

2.9 BUILT-IN FUNCTIONS FOR HANDLING ARRAYS

MATLAB has many built-in functions for managing and handling arrays. Some of these are listed below:

Table 2-2: Built-in functions for handling arrays

Function	Description	Example
length(A)	Returns the number of elements in the vector A.	>> A=[5 9 2 4]; >> length(A) ans =
size(A)	Returns a row vector $[m, n]$, where m and n are the size $m \times n$ of the array A.	>> A=[6 1 4 0 12; 5 19 6 8 2] A = 6 1 4 0 12 5 19 6 8 2 >> size(A) ans = 2 5
reshape(A, m,n)	Creates a m by n matrix from the elements of matrix A. The elements are taken column after column. Matrix A must have m times n elements.	>> A=[5 1 6; 8 0 2] A = 5 1 6 8 0 2 >> B = reshape(A,3,2) B = 5 0 8 6 1 2

Function	Description	Example			
diag(v)	When v is a vector, creates a	>> v=[7 4 2];			
	square matrix with the ele-	>> A=diag(v)			
	ments of v in the diagonal.	A =			
		7 0 0			
		0 4 0			
		0 0 2			
diag(A)	When A is a matrix, creates a vector from the diagonal elements of A.	7 8 9]			
	ments of A.	A =			
		1 2 3			
		4 5 6			
		7 8 9			
		>> vec=diag(A)			
		vec =			
		1			
		5			
		9			

Table 2-2: Built-in functions for handling arrays (Continued)

Additional built-in functions for manipulation of arrays are described in the Help Window. In this window, select "MATLAB," then in the Contents "Functions," and then "By Category."

Sample Problem 2-1: Create a matrix

Using the ones and zeros commands, create a 4×5 matrix in which the first two rows are 0s and the next two rows are 1s.

Solution

>> A(1:2,:) = zeros(2,5)			5)		First, create a 2×5 matrix with 0s.	
A =	=					
	0	0	0	0	0	
	0	0	0	0	0	
>>	A(3:4	,;)=on	es(2,5)		Add rows 3 and 4 with 1s.
A =	=					
	0	0	0	0	0	
	0	0	0	0	0	
	1	1	1	1	1	
	1	1	1	1	1	

A different solution to the problem is:

	.05(2,5);ones	3(2,5)]		Create a 4×5 matrix
A =	•	•	•		from two 2×5 matrices
0	Ü	U	0	0	
0	0	0	0	0	
1	1	1	1	1	
1	1	1	1	1	

Sample Problem 2-2: Create a matrix

Create a 6×6 matrix in which the middle two rows and the middle two columns are 1s and the rest of the entries are 0s.

Solution

AR :	= 0					First, create a 6×6 matrix with 0s.		
	0							
		0	0	0	0	0		
	0	0	0	0	0	0		
	0	0	0	0	0	0		
	0	0	0	0	0	0		
	0	0	0	0	0	0		
	0	0	0	0	0	0		
>> 2	AR(3:4	1,:)=0	ones (2	2,6)				gn the number 1 to d and 4th rows.
AR :	=						the site	a and ten rows.
	0	0	0	0	0	0		
	0	0	0	0	0	0		
	1	1	1	1	1	1		
	1	1	1	1	1	1		
	0	0	0	0	0	0		
	0	0	0	0	0	0		
>> 2	AR(:,3	3:4)=0	ones (6,2)			1	Reassign the num-
AR :	=							ber 1 to the 3rd and
	0	0	1	1	0	0		4th columns.
	0	0	1	1	0	0	l	Ttil Columns.
	1	1	1	1	1	1		
	1	1	1	1	1	1		
	0	0	1	1	0	0		
	0	0	1	1	0	0		

Sample Problem 2-3: Matrix manipulation

Given are a 5×6 matrix A, a 3×6 matrix B, and a 9-element vector v.

$$ma = \begin{bmatrix} 2 & 5 & 8 & 11 & 14 & 17 \\ 3 & 6 & 9 & 12 & 15 & 18 \\ 4 & 7 & 10 & 13 & 16 & 19 \\ 5 & 8 & 11 & 14 & 17 & 20 \\ 6 & 9 & 12 & 15 & 18 & 21 \end{bmatrix} \quad B = \begin{bmatrix} 5 & 10 & 15 & 20 & 25 & 30 \\ 30 & 35 & 40 & 45 & 50 & 55 \\ 55 & 60 & 65 & 70 & 75 & 80 \end{bmatrix}$$

$$v = \begin{bmatrix} 99 & 98 & 97 & 96 & 95 & 94 & 93 & 92 & 91 \end{bmatrix}$$

Create the three arrays in the Command Window, and then, by writing one command, replace the last four columns of the first and third rows of A with the first four columns of the first two rows of B, the last four columns of the fourth row of A with the elements 5 through 8 of V, and the last four columns of the fifth row of A with columns 3 through 5 of the third row of B.

Solution

