MATLAB

Lecture 5

Financial engineering: European and American Options

- A European call (put) option is a contract which gives the buyer
- the right to buy (sell) an asset at a future time T for a price K. The
- underlying asset, the maturity time T and the strike price K are
- specified in the contract.
- An American call (put) option is a contract which gives the buyer
- the right to buy (sell) an asset at a future time t <= T for a price K
- The underlying asset, the maturity time T and the strike price K are
- specified in the contract.

 A European call option is a contract which gives the buyer the right to buy an asset at a future time T for a price K.

This is a right but not obligation!

- If at time T price of asset S(t)>K we use this right and have a profit S(t)-K
- If at time T price of asset S(t)<K we are not using this right

 How much we have to pay now for this right (financial instrument)?

 How much we have to pay now for this right (financial instrument)?

- Let we discuss discrete time in a very simple setting
- At the time zero (now) t=0, we have an asset with price S_0
- At the time t=1 price can
 - go up and become S_0 *u
 - or can go down and become S_0 *d

 At the time t=2 price again can up or down with the same numbers u, d

Up until final time T, t=T

- How we can describe the price process?
- We know S_0 , u and d.
- Let us create matrix S:

- Each element of this matrix is:
 - $S_0 u^i d^j$ where (0 <= i , j <= N)
- Let us consider the first row:
 - You can see that each element is previous one multiplied by u
 - Starting from $S(1,1)=S_0$, S(1,2)=S(1,1)*u, S(1,3)=S(1,2)*u,
- Let us consider the second row:
 - You can see that each element is previous one multiplied by u but starting from $S(2,2)=S_0*d$
- Third row:
- starting from $S(3,3) = S_0 * d * d$
- each element is previous one multiplied by u

- We can create diagonal matrix with elements on diagonal:
- S_0 , S_0 *d, S_0 *d*d,.....
- Than follow the idea we discussed in previous slides .
- Alternatively:

```
SS = zeros(N,T);
SS(1,1) = S0;
for t = 2:T;
    for n = 1:t;
        SS(n,t) = S0*u^(t-n)*d^(n-1);
    end;
end;
```

- At the final time t=T
- We ether use the right to buy assets (executing option) at the price K
 - In this case we have profit S_T -K (payoff)
- or we are not buying assets (payoff=0)
- Summarize: At the final time t=T we have payoff vector
- $\mathbf{max}(\mathbf{0}, S_T \mathbf{K})$

• In matlab:

 Final time correspond to the last column in our matrix, so:

payoff = max((SS(:,T)-strike),0);

- The question we need to answer:
- (what is the price of European option?)
- Is the same question as:
- What is the price of financial instrument in time t=0 which provide that payoff at time t=T

Let us discuss single elementary period model:

• We know $S^2_1 S^2_1$, K . How to find out C_0 ?

• Let price C_0 go up with RNP probability P

Then

$$C_0 = (p^* max(S_1^2 - K, 0) + (1 - p) * max(S_1^1 - K, 0)) / (1+r)$$

 In this simple model and under assumption of arbitrage free market

P- Risk Neutral Probability

$$P = \frac{1 + r - d}{u - d}$$

Where r is interest rate

Dealing with multi period model:

This called backwards induction process

- backwards induction process –
- Start with time t=T, we go to t=T-1

Any single time we are dealing only with set of elementary models.

- Algorithm:
- Let us have column vector payoff and probability p.

```
Payoff(1)= (p*payoff(1)+ (1-p)*payoff(2)) /(1+r)
Payoff(2)= (p*payoff(2)+ (1-p)* payoff(3)) /(1+r)
.....
Payoff(n-1)= (p*payoff(n-1)+ (1-p)* payoff(n))//(1+r)
```

Alternatively

```
•
```

In this case we save entire matrix of payoffs

```
• r = 0.05; u = 11/10; d = 10/11; strike = 0.9; S0 = 1; T = 5; N = T;
SS = zeros(N,T);PayOffMatr = zeros(N,T); SS(1,1) = S0;
for t = 2:T;
• for n = 1:t;
• SS(n,t) = S0*u^{t-n}*d^{n-1};

    end;

    end;

rnp = (1+r-d)/(u-d);payoff = max((strike-SS(:,T)),0);
PayOffMatr(:,T) = payoff;
• for j=T-1:-1:1
• for k = 1:N-1
 PayOffMatr(k,j) = (PayOffMatr(k,j+1)*rnp ...
  + PayOffMatr(k+1,j+1)*(1-rnp))/(1+r);
  end;
  end;
```

Knowing payoffs and RNP

- You do not need to know \mathbf{u} , \mathbf{d} , \mathbf{S}_0 to calculate price of option

European put option

 A European put option is a contract which gives the buyer the right to sell an asset at a future time T for a price K

 Exactly the same logic but different payoff:

 $max(0, K-S_T)$

American options

Difference between American and European options:

- American option can be executed any time
- European option can be executed at final (maturity) time only

American options

 Price of American call option is exactly the same as price of European call option (no dividends).

Let we discuss American put option

 An American put option is a contract which gives the buyer the right to sell an asset at a future time t <= T for a price K

 The underlying asset, the maturity time T and the strike price K are specified in the contract.

 At any time t the asset holder can sell asset at price K or keep it until time t+1.

 asset holder sells an asset if it will be more profitable than keep an asset one more period.

What does this mean?

- 2 cases
- If we keep the asset we follow the same logic as in case of European option and
- $PA_{keep} = (p^* max(K S_t^2, 0) + (1 p) * max(K S_t^1, 0)) / (1+r)$
- $max(K S_t^1, 0)$
- PA_{keep}
- $\max(K S^2_{t}, 0)$

- If we sell the asset at time t-1
- We have a profit $K-S_{t-1}$

 asset holder sells the asset if it will be more profitable than keep the asset one more period

 Mathematically this means we select the biggest number of these two:

$$(p* \max(K - S^2_{t}, 0) + (1 - p) * \max(K - S^1_{t}, 0)) / (1 + r)$$
 and
$$K - S_{t-1}$$

• $Max(K-S_{t-1}, (p*max(K-S_{t}^2, 0)+(1-p)*max(K-S_{t}^1, 0))/(1+r))$

- European option
- Algorithm:
- Let us have column vector payoff and probability p.

```
Payoff(1)= (p*payoff(1)+ p*payoff(2)) /(1+r)
Payoff(2)= (p*payoff(2)+ p*payoff(3)) /(1+r)
.....
Payoff(n-1)= (p*payoff(n-1)+ p*payoff(n))//(1+r)
```


t-1

- American option
- Payoff(1)= max((p*payoff(1)+ p*payoff(2)) /(1+r), K- S_{t-1})
- •
- Payoff(n-1)= max((p*payoff(n-1)+ p*payoff(n)) /(1+r), K- S_{t-1})

Alternatively

```
    PayOffMatr(:,T) = payoff;
    for j=T-1:-1:1
    for k = 1:N-1
    PayOffMatr(k,j) = max(((PayOffMatr(k,j+1)*rnp ...
    + PayOffMatr(k+1,j+1)*(1-rnp))/(1+r)),(strike-SS(k,j)));
    end;
    end;
```

Alternatively

```
for j=T-1:-1:1
      for k = 1:N-1
        PayOff0 = (PayOffMatr(k,j+1)*rnp ...
        + PayOffMatr(k+1,j+1)*(1-rnp))/(1+r);
        if PayOff0 > (strike-SS(k,j))
          PayOffMatr(k,j) = PayOff0; IndWait(k,j) = 1;
        else
          PayOffMatr(k,j) = (strike-SS(k,j)); IndWait(k,j) = 0;
        end;
      end;
end;
```

• Example:

```
r = 0.05; u = 11/10; d = 10/11; strike = 0.9; SO = 1; T = 5; N = T;
SS = zeros(N,T); PayOffMatr = zeros(N,T); SS(1,1) = S0;
for t = 2:T;
for n = 1:t;
SS(n,t) = S0*u^(t-n)*d^(n-1);
end;
end;
rnp = (1+r-d)/(u-d); payoff = max((strike-SS(:,T)),0);
PayOffMatr(:,T) = payoff;
for j=T-1:-1:1
for k = 1:N-1
PayOffMatr(k,j) = max(((PayOffMatr(k,j+1)*rnp ...
+ PayOffMatr(k+1,j+1)*(1-rnp))/(1+r)),(strike-SS(k,j)));
end;
and.
```