MODUL LOGIKA MATEMATIKA

EKUIVALENSI HUKUM LOGIKA

MI041 - 3 SKS

ampus

UNIVERSIT BUD

FAKULTAS TEKNOLOGI INFORMASI UNIVERSITAS BUDI LUHUR

JAKARTA
SEPTEMBER 2019

TIM PENYUSUN

Rizky Pradana, M.Kom Riri Irawati, M.Kom

MODUL PERKULIAHAN #4 JUDUL POKOK BAHASAN

Capaian Pembelajaran	:	Mahasiswa dapat menyelesaikan pola ekuivalensi dengan menggunakan tabel dan hukum logika.				
Sub Pokok Bahasan	:	1.1. Ekuivalensi dengan tabel1.2. Hukum Logika1.3. Ekuivalensi dengan hukum logika				
Daftar Pustaka	:	 Ayres. (1965). Modern Algebra. Schaum's Gallier, Jean H, (1986.) Logic for Computer Science. Harper & Row Publisher. New York JP Tremblay & R.Manohar. (1975). Discrete Mathematical Structure with Application to comp.science. Mc Graw Hill Cs.Series. Lipschutz. (2007). Discrete Mathematics. Schaum's outline series. Siang, Jong Taek. (2002). Matematika Diskrit dan Aplikasinya Pada ilmu Komputer. 				

1. Ekuivalensi Dengan Tabel

Dua proposisi p dan q disebut ekivalen logik bila keduanya mempunyai tabel kebenaran yang sama.

Perhatikan proposisi berikut!

- 1) Dewi sangat cantik dan peramah.
- 2) Dewi peramah dan sangat cantik.

Dari kedua pernyataan tersebut diatas, secara sekilas tampak ekivalen atau sama saja, yang dalam bentuk ekspresi logika dapat ditampilkan berikut ini:

- p: Dewi sangat cantik
- q: Dewi peramah

Maka ekspresi logika tersebut adalah:

- 1) $p \wedge q$
- 2) q $_{\Lambda}$ p

Jika kedua ekspresi logika tersebut ekivalen secara logis, maka dapat ditulis

$$(p \wedge q) \equiv (q \wedge p)$$

Dua proposisi p dan q disebut ekivalen logik bila keduanya mempunyai tabel kebenaran yang sama.

Contoh 1.1

Buktikan $(p \rightarrow q) \land (q \rightarrow p) \equiv p \leftrightarrow q!$

Penyelesaian :

р	q	(p→ q)	$(d \rightarrow b)$	$(p{\rightarrow}q)\wedge(q\rightarrowp)$	$p \leftrightarrow q$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F
F	Т	Т	F	F	F
F	F	Т	Т	Т	Т

Terbukti ekivalen.

2. Hukum Logika (Aljabar Proposisi)

Digunakan untuk membuktikan:

- Dua proposisi ekuivalen (selain menggunakan tabel kebenaran).
- Suatu proposisi tautologi atau kontradiksi (selain menggunakan tabel kebenaran).
- Membuktikan ke-sah-an suatu argumen.

Berikut hukum-hukum yang berlaku pada aljabar proposisi:

- a. Hukum Idempoten
 - $\circ \quad (p \lor p) \equiv p$
 - $\circ (p \wedge p) \equiv p$
- b. Hukum Assosiatif
 - $\circ \qquad (p \lor q) \lor r \equiv p \lor (q \lor r)$
 - $\circ \qquad (p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$
- c. Hukum Komutatif
 - $\circ (p \land q) \equiv (q \land p)$
 - \circ (p \vee q) \equiv (q \vee p)
- d. Hukum Distributif
 - $\circ (p \lor q) \land r \equiv (p \land r) \lor (q \land r)$
 - $\circ (p \land q) \lor r \equiv (p \lor r) \land (q \lor r)$
- e. Hukum Identitas
 - \circ $p v F \equiv p$
 - \circ pvT \equiv T
 - \circ $p \wedge F \equiv F$
 - \circ $p \wedge T \equiv p$
- f. Hukum Komplemen
 - \circ $p v \sim p \equiv T$
 - \circ $p \land \sim p \equiv F$
 - $\circ \sim (\sim p) \equiv p$
 - \circ ~(T) \equiv F dan ~ (F) \equiv T
- g. Transposisi
 - $o p \rightarrow q \equiv \sim q \rightarrow \sim p$
- h. Hukum Implikasi
 - $o p \rightarrow q \equiv \sim p \vee q$
- i. Hukum Ekivalensi
 - $\circ p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$
- j. Hukum Eksportasi
 - $oproduct p \rightarrow (q \rightarrow r) \equiv (p \land q) \rightarrow r$

k. Hukum de Morgan

$$\bigcirc \sim (p \land q) \equiv \sim p \lor \sim q$$

$$\circ$$
 ~ (pvq) = ~p \wedge ~q

3. Ekuivalensi Dengan Hukum Logika

• Proposisi berikut adalah ekivalen logik:

$p \lor p \equiv p$	$p \wedge p \equiv p$
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$
$p \lor q \equiv q \lor p$	$p \wedge q \equiv q \wedge p$
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
$p \vee F \equiv p$	$p \wedge T \equiv p$
$p \lor T \equiv T$	$p \wedge F \equiv F$
$p \lor \sim p \equiv T$	$p \wedge \sim p \equiv F$
~~p ≡ p	\sim T \equiv F, \sim F \equiv T
$\sim (p \lor q) \equiv \sim p \land \sim q$	$\sim (p \land q) \equiv \sim p \lor \sim q$

$P \vee P \equiv P$	Hukum Idempoten
$(P \vee Q) \vee R \equiv P \vee (Q \vee R)$	Hukum Asosiatif
$P \lor Q \equiv Q \lor P$	Hukum Komutatif
$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$	Hukum Distributif
$P \lor F \equiv P$	Hukum Identitas

$P \lor T \equiv T$	Hukum Identitas
$P \lor \sim P \equiv T$	Hukum Komplemen
~~P≡ P	Hukum Komplemen
\sim (P \lor Q) \equiv \sim P \land \sim Q	Hukum De Morgan

Contoh 1.2

Tunjukkan dengan menggunakan tabel kebenaran dan aljabar proposisi bahwa p \vee ~ (p \vee q) dan p \vee ~q keduanya ekivalen secara logik!

Penyelesaian:

• Tabel Kebenaran

р	q	-q	(p v q)	-(p v q)	$p \vee -(p \vee q)$	p ∨ -q
Т	Т	F	Т	F	Т	T
Т	F	Т	Т	F	Т	Т
F	Т	F	Т	F	F	F
F	F	Т	F	Т	Т	Т

Terbukti Ekivalen.

• Aljabar Proposisi

$$\begin{array}{ll} p \vee -(p \vee q \) & \equiv p \vee -q \\ \Leftrightarrow p \vee (-p \wedge -q) & \equiv p \vee -q \ & (\text{Hukum De Morgan}) \\ \Leftrightarrow (p \vee -p) \wedge (p \vee -q) & \equiv p \vee -q \ & (\text{Hukum distributif}) \\ \Leftrightarrow T \wedge (p \vee -q) & \equiv p \vee -q \ & (\text{Hukum komplemen}) \\ \Leftrightarrow p \vee -q & \equiv p \vee -q \ & (\text{Hukum identitas}) \end{array}$$

Contoh 1.3

Tunjukkan dengan menggunakan tabel kebenaran dan aljabar proposisi bahwa $p \wedge (p \vee q) \equiv p \text{ keduanya ekivalen secara logik!}$

• Tabel Kebenaran

р	q	(p ∨ q)	$p \wedge (p \vee q)$	р
Т	Т	Т	Т	Т
Т	F	Т	Т	Т
F	Т	Т	F	F
F	F	F	F	F

Terbukti Ekivalen.

• Aljabar Proposisi

$p \wedge (p \vee q)$	≡ p	
$(p\vee F)\wedge (p\vee q)$	≡ p	(Hukum Identitas)
$p \lor (F \land q)$	≡ p	(Hukum distributif)
$p \vee F$	≡ p	(Hukum Identitas)
р	≡ p	(Hukum Identitas)

Rangkuman

- 1. Dua proposisi p dan q disebut ekivalen logik bila keduanya mempunyai tabel kebenaran yang sama.
- 2. Hukum Logika (Aljabar Proposisi) digunakan untuk membuktikan:
 - Dua proposisi ekuivalen (selain menggunakan tabel kebenaran).
 - Suatu proposisi tautologi atau kontradiksi (selain menggunakan tabel kebenaran).
 - Membuktikan ke-sah-an suatu argumen.

Latihan

1. Buktikan bahwa ekspresi-ekspresi logika berikut ini ekivalen dengan menggunakan tabel kebenaran.

a.
$$\neg A \leftrightarrow B \equiv (\neg A \lor B) \land (\neg B \lor A)$$

b.
$$A \rightarrow (\neg A \rightarrow B) \equiv T$$

c.
$$(A \vee \neg B) \rightarrow C \equiv (A \wedge B) \vee C$$

d.
$$A \rightarrow B \equiv \neg (A \land \neg B)$$

e.
$$\neg(\neg(A \land B) \lor B) \equiv F$$

2. Gunakan dalil de morgan untuk menentukan proposisi yang ekuivalen dengan :

a.
$$\sim$$
 (p \vee \sim q)

b.
$$\sim ((\sim p \land q) \lor \sim r)$$

c.
$$\sim$$
 (\sim (\sim p v q) v \sim (r \wedge \sim s))

3. Buktikan bahwa:

a.
$$\sim (\sim p \land q) \land (p \lor r) \equiv p \lor (\sim q \land r)$$

b.
$$(p\rightarrow q) \wedge (\sim q \wedge (r \vee \sim q)) \equiv \sim (q \vee p)$$

c.
$$p \vee (p \wedge (p \vee q)) \equiv p$$

FAKULTAS TEKNOLOGI INFORMASI UNIVERSITAS BUDI LUHUR

Jl. Raya Ciledug, Petukangan Utara, Pesanggrahan Jakarta Selatan, 12260

Telp: 021-5853753 Fax : 021-5853752

http://fti.budiluhur.ac.id