

V1.7

北京联盛德微电子有限责任公司 (Winner Micro)

地址:北京市海淀区阜成路 67 号银都大厦 18 层

电话: +86-10-62161900

网址: www.winnermicro.com

文档修改记录

版本	修订时间	修订记录	作者	审核
V0.1	2020/04/30	初稿		
V0.2	2020/06/10	更新外围参数	Huzj	
V1.0	2020/07/20	增加 ADC 电路说明	Huzj	
V1.1	2020/08/04	删除冗余内容,增加 GPIO 上下拉电阻典	Huzj	
		型值		
V1.2	2020/11/27	增加芯片电源脚说明	Huzj	
V1.3	2020/12/23	增加芯片防静电,layout 说明	Huzj	
V1.4	2021/4/14	增加 touch sensor 功能说明	Huzj	
		修改防天线口静电电路		
V1.5	20210602	修改天线部分说明	Huzj	
V1.6	20211009	修改天线部分说明	Linda	
V1.7	20220317	修改天线部分说明及 ADC 范围	Huzj	

目录

文	【档修改记录	₹	. 5
1	概述		. 7
2	管脚定义	ξ	. 7
3	芯片外围	围电路设计	10
	3.1	RESET 复位电路设计	10
	3.2	参考时钟电路设计	11
	3.3	ADC 电路设计	11
	3.4	射频电路设计	
	3.5	GPIO 设计	12
	3.6	Touch Sensor 设计	13
	3.7	下载口	13
	3.8	电源设计	14
	3.9	防静电设计	15
4	Layout	设计	16
5	天线设计	t	18
	5.1	外置天线	18
	5.2	板裁天线	12

1 概述

W800 芯片是一款安全 IoT Wi-Fi/蓝牙双模 SoC 芯片。支持 2.4G IEEE802.11b/g/n Wi-Fi 通讯协议; 支持 BT/BLE 双模工作模式,支持 BT/BLE4.2 协议。芯片集成 32 位 CPU 处理器,内置 QFlash、SPI、UART、GPIO、I2C、I2S、7816 等丰富的数字接口;支持多种硬件加解密算法,内置 DSP、浮点运算单元与安全引擎,支持代码安全权限设置,内置 2MBFlash 存储器,支持固件加密存储、固件签名、安全调试、安全升级等多项安全措施,保证产品安全特性。适用于用于智能家电、智能家居、智能玩具、无线音视频、工业控制、医疗监护等广泛的物联网领域。

2 管脚定义

图 2-1 管脚布局图 (QFN32)

表 2-1 管脚分配定义 (QFN32)

编号	名称	类型	复位后管脚功能	复用功能	最高频率	上下拉能力	驱动能力
1	PB_20	1/0	UART_RX	UARTO_RX/PWM1/UART1_CTS/I ²	10MHz	UP/DOWN	12mA
	_			C_SCL			
2	PB_19	1/0	UART_TX	UARTO_TX/PWM0/UART1_RTS/I²	10MHz	UP/DOWN	12mA
	15_17	1, 0		C_SDA	1011112		12111/1
3	WAKEUP	I	WAKEUP 唤醒功能			DOWN	
4	RESET	I	RESET 复位)	UP	
5	XTAL_OUT	0	外部晶振输出				
6	XTAL_IN	1	外部晶振输入				
7	AVDD33	Р	芯片电源 <i>,</i> 3.3V				
8	ANT	1/0	射频天线				
9	AVDD33	Р	芯片电源, 3.3V				
10	AVDD33	Р	芯片电源, 3.3V				
11	AVDD33_AU	P	芯片电源 <i>,</i> 3.3V				
	Х		7.5V				
12	TEST	I	测试功能配置管脚				
13	BOOTMODE	1/0	BOOTMODE	I ² S_MCLK/LSPI_CS/PWM2/I ² S_DO	20MHz	UP/DOWN	12mA
14	PA_1	1/0	JTAG_CK	JTAG_CK/I ² C_SCL/PWM3/I ²	20MHz	UP/DOWN	12mA
14	ΓΛ <u></u> Ι	1,0		S_LRCK/ADC0	20141112		IZIIIA

15	PA_4	1/0	JTAG_SWO	JTAG_SWO/I ² C_SDA/PWM4/I ² S_BCK/ADC1	20MHz	UP/DOWN	12mA
16	PA_7	1/0	GPIO,输入,高阻	PWM4/LSPI_MOSI/I ² S_MCK/I ² S_DI /Touch0	20MHz	UP/DOWN	12mA
17	VDD33IO	Р	IO 电源 <i>,</i> 3.3V				
18	PB_0	1/0	GPIO,输入 <i>,</i> 高阻	PWM0/LSPI_MISO/UART3_TX/PSRAM_ CK/Touch3	80MHz	UP/DOWN	12mA
19	PB_1	1/0	GPIO,输入,高阻	PWM1/LSPI_CK/UART3_RX/PSRAM_CS /Touch4	80MHz	UP/DOWN	12mA
20	PB_2	1/0	GPIO,输入 <i>,</i> 高阻	PWM2/LSPI_CK/UART2_TX/PSRAM_D0 /Touch5	80MHz	UP/DOWN	12mA
21	PB_3	1/0	GPIO,输入,高阻	PWM3/LSPI_MISO/UART2_RX/PSRAM_ D1/Touch6	80MHz	UP/DOWN	12mA
22	PB_4	1/0	GPIO,输入,高阻	LSPI_CS/UART2_RTS/UART4_TX/PSRA M_D2/Touch7	80MHz	UP/DOWN	12mA
23	PB_5	I/O	GPIO,输入,高阻	LSPI_MOSI/UART2_CTS/UART4_RX/PS ARM_D3/Touch8	80MHz	UP/DOWN	12mA
24	VDD33IO	Р	IO 电源,3.3V				
25	САР	I	外接电容 <i>,</i> 4.7μF			-	
26	PB_6	1/0	GPIO,输入,高阻	UART1_TX/MMC_CLK/HSPI_CK/SDIO_ CK/Touch9	50MHz	UP/DOWN	12mA

27	PB_7	1/0	GPIO,输入,高阻	UART1_RX/MMC_CMD/HSPI_INT/SDIO	50MHz	UP/DOWN	12mA
27	PB_/	1/0	GPIO,蒯八,同阻	_CMD/Touch10	JUMI 12		
				 ²		UP/DOWN	12mA
28	PB_8	1/0	GPIO,输入,高阻	S_BCK/MMC_D0/PWM_BREAK/SDIO_D	50MHz		
				0/ Touch11			
				 ²		UP/DOWN	12mA
29	PB_9	1/0	GPIO,输入,高阻	S_LRCK/MMC_D1/HSPI_CS/SDIO_D1/	50MHz		
				Touch12			
30	PB_10	1/0	GPIO,输入,高阻	I ² S_DI/MMC_D2/HSPI_DI/SDIO_D2	50MHz	UP/DOWN	12mA
31	VDD33IO	Р	IO 电源, 3.3V				
32	PB_11	1/0	GPIO, 输入, 高阻	I ² S_DO/MMC_D3/HSPI_DO/SDIO_D3	50MHz	UP/DOWN	12mA
33	GND	Р	接地				

注: 1. I= 输入, O= 输出, P= 电源

3 芯片外围电路设计

3.1 RESET 复位电路设计

复位电路建议设计为 RC 电路,上电自动复位,W800 低电平复位。如果使用外部控制 RESET 管脚,当电平值低于 2.0v 时,芯片处于复位状态。复位时低电平需持续 100us 以上,见图 3-1。

图 3-1 复位电路

3.2 参考时钟电路设计

芯片参考时钟选用 40MHz 频率,客户根据实际产品需求选用不同温度等级、稳定度、负载电容值的晶体,。晶体两端所接负载电容根据不同厂家晶体及频偏情况需要调整。参考设计中见图 3-2。

图 3-2 晶体电路

时钟摆放尽量靠近芯片,尽量短,并且远离干扰源,时钟周围多地孔隔离。时钟下面各层禁止其它走线穿过,防止干扰时钟源。

3.3 ADC 电路设计

芯片 14 脚(PA1)及 15 脚(PA4)脚可以作为普通 ADC 使用,输入电压范围 10mV~2.3V。当高于 2.3V 时外部需做分压处理后才可进入 ADC 接口。为提高精度,R1 和 R2 需使用高精度电阻。根据 Sensor 输出电压值选择合适的 R1,R2 电阻值分压。如图 3-3 所示。

图 3-3 ADC 分压电路

3.4 射频电路设计

芯片采用单天线设计,内部集成了功放及收发切换开关,芯片射频端口阻抗 17-1.5jΩ。根据实际产品设计性能匹配要求,需预留图 3-8 参考设计匹配网络,根据实际天线阻抗值,优化外部设计匹配元件,匹配元件需要按照低通的形式设计,对二次谐波的抑制能力 10dB 以上。

3.5 GPIO 设计

芯片上电后 1,2 脚默认为 UARTO 端口,该端口提供下载及 AT 指令端口以及 log 输出端口。客户使用时候注意不要随意使用该端口作为 GPIO 使用,防止被占用无法下载及调试。在系统起来后,该端口可以复用为其它端口使用。如果该端口被占用,可以按照 3.6 章节操作。

表 3-2 芯片 UARTO 管脚说明

1	PB20	1/0	UARTO_RX
2	PB19	1/0	UARTO_TX

其余各个管脚复用关系及使用见表 2-1。所有 GPIO 如果配置上拉电阻,典型上拉电阻值为 40K,如果配置为下拉,典型下拉电阻值为 49K。

Wakeup 脚为外部唤醒脚,当芯片进入睡眠状态后,Wakeup 脚给高电平时,芯片唤醒。正常工作状态,该端口为低电平。

TEST 脚为芯片测试脚,该脚悬空。

3.6 Touch Sensor 设计

W800 内部集成 11 个 Touch Sensor。详细管脚定义见表 2-1。设计时需注意走线及外部电路对寄生电容的影响,寄生电容的大小直接影响到 Touch Sensor 的灵敏度。

图 3-6 是触摸电容分布示意图,其中 Cground 是触摸电路参考地和大地之间的电容,Ccomponet 是芯片内部寄生电容,Ctrace 走线与电路参考地之间的寄生电容,Celectrode 触摸电极与电路参考地之间的寄生电容,Ctouch 手指与触摸电极所形成的相对于大地的电容。

图 3-6 触摸电容分布示意图

寄生电容 Cp(即未发生触摸动作时的电容)=Ccomponet+ Ctrace+Celectrode。发生触摸动作时,系统总电容的变化量ΔC=Ctouch,常见 Ctouch 约为 5pF~15pF。当寄生电容 Cp 越小,Ctouch 越大时,触摸动作越容易被系统检测到,即触摸传感系统的灵敏度就越高。使用该部分功能时,需参考《W800_touch_sensor 软硬件设计指南 v1.0》文档相关内容。

3.7 下载口

W800 芯片默认 UARTO 为下载口,芯片无固件初始下载时,直接连接 UARTO 接口,通过相关下载软件即可实现固件下载。当芯片内有固件,再次进入下载模式,可以通过拉低 PAO,然后上电进入下载模式,。

下载完成后去掉 PAO 拉低的操作,需要重启,固件才能运行。

3.8 电源设计

为了提高 ESD 对芯片的损害,在模块的总电源入口处需增加 TVS 管,提高防静电能力。

芯片电源输入脚应放置相应滤波电容改善产品性能,外部对整个芯片供电建议选用 LDO,且总电流建议 500mA 及以上。总电源走线线宽要求不低于 30mil。供电范围 3.0V-3.6V。请勿超过该范围,超过 3.6V 可能会对芯片造成永久性损坏。低于 3.0V 可能整体性能会下降。不同管脚放置电容见下述要求。

芯片 7 脚需放置 1uf 滤波器电容。

芯片 9 脚需放置 1nf 滤波器电容。见表 3-3。

表 3-3 芯片电源管脚说明

7	VDD33	Р	芯片电源,3.3V
9	VDD33LNA	Р	LNA 电源,3.3V

芯片 10 脚附近放置 47uf 滤波电容。

芯片 11 脚附近放置 47uf 滤波电容。

推荐客户在模块电源入口处放置 330uf 电解电容。见表 3-4。

表 3-4 芯片电源管脚说明

10	VDD33PA	Р	PA 电源 <i>,</i> 3.3V	
11	VDD33AUX	Р	模拟电源,3.3V	

芯片 17,24,31 脚附近放置 1uf 滤波电容。见表 3-5。

表 3-5 芯片电源管脚说明

17	VDD33IO	Р	IO 电源 <i>,</i> 3.3V	
24	VDD33IO	Р	IO 电源 <i>,</i> 3.3V	
31	VDD33IO	Р	IO 电源 <i>,</i> 3.3V	

芯片 25 脚 CAP 必须外接 4.7uf 滤波电容。

3.9 防静电设计

为了提高芯片防静电能力,需在天线端放置防静电 ESD 保护器件,天线采用倒 F 天线,匹配电路见图 3-8 所示。在生产过程中做好静电防护,防静电器件推荐型号参见 BOM 表。为满足产测需要,在模块背面可以预留射频测试点 TP2。

4 Layout 设计

W800 芯片中间 PAD 是散热地焊盘,需要接地处理,同时需要打孔,跟地良好接触散热,中间肚皮过孔不要做开窗设计。如图 4-1。

图 4-1 接地焊盘处理

产品设计完成后需要 PCB 所有层均做敷铜接地处理,需要保证第二层射频走线部分完整的地平面,保证射频阻抗连续性,同时射频走线根据板厚需要做 50 欧姆阻抗控制。

PCB 的 BOTTOM 层不要开窗露铜。

电源建议采用星型走线方式,见图 4-2 高亮部分走线。特别注意 9 脚电源脚不要跟 10,11 脚直接接一起,各电源脚采用星型走线,除数字 IO 电源脚,其余每个电源脚单走一根电源线到主电源上,避免芯片内部各个供电互相串扰。所有芯片电源脚所接电容均应靠近芯片电源脚放置。

图 4-2 电源星型走线

5 天线设计

根据客户需要可使用外置天线,也可以使用 PCB 板载天线。不同天线对产品性能可能会有不同的影响,需要根据天线阻抗实际调整匹配元件。

5.1 外置天线

对连接外置天线的连接座尽可能远离底板电源等噪声源,防止干扰天线。

5.2 板载天线

当模块使用 PCB 板载天线设计时,需严格按照本指导书设计,防止天线性能下降,影响产品使用。 天线背面敷铜需全部挖空,天线参考地平面尽可能大,天线必须经过实际仿真,仿真后天线尺寸图导入 PCB。绿色区域是天线部分,绿色区域所有层均不能敷铜,全部净空。黄色区域是射频匹配及走线区域。

并且绿色天线区域需要盖油,避免天线铜皮裸露。具体见图 5-1。

图 5-1 天线 layout 建议

图 5-2 常用且对天线性能影响较小的天线摆放方式,尽可能保证天线周围没有实体遮挡物体。

图 5-2

