

# Hardwarekomponenten

(Lernsituation 1 – Teil 1)

Fach: ITT-1

## Lernfeld 2: Arbeitsplätze nach Kundenwunsch ausstatten



| Name:       | <br> |  |
|-------------|------|--|
| Klassa:     |      |  |
| Klasse:     | <br> |  |
| Lehrerteam: |      |  |

# **Inhalt**

| 1. | Mainboard             | 3    |
|----|-----------------------|------|
| 2. | Prozessor             | 7    |
| 3. | Arbeitsspeicher (RAM) | . 11 |
| 4. | Grafikkarte           | . 15 |
| 5. | Festplatten           | . 17 |
| 6. | Soundkarte            | . 19 |
| 7. | Netzwerkkarte         | . 20 |
| 8. | PC-Kühlung            | 22   |

# Zusammenfassung

## 1. Mainboard

1.1. Bezeichnen Sie die bezifferten Komponenten des folgenden Mainboards und geben Sie kurz die Funktion an (Aufgabe 1).



| Nr.                     | Bezeichnung und Funktion der Mainboard-Komponenten                               |  |  |  |  |  |
|-------------------------|----------------------------------------------------------------------------------|--|--|--|--|--|
| 4                       | CPU-Sockel                                                                       |  |  |  |  |  |
| 1                       | Steckplatz, auf dem der Prozessor aufgesteckt wird.                              |  |  |  |  |  |
| 2                       | RAM-Steckplätze                                                                  |  |  |  |  |  |
|                         | Verbindung der Arbeitsspeichermodule mit der CPU                                 |  |  |  |  |  |
| 3                       | 24-Pin ATX Anschluss                                                             |  |  |  |  |  |
| J                       | Stromversorgung des Motherboards                                                 |  |  |  |  |  |
| 4                       | Loch                                                                             |  |  |  |  |  |
| 4                       | Zum befestigen des Motherboards am PC-Gehäuse                                    |  |  |  |  |  |
| 5                       | Chipsatz                                                                         |  |  |  |  |  |
|                         | Kommunikation und Verbindung der Motherboard-Komponenten                         |  |  |  |  |  |
| Front-Panel Anschlüsse  |                                                                                  |  |  |  |  |  |
|                         | Anbindung von z.B. Power-Button, Reset-Button, USB-Buchsen etc. vorne am Gehäuse |  |  |  |  |  |
| 7                       | M.2 Steckplatz 1 22xx (Größe)                                                    |  |  |  |  |  |
| •                       | Steckplatz für z.B. eine M.2 SSD                                                 |  |  |  |  |  |
| 8                       | M.2 Steckplatz 2 22xx (Größe)                                                    |  |  |  |  |  |
|                         | Steckplatz für z.B. eine M.2 SSD                                                 |  |  |  |  |  |
| 9                       | CMOS-Batterie                                                                    |  |  |  |  |  |
|                         | Zur Erhaltung des BIOS                                                           |  |  |  |  |  |
| 10                      | PCIe Steckplatz x1                                                               |  |  |  |  |  |
| 10                      | Anbindung von PCIe-Erweiterungskarten mit 1 Lane                                 |  |  |  |  |  |
| PCIe Steckplatz x16     |                                                                                  |  |  |  |  |  |
|                         | Anbindung von PCIe-Erweiterungskarten mit bis zu 16 Lanes                        |  |  |  |  |  |
| 8-Pin ATX Anschluss     |                                                                                  |  |  |  |  |  |
| Stromversorgung der CPU |                                                                                  |  |  |  |  |  |
| 13                      | Rear I/O                                                                         |  |  |  |  |  |
|                         | Schnittstellen verschiedener Art hinten am Motherboard (USB/Audio/Video etc.)    |  |  |  |  |  |

- 1.2. Nennen Sie drei Merkmale, die ein Formfaktor bei Mainboards bestimmt.
  - Abmessungen des Motherboards -> bedingt Gehäusegröße
  - Position der Befestigungslöcher
  - Anordnung und Lage der übrigen Komponenten

1.3. Geben Sie den Mainboard-Backpanel-Anschlüssen jeweils die richtige Bezeichnung.



| 1 | USB 3.2 Gen2 (Type A)    | 5 | DisplayPort (Audio, Video)                  |
|---|--------------------------|---|---------------------------------------------|
| 2 | USB 3.2 Gen2 (Type C)    | 6 | HDMI (High Definition Multimedia Interface) |
| 3 | Netzwerk-Port (Ethernet) | 7 | USB 2.0 (Type A)                            |
| 4 | USB 3.0 (Type A)         | 8 | Audio-Anschlüsse (verschiedene)             |

1.4. Erklären Sie anhand des Blockschaltbilds die Kommunikationswege zwischen CPU und Chipsatz. Ordnen Sie sowohl der CPU als auch dem PCH jeweils 4 Komponenten zu, die angeschlossen sind:

RAM 1, RAM 2, LAN, USB, WI-FI, PCIe x1, Audio, UEFI/BIOS, SATA, PCIe x 16 (PEG), HDMI/DVI/DP



PCH = Platform Controller Hub (Intel) FCH = Fusion Controller Hub (AMD)

1.5. Vergleichen Sie die serielle und parallele Datenübertragung. Ordnen Sie den Schnittstellen den Namen und die Art der Datenübertragung zu.

|                           | Seriell                                                                 | Parallel                                                                 |
|---------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Erklärung                 | Datenbits werden nacheinander<br>übertragen<br>-> Nur eine Datenleitung | Datenbits werden gleichzeitig<br>übertragen<br>-> Mehrere Datenleitungen |
| Beispiel<br>Schnittstelle | USB = Universal Serial Bus<br>Ethernet<br>VGA (Analog)<br>SATA<br>PCIe  | PCI<br>SCSI                                                              |

## Zusatzfragen:

- 1.6. Wie beurteilen Sie die Aussage, dass die Verbindung zwischen Chipsatz und CPU oft ein Flaschenhals ist?
- 1.7. Welche Funktion hat die Codierung bei serieller Übertragungstechnik?
- 1.8. Warum gibt es häufig die Einheit GT/s (Gigatransfers/s)?
- 1.9. Wie viele Lanes benötigen Sie um zwei 10 Gigabit LAN Anschlüsse voll zu unterstützen? (Zusatzaufgabe)
  - o bei PCIe 3.0 20Gbit/s / 8Gbit/s pro Lane = 2.5 ~ 3 Lanes
  - o bei PCIe 4.0 20Gbit/s / 16Gbit/s pro Lane =  $1.5 \sim 2$  Lanes
- 1.10. Berechnen Sie mit Hilfe der Formel zur Übertragungsgeschwindigkeit einer PCIe-Schnittstelle die fehlenden Werte in der Tabelle. aktueller stand der Technik

|                        |            |              |                            |              | V             |          |
|------------------------|------------|--------------|----------------------------|--------------|---------------|----------|
| PCIe-Version           | 1.0/1.1    | 2.0/2.1      | 3.0/3.1                    | 4.0          | 5.0           | 6.0      |
| Release-Jahr           | 2003       | 2007         | 2010                       | 2017         | 2019          | 2021     |
| Schrittgeschwindigkeit | 2,5 GT/s   | 5 GT/s       | 8 GT/s                     | 16 GT/s      | 32 GT/s       | 64 GT/s  |
| Codierung              | 8b/        | 10b          |                            | 128b/130b    |               | PAM-4    |
| Lanes                  | Übertraç   | gungsrate ir | n 10 <sup>9</sup> Byte/s : | = GByte/s oh | ne Protokoll- | Overhead |
| ×1                     | 0,25       | 0,5          | 0,984                      | 1,969        | 3,938         | 7,529    |
| ×4                     | <u>1,0</u> | 2,0          | 3,938                      | 7,877        | 15,754        | 30,118   |
| ×8                     | 2,0        | 4,0          | 7,877                      | 15,754       | 31,508        | 60,235   |
| ×16                    | 4,0        | 8,0          | 15,754                     | 31,508       | 63,015        | 120,471  |

Allgemein: Jede neue PCIe Version verdoppelt annähernd die Übertragungsrate / Schrittgeschwindigkeit Die Anzahl der Lanes vervielfacht die Übertragungsgeschwindigkeit



### 2. Prozessor

2.1. Ordnen Sie die Begriffe den gestrichelten Platzhaltern zu.

Ausgabe, Eingabe, Verarbeitung, Ausgabeeinheit, Eingabeeinheit, Rechner, CPU, Speicher, Steuerwerk (CU), Rechenwerk (ALU), Speicherbus,



2.2. Ordnen Sie den Aussagen den korrekten Fachbegriff zu.



2.3. Geben Sie an, ob es sich um eine Ausgabeeinheit (AE), Eingabeeinheit (EE), externe Speichereinheit (SE) oder Verarbeitungseinheit von Daten (VE) oder keine der entsprechenden Komponenten handelt.

| Tastatur   | EE    | RAM                 | SE    |
|------------|-------|---------------------|-------|
| Prozessor  | VE    | USB                 | SE    |
| Festplatte | SE    | Monitor             | AE    |
| Drucker    | AE    | Motherboard         | Keine |
| Maus       | EE    | MIC                 | EE    |
| Netzteil   | Keine | Kopfhörer-Anschluss | AE    |

2.4. Kennzeichnen Sie in der Abbildung den Adress- (Abus), Daten- (Dbus) und Steuerbus (Sbus). Ordnen Sie den Begriffen dann die Aussagen zu.



| АВ | Da immer nur eine Einheit Daten empfangen oder senden darf, muss jede Baugruppe eine "Hausnummer" erhalten, mit der sie vom Prozessor angesprochen wird. |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| DB | Zur Übertragung von Daten zwischen Prozessor, Arbeitsspeicher und Peripherie steht dieses Bussystem zur Verfügung.                                       |
| AB | Hier wird die Adresse angelegt, von der die Daten gelesen oder wohin sie geschrieben werden sollen.                                                      |
| SB | Über dieses System wird der Baugruppe mitgeteilt, ob Daten hineingeschrieben oder ausgegeben werden sollen.                                              |
| DB | Die Anzahl der Busleitungen bestimmt die Anzahl der Bit, die pro Takt übertragen werden können (z. B. 64-bit-Edition).                                   |

2.5. Berechnen Sie die jeweilige Adressbusbreite und geben die ansprechbaren Adressen an.

| Breite des Bus- | Ansprechbare Adressen      | Als Zweierpotenz |
|-----------------|----------------------------|------------------|
| ses             |                            |                  |
| 1 Bit           | 2 (0 und 1)                | 21               |
| 2 Bit           | 4                          | 2^2              |
| 48 Bit          | 2,81*10^14 (281 Billionen) | 2^48             |

2.6. Ergänzen Sie die Fachbegriffe zu den Beschreibungen.

| Fachbegriff                                    | Beschreibung                                           |
|------------------------------------------------|--------------------------------------------------------|
| CMOS = Complementary Metal-oxide semiconductor | flüchtiger Speicher des BIOS                           |
| EEPROM                                         | Nicht-flüchtiger Speicher des BIOS                     |
| Cache                                          | Zwischenspeicher/Pufferspeicher                        |
| ALU                                            | Kürzel zum Rechenwerk der CPU                          |
| Takt                                           | Arbeitsschritte/Sekunde (z. B. 64 GHz)                 |
| Sockel                                         | Name des Steckplatzes des Prozessors auf dem Mainboard |
| Bus                                            | Kurzwort für ein System zur Datenübertragung           |
| Formfaktor                                     | Kenngrößen des Motherboards                            |
| Chipsatz                                       | Verantwortlich für die Kommunikation auf dem Mainboard |

2.7. Mit welchem Tool können Sie die laufenden Prozesse eines Windows-PCs überwachen?

Task Manager

2.8. Wie stellen Sie die tatsächliche Leistungsfähigkeit eines Prozessors fest?

Benchmark

2.9. Ordnen Sie den technischen Daten mit Hilfe der Ziffern die korrekte Erklärung zu. Kennzeichnen Sie zusätzlich die Kenngrößen, die die Leistungsfähigkeit von einem Prozessor mitbestimmen.



| 1  | Kurzzeitiger Maximaltakt                                                                                 |
|----|----------------------------------------------------------------------------------------------------------|
| 2  | Pufferspeicher/Kern                                                                                      |
| 3  | Typ des Arbeitsspeichers                                                                                 |
| 4  | Datenbusbreite                                                                                           |
| 5  | Thermal Design Power (TDP)                                                                               |
| 6  | Dual Channel                                                                                             |
| 7  | Gemeinsamer Pufferspeicher aller Kerne                                                                   |
| 8  | Anzahl der Takte, die von der CPU pro Sekunde durchgeführt werden, wenn alle Kerne voll ausgelastet sind |
| 9  | Physischer Mikroprozessor verhält sich wie zwei logische virtuelle Kerne                                 |
| 10 | Name des Prozessorsockels                                                                                |

2.10. Prozessoren werden heute durch verschiedene Techniken der Parallelisierung beschleunigt. Geben Sie die korrekte Beschleunigungsmethode an.

| A) Multi- | B) Multi- | C) Pipeli- | D) Copro- | E) Multi-Core- | F) Hyper- |
|-----------|-----------|------------|-----------|----------------|-----------|
| Prozessor | Threading | ning       | zessor    | Prozessor      | Threading |

| Viele Programmab-     | Hohe Parallelverarbei- | Bezeichnung für    |
|-----------------------|------------------------|--------------------|
| läufe werden parallel | tung durch bessere     | einen Zusatz-      |
| bearbeitet            | Rechenwerkauslastung   | prozessor          |
| Bezeichnung für Mehr- | Prozessor, der mehrere | Parallele Befehls- |
| prozessoreinsatz      | Rechenkerne verwaltet  | ausführung         |

## 3. Arbeitsspeicher (RAM)

3.1. Erklären Sie den Unterschied zwischen flüchtigen und nicht-flüchtigen Speicherbausteinen. Nennen Sie mindestens jeweils 2 Beispiele.

|           | Flüchtige<br>Speicherbausteine                                                                                   | Nicht-flüchtige<br>Speicherbausteine |
|-----------|------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Erklärung | Strom weg, Daten weg<br>Daten nur solange speichern, wie<br>sie mit einer Versorgungsspannung<br>versorgt werden | Strom weg, Daten da                  |
| Beispiele | DRAM (Arbeitsspeicher)<br>SRAM (Cache)                                                                           | EEPROM<br>Flash-Speicher (SSD)       |

3.2. Ordnen Sie den Begriffen die korrekte Erklärung zu.



3.3. Wozu wird ein the und Memory Benchmark durchgeführt?

Messung der Schreib- und Lesegeschwindigkeit angegeben in MB/s bzw Mbit/s und der Latenzen

3.4. Was ist bei der Auswahl der Steckplätze für die Dual Channel Konfiguration zu beachten? Worauf muss beim Kauf der Arbeitsspeichermodule zudem geachtet werden?

Wichtig ist, dass ein RAM-Modul pro Kanal eingesteckt wird (normalerweise gleichfarbig markiert)

Idealerweise sollte die technische Konfiguration (Kapazität und Taktrate) bei allen Modulen gleich sein



3.5. Welche Geschwindigkeit kann (theoretisch) im Dual Channel Betrieb erreicht werden und warum?

3.6. Warum werden bei der unten Bild vorgenommenen Arbeitsspeicher-Kombination unterschiedliche Lesegeschwindigkeiten (12 GB/s und 23 GB/s) gemessen?



Da wir in beiden Kanälen zwei unterschiedliche Kapazitäten haben wählt der RAM-Controller zufällig zwischen beiden Channels aus und misst die Geschwindigkeit mal im single- und mal im dual-channel-modus

3.7. Wie lässt sich das Problem aus Aufgabe 3.6 bei einer Konfiguration mit 3 Riegeln beheben? Notieren Sie die Angaben im Bild für 2 x 4 GB und 1x 8 GB-RAM-Riegel.



In jedem Kanal sollte die gleiche Kapazität eingesteckt sein um dauerhaft den Dual-Channel-Modus zu gewährleisten

3.8. Ordnen Sie den Sprechblasen die korrekten Angaben des RAMs zu. Kennzeichnen Sie zudem die Kenngrößen, auf die Sie beim Kauf eines RAM-Moduls achten müssen.



| 1 | Speichertyp                                                                                                                                                   | Double-Data-Rate 4. Generation                                                       |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 2 | Taktrate in MHz                                                                                                                                               | Taktrate 2,1 Mrd. Übertragungen/s<br>Byte/s = 2133 * 10^6 1/s * 8Byte = 17,1 GByte/s |
| 3 | Latenz in Nanosekunden = Anzahl Taktzyklen * Taktzykluszei Intervall zwischen der Datenanfrage des Prozessors und dem Beginn der Datenlieferung (CAS Latency) |                                                                                      |
| 4 | Speicherkapazität                                                                                                                                             | Im Dual Channel Modus 8GB                                                            |

3.9. Kreuzen Sie die Merkmale an, in denen sich die DDR3- und DDR4-Riegeln unterscheiden.

| Adressbusbreite               |   | Anzahl an Schnittstellen         |   |
|-------------------------------|---|----------------------------------|---|
| Anzahl an Kontaktstellen      | Х | Kompatibilität mit dem Mainboard | Х |
| Schnelligkeit des Systemtakts |   | Höhe der Taktraten               | Х |
| Strombedarf                   | Х | Bauform                          | Х |
| Größe des RAM-Riegels         |   | Arbeitsweise                     |   |

### 4. Grafikkarte

4.1. Ordnen Sie den Begriffen die korrekte Erklärung zu.

| Begriff                            |
|------------------------------------|
| Aufgabe der Grafikkarte            |
| GPU                                |
| Hz oder fps<br>(frames per second) |
| Onboard-Grafikkarte                |
| API                                |
| Integrierte Grafikkarte            |
| Shader                             |

#### Erklärung

Einheit der Bildwiederholrate

Die Ausgabe eines Bildsignals wird gesteuert und Anschlüsse für Bildschirme o. ä. werden bereitgestellt.

Definition von speziellen Einheiten des Grafikprozessors, die spezielle Aufgaben zur Bildverbesserung übernehmen.

Sie sind direkt im Prozessor verbaut und greifen als Grafikspeicher auch auf den Arbeitsspeicher zurück.

Anwendungsschnittstelle und definiert die Programm- anbindung auf Quelltext-Ebene.

Graphics Processing Unit und ist ein auf die Berechnungen von Grafiken spezialisierter Prozessor.

Sie sind auf dem Mainboard direkt installiert und werden auch als IGP bezeichnet.

Lernfeld 2

4.1. Kreuzen Sie mögliche Schnittstellen von dedizierten Grafikkarten an. Kennzeichnen Sie die aktuellste Schnittstelle und geben Sie die Geschwindigkeit der aktuellsten Version dieser Schnittstelle an.

| PCI  |  |
|------|--|
| PCle |  |
| USB  |  |
| AGP  |  |
| SATA |  |
| M2   |  |

4.2. Ordnen Sie die Bezeichnungen und Anwendungen der Grafikausgänge zu.



| Display-Port |
|--------------|
| DVI          |
| VGA          |
| USB-C        |
| HDMI         |

| Analoge Übertragung von Bewegtbildern                                                                         |  |
|---------------------------------------------------------------------------------------------------------------|--|
| Unterstützt digitale Bild- und Tonsignale und überträgt bis 77 Gbit/s                                         |  |
| Dahinter kann sich auch eine Thunderbolt 3-<br>Schnittstelle verbergen                                        |  |
| Liefert digitales Videosignal                                                                                 |  |
| drahtgebundene Schnittstelle für die digitale<br>Bild- und Ton-Übertragung bis zu 42,667<br>Gbit/s (HDMI 2.1) |  |

4.3. Die Größe des Ausgabepuffers (Frame Buffer) wird durch die maximale Farbtiefe und Bildauflösung bestimmt.

- a) Berechnen Sie für eine die Auflösung von 1600 x 1200 Bildpunkten (Pixel) und eine Farbtiefe von 24 Bit (True Color, je 8 Bit für rot, grün und blau) die benötigte Speichergröße in Mebibyte.
- b) Für die Darstellung fließender Bewegungen, muss das Bild ständig aktualisiert werden. Dazu stellt die Grafikkarte die Bilder mehrmals in der Sekunde neu dar. Die Anzahl der Bilder wird als Bildwiederholrate in Hz oder Frames pro Sekunde (fps) angegeben. Aus ergonomischen Gründen soll die Bildwiederholrate mindestens 60 Hz betragen. Welche Gesamtdatenmenge für die Datenmenge aus Aufgabe a wird bei einer Bildwiederholrate von 60 Hz pro Sekunde benötigt?



#### FESTSPEICHER / MASSENSPEICHER

5.1. Ergänzen Sie in der Tabelle 3 Vorteile, 3 Nachteile und 2 Verwendungszwecke der HDD bzw. SSD.

Die Vorteile des einen sind die Nachteile des anderen

|                       | SSD                                                                                                                                                                                                                  | HDD                                                                                                               |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|
| Vorteile              | <ul> <li>- Höhere Lese- und<br/>Schreibgeschwindigkeit</li> <li>- Kleinere Bauform möglich</li> <li>- Robuster weil keine<br/>mechanische Bauteile</li> <li>- Leiser</li> <li>- geringerer Stromverbrauch</li> </ul> | - (noch) Größere Kapazitäten - (noch) Günstiger für Kapazität - Datenwiederherstellung /-rettung i.d.R. einfacher |  |
| Nachteil              | !y - Speicherzellen haben begrenzte Speicherzyklen - Datenverlust mit Zeit ist höher                                                                                                                                 | <i>∃</i> !x                                                                                                       |  |
| Verwendungs-<br>zweck | - Wegen kompakter Bauweise<br>bevorzugt in mobilen Endgeräten<br>- immer häufiger in Desktops für OS                                                                                                                 | - Serveranwendungen<br>- Große Speichermengen                                                                     |  |

5.2. Ordnen Sie den Kenngrößen einer Festplatte ihre Erklärung zu.



5.3. Ordnen Sie den Flashspeichern die Begriffe TLC, SLC, MLC und QLC zu. (Flashspeicher Technologie)



SLC: Single Level Cell (1bit) MLC: Multi Level Cell (2bit) TLC: Triple Level Cell (3bit) QLC: Quad Level Cell (4bit)



5.4. Bei welcher Bauweise von Flash-Speichern ist ein Fehler in der Zelle schwerwiegender? Begründen Sie Ihre Antwort.

Bei der, mit mehr bit pro Zelle (QLC z.B.), da bei gleichem Elektronenverlust mehr bit betroffen sind, und nicht gelesen werden können

5.5. Worin unterscheidet sich der Aufbau einer HDD von einer SSD?

Eine HDD hat eine magnetisierte Scheibe, die sich mit einer angegebenen RPM-Zahl dreht. Eine SSD hat Speicherzellen, die mit anlegen einer Spannung auf 1 oder 0 gesetzt werden können

### 6. Soundkarte

6.1. Ordnen Sie den Begriffen die Erklärungen zu.

| Begriff                  |               |
|--------------------------|---------------|
| Aufgabe einer Soundkarte | Signa<br>nis  |
| Latenz                   | Vera<br>ten u |
| Sample-Rate              | Ak            |
| SNR                      | Verz<br>Ere   |
| Samplingtiefe            | Anza          |

| Erklärung                                                                                              |
|--------------------------------------------------------------------------------------------------------|
| Signal-Rauschverhältnis ist ein tech-<br>nisches Maß für die technische<br>Qualität eines Nutzsignals. |
| Verarbeitung der digitalen Audiodaten und Ausgabe als analoges Audiosignal                             |
| Abstufung des Signals auf der<br>Amplitudenachse                                                       |
| Verzögerungszeit zwischen einem<br>Ereignis und dem Eintreten der<br>sichtbaren Reaktion               |
| Anzahl der Abtastungen des Signals pro Sekunde                                                         |

6.2. Müssen Sie eine Soundkarte kaufen, um an Ihrem PC Audiodateien abzuspielen?
Begründen Sie Ihre Antwort.

## 7. Netzwerkkarte

7.1. Erklären Sie die Aufgabe und Arbeitsweise einer Netzwerkkarte.

7.2. Ordnen Sie die technischen Spezifikationen einer Netzwerkkarte zu.



| 1 | Leistungsaufnahme               |
|---|---------------------------------|
| 2 | Schnittstelle der Netzwerkkarte |
| 3 | Art der Datenübertragung        |
| 4 | Unterstützte Standards          |
| 5 | Übertragungsrate                |

7.3. Ordnen Sie den Abbildungen die Begriffe Halb-Duplex und Voll-Duplex zu. Erklären Sie, warum eine Netzwerkkarte mit Vollduplex-Ethernet sich gegen Halbduplex-Netzwerkkarten durchgesetzt hat.



7.4. Was bedeutet der Begriff Auto-sense?

## 8. PC-Kühlung

8.1. Beschreiben Sie die beiden Kühlungsarten und geben Sie jeweils 2 Vorteile und Nachteile an.

|                                 | Wasserkühlung | Luftkühlung |
|---------------------------------|---------------|-------------|
| Vorteile                        |               |             |
| Nachteil                        |               |             |
| Beschreibung/<br>Funktionsweise |               |             |

8.2. Unterscheiden Sie die aktive und passive Luftkühlung anhand der Bilder und geben jeweils 1 Vorteil und Nachteil an.

| Bilder       | Kühikörper Wärmeleitpaste  Heat-Spreader CPU-Die |  |
|--------------|--------------------------------------------------|--|
| Beschreibung |                                                  |  |
| Vorteile     |                                                  |  |
| Nachteile    |                                                  |  |

LF2\_LS1\_HW\_Komponenten\_Zfg.docx

ITT10-1

8.3. Worin unterscheiden sich 2-Pin-Anschlüsse bzw. 3-Pin-Anschlüsse von 4 PIN-Anschlüssen beim Kühler?

8.4. Ordnen Sie den Sprechblasen die 5 Kenngrößen, die bei der Auswahl eines Lüfters entscheidend sind, und ggf. ihre Erklärung zu.



| 1 | Umdrehungen des Lüfters pro Minute       |
|---|------------------------------------------|
| 2 | Spannungsversorgung                      |
| 3 | Thermal Design Power                     |
| 4 | Kompatibler CPU-Sockel auf dem Mainboard |
| 5 | Lüftergröße                              |
| 6 | Luftdurchsatz                            |
| 7 | Passende CPU                             |

| Drehzahl                                                 |
|----------------------------------------------------------|
| Durchschnittliche Leistungsaufnahme des Lüfters          |
| entscheidend für den Einbau im Gehäuse                   |
| Strom- und Steueranschluss                               |
| Maß für den Luftstrom, der von einem Lüfter erzeugt wird |