

# Curso de Tecnologia em Sistemas de Computação Disciplina: Redes de Computadores II AP3 – 1º semestre de 2015 – GABARITO

| <b>uestão 1</b>                                                                               | os  |
|-----------------------------------------------------------------------------------------------|-----|
| Na tabela abaixo, são apresentados, nas colunas, diversos protocolos de acesso a um meio      | de  |
| transmissão compartilhado, e nas linhas, diversas características destes protocolos. Pred     | en- |
| cha cada célula da tabela indicando se o protocolo possui ou não a característica apresentado | da. |
| Considere que, exceto em afirmação contrária, a quantidade de estações que possuem aces       | sso |
| ao meio em questão é constante (isto é, estações não entram e saem da rede), mas que ne       | em  |
| todas as estações desejam transmitir a todo instante.                                         |     |

|                                      | S-ALOHA  | CSMA | CDMA | ALOHA    |
|--------------------------------------|----------|------|------|----------|
| o meio somente pode atingir uti-     | ×        | ×    | ✓    | ×        |
| lização de 100% se todas as estações |          |      |      |          |
| quiserem transmitir                  |          |      |      |          |
| o meio pode ficar ocioso mesmo       | <b>√</b> | ×    | ×    | ×        |
| se estações quiserem iniciar novas   |          |      |      |          |
| transmissões                         |          |      |      |          |
| protocolo de acesso aleatório        | ✓        | ✓    | ×    | <b>√</b> |
| permite acesso simultâneo ao meio    | <b>√</b> | ✓    | ×    | <b>√</b> |
| (causando colisão)                   |          |      |      |          |
| a adição de uma estação adicio-      | ×        | ×    | ×    | ×        |
| nal que não transmite reduz a uti-   |          |      |      |          |
| lização do meio                      |          |      |      |          |

| Que | estão 2                                                                         | 20 pontos    |
|-----|---------------------------------------------------------------------------------|--------------|
|     | Considere as afirmações abaixo sobre transmissões multimídia. Para cada afirmaç | ção, indique |
|     | se a mesma é verdadeira ou falsa, e explique sua resposta utilizando apenas um  | a frase:     |

- $\sqrt{}$  Um pacote de uma aplicação streaming que chega no receptor depois do tempo que foi escalonado para tocar é considerado um pacote perdido.
  - Um pacote que chega atrasado não pode ser tocado pois, para que a qualidade de uma aplicação multimídia seja mantida, os pacotes devem ser tocados seguindo o mesmo intervalo de tempo em que foram gerados.
- O protocolo TCP provê um serviço que garante confiabilidade e entrega em ordem de todos os pacotes para a aplicação. Essas garantias permitem oferecer uma boa qualidade para aplicações de voz.
  - O principal requisito para que uma aplicação de voz tenha boa qualidade é que o retardo e jitter estejam sempre abaixo de um determinado valor.
- A técnica de interleaving insere redundância no fluxo de pacotes transmitidos e



portanto aumenta a taxa de transmissão da aplicação.

A técnica de interleaving consiste na divisão dos pacotes originais em pedaços e reorganização desses pedaços construindo os novos pacotes que serão transmitidos, de forma que não é inserida nenhuma informação redundante.

O No mecanismo de bufferização do lado do cliente, quanto menor for o *buffer* do usuário, menor será o números de pausas que ocorrerão devido ao esvaziamento do *buffer*.

Quanto menor for o buffer, maior será o número de pausas, pois maior será a chance do buffer esvaziar e ocorrer a pausa.

√ A técnica de interleaving tem como desvantagem o aumento da latência. Na técnica de interleaving cada pacote transmitido é composto de n pedaços, sendo que cada pedaço é uma parte de um pacote do fluxo original. Logo, para o receptor tocar um pacote do fluxo original, ele deve aguardar a chegada de n pacotes.

Na coluna à direita, são apresentadas características de protocolos de roteamento. Associe cada característica a um dos protocolos da coluna da esquerda.

- (LS) Cálculo de rotas baseado em algoritmos como Prim ou Dijkstra
- ( LS ) Roteadores calculam as rotas de maneira independente
- (DV) Informações topológicas da rede são trocadas apenas entre vizinhos imediatos
- (DV) Atinge melhor desempenho com a ajuda de técnicas como envenenamento reverso
- (LS) Estado de enlace
- (DV) Vetor de distâncias
- (LS) Implementado nos protocolos OSPF e IS-IS
- ( LS ) Mapa topológico da rede é utilizado pelo cálculo de rotas
- (**DV**) Cálculo distribuído de rotas
- $(\mathbf{DV})$  Tabela de distâncias é utilizada pelo cálculo de rotas
- (**DV**) Implementado no protocolo RIP
- (**DV**) Troca de informações topológicas da rede e cálculo de rotas são etapas alternantes

Considere as seguintes informações criptográficas:

- $K_A^+$  e  $K_A^-$ o par de chaves pública e privada de Ana, respectivamente.
- $\bullet$   $K_B^+$ e  $K_B^-$ o par de chaves pública e privada de Bruno, respectivamente.
- $\bullet$   $K_S$  uma chave simétrica de conhecimento exclusivo de Ana e de Bruno.
- $H(\cdot)$  uma função hash que gera um resumo de mensagem (message digest).
- $\bullet$  M uma mensagem de texto qualquer.

Assuma que Ana e Bruno tenham conhecimento das respectivas chaves públicas do outro, e também conheçam a função  $H(\cdot)$ . Para cada afirmação a seguir, indique se a mesma é verdadeira ou falsa, e explique sua resposta utilizando apenas uma frase:



- $\bigcirc$  Ao receber  $K_S(H(M))$ , Bruno é capaz de decifrar e ler a mensagem M transmitida por Ana.
  - O resumo gerado pela função  $H(\cdot)$  não pode ser desfeito, ou seja, não pode ser invertido para obter a mensagem cifrada M.
- $\sqrt{K_B^+(K_B^-(K_S(M)))} = K_S(M)$ A chave pública aplicada a uma mensagem cifrada com a chave privada retorna a própria mensagem, que no caso é  $K_S(M)$ .
- $\sqrt{}$  Ao enviar  $K_B^+(M)$  e H(M) a Bruno, Ana garante confidencialidade e integridade ao envio da mensagem. Somente Bruno conhece sua chave privada  $K_B^-$ , logo somente ele é capaz de decifrar  $K_B^+(M)$  e obter M; além disso, Bruno consegue detectar se  $K_B^+(M)$  for modificada, pois a mensagem decriptada nesse caso terá um resumo diferente de H(M).
- O Bruno precisa conhecer  $K_A^-$  para verificar a autenticidade de uma mensagem M gerada por Ana.

  Qualquer pessoa, não apenas Ana, conhece  $K_A^+$  e pode gerar  $K_A^-(M)$  a partir de M; para atribuir autenticidade a M, Ana precisa cifrá-la com sua chave privada  $K_A^-$ , logo Bruno precisa conhecer  $K_A^+$ .
- $\sqrt{\ }$  Ao receber  $K_S(M),\$ Bruno é capaz de concluir que M foi gerada por Ana.

Apenas Ana e Bruno conhecem a chave simétrica  $K_S$ , logo Bruno sabe que apenas Ana pode ter gerado  $K_S(M)$ .

Suponha também que, para cada grupo de 3 pacotes consecutivos, o servidor irá criar um pacote adicional FEC, contendo o XOR destes pacotes. Este pacote será incluído na transmissão, logo após o grupo correspondente, e sua transmissão irá ocupar um slot a mais. Caso o último grupo tenha menos que 3 pacotes, o último FEC será aplicado nos pacotes restantes.

(a) Qual é o objetivo da transmissão destes pacotes FEC?

#### Resposta:

O objetivo é permitir que pacotes que eventualmente sejam perdidos durante a transmissão possam ser recuperados sem que o cliente precise pedir que o servidor transmita-os novamente, pois este procedimento é muito demorado para reprodução de vídeo por *streaming*.

(b) Quantos pacotes (tanto vídeo como FEC) o servidor irá enviar ao cliente nesta transmissão?

#### Resposta:

Serão transmitidos 32 pacotes, sendo 24 pacotes de vídeo e 8 pacotes FEC.



(c) Suponha que, nos slots 1, 2, 16, 23, 24, 25, 29 e 30, os pacotes enviados se percam durante a transmissão (nos slots restantes, o pacote chega com sucesso). Quais pacotes de vídeo o cliente não irá receber?

## Resposta:

O cliente não irá receber os pacotes de vídeo 1, 2, 18, 19, 22 e 23.

(d) No cenário descrito do item anterior, quais pacotes de vídeo o cliente não irá reproduzir?

# Resposta:

Utilizando os pacotes FEC e os outros pacotes recebidos, o cliente somente será capaz de recuperar o pacote 19. Logo, ele não irá reproduzir os pacotes de vídeo 1, 2, 18, 22 e 23.

Na rede ilustrada a seguir, 7 sistemas autônomos, identificados por letras e cores distintas, encontram-se dispostos segundo um *backbone* circular, evidenciado pelos enlaces contínuos entre ASs. No entanto, devido à presença de tráfego intenso em rotas específicas, alguns ASs negociaram ligações diretas adicionais uns com os outros, representadas por linhas tracejadas, com uma condição de uso: cada enlace direto somente pode ser usado para tráfego direto entre os ASs em questão, sendo proibido o seu uso para trafegar dados de outros ASs. Não há restrições negociadas sobre o uso do *backbone*. Algumas das subredes presentes nestes ASs são ilustradas por letras minúsculas.



(a) Os roteadores F1 e A1 irão estabelecer alguma comunicação BGP um com o outro?



Se sim, do tipo iBGP ou eBGP?

## Resposta:

Haverá comunicação eBGP entre estes roteadores.

(b) O AS D conhece uma rota até a subrede f, que está em seu domínio. Ele irá anunciar esta rota para o AS A? Por quê?

# Resposta:

Sim, pois ao anunciar esta rota ao AS A através do enlace direto que os liga, ele está permitindo que A utilize este enlace para enviar pacotes com destino a D, o que satisfaz a restrição de uso do enlace.

(c) Considere um pacote enviado da subrede g para a subrede c. Determine o caminho que este pacote irá percorrer nesta rede, tanto em nível de sistemas autônomos quanto em nível de roteadores.

## Resposta:

O pacote irá transitar através dos ASs E, F, G e A, sendo encaminhado pelos roteadores E2, E4, F1, F2, G1, G2, A1 e A3.