

W66 N220 Commerce Court • Cedarburg, WI 53012 • USA Phone: 262.375.4400 • Fax: 262.375.4248

www.lsr.com

TEST REPORT # 310194-A LSR Job #: C-944

Compliance Testing of:

Data Collection Station

Test Date(s):

October 6th to 12th and 22nd 2010

Prepared For:

Ecolab

655 Lone Oak Drive F6

Eagan, MN 55121

In accordance with:
Federal Communications Commission (FCC)
Part 15, Subpart C, Section 15.249

Industry Canada (IC) RSS 210 Annex 2
Transmitters Operating in the
Frequency Band 902 MHz – 928 MHz

This Test Report is issued under the Authority of:

Signature: Date: 10.23.2010

Test Report Reviewed by:

Thomas T. Smith, Manager EMC Test Services

Signature: Thomas Date: 10.23.2010

Tested by:

Khairul Aidi Zainal, Senior EMC Engineer

Signature: Date: 10.23.10

This Test Report may not be reproduced, except in full, without written approval of LS Research, LLC.

TABLE OF CONTENTS (page 1 of 2)

EXH	IBIT 1: INTRODUCTION	
1.1	Scope	4
1.2	Normative References	4
1.3	LS Research, LLC Test Facility	5
1.4	Location of Testing	5
1.5	Test Equipment Utilized	5
	IBIT 2: PERFORMANCE ASSESSMENT	
2.1	Client Information	6
2.2	Equipment Under Test (EUT) Information	6
2.3	Associated Antenna Description	6
2.4	EUT's Technical Specifications	7
2.5	Product Description	8
	IBIT 3: EUT OPERATING CONDITIONS & CONFIGURATIONS DURING	
TES		
3.1	Climate Test Conditions	9
3.2	Applicability & Summary of EMC Emission Test Results	9
3.3	Modifications Incorporated in the EUT for Compliance Purposes	9
3.4	Deviations & Exclusions from Test Specifications	9
EXH	IBIT 4: DECLARATION OF CONFORMITY	10
E)///	IDIT E DADIATED EMICOIONO TEOTINO	
	IBIT 5: RADIATED EMISSIONS TESTING	4.4
5.1	Test Setup	11
5.2	Test Procedure	11
5.3	Test Equipment Utilized	12
5.4	Test Results	12
5.5	Calculation of Radiated Emissions Limits	13
5.6	Radiated Emissions Test Data Chart	15
5.7	Test Setup Photo(s) – Radiated Emissions Test	18
5.8	Screen Captures – Radiated Emissions Test	19
EXIL	IDIT A CONDUCTED EMICOLONIC TECT AC DOMED LINE	
	IBIT 6: CONDUCTED EMISSIONS TEST, AC POWER LINE	00
6.1	Test Setup	23
6.2	Test Procedure	23
6.3	Test Equipment Utilized	23
6.4	Test Results	23
6.5	FCC Limits of Conducted Emissions at the AC Mains Ports	24
6.6	Conducted Emissions Test Data Chart	25
6.7	Test Setup Photo(s) – Conducted Emissions Test	26
6.8	Screen Captures – Conducted Emissions Test	27

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 2 of 38

TABLE OF CONTENTS (Page 2 of 2)

EXHIBIT 7: OCCUPIED BANDWIDTH			
7.1 Limits	28		
7.2 Method of Measurements	28		
7.3 Test Data	28		
7.4 Screen Captures – Occupied Bandwidth	28		
EXHIBIT 8: BAND-EDGE MEASUREMENTS			
8.1 Method of Measurements	30		
EXHIBIT 9: FREQUENCY & POWER STABILITY OVER VOLTAGE	31		
VARIATIONS			
APPENDICES			
APPENDIX A: TEST EQUIPMENT LIST 32			
APPENDIX B: TEST STANDARDS – RADIO	34		
APPENDIX C: UNCERTAINTY STATEMENT	35		
APPENDIX D: ANTENNA SPECIFICATIONS	36		

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 3 of 38

EXHIBIT 1. INTRODUCTION

1.1 <u>SCOPE</u>

References:	FCC Part 15, Subpart C, Section 15.249 and 15.209	
	FCC Part 2, Section 2.1043 paragraph (b)1.	
	RSS GEN Issue 2 (2007) and RSS 210 Annex 2 Issue 7	
	(2007)	
Title:	FCC: Telecommunication – Code of Federal Regulations,	
	CFR 47, Part 15.	
	IC: Low-power License-exempt Radio-communication	
	Devices (All Frequency Bands): Category I Equipment	
Purpose of Test:	To gain FCC and IC Certification Authorization for Low-	
	Power License-Exempt Transmitters.	
Test Procedures:	Both conducted and radiated emissions measurements	
	were conducted in accordance with American National	
	Standards Institute ANSI C63.4 – American National	
	Standard for Methods of Measurement of Radio-Noise	
	Emissions from Low-Voltage Electrical and Electronic	
	Equipment in the Range of 9 kHz to 40 GHz.	
Environmental Classification:	Commercial, Industrial or Business	
	Residential	

1.2 NORMATIVE REFERENCES

Publication	Title
47 CFR, Parts 0-15 (FCC)	Code of Federal Regulations - Telecommunications
RSS 210	Low-power License-exempt Radio-communication Devices (All Frequency Bands): Category I Equipment
ANSI C63.4	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
CISPR 16-1-1	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus.
CISPR 16-2-1	Specification for radio disturbance and immunity measuring apparatus and methods. Part 201: Conducted disturbance measurement.

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 4 of 38

1.3 LS Research, LLC TEST FACILITY

LS Research, LLC is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

LS Research, LLC's scope of accreditation includes all test methods listed herein, unless otherwise noted. A copy of the accreditation may be accessed on our web site: www.lsr.com. Accreditation status can be verified at A2LA's web site: www.a2la2.net.

1.4 LOCATION OF TESTING

All testing was performed at LS Research, LLC, W66 N220 Commerce Court, Cedarburg, Wisconsin, 53012 USA, utilizing the facilities listed below, unless otherwise noted.

List of Facilities Located at LS Research, LLC:

- Compact Chamber
- Semi-Anechoic Chamber
- Open Area Test Site (OATS)

1.5 <u>TEST EQUIPMENT UTILIZED</u>

A complete list of equipment utilized in testing is provided in Appendix A of this test report. Calibration dates are indicated in Appendix A. All test equipment is calibrated in accordance with A2LA standards.

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 5 of 38

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1 **CLIENT INFORMATION**

Manufacturer Name:	Ecolab
Address:	655 Lone Oak Drive F6, Eagan MN 55121
Contact Name:	Cheryl Littau

2.2 EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information has been supplied by the applicant.

Product Name:	Data Collection Stations
Model Number:	DCS1PT
Serial Number:	Engineering Prototype

2.3 ASSOCIATED ANTENNA DESCRIPTION

Antenna associated with this device is a Johanson Technology ceramic chip antenna, part number 0915AT43A0026, for use in the 902 to 928 MHZ range. It has a peak gain of -1.0 dBi and capable of handling up to 2W input power.

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 6 of 38

2.4 <u>EUT'S TECHNICAL SPECIFICATIONS</u>

Additional Information:

EUT Frequency Range (in MHz)	906.4 MHz to 921.6 MHz
RF Power in Watts	
Minimum:	0.000571Watts
Maximum:	0.000671Watts
Field Strength at 3 meters	93.5 dBµV/m at 906.4 MHz
Occupied Bandwidth	127.84kHz
Type of Modulation	GFSK
Emission Designator	128KF1D
EIRP (in mW)	0.671 mW
Transmitter Spurious (worst case) at 3	53.3dBµV/m at 5529.6MHz
meters	
Stepped (Y/N)	No
Step Value:	N/A
Frequency Tolerance %, Hz, ppm	Better than 100 ppm
Microprocessor Model # (if applicable)	CC1111F32RSP
Antenna Information	
Detachable/non-detachable	Non-detachable
Туре	Ceramic chip antenna
Gain (in dBi)	-1.0 dBi (Data Sheet)
EUT will be operated under FCC Rule	15.249
Part(s)	
EUT will be operated under RSS Rule	RSS 210
Part(s)	
Modular Filing	☐ Yes ☐ No
Portable or Mobile?	Portable

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 7 of 38

2.5 **PRODUCT DESCRIPTION**

The Data Collection Stations allow data that has been collected from the Handy Hygiene Badges to be remotely downloaded via a 900MHz data transmission. Also additional information regarding an updates and configuration details can be uploaded to the Handy Hygiene Badges via the Data Collection Stations.

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 8 of 38

EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS

3.1 CLIMATE TEST CONDITIONS

Temperature:	72° F
Humidity:	46 %
Pressure:	733 mmHg

3.2 <u>APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS</u>

FCC and IC Paragraph	Test Requirements	Compliance (yes/no)
FCC: 15.207 IC: RSS GEN sect. 7.2.2	Power Line Conducted Emissions Measurements	YES
IC : RSS GEN section 4.6.1	20 dB Bandwidth	YES
FCC: 15.249(A) & 1.1310 IC: RSS 210 A2.9 (a)	Maximum Output Power	YES
FCC: 1.1307, 1.1310, 2.1091 & 2.1093 IC: RSS 102	RF Exposure Limit	YES
FCC: 15.249(a) IC: RSS 210 A2.9(a)	Transmitter harmonics	YES
FCC: 15.249(d), 15.209 & 15.205 IC: RSS 210 A2.9(b),	Transmitter Radiated Emissions	YES

The digital circuit portion of the EUT has been tested and verified to comply with FCC Part 15, Subpart B, Class B Digital Devices (RSS GEN and RSS 210 of IC) and the associated Radio Receiver has also been tested and found to comply with Part 15, Subpart B – Radio Receivers (RSS GEN and RSS 210 of IC). The Receiver Test Report is available upon request.

3.3	MODIFICATIO	NS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES
	None	⊠ Yes (explain below)

The power level of the transmitter was set to setting '40' for all channels.

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 9 of 38

EXHIBIT 4. DECLARATION OF CONFORMITY

The EUT was found to MEET the requirements as described within the specification of FCC Title 47, CFR Part 15.249, and Industry Canada RSS-210, Annex 2.9.

If some emissions are seen to be within 3 dB of their respective limits:

As these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

LS Research, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 10 of 38

EXHIBIT 5. RADIATED EMISSIONS TEST

5.1 Test Setup

The test setup was assembled in accordance with Title 47, CFR FCC Part 15, RSS GEN and ANSI C63.4. The EUT was placed on an 80cm high non-conductive pedestal, centered on a flush mounted 2-meter diameter turntable inside a 3 meter Semi-Anechoic, FCC listed Chamber. The EUT was operated in continuously transmitting modulated mode using power as provided by a USB port of a laptop. The unit has the capability to operate on 3 channels, controllable using 'hyperterminal'.

The applicable limits apply at a 3 meter distance. Measurements above 3 GHz were performed at a 1.0 meter separation distance. The calculations to determine these limits are detailed in the following pages. Please refer to Appendix A for a complete list of test equipment. The test sample was operated on one of four (3) standard channels: **906.4 MHz, 913.8 MHz and 921.6 MHz** to comply with FCC Part 15.35.

5.2 Test Procedure

Radiated RF measurements were performed on the EUT in a 3 meter Semi-Anechoic, FCC listed Chamber. The frequency range from 30 MHz to 10000 MHz was scanned and investigated. The radiated RF emission levels were manually noted at the various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on a non-conductive pedestal in the 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the EUT. A Biconical Antenna was used to measure emissions from 30 MHz to 300 MHz, and a Log Periodic Antenna was used to measure emissions from 300 MHz to 1000 MHz. A Double-Ridged Waveguide Horn Antenna was used from 1 GHz to 10 GHz.

In the frequency range of 30 MHz to 3 GHz, the maximum radiated RF emissions were found by raising and lowering the antenna between 1 and 4 meters in height while for the range of 3 GHz to 10 GHz the antenna was raised and lowered between 1 and 1.8 meters in height. In addition, the polarity of the antenna was switched between horizontal and vertical polarity.

The EUT was positioned in three orthogonal positions for the test.

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 11 of 38

5.3 Test Equipment Utilized

A list of the test equipment and antennas utilized for the Radiated Emissions test can be found in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. All calibrations of the antennas used were performed at an IEC/ISO 17025 accredited calibration laboratory, traceable to the SI standard. In addition, the Connecting Cables were measured for losses using a calibrated Signal Generator and an EMI Receiver. The resulting correction factors and the cable loss factors from these calibrations were entered into the EMI Receiver database. As a result, the data taken from the EMI Receiver accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading. The EMI Receiver was operated with resolution bandwidths as prescribed in ANSI C63.4.

5.4 Test Results

The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Part 15.249 and Canada RSS-210, Annex 2.9. The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 12 of 38

5.5 CALCULATION OF RADIATED EMISSIONS LIMITS

Reported data:

For both fundamental and spurious emissions measurement, the data reported includes all necessary correction factors. These correction factors are loaded onto the EMI receiver when measurements are performed.

Reported Measurement data = Raw receiver measurement ($dB\mu V/m$) + Antenna correction Factor + Cable factor (dB) + Miscellaneous factors when applicable (dB) – amplification factor when applicable (dB).

Field Strength of Fundamental Frequencies:

The fundamental emissions for an intentional radiator in the 902-928 MHz band, operating under FCC part 15.249 and RSS 210 A2.9 limits, must have electric field strength of no greater than 50 mV/m, for the fundamental frequency, when measured at 3 meters, and harmonic field strength of no greater than 500 μ V/m, when measured at 3 meters. Spurious emissions outside the 902-928 MHz band shall be attenuated by at least 50 dB below the level of the fundamental, or meet the limits expressed in FCC part 15.209 under general emission limits.

Field Strength of Fundamental Frequencies is Limited to 50,000 μ V/m, or 94 dB μ V/m. Field Strength of Harmonic and Spurious Frequencies is Limited by FCC 15.249 a and d The harmonic limit of –50 dBc with respect to the fundamental limit would be:

 $94 \text{ dB}\mu\text{V/m} - 50 \text{ dB} = 44 \text{ dB}\mu\text{V/m},$

with the exception of where FCC 15.209 allows for a higher limit to be used.

Frequency (MHz)	3 m Limit (μV/m)	3 m Limit (dBμV/m)
902-928	50,000	94.0
30-88 ; 88-216	159	44.0
216-902 ; 928-960	500	46.0*
960-40,000	500	54.0*

The following table depicts the general radiated emission limits obtained from Title 47 CFR, part 15.209a, for radiated emissions measurements, including restricted band limits as expressed in 47 CFR, part 15.205.

Frequency (MHz)	3 m Limit (μV/m)	3 m Limit (dBμV/m)
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
960-40,000	500	54.0

Sample conversion from field strength µV/m to dBµV/m:

 $dB\mu V/m = 20 log_{10} (3m limit)$

30 - 88 MHz example: $dB\mu V/m = 20 \log_{10} (100)$

 $40.0 \text{ dB}\mu\text{V/m} = 20 \log_{10} (100)$

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 13 of 38

902-928 MHz example: =20 log_{10} (50000/1) =93.98 $dB\mu V/m$

For measurements made at 1 meter, a 9.5 dB correction may be been invoked.

960 MHz to 40,000 MHz 500 μ V/m or 54.0 dB μ V/m at 3 meters 54.0 + 9.5 = 63.5 dB μ V/m at 1 meter

Generic example of reported data at 200 MHz:

Reported Measurement data = 18.2 (raw receiver measurement) + 15.8 (antenna factor) + 1.45 (cable factor) = 35.45 (dB μ V/m).

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 14 of 38

5.6 RADIATED EMISSIONS TEST DATA CHART

Measurements of Electromagnetic Radiated Emissions Frequency Range Inspected: 30 MHz to 10000 MHz

Manufacturer:	Ecola	Ecolabs					
Date(s) of Test:	Octob	per 6 th to 12 th 2010					
Project Engineer:	Khair	ul Aidi Zainal					
Test Engineer(s):	Khair	ul Aidi Zainal					
Voltage:	120 V	/AC					
Operation Mode:	Conti	Continuous transmit and modulated.					
Environmental	Temperature: 72°F						
Conditions in the Lab:	Relat	Relative Humidity: 46 %					
EUT Power:	Х	Single Phase 120 VAC)		3 Phase	V	AC
EUT FOWEI.		Battery	Battery		Other:		
EUT Placement:	X	80cm non-conductive	table		10cm Space	cers	
EUT Test Location:	Х	3 Meter Semi-Anechoi	C		3/10m OAT	ΓC	
EUT TEST LOCATION.	^	FCC Listed Chamber			3/10m OATS		
Measurements:		Pre-Compliance		Prelir	ninary	Χ	Final
Detectors Used:	Х	X Peak		Quas	i-Peak	Χ	Average

The following table depicts the level of radiated fundamental:

FREQ	ANT	EUT	HEIGHT	AZIMUTH	PEAK	Q.PEAK	AVERAGE	LIMIT	MARGIN
(MHz)			(m)	(°)	(dBµv/m)	(dBµv/m)	(dBµv/m)	(dBµv/m)	(dB)
921.59	Н	F	1.59	226	93.3	92.8	91.0	94.0	1.2
913.80	Н	F	1.61	227	93.7	93.2	91.4	94.0	0.8
906.40	Н	F	1.66	223	94.1	93.5	91.7	94.0	0.5

Note:

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 15 of 38

^{1.} H = Horizontal, V = Vertical, F=Flat.

RADIATED EMISSIONS DATA CHART (continued)

The following table depicts the level of harmonic emissions seen on the low channel:

Antenna	Frequency	Peak	Average	Limit	Margin	Height	Azimuth	EUT
Polarization	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	Orientation
Vertical	1812.8	43.6	35.7	54.0	18.3	137.0	204	٧
Vertical	2719.2	43.2	33.0	54.0	21.0	241.0	282	F
Horizontal	3625.6	61.4	58.7	63.5	4.8	110.8	252	S
Horizontal	4532.0	50.9	41.7	63.5	21.8	131.9	29	V
Horizontal	5438.4	61.3	58.5	63.5	5.0	105.0	197	S
Horizontal	6344.8	53.3	47.0	63.5	16.5	116.5	335	V
Vertical	7251.2	59.5	55.4	63.5	8.1	104.5	6	٧
Horizontal	8157.6	51.8	42.5	63.5	21.0	102.7	12	٧
Vertical	9064.0	56.0	49.4	63.5	14.1	109.7	11	٧

The following table depicts the level of harmonic emissions seen on middle channel:

	The fellething table deplote the level of harmenie emissions seen on made charmen									
Antenna	Frequency	Peak	Average	Limit	Margin	Height	Azimuth	EUT		
Polarization	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	Orientation		
Vertical	1827.6	43.6	36.0	54.0	18.0	134.0	201	V		
Vertical	2741.4	42.4	32.3	54.0	21.7	238.0	282	F		
Vertical	3655.2	64.7	62.6	63.5	0.9	108.6	308	F		
Horizontal	4569.0	49.0	42.8	63.5	20.7	129.6	26	V		
Vertical	5482.8	63.5	62.5	63.5	1.0	109.9	293	F		
Vertical	6396.6	52.4	49.2	63.5	14.3	102.3	208	S		
Vertical	7310.4	56.6	55.0	63.5	8.5	136.9	347	V		
Vertical	8224.2	51.2	43.8	63.5	19.7	107.0	193	S		
Vertical	9138.0	54.6	51.0	63.5	12.5	100.0	261	F		

The following table depicts the level of harmonic emissions seen on high channel:

	The following table acplots the level of harmonic chilipsions seen of high chainles.								
Antenna	Frequency	Peak	Average	Limit	Margin	Height	Azimuth	EUT	
Polarization	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	Orientation	
Vertical	1843.2	44.0	37.7	54.0	16.3	132.0	216	V	
Vertical	2764.8	42.3	31.2	54.0	22.8	235.0	279	F	
Vertical	3686.4	63.8	62.8	63.5	0.7	119.0	297	F	
Horizontal	4608.0	50.1	44.5	63.5	19.0	125.4	28	V	
Vertical	5529.6	63.8	62.8	63.5	0.7	115.5	296	F	
Vertical	6451.2	52.3	49.3	63.5	14.2	102.3	209	S	
Vertical	7372.8	56.3	54.0	63.5	9.5	123.8	5	V	
Horizontal	8294.4	49.4	41.2	63.5	22.3	103.2	84	F	
Vertical	9216.0	55.5	50.7	63.5	12.8	102.5	262	F	

Notes:

- 1) A Peak Detector was used in measurements above 1 GHz, for average measurement, the peak detector was used with lower VBW. The peak detector was used to ensure the peak emissions did not exceed 20 dB above the limits.
- 2) Measurements above 3 GHz were made at 1 meter of separation from the EUT.
- 3) H = Horizontal, V = Vertical, F=Flat, S=Side

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 16 of 38

The following table depicts the level of significant spurious radiated RF emissions (other than harmonics) found:

FREQ	ANT	EUT	HEIGHT	AZIMUTH	PEAK	Q.PEAK	AVERAGE	LIMIT	MARGIN
(MHz)			(m)	(°)	(dBµv/m)	(dBµv/m)	(dBµv/m)	(dBµv/m)	(dB)
933.57	Н	F	1.58	229	45.9	43.2	39.2	46.0	2.8
894.44	Н	F	1.00	222	47.3	44.9	40.1	46.0	1.1
532.89	٧	F	1.00	173	38.7	33.7	23.2	46.0	12.3

Note:

1. H = Horizontal, V = Vertical, F= Flat.

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 17 of 38

5.7 <u>Test Setup Photo(s) – Radiated Emissions Test</u>

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 18 of 38

5.8 <u>Screen Captures - Radiated Emissions Test</u>

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and a peak detector with video averaging is utilized when measuring frequencies above 1 GHz.

The signature scans shown here are from worst-case emissions, as measured on channels low, middle and high, with the sense antenna both in vertical and horizontal polarity for worst case presentations.

Antenna Vertically Polarized, 300-860 MHz, at 3m Agilent 21:43:57 Oct 11, 2010 Agilent 21:48:14 Oct 11, 2010 Peak Search Marker Select Marker Meas At Mkr EMI Peak 894.41 MHz QP: EMI Avg: Meas At Mkr EMI Peak:45.30 894.41 MHz QP: 43.25 EMI Avg: 40.60 **Next Peak** Next Pk Right Normal 799.49 MH: 35.61 dB**µ**V 533.08 MH: 36.94 dB**µ**V Ref 55 dBµV EmiPk Ref 55 dB**µ**V #Atten 10 dB #Atten 10 dB Next Pk Left Delta Delta Pair Min Search Span Pair Pk-Pk Search Mkr → CF Off More 1 of 2 Stop 860.0 MH *VBW 300 kHz Sweep 307.8 ms (2000 pts) Stop 860.0 MHz •VBW 300 kHz Sweep 307.8 ms (2000 pts) Res BW (CISPR) 120 kHz Res BW (CISPR) 120 kHz File Operation Status, C:\B03L0GV9.ANT file loaded File Operation Status, C:\B03L0GV9.ANT file loaded Transceiver On Transceiver Off

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 19 of 38

<u>Screen Captures - Radiated Emissions Testing</u> (continued)

Antenna Vertically Polarized, 860-902 MHz, at 3m

Antenna Vertically Polarized, 928 to 940 MHz, at 3m

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 20 of 38

<u>Screen Captures - Radiated Emissions Testing</u> (continued)

Antenna Vertically Polarized, 940 to 1000 MHz, at 3m

Antenna Horizontally Polarized, 1000 to 1500 MHz, at 3m

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 21 of 38

<u>Screen Captures - Radiated Emissions Testing</u> (continued)

Antenna Vertically Polarized, 1500 MHz to 3000 MHz, at 3m

Antenna Vertically Polarized, 3000-10000 MHz, at 1m

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 22 of 38

EXHIBIT 6. CONDUCTED EMISSIONS TEST, AC POWER LINE:

6.1 Test Setup

The test area and setup are in accordance with ANSI C63.4 and with Title 47 CFR, FCC Part 15, Industry Canada RSS-210 and RSS GEN. The EUT was placed on a non-conductive wooden table, with a height of 80 cm above the reference ground plane. The EUT's power cable was plugged into a 50Ω (ohm), $50/250~\mu$ H Line Impedance Stabilization Network (LISN). The AC power supply of 120V was provided via an appropriate broadband EMI Filter, and then to the LISN line input. Final readings were then taken and recorded. After the EUT was setup and connected to the LISN, the RF Sampling Port of the LISN was connected to a 10 dB Attenuator-Limiter, and then to EMI receiver System. The EMCO LISN used has the ability to terminate the unused port with a 50Ω (ohm) load when switched to either L1 (line) or L2 (neutral).

6.2 Test Procedure

The EUT was investigated in continuous modulated transmit mode for this portion of the testing. The appropriate frequency range and bandwidths were selected on the EMI Receiver, and measurements were made. The bandwidth used for these measurements is 9 kHz, as specified in CISPR 16-1, Section 1, Table 1, for Quasi-Peak and Average detectors in the frequency range of 150 kHz to 30 MHz. Final readings were then taken and recorded.

6.3 <u>Test Equipment Utilized</u>

A list of the test equipment and accessories utilized for the Conducted Emissions test is provided in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. Calibrations of the LISN and Limiter were performed at an IEC/ISO 17025 accredited calibration laboratory, traceable to the SI standard. All cables are calibrated and checked periodically for conformance. The emissions are measured on the EMI System, which has automatic correction for all factors stored in memory and allows direct readings to be taken.

6.4 Test Results

The EUT was found to **MEET** the Conducted Emission requirements of FCC Part 15.207 and RSS GEN 7.2.2 for Conducted Emissions for an Intentional Radiator. See the Data Charts and Graphs for more details of the test results.

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 23 of 38

6.5 FCC Limits of Conducted Emissions at the AC Mains Ports

Frequency Range	Class B I	Limits (dBµV)	Measuring
(MHz)	Quasi-Peak	Average	Bandwidth
0.150 -0.50 *	66-56	56-46	RBW = 9 kHz
0.5 - 5.0	56	46	VBW ≥ 9 kHz for QP
5.0 – 30	60	50	VBW = 1 Hz for Average
* The limit decrea			
logarithm of the fre	quency in this ra	ange.	

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 24 of 38

6.6

CONDUCTED EMISSIONS TEST DATA CHART Frequency Range inspected: 150 KHz to 30 MHz

Manufacturer:	Ecc	Ecolab				
Date(s) of Test:	Oct	ober 12 th 2010				
Project Engineer:	Kha	airul Aidi Zainal				
Test Engineer:	Kha	irul Aidi Zainal				
Voltage:	120	VAC				
Operation Mode:	Cor	Continuous transmit				
Environmental	Ten	Temperature: 74°F				
Conditions in the Lab:	Rel	Relative Humidity: 46 %				
Test Location:	Χ	X AC Mains Test area Chamber			Chamber	
EUT Placed On:	Χ	X 40cm from Vertical Ground Plane 10cm Spacers			10cm Spacers	
EOT Flaced Off.	Χ	80cm above Ground Plane Other:		Other:		
Measurements:		Pre-Compliance		Preliminary	Χ	Final
Detectors Used:		Peak	X	Quasi-Peak	X	Average

		9	QUASI-PE <i>A</i>	<u>/K</u>		<u>AVERAGE</u>	
Frequency (MHz)	Line	Q-Peak Reading (dBµV)	Q-Peak Limit (dBμ V)	Quasi-Peak Margin (dB)	Average Reading (dBµV)	Average Limit (dBµ V)	Average Margin (dB)
0.184	1.0	46.5	64.3	17.8	39.6	54.3	14.7
0.306	1.0	37.9	60.1	22.2	31.5	50.1	18.6
0.491	1.0	33.3	56.2	22.9	29.3	46.2	16.9
2.146	1.0	35.1	56.0	20.9	31.9	46.0	14.1
19.381	1.0	39.2	60.0	20.8	31.6	50.0	18.4
0.184	2.0	46.8	64.3	17.5	39.0	54.3	15.4
0.859	2.0	26.5	56.0	29.5	23.8	46.0	22.2
2.262	2.0	37.5	56.0	18.5	34.6	46.0	11.4
19.192	2.0	40.1	60.0	19.9	32.3	50.0	17.7

- 1) The emissions listed are characteristic of the power supply used, and did not change by the EUT.
- 2) The EUT exhibited similar emissions across the Low, Middle and High channels tested.

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 25 of 38

6.7 <u>Test Setup Photo(s) – Conducted Emissions Test</u>

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 26 of 38

6.8 <u>Screen Captures – Conducted Emissions Test</u>

These screen captures represent Peak Emissions. For conducted emission measurements, both a Quasi-Peak detector function and an Average detector function are utilized. The emissions must meet both the Quasi-peak limit and the Average limit as described in 47 CFR 15.207 and RSS GEN 7.2.2 (Table 2).

The signature scans shown here are from channel 913.8 MHz, chosen as being a good representative of channels.

Line 1 Agilent 17:14:50 Oct 12, 2010 Agilent 17:10:26 Oct 12, 2010 R T Trace R T Peak Search Meas At Mkr EMI Peak: N/A QP: N/A CMI Avg: N/A Trace Presel: Input: RF Atten: 10 dB **Next Peak** Path: Filter Gain: ON Path: Filter Gain: ON Clear Write Next Pk Right Ref 80 dBµV •EmiPk∏ 41.55 dBpV #Atten 10 dB #Atten 10 dB Ref 80 dB**µ**V Max Hold Next Pk Left -DC Coupled DC Coupled Min Hold Min Search View Pk-Pk Search Blank Mkr → CF More 1 of 2 More 1 of 2 Stop 30.00 MH; Sweep 1.023 s (2000 pts) es BW (CISPR) 9 kHz VBW 91 kHz es BW (CISPR) 9 kHz VBW 91 kHz File Operation Status, C:\CNDBAVG9.LIM file loaded No Peak Found 150 kHz to 1 MHz 1 MHz to 30 MHz

Line 2

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 27 of 38

EXHIBIT 7. OCCUPIED BANDWIDTH:

7.1 Limits

There are no limits specified. The occupied bandwidth need only be reported.

7.2 Method of Measurements

This test was performed radiated in a 3-meter semi-anechoic chamber. The resolution bandwidth was set such that it was greater than the occupied bandwidth. This maximum value for the fundamental was then used as reference for 20dBc.

The resolution bandwidth was then set to a value that was greater than or equal to 1% of the bandwidth. Using the 20dBc, marker, the bandwidth was measured.

7.3 Test Data

Center Frequency (MHz)	Measured -20 dBc Occ.Bw (kHz)
906.4	127.84
913.8	127.63
921.6	127.55

7.4 Screen Captures - OCCUPIED BANDWIDTH

Low channel Occupied Bandwidth

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 28 of 38

Middle channel Occupied Bandwidth

High channel Occupied Bandwidth

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 29 of 38

EXHIBIT 8.BAND-EDGE MEASUREMENTS

8.1 Method of Measurements

FCC 15.209(b) and 15.249(d) require a measurement of spurious emission levels to be at least 50 dB lower than the fundamental emission level, or to the general radiated emissions limit in 15.209, in particular at the Band-Edges where the intentional radiator operates. Also, RSS 210 Section 2.2 requires that unwanted emissions meet limits listed in tables 2 and 3 of the same standard and also to the limits in the applicable annex. The following screen captures demonstrate compliance of the intentional radiator at the 902-928 MHz Band-Edges. The EUT was operated in continuous transmit mode with continuous modulation, with internally generated data as the modulating source. The EUT was operated at the lowest channel for the investigation of the lower Band-Edge, and at the highest channel for the investigation of the higher Band-Edge.

Screen Capture Demonstrating Compliance at the Band-Edges

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 30 of 38

EXHIBIT 9. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS

The stability of the device was examined as a function of the input voltage available to the EUT. A Spectrum Analyzer was used to measure the frequency at the appropriate frequency markers.

In this case, the EUT is powered via the USB port. Therefore, using a variable DC power supply, the voltage was varied by $\pm 15\%$.

A spectrum analyzer was used to measure the frequency at the appropriate frequency markers. For this test, the EUT was placed in continuous transmit CW mode.

The power was then cycled On/Off to observe system response. No unusual response was observed, the emission characteristics were well behaved, and the system returned to the same state of operation as before the power cycle.

The output power only varied by a maximum of **0.1dB** and the frequency stability was better than **100 ppm** during the voltage variation tests.

	4.2	25	5.0	00	5.7	75		
	Frequency	Power	Frequency	Power	Frequency	Power	Deviation	Deviation
Channel	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)
Low	906427875	-4.362	906427375	-4.334	906427625	-4.303	500	0.1
Middle	913826125	-3.842	913826250	-3.810	913825875	-3.880	375	0.1
High	High 921624250 -3.960		921624250	-3.928	921624375	-3.948	125	0.0
Maxim	Maximum Frequency Deviation			Hz				
Max	imum Power dev	iation	0.1	dBm				

Note: The output power measurement does not reflect actual power transmitted. This measurement was used to obtain power deviation only. This deviation is then applied to the radiated measurements of the fundamental to assess conformity.

EUT stops transmitting at 1.9 VDC. No anomalies were observed as supply voltage was lowered to this level.

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 31 of 38

APPENDIX A

	🛕 🗸 🙀 Wireless	SEARCH LLC SProduct Development prient Calibration						
	Date :	8-Oct-2010	Type Test :	POW & FREQ ST	TABILITY		Job # :	<u>C-944</u>
	Prepared By:	Aidi	Customer :	Ecolab			Quote #:	310194
No.	Asset #	Description	Manufacturer	Model#	Serial#	Cal Date	Cal Due Date	Equipment Status
1 2	CC 000221C AA 960143	Spectrum Analyzer Phaseflex	HP Gore	E4407B EKD01D01048.0	US39160256 5546519	3/15/2010 9/22/2011	3/15/2011 9/22/2012	Active Calibration Active Calibration
		Project Engineer:	AIDI			Quality Assurance:	том ѕмпн	

	LS RESEARCH LLC Wireless Product Development Equipment Calibration									
	Date :	8-Oct-2010	Type Test	FUNDAMENTAL			_ Job # :	C-944		
	Prepared By:	AIDI	Customer :	Ecolab			Quote #:	310194		
No.	Asset #	Description	Manufacturer	Model#	Serial#	Cal Date	Cal Due Date	Equipment Status		
1	AA 960078	Log Periodic Antenna	EMCO	93146	9701-4855	10/16/2009	10/16/2010	Active Calibration		
2	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/7/2010	6/7/2011	Active Calibration		
3	EE 960158	RF Preselecter	Agilent	N9039A	MY46520110	6/7/2010	6/7/2011	Active Calibration		
		Project Engineer	: AIDI		Qu	uality Assurance:	TOM SMITH			

7	LS RESEARCH LLC Wireless Product Development Equipment Calibration								
	Date :	8-Oct-2010	Type Test	Occupied Bandwi	dth (6dB & 20dB)		Job#:	C-944	
	Prepared By:	AIDI	Customer:	Ecolab			Quote #:	310194	
No.	Asset#	Description	Manufacturer	Model#	Serial#	Cal Date	Cal Due Date	Equipment Status	
1	AA 960078	Log Periodic Antenna	EMCO	93146	9701-4855	10/16/2009	10/16/2010	Active Calibration	
2	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/7/2010	6/7/2011	Active Calibration	
3	EE 960158	RF Preselecter	Agilent	N9039A	MY46520110	6/7/2010	6/7/2011	Active Calibration	
		Project Engineer:	AIDI		Qı	uality Assurance:	TOM SMITH		

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 32 of 38

	Wirel Eq	RESEARCH LLC ess Product Development uipment Calibration	Type Test	: TX SPURIOUS	Emissions		Job#	: C-944
	Prepared E	By: AIDI	Customer :	Ecolab			Quote #	310194
No	Asset#	Description	Manufacturer	Model#	Serial#	Cal Date	Cal Due Date	Equipment Status
1	EE 960073	Spectrum Analyzer	Agilent	E4446A	US45300564	9/22/2010	9/22/2011	Active Calibration
2	AA 960144	Phaseflex	Gore	EKD01D010720	5800373	6/4/2010	6/4/2011	Active Calibration
3	AA 960081	Double Ridge Horn Antenna	EMCO	3115	6907	12/22/2009	12/22/2010	Active Calibration
4	EE 960147	Pre-Amp	Adv. Micro	WLA612	123101	12/28/2009	12/28/2010	Active Calibration
5	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/7/2010	6/7/2011	Active Calibration
6	EE 960158	RF Preselecter	Agilent	N9039A	MY46520110	6/7/2010	6/7/2011	Active Calibration
7	AA 960078	Log Periodic Antenna	EMCO	93146	9701-4855	10/16/2009	10/16/2010	Active Calibration
8	AA 960150	Bicon Antenna	ETS	3110B	0003-3346	11/3/2009	11/3/2010	Active Calibration
9	AA 960007	Double Ridge Horn Antenna	EMCO	3115	9311-4138	11/10/2009	11/10/2010	Active Calibration
		·						
		Project En	gineer: AIDI			Quality Assurance	e: TOM SMITH	

	Wirel Eq	ESEARCH LLC ess Product Development uipment Calibration e: 8-0ct-2010	Type Test	: Radiated Emiss	sions (109)		_	: <u>C-944</u> : 310194	
	riepaieu L	Jy. Au	Customer .	LCOIAD				. 310134	
No	Asset#	Description	Manufacturer	Model#	Serial#	Cal Date	Cal Due Date	Equipment Status	
1	EE 960073	Spectrum Analyzer	Agilent	E4446A	US45300564	9/22/2010	9/22/2011	Active Calibration	
2	AA 960144	Phaseflex	Gore	EKD01D010720	5800373	6/4/2010	6/4/2011	Active Calibration	
3	AA 960081	Double Ridge Horn Antenna	EMCO	3115	6907	12/22/2009	12/22/2010	Active Calibration	
4	EE 960147	Pre-Amp	Adv. Micro	WLA612	123101	12/28/2009	12/28/2010	Active Calibration	
5	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/7/2010	6/7/2011	Active Calibration	
6	EE 960158	RF Preselecter	Agilent	N9039A	MY46520110	6/7/2010	6/7/2011	Active Calibration	
7	AA 960078	Log Periodic Antenna	EMCO	93146	9701-4855	10/16/2009	10/16/2010	Active Calibration	
8	AA 960150	Bicon Antenna	ETS	3110B	0003-3346	11/3/2009	11/3/2010	Active Calibration	
9	AA 960007	Double Ridge Horn Antenna	EMCO	3115	9311-4138	11/10/2009	11/10/2010	Active Calibration	
		Project En	gineer: AIDI			Quality Assurance	ce: TOM SMITH		

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 33 of 38

APPENDIX B TEST STANDARDS – CURRENT PUBLICATION DATES RADIO

STANDARD#	DATE	Am. 1	Am. 2
	2009	AIII. I	AIII. Z
ANSI C63.4 ANSI C63.10	2009		
CISPR 11	2009-05	2009-12 P	
CISPR 12	2009-05	2009-12 F	
CISPR 12	2007-05	2009-11	
CISPR 14-1	2003-11	2008-11	2009 05
CISPR 14-2 CISPR 16-1-1 Note 1	2010-01	2001-11	2008-05
		2004.04	2006.07
CISPR 16-1-2 Note 1 CISPR 22	2003	2004-04	2006-07
CISPR 24		2004.07	2002 10
EN 55011	1997-09 2007-05	2001-07	2002-10
EN 55014-1	2006		
EN 55014-2	1997	2007	
EN 55022	2006	2007	
EN 60601-1-2	2007-03		
EN 61000-3-2	2006-05		
EN 61000-3-3	2008-12		
EN 61000-4-2	2009-05	2222.25	
EN 61000-4-3	2006-07	2008-05	
EN 61000-4-4	2004		
EN 61000-4-5	2006-12		
EN 61000-4-6	2009-05	2004	
EN 61000-4-8	1994	2001	
EN 61000-4-11	2004-10		
EN 61000-6-1	2007-02		
EN 61000-6-2	2005-12		
EN 61000-6-3	2007-02		
EN 61000-6-4 FCC 47 CFR, Parts 0-15,	2007-02		
18, 90, 95	2009		
FCC Public Notice DA 00- 1407	2000		
FCC ET Docket # 99-231	2002		
FCC Procedures	2007		
ICES 001	2006-06		
ICES 002	2009-08		
ICES 003	2004-02		
IEC 60601-1-2 Note 1	2007-03		
IEC 61000-3-2	2005-11	2008-03	2009-02
IEC 61000-3-3	2008-06		
IEC 61000-4-2	2008-12		
IEC 61000-4-3	2008-04	incl in 2008-04	2009-12 FD

STANDARD#	DATE	Am. 1	Am.
IEC 61000-4-4	2004-07	2010-10	
IEC 61000-4-5	2005-11		
IEC 61000-4-6	2008-10		
IEC 61000-4-8	2009-09		
IEC 61000-4-11	2004-03		
IEC 61000-6-1	2005-03		
IEC 61326-1	2006-06		
ISO 14982	1998-07		
MIL Std. 461E	1999-08		
RSS GEN	2007-06		
RSS 119	2007-06		
RSS 123	1999-11		
RSS 125	2000-03		
RSS 131	2003-07		
RSS 136	2002-10		
RSS 137	2009-02		
RSS 210	2007-06		
RSS 213	2005-12		
RSS 243	2005-11		
RSS 310	2007-06		
Note 1: Test not on LSF	2 Scone of Ac	oreditation	1
odated on 02-03-10	COUPE OF ACI	or GurialiOII.	

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 34 of 38

APPENDIX C Uncertainty Statement

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k=2.

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.24 dB
Radiated Emissions	3-Meter Chamber, Log Periodic Antenna	4.8 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.18 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.92 dB
Conducted Emissions	Shielded Room/EMCO LISN	1.60 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	1.128 Volts/Meter
Conducted Immunity	3 Volts level	1.0 V

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 35 of 38

Appendix D

Antenna Specification(s)

"High Frequency Ceramic Solutions"

 915 MHz Antenna
 P/N 0915AT43A0026

 Detail Specification: 02/20/09
 Page 1 of 3

General Specifications

Part Number	0915AT43A0026	
Frequency Range	902 - 928	
Peak Gain	-1.0 dBi typ. (XZ-total)	
Average Gain	-4.0 dBi typ. (XZ-total)	
Return Loss	8.5 dB min.	
Impedance	50 Ω	
Input Power	2W max.	

Operating Temperature	-40 to +85°C
Storage Temperature Range	+5~+35°C, Humidity 45~75%RH
Reel Quanity	1,000

No.	Function	Terminal Configurati	on
1	Feeding Point		
2	NC	2 1	l

Mechanical Dimensions

	ln	mm	*
L	0.276 ± 0.008	7.00 ± 0.20	w
W	0.079 ± 0.008	2.00 ± 0.20	"
Т	0.031 +.004/008	0.80 +0.1/-0.2	· •
а	0.020 ± 0.012	0.50 ± 0.30	L

Mounting Considerations

Johanson Technology, Inc. reserves the right to make design changes without notice. All sales are subject to Johanson Technology, Inc. terms and conditions.

www.johansontechnology.com

4001 Calle Tecate • Camarillo, CA 93012 • TEL 805.389.1166 FAX 805.389.1821

2008 Johanson Technology, Inc. All Rights Reserved

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 36 of 38

"High Frequency Ceramic Solutions"

 915 MHz Antenna
 P/N 0915AT43A0026

 Detail Specification:
 02/20/09

 Page 3 or 3

Johanson Technology, Inc. reserves the right to make design changes without notice. All sales are subject to Johanson Technology, Inc. terms and conditions.

www.johansontechnology.com

4001 Calle Tecate • Camarillo, CA 93012 • TEL 805.389.1166 FAX 805.389.1821

2008 Johanson Technology, Inc. All Rights Reserved

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 37 of 38

Prepared For: Ecolab	EUT: Data Collection Station	LS Research, LLC
Report #310194-A	Model #: DCS1PT	Template: 15.249 8-11-2010
LSR Job #:C-944	Serial #:Engineering Prototype	Page 38 of 38