[奨励講演] ストリーミング配信に対する ソフトウェアペーシング方式の効果

高野了成^{1,2}, 工藤知宏¹, 児玉祐悦¹, 松田元彦¹, 岡崎史裕¹, 石川裕^{3,1}, 吉澤康文⁴

1)産業技術総合研究所, グリッド研究センター 2)株式会社アックス 3)東京大学 4)東京農工大学

2006年7月19日 電子情報通信学会 ネットワークシステム研究会@北海道大学

発表の流れ

- ギャップパケット方式によるソフトウェアペーシングの実現
 - 「ソフトウェアによる精密ペーシング方式を用いたTCP通信性能の改善」(NS2005-157)
- ストリーミング配信に対する適用
- 実験
- ・まとめ

精密なパケットスケジューリング(1)

- タイマ割込み駆動方式
 - ギガビットネットワークでは、精密な制御が困難
 - 1Gbpsで1500バイトの送信に要する時間は12マイクロ秒
 - 一般的なOSのタイマは1~10ミリ秒
 - マイクロ秒の高精度タイマ制御はオーバヘッドが大きい

精密なパケットスケジューリング(2)

- バイトクロック方式
 - 物理的な送信時間は「1バイト=8ナノ秒」と正確
 - すべての隙間をパケットで埋めることができれば、送信バイト数に基づいて精密にスケジューリングできる

ギャップパケット

- 適用可能なパケットが存在しない場合、ギャップパケット(ダミーのパケット)を挿入する
- 要件
 - ネットワークに対する副作用がない
 - 1バイト単位でパケットサイズを調整できる

イーサネットにおける ギャップパケットの実現

- PAUSEフレーム(IEEE 802.3x規格)の利用
 - 直近のスイッチ/ルータの入力ポートで破棄されるので、 外部ネットワークへの影響はない
 - 実パケットのパケット送信間隔は保たれたまま、外部ネットワークへ送出される
 - パケットサイズは64バイト~MTUサイズ

送信PC (普通の)スイッチ

PSPacer

- パケットペーシング:目標帯域に基づいて、パケット 送信間隔を均一に調整する
 - ギャップパケットサイズは、物理帯域に占める目標帯域 の割合を基に計算する

$$ipg = \left(\frac{max_rate}{target_rate} - 1\right) \times packet_size$$

PSPacerによる正確な帯域制御

8Kbps~930Mbpsの範囲で制御可能

*) ギャップパケットが最小フレームサイズである64バイトの場合

発表の流れ

- ギャップパケット方式によるソフトウェアペーシングの実現
- ストリーミング配信に対する適用
- 実験
- まとめ

目的

- 規定の帯域を持つ回線により多くのストリームを パケットロスなく配信したい
 - ストリーム数 = ボトルネック帯域 / 平均レート
- 配信経路途中のパケットロスを削減したい
 - 送受信バッファは十分あると仮定

ストリーミング サーバ

ボトルネック ルータ

クライアント

未再生フレーム発生の原因

問題

トラフィックのバースト性により、ボトルネックリンクで パケットロスが発生する

ボトルネック帯域(800Mbps) / 平均レート(400Mbps) = 2ストリーム?

アプローチ

ストリーミングサーバの出力をボトルネック帯域に 合わせてペーシングする

発表の流れ

- ギャップパケット方式によるソフトウェアペーシングの実現
- ・ストリーミング配信に対する適用
- 実験
- ・まとめ

実験

- ボトルネック帯域:800Mbps
- サーバ1台
- 1種類のMPEG4コンテンツ(3Dアニメーション)
 - 160ストリーム = 800Mbps / 5Mbps

実験環境(1)

実験環境(2)

- ハードウェアネットワークGtrcNET-1によるボトル ネックリンクの模擬
 - ボトルネック帯域: 800Mbps
 - ボトルネックルータ
 - バッファサイズ: 64KB, 256KB, 1024KB
 - 64KB: 1Gbpsの入力が2.56ms以上続くとバッファがあふれる
 - Drop Tail方式

結果

バッファ サイズ	Normal		PSPacer	
	パケットロス	ストリーム数	パケットロス	ストリーム数
64KB	32171 (0.50%)	16	0 (0.00%)	160
256KB	11767 (0.18%)	112	0 (0.00%)	160
1024KB	0 (0.00%)	160	0 (0.00%)	160

パケットロスなしで再生できるストリーム数 (単位は16ストリーム)

パケットロス数の違いについて

まとめ

- ストリーミング配信に対するペーシングの 適用を提案した
- ボトルネックリンクを模擬したネットワーク環境において、ストリーミング配信実験を行った結果、PSPacerを用いることでパケットロスを削減できる

今後の課題

- 目標帯域の見積りの最適化
 - ペーシングによる遅延増加により, サーバ側でフレーム(パケット)が間引かれる
 - 間引きの閾値を基に、(間引きが発生しない) ストリームあたりの目標帯域を決定する
 - 例) 閾値が100msであれば、ペーシングによって、100msの遅延が発生しても許容できる

PSPacerはGNU GPLライセンスにて公開

GridMPI: http://www.gridmpi.org/

GtrcNET-1: http://www.gtrc.aist.go.jp/gnet/

