

哈爾濱工業大學

二项概率公式

n重伯努利试验

若一个试验只有两个结果:

A和 \bar{A} ,称试验为伯努利试验.

伯努利
Jacob Bernoulli(1654-1705)
瑞士数学家. 伯努利家族代表人物之一, 概率论中的伯努利试验与大数定律都是他提出来的. 被公认为概率论的先驱之一.

n重伯努利试验

- > 设 $P(A) = p (0 , 则<math>P(\overline{A}) = 1 p = q$.
- 将伯努利试验重复、独立地进行n次,称为n重伯努利试验.

每次试验中 P(A)=p保持不变

各次试验的 结果互不影响

人们常把A叫"成功", \overline{A} 叫"失败".

定理1 设每次试验中成功A的概率为p (0),则在<math>n重伯努利试验中A恰好 发生k次的概率为

$$P_n(k) = C_n^k p^k q^{n-k}$$

其中 p+q=1, k=0,1,...,n.

$$P_n(k) = C_n^k p^k q^{n-k}$$

证明

 $+\cdots A_1 A_2 \cdots A_{n-k} A_{n-k+1} \cdots A_n$.

求证
$$P_n(k) = C_n^k p^k q^{n-k}$$

证明 设 B_k = "n次试验成功A恰好发生k次",

$$A_i$$
="第 i 次试验成功", $\overline{A_i}$ ="第 i 次试验失败",

则
$$P(A_1A_2\cdots A_kA_{k+1}\cdots A_n)=$$

$$P(A_1)P(A_2)\cdots P(A_k)P(\overline{A}_{k+1})\cdots P(\overline{A}_n)=p^kq^{n-k}.$$

同理可得其它项的概率也是 $p^k q^{n-k}$,

故
$$P_n(k) = P(B_k) = C_n^k p^k q^{n-k}$$
.

$$\sum_{n=0}^{\infty} P_n(k) = 1.$$

推论
$$\sum_{n=0}^{\infty} P_n(k) = 1. \qquad P_n(k) = C_n^k p^k q^{n-k}$$

证明

$$\sum_{k=0}^{n} P_n(k) = \sum_{k=0}^{n} C_n^k p^k q^{n-k} = (p+q)^n = 1.$$

例1 连续投n次均匀骰子, 求6点恰好出现

k次的概率? $(k \le n)$

解 设A=每次出现6点, \overline{A} =每次不出现6点,

$$P(A) = \frac{1}{6} = p, \quad P(\overline{A}) = \frac{5}{6} = q.$$

$$P_n(k) = C_n^k (\frac{1}{6})^k (\frac{5}{6})^{n-k}, (k = 0, 1, \dots, n).$$

例2 某人进行射击,每次射击的命中率为0.08,独立射击50次,求至少命中两次的概率.

解 设A="至少命中两次"

$$P_{50}(k) = C_{50}^{k}(0.08)^{k}(0.92)^{50-k}, k = 0, \dots, 50.$$

所求概率为
$$P(A) = 1 - P_{50}(0) - P_{50}(1)$$

= $1 - (0.92)^{50} - 50 \cdot 0.08 \cdot (0.92)^{49}$
= 0.917.

上式计算较繁琐,下面给出近似公式.

二项概率的泊松(Poisson)逼近定理

定理2 如果 $n\to\infty$, $p\to0$ 使得 $np=\lambda$ 保持为正常数,则

$$C_n^k p^k (1-p)^{n-k} \rightarrow \frac{\lambda^k}{k!} e^{-\lambda}.$$

对 $k=0,1,2,\cdots$ 一致地成立.

泊松(Poisson)

泊松(Sim éon-Denis Poisson $1781 \sim 1840$) 是法国数学家、几何学家和物理学家. 泊松定理于1837年由泊松引入的.

二项概率的泊松逼近定理

在实际计算中,当 $n \ge 10$, $p \le 0.1$ 时,可用近似

公式

$$P_n(k) = C_n^k p^k (1-p)^{n-k} \approx \frac{\lambda^k}{k!} e^{-\lambda}.$$

其中 $\lambda=np$, k=0,1,...n.

当 $n \ge 10$, $p \ge 0.9$ (即 $q \le 0.1$) 时,可用近似公式

$$P_n(k) = C_n^k p^k (1-p)^{n-k} \approx \frac{[n(1-p)]^{n-k}}{(n-k)!} e^{-n(1-p)}.$$
 $k=0,1,...n.$

当0.1 时,用正态近似. 在后面学习.

例2 某人进行射击,每次射击的命中率为0.08,独立射击50次,求至少命中两次的概率.

解(续)设A="至少命中两次"

$$P_{50}(k) = C_{50}^{k}(0.08)^{k}(0.92)^{50-k}, k = 0, \dots, 50.$$

$$n = 50, p = 0.08, \lambda = 50 \times 0.08 = 4.$$

所求概率为

$$P(A) = \sum_{k=2}^{50} C_{50}^{k} 0.08^{k} (0.92)^{50-k} \approx \sum_{k=2}^{50} \frac{4^{k}}{k!} e^{-4}$$

查poisson 分布表

$$\approx \sum_{k=2}^{\infty} \frac{4^k}{k!} e^{-4} = 0.908.$$

附表 1 泊松分布累计概率值表 $\sum_{k=m}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda}$

								k = m	•
m	λ								
	1	2	3	4	5	6	7	8	9
0	1	1	1	1	1	1	1	1	1
1	0.632 12	0.86466	0.950 21	0. 981 68	0. 993 26	0. 997 52	0. 999 09	0. 999 67	0. 999 88
2	0. 264 24	0. 593 99	0.80085	0. 908 42	0. 959 57	0. 982 65	0. 992 71	0. 996 93	0. 998 77
3	0.08030	0. 323 32	0.576 81	0.761 90	0. 875 35	0. 938 03	0. 970 36	0. 986 25	0. 993 77
4	0.01899	0. 142 88	0. 352 77	0. 566 53	0. 734 97	0.848 80	0. 918 24	0. 957 62	0. 978 77
5	0.003 66	0.052 65	0. 184 74	0. 371 16	0. 559 51	0.81494	0. 827 01	0.900 37	0. 945 04
6	0.000 59	0.016 56	0.083 92	0. 214 87	0. 384 04	0. 554 32	0. 699 29	0. 808 76	0. 884 31
7	0.00008	0.004 53	0. 033 51	0. 110 67	0. 237 82	0. 393 70	0.55029	0. 686 63	0. 793 22
8	0.00001	0.001 10	0.01191	0.051 13	0. 133 37	0. 256 02	0.401 29	0. 547 04	0. 676 10
9		0.000 24	0.003 80	0. 021 36	0.068 09	0. 152 76	0. 270 91	0. 407 45	0. 544 35
10		0.000 05	0.001 10	0.008 13	0. 031 83	0.083 92	0. 169 50	0. 283 38	0. 412 59
11		0.000 01	0.000 29	0.002 84	0.013 70	0.042 62	0.098 52	0. 184 11	0. 294 01
12			0.000 07	0.000 92	0.005 45	0.02009	0.053 35	0. 111 92	0. 196 99
13			0.000 02	0.000 27	0.002 02	0.008 83	0.027 00	0.063 80	0. 124 23

$$\sum_{k=2}^{\infty} \frac{4^k}{k!} e^{-4} = 0.90842$$

例3 一个工厂某产品的废品率为0.005,任取1000件,求(1)不超过5件废品的概率,

(2) 其中至少有两件废品的概率.

$$p = 1000, p = 0.005, \lambda = np = 5$$

(1) 设A="废品不超过5件",则

$$P(A) = \sum_{k=0}^{5} P_{1000}(k) \approx \sum_{k=0}^{5} \frac{5^{k}}{k!} e^{-5} = 1 - \sum_{k=6}^{\infty} \frac{5^{k}}{k!} e^{-5}$$

=
$$1 - 0.38404 = 0.61596.$$

例3 一个工厂某产品的废品率为0.005,任取1000件,求(1)不超过5件废品的概率,

(2) 其中至少有两件废品的概率.

$$\mathbf{p} = 1000, p = 0.005, np = 5$$

(2) 设*B*="至少有两件废品",则 $P(B) = 1 - P_{1000}(0) - P_{1000}(1) \approx 1 - \frac{5^{0}}{0!}e^{-5} - \frac{5}{1!}e^{-5}$ $= \sum_{k=0}^{1000} \frac{5^{k}}{k!}e^{-5} \approx \sum_{k=0}^{\infty} \frac{5^{k}}{k!}e^{-5} = 0.95957.$

二项分布与泊松分布概率分布图

$$n = 5, p = 0.8, \lambda = 4$$

$$n = 50, p = 0.08, \lambda = 4$$

n越大, p越小, 泊松分布近似二 项分布效果越好 二项分布与泊 松分布的近似 效果见实验2

谢 谢!