# Universally Optimal Watermarking Schemes for LLMs: from Theory to Practice



Haiyun He<sup>1,\*</sup> (hh743@cornell.edu)

Yepeng Liu <sup>2,\*</sup>

Ziqiao Wang<sup>3</sup>

Yongyi Mao<sup>4</sup>

Yuheng Bu<sup>2</sup>

u Ottawa

<sup>1</sup>Cornell University

<sup>2</sup>University of Florida

<sup>3</sup>Tongji University

<sup>4</sup>University of Ottawa

### Key Takeways

Jointly optimize the watermarking scheme and the detector:

- Universally minimum Type-II error ⇔ fundamental trade-off between detectability, distortion, and robustness
- Theory to Practice: **practical token-level** watermarking scheme  $\Rightarrow$  small Type-II error, worst-case Type-I error  $\leq \alpha$ , robust, **model-agnostic**, computationally **efficient**
- Experiments (Llama2-13B, Mistral-8×7B) on multiple datasets ⇒ High detection accuracy and robust to token replacement
- Universal optimal watermarking with
   robustness against semantic-invariant
   attacks ⇒ guideline for future design

### Watermarking LLM



Motivation: Risk of spreading disinformation, plagiarism ⇒ distinguish AI-generated text from human-written one.

- Human text:  $X_t \sim Q_{X_t|x_1^{t-1}}$  (NTP distribution)
- Watermarked text:  $X_t \sim P_{X_t | x_1^{t-1}, \zeta_t}$ , dependent on auxiliary  $\zeta_t$
- Secret key (shared with detector)  $\xrightarrow{\text{sample}} \zeta_1^T$

e.g.  $\zeta_t \leftarrow \text{Random}(\text{seed} = \text{hash}(x_{t-1}, \text{key}))$ 

- Watermarking scheme: joint distrib.  $P_{X_1^T,\zeta_1^T}$
- $\epsilon$ -distorted: distortion between text distrib.

$$\mathsf{D}(P_{X_1^T},Q_{X_1^T}) \leq \epsilon$$

 $\Rightarrow \epsilon = 0$ : **distortion-free** (ideal)

e.g. Gumbel-Max (Aaronson, 2023), EXP-edit (Kuditipudi et al., 2023)

#### Watermark Detection

Receive shared key and  $X_1^T \xrightarrow{\text{recover}} \zeta_1^T$ :

Watermarked text  $X_1^T \not\perp$  auxiliary  $\zeta_1^T$  v.s. Human text  $X_1^T \perp$  auxiliary  $\zeta_1^T$ 

- $\Rightarrow$  Watermark detection = Hypothesis testing:
- H<sub>0</sub>: human generated, i.e.,  $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$ ;
- H<sub>1</sub>: watermarked LLM generated, i.e.,  $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$ .

Any model-agnostic detector  $\gamma: \mathcal{V}^T \times \mathcal{Z}^T \to \{0, 1\}$  $\to$  performance metrics:

**Type-I:**  $\beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) := (Q_{X_1^T} \otimes P_{\zeta_1^T})(\gamma(X_1^T, \zeta_1^T) \neq 0),$ **Type-II:**  $\beta_1(\gamma, P_{X_1^T, \zeta_1^T}) := P_{X_1^T, \zeta_1^T}(\gamma(X_1^T, \zeta_1^T) \neq 1).$ 

Goal: jointly optimize watermark and detection

 $\inf_{\gamma,P_{X_1^T,\zeta_1^T}} \ eta_1(\gamma,P_{X_1^T,\zeta_1^T})$ 

s.t.  $\sup_{Q_{X_1^T}} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \leq \alpha$ ,  $D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$ .

guarantee worst-case Type-I

 $\xrightarrow{\text{Result}} universally \ minimum \ Type-II \ error \ \beta_1^*$ 

# Universally Optimal Watermarking and Detection

- Optimal detector:  $\gamma^*(X_1^T, \zeta_1^T) = \mathbf{1}\{X_1^T = g(\zeta_1^T)\},$  (g surjective)
- Optimal watermarking scheme:

$$P_{X_1^T}^* = \mathop{\arg\min}_{P_{X_1^T}: \mathsf{D}(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon} \sum_{x_1^T} (P_{X_1^T}(x_1^T) - \alpha)_+$$

and  $P^*_{\zeta_1^T|X_1^T}$  illustrated in the toy example:



- Perform well on low-entropy text.
- 2 Distortion level controllable.

## Theorem 1 (Universally minimum Type-II error)

$$\beta_1^*(Q_{X_1^T},\alpha,\epsilon) = \min_{P_{X_1^T}: \mathsf{D}(P_{X_1^T},Q_{X_1^T}) \leq \epsilon} \sum_{x_1^T} (P_{X_1^T}(x_1^T) - \alpha)_+ \Rightarrow \text{Trade-off: distortion} \uparrow, \text{ detection error} \downarrow$$

### Experiments

| Table: Watermark detection performance across different LLMs and datasets. |            |         |            |         |                      |            |             |  |  |  |
|----------------------------------------------------------------------------|------------|---------|------------|---------|----------------------|------------|-------------|--|--|--|
| LLMs                                                                       | Methods    | C4      |            |         | ELI5 (lower entropy) |            |             |  |  |  |
|                                                                            |            | ROC-AUC | TPR@1% FPR | TPR@10% | FPR ROC-AUC          | TPR@1% FPR | TPR@10% FPR |  |  |  |
| Llama-13B                                                                  | KGW-1      | 0.995   | 0.991      | 1.000   | 0.989                | 0.974      | 0.986       |  |  |  |
|                                                                            | EXP-edit   | 0.986   | 0.968      | 0.996   | 0.983                | 0.960      | 0.995       |  |  |  |
|                                                                            | Gumbel-Max | 0.996   | 0.993      | 0.994   | 0.999                | 0.991      | 0.994       |  |  |  |
|                                                                            | Ours       | 0.999   | 0.998      | 1.000   | 0.998                | 0.997      | 1.000       |  |  |  |
| Mistral-8 $\times$ 7B                                                      | KGW-1      | 0.997   | 0.995      | 1.000   | 0.993                | 0.983      | 0.994       |  |  |  |
|                                                                            | , EXP-edit | 0.993   | 0.970      | 0.997   | 0.994                | 0.972      | 0.996       |  |  |  |
|                                                                            | Gumbel-Max | 0.994   | 0.989      | 0.999   | 0.987                | 0.970      | 0.990       |  |  |  |
|                                                                            | Ours       | 0.999   | 0.998      | 1.000   | 0.999                | 0.999      | 1.000       |  |  |  |

#### Table: Watermark detection performance under token replacement attack.

| LLMs                                    | Methods               | C4      |            |            | ELI5 (lower entropy) |            |             |
|-----------------------------------------|-----------------------|---------|------------|------------|----------------------|------------|-------------|
|                                         | MEMOUS                | ROC-AUC | TPR@1% FPR | TPR@10% FP | R ROC-AUC            | TPR@1% FPR | TPR@10% FPR |
| Llama-13B                               | KGW-1                 | 0.965   | 0.833      | 0.952      | 0.973                | 0.892      | 0.973       |
|                                         | EXP-edit              | 0.973   | 0.857      | 0.978      | 0.967                | 0.889      | 0.975       |
|                                         | Gumbel-Max            | 0.776   | 0.396      | 0.551      | 0.733                | 0.326      | 0.556       |
|                                         | Ours                  | 0.989   | 0.860      | 0.976      | 0.995                | 0.969      | 0.994       |
| $\overline{\text{Mistral-8} \times 7B}$ | <sub>D</sub> EXP-edit | 0.980   | 0.861      | 0.975      | 0.983                | 0.932      | 0.988       |
|                                         | Ours                  | 0.990   | 0.881      | 0.966      | 0.993                | 0.991      | 0.995       |
|                                         |                       |         |            |            |                      |            |             |

# Practical Token-Level Watermarking Scheme

**Detector:** 
$$\gamma(X_1^T, \zeta_1^T) = \mathbf{1}\left\{\frac{1}{T}\sum_{t=1}^T \mathbf{1}\{h_{\texttt{key}}(X_t) = \zeta_t\} \geq \lambda\right\}$$

#### Algorithm Watermarked Text Generation

**Require:** LLM Q, Vocabulary  $\mathcal{V}$ , Prompt u, Secret  $\ker$ , Token-level false alarm  $\eta \in (0, \min\{1, (\alpha/\binom{T}{\lceil T\lambda \rceil})^{\frac{1}{\lceil T\lambda \rceil}}\}]$ .

- 1:  $\mathcal{Z} = \{h_{\text{key}}(x)\}_{x \in \mathcal{V}} \cup \zeta$
- 2: **for** t = 1, ..., T **do**
- 3: Construct  $P_{\zeta_t|x_1^{t-1},u}(\zeta)$  using  $(Q,\eta,\mathcal{Z})$
- 4:  $(G_{t,\zeta})_{\zeta\in\mathcal{Z}}\leftarrow \mathsf{Gumbel(seed=hash}(x_{t-n}^{t-1}, \ker)).$
- 5:  $\zeta_t \leftarrow \arg\max_{\zeta \in \mathcal{Z}} \log(P_{\zeta_t|x_1^{t-1},u}(\zeta)) + G_{t,\zeta}.$
- 6: if  $\zeta_t \neq \tilde{\zeta}$  then  $x_t \leftarrow h_{\text{kev}}^{-1}(\zeta_t)$
- 7: **else** Sample  $x_t \sim \left(\frac{(Q_{X_t|x_1^{t-1},u}(x)-\eta)_+}{\sum_{x \in \mathcal{V}} (Q_{X_t|x_1^{t-1},u}(x)-\eta)_+}\right)_{x \in \mathcal{V}}$
- 8: end for

**Ensure:** Watermarked text  $x_1^T = (x_1, ..., x_T)$ .

#### Algorithm Watermarked Text Detection

**Require:** SLM  $\tilde{Q}$ , Vocabulary  $\mathcal{V}$ , Text  $x_1^T$ , Secret key, Threshold  $\lambda$ , Token-level false alarm  $\eta$ .

- 1: score = 0,  $\mathcal{Z} = \{h_{\text{key}}(x)\}_{x \in \mathcal{V}} \cup \zeta$
- 2: **for** t = 1, ..., T **do**
- 3: Construct  $P_{\zeta_t|x_1^{t-1},u}(\zeta)$  using  $(\tilde{Q},\eta,\mathcal{Z})$
- 4:  $(G_{t,\zeta})_{\zeta\in\mathcal{Z}}\leftarrow \mathsf{Gumbel}(\mathsf{seed=hash}(x_{t-n}^{t-1}, \mathsf{key})).$
- 5:  $\zeta_t \leftarrow \arg\max_{\zeta \in \mathcal{Z}} \log(P_{\zeta_t | x_1^{t-1}}(\zeta)) + G_{t,\zeta}.$
- 6:  $\operatorname{score} \leftarrow \operatorname{score} + \mathbb{1}\{h_{\text{key}}(x_t) = \zeta_t\}$
- 7: **end for**
- 8: if score  $> T\lambda$  then
- 9: **return** 1 {Input text is watermarked}
- 10: **else**
- 11: **return** 0 {Input text is unwatermarked}
- 12: **end if**
- Surrogate language model (SLM) is a much **smaller** language model  $\xrightarrow{\text{obtain}} \tilde{Q}$  without prompt.
- Type-II error decays exponentially under certain condition, worst-case Type-I error  $\leq \alpha$

