# Lecture 5

# Multiple Linear Regression: Analysis of covariance; Non-linear Regression

Reading: Faraway (2014) Chapters 14, 9.4 or Faraway (2002) Chapters 15, 8.2.2

DSA 8020 Statistical Methods II February 7-11, 2022 Multiple Linear Regression: Analysis of covariance; Non-linear Regression



nalysis of Covariance

olynomial Regression
onlinear Regression

Whitney Huang Clemson University

# Agenda

Multiple Linear Regression: Analysis of covariance; Non-linear Regression



Analysis of Covariance

iyiloililai Hegi essio

Nonlinear Regression

Analysis of Covariance

Polynomial Regression

# **Multiple Linear Regression**

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1} + \varepsilon, \quad \varepsilon \sim \mathrm{N}(0, \sigma^2)$$
  $x_1, x_2, \dots, x_{p-1}$  are the predictors.

**Question**: What if some of the predictors are qualitative (categorical) variables?

⇒ We will need to create **dummy (indicator) variables** for those categorical variables

**Example:** We can encode Gender into 1 (Female) and 0 (Male)



Analysis of Govariance

plinoor Pogragaion

The 2008-09 nine-month academic salary for Assistant Professors, Associate Professors and Professors in a college in the U.S. The data were collected as part of the on-going effort of the college's administration to monitor salary differences between male and female faculty members.

## > head(Salaries)

|   | rank      | discipline | yrs.since.phd | yrs.service | sex  | salary |
|---|-----------|------------|---------------|-------------|------|--------|
| 1 | Prof      | В          | 19            | 18          | Male | 139750 |
| 2 | Prof      | В          | 20            | 16          | Male | 173200 |
| 3 | AsstProf  | В          | 4             | 3           | Male | 79750  |
| 4 | Prof      | В          | 45            | 39          | Male | 115000 |
| 5 | Prof      | В          | 40            | 41          | Male | 141500 |
| 6 | AssocProf | В          | 6             | 6           | Male | 97000  |

#### **Predictors**

#### > summary(Salaries)

| rank          | atsciptine | yrs.str | ice.pna | yrs.se | ervice  |
|---------------|------------|---------|---------|--------|---------|
| AsstProf : 67 | A:181      | Min.    | : 1.00  | Min.   | : 0.00  |
| AssocProf: 64 | B:216      | 1st Qu. | :12.00  | 1st Qu | .: 7.00 |
| Prof :266     |            | Median  | :21.00  | Median | :16.00  |
|               |            | Mean    | :22.31  | Mean   | :17.61  |
|               |            | 3rd Qu. | :32.00  | 3rd Qu | .:27.00 |
|               |            | Max.    | :56.00  | Max.   | :60.00  |
|               |            |         |         |        |         |

sex salary

Female: 39 Min. : 57800 Male :358 1st Qu.: 91000 Median :107300

Mean :113706 3rd Qu.:134185 Max. :231545

We have three categorical variables, namely,  ${\tt rank}, \; {\tt discipline}, \; {\tt and} \; {\tt sex}.$ 

Multiple Linear Regression: Analysis of covariance; Non-linear Regression



Analysis of Covariance

# For binary categorical variables:

$$X_{\text{sex}} = \begin{cases} 1 & \text{if sex = male,} \\ 0 & \text{if sex = female.} \end{cases}$$

$$X_{\rm discip} = \begin{cases} 0 & \text{if discip = A,} \\ 1 & \text{if discip = B.} \end{cases}$$

# For categorical variable with more than two categories:

$$X_{\texttt{rank1}} = \begin{cases} 0 & \text{if } \texttt{rank} = \texttt{Assistant Prof}, \\ 1 & \text{if } \texttt{rank} = \texttt{Associated Prof}. \end{cases}$$

$$X_{\mathrm{rank2}} = \begin{cases} 0 & \text{if } \mathrm{rank} = \mathrm{Associated\ Prof}, \\ 1 & \text{if } \mathrm{rank} = \mathrm{Full\ Prof}. \end{cases}$$

Multiple Linear Regression: Analysis of covariance; Non-linear Regression



Analysis of Covariance

# **Design Matrix**

## > head(X)

|                     | (Intercept) | rankassocProf | rankProf | aisciplines | yrs.since.pna |  |
|---------------------|-------------|---------------|----------|-------------|---------------|--|
| 1                   | 1           | 0             | 1        | 1           | 19            |  |
| 2                   | 1           | 0             | 1        | 1           | 20            |  |
| 3                   | 1           | 0             | 0        | 1           | 4             |  |
| 4                   | 1           | 0             | 1        | 1           | 45            |  |
| 5                   | 1           | 0             | 1        | 1           | 40            |  |
| 6                   | 1           | 1             | 0        | 1           | 6             |  |
| yrs.service sexMale |             |               |          |             |               |  |

2 16 1 3 3 1 4 39 1 5 41 1 6 6 1

18

With the design matrix X, we can now use method of least squares to fit the model  $Y = X\beta + \varepsilon$ 

Multiple Linear Regression: Analysis of covariance; Non-linear Regression



Analysis of Covariance

ynomiai Regress

## Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                         4536.89
                                         < 2e-16 ***
(Intercept)
             67884.32
                                 14.963
disciplineB
             13937.47
                         2346.53
                                  5.940 6.32e-09 ***
rankAssocProf 13104.15
                         4167.31 3.145 0.00179 **
rankProf
             46032.55
                         4240.12
                                  10.856
                                         < 2e-16 ***
sexMale
              4349.37
                         3875.39
                                  1.122
                                         0.26242
                          127.01
yrs.since.phd
                61.01
                                  0.480
                                         0.63124
Signif. codes:
```

0 '\*\*\*, 0.001 '\*\*, 0.01 '\*, 0.05 '., 0.1 ', 1

Residual standard error: 22660 on 391 degrees of freedom Multiple R-squared: 0.4472, Adjusted R-squared: 0.4401 F-statistic: 63.27 on 5 and 391 DF, p-value: < 2.2e-16

**Question**: Interpretation of the slopes of these dummy variables (e.g.  $\hat{\beta}_{rankAssocProf}$ )? Interpretation of the intercept?

Multiple Linear Regression: Analysis of covariance; Non-linear Regression



Analysis of Govariance

.,,...................

## **Model Fit for Assistant Professors**

#### 9-month salary



Multiple Linear Regression: Analysis of covariance; Non-linear Regression



Analysis of Covariance

olynomial Regress

## **Model Fit for Associate Professors**

#### 9-month salary



Multiple Linear Regression: Analysis of covariance; Non-linear Regression



Analysis of Covariance

lynomial Regressi

## **Model Fit for Full Professors**

#### 9-month salary



Multiple Linear Regression: Analysis of covariance; Non-linear Regression



Analysis of Covariance

lynomial Regress

# lm(salary ~ sex \* yrs.since.phd)

#### 9-month salary



#### Multiple Linear Regression: Analysis of covariance; Non-linear Regression



#### Analysis of Covariance

ynomial Regression

# lm(salary ~ disp \* yrs.since.phd)

#### 9-month salary



Multiple Linear Regression: Analysis of covariance; Non-linear Regression



Analysis of Covariance

lynomial Regressi

$$Y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p + \varepsilon$$

Analysis of Covariance

.......

We can treat polynomial regression as a special case of multiple linear regression. In specific, the design matrix takes the following form:

$$\boldsymbol{X} = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^p \\ 1 & x_2 & x_2^2 & \cdots & x_2^p \\ \vdots & \cdots & \ddots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^p \end{pmatrix}$$

# **Housing Values in Suburbs of Boston Data Set**

- y: the median value of owner-occupied homes (in thousands of dollars)
- x: percent of lower status of the population



Multiple Linear Regression: Analysis of covariance; Non-linear Regression



Analysis of Covariance

Polynomial Regress

# **Polynomial Regression Fits**

1<sup>st</sup>, 2<sup>nd</sup>, and 3<sup>rd</sup> polynomial regression fits



Multiple Linear Regression: Analysis of covariance; Non-linear Regression



Analysis of Covariance

lynomial Regression

# **Moving Away From Linear Regression**

Multiple Linear Regression: Analysis of covariance; Non-linear Regression



Analysis of Covariano

Polynomial Regression

- We have mainly focused on linear regression so far
- The class of polynomial regression can be thought as a starting point for relaxing the linear assumption
- In the next few slides we are going to discuss non-linear regression modeling



Analysis of Covariance

olynomial Regres





A simple model for population growth is the logistic growth model,

$$Y = \frac{\phi_1}{1 + \exp\left[-(x - \phi_2)/\phi_3\right]} + \varepsilon,$$

where  $\phi_1$  is the curve's maximum value;  $\phi_2$  is the curve's midpoint in x; and  $\phi_3$  is the "range" (or the inverse growth rate) of the curve.



Multiple Linear Regression: Analysis of covariance; Non-linear Regression



Analysis of Covariance

# Fitting logistic growth curve to the U.S. population

$$\hat{\phi}_1$$
 = 440.83,  $\hat{\phi}_2$  = 1976.63,  $\hat{\phi}_3$  = 46.29



Multiple Linear Regression: Analysis of covariance; Non-linear Regression



Analysis of Covariance

olynomial Regressi

# **Comparing the Logistic Growth Curve Fit and Cubic Polynomial Fit**



Multiple Linear Regression: Analysis of covariance; Non-linear Regression



Analysis of Covariance

olynomial Regres