Noise Reduction Project on MATLAB

I implemented this project using two of the most famous filters Median filter and Order-Statistics filter

Software used:

- 1. MATLAB R2016a
- 2. Sublime Text Editor

Environment:

- 1. Windows 10 Operating System
- 2. 6 GB Ram with an integrated AMD graphics card and Corei5 processor

Project Details:

Files Attached:

- Noise Reduction (Folder) as a Zip File
 - 1. code.matlab
 - 2. images (Folder)
 - a. baboon.png (grayscale)
 - b. lena.png (grayscale)
 - c. forest.jpg (RGB image)
 - d. lion. jpg (RGB image)

Warnings before running code:

- You must specify a directory to the folder attached (2. images) Line 11
 ex: C:\Users\Moustafa\Documents\MATLAB\Noise Reduction\images
- You must specify a file name of the image you choose Line 12
 Ex: baboon.png
- 3. Put your own parameters as you wish (refer to "Details about filters used" section below)

Details about filters used:

- 1. Median Filter
 - a. Function name: medfilt2
 - b. Parameters: Lines 83, 84, 85, 132
 - i. Image itself: a single channel image or just one channel out of an RGB image
 - ii. Filter size: an array of two elements that describes the two dimensions of the filter
 - c. Description: Found in documentation as referenced [1]

d. Experiment:

By getting a pure gray scale image,

And then apply a salt & pepper noise using the MATLAB noise function (imnoise) with density of 15%

Then applying median filter on the noisy image using a filter size of **3x3**, we get a relatively good result of a restored image but if you can notice the red circles, there still some pepper and salt noise left without being restored.

By changing the filter size to **5x5**, we get more pleasant results solving these left-overs

2. Order-Statistics Filter

- a. Function name: ordfilt2
- b. Parameters: Lines 88, 89, 90, 134
 - i. Image itself: a single channel image or just one channel out of an RGB image
 - ii. Filter order: an integer number that describes the nth order that we take out of a statistical series and that replaces the pixel
 - iii. Domain or Neighborhood
- c. Description: Found in documentation as referenced [1]
- d. Experiment:

By applying this filter with order of **10** on the same noisy grayscale image in the previous median filtered image (red circles)

Restored Image using order-statistics Filter

But when we change the order to **5**, there appears some left-over pepper noise while salt noise is fixed

And when we change the order to 50, there appears a lot of left-over salt noise, while pepper noise is fixed

Restored Image using order-statistics Filter

Which leaves us by choosing the intermediate value of **10**

I leave you then with some experiments those I've done and comparison between filters in individual images (Zoom-in to notice the difference between results)

References:

- 1. MATLAB Documentation [1]
- 2. https://www.mathworks.com/matlabcentral/answers/56515-noise-removal-in-image
- 3. https://www.mathworks.com/matlabcentral/answers/45268-noise-removal-from-colored-image