TD 21 - Variables aléatoires

Exercice 1: Un étudiant fait, en moyenne, une faute d'orthographe tous les 600 mots. Calculer la probabilité pour qu'il ne dépasse pas 5 fautes sur un devoir de 1800 mots.

Exercice 2:

Soient X et Y deux v.a.r. de Bernoulli indépendantes et de même paramètre p ($p \in]0, 1[$). Soient U = X + Y et V = X - Y. Déterminer la loi du couple (U, V) ainsi que celles de U et V, leurs espérances et variance.

Exercice 3:

On lance 2 dés à 6 faces équilibrés simultanément. On appelle X_1 la v.a.r. représentant le résultat du premier dé et Y la v.a.r. représentant la valeur maximale obtenue.

Déterminer la loi du couple (X_1, Y) et en déduire la loi de Y et son espérance.

Exercice 4:

Une urne contient 5 boules rouges, 5 boules vertes et 6 boules bleues.

- 1. On tire 4 boules successivement, sans remise. On désigne par X la v.a.r. égale au nombre de boules rouges obtenues. Déterminer la loi de X puis calculer E(X) et V(X).
- 2. On tire maintenant 4 boules successivement avec remise. Reprendre les questions précédentes avec la v.a.r. Y égale au nombre de boules rouges obtenues.
- 3. Comparer E(X) et E(Y). Commenter ce résultat.
- 4. Comparer $\sigma(X)$ et $\sigma(Y)$. En admettant que l'écart-type est un indice de dispersion de la v.a.r. autour de son espérance, commenter le résultat obtenu.

Exercice 5:

Dans une urne il y a 10 boules rouges et 5 boules bleues. Soit $r \in [1, 10]$, on appelle X_r le rang de la r-ième boule rouge tirée. Déterminer la loi de X_r dans le cas de tirages sans remise, puis dans le cas de tirages avec remise en limitant le nombre de tirages à N > r. On posera $X_r = N + 1$ si on n'obtient pas de boules rouges.

Exercice 6:

Dans un sac, il y a (n-2) boules rouge et 2 boules vertes. On tire les boules une à une sans remise. Soit X la v.a.r. égale au rang de la première boule verte tirée et Y au rang de la seconde boule verte tirée.

- 1. Déterminer les lois de X et Y, E(X), E(Y), V(X), et V(Y).
- 2. Calculer E(XY) E(X)E(Y). Conclure.

Exercice 7: Un dé A parfaitement équilibré porte le nombre +1 sur quatre faces et -2 sur les deux autres. Soit X la variable aléatoire qui à un lancer du dé A associe le nombre obtenu.

Un dé B porte les nombres -2, -1, 0, 1, 2, 3. Les probabilités d'obtenir ces nombres sont, dans l'ordre indiqué, en progression géométrique de raison $\frac{1}{2}$.

On lance une fois simultanément les deux dés A et B. On note S la variable aléatoire égale à la valeur absolue de la somme des deux nombres obtenus.

1. Déterminer la loi du couple (X, S). 2. Quelle est la loi marginale de S? 3. X et S sont-elles indépendantes?

Exercice 8:

k urnes contiennent chacune n boules numérotées de 1 à n. On tire une boule de chaque urne et on note X_n la v.a.r. égale au plus grand numéro des boules tirées.

Déterminer la loi de X_n . Écrire $E(X_n)$. Montrer que $E(X_n) \sim \frac{nk}{k+1}$ quand n tend vers $+\infty$.

Exercice 9: On dispose d'un dé rouge et d'un dé vert à n faces numérotées de 1 à n. On les lance. Soit X (resp. Y) le plus grand (resp. petit) des deux numéros obtenus, R (resp. V) le numéro obtenu avec le dé rouge (resp. vert).

- 1. Déterminer la loi de X, puis son espérance. On rappelle la formule $\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)$.
- 2. Déterminer la loi de Y, puis celle de Z = n + 1 Y. Que remarque-t-on? En déduire $\mathbb{E}(Y)$.

- 3. Déterminer E(R) et V(R).
- 4. Calculer XY en fonction de R et V. En déduire E(XY), montrer que $E(XY) = \frac{1}{n^2} \sum_{k=1}^{n} k^3$ et déterminer cette somme.
- 5. Donner une expression simple de la somme X + Y en fonction de R et V. En déduire V(X) et V(Y).

Exercice 10: Une urne contient n jetons numérotés de 1 à n. On en tire r en bloc (sans remise) avec $3 \leqslant r \leqslant n$. On appelle X la v.a.r. égale au plus grand des numéros tirés et Y égale au plus petit.

- 1. Déterminer les lois de X et Y. En déduire la formule $\sum_{k=a}^{b} \binom{k}{a} = \binom{b+1}{a+1}$. Calculer les espérances de X et Y.
- 2. Déterminer la loi du couple (X, Y)
- 3. On définit la v.a.r. Z: « écart entre le plus grand et le plus petit numéro tirés ». Déterminer la loi de Z.

Exercice 11: On dispose de d boules rouges et de d boules vertes, les boules rouges sont placées dans une urne U_1 , les boules vertes dans une urne U_2 .

On répète l'expérience consistant à choisir simultanément une boule dans chaque urne et à changer d'urne les boules tirées. On appelle X_n le nombre de boules rouges, après n expériences, dans l'urne U_1 . On pose $Y_n = X_n - X_{n-1}$.

- 1. Déterminer $P(Y_n = i | X_{n-1} = j)$. Et, en déduire que $E(Y_n) = 1 \frac{2}{d}E(X_{n-1})$.
- 2. En déduire $E(X_n)$ en fonction de $E(X_{n-1})$, puis en fonction de d et n. Commenter.

Exercice 12:

Un mobile évolue de façon aléatoire le long d'un axe gradué. À t=0, il est en O. À chaque instant entier t=k, avec $k \ge 0$, son abscisse varie de +1 avec une probabilité p et de -1 avec la probabilité q=1-p.

On note X_n , son abscisse au temps t = n.

- 1. Montrer que les valeurs prises par X_n sont les entier relatifs 2k-n, $0 \leqslant k \leqslant n$.
- 2. Calculer $P(X_n = 2k n)$, $0 \le k \le n$.
- 3. On pose $Y_n = \frac{X_n + n}{2}$. Reconnaître la loi de Y_n . Donner sans calcul $E(Y_n)$ et $V(Y_n)$.
- 4. En déduire $E(X_n)$ puis $V(X_n)$. Pour quelle valeur de p, X_n est-elle centrée, c'est à dire $E(X_n)=0$?

Exercice 13:

Soit $n \in \mathbb{N}^*$, on dispose d'un jeu de 2n cartes qui contient deux rois rouges. On envisage deux jeux régis par les protocoles suivants.

- 1. Premier protocole : Les cartes du jeu sont alignées sur une table de façon aléatoire et le joueur retourne les cartes une par une jusqu'à obtenir un roi rouge.
 - Il donne 1 euro chaque fois qu'il retourne une carte et dès qu'il obtient un roi rouge, il gagne a euros $(a \in \mathbb{N}^*)$ et le jeu s'arrête. Son gain est la variable aléatoire X compté positivement si le joueur gagne.
 - (a) Quelle est la valeur prise par X si le premier roi rouge obtenu est la k-ième carte retournée?
 - (b) Démontrer que $\forall k \in \llbracket 1, 2n \rrbracket$, $P(X = a k) = \frac{2n k}{n(2n 1)}$. Vérifier $\sum_{k=1}^{2n} P(X = a k) = 1$.
 - (c) Calculer l'espérance de X.
- 2. Deuxième protocole : Les cartes du jeu sont toujours alignées sur une table de façon aléatoire. Mais cette fois, le joueur n'a le doit de retourner au maximum que n cartes.

Le joueur gagne toujours a euros pour le premier roi rouge et perd 1 euro à chaque carte et le jeu s'arrête au roi rouge. On note Y le gain du joueur.

- (a) Quelle est la valeur prise par Y si le premier roi rouge obtenu est la k-ième carte retournée? Quelle est la valeur prise par Y si le joueur ne trouve pas un roi rouge? En déduire l'univers image $Y(\Omega)$.
- (b) Pour tout $k \in [1, n]$, calculer P(Y = a k).
- (c) Calculer P(Y = -n).
- (d) Vérifier que : $P(Y = -n) + \sum_{k=1}^{n} P(Y = a k) = 1$.
- (e) Calculer l'espérance de Y.