Reconstruction & Géo Algo

Romain Vergne

UJF

2012/2013

RECONSTRUCTION DE DONNÉES SPARSES

Entrée : Points

RECONSTRUCTION DE DONNÉES SPARSES

Sortie: Surface

LES FICHIERS

Vous disposez des classes suivantes (+ fonctions de base) :

- geom : classe Point3D
 - produits scalaire/vectoriel/distances/norme/...
 - liste de points (v_Point3D)
 - vecteurs propres d'une matrice 3x3 symétrique
- data_struct_algo : classes Graphe, classe Grille3D
 - création Graphe/calcul arbre couvrant minimal/...
 - initialisation d'une grille3D pour la fonction implicite
- iso_value : classe SurfaceIsovaleurGrille
 - calcule le marching tetrahèdre à partir d'une grille + une fonction implicite
- viewer / eventWidget : fenêtre et menu

LES FICHIERS

- pointsToSurface :
 - la SEULE classe à modifier!
 - une liste de points est donnée : v_Point3D _points ;
 - Vous devrez y remplir des structures/fonctions prédéfinies...
 - v_Point3D _noNormals; // (computeNonOrientedNormals)
 - v_Point3D _oNormals; // (computeOrientedNormals)
 - Graphe _acm; // (computeMinimalSpanningTree)
 - implicit function (computeImplicitFunc)
 - ... et obtenir la surface finale :
 - v_Triangle3D _surfacep; (computeMesh)
 - v_Triangle3D _surfacen; (computeNormalsFromImplicitFunc)

MÉTHODE IMPLICITE

- Calculer des normales non orientées
- Calculer l'arbre couvrant de poids minimum
- Réorienter des normales
- **1** Déterminer une fonction f(x, y, z) en tout point
- **5** Calculer la surface isovaleur f(x, y, z) = 0
- 6 Calculer les normales (finales) de la surface

1 : CALCUL DES NORMALES NON ORIENTÉES

1 : CALCUL DES NORMALES NON ORIENTÉES

REMPLIR _NONORMALS / FONCTION "COMPUTENONORIENTEDNORMALS"

- Pour chaque sommets p
 - déterminer les k-voisins pts
 - calculer le barycentre B des points pts
 - **3** calculer la matrice A = pts B
 - \bullet calculer la matrice A^TA
 - calculer les vecteurs propres associés à

$$A^{T}A = \begin{pmatrix} A11 & A12 & A13 \\ A12 & A22 & A23 \\ A13 & A23 & A33 \end{pmatrix}$$

6 y récupérer les normales non orientées _noNormals

1 : CALCUL DES NORMALES NON ORIENTÉES

REMPLIR _NONORMALS / FONCTION "COMPUTENONORIENTEDNORMALS"

- Pour chaque sommets p
 - déterminer les k-voisins pts
 - calculer le barycentre B des points pts
 - 3 calculer la matrice A = pts B
 - \bullet calculer la matrice A^TA
 - o calculer les vecteurs propres associés à

$$A^{T}A = \begin{pmatrix} A11 & A12 & A13 \\ A12 & A22 & A23 \\ A13 & A23 & A33 \end{pmatrix}$$

6 y récupérer les normales non orientées _noNormals

Astuce : utiliser les routines "kneighborhoodPoints" (pointsToSurface) et "calcul_repere_vecteurs_propres" (geom) permettant de récupérer le repère local à partir de la matrice A^TA

2: Arbre couvrant de poids minimum

2: Arbre couvrant de poids minimum

REMPLIR _ACM / FONCTION "COMPUTEMINIMALSPANNINGTREE"

- - un arc = paire de points p_i, p_j , avec
 - $distance_{-}(p_i, p_j) < r, r \text{ un rayon}$
 - ATTENTION au rayon choisi :
 - le graphe doit avoir UNE SEULE composante connexe
- calculer le graphe couvrant de poids minimum à partir de G : acm
 - utiliser "arbre_couvrant_minimal" (data_struct_algo)

3 : RÉORIENTATION DES NORMALES

3 : RÉORIENTATION DES NORMALES

REMPLIR _ONORMALS / FONCTION "COMPUTEORIENTEDNORMALS"

- pour le noeud racine de l'arbre courant minimum _acm
 - regarder les normales entre le noeud père et les noeuds fils
 - 2 si besoins, réorienter les normales des noeuds fils
 - recommencer le même procédé en partant des noeuds fils

4: LA FONCTION IMPLICITE

4: LA FONCTION IMPLICITE

REMPLIR LA FONCTION "COMPUTE MPLICIT FUNC"

Pour un point donné $\mathbf{x} = (x, y, z)$, la fonction renvoie la valeurs de la fonction implicite en utilisant MLS. A partir de points \mathbf{x}_i + normales \mathbf{n}_i , calculer la distance moyenne aux plans :

$$f(x) = \frac{\sum \mathbf{n}_i^T(\mathbf{x} - \mathbf{x}_i)w_i(\mathbf{x})}{\sum w_i(\mathbf{x})}$$

$$w_i(\mathbf{x}) = w(||\mathbf{x} - \mathbf{x}_i||), \text{ et } w(x) = e^{-(\frac{x}{\sigma})^2}$$

ATTENTION au σ utilisé (dépend de la taille de l'objet)

5: SURFACE ISOVALEUR

5: SURFACE ISOVALEUR

REMPLIR _SURFACEP / FONCTION "COMPUTEMESH"

- créer une Grille3D G que l'on utilisera pour le marching
 - déterminer la boite englobante (doit contenir l'objet et même un peu plus)
 - déterminer le pas de la grille dans les 3 dimensions
 - trop petit pas : calculs qui suivront trop lent
 - trop grand pas : mauvaise reconstruction
- 2 créer un tableau *v* contenant les valeurs de la fonction implicite
 - même taille que la grille!
 - contient les valeurs de la fontion implicite pour chaque position de la grille3D (appeler "computeImplicitFunc" implémenté précédemment)
- 3 calculer la surface isovaleur _surfacep
 - utiliser SurfaceIsovaleurGrille fonction "surface_isovaleur" (iso_value)

6: NORMALES FINALES

6: NORMALES FINALES

REMPLIR _SURFACEN / FONCTION "COMPUTENORMALSFROMIMPLICITFUNC"

On pourrait prendre les normales estimées originales : discontinuités. Solution : calculer la dérivée de la fonction implicite en chaque sommet de la surface. La dérivée du champs scalaire donne la normale! Elle se calcule de la manière suivante :

- pour chaque point $\mathbf{p}_i(x_i, y_i, z_i)$ de la surface faire
 - $n_x = f(x_i 0.01, y_i, z_i) f(x_i + 0.01, y_i, z_i)$
 - $n_y = f(x_i, y_i 0.01, z_i) f(x_i, y_i + 0.01, z_i)$
 - $n_z = f(x_i, y_i, z_i 0.01) f(x_i, y_i, z_i + 0.01)$
 - normaliser (n_x, n_y, n_z) et l'ajouter dans _**surfacen**

ALGORITHME

- Calculer des normales non orientées
- Calculer l'arbre couvrant de poids minimum
- Réorienter des normales
- **1** Déterminer une fonction f(x, y, z) en tout point
- **5** Calculer la surface isovaleur f(x, y, z) = 0
- 6 Calculer les normales (finales) de la surface

ALGORITHME

- Essayer plusieurs valeurs de lissage
- Essayer plusieurs valeurs de pas pour la grille
- Second Second

A RENDRE

- un dossier compressé prenom-nom.tgz contenant :
 - un rapport au format pdf (images + explications)
 - le fichier pointsToSurface.h
 - le fichier pointsToSurface.cpp

CONSEILS

- n'hésitez pas à enrichir la classe PointsToSurface
 - avec des variables à vous
 - avec des fonctions temporaires
- utilisez les fonctions/variables à votre disposition
 - boundingBox donnée
 - distance minimale moyenne donnée
 - etc...

COMPILATION

- bibliothèques :
 - QT
 - OpenGL
 - libqglviewer (a installer si necessaire)
- Préparation :
 - éditer main.pro
 - changer les chemins / libs si necessaire
- compiler :
 - qmake && make
- tester:
 - ./pointsToSurface data/file.txt

- Cours de Nicolas Szafran 2011/2012
 (http://www-ljk.imag.fr/membres/Nicolas.Szafran/)
- Scattered Data Interpolation and Approximation for Computer Graphics (Siggraph Asia course 2010)
- Implicit surface reconstruction from point clouds (thèse de Johan Huysmans)
- The Method of Least Squares (Steven J. Miller)
- Cours de Gael Guennebaud (moving least squares) : http://www.labri.fr/perso/guenneba/

