Anamorphic Encryption, Revisited

Fabio Banfi¹ Konstantin Gegier² Martin Hirt²

Ueli Maurer² Guilherme Rito³

¹Zühlke Engineering AG, Switzerland

²ETH Zurich, Switzerland

³Ruhr-Universität Bochum, Germany

EUROCRYPT 2024 May 27, Zurich, Switzerland

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Decoupling Keys & Security

In Persiano et al., double key dk was bound to key pair (sk, pk): $(sk, pk, dk) \leftarrow \mathbf{aGen}()$ **Limitation:** impossible to associate a new double key to an *already deployed* key pair We redefine **aGen** so that Bob can *later* associate $dk \leftarrow \mathbf{aGen}(sk, pk)$ to his key pair **Advantages:** can associate *multiple* double keys to a key pair and enables **deniability**

Recall the two modes Alice and Bob can use to communicate:

- Normal: $c \leftarrow \mathsf{Enc}(pk, m); \qquad m := \mathsf{Dec}(sk, c)$
- ▶ Anamorphic: $\tilde{c} \leftarrow \mathsf{aEnc}(dk, m, \widehat{m});$ $\hat{m} := \mathsf{aDec}(dk, \tilde{c}),$ $m := \mathsf{Dec}(sk, \tilde{c})$

Security: The two modes must be indistinguishable: $\tilde{c} \approx c!$ **Is this all?**

Using Anamorphic Encryption

This case was not considered! Need to signal "no covert message" \implies Robustness

Why Robustness?

Functionality: Bob might use Π regularly and Σ sporadically

Therefore, more often than not: ciphertexts carry no (intentional) covert message!

When Bob sees "garbage" covert messages, he could guess they were not meant \dots

Is this satisfactory? No!

Security: it could get even worse!

Without robustness, D might find out that Bob has established a covert channel!

- 1. Send encryption of random message to Bob
- 2. If D is lucky, the covert message is not "garbage" and Bob detectably reacts!

Construction Σ_1 : A Naive Robust Scheme

Keep $\widehat{\mathcal{M}}$ small (poly. size), share key K of PRF F as part of double key dk, and then:

▶ Alice: map $\widehat{m} \in \widehat{\mathcal{M}}$ to $r \in \mathcal{R}$ via F_K and counter ctr, use r to encrypt m into \widetilde{c} :

$$\mathbf{aEnc}(\mathit{dk}, m, \widehat{m}) := \mathbf{Enc}(\mathit{pk}, m; F_K(\mathbf{ctr} \| \, \widehat{m}))$$

▶ **Bob:** decrypt \tilde{c} into m, and check which $\widehat{m} \in \widehat{\mathcal{M}}$ yields \tilde{c} :

$$a\mathbf{Dec}(dk,\tilde{c}) := \{ \text{ let } m := \mathbf{Dec}(sk,\tilde{c});$$

find
$$\widehat{m}$$
 s.t. $\mathbf{Enc}(pk, m; F_K(\mathbf{ctr} || \widehat{m})) = \widetilde{c}$ or return $\bot; \}$

Problem: Alice and Bob need to keep synchronized counters and aDec uses Dec!

Solution: use PKEs with a special property: Selective Randomness Recoverability

Selective Randomness Recoverability (SRR)

PKE scheme $\Pi = (Gen, Enc, Dec)$ is SRR if the following conditions are met:

- (i) Randomness space ${\mathcal R}$ must form a group with some operation \star
- (ii) Ciphertexts "have two parts": for $c := \mathbf{Enc}(pk, m; r)$ we want c = (A, B) where:
 - Part A depends on pk, m, and r: $A = \alpha(pk, m, r)$
 - Part B depends **only** on r: $B = \beta(r)$
- (iii) Can compute $\beta(a)$ from $\beta(a \star b)$ and b:
 - ▶ There exists an efficiently computable function γ s.t. $\gamma(\beta(a \star b), b) = \beta(a)$

Both **ElGamal** and **Cramer-Shoup** are SRR

Construction Σ_2 : Using an SRR Scheme

Keep $\widehat{\mathcal{M}}$ small (poly. size), share key K of PRF F as part of double key dk, and then:

- ▶ **Bob:** precompute β^{-1} in *table* \mathbf{T} : set $\mathbf{T}[\beta(\widehat{m})] := \widehat{m}$ for each $\widehat{m} \in \widehat{\mathcal{M}}$
- ▶ Alice: use $F_K(\mathtt{ctr})$ as otp for \widehat{m} and use result as r to enc. m into $\widetilde{c} = (A, B)$:

$$\mathbf{aEnc}(\mathit{dk}, m, \widehat{m}; \mathtt{ctr}) := \mathbf{Enc}(\mathit{pk}, m; \widehat{m} \star F_K(\mathtt{ctr}))$$

Bob: use F_K and γ to extract \widehat{m} from B:

$$aDec(dk, (A, B); ctr) := T[\gamma(B, F_K(ctr))]$$
 [Dec not needed!]

Still need to keep **synchronized** counters!

Construction Σ_3 : Getting Rid of Synchronization

Idea: pick random ctr, until can partially extract ctr from B via some function δ **aEnc** (dk, m, \widehat{m}) :

- 1. Pick u.a.r. $(x,y) \in [\sigma] \times [\tau]$, set $\mathsf{ctr} := x \| y, \ r := \widehat{m} \star F_K(\mathsf{ctr})$, and $B := \beta(r)$
- 2. Repeat until $\delta(B) = x$, let r^* be the such first r
- 3. Return $(A, B) := \operatorname{Enc}(pk, m; r^*)$

aDec(dk, (A, B)):

- 1. Set $x := \delta(B)$
- 2. For each possible value y: if $\widehat{m} := \mathbf{T}[\gamma(B, F_K(\mathbf{x}||\mathbf{y}))] \neq \bot$, return \widehat{m}
- 3. If no such y found, return \perp

Security-Efficiency Trade-Off for Σ_3

Security of Σ_3 : can safely transmit at most $\sigma \cdot \tau$ covert messages

Efficiency of Σ_3 :

- **aEnc** takes σ tries in expectation
- ightharpoonup aDec takes at most au tries

Trade-off:

- ▶ For aEnc and aDec to be efficient, σ and τ must be small (poly.)
- \blacktriangleright This means, the limit on transmitted covert messages $\sigma \cdot \tau$ will also be small

Mitigation: in our new model, we can simply update the double key!

Conclusions

- ▶ Our abstract scheme can be made concrete for **EIGamal** and **Cramer-Shoup**
- ▶ We also show how to make (fully) rand. recoverable schemes robustly anamorphic
 - Use small subset of randomness as covert message space (concrete for RSA-OAEP)
- Open questions:
 - ls the trade-off between security and efficiency for Σ_3 optimal?
 - ► Are there more robust anamorphic schemes? (see next talk ②)

Thank You For Your Attention!

Appendix: The Evolution of Anamorphic Encryption

- ▶ Persiano et al. [EUROCRYPT 2022]: first receiver- and sender-anam. schemes
- ► Kutyłowski et al. [CRYPTO 2023]: sender-anamorphic signatures
- ► Kutyłowski et al. [PoPETs 2023(4)]: more receiver-anamorphic PKE schemes
- ▶ Wang et al. [ASIACRYPT 2023]: sender-anam. **robustness** (inspired by our work)
- Our work [EUROCRYPT 2024]: receiver-anamorphic robustness
- ► Catalano et al. [EUROCRYPT 2024]: receiver-anam. homomorphic encryption
 - + new receiver-anamorphic **robust** schemes

► More to come ...

Appendix: Deniability

Why does decoupling key-pair (sk, pk) and double key dk enable **deniability**?

Assume $dk \leftarrow \mathbf{aGen}(pk)$ instead of $dk \leftarrow \mathbf{aGen}(sk, pk)$ (true for all our constructions)

Then, a malicious sender holding dk cannot convince D that Bob also holds dk:

- ightharpoonup The double key dk can be generated either by the sender or the receiver
- lacktriangle The sender can simulate dk and some ciphertexts, without the help of the receiver

This is **not true** for Persiano et al.'s anamorphic Naor-Yung transform:

- ightharpoonup The malicious sender hands dk to the dictator
- ▶ The dictator can then detect whether key-pair was deployed in anamorphic mode

Appendix: An SRR Scheme

EIGamal on cyclic group $\mathbb{G} = \langle g \rangle$ of order q is SRR:

(i) $\mathcal{R}=\mathbb{Z}_q$, and $\langle \mathbb{Z}_q; \oplus
angle$ is a group with \oplus addition modulo q

- (ii) With $A = \alpha(pk, m, r) = m \cdot pk^r$ and $B = \beta(r) = g^r$: $\mathbf{Enc}(pk, m; r) = (A, B)$
- $\text{(iii)} \ \ \text{With} \ \ \gamma(a,b) := a \cdot g^{-b} \colon \quad \gamma(\beta(a \oplus b),b) = \gamma(g^{a \oplus b},b) = g^{a \oplus b} \cdot g^{-b} = g^a = \beta(a)$

Analogously for Cramer-Shoup

Appendix: Correctness and Robustness of Σ_2

Correctness: with $(A, \beta(\widehat{m} \star F_K(\mathtt{ctr}))) := \mathsf{aEnc}(dk, m, \widehat{m}; \mathtt{ctr})$:

$$\mathbf{aDec}(dk, (A, \beta(\widehat{m} \star F_K(\mathtt{ctr}))); \mathtt{ctr}) = \mathbf{T}[\gamma(\beta(\widehat{m} \star F_K(\mathtt{ctr})), F_K(\mathtt{ctr}))]$$

$$=\mathbf{T}[\beta(\widehat{m})]=\widehat{m}$$

Robustness: with $(A, \beta(r)) := \mathbf{Enc}(pk, m; r)$, for $r \stackrel{\$}{\leftarrow} \mathcal{R}$:

$$\mathbf{aDec}(dk,(A,\beta(r));\mathtt{ctr}) = \mathbf{T}[\gamma(\beta(r),F_K(\mathtt{ctr}))] = \mathbf{T}[\beta(r\star F_K(\mathtt{ctr})^{-1})] \overset{(*)}{\approx} \bot$$

(*): w.o.p., since
$$r\star F_K(\mathtt{ctr})^{-1}\notin\widehat{\mathcal{M}}$$
 with probability $1-|\widehat{\mathcal{M}}|/|\mathcal{R}|$