$$T(n) = \begin{cases} \Theta(n^{\log_b a}), & \text{if } a > b^d \text{ (case } \\ \Theta(n^d \log n), & \text{if } a = b^d \text{ (case } \\ \Theta(n^d), & \text{if } a < b^d \text{ (case } \end{cases}$$

- To solve T(n), we take the result from the geometric series stuff, use K+1 instead of K, and multiply by f(n).
- Geometric series reminders
 - o R =/= 1
 - $\blacksquare \quad \frac{1-r^k}{1-r}$
 - o R = 1
 - K
 - o R<1
 - \blacksquare $\frac{1}{1-r}$
 - R is $\frac{a}{b^d}$ where d is the exponent of f(n)
 - $T(n) = a T\left(\frac{n}{b}\right) + f(n)$
 - A is number of subproblems we make
 - B is factor by which subproblem size decreases
 - \circ $K = log_b n$
 - f(n) is difficulty to divide and recombine subproblems
- Limitations: Master Theor no work
 - o If T(n) is not monotone
 - $T(n) = \sin(n)$
 - \circ If f(n) is not polynomial
 - $f(n) = 2^n$
 - If b cannot be expressed as a constant
- Runtimes

- BFS: O(|V|+|E|)
- DFS: O(|V|+|E|)
- o Rod cutting: O(n^2)
- Bellman-Ford: O(VE)
- Kruskal & Prim: O(|E|log|V|)
- Dijkstra: O(V^2)
- Floyd-Warshall: O(V^3)

Array Sorting Algorithms

Algorithm	Running time			Space Complex
	Best	Average	Worst	Worst
Quicksort	$\Omega(n \log(n))$	θ(n log(n))	0(n^2)	0(log(n))
Mergesort	$\Omega(n \log(n))$	$\theta(n \log(n))$	0(n log(n))	0(n)
Timsort	$\Omega(n)$	θ(n log(n))	0(n log(n))	0(n)
Heapsort	Ω(n log(n))	θ(n log(n))	O(n log(n))	0(1)
Bubble Sort	<u>Ω(n)</u>	θ(n^2)	0(n^2)	0(1)
Insertion Sort	Ω(n)	θ(n^2)	0(n^2)	0(1)
Selection Sort	Ω(n^2)	θ(n^2)	0(n^2)	0(1)
Tree Sort	Ω(n log(n))	θ(n log(n))	0(n^2)	0(n)
Shell Sort	Ω(n log(n))	$\theta(n(\log(n))^2)$	0(n(log(n))^2)	0(1)
Bucket Sort	$\Omega(n+k)$	Θ(n+k)	0(n^2)	0(n)
Radix Sort	Ω(nk)	θ(nk)	0(nk)	0(n+k)
Counting Sort	$\Omega(n+k)$	Θ(n+k)	0(n+k)	0(k)
Cubesort	<u>Ω(n)</u>	θ(n log(n))	0(n log(n))	0(n)

Big-O Properties

Constants don't affect

- $f_1 * f_2 is O(g_1 g_2)$
- $f_1 + f_2$ is $O(max(g_1, g_2))$
- If f is O(g), and g is O(h), then f is O(h)

Solving NP-Complete:

- Show problem A is within NP
- Find an NP-complete problem B
- Reduce A to be B

Adjacency Matrix

• Space: n^2 elements for n vertices

Adjacency List

 Space: Number of edges [2*(number of edges) if undirected] + number of vertices

Breadth First Search (BFS)

- Iterative
- Stored in Queue
- Runs in O(|V|+|E|)
- Shortest path (unweight)
- Testing bipartiteness
- Tree Traversal
 - o Level-order

Depth First Search (DFS)

- Recursive or Iterative
- Stored in Stack
- Runs in O(|V|+|E|)
- Topological sorting
- Strongly Connected Components
- Tree Traversal
 - In-order, Pre-order, Post-order

Definitions

- Strongly Connected Components (SCC):
 - Only in directed graphs, things are considered

- strongly connected if you can reach u from v and v from u. (mutually reachable).
- Can be determined by running DFS on every vertex, if every vertex is found on every DFS, then strongly connected
- DAG: Directed Acyclic Graph, there are no directed cycles
 - If graph G has a topological ordering, then it also is a DAG and vice versa.

BFS: Testing Bipartiteness

- An undirected graph G = (V,E) can be called bipartite if the nodes on the graph can be colored with 2 colors in such a way that no nodes of the same color directly connect to one another.
- If there is an odd-length cycle in the graph, it cannot be bipartite
- One of the two following is true for determining bipartiteness
 - No edge of G joins two nodes of the same layer, and G is bipartite.
 - An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).
- We can modify the BFS algorithm to color each neighbor with the opposite color when it explores a node.

- If a neighbor has already been colored (i.e., visited), and has the same color, then return false.
- If the BFS can traverse the entire graph and color all nodes, then return true.

How to Obtain Topological-sort:

- Call DFS to compute finishing times for each vertex v.
- As each vertex is finished, insert it onto the front of a linked list
- Return the linked list of vertices
- Can also be done using BFSstarting from a node with no entering edge (no edge goes into this node, it is like a base root for the rest of the graph)
- Both of these run in O(m+n)

Minimum Spanning Tree (MST)

- Kruskal's
 - Add a safe edge to the tree that is the lightest edge connecting two distinct components (one of them must not already be in the tree)
- MSTs are always acyclic
- Prim's
 - Add a safe edge to the tree by selecting the least-weight edge connecting the tree to a vertex not already in the tree.
- Floyd-Warshall
 - Run the img shown after setting every vertex to 0 and edge to its weight. Rest to inf

for k from 1 to V for i from 1 to V

```
for j from 1 to V

if dist [i][j] > dist [i][k] + dist [k][j]

dist [i][j] ← dist [i][k] + dist [k][j]

end if
```

Bellman-Ford

- Iterate at most V 1 times
- Measures distance from one node to all nodes
- On each iteration, check if the distance we have listed to a neighboring node, or the distance to the examined node plus the distance between neighbor and examined in less, and mark down the minimum of the two.
- If nothing changes on a given iteration, the algo is finished.

Ford-Fulkerson

- Max flow is equal to capacity of min cut in graph.
- Residual Graph
 - At a given step, direct back all used up capacity in graph, leave rest going forward.
 Augment path to get more flow into graph.

Random Facts:

- BFS and DFS same if ran on tree
- Minimum weight edge always in some MST