Chapter 05.02 Direct Method of Interpolation – More Examples Computer Engineering

Example 1

A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a 15"×10" rectangular plate. The centers of the holes in the plate describe the path the arm needs to take, and the hole centers are located on a Cartesian coordinate system (with the origin at the bottom left corner of the plate) given by the specifications in Table 1.

Table 1 The coordinates of the holes on the plate.

<i>x</i> (in.)	<i>y</i> (in.)
2.00	7.2
4.25	7.1
5.25	6.0
7.81	5.0
9.20	3.5
10.60	5.0

Figure 1 Location of holes on the rectangular plate.

05.02.2 Chapter 05.02

If the laser is traversing from x = 2.00 to x = 4.25 in a linear path, what is the value of y at x = 4.00 using the direct method of interpolation and a first order polynomial?

Solution

For first order polynomial interpolation (also called linear interpolation), we choose the value of y given by

Figure 2 Linear interpolation.

Since we want to find the value of y at x = 4.00, using the two points $x_0 = 2.00$ and $x_1 = 4.25$, then

$$x_0 = 2.00, \ y(x_0) = 7.2$$

 $x_1 = 4.25, \ y(x_1) = 7.1$

gives

$$y(2.00) = a_0 + a_1(2.00) = 7.2$$

 $y(4.25) = a_0 + a_1(4.25) = 7.1$

Writing the equations in matrix form, we have

$$\begin{bmatrix} 1 & 2.00 \\ 1 & 4.25 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 7.2 \\ 7.1 \end{bmatrix}$$

Solving the above two equations gives

$$a_0 = 7.2889$$

$$a_1 = -0.044444$$

Hence

$$y(x) = a_0 + a_1 x$$

 $y(x) = 7.2889 - 0.044444 x, 2.00 \le x \le 4.25$

$$y(4.00) = 7.2889 - 0.044444(4.00)$$

= 7.1111 in.

Example 2

A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a 15"×10" rectangular plate. The centers of the holes in the plate describe the path the arm needs to take, and the hole centers are located on a Cartesian coordinate system (with the origin at the bottom left corner of the plate) given by the specifications in Table 2.

<i>x</i> (in.)	<i>y</i> (in.)
2.00	7.2
4.25	7.1
5.25	6.0
7.81	5.0
9.20	3.5
10.60	5.0

Table 2 The coordinates of the holes on the plate.

If the laser is traversing from x = 2.00 to x = 4.25 to x = 5.25 in a quadratic path, what is the value of y at x = 4.00 using the direct method of interpolation and a second order polynomial? Find the absolute relative approximate error for the second order polynomial approximation.

Solution

For second order polynomial interpolation (also called quadratic interpolation), we choose the value of y given by

$$y(x) = a_0 + a_1 x + a_2 x^2$$

05.02.4 Chapter 05.02

Figure 3 Quadratic interpolation.

Since we want to find the value of y at x = 4.00, using the three points as $x_0 = 2.00$,

$$x_1 = 4.25$$
 and $x_2 = 5.25$, then
 $x_0 = 2.00$, $y(x_0) = 7.2$
 $x_1 = 4.25$, $y(x_1) = 7.1$
 $x_2 = 5.25$, $y(x_2) = 6.0$

gives

$$y(2.00) = a_0 + a_1(2.00) + a_2(2.00)^2 = 7.2$$

$$y(4.25) = a_0 + a_1(4.25) + a_2(4.25)^2 = 7.1$$

$$y(5.25) = a_0 + a_1(5.25) + a_2(5.25)^2 = 6.0$$

Writing the three equations in matrix form, we have

$$\begin{bmatrix} 1 & 2.00 & 4 \\ 1 & 4.25 & 18.063 \\ 1 & 5.25 & 27.563 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 7.2 \\ 7.1 \\ 6.0 \end{bmatrix}$$

Solving the above three equations gives

$$a_0 = 4.5282$$

 $a_1 = 1.9855$
 $a_2 = -0.32479$

Hence

$$y(x) = 4.5282 + 1.9855x - 0.32479x^2$$
, $2.00 \le x \le 5.25$
At $x = 4.00$, $y(4.00) = 4.5282 + 1.9855(4.00) - 0.32479(4.00)^2$
= 7.2735 in.

The absolute relative approximate error $|\epsilon_a|$ obtained between the results from the first and second order polynomial is

$$\left| \in_{a} \right| = \left| \frac{7.2735 - 7.1111}{7.2735} \right| \times 100$$

= 2.2327%

Example 3

A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a 15"×10" rectangular plate. The centers of the holes in the plate describe the path the arm needs to take, and the hole centers are located on a Cartesian coordinate system (with the origin at the bottom left corner of the plate) given by the specifications in Table 3.

	<i>x</i> (in.)	<i>y</i> (in.)
	2.00	7.2
	4.25	7.1
	5.25	6.0
	7.81	5.0
	9.20	3.5
	10.60	5.0

Table 3 The coordinates of the holes on the plate.

Find the path traversed through the six points using the direct method of interpolation and a fifth order polynomial.

Solution

For fifth order polynomial interpolation, also called quintic interpolation, we choose the value of y given by

$$y(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5$$

Figure 4 5th order polynomial interpolation.

Using the six points,

$$x_0 = 2.00, \ y(x_0) = 7.2$$

 $x_1 = 4.25, \ y(x_1) = 7.1$
 $x_2 = 5.25, \ y(x_2) = 6.0$
 $x_3 = 7.81, \ y(x_3) = 5.0$

05.02.6 Chapter 05.02

$$x_4 = 9.20, \ y(x_4) = 3.5$$

 $x_5 = 10.60, \ y(x_5) = 5.0$

gives

$$y(2.00) = a_0 + a_1(2.00) + a_2(2.00)^2 + a_3(2.00)^3 + a_4(2.00)^4 + a_5(2.00)^5 = 7.2$$

$$y(4.25) = a_0 + a_1(4.25) + a_2(4.25)^2 + a_3(4.25)^3 + a_4(4.25)^4 + a_5(4.25)^5 = 7.1$$

$$y(5.25) = a_0 + a_1(5.25) + a_2(5.25)^2 + a_3(5.25)^3 + a_4(5.25)^4 + a_5(5.25)^5 = 6.0$$

$$y(7.81) = a_0 + a_1(7.81) + a_2(7.81)^2 + a_3(7.81)^3 + a_4(7.81)^4 + a_5(7.81)^5 = 5.0$$

$$y(9.20) = a_0 + a_1(9.20) + a_2(9.20)^2 + a_3(9.20)^3 + a_4(9.20)^4 + a_5(9.20)^5 = 3.5$$

$$y(10.60) = a_0 + a_1(10.60) + a_2(10.60)^2 + a_3(10.60)^3 + a_4(10.60)^4 + a_5(10.60)^5 = 5.0$$

Writing the six equations in matrix form, we have

$$\begin{bmatrix} 1 & 2.00 & 4 & 8 & 16 & 32 \\ 1 & 4.25 & 18.063 & 76.766 & 326.25 & 1386.6 \\ 1 & 5.25 & 27.563 & 144.70 & 759.69 & 3988.4 \\ 1 & 7.81 & 60.996 & 476.38 & 3720.5 & 29057 \\ 1 & 9.20 & 84.64 & 778.69 & 7163.9 & 65908 \\ 1 & 10.60 & 112.36 & 1191.0 & 12625 & 133820 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix} = \begin{bmatrix} 7.2 \\ 7.1 \\ 6.0 \\ 5.0 \\ 3.5 \\ 5.0 \end{bmatrix}$$

Solving the above six equations gives

$$a_0 = -30.898$$

 $a_1 = 41.344$
 $a_2 = -15.855$
 $a_3 = 2.7862$
 $a_4 = -0.23091$
 $a_5 = 0.0072923$

Hence

$$y(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5$$

= -30.898 + 41.344x - 15.855x² + 2.7862x³
- 0.23091x⁴ + 0.0072923x⁵, 2 \le x \le 10.6

Figure 5 Fifth order polynomial to traverse points of robot path (using direct method of interpolation).

INTERPOLATION		
Topic	Direct Method of Interpolation	
Summary	Examples of direct method of interpolation.	
Major	Computer Engineering	
Authors	Autar Kaw	
Date	November 23, 2009	
Web Site	http://numericalmethods.eng.usf.edu	