CS 381

Order Statistics

The **selection problem** is the problem of computing, given a set A of n distinct numbers and a number i, $1 \le i \le n$, the i^{th} h **order statistics** (i.e., the i^{th} smallest number) of A.

We will consider some special cases of the order statistics problem:

- the minimum, i.e. the first,
- the maximum, i.e. the last, and
- the median, i.e. the "halfway point."

Order Statistics

Medians occur at $i = \lfloor (n+1)/2 \rfloor$ and $i = \lceil (n+1)/2 \rceil$. If n is odd, the median is unique, and if n is even, there are two medians.

<u>Selection</u> (Find s-th smallest element)

Selection is a trivial problem **if the input numbers are sorted.** If we use a sorting algorithm having $O(n \lg n)$ worst-case running time, then the selection problem can be solved in in $O(n \lg n)$ time.

But using a sorting is more like using a cannon to shoot a fly since only one number needs to computed.

O(n) expected-time selection using the randomized partition

In order to find the s-th order Idea: statistics in a region of size n, use the randomized partition to split the region into two subarrays. Let k-1 and n-k be the size of the left subarray and the size of the right subarray. If k = s, the pivot is the key that's looked for. If s < k-1, look for the s-th element in the left subarray. Otherwise, look for the (s-k)-th one in the right subarray

Randomized Select Pseudocode

```
Randomized-Select(A, p, r, s) // return the s-th smallest element of A[p..r]
    if (p = r) then return A[p]
    q := \text{Randomized-Partition}(A,p,r) // compute pivot
    k := q - p + 1; // number of elements \leq pivot
    if (s = k) then
        return A[q] // found i-th smallest element
    else if (s < k) then
        return Randomized-Select(A, p, q - 1, s)
    else
        return Randomized-Select(A, q + 1, r, s - k)
```

Analysis

Denote by

- T(n,s) = expected runtime for selection of s-th statistic
- $T(n) = \max_{s} T(n, s)$ is the expected runtime of selection for the worst case index s

Analysis

T(n) the expected runtime of selection for the worst case index s

For each i, $0 \le i \le n-1$, the size of the left subarray is equal to i with probability 1/n. Assuming that the larger interval is taken, for some $\alpha > 0$, T(n) is at most

Work for
$$\alpha n + \frac{1}{n} \sum_{1 \leq k \leq n-1, k \neq s} T(\max(k, n-k)).$$
 This is at most
$$\sum_{1 \leq k \leq n-1, k \neq s} T(\max(k, n-k)).$$
 Expected work for recursive call

This is at most

$$\alpha n + \frac{2}{n} \left(\sum_{k=\lceil n/2 \rceil}^{n-1} T(k) \right).$$

Analysis (cont'd)

Assume that there is c > 0 such that $T(k) \le ck$ for all k < n.

Then the sum $\sum_{k=\lceil n/2 \rceil}^{n-1} T(k)$ is at most $\sum_{k=\lceil n/2 \rceil}^{n-1} ck$. This is at most

$$\sum_{k=1}^{n-1} ck - \sum_{k=1}^{\lceil n/2 \rceil - 1} ck$$

$$= \frac{cn(n-1)}{2} - \frac{c}{2} \left(\left\lceil \frac{n}{2} \right\rceil - 1 \right) \left\lceil \frac{n}{2} \right\rceil$$

$$\leq \frac{cn(n-1)}{2} - \frac{c}{2} \left(\frac{n}{2} - 1 \right) \frac{n}{2}$$

$$= cn \left(\frac{3n}{8} - \frac{1}{4} \right).$$

Analysis (cont'd)

So, if c is sufficiently large,

$$T(n) \le \alpha n + c\left(\frac{3}{4}n - \frac{1}{2}\right).$$

By making the constant c at least 4α , we have

that αn is at most $\frac{cn}{4}$. Then $T(n) \le c \cdot n$.