

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Análise do Valor Limite

Conclusão

Exercício de Fixação

SSC721 – Teste e Inspeção de Software

Técnica de Teste Funcional

Simone Senger de Souza srocio@icmc.usp.br

Instituto de Ciências Matemáticas e de Computação — ICMC/USP

Roteiro

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Análise do Valor Limite

Conclusão

Exercício de Fixação

Técnica Funcional

Critérios de Teste Funcionais

• Particionamento em Classes de Equivalência

Análise do Valor Limite

Conclusão

Aula Anterior...

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Análise do Valor Limite

Conclusão

- Diferentes técnicas e critérios de teste existem para auxiliar na atividade de teste.
 - Basicamente, os testes podem ser classificados em teste caixa-preta (teste funcional) ou teste caixa-branca (teste estrutural).
 - Contemplam diferentes perspectivas do software: aspecto complementar!!!!

Técnica Funcional

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Aplicabilidade da Técnica

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Análise do Valor Limite

Conclusão

- Também conhecida como Técnica Caixa-Preta
 - Considera o produto em teste como uma caixa da qual só se conhece a entrada e a saída (sem conhecimento da parte interna).
- Baseia-se na especificação do software para derivar os requisitos de teste.
 - Aborda o software de um ponto de vista macroscópico.
 - Não se preocupa com detalhes de implementação.

Passos da Técnica Funcional

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste

Funcionais

Particionamento em

Classes de Equivalência

Análise do Valor Limite

Conclusão

- Passos básicos para aplicar um critério de teste funcional:
 - A especificação de requisitos é analisada.
 - Entradas válidas são escolhidas para determinar se o produto em teste comporta-se corretamente.
 - Entradas inválidas são escolhidas para verificar se estas são detectadas e manipuladas adequadamente.
 - Os casos de testes são construídos (saídas são determinadas para cada entrada).
 - O conjunto de teste é executado e as saídas obtidas são comparadas com as saídas esperadas.
 - Um relatório é gerado para avaliar o resultado dos testes.

Aplicabilidade da Técnica

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste

Particionamento em Classes de Equivalência

Análise do Valor Limite

Conclusão

Exercício de Fixação

- Por ser independente da implementação, critérios da técnica funcional podem ser utilizados em todas as fases de teste.
- A complexidade de aplicação aumenta em cada fase.

Figura : Aplicabilidade da Técnica Funcional nas Fases de Teste.

Critérios de Teste Funcionais

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Análise do Valor Limite

Conclusão

- Critérios de teste funcionais mais conhecidos:
 - Particionamento em Classes de Equivalência
 - Divide o domínio de entrada (e de saída) de um programa em classes de equivalência, a partir das quais derivam-se os casos de teste.
 - Análise do Valor Limite
 - Complementa o critério Particionamento de Equivalência, exigindo casos de teste nos limites (fronteiras) de cada classe de equivalência.
 - Grafo de Causa-Efeito
 - Verifica o efeito combinado de dados de entrada.
 - Causas (condições de entrada) e efeitos (ações) são identificados e combinados em um grafo.
 - Tabela de Decisão → Casos de Teste

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Passos para Aplicação

Exemplos de Aplicação

Aplicabilidade e Limitações

Análise do Valor Limite

Conclusão

Exercício de Fixação

 Critério utilizado para reduzir o número de casos de teste, procurando garantir uma boa cobertura do código do produto em teste.

 Empregado intuitivamente pelos programadores mesmo sem conhecer o critério.

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Passos para Aplicação

Exemplos de Aplicação

Aplicabilidade e Limitações

Análise do Valor Limite

Conclusão

Exercício de Fixação

 Exemplo: Parte de um Sistema de Recursos Humanos que determina contratações com base na idade dos candidatos.

0 – 16	Não empregar.		
16 – 18	Pode ser empregado tempo parcial.		
18 – 55	Pode ser empregado tempo integral.		
55 – 99	Não empregar.		

Como derivar os casos de teste?

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Passos para Aplicação Exemplos de Aplicação Aplicabilidade e Limitações

Análise do Valor Limite

Conclusão

Exercício de Fixação

 Considere que o módulo que resolve o problema anterior tenha sido implementado como se segue:

```
if (idade == 0) empregar = "NAO";
   if (idade == 1) empregar = "NAO";
   if (idade == 15) empregar = "NAO";
      (idade == 16) empregar = "PAR";
     (idade == 17) empregar = "PAR";
   if (idade == 18) empregar = "INT";
   if (idade == 19) empregar = "INT";
     (idade = 53) empregar = "INT";
10
      (idade = 54) empregar = "INT";
11
     (idade = 55) empregar = "NAO";
12
     (idade = 56) empregar = "NAO";
13
14
   if (idade = 98) empregar = "NAO";
15
   if (idade == 99) empregar = "NAO";
16
```


SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Passos para Aplicação Exemplos de Aplicação Aplicabilidade e Limitações

Análise do Valor Limite

Conclusão

- Neste caso, a única forma de testá-lo adequadamente seria executar o módulo com valores de idade de 0..99.
- Caso haja tempo suficiente, esse é o melhor teste a ser realizado!
- O problema é que da forma como o código anterior foi implementado, a execução de um dado caso de teste não diz nada a respeito da execução do próximo.

SSC721 - Teste e Inspeção de Software

Considere agora uma outra implementação (bem melhor!!) do mesmo problema:

```
Técnica Funcional
Critérios de Teste
Funcionais
Particionamento em
 Passos para Aplicação
```

Aula Anterior

Classes de Equivalência

Exemplos de Aplicação Aplicabilidade e Limitações

Análise do Valor Limite

Conclusão

```
if (idade \geq 0 && idade \leq 16)
        empregar = "NAO";
if (idade >= 16 \&\& idade <= 18)
        empregar = "PAR":
if (idade >= 18 \&\& idade <= 55)
        empregar = "INT";
if (idade >= 55 \&\& idade <= 99)
        empregar = "NAO";
```

- Dada essa implementação, fica claro que não é necessário testar para todos os valores $0, 1, 2, \dots, 14, 15$ e 16, por exemplo.
- Apenas um conjunto de valores precisa ser testado.
 - Quais seriam esses valores?

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Passos para Aplicação Exemplos de Aplicação Aplicabilidade e Limitações

Análise do Valor Limite

Conclusão

- Qualquer valor dentro do intervalo tem a mesma importância, ou seja, qualquer valor escolhido é adequado.
- O mesmo se aplica para os demais intervalos de dados.
- Tais intervalos determinam o que é chamado de Classes de Equivalência.
- Qualquer valor no intervalo de uma classe é considerado equivalente em termos de teste.
 - Se um caso de teste de uma classe de equivalência revela um erro, qualquer caso de teste da mesma classe também revelaria e vice-versa

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Passos para Aplicação Exemplos de Aplicação Aplicabilidade e Limitações

Análise do Valor Limite

Conclusão

- Esse critério assume que existe uma indicação precisa das classes de equivalência.
- É assumido que não existe algo estranho como:

```
if (idade >= 0 \&\& idade <= 16)
            empregar = "NAO";
   if (idade >= 16 \&\& idade <= 18)
            empregar = "PAR":
   if (idade >= 18 \&\& idade <= 41)
            empregar = "INT";
   // início comado estranho
   if (idade == 42 && nome == "Fulano")
            empregar = "INT-DIF";
   if (idade == 42 && nome != "Fulano")
10
11
            empregar = "INT";
   // fim comando estranho
13
   if (idade >= 55 \&\& idade <= 99)
            empregar = "NAO";
14
```


SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Passos para Aplicação

Exemplos de Aplicação

Aplicabilidade e Limitações

Análise do Valor Limite

Conclusão

- Observe que esse critério de teste reduz o número de casos de teste de 100 para 4 (um para cada classe de equivalência).
- Devem ser considerados casos de teste inválidos!

Passos para Aplicação do Particionamento

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Passos para Aplicação

Exemplos de Aplicação

Aplicabilidade e Limitações

Análise do Valor Limite

Conclusão

- Identificar as classes de equivalência (requisitos de teste do critério).
 - Condições de entrada.
 - Classes válidas e inválidas.
- Definir os casos de teste.
 - Enumerar as classes de equivalência.
 - Criar casos de teste para as classes de equivalência válidas
 - Criar um caso de teste para cada classe de equivalência inválida.
 - Entradas inválidas são grandes fontes de defeitos!
- Casos de teste adicionais podem ser criados caso haja tempo e dinheiro suficientes.

Exemplo: Programa String

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Passos para Aplicação

Exemplos de Aplicação

Aplicabilidade e Limitações

Análise do Valor Limite

Conclusão

Exercício de Fixação

O programa string solicita do usuário um inteiro positivo no intervalo entre 1 e 20 e então solicita uma cadeia de caracteres desse comprimento. Após isso, o programa solicita um caracter e retorna a posição na cadeia em que o caracter é encontrado pela primeira vez ou uma mensagem indicando que o caracter não está presente na cadeia. O usuário tem a opção de procurar por vários caracteres - um de cada vez!!

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em

Classes de Equivalência
Passos para Aplicação

Exemplos de Aplicação

Aplicabilidade e Limitações

Análise do Valor Limite

Conclusão

Condição	Classes de	Classes de
de entrada	equivalência válidas	equivalência inválidas

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Passos para Aplicação

Exemplos de Aplicação

Aplicabilidado o Limitação

Análise do Valor Limite

Conclusão

Exercício de Fixação

• Identificar as condições de entrada:

Condição	Classes	Classes
de entrada	válidas	inválidas
Tamanho da cadeia (T)		
A cadeia de caracteres (CC)		
O caractere a ser procurado (C)		
Procurar mais caracteres (O)		

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Passos para Aplicação

Exemplos de Aplicação

Aplicabilidade e Limitações

Análise do Valor Limite

Conclusão

Exercício de Fixação

• Identificar as classes válidas e inválidas:

	1	
Condição	Classes	Classes
de entrada	válidas	inválidas
Tamanho (T)	$1 \le T \le 20$	T < 1 e $T > 20$
A cadeia (CC)	$CC \equiv T$	CC ≠ T
O caractere (C)	Pertence	
	Não pertence	
Procurar mais (0)	S N	Outro

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Passos para Aplicação

Exemplos de Aplicação

Aplicabilidade e Limitações

Análise do Valor Limite

Conclusão

Exercício de Fixação

Criar casos de teste:

Condição	Classes	Classes
de entrada	válidas	inválidas
Tamanho (T)	$1 \leq T \leq 20 \; (1)$	T < 1 (2) e T > 20 (3)
A cadeia (CC)	$CC \equiv T (4)$	$CC \neq T$ (5)
O caractere (C)	Pertence (6)	
	Não pertence (7)	
Procurar mais (0)	S (8) N (9)	Outro (10)

- Conjunto de Casos de Teste:
- T= {(<6, "alface", a, N>, 1), (<6, "alface", x, N>, não pertence), (<6, "alface", a, S, c, N >, 1, 5), (-2, T inválido), (<6, "alfa", >, string inválida) (<6, "alface", a, X >, 1, entrada inválida), (25, T inválido) }

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Passos para Aplicação

Exemplos de Aplicação Aplicabilidade e Limitações

Análise do Valor Limite

Conclusão

- Ilustra a definição de classes de equivalência para diferentes tipos de dados.
- Classes para Dados Contínuos (renda mensal para hipoteca deve estar entre de R\$1.000 a R\$83.333):

- São definidas duas classes inválidas e uma válida.
- Para a classe válida poderia ser escolhido R\$1.342/mês.
- Para as classes inválidas poderiam ser escolhidos R\$123/mês e R\$90.000/mês.

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Passos para Aplicação

Exemplos de Aplicação

Aplicabilidade e Limitações

Análise do Valor Limite

Conclusão

Exercício de Fixação

 Classes para Dados Discretos (hipotecas de 1 a 5 casas):

- São definidas duas classes inválidas e uma válida.
- Para a classe válida poderia ser escolhido 2.
- Para as classes inválidas poderiam ser escolhidos -2
 e 8.

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Passos para Aplicação

Exemplos de Aplicação

Aplicabilidade e Limitações

Análise do Valor Limite

Conclusão

Exercício de Fixação

 Classes para Dados Simples (somente hipoteca para pessoas é permitido):

Válido

Inválido

- São definidas uma classe inválida e uma válida.
- Para a classe válida poderia ser escolhida uma pessoa qualquer.
- Para a classe inválida deve ser escolhida uma companhia ou associação.

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Passos para Aplicação

Aplicabilidade e Limitações

Análise do Valor Limite

Conclusão

Exercício de Fixação

 Classes para Dados de Múltipla Escolha (três tipos de hipoteca são válidas: condomínio, sobrado e casa térrea):

Condomínio Sobrado Casa térrea

Válido

Inválido

- Para o intervalo válido pode-se escolher: condomínio, sobrado ou casa térrea.
 - Escolher somente um ou os três? Depende da criticalidade do programa em teste. Se forem poucos itens vale a pena selecionar um de cada.
- O mesmo para a classe inválida.

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Passos para Aplicação Exemplos de Aplicação

Aplicabilidade e Limitações

Análise do Valor Limite

Conclusão

- Devido ao número de condições de entrada, não há tempo para a criação de um caso de teste para cada classe válida.
 - Solução: Criar o menor número possível de casos de teste que cubra todas as classes válidas.
 - Criar um caso de teste para cada classe inválida.

Renda	# Casas	Aplicante	Tipo	Resultado
5.000	2	Pessoas	Condomínio	Válido
100	1	Pessoas	Casa Térrea	Inválido
90.000	1	Pessoas	Casa Térrea	Inválido
1.342	0	Pessoas	Condomínio	Inválido
1.342	6	Pessoas	Condomínio	Inválido
1.342	1	Corporação	Sobrado	Inválido
1.342	1	Pessoas	Duplex	Inválido

Aplicabilidade e Limitações do Particionamento

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Passos para Aplicação Exemplos de Aplicação

Análise do Valor Limite

Conclusão

- Reduz significativamente o número de casos de teste em relação ao teste exaustivo.
- Mais adequado para o teste de produtos com domínios de entrada divididos em intervalos ou conjuntos.
- Assume que os valores dentro da mesma classe são equivalentes (isso nem sempre é verdade!).
 - Importante empregar outros critérios de teste!!
- Aplicável em todas as fases de teste: unidade, integração e sistema.

Análise do Valor Limite

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Análise do Valor Limite

Passos para Aplicação Aplicabilidade e Limitações

Conclusão

Exercício de Fixação

 Complementa o critério Particionamento de Equivalência, exigindo casos de teste nos limites (fronteiras) de cada classe de equivalência.

• Considerando o exemplo utilizado anteriormente:

0 – 16	Não empregar.
16 – 18	Pode ser empregado tempo parcial.
18 – 55	Pode ser empregado tempo integral.
55 – 99	Não empregar.

• Observe que os limites aparecem em duas classes de equivalência (16 por exemplo).

Análise do Valor Limite

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Euncional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Análise do Valor Limite

Passos para Aplicação Aplicabilidade e Limitações

Conclusão

Exercício de Fixação

 As condições anteriores, na verdade, deveriam ser escritas como:

$0 \leq idade < 16$	Não empregar.
$16 \leq idade < 18$	Pode ser empregado tempo parcial.
$18 \leq idade < 55$	Pode ser empregado tempo integral.
$55 \le idade < 99$	Não empregar.

OU

$0 \le idade \le 15$	Não empregar.
$16 \leq idade \leq 17$	Pode ser empregado tempo parcial.
$18 \le idade \le 54$	Pode ser empregado tempo integral.
$55 \le idade \le 99$	Não empregar.

- Na primeira regra, 16 não deve ser incluído.
- Na segunda 16 pode ser empregado em tempo parcial.

Análise do Valor Limite

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Análise do Valor Limite

Passos para Aplicação Aplicabilidade e Limitações

Conclusão

Exercício de Fixação

A implementação a seguir implementa as regras anteriores:

• Valores limites a serem considerados: $\{-1,0\}$, $\{15,16\}$, $\{17,18\}$, $\{54,55\}$ e $\{99,100\}$

Passos para Aplicação da AVL

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Análise do Valor Limite

Aplicabilidade e Limitações

Conclusão

- Identificar as classes de equivalência (requisitos de teste do critério).
- Identificar os limites de cada classe.
- Criar casos de teste para os limites escolhendo:
 - Um ponto abaixo do limite.
 - O limite.
 - Um ponto acima do limite.
- Observe que acima e abaixo s\u00e3o termos relativos e dependentes do valor dos dados.
 - Números inteiros: limite = 16; abaixo = 15; acima = 17.
 - Números reais: limite = \$5,00; abaixo = \$4,99; acima = \$5.01.
- Casos de teste adicionais podem ser criados dependendo dos recursos disponíveis.

Exemplo Programa String

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Análise do Valor Limite

Passos para Aplicação

Aplicabilidade e Limitações

Conclusão

Exercício de Fixação

• Casos de Teste para Análise do Valor Limite:

Condição	Classes	Classes
de entrada	válidas	inválidas
Tamanho (T)	$1 \le T \le 20$	T < 1 e T > 20
A cadeia (CC)	$CC \equiv T$	$CC \neq T$
O caractere (C)	Pertence	
	Não pertence	
Procurar mais (O)	S N	Outro

- Conjunto de Casos de Teste:
- T= { ??? }

Aplicabilidade e Limitações da AVL

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Análise do Valor Limite Passos para Aplicação

Conclusão

- Reduz significativamente o número de casos de teste em relação ao teste exaustivo.
- Mais adequado para o teste de produtos com domínios de entrada divididos em intervalos ou conjuntos.
- Aplicável em todas as fases de teste: unidade, integração e sistema.

Concluindo...

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Análise do Valor Limite

Conclusão

- A técnica funcional pode ser utilizada em todas as fases de teste.
- Independe do paradigma de programação utilizado.
- Eficaz em detectar determinados tipos de erros.
 - Por exemplo: Funcionalidade ausente.
- Dependente de uma boa especificação de requisitos.
 - Especificações descritivas e não formais.
 - Requisitos imprecisos e informais.
- Dificuldade em quantificar a atividade de teste.
- Não é possível garantir que partes essenciais ou críticas do software sejam executadas.
- Dificuldade de automatização: em geral, a aplicação é manual.

Exercício de Fixação

SSC721 – Teste e Inspeção de Software

Gerar casos de teste utilizando os critérios Particionamento em Classe de Equivalência e Análise do Valor Limite.

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Análise do Valor Limite

Conclusão

Exercício de Fixação

O programa *Identifier* determina se um identificador é válido ou não. Um identificador válido deve começar com uma letra e conter apenas letras ou dígitos. Além disso, deve ter no mínimo um caractere e no máximo seis caracteres de comprimento.

- Identificadores Válidos
 - abc12
 - C4d5
 - dcdf

- Identificadores Inválidos
 - cont*1
 - 1soma
 - a123456

Classes de Equivalência do Programa Identifier

SSC721 – Teste e Inspeção de Software

Aula Anterior

Técnica Funcional

Critérios de Teste Funcionais

Particionamento em Classes de Equivalência

Análise do Valor Limite

Conclusão

Evercício de Eivação

Classes Válidas e Inválidas:

Condições de Entrada	Classes Válidas	Classes Inválidas
Tamanho t do identificador	1 ≤ <i>t</i> ≤ 6 (1)	t > 6 t < 1 (2) (3)
Primeiro caractere <i>c</i> é uma letra	Sim (4)	Não (5)
Só contém caracteres válidos	Sim (6)	Não (7)

Conjunto de Casos de Teste:

 $T_0 = \{(a1, V \'alido), (2B3, Inv\'alido), (Z-12, Inv\'alido), (A1b2C3d, Inv\'alido)\}$ (1, 4, 6) (5) (7) (2)