Lecture 0: Summary of Topology (Part 1)

Tianpei Xie

Nov. 6th., 2022

Contents

1	\mathbf{Set}	Theory	2
	1.1	Set Operations and Logics	2
	1.2	Functions	3
	1.3	Equivalence Relation	4
	1.4	Order Relation	5
	1.5	Cartesian Products	6
	1.6	Infinite Set and the Principle of Recursive Definition	7
	1.7	The Axioms of Choice	9
	1.8	Well-Ordering Theorem and Zorn's Lemma	9
	1.9	Principles in Set Theory	10
2	Top	oology	11
	2.1	Topological Space	11
	2.2	The Order Topology	13
	2.3	The Product Topology	14
	2.4	The Subspace Topology	16
	2.5	Closure of Set and Limit Point	17
	2.6	Continuous Function	19
		2.6.1 Definitions	19
		2.6.2 Homemorphism	20
		2.6.3 Constructing Continuous Functions	20
	2.7	Metric Topology	21
		2.7.1 Metric Topology and Metrizability	21
		2.7.2 Constructing Continuous Functions on Metric Space	24
	2.8	The Quotient Topology	25
		2.8.1 Definitions and Properties	25
		2.8.2 Constructing Continuous Function on Quotient Space	28
	2.9	Topological Groups	29

1 Set Theory

1.1 Set Operations and Logics

• **Definition** Given a set X, the collection of all subsets of X, denoted as 2^X , is defined as

$$2^X := \{E : E \subseteq X\}$$

- Remark The followings are basic operation on 2^X : For $A, B \in 2^X$,
 - 1. *Inclusion*: $A \subseteq B$ if and only if $\forall x \in A, x \in B$.
 - 2. *Union*: $A \cup B = \{x : x \in A \lor x \in B\}$.
 - 3. *Intersection*: $A \cap B = \{x : x \in A \land x \in B\}$.
 - 4. **Difference**: $A \setminus B = \{x : x \in A \land x \notin B\}$.
 - 5. Complement: $A^c = X \setminus A = \{x : x \in X \land x \notin A\}.$
 - 6. Symmetric Difference: $A\Delta B = (A \setminus B) \cup (B \setminus A) = \{x \in X : x \notin A \lor x \notin B\}$.

We have deMorgan's laws:

$$\left(\bigcup_{a\in A} U_a\right)^c = \bigcap_{a\in A} U_a^c, \quad \left(\bigcap_{a\in A} U_a\right)^c = \bigcup_{a\in A} U_a^c$$

• **Remark** Note that the following equality is useful:

$$A\Delta B = (A \cup B) \setminus (A \cap B)$$

- The forms of logic statement using "if . . . then":
 - 1. Original statement: "If P then Q", or "Q holds if P holds";

$$P \Rightarrow Q$$

2. Converse statement: "If Q then P", or "Q holds only if P holds";

$$Q \Rightarrow P$$

3. Contrapositive statement: "If not Q then not P", or "P not holds if Q not holds";

$$\neg Q \Rightarrow \neg P$$

The contrapositive and the original statements are *logically equivalent*.

If it should happen that both the statement $P \Rightarrow Q$ and its converse $Q \Rightarrow P$ are true, we express this fact by the notation

$$P \Leftrightarrow Q$$

"P holds if and only if Q holds""

1.2 Functions

• **Definition** A <u>rule of assignment</u> is a subset r of the cartesian product $C \times D$ of two sets, having the property that each element of C appears as the first coordinate **at most one ordered pair belonging to** r. Thus, a subset r of $C \times D$ is a rule of assignment if

$$[(c,d) \in r \text{ and } (c,d') \in r] \Rightarrow [d=d'].$$

Given a rule of assignment r, <u>the domain</u> of r is defined to be the *subset* of C consisting of all first coordinates of elements of r, and **the image** set of r is defined as the *subset* of D consisting of all second coordinates of elements of r.

A function f is a rule of assignment r, together with a set B that contains the image set of r.

• **Definition** $f: X \to Y$ is a *function* if for each $x \in X$, there exists a unique $y = f(x) \in Y$. X is called the *domain* of f and Y is called the *codomain* or *image* of f. $f(X) = \{y \in Y : y = f(x)\}$ is called the *range* of f

The pre-image of f is defined as

$$f^{-1}(E) = \{x \in X : f(x) \in E\}.$$

• **Definition** If $f: A \to B$ and if A_0 is a subset of A, we define the <u>restriction</u> of f to A_0 to be the function mapping A_0 into B whose rule is

$$\{(a, f(a)): a \in A_0\}.$$

It is denoted by $f|_{A_0}$, which is read ""f restricted to A_0 ."

• Remark The pre-image operation commutes with all basic set operations:

$$A \subseteq B \Rightarrow f^{-1}(A) \subseteq f^{-1}(B)$$

$$f^{-1}\left(\bigcup_{\alpha \in A} E_{\alpha}\right) = \bigcup_{\alpha \in A} f^{-1}(E_{\alpha})$$

$$f^{-1}\left(\bigcap_{\alpha \in A} E_{\alpha}\right) = \bigcap_{\alpha \in A} f^{-1}(E_{\alpha})$$

$$f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$$

$$f^{-1}(E^{c}) = (f^{-1}(E))^{c}$$

• Remark The image operation commutes with only inclusion and union operations:

$$A \subseteq B \Rightarrow f(A) \subseteq f(B)$$
$$f\left(\bigcup_{\alpha \in A} E_{\alpha}\right) = \bigcup_{\alpha \in A} f(E_{\alpha})$$

For the other operations:

$$f\left(\bigcap_{\alpha \in A} E_{\alpha}\right) \subseteq \bigcap_{\alpha \in A} f\left(E_{\alpha}\right)$$
$$f\left(A \setminus B\right) \supseteq f(A) \setminus f(B)$$

• **Definition** A map $f: X \to Y$ is *surjective*, *or*, *onto*, if for every $y \in Y$, there exists a $x \in X$ such that y = f(x). In set theory notation:

$$f: X \to Y$$
 is surjective $\Leftrightarrow f^{-1}(Y) \subseteq X$.

A map $f: X \to Y$ is *injective*, or one-to-one, if for every $x_1 \neq x_2 \in X$, their map $f(x_1) \neq f(x_2)$, or equivalently, $f(x_1) = f(x_2)$ only if $x_1 = x_2$.

If a map $f: X \to Y$ is both *surjective* and *injective*, we say f is a **bijective**, or there exists an **one-to-one correspondence** between X and Y. Thus $Y = f(\overline{X})$.

• Remark

$$f^{-1}(f(B)) \supseteq B, \quad \forall B \subseteq X$$

$$f(f^{-1}(E)) \subseteq E, \quad \forall E \subseteq Y$$

$$f: X \to Y \text{ is surjective } \Leftrightarrow f^{-1}(Y) \subseteq X.$$

$$\Rightarrow f(f^{-1}(E)) = E.$$

$$f: X \to Y \text{ is injective } \Rightarrow f^{-1}(f(B)) = B$$

$$\Rightarrow f\left(\bigcap_{\alpha \in A} E_{\alpha}\right) = \bigcap_{\alpha \in A} f\left(E_{\alpha}\right)$$

$$\Rightarrow f\left(A \setminus B\right) = f(A) \setminus f(B)$$

- Proposition 1.1 The following statements for composite functions are true:
 - 1. If f, g are both injective, then $g \circ f$ is injective.
 - 2. If f, g are both surjective, then $g \circ f$ is surjective.
 - 3. Every injective map $f: X \to Y$ can be writen as $f = \iota \circ f_R$ where $f_R: X \to f(X)$ is a bijective map and ι is the inclusion map.
 - 4. Every surjective map $f: X \to Y$ can be writen as $f = f_p \circ \pi$ where $\pi: X \to (X/\sim)$ is a quotient map (projection $x \mapsto [x]$) for the equivalent relation $x \sim y \Leftrightarrow f(x) = f(y)$ and $f_p: (X/\sim) \to Y$ is defined as $f_p([x]) = f(x)$ constant in each coset [x].
 - 5. If $g \circ f$ is injective, then f is injective.
 - 6. If $g \circ f$ is surjective, then g is surjective.

1.3 Equivalence Relation

- **Definition** A <u>relation</u> on a set A is a subset R of the cartesian product $A \times A$.
 - If R is a relation on A, we use the notation xRy to mean the same thing as $(x,y) \in R$. We read it "x is in the relation R to y."
- Remark A rule of assignment r for a function $f: A \to A$ is also a subset of $A \times A$. But it is a subset of a very special kind: namely, one such that each element of A appears as the first coordinate of an element of r exactly once. Any subset of $A \times A$ is a relation on A.

- Definition An equivalence relation on X is a relation R on X such that
 - 1. (**Reflexivity**): xRx for all $x \in X$;
 - 2. (**Symmetry**): xRy if and only if yRx for all $x, y \in X$;
 - 3. (**Transitivity**): xRy and yRz then xRz for all $x, y, z \in X$.

We usually denote the equivalence relation R as \sim .

- Definition (*Equivalence Class*)

 The equivalence class of an element x is denoted as $[x] := \{y \in X : xRy\}$.
- Lemma 1.2 [Munkres, 2000] Two equivalence classes E and E' are either disjoint or equal.
- **Definition** A <u>partition</u> of a set A is a collection of **disjoint** nonempty subsets of A whose **union** is all of A.
- Remark The set of equivalence classes provides a partition of the set X in that every $z \in X$ can must belong to only one equivalence class [x]. That is $[x] \cap [y] = \emptyset$ if $x \not\sim y$ and $X = \bigcup_{x \in X} [x]$.
- **Definition** The set of all equivalence classes of X by \sim , denoted $X/\sim := \{[x] : x \in X\}$, is **the quotient set** of X by \sim . $X = \bigcup_{C \in X/\sim} C$.
- Remark Since $x \sim y \Rightarrow y \in [x]$, we see that if $[x] \neq [y]$, then $x \not\sim y$, i.e. representative of different equivalence classes are not in the given relationship.

1.4 Order Relation

- **Definition** A relation C on a set A is called <u>an order relation</u> (or a simple order, or a linear order) if it has the following properties:
 - 1. (*Comparability*) For every x and y in A for which $x \neq y$, either xCy or yCx.
 - 2. (**Nonreflexivity**) For no x in A does the relation xCx hold.
 - 3. (**Transitivity**) If xCy and yCz, then xCz.

We denote order relation as > or <. We shall use the notation $x \le y$ to stand for the statement "either x < y or x = y"; and we shall use the notation y > x to stand for the statement "x < y." We write x < y < z to mean "x < y and y < z"

- Remark If $x \neq y$, then x < y and y < x cannot hold simultaneously.
- Remark The Comparability condition means every two elements are comparable under simple order. Without this condition, we have partial order $x \prec y$. Consider the simple ordering as along a chain graph, while the partial ordering is along the general graphs.
- **Definition** (*Order Type*) Suppose that A and B are two sets with order relations $<_A$, and $<_B$ respectively. We say that A and B have the same order type if there is a bijective correspondence between them

that **preserves order**; that is, if there exists a bijective function $f: A \to B$ such that

$$x <_A y \Rightarrow f(x) <_B f(y)$$

• Definition (Dictionary Order Relation)

Suppose that A and B are two sets with order relations \prec_A and \prec_B respectively. Define an order relation < on $A \times B$ by defining

$$a_1 \times b_1 < a_2 \times b_2$$

if $a_1 <_A a_2$, or if $a_1 = a_2$ and $b_1 <_B b_2$. It is called <u>the dictionary order relation</u> on $A \times B$.

- **Definition** Suppose that A is a set ordered by the relation <. Let A_0 be a subset of A. We say that the element b is <u>the largest element</u> of A_0 if $b \in A_0$ and $x \le b$ for every $x \in A_0$.
 - Similarly, we say that a is <u>the smallest element</u> of A_0 if $a \in A_0$ and if $a \le x$ for every $x \in A_0$.
- Remark It is easy to see that a set has at most one largest element and at most one smallest element.
- Definition (The Upper Bound and The Supremum of Subset)

We say that the subset A_0 of A is <u>bounded above</u> if there is an element b of A such that $x \leq b$ for every $x \in A_0$; the element $b \in A$ is called **an upper bound for** A_0 .

If the set of all upper bounds for A_0 has a **smallest element**, that element is called **the least upper bound**, or **the supremum**, of A_0 . It is denoted by $\sup A_0$, it may or may not belong to A_0 . If it does, it is **the largest element** of A_0 .

• Definition (The Lower Bound and The Infimum of Subset)

Similarly, we say that the subset A_0 of A is <u>bounded below</u> if there is an element a of A such that $a \le x$ for every $x \in A_0$; the element $a \in A$ is called <u>a lower bound for</u> A_0 .

If the set of all lower bounds for A_0 has a largest element, that element is called <u>the greatest</u> <u>lower bound</u>, or <u>the infimum</u>, of A_0 . It is denoted by inf A_0 , it may or may not belong to A_0 . If it does, it is <u>the smallest element</u> of A_0 .

• Definition (The Least Upper Bound Property and The Greatest Lower Bound Property)

An ordered set A is said to have <u>the least upper bound property</u> if every nonempty subset A_0 of A that is bounded above has a least upper bound.

Analogously, the set A is said to have <u>the greatest lower bound property</u> if every nonempty subset A_0 of A that is bounded below has a greatest lower bound.

1.5 Cartesian Products

• Definition (*Indexed Family of Sets*)

Let \mathcal{A} be a nonempty collection of sets. <u>An indexing function</u> for \mathcal{A} is a <u>surjective</u> function f from some set J, called **the index set**, to \mathcal{A} . The <u>collection</u> \mathcal{A} , together with <u>the</u>

indexing function f, is called <u>an indexed family of sets</u>. Given $\alpha \in J$, we shall denote the set $f(\alpha)$ by the symbol A_{α} . And we shall denote the indexed family itself by the symbol

$$\{A_{\alpha}\}_{\alpha\in J}$$
,

which is read "the family of all A_{α} , as a ranges over J." Sometimes we write merely $\{A_{\alpha}\}$, if it is clear what the index set is.

• Definition (Cartesian Product of Indexed Family of Sets)
Let m be a positive integer. Given a set X, we define an m-tuple of elements of X to be a function

$$x:\{1,\ldots,m\}\to X.$$

If X is an m-tuple, we often denote the value of x at i by the symbol x_i ; rather than x(i) and call it **the** i-th coordinate of x. And we often denote the function x itself by the symbol

$$(x_1,\ldots,x_m).$$

Now let $\{A_1, \ldots, A_m\}$ be a family of sets indexed with the set $\{1, \ldots, m\}$. Let $X = A_1 \cup \ldots \cup A_m$. We define **the cartesian product** of this indexed family, denoted by

$$\prod_{i=1}^{m} A_i \quad \text{or} \quad A_1 \times \ldots \times A_m$$

to be the set of all m-tuples (x_1, \ldots, x_m) of elements of X such that $x_i \in A_i$ for each i.

• Definition (Countable Cartesian Product of Indexed Family of Sets) Given a set X, we define an ω -tuple of elements of X to be a function

$$x: \mathbb{Z}_+ \to X;$$

we also call such a function a **sequence**, or <u>an **infinite sequence**</u>, of elements of X. If x is an ω -tuple, we often denote the value of x at i by x_i rather than x(i), and call it **the** i-th **coordinate** of x. We denote x itself by the symbol

$$(x_1, x_2, \ldots)$$
 or $(x_n)_{n \in \mathbb{Z}_+}$

Now let $\{A_1, A_2, \ldots\}$ be a family of sets, indexed with the positive integers; let X be the union of the sets in this family. **The cartesian product** of this indexed family of sets, denoted by

$$\prod_{i \in \mathbb{Z}_+} A_i \quad \text{ or } \quad A_1 \times A_2 \times \dots$$

is defined to be the set of all ω -tuples $(x_1, x_2, ...)$ of elements of X such that $x_i \in A_i$ for each i.

1.6 Infinite Set and the Principle of Recursive Definition

• **Definition** See the following definitions

- 1. A set is said to be *countably infinite* if it admits a *bijection* with the set of *positive* integers $f: A \to \mathbb{Z}_+$, and
- 2. A set is said to be *countable* if it is *finite* or *countably infinite*.
- 3. A set that is not countable is said to be *uncountable*.
- Proposition 1.3 Let B be a nonempty set. Then the following are equivalent:
 - 1. B is countable.
 - 2. There is a surjective function $f: \mathbb{Z}_+ \to B$.
 - 3. There is an **injective** function $g: B \to \mathbb{Z}_+$.
- Lemma 1.4 If C is an infinite subset of \mathbb{Z}_+ , then C is countably infinite.
- Principle 1.5 (Principle of Recursive Definition). [Munkres, 2000]
 Let A be a set. Given a formula that defines h(1) as a unique element of A, and for i > 1 defines h(i) uniquely as an element of A in terms of the values of h for positive integers less than i, this formula determines a unique function h: Z₊ → A.
- Theorem 1.6 (Principle of Recursive Definition). [Munkres, 2000]

 Let A be a set; let a₀ be an element of A. Suppose ρ is a function that assigns, to each function f mapping a nonempty section of the positive integers into A, an element of A. Then there exists a unique function

$$h: \mathbb{Z}_+ \to A$$

such that

$$h(1) = a_0,$$

 $h(i) = \rho(h | \{1, \dots, (i-1)\}) \text{ for all } i > 1.$ (1)

The formula (2) is called a <u>recursion formula</u> for h. It specifies h(1), and it expresses the value of h at i > 1 in terms of the values of h for positive integers less than i. A definition given by such a formula is called a **recursive definition**.

• Remark (Recusive Definition) Given the infinite subset C of \mathbb{Z}_+ , there is a unique function $h: \mathbb{Z}_+ \to C$ satisfying the formula:

$$h(1) = smallest element of C,$$

 $h(i) = smallest element of [C - h(\{1, ..., (i-1)\})] for all i > 1.$ (2)

The formula (2) is called a recursion formula for h; it defines the function h in terms of itself. A definition given by such a formula is called a recursive definition.

- Corollary 1.7 A subset of a countable set is countable.
- Corollary 1.8 The set $\mathbb{Z}_+ \times \mathbb{Z}_+$ is countably infinite.
- Proposition 1.9 A countable union of countable sets is countable.
- Proposition 1.10 A finite product of countable sets is countable.

• It is very tempting to assert that countable products of countable sets should be countable; but this assertion is in fact **not true**:

Theorem 1.11 Let X denote the two element set $\{0,1\}$. Then the set X^{ω} is uncountable.

- Theorem 1.12 Let A be a set. There is no injective map $f: 2^A \to A$, and there is no surjective map $g: A \to 2^A$.
- Proposition 1.13 Let A be a set. The following statements about A are equivalent:
 - 1. There exists an **injective** function $f: \mathbb{Z}_+ \to A$.
 - 2. There exists a **bijection** of A with a proper subset of itself.
 - 3. A is infinite.

1.7 The Axioms of Choice

- Principle 1.14 (Axiom of Choice). [Munkres, 2000]
 Given a collection \(\mathscr{A} \) of disjoint nonempty sets, there exists a set C consisting of exactly one element from each element of \(\mathscr{A} \); that is, a set C such that C is contained in the union of the elements of \(\mathscr{A} \), and for each \(A \) ∈ \(\mathscr{A} \), the set C \(\cap A \) contains a single element.
- Lemma 1.15 (Existence of a Choice Function). [Munkres, 2000]
 Given a collection \mathcal{B} of nonempty sets (not necessarily disjoint), there exists a function

$$c: \mathscr{B} \to \bigcup_{B \in \mathscr{B}} B$$

such that c(B) is an element of B, for each $B \in \mathcal{B}$.

Remark The function c is called a **choice function** for the collection \mathcal{B} . The difference between this lemma and the axiom of choice is that in this lemma the sets of the collection \mathcal{B} are not required to be disjoint.

- **Remark** The axiom of choice is used when someone construct an infinite set using infinite number of arbitrary choices.
- Corollary 1.16 If $\{A_{\alpha}\}_{{\alpha}\in J}$ is a **disjoint** collection of nonempty sets, there is a set $C\subset \bigcup_{{\alpha}\in J}A_{\alpha}$ such that $C\cap A_{\alpha}$ contains **precisely one element** for each $\alpha\in J$.

1.8 Well-Ordering Theorem and Zorn's Lemma

- Definition (Well-Ordered Set)
 A set A with an order relation < is said to be well-ordered if every nonempty subset of A has a smallest element.
- Proposition 1.17 (Finite Ordered Set is Well-Ordered) [Munkres, 2000] Every nonempty finite ordered set has the order type of a section $\{1,\ldots,n\}$ of \mathbb{Z}_+ , so it is well-ordered.
- Theorem 1.18 (Well-Ordering Theorem). [Munkres, 2000]
 If A is a set, there exists an order relation on A that is a well-ordering.

- **Remark** The proof of Well-Ordering Theorem is based on a construction involving an infinite number of arbitrary choices, that is, a construction involving the choice axiom.
- Corollary 1.19 There exists an uncountable well-ordered set.
- Definition (Strict Partial Order)

Given a set A, a relation \prec on A is called a <u>strict partial order</u> on A if it has the following two properties;

- 1. (*Nonreflexivity*) The relation $a \prec a$ never holds.
- 2. (**Transitivity**) If $a \prec b$ and $b \prec c$, then $a \prec c$.

Moreover, suppose that we define $a \leq b$ either $a \prec b$ or a = b. Then the relation \leq is called a partial order on A.

- Theorem 1.20 (The Maximum Principle).
 Let A be a set; let ≺ be a strict partial order on A. Then there exists a maximal simply ordered subset B of A.
- Definition (Upper Bound and Maximal Element for Strict Partial Order)
 Let A be a set and let \prec be a strict partial order on A. If B is a subset of A, an upper bound on B is an element c of A such that for every b in B, either b = c or $b \prec c$.

<u>A maximal element</u> of A is an element m of A such that for <u>no element a of A</u> does the relation $m \prec a$ hold.

- Remark The upper bound of a set A is not necessarily in A, but the maximal element of A is in A.
- Theorem 1.21 (Zorn's Lemma). [Munkres, 2000] Let A be a set that is strictly partially ordered. If every simply ordered subset of A has an upper bound in A, then A has a maximal element.

1.9 Principles in Set Theory

- Remark We summarizes the main principles in the set theory chapter:
 - 1. <u>The Axioms of Choice</u>: Given a collection \mathscr{A} of **disjoint** nonempty sets, there exists a set C consisting of **exactly one** element from each element of \mathscr{A} . \Rightarrow one can construct a infinite set with infinite number of arbitrary choices
 - 2. <u>Well-Ordering Theorem</u>: Every set has a well-ordering relation so that every non-empty subset has a smallest element.
 - 3. The Maximum Principle: Any strict partial ordered set has a maximal simply ordered subset.

Zorn's Lemma: For a strictly partially ordered set A, if **every simply ordered subset** has an **upper bound** in A, then A has **a maximal element**.

4. **Principle of Recursive Definition**: To determine a **unique** function $h: \mathbb{Z}_+ \to A$, one first define h(1) **uniquely** as an element of A. Then for i > 1, one define h **uniquely** on [1:i] in terms of value of h on **all positive integers less than** i.

2 Topology

2.1 Topological Space

• **Definition** [Munkres, 2000]

Let X be a set. $\underline{A \ topology}$ on X is a collection \mathcal{T} of subsets of X, called **open subsets**, satisfying

- 1. X and \emptyset are open.
- 2. The *union* of *any family* of open subsets is open.
- 3. The *intersection* of any *finite* family of open subsets is open.

A pair (X, \mathcal{T}) consisting of a set X together with a topology \mathcal{T} on X is called **a topological space**.

• Example (Discrete and Trivial Topology)

If X is any set, the collection of all subsets of X is a topology on X; it is called the discrete topology.

The collection consisting of X and 0 only is also a topology on X; we shall call it the **indiscrete** topology, or the trivial topology.

• Example (The Finite Complement Topology)

Let X be a set; let \mathscr{T}_f be the collection of all subsets U of X such that $X \setminus U$ either is **finite** or is all of X. Then \mathscr{T}_f is a topology on X, called **the finite complement topology**.

• Definition (Comparable Topologies on the Same Set)

Suppose that \mathscr{T} and \mathscr{T}' are two topologies on a given set X. If $\mathscr{T}' \supseteq \mathscr{T}$, we say that \mathscr{T}' is $\underline{\mathit{finer}}$ (or $\underline{\mathit{stronger}}$) than \mathscr{T} ; if \mathscr{T}' $\underline{\mathit{properly}}$ contains \mathscr{T} , we say that \mathscr{T}' is $\underline{\mathit{strictly finer}}$ than \mathscr{T} .

We also say that \mathscr{T} is <u>coarser</u> (or <u>weaker</u>) than \mathscr{T}' , or <u>strictly coarser</u>, in these two respective situations. We say \mathscr{T} is <u>comparable</u> with \mathscr{T}' if either $\mathscr{T}' \subseteq \mathscr{T}$ or $\mathscr{T} \subseteq \mathscr{T}'$.

• **Definition** Suppose X is a topological space. A collection \mathscr{B} of open subsets of X is said to be **a basis** for the topology of X (plural: **bases**) if every open subset of X is the union of some collection of elements of \mathscr{B} .

More generally, suppose X is merely a set, and \mathscr{B} is a collection of *subsets* of X satisfying the following conditions:

- 1. $X = \bigcup_{B \in \mathscr{B}} B$.
- 2. If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, then there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

Then the collection of all unions of elements of \mathcal{B} is a topology \mathcal{T} on X, called the topology \mathcal{T} generated by \mathcal{B} , and \mathcal{B} is a basis for this topology.

• Remark (Basis Element in Each Neighborhood)

By definition, a subset U of X is said to be **open** in X (that is, to be an element of \mathscr{T}) if for each $x \in U$, there exists a **basis element** $B \in \mathscr{B}$ such that $x \in B \subset U$. Note that each basis element is itself an element of \mathscr{T} .

• Lemma 2.1 Let X be a set; let \mathscr{B} be a basis for a topology \mathscr{T} on X. Then \mathscr{T} equals the

collection of all unions of elements of \mathcal{B} .

- **Remark** This lemma states that every open set *U* in X can be expressed as a *union* of *basis* elements. This expression for *U* is *not*, however, *unique*.
- Lemma 2.2 (Obtaining Basis from Given Topology). [Munkres, 2000] Let X be a topological space. Suppose that $\mathscr C$ is a collection of open sets of X such that for each open set U of X and each x in U, there is an element C of $\mathscr C$ such that $x \in C \subset U$. Then C is a basis for the topology of X.
- Lemma 2.3 (Topology Comparison via Bases). [Munkres, 2000]
 Let \mathscr{B} and \mathscr{B}' be bases for the topologies \mathscr{T} and \mathscr{T}' , respectively, on X. Then the following are equivalent:
 - 1. \mathcal{T}' is finer than \mathcal{T} .
 - 2. For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B' \in \mathcal{B}'$ such that $x \in B' \subset B$.
- Remark The basis element of finer topology are always smaller than the basis element of coaser topology so the finer basis element should be included in coaser basis element.
- Example (Topology in \mathbb{R})
 If \mathscr{B} is the collection of all open intervals in the real line,

$$(a,b) = \{x : a < x < b\},\$$

the topology generated by \mathscr{B} is called <u>the standard topology</u> on the real line. Whenever we consider \mathbb{R} , we shall suppose it is given this topology unless we specifically state otherwise.

If \mathscr{B}' is the collection of all half-open intervals of the form

$$[a,b) = \{x : a < x < b\},\$$

where a < b, the topology generated by \mathscr{B}' is called <u>the lower limit topology</u> on \mathbb{R} . When \mathbb{R} is given the lower limit topology, we denote it by \mathbb{R}_{ℓ} .

Finally let K denote the set of all numbers of the form 1/n, for $n \in \mathbb{Z}_+$, and let \mathscr{B}'' be the collection of all open intervals (a,b), along with all sets of the form $(a,b) \setminus K$. The topology generated by \mathscr{B}'' will be called <u>the K-topology</u> on \mathbb{R} . When \mathbb{R} is given this topology, we denote \mathbb{R}_K

Lemma 2.4 The topologies of \mathbb{R}_{ℓ} and \mathbb{R}_{K} are strictly finer than the standard topology on \mathbb{R} , but are not comparable with one another.

- Definition (Subbasis)
 - <u>A subbasis</u> \mathscr{S} for a topology on X is a collection of subsets of X whose union equals X. The topology generated by the subbasis \mathscr{S} is defined to be the collection \mathscr{T} of all unions of finite intersections of elements of \mathscr{S} .
- Remark (Basis from Subbasis)
 For a subbasis \mathscr{S} , the collection \mathscr{B} of all finite intersections of elements of \mathscr{S} is a basis,
- Remark *Topology* of a set X defines *all local information* we know regarding a set. For each point $x \in X$, it specifies what do we mean by a "neighborhood" U of x. Thus

properties that relies on the *local characteristic* of the space likely depend on the topology of the space. Examples include *the continuity* of function, *the convergence properties* of sequence and *differential properties* of function.

2.2 The Order Topology

• Example (Order Topology)

If X is a simply ordered set, there is a standard topology for X, defined using the order relation. It is called the order topology. The order topology is generated by intervals.

• Definition (Intervals based on Simple Order Relation)

Suppose that X is a set having a simple order relation <. Given elements a and b of X such that a < b, there are four subsets of X that are called **the** intervals determined by a and b. They are the following:

$$(a,b) = \{x : a < x < b\},\$$

$$(a,b] = \{x : a < x \le b\},\$$

$$[a,b) = \{x : a \le x < b\},\$$

$$[a,b] = \{x : a \le x \le b\}.$$

A set of the *first* type is called <u>an open interval</u> in X, a set of the *last* type is called <u>a closed interval</u> in X, and sets of the second and third types are called **half-open intervals**.

- **Definition** Let X be a set with a *simple order relation*; assume X has more than one element. Let \mathscr{B} be the collection of all sets of the following types:
 - 1. All open intervals (a, b) in X.
 - 2. All intervals of the form $[a_0, b)$, where a_0 is the smallest element (if any) of X.
 - 3. All intervals of the form $(a, b_0]$, where b_0 is the largest element (if any) of X.

The collection \mathcal{B} is a basis for a topology on X, which is called **the order topology**.

• Definition (*Rays*)

If X is an ordered set, and a is an element of X, there are four subsets of X that are called **the rays** determined by a. They are the following:

$$(a, +\infty) = \{x : x > a\},\$$

 $(-\infty, a) = \{x : x < a\},\$
 $[a, +\infty) = \{x : x \ge a\},\$
 $(-\infty, a] = \{x : x \le a\}.$

Sets of the first two types are called *open rays*, and sets of the last two types are called *closed rays*.

• Remark The open rays in X are open sets in the order topology. In fact, the open rays form a <u>subbasis</u> for the order topology on X.

2.3 The Product Topology

• We now generalize to topology of arbitrary Cartestian products.

Definition (J-tuples)

Let J be an index set. Given a set X, we define a $\underline{J\text{-tuple}}$ of elements of X to be a function $x:J\to X$. If α is an element of J, we often denote $\underline{the\ value\ of\ X}\ at\ \alpha$ by X_{α} rather than $x(\alpha)$; we call it $\underline{the\ \alpha\text{-th\ coordinate}}$ of x. And we often denote the function x itself by the symbol

$$(x_{\alpha})_{\alpha \in J}$$

which is as close as we can come to a "tuple notation" for an arbitrary index set J. We denote the set of all J-tuples of elements of X by X^J .

- Remark Compare with the m-tuple $(x_n)_{n=1}^m$ and ω -tuple $(x_n)_{n\in\mathbb{Z}_+}$, the J-tuple $(x_\alpha)_{\alpha\in J}$ is not necessarily countable.
- Definition (Arbitrary Cartestian Products) Let $\{A_{\alpha}\}_{{\alpha}\in J}$ be an indexed family of sets; let $X=\bigcup_{{\alpha}\in J}A_{\alpha}$. The cartesian product of this indexed family, denoted by

$$\prod_{\alpha \in J} A_{\alpha}$$

is defined to be the set of all J-tuples $(x_{\alpha})_{{\alpha}\in J}$ of elements of X such that $x_{\alpha}\in A_{\alpha}$ for each ${\alpha}\in J$. That is, it is the set of all functions

$$x: J \to \bigcup_{\alpha \in J} A_{\alpha}$$

such that $x(\alpha) \in A_{\alpha}$ for each $\alpha \in J$.

- Remark The existence of just construction is due to the Axioms of Choice since J is an arbitrary set.
- Remark If $A_{\alpha} = X$ for all $\alpha \in J$, then we use the notation X^J to represent the cartestian product $\prod_{\alpha \in J} X$
- Definition (Box Topology) Let $\{X_{\alpha}\}_{{\alpha}\in J}$ be an indexed family of topological spaces. Let

Let $\{X_{\alpha}\}_{{\alpha}\in J}$ be an indexed family of **topological spaces**. Let us take as a **basis** for a topology on the product space

$$\prod_{\alpha \in J} X_{\alpha}$$

the collection of all sets of the form

$$\prod_{\alpha \in J} U_{\alpha}$$

where U_{α} is **open** in X_{α} , for each $\alpha \in J$. The topology generated by this basis is called **the box topology**.

 Definition ($Projection\ Mapping\ or\ Coordinate\ Projection$)

Let

$$\pi_{\beta}: \prod_{\alpha \in J} X_{\alpha} \to X_{\beta}$$

be the function assigning to each element of the product space its β -th coordinate,

$$\pi_{\beta}((x_{\alpha})_{\alpha \in J}) = x_{\beta};$$

it is called the projection mapping associated with the index β .

• Definition ($Product\ Topology$) Let \mathscr{S}_{β} denote the collection

$$\mathscr{S}_{\beta} = \left\{ \pi_{\beta}^{-1}(U_{\beta}) : U_{\beta} \text{ open in } X_{\beta} \right\},$$

and let \mathcal{S} denote the union of these collections,

$$\mathscr{S} = \bigcup_{\beta \in J} \mathscr{S}_{\beta}.$$

The topology generated by the subbasis S is called <u>the product topology</u>. In this topology $\prod_{\alpha \in J} X_{\alpha}$ is called a product space.

• Remark (Product Topology = Weak Topology by Coordinate Projections)

The product topology on $\prod_{\alpha \in J} X_{\alpha}$ is the weak topology generated by a family of projection mappings $(\pi_{\beta})_{\beta \in J}$. It is the coarest (weakest) topology such that $(\pi_{\beta})_{\beta \in J}$ are continuous.

A typical element of the basis from the product topology is the finite intersection of subbasis where the index is different:

$$\pi_{\beta_1}^{-1}(V_{\beta_1})\cap\ldots\cap\pi_{\beta_n}^{-1}(V_{\beta_n})$$

Thus a neighborhood of x in the product topology is

$$N(x) = \{(x_{\alpha})_{\alpha \in J} : x_{\beta_1} \in V_{\beta_1}, \dots, x_{\beta_n} \in V_{\beta_n}\}$$

where there is **no restriction** for $\alpha \in \{\beta_1, \ldots, \beta_n\}$.

Note that for **the box topology**, a neighborhood of x is

$$N_b(x) = \{(x_\alpha)_{\alpha \in J} : x_\alpha \in U_\alpha, \ \forall \alpha \in J\} \subset N(x)$$

Thus the box topology is finer than the product topology. Moreover, for finite product $\prod_{\alpha=1}^{n} X_{\alpha}$, the box topology and the product topology is the same.

- Proposition 2.5 (Comparison of the Box and Product Topologies). [Munkres, 2000] The box topology on $\prod_{\alpha \in J} X_{\alpha}$ has as basis all sets of the form $\prod_{\alpha \in J} U_{\alpha}$, where U_{α} is open in X_{α} for each α . The product topology on $\prod_{\alpha \in J} X_{\alpha}$ has as basis all sets of the form $\prod_{\alpha \in J} U_{\alpha}$, where U_{α} is open in X_{α} for each α and U_{α} equals X_{α} except for finitely many values of a.
- Remark Whenever we consider the product $\prod_{\alpha \in J} X_{\alpha}$, we shall **assume** it is given **the product topology** unless we specifically state otherwise.

• Proposition 2.6 (Basis for Box and Product Topology) Suppose the topology on each space X_{α} is given by a basis \mathcal{B}_{α} . The collection of all sets of the form

$$\prod_{\alpha} B_{\alpha}$$

where $B_{\alpha} \in \mathscr{B}_{\alpha}$ for each α , will serve as a basis for the box topology on $\prod_{\alpha \in I} X_{\alpha}$.

The collection of all sets of the same form, where $B_{\alpha} \in \mathscr{B}_{\alpha}$ for finitely many indices α and $B_{\alpha} = X_{\alpha}$ for all the remaining indices, will serve as a **basis** for **the product topology** $\prod_{\alpha \in J} X_{\alpha}$.

- Proposition 2.7 Let A_{α} be a subspace of X_{α} , for each $\alpha \in J$. Then $\prod_{\alpha} A_{\alpha}$ is a subspace of $\prod_{\alpha} X_{\alpha}$ if both products are given the box topology, or if both products are given the product topology.
- Proposition 2.8 If each space X_{α} is a Hausdorff space, then $\prod_{\alpha} X_{\alpha}$ is a Hausdorff space in both the box and product topologies.
- Proposition 2.9 Let (X_{α}) be an indexed family of spaces; let $A_{\alpha} \subset X_{\alpha}$ for each α . If $\prod_{\alpha} X_{\alpha}$ is given either the product or the box topology, then

$$\prod_{\alpha} \bar{A}_{\alpha} = \overline{\prod_{\alpha} A_{\alpha}}$$

• Proposition 2.10 (Maps into Aribitrary Products). [Munkres, 2000] Let $f: A \to \prod_{\alpha} X_{\alpha}$ is given by the equation

$$f(x) = (f_{\alpha}(x))_{\alpha \in J}$$

where $f_{\alpha}: A \to X_{\alpha}$ for each α . Let $\prod_{\alpha} X_{\alpha}$ be the **product topology**. Then the function f is **continuous** if and only if each function f_{α} is **continuous**.

• Remark The above proposition does not hold for the box topology. See example in [Munkres, 2000].

2.4 The Subspace Topology

• **Definition** If (X, \mathcal{T}) is a topological space and $S \subseteq X$ is an arbitrary subset, we define **the subspace topology** on S (sometimes called **the relative topology**) as

$$\mathscr{T}_S = \{ S \cap U : U \in \mathscr{T} \}$$

That is, a subset $U \subseteq S$ to be open in S if and only if there exists an open subset $V \subseteq X$ such that $U = V \cap S$. Any subset of X endowed with the subspace topology is said to be **a** subspace of X.

• Lemma 2.11 (Basis of Subspace Topology)
If \mathcal{B} is a basis for the topology of X then the collection

$$\mathscr{B}_S = \{B \cap S : B \in \mathscr{B}\}$$

is a **basis** for the subspace topology on $S \subset X$.

• Remark (*Relative Openness*)

When dealing with a space X and a subspace Y, one needs to be careful when one uses the term "open set". Does one mean an element of the topology of Y or an element of the topology of X? We make the following definition: If Y is a subspace of X, we say that a set U is open in Y (or open relative to Y) if it belongs to the topology of Y; this implies in particular that it is a subset of Y. We say that U is open in X if it belongs to the topology of X.

- Lemma 2.12 (Open Subspace)

 Let Y be a subspace of X. If U is open in Y and Y is open in X, then U is open in X.
- Proposition 2.13 (Product of Subspace = Subspace of Product) [Munkres, 2000] If A is a subspace of X and B is a subspace of Y, then the product topology on A × B is the same as the topology A × B inherits as a subspace of X × Y.
- Remark (Subspace Topology \neq Order Topology on Subspace) Now let X be an ordered set in the order topology, and let Y be a subset of X. The order relation on X, when restricted to Y, makes Y into an ordered set. However, the resulting order topology on Y need not be the same as the topology that Y inherits as a subspace of X.

Let I = [0, 1]. The dictionary order on $I \times I$ is just the restriction to $I \times I$ of the dictionary order on the plane $\mathbb{R} \times \mathbb{R}$. However, the dictionary order topology on $I \times I$ is not the same as the subspace topology on $I \times I$ obtained from the dictionary order topology on $\mathbb{R} \times \mathbb{R}$.

The set $I \times I$ in the dictionary order topology will be called <u>the ordered square</u>, and denoted by I_{\circ}^{2} .

- **Definition** Given an ordered set X, let us say that a subset Y of X is \underline{convex} in X if for each pair of points a < b of Y, the entire interval (a, b) of points of X lies in Y. Note that intervals and rays in X are convex in X.
- Proposition 2.14 (Convex Subspace Preserve Order Topology)[Munkres, 2000] Let X be an ordered set in the order topology; let Y be a subset of X that is convex in X. Then the order topology on Y is the same as the topology Y inherits as a subspace of X.

2.5 Closure of Set and Limit Point

- **Definition** A subset A of a topological space X is said to be **closed** if the set $X \setminus A$ is open.
- Proposition 2.15 Let X be a topological space. Then the following conditions hold:
 - 1. \emptyset and X are closed.
 - 2. Arbitrary intersections of closed sets are closed.
 - 3. Finite unions of closed sets are closed.
- Remark When dealing with *subspaces*, one needs to be careful in using the term "*closed set*." If Y is a subspace of X, we say that a set A is *closed in* Y if A is a subset of Y and if A is *closed* in the *subspace topology* of Y (that is, if Y \ A is *open* in Y).

Proposition 2.16 (Closed Set in Subspace Topology)

Let Y be a subspace of X. Then a set A is closed in Y if and only if it equals the intersection of a closed set of X with Y.

• Remark A set A that is *closed in* the subspace Y may or may *not be closed in* the larger space X.

Proposition 2.17 Let Y be a subspace of X. If A is closed in Y and Y is closed in X, then A is closed in X.

• **Definition** Given a subset A of a topological space X, the interior of A is defined as the union of all open sets contained in A, and the closure of A is defined as the intersection of all closed sets containing A.

The interior of A is denoted by Int A or by \mathring{A} and the closure of A is denoted by CI A or by \overline{A} . Obviously \mathring{A} is an open set and \overline{A} is a closed set; furthermore,

$$\mathring{A} \subset A \subset \bar{A}$$
.

If A is **open**, $A = \mathring{A}$; while if A is **closed**, $A = \overline{A}$.

- Proposition 2.18 (Closure in Subspace Topology)
 Let Y be a subspace of X; let A be a subset of Y; let \(\bar{A}\) denote the closure of A in X. Then the closure of A in Y equals \(\bar{A}\)∩ Y.
- Proposition 2.19 (Characterization of Closure in terms of Basis) [Munkres, 2000] Let A be a subset of the topological space X.
 - 1. Then $x \in \bar{A}$ if and only if every open set U containing x intersects A.
 - 2. Supposing the topology of X is given by a **basis**, then $x \in \bar{A}$ if and only if every basis element B **containing** x **intersects** A.
- Remark We can say "U is a neighborhood of x" if "U is an open set containing x".
- Definition (*Limit Point*)

If A is a subset of the topological space X and if x is a point of X, we say that x is a $\underbrace{limit\ point}$ (or "cluster point," or "point of accumulation") of A if every neighborhood of x intersects A in some point other than x itself.

Said differently, x is **a** limit point of A if it belongs to the closure of $A \setminus \{x\}$. The point x may lie in A or not; for this definition it does not matter.

• Theorem 2.20 (Decomposition of Closure)

Let A be a subset of the topological space X; let A' be the set of all limit points of A. Then

$$\bar{A} = A \cup A'$$
.

- Corollary 2.21 A subset of a topological space is **closed** if and only if it contains all its limit points.
- **Definition** A topological space is called **Hausdorff** (or T_2) if and only if for all all x and $y, x \neq y$, there are **open sets** U, V such that $x \in U, y \in V$, and $U \cap V = \emptyset$.
- Proposition 2.22 Every finite point set in a Hausdorff space X is closed.

- Proposition 2.23 (<u>Limit Point in T₁ Axiom</u>). [Munkres, 2000] Let X be a space satisfying the T₁ axiom; let A be a subset of X. Then the point x is a limit point of A if and only if every neighborhood of x contains infinitely many points of A.
- Proposition 2.24 (*Limit Point is Unique in Hausdorff Space*). [Munkres, 2000] If X is a Hausdorff space, then a sequence of points of X converges to at most one point of X.

2.6 Continuous Function

2.6.1 Definitions

- **Definition** A map $F: X \to Y$ is said to be <u>continuous</u> if for every open subset $U \subseteq Y$, the **preimage** $F^{-1}(U)$ is **open** in X.
- Remark Continuity of a function depends not only upon the function f itself, but also on the topologies specified for its domain and range. If we wish to emphasize this fact, we can say that f is continuous relative to specific topologies on X and Y.
- Remark (*Prove Continuity via Basis*)
 If the topology of *the range space* Y is given by a *basis* \mathcal{B} , then to prove *continuity of* f it suffices to show that *the inverse image of every basis element is open*: The arbitrary open set V of Y can be written as a union of basis elements

$$V = \bigcup_{\alpha \in J} B_{\alpha}$$
$$\Rightarrow f^{-1}(V) = \bigcup_{\alpha \in J} f^{-1}(B_{\alpha})$$

• Remark (Prove Continuity via Subbasis)

functions $f \in \mathscr{F}$ are continuous.

If the topology on Y is given by **a** subbasis \mathscr{S} , to prove continuity of f it will even suffice to show that **the** inverse image of each subbasis element is **open**: The arbitrary basis element B for Y can be written as **a** finite intersection $S_1 \cap \ldots \cap S_n$ of subbasis elements; it follows from the equation

$$f^{-1}(B) = f^{-1}(S_1) \cap \ldots \cap f^{-1}(S_n)$$

that the inverse image of every basis element is open.

• Example $(\mathscr{F}\text{-}Weak\ Topology\ using\ Continuity\ Only)$ One can define a topology just based on the notion of continuity from a family of functions. Let \mathscr{F} be a family of functions from a set S to a topological space (X,\mathscr{T}) . The $\mathscr{F}\text{-}weak\ (or\ simply\ weak)\ topology\ on\ S$ is the coarest topology for which all the

The \mathscr{F} -weak topology \mathscr{T} is generated by subbasis \mathscr{S} of the preimage sets $S = f^{-1}(U)$ where $f \in \mathscr{F}$ and $U \in \mathscr{T}$. And the basis of \mathscr{T} is the collection of all finite intersections of preimages $f^{-1}(U)$ for $f \in \mathscr{F}$ and $U \in \mathscr{T}$.

• Proposition 2.25 (Equivalent Definition of Continuity) [Munkres, 2000] Let X and Y be topological spaces; let $f: X \to Y$. Then the following are equivalent:

- 1. f is continuous.
- 2. For every subset A of X, one has $f(\bar{A}) \subseteq \overline{f(A)}$.
- 3. For every closed set B of Y, the set $f^{-1}(B)$ is closed in X.
- 4. For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of X such that $f(U) \subseteq V$.

If the condition in (4) holds for the point x of X, we say that f is continuous at the point x.

2.6.2 Homemorphism

• Definition (Homemorphism) A $continuous\ bijective\ map\ f: X \to Y\ with\ continuous\ inverse$

$$f^{-1}: Y \to X$$

is called a <u>homeomorphism</u>. If there exists a homeomorphism from X to Y, we say that X and Y are <u>homeomorphic</u>.

• Remark (Homemorphism is Topological Equivalence (Isomorphism)) A homeomorphism $f: X \to Y$ gives us a bijective correspondence not only between X and Y but between the collections of open sets of X and of Y. As a result, any property of X

that is entirely expressed in terms of the topology of X (that is, in terms of the open sets of X) yields, via the correspondence f, the corresponding property for the space Y.

Such a property of X is called a <u>topological property</u> of X. A homemorphism is an **isomorphism** between topological space, i.e. it <u>preserves</u> the topological structure during the transformation.

 $\bullet \ \ \mathbf{Definition} \ \ (\textbf{\textit{Topological Embedding}}) \\$

If X and Y are topological spaces, a **continuous injective** map $f: X \to Y$ is called a **topological embedding** if it is a **homeomorphism** onto its image $f(X) \subseteq Y$ in the subspace topology (i.e. $f^{-1}|_{f(X)}: f(X) \to X$ is continuous in Y).

• Remark (Smooth Embedding)

If X and Y are smooth manifoolds, a smooth embedding $f: X \to Y$ when it is a topological embedding, and it is smooth map with injective differential df_x for all $x \in X$ (called a smooth immersion).

2.6.3 Constructing Continuous Functions

- Proposition 2.26 (Rules for Constructing Continuous Functions). [Munkres, 2000] Let X, Y, and Z be topological spaces.
 - 1. (Constant Function) If $f: X \to Y$ maps all of X into the single point y_0 of Y, then f is continuous.
 - 2. (Inclusion) If A is a subspace of X, the inclusion function $\iota: A \stackrel{X}{\hookrightarrow} is$ continuous.

- 3. (Composites) If $f: X \to Y$ and $g: Y \to Z$ are continuous, then the map $g \circ f: X \to Z$ is continuous
- 4. (Restricting the Domain) If $f: X \to Y$ is continuous, and if A is a subspace of X, then the restricted function $f|_A: A \to Y$ is continuous.
- 5. (Restricting or Expanding the Range) Let $f: X \to Y$ be continuous. If Z is a subspace of Y containing the image set f(X), then the function $g: X \to Z$ obtained by restricting the range of f is continuous. If Z is a space having Y as a subspace, then the function $h: X \to Z$ obtained by expanding the range of f is continuous.
- 6. (Local Formulation of Continuity) The map $f: X \to Y$ is continuous if X can be written as the union of open sets U_{α} such that $f|_{U_{\alpha}}$ is continuous for each α .
- Theorem 2.27 (The Pasting Lemma / Gluing Lemma). [Munkres, 2000]
 Let X = A ∪ B, where A and B are closed in X. Let f : A → Y and g : B → Y be continuous. If f(x) = g(x) for every x ∈ A ∩ B, then f and g combine to give a continuous function h : X → Y, defined by setting h|_A = f, and h|_B = g.
- Remark The set A and B can be open sets, and the gluing lemma comes "Local Formulation of Continuity".
- **Remark** Notice the condition for the gluing lemma:
 - 1. The domain X is a union of two **closed sets** (or open sets) A and B
 - 2. The two functions f and g are **continuous** each of closed domain sets, respectively
 - 3. f and g agree on the intersection of two sets $A \cap B$.
- Theorem 2.28 (Maps into Products). [Munkres, 2000] Let $f: A \to X \times Y$ be given by the equation

$$f(a) = (f_1(a), f_2(a)).$$

Then f is continuous if and only if the functions

$$f_1: A \to X$$
 and $f_2: A \to Y$

are continuous. The maps f_1 and f_2 are called the coordinate functions of f.

Remark There is no useful criterion for the continuity of a map f: A × B → X whose
domain is a product space. One might conjecture that f is continuous if it is continuous
"in each variable separately," but this conjecture is not true.

2.7 Metric Topology

2.7.1 Metric Topology and Metrizability

- Definition (Metric Space)
 A metric space is a set M and a real-valued function $d(\cdot, \cdot): M \times M \to \mathbb{R}$ which satisfies:
 - 1. (Non-Negativity) $d(x,y) \geq 0$

- 2. (**Definiteness**) d(x,y) = 0 if and only if x = y
- 3. (**Symmetric**) d(x,y) = d(y,x)
- 4. (Triangle Inequality) $d(x, z) \le d(x, y) + d(y, z)$

The function d is called a <u>metric</u> on M. The metric space M equipped with metric d is denoted as (M, d).

• Definition $(\epsilon - Ball)$

Given a metric d on X, the number d(x,y) is often called the **distance** between x and y in the metric d. Given $\epsilon > 0$, consider the set

$$B_d(x,\epsilon) = \{y : d(x,y) < \epsilon\}$$

of all points y whose distance from x is less than ϵ . It is called <u>the ϵ -ball centered at x</u>. Sometimes we omit the metric d from the notation and write this ball simply as $B(x, \epsilon)$, when no confusion will arise.

• Definition (Metric Topology)

If d is a metric on the set X, then the collection of all ϵ -balls $B_d(x, \epsilon)$, for $x \in X$ and $\epsilon > 0$, is a **basis** for a topology on X, called **the metric topology** induced by d.

• Remark (The Triangle Inequality is Necessary for Basis)

The triangle inequality condition is a necessary condition for the ϵ -balls to form a basis. It guarantees that for any $y \in B(x, \epsilon)$, there exists a neighborhood of y, $B(y, \delta)$ such that $B(y, \delta) \subset B(x, \epsilon)$.

Definition (Open Set in Metric Topology)

A set U is **open** in the metric topology induced by d if and only if for each $y \in U$, there is a $\delta > 0$ such that $B_d(y, \delta) \subset U$.

• Remark (Metric Topology is Quantitative)

A metric provides a measurement on the closeness between two points. The metric topology generated by open balls thus provides a quantitative description of the neighborhood and it answers the question "how close the neighborhood of x is?" On the other hand, the general topology answer this question using qualitative description via comparison with other neighborhoods via the inclusion operation \subset . Note that inclusion \subset is partially ordered, while the metric maps onto the real line where < is simply ordered.

The study of topology is to acknowledge that in many areas of research, there might not exist a properly defined metric in the set of interest. On the other hand, the study of analysis mainly focus on the space equipped with metric topology.

• Definition (*Metrizability*)

If X is a topological space, X is said to be $\underline{metrizable}$ if there exists a metric d on the set X that induces the topology of X. $\underline{A\ metric\ space}$ is a metrizable space X together with a specific metric d that gives the topology of X.

• Remark (Metrizability as Inverse Problem)

Given a metric d on X, we can generate a metric topology using ϵ -balls as basis. Conversely, given a topology \mathscr{T} on X, is \mathscr{T} a metric topology for some unknown metric d?

This is the question that *the metrization theory* is trying to answer.

• Remark (Metrizability is Valuable)

Many of the spaces important for mathematics are metrizable, but some are not. *Metrizability* is always a highly desirable attribute for a space to possess, for the existence of a *metric* gives one a valuable tool for proving theorems about the space.

• **Definition** Let X be a metric space with metric d. A subset A of X is said to be **bounded** if there is some number M such that

$$d(a_1, a_2) \le M$$

for every pair a_1, a_2 of points of A. If A is bounded and nonempty, the **diameter** of A is defined to be the number

diam
$$A = \sup \{d(a_1, a_2) : \forall a_1, a_2 \in A\}$$
.

• **Remark** The boundedness property depends on specific metric topology, thus it is not a topological property.

For instance, the following metric guarantee that every open set is bounded.

Definition (Standard Bounded Metric)

Let X be a metric space with metric d. Define $\bar{d}: X \times X \to \mathbb{R}$ by the equation

$$\bar{d}(x,y) = \min\{d(x,y), 1\}.$$

Then \bar{d} is a metric that induces the same topology as d.

The metric \bar{d} is called the standard bounded metric corresponding to d.

• Definition (*Euclidean Metric and Square Metric*) Given $x = (x_1, ..., x_n)$ in \mathbb{R}^n , we define the **norm** of x by the equation

$$||x||_2 = (x_1^2 + \ldots + x_n^2)^{1/2};$$

and we define the euclidean metric d on \mathbb{R}^n by the equation

$$d(x,y) = ||x-y||_2 = ((x_1-y_1)^2 + \ldots + (x_n-y_n)^2)^{1/2}.$$

We define the square metric ρ by the equation

$$\rho(x,y) = \max\{|x_1 - y_1|, \dots, |x_n - y_n|\}.$$

• Lemma 2.29 Let d and d' be two metrics on the set X; let \mathscr{T} and \mathscr{T}' be the topologies they induce, respectively. Then \mathscr{T}' is **finer** than \mathscr{T} if and only if for each x in X and each $\epsilon > 0$, there exists a $\delta > 0$ such that

$$B_{d'}(x,\delta) \subseteq B_d(x,\epsilon).$$

• Proposition 2.30 (Product Topology = Euclidean Metric Topology in \mathbb{R}^n)

The topologies on \mathbb{R}^n induced by the euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^n .

- Remark (<u>Finite Dimensional</u> Vector Space has Only One Meaningful Topology)
 In finite dimensional vector space, all norms are equivalent, and all norm-induced metric topologies are the same. For infinite dimensional space, these topologies are different.
- Definition (Uniform Metric on Infinite Dimensional Space) Given an index set J, and given points $x = (x_{\alpha})_{\alpha \in J}$ and $y = (y_{\alpha})_{\alpha \in J}$ of \mathbb{R}^{J} , let us define a metric $\bar{\rho}$ on \mathbb{R}^{J} by the equation

$$\bar{\rho}(x,y) = \sup \left\{ \bar{d}(x_{\alpha}, y_{\alpha}) : \alpha \in J \right\},$$

where \bar{d} is the standard bounded metric on \mathbb{R} , It is easy to check that \bar{p} is indeed a metric; it is called the uniform metric on \mathbb{R}^J , and the topology it induces is called the uniform topology.

• Proposition 2.31 The uniform topology on \mathbb{R}^J is finer than the product topology and coarser than the box topology; these three topologies are all different if J is infinite.

$$\mathscr{T}_{product} \subset \mathscr{T}_{uniform} \subset \mathscr{T}_{box}$$

 $\bullet \ \ \textbf{Theorem 2.32} \ (\textit{Countable Product Space with Product Topology is Metrizable}). \\ [\textit{Munkres}, 2000]$

Let $\bar{d}(a,b) = \min\{|a-b|,1\}$ be the **standard bounded metric** on \mathbb{R} . If x and y are two points of W", define

$$D(x,y) = \sup \left\{ \frac{\bar{d}(x_i, y_i)}{i} \right\}$$

Then D is a metric that induces the product topology on \mathbb{R}^{ω} .

2.7.2 Constructing Continuous Functions on Metric Space

- The followings are some important facts about the metric topology:
 - 1. Proposition 2.33 Every metric space (X, d) is Hausdorff.
 - 2. **Proposition 2.34** Every **subspace** of metric space (X, d) is a metric space. That is, if A is a subspace of the topological space X and d is a metric for X, then the restriction of d on $A \times A$ is a metric for the topology of A.
- Theorem 2.35 (ϵ - δ Definition of Continuous Function in Metric Space). [Munkres, 2000]

Let $f: X \to Y$; let X and Y be **metrizable** with metrics d_x and d_y , respectively. Then **continuity** of f is **equivalent** to the requirement that given $x \in X$ and given $\epsilon > 0$, there exists $\delta > 0$ such that

$$d_x(x,y) < \delta \Rightarrow d_y(f(x),f(y)) < \epsilon.$$

- Remark To use ϵ - δ definition, both domain and codomain need to be metrizable.
- Lemma 2.36 (The Sequence Lemma). [Munkres, 2000]
 Let X be a topologicaJ space; let A ⊆ X. If there is a sequence of points of A converging to x, then x ∈ Ā; the converse holds if X is metrizable.

- Proposition 2.37 Let $f: X \to Y$. If the function f is **continuous**, then for every **convergent** sequence $x_n \to x$ in X, the sequence $f(x_n)$ **converges** to f(x). The **converse** holds if X is **metrizable**.
- Remark To show the converse part, i.e. "if $x_n \to x \Rightarrow f(x_n) \to f(x)$ then f is continuous", we just need the space X to be **first countable**. That is, at each point x, there is **a countable** collection $(U_n)_{n\in\mathbb{Z}_+}$ of **neighborhoods** of x such that any neighborhood U of x contains at least one of the sets U_n .
- Proposition 2.38 (Arithmetic Operations of Continuous Functions).
 If X is a topological space, and if f, g: X → Y are continuous functions, then f + g, f g, and f · g are continuous. If g(x) ≠ 0 for all x, then f/g is continuous.
- ullet Definition (Uniform Convergence)

Let $f_n: X \to Y$ be a sequence of functions from the **set** X to **the metric space** Y. Let d be the metric for Y. We say that the sequence (f_n) **converges uniformly** to the function $f: X \to Y$ if given $\epsilon > 0$, there exists an integer N such that

$$d(f_n(x), f(x)) < \epsilon$$

for all n > N and **all** x **in** X.

- Theorem 2.39 (Uniform Limit Theorem). [Munkres, 2000]
 Let f_n: X → Y be a sequence of continuous functions from the topological space X to the metric space Y. If (f_n) converges uniformly to f, then f is continuous.
- Remark (Uniform Convergence = Convergence of Functions in Uniform Metric) A sequence of functions $f_n: X \to \mathbb{R}$ converges uniformly to $f: X \to \mathbb{R}$ if and only if the sequence (f_n) converges to f when they are considered as elements of the metric space $(\mathbb{R}^X, \bar{\rho})$, where \mathbb{R}^X is the space of all real-valued functions on X and $\bar{\rho}$ is the unform metric defined before.
- Example The space of all countable infinite sequences \mathbb{R}^{ω} in the **box topology** is **not metrizable**. (on the other hand, it is metrizable in product topology).
- Example The countable product space \mathbb{R}^{ω} in the box topology is not metrizable. (on the other hand, it is metrizable in product topology).
- Example An uncountable product of \mathbb{R} with itself is not metrizable.

2.8 The Quotient Topology

2.8.1 Definitions and Properties

- Remark (*Quotient Topology as "Cut-and-Paste"*)

 One motivation of *quotient topology* comes from geometry, where one often has occasion to use "*cut-and-paste*" techniques to construct such geometric objects as surfaces.:
 - 1. The *torus* (surface of a doughnut), for example, can be constructed by taking a *rect-angle* and "pasting" its edges together appropriately
 - 2. The *sphere* (surface of a ball) can be constructed by taking a *disc* and *collapsing* its entire boundary to a single point;

• Definition (Quotient Map)

Let X and Y be topological spaces; let $\pi: X \to Y$ be a *surjective map*. The map π is said to be <u>a quotient map</u> provided a subset U of Y is *open* in Y <u>if and only if</u> $\pi^{-1}(U)$ is *open* in X.

• Remark ($Quotient\ Map = Strong\ Continuity$)

The condition of quotient map is **stronger** than continuity (it is called **strong continuity** in some literature).

continuity: U is open in $Y \Rightarrow \pi^{-1}(U)$ is open in X open map: $\pi(V)$ is open in $Y \Leftarrow V$ is open in X

quotient map: U is open in $Y \Leftrightarrow \pi^{-1}(U)$ is open in X

An equivalent condition is to require that a subset A of K be **closed** in Y if and only if $\pi^{-1}(A)$ is **closed** in X. Equivalence of the two conditions follows from equation

$$\pi^{-1}(Y \setminus B) = X \setminus \pi^{-1}(B).$$

• Definition (Saturated Set and Fiber)

If $\pi: X \to Y$ is a *surjective map*, a subset $U \subseteq X$ is said to be <u>saturated</u> with respect to π if U contains every set $\pi^{-1}(\{y\})$ that it *intersects*. Thus U is *saturated* if it equals to the *entire preimage* of its *image*: $U = \pi^{-1}(\pi(U))$.

Given $y \in Y$, the **fiber** of π over y is the set $\pi^{-1}(\{y\})$.

• Definition (Quotient Map via Saturated Set)

A surjective map $\pi: X \to Y$ is a **quotient map** if π is **continuous** and π maps **saturated open sets** of X to **open sets** of Y (or saturated closed sets of X to closed sets of Y).

• Definition (Open Map and Closed Map)

A map $f: X \to Y$ (continuous or not) is said to be an <u>open map</u> if for every open subset $U \subseteq X$, the image set f(U) is open in Y, and a <u>closed map</u> if for every closed subset $K \subseteq X$, the image f(K) is closed in Y.

• Proposition 2.40 If $\pi: X \to Y$ is a surjective continuous map that is either open or closed, then π is a quotient map.

Remark There are *quotient maps* that are *neither open* nor *closed*. See Exercise in [Munkres, 2000].

• Example (Coordinate Projection as Quotient Map)

Let $\pi_1 : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be **projection onto the first coordinate**; then π_1 is continuous and surjective. Furthermore, π_1 is an <u>open map</u>. For if $U \times V$ is a nonempty basis element for $\mathbb{R} \times \mathbb{R}$, then $\pi_1(U \times V) = U$ is open in \mathbb{R} ; it follows that π_1 carries open sets of $\mathbb{R} \times \mathbb{R}$ to open sets of \mathbb{R} . That is, π_1 is a **quotient map**.

However, π_1 is **not** a **closed map**. The subset

$$C = \{(x, y) : x \cdot y = 1\}$$

of $\mathbb{R} \times \mathbb{R}$ is *closed*, but $\pi_1(C) = \mathbb{R} \setminus \{0\}$, which is *not closed* in \mathbb{R} .

• Definition (Quotient Topology)

If X is a space and A is a set and if $\pi: X \to A$ is a **surjective** map, then there exists **exactly one topology** \mathscr{T} on A relative to which π is a quotient map; it is called **the quotient topology** induced by π .

• Definition (Quotient Space)

Suppose X is a topological space and \sim is an equivalence relation on X. Let X/\sim denote the set of equivalence classes in X, and let $\pi: X \to X/\sim$ be the natural projection sending each point to its equivalence class. Endowed with the quotient topology determined by π , the space X/\sim is called the quotient space (or identification space) of X determined by π .

Definition [Munkres, 2000]

Let X be a topological space, and let X^* be a **partition** of X into disjoint subsets whose union is X. Let $\pi: X \to X^*$ be the **surjective** map that carries each point of X to the element of X^* containing it. In **the quotient topology** induced by π , the space X^* is called a **quotient space** of X.

• Remark (Understanding Topology of Quotient Space)

We can describe the topology of X/\sim in another way. A subset U of X/\sim is a collection of equivalence classes, and the set $\pi^{-1}(U)$ is just the union of the equivalence classes belonging to U.

Thus the typical <u>open set</u> of X/\sim is a collection of equivalence classes whose <u>union</u> is an open set of X.

$$V$$
 open in $X/\sim \quad \Leftrightarrow \quad U:=\pi^{-1}(V)=\bigcup_{[y]\in V}[y]$ open in X

• Remark (Geometrical Understanding of Quotient Space)

A set of points in X in the same equivalence class [y] is considered as one point in quotient space X/\sim . Geometrically, it is seen as collapsing a set of points into one if this set of points are in a connected neighborhood, or, it is seen as cut-and paste a set of points in boundary with another set of points in boundary.

In general, if a property is considered as irrelevant for the problem of concern, we can *identify* a set of instances that share this property as one instance, which forms the quotient space.

- Proposition 2.41 (Restricting Quotient Map to Subspace). [Munkres, 2000]
 Let π: X → Y be a quotient map; let A be a subspace of X that is saturated with respect to π; let q: A → π(A) be the map obtained by restricting π.
 - 1. If A is either open or closed in X, then q is a quotient map.
 - 2. If π is either an open map or a closed map, then q is a quotient map.
- Remark (Composite of Quotient Maps is Quotient Map).

Composites of maps behave nicely; it is easy to check that the *composite of two quotient maps* is a quotient map; this fact follows from the equation

$$p^{-1}(q^{-1}(U)) = (q \circ p)^{-1}(U).$$

• Remark (Product of Quotient Maps Need Not to be Quotient Map).

On the other hand, products of maps do not behave well; the cartesian product of two quotient maps need not be a quotient map.

One needs further conditions on either the maps or the spaces in order for this statement to be true.

- 1. One such, a condition on the spaces, is called *local compactness*; we shall study it later.
- 2. Another, a condition on the *maps*, is the condition that **both** the maps p and q be **open** maps. In that case, it is easy to see that $p \times q$ is also **an open map**, so it is a quotient map.
- Remark (Quotient Space of Haudorff Space Need Not to be Hausdorff)

 The Hausdorff condition does not behave well; even if X is Hausdorff, there is no reason that the quotient space X/\sim needs to be Hausdorff. There is a simple condition for X/\sim to satisfy the T_1 axiom; one simply requires that each element of the partition X/\sim be a closed subset of X. Conditions that will ensure X/\sim is Hausdorff are harder to find.

2.8.2 Constructing Continuous Function on Quotient Space

- We want to know if $f:(X/\sim)\to Z$ is continuous function.
- Theorem 2.42 (Passing Continuity to the Quotient). [Munkres, 2000] Let $\pi: X \to Y$ be a quotient map. Let Z be a space and let $g: X \to Z$ be a map that is constant on each fiber $\pi^{-1}(\{y\})$, for $y \in Y$. Then g induces a map $f: Y \to Z$ such that $f \circ \pi = g$. The induced map f is continuous if and only if g is continuous: f is a quotient map if and only if g is a quotient map.

$$\begin{array}{c} X \\ \pi \downarrow \qquad g \\ Y \xrightarrow{---} Z. \end{array}$$

• Corollary 2.43 Let $g: X \to Z$ be a surjective continuous map. Let X/\sim be the following collection of subsets of X:

$$X/\sim := \{g^{-1}(\{z\}) : z \in Z\},\$$

Given X/\sim the quotient topology,

1. The map g induces a bijective continuous map $f:(X/\sim)\to Z$, which is a homeomorphism if and only if g is a quotient map.

28

2. If Z is **Hausdorff**, so is X/\sim .

2.9 Topological Groups

• Definition (Topological Group)

A <u>topological group</u> G is a group that is also a topological space satisfying the T_1 axiom, such that the multiplication map $m: G \times G \to G$ and inversion map $i: G \to G$, given by

$$m(x, y) = xy, \quad i(x) = x^{-1}.$$

are both **continuous maps**. Here, $G \times G$ is viewed as a topological space by using the product topology.

ullet Example (Common Topological Groups)

The following are topological groups:

- 1. $(\mathbb{Z}, +)$
- $2. (\mathbb{R}, +)$
- 3. (\mathbb{R}_+,\cdot)
- 4. (\mathbb{S}^1,\cdot) , where we take \mathbb{S}^1 to be the space of all complex numbers z for which |z|=1
- \bullet Example (Lie Groups)

Definition ($Lie\ Group$) [Lee, 2003.]

A <u>Lie group</u> is a **smooth manifold** \mathcal{G} (without boundary) that is also a **group** in the algebraic sense, with the property that the multiplication map $m: G \times G \to G$ and inversion map $i: G \to G$, given by

$$m(g,h) = gh, \quad i(g) = g^{-1}.$$

are both *smooth*.

A Lie group is a topological group. The followings are all Lie groups:

1. <u>The general linear group</u> $GL(n,\mathbb{R})$ is the set of *invertible* $n \times n$ matrices with real entries.

$$GL(n, \mathbb{R}) \equiv \left\{ \mathbf{A} \in \mathbb{R}^{n \times n} : \det \left(\mathbf{A} \right) \neq 0 \right\}.$$

It is a group under **matrix multiplication**, and it is an open submanifold of the vector space $M(n, \mathbb{R}) \simeq \mathbb{R}^{n \times n}$. Multiplication is smooth because the matrix entries of a product matrix AB are polynomials in the entries of A and B. Inversion is smooth by Cramer's rule.

- 2. Let $GL_+(n,\mathbb{R})$ denote the subset of $GL(n,\mathbb{R})$ consisting of matrices with **positive determinant**. Because $\det(AB) = \det(A)\det(B)$ and $\det(A^{-1}) = (\det(A))^{-1}$, it is a subgroup of $GL(n,\mathbb{R})$; and because it is the *preimage* of $(0,+\infty)$ under the continuous determinant function, it is an open subset of $GL(n,\mathbb{R})$ and therefore an n^2 -dimensional manifold. The group operations are the restrictions of those of $GL(n,\mathbb{R})$, so they are smooth. Thus $GL_+(n,\mathbb{R})$ is a Lie group.
- 3. The <u>special linear group</u> $SL(n,\mathbb{R})$ is the subgroup of $GL(n,\mathbb{R})$ consisting of matrices with a <u>determinant of 1</u>.

$$SL(n, \mathbb{R}) \equiv \left\{ \mathbf{A} \in \mathbb{R}^{n \times n} : \det \left(\mathbf{A} \right) = 1 \right\}.$$

It is a *Lie group* with dimension dim $SL(n, \mathbb{R}) = n^2 - 1$.

4. The <u>orthogonal group</u> of dimension n, denoted $\mathcal{O}(n)$, is the group of **distance**preserving transformations of a Euclidean space of dimension n that preserve a fixed point, where the group operation is given by composing transformations. Also, $(\mathcal{O}(n),\cdot)$ is the group of $n \times n$ orthogonal matrices, where the group operation (\cdot) is given by matrix multiplication, and an orthogonal matrix is a real matrix whose inverse equals its transpose. The orthogonal group is a Lie group with dimension n(n-1)/2.

$$\mathcal{O}(n) \equiv \left\{ \boldsymbol{Q} \in GL(n, \mathbb{R}) : \boldsymbol{Q}^T \boldsymbol{Q} = \boldsymbol{Q} \boldsymbol{Q}^T = \boldsymbol{I}_n \right\}.$$

5. The <u>special orthogonal group</u> SO(n) is the group of the orthogonal matrices of determinant 1. This group is also called the rotation group

$$\mathcal{SO}(n) \equiv \{ \mathbf{Q} \in \mathcal{O}(n) : \det(\mathbf{Q}) = 1 \}.$$

It is an open subgroup of $\mathcal{O}(n)$, which is a *Lie group* of dimension dim $\mathcal{SO}(n) = \dim \mathcal{O}(n) = n(n-1)/2$.

- 6. The complex general linear group $GL(n,\mathbb{C})$ is the group of invertible complex $n \times n$ matrices under matrix multiplication. It is an open submanifold of $M(n,\mathbb{C})$ and thus a $2n^2$ -dimensional smooth manifold, and it is a Lie group because matrix products and inverses are smooth functions of the real and imaginary parts of the matrix entries.
- 7. If V is any real or complex vector space, GL(V) denotes the set of invertible linear maps from V to itself. It is a group under composition. If V has finite dimension n, any basis for V determines an isomorphism of GL(V) with $GL(n,\mathbb{R})$ or $GL(n,\mathbb{C})$, so GL(V) is a Lie group.
- 8. $(\mathbb{Z}, +)$
- 9. $(\mathbb{R}, +)$
- 10. The set \mathbb{R}^* of nonzero real numbers is a 1-dimensional Lie group under multiplication. (In fact, it is exactly $GL(1,\mathbb{R})$ if we identify a 1×1 matrix with the corresponding real number.) The subset \mathbb{R}_+ of **positive real numbers** is an open subgroup, and is thus itself a 1-dimensional Lie group.
- 11. The set \mathbb{C}^* of **nonzero complex numbers** is a 2-dimensional Lie group under complex multiplication, which can be identified with $GL(1,\mathbb{C})$.
- 12. The *circle* $\mathbb{S}^1 \subset \mathbb{C}^*$ is a smooth manifold and a group under complex multiplication. With appropriate *angle functions* as *local coordinates* on open subsets of \mathbb{S}^1 , *multiplication and inversion* have the *smooth coordinate expressions* $(\theta_1, \theta_2) \mapsto \theta_1 + \theta_2$ and $\theta \mapsto -theta$, and therefore \mathbb{S}^1 is a Lie group, called *the circle group*.
- 13. The <u>n-torus</u> $\mathbb{T}^n = \mathbb{S}^1 \times ... \times \mathbb{S}^1$ is an n-dimensional abelian Lie group.
- Example (Discrete Group)

Any group with the discrete topology is a topological group, called a <u>discrete group</u>. If in addition the group is finite or countably infinite, then it is a zero-dimensional Lie group, called a <u>discrete Lie group</u>.

• Definition (Homogeneous Space)

A topological space G is a <u>homogeneous space</u> if for every pair $x, y \in G$, there exists a homemorphism $f: G \to G$ such that f(x) = y.

• Proposition 2.44 (Topological Groups Are Homogeneous)

Every topological group is a homogeneous space; in particular, define map $h_{\alpha}: G \to G$ as $h_{\alpha}(x) = \alpha \cdot x$ and $g_{\alpha}: G \to G$ as $g_{\alpha}(x) = x \cdot \alpha$, for $\alpha \in G$. Then h_{α} , g_{α} are homomorphisms.

• Proposition 2.45 (Subgroup of Topological Group)

Let H be a **subspace** of topological group G. If H is also a **subgroup** of G, then both H and its closure \bar{H} are **topological groups**.

• Definition (Left Coset and Right Coset)

For $H \subset G$ as the *subgroup* of G, define the <u>left coset</u> as $xH = \{x \cdot h : h \in H\}$. Similarly, define **the right coset** as $Hx = \{h \cdot x : h \in \overline{H}\}$

• Definition (Quotient Group)

The collection of left cosets defines a <u>quotient group</u> $G/H = \{xH \mid x \in G\}$ with the group operation $xH \cdot yH = (x \cdot y)H$.

- Proposition 2.46 Let G be a topological group.
 - 1. If $\alpha \in G$, the map $f_{\alpha} : x \mapsto \alpha \cdot x$ induces a homeomorphism of G/H carrying xH to $(\alpha \cdot x)H$. Thus G/H is a **homogeneous space**.
 - 2. If H is a closed set in the topology of G, then one-point sets are closed in G/H.
 - 3. The quotient map $\pi: G \to G/H$ is open.
 - 4. If H is **closed** in the topology of G and is a **normal subgroup** of G, then the (left) quotient group G/H under quotient topology is a **topological group**.
 - 5. If H is compact subgroup of G and $\pi: G \to G/H$ is closed, then G/H is compact.
- Example $(GL(n,\mathbb{R})/SL(n,\mathbb{R}) \simeq \mathbb{R}^* = \mathbb{R} \setminus \{0\}).$

Given the generalized linear group $GL(n,\mathbb{R})$, the special linear group $SL(n,\mathbb{R})$ is a subgroup of $GL(n,\mathbb{R})$. The quotient group $GL(n,\mathbb{R})/SL(n,\mathbb{R}) \simeq \mathbb{R}^* = \mathbb{R} \setminus \{0\}$.

• Example $(\mathcal{O}(n)/\mathcal{SO}(n) \simeq \mathbb{Z}_2 = \{-1,1\} = \mathbb{Z}/2\mathbb{Z}).$

The quotient group of orthogonal group $\mathcal{O}(n)$ over the special orthogonal group $\mathcal{SO}(n) = \{ \mathbf{Q} \in \mathcal{O}(n) : \det(\mathbf{Q}) = 1 \}$ is homemorphic to $\mathbb{Z}_2 = \{-1, 1\}$.

• Example $(\mathcal{O}(n)/\mathcal{O}(n-1) \simeq \mathbb{S}^{n-1})$.

The quotient group of *n*-dimensional orthogonal group $\mathcal{O}(n)$ over (n-1)-dimensional orthogonal group $\mathcal{O}(n-1)$ is homemorphic to (n-1)-dimensional sphere \mathbb{S}^{n-1} .

• Definition (Topological Group Action)

An <u>action</u> of a topological group G on a topological space X is a continuous map $\phi: G \times X \to X$ such that for $g(x) := \phi(g, x)$,

$$(g_1 \cdot g_2)(x) = g_1(g_2(x)), \qquad \forall g_1, g_2 \in G, x \in X$$

$$1_G(x) = x, \qquad \forall x \in X$$

where 1_G is the unit element of group G. Together with the group action, X is called a G-space.

- Remark The map $x \mapsto g(x)$ is a *continuous map* on X for each $g \in G$. This map has *inverse map* $x \mapsto g^{-1}(x)$ which is continuous as well. Thus the map $x \mapsto g(x)$ is a *homemorphism*.
- Example The topological group $\mathcal{O}(n)$ acts on \mathbb{R}^n is the rotation transformation of vectors in \mathbb{R}^n . Similarly, $\mathcal{O}(n)$ acts on \mathbb{S}^1 is the rotation of circle \mathbb{S}^1 .
- Definition (Orbit under Topological Group Actions)
 If the topological group G acts on topological space X, and $x \in X$, then the orbit of x is defined as

$$G(x) = \{g(x) : g \in G\}$$

• **Definition** The *stablizer* of x under group actions G is defined as

$$G_x = \{g \in G : g(x) = x\}$$

• Definition (Orbit Space X/G)

Let G be a topological group and X be a G-space so that G acts on X. <u>The orbit space</u> is the set of all orbits of action with quotient topology. The quotient map $\pi: x \mapsto G(x)$ maps x to its orbit. The orbit space is often called **the quotient of** X **by group actions** G, i.e.

$$X/G = \{G(x) : x \in X\}.$$

• Proposition 2.47 (Orbit Space by Compact Group)

Let G be a **compact** topological group and X be a topological space so that G acts on X. Let X/G be the **orbit space**, i.e. the quotient space of X by group actions G. Then

- 1. X/G is **Hausdorff** if X is **Hausdorff**;
- 2. X/G is regular if X is regular;
- 3. X/G is **normal** if X is **normal**;
- 4. X/G is locally compact if X is locally compact;
- 5. X/G is second countable if X is second countable;
- Example (Global Flow on Smooth Manifold) [Lee, 2003.]

Definition A *global flow on* M (also called *a one-parameter group action*) is defined as a *continuous left* \mathbb{R} -action on M; that is, a *continuous map* $\theta : \mathbb{R} \times M \to M$ satisfying the following properties for all $s, t \in \mathbb{R}$ and $p \in M$:

$$\theta_{t+s}(p) = \theta_t \circ \theta_s(p),$$

 $\theta_0(p) = p$

where $\theta_t = \theta(t, \cdot) : M \to M$ is a continuous map and $\theta_0 = \mathrm{Id}_M$.

As we can see that, the global flow is topological group action of $(\mathbb{R}, +)$ on the smooth manifold M (a topological space).

Definition For each $p \in M$, define a curve $\theta^{(p)} : \mathbb{R} \to M$ by

$$\theta^{(p)}(t) = \theta(t, p).$$

The image of this curve is the <u>orbit</u> of p under the group action.

References

John Marshall Lee. *Introduction to smooth manifolds*. Graduate texts in mathematics. Springer, New York, Berlin, Heidelberg, 2003. ISBN 0-387-95448-1.

James R Munkres. Topology, 2nd. Prentice Hall, 2000.