11.

Задача: Доказать полиномиальную эквивалентность задач о клике (K), вершинном покрытии $(B\Pi)$ и независимом множестве (HM) в графе. Решение:

1. $K \propto HM$, $HM \propto K$

В G \exists множество клика W размера не менее $B \iff B$ \overline{G} \exists HM размера не менее B, где \overline{G} - Граф: $V(\overline{G}) = V(G), E(\overline{G})$ - все рёбра, которых нет в G и только они.

Понятно, что $\forall u, v \in W : uv \in E(G)$, тогда для той же пары и и v $uv \notin E(\overline{G})$, по построению.

2. B $\Pi \propto HM$, HM $\propto B\Pi$

В G \exists HM W размера не менее В \iff в G \exists ВП размера не менее n-B, n=v(G)

Если W - HM $\Rightarrow \forall u,v \in HM, uv \notin E(G) \Rightarrow$ все рёбра покрыты оставшимися вершинами из $V(G)\backslash W \iff \forall e \in E(G) \; \exists u \in V(G)\backslash W: u \in V(e)$

Аналогично, если в $G \exists B\Pi$ W размера не менее $B \Rightarrow$ в $G \exists$ HM размера не менее n-B Таким образом между любыми двумя вершинами из $V(G)\backslash W$ нет ребра, иначе хотя бы одна из них входила в вершинное покрытие.

3. K \propto BH, BH \propto K

По транзитивности:

 $K \propto HM$, $HM \propto B\Pi \Rightarrow K \propto B\Pi$

 $B\Pi \propto HM$, $HM \propto K \Rightarrow B\Pi \propto K$

Таким образом, все эти задачи полиномиально эквивалентны.