

ASIGNATURA FÍSICA GENERAL

Profesor: Jesus Alvarado Huayhuaz

Agosto 2024 Sesión 01

OBJETIVOS

✓ Al finalizar el cadete estará en facultad de comprender el concepto de la Física, su clasificación y su importancia en la ciencia y la tecnología, y de analizar y comprender la clasificación y componentes de un vector.

CONTENIDO

- ✓ CONCEPTO DE FÍSICA. DEFINICIÓN Y MÉTODO.
- ✓ DEFINICIÓN DE VECTOR. CLASIFICACIÓN DE VECTORES.
- ✓ VECTOR UNITARIO. VECTORES UNITARIOS RECTANGULARES.
- ✓ COMPONENTES DE UN VECTOR. ÁNGULOS DIRECTORES.

PRIMERA PARTE

INTRODUCCIÓN: Concepto de Física.

- La naturaleza, y ¿Qué estudia la física? pertenece a las Ciencias Naturales.
- Los ingredientes de la naturaleza, como energía, materia, espacio, tiempo fuerza y movimiento, que "mezclados" en algunas leyes dan origen a nuestro universo desde el micro-mundo del átomo hasta el macro-mundo del espacio.

Ciencia en la que se apoya la Física

La Matemática es el lenguaje básico de la Física.

Galileo Galilei.

Aplicaciones de la Física

SEGUNDA PARTE

Vectores: Definición y vector unitario.

Situación motivadora

Felipe está de guardia en su torre cuando de repente escucha unos disparos iniciados por un francotirador. En ese momento llega Pedro y le dice: "El francotirador está a $5 \, km$. ubicado en el rumbo N37°E".

¿Cómo representamos en un plano la posición de Felipe y del francotirador? ¿Cómo representamos el sentido de disparo de respuesta de Felipe?

La situación anterior se puede representar con vectores

Esto es un vector

Pasemos a definir VECTORES

Los vectores son objetos matemáticos que tienen módulo, dirección y sentido. Se puede representar gráficamente a cualquier vector mediante una flecha.

 θ : dirección y sentido del vector \vec{v} .

 $\|\vec{v}\|$: módulo (o "tamaño") del vector \vec{v} .

Para el vector $\vec{v} = (x; y)$

$$\|\vec{v}\| = \sqrt{x^2 + y^2}$$

Obs: El módulo (no nulo) $\|\vec{v}\|$ de un vector \vec{v} siempre es positivo

Esquema resumen de un vector y sus partes

Ejemplo 1:

Encontrar el módulo $|\vec{a}|$ de los siguientes vector \vec{a} :

$$\vec{a} = (6; 8)$$

Solución:

$$\|\vec{a}\| = \sqrt{6^2 + 8^2} = \sqrt{36 + 64} = \sqrt{100}$$

 $\|\vec{a}\| = \mathbf{10}$

Actividad 1:

Encuentre el módulo $|\vec{v}|$ de los siguientes vectores \vec{v} en cada caso:

1.
$$\vec{v} = (12; 5)$$

2.
$$\vec{v} = (4; -3)$$

3.
$$\vec{v} = (-24; 7)$$

1. <u>Vectores colineales</u>: Son aquellos que se encuentran en la misma línea de acción.

2. <u>Vectores coplanarios:</u> Son vectores que se encuentran contenidos en un mismo plano.

3. <u>Vectores iguales</u>: Son aquellos que tienen igual módulo, dirección y sentido.

4. <u>Vectores opuestos</u>: Son vectores que tienen igual módulo y dirección, pero sentido opuesto.

5. <u>Vectores paralelos</u>: Son aquellos que tienen igual dirección, aunque no necesariamente igual módulo.

6. <u>Vectores concurrentes</u>: Son vectores que tienen un punto en común.

Vectores unitarios:

Un vector \vec{u} es unitario si $||\vec{u}|| = 1$.

Ejemplo 2:

Sea el vector $\vec{v} = \left(\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}\right)$. Verifiquemos si es un vector unitario.

$$\|\vec{v}\| = \sqrt{\left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2}$$
$$\|\vec{v}\| = 1$$

Por lo tanto, \vec{v} es un vector unitario.

Vector unitario generador de un vector dado

Todo vector no nulo \vec{v} tiene un vector unitario generador \vec{u} .

Dado un vector no nulo \vec{v} su vector unitario generador es: $\vec{u} = \frac{\vec{v}}{\|\vec{v}\|}$

Ejemplo 3:

Dado el vector $\vec{v} = (3; 4)$, hallar su vector unitario generador.

Solución:

Hallamos el módulo de \vec{v} : $||\vec{v}|| = \sqrt{3^2 + 4^2} = 5$

Así, resulta que el vector unitario generador \vec{u} es igual a:

$$\vec{u} = \frac{\vec{v}}{\|\vec{v}\|} = \frac{(3,4)}{5}$$

Es decir:

$$\vec{u} = \left(\frac{3}{5}; \frac{4}{5}\right)$$

Vectores Unitarios

Expresión y módulo

Actividad 2:

Encuentre el vector unitario generador \vec{u} de los vectores \vec{v} en cada caso:

1.
$$\vec{v} = (5; 12)$$

2.
$$\vec{v} = (-7; 24)$$

3.
$$\vec{v} = (8; 15)$$

TERCERA PARTE

Componentes de un vector. Ángulos directores.

Conceptos previos

Trigonometria (II) – Ángulos más usados-

α	sen a	cos a
00	0	1
$30^{\circ} = \pi/6 \text{ rad}$	1/2	√3 /2
$45^{\circ} = \pi/4 \text{ rad}$	√2 /2	√2 /2
$60^{\circ} = \pi/3 \text{ rad}$	√3 /2	1/2
$90^{\circ} = \pi/2 \text{ rad}$	1	0

Componentes de un vector:

Dado un vector $\vec{v} = (m; n)$, sus componentes son las proyecciones de dicho vector sobre los ejes coordenados de referencia.

- 1. La componente en el eje X, denotada por v_x , es igual a m.
- 2. La componente en el eje Y, denotada por v_v , es igual a n.

Ángulos directores:

Se llaman ángulos directores α , β de un vector \vec{v} a los ángulos que este mismo forma con las direcciones positivas de las componentes de dicho vector.

Cálculo de las componentes de un vector:

Si conocemos el módulo $\|\vec{v}\|$ de un vector \vec{v} y el ángulo director β , entonces podemos calcular sus componentes v_{χ} , v_{γ} .

$$\cos \alpha = \frac{v_x}{\|\vec{v}\|} \longrightarrow v_x = \|\vec{v}\| \cos \alpha$$

$$\operatorname{sen} \alpha = \frac{v_y}{\|\vec{v}\|} \longrightarrow v_y = \|\vec{v}\| \operatorname{sen} \alpha$$

Ejemplo 4:

Hallar las componentes del vector \vec{v}

$$\cos 30^{\circ} = \frac{v_{\chi}}{8}$$
 \longrightarrow $v_{\chi} = (8)(\cos 30^{\circ}) = 4\sqrt{3}$

sen 30° =
$$\frac{v_y}{8}$$
 \longrightarrow $v_y = (8)(\text{sen 30}^\circ) = 4$

Actividad 3: Hallar las componentes del vector \vec{v}

1. Encuentre los componentes de la fuerza de 100 N que ejerce el niño sobre la niña si su brazo forma un ángulo de 30° con el suelo.

2. Encuentre los componentes de una fuerza de 200 N que actúa a lo largo del manubrio de una podadora. El ángulo con el suelo es de 30º hacia abajo.

Lecciones Aprendidas

✓ Al finalizar el cadete está en facultad de comprender el concepto de la Física, su clasificación y su importancia en la ciencia y la tecnología, y de analizar y comprender la clasificación y componentes de un vector.

Bibliografía

- ✓ Young, H. D., Freedman, R. A., Ford, A. L., Flores, F. V. A., & Rubio, P. A. (2009). Sears-Zemansky, Física universitaria, decimosegunda edición, volumen 1. Naucalpan de Juárez: Addison-Wesley.
- ✓ Bedford, A. & Fowler, W. (2008). Mecánica para la ingeniería: Estática. México D.F.: Pearson Educación.
- ✓Tippens, P. (2007). Física, Conceptos y Aplicaciones. Séptima edición. Mac Graw Hill interamericana.
- ✓ Serway, R. & Jewet, J. (2009). Física para ciencias e ingeniería. Sétima edición internacional. Thompson editores.

