LATEX Refsheet Haoli Yin p. 1 of 1

Trig Identities

$$\begin{split} tan(x) &= \frac{sin(x)}{cos(x)} \text{ , } csc(x) = \frac{1}{sin(x)} \text{ , } sec(x) = \frac{1}{cos(x)} \\ sin^2(x) + cos^2(x) = 1 \text{ , } tan^2(x) + 1 = sec^2(x) \\ cot^2(x) + 1 = csc^2(x) \text{ , } sin(2\theta) = 2sin(\theta)cos(\theta) \\ cos(2\theta) &= cos^2(\theta) - sin^2(\theta) \\ tan(2\theta) &= \frac{2tan(\theta)}{1 - tan^2(\theta)} \text{ , } sin^2(x) = \frac{1 - cos(2x)}{2} \\ cos^2(x) &= \frac{1 + cos(2x)}{2} \end{split}$$

Derivatives

$$\begin{array}{l} d(sinx) = cosx \ , \ d(cosx) = -sinx \ , \ d(tanx) = \\ sec^2x \\ d(secx) = secxtanx \ , \ d(cscx) = -cscxcotx \\ d(cotx) = -csc^2x \\ d(sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}, \ d(cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}} \\ d(tan^{-1}x) = \frac{1}{1+x^2}, \ d(sec^{-1}x) = \frac{1}{|x|\sqrt{x^2-1}} \\ d(csc^{-1}x) = \frac{-1}{|x|\sqrt{x^2-1}}, \ d(cot^{-1}x) = \frac{-1}{1+x^2} \end{array}$$

Ch1: Basic Definitions

Ordinary: single independent variable. **Partial**: multiple independent variables. Order: highest derivative. Linear dif**feq**: additive combination of first powers: $a_n(x)\frac{d^ny}{dx^n} + a_{n-1}\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y =$

Example of linear: $t^3 \frac{dx}{dt} - x = t^3$. $\frac{dy}{dx} = sin(x)$ bc 0 * y Nonlinear: $\frac{d^2y}{dv^2} + y^3 = 0$ bc of y^3 term.

Another: $\frac{d^2y}{dx^2} - y\frac{dy}{dx} = \cos x$ be of ydy term. **Explicit Soln**: function $\phi(x)$ when sub for y in eqn satisfies for $\forall x$ in interval. **Implicit** Soln: Verify by differentiate implicit soln wrt ind. var on both sides to check = orig.

Note: Diff of y wrt x becomes $\frac{dy}{dx}$ **Existence & Uniqueness:** 1. Find the form of the differential equation $\frac{dy}{dx} = f(x,y)$. 2. Identify the function f(x,y) and the partial derivative $\frac{\partial y}{\partial x}$ such that both are continuous in the rectangle (x, f(x)). **Autonomous eqns**: y' = f(y), rhs is fxn of dependent var only. **Method of Isoclines:** v' = f(x, v) = c, solve

for y to make isoclines (dotted lines), slope same along isocline.

Euler's Method: $y_{n+1} = y_n + hf(x_n, y_n)$, where h is step size $(\frac{dist}{numstep})$.

Ch2: Solving Linear 1st Order

Separable: y' = f(x)g(y), sep. into $\frac{dy}{g(y)} =$ f(x)dx, integrate both sides. **Linear** $a_1(x)\frac{dy}{dx} + a_0(x)y = b(x)$. Special cases:

 $a_0(x) = 0$ (no y term) then $y(x) = \int \frac{b(x)}{a_1(x)} dx + C$

 $a_0(x) = a'_1(x)$ product rule y(x) = $\frac{1}{a_1(x)}(\int b(x)dx + C)$, Standard Form: $T(t) = M_0 + (T_0 - M_0)exp(-kt)$. $\frac{dy}{dx} + P(x)y = Q(x)$, Integrating Factor: $\mu(x) =$ $exp(\int P(x)dx)$, Solve: $\mu(x)y(x) = \int \mu(x)Q(x)dx +$ C, Exact: Form M(x,y)dx + N(x,y)dy = 0, check $M_v = N_x$ for exactness, Solving: 1. Text exactness, 2. $F(x,y) = \int M(x,y)dx + g(y)$, 3. $\frac{\partial F}{\partial y} = N(x, y)$ to get g'(y), 4. $g(y) = \int g'(y) dy$, 5. sub g(y) into F(x,y) = C, Exactness **Test Fail:** check $\frac{1}{N}(\frac{\partial M}{\partial v} - \frac{\partial N}{\partial v})$ only depends on x or $\frac{1}{M}(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y})$ only depends on y, then $\mu(\cdot) = exp(|(\cdot)d(\cdot))$, plug in $\mu(x,y)M(x,y)dx + \mu(x,y)N(x,y)dy = 0$, solve with exact. Homogenous: 1. Express dy/dx in terms of y/x, 2. Sub v = y/x = f(x, v), 3. x(dv/dx) + v = f(x, v) solve with separable, 4. Resub v = y/x. Solving dy/dx = G(ax + by): 1. sub z = ax + by, 2. diff dz/dx = a + b(dy/dx)then sub dy/dx = (dz/dx - a)/b, 3. solve separable 4. resub ax + by = z. Bernoul**li**: 1. $dy/dx + P(x)y = Q(x)y^n$, $v = y^{1-n}$, 2. 1/(1-n)dv/dx + P(x)v = Q(x), 3. solve linear w/ $\mu(x)$. Linear Coeff: Special cases: 1. $a_1b_2 = a_2b_1$ then z = ax + by, 2. $b_1 = a_2$ then exact, 3. $c_1 = c_2 = 0$ then homogenous. Coeff **Solve**: 1. solve system $a_1h + b_1k = -c$ and $a_2h + b_2k = -c$ for h, k, 2. sub in x = u + h and v = v + k for form M(u, v)du + N(u, v)dv = 0, 3. Rearr for dv/du, multiply by (1/u)/(1/u)then sub z = v/u, 4. u(dz/du) + z = step3, 5.

solve separable (partial frac) 6. resub *z*, *u*, *v*.

Ch3: 1st Order Applications

Mixing Problems: $dx/dt = r_{in} - r_{out}$, where r(t) can also be salt concentration, if so, then $dx/dt = r_{in}c_{in} - r_{out}x(t)/V$, where x(t) is [salt] **Malthusian/Exponential Model**: $dP/dt = kp, p(0) = p_0, p(t) = p_0 * exp(kt)$ **Logistic Model**: $dP/dt = k_1 p - k_2 \frac{p(p-1)}{2}$, p(t) = $\frac{p_0p_1}{p_0+(p_1-p_0)exp(-Ap_1t)}$ Newton's Law of Coo**ling:** $T(t) = exp(-kt) \int exp(kt)(kM+H+U)dt +$ C * exp(-kt), where M is initial temp, H is heat (≥ 0) , U is heating(+)/cooling rate(-). Os**cillating** M **Problem**: Given time constant (1/k) and M varies as sine wave w/ min/max time/temp given, find min/max time/temp of building. 1. Find period $\omega = 2\pi/24hr$, $T_{high} = M_0 + B$, $T_{low} = M_0 - B$, solve for $M_0 =$ B_0 , B 2. $T(t) = B_0 - BF(t) Cexp(-kt)$ dies off, $F(t) = \pm 1/\sqrt{1 + (k/\omega)^2}$, 3. Find T_{high} and T_{low} by plugging in F(t) w/ /pm1, 4. Find t_{high} and t_{low} by plugging in T_{high} and T_{low} into

Physics: $F(t,v) = m\frac{dv}{dt} = mg - bv, v(0) = v_0$ $v(t) = \frac{mg}{b} + (v_0 - \frac{mg}{b})exp(-bt/m)$ $x(t) = \frac{mg}{h}t + (v_0 - \frac{mg}{h})\frac{m}{h}(1 - exp(-bt/m))$

Parachute Problem: Find distance (*d*) fallen after given t_1 w/o parachute w/ $x_1(t_1), b_1$, calc v(t) to use as v_0 in $v_2(t_2)$, distance left $d = h - x_1(t_1)$, Solve for t_2 in $x_2(t_2) =$ d, total time $t_{total} = t_1 + t_2$. RL Circuit: $exp(Rt/L)I(t) = \int exp(Rt/L)(E(t)/L)dt + K$ to $I(t) = I_{max}(1 - exp(-Rt/L))$, Resistor Voltage: $E_R(t) = I(t)$. Inductor Voltage: $E_L(t) =$ L(dI/dt). Capacitor Voltage: $E_C(t) = q/C$. Capacitor Current: R(dq/dt)+q/C=E(t). **RC Circuit**: $exp(t/RC)q(t) = \int exp(t/RC)(E(t)/R)dt +$ K. If E(t) = V = const, then g(t) = CV + (Q - t)CV)exp(-t/RC), Q is initial charge. If Q=0, then $V(t) = V_{max}(1 - exp(-t/RC))$.

Ch4: Linear 2nd Order Applications

Homogenous 2nd-order const coeff: 1. turn ay'' + by' + cy = 0 into $ar^2 + br + c = 0$ and solve for r. 2. $y = e^{rt}$ are solns. 3. $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$ is the general soln. 4a. If $r_1 \neq r_2$, then $v = c_1 e^{r_1 t} +$ $c_2e^{r_2t}$. 4b. If $r_1 = r_2$, then $v = c_1e^{r_1t} + c_2te^{r_2t}$.

Wronskian test for linear independence:

$$W[y_1, y_2] = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} \neq 0.$$

Homogenous Complex: 1. Find $r = \alpha \pm i\beta$ from $ar^2 + br + c = 0$. 2. $y = e^{\alpha t}(c_1 \cos \beta t +$ $c_2 \sin \beta t$) is the general soln.

Mass-spring system: my'' + by' + ky = 0 where m is mass, b is damping, k is spring const.