

Operational Amplifiers

FEATURES

- Guaranteed 200pA max. input offset current
- Guaranteed 2nA max. input bias current
- Guaranteed 600µA max. supply current
- Guaranteed 0.5mV max. offset voltage
- Guaranteed 5µV/°C max. drift
- Wide supply voltage range: ± 2V to ± 18V

APPLICATIONS

- Integrators
- Transducer amplifiers
- Analog memories
- Light meters

DESCRIPTION

The LM108 series of precision operational amplifiers are particularly well-suited for high source impedance applications requiring low offset and bias currents as well as low power dissipation. Unlike FET input amplifiers, the offset and bias currents of the LM108 do not change significantly with temperature variations. Advanced design, processing and testing techniques make Linear's LM108 a superior choice over previous devices.

A photodiode sensor application is shown below. For applications requiring higher performance, see the LT1008, and LT1012.

Amplifier For Photodiode Sensor

Input Currents

Storage Temperature Range

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	
Juppiy voitago	01 /
LM108A/LM108 ±2	UV
LM308A/LM308 ± 1	8V
Differential Input Current (Note 1). $\dots \pm 10$ i	nΑ
Input Voltage (Note 2) \pm 1	5V
Output Short Circuit Duration Indefir	iite
Operating Temperature Range	
LM108A/LM108 —55°C to 125	°C
LM308A/LM308 0°C to 70	°C

PACKAGE/ORDER INFORMATION

TOP VIEW	ORDER PART NO.				
COMP COMP 1 1 8 7 V+ -IN 2 6 0UT +IN 3 6 NC V-(CASE) METAL CAN H PACKAGE	LM108AH LM108H LM308AH LM308H				
TOP VIEW COMP1 1 8 COMP2 -IN 2 7 V+ +IN 3 6 OUT V- 4 5 NC PLASTIC DIP N8 PACKAGE	LM308AN8 LM308N8				

ELECTRICAL CHARACTERISTICS $\pm 5\text{V} \leqslant \text{V}_s \leqslant \pm 20\text{V}$ and $-55^{\circ}\text{C} \leqslant \text{T}_A \leqslant 125^{\circ}\text{C}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	LM108A TYP	MAX	MIN	LM108 TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	$T_A = 25^{\circ}C$	•		0.3	0.5 1.0		0.7	2.0 3.0	mV mV
ΔV _{0S} ΔTemp	Average Temperature Coefficient of Input Offset Voltage		•		1.0	5.0		3.0	15	μV/°C
l _{0S}	Input Offset Current	$T_A = 25^{\circ}C$	•		0.05	0.2 0.4		0.05	0.2 0.4	nA nA
Δl _{0\$} ΔTemp	Average Temperature Coefficient of Input Offset Current		•		0.5	2.5		0.5	2.5	pA/°C
I _B	Input Bias Current	T _A = 25°C	•		0.5	2.0 3.0		0.5	2.0 3.0	nA nA
A _{VOL}	Large Signal Voltage Gain	$T_A = 25^{\circ}\text{C}, V_S \pm 15\text{V}, V_{\text{OUT}} = \pm 10\text{V}, R_L \ge 10\text{k}\Omega$	•	80 40	300		50 25	300		V/mV V/mV
CMRR	Common Mode Rejection Ratio		•	96	110		85	100		dB
PSRR	Power Supply Rejection Ratio		•	96	110		80	96		dB
	Input Voltage Range	V _S = ± 15V	•	± 13.5			± 13.5			V
V _{OUT}	Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10k\Omega$	•	± 13	± 14		± 13	± 14		٧
R _{IN}	Input Resistance	T _A = 25°C (Note 3)	-	30	70		30	70		MΩ
Is	Supply Current	T _A = 25°C T _A = 125°C			0.3 0.15	0.6 0.4		0.3 0.15	0.6 0.4	Am Am

ELECTRICAL CHARACTERISTICS $\pm 5V \ll V_s \pm 15V$ and $0^{\circ}C \ll T_A \ll 70^{\circ}C$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIM	LM308A TYP	MAX	MIN	LM308 TYP	MAX	eTINU
Vos	Input Offset Voltage	T _A = 25°C	•		0.3	0.5 0.73		2.0	7.5 10	mV mV
ΔV _{OS} ΔTemp	Average Temperature Coefficient of Input Offset Voltage		•		2.0	5.0		6.0	30	μV/°C
los	Input Offset Current	T _A = 25°C	•		0.2	1.0 1.5		0.2	1.0 1.5	nA nA
Δl _{OS} ΔTemp	Average Temperature Coefficient of Input Offset Current		•		2.0	10		2.0	10	pA/°C
l _B	Input Bias Current	T _A = 25°C	•		1.5	7.0 10		1.5	7.0 10	nA nA
A _{VOL}	Large Signal Voltage Gain	$T_A = 25^{\circ}\text{C}, V_S \pm 15\text{V}, V_{\text{OUT}} = \pm 10\text{V}, R_L \ge 10\text{k}\Omega$	•	80 60	300		25 15	300		V/mV V/mV
CMRR	Common Mode Rejection Ratio		•	96	110		80	100		dB
PSRR	Power Supply Rejection Ratio		•	96	110		80	96		dB
	Input Voltage Range	$V_S = \pm 15V$	•	± 14		-	± 14			V
Vout	Output Voltage Swing	$V_S = \pm 15V R_L = 10k\Omega$	•	± 13	± 14		± 13	± 14		V
R _{IN}	Input Resistance	T _A = 25°C (Note 3)		10	40		10	40		MΩ
ls	Supply Current	$T_A = 25^{\circ}C$			0.3	0.8	<u> </u>	0.3	0.8	mA

The • denotes the specifications which apply over the full operating temperature range.

For MIL-STD components, please refer to LTC 883 data sheet for test listing and parameters.

Note 1: Differential input voltages greater than 1V will cause excessive current to flow through the input protection diodes unless current limiting resistance is used.

Note 2: For supply voltages less than \pm 15V, the maximum input voltage is equal to the supply voltage.

Note 3: Guaranteed by design.

TYPICAL APPLICATIONS

COMPENSATION CIRCUITS

Standard Compensation Circuit

** BANDWIDTH AND SLEW RATE ARE PROPORTIONAL TO 1/C_f

Alternate* Frequency Compensation

- * IMPROVES REJECTION OF POWER SUPPLY NOISE BY A FACTOR OF TEN.
- ** BANDWIDTH AND SLEW RATE ARE PROPORTIONAL TO 1/Cs

Feedforward Compensation

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL APPLICATIONS

Low Drift Integrator With Reset

* Q1 AND Q3 SHOULD NOT HAVE INTERNAL GATE-PROTECTION DIODES.

Inverting Amplifier With High Input Resistance

TYPICAL APPLICATIONS

Amplifier For Piezoelectric Transducers

Fast* Summing Amplifier

$\begin{array}{c|c} S1 \\ 100k \end{array}$

Amplifier For Bridge Transducers

Bilateral Current Source

Differential Input Instrumentation Amplifier

APPLICATIONS INFORMATION

Input guarding

Guarding both sides of the board is required. Bulk leakage reduction is less and depends on the guard ring width.

The guard ring is connected to a low impedance point at same potential as the sensitive input leads. Connections for various op amp configurations are shown below.

PN Input protection

Input guarding is used to reduce surface leakage. PN Current is limited by R2 even when input is connected to a voltage source outside the common mode range. If one supply reverses, current is controlled by R1. These resistors do not affect normal operation.

The input resistor controls the current when the input exceeds the supply voltages, when the power for the op amp is turned off, or when the output is shorted.

Offset Voltage Test Circuit †

† THIS CIRCUIT IS ALSO USED AS THE BURN-IN CONFIGURATION WITH SUPPLY VOLTAGES EQUAL T0 \pm 20V, R1 = R3 = 10k, R2 = 200 Ω , Ay = 100.

SCHEMATIC DIAGRAM

PACKAGE DESCRIPTION

