Line Assignment

Navya Valmeekam

1

CONTENTS

I Problem

II Solution

I. PROBLEM

In figure below, ABCD is a parallelogram and BC is produced to a point Q such that AD = CQ. If AQ intersect DC at P, show that ar (BPC) = ar (DPQ). [Hint : Join AC.]

Figure of Construction

II. SOLUTION

Construction: Join AC Theoretical Proof:

To Prove: $ar(\Delta BPC) = ar(\Delta DPQ)$ Since ABCD is a paralellogram, $AD \mid\mid BC$ and BC is extended to point Q

$$\therefore AD \mid\mid CQ$$
 and AD=CQ (given)

A quadrilateral is said to be paralellogram if a pair of its opposite sides are parallel and equal By the theorem,

Theorem: Two triangles on the same base and between same parallels are equal in area

$$ar(\Delta BPC) = ar(\Delta APC).....(1)$$

In \triangle APC and \triangle DPQ,

 \angle PAC = \angle PQD [Alternate interior angles are equal]

AC=QD [Opposite sides of a paralellogram are equal]

 \angle ACP = \angle PDQ [Alternate interior angles are equal]

By ASA rule, Δ APC and Δ DPQ are congruent

 \therefore ar(\triangle APC)=ar(\triangle DPQ).....(2) [Since congruent triangles have equal area]

From 1 and 2 ar(\triangle BPC)=ar(\triangle DPQ) hence proved

To Prove: $ar(\Delta BPC) = ar(\Delta DPQ)$

Given ABCD is a paralellogram, and BC is produced to point Q such that AD=CQ. AQ intersect DC at P.

We need to prove that ar(BPC)=ar(DPQ)Let,

> A-B=p1 D-C=s1 A-D=p2B-C=s2

By paralellogram property

$$||p1|| = ||s1|| \&\& ||p2|| = ||s2||$$
 [1]

Since P lies on DC,

DP=PC=
$$k \times DC$$

DP=PC= $k(s1)$

Area of triangle BPC

=1/2 x [PC x BC]
=1/2 x [
$$k(s1)$$
 x $s2$]
=1/2 x [$k(p1)$ x $p2$] (from [1])

Area of triangle BPC

$$=1/2 \times [k(p1) \times (p2)]$$
 [2]

Given that BC is extended to Q so,

$$AD \mid\mid CQ$$
 and AD=CQ(given)
So, ACQD is a parallelogram

AC=DQ. [Since opposite sides of a paralellogram are equal] [3]
In triangle ABC,

AC=AB+BC
AC=(A-B)+(B-C)
AC=
$$p1 + s2$$

AC= $p1 + p2$ (from [1])
From [3]
AC=DQ= $p1 + p2$ [4]

Area of a triangle DPQ

=1/2 x [DP x DQ]
=1/2 x
$$[k(s1) \times (p1 + p2)]$$
 (from [4])
=1/2 x $[k(p1) \times (p1 + p2)]$
=1/2 x $[k(p1) \times (p1) + k(p1) \times (p2)]$
=1/2 x $[k(p1) \times p2]$

Area of triangle DPQ

$$=1/2 \times [k(p1) \times p2]$$
 [5]

from [2] and [5]

ar(BPC)=ar(DPQ)

hence proved

Input parameters for this construction

Symbol	Value	Description
r0	5	DC
r1,r2	3,2.8	DA
r3,r4	4,173	CQ
r5,r6	10,3.4	СВ
θ_1	$2\pi/5$	∠ADC
θ_2	$\pi/200$	∠QDC
θ_3	$2\pi/3.45$	∠BDC