Exercise sheet 2

Curves and Surfaces, MTH201

- 1. For $\mathbf{v}:(\alpha,\beta)\to\mathbf{R}^2$ and $\mathbf{w}:(\alpha,\beta)\to\mathbf{R}^2$, show that $(\mathbf{v}(t).\mathbf{w}(t))'=\mathbf{v}'(t).\mathbf{w}(t)+\mathbf{v}(t).\mathbf{w}'(t)$.
- 2. If $\mathbf{n}: (\alpha, \beta) \to \mathbf{R}^2$ is such that $||\mathbf{n}(t)||$ is constant, then prove that $\dot{\mathbf{n}}(t)$ is either 0 or perpendicular to $\mathbf{n}(t)$.
- 3. For $\mathbf{v}:(\alpha,\beta)\to\mathbf{R}^2$ and $\mathbf{w}:(\alpha,\beta)\to\mathbf{R}^2$, show that $(\mathbf{v}(t).\mathbf{w}(t))'=\mathbf{v}'(t).\mathbf{w}(t)+\mathbf{v}(t).\mathbf{w}'(t)$ (Assume that all the functions are smooth).

4.

$$s_{\alpha}(t) := \int_{t_{\alpha}}^{t} ||\dot{\gamma}(u)|| \mathrm{d}u$$

$$s_{\beta}(t) := \int_{t_{\beta}}^{t} ||\dot{\gamma}(u)|| \mathrm{d}u$$

Prove that $s_{\beta}(t) - s_{\alpha}(t)$ is a constant.

To be updated...