ACM Programming Challenges Lab

Exercise 1 – *Coolest Number*

Paul wants to find the coolest number. For a given positive number n he defines its coolness as:

$$c(n) := |\{\pi \in S_{10} | \langle \pi(0), \pi(1), \pi(2), \pi(3), \pi(4) \rangle / \langle \pi(5), \pi(6), \pi(7), \pi(8), \pi(9) \rangle = n\}|,$$

where S_{10} is the set of all permutations of $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and $\langle x_0, \dots, x_k \rangle$ is the base-10 number with digits x_0, \dots, x_k (possibly having a leading zero).

For a given set of numbers, the coolest number is the minimum one among the numbers with the maximal coolness.

Input The first line of the input contains the number of test cases $t \le 400$. Every test case consists of two lines: a line containing the size of the set $1 \le k \le 10$, and a line containing the k numbers n_1, \ldots, n_k with $1 \le n_i \le 80$.

Output For every test case you should output a line containing the coolest number among n_1, \ldots, n_k and its coolness.

Sample Input

Sample Output

Sai	npre	TIL
2		
1		
55		
3		
12	14	17