# DeepEdge- Deep Neural Networks on Edge Devices

#### **Presented by**

Akanksha Raina

Srujana Malisetti

Rohit Singh

Nov 21, 2019

#### Instructor

Dr.In Kee Kim



### Motivation

- Many Cloud Providers now a days are providing Machine Learning Services termed as MLaaS.
- Intelligent Personal Assistants running on SoC integration devices, have capability to run ML Models efficiently.
- How about leveraging this capability on edge devices?



### **State-of-the-art approach**



**Proposed approach** 

# Many Options

| • |
|---|
| / |
|   |

| AlexNet<br>VGG                      | Image<br>Classification | Caffe      | Apple Siri                          |
|-------------------------------------|-------------------------|------------|-------------------------------------|
| CaffeNet                            |                         |            | Microsoft Cortana                   |
| DeepFace Face Recognition FaceNet   |                         | TensorFlow | Google Now                          |
| NormFace                            |                         |            | Amazon Alexa                        |
| Kaldi Speech DeepSpeech Recognition | •                       | Keras      | Raspberry Pi                        |
|                                     | Recognition             |            | Jetson Nano                         |
| SENNA<br>Tesseract                  | Text Recognition        | PyTorch    | Cloud - VM, Container,<br>Functions |



# Help from!!



 pCAMP: Performance Comparison of Machine Learning Packages on the Edges

https://www.usenix.org/system/files/conference/hotedge18/hotedge18-papers-zhang.pdf

Distributed Perception by Collaborative Robots

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411096

 Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge

http://web.eecs.umich.edu/~jahausw/publications/kang2017neurosurgeon.pdf

|                 | MacBook Pro  | Intel FogNode | NVIDIA Jetson TX2 | Raspberry Pi | Nexus 6P  |
|-----------------|--------------|---------------|-------------------|--------------|-----------|
| TensorFlow      | $\sqrt{}$    | $\sqrt{}$     | $\checkmark$      | $\sqrt{}$    | ×         |
| Caffe2          | $\checkmark$ |               |                   | ×            | X         |
| MXNet           | $\sqrt{}$    |               | ×                 | ×            | X         |
| PyTorch         | $\checkmark$ | $\checkmark$  | $\sqrt{}$         | ×            | X         |
| TensorFlow Lite | ×            | ×             | ×                 | X            | $\sqrt{}$ |



| Across 8 benchmarks          | Average | Maximum |
|------------------------------|---------|---------|
| Latency                      | 3.1x    | 40.7x   |
| Mobile energy<br>Consumption | 59.5%   | 94.7%   |
| Datacenter<br>Throughput     | 1.5x    | 6.7x    |

# Putting together..

# Approach



Deploy frameworks on selected devices

Deploy Models on the devices

Run Experiments

Analyze the results

Generate Output



### Measurement

- On each device,
  - Accuracy
  - Processing Time
  - CPU Usage
  - Memory usage
  - Battery consumption on Mobile.

# Evaluation SetUp

| Device                        | Specifications                                                                                                            | ML Framework   | Model                  |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|
| Atomic Pi                     | Intel Atom x5-8350 quad core with 2M cache 2GB RAM. Ubuntu 18.0.                                                          | Tensorflow 1.5 | MobileNet_v1_224       |
| Android<br>(Samsung<br>C9Pro) | Android version 8.0.0 Octa-Core 4×1.95 GHz ARM Cortex-A72 + 4×1.44 GHz ARM Cortex-A53 RAM- 6GB 4,000 mAh Battery Capacity | TensorflowLite | MobileNet_v1_224_quant |
| AWS EC2<br>Instance           | p2.xlarge 4vCPUs, 61GB RAM<br>AMI – DeepLearning, Ubuntu 18.04 V25.3                                                      | Tensorflow1.14 | MobileNet_v1_224       |
| AWS<br>Docker                 | p2.xlarge 4vCPUs, 61GB RAM<br>AMI – DeepLearning , Ubuntu 18.04 V20.0<br>NVIDIA Docker, 1GPU                              | Caffe1.0       | BVLC_Alexnet           |
| Laptop                        | Intel(R) Core(™) i-7 8750H CPU@2.20GHZ<br>RAM 16GB(15.2 GB usable)                                                        | Tensorflow 1.5 | SSD_MobileNet_v1       |

# Methodology

#### Development:

- For Mobile, Android studio to create Java app.
- For Atomic Pi, Python script.
- For EC2 instance & Docker, Jupyter notebook (Python).
- For Laptop Python, Jupyter notebook.

#### Measurement:

- Battery consumption on mobile device, GSam Battery Monitor Application with access to BATTERY\_STAT is used. (0.2%)
- For CPU & Memory Usage, Inference Time measurement in Atomic Pi, Docker, EC2 Instance top command is used.
- For Laptop CPU, Memory Usage, GPU Usage task manager is used.



TensorFlow+MobileNet\_v1\_224
TensorFlow Lite + MobileNet\_v1\_224\_quant



TensorFlow+MobileNet\_v1\_224
TensorFlow Lite + MobileNet\_v1\_224\_quant

## **CPU Usage**





EC2

Mobile

Atomic Pi

TensorFlow+MobileNet\_v1\_224
TensorFlow Lite + MobileNet\_v1\_224\_quant

Laptop



Caffe1.0 + AlexNet



## **Lessons Learnt**

- Caffe with Alexnet, Reference\_caffenet are not deployable on all devices.
- TensorFlow framework with Mobilenet is easily deployable.
- Not many tools for measuring battery consumption on mobile devices.
- Failures:
  - Caffe with Caffenet on Android, AtomicPi & Laptop.
  - Caffe with Alexnet on Android, Atomic Pi & Laptop.
  - AtomicPi did not support newer version of Tensorflow.
  - Jupyter Notebook hangs AtomicPi.

## Conclusion



Surprisingly, EC2 instance is consuming more resources.



AtomicPi has taken time to provide the result.



Tensorflow Lite with MobileNet combination is efficient and equally accurate even though it is quantized to support mobile devices.



Future work involves more devices and more frameworks.

## Extra Work

### Laptop – TensorFlow with RCNN

- Accuracy 99%
- CPU Usage 42%
- Memory Usage- 3 GB
- Total Time(Inference + Processing) 180 seconds.





# Thank you

Questions?