```
import pandas as pd
import numpy as np
import scipy
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt
from \ sklearn.preprocessing \ import \ StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.metrics import make_scorer, f1_score
from sklearn.inspection import permutation_importance
import shap
from mpl_toolkits.mplot3d import Axes3D
df = pd.read_csv("df_final.csv")
df.head()
```

X.corr()

I	ntuition_Encoded	Age	Income	Employment_Status	High_Expectation	Industry_Experience	Highest_Degree_Ordinal	Hours_Learning_Weekly	Months_Prog
0	3.0	35.0	2.0	1.0	1.0	1.0	4.0	2.0	
1	3.0	27.0	2.0	1.0	1.0	1.0	4.0	10.0	
2	3.0	24.0	2.0	1.0	1.0	1.0	6.0	5.0	
3	3.0	44.0	2.0	1.0	1.0	1.0	3.0	8.0	
4	3.0	21.0	2.0	1.0	1.0	1.0	4.0	42.0	
5 rows	x 29 columns								

```
# Remove the top five outliers for Money_Spent
```

```
for i in range(0,5):
   df = df[df['Money_Spent'] != df['Money_Spent'].max()]
df['Money_Spent'].max()
→ 60000.0
# Set our outcome variable
y = df['Job_Status_Income(Objective1)']
\# Drop outcome variables, as well as any columns directly related to employment status
'Laid_Off_Potential', 'Replacable_Job_Potential','Industry_Experience'])
# Check for correlated features
```

Intuition Encoded

	Intuition_Encoded	Age	Income	Hign_Expectation	Highest_Degree_Ordinal	Hours_Learning_weekly	Months_Programming	money
Intuition_Encoded	1.000000	0.090556	0.131706	0.173681	0.074111	0.088768	-0.007950	(
Age	0.090556	1.000000	0.472274	0.176099	-0.024744	-0.003074	0.071883	(
Income	0.131706	0.472274	1.000000	0.320787	-0.021986	-0.051267	0.037264	(
High_Expectation	0.173681	0.176099	0.320787	1.000000	0.054478	0.044058	0.002223	(
Highest_Degree_Ordinal	0.074111	-0.024744	-0.021986	0.054478	1.000000	0.035889	-0.015719	-(
Hours_Learning_Weekly	0.088768	-0.003074	-0.051267	0.044058	0.035889	1.000000	0.003143	(
Months_Programming	-0.007950	0.071883	0.037264	0.002223	-0.015719	0.003143	1.000000	(
Money_Spent	0.038722	0.087551	0.093026	0.063645	-0.020973	0.057002	0.033600	
Count_Learning_Methods	0.047709	0.044170	0.005411	0.048509	0.003364	0.168984	0.100183	(
Count_Online_Resources	0.087075	0.034187	0.004011	0.073308	0.014880	0.217995	0.080608	(
In-person Events	0.005363	0.027638	0.023173	0.018385	-0.014916	0.044667	0.064683	(
Listen_Podcasts	0.038103	0.067649	0.109020	0.059503	-0.012909	0.058738	0.041263	(
Youtube_Channels	0.058195	-0.051559	-0.079252	0.042241	0.046879	0.201024	0.031896	(
Months_Finding_New_Job	-0.065193	-0.185489	-0.308171	-0.151163	-0.044621	-0.002225	-0.010524	-(
Study_Field_Computer- related	0.067286	-0.067325	-0.114075	-0.005273	0.112736	0.071346	0.062263	(
Study_Field_Not applicable	-0.133764	-0.264983	-0.204240	-0.090252	-0.034717	-0.027701	-0.036212	-(
Study_Field_Other Science & Engineering	0.032216	0.128787	0.121403	0.027050	-0.051379	-0.008526	-0.005009	-4
Study_Field_Others	0.039132	0.185229	0.174181	0.064555	-0.012498	-0.026069	-0.013582	(

Income High Expectation Highest Degree Ordinal Hours Learning Weekly Months Programming Money

Random Forest Classifier

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=0)
# Perform a grid search to identify the best parameters for the model
param\_grid = {
    'n_estimators': [50, 100, 200],
    'max_depth': [5, 10, 20, None],
    'min_samples_split': [2, 5, 10],
    'bootstrap': [True, False],
grid_search = GridSearchCV(RandomForestClassifier(random_state=0), param_grid, scoring='f1_weighted', cv=5)
grid_search.fit(X_train, y_train)
print("Best parameters found: ", grid_search.best_params_)
print("Best cross-validation score: {:.3f}".format(grid_search.best_score_))
Best parameters found: {'bootstrap': False, 'max_depth': None, 'min_samples_split': 10, 'n_estimators': 100}
    Best cross-validation score: 0.786
# Build the model with the recommended parameters, and score it on training and test sets
clf = RandomForestClassifier(random_state=0, **grid_search.best_params_).fit(X_train, y_train)
# Calculate the F1 score for the training set
y_train_pred = clf.predict(X_train)
f1_train = f1_score(y_train, y_train_pred, average='weighted')
# Calculate the F1 score for the test set
y_test_pred = clf.predict(X_test)
f1_test = f1_score(y_test, y_test_pred, average='weighted')
# Print the weighted F1 scores
print("F1 of RF classifier on training set: {:.3f}".format(f1_train))
print("F1 of RF classifier on test set: {:.3f}".format(f1_test))
₹ F1 of RF classifier on training set: 0.985
    F1 of RF classifier on test set: 0.797
# Print a confusion matrix and classification report for additional insight into model performance
print(confusion_matrix(y_test, y_test_pred))
print(classification_report(y_test, y_test_pred))
→ [[738 0 11
     [ 0 519 122 0]
[141 237 171 0]
      [ 0 0 0 840]]
                  precision
                               recall f1-score support
```

```
0
                        0.84
                                   0.99
                                             0.91
                                                         749
                1
                        0.69
                                   0.81
                                             0.74
                                                         641
                        0.56
                                   0.31
                                             0.40
                                                         549
                        1.00
                                   1.00
                                             1.00
                                                         840
                                                        2779
         accuracy
                                             0.82
                        0.77
                                   0.78
        macro avo
                                             0.76
                                                        2779
    weighted avg
                        0.80
                                   0.82
                                             0.80
                                                        2779
# Calculate the F1 score with 10-fold cross-validation
f1_scorer = make_scorer(f1_score, average='weighted')
f1_scores = cross_val_score(clf, X, y, cv=10, scoring=f1_scorer)
# Print the F1 scores for each fold and the average score
print("F1 Scores for each fold: ", f1_scores)
print("Average F1 Score: {:.3f} + {:.3f}".format(f1_scores.mean(),f1_scores.std()))
F1 Scores for each fold: [0.78602757 0.79064562 0.7963856 0.77654197 0.77313895 0.78460738
     0.76859233 0.78190617 0.79498776 0.80308206]
     Average F1 Score: 0.786 + 0.010
  SVM Model
# Define numerical features
numerical_features = ['Age', 'Hours_Learning_Weekly', 'Months_Programming',
                      'Money_Spent', 'Count_Learning_Methods', 'Count_Online_Resources',
                      'Youtube_Channels', 'Months_Finding_New_Job']
# Create preprocessor with StandardScaler
preprocessor = ColumnTransformer(
    transformers=[
        ('num', StandardScaler(), numerical_features)
    remainder='passthrough' # Keep other columns unchanged
# Create the pipeline
pipe = Pipeline(steps=[
    ('preprocessor', preprocessor),
    ('svm', SVC(probability=True, random_state=0)) # Enable probability estimates
# Split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# Define hyperparameter grid
param_grid = {
    'svm_C': [0.1, 1, 10, 100],
'svm_kernel': ['rbf'],
    'svm__gamma': ['scale', 'auto', 0.1, 1, 10]
# Set up Grid Search
grid_search = GridSearchCV(pipe, param_grid, cv=5, scoring='f1_weighted', n_jobs=-1, verbose=2)
grid_search.fit(X_train, y_train)
# Retrieve and print the best parameters and score
best_params = grid_search.best_params_
print("Best parameters found: ", best_params)
print("Best cross-validation score: {:.3f}".format(grid_search.best_score_))
# Set the best parameters to the pipeline (not strictly necessary since fit already sets them)
pipe.set_params(**best_params)
# Now fit the pipeline to the training data
pipe.fit(X_train, y_train)
    Fitting 5 folds for each of 20 candidates, totalling 100 fits
Best parameters found: {'svm_C': 10, 'svm_gamma': 'auto', 'svm_kernel': 'rbf'}
     Best cross-validation score: 0.771
                        Pipeline
             preprocessor: ColumnTransformer
                   num
                                      remainder
            StandardScaler ?
                                    ▶ passthrough
                         ► SVC ?
# Calculate the weighted F1 score on training data using 10-fold CV
train_f1_scores = cross_val_score(pipe, X_train, y_train, cv=10, scoring='f1_weighted')
```

Calculate the weighted F1 score on the test data using 10-fold CV

 $print("Weighted F1 score (10-fold CV) on training set: \{:.3f\} \pm \{:.3f\}".format(train_f1_scores.mean(), train_f1_scores.std()))$

```
test_f1_scores = cross_val_score(pipe, X_test, y_test, cv=10, scoring='f1_weighted')
print("Weighted F1 score (10-fold CV) on test set: {:.3f} ± {:.3f}".format(test_f1_scores.mean(),train_f1_scores.std()))
\rightarrow Weighted F1 score (10-fold CV) on training set: 0.772 \pm 0.004
      Weighted F1 score (10-fold CV) on test set: 0.787 \pm 0.004
# Calculate the F1 score with 10-fold cross-validation
f1_scorer = make_scorer(f1_score, average='weighted')
f1_scores = cross_val_score(pipe, X, y, cv=10, scoring=f1_scorer)
# Print the F1 scores for each fold and the average score
print("F1 Scores for each fold: ", f1_scores)
print("Average F1 Score: {:.3f} ± {:.3f}".format(f1_scores.mean(),f1_scores.std()))
     [CV] END ......svm_C=0.1, svm_gamma=auto, svm_kernel=rbf; total time=
      [CV] END ......svm_C=10.1, svm_gamma=1, svm_kenel=15f; total time= 1.4min

[CV] END .....svm_C=10, svm_gamma=scale, svm_kernel=rbf; total time= 21.5s
      [CV] END ......svm_C=10, svm_gamma=auto, svm_kernel=rbf; total time=
      [CV] END ......svm_C=10, svm_gamma=0.1, svm_kernel=rbf; total time= 31.9s
[CV] END .....svm_C=10, svm_gamma=10, svm_kernel=rbf; total time= 1.8min
[CV] END .....svm_C=0.1, svm_gamma=auto, svm_kernel=rbf; total time= 40.4s
      [CV] END ......svm_C=0.1, svm_gamma=1, svm_kernel=rbf; total time= 1.4min
      [CV] END ......svm_C=1, svm_gamma=10, svm_kernel=rbf; total time= 1.8min
[CV] END .....svm_C=100, svm_gamma=auto, svm_kernel=rbf; total time= 40.0s
[CV] END .....svm_C=100, svm_gamma=0.1, svm_kernel=rbf; total time= 46.8s
      [CV] END ......svm_C=0.1, svm_gamma=0.1, svm_kernel=rbf; total time=
      [CV] END ......svm_C=1, svm_gamma=scale, svm_kernel=rbf; total time=
      [CV] END ......svm__C=1, svm__gamma=auto, svm__kernel=rbf; total time=
                                                                                              26.55
      [CV] END .......svm_C=1, svm_gamma=1, svm_kernel=rbf; total time= 1.5min [CV] END .....svm_C=10, svm_gamma=0.1, svm_kernel=rbf; total time= 30.3s
      [CV] END .....svm_C=10, svm_gamma=10, svm_kernel=rbf; total time= 1.8min
      [CV] END .....svm_C=0.1, svm_gamma=scale, svm_kernel=rbf; total time= 42.3s
      [CV] END ......svm_C=1, svm_gamma=scale, svm_kernel=rbf; total time= 21.1s
      [CV] END .....svm_C=1, svm_gamma=0.1, svm_kernel=rbf; total time= 29.9s
[CV] END ....svm_C=1, svm_gamma=1, svm_kernel=rbf; total time= 1.5min
      [CV] END ......svm_C=10, svm_gamma=1, svm_kernel=rbf; total time= 1.6min
      [CV] END ......svm_C=100, svm_gamma=0.1, svm_kernel=rbf; total time= 45.5s [CV] END .....svm_C=0.1, svm_gamma=auto, svm_kernel=rbf; total time= 40.8s
      [CV] END ......svm_C=0.1, svm_gamma=10, svm_kernel=rbf; total time= 1.6min
      [CV] END ......svm_C=10, svm_gamma=scale, svm_kernel=rbf; total time=
      [CV] END ......svm_C=10, svm_gamma=auto, svm_kernel=rbf; total time=
      [CV] END ......svm_C=10, svm_gamma=1, svm_kernel=rbf; total time= 1.6min
      [CV] END ......svm_C=100, svm_gamma=0.1, svm_kernel=rbf; total time=
      [CV] END .....svm_C=0.1, svm_gamma=scale, svm_kernel=rbf; total time=
      [CV] END ......svm_C=1, svm_gamma=auto, svm_kernel=rbf; total time= 21.9s
[CV] END .....svm_C=1, svm_gamma=0.1, svm_kernel=rbf; total time= 30.5s
[CV] END .....svm_C=1, svm_gamma=1, svm_kernel=rbf; total time= 1.5min
      [CV] END ......svm_C=10, svm_gamma=1, svm_kernel=rbf; total time= 1.6min
      [CV] END ......svm_C=100, svm_gamma=0.1, svm_kernel=rbf; total time=
                                                                                              46.09
      [CV] END ......svm_C=0.1, svm_gamma=0.1, svm_kernel=rbf; total time= 41.6s
      [CV] END ......svm_C=0.1, svm_gamma=10, svm_kernel=rbf; total time= 1.6min [CV] END .....svm_C=10, svm_gamma=scale, svm_kernel=rbf; total time= 22.2s
      [CV] END ......svm_C=10, svm_gamma=auto, svm_kernel=rbf; total time=
      [CV] END ......svm_C=10, svm_gamma=1, svm_kernel=rbf; total time= 1.6min
      [CV] END .......svm_C=100, svm_gamma=1, svm_kernel=rbf; total time= 1.3min
[CV] END .....svm_C=0.1, svm_gamma=0.1, svm_kernel=rbf; total time= 41.6s
      [CV] END ......svm_C=0.1, svm_gamma=10, svm_kernel=rbf; total time= 1.6min
      [CV] END ......svm_C=10, svm_gamma=scale, svm_kernel=rbf; total time= 22.0s
      [CV] END ......svm_C=10, svm_gamma=auto, svm_kernel=rbf; total time=
                                                                                             27.15
      [CV] END ........svm_C=10, svm_gamma=1, svm_kernel=rbf; total time= 1.6min
[CV] END ......svm_C=100, svm_gamma=1, svm_kernel=rbf; total time= 1.3min
      [CV] END ......svm_C=0.1, svm_gamma=0.1, svm_kernel=rbf; total time=
      [CV] END ......svm_C=1, svm_gamma=scale, svm_kernel=rbf; total time=
                                                                                              20.95
      [CV] END ......svm C=1, svm qamma=auto, svm kernel=rbf; total time=
                                                                                              26.85
      [CV] END ......svm_C=1, svm_gamma=1, svm_kernel=rbf; total time= 1.5min
      [CV] END ......svm_C=10, svm_gamma=0.1, svm_kernel=rbf; total time=
      [CV] END .....svm_C=100, svm_gamma=scale, svm_kernel=rbf; total time=
                                                                                              35.0s
      [CV] END ......svm_C=100, svm_gamma=auto, svm_kernel=rbf; total time= 41.9s
[CV] END .....svm_C=100, svm_gamma=1, svm_kernel=rbf; total time= 1.3min
      [CV] END .....svm_C=0.1, svm_gamma=scale, svm_kernel=rbf; total time=
      [CV] END ......svm_C=1, svm_gamma=scale, svm_kernel=rbf; total time=
                                                                                              20.2s
      [CV] END ......svm_C=1, svm_gamma=auto, svm_kernel=rbf; total time= 26.2s
# Make predictions on the test set
y_pred = pipe.predict(X_test)
# Evaluate performance using a confusion matrix and classification report
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
[[738 0 11 0]
[ 2 544 93 2]
[149 278 121 1]
       0 0
                 1 83911
                                     recall f1-score support
                      precision
```

0

2

3

accuracy

macro avg weighted avg 0.83

0.66

0.54

1.00

0.76

0.78

0.99

0.85

0.22

1.00

0 76

0.81

0.90

0.74

0.31

1.00

0.81

0.74

0.78

749

641

549

840

2779

2770

2779

Random Forest Model Evaluation

```
# Calculate predicted probabilities
y_prob = clf.predict_proba(X_test)
# Compute ROC curve and AUC for each class
n\_classes = len(np.unique(y)) # Number of classes
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
    # Compute ROC curve
    fpr[i], tpr[i], _ = roc_curve((y_test == np.unique(y)[i]).astype(int), y_prob[:, i])
    roc_auc[i] = auc(fpr[i], tpr[i])
# Plot ROC curves
plt.figure(figsize = (10, 8))
for i in range(n classes):
    plt.plot(fpr[i], tpr[i], lw = 2, label = "ROC curve for class \{0\} (area = \{1:0.2f\})".format(np.unique(y)[i], roc_auc[i])) \\
plt.plot([0, 1], [0, 1], color = "red", lw = 2, linestyle = "--") # Diagonal line
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("Receiver Operating Characteristic for Objective 1")
plt.legend(loc = "lower right")
plt.grid()
plt.show()
```


Receiver Operating Characteristic for Objective 1 1.0 0.8 True Positive Rate 0.6 0.4 0.2 ROC curve for class 0 (area = 0.97) ROC curve for class 1 (area = 0.94) ROC curve for class 2 (area = 0.82) ROC curve for class 3 (area = 1.00) 0.0 0.8 0.2 0.6 0.0 0.4 1.0

```
# Feature Importance
importances = clf.feature_importances_
indices = np.argsort(importances)[::-1]

# Plot feature importances
plt.figure(figsize = (12, 6))
plt.title("Feature Importances")
plt.bar(range(X.shape[1]), importances[indices], align = "center")
plt.xticks(range(X.shape[1]), X.columns[indices], rotation = 90)
plt.xlim([-1, X.shape[1]])
plt.show()
```



```
# Define a range for n_estimators and min_samples_split to test
n_estimators_range = np.arange(10, 301, 10) # 10 to 300 with a step of 10
min_samples_split_range = np.arange(2, 21, 1) # 2 to 20 with a step of 1
# Store results
n_estimators_scores = []
min_samples_split_scores = []
# OAT Sensitivity for 'n_estimators' (vary n_estimators, keep min_samples_split fixed)
for n in n estimators range:
         clf = RandomForestClassifier(n_estimators=n, min_samples_split=2, random_state=0) # min_samples_split fixed at 2
         scores = cross_val_score(clf, X_train, y_train, cv=3, scoring='f1_weighted')
        n_estimators_scores.append(scores.mean())
 \hbox{\# OAT Sensitivity for 'min\_samples\_split' (vary min\_samples\_split, keep n\_estimators fixed) } \\
for min_samples_split in min_samples_split_range:
        \verb|clf = RandomForestClassifier(n_estimators=100, min_samples\_split=min\_samples\_split, random\_state=0)| \# n_estimators | fixed at 100 | fixe
         scores = cross_val_score(clf, X_train, y_train, cv=3, scoring='f1_weighted')
        min_samples_split_scores.append(scores.mean())
# Plot the results
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
\# Plot for n_estimators
axes [0].plot (n\_estimators\_range, n\_estimators\_scores, marker='o') \\
axes[0].set_title("Sensitivity to n_estimators")
axes[0].set_xlabel("n_estimators")
axes[0].set_ylabel("F1 Score")
axes[0].grid()
# Plot for min_samples_split
axes[1].plot(min_samples_split_range, min_samples_split_scores, marker='o', color='orange')
axes[1].set_title("Sensitivity to min_samples_split")
axes[1].set_xlabel("min_samples_split")
axes[1].set_ylabel("F1 Score")
axes[1].grid()
plt.tight_layout()
plt.show()
```


Failure analysis

```
# Create a DataFrame for misclassified instances
misclassified_mask = y_test != y_test_pred # Create a boolean mask for misclassifications
{\tt misclassified\_instances} \ = \ {\tt X\_test[misclassified\_mask]} \quad {\tt \# \ Use \ the \ mask \ to \ filter \ X\_test}
\ensuremath{\text{\#}} Add true and predicted labels to the misclassified <code>DataFrame</code>
misclassified_instances_df = pd.DataFrame(misclassified_instances)
misclassified_instances_df['True_Label'] = y_test[misclassified_mask] # Get true labels using the mask
misclassified_instances_df['Predicted_Label'] = y_test_pred[misclassified_mask] # Get predicted labels using the mask
# Analyze misclassified instances for each class
for class_label in np.unique(y_test):
    print(f"\n--- Analysis of Misclassifications for Class: {class_label} ---")
    # Instances where the true label is the class label but predicted incorrectly
    class_misclassifications = misclassified_instances_df[misclassified_instances_df['True_Label'] == class_label]
    # Number of misclassifications
    num_misclassified = len(class_misclassifications)
    if num misclassified > 0:
         print("Number of misclassifications:", num_misclassified)
         print("Example Misclassifications:\n", class_misclassifications.head())
         print ("\n Feature\ Distributions\ of\ Misclassifications: \n",\ class\_misclassifications. describe())
    else:
         \label{lem:print} \mbox{print("No misclassifications for this class.")}
\overline{z}
         Analysis of Misclassifications for Class: 0 ---
     Number of misclassifications: 11
     Example Misclassifications:
                                                 High_Expectation
             Intuition_Encoded
                                  Aae
                                        Income
     1251
                           1.0
                                30.0
                                          2.0
                                                               1.0
     575
                           3.0
                                27.0
                                           2.0
                                                               1.0
     44
                           3.0 44.0
                                           2.0
                                                               1.0
     712
                           3.0
                                24.0
                                           2.0
                                                               1.0
     2085
                           3.0
                                23.0
                                           2.0
                                                               1.0
            Highest_Degree_Ordinal
                                      Hours_Learning_Weekly
                                                               Months_Programming
     1251
                                 6.0
                                                         10.0
                                                                                 1.0
     575
                                 4.0
                                                         30.0
                                                                                 6.0
                                 3.0
                                                         60.0
                                                                                 3.0
     712
                                 4.0
                                                         30.0
                                                                                 6.0
     2085
                                 4.0
                                                         50.0
                                                                                 0.5
                          Count_Learning_Methods
                                                     Count_Online_Resources
            Money Spent
     1251
                                               1.0
     575
                    0.0
                                               1.0
                                                                          9.0
     44
                   15.0
                                               2.0
                                                                          8.0
     712
                                               3.0
                    0.0
                                                                          6.0
     2085
                                               3.0
            In-person Events
                               Listen_Podcasts Youtube_Channels \
     1251
                          0.0
                                             0.0
                                                                 0.0
     575
                                             0.0
                                                                 3.0
                          0.0
     44
                          0.0
                                             0.0
                                                                 4.0
     712
                          0.0
                                             1.0
                                                                 2.0
     2085
                          0.0
                                             0.0
                                                                 2.0
            Months_Finding_New_Job Study_Field_Computer-related
     1251
                                24.0
                                                                  0.0
     575
                                1.0
                                                                  0.0
     44
                                24.0
                                                                  0.0
```

```
712
                            1.0
                                                             0.0
2085
                            0.0
                                                             0.0
      Study_Field_Not applicable
                                     Study_Field_Other Science & Engineering
1251
                                1.0
575
                                0.0
                                                                              0.0
44
                                0.0
                                                                              1.0
712
                                0.0
                                                                              0.0
2085
                                0.0
                                                                              1.0
      Study_Field_Others
                            True_Label
                                         Predicted_Label
1251
                       0.0
575
                       1.0
44
712
                       1.0
                                       0
2085
                       0.0
                                       0
Feature Distributions of Misclassifications:
                ion_Encoded Age Income
11.000000 11.000000 11.0
2.818182 31.909091 2.0
        Intuition_Encoded
                                                   High_Expectation \
count
                                                               11.0
mean
                                                                1.0
                 0 603023
                              0 148774
```

misclassified_instances_df.head(10)

	Intuition_Encoded	Age	Income	High_Expectation	Highest_Degree_Ordinal	Hours_Learning_Weekly	Months_Programming	Money_Spent	Count_Learning_
7890	3.0	35.0	2.0	1.0	4.0	30.0	2.0	100.0	
6035	3.0	30.0	1.0	1.0	6.0	26.0	5.0	0.0	
7922	3.0	26.0	1.0	1.0	3.0	14.0	2.0	0.0	
9787	0.0	26.0	1.0	1.0	6.0	20.0	1.0	0.0	
7173	3.0	22.0	1.0	0.0	4.0	20.0	48.0	100.0	
8667	3.0	21.0	2.0	1.0	6.0	6.0	0.0	0.0	
9609	3.0	20.0	1.0	1.0	6.0	5.0	0.0	0.0	
9619	3.0	46.0	2.0	1.0	6.0	15.0	1.0	0.0	
6945	3.0	0.0	1.0	1.0	4.0	4.0	0.0	0.0	
7170	3.0	33.0	2.0	1.0	4.0	30.0	7.0	2000.0	

Create the SHAP bar plot shap.plots.bar(explanation)

shap.plots.waterfall(explanation[misclassified_instance_index])

misclassified_instance

→	Intuition Encoded	3.0
·	Age	26.0
	Income	1.0
	High Expectation	1.0
	Highest_Degree_Ordinal	3.0
	Hours Learning Weekly	14.0
	Months_Programming	2.0
	Money_Spent	0.0
	Count_Learning_Methods	2.0
	Count_Online_Resources	3.0
	In-person Events	1.0
	Listen_Podcasts	0.0
	Youtube_Channels	1.0
	Months_Finding_New_Job	2.0
	Study_Field_Computer-related	0.0
	Study_Field_Not applicable	0.0
	Study_Field_Other Science & Engineering	0.0
	Study_Field_Others	1.0
	True_Label	2.0

1.0

```
\# Select a specific misclassified instance (you can choose the first one or any other)
misclassified_instance_index = 2  # Change this index to select another instance
misclassified_instance = misclassified_instances_df.iloc[misclassified_instance_index]
# Get the true label and the predicted label
true_label = int(misclassified_instance['True_Label'])
predicted_label = int(misclassified_instance['Predicted_Label'])
# Get the SHAP values for the misclassified instance for the true label
shap_values_instance = shap_values[true_label][misclassified_instance_index]
# Create an Explanation object for the SHAP values
explanation = shap.Explanation(
    values=shap_values[true_label][misclassified_instance_index],
    feature_names=X_test.columns,
    base_values=explainer.expected_value[true_label],
    data=misclassified_instance[:-2] # Exclude True_Label and Predicted_Label
# Create a SHAP waterfall plot
shap.plots.waterfall(explanation)
```



```
# Select a specific misclassified instance (you can choose the first one or any other)
misclassified_instance_index = 5  # Change this index to select another instance
misclassified_instance = misclassified_instances_df.iloc[misclassified_instance_index]
# Get the true label and the predicted label
true label = int(misclassified instance['True Label'])
predicted_label = int(misclassified_instance['Predicted_Label'])
# Get the SHAP values for the misclassified instance for the true label
shap_values_instance = shap_values[true_label][misclassified_instance_index]
# Create an Explanation object for the SHAP values
explanation = shap.Explanation(
    values=shap_values[true_label][misclassified_instance_index],
    feature_names=X_test.columns,
    {\tt base\_values=explainer.expected\_value[true\_label],}
    data=misclassified_instance[:-2] # Exclude True_Label and Predicted_Label
# Create a SHAP waterfall plot
shap.plots.waterfall(explanation)
```


Select a specific misclassified instance (you can choose the first one or any other) misclassified_instance_index = 8 # Change this index to select another instance misclassified_instance = misclassified_instances_df.iloc[misclassified_instance_index] # Get the true label and the predicted label true_label = int(misclassified_instance['True_Label']) predicted_label = int(misclassified_instance['Predicted_Label']) # Get the SHAP values for the misclassified instance for the true label shap_values_instance = shap_values[true_label][misclassified_instance_index] # Create an Explanation object for the SHAP values explanation = shap.Explanation(values=shap_values[true_label][misclassified_instance_index], feature_names=X_test.columns, base_values=explainer.expected_value[true_label], data=misclassified_instance[:-2] # Exclude True_Label and Predicted_Label # Create a SHAP waterfall plot shap.plots.waterfall(explanation) $\overline{\mathbf{x}}$ f(x) = 0.095-0.171 = Income-0.04 $3 = Months_Finding_New_Job$ +0.01 0 = Money_Spent 0 = Listen_Podcasts $1 = High_Expectation$ $0 = Months_Programming$ 0 = Age4 = Hours_Learning_Weekly 4 = Highest_Degree_Ordinal +0.01 9 other features 0.10 0.15 0.20 0.25 0.30

E[f(X)] = 0.224

Create a figure with subplots (1 row, 3 columns)
fig, axes = plt.subplots(3, 1, figsize=(12, 18)) # Adjust the size as needed