- 5 The roots of the quadratic equation $2x^2 + (6 + 2p)x + 2p = 0$ are α and β
 - (a) Write down an expression in terms of p for
 - (i) $\alpha + \beta$
- (ii) $\alpha\beta$

(2)

(b) Show that $(\alpha - \beta)^2 = 9 + 2p + p^2$

(4)

Given that $(\alpha - \beta) = 3$

(c) find the possible values of p

(3)

	Question 5 continued
A A	
3	
2	
1	
2	
3	
4	
<u>^</u>	
5	
DO NOT WRITE IN THIS AREA	
3	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 5 continued	

6 (a) Using a formula from page 2, show that $\cos 2A = 1 - 2\sin^2 A$

(2)

The finite region *R* is bounded by the curve with equation $y = 3 + 2\sin x$, the *x*-axis, the *y*-axis and the line with equation $x = \frac{\pi}{4}$

The region *R* is rotated through 360° about the *x*-axis.

(b) Use calculus to find the volume of the solid generated. Give your answer to the nearest integer.

(6)

(i) (a) Using a formula from page 2, show that

$$\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$$

(2)

Given that $\tan 2\alpha = 1$

(b) show that $\tan \alpha = a \pm \sqrt{b}$ where a and b are integers whose values need to be found.

(3)

(ii) (a) Using formulae from page 2, show that $\cos(x-30)^{\circ} = \sin(x+30)^{\circ}$ can be written as $\tan x^{\circ} = 1$

(4)

(b) Hence, or otherwise, solve

$$\cos(2y - 30)^{\circ} = \sin(2y + 30)^{\circ}$$
 for $-90 < y \le 90$

for
$$-90 < y \le 90$$

(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 7 continued	

	(Total for Question 7 is 11	marks)
P 7 1 6 6 6 A 0		Tu