Лекция "Функциональный анализ" по учебнику А.Н.Колмогоров С.В.Фомин

составил П.М.Ахметьев 20.04.2020

1 Гильбертово пространство, теорема об изоморфизме

Theorem 1. Любые два гильбертовых пространства изоморфны (Теорема 5, гл. III, параграф 4).

Доказательство теоремы 1

Потребуется лемма (теорема Рисса-Фишера, теорема 3 гл. III, параграф 5).

Lemma 2. Пусть φ_n , $n \in \mathbb{N}$ -произвольная ортогональная система в полном евклидовом пространстве R, пусть числа $c_1, c_2, \ldots c_n, \ldots$ таковы, что ряд

$$\sum_{k=1}^{\infty} c_k^2$$

cxoдится. Тогда $cywecmsyem\ f\in R$ такой, что

$$c_k = (f, \varphi_k), \quad \sum_{k=1}^{\infty} c_k^2 = (f, f) = ||f||^2.$$

1.1 Доказательство леммы 2

Положим

$$f_n = \sum_{k=1}^n c_k \varphi_k.$$

Утверждается, что:

- Последовательность $\{f_n\}$ фундаментальна, $\lim_{n\to\infty} f_n = f$ (почему?).
 - Справедливо равенство:

$$(f, \varphi_i) = (f_n, \varphi_i) + (f - f_n, \varphi_i),$$

причем справа первое слагаемое равно c_i , а второе бесконечномало по неравенству Коши-Буняковского (почему?). Получится $(f, \varphi_i) = c_i$.

• Поскольку $f_n \to f$, получится

$$(f - \sum_{k=1}^{n} c_k \varphi_k, f - \sum_{k=1}^{n} c_k \varphi_k) = (f, f) - \sum_{k=1}^{n} c_k^2 \to 0.$$

Доказательство теоремы 1

Докажем, что произвольное гильбертово пространство H изоморфно l_2 . Выберем в H произвольную полную ортогональную нормированную систему $\{\varphi_n\}$ (как это сделать? Теорема 1 гл III, параграф 4). Поставим в соответствие элементу $f \in H$ совокупность его коэффициентов Фурье (что это такое? гл.III, параграф 4). По лемме 2 всякому элементу

$$(c_1,c_2,\dots)\in l_2$$

отвечает некоторый вектор f.

Соответствие $H \to l_2$ является биекцией, проверим, что эта биекция сохраняет евклидову структуру:

$$(f,g) = \sum_{n=1}^{\infty} c_n d_n.$$

Это вытекает из равенств:

$$(f,f) = \sum_{n=1}^{\infty} c_n^2, \quad (g,g) = \sum_{n=1}^{\infty} d_n^2,$$

$$(f+g,f+g) = (f,f) + 2(f,g) + (g,g) = \sum_{n=1}^{\infty} (c_n + d_n)^2 =$$

$$\sum_{n=1}^{\infty} c_n^2 + 2\sum_{n=1}^{\infty} c_n d_n + \sum_{n=1}^{\infty} d_n^2. \quad \Box$$

2 Мера, гл. V; мера плоских множеств

2.1 Кольцо, алгебра, σ -алгебра, напоминание

Definition 3. Непустая система множеств \aleph называется кольцом, если эта система замкнута относительно объединения $A \cup B$, дополнения $A \setminus B$, пересечения $A \cap B$. Кольцо с единицей $E \cap A = A$, $E \in \aleph$ (для любого $A \in \aleph$) называется алгеброй.

Симметрическая разность:

$$A \triangle B = (A \setminus B) \cup (B \setminus A).$$

Кольцо замкнуто относительно симметрической разности. Пустое множество $\emptyset \in \aleph$, $\emptyset = A \setminus A, \ A \in \aleph$.

Примеры, гл.І, параграф 5

- $\aleph = 2^A$, получится $A \in \aleph$.
 - $\aleph = \{A, \emptyset\}.$
- Система всех конечных подмножеств A является кольцом, это кольцо является алгеброй $\Leftrightarrow A$ -конечно.
- Система всех ограниченных множеств числовой прямой является кольцом, но не алгеброй.

Definition 4. Алгебра \aleph называется σ -алгеброй, если замкнуто относительно объединения любого числа (не обязательно конечного числа) множеств:

$$A_n \in \aleph \Rightarrow \cup_n A_n \in \aleph$$
.

Из соотношений двойственности

$$\cap_n A_n = E \setminus \cap_n (E \setminus A_n)$$

вытекает, что σ -алгебра \aleph замкнута относительно пересечения любого числа (не обязательно конечного числа) множеств (почему?).

Theorem 5. Для любой системы множеств S существует минимальная (по отношению κ этой системе) σ -алгебра, $\aleph(S)$, содержащая множества из S и содержащаяся в любой другой σ -алгебре, содержащей S.

План доказательства теоремы 5

Существование. Рассмотрим объединение $E = \bigcup_{A \in S} A$ всех множеств из S. Рассмотрим σ -алгебру 2^E всех подмножеств множества S. Пусть Σ – совокупность всех всех σ -алгебр, содержащихся в 2^E и содержащих S. Пересечение $\aleph(S) = \bigcap_{\aleph \in \Sigma} \aleph$ является искомой σ -алгеброй.

Definition 6. Рассмотрим множество S всех открытых (или все замкнутых) подмножества пространства R (нам нужен случай $R = \mathbb{R}^2$). Борелевские множества – это множества минимльной σ -алгебры $\aleph(S)$.

Почему борелевские σ -алгебры всех открытых множеств и множества всех замкнутых множеств совпадают?

2.2 Мера элементарных плоских множеств, гл. V, параграф 1

Рассмотрим прямоугольник, который определяется одним из неравенств вида:

$$a \le x \le b;$$
 $a \le x < b,$ $a < x \le b,$ $a < x < b;$

и одним из неравенств вида:

$$c \leq y \leq d; \quad c \leq y < d, \quad c < y \leq d, \quad c < y < d.$$

В том числе, мы рассматриваем замкнутый и открытый прямоугольник. Площадь прямоугольника определяется выражением m(P)=(b-a)(d-c).

Назовем плоское множество Q элементарным, если его можно представить хотябы одним способом как объединение конечного числа прямоугольников.

Theorem 7. Все ограниченные плоские элементарные множества образуют кольцо. Существует мера m(Q), которая каждому элементарному множеству сопоставляет действительное неотрицательное число со следующим свойством аддитивности:

Если
$$Q = \bigcup_{k=1}^{n} P_k$$
 и $P_i \cap P_k = \emptyset$, $i \neq k$, то
$$m(Q) = \sum_{k=1}^{n} m(P_k).$$

Доказательство теоремы 7

Если $A=\cup_k P_k,\ B=\cup_j Q_j$ -два элементарных множества, то $A\cap B=\cup_{k,l}(P_k\cap Q_j)$

элементарное множество (пересечение любых двух прямоугольников снова прямоугольник). Разность двух прямоугольников – элементарное множество (докажите!).

Для двух элементарных множеств A, B найдется прямоугольник P, $A \subset P$, $B \subset P$. Тогда

$$A \cup B = P \setminus [(P \setminus A) \cap (P \setminus B)]$$

будет элементарным. Отсюда симметрическая разность $A\triangle B$ будет элементарным. Доказано, что элементарные множества образуют кольцо.

Определим m(A), $A = \bigcup_k P_k$, где P_k -попарно непересекающиеся прямоугольники, по формуле:

$$m(Q) = \sum_{k} m(P_k).$$

Докажем, что m(A) не зависит от способа разбиения A в сумму конечного числа прямоугольников.

Пусть $A = \bigcup_k P_k = \bigcup_j Q_j$, $P_i \cap P_k = \emptyset$, $Q_i \cap Q_k = \emptyset$, $i \neq k$. По аддитивности для непересекающихся прямоугольников:

$$\sum_{k} m(P_k) = \sum_{k,j} m(P_k \cap Q_j) = \sum_{j} m(Q_j). \quad \Box$$

Проблема

- 1. Как распространить меру с кольца (с алгебры) элементарных множеств на большее σ -кольцо (σ -алгебру) с сохранением аддитивности (свойство аддитивности требуется обобщить до свойства σ -аддитивности)? Какая σ -алгебра при этом получится?
- 2. Можно ли построить σ -аддитивную меру на множестве всех подмножеств 2^R данного ограниченного множества R, скажем, для $S = \mathbb{R} \pmod{n}$, $n \in \mathbb{Z}$ (окружность длины 1, (почему S-окружность?))?

Ответы:

- 1. Можно, мы это сделаем на следующей лекции. Получится σ -алгебра борелевских множеств.
 - 2. Это сделать невозможно.

Пусть α -некоторое (любое) иррациональное число. Разобъем точки окружности S на классы эквивалентоности. Скажем, что две точки $x,y\in S$ эквивалентны, если $x-y=n\alpha$, для некоторого $\alpha\in\mathbb{Z}$. Каждый класс эквивалентности – счетное множество точек (почему?). Выберем из каждого класса эквивалентности по одной точке. Обозначим так определенное множество через Φ_0 . Обозначим через Φ_n -сдвиг множества Φ_0 на $n\alpha$ вдоль S.

1. Множества $\Phi_{n_1}, \; \Phi_{n_2}, \; n_1 \neq n_2$ не пересекаются.

- 2. Объединение $\cup_n \Phi_n = S$ составляет всю окружность.
- 3. Множества Φ_{n_1} , Φ_{n_2} , $n_1 \neq n_2$ коншруэнтны (одно из другого получается сдвигом окружности на $(n_2-n_1)\alpha$. Поэтому, по σ -аддитивности получится:

$$1 = \sum_{n=-\infty}^{+\infty} m(\Phi_n), \quad m(\Phi_{n_1}) = m(\Phi_{n_2}),$$

что невозможно.