# IT 775 Database Technology

**Data Stores** 

**Data Warehouses** 

## INTRODUCTION

A typical organization maintains and utilizes a number of operational data sources.

The operational data sources include the databases and other data repositories which are used to support the organization's day-to-day operations

A data warehouse is created within an organization as a separate data store whose primary purpose is data analysis.

## INTRODUCTION

Two main reasons for the creation of a data warehouse as a separate analytical database. The performance of operational day-to-day tasks involving data use can be severely diminished if such tasks have to compete for computing resources with analytical queries. It is often impossible to structure a database which can be used in an efficient manner for both operational and

analytical purposes

## INTRODUCTION

Operational information (transactional information) - the information collected and used in support of day to day operational needs in businesses and other organizations

**Analytical information** - the information collected and used in support of analytical tasks

Analytical information is based on operational (transactional) information

### OPERATIONAL VS. ANALYTICAL INFORMATION

#### **Operational Data**

#### **Analytical Data**

#### **Data Makeup Differences**

Typical Time-Horizon: Years Typical Time-Horizon: Days/Months

Summarized (and/or Detailed) Detailed

Values over time (Snapsho Current

#### **Technical Differences**

Small Amounts used in a Process

High frequency of Access

Can be Updated

Non-Redundant

Large Amounts used in a Process

Low/Modest frequency of Access

Read (and Append) Only

Redundancy not an Issue

#### **Functional Differences**

Used by all types of employees for tactical purposes **Application Oriented** 

Used by a narrower set of users for decision making **Subject Oriented** 

#### Application Oriented vs. Subject Oriented - Example

An applicationoriented database serving the Vitality Health Club Visits and Payments Application

#### HEALTH CLUB MEMBER

| MemberID | MemberName | MemberGender | MLevelID | DateMembershipPaid |
|----------|------------|--------------|----------|--------------------|
| 111      | Joe        | M            | Α        | 1/1/2013           |
| 222      | Sue        | F            | В        | 1/1/2013           |
| 333      | Pam        | F            | Α        | 1/2/2013           |
|          |            |              |          |                    |

#### MEMBERSHIP LEVEL

| MLevelID | MLevelType | MLevelFee | MLevelDescription       |
|----------|------------|-----------|-------------------------|
| Α        | Gold       | \$100     | Includes the Pool Usage |
| В        | Basic      | \$50      | No Pool Usage           |

#### DAILY VISIT FROM NONMEMBERS

| DVisitTID | DVisitLeveIID | DVisitDate | DVisitorGender |
|-----------|---------------|------------|----------------|
| 11xx22    | YP            | 1/1/2013   | M              |
| 11xx23    | NP            | 1/2/2013   | M              |
| 11xx24    | YP            | 1/2/2013   | F              |
|           |               |            |                |

#### VISIT LEVEL

| DVisitLevelID | DVisitLevelFee | DVisitLevelType    |
|---------------|----------------|--------------------|
| YP            | \$15           | With Pool Usage    |
| NP            | \$10           | Without Pool Usage |

#### Application Oriented vs. Subject Oriented – Example

A subjectoriented
database for the
analysis of the
subject revenue
in the Vitality
Health Club

#### REVENUE

| RevenueRecordID | Date     | GeneratedBy | ClientGender | Pool Use Included in Purchase | Amount |
|-----------------|----------|-------------|--------------|-------------------------------|--------|
| 1000            | 1/1/2013 | Member      | M            | Yes                           | \$100  |
| 1001            | 1/1/2013 | Member      | F            | No                            | \$50   |
| 1002            | 1/1/2013 | Nonmember   | M            | Yes                           | \$15   |
| 1003            | 1/2/2013 | Member      | F            | Yes                           | \$100  |
| 1004            | 1/2/2013 | Nonmember   | M            | No                            | \$10   |
| 1005            | 1/2/2013 | Nonmember   | F            | Yes                           | \$15   |
|                 |          |             |              |                               |        |

The data warehouse is a **structured repository** of **integrated**, **subject-oriented**, **enterprise-wide**, **historical**, and **time-variant** data. The purpose of the data warehouse is the **retrieval of analytical information**. A data warehouse can store **detailed and/or summarized data**.

## **Structured repository**

The data warehouse is a *database* containing analytically useful information

Any database is a *structured repository* with its structure represented in its metadata

## Integrated

The data warehouse integrates the analytically useful data from the various operational databases (and possibly other sources)

Integration refers to this process of bringing the data from multiple data sources into a singular data warehouse.

## **Subject-oriented**

The term *subject-oriented* refers to the fundamental difference in the purpose of an operational database system and a data warehouse.

- An operational database system is developed in order to support a specific business operation
- A data warehouse is developed to analyze specific business subject areas

### **Enterprise-wide**

The term *enterprise-wide* refers to the fact that the data warehouse provides an organization-wide view of the analytically useful information it contains

### **Historical**

The term *historical* refers to the larger time horizon in the data warehouse than in the operational databases

### Time variant

The term *time variant* refers to the fact that a data warehouse contains slices or snapshots of data from different periods of time across its time horizon

 With the data slices, the user can create reports for various periods of time within the time horizon

## Retrieval of analytical information

A data warehouse is developed for the *retrieval of* analytical information, and it is not meant for direct data entry by the users.

- The only functionality available to the users of the data warehouse is retrieval
- The data in the data warehouse is not subject to changes.
- The data in the data warehouse is referred to as nonvolatile, static, or read-only

### Detailed and/or summarized data

A data warehouse, depending on its purpose, may include the detailed data or summary data or both

A data warehouse that contains the data at the finest level of detail is the most powerful

### Data warehouse components

Source systems

Extraction-transformation-load (ETL) infrastructure

Data warehouse

Front-end applications

**Example** - The use of operational data sources for operational purposes in an organization



#### **Example** - The core components of a data warehousing system



### **Source systems**

In the context of data warehousing, *source systems* are operational databases and other operational data repositories (in other words, any sets of data used for operational purposes) that provide analytically useful information for the data warehouse's subjects of analysis

Every operational data store that is used as a source system for the data warehouse has two purposes:

- The original operational purpose
- As a source system for the data warehouse

Source systems can include external data sources

#### **Example** - A data warehouse with internal and external source systems



### Data warehouse

The data warehouse is sometimes referred to as the target system, to indicate the fact that it is a destination for the data from the source systems

A typical data warehouse periodically retrieves selected analytically useful data from the operational data sources

#### **ETL** infrastructure

The infrastructure that facilitates the retrieval of data from operational databases into the data warehouses

### ETL includes the following tasks:

- Extracting analytically useful data from the operational data sources
- Transforming such data so that it conforms to the structure of the subject-oriented target data warehouse model (while ensuring the quality of the transformed data)
- Loading the transformed and quality assured data into the target data warehouse

## Data warehouse front-end (BI) applications

Used to provide access to the data warehouse for users who are engaging in indirect use

#### **Example** - A data warehouse with front-end applications



## **DATA MARTS**

#### **Data mart**

A data store based on the same principles as a data warehouse, but with a more limited scope

|                     | DATA WAREHOUSE                                    | DATA MART                             |
|---------------------|---------------------------------------------------|---------------------------------------|
| Subjects            | Multiple                                          | Single                                |
| Data Sources        | Many                                              | Fewer                                 |
| Typical Size        | Very big (routinely terabytes of data and larger) | Not as big                            |
| Implementation Time | Relatively long (months, years)                   | Not as long                           |
| Focus               | Organization-wide                                 | Often narrower than organization-wide |

## DATA MARTS

## Independent data mart

- Stand-alone data mart, created in the same fashion as the data warehouse
- Independent data mart has its own source systems and ETL infrastructure

## DATA MARTS

### **Dependent data mart**

Does not have its own source systems

The data comes from the data warehouse

## STEPS IN THE DEVELOPMENT OF DATA WAREHOUSES

