EPFLx: AlgebreX Algèbre Linéaire (Partie 1)

Pdf Notes

Chapitre 2:

2.1

DÉFINITION 1:

On écrit $M_{m \times n}(\mathbb{R})$ pour l'ensemble des matrices de tailles $m \times n$ à coefficients réels. Aussi, pour deux matrices $A, B \in M_{m \times n}(\mathbb{R})$, on définit $A + B \in M_{m \times n}(\mathbb{R})$ comme étant la matrice satisfaisant

$$(A+B)_{ij} = A_{ij} + B_{ij},$$

ceci pour tout $1 \leq i \leq m$ et tout $1 \leq j \leq n$. De manière similaire, pour $A \in M_{m \times n}(\mathbb{R})$ et $\lambda \in \mathbb{R}$, on définit $\lambda A \in M_{m \times n}(\mathbb{R})$ par

$$(\lambda A)_{ij} = \lambda A_{ij},$$

ceci pour tout $1 \leq i \leq m$ et tout $1 \leq j \leq n$. Finalement, on définit la *transposée* d'une matrice $A \in M_{m \times n}(\mathbb{R})$, notée A^T comme suit:

$$(A^T)_{ij} = A_{ji},$$

ceci pour tout $1 \leq i \leq n$ et tout $1 \leq j \leq m$. Il est important de remarquer que $A^T \in M_{n \times m}(\mathbb{R})$ dans cette situation.

LEMME 2:

Soient $A,B,C\in M_{m\times n}(\mathbb{R})$ et $\lambda,\mu\in\mathbb{R}$. Soit également $0\in M_{m\times n}(\mathbb{R})$ la matrice de taille $m\times n$ dont toutes les composantes sont nulles. (On appelle cette matrice *la matrice nulle*.) Alors les propriétés suivantes sont vérifiées.

- 1. A + B = B + A.
- 2. A + (B + C) = (A + B) + C.
- 3. $\lambda(A+B) = \lambda A + \lambda B$.
- 4. $(\lambda + \mu)A = \lambda A + \mu A$.
- 5. $(\lambda \mu)A = \lambda(\mu A)$.
- 6. $1 \cdot A = A$.
- 7. $(A+B)^T = A^T + B^T$.
- 8. $(A^T)^T = A$.
- 9. $(\lambda A)^T = \lambda A^T$.
- 10. 0 + A = A = A + 0.
- 11. $(-1) \cdot A + A = 0$.
- 12. $0 \cdot A = 0$.

2.2

<u>DÉFINITION 1 :</u>

Soient $A\in M_{m\times p}(\mathbb{R})$ et $B\in M_{p\times n}(\mathbb{R})$. On définit le produit $A\cdot B\in M_{m\times n}(\mathbb{R})$ comme étant la matrice satisfaisant

$$(A\cdot B)_{ij}=\sum_{k=1}^p A_{ik}B_{kj},$$

ceci pour tout $1 \leq i \leq m$ et tout $1 \leq j \leq n$.

LEMME 2:

Soient $A,B\in M_{m imes p}(\mathbb{R}), C,D\in M_{p imes q}(\mathbb{R}), E\in M_{q imes n}(\mathbb{R}), \lambda\in\mathbb{R}$. Soit également $I_p\in M_{p imes p}(\mathbb{R})$ la matrice telle que $(I_p)_{ii}=1$ et $(I_p)_{ij}=0$ pour tous $1\leq i,j\leq q$ tels que $i\neq j$. (On appelle cette matrice la matrice identité de taille p imes p.) Alors les propriétés suivantes sont vérifiées.

- 1. A(CE) = (AC)E.
- 2. (A+B)C = AC + BC.
- 3. A(C+D) = AC + AD.
- 4. $\lambda(AC) = (\lambda A)C = A(\lambda C)$.
- 5. $0_{a\times m}\cdot A=0_{a\times p}, A\cdot 0_{p\times r}=0_{m\times r}.$
- 6. $(AC)^T = C^T A^T.$
- 7. $AI_p = A$ et $I_pC = C$.

2.3

DÉFINITION 1:

On dit qu'une matrice A est *carrée* si elle est de taille $n \times n$ pour un certain entier $n \in \mathbb{N}$, c'est-à-dire si elle possède le même nombre de lignes et de colonnes. Aussi, une telle matrice est dite *inversible* s'il existe une matrice $B \in M_{n \times n}(\mathbb{R})$ telle que $AB = I_n = BA$.

PROPOSITION 2:

Si $A \in M_{n \times n}(\mathbb{R})$ est une matrice inversible, alors il existe une unique matrice $B \in M_{n \times n}(\mathbb{R})$ telle que $AB = I_n = BA$. On notera en général $B = A^{-1}$.

DÉFINITION 2:

Soit A une matrice de taille $m \times n$ à coefficients réels. La diagonale principale de A est la "ligne oblique" formée des composantes (i,i) de A.

DÉFINITION 3:

On dit d'une matrice $A=(a_{ij})\in M_{m imes n}(\mathbb{R})$ qu'elle est

- triangulaire supérieure si $a_{ij}=0$ pour tout i>j.
- triangulaire inférieure si $a_{ij}=0$ pour tout i < j.
- diagonale si elle est carrée (i.e. m=n) et $a_{ij}=0$ pour tous $1\leq i,j\leq n$ tels que $i\neq j$.
- *symétrique* si elle est carrée et $a_{ij}=a_{ji}$ pour tous i,j, i.e. $A=A^T$.

2.4

LEMME 1:

Soient $A\in M_{n\times n}(\mathbb{R})$ une matrice inversible et AX=b un système de n équations aux inconnues x_1,\ldots,x_n . Alors le système possède une unique solution, donnée par $X=A^{-1}b$.

DÉFINITION 1:

Une matrice élémentaire (de taille $n \times n$) est une matrice obtenue en effectuant une (et une seule) opération élémentaire, de type (I), (II) ou (III), sur les lignes de la matrice I_n . Concrétement, on adoptera les notations suivantes.

- 1. La matrice T_{ij} est la matrice obtenue en échangeant les lignes i et j de $I_n.$
- 2. La matrice $D_r(\lambda)$ est la matrice obtenue en multipliant la r-ème ligne de I_n par $\lambda \in \mathbb{R}$.
- 3. La matrice $L_{rs}(\lambda)$ est la matrice obtenue en ajoutant λ fois la ligne s à la ligne r de I_n .

THÉORÈME 2:

Soient $A\in M_{m\times n}(\mathbb{R})$ une matrice arbitraire et $E\in M_{m\times m}(\mathbb{R})$ une matrice élémentaire de type (I), (II) ou (III). Alors EA est la matrice obtenue en effectuant sur les lignes de A l'opération de type (I), (II) ou (III), qui définit la matrice E.

COROLLAIRE 3:

Les matrices élémentaires sont inversibles. On a en effet

$$T_{ij}^{-1} = T_{ji}, \ D_r(\lambda)^{-1} = D_r(\lambda^{-1}), \ L_{rs}(\lambda)^{-1} = L_{rs}(-\lambda).$$

2.6

PREMIER CRITÈRE D'INVERSIBILITÉ:

Une matrice $A \in M_{n \times n}(\mathbb{R})$ est inversible si et seulement si le système homogène AX = 0 possède une solution unique, à savoir, la solution triviale.

ALGORITHME POUR TROUVER L'INVERSE D'UNE MATRICE DONNÉE :

Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice carrée. Afin de déterminer si A est inversible et de calculer son inverse (lorsque c'est possible), on procède comme suit :

- 1. Ecrire les matrices A et I_n l'une à côté de l'autre, formant ainsi une nouvelle matrice de taille n imes 2n.
- 2. Opérer sur les lignes de cette matrice ainsi obtenue afin de réduire le côté gauche à I_n .
- 3. Si l'on y arrive, alors ${\cal A}$ est inversible et son inverse est donnée par la matrice à droite.

COROLLAIRE DU PREMIER CRITÈRE D'INVERSIBILITÉ:

Soit $A \in M_{n \times n}(\mathbb{R})$. alors les deux affirmations suivantes sont vérifiées.

- 1. La matrice A est inversible si et seulement s'il existe $B\in M_{n imes n}(\mathbb{R})$ telle que $BA=I_n$.
- 2. La matrice A est inversible si et seulement s'il existe $B\in M_{n imes n}(\mathbb{R})$ telle que $AB=I_n$.

2.8

PROPOSITION 1:

Soit $A \in M_{m \times n}(\mathbb{R})$. Alors les affirmations suivantes sont vérifiées.

- 1. La matrice AT_{ij} est obtenue en échangeant les colonnes i et j de A.
- 2. La matrice $AD_r(\lambda)$ est obtenue en multipliant la r-ème colonne de A par λ .
- 3. La matrice $AL_{rs}(\lambda)$ est obtenue en ajoutant λ fois la r-ème colonne de A à la s-ème.

PROPOSITION 2:

Soit A une matrice de taille $m \times n$ et supposons qu'il soit possible de réduire A à une forme échelonnée en n'utilisant que des opérations élémentaires de la forme $D_r(\lambda), E_{rs}(\lambda)$ (avec r>s) sur les lignes de A. Alors il existe une matrice triangulaire inférieure L et une matrice triangulaire supérieure U telles que A=LU.

2.9

ALGORITHME POUR TROUVER L ET U DANS LA DÉCOMPOSITION LU:

Soit $A \in M_{m \times n}(\mathbb{R})$ une matrice admettant une décomposition LU. Afin de déterminer les matrices L et U dans une telle décomposition, on procède comme suit :

- 1. On applique successivement les opérations élémentaires de types (II) et (III) (avec matrices élémentaires correspondantes E_1, \ldots, E_k) aux lignes de la matrice A afin de la rendre échelonnée.
- 2. On pose $U=E_k\cdots E_1A$, c'est-à-dire U est la forme échelonnée de A obtenue à l'aide des opérations élémentaires ci-dessus.
- 3. La matrice L est alors obtenue en opérant sur les colonnes de I_n par $E_1^{-1},\dots,E_k^{-1},$ dans cet ordre.

2.10

<u>APPLICATION DE LA DÉCOMPOSITION LU AUX SYSTÈMES LINÉAIRES :</u>

Soit un système AX=b d'équations linéaires aux inconnues x_1,\ldots,x_n et supposons que A=LU, où L est triangulaire inférieure et U triangulaire supérieure. Alors on résout le système de la manière suivante :

- 1. Poser $Y=\begin{pmatrix} y_1 & y_2 & \cdots & y_n \end{pmatrix}^T$.
- 2. Résoudre le système LY=b.
- 3. Résoudre le sytème UX = Y.

2.11

DÉFINITION 1:

Soit A une matrice de taille $m \times n$ à coefficients réels. Une décomposition par blocs de A est une manière de partitionner cette dernière matrice en plus petites matrices, que l'on obtient en traçant des lignes verticales et horizontales dans la matrice A.

LEMME 2:

Soient $A,B\in M_{m imes n}(\mathbb{R})$ deux matrices décomposées en matrices par blocs de la même façon, alors on peut additionner A et B par blocs. Aussi, si C et D sont deux matrices admettant des décompositions en blocs

$$C = \begin{pmatrix} C_{11} & \cdots & C_{1p} \\ C_{21} & \cdots & C_{2p} \\ \vdots & & \vdots \\ C_{m1} & \cdots & C_{mp} \end{pmatrix}, \ D = \begin{pmatrix} D_{11} & \cdots & D_{1n} \\ D_{21} & \cdots & D_{2n} \\ \vdots & & \vdots \\ D_{p1} & \cdots & D_{pn} \end{pmatrix}$$

telles que le nombre de colonnes de chaque bloc C_{ij} soit égal au nombre de lignes de chaque bloc D_{kj} , alors on peut multiplier par blocs.