Econometric Analysis of Cross Section and Panel Data

Lecture 7: Panel Data

Zhian Hu

Central University of Finance and Economics

Fall 2024

This Lecture

- ► Hansen (2022): Chapter 17
- ▶ Panel data or longitudinal data: data structures consisting of observations on individuals for multiple time periods.
- ▶ It allows us to control for unobserved time-invariant endogeneity.

Introduction

- ▶ **Micro panel:** a large number of individuals (often in the 1000's or higher) and a relatively small number of time periods (often 2 to 20 years).
- ▶ Macro panel: a moderate number of individuals (e.g. 7-20) and a moderate number of time periods (20-60 years).
- ► **Key assumption:** the individuals are mutually independent while the observations for a given individual are correlated across time periods.

Time Indexing and Unbalanced Panels

- Y_{it} or X_{it} denotes variables for individual i in period t, where individuals i = 1, ..., N and time periods as t = 1, ..., T.
- ► Thus *N* is the number of individuals in the panel and *T* is the number of time series periods.
- ▶ Balanced panel: an equal number T of observations for each individual and the total number of observations is n = NT.
- ▶ Unbalanced panel: not balanced panel. Each individual is observed for a subset of T_i periods.

Time Indexing and Unbalanced Panels

Table 17.1: Observations from Investment Data Set

Firm Code Number	Year	I_{it}	\overline{I}_i	İ _{it}	Q_{it}	\overline{Q}_i	Q _{it}	\widehat{e}_{it}
32	1970	0.122	0.155	-0.033	1.17	0.62	0.55	
32	1971	0.092	0.155	-0.063	0.79	0.62	0.17	-0.005
32	1972	0.094	0.155	-0.061	0.91	0.62	0.29	-0.005
32	1973	0.116	0.155	-0.039	0.29	0.62	-0.33	0.014
32	1974	0.099	0.155	-0.057	0.30	0.62	-0.32	-0.002
32	1975	0.187	0.155	0.032	0.56	0.62	-0.06	0.086
32	1976	0.349	0.155	0.194	0.38	0.62	-0.24	0.248
32	1977	0.182	0.155	0.027	0.57	0.62	-0.05	0.081
209	1987	0.095	0.071	0.024	9.06	21.57	-12.51	
209	1988	0.044	0.071	-0.027	16.90	21.57	-4.67	-0.244
209	1989	0.069	0.071	-0.002	25.14	21.57	3.57	-0.257
209	1990	0.113	0.071	0.042	25.60	21.57	4.03	-0.226
209	1991	0.034	0.071	-0.037	31.14	21.57	9.57	-0.283

Notation

- ▶ Observations are pairs (Y_{it}, X_{it}) where Y_{it} is the dependent variable and X_{it} is a k-vector of regressors.
- It will be useful to cluster the observations at the level of the individual.
- Write Y_i as the $T_i \times 1$ stacked observations on Y_{it} for $t \in S_i$. Similarly, we write X_i as the $T_i \times k$ matrix of stacked X'_{it} for $t \in S_i$.
- ▶ In matrix, let $\mathbf{Y} = (\mathbf{Y}_1', \dots, \mathbf{Y}_N')'$ denote the $n \times 1$ vector of stacked \mathbf{Y}_i , and set $\mathbf{X} = (\mathbf{X}_1', \dots, \mathbf{X}_N')'$ similarly.

Pooled Regression

▶ The simplest model in panel regression is pooled regresssion

$$Y_{it} = X'_{it}\beta + e_{it}$$

 $\mathbb{E}[X_{it}e_{it}] = 0$

where β is a $k \times 1$ coefficient vector and e_{it} is an error.

The standard estimator of β in the pooled regression model is least squares, which can be written as

$$egin{aligned} \widehat{eta}_{\mathsf{pool}} &= \left(\sum_{i=1}^{N} \sum_{t \in S_i} X_{it} X_{it}'\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t \in S_i} X_{it} Y_{it}\right) \\ &= \left(\sum_{i=1}^{N} X_i' X_i\right)^{-1} \left(\sum_{i=1}^{N} X_i' Y_i\right) \\ &= \left(X' X\right)^{-1} \left(X' Y\right) \end{aligned}$$

 $ightharpoonup \widehat{\beta}_{pool}$ is called the pooled regression estimator.

Pooled Regression

▶ The pooled regression model is ideally suited for the context where the errors e_{it} satisfy strict mean independence:

$$\mathbb{E}\left[e_{it}\mid \boldsymbol{X}_i\right]=0$$

Strict mean independence requires that neither lagged nor future values of X_{it} help to forecast e_{it}.

$$\widehat{eta}_{ ext{pool}} = \left(\sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \mathbf{X}_{i}' \left(\mathbf{X}_{i} \mathbf{eta} + \mathbf{e}_{i}\right)\right)$$

$$= \beta + \left(\sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{e}_{i}\right)$$

Pooled Regression

Then we can show

$$\mathbb{E}\left[\widehat{\beta}_{\mathsf{pool}} \mid \boldsymbol{X}\right] = \beta + \left(\sum_{i=1}^{N} \boldsymbol{X}_{i}' \boldsymbol{X}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \boldsymbol{X}_{i}' \mathbb{E}\left[\boldsymbol{e}_{i} \mid \boldsymbol{X}_{i}\right]\right) = \beta$$

- \blacktriangleright We expect the errors e_{it} to be correlated across time t for a given individual.
- ▶ Thus, we use a cluster-robust covariance matrix estimator which allows arbitrary within-cluster dependence, using the Stata command *regress cluster(id)* where *id* indicates the individual.
- ▶ When strict mean independence fails the pooled least squares estimator $\widehat{\beta}_{pool}$ is not necessarily consistent for β .

One-Way Error Component Model

- ▶ One approach to panel data regression is to model the correlation structure of the regression error e_{it} .
- ► The most common choice is an error-components structure. The simplest takes the form

$$e_{it} = u_i + \varepsilon_{it}$$

where u_i is an individual-specific effect and ε_{it} are idiosyncratic (i.i.d.) errors. This is known as a oneway error component model.

- In vector notation we can write $e_i = \mathbf{1}_i u_i + \varepsilon_i$ where $\mathbf{1}_i$ is a $T_i \times 1$ vector of 1's.
- ▶ The one-way error component regression model is

$$Y_{it} = X'_{it}\beta + u_i + \varepsilon_{it}$$

or $Y_i = X_i \beta + \mathbf{1}_i u_i + \varepsilon_i$ written at the level of the individual.

Random Effects

ightharpoonup Random effects model assumes $e_{it} = u_i + \varepsilon_{it}$ and

$$\mathbb{E}\left[\varepsilon_{it} \mid \mathbf{X}_{i}\right] = 0$$

$$\mathbb{E}\left[\varepsilon_{it}^{2} \mid \mathbf{X}_{i}\right] = \sigma_{\varepsilon}^{2}$$

$$\mathbb{E}\left[\varepsilon_{it}\varepsilon_{js} \mid \mathbf{X}_{i}\right] = 0, s \neq t$$

$$\mathbb{E}\left[u_{i} \mid \mathbf{X}_{i}\right] = 0$$

$$\mathbb{E}\left[u_{i}^{2} \mid \mathbf{X}_{i}\right] = \sigma_{u}^{2}$$

$$\mathbb{E}\left[u_{i}\varepsilon_{it} \mid \mathbf{X}_{i}\right] = 0$$

Random Effects

▶ The random effects model implies that the vector of errors e_i for individual i has the covariance structure

$$\mathbb{E}\left[\boldsymbol{e}_{i}\mid\boldsymbol{X}_{i}\right]=0$$

$$\mathbb{E}\left[\boldsymbol{e}_{i}\boldsymbol{e}_{i}'\mid\boldsymbol{X}_{i}\right]=\mathbf{1}_{i}\mathbf{1}_{i}'\sigma_{u}^{2}+\boldsymbol{I}_{i}\sigma_{\varepsilon}^{2}$$

$$=\begin{pmatrix}\sigma_{u}^{2}+\sigma_{\varepsilon}^{2}&\sigma_{u}^{2}&\cdots&\sigma_{u}^{2}\\\sigma_{u}^{2}&\sigma_{u}^{2}+\sigma_{\varepsilon}^{2}&\cdots&\sigma_{u}^{2}\\\vdots&\vdots&\ddots&\vdots\\\sigma_{u}^{2}&\sigma_{u}^{2}&\cdots&\sigma_{u}^{2}+\sigma_{\varepsilon}^{2}\end{pmatrix}$$

$$=\Omega_{i}$$

where I_i is an identity matrix of dimension T_i . The matrix Ω_i depends on i since its dimension depends on the number of observed time periods T_i .

Random Effects

▶ Given the error structure the natural estimator for β is GLS. Suppose σ_u^2 and σ_ε^2 are known. The GLS estimator of β is

$$\widehat{eta}_{ ext{gls}} = \left(\sum_{i=1}^{ extit{N}} oldsymbol{X}_i' \Omega_i^{-1} oldsymbol{X}_i
ight)^{-1} \left(\sum_{i=1}^{ extit{N}} oldsymbol{X}_i' \Omega_i^{-1} oldsymbol{Y}_i
ight)$$

- ▶ A feasible GLS estimator replaces the unknown σ_{μ}^2 and σ_{ε}^2 with estimators.
- By linearity

$$\mathbb{E}\left[\widehat{\beta}_{\mathrm{gls}} - \beta \mid \boldsymbol{X}\right] = \left(\sum_{i=1}^{N} \boldsymbol{X}_{i}' \Omega_{i}^{-1} \boldsymbol{X}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \boldsymbol{X}_{i}' \Omega_{i}^{-1} \mathbb{E}\left[\boldsymbol{e}_{i} \mid \boldsymbol{X}_{i}\right]\right) = 0$$

▶ You should remember that $V_{\rm gls} \leq V_{\rm pool}$, so the random effects estimator $\widehat{\beta}_{\rm gls}$ is more efficient than the pooled estimator $\widehat{\beta}_{\rm pool}$.

Consider the one-way error component regression model

$$Y_{it} = X'_{it}\beta + u_i + \varepsilon_{it}$$

or

$$\mathbf{Y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{1}_i u_i + \boldsymbol{\varepsilon}_i$$

- In many applications it is useful to interpret the individual-specific effect u_i as a time-invariant unobserved missing variable. For example, in a wage regression u_i may be the unobserved ability of individual i.
- ▶ When u_i is interpreted as an omitted variable it is natural to expect it to be correlated with the regressors X_{it} . This is especially the case when X_{it} includes choice variables.

- In the econometrics literature if the stochastic structure of u_i is treated as unknown and possibly correlated with X_{it} then u_i is called a fixed effect.
- ightharpoonup Correlation between u_i and X_{it} will cause both pooled and random effect estimators to be biased. This is due to the classic problems of omitted variables bias and endogeneity.

- ▶ Consider the scatter plot of three observations (Y_{it}, X_{it}) from three firms.
- ▶ The true model is $Y_{it} = 9 X_{it} + u_i$. (The true slope coefficient is -1.)
- ▶ The variables u_i and X_{it} are highly correlated so the fitted pooled regression line has a slope close to +1.
- ightharpoonup Conditional on u_i , however, the slope is -1. Thus regression techniques which do not control for u_i will produce biased and inconsistent estimators.

- ▶ To identify β , we need the strict exogeneity assumption.
- ▶ The regressor X_{it} is strictly exogenous for the error ε_{it} if

$$\mathbb{E}\left[X_{is}\varepsilon_{it}\right]=0$$

for all $s = 1, \ldots, T$.

This assumption is much weaker than the assumption in random effects model, which requires that the individual effect u_i is also strictly mean independent.

- ▶ The first way to consistently estimate β is to eliminate u_i using within transformation.
- Define the mean of a variable for a given individual as

$$ar{Y}_i = rac{1}{T_i} \sum_{t \in S_i} Y_{it}$$

Subtracting the individual-specific mean from the variable we obtain the deviations

$$\dot{Y}_{it} = Y_{it} - \bar{Y}_i$$

which is known as within transformation. We also refer to Y_{it} as the demeaned values or deviations from individual means.

We can also write

$$\dot{\mathbf{Y}}_{i} = \mathbf{Y}_{i} - \mathbf{1}_{i} \bar{\mathbf{Y}}_{i}
= \mathbf{Y}_{i} - \mathbf{1}_{i} (\mathbf{1}'_{i} \mathbf{1}_{i})^{-1} \mathbf{1}'_{i} \mathbf{Y}_{i}
= \mathbf{M}_{i} \mathbf{Y}_{i}$$

where $M_i = I_i - 1_i (1_i' 1_i)^{-1} 1_i'$ is the individual-specific demeaning operator.

► Similarly, define

$$egin{aligned} ar{X}_i &= rac{1}{T_i} \sum_{t \in S_i} X_{it} \ \dot{X}_{it} &= X_{it} - ar{X}_i \ \dot{oldsymbol{X}}_i &= oldsymbol{M}_i oldsymbol{X}_i. \end{aligned}$$

► Taking individual-specific averages we obtain

$$\bar{Y}_i = \bar{X}_i' \beta + u_i + \bar{\varepsilon}_i$$

where $\bar{\varepsilon}_i = \frac{1}{T_i} \sum_{t \in S_i} \varepsilon_{it}$.

▶ Subtracting from $Y_{it} = X'_{it}\beta + u_i + \varepsilon_{it}$ we obtain

$$\dot{Y}_{it} = \dot{X}'_{it}\beta + \dot{\varepsilon}_{it}$$

where $\dot{\varepsilon}_{it} = \varepsilon_{it} - \bar{\varepsilon}_{it}$. The individual effect u_i has been eliminated!

▶ We can alternatively write this in vector notation.

$$\dot{\mathbf{Y}}_i = \dot{\mathbf{X}}_i \boldsymbol{\beta} + \dot{\boldsymbol{\varepsilon}}_i$$

- Another consequence, however, is that all time-invariant regressors are also eliminated.
- In this framework, it will be impossible to estimate (or identify) a coefficient on any regressor which is time invariant.
- ▶ The within transformation can greatly reduce the variance of the regressors.

Fixed Effects Estimator

$$egin{aligned} \widehat{eta}_{\mathrm{fe}} &= \left(\sum_{i=1}^{N} \sum_{t \in S_i} \dot{X}_{it} \dot{X}_{it}'
ight)^{-1} \left(\sum_{i=1}^{N} \sum_{t \in S_i} \dot{X}_{it} \dot{Y}_{it}
ight) \ &= \left(\sum_{i=1}^{N} \dot{X}_i' \dot{X}_i
ight)^{-1} \left(\sum_{i=1}^{N} \dot{X}_i' \dot{Y}_i
ight) \ &= \left(\sum_{i=1}^{N} oldsymbol{X}_i' oldsymbol{M}_i oldsymbol{X}_i
ight)^{-1} \left(\sum_{i=1}^{N} oldsymbol{X}_i' oldsymbol{M}_i oldsymbol{Y}_i
ight). \end{aligned}$$

 \blacktriangleright This is known as the fixed-effects or within estimator of β .

Fixed Effects Estimator

- Let us describe some of the statistical properties of the estimator under strict mean independence $\mathbb{E}\left[\varepsilon_{it} \mid \mathbf{X}_i\right] = 0$.
- We can write

$$\widehat{eta}_{ ext{fe}} - eta = \left(\sum_{i=1}^{ extit{N}} oldsymbol{X}_i' oldsymbol{M}_i oldsymbol{X}_i
ight)^{-1} \left(\sum_{i=1}^{ extit{N}} oldsymbol{X}_i' oldsymbol{M}_i oldsymbol{arepsilon}_i
ight)$$

► Then

$$\mathbb{E}\left[\widehat{\beta}_{\text{fe}} - \beta \mid \boldsymbol{X}\right] = \left(\sum_{i=1}^{N} \boldsymbol{X}_{i}' \boldsymbol{M}_{i} \boldsymbol{X}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \boldsymbol{X}_{i}' \boldsymbol{M}_{i} \mathbb{E}\left[\boldsymbol{\varepsilon}_{i} \mid \boldsymbol{X}_{i}\right]\right) = 0$$

Thus $\widehat{\beta}_{fe}$ is unbiased for β .

Fixed Effects Estimator

Let $\Sigma_i = \mathbb{E}\left[\varepsilon_i \varepsilon_i' \mid \mathbf{X}_i\right]$ denote the $T_i \times T_i$ conditional covariance matrix of the idiosyncratic errors. The variance of $\widehat{\beta}_{\mathrm{fe}}$ is

$$m{V}_{ ext{fe}} = ext{var}\left[\widehat{eta}_{ ext{fe}} \mid m{X}
ight] = \left(\sum_{i=1}^N \dot{m{X}}_i' \dot{m{X}}_i
ight)^{-1} \left(\sum_{i=1}^N \dot{m{X}}_i' m{\Sigma}_i \dot{m{X}}_i
ight) \left(\sum_{i=1}^N \dot{m{X}}_i' \dot{m{X}}_i
ight)^{-1}$$

▶ It simplifies when the idiosyncratic errors are homoskedastic and serially uncorrelated:

$$\mathbb{E}\left[\varepsilon_{it}^{2} \mid \mathbf{X}_{i}\right] = \sigma_{\varepsilon}^{2}$$

$$\mathbb{E}\left[\varepsilon_{ij}\varepsilon_{it} \mid \mathbf{X}_{i}\right] = 0$$

for all $j \neq t$. In this case, $\Sigma_i = I_i \sigma_{\varepsilon}^2$ and $\boldsymbol{V}_{\mathrm{fe}}$ simplifies to

$$oldsymbol{V}_{ ext{fe}}^0 = \sigma_arepsilon^2 \left(\sum_{i=1}^N \dot{oldsymbol{X}}_i' \dot{oldsymbol{X}}_i
ight)^{-1}$$

- Another important transformation which eliminates the individual-specific effect is first-differencing.
- The first-differencing transformation is $\Delta Y_{it} = Y_{it} Y_{it-1}$. This can be applied to all but the first observation (which is essentially lost).
- At the level of the individual this can be written as $\Delta Y_i = D_i Y_i$ where D_i is the $(T_i 1) \times T_i$ matrix differencing operator

$$m{D}_i = \left[egin{array}{cccccc} -1 & 1 & 0 & \cdots & 0 & 0 \ 0 & -1 & 1 & & 0 & 0 \ dots & & \ddots & & dots \ 0 & 0 & 0 & \cdots & -1 & 1 \end{array}
ight]$$

Applying the transformation Δ to $Y_{it} = X'_{it}\beta + u_i + \varepsilon_{it}$ we obtain $\Delta Y_{it} = \Delta X'_{it}\beta + \Delta \varepsilon_{it}$ or

$$\Delta \mathbf{Y}_i = \Delta \mathbf{X}_i \beta + \Delta \varepsilon_i$$

- \triangleright We can see that the individual effect u_i has been eliminated.
- Least squares applied to the differenced equation is

$$\widehat{\beta}_{\Delta} = \left(\sum_{i=1}^{N} \sum_{t \geq 2} \Delta X_{it} \Delta X_{it}'\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t \geq 2} \Delta X_{it} \Delta Y_{it}\right)$$

$$= \left(\sum_{i=1}^{N} \Delta X_{i}' \Delta X_{i}\right)^{-1} \left(\sum_{i=1}^{N} \Delta X_{i}' \Delta Y_{i}\right)$$

$$= \left(\sum_{i=1}^{N} X_{i}' D_{i}' D_{i} X_{i}\right)^{-1} \left(\sum_{i=1}^{N} X_{i}' D_{i}' D_{i} Y_{i}\right)$$

- $\widehat{\beta}_{\Delta}$ is called the differenced estimator. For $T=2, \widehat{\beta}_{\Delta}=\widehat{\beta}_{\mathrm{fe}}$ equals the fixed effects estimator.
- When the errors ε_{it} are serially uncorrelated and homoskedastic then the error $\Delta \varepsilon_i = \mathbf{D}_i \varepsilon_i$ has covariance matrix $\mathbf{H} \sigma_{\varepsilon}^2$ where

$$m{H} = m{D}_i m{D}_i' = \left(egin{array}{cccc} 2 & -1 & 0 & 0 \ -1 & 2 & \ddots & 0 \ 0 & \ddots & \ddots & -1 \ 0 & 0 & -1 & 2 \end{array}
ight)$$

We can reduce estimation variance by using GLS. When the errors ε_{it} are i.i.d. (serially uncorrelated and homoskedastic), this is

$$\widetilde{\boldsymbol{\beta}}_{\Delta} = \left(\sum_{i=1}^{N} \Delta \boldsymbol{X}_{i}^{\prime} \boldsymbol{H}^{-1} \Delta \boldsymbol{X}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \Delta \boldsymbol{X}_{i}^{\prime} \boldsymbol{H}^{-1} \Delta \boldsymbol{Y}_{i}\right)$$

$$= \left(\sum_{i=1}^{N} \boldsymbol{X}_{i}^{\prime} \boldsymbol{D}_{i}^{\prime} \left(\boldsymbol{D}_{i} \boldsymbol{D}_{i}^{\prime}\right)^{-1} \boldsymbol{D}_{i} \boldsymbol{X}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \boldsymbol{X}_{i}^{\prime} \boldsymbol{D}_{i}^{\prime} \left(\boldsymbol{D}_{i} \boldsymbol{D}_{i}^{\prime}\right)^{-1} \boldsymbol{D}_{i} \boldsymbol{Y}_{i}\right)$$

$$= \left(\sum_{i=1}^{N} \boldsymbol{X}_{i}^{\prime} \boldsymbol{M}_{i} \boldsymbol{X}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \boldsymbol{X}_{i}^{\prime} \boldsymbol{M}_{i} \boldsymbol{Y}_{i}\right)$$

where $\mathbf{M}_i = \mathbf{D}_i' (\mathbf{D}_i \mathbf{D}_i')^{-1} \mathbf{D}_i$.

• We can find that $\widetilde{\beta}_{\Delta} = \widehat{\beta}_{\text{fe}}$, the fixed effects estimator!

- What we have shown is that under i.i.d. errors, GLS applied to the first-differenced equation precisely equals the fixed effects estimator.
- Since the Gauss-Markov theorem shows that GLS has lower variance than least squares, this means that the fixed effects estimator is more efficient than first differencing under the assumption that ε_{it} is i.i.d.

- An alternative way to estimate the fixed effects model is by least squares of Y_{it} on X_{it} and a full set of dummy variables, one for each individual in the sample.
- ▶ To see this start with the error-component model without a regressor:

$$Y_{it} = u_i + \varepsilon_{it}$$

- ightharpoonup Consider least squares estimation of the vector of fixed effects $u=(u_1,\ldots,u_N)'$.
- Now let d_i be a vector of N dummy variables where the i^{th} element indicates the i^{th} individual.
- ▶ Thus the i^{th} element of d_i is 1 and the remaining elements are zero.

- Notice that $u_i = d'_i u$ and then $Y_{it} = d'_i u + \varepsilon_{it}$.
- This is a regression with the regressors d_i and coefficients u. We can also write this in vector notation at the level of the individual as $\mathbf{Y}_i = \mathbf{1}_i d_i' u + \varepsilon_i$ or using full matrix notation as $\mathbf{Y} = \mathbf{D} \mathbf{u} + \varepsilon$ where $\mathbf{D} = \text{diag}\{\mathbf{1}_{T_1}, \dots, \mathbf{1}_{T_N}\}$.
- ▶ The least squares estimate of *u* is

$$\begin{split} \widehat{\boldsymbol{u}} &= \left(\boldsymbol{D}'\boldsymbol{D}\right)^{-1} \left(\boldsymbol{D}'\boldsymbol{Y}\right) \\ &= \operatorname{diag} \left(\mathbf{1}_i'\mathbf{1}_i\right)^{-1} \left\{\mathbf{1}_i'\boldsymbol{Y}_i\right\}_{i=1,\dots,n} \\ &= \left\{\left(\mathbf{1}_i'\mathbf{1}_i\right)^{-1}\mathbf{1}_i'\boldsymbol{Y}_i\right\}_{i=1,\dots,n} \\ &= \left\{\bar{Y}_i\right\}_{i=1,\dots,n} \end{split}$$

lacktriangle The least squares residuals are $\widehat{oldsymbol{arepsilon}} = \left(oldsymbol{I}_n - oldsymbol{D} \left(oldsymbol{D}' oldsymbol{D}
ight)^{-1} oldsymbol{D}'
ight) oldsymbol{Y} = \dot{oldsymbol{Y}}$

Now consider the error-component model with regressors, which can be written as

$$Y_{it} = X'_{it}\beta + d'_i u + \varepsilon_{it}$$

ightharpoonup since $u_i = d_i'u$ as discussed above. In matrix notation

$$\mathbf{Y} = \mathbf{X}\beta + \mathbf{D}u + \boldsymbol{\varepsilon}$$

We consider estimation of (β, u) by least squares and write the estimates as $\mathbf{Y} = \mathbf{X}\widehat{\boldsymbol{\beta}} + \mathbf{D}\widehat{\boldsymbol{u}} + \widehat{\boldsymbol{\varepsilon}}$. We call this the dummy variable estimator of the fixed effects model.

- **>** By the Frisch-Waugh-Lovell Theorem the dummy variable estimator $\widehat{\beta}$ and residuals $\widehat{\varepsilon}$ may be obtained by the least squares regression of the residuals from the regression of \boldsymbol{Y} on \boldsymbol{D} on the residuals from the regression of \boldsymbol{X} on \boldsymbol{D} .
- ▶ We learned above that the residuals from the regression on *D* are the within transformations.
- Thus the dummy variable estimator $\widehat{\beta}$ and residuals $\widehat{\varepsilon}$ may be obtained from least squares regression of the within transformed $\dot{\mathbf{Y}}$ on the within transformed $\dot{\mathbf{X}}$.
- ▶ This is exactly the fixed effects estimator $\widehat{\beta}_{fe}$. Thus the dummy variable and fixed effects estimators of β are identical.

Fixed Effects Covariance Matrix Estimation

lacktriangle First consider estimation of the classical covariance matrix $oldsymbol{V}_{
m fe}^0$ is

$$\widehat{oldsymbol{V}}_{ ext{fe}}^0 = \widehat{\sigma}_arepsilon^2 \left(\dot{oldsymbol{X}}' \dot{oldsymbol{X}}
ight)^{-1}$$

with

$$\widehat{\sigma}_{\varepsilon}^{2} = \frac{1}{n - N - k} \sum_{i=1}^{n} \sum_{t \in S_{i}} \widehat{\varepsilon}_{it}^{2} = \frac{1}{n - N - k} \sum_{i=1}^{n} \widehat{\varepsilon}_{i}^{\prime} \widehat{\varepsilon}_{i}$$

▶ The N + k degree of freedom adjustment is motivated by the dummy variable representation.

Fixed Effects Covariance Matrix Estimation

A covariance matrix estimator which allows ε_{it} to be heteroskedastic and serially correlated across t is the cluster-robust covariance matrix estimator, clustered by individual

$$\widehat{m{V}}_{ ext{fe}}^{ ext{cluster}} = \left(\dot{m{X}}'\dot{m{X}}
ight)^{-1} \left(\sum_{i=1}^N \dot{m{X}}_i'\widehat{m{arepsilon}}_i\hat{m{arepsilon}}_i'\dot{m{X}}_i
ight) \left(\dot{m{X}}'\dot{m{X}}
ight)^{-1}$$

- where $\widehat{\varepsilon}_i$ as the fixed effects residuals.
- ightarrow $\hat{m{V}}_{ ext{fe}}^{ ext{cluster}}$ can be multiplied by a degree-of-freedom adjustment.

$$\widehat{\boldsymbol{V}}_{\mathrm{fe}}^{\mathrm{cluster}} = \left(\frac{n-1}{n-N-k}\right) \left(\frac{N}{N-1}\right) \left(\dot{\boldsymbol{X}}'\dot{\boldsymbol{X}}\right)^{-1} \left(\sum_{i=1}^{N} \dot{\boldsymbol{X}}_{i}'\widehat{\boldsymbol{\varepsilon}}_{i}\widehat{\boldsymbol{\varepsilon}}_{i}'\dot{\boldsymbol{X}}_{i}\right) \left(\dot{\boldsymbol{X}}'\dot{\boldsymbol{X}}\right)^{-1}$$