tanja & zast METHODEN DER ANALYSE VON SOZIALEN NETZWERKEN

METHODEN DER ANALYSE VON SOZIALEN NETZWERKEN

TANJA & ZAST BACHELOR OF SCIENCE

Bachelor Thesis

Institute of Information Resource Management Faculty of Engineering, Computer Science and Psychology Ulm University

Februar 2022

Prof. Dr.-Ing. Dr. h.c. Stefan Wesner Dr. Dipl.-Inf. Lutz Schubert

Tanja & Zast: Methoden der Analyse von Sozialen Netzwerken, Bachelor Thesis, © Februar 2022

ZUSAMMENFASSUNG

Kurze Zusammenfassung des Inhaltes in deutscher Sprache...

INHALTSVERZEICHNIS

Ι	EINFÜHRUNG IN DIE THEORIE					
1	EINLEITUNG					
	1.1 Zielsetzung	2				
2	EINFÜHRUNG IN DIE SOZIALE NETZWERKANALYSE	3				
	2.1 Ziele der Analyse	3				
	2.2 Einführung in die Grundstruktur von Netzwerken	4				
	2.3 Einführung in die Grundstruktur von sozialen Netzwerken	6				
3	KERNFAKTOREN EINER SOZIALEN NETZWERKANALYSE	7				
	3.1 Gradzentralität	7				
	3.2 Nähe-Zentralität	8				
	3.3 Betweeness-Zentralität	9				
	3.4 Eigenvektor-Zentralität	9				
	3.5 Ein typisches soziales Netzwerk	10				
	3.6 Kurzes Recap	12				
II	DER PRAKTISCHE TEIL					
4	ERSTE VORÜBERLEGUNGEN					
	4.1 Generierung eines random Netzwerk-Plots	15				
	4.2 Random Graphen-Optimierung	17				
	4.3 Der endgültige optimierte Graph und die Analyse	20				
	4.4 Die Verteilung der Zentralitäten	22				
5	DIE UMSETZUNG	24				
	5.1 Vergleich mit Twitter	24				
	5.2 Twitter SNA - Vorarbeit	24				
6	DIE ERSTE INTERPRETATION	25				
7	ANPASSUNGEN UND OPTIMIERUNGEN	26				
8	DIE ZWEITE INTERPRETATION	27				
III	ANHANG					
A	ANHANG	29				

ABBILDUNGSVERZEICHNIS

Abbildung 2.1	Links ist Netzwerk1 als Graph dargestellt und rechts Netzwerk2	5
Abbildung 3.1	Game of Thrones social Network	11
Abbildung 4.1	Erste Versuche eines Sozialen Netzwerks	14
Abbildung 4.2	Random Graphen-Modellierung	16
Abbildung 4.3	Random Graphen-selbst implementierte Formeln	18
Abbildung 4.4	Random Soziale Graphen mit den höchsten Gradzentralitäts-Knoten als	
	Verbindung	19
Abbildung 4.5	Random soziales Netzwerk mit realistischeren Verbindungen	20
Abbildung 4.6	Verteilung der Grad-Zentralität des Graphen (b)	23
TABELLE	ENVERZEICHNIS	
Tabelle 3.1 Tabelle 4.1	Werte GOT Graph	12 21

LISTINGS

AKRONYME

Teil I EINFÜHRUNG IN DIE THEORIE

Um das Thema zu verstehen und vor allem die spätere Interpretation, ist es nun von Bedeutsamkeit, eine Einführung in die Theorie zu ermöglichen.

1 EINLEITUNG

Der Begriff "Soziales Netzwerk" oder auf Englisch "Social Network" weckt seit vielen Jahrzehnten das Interesse zahlreicher Sozial- und Verhaltenswissenschaftler*innen. Auch weckt es das Interesse von Unzähligen Unternehmen, um gezielter auf das Kundenverhalten einzugehen und dadurch den Gewinn zu maximieren. Doch nicht zu vergessen sind es heutzutage letztendlich die Nutzer*innen der Social Media-Plattformen wie Twitter, Facebook und Instagram, welche dieser Begriff vor allem tangiert und die Liste könnte noch lange weitergeführt werden. Jedoch spezialisieren sich vor allem Sozial- und Verhaltenswissenschaftler*innen, ebenso Unternehmen, auf die Analyse sozialer Netzwerke. Diese fokussieren sich weitestgehend auf Beziehungen zwischen sozialen Einheiten, sowie die Muster und Implikationen, welche diesen Beziehungen zugeschrieben werden. Schnell kommen Fragen auf wie, was ist ein "Soziales Netzwerk" definiert. Oder wie eine solche Analyse aussehen kann. Was jede einzelne Methode zur Analyse auszeichnet und Welche davon als besonders vielversprechend gelten.

1.1 ZIELSETZUNG

Um eine Aussage darüber treffen zu können, welche Methoden zur Analyse geeignet sind und nicht, muss zunächst ein Verständnis für soziale Netzwerke und anschließende Analyse hergestellt werden. Diese Arbeit wird daher in zwei Bereiche unterteilt. Zum Einen beginnt sie mit der Einführung in die sozialen Netzwerke und die Einarbeitung in die verschiedenen Zentralitäten, die bei der Analyse verwendet werden. Diese geben einen guten Aufschluss darüber, wie die Einheiten miteinander verbunden sind beziehungsweise zusammenhängen. Ob es sich starke Verbindungen oder schwache handelt. Danach wird eine weitere Methode vorgestellt, welches es durch Zuordnung der Zentralitäten ermöglicht, die mathematische Gaußverteilung nachzustellen. Anhand dieser sind dann weitere Aussagen über den Graphen möglich. Anschließend wird im zweiten Teil dieser Arbeit ein Generator programmiert, welcher Soziale Netzwerke so gut wie möglich nachstellt. Um aber bewerten können, ob dieses Netzwerk eine gute Simulation ist, wenden wir die im ersten Teil der Arbeit vorgestellten Methoden an. Ziel der Arbeit ist es daher, ein gutes Verständnis für die soziale Netzwerkanalyse zu bekommen und für beliebige Netzwerke, durch Anwendung der kennengelernten Methoden, gute Bewertungen oder Analysen durchzuführen. Diese Arbeit distanziert sich von dem Begriff "Social Networking", welcher bei Recherchen zahlreichst auftaucht, aber lediglich den Vorgang oder Zustand beschreibt, dass Menschen über soziale Netzwerke durch beispielsweise gemeinsame Interesse zueinanderfinden.

Note 1: Hier am Ende abglei chen mit der kompletten Arbeit ob dies auch wirklich das Zie war.

2 | EINFÜHRUNG IN DIE SOZIALE NETZWERKANALYSE

Um zu verstehen, warum Soziale Netzwerke analysiert werden, sollte zunächst die Frage geklärt werden, was ein Soziales Netzwerk ist. Hierfür existieren zwei Definitionen, eine gehört dem Bereich der Soziologie an und die andere dem Bereich des Internets.

In der Soziologie definiert, ist ein soziales Netzwerk eine soziale Struktur, welche zwischen Akteuren besteht. Ein Akteur kann entweder von einer Einzelpersonen oder von Organisationen repräsentiert werden. Ein soziales Netzwerk zeigt die Art und Weise, wie Menschen und Organisationen durch soziale Vertrautheiten verbunden sind, die von zufälligen Bekanntschaften bis hin zu engen familiären Bindungen reichen. Im Bereich des Internets ist der Begriff des Sozialen Netzwerks erst mit dem Web 2.0 entstanden. Der Begriff bezeichnet eine virtuelle Gemeinschaft. Diese wird überwiegend über die Internetplattform gepflegt und aufrechterhalten. Soziale Netzwerke variieren in ihren Funktionen. Beispiele hierfür sind themenorietierte Netzwerke, siehe Twitter, oder Netzwerke, die überwiegend der zwischenmenschlichen Kommunikation dienen, siehe Facebook.

2.1 ZIELE DER ANALYSE

Der Fokus der "Sozialen Netzwerkanalyse" liegt auf der Interpretation und Analyse sozialer Netzwerke im Bereich Beziehungen. Genauer gesagt auf die Beziehungen zwischen zwei sozialen Einheiten. Forscher haben erkannt, dass die Netzwerkperspektive neue Erkenntnisse und Möglichkeiten zur Beantwortung sozial- und verhaltenswissenschaftlicher Standardforschungsfragen bietet. Dies ist möglich, da die "Soziale Netzwerkanalyse" das soziale Umfeld als Muster oder Regelmäßigkeiten in Beziehungen zwischen Einheiten ausdrücken, beziehungsweise darstellen kann. Das regelmäßige Muster ind en Beziehungen kann auch als Struktur bezeichnet werden. Die Analyse, welche wir im Folgenden behandeln werden miss genau diese Strukturen wodurch genauere Aussagen oder auch Vermutungen über die Beziehungen getroffen werden können. Die Beziehungen in sozialen Netzwerken kann vielerlei Art sein, beispielsweise wirtschaftlich oder politisch, was nur zwei von vielen weiteren möglichen Bezeichnungen sind. Um die Muster oder Strukturen zu erkennen erfordert es Methoden oder analytische Konzepte. In den letzten Jahrzehnten haben sich die Methoden von sozialen Netzwerken als großer Bestandteil der Fortschritte in der Sozialtheorie erwiesen. Die Analyse sozialer Netzwerke besteht aus einer Reihe von mathematischen und grafischen Verfahren beziehungsweise Techniken, welche Indizes zwischen Einheiten verwenden, um soziale Strukturen kompakt und systematisch darzustellen. Die Netzwerkanalyse verfolgt mehrere Ziele. Das erste Ziel ist die visuelle Darstellung von Beziehungen. Dies wird in Form eines Netzwerks oder Graphen abgebildet. Ein weiteres Ziel ist die Darstellung von Informationen. Dies soll es Benutzer*innen ermöglichen, die Beziehungen zwischen den Akteuren auf einen Blick zu erkennen. Zusätzlich verfolgt die Analyse das Ziel, grundlegende Eigenschaften von Beziehungen in einem Netzwerk zu untersuchen. Dies sind Eigenschaften wie die Dichte und Zentralität. Ein weiteres Ziel besteht darin, Hypothesen über die Struktur der Verbindungen zwischen den Akteuren zu testen. Analysten sozialer Netzwerke können die Auswirkungen von Beziehungen auf die Einschränkung oder Verbesserung des individuellen Verhaltens oder der Netzwerkeffizienz untersuchen. Ein großer Vorteil von diesem Ansatz besteht darin, dass er sich auf die Beziehungen zwischen Akteuren konzentriert. Diese sind in ihren sozialen Kontext eingebettet.

Soziale Netzwerkanalyse kann in vier Schritte unterteilt werden. Erstens in die Definition eines Netzwerks, Messung der Beziehungen, Darstellung der Beziehungen und schließlich die Analyse der Beziehungen.

EINFÜHRUNG IN DIE GRUNDSTRUKTUR VON NETZWERKEN 2.2

Ein Netzwerk weist größtenteils immer die gleiche Grundstruktur auf.

Ein Graph G, der aus einem geordneten Paar von disjunkten Mengen (V, E) besteht. Dabei bezeichnet V eine Menge von Elementen, auch Knoten genannt, und E stellt eine Teilmenge von geordneten Paaren verschiedener Elemente von V dar. Sie werden Kanten oder Bögen genannt. Wenn das Netz ungerichtet ist, d.h. für jede Verbindung, die von jedem Paar i nach j geht, gibt es eine Verbindung j nach i. Dies Verbindungen werden als Kanten bezeichnet. Andernfalls werden gerichtete Verbindungen als Bögen bezeichnet. Netzwerkkanten können auch Gewichte haben, die z.B. die Stärke der Interaktion zwischen zwei Knoten angeben. Soziale Netzwerke könne entweder als Graphen oder Matrizen dargestellt werden. Eine Netzwerkmatrix ist eine quadratische Anordnung von Messungen, die das Vorhandensein oder Fehlen von Kommunikationsverbindungen zwischen Akteuren darstellen. Das Vorhandensein wir mit einer "1" und das Nichtvorhandensein mit einer "0" beschrieben. Netzwerkmatrizen geben Verbindung zwischen den Knotenpunkten an. Da Netzwerkmatrizen eine Teilmenge von Adjazenzmatrizen sind, also im Umkehrschluss jede Adjazenzmatrix auch eine Netzwerkmatrix ist, ist in Zukunft von Adjazenzmatrizen die Rede. Obwohl Matrizen bereits alle, für die Analyse relevanten, Informationen enthalten, ist es dennoch sinnvoll diese auch graphisch darzustellen. Im Folgenden betrachten wir folgende Matrizen:

Die erste Spalte und die erste Zeile der beiden Matrizen, stellt die Knoten innerhalb des Netzwerks dar. Der Wert 1 beschreibt das Vorhandensein, der Wert 0 das Nichtvorhandensein einer Verbindung zwischen den Knotenpunkten. In sozialen Netzwerken ist es eher untypisch, dass Knoten auf sich selbst abbilden. Daher stehen in den beiden oberen Matrizen in den Diagonalen immer die Ziffer 0. Das heißt, es sind keine Kanten vorhanden vom Knoten zu sich selbst.

Jedoch war die Rede davon, dass soziale Netzwerke nicht nur in Form von Matrizen dargestellt werden können, sondern auch also Graphen abgebildet werden. Die Matrizen oben bieten sich dafür idealerweise an. Die Graphen würde in diesem Fall wie folgt aussehen:

Abbildung 2.1: Links ist Netzwerk1 als Graph dargestellt und rechts Netzwerk2

Im Grunde können aber für jegliche Netzwerkanalysen beide Varianten verwendet werden. Jedoch werden in dieser Arbeit überwiegend Graphen zur Veranschaulichung und Matrizen für jegliche Berechnungen verwendet, da es leichter ist auf den Datentyp einer Matrix zuzugreifen. Das in Python bereits definierte und verwendete Paket heißt "NetworkX". Dies ist ein Python-Paket für die Erstellung, Bearbeitung und Untersuchung von Struktur, Dynamik und Funktionen komplexer Netzwerke. Dort ist es möglich, einige Features, welche ein Graph aufweist zu veranschaulichen.

In dieser Arbeit betrachten wir, wie in 2.1 unschwer zu erkenn ist, nur ungewichtete Netzwerke, um die Zentralitätsmaße, beziehungsweise Netzwerkeigenschaften zu diskutieren.

EINFÜHRUNG IN DIE GRUNDSTRUKTUR VON SOZIALEN NETZ-2.3 WERKEN

Ein soziales Netzwerk ist eine soziale Struktur, die zwischen Akteuren - Einzelpersonen oder Organisationen - besteht. Es zeigt die Art und Weise, wie Menschen und Organisationen durch verschiedene soziale Vertrautheiten verbunden sind, die von zufälligen Bekanntschaften bis hin zu engen familiären Bindungen reichen. Soziale Netzwerke bestehen aus Knotenpunkten und Verbindungen, deren Wechselwirkung nicht linear ist. Die Person oder Organisation, die am Netzwerk teilnimmt, wird als Knoten bezeichnet. Bindungen sind die verschiedenen Arten von Verbindungen zwischen diesen Knotenpunkten. Bindungen werden nach ihrer Stärke bewertet. Lockere Verbindungen, wie bloße Bekanntschaften, werden als schwache Verbindungen bezeichnet. Starke Verbindungen, wie z. B. Familien oder Cliquen, werden als starke Bindungen bezeichnet. Beispiele für soziale Netzwerke sind unsere Gesellschaft, das Internet, unser Gehirn und zelluläre Interaktionen. Doch welche grundsätzlichen Eigenschaften muss ein Netzwerk erfüllen, um als "soziales Netzwerk" bezeichnet werden zu dürfen? Sozialwissenschaftler*innen haben drei Arten von Netzwerken untersucht: egozentrische, soziozentrische und systemoffene Netzwerke. Egozentrische Netze sind Netze, die mit einem einzigen Knoten oder einer einzigen Person verbunden sind. Um als Netze zu gelten, müssen diese Verbindungen nicht nur Listen von Personen oder Organisationen sein, sondern es müssen auch Informationen über die Verbindungen zwischen diesen Personen oder Organisationen enthalten sein. Im allgemeinen Sprachgebrauch, insbesondere wenn von sozialer Unterstützung die Rede ist, wird jede Liste als Netzwerk betrachtet. Eine Person, die eine große Anzahl guter Freunde hat, auf die sie auf die sie sich verlassen kann, wird ein großes "Netzwerk" genannt. Soziozentrische Netzwerke sind, wie Russell Bernard (persönliche Kommunikation), Netzwerke in einer Box. Netze mit offenen Systemen sind Netze, bei denen die Grenzen nicht unbedingt klar sind, sie liegen nicht in einer Box - zum Beispiel die Elite der Vereinigten Staaten oder die Verbindungen zwischen Unternehmen, oder die Kette der Beeinflusser einer bestimmten Entscheidung oder die Übernahme neuer Praktiken. In gewisser Weise sind dies die interessantesten Netzwerke. Sie sind auch am schwierigsten zu untersuchen.

Diesen Teil werde ich zu einem anderen Zeitpunkt schreiben müssen weil ich keine Quellen finden, die es gut genug beschreiben was ich genau als Daten brauche.

3

KERNFAKTOREN EINER SOZIALEN NETZWERKANALYSE

In komplexen Netzwerken können einige Knoten als wichtiger angesehen werden als andere. Zum Beispiel in sozialen Netzwerken, sogenannte Influencer oder Prominente können Informationen leichter verbreiten, als gewöhnliche Personen. Daher können diese Knotenpunkte als zentral interpretiert werden. Diese Definition der Zentralität ist jedoch nicht eindeutig. Zum Beispiel im Linienverkehr, gilt eine Linie als zentral, wenn sie von großen Menschenmengen genutzt wird und stärker frequentiert wird als andere Linien. Die Definition der Zentralität ist also nicht allgemein und hängt von der der Anwendung ab. Da es keine allgemeine Definition von Zentralität gibt, wurden mehrere Maße entwickelt, die jeweils spezifische Konzepte berücksichtigen. Die Zentralität ist eine Schlüsseleigenschaft komplexer Netzwerke. Sie kann unter anderem das Verhalten dynamischer Prozesse und beispielsweise epidemische Ausbreitung beschreiben und nahelegen wie dies beeinflusst wird. Zudem kann die Zentralität Informationen über die Organisation komplexer Systeme, wie unser Gehirn, und unsere Gesellschaft liefern. Es gibt viele Metriken zur Quantifizierung der Knotenzentralität in Netzwerken. Nun folgt ein Überblick, über die wichtigsten Zentralitätsmaße und die Hauptmerkmale dieser.

3.1 GRADZENTRALITÄT

Die Gradzentralität ist die einfachste der Zentralitäten. Sie ist definiert durch die Anzahl der Verbindungen, die mit jedem Knoten verbunden sind. Mit der Adjazenzmatrix wird der Grad der Zentralität angegeben, indem die Summe der Elemente der betroffenen Zeile i berechnet wird. Mathematisch formuliert, wird folgende Formel verwendet:

$$k_i = \sum_{j=1}^N A_{ij} \tag{3.1}$$

Wobei A die Adjazenzmatrix beschreibt, N die Anzahl an Knoten darstellt und i, j die Knoten.

Da es sich bei der Gradzentralität um die einfachste Zentralität handelt, wird meist davon ausgegangen, dass Knoten mit vielen verbindungen, also Knoten mir einer hohen Zentralität, sich im Zentrum eines Netzwerkers befinden. Dies hat jedoch einige Nachteile, denn Knoten mit dem höchsten Grad könne sich auch am Rand des Netzes befinden, daher nicht zentral sein was dazu sorgt, dass die Gradzentralität nicht als lokales Maß betrachtet werden, da es nicht zentral ist. Zudem sollte hervorgehoben werden, dass bei der Gradzentralität, wie die Formel schon aus sich schließen lässt, nur eingehende beziehungsweise ausgehende Kanten gezählt werden. Die sagt zwar aus, dass ein solcher Knoten, auf das soziale Netzwerk bezogen, eine beliebte oder sehr bekannte Person ist, doch ist keine Aussage über wie Macht oder den Einfluss der Person möglich. Als extremes Gegenbeispiel, warum die Gradzentralität nicht immer optimal zur Netzwerkanalyse ist, diene ein Netzwerk mit einer großen, dichten Gruppen von Knoten. Diese machen den größten Teil des Graphen aus, was auch manchmal als Kern des

Netzes bezeichnet wird. Jedoch kann weit außerhalb des Kerns, entlang einer Kette von Knoten mit niedrigem Grad, ein Knoten liegen, der mit einer großen Anzahl von Knoten verbunden ist verbunden ist. Ein solcher Knoten hätte einen hohen Grad an Zentralität, obwohl er weit vom Kern des Netzes und den meisten Knoten entfernt ist. Um solche Faktoren mit berücksichtigen zu können, möchten wir einen weiteren Faktor mit in die Berechnung integrieren, nämlich die Weglänge. Diese spielt eine wichtige Rolle bei der "Nähe-Zentralität".

NÄHE-ZENTRALITÄT 3.2

Nachdem die Gradzentralität doch Mängel bei der Aussage über die Wichtigkeit von Knoten vorweist, möchten wir einen weiteren Faktor betrachten, woraus wie eine neue Formel herleiten können, nämlich die Weglänge. Denn die Knotenzentralität kann auch anhand der kürzesten Wege defininiert werden. Der Abstand zwischen zwei Knoten i und j ist gegeben durch die Anzahl der Kanten des kürzesten Pfades, welcher sie verbindet. Ein zentraler und daher wichtiger Knoten liegt, bezogen auf den Abstand, nahe an allen anderen Knoten des Netzes. Dieser Gedanke ist im Maß der sogenannten "Nähe-Zentralität" oder "Closeness-Centrality" enthalten. Diese wird durch den durchschnittlichen Abstand eines jeden Knotens zu allen anderen Knoten definiert. Mathematisch wird die Formel wie folgt beschrieben:

$$C_i = \frac{N}{\sum_{j=1, j \neq i}^{N} d_{ij}}$$
 (3.2)

Dabei ist mit d_{ij} der kürzeste Weg zwischen i und j gemeint und mit N erneut die Anzahl an Knoten im Netzwerk. Die Nähe-Zentralität ist vor allem dann sehr geeignet, wenn Prozesse über kurze Wege charakterisiert werden wollen. Betrachten wir beispielsweise den hierarchischen Aufbau eines Unternehmens. Dieses soll in einem sternförmigen Graphen dargestellt werden. In der Mitte des Graphen befindet sich der Vorstand, der in engem Kontakt mit den jeweiligen Abteilungsleitern steht. Die Abteilungsleiter sind, neben dem Vorstand, wiederum in sehr nahem Kontakt mit ihren jeweiligen Mitarbeitern ihrer Abteilung. Wenn wir nun ausschließlich anhand der Grad-Zentralität argumentieren würden, wären die Abteilungsleiter die wichtigsten Knoten im Graphen. Jedoch haben diese nicht die niedrigste Nähe-Zentralität, denn der Vorstand hat, da sich dieser Knoten in der Mitte des Graphen befindet, zu allen anderen Knoten entweder einen oder zwei Kanten Abstand. Die einzelnen Abteilungsleiter haben aber im worst-case zu anderen Angestellten aus anderen Abteilungen zwei bis drei Kanten Abstand. Dementsprechend ist es wichtig, auch die Nähe-Zentralität zu betrachten, denn diese ist von hoher Bedeutung. Tatsächlich weisen die meisten komplexen Netze eine geringe durchschnittliche Länge des kürzesten Weges auf. Dies ist dadurch zu begründen, da die typische Entfernung mit dem Logarithmus der Anzahl der Knoten zunimmt. Daher liegt das Verhältnis zwischen dem größten und dem kleinsten Abstand in der Größenordnung log(N), da der minimale Abstand gleich eins ist. In den meisten real existierenden Netzwerken beträgt dieses Verhältnis etwa sechs oder weniger. Es kann also mehrere Knoten mit der gleichen Zentralität haben, obwohl sie bei der Informationsverbreitung unterschiedliche Rollen spielen können. Daher ist die Nähe-Zentralität besser geeignet für räumliche Netze, bei denen die Abstände zwischen den Knoten größer ist als in zufälligen Netzen mit der gleichen Anzahl von Knoten und Verbindungen.

BETWEENESS-ZENTRALITÄT 3.3

Die Bewteenesss-Zentraität misst, wie wichtig ein Knoten für die kürzesten Pfade durch das Netz ist. Um diese Zentralität für einen Knoten N zu berechnen, wird in dieser Methode eine Gruppe Knoten ausgewählt und alle kürzesten Wege zwischen diesen Knoten gefunden. Dann wird der Anteil dieser kürzesten Wege berechnet, die den Knoten N einschließen. Wenn es beispielsweise sieben kürzeste Wege zwischen einem Knotenpaar gibt und fünf davon durch den Knoten N führen, dann wäre der Anteil 5/7 = 0.714. Dieser Vorgang wird für jedes Knotenpaar im Netz wiederholt. Anschließend werden die berechneten Bruchteile addiert, wodurch die Betweeness-Zentralität des Knotens N generiert wird. Mathematisch formuliert sieht die Formel dann wie folgt aus:

$$B_{i} = \sum_{(a-b)} \frac{\eta(a,i,b)}{\eta(a,b)}$$
 (3.3)

Hierbei bezeichnet $\eta(a,i,b)$ die Anzahl der kürzesten Wege zwischen den Knoten a und b die durch den Knoten i führen. Zudem stellt $\eta(a,b)$ die Gesamtzahl der kürzesten Wege zwischen a und b dar. Diese Zentralität, basierend auf dem "random walk"-Algorithmus, ist gegeben durch die erwartete Anzahl der Besuche jedes Knotens i während einer zufälligen Schrittfolge durch den Graphen:

$$B_i = \sum_{a=b}^{N} \sum_{b=1}^{N} w(a, i, b)$$
 (3.4)

dabei ist w(a,i,b), wie oben bereits beschrieben für $\eta(a,i,b)$, die Anzahl der kürzesten Wege zwischen den Knoten a und b die durch den Knoten i führen. Die Lösung wird nur angenähert. Die Betweeness-Zentralität ist eines der am häufigsten verwendeten Zentralitätsmaße. Sie gibt an, wie wichtig ein Knoten für den Informationsfluss von einem Knoten des Netzes zu einem anderen ist. In gerichteten Netzwerken kann Betweenness mehrere Bedeutungen haben. Einem Nutzer mit hoher Betweeness-Zentralität folgen möglicherweise viele andere Nutzer, die jedoch nicht denselben Personen folgen wie der Nutzer selbst. Dies würde darauf hindeuten, dass der Nutzer viele Anhänger oder Follower hat. Es kann aber auch sein, dass der Nutzer weniger Follower hat, diese aber dafür mit vielen Konten verbindet, die ansonsten weit entfernt sind. Dies würde darauf hindeuten, dass der Nutzer ein Anhänger von vielen Personen ist, beziehungsweise vielen Personen folgt. Daher ist es enorm wichtig die Richtung der Kanten eines Knotens zu kennen, um die Bedeutung der Zentralität zu verstehen.

EIGENVEKTOR-ZENTRALITÄT 3.4

Die Eigenvektor-Zentralität misst die Bedeutung eines Knotens, wobei die Bedeutung seiner Nachbarn berücksichtigt wird. Daher wird sie manchmal verwendet, um den Einfluss eines Knotens im Netzwerk zu messen. Er wird durch eine Matrixberechnung ermittelt, um den so genannten "Haupteigenvektor" anhand der Adjazenzmatrix zu bestimmen. Mathematisch betrachtet ist die Eigenvektor-Zentralität die komplizierteste, der in dieser Arbeit betrachteten Zentralitäten.

Wir gehen nun von der Vorstellung aus, dass ein Akteur zentraler ist, wenn er in Beziehung

zu Akteuren steht, die selbst zentral sind. Wir können also argumentieren, dass die Zentralität eines Knotens nicht nur von der der Anzahl seiner Nachbarknoten abhängt, sondern auch von deren Zentralitätswert. Beispielsweise definiert Bonacich (1972) die Zentralität $c(v_i)$ eines Knotens v_i als positives Vielfaches der Summe der benachbarten Zentralitäten. Als Formel mathematisch dargestellt sieht dies folgendermaßen aus:

$$\lambda c(v_i) = \frac{1}{\lambda} \sum_{i=1}^{N} a_{ij} c(v_j) \forall i$$
(3.5)

oder umgeschrieben:

$$c(v_i) = \sum_{j=1}^{N} a_{ij} c(v_j) \forall i$$
(3.6)

Hierbei repräsentiert $a_{i,j}$ die Werte der Adjazenzmatrix A und λ einen konstanten Faktor. In Matrixschreibweise mit $c = (c(v_1), ..., c(v_n))$ bedeutet dies auch:

$$Ac = \lambda c \tag{3.7}$$

Diese Art von Gleichung wird durch die Eigenwerte und Eigenvektoren von A gelöst. Aus der gesamten Menge an verschiedenen Eigenvektoren, scheint nur einer eine geeignete Lösung zu sein. Dieser Eigenvektor kann dann direkt als Zentralitätsmaß dienen. Da A die Adjazenzmatrix eines ungerichteten (zusammenhängenden) Graphen ist, ist A nicht negativ und aufgrund des Satzes von Perron-Frobenius, gibt es einen Eigenvektor des maximalen Eigenwerts mit nur nicht negativen, also positiven, Einträgen.

EIN TYPISCHES SOZIALES NETZWERK 3.5

Nachdem nun alle Zentralitäten und deren Berechnungen bekannt sind, ist es an der Zeit ein Musterbeispiel für ein soziales Netzwerk zu betrachten. Google Maps ist beispielsweise ein Netzwerk, bei dem die Knoten die Örteünd die Kanten die SStraßenßein können. Das bekannteste Netzwerk ist natürlich Facebook. Bei dieser sozialen Plattform ist die geeignetste Darstellung ein üngerichteter Graph. Bei Instagram hingegen, ein "gerichtet Graph. Denn hier gibt es neben Leuten, denen wir folgen, unsere eigenen Follower. Die Knoten sind die "Nutzeründ die "Kantenßind die Verbindungen zwischen ihnen. Beachten Sie, dass sowohl "Knotenäls auch "KantenÄttribute haben können. Knotenattribute in Facebook können zum Beispiel "Geschlecht", Ört", Älterüsw. sein, und Kantenattribute können "Datum der letzten Unterhaltung zwischen zwei Knoten", Änzahl der Likes", "Datum der Verbindungüsw. sein. Nun nehmen wir jedoch den Datensatz von Game of Thrones zu Hand und betrachten eine bereits durchgeführte SNA genauer:

Für diesen Plot wurde die "NetworkX" Python-Bibliothek auf "Game of Thrones"-Daten (GOT) angewendet. Das Netzwerk besteht aus 796 Knoten und 2823 Kanten. Insgesamt daher aus 796 Charakteren aus GOT.

In dieser SNA tauchen auch bisher unbekannte Messungen auf, die aber im Interpretations-Teil dieser Arbeit ebenfalls aufgegriffen werden. Beispielsweise beträgt der "Durchmesser" des GOT Graphen 9. Die heißt, wenn die kürzeste Pfadlänge von jedem Knoten zu allen

Abbildung 3.1: Game of Thrones social Network

anderen Knoten berechnet ist, ist der Durchmesser die längste aller berechneten Pfadlängen. Die durchschnittlich kürzeste Pfadlänge beträgt 3.41. Für diesen Wert wird ebenfalls, wie beim Durchmesser, die kürzeste Pfadlänge zu jedem Knoten benötigt wobei diese letztendlich zusammengezählt werden und die Summe zuletzt durch die gesamte Anzahl an Knoten geteilt. Für diese und weitere Berechnungen wie die "Dichte", "durchschnittliche Clusterbildung" und "Transitivität" existieren in Python bereits vordefinierte Funktionen aus Library NetworkX. Diese werden wir uns aber zu einem späteren Zeitpunkt anschauen. Um jedoch zurück auf die Analyse zu kommen, ist gut zu erkennen, welche Knoten eine zentrale Rolle in diesem Graphen spielen. Hierfür wird mit der Knoten-Größe variiert. Große Knoten implizieren, dass es sich um einen wichtigen Knoten für diesen Teilgraphen handelt und kleine, dass es sich um weniger relevante Knoten handelt. Wenn wir diese in der Abbildung 3.1 suchen, sehen wir, dass es sich hierbei um die Knoten handelt, die mit den meisten Kanten verbunden sind, beziehungsweise von diesen umgeben sind. Oftmals ist es bei den Graphen nicht eindeutig zu erkennen, ob es sich hierbei um Kanten handelt, die zum Knoten führen und sozusagen eine eingehende Kante darstellen, oder diese nur am Knoten vorbei verlaufen. Deshalb ist es wichtig, die Werte aus der Tabelle 3.1 zu analysieren. Betrachten wir die Spalten der "Charakter", fällt vor allem auf, dass "Tyrion – Lannister" in allen Spalten aufgeführt wird. Das heißt, dass dieser

Tabelle 3.1: Werte GOT Graph

Charakter	Grad-Zentr.	Charakter	Nähe-Zentr.	Charakter	Betweeness-Zentr.
Tyrion Lannister	0.1535	Tyrion Lannister	0.4763	Jon Snow	0.1921
Jon Snow	0.1434	Robert Baratheon	0.4593	Tyrion Lannister	0.1622
Jaime Lannister	0.1270	Eddard Stark	0.4558	Daenerys Targaryen	0.1184
Cersei Lannister	0.1220	Cersei Lannister	0.4545	Theon Greyjoy	0.1113
Stannis Baratheon	0.1119	Jaime Lannister	0.4520	Stannis Baratheon	0.1101

Knoten im Graphen sowohl zentral liegen muss, zudem kurze Abstände zu den anderen Knoten nachweisen und über diesen Knoten verlaufen zudem die häufigsten kürzesten Wege. Werfen wir nun einen Blick auf den Graphen 3.1, so sehen wir, dass der Knoten, beziehungsweise Charakter, Tyrion sofort auffällt. Er liegt zwar nicht komplett mittig im Graphen aber ist von den meisten Knoten und Kanten umgeben. Da drei der fünf wichtigsten Konten in der Spalte Grad - Zentr. den gleichen zweiten Namen tragen, liegt die Vermutung nahe, dass es sich hier um Knoten handelt, die auch sehr nah beieinander sein müssten. Beim Betrachten des Graphen bestätigt sich diese Vermutung erneut, denn alle drei Knoten befinden sich im blauen Teilgraphen. Zudem haben Recherchen ergeben, dass es sich bei dem Namen "Lannister" um ein Adelshaus in der US-amerikanischen Fantasy-Fernsehserie "Game of Thrones" handelt. Zudem fällt sofort auf, dass drei der fünf Charaktere in der Spalte Nhe – Zentr. bereits die selben sind, wie die wichtigsten Charaktere bezüglich der Grad – Zentr.. Wieder bedeutet das, dass diese Charaktere sowohl zentral im Graphen liegen müssen und zudem die kürzesten Wege zu anderen Knoten besitzen. Die Betrachtung von 3.1 bestätigt dies sofort. Zudem weist der Graph auch einige cliquen auf, die relevanteste und vor allem größte Clique befindet sich im blauen, grünen, ein Knoten im roten und zwei Knoten im pinken Teilgraphen. Jedoch werden wir die Analyse dieses interessanten sozialen Netzwerks nicht weiterführen, sondern uns auf die Analyse des künstlich erstellen sozialen Netzwerks, zu einem späteren Zeitpunkt in dieser Arbeit, fokussieren. Auch der Frage welcher mathematische bzw. stochastische Verteilung die Zentralitäten entsprechen und warum eine solche Untersuchung sinnvoll ist, werden wir zu einem späteren Zeitpunkt nachgehen.

3.6 KURZES RECAP

Nun sind die wichtigsten Eigenschaften der, in dieser Arbeit betrachteten und verwendeten, Zentralitäten bekannt und eingeführt. Manche Zentralitäten wurden oberflächlicher erklärt als andere, was die simple Begründung hat, dass sie weniger relevant für die Untersuchung der sozialen Netzwerke sind. Schließlich haben wir uns gemeinsam ein Beispiel für ein soziales Netzwerk angeschaut und dieses oberflächlich analysiert. Nachdem nun auch die Grundsätzlichen Eigenschaften klar sind, die ein soziales Netzwerke erfüllen muss, um als solches bezeichnet werden zu dürfen, kommt nun der Übergang in den zweiten Teil dieser Arbeit.

Teil II

DER PRAKTISCHE TEIL

Nun folgt der Teil der Arbeit, in dem selbst generierte soziale Netzwerke untersucht werden. Handelt es sich bei den generierten Netzwerken tatsächlich um soziale Netzwerke, erfüllen sie alle Ansprüche bezüglich der Zentralitäten und sonstigen Eigenschaften von sozialen Netzwerken? Dies sind einige Fragen, die in diesem zweiten Teil der Arbeit beantwortet werden sollen. An dieser Stelle ist anzumerken, dass jeglicher Code mit der Programmiersprache "Python" verfasst wurde

4 | ERSTE VORÜBERLEGUNGEN

Nachdem nun die theoretische Thematik ausgeführt wurde, ist es nun von Bedeutung, eine Möglichkeit zu finden diese anzuwenden. Um das Werkzeug der sozialen Netzwerkanalyse besser zu verstehen, ist es immer von Vorteil die eigenen Daten, die Social Media wie Twitter, Instagram und Facebook zur Verfügung stellen, zu interpretieren und sich daran zu erproben.

Da Facebook und Instagram der Informationspflicht unterliegen, ist es sehr simpel die eigenen social Media Daten anzufordern. Diese ähneln sich von ihrem Aufbau und Inhalt enorm. Meist handelt es sich hier um die geliketen und kommentierten Posts der Nutzer*innen, verfasste Nachrichten und gesuchte Inhalte. Jedoch enthalten die Daten nicht sonderlich viele Inhalte die sich der Interpretation eignen. Diese beschränken sich meistens auf den Benutzernamen und einen sogenannten "Timestamp", welcher nicht näher erklärt oder definiert ist, aber aus zehn Ziffern besteht. Ein Grund, warum es nicht funktioniert hat, eine wissenschaftliche Arbeit über eigene Daten zu schreiben, war die Zusammensetzung der Graphen und die schnelle Einsicht meinerseits, dass es sich bei den erstellten Plots und Ergebnissen nicht um "soziale Netzwerke" handeln kann. Denn die Graphen bestanden zum größten Teil aus einzelnen Teilgraphen, welche nicht voneinander abhängig waren oder annähernd Zusammenhänge aufweisen konnten. Auch gab es keine Cliquen oder Bridgen (Brücken).

Abbildung 4.1: Erste Versuche eines Sozialen Netzwerks

Eine weitere Schwierigkeit war die Interpretation der Kanten, denn diese war zu valide. Auf den ersten Blick sahen die Graphen oft identisch aus, doch immer wieder kam die Frage auf, was die Knoten und was Beziehung zu den Kanten aussagen könnten. Handelt es sich hier um fixe, eindeutige zugeordnete IDs, die im Umkehrschluss auf die Kanten die Bedeutung "besitzt" haben könnte.

Dementsprechend war das weitere Vorgehen mit eigenen Daten nicht zielführend und der Wunsch kam auf, eigene, zufällige Netzwerke zu generieren.

GENERIERUNG EINES RANDOM NETZWERK-PLOTS 4.1

Bei einer endlichen Anzahl von Knoten n gibt es auch eine endliche Anzahl von Graphen, die aus diesen Knoten erzeugt werden können, auch wenn die Anzahl der Graphen mit n Knoten exponentiell wächst. Ein Zufallsgraph ist nur einer dieser Graphen, der durch einen Zufallsprozess erzeugt wird. Genauer gesagt gibt es eine Wahrscheinlichkeitsverteilung über alle möglichen Graphen, die beschreibt, wie wahrscheinlich jeder Graph durch den Zufallsprozess ausgewählt wird. Wenn von "Zufallsgraphen" die Rede ist, wird in den meisten Fällen in Python das zugrunde liegende Ërdős-Rényi-Modelläls Graphengenerator angenommen (benannt nach den Mathematikern Paul Erdős und Alfréd Rényi). Eine wichtige Eigenschaft von auf diese Art erzeugten Zufallsgraphen ist, dass bei einer Menge von Knoten und einer Anzahl von Kanten alle möglichen Graphen mit der gleichen Wahrscheinlichkeit erzeugt werden. Es gibt also keine Vorliebe für eine bestimmte Art von Graphen. Das heißt es handelt sich hierbei um eine Gleichverteilung.

- der Erdős-Rényi-Graphengenerator Algorithmus beginnt mit n unverbundenen Knoten.
- Gehe jede mögliche Kante e durch. Nimm dann die Kante e mit einer (unabhängigen) Wahrscheinlichkeit p in den Graphen auf
- Die Laufzeit des Algorithmus ist $n \times n$ mögliche Kanten gibt, ist die Laufzeit $O(n^2)$
- alle Graphen haben die gleiche Wahrscheinlichkeit
- es gibt zwei Parameter für den Algorithmus: die Anzahl der Eckpunkte n und die Anzahl der Kanten e.

Aber neben dem Erdős-Rényi-Modell, gibt es noch viele weitere Methoden zur random Netzwerkmodellierung mit Python. In der ersten Version haben wir n=25 gewählt, wobei ndie Anzahl der Knoten ist.

- die "dense_gnm_random_graph" Modellierung verwendet. Dieser liefert einen $G_{n,m}$ -Zufallsgraphen. Beim $G_{n,m}$ -Modell wird ein Graph gleichmäßig zufällig aus der Menge aller Graphen mit n Knoten und m Kanten ausgewählt.
- die "Newman-Watts-Strogatz small-world graph"-Modellierung verwendet. Die funktioniert wie folgt:
 - Zunächst wird ein Ring mit n Knoten erzeugt. Dann wird jeder Knoten im Ring mit seinen k nächsten Nachbarn verbunden (oder k-1 Nachbarn, wenn k ungerade ist). Dann werden Abkürzungen durch Hinzufügen neuer Kanten wie folgt erstellt:

Für jede Kante (u, v) im zugrundeliegenden "n-Ring mit k nächsten Nachbarn" wird mit der Wahrscheinlichkeit p eine neue Kante (u, w) mit einem zufällig ausgewählten bestehenden Knoten w hinzugefügt. Im Gegensatz zu "watts_strogatz_graph()" werden keine Kanten entfernt

- Die "random_regular_graph "-Modellierung Gibt einen zufälligen d-regulären Graphen mit n Knoten zurück. Der resultierende Graph hat keine Selbstschleifen oder parallele Kanten
- Die "barabasi_albert_graph"-Modellierung hingegen liefert einen Zufallsgraphen nach dem Barabási-Albert-Präferenzmodell. Ein Graph mit n Knoten wird durch Anhängen neuer Knoten mit jeweils m Kanten erzeugt, die bevorzugt an bestehende Knoten mit hohem Grad angehängt werden.
- Die "powerlaw_cluster_graph"-Modellierung ist im wesentlichen das Barabási-Albert (BA)-Wachstumsmodell mit dem zusätzlichen Schritt, dass auf jede zufällige Kante eine Chance folgt, auch eine Kante zu einem seiner Nachbarn (und damit ein Dreieck) zu bilden. Dieser Algorithmus verbessert BA insofern, als er eine höhere durchschnittliche Clusterbildung ermöglicht, falls gewünscht.

Abbildung 4.2: Random Graphen-Modellierung

Isolation bedeutet im Social Network Zusammenhang, dass ein Knoten keinen Nachbarn besitzt (Grad 0 aufweist). Für gerichtete Graphen heißt dies, dass es keine in- und out-Nachbarn gibt. Dies würde auf Soziale Netzwerke, beziehungsweise Sozial Media, bezogen bedeuten, dass Nutzer*innen auf dieser Plattform existieren, die keinerlei Verbindungen nachweisen können. Dies kann durchaus der Fall sein, aber doch ist es sehr unwahrscheinlich, dass Menschen auf solchen Plattformen angemeldet sind und keinerlei Freunde haben oder andere Nutzer*innen kennen mit denen eine Verbindung besteht. Bei der Interpretation wäre es sogar möglich, einen Schritt weiter zu gehen. Eine Person, welche keiner weiteren Person folgt oder mit dieser Befreundet ist und der selbst keine Personen folgen, könnte eine fiktive Person sein. Denn solche Plattformen zielen darauf ab, Menschen miteinander zu verbinden und auch über räumlich große Distanzen hinweg in Verbindung zu halten. Daher muss auch bei diesem Vorgehen kritisch hinterfragt werden, ob es sich bei den Graphen um soziale Netzwerke handelt. Die Vermutung liegt nahe, dass es bei den Werten um fehlerhafte Zentralitäten handelt, jedoch kann dies noch optimiert werden. Die sozialen Graphen, die mit diesen Methoden entstanden sind, sehen wir in Abbildung 4.2. Doch auch hier war keine ansprechend genug. Noch am ehesten entspricht das Erdős-Rényi Modell einem sozialen Graph, wenn wir ausschließlich die Form der Graphen betrachten. Die Analyse der Zentralitäts-Werten hat an dieser Stelle nicht weiter stattgefunden, da bereits das erste Kriterium, dass es mehrere Verzweigungen im Graphen gibt und dass nicht automatisch alle Knoten mit den anderen Knoten verbunden sind. Zudem waren die Ergebnisse der Zentralitäten teilweise unstimmig, fehlerhaft und würden im Rahmen dieser Arbeit zu Verwirrungen führen. Dementsprechend liegt nahe, dass wir hier eine weitere Anpassung durchführen müssen. Doch wie könnte eine Anpassung aussehen?

RANDOM GRAPHEN-OPTIMIERUNG 4.2

Eine mögliche Optimierung erzielen wir, indem wir von den Random Graphen-Methoden abweichen, welche Python den Nutzer*innen zur Verfügung stellt. Eine weitere Überlegung, um eine Optimierung zu erzielen, ist zudem alle Formeln selbständig zu implementieren und nicht die bereits vordefinierten Python-Funktionen zu verwenden. Zum einen sind diese vordefinierten Funktionen intransparent und da sie die Rückgabewerte im Datentyp "Dictionary" ausgeben, wird es automatisch fehleranfälliger, auf diese korrekt zuzugreifen. Zudem erlangen wir dafür im Idealfall ein noch besseres Verständnis für die Formel. Zu einem späteren Zeitpunkt werden wir uns zudem ein Code-Ausschnitt anschauen. Doch auch die Optimierung und Umstrukturierung bringt Schwierigkeiten mit sich. Begonnen mit der gewichteten Gradzentralität, hier ist es zunächst von Vorteil, die Datenstruktur genauer zu betrachten. Zunächst sind alle edge_labels als einzelne Items in einer Liste ausgeprintet um einen besseren Überblick über die Struktur zu bekommen. Die Struktur sieht folgendermaßen aus

[((0,2),6),((0,4),5)] wobei das Tupel die zwei Knoten beschreibt, zwischen denen eine Kante existiert (also in unserem Fall existiert zwischen den Knoten 0 und 2 eine Kante. Der Wert dahinter repräsentiert das Gewicht. Also in unserem Fall ist der existierenden Kante zwischen 0 und 2 das Gewicht 6 zugeschrieben. Schnell fällt auf, dass wir den 2. Wert des Tupels nicht benötigen da für den Moment nicht relevant ist, wohin die Kante führt, aber dass sie aus dem Knoten entspringt ist durchaus relevant. Daher muss der von Python ausgeprintete Typ "Dictionary" in eine Liste umgewandelt werden, bei den Tupeln der 2. Wert entfernt und anschließend der 1. Wert von dem Tupel mit den Gewichten der Kanten gegenübergestellt werden. Zum Schluss

werden die Gewichte zusammengezählt, welche die gleiche Knoten-Nummer besitzen. vielleicht anhand Beispiel genauer beschreiben was gemeint ist Bei der closeness centrality ergibt sich ein ganz analoges Problem. Die Werte scheinen nicht zu passen bei der von Python vordefinierten Funktion für gewichtete Graphen. Zunächst müssen die Graphen wieder ungerichtet sein, weil bei den Berechnungen aufgefallen ist, dass es bei gerichteten durchaus häufiger zu Fehlern kommt, weil die Gewichte stark variieren und bei den Berechnungen die Richtungen nicht eindeutig sind. Bei weiteren Überlegungen ist die Idee entstanden, eine Methode zu schreiben, die sicherstellt, dass der ausgegebene Graph aus einer vorgegebenen Anzahl an Cliquen besteht. Hierbei ist ein Trick von Bedeutung. Der Methode wird eine fixe Zahl n übergeben und sichergestellt, dass so lange die Anzahl an Cliquen nicht genau dieser fixen Zahl n entspricht, stetig neue Graphen generiert werden müssen, bis letztendlich ein Graph generiert wurde, mit exakt n Cliquen. Zudem wird eine Variable mit einem Wert k übergeben welche auch die Größe der Cliquen festlegen kann. Entstanden ist folgendes Zwischenergebnis:

Abbildung 4.3: Random Graphen-selbst implementierte Formeln

Nachdem der Graph 4.3 leider keinesfalls einem social Network Graphen ähnelt, ist das Ziel nach wie vor, diese so gut wie möglich nachzustellen. Daher musste der Code erneut optimiert werden. Dieses mal legen wir die Hoffnung in die Darstellung durch Adjazenzmatrizen. Wie in dem ersten Teil dieser Arbeit bereits eingeführt, dürfen Netzwerke als Adjazenzmatrix dargestellt werden. In diesem Fall wurde das Programm umgeschrieben, dass es möglich ist n beliebig viele Adjazenzmatrizen zu erstellen und random also zufällig zu befüllen. Anschließend werden die random befüllte Matrizen zu einem großen Graphen zusammengeführt. D.h es werden beliebig viele einzelne Matrizen zu einer ganz großen Matrix verschmolzen. Jedoch ist davor noch wichtig, den Knoten mit der größten Gradzentralität herauszufinden um an dieser Stelle die Verbindung / Brücke zu einem anderen Teilgraphen herzustellen. Dies geschieht, indem reihen- und spaltenweise Einträge der Matrix gezählt werden. Die Zeile der jeweiligen Matrizen, in der die meisten Einträge (also Werte ungleich null) stehen, wird dann als Knoten verwendet, um die anderen Teilgraphen zu verknüpfen. Der Code kann beliebig fortgeführt werden. Durch unsere Anpassungen erhalten wir nun folgenden Graphen:

Abbildung 4.4: Random Soziale Graphen mit den höchsten Gradzentralitäts-Knoten als Verbindung

Doch auch dieses Ergebnis ist nicht zufriedenstellend. Nachdem die aktuellen Plots durchaus Sozialen Netzwerken ähneln und die Werte der Berechnungen ebenfalls richtig erscheinen, stört dennoch eine Tatsache. Bei der genaueren Betrachtung fällt auf, dass die Verbindungen untereinander, also in den kleineren Gruppen bzw. Teilgraphen, durchaus realistisch erscheinen. Jedoch wird die Möglichkeit ausgeschlossen, dass Teilgraphen verstärkt untereinander Verbindungen aufweisen. Dies liegt an der ersten Idee, den Knoten mit der höchsten Gradzentralität zu wählen und diesen dann mit einer beliebigen weiteren Gruppe zu verbinden. Doch in der Realität ist ein solches Phänomen sehr unwahrscheinlich. Denn in der Realität würde das heißen, dass beispielsweise an der Universität Ulm alle Student(en)*innen der Fakultät für Ingenieurwissenschaften, Informatik und Psychologie untereinander in einer Weise miteinander verbunden sind, jedoch nur die Professor(en)*innen, welche die höchste Gradzentralität aufweisen, mit eine*m/r weiteren Professor*in einer anderen Fakultät verbunden sind. Dies ist aber nicht realistisch

wenn bedacht wird, dass auch beispielsweise Student(en)*innen der Fakultät für Mathematik und Wirtschaftswissenschaften durchaus Kontakte zu der Fakultät für Ingenieurwissenschaften, Informatik und Psychologie haben können oder auch mit den jeweiligen Professor(en)*innen. Dementsprechend müssen diese Eigenschaft ebenfalls in der Implementierung berücksichtigt werden. Dies kann gewährleistet werden indem jedem Knoten eine zufällige Wahrscheinlichkeit zugeschrieben wird, die angibt, ob eine Kante existiert, die außerhalb des definierten Bereichs, beispielsweise einer bestimmten Fakultät, liegt. Für ein gutes soziales Netzwerk muss möglich sein, dass Knoten mit vielen anderen Knoten aus anderen Teilgruppen verbunden sind.

DER ENDGÜLTIGE OPTIMIERTE GRAPH UND DIE ANALYSE 4.3

Mit den Überlegungen und implementierten Methode aus dem vorherigen Kapitel, lässt sich gut realisieren, dass wir einen annäherndes soziales Netzwerk erhalten:

Abbildung 4.5: Random soziales Netzwerk mit realistischeren Verbindungen

Um diesen Plot zu erhalten haben wir nach wie vor primär mit Adjazenzmatrizen gearbeitet, welche erneut zufällig realisiert wurden. Statt die Knoten mit der höchsten Gradzentralität als Verbindungsglied zu wählen, wird jetzt ein beliebige Knoten mit einer beliebigen Wahrscheinlichkeit gewählt. Dadurch entstehen Graphen, die Sozialen Netzwerken tatsächlich ähneln. Doch entsprechen die erzeugten Graphen tatsächlich näherungsweise sozialen Netzwerken? Wie kann dies bestmöglich untersucht werden? Nachdem nun viele Faktoren optimiert sind, betrachten wir den erstellen Graphen und untersuchen diesen, ob es sich um ein soziales Netzwerk handelt. Bei der objektiven Betrachtung des Plots ähnelt die Struktur auf jeden Fall der, eines sozialen Netzwerks. Doch um eine fundierte Aussagen treffen zu können, müssen die Zentralitäten erst genauer analysiert werden. Hierfür wird folgende Tabelle verwendet:

Tabelle 4.1: Werte oberer Graph

Knoten	Grad-Zentr.	Nähe-Zentr.	Between-Zentr.	Knoten	Grad-Zentr.	Nähe-Zentr.	Between-Zentr.
1	0.149254	0.389535	0.0429244	38	0.0746269	0.36612	0.154688
2	0.134328	0.370166	0.0366434	41	0.0298507	0.271255	0.0298507
3	0.119403	0.350785	0.0516569	43	0.0447761	0.198813	0.030303
5	0.119403	0.378531	0.0341306	44	0.0447761	0.295154	0.0773717
6	0.119403	0.385057	0.145038	46	0.0298507	0.219672	0.0205638
7	0.0895522	0.358289	0.0208983	47	0.0447761	0.27459	0.0520902
10	0.119403	0.341837	0.0240985	48	0.0298507	0.232639	0.0373285
11	0.104478	0.360215	0.0212421	49	0.0895522	0.36413	0.221288
14	0.119403	0.3350	0.0454434	50	0.0298507	0.241877	0.0298507
18	0.134328	0.340102	0.0283754	52	0.0895522	0.314554	0.0885577
22	0.0746269	0.348958	0.0740623	54	0.104478	0.254753	0.0327816
27	0.119403	0.360215	0.0342121	55	0.0597015	0.325243	0.0670173
30	0.149254	0.348958	0.0412278	56	0.104478	0.303167	0.0672381
32	0.179104	0.435065	0.266448	57	0.0746269	0.290043	0.0213757
34	0.134328	0.394118	0.112543	60	0.0895522	0.313084	0.0903114
35	0.104478	0.362162	0.0290967	64	0.0895522	0.304545	0.0530434

Bei dieser Tabelle handelt es sich um die 32 wichtigsten Knoten. Die Anzahl der Knoten in der Tabelle 4.3 ist rein zufällig gewählt und hat keine Bedeutung. Alle Knoten die eine geringere "Betweenness-Centrality" kleineren als 0.02 aufweisen, sind außen vor gelassen. Auch hier haben wir die Grenze rein zufällig gewählt. Bei diesem Grenzwert handelt es sich um einen guten Mittelwert. Wir wollen weder zu wenig, noch zu viele Knoten betrachten. Doch betrachten wir nun die Tabelle 4.3 genauer. Bei der Grad-Zentralität sehen wir, dass die meisten Knoten einen Wert höher als 0.1 aufweisen. Wir können einen Schritt weitergehen und stellen schnell fest, dass einige wenige Knoten eine Grad-Zentralität höher als 0.13 aufweisen. Genau genommen handelt es sich hier um die Knoten 1 mit einem Wert von 0.149254, den Knoten 2 mit dem Wert 0.134328, Knoten 18 mit dem Wert 0.134328, dann Knoten 30 mit einer Zentralität von 0.149254, zudem um den Knoten 32 mit dem höchsten Wert von 0.179104 und schließlich Knoten 34 mit einer Grad-Zentralität von 0.134328. All diese aufgezählten Knoten sind zentral wichtig für den Graphen und befinden sich höchstwahrscheinlich im Zentrum des Graphen 4.5. Betrachten wir nun die Abbildung genauer, kann diese Behauptung teilweise bestätigt werden, denn die Knoten stechen auf jeden Fall heraus, doch befinden sie sich nicht ganz mittig im Graphen. Diese relativ hohen Werte sagen über die Knoten aus, dass es sich im realen Leben um eine sehr berühmte / bekannte Person handeln muss. Wir können beispielsweise annehmen, dass es ein Star, ein Influenzer oder eine, auf weitere Arten bekannte Person ist. Doch ebenso können wir annehmen, dass die Person lediglich viele andere Personen kennt,

oder von vielen anderen Personen gekannt wird. Doch nicht nur die Grad-Zentralität spielt für uns und die Analyse in dieser Arbeit eine zentrale Rolle. Im Weiteren betrachten wir die "Nähe-Zentralität" doch um auch bei diesem Aspekt nicht alle 32 Werte aufzuzählen, betrachten wir im Folgenden nun Knoten, die einen Wert höher als 0.37 aufzeigen. Hierzu zählen der Knoten 1 mit einem Wert von 0.389535, Konten 2 mit dem Wert 0.370166, zudem Knoten 5 mit dem Wert 0.378531, zusätzlich Knoten 6 mit der Zentralität 0.385057, und schließlich die Knoten 32 mit dem höchsten Wert 0.435065 und 34 mit der Zentralität von 0.394118. Je höher die Werte sind, so haben wir in dem ersten Teil der Arbeit gesehen, desto näher Befinden sich diese Knoten zu weiteren bzw. weisen die durchschnittlich kürzesten Wege nach. Betrachten wir nach dieser Information unseren Graphen 4.5 und suchen die Knoten mit der höchsten Nähe-Zentralität, sehen wir direkt, dass sich diese im gleichen Bereich befinden, wie die Knoten mit der höchsten Grad-Zentralität. Doch bestätigt der Plot unsere Vermutung nicht eindeutig, da es teilweise nicht ideal zu erkennen ist, ob die Kanten zum Knoten verlaufen oder an diesem vorbei. Doch diese Problematik ist nicht neu für uns, sie ist bereits im ersten Teil bei der Analyse des Game of Thrones Graphen 3.1 aufgetreten. Wobei auch die Möglichkeit besteht, dass wir die Formeln nicht korrekt implementiert haben. Jedoch hat händisches Nachrechnen, bei durchaus kleineren Plots, die Korrektheit ergeben, weshalb wir diese Vermutung in Klammern setzen und uns eher auf die nicht eindeutigen Darstellung einigen. Doch nun kommen wir zur letzten untersuchten Zentralität, nämlich der Betweenness-Zentralität. Auch hier betrachten wir wieder die Knoten mit den höchsten Werten, und um nicht alle 32 Werte aufzuzählen, betrachten wir erneut nur Knoten mit einem Wert höher als o.og. Diese Voraussetzung erfüllen neben dem Knoten 6 mit dem Wert 0.145038 die Knoten 32 mit der höchsten Zentralität von 0.266448 und 34 mit einem Wert von 0.112543, außerdem der Knoten 38 mit der Zentralität von 0.154688, zudem der Knoten 49 mit dem Wert 0.221288 und schließlich der Knoten 60 mit dem Wert 0.0903114. Das bedeutet für unseren Graphen 4.5, dass die kürzesten Wege anteilsmäßig am öftesten über diese genannten Knoten verlaufen. Betrachten wir erneut den Graphen, sehen wir eine zum Teil bekannte Eigenschaft, dass sich die Punkte im grün, lila, hellblau verschmolzenen, links unten zentrierten, drei Teilgraphen befinden. Doch kommt bei der Betweenness-Zentralität hinzu, dass sich die Knoten 49 und 60 auch im gelbgrünen, rechts oben liegenden, Teilgraphen befinden. In diesem Fall sehen wir sogar schön, dass die Werte gut zu unserem Plot passen und es sehr wahrscheinlich ist, dass unsere Annahme korrekt ist, und die Knoten tatsächlich am häufigsten bei allen kürzesten Wegen durchlaufen werden. Weitere Zentralitätswerte müssen wir nicht betrachten. Zum einen gäbe es hier noch die Eigenvektor-Zentralität, doch würde diese nur unsere Feststellungen bestätigen. Jetzt haben wir alle Kriterien überprüft und erfolgreich festgestellt, dass dieser Graph einem sozialen Netzwerk ähnelt. Doch um auszuschließen, dass wir hier rein zufällig ein solches erhalten haben, möchten wir uns noch ein weiteres Kriterium überlegen und anschließend untersuchen.

DIE VERTEILUNG DER ZENTRALITÄTEN 4.4

Nachdem wir im vorherigen Kapitel eine soziale Netzwerkanalyse durchgeführt haben und ein gutes soziales Netzwerk künstlich generiert haben, möchten wir uns im Folgenden die Verteilung der Zentralitätswerte anschauen. Im Laufe der Arbeit ist aufgefallen, dass sich die Werte der Zenralitäten oftmals in ähnlichen Bereichen befinden. An dieser Stelle können wir uns die Frage stellen, wie diese Werte verteilt sind. Vielleicht existieren Zusammenhänge zwischen unseren generierten sozialen Netzwerken und sozialen Netzwerken im Allgemeinen. Das heißt, im Konkreten, wollen wir der Frage nachgehen, ob alle Zentralitätswerte sozialer Netzwerke ähnliche Verteilungen nachweisen. Würde sich unsere Vermutung diesbezüglich bestätigen, können wir andere soziale Netzwerke anhand dieses Kriterium untersuchen und interessante Vermutungen aufstellen. Zunächst aber implementieren wir die Methode, die die Verteilung der Zentralitäten untersucht anhand der Gradzentralität. Da der Graph 4.5 ein zufällig, einmalig erzeugter Graph ist, werden wir nicht einen Identischen Graphen erzeugen können, um die Verteilung der Zentralitäten zu betrachten. Was sich jedoch nicht negativ auf die weiteren Untersuchungen auswirken sollte. Den ersten Graphen und die zugehörige Verteilung der Gradzentralität bildet sich folgendermaßen ab:

Abbildung 4.6: Verteilung der Grad-Zentralität des Graphen (b)

Jedoch ist zu erwähnen, dass wir keine perfekte Gauß-Verteilung generieren, sondern eine etwas nach links verschobene Verteilung sehen. An was dies liegen kann, werden wir uns später anschauen und versuchen das Phänomen zu analysieren. Nun wollen wir untersuchen, ob sich die Eigenschaft, der gleichmäßig verteilten Zentralitäten für die Nähe- und Betweenness-Zentralität bestätigt.

5 DIE UMSETZUNG

5.1 VERGLEICH MIT TWITTER

Da die vorherigen Interpretationen immer ziemlich einseitig waren und die Ergebnisse klar einzuordnen waren gehen wir nun etwas tiefer in die Materie. Es gibt viele Studien und Untersuchungen zu Twitter. Vor allem auf Ebenen der sozialen Netzwerkanalyse sind diese vielversprechend und interessant. Im vorherigen Teil damit beschäftigt haben, wie soziale Netzwerke so gut und realitätsnah wie möglich konstruiert werden könne. Daher möchten wir nun die Werte, welche in dieser Arbeit generiert wurden mit den Werten, die bei der sozialen Netzwerkanalyse von Twitter berechnet wurden, verglichen werden. Leitfragen sind hierbei, was zu erwarten ist, ob die Ergebnisse den Erwartungen entsprechen oder komplett widersprechen und warum dies der Fall ist. Zusätzlich vielleicht auch Möglichkeiten erarbeitet, wie die Graphen bzw. die Generierung angepasst werden könnte um noch bessere Graphen zu erhalten, die sozialen Netzwerken noch mehr ähneln.

5.2 TWITTER SNA - VORARBEIT

Zunächst stellt sich hier die Frage welche Datensätze benutzt werden sollten. Da zu diesem Zeitpunkt nicht klar war, ob die Datensätze zwar verwendet werden dürfen aber jegliche Berechnungen selbständig durchgeführt werden müssen, bin ich nun nach meiner Vorstellung vorgegangen. Auf meiner Suche bin ich auf mehrere gute wissenschaftliche Arbeiten gestoßen. Zunächst müssen wir eine vergleichbare Basis schaffen. Dies schaffen wir dadurch, dass wir ungefähr die gleiche Anzahl an Knoten haben damit die Werte ansatzweise vergleichen zu können.

6 DIE ERSTE INTERPRETATION

ANPASSUNGEN UND OPTIMIERUNGEN

8 DIE ZWEITE INTERPRETATION

Teil III ANHANG

A ANHANG

ERKLÄRUNG

Hiermit erkläre ich, dass ich die vorliegende Ausarbeitung selbst und ohne Verwendung anderer als der zitierten Quellen und Hilfsmittel verfasst habe. Wörtlich zitierte Sätze oder Satzteile sind als solche kenntlich gemacht; andere Hinweise zur Aussage und zum Umfang sind durch vollständige Angaben zu den betreffenden Publikationen gekennzeichnet. Die Ausarbeitung wurde in gleicher oder ähnlicher Form keiner Prüfungsstelle vorgelegt und ist nicht veröffentlicht worden. Diese Arbeit wurde noch nicht, auch nicht teilweise, in einer anderen Prüfung oder als Lehrveranstaltungsleistung verwendet.

Ulm, Februar 2022	
	Tanja & Zast