1. State & State space

State:表示当前的状态。例如在以下网格中,共有 s_1 , s_2 , ..., s_9 九个状态

State space: 状态空间,表示所有状态的集合, $S = \{s_i\}_{i=1}^9$

2. Action & Action space of a state

Action:每一个 state 接下来要采取的行动,比如:

Action space of a state: 在一个状态下可能采取的所有行动的集合, 表示为 $A(s_i) = \{a_i\}_{i=1}^5$

3. State transition: 状态转移

例如我们在 s_1 , 分别采取 a_1 和 a_2 两种动作, 分别表示为:

$$s_1 \stackrel{a_1}{\rightarrow} s_1$$

$$s_1 \stackrel{a_2}{\rightarrow} s_2$$

4. Tabular representation: 表格表示

将以上所有状态,采取不同行动的可能结果用表格表示为:

	a_1 (upwards)	a_2 (rightwards)	a_3 (downwards)	a_4 (leftwards)	a_5 (unchanged)
s_1	s_1	s_2	s_4	s_1	s_1
s_2	s_2	s_3	s_5	s_1	s_2
s_3	s_3	s_3	s_6	s_2	s_3
s_4	s_1	s_5	87	s_4	84
s_5	s_2	s_6	s_8	84	85
s_6	83	s_6	89	85	86
87	s_4	s_8	87	871	87
s_8	S5	89	s_8	87	88
89	86	89	89	s_8	S9

5. State transition probability: 状态转移的概率

 $p(s_2|s_1,a_2)=1$ 表示在 s_1 的状态下采取 a_2 的行动,到达 s_2 的概率为 1

 $p(s_i|s_1,a_2)=0$ $\forall i\neq 2$ 表示在 s_1 的状态下采取 a_2 的行动,到达任何非 s_2 的概率为 0

6. Policy: 策略,表示在某个 state 该采取的 action,如图所示:

7. Mathematical representation: 用数学概率来描述每个状态采取某种策略的概率, 如图所示:

8. Tabular representation of a policy: 采取表格形式来表示每个状态采取某种策略的概率,如下所示:

	a_1 (upwards)	a_2 (rightwards)	a_3 (downwards)	a_4 (leftwards)	a_5 (unchanged)
s_1	0	0.5	0.5	0	0
s_2	0	0	1	0	0
s_3	0	0	0	1	0
84	0	1	0	0	0
85	0	0	1	0	0
86	0	0	1	0	0
87	0	1	0	0	0
88	0	1	0	0	0
89	0	0	0	0	1

9. Reward: 反馈, 当我们采取某个行动之后得到的一个数值

■ 正数:奖励,代表对该行为进行鼓励

■ 负数:惩罚,代表不希望该行为发生

■ 整数 0 表示不惩罚

■ 可以反过来进行表示,即正数惩罚,负数奖励

10. Trajectory: 轨迹,用来表示 state-action-reward 链,如图所示:

- 11. Return: 针对一个 trajectory 而言,将该轨迹上的所有 reward 统计起来的结果,例如上述 trajectory 的return = 0 + 0 + 0 + 1 = 1
- 12. Discount rate: $\gamma \in [0,1)$

若在上述例子中,有一条轨迹是这样无穷的:

那该 trajectory 的 $return = 0 + 0 + 0 + 1 + 1 + \dots + 1 = \infty$

此时 return 发散,该结果无意义。为了解决这个问题,引入 γ ,得到 $discounted\ return=0+\gamma0+\gamma^20+\gamma^31+\ldots=\gamma^3(1+\gamma+\gamma^2+\ldots)=\frac{\gamma^3}{1-\gamma}$ γ 的作用:

- 得到的 discounted return 收敛,结果有意义
- 可以平衡更远或更近未来的 reward:
 - ◆ 若γ更接近于 0. 则更在意前面的 action,考虑更近的未来
 - ◆ 若γ更接近于 1,则更在意后面的 action,考虑更远的未来
- 13. Episode: 有限的 trajectory
- 14. Markov property: 马尔可夫性质, 即与历史无关性质
- $p(s_{t+1}|a_{t+1},s_t,...,a_1,s_0) = p(s_{t+1}|a_{t+1},s_t)$,从 s_0 采取行动一直到 s_t 后,采取

行动 a_{t+1} 到达 s_{t+1} 的概率与直接从 s_t 采取行动 a_{t+1} 到达 s_{t+1} 的概率相等,即与历史路径无关

 $p(r_{t+1}|a_{t+1},s_t,\ldots,a_1,s_0)=p(r_{t+1}|a_{t+1},s_t)$,从 s_0 采取行动一直到 s_t 后,采取行动 a_{t+1} 到达 s_{t+1} 所获得 reward 的概率与直接从 s_t 采取行动 a_{t+1} 到达 s_{t+1} 所获得 reward 的概率相等,即与历史路径无关