

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enternd)

REPORT DOCUMEN		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIFIENT'S CATALOG NUMBER
4. TITLE (end Sublitle) Structural and Electronic Relationships Between Conducting Iron Niobates and Iron Tungstates.		5. TYPE OF REPORT & PERIOD COVERED Technical
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) H. Leiva, K. Sieber, B. K and A. Wold	hazai, K. Dwight	B. CONTRACT OR GRANT NUMBER(*) N00014-77-C-0387
9. PERFORMING ORGANIZATION NAME AND Professor Aaron Wold Brown University, Depa Providence, R. I. 0291		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Dr. David Nelson, Code	RESS	12. REPORT DATE February 24, 198?
Office of Naval Resear Arlington, Virginia 22	•	13. NUMBER OF PAGES 25
14. MONITORING AGENCY NAME & ADDRES		15. SECURITY CLASS. (of this report)
		15a. DECLASSIFICATION DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Pelease; Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

B

18. SUPPLEMENTARY NOTES

Submitted to the Journal of Solid State Chemistry

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Conducting Ternary Iron Oxides Structural Relationships Wolframites $Tri-\alpha-PbO_2$

Tri-rutile

ABSTRACT (Continue on reverse side if necessary and identify by block number)

Members of the system Fe-Nb-O and Fe-W-O have been compared, and their electronic properties have been correlated with the structural parameters. The compounds crystallize as ordered variants of the basic $\alpha\text{-PbO}_2$ structure, and the nature of the ordering of the [FeO₆] and [NbO₆] or [WO₆] octahedra determines the conductivity which may be observed for these phases.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601

OFFICE OF NAVAL RESEARCH

Contract N00014-77-C-0387

Task No. NR-359-653

TECHNICAL REPORT NO. 17

Structural and Electronic Relationships Between
Conducting Iron Niobates and Iron Tungstates

by

H. Leiva, K. Sieber, B. Khazai, K. Dwight, and A. Wold

Department of Chemistry

Brown University

Providence, Rhode Island 02912

Prepared for Publication
in the

Journal of Solid State Chemistry

February 24, 1982

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited

INTRODUCTION

The use of α iron(III) oxide as a potential photoanode for photoinduced electrolysis of water has been reported (1-5). The interest in this compound has been generated by its relatively narrow band gap (~2.2 eV) and its stability in aqueous solutions. It was found (6) that pure α -Fe $_2$ O $_3$ has a high resistivity (>10 $^6\Omega\text{cm}$) and shows no detectable photocurrent. Although the phase boundary between $\alpha\text{-Fe}_20_3$ and Fe_30_4 is sharp (7), $\alpha\text{-Fe}_20_3$ can be made conducting by the introduction of small amounts of $\operatorname{Fe}_3\mathbf{0}_4$ on exposure to a reducing atmosphere. The spinel, $\operatorname{Fe_3O_4}$, contains both Fe^{2+} and Fe^{3+} on octahedral sites and conduction occurs via electron transfer from Fe^{2+} Iron(III) oxide itself crystallizes with the corundum structure which contains only trivalent iron and, in addition, cannot tolerate deviations from a metal to oxygen ratio of 2:3. Another difficulty which presents itself in the use of iron(III) oxide as a photoanode is the large positive flat band potential reported by Kung (5). Despite a reasonably favorable band gap for $\alpha\text{-Fe}_20_3$, the value of 0.7 V for V_{fb} (measured against H_2 at pH = 13.3) means that the actual efficiency of the electrode is low. The practical significance of $V_{\mbox{\scriptsize fh}}$ is that this is numerically equal to the minimum applied voltage required to decompose water. It has also been shown by Kung (5) that the use of oxide photoanodes having small band gaps, so as to utilize a large portion of the solar spectrum, requires to large an applied voltage. In order to develop a potentially useful electrode containing iron, it is therefore necessary to obtain stable compounds having both Fe^{2+} and Fe^{3+} on equivalent sites, as well as to alter the composition sufficiently so as to maintain a relatively small band gap and a reduced applied voltage.

A number of potentially interesting iron compounds which crystallize with the rutile, wolframite, columbite, or $\text{tri-}\alpha\text{-PbO}_2$ structures can be synthesized. These structure-types can accommodate varying amounts of both Fe(II) and Fe(III). In the following sections, each structure will be discussed, and the photoelectronic properties of a number of iron-containing compounds will be related to certain structural features.

	PER CAL	
	. Stribution,	/
one \	Availability	/ Codes
NSPECT: /	Av: il a	nd/or
	plat Special	al
	1	

Accession For GRA&I

THE PROPERTIES OF IRON(III) NIOBATE AND IRON(II) TUNGSTATE

The compound iron (III) niobate, FeNbO $_4$, crystallizes below 1085°C with the monoclinic wolframite structure (space group P2/C - C_{2h}^4). Roth (8) and Laves (9) have shown that between 1085°C and 1380°C, a transition to orthorhombic α -PbO $_2$ (space group Pbcn - D_{2h}^{14}) can occur which will further transform to the tetragonal rutile structure (space group P4 $_2$ /mnm - D_{2h}^{14}) above 1380°C and approximately 100° below the melting point.

The structural relationship of these phases can be discussed in terms of the variation in the linking of $[MO_6]$ octahedra and the nature of the cation distribution within the octahedra. In the most symmetrical form of rutile, the $FeNbO_4$ structure consists of a hexagonal close-packed arrangement of the anions in which the metal atoms, Fe or Nb, are in octahedral coordination.

In the rutile structure, shown in Figure 1, it can be seen that each octahedron shares a pair of opposite edges as well as further linking by sharing of vertices, in such a way that straight chains are formed along the <u>c</u> direction. It is a structure of 6:3 coordination where every metal atom is surrounded by six oxygen atoms approximately at the corners of a regular octahedron, and every oxygen atom by three titanium atoms approximately at the corners of an equilateral triangle. As shown in Figure 1(b), there is a random distribution of Fe and Nb atoms in one half of the available octahedral sites.

When FeNbO_4 crystallizes with the $\alpha\text{-PbO}_2$ structure, the edge sharing is different from that found in rutile. Whereas in rutile the edge-sharing occurs at opposite edges in each octahedron, in $\alpha\text{-PbO}_2$ the shared edges of

an octahedron are closer together. This leads to zig-zag chains (see Figure 2) of octahedra along the <u>c</u> direction rather than the straight octahedral strings found in rutile. As with the rutile structure, only one half of the octahedral sites are occupied, and random distribution of the Fe and Nb atoms in the zig-zag chains prevails.

The wolframite polymorph (Figure 3) can be compared to the $\alpha\text{-PbO}_2$ which indicated that the columbite FeNb_2O_6 may be incorporated in solid solution with the wolframite FeNbO_4 . The formation of such solid solution would be consistent $\alpha\text{-PbO}_2$. Zig-zag chains of FeO_6 and NbO_6 octahedra form, as in $\alpha\text{-PbO}_2$, but every occupied chain contains either Fe or Nb atoms.

As indicated previously, FeNbO₄ undergoes two phase transitions at elevated temperatures, wolframite $\frac{1085}{\alpha}$ -PbO₂ $\frac{1380}{\alpha}$ rutile.

The transformation of wolframite to $\alpha\text{-PbO}_2$ is considered to be essentially an order-disorder transition in which the separate chains of [FeO_6] and [NbO_6] octahedra become identical; i.e., there is a random distribution of Fe and Nb atoms within the structural array. Dachille and Roy (10) have observed that $\alpha\text{-PbO}_2$ transformed on heating to the rutile polymorph. In this transformation, the chains of [Fe,Nb]O_6 octahedra change from a zig-zag configuration found in the $\alpha\text{-PbO}_2$ structure, to straight chains in the rutile structure. Anderson and Galy (11) have indicated that such transformations may occur by the movement of cations in adjoining layers along the edge of an octahedron, to a previously unoccupied site. This is shown in Figure 4.

The room temperature resistivity of a well-sintered FeNbO₄ disc was reported to be $40^{+1}\Omega$ -cm (12). It would be anticipated that the resistivity

of intrinsic FeNbO $_4$ would be much higher than 40Ω -cm if all of the iron were in the trivalent state. The discs were shown to be n-type, and the mobility was less than $0.1 \text{cm}^2/\text{V-sec}$, as would be expected for a hopping conductor (13).

These properties are consistent with the structural studies of Turnock (14) which indicated that FeNb_2O_6 may be incorporated in solid solution with FeNbO_4 . The formation of such solid solution would be consistent with relatively high conductivity and the phase separation of a few percent of $\alpha\operatorname{-Fe}_2O_3$. It was observed (12) that careful examination of X-ray patterns obtained from sintered discs of FeNbO_4 indicated the presence of the strongest peak of $\alpha\operatorname{-Fe}_2O_3$. Measurement of the photoresponse of FeNbO_4 (12) indicated a flat-band potential between 0.1 and 0.4V versus SCE in a pH of 8.5, and an optical band gap of 2.08(2)eV. It was also indicated (12) that there was probably an additive superposition of multiple photoactive centers, rather than the "averaging" process suggested by conventional band theory.

The compound FeWO₄ also crystallizes with the wolframite structure. For this composition, the [FeO₆] octahedra should contain only divalent iron. Single crystals of FeWO₄ can be grown by chemical vapor transport, using TeCl₄ as a transport agent (15). It was observed that the resistivity of the crystals grown were related to the degree of oxidation, i.e., the trivalent iron content of the charge. This is consistent with other studies (16,17) which indicated that the wolframite structure can accommodate both divalent and trivalent iron simultaneously.

THE PROPERTIES OF DI IRON(III) TUNGSTATE

The wolframite structure represents only one ordered variant of the more fundamental α -PbO $_2$ structure. Fe $_2$ WO $_6$ has been reported to crystallize with the columbite structure when prepared below 800°C (18), and with the $tri-\alpha-PbO_2$ structure when prepared at higher temperatures (18). Both of these structures may be regarded as superlattice variants of the a-PbO2 type. In the columbite structure (Figure 5), a 2:1 cation ordering occurs, rather than the 1:1 ordering observed in the wolframite structure. This 2:1 cation order causes a tripling of the a parameter, but the orthorhombic space group (Pbcn) of α -PbO₂ is preserved. Leiva (19) has shown that the columbite variant of $\operatorname{Fe_2WO_6}$ is difficult to obtain as a single phase since the tri $-\alpha$ - PbO₂ variant also appears to form at low temperatures. The fundamental difference between the columbite and the tri -a-PbO2 structures is in the nature of the 2:1 cation ordering which occurs in these structures. Senegas and Galy (20) have indicated that for the $tri-\alpha-PbO_2$, one third of the zig-zag chains along the \underline{c} direction contain only iron atoms, and two thirds of the chains show a 1:1 ordering of iron and tungsten atoms (Figure 6). As a result of the differences in the ordering of the $[FeO_6]$ and $[WO_6]$ octahedra, the cell parameters of the three structure types α-PbO₂, tri-α-PbO₂, and columbite, have the following relationships:

$$\underline{a}$$
 α -PbO₂ = \underline{a} tri- α -PbO₂ = $\frac{a}{}$ /3 columbite

$$3b \alpha - PbO_2 \simeq b tri - \alpha - PbO_2 \simeq 3b columbite$$

$$\underline{c}$$
 α -PbO₂ $\simeq \underline{c}$ tri- α -PbO₂ $\simeq c$ columbite

A comparison of the ordering sequences and consequent changes in the cell parameters is shown in Figure 7. It can readily be seen that the idealized

occupancy of the octahedra along the zig-zag chains in the ${\rm tri}$ - α -PbO $_2$ structure is such as to give one chain containing only iron atoms for every two chains containing an ordered arrangement of iron and tungsten atoms. The iron in pure ${\rm Fe}_2{\rm WO}_6$ is all trivalent, and hence, discs prepared from this composition should give a high resistivity. However, Leiva has shown (19) that ${\rm Fe}_2{\rm WO}_6$ cannot be prepared without the appearance of a small amount of ${\rm a-Fe}_2{\rm O}_3$ in the product. Such samples also show a higher conductivity than would be expected for pure ${\rm Fe}_2{\rm WO}_6$. In addition, Leiva showed that a solid solution of ${\rm Fe}_2{\rm WO}_6$ and ${\rm FeWO}_4$ can be prepared, and still maintain the ${\rm tri}$ - ${\rm a-PbO}_2$ structure. The electrical properties of these phases indicate that there may be some degree of disorder between the Fe and W atoms within the chains (19). However, if all of the chains contained a considerable number of W atoms, no conductivity would be observed.

Both iron(III) niobate (12) and diiron(III) tungstate (19) do show photoresponses, although their flat-band potentials are positive, and hence these materials show low efficiencies as photoanodes. Pure iron(II) tungstate does not appear to yield a photoresponse (15) which would seem to indicate that trivalent iron must be present for a response to be observed

SUMMARY

The wolframite, $tri-\alpha-PbO_2$ and columbite structures represent ordered variants of the basic α -PbO $_2$ type. When FeNbO $_4$ crystallizes with the wolframite structure, the Fe and Nb cations are arranged in an ordered manner which results in the lowering of the symmetry from orthorhombic to monoclinic. As in α -PbO₂, there are formed zig-zag chains of [FeO₆] and [NbO₆] octahedra, but each chain contains only either Fe or Nb. The same structural features have been observed for the composition FeWO_{A} . These compounds can accommodate both divalent and trivalent iron in the zig-zag chains of $[FeO_6]$ octahedra, which results in high conductivity because of electron transfer within these chains. Two other variants of the $\alpha\text{-PbO}_2$ type are the $\text{tri-}\alpha\text{-PbO}_2$ and the columbite structures. For these variants, there is a 2:1 cation ordering rather than the 1:1 order observed in the wolframite structure. FeNb $_2$ 0 $_6$ has the columbite structure, and Fe $_2$ WO $_6$ can be prepared as a single phase with the $tri-\alpha-PbO_2$ structure. The existence of mixed iron valencies in the Fe-Nb-O phases has been shown to be due to the solid solution of $FeNbO_4$ and $FeNb_2O_6$. There is also evidence for the solid solution between $FeWO_4$ and Fe_2WO_6 . Undoubtedly, the existence of both Fe²⁺ and Fe³⁺ in these structures is the basis for the observed conductivity.

ACKNOWLEDGMENTS

Control of the Contro

The authors would like to acknowledge the support of the Office of Naval Research, Arlington, Virginia, for the support of Hector Leiva, Kurt Sieber, Bijan Khazai, and Kirby Dwight. Acknowledgment is also made to Brown University's Material Research Laboratory for the use of its facilities.

REFERENCES

- 1. K. L. Hardee and A. J. Bard, J. Electrochem. Soc. 123, 1024 (1976).
- 2. R. K. Quinn, R. D. Nasby and R. J. Baughman; Mat. Res. Bull. <u>11</u>, 1011 (1976).
- 3. K. L. Hardee and A. J. Bard, J. Electrochem. Soc. 124, 215 (1977).
- 4. L. R. Yeh and N. Hackerman; J. Electrochem. Soc 124, 833 (1977).
- H. H. Kung, H. S. Jarett, A. W. Sleight, and A. Ferretti, J. Appl. Phys. 48 No. 6, 2463 (1977).
- 6. P. Merchant, R. Collins, R. Kershaw, K. Dwight and A. Wold, J. Solid State Chem. 27, 307 (1979).
- 7. O. N. Salmon; J. Phys. Chem. 65, 550 (1961).
- 8. R. S. Roth and J. Waring, American Minerol. 49, 243 (1964).
- 9. Von F. Laves, G. Bayer, and A. Panagos, Schweiz. Minerol. Petrog. Mitt. 43, 217 (1963).
- 10. W. B. White, F. Dachille, and R. Roy, J. Am. Ceram. Soc. 44, 170 (1961).
- 11. P. S. Anderson and J. Galy; Bulletin de la Societe Chimique de France 1969 No. 4, 1065 (1969).
- 12. J. Koenitzer, B. Khazai, J. Hormadaly, R. Kershaw, K. Dwight and A. Wold, J. Solid State Chemistry 35, 128 (1980).
- 13. C. A. Ackert and J. Volger, Phys. Lett. <u>8</u>, 244 (1964).
- 14. A. C. Turnock, J. Amer. Ceram. Soc. 49 4, 177 (1966).
- 15. K. Kourtakis, K. Sieber, R. Kershaw, K. Dwight and A. Wold, unpublished research.
- 16. H. Weitzel, Zeit für Krist. 131, 289 (1970).
- 17. Y. Noda, M. Shimada, M. Koizumi and F. Kanamaru, J. Solid State Chem. 28, 379 (1979).
- 18. C. Parant, J. C. Bernier and A. Michel, C. R. Acad Sc. Paris <u>C 276</u>, 495 (1973).
- 19. H. Leiva, K. Dwight and A. Wold, J. Solid State Chem. 42, No. 1 (1982).
- 20. J. Senegas and J. Galy, J. Solid State Chemistry 10, 5 (1974).

FIGURE CAPTIONS

Figure 1	-	Structure of rutile: (a) packing of MO ₆ octahedra; (b) closest-packed layer of oxygen around M atoms.
Figure 2	-	Structure of α -PbO $_2$: (a) packing of MO $_6$ octahedra; (b) closest-packed layer of oxygen around M atoms.
Figure 3	-	Structure of wolframite: (a) packing of MO ₆ octahedra; (b) closest-packed layer of oxygen around Fe and Nb atoms.
Figure 4	-	(a) Relative positions of cations in rutile and $\alpha\text{-PbO}_2$; (b) Movement of cations during phase transformation.
Figure 5	-	Structure of columbite: (a) packing of MO ₆ octahedra; (b) closest-packed layer of oxygen around Fe and W atoms.
Figure 6	-	Structure of tri- α -PbO $_2$: (a) packing of MO $_6$ octahedra; (b) closest-packed layer of oxygen around Fe and W atoms.

Relative positions of cations in $\alpha\text{-PbO}_2\text{, }\text{tri-}\alpha\text{-PbO}_2\text{,}$

and columbite.

Figure 7

Ø Nb

Fe

Fe, Nb random(a)

Fe, Nb random(b)

«RANDOM Fe,W

	No. Copies		No. Copies
	copies		CODIES
Office of Naval Research		U.S. Army Research Office	
Attn: Code 472		Attn: CRD-AA-IP	
800 North Quincy Street		P.O. Box 1211	
Arlington, Virginia 22217	2	Research Triangle Park, N.C. 27709	1
ONR Western Regional Office		Naval Ocean Systems Center	
Attn: Dr. R. J. Marcus		Attn: Mr. Joe McCartney	
1030 East Green Street		San Diego, California 92152	1
Pasadena, California 91106	1		
		Naval Weapons Center	
ONR Eastern Regional Office		Attn: Dr. A. B. Amster,	
Attn: Dr. L. H. Peebles		Chemistry Division	
Building 114, Section D		China Lake, California 93555	1
666 Summer Street			
Boston, Massachusetts 02210	1	Naval Civil Engineering Laboratory	
		Attn: Dr. R. W. Drisko	
Director, Naval Research Laboratory		Port Hueneme, California 93401	1
Attn: Code 6100			
Washington, D.C. 20390	1	Department of Physics & Chemistry	
-		Naval Postgraduate School	
The Assistant Secretary		Monterey, California 93940	1
of the Navy (RE&S)			
Department of the Navy		Scientific Advisor	
Room 4E736, Pentagon		Commandant of the Marine Corps	
Washington, D.C. 20350	I	(Code RD-1)	
•		Washington, D.C. 20380	1
Commander, Naval Air Systems Command			
Attn: Code 310C (H. Rosenwasser)		Naval Ship Research and Development	
Department of the Navy		Center	
Washington, D.C. 20360	1	Attn: Dr. G. Bosmajian, Applied	
•		Chemistry Division	
Defense Technical Information Center		Annapolis, Maryland 21401	1
Building 5, Cameron Station		•	
Alexandria, Virginia 22314	12	Naval Ocean Systems Center	
		Attn: Dr. S. Yamamoto, Marine	
Dr. Fred Saalfeld		Sciences Division	
Chemistry Division, Code 6100		San Diego, California 91232	i
Naval Research Laboratory			
Washington, D.C. 20375	1	Mr. John Boyle	
		Materials Branch	
		Naval Ship Engineering Center	
		Philadelphia, Pennsylvania 19112	i
		•	

	No. Copies		No. Copies
Dr. Paul Delahay		Dr. P. J. Hendra	
Department of Chemistry		Department of Chemistry	
New York University		University of Southhampton	
New York, New York 10003	1	Southhampton SO9 5NH	
		United Kingdom	1
Dr. E. Yeager			
Department of Chemistry		Dr. Sam Perone	
Case Western Reserve University		Department of Chemistry	
Cleveland, Ohio 41106	1	Purdue University	
		West Lafayette, Indiana 47907	1
Dr. D. N. Bennion			
Department of Chemical Engineering		Dr. Royce W. Murray	
Brigham Young University		Department of Chemistry	
Provo, Utah 84602	1	University of North Carolina	•
		Chapel Hill, North Carolina 27514	1
Dr. R. A. Marcus			
Department of Chemistry		Naval Ocean Systems Center	
California Institute of Technology		Attn: Technical Library	•
Pasadena, California 91125	1	San Diego, California 92152	1
Dr. J. J. Auborn		Dr. C. E. Mueller	
Rell Laboratories		The Electrochemistry Branch	
Murray Hill, New Jersey 07974	1	Materials Division, Research	
Murray Rill, New Sersey 07774	•	& Technology Department	
Dr. Adam Heller		Naval Surface Weapons Center	
Bell Laboratories		White Oak Laboratory	
Murray Hill, New Jersey 07974	1	Silver Spring, Maryland 20910	1
muriay nili, New Sersey 01314	•	biliter opining; mary and control	
Dr. T. Katan		Dr. G. Goodman	
Lockheed Missiles & Space		Globe-Union Incorporated	
Co, Inc.		5757 North Green Bay Avenue	
P.O. Box 504		Milwaukee, Wisconsin 53201	1
Sunnyvale, California 94088	1	•	
•		Dr. J. Boechler	
Dr. Joseph Singer, Code 302-1		Electrochimica Corporation	
NASA-Lewis		Attention: Technical Library	
21000 Brookpark Road		2485 Charleston Road	
Cleveland, Ohio 44135	1	Mountain View, California 94040	1
		n. n n cohaide	
Dr. B. Brummer		Dr. P. P. Schmidt	
EIC Incorporated		Department of Chemistry	
55 Chapel Street	1	Oakland University	1
Newton, Massachusetts 02158	1	Rochester, Michigan 48063	1
Library		Dr. H. Richtol	
P. R. Mallory and Company, Inc.		Chemistry Department	
Northwest Industrial Park		Rensselaer Polytechnic Institute	
Burlington, Massachusetts 01803	1	Troy, New York 12181	1
eres Granita institution		- · ·	

	No. Copies		No. Copies
Dr. A. B. Ellis		Dr. R. P. Van Duyne	
Chemistry Department		Department of Chemistry	
University of Wisconsin		Northwestern University	
Madison, Wisconsin 53706	1	Evanston, Illinois 60201	1
Dr. M. Wrighton		Dr. B. Stanley Pons	
Chemistry Department		Department of Chemistry	
Massachusetts Institute		University of Alberta	
of Technology	•	Edmonton, Alberta	•
Cambridge, Massachusetts 02139	1	CANADA T6G 2G2	1
Larry E. Plew		Dr. Michael J. Weaver	
Naval Weapons Support Center		Department of Chemistry	
Code 30736, Building 2906	_	Michigan State University	_
Crane, Indiana 47522	1	East Lansing, Michigan 48824	1
S. Rubv		Dr. R. David Rauh	
DOE (STOR)		EIC Corporation	
600 E Street		55 Chapel Street	
Washington, D.C. 20545	1	Newton, Massachusetts 02158	1
Dr. Aaron Wold		Dr. J. David Margerum	
Brown University		Research Laboratories Division	
Department of Chemistry		Hughes Aircraft Company	
Providence, Rhode Island 02192	1	3011 Malibu Canyon Road	
		Malibu, California 90265	1
Dr. R. C. Chudacek			
McGraw-Edison Company		Dr. Martin Fleischmann	
Edison Battery Division		Department of Chemistry	
Post Office Box 28		University of Southampton	•
Bloomfield, New Jersey 07003	1	Southampton 509 5NH England	1
Dr. A. J. Bard		Dr. Janet Osteryoung	
University of Texas		Department of Chemistry	
Department of Chemistry		State University of New	
Austin, Texas 78712	1	York at Buffalo	
		Buffalo, New York 14214	1
Dr. M. M. Nicholson			
Electronics Research Center		Dr. R. A. Osteryoung	
Rockwell International		Department of Chemistry	
3370 Miraloma Avenue		State University of New	
Anaheim, California	1	York at Buffalo	
		Buffalo, New York 14214	1
Dr. Donald W. Ernst			
Naval Surface Weapons Center		Mr. James R. Moden	
Code R-33		Naval Underwater Systems	
White Oak Laboratory	•	Center	
Silver Spring, Maryland 20910	1	Code 3632	1
		Newport, Rhode Island 02840	1

	No. Copies		No. Copies
Dr. R. Nowak		Dr. Bernard Spielvogel	
Naval Research Laboratory		U.S. Army Research Office	
Code 6130		P.O. Box 12211	
Washington, D.C. 20375	1	Research Triangle Park, NC 27709	1
Dr. John F. Houlihan		Dr. Denton Elliott	
Shenango Valley Campus		Air Force Office of	
Pennsylvania State University		Scientific Research	
Sharon, Pennsylvania 16146	1	Bolling AFB	
		Washington, DC 20332	1
Dr. D. F. Shriver			
Department of Chemistry		Dr. David Aikens	
Northwestern University	_	Chemistry Department	
Evanston, Illinois 60201	1	Rensselaer Polytechnic Institute Troy, NY 12181	1
Dr. D. H. Whitmore			
Department of Materials Science		Dr. A. P. B. Lever	
Northwestern University		Chemistry Department	
Evanston, Illinois 60201	1	York University	
		Downsview, Ontario M3J1P3	1
Dr. Alan Bewick		Canada	
Department of Chemistry		•	
The University		Mr. Maurice F. Murphy	
Southampton, SO9 5NH England	1	Naval Sea Systems Command 63R32	
Dr. A. Himy		2221 Jefferson Davis Highway	
NAVSEA-5433 NC #4		Arlington, VA 20360	1
2541 Jefferson Davis Highway		Dr. Stanislaw Szpak	
Arlington, Virginia 20362	1 .	Naval Ocean Systems Center Code 6343	
Dr. John Kincaid		San Diego, CA 95152	1
Department of the Navy		3 ,	
Stategic Systems Project Office		Dr. Gregory Farrington	
Room 901		Department of Materials Science &	
Washington, DC 20376	1	Engineering	
•		University of Pennsylvania	
M. L. Robertson		Philadelphia, PA 19104	1
Manager, Electrochemical			
Power Sonices Division		Dr. Bruce Dunn	
Naval Weapons Support Center		Department of Engineering &	
Crane, Indiana 47522	1	Applied Science	
		University of California	_
Dr. Elton Cairns		Los Angeles, CA 90024	1
Energy & Environment Division			
Lawrence Berkeley Laboratory			
University of California	•		
Berkeley, California 94720	1		

	No. Copies
Dr. Micha Tomkiewicz Department of Physics	
Brooklyn College	
Brooklyn, NY 11210	1
blocklyn, Mi 11210	•
Dr. Lesser Blum	
Department of Physics	
University of Puerto Rico	
Rio Piedras, PR 00931	1
Dr. Joseph Gordon II	
IBM Corporation	
K33/281	
5600 Cottle Road	_
San Jose, CA 95193	1
Dr. Robert Somoano	
Jet Propulsion Laboratory	
California Institute of Technology	1
Pasadena, CA 91103	1

