Gradient Boosted Machines

(For Stocks)

Project Location

https://github.com/AIClubUA/Weekly-Meetings/tree/master/September%202018/Week%20of%209-17-2018/gbm-forstocks

Disclaimer:

- Do NOT start trading based off of this presentation
- This is for demonstration purposes only and does not account for the numerous considerations to take into account when formulating a trading strategy
- The primary focus of this is showcasing how easy it is to turn a .csv of data into useful and interesting insight with a low barrier to entry

Problem Framing

- Given a bunch of stock market data, can we predict if the stock will go up or down the next day?
- ► This is a classification problem
 - ▶ Will be using 3 classes
 - **▶** Up
 - Down
 - Neutral

Data

- We will be using .csv data sourced from Yahoo Finance
- Can download manually from here:
 - ► https://finance.yahoo.com/quote/TSLA/history?p=TSLA
- Or use:
 - pip install yapywrangler (on command line)

```
import yapywrangler as yp

stocks = ['FB', 'TSLA', 'BAC']
data = yp.securityData(stocks, end='2010-01-01', save=True, epoch=False)
```

Data Snippet

4	Α	В	С	D	Е	F	
1	date	open	high	low	close	volume	
2	1.54E+09	290.04	295	288.13	293.09	2139507	
3	1.54E+09	288.76	297.33	286.52	295.2	6763600	
4	1.54E+09	288.02	295	285.18	289.46	6340300	
5	1.54E+09	281.44	292.5	278.65	290.54	10015400	
6	1.54E+09	279.47	282	273.55	279.44	9170000	
7	1.54E+09	273.26	286.03	271	285.5	14283500	
8	1.54E+09	260.1	268.35	252.25	263.24	22491900	
9	1.54E+09	284.8	291.17	278.88	280.95	7480800	
10	1.54E+09	285.05	286.78	277.18	280.74	7720800	
11	1.54E+09	296.94	298.19	288	288.95	8350500	
12	1.54E+09	302	305.31	298.6	301.66	5375100	
13	1.54E+09	302.26	304.6	297.72	303.15	7216700	
14	1.54E+09	310.27	311.85	303.69	305.01	7447400	
15	1 545,00	210 //1	210.00	211 10	211.06	7640100	

Data - Inputs and Labels

- Inputs
 - Our inputs will be the 10 previous trading days
 - Just using the closing price
- Labels
 - Generated by looking through past data
 - ▶ If "tomorrow" saw > 1% growth
 - ► Label = 2
 - ▶ If < 1%
 - ▶ Label = 1
 - ► Else, Label = 0

	Α	В	С	D	Е	F	
1	date	open	high	low	close	volume	
2	1.54E+09	290.04	295	288.13	293.09	2139507	
3	1.54E+09	288.76	297.33	286.52	295.2	6763600	
4	1.54E+09	288.02	295	285.18	289.46	6340300	
5	1.54E+09	281.44	292.5	278.65	290.54	10015400	
6	1.54E+09	279.47	282	273.55	279.44	9170000	
7	1.54E+09	273.26	286.03	271	285.5	14283500	
8	1.54E+09	260.1	268.35	252.25	263.24	22491900	
9	1.54E+09	284.8	291.17	278.88	280.95	7480800	
10	1.54E+09	285.05	286.78	277.18	280.74	7720800	
11	1.54E+09	296.94	298.19	288	288.95	8350500	
12	1.54E+09	302	305.31	298.6	301.66	5375100	
13	1.54E+09	302.26	304.6	297.72	303.15	7216700	
14	1.54E+09	310.27	311.85	303.69	305.01	7447400	
10	1 5/15/00	210 //1	210 00	211 10	211 04	7640100	

Model - Gradient Boosted Machine

- Why GBM?
 - ▶ Neural Nets are awesome, but they require tons and tons of data to learn
 - ▶ Without tons of data, GBMs perform much much better
 - Very simple implementation
 - (we will go into tuning at a later meeting)

Model - Gradient Boosted Machine

- What is a GBM model?
 - ▶ GBMs are generally built on top of decision trees
 - ▶ GBMs combine multiple decision trees
 - ► Each tree can learn different features
 - ▶ Tree A is 90% confident, Tree B is 70% confident, chose Tree A
- ▶ Single Decision Tree →

Model - Gradient Boosted Machines

Gradient Boosting Machine (GBM)

Preprocessing - Creating Inputs

- First, we will want to isolate the "close" column
- Then we will want to create groups of data points
 - ▶ Doing groups of 11, will rip off one to make the label
 - ► This leaves 1:10 label:input dimensions
- Next we will normalize each group
 - ▶ We do this so we can pool together all stocks, even ones trading at different prices
 - ▶ We do this as opposed to creating a model for each stock

Preprocessing - Creating Labels

- Once we have the normalized groups of 11:
 - Compare most recent day to next most recent
 - ▶ 0th index to 1st index

```
for brick in grouped_data:
   if brick[0]*1.01 > brick[1]:
        labels.append(2)
   elif brick[0]*0.99 < brick[1]:
        labels.append(1)
   else:
        lablels.append(0)

inputs.append(brick[1:])</pre>
```

Training/Fitting the Model

- Want to merge data from each stock
 - Shuffle the data as well
- Also want to do a test_train split
 - ▶ Create a validation set to see how well we perform on unseen data
- Fit the model
- Gauge performance
- Make predictions

Core GBM Implementation

```
from sklearn.ensemble import GradientBoostingClassifier
gbm = GradientBoostingClassifier( learning_rate=0.01, # [OK]
                                        n estimators=3600, # [OK]
                                        min_samples_split=10, # [OK]
                                        min_samples_leaf=50, # [OK]
                                        max_depth=14, # [OK]
                                        max_features='sqrt',
                                        subsample=0.9, # .8 [OK]
                                        random state=10) # [OK]
gbm.fit(X train, y train)
score = gbm.score(X_test, y_test)
print("Validation/Testing Score:", score)
preds = gbm.predict(y_train)
```

Final Considerations

- Improve accuracy and effectiveness of model
- 1) Improve the Data
 - ▶ 90% of the time, this is the most effective route
 - "Garbage in, garbage out"
 - Upsampling/Downsampling
 - Want balanced dataset
- 2) Improve the Model
 - Grid Searching
 - ► Great how to: https://www.analyticsvidhya.com/blog/2016/02/complete-guide-parameter-tuning-gradient-boosting-gbm-python/
 - XGBoost is another wildly popular and effective algorithm
 - ▶ Will cover this later on