1 BigDecimalMath

V tomto souboru řeším matematické funkce, které nejsou normálně dostupné pro java modul *BigDecimal*. Řešení těchto funkcí je vybráno tak, aby bylo co nejvíce nejpřesnější a jednoduše na provedení, ale zároveň aby čas vypočtení byl co nejmneší.

1.1 Konstanty a čísla

Součástí BigDecimalMath jsou i konstanty a jiná užitečná čísla, pro rychlejší a přehlednější programování. BigDecimal modul pro Javu již nějaké takovéto čísla obsahuje, například BigDecimal.ZERO a BigDecimal.ONE. Ovšem jiné variace, například pro číslo dva si musíme definovat vlastnoručně, proto jsem někerá tato čísla definoval pro jednoduší použití v BigDecimalMath.

```
import java.math.BigDecimal;
import java.math.RoundingMode;
// Minus jedna
public static final BigDecimal MINUSONE = new BigDecimal(-1);
// Dva
public static final BigDecimal TWO = new BigDecimal(2);
// Pi hodnota - napsana na 1000 desetinnych mist
public static final BigDecimal PI = new BigDecimal(
   "3.141592653589793238462643383279502884197169399..."
);
// E hodnota - napsana na 1000 desetinnych mist
public static final BigDecimal E = new BigDecimal(
   "2.718281828459045235360287471352662497757247093..."
);
// 2*Pi
pubic static final BigDecmal TWOPI = PI.multiply(TWO);
public static final BigDecimal HALFPI = PI.divide(TWO, 1000,
    RoundingMode.HALF_UP);
// Minus Pi/2
public static final BigDecimal MINHALFPI =
    MINUSONE.multiply(HALFPI);
```

1.2 Trigonometrické a Hyperbolické funkce

Původní použití pro tento soubor bylo použití při implementaci complexních čísel a jejich funkcí do Java modulu BigDecimal. Použití modulu Math nebylo na místě, kvůli jeho omezení na double hodnoty. Z tohoto důvodu jsem musel napsat nové algoritmy na výpočty trigonometrických funkcí, které jsem potřeboval použít.

Tento script neobsahuje všechny trigonometrické či hyperbolické funkce, jen ty, které jsem potřeboval.

1.2.1 Sinus

Pro aproximaci sinu z čísla jsem použil taylorovu sérii, která vypadá takto:

$$sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2x+1)!} x^{2x+1}.$$

Výsledný algoritmus vypadá tedy takto:

```
public static BigDecimal sin(BigDecimal x) {
   BigDecimal ans = new BigDecimal(0);
   for (BigDecimal n = BigDecimal.ZERO; n.compareTo(new
        BigDecimal(50)) <= 0; n = n.add(BigDecimal.ONE)) {</pre>
       // Citatel
       BigDecimal numerator = MINUSONE.pow(n.intValue());
       // Jmenovatel
       BigDecimal denominator =
           factorial((TWO.multiply(n)).add(BigDecimal.ONE));
       // Vzorec uvnitr sumy
       ans = ans.add((numerator.divide(denominator, 1000,
           RoundingMode.HALF_UP)).multiply(
           x.pow(((TWO.multiply(n)).add(
           BigDecimal.ONE)).intValue())));
   }
   // Vraceni vysledku
   return ans.setScale(50, RoundingMode.HALF_UP);
}
```

Tento algoritmus je nastaven na přesnost okolo 1×10^{-50} s časem vypočítání okolo 10ms. Pro větší přesnost zvyšte $n.compareTo(new\ BigDecimal(50))$ hodnotu na vyšší.

1.2.2 Cosinus

Pro aproximaci cosinu je opět použita taylorova série, která vypadá takto:

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2x}$$

Výsledný algoritmu vypadá tedy takto:

```
public static BigDecimal cos(BigDecimal x) {
   BigDecimal ans = new BigDecimal(0);
   // Suma
   for (BigDecimal n = BigDecimal.ZERO; n.compareTo(new
        BigDecimal(50)) <= 0; n = n.add(BigDecimal.ONE)) {
        // Citatel
        BigDecimal numerator = MINUSONE.pow(n.intValue());
}</pre>
```

Tento algoritmus je nastaven na přesnost okolo 1×10^{-50} s časem vypočítání okolo 10ms. Pro větší přesnost zvyšte $n.compareTo(new\ BigDecimal(50))$ hodnotu na vyšší.

1.2.3 Arctangens

Pro aproximaci arctangensu jsem opět použil taylorovy série, konkrétně jejich kombinaci, která bypadá takto:

$$arctanx = \begin{cases} \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} & : |x| \le 1 \\ \frac{\pi}{2} - \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)x^{2n+1}} & : x \ge 1 \\ -\frac{\pi}{2} - \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)x^{2n+1}} & : x \le -1 \end{cases}$$
 (1)

Výsledný algoritmus vypadá tedy takto:

```
public static BigDecimal arctan(BigDecimal x) {
   // Pokud je |x| <= 1
   if (x.abs().compareTo(BigDecimal.ONE) <= 0) {</pre>
       BigDecimal ans = new BigDecimal(0);
       // Suma
       for (BigDecimal n = BigDecimal.ZERO; n.compareTo(new
           BigDecimal(50)) <= 0; n = n.add(BigDecimal.ONE)) {</pre>
           // Citatel
           BigDecimal numerator = MINUSONE.pow(n.intValue());
           // Jmenovatel
           BigDecimal denominator =
               (TWO.multiply(n)).add(BigDecimal.ONE);
           // Vzorec uvnitr sumy
           ans = ans.add((numerator.divide(denominator, 1000,
               RoundingMode.HALF_UP)).multiply(
               x.pow(((TWO.multiply(n)).add(
               BigDecimal.ONE)).intValue())));
```

```
// Vraceni vysledku
       }
       return ans.setScale(50, RoundingMode.HALF_UP);
   // Jinak
   } else {
       BigDecimal ans = new BigDecimal(0);
       // Suma
       for (BigDecimal n = BigDecimal.ZERO; n.compareTo(new
           BigDecimal(50)) <= 0; n = n.add(BigDecimal.ONE)) {</pre>
           // Citatel
           BigDecimal numerator = MINUSONE.pow(n.intValue());
           // Jmenovatel
           BigDecimal denominator =
               ((TWO.multiply(n)).add(BigDecimal.ONE)).multiply(
               x.pow(((TWO.multiply(n)).add(
               BigDecimal.ONE)).intValue()));
           // Vzorec uvnitr sumy
           ans = ans.add((numerator.divide(denominator, 1000,
               RoundingMode.HALF_UP)));
       // Pokud je x > 1
       if (x.compareTo(BigDecimal.ONE) > 0) {
           return HALFPI.subtract(ans).setScale(50,
               RoundingMode.HALF_UP);
       // Pokud je x < 1
       } else if (x.compareTo(MINUSONE) < 0) {</pre>
           return MINHALFPI.subtract(ans).setScale(50,
               RoundingMode.HALF_UP);
       // Jinak vrati chybny vysledek
       } else {
           return ans.setScale(50, RoundingMode.HALF_UP);
   }
}
```

Tento algoritmus je nastaven na přesnost okolo 1×10^{-50} s časem vypočítání okolo 10ms. Pro větší přesnost zvyšte $n.compareTo(new\ BigDecimal(50))$ hodnotu na vyšší.

1.2.4 Hyperbolický sinus

Pro aproximaci hyperbolického sinusu jsem použil opět taylorovu sérii.

$$sinhx = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$

Výsledný algoritmus vypadá tedy takto:

```
public static BigDecimal sinh(BigDecimal x) {
   BigDecimal ans = new BigDecimal(0);
   for (BigDecimal n = BigDecimal.ZERO; n.compareTo(new
        BigDecimal(50)) <= 0; n = n.add(BigDecimal.ONE)) {</pre>
       // Citatel
       BigDecimal numerator = x.pow((2*(n.intValue())+1));
       // Jmenovatel
       BigDecimal denominator =
           factorial((TWO.multiply(n)).add(BigDecimal.ONE));
       // Vzorec uvnitr sumy
       ans = ans.add(numerator.divide(denominator, 1000,
           RoundingMode.HALF_UP));
   }
   // Vraceni vysledku
   return ans.setScale(50, RoundingMode.HALF_UP);
}
```

Tento algoritmus je nastaven na přesnost okolo 1×10^{-50} s časem vypočítání okolo 10ms. Pro větší přesnost zvyšte $n.compareTo(new\ BigDecimal(50))$ hodnotu na vyšší.

1.2.5 Hyperbolický cosinus

Pro aproximaci hyperbolického cosinu je opět užita taylorova série.

$$coshx = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

Výsledný algoritmus vypadá tedy takto:

```
public static BigDecimal cosh(BigDecimal x) {
   BigDecimal ans = new BigDecimal(0);
   // Suma
   for (BigDecimal n = BigDecimal.ZERO; n.compareTo(new
        BigDecimal(50)) <= 0; n = n.add(BigDecimal.ONE)) {</pre>
       // Citatel
       BigDecimal numerator = x.pow(2*(n.intValue()));
       // Jmenovatel
       BigDecimal denominator = factorial(TWO.multiply(n));
       // Vzorec uvnitr sumy
       ans = ans.add(numerator.divide(denominator, 1000,
           RoundingMode.HALF_UP));
   }
   // Vraceni vysledku
   return ans.setScale(50, RoundingMode.HALF_UP);
}
```

Tento algoritmus je nastaven na přesnost okolo 1×10^{-50} s časem vypočítání okolo 10ms. Pro větší přesnost zvyšte $n.compareTo(new\ BigDecimal(50))$ hodnotu na vyšší.

1.3 Exponenciální funkce a přirozený logaritmus

1.3.1 Exponenciální funkce

Exponenciální funkce ve tvaru $\exp(x) = e^x$ je vypočítaná taylorovou sérií, která vypadá takto:

$$exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Algoritmus pro vypočítaní vypadá tedy takto:

Tento algoritmus je nastaven na přesnost okolo 1×10^{-50} s časem vypočítání okolo 15ms. Pro větší přesnost zvyšte $n.compare To(new\ BigDecimal(50))$ hodnotu na vyšší.

1.3.2 Přirozený logaritmus

Algorimizace přirozeného logarimu je složitá. Integrální vzorec je časově velice neefektivní, tudíž jsem se rozhodl použít lehce upravený Newtonův algoritmus. Vypadá takto:

$$log(x) = \sum_{x}^{\infty} x - \frac{e^x - x}{e^x}$$

1.4 Zdroje

Zdroj pro aproximace trigonometrických funkcí:

Wikipedia: Taylor series

Wikiproof: Power series expansion for real arctangnet function

Zdroj pro aproximace hyperbolických funkcí:

Wikipedia: Taylor series Zdroj pro exponenciální funkci: Wikipedia: Taylor series