Core-Maths-C3 - 2008-June

Question 1

The point P lies on the curve with equation

$$y = 4e^{2x+1}$$
.

The y-coordinate of P is 8.

(a) Find, in terms of ln 2, the x-coordinate of P.

(2)

(b) Find the equation of the tangent to the curve at the point P in the form y = ax + b, where a and b are exact constants to be found.

(4)

Question 2

$$f(x) = 5\cos x + 12\sin x$$

Given that $f(x) = R\cos(x - \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$,

(a) find the value of R and the value of α to 3 decimal places.

(4)

(b) Hence solve the equation

$$5\cos x + 12\sin x = 6$$

for
$$0 \le x < 2\pi$$
.

(5)

(c) (i) Write down the maximum value of $5\cos x + 12\sin x$.

(1)

(ii) Find the smallest positive value of x for which this maximum value occurs.

(2)

Question 3

Figure 1

Figure 1 shows the graph of y = f(x), $x \in \mathbb{R}$.

The graph consists of two line segments that meet at the point P.

The graph cuts the y-axis at the point Q and the x-axis at the points (-3, 0) and R. Sketch, on separate diagrams, the graphs of

(a)
$$y = |f(x)|$$
, (2)

(b)
$$y = f(-x)$$
. (2)

Given that f(x) = 2 - |x + 1|,

(c) find the coordinates of the points P, Q and R, (3)

(d) solve
$$f(x) = \frac{1}{2}x$$
. (5)

Question 4

The function f is defined by

$$f: x \mapsto \frac{2(x-1)}{x^2 - 2x - 3} - \frac{1}{x - 3}, \quad x > 3.$$

- (a) Show that $f(x) = \frac{1}{x+1}$, x > 3.
- (b) Find the range of f. (2)
- (c) Find f⁻¹(x). State the domain of this inverse function.
 (3)

The function g is defined by

$$g: x \mapsto 2x^2 - 3, x \in \mathbb{R}.$$

(d) Solve
$$fg(x) = \frac{1}{8}$$
. (3)

Question 5

- (a) Given that $\sin^2\theta + \cos^2\theta \equiv 1$, show that $1 + \cot^2\theta \equiv \csc^2\theta$.
- (b) Solve, for $0 \leqslant \theta < 180^{\circ}$, the equation

$$2 \cot^2 \theta - 9 \csc \theta = 3,$$

giving your answers to 1 decimal place.

(6)

Question 6

- (a) Differentiate with respect to x,
 - (i) $e^{3x}(\sin x + 2\cos x)$, (3)
 - (ii) $x^3 \ln (5x+2)$. (3)

Given that $y = \frac{3x^2 + 6x - 7}{(x+1)^2}$, $x \neq -1$,

- (b) show that $\frac{dy}{dx} = \frac{20}{(x+1)^3}$. (5)
- (c) Hence find $\frac{d^2y}{dx^2}$ and the real values of x for which $\frac{d^2y}{dx^2} = -\frac{15}{4}$.

Question 7

$$f(x) = 3x^3 - 2x - 6$$

- (a) Show that f(x) = 0 has a root, α , between x = 1.4 and x = 1.45
- (b) Show that the equation f(x) = 0 can be written as

$$x = \sqrt{\left(\frac{2}{x} + \frac{2}{3}\right)}, \quad x \neq 0.$$

(c) Starting with $x_0=1.43$, use the iteration

$$x_{n+1} = \sqrt{\left(\frac{2}{x_n} + \frac{2}{3}\right)}$$

to calculate the values of x_1 , x_2 and x_3 , giving your answers to 4 decimal places. (3)

(d) By choosing a suitable interval, show that $\alpha = 1.435$ is correct to 3 decimal places.