DB Design Theory

Quick Recap

- Data Anomalies
- What is FD?
- Defining and validating FD's

What's Next?

- "Good" vs. "Bad" FDs: Intuition
- Closures
- Minimal Cover

"Good" vs. "Bad" FDs

FDs are derived from the real-world constraints on the attributes.

- defined by Domain Expert.
- An FD must hold at all times

We can start to develop a notion of **good** vs. **bad** FDs:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

Intuitively:

EmpID -> Name, Phone, Position is "good FD"

No redundancy and anomalies

"Good" vs. "Bad" FDs

EmpID	Name	Phone	Position	
E0045	Smith	1234	Clerk	
E3542	Mike	9876	Salesrep	
E1111	Smith	9876	Salesrep	
E9999	Mary	1234	Lawyer	

Intuitively:

EmpID -> **Name, Phone, Position** is "good FD" But

Position -> Phone is a "bad FD"

 Redundancy! Possibility of data anomalies

Given a set of FDs (from user) our goal is to eliminate the "Bad Ones".

Finding Functional Dependencies

Example:

StudentGrade (rollNo, name, email, CourseID, grade)

Provided FDs:

- 1. $rollNo \rightarrow name, email$
- 2. $email \rightarrow rollNo$
- 3. rollNo, CourseID \rightarrow grade

Given the provided FDs, which other FD's hold

{CourseID, email} → {grade}

Does this FD holds on all **instance**...

Which / how many other FDs do?!?

Finding Functional Dependencies

Equivalent to asking:

Given a set of FDs, $F = \{f_1, ..., f_n\}$, does an FD g hold?

Inference problem: How do we decide?

Three simple rules called **Armstrong's Rules.**

- 1. Reduction (Reflexive)
 - If Y <u>__</u>X, then X -> Y
- 2. Augmentation
 - If X -> Y, then XZ -> YZ
- 3. Transitivity
 - If X -> Y and Y -> Z, then X -> Z

Two further rules that can be derived from Armstrong's Rules

- Union
- Decomposition

Split (Decomposition)

... is equivalent to the following *n* FDs...

$$A_1,...,A_m \rightarrow B_1$$

 $A_1,...,A_m \rightarrow B_2$
....
 $A_1,...,A_m \rightarrow B_i$ for i=1,...,n

Combine (Union)

$$A_1,...,A_m \rightarrow B_1$$

 $A_1,...,A_m \rightarrow B_2$
....
 $A_1,...,A_m \rightarrow B_i$ for i=1,...,n

... is equivalent to ...

$$A_1, \ldots, A_m \rightarrow B_1, \ldots, B_n$$

Proofs

- If X -> YZ, then X -> Y and X -> Z
 - YZ -> Y (reflexive)
 - X -> YZ (given)
 - X -> Y (transitivity)
- If X -> Y and X -> Z, then X -> YZ
 - X ->XY (augmenting X in X-> Y)
 - XY -> YZ (augmenting Y in X-> Z)
 - X -> YZ (transitivity)
- If X -> Y and WY -> Z, then WX -> Z
 - WX->WY (augmenting)
 - WY -> Z (given)
 - WX -> Z (transitivity)

Armstrong's Rules

- Reduction (Reflexive)
 - If Y ⊆ X, then X -> Y
- 2. Augmentation
 - If X -> Y, then XZ -> YZ
- 3. Transitivity
 - If X -> Y and Y -> Z, then X -> Z

Pseudo Transitivity

Finding Functional Dependencies

Example:

StudentGrade (rollNo, name, email, CourseID, grade)

Provided FDs:

- 1. $rollNo \rightarrow name$, email
- 2. email \rightarrow rollNo
- 3. rollNo, CourseID \rightarrow grade

Given the provided FDs, which other FD's hold

Use Rules to determine which FD's hold?

Using rules of FD's

- Given a relation R and set of FD's F
 - Does another FD $X \rightarrow Y$ follow from F?
 - Use the rules to come up with a proof

FDs

- 1. $rollNo \rightarrow name, email$
- 2. email \rightarrow rollNo
- 3. rollNo, courseID \rightarrow grade
- Example: Which of the following FD holds
 - 1. email \rightarrow name?
 - 2. name -> email?
 - 3. name, couseID -> name?

Using rules of FD's

- Given a relation R and set of FD's F
 - Does another FD $X \rightarrow Y$ follow from F?
 - Use the rules to come up with a proof

FDs

- 1. $rollNo \rightarrow name, email$
- 2. $email \rightarrow rollNo$
- 3. rollNo, CourseID \rightarrow grade
- Example: courseID, email → grade?
 - email \rightarrow rollNo (given in F)
 - courseID, email \rightarrow courseID, rollNo (augmentation)
 - rollNo, courseID \rightarrow grade (given in F)
 - courseID, email \rightarrow grade (transitivity)

Is there any algorithmic way to determine if an FD holds?

Closures

Closure

Given a set of attributes $A_1, ..., A_n$ and a set of FDs F: Then the <u>closure</u>, $\{A_1, ..., A_n\}^+$ is the set of attributes B s.t. $\{A_1, ..., A_n\}^+$ B

```
Example: F = 1. rollNo \rightarrow name, email
2. email \rightarrow rollNo
3. rollNo, CourseID \rightarrow grade
```

Example Closures:

```
{name}+ = {rollNo}+ =
```

Activity: Closure Algorithm

StudentGrade (rollNo, name, email, courseID, grade)

```
FDs
■ { courseID, email }+ =?
                                                              rollNo \rightarrow name, email
     - { courseID, email }+ = {courseID, email}
                                                          2. email \rightarrow rollNo
                                                              rollNo, courseID \rightarrow grade
     Consider FD: email \rightarrow rollNo
     - { courseID, email }+ = {rollNo, courseID, email}
     Consider FD: rollNo \rightarrow name, email
     - { courseID, email }+ = {rollNo, courseID, email, name}
    Consider FD: rollNo, courseID \rightarrow grade
```

- { courseID, email }+ = {rollNo, courseID, email, name, grade}

Start with $X = \{A_1, ..., A_n\}$ and set of FDs F.

Repeat until X doesn't change; **do**:

if an FD{B₁, ..., B_n} \rightarrow C is in F and {B₁, ..., B_n} \subseteq X then add C to X.

Return X as X⁺

Closure of a set of Attributes

Given a set of attributes $A_1, ..., A_n$ and a set of FDs F: Then the <u>closure</u>, $\{A_1, ..., A_n\}^+$ is the set of attributes B s.t. $\{A_1, ..., A_n\}^+$ B

Products

Name	Color	Category	Dep	Price
Gizmo	Green	Gadget	Toys	49
Widget	Black	Gadget	Toys	59
Gizmo	Green	Whatsit	Garden	99

Provided FDs:

- 1. {Name} → {Color}
- 2. {Category} → {Department}
- 3. {Color, Category} → {Price}

Example Closures:

```
{name}+ =
{category}+ =
```

```
Start with X = \{A_1, ..., A_n\}, FDs F.

Repeat until X doesn't change;

do:

if \{B_1, ..., B_n\} \rightarrow C is in F and
\{B_1, ..., B_n\} \subseteq X:

then add C to X.

Return X as X<sup>+</sup>
```

```
F = {name} → {color}

{category} → {dept}

{color, category} → {price}
```

{name, category}+ = {name, category}

```
Start with X = \{A_1, ..., A_n\}, FDs F.

Repeat until X doesn't change;
do:

if \{B_1, ..., B_n\} \rightarrow C is in F and
\{B_1, ..., B_n\} \subseteq X:

then add C to X.

Return X as X+
```

```
F = \{\text{name}\} \rightarrow \{\text{color}\}\
\{\text{category}\} \rightarrow \{\text{dept}\}\
\{\text{color, category}\} \rightarrow \{\text{price}\}\
```

```
{name, category}+ =
{name, category}
```

{name, category}⁺ = {name, category, color}

```
Start with X = \{A_1, ..., A_n\}, FDs F.

Repeat until X doesn't change;

do:

if \{B_1, ..., B_n\} \rightarrow C is in F and
\{B_1, ..., B_n\} \subseteq X:

then add C to X.

Return X as X<sup>+</sup>
```

```
F = \{\text{name}\} → \{\text{color}\}
\{\text{category}\} → \{\text{dept}\}
\{\text{color, category}\} → \{\text{price}\}
```

```
{name, category}+ =
{name, category}
```

```
{name, category}+ =
{name, category, color}
```

```
{name, category}<sup>+</sup> = {name, category, color, dept}
```

```
Start with X = \{A_1, ..., A_n\}, FDs F.

Repeat until X doesn't change;

do:

if \{B_1, ..., B_n\} \rightarrow C is in F and
\{B_1, ..., B_n\} \subseteq X:

then add C to X.

Return X as X<sup>+</sup>
```

```
{\text{name}} \rightarrow {\text{color}}
{\text{category}} \rightarrow {\text{dept}}
{\text{color, category}} \rightarrow {\text{price}}
```

```
{name, category}+ =
{name, category}
```

```
{name, category}+ =
{name, category, color}
```

```
{name, category}+ =
{name, category, color, dept}
```

```
{name, category}<sup>+</sup> = {name, category, color, dept, price}
```

Example

R(A,B,C,D,E,F)

$${A,B} \rightarrow {C}$$

 ${A,D} \rightarrow {E}$
 ${B} \rightarrow {D}$
 ${A,F} \rightarrow {B}$

Compute
$$\{A, F\}^+ = \{A, F, F\}$$

Example

R(A,B,C,D,E,F)

$${A,B} \rightarrow {C}$$

 ${A,D} \rightarrow {E}$
 ${B} \rightarrow {D}$
 ${A,F} \rightarrow {B}$

Compute
$$\{A,B\}^+ = \{A, B, C, D\}$$

Compute
$$\{A, F\}^+ = \{A, F, B\}$$

Example

R(A,B,C,D,E,F)

$${A,B} \rightarrow {C}$$

 ${A,D} \rightarrow {E}$
 ${B} \rightarrow {D}$
 ${A,F} \rightarrow {B}$

Compute $\{A,B\}^+ = \{A, B, C, D, E\}$

Compute $\{A, F\}^+ = \{A, B, C, D, E, F\}$

Keys and Superkeys

A <u>superkey</u> is a set of attributes $A_1, ..., A_n$ s.t. for any other attribute **B** in R,

I.e. all attributes are functionally determined by a superkey

A **key** is a minimal superkey

we have $\{A_1, ..., A_n\} \rightarrow B$

This means that no subset of a key is also a superkey (i.e., dropping any attribute from the key makes it no longer a superkey)

Finding Keys and Superkeys

■ For each set of attributes X

1. Compute X⁺

2. If X^+ = set of all attributes then X is a **superkey**

3. If X is minimal, then it is a **key**

Example of Finding Keys

Product(name, price, category, color)

```
{name, category} → price {category} → color
```

What is a key?

Example of Keys

Product(name, price, category, color)

```
{name, category} → price {category} → color
```

Algorithm: To Find a Key K for R given a set F of FD's

Input: A universal relation R and a set of functional dependencies F on the attributes of R.

```
2. For each attribute A in K {
compute (K - A)<sup>+</sup> with respect to F;
If (K - A)<sup>+</sup> contains all the attributes in R,
then set K := K - {A};
```

Set K := R.

Activity: Find the Key

- Consider a relation R= {A,B,C,D,E,F,G,H,I,J} and
- The set of FD's
 - A,B -> C
 - -A->E
 - H->J
 - A,I-> D,H
 - B,I->G,F
- Find the key for Relation R with given FD's.
- What if $R_2 = \{A,B,C,D,E,F,G,H,I,J,K\}$ and Fd's are same as above