Announcements

- * HW2 (HW3 soon)
 - * Due on Monday Sep. 30 at 11:59pm
- Project 1 (Project 2 soon)
 - * Due on Wed. Oct. 9 at 11:59
- * Make-up class
 - * Oct 14 no class
 - * Oct 9 at 8am-9:40am in Upper Hall上院202
- Final Exam
 - * Monday Dec. 9 at 4pm-5:40pm

Ve492: Introduction to Artificial Intelligence

Markov Decision Processes I

Paul Weng

UM-SJTU Joint Institute

Slides adapted from http://ai.berkeley.edu, AIMA, UM, CMU

Non-Deterministic Search

Example: Grid World

* A maze-like problem

- The agent lives in a grid
- * Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - * 80% of the time, the action North takes the agent North (if there is no wall there)
 - * 10% of the time, North takes the agent West; 10% East
 - * If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - * Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World

Stochastic Grid World

Markov Decision Processes

An MDP is defined by:

- * A set of states $s \in S$
- * A set of actions $a \in A$
- * A transition function T(s, a, s')
 - * Probability that a from s leads to s', i.e., $P(s' \mid s, a)$
 - * Also called the model or the dynamics
- * A reward function R(s, a, s')
 - * Sometimes just R(s) or R(s')
- * A start state
- Maybe a terminal state

MDPs are non-deterministic search problems

- * One way to solve them is with expectimax search
- * We'll have a new tool soon

What is Markov about MDPs?

- * "Markov" generally means that given the present state, the future and the past are independent
- * For Markov decision processes, "Markov" means action out only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$
=

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

Andrey Markov (1856-1922)

* This is just like search, where the successor function could only depend on the current state (not the history)

Policies

In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal

For MDPs, we want an optimal policy $\pi^*: S \to A$

- * A policy π gives an action for each state
- An optimal policy is one that maximizes expected utility if followed
- An explicit policy defines a reflex agent

Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

Expectimax didn't compute entire policies

It computed the action for a single state only

Optimal Policies

$$R(s) = -0.01$$

$$R(s) = -0.4$$

$$R(s) = -0.03$$

$$R(s) = -2.0$$

Example: Racing

Example: Racing

A robot car wants to travel far, quickly

Three states: Cool, Warm, Overheated

Two actions: Slow, Fast

Going faster gets double reward

MDP Search Trees

Each MDP state projects an expectimax-like search tree

Utilities of Sequences

Utilities of Sequences

What preferences should an agent have over reward sequences?

More or less?

Now or later?

$$[0, 0, 1]$$
 or $[1, 0, 0]$

Discounting

It's reasonable to maximize the sum of rewards

It's also reasonable to prefer rewards now to rewards later

One solution: values of rewards decay exponentially

1

Worth Now

Y

Worth Next Step

 γ^2

Worth In Two Steps

Discounting

* How to discount?

* Each time we descend a level, we multiply in the discount once

* Why discount?

- Sooner rewards probably do have higher utility than later rewards
- Also helps our algorithms converge
- Example: discount of 0.5
 - * U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - * U([1,2,3]) < U([3,2,1])

Quiz: Discounted Sum of Rewards

- * What is the value of U[2,4,8] with $\gamma = 0.5$?
- * What is the value of U[8,4,2] with $\gamma = 0.5$?

Stationary Preferences

Theorem: if we assume stationary preferences:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

$$\updownarrow$$

$$[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$

Then: there are only two ways to define utilities

- * Additive utility: $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + ...$
- * Discounted utility: $U([r_0, r_1, r_2, ...]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

Discounting

Given:

- * Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic

For $\gamma = 1$, what is the optimal policy?

For $\gamma = 0.1$, what is the optimal policy?

For which γ are West and East equally good when in state d?

Infinite Utilities?!

- * Problem: What if the game lasts forever? Do we get infinite rewards?
- * Solutions:
 - Finite horizon: (similar to depth-limited search)
 - * Terminate episodes after a fixed T steps (e.g. life)
 - * Gives nonstationary policies (π depends on time left)
 - * Discounting: use $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

- Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Recap: Defining MDPs

Markov decision processes:

- Set of states S
- Start state s₀
- Set of actions A
- * Transitions P(s' | s,a) (or T(s,a,s'))
- Rewards R(s,a,s') (and discount γ)

MDP quantities so far:

- Policy = Choice of action for each state
- Utility = sum of (discounted) rewards

Solving MDPs

Optimal Quantities

- The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

• The optimal policy: $\pi^*(s) = \text{optimal action from state } s$

Snapshot of Demo – Gridworld V Values

Snapshot of Demo – Gridworld Q Values

Values of States

- * Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - * This is just what expectimax computed!
- * Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

- * We're doing way too much work with expectimax!
- * Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - * Idea: Do a depth-limited computation, but with increasing depths until change is small
 - * Note: deep parts of the tree eventually don't matter if $\gamma < 1$

Time-Limited Values

- Key idea: time-limited values
- * Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - * Equivalently, it's what a depth-k expectimax would give from s

Computing Time-Limited Values

Value Iteration

Value Iteration

- * Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- * Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

* Repeat until convergence

- Basic idea: approximations get refined towards optimal values
- Policy may converge long before values do

Example: Value Iteration

Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Convergence

- * How do we know the V_k vectors are going to converge?
- * Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - * The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - * That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - * But everything is discounted by γ^k that far out
 - * So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
 - * So as k increases, the values converge

MDP Notation

Standard expectimax:
$$V(s) = \max_{a} \sum_{s'} P(s' | s, a) V(s')$$

Bellman equations: $V(s) = \max_{a} \sum_{s'} P(s' | s, a) [R(s, a, s') + \gamma V(s')]$
Value iteration: $V_{k+1}(s) = \max_{a} \sum_{s'} P(s' | s, a) [R(s, a, s') + \gamma V_{k}(s')], \quad \forall \ s$
Q-iteration: $Q_{k+1}(s, a) = \sum_{s'} P(s' | s, a) [R(s, a, s') + \gamma \max_{a'} Q_{k}(s', a')], \quad \forall \ s, a$
Policy extraction: $\pi_{V}(s) = \operatorname{argmax} \sum_{s'} P(s' | s, a) [R(s, a, s') + \gamma V(s')], \quad \forall \ s$
Policy evaluation: $V_{k+1}^{\pi}(s) = \sum_{s'} P(s' | s, \pi(s)) [R(s, \pi(s), s') + \gamma V_{k}^{\pi}(s')], \quad \forall \ s$
Policy improvement: $\pi_{new}(s) = \operatorname{argmax} \sum_{s'} P(s' | s, a) [R(s, a, s') + \gamma V_{notd}^{\pi}(s')], \quad \forall \ s$

MDP Notation

Standard expectimax:
$$V(s) = \max_{a} \sum_{s'} P(s' | s, a) V(s')$$

Bellman equations: $V(s) = \max_{a} \sum_{s'} P(s' | s, a) \left[R(s, a, s') + \gamma V(s') \right]$
Value iteration: $V_{k+1}(s) = \max_{a} \sum_{s'} P(s' | s, a) \left[R(s, a, s') + \gamma V_{k}(s') \right], \quad \forall \ s$
Q-iteration: $Q_{k+1}(s, a) = \sum_{s'} P(s' | s, a) \left[R(s, a, s') + \gamma \max_{a'} Q_{k}(s', a') \right], \quad \forall \ s, a$
Policy extraction: $\pi_{V}(s) = \underset{s'}{\operatorname{argmax}} \sum_{s'} P(s' | s, a) \left[R(s, a, s') + \gamma V(s') \right], \quad \forall \ s$
Policy evaluation: $V_{k+1}^{\pi}(s) = \sum_{s'} P(s' | s, \pi(s)) \left[R(s, \pi(s), s') + \gamma V_{k}^{\pi}(s') \right], \quad \forall \ s$
Policy improvement: $\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s' | s, a) \left[R(s, a, s') + \gamma V_{k}^{\pi}(s') \right], \quad \forall \ s$