Sistema de Numeração em Computação

B -> base do sistema de numeração n -> quantidade de digitos disponíveis para representan os nomuos

$$a = \sum_{i=0}^{n-1} (x_i.B^i)$$

Para uma deter minada bose B, empregando-se n digitos tem-x: Bn combinações distintas, ou seja. Bnuímeras distintos.

Ex: Bose é decimal empregando- x 3 dégitos para a sua representação:

103 = 1000 números possíveis

999 a Ø

Repare que a bose binária requer uma quantidade apande de dégitos para representar números:

ex: 255 = 11111111 decimal binário

Números binários tenão prondes caderos de "0": "1", o que poderatra emos visuais quando realizarmos kituras. Assim Costuma. x em pregos a bose 8 e base 16 (Hexadecimal) ra representação de uma forma mais compacta pora representar suímeros binários

A Tabela 2.1 abaixo lista os primeiros 16 números em binário, decimal, octal e hexadecimal.

Binário	Decimal	Octal	Hexadecimal
0000	0	00	0
0001	1	01	1
0010	2	02	2
0011	3	03	3
0100	4	04	4
0101	5	05	5
0110	6	06	6
0111	7	07	7
1000	8	10	8
1001	9	11	9
1010	10	12 ·	· A
1011	11	13	В
1100	12	14	C
1101	13	15	D
1110	14	16	Е
1111	15	17	· F

Tabela 2.1 - Números em binário, decimal, octal e hexadecimal

Cada digito do Sistema binário, (o. 11, e denominado de bit (binary digit)

4 bits → nibble 8 bits → byTe

Múltiplos do sistema decimal K. M. G. T. P

No sistema binário

Kb c KB

-> 20 = 1024

Kilo bit Kilobyte

Megabit = 2°.2° = 2°.kbit

Representação de números

Inteiro positivo
Sinal - magnitude
Complemento de 1
complemento de 2.

Jnterros Positivos:

n digitos => 2º números

faixa de representação:

0 a 2º-1

25 = 32 => 00000 a 11111

(0) decimal (31 decimal)

• some-se not melmente OO Heradecimal FF

Heradecim

• pode haver estouro (cherflow)

Representação Siral-magnitude

- -> Representação de números positivos e negativos
- -> Utiliza se, em geral, o digito mais significativo para representar o sinal: 1 --- "+"
- -> Redução de faire de representação, assim Tem-x agenc (n-1) digitos para representar a magnitude
- -> Representação de faire: (-(2-1), (2-1))
 ex: n=4

$$-(5_{3}-7)=-2$$
 => 1111
+(5₃-7)=+3 => 0117

-> 2 representações pora o valor "o" - DODO

- = É possível representar no máximo: 2"-1 valores distintos
- -> Pode ser vista como composta por 2 porcelas:

 S(a)M(a) > magnitudo a

 L> scral do salémero a
 - -> As opnações autréticas de soma e subtração em computo dor requer vários passos:

Inferir some as majnitudes
Inferir some as sirais

S(a)	S(c)	S(d)	M(d)	Exemplo
+	+	+	M(a)+M(c)	5 + 7 = 12
_		_	M(a)+M(c)	-5 + -7 = -12
+	-	se $M(a) \ge M(c)$, +	M(a)-M(c)	7 + -5 = 2
		se $M(a) < M(c)$, –	M(c)-M(a)	5 + -7 = -2
-	+	se $M(a)>M(c)$, –	M(a)-M(c)	-7 + 5 = -2
		se $M(a) \leq M(c)$, +	M(c)-M(a)	-5 + 7 = 2

Representação em complemento de 1

- -> Permitir que a opuação de soma seja realizada de forma vínica.
- -> números positivos na forma normal (Eipo InTeiro pa
- -> números regativos na forma de complemento
- esto número de maior quantidade su presentérel. (Teodie)
- (ou com plementando-x) cada bit do mimero.

Faixa de upresentação:

$$[-(B_2^n-1),+(B_2^n-1)]$$

Er: base biránia com 4 digitos

faixa:
$$(-(2^{\frac{1}{2}}-1))^{2/2}-1)$$

binário	decimal
0111	7
0110	6
0101	5
0100	4
0011	3
0010	2
0001	1
1111	•
1110	-1
110 T	- 5
1100	- 3
1011	- 4
1010	- 5
1007	- 6
1000	-7

Represente ção negativa pode ser obtida, simplesmente, complementemodo-se cada bit do número

-> Na bax 2 (binásia) com representação em complemente de 1 tem- 4:

Se o bit mais significative for "1" => nº negative case contrâme, Man="0" => nº positive.

-> Problema:

Dupla representação pora o grao

-> A magnitude de um número positivo é direta

" " " negativo é obtida aplicando-x

o complemento.

Ex: 1000 em complemento de 1

L, significa que o número é negativo

Qual é a sua magnitude? (sur valor sem considerarmos o sinal)

R: complemente (1000) => 0111

1000 = -7

complemento decimal com schal

do 1

Some de binquio na representação em complemento del.

Alguns resultados recessitam de correção:

-> Para re obter a soma correta em complemento de 1, basta somar o voi-um ao resultado.

subtração:

Regna prática complemente- x o subtraendo e efetba- x a soma em complemento de 1.

Remesentação em complemento de 3

Faire de representação

$$(-2^{n}, 2^{n} - 1)$$

- . Não existe mais a dupla representação do zero.
- · Faixa positiva continua a mesma.
- · Faixa negativa safre um deslo camento de uma unidade
- · Pana a base 2: o digito mais significativo modicand o simal:

 O => positivo (igni antenious)

 1 => negativo (igni antenious)

· Regre Partice por se obter a representação negative:

complements-se os bits (semelhente ao complemento de 1) a soure. # 1. complemento decimel com simil

```
(Dublement)
            decimal com siral
  0111
  0110
  0101
  0100
  0011
  0010
  0001
              -> Todos bets com "1" => -1
  1101
  1100
  1011
  1010
  1001
         - 8 - Aporas 1 bit ( mss) em "1"
  1000
```

- . Soma feita diretamente. (Usade em computação)
- e subtração : complementor se (cm comp. ou z) o subtraendo e efetua-je a soma.
- · Overflow: Esteros de upresentação.

Binário	Inteiros positivos	Sinal- magnitude	Complemento de 1	Complemento de 2
0000	0	+0	0	0
0001	1	1	1	1
0010	2	2	2	2
0011	3	3	3	3
0100	4	4	4	4
0101	* 5 .	5	5	5
0110	6	6	6	6
0111	7	7	7	7
1000	8.	-0	-7	-8
1001	9	-1	-6	- 7
1010	10	-2	-5	– 6
1011	11	-3	-4	- 5
1100	12	-4	-3	_4
1101	13	- 5	_2	-3
1110	14	-6	-1	-2
1111	15	-7	-0	-1

Tabela 2.16 - Interpretação de números binários

Alu abaixo permite fazer subtração em complemento de 1 e complemento de 2. Lembrando que para somarmos números com mais de 1bit deve-se cascatear vários circuitos de ALU . No caso de usarmos subtração em complemento de 2, deve-se colocar "1" na entrada **Vem-um** do somador da parte LSB.

Fig. 3.19 UAL de 1 bit.