2a	Avaluaci	ó
G1	obal	

Tecnologia industrial

1r Batxillerat
Data:

Nom	i	cognoms:
	-	000110111101

Qualificació:_

Instruccions: Feu els exercicis a l'espai que se us proporciona. Feu servir la cara posterior si necessiteu més espai, indiqueu-ho clarament en aquest cas. Heu d'identificar clarament les respostes i mostrar el procés per tal d'aconseguir la màxima puntuació. La puntuació dels exercicis es dona entre parèntesis.

1. Disposem de **vuit** cables de longitud $L_0 = 50 \, cm$ amb les característiques següents

	E(GPa)	$\sigma_e (MPa)$	$\sigma_r (MPa)$	$\varnothing_1(mm)$	$\varnothing_2(mm)$	$\alpha\left(C^{-1}\right)$
Material A	210	30	40	16,8	19	10^{-3}
Material B	220	36	42	16,8	19	10^{-4}
Material C	200	40	50	16,8	19	10^{-5}
Material D	250	50	55	16,8	19	10^{-6}

On E és el mòdul de Young, σ_e el límit elàstic, σ_r l'esforç de trencament, \varnothing_1 i \varnothing_2 els diàmetres disponibles de cada mostra i α el coeficient de dilatació lineal de cada material. Suposem que apliquem sobre cada cable una força $F = 10^4 N$. Calculeu l'esforç a què estan sotmesos els cables en funció del diàmetre per tal de respondre les següents preguntes:

- (a) (1 pt) Quins materials i per quins diàmetres presentaran deformacions permanents un copretirada la força que hi actua?
- (b) (1 pt) Quins materials i per quins diàmetres es trencaran?
- (c) (1 pt) Quina serà la longitud final dels que no pateixen deformacions permanents?
- (d) (1 pt) Per aquests darrers, calculeu l'increment de temperatura (refredant) que compensaria l'increment de longitud patit.

2. Considereu una biga de massa $m=200\,kg$ i longitud L articulada al punt A que es troba subjecta a la pared mitjançant un tirant que forma un angle $\alpha=30^{\circ}$.

Sobre la biga, i a una distància $\frac{L}{4}$ de la pared, hi ha un objecte de massa $M=50\,kg$. En aquestes condicions es demana:

- (a) (0,5 pts) Representeu el diagrama de sòlid lliure de la biga.
- (b) (1 pt) Escriviu les equacions d'equilibri i moments.

- (c) (1 pt) Resoleu les equacions anteriors per calcular la tensió T al tirant i les reaccions al punt de suport A de la biga.
- 3. Una placa de massa $m=25\,kg$ es troba subjecte per un vèrtex a una articulació i es manté en equilibri gràcies a una força F tal com es mostra a la figura

Es demana:

(a) (0,5 pts) Representeu el diagrama de sòlid lliure de la placa.

(b) (1 pt) Escriviu les equacions d'equilibri i moments.	
(c) (1 pt) Resoleu les equacions anteriors per calcular les reaccions al punt de la placa i el valor de la força F .	suport articulat de
4. (1 pt) Calculeu la potència útil que produeix una central tèrmica que consur segon si el seu rendiment és del 85 %.	meix $400000J$ cada