

1st Cycle Integrated Project in Engineering Physics (PIC 1)

Advanced sensors for current monitoring in the next generation of power devices

Duarte Miguel de Aguiar Pinto e Morais Marques | 96523

Supervisors

Prof. Susana Cardoso de Freitas Prof. Diogo Miguel Bárbara Coroas Prista Caetano Prof. Paulo Jorge Peixeiro de Freitas

> Lisbon, Portugal July 4th 2022

Summary

- **Current sensors** detect the operating current of a device in real time;
 - used for **power monitoring systems** and **energy meters**;
 - techniques with different operating principles; by direct connection or **indirectly**.
 - ► This work aims to study magnetoresistive sensors, a viable solution for the next generation of batteries.
 - Current sensing techniques
 - Magnetoresistive sensors
 - Characterization of samples (TMR and GMR)
 - Characterization of commercial current sensor
 - Designing 3D model for measurements in a fixed position
 - Developing a new measurement interface

Current sensing techniques

► Open-loop and closed-loop

(b)

- **High** μ ring concentrates H lines onto the sensor:
 - amplification limits bandwidth;
 - skin effect limits accuracy;
 - hysteresis and eddy currents;
 - overcurrent can saturate magnetic core.

- **Closed-loop:** i_S through second transformer winding:
- improves linearity and accuracy;
- practically no eddy currents or hysteresis losses;
- requires higher current supply and additional circuitry (limits bandwidth).

► Magnetoresistive (MR) sensors

- Linear magnetic field transducers based on:
- → intrinsic magnetoresistance of ferromagnetic material (AMR);
- → ferromagnetic/non-magnetic heterostructures (GMR and TMR).
- Resistance varies due to external magnetic field $\rightarrow R(H)$;
- able to detect weaker magnetic fields → gradually replaced
 Hall sensors in hard drives and current sensing applications;
- easily scalable with micro and nanofabrication techniques (allows for very small devices);
- hysteresis effects often negligible.
- **Hysteresis**, **linear range** and **sensitivity** are examples of parameters set differently for different products.

Open-loop (a) and closed-loop (b) technologies in current transducers

Magnetoresistive sensors

Anisotropic Magnetoresistance (AMR)

- **Current** *I* in **ferromagnetic material** experiences *R* dependent on angle with **magnetization** *M*, changed because of H_{ext} ;
- $ightharpoonup R_{min}$ when I parallel to M, R_{max} when I perpendicular to M;
- ▶ high thermal drift and non-linearity; higher sensitivities than Hall sensors, but lower than GMR and TMR.

Giant Magnetoresistance (GMR)

- ► Non-magnetic conductive layer (such as copper layer) between two FM layers **free layer** (*M* changes direction) and **pinned layer** (fixed orientation):
 - middle layer thinner than mean free path of electrons (a few nm).
- spin-dependent electron scattering:
 - magnetizations in the <u>same direction</u> → only one type of electron scattered significantly;
 - magnetizations in <u>opposite directions</u> → more electrons experience scattering \rightarrow increase in R.
- higher ΔR , thus weaker H can be measured, currents below the detection limit of AMR or Hall effect sensors are detected.

Magnetoresistive sensors

Tunnel Magnetoresistance (TMR)

- Similar to GMR, but uses an **insulator** (instead of a conductor) typically of aluminum oxide (Al_2O_3) or magnesium oxide (MgO);
- ► relative orientation of *M* in the FM layers determined by **spin-dependent tunneling** of electrons across the insulator;
- ▶ anti-parallel state → tunneling between spin bands with higher and spin bands with lower DOS, leading to lower conductance; parallel state → tunneling between spin bands with similar DOS. R inversely proportional to the conductance, thus $R_{\uparrow\downarrow} > R_{\uparrow\uparrow}$.

➤ Ideal **transfer curve** and magnetization directions in the FM layers (the parallel configuration was defined here for H > 0)

• Magnetoresistance level:

$$MR(\%) = \frac{R_{max} - R_{min}}{R_{min}}$$

Sensor field sensitivity:

$$S = \frac{1}{R_{min}} \left(\frac{\Delta R}{\Delta H}\right)_{linear} = \frac{MR(\%)}{(\Delta H)_{linear}} [\%/0e]$$

$$(R_{max} \equiv R_{\uparrow\downarrow}, R_{min} \equiv R_{\uparrow\uparrow})$$

Schematic band structure for electrons tunnelling in the parallel state (a) and anti-parallel state (b)

➤ Basic structure of a MTJ sensor, in which electrons can cross the thin isolating layer by means of **quantum tunneling**

Characterization of samples (TMR and GMR)

Minimum

Characterization setup

Range [-141, 141] **Oe** for the magnetic field H (with reverse magnetic field sweep), generated by current in the coils;

- bias current of $I_{bias} = 1\mu A (V = R \cdot I_{bias});$
- constant of proportionality $k = (35.05 \pm 0.03)0e/A$ between H and I;
- needles of the **micropositioners** put over the samples.

Characterization of the first sample

MPW5 (N88TJ152) - TMR technology

- Sample with four sensors (S_A , S_B , S_1 and S_2) with analogous characteristics; needles placed over S_A and GND;
- selection of the bias current → both noise and output signal proportional to it;
- the sensor has a linear output and saturation is not reached;
- ▶ R(H) and V(H) curves with **linearity error** of less than $\pm 0.21\%$;
- **▶ no hysteresis** is apparent.

R_0 [k Ω]	$R_{min}\left[\mathbf{k}\Omega ight]$	$R_{max}\left[\mathbf{k}\Omega\right]$	MR(%)*
30.02948	29.54624	30.52436	3.31

Characterization of the second sample

INSPECT (GMR ECP 1.0) – GMR technology

- \blacktriangleright Better sample to measure **smaller current values** (saturation is reached in the same H range);
- if two small currents are to be measured, output voltage difference will be more significant (higher precision);
- at too small current values: more significant impact of noise;
- ▶ minimum value of the resistance occurs far from the edge of the linear range;
- **▶** some **hysteresis** is noticeable → not favorable for practical applications, since the signal depends on the past conditions of the sensor.

$R_{min}^* \left[\mathbf{k} \Omega \right]$	R_{max} [k Ω]	MR (%)*	$R_{min} [k\Omega]$	MR (%)	$(\Delta H)_{linear} [Oe]$	S [%/0e]
17.56224	18.74039	6.71	17.61074	6.41	120	0.053

Characterization of STB-200LA/ZN current sensor

> Experimental setup in the Characterization Room

 $V_{ref} = 2.5V (\pm 0.8\%)$

- ► **Current** generated in the current source flows through the wire:
 - generates magnetic field H which changes the resistance.
- ► magnetic sensor **STB-200LA/ZN** (produced by SinomagsTM) based on a **closed-loop principle with TMR technology**:
 - can detect **DC**, AC, pulse and irregular signals.

Current Source

3D model for measurements with fixed distance

 Dimensions of STB-xxxLA/ZN current sensors [±0.5mm]

- ► Two pieces which mechanically fix together;
- small margins must be removed from the dimensions in the datasheet;
- ➤ 3D printed using a **PLA** (polyactic acid) based material.

Ultimaker S3

(3D printer)

• Dimensions of the 3D model [mm]

• Wire diameter $d = (7.50 \pm 0.05)mm$

Autodesk Tinkercad

Ultimaker Cura

Measurements now obtainable in the **center** of the device.

Characterization of STB-200LA/ZN current sensor

Linear fit $V = k \cdot I + b$:

- ightharpoonup Slope: $k = (3.142 \pm 0.003) \text{mV/A}$
 - differs 0.5% from sensitivity 3.125mV/A in the datasheet.
- ightharpoonup Offset: b = (-1.70 ± 0.02)mV
 - **electrical offset voltage** of 5mV [(V_{out} V_{ref}) at I=0A] in the datasheet;
 - **oscillations** in current values;
 - residual current flowing in the wire;
 - other magnetic fields in the setup;
 - thermal drift (datasheet information for T=25°C).
- Maximum **linearity error** of 0.87%, fitting parameter $\chi^2/n_d = 0.05 < 1$.
- ► Average relative diferences to the average output voltage values at diferent positions:
 - dependence of the **magnetic field** H on **distance** $r \rightarrow$ position of the resistance inside the sensor.

Developing a new measurement interface

Altium Designer

3D Layout Mode

2D Layout Mode (**Top Layer**)

- ► **Printed circuit board (PCB)** for the **interface** with current sensors **STB-xxxLA/ZN**;
- allows three sensors to be tested simultaneously;
- performs signal amplification and buffering.

Facilitates measurement procedures

Developing a new measurement interface

Altium Designer

Circuit schematic

> STB-xxxLA/ZN terminals

- ICs and resistances for (separate) amplifications of V_{out} and V_{ref};
- **potentiometer** allows change in amplification;
- ► most **capacitors** to filter fluctuations in the signals.

Conclusion

- Current sensing demand continues to expand → magnetoresistive sensors as an alternative to conventional methods;
- State-of-the-art current sensors using **TMR** and **GMR** technologies were characterized:
 - ☐ MPW5 (N88TJ152) in the linear range (saturation not reached);
 - □ INSPECT (GMR ECP 1.0) with apparent hysteresis and higher precision.
- Characterization of STB-200LA/ZN current sensor (TMR technology) in the linear range; 3D model developed for use with fixed distance; PCB designed for measurement interface;
- Regarding the work on advanced current sensors, the possibilities appear to be endless...

...even more to be done!

