Clase 13 Pruebas no paramétricas Diplomado en Análisis de datos con R para la acuicultura.

Dr. José A. Gallardo y Dra. María Angélica Rueda. | jose.gallardo@pucv.cl | Pontificia Universidad Católica de Valparaíso

02 November 2021

PLAN DE LA CLASE

1.- Introducción

- ¿Qué son las pruebas no paramétricas?.
- ► Test de Correlación no paramétrico.
- Pruebas de contraste no paramétrico.
- Prueba de asociación Chi cuadrado.

2.- Práctica con R y Rstudio cloud

- Realizar pruebas no paramétricas.
- Realizar gráficas avanzadas con ggplot2.
- Elaborar un reporte dinámico en formato pdf.

MÉTODOS NO PARAMÉTRICOS

- Conjunto diverso de pruebas estadísticas.
- El concepto de "no paramétrico" a veces es confuso, pues los métodos no paramétricos si estiman y someten a prueban hipótesis usando parámetros, pero no los de distribución normal.
- Se aplican usualmente para variables cuantitativas que no cumplen con el supuesto de normalidad y para variables cualitativas.
- Alternativamente se conocen como métodos de distribución libre.
- El concepto matemático de permutación está subyacente a muchos métodos no paramétricos y se utiliza para someter a prueba las hipótesis.

SUPUESTOS DE LOS MÉTODOS NO PARAMÉTRICOS

- Las variables son independientes.
- Muestras independienteds tienen identica distribución.
- No tienen supuestos acerca de la distribución de la variable.
- La distribución muestreal se estima a veces usando permutación.

PRUEBA DE CORRELACIÓN NO PARAMÉTRICA

¿Para que sirve?

Para estudiar asociación de dos variables, cuando no se cumple uno o varios supuestos de la correlación paramétrica:

- Las variables X e Y no son continuas.
- No existe relación lineal.
- La distribución conjunta de (X, Y) no es una distribución Bivariable normal.

EJEMPLO FUNCIÓN MONÓTONA

¿Cuál es el supuesto que no se cumple?

No existe una relación lineal

EJEMPLO VARIABLES DISCRETAS U ORDINALES

¿Cuál es el supuesto que no se cumple?

Parásitos es variable discreta.

COEFICIENTE DE CORRELACIÓN DE SPEARMAN

¿Cómo se calcula?

$$\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = -0, 6 = rho$$

Fish size (X)	Parásitos (Y)	Ranking X	Ranking Y	d	d^2
942	13	4	2	2	4
101	14	1	3	-2	4
313	18	2	4	-2	4
800	10	3	1	2	4

$$\sum d^2 = 16$$

¿CUÁNTAS CORRELACIONES SON POSIBLES?

Para 4 elementos el número de permutaciones (combinación ordenada de elementos) es: $4! = 4 \times 3 \times 2 \times 1 = 24$ permutaciones posibles.

Opción 1: Correlación negativa.

Opción 2: Correlación positiva.

Ranking X	Ranking Y
4	1
1	4
2	3
3	2
ho= -1	

Ranking X	Ranking Y
4	4
1	1
2	2
3	3
$\rho = 1$	

DISTRIBUCIÓN MUESTRAL DE CORRELACIÓN

¿Cuántas correlaciones son >= 0.6 y <= -0.6?

PRUEBA DE HIPÓTESIS DE CORRELACIÓN

Hipótesis	Verdadera cuando
H ₀ : X e Y mutuamente independientes	$\rho = 0$
$\mathbf{H_1}$: X e Y no son mutuamente independientes	ho eq 0

$$p = 10 / 24$$

 $p = 0.4167$

No se rechaza H_0 porque p=0,416 es mayor a 0,05

PRUEBA DE CORRELACIÓN CON R

-0.6

```
# Crea objetos X e Y
X \leftarrow c(942,101,313,800)
Y \leftarrow c(13,14,18,10)
# Realiza test de correlación
cor.test(X,Y, method = "spearman",
         alternative = "two.sided")
##
    Spearman's rank correlation rho
##
##
## data: X and Y
## S = 16, p-value = 0.4167
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
```

COMPARACIÓN DE MUESTRAS INDEPENDIENTES

¿Para qué sirve?

Para comparar dos muestras con idéntica distribución, con diferentes medianas y sin normalidad.

Usualmente para variables discretas.

PRUEBA DE MANN-WHITNEY (W)

Estudio de caso: Conducta agresiva (minutos de pelea) entre tilapias cultivadas en estanque mosexo (Tratamiento: solo machos) y estanques mixtos (Control: Machos y hembras) **Link**

Tratamiento (T)	Control (C)
9	0
12	4
13	6

CÁCULO DE ESTADÍSTICO MANN-WHITNEY (W)

¿Cómo se calcula el estadístico W?

Como la diferencia de los ranking entre tratamiento y control

Tratamiento (T)	Control (C)	Ranking T	Ranking C
9	0	4	1
12	4	5	2
13	6	6	3
		$\sum = 15$	$\sum = 6$

$$W = 15 - 6 = 9$$

Máxima diferencia posible entre T y C.

¿CUÁNTAS COMBINACIONES SON POSIBLES?

¿Cuántas combinaciones son posibles?

$$6! / 3! X 3! = 720 / 36 = 20$$

2 resultados posibles de 20

Control mayor que tratamiento. Tratamiento mayor que Control.

Т	С
1	4
2	5
3	6
6	15
W =	- 9

Т	C
2	1
5	3
6	4
13	8
W =	5

DISTRIBUCIÓN MUESTRAL DE W

PRUEBA DE HIPÓTESIS DE MANN-WHITNEY

Hipótesis

 H_0 : Tratamiento = Control H_1 : Tratamiento > Control

Resultado obtenido W=9.

p = 1/20

p = 0.05

No se rechaza H_0 porque p = 0.05

PRUEBA DE MANN-WHITNEY CON R

Crea objetos tratamiento y control

 $t \leftarrow c(9, 12, 13)$

W = 9, p-value = 0.05

alternative hypothesis: true location shift is greater

COMPARACIÓN DE MUESTRAS PAREADAS

¿Para que sirve?

Para comparar dos muestras *pareadas* con idéntica distribución, con diferentes medianas y sin normalidad.

PRUEBA DE WILCOXON MUESTRAS PAREADAS

Estudio de caso: Gonadotrofina en trucha 7 y 14 días **post ovulación.**

¿Aumenta la gonadotrofina post ovulación?

Trucha	7 días	14 días	d	Ranking con signo
1	45	49	4	2
2	41	50	9	4
3	47	52	5	3
4	52	50	2	-1

W = suma de los ranking = 8

V = suma de casos positivos (aumenta) = 9

DISTRIBUCIÓN MUESTRAL DE W

¿Cuántas combinaciones de signos (+ o -) son posibles? $2^4 = 16$

PRUEBA DE HIPÓTESIS DE WILCOXON

Hipótesis

 H_0 : d = 0

 H_1 : d > 0

$$p = 2/16$$

 $p = 0.125$

No se rechaza H_0 porque p = 0.125 es mayor a 0.05

PRUEBA DE WILCOXON PAREADAS CON R

```
# Crea objetos pre y post
pre \leftarrow c(45, 41, 47, 52)
post \leftarrow c(49, 50, 52, 50)
# Realiza prueba de Wilcoxon
wilcox.test(post - pre, alternative = "greater")
##
##
    Wilcoxon signed rank exact test
##
## data: post - pre
## V = 9, p-value = 0.125
## alternative hypothesis: true location is greater than 0
# no es necesario indicar muestras pareadas
# pues estamos haciendo la resta en la función.
```

COMPARACIÓN DE MÚLTIPLES MUESTRAS INDEPENDIENTES

¿Para que sirve?

Para comparar múltiples muestras con idéntica distribución, con diferentes medianas y sin normalidad.

ESTUDIO DE CASO: SCORE CALIDAD CAMARÓN

Score de calidad organoléptica (textura) de camarón link.

Descripción	Puntaje
Muy compacto y denso	9
Menos elástico, compacto y denso	7
No elástico, no compacto y no denso	5
Ligeramente blando	3
Suave	1

PRUEBA DE KRUSKAL - WALLIS

Textura luego de 0, 4 y 8 días de almacenamiento de camarón congelado.

0 días	4 días	8 días
9	7	6
8	7	5
9	6	5
8	8	6

		•
Hi	póte	SIS
	P 1	

 $\mathbf{H_0}$: La distribución de los k grupos son iguales. $\mathbf{H_1}$: Al menos 2 grupos son distintos.

PRUEBA DE KRUSKAL - WALLIS CON R

```
d0 <- c(9,8,9,8) # day0
d4 <- c(7,7,6,8) # day4
d8 <- c(6,5,5,6) # day8
kruskal.test(list(d0, d4, d8))

##
## Kruskal-Wallis rank sum test
##
## data: list(d0, d4, d8)
## Kruskal-Wallis chi-squared = 9, df = 2, p-value = 0.011;</pre>
```

PRUEBA DE ASOCIACIÓN VARIABLES CATEGÓRICAS

¿Para que sirve?

Se utilizan para investigar la asociación de dos o más variables categóricas una de las cuales es una variable respuesta y la otra es una variable predictora.

Tratamiento	Respuesta +	Respuesta -
Si	a	С
No	b	d

PRUEBA DE CHI CUADRADO

Esta prueba contrasta frecuencias observadas con las frecuencias esperadas de acuerdo con la hipótesis nula.

Hipótesis

 $\mathbf{H_0}$: La variable predictora y la variable respuesta son independientes (Tratamiento = control)

H₁: La variable predictora y la variable respuesta NO son independientes

Supuestos:

- Los datos provienen de una muestra aleatoria de la población de interés.
- El tamaño de muestra es lo suficientemente grande para que el número esperado en las categorías sea mayor 5 y que ninguna frecuencia sea menor que 1.

ESTUDIO DE CASO: SOBREVIVENCIA MANCHA BLANCA CAMARÓN

Sobrevivencia de postlarvas alimentadas con B glucanos y desafiadas con WSSP **link**.

Tratamiento	Sobrevivientes	Muertos
Con glucanos	20	80
Sin glucanos	5	95

CÁLCULO DE ESTADÍSTICO CHI CUADRADO

¿Cómo se calcula el estadístico Chi cuadrado?

$$X^2 = \sum \frac{(freq.obs. - freq.esp.)^2}{(freq.esperada)} = \sum \frac{(O - E)^2}{(E)}$$

Frecuencia esperada

```
## [,1] [,2]
## [1,] 12.5 87.5
## [2,] 12.5 87.5
## X-squared
## 10.28571
```

PRUEBA DE CHI CUADRADO CON R

```
# Crea matriz de datos
datos \leftarrow c(20, 5, 80, 95)
dim(datos) \leftarrow c(2,2)
# Test de Chi-squared en R (chisq.test)
chisq.test(datos, correct = FALSE)
##
##
    Pearson's Chi-squared test
##
## data: datos
## X-squared = 10.286, df = 1, p-value = 0.001341
```

PRÁCTICA ANÁLISIS DE DATOS

- Guía de trabajo práctico disponible en drive y Rstudio.cloud.
 Clase_12
- ► El trabajo práctico se realiza en Rstudio.cloud. Clase 12

RESUMEN DE LA CLASE

Revisión de conceptos de estadística no paramétrica.

- Correlación de Spearman.
- Prueba de Man-Whitney.
- ► Prueba de Wilcoxon.
- Prueba de Kruskal Wallis.
- Prueba de Chi-cuadrado.