- exp: \mathbb{R} -> \mathbb{R}
- $\bullet x-> \sum_{n=0}^{\infty} \frac{x^n}{n!}$
- \bullet konvergiert für alle x $\in \mathbb{R}$
 - − sogar für x \in C
- stetig
- streng monoton wachsend
- injektiv
- Eigenschaften

$$-exp(x+y) = exp(x*y)$$

$$- exp(0) = 1$$

$$- \forall x \in \mathbb{R}(\mathbb{C}) : exp(0) \neq 0$$

$$- \ \forall x \in \mathbb{R} : exp(x) > 0$$

$$-exp(-x) = \frac{1}{exp(x)}$$

$$- \forall x > 0 : exp(x) > 1$$

$$* exp(x) > 1 + x für x > 0$$

$$- exp(1) = e = > exp(n) = e^n$$

$$* \ exp(-1) = \tfrac{1}{e} = => exp(-n) = \tfrac{1}{e^n}$$

- Logarithmus
 - exp: exp: \mathbb{R} -> \mathbb{R} +
 - bijektiv ==> exp besitzt Umkehrfunktion ln: $\mathbb{R}+->\mathbb{R}$
 - * natürliche Logarithmus

* y->
$$exp^{-1}(y)$$

- $ln(e^x) = exp(ln(x)) = x$
- $e^x > x^n$ für jedes $x > 0, n \in \mathbb{N}$
 - exponentielles Wachstum
 - $-\ e^x$ wächst stärker als jede Potenz von x
- $ln(x) < x^{1/n}$
 - logarithmisches Wachstum
 - $-\ ln(x)$ wächst langsamer als jede Wurzel von x
- $\bullet \ a^x = e(xln(a))$