

Introduction to ML strategy

Why ML Strategy?

Motivating example

90%

Ideas:

- Collect more data
- Collect more diverse training set
- Train algorithm longer with gradient descent
- Try Adam instead of gradient descent
- Try bigger network
- Try smaller network

- Try dropout
- Add *L*₂ regularization
- Network architecture
 - Activation functions
 - # hidden units
 - ··· Andrew Ng

TV tuning example

Chain of assumptions in ML

- > Fit test set well on cost function & Diggs den set
- > Performs well in real world of the devict or (Hoppy cat pir off was.)

Andrew Ng

Using a single number evaluation metric

Another example

	2	V	V	V
Algorithm	US	China	India	Other
A	3%	7%	5%	9%
В	5%	6%	5%	10%
C	2%	3%	4%	5%
D	5%	8%	7%	2%
E	4%	5%	2%	4%
F	7%	11%	8%	12%

Cat classification dev/test sets

dovelopment sor hold out cross voludorin com

Regions:

- US
- UK
- Other Europe
- South America
- India
- China
- Other Asia
- Australia

der set Metric

Code

Andrew Ng

True story (details changed)

Optimizing on dev set on loan approvals for medium income zip codes

X -> y (repay loan?)

Tested on low income zip codes

Guideline

Some distribution

Choose a dev set and test set to reflect data you expect to get in the future and consider important to do well on.

Old way of splitting data

Size of dev set

Set your dev set to be big enough to detect differences in

algorithm/models you're trying out.

Andrew Ng

Size of test set

→ Set your test set to be big enough to give high confidence in the overall performance of your system.

Cat dataset examples

Motre + Der: Prefer A. Youlusons: Prefer B.

Metric: classification error

Algorithm A: 3% error

pornographic

/ Algorithm B: 5% error

Error:
$$\sum_{i=1}^{N} \omega^{(i)} = \sum_{i=1}^{N} \omega^{(i)} = \sum_{i=1}^{N}$$

Andrew Ng

Orthogonalization for cat pictures: anti-porn

- → 1. So far we've only discussed how to define a metric to evaluate classifiers. Place → → ♣
- → 2. Worry separately about how to do well on this metric.

Another example

Algorithm A: 3% error

✓ Algorithm B: 5% error ←

→ Dev/test

If doing well on your metric + dev/test set does not correspond to doing well on your application, change your metric and/or dev/test set.

Comparing to human-level performance

Why compare to human-level performance

Humans are quite good at a lot of tasks. So long as ML is worse than humans, you can:

- \rightarrow Get labeled data from humans. (x, y)
- Gain insight from manual error analysis:
 Why did a person get this right?
- → Better analysis of bias/variance.

Bias and Variance

Bias and Variance

Cat classification

Dev set error:

high votone high bios high bios low bios

Cat classification example

Human-level error as a proxy for Bayes error

Medical image classification example:

Suppose:

(c) Experienced doctor 0.7 % error

 \rightarrow (d) Team of experienced doctors .. 0.5 % error \leftarrow

What is "human-level" error?

Boye error 5 0.50/s

Error analysis example

Human (paxy for Bayes

Avoidable bias

Training error

Dev error

Andrew Ng

Summary of bias/variance with human-level performance

Training error

Dev error

Human-level error

(pay la Bayes error)

"Araidale

Surpassing human-level performance

Team of humans

One human

Training error

One human

O

What is avoidable bios?

Problems where ML significantly surpasses human-level performance

- Online advertising
- Product recommendations
- → Logistics (predicting transit time)
- → Loan approvals

Structul desta Not noted perception Lots of dosta - Speech recognition
- Some in age recognition
- Medul
- ECG, Skin cencer,...

The two fundamental assumptions of supervised learning

1. You can fit the training set pretty well.

n Aroidable bios

2. The training set performance generalizes pretty well to the dev/test set.

Reducing (avoidable) bias and variance

Train bigger model

Train longer/better optimization algorithms
- worth, ENSpop, Alum

NN architecture/hyperparameters search

Varione ____

Dev error

More data

Regularization

- (2, droport, dorta augnetortien

NN architecture/hyperparameters search

Andrew Ng

RNN