Vocabulary

Suppose f(x) is a real-valued function with domain D and suppose c is a point in D.

- 1. f(c) is an **absolute maximum value** for f if $f(c) \ge f(x)$ for each x in D.
- 2. f(c) is a **(absolute) minimum value** for f if $f(c) \le f(x)$ for each x in D.
- 3. f(c) is a **local maximum value** for f if $f(c) \ge f(x)$ for each x in D near c.
- 4. f(c) is a **local minimum value** for f if $f(c) \le f(x)$ for each x in D near c.
- 5. We say c is a **critical point** for f if either f'(c) = 0 or f'(c) does not exist.

Key Tools

- 1. [Fermat's Theorem] If f(c) is a (local or absolute) maximum/minimum value, and if f is defined on both sides of c, and if f'(c) exists, then f'(c) = 0.
- 2. [Extreme Value Theorem] If the domain of f is a closed, bounded interval, and if f is continuous, then f is guaranteed to have both a maximum and a minimum value.
- 1. Sketch the graph of a function with domain [-3,3] that has an absolute maximum of 5 at x = -2, an absolute minimum of 0 at x = 2 and a local minimum of 2 at x = 0 that is not an absolute minimum.

2. Give an example of a function with domain (−1,1) that does not attain either an absolute minimum or an absolute maximum value. Why doesn't your example violate the Extreme Value Theorem?

$$f(x) = x$$

no violation: interal not closed.

3. Sketch a discontinuous function with domain [-1,1] that attains a minimum but does not attain a maximum value. Why doesn't your example violate the Extreme Value Theorem?

No violation: function not continuous

4. Give an example of a continuous function with domain $[0, \infty)$ that attains a minimum but does not attain a maximum value. Why doesn't your example violate the Extreme Value Theorem?

f(x)=x

No viplation: interval not bounded

5. Consider the function sec(x). Sketch this function. From the sketch answer the following. Does this function have any absolute maximums? Absolute minimums? Local maximums? Local minimums?

no absolute mox/ning

6. Find all critical points of the function $f(x) = \sin(x)^{1/3}$.

$$f'(y) = \frac{1}{8} (5 \text{ in } (x))^{-2/8} \cdot \cos(x)$$

$$f'(y) = \cos(x) + \cos(x) + \sin(y) = 0 \quad (x = k\pi \text{ ke } \mathbb{Z})$$

$$f'(x) = 0 \quad \text{if } \cos(x) = 0 \quad (x = \frac{\pi}{2} + k\pi, \text{ ke } \mathbb{Z})$$

$$\sin(x) = \cos(x) + \cos(x) = 0 \quad (x = \frac{\pi}{2} + k\pi, \text{ ke } \mathbb{Z})$$

7. Key Tool: Closed Interval Method

To find a maximum or minimum value for a continuous function defined on an closed, bounded interval [a, b], look in all of the following locations:

- 1. The end points.
- 2. The critical points.

Find the absolute maximum and minimum values of $f(x) = x - x^{1/3}$ on the interval [-1, 4], and the locations where those values are attained.

8. Find the absolute maximum and minimum values of $f(x) = e^{-x^2}$ on the interval [-2, 3], and the locations where those values are attained.

9. Find the maximum and minimum values of $f(x) = x - x^{1/3}$ on the interval [-1,4]. Determine where those maximum and minimum values occur.

10. Find the maximum and minimum values of $f(x) = x + \frac{1}{x}$ on the interval [1/5,4]. Determine where those maximum and minimum values occur.

$$f(x) = 1 - \frac{1}{x^2}$$

critical point: $x = 1$
endpoint $x = \frac{1}{5}$
end point $x = \frac{1}{5}$

$$f(x) = 1 - \sqrt{2}$$

critical point: $x = 1$

endpoint

 $x = \frac{1}{5}$

f(1) = 2

at $x = 1$

endpoint

 $x = \frac{1}{5}$

f(1/5) = 5 + \frac{1}{5}

end point

 $x = \frac{1}{5}$

f(4) = 4 + \frac{1}{4}

at $x = 4$

11. Find the maximum and minimum values of $f(x) = x^{2/3}$ on the interval [-8,8]. Determine where those maximum and minimum values occur.

$$f'(x) = 32 x^{-1/3}$$

$$f'(x) \text{ loss not exist at } x = 0$$

end point
$$x = -8$$
 $f(-8) = 4$ mux value at $x = 8, -8$

end point
$$x=8$$
 $f(8)=4$

12. A ball thrown in the air at time t = 0 has a height given by

$$h(t) = h_0 + v_0 t - \frac{1}{2} g_0 t^2$$

meters where t is measured in seconds, h_0 is the height at time 0, v_0 is the velocity (in meters per second) at time 0 and g_0 is the constant acceleration due to gravity (in m/s²). Assuming $v_0 > 0$, find the time that the ball attains its maximum height. Then find the maximum hight.

$$h'(t) = 0$$

$$t = \frac{V_0}{g_0}$$

h'(t)=0 > t= vo & time of max height

$$\left(\frac{v_o}{g_o} \right) = h_o + v_o \left(\frac{v_o}{g_o} \right) - \frac{1}{2} g_o \left(\frac{v_o^2}{g_o^2} \right)$$