Мат. анализ, 3 сем., "Прикл. мат. и информатика". Контр. работа

	1. Найти симметричную $T_{(ij)}$ и антисимметричную $T_{[ij]}$ части тензора T_{ij} . Найти $g^{ij}T_{ij}$ и $T^{ij}T_{ij}$, если $g_{ij}=\delta_{ij}$.	$T_{ij} =$	1	2	4	
_			$\begin{bmatrix} 0 \\ 3 \end{bmatrix}$	-3	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	
D 1	2. Найти главные значения λ_i и главные оси симметричного тензора T_j^i . Убедиться, что $T_i^i = \sum \lambda_i, T_k^i T_i^k = \sum \lambda_i^2$.		4	1	-1	
		$T_j^i = $	1 _1	4 _1	-1	

В1

B2

В3

B4

- 3. Найти в R^3 и R^4 : * $\tilde{d}(((x^1)^2dx^2+x^3dx^3)\wedge(x^2dx^1-x^2dx^2+x^1dx^3))$
- 4. Найти в R^3 : $*\tilde{d}*(x^1\vec{e_1}+x^1x^2\vec{e_2}+(x^1)^2\vec{e_3})$
- 5. Выразить F^{ij} через F_{ij} , если $g_{ij} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 0 & 0 \end{bmatrix}$
- 1. Найти симметричную $T_{(ij)}$ и антисимметричную $T_{[ij]}$ части тензора T_{ij} . Найти $g^{ij}T_{ij}$ и $T^{ij}T_{ij}$, если $g_{ij}=\delta_{ij}$.
- 2. Найти главные значения λ_i и главные оси симметричного тензора T^i_j . Убедиться, что $T^i_i = \sum \lambda_i, \, T^i_k T^k_i = \sum \lambda^2_i.$
- 3. Найти в R^3 и R^4 : * $\tilde{d}(((x^3)^2dx^1+x^2dx^3)\wedge(x^1dx^1-x^3dx^2+x^1dx^3))$
- 4. Найти в R^3 : $*\tilde{d}*(x^1x^3\vec{e_1}+x^2\vec{e_2}+(x^2)^2\vec{e_3})$
- 5. Выразить F^{ij} через F_{ij} , если $g_{ij} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
- 1. Найти симметричную $T_{(ij)}$ и антисимметричную $T_{[ij]}$ части тензора T_{ij} . Найти $g^{ij}T_{ij}$ и $T^{ij}T_{ij}$, если $g_{ij} = \delta_{ij}$.
- 2. Найти главные значения λ_i и главные оси симметричного тензора T^i_j . Убедиться, что $T^i_i = \sum \lambda_i, \, T^i_k T^k_i = \sum \lambda^2_i.$
- 3. Найти в R^3 и R^4 : $*\tilde{d}((x^3dx^1-(x^3)^2dx^2+x^2dx^3)\wedge(x^1x^2dx^1-x^3dx^2))$
- 4. Найти в R^3 : $*\tilde{d}*(x^3\vec{e_1}+x^1x^2\vec{e_2}+(x^3)^2\vec{e_3})$
- 5. Выразить F^{ij} через F_{ij} , если $g_{ij} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$
 - 1. Найти симметричную $T_{(ij)}$ и антисимметричную $T_{[ij]}$ части тензора T_{ij} . Найти $g^{ij}T_{ij}$ и $T^{ij}T_{ij}$, если $g_{ij}=\delta_{ij}$.

$$T_{ij} = \begin{bmatrix} -3 & 2 & 6 \\ -2 & -1 & 8 \\ -8 & 2 & 4 \end{bmatrix}$$

-1 -1 4

- 2. Найти главные значения λ_i и главные оси симметричного тензора T^i_j . Убедиться, что $T^i_i = \sum \lambda_i,\, T^i_k T^k_i = \sum \lambda^2_i.$
- 3. Найти в R^3 и R^4 : $*\tilde{d}((x^3dx^1-(x^1)^2dx^2+x^1dx^3)\wedge(x^2dx^1-x^3dx^2+dx^3))$
- 4. Найти в R^3 : $*\tilde{d}*((x^1)^2\vec{e}_1+x^1x^2x^3\vec{e}_2+(x^3)^2\vec{e}_3)$
- 5. Выразить F^{ij} через F_{ij} , если $g_{ij} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$

1. Найти симметричную $T_{(ij)}$ и антисимметричную $T_{[ij]}$ части тензора T_{ij} . Найти $g^{ij}T_{ij}$ и $T^{ij}T_{ij}$, если $g_{ij}=\delta_{ij}$.	$T_{ij} =$	$\lceil -1 \rceil$	2	3	
		-2	-1	2	
		7	1	-4	

- 2. Найти главные значения λ_i и главные оси симметричного тензора T^i_j . Убедиться, что $T^i_i = \sum \lambda_i, \, T^i_k T^k_i = \sum \lambda^2_i.$
- 3. Найти в R^3 и R^4 : $*\tilde{d}((x^2dx^1-x^1x^3dx^2+dx^3)\wedge(x^2dx^1-x^3dx^2+dx^3))$ 4. Найти в R^3 : $*\tilde{d}*(2x^2\vec{e}_1+(x^2)^2x^3\vec{e}_2+(x^3)^2x^2\vec{e}_3)$

В5

B6

- 5. Выразить F^i через F_i , а F^{ij} через F_{ij} , если $g_{ij} =$ 0 1 0
- 1. Найти симметричную $T_{(ij)}$ и антисимметричную $T_{[ij]}$ части тензора T_{ij} . Найти $g^{ij}T_{ij}$ и $T^{ij}T_{ij}$, если $g_{ij}=\delta_{ij}$.
- 2. Найти главные значения λ_i и главные оси симметричного тензора T^i_j . Убедиться, что $T^i_i = \sum \lambda_i, \, T^i_k T^k_i = \sum \lambda^2_i.$
- 3. Найти в R^3 и R^4 : $*\tilde{d}((x^2x^3dx^1-(x^1)^2x^3dx^2)\wedge(x^2dx^1-(x^3)^2dx^2+x^3dx^3))$
- 4. Найти в R^3 : $*\tilde{d}*(x^1\vec{e_1}+x^1x^2\vec{e_2}+(x^2)^2\vec{e_3})$
- 5. Выразить F^i через F_i , а F^{ij} через F_{ij} , если $g_{ij}=\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$