(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-29834

(43)公開日 平成6年(1994)2月4日

(51)Int.Cl. ⁵ H 0 3 K	19/0948	識別記号	庁内整理番号	FI		技術表示箇所
	3/356	Z	8124-5 J			
	19/00	Α	8941-5 J			
			89415 I	HOSK	19/ 094	R

審査請求 未請求 請求項の数5(全13頁)

(21)出顧番号	特顯平4-337898	(71)出顧人	000004226
			日本電信電話株式会社
(22)出願日	平成 4年(1992)11月26日		東京都千代田区内幸町一丁目1番6号
		(72)発明者	道関 隆国
(31)優先権主張番号	特顧平3-311007		東京都千代田区内幸町1丁目1番6号 日
(32)優先日	平3(1991)11月26日		本電信電話株式会社内
(33)優先権主張国	日本 (JP)	(72)発明者	山田 順三
(31)優先権主張番号	特顧平3-323382		東京都千代田区内幸町1丁目1番6号 日
(32)優先日	平3(1991)12月6日		本電信電話株式会社内
(33)優先権主張国	日本(JP)	(72)発明者	松谷 康之
(31)優先権主張番号	特顯平3-324512		東京都千代田区内幸町1丁目1番6号 日
(32)優先日	平 3 (1991)12月 9日	ļ	本電信電話株式会社内
(33)優先権主張国	日本 (JP)	(74)代理人	弁理士 山川 政樹
			最終頁に続く

(54)【発明の名称】 論理回路

(57)【要約】

【目的】 電源電圧が低下しても高速動作が可能で、非動作時の消費電力を低減できるようにする。

【構成】 低スレッシュホルド論理回路20に対して第1の電源線PL1から高スレッシュホルドトランジスタTS1を介して電源を供給すると共に、第2の電源線PL2から高スレッショルドトランジスタTS2を介して電源を供給する。このため、トランジスタTS1、TS2がオフの時は低スレッショルド論理回路に電流が流れない。また低スレッショルド論理回路の閾値を低くする必要な無いので、伝播遅延が小さくでき、低電圧動作に適する。

【特許請求の範囲】

【請求項1】 複数の低スレッシュホルドの電界効果ト ランジスタからなる論理回路要素を備えた低スレッシュ ホルド論理回路と、

前記低スレッシュホルド論理回路への電力供給源となる 第1および第2の電源線対と、

前記低スレッシュホルド論理回路に電源を供給する電源 供給回路とから構成され、

前記電源供給回路は、

前記低スレッシュホルド論理回路の電源端子の一つに接 10 続される第1の疑似電源線およびこの第1の疑似電源線 と第1の電源線との間に配置される高スレッシュホルド の第1の制御トランジスタとによって構成される第1電 源供給回路と、

前記低スレッシュホルド論理回路の残りの電源回路に接 続される第2の疑似電源線およびこの第2の疑似電源線 と第2の電源線との間に接続される高スレッシュホルド の第2の制御トランジスタとによって構成される第2電 源供給回路との双方あるいは一方から構成されることを 特徴とする論理回路。

【請求項2】 請求項1において、

第1の疑似電源線と第1の電源線の間、第2の疑似電源 線と第2の電源線の間の双方あるいは一方にコンデンサ を接続したことを特徴とする論理回路。

【請求項3】 請求項1または請求項2において、 低スレッシュホルド論理回路は、複数段によって構成さ n.

第1の段は、

複数の低スレッシュホルドの電界効果トランジスタから 理回路, この第1の低スレッシュホルド論理回路に電力 を供給するための第1および第2の電源線対,前記第1 の低スレッシュホルド論理回路の電源端子の一つに接続 される第1の疑似電源線、この第1の疑似電源線と第1 の電源線との間に配置される高スレッシュホルドの第1 の制御トランジスタによって構成され、

第2の電源線は第1の低スレッシュホルド回路の残りの 電源端子に接続され、

この第1の段に続く第2の段は、

複数の低スレッシュホルドの電界効果トランジスタから 40 なる論理回路要素を備えた第2の低スレッシュホルド論 理回路,前記第2の低スレッシュホルド論理回路の電源 端子の一つに接続される第2の疑似電源線, この第2の 疑似電源線と第2の電源線との間に配置される高スレッ シュホルドの第1の制御トランジスタとによって構成さ n.

第2の低スレッシュホルド回路の残りの電源端子は、第 1の電源線に接続されていることを特徴とする論理回 路。

【請求項4】 複数の低スレッシュホルドの電界効果ト 50 信号CSB、スイッチングトランジスタM4,M5・・

ランジスタからなる論理回路要素を備えた低スレッシュ ホルド論理回路と、

この低スレッシュホルド論理回路に電力を供給するため の第1、第2の電源線対と、

前記低スレッシュホルド論理回路の電源端子のひとつに 接続される第1の疑似電源線と、

この第1の疑似電源線と第1の電源線との間に配置され る高スレッシュホルドの第1の制御トランジスタと前記 低スレッシュホルド論理回路の残りの電源端子に接続さ れる第2の疑似電源線と、

この第2の疑似電源線と第2の電源線との間に配置され る高スレッシュホルドの第2の制御トランジスタと、 前記低スレッシュホルド論理回路の出力によって動作が 制御される他の論理回路を有し、

この他の論理回路の電源端子は、前記第1、第2の電源 に接続されていることを特徴とする論理回路。

【請求項5】 集積回路基板上に形成された複数の論理 回路ブロックと、制御回路ブロックとを備え、

前記各論理回路ブロックは、

20 複数の低スレッシュホルドの電界効果トランジスタから なる論理回路要素を備えた低スレッシュホルド論理回 路、この低スレッシュホルド論理回路に電力を供給する ための第1および第2の電源線対,前記低スレッシュホ ルド論理回路の電源端子のひとつに接続される第1の疑 似電源線、前記低スレッシュホルド論理回路の残りの電 源端子に接続される第2の疑似電源線を含み、

前記制御回路ブロックは、

この第1の疑似電源線と第1の電源線との間に配置され る高スレッシュホルドの第1の電界効果型制御トランジ なる論理回路要素を備えた第1の低スレッシュホルド論 30 スタ,この第2の疑似電源線と第2の電源線との間に配 置される高スレッシュホルドの第2の電界効果型制御ト ランジスタを含み、前記論理回路ブロック群の端に配置 されることを特徴とする論理回路。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、特に電源電圧が1V以 下のような低電圧で動作可能なラッチ回路に用いられる 論理回路に関するものである。

[0002]

【従来の技術】従来のこの種論理回路は、CMOS型論 理ブロック回路で構成されているのが一般的であり、図 12はその一例を示している。この例では、インバータ INV1、ナンドゲートNAND1・・・インバータI NV2などの各論理素子が、それぞれスイッチングトラ ンジスタM1, M2···M3とスイッチングトランジ スタM4, M5···M6とを介して電源ラインVDDと VSSに接続されている。

【0003】そしてこのような構成のもとに、スイッチ ングトランジスタM1, M2···M3に高レベル制御 ・M6に低レベル制御信号CSをそれぞれ供給して各論理素子の動作を制御する。

[0004]

【発明が解決しようとする課題】しかしながら、このような構成に用いられるスイッチングトランジスタは、単一のしきい値電圧をもつトランジスタのように構成されているため、以下のような問題を生じた。

【0005】例えば、乾電池動作を想定して、この論理 回路の電源電圧を従来の5Vから1Vに低下させた場 合、動作時(CS=Hレベル、CSB=Lレベル)に は、各トランジスタのしきい値電圧と電源電圧が接近す るため、各トランジスタの相互コンダクタンスが極端に 小さくなり、各論理回路素子の遅延時間が大きくなる問 題があった。

【0006】また論理回路を構成する各トランジスタのしきい値電圧を低下させると、非動作時(CS=Lレベル、CSB=Hレベル)にリーク電流が大きくなり、電池の寿命が極端に小さくなる。さらに、制御トランジスタが非導通状態になるため、記憶情報が破壊されるという問題も生じる。

【0007】本発明はこのような状況に鑑みてなされた もので、電源電圧が低下しても高速動作が可能で、非動 作時の消費電力を低減できるようにしたものである。

[0008]

【課題を解決するための手段】このような課題を解決するために第1の発明は、図1に対応するもので、低スレッシュホルド論理回路(20)の電源端子(PL)の一つに接続される第1の疑似電源線(PL)および第1の疑似電源線と第1の電源線との間に配置される高スレッシュホルドの第1の制御トランジスタ(TS1)とによるのではできれる第1電源供給回路と、低スレッシュホルド論理回路の残りの電源回路(PL2)に接続される第2の疑似電源線(QL2)および第2の疑似電源線と第2の電源線との間に接続される高スレッシュホルドの第2の制御トランジスタ(TS2)とによって構成される第2電源供給回路との双方あるいは一方をそなえたものである。

【0009】第2の発明は図4に対応するもので第1の発明において、第1の疑似電源線と第1の電源線の間、第2の疑似電源線と第2の電源線の間の双方あるいは一 40方にコンデンサを接続したものである。

【0010】第3の発明は図7に対応するもので、第1 の発明または第2の発明において、低スレッシュホルド 論理回路は複数段によって構成し、各段は第1の電源線 と第1の疑似電源線との間、または第2の電源線と第2 の電源線との間に交互に高スレッシュホルドの電界効果 トランジスタを備えたものである。

【0011】第4の発明は図1、図6、図7に対応する もので、第1の発明または第2の発明の回路の後段に他 の論理回路(30)を備えたものである。 4

【0012】第5の発明は図10に対応するもので、集積回路基板上に形成された複数の論理回路ブロックと、制御回路ブロックとを備え、前記各論理回路ブロックは第1および第2の疑似電源線から電源が供給され、制御回路ブロックは第1および第2の電源線から高スレッシュホルドの電界効果トランジスタを介して電源が供給されるようにしたものである。

[0013]

【作用】低スレッシュホルドトランジスタは高スレッシュホルドトランジスタを介して電源が供給されるようになっているので、高スレッシュホルドトランジスタがオフの時は電流が流れない。

[0014]

【実施例】図1は本発明に係る論理回路の一実施例を示しており、クロック信号CKからそのクロック信号CKと、反転クロック信号CKBとを作る低スレッショルド論理回路20と、これらのクロックによって駆動される高スレッショルド論理回路の構成を示している。

【0015】同図において、制御回路10は後述する制20 御トランジスタをオン・オフさせるための制御信号CS、CSBを送出するものであり、制御信号CSBは制御信号CSを反転させた信号である。

【0016】また電界効果型MOS制御トランジスタは、記号Ts1およびTs2で表し、pチャンネル型のトランジスタTS1は、電源電圧VDDが供給される電源線PL1と、疑似電源線QL1との接続をオン/オフし、nチャンネル型トランジスタTS2は接地された電源線PL2と、疑似電源線QL2との接続をオン/オフする機能を有する。

0 【0017】低スレッシュホルドのCMOS素子で構成された低スレッシュホルド回路20は、本例ではクロック信号CKから反転クロック信号CKBを作るために2個のインバータINV1、INV2として構成されている。たとえば、インバータINV1は出力電極が縦属接続され、入力電極が共通接続された低スレッシュホルドの2個のMOSトランジスタT21およびトランジスタT2によって構成され、トランジスタT21はpチャンネル型、トランジスタT22はnチャンネル型を用いている。【0018】また、トランジスタT21の出力電極の一つは疑似電源線QL1に接続され、トランジスタT22の出

は疑似電源線QL1に接続され、トランジスタT22の出力電極の一つは疑似電源線QL2に接続されている。更に、インバータINV2も入力としてインバータINV1の出力を受けている点を除いてはインバータINV1と同じ構成であり、そのため簡略化した記号で示してある。

【0019】本発明では低スレッシュホルド回路を20 を構成するすべての論理素子に対して共通の疑似電源線 QL1、QL2が接続されている。そして疑似電源線Q L1はトランジスタTs1の出力電極を介して電源線PL 50 1 (たとえばVDDの電位) に接続され、疑似電源線QL 2はトランジスタTS2の出力電極を介して電源線(たと えば接地電位)に接続されている。

【0020】この低スレッシュホルド回路の構成はあく までも一例であり、用途あるいはその他の要因を考慮し てアンドゲート、オアゲート、ナンドゲート等の論理要 素を用いて種々の構成に組み立てられる。したがって、 このスレッシュホルド回路20はこの実施例の回路に限 定されない。なお、トランジスタTS1およびTS2の入力 電極にはそれぞれ、制御信号CSBおよびCSが供給さ れる。

【0021】また、高スレッシュホルドのCMOS素子 で構成された高スレッシュホルド論理回路30は、2個 のトランスファゲートして1およびして2と、3個のイ ンバータINV3, INV4, INV5とを有するラッ チ回路によって構成され、このラッチ回路は、2個の高 スレッシュホルド形を有するのMOS電界効果トランジ スタTS5および、TS6を介して電力の供給が制御され る。

【0022】この場合、トランジスタTS5はpチャンネ ル型であり、トランジスタTS6は、nチャンネル型であ 20 る。また、トランスファゲートLC1は2個の低スレッ シュホルド電圧の電界効果型MOSトランジスタT31と T32とによって構成され、これらのトランジスタの出力 電極は、共通接続され、一つは、データが入力される端 子Dに接続され、もう一つはインバータINV3の入力 側に接続されている。

【0023】そしてトランジスタT31の入力電極には、 クロックCKが供給され、トランジスタT32の入力電極 には、反転クロック (CKバー) CKBが供給されてい る。トランスファゲートLC2もトランスファゲートL 30 低下しても高速動作が可能となる。 C1と同様な構成であり、出力電極の一つはトランスフ ァゲートLC1の出力側に接続され、出力電極のもう一 つは、インバータINV3の入力側に接続されている。 【0024】 インバータ INV3, INV4, INV5 は、インバータINV1と同じ構成であり、インバータ INV3を構成する各トランジスタは、低スレッシュホ ルドのMOSトランジスタによって構成されているが、 インバータINV4およびインバータINV5のトラン ジスタは、高スレッシュホルドのトランジスタによって 構成されている。なお、トランスファゲートLC2を構 40 成する各トランジスタは、低スレッシュホルドでも高ス レッシュホルドのどちらのタイプのトランジスタでもよ 11

【0025】つぎに、インバータINV3の出力電極の 一つは、高スレッショルドのトランジスタTS5を介して 電源線PL1に接続され、インバータINV3の出力の もう一つは、高スレッシュホルドのトランジスタTS6を 介して電源線PL2に接続されている。 そしてトランジ スタTS5の入力電極には、制御信号CSBが供給されて おり、トランジスタTS6の入力電極には、制御信号CS 50 ファゲートLC1の出力を、制御回路10から送出され

が供給されている。

【0026】またインバータINV4はインバータIN V3に対して並列に接続され、インバータINV3との 相違は、トランジスタTS5およびトランジスタTS6のよ うなトランジスタを介することなく、直列接続されたト ランジスタの出力電極は、直接に電源線PL1およびP L2へ接続されている。そして、各インバータINV3 および INV4の出力側は共通に接続され、このラッチ 回路の出力として後段に送出されるように構成されてい 10 る。

6

【0027】また、このラッチ回路ではこれらのインバ ータINV3およびINV4の出力側と、トランスファ ゲートLC 2の出力電極の一つとの間に、もう一つのイ ンバータ I NV 5が接続されている。このインバータ I NV5は、2個の高スレッシュホルドのトランジスタに よって構成され、前述したインバータ I NV 4 と同様に 電源線PL1, PL2に直接接続されている。

【0028】このような構成において、制御回路10か ら制御信号CSおよびCSBが送出されたときの状態を 具体的に説明すると、低レベルの選択制御信号CSBお よび選択制御信号CSが所定電極に供給されると、高ス レッシュホルドの制御トランジスタTS1およびトランジ スタTS2が導通状態となり、疑似電源線QL1およびQ L2に電位が現われる。

【0029】これにより低スレッシュホルド回路20を 構成する各論理素子は電源電圧が印加された状態とな り、クロックCKおよびクロックCKBに従った論理動 作を行う。このとき、低スレッシュホルド回路20の各 **論理素子はスレッシュホルドが小さいため、電源電圧が**

【0030】つぎに、制御信号CSおよび、CSBが選 択されない場合、すなわちこれらの信号がトランジスタ TS1およびトランジスタTS2に供給されず、これらのト ランジスタが非導通状態にある場合には、疑似電源線Q L1、QL2に電源電圧が現われず、低スレッシュホル ド回路20には電源電圧が印加されないことになる。

【0031】換言すれば、この低スレッシュホルド回路 20は非動作状態におかれることになる。このとき、制 御トランジスタTS1およびTS2は高スレッシュホルドで あるため、この下流に接続された低スレッショルド回路 20が低スレッシュホルドの論理素子であっても、非動 作時の消費電力の増大は起きない。これにより、この論 理回路の動作遅延時間を抑えることができる。

【0032】つぎに、この低スレッシュホルド回路20 によって駆動されるラッチ回路の動作を説明する。まず 入力端子Dに供給されたデータは、トランスファゲート LC1に供給されるクロック信号CKおよびCKBのタ イミングで取り込まれ、インバータINV3, INV4 に送られる。インバータINV3は供給されるトランス

40

る制御信号CSBおよびCSによって電源電圧の供給を 受けたときに取り込む。

【0033】このインバータINV3およびINV4の 出力は、ラッチ回路の出力として後段に送出されるとと もにインバータINV5にも送られ、さらにこのインバ ータINV5の出力はトランスファゲートLC2に送ら れる。トランスファゲートLC2はクロック信号CKお よびCKBのタイミングで、この出力をインバータIN V3の入力側に送り、取り込んだ信号をラッチする動作

【0034】ここで、高レベルの制御信号CSと、低レ ベルの制御信号CSBが送出された場合、トランジスタ TS6およびTS5が導通状態となり、インバータINV 3、INV4、INV5を構成するトランジスタおよび 前述したトランスファゲートLC1およびLC2のトラ ンジスタの動作によって、この部分は高速のDフリップ フロップのマスター部として動作する。

【0035】つぎに、制御信号CSおよびCSBが非選 択の時には、ランジスタTS6およびTS5は非導通状態に おかれ、低スレッシュホルドトランジスタによって構成 20 されたCMOSインバータINV3は、非導通の状態と なっている。しかし、このインバータ I NV3と並列接 続された高スレッシュホルドのトランジスタによって構 成されたインバータ INV4および INV5と、トラン スファゲートLC2がデータを保持しているため、ラッ チ回路のデータは破壊されない。

【0036】また、このラッチ回路は、高スレッシュホ ルドのトランジスタTS6およびトランジスタTS5を介し て電源線PL1,PL2に接続されているため、非動作 時の消費電力の増大はないことになる。

【0037】図2は本発明と従来の論理回路の効果を示 す特性図である。同図において、横軸は電源電圧VDDを 示し、縦軸は遅延時間tpdを示す。特性aは図1に示さ れるような論理回路を用いたときの遅延時間と電源電圧 の関係を示し、特性bは本発明による論理回路を用いた ときの遅延時間と電源電圧の関係を示している。電源電 圧が1 Vの時には本発明の論理回路を用いると、非動作 時の消費電力を増加させることなく、従来の論理回路に 比較して遅延時間を50パーセント削減することができ ることがわかる。

【0038】以上述べたように本発明の論理回路を用い れば、スレッショルド電圧の小さいトランジスタを用い るため電源電圧が低下しても高速化でき、さらに非動作 時には、スレッシュホルド電圧の大きいトランジスタで 論理回路を非導通状態にできるため消費電力を削減でき る等の効果を奏する。

【0039】図3はさらに本発明の論理回路、特に後段 のラッチ回路の周波数特性を示しており、縦軸はラッチ 回路を正常に動作させるためのクロック信号(CK)の 最高周波数である最高トグル周波数を示し、横軸は電源 50 た論理回路群のうち、後段の論理回路を疑似電源線の一

電圧VDDを示している。この図において、特性Pは本発 明の回路を用いた場合、特性Qは従来の回路を用いた場 合を示している。

8

【0040】図3において電源電圧が1Vの場合、本発 明の回路では最高トグル周波数は500MHZとなるの に対して、従来の回路を用いた場合は100MH2であ り、本発明回路を用いれば、非動作時の消費電力を増加 させることなく、Dフリップフロップ回路の最高トグル 周波数を5倍に上昇できることがわかる。

10 【0041】図4は本発明の他の実施例を示し、大部分 は図1と同じ構成であるためこの実施例の説明に必要な 部分のみを示してある。すなわち、この実施例では、疑 **似電源線QL1と電源線PL1、疑似電源線QL2と電** 源線PL2との間にコンデンサC1およびC2を接続 し、これにより疑似電源線と低スレッシュホルド論理回 路20の電源ラインとの接続部N2およびN1の電源変 動を抑えるようにしたものである。

【0042】この容量を大きくすることによって、この 回路による動作の遅延時間が短縮され、図1の実施例よ り高速にすることができる。この場合、コンデンサC1 およびC2は実際の装置では例えば、トランジスタTS1 およびトランジスタTS2のドレインと基板との間に接続 される。このようにすれば、疑似電源線の太さを太くす ることにより、容量増加を達成できるので特別の容量増 加プロセスを必要としない。

【0043】図5は本発明の他の実施例を示し、特にラ ッチ回路の部分の変形例を示している。同図において各 部の機能は図1と同じであり、レイアウトが変形された ものであるため、図1と同じ符号が用いられている。す 30 なわち、図5ではインバータINV3と制御トランジス タTS5およびTS6の直列体が、トランスファゲートLC 1の前段に配置されている。

【0044】このように構成すれば信号の取り込みの動 作が分けられるが、図1と同様の動作をさせることがで きる。また、図1においてもトランスファゲートLC1 の前段に図5のトランジスタTS5、インバータINV 3、トランジスタTS6の直列体を設けることもあるが、 そのような構成に対しては図5の構成の方がインバータ が1個少ない分、遅延時間を小さくすることができる。

【0045】図6は本発明の他の実施例を示し、特に図 1のラッチ回路の変形例を示す。この例では、制御トラ ンジスタTS5およびトランジスタTS6の直列体が削除さ れている。このように構成しても、高スレッシュホール ド論理回路30はラッチ回路として図1、図4と同様の 動作をさせることができる。

【0046】図7~図8は本発明の他の実施例を示して おり、特にメモリ装置に適用した場合を示している。こ の例ではスレッシュホルド電圧の小さいMOSFETか ら構成されたCMOS選択論理回路をカスケード接続し 方(本例ではQL1)に接続し、その前段では論理回路 と後段とは異なる疑似電源線(本例ではQL2)に接続 し、これによって出力電位のフローティングを抑制する ようにしたものである。

【0047】図7にはナンドゲートNAND1~NAN DnおよびインバータINV21~INV2nによって 構成される選択論理回路が示され、2つの入力を受ける ナンドゲートNAND1~NANDnは電源端子の一端 を電源線PL1に接続し、ナンドゲートNAND1~N AND nの電源端子の他端は、疑似電源線QL2に接続 10 され、この疑似電源線QL2は制御トランジスタTS2A を介して電源線PL2に接続されている。

【0048】ここで使用されるナンドゲートは、低スレ ッシュホルドのCMOSトランジスタによって構成さ れ、図に示されるとおり、並列接続されたpチャンネル 型MOSトランジスタT61およびトランジスタT62とこ れらのトランジスタのソース側に直列接続されたnチャ ンネル型MOSトランジスタT63およびトランジスタT 64とによって構成されており、トランジスタT62とトラ ンジスタT63のゲート電極は入力端子の一つ I1 に共通 20 に接続されており、トランジスタT61とトランジスタT 64のゲート電極は他の入力端子 I 2に接続されている。

【0049】また、インバータINV21ないしINV 2nは、図1に示されるインバータと同じ構成であって 2個の直列接続された低スレッシュホルドのトランジス タT65およびトランジスタT66によって構成されてお り、トランジスタT65の出力電極の一つは疑似電源線Q L1に接続され、この疑似電源線QL1は共通の制御ト ランジスタTSIA を介して電源線PL1(本例では、V DD) に接続されている。また、トランジスタT66の出力 30 電極の一つは、疑似電源線を介することなく、直接電源 線PL2(本例では接地)に接続されている。

(0050) 7Dnにはそれぞれ2個の入力が供給され、各ナンドゲー トの出力は後段の対応するインバータINV21~IN V2nの入力側に接続されている。また、これらのイン バータINV21~INV2nの出力は、後段の高スレ ッシュホールドメモリセルアレイ70の対応する各セル に、ワード線WL1~WLnとして接続されている。

【0051】メモリセルアレイ70はn×mのマトリッ クス状に配置されたセルによって構成され、各セルは図 8に示されるように、電源線PL1とPL2との間に、 直列に配置されたnチャンネルとpチャンネルの高スレ ッシュホルドのCMOSトランジスタT71およびトラン ジスタT72の直列体と、トランジスタT73およびトラン ジスタT74の直列体がある。

【0052】また、トランジスタT71とトランジスタT 72の接続点と、トランジスタT73とトランジスタT74の 接続点と、ビット線対BL、BLバーとの間に配置され る n チャンネルの高スレッシュホルドのトランジスタT 50 のときトランジスタT66はオン状態にあるため、このイ

10 75およびトランジスタT76とを有し、トランジスタT71

およびトランジスタT72の接続点と、トランジスタT73 およびトランジスタT74のゲート電極と、T75の出力電 極の一つとが共通に接続され、T73とT74の接続点と、 トランジスタT71およびトランジスタT72のゲート電極 と、トランジスタT76の出力電極の一つとが共通に接続 されている。

【0053】また、トランジスタT76のもう一つの出力 電極は、ビット線BLおよびマルチプレクサMUXに接 続され、トランジスタT75のもう一つの出力電極もビッ ト線BLB (BLバー) およびマルチプレクサMUXに 接続されている。ワード線WLはトランジスタT76,T7 5のゲート電極に接続されている。

【0054】そして、ワード線WLに高レベルの信号が 与えられると、トランジスタT71とトランジスタT72の 接続点の電位、トランジスタT73とトランジスタT74の 接続点の電位が信号として取り出され、マルチプレクサ MUXによりこの入力が1(エル)個に絞られ、この絞 られた1 (エル) 個のマルチプレクサ出力D0~D1が後 段の読み出し回路80に送られる。

【0055】この読み出し回路80も前述した選択論理 回路60と同様に2段構成になっており、メモリセルア レイ70のマルチプレクサ出力D0~D1が供給されるイ ンバータ I N V 3 1 ~ I N V 3 1 (エル) の電源端子の 一つは、疑似電源線QL1に接続された後、制御トラン ジスタTS1B を介して電源線PL1 (本例ではVDD) に 接続され、インバータINV31~INV31(エル) のもう一つの電源端子PL2 (本例では接地) に接続さ れている。

【0056】また、インバータINV31~INV31 (エル)の出力を受けるインバータ I NV41~ I NV 41 (エル)の電源端子の一つは、疑似電源線QL2に 接続された後、制御トランジスタTS2B を介して電源線 PL2 (本例では接地) に接続され、インバータ I NV 41~INV41 (エル) のもう一つの電源端子PL1 (本例ではVDD)に接続されている。

【0057】このような構成を有する選択論理回路60 の動作非選択時の動作を説明する。この場合、選択論理 回路60の前段のナンドゲートNAND1~NANDn を制御する制御トランジスタTS2A に印加される制御信 号が低電位であるため、トランジスタTS2Aは、オフ状 態にある。そして、ナンドゲートの入力端子 I 1および 12 は、非選択状態であるため低電位におかれ、トラン ジスタT61およびT62が導通状態となり、疑似電源線Q L2はVDDの高電位におかれる。

【0058】また、このとき後段のインバータ回路、た とえばインバータINV21では、制御トランジスタT S1A に印加される制御信号CSBが高電位にあるため、 制御トランジスタTS1A は、非導通状態におかれる。こ

ンバータの出力は、低電位になる。この結果、前述した 例と同様に、論理回路の動作選択時の高速動作および非 動作時における低消費電力化を図ることができる。

【0059】なお、本実施例ではナンドゲート側の制御 トランジスタを低電位側に、インバータ側の制御トラン ジスタを高電位側に配置してあるが、逆にナンドゲート 側の制御トランジスタを高電位側に、インバータ側の制 御トランジスタを低電位側に配置してもよいことはもち ろんである。また、ここで使用された論理回路素子以外 の論理回路素子を使用してこの選択論理回路を構成する ことも当業者であれば容易に考えられるところである。 【0060】また、論理回路の段数も2段に限定され ず、さらに段数を増やした構成にすることもできること は容易に類推できるであろう。この段数を増やす場合に は前段の論理回路では、その後段とは異なる(逆極性) の電源と論理回路の間にだけ、高スレッシュホルドのM OSFETを直列に接続するように、順次高スレッシュ ホルドMOSトランジスタを挿入する電源の極性(高電 位あるいは低電位)を決定すればよい。

【0061】また、読み出し回路は80も上述した選択 20 読み出し回路と同様に2段構成であり、マルチプレクサ MUXの出力が供給される前段は、低スレッシュホルド のトランジスタによって構成されたインバータINV31(エル)に、高スレッシュホルドの制御 トランジスタTS1B に供給される制御信号CSBの有無 によって電力供給を制御するようにしている。

【0062】これらのインバータINV31~INV31(エル)の出力側に配置されるインバータINV41 ~INV41(エル)への疑似電源線QL2を介しての電力供給を高スレッシュホルドの制御トランジスタTS2Bに供給される制御信号CSBの有無によって制御するようにしており、このように構成することによって前述した例と同様に、論理回路の動作選択時の高速動作および非動作時における低消費電力化を図ることができる

【0063】図9は本発明のさらに他の実施例を示し、特に本発明をメモリ装置に適用した場合を示している。本例では、論理ブロック100は従属接続された複数のCMOSインバータINV50によって構成され、これらのインバータINV50の電源は、疑似電源線QL1およびQL2に、ノードN1およびノードN2で接続されている。

【0064】これらの疑似電源線は制御トランジスタT S1およびトランジスタTS2を介してそれぞれ電源線 PL 1および PL 2 に接続されている。前述した各部の機能は前述した実施例と同じであるため、同じ記号で示してある。このような基本構成の論理回路をメモリ装置に使用した例を図10に示す。

【0065】図10はスタンダードセルのメモリ装置の る内部トランジスタに比較して大きく設定されているのレイアウトを示している。このメモリ装置は、スタンダ で、制御トランジスタTS1およびTS2の非導通状態におードセルSL1~SL(n+1)により構成され、各スタンダ 50 いて流れる電流が非常に小さく、非動作時の消費電力の

12

ードセルにそれぞれ一つの論理ブロック100が対応している。したがって、スタンダードセル1~nは、論理回路ブロック1001~100nからなる論理回路群であり、スタンダードセル(n+1) は制御トランジスタブロック110(図1のトランジスタTS1およびトランジスタTS2に対応)に対応する。

【0066】この例では、制御トランジスタブロック1 10は論理回路群の右側に隣接して配置されている。また、同図において論理ブロックのスタンダードセルのn 10 チャンネルMOSトランジスタ、pチャンネルMOSトランジスタ内の拡散層120および121にはスレッシュホルド制御マスクは含まれていない。

【0067】なお、本実施例ではスレッシュホルド制御マスクを高スレッシュホルドに用いたが、低しきい値に用いてもよいことはもちろんである。各スタンダードセルは基板固定されている電源線×1および×2(これまでの実施例のPL1およびPL2に対応)および疑似電源線y1およびy2(これまでの実施例のQL1およびQL2に対応)とそれぞれ接続され、スタンダードセル内の配線は、トランジスタのゲートに用いるポリシリコン配線となっている。

【0068】論理回路群は疑似電源線y1およびy2 と、電源線×1および×2を介して配線幅の大きい疑似 電源線から電力が供給される。また、各論理解路を構成 するトランジスタの基板電位は、電源線PL1およびP L2から印加されている。またスタンダードセル(n+1) の制御ブロックは、スレッシュホルド制御マスク125 を各制御トランジスタTS1およびTS2毎に有する。

~INV41 (エル)への疑似電源線QL2を介しての 【0069】これらの制御トランジスタTS1およびTS2電力供給を高スレッシュホルドの制御トランジスタTS2 30 は、論理回路群と同様に電源線×1および×2を介してBに供給される制御信号CSBの有無によって制御する 疑似電源線y1,y2に電圧を印加する。

【0070】このような構成において、制御信号CSおよびCSBが選択された場合、制御トランジスタTS1およびTS2は導通状態となり、疑似電源線y1および、y2に電源電圧が印加される。このとき、論理回路群のインバータブロックINV50を構成するトランジスタのスレッシュホルド電圧は制御トランジスタよりも小さく、しかも疑似電源線y1およびy2には各トランジスタのソース容量が付加されるのでその寄生容量が大きいため、この部分の電圧降下が小さく、高速でインバータ、すなわち論理回路群を動作させることができる。

【0071】また、制御信号CSおよびCSBが非選択時の場合には、制御トランジスタは非導通状態となり、疑似電源線y1およびy2に電源電圧が供給されず、論理回路群を構成するインバータ1NV50は非動作状態におかれる。このとき、制御トランジスタTSIおよびTS2のスレッシュホルド電圧は、インバータ回路を構成する内部トランジスタに比較して大きく設定されているので、制御トランジスタTSIおよびTS2の非導通状態において流れる電流が非常に小さく、非動作時の消費電力の

増大はない。

【0072】また、この実施例のスタンダードセルのレ イアウトは、制御トランジスタを論理回路群のはしに配 置するだけでよいため、回路規模が大きくなるほど、従 来のスタンダードセル方式に較べて占有面積を削減でき る。

【0073】なお、この実施例では制御トランジスタブ ロックを論理回路ブロック群の右端に配置したけれど も、他の場所、たとえば左端、上部、あるいは下部に配 置するようにしてもよい。

【0074】図11は図10の実施例の効果を示す特性 図であり、縦軸は論理回路ブロックの占有面積を示し、 横軸はスタンダードセルの数を示している。同図におい て、特性eは従来形式の回路構成による占有面積であ り、特性fは本発明の回路構成による占有面積を示す。 ここでは従来のスタンダードセルを10個で実現した場 合の占有面積で規格化したものである。この特性に示す ように、従来の形式に較べて占有面積を約1/2に削減 できることがわかる。

[0075]

【発明の効果】以上説明したように本発明は、低スレッ シュホルドトランジスタを使用した論理回路に、高スレ ッシュホルドトランジスタを介して電源を供給するよう にしたので、閾値識別は高スレッシュホルドトランジス タで行えるため、低スレッシュホルドトランジスタの閾 値を下げなくてもすみ、論理回路の遅延時間を小さくで きる。また、高スレッシュホルドトランジスタがオフに なっているときは低スレッシュホルドトランジスタに電 流が流れないので、リーク電流が少なくなる。このた め、1 V程度の低電圧で動作させることが可能になると 30 CS, CSB 制御信号 いう効果を有する。

【図面の簡単な説明】

【図1】本発明による論理回路の実施例を示す系統図で ある。

14

【図2】図1の本発明の実施例と従来のものの電源電圧 –遅延時間特性を示す特性図である。

【図3】図1の本発明の実施例と従来のものの電源電圧 最高トグル周波数特性を示す特性図である。

【図4】本発明の変形例を示す系統図である。

【図5】本発明の変形例を示す系統図である。

【図6】本発明のさらに他の実施例を示す系統図であ る。

【図7】本発明のさらに他の実施例を示す系統図であ 10 る。

【図8】 図7のメモリセルの具体例を示す回路図であ

【図9】本発明のさらに他の実施例を示す系統図であ る。

【図10】図10の構成のものを実際のメモリセル構造 に適用した場合の実施例を示す図である。

【図11】図11の実施例と従来のスタンダードセル数 一論理回路のブロックの占有面積特性を示す特性図であ る。

【図12】従来の論理回路の例を示す系統図である。 20 【符号の説明】

10 制御回路

20 低スレッショルド論理回路

30 高スレッショルド論理回路

100 論理回路群

110 制御回路ブロック

PL1, PL2 電源線

QL1, QL2 疑似電源線

CK、CKB クロック信号

LC1, LC2 アナログスイッチ

MUX マルチプレクサ

SL スタンダードセル

【図4】

【図8】

【図9】

【図12】

【図6】

【図7】

【図10】

【図11】

フロントページの続き

(31) 優先権主張番号 特願平4-14537

(32)優先日

平4 (1992) 1月30日

(33)優先権主張国

日本(JP)

(72)発明者 武藤 伸一郎

東京都千代田区内幸町1丁目1番6号 日

本電信電話株式会社内