Swirling measures

The quotient structure of the tangent cone to the Wasserstein space

Averil Prost

LMI. INSA Rouen Normandie Hasnaa Zidani and Nicolas Forcadel (LMI)

This presentation contains errors. I let it online for the record, but in the general case, $\operatorname{Tan}_{\mu} \subsetneq \mathscr{P}_2(\operatorname{T}\mathbb{R}^d)_{\mu}/\sim_{\mu}.$

July 5, 2024

Journée de la fédération Normandie Mathématiques, Rouen

Helmholtz decomposition

Theorem – HH decomposition [Lad87] Let $f \in L^2(\mathbb{R}^d; \mathbb{R}^d)$. There exists two uniquely defined vector fields $g, h \in L^2(\mathbb{R}^d; \mathbb{R}^d)$ such that

$$f = g + h, \qquad g \in \overline{\{\nabla \varphi \mid \varphi \in \mathcal{C}_c^\infty\}}^{L^2}, \qquad h \in \overline{\{\varphi \in \mathcal{C}_c^\infty(\mathbb{R}^d; \mathbb{R}^d) \mid \operatorname{div} \varphi = 0\}}^{L^2}.$$

Averil Prost Swirling measures April 30, 2024 2 / 12

Helmholtz decomposition

Theorem – HH decomposition [Lad87] Let $f \in L^2(\mathbb{R}^d; \mathbb{R}^d)$. There exists two uniquely defined vector fields $q, h \in L^2(\mathbb{R}^d; \mathbb{R}^d)$ such that

$$f = g + h, \qquad g \in \overline{\{\nabla \varphi \mid \varphi \in \mathcal{C}_c^\infty\}}^{L^2}, \qquad h \in \overline{\{\varphi \in \mathcal{C}_c^\infty(\mathbb{R}^d; \mathbb{R}^d) \mid \operatorname{div} \varphi = 0\}}^{L^2}.$$

Averil Prost Swirling measures April 30, 2024 2 / 12

 Introduce a generalization in the case of measure fields.

Averil Prost Swirling measures April 30, 2024 3 / 12

- Introduce a generalization in the case of measure fields.
 - Vector field : $x \mapsto f(x) \in \mathsf{T}_x \mathbb{R}^d$.

- Introduce a generalization in the case of measure fields.
 - Vector field : $x \mapsto f(x) \in \mathsf{T}_x \mathbb{R}^d$.
 - Measure field : $x \mapsto \xi_x \in \mathscr{P}(\mathsf{T}_x \mathbb{R}^d)$.

- Introduce a generalization in the case of measure fields.
 - Vector field : $x \mapsto f(x) \in \mathsf{T}_x \mathbb{R}^d$.
 - Measure field : $x \mapsto \xi_x \in \mathscr{P}(\mathsf{T}_x \mathbb{R}^d)$.
 - To allow for definitions only μ -a.e., better suited to consider measures on $\mathbb{T}\mathbb{R}^d=\{(x,v)\}$ with $x\in\mathbb{R}^d$ and $v\in\mathbb{T}_x\mathbb{R}^d$, i.e.

$$\xi \in \mathscr{P}(\mathsf{T}\mathbb{R}^d).$$

Averil Prost Swirling measures April 30, 2024 3 / 12

- Introduce a generalization in the case of measure fields.
 - Vector field : $x \mapsto f(x) \in \mathsf{T}_x \mathbb{R}^d$.
 - Measure field : $x \mapsto \xi_x \in \mathscr{P}(\mathsf{T}_x \mathbb{R}^d)$.
 - To allow for definitions only μ -a.e., better suited to consider measures on $\mathbb{T}\mathbb{R}^d=\{(x,v)\}$ with $x\in\mathbb{R}^d$ and $v\in\mathbb{T}_x\mathbb{R}^d$, i.e.

$$\xi \in \mathscr{P}(\mathsf{T}\mathbb{R}^d).$$

• Derive a formulation of the tangent cone to the Wasserstein space.

Table of Contents

The metric space $\mathscr{P}_2(\mathbb{R}^d)$

Decomposition for measure fields

Characterization of Tai

Averil Prost Swirling measures April 30, 2024 3 / 12

Wasserstein space

Let μ_0, μ_1 be Borel probability measures such that $\int_{x \in \mathbb{R}^d} |x|^2 d\mu_i(x) < \infty$.

Wasserstein space

Let μ_0, μ_1 be Borel probability measures such that $\int_{x\in\mathbb{R}^d} |x|^2 d\mu_i(x) < \infty$.

Def - Wasserstein distance

$$d_{\mathcal{W}}^2(\mu,\nu) := \inf \int_{(x,y)\in(\mathbb{R}^d)^2} |x-y|^2 d\omega,$$

where $\omega \in \mathscr{P}_2((\mathbb{R}^d)^2)$ is such that

$$\int_x d\omega = \nu \quad \text{and} \quad \int_y d\omega = \mu.$$

 $(\mathscr{P}_2(\mathbb{R}^d), d_{\mathcal{W}})$ is a complete geodesic metric space.

Wasserstein space

Let μ_0, μ_1 be Borel probability measures such that $\int_{x \in \mathbb{R}^d} |x|^2 d\mu_i(x) < \infty$.

Def – Wasserstein distance

$$d_{\mathcal{W}}^2(\mu,\nu) := \inf \int_{(x,y)\in(\mathbb{R}^d)^2} |x-y|^2 d\omega,$$

where $\omega \in \mathscr{P}_2((\mathbb{R}^d)^2)$ is such that

$$\int_x d\omega = \nu \quad \text{and} \quad \int_y d\omega = \mu.$$

 $(\mathscr{P}_2(\mathbb{R}^d), d_{\mathcal{W}})$ is a complete geodesic metric space.

Wasserstein space

Let μ_0, μ_1 be Borel probability measures such that $\int_{x\in\mathbb{R}^d} |x|^2 d\mu_i(x) < \infty$.

Def – Wasserstein distance

$$d_{\mathcal{W}}^2(\mu,\nu) := \inf \int_{(x,y)\in(\mathbb{R}^d)^2} |x-y|^2 d\omega,$$

where $\omega \in \mathscr{P}_2((\mathbb{R}^d)^2)$ is such that

$$\int_x d\omega = \nu \quad \text{and} \quad \int_y d\omega = \mu.$$

 μ ν

 $(\mathscr{P}_2(\mathbb{R}^d), d_{\mathcal{W}})$ is a complete geodesic metric space.

Averil Prost Swirling measures April 30, 2024 4 / 12

Wasserstein space

Let μ_0, μ_1 be Borel probability measures such that $\int_{x\in\mathbb{R}^d} |x|^2 d\mu_i(x) < \infty$.

Def – Wasserstein distance

$$d_{\mathcal{W}}^2(\mu,\nu) := \inf \int_{(x,y)\in(\mathbb{R}^d)^2} |x-y|^2 d\omega,$$

where $\omega \in \mathscr{P}_2((\mathbb{R}^d)^2)$ is such that

$$\int_x d\omega = \nu \quad \text{and} \quad \int_y d\omega = \mu.$$

 $\frac{\mu}{\nu}$

 $(\mathscr{P}_2(\mathbb{R}^d), d_{\mathcal{W}})$ is a complete geodesic metric space.

Averil Prost Swirling measures April 30, 2024 4 / 12

Let μ_0, μ_1 be Borel probability measures such that $\int_{x\in\mathbb{P}^d} |x|^2 d\mu_i(x) < \infty$.

Def – Wasserstein distance

$$d_{\mathcal{W}}^2(\mu,\nu) := \inf \int_{(x,y)\in(\mathbb{R}^d)^2} |x-y|^2 d\omega,$$

where $\omega \in \mathscr{P}_2((\mathbb{R}^d)^2)$ is such that

$$\int_x d\omega = \nu \quad \text{and} \quad \int_y d\omega = \mu.$$

 $(\mathscr{P}_2(\mathbb{R}^d), d_{\mathcal{W}})$ is a complete geodesic metric space.

Measure fields

Let
$$T\mathbb{R}^d := \{(x,v) \mid x \in \mathbb{R}^d, v \in T_x\mathbb{R}^d\}$$
. Denote $f \# \alpha$ the measure $\alpha(f^{-1}(\cdot))$.

Averil Prost Swirling measures April 30, 2024 5 / 12

Measure fields

Let $T\mathbb{R}^d := \{(x,v) \mid x \in \mathbb{R}^d, \ v \in T_x\mathbb{R}^d\}$. Denote $f \# \alpha$ the measure $\alpha(f^{-1}(\cdot))$.

Def – **Measure field** A measure $\xi \in \mathscr{P}_2(T\mathbb{R}^d)$ is a measure field attached to $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, denoted $\xi \in \mathscr{P}_2(T\mathbb{R}^d)_{\mu}$, if $\pi_x \# \xi = \mu$.

Averil Prost Swirling measures April 30, 2024 5 / 12

The metric space $\mathscr{P}_2(\mathbb{R}^d)$

Let $T\mathbb{R}^d := \{(x,v) \mid x \in \mathbb{R}^d, v \in T_x\mathbb{R}^d\}$. Denote $f \# \alpha$ the measure $\alpha(f^{-1}(\cdot))$.

Def – **Measure field** A measure $\xi \in \mathscr{P}_2(T\mathbb{R}^d)$ is a measure field attached to $\mu \in$ $\mathscr{P}_2(\mathbb{R}^d)$, denoted $\xi \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$, if $\pi_x \# \xi = \mu$.

Any vector field $f \in L^2_\mu$ identifies with $\xi = f \# \mu$, for which $\xi_x = \delta_{(x,f(x))}$.

Def – Distance between measure fields [Gig08]

$$W_{\mu}^{2}(\xi,\zeta) := \int_{x \in \mathbb{R}^{d}} d_{\mathcal{W},\mathsf{T}_{x}\mathbb{R}^{d}}^{2}(\xi_{x},\zeta_{x}) d\mu(x).$$

Averil Prost April 30, 2024 5 / 12 Swirling measures

Measure fields

Let $T\mathbb{R}^d := \{(x,v) \mid x \in \mathbb{R}^d, v \in T_x\mathbb{R}^d\}$. Denote $f \# \alpha$ the measure $\alpha(f^{-1}(\cdot))$.

Def – **Measure field** A measure $\xi \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)$ is a measure field attached to $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, denoted $\xi \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_{\mu}$, if $\pi_x \# \xi = \mu$.

Any vector field $f \in L^2_{\mu}$ identifies with $\xi = f \# \mu$, for which $\xi_x = \delta_{(x,f(x))}$.

Def - Distance between measure fields [Gig08]

$$W_{\mu}^{2}(\xi,\zeta) := \int_{x \in \mathbb{R}^{d}} d_{\mathcal{W},\mathsf{T}_{x}\mathbb{R}^{d}}^{2}(\xi_{x},\zeta_{x}) d\mu(x).$$

In particular, $W_{\mu}(f\#\mu, g\#\mu) = \|f - g\|_{L^{2}_{\mu}}$.

Averil Prost Swirling measures April 30, 2024 5 / 12

Canonical construction of the tangent cone [AGS05, Gig08]

Let
$$\mu \in \mathscr{P}_2(\mathbb{R}^d)$$
.

Canonical construction of the tangent cone [AGS05, Gig08]

Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$.

Canonical construction of the tangent cone [AGS05, Gig08]

Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Consider

ullet the $\eta\in\mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$ such that

$$s \mapsto (\pi_x + s\pi_v) \# \eta$$

is a geodesic;

Canonical construction of the tangent cone [AGS05, Gig08]

Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Consider

ullet the $\eta\in\mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$ such that

$$s \mapsto (\pi_x + s\pi_v) \# \eta$$

is a geodesic;

• the positive cone $\alpha \cdot \eta$ for all $\alpha \geqslant 0$.

Canonical construction of the tangent cone [AGS05, Gig08]

Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Consider

ullet the $\eta\in\mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$ such that

$$s \mapsto (\pi_x + s\pi_v) \# \eta$$

is a geodesic;

- the positive cone $\alpha \cdot \eta$ for all $\alpha \geqslant 0$,
- the completion of the previous cone with respect to W_{μ} .

The resulting set is denoted $\operatorname{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d})$.

Link with gradient fields

What is the link between Tan_{μ} and gradient fields?

Link with gradient fields

What is the link between Tan_{μ} and gradient fields? First, if μ is "kind", direct representation.

Theorem – Tangent space to a regular measure [Bre91] Assume that μ is absolutely continuous with respect to the Lebesgue measure. Then

$$\mathsf{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d}) = \overline{\{\nabla\varphi \mid \varphi \in \mathcal{C}_{c}^{\infty}\}}^{L_{\mu}^{2}} \#\mu =: \mathsf{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d}).$$

Link with gradient fields

What is the link between Tan_{μ} and gradient fields? First, if μ is "kind", direct representation.

Theorem – Tangent space to a regular measure [Bre91] Assume that μ is absolutely continuous with respect to the Lebesgue measure. Then

$$\mathsf{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d}) = \overline{\{\nabla\varphi \mid \varphi \in \mathcal{C}_{c}^{\infty}\}}^{L_{\mu}^{2}} \#\mu =: \mathsf{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d}).$$

In the general case, one has the following.

Theorem – Vertical superposition of the tangent cone for any $\eta \in \mathsf{Tan}_{\mu}\mathscr{P}_2(\mathbb{R}^d)$, there exists $\varpi \in \mathscr{P}_2(\mathsf{Tan}_{\mu})$ such that for all $\varphi \in \mathcal{C}_b(\mathbb{R}^d;\mathbb{R})$,

$$\int_{(x,v)\in \mathbb{T}\mathbb{R}^d} \varphi(x,v) d\eta(x,v) = \int_{b\in \mathsf{Tan}_{\mu}} \int_{x\in \mathbb{R}^d} \varphi(x,b(x)) d\mu(x) d\varpi(b).$$

Table of Contents

The metric space $\mathscr{P}_2(\mathbb{R}^d)$

Decomposition for measure fields

Characterization of Tar

Averil Prost Swirling measures April 30, 2024 7 / 12

Solenoidal measure fields

In $L^2_{\mu\nu}$ solenoidal (divergence-free) fields are orthogonal to gradient vector fields.

Solenoidal measure fields

In L^2_{μ} , solenoidal (divergence-free) fields are orthogonal to gradient vector fields.

Def – **Metric scalar product** Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, and $\xi, \zeta \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_{\mu}$.

$$\langle \xi, \zeta \rangle_{\mu} \coloneqq \frac{1}{2} \left[\|\xi\|_{\mu}^2 + \|\zeta\|_{\mu}^2 - W_{\mu}^2(\xi, \zeta) \right], \qquad \text{where } \|\xi\|_{\mu} \coloneqq W_{\mu}^2(\xi, 0_{\mu}).$$

Solenoidal measure fields

In $L^2_{\mu\nu}$ solenoidal (divergence-free) fields are orthogonal to gradient vector fields.

Def – **Metric scalar product** Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, and $\xi, \zeta \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_{\mu}$.

$$\langle \xi, \zeta \rangle_{\mu} \coloneqq \frac{1}{2} \left[\|\xi\|_{\mu}^2 + \|\zeta\|_{\mu}^2 - W_{\mu}^2(\xi, \zeta) \right], \qquad \qquad \text{where } \|\xi\|_{\mu} \coloneqq W_{\mu}^2(\xi, 0_{\mu}).$$

We may now define the set $\mathbf{Sol}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d})$.

Def – **Solenoidal measure fields** An element $\zeta \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$ is said solenoidal if

$$\langle \eta, \zeta \rangle_{\mu} = 0 \qquad \qquad \forall \eta \in \mathrm{Tan}_{\mu} \mathscr{P}_{2}(\mathbb{R}^{d}).$$

Averil Prost Swirling measures April 30, 2024 8 / 12

Examples

• If $\mu = \delta_x$, then $\mathbf{Sol}_{\mu} = \{0_{\mu}\}$. Indeed, any $\xi \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_{\mu}$ induces a geodesic, hence belongs to the tangent cone.

Examples

• If $\mu = \delta_x$, then $\mathbf{Sol}_{\mu} = \{0_{\mu}\}$. Indeed, any $\xi \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_{\mu}$ induces a geodesic, hence belongs to the tangent cone. **Very small!**

Examples

- If $\mu = \delta_x$, then $\mathbf{Sol}_{\mu} = \{0_{\mu}\}$. Indeed, any $\xi \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_{\mu}$ induces a geodesic, hence belongs to the tangent cone. Very small!
- If μ is absolutely continuous, then ${\sf Tan}_\mu = {\sf Tan}_\mu$ and for any $\zeta \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$,

$$\langle f \# \mu, \zeta \rangle_{\mu} = \langle f, \mathsf{Bary}_{\mathsf{T}\mathbb{R}^d} \left(\zeta \right) \rangle_{L^2_{\mu}}, \qquad \mathsf{where} \ \mathsf{Bary}_{\mathsf{T}\mathbb{R}^d} \left(\zeta \right) (x) = \int_{v \in \mathsf{T}_v \mathbb{R}^d} v d\zeta(x,v).$$

Examples

- If $\mu = \delta_x$, then $\mathbf{Sol}_{\mu} = \{0_{\mu}\}$. Indeed, any $\xi \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_{\mu}$ induces a geodesic, hence belongs to the tangent cone. Very small!
- If μ is absolutely continuous, then ${\sf Tan}_\mu = {\sf Tan}_\mu$ and for any $\zeta \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$,

$$\langle f \# \mu, \zeta \rangle_{\mu} = \langle f, \mathsf{Bary}_{\mathsf{T}\mathbb{R}^d} \left(\zeta \right) \rangle_{L^2_{\mu}} \,, \qquad \mathsf{where} \; \mathsf{Bary}_{\mathsf{T}\mathbb{R}^d} \left(\zeta \right) (x) = \int_{v \in \mathsf{T}_v \mathbb{R}^d} v d\zeta(x, v).$$

Hence $\zeta \in \mathbf{Sol}_{\mu}$ iff its barycenter is a solenoidal vector field.

Examples

- If $\mu = \delta_x$, then $\mathbf{Sol}_{\mu} = \{0_{\mu}\}$. Indeed, any $\xi \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_{\mu}$ induces a geodesic, hence belongs to the tangent cone. **Very small!**
- If μ is absolutely continuous, then ${\sf Tan}_\mu = {\sf Tan}_\mu$ and for any $\zeta \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$,

$$\langle f \# \mu, \zeta \rangle_{\mu} = \langle f, \mathsf{Bary}_{\mathsf{T}\mathbb{R}^d} \left(\zeta \right) \rangle_{L^2_{\mu}} \,, \qquad \mathsf{where} \; \mathsf{Bary}_{\mathsf{T}\mathbb{R}^d} \left(\zeta \right) (x) = \int_{v \in \mathsf{T}_v \mathbb{R}^d} v d\zeta(x, v).$$

Hence $\zeta \in \mathbf{Sol}_{\mu}$ iff its barycenter is a solenoidal vector field. Very large!

HH decomposition for measure fields

Recall that in the classical case, f = g + h, or in weak form,

$$\int_{x} \varphi(x, f(x)) d\mu = \int_{x} \varphi(x, g(x) + h(x)) d\mu \qquad \forall \varphi \in \mathcal{C}_{b}(\mathsf{T}\mathbb{R}^{d}; \mathbb{R}).$$

Averil Prost Swirling measures April 30, 2024 10 / 12

HH decomposition for measure fields

Recall that in the classical case, f = g + h, or in weak form,

$$\int_{x} \varphi(x, f(x)) d\mu = \int_{x} \varphi(x, g(x) + h(x)) d\mu \qquad \forall \varphi \in \mathcal{C}_{b}(\mathsf{T}\mathbb{R}^{d}; \mathbb{R}).$$

Theorem – HH decomposition For any $\xi \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_\mu$, there exists an unique pair $\eta \in \operatorname{Tan}_\mu$ and $\zeta \in \operatorname{Sol}_\mu$ such that for some measurable family $(\alpha_x)_x$ with $\alpha_x \in \Gamma(\eta_x, \zeta_x)$ for a.e. $x \in \operatorname{supp}_\mu$,

$$\int_{(x,v)} \varphi(x,v)d\xi = \int_{\substack{x \in \mathbb{R}^d, \\ (v,w) \in (\mathsf{T}_x \mathbb{R}^d)^2}} \varphi(x,v+w)d[\alpha_x \otimes \mu] \qquad \forall \varphi \in \mathcal{C}_b(\mathsf{T}\mathbb{R}^d;\mathbb{R}).$$

Averil Prost Swirling measures April 30, 2024 10 / 12

Table of Contents

The metric space $\mathscr{P}_2(\mathbb{R}^d)$

Decomposition for measure fields

Characterization of Tan

Averil Prost Swirling measures April 30, 2024 10 / 12

$$\lim_{h\searrow 0} \frac{d_{\mathcal{W}}(\mu, (\pi_x + h\pi_v)\#\xi)}{h} = 0.$$

Proposition A measure field ξ is solenoidal if and only if

$$\lim_{h\searrow 0}\frac{d_{\mathcal{W}}(\mu,(\pi_x+h\pi_v)\#\xi)}{h}=0.$$

In this case, the tangent component of ξ is 0_u .

Proposition A measure field ξ is solenoidal if and only if

$$\lim_{h \searrow 0} \frac{d_{\mathcal{W}}(\mu, (\pi_x + h\pi_v) \# \xi)}{h} = 0.$$

In this case, the tangent component of ξ is 0_{μ} . In general, if $\pi^{\mu}\xi$ denotes the tangent component,

$$\lim_{h \searrow 0} \frac{d_{\mathcal{W}}((\pi_x + h\pi_v) \# \pi^{\mu} \xi, (\pi_x + h\pi_v) \# \xi)}{h} = 0.$$

Proposition A measure field ξ is solenoidal if and only if

$$\lim_{h \searrow 0} \frac{d_{\mathcal{W}}(\mu, (\pi_x + h\pi_v) \# \xi)}{h} = 0.$$

In this case, the tangent component of ξ is 0_{μ} . In general, if $\pi^{\mu}\xi$ denotes the tangent component,

$$\lim_{h \searrow 0} \frac{d_{\mathcal{W}}((\pi_x + h\pi_v) \# \pi^{\mu} \xi, (\pi_x + h\pi_v) \# \xi)}{h} = 0.$$

Proposition A measure field ξ is solenoidal if and only if

$$\lim_{h \searrow 0} \frac{d_{\mathcal{W}}(\mu, (\pi_x + h\pi_v) \# \xi)}{h} = 0.$$

In this case, the tangent component of ξ is 0_{μ} . In general, if $\pi^{\mu}\xi$ denotes the tangent component,

$$\lim_{h \searrow 0} \frac{d_{\mathcal{W}}((\pi_x + h\pi_v) \# \pi^{\mu} \xi, (\pi_x + h\pi_v) \# \xi)}{h} = 0.$$

Proposition A measure field ξ is solenoidal if and only if

$$\lim_{h \searrow 0} \frac{d_{\mathcal{W}}(\mu, (\pi_x + h\pi_v) \# \xi)}{h} = 0.$$

In this case, the tangent component of ξ is 0_{μ} . In general, if $\pi^{\mu}\xi$ denotes the tangent component,

$$\lim_{h \searrow 0} \frac{d_{\mathcal{W}}((\pi_x + h\pi_v) \# \pi^{\mu} \xi, (\pi_x + h\pi_v) \# \xi)}{h} = 0.$$

Construction of the tangent cone

Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Consider

• the $\xi \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$ such that

$$s \mapsto (\pi_x + s\pi_v) \# \xi$$

is a geodesic;

- the positive cone $\alpha \cdot \xi$ for all $\alpha \geqslant 0$,
- the completion of the previous cone with respect to W_{μ} .

The resulting set is denoted $\operatorname{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d})$.

Quotient construction

Let
$$\mu \in \mathscr{P}_2(\mathbb{R}^d)$$
.

Construction of the tangent cone

Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Consider

• the $\xi \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$ such that

$$s \mapsto (\pi_x + s\pi_v) \# \xi$$

is a geodesic;

- the positive cone $\alpha \cdot \xi$ for all $\alpha \geqslant 0$,
- the completion of the previous cone with respect to W_{μ} .

The resulting set is denoted $\operatorname{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d})$.

Quotient construction

Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Define $\xi \sim_{\mu} \zeta$ if

$$d_{\mathcal{W}}((\pi_x + h\pi_v)\#\xi, (\pi_x + h\pi_v)\#\zeta) = o(h).$$

Construction of the tangent cone

Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Consider

ullet the $\xi\in\mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$ such that

$$s \mapsto (\pi_x + s\pi_v) \# \xi$$

is a geodesic:

- the positive cone $\alpha \cdot \xi$ for all $\alpha \geqslant 0$,
- the completion of the previous cone with respect to W_{μ} .

The resulting set is denoted $\operatorname{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d})$.

Quotient construction

Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Define $\xi \sim_{\mu} \zeta$ if

$$d_{\mathcal{W}}((\pi_x + h\pi_v)\#\xi, (\pi_x + h\pi_v)\#\zeta) = o(h).$$

$$\operatorname{Tan}_{\mu}\mathscr{P}_2(\mathbb{R}^d)\stackrel{\mathrm{isometry}}{=}\mathscr{P}_2(\mathbb{R}^d)_{\mu}/\sim_{\mu}.$$

Construction of the tangent cone

Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Consider

• the $\xi \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$ such that

$$s \mapsto (\pi_x + s\pi_v) \# \xi$$

is a geodesic;

- the positive cone $\alpha \cdot \xi$ for all $\alpha \geqslant 0$,
- the completion of the previous cone with respect to W_{μ} .

The resulting set is denoted $\operatorname{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d})$.

Quotient construction

Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Define $\xi \sim_{\mu} \zeta$ if

$$d_{\mathcal{W}}((\pi_x + h\pi_v)\#\xi, (\pi_x + h\pi_v)\#\zeta) = o(h).$$

$$\operatorname{Tan}_{\mu}\mathscr{P}_2(\mathbb{R}^d)\stackrel{\mathrm{isometry}}{=}\mathscr{P}_2(\mathbb{R}^d)_{\mu}/\sim_{\mu}.$$

That's it!

False in general. One can craft a counterexample on a Cantor measure. Sorry if you lost time

Thank you!

[AGS05] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré.

Gradient Flows.

Lectures in Mathematics ETH Zürich, Birkhäuser-Verlag, Basel, 2005.

[Bre91] Yann Brenier.

Polar factorization and monotone rearrangement of vector-valued functions.

Communications on Pure and Applied Mathematics, 44(4):375–417, June 1991.

[Gig08] Nicola Gigli.

On the Geometry of the Space of Probability Measures Endowed with the Quadratic Optimal Transport Distance.

PhD thesis. Scuola Normale Superiore di Pisa. Pisa. 2008.

[Lad87] Ol'ga A. Ladyženskaja.

The Mathematical Theory of Viscous Incompressible Flow.

Number 2 in Mathematics and Its Applications. Gordon and Breach, 1987.