Il linguaggio $L = \{1^{3n+2} : n \geq 0\}$ è regolare?

- se pensi che il linguaggio sia regolare, riempi lo schema di soluzione qui sotto
- se pensi che il linguaggio **non sia regolare**, gira il foglio

Sì, il linguaggio è regolare perché è riconosciuto dall'automa a stati finiti

Il linguaggio $L = \{0^n 1^m 0^n : m+n > 0\}$ è regolare?

- se pensi che il linguaggio sia regolare, riempi lo schema di soluzione qui sotto
- se pensi che il linguaggio **non sia regolare**, gira il foglio

Sì, il linguaggio è regolare perché è riconosciuto dall'automa a stati finiti

Il linguaggio $L = \{0^n 1^m 0^n : m + n > 0\}$ è regolare?

- se pensi che il linguaggio sia regolare, gira il foglio
- se pensi che il linguaggio **non sia regolare**, riempi lo schema di soluzione qui sotto

Supponiamo per assurdo che L sia regolare:

- \bullet sia k la lunghezza data dal Pumping Lemma;
- consideriamo la parola w =_____, che appartiene ad L ed è di lunghezza maggiore o uguale a k;
- sia w = xyz una suddivisione di w tale che $y \neq \varepsilon$ e $|xy| \leq k$;
- consideriamo l'esponente i= _____. Dimostriamo che per qualsiasi suddivisione $xyz, \, xy^iz \not\in L$:

Il linguaggio $L = \{1^{3n+2} : n \ge 0\}$ è regolare?

- se pensi che il linguaggio sia regolare, gira il foglio
- se pensi che il linguaggio **non sia regolare**, riempi lo schema di soluzione qui sotto

Supponiamo per assurdo che L sia regolare:

- \bullet sia k la lunghezza data dal Pumping Lemma;
- consideriamo la parola w =_____, che appartiene ad L ed è di lunghezza maggiore o uguale a k;
- sia w = xyz una suddivisione di w tale che $y \neq \varepsilon$ e $|xy| \leq k$;
- consideriamo l'esponente i= _____. Dimostriamo che per qualsiasi suddivisione $xyz, \, xy^iz \not\in L$:

Il linguaggio $L = \{0^n 1^m 0^p : m+n+p>0\}$ è regolare?

- se pensi che il linguaggio sia regolare, riempi lo schema di soluzione qui sotto
- se pensi che il linguaggio **non sia regolare**, gira il foglio

Sì, il linguaggio è regolare perché è riconosciuto dall'automa a stati finiti

Il linguaggio $L = \{w \in \{a,b\}^* : numero di a è due volte il numero di b\} è regolare?$

- se pensi che il linguaggio sia regolare, riempi lo schema di soluzione qui sotto
- se pensi che il linguaggio non sia regolare, gira il foglio

Sì, il linguaggio è regolare perché è riconosciuto dall'automa a stati finiti

Il linguaggio $L = \{w \in \{a,b\}^* : numero di a è due volte il numero di b\} è regolare?$

- se pensi che il linguaggio sia regolare, gira il foglio
- se pensi che il linguaggio non sia regolare, riempi lo schema di soluzione qui sotto

Supponiamo per assurdo che L sia regolare:

- sia k la lunghezza data dal Pumping Lemma;
- consideriamo la parola w =______, che appartiene ad L ed è di lunghezza maggiore o uguale a k;
- sia w = xyz una suddivisione di w tale che $y \neq \varepsilon$ e $|xy| \leq k$;
- consideriamo l'esponente $i = \underline{\hspace{1cm}}$. Dimostriamo che per qualsiasi suddivisione $xyz, \, xy^iz \not\in L$:

Il linguaggio $L = \{0^n 1^m 0^p : m + n + p > 0\}$ è regolare?

- se pensi che il linguaggio sia regolare, gira il foglio
- se pensi che il linguaggio **non sia regolare**, riempi lo schema di soluzione qui sotto

Supponiamo per assurdo che L sia regolare:

- sia k la lunghezza data dal Pumping Lemma;
- consideriamo la parola w =_____, che appartiene ad L ed è di lunghezza maggiore o uguale a k;
- sia w = xyz una suddivisione di w tale che $y \neq \varepsilon$ e $|xy| \leq k$;
- consideriamo l'esponente i= _____. Dimostriamo che per qualsiasi suddivisione $xyz, \, xy^iz \not\in L$: