Dismiss

This repository has been archived by the owner. It is now read-only.

probmarkcole / Useful-python-for-medical-physics

Join GitHub today

GitHub is home to over 28 million developers working together to host and review code, manage projects, and build software together.

Sign up

Branch: master ▼

Find file

Copy path

Useful-python-for-medical-physics / Experiments in ipython notebooks / pyEclipseDVH / Bladder_plan_comparison 5-4-2017.ipynb

probmarkcole Various edits to remove old work

2c4aa84 on 5 Apr 2017

1 contributor

448 lines (447 sloc) 78.2 KB

In [1]: from pyEclipseDVH_v2 import List_txt, Load_patient, get_dmin, get_dmax, get_d_metric, Load_files_t
 o_df
 %matplotlib inline
 import numpy as np
 import pandas as pd

import pandas as pd
import matplotlib.pyplot as plt

In [2]: Prescription = 36.0 # Gy

In [3]: def diff_to_prescribed(dose, Prescribed_dose):
 return 100.0 + 100.0*(dose-Prescribed dose)/Prescribed dose

In [4]: txt_files = List_txt()
txt files

Out[4]: ['Planned_plan_RC_export.txt', 'Replan_RC_export.txt']

In [5]: multi_df = Load_files_to_df(txt_files)

Planned_plan_RC_export.txt loaded patID:X12345 PlanID:Planned and number of structures is 6 Replan_RC_export.txt loaded patID:X12345 PlanID:Replanned and number of structures is 5

In [6]: multi_df.to_csv('All_data.csv')

For processing, drop the patID level since it is unchanged and this causes errors in my custom get_dose functions]

In [7]: multi_df.columns = multi_df.columns.droplevel()
 multi_df.head()

Out[7]:

planID	Planned						Replanned					
Structure	BODY	CTV36Gy	L Femoral Head	PTV BLADDER	R Femoral Head	Rectum	CTV36Gy	L Femoral Head	PTV BLADDER	R Femoral Head	Rectum	
Dose (Gy)												
0.00	100.000000	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
0.05	99.967853	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
0.10	99.710568	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	

0.15	98.967167	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	l
0.20	96.848389	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	l

```
In [8]: def plot_structure(structure, xlim):
    multi_df.xs(structure, level='Structure', axis=1).plot()
    plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
    plt.title('The DVH for structure ' + structure)
    plt.ylabel('Relative dose (%)')
    plt.xlim(xlim)
    return

structure = 'PTV BLADDER'
    plot_structure(structure, xlim=[30,40])
```



```
In [9]: structure = 'Rectum'
plot_structure(structure, xlim=[0,40])
```



```
In [10]: def d50(df):
    return diff_to_prescribed(get_d_metric(df, 50.0), Prescription)
In [11]: d50_df = multi_df.apply(d50) # function of form lambda function that takes a single argument
```

```
In [15]: d50_df
Out[15]: planID Structure
```

Out[15]: planID Structure
Planned BODY 2.650682
CTV36Gy 99.967557
L Femoral Head 61.680973
PTV BLADDER 100.271376

```
R Femoral Head
                                                                60.645708
                                                                94.564767
                                 Rectum
               Replanned CTV36Gy
                                                              101.221269
                                 L Femoral Head
                                                                61.565716
                                 PTV BLADDER
                                                              101.619544
                                 R Femoral Head
                                                                61.015640
                                 Rectum
                                                                92.089050
               dtype: float64
In [22]: for item in d50_df.index.values:
                      print(item)
              ('Planned', 'BODY')
('Planned', 'CTV36Gy')
('Planned', 'L Femoral Head')
('Planned', 'PTV BLADDER')
('Planned', 'R Femoral Head')
('Planned', 'Rectum')
('Replanned', 'CTV36Gy')
('Replanned', 'L Femoral Head')
('Replanned', 'PTV BLADDER')
('Replanned', 'R Femoral Head')
('Replanned', 'R Femoral Head')
In [25]: d50_df[('Planned', 'CTV36Gy')]
Out[25]: 99.967557445299192
In [26]: d50_df[('Replanned', 'CTV36Gy')]
Out[26]: 101.22126906797547
 In [ ]:
```