

Lab Seminar: 2022, 07, 05.

Dive Into Convolutional Neural Network

(for newer to CNN)

JongHyeon Kim

School of Computer Science/Department of AI Convergence Engineering Gyeongsang National University (GNU)

Contents

- Convolution
- Cross Correlation
- Convolution vs. Cross Correlation
- Fully-Connected Neural Network
- Convolutional Neural Network
- Details of CNN

Definition

- An operation on two functions of a real-valued argument
 - Expression: $(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t \tau)d\tau$

Example

- Suppose we are tracking the location of a plane with a laser sensor
 - The sensor provides a single output x(t): position of the plane at time t
 - Both x and t: real-valued

Exponentially Weighted Moving Average (EWMA)

- A method of making the effect of old data exponentially decay when calculating the moving average of data
- Expression: $V_t = \beta \times V_{t-1} + (1-\beta) \times \theta_t$, $V_{t-1} = \beta \times V_{t-2} + (1-\beta) \times \theta_{t-1}$
 - β : hyperparameter (0~1), V: trends, θ : new data, t: time
 - $V_t = \beta \times (\beta \times V_{t-2} + (1-\beta) \times \theta_{t-1}) + (1-\beta) \times \theta_t > \text{exponential}$
 - $V \approx \frac{1}{1-\beta}$

Example (Temperature of London)

Convolution

- Example
 - $\beta = 0.9$ (red line, for 10 days)

• $\beta = 0.98$ (green line, for 50 days)

Convolution

Example

• $\beta = 0.5$ (yellow line, for 2 days)

• Parameter β

- if close to 1, more weight to former data
- if close to 0, more weight to now data

Example (Convolution)

- Suppose the sensor is noisy; objective > to get less noisy estimate of x
 - We average together several measurements
 - More recent measurements are more relevant (have more weight)
- Define a weighting function w(a)
 - To give more weight to recent measurements
 - a: the age of a measurement
 - w is learnable (parameter)

- Apply weighted average operation at every moment
 - A new function: s providing a smoothed estimate of x

$$-s(t) = \sum_{-\infty}^{\infty} x(a)w(t-a) \triangleq (x*w)(t)$$

Convolution

Arguments

$$s(t) = (x * w)(t) = \sum_{a = -\infty}^{\infty} x(a)w(t - a)$$

- First argument (function x): input
- Second argument (function w): kernel or filter
- Output (function s): feature map or activation map

2D Convolution

- Suppose we use 2D image I as input, 2D kernel K
 - $S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n); (I * K)(i,j) = (K * I)(i,j)$
- Convolution means "Convolution with Kernel Flipping"

Cross Correlation

Definition

- The same as convolution, but without flipping the kernel
- Expression: $S(i,j) = (K * I)(i,j) = \sum_{m} \sum_{n} K(m,n)I(i + m, j + n)$

2D Cross Correlation (element-wise; dot product)

Convolution vs. Cross Correlation

Convolution vs. Cross Correlation

- Convolution means...
 - To find the output of a system of impulse response for an input
 > used to calculate the output of a system
- Cross correlation means..
 - A process to find the degree of similarity between two signals

Fully-Connected Neural Network

Problems

- Large computation
- Overfitting risks
- Data loss problem (Flatten)

Fully-Connected Neural Network

- Problems
 - Data loss problem (Flatten)

- Motivated from Partially Connection
 - Due to *locality*

Translation equivariance

Should have the same calculation results, like

I see hair
I see an eye
I see something.... cute...

How can we Consider this respect into MLP classification?

Weight sharing

-6	5	4	3	-4	7	3	7	0	-1
8	2	-1	-7	6	9	9	10	3	6
9	-10	-7	6	4	-2	-8	6	٦-	-8
8	6	-9	8	9	6	-5	4	8	9
4	-4	6	9	-3	2	-8	-8	-7	7
-7	7	6	4	10	7	0	-3	-8	7
-2	-1	ဒု	-10	-4	-2	-10	7	8	3
6	3	- 5	-2	-5	-5	3	-7	3	-8
0	-8	5	9	10	4	-9	0	0	-5
4	3	-2	4	7	5	2	8	-3	8

Mechanism

Filter (=Kernel)

Original image \

Visualization of the receptive field

0	0	0	0	0	0	30
0	0	0	0	50	50	50
0	0	0	20	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0

Pixel representation of the receptive field

_	r		
3	÷	e	•
•	Т	٦	,
	•		

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Multiplication and Summation = (50*30)+(50*30)+(50*30)+(20*30)+(50*30)=6600 (A large number!)

Stride

Stride

- Recap: cross correlation expr (1D)
 - $(f \star g)(x) = \int_{-\infty}^{\infty} f(x)g(x+t)dx$
 - t = stride

Padding

- To prevent data loss when convolution
- To preserve edge data information
- Usually pads to 0

Λ	1	7	5]						
U	1		3		1	0	۱۵			
5	5	6	6						41	33
	_			*	1	2	1	=	•••	00
5	3	3	0	~	_	_	_		25	23
_	_	_	_		1	2	3			
1	1	1	2				Ĺ	l		

0	0	0	0	0	0
0	0	1	7	5	0
0	5	5	6	6	0
0	5	3	3	0	0
0	1	1	1	2	0
0	0	0	0	0	0

Pooling

- To extract summary statistics
- Accelerate the speed, reduce the noise effect, overfitting
- Max pooling, Average pooling, Weighted average pooling, …
- in CNN, usually uses Max pooling
- Pooling does not increase parameters (just simple calculation)

0	5	4	3	0	0
8	2	0	0	6	9
9	0	0	6	4	0
8	6	0	8	9	6
4	0	6	9	0	2
0	7	6	4	10	7

8	4	9
9	8	9
7	9	10

Output tensor size of convolution layer

- Notation
 - 0: size(width) of output image
 - I: size(width) of input image
 - K: size(width) of kernels
 - N: number of kernels
 - S: stride of the convolution operation
 - P: padding size
- O(width of output image)

$$O = \frac{I - K + 2P}{S} + 1$$

Channels of output image == number of filters (N)

Output tensor size of max pooling layer

- Notation
 - O: size(width) of output image
 - I: size(width) of input image
 - S: stride of the convolution operation
 - P_s : pooling size
- O(width of output image)

$$0 = \frac{I - P_S}{S} + 1$$

Channels of output image == number of input images

Number of parameters on convolution layer

- Notation
 - W_c : number of weights of the convolution layer
 - B_c : number of biases of the convolution layer
 - P_c : number of parameters of the convolution layer
 - K: size(width) of kernels used in the convolution layer
 - N: number of kernels
 - C: number of channels of the input image

•
$$W_c = K^2 \times C \times N$$
, $B_c = N$, $P_c = W_c + B_c$

Depth of filters == input image channels

Improving lives through learning

IDEALAB