Customer Transactions Preprocessing Summary Report

Group Members and roles

Member	Role (task)
Glen Miracle	Part 1: Data Augmentation on CSV files
Nguepi Jordan	Part 2: Merging Datasets with Transitive properties
Peter Johnson	Part 3: Data consistency and Quality checks

Preprocessing Steps

The preprocessing of the customer_transactions.csv dataset involved several steps to clean, augment, and prepare the data for predicting customer_rating:

1. Data Cleaning and Augmentation (Glen Miracle)

- Loaded the customer transactions dataset.
- Handled missing values using mean, median, mode imputation, and predictive modeling.
- Applied synthetic data generation techniques, including:
 - Adding random noise to numerical values.
 - Using **SMOTE** for data balancing.
 - Applying log transformation for skewed data.
- Saved the cleaned dataset as customer_transactions_augmented.csv.

2. Merging Datasets (Nguepi Jordan)

- Merged customer transactions with social profile data, linking them using an ID mapping dataset.
- Standardized different customer ID formats to maintain consistency.

Handled cases where a single customer ID had multiple records.

•

3. Feature Selection (Peter Johnson)

- Created a Customer Engagement Score using transaction history and social media activity.
- Engineered new features like:
 - Moving averages of transactions.
 - Time-based purchase aggregation.
 - Text-based features using TF-IDF.
- Identified highly correlated features using a correlation heatmap.
- Selected the top 10 most important features using SelectKBest.
- Saved the merged dataset as final_customer_data_[Databases-Peer-2].csv .

OUTPUT

Saved the augmented, transformed dataset (300 rows) as final_dataset_ready.csv.

Key Insights

- **Missing Data**: customer_rating had 6.67% missing values (10/150), addressed via mean imputation to retain all rows.
- **Spending Patterns**: purchase_amount ranged from 51 to 495 (mean ≈280.78), with synthetic data maintaining this distribution.
- **Feature Relevance**: Temporal (e.g., days_since_purchase) and behavioral (e.g., avg_monthly_purchases) features strongly correlated with customer_rating, suggesting predictive power.
- Data Expansion: Doubling the dataset improved robustness for modeling without overfitting risks.

Challenges and Solutions

Challenge: Limited Data Size

 Solution: Augmented with synthetic data, adding controlled noise and customer-specific category sampling to mimic real transactions.

Challenge: Missing Values in customer_rating

 Solution: Imputed with the mean to avoid dropping rows, given the low missing rate and numeric nature.

Challenge: Skewed purchase_amount

 Solution: Applied normalization (purchase_amount_normalized) to reduce skewness, aiding clustering and selection.

Challenge: Temporal Feature Accuracy

 Solution: Used the current date (March 16, 2025) for days_since_purchase, assuming recent data relevance; future adjustments could use a fixed reference date.

Challenge: Feature Overload

 Solution: Employed SelectKBest to focus on the top 10 predictive features, balancing complexity and utility.

Conclusion

The preprocessing transformed a small, partially incomplete dataset into a clean, augmented, and feature-rich version suitable for machine learning. The steps addressed data quality, quantity, and relevance, setting the stage for accurate customer_rating predictions.