

Table of Contents

Applications of NLP

NLP general workflow

Classification schema of NLP techniques

Textual data

Text-Preprocessing

Text parsing and exploratory data analysis

Text representation and vectorizing

Modeling and/or pattern mining

Random Forest Classifier

Goals of NLP tutorial by SEDS lab (today)

- General understanding of NLP,
 - Applications, use cases
 - Workflow
 - General tools
- Build a sentiment analysis tool Together!
 - Explaining each part
 - Implementing them

Applications of NLP

- Email Filters
- Fraud Detection
- Search Results
- Predictive Text
- Language translation
- Data and Text analysis
- More ...

- Requirements Elicitation
- Sentiment Analysis
- Opinion Mining
- Text Summarization
- Context Analysis
- Decision Support

Classification schema of NLP techniques

Textual Data in Software Projects

Source: [1]

Textual Data Retrieval

- API's
- Enterprise Resource Planning (ERP) systems
- Version Control history
- Communications
 - Email
 - Chat
- Surveys

Let's Start Coding

Text-Preprocessing

Text Parsing and Exploratory data analysis

- Named Entity Recognition
- Part-Of-Speech (POS) Tagging

Let's See some examples in the existing general purpose NLP tools:

- IBM's NLP tool set called Watson (link)
- Google's NLP API (link)

Text representation - Vectorizing

- A few Text Representation and Vectorization methods:
 - Bag of Words (BoW)
 - N-Gram (extension of BoW)
 - TF-IDF
 - Word2Vec
 - Doc2Vec
 - BERT

Bag of Words

Source: https://blog.insightdatascience.com/how-to-solve-90-of-nlp-problems-a-step-by-step-guide-fda605278e4e

• Why this is NOT a good text representation?

Term Frequency-Inverse Document Frequency (TF-IDF)

- Why TF-IDF?
- What is it?
 - Creates a document-term matrix; one row per document, one column per word in the corpus
 - Generates a weighting for each word/document pair intended to reflect how important a given word is to the document within the context of its frequency within a larger corpus

0.27	0.23	 0.77	0.68
0.86	0.96	 0.3	0.83
0.18	0.71	 0.87	0.63
0.68	0.29	 0.61	0.92

M tweets

N words

$$w_{i,j} = tf_{i,j} \times log(\frac{N}{df_i})$$

 $w_{i,j}$ = weighting of word i for document j $tf_{i,j}$ = number of times i occurs in j divided by the total number of terms in j df_i = number of documents containing word i N = total number of documents

Let's Continue Coding

TF-IDF Vectorization

Modeling and/or Pattern mining

- Machine Learning:
 - NVIDIA, 2016: Practice of using algorithms to parse data, learn from it, and then make a determination or prediction about something in the world. [3]
- Two broad types of ML
 - Supervised Learning
 Inferring a function from a labeled training data to make predictions on unseen data
 - Example: Predict whether any given tweet has a positive or negative emotion

- Unsupervised Learning
 - Deriving structure from data where we don't know the effect of any of the variables
 - Example: Based on the content of a tweet, group similar tweets together in distinct folders

Modeling and/or Pattern mining

Supervised Learning and pattern mining

N features

labels

0.27 0.23 ... 0.77 0.68 1

0.86 0.96 ... 0.3 0.83 0

M
training

0.18 0.71 ... 0.87 0.63 0

0.68 0.29 ... 0.61 0.92 1

Random Forest Naïve Bayes Neural Network (MLP) RNN

Random Forest

- Why Random Forest?
- Ensemble Methods

Source: https://medium.com/geekculture/the-power-of-ensemble-96cd2621c2de

- Can be used for classification or regression
- Handles outliers, missing values, etc.
- Less likely to overfit

- Random Forest
 - Ensemble learning method
 - A collection of decision trees
 - aggregates the predictions
 - A simple voting method for decision trees (DT):
 70 DTs vote for Positive > 30 DTs for Negative

Let's Continue and Finish Coding

Modeling and Pattern Mining

References

- Bird, Christian, Tim Menzies, and Thomas Zimmermann, eds. The art and science of analyzing software data. Elsevier, 2015.
- 2. Moises Gonzalez-Garcia, Speech recognition, NLP, and the use of ontologies to identify the problem-domain and solution requirements: A systematic mapping study, Information and Software Technology, 2019, In press
- https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machinelearning-deep-learningai/#:~:text=Machine%20learning%20at%20its%20most,about%20something%20in%20the%20world.
- 4. https://realpython.com/nltk-nlp-python/
- 5. https://towardsdatascience.com/tf-idf-a-visual-explainer-and-python-implementation-on-presidential-inauguration-speeches-2a7671168550