

ECN option mathématiques Parcours S2D

Statistique Bayésienne.

Anne Philippe Université de Nantes, LMJL

Fiche 3. Inférence bayésienne

Exercice 1.

Soient X_1, \ldots, X_n des variables aléatoires iid suivant la loi de densité f_{θ} , où $\theta \in \Theta$. Le paramètre θ est inconnu, on l'estime par une approche bayésienne.

On considère la fonction de coût

$$L(\theta, \delta) = e^{\delta - \theta} - (\delta - \theta) - 1.$$

- 1) Montrer que la fonction L définie bien une fonction de coût.
- 2) Montrer que

$$\delta^{\pi}(X_1, \dots, X_n) = -\log\left(\mathbb{E}(e^{-\theta}|X_1, \dots, X_n)\right)$$

est un estimateur de Bayes pour la fonction de coût L.

EXERCICE 2. MODÈLE GAUSSIEN

On dispose de n observations $X_1, ..., X_n$ iid suivant une loi gaussienne $\mathcal{N}(\theta, 1)$. On choisit comme loi a priori sur θ la loi gaussienne $\mathcal{N}(0, \tau^{-2}), \tau > 0$

1) Montrer que la loi a posteriori est une loi Gaussienne

$$\mathcal{N}(\frac{\bar{X}_n}{1+\tau^2/n}, \frac{1}{n+\tau^2})$$

2) Montrer que les régions HPD de niveau $1 - \alpha (= .95)$ sont de la forme

$$\theta \in \left[\frac{\bar{X}_n}{1 + \tau^2/n} - \frac{u_{1-\alpha/2}}{\sqrt{n + \tau^2}}; \frac{\bar{X}_n}{1 + \tau^2/n} + \frac{u_{1-\alpha/2}}{\sqrt{n + \tau^2}} \right] = I^{HPD}(\tau, \bar{X}_n)$$

où u_{α} est le quartile d'ordre α de la loi gaussienne standard.

3) Montrer que

$$P_{\theta}(\theta \in I^{HPD}(\tau, \bar{X}_n)) = F\left(\frac{\theta \tau^2}{\sqrt{n}} + u_{1-\alpha/2}\sqrt{\frac{n+\tau^2}{n}}\right) - F\left(\frac{\theta \tau^2}{\sqrt{n}} - u_{1-\alpha/2}\sqrt{\frac{n+\tau^2}{n}}\right)$$

où F est la fonction de répartition de la loi gaussienne standard.

- 4) Quelle est la limite de cette probabilité quand $n \to \infty$. Commenter.
- 5) Quelle est la limite de cette probabilité quand $\tau \to 0$. Commenter.
- 6) Comment choisir la loi a priori pour que les régions HPD de niveau 1α soient aussi des régions de confiance au sens classique de niveau 1α .
- 7) Vérifier que la loi de Jeffrey satisfait cette propriété.

2

EXERCICE 3. MODÈLE NON RÉGULIER

Soit $\mathbf{X} = (X_1, \dots, X_n)$ des variables aléatoires indépendantes et identiquement distribuées suivant la loi uniforme sur $[0; \theta]$ avec $\theta > 0$ inconnu.

On pose

$$M_n = \max(X_1, \dots, X_n).$$

1) Ecrire la densité de (X_1, \ldots, X_n)

Soit (a,b) deux réels tels que a>1 et b>0. On considère la densité de probabibilité $\pi_{a,b}$ définie par

$$\pi_{a,b}(\theta) = ab^a \frac{1}{\theta^{a+1}} \mathbb{I}_{[b\;;\; +\infty[}(\theta).$$

2) Calculer la loi a posteriori de θ .

3) Montrer que l'estimateur de Bayes associé à la loi $\ a\ priori\ \pi_{a,b}$ vaut

$$\delta_n^{a,b}(\mathbf{X}) = \frac{a+n}{a+n-1} \max(b, M_n).$$

4) On suppose que $P_{\theta}(X_1 > b) > 0$.

a) Montrer que les variables aléatoires M_n et $\max(b, M_n)$ sont presque sûrement égales à partir d'un certain rang.

b) En déduire que l'estimateur de Bayes converge presque surement vers la vraie valeur du paramètre.

5) Que se passe-t-il lorsque $P_{\theta}(X_1 > b) = 0$?

Exercice 4. Calcul des lois de Jeffrey

Calculer la loi non informative de Jeffrey pour les modèles suivants :

1) Poisson : $\{\mathcal{P}(\theta), \theta \in \mathbb{R}^+\}$

2) binomiale $\{\mathcal{B}(n,\theta), \theta \in]0,1[\}$

3) Gaussien : $\{\mathcal{N}(\mu, \sigma^2), (\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}_+\}$ dans les deux situations suivantes

a. $\theta = \mu$ et σ^2 est connu.

b. $\theta = \sigma$ et μ est connu.

c. les deux paramètres sont inconnus : $\theta = (\mu, \sigma)$.