Лабораторная работа 5.1.3. Изучение рассеяния медленных электронов на атомах (эффект Рамзауэра).

Вязовцев Андрей, Б01-009

19.10.22

Цель работы: Исследуется энергетическая зависимость вероятности рассеяния электронов атомами ксенона, определяются энергии электронов, при которых наблюдается «просветление» ксенона, и оценивается размер его внешней электронной оболочки.

В работе используются: тиратрон ТГ3-01/1.3Б

Теоретическая справка:

Эффективное сечение реакции — величина, характеризующая вероятность перехода системы двух сталкивающихся частиц в результате их рассеяния в определённое конечное состояние.

$$\sigma = \frac{N}{nv} \tag{1}$$

Если построить зависимость $\sigma(E)$, то получится график как на рис. 1.

Отсюда видно, что при энергии 1 эВ есть «прозрачное окно», т.е. электроны свободно проходят через среду аргона. Такое явление нельзя объяснить с помощью классической физики. По отношению к электронной волне атом ведёт себя как преломляющая волна:

$$n = \frac{\lambda}{\lambda'} = \sqrt{1 - \frac{U}{E}} \tag{2}$$

Решение задачи о рассеянии электрона на сферической потенциальной яме достаточно громоздко, поэтому в нашей модели будем считать,

Рис. 1. Качественная картина результатов измерения упругого рассеяния электронов в аргоне

что яма является одномерной конечной глубины U_0 шириной l. Используя уравнение Шрёдингера и вычисляя коэффициент прохождения, получаем условие на его максимумы:

$$k_2 l = \sqrt{\frac{2m(E+U)}{\hbar^2}} l = \pi n, \ n \in \mathbb{N}$$
 (3)

Для качественного объяснения эффекта Рамзауэра достаточно использовать соотношение де Бройля и рассмотреть интерференцию волн ле Бройля в атоме. Условие максимума: разность хода равна длине волны в атоме:

$$2l = \lambda_1 = \frac{h}{\sqrt{2m(E_1 + U_0)}} \tag{4}$$

Здесь E_1 — энергия, соответствующая данному условию. С другой стороны, можно таким же образом найти минимум:

$$2l = \frac{3}{2}\lambda_2 = \frac{3}{2}\frac{h}{\sqrt{2m(E_2 + U_0)}}\tag{5}$$

Решив эти уравнения, исключаем U_0 и получаем:

$$l = \frac{h\sqrt{5}}{\sqrt{32m(E_2 - E_1)}}\tag{6}$$

Понятно, что энергии E_1 и E_2 соответствуют энергиям электронов, прошедших разность потенциалов, т. е. $E_1 = eV_1$, $E_2 = eV_2$. Из уравнений (4) и (5) можно получить глубину ямы:

$$U_0 = \frac{4}{5}E_2 - \frac{9}{5}E_1 \tag{7}$$

Экспериментальная установка:

В данной работе для изучения эффекта Рамзауэра используется тиратрон $T\Gamma 3$ -01/1.3Б (см. рис. 2). В нём:

- 1, 2, 3 сетки
- 4 внешний металлический цилиндр
- 5 катод
- 6 анод
- 7 накаливаемая спираль

Уравнение BAX выражается так:

$$I_a = I_0 e^{-C\omega(V)} \tag{8}$$

где $I_0=eN_0$ — ток катода, $I_{\rm a}=eN_a$ — анодный ток, $C=Ln_{\rm a}\Delta_{\rm a}$, L — расстояние от катода до анода, n_a — концентрация атомов газа в лампе, Δ_a — площадь поперечного сечения атома, $\omega(V)$ — вероятность рассеяния на атоме. Отсюда вероятность выражается так:

$$\omega(V) = -\frac{1}{C} \ln \frac{I_a(V)}{I_0} \tag{9}$$

Рис. 2. Схема тиратрона (слева) и его конструкция (справа)

Рис. 3. Схема включения тиратрона

Рис. 4. Блок-схема экспериментальной установки

Ход работы:

- 1. Подготовим осциллограф к работе, затем включим в сеть.
- 2. Поставим переключатель в динамический режим. Измерим с помощью осциллографа напряжение в точках максимума, минимума и пробоя. Результаты представлены в таблице 1, а осциллограммы на рисунках 5 и 6.

$U_{\text{\tiny Hak}}, B$	V_{max} , B	V_{min} , B	$V_{\rm np}$, B
2.839	1.3 ± 0.1	2.8 ± 0.2	5.4 ± 0.4
3.125	1.5 ± 0.1	3.2 ± 0.2	5.1 ± 0.1

Таблица 1. Данные с осциллограммы

Рис. 5

Рис. 6

3. Теперь переключим в статический режим. Измерим ток анода, изменяя катода с промежутком 0.5 В при тех же $U_{\rm нак}$. Результаты для $U_{\rm нак}=2.844$ В представлены в таблице 2, а для $U_{\rm нак}=3.169$ — в таблице 3

$V_{\text{кат}}, B$	1.000	1.500	2.0	00 2	2.553	3.097	3.602	4.030	4.509	5.019	5.498
$V_{\rm ah}, { m B}$	0.00	0.38	30.	80 5	50.50	37.23	32.50	30.33	28.52	26.83	25.58
$V_{\text{кат}}$, B	6.027	6.521	7.0	46 7	7.515	8.007	8.499	9.024	9.516	10.078	2.200
$V_{\mathrm{aH}}, \mathrm{B}$	24.66	24.11	23.	79 2	23.78	24.1	25.02	26.22	26.71	28.18	49.10
	$V_{\text{кат}}$	B 2.2	298	2.400	2.48	8 2.82	21 7.2	15 7.4	08		
	V_{aH} ,]	B 52	.56	52.90	51.9	2 43.8	33 24.	12 23.	91		

Таблица 2. Измерения для $U_{\text{нак}} = 2.844$

$V_{\rm \kappa a}$	т, В	1.0	000	1.500	2.077	2.516	3.036	3.501	4.026	4.511	5.037	5.507
$V_{\rm ar}$	н, В	0.0	00	1.10	66.77	98.07	91.69	86.95	82.52	78.47	74.28	70.87
$V_{\rm \kappa a}$	т, В	6.0	047	6.497	7.014	7.539	8.016	8.511	9.014	9.500	10.048	2.207
$V_{\rm ar}$	н, В	68.	.81	67.74	67.15	67.52	68.99	71.66	75.45	77.99	82.00	84.42
	$V_{\text{кат}}$	В	2.293	3 2.42	27 2.60	00 2.78	85 7.21	14 7.41	15 7.71	17 7.92	23	
	$V_{\rm ah}$, I	3	90.93	3 95.5	7 95.9	90 94.1	17 70.1	19 70.9	94 72.0	05 72.8	35	

Таблица 3. Измерения для $U_{\rm нак} = 3.169$

Обработка результатов:

4. Примем $U_0 = 2.5$ эВ и найдём размер электронной оболочки атома по результатам измерений в динамическом режиме по формулам (4) и (5). Получаем:

$U_{\text{нак}}$	l по формуле (4)	l по формуле (5)
2.829	$1.00 \pm 0.08 \ \mathring{A}$	$1.26 \pm 0.09 \ \mathring{A}$
3.125	$0.97 \pm 0.06 \ \mathring{A}$	$1.22 \pm 0.08 \; \mathring{A}$

Теперь вычислим данный размер по формуле (6). Получаем:

$$l = 1.77 \pm 0.18 \ \mathring{A}, \ \text{при} \ U_{\text{нак}} = 2.829$$

$$l = 1.66 \pm 0.15 \ \mathring{A}, \ \text{при} \ U_{\text{нак}} = 3.125$$

5. Найдём глубину потенциальной ямы по формуле (7):

$$U_0 = -0.1 \pm 0.3$$
 эВ, при $U_{
m Hak} = 2.829$ $U_0 = -0.1 \pm 0.3$ эВ, при $U_{
m Hak} = 3.125$

Комментировать данные результаты мы не будем. Это какой-то волшебный газ.

6. Построим графики $I_a=f(V_c)$ для статического режима. Учтём, что $I_a=V_a/R_a$, где $R_a=100$ кОм. Теперь вычислим все величины, которые вычисляли для динамического режима:

$U_{\text{\tiny HAK}}$	U_{max}	U_{min}	l по формуле (4)	l по формуле (5)
2.829	$2.3 \pm 0.1 \text{ B}$	$7.3 \pm 0.1 \text{ B}$	$0.89 \pm 0.04 \ \mathring{A}$	$0.93 \pm 0.01 \ \mathring{A}$
3.125	$2.5 \pm 0.1 \text{ B}$	$7.2 \pm 0.2 \text{ B}$	$0.87 \pm 0.03 \; \mathring{A}$	$0.93 \pm 0.03 \ \mathring{A}$

$U_{\text{нак}}$	l по формуле (6)	U_0
2.829	$0.97 \pm 0.04 \ \mathring{A}$	$1.7 \pm 0.3 \; \mathrm{9B}$
3.125	$1.00 \pm 0.05 \ \mathring{A}$	$1.3 \pm 0.4 \text{9B}$

Рис. 7. $U_{\text{нак}} = 2.829$

7. На основе формулы (9) найдём вероятности рассеяния электронов и построим соответствующий график.

Рис. 8. $U_{\text{нак}} = 3.125$

Рис. 9. $U_{\text{нак}} = 2.829$

Рис. 10. $U_{\text{нак}} = 3.125$