CS I	173 - Lecture 14	
Recu	ursion	
Recu	ursive functions have two parts:	
')	base case	
2)	recursive formula	
ex.	Fibonacci Fi	
	F ₀ = 0)	
	F ₁ = 1 } base cases F ₁ = 1 } fibonacci sequence	
	$F_n = F_{n-1} + F_{n-2}$ $n \ge 2$ } recursive formula	
ex.	summation from 0 to n = 0	
	S(O) = D base case	
	5(n) = 5(n-1)+n n=1 recursive formula	
Neck	As to recur down to base case eventually	
ex.	f(x) = f(x-1) + 100	
	not complete recursion be no base case	
e×.	$q(x) = \langle g(x) = 0 \rangle x = 7$	
	$g(x) = \begin{cases} g(x) = 0 & x = 7 \\ g(x) = g(x-1) + 2 & x > 6 \end{cases}$	
	invalid recursion be g(7) defined twice	
	uze of recursion.	
	1) cover every case	
ı	2) no duplicate definitions	
,	3) base case (s)	
	olling	
	Fibonacci: Fo=0, F,=1, Fn=Fn-,+Fn-2 NZ2	
	$F_2 = F_1 + F_0 = 1 + 0 = 1$	
	F4 = F3 + F2 = F2 + F, + F0 = F, + F0 + F, + F0 = 1 + 0 + 1 + 1 + 0 = 3	
	$T: \mathbb{N} \to \mathbb{Z}$	
	T(0) = 1	
	$T(n) = 2T(n-1) + 3$ $n \ge 1$ $k = "level"$	
k = 2		
k=3		

k=k	T(n)	= 2 ^k	T (n.	- K)+	3 5	2 .													
At T																			
						nal c	losed	form											
	ling																		
	•				us ite	rations	15	art at	n	go dow	in lie	и, n	-1, n=	2 ,	or k	=1.2.	k		
٠,	avess			president	00 11		, (3		, ,,	3			*			,,,,,			
	reach																		
					for b	ase	ease												
								, i 4	: 6 1	,									
ex.	S(n)	= }	c (h)	N = 1	n > 1	7	N =	= 2 V	LCK	3									
							s(%))=25(Sq) + Sq										
	k=I			$\left(\frac{N}{2}\right)$ +															
	k=2					+ N =													
	k=3		= 22	(25(n/8)) + ")	+n+n	= 235	(8)+	3n										
	; k=k		= 2 × 5	$\left(\frac{n}{2^k}\right)$	+ kn														
	base	case u	when	n=1,	<u>n</u> 2k	= -) k=	log2n	, pl	ug in									
		5(n)	= 2 109	2 h S	(n 2 1 - 32 "	;) + n	logzr	= N	5(1)+	nlog 2"	n = cn	+ nlog.	_e h	close	d for	rm			
		5(n)	= 2 109	² 5	$\left(\frac{n}{2^{1^{2}j_{2}y}}\right)$;)+ n	log ₂ n	, = N	5(1)+	nlog 2"	n = CN	+ n log	eh	close	d for	ſm			
		5(n)	= 2 109	2 h S	21-324	;)+ n	logzn	. = N	5(1)+	nlog 2"	n = Cn	+ n log	e in	close	d for	rm			
		5(n)	= 2 109	2 ^h 5	210324	;)+ n	logzn	. = N	5(1)+	nlog 2) = CN	+ n log,	, h	close	d for	(m			
		5(n)	= 2 103	12 ⁿ 5	(2 ogz u	;) + n	logzn	= N	5(1)+	nlog 2°	n = (n	+ n log 2	, h	c103e	d for	ſm			
		5(n)	= 2 109	2 ⁿ 5	(Zingar	;) + n	log ₂ n	, = N	5(1)+	nlog 2"	n= Cn	+ 109	, h	close	d for	(m			
		5(n)	= 2 109	2 ⁿ 5	(N Z lagar	;) + n	log ₂ n	= N	5(1)+	nlog 2"	n= cn	+ 109	, h	close	d for	rm -			
		5(n)	= 2 109	2 ⁿ 5	2 10 gz 1	;) + n	log ₂ n	= N	5(1)+	nlog 2"	n = Cn	+ 109	, h	close	d for	(m			
		5(n)	= 2 109	2 ⁿ 5	(2 lage	;) + n	log ₂ n	= N	5(1)+	nlog 2"	n = cn	+ 109	, h	close	d for	rm .			
		5(n)	= 2 109	2 ⁿ 5	(N 2 laga 1	;) + n	log ₂ n	= N	5(1)+	nlog 2"	n= cn	+ 109	, h	close	d for	rm .			
		5(n)	= 2 109	2 h S	(N 2 laga v	;) + n	log ₂ n	= N	5(1)+	nlog 2"	n= cn	+ 109,	, h	close	d for				
		5(n)	= 2 109	2 n S	(N 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	;) + n	log ₂ n	a N	5(1)+	nlog 2"	n = cn	+ 109	, h	close	d for				
		5(n)	= 2 109	2 n S	(N 2 laga v	;) + n	log ₂ n	= N	5(1)+	nlog 2"	n = cn	+ 109	, h	close	d for				
		5(n)	= 2 109	2 n S	(2 1 mg 2	;) + n	log ₂ n	= N	5(1)+	nlog 2"	n = cn	+ 109	, h	close	d for				
		5(n)	= 2 100	2 n S	(N 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	;) + n	log ₂ n	a N	5(1)+	nlog 2"	n = cn	+ 109	, h	close	d for				
		5(n)	= 2 109	2 n S	(N 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	;) + n	log ₂ n		5(1)+	nlog 2"	n = cn	+ 109,	, h	close	d for				
		5(n)	= 2 109	2 n S	(N 2 laga v	;) + n	log ₂ n		5(1)+	nlog 2"	n = cn	+ 109	, h	close	d for				

Invalid recursion

Three of the following function definitions are not valid, each for a different reason. Which one is valid, and what's wrong with each of the others? (Domains and codomains are not

provided, but assume they're always something sensible.)

		re arways something	
f(n) =	∫8	when $n < 9$	
J(n) = 3	n + f(n-2)	when $n < 9$ which when $n \ge 9$ when $n = 6$ when $n > 7$	
$a(n) = \lambda$	-9	when $n=6$	doesn't cover a(7)
g(n) =	n+g(n-1)	when $n > 7$	MOCM - COLOR JC
h(n) = a	$\int 3$	when $n=6$	never reaches a base case
n(n) = n	n + h(n+1)	when $n \geq 7$	The state of the s
s(n) = a	$\int 2$	when $n \leq 7$	never reaches a base case two definitions for s(7)
0(10) —	n+s(n-1)	when $n > 6$	

- Find closed forms for the following recursive definitions using unrolling. Specifically, show at least two steps of unrolling, a summation whose value is equal to T(n), and finally a closed-form expression (i.e. containing no recursion or summations) equal to T(n).
- (a) $T: \mathbb{Z}^+ \to \mathbb{Z}^+$ defined by T(n) = 2T(n-1) + 3(b) $f: \mathbb{N}+ \to \mathbb{N}$ defined by f(0) = 0

= $5(5f(n-2)+1)+1=5^2f(n-2)+5\cdot1+1$

 $=5^{2}\left(5f(n-3)+1\right)+5\cdot1+1=5^{3}f(n-3)+5^{2}\cdot1+5\cdot1+5$

 $= 5^{k} f(n-k) + 5^{k-1} + 5^{k-2} + \dots + 5^{i} + 5^{o} = 5^{k} f(n-k) + \sum_{i=0}^{k-1} 5^{i}$

= 5" f(0) + \(\varepsilon^{-1} \sigma^{\varepsilon} = \varepsilon^{-1} \sigma^{\varepsilon} = \varepsilon^{\varepsilon} - 1 \\
\varepsilon^{\varepsilon} \sigma^{\varepsilon} = \varepsilon^{\varepsilon} = \varepsilon^{\varepsilon} - 1 \\
\varepsilon^{\varepsilon} \sigma^{\varepsilon} = \varepsilon^{\varepsilon} = \varepsilon^

(c) $T: \mathbb{Z}^+ \to \mathbb{Z}^+$ defined (powers of 3 only) by T(1) = 47

f(n) = 5f(n-1) + 1

Unrolling

12.2

$$T(1) = 47$$

$$T(n) = 3T(n/3) + 13n$$

f(n) = 5f(n-1)+1

f(n)= 5f(n-1)+1

case when n-k=0, k=n

b) f: N+ → N

f(0) = 0

k=3

K=K

c) $T: \mathbb{Z}^+ \to \mathbb{Z}^+$

T(1)=47

 $T(n) = 3T(\frac{n}{3}) + 13n$

K=1 $T(n)=3T(\frac{n}{3})+13n$

k=2		and and	3 (3	$T\left(\frac{n}{9}\right)$	+ 13	n)+13	n = 3	7 (n) + 13n	+ 13 n								
k=3									$T\left(\frac{n}{27}\right)$		+13n+	13n						
! k=k				$\left(\frac{n}{3^{k}}\right)$ +														
for	base						k=1	og ₃ n										
k = 10g) + 13n	logan	= 47n	+ 1301	0g 3 ⁿ	closed	form	•		
	•			()														