ্ঞানুসারে,
$$C = \frac{Q}{V}$$

$$\therefore V = \frac{Q}{C} \dots \dots \dots \dots (1)$$

এখন, গোলকে প্রদত্ত Q চার্জ সুষমভাবে ছড়িয়ে পড়ে এবং তড়িৎক্ষেত্র বলরেখা গুলো গোলকের পৃষ্ট হতে লম্বভাবে নির্গত হয়ে বহিমুখী হবে। বলরেখা গুলোকে পিছনের দিকে বর্ধিত করলে এরা কেন্দ্রে মিলিত হবে। ফলে চার্জ কেন্দ্রে কেন্দ্রীভূত আছে ধরা যায়।

ফলে গোলক পৃষ্ঠের সর্বত্র বিভব
$$V=rac{1}{4\pi \in_0} \ rac{Q}{r}... \ ... \ ... \ (2)$$

সমীকরণ (1) ও (2) হতে পাই,
$$\frac{Q}{C} = \frac{1}{4\pi \in_{\varrho}} \ \frac{Q}{r}$$

 $\therefore C = 4\pi \in r$ ইহাই শূন্য বা বায়ু মাধ্যমে গোলাকার ধারকের ধারকত্বের রাশিমালা।

শূন্য বা বায়ু মাধ্যমে গোলাকার ধারকের ধারকত্ব ব্যাসার্ধের $4\pi\in_0$ গুণ। বায়ু ছাড়া অন্যমাধ্যমে ধারকত্ব $:C=4\pi\in_0 Kr$ হবে। এখানে, K মাধ্যমিটির পরাবৈদ্যুতিক ধ্রুবক। $4\pi\in_0 K$ ধ্রুবক, ফলে $C\propto r$ । অর্থাৎ গোলাকার ধারকের ধারকত্ব ব্যাসার্ধের সমানুপাতিক।

সমান্তরাল পাত ধারকের ধারকত্বের রাশিমালা নির্নয়: একই আকৃতির সমান ক্ষেত্রফল বিশিষ্ট দুটি সমান্তরাল ধাতব পাত M ও N বায়ুতে d দূরত্বে রেখে সমান্তরাল পাত ধারক গঠন করা হয়। পাত দুটির একটিতে চার্জ দেওয়া থাকে ও অপরটিকে ভূ-সংযুক্ত করা থাকে। পাত দুটির প্রত্যেকটির ক্ষেত্রফল A এবং মধ্যবর্তী মাধ্যম বায়ু। M পাতটি অন্তরিত, N পাতটি ভূ-সংযুক্ত। M পাতটিকে তড়িৎ উৎপাদক যন্ত্রের সাহায্যে +Q চার্জে চার্জিত করা হয়। এতে N পাতের ভিতরের ঋনাত্মক চার্জ ও বাইরের পৃষ্ঠে ধনাত্মক চার্জ আবিষ্ট হবে। N পাতিট ভূমির

সাথে যুক্ত থাকায় ভূমি হতে ইলেকট্রন এসে বাইরের পৃষ্ঠের ধনাত্মক চার্জকে প্রশ্মিত করে। পতটির ভিতরের পৃষ্ঠে ঋনাত্মক বদ্ধ চার্জে আবিষ্ঠ থাকবে। এ অবস্থায় বলরেখা গুলি ধনাত্মক M পাত হতে নির্গত হয়ে ঋণাত্মক N পাতে পৌছবে। পাত দুটির মধ্যবর্তী দূরত্ব কম বলে বলরেখাগুলি সমান্তরাল হবে, কিন্তু পার্শ্বচাপের ফলে পাত দুটির প্রান্ত ভাগে বল রেখাগুলি বেঁকে যাবে।

হিসাব ও গণনাঃ মনে করি ধারকটির প্রত্যেকটি পাতের ক্ষেত্রফল =A এবং M পাতে প্রদত্ত চার্জের পরিমান Q।

সুতরাং
$$M$$
 পাতের পৃষ্ঠতলের তলমাত্রিক ঘনতৃ, $\sigma = \frac{Q}{A}$ বা, $Q = \sigma A$ (1)

M ও N পাত দুটির মধ্যে বিভব পার্থক্য V হলে,

V= একক ধন চার্জকে N পাত হতে M পাতে স্থানান্তরিত করতে কৃত কাজ,

$$\Rightarrow V =$$
 প্রাবল্য \times দূরত্ব

$$\therefore V = E \times d \dots \dots (2)$$

কিন্তু, M পাতে আধানের তল মাত্রিক ঘনতু σ বলে এর পৃষ্ঠতলের একক ক্ষেত্রফল হতে σ সংখ্যক বল-নল নির্গত হয়ে N পাতের একক ক্ষেত্রফলে শেষ হবে। আমরা জানি প্রত্যেক বল-নলে $\frac{1}{\epsilon_0}$ সংখ্যক বল-রেখা থাকে। কাজেই σ সংখ্যক বল-

নলে মোট বল রেখার সংখ্যা = প্রাবল্য, $E = \frac{\sigma}{\epsilon_0}$ (3)

অতএব ধারকটির ধারকত্ব,
$$C=rac{Q}{V}$$

$$\Rightarrow C=rac{\sigma A}{E\times d} \qquad \qquad [\because V=E\times d\ {\it G}\ Q=\sigma A]$$

$$\Rightarrow C=rac{\sigma A}{\frac{\sigma}{\epsilon_0}\times d} \qquad \qquad \Big[\because E=rac{\sigma}{\epsilon_0}\Big]$$

$$\Rightarrow C=rac{\sigma A \epsilon_0}{\sigma\times d}$$

9

 $\Rightarrow C = rac{\epsilon_0}{d}$ বায়ুর পরিবর্তে ধারকের পাত দুটির মধ্যে K তড়িৎ মাধ্যমাংকের কোন মাধ্যম রাখলে

ধারকত্ব \mathbf{K} গুন বৃদ্ধি পায়। অর্থাৎ, $C=rac{K\in_0 A}{d}$

$$\therefore C = \frac{\epsilon A}{d} \qquad \qquad \left[\because \epsilon = K \epsilon_0 \right]$$

ইহাই সমান্তরাল পাত ধারকের ধারকত্বের রাশিমালা।

<u>তুল্য ধারকত্ব</u>ঃ একাধিক ধারকের সমবায়ের পরিবর্তে যে একটি মাত্র ধারক ব্যবহার করলে সমবায়ের বিভব পার্থক্য ও আধানের কোন পরিবর্তন হয় না তার ধারকত্বকে সমবায়ের তুল্যধারকত্ব বলে।

ধারকের সমবায়: একাধিক ধারককে একত্রে ব্যবহার করাকে ধারকের সমবায় বা সন্নিবেশ বলে। ধারকের সমবায় দুই প্রকার; যথা-(১) শ্রেণী সমবায় (২) সমান্তরাল সমবায়

<u>শ্রেণী সমবায়ে তুল্য ধারকত্ব:</u> ধারকের যে সমবায়ে প্রথম ধারকের ২য় পাতের সাথে ২য় ধারকের ১ম পাত, ২য় ধারকের ২য় পাতের সাথে ৩য় ধারকের ১ম পাত এই ভাবে সংযুক্ত ধারককে ধারকের শ্রেণী সমবায় বলে।

কোন তড়িৎ কোষ হতে যদি Q চার্জ ১ম ধারকের ১ম পাতে প্রদান করা হয়, তবে তা অন্য পাতের ভিতর পৃষ্ঠে -Q চার্জ আবিষ্ট করবে এবং +Q চার্জ ২য় ধারকের ১ম পাতে প্রবাহিত হবে। এ প্রকৃয়ার পুনরাবৃত্তি ঘটতে থাকে। সুতরাং প্রতিটি ধারকের এক পাত +Q এবং অন্যপাত -Q চার্জ লাভ করে। যদি ধারক গুলোর পাত দ্বয়ের মধ্যে বিভব পার্থক্য যথাক্রমে $V_1,V_2,$ ও V_3 হয় তবে শ্রেণী সমবায়ের ১ম এবং শেষ পাতের বিভব পার্থক্য হবে,

সমবায়ে তিনটি ধারকের পরিবর্তে n সংখ্যক খারক থাকলে

$$\therefore C_s = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_n}}$$

<u>সমান্তরাল সমবায়ে তুল্য ধারকত</u>: যে সমবায়ে ব্যবহৃত ধারকগুলোর প্রত্যেকটির একদিকের প্রত্যেকটির পাতগুলো একটি বিন্দুতে

এবং অন্য দিকের পাতগুলো অন্য একটি বিন্দুতে যুক্ত করা হয় তবে তাকে সমান্তরাল সমবায় বলে। পাশ্বের চিত্রে তিনটি ধারকের সমান্তরাল সমবায় দেখান হল, যেখানে ধনাত্মক পাতসমূহ কোষের ধনাত্মক প্রান্তে এবং ঋণাত্মক পাত সমূহ কোষের ঋণাত্মক প্রান্তের সাথে সংযুক্ত করা হল। তড়িৎ কোষ হতে +Q চার্জ প্রদান করা হলে এ আধান ধারকগুলোর ধারকত্ব অনুসারে ভাগ করে নেয়। যদি ধারকগুলোতে আধানের পরিমান যথাক্রমে Q_1, Q_2, Q_3 হয় তবে মোট চার্জ

$$Q = Q_1 + Q_2 + Q_3 \dots \dots \dots (1)$$

$$\Rightarrow C_p V = C_1 V + C_2 V + C_3 V \qquad [\because Q = CV]$$

 \Rightarrow $C_p=C_1+C_2+C_3$ [উভয় পক্ষকে V দ্বারা ভাগ করে।] সমবায়ে তিনটি ধারকের পরিবর্তে n সংখ্যক ধারক থাকলে

facebook /gmail/skype: -tanbir.cox

Web: http://tanbircox.blogspot.com

 $C_p = C_1 + C_2 + C_3 + - - - - + C_n$ সুতরাং সমান্তরাল সমবায়ে তুল্য ধারকত্ব ধারকণ্ডলোর ধারকত্বের সমষ্টির সমান।

চার্জিত ধারকের শক্তির রাশিমালা:

কোন একটি ধারককে চার্জিত করার অর্থ কোন বাইরের শক্তির সাহায্যে এক পাত থেকে ইলেকট্রন সরিয়ে অন্য পাতে স্থানান্তরিত করা। এ কাজে দু'পাতের মধ্যে বিভব পার্থক্য সৃষ্টি হয় যা পরবর্তী চার্জ স্থানান্তরিত করতে বাধা প্রদান করে। এজন্য চার্জ প্রদান করতে বহিরাগত শক্তিকে আরও অধিক কাজ করতে হয়। এই কাজ বৈদ্যতিক স্থিতিশক্তি হিসেবে পাতদুটির মধ্যকার বৈদ্যুতিক ক্ষেত্রে সঞ্চিত থাকে। এটিই হলো চার্জিত ধারকের শক্তি।

মনে করি, C ধারকত্ব বিশিষ্ট কোন ধারকের অন্তরিত পাতের বিভবের সর্বোচ্চ মান =V চার্জিত করণের কোন মুহূর্তে পাতটির বিভব V'হলে ঐ পাতে অতিরিক্ত dQ পরিমান চার্জ পাঠাতে কৃত কাজের পরিমান হবে,

$$dW = V'dQ \dots \dots \dots (1)$$

dQ পরিমান চার্জ দেওয়ার ফলে ধারকটির বিভব dV' পরিমান পরিবর্তিত হলে লেখা যায়,

 $dQ = C \, dV'$ এখানে C হল ধারকটির ধারকত্ব । dQ এর মান (1) নং সমীকরণে বসিয়ে পাই,

 $dW=V'\,\mathrm{CdV'}=\mathrm{CV'dV'}$ (2) এখন (2) নং সমীকরণকে V'=0 হতে V'=V সীমার মধ্যে সমাকলন করে মোট কৃত কাজের পরিমান পাওয়া যায়,

$$W = \int_{0}^{V} CV'dV' = C \int_{0}^{V} V'dV'$$

$$\Rightarrow W = C \left[\frac{V'^{2}}{2} \right]_{0}^{V} = C \left[\frac{1}{2}V^{2} - 0 \right] = \frac{1}{2}CV^{2}$$

মোট কৃত কাজের পরিমান = চার্জিত ধারকের শক্তি

∴ চার্জিত ধারকের শক্তি
$$E = \frac{1}{2}CV^2 = \frac{1}{2}QV = \frac{1}{2}\frac{Q^2}{C}$$

চার্জ ঘনত্ব ও প্রাবল্যের মধ্যে সম্পর্ক:

চার্জের তল ঘনত্ব g কোন চার্জিত পরিবাহীর একক ক্ষেত্রফলে যে পরিমান চার্জ থাকে তাকে চার্জের তল ঘনত্ব বলে। একে দ্বারা σ দ্বারা প্রকাশ করা হয়। A ক্ষেত্রফল বিশিষ্ট কোন তলের উপর Q পরিমান অর্পণ করলে উক্ত তলের যে কোন বিন্দুতে চার্জের তল ঘনত্ব, $\sigma = \frac{\text{DISS}'}{\text{C}$ ক্ষেত্রফল $} = \frac{Q}{A}$, এর একক Cm^2 ,

প্রাবল্যঃ মনে করি, r ব্যাসার্ধের কোন গোলাকার পরিবাহীর পৃষ্ঠে Q পরিমান চার্জ রয়েছে। গোলকের পৃষ্ঠ থেকে বলরেখা সমূহ লম্বভাবে নির্গত হয়ে বহির্ম্থী হয়। বলরেখাগুলোকে পেছনে বাড়ালে এরা গোলকের কেন্দ্রে মিলিত হয়। সুতরাং গোলক পৃষ্ঠে প্রদত্ত চার্জ এর কেন্দ্রে কেন্দ্রীভূত রয়েছে বলে বিবেচনা করা যায়। সুতরাং গোলকপৃষ্ঠে প্রদত্ত Q চার্জ এর কেন্দ্রে বিন্দু চার্জ এর মত আচরণ করে।

অতএব গোলকপৃষ্ঠের তড়িৎ প্রাবল্য, $E=\frac{Q}{4\pi \in_0 r^2}$ (1) কিন্তু $4\pi r^2$ হলো গোলক পৃষ্ঠের ক্ষেত্রফল । $4\pi r^2=A$ লিখে পাই, $E=\frac{Q}{\in_0 A}$ (2) গোলক পৃষ্ঠের চার্জ ঘনত্ব σ হলে, $\sigma=\frac{Q}{A}$ (3)

11

সমীকরণ (2) ও (3) হতে পাই, $E=rac{\sigma}{\epsilon_0}$ এটাই নির্ণেয় সম্পর্ক। গোলকটি যদি K পরাবৈদ্যুতিক ধ্রুবক বিশিষ্ট মাধ্যমে অবস্থান করে তবে, এর সন্নিকটে তড়িৎ প্রাবল্য, $E=rac{\sigma}{\epsilon_0}$ ইহাই চার্জ ঘনত্ব ও প্রাবল্যের মধ্যে সম্পর্ক।

আপেক্ষিক ভেদনযোগ্যতা বা পরাবৈদ্যুতিক ধ্রুবক বা তড়িৎ মাধ্যমাঙ্ক (Relative Permittivity or Dielectric Constant):

যে কোন দুটি আধানের মধ্যে নির্দিষ্ট দূরত্বে শূন্যস্থানে ক্রিয়াশীল বল এবং ঐ দুই আধানের মধ্যে ঐ একই দূরত্বে অন্য কোন মাধ্যমে ক্রিয়াশীল বলের অনুপাত একটি ধ্রুব সংখ্যা এই ধ্রুব সংখ্যাকে ঐ মাধ্যমের পরাবৈদ্যুতিক ধ্রুবক বা তড়িৎ মাধ্যমাঙ্ক বলে। একে K দ্বারা প্রকাশ করা হয়। ধরা যাক, $F_o=$ শূন্য মাধ্যমে দুটি আধানের মধ্যে ক্রিয়াশীল বল। $F_m=$ যে কোন মাধ্যমে একই দূরত্বে ঐ দুটি আধানের মধ্যে ক্রিয়াশীল বল। K= মাধ্যমের পরাবৈদ্যুতিক ধ্রুবক। $\therefore K=\frac{F_o}{F_m}$

কোন মাধ্যমের ভেদন যোগ্যতা ও শূন্য মাধ্যমের ভেদন যোগ্যাতার অনুপাত একটি ধ্রুব সংখ্যা এই ধ্রুব সংখ্যাকে ঐ মাধ্যমের পরাবৈদ্যুতিক ধ্রুবক বা তড়িৎ মাধ্যমাঙ্ক বলে। একে K দ্বারা প্রকাশ করা হয়। ধরা যাক, কোন মাধ্যমের ভেদন যোগ্যতা $=\in$ ও শূন্য মাধ্যমের ভেদন যোগ্যতা $=\in$ $:K=\frac{\in}{\in}$

ধারকের দুটি পাতের মধ্যে কোন মাধ্যম না থাকলে যে ধারকত্ব পাওয়া যায় পাত দ্বয়ের মধ্যবর্তী স্থানে কোন অন্তরক পদার্থ থাকলে ধারকত্ব তার চেয়ে বেশী। পাতদ্বয়ের মধ্যে কোন মাধ্যম না থাকলে ধারকত্ব, C এবং মাধ্যম থাকা কালে ধারকত্ব, C হলে এই দুই অবস্থায় ধারকত্বের অনুপাত সর্বদা একটি ধ্রুব সংখ্যা। এই ধ্রুব সংখ্যাকে ঐ মাধ্যমের পরা বৈদ্যুতিক ধ্রুবক বা তড়িৎ মাধ্যমাঙ্ক বলে। কোন মাধ্যমের আপেক্ষিক ভেদনযোগ্যতা, $K=\frac{C}{C}$

Want more Updates: https://www.facebook.com/tanbir.ebooks

দ্বিতীয় পত্রের অংকের সমাধান

2nd Paper Math Solution
১ ৷ স্থ্রির তড়িৎ (01. Static Electricity)

১। বাতাসের মধ্যে 100C চার্জ থেকে 1m দূরে কোন বিন্দুতে বৈদুতিক প্রাবল্য নির্ণয় কর।

= $9 \times 10^{11} \; \mathrm{NC}^{-1} \; \mathrm{(Ans.)}$ ২। একটি সমান্তরাল পাত ধারকের প্রতি পাতের ক্ষেত্রফল $1.5 \mathrm{m}^2$ এবং এর মাঝে $1 \mathrm{mm}$ পুরু বায়ুর স্তর থাকলে এর ধারকতু কত হবে?

 $C = \frac{\epsilon_o A}{d}$ $\Rightarrow C = \frac{8.854 \times 10^{-12} \times 1.5}{1 \times 10^{-3}} F$ $\Rightarrow C = 1.328 \times 10^{-8} F \text{ (Ans.)}$

৩। 1.0 m বাহু বিশিষ্ট একটি বর্গক্ষেত্রের প্রতিটি কোনায় 5.0×10^{-9} C চার্জ স্থাপন করা হল। বর্গক্ষেত্রের কেন্দ্রে বিভব নির্ণয় কর। আমরা জানি.

$$V = \frac{1}{4\pi \in_{0}} \frac{q}{r}$$

আমরা জানি.

ডানের চিত্রানুযায়ী, প্রতিটি কোণা থেকে কেন্দ্রের দূরত্ব r = AO=BO=CO=DO

AD² = 2AO²

$$\Rightarrow 1^2 = 2 \text{ AO}^2$$

$$\Rightarrow AO = \frac{1}{\sqrt{2}} = 0.707$$

$$\Rightarrow V = 9 \times 10^9 \times \frac{4 \times 5 \times 10^{-9}}{0.707} V$$

:.
$$V = 254.56 \text{ V (Ans.)}$$

8। 5Ω রোধের মধ্যদিয়ে প্রতি মিনিটে 720C চার্জ প্রবাহিত করা হলে রোধকের দুই প্রান্তের বিভব পার্থক্য নির্ণয় কর। আমরা জানি.

$$Q = it$$

$$\Rightarrow Q = \frac{V}{R}t$$

$$\Rightarrow V = \frac{QR}{t}$$

$$\Rightarrow V = \frac{720 \times 5}{60}V$$

এখানে, রোধ,
$$R=5\Omega$$
 চার্জ, $Q=720~C$ সময়, $t=1$ মি:= $60s$ বিভব অন্তর, $V=?$

$$\Rightarrow V = \frac{720 \times 5}{60} V$$

∴ V = 60 V (Ans.)

৫। কোন বর্গ ক্ষেত্রের তিনটি কৌনিক বিন্দুতে যথাক্রমে 3, –6 এবং 7 Coul চার্জ স্থাপন করা আছে। চতুর্থ কৌনিক বিন্দুতে কত চার্জ স্থাপন করলে ঐ বর্গন্ধেত্রের কেন্দ্রে বিভব শূন্য হবে?

এখানে,

চার্জ, q₁ = 3 Coul

চার্জ, q₂ = - 6 Coul

চার্জ, q₃ = 7 Coul

মনে করি চতুর্থ কৌনিক বিন্দুতে $q_4=q$ চার্জ স্থাপন করতে হবে। আমরা জানি, বর্গন্ধেত্রের প্রতিটি কৌনিক বিন্দু

থেকে কেন্দ্রের দূরত্ব সমান, মনে করি সেই দূরত্ব r।

$$q_1$$
 চার্জের জন্য কেন্দ্রে বিভর $V_1=rac{1}{4\pi \in _0}rac{q_1}{r}$

$$\mathbf{q}_2$$
 চার্জের জন্য কেন্দ্রে বিভব $\mathbf{V}_2 = \frac{1}{4\pi \in \mathbf{q}} \frac{\mathbf{q}_2}{\mathbf{r}}$

$$q_3$$
 চার্জের জন্য কেন্দ্রে বিভব $\,V_3 = \frac{1}{4\pi \, \varepsilon_o} \frac{q_3}{r} \,$

$$\mathbf{q}_4$$
 চাজের জন্য কেন্দ্রে বিভব $\mathbf{V}_4 = \frac{1}{4\pi \in \mathbf{q}_4} \frac{\mathbf{q}_4}{\mathbf{r}}$

প্রমতে,
$$V_1 + V_2 + V_3 + V_4 = 0$$

$$\Rightarrow \frac{1}{4\pi \in r} \left(q_1 + q_2 + q_3 + q_4 \right) = 0$$

$$\Rightarrow \frac{1}{4\pi \in_{\scriptscriptstyle o}} \frac{1}{r} (3 - 6 + 7 + q) = 0$$

$$\Rightarrow 3 - 6 + 7 + q = 0$$

$$\Rightarrow$$
 q = $-3 + 6 - 7$

$$\therefore$$
 q = -4 Coul (Ans.)

৬। $16~\mu F$ এবং $22~\mu F$ ধারকত্ব বিশিষ্ট দুটি ধারককে শ্রেণী সমবায়ে সাজালে তুল্য ধারকত্ব কত হবে?

আমরা জানি.

$$\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2}$$

$$\Rightarrow \frac{1}{C_s} = \frac{1}{16} + \frac{1}{22}$$

$$\Rightarrow \frac{1}{C_s} = \frac{22 + 16}{16 \times 22}$$

$$\Rightarrow 38C_s = 16 \times 22$$

$$\Rightarrow C_s = \frac{16 \times 22}{38}$$

 $\therefore C_s = 9.26 \,\mu \,F$ (Ans.)

এখানে, ধারকত্ব, C_1 =16μF ধারকত্ব, C_2 = 22 μF

৭। সমভাবে আহিত দুটি শোলা বল বায়ুতে $3.0~{
m cm}$ ব্যবধানে রাখলে পরস্পরকে $4 \times 10^{-5} \mathrm{N}$ বলে বিকর্ষন করে। প্রত্যেক শোলা বলের আধান নির্ণয় কর। আমরা জানি,

"
$$F = \frac{1}{4\pi \in_o} \frac{q_1 q_2}{r^2}$$

$$\Rightarrow 4 \times 10^{-5} = 9 \times 10^9 \times \frac{qq}{0.03^2}$$

$$\Rightarrow q^2 = \frac{4 \times 10^{-5} \times 0.03^2}{9 \times 10^9}$$
"পূরত্ব, $r = 3.0 \text{ cm}$

$$= 0.03 \text{m}$$

$$\forall q = q_1 = q_2 = ?$$

 \therefore q = 2×10⁻⁹ Coul. (Ans.)

৮। $0.50 \mathrm{m}$ ব্যাসার্ধের একটি গোলকে $20 \mathrm{C}$ চার্জ দেয়া আছে। গোলকের কেন্দ্র হতে 0.40m ও 0.80 m দুরে কোন বিন্দুতে বিভবের মান নির্ণয় কর।

গোলাকার পরিবাহীর বিভব

$$V=rac{1}{4\pi\in_o}rac{q}{r}$$
 $\therefore V_1=rac{1}{4\pi\in_o}rac{q}{r_1}$ গোলাকের ব্যাসার্ধ $0.50m$ $r_1{=}0.40m$ ইহা গোলকের ব্যাসার্ধের চেয়ে ছোট । কাজেই $0.40m$ দূরত্বের বিভব $0.50m$ দূরত্বের বিভবের সমান ।

$$V_1 = \frac{1}{4\pi \in_0} \frac{q}{r}$$

$$\Rightarrow V_1 = 9 \times 10^9 \times \frac{20}{0.5}$$

 \therefore V_1 =3.6×10 11 V ও 0.8m দূরে বিভব

$$V_2 = \frac{1}{4\pi \in_0} \frac{q}{r_2}$$

$$\Rightarrow V_2 = 9 \times 10^9 \times \frac{20}{0.8}$$

 $V_2 = 2.25 \times 10^{11} \text{ V (Ans.)}$

৯। দুটি ধারককে সমান্তরাল ও শ্রেণীতে যুক্ত করলে তুল্য ধারকত্ব যথাক্রমে 9µF ও 2µF, ধারক দুটির ধারকত্ব নির্ণয় কর আমরা জানি,

$$c_P = c_1 + c_2$$
⇒ $9 = c_1 + c_2$
∴ $c_2 = 9 - c_1$(1)

আবার, $\frac{1}{c_S} = \frac{1}{c_1} + \frac{1}{c_2}$

$$\frac{1}{c_S} = \frac{1}{c_1} + \frac{1}{c_2}$$
⇒ $\frac{1}{2} = \frac{c_2 + c_1}{c_1 c_2}$
⇒ $\frac{1}{2} = \frac{9}{c_1 (9 - c_1)}$
⇒ $18 = 9c_1 - c_1^2$

 \Rightarrow $c_1^2 - 9c_1 + 18 = 0$

এখানে, ধারকত্ব,
$$c_p=9\mu F$$
 ধারকত্ব, $c_s=2\mu F$ ধারকত্ব, $c_1=?$ ধারকত্ব, $c_2=?$

দূরত্ব, r = 0.50m

দূরত্ব, $r_1 = 0.40 m$

দূরত্ব, $r_2 = 0.80$ m

চার্জ, q = 20C

বিভব, $V_1 = ?$

বিভব, V₂ =?

$$\Rightarrow c_1^2 - 6c_1 - 3c_1 + 18 = 0$$
 $\Rightarrow c_1(c_1 - 6) - 3(c_1 - 6) = 0$
 $\Rightarrow (c_1 - 6)(c_1 - 3) = 0$
হয়, $c_1 - 6 = 0$ $\therefore c_1 = 6$
অথবা, $c_1 - 3 = 0$ $\therefore c_1 = 3$
 $c_2 = 9 - c_1$(1)
 $\therefore c_2 = 9 - 6 = 3$ যখন $c_1 = 6$
 $c_2 = 9 - 3 = 6$ যখন $c_1 = 3$

ধারক দ্বয়ের ধারকত্ব যথাক্রমে $3\mu F ও 6\mu F (Ans.)$

১০। $1.4 \mu F$ ধারকত্ববিশিষ্ট একটি ইলেকট্রনিক যন্ত্রের টার্মিনাল দ্বয়ের মধ্যে $3000\mathrm{V}$ বিভব পার্থক্য দেয়া হল। ধারকে সঞ্চিত শক্তির পরিমান নির্ণয় কর।

আমরা জানি,
$$E = \frac{1}{2}CV^2$$
 এখানে, ধারকত্ব, $C = 1.4\mu F$ $C = 1.4 \times 10^{-6} F$ বিভব অন্তর, $C = 1.4 \times 10^{-6} F$

১১। একটি সমান্তরাল পাত ধারকের প্রত্যেক পাতের ক্ষেত্রফল 1m^2 এবং পাতদ্বয় পরস্পর থেকে $0.01 \mathrm{m}$ দূরে অবস্থিত। যদি পাত দুটির বিভব পার্থক্য 66V হয় তবে প্রত্যেকটি পাতের চার্জের পরিমান নির্ণয় কর।

$$C=\frac{\epsilon_o}{d}$$
 অবার, $Q=CV$ অবার, $Q=CV$ তিম $Q=\frac{\epsilon_o}{d}$ তিম $Q=\frac{\epsilon_o}{d}$ তিম $Q=\frac{\epsilon_o}{d}$ তিম $Q=\frac{8.854\times 10^{-12}\times 1\times 66}{0.01}$ $Q=\frac{8.854\times 10^{-8}\ C\ (Ans.)}$

১২। সমান ধারকত্বের তিনটি ধারককে সমান্তরাল সমবায়ে সাজালে তুল্য ধারকত্ব হবে প্রতিটি ধারকত্বের তিনগুন এবং শ্রেণী সমবায়ে সাজালে তুল্য ধারকত্ব হবে প্রতিটি ধারকত্বের 🗓 গুন। প্রমান কর। আরও প্রমান কর শ্রেণী

সমবায়ে থাকাকালীন তুল্য ধারকত্ব সমান্তরালে থাকাকালীন তুল্য ধারকত্বের 🗓

জামরা জানি,
$$C_p = C_1 + C_2 + C_3$$

$$\Rightarrow C_p = C + C + C$$

$$\therefore C_p = 3C \text{ (প্রমাণিত)}$$

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

$$\Rightarrow \frac{1}{C_S} = \frac{1}{C} + \frac{1}{C} + \frac{1}{C}$$

$$\Rightarrow \frac{1}{C_S} = \frac{1+1+1}{C}$$

$$\therefore C_S = \frac{1}{3}C \text{ (প্রমাণিত)}$$

$$\text{আবার } \frac{C_S}{C_p} = \frac{\frac{1}{3}C}{3C} \therefore C_S = \frac{1}{9}C_p \text{ (Pr oved)}$$

১৩ $+3.23 \times 10^{-19} \mathrm{C}$ চার্জের একটি গ্লাষ্টিক বল কোন স্থানে $2.6 \times$ 10⁴ volt/m প্রাবল্যের একটি সুষম বৈদ্যতিক ক্ষেত্রে ঝুলম্ভ অবস্থায় রাখা হল। উক্ত স্থানে অভিকর্ষজ তুরণের মান $10 \mathrm{ms}^{-2}$ হলে বলটির ভর কত?

আমরা জানি,
$$F = Eq$$

$$\Rightarrow mg = Eq$$

$$\Rightarrow m \times 10 = 2.6 \times 10^4 \times 3.23 \times 10^{-19}$$

$$\Rightarrow m = \frac{2.6 \times 10^4 \times 3.23 \times 10^{-19}}{10}$$

$$\Rightarrow m = \frac{2.6 \times 10^4 \times 3.23 \times 10^{-19}}{10}$$

$$\therefore$$
 m = 8.398×10⁻¹⁶ Kg (Ans.)

১৪। সমপরিমান চার্জে চার্জিত দুটি গোলককে পরস্পর হতে $\frac{1}{2}\,\mathrm{m}$

দূরে স্থাপন করলে 6 gm-Wt বল দ্বারা বিকর্ষন করে। প্রত্যেক গোলকে চার্জের পরিমান নির্ণয় কর।

আমরা জানি,
$$F = \frac{1}{4\pi \in_0} \frac{q_1 q_2}{r^2}$$

$$\Rightarrow \frac{6 \times 9.8}{1000} = 9 \times 10^9 \frac{q \times q}{(0.5)^2}$$

$$\Rightarrow q^2 = \frac{6 \times 9.8 \times 0.25}{1000 \times 9 \times 10^9}$$

$$\Rightarrow q = \sqrt{\frac{6 \times 9.8 \times 0.25}{1000 \times 9 \times 10^9}}$$

$$\Rightarrow q = \sqrt{\frac{6 \times 9.8 \times 0.25}{1000 \times 9 \times 10^9}}$$

$$\therefore q = 1.28 \times 10^{-6} \text{ C (Ans.)}$$

১৫ । $0.24\mathrm{m}$ ব্যাসের একটি গোলকে 33.3×10^{-9} কুলম্ব চার্জ দেয়া আছে। গোলকের কেন্দ্র হতে i) 0.5m ii) 0.03 m দূরে কোন বিন্দুর তড়িৎ বিভব ও তড়িৎ প্রাবল্য বের কর।

i) $r_1 = 0.5 \, \text{m}$ ইহা গোলকের ব্যাসার্ধের চেয়ে বড়। কাজেই $0.5 \, \text{m}$

$$\begin{split} &V_1 = \frac{1}{4\pi \in_o} \frac{q}{r_1} \\ &\Rightarrow V_1 = 9 \times 10^9 \times \frac{33.3 \times 10^{-9}}{0.5} \\ &\therefore V_1 = 599.4 V \text{ (Ans.)} \\ &\text{প্রাবল্য, } E_1 = \frac{1}{4\pi \in_o} \frac{q}{r_1^2} \end{split}$$

$$E_1 = 9 \times 10^9 \times \frac{33.3 \times 10^{-9}}{0.5^2} \text{ NC}^{-1}$$

$$\therefore E_1 = 1198.8NC^{-1}$$
 (Ans.)

ii) r₂ = 0.03m মিটার দূরের বিন্দুটি গোলকের ভিতরে হওয়ায় এর উপরি তলের বিভবই ভিতরে সকল বিন্দুর বিভব

₹₹₹₹,
$$V_2 = \frac{1}{4\pi ∈_0} \frac{q}{r}$$

$$⇒ V_2 = 9 × 10^9 × \frac{33.3 × 10^{-9}}{0.12} V$$
∴ $V_2 = 2497.5 V$ (Ans.)

r₂ = 0.03m মিটার দূরের বিন্দুটি গোলকের ভিতরে। ভিতরে কোন বৈদ্যতিক বলরেখা না থাকায় ভিতরে প্রাবল্য E₂ =0

১৬। সমান ধারকতের তিনটি ধারককে সমান্তরাল সমবায়ে সাজালে তুল্য ধারকত্ব, শ্রেণী সমবায়ে থাকাকালীন তুল্য ধারকত্বের কত গুন? আমরা

$$C_p = C_1 + C_2 + C_3$$
 $\Rightarrow C_p = C + C + C$
 $\therefore C_p = 3C$

আবার, $\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$

$$\Rightarrow \frac{1}{C_s} = \frac{1}{C} + \frac{1}{C} + \frac{1}{C}$$

$$\Rightarrow \frac{1}{C_s} = \frac{1}{C} + \frac{1}{C} + \frac{1}{C}$$

$$\Rightarrow \frac{1}{C_s} = \frac{3}{C} \qquad \therefore C_s = \frac{C}{3}$$
ফেলে, $\frac{C_p}{C_s} = \frac{3C}{C} \Rightarrow C_s = \frac{3C \times 3}{C}$

$$\therefore C_p = 9C_s \text{ উজ্জ্য & গুলা।}$$

১৭। দু'টি প্রিতলের বলের ব্যাসার্ধ যথাক্রমে 0.02m এবং 0.06m। বল দু'টিতে যথাক্রমে 2.5×10^{-9} C এবং 5.0×10^{-9} C চার্জ দেওয়া হল এদের চার্জের তলমাত্রিক ঘনতের তুলনা কর।

আমরা জানি,
$$\sigma_1 = \frac{Q_1}{4\pi r_1^2} \, \text{ও} \, \sigma_2 = \frac{Q_2}{4\pi r_2^2}$$

$$\therefore \frac{\sigma_1}{\sigma_2} = \frac{Q_1}{4\pi r_1^2} \times \frac{4\pi r_2^2}{Q_2}$$

$$\Rightarrow \frac{\sigma_1}{\sigma_2} = \frac{Q_1}{Q_2} \times \frac{r_2^2}{r_1^2}$$

$$\Rightarrow \frac{\sigma_1}{\sigma_2} = \frac{Q_1}{Q_2} \times \frac{r_2^2}{r_1^2}$$

$$\Rightarrow \frac{\sigma_1}{\sigma_2} = \frac{2.5 \times 10^{-9}}{5.0 \times 10^{-9}} \times \frac{(0.06)^2}{(0.02)^2}$$

 $\Rightarrow \frac{\sigma_1}{\sigma_2} = \frac{1}{2} \times \frac{0.0036}{0.0004} \therefore \sigma_1 : \sigma_2 = 9 : 2 \quad \text{(Ans.)}$ ১৮। $1.6 \times 10^{-9}~\mathrm{C}$ চার্জে চার্জিত একটি ক্ষুদ্র গোলককে বায়ুতে স্থাপন করা

হল। চার্জিত গোলকের কেন্দ্র হতে 0.14 m দূরে কোন বিন্দুতে বৈদ্যুতিক

প্রাবল্য বের কর। আমরা জানি, আমরা জানি, $\text{প্রাবল্য, } E = \frac{1}{4\pi \in {}_{o}} \frac{q}{r^2}$ পূরত্ব, r = 0.14 m $\text{DISM, } q = 1.6 \times 10^{-9} \text{ C}$ প্রাবল্য, E = ? \Rightarrow E = $9 \times 10^9 \times \frac{1.6 \times 10^{-9}}{0.14^2} \text{ NC}^{-1}$ \therefore E = 734.69 NC⁻¹(Ans.)

তড়িৎ প্রবাহ ও বর্তনী

(Plectric Current and Circuit)

বিদ্যুৎ প্রবাহ (Electric Current): কোন পরিবাহকের যে কোন প্রস্তুচ্ছেদ দিয়ে প্রতি একক সময়ে যে পরিমান চার্জ প্রবাহিত হয় তাকে তড়িৎপ্রবাহ (electric current) বলে। কোন পরিবাহকের যে কোন প্রস্তুচ্ছেদ দিয়ে যদি dt সময়ে dq পরিমান চার্জ প্রবাহিত হয়, তাহলে তড়িৎ প্রবাহ $I = \frac{dq}{dt}$ হবে। বিদ্যুৎ প্রবাহের একক অ্যাম্পিয়ার।

<u>অ্যাম্পিয়ার (Ampere)</u>: (ক) কোন পরিবাহীর যে কোন প্রস্তচ্ছেদের মধ্যদিয়ে প্রতিসেকেন্ডে 1 কুলম্ব চার্জ প্রবাহিত হলে, এর প্রবাহমাত্রাকে 1 অ্যাম্পিয়ার তড়িৎ প্রবাহ বলে।

- (খ) কোন পরিবাহীর 1Ω রোধের দুই প্রান্তের বিভব পার্থক্য 1 ভোল্ট হলে এর মধ্য দিয়ে যে পরিমান বিদ্যুৎ প্রবাহিত হয় তাকে 1 অ্যাম্পিয়ার তড়িৎ প্রবাহ বলে।
- (গ) শূন্যস্থানে এক মিটার দূরত্বে অবস্থিত অসীম দৈর্ঘ্যের এবং উপেক্ষণীয় প্রস্থচ্ছেদের দুটি সমান্তরাল পরিবাহীর প্রত্যেকটিতে যে পরিমান তড়িৎ প্রবাহ চললে পরস্পরের মধ্যে প্রতি মিটার দৈর্ঘ্যে 2×10^{-7} নিউটন বল উৎপন্ন হয় তাকে 1অ্যাম্পিয়ার তড়িৎ প্রবাহ বলে।

<u>তাড়ন বেগ (Drift Velocity):</u> কোন পরিবাহকের মধ্যে মুক্ত ইলেকট্রনগুলো যে গড় বেগে প্রবাহিত হয়ে প্রবাহ সৃষ্টি করে তাকে তাড়ন বেগ বলে।

তাড়ন বেগের রাশিমালাঃ

একটি ধাতব পরিবাহীর খানিকটা অংশ বিবেচনা করা যাক, যার মধ্যেদিয়ে তড়িৎ প্রবাহিত হচ্ছে।

ধরা যাক, পরিবাহকের মধ্যদিয়ে তড়িৎ প্রবাহ 🖘 🎉

পরিবাহকের বিবেচিত অংশের দৈর্ঘ্য = l

পরিবাহকের প্রস্তুচ্ছেদের ক্ষেত্রফল = A

প্রতি একক আয়তনে মুক্ত ইলেকট্রনের সংখ্যা = n

প্রত্যেক ইলেকট্রনে চার্জের পরিমান ቹ e

ইলেকট্রনের গড় সঞ্চারণ বেগ বা তাড়ন বেগ = v

পরিবাহকটির বিবেচিত অংশের আয়তন = lA

- ∴ পরিবাহকের এই অংশে মোট মুক্ত ইলেকট্রনের সংখ্যা = nlA
- ∴ মুক্ত ইলেকট্রনের মোট আধান, q = nlAe

সমস্ত মুক্ত ইলেক্ট্রনের যদি পরিবাহকের l দৈর্ঘ্য অতিক্রম করতে t সেকেন্ড সময় লাগে, তাহলে $t=\frac{l}{v}$ সুতরাং পরিবাহকের মধ্যদিয়ে চার্জ প্রবাহের হার অর্থাৎ পরিবাহকের মধ্যদিয়ে তড়িৎ প্রবাহ,

উপরোক্ত (1) নং সমীকরণ তাড়ন বেগের রাশিমালা।

ও'মের সূত্রের বর্ণনা ও ব্যাখ্যা:

<u>ও'মের সূত্র :</u> স্থির তাপমাত্রায় কোন পরিবাহীর মধ্যদিয়ে যে বিদ্যুৎ প্রবাহিত হয় তা ঐ পরিবাহীর দুই প্রান্তের বিভব পার্থক্যের সমানুপাতিক।

ব্যাখ্যা : মনে করি, AB একটি পরিবাহী, যার A ও B প্রান্তের বিভব যথাক্রমে V_A ও V_B । যদি $V_A > V_B$ হয় তাহলে বিভব পার্থক্য হবে $V = V_A - V_B$ । তড়িৎ প্রবাহমাত্রা I হলে ও'মের সূত্রানুসারে, $I \propto V$

$$\underset{A}{\overset{I \ V_{A}}{\Rightarrow}} \underset{A}{\overset{V_{B}}{\Rightarrow}}$$

 $\Rightarrow I = GV$ এখানে G একটি ধ্রুব সংখ্যা, এই ধ্রুব সংখ্যাকে পরিবাহকের পরিবাহীতা

বলে। G হল রোধের বিপরীত রাশি অর্থাৎ $G=\frac{1}{R}$ উপরিউক্ত সমীকরণে বসালে আমরা পাই,

$$I=rac{V}{R}$$
 (1) এখানে R একটি ধ্রুব সংখ্যা, এই ধ্রুব সংখ্যাকে পরিবাহীর

রোধ বলে। পরিবাহীর যে ধর্ম বিদাুৎ প্রবাহকে বাধা দেয় তাকে রোধ বলে। রোধের একক ওহম।

<u>ওহমঃ</u> যে পরিমান রোধের দুই প্রান্তের বিভব পার্থক্য I ভোল্ট হলে উহার মধ্যদিয়ে I অ্যাম্পিয়ার বিদ্যুৎ প্রবাহিত হয়, তাকে 1ওহম রোধ বলে।

(1) নং সমীকরণ থেকে বলা যায়, কোন পরিবাহীর মধ্যদিয়ে যে বিদ্যুৎ প্রবাহিত হয় তা ঐ পরিবাহীর দুই প্রান্তের বিভব পার্থক্যের সমানুপাতিক এবং রোধের ব্যাস্তানুপাতিক।

ও'মের সূত্রের পরীক্ষামূলক প্রমাণ:

বর্ণনা : একটি ব্যটারি B , একটি চাবি K, একটি অ্যমিটার A, একটি স্থির মানের রোধ R এবং একটি পরিবর্তনশীল রোধ R_h শ্রেণী সমবায়ে যুক্ত করা হল । স্থির রোধের দুই প্রান্তের বিভব পার্থক্য নির্ণয় করার জন্য এর সমান্তরালে একটি ভোল্ট মিটার V সংযুক্ত করা হল ।

কার্যপদ্ধতিঃ চাবি K বন্ধ করে ও পরিবর্তনশীল রোধ R_h কে উপযোজন করে বর্তনীর

মধ্যদিয়ে তড়িৎ প্রবাহিত করে অ্যামিটার ও ভোল্টমিটারের পাঠ নেয়া হয়। R_h এর মান আন্তে আন্তে পরিবর্তিন করে প্রত্যেকবার অ্যামিটার ও ভোল্ট মিটারের পাঠ গ্রহন করা হয়। মনে করি, R_h এর বিভিন্ন অবস্থানের জন্য বর্তনীর প্রবাহ মাত্রা I_I , I_2 ও I_3 ইত্যাদি এবং এ সব মানের জন্য স্থির রোধের দু' প্রান্তের মধ্যবর্তী বিভব পার্থক্য যথাক্রমে V_I , V_2 ও V_3 ইত্যাদি।

ফলাফল: পরীক্ষায় দেখা যায় যে,
$$\frac{V_1}{I_1} = \frac{V_2}{I_2} = \frac{V_3}{I_3} =$$
ধ্রুবসংখ্যা $= R$

$$\Rightarrow \stackrel{V}{\stackrel{}{=}} R$$

$$\Rightarrow V = IR$$
 বা, $V \propto I$ সুতরাং ও'মের সূত্রটি প্রমানিত।

I এর মান গুলি X অক্ষে ও V এর মান গুলি Y অক্ষে স্থাপন করে একটি লেখচিত্র অংকন করলে এটি মূলবিন্দুগামী একটি সরল রেখা হবে। এই লেখচিত্র প্রমান করে যে, বিভব পার্থক্য বিদ্যুৎ প্রবাহের সমানুপাতিক। ফলে ও'মের সূত্রটি প্রমানিত হল।

২। সুবেদী এ্যামিটার ও ভোল্টমিটার ব্যবহার করা উচিৎ।

তড়িৎচ্চালক শক্তি ও বিভব পার্থক্যের মধ্যে সম্পর্ক:

তড়িংচ্চালক শক্তি: কোন খোলা তড়িংকোষের দুই পাতের বিভব পার্থক্যকে ঐ কোষের তড়িং চালক শক্তি বলে। একে E দ্বারা প্রকাশ করা হয়। এর একক ভোল্ট।

বিভব পার্থক্যঃ তড়িৎ প্রবাহ চলাকালে বর্তনীর এক বিন্দু হতে অন্য বিন্দুতে একক ধনাত্মক চার্জ আনতে যে পরিমান কাজ সাধিত হয়, তাকে ঐ দু'বিন্দুর মধ্যকার বিভব পার্থক্য বলে। একে V দ্বারা প্রকাশ করা হয়। এর একক ভোল্ট।

3

<u>অভ্যন্তরীণ রোধ:</u> কোষের মধ্যে বিদ্যুৎ প্রবাহ কিছুটা রোধ বা বাধার সম্মুখীন হয়। কোষের ভিতরের এ বাধা বা রোধকে কোষের অভ্যন্তরীণ রোধ বলে। একে r দ্বারা প্রকাশ করা হয়। এর একক ওহম।

E তড়িৎ চালক শক্তি ও r অভ্যন্তরীণ রোধের একটি কোষকে বহিঃরোধ ${\bf R}$ এর সাথে চাবি ${\it K}$ -এর সাহায্যে যুক্ত করে চাবি বন্ধ করলে বর্তনীতে প্রবাহ ${\bf I}$ চলে। কোষের তড়িৎ চালক শক্তি ${\it E}$ হলো একক একক চার্জকে পূর্ণ বর্তনীর কোন এক বিন্দু হতে ${\bf R}$ -এর মধ্যদিয়ে চালনা করে আবার উক্ত বিন্দুতে আনতে সর্বমোট শক্তি খরচের পরিমান।

মনে করি, E শক্তির এক অংশ V ব্যায় হয় R —এর মধ্যদিয়ে চালনা করে এবং বাকী অংশ V' ব্যায় হয় ব্যায় হয় কোষের অভ্যন্তনীণ রোধ r —এর মধ্যদিয়ে চালনা করে করতে।

সুতরাং শক্তির নিত্যতা সূত্রানুসারে, E=V+V'

$$\Rightarrow E = IR + Ir \qquad \left[\because V = IR, \ I \quad V' = Ir \right]$$
$$\Rightarrow E = I(R + r)$$

 $\therefore I = rac{E}{R+r} = rac{V}{R}$ ইহাই বিভব পার্থক্যের সাথে তড়িৎচালক বলের তথা তড়িৎ প্রবাহের সম্পর্কের রাশিমালা।

তড়িৎ চালক শক্তি ও বিভব পার্থক্যের মধ্যে পার্থক্য:

তড়িৎ চালক শক্তি	্বিভব পার্থক্য
১। খোলা তড়িৎ কোষের দু'পাতের বিভব পার্থক্যকে ঐ	১। তড়িৎ প্রবাহ চলাকালে বর্তনীর এক বিন্দু হতে অন্য
কোষের তড়িৎ চালক শক্তি বলে।	বিন্দুতে একক ধুনাত্মক চার্জ আনতে যে পরিমান কাজ
	সাধিত হয়, তাকে ঐ দু'বিন্দুর মধ্যকার বিভব পার্থক্য
	वल्।
২। একে E দ্বারা প্রকাশ করা হয়।	২০ একৈ V দ্বারা প্রকাশ করা হয়।
৩। এটি বর্তনীর রোধের উপর নির্ভর করে না।	৩ এটি বর্তনীর রোধের উপর নির্ভর করে।
৪। এটি কারণ।	৪। এটি ফল।

রোধ: পরিবাহীর যে ধর্ম এর মধ্যদিয়ে বিদ্যুৎ প্রবাহকে বাধাদেয় তাকে রোধ বলে। নির্দিষ্ট তাপমাত্রায় পরিবাহীর বিভব অন্তর ও বিদ্যুৎ প্রবাহের অনুপাত একটি ধ্রুব সংখ্যা এই ধ্রুব সংখ্যাকে পরিবাহীর রোধ বলে। একে r বা R দ্বারা প্রকাশ করা হয়। রোধের একক ওহম।

প্রথম: কোন পরিবাহকের যে পরিমান রোধের দুইপ্রান্তের বিভব পার্থক্য I ভোল্ট হলে এর মধ্যদিয়ে I অ্যাম্পিয়ার বিদ্যুৎ প্রবাহিত হয় তাকে I ওহম রোধ বলে। ওহম কে Ω (ওমেগা) চিহ্ন দ্বারা প্রকাশ করা হয়।

পরিবাহিতা(Conductance): রোধের ব্যান্তমানকে পরিবাহিতা বলে। ওহমের সূত্র থেকে আমরা পাই, $I \propto V$ বা, $I = GV : G = \frac{I}{V}$ অর্থাৎ কোন পরিবাহকের বিদ্যুৎ প্রবাহ ও বিভব পার্থক্যের অনুপাত একটি ধ্যুব সংখ্যা এই ধ্রুব সংখ্যাকে পরিবাহকের পরিবাহিতা বলে। পরিবাহিতার একক সিমেন্স।

<u>সিমেশ</u>: কোন পরিবাহকের যে পরিমান পরিবাহিতার দুইপ্রান্তের বিভব পার্থক্য 1 ভোল্ট হলে এর মধ্যদিয়ে 1 অ্যাম্পিয়ার বিদ্যুৎ প্রবাহিত হয় তাকে 1 সিমেশ পরিবাহিতা বলে। সিমেশকে কে S চিহ্ন দ্বারা প্রকাশ করা হয়।

বোধের কালার কোড: কার্বন রোধ এত ছোট যে এদের গায়ে এদের মান লেখা সম্ভব হয় না। তাই এ সব রোধ গুলোতে বিভিন্ন রং থাকে এবং এ সব রংই হল সংখ্যার মান। প্রত্যেক রং এর জন্য এক একটি সংখ্যা থাকে এবং ঐ রংএর সংখ্যা থেকে

4

বিশেষ প্রক্রিয়ায় গণনার সাহায্যে রোধের মান নির্ণয় করা হয়। রং দ্বারা রোধ গণনার এ পদ্ধতিকে বলা হয় রোধের কালার কোড।

বর্ণকোড সহজে মনে রাখার জন্য B B ROY Good Boy Very Good Worker বাক্যটি ব্যবহার করা যেতে পারে। এখানে বড় হাতের অক্ষরগুলি পর্যায় ক্রমে রঙের নাম ও কোড যথাক্রমে Black=0, Brown=1, Red=2, Orange=3, Yellow=4, Green=5, Blue=6, Violet=7, Gray=8, White=9 নির্দেশ করে। প্রথম তিনটি কোড থেকে রোধের মান ও শেষ কোডটিতে টলারেন্স নির্দেশ করে। সেই হিসেবে ৩য় কালার হিসেবে আরও দুটি রং যথা Golden=-1, Silver=-2 গ্রহন করা হয়। এ ছাড়া ৪র্থ রং টলারেন্স মধ্যে $Red \pm 2\%$, $Golden\pm 5\%$, $Silver\pm 10\%$ রং না থাকলে $\pm 20\%$ ধরা হয়। রোধ নির্ণয়ের প্রকৃত ফরমুলাটি হল, $R=(First\ color\times 10+2nd\ Color)\times 10^{Third\ Color}\pm Fourth\ Color\%$ উদাহরণঃ হলুদ, বেগুনী, লাল ও লাল হলে রোধের মান, $R=(4\times 10+7)10^2\pm 2\%=4700\pm 2\%$,

<u>রোধের উষ্ণতা শুনাঙ্ক (Temperature co-efficient of resistance):</u> কোন পরিবাহকের রোধ তার তাপমাত্রার উপর নির্ভর করে। ধাতব পদার্থের তাপমাত্রা বাড়লে রোধ বাড়ে কিন্তু রোধ তাপমাত্রার সমানুপাতিক নয়।

রাধের উষ্ণতা গুনাঙ্কের সংজ্ঞা: $0^{\circ}C$ তাপমাত্রার একক রোধের কোন পরিবাহকের তাপমাত্রা একক পরিমান বৃদ্ধিতে তার রোধের যে বৃদ্ধি ঘটে তাকে ঐ পরিবাহকের উপাদানের রোধের উষ্ণতা গুনাঙ্ক বলে। উষ্ণতা গুনাঙ্ককে α দ্বারা প্রকাশ করা হয়। $0^{\circ}C$ তাপমাত্রার কোন পরিবাহকের রোধ R_0 হলে রোধের উষ্ণতা গুনাঙ্ক $\alpha=\frac{R_0-R_0}{R_0\theta}$ বা $R_0=R_0(1+\alpha\theta)$ বিভিন্ন পদার্থের রোধের উষ্ণতা গুনাঙ্ক বিভিন্ন। রোধের উষ্ণতা গুনাঙ্কের একক C^{-1} ।

রোধের সূত্রঃ রোধ পরিবাহীর দৈর্ঘ্য, প্রস্থচ্ছেদের ক্ষেত্রফল, উপাদান ও তাপমাত্রার উপর নির্ভর করে। রোধের এ নির্ভরশীলতার উপর ভিত্তি করে রোধের তিনটি সূত্র আছে। সূত্রগুলো নিম্মরূপঃ

- \S । দৈর্ঘ্যের সূত্র (Law of Length): তাপমাত্রা, উপাদান ও প্রস্থচ্ছেদের ক্ষেত্রফল স্থির থাকলে কোন পরিবাহীর রোধ দৈর্ঘ্যের সমানুপাতিক। কোন পরিবাহীর দৈর্ঘ্য L, প্রস্থচ্ছেদের ক্ষেত্রফল A এবং রোধ R হলে সূত্রানুসারে, $R \propto L$ যখন A ধ্রুবক।
- <u>২। প্রস্থাচ্ছেদের সূত্র (Law of cross-section)</u> তাপমাত্রা, উপাদান ও দৈর্ঘ্য স্থির থাকলে কোন পরিবাহীর রোধ প্রস্থাচ্ছেদের ক্ষেত্রফলের ব্যাস্তানুপাতিক। কোন পরিবাহীর দৈর্ঘ্য L, প্রস্থাচ্ছেদের ক্ষেত্রফল A এবং রোধ R হলে সূত্রানুপারে, $R \propto \frac{1}{A}$ যখন L প্রুবক।
- <u>৩। উপাদানের সূত্র (Law of material or substance):</u> তাপমাত্রা, দৈর্ঘ্য ও প্রস্থচ্ছেদের ক্ষেত্রফল স্থির থাকলে বিভিন্ন পরিবাহীর রোধ বিভিন্ন হয়। ১ম ও ২য় সূত্র থেকে পাই, $R \propto \frac{L}{A}$ বা, $R = \rho \frac{L}{A}$ এখানে ρ একটি সমানুপাতিক ধ্রুবক। এর মান পরিবাহীর উপাদান ও তাপমাত্রার উপর নির্ভর করে। একে নির্দিষ্ট তাপমাত্রায় পরিবাহীর উপাদানের আপেক্ষিক রোধ বা রোধাংক বলে।

<u>আপেক্ষিক রোধ বা রোধাংক (Resistivity)</u>: কোন নির্দিষ্ট তাপমাত্রায় একক দৈর্ঘ্যের ও একক প্রস্থচ্ছেদের ক্ষেত্রফলের কোন পরিবাহকের রোধকে বা, একক বাহু বিশিষ্ট কোন ঘনকের রোধকে ঐ তাপমাত্রায় ঐ পরিবাহকের উপাদানের আপেক্ষিক রোধ বা রোধাংক বলে। রোধাংকের একক, $\rho = \frac{RA}{L} = \frac{\Omega - m^2}{m} = \Omega - m$ কোন পদার্থের মান $1.6 \times 10^{-8} \, \Omega - m$ বলতে এই বুঝি যে, 1 m বাহু বিশিষ্ট, উক্ত পদার্থের একটি ঘনকের রোধের মান হবে, $1.6 \times 10^{-8} \, \Omega$ ।

<u>পরিবাহকত্ব বা পরিবাহিতাংক (Conductivity)</u>: রোধাংকের বিপরীত মানকে পরিবাহিতাংক বলে। একে σ দ্বারা প্রকাশ করা হয়। অর্থাৎ $\sigma = \frac{I}{\rho}$ । একক দৈর্ঘ্য এবং একক প্রস্তুচ্ছেদের ক্ষেত্রফল বিশিষ্ট কোন পরিবাহকের দুই প্রান্তে বিভব পার্থক্য একক হলে ঐ পরিবাহকের মধ্যদিয়া যে পরিমান তড়িৎ প্রবাহিত হয় তাকে ঐ পরিবাহকের পরিবাহকত্ব বা পরিবাহিতাংক বলে। এর একক Sm⁻¹

<u>রোধের সমবায় (Combination of Resistance):</u> একাধিক রোধকে একত্রে যুক্ত করাকে বলে রোধের সমবায়। রোধের সমবায় ২ প্রকার ঃ যথা - (ক) রোধের শ্রেণী সমবায় (২) রোধের সমান্তরাল সমবায়।

রোধের শ্রেণী সমবায় (Series Combination of Resistance): যখন কতকগুলো রোধকে এমন ভাবে পরপর সাজানো হয় যাতে রোধগুলোর মধ্য দিয়ে একই মাত্রার তড়িৎপ্রবাহ চলে তখন উক্ত সমবায়কে অনুক্রম বা শ্রেণী সমবায় বলে। R_1,R_2 ও R_3 মানের তিনটি রোধকে শ্রেণী সমবায়ের নিয়মানুযায়ী সংযুক্ত করা হল। যেহেতু রোধগুলি শ্রেণীসমবায়ে সংযুক্ত আছে, সুতরাং এদের প্রত্যেরে মধ্যদিয়ে একই তড়িৎপ্রবাহ I প্রবাহিত হবে। ধরি প্রত্যেকটি রোধের দু'প্রান্তের বিভব পার্থক্য যথাক্রমে V_1,V_2 ও

$$V_3$$
। যদি রোধ গুলির দু'প্রান্তে মোট বিভব পার্থক্য V । অতএব $V{=}V_1{+}V_2{+}V_3$

$$\Rightarrow IR_S = IR_1 + IR_2 + IR_3 \quad [\because V = IR_S, V_1 = IR_1, V_2 = IR_2, V_3 = IR_3]$$

$$\Longrightarrow R_S = R_1 + R_2 + R_3$$
 [উভয় পক্ষ েক I দ্বারা ভাগ $\,$

$$\therefore R_S = R_1 + R_2 + R_3 \dots \dots \dots + R_n$$

রোধের সমান্তরাল সমবায় (Parallel Combination of Resistance): যখন কতকগুলো রোধের প্রত্যেকে এক প্রান্ত এক বিন্দুতে এবং অপর প্রান্ত গুলি অন্য এক বিন্দুতে যুক্ত করা হয় এবং প্রত্যেকটি রোধের দু'প্রান্তে একই বিভব পার্থক্য থাকে তখন উক্ত সমবায়কে সমান্তরাল সমবায় বলে। R_1 , R_2 ও R_3 মানের তিন্রটি রোধকে সমান্তরাল সমবায়ের নিয়মানুযায়ী সংযুক্ত করা হলে। যেহেতু রোধগুলি সমান্তরাল সমবায়ে সংযুক্ত করা হয়েছে। কোষ থেকে উৎপন্ন মূল তড়িৎ প্রবাহ I সাধারণ বিন্দুতে পৌছে I_1 I_2 ও I_3 তে বিভক্ত হয়ে যথাক্রমে R_1 , R_2 ও R_3 রোধ সমুহের মধ্যদিয়ে অপর বিন্দুতে পৌছবেএবং আবার একত্রিত হয়ে মূল তড়িৎ প্রবাহ I এ রূপান্তরিত হবে। ধরি সাধারণ বিভব পার্থক্য V। অত্রবে ওহমের সূত্র হতে পাই,

$$\begin{split} I &= I_1 + I_2 + I_3 \\ \Rightarrow \frac{V}{R_P} &= \frac{V}{R_I} + \frac{V}{R_2} + \frac{V}{R_3} \\ \Rightarrow \frac{I}{R_P} &= \frac{I}{R_I} + \frac{I}{R_2} + \frac{I}{R_3} \\ \therefore R_P &= \frac{I}{\frac{I}{R_I}} + \frac{I}{R_2} + \frac{I}{R_3} & \cdots & \cdots & + \frac{I}{R_n} \end{split}$$

কার্শফের ১ম সূত্র (Kirchhoff's 1st law):
কার্ন বৈদ্যুতিক বর্তনীর যে কোন সংযোগ বিন্দুতে তড়িৎপ্রবাহ মাত্রা সমূহের বীজগণিতিক যোগফল শূন্য।

ব্যখ্যা (Explanation): ধরা যাক কোন একটি I_1 , I_2 , I_3 , I_4 , ও I_5 মানের বিভিন্ন অভিমুখী প্রবাহমাত্রা O বিন্দুতে মিলিত হয়েছে । O বিন্দু অভিমুখী প্রবাহকে ধনাত্মক প্রবাহ এবং নির্গত প্রবাহকে ঋনাত্মক প্রবাহ ধরলে, $I_1+I_2-I_3+I_4-I_5=0$

6

কার্শফের ২য় সূত্র (Kirchhoff's 2nd law): কোন বদ্ধ তড়িৎ বর্তনীর বিভিন্ন অংশগুলোর রোধ এবং তাদের আনুষঙ্গিক প্রবাহের গুনফলের বীজগণিতিক যোগফল ঐ বর্তনীর অর্ন্তভূক্ত মোট তড়িৎ চালক শক্তির সমান। একে লুপ উপপাদ্য বলে।

ব্যখ্যা (Explanation): ডান পার্শ্বের চিত্রে কার্শপের লুপ উপপাদ্য অনুসারে, $IR_1 + IR_2 + IR_3 - E = 0$

ও'মের সূত্রের সাহায্যে হুইটস্টোন ব্রীজ নীতি প্রতিষ্ঠা:

ছুইটস্টোন ব্রীজ নীতি (Wheatone's Bridge principle): $P, Q, R \otimes S$ রোধ চারটিকে চিত্রানুযায়ী $A, B, C \otimes D$ এর স্থাপন করে $B \otimes D$ এর মধ্যে গ্যালভানোমিটার এবং $A \otimes C$ মধ্যে ব্যাটারী সংযুক্ত করে চাবির সাহায়্যে বিদ্যুৎ প্রবাহ চালনা করে $P, Q, R \otimes S$ রোধ চারটিকে কম বেশী করে যদি গ্যালভানোমিটারের বিক্ষেপ শূন্য করা যায় তবে $\frac{P}{Q} = \frac{R}{S}$ হবে, আর একেই হুইটস্টোন ব্রীজ নীতি বলে।

কার্যপ্রণালী 8 P, Q, R ও S রোধ চারটিকে কম বেশী করে গ্যালভানোমিটারের বিক্ষেপ শূন্য করা হল । ব্রীজের এ অবস্থাকে নাল অবস্থা বলে । এই অবস্থায় $I_g = 0$ ধরা যাক, নিস্পন্দ অবস্থায় P ও Q এর মধ্যদিয়ে তড়িৎ প্রবাহের মান I_1 ও R ও S এর মধ্যদিয়ে তড়িৎ প্রবাহের মান I_2 এবং A, B, C ও D বিন্দুর বিভব যথাক্রমে V_A , V_B , V_C ও V_D । যেহেতু গ্যালভানোমিটারের বিক্ষেপ শূন্য অর্থাৎ এর মধ্যদিয়ে কোন বিদ্যুৎ প্রবাহিত হয় না সেহেতু B ও D বিন্দুর বিভব সমান হবে অর্থাৎ $V_B = V_D$ হবে ।

(1) ও (2) নং সমাকরণ হতে পাই, $\frac{P}{Q} = \frac{R}{S}$ (হুইটস্টোন ব্রীজ নীতিটি প্রমাণিত)

কার্শফের সূত্রের সাহায্যে হুইটস্টোন ব্রীজ নীতি প্রতিষ্ঠা:

ছুইটস্টোন ব্রীজ নীতি (Wheatone's Bridge principle): $P, Q, R \otimes S$ রোধ চারটিকে চিত্রানুযায়ী $A, B, C \otimes D$ এর স্থাপন করে $B \otimes D$ এর মধ্যে গ্যালভানোমিটার এবং $A \otimes C$ মধ্যে ব্যাটারী সংযুক্ত করে চাবির সাহায়্যে বিদ্যুৎ প্রবাহ চালনা করে P, Q,

R ও S রোধ চারটিকে কম বেশী করে যদি গ্যালভানোমিটারের বিক্ষেপ শূন্য করা যায় তবে $\frac{P}{Q} = \frac{R}{S}$ হবে, আর একেই হুইটস্টোন ব্রীজ নীতি বলে।

 \mathcal{E} ট বিন্দুতে কার্শফের ১ম সূত্র প্রয়োগ করে পাই, $I_1-I_2-I_{_{\mathcal{E}}}=0$

গ্যালভানোমিটারের প্রবাহ, $I_{g}=0$ ফলে, $I_{1}=I_{2}$ $\ldots(1)$

D বিন্দুতে কার্শফের ১ম সূত্র প্রয়োগ করে পাই, $I_3 + I_g - I_4 = 0$

গ্যালভানোমিটারের প্রবাহ, $I_g=0$ ফলে, $I_3=I_4$ (2)

ABDA বদ্ধ বর্তনীর ক্ষেত্রে কার্শফের ২য় সূত্র প্রয়োগ করে পাই, $I_1P+I_gG-I_3R=0$

এখানে G গ্যালভানোমিটারের রোধ। গ্যালভানোমিটারের প্রবাহ, $I_g=0$ ফলে, $I_1P=I_3R\dots\dots(3)$

BCDB বদ্ধ বর্তনীর ক্ষেত্রে কার্শফের ২য় সূত্র প্রয়োগ করে পাই, $I_2Q-I_4S-I_gG=0$

গ্যালভানোমিটারের প্রবাহ, $I_g=0$ ফলে, $I_2Q=I_4S$ (4) কিন্তু $I_1=I_2$ ও $I_3=I_4$ বলে,

(4) নং সমীকরণ দাড়ায়, $I_1Q = I_3S \dots \dots (5)$

(3) নং সমীকরকে (5) নং সমীকরণ দ্বারা ভাগ করে পাই, $\frac{I_1P}{I_1Q}=\frac{I_3R}{I_3S}$ $\therefore \frac{P}{Q}=S$ হুইটস্টোন ব্রীজ নীতি প্রতিষ্ঠিত।

মিটার ব্রীজ: যে যন্ত্রে এক মিটার লম্বা সুষম প্রস্থচ্ছেদের একটি রেপ্রের তারকে কাজে লাগিয়ে হুইটস্টোন ব্রীজ নীতি ব্যবহার করে কোন অজানা রোধ নির্ণয় করা হয় তাকে মিটার ব্রীজ বলে।

যন্ত্রের বর্ণনা : এই যন্ত্রে একটি কাঠের ফ্রেমের উপর তিনটি তামার বা

পিতলের পাত a, b ও c বসানো থাকে এতে a ও b -এর মধ্যে একটি ও b ও c -এর মধ্যে একটি ফাঁক থাকে। a ও c পাতের যথাক্রমে A ও C বিন্দুর সাথে এক মিটার লম্বা সুষম প্রস্থচ্ছেদের একটি ম্যাঙ্গানিনের রোধ তার টানা দেওয়া থাকে [উপরের চিত্র]। এই তারের নীচে একটি মিটার স্কেল বসানো থাকে যার সাহায্যে এই তারের যে কোন অংশের দৈর্ঘ্য নির্ণয় করা যায়। এই তারের দৈর্ঘ্য ঠিক এক মিটার হওয়ায় এই যুদ্ধের নাম মিটার ব্রীজ হয়েছে।

বর্তনী সংযোগ (Circute Connection): মিটার ব্রীজের দুই শূন্য স্থানে দুটি রোধ P ও Q বসানো হয় যার একটি জানা ও অপরটি অজানা। A ও C বিন্দুর মধ্যে একটি চাবি K -সহ একটি ব্যাটারি E সংযুক্ত করা হয়। একটি গ্যালভানোমিটার G -এর এক প্রান্ত B বিন্দুর সাথে এবং অপর প্রান্ত একটি জকি J -এর সাথে যুক্ত করা হয়। এই জকি J -কে AC তারের যে কোন বিন্দুতে স্পর্শ করানো হয়।

রোধ নির্ণয়ের তত্ত্ব: চাবি বন্দ করে প্রবাহ চালিয়ে জকিটিকে AC তারের D বিন্দুতে স্পর্শ করা হলে মিটার ব্রীজটি একটি হুইট স্টোন ব্রীজে রূপ নেয়। এর চারটি রোধ P,Q এবং AD অংশের তারের রোধ R ও DC অংশের তারের রোধ S হুইটস্টোন ব্রীজের চারটি বাহু গঠন করে।

গ্যালভানোমিটারে কোন বিক্ষেপ না হলে হুইট স্টোন ব্রীজ নীতি অনুসারে আমরা পাই,

$$\frac{P}{O} = \frac{R}{S} \dots \dots \dots (1)$$

8

রোধ নির্ণয় (Determination of Resistance): ধরা যাক, জকিটি AC তারকে D বিন্দুতে স্পর্শ করলে গ্যলভানোমিটারের বিক্ষেপ হয়না। সুতরাং D বিন্দুটি নিস্পন্দ বিন্দু । A বিন্দু থেকে নিস্পন্দ বিন্দুর দুরত্ব $AD = l\ cm$ সুতরাং $DC = (100-l)\ cm$ । আরো ধরা যাক, AC তারের প্রতি সেন্টিমিটার দৈর্ঘ্যের রোধ σ । সুতরাং AD অংশের রোধ, $R = l\sigma$ এবং DC অংশের রোধ, $S = (100-l)\sigma\ R$ ও S -এর এই মান (1) নং সমীকরণে বসালে আমরা পাই,

$$\frac{P}{Q} = \frac{l\sigma}{(100 - l)\sigma}$$

 $\therefore \frac{P}{Q} = \frac{l}{(100-l)}$ এই সমীকরণে P ও Q রোধের যে কোন একটি জানা থাকলে অপরটি জানা যায়। মনে করি, জানা রোধ

$$Q,$$
 : অজানা রোধ, $P = \frac{lQ}{(100-l)}$

আপেক্ষিক রোধ নির্ণয় (Determination of Specific resistance):

ধরা যাক, পরিবাহকের দৈর্ঘ্য L, প্রস্থচ্ছেদের ক্ষেত্রফল A, ব্যাসার্ধ্য r, রোধ P এবং এর উপাদানের আপেক্ষিক রোধ ρ । আমরা জানি, $\rho = \frac{PA}{L}$ $\therefore \rho = \frac{\pi r^2 P}{L}$ (2) এখন মিটার ব্রীজের সাহায্যে পরিবাহকের রোধ P, মিটার ক্ষেলের সাহায্যে দৈর্ঘ্য L এবং স্কু গজের সাহায্যে পরিবাহকের ব্যাসার্ধ r বের করে (2) নং সমীকরণে ব্যসিয়ে আপেক্ষিক রোধ ρ নির্ণয় করা হয় ।

Want more Updates: https://www.facebook.com/tanbir.ebooks দ্বিতীয় পত্রের অংকের সমাধান

2nd Paper Math Solution

২। প্রবাহ ও বর্তনী (02. Electric Current & Circuit)

১। $10\Omega,\,50\Omega$ এবং 190Ω রোধের তিনটি পরিবাহককে শ্রেণীতে সংযুক্ত করে এর দু'প্রান্তে 250V প্রয়োগ করা হয়েছে। পরিবাহক তিনটির প্রত্যেকটির দু'প্রান্তের বিভব পার্থক্য নির্ণয় কর।

২। 99 Ω রোধের একটি গ্যালভানোমিটারের পাল্লা আদিপাল্লার 100 গুন করতে গ্যালভানোমিটারের সাথে কত কত মানের সান্ট লাগাতে হবে?

আমরা জানি,

$$I_g = \frac{IS}{S+G}$$
 এখানে, রোধ $G = 99\Omega$ $\Rightarrow x = \frac{100x \times S}{S+99}$ ধরি $I_g = x$ $\therefore I = 100 \ x$ $\Rightarrow 100S = S+99$ $\Rightarrow 99S = 99$ $\therefore S = 1\Omega$ (Ans.)

৩। 100Ω রোধের একটি গ্যালভানোমিটার 1mA তড়িছ প্রবাহ নিরাপদে গ্রহন করতে পারে। 1A তড়িছ প্রবাহ মাপার জন্য কত রোধের একটি সান্টের প্রয়োজন হবে?

আমরা জানি,

$$I_g = \frac{IS}{S+G}$$
 রোধ, $G = 100\Omega$ রেরে, $I_g = 1mA$ $= 1 \times 10^{-3} A$ $\therefore I = 1A$ সান্ট, $S = 9$.

 \therefore S = 0.1001001 Ω = 0.1 Ω (Ans.)

8। একটি কোষের তড়িচ্চালক শক্তি 1.5V এবং অভ্যন্তরীণ রোধ 2Ω । এর প্রান্ত দ্বয় 10Ω রোধের তার দ্বারা যুক্ত করলে কত তড়িৎ প্রবাহিত হবে?

আমরা জানি,
$$I = \frac{E}{R+r}$$
 তড়িচ্চালক শক্তি, $E = 1.5V$ অভ্যন্তরীণ রোধ, $r = 2\Omega$ বহিঃ রোধ, $R = 10\Omega$ তড়িৎ প্রবাহ, $I = 9.125$ A (Ans.)

ে। একটি কোষের তড়িচ্চালক শক্তি 2V ও অভ্যন্তরীন রোধ 0.5Ω । একে $1.5\Omega,\,2\Omega$ ও 4Ω রোধের তিনটি তারের সাথে যুক্ত করা হল। মধ্যম তারের দুই প্রান্তের বিভব পার্থক্য নির্ণয় কর।

আমরা জানি,

$$I = \frac{E}{r + R_1 + R_2 + R_3}$$
 এখানে, বিভব, $E = 2V$ অভ্যন্তরীন রোধ, $r = 0.5\Omega$ রোধ, $R_1 = 1.5 \Omega$ রোধ, $R_2 = 2 \Omega$ রোধ, $R_3 = 4 \Omega$ বিভব অন্তর, $R_3 = 4 \Omega$ বিভব অন্তর, $R_3 = 4 \Omega$

∴ মধ্যম তরের দুই প্রান্তের বিভব পার্থক্য

$$V_2 = IR_2 = 0.25 \times 2 \text{ V} = 0.5 \text{ V (Ans.)}$$

৬। নিচের বর্তনীতে R_1 =100 Ω , R_2 = R_3 = 50Ω , R_4 = 75Ω এবং E = 6V প্রতিটি রোধের মুধ্যদিয়ে তড়িং প্রবাহ নির্ণয় কর।

আমরা জানি, $\frac{1}{R_p} = \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}$ $\Rightarrow \frac{1}{50} + \frac{1}{50} + \frac{1}{75}$ $\Rightarrow \frac{1}{R_p} = \frac{3+3+2}{150}$

$$\Rightarrow$$
 R_p = $\frac{150}{8}\Omega$ = 18.75 Ω
আবার, I = $\frac{E}{R_1 + R_p}$

$$\Rightarrow I = \frac{6}{100 + 18.75} = \frac{6}{118.75} = 0.0505A$$

$$V_P = I \times R_P = 0.0505 \times 18.75 = 0.946V$$

$$m R_2$$
 এর মধ্য দিয়ে প্রবাহিত বিদ্যুৎ প্রবাহ $m I_2 = {0.946 \over 50} = 0.0189$ A

$$m R_3$$
 এর মধ্য দিয়ে প্রবাহিত বিদ্যুৎ প্রবাহ $m I_3 = \frac{0.946}{50} = 0.0189
m \ A$

$$R_4$$
 এর মধ্য দিয়ে প্রবাহিত বিদ্যুৎ প্রবাহ $I_4 = \frac{0.946}{75} = 0.0126 A \text{ (Ans)}$

৭। একটি রোধের গায়ে যথাক্রমে হলুদ, বেগুনি, কমলা ও লাল রং দেয়া আছে। রোধের সর্বোচ্চ ও সর্বোনিম্ন মান কত?

আমরা জানি , রোধের মান,
$$R=(F\times 10+S)\times 10^T\pm F\%$$
 প্রথম পটি, $F=$ হলুদ $=4$ হয় পটি, $F=$ হলুদ $=4$ হয় পটি, $S=$ বেগুনি $=7$ তয় পটি, $S=$ বেগুনি $=7$ তয় পটি, $S=$ কমলা $=3$ ৪র্থ পটি, $S=$ লাল $=2$ $\Rightarrow R=47000\pm \frac{47000\times 2}{100}$ $\Rightarrow R=(47000\pm 940)\Omega$

 \therefore সর্বোচ্চ রোধ 47940Ω ও সর্বোনিম্ন রোধ 46060Ω (Ans.)

৮। কোন একটি কোষের মধ্যদিয়ে নির্দিষ্ট মাত্রার তড়িৎ প্রবাহ চলছে। এর সাথে 120Ω রোধ শ্রেণীবদ্ধ ভাবে যুক্ত করলে প্রবাহমাত্রা পূর্বের অর্ধেক হয়। রোধকের রোধ কত?

আমরা জানি,

$$I_1 = \frac{V}{R_1}$$
 (1) ব্যাবার, $I_2 = \frac{V}{R_1 + R_2}$ (2)
$$I_1 = \frac{V}{R_1 + R_2}$$
(2)
$$I_2 = \frac{V}{R_1 + R_2}$$
(2)

(1) ÷ (2)
$$\frac{I}{0.5I} = \frac{V}{R_1} \times \frac{R_1 + 120}{V}$$

$$\Rightarrow \frac{10}{5} = \frac{R_1 + 120}{R_1}$$

$$\Rightarrow$$
 2R₁ = R₁ +120

$$\therefore R_1 = 120 \Omega \text{ (Ans.)}$$

৯। 0.48m দীর্ঘ এবং 0.12mm ব্যাসের একটি তারের রোধ 15 Ω । তারটির উপাদানের আপেক্ষিক রোধ নির্ণয় কর।

আমরা জানি,
$$\rho = \frac{RA}{L}$$

$$\Rightarrow \rho = \frac{R\pi r^2}{L}$$

$$\Rightarrow \rho = \frac{15 \times 3.14 (0.00006)^2}{0.48}$$
 েরাখ, $R = 15 \Omega$ আপেন্দিক রোধ, $R = 15 \Omega$ আপেন্দিক রোধ, $R = 15 \Omega$

১০। একটি কোষের তড়িচ্চালক শক্তি 2V এবং অভ্যন্থরীন রোধ 0.25Ω , 5Ω এবং 15Ω রোধের দুটি তার সমান্তরাল ভাবে সাজিয়ে কোষটির সাথে যুক্ত করলে প্রত্যেক তারের বিদ্যুৎ প্রবাহ নির্ণয় কর।

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2}$$
 $\Rightarrow \frac{1}{R_p} = \frac{1}{5} + \frac{1}{15}$
 $\Rightarrow \frac{1}{R_p} = \frac{3+1}{15}$
 $\Rightarrow \frac{1}{R_p} = \frac{3+1}{15}$
 $\Rightarrow \frac{1}{R_p} = \frac{4}{15}$
 $\Rightarrow R_p = \frac{15}{4} = 3.75 \Omega$
 $\Rightarrow I = \frac{E}{R_p + r} = \frac{2}{3.75 + .25}$

∴ $I = 0.5 A$

$$I_{1} = \frac{IR_{2}}{R_{1} + R_{2}} = \frac{0.5 \times 15}{5 + 15} = 0.375A$$

$$I_{2} = \frac{IR_{1}}{R_{1} + R_{2}} = \frac{0.5 \times 5}{5 + 15} = 0.125 \text{ A} \quad \text{(Ans.)}$$

১১। একটি অ্যামিটারের অভ্যন্তরীন রোধ 0.9Ω এবং এটি 5A পর্যন্ত প্রবাহ মাপতে পারে। এর সাহায্যে 50A প্রবাহ মাপতে হলে কি ব্যবস্থা নিতে হবে? আমরা জানি,

$$I_g = \frac{IS}{S+G}$$
 এখানে, রোধ, $G = 0.9\Omega$ $\Rightarrow 5 = \frac{50 \times S}{S+0.9}$ $\Rightarrow 50S = 5S+4.5$ $\Rightarrow 45S = 4.5$ $\therefore S = 0.1\Omega$ (Ans.)

১২। একটি হুইটস্টোন ব্রীজের চার বাহুতে যথাক্রমে 10,20,10 ও 60Ω রোধ যুক্ত করা হল। তৃতীয় বাহুতে কত রোধ কিভাবে যুক্ত করলে ব্রীজটি সাম্যাবস্তা লাভ করবে?

আমরা জানি,
$$\frac{P}{Q} = \frac{R}{S}$$
 রোধ, $P = 10~\Omega$ রোধ, $Q = 20~\Omega$ রোধ, $Q = 20~\Omega$ রোধ, $Q = 10~\Omega$ রোধ, $Q = 10$

প্রস্থাতে, $R=R_1+x$ 30=10+x বা. x=(30-10) $\Omega=20$ Ω (Ans.)

১৩। একটি তামার তারের দৈর্ঘ্য অপর তামার তারের দৈর্ঘ্যের তিনগুন। তার দুটির রোধ সমান হলে এদের ব্যাসের অনুপাত বের কর। আমরা জানি,

রোধ R₁ = R₂

$$\Rightarrow \frac{\rho l_1}{\pi r_1^2} = \frac{\rho l_2}{\pi r_2^2}$$
 $\Rightarrow \frac{l_1}{r_1^2} = \frac{l_2}{r_2^2}$
 $\Rightarrow \frac{l_1}{l_2} = \frac{r_1^2}{r_2^2}$
 $\Rightarrow \frac{l_1}{l_2} = \frac{r_1^2}{r_2^2}$
 $\Rightarrow \frac{r_1^2}{r_2^2} = \frac{3l}{l} \Rightarrow \frac{r_1}{r_2} = \sqrt{\frac{3l}{l}}$
 $\Rightarrow \frac{2r_1}{2r_2} = \sqrt{3} \Rightarrow \frac{d_1}{d_2} = \sqrt{3}$
 \therefore d₁: d₂ = 1.732:1 (Ans.)

১৪। একটি বর্তনী নিচে দেওয়া হল। এর বিভিন্ন রোধে তড়িৎ প্রবাহের মান কার্শকের সত্র প্রয়োগে নির্ণয় কর।

বাম পার্শ্বের লুপটিতে লুপ উপপাদ্য ব্যবহার করে পাই,

$$i_1R_1 + i_3R_3 = E_2$$

 $\Rightarrow 2i_1 + 5i_3 = 3$
 $\therefore i_1 = \frac{3 - 5i_3}{2} \dots \dots \dots (1)$

ডান পার্শ্বের লুপটিতে লুপ উপপাদ্য ব্যবহার করে পাই.

$$i_2R_2 + i_3R_3 = E_1$$

 $\Rightarrow i_2 + 5i_3 = 1.5$
 $\therefore i_2 = 1.5 - 5i_3 \dots \dots \dots (2)$

আবার জাংশন উপপাদ্য অনুসারে.

$$i_1 + i_2 - i_3 = 0 \dots \dots (3)$$

$$\Rightarrow \frac{3 - 5i_3}{2} + 1.5 - 5i_3 - i_3 = 0$$

$$\Rightarrow 3 - 5i_3 + 3 - 10i_3 - 2i_3 = 0$$

$$\Rightarrow 17i_3 = 6$$

$$\Rightarrow i_3 = \frac{6}{17}$$

$$i_1 = \frac{3 - 5i_3}{2} \dots \dots (1)$$

 $: i_3 = 0.352A$

$$\Rightarrow i_1 = \frac{3 - 5 \times 0.352}{2}$$

$$3 - 1.76 \quad 1.24$$

$$\Rightarrow i_1 = \frac{3 - 1.76}{2} = \frac{1.24}{2}$$

$$\therefore i_1 = 0.62A$$

$$i_2 = 1.5 - 5i_3 \dots \dots (2)$$

$$\Rightarrow i_2 = 1.5 - 5 \times 0.352$$

$$\Rightarrow i_2 = 1.5 - 1.76$$

 $\therefore i_2 = -\ 0.26 A$, i_2 ঋনাত্মক এর অর্থ, i_2 এর দিক যে দিকে ধরা হয়েছে প্রকৃত দিক তার বিপরীত দিকে।

১৫। 6Ω রোধের একটি তারকে টেনে তিনগুন লম্বা করা হলে প্রস্থচ্ছেদের ক্ষেত্রফল এক-তৃতীয়াংশ হয়। পরিশেষে তারটির রোধ কত হবে? আমরা জানি

$$\begin{split} \frac{R_1A_1}{L_1} &= \frac{R_2A_2}{L_2} \\ \Rightarrow \frac{6y}{x} &= \frac{R_2\frac{1}{3}y}{3x} \\ \Rightarrow \frac{6}{1} &= \frac{R_2}{3\times 3} \\ \therefore R_2 &= 54\Omega \text{ (Ans.)} \end{split}$$

১৬। 4Ω ও 6Ω এর দুটি রোধককে শ্রেণীসমবায়ে যুক্ত করে সমবায়টিকে 2.2V তড়িচ্চালক শক্তি ও 1Ω অভ্যন্তরীণ রোধের একটি কোষের সঙ্গে যুক্ত করে বর্তণী পূর্ণ করা প্রয়োগ করা হল। প্রতিটি রোধের প্রান্তীয় বিভব নির্ণয় কর।

আমরা জানি,
$$I=\frac{V}{R_1+R_2+r}$$
 বিভব, $V=2.2V$ রোধ, $R_1=4$ Ω রোধ, $R_2=6$ Ω আভ্যন্তরীণ রোধ $R=1$ বিভব অন্তর, $R=1$

্ঠিপ। 2V তড়িচ্চালক বল এবং 0.5Ω অভ্যন্তরীন রোধের একটি কোষের দুই প্রান্ত সমান্তরাল সমবায়ে সজ্জিত 20Ω এবং 30Ω রোধের দুটি তারের সঙ্গে যুক্ত আছে। প্রত্যেক তারের মধ্যদিয়ে প্রবাহিত তড়িৎ প্রবাহের মান নির্ণয় কর।

$$\begin{split} &\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} \\ &\Rightarrow \frac{1}{R_{p}} = \frac{1}{20} + \frac{1}{30} \\ &\Rightarrow \frac{1}{R_{p}} = \frac{3+2}{60} \\ &\Rightarrow \frac{1}{R_{p}} = \frac{3+2}{60} \\ &\Rightarrow \frac{1}{R_{p}} = \frac{1}{12} \\ &\therefore R_{p} = 12 \ \Omega \\ &\Rightarrow I = \frac{E}{R_{p} + r} = \frac{2}{12 + 0.5} \ A \\ &\therefore I = 0.16 \ A \\ &I_{1} = \frac{IR_{2}}{R_{1} + R_{2}} = \frac{0.16 \times 30}{20 + 30} = 0.096A \ &I_{2} = \frac{IR}{R_{1} + R_{2}} = \frac{0.16 \times 20}{20 + 30} = 0.064 \ A \ (Ans.) \end{split}$$

১৮। দুটি রোধককে শ্রেণীতে সংযুক্ত করলে তুল্য রোধ 32Ω এবং সমান্তরালে তে যুক্ত করলে তুল্য রোধ 6Ω হয়। রোধক দুটির রোধ বের কর।

আমরা জানি.

$$R_s = R_1 + R_2$$
 $\Rightarrow 32 = R_1 + R_2$
 $\therefore R_2 = 32 - R_1$(1)
আবার, $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2}$
 $\Rightarrow \frac{1}{6} = \frac{R_2 + R_1}{R_1 R_2}$
 $\Rightarrow \frac{1}{6} = \frac{32}{R_1(32 - R_1)}$
 $\Rightarrow 192 = 32R_1 - R_1^2$
 $\Rightarrow R_1^2 - 32R_1 + 192 = 0$
 $\Rightarrow R_1^2 - 24R_1 - 8R_1 + 192 = 0$
 $\Rightarrow R_1(R_1 - 24) - 8(R_1 - 24) = 0$
 $\Rightarrow (R_1 - 24)(R_1 - 8) = 0$
হয়, $R_1 - 24 = 0$ $\therefore R_1 = 24$
অথবা, $R_1 - 8 = 0$ $\therefore R_1 = 8$
 $R_2 = 32 - R_1$(1)
 $\therefore R_2 = 32 - 8 = 24$ যখন $R_1 = 8$
 \therefore রোধক দুয়ের রোধ যথাক্রমে 24Ω ও 8Ω (Ans.)

১৯। একই উপাদানের দু'টি রোধকের রোধ সমান। রোধক দু'টির দৈর্ঘ্যের অনুপাত 4:9 হলে রোধক দু'টির ব্যাসের অনুপাত কত?

আমরা জানি,

রোধ
$$R_1 = R_2$$

$$\Rightarrow \frac{\rho l_1}{\pi r_1^2} = \frac{\rho l_2}{\pi r_2^2}$$

$$\Rightarrow \frac{l_1}{r_1^2} = \frac{l_2}{r_2^2}$$

$$\Rightarrow \frac{l_1}{l_2} = \frac{r_1^2}{r_2^2}$$

$$\Rightarrow \frac{4}{9} = \frac{r_1^2}{r_2^2}$$

$$\Rightarrow \frac{r_1}{r_2} = \frac{2}{3}$$

$$\Rightarrow \frac{2r_1}{d_2} = \frac{2}{3}$$

$$\Rightarrow \frac{d_1}{d_2} = \frac{2}{3}$$

$$\therefore d_1(d_2) = 2:3 \quad (Ans.)$$

তড়িৎ প্রবাহের তাপীয় ক্রিয়া:

(Heating & Chemical Effect of Electric Current)

কোন পরিবাহীর মধ্য দিয়ে তড়িৎ প্রবাহিত হলে ঐ পরিবাহী গরম হয় অর্থাৎ পরিবাহীতে তাপ উৎপন্ন হয়। এই ঘটনাকে তড়িৎ প্রবাহের তাপীয় ক্রিয়া বলে।

R ওহম রোধের মধ্য দিয়ে ও অ্যাম্পিয়ার তড়িৎ প্রবাহ ঃ সেকেন্ড ব্যপী চললে উৎপন্ন তাপের পরিমান নির্ণয়:

ধরা যাক, R ওহম রোধ বিশিষ্ট একটি পরিবাহীর দু'প্রান্তের মধ্যে বিভব পার্থক্য V ভোল্ট হলে এক প্রান্ত হতে অন্য প্রান্তে Q কুলম্ব চার্জ প্রবাহিত হতে সম্পন্ন কাজের পরিমান, W = VQ জুল (1)

যদি t সময়ে Q কুলম্ব চার্জ প্রবাহিত হওয়ার ফলে প্রবাহ মাত্রা I হয় তবে, Q = It (1) নং সমীকরণে
বিসিয়ে পাই, W = VI t জুল

$$\Rightarrow$$
 W = IR. I t জুল [∵ V = IR]

$$\therefore W = I^2 R t$$
 জুল (2)

পরিবাহীর মধ্যদিয়ে তাপ উৎপাদনের ক্ষেত্রে কাজ যদি সম্পুর্ন রূপে তাপে পরিনত হয় তবে তবে জুলের সূত্রানুসারে পাই, কাজ তাপের সমানুপাতিক অর্থাৎ $W \propto H$ বা, $W = JH \dots \dots (3)$ এখানে J একটি ধ্রুব সংখ্যা এই ধ্রুব সংখ্যাকে তাপের যান্ত্রিক সমতা বলে। J এর মান 4.2 জুল/ ক্যালরি। (3) নং সমীকরণ হতে W এর (2) নং সমীকরণে বসিয়ে পাই,

JH = I²R t
⇒ H =
$$\frac{I^2R t}{J}$$

⇒ H = $\frac{I^2R t \text{ Joule}}{4.2\text{Joule/Cal}}$

∴ $H = 0.24 \, I^2 R \, t \, Cal \, ... \, ... \, (4) \, এই (4) নং সমীকরণ থেকে তাপ উৎপাদন ক্ষেত্রে তিনটি সূত্র পাওয়া যায় এই সূত্র$ তিনটিকে জুলের সূত্র বলে। সূত্রগুলো নিম্মরূপ:

(১) প্রথম সূত্র: প্রবাহমাত্রার সূত্র: কোন পরিবাহীর রোধ R এবং প্রবাহকাল t অপরিবর্তিত থাকলে পরিবাহীতে উৎপন্ন তাপ H প্রবাহ মাত্রার বর্গের সমানুপাতিক। প্রবাহমাত্রা I হলে স্ত্রানুযায়ী, $H \propto I^2$ যখন R ও t ধ্রুব থাকে।

কোন পরিবাহীর মধ্যদিয়ে I_1 , I_2 ও I_3 প্রবাহ সমান সময় ধরে চালালে উৎপন্ন তাপের পরিমান যথাক্রমে H_1 , H_2 ও H_3 হলে, এই সূত্রানুসারে, $\frac{H_1}{I_1^2}=\frac{H_2}{I_2^2}=\frac{H_3}{I_3^2}=$ ধ্র ব্রক্তি

(২) দ্বিতীয় সূত্র: রোধের সূত্র:

কোন পরিবাহীর প্রবাহমাত্রাম এবং প্রবাহকাল t অপরিবর্তিত থাকলে পরিবাহীতে উৎপন্ন তাপ H রোধের সমানুপাতিক। পরিবাহীর রোধ R হলে সত্রানুযায়ী, $H \propto R$

একই পরিমান প্রবাহ একই সময় ধরে R_1, R_2 ও R_3 রোধের ভিতর দিয়ে প্রবাহিত করলে উৎপন্ন তাপের পরিমান H_1, H_2 ও H_3 হলে, এই সূত্রানুসারে, $\frac{H_1}{R_1} = \frac{H_2}{R_2} = \frac{H_3}{R_3} =$ ধ্রত্বক

(৩) তৃতীয় সূত্র: প্রবাহকালের সূত্র:

কোন পরিবাহীর প্রবাহমাত্রা I এবং পরিবাহীর রোধ R অপরিবর্তিত থাকলে পরিবাহীতে উৎপন্ন তাপ H প্রবাহকালের সমানুপাতিক। প্রবাহকাল t হলে সত্রানুযায়ী, $H \propto t$

কোন নির্দিষ্ট পরিমান প্রবাহ t_1, t_2 ও t_3 সময় ধরে চালালে উৎপন্ন তাপের পরিমান H_1, H_2 ও H_3 হলে, এই সূত্রানুসারে, $\frac{H_1}{t_*} = \frac{H_2}{t_*} = \frac{H_3}{t_*} =$ শু লবক ।

জুলের সূত্রের পরীক্ষা মূলক প্রমাণ:

জুলের ক্যালরিমিটারের সাহায্যে জুলের সূত্রের সত্যতা প্রমাণ করা যায়ঃ জুলের ক্যালরিমিটারের বর্ণনাঃ এই ক্যালরিমিটারটি তামার তৈরী একটি চোঙাকৃতি পাত্র C। পাত্রটির মধ্যে নাইক্রোমের তৈরী একটি কুন্ডলী R আছে। ঢাকনিটিতে দুটি ছিদ্র থাকে। একটি ছিদ্রের মধ্যেদিয়ে থার্মোমিটার T ও অপরটির মধ্যদিয়ে একটি নাড়নী থাকে। ক্যালরি মিটারটি একটি বাক্সের মধ্যে বসানো থাকে। ক্যালরি মিটার ও বাক্সের মাঝখানে তুলা, চুল, পশম ইত্যাদি তাপ কুপরিবাহী পদার্থ থাকে।

প্রথম সূত্রের প্রমাণ: জুলের ক্যলরিমিটারের কুন্ডলী (R) একটি অ্যামিটার (A), ব্যাটারী (B), চাবি (K) ও পরিবর্তনশীল রোধ R_h শ্রেণী সমবায়ে যুক্ত করা হয়। এরপর ক্যালরিমিটারে কিছু তরল নেওয়া হয় যার আপেক্ষিক তাপ জানা আছে যেমন তারপিন। একটি থার্মোমিটার T -এর সাহায্যে তরল ও ক্যালরি মিটারের প্রাথমিক তাপমাত্রা দেখে রাখা হয়। এরপর চাবি বন্ধ করে t সেঃ ধরে তড়িং প্রবাহ চালনা করা হয়। ধরা যাক, অ্যামিটারের তড়িং প্রবাহমাত্রা I_1 পাঠ দেয়। তড়িং প্রবাহের ফলে তাপ উৎপন্ন হবে। এই তাপে ক্যালরিমিটার ও তরলের তাপমাত্রা বৃদ্ধি পাবে। ধরা যাক তাপমাত্রা বৃদ্ধির পরিমান $\Delta\theta_1$ । এরপর বিদ্যুৎ প্রবাহ বন্ধ করে ক্যালরি মিটার ও এর অভ্যন্তরন্ত তরল পদার্থকে ক্তগতাপমাত্রায় ঠান্ডা করা হয়। এরপর পরিবর্তনশীল রোধ R_h কে পরিবর্তন করে কুন্ডলির মধ্যদিয়ে একই সময় t সে ধরে তড়িং প্রবাহ চালনো হয়। ধরা যাক এবার তড়িং প্রবাহ I_2 এবং তাপমাত্রা বৃদ্ধি $\Delta\theta_2$ ।

পরীক্ষায় দেখা যায় যে,
$$\qquad \frac{\Delta \theta_1}{\Delta \theta_2} = \frac{I_1^2}{I_2^2}$$

যদি উভয় ক্ষেত্রে উৎপন্ন তাপের পরিমান যথাক্রমে H_1 ও H_2 হয়, তাহলে $\frac{H_1}{H_2} = \frac{\Delta \theta_1}{\Delta \theta_2}$

$$\therefore \frac{H_1}{H_2} = \frac{I_1^2}{I_2^2}$$
 বা, $H \propto I^2$; যখন R ও t স্থির থাকে। জুলের প্রথম সূত্র প্রমাণিত।

দ্বিতীয় সূত্রের প্রমাণ: এই সূত্র প্রমাণের জন্য একই ধরনের দুটি জুলের ক্যলরি মিটার C_1 ও C_2 নেওয়া হয়। উভয় ক্যলরিমিটারে সমপরিমানের একটি তরল নেওয়া হয়। R_1 ও R_2 রোধের একই পদার্থের দুটি কুঙলী ক্যলরিমিটার দুটিতে স্থাপন করা হয়। কুঙলী দুটিকে একটি অ্যমিটার A, একটি ব্যাটারি B, একটি চাবি K ও একটি পরিবর্তনশীল রোধ R_h এর সাথে সিরিজে যুক্ত করা হয়। চাবি বন্ধ করে একই প্রবাহ মাত্রা (I) একই সময় (t) ব্যাপি কুঙলী দুটির মধ্যদিয়ে প্রবাহিত করা হয়। এই সময়ে

ক্যালরিমিটার দুটির তাপমাত্রা T_1 ও T_2 থার্মেমিটার দ্বারা পরিমাপ করা হয়। ধরা যাক তাপমাত্রা বৃদ্ধি যথাক্রমে $\Delta\theta_1$ ও $\Delta\theta_2$ । এবং ক্যালরিমিটার ও তরল কতৃক শোষিত তাপ যথাক্রমে H_1 ও H_2 । পরীক্ষালব্ধ মান থেকে দেখা যায় যে, $\frac{\Delta\theta_1}{\Delta\theta_2} = \frac{R_1}{R_2}$

কিন্তু যদি উভয় ক্ষেত্রে উৎপন্ন তাপের পরিমান যথাক্রমে H_1 ও H_2 হয়, তাহলে $\frac{H_1}{H_2} = \frac{\Delta \theta_1}{\Delta \theta_2}$

$$\therefore \frac{H_1}{H_2} = \frac{R_1}{R_2}$$
 বা, $H \propto R$; যখন I ও t স্থির থাকে । জুলের দ্বিতীয় সূত্র প্রমাণিত ।

ভূতীয় সূত্রের প্রমাণ: একই তড়িৎ প্রবাহ (I) দুটি ভিন্ন সময় (t_1 ও t_2) ধরে চালনা করে ক্যালরিমিটার ও তরলের তাপমাত্রা বৃদ্ধি পরিমাপ করা হয়। যদি দুই ক্ষেত্রে তাপমাত্রা বৃদ্ধির পরিমান যথাক্রমে $\Delta\theta_1$ ও $\Delta\theta_2$ হয়, $t_1 = \frac{R_0}{L}$

৩। তড়িৎ প্রবাহের তাপীয় ও রাসায়নিক ক্রিয়া (Heating & Chemical Effect of Electric Current)

বা, $H \propto t$; যখন I ও R স্থির থাকে। ইহাই জুলের তৃতীয় সূত্র।

ফ্যারাডে ঃ তড়িৎ বিশ্লেষন প্রক্রিয়ায় যে কোন পদার্থের 1 গ্রাম তুল্যাঙ্ক মুক্ত করতে যে নির্দিষ্ট পরিমান চার্জের প্রয়োজন তাকে 1 ফ্যারাডে বলে। 1 ফ্যারাডে = 96500 কুলম্ব।

জুলের ক্যলরিমিটারের সাহায্যে 'J' এর মান নির্ণয় (Determination of Mechanical Equivalent of Heat):

ভূত্ত ঃ যদি কোন পরিবাহীর দুই প্রান্তের বিভব পার্থক্য ∨ ভোল্ট হয় এবং এর মধ্য দিয়ে I অ্যম্পিয়ার প্রবাহ t সেঃ ধরে প্রবাহিত হয়, তাহলে সম্পন্ন কাজের পরিমান,

$$W = VIt$$
 জুল।

তড়িং প্রবাহ চলা কালে এই কাজ যদি সম্পুর্নরূপে তাপে রূপান্তরিত হয় এবং উৎপন্ন তাপের পরিমান H ক্যালরি হয় তাহলে জুলের সূত্রানুসারে,

$$W \propto H$$

বা, $W = JH$
বা, $J = \frac{W}{H}$
 $\therefore J = \frac{VIt}{H}$ জুল/ক্যালরি (1)

বর্তনী সংযোগ: নাড়নীসহ একটি জুলের ক্যালরিমিটার নিয়ে এর মধ্যে R রোধের সাথে একটি ব্যাটারী B, পরিবর্তরশীল রোধ R_h অ্যমিটার A এবং চাবি K শ্রেণী সমবায়ে যুক্ত করা হয়। R রোধের দুই প্রান্তের বিভব পার্থক্য মাপার জন্য এর সাথে সমান্তরালে একটি ভোল্টমিটার V যুক্ত করা হয়।

প্রীক্ষা: বর্তনী সংযোগের পূর্বে নাড়নী সহ ক্যলরিমিটারের ভর নির্ণয় করা হয়। এর পর এতে কিছু জানা আপেক্ষিক তাপের তরল (যেমন তারপিন) নিয়ে পুনরায় ভর নির্ণয় করা হয়। দ্বিতীয় ভর থেকে প্রথম ভর বিয়োগ করে তরলের ভর নির্ণয় করা হয়। একটি থার্মোমিটার T দিয়ে তরল ও ক্যালরিমিটারের প্রাথমিক তাপমাত্রা নির্ণয় করা হয়।

এখন চাবি বন্ধ করে একটি নির্দিষ্ট সময় ধরে তড়িৎ প্রবাহিত করা হয় এবং এ্যমিটার ও ভোল্টমিটারের পাঠ নেওয়া হয়। তড়িৎ প্রবাহিত করার সময়কাল থামা ঘড়ির সাহায্যে নির্ণয় করা হয়। এরপর থার্মোমিটার T এর সাহায্যে চুড়ান্ত তাপমাত্রা নির্ণয় করা হয়।

হিসাব: ধরা যাক,

তড়িৎ প্রবাহমাত্রা = I অ্যাম্পিয়ার প্রবাহকাল = t সেঃ কুন্ডলীর দুই প্রান্তের বিভব পার্থক্য = V ভোল্ট ক্যালরিমিটারের ভর = m_1 গ্রাম তরলের ভর = m_2 গ্রাম ক্যালরিমিটার ও তরলের প্রাথমিক তাপমাত্রা = θ_1 °C ক্যালরিমিটার ও তরলের চুড়ান্ত তাপমাত্রা = θ_2 °C ক্যালরিমিটারের উপাদানের আপেক্ষিক তাপ = S_1 cal gm $^{-1}$ °C তরলের আপেক্ষিক তাপ = S_2 cal gm $^{-1}$ °C

অতএব ক্যলরিমিটার কতৃক গৃহীত তাপ = $m_1 s_1(\theta_2 - \theta_1)$ cal

তরল কতৃক গৃহীত তাপ = $m_2 s_2(\theta_2 - \theta_1)$ cal

 \therefore মোট গৃহীত তাপ $H = (m_1s_1 + m_2s_2)(\theta_2 - \theta_1)$ cal

$$(1)$$
 নং সমীকরণে H এর মান বসিয়ে পাই, $J=rac{VIt}{(m_1s_1+m_2s_2)(heta_2- heta_1)}$ জুল/ক্যালরি

পরিবর্তনশীল রোধের মান পরিবর্তন করে বিভিন্ন প্রবাহমাত্রা বিভিন্ন সময় ধরে চালিয়ে J এর নির্ণয় করে গড় মান বের করা হয়। সতর্কতাঃ ১। সংযোগ তারের প্রান্তএবং সংযোগ স্কু শিরিষ কাগজ দিয়ে ভাল ভাবে পরিষ্কার করে নেওয়া উচিৎ। ৩। তড়িৎ প্রবাহের তাপীয় ও রাসায়নিক ক্রিয়া (Heating & Chemical Effect of Electric Current)

- ২। সকল সংযোগ শক্ত করে দেওয়া উচিৎ
- ৩। এমন ভাবে তরল নেওয়া উচিৎ যেন রোধ কুন্ডলী সব সময় রোধ কুন্ডলী তরলে ডুবে থাকে।

বৈদ্যুতিক ক্ষমতাঃ কোন তড়িৎ যন্ত্রের কাজ করার হারকে এর তড়িৎ ক্ষমতা বলে। অর্থাৎ কোন তড়িৎ যন্ত্র প্রতি সেকেন্ডে যে পরিমান কাজ সম্পন্ন করে তাকে এর ক্ষমতা বলে। একে P দ্বারা প্রকাশ করা হয়। t সময়ে কোন যন্ত্র যদি W কাজ করে তবে

ক্ষমতা
$$P = \frac{W}{t}$$
 হবে। এর একক ওয়াট।

কোন পরিবাহীর দুই প্রান্তের বিভব পার্থক্য V ভোল্ট হলে পরিবাহীর মধ্যদিয়ে Q কুলম্ব চার্জ প্রবাহিত হলে সম্পন্ন কাজের পরিমান W=VQ

$$\therefore P = \frac{VIt}{t} = VI = IR.I = I^2R$$

কিলোওয়াট ঘন্টা ঃ এক কিলোওয়াট ক্ষমতা সম্পন্ন কোন যন্ত্ৰ বেদ্যুতিক সাৰ্কিটে 1 ঘন্টা চললে যে তড়িৎ শক্তি ব্যায় হয় তাকে ১ কিলো ওয়াট ঘন্টা (1KWH) বলে। এটি তড়িৎ সরবরাহের একক। সমগ্র পৃথিবীর তড়িৎ সরবরাহ প্রতিষ্ঠানগুলো এই একক ব্যবহার করে বলে একে বোর্ড অফ ট্রেড ইউনিট (BOT) একক বলে। এই একক কে সাধারণ কথায় ইউনিট বলে। 1KWH = 1000WH = 1000J/Sec×3600Sec = 3600000 J = 3.6×106 Joule

কোন বৈদ্যুতিক বাতির গায়ে 220V – 60W লেখা আছে এর অর্থ –

কোন বৈদ্যুতিক বাতির গায়ে 220V - 60W লেখা আছে এর অর্থ রাতিটি 220V এর লাইনে সব চেয়ে উজ্জ্বল হয়ে জ্বলবে এবং ঘন্টায় 60W শক্তি খরচ করবে। 220V এর কম ভোল্টে বাতিটি অনুজ্বল ভাবে জ্বলবে। বাতিটি দিয়ে প্রবাহিত বিদ্যুতের পরিমান, $I=\frac{P}{V}=\frac{60}{220}A=0.272Amp$. বাতিটির রোধ, $R=\frac{V}{I}=\frac{220}{0.272}\Omega=808.82\,\Omega$

ফিউজ এবং এর ব্যবহারঃ ফিউজ হচ্ছে সাধারণতঃ 75% সিসা ও 25% টিন এর সংকরের এক টুকরা সরু তার। এর গলনাঙ্ক খুবই কম। তারটির দুই প্রান্ত একটি চীনামাটির বাস্ত্রের দুটি স্কুর সাথে আটকান থাকে। বাক্সটিকে বৈদ্যতিক বর্তনীতে সিরিজে যুক্ত করা হয়। কোন বৈদ্যুতিক বর্তনীর মধ্যদিয়ে একটি নির্দিষ্ট মাত্রার অতিরিক্ত বিদ্যুৎ প্রবাহিত হয়ে যাতে অগ্নিকান্ডের সৃষ্টি হতে না পারে বা যন্ত্রপাতি নষ্ট হতে না পারে তার জন্য বর্তনীতে ফিউজ ব্যবহার করা হয়। বর্তনীতে কোন কারণে বেশী মাত্রার তড়িৎ প্রবাহিত হলে ফিউজের তারটি উত্তপ্ত হয়ে গলে যায়। ফলে বর্তনী সংযোগ বিচ্ছিন্ন হয়ে তড়িৎ প্রবাহ বন্ধ হয়ে যায়।

একটি 6 অ্যাম্পিয়ার ফিউজ বলতে এই বুঝি যে, ফিউজটি কোন বর্তনীতে যুক্ত করলে তা 6 অ্যম্পিয়ার পর্যন্ত তড়িৎ প্রবাহ সহ্য করতে পারে। তড়িৎপ্রবাহ 6 অ্যম্পিয়ারের বেশী হলে ফিউজটি গলে বর্তনীর সংযোগ বিচ্ছিন্ন হয়ে যায়। এতে শর্টসার্কিটের মত মারাত্মক বিপদের হাত থেকে রক্ষা পাওয়া যায়।

<u>তাপের যান্ত্রিক সমতাঃ</u> পরিবাহীর মধ্যদিয়ে তড়িৎ প্রবাহিত হতে সম্পুর্ন তাপ যদি কাজে রমুপান্তরিত হয় তবে জুলের সূত্রানুসারে কাজ ও তাপ পরস্পর সমানুপাতিক। যদি পরিবাহীতে H ক্যালরি তাপ কাজে রূপান্তরিত হয়ে W কাজ সম্পন্ন হয় তবে জুলের সূত্রানুসারে W ∞ H বা, W = JH এখানে J একটি সমানুপাতিক ধ্রুবক। একে তাপের যান্ত্রিক সমতা বলে। অর্থাৎ 1 ক্যালরি তাপ সম্পুর্ণরূপে কাজে রমুপান্তরিত হলে যতটুকু কাজ হয় তাকে তাপের যান্ত্রিক সমতা বলে। এর মান 4.2 J cal¹। তাপের যান্ত্রিক সমতা 4.2 J cal¹। কাপের যান্ত্রিক সমতা 4.2 জুল কাজ সম্পন্ন হবে।

তাপ-যুগল (থার্মোকাপল) ও সীবেক ক্রিয়া (Thermocouple & Seebeck-effect) ঃ দুটি ভিন্ন ধাতুর তারের দুই প্রান্তজোড়া

লাগিয়ে এর মধ্যে একটি গ্যালভানোমিটার অন্তর্ভুক্ত করে যদি বর্তনী তৈরী করা যায় এবং তার দুটির সংযোগ স্থল দুটিতে (Junctions) তাপমাত্রার ব্যবধান সৃষ্টি করা যায়, তাহলে ঐ বর্তনীতে তড়িং প্রবাহিত হবে, এই তড়িং প্রবাহকে তাপ তড়িং প্রবাহ বলে। ১৮২৬ খ্রিস্টাব্দে সীবেক সর্ব প্রথম ঘটনাটি প্রথম প্রত্যক্ষ করেন। তাই এ ঘটনাকে সীবেক ক্রিয়া (Seebeck-effect) বলে। দুটি ভিন্ন তার দ্বারা সৃষ্ট এ ব্যবস্থাকে বলা হয় তাপ-যুগল (Thermocouple) এবং বর্তনীতে যে তড়িচ্চালক শক্তির উদ্ভব হয় তাকে তাপীয় তড়িচ্চালক শক্তি (Thermo electromotive force) বলা হয়।

<u>নিরপেক্ষ তাপমাত্রা (Neutral Temperature):</u> এক সংযোগকে শীতল তাপমাত্রায় রেখে উষ্ণ সংযোগকে যে, তাপমাত্রায় রাখলে বর্তনীতে তাপীয় তড়িচ্চালক শক্তির মান সর্বাধিক হয় সেই তাপমাত্রাকে নিরপেক্ষ তাপমাত্রা বলে। তামা ও লোহা যুগলের জন্য এ তাপমাত্রা 275° C।

উৎক্রম তাপমাত্রা (Inversion Temperature): কোন তাপ যুগলের উষ্ণ সংযোগকে যে তাপমাত্রায় রাখলে তাপ তড়িচ্চালক শক্তির মান শূন্য হয় তাকে ঐ যুগলের উৎক্রম তাপমাত্রা বলে। তামা ও লোহা যুগলের জন্য এ তাপমাত্রা 550° C।

প্রটেনশিওমিটারের সাহায্যে তাপীয় তড়িচ্চালক শক্তি নির্ণয় (Determination of thermo emf by a potentiometer):

বর্তনী সংযোগ: চিত্রানুযায়ী পটেনশিওমিটারের A ও B বিন্দুর সাথে একটি অ্যামিটার A, ব্যাটরী Ba, চাবি K এবং পরিবর্তনশীল রোধ R_h শ্রেণী সমবায়ে যুক্ত করা হয়। ব্যাটরী Ba এর ধনাত্মক প্রান্ত প্রান্ত A বিন্দুর সাথে যুক্ত থাকে। এখন তামা ও লোহার তার দিয়ে তৈরী থার্মোকাপলের উষ্ণ সংযোগ স্থলের সাথে যে তামার তার থাকে, সেই তারের মুক্ত প্রান্তকে A -তে এবং শীতল সংযোগ স্থলের সাথে যুক্ত তামার তারের মুক্ত প্রান্তকে গ্যালভানোমিটারের G -এর মধ্যদিয়ে জকিতে যুক্ত করা হয়।

পরীক্ষাঃ চাবি K বন্ধ করে পটেনশিওমিটারে AB তারে তড়িৎ প্রবাহ চালনা করা হয়। এর পর পরিবর্তনশীল রোধের মান এমন ভাবে সমন্বিত করা হয় যাতে জকিটিকে A বিন্দুতে স্পর্শ করালে গ্যালভানোমিটারের কাঁটা যে বিক্ষেপ দেয় B বিন্দুতে স্পর্শ

করালে তার বিপরীত দিকে বিক্ষেপ দেয়। ধরা যাক, জকিটিকে C বিন্দুতে স্পর্শ করালে গ্যালভানোমিটারের কোন বিক্ষেপ হয় না অর্থাৎ C বিন্দুই ভারসাম্য বিন্দু। এখন A ও C এর মধ্যকার তারের দৈর্ঘ্য । পরিমাপ করা হয় এবং অ্যামিটার থেকে বিদ্যুৎ প্রবাহের মান I নির্ণয় করা হয়।

<u>হিসাব (Calculation) ३</u> তাপীয় তড়িচ্চালক শক্তি E হলে E= *l* দৈর্ঘ্যের অংশের তারের বিভব পার্থক্য

=I× l দৈর্ঘ্যের অংশের তারের রোধ

পটেনশিওমিটারের প্রতি একক দৈর্ঘ্যের রোধ σ হলে l দৈর্ঘ্যের তারের রোধ হবে σ l \tilde{l}

 \therefore E=I $l\sigma$ আবার পটেনশিওমিটারের সম্পূর্ণ তারের অর্থাঙ্গ দৈর্ঘ্যের তারের রোধ R হলে $\sigma=rac{R}{L}$

 $\therefore E = \frac{I/R}{L}$ এই সমীকরণের ডান দিকের সব রাশি জানা থাকায় সৃষ্ট তাপীয় তড়িচ্চালক শক্তির মান নির্ণয় করা যাবে।

পেলশিয়ার ক্রিয়াঃ ফরাসী বিজ্ঞানী পেলশিয়ার সীরেক ক্রিয়ার বিপরীত একটি তাপ তড়িৎ ক্রিয়া আবিষ্কার করেন। তিনি লক্ষ্য করেন যে, দুটি ভিন্ন পদার্থের তৈরী ধাতব তারের দুই প্রান্তযুক্ত করে এদের মধ্যে একটি ব্যাটারীর সাহায্যে তড়িৎ প্রবাহিত করলে সংযোগ স্থল দ্বয়ের মধ্যে তাপমাত্রার ব্যবধান সৃষ্টি হয়। এই ঘটনাকে পেলশিয়ার ক্রিয়া বলে।

ধরি, একটি লোহার তার এবং একটি তামার তারকে $A ext{ } ext{ }$

তড়িৎ প্রবাহের রাসায়নিক ক্রিয়াঃ

যদি কোন তরলের মধ্যদিয়ে তড়িৎ প্রবাহের ফলে যদি রাসায়নিক ক্রিয়া সংঘটিত হয় এবং তরল পদার্থের অণুগুলো বিপরীত আধানযুক্ত আয়ন-এ বিশ্লিষ্ট হয়ে যায় তাহলে এ ঘটনাকে তড়িৎ প্রবাহের তাপীয় ও রাসায়নিক ক্রিয়া বলে। ১৮৮৩ খ্রিস্টাব্দে বিজ্ঞানী মাইকেল ফ্যারাডে তড়িৎ প্রবাহের রাসায়নিক ক্রিয়া আবিষ্কার করেন।

তড়িৎ বিশ্লেষন ঃ কোন দ্রবনের মধ্যে তড়িৎ প্রবাহিত করে এর অনুগুলিকে ধনাত্মক ও ঋনাত্মক অংশে বিভক্ত করার পদ্ধতিকে তড়িৎ বিশ্লেষন বলে। যেমন -কপার সালফেট (CuSO₄) দ্রবনের মধ্যে তড়িৎ প্রবাহের ফলে দ্রবনটি কপার ও সালফেট আয়নে বিয়োজিত হয়। এ বিয়োজিত হওয়াকে CuSO₄ এর তড়িৎ বিশ্লেষন বলে।

<mark>রাসায়নিক সমতুল</mark> ঃ কোন মৌলের পারমানবিক ভর ও যোজ্যতার অনুপাতকে ঐ মৌলের রাসায়নিক সমতুল বলে। একে সাধারণতঃ E দ্বারা প্রকাশ করা হয়। যেমন- অক্সিজেনের পারমানবিক ভর 16 এবং যোজ্যতা 2। অতএব অক্সিজেনের রাসায়নিক রাসায়নিক সমতুল ৪।

ফ্যারাডের তড়িৎ বিশ্লেষনের সূত্র গুলি নিম্নরূপ ঃ

প্রথম সূত্র ঃ কোন তড়িৎ বিশ্লেষ্য দ্রবনের মধ্যদিয়ে তড়িৎ প্রবাহিত করলে প্রত্যেক তড়িৎ দ্বারে যে পরিমান আয়ন জমা হয় তা দ্রবনে প্রবাহিত চার্জের সমানুপাতিক।

কোন তড়িৎ বিশ্লেষ্য দ্রবনের মধ্যদিয়ে Q কুলম্ব চার্জ t সেকেন্ড প্রবাহিত করার ফলে যদি তড়িৎ দ্বারে W Kg আয়ন জমা হয়, তাহলে ফ্যরাডের প্রথম সূত্রানুসারে , W ∝ Q

এখানে Z একটি ধ্রুবসংখ্যা। এই ধ্রুব সংখ্যাকে তড়িৎ রাসায়নিক তুল্যাঙ্ক (সমতুল) বলে। W = Z হবে তখন, যখন Q=1 কুলম।

তড়িৎ রাসায়নিক তুল্যাঙ্ক ঃ কোন দ্রবনে 1 কুলম্ব চার্জ প্রবাহিত করলে যতটুকু আয়ন জমা হয় তাকে ঐ দ্রবনের তড়িৎ রাসায়নিক তুল্যাঙ্ক বলে।

তাৎপর্যঃ তামার তড়িৎ রাসায়নিক তুল্যাঙ্ক $32.95 imes 10^{-8}~{
m kg}~{
m C}^{-1}$ বলতে এই বুঝি যে, তামা ঘটিত কোন দ্রবণের মধ্যদিয়ে এক কুলম্ব চার্জ পাঠালে 32.95× 10⁻⁸ kg তামা জমা হবে।

যদি Q কুলম্ব চার্জ t সেকেন্ড ধরে চলার ফলে প্রবাহমাত্রা I হয়, তবে Q=It (1) নং সমীকরণে বসিয়ে পাই,

$$W = ZIt...................(2)$$

দ্বিতীয় সূত্র ঃ একই পরিমান চার্জ বিভিন্ন তড়িৎ বিশ্লেষ্য দ্রবনের মধ্যদিয়ে তড়িৎ প্রবাহিত করলে বিভিন্ন তড়িৎ দ্বারে যে আয়ন জমা হয় তা দ্রবন গুলির নিজ নিজ রাসায়নিক তুল্যাংকের সমানুপাতিক

ধরি, E₁, E₂ ও E₃ রাসায়নিক সমতুল বিশিষ্ট বিভিন্ন তুড়িং বিশ্লেষ্য দ্রবনের মধ্যদিয়ে একই পরিমান চার্জ প্রবাহিত করার ফলে বিভিন্ন তড়িৎ দারে যথাক্রমে W_1, W_2 ও W_3 পরিমান আয়ুন জমা হয়, তাহলে ফ্যারাডের দিতীয় সূত্রানুসারে,

$$W_1 \circ W_2 \circ W_3 = E_1 \circ E_2 \circ E_3 \quad \text{al}, \quad \frac{W_1}{E_1} = \frac{W_2}{E_2} \quad \frac{W_3}{E_3} \quad \therefore \quad W \propto E$$

ফ্যারাডের তড়িৎ বিশ্লেষনের প্রথম সূত্রের প্রমাণ ঃ

ফ্যরাডের প্রথম সূত্রানুসারে তড়িৎদ্বারে জমা হওয়া আয়নের পরিমান প্রবাহিত আধানের সমানুপাতিক।

বা,
$$\frac{W_1}{Q_1} = \frac{W_2}{Q_2}$$

বা,
$$\frac{W_1}{Q_1} = \frac{W_2}{Q_2}$$

$$\therefore \frac{W_1}{I_1 t_1} = \frac{W_2}{I_2 t_2} = 4 \text{ sap} \qquad [\because Q = It]$$

যন্ত্রপাতি ঃ CuSO4 দ্রবণসহ একটি তামার ভোল্টামিটার, ব্যাটারী, পরিবর্তনশীল রোধ ও অ্যামিটার। বর্তনী সংযোগ ঃ

ক্যাথোড দন্ডটিকে বের করে ভালভাবে পরিষ্কার করে সূক্ষভাবে ওজন নেওয়া হয়। এবার দন্ডটিকে পুনরায় ভোল্টামিটারের মধ্যে স্থাপন করে ভোল্টামিটারটিকে ব্যাটারী B, পরিবর্তনশীল রোধ Rh, চাবি K ও অ্যামিটার A এর সাথে শ্রেণী সমবায়ে যুক্ত করা হল।

পরীক্ষাঃ

এখন চাবি বন্ধ করে বর্তনী পূর্ণকরে t_1 সেকেন্ড ধরে তড়িৎ প্রবাহিত করা হল। অ্যামিটার থেকে তড়িৎ প্রবাহের মান I_1 জেনে নেওয়া হল। এবার ক্যাথোড টিকে বের করে পরিষ্কার পানিতে ধুয়ে শুকিয়ে পুনরায় সূক্ষভাবে ওজন নেওয়া হল। প্রথম ও দ্বিতীয় ওজনের পার্থক্য থেকে ক্যাথোডে সঞ্চিত তামার পরিমান পাওয়া যায়। ধরি এই পরিমান W_1 ।

এবার t2 সেকেন্ড ধরে I2 প্রবাহ চালিয়ে পূর্বের ন্যায় ক্যাথোডে সঞ্চিত আয়নের পরিমান W_2 নির্ণয় করা হল।

7

৩। তড়িৎ প্রবাহের তাপীয় ও রাসায়নিক ক্রিয়া (Heating & Chemical Effect of Electric Current)

সিদ্ধান্ত: পরীক্ষা থেকে দেখা যায় যে,

$$rac{W_1}{I_1 t_1} = rac{W_2}{I_2 t_2} =$$
ধ্র ^{*}বক বা, $rac{W_1}{Q_1} = rac{W_2}{Q_2} =$ ধ্র ^{*}বক

∴ $W \propto Q$ অর্থাৎ সঞ্চিত আয়নের ভর দ্রবণে প্রবাহিত চার্জের সমানুপাতিক। সুতরাং প্রথম সূত্র প্রমাণিত হল।

षिठीয় সূত্রের প্রমাণঃ ফ্যারাডের দ্বিতীয় সূত্রানুসারে সম-পরিমান চার্জ বিভিন্ন তড়িৎ দ্রবের মধ্যদিয়ে প্রবাহিত করা হলে প্রত্যেক তড়িৎদ্বারে সঞ্চিত আয়নের পরিমান নিজ নিজ রাসায়নিক সমতুলের সমানুপাতিক। মনে করি সম পরিমান চার্জ ভিন্ন ভিন্ন দ্রবের মধ্যদিয়ে প্রবাহিত করা হল। এতে প্রত্যেক তড়িৎদ্বারে যথাক্রমে $W_1, W_2, W_3, \dots, W_n$ আয়ন জমা হল। এই দ্রবগুলোর রাসায়নিক সমতুল যথাক্রমে $E_1, E_2, E_3, \dots, E_n$ হলে $\frac{W_1}{E_1} = \frac{W_2}{E_2} = \frac{W_3}{E_3}, \dots, \frac{W_n}{E_n}$ হবে।

যন্ত্রপাতিঃ তিনটি ভোল্টামিটার, অ্যামিটার, পরিবর্তনশীল রোধ, ব্যাটারি। বর্তনী সংযোগঃ এই সূত্র প্রমানের জন্য একটি তামা, একটি রূপা ও একটি পানি ভোল্টামিটার নিয়ে শ্রেণী সমবায়ে যুক্ত করা হল। এদের সাথে একটি অ্যামিটার A, একটি পরিবর্তনশীল রোধ R_h , একটি ব্যাটারী B, ও একটি চাবি K শ্রেণী সমবায়ে যুক্ত করা হল।

প্রীক্ষাঃ তামা ও রূপা ভোল্টামিটার থেকে ক্যাথোডদ্বয় বের করে ধুয়ে শুকিয়ে সুক্ষভাবে ভর নির্ণয় করা হল। ভোল্টামিটারগুলোর মধ্যে যথাক্রমে কপারসালফেট, সিলভার নাইট্রেট ও সালফিউরিক এসিডের দ্রবণ নেয়া হল।

ঘন সেন্টিমিটারে দাগাঙ্কিত একটি পানিপূর্ণ পরীক্ষা নল পানি ভোল্টামিটারের ক্যথোডের উপর উল্টো ভাবে স্থাপন করে বর্তনীতে নির্দিষ্ট সময়ের জন্য তড়িৎ প্রবাহ চালনা করা হল। ভোল্টামিটার গুলো শ্রেণী সমবায়ে থাকায় এদের মধ্যে সম-পরিমান তড়িৎ প্রবাহিত হবে। বেশ কিছু হাইড্রোজেন পানি থেকে ভোল্টামিটারের ক্যাথোডে জমা হওয়ার পর তড়িৎ বন্ধ করা হল। এবার বিভিন্ন ক্যাথোডে সঞ্চিত তামা, রূপা ও হাইড্রোজেনের ভর নির্ণয় করা হল।

<u>সিদ্ধান্তঃ</u> ধরা যাক, তড়িৎদারে সঞ্চিত তামা, রূপা ও হাইড্রোজেনের ভর যথাক্রমে W_1, W_2 ও W_3 গ্রাম। এখন এই মৌলগুলোর রাসায়নিক সমতুল যথাক্রমে E_1, E_2 ও E_3 হলে পরীক্ষা থেকে দেখা যায় যে,

$$rac{W_1}{E_1}=rac{W_2}{E_2}=rac{W_3}{E_3}=$$
ধুৰুক্ত বা, ${
m W}\propto {
m E}$ অর্থাৎ দ্বিতীয় সূত্রটি প্রমাণিত হল ।

তড়িৎ রাসায়নিক তুল্যাঙ্ক ও রাসায়নিক তুল্যাঙ্কের মধ্যে সম্পর্ক ঃ

মনে করি, A ও B দুটি মৌলিক পদার্থ। এদের তড়িৎ রাসায়নিক তুল্যাঙ্ক যথাক্রমে Z_A ও Z_B এবং রাসায়নিক তুল্যাঙ্ক যথাক্রমে E_A ও E_B । যদি A ও B মৌল দুটির তড়িৎ বিশ্লেষ্যের মধ্য দিয়ে Q পরিমান চার্জ প্রবাহিত করার ফলে তড়িৎদ্বারে সঞ্চিত পদার্থের ভর যথাক্রমে W_A ও W_B হয় তাহলে প্রথম সূত্রানুসারে,

আবার দ্বিতীয় সূত্রানুসারে,

$$\frac{W_A}{W_B} = \frac{E_A}{E_B} \dots \dots \dots \dots (2)$$

সমীকরণ (1) ও (2) হতে পাই,

৩। তড়িৎ প্রবাহের তাপীয় ও রাসায়নিক ক্রিয়া (Heating & Chemical Effect of Electric Current)

$$\frac{Z_A}{Z_B} = \frac{E_A}{E_B}$$

$$\therefore Z \propto E$$

অর্থাৎ কোন মৌলের তড়িৎ রাসায়নিক তুল্যাঙ্ক ও রাসায়নিক তুল্যাঙ্কের সমানুপাতিক।

ভোল্টামিটার: যে পাত্রে তড়িৎ বিশ্লেষ্য রেখে প্রবাহ চালনা করে তড়িৎ বিশ্লেষন করা হয় বা তড়িৎ বিশ্লেষ্যকে উপাদানে বিভক্ত করা হয়, তাকে ভোল্টামিটার বলে। ভোল্টামিটারে একই পদার্থের দুটি দন্ত বা পাত ব্যবহার করা হয়। পাত দুটিকে তড়িৎদ্বার বলে। যে পাত দিয়ে ভোল্টামিটারে তড়িৎ প্রবেশ করে তাকে অ্যানোড এবং যে পাত দিয়ে ভোল্টা মিটার হতে প্রবাহ বেরিয়ে যায় তাকে ক্যাথোড বলে।

ভোল্টামিটারের সাহায্যে কোন পদার্থের তড়িৎ রাসায়নিক তুল্যাঙ্ক নির্ণয় ঃ

ভত্তঃ Z তড়িৎ রাসায়নিক তুল্যাঙ্কের কোন তড়িৎ বিশ্লেষ্যের মধ্যদিয়ে I মাত্রার তড়িৎ প্রবাহিত করলে যদি W পরিমান আয়ন জমা হয়, তাহলে ফ্যারাডের প্রথম সূত্রানুসারে, W=ZIt

$$\therefore Z = \frac{W}{It} \dots \dots \dots (1)$$

বর্তনী সংযোগঃ যে পদার্থের তড়িৎ রাসায়নিক তুল্যাঙ্ক নির্ণয় করতে হবে তার কোন যৌগের দ্রবণ ভোল্টামিটারে নিয়ে অ্যানোড ও ক্যাথোডকে একটি ব্যাটরী B,অ্যামিটার A, চাবি K, পরিবর্তনশীল রোধ Rh এর সাথে শ্রেণী সমবায়ে চিত্রানুযায়ী যুক্ত করা হয়।

প্রীক্ষা ঃ বর্তনী সংযোগের পূর্বে ভোল্টামিটারের ক্যাথোডটিকে বের করে ভাল ভাবে ধুয়ে শুকিয়ে নিজির সাহায্যে ভর নির্ণয় করা হয়। এর পর ক্যাথোড টিকে যথাস্থানে রেখে বর্তনী সংযোগ করা হয় এবং চাবি বন্ধ করে একটি নির্দিষ্ট সময়ের জন্য তড়িৎ প্রবাহিত করা হয়। থামা ঘড়ি থেকে সময় এবং অ্যামিটার থেকে প্রবাহমাত্রার পাঠ নেওয়া হয়। এরপর তড়িৎ প্রবাহ বন্ধ করে ক্যাথোড টিকে বের করে নিয়ে ধুয়ে শুকিয়ে পূনরায় ভর নির্ণয় করা হয়। এ ভর থেকে প্রথম ভর বিয়োগ করে সঞ্চিত আয়ুনের ভর নির্ণয় করাহয়।

হিসাব ও গণনাঃ

ধরি, প্রবাহ মাত্রা = I অ্যাম্পিয়ার

প্ৰবাহ কাল = t সেকেড

ক্যাথোডে সঞ্চিত আয়নের ভর = W কেজি

পদার্থের নির্ণেয় তড়িৎ রাসায়নিক তুল্যাঙ্ক = Z কেজি/কুলম্ব

(1) নং সমীকরণ $\therefore Z = \frac{W}{It}$ এ W, I ও t এর মান বসিয়ে তড়িৎ রাসায়নিক তুল্যাঙ্ক Z এর নির্ণয় করা হয়।

সতর্কতাঃ ১। সংযোগ তারের প্রান্তএবং সংযোগ স্কু শিরিষ কাগজ দিয়ে ভাল ভাবে পরিষ্কার করে নেওয়া উচিৎ।

- ২। সকল সংযোগ শক্ত করে দেওয়া উচিৎ
- ৩। সদ্য প্রস্তুত দ্রবণ নেওয়া উচিৎ।

ভোল্টামিটারের সাহায্যে তড়িৎ প্রবাহমাত্রা নির্ণয় ঃ

তৃত্তঃ Z তড়িৎ রাসায়নিক তুল্যাঙ্কের কোন তড়িৎ বিশ্লেষ্যের মধ্যদিয়ে I মাত্রার তড়িৎ প্রবাহিত করলে যদি W পরিমান আয়ন জমা হয়, তাহলে ফ্যারাডের প্রথম সূত্রানুসারে, W = ZIt

$$\therefore I = \frac{W}{Zt} \dots \dots \dots (1)$$

বর্তনী সংযোগঃ

একটি ভোল্টামিটারে সদ্য প্রস্তুত কপার সালফেটের সদ্য প্রস্তুত দ্রবণে অ্যানোড ও ক্যাথোড স্থাপন করে একটি ব্যাটরী B, চাবি K, পরিবর্তনশীল রোধ R_h এর সাথে শ্রেণী সমবায়ে চিত্রানুযায়ী যুক্ত করা হয়।

facebook /gmail/skype: -tanbir.cox

পরীক্ষাঃ

বর্তনী সংযোগের পূর্বে ভোল্টামিটারের ক্যাথোডটিকে বের করে ভাল ভাবে ধুয়ে শুকিয়ে নিক্তির সাহায্যে ভর নির্ণয় করা হয়। এর পর ক্যাথোড টিকে যথাস্থানে রেখে বর্তনী সংযোগ করা হয় এবং চাবি বন্ধ করে একটি নির্দিষ্ট সময়ের জন্য তড়িৎ প্রবাহিত করা হয়। থামা ঘড়ি থেকে সময় নির্ণয় করা হয়। এরপর তড়িৎ প্রবাহ বন্ধ করে ক্যাথোড টিকে বের করে নিয়ে ধুয়ে শুকিয়ে পূনরায় ভর নির্ণয় করা হয়। এ ভর থেকে প্রথম ভর বিয়োগ করে সঞ্চিত আয়নের ভর নির্ণয় করাহয়।

হিসাব ও গণনাঃ

I এর নির্ণয় করা হয়।

ধরি, প্রবাহ মাত্রা = I অ্যাম্পিয়ার প্রবাহ কাল = t সেকেন্ড ক্যাথোডে সঞ্চিত আয়নের ভর = W কেজি পদার্থের নির্ণেয় তড়িৎ রাসায়নিক তুল্যাঙ্ক = Z কেজি/কুলম্ব (1) নং সমীকরণ $\therefore I = \frac{W}{Z_t}$ এ W, Z ও t এর মান বসিয়ে তড়িৎ প্রবাহ

সতর্কতাঃ 🕽 । সংযোগ তারের প্রান্ত এবং সংযোগ স্কু শিরিষ কাগজ দিয়ে ভাল ভাবে পরিষ্কার করে নেওয়া উচিৎ।

- ২। সকল সংযোগ শক্ত করে দেওয়া উচিৎ
- ৩। সদ্য প্রস্তুত দ্রবণ নেওয়া উচিৎ।

তিড়ং প্রলেপনঃ তড়িং বিশ্লেষন প্রক্রিয়ায় কোন ধাতুর উপর সুবিধামত অন্য ধাতুর প্রলেপ দেওয়াকে তড়িং প্রলেপন বলে। সধারণত কোন নিকৃষ্ট ধাতু যেমন - তামা, লোহা, ব্রোঞ্জ ইত্যাদি দিয়ে তৈরী জিনিসকে জলবায়ু থেকে রক্ষা করার এবং সুন্দর দেখানোর জন্য এদের উপর সোনা, রূপা, নিকেল ইত্যাদি মূল্যবান ধাতুর প্রলেপ দেওয়া হয়। যে বস্তুতে প্রলেপ দিতে হবে সেটি ভাল ভাবে পরিস্কার করে ধুয়ে একটি ভোল্টামিটারের ক্যাথোড এবং যে ধাতুর প্রলেপ দিতে হবে তাকে অ্যানোড হিসেবে ব্যবহার করা হয়। আবার যে ধাতুর প্রলেপ দিতে হবে তার কোন সুবিধা জনক দ্রবণ তড়িং দ্রব হিসেবে ব্যবহার করা হয়। এখন ভোল্টামিটারের মধ্যে তড়িং প্রবাহ চালনা করলে তড়িং বিশ্লেষনের ফলে ক্যাথোডে রাখা বস্তুর উপর ধাতুর প্রলেপ পড়ে। এভাবে লোহার উপর দস্তার প্রলেপ দেয়াকে গ্যালভানাইজ বলে

Want more Updates: https://www.facebook.com/tanbir.ebooks দিতীয় পত্রের অংকের সমাধান

2nd Paper Math Solution ৩। তড়িৎ প্রবাহের তাপীয় ও রাসায়নিক ক্রিয়া

(Heating & chemical Effect of Electric Current)

১। রূপা ভোল্টামিটারে 1.118 গ্রাম রূপা মুক্ত করতে 1A বিদ্যুৎপ্রবাহ কতক্ষন প্রবাহিত করতে হবে? [রূপার বৈদ্যুতিক রাসায়নিক সমতুল

0.001118 gm/Coul.]আমরা জানি, W=ZIt $\therefore t = \frac{W}{ZI}$ $\Rightarrow t = \frac{1.118 \times 10^{-3}}{0.001118 \times 10^{-3} \times 1} \text{s}$ $\therefore t = 1000 \text{ s (Ans.)}$ এখানে, Z = 0.001118 gm/coul $= 0.001118 \times 10^{-3} \text{Kg/Coul}$ $= 0.001118 \times 10^{-3} \text{Kg}$ $= 0.001118 \times 10^{-3} \text{Kg}$

২। সিলভার নাইট্রেট দ্রবনের তড়িৎ বিশ্লেষক কোষে কি পরিমান প্রবাহ 1 ঘন্টা চালনা করলে ক্যাথোডে $8.05\times 10^{-4} kg$ রূপা সঞ্চিত হবে? রূপার তড়িৎ রাসায়নিক তুল্যাংক $11.18\times 10^{-7} kg$ C^{-1} আমরা জানি,

$$W=ZIt$$

$$\therefore \ I = \frac{W}{Zt}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

$$\Rightarrow I = \frac{8.05 \times 10^{-4} \text{ Kg}}{11.18 \times 10^{-7} \times 3600} \text{ A}$$

ত। $ZnSO_4$ পূর্ন একটি ভোল্টা মিটারের মধ্য দিয়ে 1 ঘন্টা 30 মিনিট ধরে 1.25 অ্যাম্পিয়ার তড়িৎ প্রবাহিত করলে 2.888×10^{-3} কেজি Zn সঞ্চিত হয়। Zn-এর তড়িৎ রাসায়নিক তুল্যাংক নির্ণয় কর। আমরা জানি,

ভাষি ভাষি, $W = 2.888 \times 10^{-3} \, \mathrm{kg}$ $\Rightarrow Z = \frac{W}{\mathrm{It}}$ $\Rightarrow Z = \frac{2.888 \times 10^{-3}}{1.25 \times 5400}$ $\Rightarrow Z = \frac{2.888 \times 10^{-3}}{1.25 \times 5400}$ $\therefore Z = 4.27 \times 10^{-7} \, \mathrm{kgC}^{-1}$ (Ans.)

8। 100 ওয়াটের একটি বৈদ্যুতিক বাতিকে প্রতিদিন 5 ঘন্টা করে জ্বালানো হয়। প্রতি কিলোওয়াট বৈদ্যুতিক শক্তির মূল্য 2.00 টাকা হলে এক মাসে কত খরচ পড়বে?

200 ওয়াটের 1 টি বাতি 5 ঘন্টা করে চললে দৈনিক বিদ্যুৎ খরচ $= 100 \times 1 \times 5 \text{ ওয়াট ঘন্টা}$ = 500 ওয়াট ঘন্টা = 0.5 কিলোওয়াট ঘন্টা1 কিলোওয়াট ঘন্টা বৈদ্যুতিক শক্তির মূল্য = 2.00 টাকা
∴ 0.5 " " = 0.5 \times 2.00 টাকা = 1.00 টাকা∴ 1.00 টাকা

দৈনিক বিদ্যুৎ খরচ = 1.00 টাকা
∴ 30 দিনের " = 1.00 \times 30 টাকা =

৫। একটি $100\mathrm{W}$ এর নিমজ্জক উত্তাপক 7 মিনিটে 1 লিটার পানির তাপমাত্রা $30^{\mathrm{o}}\mathrm{C}$ থেকে $40^{\mathrm{o}}\mathrm{C}$ পর্যন্ত বৃদ্ধি করে। J এর মান নির্ণয় কর।

আমরা জানি, এখানে. W = VItক্ষমতা, P = VI = 100W \Rightarrow JH = VIt সময়, t = 7 মি: = 420 s. \Rightarrow J(ms $\Delta\theta$) = VIt পানির আয়তন, =1 লি: = 1000cc \Rightarrow J = $\frac{\text{VIt}}{\text{ms}\Delta\theta}$ পানির ভর, m = 1000 gm তাপমাত্রা পার্থক্য, $\Rightarrow J = \frac{100 \times 420}{1000 \times 1 \times 10}$ $\Delta\theta = (40-30)^{\circ}C = 10^{\circ}C$ তাপের যান্ত্রিক সমতা, J = ? \therefore J = 4.2 J/cal. (Ans.)

৬। $20 cm^2$ প্রস্থচ্ছেদের একটি পাতের উভয় পার্শ্বে 0.001 cm পুরু তামার প্রলেপ দিতে 12V বিদ্যুচ্চালক শক্তির একটি ব্যাটরী ব্যবহার করা হল। ব্যটরী কতৃক ব্যায়িত বৈদ্যুতিক শক্তি নির্ণয় কর। [তামার ঘনত্ব = $9000 kgm^{-3}$ এবং তামার বৈদ্যুতিক রাসায়নিক সমতুল = $30 \times 10^{-7} \ kgC^{-1}$ ।

আমরা জানি, ু আয়তন V≑At এখানে, $V=40\times10^{-4}\times0.00001 \text{ m}^3$ ক্ষেত্ৰফল, A= 20×2 cm² $=40\times10^{-4}\,\mathrm{m}^2$ $= 4 \times 10^{-8} \text{ m}^3$ পুরুত্ব, t = 0.001cm ভর W=Vp = 0.00001m $\sqrt{} = 4 \times 10^{-8} \times 9000 \text{kg}$ $Z = 30 \times 10^{-7} \text{KgC}^{-1}$ $= 3.6 \times 10^{-4} \text{ kg}$ ঘনত্ব, $\rho = 9000 \text{kgm}^{-3}$ আবার,W=ZQ ব্যয়িত শক্তি, P = ? $\Rightarrow Q = \frac{W}{Z}$ E = 12 V $\Rightarrow Q = \frac{3.6 \times 10^{-4}}{30 \times 10^{-7}} C$ \therefore Q =120 C ব্যয়িত শক্তি, P = EQ $= 12 \times 120 \text{ J} = 1440 \text{J} \text{ (Ans.)}$

৭। 100Ω রোধের একটি নিমজ্জক উত্তাপককে 2.5kg পানিতে ডুবিয়ে 5A প্রবাহ চালনা করলে কত সময়ে পানির তাপমাত্রা $24^{\circ}C$ বৃদ্ধি পাবে? আমরা জানি,

 $H = mS\Delta\theta$ $\Rightarrow H = 2500 \times 1 \times 24 \text{ Cal}$ ∴ H = 60000 Calআবার, $H = .24 \text{ I}^2\text{Rt}$ $\Rightarrow t = \frac{H}{0.24 \times \text{I}^2\text{R}}$ $\Rightarrow t = \frac{60000}{0.24 \times 5^2 \times 100}$ ∴ t = 100 s (Ans.) dখানে,পানির ভর m = 2.5kg = 2500gmতাপমাত্রা পার্থক্য $\Delta\theta = 24^{\circ}\text{C}$ পানির আঃ তাপ $S = 1\text{Calgm}^{-1}\text{°C}$ রোধ $R = 100\Omega$ প্রবাহমাত্রা I = 5Aসময় t = ?

= 30.00 টাকা (Ans.)

৮। একটি বাড়িতে 5 টি 60 ওয়াটের বাতি এবং 2 টি 40 ওয়াটের পাখা প্রতিদিন 6 ঘন্টা করে চলে। প্রতি ইউনিট বৈদ্যুতিক শক্তির মূল্য 3.20 টাকা হলে এক মাসে বিদ্যুৎ খরচ পড়বে?

60 ওয়াটের 5 টি বাতি 6 ঘন্টা করে চললে দৈনিক বিদ্যুৎ খরচ

 $=60 \times 5 \times 6$ ওয়াট ঘন্টা

= 1800 ওয়াট ঘন্টা

= 1.8 কিলোওয়াট ঘন্টা

40 ওয়াটের 2 টি পাখা 6 ঘন্টা করে চললে দৈনিক বিদ্যুৎ খরচ

 $=40\times2\times6$ ওয়াট ঘন্টা

= 480 ওয়াট ঘন্টা

= 0.48 কিলোওয়াট ঘন্টা

মোট ব্যায়িত শক্তি = (1.8+0.48) কিলোওয়াট ঘন্টা = 2.28 কিলোওয়াট ঘন্টা বা, 2.28 ইউনিট

দৈনিক বিদ্যুৎ খরচ == 7.296 টাকা

∴ 30 দিনের " = 7.296 ×30 টাকা =
 ১ মাসে বিদ্যুৎ খরচ = 218.88 টাকা (Ans.)

৯। 50Ω রোধের ভিতর দিয়ে 2A প্রবাহ 100sec চালনা করলে $0^{\circ}C$ তাপমাত্রার কতটুকু পানির তাপমাত্রা $100^{\circ}C$ এ পৌছবে? আমরা জানি,

 $H = mS\Delta\theta$ ⇒ $H = m \times 1 \times 100$ Cal ∴ H = 100m Cal

আবার,

H = $0.24 I^2 Rt$ $\Rightarrow 100 m = 0.24 \times 2^2 \times 50 \times 100$

 $\Rightarrow m = 0.24 \times 2^2 \times 50$

 \therefore m = 48gm (Ans.)

এখানে, তাপমাত্রা পার্থক্য, $\Delta\theta = (100-0)^{\circ}C$ $= 100 \ ^{\circ}C$ পানির আঃ তাপ, $S=1Calgm^{-10}$ রোধ, $R=50\ \Omega$ প্রবাহমাত্রা, I=2A সময়, t=100s পানির ভর, $m \equiv ?$

১০। একটি বৈদ্যুতিক ইস্ত্রিতে 220Volt এবং 1200Watt লেখা আছে। এর রোধ কত? যদি প্রতি ইউনিট বিদ্যুৎ শক্তির মূল্য 1.00 টাকা হয় তাহলে ইস্ত্রিটি 2 ঘন্টা চালালে কত খরচ হবে?

আমরা জানি,
ক্ষমতা, P = VI $\Rightarrow P = V \frac{V}{R} = \frac{V^2}{R}$ $\Rightarrow R = \frac{V^2}{P}$ $\Rightarrow R = \frac{220^2}{1200}$

 $\therefore R = 40.33\Omega \text{ (Ans.)}$

1200 ওয়াটের 1 টি ইস্ত্রি 2 ঘন্টা চললে বিদ্যুৎ খরচ

 $= 1200 \times 1 \times 2$ ওয়াট ঘন্টা

= 2400 ওয়াট ঘন্টা

= 2.4 কিলোওয়াট ঘন্টা

প্রতি ইউনিট 1.00 টাকা হারে বিদ্যুৎ খরচ = 2.4×1.00.=2.40 টাকা (Ans.)

১১। এক টুকরা ধাতব পাতের উপর 20~gms সোনার প্রলেপ দিতে 1~Amp তড়িৎ কত সময় প্রবৃথিত করতে হবে? [সোনার বৈদ্যুতিক রাসায়নিক সমতুল = $6.3\times10^{-7}\,kgCoul^{-1}$]

আমরা জানি, W=ZIt W=ZIt W=20~gms $=20\times10^{-3}~Kg$ প্রবাহ I=1~Amp $Z=6.3\times10^{-7}\times1$ $\therefore t=31746~Sec~(Ans.)$

১২। কোনো বাড়ীর মেইন মিটারে 6A - 200V লেখা আছে। 60W -এর কতটি বাতি ঐ বাড়ীতে নিরাপত্তার সাথে ব্যবহার করা যাবে?

আমরা জানি,
ক্ষমতা, P=VI
∴ মেইনমিটারের ক্ষমতা, $P = 200 \times 6W = 1200W$ কিন্তু প্রতিটি বাতির ক্ষমতা = 60W

এখানে, বিভব পার্থক্যম, V =200 V তড়িৎ প্রবাহ, I= 6A প্রতিটি বাতীর ক্ষমতা, P₁=60W

∴ ব্যবহৃত বাতির সংখ্যা = $\frac{1200}{60}$ টি = 20টি

अंड्ड च्यां एवं किया (Magnetic Effect of Electric Current)

তড়িৎ প্রবাহের চৌম্বক ক্রিয়া: কোন পরিবাহী তারের মধ্যদিয়ে তড়িৎ প্রবাহিত হলে ঐ তারের চারপাশে একটি চৌম্বক ক্ষেত্রের সৃষ্টি হয়। এ ঘটনাকে বিদ্যুৎ প্রবাহের চৌম্বক ক্রিয়া বলে।

তড়িৎ প্রবাহের চৌম্বক ক্রিয়া সম্পর্কিত ওয়েরস্টেডের পরীক্ষা:

চিত্রে NS একটি চুম্বক শলাকা। এটি উত্তর দক্ষিন বরাবর মুক্ত ভাবে স্থাপন করা আছে। এর উপর এর দৈর্ঘ্য বরাবর রাখা একটি ধাতব তারের মধ্য দিয়ে তড়িৎ প্রবাহ চালনা করা হলে NS চুম্বক শলাকার বিক্ষেপ ঘটে এবং শলাকাটি একটু ঘুরে স্থির অবস্থায় আসে। প্রবাহের দিক পরিবর্তন করলে শলাকার বিক্ষেপের দিক পরিবর্তন হয়। প্রবাহের

মাত্রা পরিবর্তন করলে বিক্ষেপের মাত্রা ও পরিবর্তিত হয়।

দক্ষিন হস্তের বৃদ্ধাঙ্গুলি নিয়ম: কোন পরিবাহীর মধ্যদিয়ে প্রবাহিত তড়িৎ প্রবাহের অভিমুখ ডান হাতের মুঠোর (চিত্র নং-১) বৃদ্ধাঙ্গুলি দ্বারা নির্দেশ করলে অন্যন্ত আঙ্গুলগুলোর অগ্রভাগ বলরেখা তথা চৌম্বক ক্ষেত্রের অভিমুখ নির্দেশ কর্রের

ব্যাখ্যা ঃ ধরা যাক, CD একটি তড়িৎ বাহী তার এবং এর মধ্য দিয়ে I তড়িৎ প্রবাহ চলছে। এ তড়িৎ প্রবাহের জন্য পরিবাহীর চারপাশে একটি চৌম্বক ক্ষেত্রের সৃষ্টি হয়। পরিবাহী তারের যে-কোন ক্ষুদ্র অংশের (dl) তড়িৎ প্রবাহের জন্য চৌম্বকক্ষের যে কোন বিন্দু P তে সৃষ্ট , চৌম্বক আবেশ বা চৌম্বক ক্ষেত্রের মান dB,

- $oldsymbol{3}$ । দৈর্ঘ্য dl এর সমানুপাতিক ($dB \propto doldsymbol{l}$)
- ২। প্রবাহমাত্রা I এর সমানুপাতিক ($dB \propto I$)
- ৩। $sin\theta$ -এর সমানুপাতিক ($dB \propto sin\theta$)
- 8। দূরত্ব r এর বর্গের ব্যাস্তানুপাতিক $(dB \propto rac{1}{r^2})$

অতএব, P বিন্দুতে সৃষ্ট চৌম্বক ক্ষেত্রের মান $dB \propto \frac{I \, d m{l} \, \sin heta}{r^2}$

বা,
$$dB = K \frac{I \, dl \sin \theta}{r^2}$$

এখানে K হচ্ছে একটি সমানুপাতিক ধ্রুবক। K এর মান $K=rac{\mu_0}{4\pi}$ আবার $\mu_0=4\pi imes10^{-7}Wbm^{-1}A^{-1}$ বা TmA^{-1}

8। তড়িৎ প্রবাহের চৌম্বক ক্রিয়া (Magnetic Effect of Current)

$$\therefore dB = \frac{\mu_0}{4\pi} \frac{I \, dl \sin \theta}{r^2}$$
তেক্টর রূপে লিখলে, $\vec{dB} = \frac{\mu_0}{4\pi} \frac{I \, dl \times \vec{r}}{r^3}$ ফলে, $\vec{B} = \int \vec{dB} = \int \frac{\mu_0}{4\pi} \frac{I \, dl \times \vec{r}}{r^3}$

তড়িৎবাহী লম্বা সোজা পরিবাহী তারের নিকটে কোন বিন্দুতে B এর মানঃ

ধরা যাক, শূন্য মাধ্যমে অবস্থিত একটি দীর্ঘ সোজা পরিবাহী তার CD -এর মধ্য দিয়ে I অ্যাম্পিয়ার প্রবাহমাত্রার তড়িৎ প্রবাহিত হচ্ছে।

তার থেকে a লম্ব দূরত্বে অবস্থিত P একটি বিন্দু। স্বল্প দৈর্ঘ্য dl -এর জন্য চৌম্বক ক্ষেত্র,

$$dB = \frac{\mu_0 I \ dl \sin \theta}{4\pi r^2} \dots \dots \dots (1)$$

চিত্ৰ থেকে পাই, $\sin \theta = \frac{a}{r}$

$$\therefore \mathbf{r} = \frac{a}{\sin \theta} \dots \dots (2)$$

এবং
$$\cot \theta = \frac{-l}{a}$$
 বা, $l = -a \cot \theta$

$$\therefore dl = a \csc^2 \theta \ d\theta \ \dots \dots \dots (3)$$

(1) নং সমীকরণে r ও dl এর বসিয়ে পাই,

$$dB = \frac{\mu_0 I \ a \csc^2 \theta \ d\theta \sin \theta \times \sin^2 \theta}{4\pi \ a^2}$$

$$\Rightarrow dB = \frac{\mu_0 I}{4\pi \ a} \sin \theta \ d\theta$$

 $(0-\pi)$ সীমার মধ্যে উপরোক্ত সমীকরণকে সুমাকলন করে পাই,

$$\Rightarrow B = \frac{\mu_0 I}{4\pi a} \int_0^{\pi} \sin \theta \, d\theta$$

$$\Rightarrow B = \frac{\mu_0 I}{4\pi a} [-\cos \theta]_0^{\pi}$$

$$\Rightarrow B = \frac{\mu_0 I}{4\pi a} [-\cos \pi + \cos \theta]$$

$$\Rightarrow B = \frac{\mu_0 I}{4\pi a} [-(-1) + 1]$$

$$\therefore B = \frac{\mu_0 I}{2\pi a}$$

ধরা যাক, একটি বৃত্তাকার পরিবাহীর মধ্যদিয়ে ঘড়ি বিসমাবর্তী দিকে তড়িৎ প্রবাহিত হচ্ছে, বৃত্তের ব্যাসার্ধ =r, প্রবাহ মাত্রা =I; বায়োট -স্যাভার্টের সূত্রানুসারে dl দৈর্ঘ্যের ক্ষুদ্র অংশের জন্য কেন্দ্র বিন্দু P তে সৃষ্ট চৌম্বক ক্ষেত্র B এর মান নির্ণয় করতে হবে।

$$dB = \frac{\mu_0 I \ dl \sin \theta}{4\pi r^2} \dots \dots \dots \dots (1)$$

8। তড়িৎ প্রবাহের চৌম্বক ক্রিয়া (Magnetic Effect of Current)

এখানে, θ হচ্ছে $\mathrm{d}l$ এবং r এর মধ্যবর্তী কোণ। এখন (1) নং সমীকরণকে সমাকলন করে সমগ্র কুন্ডলীর জন্য P তে চৌম্বক ক্ষেত্রের মান পাওয়া যায়। যেহেতু বৃত্তকার পরিবাহকের দৈর্ঘ্য হচ্ছে কুন্ডলীর পরিধির দৈর্ঘ্য অর্থাৎ $2\pi\mathrm{r}$, সুতরাং সমাকলনের সীমা হবে l=0 থেকে $l=2\pi\mathrm{r}$

পর্যন্ত।

$$B = \int dB = \int_{0}^{2\pi r} \frac{\mu_0 I \ dl \sin \theta}{4\pi r^2}$$

যেহেতু কুন্ডলীর সকল বিন্দু থেকে বৃত্তের কেন্দ্র P এর দূরত্ব r এর সমান এবং কুন্ডলীর যে কোন অংশ dl এবং r এর অর্স্তভূক্ত কোণ সর্বদা $\theta=90^{\circ}$; সুতরাং

$$\Rightarrow B = \int_{0}^{2\pi r} \frac{\mu_0 I \, dl \sin 90^{\circ}}{4\pi r^2}$$
$$\Rightarrow B = \frac{\mu_0 I}{4\pi r^2} \int_{0}^{2\pi r} dl$$

$$\Rightarrow B = \frac{\mu_0 I}{4\pi r^2} [l]_0^{2\pi r}$$

$$\Rightarrow B = \frac{\mu_0 I}{4\pi r^2} [2\pi r]$$

$$\therefore B = \frac{\mu_0 I}{2r}$$

কুডুলীর পাক সংখ্যা N হলে,

$$B = \frac{\mu_0 NI}{2r}$$
 হবে।

চৌম্বক ক্ষেত্রে স্থাপিত কোন পরিবাহীর ভিতরদিয়ে তড়িৎ প্রবাহিত হলে, প্রবাহ এবং চৌম্বক ক্ষেত্র উভয়ের সাথে লম্বভাবে একটি ভোল্টেজ বা বিভব পার্থক্য উৎপন্ন হয়। এই ঘটনাকে হলক্রিয়া বলে এবং সৃষ্ট বিভব পার্থক্যকে হল বিভব পার্থক্য বলে।

হল ভোল্টেজের রাশিমালা:

ধরি একটি চ্যাপটা পাত আকৃতির পরিবাহীর মধ্য দিয়ে দৈর্ঘ্য বরাবর তড়িৎ প্রবাহিত হচ্ছেএবং পাতের উপর লম্বভাবে একটি চৌম্বক ক্ষেত্র ক্রিয়াশীল।

A= পরিবাহকের প্রস্তুচ্ছেদের ক্ষেত্রফল

B = চৌম্বক ক্ষেত্র

d =পরিবাহীর প্রস্থ

t =পরিবাহীর পুরত্ব

v = চার্জের তাড়ন বেগ

q =চার্জ

n = পরিবাহীর একক আয়তনে চার্জের সংখ্যা

I = তড়িৎ প্ৰবাহ

 V_H = হল ভোন্টেজ

E = হল তড়িৎ ক্ষেত্রের তীব্রতা

$$\Rightarrow E = \frac{V_H}{d}$$

পরিবাহীর তড়িৎ ক্ষেত্রের দরুন চার্জের উপর ক্রিয়াশীল তড়িৎ বল,

$$F_e = qE = \frac{V_H q}{d}$$

টৌম্বক ক্ষেত্রের দরুন চার্জের উপর ক্রিয়াশীল চৌম্বক বল

$$F_m = q v B$$
 [যেহেতু ${
m v}$ এবং ${
m B}$ সমকোণে ক্রিয়াশীল $[\because \theta = 90^\circ]$

সাম্যাবস্থায়, $F_m = F_e$

$$\Rightarrow qvB = \frac{V_H q}{d}$$

 $: V_H = vBd$ (1) পরিবাহীর প্রস্থ, d এবং চৌম্বক ক্ষেত্র, B এর মান জানা থাকলে হল ভোল্টেজ পরিমাপ করে (1) নং সমীকরণের সাহায্যে চার্জের সঞ্চরণ বেগ v নির্ণয় করা যায়।

আবার আমরা জানি.

$$I = nAqv$$
 $\Rightarrow I = ndtqv$ [চিত্ৰ থেকে $A = dt$]
$$\therefore v = \frac{I}{ndtq}$$

(1) নং সমীকরণে ν এর মান বসিয়ে পাই,

$$V_{H} = \frac{I}{ndtq}Bd$$

$$BI$$

$$\Rightarrow V_H = rac{BI}{ntq}$$
(2) ইহাই হল ভোল্টেজ এর রাশীমালা।

 $\therefore n = \frac{BI}{V_u t a}$ (3) এই সমীকরণের সাহায়ে চৌম্বক ক্ষেত্র, B এবং পরিবাহীর পুরত্ব, t জানা থাকলে হল ভোল্টেজ,

 V_H এবং তড়িৎপ্রবাহ, I পরিমাপ করে পরিবাহীর প্রতি একক আয়তনে চার্জের সংখ্যা নির্ণয় করা যায়।

তড়িৎ ক্ষেত্রে স্থাপিত একটি তড়িৎবাহী পরিবাহকের উপর ক্রিয়াশীল বলের রাশিমালা:

আমরা জানি, চৌম্বক ক্ষেত্র গতিশীল আধান বল প্রয়োগ করে। সুতরাং চৌম্বক ক্ষেত্র তড়িৎবাহী পরিবাহকের গতিশীল আধানগুলোর উপর তথা পরিবাহকের উপর অবশ্যই বল প্রয়োগ করবে। চিত্রে একটি সুষম চৌম্বক ক্ষেত্রের দিকের সাথেলম্ব ভাবে স্থাপিত একটি পরিবাহককে দেখা ্যাচ্ছে। চিত্রে × চিহ্ন দ্বারা সুষম চৌম্বক ক্ষেত্র $ec{B}$ এর অভিমুখ হচ্ছে কাগজের তলের লম্ব দিকে ভিতরের দিকে বুঝান হয়েছে। পরিবাইকের মধ্যদিয়ে তড়িৎ প্রবাহ I বামদিক থেকে ডানদিকে প্রবাহিত হচ্ছে, সুতরাং আধান বাহক ইলেকট্রন ডানদিক থেকে বাম দিকে গতিশীল।

ধরা যাক.

l = পরিবাহকের দৈর্ঘ্য

A = পরিবাহকের প্রস্তুচ্ছেদের ক্ষেত্রফল

n = পরিবাহকের প্রতি একক আয়তনে ইলেক্ট্রনের সংখ্যা

q = প্রতিটি ইলেকট্রনের আধান

v = ইলেকট্রনের তাড়ন বেগ

B = চৌম্বক ক্ষেত্রের মান

I = পরিবাহকের তড়িৎ প্রবাহ

যেহেতু তড়িৎবাহী পরিবাহকটি চৌম্বক ক্ষেত্রের সাথে লম্ব ভাবে স্থাপন করা হয়েছে, তাই পরিবাহকের প্রতিটি ইলেকট্রনের উপর প্রযুক্ত চৌম্বক বল,

এখন পরিবাহকে মোট ইলেকট্রন সংখ্যা N হলে পরিবাহকের সকল ইলেক্ট্রনের উপর ক্রিয়াশীল বল তথা পরিবাহকের উপর

ক্রিয়াশীল বল,
$$F = N F_m \dots \dots (2)$$

কিন্তু, N=n imes পরিবাহকের আয়তন

বা,
$$N = nAl$$
 (3)

(3) নং সমীকরণ হতে N এর মান এবং (1) নং সমীকরণ হতে F_m এর মান (2) নং সমীকরণে বসিয়ে পাই,

$$F = nAl \times qvB = nAqv lB \dots (4)$$

কিন্তু আমরা জানি, I = nAqv ফলে, (8) সমীকরণ দাড়ায়,

$$F = I l B \dots \dots (5)$$

কিন্তু তড়িৎবাহী পরিবাহক যদি চৌম্বক ক্ষেত্রের সমকোণে না থেকে θ কোণ উৎপন্ন করে তাহলে একটি ইলেকট্রনের উপর বল হবে.

$$F_m = qvB \sin\theta$$

এবং সমগ্র পরিবাহকের উপর বল হবে, $F=I/B\sin\theta$, এই সমীকরণকে ভেক্টর রূপে দুটি ভেক্টরের গুনফল হসেবে লিখলে ঐ সমীকরণ থেকে প্রযুক্ত বলের মান ও দিক উভয়ই পাওয়া যায়।

$$\vec{F} = I \vec{l} \times \vec{B}$$

এখানে ভেক্টর $ar{l}$ এর মান পরিবাহকের দৈর্ঘ্য নির্দেশ করে। $ar{l}$ এর দিক ধরা হয়েছে ধনাত্মক আধানের গতির দিকে তথা তড়িৎ প্রবাহের দিকে।

N পাকের কোন কুন্ডলী হলে তার উপর প্রযুক্ত বল হবে, $ec{F}=N~I~ec{l}~ imes~ec{
m B}$

শুদ্র বর্তনীর উপর চৌম্বক ক্ষেত্রের টর্ক: ধরা যাক, চিত্রে PQRS একটি শুদ্র আয়তাকার বর্তনী। এটি একটি সুষম চৌম্বক ক্ষেত্র \vec{B} এর মধ্যে অবস্থিত। বর্তনীর মধ্যদিয়ে I তড়িৎ প্রবাহ ঘড়ি সমাবর্তী দিকে দিকে প্রবাতি হচ্ছে। বর্তনীর PQ ও RS বাহুদ্বয়ের দৈর্ঘ্য k এবং \vec{B} এর সমান্তরাল। SP ও QR বাহুদ্বয়ের দৈর্ঘ্য I এবং এরা \vec{B} এর লম্ব বরাবর।

$$PQ$$
 বাহুর উপর বল = $I\vec{k} \times \vec{B} = IkB\sin\theta = 0$ $[::\vec{k} + \vec{B}]$ এর মধ্যবর্তী কোণ θ

$$RS$$
 বাহুর উপর বল $=I\vec{k} \times \vec{B} = IkB \sin 180^\circ = 0$ ্রিট্র ও \vec{B} এর মধ্যবর্তী কোণ 180°

$$QR$$
 বাহুর উপর বল, $\vec{F}_2 = I\vec{l} \times \vec{B} = IlB \sin 90^\circ = IlB$ $[\because \vec{l} \ \Im \ \vec{B} \ \Im \ \Lambda$ ধ্যবর্তী কোণ 90°]

উপরোক্ত আলোচনা হতে দেখা যায় যে, \vec{F}_1 ও \vec{F}_2 বল দ্বয় সমান, সমান্তরাল ও বিপরীতমুখী, ফলে এ বল দ্বয় একটি দ্বন্দ্ব সৃষ্টি করে। এ দ্বন্দ্ব বর্তনীটিকে ঘুরানোর চেষ্ট্রা করে। দ্বন্দের ভ্রামক বা টর্ক,

$$au=$$
 যে কোন একটি বল $imes$ দ্বন্দের বাহু

$$\Rightarrow \tau = I l B k$$

$$:: \tau = I A B \dots \dots (1)$$
 [$l k = A =$ বর্তনীর ক্ষেত্রফল।]

বর্তনীর মধ্যবিন্দু দিয়ে গমনকারী এবং SP ও QR বাহুর সমান্তরাল একটি অক্ষXY আঁকা হলো। τ এর অভিমুখ হচ্ছে XY বরাবর।

ভেক্টর রূপে লিখলে লেখা যায়,

$$\vec{\tau} = I \vec{A} \times \vec{B} \dots \dots (2)$$

ক্ষেত্রফল ভেক্টর \vec{A} এর দিক হচ্ছে কাগজ পৃষ্ঠের লম্ব বরাবর, নিচ দিকে। বর্তনীতে একই আকৃতি ও ক্ষেত্রফলের N সংখ্যক পাক (turn) থাকলে,

$$\vec{\tau} = N I \vec{A} \times \vec{B}$$

 $ec{ au} = ec{m} imes ec{B}$ [এখানে, $ec{m} = NI ec{A} =$ বর্তনীর চৌম্বক ভামক] $ec{m}$ এর দিক হচ্ছে $ec{A}$ এর দিকে।

সান্ট: গ্যালভানোমিটার বা অ্যামিটারের মত অত্যন্ত সুবেদী যন্ত্রগুলোর প্রবাহমাত্রা পরিমাপের একটি নির্দিষ্ট সীমা থাকে। নির্ণেয় প্রবাহমাত্রা এ সীমা অতিক্রম করলে যন্ত্রের কুডলীটি পুড়ে যায় এবং যন্ত্রটি নষ্ট হয়। এ সব যন্ত্রের মধ্যদিয়ে যাতে অধিক পরিমান তড়িং না যেতে পারে তার জন্য একটি ক্ষুদ্র মানের রোধ যন্তটির সাথে সমান্তরালে যুক্ত করা হয়। ক্ষুদ্র মানের এ রোধকে সান্ট বলে।

সান্ট ও গ্যালভানোমিটার প্রবাহের রাশিমালা:

ধরা যাক, G রোধ বিশিষ্ট একটি গ্যালভানোমিটারের A ও B প্রান্তের সাথে S রোধের একটি সান্ট যুক্ত করা হল। বর্তনীর মূল প্রবাহমাত্রা I, A বিন্দুতে পৌছে গ্যালভানোমিটারের মধ্য দিয়ে I_g এবং সান্টের মধ্যদিয়ে I_s পরিমান তড়িৎ প্রবাহিত হয়ে B বিন্দুতে এসে পুনরায় I হবে। অর্থাৎ

যদি A ও B বিন্দুর মধ্যে বিভব পার্থক্য ($V_A - V_B$) হয়, তাহলে ওহমের সূত্র হতে পাই,

(4) নং সমীকরণ সান্ট প্রবাহের রাশিমালা ও (5) নং সমীকরণ গ্যালভানোমিটার প্রবাহের রাশিমালা।

অ্যামিটারের গঠন ও কার্যপ্রণালী:

<u>অ্যামিটার:</u> যে যন্ত্রের সাহায্যে বর্তনীর তড়িৎপ্রবাহ সরাসরি অ্যাম্পিয়ার এককে মাপা যায় তাকে অ্যামিটার বলে। একে বর্তনীর সাথে শ্রেণী সমবায়ে যুক্ত করতে হয়।

<u>গঠন:</u> এই যন্ত্রে একটি চল কুন্ডলী গ্যালভানোমিটার থাকে। কুন্ডলীর বিক্ষেপ নির্ণয়ের জন্য কুন্ডলী তলের সমকোণে একটি সূচক বা কাটা লাগানো থাকে। সূচকটি অ্যাম্পিয়ার এককে দাগকাটা একটি স্কেলের উপরে ঘুরতে পারে। কুন্ডলীর সাথে সমান্তরাল সমবায়ে একটি অল্প মানের রোধ লাগানো থাকে।

কার্যপ্রণালী: যেহেতু অ্যামিটারটিকে বর্তনীতে শ্রেণী সমবায়ে যুক্ত করতে হয় তাই এর রোধ বর্তনীতে কার্যকর হয়। ফলে বর্তনীর প্রবাহের মান পরিবর্তিত হতে পারে। এর জন্য গ্যালভানোমিটারের রোধের সাথে সমান্তরালে রোধ সান্ট হিসেবে যুক্ত করা হয়।

এতে যন্ত্রের তুল্য রোধ খুব কম হয়, ফলে অ্যামিটার বর্তনীতে যুক্ত করলে বর্তনীতে কার্যত প্রবাহের কোন পরিবর্তন হয় না এবং প্রবাহের একটি ক্ষুদ্র অংশ মাত্র কুন্ডলীর ভিতরদিয়ে প্রবাহিত হয় এবং যন্ত্রটি নষ্ট হওয়ার হাত থেকে রক্ষা পায়।

ধরি, যে গ্যালভানোমটার দ্বারা অ্যামিটার তৈরী করা হয়েছে তার রোধ G এবং গ্যালভানোমিটারের সর্বাধিক যে প্রবাহ নিতে পারে তার মান I_g , একে সর্বাধিক I প্রবাহ পরিমাপের উপযোগী অ্যামিটারে পরিণত করতে হলে এর সাথে যদি S মানের রোধ সান্ট হিসেবে ব্যবহার করা হয় তবে,

$$\begin{split} I_g = & \frac{\mathbf{I} \times \mathbf{S}}{S+G} \\ \text{TI,} \quad I_g S + I_g G = IS \\ \text{TI,} \quad S(I-I_g) = I_g G \end{split}$$

 $\therefore S = rac{I_g G}{I - I_g}$ গ্যালভানোমিটারের সমান্তরালে এই S মানের রোধ সমান্তরালে যুক্ত করলে ঐ গ্যালভানোমিটার

(0 − I) পাল্লার অ্যামিটারে রূপান্তরিত হবে।

<u>অ্যামিটারের পাল্লা বৃদ্ধি</u>: একটি স্বল্প পাল্লার অ্যামিটারকে বেশী পাল্লার অ্যামিটারে পরিণত করতে হলে অ্যামিটারের সাথে সমান্তরাল সমবায়ে একটি স্বল্প মাত্রার রোধ যুক্ত করতে হয়।

ধরা যাক, অ্যামিটারটির কার্যকরী রোধ R এবং এটি সর্বোচ্চ I প্রবাহ মাপুতে পারে। এ যন্ত্রের সাহায্যে I এর n গুন অর্থাৎ nI প্রবাহমাত্রা পরিমাপ করার জন্য এর সাথে এর সমান্তরালে r রোধ যুক্ত করতে হবে।

$$I = \frac{nI \times r}{R+r}$$

বা, $nr = R+r$
বা, $r(n-1) = R$

 $r = \frac{R}{n-1}$ অর্থাৎ n গুণ তড়িৎ প্রবাহ পরিমাপ করতে হলে অ্যামিটারের সাথে $\frac{R}{n-1}$ মানের রোধ

সমান্তরালে যোগ করতে হবে।

ভোল্টমিটার: যে যন্ত্রের সাহায্যে বর্তনীর যে কোন দুই বিন্দুর মধ্যকার বিভব পার্থক্য সরাসরি ভোল্ট এককে পরিমাপ করা যায় তাকে ভোল্টমিটার বলে।

<u>গঠন ३</u> এই যন্ত্রে একটি চল কুশুলী গ্যালভানোমিটার থাকে। কুশুলীর বিক্ষেপ নির্ণয়ের জন্য কুশুলী তলের সমকোণে একটি সূচক বা কাটা লাগানো থাকে। সূচকটি ভোল্ট এককে দাগকাটা একটি ক্ষেলের উপরে ঘুরতে পারে। কুশুলীর সাথে শ্রেণী সমবায়ে একটি উচ্চ মানের রোধ লাগানো থাকে।

কার্যপ্রণালী: যেহেতু ভোল্টমিটারকে বর্তনীর দুই বিন্দুর সাথে সমান্তরাল সমবায়ে যুক্ত করা হয় তাই কিছু প্রবাহ ভোল্টমিটারে প্রবেশ করে, ফলে মূল বর্তনীতে প্রবাহের পরিবর্তন ঘটতে পারে। বর্তনীর মূল প্রবাহের যাতে কোন পরিবর্তন না হয় তাই এর সাথে শ্রেণী সমবায়ে একটি উচ্চ মানের রোধ যুক্ত করা হয়। এই উচ্চমানের রোধটি বর্তনীর সাথে সমান্তরাল হওয়ায় বর্তনী ও ভোল্টমিটারের তুল্যরোধ বর্তনীর মূল রোধের প্রায় সমান হয় এবং যন্ত্রের সাথে যুক্ত রোধ উচ্চমানের হওয়ায় এর ভিতর দিয়ে খুব অল্প প্রবাহ চলে। ফলে বর্তনীর মূল প্রবাহের কোন পরিবর্তন হয় না।

ধরি, যে গ্যালভানোমিটার দ্বারা ভোল্টমিটার তৈরী করা হয়েছে তার রোধ G এবং গ্যালভানোমিটার সর্বাধিক যে প্রবাহ নিতে পারে তার মান I_g । একে সর্বাধিক V ভোল্ট বিভব পার্থক্য পরিমাপের উপযোগী ভোল্টমিটারে পরিণত করতে এর সাথে যদি R মানের উচ্চ রোধ শ্রেণীতে যুক্ত করতে হয় তবে,

ওহমের সূত্র হতে পাই,

$$I_g = \frac{V}{R + G}$$

 \therefore R = $\frac{V}{I_g}$ – G (1) অতএব কুন্ডলীর সাথে শ্রেনীতে R মানের রোধ যুক্ত করলে ঐ গ্যালভানোমিটার

(0-V) পাল্লার ভোল্টমিটার রূপে ব্যবহার করা যাবে।

ভোল্টমিটারের পাল্লা বৃদ্ধি: একটি স্বল্প পাল্লার ভোল্টমিটারকে বেশী পাল্লার ভোল্টমিটারে রূপান্তরিত করতে হলে যন্ত্রের সাথে শ্রেণী সমবায়ে এমন একটি রোধ যুক্ত করতে হবে যাতে যন্ত্রের ভিতর দিয়ে প্রবাহিত তড়িতের কোন পরিবর্তন না হয়।

ধরা যাক, ভোল্টমিটারের কার্যকরী রোধ R_1 , এবং সংযোগ বিন্দুদ্বয়ের মধ্যে V বজায় থাকলে ভোল্টমিটারের মধ্যদিয়ে সর্বোচ্চ প্রবাহ I_g হয়।

$$\therefore I_g = \frac{V}{R_1}$$

ধরা যাক, এ যন্ত্রের সাহায্যে nV পরিমান বিভব পার্থক্য পরিমাপ করার জন্য এর সাথে R_2 মানের রোধ শ্রেণীতে যুক্ত করতে হবে।

$$\therefore I_g = \frac{nV}{R_1 + R_2}$$

$$\text{If, } \frac{V}{R_1} = \frac{nV}{R_1 + R_2}$$

$$\text{If, } \frac{1}{R_1} = \frac{n}{R_1 + R_2}$$

$$\text{If, } R_1 + R_2 = nR_1$$

 $\therefore R_2 = R_1(n-1)$ সুতরাং n গুন বিভব পার্থক্য মাপতে হলে ভোল্টমিটারের সাথে এর বর্তমান কার্যকরী রোধের (n-1) গুণ রোধকে শ্রেণী সমবায়ে যুক্ত করতে হবে।

<u>মাল্টিমিটার:</u> যে যন্ত্রের সাহায্যে রৌধ, বিভব পার্থক্য ও তড়িৎপ্রবাহ মাপা যায় তাকে মাল্টিমিটার বলে। মাল্টিমিটারে রোধ, বিভব পার্থক্য ও রোধ মাপার জন্য পৃথক পৃথক ক্ষেল আছে। রোধ, বিভব পার্থক্য ও তড়িৎপ্রবাহ মাপা যায় বলে একে AVO মিটার ও বলে।

Want more Updates: https://www.facebook.com/tanbir.ebooks

দ্বিতীয় পত্রের অংকের সমাধান

2nd Paper Math Solution ৪। তড়িৎ প্রবাহের চৌম্বক ক্রিয়া

(04.Magnetic Effect of Electric Current)

১। একটি চল কুন্ডলী গ্যালভানোমিটারের ধ্রুবক $2\times 10^{-4}~A~rad^{-1}$ হলে কত তড়িৎ প্রবাহে এ বিক্ষেপ 54^o হন্ত্রেঞ্জানে,

আমরা জানি, $I = k\theta$ $= \frac{2 \times 10^{-4} \times 54 \times 3.14}{180} A$ $= 1.884 \times 10^{-4} A \quad (Ans.)$

প্রেখানে, গ্যালভানো মিটারের ধ্রবক $k=2\times10^{-4}~A~rad^{-1}$ বিক্ষেপ কোণ, $\theta=54^\circ$ বা, $\theta=\frac{54\times\pi}{180}=\frac{54\times3.14}{180}$ rad বিদ্যুৎ প্রবাহ মাত্রা, I=?

২। একটি বৃত্তাকার কুন্ডুলীর ব্যাসার্ধ 20cm। এর মধ্যদিয়ে 2A তড়িৎ প্রবাহিত চললে কুন্ডুলীর কেন্দ্রে $2.518\times10^{-3}\,T$ এর চৌম্বক ক্ষেত্র সৃষ্টি হয়। কুন্ডুলীর পাক সংখ্যা কত? । এখানে,

আমরা জানি, $B = \frac{\mu_0 n i}{2r}$ $\Rightarrow n = \frac{2Br}{\mu_0 i}$

এখানে,
ব্যাসার্ধ, r =20cm =0.2m
বিদ্যুৎ প্রবাহ, I=2A
টৌম্বক ক্ষেত্র,
B =2.518×10⁻³ T
পাক সংখ্যা, n=?

 $\Rightarrow n = \frac{2 \times 2.518 \times 10^{-3} \times 0.2}{4\pi \times 10^{-7} \times 2}$

∴ n = 400.95 পাক = 401 পাক (Ans.)

৩। পরস্পর হতে $25\times10^{-2}~m$ ব্যবধানে অবস্থিত 5m দৈর্ঘ্যের দু'টি তারের উভয়ের মধ্যে দিয়ে 50A বিদ্যুৎ প্রবাহিত হলে এদের মধ্যে ক্রিয়াশীল বলের মান নির্ণয় কর।

আমরা জানি,

$$F = \frac{\mu_0 I_1 I_2 l}{2\pi r}$$

$$\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 25 \times 10^{-2}}$$
 $\therefore F = 0.01N \ (Ans)$
 $\Rightarrow \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 25 \times 10^{-2}}$
 $\Rightarrow \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 25 \times 10^{-2}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 25 \times 10^{-2}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 25 \times 10^{-2}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 25 \times 10^{-2}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 25 \times 10^{-2}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 25 \times 10^{-2}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 25 \times 10^{-2}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 25 \times 10^{-2}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 25 \times 10^{-2}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 25 \times 10^{-2}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 25 \times 10^{-2}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 25 \times 10^{-2}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 25 \times 10^{-2}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 25 \times 10^{-2}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 25 \times 10^{-2}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 10^{-2}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 10^{-2}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 10^{-2}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 10^{-2}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 10^{-2}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 10^{-2}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 10^{-7}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 10^{-7}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 10^{-7}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 10^{-7}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 10^{-7}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 10^{-7}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 10^{-7}}$
 $\Rightarrow F = \frac{4\pi \times 10^{-7} \times 50 \times 50 \times 5}{2\pi \times 10^{-7}}$

8। একটি গ্যলভানো মিটারের রোধ 99 ওহমঁ। এর সাথে কত সান্ট যুক্ত করলে মূল বিদ্যুৎ প্রবাহমাত্রার 98% সান্টের মধ্যদিয়ে প্রবাহিত হবে।

আমরা জানি.

$$Is = \frac{IG}{S+G}$$

$$\Rightarrow \frac{I \times 98}{100} = \frac{I \times 99}{S+99}$$

$$\Rightarrow \frac{98}{100} = \frac{99}{S+99}$$

$$\Rightarrow 98S + 9702 = 9900$$

$$\Rightarrow 98S = 9900 - 9702$$

$$\Rightarrow S = \frac{198}{98} \therefore S = 2.02 \Omega \text{ (Ans.)}$$

ে। $100~\Omega$ রোধের একটি গ্যালভানোমিটারের সাথে 5Ω রোধের সান্ট যুক্ত করে একটি তড়িৎ বর্তনীর সাথে যুক্ত করলে গ্যালভানো মিটারের মধ্য দিয়ে 0.42A প্রবাহ পাওয়া গেল। বর্তনীর মূল প্রবাহ কত?

এখানে,
$$i_g=0.42A$$
 $G=100\Omega$ $S=5\Omega$ $i=?$ আমরা জানি, $i_g=\frac{iS}{G+R}$ $\Rightarrow 0.42=\frac{i\times 5}{100+5}$ $\Rightarrow 5i=105\times 0.42$ $\Rightarrow i=\frac{105\times 0.42}{5}$ $\Rightarrow i=\frac{100\times 0.42}{5}$

৬। একটি গ্যলভানো মিটারের রোধ 20ওহম। এর সাথে কত সান্ট যুক্ত করলে মূল্রবিদ্যুৎ প্রবাহমাত্রার 10% গ্যলভানো মিটারের মধ্যদিয়ে প্রবাহিত হবে। আমরা জানি,

ামরা জ্যান,
$$Ig = \frac{IS}{S+G}$$

$$\Rightarrow \frac{I}{10} = \frac{I \times S}{S+20}$$

$$\Rightarrow 10S = S+20$$

$$\Rightarrow 9S = 20$$

$$\Rightarrow S = \frac{20}{9} \therefore S = 2.22 \Omega \text{ (Ans.)}$$
 এখানে, রোধ, $G = 20$ ওহম মূল প্রবাহ, $= I$ (ধরি)
$$\therefore \text{ গালভানো মিটারের প্রবাহ },$$

$$Ig = \frac{I \times 10}{100} = \frac{I}{10}$$
 সান্ট, $S = ?$

৭। 0.4T মানের একটি মুসম চৌম্বক ক্ষেত্রে একটি প্রোটন $1000~{\rm km~s^{-1}}$ বেগে প্রবেশ করে। বেগের অভিমুখ চৌম্বক ক্ষেত্রের সাথে $30^{\rm o}$ কোণ সৃষ্টি করে। প্রোটনটির উপর চৌম্বক বল নির্ণয় কর। প্রোটনের চার্জ $1.6\times10^{-19}{\rm C}$ আমরা জানি,

$$\begin{split} \vec{F} &= q \vec{v} \times \vec{B} \\ \Rightarrow \vec{F} &= q v B S i n \theta \\ \Rightarrow \vec{F} &= 1.6 \times 10^{-19} \times 10^6 \times 0.4 S i n 30^\circ \\ \Rightarrow \vec{F} &= 1.6 \times 10^{-19} \times 10^6 \times 0.4 \times 0.5 \\ \therefore \vec{F} &= 3.2 \times 10^{-14} \, \text{N} \quad \text{(Ans)} \end{split} \qquad \begin{array}{l} \text{ative}, \\ \text{Ties}, q &= 1.6 \times 10^{-19} \\ \text{Cati}, v &= 1000 \, \text{kms}^{-1} \\ &= 10^6 \, \text{ms}^{-1} \\ B &= 0.4 T \\ \theta &= 30^\circ \\ F &= ? \end{split}$$

৮। একটি বৃত্তাকার কুণ্ডুলীর পাকসংখ্যা 400 এবং ব্যাস 320mm। কুণ্ডুলীতে কত তড়িৎ প্রবাহিত করলে এর কেন্দ্রে 2.518×10⁻³ T চৌম্বক ক্ষেত্র সৃষ্টি হবে?

চাম্বক ক্ষেত্র সৃষ্টি হবে?
আমরা জানি, $B = \frac{\mu_o NI}{2r}$ $\Rightarrow I = \frac{B \times 2r}{\mu_o N}$ $\Rightarrow I = \frac{2.518 \times 10^{-3} \times 2 \times 0.16}{4\pi \times 10^{-7} \times 400}$ $\therefore I = 1.6 \text{ Amp.} \quad \text{(Ans.)}$

এখানে, পাক সংখ্যা, N=400 পাক ব্যাসার্ধ, $r=\frac{320\times 10^{-3}}{2}\,m$ =0.16m $\mu_0=4\pi\times 10^{-7} TmA^{-1}$ চৌম্বক ক্ষেত্র, $B=2.518\times 10^{-3}\,T$ তড়িৎ প্রবাহ I=?

৯। একটি তড়িৎবাহী বৃত্তারকার তার কুন্ডুলীর ব্যাসার্ধ 31.41×10^{-2} m ও পাকসংখ্যা 400। তারটিতে $5\times10^{-7}A$ তড়িৎ প্রবাহিত করলে এর কেন্দ্রে চৌম্বক ফ্লাক্স ঘনতু নির্ণয় কর।

আমরা জানি, $B = \frac{\mu_0 NI}{2r}$ $\Rightarrow B = \frac{4\pi \times 10^{-7} \times 400 \times 5 \times 10^{-7}}{2 \times 31.4 \times 10^{-2}}$ $\therefore B = 4 \times 10^{-10} T \quad (Ans.)$

এখানে, পাক সংখ্যা, $N=\!400$ পাক $I=\!5\!\times\!10^{\text{-7}}$ Amp ব্যাসার্ব, $r=\!31.41\!\times\!10^{\text{-2}}$ m $\mu_o=\!4\pi\!\times\!10^{\text{-7}} TmA^{\text{-1}}$ চৌম্বক ফ্লাক্স ঘনতু, $B=\!?$

১০। একটি বৃত্তাকার কুডলীর পাকসংখ্যা 40 এবং ব্যাস $320~{
m mm}$ । কুডলীতে কত মাত্রার বিদ্যুৎ প্রবাহিত করলে কেন্দ্রে $300 \mu {
m wb/m}^2$

চৌম্বক প্রাবল্য সৃষ্টি করবে? আমরা জানি, $B = \frac{\mu_o NI}{2r}$ $\Rightarrow I = \frac{B \times 2r}{\mu_o N}$ $\Rightarrow I = \frac{300 \times 10^6 \times 2 \times 160 \times 10^3}{4\pi \times 10^7 \times 40}$ $\therefore I = 1.9 \, A \quad (Ans.)$

এখানে, পাক সংখ্যা, N =40 পাক, I =? ব্যাসাধ', $r = \frac{320}{2}$ mm = 160×10^{-3} m $\mu_o = 4\pi \times 10^{-7} wbA^{-1}m^{-1}$ চৌম্বক ফ্লাক্স ঘনতৃ, B = $300 \ \mu wb/m^2 = 300 \times 10^{-6}$ wb/m² বিদ্যুৎ প্রবাহ, I=?

১১ । $8.4\times10^{-16}~{
m Kg}$ ভরের একটি চার্জিত প্লাষ্টিক বল $2.6\times10^4~{
m Volt/m}$ মানের সুসম বৈদ্যুতিক ক্ষেত্রে ঝুলন্ত অবস্থায় আছে । বলটিতে চার্জের পরিমান নির্ণয় কর ।

[g =
$$10 \text{ms}^{-2}$$
]
আমরা জানি,

 $F = qBSin\theta$

$$\Rightarrow mg = qBSin\theta$$

$$\Rightarrow 8.4 \times 10^{-16} \times 10$$

$$= q \times 2.6 \times 10^4 \times Sin90^\circ$$

$$\Rightarrow q = \frac{8.4 \times 10^{-16} \times 10}{2.6 \times 10^4 \times 1}$$

$$\therefore q = 3.23 \times 10^{-19} \text{ C (Ans.)}$$

$$\text{and } q = \frac{40 \times 10^{-16} \times 10}{2.6 \times 10^4 \times 1}$$

$$\Rightarrow q = \frac{8.4 \times 10^{-16} \times 10}{2.6 \times 10^4 \times 1}$$

$$\Rightarrow q = 3.23 \times 10^{-19} \text{ C (Ans.)}$$

১২। একটি বিদ্যুৎ সরবরাহ লাইন 80A তড়িৎ প্রবাহ এক স্থান থেকে অন্য স্থানে প্রেরণ করছে। এই তড়িৎ প্রবাহের দরুন 1.5m নিচে চৌম্বকক্ষেত্রের মান নির্ণয় কর।

জামরা জানি, $B = \frac{\mu_o I}{2\pi a}$ $\Rightarrow B = \frac{4\pi \times 10^{-5} \times 80}{2\pi \times 1.5}$ $\therefore B=1.06 \times 10^{-5} \text{ T (Ans.)}$

১৩। একটি ভোল্ট মিটারের পাল্লা $15 \mathrm{V}$ এবং রোধ 1000Ω । একে কিভাবে ব্যবহার করলে $150 \mathrm{V}$ পর্যন্ত মাপা যাবে? আমরা জানি.

 $I = \frac{V_1}{R} = \frac{V_2}{R + R_1}$ $\Rightarrow \frac{15}{1000} = \frac{150}{1000 + R_1}$ $\Rightarrow \frac{1}{1000} = \frac{10}{1000 + R_1}$ $\Rightarrow 1000 + R_1 = 10000$

এখানে, বিভব, $V_1=15V$ বিভব, $V_2=150V$ রোধ, $R=1000\Omega$ ধরি সিরিজে R_1 রোধ সংযুক্ত করতে হবে।

তৎি প্ৰবাহ, I = 80A

 $\mu_0 = 4\pi \times 10^{-7} \text{ TmA}^{-1}$

দুরত্ব, a = 1.5m

চৌম্বকক্ষেত্ৰ, B =?

 $\Rightarrow R_1 = (10000 - 1000)\Omega$ $\Rightarrow R_1 = (10000 - 1000)\Omega$ $\therefore R_1 = 9000\Omega$

উত্তরঃ 9000Ω শ্রেণী সমবায়ে যুক্ত করতে হবে।

(H) The Thirth of the Control of the

চুম্বকঃ যে বস্তু চৌম্বকক্ষেত্র সৃষ্টি করে, ফলে অন্য একট চুম্বক বা চৌম্বক পদার্থের উপর বল প্রয়োগ করে তাকে চুম্বক বলে।

<u>চৌম্বক পদার্থ:</u> যে সকল পদার্থকে চুম্বক আকর্ষণ করে এবং যাদেরকে চুম্বকে পরিনত করা যায় সেই সকল পদার্থকে চৌম্বক পদার্থ বলে।

<u>অচৌম্বক পদার্থ:</u> যে সকল পদার্থকে চুম্বক আকর্ষণ করে না এবং যাদেরকে চুম্বকে পরিনত করা যায় না সেই সকল পদার্থকে অচৌম্বক পদার্থ বলে।

<u>চৌম্বক মেরু:</u> চুম্বকের দুই প্রান্তের কাছাকাছি যেখানে চুম্বকের আকর্ষণ ক্ষমতা সবচেয়ে বেশী তাকে চুম্বকের মেরু বলে। চিত্রে Nও S চুম্বকের মেরু।

<u>চৌম্বক অক্ষ:</u> চুম্বকের দুই মেরুর সংযোজক কাল্পনিক সরল রেখাকে চৌম্বক অক্ষ বলে। চিত্রে AB সরল রেখা চৌম্বক অক্ষ।

তৌষক দৈর্ঘ্য বা কার্যকরী দৈর্ঘ্য:
 চ্মকের দুই মেরুর মধ্যবর্তী দূরত্বকে এর চৌম্বক দৈর্ঘ্য বা কার্যকরী দৈর্ঘ্য বলে। চিত্রে NS চুম্বকের চৌম্বক দৈর্ঘ্য বা কার্যকরী দৈর্ঘ্য দির্ঘ্যকে 21 দ্বারা প্রকাশ করা হয়।

চিত্রে CD চুম্বকের জ্যামিতিক দৈর্ঘ্য।

কোন চুম্বকের চৌম্বক দৈর্ঘ্য ও জ্যামিতিক দৈর্ঘ্যের অনুপাত একটি ধ্রুব সংখ্যা। এই ধ্রুব সংখ্যার মান 0.85।

<u>চৌম্বক মধ্যতল:</u> কোন স্থানে মুক্ত ভাবে ঝুলন্ত চুম্বকের চৌম্বক অক্ষের উপর কল্পিত উলম্ব তলকে ঐ স্থানের চৌম্বক মধ্যতল বলে।

ভৌগলিক মধ্যতল: কোন স্থানে ভৌগলিক উত্তর মেরু ও ভৌগলিক দক্ষিন মেরু সংযোগ সরল রেখার উপর কাল্পনিক উলম্ব তলকে ভৌগলিক মধ্যতল বলে।

টোম্বক ভ্রামক: কোন চুম্বকের যে কোন একটি মেরুর মেরু শক্তি ও এর চৌম্বক দৈর্ঘ্যের গুনফলকে চৌম্বক ভ্রামক বা চুম্বকের দিপোল ভ্রামক্র বলে। এটি একটি ভেক্টর রাশি। একে $\stackrel{\rightarrow}{M}$ দ্বারা প্রকাশ করা হয়। কোন চুম্বকের মেরু শক্তি m এবং চৌম্বক দৈর্ঘ্য $2\vec{l}$ হলে $\stackrel{\rightarrow}{M}=(2\vec{l}\)m$ । এর একক অ্যাম্পিয়ার –িমটার 2 ।

<u>চৌধকক্ষেত্র বা চৌধক ফ্লাক্স ঘনত্ব বা চৌধক আবেশ ক্ষেত্র:</u> একটি গতিশীল চার্জ বা স্থায়ী চুম্বক তার চার পাশে যে ক্ষেত্র সৃষ্টি করে তাকে তাকে চৌম্বকক্ষেত্র বা চৌম্বক ফ্লাক্স ঘনত্ব বা চৌম্বক আবেশ ক্ষেত্র বলে। কোন চৌম্বক ক্ষেত্রের দিকের সাথে সমকোণে একক বেগে চলমান একটি একক চার্জের উপর ক্রিয়াশীল বলকে ঐ চৌম্বক ক্ষেত্রের মান বলে।

টৌম্বক ক্ষেত্রকে $ec{B}$ দ্বারা প্রকাশ করা হয়। এটি একটি ভেক্টর রাশি। এর একক টেসলা বা $NA^{-1}m^{-1}$ ।

<u>চৌম্বক তীব্রতা বা চৌম্বক প্রাবল্য</u>ে কোন বিন্দুর চৌম্বকক্ষেত্র এবং চৌম্বক প্রবেশ্যতার অনুপাতকে চৌম্বক তীব্রতা বা চৌম্বক প্রাবল্য বলে। চৌম্বক তীব্রতাকে H দ্বারা প্রকাশ করা হয়। শূন্য স্থানে কোন বিন্দুর চৌম্বকক্ষেত্র B_0 ও চৌম্বক প্রবেশ্যতা μ_0 হলে চৌম্বক

তীব্রতা,
$$H=rac{B_0}{\mu_0}$$
 হবে। শূন্য মাধ্যম ছাড়া অন্য মাধ্যমে $H=rac{B}{\mu}$ সুতরাং,

 $B = \mu H$

অর্থাৎ, চৌম্বক ক্ষেত্র = চৌম্বক প্রবেশ্যতা × চৌম্বক তীব্রতা

জ্যামিতিক দৈর্ঘ্য

একক ঃ চৌম্বক তীব্রতার একক
$$=rac{T}{TmA^{-1}}=Am^{-1}$$
 চৌম্বক তীব্রতাকে চৌম্বক ক্ষেত্রপ্রাবল্য ও বলা হয়।

চুম্বকন মাত্রা বা চুম্বাকায়ন তীব্রতা (Intensity of Magnetisation): সুষমভাবে চুম্বকিত কোন স্থায়ী বা আবিষ্ট চুম্বকের একক আয়তনের চৌম্বক ভ্রামককে চুম্বকন মাত্রা বা চুম্বাকায়ন তীব্রতা বলে। V আয়তনের চৌম্বক ভ্রামক \vec{M} হলে চুম্বাকায়ন তীব্রতা

$$\vec{I} = \frac{\vec{M}}{V}$$
 হবে।

যদি চৌম্বক পদার্থটির প্রস্থাচ্ছেদের ক্ষেত্রফল a এবং চৌম্বক দৈর্ঘ্য 2l হয় তাহলে তার আয়তন $V=a\times 2l$ । চুম্বাকায়নের ফলে উদ্ভুত মেরু শক্তি m হলে, ঐ পদার্থের চৌম্বক ভ্রামক, $M=m\times 2l$ ।

সুতরাং $I=rac{M}{V}=rac{m imes 2l}{a imes 2l}=rac{m}{a}$ অর্থাৎ, একক প্রস্থাচ্ছেদের ক্ষেত্রফলে উদ্ভূত মেরুশক্তিকে চুম্বাকায়ন তীব্রতা বা চুম্বকন মাত্রা বলে।

 $\underline{\text{একক:}}$ যেহেতু চৌম্বক ভ্রামকের একক $A\ m^2$, সুতরাং চুম্বকায়ন তীব্রতার একক হবে, $\frac{A\ m^2}{m^3} = Am^{-1}$

<u>চৌম্বক আবেশ বা চৌম্বক আবেশ ক্ষেত্র:</u> চৌম্বক পদার্থের মধ্যে চৌম্বক আবেশ রেখার লম্বভাবে অবস্থিত একক ক্ষেত্রফল দিয়ে অতিক্রমকারী চৌম্বক আবেশ রেখার সংখ্যাকে চৌম্বক আবেশ বা চৌম্বক আবেশ ক্ষেত্র রলে।

ব্যাখ্যাঃ চৌম্বক আবেশকে \vec{B} দিয়ে প্রকাশ করা হয়। চৌম্বক আবেশ \vec{B} হচ্ছে চৌম্বক ক্ষেত্র \vec{B}_0 এবং চৌম্বক পদার্থের চুমাকায়নের ফলে সৃষ্ট চৌম্বক ক্ষেত্র $\mu_0 \vec{I}$ এর সমষ্টি।

সুতরাং,
$$\vec{B} = \vec{B}_0 + \mu_0 \vec{I} = \mu_0 \vec{H} + \mu_0 \vec{I}$$

$$\therefore \vec{B} = \mu_0 (\vec{H} + \vec{I})$$

চৌম্বক আবেশ B কে চৌম্বক ফ্লাক্স ঘনত্ব বা চৌম্বকক্ষেত্র ও বলা হয়।

এককঃ চৌম্বক আবেশ এর একক T (টেসলা) বা Wbm⁻²।

<u>টেসলা:</u> টেসলা হল চৌম্বক ক্ষেত্রের বলের মান। চৌম্বক ক্ষেত্রের কোন বিন্দুতে 1 কুলম্ব চার্জ স্থাপন করলে সেটি যদি ক্ষেত্রের সাথে সমকোণে $1 {
m ms}^{-1}$ বেগে গতিশীল হয়ে $1 {
m N}$ বল অনুভব করে তবে সেই চৌম্বক ক্ষেত্রের মানকে 1 টেসলা বলে।

<u>চৌম্বক প্রবেশ্যতা:</u> কোন চৌম্বক পদার্থের চৌম্বক আবেশ এবং চৌম্বক তীব্রতার অনুপাতকে ঐ পদার্থের চৌম্বক প্রবেশ্যতা বলে। একে μ দ্বারা প্রকাশ করা হয়। কোন চৌম্বক পদার্থের চৌম্বক আবেশ B এবং চৌম্বক তীব্রতা H হলে, $\mu = \frac{B}{H}$ হবে, চৌম্বক প্রবেশ্যতার একক একক TmA^{-1} ।

<u>চৌম্বক গ্রাহীতা বা চৌম্বক প্রবণতা:</u> কোন চৌম্বক পদার্থের চুম্বকায়ন তীব্রতা (চুম্বকন মাত্রা) এবং চৌম্বক তীব্রতার অনুপাতকে ঐ পদার্থের চৌম্বকগ্রাহীতা বা চৌম্বক প্রবণতা বলে। একে к দ্বারা প্রকাশ করা হয়। সুতরাং কোন পদার্থের চুম্বাকায়ন তীব্রতা I এবং চৌম্বক তীব্রতা H হলে চৌম্বক প্রবণতা $\kappa = \frac{I}{I}$ ।

<u>এককः</u> যেহেতু চৌম্বক গ্রহীতা দুইটি একই প্রকার রাশির অনুপাত, তাই এর কোন একক নেই।

<u>আপেক্ষিক চৌম্বক প্রবেশ্যতা:</u> কোন চৌম্বক পদার্থের চৌম্বক প্রবেশ্যতা ও শূন্যস্থানের চৌম্বক প্রবেশ্যতার অনুপাতকে ঐ পদার্থের আপেক্ষিক চৌম্বক প্রবেশ্যতা বলে। একে μ_r দ্বারা প্রকাশ করা হয়। কোন চৌম্বক পদার্থের চৌম্বক প্রবেশ্যতা μ ও শূন্যস্থানের চৌম্বক প্রবেশ্যতা μ_0 হলে আপেক্ষিক চৌম্বক প্রবেশ্যতা $\mu_r = \frac{\mu}{\mu}$

<u>এককঃ</u> যেহেতু আপেক্ষিক চৌম্বক প্রবেশ্যতা দুইটি একই প্রকার রাশির অনুপাত, তাই এর কোন একক নেই।

- (ক) ফেরোচীম্বক পদার্থ: ফেরোচীম্বক পদার্থের পরমাণু তথা অণুসমুহের নীট চৌম্বক দ্বিপোল মোমেন্ট থাকে। কিন্তু দ্বিপোলগুলো স্বাধীন সন্তা হিসাবে ক্রিয়া করেনা। ফেরোচীম্বক পদার্থের তৈরী একটি বস্তুর দ্বিপোলগুলো বিভিন্ন ডোমেইন -এ বিভক্ত থাকে। বহিঃচোম্বক ক্ষেত্র প্রয়োগ করলে সব ডোমেইন মিলে একটি বৃহৎ ডোমেইন গঠন করে এবং প্রায় সমস্ত দ্বিপোল ক্ষেত্রের দিকে সজ্জিত হয়। ফলে ক্ষেত্রের দিকে বস্তুটিতে যথেষ্ট চুম্বাকায়ন ঘটে।
- (খ) প্যারাচীম্বক পদার্থ: প্যারাচীম্বক পদার্থের পরমাণু তথা অণুসমুহের নীট চৌম্বক দ্বিপোল মোমেন্ট থাকে। এ সব দ্বিপোল এক একটি স্বাধীন সন্তা হিসেবে ক্রিয়া করে। তাপীয় উত্তেজনায় দ্বিপোলগুলো এলোমেলা থাকে। ফলে, বস্তুটিতে কোন নীট চুম্বকায়ন থাকে না। বহিঃচৌম্বক ক্ষেত্র প্রয়োগ করলে দ্বিপোলগুলো ক্ষেত্রের দিকে সজ্জিত হবার পায়াস পায়। কিন্তু, তাপীয় উত্তেজনা সজ্জিত হতে বাধা দেয়। ফলে, কিছু দ্বিপোল সজ্জিত হয় এবং ক্ষেত্রের দিকে কিছু চুম্বকায়ন ঘটে।
- (খ) <u>ডায়াচীম্বক পদার্থ</u>: পদার্থের পরমাণুতে ইলেকট্রনের কক্ষীয় ও স্পিন গতি থেকে চৌম্বক মোমেন্ট উদ্ভূত হয়। এক জোড়া ইলেকট্রনের মধ্যে একটি মোমেন্ট অপরটির সমান ও বিপরীত হলে, উক্ত জোড়ার নীট মোমেন্ট শূন্য। ডায়াচৌম্বক পদার্থ দ্বারা তৈরী একটি বস্তু এ ধরনের বহু সংখ্যক জোড়ার সমষ্টি। ফলে, এ সব বস্তুতে কোন দ্বিপোল থাকে না এবং কোন নীট মোমেন্ট থাকে না।

<u>ডোমেইন (Domain)</u> ফেরোচুম্বকের বেলায় সমস্ত চুম্বক পদার্থটি অনেকগুলো ক্ষুদ্র ক্রুলাকায় এমন ভাবে বিভক্ত থাকে যে, প্রত্যেকটি এলাকার মধ্যে অবস্থিত চুম্বক দ্বিপোলগুলোর সব চুম্বক মোমেন্ট একই দিকে সন্নিবেশিত থাকে। এরূপ সন্নিবেশিত এলাকাকে ডোমেইন বলে।

ফেরোচৌম্বক, প্যারাচৌম্বক ও ডায়াচৌম্বক পদার্থের মধ্যে পার্থক্য:

ফেরোচৌম্বক পদার্থ	প্যারাচৌম্বক পদার্থ <i>ি</i>	ভায়াচৌম্বক পদার্থ
🕽 । চুম্বক দ্বারা প্রবলভাবে আকর্ষিত হয়।	চুম্বক দ্বারা ক্ষীণভাবে আকর্ষিত হয়।	চুম্বক দ্বারা ক্ষীণভাবে বিকর্ষিত হয়।
২। আপেক্ষিক চৌম্বক প্রবেশ্যতা (μ_r) 1	আপেক্ষিক চৌম্বক প্রবেশ্যতা (µr) 1 এর	আপেক্ষিক চৌম্বক প্রবেশ্যতা (µr) 1 এর
এর চেয়ে অনেক বেশী।	চেয়ে সামান্য বেশী।	চেয়ে সামান্য কম।
৩। চৌম্বক প্রবণতা ধনাত্মক ও উচ্চমানের	চৌম্বক প্রবৰ্ণতা ধনাত্মক ও অল্পমানের	চৌম্বক প্রবণতা ঋনাত্মক ও অল্পমানের
হয়।	হয়।	হয়।
৪। একটি নির্দিষ্ট কুরী বিন্দু আছে।	কোন কুরী বিন্দু নেই।	কোন কুরী বিন্দু নেই।
৫। চৌম্বক ধারকত্ব ধর্ম আছে।	চৌম্বক ধারকত্ব ধর্ম নেই।	চৌম্বক ধারকত্ব ধর্ম নেই।

ভূ-চৌকত্বের উপাদান তিনটি যথাঃ (ক) বিচ্যুতি (খ) বিনতি (গ) ভূ-চৌমক্ষেত্রের অনুভূমিক প্রাবল্য:

(ক) বিচ্যুতি: পৃথিবীর কোন স্থানে চৌম্বক মধ্যতল এবং ভৌগোলিক মধ্যতলের মধ্যবর্তী কোণকে ঐ স্থানের বিচ্যুতি কোণ বলে। একে θ দ্বারা প্রকাশ করা হয় ও ডিগ্রীতে মাপা হয়। পৃথিবীর বিভিন্ন স্থানে বিচ্যুতি কোণ বিভিন্ন। চিত্রে O স্থানে AODC তল দ্বারা ভৌগোলিক মধ্যতল ও BODE তল দ্বারা চৌম্বক মধ্যতল নির্দেশ করা হয়েছে। কাজেই ∠AOB ঐ স্থানের বিচ্যুতি কোণ।

ঢাকার বিচ্যুতি $(\frac{1}{2})^\circ$ পূর্ব বলতে এই বুঝি যে, ঢাকায় মুক্তভাবে নড়নক্ষম কোন সূচী চুম্বকের চৌম্বক অক্ষ চৌম্বক মধ্যতলে থেকে ভৌগোলিক অক্ষের সাথে $(\frac{1}{2})^\circ$ কোণ উৎপন্ন করে এবং এর উত্তর মেক্ল ভৌগোলিক অক্ষের পূর্বদিকে থাকে।

(খ) বিনতি: পৃথিবীর কোন স্থানে ভারকেন্দ্র দিয়ে মুক্তভাবে ঝুলন্ত চুম্বকের চৌম্বক অক্ষ ঐ স্থানের অনুভূমিকের সাথে যে কোণ করে স্থির থাকে, তাকে ঐ স্থানের ভূ-চুম্বকত্বের বিনতি কোণ বলে। চিত্রে O স্থানে OB রেখা অনুভূমিক নির্দেশ করে। ঐ স্থানে মুক্ত ভাবে ঝুলন্ত চুম্বকের চৌম্বক অক্ষ ON বরাবর অবস্থান করলে ∠BON = বিনতি = δ ঐ স্থানের বিনতি।

ঢাকার বিনতি 24°N বলতে এই বুঝি যে, ঢাকায় একটি দন্ড চুম্বককে মুক্তভাবে তার ভারকেন্দ্র হতে ঝুলালে, দন্ড চুম্বকটির উত্তর মেরু অনুভূমিকের সাথে 24° কোণ উৎপন্ন করে এবং উত্তরমেরুটি নিচে ঝুলে থাকে।

(গ) ভূ-চৌমক্ষেত্রের অনুভূমিক প্রাবল্য: পৃথিবীর কোন স্থানে একটি একক মেরুশক্তির উত্তর মেরুর উপর ভূ-চুম্বকত্বের দরুন যে বল ক্রিয়া করে তাকে ঐ স্থানের ভূ-চুম্বক ক্ষেত্রের মোট প্রাবল্য বলে। মনে করি কোন স্থানে এই ভূ-চুম্বক ক্ষেত্রের মোট প্রাবল্য B; এ প্রবাল্য B -কে দুটি উপাংশে ভাগ করা যায়। একটি অনুভূমিক উপাংশ H ও অপরটি উলম্ব উপাংশ
V। এ অনুভূমিক উপাংশকে ভূ-চৌমক্ষেত্রের অনুভূমিক প্রাবল্য এবং উলম্ব উপাংশকে ঐ স্থানের ভূ-চৌমক্ষেত্রের উলম্ব প্রাবল্য বলে। এদের মান পৃথিবীর বিভিন্ন স্থানে বিভিন্ন হয়।

বর্ণনা অনুসারে,

$$H = B \cos \delta \dots \dots \dots \dots (1)$$

এবং $V = B \sin \delta \dots \dots \dots (2)$ এখানে, $\delta =$ বিনতি কোণ সমীকরণ (1) ও (2) কে বর্গ করে যোগ করে পাই,

$$B^2 \cos^2 \delta + B^2 \sin^2 \delta = H^2 + V^2$$

$$\Rightarrow$$
 B² (cos² δ + sin² δ) = H² + V²

$$\Rightarrow$$
 B² × 1 = H² + V²

$$[\because \cos^2 \delta + \sin^2 \delta = 1]$$

$$\Rightarrow$$
 B = $\sqrt{V^2 + H^2}$

সমীকরণ (2) কে (1) দ্বারা ভাগ করে পাই,

$$\frac{B\sin\delta}{B\cos\delta} = \frac{V}{H}$$

$$\Rightarrow \tan \delta = \frac{V}{H}$$

$$\therefore \delta = \tan^{-1} \frac{V}{H}$$

একটি বিনতি বৃত্তের বর্ণনা এবং এর সাহায্যে কোন স্থানের বিনতি নির্ণয়: পৃথিবীর কোন স্থানে ভারকেন্দ্র দিয়ে মুক্তভাবে ঝুলন্ত চুম্বকের চৌম্বক অক্ষ ঐ স্থানের অনুভূমিকের সাথে যে কোণ করে স্থির থাকে, তাকে ঐ স্থানের ভূ-চুম্বকত্বের বিনতি কোণ বলে।

বিনতি বৃত্তঃ কোন স্থানের বিনতি নির্ণয়ের জন্য যে যন্ত্র ব্যবহার করা হয় তাকে বিনতি বৃত্ত বলে।

যদ্রের বর্ণনাঃ (i) এ যন্ত্রে NS একটি চুম্বক শলাকা। চুম্বক শলাকার ভারকেন্দ্র দিয়ে একটি ক্ষুদ্র দন্ড প্রবেশ করিয়ে দন্ডটির দুই প্রান্ত অপর একটি উলম্ব দন্ড R এর উপর রক্ষিত দুটো ত্রিশির টুকরার উপর অনুভূমিক ভাবে রাখা হয়।

(ii) A একটি বৃত্তাকার চাকতি। এটি খাড়া ভাবে রাখা হয়। চুম্ব শলাকার কেন্দ্র এ চাকতির কেন্দ্রে অবস্থিত এবং শলাকার দুই প্রান্ত চাকতির উপর দিয়ে সহজ ভাবে ঘুরতে পারে।

চাকতিটি চারটি সমান ভাবে বিভক্ত এবং প্রত্যেক ভাগে 0°–90° পর্যস্ত দাগ কাটা আছে। এ স্কেলের 0°– 0° রেখা অনুভূমিক এবং 90°–90° রেখা উলম্ব।

- (iii) G একটি কাচের বাক্স। যন্ত্রটি এর মধ্যে বসানো থাকে। যন্ত্রসহ বাক্সটিকে উলম্ব অক্ষের চারদিকে ঘুরানো যায়। যন্ত্রটিকে কত ডিগ্রী ঘুরান হল তা P সুচকের সাহায্যে অপর একটি অনুভূমিক বৃত্তাকার স্কেল H হতে জানা যায়। এ স্কেলে 0° হতে 360° দাগ কাটা থাকে।
- (iv) B একটি অনুভূমিক পাটাতনের উপর সমগ্র যন্ত্রটি উলম্বভাবে স্থাপিত এবং H স্কেলটি অঙ্কিত। এটি তিনটি লেভেলিং স্কু L এর উপর স্থাপিত থাকে। লেভেলিং স্কু L তিনটির সাহায়েয়ে পাটাতনটিকে অনুভূমিক করা যায়।

বিনতি নির্ণয়ঃ (i) প্রথমে যন্ত্রটির নিকট হতে সমস্ত চুম্বক বা চৌম্বক পদার্থ সরিয়ে লেভেলিং স্কু L এর সাহায্যে যন্ত্রটিকে অনুভূমিক রাখা হয়।

- (ii) এখন বাক্সটিকে খাড়া অক্ষে ঘুরানা হয় যতক্ষন না চুম্বক শলাকার প্রান্তদ্বয় 90°—90° দাগের সাথে মিলে যায়। এই অবস্থায় চুম্বক শলাকা কেবল মাত্র ভূ-চৌম্বক ক্ষেত্রের উলম্ব উপাশের প্রভাব থাকে, অনুভূমিক উপাশের কোন প্রভাব থাকে না।
- (iii) এরপর H স্কেলের উপর P সূচকের পাঠ নিয়ে বাক্সটিকে দক্ষিনাবর্তে আরো 90° কোণে ঘুরানো হয়। এতে চুম্বক শলাকার অক্ষভূ-চৌম্বক ক্ষেত্রের মোট প্রাবল্যের অভিমুখে অবস্থান করে। কাজেই 0°— 0° রেখা ও চুম্বক শলাকার অক্ষের অর্ভভূক্ত কোণ ঐ স্থানের বিনতি নির্দেশ করে। এরপর উলম্ব বৃত্তাকার স্কেলে চুম্বক শলাকার দু প্রান্তের পাঠ নেওয়া হয়। এরপর যন্ত্রটিকে দক্ষিনাবর্তে আরো 180° ঘুরিয়ে রেখে চুম্বক শলাকার দু প্রান্তের পাঠ নেওয়া হয়। এরপর বাক্সটিকে আবার খাড়া অক্ষে ঘুরানা হয় যতক্ষন না চুম্বক শলাকার প্রান্তর্বয় 90°—90° দাগের সাথে মিলে যায়। এরপর H স্কেলের উপর P সূচকের পাঠ নিয়ে বাক্সটিকে ঐ অবস্থান হতে বামাবর্তে 90° কোণে ঘুরানো হয়। এতে চুম্বক শলাকার অক্ষ ভূ-চৌম্বক ক্ষেত্রের মোট প্রাবল্যের অভিমুখে অবস্থান করে। কাজেই 0°— 0° রেখা ও চুম্বক শলাকার অক্ষের অর্ভভূক্ত কোণ ঐ স্থানের বিনতি নির্দেশ করে। এরপর উলম্ব বৃত্তাকার স্কেলে চুম্বক শলাকার দু প্রান্তের পাঠ নেওয়া হয়। এরপর যন্ত্রটিকৈ বামাবর্তে আরো 180° ঘুরিয়ে রেখে চুম্বক শলাকার দু প্রান্তের পাঠ নেওয়া হয়। পাঠগুলোর প্রত্যেকটিই বিনতি কোণ নির্দেশ করে। কাজেই পাঠগুলোর গড়েই ঐ স্থানের প্রকৃত বিনতি।
- (iv) সরল ভাবে উপরোক্ত পদ্ধতি অনুসরণ করলে ঐ স্থানের বিনৃতি পাওয়া যায়। কিন্তু বিনৃতি বৃত্তি যদি আদর্শ না হয়ে কিছুটা ব্রুটি যুক্ত হয় তবে অবশ্যই তা হিসেবে আনতে হবে। এসব ক্রুটির মধ্যে (১) উৎকেন্দ্রতা ক্রুটি (২) শূন্যরেখা ক্রুটি (৩) অক্ষ ক্রুটি (৪) ভারকেন্দ্র ক্রুটি। বিভিন্ন দিক ঘুরিয়ে ফিরিয়ে বেশী বেশী পাঠের গড় নিয়ে এ সব ক্রুটি দূর করা হয়।

একটি কম্পন চুম্বকমান যন্ত্রের বর্ণনা এবং এর সাহায়্যে কোন স্থানের MH নির্ণয়:

যদ্রের বর্ণনা ঃ এ যন্ত্রে একটি আয়তাকার বাক্স B এর উপরের ঢাকনার ঠিক মধ্যস্থলে একটি চোঙাকৃতি খাড়া নল M আছে। এ নলের উপরের স্কু S হতে একটি পাকবিহীন রেশমের সুতার সাহায্যে একটি অচৌম্বক পদার্থের দোলনা P বাব্ধের মাঝখানে অনুভূমিকভাবে ঝুলান থাকে। এ দোলনার উপর পরীক্ষাধীন চুম্বককে অনুভূমিকভাবে রাখা হয়। চুম্বকটি বায়ুপ্রবাহে যাতে বিঘ্নিত না হয় এ জন্য বাক্সটি ব্যবহৃত হয়। এ বাব্ধের দু পার্শ্ব কাচের তৈরী এবং এদের একটিকেখোলার ব্যবস্থা থাকে। তিনটি লেভেলিং

ক্স্র্ -এর উপর বাক্সটি বসানো থাকে শিলেভেলিং ক্স্র্ -এর সাহায্যে বাক্সটিকে অনুভূমিক করা হয়।

মূলতত্ত্ব: কম্পন চুম্বকমান যন্ত্রের সাহায্যে MH এর মান নির্ণয়ের জন্য যে সমীকরণ ব্যবহার করব

তা হলঃ $T=2\pi\sqrt{\frac{I}{MH}}$ এখানে, T= দোলনকাল, M= চুম্বকের চৌম্বক ভ্রামক, I= চুম্বকের

জড়তার ভ্রামক এবং H= ভূ-চৌম্বক ক্ষেত্রের অনুভূমিক প্রাবল্য।

সমীকরণের উভয় পক্ষকে বর্গ করে পাই, $T^2=4\pi^2 \frac{1}{MH}$

 \therefore $MH = 4\pi^2 \, rac{I}{T^2}$ এখন T এবং I মান জেনে MH এর মান নির্ণয় করা যায়।

যদি চুম্বকটির ভর m হয় তবে, চুম্বকের জড়তার ভ্রামক $I=m\bigg(\frac{l^2+b^2}{12}\bigg)$ এখানে l= দশু চুম্বকের দৈর্ঘ্য, b= দশু চুম্বকের প্রস্থ ।

কার্যপদ্ধতি: পরীক্ষার শুরুতে চুম্বকমান যন্ত্রের নিকট থেকে চুম্বক এবং চৌম্বক পদার্থকে সরিয়ে নেওয়া হয়। এরপর একটি দশু চুম্বককে চুম্বকমান যন্ত্রের দোলনার উপর অনুভূমিক ভাবে স্থাপন করা হয় যাতে চুম্বকটি উত্তর দক্ষিন হয়ে চৌম্বক মধ্যতলে অবস্থান করে। এরপর আর একটি দশু চুম্বককে বাক্সের নিকট এনে সরিয়ে নেওয়া হয়। এর ফলে দোলনায় রাখা চুম্বকটি দুলতে শুরু করে। এর পর থামা ঘড়ির সাহায্যে কমপক্ষে কম পক্ষে 25 বা, 30 টি দোলনের সময়কে দোলন সংখ্যা দিয়ে ভাগ করে দোলনকার T এর মান নির্ণয় করা হয়। একটি তুলা দন্ডের সাহায্যে m বের করা হয়। একটি স্লাইড ক্যালিপার্সের সাহায্যে দশু চুম্বকের দৈর্ঘ্য l ও প্রস্থ b নির্ণয় করা হয়। এর পর l, b ও m এর মান $I = m \left(\frac{l^2 + b^2}{12} \right)$ সমীকরণে বসিয়ে I এর মান নির্ণয় করা হয়। এর পর I

এবং T মান $MH=4\pi^2\,rac{I}{T^2}$ সমীকরণে বসিয়ে MH এর মান নির্ণয় করা হয়।

হিসটেরেসিস ও হিসটেরেসিস লুপ ও এর ব্যাখ্যা:

<u>হিসটেরেসিস</u>: চৌম্বক ক্ষেত্র প্রাবল্য H -এর পরিবর্তনের সাথে চুম্বকন মাত্রা I -এর যে পরিবর্তন ঘটে তা প্রত্যাবতী নয়। অর্থাৎ I—H লেখচিত্র যে পথ ধরে H -এর বৃদ্ধির সাথে I -এর বৃদ্ধি হয় সেই পথ ধরে H -এর হ্রাসের সাথে I -এর হ্রাস ঘটেনা। I-H লেখ চিত্রের একই পথে প্রত্যাবর্তনের এই অক্ষমতাকে হিসটেরেসিস বলে।

হিসটেরেসিস লুপ: I-H লেখচিত্র যে আবদ্ধ পথ রচনা করে তাকে হিসটেরেসিস লুপ বলে।

চিত্রে I-H লেখচিত্রের বিভিন্ন অবস্থা দেখানো হয়েছে। অচুম্বকায়িত লোহা নিয়ে O বিন্দু থেকে শুরু করে ধীরে ধীরে H এর মান বৃদ্ধি করে উহাকে চুম্বাকায়িত করতে থাকলে চুম্বকন মাত্রা I -এর মান বৃদ্ধি পেতে থাকে এবং এমন এক অবস্থায় পৌছে যখন H - এর মান বৃদ্ধি করতে থাকলেও I -এর কোন পরিবর্তন হয়না। I এর এই অবস্থাকে সম্পৃক্ত অবস্থা বলে। লেখ চিত্রে Oa রেখা দ্বারা I -এর মান বৃদ্ধি এবং a বিন্দুতে সম্পৃক্ত অবস্থা নির্দেশিত হয়েছে। এই অবস্থা থেকে চৌম্বক প্রাবল্য H -এর মান ক্রমশ হ্রাস করতে থাকলে I -এর মান হাস পাবে কিন্তু O বিন্দুতে কিরে না এসে ab পথ অনুসরণ করবে। b বিন্দুতে H -এর মান শূন্য মানে পৌছে কিন্তু I -এর মান শূন্য মান প্রাপ্ত হয় না। এই অবস্থায় I -এর মান Ob। চুম্বকায়নের এই মানকে রিমেনেঙ্গ বলে। বিভিন্ন ফোরোচৌম্বক পদার্থের জন্য এই মান বিভিন্ন হয়। চৌম্বক প্রাবল্য H -এর মান হাস করে ঋনাত্মক মান প্রয়োগ করলে I -এর মান কমতে থাকবে এবং bcd লেখচিত্র পাওয়া যাবে। c বিন্দুতে I -এর শূন্য হয়ে যায় এবং তখন H -এর ঋনাত্মক মান Oc। H -এর এই মানকে কোয়েরসিভ ফোর্স বলে। H -এর ঋনাত্মক মান আরও বৃদ্ধি করতে থাকলে I -এর ঋনাত্মক দিকে a বিন্দুর অনুরূপ d বিন্দু পাওয়া যাবে। d বিন্দুতে I ঋনাত্মক সম্পৃক্ত মান প্রাপ্ত হয়। চিত্রে Oa ও ab রেখাদ্বয় পর্যবেক্ষন করলে দেখা যায়, H-এর যে কোন মানের জন্য বিচুম্বকায়নের সময় I -এর মান চুম্বকায়নের সময় f এর মানের চেয়ে বেশি। অর্থাৎ পদার্থিটি বিচুম্বকায়িত হতে শৈথিল্য দেখায়। চৌম্বক পদার্থের এই ধর্মকে হিসটেরেসিস বলে। abcdef বদ্ধ লুপকে হিসটেরেসিস লুপ বলে এবং সমগ্র চক্রকে হিসটেরেসিস চক্র বা চুম্বকায়ন চক্র বালে।

Want more Updates: https://www.facebook.com/tanbir.ebooks

দিতীয় পত্রের অংকের সমাধান

2nd Paper Math Solution ে। চৌম্বক পদার্থ ও ভূ - চৌম্বকত্ব

(Magnetic Material & Terrestrial Magnetism)

১। $4\times10^{-5}~{
m Kg-m^2}$ জড়তার দ্রামকের একটি দশুচুম্বক মুক্তভাবে দোলনকালে প্রতি মিনিটে 44 টি দোলন সম্পন্ন করে। পরীক্ষার স্থানে MH –এর মান নির্ণয় কর।

আমরা জানি,

$$T=2\pi\sqrt{\frac{I}{MH}}$$
 এখানে,
$$\Rightarrow T^2=4\pi^2\frac{I}{MH}$$
 জড়তার ভ্রামক, $I=4\times10^{-5}~{\rm Kg}{\rm -m}^2$
$$\Rightarrow MH=4\pi^2\frac{I}{T^2}$$

$$\Rightarrow MH = 4 \times 9.87 \times \frac{4 \times 10^{-5}}{\left(\frac{60}{44}\right)^2}$$

$$\Rightarrow MH = \frac{4 \times 9.87 \times 4 \times 10^{-5} \times 44^2}{60^2}$$

:. MH =
$$8.49 \times 10^{-4}$$
 Nm (Ans.)

২। কোন স্থানের বিনতি 60° এবং ভূ-চৌম্বক ক্ষেত্রের অনুভূমিক উপাংশ $30~\mu T$ । ঐ স্থানের উলম্ব উপাংশ কত? আমরাজানি.

$$V=H \ tan\delta$$
 এখানে, বিনতি, $\delta=60^{\circ}$ মনুভূমিক উপাংশ, $H=30\ \mu T$ $V=51.96\ \mu T$ (Ans.)

ত। কোন স্থানের ভূ-টোম্বক ক্ষেত্রের অনুভূমিক ও উলম্ব উপাংক্রের মান যথাক্রমে $32\mu T$ এবং $20\mu T$ হলে ঐ স্থানের ভূ-টোম্বক ক্ষেত্রের মান কত।

আমরা জানি, $B = \sqrt{H^2 + V^2}$ $\Rightarrow B = \sqrt{32^2 + 20^2}$ $\Rightarrow B = \sqrt{1024 + 400}$ $\Rightarrow B = \sqrt{1424}$

∴ B = 37.735μ T (Ans.)

এখানে, অনুভূমিক উপাংশ, $H=32~\mu T$ উলম্ব উপাংশ, $V=20~\mu T$ ভূ-চৌম্বক ক্ষত্র, B=?

8। কোন কম্পন ম্যাগনেটোমিটারে একটি চুম্বক প্রতি মিনিটে 30টি পূর্ন দোলন দেয়। যদি ঐ চুম্বকের চৌম্বক ভ্রামক 1.2Am² হয় এবং ঐ স্থানের ভূ-চৌম্বক ক্ষেত্রের অনুভূমিক উপাংশ 32µT হয় তবে ঐ চুম্বকের জড়তার ভ্র্যামক নির্ণয় কর।

জামরা জানি, $T = 2\pi \sqrt{\frac{I}{MH}}$ $\Rightarrow T^2 = 4\pi^2 \frac{I}{MH}$ $\Rightarrow I = \frac{T^2MH}{4\pi^2}$ $\Rightarrow I = \frac{2^2 \times 1.2 \times 32 \times 10^{-6}}{4 \times 9.87}$

দোলনকাল, $T=\frac{60}{30}=2\,\mathrm{sec}$ চৌম্বক ভ্রামক, $M=1.2\,\mathrm{Am^2}$ অনুভূমিক উপাংশ, $H=32\,\mu\mathrm{T}$ $H=32\,\times10^{-6}\,\mathrm{T}$ জড়তার ভ্র্যামক, I=?

৫। কোন স্থানে ভূ-চৌম্বক ক্ষেত্রের মান 22.5 μ Tএবং বিনতি 30° । ঐ স্থানে ভূ-চৌম্বক ক্ষেত্রের অনুভূমিক উপাংশ বের কর।

আমরা জিনি,

H = Bcos δ \Rightarrow H = 22.5×10⁻⁶ cos 30° \Rightarrow H = 22.5×10⁻⁶ × 0.866025

H = 1.95×10⁻⁵ T(Ans.)

 $I = 3.89 \times 10^{-6} \text{ Kgm}^2 \text{ (Ans.)}$

এখানে, বিনতি, $\delta=30^{\circ}$ ভূ- চৌম্বক ক্ষেত্রের মান, $B=22.5~\mu T$ = $22.5\times 10^{-6}~T$ অনুভূমিক উপাংশ, H=?

৬। কোন স্থানের ভূ-চৌম্বক ক্ষেত্রের মান 15.923T এবং এবং বিনতি 60° হলে ঐ স্থানের উলম্ব উপাংশের মান কত?

আমরা জানি, $V = B \sin \delta$ $\Rightarrow V = 15.923 \sin 60^{\circ}$ $\Rightarrow V = 15.923 \times 0.866025403$ $\therefore V = 13.79 \text{ T (Ans)}$ এখানে, বিনতি, $\delta=60^\circ$ ভূ- চৌম্বক ক্ষেত্রের মান, B=15.923~T উলম্ব উপাংশ, V=?

৭। কোন কম্পমান চুম্বকের দোলনকাল 2s এবং জড়তার দ্রামক $8\times 10^{-6}\,kg\;m^2$ । ঐ স্থানের ভূ-চৌম্বক ক্ষেত্রের অনুভূমিক উপাংশের মান $40\mu T$ হলে চুম্বকটির চৌম্বক দ্রামকের মান কত?

আমরা জানি, $T = 2\pi \sqrt{\frac{I}{MH}}$ $\Rightarrow T^2 = 4\pi^2 \frac{I}{MH}$ $\Rightarrow M = 4\pi^2 \frac{I}{T^2H}$ $\Rightarrow M = 4 \times 9.87 \times \frac{8 \times 10^{-6}}{2^2 \times 40 \times 10^{-6}}$

এখানে, দোলনকাল, T=2s জড়তার ভ্রামক, $I=8\times 10^{-6}~{\rm Kg}~{\rm m}^2$ অনুভূমিক উপাংশ, $H=40\mu T=40\times 10^{-6}T$ চৌম্বক ভ্রামক, M=?

⇒ M =
$$4 \times 9.87 \times \frac{8 \times 10^{-6}}{2^2 \times 40 \times 10^{-6}}$$

∴ M = 1.974 Am² (Ans.)

৮। $0.3 {
m Am}^2$ চৌম্বক ভ্রামকবিশিষ্ট কোন দন্ড চুম্বককে অনুভূমিক ও মুক্তভাবে দোল দিলে তা প্রতিমিনিটে 4 বার পূর্ণ দোলন দেয়। ঐ চুম্বকের জড়তার ভ্রামক নির্ণয় কর। [H=32µT]

$$T=2\pi\sqrt{\frac{I}{MH}}$$
 | এখানে, (দালনকাল, $T=\frac{60}{4}\,\mathrm{s}=15\,\mathrm{s}$ | স $T^2=4\pi^2\frac{I}{MH}$ | $T=\frac{60}{4}\,\mathrm{s}=15\,\mathrm{s}$ | স $T^2=4\pi^2\frac{I}{MH}$ | $T=\frac{60}{4}\,\mathrm{s}=15\,\mathrm{s}$ | স $T=\frac{T^2MH}{4\pi^2}$ | স্বান্থ্যিক উপাংশ, $T=\frac{60}{4}\,\mathrm{s}=16$ | স্বান্থ্য স্বান্ধ্য স

৯। কোন দোলায়মান চৌম্বকমান যন্ত্র এক স্থানে 40 সেকেন্ডে 10টি দোল দেয় এবং অন্য স্থানে একই সংখ্যক দোল দেয় 60 সেকেন্ডে। স্থান দুটিতে ভূ-চৌম্বক ক্ষেত্রের অনুভূমিক প্রাবল্যের তুলনা কর।

$$T_{1} = 2\pi \sqrt{\frac{I}{MH_{1}}}.....(1)$$

$$T_{2} = 2\pi \sqrt{\frac{I}{MH_{2}}}.....(2)$$

$$\therefore \frac{T_{1}}{T_{2}} = \sqrt{\frac{H_{2}}{H_{1}}}$$

$$\frac{H_{1}}{H_{2}} = \frac{T_{2}^{2}}{T_{1}^{2}}$$

$$\Rightarrow \frac{H_{1}}{H_{2}} = \frac{6^{2}}{4^{2}}$$

প্রথম স্থানে দোলনকাল,

$$T_1 = \frac{40}{10}s = 4s$$

$$T_2 = \frac{60}{10} s = 6s$$

অনুভূমিক উপাংশ,

$$H_1 \circ H_2 = ?$$

Want more Updates: https://www.facebook.com/tanbir.ebooks

তড়িৎ চৌশ্বক আবেশ ও দিকদরিবতী প্রবাহ

(Electromagnetic Induction and Alternating Current)

তড়িচ্চুম্বনীয় আবেশ: একটি গতিশীল চুম্বক বা তড়িৎবাহী বর্তনীর সাহায্যে অন্য একটি বদ্ধ বর্তনীতে ক্ষণস্থায়ী তড়িচ্চালক শক্তি ও তড়িৎ প্রবাহ উৎপন্ন হওয়ার পদ্ধতিকে তড়িচ্চুম্বকীয় আবেশ বলে।

টৌম্বক ফ্লাব্রঃ কোন তলের ক্ষেত্রফল এবং ঐ তলের লম্ব বরাবর চৌম্বক ক্ষেত্রের উপাংশের গুণফলকে ঐ তলের সাথে সংশ্লিষ্ট

চৌম্বক ফ্লাক্স বলে। কোন তলের ক্ষেত্রফল A এবং ঐ তলের লম্ব বরাবর চৌম্বক ক্ষেত্র \vec{B} হলে (চিত্র-ক) চৌম্বক ফ্লাক্স $\phi=AB$, কিন্তু যদি চৌম্বক ক্ষেত্র তলের লম্ব বরাবর ক্রিয়া না করে θ কোণে ক্রিয়া করে (চিত্র-খ) তাহলে ঐ তলের লম্ব বরাবর চৌম্বক ক্ষেত্রের উপাংশ হবে $B\cos\theta$ । সুতরাং চৌম্বক ফ্লাক্স হবে, $\phi=AB\cos\theta$ । এখন \vec{A} কে একটি ভেক্টর হিসেবে গন্য করা হয় যার মান ঐ তলের ক্ষেত্রফল নির্দেশ করে এবং দিক হয় তলের লম্ব বরাবর বর্হিমুখী। সুতরাং উপরিউক্ত সমীকরণের θ হল ক্ষেত্রফল ভেক্টর \vec{A} এবং চৌম্বক ক্ষেত্র \vec{B}

এর মধ্যবর্তী কোণ এবং এই সমীকরণ দাড়ায়, $\phi = \vec{A}.\vec{B}$ সুতরাং ক্ষেত্রফল ভেক্টর ও চৌম্বক্সেত্র এর স্কেলার গুনফল দারা চৌম্বকফ্লাক্স পরিমাপ রকরা হয়। সুতরাং দেখা যাচ্ছে যে, চৌম্বক ফ্লাক্স একটি স্কেলার রাশি। চৌম্বক ফ্লাক্সের একক হচ্ছে টেসলা-মিটার 2 । একে ওয়েবার (Wb) ও বলে।

টৌম্বক ফ্লাক্স ঘনতৃঃ কোন বিন্দুর চারপাশে একক ক্ষেত্রফল দিয়ে যে পরিমান টৌম্বক ফ্লাক্স অতিক্রম করে তাকে ঐ বিন্দুতে ঐ তলের লম্ব বরাবর চৌম্বক ফ্লাক্স ঘনতৃ বলে। A ক্ষেত্রফল দিয়ে অতিক্রমকারী চৌম্বক ফ্লাক্স ϕ হলে ঐ তলের লম্ব বরাবর চৌম্বক ফ্লাক্স ঘনতৃ, $\frac{\phi}{A} = \frac{AB}{A}$ B, সুতরাং দেখা যাচেছ যে, কোন বিন্দুতে চৌম্বক ফ্লাক্স ঘনতৃ ও ঐ বিন্দুর চৌম্বক ক্ষেত্র একই। এ জন্য চৌম্বক ক্ষোব্রকে চৌম্বক ফ্লাক্স ঘনতৃ ও বলা হয়। চৌম্বক ফ্লাক্স ঘনতৃর একক টেসলা বা, $Weber/m^2$ বা, $NA^{-1}m^{-1}$ ।

ফ্যারাডের তড়িচ্চুম্বকীয় আবেশের সূত্র:

১ম সূত্র: যখনই কোন বদ্ধ কুশুলীর মধ্যদিয়ে অতিক্রান্ত চৌম্বক বলরেখার মোট সংখ্যা বা চৌম্বক বলরেখার পরিবর্তন ঘটে, তখনই উক্ত কুশুলীতে একটি ক্ষনস্থায়ী তড়িচ্চালক শক্তি তথা তড়িৎপ্রবাহ আবিষ্ট হয়। যতক্ষন চৌম্বক ফ্লাক্স বা বলরেখার পরিবর্তন ঘটে, আবিষ্ট তড়িচ্চালক শক্তি তথা প্রবাহ ততক্ষণই স্থায়ী হয়।

ব্যাখ্যা: একটি দন্ড চুম্বক বা একটি বিদ্যুৎবাহী তার কুন্ডলী এবং একটি বদ্ধ গৌণ তার কুন্ডলীর মধ্যে আপেক্ষিক গতি থাকলে অথবা একটি বিদ্যুৎবাহী তার কুন্ডলী রেখে বিদ্যুৎ প্রবাহ মাত্রার পরিবর্তন করলে গৌন কুন্ডলীর সাথে জড়িত চৌম্বক বল রেখার সংখ্যার পরিবর্তন ঘটে এবং এর ফলে গৌন কুন্ডলীতে আবিষ্ট বিদ্যুৎ চালক বল বা বিদ্যুৎ প্রবাহের সৃষ্টি হয়। সময়ের সাথে তার কুন্ডলীতে সংযুক্ত চৌম্বক বল রেখার পরিবর্তন না হলে, আবিষ্ট বিদ্যুৎ প্রবাহ ও উৎপন্ন হয় না।

<u>২য় সূত্র:</u> কোন বদ্ধ কুঙলীতে আবিষ্ট তড়িচ্চালক শক্তির মান ঐ কুঙলীর মধ্যদিয়া অতিক্রান্ত চৌম্বক ফ্লাক্সের পরিবর্তনের হারের ঋনাত্মক মানের সমানুপাতিক।

ব্যাখ্যা: মনে করি, $\phi_1 =$ কোন নির্দিষ্ট সময়ে কোন বদ্ধ কুশুলী দিয়ে অতিক্রমকারী চৌম্বক ফ্লাক্স।

 $\phi_2\!=\!t$ সময় পর ঐ বদ্ধ কুন্ডলী দিয়ে অতিক্রমকারী চৌম্বক ফ্লাক্স।

ফ্যারাডের দ্বিতীয় সূত্রানুসারে আবিষ্ট তড়িচ্চালক শক্তি E হলে,

$$E \propto -rac{arphi_2-arphi_1}{t}$$
 বা, $E \propto -rac{darphi}{dt}$

বা , $E=-Krac{d\phi}{dt}$ এখানে K একটি ধ্রুব সংখ্যা । E ভোল্ট এককে , ϕ ওয়েবার এককে এবং t সেকেন্ড এককে

প্রকাশ করলে $\mathbf{K} = \mathbf{1}$ হয়। $\therefore E = -\frac{d\varphi}{dt}$ এ সমীকরণটি $\mathbf{1}$ পাক বিশিষ্ট কুডলীর ক্ষেত্রে প্রযোজ্য।

ধরা যাক, কুন্ডলীতে N সংখ্যক পাক আছে। ফলে কুন্ডলীর মধ্যদিয়ে অতিক্রান্ত মোট ফ্লাক্স $N\phi_{\mathrm{B}};$

 $\therefore E = -N rac{d \phi}{dt}$ এই সমীকরণে বিয়োগ চিহ্ন দারা বুঝায় যে, E ফ্লাক্সের পরিবর্তনকে বাধা দেয়।

<u>লেঞ্জের সূত্র:</u> যে কোন তড়িৎচৌম্বক আবেশের বেলায় আবিষ্ট তড়িচ্চালক শক্তি বা প্রবাহের দিক এমন হয় যে, তা সৃষ্ট হওয়া মাত্রই যে কারণে সৃষ্টি হয় সেই কারণকে বাধা দেয়।

সুতরাং লেঞ্জের সূত্র থেকে আমরা আবিষ্ট তড়িচ্চালক বল ও প্রবাহের দিক জানতে পারি । $E=-Nrac{d\phi}{dt}$ এই সমীকরণে

 $N \frac{d\phi}{dt}$ এর আগে যে ঋনাত্মক চিহ্ন ব্যবহার করা হয়েছে তা এ কারণেই।

<u>লেঞ্জের সূত্রের ব্যাখ্যা:</u> ধরা যাক, একটি দন্ড চুম্বকের দক্ষিন মেরুকে একটি তারের কুন্ডলীর দিকে নেওয়া হচ্ছে। তড়িৎ চৌম্বক

আবেশের ফলে কুন্ডলীতে তড়িৎ প্রবাহের উদ্ভব হবে। এই তড়িৎ প্রবাহের অভিমুখ এমন হবে যেন তা তার উৎপত্তির কারণ অর্থাৎ চুম্বকের গতিকে বাধা দিবে। এটি সম্ভব যদি দক্ষিন মেরুর সম্মুখস্থ কুন্ডলীর তলে দক্ষিন মেরুর উদ্ভব হয়। এখন সলিনয়েডের নিয়ম থেকে আমরা জানি যে, যে দিক থেকে দেখলে কুন্ডলীতে তড়িৎ প্রবাহ ঘড়ির কাঁটার দিকে প্রবাহিত হয় সে দিকটি

হবে দক্ষিন মেরু। সুতারাং চুম্বকটিকে বিকর্ষণ করতে হলে কুশুলতি আবিষ্ট প্রবাহ ঘড়িরকাঁটা যেদিকে ঘুরে সেদিক বরাবর চলবে। আবার চুম্বকের দক্ষিন মেরুটিকে কুশুলী থেকে দূরে সরিয়ে নেওয়ার চেষ্টা করলে কুশুলীটি চুম্বকটিকে আকর্ষন করবে। সুতরাং প্রবাহের দিক এমন হবে যেন চুম্বকের নিকটবর্তী কুশুলী তলে উত্তর মেরুর আবির্ভাব হয়। সেটি একমাত্র সম্ভব যদি কুশুলীটিতে আবিষ্ট তড়িৎ প্রবাহের অভিমুখ ঘড়ির কাঁটা যেদিকে ঘুরে তার বিপরীত দিকে হয়। এভাবে আমরা আবিষ্ট তড়িচ্চালক শক্তি ও তড়িৎ প্রবাহের দিক নির্ণয় করতে পারি।

লেঞ্জের সূত্র এবং শক্তির নিত্যতা: তাড়িতটোম্বক আবেশের ফলে আমরা দেখতে পাই যে, কোন বদ্ধ কুন্ডলীতে তড়িচ্চালক শক্তির উৎস ছাড়াই তড়িৎ প্রবাহ উৎপন্ন হচ্ছে। আপাত দৃষ্টিতে এটি শক্তির নিত্যতা সূত্রের ব্যতিক্রম বলে মনে হয়। কিন্তু প্রকৃতপক্ষে তাড়িতটৌম্বক আবেশে শক্তির নিত্যতা সূত্র বিরোধী কোন ঘটনা ঘটে না। লেঞ্জের সূত্র থেকেই আমরা তা প্রমান করতে পারি। লেঞ্জের সূত্র থেকে আমরা জানি, কোন কুন্ডলীতে আবিষ্ট তড়িচ্চালক শক্তি এর সৃষ্টির কারণকেই বাধা দেয়। কোন কুন্ডলী ও চুম্বকের মধ্যবর্তী আপেক্ষিক গতির জন্য কুন্ডলীতে আবিষ্ট তড়িৎপ্রবাহের উদ্ভব হয় যা ঐ আপেক্ষিক গতিকে বাধা দেয়। সুতরাং ঐ গতি বজায় রাখার জন্য সর্বদা কিছু যন্ত্রিক শক্তি ব্যয় করতে হয়। এই যান্ত্রিক শক্তিই তড়িৎ শক্তিতে রূপান্তরিত হয়ে কুন্ডলীতে তড়িৎ প্রবাহের সৃষ্টি করে। সুতরাং তড়িৎপ্রবাহের চৌম্বক ক্রিয়া শক্তির নিত্যতা সূত্র মেনে চলে।

স্থকীয় আবেশ বা স্বাবেশ: একটি মাত্র বর্তনীতে তড়িৎপ্রবাহের পরিবর্তনের ফলে অথবা কোন চৌম্বক ক্ষেত্রে বর্তনীর গতির ফলে বর্তনীর সাথে সংশ্লিষ্ট চৌম্বক ফ্লাব্রের পরিবর্তন ঘটে। এই পরিবর্তনের ফলে যে তড়িৎ চৌম্বক আবেশ ঘটে তাকে স্বকীয় আবেশ বলে।

স্বকীয় আবেশ গুনাঙ্ক: মনে করি, কোন কুভলীতে I প্রবাহমাত্রার জন্য অতিক্রান্ত চৌম্বক ফ্লাক্স ϕ , তাহলে,

 $\phi\propto I$ বা, $\phi=LI$ (1) এখানে, L সমানুপাতিক ধ্রুবক। এই ধ্রুব সংখ্যাকে স্বকীয় আবেশ গুনাঙ্ক বলে। যদি I=1 একক হয় তবে, $\phi=L$ হবে।

<u>১ম সংজ্ঞা</u>: কোন কুন্ডলীতে একক তড়িৎ প্রবাহিত হলে কুন্ডলীতে সংযুক্ত মোট চৌম্বক ফ্লাক্সকে ঐ কুন্ডলীর স্বকীয় আবেশ গুনাঙ্ক বলে।

আবার আমরা জানি,

$$\begin{split} E &= -\frac{d\phi}{dt} \\ \text{বা, } E &= -\frac{d(LI)}{dt} \\ \therefore E &= -L\frac{dI}{dt} \quad \text{যদ } \frac{dI}{dt} = 1 \text{ হয়, তবে } E = -L \text{ হবে } \text{।} \end{split}$$

<u>২য় সংজ্ঞা</u>: কোন কুন্ডলীতে একক হারে তড়িৎপ্রবাহ পরিবর্তিত হলে কুন্ডলীতে যে আবিষ্ট তড়িচ্চালক শক্তির উদ্ভব হয় তাকে ঐ কুন্ডলীর স্বকীয় আবেশ গুনাঙ্ক বলে।

স্বকীয় আবেশ গুনাঙ্কের একক: স্বকীয় আবেশ গুনাঙ্কের একক হেনরি। হেনরিকে H দ্বারা প্রকাশ করা হয়।

<u>হেনরি এর সংজ্ঞা</u>: কোন কুন্ডলীতে তড়িৎপ্রবাহ প্রতি সেকেন্ডে এক অ্যম্পিয়ার হারে পরিবর্তিত হলে যদি যদি ঐ কুন্ডলীতে এক ভোল্ট তড়িচ্চালক শক্তি আবিষ্ট হয় তাহলে ঐ কুন্ডলীর স্বকীয় আবেশ গুনাঙ্ককে এক হেনরি বলে।

পারস্পরিক আবেশ: কোন একটি কুন্ডলীতে তড়িৎ প্রবাহ পরিবর্তন করলে নিকটবর্তী অন্য একটি কুন্ডলীতে যে তাড়িতচৌম্বক আবেশ সৃষ্টি হয় তাকে পারস্পরিক আবেশ বলে।

পারস্পরিক আবেশ গুনাঙ্ক: কোন মুখ্য কুডলীতে I তড়িৎ প্রবাহের ফলে জন্য গৌণ কুডলীতে সংযুক্ত ফ্লাক্স যদি ϕ হয়, তাহলে,

$$\phi \propto I$$

বা, $\phi=MI$ এখানে, M একটি সমানুপাতিক ধ্রুবক। এই ধ্রুব সংখ্যাকে পারস্পরিক আবেশ গুনাঙ্ক বলে। যদি I=1 একক হয় তবে, $\phi=M$ হবে।

আবার আমরা জানি,

$$\begin{split} E &= -\frac{d\phi}{dt} \\ \text{বা, } E &= -\frac{d(MI)}{dt} \\ \therefore E &= -M\frac{dI}{dt} \end{split}$$

এখানে, $\frac{dI}{dt}$ ঐ নির্দিষ্ট মুহুর্তে P কুন্ডলীর প্রবাহের পরিবর্তনের হার। বিয়োগ চিহ্ন দিয়ে আবিষ্ট তড়িচ্চালক শক্তির

প্রতিরোধী প্রকৃতি বুঝানো হয়েছে। যখন $\frac{dI}{dt} = 1$ হয়, তখন E = M হবে।

<u>২য় সংজ্ঞা</u> কোন মুখ্য কুন্ডলীতে তড়িংপ্রবাহ একক হারে পরিবর্তিত হলে গৌণ কুন্ডলীতে যে আবিষ্ট তড়িচ্চালক শক্তির উদ্ভব হয় তাকে ঐ কুন্ডলীদ্বয়ের পারস্পরিক আবেশ গুনাঙ্ক বলে।

ট্রান্সফর্মারের গঠন ও কার্য প্রণালী:

ট্রা**লফর্মার:** যে যন্ত্রের সাহায্যে দিক পরিবর্তী উচ্চ বিভবকে নিং বিভবে বা নিং বিভবকে উচ্চ বিভবে রূপান্তরিত করা যায় তাকে ট্রালফর্মার বা রূপান্তরক বলে। তাড়িতচৌম্বক আবেশের উপর ভিত্তি করে এই যন্ত্র তৈরী করা হয়। ট্রালফর্মার সাধারণত দুই প্রকারের হয়। যথা– ১। আরোহী বা স্টেপ আপ ট্রালফর্মার ২। অবরোহী বা স্টেপ ডাউন ট্রালফর্মার।

যে ট্রান্সফর্মার অল্প বিভবের অধিক তড়িৎ প্রবাহকে অধিক বিভবের অল্প তড়িৎ প্রবাহে রূপান্তরিত করে তাকে আরোহী বা স্টেপ আপ ট্রান্সফর্মার বলে। আর যে ট্রান্সফর্মার অধিক বিভবের অল্প তড়িৎ প্রবাহকে অল্প বিভবের অধিক তড়িৎ প্রবাহে রূপান্তরিত করে তাকে অবরোহী বা স্টেপ ডাউন ট্রান্সফর্মার বলে।

<u>গঠন:</u> একটি কাঁচা লোহার আয়তকার মজ্জার উপর দুই বিপরীত বাহুতে অন্তরীত তার

প্রতিয়ে ট্রান্সফর্মার তৈরী করা হয়। মজ্জার যে বাহুর কুঙলীতে পরিবর্তী প্রবাহ বা বিভব প্রয়োগ করা হয় তাকে মুখ্য কুঙলী বলে আর যে বাহুর কুঙলীতে পরিবর্তী প্রবাহ বা বিভব আবিষ্ট হয় তাকে গৌণ কুঙলী বলে।

আরোহী ট্রান্সফর্মারের মুখ্য কুন্ডলীর চেয়ে গৌণ কুন্ডলীতে পাক সংখ্যা বেশী থাকে। আর অবরোহী ট্রান্সফর্মারের মুখ্য কুন্ডলীর চেয়ে গৌণ কুন্ডলীতে পাক সংখ্যা কম থাকে। ধরা যাক, মুখ্য কুন্ডলীতে E_p পরিবর্তী বিভব প্রয়োগ করায় এই কুন্ডলীতে I_P প্রবাহ পাওয়া গেল। এই প্রবাহ মজ্জাকে চুম্বকিত করে চৌম্বক ক্ষেত্র রেখা উৎপন্ন করে যা মুখ্য কুন্ডলীতে একটি আবিষ্ট তড়িচ্চালক শক্তি উৎপন্ন করে। মুখ্য কুন্ডলীর পাক সংখ্যা N_P এবং চৌম্বক ফ্লাক্স ϕ হলে, $E_P = -N_P \frac{d\phi}{dt} (1)$ এখানে $\frac{d\phi}{dt} =$ মুখ্য কুন্ডলীতে প্রতি পাকের চৌম্বক ফ্লাক্সের পরিবর্তনের হার।

চৌম্বক ফ্লাক্সের যদি কোন ক্ষরণ না্ হয় তাহলে গৌণ কুন্ডলীর প্রতি পাকেও একই ফ্লাক্স সংযুক্ত হবে ফলে গৌণ কুন্ডলীতেও তড়িচ্চালক শক্তি আবিষ্ট হবে। গৌণ কুন্ডলীর পাক সংখ্যা N_S হলে তড়িচ্চালক শক্তি $E_S=-N_S\frac{d\phi}{dt}...$ (2)

(1) নং ও (2) সমীকরণ হতে পাই, $\frac{E_p}{E_s} = \frac{N_p}{N_s}$ (3) অর্থাৎ কুন্ডলীদ্বয়ের তড়িচ্চালক শক্তি এদের পাক সংখ্যার সমানুপাতিক।

এখন শক্তির নিত্যতা সূত্রানুসারে ট্রান্সফর্মারের উভয় কুন্ডলীর ক্ষমতা সমান হবে অর্থাৎ মুখ্য কুন্ডলীতে প্রতি সেকেন্ডে ব্যয়িত শক্তি গৌণ কুন্ডলীতে প্রতি সেকেন্ডে উৎপন্ন শক্তির সমান হবে। গৌণ কুন্ডলীতে Is প্রবাহ পাওয়া গেলে,

এখন (3) নং ও (4) সমীকরণ হতে পাই,

$$\frac{E_P}{E_S} = \frac{N_P}{N_S} = \frac{I_S}{I_P}$$

ব্যবহার: ট্রাসফর্মার কখনো ডি. সি. লাইনে ব্যবহার করা যায় না, কেবল মান্ত্র এ. সি. লাইনে ব্যবহৃত হয়। তড়িৎশক্তি সরবরাহ ও বন্টন ব্যবস্থায় ট্রাসফর্মার বহুল পরিমানে ব্যবহৃত হয়। এ ছাড়া বেতার প্রেরক ও গ্রাহক যন্ত্রে, টেলিভিশনে, টেলিগ্রাফ, টেলিফোন ইত্যাদিতে ট্রাসফর্মার ব্যবহার করা হয়।

<u>দিকপরিবর্তী তড়িচ্চালক শক্তির পূর্ণচক্রের গড়মান:</u> কোন সময় ব্যাবধানের তড়িচ্চালক শক্তির সকল মানের গড়কে ঐ সময় ব্যবধানের গড় তড়িচ্চালক শক্তি বলে। আমরা জানি, ক্ষুদ্রাতিক্ষুদ্র সময় ব্যবধানের তড়িচ্চালক শক্তি ও সময় ব্যবধানের গুনফলের সমষ্টি নিয়ে তাকে মোট সময় ব্যবধান দিয়ে ভাগ করলে ঐ সময় ব্যবধানের গড় তড়িচ্চালক শক্তি পাওয়া যায়। পর্যায়কাল T হলে

একটি পূর্ণ চক্রের জন্য গড় তড়িচ্চালক শক্তি হবে, $E = \frac{1}{T} \int\limits_0^T E dt$

আমরা জানি, দিকপরিবর্তী তড়িচ্চালক শক্তি, $E=E_0\sin\omega t$ এখানে, $E_0=$ তড়িচ্চালক শক্তির শীর্ষমান ও $\omega=$ কৌনিক কম্পাঙ্ক

$$\therefore \overline{E} = \frac{1}{T} \int_{0}^{T} E_{0} \sin \omega t \, dt$$

$$\Rightarrow \overline{E} = \frac{E_0}{T} \int_0^T \sin \omega t \, dt$$

$$\Rightarrow \overline{E} = -\frac{E_0}{\omega T} [\cos \omega t]_0^T$$

$$\Rightarrow \overline{E} = -\frac{E_0}{\omega T} [\cos \omega T - \cos 0]$$

$$\Rightarrow \overline{E} = -\frac{E_0}{\omega T} \left[\cos 2\pi - \cos 0\right] \qquad \left[\because \omega = \frac{2\pi}{T} \text{ dif, } \omega T = 2\pi\right]$$

$$\Rightarrow \overline{E} = -\frac{E_0}{\omega T} [1 - 1]$$

 $\therefore \overline{E} = 0$ সুতরাং পূর্ণ চক্রের জন্য তড়িচ্চালক শক্তির গড় মান =শূন্য।

<u>দিকপরিবর্তী তড়িৎ প্রবাহের পূর্ণচক্রের গড়মান:</u> কোন সময় ব্যাবধানের তড়িৎ প্রবাহের সকল মানের গড়কে ঐ সময় ব্যবধানের গড় তড়িৎ প্রবাহ বলে। আমরা জানি, ক্ষুদ্রাতিক্ষুদ্র সময় ব্যবধানের তড়িৎ প্রবাহ ও সময় ব্যবধানের গুনফলের সমষ্টি নিয়ে তাকে মোট সময় ব্যবধান দিয়ে ভাগ করলে ঐ সময় ব্যবধানের গড় তড়িৎ প্রবাহ পাওয়া যায়। পর্যায়কাল T হলে একটি পূর্ণ চক্রের জন্য গড়

তড়িৎ প্রবাহ হবে,
$$\bar{I} = \frac{1}{T} \int\limits_0^T I dt$$

আমরা জানি, দিকপরিবর্তী তড়িৎ প্রবাহ, $I=I_0\sin\omega t$ এখানে, $I_0=$ তড়িৎ প্রবাহের শীর্ষমান ও $\omega=$ কৌনিক কম্পাঙ্ক

$$\therefore \bar{I} = \frac{1}{T} \int_{0}^{T} I_{0} \sin \omega t \, dt$$

$$\Rightarrow \bar{I} = \frac{I_0}{T} \int_0^T \sin \omega t \, dt$$

$$\Rightarrow \bar{I} = -\frac{I_0}{\omega T} [\cos \omega t]_0^T$$

$$\Rightarrow \bar{I} = -\frac{I_0}{\omega T} [\cos \omega T - \cos \theta]$$

$$\Rightarrow \bar{I} = -\frac{I_0}{\omega T} \left[\cos 2\pi - \cos 0 \right] \qquad \left[\because \omega = \frac{2\pi}{T} \text{ If, } \omega T = 2\pi \right]$$

$$\Rightarrow \bar{I} = -\frac{I_0}{\omega T} [1 - 1]$$

 $\therefore ar{\mathrm{I}} = 0$ সুতরাং পূর্ণ চত্তের জন্য তড়িৎ প্রবাহের গড় মান \cong শুন্য

<u>দিকপরিবর্তী তড়িচ্চালক শক্তির অর্ধচক্রের গড়মান:</u> কোন সময় ব্যাবধানের তড়িচ্চালক শক্তির সকল মানের গড়কে ঐ সময় ব্যবধানের গড় তড়িচ্চালক শক্তি বলে। আমরা জানি, ক্ষুদ্রাতিক্ষুদ্র সময় ব্যবধানের তড়িচ্চালক শক্তি ও সময় ব্যবধানের গুনফলের সমষ্টি নিয়ে তাকে মোট সময় ব্যবধান দিয়ে ভাগ করলে ঐ সময় ব্যবধানের গড় তডিচ্চালক শক্তি পাওয়া যায়। পর্যায়কাল T হলে

একটি অর্ধচক্রের জন্য গড় তড়িচ্চালক শক্তি হবে, $\overline{E} = \frac{1}{T_{//2}} \int_{0}^{T_{//2}} E dt$

আমরা জানি, দিকপরিবর্তী তড়িচ্চালক শক্তি, $E=E_0\sin\omega t$ এখানে, $E_0=$ তড়িচ্চালক শক্তির শীর্ষমান ও $\omega=$ কৌনিক কম্পাঙ্ক

$$\therefore \overline{E} = \frac{2}{T} \int_{0}^{T/2} E_0 \sin \omega t \, dt$$

$$\Rightarrow \overline{E} = \frac{2E_0}{T} \int_{0}^{T/2} \sin \omega t \, dt$$

$$\Rightarrow \overline{E} = -\frac{2E_0}{\omega T} [\cos \omega t]_0^{T/2}$$

$$\Rightarrow \overline{E} = -\frac{2E_0}{\omega T} \left[\cos \frac{\omega T}{2} - \cos 0 \right]$$

$$\Rightarrow \overline{E} = -\frac{2E_0}{2\pi} \Big[\cos \pi - \cos 0 \Big] \qquad \left[\because \omega = \frac{2\pi}{T} \text{ at, } \omega T = 2\pi \text{ at, } \frac{\omega T}{2} = \pi \right]$$

$$\Rightarrow \overline{E} = -\frac{E_0}{\pi} [-1 - 1]$$

$$\Rightarrow \overline{E} = \frac{2E_0}{\pi}$$

$$\therefore \overline{E} = 0.637E_0$$

সুতরাং অর্ধচক্রের জন্য তড়িচ্চালক শক্তির গড় মান তড়িচ্চালক শক্তির শীর্ষ মানের 0.637 গুন বা 63.7%

<u>দিকপরিবর্তী তড়িৎ প্রবাহের অর্ধচক্রের গড়মান:</u> কোন সময় ব্যাবধানের তড়িৎ প্রবাহের সকল মানের গড়কে ঐ সময় ব্যবধানের গড় তড়িৎ প্রবাহ বলে। আমরা জানি, ক্ষুদ্রাতিক্ষুদ্র সময় ব্যবধানের তড়িৎ প্রবাহ ও সময় ব্যবধানের গুনফলের সমষ্টি নিয়ে তাকে মোট সময় ব্যবধান দিয়ে ভাগ করলে ঐ সময় ব্যবধানের গড় তড়িৎ প্রবাহ পাওয়া যায়। পর্যায়কাল T হলে একটি অর্ধচক্রের জন্য গড়

আমরা জানি, দিকপরিবর্তী তড়িচ্চালক শক্তি, $I=I_0\sin\omega t$ এখানে, $I_0=$ তড়িৎপ্রবাহের শীর্ষমান ও $\omega=$ কৌনিক কম্পাঙ্ক

$$\therefore \bar{I} = \frac{2}{T} \int_{0}^{T/2} I_0 \sin \omega t \, dt$$

$$\Rightarrow \bar{I} = \frac{2I_0}{T} \int_0^{T/2} \sin \omega t \, dt$$

$$\Rightarrow \bar{I} = -\frac{2I_0}{\omega T} [\cos \omega t]_0^{T/2}$$

$$\Rightarrow \bar{I} = -\frac{2I_0}{\omega T} \left[\cos \frac{\omega T}{2} - \cos 0 \right]$$

$$\Rightarrow \bar{I} = -\frac{2I_0}{2\pi} \left[\cos \pi - \cos 0\right] \qquad \left[\because \omega = \frac{2\pi}{T} \text{ at, } \omega T = 2\pi \text{ at, } \frac{\omega T}{2} = \pi\right]$$

$$\Longrightarrow \bar{I} = -\frac{I_0}{\pi} [-1 - 1]$$

$$\Longrightarrow \overline{I} = \frac{2I_0}{\pi}$$

$$\therefore \bar{I} = 0.637 I_0$$

সুতরাং অর্ধচক্রের জন্য তড়িৎপ্রবাহের গড় মান তড়িৎপ্রবাহের শীর্ষ মানের 0.637 গুন বা 63.7%

<u>দিকপরিবর্তী তড়িচ্চালক শক্তির গড় বর্গ মান:</u> কোন সময় ব্যাবধানের তড়িচ্চালক শক্তির সকল মানের বর্গের গড়কে ঐ সময় ব্যবধানের গড় তড়িচ্চালক শক্তির গড় বর্গ মান বলে। আমরা জানি, ক্ষুদ্রাতিক্ষুদ্র সময় ব্যবধানের তড়িচ্চালক শক্তির বর্গের মান ও সময় ব্যবধানের গুনফলের সমষ্টি নিয়ে তাকে মোট সময় ব্যবধান দিয়ে ভাগ করলে ঐ সময় ব্যবধানের তড়িচ্চালক শক্তির গড় বর্গমান পাওয়া যায়। পর্যায়কাল T হলে একটি পূর্ণ চক্তের জন্য তড়িচ্চালক

শক্তির গড় বর্গ মান হবে,
$$\overline{E}^2 = \frac{1}{T} \int_0^T E^2 dt$$

আমরা জানি, দিকপরিবর্তী তড়িচ্চালক শক্তি, $E=E_0\sin\omega t$ এখানে, $E_0=$ তড়িচ্চালক শক্তির শীর্ষমান ও $\omega=$ কৌনিক কম্পাঙ্ক

$$\therefore \overline{E^2} = \frac{1}{T} \int_0^T E_0^2 \sin^2 \omega t \, dt$$

$$\Rightarrow \overline{E^2} = \frac{E_0^2}{T} \int_0^T \sin^2 \omega t \, dt$$

$$\Rightarrow \overline{E^2} = \frac{E_0^2}{T} \int_0^T \left(\frac{2\sin^2 \omega t}{2} \right) dt$$

$$\Rightarrow \overline{E^2} = \frac{E_0^2}{2T} \int_0^T (1 - \cos 2\omega t) dt$$

$$\Rightarrow \overline{E^2} = \frac{E_0^2}{2T} \left\{ \int_0^T dt - \int_0^T \cos 2\omega t dt \right\}$$

$$\Rightarrow \overline{E^2} = \frac{E_0^2}{2T} \left\{ \left[t \right]_0^T - \frac{1}{2\omega} \left[\sin 2\omega t \right]_0^T \right\}$$

$$\Rightarrow \overline{E^2} = \frac{E_0^2}{2T} \left\{ T - \frac{1}{2\omega} \left[\sin 2\omega T - \sin 0 \right] \right\}$$

$$\Rightarrow \overline{E^2} = \frac{E_0^2}{2T} \left\{ T - \frac{1}{2\omega} \left[\sin 4\pi - \sin 0 \right] \right\}$$

$$\Rightarrow \overline{E^2} = \frac{E_0^2}{2T} \left\{ T - \frac{1}{2\omega} \left[0 - 0 \right] \right\}$$

$$\Rightarrow \overline{E^2} = \frac{E_0^2}{2T} \left\{ T - \frac{1}{2\omega} \left[0 - 0 \right] \right\}$$

$$\Rightarrow \overline{E^2} = \frac{E_0^2}{2T} \left\{ T - 0 \right\}$$

তড়িচ্চালক শক্তির বর্গের গড় মানের বর্গমূলকে তড়িচ্চালক শক্তির **গড় বর্গের বর্গমূল** $(E_{
m ms})$ বা **কার্যকর** ভোল্টেজ বলে।

সুতরাং, $E_{ms} = \sqrt{\overline{E^2}} = \sqrt{\frac{E_0^2}{2}} = \frac{E_0}{\sqrt{2}} = 0.707E_0$ সুতরাং পূর্ণচক্রে দিক পরিবর্তী তড়িচ্চালক শক্তির গড় বর্গের বর্গমূল

মান = $\frac{1}{\sqrt{2}}$ × শীর্ষমান। অর্থাৎ পূর্ণচক্রে তড়িচ্চালক শক্তির গড় বর্গের বর্গমূল মান এর শীর্ষ মানের 0.707 গুণ বা 70.7%

দিকপরিবর্তী তড়িৎ প্রবাহের গড় বর্গ মান: কোন সময় ব্যাবধানের তড়িৎ প্রবাহের সকল মানের বর্গের গড়কে ঐ সময় ব্যবধানের গড় তড়িৎ প্রবাহের গড় বর্গ মান বলে। আমরা জানি, ক্ষুদ্রাতিক্ষুদ্র সময় ব্যবধানের তড়িৎ প্রবাহের বর্গের মান ও সময় ব্যবধানের গুনফলের সমষ্টি নিয়ে তাকে মোট সময় ব্যবধান দিয়ে ভাগ করলে ঐ সময় ব্যবধানের তড়িৎ প্রবাহের গড় বর্গমান পাওয়া যায়। পর্যায়কাল T হলে একটি পূর্ণ চক্রের জন্য

তড়িৎ প্রবাহের গড় বর্গ মান হবে, $\overline{I^2} = \frac{1}{T}\int\limits_{T}^{T} I^2 dt$

 $\Rightarrow \overline{E^2} = \frac{E_0^2}{2} \dots \dots \dots \dots (1)$

আমরা জানি, দিকপরিবর্তী তড়িৎ প্রবাহ, $I=I_0\sin\omega t$ এখানে, $I_0=$ তড়িৎ প্রবাহের শীর্ষমান ও $\omega=$ কৌনিক কম্পাঙ্ক

$$\therefore \overline{I^2} = \frac{1}{T} \int_0^T I_0^2 \sin^2 \omega t \, dt$$

$$\Rightarrow \overline{I^2} = \frac{I_0^2}{T} \int_0^T \sin^2 \omega t \, dt$$

$$\Rightarrow \overline{I^2} = \frac{I_0^2}{T} \int_0^T \left(\frac{2\sin^2 \omega t}{2} \right) dt$$

$$\Rightarrow \overline{I^2} = \frac{I_0^2}{2T} \int_0^T (1 - \cos 2\omega t) \, dt$$

$$\Rightarrow \overline{I^{2}} = \frac{I_{0}^{2}}{2T} \left\{ \int_{0}^{T} dt - \int_{0}^{T} \cos 2\omega t dt \right\}$$

$$\Rightarrow \overline{I^{2}} = \frac{I_{0}^{2}}{2T} \left\{ [t]_{0}^{T} - \frac{1}{2\omega} [\sin 2\omega t]_{0}^{T} \right\}$$

$$\Rightarrow \overline{I^{2}} = \frac{I_{0}^{2}}{2T} \left\{ T - \frac{1}{2\omega} [\sin 2\omega T - \sin 0] \right\}$$

$$\Rightarrow \overline{I^{2}} = \frac{I_{0}^{2}}{2T} \left\{ T - \frac{1}{2\omega} [\sin 4\pi - \sin 0] \right\}$$

$$\Rightarrow \overline{I^{2}} = \frac{I_{0}^{2}}{2T} \left\{ T - \frac{1}{2\omega} [0 - 0] \right\}$$

$$\Rightarrow \overline{I^{2}} = \frac{I_{0}^{2}}{2T} \left\{ T - 0 \right\}$$

$$\Rightarrow \overline{I^{2}} = \frac{I_{0}^{2}}{2T} \left\{ T - 0 \right\}$$

$$\Rightarrow \overline{I^{2}} = \frac{I_{0}^{2}}{2T} \left\{ T - 0 \right\}$$

তড়িৎ প্রবাহের বর্গের গড় মানের বর্গমূলকে তড়িৎ প্রবাহের গড় বর্গের বর্গমূল (I_{rms}) বা কার্যকর তড়িৎ প্রবাহ বলে।

সুতরাং, $I_{ms} = \sqrt{\overline{I^2}} = \sqrt{\frac{I_0^2}{2}} = \frac{I_0}{\sqrt{2}} = 0.707 I_0$ সুতরাং পূর্ণচক্রে দিক পরিবর্তী তড়িৎ প্রবাহের গড় বর্গের বর্গমূল মান $\frac{1}{1000} \times 1000$ পূর্ণচক্রে তড়িৎ প্রবাহের গড় বর্গের বর্গমূল মান এর শীর্ষ মানের 0.707 গুণ বা 70.7%

 $=\frac{1}{\sqrt{2}} imes$ শীর্ষমান। অর্থাৎ পূর্ণচক্রে তড়িৎ প্রবাহের গড় বর্গের বর্গমূল মান এর শীর্ষ মানের 0.707 গুণ বা 70.7%

মোটর: যে বৈদ্যুতিক যন্ত্র বিদ্যুৎ শক্তিকে যান্ত্রিক শক্তিতে রূপান্তর করে তাকে মোটর বলে? <u>জেনারেটর বা ডাইনামো:</u> যে বৈদ্যুতিক যন্ত্র যান্ত্রিক শক্তিকে বিদ্যুৎ শক্তিতে রূপান্তর করে তাকে জেনারেটর বা ডাইনামো বলে? <u>ইঞ্জিন:</u> যে যন্ত্র তাপ শক্তিকে যান্ত্রিক শক্তিতে রূপান্তর করে তাকে ইঞ্জিন বলে?

Want more Updates: https://www.facebook.com/tanbir.ebooks দ্বিতীয় পত্রের অংকের সমাধান

2nd Paper Math Solution ৬। তড়িৎ চৌম্বক আবেশ ও দিক পরিবর্তী প্রবাহ

(Electromagnetic Induction & Alternating Current)

১। একটি কুন্ডলিতে $1.015 \mathrm{s}$ সময়ে তড়িৎ প্রবাহ $0.1 \mathrm{A}$ থেকে 0.5A তে পরিবর্তিত হওয়ার দরুন ঐ কুডলীতে 10V তড়িচ্চালক বল আবিষ্ট হয়। কুন্ডলীটির স্বকীয় আবেশাংক নির্ণয় কর।

আমরা জানি. $E = L \frac{di}{dt}$ তড়িচ্চালক বল, E = 10V di = (0.5 - 0.1)A = 0.4A dt = 1.015 s স্বকীয় আবেশাংক, L = ? \therefore L = 25.375 Henry (Ans.)

২। একটি ট্রান্সফরমারের মুখ্য কুন্ডলীর পাক সংখ্যা 50, ভোল্টেজ 200V। এর গৌন কুন্ডলীর পাক সংখ্যা 100 হলে ভোল্টেজ কত? আমরা জানি.

$$rac{E_p}{E_S} = rac{N_p}{N_S}$$
 এখানে, মুখ্য কুন্ডলীর পাক সংখ্যা, $N_p = 50$ গৌন কুন্ডলীর পাক সংখ্যা, $N_s = 100$ মুখ্য কুন্ডলীর ভোল্টেজ, $E_p = 200 ext{V}$ গৌন কুন্ডলীর ভোল্টেজ, $E_p = 200 ext{V}$ গৌন কুন্ডলীর ভোল্টেজ, $E_s = ?$ $\therefore E_S = 400 ext{ V}$ (Ans.)

৩। একটি কুন্ডলীর পাক সংখ্যা 100। একে একটি চুম্বকের নিকটhoহতে $0.04\mathrm{s}$ এ সরালে প্রতিটি পাকের চৌম্বক ফ্লাক্স $30\times10^{-5}~\mathrm{Wb}$ হতে $2 \times 10^{-5} \; \mathrm{Wb}$ এ পরিণত হয়। কুন্ডলীটিতে আবিষ্ট তড়িচ্চালক শক্তি নির্ণয় কর।

আমরা জানি, $E=N\frac{d\phi_B}{dt} \label{eq:energy}$ $\Rightarrow E=\frac{100\times28\times10^{-5}}{0.04}\,V \begin{tabular}{ll} $\phi=0.04$ & $dt=0.04$ & $d\phi=(30\times10^{-5}-2\times10^{-5})$Wb & $=28\times10^{-5}$ Wb & $E=?$ & $=?$ & $=?$ & $=28\times10^{-5}$ & $=28\times10^{-5$ আমরা জানি, \therefore E = 0.7 V (Ans.)

8। একটি ট্রান্সফরমারের মুখ্য কুন্ডলীর ভোল্টেজ 10V এবং তড়িৎ প্রবাহ 4A। গৌন কুন্ডলীর ভোল্টেজ 20V হলে, এতে প্রবাহ কত হবে?

আমরা জানি,

$$rac{E_S}{E_P}=rac{I_P}{I_S}$$
 এখানে, মুখ্য কুন্ডলীর প্রবাহ, $I_P=4A$ মুখ্য কুন্ডলীর প্রবাহ, $I_P=4A$ মুখ্য কুন্ডলীর প্রবাহ, $I_S=10V$ গৌন কুন্ডলীর ভোল্টেজ, $E_S=20V$ গৌন কুন্ডলীর প্রবাহ, $I_S=2A$ (Ans.)

৫। একটি আবেশকের স্বকীয় আবেশ গুনাঙ্ক 10 henry। এর মধ্যে দিয়ে $6 imes 10^{-2}$ সেকেন্ডে তড়িৎ প্রবাহমাত্রা $10 ext{A}$ থেকে $7 ext{A}$ -এ নেমে আসলে আবিষ্ট তড়িচ্চালক শক্তির মান কত?

আমরা জানি, $E = L \frac{di}{dt}$ di = (10A - 7A) = 3A $dt = 6 \times 10^{-2} \text{ s}$ $\Rightarrow E = 10 \times \frac{3}{6 \times 10^{-2}}$ স্বকীয় আবেশ গুনাঙ্ক, L = 10 henryতড়িৎ-চালক বল, E =? \therefore E = 500V (Ans.)

৬। একটি দিক পরিবর্তী প্রবাহের সমীকরণ I=30sin 628t হলে তড়িৎ প্রবাহের (i) শীর্ষমান (ii) কম্প্রাঙ্ক (iii) মূল গড় বর্গের মান নির্নয় কর। এখানে,

প্রদত্ত সমীকরণ I=30sin 628t আদর্শ সমীকরণ I = I sin ω t সমীকরণদ্বয়কে তুলনা করে পাই,

(i)
$$I_0 = 30 \text{ A}$$

are (ii) $\omega = 628$

$$\Rightarrow 2\pi f = 628$$

$$\Rightarrow f = \frac{628}{2\pi} \Rightarrow f = \frac{628}{2 \times 3.14}$$

$$\therefore f = 100 \text{Hz}$$

(iii)
$$I_{rms}$$
= 0.707 I_0
 $\Rightarrow I_{rms}$ = 0.707 × 30 Amp
 $\therefore I_{rms}$ = 21.21A

- (i) প্রবাহের শীর্ষমান I₀=30A (ii) প্রবাহের কম্পাঙ্ক 100 Hz
- (iii) প্রবাহের মূল গড় বর্গের মান $I_{rms} = 21.21A$

৭। একটি এ.সি. উৎসের বিস্তার $160 \mathrm{V}$ এবং কম্পাঙ্ক $60 \mathrm{Hz}$ । এর উৎসের সাথে 20Ω রোধ যুক্ত করা হলে কার্যকর ভোল্টেজ, কার্যকর প্রবাহমাত্রা এবং উত্তাপ জনিত শক্তি ক্ষয় নির্ণয় কর।

আমরা জানি,
$$E_{ms} = 0.707\epsilon_{0}$$

$$\Rightarrow E_{ms} = 0.707 \times 160 \text{ V}$$
 রোধ, $R=20\Omega$ রাধ, $R=20\Omega$ কার্যকর ভোল্টেজ, $E_{ms} = ?$ আবার, $I_{rms} = \frac{E_{rms}}{R} = \frac{113.12}{20} \text{ Amp.}$ $\therefore I_{rms} = 5.656 \text{ Amp.}$ উত্তাপ জনিত শক্তি ক্ষয় $= E_{ms} \times I_{rms} = 113.12 \times 5.656 \text{ J}$

= 639.8 J

৮। 100 পাক বিশিষ্ট একটি কুন্ডলিতে 4A তড়িৎ প্রবাহ চললে 0.02Wb চৌম্বক ফ্লাক্স উৎপন্ন হয়। কুন্ডলীর স্বকীয় আবেশ গুনাঙ্ক নির্ণয় কর।

আমরা জানি,
$$\phi = LI$$

$$\Rightarrow L = \frac{\phi}{I}$$

$$\Rightarrow L = \frac{100 \times 0.02}{4} H$$

$$\therefore L = 0.5H \text{ (Ans.)}$$

এখানে, তড়িৎ প্রবাহ
$$I=4A$$
 পাক সংখ্যা, $N=100$ পাক $\therefore \varphi=N\times 0.02\,\mathrm{Wb}$ $\Rightarrow \varphi=100\times 0.02\,\mathrm{Wb}$ স্বকীয় আবেশ গুনাঙ্ক $L=?$

৯। কোন মুখ্য কুন্ডলীতে 0.05 sec এ তড়িৎ প্রবাহমাত্রা 6A হতে 1A তে আনলে গৌন কুন্ডলীতে 5V তড়িচ্চালক বল আবিষ্ট হয়। কুন্ডলীদ্বয়ের পারস্পরিক আবেশগুনাঙ্ক কত?

আমরা জানি,
$$E = M \frac{di}{dt}$$

$$\Rightarrow 5 = M \times \frac{5}{0.05}$$

$$\Rightarrow M = \frac{5 \times 0.05}{5} \text{ Henry}$$
∴ M = 0.05 Henry (Ans.)

তিড়িৎ চুম্বকীয় তরঙ্গ ঃ তড়িৎ ক্ষেত্র ও চৌম্বক ক্ষেত্রের পরস্পর লম্ব সমবায়ের ফলে যে তরঙ্গের সৃষ্টি হয় তাকে তড়িৎ চুম্বকীয় তরঙ্গ বলে । তড়িৎ ক্ষেত্র ও চৌম্বক ক্ষেত্রের পর্যায় ক্রমিক হাস বৃদ্ধির ফলে এ তরঙ্গ গঠিত হয় । তাড়িত চৌম্বক তরঙ্গ সর্বদাই তড়িৎ ও চৌম্বক উভয়ই তরঙ্গের সাথে সমকোণে থাকে । অর্থাৎ তড়িৎ চুম্বকীয় তরঙ্গ হল অনুপ্রস্থ বা তীর্যক তরঙ্গ । এই ধরনের তরঙ্গের ক্ষেত্রে, $E=E_0\sin(x-ct)$ এবং $B=B_0\sin(x-ct)$ এখানে, E_0 ও B_0 যথাক্রমে তড়িৎ ও চৌম্বক ক্ষেত্রের সর্বোচ্চ মান বা বিস্তার ।

<u>তড়িৎ চুম্বকীয় বিকিরণের ধর্ম:</u> বিভিন্ন তাড়িতচৌম্বক বিকিরণের উৎস বিভিন্ন এবং এদের তরঙ্গ দৈর্ঘ্যের মধ্যে বিরাট পার্থক্য থাকলেও এদের ধর্ম বা মৌলিক বৈশিষ্টের মধ্যে মিল রয়েছে। এরূপ বৈশিষ্ট্য নিম্নে বর্ণিত হলো।

- ১) তড়িত চৌম্বক বিকিরণ শূন্যস্থানে আলোর দ্রুতিতে $(3 \times 10^8 {
 m ms}^{-1})$ গমন করে।
- ২) তড়িত চৌম্বক বিকিরণের তীব্রতা বিপরীত বর্গীয় নিয়ম মেনে চলে। অর্থাৎ দূরত্ব দ্বিগুণ রাড়লে তীব্রতা এক চতুর্থাংশ হবে।
- ৩) তড়িৎ চুম্বকীয় বিকিরণের সকল তরঙ্গ দৈর্ঘ্যের জন্য $c=v\lambda$ সমীকরণ প্রযোজ্য হবে এখানে c তরঙ্গের দ্রুতি, v কম্পাঙ্ক এবং λ তরঙ্গ দৈর্ঘ্য।
- ৪) স্বাভাবিক আলোর ন্যায় তড়িৎ চুম্বকীয় তরঙ্গের প্রতিফলন, প্রতিসরণ, ব্যতিচার, অপবর্তন ও পোলারায়ন ঘটে।
- ৫) তড়িত চৌম্বক সঞ্চালনের জন্য কোন মাধ্যমের প্রয়োজন হয় না। এ তরঙ্গু শূন্য মাধ্যমে সঞ্চালিত হতে পারে।
- ৬) তড়িত চৌম্বক তরঙ্গ অনুপ্রস্থ বা আড় তরঙ্গ।

তাড়িতটোম্বক বর্ণালী ঃ তাড়িতটোম্বক বিকিরণে অর্ভভুক্ত রয়েছে দৃশ্যমনি আলো, অবলোহিত বিকিরণ, বেতার তরঙ্গ, অতিবেগুণি বিকিরণ, এক্সরে ও গামা রশ্মি। এসব বিকিরণ যে বর্ণালীর সৃষ্টি করে তাকে তাকে তাড়িতটোম্বক বর্ণালীর বিভিন্ন অংশ হল ১। গামা রশ্মি ২। এক্স রশ্মি ৩। অতিবেগুণি রশ্মি ৪। দৃশ্যমান বর্ণালী ৫। অবলোহিত রশ্মি ৬। হস্ম তরঙ্গ ও ৭। বেতার তরঙ্গ

আলোর কণিকা তত্ত্ব ঃ

আলোর প্রকৃতি ব্যাখ্যা করতে গিয়ে বিশ্ব বিখ্যাত বিজ্ঞানী স্যার আইজ্যাক নিউটন আলোর কণিকা তত্ত্ব প্রবর্তন করেন। তত্ত্বটি হলো-'কোন ভাস্বর বস্তু হতে অনবরত ঝাঁকে ঝাঁকে অতি ক্ষুদ্র কণিকা নির্গত হয়। এ কণিকাগুলো ওজনহীন এবং উৎস হতে চারদিকে সরল রেখায় আলোর গতিবেগে ধাবিত হয়। যখন এরা চোখে প্রবেশ করে তখন দৃষ্টির অনুভূতি জন্মে।'

সফলতা ঃ এ তত্ত্বের সাহায্যে কিছু কিছু ধুমাবলী ব্যাখ্যা করা যায়। যেমন- আলো সরল রেখায় চলে। কারণ এ তত্ত্বে মূল কথা হলো কণিকা গুলো আলোর গতিবেগে সরলরেখায় ধাবিত হয়। আবার আলোর প্রতিফলন ও প্রতিসরণ এ তত্ত্বের সাহায্যে ব্যাখ্যা করা সম্ভব। নিউটন বলেন যে, আলোর কণিকাগুলো যখন জড় মাধ্যমের উন্মুক্ত তলের কাছে যায়তখন এরা আকর্ষণ ও বিকর্ষণ বল অনুভব করে। কণিকাগুলো মাধ্যম কতৃক বিকর্ষিত হয়ে প্রতিফলনের সৃষ্টি করে।

সীমাবদ্ধতা ঃ এ তত্ত্বের সাহায্যে আলোর ব্যতিচার, অপবর্তন, সমবর্তন, আলোক তড়িৎ নিঃসরণ ইত্যাদি ব্যাখ্যা করা যায় না। আবার আমরা জানি আলো কোন প্রতিফলকে আপতিত হলে এর কিছু অংশ প্রতিফলিত এবং কিছু অংশ প্রতিসরিত হয়। কিন্তু এতত্ত্ব অনুসারে প্রতিফলন সৃষ্টির জন্য কিছু সংখ্যক কণিকার উপর বিকর্ষণ বল এবং একই অবস্থায় কিছু সংখ্যক কণিকার উপর আকর্ষণ বল কেন কাজ করে তা ব্যাখ্যা করা যায় না।

আলোর তরঙ্গ তত্ত্ব ঃ

ডাচ বিজ্ঞানী হাইগেনস ১৬৭৮ খ্রীস্টাব্দে আলোর তরঙ্গ তত্ত্ব উপস্থাপন করেন। পরবর্তিতে ইয়ং ফ্রেনেল এবং আরও অনেক বিজ্ঞানী এ তত্ত্বকে সুপ্রতিষ্ঠিত করেন। এ তত্ত্ব অনুসারে আলো তরঙ্গাকারে ইথার নামক মাধ্যমের সাহায্যে সঞ্চালিত হয়। ইথার বাস্তব কোন পদার্থ নয়। তরঙ্গ বিস্তারের জন্য যে সমস্ত ধর্মের প্রয়োজন ইথার মাধ্যমের সে সমস্ত গুনাবলী আছে। হাইগেনস্বের কল্পনা অনুসারে আপাত দৃষ্টিতে যা কিছু শূন্য মনে হয় প্রকৃতপক্ষে তাইই ইথার। স্ফলতা ঃ এ তত্ত্বের সাহায্যে আলোর প্রতিফলন, প্রতিসরণ, ব্যতিচার, অপবর্তন, প্রতিসরাস্ক এবং বিভিন্ন মাধ্যমে আলোর গতিবেগ ইত্যাদি সম্পর্কে সম্ভাষজনক ব্যাখ্যা পাওয়া যায়। নিউটনের কণিকা তত্ত্ব অনুসারে ঘনমাধ্যমে আলোরবেগ অপেক্ষাকৃত বেশী কিন্তু তরঙ্গ তত্ত্ব অনুসারে হালকা মাধ্যমে আলোর বেগ ঘনমাধ্যমের চেয়ে বেশী যা বিভিন্ন পরীক্ষার সাহায্যে বাস্তব সম্মত বলে গৃহীত হয়।

<u>সীমাবদ্ধতা ঃ</u> এ তত্ত্বের সাহায্যে আলোর বিভিন্ন ঘটনাবলি ব্যাখ্যা করা সম্ভব হলেও আলোর সরলরৈখিক গতি, সমবর্তন, আলোক তড়িৎ নিঃসরণ ইত্যাদি ব্যাখ্যা করা যায় না। এ তত্ত্বের সবচেয়ে বড় দূর্বলতা হলো- সর্বত্র বিরাজমান ইথার বিস্ময়কর গুনের অধিকারী, কিন্তু ইন্দ্রিয়গ্রাহ্য নয়। এরূপ একটি মাধ্যমের অস্তিত্ব অনেকেই স্বীকার করতে অস্বস্থি বোধ করেন।

আমরা জানি, কোন মাধ্যমের স্থিতিস্থাপক গুনাঙ্ক E ও ঘনতু ho হলে ঐ মাধ্যম সঞ্চালিত আলোর বেগ, $\mathbf{v}=\sqrt{\frac{E}{
ho}}$ যেহেতু আলোর

গতিবেগ অনেক বেশী এবং আলো ইথার মাধ্যমে তরঙ্গাকারে সঞ্চালিত হয়। সুতরাং ইথার মাধ্যমে স্থিতিস্থাপক গুনাঙ্কের মান অতিউচ্চ এবং ঘনত্বের মান অত্যন্ত কম। এ দুটি ধর্ম পরস্পর বিরোধী । কাজেই ইথার মাধ্যমের অস্তিত্ব বাস্তবে সম্ভব নয়। পরবর্তিতে বিভিন্ন পরীক্ষার সাহায্যে প্রমাণিত হয় যে- ইথার মাধ্যমের কোন অস্তিত্ব নেই।

আলোর কোয়ন্টাম তত্ত্ব ঃ

১৯০০ সালে ম্যাক্স প্ল্যাক্ষ বিকিরণ সম্বন্ধীয় কোয়ান্টাম তত্ত্ব উপস্থাপন করেন। কিন্তু পরবর্তীতে বিশ্বখ্যাত বিজ্ঞানী আলবার্ট আইনস্টাইন আলোক কোয়ান্টার চমকপ্রদ ধারণা প্রবর্তন করে এ তত্ত্বকে আলোকের ক্ষেত্রে সম্প্রসারিত করেন। এ তত্ত্ব অনুসারে -'যে কোন বিকিরণ অসংখ্য কোয়ান্টার সমষ্টি। এই কোয়ান্টাগুলোকে বলে ফোটন। বিকিরণ বিছিন্নভাবে খন্ড খন্ড আকারে নিঃসরিত বা শোষিত হয়।

সফলতা ঃ যে সমস্ত ঘটনায় পদার্থ এবং বিকিরণের মধ্যে পারস্পরিক ক্রিয়া জড়িত সে সমস্ত ঘটনার ব্যাখ্যায় আলোর কোয়ান্টাম তত্ত্ব অভূতপূর্ব সাফল্য অর্জন করে। এ তত্ত্বের সাহায্যে খুব সুন্দর ভাবে আলোক তড়িৎ নিঃসরণ, কম্পন ক্রিয়া, রমন ক্রিয়া প্রভৃতি ব্যাখ্যা করা যায়। বিজ্ঞানী আইনস্টাইন প্রমান করেন ভর ও চার্জহীন প্রতিটি ফোটনের শক্তি নির্দিষ্ট এবং একটি ফোটনের শক্তি, $E = h_{\rm U}$ । যেখানে h হলো প্লাঙ্কের ধুবক এবং v, ফোটনের কম্পাঙ্ক।

ব্যার্থতা ঃ এ তত্ত্বের সাহায্যে আলোর ব্যতিচার, অপবর্তন প্রভৃতি ঘটনা ব্যাখ্যা করা যায় না।

ফিজোর পদ্ধতিতে আলোর বেগ নির্ণয়ঃ

যান্ত্রের বর্ণনা : এই যান্ত্রে S একটি শক্তিশালী আলোক উৎস ; L_1 , L_2 , ও L_3 তিনটি উত্তল লেঙ্গং P একটি কাচের প্লেট । W একটি দাঁত ওয়ালা চাকাং M একটি অবতল দর্পন এবং T একটি দূরবিক্ষন যন্ত্র । এখানে আলোক উৎস হতে আগত আলোক রশ্মিণ্ডলো L_1 লেঙ্গে প্রতিসৃত হয়ে মিলিত হবার পথে অনুভূমিকের সাথে 45° কোণেআনত কাচের প্লেট P-এর উপর পড়ে । এ

রশ্মিণ্ডলো প্লেটে প্রতিফলিত হবার পর L_2 লেন্সের প্রথম মুখ্য ফোকাস O বিন্দুতে মিলিত হয়। O হতে অপসারী আলোক রশ্মিণ্ডলো L_2 লেন্সে পরস্পরের সমান্তরালে প্রতিসৃত হয়ে 4 মাইল পথ অতিক্রম করার পর L_3 লেন্সের উপর পড়ে এবং L_3 লেন্স হতে রশ্মিণ্ডলো পুনরায় প্রতিসৃত হয়ে অবতল দর্পন M এর উপর একটি বিন্দুতে একত্রিত হয়। L_3 লেন্সের দ্বিতীয় মুখ্য ফোকাস তলে অবতল দর্পন M এবং দর্পনের বক্রতার কেন্দ্রে L_3 লেন্সের আলোক কেন্দ্র অবস্থিত। এ জন্য L_3 হতে প্রতিসৃত অভিসারী আলোক রশ্মিণ্ডলো M এ প্রতিফলিত হয়ে পুনরায় একই পথে L_3 ও L_2 লেন্সের মধ্যদিয়ে গিয়ে O বিন্দুতে মিলিত হয়।

 L_2 লেন্সের ফোকাস তলে থাকে দাঁতওয়ালা চাকা W। চাকাটি অনুভূমিক অক্ষের চতুর্দিকে ঘুরতে পারে। এতে এর পরিধি বরাবর একই আকার ও দৈর্ঘ্যের সমান সংখ্যক দাঁত ও ফাঁক আছে। চাকাটি আস্তে আস্তে ঘুরাতে থাকলে যখন তার কোন একটি ফাঁকদিয়ে প্রবেশকারী আলোক রশ্মি M দর্পনে প্রতিফলিত হয়ে পুনরায় অপরফাঁক দিয়ে প্লেট P-এর উপর পড়ে তখন এ আলোকের কিছু অংশ কাচের প্লেটের মধ্যদিয়ে দূরবীক্ষন যন্দ্র T -এ প্রবেশ করে। দূরবীক্ষন যন্ত্রের ভেতর দিয়ে দেখলে আলোক উৎস S -এর একটি উজ্জ্বল প্রতিবিদ্ব দৃষ্টিগোচর হয়। কিন্তু যখন আলোক রশ্মিগুলো বাধা পায় এবং আলোক উৎসকে দূরবীক্ষন যন্ত্রে আর দেখা যায় না। এজন্য চাকাটিকে আস্তে আস্তে ঘুরাতে থাকলে দূরবীক্ষন যন্ত্রে আলোক উৎসের প্রতিবিদ্ব ক্রমে দৃশ্য ও অদৃশ্য হবে এবং একটি চলমান আলোকচ্ছটা দেখা যাবে। কিন্তু যদি চাকার আবর্তন বেগ ক্রমন্বয়ে বৃদ্ধি করা যায় তবে ঘূর্ণনের বেগ একটি নির্দিষ্ট মাত্রায় পৌছলে চাকার কোন এক ফাঁকদিয়ে অতিক্রমকারী M দর্পনমুখী আলোক রশ্মি ফেরার পথে পরবর্তী দাঁত দ্বারা বাধাপ্রাপ্ত হবে। ফলে আলোক রশ্মি দূরবীক্ষন যন্ত্রে পৌছবে না এবং স্থায়ীভাবে দূরবীক্ষন যন্ত্র অন্ধকারাচ্ছন্ন থাকবে। এ অবস্থায় চাকার যে কোন একটি দাঁত তার পরবর্তী ফাঁকা স্থানে আসতে যে সময় লাগে সে সময় আলো O হতে M পর্যন্ত গিয়ে পুনরায় O -তে ফিরে আসে।

হিসাব ও গণনাঃ ধরা যাক আলোর বেগ v; O ও M এর মধ্যবর্তী দূরত্ব = d; O হতে M এ গিয়ে পুনরায় O -তে ফিরে আসতে 2d দূরত্ব অতিক্রম করে এবং এই 2d দূরত্ব অতিক্রম করতে প্রয়োজনীয় সময় = t

তাহলে, $\frac{2d}{v}=t$ আরও ধরা যাক, চাকায় মোট দাঁত বা ফাঁকের সংখ্যা =m, একটি দাঁত বা ফাঁকা স্থান কতৃক চাকার কেন্দ্রে উৎপন্ন কোণ=0, প্রতি সেকেন্ডে চাকাটির ঘূর্ণন সংখ্যা =n ও চাকাটির কৌনিক রেগ $=\omega$

চাকার কেন্দ্রে ω কোন উৎপন্ন করে 1 সেকেন্ডে ফলে θ কোণ উৎপন্ন করে $\frac{\theta}{\omega}$ সেকেন্ডে

$$\therefore t = \frac{\theta}{\omega} = \frac{\theta}{2\pi n} \qquad [\because \omega = 2\pi n]$$

দাঁত ও পার্শ্ববর্তী ফাঁকের জন্য চাকার কেন্দ্রে উৎপন্ন মোট কোণ $2m\theta = 2\pi$ $\therefore \theta = \frac{\pi}{m}$

$$\therefore t = \frac{\theta}{2\pi n}$$

$$\Rightarrow t = \frac{\pi}{2\pi \, n \times m}$$

$$\Rightarrow \frac{2d}{v} = \frac{1}{2 \text{ nm}}$$

∴ v=4mnd এই সমীকরণে m, n ও d এর মান বসিয়ে আলোর বেগ নির্ণয় করা যায়।

আলোক বর্ষ ঃ এক বছরে আলোক রশ্মিয়ে দূরত্ব অতিক্রম করে তাকে আলোক বর্ষ বলে। আলোক বর্ষ দূরত্বের একক।

$$1$$
 আলোক বর্ষ = আলোর বেগ \times 1 বছরের সেকেন্ড সংখ্যা । = $3\times 10^8~{\rm ms}^{-1} \times (365\times 24\times 60\times 60)~{\rm s}$ = $9.4\times 10^{15}~{\rm m}=9.4\times 10^{12}~{\rm Km}$

সৌর বর্ণালী এবং ফ্রনহফারের রেখাঃ

সৌর রশ্মি হতে আমরা যে বর্ণালী পাই তার নাম সৌর বর্ণালী। এ বর্ণালীতে লাল হতে বেগুনী পর্যন্ত সাতটি বর্ণকেই অবিচ্ছিন্নভাবে পাওয়া যায়। কিন্তু অতি শক্তিশালী আলোক যন্ত্রের সাহায্যে এ সৌর বর্ণালীকে পরীক্ষা করলে এতে কতকগুলো কালো দাগের অন্তিত্ব লক্ষ্য করা যায়। বিজ্ঞানী ওয়ালাস্টন (Wallaston) 1802 সালে সর্বপ্রথম এ কালো রেখাগুলোর অন্তিত্ব প্রত্যক্ষ করেন। কিন্তু এ কালো রেখাগুলো সম্বন্ধে 1804 সালে পুঙ্খানুপুঙ্খরূপে গবেষনা করে উৎপত্তির কারণসহ পরিচয় প্রদান করেন জার্মান পদার্থবিদ ফ্রনহফার। এ জন্য সৌর বর্ণালীতে বিদ্যমান কালো রেখাগুলোকে ফ্রনহফারের রেখা বলে।

রেখাগুলোর উৎপত্তির কারণঃ

বিখ্যাত বিজ্ঞানী কারসপ (Kirchhoff) সৌর বর্ণালীতে কালো রেখা গুলোর উৎপত্তির কারণ ব্যাখ্যা করেন। তিনি বিভিন্ন পরীক্ষা হতে এ সিদ্ধান্তে উপনীত হন যে, অধিক তাপমাত্রায় কোন পদার্থ যে আলোক রিশ্মি নির্গমন করে নিম্ম তাপমাত্রায় উক্ত পদার্থ তা শোষন করে।

সৌরমন্ডলের কেন্দ্রস্থল খুবই উত্তপ্ত। এটি সাদা উত্তপ্ত কঠিন পদার্থে গঠিত। এর নাম আলোক মন্ডল। এর তাপমাত্রা কয়েক কোটি ডিগ্রী সেন্ট্রিগ্রেট। আলোকমন্ডলের বাইরের অংশের নাম বর্ণমন্ডল। এ অংশের তাপমাত্রা অপেক্ষাকৃত কম। আলোকমন্ডলের অভ্যন্তরে পদার্থের পরমাণু প্রচন্ড তাপ এবং চাপের অধীনে থাকে এবং সর্ব বর্ণের সাদা আলোক প্রদান করে। এ সাদা আলোক হতে স্ব স্ব ধর্মানুযায়ী বিশেষ বিশেষ বর্ণের আলোক শোষণ করে। এ বিশিষ্ট শোষণের ফলে সৌর বর্ণালীতে কালো রেখার উৎপত্তি হয়েছে। তবে সব ফ্রন্থফার রেখাই বর্ণমন্ডলের বাষ্প দ্বারা শোষনের ফলে উৎপন্ন হয় না। পৃথিবীর বায়ুমন্ডলের বাষ্পে দ্বারা শোষনের ফলেও কিছু কিছু কালো রেখা উৎপন্ন হয়।

Want more Updates: https://www.facebook.com/tanbir.ebooks দ্বিতীয় পত্রের অংকের সমাধান

2nd Paper Math Solution

৭। তড়িৎ চুম্বকীয় তরঙ্গ (Electromagnetic Wave)

১। পানি ও কাঁচের প্রতিসরাংক যথাক্রমে 1.33 ও 1.5 হলে, কাঁচে আলোর বেগ কত? [পানিতে আলোর বেগ 2.28×10⁸ m/s] আমরা জানি,

 $\Rightarrow \frac{1.33}{1.5} = \frac{C_g}{2.28 \times 10^8}$ $\Rightarrow C_g = \frac{1.33 \times 2.28 \times 10^8}{1.5}$ $\therefore C_g = 2.02 \times 10^8 \,\text{ms}^{-1} \text{ (Ans.)}$

$$\begin{split} \frac{_{a}\,\mu_{\rm w}}{_{a}\,\mu_{\rm g}} &= \frac{C_{a}/C_{\rm w}}{C_{a}/C_{\rm g}} \\ \Rightarrow \frac{_{a}\,\mu_{\rm w}}{_{a}\,\mu_{\rm g}} &= \frac{C_{\rm g}}{C_{\rm w}} \end{split} \qquad \begin{array}{l} \text{এখান,} \\ \text{পানির প্রতিসরাংক, }_{a}\mu_{\rm w} &= 1.33 \\ \text{⇒ісья প্রতিসরাংক, }_{a}\mu_{\rm g} &= 1.5 \\ \text{পানিতে আলোর বেগ,} C_{\rm w} &= 2.28 \times 10^8~{\rm ms^{-1}} \\ \text{⇒ісь আলোর বেগ,} C_{\rm g} &= ? \end{split}$$

২। বাতাসে সোডিয়াম আলোর তরঙ্গ দৈর্ঘ্য $5.89 \times 10^{-7} \text{ m}$ । যে কাচের প্রতিসরাঙ্ক 1.52 তাতে আলোর তরঙ্গ দৈর্ঘ্য নির্ণয় কর। আমরা জানি,

 $_{a}\mu_{g}=\frac{\lambda_{a}}{\lambda_{a}}$ $\Rightarrow 1.52 = rac{5.89 imes 10^{-7}}{\lambda_{g}}$ কাচের প্রতিসরাংক, $_{a}\mu_{g} = 1.52$ কাচের প্রতিসরাংক, $_{a}\mu_{g} = 1.52$ তরঙ্গ দৈর্ঘ্য, $\lambda_{g} = ?$ $\Rightarrow \lambda_g = \frac{5.89 \times 10^{-7}}{1.52}$

সোডিয়াম আলোর তরঙ্গ দৈর্ঘ্য, λ_a =5.89imes10 $^{-7}$ m

 $\lambda_{g} = 3.875 \times 10^{-7} \text{ m (Ans.)}$

৩। পানি ও হিরকের প্রতিসরাংক যথাক্রমে 1.33 ও 2.4 হলে, হিরকে আলোর বেগ কত? পানিতে আলোর বেগ 2.28×10^8 m/s] আমরা জানি,

 $\therefore C_A = 1.26 \times 10^8 \,\text{ms}^{-1}$ (Ans.)

 $\begin{array}{l} _{d}\mu_{w}=\frac{a+w}{a}\mu_{d}=\frac{C_{d}}{C_{w}}\\ \Rightarrow \frac{1.33}{2.4}=\frac{C_{d}}{2.28\times10^{8}}\\ \Rightarrow C_{d}=\frac{1.33\times2.28\times10^{8}}{2.4} \end{array} \hspace{0.2cm} \text{পানির প্রতিসরাংক, }_{a}\mu_{w}=1.32$ হিরকে প্রতিসরাংক, $_{a}\mu_{d}=2.4$ পানিতে আলোর বেগ, $_{c}C_{w}=2.28\times10^{8}$ ms⁻¹ হিরকে আলোর বেগ, $_{c}C_{d}=2.28\times10^{8}$

৪। বায়ু সাপেক্ষে কাচের প্রতিসরাংক 1.5। বায়ুতে এক আলোক বৎসর 9.4×10¹² km। কাচে এক আলোক বৎসরের মান কত?

 $_{a}\,\mu_{g}=rac{{
m alig}$ তে এক আলোক বৎসর}{ কালে এক আলোক বৎসর \Rightarrow 1.5 = $\frac{9.4 \times 10^{12} \,\mathrm{km}}{$ কাচে এক আলোক বৎসর

 \Longrightarrow কাচে এক আলোক বৎসর = $\dfrac{9.4 \times 10^{12} \, km}{1.5}$

∴ কাচে এক আলোক বৎসর = $6.27 \times 10^{12} \, \text{km}$ (Ans.)

ে। আলোর বেগ নির্ণয়ের জন্য ফিজোর পরীক্ষার চাকার দাঁত সংখ্যা ছিল 720। চাকার প্রতি সেকেন্ডে আবর্তন সংখ্যা ছিল 12.6 এবং চাকা ও অবতল

আমরা জানি. C = 4mnd \Rightarrow C = $4 \times 720 \times 12.6 \times 8.6 \times 10^3 \mathrm{m}$ | প্রতি সেকেন্ডে আবর্তন সংখ্যা, n=12.6 \therefore C = 3.12×10⁸ ms⁻¹ (Ans.)

চাকার দাঁত সংখ্যা ছিল, m = 720 চাকা ও অবতল দর্পনের মধ্যবর্তী দূরত, $d = 8.6 \times 10^3 \text{m}$ আলোর বেগ, C = ?

৬। কোন বৈতার তরঙ্গের $E_0=10^{-4}~{
m Vm}^{-1}$, B_0 এর মান কত? আমরা জানি.

$$\frac{E_0}{B_0} = C$$

$$\Rightarrow B_0 = \frac{E_0}{C} = \frac{10^{-4}}{3 \times 10^8}$$

$$\therefore B_0 = 3.33 \times 10^{-13} \text{ T (Ans.)}$$

৭। $6630 \times 10^{-10} \mathrm{m}$ তরঙ্গ দৈর্ঘের ফোটনের শক্তি (গতি শক্তি) নির্ণয় কর। [h $= 6.63 \times 10^{-34} \text{ J-s}$ এবং $c = 3 \times 10^8 \text{ ms}^{-1}$]

আমরা জানি, $E = \frac{hc}{\lambda}$ $\Rightarrow E = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{6630 \times 10^{-10}} \quad | \begin{array}{c} \lambda = 6630 \times 10^{-10} \\ \text{*IGe}, E = ? \end{array}$ $\therefore E = 3 \times 10^{-19} \text{ J} \text{ (Ans.)}$

এখানে. প্লাঙ্ক ধ্রুব, $h = 6.63 \times 10^{-34} \text{ J-s}$ আলোর দ্রুতি, $c = 3 \times 10^8 \text{ ms}^{-1}$ $\lambda = 6630 \times 10^{-10} \,\mathrm{m}$

আলোর প্রতিফলন (Reflection of Light)

আলোর প্রতিফলনঃ আলো যখন বায়ু বা অন্য কোন মাধ্যমের ভিতর দিয়ে যাওয়ার সময় অন্য কোন স্বচ্ছ মাধ্যম দ্বারা বাধা প্রাপ্ত হয় তখন দুই মাধ্যমের বিভেদতল থেকে কিছু পরিমান আলো প্রথম মাধ্যমে ফিরে আসে। এই ফিরে আসার ঘটনাকে আলোর প্রতিফলন বলে।

দর্পণঃ যে মসুন তলে আলোর নিয়মিত প্রতিফলন ঘটে, তাকে দর্পণ বলে। দর্পণ সাধারণত দুই প্রকার। যথা —

- (ক) সমতল দৰ্পণ
- (খ) গোলীয় দর্পণ
- (ক) সমতল দর্পণঃ কোন সমতল পৃষ্ঠ যদি মসৃণ হয় এবং তাতে আলোর নিয়মিত প্রতিফলন ঘটে তবে তাকে সমতল দর্পণ বলে। আমরা প্রতিদিন চেহারা দেখার জন্য যে আয়না ব্যবহার করি তা সমতল দর্পণ। চিত্রে MM' একটি সমতল দর্পণ।

(খ) গোলীয় দর্পণঃ কোন স্বচ্ছ ফাঁকা গোলকের অংশবিশেষ যদি মসৃন হয় ববেং তাতে আলোর নিয়মিত প্রতিফলন ঘটে তবে তাকে গোলীয় দর্পণ বলে। গোলীয় দর্পণ দু'প্রকার -(a) অবতল দর্পন (b) উত্তল দর্পণ

(a) অবতল দর্পনঃ

ফাঁপা গোলকের ভিতরের পৃষ্ঠের কিছু অংশ (অবতল পৃষ্ঠ) যদি প্রতি ফলক রূপে ক্রিয়াকরে তবে তাকে অবতল দর্পণ বলে। চিত্রে MAM' একটি অবতল দর্পণ।

(b) উত্তল দর্পণঃ

কোন ফাঁপা গোলকের বাইরের পৃষ্ঠের কিছু অংশ যদি প্রতি ফলকু তল রূপে ক্রিয়া করে তবে তাকে উত্তল দর্পন বলে। পার্শ্বের চিত্রে MAM' একটি উত্তল দর্পণ। কোন ফাঁপা গোলকের কিছু অংশ কেঁটে নিয়ে যদি ভেতরের অংশে পারদের প্রলেপ দেওয়া হয়, তবে উত্তল দর্পণ তৈরী হয়।

বক্রতার কেন্দ্রঃ দর্পণটি যে গোলকের অংশ তার কেন্দ্রকে বক্রতার কেন্দ্র বলে। চিত্রে C দর্পনটির বক্রতার কেন্দ্র।

প্রধান ফোকাসঃ

প্রধান অক্ষের সমান্তরাল আলোক রেশ্মিকোন গোলীয় দর্পনে আপতিত হওয়ার পর প্রতিফলিত রশ্মি যে বিন্দুতে মিলিত হয় (অবতল দর্পনে) বা যে বিন্দুতে মিলিত হয় বলে মনে হয় (উত্তল দর্পনে) তাকে ঐ দর্পনের প্রধান ফোকাস বলে। প্রধান ফোকাসকে F দ্বারা প্রকাশ করা হয়। ডান পার্ম্বের চিত্রে

ফোকাস তলঃ

কোন গোলীয় দর্পণের প্রধান ফোকাসের মধ্য দিয়ে প্রধান অক্ষের উপর অঙ্কিত বা কল্পিত তলকে ফোকাস তল বলে। চিত্রে ABCD ফোকাস তল।

গৌন ফোকাসঃ

পরস্পর সমান্তরাল রশ্মিগুচ্ছ যখন কোন গোলীয় দর্পনের প্রধান অক্ষের সাথে তীর্যকভাবে দর্পণে আপতিত হয় তখন তারা ফোকাস তলের কোন বিন্দুতে মিলিত হয় (অবতল দর্পনে) অথবা কোন বিন্দু হতে অপসূত হচ্ছে বলে মনে হয় (উত্তল দর্পনে)। ফোকাস তলের উপরস্থ ঐ বিন্দুকে গৌণ ফোকাস বলে।

অনুবন্ধি ফোকাসঃ

গোলীয় দর্পণের অনুবন্ধী ফোকাস বলতে প্রধান অক্ষের উপরস্থ এমন
দুটি বিন্দু বুঝায় যাদের যে কোন একটিতে বস্তু রাখলে যথাক্রমে অপরটিতে প্রতিবিদ্ধ গঠিত
হয়। চিত্রে O বিন্দুতে বস্তু রাখলে P বিন্দুতে প্রতিবিদ্ধ গঠিত হয়। আবার P বিন্দুতে বস্তু
রাখলে O বিন্দুতে প্রতিবিদ্ধ গঠিত হয়। সুতরাং O ও P বিন্দু অনুবন্ধী ফোকাস।
প্রধান ছেদঃ মেরুবিন্দু ও বক্রতার কেন্দ্রের মধ্য দিয়ে কোন সমতল কল্পনা
করলে, ঐ তল যে বক্ররেখায় দর্পনকে ছেদ করে সে বক্র রেখাকে প্রধান
ছেদ বলে। ডান পার্শ্বের চিত্রে MAM' দর্পনের প্রধান ছেদ।

উন্মেষঃ

গোলীয় দর্পনের প্রধান ছেদ দর্পনের বক্রতার কেন্দ্রে যে কোণ উৎপন্ন করে তাকে দর্পনের উন্মেষ বলে। প্রধান ছেদের প্রান্ত বিন্দু দুটি বক্রতার কেন্দ্রের সাথে যুক্ত করলে দর্পনের উন্মেষ পাওয়া যায়। চিত্রে $\angle MCM' = \theta$ দর্পনের উন্মেষ। আবার উন্মেষ, $\theta = \frac{\text{bid}}{\text{ব্যাসাধ'}} = \frac{MAM'}{AC}$

- (ক) বাস্তব প্রতিবিম্ব
- (খ) অবাস্তব প্রতিবিম্ব

(ক) বাস্তব প্রতিবিম্বঃ

কোন বিন্দু থেকে আলোক রশ্মি কোন মাধ্যমে আপতিত হওয়ার পর প্রতিফলিত বা প্রতিসরিত হবার পর রশ্মিণ্ডলো যদি দ্বিতীয় কোন বিন্দুতে মিলিত হয় তা হলে ঐ দ্বিতীয় বিন্দুকে প্রথম বিন্দুর বাস্তব প্রতিবিম্ব বলে। চিত্রে P' বিন্দুর সিব্দুর বাস্তব প্রতিবিম্ব। বাস্তব প্রতিবিম্ব সর্বদা উল্টো বা অবশীর্ষ হয়।

কোন বিন্দু হতে কিছু সংখ্যক আলোক রশ্মি কোন তলে আপতিত হওয়ার পর প্রতিফলিত বা প্রতিসরিত রশ্মিগুলো যদি দ্বিতীয় কোন বিন্দু হতে অপসারিত হচ্ছে বলে মনে হয় তবে, ঐ দ্বিতীয় বিন্দুটিকে প্রথম বিন্দুর অবাস্তব প্রতিবিম্ব বলে। চিত্রে P'বিন্দু P বিন্দুর অবাস্তব প্রতিবিম্ব। অবাস্তব প্রতিবিম্ব সর্বদা সিধা বা সমশীর্ষ হয়।

বাস্তব ও অবাস্তব প্রতিবিম্বের পার্থক্যঃ

বাস্তব প্রতিবিস্ক	অবাস্তব প্রতিবিম্ব
১। কোন বিন্দু থেকে আলোক রশ্মি কোন মাধ্যমে আপতিত	কোন বিন্দু হোতে কিছু সংখ্যক আলোক রশ্মি কোন তলে
হওয়ার পর প্রতিফলিত বা প্রতিসরিত হবার পর রশ্মিণ্ডলো	আপতিত হওয়ার পর প্রতিফলিত বা প্রতিসরিত রশ্মিগুলো যদি
যদি দ্বিতীয় কোন বিন্দুতে মিলিত হয় তা হলে ঐ দ্বিতীয়	দ্বিতীয় কোন বিন্দু হতে অপসারিত হচ্ছে বলে মনে হয় তবে,
বিন্দুকে প্রথম বিন্দুর বাস্তব প্রতিবিম্ব বলে।	ঐ দ্বিতীয় বিন্দুটিকে প্রথম বিন্দুর অবাস্তব প্রতিবিম্ব বলে।
২। প্রতিফলিত বা প্রতিসরিত আলোক রশ্মির প্রকৃত মিলনের	অবাস্তব প্রতিবিম্বের ক্ষেত্রে প্রতিফলিত বা প্রতিসরিত রশ্মি
ফলে বাস্তব প্রতিবিম্ব গঠিত হয়।	গুলোর প্রকৃত মিলন হয় না।
৩। চোখে দেখা যায় এবং পর্দায় ফেলা যায়।	চোখে দেখা যায় কিন্তু পৰ্দায় ফেলা যায় না।
৪। প্রতিবিম্ব উল্টো বা অবশীর্ষ হয়।	প্রতিবিম্ব সিধা বা সমশীর্ষ হয়।

স্পর্শ না করে দর্পন সনাক্ত করার উপায়ঃ

কোন দর্পণের একেবারে নিকটে একটি আঙ্গুল বা বস্তু খাড়া ভাবে স্থাপন করলে যদি বিম্ব লক্ষ্যবস্তু অপেক্ষা বড় হয় তবে দর্পনিট অবতল, আর যদি সোজা বিম্ব ছোট হয় তাহলে দর্পনিটি উত্তল। আবার যদি প্রতিবিম্ব লক্ষ্য বস্তুর সমান হয় তবে দর্পনিটি সমতল।

দর্পনের ক্ষেত্রে $f=rac{r}{2}$ সম্পর্কটির প্রমান ঃ বা, দর্পনের ফোকাস দূরত্ব ও বক্রতার ব্যাসার্ধের মধ্যে সম্পর্কঃ

(ক) অবতল দর্পনের ক্ষেত্রেঃ মনে করি, MPM'অবতল দর্পন। C দর্পনের বক্রতার কেন্দ্র এবং P এর মেরু। ধরা যাক, প্রধান আক্ষ CP -এর নিকটবর্তী এবং সমান্তরাল AM আলোক রিশ্মি দর্পনের M বিন্দুতে আপতিত হয়। CM যোগ করা হল। CM দর্পনের বক্রতার ব্যাসার্ধ বলে এটি M বিন্দুতে দর্পনের উপর লম্ব। এখন আপতন কোণ ∠AMC এর সমান করে ∠CMF কোণ অংকন করলে MF প্রতিফলিত রিশ্মি পাওয়া যায়। এই প্রতিফলিত রিশ্মি প্রধান অক্ষকে F বিন্দুতে ছেদ করে। F, দর্পনের প্রধান ফোকাস। চিন্তের ধনাত্মক নিয়ম অনুসারে,

PF = ফোকাস দূরত্ব = f

PC = বক্রতার ব্যাসার্ধ = r

প্রমানঃ প্রতিফলনের দ্বিতীয় সূত্রানুসারে,

আপাতন কোণ = প্রতিফলন কোণ

 $\therefore \angle AMC = \angle CMF \dots \dots (1)$

আবার, AM||CP এবং CM এদের ছেদক।

∴ ∠AMC = একান্তর ∠MCP

বা,∠AMC = ∠MCF (2)

সুতরাং (1) নং ও (2) নং সমীকরণ হতে পাই,

∠CMF = ∠MCF [∵ উভয়ই ∠AMC -এর সমান]

অর্থাৎ ∆MCF এর মধ্যে, ∠CMF = ∠MCF

∴ ΔMCF সমদিবাহু, যার MF = FC (3)

দর্পনের উন্মেষ খুবই ক্ষুদ্র হওয়ায় M বিন্দু P বিন্দুর খুবই নিকটে হবে

এবং সে ক্ষেত্রে, MF = PF (4)

এখন (3) ও (4) নং সমীকরণ হতে পাই,

$$PF = FC$$

অর্থাৎ, F, PC এর মধ্য বিন্দু।

$$\therefore PC = PF + FC = PF + PF \qquad [\because PF = FC]$$

বা, PC = 2PF

বা,
$$PF = \frac{1}{2}PC$$

বা,
$$f = \frac{r}{2}$$
 [: PF = f; PC = r]

অতএব নির্ণেয় সম্পর্ক ঃ অবতল দর্পনের ফোকাস দূরত্ব বক্রতার ব্যাসার্ধের অর্ধেক।

F দর্পনের প্রধান ফোকাস। চিহ্নের ধনাত্মক নিয়ম অনুসারে,

PF = ফোকাস দূরত্ব = -f

PC = বক্রতার ব্যাসার্ধ = -r

প্রমানঃ প্রতিফলনের দ্বিতীয় সূত্রানুসারে,

আপাতন কোণ = প্রতিফলন কোণ

 $\therefore \angle AMN = \angle NMB \dots \dots (1)$

আবার, AM||PC এবং CMN এদের ছেদক।

∴∠AMN = অনুরূপ ∠NCF

বা,∠AMN = ∠MCF (2)

সুতরাং (1) নং ও (2) নং সমীকরণ হতে পাই,

∠NMB = ∠MCF (3) [∵ উভয়ই ∠AMN -এর সমান]

আবার, ∠NMB=∠CMF(4) [বিপ্রতীপ কোণ]

সুতরাং (3) নং ও (4) নং সমীকরণ হতে পাই,

∠CMF = ∠MCF [∵ উভয়ই ∠NMB -এর সমান]

অর্থাৎ ∆MCF এর মধ্যে, ∠CMF = ∠MCF

∴ ΔMCF সমদ্বিবাহু, যার MF = FC (5)

দর্পনের উন্মেষ খুবই ক্ষুদ্র হওয়ায় M বিন্দু P বিন্দুর খুবই নিকটে হবে

এবং সে ক্ষেত্রে, MF = PF (6)

এখন (5) ও (6) নং সমীকরণ হতে পাই,

$$PF = FC$$

অর্থাৎ, F, PC এর মধ্য বিন্দু।

$$\therefore$$
 PC = PF + FC = PF + PF [\because PF = FC]

বা, PC = 2PF

বা,
$$PF = \frac{1}{2}PC$$

অবতল দর্পনের ক্ষেত্রে $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ সম্পর্কটির প্রমানঃ

মনে করি, MOM'ক্ষুদ্র উন্মেষের একটি অবঁতল দর্পণের প্রধান ছেদ। O এর মেরু বিন্দু এবং C বক্রতার কেন্দ্র। এর প্রধান অক্ষের উপর P একটি বিন্দু লক্ষবস্তু। ধরা যাক, P থেকে আগত একটি আলোক রিশ্মি প্রধান অক্ষ বরাবর PO পথে O বিন্দুতে লম্ব ভাবে আপতিত হয়। এটি OP পথে প্রতিফলিত হয়। অন্য একটি রিশ্মি PM, দর্পনের M বিন্দুতে আপতিত হয়। CM যোগ করা হল, এটি M বিন্দুতে অভিলম্ব। এখন আপতন কোণ $\angle PMC$ -এর সমান করে $\angle CMA$ কোণ অঙ্কন করলে MA প্রতিফলিত রিশ্মি পাওয়া যায়। প্রতিফলিত রিশ্মি দুটি OP এবং MA প্রধান অক্ষের উপর Q বিন্দুতে মিলিত হয়। সুতরাং Q হল P বিন্দুর বাস্তব প্রতিবিম্ব। অতএব আপতন কোণ $\angle PMC=i$

এবং প্রতিফলন কোণ ∠QMC = r

সুতরাং প্রতিফলনের নিয়মানুসারে, i=r (1)

ধরা যাক, MP, MC এবং MQ রেখা প্রধান অক্ষের সাথে যথাক্রমে, α , β ও γ কোণ উৎপন্ন করে। এখন Δ MPC এর একটি বহিঃস্থ কোণ β । \therefore $\beta=\alpha+i$

বা,
$$i = \beta - \alpha$$

এবার $\Delta \mathrm{MQC}$ এর একটি বহিঃস্থ কোণ γ ।

$$\therefore \gamma = \beta + r$$

বা,
$$r = \gamma - \beta$$

(1) নং সমীকরণে i ও r এর মান বসিয়ে পাই,

$$\beta - \alpha = \gamma - \beta$$

বা,
$$\gamma + \alpha = 2\beta$$

যেহেতু দর্পনের উন্মেষ খুব ছোট তাই $lpha,\,eta$ ও γ কোণগুলোও খুব ছোট হবে। কোণগুলো রেডিয়ানে প্রকাশিত তাই, সমীকরণকে

লেখা যায়—
$$\frac{MO}{OQ} + \frac{MO}{OP} = \frac{2MO}{OC}$$

বা, $\frac{1}{OQ} + \frac{1}{OP} = \frac{2}{OC}$ এখন চিহ্নের বাস্তব ধনাত্মক প্রথা অনুসারে, লক্ষ বস্তুর দূরত্ব, OP = +u বিমের দূরত্ব, OQ = +v

বক্রতার ব্যসার্ধ, OC = r বসিয়ে পাই,

$$\therefore \frac{1}{v} + \frac{1}{u} = \frac{2}{r} = \frac{1}{f} \qquad [\because r = 2f]$$

অতএব, $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ ইহাই নির্ণেয় সম্পর্ক।

বা, $\frac{u+v}{uv}=\frac{1}{f}$ $\therefore f=\frac{uv}{u+v}$ ইহাই ফোকাস দূরত্বের সমীকরণ।

উত্তল দর্পনের ক্ষেত্রে $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ সম্পর্কটির প্রমানঃ

মনে করি, MOM' ক্ষুদ্র উন্মেষের একটি অবতল দর্পণের প্রধান ছেদ। O এর মেরু বিন্দু এবং C বক্রতার কেন্দ্র। এর প্রধান অক্ষের উপর P একটি বিন্দু লক্ষবস্তু। ধরা যাক, P থেকে আগত একটি আলোক রিশ্বি প্রধান অক্ষ বরাবর PO পথে O বিন্দুতে লম্ব ভাবে আপতিত হয়। এটি OP পথে প্রতিফলিত হয়। অন্য একটি রিশ্বি PM, দর্পনের M বিন্দুতে আপতিত হয়। CM যোগ করে N পর্যন্ত বাড়ানো হল। এটি M বিন্দুতে অভিলম্ব। এখন আপতন কোণ $\angle PMN$ —এর সমান করে $\angle NMA$ কোণ অঙ্কন করলে MA প্রতিফলিত রিশ্বি পাওয়া যায়। প্রতিফলিত রিশ্বি দুটি OP ও MA অপসারী হওয়ায় এদেরকে পিছন দিকে বর্ধিত করলে প্রধান অক্ষের উপর Q বিন্দু থেকে আসছে বলে মনে হয়। সুতরাং Q হল P বিন্দুর অবান্তব প্রতিবিম্ব।

অতএব আপতন কোণ $\angle PMN=i$ এবং প্রতিফলন কোণ $\angle NMA=\angle CMQ=r$ সুতরাং প্রতিফলনের নিয়মানুসারে, i=r (1) ধরা যাক, MP, MC এবং MQ রেখা প্রধান অক্ষের সাথে যথাক্রমে α,β ও γ কোণ উৎপন্ন করে। এখন Δ MPC এর একটি বহিঃস্থ

কোণ i । $\therefore i = \alpha + \beta$

এবার ΔMQC এর একটি বহিঃস্থ কোণ γ

(1) নং সমীকরণে i ও r এর মান বসিয়ে পাই,

যেহেতু দর্পনের উন্মেষ খুব ছোট তাই α , β ও γ কোণগুলোও খুব ছোট হবে। কোণগুলোকে রেডিয়ানে প্রকাশ এই সমীকরণকে লেখা যায়— $\frac{MO}{OQ} - \frac{MO}{OP} = \frac{2MO}{OC}$

বা, $\frac{1}{OQ} - \frac{1}{OP} = \frac{2}{OC}$ এখন চিহ্নের বাস্তব ধনাত্মক প্রথা অনুসারে, লক্ষ্ন বস্তুর দূরত্ব, OP = +u বিম্নের দূরত্ব, OQ = -v

বক্রতার ব্যসার্ধ, OC = -r বসিয়ে পাই,

$$\therefore \frac{1}{-v} - \frac{1}{u} = \frac{2}{-r} = \frac{1}{-f} \qquad [\because r = 2f]$$

অতএব, $\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$ ইহাই নির্ণেয় সম্পর্ক। বা, $\frac{u+v}{uv}=\frac{1}{f}$ $\therefore f=\frac{uv}{u+v}$ ইহাই ফোকাস দূরত্বের সমীকরণ।

রৈখিক বিবর্ধন ও বিবর্ধনের রাশিমালাঃ

রৈখিক বিবর্ধনঃ রৈখিক বিবর্ধন বলতে প্রতিবিম্বের দৈর্ঘ্য এবং বস্তুর দৈর্ঘ্যের অনুপাতকে বুঝায়। রৈখিক বিবর্ধনকে m দ্বারা প্রকাশ করা হয়। বস্তুর দৈর্ঘ্য x ও প্রতিবিম্বের দৈর্ঘ্য y হলে রৈখিক বিবর্ধন m = $\frac{y}{}$ হবে।

বিবৰ্ধনের রাশিমালাঃ চিত্রে AB লক্ষ বস্তুর জন্য A'B' উল্টো (বাস্তৰ) প্রতিবিদ্ধ সিধা (অবাস্তৰ) প্রতিবিদ্ধ সৃষ্টি হয়েছে। সুতরাং বিবর্ধন $m = \frac{A'B'}{AB}$ এখন $\Delta A'B'O$ এবং ΔABO দ্বয়ের মধ্যে

$$\angle$$
A'B'O = \angle ABO = 90°

∠A'OB' = ∠AOB [∵প্রতিফলন কোণ = আপতন কোণ (বাস্তব প্রতিবিম্ব), প্রতিফলনের বিপ্রতীপ কোণ = আপতন কোণ (অবাস্তব প্রতিবিম্ব)] এবং অবশিষ্ট $\angle OA'B' = \angle OAB$

সুতরাং ত্রিভুজ দুটি সদৃশকোণী বা সদৃশ।

ফলৈ,
$$\frac{A'B'}{AB} = \frac{OB'}{OB}$$

$$\therefore m = \frac{OB'}{OB} = \frac{y}{x} \dots \dots \dots (1)$$

চিহ্নের বাস্তব প্রথা অনুসারে,

(বাস্তব দূরত্ব ধনাত্বক ও অবাস্তব দূরত্ব ঋনাত্মক।)

(1) নং সমীকরণ অনুসারে,
$$m = \frac{v}{u} = \frac{y}{x}$$

প্রতিবিম্ব অবাস্তব, সিধা বা সমশীর্ষ হলে বিবর্ধন ধনাতুক ধরা হয়।

চিহ্ন সংশোধন করে পাই,
$$m = -\frac{v}{u} = -\frac{y}{x}$$

কোন অবতল দর্পণের প্রধান অক্ষের উপর লক্ষ বস্তুর বিভিন্ন অবস্থানে যে সকল বিম্ব সৃষ্টি হয় তা নিখুত চিত্র সহ বর্ণনাঃ

(ক) লক্ষ বস্তু অসীম দূরত্বেঃ ধরা যাক, MAM' একটি অবতল দর্পণের প্রধান ছেদ। A উহার মেরু, F প্রধান ফোকাস, C বক্রতার কেন্দ্র এবং AFC প্রধান অক্ষ। PO লক্ষ্য বস্তুটি অসীম দূরত্বে অবস্থিত। অসীম দূরত্বে অবস্থিত লক্ষ্যবস্তুর শীর্ষ হতে আগত দুটি আলোকরশ্মি প্রতিফলনের পর ফোকাস তলের Y বিন্দুতে মিলিত হয়।

P' হতে প্রধান অক্ষের উপর P'Q' লম্ব আঁকা হল। P'Q' ই PQ লক্ষ্য বস্তুর বাস্তব প্রতিবিম্ব। প্রতিবিম্বের অবস্থান ঃ প্রধান ফোকাস তলে অর্থাৎ m v=f

প্রতিবিম্বের প্রকৃতি ঃ বাস্তব ও উল্টো

P'বিন্দুতে ছেদ করে। P'হতে প্রধান অক্ষের উপর অঙ্কিত P'O' লম্বই PO লক্ষ্যবস্তুর বাস্তব প্রতিবিম্ব।

প্রতিবিম্বের অবস্থান ঃ প্রধান ফোকাস ও বক্রতার কেন্দ্রের মাঝখানের কোন এক জায়গায়।

প্রতিবিম্বের প্রকৃতি ঃ বাস্তব ও উল্টো

প্রতিবিম্বের অকার ঃ খর্বিত।

(গ) লক্ষ বস্তু বক্রতার কেন্দ্রে (অর্থাৎ u=2f) ধরা যাক, MAM' একটি অবতল দর্পণের প্রধান ছেদ। A উহার মেরু, F প্রধান ফোকাস, C বক্রতার কেন্দ্র এবং AFC প্রধান অক্ষ। PQ লক্ষ্য বস্তুটি AFC প্রধান অক্ষের উপর বক্রতার কেন্দ্রে অবস্থিত। P হতে একটি রিশা প্রধান অক্ষের সমান্তরালেআপতিত হয়ে প্রধান ফোকাস দিয়ে প্রতিফলিত হয়। অপর একটি আলোক রিশা প্রধান ফোকাস দিয়ে আপতিত হয়ে প্রধান অক্ষের সমান্তরালেপ্রতিফলিত হয়। প্রতিফলিত রিশাদিয়ে P'বিন্দুতে ছেদ করে। P'হতে প্রধান

অক্ষের উপর অঙ্কিত P'Q' লম্বই PQ লক্ষ্যবস্তুর বাস্তব প্রতিবিম্ব। প্রতিবিম্বের অবস্থান ঃ বক্রতার কেন্দ্রে। প্রতিবিম্বের প্রকৃতি ঃ বাস্তব ও উল্টো প্রতিবিম্বের অকার ঃ বস্তুর সমান।

্ঘ) লক্ষ বস্তু প্রধান ফোকাস ও বক্রতার কেন্দ্রের মধ্যে (অর্থাৎ f<u<2f)ঃ

ধরা যাক, MAM' একটি অবতল দর্পণের প্রধান ছেদ। A উহার মেরু, F প্রধান ফোকাস, C বক্রতীর কেন্দ্র এবং AFC প্রধান অক্ষ। PQ লক্ষ্য বস্তুটি AFC প্রধান অক্ষের উপর ফোকাস ও বক্রতার কেন্দ্রের মধ্যে অবস্থিত। P হতে একটি রশ্মি প্রধান অক্ষের সমান্তরালেআপতিত হয়ে প্রধান ফোকাস দিয়ে প্রতিফলিত হয়। অপর একটি আলোক রশ্মি প্রধান ফোকাস দিয়ে আপতিত হয়ে

প্রধান অক্ষের সমান্তরালেপ্রতিফলিত হয়। প্রতিফলিত রশ্মিদ্বয় P'বিন্দুতে ছেদ করে।
P'হতে প্রধান অক্ষের উপর অঙ্কিত P'Q' লম্বই PQ লক্ষ্যবস্তুর বাস্তব প্রতিবিদ্ব।
প্রতিবিদ্বের অবস্থান ঃ বক্রতার কেন্দ্র ও অসীমের মধ্যে।
প্রতিবিদ্বের প্রকৃতি ঃ বাস্তব ও উল্টো

প্রতিবিম্বের প্রকৃতি ঃ বাস্তব ও উল্টো প্রতিবিম্বের অকার ঃ বিবর্ধিত।

(ঙ) লক্ষ বস্তু প্রধান ফোকাসে (অর্থাৎ $\mathbf{u} = \mathbf{f}$)ঃ

ধরা যাক, MAM' একটি অবতল দর্পণের প্রধান ছেদ। A উহার মেরু, F প্রধান ফোকাস, C বক্রতার কেন্দ্র এবং AFC প্রধান অক্ষ। PQ লক্ষ্য বস্তুটি AFC প্রধান অক্ষের উপর প্রধান ফোকাসে। P হতে একটি রশ্মি প্রধান অক্ষের সমান্তরালেআপতিত হয়ে প্রধান ফোকাস দিয়ে প্রতিফলিত হয়। অপর একটি আলোক রশ্মি বক্রতার কেন্দ্র দিয়ে আপতিত

হয়ে একই পথে প্রতিফলিত হয়। প্রতিফলনের পর প্রতিফলিত রশ্মিদ্বয় পরস্পর সমান্তরাল হয়। এ রশ্মিদ্বয় অসীমে PQ এর বাস্তব প্রতিবিদ্ব গঠন করে। প্রতিবিদ্বের অবস্থান ঃ অসীমে।

প্রতিবিম্বের প্রকৃতি ঃ বাস্তব ও উল্টো অথবা অবাস্তব ও সৌর্জা। প্রতিবিম্বের অকার ঃ অত্যন্ত বিবর্ধিত।

(চ) লক্ষবস্তু প্রধানফোকাস ও মেরুর মধ্যে (অর্থাৎ u < f)ঃ

ধরা যাক, MAM' একটি অবতল দর্পণের প্রধান ছেদ। A উহার মেরু, F প্রধান ফোকাস, C বক্রতার কেন্দ্র এবং AFC প্রধান অক্ষ। PQ লক্ষ্য বস্তুটি AFC প্রধান অক্ষের উপর প্রধান ফোকাস ও মেরুর মধ্যে। P হতে একটি রশ্মি প্রধান অক্ষের সমান্তরালেআপতিত হয়ে প্রধান ফোকাস দিয়ে প্রতিফলিত হয়। অপর একটি আলোক রশ্মি বক্রতার কেন্দ্র দিয়ে আপতিত হয়ে একই পথে প্রতিফলিত হয়। প্রতিফলনের পর প্রতিফলিত রশ্মিদ্বয় পরস্পর হতে দূরে সরে যায়।

এদেরকে পিছন দিকে বাড়ালে P' বিন্দু থেকে অপসৃত হচ্ছে বলে মনে হয়।
P' হতে প্রধান অক্ষের উপর অঙ্কিত P'Q' লম্বই PQ লক্ষ্যবস্তুর অবাস্তব প্রতিবিম্ব।
প্রতিবিম্বের অবস্থান ঃ দর্পনের পিছনে।
প্রতিবিম্বের প্রকৃতি ঃ অবাস্তব ও সোজা বা খাড়া।

প্রতিবিম্বের অকার ঃ বিবর্ধিত। <mark>উত্তল দর্পণে প্রতিবিম্ব গঠনঃ</mark>

মনে করি, MAM' একটি উত্তল দর্পণের প্রধান ছেদ, এর প্রধান ফোকাস F। বক্রতার কেন্দ্র C, প্রধান অক্ষ QAC এবং -এর উপর লক্ষ্যবস্তু PQ লম্ব ভাবে অবস্থিত।

P হতে প্রধান অক্ষের সমান্তরালে দর্পণের L বিন্দুতে আপতিত PL আলোক রশ্মিটি দর্পণ হতে FLR রেখায় LR বরাবর প্রতিফলিতহবে। আবার P হতে দর্পণের N বিন্দুতে আপতিত বক্রতার কেন্দ্র C অভিমুখী PN আলোক রশ্মিটি দর্পণ হতে একই রেখায় বিপরীত দিকে NP বরাবর প্রতিফলিত হবে। অতএব পশ্চাৎ দিকে বর্ধিত উপরোক্ত প্রতিফলিত রশ্মি দুটির ছেদবিন্দু P' ই P

বিন্দুর অবাস্তব প্রতিবিম্ব এবং

P' হতে QAC -এর উপর অঙ্কিত লম্ব P'Q' -ই বস্তু PQ এর অবাস্তব ও সিধা প্রতিবিম্ব হবে। চিত্রে বস্তুর প্রথম ও দ্বিতীয় অবস্থানে প্রতিবিম্ব যথাক্রমে ক ও খ -এ গঠিত হয়েছে। চিত্র হতে অনায়াসে বলা যায় যে, বস্তু যেখানেই থাকুক না কেন উত্তল দর্পণে তার প্রতিবিম্ব সর্বদা সিধা, অবাস্তব ও দর্পণের পিছনে গঠিত হবে এবং আকারে বস্তুর চেয়ে ছোট হবে। বস্তু যত দর্পণের কাছে অবস্থান করবে প্রতিবিম্ব দর্পণের তত কাছে গঠিত হবে ও প্রতিবিম্ব ও বড় হবে।

অবতল দর্পনের ফোকাস দূরত্ব নির্ণয়ঃ

লম্বন পদ্ধতিঃ একটি দন্ডের সাথে পরীক্ষণীয় অবতল দর্পণ MAM' -টিকে এমন ভাবে আটকিয়ে রাখা হয় যেন তার প্রধান অক্ষ অনুভূমিক হয়। এখন অন্য একটি খাড়া দভের সাহায্যে একটি পিন PO আটকিয়ে পিনটিকে দর্পণের সম্মুখে রাখা হয় যেন পিনটির শীর্ষ P ও দর্পণটির মেরু A একই উচ্চতায় থাকে অর্থাৎ পিনটির শীর্ষ দর্পণের প্রধান অক্ষকে স্পর্শ করে। অতঃপর পিনটিকে সম্মুখে বা পিছনে সরিয়ে এমন এক অবস্থানে রহয় যেন তার প্রতিবিদ্ধ P'Q'ঠিক PQ পিনের মাথায় অবস্থান করে এবং

প্রতিবিম্ব ও বস্তুর মধ্যে কোন লম্বন ক্রটি না থাকে। এমতাবস্থায় তাদের দিকে চোখ রেখে এপাশ ওপাশ তাকালে পিনের সাপেক্ষে তার অবস্থানের কোনরূপ পরিবর্তন লক্ষ্য করা না যায়। কাজেই এ ক্ষেত্রে বস্তুর দূরত্ব u=AP এবং প্রতিবিম্বের দূরত্ব v=A P' পরস্পর বক্রতার ব্যাসার্ধ r এর সমান হবে।

কাজেই AP জেনে উপরের সমীকরনের সাহায্যে f নির্ণয় করা যায়।

গোলীয় অবতল দর্পনের প্রধান ফোকাস ও বক্রত্বি কৈন্দ্রে বস্তু রাখলে যথাক্রমে অসীমে এবং বক্রকার কেন্দ্রে বাস্তব প্রতিবিম্ব গঠিত

হয় এর গাণিতিক প্রমানঃ

বস্তু অবতল দর্পণের প্রধান ফোকাসেঃ

এখানে, বস্তুর দূরত্ব u = f

ফোকাস দূরত্ব f=f

প্রতিবিম্ব দূরত্ব v = ?

আমরা জানি, $\frac{1}{v} + \frac{1}{f} = \frac{1}{f}$

বা, $\frac{1}{V} = 0$

 $\therefore v = \frac{1}{0} = \infty$ বস্তু প্রধান ফোকাসে

থাকলে প্রতিবিম্ব অসীমে গঠিত হবে।

বস্তু অবতল দর্পণের বক্রতার কেন্দ্রেঃ

এখানে, বস্তুর দূরত্ব u=r

বক্রতার ব্যাসার্ধ r = r প্রতিবিম্ব দূরত্ব v = ?

আমরা জানি, $\frac{1}{v} + \frac{1}{u} = \frac{2}{r}$

 $\frac{1}{v} + \frac{1}{r} = \frac{2}{r}$

∴ v = r বস্তু প্রধান বক্রতার কেন্দ্রে

থাকলে প্রতিবিম্ব বক্রতার কেন্দ্রে গঠিত হবে।

দ্বিতীয় পত্রের অংকের সমাধান

2nd Paper Math Solution

৮। আলোর প্রতিফলন (Reflection of Light)

দৰ্পণ	u/x	v/y	f/r	m
উত্তল	+	_	ı	+
অবতল (বাস্তব)	+	+	+	_
অবতল (অবাস্তব)	+	_	+	+

১। 12 cm ফোকাস দূরত্ব বিশিষ্ট একটি অবতল দর্পন থেকে কত দূরে একটি বস্তু স্থাপন করলে বিম্বের আকার বস্তুর আকারের তিন গুন হবে? এখানে.

আমরা জানি,

ফোকাস দূরত্ব,
$$f = 12 \text{ cm}$$

বিবর্ধন, $m = \mp 3$

$$m = -\frac{v}{u}$$

$$\Rightarrow \mp 3 = -\frac{v}{u}$$

$$\Rightarrow$$
 $-3 = -rac{v}{u}$ [বাস্তব প্রতিবিম্ব m = - 3 হবে]

$$\therefore v = 3u \dots (1)$$

আবার.

$$\frac{1}{y} + \frac{1}{y} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{3u} + \frac{1}{u} = \frac{1}{12}$$

$$\Rightarrow \frac{1+3}{3u} = \frac{1}{12}$$

$$\Rightarrow 3u = 48$$

$$\therefore$$
 u = 16 cm (Ans.)

আবার.

$$3 = -\frac{V}{U}$$
 [অবাস্তব প্রতিবিম্ব $m = 3$ হবে]

$$\Rightarrow$$
 v = $-3u$ (2)

আবার.

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{-3u} + \frac{1}{u} = \frac{1}{12}$$

$$\Rightarrow \frac{-1+3}{3\pi} = \frac{1}{12}$$

$$\Rightarrow 3u = 24$$

$$\therefore$$
 u = 8 cm (Ans.)

২। প্রমান কর যে, r বক্রতার ব্যাসার্ধ্যের একটি অবতল দর্পন হতে x দূরত্বে কোন বস্তু স্থাপন করলে এর বাস্তব

বিষের দূরত্ব $V = \frac{rx}{2x-r}$ হবে ।

আমরা জানি.

$$\frac{1}{v_1} + \frac{1}{u_1} = \frac{2}{r_1}$$

$$\Rightarrow \frac{1}{v} + \frac{1}{x} = \frac{2}{r}$$

$$\Rightarrow \frac{1}{v} = \frac{2}{r} - \frac{1}{x}$$

$$\Rightarrow \frac{1}{v} = \frac{2x - r}{rx}$$

$$\therefore v = \frac{rx}{2x - r}$$
 (প্রমাণিত ()

এখানে. বক্রতার ব্যাসার্ধ, $r_1 = r$ বস্তুর দূরত্ব, $u_1 = x$ প্রতিবিম্বের দূরত্ব, $v_1=v$ প্রমান করতে হবে যে, $V = \frac{rx}{2x - r}$

ফোকাস দূরত্ব, f = 20 cm

বিবর্ধন, $m = -\frac{1}{4}$ বস্তুর দূরত্ব, u = ?

৩। একটি অবতল দর্পনের ফোকাস দূরত্ব 20 cm। দর্পনটি হতে কত দূরে বস্তু রাখলে বাস্তব প্রতিরিম্বের আকার বস্তুর আকারের এক-চতুর্থাংশ হবে? আমরা জানি,

$$-\frac{1}{4} = -\frac{v}{u}$$

$$\therefore v = \frac{u}{4} \quad \dots \quad (1)$$

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\Rightarrow \frac{1 \times 4}{u} + \frac{1}{u} = \frac{1}{20}$$

$$\Rightarrow \frac{4+1}{u} = \frac{1}{20}$$

$$\therefore u = 100 \text{ cm} \quad \text{(Ans.)}$$

8। 25cm ফোকাস দ্রত্বের একটি উত্তল দর্পন হতে কত দূরে একটি 2 cm লম্বা লক্ষ্য বস্তু প্রধান অক্ষের উপর লম্ব ভাবে স্থাপন করলে
$$0.4 \text{ cm}$$
 লম্বা একটি প্রতিবিম্ব গঠিত হবে?

আমরা জানি.

$$-\frac{y}{x} = -\frac{v}{u}$$

$$\Rightarrow \frac{-0.4}{2} = \frac{v}{u}$$

$$\Rightarrow v = -\frac{0.4u}{2} = -0.2u$$

এখানে. ফোকাস দূরত্ব f = -25 cm বস্তুর আকার, x = 2cmপ্রতিবিম্বের আকার, y = -0.4cm বস্তুর দূরত্ব, u = ?

আবার,
$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{-0.2u} + \frac{1}{u} = \frac{1}{-25}$$

$$\Rightarrow \frac{10}{-2u} + \frac{1}{u} = \frac{1}{-25}$$

$$\Rightarrow \frac{-10+2}{2u} = \frac{1}{-25}$$

$$\Rightarrow 2u = 200$$

$$\therefore$$
 u = 100 cm (Ans.)

৫। 15cm ফোকাস দূরত্বের একটি অবতল দর্পন হতে কত দূরে একটি বস্তু স্থাপন করলে তিনগুন বিবর্ধিত অবাস্তব প্রতিবিম্ব গঠিত হবে?

আমরা জানি,

$$m=-rac{v}{u}$$
 এখানে, ফোকাস দূরত্ব, $f=15~cm$ বিবর্ধন, $m=3$ (অবাস্তব প্রতিবিম্ব) বস্তুর দূরত্ব, $u=?$

 $\therefore v = -3u$ (1)

আবার,
$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{-3u} + \frac{1}{u} = \frac{1}{15}$$

$$\Rightarrow \frac{-1+3}{3u} = \frac{1}{15}$$

$$\Rightarrow 3u = 30$$
∴ $u = 10 \text{ cm}$ (Ans.)

৬। একটি অবতল দর্পনের বক্রতার ব্যাসার্ধ $30 {
m cm}$ । একটি বস্তুকে বক্রতার কেন্দ্রে রাখলে কোথায় এর প্রতিবিম্ব গঠিত হবে? আমরা জানি.

$$\frac{1}{v} + \frac{1}{u} = \frac{2}{r}$$

$$\Rightarrow \frac{1}{v} + \frac{1}{30} = \frac{2}{30}$$

$$\Rightarrow \frac{1}{v} = \frac{1}{15} - \frac{1}{30}$$

$$\Rightarrow \frac{1}{v} = \frac{2-1}{30}$$

$$\therefore v = 30 \text{ cm}$$

∴ প্রতিবিম্ব বক্রতার কেন্দ্রে গঠিত হবে। (Ans.)

৭। একটি অবতল দর্পনের ফোকাস দূরত্ব 15cm। দর্পনের সামনে অসীম দূরত্বে একটি বস্তু রাখা হলো। প্রতিবিম্বের অবস্থান নির্ণয় কর।

আমরা জানি.

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$
 $\Rightarrow \frac{1}{v} + \frac{1}{\infty} = \frac{1}{15}$
 $\Rightarrow \frac{1}{v} + 0 = \frac{1}{15}$
 $\Rightarrow \frac{1}{v} = \frac{1}{15}$
 $\Rightarrow v = 15 \text{ cm}$
 $\Rightarrow v = 15 \text{ cm}$

∴ প্রতিবিম্ব ফোকাসে গঠিত হবে। (Ans.)

৮। একটি অবতল দর্পনের বক্রতার ব্যাসার্ধ 30cm। দর্পন হতে 40cm দূরে একটি বস্তু রাখা হলো। প্রতিবিম্বের অবস্থান, প্রকৃতি ও বিবর্ধন নির্ণয় কর?

আমরা জানি.

$$\frac{1}{v} + \frac{1}{u} = \frac{2}{r}$$

$$\Rightarrow \frac{1}{v} + \frac{1}{40} = \frac{2}{30}$$

$$\Rightarrow \frac{1}{v} = \frac{1}{15} + \frac{1}{40}$$

$$\Rightarrow \frac{1}{v} = \frac{1}{15 \times 40}$$

$$\Rightarrow 25v = 15 \times 40$$

$$\Rightarrow v = \frac{15 \times 40}{25}$$

 \therefore v = 24 cm (Ans.)

v ধনাত্মক হেতু প্রতিবিম্ব বাস্তব ও উল্টা হবে এবং দর্পণের

24 cm সামনে গঠিত হবে।

∴ বিবর্ধন
$$m = -\frac{v}{u}$$

$$= -\frac{24}{40}$$

$$= -\frac{3}{5}$$
 (Ans.)

৯। একটি অবতল দর্পনের ফোকাস দূরত্ব 12cm। দর্পন হতে 4cm দূরে একটি বস্তু রাখা হলো। প্রতিবিম্বের অবস্থান ও প্রকৃতি নির্ণয় কর। বস্তুটি $2 {
m cm}$ লম্বা হলে প্রতিবিম্বের আকার বের কর।

আমরা জানি,

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$
 $\Rightarrow \frac{1}{v} + \frac{1}{4} = \frac{1}{12}$
 $\Rightarrow \frac{1}{v} = \frac{1}{12} - \frac{1}{4}$
 $\Rightarrow \frac{1}{v} = \frac{1-3}{12}$
 $\Rightarrow -2v = 12$
 $\therefore v = -6 \text{ cm}$

এখানে,
ফোকাস দূরত্ব, $f = 12 \text{ cm}$
বস্তুর দূরত্ব, $u = 4 \text{ cm}$
প্রতিবিম্বের দূরত্ব, $v = ?$
বস্তুর আকার, $v = ?$

v ঋনাত্মক হেতু প্রতিবিম্ব অবাস্তব ও সিধা হবে এবং দর্পণের 6 cm পিছনে গঠিত হবে।

আবার

$$m = -\frac{v}{u} = -\frac{y}{x}$$

$$\Rightarrow -\frac{-6}{4} = -\frac{y}{2}$$

$$\Rightarrow \frac{6}{4} = \frac{-y}{2}$$

$$\Rightarrow$$
 -4y = 12

$$\Rightarrow$$
 y = -3 cm

∴ অবাস্তব প্রতিবিম্বের আকার 3cm হবে। (Ans.)

১০। একটি উত্তল দর্পনের ফোকাস দূরত্ব $10 \mathrm{cm}$ । মেরু হতে $15 \mathrm{cm}$ দূরে একটি বস্তু রাখা হলো। প্রতিবিম্বের অবস্থান, প্রকৃতি ও বিবর্ধন নির্ণয় কর।

আমরা জানি, $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ $\Rightarrow \frac{1}{v} + \frac{1}{15} = \frac{1}{-10}$ $\Rightarrow \frac{1}{v} = \frac{1}{-10} - \frac{1}{15}$ $\Rightarrow \frac{1}{v} = \frac{-3 - 2}{30}$ $\Rightarrow -5v = 30$

এখানে,
ফোকাস দূরত্ব, f=-10 cm
বস্তুর দূরত্ব, u=15 cm
প্রতিবিম্বের দূরত্ব, v=?প্রকৃতি = ?
বিবর্ধন, m=?

 $\Rightarrow v = -\frac{30}{5}$

 $\therefore v = -6 \text{ cm}$

শ্বনাত্মক হেতু প্রতিবিদ্ব অবাস্তব ও সিধা হবে এবং
দর্পণের 6cm পিছনে গঠিত হবে।

বিবৰ্ধন $m = -\frac{V}{u}$ $= -\frac{-6}{15} = \frac{2}{5} \quad (Ans.)$

১১। একটি অবতল দর্পন হতে 12 ও 20 cm সামনের দুটি বিন্দুকে অনুবন্ধী ফোকাস গন্য করা যায়। দর্পনের ফোকাস দূরত্ব কত? আমরা জানি.

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{12} + \frac{1}{20} = \frac{1}{f}$$

$$\Rightarrow \frac{20 + 12}{12 \times 20} = \frac{1}{f}$$

$$\Rightarrow 32f = 12 \times 20$$

$$\Rightarrow f = \frac{12 \times 20}{32}$$

$$\therefore f = 7.5 \text{ cm} \quad \text{(Ans.)}$$

১২। একটি অবতল দর্পনের বক্রতার ব্যাসার্ধ $40 {
m cm}$ । দর্পন হতে কত দূরে বস্তু স্থাপন করলে দু'গুন বিবর্ধিত প্রতিবিম্ব পাওয়া যাবে?

এখানে, আমরা জানি. বক্রতার ব্যাসার্ধ, r = 40 cm $m = -\frac{v}{v}$ বস্তুর দূরত্ব, u=?বিবর্ধন, m = -2 ও m = +2 \Rightarrow $-2 = -\frac{v}{u}$ [বাস্তব প্রতিবিম্ব] $\therefore \mathbf{v} = 2\mathbf{u} \quad \dots \quad \dots \quad (\mathbf{i})$ আবার, $\frac{1}{y} + \frac{1}{y} = \frac{2}{r}$ $\Rightarrow \frac{1}{2\pi} + \frac{1}{\pi} = \frac{2}{40}$ $\Rightarrow \frac{1+2}{2\pi} = \frac{1}{20}$ $\Rightarrow 2u = 60$ \Rightarrow u = $\frac{60}{2}$ \therefore u = 30 cm আবার. m = +2

আবার, $\frac{1}{v} + \frac{1}{u} = \frac{2}{r}$ $\Rightarrow \frac{1}{-2u} + \frac{1}{u} = \frac{2}{40}$

$$\Rightarrow \frac{-1+2}{2u} = \frac{1}{20}$$

 $\Rightarrow 2u = 20$

 \therefore u = 10

∴ বস্তুর দূরত্ব 30 cm বা, 10 cm । (Ans.)

১৩। f ফোকাস দূরত্ব বিশিষ্ট একটি অবতল দর্পণের প্রধান ফোকাস হতে একটি বস্তু x এবং তার প্রতিবিদ্ব y দূরে অবস্থিত। প্রমাণ কর যে, $xy=f^2$

আমরা জানি, $\Rightarrow \frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ $\Rightarrow \frac{1}{f+y} + \frac{1}{f+x} = \frac{1}{f}$ $\Rightarrow \frac{1}{f+y} + \frac{1}{f+x} = \frac{1}{f}$ $\Rightarrow \frac{f+x+f+y}{(f+y)(f+x)} = \frac{1}{f}$ $\Rightarrow f^2 + fy + fx + xy = f^2 + fx + f^2 + fy$ $\Rightarrow xy = f^2 + fx + f^2 + fy - f^2 - fy - fx$ $\therefore xy = f^2 (প্রমাণিত)$

🔰 । একটি উত্তল দর্পণ দ্বারা সৃষ্ট প্রতিবিম্ব বস্তুর আকারের $\, rac{1}{2} \,$ অংশ।

দর্পনের ফোকাস দূরত f হলে দেখাও যে, বস্তুটি দর্পন হতে (x-1) f দূরে অবস্থিত।

আমরা জানি.

$$m=-rac{v}{u}$$

$$\Rightarrow rac{1}{x}=-rac{v}{u}$$

$$\therefore v=-rac{u}{x}$$
আবার,
$$rac{1}{v}+rac{1}{u}=rac{1}{f}$$

$$\Rightarrow -rac{x}{u}+rac{1}{u}=rac{1}{f}$$

$$\Rightarrow rac{x-1}{u}=rac{1}{f}$$

১৫। f ফোকাসের একটি অবতল দর্পনের সামনে 3f দূরে বস্তু রাখলে দেখাও যে, প্রতিবিম্বের আকার বস্তুর আকারের অর্ধেক হবে।

ফোকাস দূরত, *f=f*

আমরা জানি.

ভাষির জামি,
$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{v} + \frac{1}{3f} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{v} = \frac{1}{f} - \frac{1}{3f}$$

$$\Rightarrow \frac{1}{v} = \frac{3-1}{3f}$$

$$\Rightarrow v = \frac{3f}{2} \dots (1)$$
আবার,

 $\therefore u = (x-1) f$ দেখান হল।

$$m = -\frac{v}{u}$$

$$\Rightarrow m = -\frac{3 f}{2} \times \frac{1}{3 f}$$

 $\therefore m = -\frac{1}{2}$ অর্থাৎ প্রতিবিম্বের আকার বস্তুর আকারের অর্ধেক।

১৬। দর্পনের সাধারণ সমীকরণ থেকে দেখাও যে, বস্তু ও প্রতিবিম্বের অবস্থান বিনিময় যোগ্য।

যদি, বস্তুর দূরত্ব x হলে প্রতিবিম্ব দূরত্ব যত হবে প্রতিবিম্ব x হলেও যদি বস্তু দূরত্ব তত হয় তবে ঘটনাটি প্রমাণিত হবে।

আমরা জানি.

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{x} + \frac{1}{u} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{u} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{u} = \frac{x - f}{fx}$$

$$\Rightarrow u = \frac{fx}{x - f} \dots (2)$$

(১) ও (২) নং সমীকরণ হতে বলা যায়, বস্তু ও প্রতিবিম্বের অবস্থান বিনিময়

Want more Updates: https://www.facebook.com/tanbir.ebooks

আলোর প্রতিসরণ (Refraction of Light)

প্রতিসরণঃ

দুটি মাধ্যমের বিভেদতলে আলো যদি তির্যকভাবে আপতিত হয়, তাহলে দ্বিতীয় মাধ্যমে প্রবেশের সময় রশ্মির দিক পরিবর্তন হওয়ার ঘটনাকে আলোর পতিসরণ বলে।

ব্যাখ্যাঃ চিত্রে দুটি মাধ্যমের বিভেদতলে আলোর প্রতিসরণ প্রদর্শিত হলো। PQ বিভেদতলে একটি রশ্মি AO তির্যক ভাবে আপতিত হয়। রশ্মিটির অভিমুখ OC বরাবর। কিন্তু দ্বিতীয় মাধ্যমে প্রবেশ করার সময় রশ্মিটির গতিপথ পরিবর্তিত হয়। অর্থাৎ দ্বিতীয় মাধ্যমে OB পথে চলে। অন্য কথায় রশ্মিটি OB পথে প্রতিসৃত হয়।

আপতিত রশ্মি (Incident ray) ঃ যে রশ্মি বিভেদতলে পতিত হয়, তাকে আপতিত রশ্মি বলে। চিত্রে AO আপতিত রশ্মি।

<u>আপতন বিন্দু (Point of incidence)</u>ঃ আপতিত রশ্মি বিভেদতলের যে বিন্দুতে পতিত হয়, তাকে আপতন বিন্দু বলে। চিত্রে *O* আপতন বিন্দু।

প্র<u>তিসরিত রশ্মি (Reflected ray)</u>ঃ বিভেদতলে দিক পরিবর্তনের পর দ্বিতীয় মাধ্যম দিয়ে গ্রমনকারী রশ্মিকে প্রতিসরিত রশ্মি বলে। চিত্রে *OB* প্রতিসরিত প্রতিসূত রশ্মি।

<u>অভিলম্ব (Normal) ঃ</u> আপতন বিন্দুতে বিভেদ তলের উপর অঙ্কিত লম্বকে অভিলম্ব বলে। চিত্রে *NON'* অভিলম্ব।

<u>আপতন কোণ (Angle of Incidence)</u>ঃ আপতিত রশ্মি অভিলম্বের সাথে যে কোণ করে তাকে আপতন কোণ বলে। চিত্রে আপতন কোণ, $i=\angle AON$

প্রতিসরণ কোণ (Angle of refraction) ? প্রতিসরিত রশ্মি অভিলম্বের সাথে যে কোণ করে তাকে প্রতিসরণ কোণ বলে। চিত্রে প্রতিসরণ কোন, $r = \angle BON'$

প্রতিসরণের সূত্র (Laws of Refraction)ঃ

- (১) আপতিত রশ্মি, প্রতিসূত রশ্মি এবং আপতন বিন্দুতে বিভেদ তলের উপর অঙ্কিত অভিলম্ব একই সমতলে থাকে।
- (২) এক জোড়া নির্দিষ্ট মাধ্যম ও একটি নির্দিষ্ট বর্ণের আলোর তির্যক আপতনের ক্ষেত্রে, আপতন কোণের সাইন ও প্রতিসরণ কোণের সাইনের অনুপাত একটি ধ্রুব সংখ্যা।

<u>১ম সূত্রের ব্যাখ্যাঃ</u> চিত্রে AO আপতিত রশ্মি, OB প্রতিসৃত রশ্মি এবং NON'আপতন বিন্দুতে অঙ্কিত অভিলম্ব। সূত্র অনুযায়ী, AO, OB এবং NON' একই সমতলে আছে।

<u>২য় সূত্রের ব্যাখ্যাঃ</u> চিত্রে এক জোড়া নির্দিষ্ট মাধ্যমের জন্য প্রতিসরণ দেখান হয়েছে। ধরা যাক, একটি নির্দিষ্ট বর্ণের আলোক রশ্মি আপতিত হচ্ছে। ২য় সূত্র অনুযায়ী,

 $rac{\sin i}{\sin r}=$ ধ্র ব্বক , এই ধ্রুবককে প্রতিসরাঙ্ক বা প্রতিসরনাঙ্ক বলে। একে μ দ্বারা প্রকাশ করা হয়।

প্রতিসরাঙ্ক বা প্রতিসরনাঙ্কঃ এক জোড়া নির্দিষ্ট মাধ্যম ও একটি নির্দিষ্ট বর্ণের আলোর তির্যক আপতনের ক্ষেত্রে, আপতন কোণের সাইন ও প্রতিসরণ কোণের সাইনের অনুপাত একটি প্রুব সংখ্যা। এই প্রুবককে প্রতিসরাঙ্ক বা প্রতিসরনাঙ্ক বলে। একে μ দ্বারা প্রকাশ করা হয়। আপতন কোণ i এবং প্রতিসরণ কোণ r হলে প্রতিসরাঙ্ক $\mu=\frac{\sin i}{\sin r}$ হবে। প্রতিসরাঙ্ক দুই প্রকার যথা s-

🕽 । আপেক্ষিক প্রতিসরাঙ্ক ২ । পরম প্রতিসরাঙ্ক

আপেক্ষিক প্রতিসরাঙ্কঃ এক মাধ্যম সাপেক্ষে অন্য মাধ্যমের প্রতিসরাঙ্ক কে আপেক্ষিক প্রতিসরাঙ্ক বলে। পরম প্রতিসরাঙ্কঃ শূন্য মাধ্যম সাপেক্ষে কোন মাধ্যমের প্রতিসরাঙ্ককে পরম প্রতিসরাঙ্ক বলে।

দুটি মাধ্যমের প্রতিসরাঙ্কের মধ্যে সম্পর্ক $_a \mu_b = \frac{1}{_b \mu_a}$ এর প্রমাণঃ

ধরা যাক, a ও b দুটি স্বচ্ছ মাধ্যম। a লঘু এবং b ঘনত্বর মাধ্যম। PQ এদের বিভেদ তল। AO আপতিত রশা্রি, OB প্রতিসৃত রশা্রি। O বিন্দুতে NON' অভিলম্ব হলে,স্লেলের সূত্রানুযায়ী।

$$_a \mu_b = \frac{\sin i}{\sin r}$$
 (1) এখানে, i আপতন কোণ ও r প্রতিসরণ কোণ।

আমরা জানি, আলোক রশ্মি প্রত্যাবর্তনশীল। অর্থাৎ আলোক রশ্মি BO পথে O বিন্দুতে আপতিত হবার পর OA পথে প্রতিসৃত হবে। তখন আপতন কোণ r ও প্রতিসরণ কোণ i।

$$\therefore {}_{b}\mu_{a} = \frac{\sin r}{\sin i} \dots \dots \dots (2)$$

সমীকরণ (1) কে (2) দ্বারা গুন করে পাই,

$$_{a}\mu_{b} \times_{b} \mu_{a} = \frac{\sin i}{\sin r} \times \frac{\sin r}{\sin i}$$

বা,
$$_a\mu_b \times_b \mu_a = 1$$

 $\therefore_a \mu_b = \frac{1}{_b \mu_a}$ অর্থাৎ a মাধ্যমের প্রতিসরাঙ্ক হবে b মাধ্যমের প্রতিসরাঙ্কের বিপরীত সংখ্যার সমান।

$$_{b}\,\mu_{c}=rac{_{a}\,\mu_{c}}{_{a}\,\mu_{b}}$$
 এর প্রমাণঃ

a,b,c তিনটি মাধ্যম বিবেচনা করা যাক। মাধ্যমগুলো a,b,c,a এই রূপে সাজানো আছে। প্রথম ও শেষ মাধ্যম অভিন্ন। মাধ্যমগুলোর মধ্যে অবস্থিত বিভেদ তলগুলো সমতল এবং পরস্পর সমান্তরাল।

ধরা যাক, a মাধ্যম হতে আগত একটি আলোক রিশ্মি মাধ্যমগুলোর মধ্য দিয়ে গমন করে শেষ পর্যন্ত a মাধ্যমে নির্গত হয়। রিশ্মিটির গতিপথ হচ্ছে ABCDE। আপতিত রিশ্মি AB এবং নির্গত রিশ্মি DE। $AB \parallel DE$ । B, C ও D বিন্দুতে প্রতিসরণের জন্য আমরা পাই,

(1), (2) ও (3) নং সমীকরণকে গুণ করে পাই,

$$_{a}\mu_{b} \times_{b} \mu_{c} \times_{c} \mu_{a} = \frac{\sin i}{\sin r} \times \frac{\sin r}{\sin r_{1}} \times \frac{\sin r_{1}}{\sin i}$$

বা,
$$_a\mu_b \times_b \mu_c \times_c \mu_a = 1$$

বা,
$$_{b}\mu_{c}=\frac{1}{_{a}\mu_{b}\times_{c}\mu_{a}}$$

$$\therefore {}_{b}\mu_{c} = \frac{{}_{a}\mu_{c}}{{}_{a}\mu_{b}} \qquad \left[\because_{c} \mu_{a} = \frac{1}{{}_{a}\mu_{c}} \right]$$

কোন বস্তু থেকে আগত আলোক রশ্মি সরাসরি চোখে প্রবেশ করলে আমরা বস্তুটিকে দেখতে পাই। রশ্মি সরাসরি না এসে যদি প্রতিসরণের পর চোখে প্রবেশ করে তবে বস্তুর একটি প্রতিবিদ্ধ দেখতে পাওয়া যায়। ঘন মাধ্যমে অবস্থিত বস্তুকে যদি লঘুতর

মাধ্যম হতে দেখা হয়, তাহলে বস্তুটিকে অপেক্ষাকৃত কাছে মনে হয়। লঘু মাধ্যমে অবস্থিত বস্তুকে ঘনতর মাধ্যম হতে দেখলে বস্তুটিকে অপেক্ষাকৃত দূরে মনে হয়।

ধরা যাক, a ও b দুটি স্বচ্ছ মাধ্যম। a লঘু ও b ঘন মাধ্যম। PQ এদের মধ্যকার বিভেদতল। একটি বিন্দু বস্তু F ঘন মাধ্যমে আছে। বস্তুটিকে লঘু মাধ্যম হতে দেখা হচ্ছে। F হতে আগত একটি আলোক রশ্মি FO বিভেদতলে লম্ব ভাবে আপতিত হল। এটি সোজা OA পথে প্রতিসৃত হয়। F হতে অন্য একটি আলোক রিশা FM। এটি তির্যকভাবে আপতিত এবং প্রতিসরণের পর MC পথে যায়। OA এবং MC-কে পিছনদিকে বাড়ালে এরা H বিন্দুতে মিলিত হয়। উপর থেকে সোজাসুজি বস্তুর দিকে তাকালে প্রতিসৃত রশা্রিদ্য চোখে পড়বে এবং মনে হবে এরা H বিন্দু থেকে আসছে। এ অবস্থায়, F-এর একটি অবাস্তব প্রতিবিদ্ধ Hবিন্দুতে গঠিত হবে। M বিন্দুতে BMG লম্ব টানা হল।

ধরা যাক, বস্তুর দূরত্ব,
$$OF=u=$$
 প্রকৃত গভীরতা প্রতিবিম্ব দূরত্ব, $OH=v=$ আপাত গভীরতা আপতন কোণ, $i=\angle FMG$ প্রতিসরণ কোণ, $r=\angle BMC$ $\therefore {}_a\mu_b=\frac{1}{{}_b\mu_a}=\frac{1}{\frac{\sin i}{\sin r}}=\frac{\sin r}{\sin i}$ বা, ${}_a\mu_b=\frac{\sin r}{\sin i}=\frac{\sin \angle BMC}{\sin \angle FMG}$

এখন, $AH\parallel BM$ এবং HMC এদের ছেদক; $\therefore \angle BMC = \angle OHM$ \dots \dots \dots আনুরূপ কোণ। আবার, $OF \parallel MG$ এবং FM এদের ছেদক; $\therefore \angle FMG = \angle OFM$

$$a \mu_b = \frac{\sin \angle BMC}{\sin \angle FMG} = \frac{\sin \angle OHM}{\sin \angle OFM}$$

$$\text{II}, \quad a \mu_b = \frac{OM / MH}{OM / MF} = \frac{MF}{MH}$$

O এবং M বিন্দু খুবই নিকটে; ফলে, MF = OF; MH = OH

$$\therefore_a \mu_b = \frac{OF}{OH} = \frac{u}{v}$$

এখন u ও v এর মান বসিয়ে পাই, $_a\mu_b=$ প্রকৃত গভীরতা আপাত গভীরতা

সংকট কোণ ও এর শর্তঃ

আলোকরশ্মি ঘন মাধ্যম থেকে হালকা মাধ্যমে প্রতিসূত হওয়ার সময় আপতন কোণ বাড়াতে থাকলে প্রতিসরণ কোণও বাড়তে থাকে নির্দিষ্ট একটি আপতন কোণের জন্য প্রতিসরণ কোণের মান 90° হয়। যে আপতন কোণের জন্য প্রতিসরণ কোণের মান 90° হয় সেই আপতন কোণকে সংকট কোণ বলে। চিত্রে $\angle MON'$ আপতন কোণের জন্য প্রতিসরণ কোণ $\angle NOM' = 90^\circ$ ফলে, $\angle MON' =$ সংকট কোণ।

সংকট কোণের শর্ত ঃ আলোক রশ্মি ঘন মাধ্যম থেকে হালকা মাধ্যমে আপতিত হবে। পূর্ণ অভ্যন্তরীণ প্রতিফলন ও এর শর্তঃ

আলোকরশ্মি ঘন মাধ্যম থেকে হালকা মাধ্যমে প্রতিসূত হওয়ার সময় আপতন কোণ বাড়াতে থাকলে প্রতিসরণ কোণও বাড়তে থাকে। নির্দিষ্ট একটি আপতন কোণের জন্য প্রতিসরণ কোণের মান 90° হয়। যে আপতন কোণের জন্য প্রতিসরণ কোণের মান 90° হয় সেই আপতন কোণকে সংকট কোণ বলে। আপতন কোণ যদি সংকট কোণ অপেক্ষাও বড় হয় তবে প্রতিসরণের পরিবর্তে প্রতিফলনের নিয়মানুযায়ী প্রথম মাধ্যমের অভ্যন্তরে সম্পুর্ণরূপে প্রতিফলিত হয়। এ ধরনের প্রতিফলনকে পূর্ণ অভ্যন্তরীণ প্রতিফলন বলে। চিত্রে LO আপতিত আলোক রশ্মির জন্য OL' পূর্ণ অভ্যন্তরীণ প্রতিফলিত রশ্মি।

পূর্ব অভ্যন্তরীণ প্রতিফলনের শর্তঃ (১) আলোক রশ্মি ঘন মাধ্যম থেকে হালকা মাধ্যমে আপতিত হবে।

(২) আপতন কোণের মান সংকট কোণের চেয়ে বড় হবে।

সংকট কোণ ও প্রতিসরাঙ্কের মধ্যে সম্পর্কঃ

ধরি, আলোক রশ্মি b ঘন মাধ্যম থেকে a হালকা মাধ্যমে প্রতিসরিত হচ্ছে। যেখানে, আপতন কোণ $i=\theta_c$ এবং প্রতিসরণ কোণ $r=90^o$

$$\therefore$$
 b মাধ্যম সাপেকে a মাধ্যমের প্রতিসরাক্ষ $_b\mu_a=rac{\sin i}{\sin r}$ বা, $_b\mu_a=rac{\sin heta_c}{\sin 90^\circ}$ \therefore $_b\mu_a=rac{\sin heta_c}{1}=\sin heta_c$ আবার, $_a\mu_b=rac{1}{\sin heta_c}$ \therefore $_a\mu_b=rac{1}{\sin heta_c}$

হালকা মাধ্যম সাপেক্ষে ঘন মাধ্যমের প্রতিসরাঙ্ক = $\frac{1}{\sin heta_c}$ । ইহাই প্রতিসরাঙ্ক ও সংকট কোণের মধ্যে সম্পর্ক।

প্রিজমঃ তিনটি আয়তক্ষেত্রকার এবং দুটি ত্রিভুজক্ষেত্রকার সমতল পৃষ্ঠ দ্বারা সীমারদ্ধ কোন স্বচ্ছ প্রতিসারক মাধ্যমকে প্রিজম বলে। প্রিজমের পাঁচটি তল থাকে। প্রিজমের যে তল দিয়ে আলোকরশ্মি প্রবেশ করে এবং যে তল দিয়ে আলোক রশ্মি বের হয়ে যায় তাদেরকে প্রিজমের প্রতিসারক তল বলে। প্রতিসারক তলদ্বয়ের মধ্যবর্তী কোণকে প্রতিসারক কোণ বলে।

প্রিজমের ক্ষেত্রে
$$\underline{\delta=i_1+i_2-A}$$
বা, $\underline{\mu=\frac{\sin\frac{A+\delta_m}{2}}{Sin\frac{A}{2}}}$ সম্পর্কটির প্রমাণঃ

মনে করি, ABC একটি প্রিজমের প্রধান ছেদ। \overline{AB} এবং AC প্রতিসরণ তল, $\angle A$ প্রিজম কোণ এবং BC প্রিজমের ভূমি। আরও মনে করি PQ কোন আপতিত রশ্মি বায়ু হতে প্রিজমের AB তলের Q বিন্দুতে তির্যকভাবে আপতিত হল। এক্ষেত্রে

আলোক রিশ্ম লঘুতর মাধ্যম হতে ঘনতর মাধ্যমে প্রবেশ করার ফলে প্রতিসৃত রিশ্ম Q বিন্দুতে AB তলের উপর অঙ্কিত অভিলম্ব NQO' -এর অভিমুখে সরে গিয়ে QR পথে প্রতিসৃত হবে। এর পর ঐ রিশ্ম AC তলের R বিন্দুতে আপতিত হবে এবং আবার বায়ু মাধ্যমে RS পথে নির্গত হবে। তা হলে আবার রিশ্মিটির প্রতিসরণ ঘটবে এবং কাচ হতে বায়ুতে যাবার ফলে প্রতিসৃত রিশ্মি AC তলের R বিন্দুতে অঙ্কিত অভিলম্ব N'R হতে দূরে সরে যাবে। এখানে, PQRS আলোক রিশ্মির পথ নির্দেশ করে। এখন আপতিত আলোক রিশ্মি PQ -কে সামনের দিকে L পর্যন্ত এবং নির্গত রিশ্মি RS কে

পিছন দিকে বর্ধিত করলে এরা O বিন্দুতে মিলিত হবে। এখানে ঐ রিশার জন্য ∠SOL বিচ্যুতি কোণ নির্দেশ করে। একে δ দারা প্রকাশ করা হয়। ∴ ∠ $SOL = \delta$

বিচ্যুতি কোণঃ আপতিত রশ্মিকে সামনের দিকে এবং নির্গত রশ্মিকে পিছন দিকে বর্ধিত করলে যে কোণ উৎপন্ন হয় তাকে বিচ্যুতি কোণ বলে। এক কথায়, আপতিত রশ্মি ও নির্গত রশ্মির মধ্যবর্তী কোণকে বিচ্যুতি কোণ বলে। একে δ দ্বারা প্রকাশ করা হয়। চিত্রে ∠LOS বিচ্যুতি কোণ।

বিচ্যুতির হিসাবঃ মনে করি, $\angle PQN = i_1$, $\angle O'QR = r_1$, $\angle SRN' = i_2$ এবং $\angle O'RQ = r_2$ । তাহলে মোট বিচ্যুতি, $\delta = x_1 + x_2 = (i_1 - r_1) + (i_2 - r_2)$

বা,
$$\delta = (i_1 + i_2) - (r_1 + r_2) \dots \dots \dots (1)$$

এখন O'QR ত্রিভুজে, $\angle O' + \angle r_1 + \angle r_2 =$ দুই সমকোণ (2)

পুনরায়, AQOR চতুর্ভুজে $\angle AQO' = \angle ARO' =$ এক সমকোণ

$$\therefore \angle A + \angle O' =$$
দুই সমে কাণ (3)

(2) ও (3) নং সমীকরণ হতে আমরা পাই, $\angle O' + \angle r_1 + \angle r_2 = \angle A + \angle O'$

$$\therefore \angle \mathbf{r}_1 + \angle \mathbf{r}_2 = \angle A$$

অর্থাৎ
$$r_1 + r_2 = A \dots \dots (4)$$

(4) নং সমীকরণ হতে r_1 ও r_2 এর মান (1) নং সমীকরণে বসিয়ে পাই,

বিচ্যুতি, $\delta=i_1+i_2-A$ (5) এটাই হল প্রিজমের মধ্য দিয়ে আলোক রশ্মির বিচ্যুতির রাশিমালা।

ন্যুনতম বিচ্যুতি কোণঃ প্রিজমের উপর আপতিত রশ্মির আপতন কোণ খুব নিম্মমান থেকে ধীরে ধীরে বাড়াতে থাকলে প্রথমত বিচ্যুতি কোণ কমতে থাকে। কিন্তু আপতন কোণ একটি নির্দিষ্ট মান অতিক্রম করলে বিচ্যুতি কোণ কমার পরিবর্তে বাড়তে শুরু করে। যে বিশেষ মানের আপতন কোণের জন্য বিচ্যুতি কোণের মান সবচেয়ে ছোট হয়। আপতন কোণের মান এর চেয়ে ছোট বা বড় হলে বিচ্যুতি কোণ সব সময়ই বড় হবে। নিম্মতম মানের এই বিচ্যুতি কোণকে ন্যুনতম বিচ্যুতি কোণ বলে। একে $\delta_{\rm m}$ দ্বারা প্রকাশ করা হয়।

প্রিজমের ন্যূনতম বিচ্যুতির শর্ত হতে আমরা জানি যে, $i_1=i_2$, $\mathbf{r}_1=\mathbf{r}_2$, ও $\delta=\delta_{\mathrm{max}}$

(4) নং ও (5) নং সমকিরণ থেকে পাই, $r_1 + r_1 = A$

বা,
$$2r_I = A$$

$$\therefore r_I = \frac{A}{2} \dots \dots \dots \dots \dots (6)$$

$$\mathfrak{G}_{m}=i_{1}+i_{1}-A$$

বা,
$$\delta_{\scriptscriptstyle m}=2i_{\scriptscriptstyle 1}-A$$

$$\therefore i_1 = \frac{A + \delta_m}{2} \dots \dots (7)$$

চার পাশের মাধ্যম সাপেক্ষে প্রিজমপদার্থের প্রতিসরাদ্ধ $\mu=rac{\sin i_1}{\sin r_1}$

চার পাশের মাধ্যম সাপেক্ষে প্রিজমপদার্থের প্রতিসরাঙ্ক, $\mu=\dfrac{\sin\dfrac{A+\delta_m}{2}}{\sin\dfrac{A}{2}}$ (প্রমাণিত)। [(6) ও (7) নং সমীকরণ থেকে r_1 ও i_1

এর মান বসিয়ে।]

সরু প্রিজমে আলোক রশ্মির বিচ্যুতিঃ

যে সকল প্রিজমের কোণ 4° থেকে 6° -এর চেয়ে বড় নয় তাদেরকে সরু প্রিজম বলে। কোন সরু প্রিজমের উপর একটি রশ্মি খুব ছোট কোণে আপতিত হলে অর্থাৎ প্রায় লম্ব ভাবে আপতিত হলে বিচ্যুতি কোণ,

$$\delta=i_1+i_2-A$$
 এবং $\mu=\dfrac{\sin i_1}{\sin r_1}=\dfrac{\sin i_2}{\sin r_2}$

এখন i_1 ও r_1 খুব ছোট হওয়ায় i_2 ও r_2 ও খুব ছোট হয় কজেই,

 $\mu=rac{i_1}{r_1}=rac{i_2}{r_2}$ $\therefore i_1=\mu r_1$ ও $i_2=\mu r_2$ [$\because i_1$ খুব ছোট সেই জন্য $\sin i_1=i_1$ অনুরূপ ভাবে $\sin r_1=r_1$, $\sin i_2=i_2$ ও $\sin r_2=r_2$] $\therefore \delta=\mu r_1+\mu r_2-A$

বা,
$$\delta = \mu(r_1 + r_2) - A$$

বা, $\delta = \mu A - A$

ফোকাঁস তল

$$\therefore \delta = A(\mu - 1)$$

<u>আলোর বিচ্ছুরণ ঃ</u> সাদা আলো প্রিজমের মধ্যদিয়ে প্রতিসরণের ফলে সাতটি মূল বর্ণে বিভক্ত হওয়ার প্রক্রিয়াকে আলোর বিচ্ছুরণ বলে।

বর্ণালীঃ যৌগিক আলোর বিচ্ছুরণের ফলে মূল বর্ণসমূহের যে সজ্জা বা পটি পাওয়া যায়, তাকে বর্ণালী বলে। সৌর বর্ণালীতে নিম্মোক্ত ৭ টি বর্ণ থাকে। যেমনঃ– বেগুনী, নীল, আসমানী, সবুজ, হলুদ, কমলা ও লাল।

আলোক কেন্দ্রঃ কোন আলোক রশ্মি যদি কোন লেন্সের এক পৃষ্ঠে আপতিত হয়ে নির্গত হওয়ার সময় আপতিত রশ্মির সমান্তরালে নির্গত হয় তাহলে সেই রশ্মি লেন্সের প্রধান অক্ষের যে বিন্দুর মধ্যদিয়ে যায় সেই বিন্দুকে লেন্সের আলোক কেন্দ্র বলে। অথবা লেন্সের যে বিন্দুর মধ্যদিয়েআলোক রশ্মি গমন করলে আলোক রশ্মি বাকায় না অর্থাৎ প্রতিসরিত হয় না তাকে আলোক কেন্দ্র বলে। চিত্রে O আলোক কেন্দ্র।

প্রধান ফোকাসঃ প্রধান অক্ষের সমান্তরাল রশ্মিগুচ্ছ প্রতিসরণের পর প্রধান অক্ষের যে বিন্দুতে মিলিত হয় (উত্তল লেসের ক্ষেত্রে) অথবা যে বিন্দু থেকে ছড়িয়ে পড়ছে বলে মনে হয় (অবতল লেসের ক্ষেত্রে) সে বিন্দুকে লেসের প্রধান ফোকাস বা মূখ্য ফোকাস বলে। প্রধান ফোকাসকে F দ্বারা প্রকাশ করা হয়। চিত্রে F প্রধান ফোকাস বলে।

ফোকাস তল ঃ কোন লেসের ফোকসের মধ্যদিয়া প্রধান অক্ষের সাথে লম্ব ভাবে যে থল কল্পনা করা হয় তাকে ফোকাস তল বলে। ডান পার্শ্বের চিত্রে ফোকাস তল দেখান হল।

<u>গৌণ ফোকাসঃ</u> প্রধান অক্ষের সাথে সামান্য আনত্ সমান্তরাল রশ্মিণ্ডচ্ছ কোন লেন্সে আপতিত হয়ে প্রতিসরণের পর ফোকাস তলের যে বিন্দুতে মিলিত হয় (উত্তল লেন্সে) বা যে বিন্দু থেকে অপসৃত হচ্ছে বলে মনে হয় (অবতল লেন্সে) তাকে গৌণ ফোকাস বলে। ডান পার্শ্বের চিত্রে F' গৌণ ফোকাস।

<u>অনুবন্ধী ফোকাসঃ</u> লেন্সের প্রধান অক্ষের উপর এমন দুটি বিন্দু আছে যাদের যে কোন একটিতে বস্তু রাখলে যথাক্রমে অপরটিতে প্রতিবিম্ব সৃষ্টি হয় তাকে অনুবন্ধী ফোকাস বলে। চিত্রে A ও B অনুবন্ধী ফোকাস।

উত্তল লেন্সের বাস্তবপ্রতিবিম্বের ক্ষেত্রে $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ এর প্রমাণঃ

মনে করি, LL' একটি সরু উত্তল লেন্স। O লেন্সের আলোক কেন্দ্র। F'প্রধান ফোকাস, F দ্বিতীয় প্রধান ফোকাস এবং QOQ'প্রধান অক্ষ। লেন্সের প্রধান ফোকাসের বাইরে প্রধান অক্ষের উপর PQ একটি লক্ষ বস্তু। P বিন্দু থেকে আগত PA আলোক রিশ্মি প্রধান অক্ষের সমান্তরালে আপতিত হয়ে AFR পথে প্রতিসৃত হয়। আরেকটি রিশ্মি PO আলোক কেন্দ্র O এর মধ্য দিয়ে সোজা POS পথে প্রতিসৃত হয়। প্রতিসৃত রিশাদ্বয় P বিন্দুতে মিলিত হয়। P' বিন্দু থেকে OF রেখার উপর P'Q' লম্ব টানা হল। তাহলে P'Q' লম্বই PQ এর বাস্তবপ্রতিবিম্ব।

হিসাব ও গণনাঃ চিত্র থেকে দেখা যায় যে, ΔPOQ ও $\Delta P'OQ'$ ত্রিভুজ

দুটি সদৃশ
$$\therefore \frac{PQ}{P'Q'} = \frac{OQ}{OQ'} \dots \dots \dots (1)$$

আবার, $\Delta {
m AFO}$ ও $\Delta {
m P'FQ'}$ ত্রিভুজ দুটি সদৃশ

facebook /gmail/skype: -tanbir.cox

Web: http://tanbircox.blogspot.com

$$\therefore \frac{AO}{P'Q'} = \frac{OF}{FQ'}$$
(2)
বা, $\frac{PQ}{P'O'} = \frac{OF}{FO'}$ (3) [$PQOA$ একটি আয়তক্ষেত্ৰ বলে $AO = PQ$]

(1) ও (3) নং সমীকরণ হতে পাই,

$$\frac{OQ}{OQ'} = \frac{OF}{FQ'}$$

$$\text{II}, \frac{OQ}{OQ'} = \frac{OF}{OQ' - OF} \dots \dots \dots (4)$$

$$[\because FQ' = OQ' - OF]$$

চিহ্নের আধুনিক প্রথা অনুযায়ী, সকল বাস্তবদূরত্ব ধনাত্মক;

ফলে,
$$OQ =$$
 বস্তুর দূরত্ব $= u$

$$OQ' = প্রতিবিম্ব দূরত্ব $= v$

$$OF = ফোকাস দূরত্ব $= f$$$$$

(4) নং সমীকরণে মান বসিয়ে পাই,

$$\frac{u}{v} = \frac{f}{v - f}$$

বা, $vf = uv - uf$
বা, $\frac{1}{u} = \frac{l}{f} - \frac{l}{v}$ [$u v f$ দ্বারা উভয় পক্ষকে ভাগ করে।]
 $\therefore \frac{l}{v} + \frac{l}{u} = \frac{l}{f}$ (প্রমাণিত)।

উত্তল লেন্সের অবাস্তবপ্রতিবিম্বের ক্ষেত্রে $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ এর প্রমাণঃ

মনে করি, LL' একটি সরু উত্তল লেস। O লেসের আলোক কেন্দ্র। F'প্রধানফোকাস, F দ্বিতীয় প্রধান ফোকাস এবং Q'OF প্রধান অক্ষ। লেসের প্রধান ফোকাসের ভিতরে প্রধান অক্ষের উপর PQ একটি লক্ষ বস্তু। P বিন্দু থেকে আগত PA আলোক রিশ্মি প্রধান অক্ষের সমান্তরালে আপতিত হয়ে AFR পথে প্রতিসৃত হয়। আরেকটি রিশ্মি PO আলোক কেন্দ্র O এর মধ্য দিয়ে সোজা POS পথে প্রতিসৃত হয়। প্রতিসৃত রিশ্মিদ্বয় অপসারী বলে মিলিত হয় না। এদেরকেপিছনের দিকে বাড়িয়ে দিলে P' বিন্দতে মিলিত হয়। P' বিন্দু থেকে OF রেখার উপর P'Q' লম্ম্ব টানা হল। তাহলে P'Q' লম্ম্বই PQ এর অবাস্তব প্রতিবিম্ব।

হিসাব ও গণনাঃ চিত্র থেকে দেখা যায় যে, ΔPOQ ও $\Delta P'OQ'$ ত্রিভুজ দুটি সদৃশ

$$\therefore \frac{PQ}{P'Q'} = \frac{OQ}{OQ'} \dots \dots \dots (1)$$

আবার, ΔAFO ও $\Delta P'FQ'$ ত্রিভুজ দুটি সদৃশ

$$\therefore \frac{AO}{P'Q'} = \frac{OF}{FQ'} \dots \dots (2)$$

বা, $\frac{PQ}{P'Q'} = \frac{OF}{FQ'}$ (3) [PQOA একটি আয়তক্ষেত্ৰ বলে AO = PQ]

(1) ও (3) নং সমীকরণ হতে পাই,

চিন্ফের আধুনিক প্রথা অনুযায়ী, সকল বাস্তব দূরত্ব ধনাত্মক ও সকল অবাস্তবদূরত্ব ঋনাত্মক;

ফলে,
$$OQ$$
 = বস্তুর দূরত্ব = u
 OQ' = প্রতিবিম্ব দূরত্ব = $-v$
 OF = ফোকাস দূরত্ব = f

(4) নং সমীকরণে মান বসিয়ে পাই,

$$\frac{u}{-v} = \frac{f}{-v+f}$$

বা, $-vf = -uv + uf$
বা, $\frac{1}{-u} = \frac{1}{-f} + \frac{1}{v}$ [$u \ vf$ দ্বারা উভয় পক্ষকে ভাগ করে।]
 $\therefore \frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ (প্রমাণিত)।

অবতল লেন্সের (অবাস্তবপ্রতিবিম্বের) ক্ষেত্রে $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ এর প্রমাণঃ

মনে করি, LL' একটি সরু অবতল লেশ। O লেশের আলোক কেন্দ্র। F দ্বিতীয় প্রধান ফোকাস এবং QQ'Oপ্রধান অক্ষ। লেশের প্রধান অক্ষের উপর PQ একটি লক্ষ বস্তু। P বিন্দু থেকে আগত PA আলোক রিশ্মি প্রধান অক্ষের সমান্তরালে আপতিত হয়ে AR পথে প্রতিসৃত হয়। আরেকটি রিশ্মি PO আলোক কেন্দ্র O এর মধ্য দিয়ে সোজা POS পথে প্রতিসৃত হয়। প্রতিসৃত রিশ্মিদ্বয় অপসারী বলে মিলিত হয় না। এদেরকে পিছনের দিকে বাড়িয়ে দিলে P' বিন্দুতে মিলিত হয়। P' বিন্দু থেকে OF রেখার উপর P'Q'লম্ব টানা হল। তাহলে P'Q'লম্বই PQ এর অবাস্তব প্রতিবিম্ব।

হিসাব ও গণনাঃ চিত্র থেকে দেখা যায় যে, ΔPOQ ও $\Delta P'OQ'$ ত্রিভুজ দুটি সদৃশ

$$\therefore \frac{PQ}{P'Q'} = \frac{OQ}{OQ'} \dots \dots \dots (1)$$

আবার, ΔAFO ও $\Delta P'FQ'$ ত্রিভুজ দুটি সদৃশ

$$\therefore \frac{AO}{P'Q'} = \frac{OF}{FQ'} \dots \dots (2)$$

বা,
$$\frac{PQ}{P'Q'} = \frac{OF}{FQ'}$$
 (3) [$PQOA$ একটি আয়তক্ষেত্ৰ বলে $AO = PQ$]

(1) ও (3) নং সমীকরণ হতে পাই,

$$\frac{OQ}{OQ'} = \frac{OF}{FQ'}$$

বা,
$$\frac{OQ}{OQ'} = \frac{OF}{OF - OQ'} \dots$$
 (4)

$$[::FQ'=OF-OQ']$$

চিহ্নের আধুনিক প্রথা অনুযায়ী, সকল বাস্তবদূরত্ব ধনাত্মক ও সকল অবাস্তবদূরত্ব ঋনাত্মক;

ফলে,
$$OQ$$
 = বস্তুর দূরত্ব = u

$$OQ' =$$
 প্রতিবিম্ব দূরত্ব $= -v$

$$OF =$$
 ফোকাস দূরত্ব $= -f$

(4) নং সমীকরণে মান বসিয়ে পাই,

$$\frac{u}{-v} = \frac{-f}{-f - (-v)}$$

বা,
$$vf = -uf + uv$$

বা,
$$\frac{1}{u} = \frac{1}{-v} + \frac{1}{f}$$
 [$u \ v \ f$ দ্বারা উভয় পক্ষকে ভাগ করে।]

$$\therefore \frac{1}{v} + \frac{1}{u} = \frac{1}{f} \quad (প্রমাণিত)$$

<u>রৈখিক বিবর্ধনঃ</u> বিম্বের দৈর্ঘ্য ও বস্তুর দৈর্ঘ্যের অনুপাতকে রৈখিক বিবর্ধন বলে। আবার প্রতিবিম্বের দূরত্ব ও বস্তুর দূরত্বের অনুপাতকেও রৈখিক বিবর্ধন বলে। একে m দ্বারা প্রকাশ করা হয়। প্রতিবিম্বের দৈর্ঘ্য y, বস্তুর দৈর্ঘ্য x, প্রতিবিম্বের দূরত্ব v ও বস্তুর দূরত্ব u হলে, বিবর্ধন $m=\frac{y}{x}=\frac{v}{u}$ হবে। বিবর্ধন দুটি একই প্রকার রাশির অনুপাত বলে এর কোন একক নেই।

বিবর্ধনের রাশিমালাঃ চিত্রে PQ লক্ষ বস্তুর জন্য P'Q'উল্টো (উত্তল লেসে) সিধা (অবতল লেসে) প্রতিবিম্ব সৃষ্টি হয়েছে। সুতরাং বিবর্ধন $m=\frac{P'Q'}{PO}$ এখন $\Delta P'Q'O$ এবং ΔPQO দ্বয়ের মধ্যে

$$\angle P'Q'O = \angle PQO = 90^{\circ}$$

 $\angle P'OQ' = \angle POQ$ $[\because$ বিপ্রতীপ কোণ (উত্তল লেসে), একই কোণ (অবতল লেসে)]

এবং অবশিষ্ট $\angle OP'Q' = \angle OPQ$

সুতরাং ত্রিভুজ দুটি সদৃশকোণী বা সদৃশ।

ফলে,
$$\frac{P'Q'}{PQ} = \frac{OQ'}{OQ}$$

$$\therefore m = \frac{OQ'}{OQ} = \frac{y}{x} \dots \dots \dots (1)$$

চিহ্নের বাস্তব প্রথা অনুসারে,

(বাস্তব দূরত্ব ধনাত্বক ও অবাস্তব দূরত্ব ঋনাত্মক।)

(1) নং সমীকরণ অনুসারে,
$$m = \frac{v}{u} = \frac{y}{x}$$

প্রতিবিম্ব অবাস্তব, সিধা বা সমশীর্ষ হলে বিবর্ধন ধনাত্মক ধরা হয়।

কিন্তু সিধা তথা অবাস্তবপ্রতিবিম্বের ক্ষেত্রে, প্রতিবিম্বের দূরত্ব, প্রতিবিম্বের গাতার, প্রতিবিম্ব বাস্তব, উল্টো বা অবশীর্ষ হলে বিবর্ধন ঋনাত্বক ধরা হয়। কিন্তু উল্টো তথা বাস্তবপ্রতিবিম্বের ক্ষেত্রে, প্রতিবিম্বের দূরত্ব, ν ধনাত্মক।

চিহ্ন সংশোধন করে পাই,
$$m=-rac{v}{u}=-rac{y}{x}$$

অবতল তলের জন্য $\frac{\mu}{v} + \frac{1}{u} = \frac{\mu-1}{r}$ সম্পর্কটি প্রমাণ কর। এখানে প্রতিক গুলি প্রচলিত অর্থ বহন করেঃ

ধরা যাক, বায়ুমাধ্যমে অন্য একটি ঘন্তর মাধ্যমে রাখা হল। ঘনতর মাধ্যমের প্রতিসরাঙ্ক μ । এর একটি কম উন্মেষের অবতল প্রতিসারক তল আছে। তলটির প্রধান ছেদ ROR', মেরু O, বক্রতার কেন্দ্র C, প্রধান অক্ষ OCA। প্রধান অক্ষের উপর A একটি বিন্দুবস্তু।

ধরি, A হতে আগত একটি রশ্মি AB। এটি ROR' -এর B বিন্দুতে আপতিত। NBC অভিলম্ব আঁকা হল। AB রশ্মিটি অভিলম্বের দিকে কিছুটা বেঁকে BD বরাবর প্রতিসৃত হয়। A হতে আগত অন্য একটি রশ্মি AO। এটি লম্ব ভাবে আপতিত। তাই কোন দিকে না বেকেঁ এটি সোজা AOE পথে যায়। প্রতিসৃত রশ্মিদ্বয়কে পিছনের দিকে বাড়ালে G বিন্দুতে মিলিত হয়। অতএব G বিন্দুতে A বিন্দুর একটি অবাস্তবপ্রতিবিম্ব গঠিত হবে।

এখন,
$$\triangle ABC$$
 হতে, $\frac{\sin i}{\sin C} = \frac{AC}{AB}$ (3)

$$\Delta BCG$$
 হতে, $\frac{\sin r}{\sin C} = \frac{GC}{GB} \dots \dots \dots \dots (4)$

(2) নং সমীকরণে (3) ও (4) এর মান বসিয়ে পাই,

প্রতিসারক তলটি কম উন্মেষের। তাই B বিন্দু O বিন্দুর খুবই নিকটে অবস্থিত। তাই, AB=AO; GB=GO;

চিহ্নের নতুন প্রথা অনুসারে, CO = -r, AO = +u, GO = -v;

$$\therefore$$
 (6) হতে পাই, $1-\frac{-r}{u}=\mu\bigg(1-\frac{-r}{-v}\bigg)=\mu-\frac{\mu r}{v}$
$$\Rightarrow \frac{\mu r}{v}+\frac{r}{u}=\mu-1$$

$$\therefore \frac{\mu}{v}+\frac{1}{u}=\frac{\mu-1}{r}\,\dots\,\dots\,(7) \quad (প্রমাণিত)$$

উত্তল তলের জন্য $\frac{\mu}{v} + \frac{1}{u} = \frac{\mu-1}{r}$ সম্পর্কটি প্রমাণ কর। এখানে প্রতিক গুলি প্রচলিত অর্থ বহন করেঃ

ধরা যাক, বায়ুমাধ্যমে অন্য একটি ঘনতর মাধ্যমে রাখা হল্ । ঘনতর মাধ্যমের প্রতিসরাঙ্ক μ । এর একটি কম উন্মেষের উত্তল প্রতিসারক তল আছে। তলটির প্রধান ছেদ ROR', মেরু O, বক্রতার কেন্দ্র C, প্রধান অক্ষ AOC। প্রধান অক্ষের উপর A একটি বিন্দুবস্তু।

ধরি, A হতে আগত একটি রশ্মি AB। এটি ROR এর B বিন্দুতে আপতিত। NBC অভিলম্ব আঁকা হল। AB রশ্মিটি অভিলম্বের দিকে কিছুটা বেঁকে BD বরাবর প্রতিসৃত হয়। A হতে আগত অন্য একটি রশ্মি AO। এটি লম্ব ভাবে আপতিত। তাই কোন দিকে না বেকেঁ এটি সোজা AOC পথে যায়। প্রতিসৃত রশ্মিদ্বয়কে পিছনের দিকে বাড়ালে G বিন্দুতে মিলিত হয়। অতএব G বিন্দুতে A বিন্দুর একটি অবাস্তবপ্রতিবিম্ব গঠিত হরে A

আপতন কোণ =
$$\angle ABN = i$$

প্রতিসরণ কোণ = $\angle DBC = r$
আমরা জানি, $\mu = \frac{\sin i}{\sin r}$ (1)

বা, $\sin i = \mu \sin r$

বা,
$$\sin(\pi - \angle ABC) = \mu \sin(\pi - \angle CBG)$$

বা, $\sin \angle ABC = \mu \sin \angle CBG$

এখন,
$$\triangle ABC$$
 হতে, $\frac{\sin \angle ABC}{\sin C} = \frac{AC}{AB}$ (3)

$$\Delta BCG$$
 হতে, $\frac{\sin \angle CBG}{\sin C} = \frac{CG}{BG} \dots \dots \dots \dots (4)$

(2) নং সমীকরণে (3) ও (4) এর মান বসিয়ে পাই,

প্রতিসারক তলটি কম উন্মেষের। তাই B বিন্দু O বিন্দুর খুবই নিকটে অবস্থিত। তাই, AB=AO; GB=GO;

চিহ্নের নতুন প্রথা অনুসারে, OC = +r, AO = +u, OG = -v;

$$\therefore$$
 (6) হতে পাই, $1+\frac{r}{u}=\mu\bigg(1+\frac{r}{-v}\bigg)=\mu-\frac{\mu r}{v}$
$$\Rightarrow \frac{\mu r}{v}+\frac{r}{u}=\mu-1$$

$$\therefore \frac{\mu}{v}+\frac{1}{u}=\frac{\mu-1}{r}\,\dots\,\dots\,(7) \quad (প্রমাণিত)$$

লেশ প্রস্তুতকারকের সমীকরণঃ ধরা যাক LL' একটি সরু লেশ। এটি বায়ুর মধ্যে অবস্থিত। লেশের উপাদানের প্রতিসরাঙ্ক $\mu \mid O$ আলোক কেন্দ্র। প্রধান অক্ষের উপর A একটি বিন্দু-বস্তু। A হতে আগত AB আলোক রিশ্ম লেশের B বিন্দুতে আপতিত হল। এটি লেশের মধ্যে BC পথে যায়। লেশ থেকে নির্গত হয়ে এটি CF পথে যায়। A হতে আগত অন্য একটি আলোক রিশ্ম আলোক কেন্দ্র দিয়ে সোজাসুজি AO পথে যায়।

<u>১ম পৃষ্ঠে প্রতিসরণঃ</u> প্রতিসৃত রশ্মিদ্বয় হচ্ছে BC ও M_1M_2 । এদের ছেদ্বিন্দু E । সুতরাং ২য় পৃষ্ঠ না থাকলে, E হত A এর বাস্তবপ্রতিবিদ্ধ । আপতন মাধ্যম সাপেক্ষে প্রতিসরণ মাধ্যমের প্রতিসরাঙ্ক $=\mu$

বস্তুর দূরত্ব =
$$OA = u$$
প্রতিবিধের দূরত্ব = $OE = v'$
প্রথম পৃষ্ঠের বক্রতার ব্যাসার্ধ = r_1

$$\therefore \frac{\mu}{v'} + \frac{1}{u} = \frac{\mu - 1}{r_1} \dots \dots \dots (1)$$

<u>২য় পৃঠে প্রতিসরণঃ</u> এ পৃঠে আপতিত BCও M_1M_2 রিশা E বিন্দু অভিমুখী । অতএব E বিন্দু এক্ষেত্রে অবাস্তব বস্তু হিসেবে ক্রিয়া করে । প্রতিসৃত রিশাদ্বয় হচ্ছে CF ও M_2F । এদের ছেদ বিন্দু F । অতএব, অবাস্তব লক্ষবস্তু E এর বাস্তব প্রতিবিদ্ধ হচ্ছে F ।

আপতন মাধ্যম সাপেক্ষে প্রতিসরণ মাধ্যমের প্রতিসরাক্ক $=\frac{1}{\mu}$ ।

বস্তুর দূরত্ব
$$= OE = -v'$$
 প্রতিবিধের দূরত্ব $= OF = v$ [F হচ্ছে A বিন্দুর চূড়ান্ত প্রতিবিধ] দ্বিতীয় পৃষ্ঠের বক্রতার ব্যাসার্ধ $= r_2$
$$\frac{1/\mu}{v} + \frac{1}{-v'} = \frac{(1/\mu) - 1}{r_2}$$

বা,
$$\frac{1}{v} - \frac{\mu}{v'} = \frac{1-\mu}{r_2}$$
 [উভয় পক্ষকে μ দারা গুণ করে $+$] বা, $\frac{1}{v} - \frac{\mu}{v'} = \frac{-(\mu-1)}{r_2} \dots \dots (2)$

সমীকরণ (1) ও (2) যোগ করে পাই,

$$\frac{1}{v} + \frac{1}{u} = (\mu - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right) \dots \dots (3)$$

বস্তু অসীম দূরত্বে থাকলে প্রতিবিম্ব প্রধান ফোকাসে গঠিত হয়। অর্থাৎ, $u=\infty$ হলে v=f ; মানগুলি (3) নং সমীকরণে বসিয়ে

পাই,
$$\frac{1}{f} + \frac{1}{\infty} = (\mu - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$
 $\Rightarrow \frac{1}{f} + 0 = (\mu - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$ $\therefore \frac{1}{f} = (\mu - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right) \dots \dots (4)$

(8) নং সমীকরণকে লেন্স প্রস্তুত কারকের সমীকরণ বলে। একটি নির্দিষ্ট ফোকাস দূরত্বের বা নির্দিষ্ট ক্ষমতার লেন্স প্রস্তুত করতে r_1 বা r_2 -এর মান কত হবে তা এ সমীকরণ দ্বারা নির্ণয় করা হয়।

তুল্য লেন্সের ফোকাস দূরত্ব ও ক্ষমতা অর্থাৎ তুল্য লেন্সের ক্ষমতা লেন্সগুলোর পৃথক পৃথক ক্ষমতার সমষ্টির সমানঃ

তুল্য লেশঃ যদি প্রতিবিম্বের অবস্থান, প্রকৃতি ইত্যাদি অপরিবর্তিত রেখে কোন লেস সমবায়কে একটি একক লেস দ্বারা প্রতিস্থাপন করা যায় তাহলে ঐ একক লেসকে উক্ত সমবায়ের সমতুল্য লেস বলে।

ধরা যাক, L_1 ও L_2 দুটি সরু উভোত্তল লেন্স। এরা একই অক্ষ বরাবর পরস্পরের সংস্পর্শে অবস্থিত। এদের ফোকাস দূরত্ব যথাক্রমে f_I ও f_2 । XX' এদের সাধারণ প্রধান অক্ষ। প্রধান অক্ষের উপর A একটি বিন্দু-বৃদ্ভ $\setminus O$ হচ্ছে লেন্সদ্বয়ের স্পর্শ বিন্দু। লেন্সদ্বয় সরু হওয়ায় O কে প্রত্যেকটি লেন্সের আলোক কেন্দ্র হিসাবে গন্য করা যায়। বস্তুর দুরত্ব=AO=u।

A হতে একটি আগত আলোক রশ্মি AB। এটি L_I -এ প্রতিসরণের পর BC পথে যায়, $\widehat{\mathbb{L}}_2$ -এ প্রতিসরণের পর CD পথে যায়। A হতে অন্য একটি আলোকরশ্মি সোজাসুজি AOX' পথে যায়। CD এবং AOX' এর D বিন্দুতে মিলিত হয়। BC এবং AOX'

এর E বিন্দুতে মিলিত হয়। E হচ্ছে L_I দ্বারা সৃষ্ট A-এর প্রতিবিম্ব।

$$\therefore \frac{1}{v'} + \frac{1}{u} = \frac{1}{f_1} \dots \dots \dots (1)$$

প্রতিবিম্ব E, L2 লেন্সের জন্য অবাস্তববস্তু হিসাবে কাজ করবে 🛭 D হচ্ছে L_2 দারা সৃষ্ট E -এর প্রতিবিম্ব।

ধরি, প্রতিবিম্বের দূরত্ব, OD = v;

$$\therefore \frac{1}{v} + \frac{1}{(-v')} = \frac{1}{f_2} \dots \dots \dots (2)$$
 [অবাস্তবপ্রতিবিম্বের দূরত্ব ঋনাত্মক]

(1) ও (2) নং সমীকরণ যোগ করে পাই,

এখন তুল্য লেন্সের ক্ষেত্রে, বস্তুর দূরত্ব = u

প্রতিবিম্বের দূরত্ব = v এবং তুল্যলেন্সের ফোকাস দূরত্ব = F

$$\therefore \frac{1}{u} + \frac{1}{v} = \frac{1}{F} \dots \dots \dots (4)$$

সমীকরণ (3) ও (4) কে তুলনা করে পাই,

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2}$$

একই ভাবে দেখান যায় যে, $f_1, f_2, f_3, \ldots, f_n$ ইত্যাদি ফোকাস দূরত্ব বিশিষ্ট n সংখ্যক লেন্স সংযোজিত করলে,

তুল্য লেন্সের ফোকাস দূরত্ব,
$$F = \frac{1}{\frac{1}{f_1} + \frac{1}{f_2} + \frac{1}{f_3} + \dots + \frac{1}{f_n}} = \frac{1}{\sum \frac{1}{f}} \dots \dots \dots (6)$$

তুল্য লেন্সের ক্ষমতা, $P=rac{1}{F}$ ও সংযোজিত লেন্স গুলির ক্ষমতা যথাক্রমে

অর্থাৎ তুল্য লেন্সের ক্ষমতা লেসগুলোর পৃথক পৃথক ক্ষমতার সমষ্টির সুমান।

রশ্মি চিত্রের সাহায্যে লেন্সের সামনে বিভিন্ন অবস্থানে স্থাপিত বস্তুর প্রতিবিদ্য

(১) লক্ষবস্তু অসীম দূরে অবস্থিতঃ অসীম দূরে অবস্থিত লক্ষবস্তুর শীর্ষ থেকে অগত পরস্পর সমান্তরাল রশ্মি গুচ্ছ প্রধান অক্ষের সাথে আনতভাবে আপতিত হয়ে প্রতিসরনের পর ফোকাস তলের P´ বিন্দুতে মিলিত হয়। P´থেকে প্রধান অক্ষের উপর P´Q´ লম্বই PQ এর প্রতিবিম্ব। অবস্থানঃ প্রধান ফোকাসে

P

প্রকৃতি ঃ বাস্তবও উল্টো।

আকৃতি ঃ অত্যন্ত খর্বিত।

(২) লক্ষবস্তু লেন্স থেকে 2f এর বেশী দূরে অবস্থিত ঃ P থেকে একটি রশ্মি আলোককেন্দ্র বরাবর এবং অপর আরেকটি রশ্মি প্রধান অক্ষের সমান্তরাল বিবেচনা করলে প্রতিসরণের পর এগুলো P' বিন্দুতে মিলিতহয়। P' থেকে প্রধান অক্ষের উপর P'Q' লম্বই

PQ এর প্রতিবিম্ব। অবস্থান ঃ f ও 2f এর মধ্যে। প্রকৃতি ঃ বাস্তব ও উল্টো। আকৃতি ঃ খর্বিত।

(৩) লক্ষবস্তু লেন্স থেকে 2f দূরে অবস্থিতঃ P থেকে একটি রশ্মি আলোককেন্দ্র বরাবর এবং অপর আরেকটি রশ্মি প্রধান অক্ষের

সমান্তরাল বিবেচনা করলে প্রতিসরণের পর এগুলো P' বিন্দুতে মিলিত হয়। P' থেকে প্রধান অক্ষের উপর P'Q' লম্বই PQ এর প্রতিবিদ্ধা। অবস্থান ঃ 2f দূরত্বে। প্রকৃতি ঃ বাস্তব ও উল্টো। আকৃতি ঃ লক্ষ্ণ বস্তুর সমান।

(8) লক্ষবস্তু লেস থেকে f ও 2f এর মধ্যে অবস্থিতঃ P থেকে একটি রশ্মি আলোককেন্দ্র বরাবর এবং অপর আরেকটি রশ্মি প্রধান

অক্ষের সমান্তরাল বিবেচনা করলে প্রতিসরণের পরি এগুলো P' বিন্দুতে মিলিত হয়। P' থেকে প্রধান অক্ষের উপর P'Q' লম্মই PQ এর প্রতিবিম্ব। অবস্থান ঃ 2f এর বেশী দরতে।

অবস্থান ঃ 2f এর বেশী দূরত্বে। প্রকৃতি ঃ বাস্তবও উল্টো।

আকৃতি ঃ লক্ষ বস্তুর চেয়ে বড় অর্থাছ বিবর্ধিত।

(৫) লক্ষবস্তু লেন্স থেকে প্রধান ফোকাসে অবস্থিতঃ P থেকে একটি রশ্মি আলোককেন্দ্র বরাবর এবং অপর আরেকটি রশ্মি প্রধান

অক্ষের সমান্তরাল বিবেচনা করলে প্রতিসরণের পর এগুলো পরস্পর সমান্তরাল হয়।এগুলো অসীমে মিলিত হয় কিম্বা পেছন দিকে বাড়ালে অসীম থেকে অপসৃত হচ্ছে বলে মনে হয়। অবস্থান ঃ অসীম দূরত্বে।

প্রকৃতি ঃ বাস্তবও উল্টো অথবা অবাস্তবও সোজা। আকৃতি ঃ অত্যন্ত বিবর্ধিত।

(৬) লক্ষবস্তু আলোককেন্দ্র ও প্রধান ফোকাসের মধ্যে অবস্থিতঃ P থেকে একটি রশ্মি আলোককেন্দ্র বরাবর এবং অপর আরেকটি

রশ্মি প্রধান অক্ষের সমান্তরাল বিবেচনা করলে প্রতিসরণের পর এগুলো পরস্পর অপসারী হয়। এগুলো পেছন দিকে বাড়ালে P' বিন্দু থেকে অপসৃত হচ্ছে বলে মনে হয়। P' বিন্দু থেকে প্রধান অক্ষের উপর P'Q' লম্বই PQ এর প্রতিবিম্ব। অসীম থেকে অপসৃত

অবস্থান ঃ লক্ষবস্তু লেন্সের যে পাশে, প্রতিবিদ্ব ও লেন্সের সেই পাশে লক্ষবস্তুর

পিছনে ফোকাসের বাইরে। প্রকৃতি ঃ অবাস্তব ও সোজা। আকৃতি ঃ বিবর্ধিত।

লেপের ক্ষমতাঃ মিটারে প্রকাশিত লেপের ফোকাস দূরত্বের ব্যাস্ত মানকে ডাইঅপ্টারে লেপের শক্তি বলে। লেপের শক্তিকে P দ্বারা প্রকাশ করা হয়। মিটরে প্রকাশিত ফোকাস দূরত্ব f হলে লেপের শক্তি $P=\frac{1}{f}$ হবে।

<u>অবতল লেন্স দারা সৃষ্ট প্রতিবিশ্বঃ</u> চিত্রে AOB একটি সরু অবতল লেন্সের প্রথান ছেদ। লেন্সটির আলোক কেন্দ্র O। দ্বিতীয় প্রধানস ফোকাস F। প্রধান অক্ষ OQ -এর উপর দন্ডায়মান PQ একটি বস্তু। বস্তুটির বিভিন্ন অবস্থানে তার প্রতিবিদ্ধ লেন্সে কিভাবে উৎপন্ন হবে তা বস্তুর সর্বেচ্চ বিন্দু P হতে দুটি রিশ্মিরু গতিপথদেখিয়ে নির্দেশ করা হয়েছে। বস্তুর সর্বোচ্চ বিন্দু P হতে প্রধান অক্ষের সমান্তরাল আলোক রিশ্মিটি লেন্সে আপতিত হয়েলেন্স হতে এমন ভাবে নির্গত হবে যে, তা F বিন্দু হতে নির্গত হচ্ছে বলে মনে হবে। আবার P

হতে এমন ভাবে নিগত হবে যে, তা F বিন্দু হতে নিগত হচ্ছে বলে মনে হবে। আবার P হতে লেন্সের আলোক কেন্দ্র O অভিমুখী লেন্সে আপতিত PO আলোক রশ্মিটি লেন্স হতে না বেঁকে সোজা PO পথে চলে যাবে। নির্গত এ রশ্মি দুটির ছেদ বিন্দু, P -এর অবাস্তব প্রতিবিম্ব P'। P' বিন্দু হতে প্রধান অক্ষের উপর P'Q' লম্মই PQ এর প্রতিবিম্ব। অবস্থান ঃ লক্ষবস্তু ও প্রতিবিম্ব লেন্সের একই পাশে অবস্থিত।

প্রকৃতি ঃ অবাস্তব ও সোজা। আকৃতি ঃ বস্তুর তুলনায় ছোট।

লেন্স	u/x	v/y	f	m
উত্তল (বাস্তব)	+	+	+	_
উত্তল (অবাস্তব)	+	_	+	+
অবতল	+	_	-	+

১। একটি প্রিজমের কোণ এবং ন্যুনতম বিচ্যুতি কোণ যথাক্রমে 60° ও 30°। প্রিজমটির পদার্থের প্রতিসরাংক নির্ণয় কর। আমরা জানি.

$$\mu = \frac{\sin \frac{A + \delta_m}{2}}{\sin \frac{A}{2}}$$

$$\Rightarrow \mu = \frac{\sin \frac{60^\circ + 30^\circ}{2}}{\sin \frac{60^\circ}{2}}$$

$$\Rightarrow \mu = \frac{\sin 45^\circ}{\sin 30^\circ}$$

$$\Rightarrow \mu = \frac{0.707106781}{0.5}$$

$$\therefore \mu = 1.414 \text{ (Ans.)}$$

২। যে প্রিজমের প্রতিসারক কোণ 60° এবং যার উপাদানের প্রতিসরাংক 1.61। তার ন্যূনতম বিচ্যুতি কোণ নির্ণয় কর। আমরা জানি,

$$\mu = \frac{\sin\frac{A+\delta_m}{2}}{\sin\frac{A}{2}}$$

$$\Rightarrow 1.61 = \frac{\sin\frac{60^\circ + \delta_m}{2}}{\sin\frac{60^\circ}{2}}$$

$$\Rightarrow 1.61 = \frac{\sin\frac{60^\circ + \delta_m}{2}}{\sin 30^\circ}$$

$$\Rightarrow 1.61 = \frac{\sin\frac{60^\circ + \delta_m}{2}}{\sin 30^\circ}$$

$$\Rightarrow 1.61 = \frac{\sin\frac{60^\circ + \delta_m}{2}}{0.5}$$

$$\Rightarrow \frac{60^{\circ} + \delta_{m}}{2} = \sin^{-1} 0.805$$

$$\Rightarrow \frac{60^{\circ} + \delta_{m}}{2} = 53.61^{\circ}$$

$$\Rightarrow 60^{\circ} + \delta_{m} = 107.22^{\circ}$$

$$\Rightarrow \delta_{m} = 107.22^{\circ} - 60^{\circ}$$

$$\therefore \delta_{m} = 47.22^{\circ} \text{ (Ans.)}$$

৩। 6 cm লম্বা একটি বস্তুকে 16 cm ফোকাস দূরত্বের উত্তল লেন্স থেকে 12 cm দূরে স্থাপন করা হল। বিম্বের আকার বের কর।

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{v} + \frac{1}{12} = \frac{1}{16}$$

$$\Rightarrow \frac{1}{v} = \frac{1}{16} - \frac{1}{12}$$

$$\Rightarrow \frac{1}{v} = \frac{3-4}{48}$$

$$\Rightarrow \frac{1}{v} = \frac{-1}{48}$$

$$\therefore v = -48 \text{ cm}$$

$$-\frac{y}{x} = -\frac{v}{u}$$

$$\Rightarrow \frac{y}{6} = \frac{48}{12}$$

$$\therefore y = -24 \text{ cm}$$

উত্তর: 24 cm দীর্ঘ অবাস্তব প্রতিবিম্ব পাওয়া যাবে।

৪। বায়ুতে একটি কাঁচ লেন্সের ফোকাস দূরত্ব $20 {
m cm}$ হলে পানিতে এর ফোকাস দূরত্ব কত? বায়ুর সাপেক্ষে কাঁচের প্রতিসরাঙ্ক $\frac{3}{2}$ ও পানির প্রতিসরাঙ্ক $\frac{4}{3}$

এখানে. বায়ুতে ফোকাস দূরত f_a = 20cm পানিতে ফোকাস দূরত্ব $f_w = ?$ বায়ুর সাপেক্ষে কাঁচের প্রতিসরান্ধ $_a \mu_{
m g} = rac{3}{2}$ বায়ুর সাপেক্ষে পানির প্রতিসরাঙ্ক $a\mu_{\rm w}=rac{4}{3}$ আমরা জানি.

$$_{\rm w}\mu_{\rm g} = \frac{_{a}\mu_{\rm g}}{_{a}\mu_{\rm w}} = \frac{\frac{3}{2}}{\frac{4}{3}} = \frac{3}{2} \times \frac{3}{4} = \frac{9}{8}$$

$$\frac{1}{f_a} = (_a \mu_g - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right) \dots (1)$$

$$\frac{1}{f_w} = (_w \mu_g - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right) \dots (2)$$

$$(1) \div (2)$$

$$\frac{f_{w}}{f_{a}} = \frac{\binom{a}{\mu_{g}} - 1 \left(\frac{1}{r_{1}} - \frac{1}{r_{2}}\right)}{\binom{w}{\mu_{g}} - 1 \left(\frac{1}{r_{1}} - \frac{1}{r_{2}}\right)}....(3)$$

$$\Rightarrow \frac{f_{w}}{f_{a}} = \frac{\frac{3}{2} - 1}{\frac{9}{2} - 1}$$

$$\Rightarrow \frac{f_{w}}{f_{a}} = \frac{\frac{1}{2}}{\frac{1}{8}} \Rightarrow \frac{f_{w}}{f_{a}} = \frac{1}{2} \times \frac{8}{1} \Rightarrow \frac{f_{w}}{20} = \frac{4}{1}$$

$$\therefore f_w = 80 \text{ cm (Ans.)}$$

৫। কোন লেন্স $80\mathrm{cm}$ দূরে স্থাপিত একটি বস্তুর সমান আকারের একটি বস্তুর বাস্তব বিম্ব গঠন করে। লেসটির ক্ষমতা কত?

আমরা জানি.

$$m = -\frac{v}{u}$$

$$\Rightarrow -1 = -\frac{v}{u}$$

 \Rightarrow v = u \Rightarrow u = 80

আবার,
$$\frac{1}{v} + \frac{1}{v} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{80} + \frac{1}{80} = \frac{1}{f}$$

$$\Rightarrow \frac{1+1}{80} = \frac{1}{f}$$

f = 40 cm = 0.40 m

আবার,
$$P = \frac{1}{f} = \frac{1}{0.40}$$

$$\therefore P = 2.5D \text{ (Ans)}$$

৬। একটি উত্তল লেন্সের ফোকাস দূরত্ব 15cm। বস্তুর দূরত্ব কত হলে অবাস্তব প্রতিবিম্বের আকার বস্তুর আকারের তিন্ইণ হবে?

আমরা জানি.

$$m = -\frac{v}{u}$$

$$\Rightarrow 3 = -\frac{v}{u}$$

$$\therefore v = -3u \dots (1)$$

বস্তুর দূরত্ব, u =?

আবার,

আবার,
$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{-3u} + \frac{1}{u} = \frac{1}{15}$$

$$\Rightarrow \frac{-1+3}{3u} = \frac{1}{15}$$

$$\Rightarrow 3u = 30$$

ফোকাস দূরত্ব, f = 15cm

প্রতিবিম্বের দূরত্ব, v = 80cm

লেসটির ক্ষমতা, P = কত?

বিবর্ধন ক্ষমতা, m = -1

 \therefore u = 10 (Ans.)

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

$$\Rightarrow \frac{1}{f} = (1.5 - 1) \left\{ \frac{1}{r} - \frac{1}{(-r)} \right\}$$

$$\Rightarrow \frac{1}{f} = 0.5 \left(\frac{1}{r} + \frac{1}{r} \right)$$

$$\Rightarrow \frac{1}{f} = 0.5 \times \frac{2}{r}$$

$$\Rightarrow \frac{1}{f} = \frac{1}{r}$$

৭। কাচ দারা তৈরী একটি দ্বি- উত্তল লেন্সের উভয় পৃষ্ঠের বক্রতার ব্যাসার্ধ সমান। কাচের প্রতিসরাঙ্ক 1.5 হলে দেখাও যে, লেন্সটির ফোকাস দূরত্ব তার

৮। 1.5 প্রতিসরাক্ষের কোন কাচ প্রিজমের এক পৃষ্ঠের উপর আলোক রশ্মি লম্ব ভাবে আপতিত্তিয়া এবং প্রিজমের দ্বিতীয় পৃষ্ঠের গাঁ ঘেষে নির্গত হয়। প্রিজম কোণ নির্ণয় কর

আমরা জানি

 \therefore f = r (Proved.)

$$\begin{array}{c}
\text{Sin } i_1 \\
\text{Sin } r_1
\end{array}$$

$$\Rightarrow 1.5 = \frac{\sin 0^{\circ}}{\sin r_1}$$

$$\Rightarrow 1.5 = \frac{0}{\sin r_1}$$

$$\Rightarrow$$
 Sin $r_1 = \frac{0}{1.5} = 0$

$$\Rightarrow$$
 Sin $r_1 = 0$

$$\therefore r_{_{1}}=0$$

আবার,

$$\mu = \frac{\sin i_2}{\sin r_2}$$

$$\Rightarrow 1.5 = \frac{\sin 90^{\circ}}{\sin r_2}$$

$$\Rightarrow 1.5 = \frac{1}{\sin r_2}$$

$$\Rightarrow$$
 r₂ = Sin⁻¹0.666666666

$$\therefore r_2 = 41.8^{\circ}$$

আবার,
$$A = r_1 + r_2$$

$$A = 0 + 41.8^{\circ}$$

$$\therefore A = 41.8^{\circ} \text{ (Ans.)}$$

এখানে. প্রতিসরাংক, $\mu = 1.5$ ১ম পৃষ্ঠে আপতন কোণ, $i_{\scriptscriptstyle 1}=0^\circ$ ২য় পৃষ্ঠে আপতন কোণ, $i_{\scriptscriptstyle 2}=90^\circ$ $^\circ$ প্রিজম কোণ, A = ?

৯। 0.75m ফোকাস দূরত্বের একটি উত্তল লেস থেকে কত দূরে একটি বস্তু রাখলে তিনগুন বিবর্ধিত বাস্তব ও অবাস্তব প্রতিবিদ্ধ গঠিত হবে?

আমরা জানি,
$$m=-\frac{v}{u} \qquad \qquad \text{এখানে,}$$
 ফোকাস দূরত্ব, $f=0.75m$ বিবর্ধন, $m=\mp 3$ বস্তুর দূরত্ব, $u=?$
$$\Rightarrow -3=-\frac{v}{u} \qquad \qquad \text{বাস্তব প্রতিবিদ্ধ } m=-3 \text{ হবে }]$$

$$\therefore v=3u \dots (1)$$

আবার.

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{3u} + \frac{1}{u} = \frac{1}{0.75}$$

$$\Rightarrow \frac{1+3}{3u} = \frac{1}{0.75}$$

$$\Rightarrow 3u = 3$$

$$\therefore u = 1 \text{ m (Ans.)}$$
আবার,

$$3=-rac{v}{u}$$
 [অবাস্তব প্রতিবিম্ব $m=3$ হবে]
$$\Rightarrow v=-3u \ \ (2)$$
 আবার,

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{-3u} + \frac{1}{u} = \frac{1}{0.75}$$

$$\Rightarrow \frac{-1+3}{3u} = \frac{1}{0.75}$$

$$\Rightarrow 3u = 1.5$$

$$\therefore u = 0.5 \text{ m (Ans.)}$$

১০। কাচ ও হীরকের প্রতিসরাঙ্ক যথাক্রমে 1.5 ও 2.5 হলে কাচ ও হীরকের মধ্যে সঙ্কট কোণ নির্ণয় কর।

আমরা জানি,

$$_{\rm g}\mu_{\rm d}=rac{a\,\mu_{
m d}}{a\,\mu_{
m g}}$$
 এখানে, প্রতিসরাংক, $_{\rm a}\mu_{
m g}=1.5$ প্রতিসরাংক, $_{\rm a}\mu_{
m d}=1.5$ প্রতিসরাংক, $_{\rm a}\mu_{
m d}=2.5$ সঙ্কট কোণ, $\theta_{
m c}=?$ পাবার, $_{\rm g}\mu_{
m d}=rac{1}{{
m Sin} heta}$

$$\Rightarrow \sin \theta_{c} = \frac{1}{\frac{1}{g}\mu_{d}}$$

$$\Rightarrow \sin \theta_{c} = \frac{1}{1.67}$$

$$\Rightarrow \sin \theta_{c} = 0.5988$$

$$\Rightarrow \theta_{c} = \sin^{-1} 0.5988$$

$$\therefore \theta_{c} = 36.78^{\circ} \text{ (Ans)}$$

১১। 0.25m ফোকাস দুরত্বের একটি উত্তল লেন্সকে 0.75m ফোকাস দূরত্বের একটি অবতল লেন্সের সংস্পশে রাখা হল। এ সমবায়টির তুল্য ফোকাস দূরত্ব ও ক্ষমতা নির্ণয় কর।

আমরা জানি,

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$$

$$\Rightarrow \frac{1}{f} = \frac{1}{0.25} + 0.75$$

$$\Rightarrow \frac{1}{f} = \frac{3}{0.75} + 0.75$$

$$\Rightarrow \frac{1}{f} = \frac{3}{0.75} + 0.75$$

$$\Rightarrow \frac{1}{f} = \frac{3}{0.75} + 0.75$$

$$\Rightarrow \frac{1}{f} = \frac{2}{0.75}$$

$$\Rightarrow 2f = 0.75$$

$$\therefore f = \frac{0.75}{2} \text{ m} = 0.375 \text{ m (Ans.)}$$

আবার,
$$P = \frac{1}{f} = \frac{1}{0.375} = 2.67 D$$
 (Ans.)

১২। d গভীরতা বিশিষ্ট কোন পাত্রের $\frac{1}{4}$ অংশ μ_1 প্রতিসরাঙ্কের একটি তরলে এবং বাকী অংশ μ_2 প্রতিসরাঙ্কের অপর একটি তরলে পূর্ণ করা হল। খাড়া

এবং বাকা অংশ μ_2 প্রাওসরাঞ্চের অপর একাট তরলে পূণ করা হল। উপর থেকে নিচে তাকালে ঐ পাত্রটি কত গভীর বলে মনে হবে। এখানে.

 μ_1 প্রতিসরাঙ্কের তরলের প্রকৃত গভীরতা $=rac{d}{4}$

 $\therefore \mu_2$ প্রতিসরাক্ষের তরলের প্রকৃত গভীরতা = $\dfrac{3d}{4}$

আমরা জানি,

 μ_1 প্রতিসরাঙ্কের তরলের আপাত গভীরতা $=rac{$ প্রকৃত গভীরতা $}{$ প্রতিসরাক্ষ

 $\therefore \mu_{_{1}}$ প্রতিসরাক্ষের তরলের আপাত গভীরতা $=rac{d}{4\mu_{_{1}}}$

এবং $\;\mu_2\;$ প্রতিসরাঙ্কের তরলের আপাত গভীরতা = $\displaystyle \frac{3d}{4\mu_2}$

$$\therefore \mu_1$$
 এবং $\ \mu_2$ তরলের মোট আপাত গভীরতা $= rac{d}{4\mu_1} + rac{3d}{4\mu_2}$ $= rac{d}{4} igg(rac{1}{\mu_1} + rac{3}{\mu_2}igg) \ (Ans.)$

১৩। একটি প্রিজমের উপাদানের প্রতিসরাঙ্ক 1.5। প্রিজমের কোন এক তলে আলোকরশ্মি 50° কোণে আপতিত হলে রশ্মিটির ন্যূনতম বিচ্যুতি ঘটে। প্রিজম কোণ নির্ণয় কর।

$$\mu = \frac{\sin\frac{A + \delta m}{2}}{\sin\frac{A}{2}}$$

প্রতিসরান্ধ,
$$\mu=1.5$$
 আপতিত কোণ, $i=50^{o}$ প্রিজম কোণ, $A=$?

$$\Rightarrow 1.5 = \frac{\sin i}{\sin \frac{A}{2}}$$

$$\Rightarrow 1.5 = \frac{\sin 50^{\circ}}{\sin \frac{A}{2}}$$

$$\Rightarrow 1.5 = \frac{0.766044443}{\text{Sin } \frac{A}{2}}$$

$$\Rightarrow$$
 Sin $\frac{A}{2} = \frac{0.766044443}{1.5}$

$$\Rightarrow \sin \frac{A}{2} = 0.510696295$$

$$\Rightarrow \frac{A}{2} = \sin^{-1} 0.510696295$$

$$\Rightarrow \frac{A}{2} = 30.71^{\circ}$$

$$\therefore$$
 A = 61.42° (Ans.)

১৪। একটি লেন্স হতে 15cm দূরে লক্ষ বস্তু রাখলে বিম্ব রাষ্ট্রর ও চারগুন বিবর্ধিত হয়। ঐ লক্ষ বস্তুটি লেন্স থেকে কত দূরে রাখলে বিম্ব অবাস্তব ও তিনগুন বিবর্ধিত হবে।

আমরা জানি,

$$m = -\frac{v}{u}$$

বিখানে,
$$u = 15$$
 cm বিবর্ধন, $m = -4$ ফোকাস দূরতু, $f = ?$

$$\Rightarrow -4 = -\frac{v}{15}$$

$$\therefore v = 60cm$$

আবার,

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{60} + \frac{1}{15} = \frac{1}{f}$$

$$\Rightarrow \frac{1+4}{60} = \frac{1}{f}$$

$$\Rightarrow 5f = 60$$

$$\therefore f = \frac{60}{5} = 12cm$$

আরার, বিবর্ধন,
$$m_1 = 3$$
 ফোকাস দূরত্ব, $f = 12cm$ বস্তু দূরত্ব $u_1 = ?$

 $\mathbf{m}_1 = -\frac{\mathbf{v}_1}{\mathbf{u}_1}$ $\Rightarrow 3 = -\frac{v_1}{u_1}$

 $\therefore \mathbf{v}_1 = -3\mathbf{u}_1$

 $\frac{1}{v_1} + \frac{1}{u_1} = \frac{1}{f}$

 $\Rightarrow \frac{1}{-3u_1} + \frac{1}{u_1} = \frac{1}{12}$

 $\Rightarrow \frac{-1+3}{3u_1} = \frac{1}{12}$

 $\therefore u_1 = \frac{24}{3} \text{ cm} = 8 \text{ cm} \text{ (Ans.)}$

১৫। একটি উভাবতুল লেন্সের বক্রতার ব্যাসার্ধ যথাক্রমে 30cm এবং 20cm। লেন্সটির ফোকাস দূরত্ব নির্ণয় কর। লেন্সের উপাদানের প্রতিসরাঙ্ক 1.5। আমরা জানি

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$
 $\Rightarrow \frac{1}{f} = (1.5 - 1) \left(\frac{1}{-20} - \frac{1}{30} \right)$
 $\Rightarrow \frac{1}{f} = 0.5 \left(\frac{-3 - 2}{60} \right)$
 $\Rightarrow \frac{1}{f} = 0.5 \left(\frac{-3 - 2}{60} \right)$
 $\Rightarrow \frac{1}{f} = 0.5 \left(\frac{-3 - 2}{60} \right)$
 $\Rightarrow \frac{1}{f} = 0.5 \left(\frac{-3 - 2}{60} \right)$

 $\Rightarrow \frac{1}{f} = 0.5 \times \frac{-5}{60}$

 $\Rightarrow \frac{1}{f} = \frac{-2.5}{60}$

∴ $f = \frac{60}{-2.5} = -24cm$ উত্তর:লেসটির ফোকাস দূরত্ব 24cm

১৬। অস্তগামী সূর্য দেখতে হলে একটি মাছ পানির নীচ থেকে কোন দিকে তাকাবে? (পানির প্রতি সরাঙ্ক $\frac{4}{3}$)

মনে করি, অস্তগামী সূর্য দেখতে হলে একটি মাছ পানির নীচ থেকে সঙ্কট কোণ

 $heta_{
m c}$ কোণে তাকাবে।

আমরা জানি, $\mu = \frac{1}{\sin \theta_c}$

 $\Rightarrow \sin \theta_{\rm c} = \frac{1}{11}$

 $\Rightarrow \sin \theta_{\rm c} = \frac{1 \times 3}{4}$

$$\Rightarrow \theta_{c} = \sin^{-1} \frac{3}{4}$$

$$\therefore \theta_{c} = 48.6^{\circ} \quad (Ans.)$$

১৭। পানি সাপেক্ষে কাচের প্রতিসরাঙ্ক $\frac{9}{8}$ । বায়ু সাপেক্ষে কাচের প্রতিসরাঙ্ক $\frac{3}{2}$ । বায়ু সাপেক্ষে পানির প্রতিসরাঙ্ক কত? আমরা জানি,

$$\begin{array}{l} _{a}\mu_{w}\times_{w}\mu_{g}\times_{g}\mu_{a}=1\\ \\ \Rightarrow_{a}\mu_{w}=\frac{1}{\frac{1}{w\mu_{g}\times_{g}\mu_{a}}}\\ \\ \Rightarrow_{a}\mu_{w}=\frac{a\mu_{g}}{\frac{u}{w\mu_{g}}}\\ \\ \Rightarrow_{a}\mu_{w}=\frac{\frac{3}{2}}{\frac{9}{8}}\\ \\ \Rightarrow_{a}\mu_{w}=\frac{3}{2}\times\frac{8}{9}\\ \\ \therefore_{a}\mu_{w}=\frac{4}{3}=1.33 \ \text{Ans.} \end{array}$$

১৮। $10~{\rm cm}$ পুরু একটি কাঁচ ফলকের তলদেশে অবস্থিত একটি কালির দাগকে লম্বভাবে দেখা হচ্ছে। কাঁচের প্রতিসরাংক $1.5~{\rm cm}$ দর্শকের দিকে কালির দাগটির আপাত সরণ নির্ণয় কর।

প্রতিসরাংক
$$=$$
 $\frac{প্রকত গভীরতা}{\text{আপাত গভীরতা}}$
 \Rightarrow আপাত গভীরতা $=$ $\frac{প্রকত গভীরতা}{প্রতিসরাংক}$
 \Rightarrow আপাত গভীরতা $=$ $\frac{10}{1.5}$
 \therefore আপাত গভীরতা $=$ $6.6666cm$
আপাত সরণ $=$ প্রকৃত গভীরতা $-$ আপাত গভীরতা

⇒ আপাত সরণ = (10 - 6.6666) cm ∴ আপাত সরণ = 3.33 cm (Ans.) ১৯। বায়ু সাপেক্ষে পানির প্রতিসরাঙ্ক $\frac{4}{3}$ । পানি সাপেক্ষে বায়ুর প্রতিসরাঙ্ক

কত? আমরা জানি, ${}_{w}\mu_{a}=\frac{1}{{}_{a}\mu_{w}}$ $\Longrightarrow_{w}\mu_{a}=\frac{1}{\frac{4}{3}}$ প্রতিসরান্ধ, ${}_{w}\mu_{a}=\frac{2}{3}$ প্রতিসরান্ধ, ${}_{w}\mu_{a}=\frac{3}{4}$ (Ans.)

২০। একটি অবতল লেন্সের ফোকাস দূরত্ব 10cm. লেন্সের বাম পার্শ্বে অসীম দূরত্বে অবস্থিত একটি বস্তুর প্রতিবিম্বের অবস্থান, প্রকৃতি ও বিবর্ধন নির্ণয় কর।

আমরা জানি,
$$\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$$

$$\Rightarrow \frac{1}{v}+\frac{1}{\infty}=\frac{1}{10}$$

$$\Rightarrow \frac{1}{v}+\frac{1}{\infty}=\frac{1}{10}$$

$$\Rightarrow \frac{1}{v}+0=\frac{1}{10}$$

$$\Rightarrow \frac{1}{v}+0=\frac{1}{10}$$

$$\Rightarrow v=-10cm$$

$$\therefore v=-10cm=f$$
 প্রতিবিদ্ধ ফোকাসে গঠিত হবে। প্রতিবিদ্ধ হবে অবাস্তব ও সিধা।

চোখের উপযোজন (Accomudation of eye)ঃ

চোখের সাহায্যে আমরা বিভিন্ন দূরত্বে রাখা বস্তু দেখি। চোখের লেন্সের একটি বিশেষ গুণ হচ্ছে এর আকৃতি প্রয়োজন বোধে বদলিয়ে ফোকাস দূরত্ব কমাতে বা বাড়াতে পারে। ফোকাস দূরত্ব পরিবর্তনের ফলে লক্ষ্য বস্তুর যে -কোন অবস্থানের জন্য রেটিনার উপর প্রতিবিম্ব গঠিত হতে পারে। চোখের সামনে রাখা যে -কোন দূরত্বের বস্তু দেখার জন্য চোখের লেন্সের ফোকাস দূরত্ব নিয়ন্ত্রন করার ক্ষমতাকে সংযোজন ক্ষমতা বা উপযোজন ক্ষমতা বলে।

স্পষ্ট দর্শনের নিক্টতম দূরত্ব বা নিকট বিন্দু (Least distance of distinct vision Near Point)ঃ

চোখ থেকে সবচেয়ে কম দূরত্বে অবস্থিত লক্ষবস্তুকে বিনা শ্রান্তিতে স্পষ্ট দেখা যায়, তাকে স্পষ্ট দর্শনের নিকটতম দূরত্ব বলে। স্বাভাবিক চোখের জন্য স্পষ্ট দর্শনের নিকটতম দূরত্ব প্রায় 25 সেন্টিমিটার বা 10 ইঞ্চি। চোখ থেকে নিকটতম দূরত্বে (25 সেঃ মিঃ) অবস্থিত বিন্দুটিকে 'নিকট বিন্দু' বলে।

দর্শনানুভূতির স্থায়িত্বকাল (Persistence of vision) &

চোখের সামনে কোন বস্তু রাখলে রেটিনায় তার বিম্ব গঠিত হয় এবং আমরা বস্তুটিকে দেখতে পাই। যদি বস্তুটিকে চোখের সামনে থেকে সরিয়ে নেওয়া হয় তাহলে 0.1 সেকেন্ড পর্যন্ত এর অনুভূতি মস্তিক্ষে থেকে যায়। এই সময়কে দর্শনানুভূতির স্থায়িত্বকাল বলে।

চোখের ক্রটি ও এর প্রতিকার (Defects of Vision and Its Correction) ৪

যদি কোন চোখ ২৫ সেঃমিঃ থেকে অসীম পর্যন্ত কোন বস্তুকে স্পষ্ট দেখতে না পায় তাহলে সেই চোখ ক্রটিপূর্ণ বলে ধরা হয়। চোখে সাধারণত চার ধরনের ক্রটি দেখা যায়। যথা ঃ

- ১। হ্রস্ব দৃষ্টি বা ক্ষীণ দৃষ্টি (Short sight or Myopia)
- ২। দীর্ঘ দৃষ্টি বা দূরদৃষ্টি (Long sight or Hypermetropia)
- ৩। বার্ধক্য দৃষ্টি বা চাল্শে (Presbiopia)
- 8। বিষম দৃষ্টি বা নকুলান্ধতা (Astigmatism)

<u>১। হস্ব দৃষ্টি বা ক্ষীণ দৃষ্টি (Short sight or Myopia)</u> যদি কৌন চোখের দৃষ্টি এমন হয় যে, কাছের বস্তু দেখতে পায় কিন্তু দূরের বস্তু দেখতে পায় না, তবে চোখের দৃষ্টির এই ক্রটিকে ক্ষীণ দৃষ্টি বলে। সাধারণত অল্প বয়সে এ ক্রটি হয়ে থাকে।

কারণ ঃ দুটি কারণে সাধারণত এ ত্রুটি হয়ে থাকে

- (ক) চক্ষু লেন্সের ফোকাস দূরত্ব হাস পেলে অর্থাৎ ক্ষমতা বৃদ্ধি পেলে।
- (খ) অক্ষি গোলকের ব্যাসার্ধ বেড়ে গেলে।

ত্রিটির ফলঃ ক্ষীণ দৃষ্টিসম্পন্ন চোখে অসীম থেকে আগত রশ্মিণ্ডচ্ছ চক্ষু লেন্সে প্রতিসরণের পর রেটিনার অনেক সামনে চক্ষু লেন্সের ফোকাস তলে মিলিত হয়ে প্রতিবিম্ব গঠন করে। চোখের উপযোজন ক্ষমতা দ্বারা এ প্রতিবিম্ব রেটিনার উপর ফেলা যায় না। ফলে লক্ষ্য বস্তু স্পষ্ট দেখা যায় না। এ ধরনের চোখের দূর বিন্দু অসীমের পরিবর্তে অনেক নিকটে হয়ে থাকে। এমনকি এক মিট রের কমও হতে পারে। চিত্রে T হচ্ছে ক্রেটিযুক্ত চোখের দূরবিন্দু।

প্রতিকারঃ চক্ষু লেন্সের অভিসারী ক্ষমতা বেড়ে গেলে এ ধরণের ত্রুটির উদ্ভব হয়।

চক্ষু লেন্সের অভিসারী ক্ষমতা প্রতিহত করার জন্য চশমা হিসেবে অবতল লেন্স ব্যবহার করা হয়। চশমা লেন্সের অপসারী ক্রিয়া চক্ষু লেন্সের অভিসারী ক্রিয়ার বিপরীতে ক্রিয়া করে। অপসারী লেন্সের ফোকাস দূরত্ব এমন হতে হবে যেন অসীম দূরত্বের বস্তু হতে আগত রশ্মিণ্ডচ্ছে অপসারী লেন্সে প্রতিসরণের পর চক্ষুর দূরবিন্দু T হতে অপসারী হচ্ছে বলে মনে হয়। অর্থাৎ এমন একটি অবতল লেন্স ব্যবহার করা হয় যেন বস্তু অসীম দূরত্বে থাকলে প্রতিবিদ্ধ T বিন্দুতে সৃষ্টি হয়। T বিন্দু চক্ষু লেন্সের জন্য বস্তু হিসেবে ক্রিয়া করে।

আগত রশ্মিণ্ডচ্ছ অপসারী লেন্স ও চক্ষু লেন্সের যুগ্ম ক্রিয়ায় রেটিনার উপরিস্থিত কোন একটি বিন্দুতে মিলিত হবে। ধরা যাক, ক্রুটিযুক্ত চোখের দূরবিন্দুর দূরত্ব =d ;

অতএব, চশমা লেন্সের ক্ষেত্রে, u= ∞ এবং v= চোখের স্পষ্ট দর্শনের দীর্ঘতম দূরত্ব =-d

$$\therefore \frac{1}{f} = \frac{1}{v} + \frac{1}{u} \Rightarrow \frac{1}{f} = \frac{1}{-d} + \frac{1}{\infty} \Rightarrow \frac{1}{f} = \frac{1}{-d}$$

facebook /gmail/skype: -tanbir.cox

বা, f=-d অতএব, অবতল লেন্সের ক্ষেত্রে প্রতিবিম্ব অবাস্তব হেতু v=-d ধরা হয়েছে। d ফোকাস দূরত্ব বিশিষ্ট একটি অবতল লেন্সের চশমা ব্যবহার করতে হবে।

২। দীর্ঘ দৃষ্টি বা দূরদৃষ্টি (Long sight or Hypermetropia) ।

যদি কোন চোখের দৃষ্টি এমন হয় যে, দুরের বস্তু দেখতে পায় কিন্তু কাছের বস্তু দেখতে পায় না, তবে চোখের দৃষ্টির এই ক্রণ্টিকে

দীর্ঘ দৃষ্টি বা দূরদৃষ্টি বলে। সাধারণত অধিক বয়সে এ ক্রণ্টি হয়ে থাকে। কারণ ঃ দুটি কারণে সাধারণত এ ক্রণ্টি হয়ে থাকে

- (ক) চক্ষু লেন্সের ফোকাস দূরত্ব বৃদ্ধি পেলে অর্থাৎ ক্ষমতা হ্রাস পেলে।
- (খ) অক্ষি গোলকের ব্যাসার্ধহ্রাস পেলে।

ত্রাটির ফলঃ এ ধরনের ক্রটিযুক্ত চোখে স্বাভাবিক নিকট বিন্দু N হতে আগত আলোকরশ্যি চক্ষু লেন্সের মধ্যদিয়ে প্রতিসরণের পর রেটিনার পিছনে F বিন্দুতে মিলিত হয় এবং চোখ কাছের ঐ বস্তু দেখতে পায় না। কিন্তু N_I বিন্দু হতে আগত আলোক রশ্মি রেটিনায় মিলিত হয় এবং চোখ ঐ N_I বিন্দুতে রক্ষিত বস্তু চশমা ছাড়া দেখতে পায়।

খুব কাছে স্থাপন করা হয়। এ লেন্সের ফোকাস দূরত্ব এমন রাখা হয় যাতে N বিন্দুতে একটি বস্তু রাখলে N_I বিন্দুতে একটি অবাস্তব প্রতিবিম্ব গঠিত হয়। N বিন্দু হতে আগত আলোক রিশ্ম চশমা লেন্সে একবার এবং চক্ষু লেন্সে আর একবার প্রতিসৃত হয়ে রেটিনার কোন বিন্দুতে মিলিত হয়। N_I বিন্দু চক্ষু লেন্সের জন্য বস্তু হিসেবে ক্রিয়া করে। উত্তল লেসটির আলোক কেন্দ্র হতে বস্তুর দূরত্ব = স্বাভাবিক চোখের স্পষ্ট দর্শনের ন্যূনতম দূরত্ব = u এবং প্রতিবিম্ব দূরত্ব = দীর্ঘি দৃষ্টি চোখের স্পষ্ট দর্শনের ন্যূনতম দূরত্ব = v। এক্ষেত্রে, u ধনাত্মক এবং v ঋনাত্মক বলে লেন্সের সাধারণ সমীকরণ হতে লেস্টির ফোকাস দূরত্ব পাই,

$$\frac{1}{-v} + \frac{1}{u} = \frac{1}{f}$$
বা, $f = \frac{uv}{v - u}$

এক্ষেত্রে ক্রটিপূর্ণ চোখের লোকের চশমার লেন্সটি হবে উত্তল্ এবং যার মান উপরিউক্ত সমীকরণ থেকে পাওয়া যায়।

<u>৩। বার্ধক্য দৃষ্টি বা চাল্শে (Presbiopia)</u> বয়স বৃদ্ধির সাথে সাথে মানুষের চোখের উপযোজন ক্ষমতা কমে যায় এবং এর ফলে মানুষ কাছের বা দূরের কোন বস্তুই স্পষ্ট দেখতে পায় না। সাধারণত চল্লিশ বছর বয়সের পর এ ক্রটি দেখা যায় বলে একে বার্ধক্য দৃষ্টি বা চালশে বলে।

প্রতিকার ৪ এটি দূর করার জন্য চশমার কচি এমন ভাবে তৈরী করতে হবে যাতে কাচের উপরদিকে অবতল লেস এবং নিচদিকে উত্তল লেস থাকে। দূরের বস্তু দেখার জন্য উপরের অংশ এবং কাছের জিনিস দেখার জন্য নিচের অংশ ব্যবহৃত হয়। এ ধরণের চশমার লেসকে দ্বি-ফোকাস (Bi-focal) লেস বলে।

8। বিষম দৃষ্টি বা নকুলান্ধতা (Astigmatism) এই ক্রেটিগ্রন্থ চোখ একই দূরত্বে অবস্থিত অনুভূমিক ও উলম্ব দুটি সরল রেখার উভয়দিকে সমানভাবে স্পষ্ট দেখতে পায় না কর্ণিয়ার অসম বক্রতার জন্য চোখে এ ধরনের দেখা দেয়। সমতল বেলনাকৃতি (Plano cylindrical) লেন্স ব্যবহার করে এই ক্রেটির প্রতিকার করা যায়। তবে চোখে এই ক্রেটির সাথে যদি দীর্ঘ দৃষ্টি বা ক্ষীণ দৃষ্টি ক্রেটি থাকে তবে গোল বেলনাকৃতি (Sphero cylindrical) লেন্স ব্যবহার করতে হয়। এই ধরনের লেন্সকে টরিক লেন্স (Toric lens) বলে।

সরল অণুবিক্ষন যন্ত্র ঃ সরল অণুবিক্ষন যন্ত্র হলো উপযুক্ত হাতলে আবদ্ধ কম ফোকাস দূরত্বের একটি উত্তল লেন্স। লেন্সের ফোকাস দূরত্বের মধ্যে কোন বস্তুকে স্থাপন করে লেন্সের অপর পাশ থেকে বস্তুটিকে দেখলে লক্ষ্যবস্তুর পরিবার্তে বস্তুটির একটি অবাস্তব ও বিবর্ধিত প্রতিবিদ্ব দেখাযায়। বিদ্ব চোখের যত কাছে গঠিত হবে বীক্ষন কোণ ও তত বড় হবে এবং বিদ্বটিও বড় দেখাবে।

কার্যপ্রণালীঃ একটি ক্ষুদ্র বস্তু PQ -কে একটি উত্তল লেন্স LO -এর ফোকাস ও আলোক কেন্দ্রের মধ্যে রাখা হল। P বিন্দু হতে একটি রিশ্মি PR লেন্সের প্রধান অক্ষের সমান্তরালে লেন্সে আপতিত হয়ে প্রতিসরণের পর দ্বিতীয় প্রধান ফোকাসের, মধ্যদিয়ে RS অভিমুখে নির্গত হয়। অপর একটি রিশ্মি PO লেন্সের আলোক কেন্দ্র দিয়ে প্রবেশ করে বিচ্যুত না হয়ে সোজা প্রতিসরিত হয়। এ প্রতিসরিত রিশ্মিদ্বাকে পশ্চাৎ দিকে বাড়ালে এরা P' বিন্দুতে মিলিত হয়। P' হতে প্রধান অক্ষের উপর P'Q'লম্ব টানলে তা হবে PQ বস্তুর অবাস্তব ও বিবর্ধিত প্রতিবিম্ব।

বিবর্ধনঃ ধরা যাক, বস্তুর দূরত্ব OQ=u, বিম্বের দূরত্ব OQ'=v এবং লেসটির ফোকাস দূরত্ব =f, চোখেল স্পষ্ট দর্শনের ন্যূনতম দূরত্ব D ধরলে লিখতে পারি, OQ'=v=D । বিবর্ধন m হলে

চোখে প্ৰতিবিদ্ধ কতৃক সৃষ্ট দৃষ্টি কোণ

m = প্রতিবিদ্ধ অবস্থানে বস্তু আছে ধরে নিয়ে চোখে বস্তু কর্তৃক সৃষ্ট দৃষ্টি কোণ

 $\angle P'OQ'$ ও $\angle P_1OQ'$ উভয়ই ক্ষুদ্র বলে,

$$m = \frac{\tan \angle P'OQ'}{\tan \angle P_1OQ'} = \frac{P'Q'/OQ'}{P_1Q'/OQ'} \Rightarrow m = \frac{P'Q'}{P_1Q'} = \frac{P'Q'}{PQ}$$
$$m = \frac{P'Q'}{PQ} = \frac{OQ'}{OQ} \therefore m = \frac{v}{u}$$

উত্তল লেন্সে অবাস্তব প্রতিবিম্ব বলে v ঋনাতাক এবং u ও f ধনাতাক,

$$\frac{1}{-v} + \frac{1}{u} = \frac{1}{f}$$
 \vec{a} , $\frac{1}{u} = \frac{1}{v} + \frac{1}{f}$

যৌগিক অণুবিক্ষন যদ্রের গঠন ও কার্যনীতিঃ যৌগিক অণুবিক্ষন যন্ত্র বস্তুত দুটি উত্তল লেস O এবং E থাকে। লেস দুটি সমাক্ষভাবে দুটি নলের মধ্যে পরস্পর হতে কিছু দুরে অবস্থান করে। নল্ল দুটি একটি অপররি ভিতরে থাকে যাতে এদের মধ্যবর্তী

দূরত্ব পরিবর্তন করা যায়। বস্তুর দিকের লেসটি অভিলক্ষ্য O যার ফোকাস দূরত্ব ও উন্মেষ অপেক্ষাকৃত কম ও চোখের দিকের লেসটি অভিনেত্র E যার ফোকাস দূরত্ব ও উন্মেষ অপেক্ষাকৃত বেশী। একটি স্টান্ডের সাহায্যে নলটি ধরা থাক। ব্যাক ও পিনিয়ন ব্যবস্থার সাহায্যে নলটির অবস্থান পরিবর্তন করে বস্তুটিকে ফোকসিং করা হয়।

কার্যনীতি ঃ চিত্রে O হচ্ছে অভিলক্ষ্য, E হচ্ছে অভিনেত্র । PQ একটি লক্ষ্যবস্তু যাকে অভিলক্ষের সামনে ফোকাস দূরত্বের কিছু বাইরে স্থাপন করা হয় । P বিন্দু থেকে আগত রশ্মিশুচ্ছ প্রতিসরণের পর P_I বিন্দুতে মিলিত হয় । সুতরাং P_IO হল PO এর বাস্তব ও উল্টা

প্রতিবিম্ব । অভিনেত্র E কে সরিয়ে এমন ভাবে উপযোজন করা হয় যাতে P_1Q_1 বিম্বটি অভিনেত্রের ফোকাস ও আলোক কেন্দ্রের মধ্যে পড়ে । E লেপটি বিবর্ধক কাচ হিসেবে ক্রিয়া করবে । P_1Q_1 বিম্বটি E লেপের সামনে একটি বস্তু হিসেবে ক্রিয়া করবে এবং লেপের সামনে একটি বিবর্ধিত, অবাস্তব ও সিধা প্রতিবিম্ব P_2Q_2 গঠন করবে । P_2Q_2 বিম্বই হবে যন্ত্রটি দ্বারা গঠিত বস্তুর চুড়ান্ত প্রতিবিম্ব । অভিনেত্রের অবস্থান এমন ভাবে রাখা হয় যাতে চুড়ান্ত প্রতিবিম্ব স্পষ্ট দর্শনের ন্যূনতম দূরত্বে গঠিত হয় ।

বিবর্ধনঃ এ যন্ত্রে লক্ষ্যবস্তুটি প্রথমে অভিলক্ষ্য O দারা একবার ও পরে অভিনেত্র E দারা আর একবার অর্থাৎ মোট দুবার বিবর্ধিত হয়।

$${
m O}$$
 দারা বিবর্ধন, $m_1=rac{P_1Q_1}{PQ}$ এবং ${
m E}$ দারা বিবর্ধন, $m_2=rac{P_2Q_2}{P_1Q_1}$

$$\therefore$$
 মোট বিবর্ধন, $m = \frac{P_2Q_2}{PQ} = \frac{P_2Q_2}{P_1Q_1} \times \frac{P_1Q_1}{PQ} = m_2m_1$

$$\therefore$$
 অর্থাৎ মোট বিবর্ধন, $m=m_1m_2$ (1)

ধরা যাক,
$$O$$
 লেন্স হতে বস্তু PQ এর দূরত্ব, $C_IQ=u_o$

$$O$$
 লেন্স হতে প্রতিবিম্ব P_1Q_1 এর দূরত্ব, $C_1Q_1=v$

$$\therefore m_1 = \frac{P_1 Q_1}{PQ} = \frac{v_o}{u_o}$$
 চিহ্ন সংশোধন করে লিখলে, $m_1 = -\frac{v_o}{u_o}$ (2)

আবার ধরা যাক, E লেন্স হতে P_1Q_1 এর দূরত্ব, $C_2Q_1=u_e$

E লেন্স হতে P_2Q_2 এর দূরত্ব, $C_2Q_2=v_e$

$$\therefore m_2 = \frac{P_2 Q_2}{P_1 Q_1} = \frac{v_e}{u_e} \dots \dots \dots (3)$$

অভিনেত্রের ফোকাস দূরত্ব $= f_e$ এবং চোখের স্পষ্ট দর্শনের ন্যূনতম দূরত্ব $v_e = D$ ধরলে,

$$\frac{1}{-v_e} + \frac{1}{u_e} = \frac{1}{f_e}$$
 $[\because$ চুড়ান্ত প্রতিবিম্ব অবাস্তব বলে v_e ঋনাত্মক $]$

বা,
$$\frac{v_e}{-v_e} + \frac{v_e}{u_e} = \frac{v_e}{f_e}$$
 [উভয় পক্ষকে v_e দারা গুন]

(2) নং ও (4) নং সমীকরণ থেকে m_1 ও m_2 এর মান (1) নং সমীকরণে বসিয়ে প্রাই,

$$m=-rac{v_o}{u_o}igg(1+rac{D}{f_e}igg)$$
 (5) ইহাই যৌগিক অণুবিক্ষন যন্ত্রে বিবর্ধনের রাশিমালা।

নভোদূরবিক্ষণ যন্ত্রের গঠন ও কার্যনীতিঃ

নভোদূরবিক্ষণ যন্ত্র ৪ আকাশের গ্রহ, নক্ষত্র ইত্যাদি পর্যবেক্ষনের জন্য যে, দূরবিক্ষণযন্ত্র ব্যবহার করা হয় তাকে নভোদূরবিক্ষণ যন্ত্র বলে। ডেনমার্কের বিখ্যাত জ্যোতির্বিদ কেপলার ১৬১১ সালে নভোদূরবিক্ষ্ণ যন্ত্র উদ্ভাবন করে।

<u>গঠনঃ</u> নভোদূরবীক্ষণ যন্ত্র দুটি লেস দ্বারা গঠিত। লেস দুটিকে দুটি টানা নলের সাহায্যে একটি ধাতব চোঙের দুই প্রান্তে সমাক্ষভাবে স্থাপন করা হয়। যে লেসটি সর্বাদা বস্তুর দিকে থাকে তাকে অভিলক্ষ্য (O) বলে। এটি ক্রাউন কাচের তৈরী এবং এর

ফোকাস দূরত্ব ও উন্মেষ অপেক্ষাকৃত বড়। যে লেন্সের পিছনে রচার্থ রেখে দেখতে হয় সেটি অভিনেত্র (E)। এটি ফ্লিন্ট কাচের তৈরী এবং এর ফোকাস দূরত্ব ও উন্মেষ অপেক্ষাকৃত ছোট। প্রয়োজনে স্কুর সাহায্যে অভিলক্ষ্য ও অভিনেত্রের মধ্যবর্তী দূরত্ব পরিবর্তন করা যায়।

ক্ষুদ্রাকৃতি প্রতিবিদ্ব PQ গঠন করে Q বিন্দু Q -এর ফোকাস। E কে এমন ভাবে রাখতে হবে যেন PQ প্রতিবিদ্বটি E -এর ফোকাস ও আলোক কেন্দ্রের মধ্যে পড়ে। ফলে PQ, E -এর জন্য বস্তু হিসেবে বিবেচিত হবে এবং E -এর সামনে একই দিকে একটি অবাস্তব ও বিবর্ধিত প্রতিবিদ্ব গঠিত হবে। শেষ প্রতিবিদ্ব P_1Q_1 , PQ এর তুলনায় সমশীর্ষ কিন্তু দূরবর্তী মূল বস্তুটির তুলনায় অবশীর্ষ বা উল্টা হবে। সাধারণত শেষ প্রতিবিদ্বকে চোখের স্পষ্ট দর্শনের ন্যূনতম দূরত্বে গঠন করে দেখা হয়। অর্থাৎ অভিনেত্রকে এমন ভাবে স্থাপন করা হয় যেন P_1Q_1 বিদ্ব চোখের নিকট বিন্দুতে গঠিত হয়। এ ধরনের ফোকাসিংকে স্পষ্ট দর্শনের ন্যূনতম দূরত্বে ফোকাসিং বা নিকট ফোকাসিং বলে।

বিবর্ধনঃ নভোদূরবিক্ষণ যন্ত্রের বিবর্ধন বলতে চোখে প্রতিবিম্ব এবং বস্তু দ্বারা উৎপন্ন কোণের অনুপাতকে বুঝায়। যদি বস্তু ও প্রতিবিম্ব চোখে যথাক্রমে α এবং β কোণ উৎপন্ন করে, তবে বিবর্ধন ক্ষমতা

$$\mathbf{m} = \frac{\text{চো খ প্রতিবিম্ম ঝ দারা উৎপন্ন কোণ}}{\text{চো খে বস্ফু দারা উৎপন্ন কোণ}} = \frac{\beta}{\alpha} = \frac{\angle PC_2Q}{\angle PC_1Q}$$

যেহেতু কোণ দুটোর মান খুবই ছোট, তাই

$$m = \frac{\tan \angle PC_2Q}{\tan \angle PC_1Q} = \frac{PQ/C_2Q}{PQ/C_1Q} = \frac{C_1Q}{C_2Q} = \frac{f_o}{u_e} \dots \dots (1)$$

 $C_1Q=$ অভিলক্ষ্যের ফোকাস দূরত্ব $=f_o$, $C_2Q=$ অভিনেত্রের ক্ষেত্রে বস্তুর দূরত্ব $=u_e$ $C_2Q_1=$ স্পিষ্ট দর্শনের নিকটতম দূরত্ব $=v_e=D=E$ হতে চূড়ান্ত প্রতিবিম্বের দূরত্ব $=u_e$

অভিনেত্রের সমীকরণ হতে, $\frac{1}{-v_a} + \frac{1}{u_a} = \frac{1}{f_a}$ $[\because চূড়ান্ত প্রতিবিম্ব অবাস্তব বলে <math>v_e$ ঋনাত্মক।]

বা,
$$\frac{1}{u_e} = \frac{1}{v_e} + \frac{1}{f_e}$$

বা, $\frac{1}{u_e} = \frac{1}{D} + \frac{1}{f_e} = \frac{D + f_e}{Df_e} \dots \dots \dots (2)$ [$v_e = D$ বসিয়ে]

$$\therefore u_e = \frac{Df_e}{D + f_e} \dots \dots \dots (3)$$

 \therefore বিবৰ্ধন ক্ষমতা $m = \frac{f_o}{u_e} = f_o \left(\frac{D + f_e}{D f_e} \right) = f_o \left(\frac{1}{D} + \frac{1}{f_e} \right) \dots \dots \dots (4)$

এবং যন্ত্রের দৈর্ঘ্য,
$$L = C_1 C_2 = f_o + u_e = f_o + \frac{D f_e}{D + f_e} \dots \dots (5)$$

<u>অসীম দূরত্বে ফোকাসিং বা স্বাভাবিক ফোকাসিং</u>ঃ ধরা যাক, অভিনেত্র E কে এমন অবস্থানে রাখা হল যাতে PQ, E -এর ফোকাস তলে থাকে । Q বিন্দু O এবং E উভয়ের ফোকাস । PQ হতে আগত আলোক রশ্মিগুচ্ছ অভিনেত্রে পরস্পরের সমান্তরালে প্রতিসৃত হয় । ফলে PQ -এর দিকে অসীম দূরত্বে একটি অতি বিবর্ধিত অবাস্তব প্রতিবিদ্ধ গঠিত হয় । এ ধরনের ফোকাসিংকে অসীম দূরত্বে ফোকাসিং বা স্বাভাবিক ফোকাসিং বলে ।

বিবর্ধনঃ ধরি, C_2Q = অভিনেত্রের ফোকাস দূরত্ব $= f_e$ অসীম দূরত্বে ফোকাসিং এর ক্ষেত্রে, (1) নং সমীকরণ অনুযায়ী

বিবর্ধন,
$$m = \frac{\beta}{\alpha} = \frac{C_1 Q}{C_2 Q} \dots \dots \dots (1)$$

এবং যন্ত্রের দৈর্ঘ্য, $L'=f_o+f_e$ (7)

- (১) অভিলক্ষের ফোকাস দূরত্বে (f_o) বৃদ্ধি করে;
- (২) অভিনেত্রের ফোকাস দূরত্বে (f_e) হ্রাস করে।

Want more Updates: https://www.facebook.com/tanbir.ebooks দ্বিতীয় পত্রের অংকের সমাধান

2nd Paper Math Solution

১০। আলোক যন্ত্ৰপাতি (Optical Instrument)

১। একটি নভো-দূরবিক্ষন যন্ত্রের অভিলক্ষ্য এবং অভিনেত্রের ফোকাস দূরত্ব যথাক্রমে 50cm এবং 5cm। নিকট ফোকাসিং-এর ক্ষেত্রে ও স্বাভাবিক ফোকাসিং- এর ক্ষেত্রে যন্ত্রটির দৈর্ঘ্য এবং এর দ্বারা সৃষ্ট বিবর্ধন নির্ণয় কর।

আমরা জানি. নিকট ফোকাসিং এর ক্ষেত্রে যন্ত্রের দৈর্ঘ্য,

$$x = f_o + u_e$$

$$\Rightarrow x = f_o + \frac{D \times f_e}{D + f_e}$$

$$\Rightarrow x = 0.5 + \frac{0.25 \times 0.05}{0.25 + 0.05}$$

⇒
$$x = 0.5 + 0.0416$$

∴ $x = 0.5416$ m (Ans.)

বিবৰ্ধন
$$m = \frac{f_o}{u_e}$$

$$\Rightarrow m = \frac{f_o(D + f_e)}{D \times f_e}$$

$$\Rightarrow m = \frac{0.5(0.25 + 0.05)}{0.25 \times 0.05}$$

$$\therefore m = 12 \quad (Ans.)$$
আবার,

স্বাভাবিক ফোকাসিং- এর ক্ষেত্রে

যন্ত্রের দৈর্ঘ্য, $x = f_0 + f_e = (0.5 + 0.05)m$ = 0.55 m (Ans.)

বিবর্ধন ক্ষমতা $m = \frac{f_o}{f_o}$

$$\Rightarrow m = \frac{0.5}{0.05}$$

$$\therefore m = 10 \quad \text{(Ans.)}$$

অভিলক্ষ্যের ফোকাস দ্রত্ব,
$$f_0 = 50 {
m cm} = 0.5 {
m m}$$
 অভিনেত্রের ফোকাস দ্রত্ব,

অভিলক্ষ্যের ফোকাস দূরতু, $f_o = 50 \text{cm} = 0.5 \text{m}$ $f_e = 5cm = 0.05m$

⇒
$$P = \frac{1}{0.5}$$

∴ $P = 2D$ (Ans.)

৩। এক ব্যক্তির নিকট বিন্দু $0.4 \mathrm{m}$ এবং দূর বিন্দু $5 \mathrm{m}$ -এ অবস্থিত। বই পড়তে এবং দূরের বস্তু দেখতে তার কত ক্ষমতার লেন্সের প্রয়োজন? আমরা জানি.

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{-0.4} + \frac{1}{0.25} = \frac{1}{f}$$

$$\Rightarrow \frac{-0.25 + 0.4}{0.4 \times 0.25} = \frac{1}{f}$$

এখানে,
প্রতিবিম্ব দূরত্ব,
$$v=-0.4m$$

বস্তুর দূরত্ব, $u=0.25m$
ক্ষমতা, $P=?$

$$\therefore 1.5 = \frac{1}{f}$$

$$\therefore P = 1.5D \text{ (Ans.)}$$

আবার.

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{-5} + \frac{1}{\infty} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{-5} + 0 = \frac{1}{f}$$

আবার,
প্রতিবিম্ব দূরত্ব,
$$v=-5m$$

বস্তুর দূরত্ব, $u=\infty$
ক্ষমতা, $P=?$

$$\therefore -0.2 = \frac{1}{f}$$

আবার,
$$P = \frac{1}{f}$$

$$\therefore P = -0.2D(Ans.)$$

২। দীর্ঘ দৃষ্টিসম্পন্ন এক ব্যক্তির স্পষ্ট দর্শনের ন্যুনতম দূরত 0.50m।

পড়ার জন্য তাকে কি ক্ষমতার লেন্স ব্যবহার করতে হবে? আমরা জানি.

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{-0.5} + \frac{1}{0.25} = \frac{1}{f}$$

$$\Rightarrow \frac{-1+2}{0.5} = \frac{1}{f}$$

$$\therefore f = 0.5 \text{ m}$$

$$\text{আবার, } P = \frac{1}{f}$$

প্রতিবিম্ব দূরত্ব, v = -0.50 m

৪। একটি অণুবিক্ষন যন্ত্রের অভিলক্ষ ও অভিনেত্রের ফোকাস দূরত্ব যথাক্রমে 2cm ও 7 cm এবং এদের মধ্যবর্তী দূরত্ব 20cm। অভিলক্ষের সামনে কত দূরে একটি বস্তু স্থাপন করলে অভিনেত্র থেকে 25cm দূরে এর প্রতিবিম্ব দেখা যাবে?

$$\frac{1}{v_e} + \frac{1}{u_e} = \frac{1}{f_e}$$

$$\Rightarrow \frac{1}{-25} + \frac{1}{u_e} = \frac{1}{7}$$

$$\Rightarrow \frac{1}{u_e} = \frac{1}{7} + \frac{1}{25}$$

$$\Rightarrow \frac{1}{u_e} = \frac{25 + 7}{7 \times 25}$$

$$\Rightarrow \frac{1}{u_e} = \frac{32}{175}$$

$$\Rightarrow u_e = \frac{175}{32}$$

এখানে, অভিলক্ষের ফোকাস দ্রত্ব, $f_o\!=\!2cm$ অভিনেত্রের ফোকাস দ্রত্ব, $f_e\!=\!7cm$ $v_o\!+\!u_e\!=\!20cm$ শেষ পতিবিম্ব দূরত্ব, $v_e\!=\!-25cm$ বস্তু দূরত্ব, $u_o\!=\!?$

⇒ $\frac{1}{u_e} = \frac{32}{175}$ ⇒ $u_e = \frac{175}{32}$ ∴ $u_e = 5.46875$ cm

আবার, $v_0 + u_e = 20$ cm
⇒ $v_0 + 5.46875 = 20$ ⇒ $v_0 = 20 - 5.46875$ ∴ $v_0 = 14.53125$ cm

৫। স্বাভাবিক দর্শনের জন্য 4 বিবর্ধন বিশিষ্ট একটি নভোদূরবীক্ষন যন্ত্রের লেন্স দুটির মধ্যবর্তী দূরত্ব 0.36m হলে লেন্স দুটির ফোকাস দূরত্ব নির্ণয় কর।

আমরা জানি,
$$m=\frac{f_1}{f_2}$$

$$\Rightarrow 4=\frac{f_1}{f_2}$$

$$\therefore f_1=4f_2.....(1)$$
 আবার, $L=f_1+f_2$
$$\Rightarrow 0.36=4f_2+f_2$$

$$\Rightarrow 5f_2=0.36$$

$$\Rightarrow f_2=\frac{0.36}{5}$$

 \therefore $f_2=0.072m=7.2cm$ ও $f_1=4\times7.2cm=28.8cm$ ৬। দীর্ঘ দৃষ্টিসম্পন্ন এক ব্যক্তির স্পষ্ট দর্শনের ন্যূনতম দূরত্ব 60~cm এবং তিনি 0.3~m ফোকাস দূরত্বের উক্তা লেস ব্যবহার করে। এতে তার স্পষ্ট দর্শনের ন্যূনতম দূরত্ব কত হ্রাস্য পাবে?

আমরা জানি,
$$\frac{1}{v}$$
 $\frac{1}{u} = \frac{1}{f}$

$$\frac{1}{-60} + \frac{1}{u} = \frac{1}{30}$$

$$\Rightarrow \frac{1}{u} = \frac{1}{30} + \frac{1}{60}$$

$$\Rightarrow \frac{1}{u} = \frac{2+1}{60}$$

$$\therefore u = \frac{60}{3} = 20 \text{cm}$$

$$\Rightarrow \frac{1}{v} = \frac{60}{3} = 20 \text{cm}$$

∴ স্পষ্ট দর্শনের ন্যূনতম দূরত্বহাসপাবে = (60-20) cm = 40cm (Ans.)

৭। একটি সরল অণুবীক্ষণ যন্ত্রে ব্যবহৃত লেন্সের ফোকাস দূরত্ব 0.14m. স্পষ্ট দৃষ্টির ন্যূনতম দূরত্ব 0.25m হলে ঐ যন্ত্রের বিবর্ধন কত? আমরা জানি.

$$m=1+rac{D}{f}$$
 এখানে, ফোকাস দূরত্ব, $f=0.14m$ স্পষ্ট দৃষ্টির ন্যূনতম দূরত, $D=0.25m$ ক $m=1+1.79$ $m=2.79$ (Ans.)

 $\therefore u_0 = 2.32 \text{ cm (Ans.)}$

তরঙ্গ মুখঃ

যে পর্যবৃত্ত আন্দোলন কোন জড় মাধ্যমের এক স্থান থেকে অন্য স্থানে শক্তি সঞ্চারিত করে কিন্তু মাধ্যমের কণগুলোকে আন্দোলিত করে না তাকে তুরঙ্গ বলে। কোন তরঙ্গের উপুর অবস্থিত সমদৃশা সম্পন্ন কণাগুলোর গতিপথকে তরঙ্গ মুখ বলে

ব্যাখ্যাঃ মনে করি, কোন সমসত্ব মাধ্যমে অবস্থিত S একটি অতি ক্ষুদ্র আলেক উৎস। তাহলে S -এর কম্পনে উৎপন্ন আড় তরঙ্গ মাধ্যমের চারদিকে ছড়িয়ে পড়ে। কোন তরঙ্গের বেগ v হলে t সময়ে তরঙ্গ vt দূরত্ব অতিক্রম করে। কোন বিন্দু উৎসকে কেন্দ্রকরে vt ব্যাসার্ধের একটি গোলক কল্পনা করলে এই গোলক পৃষ্ঠ t সময়ের তরঙ্গ মুখ নির্দেশ করে। এই t সময়ে গোলক পৃষ্ঠের প্রতিটি কম্পমান কণা একই দশায় থাকে। সুতরাং যে কোন সময় তরঙ্গ মুখ সেই তল নির্দেশ করে যে তলে কণা সমূহ একই দশায় কম্পমান অবস্থায় থাকে।

হাইগেনসের নীতিঃ তরঙ্গমুখের প্রতিটি বিন্দু অণুতরঙ্গ বা গৌণ তরঙ্গের উৎস হিসেবে বিবেচিত হবে। প্রতিটি গৌণ উৎস হতে অণুতরঙ্গ উৎপন্ন হয়ে মূল তরঙ্গের বেগে সঞ্চালিত হবে। কোন মুহূর্তে অণুতরঙ্গগুলোর সাধারণ ক্রপর্শতল ঐ মুহূর্তে তরঙ্গমুখের নুতন অবস্থান নির্দেশ করবে।

<u>হাইগেন্সের নীতির ব্যাখ্যা</u> \sharp মনে করি, কোন তরঙ্গ উৎস S হতে উৎপন্ন আলোক তরঙ্গের জন্য AB একটা গোলীয় তরঙ্গমুখ । হাইগেন্সের নীতি অনুসারে AB গোলীয় তলের প্রতিটি বিন্দু গৌণ তরঙ্গের উৎস রূপে বিবেচিত হবে । চিত্রে P_1, P_2, P_3 ইত্যাদি বিন্দুগুলো গৌণ তরঙ্গের উৎসরূপে বিবেচিত হবে । মূল তরঙ্গের বেগ v হলে উৎপন্ন গৌণ তরঙ্গ v বেগ্নে সঞ্চালিত হবে । t সময়ে তরঙ্গের অতিক্রান্ত দূরত্ব হবে vt । vt -এর সমান ব্যাসার্ধ নিয়ে P_1, P_2, P_3 ইত্যাদি বিন্দুকে

কেন্দ্র করে কতকগুলো বৃত্তচাপ অঙ্কন করে ঐ বৃত্তচাপ গুলোর সাধারণ স্পর্শক CD অঙ্কন করলে তা t সময় পর তরঙ্গ মুখের নুতন অবস্থান নির্দেশ করবে।

হাইগেনুসের নীতির সাহায্যে আলোকের প্রতিফলনের সূত্রগুলোর প্রমাণঃ ধরা যাক, একগুছে সমতল তরঙ্গ একটি দর্পণের (MM') উপর তির্যকভাবে আপতিত হচ্ছে। চিত্রে তরঙ্গুচছের দুটি রশ্মি AB ও CD দেখানো হয়েছে। কোন এক সময়ে, BD তরঙ্গমুখের B বিন্দুতে দর্পনে আপতিত। CD -কে বাড়ালে এটি দর্পণিকে E বিন্দুতে ছেদ করে। B -কে কেন্দ্র করে DE সমান ব্যাসার্ধ নিয়ে একটি বৃত্তচাপ (FH) আঁকা হল। E হতে E -এর উপর EH স্পর্শক আঁকা হল। E যোগ করা হল। ধরি, E সময়ে E বিন্দুতে পৌছে। সামনের দিকে অগ্রসর হবার সময় অপারগতার কারণে, এ সময়ে, E হতে নিঃসৃত একটি উপতরঙ্গ (প্রতিফলিত রশ্মি) E অবস্থানে আসে। অর্থাৎ, E সময় পরে তরঙ্গ E বিন্দুতে দর্পণের উপর E তবস্থানে, E চলে যায় E অবস্থানে। অতএব, E তরঙ্গ মুখ E সময় পরে E অবস্থান নেয় E ও E বিন্দুতে দর্পণের উপর E তব্দ আঁকা হল। E আপতিত রশ্মি ও E বিন্দুতে দর্পণের উপর E তিফলিত প্রতিফলিত প্রতিফলিত রশ্মি

হিসাব ও গণনাঃ এখন,

আপতন কোণ,
$$\angle ABI = i = 90^{\circ} - \angle IBD = \angle DBE$$

$$\therefore i = \angle DBE \dots \dots (1)$$

প্রতিফলন কোণ,
$$\angle KEJ = r = 90^{\circ} - \angle JEH = \angle HEB$$

$$\therefore r = \angle HEB \dots \dots (2)$$

 $\Delta \mathrm{BDE}$ ও $\Delta \mathrm{BHE}$ উভয়েই সমকোণী ত্রিভুজ। [$\because \angle BDE = \angle BHE = 1$ সমে কাণ]

$$\triangle BDE$$
 হত, $\sin i = \frac{DE}{BE}$ (3)

$$\Delta BHE$$
 হ'ত, $\sin r = \frac{BH}{BE} = \frac{DE}{BE} \dots \dots (4) \quad [\because DE = BH]$

(3) ও (4) হতে পাই,
$$\sin i = \sin r$$
 (5)

$$\therefore i = r$$

অর্থাৎ, আপতন কোণ = প্রতিফলন কোণ। এটি প্রতিফলনের দ্বিতীয় সূত্র।

আবার, অংকন অনুযায়ী, আপতিত রশ্মি AB, প্রতিফলিত রশ্মি BH, আপতন বিন্দুতে অঙ্কিত অভিলম্ব BI একই কাগজ তলে অবস্থিত। এটি প্রতিফলনের প্রথম সূত্র।

হাইণেনুসের নীতির সাহায্যে আলোকের প্রতিসরণের সূত্রগুলোর প্রমাণঃ ধরা যাক, '1' ও '2' দুটি স্বচ্ছ মাধ্যম '1' লঘু ও '2' ঘনতর। মাধ্যমদ্বয়ের মধ্যে একটি বিভেদ তল PQ আছে। বিভেদতলে একগুচ্ছ সমতল তরঙ্গ তির্যকভাবে আপতিত হচ্ছে। '1' ও '2' মাধ্যমে আলোর বেগ যথাক্রমে v_I ও v_2 । $v_I > v_2$ । চিত্রে তরঙ্গগুচ্ছের দুটি রশ্মি AB ও CD দেখানো হয়েছে। কোন এক সময়ে, BD তরঙ্গমুখের B বিন্দুতে বিভেদতলে আপতিত। CD-কে বাড়ালে এটি বিভেদতলকে E বিন্দুতে ছেদ করে। ধরি, t সময়ে D বিন্দু E বিন্দুতে পৌছে।

অতএব,
$$DE = v_I t$$
 (1)

B -কে কেন্দ্র করে v_2t সমান ব্যাসার্ধ নিয়ে '2' মাধ্যমে একটি বৃত্তচাপ (FG) আঁকা হল । E হতে FG -এর উপর EH স্পর্শক আঁকা হল । BH যোগ করা হল ।

অতএব,
$$BH = v_2t \dots \dots (2)$$

তরঙ্গ D যখন চলে যায় E অবস্থানে, B তখন চলে যায় H অবস্থানে। অর্থাৎ, BD তরঙ্গ মুখ t সময় পরে EH অবস্থান নেয়। B বিন্দুতে PQ -এর উপর MBN লম্ব আঁকা হল। ফলে AB আপতিত রিশা ও BH প্রতিসরিত রিশা।

হিসাব ও গণনাঃ এখন,

আপতন কোণ, $\angle ABN = i = 90^{\circ} - \angle NBD = \angle DBE$

$$\therefore i = \angle DBE \dots \dots (1)$$

প্রতিসরণ কোণ, $\angle HBM = r = 90^{\circ} - \angle HBE = \angle BEH$

$$\therefore r = \angle BEH \dots \dots (2)$$

 ΔDBE ও ΔBHE সমকোণী, $[:: \angle BDE = \angle BHE = 1]$ সম কোণ $] \bigcirc P$

$$\frac{\sin i}{\sin r} = \frac{DE/BE}{BH/BE} = \frac{DE}{BH} = \frac{v_l t}{v_2 t} \dots \dots (3)$$

$$\therefore \frac{\sin i}{\sin r} = \frac{v_1}{v_2} \dots \dots (4)$$

নির্দিষ্ট দুটি মাধ্যমের জন্য v_I ও v_2 ধ্রুবক।

$$\therefore \frac{\sin i}{\sin r} = \underline{4} \cdot \overline{5} = \underline{\mu}_2 (4 \cdot \overline{3}) \dots \dots \dots (5)$$

এটি প্রতিসরণের দ্বিতীয় সূত্র বা স্লেলের সূত্র

আবার, অংকন অনুযায়ী, আপতিত রশ্মি AB, প্রতিসৃত রশ্মি BH, আপতন বিন্দুতে অঙ্কিত অভিলম্ব BN একই কাগজ তলে অবস্থিত। এটি প্রতিসরণের প্রথম সূত্র

পথ পার্থক্য ও দশা পার্থক্যের মধ্যে সম্পর্কঃ

একটি তরঙ্গের দুটি বিন্দু A এবং B বিবেচনা করা যাক। ধরি, বিন্দুদ্বয়ের মধ্যে পথ পার্থক্য δ এবং দশা পার্থক্য σ । আমরা জানি, একটি তরঙ্গের দুটি বিন্দুর মধ্যে দূরত্ব তরঙ্গ দৈর্ঘ্যের (λ) এর সমান হলে দশা পার্থক্য হবে 2π ।

 λ পথের দূরত্বের জন্য দশা পার্থক্য 2π

$$\therefore$$
 1 ,, ,, ,, ,, $\frac{2\pi}{\lambda}$

$$\therefore \delta ,, ,, ,, ,, \frac{2\pi}{\lambda} \times \delta$$
প্রামতে, $\frac{2\pi}{\lambda} \times \delta = \sigma$
বা, $\frac{\delta}{\lambda} = \frac{\sigma}{2\pi}$

অর্থাৎ,
$$\frac{\mbox{পথ পাথ 'ক্য}}{\lambda} = \frac{\mbox{দশা পাথ 'ক্য}}{2\pi}$$
 ইহাই পথ পার্থক্য ও দশা পার্থক্যের মধ্যে সম্পর্ক।

সুসঙ্গত উৎসঃ দুটি উৎস থেকে সম দশায় বা কোন নির্দিষ্ট দশা পার্থক্যের একই তরঙ্গ দৈর্ঘ্যের দুটি আলোক তরঙ্গ নিঃসৃত হলে তাদেরকে সুসঙ্গত উৎস বলে।

<u>আলোর ব্যাতিচারঃ</u> সুসঙ্গত উৎস থেকে নিঃসৃত দুটি আলোক তরঙ্গের উপরিপাতনের ফলে কোন বিন্দুর আলোক তিব্রতা বৃদ্ধি পায় আবার কোন বিন্দুর আলোক তিব্রতা হ্রাস পায়। এর ফলে কোন তলে পর্যায়ক্রমে আলোকোজ্জ্বল ও অন্ধকার অবস্থার সৃষ্টি হয়। কোন স্থানে বিন্দু থেকে বিন্দুতে আলোক তিব্রতার এই পর্যায়ক্রমিক হ্রাস বৃদ্ধিকে আলোর ব্যাতিচার বলে।

ব্যাখ্যাঃ সমদশায় উপরিপাতনের ক্ষেত্রে, উভয় তরঙ্গের তরঙ্গ শীর্ষ বা তরঙ্গ পাদ একসাথে একটি বিন্দুতে আপতিত হয়। ফলে লব্ধি বিস্তার তরঙ্গ দ্বয়ের বিস্তারের সমষ্টির সমান হয়। প্রাবল্য বিস্তারের বর্গের সমানুপাতিক তাই, এক্ষেত্রে বিন্দুটি উজ্জ্বল দেখায়। বিপরীত দশায় উপরিপাতনের ক্ষেত্রে, একটির তরঙ্গ শীর্ষ এবং অপরটির তরঙ্গপাদ একসাথে একটি বিন্দুতে আপতিত হয়। ফলে লব্ধি বিস্তার শূন্য হয়। তাই এক্ষেত্রে প্রাবল্য শূন্য হয় বা বিন্দুটি অন্ধকার দেখায়। ব্যাতিচার দুই প্রকার ঃ যথা (১) গঠনমূলক ব্যাতিচার ও (২) ধ্বংসাত্মক ব্যাতিচার

- (১) <u>গঠনমূলক ব্যাতিচারঃ</u> দুটি উৎস থেকে একই তরঙ্গদৈর্ঘ্য ও প্রায় সমান বিস্তার বিশিষ্ট তরঙ্গের সমদশায় উপরিপাতনের ক্ষেত্রে, উভয় তরঙ্গের তরঙ্গ শীর্ষ বা তরঙ্গ পাদ একসাথে একটি বিন্দুতে আপতিত হলে লব্ধি বিস্তার তরঙ্গ দ্বয়ের বিস্তারের সমষ্টির সমান হয়। প্রাবল্য বিস্তারের বর্গের সমানুপাতিক তাই, এক্ষেত্রে বিন্দুটির উজ্জ্বল্য বেড়ে যায়। একে গঠনমূলক ব্যতিচার বলে।
- (২) ধ্বংসাত্মক ব্যাতিচারঃ দুটি উৎস থেকে একই তরঙ্গদৈর্ঘ্য ও প্রায় সমান বিস্তার বিশিষ্ট তরঙ্গের বিপরীত দশায় উপরিপাতনের ক্ষেত্রে, একটির তরঙ্গ শীর্ষ এবং অপরটির তরঙ্গপাদ একসাথে একটি বিন্দুতে আপতিত হয়। ফলে লব্ধি বিস্তার শূন্য হয়। তাই এক্ষেত্রে প্রাবল্য শূন্য হয় বা বিন্দুটি অন্ধকার দেখায়। এ ঘটনাকে ধ্বংসাত্মক ব্যাতিচার বলে।

ব্যাতিচারের শর্তঃ

- 🕽 । আলোক উৎস দুটি সুসঙ্গত হতে হবে।
- ২। যে দুটি তরঙ্গ ব্যাতিচার ঘটাবে তাদের বিস্তার সমান বা প্রায় সমান হতে হবে।
- ৩। উৎসগুলো খুব কাছাকাছি হতে হবে।
- ৪। উৎসগুলো খুব সৃক্ষা হতে হবে।

<u>আলোর ব্যাতিচারের ইয়ং-এর দ্বি-চির পরীক্ষা বর্ণনা কর এবং উজ্জ্বল ও অন্ধকার ডোরার শর্তসমূহ আলোচনাঃ</u> ইয়ং এর দ্বি-চির পরীক্ষার গানিতিক বিশ্লেষনঃ

মনে করি, একটি সৃষ্ণ্ণ চিড় S_o , λ তরঙ্গ দৈর্ঘ্যের একবর্ণী আলোক দ্বারা আলোকিত। S_o হতে নির্গত গোলাকৃতির আলোক তরঙ্গ S_o এর কাছাকাছি এবং সমদূরত্বে অবস্থিত দুটি সমান্তরাল চিড় S_1 ও S_2 -কে আলোকিত করে। S_o হতে সমদূরত্বে বলে যে কোন মূহুর্তে S_1 ও S_2 চিড়ে আগত আলোক তরঙ্গ সমদৃশায় উপনীত হয়। S_1 ও S_2 হতে নির্গত গৌন তরঙ্গসমূহ সুসংহত। S_1 ও S_2 হতে নির্গত রিশ্বি চিড়ন্বয়ের সমান্তরালে স্থাপিত পর্দায় আপতিত হয় এবং

উপরিপাতনের ফলে উজ্জ্বল ও অন্ধকরি ডোরার সৃষ্টি হয়। এখন আমরা উজ্জ্বল ও অন্ধকার ডোরা সৃষ্টির শর্ত নিরূপণ করব।

ধরা যাক, S_I চিড় হতে x_I দূরত্বে P বিন্দুতে আপতিত আলোক তরঙ্গের সমীকরণঃ

$$y_1 = a \sin \frac{2\pi}{\lambda} (vt - x_1) \dots \dots \dots (1)$$
 $[:: S_1 P = x_1]$

এখানে, $y_1 =$ আলোক তরঙ্গের সরণ, v = তরঙ্গের বেগ, $\lambda =$ তরঙ্গদৈর্ঘ্য, a = তরঙ্গের বিস্তার এবং $S_2B = S_2P - S_1P = (x_2 - x_1) =$ পথ পার্থক্য। এখন S_2 চিড় হতে x_2 দূরত্বে P বিন্দুতে আলোক তরঙ্গের সরণ y_2 ,

S2 হতে P বিন্দুতে আপতিত আলোক তরঙ্গের সমীকরণঃ

$$y_2 = a \sin \frac{2\pi}{\lambda} (vt - x_2) \dots \dots \dots (2)$$
 [:: S₂P = x₂]

P বিন্দুতে এই দুটি তরঙ্গের উপরিপাতন ঘটায়, P বিন্দুস্থ কণার লব্ধি সরণ হবে,

$$y = y_1 + y_2$$

$$y = a \sin \frac{2\pi}{2} (vt - x_1) + a \sin \frac{2\pi}{2} (vt - x_2)$$

$$\Rightarrow y = 2a \left[\sin \frac{2\pi}{\lambda} \left(\frac{vt - x_1 + vt - x_2}{2} \right) \cos \frac{2\pi}{\lambda} \left(\frac{vt - x_1 - vt + x_2}{2} \right) \right]$$

$$\Rightarrow y = 2a\cos\frac{\pi}{\lambda}(x_2 - x_1)\sin\frac{2\pi}{\lambda}\left(vt - \frac{x_1 + x_2}{2}\right)$$

$$\therefore y = A \sin rac{2\pi}{\lambda} \left(vt - rac{x_1 + x_2}{2}
ight)$$
 এটি সরল ছন্দিত স্পন্দনের সমীকরণ।

এখানে বিস্তার,
$$A = 2a\cos\frac{\pi}{\lambda}(x_2 - x_1)$$

(i) উজ্জ্বল ডোরার শর্তঃ বিস্তার তথা আলোর তীব্রতা যখন সর্বোচ্চ হবে অর্থাৎ গঠনমূলক ব্যতিচার হবে, যখন—

$$A = \pm 2a$$
 অর্থাৎ, $\cos \frac{\pi}{\lambda} (x_2 - x_1) = \pm 1$

বা,
$$\frac{\pi}{\lambda}(x_2-x_1)=0,\pi,2\pi.....n\pi$$
 যেখানে, $(n=0,1,2,3.....)$

বা,
$$x_2 - x_1 = 0, \lambda, 2\lambda$$
..... $n\lambda$ যেখানে, $(n = 0, 1, 2, 3)$

$$\therefore S_2 B = n\lambda = 2n\frac{\lambda}{2}$$
 যেখানে, $(n = 0, 1, 2, 3 \dots)$

সুতরাং, উজ্জ্বল ডোরার শর্ত হল পথ পার্থক্য $\frac{\lambda}{2}$ এর যুগা গুনিতক হতে হরে।

(ii) **অন্ধকার ডোরার শর্তঃ** বিস্তার তথা আলোর তীব্রতা যখন সর্বোনিমু হবে অর্থাৎ ধ্বংসাত্মক ব্যতিচার হবে, যখন—

$$A=0$$
 অর্থাৎ, $\cos\frac{\pi}{\lambda}(x_2-x_1)=0$

বা,
$$\frac{\pi}{\lambda}(x_2 - x_1) = \frac{\pi}{2}, \frac{3\pi}{2}$$
.....(2n+1) $\frac{\pi}{2}$ যেখানে, $(n = 0, 1, 2, 3, ...)$

বা,
$$(x_2 - x_1) = \frac{\lambda}{2}, \frac{3\lambda}{2}$$
......(2n+1) $\frac{\lambda}{2}$ যেখানে, $(n = 0, 1, 2, 3)$

$$\therefore S_2 B = (2n+1)\frac{\lambda}{2}$$
 যেখানে, $(n=0, 1, 2, 3 \dots)$

সুতরাং, অন্ধকার ডোরার শর্ত হল পথ পার্থক্য $\frac{\lambda}{2}$ এর অযুগা গুনিতক হতে হবে।

ইয়ং এর দ্বি-চির পরীক্ষার আলোকে গাণিতিক ভাবে প্রমাণ কর, পর পর দুটি অন্ধকার ডোরার বিস্তার পর পর দুটি উজ্লল ডোরার বিস্তারের সমানঃ

ইয়ং এর দ্বি-চির পরীক্ষার বর্ণনাঃ

মনে করি, কোন একটি একবর্ণী আলোক উৎস S_o হতে নির্গত আলোর দুটি রিশ্মি সমান্তরাল দুটি চির S_I ও S_2 এ আপতিত হয়ে চির দুটির মধ্যদিয়ে সঞ্চালিত হয়ে পর্দা PP'-এর উপর পড়ে পর্দা PP'-এ ব্যাতিচার ঝালরের নক্শার সৃষ্টি হচ্ছে। মনে করি চির দুটির পারস্পরিক দূরত্ব a এবং S_I ও S_2 থেকে পর্দা PP'-এর অভিলম্ব দূরত্ব D। আরও মনে করি, S_I ও S_2 -এর লম্বদ্বিশুভক AO পর্দা PP' কে O বিন্দুতে ছেদ করে। পর্দা PP' এর O বিন্দু চির S_I ও S_2 থেকে সমদূরবর্তী। যেহেতু আলোর তরঙ্গ S_I ও S_2 থেকে একই দশায় যাত্রা শুরু করে এরা সমান দূরত্ব অতিক্রম করে একই দশায় O বিন্দুতে পৌছবে এবং ঐ বিন্দুতে উজ্জ্বল ঝালরের সৃষ্টি করবে। আরও দেখা যাবে যে, O বিন্দুর দু'পাশে পর্দা PP' এর উপর সমান সমান দূরত্বে পর্যায়ক্রমে অন্ধকার ও উজ্জ্বল ঝালরের সৃষ্টি হবে।

ডোরার প্রস্থঃ

দুটি ডোরার মধ্যবর্তী দূরত্ব নিম্মোক্ত বিষয় গুলির উপর নির্ভর করে।

ব্যবহৃত তরঙ্গের তরঙ্গ দৈর্ঘ্য = λ , দ্বি-চির থেকে পর্দার দূরত্ব AO = D, চির দুটির মধ্যবর্তী দূরত্ব $S_1S_2 = a$ ও পথ পার্থক্য = S_2B মনেকরি, চিত্রে O থেকে n তম উজ্জ্বল ডোরাটির অবস্থান হচ্ছে P, O থেকে P তথা n তম উজ্জ্বল ডোরার দূরত্ব $PO = x_n$ । চিত্রানুযায়ী পথ পার্থক্য,

$$\Rightarrow S_2B = PS_2 - PB$$

$$\therefore \quad \delta = PS_2 - PS_1$$
আবার , $\Delta S_1 B S_2$ এ
$$\sin \theta = \frac{S_2 B}{S_1 S_2}$$
বা, $S_2B = S_1 S_2 \sin \theta$

 \therefore পথ পার্থক্য, $S_2B=a\sin\theta$

আবার গঠন মূলক ব্যতিচারের শর্ত থেকে পাই, পথ পার্থক্য, $S_2B = n\lambda$

$$\Delta POA$$
 এ $an heta = \frac{PO}{AO}$
বা, $PO = AO$ $an heta$
বা, $PO = AO$ $an heta$
বা, $PO = AO$ $an heta$
 $\therefore x_n = D \frac{n \lambda}{a}$ [$AO = D$, ধরি, $PO = x_n$]
অনুরূপভাবে, $(n-1)$ তম উজ্জ্বল ডোরার দূরতু

 $x_{n-1} = D \frac{(n-1)\lambda}{a}$ সুতরাং দুটি উজ্জ্বল ডোরার ব্যাবধান

$$\Delta x = x_n - x_{n-1}$$
 বা, $\Delta x = \frac{Dn\lambda}{a} - \frac{D(n-1)\lambda}{a}$ বা, $\Delta x = \frac{Dn\lambda - Dn\lambda + D\lambda}{a}$

 $\Delta x = \lambda \frac{D}{a}$ (2) অনুরূপ ভাবে প্রমাণ করা যায় যে, দুটি অন্ধকার ডোরার ব্যাবধান ও $\Delta x = \lambda \frac{D}{a}$ একটি উজ্জল বা একটি অন্ধকার ডোরার প্রস্থ দুটি অন্ধকার বা দুটি উজ্জ্বল ডোরা ব্যবধানের অর্ধেক।

সুতরাং ডোরা প্রস্থ, $x = \frac{\lambda D}{2a} \dots \dots (3)$

- (2) নং সমীকরণ থেকে দেখা যায় ঃ—
 - 1) D এর মান বাড়ালে ডোরার প্রস্থ বাড়ে।
 - 2) a এর কমালে ডোরার প্রস্থ বাড়ে।

১১ ৷ আলোর তরঙ্গ-তত্ত্ব (Wave Theory Of Light)

অপবর্তন কাকে বলে? উহা কত প্রকার ও কি কি? একক চিরের দরুন অপবর্তন ব্যাখ্যাঃ

<u>অপবর্তনঃ</u> কোন প্রতিবন্ধকের ধার ঘেষে সরু চিরের মধ্যদিয়ে যাওয়ার সময় জ্যামিতিক ছায়া অঞ্চলের মধ্যে আলোর বেঁকে যাওয়ার ঘটনাকে আলোর অপবর্তন বলে।

অপবর্তনের শর্তঃ

- ১। ধার খুব তীক্ষ্ণ হতে হবে। এর প্রস্থ বা বেধ আলোর তরঙ্গ দৈর্ঘ্যের (λ) সাথে তুলনীয় হতে হবে।
- ২। ছিদ্র খুব ছোট হতে হবে। অর্থাৎ ব্যাস বা প্রস্থ λ এর সমান বা কাছাকাছি হতে হবে।

অপবর্তন দুই প্রকারঃ ১।ফ্রন হফার শ্রেণীর অপবর্তন ২।ফ্রেনেল শ্রেণীর অপবর্তন।

- <u>১। ফ্রন হফার শ্রেণীর অপবর্তনঃ</u> প্রতিবন্ধক হতে আলোক উৎস ও পর্দা উভয়ই কার্যকর ভাবে অসীম দূরত্বে অবস্থান করলে যে অপবর্তন ঘটায় তাকে ফ্রন হফার শ্রেণীর অপবর্তন বলে।
- <u>২। ফ্রেনেল শ্রেণীর অপবর্তনঃ</u> প্রতিবন্ধক হতে আলোক উৎস ও পর্দা উভয়ই কার্যকর ভাবে সসীম দূরত্বে অবস্থান করলে যে অপবর্তন ঘটায় তাকে ফ্রেনেল শ্রেণীর অপবর্তন বলে।

একক চিরের দরুন অপবর্তনঃ

মনে করি AB একটি সরু চির কাগজের তলের উপর লম্বভাবে আবস্থিত। চিরের প্রস্থ AB=a। চিরের সামনে একটি উত্তল লেস L_1 স্থাপন করা হল। এই লেসের ফোকাসে অবস্থিত সরুছিদ্র S হতে λ তরঙ্গ দৈর্ঘ্যের এক বর্ণী আলো লেসে প্রতিসরনের পর সমান্তরাল আলোক রশ্মি গুচ্ছাকারে AB চিরকে উৎভাসিত করে। এখন AB থেকে নির্গত সমান্তরাল আলোক রশ্মিগুচ্ছকে L_2 উত্তল লেসের সাহায্যে এর ফোকাস তলে স্থাপিত পর্দা MN-এর উপর অভিসারিত করা হয়। AB চিরে আপত্তিত সমতল তরঙ্গমুখের

প্রতিটি কণা সমদশা সম্পন্ন হয় এবং কণাগুলো গৌণ তরঙ্গ উৎপন্ন করে। এই গৌণ তরঙ্গ A বিন্দুর উপরে এবং B বিন্দুর নিচে ছড়িয়ে পড়ে। তাই চিরের অক্ষ CO বরাবর পর্দার O বিন্দুতে সুতীক্ষ্ণ প্রতিবিম্ব গঠিত না হয়ে, এর উভয় পার্শ্বে প্রয়োয়ক্রমে উজ্জ্বল ও অন্ধকার অপবর্তন ঝালরের সৃষ্টি হয়। চিরের A ও B প্রান্ত হতে নির্গত চিরের অক্ষ CO -এর সমান্তরাল রশ্মিগুচ্ছ L_2 লেন্স কতৃক পর্দায় O বিন্দুতে অভিসারিত হয়। O বিন্দুতে মিলিত তরঙ্গ সমূহ একই পথ অতিক্রম করে বলে এদের দশা একই হয়। তাই O বিন্দুর তীব্রতা ও উজ্জ্বলতা সর্বাধিক হয়। O বিন্দুরে মুখ্য চরম বিন্দু বলে।

এখন ধরা যাক, CO এর সাথে θ কোণে অপরিবর্তিত রশ্মিগুচ্ছ CO_1 -এর সমান্তরালে L_2 লেন্সে আপতিত হয়ে পর্দার O_1 বিন্দুতে মিলিত হয়। O_1 বিন্দুতে মিলিত তরঙ্গ সমুহের মধ্যে পথ-পার্থক্য তথা দশা পার্থক্য থাকবে। O_1 বিন্দু উজ্জ্বল বা চরম (maximum) কিংবা অন্ধকার বা অবম (minimum) হতে পারে। এটা নির্ভর করবে O_1 বিন্দুতে মিলিত গৌন তরঙ্গসমুহের পথ পার্থক্যের উপর।

চিত্র থেকে দেখা যায়, AB চিরের দুই প্রান্তবিন্দু Aও B থেকে নির্গত দুটি গৌন তরঙ্গের পথ পার্থক্য $AD = ABsin\theta = asin\theta$ গানিতিক ভাবে O_I বিন্দুতে চরম বা অরম হওয়ার শর্ত প্রতিপাদন করলে তা নিম্মরূপ হবে ঃ

<u>অবমের শর্ত:</u> মুখ্য চরমের উভয় পার্ম্থে n-তম অবম বিন্দুর বিন্দুর উপযোগী অপবর্তন কোণ θ_n ও চিরের প্রস্থ a হলে,

$$a \sin \theta_n = n\lambda$$
 $n = 1, 2, 3, \dots$

চরমের শর্ত: মুখ্য চরমের উভয় পার্ম্বে n-তম চরম বিন্দুর বিন্দুর উপযোগী অপবর্তন কোণ θ_n' ও চিরের প্রস্থ a হলে,

$$a \sin \theta'_n = (2n+1)\frac{\lambda}{2}$$
 $n = 1, 2, 3, \dots$

আলোকের ব্যতিচার ও অপবর্তনের পার্থক্যঃ

আলোকের ব্যতিচার	আলোকের অপবর্তন
🕽 । একই উৎস হতে নির্গত দুটি সুসংহত তরঙ্গ মুখ হতে উৎপন্ন	১। একই তরঙ্গের বিভিন্ন বিন্দু হতে উৎপন্ন গৌন তরঙ্গের
আলোক তরঙ্গের উপরিপাতনের ফলে ব্যতিচার ঘটে।	উপরিপাতনের ফলে অপবর্তন ঘটে।
২। ব্যতিচারের ঝালরের প্রস্থ সমান অথবা অসমান হতে পারে।	২। অপবর্তন ঝালরের প্রস্থ কখনই সমান হয় না।
৩। ব্যতিচারের অন্ধকার পট্টিতে কোন আলো থাকে না।	৩। অপবর্তনে অন্ধকার পট্টিতে কিছু আলো বিরাজ করে।
৪। ব্যতিচারে উজ্জল বিন্দু গুলোর উজ্জলতা সর্বত্র সমান হয়।	৪। অপবর্তনে সকল বিন্দু গুলোর উজ্জ্বলতা সমান হয় না।

১১ | আলোর তরঙ্গ-তত্ত্ব (Wave Theory Of Light)

অপবর্তন গ্রেটিংঃ পাশ্যাশি স্থাপিত অনেকগুলো সমপ্রস্থের সৃষ্ণ্ণ চির সম্পন্ন পাতকে অপবর্তন গ্রেটিং বলে। একটি সূচাল অগ্রভাগ বিশিষ্ট হীরার টুকরা দিয়ে একটি স্বচ্ছ সমতল কাচ পাতে দাগ কেটে গ্রেটিং তৈরী করা হয়। এই দাগগুলি সমান ব্যবধানে অবস্থিত ও সমান্তরাল হয়।

গ্রেটিং ধ্রুবকঃ গ্রেটিং এর একটি চিরের শুরু থেকে পরবর্তী চিরের শুরু পর্যন্ত দূরত্বকে গ্রেটিং ধ্রুবক বলে। গ্রেটিং ধ্রুবক হল প্রতিটি চিরের প্রস্থ ও প্রতিটি রেখার প্রস্থের সমষ্টি। অর্থাৎ গ্রেটিং ধ্রুবক, d=a+b এখানে, a ও b যথাক্রমে চিরের ও রেখার প্রস্থ।

গ্রেটিং কতৃক অপবর্তনের ব্যাখ্যাঃ মনে করি, ABCD একটি অপবর্তন গ্রেটিং। এর প্রতিটি চিরের প্রস্থ a এবং দাগের প্রস্থ b। সুতরাং এর গ্রেটিং ধ্রুবক d=a+b। গ্রেটিং এর উপর একবর্ণী একগুচ্ছ সমান্তরাল আলোক রশ্মি আপতিত হলে বেশির ভাগ আলো কোনরূপ অপবর্তিত না হয়ে সরাসরি সোজা পথে যাবে এবং একটি উত্তল লেন্স দ্বারা পর্দা S_1S_2 এর উপর O বিন্দুতে কেন্দীভূত হবে। ফলে O বিন্দুটি খুব উজ্জল দেখাবে এবং এটি হবে কেন্দ্রীয় চরম বিন্দু। গ্রেটিং এর চিরগুলো খুব ছোট হওয়ায় চির অতিক্রম করার সময় কিছু আলো অপবর্তিত হয়ে বিভিন্ন দিকে গমন করে। ধরি θ কোণে অপবর্তিত সমান্তরাল আলোক রশ্মি গুচ্ছ উত্তল লেস দ্বারা প্রতিসূত হয়ে P বিন্দুতে মিলিত হয়। P বিন্দুটি চরম বিন্দু হবে না অবম বিন্দু হবে তা নির্ভর করবে তরঙ্গগুলোর পথ পার্থক্যের উপর। চিত্রে দেখা যায় A এবং C দুটি অনুরূপ বিন্দু থেকে নির্গত দুটি গৌন তরঙ্গের পথ পার্থক্য হচ্ছে, পথ পার্থক্য, $CM = AC \sin\theta = (a+b) \sin\theta = d \sin\theta$ উপরোক্ত গানিতিক হিসাবের সাহায্যে P বিন্দুটির অবম ও চরম হওয়ার শর্তপাওয়া যায়।

চরমের শর্তঃ

P বিন্দুটি চরম হবে যদি;

$$dsin\theta_n = n\lambda$$

$$n = 1, 2, 3, \dots$$

$$\therefore (a+b)\sin\theta_n = n\lambda \qquad [\because d = a+b]$$

$$\therefore d = a+b$$

অবমের শর্তঃ

P বিন্দুটি অবম হবে যদি ;

$$dsin\theta_n = (2n+1)\frac{\lambda}{2}$$

$$n = 1, 2, 3, \dots$$

$$\therefore (a+b)\sin\theta_n = (2n+1)\frac{\lambda}{2} \qquad [\qquad d \Rightarrow a+b]$$

$$(a \neq a+b]$$

চরম বিন্দুর শর্তে n=0 বসালে কেন্দ্রীয় চরম বিন্দু বা মুখ্য চরম বিন্দু এবং n=1 বা -1 বসালে কেন্দ্রীয় চরম বিন্দুর দুই পাশে ১ম উজ্জ্বল রেখা এবং n=2 বা -2 বসালে কেন্দীয় চরম বিন্দুর দুই পাশে ২য় উজ্জ্বল রেখা পাওয়া যায়।

গ্রেটিং এর ব্যবহার ঃ

- (১) আলোকের তরঙ্গ দৈর্ঘ্য নির্ণয় করা যায়।
- (২) একই তরঙ্গ দৈর্ঘ্যের দুটি বর্ণালী পৃথক করা যায়।
- তরঙ্গ দৈর্ঘ্যের সাপেক্ষে অপবর্তন কোণের পরিবর্তনের হার নির্ণয় করা যায়।

অপবর্তন গ্রেটিং এর সাহায্যে এক বর্নী আলোর তরঙ্গ দৈর্ঘ্য নির্ণয়ঃ

তত্ত্বঃ ধরা যাক, λ তরঙ্গ দৈর্ঘ্যের একরঙা সমান্তরাল আলোক রশ্মিণ্ডচ্ছ একটি গ্রেটিং -এর উপর লম্বভাবে অপতিত হচ্ছে আপতিত হচ্ছে। d হল গ্রেটিং ধ্রুবক। গ্রেটিং ধ্রুবক হল প্রতিটি চিরের প্রস্থ ও প্রতিটি রেখার প্রস্তের সমষ্টি। অপবর্তন কোন θ ও পটির ক্রম nহলে. গ্রেটিং সমীকরণ হতে আমরা পাই.

$$d\sin\theta = n\lambda$$
বা, $\lambda = \frac{d\sin\theta}{n}$

১১ | আলোর তরঙ্গ-তত্ত্ব (Wave Theory Of Light)

$$\therefore \ \lambda = \frac{\sin \theta}{N.\,n} \ \dots \ \dots \ (1) \quad \left[\ \because d = \frac{1}{N} \right] \ ext{N}$$
 হচ্ছে একক দৈর্ঘ্যে চির সংখ্যা।

N জানা থাকলে, উজ্জ্বল পটির ক্রম n এবং heta নির্ণয় করে (1) নং সমীকরণের সাহায্যে λ নির্ণয় করা যায়। কার্য পদ্ধতিঃ

প্রথমে একটি সমতল অপবর্তন নিঃসরণ গ্রেটিং G, নেই যার প্রতি একক দৈর্ঘ্যের চির সংখ্যা N জানা আছে। বর্ণালীবীক্ষণ যন্ত্রের কলিমিটার C এবং দূরবীক্ষণ যন্ত্র T এর বিভিন্ন অংশ উপযোজন করে এক রঙা আলোক উৎস S হতে আগত সমান্তরাল আলোক রিশ্মির জন্য দূরবীক্ষণ যন্ত্র T -কে ফোকাস করা হয়। এরপর গ্রেটিং বর্ণালীবীক্ষণ যন্ত্রের টেবিল P এর উপর উলম্বভাবে স্থাপন করা হয় যাতে এর দাগাঙ্কিত দূরবীক্ষণ যন্ত্রের দিকে থাকে। এরপর দূরবীক্ষণ যন্ত্রটিকে কলিমিটারের সাথে স্থাপন করলে এর রেখনতারে কেন্দ্রীয় উজ্জ্বল পটি বা কেন্দ্রীয় চরম বিন্দু দেখা যাবে যেখানে পটির ক্রম n=0। এ স্থানে দূরবীক্ষণ যন্ত্রের বৃত্তাকার ক্ষেল ও ভার্নিয়ার ক্ষেলের পাঠ নেওয়া হয়। মনে করি,

এই পাঠ = T_1 । এরপর দূরবীক্ষণ যন্ত্র T কে ক্রমশ কেন্দ্রীয় চরম বিন্দুর ডানদিকে সরিয়ে প্রথম ক্রমের উজ্জ্বল পটিকে রেখনতারে মিলিয়ে নিয়ে দূরবীক্ষণ যন্ত্রের বৃত্তাকার ক্ষেল ও ভার্নিয়ার ক্ষেলের পাঠ নেওয়া হয়। মনে করি, এই পাঠ = T_2 ।

এরপর দূরবীক্ষণ যন্ত্র T কে ক্রমশ কেন্দ্রীয় চরম বিন্দুর বামদিকে সরিয়ে প্রথম ক্রমের উজ্জ্বল পটিকে রেখনতারে মিলিয়ে নিয়ে দূরবীক্ষণ যন্ত্রের বৃত্তাকার ক্ষেল ও ভার্নিয়ার ক্ষেলের পাঠ নেওয়া হয়। মনে করি, এই পাঠ $= T_3$ ।

হিসাব ও গণনাঃ

বলৈ।

- (১) T_1 ও T_2 পাঠের অন্তর ফল $T_1 \sim T_2 = \theta$
- (২) T_1 ও T_3 পাঠের অন্তর ফল $T_1 \sim T_3 = heta$
- (৩) T_2 ও T_3 পাঠের অন্তর ফল $T_2\sim T_3=2 heta$ এর অর্ধেক করে heta নির্ণিয় করা হয়। এভাবে n=1 অর্থাৎ প্রথম ক্রমের উজ্জ্বল পটির জন্য গড় heta নির্ণিয় করে (1) নং সমীকরণ $\lambda=rac{\sin heta}{N.\,n}$ এ বসিয়ে এক বর্নী আলোর তরঙ্গ দৈর্ঘ্য λ নির্নিয় করা হয়।

বিঃ দ্রঃ T কে আরো ডানে ও বামে সরিয়ে n=2 ক্রমের জন্য θ নির্ণয় করে λ নির্ণয় করা হয়। এরূপ করা হলে, n=1 ও n=2 ক্রমের জন্য নির্ণিত λ দ্বয়ের গড় নিতে হবে।

<u>আলোর সমবর্তনঃ</u> যে প্রক্রিয়ায় বিভিন্ন তলে কম্পমান আলোক তরঙ্গকে একটি নির্দিষ্ট তল বরাবর কম্পনক্ষম করা যায় তাকে আলোকের সমবর্তন বা পেলারায়ন বলে এবং প্রাপ্ত আলোকে সমবর্তিত আলো বলে।

ব্যাখ্যা ঃ চিত্রের ন্যায় অসমবর্তিত আলোকে সমবর্তক ফালির মধ্যদিয়ে সঞ্চালিত হতে দিলে সমতল সমবর্তিত আলোতে রূপান্তরিত হয়। সমবর্তন প্রক্রিয়ার প্রকারভেদে আলো সমতল বা সরল সমবর্তিত, বৃত্তাকার সমবর্তিত বা উপবৃত্তাকারে সমবর্তিত হতে পারে। সমবর্তিত আলোঃ একটি তলে বা এর সমান্তরাল তলে কম্পমান আড় তরঙ্গ বিশিষ্ট আলোকে সমবর্তিত আলো বলে।

<u>অসমবর্তিত আলোঃ</u> সাধারণ আলোক যার গতিপথের লম্ব অভিমুখে চারদিকে সমান বিস্তারে কম্পিত হয় তাকে অসমবর্তিত আলো

Want more Updates: https://www.facebook.com/tanbir.ebooks দিতীয় পত্রের অংকের সমাধান

2nd Paper Math Solution

১১। আলোর তরঙ্গ-তত্ত (Wave Theory of Light)

ডোরা ব্যবধান,
$$\Delta x=\lambda \frac{D}{a}$$
 ডোরার প্রস্থ, $x=\lambda \frac{D}{2a}$ পর পর দুটি উজ্জ্বল ও অন্ধকার পটির কেন্দ্রের মধ্যবর্তী দূরত্ব = ডারার প্রস্থ, $x=\lambda \frac{D}{2a}$

১। ইয়ং-এর দ্বি-চির পরীক্ষায় চির দু'টির মধ্যে দূরত্ব 0.8~mm এবং চিরগুলি থেকে পর্দার দূরত্ব 1m। চিরগুলিকে $5890\times10^{-10}~m$ তরঙ্গ দৈর্ঘ্যের একবর্ণী আলো দ্বারা আলোকিত করা হলে একটি উজ্জল ডোরার প্রস্থ নির্ণয় কর।

আমরা জানি,

$$x = \frac{\lambda D}{2a}$$

$$\Rightarrow x = \frac{5890 \times 10^{-10} \times 1}{2 \times 0.8 \times 10^{-3}} \text{m}$$

$$\therefore x = 368.125 \times 10^{-6} \text{m (Ans.)}$$

চির দূটির দূরত্ব, a=0.8 mm $=0.8 \times 10^{-3} \, m$ চিরগুলিথেকে পর্দার দূরত্ব, $D=1 \, m$ $\lambda=5890\times 10^{-10} \, m$ ডোরার প্রস্থ, x=7

২। একটি ফ্রনহফার শ্রেণীর একক চিরের দরুন অপবর্তন পরীক্ষায় 5600\AA তরঙ্গ দৈর্ঘ্যে আলো ব্যবহার করা হল। প্রথম ক্রমের অন্ধকার পট্টির জন্য অপবর্তন কোণ নির্ণয় কর । চিরের বেধ = 0.2mm

আমরা জানি.

অবমের শর্তানুসারে,

$$d \sin\theta = n\lambda$$

$$\Rightarrow$$
 Sin $\theta = \frac{n\lambda}{d}$

$$\Rightarrow \sin\theta = \frac{1 \times 5600 \times 10^{-10}}{0.2 \times 10^{-3}}$$

$$\Rightarrow \theta = \sin^{-1} 0.0028$$

$$\theta = 0.16^{\circ}$$
 (Ans.)

এখানে, চিরের বেধ, d=0.2mm $=0.2\times10^{-3}~{\rm m}$ ডোরা ক্রম, n=1 তরঙ্গ দৈর্ঘ্য, $\lambda=5600{\rm \AA}$ $=5600\times10^{-10}~{\rm m}$ অপবর্তন কোণ, $\theta=?$

৩। একটি তরঙ্গের দুটি বিন্দুর মধ্যে পথ পার্থক্য $\lambda/4$ । বিন্দুদ্বয়ের মধ্যে দশা পার্থক্য কত?

পথ পার্থক্য, $\delta = \lambda/4$

দশা পার্থক্য, $\sigma = ?$

আমরা জানি.

$$\frac{\delta}{\lambda} = \frac{\sigma}{2\pi}$$

$$\Rightarrow \frac{\lambda/4}{\lambda} = \frac{\sigma}{2\pi}$$

$$\Rightarrow \frac{\lambda}{4\lambda} = \frac{\sigma}{2\pi}$$

$$\Rightarrow \sigma = \frac{2\pi \times \lambda}{4\lambda}$$

$$\therefore \sigma = \frac{\pi}{2} \text{ (Ans.)}$$

8। ইয়ংয়ের দ্বি-চিড়্ন পরীক্ষায় আলোর কম্পাঙ্ক $6\times10^{14}~Hz$ । পার্শ্ববর্তী দুটি ডোরার কেন্দ্রের মধ্যবর্তী দূরত্ব 0.75mm। চিড় থেকে দুটি ডোরার কেন্দ্রের মধ্যবর্তী দূরত্ব 1.55m দূরে হলে চিড় দুটির মধ্যবর্তী দূরত্ব কত? আমরা জানি,

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{6 \times 10^{14}} \,\mathrm{m}$$
$$\therefore \lambda = 5 \times 10^{-7} \,\mathrm{m}$$

$$a = \frac{D\lambda}{\Delta x}$$

এখানে, কম্পাঙ্ক,
$$f=6\times10^{14} {\rm Hz}$$
 ডোরা ব্যবধান, $\Delta x=0.75 {\rm mm}$ $=0.75\times10^{-3} {\rm m}$ পর্দার দূরজু, $D=1.55 {\rm m}$ চিড় দুটির দূরজু, $a=?$

$$\Rightarrow a = \frac{1.55 \times 5 \times 10^{-7}}{0.75 \times 10^{-3}} \text{m}$$

$$\therefore a = 1.03 \times 10^{-3} m = 1.03 mm(Ans.)$$

৫। ইয়ং-এর দ্বি-চির পরীক্ষায় চির দু'টির মধ্যে দূরত্ব 2.0 mm। এ চির থেকে 1m দূরত্বে ডোরার প্রস্থ 0.295 mm পাওয়া গেল। আলোর তরঙ্গ দৈর্ঘ্য নির্ণয় কর।

আমরা জানি,

$$x = \frac{\lambda D}{2a}$$

$$\Rightarrow \lambda = \frac{2xa}{D}$$

$$\Rightarrow \lambda = \frac{2 \times 0.295 \times 10^{-3} \times 2 \times 10^{-3}}{1} \text{ m}$$

$$\Rightarrow \lambda = \frac{1}{1}$$

$$\lambda = 1.18 \times 10^{-6} \,\mathrm{m} \, (Ans)$$

এখানে, চিড় দুটির দূরত, a=2.0 mm $=2.0 \times 10^{-3} \ m$ পর্দার দূরত্ব, D=1 m ডোরার প্রস্থ, $x=0.295 \ mm$ $=0.295 \times 10^{-3} m$ তরঙ্গ দৈর্ঘ্য, $\lambda=?$

৬। ইয়ং-এর দ্বি-চির পরীক্ষায় চির দু'টির মধ্যে দূরত্ব 2.0 mm। এ চির থেকে 1m দূরত্বে ডোরার ব্যবধান 0.295 mm পাওয়া গেল।

আমরা জানি, $\Rightarrow \lambda = \frac{0.295 \times 10^{-3} \times 2 \times 10^{-3}}{1} \text{ m}$ $\Rightarrow \lambda = 5.9 \times 10^{-7} \,\mathrm{m}$

 $\Rightarrow \lambda = 5.9 \times 10^{-7} \times 10^{10} \text{ Å}$

 $\lambda = 5900 \text{ Å}$ (Ans)

আলোর তরঙ্গ দৈর্ঘ্য নির্ণয় কর।

চিড় দুটির দূরত, a=2.0mm $= 2.0 \times 10^{-3} \text{ m}$ পর্দার দূরত্ব, D = 1m ডোরা ক্রম, n = 1 ডোরার ব্যবধান, $\Delta x = 0.295 \ mm$ $=0.295\times10^{-3}$ m

৭। একটি সমতল নিঃসরণ গ্রেটিং এর দ্বারা সৃষ্ট বর্ণালী রেখার দ্বিতীয় ক্রম 30° অপবর্তন কোণ উৎপন্ন করে। যদি আলোর তরঙ্গ দৈর্ঘ্য 5890Å হয় তবে গ্রেটিং এর প্রতি ঘনমিটারে রেখার সংখ্যা নির্ণয় কর।

আমরা জানি.

অবমের শর্তানুসারে, $d \sin\theta = n\lambda$ $\Rightarrow \frac{\sin \theta}{N} = n\lambda$ $\left[\because d = \frac{1}{N}\right]$ অপবর্তন কোণ, $\theta = 30^{\circ}$ তরঙ্গ দৈর্ঘ্য, $\lambda = 5890$ $\Rightarrow N = \frac{\sin \theta}{n\lambda}$ $\Rightarrow N = \frac{\sin 30^{\circ}}{2 \times 5890 \times 10^{-10}} \,\mathrm{m}^{-1}$ \Rightarrow N = $\frac{0.5}{2 \times 5890 \times 10^{-10}}$ m⁻¹ \therefore N = 4.24×10⁵ m⁻¹ (Ans.)

এখানে. ডোরা ক্রম, n = 2 তরঙ্গ দৈর্ঘ্য, $\lambda=5890
m \AA$ $=5890\times10^{-10}\,\mathrm{m}$ প্রতিঘনমিটারে রেখার সংখ্যা, N =?

 $=5890 \times 10^{-10} \,\mathrm{m}$

অপবর্তন কোণ, $\theta = ?$

আমরা জানি, এখানে, অবমের শর্তানুসারে. চিরের বেধ, d = 0. 2mm $d \sin\theta = n\lambda$ $= 0.2 \times 10^{-3} \text{ m}$ \Rightarrow Sin $\theta = \frac{n\lambda}{d}$ অবমের ক্রম, n=2তরঙ্গ দৈর্ঘ্য, $\lambda = 5890 \text{ Å}$

৮। একটি ফ্রনহফার শ্রেণীর একক চিরের দরুন অপর্বর্তন পরীক্ষায় 5890Å তরঙ্গ দৈর্ঘ্যে আলো ব্যবহার করা হল ফিতীয় অবমের জন্য

অপবর্তন কোণ নির্ণয় কর। [চিরের বেধ = 0.2mm]

 $\Rightarrow \sin\theta = \frac{2 \times 5890 \times 10^{-10}}{0.2 \times 10^{-3}}$

 $\Rightarrow \theta = \sin^{-1} 0.0089$

 $\Rightarrow \theta = 0.337^{\circ} :: \theta = 0.34^{\circ} (Ans.)$

৯। 0.2 mm ব্যবধান বিশিষ্ট দুটি চির থেকে 50 cm দূরত্বে অবস্থিত পর্দার উপর ব্যতিচার সজ্জা সৃষ্টি হল। পরপর দুটি উজ্জল পট্রির কেন্দ্রের মধ্যবর্তী দূরত্ব 1.42mm হলে আলোর তরঙ্গ দৈর্ঘ্য নির্ণয় কর।

আমরা জানি. $\Delta x = \frac{\lambda D}{a}$ $\Rightarrow \lambda = \frac{1.42 \times 10^{-3} \times 0.2 \times 10^{-3}}{0.5} m$ $\Rightarrow \lambda = 5.68 \times 10^{-7} m$ $\Rightarrow \lambda = 5.68 \times 10^{-7} \times 10^{10} \text{ Å}$

 $\lambda = 5680 \,\text{Å} \text{ (Ans)}$

এখানে, চিড় দুটির দূরত, a=0.2 mm $= 0.2 \times 10^{-3} \text{ m}$ পর্দার দূরত্ব, D =50cm= 0.5m ডোরার ব্যবধান, ∆x =1.42 mm $=1.42\times10^{-3}$ m তরঙ্গ দৈর্ঘ্য, $\lambda = ?$

১০। ইয়ংয়ের পরীক্ষণে দুটি চিরের মধ্যবর্তী দূরত্ব 0.4mm। চিরের সমান্তরালে 1m দূরত্বে অবস্থিত পর্দায় ডোরা দেখা গেল। কেন্দ্রীয় চরম থেকে 12 তম ডোরার দূরত্ব 9.3mm। ব্যবহৃত আলোর তর দৈর্ঘ্য বের কর।

আমরা জানি, $\lambda = \frac{9.3 \times 10^{-3} \times 0.4 \times 10^{-3}}{12 \times 1} \, \text{m}$ তরঙ্গ দৈখ্য, $\lambda = ?$

ডোরা ক্রম, n =12 চিড় দুটির দূরত, a=0.4mm $=0.4 \times 10^{-3} \text{ m}$ পর্দার দূরত্ব, D = 1m কেন্দ্রীয় চরম থেকে দূরত্ব , $x_n=9.3$ mm= 9.3×10^{-3} m

 $\Rightarrow \lambda = 3.1 \times 10^{-7} \, m = 3.1 \times 10^{-7} \times 10^{10} \, \stackrel{0}{A}$ $\lambda = 3100 \text{ Å} (Ans)$

Want more Updates: https://www.facebook.com/tanbir.ebooks

প্লাজমা অবস্থাঃ

নিম্ন চাপে গ্যাসকে উত্তপ্ত করলে ঐ গ্যাস পর্যাপ্ত শক্তি গ্রহণ করে গ্যাস সম্পুর্ণ আয়নিত অবস্থা প্রাপ্ত হয়। তখন গ্যাসে সমান সংখ্যক ধনাত্মক আধান ও মুক্ত ইলেকট্রন থাকে। গ্যাসের এ অবস্থাকে প্লাজমা অবস্থা বলে। তাহলে দেখা যাচ্ছে গ্যাসের মোট চারটি অবস্থা, যথা ঃ (১) কঠিন অবস্থা (২) তরল অবস্থা (৩) বায়বীয় অবস্থা ও (৪) প্লাজমা অবস্থা পদার্থের প্লাজমা অবস্থার ভৌত গুনাবলী কঠিন, তরল ও বায়বীয় পদার্থের গুনাবলি হতে অনেক আলাদা।

ক্যাথোড রশ্মিঃ ক্যাথোড রশ্মির উৎপাদন, এর ধর্ম ও ব্যবহারঃ

ক্যাথোড রশ্মিঃ তড়িৎক্ষরণ নলে বায়ুর চাপ কমে 10^{-3} mm থেকে 10^{-5} mm পারদস্তম্ভ চাপ হলে সমস্ত নল অন্ধকারাচ্ছন্ন হয়ে যায় এবং নলে কোন আলো থাকে না। তখন অদৃশ্য রশ্মির একটি বীম ক্যাথোড থেকে অভিলম্ব ভাবে নির্গত হয়ে কাচের নলের দেয়ালে সবুজ প্রতিপ্রভার সৃষ্টি করে। এই রশ্মিকে ক্যাথোড রশ্মিব বলে।

ক্যাথোড রশ্মির উৎপাদনঃ অতি নিম্নচাপে যে বদ্ধ কাচনলের বায়ু বা গ্যাসের মধ্যদিয়ে বিদ্যুৎ ক্ষরণের ব্যবস্থা করা হয় তাকে ক্ষরণ

নল বলে। ক্ষরণ নলের মধ্যকার বায়ুচাপ $10^{-3}mm$ হতে $10^{-5}mm$ পারদস্তম্ভ চাপের সমান হয় এবং নলের ভিতরে ইলেকট্রোড দ্বয়ে যখন 30,000 থেকে 40,000 ভোল্ট বিদ্যুৎ চাপের পার্থক্য থাকে তখন নলটির ভিতর সম্পুর্ণরূপে অন্ধকারাচছন্ন থাকে। এই সময় ক্যাথোড হতে লম্বভাবে এক প্রকার রশ্মি নির্গত হয় এবং এই রশ্মির আলোর আভা ক্যাথোডের ঠিক বিপরীতে ক্ষরণ নলের দেওয়ালে দেখা যায়।

একে ফ্লোরেসেন্ট বলে। পরীক্ষা দ্বারা প্রমাণ হয়েছে যে, ঐ রশ্মিণ্ডলো ঋণচার্জ যুক্ত মৌলিক কণাদ্বারা গঠিত। ক্যাথোড হতে এই রশ্মিণ্ডলো নির্গত হয় বলে বৈজ্ঞানিক ক্রুক একে ক্যাথোড রশ্মি নাম দিয়েছেন। এই ক্যাথোড রশ্মি ঋণ চার্জযুক্ত ইলেকট্রনের স্রোত দ্বারা গঠিত। ক্যথোড রশ্মি হল ক্যাথোড হতে নির্গত উচ্চ গতিবেগ সম্পন্ন ইলেকট্রনের স্রোত।

<u>ক্যাথোড রশ্মির ধর্মঃ</u>

- ১। ক্যাথোড রশ্মি সরল পথে গমন করে।
- ২। ক্যাথোড রশ্মি ঋনাত্মক চার্জ বিশিষ্ট। এর চার্জ - $1.6 imes10^{-19}C$ ।
- ৩। ক্যাথোড রশ্মি স্থির তড়িৎ ক্ষেত্রের মধ্য দিয়ে গেলে এর পথের বিচ্যুতি ঘটে।
- ৪। চৌম্বক ক্ষেত্রের প্রভাবে এ রশ্মির পথ বেকে যায়
- ৫। ক্যাথোড রশ্মি চাপ প্রয়োগ করে।
- ৬। ক্যাথোড রশ্মির গতিশক্তি আছে।
- ৭। এ রশ্মির ভরবেগ আছে।
- ৮। ক্যাথোড রশ্মির ভেদন ক্ষমতা আছে।
- ৯। এ রশ্মি পরস্পরকে বিকর্ষণ করে
- ১০। দ্রমুত গতি সম্পন্ন ক্যাথোড রশ্মি কোন ধাতুর উপর আপতিত হলে এক্স-রে উৎপন্ন হয়।

ক্যাথোড রশ্মির ব্যবহারঃ

- ১। ক্যাথোড রশ্মির সাহায্যে ইলেকট্রনের চার্জ, ভর এবং আপেক্ষিক চার্জ নির্ণয় করা যায়।
- ২। রঞ্জন রশ্মি বা এক্স-রে উৎপাদনে ক্যাথোড রশ্মি ব্যবহার করা হয়।
- ৩। আয়ন সৃষ্টির কাজে ক্যাথোড রশ্মি ব্যবহার করা হয়।

<u>এক্স-রশ্মি, এক্স-রশ্মির উৎপাদন, এর ধর্ম ও ব্যবহার ঃ</u>

রঞ্জন রশ্মি (বা এক্স-রে)ঃ

দ্রমূত গতি সম্পন্ন ইলেকট্রন কোন ধাতুকে আঘাত করলে তা থেকে উচ্চ ভেদন ক্ষমতা সম্পন্ন যে বিকিরণ উৎপন্ন হয়, তাকে এক্স-রে বা রঞ্জন রশ্মি বলে। এটি একটি বিদ্যুৎ চুম্বকীয় তরঙ্গ এবং সাধারণ আলোর সাথে এর পার্থক্য তরঙ্গ দৈর্ঘ্যের। এক্স-রে এর তরঙ্গ দৈর্ঘ্য $10^{-10}\ m$ প্রায়।

এক্স-রশ্মির উৎপাদনঃ

দ্রুত গতিসম্পন্ন ইলেকট্রন যখন কোন ধাতব প্রতিবন্ধক দারা বাধাপ্রাপ্ত হয়, তখন ইলেকট্রনের কিছু গতিশক্তি এক্স রশ্মিতে

facebook /gmail/skype: -tanbir.cox Web: http://tanbircox.blogspot.com

রূপান্তরিত হয়। এক্স রশ্মি উৎপাদনের একটি আধুনিক যন্ত্রের মূল অংশ গুলো চিত্রে দেখান হল।

<u>বর্ণনাঃ</u>

এক্স-রে উৎপাদনের জন্য বায়ুশূন্য কুলিজ নল ব্যবহার করা হয়। এ নলের মধ্যে C হলো টাংস্টেন নির্মিত সরু তারের কুন্ডলী। এতে তড়িৎ প্রবাহ চালনা করে উত্তপ্ত করা হয়। ফলে উত্তপ্ত ক্যাথোড থেকে প্রচুর পরিমানে ইলেকট্রন নির্গত হয়। অ্যানোড A লম্বা একটি তামার চোঙ। এ চোঙে উচ্চ গলনাঙ্ক বিশিষ্ট ধাতব পাত (টাংস্টেন বা মলিবডেনাম) আটকান থাকে। এ ধাতুর পাতকে টার্গেট বলা হয়। ক্যাথোড ও অ্যানোডের মধ্যে

উচ্চ বিভব পার্থক্য (প্রায় 30,000 থেকে 50,000 volt) সৃষ্টি করা হয়। ক্যাথোড C কে ঘিরে থাকে একটি মলিবডেনাম নল (FF)। এ নল ইলেকট্রন প্রবাহকে টার্গেটের উপর ফোকাস করে। ক্যাথোড ও অ্যানোডের মধ্যে উচ্চ বিভব পার্থক্যের জন্য ক্যাথোড থেকে নির্গত ইলেকট্রন ত্বরিত হয় এবং উচ্চ গতি সম্পন্ন হয়। এ সব ইলেকট্রনের গতি শক্তির সামান্য অংশ (0.1% থেকে 0.2%) X রিশ্মিতে রূপান্তরিত হয়, বাকি অংশ তাপে রূপান্তরিত হয়। তামার অ্যানোড এ তাপ দ্রম্নত পরিবহন করে এবং ঠান্ডা পানি দ্বারা একে শীতল করা হয়।

এক্স-রশ্মির তীব্রতা নির্ভর করে টার্গেটে আঘাতকারী ইলেকট্রনের সংখ্যার উপর। তাই ক্যাথোড ফিলামেন্টের মধ্যদিয়ে প্রবাহিত তড়িৎ প্রবাহের পরিমানের সাহায্যে এক্স রশ্মির তীব্রতা পরিমাপ করা হয়। এক্সরশ্মির ভেদন ক্ষমতা নির্ভর করে প্রযুক্ত বিভব পার্থক্যের উপর।

ধরা যাক, অ্যানোড ও ক্যাথোডের মধ্যে বিভব পার্থক্য = V

ইলেক্ট্রনের চার্জ = e

ইলেকট্রনের ভর = m

টার্গেটে আঘাতকারী ইলেকট্রনের বেগ্র

ইলেকট্রনের গতিশক্তি,
$$\frac{1}{2}mv^2 = eV \dots \dots \dots \dots (1)$$

এখন, আমরা জানি যে, X–রশ্মি হচ্ছে উচ্চ গতিশক্তির ফোট্রের প্রবাহ। কোয়ান্টাম তত্ত্ব অনুসারে এর শক্তি,

$$E = h\upsilon = h$$
 (2)
এখানে, $\upsilon =$ কম্পান্ধ
 $h =$ প্লান্ধের ধ্রবক = $6.63 \times 10^{-34} \, Joule - \sec$
 $c =$ আলোর বেগ
 $\lambda =$ ফোটনের তরঙ্গ দৈর্ঘ্য

ধরা যাক, একটি ইলেকট্রন টার্গেটে আঘাত করে X-রিশ্ম (ফোটন) উৎপন্ন করছে। ইলেকট্রনের গতিশক্তির কিছু অংশ $\frac{hC}{\lambda}$ ফোটনের শক্তি হিসাবে আবিভূত হয়, বাকী অংশ Q তাপ শক্তিতে রূপান্তরিত হয়।

অতএব,
$$\frac{1}{2}mv^2 = eV = \frac{hC}{\lambda} + Q \dots \dots (3)$$

যদি কোন ইলেকট্রনের সমস্ত গতি শক্তি এক্স রশ্মিতে রূপান্তরিত হয়, সেক্ষেত্রে প্রতিষঙ্গি তরঙ্গ দৈর্ঘ্য হবে ন্যূনতম, সেক্ষেত্রে O=0, অতএব সমীকরণ (3) থেকে পাই,

$$eV=rac{hC}{\lambda_{
m min}}$$
 এখানে, $\lambda_{
m min}=$ ন্যুনতম তরঙ্গ দৈর্ঘ্য

অতএব, $\lambda_{\min}=\frac{hC}{eV}$ (4) অর্থাৎ X- রিশ্মির নলে বিভিন্ন তরঙ্গ দৈর্ঘ্যের X- রিশ্মি নির্গত হয়। তন্মেধ্যে ন্যূনতম তরঙ্গ দৈর্ঘ্য (4) নং সমীকরণ দ্বারা নির্ধারিত হয়।

X-রশার এর ধর্ম (বৈশিষ্ট)ঃ

- 🕽 । এক্স-রশ্মি সরল রেখায় চলে। শূন্য মাধ্যমে এর বেগ আলোর বেগের সমান।
- ২। এক্স-রশ্মি আধান হীনকণিকা, 'ফোটন' দ্বারা গঠিত।
- ৩। আলোর মত এক্স-রশ্মি তড়িৎ চুম্বকীয় তরঙ্গ। কিন্তু এক্স-রশ্মির কম্পাঙ্ক দৃশ্যমান আলোর কম্পাঙ্ক অপেক্ষা 1000 গুণ বেশী।
- ৪। আলোর মত এক্স-রশার ও প্রতিফলন, প্রতিসরণ, ব্যতিচার, অপবর্তন ও সমবর্তন হয়।
- ৫। আলোর মত শুন্য স্থানে এর বেগ $3\times10^8~ms^{-1}$ ।
- ৬। এক্স-রশ্মি ফটোগ্রাফিক প্লেটে বিক্রিয়া ঘটায়।
- ৭। এক্স-রশ্মি প্রতি প্রভা সৃষ্টি করে।
- ৮। এক্স-রশ্মি চামড়া মাংশ ইত্যাদি ভেদ করে যেতে পারে।

X-রশ্মির ব্যবহারঃ

- ১। চিকিৎসা ক্ষেত্রেঃ রোগ নির্ণয়ে এক্স-রশ্মির অবদান অনস্বীকার্য। এক্স-রশ্মির সাহায্যে দেহের অভ্যন্তরে যে ফটোগ্রাফ নেওয়া হয় তাকে রেডিওগ্রাফ বলে। রেডিওগ্রাফের সাহায্যে ভাঙ্গা হাড়, শরীরের মধ্যে কোথাও ক্ষত বা কোন অবাঞ্চিত বস্তুর উপস্থিতি দেখতে পাওয়া যায়।
- ২। শিল্প ক্ষেত্রে ঃ শিল্প কারখানায় নির্মিত ধাতব বস্তুর মধ্যে ত্রমুটি নির্ণয়ে এক্স রশ্মি ব্যবহৃত হয়; বিশেষ করে ঢালাই বা ঝালাই এর পর ফাটল বা ত্রমুটি নির্ণয়ের জন্য এ রশ্মি ব্যবহৃত হয়।
- ৩। বৈজ্ঞানিক গবেষনায়ঃ এক্স রশ্মির ব্যবহার অত্যন্ত ব্যাপক, গুরুত্বপূর্ণ ও সুদূরপ্রসারী। পরমাণুর গঠন বিষয়ক গবেষনায় এক্স রশ্মির অপবর্তন গুরুত্বপূর্ণ ভূমিকা রেখেছে। কেলাসের গঠন সংক্রান্ত বিভিন্ন পরীক্ষা ও গবেষনায় এক্স রশ্মি ব্যবহৃত হয়।
- 8। শুক্ক ও পুলিশ বিভাগেঃ চোরাচালান বন্ধের জন্য এক্স রশ্মি ব্যবহার করা হয়। সোনা, বস্তু বা নিষিদ্ধ কোন বস্তু দেহের কোথাও লুকান আছে কিনা অনুসন্ধানের জন্য এক্স-রে স্ক্যানিং ব্যবহার করা হয়।

এক্স-রশ্মি ও ক্যাথোড রশ্মির পার্থক্যঃ

একা রশ্মি	ক্যাথোড রশ্মি
🕽 । এক্স রশ্মি তড়িৎ-চুম্বকীয় তরঙ্গ। এ রশ্মি ফোটন দ্বারা	১। ক্যাথোড রশ্মি ঋনাত্মক আধান যুক্ত কণা ইলেকট্রনের
গঠিত।	স্রোত।
২। তড়িৎ বা চৌম্বক ক্ষেত্রের প্রভাবে বিচ্যুৎ হয় না	২। তড়িৎ বা চৌম্বক ক্ষেত্রের প্রভাবে বিচ্যুতি ঘটে।
৩। এক্স রশার ভেদন ক্ষমতা বেশী।	৩। ক্যাথোড রশ্মির ভেদন ক্ষমতা অনেক কম।
৪। শূন্য মাধ্যমে এর বেগ আলোর বেগের সমান।	৪। এ রশ্মির বেগ ক্যাথোড ও অ্যানোডের বিভব পার্থক্যের উপর নির্ভর করে।
৫। এ রশ্মির সাহায্যে বিকিরণ উৎপাদন করা যায় না।	৫। এ রশ্মির সাহায্যে বিকিরণ উৎপাদন করা যায়।

কৃষ্ণকায়া বিকিরণ ব্যাখ্যায় চিরায়ত পদার্থবিজ্ঞানের ব্যার্থতাঃ

একটি কৃষ্ণকায়াকে উত্তপ্ত করতে থাকলে এটা বিস্তৃর্ণ পাল্লার বিভিন্ন তরঙ্গদৈর্ঘ্যের বিকিরণ নিঃসরণ করে। তাপের প্রভাবে নিঃসৃত এ বিকিরণকে তাপীয় বিকিরণ (thermal radiation) বলে। বিভিন্ন পরীক্ষা নিরীক্ষা হতে তাপীয় বিকিরণের তরঙ্গ দৈর্ঘ্যের পাল্লা অবলোহিত অঞ্চল হতে অতিবেগুনি অঞ্চল পর্যন্ত নির্ণিত হয়েছে।

চিরায়ত পদার্থবিদ্যার মতে তাপের প্রভাবে কোন বস্তুর পৃষ্ঠের নিকটবর্তী চার্জিত কণা ত্বারিত হয়ে তাপ বিকিরণের উৎপত্তি

ঘটায় এবং ছোট এ্যানটেনার (antena) মত বিকিরণ নিঃসরণ করে। তাপীয় ভাবে উত্তেজিত চার্জিত কণিকা এমন ভাবে ত্বারিত হয় যে, বস্তু থেকে নিরবিচ্ছিন্নভাবে বিকিরণ নিঃসৃত হয় বা বর্ণালীর উৎপত্তি ঘটে। উনবিংশ শতাব্দীর শেষের দিকে বিজ্ঞানী মহলে সুস্পষ্ঠ হয় যে, কৃষ্ণকায়া থেকে বিস্তৃর্ণ পাল্লার বিভিন্ন তরঙ্গ দৈর্ঘ্যের বিকিরণে শক্তি বিন্যাসের ধারাবাহিক ব্যাখ্যা চিরায়ত পদার্থবিদ্যার তত্ত্ব থেকে পাওয়া যায় না। উষ্ণতা বৃদ্ধির সাথে কৃষ্ণকায়া হতে নিঃসৃত বিকিরণের শক্তি বৃদ্ধি পায়। কিন্তু যে তরঙ্গ দৈর্ঘ্যে সর্বাধিক তীব্রতার বিকির্ণ শক্তির নিঃসরণ ঘটে, তা তাপমাত্রা বৃদ্ধির সাথে হ্রাস পায় (চিত্র পার্শ্বে), যা ভিনের (Wein) সরণ সূত্র $\lambda_m T =$ ধ্রম্বক মেনে চলে। এখানে T কৃষ্ণকায়ার পরম তাপমাত্রা এবং λ_m হলো সেই তরঙ্গদৈর্ঘ্য, যে তরঙ্গ দৈর্ঘ্যে সর্বাধিক

তীব্রতার বিকির্ণ শক্তির নির্গমন ঘটে। ভিনের সরণ সূত্রটি ক্ষুদ্র তরঙ্গ দৈর্ঘ্যের বেলায় স্বতঃসিদ্ধ হলেও দীর্ঘ তরঙ্গ দৈর্ঘ্যের ক্ষেত্রে উপযুক্ত ব্যাখ্যা দিতে পারে না। বিজ্ঞানী রেলি-জিন্স দীর্ঘ তরঙ্গ দৈর্ঘ্যের ক্ষেত্রে বর্ণালীতে শক্তির বিন্যাস ব্যাখ্যা করতে সমর্থ হন এবং তাঁরা শক্তির সমবিভাজন সূত্র প্রয়োগ করে, যে সূত্র প্রতিপাদন করেন তা পরীক্ষালব্ধ ফলাফলের সাথে সঙ্গতিপূর্ণ। কিন্তু ক্ষুদ্র তরঙ্গ দৈর্ঘ্যের ক্ষেত্রে রেলি-জিন্সরে সূত্র পরীক্ষালব্ধ ফলাফলের সাথে সঙ্গতিপূণ নর্য়।

সুতরাং, চিরায়ত পদার্থবিদ্যার তত্ত্ব প্রয়োগ করে কৃষ্ণকায়া বিকিরণে শক্তির বিন্যাসের সফল ব্যাখ্যা পাওয়া যায় না। পরবর্তিতে প্লাঙ্কের কোয়ান্টাম তত্ত্ব থেকে এই সমস্যার সমাধান পাওয়া যায়।

ফোটনঃ শক্তির বিকিরণ নিরবিচ্ছন্ন ভাবে ঘটে না। বরং বিচ্ছিন্নভাবে এক একটি গুচ্ছে নির্গত ও শোষিত হয়। অর্থাৎ যে কোন বিকিরণ 'প্যাকেট' আকারে নির্গত বা শোষিত হয়। এ প্যাকেট গুলোকে বলা হয় কোয়ান্টা বা ফোটন।

<u>ফোটনের বৈশিষ্টঃ</u>

- 🕽 । যে কোন বিকিরণ অসংখ্য বিচ্চিন্ন ফোটন দ্বারা গঠিত।
- ২। ফোটনের বেগ আলোর বেগের সমান।
- ৩। ফোটনের 'স্থির ভর' শূন্য।
- ৪। ফোটন তড়িৎ নিরপেক্ষ।
- ৫। ফোটনের দ্বৈত রূপ আছে অর্থাৎ কোন কোন সময় এটি কণার ন্যায় আচরণ করে আবার কোন কোন সময় এটি তরঙ্গের ন্যায়। আচরণ করে।
- ৬। প্রত্যেক ফোটনের শক্তি নির্দিষ্ট এবং এই শক্তির পরিমান $E=h\upsilon$ এখানে, E= ফোটনের শক্তি; h= প্লাঙ্কের ধ্রম্বক; $\upsilon=$ ফোটন কম্পাঙ্ক।

ফটো তড়িৎ ক্রিয়া বা আলোর তড়িৎ ক্রিয়া (Photoelectric Effect)ঃ

যথোপযুক্ত উচ্চ কম্পাঙ্ক বিশিষ্ট আলোক রশ্মি কোন ধাতব পৃষ্ঠে আপতিত হলে তা থেকে ইলেকট্রন নিঃসৃত হয়, এ ঘটনাকে ফটো তড়িৎ ক্রিয়া বা আলোর তড়িৎ ক্রিয়া বলে। ফটো তড়িৎ ক্রিয়ার ফলে ধাতব পৃষ্ঠ থেকে নিঃসৃত ইলেকট্রনকে **ফটো ইলেকট্রন বলে**।

ফটো তড়িৎ ক্রিয়ার পরীক্ষা (Experiment of Photoelectric Effect) &

চিত্রে কোয়ার্টজ নির্মিত বায়ুশূন্য নলে দুটি ধাতব পাত A এবং C আছে। পাত দুটিকে বাইরের একটি বর্তনীর সাহায্যে একটি ব্যাটারী B, একটি পরিবর্তনশীল রোধ R_h ও একটি mA –এর সংগে যুক্ত করা হয়েছে। পাত দুটির বিভব পার্থক্য মাপার জন্য বর্তনীতে একটি ভোল্টমিটার V সংযুক্ত আছে। A পাতটি ব্যাটারীর ঋনাত্মক প্রান্তের সাথে সংযুক্ত। এখন আলোক রশ্মি A -এর উপর আপতিত হলে A ও C এর মধ্যে তড়িৎ প্রবাহের সূচনা হবে যা মিলিঅ্যামিটার এ পরিমাপ করা যাবে। এখন পাত দুটির মধ্যে

বিভব পার্থক্য ক্রমশ বাড়াতে থাকলে তড়িৎ প্রবাহত বাড়তে থাকবে। কিন্তু বিভব পার্থক্যের একটি নির্দিষ্ট মানের বেশীর জন্য এই প্রবাহ আর বাড়বে না। কোন নির্দিষ্ট বিভব পার্থেক্যের জন্য তড়িৎ প্রবাহের এই সর্বোচ্চ মানকে 'সম্পৃক্তি প্রবাহ' বলে।

কিন্তু যদি পাত A -কে সামান্য ধনাত্মক বিভবে এবং C কে ঋনাত্মক বিভবে রাখে A-পাতের উপর একটা নির্দিষ্ট কম্পাঙ্কের আলো আপতিত হতে দেওয়া হয় তাহলে নির্গত ইলেকট্রনের মধ্যে ধীর গতি সম্পন্নগুলো C-তে না পৌছে পুনরায় A -তে ফিরে আসে। A ও C এর মধ্যে বিভব পার্থক্য ক্রমশ

বৃদ্ধি করতে থাকলে আলোক তড়িৎপ্রবাহ ক্রমশ কমতে থাকবে এবং এক সময় A -এর নির্দিষ্ট কোন বিভবের জন্য তড়িৎপ্রবাহ বন্ধ হয়ে যাবে। নির্দিষ্ট ধাতব পদার্থের জন্য A -এর এই ধনাত্মক বিভবকে নিবৃতি বিভব বলে। এই সময় আলোর তীব্রতা বৃদ্ধি করলেও কোন ইলেকট্রন C -তে পৌছে না। এই বিভব পার্থক্যকে ইলেকট্রনের চার্জ দ্বারা গুণ করলে ইলেকট্রণের সর্বাধিক গতিশক্তি

$$K_{
m max}=eV_o$$
 পাওয়া যায়।

বা,
$$\frac{1}{2}mv_m^2 = eV_o$$
 (1) এখানে, m ইলেকট্রনের ভর,

 $m v_m$ = ইলেকট্রনের সর্বাধিক বেগ, $m \it e$ = ইলেকট্রনের চার্জ, $m \it V\it o$ = নিবৃত্তি বিভব।

পুনরায় যদি A-কে ঋনাত্মক C কে ধনাত্মক বিভবে রেখে আলোর কম্পাঙ্ক অপরিবর্তিত রেখে তীব্রতা ক্রমশ বাড়ানো হয় তাহলে দেখা যাবে যে নিবৃতি বিভবের মান সব সময় একই থাকছে কিন্তু তড়িৎ প্রবাহের মান বৃদ্ধি পাবে।

অপর পক্ষে আলোর তীব্রতা একই রেখে কম্পাঙ্ক পরিবর্তন করলে দেখা যাবে যে, কম্পাঙ্ক যতই বাড়ানো হয় নিবৃতি বিভব ততই বেড়ে যায় কিন্তু তড়িৎ প্রবাহের কোন পরিবর্তন হয় না। এতে বুঝা যায়, কম্পাঙ্ক বৃদ্ধির সাথে সাথে ফটো ইলেকট্রনের সর্বোচ্চ গতি শক্তি বৃদ্ধি পায়। আবার কম্পাঙ্ক হাস করতে থাকলে দেখা যায় যে, কোন একটি নিমুতম কম্পাঙ্কে ঐ ধাতু থেকে কোন ইলেকট্রন নিঃসৃত হয়না। উক্ত ন্যূনতম কম্পাঙ্ককে ঐ ধাতুর ছেদন কম্পাঙ্ক বা সূচন কম্পাঙ্ক বলে।

আলোক তড়িৎ ক্রিয়া ব্যাখ্যায় চিরায়ত তরঙ্গ তত্ত্বের ব্যর্থতাঃ

আলোর তরঙ্গ তত্ত্ব আলোর তড়িৎ ক্রিয়া ব্যাখ্যায় ব্যার্থ হয়েছে। ব্যার্থতার কারণ সমূহ নিম্নে উল্লেখ করা হলঃ

- (ক) চিরায়ত তরঙ্গ তত্ত্ব অনুসারে ইলেকট্রনকে পরমানু থেকে মুক্ত করতে অনেক সময় প্রয়োজন। কিন্তু আলোক তড়িৎ ক্রিয়া একটি তাৎক্ষনিক ঘটনা।
- (খ) চিরায়ত তরঙ্গ তত্ত্ব অনুসারে নিঃসৃত ইলেকট্রনের প্রাথমিক বেগ আলোর তীব্রতার উপর নির্ভরশীল। কিন্তু আলোক তড়িৎ ক্রিয়ার পরীক্ষালব্ধ ফলাফল থেকে দেখতে পাই, নিঃসৃত ইলেকট্রনের প্রাথমিক বেগ তীব্রতার উপর নির্ভরশীল নয়; কম্পাঙ্কের উপর নির্ভরশীল। পরীক্ষালব্ধ এই ফলাফল তরঙ্গ তত্ত্বের সাহায্যে ব্যাখ্যা করা যায় না।
- (গ) যে কোন ধাতুর ক্ষেত্রে এর সূচন কম্পাঙ্কের চেয়ে বেশী কম্পাঙ্ক বিশিষ্ট আলো আপতিত হলেই ইলেকট্রন নির্গত হবে। এই সূচন কম্পাঙ্কের অস্তিত্ব -চিরায়ত তরঙ্গ তত্ত্ব দ্বারা ব্যাখ্যা করা যায় না।

অতএব, আলোক তড়িৎ ক্রিয়ার পরীক্ষালব্ধ ফলাফল চিরায়ত তরঙ্গ তত্ত্ব দ্বারাব্যাখ্যা করা যায় না।

আলোক তড়িৎ ক্রিয়ার জন্য আইনস্টাইনের সমীকরণ নির্ণয়ঃ

কোয়ান্টাম তত্ত্ব অনুযায়ী যে কোন বিকিরণ বিচ্ছিন্ন প্যাকেট বা ফোটনের আক্রারে নিঃসৃত হয়।

প্রতিটি ফোটনের শক্তি $=h\upsilon$ এখানে, h= প্লাঙ্কের ধ্যুবক এবং $\upsilon=$ বিকিরণের কম্পাঙ্ক। আইনস্টাইনের মতে, পরমাণুর সাথে একটি ফোটনের স্থিতিস্থাপক সংঘর্ষ হয় এবং এর পরমাণুর একটি ইলেকট্রন ফোটনের সমস্ত শক্তি শোষণ করে নেয়। কাজেই ইলেকট্রনের শক্তি $h\upsilon$ পরিমান বৃদ্ধি পায়। এখন ইলেকট্রনটি নিউক্লিয়াসের আকর্ষনে পরমানুতে আবদ্ধ থাকে। সুতরাং পরমানু থেকে বিচ্ছিন্ন করতে হলে কিছু শোষিত শক্তি ব্যয় করতে হয়

ধরি, এই ব্যায়িত শক্তির পরিমান $=W_o$

আবার ইলেকট্রনটি নিঃসারক পাত পরিত্যাগ করার সময় কিছু গতিশক্তিসহ নিঃসৃত হয়। সুতরাং শক্তির নিত্যতার সাহায্যে

লেখাযায়,
$$h\upsilon - W_o = \frac{1}{2}mv^2$$

এখানে, m = ইলেকট্রনের ভর এবং ν = ইলেকট্রনের নিঃসরণ বেগ।

এখন ধাতব পাত থেকে ইলেকট্রন নিঃসরণের জন্য প্রারম্ভ কম্পাঙ্ক υ_o হলে কার্যপেক্ষক $W_o=h \upsilon_o$

$$\therefore h \upsilon - h \upsilon_o = \frac{1}{2} m v^2$$
 এই সমীকরণকে আলোক তড়িৎ সম্পর্কিত আইনস্টাইনের সমীকরণ বলা হয়।

লেজার রশ্মি ও এর গঠনঃ

বর্তমানে পদার্থ বজ্ঞানের একটি বিশেষ গুরুত্বপূর্ণ আবিষ্কার হচ্ছে লেজার (laser), 'LASER' Light Amplification by

Stimulated Emission of Radition কথাটির সংক্ষিপ্ত রূপ লেজার রিশ্মি উৎপাদনের বিভিন্ন ব্যাবস্থা আছে। এদের মধ্যে রুবি লেজার অন্যতম। $1\ cm$ ব্যাসের ও প্রায় $5\ cm$ দৈর্ঘ্য বিশিষ্ট AB একটি রুবি কেলাস। এটি একটি ক্রোমিয়াম ডোপিংযুক্ত অ্যালুমিনিয়াম অক্সাইড। এই কেলাসের A প্রান্ত সম্পূর্ণ সুমসৃণ ও সম্পূর্ণ সিলভারিং করা। অপর প্রান্ত B ও সুমসৃণ এবং A এর সহিত সমান্তরাল কিন্তু আংশিক সিলভারিং করা। এবার একটি জেনন বাতির সাহায্যে

আলোর ঝলক কেলাসের উপর ফেললে কেলাসের পরমাণু গুলো উত্তেজিত হয় এবং লাল আলো নিসৃত হয়। এই আলো বারবার A এবং B এর মধ্যে প্রতিফলিত হয় এবং উদ্দীপিত হয়। ফলে তীব্র লেজার রিশা B প্রান্ত দিয়ে নির্গত হয়।

লেজার রশার বৈশিষ্ট বা ধর্মঃ

- 🕽 । এ রশার তীব্রতা খুব বেশী।
- ২। এ রশ্মির দশা -সুসংহত।
- ৩। এ রশ্মি প্রায় নিখুঁত ভাবে সমান্তরাল হয়।
- ৪। এ রশ্মি এক বর্ণী।
- ে। এ রশ্মি পানি দ্বারা শোষিত হয় না।

<u>লেজার রশ্মির ব্যবহার বা প্রয়োগঃ</u>

- 🕽 । পরীক্ষাগারে লেজার রশ্মির সাহায্যে আলোর বিভিন্ন বৈশিষ্ট প্রমাণ করা যায়।
- ২। যোগাযোগ ব্যবস্থায় লেজার রশ্মি ব্যবহৃত হয়।
- ৩। কঠিন বস্তুতে গর্তকরা, জোড়া বা ঝালাই কাজে
- ৪। চিকিৎসা ক্ষেত্রে সূক্ষ্ম অস্ত্রোপচারে লেজার রশ্মি ব্যবহৃত হয়।
- ৫। লেজার রশ্মির সাহায্যে সঠিকভাবে দূরত্ব মাপা যায়। লেজার রশ্মির সাহায্যে পৃথিবীথেকে চাঁদের দূরত্ব প্রায় সঠিকভাবে নির্ণয় সম্ভব হয়েছে।

<u>ইলেকট্রন ভোল্ট (eV)</u>ঃ একটি ইলেকট্রন এক ভোল্ট বিভব পার্থক্য অতিক্রম করতে যে পরিমান কাজ সম্পাদন করে, অথবা যে পরিমান শক্তি অর্জন করে, তাকে ইলেকট্রন ভোল্ট বলে। 1eV= ইলেকট্রনের চার্জ $\times 1$ েভোল্ট

$$\Rightarrow 1eV = 1.6 \times 10^{-19} C \times 1Volt$$
$$\therefore 1eV = 1.6 \times 10^{-19} \text{ GeV}(J)$$

সূচন কম্পাঙ্কঃ ফোটনের যে কম্পাঙ্কের নিচে ধাতু থেকে ইলেকট্রন নির্গত হবে না, ফোটনের সে ন্যূনতম কম্পাঙ্ককে সূচন কম্পাঙ্ক বলে। একে υ_o দ্বারা প্রকাশ করা হয়। এর মান $\upsilon_o=\frac{W_o}{h}$ এখানে, $W_o=$ কার্যাপেক্ষকের মান বা ন্যূনতম বন্ধন শক্তি ও h= প্লাঙ্কের প্রমূবক।

<u>নিবৃত্তি বিভবঃ</u> যে নির্দিষ্ট বিভবের জন্য ফটো ইলেকট্রন নিঃসর্গ বন্ধ হয়ে যায় তাকে ঐ ধাতুর নিবৃত্তি বিভব বলা হয়। এ নিবৃত্তি বিভবের মান আপতিত আলোর প্রকৃতি ও ফটো ইলেকট্রন নিঃসরণকারী ধাতুর প্রকৃতির উপর নির্ভর করে।

কার্য অপেক্ষকঃ কোন ধাতবপৃষ্ঠ থেকে ইলেকট্রন নিঃস্রেলের জন্য একটি ন্যুনতম শক্তির প্রয়োজন থাকে তাকে ইলেকট্রনের বন্ধন শক্তি বলে। যখন বন্ধন শক্তি ন্যুনতম হয় তখন নিঃসৃত ইলেকট্রনের গতিশক্তি সর্বোচ্চ হয়। এ ন্যুনতম বন্ধন শক্তিকে কার্য অপেক্ষক বলে। কার্য অপেক্ষকের মান $W_o=hv_o$ এখানে, h= প্লাঙ্কের ধ্রম্বক ও $v_o=$ সূচন কম্পাঙ্ক।

দ্বিতীয় পত্রের অংকের সমাধান

2nd Paper Math Solution

১২। ইলেকট্রন ও ফোটনঃ (Electron And Photon)

১ । $6630\times10^{-10} m$ তরঙ্গ দৈর্ঘের ফোটনের শক্তি (গতি শক্তি) নির্ণয় কর । $[h=6.63\times10^{-34}~J\text{-s}$ এবং $c=3\times10^8~m\text{s}^{-1}~]$ আমরা জানি.

$$E=h\nu$$
 $\Rightarrow E=rac{hc}{\lambda}$ এখানে, গ্লাঙ্ক প্রুব, $h=6.63 imes 10^{-34} \ J-s$ আলোর দ্রুতি, $c=3 imes 10^8 \ ms^{-1}$ $\lambda=6630 imes 10^{-10} \ m$ শক্তি, $E=3 imes 10^{-19} \ J$ (Ans.)

২। সোডিয়ামের সূচন তরঙ্গদৈর্ঘ্য $6800 \mbox{\AA}$ । এর কার্যাপেক্ষক কত? আমরা জানি,

$$\begin{split} \phi &= hf_o = \frac{hc}{\lambda} \\ \Rightarrow \phi &= \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{6800 \times 10^{-10}} \\ \Rightarrow \phi &= 2.925 \times 10^{-19} \text{ J} \\ \Rightarrow \phi &= \frac{2.925 \times 10^{-19} \text{ gr}}{1.6 \times 10^{-19}} \text{ ev} \\ \therefore \phi &= 1.828125 \text{ ev} \quad \text{(Ans.)} \end{split}$$

৩। $4\times10^{15}\,\mathrm{Hz}$ কম্পনাঙ্কের বিকিরণ কোণ ধাতব পৃষ্ঠে আপতিত হলে সর্বোচ্চ $3.6\times10^{-19}\,\mathrm{J}$ শক্তি সম্পন্ন ইলেকট্রন নির্গত হয়। ঐ ধাতুর সূচন কম্পাঙ্ক কত?

8। কোন পদার্থে কার্যাপেক্ষক 1.85eV হলে ঐ পদার্থের সূচন কম্পাঙ্ক কত?

আমরা জানি,
$$\phi = f_0 h$$

$$\Rightarrow f_0 = \frac{\phi}{h}$$

$$\Rightarrow f_0 = \frac{1.85 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}} Hz$$

$$\therefore f_0 = 4.46 \times 10^{14} \ Hz \ (Ans.)$$

৫। কোন একটি ধাতু হতে ইলেকট্রন মুক্ত করতে 2.20eV শক্তির প্রয়োজন। ঐ ধাতুর উপর 6800 Å তরঙ্গ দৈর্ঘ্যের আলো পতিত হলে কোন ইলেকট্রন মুক্ত হবে কি?

আমরা জানি,

$$\begin{split} E &= hf = \frac{hc}{\lambda} \\ \Rightarrow E &= \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{6800 \times 10^{-10}} \, J \\ \Rightarrow E &= 2.925 \times 10^{-19} \, J \\ \Rightarrow E &= \frac{2.925 \times 10^{-19}}{1.6 \times 10^{-19}} \, eV \end{split} \qquad \begin{cases} e^{\frac{1}{2} \sqrt{10^{-34}}} \, e^{-\frac{1}{2} \sqrt{1$$

 $\therefore E = 1.828 \,\text{eV}$

যেহেতু ধাতুর উপর 6800\AA তরঙ্গ দৈর্ঘ্যের আলো পড়লে 1.828eV শক্তি উৎপন্ন হয় এবং ইলেকট্রন মুক্ত করতে 2.20eV শক্তির আলো প্রয়োজন বলে উক্ত আলো পড়লে কোন ইলেকট্রন মুক্ত হবে না।

৬। একটি ফেটিনের শক্তি 1.77 eV. ফোটনটির তরঙ্গ দৈর্ঘ্য নির্ণয় কর। আমরা জানি

$$E = hf \therefore f = \frac{E}{h}$$
আবার, $C = f\lambda$

$$\Rightarrow C = \frac{E\lambda}{h} \therefore \lambda = \frac{Ch}{E}$$

$$\Rightarrow \lambda = \frac{3 \times 10^8 \times 6.626 \times 10^{-34}}{1.77 \times 1.6 \times 10^{-19}} m$$

$$\therefore \lambda = 7.019 \times 10^{-7} m = 7019 \text{ Å (Ans.)}$$

৭। একটি H_2 পরমাণু -1.5~eV শক্তি অবস্থা থেকে -3.4~eV শক্তি অবস্থায় আসলে যে ফোটন নিঃসরণ করে তার কম্পাঙ্ক কত?

আমরা জানি,
$$hf = E_1 - E_2$$
 প্রথম কক্ষের শক্তি, $E_1 = -1.5 \text{ eV}$ দ্বিতীয় কক্ষের শক্তি, $E_2 = -3.4 \text{ eV}$ কম্পাঙ্ক, $f = ?$
$$\Rightarrow f = \frac{(-1.5 + 3.4) \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}} \text{ Hz}$$

$$\therefore f = 4.58 \times 10^{14} \text{ Hz (Ans.)}$$

৮। একটি 100 MeV ফোটনের কম্পাঙ্ক এবং তরঙ্গদৈর্ঘ্য নির্ণয় কর। আমরা জানি.

$$E=hf$$
 $\Rightarrow f=rac{E}{h}$ $\Rightarrow f=rac{E}{h}$ $\Rightarrow f=rac{100\times 10^6\times 1.6\times 10^{-19}}{6.63\times 10^{-34}} Hz$ $\therefore f=2.41\times 10^{-22} Hz \, (Ans.)$ আবার, $C=f\lambda$ $\Rightarrow \lambda=rac{C}{f}=rac{3\times 10^8}{2.41\times 10^{-22}}$ $\therefore \lambda=1.24\times 10^{-14} \, m \, (Ans.)$

৯। কোন ফোটনের তরঙ্গদৈর্ঘ্য $4\times 10^{-7} m$ । এর রৈখিক ভরবেগ কত? আমরা জানি,

$$p = \frac{h}{\lambda}$$
 এখানে, তরঙ্গ দৈর্ঘ্য, $\lambda = 4 \times 10^{-7} \mathrm{m}$ ভর বেগ $p = ?$ $\therefore p = 1.66 \times 10^{-27} \mathrm{kgms}^{-1}$ (Ans.)

১০। সোডিয়ামের কার্যাপেক্ষক 2.3eV। এর উপর 2000Å তরঙ্গদৈর্ঘ্যের আলোকরশ্মি পড়লে ইলেকট্রনের গতিশক্তি কত হবে?

আমরা জানি,
$$hf = \phi + K_{max}$$

$$\Rightarrow K_{max} = hf - \phi$$

$$\Rightarrow K_{max} = h\frac{c}{\lambda} - \phi$$

$$\Rightarrow K_{max} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{2000 \times 10^{-10}} - 2.3 \times 1.6 \times 10^{-19}$$

$$\Rightarrow K_{max} = 9.945 \times 10^{-19} - 3.68 \times 10^{-19}$$

$$\Rightarrow K_{max} = 6.265 \times 10^{-19} J$$

$$\Rightarrow K_{max} = \frac{6.265 \times 10^{-19}}{1.6 \times 10^{-19}} eV$$

$$\therefore K_{max} = 3.92 eV$$
 (Ans.)

পারমানবিক সংখ্যা, ভর সংখ্যা এবং আইসোটোপঃ

পারমানবিক সংখ্যা (Atomic number) কোন মৌলের পরমাণুর নিউক্লিয়াসে অবস্থিত প্রোটনের সংখাকে ঐ মৌলের পারমানবিক সংখ্যা বলে। একে Z দ্বারা প্রকাশ করা হয়।কোন মৌলের স্বাতন্ত্র্য এই সংখ্যার উপর নির্ভর করে। এটি যে কোন মৌলের মৌলিক ধর্ম। কার্বনের পরমানুতে 6টি প্রোটন আছে। সুতরাং কার্বনের পারমানবিক সংখ্যা 6।

<u>ভর সংখ্যা (Mass number)</u> নিউক্লিয়াসে অবস্থিত প্রোটন ও নিউট্রনের মোট সংখ্যাকে একটি পরমাণুর ভর সংখ্যা বলে। ভর সংখ্যাকে A দ্বারা প্রকাশ করা হয়। ক্লোরিনের একটি পরমাণুতে প্রোটন আছে 17 টি, নিউট্রন আছে 18 টি। সুতরাং ক্লোরিনের এই পরমাণুর ভর সংখ্যা 35।

<u>আইসোটোপ (Isotope)</u> একই মৌলের পরমাণুতে নিউটনের ভিন্নতার কারণে বিভিন্ন ভর হতে পারে। বিভিন্ন ভর সংখ্যা বিশিষ্ট একই মৌলের পরমাণুকে ঐ মৌলের আইসোটোপ বলা হয়। আইসোটোপ সমূহের রাসায়নিক ধর্ম একই থাকে। হাইড্রোজেনের তিনটি আইসোটোপ আছে। হাইড্রোজেন, ডিউটোরিয়াম (Deuterium) ও ট্রিটিয়াম (Tritium)। হাইড্রোজেনের ভর সংখ্যা ১, ডিউটোরিয়ামের 2 ও ট্রিটিয়ামের 3। বলা বাহুল্য তিনটিতেই পারমানবিক সংখ্যা 1। সুতরাং প্রথমটিতে কোন নিউট্রন নাই, দিতীয়টিতে আছে 1 টি ও তৃতীয়টিতে আছে 2 টি। কিছু কিছু আইসোটোপ তেজব্রুয়ে কণা ও রিশ্মি ছুড়ে দেয়। এদেরকে তেজব্রুয়ে আইসোটোপ বলে। C^{12} ও C^{14} তেজব্রুয়ে আইসোটোপের উদাহরণ।

রাদারফোর্ডের প্রমানু মডেল (Rutherford's atom model) &

সৌরমন্ডলের গঠনের সঙ্গে সাদৃশ্য রেখে ১৯১১ খ্রিষ্টাব্দে বিজ্ঞানী রাদারফোর্ড প্রিমানুর গঠন সম্পর্কে নিজস্ব মতবাদ উপস্থাপন করেন। এ মতবাদটি বাদারফোর্ডের Solar system atom model নামে পরিচিত। এ প্রস্তাবের উল্লেখযোগ্য প্রস্তাবগুলো হল-

- ৩) পরমাণুর প্রায় সবটুকু ভর এর নিউক্লিয়াসে পুঞ্জিভূত। তাই মোটামুটিভাবে নিউক্লিয়াসের ভরই পারমানবিক ভর।
- 8) সৌরমন্ডলের সূর্যের চারিদিকে আবর্তনীয় গ্রহসমূহের মত পরমাণুতে নিউক্লিয়াসের চতুর্দিকে কক্ষপথে কতগুলো ঋনাত্মক কণিকা সর্বদা ঘূনায়মান। এদের ইলেকট্রন বলে।
- ৫) নিউক্লিয়াসে ধনাত্মক চার্জের সংখ্যা এবং কক্ষপথে পরিক্রমশীল ঋনাত্মক চার্জযুক্ত ইলেকট্রনের সংখ্যা সমান। এ কারণে সকল পরমানুই বৈদ্যুতিক ভাবে চার্জ নিরপেক্ষ্
- ৬) সৌরজগতের সূর্যের চারদিকে খূর্নায়মান গ্রহের মত ইলেকট্রনগুলো এর কেন্দ্রস্থ নিউক্লিয়াসের চারদিকে সর্বদা ঘূর্নায়মান। ধনাত্মক চার্জ বিশিষ্ট নিউক্লিয়াসের ও ঋনাত্মক চার্জবিশিষ্ট ইলেকট্রন সমূহের পারস্পারিক স্থির বৈদ্যুতিক আকর্ষণ জনিত কেন্দ্রমুখী বল এবং ঘূর্নায়মান ইলেকট্রনের কেন্দ্রের বহির্মুখী বল পরস্পর সমান অর্থাৎ পরস্পরকে সমভার (counter balanced) করে।

রাদারফোর্ডের মডেলের সীমাবদ্ধতা (Limitation's Rutherford's atom model) &

এ মডেলের বেশ কিছু ত্রুটি রয়েছে, যেমন ঃ

- ১) এ মডেলকে সৌর মন্ডলের গঠনের সাথে সদৃশ্যপূর্ন দেখানো হয়েছে। সৌর মন্ডলের গ্রহণ্ডলো তড়িৎ নিরপেক্ষ এবং তাদের পরস্পরের মধ্যে মহাকর্ষ নিয়মে আকর্ষণ বিদ্যমান কিন্তু পরমানুর কক্ষপথে আবর্তনকারী ইলেকট্রন সমূহ ঋনাত্মক চার্জযুক্ত এবং এরা পরস্পরকে বিকর্ষণ করে।
- ২) ম্যাক্সওয়েলের তত্ত্বানুসারে পরিক্রমনরত চার্জযুক্ত ইলেকট্রন কণার অবিচ্ছিন্ন ভাবে শক্তিবিকিরণ করার কথা। এভাবে শক্তি হারাতে থাকলে নিউক্লিয়াসের আকর্ষণে ইলেকট্রনের কক্ষপথ সর্পিল আকারে হ্রাস পেয়ে এক সময় ইলেকট্রন নিউক্লিয়াসে পতিত হবে। এতে রাদারফোর্ডের বর্ণিত পরমাণু মডেলের কোন অস্তিত্বই থাকে না।
- ৩) এ তেজ বিকিরণ ক্রমাগত অবিচ্ছিন্নভাবে ঘটে বলে পরমাণুর বর্ণালীতে প্রাপ্ত রেখাসমূহ অবিচ্ছিন্ন হবে এবং প্রশস্থ ব্যান্ডের মত দেখাবে। কিন্তু এ রেখাগুলোকে বিচ্ছিন্ন ও বেশ উজ্জ্বল দেখায়।
- 8) ঘূর্ণনরত ইলেকট্রনের কক্ষ পথের আকার এবং আকৃতি কোন ধারনাই রাদারফোর্ডের মডেলে দেওয়া হয়নি।

৫) যে সব পরমাণুতে বহু ইলেকট্রন আছে সেসব ক্ষেত্রে ইলেকট্রন গুলো কিভাবে নিউক্লিয়াসকে পরিক্রমন করে সে সম্পর্কে কোন উল্লেখ এ মডেলে নেই।

<u>বোরের পরমাণু মডেল বর্ণনাঃ</u>

পরমাণুর গঠন ও একই সাথে পামানবিক বর্ণালী ব্যাখ্যা দেওয়ার জন্য নীলস্ বোর 1913 সালে তার বিখ্যাত পরমাণু মডেল প্রকাশ করেন। কোয়ান্টাম তত্ত্বের উপর প্রতিষ্ঠিত বোর পরমাণু মডেলের স্বীকার্যসমূহ নিমুরূপ তিনটি প্রধান ভাগে বিভক্তঃ

১ম স্বীকার্য ঃ ইলেকট্রনের স্থীর কক্ষপথ বা শক্তি স্তরের ধারনাঃ

পরমাণুর ইলেকট্রনগুলো নির্দিষ্ট শক্তির কতকগুলো বৃত্তাকার স্থায়ী কক্ষপথে নিউক্লিয়াসের চতুর্দিকে আবর্তন করে। এসব কক্ষপতে আবর্তন করার সময় ইলেকট্রন শক্তি শোষণ বা বিকিরণ করে না। এ কক্ষপথ গুলো শক্তি স্তর নামে পরিচিত। নিউক্লিয়াস থেকে ক্রমান্বয়ে দূরবর্তী শক্তিস্তর সমূহকে ১ম, ২য়, ৩য় প্রভৃতি শক্তিস্তর বলা হয়। প্রত্যেক শক্তিস্তর নির্দিষ্ট কোয়ান্টাম (শক্তির নূন্যতম একক) শক্তি সম্পন্ন। যে শক্তি স্তর নিউক্লিয়াস থেকে যত বেশী দূরে অবস্থিত তার শক্তি তত অধিক (1>2>3>4>5......) শক্তি স্তর সূচক এ সংখ্যা গুলোকে কোয়ান্টাম সংখ্যা (n=1,2,3,.....) বলে।

২য় স্বীকার্য ঃ কৌনিক ভরবেগ সম্পর্কিত প্রস্তাবঃ

একটি নির্দিষ্ট শক্তিস্তরে পরিক্রমরত ইলেকট্রনের কৌনিক ভরবেগ নির্দিষ্ট এবং তা $\frac{h}{2\pi}$ এর গুনিতক। অর্থাৎ কৌনিক

ভরবেগ, $mvr = \frac{h}{2\pi} \times n$

এখানে,

m = ইলেকট্রনের ভর

v = ইলেকট্রনের গতিবেগ

r = শক্তি স্তরের ব্যাসার্ধ

h =্লাঙ্কের ধ্রুবক = $6.626 \times 10^{-34} Js^{-1}$

n = অখন্ড সংখ্যা অর্থাৎ 1,2,3 ইত্যাদি।

n এর এসব মানের উপর ভিত্তি করে যথাক্রমে প্রথম, দ্বিতীয়, তৃতীয় প্রভৃতি কক্ষপথ নির্দেশিত হয়।

৩য় স্বীকার্য ঃ কম্পাঙ্ক স্বীকার্য ও বর্ণালী সৃষ্টির ধারণাঃ

যখন কোন ইলেকট্রন একটি কক্ষপথ বা শৈক্তিস্তর হতে অন্য শক্তিস্তর বা কক্ষপথে লাফিয়ে চলে, তখন ঐ ইলেকট্রন দ্বারা নির্দিষ্ট পরিমান শক্তি শোষিত বা বিকিরিত হয়। যখন উচ্চ শক্তিস্তর হতে নিমু শক্তি স্তরে লাফিয়ে চলে তখন শক্তির বিকিরণ এবং নিমু শক্তিস্তর হতে উচ্চ শক্তিস্তরে লাফিয়ে গেলে তখন শক্তির শোষন ঘটে। যদি প্রথম কক্ষপথে ইলেকট্রনের শক্তি E_1 এবং দ্বিতীয়

কক্ষপথে ইলেকট্রনের শক্তি E_2 হলে, বিকিরিত শক্তি হবে $\Delta E = E_2 - E_1$ । এই শক্তি বিদ্যুৎ চৌম্বকীয় বিকিরণ হিসেবে নির্গত হবে। প্লাঙ্কের সূত্রানুসারে সে বিকিরণের পরিমাণও স্পন্দন সংখ্যা ν নিম্নের সমীকরণ দ্বারা নির্ধারণ হবে।

 $\Delta E = (E_2 - E_1) = h \nu$, অর্থাৎ সৃষ্ট বর্ণালীতে ν স্পান্দন সংখ্যা বিশিষ্ট একটি রেখা দেখা যাবে। এখানে, ΔE হল দুটি শক্তি স্তরে ইলেকট্রন $\to E_2$ শক্তি শক্তির পার্থক্য, h প্লাঙ্কের ধ্রুবক $(6.626 \times 10^{-34}~Js^{-1})$ এবং ν হল বিকিরিত তড়িৎ চুম্বকীয় রিশ্মির ফ্রিকোয়েন্সি।

<u>বোর পরমাণু মডেলের সীমাবদ্ধতাঃ</u>

- ১) বোর পরমাণু মডেলে হাইড্রোজেন ও হাইড্রোজেন সদৃশএক ইলেকট্রন বিশিষ্ট আয়ন (H^+, Li^{-2+}) সমুহের ব্যাখ্যা করতে পারলেও একাধিক ইলেকট্রন বিশিষ্ট পরমানু সমূহের বর্ণালী ব্যাখ্যা করতে পারেন নি।
- ২) এক শক্তি স্তর থেকে অন্য শক্তিস্তরে ইলেকট্রনের স্থানান্তর ঘটলে বোর পরমাণু মডেল অনুসারে বর্ণালীতে একটি করে রেখা সৃষ্টি হওয়ার কথা। কিন্তু হাইড্রোজেন ও অন্যান্য পরমানু সমূহের আয়নের রেখা বর্ণালী অধিকতর সূক্ষ্ম যন্ত্র দ্বারা পরীক্ষণ করলে দেখা

যায়, প্রতিটি রেখার স্থানে কয়েকটি রেখা অবস্থান করছে। বোরের মতবাদে এর কোন ব্যাখ্যা নেই। অবশ্য বোর মতবাদ সম্প্রসারণ করে সোমারফিল্ড এর ব্যাখ্যা দান করেন।

৩) বোর মতবাদের সবচেয়ে বেশী সমালোচনা করা হয় হাইসেনবার্গ এর অনিশ্চয়তা নীতি থেকে। বোর মতবাদ পরমাণুতে একই (নির্দিষ্ট) সময়ে ইলেকট্রনের অবস্থান ও তার গতিবেগ সুনির্দিষ্ট করা হয়েছে যা এ নীতি মতে অসম্ভব।

<u>বোরের মডেল অনুসারে পরমানুর n তম কক্ষপথে ঘুর্নায়মান ইলেক্ট্রনের ব্যাসার্ধ ও শক্তি প্রকাশের রা</u>শিমালা নির্ণয়ঃ

মনে করি, m ভর বিশিষ্ট ও e আধান বিশিষ্ট একটি ইলেকট্রন rn ব্যাসার্ধ বিশিষ্ট একটি স্থায়ী কক্ষপথে vn বেগে ঘুরছে। পদার্থটির পারমানবিক সংখ্যা যদি z হয় তবে পরমাণুর নিউক্লিয়াসের আধানের পরিমান হবে ze। নিউক্লিয়াস ও ইলেকট্রনটির মধ্যে ক্রিয়াশীল আকর্ষণী বল ইলেক্ট্রনটির বৃত্তাকার পথে ঘোরার জন্য প্রয়োজনীয় কেন্দ্রমুখী বল $=rac{mv_n^2}{r_n}$ । নিউক্লিয়াসের ধনাত্মক আধান (ze) ও ইলেক্ট্রনের ঋনাত্মক আধানের মধ্যে বৈদ্যুতিক আকর্ষণ বলের মান $= \frac{1}{4\pi \in _0} \frac{(ze)e}{r_n^2}$

এই বলের মানদ্বয় পরস্পর সমান ও বিপরীত।
$$\therefore \frac{mv_n^2}{r_n} = \frac{1}{4\pi \in_0} \frac{ze^2}{r_n^2}$$
 $\Rightarrow v_n^2 = \frac{1}{4\pi \in_0} \frac{ze^2}{mr_n} \dots \dots \dots (1)$ আবার, বোরের স্বীকার্য থেকে আমরা জানি, স্থায়ী কন্ধের শর্ত , ইলেকট্রনের কৌনিক ভরবেগ, $mv_n r_n = n \frac{h}{2\pi}$

আবার, বোরের স্বীকার্য থেকে আমরা জানি, স্থায়ী কক্ষের শর্ত ,

ইলেকট্রনের কৌনিক ভরবেগ,
$$mv_n r_n = n \frac{h}{2\pi}$$

$$\therefore v_n = n \frac{h}{2\pi m r_n} \dots (2)$$

(2) নং সমীকরণ হতে v_n এর মান (1) এ বসিয়ে পাই,

$$(1) \ \exists \ \exists \exists \exists \exists \exists \exists e^2 \\ 4\pi \in_0 mr_n$$

$$\Rightarrow \frac{n^2 h^2}{4\pi^2 m^2 r_n^2} = \frac{ze^2}{4\pi \in_0 mr_n}$$

$$\Rightarrow \pi m r_n z e^2 = \in_0 n^2 h^2$$

$$\therefore r_n = \frac{e^2 n^2 h^2}{\pi m r_n e^2} \dots \dots \dots (3)$$

হাইড্রোজেন পরমানুর ১ম কক্ষপথের ক্ষেত্রে, n=1,ও z=1 ফলে হাইড্রেজিন পরমাণুর প্রথম কক্ষপথের

ব্যাসার্ধ ::
$$r_1 = \frac{\epsilon_0 h^2}{\pi m e^2}$$
 (4)

শক্তি প্রকাশের রাশিমালাঃ মোট শক্তি, E_n = গতিশক্তি (E_k) + বিভবশক্তি (E_D)

$$\Rightarrow E_n = \frac{1}{2} m v_n^2 + (\overline{\textbf{হ}} \textbf{census} \textbf{cns} \ \textbf{small} + \overline{\textbf{small}} \textbf{cns} \ \textbf{small} \ \textbf{small} = \frac{1}{2} m \times \frac{1}{4\pi \in_0} \frac{ze^2}{mr_n} + \left(-e \times \frac{1}{4\pi \in_0} \frac{ze}{r_n} \right) \ \textbf{small} \$$

$$\Rightarrow E_n = -rac{ze^2 imes \pi mze^2}{8\pi \in_0 imes \in_0 n^2 h^2}$$
 \quad \left[(3)নং থেকে $r_n = rac{\in_0 n^2 h^2}{\pi mze^2}$ বিসিয়ে \right] \\ \Rightarrow E_n = $-rac{mz^2 e^4}{8 \in_0^2 n^2 h^2}$ \quad \text{...} \quad \text{...} \quad (6) ইহাই n তম কক্ষপথের শক্তির রাশিমালা।

হাইড্রোজেন এর ক্ষেত্রে, z=1 এবং n=1 ফলে, $E_1=-\dfrac{me^4}{8\in_0^2h^2}$ (7) ইহাই কক্ষপথের শক্তির রাশিমালা।

স্থিতিশক্তির ঋনাত্মক মান প্রমাণ করে যে, ইলেকট্রনকে পরমাণু হতে বিচ্ছিন্ন করতে বাইরে থেকে শক্তি প্রদানের প্রয়োজন। এ শক্তিকে পরমাণুর বন্ধন শক্তিও বলে।

তেজস্ক্রিয়তা (Radioactivity) তেজস্ক্রিয় মৌল থেকে তেজস্ক্রিয় রিশ্মিনির্গমনের ঘটনাকে বলা হয় তেজস্ক্রিয়তা। তেজস্ক্রিয়তা একটি স্বাভাবিক স্বতঃস্কৃত্ত অবিরাম ঘটনা। ১৮৯৬ খ্রিষ্টাব্দে বিখ্যাত ফরাসি বিজ্ঞানী হেনরী বেকরেল সর্ব প্রথম তেজস্ক্রিয়তা আবিষ্কার করেন। তেজস্ক্রিয়তার এস আই একক বেকেরেল (Bq)। প্রতি সেকেন্ডে একটি তেজস্ক্রিয় ভাঙ্গন বা ক্ষয়কে এক বেকেরেল বলে। এ ছাড়াও তেজস্ক্রিয়তার আরো দুটি একক আছে। একটি কুরি ও অপরটি রাদারফোর্ড। প্রতি সেকেন্ডে 3.7×10^{10} সংখ্যক পরমাণুর ভাঙ্গনকে 1 কুরি বলে। অপরদিকে প্রতি সেকেন্ডে 10^6 সংখ্যক পরমাণুর ভাঙ্গনকে 1রাদারফোর্ড বলে।

তেজস্ক্রিয়তার বৈশিষ্ট্য (Characteristics of Radioactivity)ঃ

- ১) যে সব মৌলিক পদার্থের পারমানবিক ভর 206 এর বেশী , কেবলমাত্র সে সব পদার্থই তেজস্ক্রিয়তা প্রদর্শন করে।
- ২) তেজস্ক্রিয়তা একটি স্বাভাবিক স্বতঃস্কুর্ত অবিরাম ঘটনা। বাইরের কোন ঘটনা এ ঘটনাকে প্রভাবিত করে না।
- ৩) তেজস্ক্রিয় পদার্থ থেকে তিন ধরনের রশ্মি নির্গত হয়; এরা আলফা, বিটা ও গামা রশ্মি নামে পরিচিত।
- ৪) তেজস্ক্রিয়তা সম্পূর্ণভাবে একটি নিউক্লীয় ঘটনা। এতে নিউক্লিয়াসের বাইরেইলেকট্রনের কোন ভূমিকা নেই।
- ৫) নিউক্লিয়াসের ভাঙ্গনের ফলেই তেজব্ধ্রিয়তার সৃষ্টি হয় এবং তেজব্ধ্রিয় ক্ষিয়ের মাধ্যমে এক মৌল অন্য এক মৌলে পরিণত হয়।
- ৬) তেজস্ক্রিয় রশ্মি জীবন্ত কোষের জন্য ক্ষতিকারক।

(ক) আলফা রশ্মির ধর্ম (Properties of α -rays)ঃ

- ১) আলফা রশ্মি ধনাত্মক আধানযুক্ত এবং এর আধানের পরিমান একটি প্রোটনের আধানের দিগুন।
- ২) আলফা কণিকার ভর একটি প্রোটনের ভরের প্রায় চার গুণ্টা
- ৩) এর আপেক্ষিক আধান হাইড্রোজেন আয়নের আপেক্ষিক আধানের অর্ধেক।
- ৪) আলফা কণার ভর ও আধানের পরিমান দেখে মনে হয় যে, আলফা কণা প্রকৃতপক্ষে হিলিয়াম পরমাণুর নিউক্লিয়াস।
- ৫) আলফা রশ্মি জিম্কসালফাইড, বেরিয়াম প্লাটিসোসায়ানাইড প্রভৃতি বস্তুতে প্রতিপ্রভা সৃষ্টি করে। প্রতিপ্রভা আলোর মত বিরতিহীন না হয়ে স্কুলিঙ্গায়নের মতো বিচ্ছিন্ন হয়। এতে প্রমানিত হয় যে, আলফা রশ্মি কতকগুলো কণার সমষ্টি।
- ৬) তেজস্ক্রিয় পদার্থ থেকে আলফা প্রচুত বেগে নির্গত হয়। বিভিন্ন তেজস্ক্রিয় পদার্থ থেকে নির্গত আলফা কণার বেগ বিভিন্ন হয়।
- ৭) কোন গ্যাসের মধ্য দিয়ে যাওয়ার সময় আলফা কণা তীব্র আয়নায়ন সৃষ্টি করতে পারে।
- ৮) আলফা কণা ফটোগ্রাফিক প্লেটের উপর প্রতিক্রিয়া সৃষ্টি করে।
- ৯) আলফা কণা নিউক্লিয় বিক্রিয়া ঘটাতে পারে।
- ১০) আলফা কণার ভেদন ক্ষমতা খুবই কম। এটি বস্তু দ্বারা সহজেই শোষিত হয়।
- ১১) মানবদেহের উপর দীর্ঘ সময় ধরে আলফা রশ্মি আপতিত হলে চামড়ায় দূরারোগ্য ক্ষত সৃষ্টি হতে পারে।

(খ) বিটা রশ্মির ধর্ম (Properties of β-rays) &

- ১) তড়িৎ বা চৌম্বক ক্ষেত্র দ্বারা এ রশ্মি বিক্ষিপ্ত হয়, বিটা রশ্মি ঋনাতাক আধানবিশিষ্ট কণার সমষ্টি।
- ২) বিটা কণিকার ভর ইলেকট্রনের ভরের সমান অর্থাৎ $(9.1 \times 10^{-31} Kg)$ প্রকৃত পক্ষে eta রশ্মির কণা দ্রুতিগতি সম্পন্ন ইলেকট্রন।
- ৩) বিটা কণিকার আধান একটি ইলেকট্রনের আধানের সমান, অর্থাৎ $1.6 imes 10^{-19}$ কুলম্ব।
- 8) বিটা রশ্মির বেগ প্রায় শূন্য থেকে সব্বোচ্চ মান পর্যন্ত হতে পারে। কখনও কখনও এর বেগ প্রায় আলোর বেগের কাছাকাছি হয়।
- lpha) lpha কণার তুলনায় eta কণা অত্যন্ত হাল্কা হওয়ায় তড়িৎ বা চৌম্বক ক্ষেত্রে lpha কণা অপেক্ষা eta কণার বিক্ষেপ বেশী হয়।
- ৬) eta কণার ভেদন ক্ষমতা lpha কণা অপেক্ষা প্রায় 100 গুণ বেশী।
- ৭) eta রশ্মি জিঙ্কসালফাইড, বেরিয়াম প্লাটিসোসায়ানাইড প্রভৃতি বস্তুতে প্রতিপ্রভা সৃষ্টি করে।

- ৮) ফটোগ্রাফিক প্লেটে eta রশ্মির বিক্রিয়া lpha রশ্মি অপেক্ষা বেশী।
- ৯) মানবদেহে দীর্ঘ দিন ধরে eta রশ্মি আপতিত হলে চামড়ায় দূরারোগ্য ক্ষত সৃষ্টি হতে পারে।

(গ) গামা রশার ধর্ম (Properties of γ-rays) ঃ

- ১) তড়িৎ বা চৌম্বক ক্ষেত্র দ্বারা এ রশ্মি বিক্ষিপ্ত হয় না, এতে প্রমানিত হয় যে, গামা রশ্মি আধানহীন।
- ২) গামা রশ্মি তড়িৎ চুমাবকীয় তরঙ্গ অর্থাৎ এদের প্রকৃতি আলো ও এক্স রশ্মির মত। শূন্য স্থানে এদের বেগ $3\times~10^8~{
 m ms}^{-1}$ । γ রশ্মির তরঙ্গ দৈর্ঘ্যের পাল্লা প্রায় $10^{-11}~m$ থেকে $10^{-13}m$ পর্যন্ত বিস্তৃত।
- ৩) ফটোগ্রাফিক প্লেটে দৃশ্যমান আলোর মত একই ভাবে ক্রিয়া করে।
- 8) γ রশ্মি জিঙ্কসালফাইড, বেরিয়াম প্লাটিসোসায়ানাইড প্রভৃতি বস্তুতে প্রতিপ্রভা সৃষ্টি করতে পারে।
- ৫)
 γ
 রিশ্ব আলের মত প্রতিফলন, প্রতিসরণ প্রদর্শন করে।
- ৬) γ রশ্মি উচ্চ শক্তির ফোটন কণার স্রোত।
- ৮) জৈবিক কোষের উপর γ রশ্মি ক্রিয়া করে। টিউমার, ক্যানসার ইত্যাদি রোগের চিকিৎসায় গামা রশ্মি ব্যবহৃত হয়।

<u>তেজস্ক্রিয়তার ক্ষয় সূত্রঃ</u> কোন মুহূর্তে তেজস্ক্রিয় পরমাণুর ভাঙ্গন বা অবক্ষয়ের হার ঐ সময়ে উপস্থিত অক্ষত পরমাণুর সমানুপাতিক।

ক্ষয় সূত্রের ব্যাখ্যাঃ যদি তজস্ক্রিয় পরমাণুর ভাঙ্গনের হার $\frac{dN}{dt}$ এবং t সময়ে অক্ষত প্রমাণুর সংখ্যা N হয়, তবে, $-\frac{dN}{dt} \propto N$ বা,

 $rac{dN}{dt} = -\lambda N$ বা, $rac{dN}{N} = -\lambda dt$ (1) এখানে λ একটি ধ্রুব সংখ্যা এই ধ্রুব সংখ্যাই তেজস্ক্রিয়তার ক্ষয় ধ্রুবক। কোন

তেজস্ক্রিয় মৌলের একটি পরমাণুর একক সময়ে অবক্ষয়ের সম্ভাব্যতাকে ঐ মৌলের ক্ষয় ধ্রুবক বা অবক্ষয় ধ্রুবক বলে। মনে করি, শুরুতে অর্থাৎ t=0, তখন পরমাণুর সংখ্যা $N=N_o$ এবং অন্য এক সময় t=t তে N=N। সুতরাং এই সীমার মধ্যে উপরোক্ত সমীকরণকে সমাকলন করে পাই,

$$\int_{N_0}^{N} \frac{dN}{N} = -\int_{0}^{t} \lambda dt$$

বা,
$$[\ln N]_{N_0}^N = -\lambda [t]_o^t$$

বা,
$$(\ln N - \ln N_o) = -\lambda(t - o)$$

$$\sqrt[4]{ln} \cdot \frac{N}{N_0} = -\lambda t$$

বা,
$$\frac{N}{N_0} = e^{-\lambda t}$$

 $\therefore N = N_o e^{-\lambda t}$ (4) এটিই তেজস্ক্রিয়তার ক্ষয় সূত্র।

তেজন্ত্রিয় মৌলের অধায় এবং ক্ষয় ধ্রুবকের মধ্যে সম্পর্কঃ

অর্ধায়ুঃ কোন তেজস্ক্রিয় পদার্থের প্রারম্ভিক অক্ষত পরমাণুর সংখ্যা অর্ধেক হয়ে যেতে যে সময় লাগে তাকে অর্ধায়ু বা অর্ধ-পর্যায় বলে। তেজস্ক্রিয়তার ক্ষয় সূত্র থেকে আমরা জানি, $N=N_o e^{-\lambda t}$

যদি অর্ধায়ুকে $T_{\frac{1}{2}}$ দারা প্রকাশ করা হয়, তাহলে যখন, $t=T_{\frac{1}{2}}$, তখন $N=rac{N_o}{2}$

$$\therefore \frac{N_o}{2} = N_o e^{-\lambda T_{\frac{1}{2}}} \quad \text{at, } \frac{1}{2} = e^{-\lambda T_{\frac{1}{2}}} \quad \text{at, } 2 = \frac{1}{e^{-\lambda T_{\frac{1}{2}}}} \quad \text{at, } 2 = e^{\lambda T_{\frac{1}{2}}} \quad \text{at, } \log_e 2 = \lambda T_{\frac{1}{2}}$$

বা, $\lambda=\frac{\log_e 2}{T_{\frac{1}{2}}}$ $\therefore \lambda=\frac{0.693}{T_{\frac{1}{2}}}$ ইহাই অধায়ু এবং ক্ষয় ধ্রুবকের মধ্যে সম্পর্ক ।

<u>গড় আয়ুঃ</u> প্রত্যেকটি তেজস্ক্রিয় সবগুলো পরমাণুর আয়ুর যোগফলকে পরমাণুর প্রারম্ভিক সংখ্যা দ্বারা ভাগ করলে ঐ তেজস্ক্রিয় পদার্থের গড় আয়ু পাওয়া যায়। গড় আয়ুকে সাধারণত τ দ্বারা প্রকাশ করা হয়। \cdot _ _ ১ম পরমাণুর আয়ু + ২য় পরমাণুর আয়ু + ৩য় পরমাণুর আয়ু ++ $N_{_0}$ - তম পরমাণুর আয়ু \cdot

গানিতিক ভাবে দেখানো যায় যে, গড় আয়ু $au=rac{1}{\lambda}=rac{T_{rac{1}{2}}}{0.693}$ $\therefore T_{rac{1}{2}}=0.693 au$, সুতরাং অর্ধায়ু গড় আয়ুর সমানুপাতিক।

<u>নিউক্লিয় ফিশনঃ</u> যে প্রক্রিয়ায় ভারী পরমাণুর নিউক্লিয়াস বিশ্লিষ্ট হয়ে প্রায় সমান ভরের দুটি নিউক্লিয়াস তৈরি হয় এবং বিপুল পরিমান শক্তি নির্গত হয় তাকে ফিশন বা নিউক্লিয়ার বিভাজন বলে।

উদাহরণ স্বরূপ বলা যা যে, ইউরেনিয়াম নিউক্লিয়াসকে উচ্চ শক্তি সম্পন্ন নিউট্রন, প্রোটন বা ডিউটেরণ দ্বারা আঘাত করলে নিউক্লিয়াসের ফিশন ঘটে।

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{236}_{92}U \rightarrow ^{141}_{56}Ba + ^{92}_{36}Kr + 3^{1}_{0}n + \rar{6}$$

অর্থাৎ ইউরেনিয়াম $^{235}_{92}U$ -কে নিউট্রন দ্বারা আঘাত করায় এটি নিউট্রনকে আটক করে অস্থায়ী $^{236}_{92}U$ -এ পরিণত হয়। এই অস্থায়ী নিউক্লিয়াস ফিশন প্রক্রিয়ায় বিভাজিত হয়ে বেরিয়াম ও ক্রিপটন নিউক্লিয়াস গঠন করে। এবং 1টি হতে 3টি নিউট্রন সৃষ্টি হয়। এ নিউট্রন গুলোর আঘাতে আরও ইউরেনিয়াম নিউক্লিয়াসে ফিশন ঘটে। এরূপ ধারা বাহিক ভাবে ফিশন ঘটতে থাকে। প্রতিটি ফিশনে প্রায় 200 MeV শক্তি উৎপন্ন হয়।

নিউক্লিয় ফিউশনঃ যে প্রক্রিয়ায় একাধিক হালকা নিউক্লিয়াস একত্রিত হয়ে একটি অপেক্ষাকৃত ভারী নিউক্লিয়াস গঠন করে এবং অত্যধিক শক্তি নির্গত হয়, তাকে ফিউশন বা নিউক্লিয় সংযোজন বলে। এ জন্য ফিউশনকে ফিশনের বিপরীত প্রক্রিয়া বলা হয়। ফিউশন অত্যধিক উচ্চ তাপমাত্রায় সংঘটিত হয় বলে এ বিক্রিয়াকে তাপ নিউক্লিয় বিক্রিয়া বলে।

উদাহরণ স্বরূপ বলা যা যে, 4টি হাইড্রেজিন পরমাণুর নিউক্লিয়াসকে সংযোজন করে একটি হিলিয়াম নিউক্লিয়াস গঠন করলে হিলিয়াম নিউক্লিয়াসের ভর ৪টি হাইড্রোজেন নিউক্লিয়াসের ভর অপেক্ষা কিছু ক্রম হয়। এ হ্রাসকৃত ভর শক্তিতে রূপান্তরিত হয়।

$${}_{1}^{3}H + {}_{1}^{2}D \rightarrow {}_{2}^{4}He + {}_{0}^{1}n + \text{MG}$$

পারমাণবিক ভরের এককঃ পারমাণবিক ভরের একক $Atomic\ massumit\ (amu\)$ । পরমাণুর ভর খুব নগণ্য বলে এর প্রকৃত ভর বিবেচনা না করে কোন প্রমাণ মৌলের সাপেক্ষে অন্যান্য মৌলের ভর নির্ণয় করা হয়। 1960 সাল থেকে $_6C^{12}$ কে প্রমাণ মৌল

হিসেবে ধরা হয়। $_6C^{12}$ পরমাণুর ভরের $\frac{1}{12}$ অংশকে পারমানবিক ভর একক (amu) ধরা হয়। $1amu=1.66057\times 10^{-27}~Kg$ ।

নিউক্লীয় বলঃ পরমাণুর নিউক্লিয়াসে বিদ্যমান নিউক্লিয়ন তথা প্রোটন ও নিউট্রন গুলোর মধ্যে এক প্রকার আকর্ষণ বল পরস্পর পরস্পরের সাথে দৃঢ ভাবে আবদ্ধ থাকে। এ বলকে নিউক্লীয় বল বলে।

নিউক্লীয় চুল্লি (পারমানবিক) চুল্লিঃ যে যান্ত্রিক ব্যাবস্থার সাহায্যে নিউক্লিয়াসের নিয়ন্ত্রিত ক্রমিক বিভাজন দ্বারা বিপুল পরিমান পারমানবিক শক্তি অর্জন করা যায় তাকে নিউক্লীয় (পারমাণবিক) চুল্লি বলে। কয়লা পোড়ালে যেমন তাপশক্তি পাওয়া যায় তেমনি জ্বালানির ফিশনের ফলে উৎপন্ন পারমাণবিক শক্তি ভীষণ উত্তপ্ত আকারে বহির্ভূত হয়। এই উত্তাপ দ্বারা বাষ্প সৃষ্টি করে টারবাইন

চালিয়ে বিদ্যুৎ উৎপাদন করা হয়। শৃষ্পল বিক্রিয়াঃ চেইন বা শৃষ্পল বিক্রিয়াঃ এমন একটি প্রক্রিয়া যা একবার শুরু হলে তাকে চালিয়ে রাখার জন্য কোন অতিরিক্ত শক্তি প্রয়োজন হয় না। ফিশনযোগ্য বিক্রিয়ায় যে নিউটন মুক্তি লাভ করে বা বেরিয়ে আসে তা শৃষ্পল বিক্রিয়াকে সম্ভব করে তোলে। ফিশনের ফলে $_{92}U^{235}$ থেকে মুক্ত হয়েছে দুটি নিউট্রন। এখন এ দুটি নিউট্রন যদি আরও দুটি $_{92}U^{235}$ নিউক্রিয়াসের ফিশন ঘটায় তাহলে পাওয়া যাবে $_{4}$ টি নিউট্রন। এরা আরও $_{4}$ টি নিউক্রিয়াসের ফিশন ঘটিয়ে তৈরী করবে $_{8}$ (আট) টি নিউট্রন এবং এ প্রক্রিয়া ফিশন যোগ্য পদার্থ শেষ না

চিত্র ঃ শুন্সল বিক্রিয়া। হওয়া পর্যন্ত চলতে থাকবে। এ প্রক্রিয়াকেই বলা হয় শৃঙ্খল বিক্রিয়া। উপরোক্ত চিত্রটি দ্বারা শৃঙ্খল বিক্রিয়া বোঝান হয়েছে। শৃঙ্খল বিক্রিয়ার সংজ্ঞাঃ যে স্ব-বহ প্রক্রিয়া একবার শুরু হলে তাকে চালিয়ে রাখার জন্য অতিরিক্ত কোন শক্তির প্রয়োজন হয় না তাকে শৃঙ্খল বিক্রিয়া বলে।

অনিয়ন্ত্রিত শৃঙ্খল বিক্রিয়া অতি অল্প সময়ে অধিক পরিমান শক্তির উদ্ভব ঘটায়। একটি নিউট্রন দ্বারা শুরু করা অনিয়ন্ত্রিত শৃঙ্খল বিক্রিয়া নজীরবিহীন বিস্ফোরণ ঘটাতে পারে। কিন্তু শৃঙ্খল বিক্রিয়াকে যথোপযুক্ত ভাবে নিয়ন্ত্রিত করতে পারলে তা থেকে পাওয়া যাবে অপরিসীম শক্তির। এই শক্তিকে মানব কল্যানে ব্যবহার করা যেতে পারে। শৃঙ্খল বিক্রিয়াকে নিয়ন্ত্রিত করে রিয়্যাকটরে নানান রকম কাজ করা হয়।

<u>ভর ক্রুটিঃ</u> কোন একটি নিউক্লিয়াসের ভর এবং এবং এর উপাদানিক কণাগুলোর মুক্ত অবস্থায় মিলিত ভরের পার্থক্যকে ভর ক্রুটি বলে।

Want more Updates: https://www.facebook.com/tanbir.ebooks দিতীয় পত্রের অংকের সমাধান

2nd Paper Math Solution

১৩। প্রমাণু (Atom)

 একটি তেজস্ক্রিয় মৌলিক পদার্থের অর্ধায় 4d । পদার্থটির ক্ষয় ধ্রুবক নির্ণয় কর ।

Avgiv Rvwb,
$$T_{\frac{1}{2}} = \frac{0.693}{\lambda}$$

$$\Rightarrow \lambda = \frac{0.693}{T_{\frac{1}{2}}}$$

$$\Rightarrow \lambda = \frac{0.693}{4d}$$

$$\Rightarrow \lambda = \frac{0.693}{4d}$$

$$\lambda = 0.17325 \,\mathrm{d}^{-1} \,\,(\mathrm{Ans.})$$

২। রেডিয়ামের গড় আয়ু ২৩৪১ বৎসর। এর অবক্ষয় ধ্রুবকের মান নির্ণয় কর।

আমরা জানি.

$$\lambda=rac{1}{ au}$$
 এখানে, গড় আয়ু, $au=2341$ বৎসর অবক্ষয় ধ্রবুক, $\lambda=?$

∴ $\lambda = 4.27 \times 10^{-4}$ বৎসর⁻¹ (Ans.)

৩। এক খন্ড রেডনের ৬০% ক্ষয় হতে কত সময় লাগবে?

$$\Rightarrow \lambda = \frac{0.693}{3.82 \text{ fin}}$$

 $\therefore \lambda = 0.1814 /$ দিন

মনেকরি, রেডনের প্রারম্ভিক পরিমান ঘ_{ড়} এবং ঃ দিন পর রেডনের পরিমান ঘ.

$$N = \frac{N_o \times 40}{100}$$
 আবার, $N = N_o e^{-\lambda t}$

$$\Rightarrow \frac{N_o \times 40}{100} = N_o e^{-\lambda t}$$

$$\Rightarrow 0.4 = e^{-\lambda t}$$

$$\Rightarrow \ln 0.4 = -\lambda t$$

$$\Rightarrow -0.916290731 = -0.1814 t$$

$$\Rightarrow t = \frac{0.916290731}{0.1814}$$

$$\therefore t = 5.05$$
 দিন (Ans.)

৪। রেডনের অর্ধায়ু 3.82 দিন। রেডনের তেজস্ক্রিয় ধ্রুবকের মান কত এবং কত দিন পর রেডনের প্রারম্ভিক মানের $\frac{1}{20}$ অংশ অপরিবর্তিত

থাকবে?

আমরা জানি,

$$T_{\frac{1}{2}}=rac{0.693}{\lambda}$$
 এখানে, অর্থায়ু $T_{\frac{1}{2}}=3.82$ দিন $\lambda=rac{0.693}{3.82}$ দিন $\frac{1}{20}$ অংশ অপরিবর্তিত থাকতে সময় $t=?$ $\therefore \lambda=0.1814/$ দিন

মনেকরি, রেডনের প্রারম্ভিক পরিমান N_o এবং t দিন পর রেডনের

পরিমান
$$N = \frac{N_o}{20}$$

আবার,
$$N = N_0 e^{-\lambda t}$$

$$\Rightarrow \frac{N_o}{20} = N_o e^{-\lambda t}$$

$$\Rightarrow 0.05 = e^{-\lambda t}$$

$$\Rightarrow ln0.05 = -\lambda t$$

$$\Rightarrow$$
 -2.99573 = -0.1814 t

$$\Rightarrow t = \frac{2.99573}{0.1814}$$

৫। হাইড্রোজেন পরামানুর ৩য় কক্ষ পথের ব্যাসার্ধ ও শক্তি নির্ণয় কর। এখানে, h= $6.63 \times 10^{-34} J_S$, ইলেকট্রনের ভর = $9.1 \times 10^{-31} kg$ এবং

ইলেকট্রনের চার্জ =
$$1.6 \times 10^{-19}$$
 C আমরা জানি,
$$r_n = \frac{n^2 h^2 \in_o}{\pi \ m \ e^2}$$

$$\Rightarrow r_3 = \frac{3^2 (6.63 \times 10^{-34})^2 8.854 \times 10^{-12}}{3.14 \times 9.1 \times 10^{-31} (1.6 \times 10^{19})^2}$$
 | এখানে,
$$h = 6.63 \times 10^{-34} J_S$$
 ভর
$$m = 9.1 \times 10^{-31} kg$$
 চার্জ
$$e = 1.6 \times 10^{-19} \ C$$

$$\in_0 = 8.854 \times 10^{-12} C^2 N^{-1} m^{-2}$$

$$\therefore r_3 = 4.79 \times 10^{-10} \text{ m} = 4.79 \text{ Å} \text{ (Ans.)}$$

আবার.

$$E_{n} = -\frac{\text{me}^{4}}{8n^{2}h^{2} \in_{0}^{2}}$$

$$\Rightarrow E_{n} = -\frac{9.1 \times 10^{-31} \times (1.6 \times 10^{-19})^{4}}{8 \times 3^{2} \times (6.63 \times 10^{-34})^{2} (8.854 \times 10^{-12})^{2}}$$

$$\therefore E_{n} = -2.4 \times 10^{-19} J$$

$$\Rightarrow E_{n} = -\frac{2.4 \times 10^{-19}}{1.6 \times 10^{-19}} eV = -1.5 eV (Ans.)$$

৬ । ইউরেনিয়ামের অর্ধায়ু $45{ imes}10^8$ বছর । এর গড় আয়ু নির্নয় কর ।

আমরা জানি, $T_{\frac{1}{2}} = \frac{0.693}{\lambda}$ $\Rightarrow \lambda = \frac{0.693}{T_{\frac{1}{2}}}$ $\therefore \lambda = \frac{0.693}{45 \times 10^8} = 1.54 \times 10^{-10}$ $\text{আবার,} \quad \tau = \frac{1}{\lambda}$ $\Rightarrow \tau = \frac{1}{1.54 \times 10^{-10}}$ $\therefore \tau = 6.49 \times 10^9 \quad \text{বছর (Ans.)}$

৭। একটি হাইড্রোজেন পরমাণু -15 eV শক্তি অবস্থা থেকে -3.4 eV অবস্থায় আসলে যে ফোটন নিঃসরণ হয় তার কম্পাঙ্ক কত হবে?

আমরা জানি, $hf = E_u - E_l$ $\Rightarrow f = \frac{E_u - E_l}{h}$

এখানে,
নিম্ন শক্তি স্তর
$$E_l$$
= -3.4eV
= -3.4×1.6×10⁻¹⁹J
উচ্চ শক্তি স্তর E_u = -
1.5eV
= -1.5×1.6×10⁻¹⁹J
কম্পাদ্ধ, f =?

$$\Rightarrow f = \frac{-1.5 \times 1.6 \times 10^{-19} - (-3.4 \times 1.6 \times 10^{-19})}{6.63 \times 10^{-34}} \text{ Hz}$$

$$\therefore f = 4.59 \times 10^{14} \text{ Hz (Ans.)}$$
s.)

অর্ধপরিবাহী (Semiconductor)ঃ

যে সকল পদার্থের পরিবাহীতা অন্তরক এর চেয়ে বেশী কিন্তু পরিবাহীর চেয়ে কম তাদের অর্ধ পরিবাহী বলে। সাধারনত পর্যায় সারণীর চতুর্থ শ্রেণীর মৌল যেমন সিলিকন, জার্মেনিয়াম প্রভৃতি পদার্থ অর্ধ পরিবাহীর ন্যায় আচরণ করে। এসব পদার্থে অল্প তড়িৎ ক্ষেত্র প্রয়োগ করে যোজন ব্যান্ড থেকে ইলেকট্রন পরিবহন ব্যান্ডে পাঠানো যায় এবং তডিৎ প্রবাহ সৃষ্টি হয়। তাপমাত্রা বৃদ্ধিপেলে পরিবহন ব্যান্ডে গমনকারী ইলেকট্রনের সংখ্যা বৃদ্ধি পায়, ফলে পরিবাহীতা ও বৃদ্ধি পায় অর্থাৎ রোধ হ্রাস পায়।

অর্ধপরিবাহীর বৈশিষ্ট্য (Characteristics of semiconductor)ঃ

- (i) অর্ধপরিবাহীর যোজন ব্যান্ড পূর্ন থাকে ও পরিবহন ব্যান্ড খালি থাকে।
- (ii) এর রোধকত্ব $10^{-4}~\Omega {
 m m}$ ক্রমের।
- (iii) যোজন ব্যান্ড ও পরিবহন ব্যান্ডের মধ্যে শক্তির ব্যবধান খুব কম থাকে।
- (iv) তাপমাত্রা বৃদ্ধিতে পরিবহন ব্যান্ডে ইলেকট্রন সংখ্যা বৃদ্ধি পায় এবং অর্ধপরিবাহীর তড়িৎ পরিবাহীতা বৃদ্ধি পায়।
- (v) উপযুক্ত অপদ্রব্য মিশ্রনে তড়িৎ পরিবহন ধর্মের উল্লেখযোগ্য পরিবর্তন ঘটে।

ব্যান্ড তত্ত্বের আলোকে অন্তরক. পরিবাহী ও অর্ধপরীবাহী পদার্থের আচরণ ব্যাখ্যাঃ

(ক) **অন্তরকঃ** কাচ, প্লাস্টিক, কাঠ ইত্যাদি অন্তরক পদার্থ। এদের মধ্যদিয়ে দিয়ে বিদ্যুৎ প্রবাহিত হয় না। এ সমস্তবস্তুর যোজন ব্যান্ড পূর্ণ থাকে এবং পরিবহন ব্যান্ড সম্পূর্ণ খালি থাকে। এ ছাড়া যোজন ব্যান্ড ও পরিবহন ব্যান্ডের মধ্যে পার্থক্য অনেক বেশী থাকে। সাধারণ্ত এ পার্থক্য 10eV-এর বেশী। যে সমস্ত পদার্থে উপরের বৈশিষ্ট্য বিদ্যমান সে গুলো অন্তর্রক হিসেবে পরিচিত। অন্তরকে যোজন ব্যান্ড থেকে ইলেকট্রন পরিবহন ব্যান্ডে নিতে হলে যথেষ্ট পরিমান শক্তি সরবরাহ করতে হয় সেই শক্তি প্রাপ্ত হয়ে যোজন ব্যান্ড থেকে ইলেকট্রন পরিবহন ব্যান্ডে যেতে পারে। তাই অন্তরক

পদার্থে তাপমাত্রা অনেক বাড়ালেও কিছু কিছু ইলেকট্রন যথেষ্ট শক্তি সঞ্চয় করে যোজন ব্যান্ড থেকে পরিবহন ব্যান্ডে যৈতে পারে। (খ) সুপরিবাহীঃ সুপরিবাহী পদার্থ বলতে সে সমস্তপদার্থকে বুঝায় যে সকল পদার্থের মধ্যে প্রচুর পরিমানে মুক্ত ইলেকট্রন থাকে যা

তড়িৎ প্রবাহে অংশ করে। শক্তি ব্যান্ডের দৃষ্টিতে এর অর্থ হল যেসুপরিবাহী পদার্থে যোজন ব্যান্ড ও পরিবহন ব্যান্ডের মধ্যে আংশিক উপরিপাত (Overlapping) হয়। সত্যিকার অর্থে দুটো ব্যান্ডের মধ্যে ভৌত পার্থক্য নির্ধারণ করা কঠিন। সুতরাং সুপরিবাহী পদার্থে

বৈদ্যুতিক ক্ষেত্র প্রয়োগ করলেই তড়িৎ প্রবাহ ঘটেন

(গ) **অর্ধপরিবাহীঃ** অর্ধপরিবাহী বস্তুর বিদ্যুৎপরিবাহীতা অন্তরক ও সুপরিবাহীর মাঝামাঝি। শক্তি ব্যাইউর আলোকে বলা যায় যে, এ সমস্ত পদার্থের যোজন ব্যান্ড ও পরিবহন ব্যান্ডের মধ্যে শক্তির পার্থক্য অন্তরকের চেয়ে অনেক কম থাকে। সাধারণত এই পার্থক্য ি মানের বা তার কিছু কম বা বেশী হয়। কক্ষ তাপমাত্রায় অর্ধপরিবাহীর (i) আংশিকপূর্ণ পরিবহঁন ব্যান্ড ও (ii) আংশিক পূর্ণ যোজন ব্যান্ড থাকে। পরম তাপমাত্রায় অর্ধপরিবাহীর পরিবহন ব্যান্ড সম্পূর্ণ খালি এবং যোজন ব্যান্ড সম্পূর্ণ পূর্ণ থাকে। সুতরাং পরম তাপমাত্রায় সিলিকন বা জার্মেনিয়াম আদর্শ অন্তরক।

বিশুদ্ধ বা সহজাত অর্ধপরিবাহী (Pure or intrinsic semiconductor)ঃ

যে সব অর্ধপরিবাহীতে কোন অপদ্রব্য থাকেনা তাদের বিশুদ্ধ বা সহজাত অর্ধপরিবাহী বলে। বিশুদ্ধ অর্ধপরিবাহীতে ইলেকট্রন ও হোলের সংখ্যা সমান। সহজাত অর্ধপরিবাহীর দু'প্রান্তে বিভব প্রয়োগ করলে এতে ইলেকট্রন ও হোলের জন্য তড়িৎ প্রবাহ চলতে থাকে। সিলিকন (Si), জার্মেনিয়াম(Ge), টিন(Sn) প্রভৃতি বিশুদ্ধ বা সহজাত অর্ধপরিবাহী।

দুষিত বা বর্হিজাত অর্ধপরিবা<u>হী (Impure or extrinsic semiconductor)</u>ঃ

সাধারণ তাপমাত্রায় বিশুদ্ধ অর্ধপরিবাহীর তড়িৎ পরিবাহীতা খুবই কম। কিন্তু বিশুদ্ধ অর্ধপরিবাহীতে বিশেষ ধরনের অপদ্রব্য অতি অল্প পরিমানে মিশিয়ে হোল বা মুক্ত ইলেকট্রনের সংখ্যা বাড়ানো যায়। ফলে অর্ধপরিবাহীর তড়িৎ পরিবাহীতা বৃদ্ধি পায়। এ ধরনের অপদ্রব্য মিশ্রিত অর্ধপরিবাহীকে দুষিত বা বর্হিজাত অর্ধপরিবাহী বলে। আর বিশুদ্ধ অর্ধপরিবাহীর সাথে সুনিয়ন্ত্রিত ও উপযুক্ত উপায়ে অল্প পরিমান অপদ্রব্য মেশানোর এ প্রক্রিয়াকে ডোপিং বলে। অপদ্রব্যের প্রকৃতির উপর ভিত্তি করে বহির্জাত অর্ধপরিবাহীকে দু' ভাগে ভাগ করা যায়। যথা lpha (i) p-টাইপ অর্ধপরিবাহী (ii) n-টাইপ অর্ধপরিবাহী।

p-টাইপ অর্ধপরিবাহী (p - type semiconductor) %

কোন বিশুদ্ধ অর্ধপরিবাহীতে সামান্য পরিমাণ ত্রিযোজী অর্থাৎ পর্যায় সারণীর তৃতীয় সারির মৌল অপদ্রব্য হিসেবে মেশানো হলে তাকে p-টাইপ অর্ধপরিবাহী বলে। বিশুদ্ধ অর্ধপরিবাহী জার্মেনিয়াম বা সিলিকনের পরমাণুতে যদি উপযুক্ত মাত্রায় কোন ত্রিযোজী মৌল (অ্যালুমিনিয়াম, গ্যালিয়াম ইত্যাদি) মেশান হয় তাহলে এ যোগকৃত ত্রিযোজী অপদ্রব্য জার্মেনিয়াম বা সিলিকনের কেলাসে প্রচুর হোল সস্টি করে।

একটি অ্যালুমিনিয়াম পরমাণু তার তিন দিকের তিনটি যোজন ইলেকট্রন দ্বারা চারিপার্শ্বস্থ জার্মেনিয়াম পরমাণুগুলোর সাথে সমযোজী বন্ধন গঠন করলেও একটি

ইলেক্ট্রনের সংখ্যার চেয়ে হোলের আধিক্যের কারণে একে p-টাইপ অর্ধপরিবাহী বলে।

n-টাইপ অর্ধপরিবাহী (n - type semiconductor) %

কোন বিশুদ্ধ অর্ধপরিবাহীতে সামান্য পরিমাণ পঞ্চযোজী অর্থাৎ পর্যায় সারণীর পঞ্চম সারির মৌল অপদ্রব্য হিসেবে মেশানো হলে তাকে n-টাইপ অর্ধপরিবাহী বলে। জার্মেনিয়ামের কেলাসে উপযুক্ত মাত্রায় কোন পঞ্চযোজী মৌল যেমন আর্সেনিক মেশানো হয় তাহলে একটি আর্সেনিক পরমাণুর চারটি ইলেকট্রন এর চারিপার্শ্বস্থ জার্মেনিয়াম পরমানুর সাথে সমযোজী বন্ধনে আবদ্ধ হয়। পঞ্চম ইলেকট্রনটি কোন সমযোজী বন্ধন গঠন করতে পারে না বলে তা উদ্ধৃত্ত থাকে এবং কেলাস গঠনের মধ্যে স্বাচ্ছন্দ্যে বিচরণ করে। এরা ইলেকট্রন যোগান দেয় বলে এদের দাতা পরমাণু

P Type জামেনিয়াম

অ্যালুমিনিয়াম (Al) অপদ্ধব্য মিশ্রিত জ্যমেনিয়াম(Ge)

(Donor) বলে। n-টাইপ অর্ধপরিবাহীতে পঞ্চযোজী অপদ্রব্য যুক্তকরীতে এতে প্রচুর মুক্ত ইলেকট্রন তথা পরিবহন ব্যান্ড ইলেকট্রন সৃস্টি হয়। তাছাড়া কক্ষ তাপমাত্রায় তাপীয় উত্তেজনার দরুন কিছু ইলেকট্রন-হোল যুগল সৃস্টি হয়। কিন্তু পরিবহন ব্যান্ড হোলের চেয়ে ইলেকট্রনের সংখ্যা অনেক বেশী থাকে বলে একে n-টাইপ্র অর্ধপরিবাহী বলে।

p
n

সমুখ বায়াস (Forword Bias)ঃ

p- অঞ্চলকে একটি ব্যাটারির ধনাত্মক প্রান্তেরসাথে এবং n- অঞ্চলকে একটি ব্যাটারির ঋনাত্মক প্রান্তেরসাথে যুক্ত করলে তড়িৎ প্রবাহিত হবে। এর কারণ হলো, ব্যাটারির ধনাত্মক প্রান্ত p- অঞ্চলের হোলগুলোকে বিকর্ষন করে এবং ঋনাত্মক প্রান্ত n- অঞ্চলের ইলেকট্রনগুলোকে বিকর্ষন

করে সংযোগের দিকে পাঠাবে। এতে বিভব প্রাচীরের উচ্চতা কমে যায়। ফলে, n- অঞ্চল থেকে ইলেকট্রন p- অঞ্চলে এবং p- অঞ্চল হোল n- অঞ্চলে অপেক্ষাকৃত সহজে প্রবাহিত হয়। এ ক্ষেত্রে খালি এলাকার প্রস্থ কমে যায়। যতক্ষন পর্যন্ত তড়িৎচালক বল থাকবে ততক্ষন পর্যন্ত বর্তনীতে তড়িৎ প্রবাহ চালু থাকবে। স্বাভাবিকভাবে ব্যাটারিতে যতবেশী তড়িৎচালক বল থাকবে প্রবাহমাত্রা তত বেশী হবে। অর্ধপরিবাহী ডায়োডের সাথে ব্যাটারীর এ রকম সংযোগকে সম্মুখ বায়াস বা ফরওয়ার্ড বায়াস বলে।

পশ্চাৎমুখী বায়াস (Reverse Bias)ঃ

p- অঞ্চলকে একটি ব্যাটারির ঋনাত্মক প্রান্তেরসাথে এবং n- অঞ্চলকে একটি ব্যাটারির ধনাত্মক প্রান্তেরসাথে যুক্ত করলে বর্তনী দিয়ে কার্যত কোন তড়িৎ তড়িৎ প্রবাহিত হবে না। এর কারণ হলো, ব্যাটারির ঋনাত্মক প্রান্ত p- অঞ্চলের হোলগুলোকে আকর্ষন এবং ধনাত্মক প্রান্ত প্রান্ত n- অঞ্চলের ইলেকট্রনগুলোকে আকর্ষন করে সংযোগ হতে দূরে সরিয়ে দিবে। এতে বিভব প্রাচীরের উচ্চতা বেড়ে যায়। ফলে, n- অঞ্চলের ইলেকট্রন এবং p- অঞ্চলের হোলগুলো বিভব প্রাচীর অতিক্রম করে যেতে পারে না এবং বর্তনী পূর্ন হওয়াতে কোন প্রবাহ থাকে না। এ ক্ষেত্রে খালি এলাকার প্রস্থ বেড়ে যায়। অর্ধপরিবাহী ডায়োডের সাথে ব্যাটারীর এ রকম সংযোগকে পশ্চাৎমুখী বায়াস বা রিভার্স বায়াস বলে।

p-n জাংশন বা অর্ধপরিবাহী ডায়োড - এর বৈশিষ্ট্য লেখঃ

আমরা জানি যে, p-n জাংশনে সম্মুখ বায়াস প্রয়োগ করলে বর্তনীতে তড়িৎ প্রবাহ পাওয়া যায়। p-n জাংশনে বিভিন্ন বিভব পার্থক্য V প্রয়োগ করে প্রতিক্ষেত্রে I নির্ণয় করে X অক্ষে V এবং Y অক্ষে I নিয়ে (খ) চিত্রের মত যে লেখ চিত্র পাওয়া যায় তাকে অর্ধপরিবাহী ডায়োড - এর বৈশিষ্ট্য লেখ বা p-n জাংশনের I-V লেখচিত্র বলে।

জাংশন ডায়োডের বৈশিষ্ট্য লেখ অংকন করার জন্য (ক) চিত্রের মত একটি বর্তনী ব্যবহার করা হয়। তড়িৎ প্রবাহ মাপার জন্য একটি মিলি অ্যামিটার (mA), বিভব মাপার জন্য একটি ভোল্টমিটার (V) ব্যবহার করা হয়। পরিবর্তনশীল রোধ (Rh) এর সাহায্যে বর্তনীতে প্রযুক্ত বিভব হাস বৃদ্ধি করা হয়। উক্ত লেখচিত্র হতে দেখা যায় যে, সম্মুখ বায়াসের ক্ষেত্রে সামান্য ভোল্টেজ বৃদ্ধিতে প্রবাহমাত্রা দ্রুত বৃদ্ধি পায়। কিন্তু পশ্চাৎমুখী বায়াসের ক্ষেত্রে ভোল্টেজ যথেষ্ট

পরিমান বৃদ্ধি করলেও প্রবাহমাত্রা খুবই সামান্য বৃদ্ধি পায়। পরীক্ষায় দেখা

গেছে যে, সম্মুখ বায়াসে প্রবাহমাত্রা কয়েক মিলিঅ্যাম্পিয়ার হলেও পশ্চাৎ বায়াসের বেলায় তা হয় মাত্র কয়েক মাইক্রোঅ্যাম্পিয়ার। পশ্চাৎমুখী বায়াস ক্রমশ বাড়াতে থাকলে একটি বিশেষ ভোল্টেজে প্রবাহমাত্রা হটাৎ খুব বেশি বৃদ্ধি পায় (লেখচিত্রে ভগ্ন রেখা), অর্থাৎ, মনে হয় ঐ সময় জাংশনের রোধ সম্পূর্ণরূপে শূন্য হয়। এ ঘটনাকে জেনার ক্রিয়া (Zener effect) বলে এবং ঐ ভোল্টেজকে জেনার ভোল্টেজ (Zener Voltage) বলে।

p-n জাংশান বা অর্ধপরিবাহী ডায়োড দ্বারা একমুখীকরণঃ

পরিবর্তী প্রবাহকে (AC) একমুখী প্রবাহে (DC) রূপান্তরিত করতে পারে বলে p-n জাংশনকে রেক্টিফায়ার বা একমুখিকারক হিসেবে ব্যবহার করা হয়। একমুখীকরণ দু'প্রকারের হতে পারে। যথাঃ (ক) অর্ধতরঙ্গ একমুখীকরণ (Half-wave rectification)

(খ) পূর্ণতরঙ্গ একমুখী করণ (Full-wave rectification)

(ক) অর্ধতরঙ্গ একমুখীকরণ (Half-wave rectification)ঃ

(গ) চিত্রে একটি p-n জাংশনকে রেক্টিফায়ার হিসেবে দেখান হয়েছে। বর্তনীটি একটি পরিবর্তী প্রবাহ উৎসের সাথে সংযুক্ত। ফলে উৎসের প্রতিচক্রের এক অর্ধচক্রে জাংশনটি সম্মুখ বায়াসে এবং অপর অর্ধচক্রে জাংশনটি পশ্চাৎমুখী বায়াসে থাকবে। যখন p অঞ্চল ধনাত্মক, তখন p-n জাংশনটি সম্মুখ বায়াস প্রাপ্ত হয়। ফলে বর্তনীতে সংযুক্ত লোড রেজিস্ট্যান্স R_L এর মধ্য দিয়ে বিদ্যুৎ প্রবাহ চলে। আবার p অঞ্চল যখন ঋনাত্মক হয় তখন p-n জাংশনটি পশ্চাৎমুখী বায়াস প্রাপ্ত হয়। ফলে লোড রেজিস্ট্যান্স R_L এর মধ্য দিয়ে কোন বিদ্যুৎ প্রবাহ চলে না। এবং লোড R_L এর দুই প্রান্তেকোন বিভব পার্থক্য পাওয়া যায় না। সুতরাং দেখা যাচ্ছে যে, লোড R_L রোধের ভিতর দিয়ে একটি বিরতিযুক্ত কিন্তু সর্বদা একমুখী প্রবাহ যাচ্ছে। লেখচিত্র হতে সহজে বুঝা যায় যে, AC সরবরাহের একটি পূর্ণ চক্রের উপরিঅর্ধের দক্রন লোড R_L রোধের মধ্য দিয়ে প্রবাহ পাওয়া গেলেও নিার্ধের দক্রন কোন প্রবাহ যাবে না। পূর্ণ চক্রের এক অর্ধেকের প্রবাহ পাওয়া যায় বলে একে অর্ধত্বক্র একমুখীকরণ (Half-wave rectification) বলা হয়।

(খ) পূর্ণতরঙ্গ একমুখী করণ (Full-wave rectification)ঃ

পূর্ণতরঙ্গ একমুখীকরণের জন্য দুটি p-n জাংশন ডায়োড (ঘ) চিত্রের মত সমান্তরালে ব্যবহার করতে হয়। ধরি, একটি পূর্ণচক্রের উপরি অর্ধেকের জন্য A প্রান্ত ধনাত্মক। এমতাবস্থায় , ডায়োড D_1 এর মধ্য দিয়ে তড়িং প্রবাহিত হবে। কিন্তু B প্রান্ত ঋণাত্মক থাকার কারনে ডায়োড D_2 এর মধ্য দিয়ে কোন প্রবাহ থাকবে না। আবার, পূর্ণচক্রের নিম্নার্ধের জন্য A প্রান্ত ঋনাত্মক এবং B প্রান্ত ধনাত্মক বলে ডায়োড D_2 এর মধ্যদিয়ে তড়িং প্রবাহিত হবে এবং ডায়োড D_1 এর মধ্যদিয়ে কোন বিদ্যুৎ প্রবাহিত হবে না।

উভয় ক্ষেত্রে লোড R_L রোধের মধ্যদিয়ে তড়িৎ একই দিকে প্রবাহিত হবে। একেই পূর্ন তরঙ্গ একমুখী করণ বলে।

ট্রানজিস্টর ও এর প্রকার ভেদঃ

তিন প্রান্ত বিশিষ্ট যে ক্ষুদ্র অর্ধ-পরিববাহক যন্ত্রে বর্হিমুখী প্রবাহ, ভোল্টেজ এবং ক্ষমতা অর্জমুখী প্রবাহ দ্বারা নিয়ন্ত্রিত হয় এবং বর্হিমুখী প্রবাহ সংকেত বহুগুনে বিবর্ধিত হয় তাকে ট্রানজিস্টার বলে। উহা দুই প্রকার যথাঃ PNP ও NPN

অ্যাম্পলিফায়ার হিসেবে n-p-n ট্রানজিস্টারের কার্যপ্রণালী ব্যাখ্যাঃ

চিত্রে একটি কমন এমিটার n-p-n ট্রানজিস্টারের গঠন দেখান হয়েছে। ইনপুট সার্কিটে বেস ও এমিটারের মধ্যে এমন মানের একটি ডিসি ভোল্টেজ V_{BB} প্রয়োগ করা হয় যাতে এ জাংশন সব সময় সম্মুখ বায়াসে থাকে অর্থাৎ এ সি সিগনালের ঋনাত্মক অর্ধচক্রের সময়েও এ বায়াস সম্মুখ বায়াসে থাকে। সম্মুখ বায়াসে থাকার কারণে ইনপুট সার্কিটে রোধ খুব কম থাকে। আউটপুট সার্কিটে কালেকটর ও এমিটারের মধ্যে ডিসি ভোল্টেজ V_{CC} প্রয়োগ করে পশ্চাৎমুখী বায়াস করা হয়। এ কারণে আউটপুট সার্কিটে রোধ খুব বেশী থাকে। আউটপুট সার্কিটে একটি উচ্চ মানের ভার রোধ R_L সংযুক্ত থাকে।

ইনপুট ও আউটপুটে অনুকুল ডিসি বায়াস থাকার কারণে এমিটার, বেস ও কালেকটার প্রবাহ শুরু হয়। ধরি ডিসি প্রবাহ শুলো যথাক্রমে I_E , I_B ও I_C । কমন এমিটার বর্তনীতে বেস প্রবাহ হল ইনপুট ও কালেকটর প্রবাহ হল আউটপুট।

ধরি, ইনপুট সার্কিটে একটি দূর্বল AC সিগনাল ভোল্টেজ E_s প্রয়োগ করা হলো। E_s এর ধনাত্মক অর্ধচক্রের সময় বেস-এমিটার জাংশনের সম্মুখ বায়াস বৃদ্ধি পায়, ফলে অধিক সংখ্যক ইলেকট্রন এমিটার থেকে বেস তথা কালেকটরের দিকে ধাবিত হয় এবং সবগুলো প্রবাহ যথাঃ I_B , I_C ও I_E বৃদ্ধি পায়। কালেকটর প্রবাহের বৃদ্ধি ΔI_C , বেস প্রবাহের বৃদ্ধি ΔI_B এর তুলনায় অনেক বেশী। ΔI_C ও ΔI_B এর অনুপাতকে কারেন্ট গোইন ফ্যাক্টর বলে। একে β দ্বারা প্রকাশ করা হয়। $\beta = \frac{\Delta I_C}{\Delta I_B}$, $I_C >> \Delta I_B$ বলে প্রবাহ বর্ধিত হয়।

আবার বেড়ে যাওয়া কালেকটর প্রবাহ ভার রোধ R_L এ অধিক বিভব পতন ঘটায় অর্থাৎ আউট পুট ভোল্টেজ $V_o = I_C \times R_L$ যা E_S তুলনায় অনেক গুন বড়। এ ভাবে আউট পুটে ভোল্টেজ ও কারেন্ট অনেক গুন বর্ধিত হয়। এ ভাবে একটি n-p-n ট্রানজিস্টর অ্যাম্পলিফায়ার হিসেবে কাজ করে।

অ্যাম্পলিফায়ার হিসেবে p-n-p ট্রানজিস্টারের কার্যপ্রণালী ব্যাখ্যাঃ

চিত্রে একটি কমন এমিটার p-n-p ট্রানজিস্টারের গঠন দেখান হয়েছে। ইনপুট সার্কিটে বেস ও এমিটারের মধ্যে এমন মানের একটি ডিসি ভোল্টেজ V_{BB} প্রয়োগ করা হয় যাতে এ জাংশন সব সময় সম্মুখ বায়াসে থাকে অর্থাৎ AC সিগনালের ধনাত্মক অর্ধচক্রের সময়েও এ বায়াস সম্মুখ বায়াসে থাকে। সম্মুখ বায়াসে থাকার কারণে ইনপুট সার্কিটে রোধ খুব কম থাকে। আউটপুট সার্কিটে কালেকটর ও এমিটারের মধ্যে ডিসি ভোল্টেজ V_{CC} প্রয়োগ করে পশ্চাৎমুখী বায়াস করা হয়। এ কারণে আউটপুট সার্কিটে রোধ খুব বেশী থাকে। আউটপুট সার্কিটে একটি উচ্চ মানের ভার রোধ R_L সংযুক্ত থাকে।

ইনপুট ও আউটপুটে অনুকুল ডিসি বায়াস থাকার কারণে এমিটার, বেস ও কালেকটার প্রবাহ শুরু ইয়। ধরি ডিসি প্রবাহ গুলো যথাক্রমে I_E , I_B ও I_C । কমন এমিটার বর্তনীতে বেস প্রবাহ হল ইনপুট ও কালেকটর প্রবাহ হল আউটপুট।

ধরি, ইনপুট সার্কিটে একটি দূর্বল AC সিগনাল ভোল্টেজ E_s প্রয়োগ করা হলো। E_s এর ঋনাত্মক অর্ধচক্রের সময় বেস-এমিটার জাংশনের সম্মুখ বায়াস বৃদ্ধি পায়, ফলে অধিক সংখ্যক হোল এমিটার থেকে বেস তথা কালেকটরের দিকে ধাবিত হয় এবং সবগুলো প্রবাহ যথাঃ I_B , I_C ও I_E বৃদ্ধি পায়। কালেকটর প্রবাহের বৃদ্ধি ΔI_C , বেস প্রবাহের বৃদ্ধি ΔI_B এর তুলনায় অনেক বেশী। ΔI_C ও ΔI_B এর অনুপাতকে কারেন্ট গেইন ফ্যাক্টর বলে। একে β দ্বারা প্রকাশ করা হয়। $\beta = \frac{\Delta I_C}{\Delta I_B}$, $I_C >> \Delta I_B$ বলে প্রবাহ বর্ধিত হয়।

আবার বেড়ে যাওয়া কালেকটর প্রবাহ ভার রোধ R_L এ অধিক বিভব পতন ঘটায় অর্থাৎ আউট পুট ভোল্টেজ $V_o = I_C \times R_L$ যা E_S তুলনায় অনেক গুন বড়। এ ভাবে আউট পুটে ভোল্টেজ ও কারেন্ট অনেক গুন বর্ধিত হয়। এ ভাবে একটি p-n-p ট্রানজিস্টর অ্যাম্পলিফায়ার হিসেবে কাজ করে।

<u>Field Effect Transister (FET)</u> ঃ FET একটি তিন প্রান্তের একক বাহক আধান বিশিষ্ট ব্যবস্থা বা কৌশল Device। এখানে তড়িৎ প্রবাহ প্রযুক্ত তড়িৎ ক্ষেত্র দ্বারা নিয়ন্ত্রিত হয়। এটির কার্য সম্পাদন কেবল মাত্র একধরনের আধানের উপর নির্ভরশীল বলে একে Unipolar Transistor বলা হয়। ফেট (FET) মূলত দু ধরনের। যথা- জাংশন ফেট (JFET) এবং ধাতবঅক্সাইড ফেট (MOSFET)।

ডোপিং (Dopping)ঃ

সাধারণ তাপমাত্রায় বিশুদ্ধ অর্ধপরিবাহীর তড়িৎ পরিবাহীতা খুবই কম। কিন্তু বিশুদ্ধ অর্ধপরিবাহীতে বিশেষ ধরনের অপদ্রব্য অতি অল্প পরিমানে মিশিয়ে হোল বা মুক্ত ইলেকট্রনের সংখ্যা বাড়ানো যায়। ফলে অর্ধপরিবাহীর তড়িৎ পরিবাহীতা বৃদ্ধি পায়। এ ধরনের অপদ্রব্য মিশ্রিত অর্ধপরিবাহীকে বর্হিজাত অর্ধপরিবাহী বলে। আর বিশুদ্ধ অর্ধপরিবাহীর সাথে সুনিয়ন্ত্রিত ও উপযুক্ত উপায়ে অল্প পরিমান অপদ্রব্য মেশানোর এ প্রক্রিয়াকে বলা হয় ডোপিং।

ইনট্রিপ্রেটেড সার্কিট (IC)ঃ ইনট্রিপ্রেটেড সার্কিট হল সে বর্তনী যাতে বর্তনীর উপাংশ বা যন্ত্রাংশগুলো একটি ক্ষুদ্র অর্ধপরিবাহক চিপে বিশেষ প্রক্রিয়ায় গঠন করা হয় যারা সয়ংক্রিয়ভাবে ঐ চিপের অংশ। ইনট্রিগ্রেটেড সার্কিটে অনেকগুলো যন্ত্রাংশ যেমন রোধক, ধারক, ডায়োড, ট্রানজিস্টর ইত্যাদি এবং এদের অন্তসংযোগ একটি ক্ষুদ্র প্যাকেজ হিসেবে থাকে। এরা একটি পূর্ন ইলেকট্রনিকস্ কার্যাবলী সম্পন্ন করে।

ইনট্রিগ্রেটেড সার্কিট (IC) এর বৈশিষ্টঃ

- (১) এই সার্কিটের বিভিন্ন যন্ত্রাংশ স্বয়ংক্রিয়ভাবেই ক্ষুদ্র অর্ধপরিবাহক চিপের অংশ এবং কথনই স্বতন্ত্র যন্ত্রাংশকে আলাদা করা যায় না বা পুনস্থাপন করা যায় না।
- (২) এই সার্কিটের আকার থাকে খুবই ক্ষুদ্র। বিভিন্ন যন্ত্রাংশের সংযোগ দেখতে হলে মাইক্রোসকোপ ব্যাবহার করতে হয়।
- (৩) এই সার্কিট ব্যাবহার করে উৎপাদিত যন্ত্রাংশ আকারে ছোট ও ভাল কার্যকারিতা সম্পন্ন হয়।

ইনট্রিপ্রেটেড সার্কিটের সুবিধাঃ

- (১) সংযোগ সংখ্যা কম হওয়ায় নির্ভরযোগ্যতা বেশী।
- (২) অত্যন্ত ক্ষুদ্রাকৃতি।
- (৩) ওজন একেবারেই কম।
- (৪) পরিচালনার জন্য কম বিদ্যুতের প্রয়োজন হয়।
- (৫) অতি উচ্চ তাপমাত্রায় ও অধিক যোগ্যতায় কাজ করতে পারে।
- (৬) স্বল্প দাম

ইনট্রিগ্রেটেড সার্কিটের অসুবিধাঃ

কোন যন্ত্রাংশ নষ্ট হলে সমস্তচিপটি পরিবর্তন করতে হয়, অংশ বিশেষ মেরামত করা যায় না।

আলোক নিঃসরক ডায়োড (*LED*)ঃ

যে অর্ধপরিবাহীজাত কৌশল যা ব্যবহার করে তড়িৎ শক্তিকে তাপ আলোক শক্তিতে রূপান্তরিত করে সেই কৌশল কে আলোক নিঃসরক ডায়োড (LED) বলে। আলোক নিঃসরক ডায়োড দেখতে অনেকটা ছোট

বাল্বের মত। [চিত্র ঃ (চ)]

কাৰ্যপ্ৰণালীঃ

(LED) মুলত একটি সম্মুখ ঝোক বিশিষ্ট p-n জাংশন। সম্মুখ ঝোঁক প্রযুক্ত হলে এটি আলো নিঃসরণ করে। (ছ ও জ) চিত্রে একটি একটি (LED) এর বর্তনী ও কার্যনীতি দেখান হয়েছে। আমরা জানি যে, p-n জাংশনের n অঞ্চল হতে ইলেকট্রন প্রবাহিত হয়ে p অংশে যায় এবং p অঞ্চলের হোলের সাথে সংযোজন ও

পুনর্মিলন ঘটে। অনুরূপভাবে p অঞ্চল হতে হোল n অঞ্চলে যায় এবং ইলেকট্রনের সাথে সংযোজন ঘটে। পুনর্মিলন বিক্রিয়া হলঃ $A^+ + e^- \to A$ এখানে A^+ হচ্ছে ধনাত্মক আয়ন (হোল), e^- হচ্ছে ইলেকট্রন A হচ্ছে উৎপন্ন নিরপেক্ষ অনু বা পরমাণু। নিরপেক্ষ অণু বা পরমাণু উৎপন্ন হবার পর কিছুটা উত্তেজিত (Excited State) অবস্থায় থাকে। পরবর্তীতে আলো বা তাপ শক্তি নিঃসরণ করে নিরপেক্ষ অণু বা পরমাণু অবস্থায় (Ground State) ফিরে আসে।

LED এর ব্যবহারঃ

অপটিক্যাল যোগাযোগে, ইন্ডিকেটর বাতি এবং ডিজিটাল ইলেকট্রনিকস্ ইত্যাদিতে LED ব্যবহার করা হয়। ডিজিটাল যন্ত্রসমূহে রঙ্গিন বর্ণ বা সংখ্যা সৃষ্টি ও প্রদর্শনের জন্য LED ব্যবহার করা হয়।

সৌর কোষঃ

যে p-n যান্ত্রিক ব্যবস্থা দ্বারা সূর্য কিরণের আলোক রিশ্মি শক্তিকে তড়িৎ শক্তিতে রূপান্তরিত করে তাকে তাকে সৌর কোষ বলে। (ঝ) চিত্রে একটি সৌর কোষের গঠন দেখান হলো।এ কোষে সিলিকনের তৈরী p-n জাংশন ডায়োডের উপর গ্লাসের একটি জানালা থাকে। p অঞ্চল খুবই পাতলা করা হয় যাতে সূর্যরিশ্মি খুব সহজেই p-n জাংশনে পৌছতে পারে। আপতিত সৌর রিশ্মির ফোটন কিনকা যখন p বা n বস্তুর যোজন ইলেকট্রনের সাথে ধাক্কা খায় তখন ইলেকট্রন যথেষ্ট শক্তি প্রাপ্ত হয় এবং মূল পরমাণু থেকে বিচ্ছিন্ন হয়ে যায়। এ ভাবে জাংশনের দু পাশে যথেষ্ট সংখ্যক ইলেকট্রন ও হোলের সৃষ্টি হয়। জাংশনে বিরাজমান তড়িৎক্ষেত্রের প্রভাবে এসব ইলেকট্রন ও হোল পুনর্মিলনের সুযোগ পায় না।

তড়িৎক্ষেত্রের প্রভাবে এসব ইলেকট্রন ও হোল পুনর্মিলনের সুযোগ পায় না। বরং, পরস্পর হতে বিচ্ছিন্ন হয়ে জাংশন পার হয়ে পরস্পর বিপরীত দিকে গমন করে। হোল গুলো p অঞ্চলের দিকে এবং ইলেকট্রন গুলো n অঞ্চলের দিকে ধাবিত হয়। p অঞ্চলে সৃষ্ট ইলেকট্রন হচ্ছে সংখ্যা লঘু ইলেকট্রন বাহক। জাংশনের তড়িৎক্ষেত্র ইলেকট্রন গুলোকে n অঞ্চলে যেতে সহায়তা করে। অনুরূপ ভাবে n অঞ্চলে সৃষ্ট হোল গুলো p অঞ্চলের দিকে গমন করে। ইলেকট্রন ও হোলের চলাচলের কারণে তড়িৎ প্রবাহের সৃষ্টি হয়। তড়িৎ

প্রবাহ আপতিত রশ্মির তীব্রতা এবং যতটুকু জায়গা জুড়ে আলোক রশ্মি আপতিত হয় তার উপর নির্ভর করে।

সৌর কোষ এর ব্যবহারঃ

আলেক গ্রাহক যন্ত্র, রিলে, কৃত্রিম উপগ্রহ, ক্যালকুলেটর, ঘড়ি ইত্যাদিতে বিদ্যুৎ শক্তি সরবরাহ করার জন্য সৌর কোষ ব্যবহৃত হয়।

Want more Updates: https://www.facebook.com/tanbir.ebooks দিতীয় পত্রের অংকের সমাধান

2nd Paper Math Solution ১৪।ইলেক্ট্রনিক্স (Electronics)

১। কোন ট্রানজিস্টর এর সাধারণ পীট সংযোগে আছে। এর নিঃসারক প্রবাহ 0.85 mA এবং পীঠ প্রবাহ 0.05 mA, সংগ্রাহক প্রবাহ ও প্রবাহ বিবর্ধক গুণক lpha বের কর।

এখানে.

আমরা জানি,

$$I_E = I_C + I_B$$

$$\Rightarrow$$
 $I_C = I_E - I_B$

$$\Rightarrow I_C = 0.85 - 0.05$$

$$\therefore$$
 I_C = 0.8 mA (Ans.)

আবার,

বিবর্ধক গুণক
$$\alpha = \frac{I_C}{I_E}$$

 $\Rightarrow \alpha = \frac{0.8 \text{mA}}{0.85 \text{mA}}$

0.85mA $\therefore \alpha = 0.94$ (Ans.)

২। 20mA নিঃসরক প্রবাহের ফলে একটি ট্রানজিস্টরে 18mA সংগ্রাহক প্রবাহ পাওয়া গেল। ট্রানজিস্টারের ভূমি প্রবাহের মান কত? আমরা জানি,

$$I_E = I_C + I_B$$

$$\Rightarrow$$
 $I_B = I_E - I_C$

$$\Rightarrow$$
 I_B = 20 - 18

 \therefore I_B = 2 mA (Ans.)

এখানে,

এখানে.

 $\alpha = ?$

 $\beta = ?$

 $I_E = ?$

নিঃসারক প্রবাহ $I_E=20~mA$ সংগ্রাহক প্রবাহ $I_c=18mA$ ভূমি প্রবাহ $I_B=?$

 $I_c = 5 \text{mA} = 5 \times 10^{-3} \text{A}$

 $I_B = 100 \mu A = 10 \times 10^{-6} A$

নিঃসারক প্রবাহ $I_E=0.85 mA$ পীঠ প্রবাহ $I_B=0.05 mA$

সংগ্রাহক প্রবাহ I_c=?

বিবর্ধক গুণক $\alpha = ?$

৩। একটি ট্রানজিস্টরের $I_c = 5 mA, \; I_B = 100 \mu A$ হলে

 $\alpha,\, \beta$ এবং I_E এর মান নির্ণয় কর।

আমরা জানি,

$$\beta = \frac{I_C}{I_D}$$

$$\Rightarrow \beta = \frac{5 \times 10^{-3}}{100 \times 10^{-6}}$$

$$\beta = 50$$
 (Ans.)

আবার,
$$\beta = \frac{\alpha}{1-\alpha}$$

$$\Rightarrow 50 = \frac{\alpha}{1-\alpha}$$

$$\Rightarrow \alpha = 50 - 50\alpha$$

$$\Rightarrow$$
 51 α = 50

$$\alpha = \frac{50}{51} = 0.98$$
 (Ans.)

আবার, $I_{\rm E}=I_{\rm B}+I_{\rm C}$

$$\Rightarrow I_E = 100 \times 10^{-6} + 5 \times 10^{-3}$$

$$I_{\rm E} = 5.1 \times 10^{-3} \,\text{A} = 5.1 \,\text{mA} \, \text{(Ans.)}$$

8। কোন ট্রানজিস্টর সাধারণ পীট সংযোগে রয়েছে। এর সংগ্রাহক প্রবাহ 0.95mA এবং পীঠ প্রবাহ 0.05mA নিঃসারক প্রবাহ কত?

আমরা জানি.

$$I_E = I_C + I_B$$

$$\Rightarrow$$
 I_E = 0.95 mA+0.05 mA

$$\therefore$$
 I_E = 1.00 mA (Ans.)

এখানে,

সংগ্রাহক প্রবাহ $I_c = 0.95 mA$ পীঠ প্রবাহ $I_B = 0.05 mA$

নিঃসারক প্রবাহ $I_E = ?$

৫। নিঃসারক প্রবাহের $10.0~{
m mA}$ পরিবর্তন, সংগ্রাহক প্রবাহের $7.2~{
m mA}$ পরিবর্তন ঘটায়। এ জন্য পীট প্রবাহ কতটুকু পরিবর্তন করতে হবে?

আমরা জানি,

$$\Delta I_{E} = \Delta I_{C} + \Delta I_{B}$$

$$\Rightarrow \Delta I_B = \Delta I_E - \Delta I_C$$

$$\Rightarrow \Delta I_B = 10.0 \text{mA} - 7.2 \text{mA}$$

$$\therefore \Delta I_B = 2.8 \text{ mA (Ans.)}$$

এখানে,

নিঃসারক প্রবাহের পরিবর্তন,

 $\Delta I_E {=} 10.0 mA$ সংগ্রাহক প্রবাহের পরিবর্তন,

 $\Delta I_C = 7.2 \text{mA}$

পীঠ প্রবাহের পরিবর্তন, ΔI_B=?

৬। কোন ট্রানজিস্টরে 8.0 mA নিঃসারক প্রবাহ পরিবর্তনের জন্য 7.0 mA সংগ্রাহক প্রবাহের পরিবর্তন ঘটল। সংগ্রাহক প্রবাহ বির্বর্তনের কারণে পীট প্রবাহের পরিবর্তন পাওয়া গেল 0.1 mA। প্রবাহ বিবর্ধন গুণক α এবং প্রবাহ

লাভ β বের কর।

আমরা জানি,

বিবর্ধক গুণক,
$$\alpha = \frac{\Delta I_C}{\Delta I_E}$$

$$\Rightarrow \alpha = \frac{7.0}{8.0}$$

$$\therefore \alpha = 0.875 \text{ (Ans.)}$$

প্রবাহ লাভ,
$$\beta = \frac{\Delta I_C}{\Delta I_B}$$

$$\Rightarrow \beta = \frac{7.0}{0.1}$$

$$\therefore \beta = 70$$
 (Ans.)

এখানে,

নিঃসারক প্রবাহের পরিবর্তন,

 $\Delta I_E {=} 8.0 mA$ সংগ্রাহক প্রবাহের পরিবর্তন,

 $\Delta I_C = 7.0 \text{mA}$

পীঠ প্রবাহের পরিবর্তন,

 $\Delta I_B = 0.1 \text{mA}?$

বিবর্ধন গুণক lpha=? এবং প্রবাহ লাভ eta=?

৭। কোন ট্রানজিস্টারের কমন বেস সার্কিটে এমিটার কারেন্ট $100\mu A$ থেকে $150\mu A$ -এ উন্নীত করায় কালেক্টর কারেন্ট $98\mu A$ থেকে $147\mu A$ -এ উন্নীত হল। এ ক্ষেত্রে কারেন্ট অ্যামপ্রিফিকেশন ফ্যাক্টর নির্ণয় কর।

আমরা জানি,

$$\alpha = \frac{\Delta I_C}{\Delta I_E}$$

$$\Rightarrow \alpha = \frac{49 \ \mu A}{50 \ \mu A}$$

$$\therefore \alpha = 0.98$$
 (Ans.)

এখানে.

এমিটার কারেন্ট পরিবর্তন, $\Delta I_{\rm E}$

 $=150\mu A - 100\mu A = 50\mu A$

কালেক্টর কারেন্ট পরিবর্তন, ΔI_C

 $=147\mu A - 98\mu A = 49\mu A$

17/41/1004

কারেন্ট অ্যামপি- ফিকেশন ফ্যাক্টর α=?

Want more Updates: https://www.facebook.com/tanbir.ebooks

MCPRS 33 3 (SISTIPPIZITATS) (Theory of Relativity And Astro Physics)

<u>আপেক্ষিকতাঃ</u> কোন বিষয় অন্য কোন কিছুর সাপেক্ষে বিবেচিত হবার নামই আপেক্ষিকতা। আপেক্ষিকতার বিশেষ তত্ত্ব অনুসারে চরম গতি নিরর্থক, সব গতিই আপেক্ষিক।

প্রসংঙ্গ কাঠামোঃ কোন বস্তুর গতির বর্ণনার জন্য ত্রিমাত্রিক স্থানে যে সুনির্দিষ্ট স্থানাঙ্ক ব্যবস্থা বিবেচনা করা হয় যার সাপেক্ষে বস্তুটির গতি বর্ণনা করা হয় তাকে প্রসংঙ্গ কাঠামো বলে।

জড় প্রসংঙ্গ কাঠামোঃ পরস্পরের সাপেক্ষে ধ্রুববেগে গতিশীল যে সকল প্রসঙ্গ কাঠামোতে নিউটনের গতিসূত্র অর্জন করা যায় তাদেরকে জড় প্রসংঙ্গ কাঠামো বলে।

আপেক্ষিতার বিশেষ তত্ত্বের মৌলিক স্বিকার্য দুটি ঃ

প্রথম স্বীকার্যঃ জড় কাঠামোতে পদার্থবিজ্ঞানের সূত্রসমূহ অভিন্ন থাকে।

ব্যাখ্যাঃ নিউটনের গতির ১ম সূত্র যে প্রসঙ্গ কাঠামোতে প্রযুক্ত হয়, তাকে জড়তার কাঠামো বলে। যদি কোন বস্তু স্থিতি বা গতি জড়তায় থাকে, তবে এর উপর বাহ্যিক বল প্রযুক্ত না হলে এর অবস্থার কোন পরিবর্তন হবে না। এ স্বীকার্য অনুসারে দুজন পর্যবেক্ষক একই রৈখিক বেগে চলতে থাকলে যে কোন ভৌত সূত্রের অবস্থা একই থাকুবে।

উদাহরণঃ সমগতি সম্পন্ন কোন ট্রেনযাত্রী কামরার ভিতরের কোন পরীক্ষার সাহায্যে প্রমান করতে পারবেন না ট্রেন স্থির রয়েছে না চলছে। পদার্থবিজ্ঞানের সকল পরীক্ষার ফল ট্রেন স্থির থাকলেও যা হবে সমরেগে চললেও তাই পাওয়া যাবে।

<u>দিতীয় স্বীকার্যঃ</u> শূন্যস্থানে সকল প্রসঙ্গ কাঠামোতে আলোর দ্রুতির মান্ একই থাকে।

ব্যাখ্যাঃ এ স্বীকার্য অনুসারে ইথারের অস্তিত্ব স্বীকার করা কোন মতেই সম্ভব নয়। তা ছাড়া মাইকেলসন-মর্লির পরীক্ষা এবং নানা পরীক্ষার সাহায্যে প্রমাণিত হয়েছে যে, শূক্কস্থানে আলোর বেগ উৎস্প ও পর্যবেক্ষকের আপেক্ষিক বেগের উপর নির্ভরশীল নয়। এটি একটি ধ্রুব রাশি।

প্রশ্নঃ দৈর্ঘ্য সংকোচন কি? দেখাও যে, $L=L_0\sqrt{1-\frac{v^2}{c^2}}$ এখানে, প্রকিতগুলি প্রচলিত অর্থ বহন করে।

দৈর্ঘ্যের আপেক্ষিকতা বা দৈর্ঘ্য সংকোচনঃ

আপেক্ষিকতার তত্ত্বানুসারে বস্তু বা দন্ডের দৈর্ঘ্য আপেক্ষিক গতির উপর নির্ভর করে। পর্যবেক্ষকের সাপেক্ষে গতিশীল কোন দন্ডের দৈর্ঘ্য L এবং নিশ্চল অবস্থায় দন্ডে দৈর্ঘ্য D_0 হলে, আপেক্ষিকতার তত্ত্বানুসারে, L সর্বদা L_0 অপেক্ষা ছোট হবে। একেই দৈর্ঘ্যের আপেক্ষিকতা বা দৈর্ঘ্য সংকোচন বলে

দৈর্ঘ্য সংকোচনের সমীকরণ প্রতিপাদন (লরেঞ্জ রূপান্তরের ১ম ফলাফল)ঃ

মনে করি S' কাঠামোতে S কাঠামোর সাপেক্ষে v ধ্রুব গতিতে +X অক্ষ বরাবর গতিশীল রয়েছে। S কাঠামোতে একজন পর্যবেক্ষক +X অক্ষ বরাবর শায়িত AB দন্ডের দু'প্রান্তের স্থানাংক নির্ণয় করলেন x_1 ও x_2 ; তাহলে, এই কাঠামোতে দন্ডের দৈর্ঘ্য হবে,

$$L_0 = x_2 - x_1 \dots \dots (1)$$

এখন ধরা যাক, S' কাঠামোতে অপর একজন পর্যবেক্ষক AB দন্ডের দু'প্রান্তের স্থানাংক নির্ণয় করলেন x_1' ও x_2' ; এই কাঠামোতে দন্ডের দৈর্ঘ্য হবে, $L=x_2'-x_1'...$... (2) আবার, লরেঞ্জে- এর বিপরীত রুপান্তর অনুসারে পাই,

facebook /gmail/skype: -tanbir.cox

Web: http://tanbircox.blogspot.com

$$x_1 = \frac{x_1' + vt'}{\sqrt{1 - v^2 / c^2}} \quad \text{এবং } x_2 = \frac{x_2' + vt'}{\sqrt{1 - v^2 / c^2}} \quad \text{এবার (1)} \quad \text{নং সমীকরণ } x_1 \, \text{ও} \, x_2 \, \text{এর মান বসিয়ে পাই,}$$

$$L_0 = \frac{x_2' + vt'}{\sqrt{1 - v^2 / c^2}} - \frac{x_1' + vt'}{\sqrt{1 - v^2 / c^2}}$$

$$\Rightarrow L_0 = \frac{x_2' - x_1'}{\sqrt{1 - v^2 / c^2}}$$

$$\Rightarrow L_0 = \frac{L}{\sqrt{1 - v^2 / c^2}} \qquad [\because L = x_2' - x_1']$$

$$\therefore L = L_0 \sqrt{1 - \frac{v^2}{c^2}} \dots \dots \dots (3)$$

(3) নং সমীকরণকে দৈর্ঘ্য সংকোচন সম্পর্কিত সমীকরণ বলে। এই সমীকরণ হতে দেখা যায় যে, $L < L_0$; অর্থাৎ, গতিশীল অবস্থায় দন্ডের দৈর্ঘ্য নেশ্চের দৈর্ঘ্য অপেক্ষা ছোট হবে। এই ঘটনাকে স্থান সংকোচন বলে।

কাল দীর্ঘায়নের সমীকরণ প্রতিপাদন (লরেঞ্জ রূপান্তরের ২য় ফলাফল)ঃ

কাল দীর্ঘায়নঃ দুটি প্রসঙ্গ কাঠামো যখন একটি অপরটির সাপেক্ষে আপেক্ষিক গতিতে গতিশীল থাকে, আপেক্ষিকতার নিয়ম অনুসারে সময়ের ব্যবধানেরও পরিবর্তন হয়। কোন পর্যবেক্ষকের সাপেক্ষে স্থির অবস্থায় থাকলে একটি ঘড়ি ঐ পর্যবেক্ষকের নিকট দ্রুততম হারে চলে বলে মনে হয়। কিন্তু পর্যবেক্ষকের সাপেক্ষে ঘড়িটি v বেগে চললে ঘড়িটির চলার

হার
$$\sqrt{1-rac{v^2}{c^2}}$$
 অনুপাতে কমে যায়। এটাই কাল বা সময় দীর্ঘায়ন নামে পরিচিত।

কাল বা সময় দীর্ঘায়নের সম্পর্ক প্রতিপাদনঃ

ধরা যাক, গতিশীল S' কাঠামোর x' বিন্দুতে একটি ঘড়ি আছে। S'কাঠামোর একজন পর্যবেক্ষক কোন সময় t_1' নির্ণয় করলে S' কাঠামোতে অবস্থিত একজন পর্যবেক্ষক তা নির্ণয় করনেন t_1 । কিছুকাল অতিবাহিত হওয়ার পর S' এর পর্যবেক্ষক সময় নির্ণয় করলেন t_2 । S' এবং S' এবং S' এর পর্যবেক্ষক সময় নির্ণয় করলেন S' এবং S' এবং

গতিশীল কাঠামোর পর্যবেক্ষকের ঘড়ি অনুসারে সময় কাল ব্যবধান t_0 হল।

$$t_0 = t_2' - t_1' \dots \dots \dots (1)$$

কিন্তু S কাঠামোর একজন পর্যবেক্ষক এই কাল ব্যবধান নির্ণয় করলেন t , যেখানে $t=t_2-t_1$ । বিপরীত লরেঞ্জ রূপান্তর হতে আমরা জানি যে,

$$t_1 = \frac{t_1' + \frac{vx'}{c^2}}{\sqrt{1 - v^2/c^2}}$$
 এবং $t_2 = \frac{t_2' + \frac{vx'}{c^2}}{\sqrt{1 - v^2/c^2}}$ আমরা জানি, $t = t_2 - t_1$
$$\Rightarrow t = \frac{t_2' + \frac{vx'}{c^2}}{\sqrt{1 - v^2/c^2}} - \frac{t_1' + \frac{vx'}{c^2}}{\sqrt{1 - v^2/c^2}}$$

$$\Rightarrow t = \frac{t_2' + \frac{vx'}{c^2} - t_1' - \frac{vx'}{c^2}}{\sqrt{1 - v^2 / c^2}}$$

$$\Rightarrow t = \frac{t_2' - t_1'}{\sqrt{1 - v^2 / c^2}}$$

 $\therefore t = \frac{t_0}{\sqrt{1-v^2/c^2}}$ (2) কোন গতিশীল বস্তুর জন্য $\sqrt{1-v^2/c^2}$ রাশিটি সব সময় 1 এর চেয়ে ছোট তাই t

সবসময়ই t_0 এর চেয়ে বড়। সমীকরণ (2) কালদীর্ঘায়ন প্রকাশকারী সমীকরণ।

নিশ্চল ভর ও সচল ভরের মধ্যে সম্পর্কঃ

ভরের আপেক্ষিকতাঃ

আমরা জানি ভর একটি ধ্রুব সংখ্যা। স্থান, কাল ও গতির পরিবর্তনের উপর এর কোন পরিবর্তন হয় না। কিন্তু আইনষ্টাইনের আপেক্ষিক তত্ত্ব $m=\frac{m_o}{\sqrt{I-\frac{v^2}{c^2}}}$ অনুসারে দেখতে পাই, বস্তুর ভর ধ্রুব নয়, ভর আপেক্ষিক। বস্তুর গতিবেগ বৃদ্ধির সাথে সাথে বস্তুর

ভর ও বৃদ্ধি পায়। একে ভরের আপেক্ষিকতা বলে।

গতিশীল বস্তুর ভরের সমীকরণঃ

মনেকরি S ও S' দুটি জড় প্রসঙ্গ কাঠামো। S' কাঠামোটি +X অক্ষের অভিমুখে S কাঠামোর সাপেক্ষে v বেগে গতিশীল। কাঠামো দুটোতে অবস্থিত দুজন পর্যবেক্ষক সমান ভরের দুটি কণা A ও B—এর সংঘর্ষ পর্যবেক্ষন করছেন। সংঘর্ষের পর্বে A কণাটি S এবং B কণাটি S' কাঠামোতে স্থির অবস্থায় আছে। একই মহর্তে A কণাটি কে V_A বেগে +Y অক্ষের

সংঘর্ষের পূর্বে A কণাটি S এবং B কণাটি S' কাঠামোতে স্থির অবস্থায় আছে। একই মুহূর্তে A কণাটিকে v_A বেগে +Y অক্ষের দিকে এবং B কণাটিকে v_B' বেগে -Y অক্ষের দিকে নিক্ষেপ করা হল। এখানে $v_A=v_B'$ । সংঘর্ষের পর A কণাটি -Y অক্ষের এবং B কণাটি +Y' অক্ষের দিকে যথাক্রমে v_A ও v_B' বেগে ফিরে আসে। নিক্ষেপের মুহূর্তে কণা দুটির মধ্যবর্তী দূরত্ব y হলে উভয়

পর্যবেক্ষক দেখবেন যে কণাটি $\frac{1}{2}y$ দূরে সংগঠিত হচ্ছে।

 $\therefore S$ কাঠামোতে A কণার ভ্রমন কাল হবে, t_o \Rightarrow (1)

এবং S' কাঠামোতে B কণার ভ্রমন কাল হবে, $t_{o} = \frac{y}{v_{B}'}$(2)

S কাঠামোতে ভরবেগ যদি সংরক্ষিত থাকে এবং A ও B কণা দুটির ভর যথাক্রমে m_A ও m_B হলে, $m_A v_A = m_B v_B$ (3) এখানে, $v_A = S$ কাঠামোতে A এর বেগ ও $v_B = S$ কাঠামোতে B -এর বেগ । এখন S কাঠামোতে B এর ভ্রমনকাল t হলে, $v_B = \frac{y}{t}$(4)

আবার কাল দীর্ঘায়নের সম্পর্ক মতে S' কাঠামোতে B এর ভ্রমনকাল t_o ও S কাঠামোতে B এর ভ্রমনকাল t এর মধ্যে সম্পর্ক হল,

$$t = \frac{t_o}{\sqrt{l - \frac{v^2}{c^2}}}$$
 (4) নং সমীকরণে t এর মান বসিয়ে পাই, $v_B = \frac{y\sqrt{l - \frac{v^2}{c^2}}}{t_o} \dots \dots \dots (5)$

আবার (1) নং সমীকরণ থেকে পাই, $v_{\scriptscriptstyle A} = \frac{y}{t_{\scriptscriptstyle o}}$(6)

(5) নং ও (6) নং সমীকরণ থেকে v_A ও v_B এর মান (3) নং সমীকরণে বসিয়ে পাই,

$$m_A \frac{y}{t_o} = m_B \frac{y\sqrt{1 - \frac{v^2}{c^2}}}{t_o}$$
 $rac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$ $rac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$ (7)

$$\therefore m_B = rac{m_A}{\sqrt{1-rac{v^2}{c^2}}}$$
(8) মনেকরি স্থির অবস্থায় বস্তুর ভর $m_A = m_o$ এবং গতিশীল অবস্থায় বস্তুর ভর $m_B = m$

$$V$$
 c^3 সুতরাং (8) সমীকরণ হতে পাই, $\therefore m = \frac{m_0}{\sqrt{1-\frac{v^2}{c^2}}}$

অর্থাৎ আপেক্ষিক তত্ত্ব মতে কোন বস্তুর ভর ও আপেক্ষিক। গতিশীল বস্তুর ভর স্থির বস্তুর ভরের চেয়ে বেশী।

ভর শক্তির সমীকরণ $E=mc^2$ এর প্রমাণঃ

বস্তুর ভর m ও আলোর দ্রুতি c হলে মোট শক্তি, $E=mc^2$ হবে।

প্রমাণঃ আমরা জানি, বল হল ভর বেগের পরবর্তনের হার। ভরবেগ P হলে বল, $F=rac{dP}{dt}$

$$\therefore F = \frac{d}{dt}(mv) \dots \dots (1) \quad [\because P = mv]$$

আমরা আরও জানি, কোন বস্তুকে নিশ্চল অবস্থা থেকে গতিশীল অবস্থায় আনতে যে পরিমান কাজ করতে হয় তাকে তাকে বস্তুর গতি শক্তি বলে। কোন বস্তুতে F বল প্রয়োগ করা হলে বস্তুটি বলের দিকে dx পরিমান দুর্ত্ব্ধ গৈলে

বস্তুর গতিশক্তি,
$$E_K = \int\limits_0^x F . \, dx$$

$$\Rightarrow E_K = \int\limits_0^x \frac{d}{dt} (mv) . \, dx$$

$$\Rightarrow E_K = \int\limits_0^x d(mv) . \, \frac{dx}{dt}$$

$$\Rightarrow E_K = \int\limits_0^v d(mv) . v$$

$$\Rightarrow E_K = \int\limits_0^v v . \, d(mv)$$

$$\Rightarrow E_K = \int\limits_0^v v . \, d(mv)$$

$$\therefore E_K = \int\limits_0^v (v^2 dm + mv dv) \dots \dots \dots (2)$$

ভরের আপেক্ষিক তত্ত্ব থেকে আমরা জানি, $m=\dfrac{m_0}{\sqrt{I-\dfrac{v^2}{c^2}}}$ এ স্থলে m_0 দর্শকের সাপেক্ষে স্থির অবস্থায় বস্তুটির ভর; v দর্শকের

সাপেক্ষে বস্তুটির আপেক্ষিক বেগ; m= দর্শকের সাপেক্ষে গতি সম্পন্ন অবস্থায় বস্তুটির ভর।

উপরের সমীকরণ হতে,
$$I - \frac{v^2}{c^2} = \frac{m_0^2}{m^2} \dots \dots (3)$$

উভয় পক্ষকে ডিফারেন্সিয়েশান করে পাই

$$\frac{-2vdv}{c^2} = m_0^2 \left(-2m^{-3}dm \right)$$

$$\Rightarrow \frac{vdv}{c^2} = \frac{m_0^2}{m^2} \frac{dm}{m} \dots \dots \dots (4)$$

$$\Rightarrow \frac{vdv}{c^2} = \left(1 - \frac{v^2}{c^2}\right) \frac{dm}{m} \qquad \left[(3)$$
 নং সমীকরণ হতে $\frac{m_0^2}{m^2}$ এর মান বসিয়ে। $\right]$

$$\Rightarrow \frac{vdv}{c^2} = \left(\frac{c^2 - v^2}{c^2}\right) \frac{dm}{m}$$

$$\Rightarrow \text{mvdv} = (c^2 - v^2) \text{dm} \dots \dots \dots (5)$$

(5) নং সমীকরণ হতে mvdv এর মান (2) নং সমকরণে বসিয়ে পাই,

কৃষ্ণ বিবর ও এর সৃষ্টিঃ

কৃষ্ণবিরের পুরাতন সংজ্ঞাঃ একটি তারকার যদি যথেষ্ট পরিমান ভর ও ঘনত্ব থাকে, তাহলে তার মহাকর্ষশক্তি এত শক্তিশালী হয় যে, আলোক সেখান থেকে নির্গত হতে পারবে না। সেই তারকার পৃষ্ঠ থেকে নির্গত আলোক রশ্মি বেশী দূওে যাওয়ার আগেই তারকাটির মহাকর্ষ আকর্ষণ তাকে পিছনে টেনে নিয়ে আসবে। ঐ সব তারকা থেকে আলো আসতে পারেনা বলে আমরা এদেও দেখতে পারিনা। এই সমস্ত বস্তু পিভকে আমরা কৃষ্ণ বিবর বা কৃষ্ণ গহকার বলি।

কৃষ্ণবিবরের নতুন সংজ্ঞাঃ মুক্তি বেগ সূর্যের গড় ঘনত্ব ও ব্যাসার্ধের উপর নির্ভর করে। কোন বস্তুর ঘনত্ব যদি সূর্যের সমান এবং ব্যাসার্ধ যদি সূর্যের 500 গুন হয়, তবে ঐ বস্তুর পৃষ্ঠ থেকে মুক্তি বেগ হবে আলোর দ্রুতি c এর এর চেয়ে বেশী। সুতরাং আলোকে সে নিজের দিকে টেনে রাখবে, ঐ বস্তু থেকে নির্গত আলো বস্তুতেই ফিরে যাবে, কিন্তু বস্তু থেকে বেরুতে পারবে না। এ ধরনের বস্তুকে কৃষ্ণ বিবর বা কৃষ্ণ গহবর রলে।।

কৃষ্ণ বিবরের সৃষ্টিঃ যখন বেশী পরিমান মহাজাগতিক বায়ু নিজস্ব মহাকর্ষীয় আকর্ষনের চাপে নিজের উপরেই চুপসে যেতে থাকে, তখনই একটি তারকার সৃষ্টি হয়। তারকাটি সংকুচিত হওয়ার সাথে সাথে বায়ুর পরমাণুগুলোর মধ্যে ক্রমাগত সংঘর্ষ হতে থাকে এবং এর ফলে বায়ু উত্তপ্ত হয়। শেষ পর্যন্ত বায়ু এত উত্তপ্ত হয় যে, হাইড্রোজেন পরমাণু গুলো পরস্পর থেকে ছিটকে না যেয়ে একত্রে মিশে হিলিয়ামে পরিণত হয়। এর ফলে যে তাপ উৎপন্ন হয় তার জন্য তারকাটি আলো বিকিরণ করে। বায়ুর এ বাড়তি উত্তাপ পরিধির দিকে একটা বায়ু চাপের সৃষ্টি করে। বায়ুর এ চাপ ও মহাকর্ষীয় আককর্ষণ যখন সমান হয়, তখন বায়ুর সংকোচন প্রসারণ বন্ধ হয়ে যায়। পারমাণবিক প্রক্রিয়া থেকে সৃষ্ট উত্তাপের ফলে সংঘটিত প্রসারণ শক্তি এবং প্রবল মহাকর্ষ শক্তির ফলে সংঘটিত সংকোচন শক্তি এই দুই শক্তির ভারসাম্যের ফলে তারকাগুলো বহু কাল পর্যন্ত সৃষ্থিত থাকে।

দ্বিতীয় পত্রের অংকের সমাধান

2nd Paper Math Solution

১৫। আপেক্ষিক তত্ত্ব ও জ্যোর্তিপদার্থবিদ্যা

১। 5 gm ভরের সমতুল্য শক্তি নির্ণয় কর।

আমরা জানি, $E = mc^2$ \Rightarrow E = $5 \times 10^{-3} \times (3 \times 10^8)^2$ ভর, $m = 5 gm = 5 \times 10^{-3} \ kg$ আলোর বেগ, $c = 3 \times 10^8 \ ms^{-1}$ শক্তি, E = ?

$$\Rightarrow E = \frac{4.5 \times 10^{14}}{1.6 \times 10^{-19}} \text{ eV}$$

:. $E = 2.8 \times 10^{33} \text{ eV (Ans.)}$

২। কোন একটি বস্তু কণার মোট শক্তি এর স্থিতাবস্থার শক্তির দিগুন। বস্তুটির দ্রুতি কত?

আমরা জানি,

$$E = 2E_0$$

$$\Rightarrow$$
 mc² = 2m₀c²

$$\Rightarrow \frac{m_0 c^2}{\sqrt{1 - \frac{v^2}{c^2}}} = 2m_0 c^2$$

$$\Rightarrow \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = 2$$

$$\Rightarrow 4\left(\frac{c^2 - v^2}{c^2}\right) = 1$$

$$\Rightarrow 4c^2 - 4v^2 = c^2$$
$$\Rightarrow 4v^2 = 3c^2$$

$$\Rightarrow 4v^2 = 3c^2$$

$$\Rightarrow v^2 = \frac{3}{4}c^2$$

$$\Rightarrow$$
 v = $\sqrt{\frac{3}{4}} \times c$

$$\Rightarrow$$
 v = 0.866 \times 3×10⁸

:.
$$v = 2.6 \times 10^8 \text{ ms}^{-1} \text{ (Ans.)}$$

৩। 1 amu ভরের সমতুল্য শক্তি eV এককে ও MeV এককে নির্ণয় কর।

আমরা জানি, \Rightarrow E=1.66057×10⁻²⁷(3×10⁸) 2 J \Rightarrow E = $\frac{1.494513\times10^{-10}}{1.6\times10^{-19}}\,\mathrm{eV}$ \Rightarrow E = $\frac{1.494513\times10^{-10}}{1.6\times10^{-19}}\,\mathrm{eV}$ \Rightarrow F = ? $\therefore E = 934.07 \times 10^6 \text{ eV (Ans.)}$ \therefore E = 934.07MeV (Ans.)

৪। ভূ-পৃষ্ঠে একটি রকেটের দৈর্ঘ্য 100m। রকেটটি ভূ-পৃষ্ঠের কোন এক স্থির পর্যবেক্ষকের সাপেক্ষে চলতে থাকলে এটির দৈর্ঘ্য 99.5m মনে হয়। রকেটটির গতিবেগ নির্ণয় কর।

আমরা জানি, $L = L_o \sqrt{1 - \frac{v^2}{c^2}}$ $\Rightarrow 99.5 = 100\sqrt{1 - \frac{v^2}{(3 \times 10^8)^2}}$

$$\Rightarrow 99.5 = 100\sqrt{1 - \frac{v}{(3 \times 10^8)^2}}$$
$$\Rightarrow \frac{99.5}{100} = \sqrt{1 - \frac{v^2}{(3 \times 10^8)^2}}$$

$$\Rightarrow (0.995)^2 = 1 - \frac{v^2}{(3 \times 10^8)^2}$$

$$\Rightarrow \frac{v^2}{(3 \times 10^8)^2} = 1 - 0.990025$$

⇒
$$v^2 = 0.009975 \times 9 \times 10^{16}$$

∴ $v = 2.996 \times 10^7 \text{ ms}^{-1}$ (Ans.)

 $e + 1.6 imes 10^6 \mathrm{eV}$ গতিশক্তি সম্পন্ন ইলেকট্রনের ভর কত?

আমরা জানি,

$$K = (m - m_0) c^2$$

$$\Rightarrow m = \frac{K}{c^2} + m_0$$

$$\Rightarrow m = \frac{2.56 \times 10^{-13}}{(3 \times 10^8)^2} + 9.1 \times 10^{-31}$$

 \therefore m = 3.75×10⁻³⁰ Kg (Ans.)

এখানে, ভর,
$$m=?$$
 আলোর বেগ, $c=3\times10^8~ms^{-1}$ গতিশক্তি, $K=1.6\times10^6eV$ $=1.6\times10^6\times1.6\times10^{-19}~J$ $=2.56\times10^{-13}~J$ $m_o=9.1\times10^{-31}Kg$ ইলেকট্রনের ভর , $m=?$

ভূ-পৃষ্ঠে রকেটের দৈর্ঘ্য, L_o=100m স্থির পর্যবেক্ষকের সাপেক্ষে

রকেটের দৈর্ঘ্য, L = 99.5 আলোর বেগ, C=3×10⁸ ms⁻¹

রকেটের বেগ, v = ?

৬। একটি বস্তুকণা 0.5c বেগে গতিশীল আছে। বস্তুটির স্থির অবস্থায় ভর এবং গতিশীল অবস্থায় ভরের অনুপাত বের কর।

আমরা জানি.

$$m = \frac{m_o}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$\Rightarrow \frac{m_o}{m} = \sqrt{1 - \frac{v^2}{c^2}}$$

$$\Rightarrow \frac{m}{m} = \sqrt{1 - \frac{(0.5c)^2}{c^2}}$$

$$\Rightarrow \frac{\mathrm{m_o}}{\mathrm{m}} = \sqrt{1 - \frac{0.25\mathrm{c}^2}{\mathrm{c}^2}}$$

$$\Rightarrow \frac{m_o}{m} = \sqrt{0.75}$$

$$\therefore \frac{m_0}{m} = 0.866 \text{ (Ans.)}$$

বস্তু কণার বেগ, v =0.5 c

৭। $1.4 imes10^5 \mathrm{eV}$ গতি শক্তি সম্পন্ন ইলেকট্রনের ভর ও দ্রুতি বের

আমরা জানি.

$$K=(m-m_0)$$
 c^2 $\Rightarrow 2.24\times 10^{-14} = (m-9.1\times 10^{-3~1})$ $\times (3\times 10^8)^2$ $\Rightarrow m-9.1\times 10^{-31} = \frac{2.24\times 10^{-14}}{(3\times 10^8)^2}$ $\Rightarrow m-9.1\times 10^{-31} = 2.488\times 10^{-31}$ $\Rightarrow m=2.488\times 10^{-31} + 9.1\times 10^{-31} Kg$ $\therefore m=11.58\times 10^{-31} Kg$ (Ans.) আবার,

$$\begin{split} m &= \frac{m_o}{\sqrt{1 - v^2 / c^2}} \\ \Rightarrow 1 - \frac{v^2}{c^2} &= \frac{m_o^2}{m^2} \\ \Rightarrow \frac{v^2}{c^2} &= 1 - \frac{m_o^2}{m^2} \\ \Rightarrow \frac{v^2}{(3 \times 10^8)^2} &= 1 - \left(\frac{9.1 \times 10^{-31}}{11.58 \times 10^{-31}}\right)^2 \\ \Rightarrow \frac{v^2}{9 \times 10^{16}} &= 1 - 0.6175 \\ \Rightarrow v^2 &= 0.3825 \times 9 \times 10^{16} \\ \therefore v &= 1.85 \times 10^8 \, \text{ms}^{-1} \text{ (Ans.)} \end{split}$$

৮। 25 বছর বয়সের এজন মহাশূন্যচারী মহাকাশ্যানে $1.8 imes 10^8 ext{ms}^{-1}$ বেগে চলে 30 বছর পরে ফিরে এলেন। তার বর্তমান বয়স কত। আমরা জানি.

$$t = \frac{t_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$
 বিশানে, বেগ, $v = 1.8 \times 10^8 \text{ms}^{-1}$ সময়, $t = 30 \text{Years}$ আলোর বেগ, $v = 3 \times 10^8 \text{ms}^{-1}$ $\Rightarrow 30 = \frac{t_0}{\sqrt{1 - \frac{(1.8 \times 10^8)^2}{(3 \times 10^8)^2}}}$ $\Rightarrow 30 = \frac{t_0}{0.8}$ $\therefore t_0 = 24 \text{Years}$

সুতারাং ঐ ব্যক্তির বর্তমান বয়স =(25+24) বছর = 49 বছর (Ans.)

৯। একটি মেসন কণার গড় আয়ু $3\times10^{-8}\,\mathrm{s}$ । যদি কণাটি 0.85c বেগে চলে তবে এর গড় আয়ু বের কর।

$$t = \frac{t_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$\Rightarrow t = \frac{3 \times 10^{-8}}{\sqrt{1 - \frac{(0.85c)^2}{c^2}}}$$

$$\Rightarrow t = \frac{3 \times 10^{-8}}{\sqrt{1 - 0.85^2}}$$

$$\Rightarrow t = \frac{3 \times 10^{-8}}{\sqrt{1 - 0.85^2}}$$

$$\therefore t = 5.69 \times 10^{-8} \text{s (Ans.)}$$

১০। একটি রকেট কত দ্রুতিতে চললে এর চলমান দৈর্ঘ্য নিশ্চল দৈর্ঘ্যের অর্ধেক হবে?

50। একাট রকেট কড দ্রুগতে চললে এর চলমান দেঘ্য নিশ্চল দৈটে হবে?
আমরা জানি,
$$L = L_o \sqrt{1 - \frac{v^2}{c^2}}$$

$$\Rightarrow \frac{L}{L_o} = \sqrt{1 - \frac{v^2}{c^2}}$$

$$\Rightarrow \frac{1}{4} = 1 - \frac{v^2}{c^2}$$

$$\Rightarrow \frac{1}{4} - 1 = -\frac{v^2}{c^2}$$

$$\Rightarrow \frac{1 - 4}{4} = -\frac{v^2}{c^2}$$

$$\Rightarrow \frac{1 - 4}{4} = -\frac{v^2}{c^2}$$

$$\Rightarrow v^2 = \frac{3c^2}{4}$$

$$\Rightarrow v = \frac{\sqrt{3}}{2}$$

$$\Rightarrow v = \frac{1.732 \times 3 \times 10^8}{2}$$

 $v = 2.6 \times 10^8 \, \text{ms}^{-1} (Ans.)$

ইন্টারনেট হতে সংগ্রহীত

প্রয়োজনীয় বাংলা বই ফ্রী ডাউনলোড করতে চাইলে নিচের লিংক গুলো দেখতে পারেনঃ

- ☆ http://www.techtunes.com.bd/tuner/tanbir_cox
- ☆ http://www.tunerpage.com/archives/author/tanbir_cox
- ☆ http://www.somewhereinblog.net/tanbircox
- ☆ http://www.pchelplinebd.com/?author=1177
- ☆ http://www.prothom-aloblog.com/blog/tanbir_cox

Tanbir Ahmad Razib

Mobile No:→ 01738 -359555

E --Mail: → tanbir.cox@gmail.com

Facebook: → http://www.facebook.com/tanbir.cox

Fb Page: →: https://www.facebook.com/tanbir.ebooks

Web Site : → http://tanbircox.blogspot.com

Any comments and critics are welcome.

TONB!R.