אלגברת היחסים

Query 1

SELECT COUNT(*) FROM book_instock INNER JOIN book_extension INNER JOIN book WHERE book_instock.book_extension_id = book_extension.book_extension_id AND book_extension.book id = book.book id AND book.book_name = 'input';

 $\pi \ COUNT(*) \ (\sigma \ bookInStock. \ bookExtensionId$ $= bookExtension. \ bookExtensionId \land bookExtension. \ bookId$ $= book. \ bookId \land book. \ bookName = \frac{input}{input} \ (bookInStock \bowtie book)$

Query 2

SELECT first_name, last_name FROM customer WHERE customer_id = (SELECT MIN(customer_id) FROM customer)

 π firstName, lastName (σ customerId = (π Min(customerId)(customer))(customer)

Query 3

SELECT book_name FROM book_instock
INNER JOIN book_extension INNER JOIN book
WHERE book_instock.book_extension_id = book_extension.book_extension_id AND
book_extension.book_id = book.book_id
AND(SELECT MIN(date_in) FROM book_instock)
LIMIT 1

 π bookName (σ bookInStock.bookExtensionId

- = bookExtension. BookExtensionId \land bookExtension. bookId
- $= book.bookId \land book.bookId$
- $= (\pi \min(dateIn)(bookInStock)))(bookInStock \bowtie book)$

```
SELECT order_id, date_in, book_name , language , publisher_name ,publish_year , first_name, last_name, mobile_number  
FROM orders INNER JOIN book_extension INNER JOIN book INNER JOIN customer  
WHERE book_extension.book_extension_id = orders.book_extension_id AND  
book_extension.book_id = book.book_id AND customer.customer_id = orders.customer_id  
ORDER BY date_in  
 \pi \ orderId \ , dateIn \ , bookName \ , language \ ,
```

 π orderId , dateIn , bookName , language , publisherName , publishYear , firstName , lastName , mobileNumber (σ bookExtension. bookExtension = orders. bookExstensionId \wedge bookExtension. bookId = book. bookId \wedge customer. customerId = orders. customerId)(τ dateIn)(orders \bowtie bookExtension \bowtie book \bowtie customer)

Query 5

```
SELECT COUNT(*) FROM books_sales
INNER JOIN book_extension INNER JOIN book
WHERE books_sales.book_extension_id = book_extension.book_extension_id AND
book_extension.book_id = book.book_id AND book.book_name = 'input'

\pi \ COUNT(*)(\sigma \ booksSales.bookExtensionId \\
= bookExtension.bookExtensionId \land bookExtension.bookId \\
= book.bookId \land book.bookName \\
= 'input')(bookSales \bowtie bookExtension \bowtie book)
```

Query 6

```
SELECT first_name , last_name , COUNT(*) FROM books_sales INNER JOIN book_extension INNER JOIN book_author_relation INNER JOIN authors WHERE books_sales.book_extension_id = book_extension.book_extension_id AND book_extension.book_id = book_author_relation.book_id AND book_author_relation.author_id = authors.author_id AND sale_date BETWEEN 'input1' AND 'input2' GROUP BY first_name , last_name LIMIT 1; \pi \ firstName \ , lastName \ , COUNT(*) (\sigma \ booksSales.bookExtensionId \\ = bookExtension.bookExtensionId \ \land bookExtension.bookId \\ = bookAuthorRelation.bookId \ \land bookAuthorRelation.authorId
```

 \geq 'input1' \wedge saleDate \leq 'input2' \Im firstName \wedge lastName) (booksSales)

 \bowtie bookExtension \bowtie bookAuthorRelation \bowtie authors)

= authors. authorId \land saleDate

SELECT first_name , last_name , SUM(counter) FROM (SELECT customer.customer_id AS id, first_name, last_name , COUNT(*) AS counter
FROM deal INNER JOIN customer INNER JOIN deal_books_relation WHERE deal.customer_id = customer.customer_id AND deal_books_relation.deal_id = deal.deal_id
GROUP BY customer.customer_id
UNION

SELECT customer.customer_id AS id, first_name, last_name, COUNT(*) FROM delivery INNER JOIN delivery_books_relation INNER JOIN deal INNER JOIN customer WHERE delivery.delivery_id = delivery_books_relation.delivery_id AND delivery.deal_id = deal.deal_id AND deal.customer_id = customer.customer_id GROUP BY customer.customer_id) AS complex GROUP BY id LIMIT 3

 $\begin{array}{l} \pi \ firstName \ , lastName \ , SUM(counter)(\Big(\pi \ customer. \ customerId \ , firstName \ , lastName \ , COUNT \ \\ = \ customer. \ customerId \ \land \ dealBooksRelation. \ dealId \ \\ = \ deal. \ dealId \ \Im \ customer. \ customerId)(deal \ \bowtie \ customer \ \bowtie \ dealBooksRelation \) \\ \bowtie \ \big(\pi \ customer. \ customerId \ , firstName \ , lastName \ , COUNT(*) \ (\sigma \ delivery. \ delivery. \ delivery. \ deal. \ customerId \ \\ = \ deliveryBooksRelation. \ deliveryId \ \land \ delivery. \ dealId \ \land \ deal. \ customerId \ \\ = \ customer. \ customerId \ \Im \ customer. \ customerId) \ (delivery \ \bowtie \ deliveryBooksRelation \ \\ \bowtie \ deal \ \bowtie \ customer. \ customerId) \ \end{array}$

Query 8

SELECT book_name , COUNT(*) FROM book_extension INNER JOIN book WHERE book_extension.book_id = book.book_id AND book_extension.language IS NOT NULL GROUP BY book_name LIMIT 1

 π bookName, COUNT(*)(σ bookExtension. bookId = book. bookId \wedge bookExtension. language \neq NULL \Im bookName)(bookExtension \bowtie book)

SELECT book_name, books_sales.price, sale_date FROM deal INNER JOIN customer INNER JOIN deal_books_relation INNER JOIN books_sales INNER JOIN book_extension INNER JOIN book WHERE deal_deal_id = deal_books_relation.deal_id AND deal.customer_id = customer_customer_id AND books_sales.books_sale_id = deal_books_relation.book_sale_id AND books_sales.book_extension_id = book_extension.book_extension_id AND books_book_id = book_extension.book_id AND first_name = 'input1' AND last_name = 'input2' UNION

SELECT book_name, books_sales.price, sale_date FROM delivery INNER JOIN delivery_books_relation INNER JOIN deal INNER JOIN customer INNER JOIN books_sales INNER JOIN book_extension INNER JOIN book WHERE delivery.deal_id = deal.deal_id AND delivery_books_relation.delivery_id = delivery.delivery_id AND deal.customer_id = customer.customer_id AND books_sales.books_sale_id = delivery_books_relation.book_sale_id AND books_sales.book_extension_id = book_extension.book_extension_id AND books_book_id = book_extension.book_id AND first_name = 'input1' AND last_name = 'input2'

 $\begin{tabular}{ll} π booksSales.price , saleDate (deal. dealId) \\ &= deal_{booksRelation}. dealId \land deal. customerId \\ &= customer. customerId \land books_{sales}. booksSaleId \\ &= dealBooksRelation. book_{sale_{id}} \land books_{sales}. bookExtensionId \\ &= bookExtension. bookExtensionId \land book. bookId \\ &= bookExtension. bookId \land first_{name} = __input1' \land last_{name} \\ &= _input2') (deal \bowtie customer \bowtie dealBooksRelation \bowtie booksSales \\ \bowtie bookExtension \bowtie book) \\ \bowtie (π bookName , booksSales.price , saleDate (σ delivery. deal_{id} \\ &= deal. deal_{id} \land deliveryBooksRelation. deliveryId \\ &= delivery. deliveryId \land deal. customerId \\ &= customer. customerId \land booksSales.booksSalesId \\ &= deliveryBooksRelation. bookSaleId \land booksSalesId. bookExtensionId \\ &= bookExtension. bookExtensionId \land book. bookId \\ &= bookExtension. bookId \land firstName = _input1' \land lastName \\ &= _input2') (delivery \bowtie deliveryBooksRelation \bowtie deal \bowtie customer \\ \bowtie booksSales \bowtie bookExtension \bowtie book)) \\ \end{tabular}$

Query 10

SELECT book_name , date_in , isArrived , isBought FROM orders INNER JOIN book_extension INNER JOIN book INNER JOIN customer WHERE orders.book_extension_id = book_extension.book_extension_id AND book_extension.book_id = book.book_id AND orders.customer_id = customer.customer_id AND customer.first_name = 'input1' AND customer.last_name = 'input2' ORDER BY date_in

```
(\pi \ book\_name \ , date\_in \ , isArrived \ , isBought \ )(\sigma \ orders. book\_extension\_id = book\_extension. book\_extension\_id \ book\_extension. book\_id = book. book\_id \ \ orders. customer\_id = customer. customer_id \ \ customer. first\_name = 'input1' \ \ customer. last\_name = 'input2' \ \ \ t \ date\_in)(orders \ book\_extension \ book \ book \ customer)
```

*The query depends on number of inputs by the user – the example shows 1 input

SELECT SUM(weight) FROM book_instock INNER JOIN book_extension WHERE book_instock.book_extension_id = book_extension.book_extension_id AND book_instock_id = 'input'

```
(\pi \text{ SUM(weight)})(\sigma \text{ book_instock.book_extension_id})
= book_extension.book_extension_id \wedge book_instock_id
= 'input')(book_instock \wedge book_extension)
```

Query 12

SELECT tracking_id, delivery_status, courier_company, delivery_type, deal.date_in FROM delivery INNER JOIN deal WHERE delivery.deal_id = deal.deal_id AND delivery.deal_id = (SELECT deal.deal_id FROM delivery INNER JOIN deal INNER JOIN customer WHERE delivery.deal_id = deal.deal_id AND customer.customer_id = deal.customer_id AND first_name = 'input1' AND last_name = 'input2' HAVING COUNT(deal.deal_id) > 1)

```
\pi tracking_id, delivery_status, courier_company, delivery_type, deal. date_in (\sigma delivery. deal_id = deal. deal_id AND delivery. deal_id = ((\pi deal. deal_id)(\sigma delivery. deal_id = deal. deal_id \wedge customer. customer_id = deal. customer_id \wedge first_name = 'input1' \wedge last_name = 'input2' \wedge COUNT(deal. deal_id) > 1)(delivery \bowtie deal \bowtie customer))) (delivery \bowtie deal)
```

Query 13

SELECT delivery status FROM delivery WHERE delivery id = input

```
\pi delivery status (\sigma delivery id = input)(delivery)
```

Query 14

SELECT COUNT(*) FROM delivery INNER JOIN deal WHERE delivery.deal_id = deal.deal_id AND courier_company = 'Xpress' AND date_in BETWEEN 'input-01' AND 'input-31'

```
\pi COUNT(*) (\sigma delivery. deal_id = deal. deal_id \wedge courier_company = 'Xpress' \wedge date_in \geq 'input - 01' \wedge date_in \leq 'input - 31')(delivery \bowtie deal)
```

Query 15

SELECT SUM(price) FROM deal WHERE payment_type = 'Bit' AND date_in BETWEEN 'input-01' AND 'input-31'

```
\pi SUM(price) (\sigma payment_type = 'Bit' \wedge date_in \geq 'input - 01' \wedge date_in \leq 'input - 31')(deal)
```

SELECT customer.first_name, customer.last_name, date_in, price, payment_type, employee.first_name, employee.last_name FROM deal INNER JOIN customer INNER JOIN employee WHERE deal.employee_id = employee.employee_id AND deal.customer_id = customer.customer_id AND price > (SELECT AVG(price) FROM deal WHERE date_in >= NOW() - INTERVAL 1 YEAR)

 π customer. first_name, customer. last_name, date_in, price, payment_type, employee. first_name, emplo $(\sigma \text{ deal. employee_id} = \text{employee. employee_id} \land \text{ deal. customer_id})$

= customer.customer_id \wedge price > $(\pi \text{ AVG(price)}(\sigma \text{ date_in}))$

= NOW() − INTERVAL 1 YEAR)(deal))(deal ⋈ customer ⋈ employee)

Query 17

```
SELECT COUNT(*) FROM delivery WHERE courier_company = 'Israel Post'
```

```
\pi COUNT(*) (\sigma courier_company = 'Israel Post')(delivery)
```

SELECT COUNT(*) FROM delivery WHERE courier company = 'Xpress'

 $\pi \text{ COUNT}(*) (\sigma \text{ courier_company} = 'Xpress')(\text{delivery})$

Query 18

SELECT first_name, last_name FROM deal INNER JOIN employee WHERE employee.employee_id = deal.employee_id AND MONTH(deal.date_in) = input GROUP BY employee.employee_id LIMIT 1

 π first name, last name(σ employee, employee id

- = deal.employee_id \(\text{MONTH(deal.date_in)} \)
- = input ℑ employee.employee_id)(deal ⋈ employee)

Query 19

SELECT delivery.delivery_id, delivery.delivery_type, delivery.delivery_status, delivery.deal_id FROM delivery INNER JOIN delivery_books_relation INNER JOIN books_sales INNER JOIN book_extension WHERE delivery.delivery_id = delivery_books_relation.delivery_id AND delivery_books_relation.book_sale_id = books_sales.books_sale_id AND books_sales.book_extension_id = book_extension.book_extension_id GROUP BY book_id HAVING COUNT(book_extension.book_extension_id) > 1;

 π delivery. delivery. delivery. delivery. delivery. delivery. delivery. delivery. delivery. delivery.

- = delivery_books_relation.delivery_id \(\lambda \) delivery_books_relation.book_sale_id
- = books_sales.books_sale_id ∧ books_sales.book_extension_id
- = book_extension.book_extension_id \(\cap COUNT(book_extension.book_extension_id) \)
- > 1)(delivery \times delivery_books_relation \times books_sales \times book_extension)

SELECT customer.first_name, customer.last_name, customer.phone_number, customer.mobile_number FROM customer INNER JOIN deal WHERE deal.customer_id = customer.customer_id AND deal.date_in <= NOW() - INTERVAL 24 MONTH GROUP BY customer.customer_id

 π customer. first_name, customer. last_name, customer. phone_number, customer. mobile_number (σ deal. customer_id = customer. customer_id \wedge deal. date_in

```
\leq NOW()
```

- INTERVAL 24 MONTH GROUP BY customer. customer id)(customer

⋈ deal)

Query 21

SELECT * FROM orders WHERE isArrived = 1 AND date_arrived <= NOW() - INTERVAL 14 DAY AND isBought = 0

```
\pi AllAtributes (σ isArrived = 1 AND date_arrived 
 \leq NOW() - INTERVAL 14 DAY \wedge isBought = 0)(orders)
```

Query 22

SELECT YEAR(date_in), MONTH(date_in), COUNT(*) FROM book_instock GROUP BY MONTH(date_in), YEAR(date_in) ORDER BY date_in

```
\pi YEAR(date_in), MONTH(date_in), COUNT(
*) ($\forall MONTH(date_in), YEAR(date_in) \tau date_in)(book_instock)
```

Query 23

SELECT SUM(books_sales.price) - SUM(book_instock.price) FROM books_sales INNER JOIN book_instock WHERE MONTH(books_sales.sale_date) = input1 AND MONTH(book_instock.date_in) = input1 AND YEAR(books_sales.sale_date) = input2 AND YEAR(book instock.date in) = input2

```
π SUM(books_sales. price) — SUM(book_instock. price)( σ MONTH(books_sales. sale_date)
= input1 ∧ MONTH(book_instock. date_in)
= input1 ∧ YEAR(books_sales. sale_date)
= input2 ∧ YEAR(book_instock. date_in) = input2)(books_sales

⋈ book_instock)
```

Query 24

```
SELECT SUM(price) FROM deal WHERE date_in >= NOW() - INTERVAL 1 YEAR
```

```
\pi SUM(price) (\sigma date_in \geq NOW() - INTERVAL 1 YEAR)
= input2 \wedge YEAR(book_instock.date_in) = input2)(deal)
```

SELECT monthly_hours, salary FROM employee INNER JOIN employees_hours WHERE employee.employee_id = employees_hours.employee_id AND employee.first_name = 'input1' AND employee.last_name = 'input2' AND month = 'input3-01'

```
\pi monthly_hours, salary ( \sigma employee.employee_id
```

- = employees_hours.employee_id ∧ employee.first_name
- = 'input1' \(\Lambda \) employee.last_name = 'input2' \(\Lambda \) month
- = $'input3 01')(employee \bowtie employees hours)$

Query 26

SELECT COUNT(*), SUM(deal.price) FROM deal WHERE deal.date_in BETWEEN 'input1' AND 'input2'

 π COUNT(*), SUM(deal. price)(σ deal. date_in \geq 'input1' \wedge deal. date_in \geq 'input2')(deal)