UBC MATH CIRCLE 2024 PROBLEM SET 2

Problem 1. Let $f \in \mathbb{Z}[x]$ be a polynomial with integer coefficients and let $S \subset \mathbb{Z}$ be a finite set of positive integers such that for any $n \in \mathbb{Z}$, there is a $s \in S$ such that $s \mid f(n)$. Show that there is an $s \in S$ such that $s \mid f(n)$ for all $n \in \mathbb{N}$.

Problem 2. Is it possible to cover the plane with the interiors of a finite number of parabolas?

Problem 3. Let \mathbb{Z}^n be the integer lattice in \mathbb{R}^n . Two points in \mathbb{Z}^n are called neighbors if they differ by exactly 1 in one coordinate and are equal in all other coordinates. For which integers $n \geq 1$ does there exist a set of points $S \subset \mathbb{Z}^n$ satisfying the following two conditions?

- (1) If p is in S, then none of the neighbors of p is in S.
- (2) If $p \in \mathbb{Z}^n$ is not in S, then exactly one of the neighbors of p in S.

Date: January 28, 2024.