MATH 503: Mathematical Statistics Dr. Kimberly F. Sellers, Instructor Homework 2

- 1. Let X_i , i = 1, 2, ..., be independent Bernoulli(p) random variables and let $Y_n = \frac{1}{n} \sum_{i=1}^n X_i$. Use the delta method to find the limiting distribution of $g(Y_n) = Y_n(1 Y_n)$ for $p \neq \frac{1}{2}$.
- 2. Let \bar{X} be the mean of a random sample from the exponential distribution, Exponential (θ) .
 - (a) Show that \bar{X} is an unbiased point estimator of θ .
 - (b) Using the mgf technique, determine the distribution of \bar{X} .
 - (c) Use (b) to show that $Y = 2n\bar{X}/\theta$ has a χ^2 distribution with 2n degrees of freedom.
- 3. Let X_1, X_2, \ldots, X_n be a random sample from the Poisson (θ) distribution, where θ is unknown. Let $Y = \sum_{i=1}^n X_i$. Find the distribution of Y and determine c so that cY is an unbiased estimator of θ .
- 4. Let $Y_1 < Y_2 < \ldots < Y_n$ be the order statistics of a random sample of size n (X_1, X_2, \ldots, X_n) from a Weibull distribution of the form $f(x) = cx^b \exp\left\{-\frac{cx^{b+1}}{b+1}\right\}$, $0 < x < \infty$, zero elsewhere. Find the distribution of Y_1 .
- 5. Let X and Y denote independent random variables with respective probability density functions f(x) = 2x, 0 < x < 1, zero elsewhere, and $g(y) = 3y^2$, 0 < y < 1, zero elsewhere. Let $U = \min(X, Y)$ and $V = \max(X, Y)$. Find the joint pdf of U and V.
- 6. Let X_1, X_2, \ldots, X_n represent a random sample from each of the distributions having the following pdfs or pmfs:
 - (a) $f(x;\theta) = \frac{\theta^x e^{-\theta}}{x!}$, $x = 0, 1, 2, ..., 0 \le \theta < \infty$, zero elsewhere, where f(0;0) = 1
 - (b) $f(x;\theta) = \theta x^{\theta-1}, \ 0 < x < 1, \ 0 < \theta < \infty$, zero elsewhere
 - (c) $f(x;\theta) = \frac{1}{\theta}e^{-x/\theta}$, $0 < x < \infty$, $0 < \theta < \infty$, zero elsewhere
 - (d) $f(x;\theta) = e^{-(x-\theta)}, \ \theta \le x < \infty, -\infty < \theta < \infty$, zero elsewhere.

In each case, find the mle $\hat{\theta}$ of θ .

7. Suppose X_1, X_2, \ldots, X_n are iid with pdf $f(x; \theta) = \frac{1}{\theta} e^{-x/\theta}$, $0 < x < \infty$, zero elsewhere. Find the MLE of P(X > k), for some k > 0 (known).

- 8. Let X_1, \ldots, X_n be iid with pdf $f(x \mid \theta) = \theta x^{\theta-1}, 0 < x < 1, 0 < \theta < \infty$.
 - (a) Find the MLE of θ , and show that its variance converges to 0 as $n \to \infty$.
 - (b) Find the method of moments estimator of θ .