Lecture 13 Stability of LU Factorization; Cholesky Factorization

Songting Luo

Department of Mathematics Iowa State University

MATH 562 Numerical Analysis II

1 Stability of LU Factorization

2 Cholesky Factorization

1 Stability of LU Factorization

2 Cholesky Factorization

Stability of LU without Pivoting

• For **A** = **LU** computed without pivoting

$$\tilde{\mathbf{L}}\tilde{\mathbf{U}} = \mathbf{A} + \delta \mathbf{A}, \quad \frac{\|\delta \mathbf{A}\|}{\|\mathbf{L}\| \|\mathbf{U}\|} = O(\epsilon_{machine})$$

- This is close to backward stability, except that we have ||L|||U||
 instead of ||A|| in the denominator
- Instability of Gaussian elimination can happen only if one or both of the factors L and U is large relative to size of A
- Unfortunately, ||L|| and ||U|| can be arbitrarily large (even for well-conditioned A), e.g.,

$$\mathbf{A} = \begin{bmatrix} 10^{-20} & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 10^{20} & 1 \end{bmatrix} \begin{bmatrix} 10^{-20} & 1 \\ 0 & 1 - 10^{-20} \end{bmatrix}$$

• Therefore, the algorithm is unstable

Stability of LU with Partial Pivoting

- With pivoting, all entries of **L** are in [-1, 1], so $\|\mathbf{L}\| = O(1)$.
- To measure growth in \mathbf{U} , we introduce the growth factor $\rho = \frac{\max_{ij} |u_{ij}|}{\max_{ij} |a_{ii}|}$, and hence $\|\mathbf{U}\| = O(\rho(\mathbf{A}))$
- We then have PA = LU

$$\tilde{\mathbf{L}}\tilde{\mathbf{U}} = \tilde{\mathbf{P}}\mathbf{A} + \delta\mathbf{A}, \quad \frac{\|\delta\mathbf{A}\|}{\|\mathbf{A}\|} = O(\rho\epsilon_{machine})$$

- If $|l_{ij}| < 1$ for each i > j, (i.e., there is no tie for the pivoting), then $\tilde{\mathbf{P}} = \mathbf{P}$ for sufficiently small $\epsilon_{machine}$
- If $\rho = O(1)$, then the algorithm is backward stable
- In fact, $\rho \leqslant 2^{m-1},$ so by definition ρ is a constant but can be very large

The Growth Factor

• ρ can indeed be as large as 2^{m-1} . Consider matrix

where growth factor $\rho = 16 = 2^{m-1}$.

- $\rho=2^{m-1}$ is as large as ρ can get. It can be catastrophic in practice
- Theoretically, Gaussian elimination with partial pivoting is backward stable according to formal definition
- \bullet However, in the worst case, Gaussian elimination with partial pivoting may be unstable for practical values of m

The Growth Factor in Practice

- Good news: Large ρ occurs only for very skewed matrices. Experimentally, one rarely see very large ρ
- Probability of large ρ decreases exponentially in ρ .
- "If you pick a billion matrices at random, you will almost certainly not find one for which Gaussian elimination is unstable"
- In practice, ρ is no larger than $O(\sqrt{m})$. However, this behavior is not fully understood yet
- In conclusion,
 - Gaussian elimination with partial pivoting is backward stable
 - ullet In theory, its error may grow exponentially in m
 - In practice, it is stable for matrices of practical interests

Stability of LU Factorization

2 Cholesky Factorization

Hermitian Positive-Definite Matrices

- Symmetric matrix $\mathbf{A} \in \mathbb{R}^{m \times m}$ is symmetric positive definite (SPD) if $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for $\mathbf{x} \in \mathbb{R}^m \setminus \{\mathbf{0}\}$
- Hermitian matrix $\mathbf{A} \in \mathbb{C}^{m \times m}$ is Hermitian positive definite (HPD) if $\mathbf{x}^* \mathbf{A} \mathbf{x} > 0$ for $\mathbf{x} \in \mathbb{C}^m \setminus \{\mathbf{0}\}$
- If ${\bf A}$ is $m \times$ HPD and ${\bf X} \in \mathbb{C}^{m \times m}$ has full column rank, then ${\bf X}^*{\bf A}{\bf X}$ is HPD
- Any principal submatrix (picking some rows and corresponding columns) of **A** is HPD and $a_{ii} > 0$.
- HPD matrices have positive real eigenvalues and orthogonal eigenvectors
- Note: A positive-definite matrix does not need to be symmetric or Hermitian! A real matrix A is positive definite iff A + A^T is SPD.

Cholesky Factorization

- Key idea: take advantage and preserve the properties of symmetry and positive-definiteness in factorization
- Eliminate below diagonal and to the right of diagonal

$$\begin{split} \mathbf{A} &= \left[\begin{array}{cc} a_{11} & \mathbf{w}^* \\ \mathbf{w} & \mathbf{K} \end{array} \right] = \left[\begin{array}{cc} \alpha & \mathbf{0} \\ \mathbf{w}/\alpha & \mathbf{I} \end{array} \right] \left[\begin{array}{cc} \alpha & \mathbf{w}^*/\alpha \\ \mathbf{0} & \mathbf{K} - \mathbf{w}\mathbf{w}^*/a_{11} \end{array} \right] \\ &= \left[\begin{array}{cc} \alpha & \mathbf{0} \\ \mathbf{w}/\alpha & \mathbf{I} \end{array} \right] \left[\begin{array}{cc} 1 & \mathbf{0} \\ \mathbf{0} & \mathbf{K} - \mathbf{w}\mathbf{w}^*/a_{11} \end{array} \right] \left[\begin{array}{cc} \alpha & \mathbf{w}^*/\alpha \\ \mathbf{0} & \mathbf{I} \end{array} \right] = \mathbf{R}_1^* \mathbf{A}_1 \mathbf{R}_1 \end{split}$$
 where $\alpha = \sqrt{a_{11}}, \ a_{11} > 0$

• $\mathbf{K} - \mathbf{w}\mathbf{w}^*/a_{11}$ is principal submatrix of HPD $\mathbf{A}_1 = \mathbf{R}_1^{-*}\mathbf{A}\mathbf{R}_1^{-1}$ and therefore is HPD, with positive diagonal entries

Cholesky Factorization

· Apply recursively to obtain

$$\mathbf{A} = (\mathbf{R}_1^* \mathbf{R}_2^* \cdots \mathbf{R}_m^*)(\mathbf{R}_m \cdots \mathbf{R}_2 \mathbf{R}_1) = \mathbf{R}^* \mathbf{R}, \quad r_{jj} > 0$$

which is known as Cholesky factorization

- Question: Is **R** simply ?union? of kth rows of \mathbf{R}_k (or \mathbf{R}^* "union" of kth columns of \mathbf{R}_k^*)? Yes. Hint: Write \mathbf{R}_k^* in a form similar to $\mathbf{L}_k = \mathbf{I} + \mathbf{I}_k \mathbf{e}_k^*$ in LU.
- Existence and uniqueness: every HPD matrix has a unique Cholesky factorization
 - Exists because algorithm for Cholesky factorization always works for HPD matrices
 - Is unique since once $\alpha=\sqrt{a_11}$ is determined at each step, entire column \mathbf{w}/α is determined
 - Question: How to check whether a Hermitian matrix is positive definite? Answer: Run Cholesky factorization and it would succeeds iff the matrix is positive definite.

Algorithm of Cholesky Factorization

Factorize HPD matrix A

Algorithm: Cholesky factorization

$$\begin{aligned} \mathbf{R} &= \mathbf{A} \\ \text{for } k &= 1 \text{ to } m \\ \text{for } j &= k+1 \text{ to } m \\ &\quad \mathbf{r}_{j,j:m} \leftarrow \mathbf{r}_{j,j:m} - \mathbf{r}_{k,j:m} \bar{r}_{kj}/r_{kk} \\ &\quad \mathbf{r}_{k,k:m} \leftarrow \mathbf{r}_{k,k:m}/\sqrt{r_{kk}} \end{aligned}$$

Operation count

$$\sum_{k=1}^{m} \sum_{j=k+1}^{m} 2(m-j) \sim 2 \sum_{k=1}^{m} \sum_{j=1}^{k} j \sim \sum_{k=1}^{m} k^2 \sim m^3/3$$

Stability

Theorem

The computed Cholesky factor R satisfies

$$\tilde{\mathbf{R}}^* \tilde{\mathbf{R}} = \mathbf{A} + \delta \mathbf{A}, \quad \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|} = O(\epsilon_{machine}),$$

i.e., Cholesky factorization is backward stable

- Forward errors in $\tilde{\mathbf{R}}$ is $\|\tilde{\mathbf{R}} \mathbf{R}\|/\|\mathbf{R}\| = O(\kappa(\mathbf{A})\epsilon_{machine})$, which may be large for ill-conditioned \mathbf{A} .
- Solve Ax = b for positive definite A
 - Factorize $\mathbf{A} = \mathbf{R}^* \mathbf{R}$, solve $\mathbf{R}^* \mathbf{y} = \mathbf{b}$, solve $\mathbf{R} \mathbf{x} = \mathbf{y}$
 - Operation count is $\sim m^3/3$
 - Algorithm is backward stable:

$$(\mathbf{A} + \Delta \mathbf{A})\tilde{\mathbf{x}} = \mathbf{b}, \quad \frac{\|\Delta \mathbf{A}\|}{\|\mathbf{A}\|} = O(\epsilon_{machine})$$

◆ロト ◆昼 ト ◆ 差 ト → 差 ・ 夕 Q ②

LDL* Factorization

- Cholesky factorization is sometimes given by A = LDL* where D is diagonal matrix and L is unit lower triangular matrix
- It avoids computing square roots
- Analogously, LU factorization can also be written as LDU, where U is unit upper triangular
- Question: How is \mathbf{R} in $\mathbf{A} = \mathbf{R}^*\mathbf{R}$ related to the \mathbf{L} and \mathbf{U} factors of $\mathbf{A} = \mathbf{L}\mathbf{U}$?
 - $\mathbf{U} = \mathbf{DL^*} = \sqrt{\mathbf{D}}\mathbf{R}$, where $\sqrt{\mathbf{D}} = diag(\sqrt{d_{11}}, \cdots, \sqrt{d_{mm}})$
- Hermitian indefinite systems can be factorized with $\mathbf{PAP}^T = \mathbf{LDL}^*$, but \mathbf{D} is block diagonal with 1×1 and 2×2 blocks. Its cost is similar to Cholesky factorization and is about 50% of Gaussian elimination.

Stability of LU Factorization

2 Cholesky Factorization

Software for Linear Algebra

- LAPACK: Linear Algebra PACKage (www.netlib.org)
 - Standard library for solving linear systems and eigenvalue problems
 - Depends on **BLAS** (Basic Linear Algebra Subprograms)
 - Note: Uses Fortran conventions for matrix arrangements
 - C-version: CLAPACK

MATLAB

- e.g., Factorize **A**: lu(A) and chol(A)
- Solve $\mathbf{A}\mathbf{x} = \mathbf{b}$: $x = A \setminus b$
 - Uses back/forward substitution for triangular matrices
 - Uses Cholesky factorization for positive-definite matrices
 - Uses LU factorization with column pivoting for nonsymmetric matrices
 - Uses Householder QR for least squares problems
- Uses LAPACK and other packages internally
- Solvers for sparse matrices (e.g., SuperLU, TAUCS)

Some Examples

Example BLAS routines: Matrix-vector multip.: dgemv; Matrix-matrix multip: dgemm

	LU Factorization			Solve linear system				Est. cond
	General	Symmetric		Genera	ıl	Symmetric		
LAPACK	dgetrf	dpotrf/dsytrf		dgesv	d	dposv/dposvx		dgecon
LINPACK	dgefa	dpofa/dsifa		dgesl	dposl		l/dsisl	dgeco
MATLAB	lu	C	hol					rcond
	Lii	S	Eigenvalue/vector			SVD		
	QR	Solve	Rank-de	eficient	Gen	eral	Sym.	
LAPACK	dgeqrf	dgesl	dgelsy/s/d		dge	eev	dsyev	dgesvd
LINPACK	dqrdc	dqrsl	dqrst					dsvdc
MATLAB	qr				e	ig	eig	svd

For BLAS, LINPACK, and LAPACK, first letter **s** stands for single-precision real, **d** for double-precision real, **c** for single-precision complex, and **z** for double-precision complex.

Using LAPACK Routines in C Programs

- LAPACK was written in Fortran 77. Special attention is required when calling a Fortran subroutine from C.
- Key differences between C and Fortran
 - Storage of matrices: column major (Fortran) versus row major (C/C++)
 - Argument passing for subroutines in C and Fortran: pass by reference (Fortran) and pass by value (C/C++)
- To find a function name, refer to LAPACK Users? Guide. or search netlib.org
- To find out arguments for a given function, search on netlib.org
- Note the difference on precision