Untitled

```
itle:
                US- 10- 536- 935A- 1
Perfect score: 1497
Sequence:
                  1 at ggcaacagt acat cagaa. . . . . . . . . gaat at t cat t aagct at aa 1497
title:
                  US-10-536-935A-1
Perfect score:
                 1497
Sequence:
                 1 at ggcaacagt acat cagaa......gaat at t cat t aagct at aa 1497
RESULT 1
ABL88606
ID
     ABL88606 standard: DNA: 1497 BP.
ABL88606:
      20-MAY-2002 (first entry)
      Fungal cell wall synthesis related polynucleotide SEQ ID NO 1.
      Fungi: transport: GPI anchor protein: cell wall: biosynthesis: fungicide:
      antifungal: 1-(4-n-but vI benzyl) i soqui nol i ne: gene: ds.
      Saccharomyces cerevisiae.
      W0200204626- A1.
      17- JAN- 2002.
      06-JUL-2001: 2001WO-JP005899.
      07-JUL-2000; 2000JP-00206968.
      17- OCT- 2000: 2000 JP- 00316027
     (EISA) EISAI COLTD.
      Tsukahara K, Hata K, Sagane K, Nakamoto K, Tsuchiya M,
Watanabe N, Coa F, Tsukada I, Ueda N, Tanaka K, Kai J;
      WPI: 2002-241441/29.
      P- PSDB: ABB88538.
      Fungal cell wall synthesis gene encoding protein related to transport
      process of GPI anchor protein to cell wall, useful in screening
      inhibitors for development into antifungal agents.
      Claim 1; Page 213-216; 297pp; Japanese.
      The invention relates to a DNA overexpressed in fungi that encodes a
     protein imparting tolerance to compounds that inhibit the transport process of the GPI anchor protein to the cell wall in fungi. The
      inhibitors have fungicide activity through inhibition of fungal cell wall
      synthesis. The gene and encoded protein are useful in screening for
      inhibitors for development into antifungal agents, particularly for
      patients with opportunistic fungal infection. A gene imparting tolerance
      to e.g. 1-(4-n-butylbenzyl)isoquinoline can be identified. Such
     antifungal's are likely to be more effective because of its novel mechanism of action. The present sequence is that of a polynucleotide of
      the invention
      Sequence 1497 BP; 429 A; 269 C; 275 G; 524 T; 0 U; 0 Other;
```

Page 1

Untitled

		Similarity 7: Conserva	100.0% 100.0%	Score Pred.		DB 6; 0:	Lengt h I ndel s	1497; 0:	Gaps	0:
Qv		ATGGCAACAGT		,		,		-,		,
Db	1	ATGCCAACAGT								60
Qу	61	ACAGGGCTCAA								120
Db	61	ACAGGGCT CAA	TGGGGGTTC	TATAAC	AGAAATT/	 4A CGCAG	 GACATC	ATTECT	TTGGTA	120
Qу	121	ACTTACATATO								180
Db	121	ACTTACATATO	ATGGAACTT	ATTGAA	AAATTCC	AACCTTA	rcccrcc	r GGCATT	TOCAGO	180
Qy	181									240
Db	181	GTGCAATACAT	AATTGATTT	TGCATT	GAACTGG	SITECT	rect tet/	ATCTATT	ACTATT	240
Qу	241	TATGCTAGTGA								300
Db	241	TATOCTAGTGA	ACCATACCT	TCTAAA	CAOGCTA	ATACTGT	FACCTTG	rttecte	CCATTC	300
Qу	301	ATATATGGAAA								360
Db	301	ATATATGGAAA	ATTTACTAC	CTOGAG	TAAACCT	TCTAATO	CAATATAC	CAATAAA	AAAAA	360
Qу	361	ATGATTACACA								420
Db	361	ATGATTACACA	(GOGGTTOCA	VACTAGA	AAAAAAG	COGTATA	TACTOO	STATOGT	OGT OGG	
Qу		ATCCTTATTCT	ШШШ	HIIIII		1111111	HIIIIII	HIIII		
Db	421	ATGCTTATTCT								
Qy 	481	TTTGCCAAGGT	ШШШ			HIIIII	1111111	HIIII		
Db -	481	TTTGCCAAGGT								
Qy 	541					HIIIII	THILL	HIIII		
Db	541	TTCAGTAACGC								
Qy Cu		COCAGCTTCTT		(A) AA 		AAATCAG	JAGUJAAC 		IIIIII	660
Db	601 661									
Cy Db	661	TITITITI I		1111111			1111111		i i i i i i i	
Qy		GOOGTTCATTO								
Db	721	GOOGLICATIO						HILL	ĤĤĤ	780
Qy	781									
Db		GATCCCGTCAC	HIIIIII	HIIIII	ĤĤĤĤ	HIIIIII	HIIIII	HIHI		
Qv		GAATGGCTACT								
-,		miimiiii		ĤHĤ						

Untitled 841 GAATGCCTACTTTTAAAGGACGATGCCACTTTAAACTTTTTAATTTTGCCTGATAGAAAT 900 Db 901 TGTTTCTTCAGTGCTAATAGAGAAGCCATCTTCTCATTTCTAGGTTATTGCTCGATTTTT 960 Qy TGTTCTTCAGTCCTAATACACAACCCATCTTCTCATTTCTACGTTATTCCTCCATTTTT 960 Db 961 CTTT@@@CCAAAACAC@GGATTTTACTTGTT@GGAAATAAACCAACTTTAAACAATCTT 1020 Qv CTTT@333CAAAACAC33GATTTTACTTGTT@CAAATAAACCAACTTTAAACAACTT 1020 Db 1021 TATAAGCCTTCTACGCAAGACGTAGTTGCAGCATCAAAGAAGTCTTCGACTTGGGACTAT 1080 Qy Dh 1081 TGGACTTCAGTAACCCCATTAAGTGCCCTCTGTATATGGAGTACAATTTTTCTTGTTATC 1140 Qy 1081 TGCACTTCAGTAACCCCATTAAGTGCCCTCTGTATATGCAGTACAATTTTCTTGTTATC 1140 Db 1141 ACCCAGITGGITTTTCAATACCATCCTTATAGIGTTCAAGAAGGITTGCTAACTTACCA 1200 Qy ACCACITECTITICAATACCATCCTTATACTCTTCAACAACCTTTCCTAACTTACCA 1200 Db 1201 TATACTTTGTQQGTCATTACTTATAATTTACTATTTTTTGACTQQGTACTQCTTGACTQAC 1260 Qy Db 1261 AAAATTTTOGGTAATTCTTOGGAATATTATAAAGTTQOOGAATQCTTGGAATCAATCAAC 1320 Qv Db Qy 1321 TCCAATGGTTGTTTTATTTTTGTTGGCAAATGTCTCTACTGGTTTAGTCAATATGTCT 1380 TCCAATGCGTTGTTTTTATTTTTGTTGCCAAATGTCTCTACTGGTTTAGTCAATATGTCT 1380 Db 1381 ATGGTCACGATACATTCTTCACCCTTAAAATCATTCCTGGTTTTGTTGCCATACTGCTCA 1440 Qv 1381 ATGGTCACGATAGATTCTTCACCCTTAAAATCATTCCTGGTTTTGTTCCCATACTCCTCA 1440

Db

Qy

Db

1441 TTCATACCTGTCATATCCGTTTTCTTGTATACAAAAACAATATTCATTAACCTATAA 1497

TCATACCTGTCATATCCGTTTTCTTGTATACAAAAACAATATTCATTAACCTATAA 1497