```
In [2]:
    from mpl_toolkits.mplot3d import axes3d
    from matplotlib import cm
    wmatplotlib notebook

def f_2(x):
    result = 9* x[0]**2 - 6 * x[0] * x[1]**2 + x[1]**4

    return result

d = 3.0 # radius within which the function will be plotted
X = np.arange(-d, d, 0.01)
Y = np.arange(-d, d, 0.01)
X, Y = np.meshgrid(X, Y)
Z = f_2((X,Y))

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_surface(X, Y, Z, cmap=cm.Oranges_r)
Figure 1
```


Gegeben sei das Optimierungsproblem

$$P: \min f(x), \text{ s.t. } x \in M$$

mit

a)
$$f(x) = -x^5$$
, $M = (-\infty, 1)$.

b)
$$f(x) = 9x_1^2 - 6x_1x_2^2 + x_2^4$$
, $M = \mathbb{R}^2$

c)
$$f(x) = \frac{x^T A x}{\|x - b\|_2 + 1}$$
, mit $A \in \mathbb{R}^{n \times n}$ positiv definit, $b \in \mathbb{R}^n$ und $M = \mathbb{R}^n$.

Begründen Sie jeweils: ist f koerziv auf M? Ist P lösbar?

Hinweis: Nutzen Sie für Aufgabenteil c) die Äquivalenz der Normen im \mathbb{R}^n Nach Vor-

lesung (Definition 1.2.37) gilt:

Gegeben seien eine (nicht notwendigerweise abgeschlossene) Menge $M \subseteq \mathbb{R}^n$ und eine Funktion $f: M \to \mathbb{R}$. Falls für alle Folgen $(x^{\nu}) \subseteq M$ mit $\lim_{\nu \to \infty} ||x^{\nu}|| \to \infty$ und alle konvergenten Folgen $(x^{\nu}) \subseteq M$ mit $\lim_{\nu} x^{\nu} \notin M$ die Bedingung

$$\lim_{\nu \to \infty} f(x^{\nu}) = +\infty$$

gilt, $dann\ heißt\ f\ koerziv\ auf\ M$.

a)
$$f(x) = -x^5$$
, $M = (-\infty, 1)$:

Beweis: Beachte $M \subseteq \mathbb{R}$. Es gilt $\overline{M} = (-\infty, 1]$, d.h. $\partial M = \{1\}$. Für die Koerzivität sind demnach alle Folgen $(x^{\nu}) \subseteq M$ zu betrachten für die entweder

$$x^{\nu} \longrightarrow \infty$$
 oder $x^{\nu} \longrightarrow 1$

gilt. Sei nun (x^{ν}) eine Folge für die gilt $x^{\nu} \to 1$. Für alle $\epsilon > 0$ existiert demnach ein m, sodass:

$$||x^{\nu_m} - 1|| < \epsilon, \quad \forall \nu_m > m.$$

Daraus ergibt sich:

$$\lim_{\nu} f(x^{\nu}) = \lim_{\nu \to \infty} \left(-(x^{\nu})^{5} \right) = -\lim_{\nu} \left((x^{\nu} - 1 + 1)^{5} \right)$$

$$\leq \left| -\lim_{\nu \to \infty} \left((\|x^{\nu} - 1\| + 1)^{5} \right) \right|$$

$$< \lim_{\nu \to \infty} (\epsilon + 1)^{5}.$$

Da diese Ungleichung im Grenzwert für alle $\epsilon > 0$ gilt, ist f nicht koerziv.

Die Funktion f ist monoton fallend auf M und streng monoton fallend auf (0,1), da

$$f'(x) = -5x^4 \le 0$$

mit strikter Ungleichung für $x \neq 0$. Damit ist

$$\inf_{x \in M} f(x) = \lim_{x \to 1} f(x) = -1.$$

Da das Infimum aber nicht in der Menge angenommen wird (M offen, damit ist aufgrund strenger Monotonie f(x) > -1 für alle $x \in M$), ist das Problem nach Definition 1.2.3 nicht lösbar.

b)
$$f(x) = 9x_1^2 - 6x_1x_2^2 + x_2^4$$
, $M = \mathbb{R}^2$:

Beweis: Es gilt

$$f(x) = 9x_1^2 - 6x_1x_2^2 + x_2^4 = (3x_1 - x_2^2)^2$$
.

Für jede Folge für die für alle $\nu \in \mathbb{N}$ gilt dass $\sqrt{3x_1^{\nu}} = x_2^{\nu}$ folgt:

$$f(x^{\nu}) = 0 \quad \forall \nu \in \mathbb{N},$$

z.B. $x^{\nu} = (\nu, \sqrt{3\nu}) \ \forall \nu \in \mathbb{N} \Rightarrow \lim_{\nu \to \infty} f(x^{\nu}) = 0$. Da wir eine Folge gefunden haben für die $||x^{\nu}|| \to \infty$ aber $\lim_{\nu \to \infty} f(x^{\nu}) = 0$ gilt, ist f nicht koerziv.

Es gilt $f(x) = (3x_1 - x_2^2)^2 \ge 0 = \inf_{x \in M} f(x)$, wobei

$$f(x) = 0 \iff (3x_1 - x_2^2)^2 = 0 \iff x_1 = \frac{x_2^2}{3}$$

Da es $(x_1, x_2) \in M$ gibt, die die obige Bedingung erfüllen (z.B. $x = (\frac{1}{3}, 1)$), nimmt f auf M sein Infimum an, und das Problem ist nach Definition 1.2.3. lösbar.

c) $f(x) = \frac{x^T A x}{\|x - b\|_2 + 1}$, mit $A \in \mathbb{R}^{n \times n}$ positiv definit, $b \in \mathbb{R}^n$ und $M = \mathbb{R}^n$:

Beweis: Da $M = \mathbb{R}^{n \times n}$ sei (x^{ν}) eine beliebige divergente Folge. Aufgrund der positiven Definitheit von A ist $x^T A x > 0$ und damit ist

$$f(x) = \frac{x^T A x}{\|x - b\|_2 + 1} > 0.$$
 (*)

In der Übung wurde die Norm

$$\|x\|_{\tilde{A}} = \sqrt{\langle x, x \rangle_{\tilde{A}}} = \sqrt{x^T \tilde{A} x}$$

eingeführte, mit einer positiv definite, symmetrische Matrix \tilde{A} . Sei

$$B := \frac{A^T + A}{2},$$

dann ist B eine positiv definite, symmetrische Matrix und es gilt nach Übung

$$x^T A x = x^T B x.$$

Damit folgt:

$$|f(x^{\nu})| = \left| \frac{(x^{\nu})^T A x^{\nu}}{\|x^{\nu} - b\|_2 + 1} \right| = \frac{\|x^{\nu}\|_B^2}{\|x^{\nu} - b\|_2 + 1}.$$

Aufgrund der Divergenz der Folge (x^{ν}) gilt für ν groß genug unter Verwendung der Dreiecksungleichung die Abschätzung

$$|f(x^{\nu})| = \frac{\|x^{\nu}\|_{B}^{2}}{\|x^{\nu} - b\|_{2} + 1} \ge \frac{\|x^{\nu}\|_{B}^{2}}{2\|x^{\nu} - b\|_{2}}$$

$$\ge \frac{\|x^{\nu}\|_{B}^{2}}{2(\|x^{\nu}\|_{2} + \|b\|_{2})}$$

$$\ge \frac{\|x^{\nu}\|_{B}^{2}}{2(\|x^{\nu}\|_{2} + \|x^{\nu}\|_{2})}$$

Durch die Äquivalenz der Normen im \mathbb{R}^n existiert nun eine Konstante c so, dass

$$|f(x^{\nu})| \ge \frac{c}{2} \cdot \frac{\|x^{\nu}\|_{B}^{2}}{2(\|x^{\nu}\|_{B} + \|x^{\nu}\|_{B})} = \frac{c}{4} \cdot \frac{\|x^{\nu}\|_{B}^{2}}{\|x^{\nu}\|_{B}} = \frac{c}{4} \cdot \|x^{\nu}\|_{B} \longrightarrow \infty, \quad (**)$$

wobei wir im letzten Schritt wieder die Äquivalenz der Normen verwendet haben, da somit x^{ν} in allen Normen divergiert. (*) zusammen mit (**) liefert für alle divergenten Folgen (x^{ν}) , dass

$$f(x^{\nu}) \longrightarrow \infty,$$

d.h. f ist koerziv.

DaMnicht-leer und abgeschlossen, und fstetig und koerziv ist, ist das Problem nach Korollar 1.2.30 lösbar. $\hfill\Box$

Gegeben sei das unrestringierte Optimierungsproblem

$$P: \min_{x \in \mathbb{R}^2} \exp\left(-\min\left\{-x_1-3, -|x_2-4|, x_1+x_2-20\right\}\right).$$

a) Geben Sie die verallgemeinerte Epigraph-Umformulierung P_{epi} von P an (siehe Übung 1.3.9. im Skript). Begründen Sie, welche Funktionen f, g, F und G Sie für die Umformulierung verwenden.

Beweis: Da es sich um ein unrestringiertes Problem handelt, ist $X=\mathbb{R}^2,\,G\equiv 0,g\equiv 0.$ Definiere

$$F : \mathbb{R} \to \mathbb{R}, x \mapsto e^x,$$

 $f : \mathbb{R}^2 \to \mathbb{R}, x \mapsto -\min \{-x_1 - 3, -|x_2 - 4|, x_1 + x_2 - 20\}.$

Damit ist das unrestringierte Optimierungsproblem äquivalent zu

$$P: \min_{x \in \mathbb{R}^2} F(f(x)) \text{ s.t. } G(g(x)) \le 0, x \in X$$

Nach Übung 1.3.9 (Verallgemeinerte Epigraph-Umformulierung) ist somit folgende Epigraph-Umformulierung äquivalent zu P:

$$P_{epi}: \min_{(x,\alpha,\beta) \in \mathbb{R}^2 \times \mathbb{R} \times \mathbb{R}} F(\alpha) \text{ s.t. } G(\beta) \leq 0, f(x) \leq \alpha, g(x) \leq \beta, x \in X$$

$$\iff \min_{(x,\alpha)\in\mathbb{R}^2\times\mathbb{R}} e^{\alpha} \text{ s.t. } -\min\left\{-x_1-3,-|x_2-4|,x_1+x_2-20\right\} \le \alpha, \ x\in X$$

Wobei wir im letzten Schritt β aufgrund der trivialen Bedingung $G(\beta) \equiv 0 \stackrel{!}{=} 0$ zur Vereinfachung fallen gelassen haben.

b) Formulieren Sie, aufbauend auf Aufgabenteil a), ein lineares Optimierungsproblem P_{lin} , welches die selben Optimalpunkte wie P_{epi} besitzt.

Beweis: Es gilt

$$f(x) = -\min \left\{ -x_1 - 3, -|x_2 - 4|, x_1 + x_2 - 20 \right\}$$
$$= \max \left\{ x_1 + 3, |x_2 - 4|, -(x_1 + x_2) + 20 \right\}.$$

Die Bedingung $f(x) \leq \alpha$ aus der Epigraph-Formulierung bedeutet, dass jede Komponente des Maximums kleiner gleich α sein muss, d.h. das folgende Problem ist äquivalent zu P_{epi} :

$$\tilde{P}_{epi} : \min_{(x,\alpha) \in \mathbb{R}^2 \times \mathbb{R}} e^{\alpha} \text{ s.t. } x \in X, \begin{cases} x_1 + 3 \le \alpha \\ x_2 - 4 \le \alpha, \ x_2 - 4 \ge -\alpha \\ -(x_1 + x_2) + 20 \le \alpha \end{cases}$$

Da die Exponentialfunktion streng monoton ist, ist jedes Minimum der Identität auf dieser Menge gleich dem Minimum der Exponentialfunktion. Ein lineares Optimierungsproblem P_{lin} , welches die selben Optimalpunkte wie P_{epi} besitzt, lautet somit

$$P_{lin}: \min_{(x,\alpha)\in\mathbb{R}^2\times\mathbb{R}} \alpha \text{ s.t. } x \in X, \begin{cases} x_1+3 \leq \alpha \\ x_2-4 \leq \alpha, \ x_2-4 \geq -\alpha \\ -(x_1+x_2)+20 \leq \alpha \end{cases}$$

c) Zeigen Sie, mit Hilfe des verschärften Satz von Weierstraß, dass das Problem P_{lin} lösbar ist.

Beweis: Das Problem P_{lin} ist auf der Menge

$$M \subseteq \left\{ (\alpha, x) = (\alpha, (x_1, x_2)) : \alpha \in \mathbb{R}, x \in \mathbb{R}^2 \right\}$$

definiert, die die folgenden Nebenbedingungen hält:

$$\begin{cases} x_1 + 3 \le \alpha \\ x_2 - 4 \le \alpha, \ x_2 - 4 \ge -\alpha \\ -(x_1 + x_2) + 20 \le \alpha \end{cases}$$

Die Funktion $f(\alpha) = \alpha$ ist als Identität stetig. Für den verschärften Satz von Weierstraß bleibt zu zeigen, dass für ein $\beta \in \mathbb{R}$ die Menge

$$\operatorname{lev}_{<}^{\beta}(f, M) = \{(\alpha, x) \in M | f(\alpha) = \alpha \le \beta\}$$

nicht-leer und kompakt ist. Für $\alpha < 0$ existiert kein x_2 , sodass $x_2 - 4 \le \alpha$ und $x_2 - 4 \ge -\alpha$. Für $\alpha = 0$, ist $x_2 = 4$ und damit $\not\exists x_1 : x_1 + 3 \le 0$ und $-(x_1 + 4) + 20 \le 0$ Für $\alpha > 0$ ist

$$x_2 \in [4 - \alpha, 4 + \alpha],\tag{*}$$

d.h. x_2 liegt in einer nicht-leeren, abgeschlossenen Menge. Aus den Restriktionen erhalten wir außerdem

$$x_1 \in [20 - x_2 - \alpha, \alpha - 3],$$
 (**)

Diese Menge ist für $\alpha > \frac{19}{3}$ nicht leer und abgeschlossen, da für $x_2 = 4 + \alpha$:

$$20 - x_2 - \alpha < \alpha - 3 \iff 23 - (4 + \alpha) < 2\alpha \iff \alpha > \frac{19}{3}$$
.

Somit liefert ein $\beta > \frac{19}{3}$, dass $f(\alpha) = \alpha \in \left[\frac{19}{3}, \beta\right]$ beschränkt ist. Das in Kombination mit (*) bzw. (**) liefert die Beschränktheit von x_1, x_2 . Zusammengefasst ist für ein $\beta > \frac{19}{3}$ die Menge

$$\{(\alpha, x) \in M | f(\alpha) = \alpha \le \beta\}$$

nicht-leer und kompakt und der verschärfte Satz von Weierstraß garantiert die Lösbarkeit des Problems. \Box

d) Modellieren Sie das Problem in Matlab/ Jupyter Notebook und geben Sie den globalen Minimalpunkt von P_{lin} aus.

```
In [3]: from scipy.optimize import minimize
          import numpy as np
          def f(x):
               result = x[2]
               return result
          def g_1(x):
    result= np.array(x[2]-x[0]-3)
    return result
          def g_2(x):
    result = np.array(x[2]-x[1]+4)
    return result
          def g_3(x):
    result = np.array(x[2]+x[1]-4)
               return result
          def g_4(x):
    result = np.array(x[2]+(x[0]+x[1])-20)
               return result
          },
{ 'type': 'ineq',
   'fun': g_2
                    },
{'type' : 'ineq',
  'fun': g_3
                    },
{ 'type': 'ineq',
  'fun': g_4}
          x0=np.array([0,0,10])
          res = minimize (f, x0, constraints=cons, options ={'disp': True})
         Optimization terminated successfully. (Exit mo Current function value: 6.33333333333
                                                             (Exit mode 0)
                         Iterations: 7
                         Function evaluations: 35
                         Gradient evaluations: 7
Out[3]: array([ 3.33333333, 10.33333333, 6.33333333])
```

e) Bestimmen Sie einen globalen Optimalpunkt und den Optimalwert von P.

Beweis: Die Minimalpunkte von P und P_{lin} stimmen nach Konstruktion überein (siehe 3b), also folgt aus d) für die Optimalpunkte $x^* = (\frac{10}{3}, \frac{31}{3})$. Einsetzten in das Ursprungsproblem ergibt:

$$f(x^*) = \exp(-\min\{-x_1 - 3, -|x_2 - 4|, x_1 + x_2 - 20\})$$

$$\iff \exp\left(-\min\{\frac{1}{3}, -\frac{19}{3}, -\frac{19}{3}\}\right) = \exp(\frac{19}{3}) = 563.0302$$

Gegeben seien eine (p, n)-Matrix A, sowie Vektoren $b \in \mathbb{R}^p$ und $a \in \mathbb{R}^n$. In dieser Aufgabe geht es um die Projektion von a auf die Menge

$$\hat{M} := \left\{ x \in \mathbb{R}^n \colon Ax \le b \right\}.$$

Dieses Problem tritt in ähnlicher Form in der Gemischt-Ganzzahligen Optimierung im Rahmeneines Ansatzes zur heuristischen Bestimmung von Punkten in

$$M = \left\{ x \in \mathbb{Z}^m \colon Ax \le b \right\}$$

auf (Feasibility Pump, [1]). Wählt man für die Projektion die ℓ_1 -Norm, so lässt sich dasOptimierungsproblem formulieren als

$$FP: \quad \min_{x \in \mathbb{R}^n} \sum_{j=1}^n |x_j - a_j| \text{ s.t. } Ax \le b.$$

Bestimmen Sie ein äquivalentes lineares Optimierungsproblem FP_{lin} , indem Sie die verallgemeinerte Epigraph Umformulierung (vgl. Übung 1.3.9 im Skript) anwenden. Begründen Sie, welche Funktionen f, g, F und G Sie für die Umformulierung verwenden.

Beweis: Wir definieren

$$f: \mathbb{R}^n \to \mathbb{R}^n, x \mapsto x - a$$

$$F: \mathbb{R}^n \to \mathbb{R}, x \mapsto ||x||_1$$

$$g: \mathbb{R}^n \to \mathbb{R}^n, x \mapsto Ax - b$$

$$G: \mathbb{R}^n \to \mathbb{R}, x \mapsto \max\{x_1, \dots, x_n\}$$

Damit gilt für $X = \mathbb{R}^n$, dass das obiges Optimierungsproblem äquivalent dargestellt werden kann durch

$$P: \min_{x \in \mathbb{R}^n} F(f(x)) \text{ s.t. } G(g(x)) \le 0, x \in X$$

$$\iff \min_{x \in \mathbb{R}^n} \|x - a\|_1 \text{ s.t. } \max_i \{(Ax - b)_i\} \le 0, x \in \mathbb{R}^n,$$

wobei wir ausnutzen, dass $Ax \leq b \iff Ax - b \leq 0 \iff \max_i \{(Ax - b)_i\} \leq 0$. Damit sind die Voraussetzungen der verallgemeinerten Epigraph-Formulierung gegeben und diese lautet:

$$P_{epi}: \min_{(x,\alpha,\beta)\in\mathbb{R}^n\times\mathbb{R}^n\times\mathbb{R}^l} F(\alpha) \text{ s.t. } G(\beta) \le 0, \ f(x) \le \alpha, \ g(x) \le \beta, \ x \in X$$

$$\iff \min_{(x,\alpha,\beta)\in\mathbb{R}^n\times\mathbb{R}^n\times\mathbb{R}^l} \sum_{i=1}^n |\alpha_i| \text{ s.t. } x\in X, \begin{cases} \beta_i \leq 0, \\ (x-a)_i \leq \alpha_i, \end{cases} \forall i\in\{1,\ldots,n\}$$
$$(Ax-b)_i \leq \beta_i,$$

was ein lineares Problem darstellt.

Skizzieren Sie folgende Mengen $M \subseteq \mathbb{R}^2$ und zeigen oder widerlegen Sie jeweils die Konvexität von M.

Definition 2.1.1.: Eine Menge $M \subseteq \mathbb{R}$ heißt konvex, falls folgendes gilt

$$\forall x, y \in M, \lambda \in (0,1) : (1-\lambda)x + \lambda y \in M$$

(d.h. die Verbindungsstrecke von je zwei beliebigen Punkten in M gehört komplett zu M).

a)
$$M: \left\{ x \in \mathbb{R}^2 : (x_1 - 1)^2 + (x_2 - 1)^2 \le 4 \right\}$$

Beweis: Sei $f(x) := (x_1 - 1)^2 + (x_2 - 1)^2 - 4$, dann ist

$$M = f_{<}^{0}$$
.

Da f als Polynom zweimal stetig differenzierbar ist, ist die Hesse-Matrix wohldefiniert:

$$\nabla f(x) = \begin{pmatrix} 2x_1 - 2 \\ 2x_2 - 2 \end{pmatrix} \Rightarrow D^2 f(x) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}.$$

Die charakteristische Gleichung für $D^2 f(x)$ lautet somit:

$$\det(D^{2}f(x) - \lambda I) = (2 - \lambda)^{2} \stackrel{!}{=} 0.$$

Damit ist $\lambda = 2$ zweifacher Eigenwert, womit f konvex ist. Nach Übung 4.4 ist damit M eine konvexe Menge.

b)
$$M: \left\{ x \in \mathbb{R}^2: (x_1 - 1)^2 + (x_2 - 1)^2 \le 4, (x_1 - 3)^2 + (x_2 - 1)^2 \ge 1 \right\}$$

Beweis: Behauptung: M ist nicht konvex, da $x, y \in M$ existieren, deren konvexe Verbindungsstrecke nicht komplett in der Menge liegt.

Sei hierfür $x=(\frac{11}{4},1-\frac{\sqrt{15}}{4})$ und $y=(\frac{11}{4},1+\frac{\sqrt{15}}{4})$, dann gilt $x,y\in M$. Wähle konkret $\lambda=0,5$ und definiere $z:=(1-\lambda)x+\lambda y$. Wäre M konvex, so müsste folgen $z\in M$. Einsetzen der obigen Werte ergibt:

$$z_1 = 0,5 * \frac{11}{4} + (1 - 0.5)\frac{11}{4} = \frac{11}{4}$$
$$z_2 = (0,5 * (1 - \frac{\sqrt{15}}{4}) + (1 - 0.5)(1 + \frac{\sqrt{15}}{4}) = 1$$

Einsetzen der Werte in die Ungleichungen ergibt:

$$(z_1 - 1)^2 + (z_2 - 1)^2 = \frac{49}{16} \le 4$$
$$(z_1 - 3)^2 + (z_2 - 1)^2 = \frac{1}{16} \le 1$$

Aufgrund der 2. Ungleichung gilt $z \notin M$ und damit ist M nicht konvex.

c)
$$M: \left\{ x \in \mathbb{R}^2: (x_1 - 1)^2 + (x_2 - 1)^2 \le 4, (x_1 - 3)^2 + (x_2 - 1)^2 \ge 16 \right\}$$

Beweis: Behauptung: Die Menge M enthält nur den Punkt (-1,1) und ist damit trivialerweise konvex. Betrachte hierfür die Randbedingungen

$$(x_2 - 1)^2 \le 4 - (x_1 - 1)^2 \text{ und } (x_2 - 1)^2 \ge 16 - (x_1 - 3)^2.$$
 (*)

Einsetzen ineinander liefert

$$4 - (x_1 - 1)^2 \ge 16 - (x_1 - 3)^2 \iff 8 - 4x_1 \ge 12 \iff x_1 \le -1$$

Da allerdings

$$4 \ge (x_1 - 1)^2 + (x_2 - 1)^2 \ge (x_1 - 1)^2$$

die zwei Möglichkeiten $x_1 \leq 3$ und $-1 \geq x_1$ liefert, erfüllt nur $x_1 = -1$ die Bedingung. Aus (*) folgt damit direkt

$$4 - (x_1 - 1)^2 = 0 \ge (x_2 - 1)^2 \ge 0 \iff x_2 = 1$$

und somit die Behauptung.

(-1,1) 1.5 - 0.5 - x