Balmain High School

4 unit mathematics

Trial DSC Examination 1986

- 1. (i) Evaluate (a) $\int_{-1}^{2} \frac{x^2}{\sqrt{x^3+2}} dx$ (b) $\int_{0}^{1} xe^{-x} dx$ (c) $\int_{0}^{\pi} \sin^2(\frac{x}{4}) dx$ (d) $\int_{2}^{4} \frac{dx}{x^2-4x+8}$ (ii) Find all solutions in the domain $\theta: -2\pi \le \theta \le 2\pi$, $\cos \theta + \cos 2\theta + \cos 3\theta = 0$.
- **2.** (i) Define the absolute value of x (|x|) for positive, negative and zero values of x. Sketch the following curves (not on graph paper).
- (a) $y = |\sin x| \text{ for } x : -2\pi \le x \le 2\pi$
- **(b)** $y = \sin |x| \text{ for } x : -2\pi \le x \le 2\pi$
- (c) |x| + |y| = 1
- (ii) Find the complete factorization of $P(z) = z^6 1$
- (a) over the complex field \mathbb{C}
- **(b)** over the real field \mathbb{R}
- 3. (i) Express $\frac{1}{(x-1)(x^2+1)}$ as a sum of partial fractions and hence find $\int \frac{dx}{(x-1)(x^2+1)}$
- (ii) When the polynomial P(x) is divided by (x-2) and by (x-3) the respective remainders are 4 and 9. Determine what the remainder must be when the polynomial is divided by (x-2)(x-3).
- (iii) The roots of the equation $x^3 + ax^2 + bx + c = 0$ are α, β, γ . Find the values of the following (in terms of a, b, c)
- (a) $\alpha + \beta + \gamma$ (b) $\alpha^2 + \beta^2 + \gamma^2$ (c) $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$
- (d) Write an equation which has $\alpha 1, \beta 1$, and $\gamma 1$ as its roots.
- **4.** (i) Prove $|z_1 + z_2| \le |z_1| + |z_2|$.
- (ii) If z = 3 + 2i show on the Argand diagram (a) z (b) \overline{z} (c) $z\overline{z}$ (d) iz
- (iii) In the Argand diagram, P represents the complex number z and Q the complex number w given by $w = \frac{3z-1}{z-1}$. If P describes the circle of unit radius with centre at the origin find the locus by Q.
- **5.** Show that the tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point (x_1, y_1) has equation $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$. The tangent to the ellipse at any point P meets the x-axis at T, the foot of the perpendicular from P to the x-axis in N, and the normal at P meets the x-axis at G. If O is the centre of the ellipse show that $OT.NG = b^2$.
- **6.** (i) A rectangle is inscribed in a semi-circle of radius a. Find the maximum area of the rectangle.
- (ii) Find the turning points of the curve $y = x^4 4x^3 + c$. Show that for 0 < c < 27 the curve crosses the x-axis between x = 0 and x = 3. What is the condition that

the curve does not intersect the x-axis?

- 7. (a) Find the volume of the torus generated by revolving the circle $x^2 + y^2 = 16$ about the line x = 6 by using the 'slicing method'.
- (b) Confirm your answer by using a different method or approach.
- **8.** (i) Prove that if n is a positive integer and x > 0, then $x^n + \frac{1}{x^n} > x^{n-1} + \frac{1}{x^{n-1}}$ (provided $x \neq 1$).
- (ii) Given a triangle whose sides are in the ratio 4:5:6 prove (without use of calculators or tables) that one angle is twice another.
- (iii) From the top of a hill of uniform slope the angle of depression of a point in the plane below is 30° , and from a spot 3/4 of the way down it is 15° . Find the slope of the hill.