GREET tutorial:

The purpose of this tutorial is to provide a step-by-step guide for checking GHG emission results for bio-ethanol production. It was designed with reference to the official training materials provided by Argonne National Laboratory. For the latest updates, please refer to this link:

https://greet.anl.gov/greet train the trainer

Step 1 - Download R&D GREET 2024 Rev. 1

- 1. Go to Argonne's GREET Website: https://greet.anl.gov/greet 1 series.
- 1. Enter your information and select Submit.
- 2. Click on R&D GREET_2024 Rev1.zip and download the file.
- 3. Once the model is downloaded, extract the contents to any folder that is not the Downloads folder.
- 4. Right-click on each of the Excel files in your newly extracted folder, select properties, check "Unblock," then select "Apply".

When you open the folder, you will find the following files:

Name	Туре	Compressed size	Password	Size
CCLUB_2024_Rev1	Microsoft Excel Macro-En	16,266 KB	No	17,126 KB
R&D GREET1_2024_Rev1	Microsoft Excel Macro-En	23,372 KB	No	24,570 KB
R&D GREET2_2024_Rev1	Microsoft Excel Macro-En	5,152 KB	No	5,596 KB
☑	Microsoft Excel Add-In	527 KB	No	1,718 KB

- R&D GREET 1: fuel cycle (or WTW) model of vehicle technologies and transportation fuels.
- R&D GREET 2: vehicle manufacturing cycle model of vehicle technologies.
- CCLUB: land-use and land-management changes.
- Stochastic Toolkit: running stochastic analyses and determining error bars on LCA estimates.

We will use **R&D GREET 1_2024_Rev1.xlsm**. Note: The Excel model should be opened as a macro-enabled file to ensure proper functionality.

Step 2 - GREET 1 Model Structure

1. The overview sheet

When you open the Excel file, the first sheet is the *Overview*, containing the GREET copyright statement. It also presents a brief summary of each worksheet and is intended to provide a brief introduction to the functions of each sheet.

To become familiar with this sheet, watch the YouTube video "Bidges Case Study Resources - Aviation Fuel" from 02:35 to 06:33.

In this tutorial, we will utilize the following sheets:

- The *Input* Sheet: presents key variables for various well-to-pump (WTP) and pump-to-wheels (PTW) scenarios, and specifies key parametric assumptions for GREET simulations.
- The *Result* Sheet: presents results for vehicle/fuel options included in the GREET model. The sheet consists of three sections: well-to-pump, well-to-wheels, and well-to-wheels energy Use and Emissions sections.
- The *EtOH* Sheet: calculates energy use and emission rates for ethanol production from various biomass feedstocks, covering farming, transportation, ethanol production, transportation, distribution, and storage of the ethanol fuel.

Figure 1: The overview of sheets in the GREET model.

Note: For more details on each sheet, please refer to the *Operating Manual for GREET*, which can be downloaded here: https://greet.anl.gov/greet 1 series (see the Documents section).

Step 3 - Find the General Settings to Alter an Ethanol Pathway

1. Target year for simulation

When you open the 'Input' sheet, the first parameter you can modify is the 'Target Year for Simulation.'

Since this GREET version is 2024, the default target year is set to 2024. You can also select the future year (e.g., 2030 or 2050) to simulate future scenarios, which are based on assumed changes in parameters such as the electricity generation mix, vehicle efficiency, and carbon capture implementation. These assumptions can be manually adjusted by users as needed.

In this tutorial, we use the default 2024 as the target year.

Figure 2: The selection of 'Target Year of Simulation'.

2. Ethanol production pathway

Next, click **'Ethanol'**. This will take you to the section in the Input sheet where you can modify parameters for ethanol production.

Figure 3: Button to access the 'Ethanol' section.

Bioethanol can be produced from various biomass feedstocks. In the **'Fuel Ethanol Pathway'** section, you can specify the percentage contribution of each feedstock from corn, cellulosic biomass, or sugarcane. For example, you can set corn to 100%, or switchgrass to 100%, or assign mixed shares (e.g., 50% corn stover and 50% wheat straw).

Here, we will explore ethanol production from five biomass feedstocks: **corn**, **sugarcane**, **corn stover**, **switchgrass**, and **miscanthus**. First, let's set the **100% share of corn** to ethanol production.

Figure 4: Setting the ethanol production feedstock shares.

Next, scroll down to Section '8.7.c Selection of Plant Type'.

In this section, you can modify the configuration of the ethanol production plant. You can choose the type of **process fuel** used (e.g., natural gas, coal, or biomass) and specify whether the plant co-produces Distillers Dried Grains with Solubles (**DDGS**)—a high-protein animal feed derived from the fermentation residues.

Dry mill and **wet mill** refer to two different ethanol production technologies: a dry mill grinds the entire corn kernel and primarily produces ethanol and DDGS, while a wet mill separates the corn into its components (starch, fiber, oil, and protein) before fermentation and yields multiple co-products such as corn gluten meal, corn oil, and ethanol. Generally, the dry mill is a modern fuel ethanol plant design that is used for almost all corn-based ethanol in North America.

| 1 - Industrial average | 2 - User defined average | 3 - Plant Specific Dy Mill with DOS as operand and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Plant Specific Dy Mill with only VDOS as co-product and NO as process faul | 4 - Pla

Here, let's select 4 - Plant Specific: Dry Mill with only DDGS as co-product and NG as process fuel.

Figure 5: Selecting the ethanol plant type.

3. Further Explore Ethanol Scenarios

Click **'EtOH'.** This will open the *EtOH* sheet, where you can further adjust ethanol production scenarios and calculate the associated energy use and emission rates.

Here are **four sections** for this sheet:

- Scenario control and key input parameters. The values in this section derive primarily from the Inputs sheet. Thus, this section is the interactive link between the Inputs sheet and this sheet.
- 2) Shares of combustion processes for each stage, which are used for emission calculations;
- 3) Calculation of energy use and emissions for individual stages. In this section, GREET calculates energy use and emissions for each individual stage by considering energy and material use, energy efficiency, fuel use by type, fuel use by combustion technology, etc.
- 4) Summary of energy use and emissions. Other GREET sheets use the summary results from this sheet for individual vehicle/fuel WTW calculations.

- 1) Scenario Control and Key Input Parameters This section links values from the *Inputs* sheet that define the feedstocks used for ethanol production (first row). Besides, you can modify the fraction of gasoline-blended ethanol (second row). Let's keep the default setting, which assumes that all of the ethanol produced (100%) is blended with gasoline.
- **1.1) Feedstock Farming** This section defines the feedstock farming options. In **'N2O Emissions Management Practices'**, you can choose among three options: BAU (Business-As-Usual), 4R (improved fertilizer management), or EEF (enhanced efficiency fertilizer technology). Here, we will use the default **BAU scenario**.

Figure 6: Setting feedstock and farming scenarios.

Then, scroll down to the bottom of the sheet to find **Section 4**, which provides a **summary of energy consumption**, **water consumption**, **and emissions** for different biomass ethanol pathways. *Note:* These results can also be viewed on the 'Results' page, so let's go there to check them.

Energy Consumption, Water Consumption, and Tot		Dry Milling Corn Ethanol w/o Corn Oil		Dry Milling Corn Ethanol w/ Corn Oil		Wet Milling Corn Ethanol		Corn Ethanol: Combined Dry and Wet		Integrated Corn/Stover Ethanol (Combined Gallon)		Integrated Corn/Stover Ethanol (Associated with Corn Ethanol)		Integrated Corn/Stover Ethanol (Associated with Corn Stover Ethanol)	
	_														
		Corn	Ethanol	Corn	Ethanol	Corn	Ethanol	Corn	Ethanol	Corn	Ethanol	Corn	Ethanol	Stover	Ethanol
oss factor			1.001		1.001		1.001		1.001		1.001		1.001		1.001
tal energy		-416,123	1.257.714	-306.697	1.217.236	-950,601	1.530.674	-416,123	1.257,714	-191.639	1.076.496	-425.822	1.086,462	452,362	1.097.204
ssii fuels		98.256	476.691	112.782	395.753	93.761	701.036	98.256	476.691	111.397	257,160	108.520	328.068	119.306	106.945
pal		4.351	23,549	5.173	21,439	4,554	175,373	4,351	23,549	4,594	-1,344	4,770	-1.380	4,112	6,189
atural das	· ·	58 087	440.382	68.159	361.661	55.432	510.863	58.087	440.382	60.462	243,656	65.695	317.532	46.071	76.220
etroleum		35.818	12,761	39,450	12,653	33,774	14,800	35.818	12,761	46.341	14,848	38.056	11,916	69.123	24.536
			12,701		12,053		14,000		44.861	244.742	61,358		37 184	9.075	
ater consumption		302.211	45	367.151		332.593		302.211				330.439			131.476
OC .		3.491	58.597	5.683	57.164	5.110	61,132	3,491	58.597	5.063	55.180	4.615	56.246	6.294	55.971
)		19.579	32.836	22.054	27.358	18.411	41.933	19.579	32.836	20.391	19.769	21.338	24.044	17.785	13.082
Dx .		55.813	45.364	59.752	38.224	50.009	72.567	55.813	45.364	48.236	29.719	58.958	33.184	18.751	23.715
110		2.946	13.298	3.207	12.974	2.689	15.148	2.946	13.298	3.028	12.421	3.140	12.446	2.722	12.603
12.5		2.468	3.747	2.688	3.445	2.253	4,499	2.468	3.747	2.552	3.067	2.631	3.128	2.335	3.073
DX		12.666	2.828	13.725	2.737	11.547	39.076	12,666	2.828	12.201	3.534	13.442	0.234	8.791	14.093
		0.472	0.274	0.520	0.227	0.444	0.345	0.472	0.274	0.622	0.193	0.502	0.204	0.949	0.181
		0.467	0.757	0.515	0.632	0.434	0.891	0.467	0.757	0.497	0.471	0.501	0.538	0.487	0.334
14		13.046	71.947	15.043	59.584	12.449	105.154	13.046	71.947	14.183	38.359	14.479	49.374	13.366	14.728
20		35.075	0.876	38.471	0.734	33.037	1.121	35.075	0.876	24.081	2.423	37.120	0.621	-11.775	7.440
02		11,553	29,119	12.473	24,321	13,255	48,560	11,553	29,119	11,017	15,479	12,181	19,409	7,817	8,017
02 (w/ C in VOC & CO)		11.595	29.353	12,525	24.542	13,300	48,817	11,595	29.353	11,065	15.682	12.229	19.622	7.864	8.212
HGs		21.559	31.736	23.476	26.518	22,690	52.256	21.559	31,736	18.062	17.487	22.794	21,263	5.048	10.682
Urban Emissions		21,000	31,730	23,470	20,510	22,000	56,650	21,000	31,730	10,002	17,407	66,704	21,200	5,040	10,002
Urban Emissions					_				4.004						
									1.001						
ban VOC		0.191	13.582	0.214	13.531	0.182	13.620	0.191	13.582	0.215	13.453	0.206	13.486	0.239	13.393
ban CO		0.376	1.865	0.428	1.594	0.359	1.803	0.376	1.865	0.436	0.957	0.412	1.147	0.503	0.590
ban NOx		0.928	2.789	1.036	2.418	0.867	2.452	0.928	2.789	0.971	1.368	1.004	1.529	0.881	1,181
ban PM10		0.080	0.120	0.088	0.105	0.075	0.043	0.080	0.120	0.085	0.018	0.085	0.010	0.083	0.057
ban PM2.5		0.069	0.097	0.076	0.085	0.064	0.033	0.069	0.097	0.072	0.012	0.074	0.006	0.068	0.046
ban SOx	1	0.515	0.851	0.571	0.728	0.483	0.148	0.515	0.851	0.514	-0.051	0.553	-0.108	0.407	0.254
ban BC	- 1	0.008	0.006	0.009	0.728	0.463	0.148	0.008	0.006	0.009	0.002	0.009	0.002	0.407	0.254
		0.008	0.006		0.005	0.008	0.003	0.008	0.006	0.009	0.002	0.009	0.002		
ban OC		0.022	0.030	0.024	0.026	0.020	0.013	0.022	0.030	0.022	0.007	0.023	0.005	0.019	0.017
nergy Consumption, Water Consumption, and															
	HCI	Filter Ai	1 ,	Activated Carbon CaCI	2 So	da Ash Su	lfur	Defoamant M	agnesium Hydro	Aqueous NaOCI (1 H)	drogen Perox	Magnesium bils Ci	alcium Sulfate	Tire Lir	me in U.S.
ergy Use: mmBtu per ton															
Total energy	- 1	26.672	0.314	101.799	1.382	5.082	0.487	75.677	5.870	0.000	14.386	1.198	0.372	36.057	4.259
ossil fuels	- 1	23.452	0.232	15.333	1.266	5.073	0.384	72.810	5.866	0.000	13.451	1.197	0.364	34.514	4.154
Coal		4.272	0.095	0.024	0.133	4.239	0,119	4.420	0.004	0.000	1.079	0.001	0.002	3.660	3.509
														10.000	

Figure 7: Checking the result.

Step 4 - Well-to-Wheel (WTW) GHG Emissions

1. Vehicle operations setting

To calculate well-to-wheels (WTW) GHG emissions, let's use a Dedicated Ethanol (EtOH) Spark-Ignition Internal Combustion Engine (SI-ICE) Light-Duty Vehicle fueled by 100% ethanol as an example. First, go to the 'Vehicle Operations' section in the *Inputs* sheet and set the **Dedicated** Vehicle Fuel to 100% Ethanol.

Figure 8: Setting the dedicated vehicle fuel.

2. Select the vehicle type and check the result

Then, go to the 'Results' page. Under SI ICE Vehicles, select 'SI – Dedi. EtOH Vehicle' as the vehicle type, and set the emission unit to grams (g) and the energy functional unit to megajoules (MJ). Finally, click 'Go' to review the WTW energy consumption, water consumption, and GHG emissions results for the selected scenario. These results cover the different life cycle stages of ethanol, including feedstock cultivation, fuel production, and vehicle operation.

Figure 8: Setting the vehicle type.

	Btu/mile or Gal	lon/mile or g/n	nile		Btu/MJ or Gallon/MJ or g/MJ					
			Vehicle				Vehicle			
Item	Feedstock	Fuel	Operation	Total	Feedstock	Fuel	Operation	Total		
Total Energy	-1,612.206	4,907.668	4,008.497	7,303.959	-381	1,160	948	1,727		
Fossil Fuels	388	1,871	120.6730	2,380	92	442	29	563		
Coal	17	92	0	110	4	22	0	26		
Natural Gas	230	1,724	0	1,954	54	408	0	462		
Petroleum	140	55	121	316	33	13	29	75		
Water Consumption	1.2	0.2	0	1	0	0	0	0		
CO2 (w/ C in VOC & CO)	-246	115	301	170	-58	27	71	40		
CH4	0.060	0.283	0.015	0.358	0.014	0.067	0.003	0.085		
N20	0.136	0.003	0.004	0.144	0.032	0.001	0.001	0.034		
GHGs	-207	125	302	220.17	-49	30	71	52		
VOC: Total	0.014	0.231	0.206	0.450	0.003	0.055	0.049	0.107		
CO: Total	0.077	0.128	2.741	2.946	0.018	0.030	0.648	0.697		
NOx: Total	0.218	0.178	0.082	0.478	0.052	0.042	0.019	0.113		
PM10: Total	0.012						0.008	0.023		
PM2.5: Total	0.010						0.002	0.008		
SOx: Total	0.050		WTW G	HG em	issions		0.000	0.014		
BC Total	0.002	000 47		,	F0 . 00	0 (54)	0.001	0.001		
OC Total	0.002	220.1/	g CO2e	/mile o	r 52 g CO	2e/MJ	0.000	0.002		
VOC: Urban	0.001						0.034	0.047		
CO: Urban	0.001	0.007	1.919	1.928	0.000	0.002	0.454	0.456		
NOx: Urban	0.004	0.011	0.058	0.072	0.001	0.003	0.014	0.017		
PM10: Urban	0.000	0.001	0.024	0.025	0.000	0.000	0.006	0.006		
PM2.5: Urban	0.000	0.000	0.005	0.006	0.000	0.000	0.001	0.001		
SOx: Urban	0.002	0.003	0.000	0.006	0.000	0.001	0.000	0.001		
BC: Urban	0.000	0.000	0.002	0.002	0.000	0.000	0.000	0.000		
OC: Urban	0.000	0.000	0.001	0.001	0.000	0.000	0.000	0.000		

Figure 9: Checking the emission result.

Note: You can click Formulas -> Trace Precedents, or simply click on a cell's formula, to see how the results are calculated.

Repeat the above steps to check the WTW GHG emissions for ethanol produced from the other four biomass feedstocks - **sugarcane**, **corn stover**, **switchgrass**, **and miscanthus**. Discuss your observations and findings $\ensuremath{\mathfrak{C}}$.