UCI Wine Dataset: K-means vs Hierarchical Clustering

Problem Statement

Cluster wines using 13 physico-chemical attributes without leveraging labels for modelling; compare K-means and hierarchical approaches, select k via internal indices, and interpret cluster differences via statistical inference.

Part A: Data Loading & Preprocessing

How obtained

Loaded UCI Wine data via scikit-learn; inspected the first 10 rows and confirmed all 13 features are numeric (float64). Applied median imputation (none missing in this dataset) and Z-score standardization, then saved the scaled dataset to CSV.

Row	alcohol	malic_acid	ash	flavanoids
0	14.23	1.71	2.43	3.06
1	13.20	1.78	2.14	2.76
2	13.16	2.36	2.67	3.24
3	14.37	1.95	2.50	3.49
4	13.24	2.59	2.87	2.69
5	14.20	1.76	2.45	3.39
6	14.39	1.87	2.45	2.52
7	14.06	2.15	2.61	2.51
8	14.83	1.64	2.17	2.98
9	13.86	1.35	2.27	3.15

Significance

Numeric types and standardization ensure comparable scales for distance-based methods; imputation prevents missingness from biasing PCA or clustering.

Code: Loading, Imputation, Standardization, Save

```
from sklearn.datasets import load_wine
data = load_wine()
X = pd.DataFrame(data.data, columns=data.feature_names)
y = pd.Series(data.target)
imputer = SimpleImputer(strategy='median')
X_imputed = pd.DataFrame(imputer.fit_transform(X), columns=X.columns)
scaler = StandardScaler()
X_scaled = pd.DataFrame(scaler.fit_transform(X_imputed), columns=X.columns)
```

Dataset & Features

Total samples: 178; features: 13. Variables: alcohol, malic_acid, ash, alcalinity_of_ash, magnesium, total_phenols, flavanoids, nonflavanoid_phenols, proanthocyanins, color_intensity, hue, od280/od315_of_diluted_wines, proline. Labels used only for optional external validation (not for tuning). Class counts: {1: 71, 0: 59, 2: 48}.

Preprocessing Choices

Median imputation handles potential missingness (none observed in Wine). Z-score standardization is crucial for distance-based algorithms and PCA, ensuring all features contribute comparably.

Pipeline Overview

 $\mathsf{Load} \to \mathsf{Impute} \to \mathsf{Standardize} \to \mathsf{EDA} \to \mathsf{PCA} \to \mathsf{Feature} \ \mathsf{Engineering} \to \mathsf{KMeans/Hierarchical} \to \mathsf{Validation} \to \mathsf{Inference} \to \mathsf{Presentation}$

Part B: First Exploratory Data Analysis (20 points)

Descriptive statistics for selected features (alcohol, malic_acid, ash, flavanoids) were computed and saved. Histograms for at least four variables reveal distribution shape and skew; we also include a PCA scree plot to motivate dimensionality reduction.

stat	alcohol	malic_acid	ash	flavanoids
mean	13.00	2.34	2.37	2.03
std	0.81	1.12	0.27	1.00
min	11.03	0.74	1.36	0.34
max	14.83	5.80	3.23	5.08

Histograms (4 variables)

Skewness (selected): {'alcohol': -0.051482331077134784, 'malic_acid': 1.0396511925814442, 'ash': -0.17669931645735712, 'flavanoids': 0.02534355338149103}

Significance: Histograms show spread/outliers; skewness highlights long tails (e.g., malic_acid right-skew). Scree plot shows diminishing variance gains across components.

Code: Histograms & Descriptive Stats

```
selected = ['alcohol','malic_acid','ash','flavanoids']
desc = X_imputed[selected].describe().T
for col in selected:
    fig, ax = plt.subplots()
    sns.histplot(X_imputed[col], kde=True, ax=ax)
    save_fig(fig, os.path.join(hist_dir, f'{col}_hist.png'))
```

PCA Scree Plot

8

Component

10

12

Dimension Reduction (PCA)

2

4

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Explained Variance Ratio

PCA reduces redundancy from correlated variables and can improve cluster separation. Retaining 95% variance yields 10 components; the scree plot shows diminishing returns across components.

6

Code: Building the PCA Scree Plot

```
pca = PCA(); pca.fit(X_scaled)
evr = pca.explained_variance_ratio_
fig, ax = plt.subplots()
ax.plot(np.arange(1, len(evr)+1), evr, marker='o')
save_fig(fig, os.path.join(fig_dir, 'pca_scree.png'))
```

Part C: Feature Engineering (15 points)

We optionally crafted composite features (acid_index = malic_acid/alcohol; phenols_ratio = total_phenols/(flavanoids+ ϵ)) and standardized them. We also applied PCA retaining 95% variance. These transformed features were considered in clustering when they improved separation/compactness.

Code: Composite Features & PCA (95%)

```
acid_index = X_imputed['malic_acid'] / X_imputed['alcohol']
phenols_ratio = X_imputed['total_phenols'] / (X_imputed['flavanoids'] + 1e-6)
comp_scaler = StandardScaler()
comp = comp_scaler.fit_transform(np.c_[acid_index, phenols_ratio])
X_fe = X_scaled.copy(); X_fe['acid_index'] = comp[:,0]; X_fe['phenols_ratio'] = comp[:,1]
pca95 = PCA(n_components=0.95, svd_solver='full'); X_pca = pca95.fit_transform(X_scaled)
```

Part D: Clustering Modelling & Validation (25 points)

K-means: run k=2..8; compute Silhouette (\uparrow), Davies–Bouldin (\downarrow), Calinski–Harabasz (\uparrow) and pick k balancing these indices. Hierarchical: build Ward & average dendrograms and compute cophenetic correlation to assess tree fidelity. External validation (ARI, NMI) reported for analysis only.

KMeans Model Selection

Clustering Methods & Indices

K-means minimizes within-cluster variance; hierarchical builds a dendrogram using Ward (variance-minimizing) and average (mean-distance) linkages. Internal indices used: Silhouette (cohesion/separation, higher better), Davies–Bouldin (cluster separation/compactness, lower better), Calinski–Harabasz (between/within dispersion, higher better).

Indices vs k (scaled)

Indices vs k (pca)

Indices vs k (feature_engineered)

Selected configuration: set=pca, k=3. Metrics: Silhouette=0.299, Davies-Bouldin=1.336, Calinski-Harabasz=76.2.

Code: Computing Indices vs k

for k in range(2, 9):

```
km = KMeans(n_clusters=k, n_init=10, random_state=42)
labels = km.fit_predict(features)
sil = silhouette_score(features, labels)
db = davies_bouldin_score(features, labels)
ch = calinski_harabasz_score(features, labels)  # plot vs k
```

Hierarchical Dendrograms

Cophenetic correlation evaluates dendrogram fidelity to original distances. Ward: 0.664, Average: 0.761.

Code: Building Dendrograms

```
Z_ward = linkage(features_for_kmeans, method='ward', metric='euclidean')
fig, ax = plt.subplots()
dendrogram(Z_ward, ax=ax)
save_fig(fig, os.path.join(fig_dir, 'dendrogram_ward.png'))
```

Code: Cophenetic Correlation

```
Y = pdist(features_for_kmeans)
coph_ward, _ = cophenet(Z_ward, Y)
coph_avg, _ = cophenet(Z_avg, Y)
json.dump({'ward': coph_ward, 'average': coph_avg}, open(os.path.join(out_dir,'cophenetic.json'),'w
```

PCA Scatter by KMeans Clusters

Code: PCA Scatter by Cluster

```
pca2 = PCA(n_components=2)
X_pca2 = pca2.fit_transform(X_scaled)
fig, ax = plt.subplots()
ax.scatter(X_pca2[:, 0], X_pca2[:, 1], c=kmeans_labels, cmap='viridis')
save_fig(fig, os.path.join(fig_dir, 'pca_scatter_kmeans.png'))
```

Cluster Centroids (Original Units)

Cluster	alcohol	malic_acid	ash	flavanoids
0	12.25	1.90	2.23	2.06
1	13.13	3.31	2.41	0.86
2	13.68	1.99	2.47	2.96

Cluster Profiles (Selected Variables)

Code: Cluster Profiles Bar Chart

```
key_vars = ['alcohol', 'malic_acid', 'ash', 'flavanoids']
fig, ax = plt.subplots(figsize=(10, 5))
idx = np.arange(len(key_vars)); width = 0.8 / chosen_k
for c in range(chosen_k):
    ax.bar(idx + c * width, centroids_original.loc[c, key_vars], width)
save_fig(fig, os.path.join(fig_dir, 'cluster_profiles_bar.png'))
```

Part E: Second EDA & Statistical Inference (15 points)

Provide centroids in original units and PCA scatter coloured by cluster to interpret clusters. Use ANOVA/Kruskal-Wallis on alcohol and flavanoids; report p-values and effect sizes (eta², ϵ ²). If labels used for validation, note any discrepancies.

Statistical Inference

Alcohol: ANOVA p=0.0000, eta²=0.564; Kruskal p=0.0000, ε ²=0.571

Flavanoids: ANOVA p=0.0000, eta²=0.756; Kruskal p=0.0000, ε ²=0.750

Effect sizes (eta², ε ²) contextualize practical differences beyond p-values.

Code: ANOVA & Kruskal-Wallis

```
df = X_imputed.copy(); df['cluster'] = kmeans_labels
groups = [g['alcohol'].values for _, g in df.groupby('cluster')]
f, p = stats.f_oneway(*groups)
h, pkw = stats.kruskal(*groups)
# eta² and & computed from sums of squares and H-statistic
```

External Validation (Optional)

Adjusted Rand Index (ARI)=0.897, Normalized Mutual Info (NMI)=0.876. Labels were not used in tuning; external metrics are reported for analysis only.

Part F: PCA Influence & Suitability (Trade-offs)

How PCA influenced clustering decisions: PCA features yielded the best balance of internal indices (e.g., silhouette) at k=3, indicating reduced collinearity/noise improved separability.

Hierarchical vs K-means suitability: hierarchical exposes multi-scale structure but depends on linkage choice and can show chaining; K-means is efficient and interpretable for roughly convex clusters. Choice depends on goals and data geometry.

Reflection & Rationale

Standardization ensures fair distances; PCA reduces noise and collinearity, often improving cluster compactness/separation. K-means is efficient and interpretable for convex clusters; hierarchical reveals multiscale structure and is evaluated via cophenetic correlation. In this run, PCA features with k=3 yielded the best internal indices, suggesting reduction clarified the grouping signal.

Trade-offs: K-means sensitivity to scaling and initialization vs. hierarchical dependence on linkage choice and potential chaining. Future work: stability analysis, alternative algorithms (GMM, DBSCAN), domain-informed feature engineering.

Applications

Quality control: group similar wines; product segmentation; inventory planning and sourcing; marketing tailored to cluster profiles.

Benefits & Limitations

Benefits: fast, interpretable clustering; dendrograms reveal structure; PCA reduces noise. Limitations: K-means assumes convex clusters and needs standardization; hierarchical is sensitive to linkage; PCA components may be less interpretable.