\*Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

# 

Лабораторная работа №5 по дисциплине «Основы профессиональной деятельности»

Вариант 10035

Выполнил: Студент группы Р3112 Медведев Ярослав Александрович Преподаватель: Блохина Елена Николаевна

г. Санкт-Петербург 2024

# Задание

По выданному преподавателем варианту разработать программу асинхронного обмена данными с внешним устройством. При помощи программы осуществить ввод или вывод информации, используя в качестве подтверждения данных сигнал (кнопку) готовности ВУ.

Введите номер варианта 10035

- 1. Программа осуществляет асинхронный ввод данных с ВУ-2
- 2. Программа начинается с адреса  $3A1_{16}$ . Размещаемая строка находится по адресу  $60E_{16}$ .
- 3. Строка должна быть представлена в кодировке ISO-8859-5.
- 4. Формат представления строки в памяти: АДР1: СИМВ1 СИМВ2 АДР2: СИМВ3 СИМВ4 ... СТОП\_СИМВ.
- 5. Ввод или вывод строки должен быть завершен по символу с кодом 00 (NUL). Стоп символ является обычным символом строки и подчиняется тем же правилам расположения в памяти что и другие символы строки.

Слово: Йогурт:

ISO-8859-5: B9, DE, D3, E3, E0, E2, 3A

UTF-16: 0419, 043E, 0433, 0443, 0440, 0442, 003A UTF-8: D099, D0BE, D0B3, D183, D180, D182, 003A

### Доп:

Ввод осуществляется с клавиатуры (ВУ-8) вывод осуществляется на текстовый принтер Выводятся только нечетные символы все остальное согласно первоначальному заданию

XXXX XXXX XXXX XXXX

СТОП-символ (если это будет необходимо) можно поменять (стоп-символ - /)

#### Текст подпрограммы:



```
S2: IN 0x19;
    AND #0x40;
    BEQ S2;
    CLA ;
    IN 0x18 ;
    ST RES2;
    LD RES1;
    SWAB ;
    OR RES2;
    ST
        RES1;
    AND MASK;
    CMP RES1;
    BEQ EXIT;
    LD
        RES1;
    ST (I)+;
   JUMP START;
EXIT: LD RES1;
   ST (I)+;
    HLT ;
```

# Ход работы

# Текст исходной программы

| текст исходной программы |             |               |                                                        |  |  |  |  |
|--------------------------|-------------|---------------|--------------------------------------------------------|--|--|--|--|
| Адрес                    | Код команды | Мнемоника     | Комментарии                                            |  |  |  |  |
| 3A5                      | 0200        | CLA           | 0 -> AC                                                |  |  |  |  |
| 3A6                      | 1205        | IN 5          | 5 -> МЛ. БАЙТ АС                                       |  |  |  |  |
| 3A7                      | 2F40        | AND #40       | 40 & AC -> AC                                          |  |  |  |  |
| 3A8                      | F0FE        | BEQ (IP - 2)  | Переход если равенство (Z==1)                          |  |  |  |  |
| 3A9                      | 0200        | CLA           | 0 -> AC                                                |  |  |  |  |
| ЗАА                      | 1204        | IN 4          | 4 -> МЛ. БАЙТ АС                                       |  |  |  |  |
| ЗАВ                      | EEF7        | ST (IP - 9)   | AC -> (IP - 9)                                         |  |  |  |  |
| 3AC                      | 2EF8        | AND (IP - 8)  | (IP - 8) & AC -> AC                                    |  |  |  |  |
| 3AD                      | 7EF5        | CMP (IP - 11) | УСТАНОВИТЬ<br>ФЛАГИ ПО<br>РЕЗУЛЬТАТУ АС -<br>(IP - 11) |  |  |  |  |
| 3AE                      | F011        | BEQ (IP + 17) | Переход если равенство (Z==1)                          |  |  |  |  |
| 3AF                      | 1205        | IN 5          | 5 -> МЛ. БАЙТ АС                                       |  |  |  |  |
| 3B0                      | 2F40        | AND #40       | 40 & AC -> AC                                          |  |  |  |  |
| 3B1                      | F0FE        | BEQ (IP - 2)  | Переход если равенство (Z==1)                          |  |  |  |  |
| 3B2                      | 0200        | CLA           | 0 -> AC                                                |  |  |  |  |
| 3B3                      | 1204        | IN 4          | 4 -> МЛ. БАЙТ АС                                       |  |  |  |  |
| 3B4                      | EEEF        | ST (IP - 17)  | AC -> (IP - 17)                                        |  |  |  |  |
| 3B5                      | AEED        | LD (IP - 19)  | (IP - 19) -> AC                                        |  |  |  |  |
| 3B6                      | 0680        | SWAB          | AC0AC7 <-><br>AC8AC15                                  |  |  |  |  |
| 3B7                      | 3EEE        | OR (IP - 20)  | (IP - 20)   AC -><br>AC                                |  |  |  |  |

| 3B8 | EEEA | ST (IP - 22)   | AC -> (IP - 22)                                        |  |  |
|-----|------|----------------|--------------------------------------------------------|--|--|
| 3B9 | 2EEB | AND (IP - 21)  | (IP - 21) & AC -><br>AC                                |  |  |
| ЗВА | 7EE8 | CMP (IP - 24)  | УСТАНОВИТЬ<br>ФЛАГИ ПО<br>РЕЗУЛЬТАТУ АС -<br>(IP - 24) |  |  |
| ЗВВ | F004 | BEQ (IP + 4)   | Переход если равенство (Z==1)                          |  |  |
| 3BC | AEF6 | LD (IP - 26)   | (IP - 26) -> AC                                        |  |  |
| 3BD | EAE4 | ST (IP - 28)+  | AC -> (IP - 28)+                                       |  |  |
| 3BE | CEE9 | JUMP (IP - 25) | (IP - 25) -> IP                                        |  |  |
| 3BF | AEE3 | LD (IP - 29)   | (IP - 29) -> AC                                        |  |  |
| 3C0 | EAF1 | ST (IP - 31)+  | AC -> (IP - 31)+                                       |  |  |
| 3C1 | 0100 | HLT            | ОСТАНОВ                                                |  |  |

# Текст программы на ассемблере

ORG 0x3A1 ;

I: WORD 0x060E; Ссылка на ячейку для записи информации

RES1: WORD 0x0000 ; Первый введенный символ/конечный результат

RES2: WORD 0x0000 ; Второй введенный символ

MASK: WORD 0xFF00; Маска для проверки на стоп-символ

START: CLA ; Очистка аккумулятор

S1: IN 5 ; Получение данных из регистра состояния ВУ-2

AND #0x40; Проверка на наличие введенного символа

BEQ S1; Нет - "Спин-луп"

CLA ; Очистка аккумулятора

IN 4 ; Получение данных из дата регистра ВУ-2

ST RES1; Сохранение первой буквы в RES1

AND MASK; Применение маски

СМР RES1; Проверка на стоп-символ

BEQ EXIT; Да - переход к завершению программы

S2: IN 5 ; Получение данных из регистра состояния ВУ-2

AND #0x40 ; Проверка на наличие введенного символа

BEQ S2; Heт - "Спин-луп"

CLA ; Очистка аккумулятора

IN 4 ; Получение данных из дата регистра ВУ-2

ST RES2; Сохранение второй буквы в RES2

LD RES1; Загрузка первой буквы

SWAB ;

OR RES2; Подготовка данных для записи

ST RES1; Сохранение конечного результата в RES1

AND MASK; Применение маски

CMP RES1; Проверка на стоп-символ

BEQ EXIT; Да - переход к завершению программы

LD RES1;

ST (I)+; Загрузка в память конечного результата JUMP START; Переход к началу программы

EXIT: LD RES1;

ST (I)+; Сохранение в память конечного результата

HLT ; Прекращение работы программы

## Описание программы

Программа осуществляет асинхронный ввод данных с ВУ-2, предоставляя строку в кодировке ISO-8859-5 и записываю ее в память в формате: АДР1: СИМВ1 СИМВ2 АДР2: СИМВ3 СИМВ4 ... СТОП\_СИМВ. Концом передачи информации служит символ 00.

## Область представления данных

I - знаковое 16-разрядное число, диапазон - [-2^15, 2^15 - 1].

RES1 - беззнаковое 16-разрядное число, диапазон - [2^15, 2^15 - 1].

RES2 - знаковое 16-разрядное число, диапазон - [-2^15, 2^15 - 1].

MASK - знаковое 16-разрядное число, диапазон - [-2^15, 2^15 - 1].

## Область допустимых значений

I - [f60E; 07FF];

RES1 - [0000, FFFF];

RES2 - [00, FF];

MASK - константа (FF00).

#### Расположение в памяти ЭВМ

Расположение программы - [3A5, 3BF].

3А1 - исходная переменная I - адрес ячейки для записи символов.

3А2 - переменная, хранящая первую букву и конечный результат.

3А3 - переменная, хранящая вторую букву.

3А4 - исходная константа, выполняющая роль маски.

#### Программа:

Адрес первой выполняемой команды - 3A5, адрес последней выполняемой команды - 3BF.

# **Трассировка**

| Выполняем<br>ая команда | Содержимое регистров процессора после выполнения команды содере кото измень постоя выполя ком |
|-------------------------|-----------------------------------------------------------------------------------------------|
|-------------------------|-----------------------------------------------------------------------------------------------|

| Адр<br>ес | Код  | IP  | CR   | AR  | DR   | SP   | BR   | AC   | NZVC | Адр<br>ес | Нов<br>ый<br>код |
|-----------|------|-----|------|-----|------|------|------|------|------|-----------|------------------|
| 3A5       | 0200 | 3A6 | 0200 | 3A5 | 0200 | 0000 | 03A5 | 0000 | 0100 | -         | -                |
| 3A6       | 1205 | 3A7 | 1205 | 3A6 | 1205 | 0000 | 03A6 | 0040 | 0100 | -         | -                |
| 3A7       | 2F40 | 3A8 | 2F40 | 3A7 | 0040 | 0000 | 0040 | 0040 | 0000 | -         | -                |
| 3A8       | F0FD | 3A9 | F0FD | 3A8 | F0FD | 0000 | 03A8 | 0040 | 0000 | -         | -                |
| 3A9       | 0200 | 3AA | 0200 | 3A9 | 0200 | 0000 | 03A9 | 0000 | 0100 | -         | -                |
| 3AA       | 1204 | 3AB | 1204 | 3AA | 1204 | 0000 | 03AA | 00B9 | 0100 | -         | -                |
| 3AB       | EEF6 | 3AC | EEF6 | 3A2 | 00B9 | 0000 | FFF6 | 00B9 | 0100 | 3A2       | 00B9             |
| 3AC       | 2EF7 | 3AD | 2EF7 | 3A4 | FF00 | 0000 | FFF7 | 0000 | 0100 | -         | -                |
| 3AD       | 7EF4 | 3AE | 7EF4 | 3A2 | 00B9 | 0000 | FFF4 | 0000 | 1000 | -         | -                |
| 3AE       | F010 | 3AF | F010 | 3AE | F010 | 0000 | 03AE | 0000 | 1000 | -         | -                |
| 3AF       | 1205 | 3B0 | 1205 | 3AF | 1205 | 0000 | 03AF | 0000 | 1000 | -         | -                |
| 3B0       | 2F40 | 3B1 | 2F40 | 3B0 | 0040 | 0000 | 0040 | 0000 | 0100 | -         | -                |
| 3B1       | F0FD | 3AF | F0FD | 3B1 | F0FD | 0000 | FFFD | 0000 | 0100 | -         | -                |
| 3AF       | 1205 | 3B0 | 1205 | 3AF | 1205 | 0000 | 03AF | 0000 | 0100 | -         | -                |
| 3B0       | 2F40 | 3B0 | 0000 | 000 | 0000 | 0000 | 0000 | 0000 | 0100 | -         | -                |
| 3B0       | 2F40 | 3B1 | 2F40 | 3B0 | 0040 | 0000 | 0040 | 0000 | 0100 | -         | -                |
| 3B1       | F0FD | 3AF | F0FD | 3B1 | F0FD | 0000 | FFFD | 0000 | 0100 | -         | -                |
| 3AF       | 1205 | 3B0 | 1205 | 3AF | 1205 | 0000 | 03AF | 0040 | 0100 | -         | -                |
| 3B0       | 2F40 | 3B1 | 2F40 | 3B0 | 0040 | 0000 | 0040 | 0040 | 0000 | -         | -                |
| 3B1       | F0FD | 3B2 | F0FD | 3B1 | F0FD | 0000 | 03B1 | 0040 | 0000 | -         | -                |
| 3B2       | 0200 | 3B3 | 0200 | 3B2 | 0200 | 0000 | 03B2 | 0000 | 0100 | -         | -                |
| 3B3       | 1204 | 3B4 | 1204 | 3B3 | 1204 | 0000 | 03B3 | 00DE | 0100 | -         | -                |
| 3B4       | EEEE | 3B5 | EEEE | 3A3 | 00DE | 0000 | FFEE | 00DE | 0100 | 3A3       | 00DE             |
| 3B5       | AEEC | 3B6 | AEEC | 3A2 | 00B9 | 0000 | FFEC | 00B9 | 0000 | -         | -                |
| 3B6       | 0680 | 3B7 | 0680 | 3B6 | 0680 | 0000 | 03B6 | B900 | 1000 | -         | -                |
| 3B7       | 3EEB | 3B8 | 3EEB | 3A3 | 00DE | 0000 | 4641 | B9DE | 1000 | -         | -                |
| 3B8       | EEE9 | 3B9 | EEE9 | 3A2 | B9DE | 0000 | FFE9 | B9DE | 1000 | 3A2       | B9DE             |
| 3B9       | 2EEA | 3BA | 2EEA | 3A4 | FF00 | 0000 | FFEA | B900 | 1000 | -         | -                |
| 3ВА       | 7EE7 | 3BB | 7EE7 | 3A2 | B9DE | 0000 | FFE7 | B900 | 1000 | -         | -                |
| 3BB       | F003 | 3BC | F003 | 3BB | F003 | 0000 | 03BB | B900 | 1000 | -         | -                |
| 3BC       | AEE5 | 3BC | 0000 | 000 | 0000 | 0000 | 0000 | 0000 | 0100 | -         | -                |
| 3BC       | AEE5 | 3BD | AEE5 | 3A2 | B9DE | 0000 | FFE5 | B9DE | 1000 | -         | -                |
| 3BD       | EAE3 | 3BE | EAE3 | 60E | B9DE | 0000 | FFE3 | B9DE | 1000 | 3A1       | 060F             |
|           |      |     |      |     |      |      |      |      |      | 60E       | B9DE             |

# Вывод

В ходе выполнения лабораторной работы я познакомился с асинхронным вводом-выводом в БЭВМ, более подробно рассмотрел взаимодействие с ВУ-2 и научился писать программы ввода-вывода на языке Ассемблера БЭВМ.