YILDIZ TECHNICAL UNIVERSITY FACULTY OF MECHANICAL ENGINEERING DEP OF INDUSTRIAL ENGINEERING 2021/2022 FALL SEMESTER

END3971 - Artificial Intelligence and Expert Systems

EXAM: Final

MUDEK Criteria						Total
Question(s)	1	2	3	4		
Grade						

		rname	:				Duration:		ninutes	10.00				
	dent I						Date:		1.2022-1					
	ature						Exam Place	e: B20	1 B202 I	3402				
	. Asst		ALL VOUD	CALCULA	TIONE		_					_		
				CALCULA SULTS TO T					-					t models to
								-		ng a 3 to	ld cross v	<i>r</i> alidation	. The mod	dels has the
-			•	that we have			_	ollowing	results:				l	
				will do the s		-	the				_	del 1		odel 2
exar	n. I hav	e a dat	aset of 10 ho	uses given in	the follo	owing						alues	R2	Values
			1		T =:	1		Fold1	Fold2	Fold3	Train	Test	Train	Test
	No 1	Size 45	Price 96	No 6	Size 83	Price 243		Train	Train	Test	0.85	0.81	0.86	0.78
	2	55	129	7	92	210		Train	Test	Train	0.8	0.75	0.88	0.8
	3	57	170	8	99	199	F	Test	Train	Train	0.81	0.81	0.75	0.7
	4	64	129	9	110	220	L	1631	Hulli	Hulli	0.01	0.01	0.73	0.7
	5	80	160	10	112	280	a.	\ (105)	Mhich m	ميد امام	uld vou	chooso a	nd why?	Show you
								, (10p) alculatio		louel wo	uiu you	ciioose a	iiu wiiy:	Silow you
Each	obser	vation h	nas size as its	feature and	the outp	ut is the	ice.	aiculatic	,,,,					
				ze is 45m2 aı										
				predictions. I										
				y KNN, i.e., v	ve will t	ake arith	etic							
			lidian distand											
•			price of a ho	use with size	60 m2 if	f we use a	NN							
mod	el with	າ k=2.												

c. (5p) We want to see what happens to the model with the choice of k. Please plot the train error and the test error versus the value of k.

b. (5p) What is the price of a house with size 60 m2 if we use a KNN

model with k=3.

b)(10p) What is a n-fold cross validation? Why do we need such a technique?

Q3. (40p) We have a dataset of patients that has a specific tumor type. Each data point has the size of the tumor as its single feature and an output that shows whether a tumor is really a cancer **(y=1)** or not **(y=0).** The logistic regression model for this data is: $h_{\theta}(x) = g(x/4-7) \text{ Here } x \text{ is the size of the tumor and } g(z) \text{ is the sigmoid function. where } g(z) = \frac{1}{1+e^{-z}}$

We have the following **test set** that has five patients.

Patient	1	2	3	4	5	6	7	8
Size	12	18	22	42	36	72	14	25
Cancer?	0	0	1	1	1	0	0	0
Prediction								

Finally recall the error metric that is given in the lecture:

$$\frac{1}{m}\sum_{i=1}^{m}err(h_{\theta}(x^{(i)}),y^{(i)})$$

Where $err(h_{\theta}(x^{(i)}), y^{(i)}) = 0$ if your prediction is correct and 1 otherwise. Use natural logarithm (LN) whenever necessary.

a) (10) Find the confusion matrix of this algorithm. Please use the table below. Also use the last line of the above table to create the confusion matrix. Show your calculations.

comusion matrix. 3no	w your calculations.
TN	FP
'''	1.5
FN	TP
'''	••

b) (5p) Please plot the decision boundary.

c) (25p) Assume you are give a confusion matrix as below. Calculate the required values. Please show your calculations.

TN=300	FP=5
FN=15	TP=25

Accuracy	
Precision	
Recall	
FPR	
F1 score	

I have two features, say X1 and X2 and 5 sample points and I want to divide them into two clusters using K-means algorithm. The points are (0,0), (0,2), (1,4), (5,4), (5,0). As the algorithm proposes, we will start the algorithm by choosing two random data points as the centroids of the clusters. Let the center of the first cluster be (0,2) and let the center of the second cluster be (5,0). Now please iterate the algorithm for one cycle, i.e., first find which cluster does each data point belong to, **and** then update the centroid of the two clusters.

Q5. (10p) Briefly explain why do we use test and cross validation sets in finding appropriate models for predicting in machine learning.

Bonus Question: You run each model for three times in question 2 (since you are making a three fold CV) hence you have three different parameter set for each model. After you decided to pick a model, which model would you use to make predictions? Or how do you calculate the parameters? You can write at the back of the paper if you need.