

AnoFPDM: Anomaly Detection with Forward Process of Diffusion Models for Brain MRI

Yiming Che^{1,2}, Fazle Rafsani^{1,2}, Jay Shah, Md Mahfuzur Rahman Siddiquee^{1,2}, and Teresa Wu^{1,2} ¹Arizona State University ²ASU-Mayo Center for Innovative Imaging

Motivation

- Current weakly-supervised diffusion models for anomaly detection is not fully weakly-supervised.
- Pixel-level labels is required for hyperparameter tuning in inference!
- Subject to human annotator bias
- o Costly
- > Current hyperparameter selection is fixed
- All samples are using the same hyperparameters, e.g., noise level and threshold.
- > Need a new dynamical hyperparameter selection method.
- Get rid of pixel-level labels
- Select hyperparameters individually

Contributions

- > A fully weakly-supervised anomaly detection framework
- ➤ Novel dynamical threshold and noise scale selection and novel fixed guidance strength selection for diffusion models on weakly-supervised anomaly detection
- > Novel aggregation strategy combined with dynamical noise scale selection to enhance the signal strength of anomalous regions on anomaly map

- No iterative reconstruction
- Only the forward process
- Healthy guided
- o Unguided
- Aggregate SAMs until t_e
- \circ t_e dynamical noise scale
- Capture 'sweet spot' Determined by max M_t
- \triangleright Segmentation threshold Q^*
 - Determined by anomaly size \circ Roughly linear related with M_{t_a}
- \triangleright Optimal fixed guidance strength w^*
 - Determined separately according to classification
 - o See Sec. 4.2 in our paper

Sub-anomaly Maps (SAMs)

Healthy-guided Forward Process (HFP)

Unguided Forward Process (UFP)

The divergence M_{t} is essentially the magnitude of weighted gradient of the log-likelihood of the implicit classifier

SAM has similar form but with an extra error term Δs_t . It achieves better results compared to use the difference between two forward processes.

How SAMs change?

- Focus: high-frequency to low-frequency components
- > The signals from healthy regions appear randomly distributed.
- > The signals from anomalous regions exhibit more consistency.
- > This consistency is crucial to the effectiveness of the aggregation process.

Experiments

See references in our paper

	MIXEU			Officaltry		
Methods	DICE	IoU	AUPRC	DICE	IoU	AUPRC
AnoDDPM (G) [26]	66.1±0.1	61.7±0.1	51.8±0.1	37.6±0.1	28.1±0.1	61.3±0.1
AnoDDPM (S) [26]	75.1 ± 0.3	69.5 ± 0.2	67.3 ± 0.1	53.7 ± 2.7	45.5 ± 1.3	71.8 ± 0.1
DDIM clf [25]	76.5 ± 0.1	71.0 ± 0.1	58.4 ± 0.3	52.2 ± 0.2	40.4 ± 0.2	61.6 ± 0.2
DDIM clf-free [18]	74.3 ± 0.0	$\overline{69.1 \pm 0.0}$	59.9 ± 0.0	49.1 ± 0.0	38.1 ± 0.0	61.4 ± 0.0
CG-CDM [9]	-	-	-	44.4±0.3	32.2±0.5	31.2±0.7
AnoFDDM (DDIM)	77.4 ± 0.0	72 5±0 0	72 240 0	61.5 ± 0.0	50 0±0 1	75 5±0 0

		MIACU					
Methods	DICE	IoU	AUPRC	DICE	IoU	AUPRC	
AnoDDPM (G) [26]	74.8 ± 0.1	74.8 ± 0.1	2.0 ± 0.1	$0.4 {\pm} 0.1$	0.2 ± 0.1	6.5±0.2	
AnoDDPM (S) [26]	74.9 ± 0.1	74.6 ± 0.1	$20.8 {\pm} 0.5$	3.4 ± 1.0	3.3 ± 0.7	30.9 ± 0.4	
DDIM clf [25]	51.5 ± 0.8	50.8 ± 0.7	1.9 ± 0.1	5.8 ± 0.1	3.7 ± 0.1	5.6 ± 0.1	
DDIM clf-free [18]	73.5 ± 0.0	73.0 ± 0.0	9.3 ± 0.0	$0.1 {\pm} 0.0$	$0.1 {\pm} 0.0$	13.6 ± 0.0	
CG-CDM [9]	-	_	_	2.1±0.0	1.1±0.0	1.6±0.0	
A EDDM (DDIM)	75 5 1 0 2	75 5 1 0 3	22 5 1 0 1	21 5 1 0 0	155100	21 2 0 1	

Qualitative results on (top) ATLAS v2.0 dataset and (bottom) BraTS21 dataset

