Contents

Lis	st of	Figures		13				
Lis	st of	Tables		17				
Lis	st of	abbrevi	iations	19				
1	Intr	oductio	on	23				
	1.1	Quant	citative dynamical modelling in synthetic biology	23				
	1.2	Conte	nts of this thesis	23				
		1.2.1	Outline	23				
		1.2.2	Publications	23				
2	Background							
	2.1	Introd	ntroduction to synthetic biology					
	2.2	System design in synthetic biology						
	2.3	2.3 Introduction to Biochemical Modelling						
		2.3.1	Graphical representation of biochemical systems	27				
		2.3.2	Deterministic and Stochastic modelling	27				
		2.3.3	Steady state and stability	28				
	2.4	The ge	enetic toggle switch	29				
		2.4.1	Importance in natural systems	29				
		2.4.2	Uses in synthetic biology	30				
		2.4.3	Modelling the genetic toggle switch	30				
	2.5	Introd	uction to Bayesian statistics	33				
		2.5.1	Bayes' theorem	34				
		2.5.2	Bayesian inference	34				
		2.5.3	Model checking	34				
		2.5.4	Prior selection	34				

8 Contents

		2.5.5	Model parametric Robustness	35	
	2.6	Approx	ximate Bayesian Computation (ABC)	37	
		2.6.1	ABC algorithms	37	
		2.6.2	Particle sampling	39	
		2.6.3	Perturbation	39	
		2.6.4	Particle simulation	40	
		2.6.5	Weight calculation	40	
3	Effe	ct or fe	edback loops on switch robustness	43	
	3.1	Introdu	uction	43	
	3.2	The bis	stable genetic toggle switch	43	
		3.2.1	Bifurcation analysis	44	
	3.3	Design	ning a simple synthetic switch	46	
		3.3.1	Parameter scan for model stability	46	
		3.3.2	Toggle switch parameter inference	51	
		3.3.3	Design specifications	52	
			3.3.3.1 Distance function	52	
		3.3.4	Results	53	
	3.4	Design	ning a more robust genetic toggle switch	55	
		3.4.1	Models of the genetic toggle switch	55	
			3.4.1.1 Bifurcation analyses	57	
		3.4.2	ABC for model selection	59	
	3.5	Discussion			
	3.6	Summa	ary	65	
4	Dyn	amics o	of multi-stable switches	67	
	4.1	Introdu	uction	67	
	4.2	Stabilit	ty Finder algorithm	67	
		4.2.1	Algorithm overview	68	
		4.2.2	Initial condition sampling	70	
		4.2.3	Distance function	71	
			4.2.3.1 Clustering methods	71	
		4.2.4	Particle rejection	72	
		4.2.5	Model checking	72	
	4.3	Calcula	ating robustness	72	
		4.3.1	Case study 1: Infectious diseases	75	
		4.3.2	Case study 2: Population growth	78	

	4.4	Applications of Stability Finder			
		4.4.1	Testing S	tabilityFinder	80
		4.4.2	Lu toggle	switch models	84
			4.4.2.1	Extending the Lu models	86
			4.4.2.2	Multistability in the Lu models	90
			4.4.2.3	Extending the Lu switch to three nodes	94
		4.4.3	Mass Act	ion switches	96
			4.4.3.1	Multistability in the MA switces	101
			4.4.3.2	Robustness prior dependence	103
	4.5	Discus	ssion		107
	4.6	Summ	ary		108
_	D		1.1.0	1: 1. 0 1.	100
5	•			ng applied to flow cytometry data	
	5.1				
	5.2			and model fitting	
	5.3	ABC-I	Č	thm development	
			5.3.0.1	Distance Calculations	
		= 0.4	5.3.0.2	Intensity calculation	
		5.3.1		w model fitting	
			5.3.1.1	Distance study	
			5.3.1.2	ABC-Flow validation using simulated data	
	5.4	Toggle switch data collection			
		5.4.1		verview	
		5.4.2			
			5.4.2.1	Escherichia coli culturing conditions	
			5.4.2.2	Glycerol stock preparation	
			5.4.2.3	Revival	128
			5.4.2.4	Inducers	129
			5.4.2.5	Growth rate measurement	129
			5.4.2.6	Flow cytometry	129
			5.4.2.7	Concentration assays	129
			5.4.2.8	Time course assays	130
		5.4.3	Results .		131
			5.4.3.1	Growth rate investigation	131
			5.4.3.2	Toggle switch concentration assays	133
			5.4.3.3	Toggle switch time course assay	137
			5.4.3.4	Plasmid construction	140

		5.4.3.5 Polymerase Chain Reaction			
		5.4.3.6 Digestion			
		5.4.3.7 Agarose gel electrophoresis			
		5.4.3.8 Ligation			
		5.4.3.9 Transformation			
		5.4.3.10 Colony PCR			
		5.4.3.11 Sequencing			
	5.5	ABC-Flow used on experimental data			
	5.6	Discussion			
	5.7	Summary			
6	Des	gning new switches			
	6.1	Introduction			
	6.2	Cloning overview			
		6.2.1 Resulting switches			
	6.3	Experimental design			
		6.3.1 Stage 1 - Construction of pKDL071-plac/ara-araC 15			
		6.3.2 Stage 2 - Construction of pKDL071-pluxtet-luxR 15			
		6.3.3 Stage 3 - Construction of pKDL0713a			
	6.4	Summary			
7	Con	clusions			
	7.1	Evaluation			
	7.2	Future work			
Bi	bliog	raphy			
Αŗ	pend	ices			
A	Biochemical kinetic models				
	A.1	Ordinary differential equations			
		A.1.1 Standard toggle switch with inducers			
		A.1.2 Positive autoregulation on A and B with inducers 17			
		A.1.3 CS-MA			
		A.1.4 DP-MA			
В	Prin	ners 183			
	B.1	Primers used during PCR and sequencing			

				Contents	11
С	Algo	orithms	6	185	
C.1		Cluste	ring algorithms	185	
		C.1.1	Deterministic case	185	
		C.1.2	Stochastic case	185	
	C.2	C.2 K-means clustering			