In [1]: # import libaries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

In [33]: x=pd.read_csv(r"C:\Users\user\Downloads\16_Sleep_health_and_lifestyle_dataset

Out[33]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blo Press
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140
369	370	Female	59	Nurse	8.1	9	75	3	Overweight	140
370	371	Female	59	Nurse	8.0	9	75	3	Overweight	140
371	372	Female	59	Nurse	8.1	9	75	3	Overweight	140
372	373	Female	59	Nurse	8.1	9	75	3	Overweight	140
373	374	Female	59	Nurse	8.1	9	75	3	Overweight	140

374 rows × 13 columns

In [34]: x=x.head(10)

Out[34]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Bloo Pressur
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126/8
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125/8
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125/8
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140/9
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140/9
5	6	Male	28	Software Engineer	5.9	4	30	8	Obese	140/9
6	7	Male	29	Teacher	6.3	6	40	7	Obese	140/9
7	8	Male	29	Doctor	7.8	7	75	6	Normal	120/8
8	9	Male	29	Doctor	7.8	7	75	6	Normal	120/8
9	10	Male	29	Doctor	7.8	7	75	6	Normal	120/8

In [35]:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9

Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Person ID	10 non-null	int64
1	Gender	10 non-null	object
2	Age	10 non-null	int64
3	Occupation	10 non-null	object
4	Sleep Duration	10 non-null	float64
5	Quality of Sleep	10 non-null	int64
6	Physical Activity Level	10 non-null	int64
7	Stress Level	10 non-null	int64
8	BMI Category	10 non-null	object
9	Blood Pressure	10 non-null	object
10	Heart Rate	10 non-null	int64
11	Daily Steps	10 non-null	int64
12	Sleep Disorder	10 non-null	object
	(1 164/4) 164/7)	1	

dtypes: float64(1), int64(7), object(5)

memory usage: 1.1+ KB

In [37]: d=x[['Person ID', 'Gender', 'Age', 'Occupation', 'Sleep Duration']]

Out[37]:

Untitled20 - Jupyter Notebook

	Person ID	Gender	Age	Occupation	Sleep Duration
0	1	Male	27	Software Engineer	6.1
1	2	Male	28	Doctor	6.2
2	3	Male	28	Doctor	6.2
3	4	Male	28	Sales Representative	5.9
4	5	Male	28	Sales Representative	5.9
5	6	Male	28	Software Engineer	5.9
6	7	Male	29	Teacher	6.3
7	8	Male	29	Doctor	7.8
8	9	Male	29	Doctor	7.8
9	10	Male	29	Doctor	7.8

In [7]:

Out[7]:

	Race Number	Distance	Prize money	Starting position	Jockey weight	Horse age	Path	Final place
count	10.000000	10.000000	10.0	10.000000	10.000000	10.000000	10.000000	10.000000
mean	8.100000	1620.000000	1310000.0	8.000000	53.800000	7.400000	1.500000	4.700000
std	2.923088	175.119007	0.0	3.527668	2.149935	0.516398	1.581139	2.496664
min	1.000000	1400.000000	1310000.0	3.000000	52.000000	7.000000	0.000000	1.000000
25%	8.250000	1450.000000	1310000.0	6.000000	52.000000	7.000000	0.250000	3.000000
50%	9.000000	1600.000000	1310000.0	8.000000	53.000000	7.000000	1.000000	4.000000
75%	10.000000	1800.000000	1310000.0	9.000000	55.500000	8.000000	2.000000	6.000000
max	10.000000	1800.000000	1310000.0	14.000000	57.000000	8.000000	5.000000	9.000000

In [8]:

Out[8]: <seaborn.axisgrid.PairGrid at 0x2747f2e3d00>

In [39]:

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[39]: <AxesSubplot:xlabel='Age', ylabel='Density'>

In [40]:

In [41]:

Out[41]: <AxesSubplot:>

In [42]: x=x1[['Person ID', 'Age', 'Sleep Duration']]

```
In [43]: # to split my dataset into traning and test date
         from sklearn.model_selection import train_test_split
In [44]: from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
Out[44]: LinearRegression()
In [45]:
          1.4210854715202004e-14
In [46]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[46]:
                         Co-efficient
              Person ID 2.637840e-17
                   Age 1.000000e+00
          Sleep Duration 3.589282e-17
In [47]: prediction=lr.predict(x_test)
Out[47]: <matplotlib.collections.PathCollection at 0x2740675ea30>
          29.0
           28.8
           28.6
          28.4
          28.2
                                                 28.8
               28.0
                        28.2
                                28.4
                                        28.6
                                                         29.0
In [48]:
Out[48]: 1.0
In [49]: __
Out[49]: 1.0
In [50]: from sklearn.linear_model import Ridge,Lasso
```

http://localhost:8888/notebooks/Untitled20.ipynb

```
In [51]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
Out[51]: 0.376539856718753

In [52]: la=Lasso(alpha=10)
Out[52]: Lasso(alpha=10)
In [53]:
Out[53]: -1.2346938775510221

In []:
```

7 of 7