Module Interface Specification for Software Engineering

Team 4, EcoOptimizers

Nivetha Kuruparan Sevhena Walker Tanveer Brar Mya Hussain Ayushi Amin

April 5, 2025

1 Revision History

Date		Name	Notes
January	17th,	All	Initial Draft
2025			
March	24th,	Mya Hus-	Removed Pythonic Syntax Mentions
2025		sain	
March	24th,	Mya Hus-	Added Some References to Local Functions
2025		sain	
March	24th,	Mya Hus-	Modified Wrong Environment Variables
2025		sain	
March	25th,	Tanveer	Added MIS for new plugin modules
2025		Brar	
March	28th,	Tanveer	Addressed TA and Peer Review Feedback Issues
2025		Brar	

2 Symbols, Abbreviations and Acronyms

See SRS Documentation.

Contents

1	Revision History						
2	Syn	Symbols, Abbreviations and Acronyms					
3	Introduction						
4	Not	ation	1				
5	Mo	dule Decomposition	3				
6	MIS	S of Smell Data Type	4				
	6.1	Module	4				
	6.2	Uses	4				
	6.3	Syntax	4				
	6.4	Semantics	4				
		6.4.1 State Variables	4				
		6.4.2 Environment Variables	5				
		6.4.3 Assumptions	5				
		6.4.4 Access Routine Semantics	5				
		6.4.5 Local Functions	5				
7	MIS	S of BaseRefactorer	5				
	7.1	Module	5				
	7.2	Uses	5				
	7.3	Syntax	5				
	7.4	Semantics	6				
		7.4.1 State Variables	6				
		7.4.2 Environment Variables	6				
		7.4.3 Assumptions	6				
		7.4.4 Access Routine Semantics	7				
		7.4.5 Local Functions	8				
8	MIS	S of LongMessageChainRefactorer	9				
	8.1	Module	9				
	8.2	Uses	9				
	8.3	Syntax	9				
	0.0	8.3.1 Exported Constants	9				
		8.3.2 Exported Access Programs	9				
	8.4	Semantics	10				
	O. I	8.4.1 State Variables	10				
		8.4.2 Environment Variables	10				
		8.4.3 Assumptions	10				
		CITIC TENNETH DUCHE I I I I I I I I I I I I I I I I I I I	11				

		8.4.4	Access Routine Semantics		. 10
		8.4.5	Local Functions		. 11
9	MIS	of Lo	ongLambdaFunctionRefactorer		12
	9.1		lle		
	9.2				
	9.3		X		
	0.0	9.3.1	Exported Constants		
		9.3.2	Exported Access Programs		
	9.4		ntics		
		9.4.1	State Variables		
		9.4.2	Environment Variables		
		9.4.3	Assumptions		
		9.4.4	Access Routine Semantics		
		9.4.5	Local Functions		
10			${ m congParameterListRefactorer}$		15
			lle		
	10.3		X		
			Exported Constants		
			Exported Access Programs		
	10.4		ntics		
			State Variables		
			Environment Variables		
			3 Assumptions		
			Access Routine Semantics		
		10.4.5	Local Functions		. 17
11	MIS	of Us	${f seListAccumulationRefactorer}$		18
			lle	_	
		T.T			10
			X		
		•	ntics		
			State Variables		_
			Environment Variables		
			3 Assumptions		
			Access Routine Semantics		
			Local Functions		
10	N ATO	C 3 F			0.1
12			$egin{aligned} ext{IakeMethodStaticRefactorer} \ ext{IakeMethodStaticRefactorer} \end{aligned}$		21 . 21
			de		
	14.2	USES .			. 41

1:	2.3	Syntax	21
1:	2.4	Semantics	21
		12.4.1 State Variables	21
		12.4.2 Environment Variables	22
		12.4.3 Assumptions	22
		12.4.4 Access Routine Semantics	22
		12.4.5 Local Functions	23
40.3			~ .
			24
			24
			24
1.	პ.პ		24
			24
4	0.4	The state of the s	24
13	3.4		24
			24
			24
		1	25
			25
		13.4.5 Local Functions	26
14 N	ЛIS	of Measurements Module	26
			26
			27
			27
_	1.0	V	27
		1	27
1.	4 4	1	27
_			27
			27
			27
		14.4.4 Access Routine Semantics	28
			28
15 N	IIS	of PylintAnalyzer	29
1	5.1	Module	29
1	5.2	Uses	29
1	5.3	Syntax	29
1	5.4	Semantics	29
		15.4.1 State Variables	29
		15.4.2 Environment Variables	30
		15.4.3 Assumptions	30
		15.4.4 Access Routing Computies	30

	15.4.5 Local Functions	31
1 1 1	MIS of UseAGeneratorRefactorer 6.1 Module	32 32 32 32 32 32 33 33 33
	16.4.5 Local Functions	33
1 1 1	MIS of CacheRepeatedCallsRefactorer 7.1 Module	34 34 34 34 34 35 35 35
1 1 1	MIS of PluginInitiator 8.1 Module	36 36 37 37 37 37 37 37 38 38
1: 1: 1:	MIS of BackendCommunicator 9.1 Module	38 38 38 39 39 39

		19.4.4	Access Routine Semantics			 			 				 . 40
		19.4.5	Local Functions	 		 			 				 . 40
20	MIS	of Sm	ellDetector										40
20			9										
			tics										
	20.4		State Variables										
			Environment Variables .										
			Assumptions										
			Access Routine Semantics										
		20.4.5	Local Functions	 	 •	 		•	 	•		•	 . 42
21	MIS	of Sm	ellRefactorer										42
	21.1	Module	9	 		 			 				 . 42
	21.2	Uses .		 		 			 				 . 42
	21.3	Syntax		 		 			 				 . 42
			tics										
		21.4.1	State Variables	 		 			 		 		 . 43
		21.4.2	Environment Variables .	 		 			 				 . 43
			Assumptions										
			Access Routine Semantics										
			Local Functions										
22			eHighlighter										43
	22.1	Module	e	 		 			 	•		•	
	22.3	Syntax		 		 			 				 . 44
	22.4	Semant	tics	 		 			 				 . 44
		22.4.1	State Variables	 		 			 				 . 44
		22.4.2	Environment Variables .	 		 			 				 . 44
		22.4.3	Assumptions	 		 			 				 . 44
		22.4.4	Access Routine Semantics			 			 				 . 44
		22.4.5	Local Functions	 		 			 				 . 45
23	MIS	of Ho	verManager										45
_ U													
		*											
	25.4		tics										
			State Variables	• •	 •	 	•	•	 	•	 •	•	 . 40 16
													/11/

		23.4.3	Assumptions	. 46
			Access Routine Semantics	
			Local Functions	
24	MIS	of Re	factorManager	47
			·····	
		•	iics	
			State Variables	
			Environment Variables	
			Assumptions	
			Access Routine Semantics	
			Local Functions	
25	MIS	of Ca	${ m cheManager}$	48
			encivianager	
			ics	
	20.1		State Variables	
			Environment Variables	
			Assumptions	
			Access Routine Semantics	
			Local Functions	
		20.4.0	Local Tunctions	. 50
			terManager	50
	26.1	Modul	9	. 50
	26.2	Uses .		. 50
	26.3	Syntax		. 50
	26.4	Seman	ics	. 50
		26.4.1	State Variables	. 50
			Environment Variables	. 50
		26.4.3	Assumptions	. 51
		26.4.4	Access Routine Semantics	. 51
		26.4.5	Local Functions	. 51
27]	MIS	of En	m ergyMetrics	51
			· · · · · · · · · · · · · · · · · · ·	
			iics	
			State Variables	50

	27.4.2 Environment Variables	52
	27.4.3 Assumptions	52
	27.4.4 Access Routine Semantics	52
	27.4.5 Local Functions	53
28 M	IS of ViewProvider	53
28	.1 Module	53
	2 Uses	53
	3 Syntax	53
	4 Semantics	53
	28.4.1 State Variables	53
	28.4.2 Environment Variables	53
	28.4.3 Assumptions	54
	28.4.4 Access Routine Semantics	54
	28.4.5 Local Functions	54
29 M	IS of EventManager	54
	1 Module	54
	2 Uses	55
	3 Syntax	55
	4 Semantics	55
29	29.4.1 State Variables	55 55
		55 55
	29.4.2 Environment Variables	55 55
	29.4.3 Assumptions	
	29.4.4 Access Routine Semantics	55
	29.4.5 Local Functions	56
30 A ₁	opendix — Reflection	57

3 Introduction

The following document details the Module Interface Specifications (MIS) for the Source Code Optimizer project. The Source Code Optimizer is a software tool designed to analyse, refactor, and optimise Python source code to improve energy efficiency, maintainability, and performance. This tool incorporates a combination of static code analysis using Pylint, abstract syntax tree (AST) parsing, and custom refactoring techniques to detect and address various code smells in Python programs.

The application allows developers to identify inefficient coding patterns, refactor them into optimized alternatives, and validate the results through built-in testing mechanisms. Key features include support for custom smell detection, energy profiling, and modular refactorers tailored to specific code smells, such as long method chains or inefficient list comprehensions. By automating parts of the optimization process, the Source Code Optimizer helps developers have the option of choosing to reduce emissions and produce more efficient software.

Complementary documents include the System Requirement Specifications (SRS) and Module Guide (MG). The full documentation and implementation can be found at: https://github.com/ssm-lab/capstone--source-code-optimizer

4 Notation

The following table summarizes the primitive data types used by Software Engineering. The specification of Software Engineering uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, Software Engineering uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

Data Type	Notation	Description
optional	?	denotes a variable as optional
any type	Any	any data type is acceptable
character	char	a single symbol or digit
String	str	a sequence of characters
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$
natural number	\mathbb{N}	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$
boolean	\mathbb{B}	True or False
code smell	Smell	a collection of data representing a code smell
path	Path	Data object representing a path in a filesystem
list	list[T]	an ordered collection of objects of type T
set	set[T]	an unordered collection of <i>unique</i> objects of type T
dictionary	dict[key] = value	data structure containing multiple key- value pairs
AST Node	AST	AST node representing any AST node
AST Constant	Constant	AST node representing a constant
AST Function Definition	FuncDef	AST node representing a function definition
AST Module	Module	AST node representing a Module
AST Class Definition	ClassDef	ast node representing a class definition
AST Call	Call	ast node representing a function call
AST Lambda	Lambda	ast node representing a lambda function
AST List Comprehension	ListComp	ast node representing a list comprehension
AST Generator Expression	GenExp	ast node representing a generator expression
current instance	self	a reference to the current instance of a module

Table 1: MIS Notation

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware-Hiding Module	None
	Smell Module
	BaseRefactorer Module
	MakeStaticRefactorer Module
Behaviour-Hiding Module	UseListAccumulationRefactorer Module
	UseAGeneratorRefactorer Module
	CacheRepeatedCallsRefactorer Module
	LongElementChainRefactorer Module
	LongParameterListRefactorer Module
	LongMessageChainRefactorer Module
	LongLambdaFunctionRefactorer Module
	PluginInitiator Module
	BackendCommunicator Module
	SmellDetector Module
	FileHighlighter Module
	HoverManager Module
	CacheManager Module
	FilterManager Module
	Measurements Module
Software Decision Module	PylintAnalyzer Module
	Testing Functionality Module
	SmellRefactorer Module
	RefactorManager Module
	EnergyMetrics Module
	ViewProvider Module
	EventManager Module

Table 2: Module Hierarchy

6 MIS of Smell Data Type

Smell

6.1 Module

Contains data related to a code smell.

6.2 Uses

None

6.3 Syntax

Exported Constants: None

Exported Access Programs: None

6.4 Semantics

6.4.1 State Variables

- absolutePath: str: Absolute path to the source file containing the smell.
- column: int: Starting column in the source file where the smell is detected.
- confidence: str: Confidence level for the smell detection.
- endColumn?: int: Ending column for the smell location, if applicable.
- endLine?: int: Ending line number for the smell location, if applicable.
- occurences: dict: Contains positional data related to where the smell is located in a code file.
- message: str: Descriptive message explaining the smell.
- messageId: str: Unique identifier for the specific message or warning.
- module: str: Module or component name containing the smell.
- obj: str: Specific object associated with the smell.
- path: str: Relative path to the source file from the project root.
- symbol: str: Symbol or code construct involved in the smell.
- type: str: Type or category of the smell.

6.4.2 Environment Variables

None

6.4.3 Assumptions

• All values provided to the fields of Smell conform to the expected data types and constraints.

6.4.4 Access Routine Semantics

Smell()

- **transition**: Creates a dictionary-like structure with the defined attributes representing a code smell.
- output: Returns a Smell instance.

6.4.5 Local Functions

None.

7 MIS of BaseRefactorer

BaseRefactorer

7.1 Module

The base interface that all refactorers inherit from, providing common functionality for file I/O, AST manipulation, code validation, and energy measurement integration.

7.2 Uses

None

7.3 Syntax

Exported Constants: None Exported Access Programs:

Name	In	Out	Exceptions		
BaseRefactorer	output_dir: Path	self	None		
refactor	file_path: Path, smell:	None	IOError		
	Smell, initial_emissions: $\mathbb R$				
parse_ast	source: str	AST	SyntaxError		
validate_transformation	original: AST, modified:	bool	None		
	AST				
write_output	path: Path, content: str	None	IOError		
measure_energy	before: float, after: float	float	None		
apply_transformation	node: AST	AST	None		

7.4 Semantics

7.4.1 State Variables

• output_dir: Path: Directory for output files

• temp_dir: Path: Directory for temporary files during processing

• ast_cache: Cache for parsed AST trees

• transformation_state: Tracks current refactoring state

• energy_metrics: Stores energy consumption measurements

7.4.2 Environment Variables

• WORKSPACE_ROOT: Root directory of the workspace

• FILE_PERMISSIONS: Required file access permissions

• TEMP_DIR_CONFIG: Configuration for temporary directory

7.4.3 Assumptions

- Input files are valid Python scripts
- Output directory exists or can be created
- Write permissions are available for output directory
- AST transformations preserve program semantics

7.4.4 Access Routine Semantics

BaseRefactorer(output_dir: Path)

- Transition:
 - Initializes temporary directory using _create_temp_dir
 - Sets up AST cache using _setup_ast_cache
 - Configures transformation state
 - Initializes energy metrics
- Output: self
- Exception: None

refactor(file_path: Path, smell: Smell, initial_emissions: R)

- Transition:
 - Reads and parses source file using parse_ast
 - Applies transformation using apply_transformation
 - Validates changes using validate_transformation
 - Measures energy impact using measure_energy
 - Writes output using write_output if valid
 - Cleans up using _cleanup_temp_files
- Output: None
- Exception: IOError if file operations fail

parse_ast(source: str)

- Transition: Parses source code into AST representation
- Output: AST object
- Exception: SyntaxError for invalid Python code

validate_transformation(original: AST, modified: AST)

- Transition: Verifies semantic equivalence between ASTs
- Output: Boolean indicating valid transformation
- Exception: None

write_output(path: Path, content: str)

• Transition: Writes transformed code after _validate_permissions

• Output: None

• Exception: IOError for file system issues

measure_energy(before: float, after: float)

• Transition: Calculates energy consumption difference

• Output: Float representing energy impact

• Exception: None

apply_transformation(node: AST)

• Transition: Abstract method for specific refactoring logic

• Output: Modified AST

• Exception: None

7.4.5 Local Functions

_create_temp_dir()

• Transition: Creates a temporary directory for storing intermediate files

• Output: Path to created directory

• Exception: IOError if directory creation fails

_setup_ast_cache()

• Transition: Initializes cache for storing parsed AST nodes

• Output: None

• Exception: None

_cleanup_temp_files()

• Transition: Removes all temporary files and directories

• Output: None

• Exception: IOError if cleanup fails

_validate_permissions()

• Transition: Verifies read/write permissions for target files

• Output: Boolean indicating if permissions are valid

• Exception: None

_update_energy_metrics()

• Transition: Updates energy consumption measurements

• Output: None

• Exception: None

8 MIS of LongMessageChainRefactorer

 ${\tt LongMessageChainRefactorer}$

8.1 Module

LongMessageChainRefactorer is a module that identifies and refactors long message chains in Python code to improve readability, maintainability, and performance. It specifically handles long chains by breaking them into separate statements, ensuring proper refactoring while maintaining the original functionality.

8.2 Uses

- Uses Smell interface for data access
- Inherits from BaseRefactorer

8.3 Syntax

8.3.1 Exported Constants

None

8.3.2 Exported Access Programs

Name	In	Out	Exceptions
$apply_transformation$	node: AST	AST	None
identify_chains	node: AST	List[Chain]	None
extract_methods	chain: Chain	List[str]	None
generate_vars	methods: List[str]	List[str]	None

8.4 Semantics

8.4.1 State Variables

- chain_patterns: Dictionary mapping chain types to their patterns
- intermediate_vars: List of generated variable names
- indentation_map: Mapping of line numbers to indentation levels

8.4.2 Environment Variables

Inherits from BaseRefactorer

8.4.3 Assumptions

- Message chains are properly terminated
- Variable names generated do not conflict with existing ones
- Indentation is consistent within code blocks

8.4.4 Access Routine Semantics

apply_transformation(node: AST)

• Transition:

- Identifies message chains using identify_chains
- Extracts methods using extract_methods
- Generates intermediate variables using generate_vars
- Validates chain breaks using _validate_chain_break
- Preserves code formatting using _preserve_indentation
- Reconstructs code with intermediate assignments
- Output: Modified AST
- Exception: None

identify_chains(node: AST)

- Transition: Analyzes AST for message chain patterns using _analyze_chain_complexity
- Output: List of identified chains
- Exception: None

extract_methods(chain: Chain)

- Transition: Extracts individual method calls from chain using _preserve_indentation
- Output: List of method call strings
- Exception: None

generate_vars(methods: List[str])

- Transition: Creates unique variable names using _generate_unique_name
- Output: List of variable names
- Exception: None

8.4.5 Local Functions

_analyze_chain_complexity(chain: Chain)

- Transition: Analyzes the length and complexity of method call chains
- Output: Integer representing chain complexity
- Exception: None

_preserve_indentation(line: str)

- Transition: Extracts and preserves the indentation level of code lines
- Output: String containing the indentation spaces
- Exception: None

_validate_chain_break(original: str, parts: List[str])

- **Transition**: Verifies that breaking the chain preserves functionality
- Output: Boolean indicating if chain break is valid
- Exception: None

_generate_unique_name(base: str)

- Transition: Creates a unique variable name based on the base string
- Output: String containing unique variable name
- Exception: None

9 MIS of LongLambdaFunctionRefactorer

 ${\tt LongLambdaFunctionRefactorer}$

9.1 Module

LongLambdaFunctionRefactorer is a module that refactors long lambda functions in Python code by converting them into normal functions. This improves code readability, maintainability, and performance, while reducing potential energy consumption.

9.2 Uses

BaseRefactorer

9.3 Syntax

9.3.1 Exported Constants

None

9.3.2 Exported Access Programs

Name	In	Out	Exceptions
LongLambdaFunctionRefactorer	output_dir:	self	None
	Path		
refactor	file_path:	None	IOError
	Path, smell:		
	Smell,		
	initial_emi		
	ssions: $\mathbb R$		
identify_lambdas	node: AST	List[Lambda]	None
extract_lambda_components	lambda_node:	(List[str], str)	None
	Lambda		
generate_function_name	lambda_body:	str	None
	str		

9.4 Semantics

9.4.1 State Variables

• lambda_registry: Dictionary mapping lambda nodes to their locations

• function_counter: Counter for generating unique function names

• scope_stack: Stack tracking current scope for function placement

9.4.2 Environment Variables

Inherits from BaseRefactorer

9.4.3 Assumptions

- Input code contains valid Python syntax
- Lambda functions are properly defined
- Generated function names do not conflict with existing ones
- Scope information is correctly maintained

9.4.4 Access Routine Semantics

LongLambdaFunctionRefactorer(output_dir: Path)

- Transition:
 - Initializes base refactorer
 - Sets up lambda registry
 - Initializes function counter
 - Configures scope tracking
- Output: self
- Exception: None

refactor(file_path: Path, smell: Smell, initial_emissions: R)

- Transition:
 - Reads source file
 - Identifies long lambda functions
 - Converts lambdas to named functions
 - Validates transformation
 - Writes refactored code if valid
- Output: None
- Exception: IOError if file operations fail

identify_lambdas(node: AST)

• Transition: Analyzes AST node for lambda function definitions

• Output: List of identified lambda nodes

• Exception: None

extract_lambda_components(lambda_node: Lambda)

• Transition: Extracts parameters and body from lambda function

• Output: Tuple of parameter list and body string

• Exception: None

generate_function_name(lambda_body: str)

• Transition: Creates descriptive name based on lambda body

• Output: Generated function name

• Exception: None

9.4.5 Local Functions

_analyze_lambda_complexity(node: Lambda)

• Transition: Analyzes lambda function complexity based on length and nesting

• Output: Integer representing complexity score

• Exception: None

_find_insertion_point(node: AST)

• Transition: Determines optimal location for new function definition

• Output: AST node indicating insertion point

• Exception: None

_validate_scope(node: AST)

• Transition: Verifies scope compatibility for function placement

• Output: Boolean indicating valid scope

• Exception: None

_create_function_def(name: str, params: List[str], body: str)

• Transition: Generates AST node for new function definition

• Output: FunctionDef AST node

• Exception: None

10 MIS of LongParameterListRefactorer

LongParameterListRefactorer

10.1 Module

LongParameterListRefactorer is a module that identifies and refactors functions or methods with long parameter lists(detected beyond configured threshold) in Python code. The refactoring aims to improve code readability, maintainability, and energy efficiency by encapsulating related parameters into objects and removing unused ones.

10.2 Uses

- Uses Smell interface for data access
- Inherits from BaseRefactorer
- Inherits from Python's ast module's NodeTransformer

10.3 Syntax

10.3.1 Exported Constants

None

10.3.2 Exported Access Programs

Name	In	Out	Exceptions
LongParameterListRefactorer	output_dir: Path	self	None
refactor	file_path: Path,	None	TypeError, IOError
	pylint_smell:		
	Smell,		
	initial_emissions:		
	\mathbb{R}		

10.4 Semantics

10.4.1 State Variables

None

10.4.2 Environment Variables

None

10.4.3 Assumptions

- Input files are valid Python scripts.
- Smells identified by pylint_smell include valid line numbers.
- Refactored code must pass the provided test suite.

10.4.4 Access Routine Semantics

LongParameterListRefactorer(output_dir: Path)

- **Transition**: Initializes the refactorer with the specified output directory.
- Output: self.
- Exception: None.

refactor(file_path: Path, pylint_smell: Smell, initial_emissions: R)

- Transition:
 - 1. Reads the file at file_path and locates the target function using pylint_smell.
 - 2. Analyzes function body using get_used_parameters to identify used parameters and remove unused ones.
 - 3. For remaining parameters that exceed the configured limit:
 - Groups parameters using classify_parameters
 - Creates parameter classes using create_parameter_object_class
 - Updates function signature using update_function_signature
 - Updates parameter usages using update_parameter_usages
 - Updates function calls using update_function_calls
 - 4. Writes the refactored code to a temporary file.
- Output: None. Refactored file is saved if improvements are validated.
- Exception: Raises IOError if input file cannot be read. Raises TypeError if source file cannot be parsed into an AST.

10.4.5 Local Functions

- 1. get_used_parameters(function_node: ast.FunctionDef, params: list[str]) ->
 list[str]:
 - transition: Identifies parameters used within the function body.
 - **output**: List of names of parameters that are actually used in the function.
 - exception: None
- 2. get_parameters_with_default_value(params: list[ast.Param]) -> key-value pairs:
 - transition: Maps parameter names to their default values.
 - output: Key-value pairs mapping parameter names to their default values.
 - exception: None
- 3. classify_parameters(params: list[str]) -> key-value pairs:
 - transition: Classifies parameters into data and config groups based on naming conventions.
 - **output**: Key-value pairs with keys "data_params" and "config_params" mapping to lists of parameter names.
 - exception: None
- 4. create_parameter_object_class(param_names: list[str], default_value_params: key-value pairs, class_name: str) -> ast.ClassDef:
 - transition: Creates an AST class definition for encapsulating related parameters.
 - output: AST ClassDef node representing the parameter object class.
 - exception: None
- 5. update_function_signature(function_node: ast.FunctionDef, classified_params:
 key-value pairs) -> ast.FunctionDef:
 - transition: Updates function signatures to use encapsulated parameter objects.
 - output: Updated AST FunctionDef node with new parameter structure.
 - exception: None
- 6. update_parameter_usages(function_node: ast.FunctionDef, classified_params: key-value pairs) -> ast.FunctionDef:
 - **transition**: Updates parameter references in function body to use encapsulated object attributes.
 - output: Updated AST FunctionDef node with transformed parameter usages.

• exception: None

7. update_function_calls(tree: ast.Module, function_node: ast.FunctionDef,
 used_params: list[str], classified_params: key-value pairs, classified_param_names
 tuple[str, str], enclosing_class_name: str) -> ast.Module:

- transition: Updates all calls to the refactored function to use new parameter structure.
- output: Updated AST Module node with transformed function calls.

• exception: None

11 MIS of UseListAccumulationRefactorer

UseListAccumulationRefactorer

11.1 Module

The UseListAccumulationRefactorer module identifies and refactors string concatenations in loops in Python code to improve the performance and energy efficiency of the software. It specifically handles these concatenations by, instead, adding the string for each iteration to a list that is then converted to a string, ensuring proper refactoring while maintaining the original functionality.

11.2 Uses

- Uses Smell interface for data access
- Inherits from BaseRefactorer
- Uses astroid library for AST manipulation

11.3 Syntax

Exported Constants: None Exported Access Programs:

Name	In	Out	Exceptions
UseListAccumulationRefactorer	output_dir: Path	self	None
refactor	file_path: Path,	None	TypeError, IOError
	<pre>pylint_smell: Smell,</pre>		
	initial_emissions:		
	$\mid \mathbb{R}$		

11.4 Semantics

11.4.1 State Variables

- target_lines: list[int]: Line numbers requiring refactoring
- assign_var: str: Target concatenation variable name
- target_node: NodeNG: AST node of concatenation target
- last_assign_node: Assign|AugAssign: Last variable assignment before loop
- concat_nodes: list[Assign|AugAssign]: Detected concatenation nodes
- reassignments: list[Assign]: Variable reassignments in loop scope
- outer_loop: For | While: Outermost loop containing concatenations

11.4.2 Environment Variables

None

11.4.3 Assumptions

- Input files contain valid Python syntax
- Smell detection provides valid line numbers and variable names

11.4.4 Access Routine Semantics

UseListAccumulationRefactorer(output_dir: Path)

- Transition: Initializes refactorer with output directory
- Output: self
- Exception: None

refactor(file_path: Path, pylint_smell: Smell, initial_emissions: R R)

• Transition:

- Parses code using _visit pattern for AST traversal
- Identifies concatenations with _find_reassignments
- Determines scope via _find_scope and _find_last_assignment
- Generates temp names with _generate_temp_list_name
- Modifies code using _add_node_to_body

- Validates transformations before writing to refactored file
- Output: None
- Exception:
 - IOError: File read/write failures
 - TypeError: AST parsing errors

11.4.5 Local Functions

_visit(node: NodeNG)

- Transition: Collects concatenation nodes and loop structures
- Output: None
- Exception: None

_find_reassignments()

- Transition: Finds variable reassignments in loop scope
- Output: None
- Exception: None

_find_last_assignment(scope: NodeNG)

- Transition: Locates final variable assignment before loop
- Output: None
- Exception: Raises TypeError for invalid scope

_find_scope()

- Transition: Determines insertion point for list initialization
- Output: None
- Exception: Requires concat_nodes to be populated

_generate_temp_list_name()

- Transition: Creates unique list name for complex targets
- Output: Returns generated name string
- Exception: Raises TypeError for unsupported nodes

_add_node_to_body(code_file: str, nodes_to_change: list[tuple])

• Transition:

- Replaces concatenations with list operations
- Adds join() call and list initialization

• Output: Returns modified source code

• Exception: Requires valid node references

12 MIS of MakeMethodStaticRefactorer

MakeStaticRefactorer

12.1 Module

The MakeStaticRefactorer module identifies and refactors class methods that don't make use of their instance attributes to improve the readability, performance and energy efficiency of the software. It specifically handles these methods by turning them into static functions and ensuring any calls to this method use the proper calling syntax. This ensures proper refactoring while maintaining the original functionality.

12.2 Uses

BaseRefactorer

12.3 Syntax

Exported Constants: None

Exported Access Programs:

Name	In	Out	Exceptions
$apply_transformation$	node: AST	AST	None
identify_methods	node: AST	List[Method]	None
analyze_method_usage	method: Method	bool	None
transform_to_static	method: Method	Method	None

12.4 Semantics

12.4.1 State Variables

• class_hierarchy: Dictionary mapping classes to their inheritance tree

- method_registry: Dictionary mapping methods to their usage patterns
- static_candidates: Set of methods eligible for static conversion

12.4.2 Environment Variables

Inherits from BaseRefactorer

12.4.3 Assumptions

- Class inheritance hierarchies are well-defined
- Method definitions are complete and valid
- No dynamic method creation or modification

12.4.4 Access Routine Semantics

apply_transformation(node: AST)

- Transition:
 - Identifies candidate methods using identify_methods
 - Analyzes each method using analyze_method_usage
 - Transforms eligible methods using transform_to_static
 - Updates method calls using _update_method_calls
 - Validates transformation using _validate_transformation
 - Reconstructs code with static methods
- Output: Modified AST
- Exception: None

identify_methods(node: AST)

- Transition: Analyzes AST for instance methods using _build_class_hierarchy
- Output: List of identified methods
- Exception: None

analyze_method_usage(method: Method)

- Transition: Evaluates method for static conversion using _check_inheritance_safety
- Output: Boolean indicating if method can be made static
- Exception: None

transform_to_static(method: Method)

- Transition: Converts instance method to static using _update_method_calls and validates using _validate_transformation
- Output: Transformed method
- Exception: None

12.4.5 Local Functions

_build_class_hierarchy(node: AST)

- Transition: Analyzes class definitions and builds inheritance relationships
- Output: Dictionary mapping classes to their parent classes
- Exception: None

_check_inheritance_safety(method: Method)

- Transition: Verifies method can be safely made static across inheritance chain
- Output: Boolean indicating if transformation is safe
- Exception: None

_update_method_calls(old_method: str, new_method: str)

- Transition: Updates all call sites to use static method syntax
- Output: None
- Exception: None

_validate_transformation(method: Method)

- Transition: Verifies the static method transformation maintains functionality
- Output: Boolean indicating if transformation is valid
- Exception: None

13 MIS of LongElementChainRefactorer

LongElementChainRefactorer

13.1 Module

LongElementChainRefactorer is a module that refactors long element chains, specifically focusing on flattening nested dictionaries to improve readability, maintainability, and energy efficiency. The module uses a recursive flattening strategy while caching previously seen patterns for optimization.

13.2 Uses

BaseRefactorer

13.3 Syntax

13.3.1 Exported Constants

None

13.3.2 Exported Access Programs

Name	In	Out	Exceptions
$apply_transformation$	node: AST	AST	None
identify_nested_dicts	node: AST	List[Dict]	None
flatten_dict	dict_node: Dict	Dict	None
update_access_calls	old_path: str, new_path:	None	None
	str		

13.4 Semantics

13.4.1 State Variables

- dict_patterns: Dictionary mapping access patterns to their flattened forms
- flattened_keys: Set of generated flattened key names
- reference_map: Mapping of original to flattened dictionary paths

13.4.2 Environment Variables

Inherits from BaseRefactorer

13.4.3 Assumptions

- Dictionary keys are valid Python identifiers
- No key name conflicts in flattened structure
- Dictionary access patterns are consistent

13.4.4 Access Routine Semantics

apply_transformation(node: AST)

- Transition:
 - Identifies nested dictionaries using identify_nested_dicts
 - Flattens each dictionary using flatten_dict
 - Updates access patterns using update_access_calls
 - Updates code references using _update_references
 - Validates dictionary access using _validate_dict_access
 - Reconstructs code with flattened structure
- Output: Modified AST
- Exception: None

identify_nested_dicts(node: AST)

- Transition: Analyzes AST for nested dictionary patterns using _analyze_dict_complexity
- Output: List of identified dictionaries
- Exception: None

flatten_dict(dict_node: Dict)

- Transition: Creates flattened dictionary structure using _generate_flat_key
- Output: Flattened dictionary
- Exception: None

update_access_calls(old_path: str, new_path: str)

- Transition: Updates dictionary access patterns using _validate_dict_access and _update_references
- Output: None
- Exception: None

13.4.5 Local Functions

_analyze_dict_complexity(node: Dict)

• Transition: Analyzes the nesting depth and structure of dictionary nodes

• Output: Integer representing complexity score

• Exception: None

_generate_flat_key(path: List[str])

• Transition: Concatenates path components into a flattened key name

• Output: String representing the flattened key

• Exception: None

_validate_dict_access(path: str)

• Transition: Checks if dictionary access path is valid and follows conventions

• Output: Boolean indicating validity

• Exception: None

_update_references(old_ref: str, new_ref: str)

• **Transition**: Updates all references to the old dictionary path with the new flattened path

• Output: None

• Exception: None

14 MIS of Measurements Module

Measurements

14.1 Module

The MeasurementsModule is a module designed to measure and track the carbon emissions generated by executing scripts. By leveraging the CodeCarbon library, it allows developers to assess the environmental impact of their code execution. The module runs a specified Python file, tracks the associated carbon emissions during the execution, and logs the results for further analysis. It provides functionality for measuring, logging, and extracting emissions data in a structured manner to help improve energy efficiency in software development.

14.2 Uses

- Uses CodeCarbon library for track energy consumption
- Uses TemporaryDirectory to store temporary files
- Inherits from BaseEnergyMeter

14.3 Syntax

14.3.1 Exported Constants

None

14.3.2 Exported Access Programs

Name	In	Out	Exceptions
Measurements	output_dir:	self	None
	Path		
measure_energy	None	None	CalledProcessError and FileReading exceptions

14.4 Semantics

14.4.1 State Variables

- emissions_data: Stores the emissions data extracted from the CSV file generated by CodeCarbon. It is populated after the energy measurement process completes successfully. The value is either a dictionary containing the last row of emissions data or None if no data was extracted due to an error.
- emissions: Raw emissions object from CodeCarbon tracker

14.4.2 Environment Variables

None

14.4.3 Assumptions

- The file at file_path is a valid Python script.
- The CodeCarbon tool is properly installed and configured.
- The EmissionsTracker can successfully execute the Python script specified by file_path.
- The emissions data is captured in a CSV format and can be extracted correctly.
- The temporary directories are correctly set up and accessible during execution.

14.4.4 Access Routine Semantics

Measurements(output_dir: Path)

• Transition: Initializes the energy meter with empty emissions data

• Output: self

• Exception: None

measure_energy()

• Transition:

- Logs the start of the energy measurement process
- Creates isolated temporary directory using TemporaryDirectory
- Configures system temp directories through environment variables
- Initializes CodeCarbon EmissionsTracker in process mode
- Runs the script specified by file path and captures the output
- Stops tracker and captures raw emissions data
- Validates emissions CSV creation
- Parses results using extract_emissions_csv

• Output:

- Updates emissions with tracker results
- Populates emissions_data with parsed metrics

• Exception:

- CalledProcessError: If script execution fails
- FileNotFoundError: If emissions CSV is missing

14.4.5 Local Functions

extract_emissions_csv(csv_file_path: Path)

• Transition:

- Attempts to read CSV file using pandas
- Extracts last measurement record
- Converts DataFrame row to dictionary
- Output: Returns dictionary of metrics or None on error
- Exception: Logs pandas read errors but does not propagate them

15 MIS of PylintAnalyzer

PylintAnalyzer

15.1 Module

The PylintAnalyzer module performs static code analysis on Python files using Pylint, with additional custom checks for detecting specific code smells. It outputs detected smells in a structured format for further processing.

15.2 Uses

- Uses Python's pylint library for code analysis
- Uses ast module for parsing and analyzing abstract syntax trees
- Uses astor library for converting AST nodes back to source code
- Integrates with custom checkers, including StringConcatInLoopChecker
- Accesses configuration settings from analyzers_config

15.3 Syntax

Exported Constants: None Exported Access Programs:

Name	In	Out	Exceptions
PylintAnalyzer	file_path: Path,	self	None
	source_code: Module		
build_pylint_options	None	list[str]	None
analyze	None	None	JSONDecodeError, Exception
configure_smells	None	None	None
filter_for_one_code_smell	<pre>pylint_results: list[Smell], code:</pre>	list[Smell]	None
	str		

15.4 Semantics

15.4.1 State Variables

• file_path: Path: The path to the Python file being analyzed

• source_code: Module: The parsed abstract syntax tree of the source file

• smells_data: list[dict]: List of detected code smells in dictionary format

15.4.2 Environment Variables

None

15.4.3 Assumptions

- The input file is valid Python code and can be parsed into an AST
- Configuration settings (extra Pylint options, custom smell definitions) are valid

15.4.4 Access Routine Semantics

PylintAnalyzer(file_path: Path, source_code: Module)

- Transition: Initializes analyzer with file path and AST
- Output: self
- Exception: None

build_pylint_options()

- Transition: Constructs Pylint options list from config
- Output: List of option strings
- Exception: None

analyze()

- Transition:
 - Executes Pylint analysis with custom checks using the local detect functions
 - Populates smells_data with results and uses parse_line
- Output: None
- Exception:
 - JSONDecodeError for invalid Pylint output
 - Exception for general runtime errors

configure_smells()

- Transition: Filters smells_data to configured smells
- Output: None
- Exception: None

filter_for_one_code_smell(pylint_results: list[Smell], code: str)

• Transition: Filters results by smell type code

• Output: Filtered list of smells

• Exception: None

15.4.5 Local Functions

_detect_long_message_chain(threshold?: int)

• Transition: Identifies method chains exceeding length threshold

• Output: List of long chain smells

• Exception: None

_detect_long_lambda_expression(threshold_length?: int, threshold_count?: int)

• Transition: Detects oversized lambda expressions

• Output: List of lambda smells

• Exception: None

_detect_long_element_chain(threshold?: int)

• Transition: Finds long dictionary access chains

• Output: List of element chain smells

• Exception: None

_detect_repeated_calls(threshold?: int)

• Transition: Identifies excessive repeated calls

• Output: List of repetition smells

• Exception: None

_parse_line(file_path: Path, line: int)

• Transition: Extracts AST node from specific line

• Output: Parsed AST node

• Exception: None

_get_lambda_code(lambda_node: Lambda)

• Transition: Converts lambda node to source code

• Output: String representation of lambda

• Exception: None

16 MIS of UseAGeneratorRefactorer

UseAGeneratorRefactorer

16.1 Module

The UseAGeneratorRefactorer module identifies and refactors unnecessary list comprehensions in Python code by converting them to generator expressions. This refactoring improves energy efficiency while maintaining the original functionality.

16.2 Uses

- Uses Smell interface for data access
- Inherits from BaseRefactorer
- Uses Python's ast module for parsing and manipulating abstract syntax trees

16.3 Syntax

Exported Constants: None Exported Access Programs:

Name	In	Out	Exceptions
UseAGeneratorRefactorer	output_dir: Path	self	None
refactor	file_path: Path,	None	IOError, TypeError
	pylint_smell: Smell,		
	initial_emissions: $\mathbb R$		

16.4 Semantics

16.4.1 State Variables

• temp_dir: Path: Directory path for storing refactored files

• output_dir: Path: Directory path for saving final refactored code

16.4.2 Environment Variables

None

16.4.3 Assumptions

- The input file contains valid Python syntax
- pylint_smell provides valid line/column locations

16.4.4 Access Routine Semantics

UseAGeneratorRefactorer(output_dir: Path)

- Transition: Initializes temporary directory within output directory
- Output: self
- Exception: None

refactor(file_path: Path, pylint_smell: Smell, initial_emissions: R)

- Transition:
 - Reads source code using ListCompInAnyAllTransformer metadata
 - Applies AST transformation via replace node for node substitution
 - Uses leave_Call in transformer to identify replacement targets
 - Validates and writes modified code using generator expressions
- Output: None
- Exception:
 - IOError: File read/write failures
 - TypeError: CST parsing errors

16.4.5 Local Functions

_replace_node(tree: Module, old_node: ListComp, new_node: GeneratorExp)

- Transition: Replaces list comprehension node with generator expression
- Output: Modified AST
- Exception: None

ListCompInAnyAllTransformer

• **Transition**: Custom CST transformer that identifies and converts list comprehensions in any()/all() calls

• Output: Modified syntax tree

• Exception: None

17 MIS of CacheRepeatedCallsRefactorer

CacheRepeatedCallsRefactorer

17.1 Module

The CacheRepeatedCallsRefactorer identifies and caches repeated function calls using temporary variables to improve performance and energy efficiency while preserving functionality.

17.2 Uses

- Uses Smell interface for data access
- Inherits from BaseRefactorer
- Uses Python's ast module for AST manipulation

17.3 Syntax

Exported Constants: None Exported Access Programs:

Name	In	Out	Exceptions
CacheRepeatedCallsRefactorer	output_dir: Path	self	None
refactor	file_path: Path,	None	IOError, TypeError
	pylint_smell:		
	Smell,		
	initial_emissions:		
	\mathbb{R}		

17.4 Semantics

17.4.1 State Variables

• cached_var_name: str: Name of the temporary variable used for caching.

• target_line: int: Line number where refactoring is applied.

17.4.2 Environment Variables

None

17.4.3 Assumptions

- Input files contain valid Python syntax
- Smell detection provides valid call patterns
- Repeated calls have no side effects

17.4.4 Access Routine Semantics

CacheRepeatedCallsRefactorer(output_dir: Path)

- Transition: Initializes temp directory
- Output: self
- Exception: None

refactor(file_path: Path, smell: CRCSmell, ...)

- Transition:
 - Generates cache name via _extract_function_name
 - Locates insertion point with _find_insert_line
 - Determines indentation via _get_indentation
 - Modifies calls using _replace_call_in_line
 - Validates scope with _find_valid_parent
- Output: None
- Exception:
 - IOError: File access failures
 - TypeError: Invalid AST structure

17.4.5 Local Functions

_extract_function_name(call_string: str)

- Transition: Extracts function name from call expression
- Output: String containing function name
- Exception: None

_get_indentation(lines: list[str], line_number: int)

• Transition: Calculates whitespace for code insertion

• Output: Indentation string

• Exception: None

_replace_call_in_line(line: str, call_string: str, cached_var_name: str)

• Transition: Replaces function calls with cache variable

• Output: Modified source line

• Exception: None

_find_valid_parent(tree: ast.Module)

• Transition: Locates common parent for all call instances

• Output: Parent AST node or None

• Exception: None

_find_insert_line(parent_node: ast.AST)

• Transition: Determines optimal insertion point

• Output: Line number for cache assignment

• Exception: None

_line_in_node_body(node: ast.AST, line: int)

• Transition: Verifies line belongs to node body

• Output: Boolean existence check

• Exception: None

18 MIS of PluginInitiator

18.1 Module

PluginInitiator is a module that initialises the VS Code plugin and registers commands for VS Code Plugin.

18.2 Uses

- SmellDetector to register and manage smell detection functionality.
- RefactorManager to register and manage refactoring operations.
- FilterManager to register and manage smell filtering operations.

18.3 Syntax

Exported Constants:

• ecoOutput: VS Code OutputChannel for logging and information display

Exported Access Programs:

Name	In	Out	Exceptions
activate	context:	void	None
	vscode.ExtensionContext		
deactivate	None	void	None
isSmellLintingEnabled	None	boolean	None

18.4 Semantics

18.4.1 State Variables

- smellLintingEnabled: boolean Tracks if smell linting is enabled
- backendLogManager: LogManager Manages backend logging

18.4.2 Environment Variables

- VS Code extension context
- Workspace configuration state

18.4.3 Assumptions

- The plugin is correctly loaded in VS Code
- VS Code APIs are available and accessible
- Required modules (SmellDetector, RefactorManager, FilterManager) are properly initialised

18.4.4 Access Routine Semantics

activate(context: vscode.ExtensionContext)

- Transition:
 - Initialises output channel for logging
 - Initialises SmellDetector module
 - Initialises RefactorManager module
 - Initialises FilterManager module
 - Sets up workspace configuration
 - Registers plugin commands
- Output: None
- Exception: None

deactivate()

- Transition: Cleans up resources and stops background processes
- Output: None
- Exception: None

isSmellLintingEnabled()

- Transition: Returns current state of smell linting
- Output: boolean indicating if smell linting is enabled
- Exception: None

18.4.5 Local Functions

None

19 MIS of BackendCommunicator

19.1 Module

BackendCommunicator handles all communication between the plugin and the backend service. It sends requests for analysis or refactoring and receives results.

19.2 Uses

• EcoOptimizer for executing backend service operations and health checks

19.3 Syntax

Exported Constants:

• BASE_URL: string - Base URL for backend API endpoints

Exported Access Programs:

Name	In	Out	Exceptions
checkServerStatus	None	Promise <void></void>	Network Error
initLogs	log_dir: string	Promise boolean>	Network Error
fetchSmells	filePath:	Promise<{smells:	Network Error
	string,	Smell[], status:	
	enabledSmells:	number}>	
	Record <string,< td=""><td></td><td></td></string,<>		
	Record <string,< td=""><td></td><td></td></string,<>		
	number		
	string>>		
backendRefactor	smell: Smell,	Promise <refactoredi< td=""><td>aNetwork Error</td></refactoredi<>	a Net work Error
Smell	workspacePath:		
	string		
backendRefactor	smell: Smell,	Promise <refactoredi< td=""><td>aNetwork Error</td></refactoredi<>	a Net work Error
SmellType	workspacePath:		
	string		

19.4 Semantics

19.4.1 State Variables

• serverStatus: ServerStatusType - Tracks the backend server's current status

19.4.2 Environment Variables

• SERVER_URL: string - Backend server URL from environment configuration

19.4.3 Assumptions

- EcoOptimizer backend service is reachable and operational
- Network connection is available for API communication
- Valid workspace configuration exists for operations requiring paths
- Input files contain valid Python syntax

19.4.4 Access Routine Semantics

checkServerStatus()

- Transition: Verifies backend service availability and updates extension status
- Output: Promise resolving to void
- Exception: Logs network errors and updates server status to DOWN

initLogs(log_dir: string)

- Transition: Initialises and synchronises logs with the backend server
- Output: Promise

 boolean> indicating success or failure
- Exception: Logs initialisation errors and returns false

fetchSmells(filePath: string, enabledSmells: Record)

- Transition: Analyses source code for code smells using backend detection service
- Output: Promise resolving to smell detection results and HTTP status
- Exception: Throws Error for network failures or invalid responses

backendRefactorSmell(smell: Smell, workspacePath: string)

- Transition: Executes code refactoring for a specific detected smell pattern
- Output: Promise resolving to refactoring result data
- Exception: Throws Error for invalid workspace path or refactoring failures

backendRefactorSmellType(smell: Smell, workspacePath: string)

- Transition: Refactors all smells of a specific type in a file
- Output: Promise resolving to refactoring result data
- Exception: Throws Error for invalid workspace path or refactoring failures

19.4.5 Local Functions

None

20 MIS of SmellDetector

20.1 Module

SmellDetector analyses Python files for code smells and manages the detection workflow.

20.2 Uses

- BackendCommunicator for communicating with SourceCodeOptimizer
- CacheManager for managing smell detection results
- FileHighlighter for highlighting detected smells
- EventManager for managing detection events
- HoverManager for displaying smell information

20.3 Syntax

Exported Constants: None

Exported Access Programs:

Name	In	Out	Exceptions
detectSmellsFile	filePath: string,	Promise <void></void>	Analysis Error
	smellsViewProvider:		
	SmellsViewProvider,		
	cacheManager:		
	CacheManager		
detectSmellsFolder	folderPath: string,	Promise <void></void>	Analysis Error
	smellsViewProvider:		
	SmellsViewProvider,		
	cacheManager:		
	CacheManager		

20.4 Semantics

20.4.1 State Variables

• serverStatus: ServerStatusType - Current status of the backend server

20.4.2 Environment Variables

• enabledSmells: Record<string, SmellConfig> - Configuration of enabled smell detectors

20.4.3 Assumptions

- Target files have valid Python syntax
- Backend server is operational for non-cached analysis
- At least one smell detector is enabled in settings
- Valid workspace configuration exists

20.4.4 Access Routine Semantics

detectSmellsFile(filePath, smellsViewProvider, cacheManager)

- Transition: Checks a Python file using precheckAndMarkQueued(), analyses it for code smells, updates cache and view
- Output: Promise resolving to void
- Exception: Throws error if analysis fails

detectSmellsFolder(folderPath, smellsViewProvider, cacheManager)

- Transition: Recursively analyzes Python files in directory, shows progress
- Output: Promise resolving to void
- Exception: Throws error if folder scanning or analysis fails

20.4.5 Local Functions

precheckAndMarkQueued(filePath, smellsViewProvider, cacheManager)

- Transition: Validates conditions before analysis and manages file status
- Output: Promise < boolean > indicating if analysis should proceed
- Exception: None

21 MIS of SmellRefactorer

21.1 Module

SmellRefactorer applies a refactoring to a detected smell.

21.2 Uses

- BackendCommunicator for sending the smell data to Source Code Optimizer for refactoring.
- RefactorManager for managing refactoring workflows.

21.3 Syntax

Exported Constants: None

Exported Access Programs:

Name	In	Out	Exception
refactor	smell: Smell	None	Invalid input

21.4 Semantics

21.4.1 State Variables

None

21.4.2 Environment Variables

None

21.4.3 Assumptions

• The smell data is valid and correctly identifies a refactorable issue.

21.4.4 Access Routine Semantics

refactor(smell: Smell)

- **Transition**: Sends the smell data to the backend for refactoring and applies the changes in the editor.
- Output: None.
- Exception: Logs errors for invalid inputs or failed refactoring.

21.4.5 Local Functions

None

22 MIS of FileHighlighter

22.1 Module

FileHighlighter is a module that manages highlighting of code regions in the VS Code editor.

22.2 Uses

• ViewProvider for managing editor decorations and visual updates

22.3 Syntax

Exported Constants: None Exported Access Programs:

Name	In	Out	Exception
getInstance	cacheManager:	FileHighlighter	None
	CacheManager		
updateHighlightsFor	None	void	None
VisibleEditors			
resetHighlights	None	void	None
highlightSmells	editor:	void	None
	vscode.TextEditor		

22.4 Semantics

22.4.1 State Variables

• instance: FileHighlighter - Singleton instance of the highlighter

 $\bullet \ decorations : \ TextEditorDecorationType[] \ - \ Active \ editor \ decorations \\$

• cacheManager: CacheManager - Reference to the cache manager

22.4.2 Environment Variables

• smellsColours: Configuration for smell highlight colours

• useSingleColour: Boolean flag for using single highlight colour

• singleHighlightColour: Colour value for single highlight mode

• highlightStyle: Style configuration for highlights

22.4.3 Assumptions

• CacheManager is properly initialized

• Valid configuration exists for highlight colours and styles

22.4.4 Access Routine Semantics

getInstance(cacheManager: CacheManager)

• Transition: Creates or returns singleton instance of FileHighlighter

• Output: FileHighlighter instance

• Exception: None

updateHighlightsForVisibleEditors()

- Transition: Updates highlights for all visible Python files using _getDecoration and _updateHighlightsForFile
- Output: None
- Exception: None

resetHighlights()

- Transition: Removes all active highlights from editors
- Output: None
- Exception: None

highlightSmells(editor: vscode.TextEditor)

- Transition: Applies highlights for cached smells in the editor
- Output: None
- Exception: None

22.4.5 Local Functions

_getDecoration(colour, style)

- Transition: Creates decoration type based on configuration
- Output: TextEditorDecorationType object
- Exception: None

_updateHighlightsForFile(filePath)

- Transition: Updates highlights for a specific file
- Output: None
- Exception: None

23 MIS of HoverManager

23.1 Module

HoverManager manages hover effects to display contextual information.

23.2 Uses

• ViewProvider for managing hover display and updates

23.3 Syntax

Exported Constants: None

Exported Access Programs:

Name	In	Out	Exception
register	context:	void	None
	vscode.ExtensionContext		
provideHover	document: TextDocument,	ProviderResult <hover></hover>	None
	position: Position,		
	token: CancellationToken		

23.4 Semantics

23.4.1 State Variables

• cacheManager: CacheManager - Reference to the cache manager

23.4.2 Environment Variables

None

23.4.3 Assumptions

- VS Code editor is active with a Python file open
- Valid hover position is provided

23.4.4 Access Routine Semantics

register(context: vscode.ExtensionContext)

• Transition: Registers hover provider for Python files

• Output: None

• Exception: None

provideHover(document, position, token)

• Transition: Provides hover content with smell information

• Output: Hover content or undefined

• Exception: None

23.4.5 Local Functions

None

24 MIS of RefactorManager

24.1 Module

RefactorManager manages the process of applying refactorings to detected smells.

24.2 Uses

- EnergyMetrics for tracking refactoring impact
- CacheManager for managing refactoring state
- EventManager for handling refactoring events

24.3 Syntax

Exported Constants: None

Exported Access Programs:

Name	In	Out	Exception
register	context:	void	None
	vscode.ExtensionContext		
provideHover	document: TextDocument,	ProviderResult <hover></hover>	None
	position: Position,		
	token: CancellationToken		

24.4 Semantics

24.4.1 State Variables

• serverStatus: ServerStatusType - Current status of the backend server

24.4.2 Environment Variables

• WORKSPACE_CONFIGURED_PATH: string - Path to workspace configuration

24.4.3 Assumptions

- Backend server is operational
- Valid workspace configuration exists

- Smell data is valid and complete
- Required view providers are initialized

24.4.4 Access Routine Semantics

refactor(smellsViewProvider, refactoringDetailsViewProvider, smell, context, isRefactorA

• Transition: Orchestrates complete refactoring workflow

• Output: Promise resolving to void

• Exception: Throws error for validation failures

startRefactorSession(smell, refactoredData, refactoringDetailsViewProvider)

• Transition: Initialises and manages refactoring session

• Output: Promise resolving to void

• Exception: None

24.4.5 Local Functions

None

25 MIS of CacheManager

25.1 Module

CacheManager manages caching of detected smells and file states.

25.2 Uses

- BackendCommunicator for backend communication
- ViewProvider for UI updates

25.3 Syntax

Exported Constants: None

Exported Access Programs:

Name	În	Out	Exception
setCachedSmells	filePath: string,	Promise <void></void>	None
	smells: Smell[]		
getCachedSmells	filePath: string	Smell[] or undefined	None
hasCachedSmells	filePath: string	boolean	None
clearAllCachedSmells	None	Promise <void></void>	None

25.4 Semantics

25.4.1 State Variables

- cacheUpdatedEmitter: EventEmitter Emits cache update events
- fileStatuses: Map<string, string> Tracks file statuses
- fileSmells: Map<string, Smell[]> Stores cached smells

25.4.2 Environment Variables

None

25.4.3 Assumptions

- VS Code extension context is valid
- File paths are normalized
- Smell data structure is consistent

25.4.4 Access Routine Semantics

setCachedSmells(filePath, smells)

- Transition: Stores smells in cache for specified file using generateSmellId()
- Output: Promise resolving to void
- Exception: None

getCachedSmells(filePath)

- Transition: Retrieves cached smells for file using hasCachedSmells()
- Output: Array of smells or undefined
- Exception: None

hasCachedSmells(filePath)

- Transition: Checks if file has cached smells
- Output: boolean
- Exception: None

clearAllCachedSmells()

- Transition: Removes all cached smells
- Output: Promise resolving to void
- Exception: None

25.4.5 Local Functions

- generateSmellId(smell): Generates unique ID for smell
- generateFileHash(filePath): Generates hash for file content

26 MIS of FilterManager

26.1 Module

FilterManager manages filtering of detected smells.

26.2 Uses

- CacheManager for accessing smell data
- EventManager for handling filter events
- HoverManager for displaying filtered smells

26.3 Syntax

Exported Constants: None

Exported Access Programs:

Name	In	Out	Exception
toggleSmellFilter	smellKey: string	void	None
editSmellFilterOption	item: {smellKey:	Promise <void></void>	Validation Error
	string, optionKey:		
	string, value: any}		
refresh	None	void	None

26.4 Semantics

26.4.1 State Variables

- filterState: Map<string, boolean> Tracks filter states
- filterOptions: Map<string, any> Stores filter options

26.4.2 Environment Variables

None

26.4.3 Assumptions

- Valid smell keys are provided
- Filter options are properly configured
- Cache manager is initialized

26.4.4 Access Routine Semantics

toggleSmellFilter(smellKey)

- Transition: Toggles filter state for smell
- Output: None
- Exception: None

editSmellFilterOption(item)

- Transition: Updates filter option value
- Output: Promise resolving to void
- Exception: Throws validation error for invalid input

refresh()

- Transition: Updates filter display
- Output: None
- Exception: None

26.4.5 Local Functions

None

27 MIS of EnergyMetrics

27.1 Module

EnergyMetrics manages energy consumption measurements and metrics display.

27.2 Uses

• ViewProvider for displaying metrics

27.3 Syntax

Exported Constants: None

Exported Access Programs:

Name	In	Out	Exception
updateMetrics	filePath: string, carbonSaved:	void	None
	number, smellSymbol: string		
refresh	None	void	None
getTreeItem	element: MetricTreeItem	TreeItem	None

27.4 Semantics

27.4.1 State Variables

- metricsData: Record<string, MetricsDataItem> Stores metrics data
- onDidChangeTreeData: EventEmitter Emits tree data change events

27.4.2 Environment Variables

None

27.4.3 Assumptions

- Valid file paths are provided
- Metrics data is properly formatted
- Tree view is initialized

27.4.4 Access Routine Semantics

updateMetrics(filePath, carbonSaved, smellSymbol)

- Transition: Updates metrics for file and smell using calculateFileMetrics()
- Output: None
- Exception: None

refresh()

- Transition: Updates metrics display using formatNumber()
- Output: None
- Exception: None

getTreeItem(element)

• Transition: Creates tree item for metrics display

• Output: TreeItem

• Exception: None

27.4.5 Local Functions

• calculateFileMetrics(filePath, metricsData): Calculates metrics for file

• formatNumber(number): Formats number for display

28 MIS of ViewProvider

28.1 Module

ViewProvider manages the display of smells and metrics in VS Code.

28.2 Uses

None

28.3 Syntax

Exported Constants: None

Exported Access Programs:

Name	In	Out	Exception
refresh	None	void	None
setStatus	filePath: string, status: string	void	None
setSmells	filePath: string, smells: Smell[]	void	None
removeFile	filePath: string	boolean	None

28.4 Semantics

28.4.1 State Variables

- fileStatuses: Map<string, string> Tracks file statuses
- fileSmells: Map<string, Smell[]> Stores smell data
- onDidChangeTreeData: EventEmitter Emits tree data change events

28.4.2 Environment Variables

None

28.4.3 Assumptions

- VS Code extension context is valid
- File paths are normalized
- Smell data structure is consistent

28.4.4 Access Routine Semantics

refresh()

- Transition: Updates tree view display
- Output: None
- Exception: None

setStatus(filePath, status)

- Transition: Updates file status in view
- Output: None
- Exception: None

setSmells(filePath, smells)

- Transition: Updates smell data in view
- Output: None
- Exception: None

removeFile(filePath)

- Transition: Removes file from view
- Output: boolean indicating success
- Exception: None

28.4.5 Local Functions

None

29 MIS of EventManager

29.1 Module

EventManager manages event handling and propagation.

29.2 Uses

• ViewProvider for UI updates

29.3 Syntax

Exported Constants: None

Exported Access Programs:

Name	In	Out	Exception
getStatus	None	ServerStatusType	None
setStatus	newStatus: ServerStatusType	void	None
on	event: string, listener:	void	None
	Function		
emit	event: string, data: any	void	None

29.4 Semantics

29.4.1 State Variables

• status: ServerStatusType - Current server status

• eventEmitter: EventEmitter - Event emitter instance

29.4.2 Environment Variables

None

29.4.3 Assumptions

• Event listeners are properly registered

• Event types are consistent

• Server status is valid

29.4.4 Access Routine Semantics

getStatus()

• Transition: Returns current server status

• Output: ServerStatusType

• Exception: None

setStatus(newStatus)

• Transition: Updates server status and emits event

• Output: None

• Exception: None

on(event, listener)

• Transition: Registers event listener

• Output: None

• Exception: None

emit(event, data)

• Transition: Emits event with data

• Output: None

• Exception: None

29.4.5 Local Functions

None

30 Appendix — Reflection

The information in this section will be used to evaluate the team members on the graduate attribute of Problem Analysis and Design.

The purpose of reflection questions is to give you a chance to assess your own learning and that of your group as a whole, and to find ways to improve in the future. Reflection is an important part of the learning process. Reflection is also an essential component of a successful software development process.

Reflections are most interesting and useful when they're honest, even if the stories they tell are imperfect. You will be marked based on your depth of thought and analysis, and not based on the content of the reflections themselves. Thus, for full marks we encourage you to answer openly and honestly and to avoid simply writing "what you think the evaluator wants to hear."

Please answer the following questions. Some questions can be answered on the team level, but where appropriate, each team member should write their own response:

Group Reflection

1. Which of your design decisions stemmed from speaking to your client(s) or a proxy (e.g. your peers, stakeholders, potential users)? For those that were not, why, and where did they come from?

The decision to modularize the refactorers into specific "smell-focused" components was largely inspired by a conversation with our supervisor, who is also our primary stakeholder. During one of our discussions, our supervisor suggested that the problem at hand had the potential to evolve into a graduate-level reinforcement learning project. This idea of managing multiple refactoring strategies and selecting the best one based on certain conditions led to the insight that organizing the refactorers by the specific types of code smells they address would make the system more extensible. By focusing each component on a particular code smell, we could later build upon the design and possibly incorporate machine learning or reinforcement learning strategies to optimize refactorer selection. This modular approach would allow for easier integration of additional strategies in the future, making the tool scalable as the project evolves.

Another important design decision influenced by our supervisor was the idea to validate the refactored code using a test suite. Our supervisor emphasized that in a real-world application, validating the integrity of the refactored code with a comprehensive test suite was a crucial step.

Both of these design decisions were informed by valuable input from our supervisor, ensuring that the project stayed grounded in real-world applicability and allowed for future enhancements and improvements.

2. While creating the design doc, what parts of your other documents (e.g. requirements, hazard analysis, etc), it any, needed to be changed, and why?

While creating the design document, several components of the project were revised to improve clarity and focus. Specifically, the list of code smells targeted by the refactoring library was refined by adding new smells that align more closely with our sustainability goals and removing others deemed less impactful. This required updates to the requirements document to ensure it accurately reflected the new scope of supported refactorings. Additionally, the decision was made to remove the metric reporting functionality due to its complexity and limited time, which led to corresponding modifications in both the requirements document and the VnV plan, where this feature had previously been considered for validation. Moreover, the reinforcement learning model, initially intended to optimise refactoring decisions, was excluded from the project due to time constraints and implementation challenges. This necessitated updates to the hazard analysis document to remove risks associated with this component and to better align the analysis with the reduced project scope. These changes ensure consistency and maintain a realistic and achievable project timeline.

- 3. What are the limitations of your solution? Put another way, given unlimited resources, what could you do to make the project better? (LO_ProbSolutions)
 - The energy measurement library we selected, Codecarbon, proved to be less reliable than anticipated, which affects the accuracy of some of our results. Ideally, we would replace it with a more dependable resource. However, due to time constraints and the inherent complexity of measuring CO2 emissions from code, this isn't feasible within the scope of this project. For now, we are assuming Codecarbon's reliability. In a real-world implementation, we would prioritize using a more robust energy measurement system.
- 4. Give a brief overview of other design solutions you considered. What are the benefits and tradeoffs of those other designs compared with the chosen design? From all the potential options, why did you select the documented design? (LO_Explores)
 - We considered incorporating a machine learning aspect into the project, specifically using reinforcement learning (RL) to manage the refactoring process. The idea was to treat the selection and application of refactoring strategies as a decision-making process, where an agent could learn the best strategies over time based on rewards and outcomes.

In this approach, the agent would represent the system that applies different refactoring techniques to the code. The environment would be the code itself, with various code smells and inefficiencies that the agent needs to address. The actions the agent would take would involve selecting and applying one of the predefined refactoring strategies (like long lambda function or long parameter list). The reward would be the resulting decrease in energy consumption (i.e., reduction in CO2 emissions), measured after the code is refactored and executed. The agent would receive a positive reward for actions that successfully lead to more energy-efficient code and a negative reward for actions that increase energy consumption. Over time, the agent would learn to prioritize and apply the most effective refactoring techniques based on the rewards it receives.

While this machine learning solution seemed promising, there were a few trade-offs to consider. First, implementing reinforcement learning would significantly increase the complexity of the project. It would require training data, fine-tuning the agent's learning parameters, and ensuring that the agent's actions actually lead to measurable improvements in CO2 efficiency. Additionally, RL would require ongoing iteration to improve its performance, which could be time-consuming and resource-intensive, especially given the limited time available for the project.

Another concern was that reinforcement learning, while powerful, might not always be the most effective or efficient solution for this kind of task. The selection of refactoring strategies is not necessarily a highly complex decision-making process that requires learning over time. Since we already have a set of predefined strategies, a more direct, rule-based approach was more appropriate. We could achieve the same results without the need for training the agent or dealing with the unpredictability of machine learning models.

Given these trade-offs, we opted to stick with the more straightforward approach of selecting and applying refactoring strategies based on predefined rules. This decision was driven by the need for a practical and efficient solution within the given project constraints. While reinforcement learning could be an interesting exploration for future versions of the tool, the current design provides a reliable and manageable way to achieve the desired results without adding unnecessary complexity.

Mya Hussain

1. What went well while writing this deliverable?

Writing the deliverable helped to clearly decompose the system into manageable modules. This ensured no functionality was missed in the implementation process and that all components connected in a way that made sense.

2. What pain points did you experience during this deliverable, and how did you resolve them?

It was strange that we had already coded the project before completing this deliverable. It acted as more of a sanity check that our design decisions made sense rather than an actual blueprint of what to do. This made this deliverable easier to write as the code was already present but also made the work feel unnecessarily redundant i.e boring to do. It often felt like I was documenting things that were already clear or implemented. This repetition made the process less engaging and, at times, a bit tedious. To resolve this, I focused on framing the document as an opportunity to validate and formalize our design decisions, which helped shift the mindset from simply checking off tasks to reaffirming the thought process behind our choices.

Sevhena Walker

1. What went well while writing this deliverable?

Our team already had a pretty solid idea of how we wanted to break up our system, as well as the key components that should be involved, even before we started working on the MG and MIS documents. We had already coded a decent portion of the system and, in doing so, had explored and tested various design approaches and options. This hands-on experience gave us a strong foundation and a practical understanding of what worked and what didn't, which significantly influenced our final design choices. For example, we had already determined that the refactorers would be structured as individual classes inheriting from a common base class, which simplified documenting shared functionality in the MIS.

2. What pain points did you experience during this deliverable, and how did you resolve them?

One of the biggest pain points was turning our informal design ideas and code into well-defined, modular components with clear inputs, outputs, and semantics. We had to carefully review the existing code to make sure the documentation matched its behaviour while keeping things flexible for future changes. We also ran into some inconsistencies that required minor refactoring to clean up our interfaces. Another tricky part was finding the right balance between providing enough detail and keeping the documentation readable without going too deep into implementation. We tackled these problems by reviewing everything multiple times, getting feedback, and simplifying where we could to make things clearer.

Nivetha Kuruparan

- 1. What went well while writing this deliverable? Planning out the different modules early on was incredibly helpful for me. It allowed me to clearly identify how various parts of the system interact and what functionality could be combined or separated. This structured approach not only helped in designing the system but also made it easier to focus on what each module should accomplish, ensuring no major functionality was overlooked.
- 2. What pain points did you experience during this deliverable, and how did you resolve them? It was challenging for me to think through each module thoroughly and ensure that every input, output, and state variable was captured accurately. This required going through the implementation multiple times and considering edge cases that might not have been obvious at first. Breaking the process into smaller, more manageable tasks and carefully reviewing each module helped resolve this challenge.

Ayushi Amin

1. What went well while writing this deliverable? Honestly, once I got into it, things flowed pretty smoothly. Breaking everything down into smaller sections helped a ton. It made the whole thing feel less intimidating. I also felt like I had a good understanding

of how the modules all connected, which made it easier to explain things. We all had our own parts to work on based on the modules we have and were going to create so it was easier to work on something I was familiar with. Also, talking it through with my teammates about some of the trickier parts really helped me feel more confident about what I was writing. We all did code reviews and helped eachother out on parts we didn't quite get or thought we got. Overall, it felt pretty satisfying to see it all come together.

2. What pain points did you experience during this deliverable, and how did you resolve them? I think the hardest part of this was visualising extra dependencies and functions I would need to create to make my module work. We had coded out a portion of it but it did not include everything. I had to make sure I was not missing anything important. It felt like I was stuck in this loop of overthinking every little detail. To get past it, I took a break and came back with a fresh perspective, which helped a bit. I also hit up one of my teammates to talk through the parts I was struggling with. They gave me some ideas and helped me confirm I was on the right track since some of the modules I did were similar to theirs so we were able to collaborate easily. After that, things did not feel as stressful, and I was able to wrap it up.

Tanveer Brar

- 1. What went well while writing this deliverable? The best part about writing this deliverable was getting the chance to design the user interface before having implemented it. The Source Code Optimizer has already been designed and implemented as a result of the POC assignment in November. We had not implemented the VS Code Plugin for it yet, so getting the chance to actually think about its design was very rewarding(especially since most academic projects I have done before either involved no design component or very minimal for a small program). Each modules has clear responsibilities, which helped me anticipate all needed requirements for this plugin through a logical framework(POC implementation was a lot of trial and error). The other good thing were the built in labels for anticipated changes and modules, which helped me easily write down the traceability matrix.
- 2. What pain points did you experience during this deliverable, and how did you resolve them? One of the biggest challenges that I faced was identifying the correct module for each anticipated change in the traceability matrix. My team mate had worked on the anticipated changes, Some of these changes had overlapping responsibilities across modules, so I carefully reviewd the module responsibilities over again to be able to point out the modules for each change. It needed a lot of cross referencing the module guide and anticipated changes to make sure nothing was missde. Also, when determining module dependencies in the "Uses" section for each module's decomposition, I was not fully sure about which modules should depend on which for the VS Code Plugin. This is because there can be multiple possible ways, for example the Plugin Initializer or

Smell Detector being able to directly call Source Code Optimizer. While resolving this, I realized that while there is no one perfect mapping of dependencies, the goal should be to be as modular as possible and apply the seperation of concerns principle. This is why, for example, the Backend Communicator is the only module in the design that communicates with Source Code Optimizer.