Probabilidade

Parte 5

Prof.: Eduardo Vargas Ferreira

Considere a distribuição de 300 clientes em três categorias de compra, separados por região.

	Sul	Sudeste	Total
Esporte	36	24	60
Eletrônicos	109	56	165
Beleza	35	40	75
Total	180	120	300

1. Calcule
$$P(\text{ Esportes}) = \frac{60}{300} = 0.2$$

2. Calcule
$$P(\text{ Esportes} \mid \text{ Sudeste}) = \frac{24}{120} = 0.2$$

A distribuição de Esportes independe da Região

Considere a distribuição de 300 clientes em três categorias de compra, separados por região.

	Sul	Sudeste	Total
$\mathbf{E}\mathbf{sporte}$	36	24	60
Eletrônicos	109	56	165
Beleza	35	40	75
Total	180	120	300

3. Calcule
$$P(\text{ Eletrônicos}) = \frac{165}{300} = 0.55$$

4. Calcule
$$P(\text{ Eletrônicos} \mid \text{Sul}) = \frac{109}{180} = 0.60$$

A distribuição de Eletrônicos depende da Região

Considere a distribuição de 300 clientes em três categorias de compra, separados por região.

	Sul	$\mathbf{Sudeste}$	Total
Esporte	36	24	60
Eletrônicos	109	56	165
Beleza	35	40	75
Total	180	120	300

Esportes independe da Região

- 1. Calcule P(Esportes) = 0.2
- 2. Calcule $P(\text{Esportes} \mid \text{Sudeste}) = 0.2$

Eletrônicos depende da Região

- 3. Calcule P(Eletrônicos) = 0.55
- 4. Calcule $P(\text{ Eletrônicos} \mid \text{Sul }) = 0.60$

Independência

▶ Dizemos que dois eventos são **independentes** quando o fato de saber da ocorrência de um evento não altera a probabilidade do outro evento.

$$P(A|B) = P(A)$$

Esportes independe da Região

- 1. Calcule P(Esportes) = 0.2
- 2. Calcule $P(\text{Esportes} \mid \text{Sudeste}) = 0.2$

Eletrônicos depende da Região

- 3. Calcule P(Eletrônicos) = 0.55
- 4. Calcule $P(\text{ Eletrônicos} \mid \text{Sul }) = 0.60$

Independência

E se as probabilidades são próximas, mas não são iguais?

Na prática, testamos essa hipótese de independência

- 1. Calcule P(Esportes) = 0.2
- 2. Calcule $P(\text{Esportes} \mid \text{Sudeste}) = 0.2$

- 3. Calcule P(Eletrônicos) = 0.55
- 4. Calcule $P(\text{ Eletrônicos} \mid \text{Sul}) = 0.60$

Exemplo: investimento em propaganda

An Introduction to Statistical Learning

► Considere a distribuição de 300 clientes em três categorias de compra, separados por região.

	Sul	Sudeste	Total
Esporte	36	24	60
Eletrônicos	109	56	165
Beleza	35	40	75
Total	180	120	300

5. Calcule
$$P(\text{Esportes} \cap \text{Sudeste}) = \frac{24}{300} = 0.08$$

6. Calcule
$$P(\text{ Esportes }) \cdot P(\text{ Sudeste }) = \frac{60}{300} \cdot \frac{120}{300} = 0.08$$

A distribuição de Esportes independe da Região

Dois eventos são independentes quando ...

A ocorrência de um evento não altera a probabilidade do outro. Ou a probabilidade da interseção dos eventos é igual ao produto de suas probabilidades marginais

$$P(A|B) = P(A)$$

$$P(A \cap B) = P(A) \cdot P(B)$$

- 1. Calcule P(Esportes) = 0.2
- 2. Calcule $P(\text{Esportes} \mid \text{Sudeste}) = 0.2$

- 5. Calcule $P(\text{Esportes} \cap \text{Sudeste}) = 0.08$
- 6. Calcule $P(\text{Esportes}) \cdot P(\text{Sudeste}) = 0.08$

Exemplo: reservatório de água

Um reservatório recebe água de três fontes, com diferentes chances de contaminação:

- A primeira tem 5% de chance (evento A);
- A segunda tem 6,5% de chance (evento B);
- A terceira tem 12% de chance (evento C);
- 1. Qual a probabilidade do reservatório ser contaminado?

$$P(R) = P(A \cup B \cup C) = 1 - P(A^{c} \cap B^{c} \cap C^{c})$$

$$\stackrel{ind}{=} 1 - P(A^{c}) \cdot P(B^{c}) \cdot P(C^{c})$$

$$= 1 - 0.95 \cdot 0.935 \cdot 0.88$$

$$= 0,2183$$

Referências

- ▶ Bussab, WO; Morettin, PA. Estatística Básica. São Paulo: Editora Saraiva, 2006 (5ª Edição).
- Magalhães, MN; Lima, ACP. Noções de Probabilidade e Estatística. São Paulo: EDUSP, 2008.

