Graphical Economics (with Resale)

Carlos Lezama

Instituto Tecnológico Autónomo de México General Equilibrium Fall 2022

- 1 Introduction
- 2 Setting and Background
- 3 The Arrow–Debreu (AD) Exchange Model
- 4 The Kakade, Kearns, Ortiz (KKO) Exchange Model
- **5** Allowing Resale

Introduction

General Equilibrium Theory

- Long history and deep mathematical grounding
- We attempt to explain supply, demand, and prices
- Arrow-Debreu Model is central

Setting and Background

We consider economies consisting of:

- A set $[\ell] := \{1, \dots, \ell\}$ of divisible goods
- A set $[m] := \{1, ..., m\}$ of **agents embedded as nodes** in some graph G = ([m], E), whose edges E describe who may trade with whom
- A **bundle of goods** $\mathbf{e}^i \in \mathbb{R}_+^{\ell}$ that agent $i \in [m]$ enters the market with
- A **utility function** $u_i : \mathbb{R}_+^{\ell} \to \mathbb{R}_+$ that encodes agent *i*'s preferences over bundles of goods

Graphical Economy

A **graphical economy** is an undirected graph G over agents [m] with neighbor relation \simeq , utilities $\{u_i: \mathbb{R}_+^\ell \to \mathbb{R}_+\}_{i \in [m]}$, and endowments $\{\mathbf{e}^i \in \mathbb{R}_+^\ell\}_{i \in [m]}$, where ℓ is an integer denoting the number of goods being traded.

For ease of exposition, G is assumed undirected — all results can be easily extended to directed graphs.

To discuss equilibria in a graphical economy, we also need:

- Local price vectors $\mathbf{p}^i \in \mathbb{R}_+^{\ell}$ for each agent $i \in [m]$
- The bundle of goods $\mathbf{x}^{ij} \in \mathbb{R}_+^\ell$ agent i purchases from agent j for consumption
 - To enforce the condition that trade must traverse edges, $\mathbf{x}^{ij} = 0$ for $i \not\simeq i$

Agent i buys an amount x_k^{ij} of good k from agent j for consumption

$$i \neq j \in [m]$$
$$k \in [\ell]$$

The Arrow-Debreu (AD) Exchange Model

AD Equilibrium

An **AD Equilibrium** is a pair (\mathbf{p}, \mathbf{x}) of a set of price vectors \mathbf{p} and set of consumption plans \mathbf{x} such that, if the underlying graph is complete, we have $\mathbf{p}^i = \mathbf{p}^j$ for all $i, j \in [m]$, and the following conditions are satisfied:

• Market Clearing.

$$\sum_{i,j\in[m]}\mathbf{x}^{ij}=\sum_{i\in[m]}\mathbf{e}^i$$

• Individual Rationality. For all agents $i \in [m]$, setting $\hat{\mathbf{x}}^i = \mathbf{x}^i$ maximizes their utility $u_i\left(\sum_{j\simeq i}\hat{\mathbf{x}}^{ij}\right)$ over all $\hat{\mathbf{x}}^i\in\mathbb{R}_+^\ell$ satisfying

$$\sum_{j \simeq i} \mathbf{p}^j \cdot \hat{\mathbf{x}}^{ij} \le \mathbf{p}^i \cdot \mathbf{e}^i$$

- Agents sell endowments at market prices
- They spend profits on goods maximizing their utility
- There is a single global market
 - Single price for each good
 - Every pair of agents can trade
 - Markets are cleared when the demand of all agents is equal to the supply of all agents

We would like something more local

The Kakade, Kearns, Ortiz (KKO) Exchange Model

The Kakade, Kearns, Ortiz (KKO) Exchange Model

Text.

Allowing Resale

Allowing Resale

Text.