

# BIRZEIT UNIVERSITY Physics Department

## Physics 112

## **Experiment No. 2**

## **Impedance Matching and Internal Resistance**

Student's Name: Mohammad Sheikh Student's No.: 1221541

Partner's Name: Mousa Suhaib Partners' No.: 1210143

Instructor: Shayma' Salama Section No.: 6

Date: 12-11-2023

## > Abstract:

- The aim: To find the value of the load resistance  $R_L$  that satisfies the condition of the maximum power transfer which is  $R_L = R + r_{in}$ .
- The method: The direct calculation of the electrical current passing through a simple circuit at different values of the resistance so we start making the circuit and connecting their elements with each other, we connect a battery that have a voltage of a 10 volts " $\mathcal{C}$ " with a constant resistor of 1000  $\Omega$  "R" and then connect the constant resistor with the adjustable resistor "RL" that is the load resistor.

#### • The main Result:

- From graph 1 (1/I vs RL):

```
Slope of line = 1/E = 0.0996.

E = 1/Slope = 10.03 \text{ volt}.

y\text{-intercept} = \sum R/E = 0.092 \text{ mA}^{-1} = 92.6 \text{ A}^{-1}.

\sum R = (R + rin) = 922 \Omega.
```

- From graph 2 (P vs RL):

$$\begin{split} P_{max} &= 24.9001 \text{ mW}. \\ RL &= (\ R + r_{in}\ ) = (1\ K\ \Omega) = 1000\ \Omega. \end{split}$$

#### • Introduction :

A voltage source is characterized by its electromotive force and the maximum value of the current it can deliver to short circuit . In this experiment, it was expected to measure the internal resistance of the voltage, the potential difference , and the maximum value of the power. This would be done by graphing two graphs, where one is expected to be a linear graph of  $R_L \, vs \, I^{-1}$ , and the second is expected to have a graph where the maximum value of the power, is known.

## **>** Data

| $R_{L}(K)$ | I(ma) | $I^{-1}$   | $I^2$   | $P_{\rm L} = I^2 R_{\rm L}$ |
|------------|-------|------------|---------|-----------------------------|
| 0.1        | 9     | 0.11111111 | 81      | 8.1                         |
| 0.3        | 7.63  | 0.1310616  | 58.2169 | 17.46507                    |
| 0.5        | 6.62  | 0.1510574  | 43.8244 | 21.9122                     |
| 0.7        | 5.85  | 0.17094017 | 34.2225 | 23.95575                    |
| 0.9        | 5.24  | 0.19083969 | 27.4576 | 24.71184                    |
| 1          | 4.99  | 0.2004008  | 24.9001 | 24.9001                     |
| 1.1        | 4.75  | 0.21052632 | 22.5625 | 24.81875                    |
| 1.3        | 4.34  | 0.23041475 | 18.8356 | 24.48628                    |
| 1.5        | 4     | 0.25       | 16      | 24                          |
| 2          | 3.34  | 0.2994012  | 11.1556 | 22.3112                     |
| 2.5        | 2.86  | 0.34965035 | 8.1796  | 20.449                      |
| 3          | 2.5   | 0.4        | 6.25    | 18.75                       |
| 5          | 1.67  | 0.5988024  | 2.7889  | 13.9445                     |
| 8          | 1.11  | 0.9009009  | 1.2321  | 9.8568                      |
| 10         | 0.9   | 1.11111111 | 0.81    | 8.1                         |
| 20         | 0.47  | 2.12765957 | 0.2209  | 4.418                       |
| 50         | 0.19  | 5.26315789 | 0.0361  | 1.805                       |

## > Data Analysis:



## ✓ Calculations of Graph 1 :

- Slope =  $\frac{\Delta 1/I}{\Delta R}$  =  $\frac{0.4 0.131}{3 0.3}$  = 0.0996
- E = 1/(Ans before rounding) = 10.03 volt.
- y-intercept =  $\sum R/E = 0.092 \text{ mA}^{-1} = 92.6 \text{ A}^{-1}$ .
- $\sum R = (R + r_{in}) = y$ -intercept \* E = (0.092 \* 10.03) = 0.9227 volt / mA =  $922\Omega$  .
- $r_{in} = \sum R R$  (where R is 1K $\Omega$  making it 1000).  $r_{in} = 922 - 1000 = -78 \Omega$ .



### ✓ Calculations of Graph 2:

- We see from figure (power versus resistance) that the maximum value for p occurs at RL equal (1)  $K\Omega \longrightarrow p_{max}$  equal (24.9001) mW.
- And the maximum power is when :  $R_L = (R + r_{in}) = (1k \ K\Omega) = (1000 \ \Omega).$   $R_{in} = RL R = 1000 1000 = 0 \ \Omega$

### > Result and conclusion:

- There should be an internal resistance in every circuit.
- To reach the maximum value of the power transferring the load resistance should be equal to the sum of the additional resistance and the internal resistance.
- Our Result of (R+  $r_{in}$ ) from Linear graph = 922  $\Omega$  and (R+  $r_{in}$ ) from semi log = 1000  $\Omega$  .

We noticed that difference in values of (R + rin) that occurred due to Systemetic errors and random errors.