Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No	•
---------------	---

Faculty of Engineering / Science End Sem (Odd) Examination Dec-2022 EN3ES17 / BC3ES01 Basic Electrical Engineering

Branch/Specialisation: All/ Computer Programme: B.Tech./ B.Sc.(CS) Science

Maximum Marks: 60 Duration: 3 Hrs.

Note: All questions are compulsory Internal choices if any are indicated Answers of

		should be written in full instead of c	, ,		OI
Q.1	i.	When the resistances are connected	l in parallel cir	cuit then-	1
		(a) Branch currents are additive	(b) Conduct	ance's are additive	
		(c) Powers are additive	(d) All of th	ese	
	ii.	Polarity of the voltage drop across	resistance is de	etermined by-	1
		(a) Value of resister	(b) Value of	current	
		(c) Direction of current	(d) All of th	ese	
	iii.	An AC current is given by $i = 200$	$\sin 100\pi t$. it wi	ill achieve a value of	1
		100 A after seconds.			
		(a) 1/900 (b) 1/800	(c) 1/700	(d) 1/600	
	iv.	At series resonance condition pow	er factor and in	mpedance of circuit	1
		will be-			
		(a) 1 & Minimum	(b) Zero & I	Maximum	
		(c) 0.8 & Zero	(d) None of	these	
	v.	In a four-pole D.C. machine-			1
		(a) All the four poles are north pole	es		
		(b) Alternate poles are north and so	outh		
		(c) All the four poles are south pole	es		
		(d) Two north poles follow two sou	ith poles		
	vi.	A 3-phase 440 V, 50 Hz induction	motor has 4% s	slip. The frequency of	1
		rotor e.m.f. will be-			
		(a) 200 Hz (b) 50 Hz	(c) 2 Hz	(d) 0.2 Hz	
	vii.	In linear power supply a capacitor	is used to-		1
		(a) Smooth the pulsating current from	om rectifier		
		(b) Reduce the ripple factor of outp	out		
		(c) Both (a) and (b)			
		(d) Reduce the output voltage			

P.T.O.

	viii.	The value of fusing factor is-		1
		_	(b) More than 1	
		(c) Always 1 (d) None of these	
	ix.	Three phase electrical power is genera	· •	1
			(c) 66 kV (d) 132 kV	
	х.	is used for heating non-conduc		1
		_	(b) Arc heating	
			(d) Dielectric heating	
		,	,	
Q.2	i.	Define the following terms with an exa	ample:	4
		_	(b) Bilateral element	
		(c) Active element (d) Passive element	
	ii.	Find Voltage across 1 ohm using noda	ıl analysis.	6
		V_1 1 Ω	V ₂	
			1	
		2 Ω ≶	Į Į	
		$\int 3\Omega \lesssim 59$	$\Omega \lesssim \qquad (\uparrow) 2 A$	
		2 V (+)	ſ	
OR	iii.	State and explain Norton theorem with	n an example.	6
			F	
Q.3	i.	Derive the expression of impedance,	power factor and phase angle of	4
		coil in RL series circuit with circuit an	• •	
	ii.	A choke coil is connected across a var	-	6
		voltage of which is kept constant at 22		
		supply is 50 Hz, an ammeter in the ci	- ·	
		the frequency to 100 Hz, the current	_	
		falls to 40 A, calculate the resistance a	_	
OR	iii.	Derive the relation between line and p		6
		of three phase ac system with circuit a	•	
		1 3		
Q.4	i.	Define the transformer and also deriv	we emf equation of single-phase	4
		transformer.		
	ii.	Explain the constructional details of D	OC machine.	6
OR	iii.	Write the working principle and pheno		6
			(b) Three phase induction motor	

- Q.5 i. Calculate the bill of electricity consumed in the month of November 4 from the following details. One 60 W bulb is used for 5 hours daily. One 100 W bulb is used for 3 hours daily. One 1kW electric heater is used for 2 hours daily. Tariff is 7.5 Rs. /Unit.
 - ii. What is switch mode power supply (SMPS)? Explain its functioning **6** with block diagram.
- OR iii. What is UPS? Explain functioning of online and offline UPS with 6 block diagram.
- Q.6 Attempt any two:
 - i. Represent each component of power system in single line diagram from 5 generation to distribution.

5

- ii. Explain thermal power plants with appropriate diagram.
- iii. Explain construction and working of welding transformer with 5 advantage and disadvantage.

Scheme of Marking

Faculty of Engineering End Sem (Odd) Examination Dec-2022 EN3ES17 Basic Electrical Engineering

Programme: B.Tech.

Branch/Specialisation:

Note: The Paper Setter should provide the answer wise splitting of the marks in the scheme below.

Q.1	i)	(d) All of the above	1
	ii)	(c) direction of current	1
	iii)	An AC current is given by i = 200 Sin100Πt. it will achieve a value of 100 A after second. (d) 1/600	1
	iv)	(a) 1 & Minimum	1
	v)	(b) alternate poles are north and south	1
	vi)	A 3-phase 440 V, 50 Hz induction motor has 4% slip. The frequency of rotor e.m.f. will be (c) 2 Hz	1
	vii)	In linear power supply a capacitor is used to (c) both (a) and (b)	1
	viii)	The value of Fusing factor is (b) more than 1	1
	ix)	(b) 11 kV	1
	x)	Is used for heating non-conducting materials (d) Dielectric heating	1
Q.2	i.	Define the term with example. (a) Linear element (b) Bilateral element (c) Active element (d) Passive element	1*4=4
	ii.	Equation at V_1 Equation at V_2 Voltage at 1 ohm $V_1 = \frac{8}{3}V, V_2 = \frac{35}{9}V$ $V_1 = \frac{11}{9}V$	2 2 1
OR	iii.	Statement of Norton theorem Determination of I _n Determination of R _n	2 2

		Determination of I _L	1
			1
Q.3	i.	Circuit diagram	1
		Phasor diagram	1
		Expression of Z, pf, and phase angle	2
	ii.	Expression of first condition Expression of second condition Calculation of R and L $R = 2.8.2$ $R = 7.53844$	2
		Expression of second condition $ 21/4 = R^2 + 4x$ Calculation of R and L	2
OB	ļ	Circulation of Raint E R= 2.8-2 L= 7.533011	2
OR	iii.	Circuit diagram with proper naming. Phasor diagram	2
		Derivation and result	2
		Derivation and result	2
Q.4	i.	Define the transformer	2
		drive emf equation	2
	ii.	Each part details	1*6=
OD	iii.	W' d	6
OR	111.	Write the working principle and phenomena of rotating of (a) single phase induction motor (b) three phase induction motor	3*2=6
Q.5	i.	Each step 1 mark	1*4=4
	ii.	Definition of SMPS 6 9 KWhd	2
		Each step 1 mark Definition of SMPS Explanation of each block 1 marks Definition of LIPS Definition of LIPS	1*4=4
OR	iii.		2
		Explanation of each mode 2 marks (4) TOTAL - 78 X 173	2*2=4
Q.6			
	i.	single line diagram	3
		Component representation with symbols	2
	ii.	Block diagram	23
		Explanation	3
	iii.	Circuit diagram Construction	12
		Explanation (working)	2
		advantage and disadvantage. I Mark for each	2
