STAT 710 Final Exam 10:00am-12:00noon, May 10, 2011

Please show all your work for full credits.

- 1. Let $X_1, ..., X_n$ be iid observations with the Lebesgue p.d.f. $\theta \eta^{\theta} x^{-(\theta+1)} I_{[\eta,\infty)}(x)$, where $\theta > 0$ and $\eta > 0$.
 - (a) (4 points) Assume that θ is known and η is unknown. Obtain a Θ' -UMA upper confidence bound of η with confidence coefficient $1 \alpha \in (1/2, 1)$, where $\Theta' = (\eta, \infty)$.
 - (b) (3 points) Let η_0 and θ_0 be positive constants. When both θ and η are unknown, derive the likelihood ratio statistic for testing the null hypothesis $H_0: \eta = \eta_0$ and $\theta = \theta_0$, in terms of a function of the MLE $(\hat{\theta}, \hat{\eta})$ of (θ, η) .
 - (c) (3 points) Show that $\sqrt{n}\log(\hat{\eta}/\eta) \to 0$ in probability as $n \to \infty$.
 - (d) (3 points) Show that $\sqrt{n}(\frac{\theta}{\hat{q}}-1)$ is asymptotically pivotal as $n\to\infty$. as $n\to\infty$.
 - (e) (4 points) Let $\lambda(\theta_0, \eta_0)$ be the likelihood statistic in (b). Show that $\lambda(\theta, \eta)$ is asymptotically pivotal and discuss how to obtain a confidence set of (θ, η) with asymptotic level 1α .
 - (f) (4 points) Consider the parameter $\phi = 2^{1/\theta}\eta$. Show that the sample median $\hat{\phi}$ is a consistent estimator of ϕ and derive the asymptotic distribution of $\sqrt{n}(\hat{\phi} \phi)$.
- 2. Let X be an observation with the Lebesgue p.d.f. $\theta f(\theta x)$, where $\theta > 0$ is unknown and f is a known Lebesgue p.d.f., f(-x) = 0 and f(x) > 0 for any x > 0.
 - (a) (4 points) Let the prior for θ to be the Gamma distribution with shape parameter a>0 and scale parameter $\gamma>0$ where a and γ are known. Under the squared error loss, obtain the Bayes estimators of θ and θ^{-1} .
 - (b) (3 points) Assume that f has finite moment of any order. Obtain the generalized Bayes estimator of θ by letting γ in (a) tend to ∞ .
 - (c) (3 points) Show that θX is a pivotal quantity. If f is unimodal at $x_0 > 0$, derive the shortest length confidence interval of the form (aX^{-1}, bX^{-1}) and confidence coefficient 1α .
- 3. Let $X_1, ..., X_n$ be iid from the Gamma distribution with known shape parameter a > 0 and unknown scale parameter $\theta > 0$, and $Y_1, ..., Y_n$ be iid from the Gamma distribution with known shape parameter a > 0 and unknown scale parameter $\varphi > 0$. Suppose that X_i 's and Y_i 's are independent.
 - (a) (3 points) Obtain a 1α asymptotically correct confidence interval for θ/φ by inverting the acceptance regions of likelihood ratio tests.
 - (b) (3 points) Obtain a 1α asymptotically correct confidence interval for θ/φ by inverting the acceptance regions of Wald's tests.
 - (c) (3 points) Obtain a 1α asymptotically correct confidence interval for θ/φ by inverting the acceptance regions of Rao's score tests.