P.Krause, K. Schweizer

Übungsblatt 3

25.09.2019

Aufgabe 1

Sei $f: \mathbb{R}^3 \to \mathbb{R}^3$ das Vektorfeld $f(x, y, z) = (-xy, x^2, z^3)$ und $\gamma: [0, 1] \to \mathbb{R}^3$ der Weg $\gamma(t) = (\cosh(t), \sinh(t), 1)$. Berechne den Wert des Wegintegrals

$$\int_{\gamma} f ds$$
.

Aufgabe 2

Es sei $f: \mathbb{R}^2 \to \mathbb{R}$ die Funktion f(x,y) = x + y. Was ist der Wert des Wegintegrals $\int_{\gamma} f ds$ von f über den Rand des Dreiecks mit den Eckpunkten (0,0), (0,1) und (1,0)?

Aufgabe 3

Sei das Vektorfeld $F:\mathbb{R}^2\to\mathbb{R}^2$ und der Weg $\gamma:[0,1]\to\mathbb{R}^2$ gegeben durch

(a)
$$F(x,y) = \begin{pmatrix} e^{x+y}\cos(xy) - ye^{x+y}\sin(xy) \\ e^{x+y}\cos(xy) - xe^{x+y}\sin(xy) \end{pmatrix}, \qquad \gamma(t) = \begin{pmatrix} 1 + t^{13} \\ \frac{\pi}{2} + \frac{\pi}{2} \sqrt[1]{t} \end{pmatrix}$$

(b)
$$F(x,y) = \begin{pmatrix} 2xy + e^x \\ x^2 \end{pmatrix}, \qquad \gamma(t) = \begin{pmatrix} \log(t^{10} + 1) \\ e^{t^{10} - 1} \end{pmatrix}$$

Was ist der Wert des Wegintegrals $\int_{\gamma} F dt$ von F entlang γ ?

Aufgabe 4

Eine Schlaufe in einer offenen Teilmenge $U \subset \mathbb{R}^n$ ist ein Weg $\gamma : [0,1] \to U$ mit $\gamma(0) = \gamma(1)$. Zeige, dass ein stetiges Vektorfeld $F: U \to \mathbb{R}^n$ genau dann konservativ ist, wenn für jede stückweise stetig differenzierbare Schlaufe γ in U

$$\int_{\gamma} F dt = 0$$

gilt.

Aufgabe 5 Welche den felgenden Velttenfelden eine konsernativ? Dermünde deine Antwert

Welche der folgenden Vektorfelder sind konservativ? Begründe deine Antwort.

(a)
$$f_1: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \mapsto \begin{pmatrix} -y^2 \\ x^2 \end{pmatrix}$$

(b)
$$f_2: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2, (x,y) \mapsto \begin{pmatrix} \frac{x}{x^2 + y^2} \\ \frac{y}{x^2 + y^2} \end{pmatrix}$$

(c)
$$f_3: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2, (x,y) \mapsto \begin{pmatrix} \frac{-y}{x^2+y^2} \\ \frac{x^2+y^2}{x^2+y^2} \end{pmatrix}$$

(d)
$$f_4: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \mapsto \begin{pmatrix} -\sin(x)\sin(y) \\ \cos(x)\cos(y) \end{pmatrix}$$

Aufgabe 6

Sei $U=\{(x,y,z)\in\mathbb{R}^3\,\big|\,|x|<\frac{\pi}{2}\}\subseteq\mathbb{R}^3$ und $F:U\to\mathbb{R}^3$ das Vektorfeld gegeben durch

$$F(x, y, z) = \begin{pmatrix} y + y \tan^2(x) + \cos(z) \\ \tan(x) \\ -x \sin(z) \end{pmatrix}$$

Ist F konservativ? Falls ja, gib ein Potential von F an.

Aufgabe 7

Sind die folgenden Vektorfelder konservativ? Wenn ja, gib das Potential an.

(a)
$$f(x,y) = \begin{pmatrix} xy^2 \\ x^3y \end{pmatrix}$$

(b)
$$f(x, y, z) = \begin{pmatrix} 3x^2y \\ x^3 + 1 \\ 9z^2 \end{pmatrix}$$

(c)
$$f(x, y, z) = \begin{pmatrix} 2xy \\ z + x^2 \\ y \end{pmatrix}$$

(d)
$$f(x,y) = \begin{pmatrix} -y \\ x \end{pmatrix}$$

(e)
$$f(x, y, z) = \begin{pmatrix} z \\ z \\ y - 1 \end{pmatrix}$$

(f)
$$f(x, y, z) = \begin{pmatrix} z\cos(xz) + y \\ x \\ x\cos(xz) \end{pmatrix}$$

(g)
$$f(x, y, z) = \begin{pmatrix} y \\ xz \\ xy \end{pmatrix}$$

(h)
$$f(x,y) = \begin{pmatrix} 2xy^3 + 1\\ 3x^2y^2 - 2y \end{pmatrix}$$

(i)
$$f(x,y) = \begin{pmatrix} x\sin(y) \\ -y\sin(x) \end{pmatrix}$$

(j)
$$f(x,y) = \begin{pmatrix} x\sin(y) + 1\\ \frac{x^2\cos(y)}{2} \end{pmatrix}$$

Aufgabe 8

Berechne die Divergenz der folgenden Vektorfelder.

(a)
$$f(x,y) = \begin{pmatrix} x \\ y \end{pmatrix}$$

(b)
$$f(x,y) = \begin{pmatrix} y^3 \\ xy \end{pmatrix}$$

(c)
$$f(x,y) = \begin{pmatrix} 3x^2 \\ -6xy \end{pmatrix}$$

(d)
$$f(x, y, z) = \begin{pmatrix} x^2 \\ 2z \\ -y \end{pmatrix}$$

(e)
$$f(x, y, z) = \begin{pmatrix} \frac{4y}{x^2} \\ \sin(y) \\ 3 \end{pmatrix}$$

(f)
$$f(x, y, z) = \begin{pmatrix} e^x \\ \ln(xy) \\ e^{xyz} \end{pmatrix}$$

Aufgabe 9

Berechne die Rotation der folgenden Vektorfelder.

(a)
$$f(x, y, z) = \begin{pmatrix} x \\ -y \\ z \end{pmatrix}$$

(b)
$$f(x, y, z) = \begin{pmatrix} y^3 \\ xy \\ -z \end{pmatrix}$$

(c)
$$f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

(d)
$$f(x, y, z) = \begin{pmatrix} x^2 \\ 2z \\ -y \end{pmatrix}$$

Aufgabe 10

Es sei ${\cal M}$ die 1-dimensionale Teilmannigfaltigkeit

$$M = \{(x, y) \in \mathbb{R}^2 | x^4 + xy + 2y^2 = 4 \}$$

von \mathbb{R}^2 . Der Tangentialraum von M im Punkt $p=(1,1)\in M$ ist gegeben durch $T_pM=\{p\}\times\mathbb{R}v$ für den Vektor

$$\bigcirc v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\bigcirc v = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\bigcirc v = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$\bigcirc v = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

Aufgabe 11

Gegeben sei die Teilmannigfaltigkeit

$$M\{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1, x + y = 0\}$$

Bestimme eine Basis für den Tangentialraum T_pM bei $p=\frac{1}{\sqrt{3}}(1,-1,1)$. Bestimme zudem eine Basis des Raums der Normalvektoren $(T_pM)^{\perp}$ an M bei p.

Aufgabe 12

Sei $n \in \mathbb{N}$. Zeige, dass die n-dimensionalen Teilmannigfaltigkeiten von \mathbb{R}^n genau die offenen Teilmengen von \mathbb{R}^n , und die nulldimensionalen Teilmannigfaltigkeiten von \mathbb{R}^n genau die diskreten Teilmengen von \mathbb{R}^n sind.

Bemerkung: Eine Teilmenge $M \subseteq \mathbb{R}^n$ heißt diskret, falls zu jedem Punkt $p \in M$ ein $\epsilon > 0$ existiert mit $M \cap B_{\epsilon}(p) = \{p\}.$