Intégration

Olivier Sellès, transcrit par Denis Merigoux

Table des matières

1	Inte	égrale des fonctions en escalier (réelles)	3
	1.1	Fonctions en escalier	3
		1.1.1 Subdivisions d'un intervalle	3
		1.1.2 Fonctions en escalier	3
	1.2	Intégrale d'une fonction en escalier	3
	1.3	Propriétés de l'intégrale des fonctions en escalier	4
		1.3.1 Linéarité	4
		1.3.2 Positivité	4
		1.3.3 Relation de Chasles	4
2	Inte	égrale de fonctions continues par morceaux réelles	5
	2.1	Fonctions continues par morceaux	5
	2.2	Théorèmes d'approximation	5
		2.2.1 Énoncés	5
		2.2.2 Démonstrations	6
	2.3	Définition de l'intégrale pour les fonctions continues par morceaux réelles	6
	2.4	Propriétés de l'intégrale des fonctions continues par morceaux réelles	7
		2.4.1 Linéarité	7
		2.4.2 Positivité	8
		2.4.3 Relation de Chasles	9
3	Inte	égrale de fonctions continues par morceaux complexes	10
3	Inte 3.1	égrale de fonctions continues par morceaux complexes Définition	10 10
3			
3	3.1	Définition	10
3	3.1	Définition	10 10
3	3.1	DéfinitionPropriétés3.2.1 Relation de Chasles	10 10 10
3	3.1 3.2	Définition	10 10 10 10
	3.1 3.2	Définition	10 10 10 10 10
	3.1 3.2	Définition	10 10 10 10 10 10
	3.1 3.2	Définition Propriétés 3.2.1 Relation de Chasles 3.2.2 Linéarité 3.2.3 Positivité égrales et primitives Petite histoire	10 10 10 10 10 10 11
	3.1 3.2	Définition Propriétés 3.2.1 Relation de Chasles 3.2.2 Linéarité 3.2.3 Positivité égrales et primitives Petite histoire 4.1.1 Théorème 1	10 10 10 10 10 10 11
	3.1 3.2 Into 4.1	Définition Propriétés 3.2.1 Relation de Chasles 3.2.2 Linéarité 3.2.3 Positivité égrales et primitives Petite histoire 4.1.1 Théorème 1 4.1.2 Théorème 2	10 10 10 10 10 10 11 11 12
	3.1 3.2 Into 4.1	Définition Propriétés 3.2.1 Relation de Chasles 3.2.2 Linéarité 3.2.3 Positivité égrales et primitives Petite histoire 4.1.1 Théorème 1 4.1.2 Théorème 2 Théorèmes concernant l'intégration	10 10 10 10 10 10 11 11 12 12
	3.1 3.2 Into 4.1	Définition Propriétés 3.2.1 Relation de Chasles 3.2.2 Linéarité 3.2.3 Positivité égrales et primitives Petite histoire 4.1.1 Théorème 1 4.1.2 Théorème 2 Théorèmes concernant l'intégration 4.2.1 Changement de variable	10 10 10 10 10 10 11 12 12 12
	3.1 3.2 Into 4.1	Définition Propriétés 3.2.1 Relation de Chasles 3.2.2 Linéarité 3.2.3 Positivité égrales et primitives Petite histoire 4.1.1 Théorème 1 4.1.2 Théorème 2 Théorèmes concernant l'intégration 4.2.1 Changement de variable 4.2.2 Intégration par parties	10 10 10 10 10 10 11 12 12 12 12
4	3.1 3.2 Into 4.1	Définition Propriétés 3.2.1 Relation de Chasles 3.2.2 Linéarité 3.2.3 Positivité égrales et primitives Petite histoire 4.1.1 Théorème 1 4.1.2 Théorème 2 Théorèmes concernant l'intégration 4.2.1 Changement de variable 4.2.2 Intégration par parties 4.2.3 Formule de TAYLOR avec reste intégral	10 10 10 10 10 10 10 11 12 12 12 12 13
4	3.1 3.2 Inte 4.1 4.2	Définition Propriétés 3.2.1 Relation de Chasles 3.2.2 Linéarité 3.2.3 Positivité égrales et primitives Petite histoire 4.1.1 Théorème 1 4.1.2 Théorème 2 Théorèmes concernant l'intégration 4.2.1 Changement de variable 4.2.2 Intégration par parties 4.2.3 Formule de TAYLOR avec reste intégral	10 10 10 10 10 10 11 12 12 12 12 13

	Approximations numériques de intégrales 6.1 Méthode des rectangles	19
7		22 22

1 Intégrale des fonctions en escalier (réelles)

1.1 Fonctions en escalier

1.1.1 Subdivisions d'un intervalle

Soient $a, b \in \mathbb{R}$ avec a < b. Une subdivision de [a, b] est une suite finie $\sigma = (x_0, x_1, \dots, x_n)$ de réels tels que $a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$.

Remarques

- Soit $m \in \mathbb{N}^*$, pour $0 \le k \le m$, posons $x_k = a + k \frac{b-a}{m}$. Alors (x_0, x_1, \dots, x_n) est une subdivision de [a, b] appelée subdivision régulière d'ordre m.
- Si $\sigma = (x_0, x_1, \dots, x_n)$ est une subdivision de [a, b], alors le pas de σ est le nombre :

$$\delta\left(\sigma\right) = \max_{0 \le k \le n-1} \left(x_{k+1} - x_k\right)$$

- Soient $\sigma = (x_0, x_1, \dots, x_n)$ et $\tau = (y_0, y_1, \dots, y_m)$ des subdivisions de [a, b]. On dit que σ est plus fine que τ si $\{y_0, y_1, \dots, y_m\} \subset \{x_0, x_1, \dots, x_n\}$.
- Soient $\sigma = (x_0, x_1, \dots, x_n)$ et $\tau = (y_0, y_1, \dots, y_m)$ des subdivisions de [a, b]. On note $\sigma \vee \tau$ la subdivision obtenue en listant par ordre croissant et éléments de $\{x_0, x_1, \dots, x_n\} \cup \{y_0, y_1, \dots, y_m\}$. Il est alors clair que $\sigma \vee \tau$ est plus fine que σ et τ .

1.1.2 Fonctions en escalier

Soient $a, b \in \mathbb{R}$ avec a < b. $f : [a, b] \longrightarrow \mathbb{R}$ est dite en escalier s'il existe une subdivision $\sigma = (x_0, x_1, \dots, x_n)$ de [a, b] telle que $\forall i \in [[0, n-1]], f_{|]x_i, x_{i+1}[}$ est constante.

Une telle subdivision σ est dite adaptée à f. On note $\mathcal{E}([a,b])$ l'ensemble des fonctions en escalier réelles sur [a,b].

Remarques

- Soit $f \in \mathcal{E}([a,b])$, σ une subdivision de [a,b] adaptée à f. Alors toute subdivision plus fine que σ est adaptée à f.
- Soient $f, g \in \mathcal{E}([a, b])$ et $\alpha \in \mathbb{R}$. Alors $\alpha f + g$, fg, |f|, $\frac{1}{f}$ (si f ne s'annule pas), sup (f, g) et inf (f, g) sont des fonctions en escaliers.

Ces résultats sont immédiats en considérant la subdivision $\sigma \vee \tau$ adaptée à f et à g.

1.2 Intégrale d'une fonction en escalier

Soit $f \in \mathcal{E}([a,b])$.

(1) Soit $\sigma = (x_0, x_1, \dots, x_n)$ une subdivision de [a, b] adaptée à f, et notons pour $i \in [0, n-1]$ λ_i la valeur constante de f sur chaque intervalle $]x_i, x_{i+1}[$. On pose alors :

$$I_{\sigma}(f) = \sum_{i=0}^{n-1} \lambda_i (x_{i+1} - x_i)$$

- (2) Si σ et τ sont deux subdivisions de [a,b] adaptées à f, alors $I_{\sigma}(f) = I_{\tau}(f)$.
- (3) On appelle intégrale de f sur [a,b] notée I(f) le nombre $I_{\sigma}(f)$, avec σ étant n'importe quelle subdivision de [a,b] adaptée à f.

Démonstration du (2)

- Soit $\sigma = (x_0, x_1, \dots, x_n)$ une subdivision de [a, b] adaptée à f. Pour $0 \le i \le n-1$, on notera λ_i la valeur constante de f sur $]x_i, x_{i+1}[$. Soit $c \in [a, b] \setminus \{x_0, x_1, \dots, x_n\}$, alors $\exists i \in [[0, n-1]]$ tel que $x \in]x_i, x_{i+1}[$ et posons $\sigma' = (x_0, \dots, x_i, c, x_{i+1}, \dots, x_n)$. Alors

$$I_{\sigma'}(f) = \lambda_0 (x_1 - x_0) + \dots + \underbrace{\lambda_i (c - x_i) + \lambda_i (x_{i+1} - c)}_{\lambda_i (x_{i+1} - x_i)} + \dots + \lambda_{n-1} (x_n - x_{n-1})$$

$$= I_{\sigma}(f)$$

Ce résultat est donc valable pour toutes les subdivisions de [a,b] plus fines que σ .

– Soient σ, τ deux subdivisions de [a, b] adaptées à f et ω une subdivision plus fine que τ et σ . Alors $I_{\sigma}(f) = I_{\omega}(f) = I_{\tau}(f)$, d'où le résultat.

1.3 Propriétés de l'intégrale des fonctions en escalier

1.3.1 Linéarité

Soient $f, g \in \mathcal{E}([a, b])$ et $\alpha \in \mathbb{R}$. Alors $I(\alpha f + g) = \alpha I(f) + I(g)$. En particulier, I(-f) = -I(f).

Démonstration Soit $\sigma = (x_0, x_1, \dots, x_n)$ une subdivision de [a, b] adaptée à f et à g. Pour $0 \le i \le n - 1$, on note λ_i (respectivement μ_i) la valeur constante de f (respectivement g) sur $]x_i, x_{i+1}[$. Alors $\alpha f + g$ est constante égale à $\alpha \lambda_i + \mu_i$ sur $]x_i, x_{i+1}[$ donc σ est également adaptée à $\alpha f + g$ et

$$I(\alpha f + g) = \sum_{i=0}^{n-1} (\alpha \lambda_i + \mu_i) (x_{i+1} - x_i)$$

$$= \alpha \sum_{i=0}^{n-1} \lambda_i (x_{i+1} - x_i) + \sum_{i=0}^{n-1} \mu_i (x_{i+1} - x_i)$$

$$= \alpha I(f) + I(g)$$

1.3.2 Positivité

Soit $f \in \mathcal{E}([a,b])$ telle que $\forall t \in [a,b], f(t) \ge 0$. Alors $I(f) \ge 0$.

Démonstration $I(f) = \sum_{i=0}^{n-1} \underbrace{\lambda_i}_{\geq 0} \underbrace{(x_{i+1} - x_i)}_{>0}$, d'où le résultat.

Corollaires

- (1) upient $f, g \in \mathcal{E}([a, b])$ avec $f \leq g$. Alors $I(f) \leq I(g)$. En effet, $g - f \in \mathcal{E}([a, b])$ et $g - f \geq 0$ donc $I(g - f) = I(g) - I(f) \geq 0$.
- (2) Soit $f \in \mathcal{E}([a, b])$, alors $|I(f)| \leq I(|f|)$. En effet, $f \leq |f|$ donc $I(f) \leq I(|f|)$. De même, $-f \leq |f|$ donc $-I(f) \leq I(|f|)$ d'où le résultat.

1.3.3 Relation de Chasles

 $\text{Soit } f \in \mathcal{E}\left([a,b]\right) \text{ et } c \in \left]a,b\right[, \text{ alors } f_{\mid [a,c]} \in \mathcal{E}\left([a,c]\right), \ f_{\mid [c,b]} \in \mathcal{E}\left([c,b]\right) \text{ et } I\left(f\right) = I\left(f_{\mid [a,c]}\right) + I\left(f_{\mid [c,b]}\right).$

Démonstration Soit $\sigma = (x_0, x_1, \dots, x_n)$ une subdivision de [a, b] adaptée à f, on peut supposer que $c \in \{x_0, x_1, \dots, x_n\}$ quitte à le rajouter. Pour $0 \le i \le n-1$, on notera λ_i la valeur constante de f sur $]x_i, x_{i+1}[$. Posons $c = x_j$:

$$I(f) = \sum_{i=0}^{n-1} \lambda_i (x_{i+1} - x_i)$$

$$= \sum_{i=0}^{j-1} \lambda_i (x_{i+1} - x_i) + \sum_{i=j}^{n-1} \lambda_i (x_{i+1} - x_i)$$

$$= I(f_{|[a,c]}) + I(f_{|[c,b]})$$

En effet, (x_0, x_1, \ldots, x_j) est une subdivision de [a, c] adaptée à $f_{|[a,c]}$ et $(x_j, x_{j+1}, \ldots, x_n)$ est une subdivision de [c, b] adaptée à $f_{|[c,b]}$.

2 Intégrale de fonctions continues par morceaux réelles

2.1 Fonctions continues par morceaux

Soit $f:[a,b] \longrightarrow \mathbb{K} = \mathbb{R}$ ou \mathbb{C} . f est continue par morceaux s'il existe une subdivision $\sigma = (x_0, x_1, \dots, x_n)$ de [a,b] telle que, $\forall i \in [[0,n-1]]$:

- (1) f est continue sur $]x_i, x_{i+1}[$.
- (2) f admet une limite à droite finie en x_i et une limite à gauche finie en x_{i+1} .

On dit alors que σ est adaptée à f. On note $\mathcal{C}_{pm}([a,b],\mathbb{K})$ l'ensemble des fonctions continues par morceaux sur [a,b].

Remarques

- Si $f ∈ C_{pm}([a, b], \mathbb{K})$ et si σ est une subdivision de [a, b] adaptée à f, alors toute subdivision plus fine que σ est également adaptée à f.
- Si $f, g \in \mathcal{C}_{pm}$ ([a, b], K), alors il existe toujours une subdivision adaptée à f et à g.
- Soient $f, g \in \mathcal{C}_{pm}([a, b], \mathbb{K})$ et $\alpha \in \mathbb{K}$. Alors $\alpha f + g$, fg, $\frac{1}{f}$ (si f ne s'annule pas), |f| appartiennent à $\mathcal{C}_{pm}([a, b], \mathbb{K})$.
 - o Si $\mathbb{K} = \mathbb{R}$, alors sup (f, g) et inf (f, g) sont aussi continues par morceaux.
 - o Si $\mathbb{K} = \mathbb{C}$, alors $\Re(f)$, $\Im(f)$, |f| et \overline{f} sont aussi continues par morceaux.

2.2 Théorèmes d'approximation

2.2.1 Énoncés

Théorème 1

```
Soient a, b \in \mathbb{R}, a < b, f : [a, b] \longrightarrow \mathbb{R} continue et \varepsilon > 0.
Alors \exists \varphi_{\varepsilon}, \psi_{\varepsilon} \in \mathcal{E}([a, b]) avec :
```

- (1) $\varphi_{\varepsilon} \leqslant f \leqslant \psi_{\varepsilon}$
- (2) $\psi_{\varepsilon} \varphi_{\varepsilon} \leqslant \varepsilon$

Théorème 2

```
Soient a, b \in \mathbb{R}, a < b, f : [a, b] \longrightarrow \mathbb{R} continue par morceaux et \varepsilon > 0.
Alors \exists \varphi_{\varepsilon}, \psi_{\varepsilon} \in \mathcal{E}([a, b]) avec :
```

- (1) $\varphi_{\varepsilon} \leqslant f \leqslant \psi_{\varepsilon}$
- (2) $\psi_{\varepsilon} \varphi_{\varepsilon} \leqslant \varepsilon$

2.2.2 Démonstrations

Démonstration du théorème 1 f est continue sur le compact [a,b] donc, d'après le théorème de Heine a, f est uniformément continue : $\exists \alpha > 0 / \forall s, t \in [a,b], |s-t| \leq \alpha \Rightarrow |f(s)-f(t)| \leq \varepsilon$.

Soit $m \in \mathbb{N}^*$ tel que $\frac{b-a}{m} \le \alpha$ et σ la subdivision régulière de [a,b] d'ordre m. Soit $i \in [[0,m-1]], f$ est continue sur le compact $[x_i,x_{i+1}]$ donc f est bornée et atteint ses bornes b sur $[x_i,x_{i+1}]$. Posons $m_i = \min_{[x_i,x_{i+1}]} f$,

 $M_{i} = \max_{\left[x_{i}, x_{i+1}\right]} f \text{ et } s_{i}, t_{i} \in \left[x_{i}, x_{i+1}\right] \text{ tels que } f\left(s_{i}\right) = m_{i} \text{ et } f\left(t_{i}\right) = M_{i}.$

On définit alors φ_{ε} et ψ_{ε} de la façon suivante :

- Pour $i \in [0, n]$, $\varphi_{\varepsilon}(x_i) = \psi_{\varepsilon}(x_i) = f(x_i)$.
- Pour $i \in [0, n-1]$, φ_{ε} est constante égale à m_i sur $]x_i, x_{i+1}[$ et ψ_{ε} est constante égale à M_i sur $]x_i, x_{i+1}[$. Alors on a bien $\varphi_{\varepsilon}, \psi_{\varepsilon} \in \mathcal{E}([a, b])$ avec $\varphi_{\varepsilon} \leqslant f \leqslant \psi_{\varepsilon}$ et $\psi_{\varepsilon} \varphi_{\varepsilon} \leqslant \varepsilon$. En effet, pour $t \in]x_i, x_{i+1}[$,

$$\psi_{\varepsilon}(t) - \varphi_{\varepsilon}(t) = M_{i} - m_{i}$$

$$= f(t_{i}) - f(s_{i})$$

$$\leq |f(t_{i}) - f(s_{i})|$$

$$\leq \varepsilon \operatorname{car} |s_{i} - t_{i}| \leq \alpha$$

Et $\varphi_{\varepsilon}(x_i) = \psi_{\varepsilon}(x_i) = 0 \leqslant \varepsilon$.

Démonstration du théorème 2 Soit $\sigma = (x_0, x_1, \dots, x_n)$ une subdivision de [a, b] adaptée à f et $i \in [0, n-1]$. Posons :

$$\tilde{f}: [x_i, x_{i+1}] \longrightarrow \mathbb{R}$$

$$t \mapsto \begin{cases} f(t) & \text{si } x_i < t < x_{i+1} \\ \lim_{x_i^+} f & \text{si } t = x_i \\ \lim_{x_{i+1}^-} f & \text{si } t = x_{i+1} \end{cases}$$

Il est clair que \tilde{f} est continue sur $[x_i, x_{i+1}]$ donc, d'après le théorème 1 appliqué à $[x_i, x_{i+1}]$, $\exists \varphi_{\varepsilon}^i, \psi_{\varepsilon}^i \in \mathcal{E}([x_i, x_{i+1}])$ avec $\varphi_{\varepsilon}^i \leq f \leq \psi_{\varepsilon}^i$ et $\psi_{\varepsilon}^i - \varphi_{\varepsilon}^i \leq \varepsilon$. Soit $t \in [a, b]$.

- Si $t \in \{x_0, x_1, \dots, x_n\}$, on pose $\varphi_{\varepsilon}(t) = \psi_{\varepsilon}(t) = f(t)$.
- Sinon, $\exists i \in [0, n-1]$ tel que $t \in [x_i, x_{i+1}]$ donc on pose $\varphi_{\varepsilon}(t) = \varphi_{\varepsilon}^i(t)$ et $\psi_{\varepsilon}(t) = \psi_{\varepsilon}^i(t)$. Alors $\varphi_{\varepsilon}, \psi_{\varepsilon} \in \mathcal{E}([a, b])$, on a bien $\varphi_{\varepsilon} \leqslant f \leqslant \psi_{\varepsilon}$ et $\psi_{\varepsilon} \varphi_{\varepsilon} \leqslant \varepsilon$.

Corollaire Soit $f \in \mathcal{C}_{pm}([a,b],\mathbb{R})$ et $\varepsilon > 0$. Alors $\exists \varphi_{\varepsilon}, \psi_{\varepsilon} \in \mathcal{E}([a,b])$ avec $\varphi_{\varepsilon} \leqslant f \leqslant \psi_{\varepsilon}$ et $I(\psi_{\varepsilon} - \varphi_{\varepsilon}) \leqslant \varepsilon$. En effet, d'après le théorème 2, $\exists \varphi_{\varepsilon}, \psi_{\varepsilon} \in \mathcal{E}([a,b])$ avec $\varphi_{\varepsilon} \leqslant f \leqslant \psi_{\varepsilon}$ et $\psi_{\varepsilon} - \varphi_{\varepsilon} \leqslant \frac{\varepsilon}{b-a}$. D'où

$$I(\psi_{\varepsilon} - \varphi_{\varepsilon}) \leqslant I\left(\frac{\varepsilon}{b-a}\right) = \varepsilon$$

2.3 Définition de l'intégrale pour les fonctions continues par morceaux réelles

Soit $f \in \mathcal{C}_{pm}([a,b],\mathbb{R})$. On note $\mathcal{E}^+ = \{\psi \in \mathcal{E}([a,b]) | \psi \leqslant f\}, \mathcal{E}^- = \{\psi \in \mathcal{E}([a,b]) | \psi \leqslant f\}, \Lambda^+ = \{I(\psi) | \psi \in \mathcal{E}^+\}$ et $\Lambda^- = \{I(\psi) | \psi \in \mathcal{E}^-\}$.

Alors Λ^+ est minoré, Λ^- est majoré en inf $\Lambda^+ = \sup \Lambda^-$. On définit l'intégrale de f sur [a,b] et on note $\int_a^b f$ le nombre inf $\Lambda^+ = \sup \Lambda^-$.

a. Voir section 11.1.2.1 du cours complet page 178.

b. Voir section 11.1.2.3 du cours complet page 179.

Preuve D'après le théorème 2, \mathcal{E}^+ et \mathcal{E}^- ne sont pas vides, ainsi que Λ^+ et Λ^- .

- Soit $\psi \in \mathcal{E}^+$, $\forall \varphi \in \mathcal{E}^-$, $\varphi \leqslant f \leqslant \psi$ donc $I(\varphi) \leqslant I(\psi)$ donc $I(\psi)$ majore Λ^- donc sup Λ^- existe et sup $\Lambda^- \leqslant I(\psi)$. Ce qui précède étant valable pour tout $\psi \in \mathcal{E}^+$, on voit donc que sup Λ^- minore Λ^+ donc Λ^+ est minoré et inf $\Lambda^+ \geqslant \sup \Lambda^-$.
- Soit $\varepsilon > 0, \exists \varphi \in \mathcal{E}^-, \psi \in \mathcal{E}^+$ avec $I(\psi \varphi) \leqslant \varepsilon$ d'où $I(\psi) \leqslant \varepsilon + I(\varphi)$. Ainsi

$$\inf \Lambda^{+} \leq I(\psi) \leq I(\varphi) + \varepsilon \leq \sup \Lambda^{-} + \varepsilon$$

Cette inégalité étant valable $\forall \varepsilon > 0$, on a donc inf $\Lambda^+ \leq \sup \Lambda^-$. Vu les derniers résultats, inf $\Lambda^+ = \sup \Lambda^-$.

Remarque Soit $f \in \mathcal{C}_{pm}([a, b], \mathbb{R})$. Par définition de $\int_a^b f$, on a $\forall \varphi \in \mathcal{E}^-$, $I(\varphi) \leqslant \int_a^b f$ et $\forall \psi \in \mathcal{E}^+$, $\int_a^b f \leqslant I(\psi)$. f est en escalier donc $f \in \mathcal{E}^-$ et $f \in \mathcal{E}^+$ donc:

$$I(f) \leqslant \int_{a}^{b} f \leqslant I(f) \Leftrightarrow I(f) = \int_{a}^{b} f$$

2.4 Propriétés de l'intégrale des fonctions continues par morceaux réelles

2.4.1 Linéarité

Soient $f, g \in \mathcal{C}_{pm}([a, b], \mathbb{R})$ et $\alpha \in \mathbb{R}$. Alors

$$\int_{a}^{b} (\alpha f + g) = \alpha \int_{a}^{b} f + \int_{a}^{b} g$$

En particulier, $\int_{a}^{b} (-f) = -\int_{a}^{b} f$.

Démonstration

1^{er} cas : $\alpha < 0$ Soit $\varepsilon > 0$, d'après le théorème 2, $\exists \varphi_{\varepsilon}, \psi_{\varepsilon} \in \mathcal{E}([a,b])$ et $\omega_{\varepsilon}, \eta_{\varepsilon} \in \mathcal{E}([a,b])$ avec $\varphi_{\varepsilon} \leqslant f \leqslant \psi_{\varepsilon}$, $\omega_{\varepsilon} \leqslant g \leqslant \eta_{\varepsilon}$, $I(\psi_{\varepsilon} - \varphi_{\varepsilon}) \leqslant \varepsilon$ et $I(\eta_{\varepsilon} - \omega_{\varepsilon}) \leqslant \varepsilon$. On a alors :

$$\alpha\psi_{\varepsilon} \leqslant \alpha f \leqslant \alpha\varphi_{\varepsilon} \Rightarrow \underbrace{\alpha\psi_{\varepsilon} + \omega_{\varepsilon}}_{\in \mathcal{E}([a,b])} \leqslant \underbrace{\alpha f + g}_{\in \mathcal{C}_{pm}([a,b],\mathbb{R})} \leqslant \underbrace{\alpha\varphi_{\varepsilon} + \eta_{\varepsilon}}_{\in \mathcal{E}([a,b])}$$

Donc

$$I\left(\alpha\psi_{\varepsilon}+\omega_{\varepsilon}\right)\leqslant\int_{a}^{b}\left(\alpha f+g\right)\leqslant I\left(\alpha\varphi_{\varepsilon}+\eta_{\varepsilon}\right)\Rightarrow\alpha I\left(\varphi_{\varepsilon}\right)+I\left(\varphi_{\varepsilon}\right)\leqslant\int_{a}^{b}\left(\alpha f+g\right)\leqslant\alpha I\left(\varphi_{\varepsilon}\right)+I\left(\eta_{\varepsilon}\right)\quad\text{car }\alpha<0$$

Or on a $I(\varphi_{\varepsilon}) \geqslant I(\psi_{\varepsilon}) - \varepsilon \Rightarrow \alpha I(\varphi_{\varepsilon}) \leqslant \alpha I(\psi_{\varepsilon}) - \alpha \varepsilon$ et $I(\psi_{\varepsilon}) \geqslant \int_{a}^{b} f \Rightarrow \alpha I(\psi_{\varepsilon}) \leqslant \alpha \int_{a}^{b} f$. De même, $I(\eta_{\varepsilon}) \leqslant I(\omega_{\varepsilon}) + \varepsilon \leqslant \int_{a}^{b} g + \varepsilon$. Ainsi :

$$\alpha I(\varphi_{\varepsilon}) + I(\eta_{\varepsilon}) \leq \alpha \int_{a}^{b} f + \int_{a}^{b} g + (1 - \alpha) \varepsilon \quad \text{et} \quad \alpha I(\psi_{\varepsilon}) + I(\omega_{\varepsilon}) \geq \alpha \int_{a}^{b} f + \int_{a}^{b} g - (1 - \alpha) \varepsilon$$

Donc on a $\forall \varepsilon > 0$:

$$\alpha \int_{a}^{b} f + \int_{a}^{b} g - (1 - \alpha) \varepsilon \leqslant \int_{a}^{b} (\alpha f + g) \leqslant \alpha \int_{a}^{b} f + \int_{a}^{b} g + (1 - \alpha) \varepsilon$$

Lorsque
$$\varepsilon \to 0$$
, $\int_a^b (\alpha f + g) = \alpha \int_a^b f + \int_a^b g$.

2ème cas : $\alpha > 0$ On a $\alpha \varphi_{\varepsilon} + \omega_{\varepsilon} \leqslant \alpha f + g \leqslant \alpha \psi_{\varepsilon} + \eta_{\varepsilon}$ d'où :

$$\underbrace{I\left(\alpha\varphi_{\varepsilon} + \omega_{\varepsilon}\right)}_{\alpha I(\varphi_{\varepsilon}) + I(\omega_{\varepsilon})} \leqslant \int_{a}^{b} \left(\alpha f + g\right) \leqslant \underbrace{I\left(\alpha\psi_{e} + \eta_{\varepsilon}\right)}_{\alpha I(\psi_{\varepsilon}) + I(\eta_{\varepsilon})}$$

Or $I(\psi_{\varepsilon}) - I(\varphi_{\varepsilon}) \leq \varepsilon$ donc $I(\varphi_{\varepsilon}) \geq I(\psi_{\varepsilon}) - \varepsilon \geq \int_{a}^{b} f - \alpha$ car ψ_{ε} est en escalier et $\psi_{\varepsilon} \geq f$. De même, $I(\omega_{\varepsilon}) \geq \int_{a}^{b} g - \varepsilon$ d'où

$$\alpha \left(\int_{a}^{b} g - \varepsilon \right) + \int_{a}^{b} g - \varepsilon \leqslant \int_{a}^{b} (\alpha f + g) \Rightarrow \alpha \int_{a}^{b} f + \int_{a}^{b} g - (\alpha + 1) \varepsilon \leqslant \int_{a}^{b} (\alpha f + g) dx$$

On a aussi $I(\psi_{\varepsilon}) \leq \varepsilon + I(\varphi_{\varepsilon}) \leq \varepsilon + \int_{a}^{b} f \operatorname{car} \varphi_{\varepsilon} \text{ est en escalier et } \varphi_{\varepsilon} \leq f, \text{ et } I(\eta_{\varepsilon}) \leq \varepsilon + \int_{a}^{b} g.$ On obtient alors

$$\alpha \int_{a}^{b} f + \int_{a}^{b} g - (\alpha + 1) \varepsilon \leqslant \int_{a}^{b} (\alpha f + g) \leqslant \alpha \int_{a}^{b} f + \int_{a}^{b} g + (\alpha + 1) \varepsilon$$

Le résultat est obtenu en faisant tendre ε vers 0.

2.4.2 Positivité

Soit $f \in \mathcal{C}_{pm}([a, b], \mathbb{R})$ positive. Alors $\int_a^b f \ge 0$.

Démonstration Soit θ la fonction nulle. Alors $\theta \in \mathcal{E}([a,b])$ et $\theta \leqslant f$ alors $\int_a^b f \geqslant \int_a^b \theta = 0$.

Corollaire

- (1) Soient $f, g \in \mathcal{C}_{pm}([a, b], \mathbb{R})$ et $f \leq g$. Alors $\int_a^b f \leq \int_a^b g$.
- (2) Soit $f \in \mathcal{C}_{pm}([a, b], \mathbb{R})$, alors $\left| \int_a^b f \right| \leq \int_a^b |f|$.

Raffinement Soit $f \in \mathcal{C}_{pm}([a,b],\mathbb{R})$ positive et $x \in [a,b]$. Supposons f continue en x et f(x) > 0. Soit $\lambda \in]0, f(x)[$, f est continue en x donc $\exists a \leqslant c \leqslant d \leqslant b$ tels que $\forall t \in [c,d], f(t) \geqslant \lambda$. Soit φ définie pat

$$\varphi(t) = \begin{cases} \lambda & \text{si } t \in [c, d] \\ 0 & \text{si } t \in [a, b] \setminus [c, d] \end{cases}$$

Alors $\varphi \in \mathcal{E}\left(\left[a,b\right]\right)$ et $\varphi \leqslant f$ donc $\int_{a}^{b}f\geqslant I\left(\varphi\right)=\lambda\left(d-c\right)>0.$ On en déduit :

- (1) Si $f:[a,b] \longrightarrow \mathbb{R}$ est positive et différente de la fonction nulle, alors $\int_a^b f > 0$.
- (2) Si $f:[a,b] \longrightarrow \mathbb{R}$ est continue positive et si $\int_a^b f = 0$, alors $\forall t \in [a,b], f(t) = 0$.

Inégalités de la moyenne Soit $f:[a,b] \longrightarrow \mathbb{R}$ continue. Alors f est bornée donc $\exists m, M \in \mathbb{R}$ tels que $\forall x \in [a,b], m \leqslant f(x) \leqslant M$. Ainsi :

$$\int_{a}^{b} m \, \mathrm{d}t \leqslant \int_{a}^{b} f\left(t\right) \, \mathrm{d}t \leqslant \int_{a}^{b} M \, \mathrm{d}t \Leftrightarrow m\left(b-a\right) \leqslant \int_{a}^{b} f\left(t\right) \, \mathrm{d}t \leqslant M\left(b-a\right)$$

De même, si $\exists \lambda \in \mathbb{R}_+$ tel que $\forall x \in [a, b], |f(x)| \leq \lambda$, alors $\left| \int_a^b f(t) dt \right| \leq \lambda (b - a)$.

On remarque que $\frac{1}{b-a}\int_a^b f(t) dt \in [m, M] = f([a, b])$. donc il existe $\xi \in [a, b]$ tel que $\int_a^b f(t) dt \in [m, M] = f([a, b])$.

2.4.3 Relation de Chasles

Soit $f \in \mathcal{C}_{pm}([a,b],\mathbb{R})$ et $c \in]a,b[$. Alors $f_{|[a,c]} \in \mathcal{C}_{pm}([a,c],\mathbb{R})$ et $f_{|[c,b]} \in \mathcal{C}_{pm}([c,b],\mathbb{R})$ et $\int_a^b f = \int_a^c f_{|[a,c]} + \int_c^b f_{|[c,b]}$, ce que l'on écrit :

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

Démonstration Soit $\sigma = (x_0, x_1, \dots, x_n)$ une subdivision de [a, b] adaptée à f. On peut supposer que $c \in \{x_0, x_1, \dots, x_n\}$, quitte à le rajouter. Il est alors clair que $f_{|[a,c]} \in \mathcal{C}_{pm}([a,c], \mathbb{R})$ et $f_{|[c,b]} \in \mathcal{C}_{pm}([c,b], \mathbb{R})$. Soit $\varphi \in \mathcal{E}([a,b])$ telle que $\varphi \leqslant f$. On sait que $\varphi_{|[a,c]} \in \mathcal{E}([a,c])$, $\varphi_{|[a,c]} \leqslant f_{|[a,c]}$, mais aussi que $\varphi_{|[c,b]} \in \mathcal{E}([c,b])$ et $\varphi_{|[c,b]} \leqslant f_{|[c,b]}$. D'où $I(\varphi_{|[a,c]}) \leqslant \int_a^b f$ et $I(\varphi_{|[c,b]}) \leqslant \int_c^b f$. Ainsi:

$$I(\varphi) = I(\varphi_{|[a,c]}) + I(\varphi_{|[c,b]})$$

$$\leq \int_{a}^{c} f + \int_{c}^{b} f = A$$

A majore $\{I(\varphi) | \varphi \in |\mathcal{E}([a,b])\}\ donc:$

$$A \geq \sup_{[a,b]} \{ I(\varphi) | \varphi \in \mathcal{E}([a,b]) \}$$
$$\geq \int_{a}^{b} f$$

On montre de même que pour $\psi \leqslant f$ et $\psi \in \mathcal{E}([a,b]), \int_a^b f \geqslant A$ d'où le résultat.

Conventions Soient $x, y \in \mathbb{R}$ avec $x \neq y$ et $f: [x, y] \longrightarrow \mathbb{R}$ continue par morceaux. On convient que

$$-\int_{x}^{x} f = 0$$

$$-\operatorname{Si} x > y, \int_{x}^{y} f = -\int_{y}^{x} f.$$

Avec ces conventions, $\forall x, y, z \in [a, b]$ et $f : [a, b] \longrightarrow \mathbb{R}$ continue par morceaux,

$$\int_{x}^{z} f = \int_{x}^{y} f + \int_{y}^{z} f$$

3 Intégrale de fonctions continues par morceaux complexes

3.1 Définition

Soit $f \in \mathcal{C}_{pm}([a,b],\mathbb{C}), u = \Re(f)\mathcal{C}_{pm}([a,b],\mathbb{R})$ et $v = \Im(f) \in \mathcal{C}_{pm}([a,b],\mathbb{R})$. Par définition :

$$\int_{a}^{b} f = \int_{a}^{b} u + i \int_{a}^{b} v$$

On a donc $\Re\left(\int_{a}^{b} f\right) = \int_{a}^{b} \Re\left(f\right), \ \Im\left(\int_{a}^{b} f\right) = \int_{a}^{b} \Im\left(f\right), \ \overline{f} \in \mathcal{C}_{\mathrm{pm}}\left(\left[a,b\right],\mathbb{C}\right) \ \mathrm{et} \ \int_{a}^{b} \overline{f} = \overline{\int_{a}^{b} f}.$

3.2 Propriétés

3.2.1 Relation de Chasles

Évidente car vraie pour $\Re (f)$ et $\Im (f)$.

3.2.2 Linéarité

Soit $f \in \mathcal{C}_{pm}([a,b],\mathbb{C}), \alpha \in \mathbb{C}$. Alors

$$\int_{a}^{b} (\alpha f + g) = \alpha \int_{a}^{b} f + \int_{a}^{b} g$$

Démonstration Soient $u_f = \Re e(f)$, $v_f = \Im m(f)$, $u_g = \Re e(f)$, $v_g = \Im m(g)$, posons $\alpha = \sigma + i\tau$ avec $\sigma, \tau \in \mathbb{R}$. Alors $\Re e(\alpha f + g) = \sigma u_f - \tau v_f + u_g$ et $\Im m(\alpha f + g) = \sigma v_f + \tau u_f + u_g$. D'où:

$$\int_{a}^{b} f = \int_{a}^{b} (\sigma u_f - \tau v_f + u_g) + \int_{a}^{b} \sigma v_f + \tau u_f + u_g$$

Toutes ces fonctions étant réelles et continues par morceaux, on a :

$$\int_{a}^{b} \alpha f + g = \sigma \int_{a}^{b} u_{f} - \tau \int_{a}^{b} v_{f} + \int_{a}^{b} u_{g} + i\sigma \int_{a}^{b} v_{f} + i\tau \int_{a}^{b} u_{g} + i \int_{a}^{b} v_{g}$$

$$= (\sigma + i\tau) \int_{a}^{b} (u_{f} + iv_{f}) + \int_{a}^{b} (u_{g} + iv_{g})$$

$$= \alpha \int_{a}^{b} f + \int_{a}^{b} g$$

3.2.3 Positivité

Soit
$$f \in \mathcal{C}_{pm}([a, b], \mathbb{C})$$
. Alors $\left| \int_a^b f \right| \le \int_a^b |f|^a$.

4 Intégrales et primitives

4.1 Petite histoire

Soit I un intervalle non-trivial de \mathbb{R} , $f: I \longrightarrow \mathbb{K}$ continue et $a \in I$. Pour $x \in I$, on pose $F_a(x) = \int_a^x f$. Cette fonction est bien définie :

– On a par convention $F_a(0) = 0$.

a. Pour la démonstration se reporter à la section 4.3.2.2 du cours complet page 55.

- Si x > 0, $F_a(x)$ est l'intégrale de la fonction continue $f_{|[a,x]}$.
- Si $x < 0, F_a(x)$ est l'opposée de l'intégrale de la fonction $f_{|[x,a]}$ continue.

Prenons $x \in I$. Pour $y \in I \setminus \{x\}$:

$$\frac{F_a(y) - F_a(x)}{y - x} = \frac{1}{y - x} \left(\int_a^y f - \int_a^x f \right)$$
$$= \frac{\int_x^y f}{y - x}$$

Montrons que cette dernière quantité tend vers f(x) lorsque y tend vers x. Pour $y \in I \setminus \{x\}$, posons $\Delta(y) = \frac{\int_{x}^{y} f}{\int_{x}^{y} f(x) dx} - f(x)$. Or $f(x) = \frac{1}{y-x} \int_{x}^{b} f(x) dx$ donc :

$$\Delta(y) = \frac{1}{y - x} \int_{x}^{y} (f(t) - f(x)) dt$$

Soit $\varepsilon > 0$, famssymbotinue donc $\exists \alpha > 0$ tel que $\forall u \in I$, $|u - x| \leq \alpha \Rightarrow |f(u) - f(x)| \leq \varepsilon$. Prenons alors $y \in I \setminus \{x\}$ tel que $|y - x| \leq \alpha$.

Si y < x: Pour $t \in [x, y], |t - x| \le |y - x| \le \alpha \text{ donc } |f(t) - f(x)| \le \varepsilon \text{ d'où}$:

$$|\Delta(y)| = \frac{1}{y-x} \left| \int_{x}^{y} (f(t) - f(x)) dt \right|$$

$$\leqslant \frac{1}{y-x} \int_{x}^{y} \underbrace{|f(t) - f(x)|}_{\leqslant \varepsilon} dt$$

$$\leqslant \frac{1}{y-x} \int_{x}^{y} \varepsilon dt = \varepsilon$$

Si y > x: Pour $t \in [y, x], |t - x| \le |y - x| \le \alpha \text{ donc } |f(t) - f(x)| \le \varepsilon \text{esinù}$:

$$|\Delta(y)| = \frac{1}{|y-x|} \left| \int_{x}^{y} (f(t) - f(x)) dt \right|$$

$$\leq \frac{1}{x-y} \int_{y}^{x} |f(t) - f(x)| dt$$

$$\leq \frac{1}{x-y} \int_{x}^{x} \varepsilon dt = \varepsilon$$

Ainsi, $\forall \varepsilon > 0$, $\exists \alpha > 0$ tel que $\forall y \in I \setminus \{x\}$, $|y - x| \leq \alpha \Rightarrow |\Delta(y)| \leq \varepsilon$ donc $\frac{1}{y - x} \int_{x}^{y} f \underset{\substack{x \to y \\ x \neq y}}{\longrightarrow} f(x)$ donc :

$$\frac{F_a(y) - F_a(x)}{y - x} \underset{x \neq y}{\longrightarrow} f(x)$$

Ainsi, f est dérivable en x et $F'_a(x) = f(x)$.

4.1.1 Théorème 1

Soit $f: I \longrightarrow \mathbb{K}$ continue. Alors f admet des primitives sur I.

Plus précisément, $\forall x \in I, x \in I \longmapsto \int_a^x f$ est une primitive de f sur I, c'est même la seule primitive de f qui s'annule en a.

Démonstration La petite histoire se termine sur la première partie de ce théorème. Il ne nous reste plus qu'à démontrer la précision.

Soit $F_a: x \in I \longrightarrow \int_a^x f$, F_a est bien une primitive de f et $F_a(a) = 0$. Montrons l'unicité de F_a .

Petit lemme Soit G une primitive de f. Alors l'ensemble des primitives de f est $\{t \longmapsto G(t) + \lambda | \lambda \in \mathbb{K}\}$. En effet, $\forall \lambda \in \mathbb{K}$, $\forall t \in I$, $(G(t) + \lambda)' = G'(t) + f(t)$ donc $t \in I \longmapsto G(t) + \lambda$ est bien une primitive de f. Réciproquement, soit H une primitive de f. H - G est dérivable sur I et (H - G)' = 0 donc H - G est constante : $\exists \lambda \in \mathbb{K}$ tel que $\forall t \in I, H(t) = G(t) + \lambda$.

Revenons à la démonstration principale : soit G une primitive de f qui s'annule en a. Alors $\exists \lambda \in \mathbb{K}$ tel que $\forall t \in I, G(t) = F_a(t) + \lambda \Rightarrow 0 = G(0) = F_a(0) + \lambda \Rightarrow \lambda = 0$. Ainsi $G = F_a$.

4.1.2 Théorème 2

Soit $f \in \mathcal{C}(I, \mathbb{K})$. Alors:

- (1) f admet des primitives sur I.
- $(2) \text{ Si } G \text{ est une primitive de } f \text{ sur } I, \text{ alors } \forall a,b \in I, \\ \int_{a}^{b} f = G\left(b\right) G\left(a\right). \text{ On note alors } \int_{a}^{b} f = \left[G\left(t\right)\right]_{a}^{b}.$

Démonstration

- (1) « Djàvu! »
- (2) Soit G une primitive de $f : F_a$ et G sont des primitives de f donc $\exists \lambda \in \mathbb{K}$ tel que $lqt \in I$, $G(t) = F_a(t) + \lambda$. Donc, pour $b \in I$,

$$G(b) - G(a) = (F_a(b) + \lambda) - (F_a(a) + \lambda)$$

$$= F_a(a)$$

$$= \int_a^b f$$

4.2 Théorèmes concernant l'intégration

4.2.1 Changement de variable

Soit $\varphi : [\alpha, \beta] \longrightarrow [a, b]$ de classe \mathcal{C}^1 et $f : [a, b] \longrightarrow \mathbb{K}$ continue. Alors :

$$\int_{\alpha}^{\beta} \varphi'(t) f(\varphi(t)) dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(u) du$$

4.2.2 Intégration par parties

Soient
$$f, g \in \mathcal{C}^1([a, b], \mathbb{K})$$
. Alors:
$$\int_a^b f'g = [f(t)g(t)]_a^b - \int_a^b fg'$$

4.2.3 Formule de Taylor avec reste intégral

Soient $a, b \in \mathbb{R}$ avec $a \neq b, f : [a, b] \longrightarrow \mathbb{K}$ de classe C^{n+1} . Alors :

$$f(b) = T_{n,f,a}(b) + \int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt$$

Démonstration Soit H_n : « Pour $f:[a,b] \longrightarrow \mathbb{K}$ de classe C^{n+1} , $f(b) = T_{n,f,a}(b) + \int_a^b \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt$ ».

- Prouvons H_0 . Si f est de classe \mathcal{C}^1 sur [a,b], f est une primitive de la fonction continue f' donc $\int_a^b f' = f(b) - f(a)$ d'où

$$f(b) = f(a) + \int_{a}^{b} \frac{(b-t)^{0}}{0!} f^{(0+1)}(t) dt$$
$$= f(a) + f(b) - f(a)$$

– Supposons H_n vraie pour $n \in \mathbb{N}$, soit $f \in \mathcal{C}^{n+2}([a,b],\mathbb{K})$. On sait que

$$f(b) = T_{n,f,a}(b) + \int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt$$

Or $f^{(n+1)}$ est au moins de classe C^1 et $\left(-\frac{(b-t)^{n+1}}{(n+1)!}\right)' = \frac{(b-t)^n}{n!}$ donc, par intégration par parties :

$$\int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt = \underbrace{\left[-\frac{(b-t)^{n+1}}{(n+1)!} f^{(n+1)}(t)\right]_{a}^{b}}_{(b-t)^{n+1}} + \int_{a}^{b} \frac{(b-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt$$

Or $\frac{(b-a)^{n+1}}{(n+1)!}f^{(n+1)}(t)$ est le n+2-ième terme du polynôme de TAYLOR à l'ordre n+1, d'où le résultat.

Taylor-Lagrange revisité Soient $a, b \in \mathbb{R}$, a < b, $f : [a, b] \longrightarrow \mathbb{K}$ de classe C^{n+1} et M un majorant de $|f^{(n+1)}|$ sur [a, b]. On a alors, d'après la formule de TAYLOR avec reste intégral :

$$|f(b) - T_{n,f,a}(b)| = \left| \int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt \right|$$

$$\leq \int_{a}^{b} \frac{(b-t)^{n}}{n!} \left| f^{(n+1)}(t) \right| dt$$

$$\leq M \int_{a}^{b} \frac{(b-t)^{n}}{n!} dt$$

$$\leq M \left[-\frac{(b-t)^{n+1}}{(n+1)!} \right]_{a}^{b}$$

$$\leq M \frac{(b-a)^{n+1}}{(n+1)!}$$

5 Sommes de RIEMANN

5.1 Intégrales et sommes de RIEMANN

Soit $f:[a,b] \longrightarrow \mathbb{K}$ continue, $n \in \mathbb{N}^*$ et $\sigma = (x_0, x_1, \dots, x_n)$ la subdivision régulière de [a,b] d'ordre n. On a alors $\forall k \in [0, n-1]$, $x_k = a + k \frac{b-a}{n}$. On pose :

$$U_n(f) = \frac{b-a}{n} \sum_{k=1}^{n-1} f\left(a + k \frac{b-a}{n}\right) \quad \text{et} \quad V_n(f) = \frac{b-a}{n} \sum_{k=1}^{n} f\left(a + k \frac{b-a}{n}\right)$$

On remarque que:

$$U_n(f) = \frac{b-a}{n} \sum_{k=0}^{n-1} f(x_k)$$
$$= \sum_{k=0}^{n-1} \frac{b-a}{n} f(k)$$
$$= \int_a^b \varphi$$

Avec φ la fonction en escalier égale à $f(x_i)$ sur $]x_i, x_{i+1}[$ pour $i \in [0, n-2]]$. De même, $V_n(f) = \int_a^b \psi$ où ψ est la fonction en escalier égale à $f(x_{i+1})$ sur $]x_i, x_{i+1}[$ pour $i \in [1, n-1]]$.

Sommes de Darboux-Riemann Soit $\sigma=(x_0,x_1,\ldots,x_n)$ une subdivision quelconque de [a,b]. On appelle choix de points associé à σ une liste $\xi=(y_0,y_1,\ldots,y_{n-1})$ de points de [a,b] telle que pour $i\in[0,n-1]$, $y_i\in[x_i,x_{i+1}]$.

La somme de Darboux-Riemann associée à σ et ξ est l'expression :

$$S_{f,\sigma,\xi} = \sum_{i=0}^{n-1} f(y_i) (x_{i+1} - x_i)$$

5.2 Théorème de Darboux-Riemann

Soit $f:[a,b] \longrightarrow \mathbb{K}$ continue et $\varepsilon > 0$. Alors $\exists \alpha > 0$ tel que pour toute subdivision σ de [a,b] de pas plus petit que α et pour tout choix de points ξ associé à σ , on a le résultat suivant :

$$\left| S_{f,\sigma,\xi} - \int_{a}^{b} f \right| \leqslant \varepsilon$$

Démonstration f est continue a sur le compact [a,b] donc elle est uniformément continue : $\exists \beta > 0$ tel que $\forall s,t \in [a,b], |s-t| \leq \beta \Rightarrow |f(s)-f(t)| \leq \frac{\varepsilon}{b-a}$. Prenons $\alpha = \beta$, et soit $\sigma = (x_0,x_1,\ldots,x_n)$ une subdivision

a. Il convient ici de rapporter une petite mise au point nécessaire de M. Sellès sur la prononciation de certains mots de notre belle langue :

 $^{{\}it \textit{w}-D'ailleurs on dit \textit{\textit{w} Aukserres \textit{\textit{w}} et pas \textit{\textit{w} Aussères \textit{\textit{w}} comme disent les petits parisiens}}.$

⁻ Mais m'sieur vous dites pas « amsile »!

⁻ Mais tu est gentile! Tu dis bien chenil non? »

Inutile de préciser que l'autre protagoniste de ce dialogue qui fait preuve En effet, si e culture n'est autre qu'Aménofis!

de [a, b] de pas inférieur ou égal à β et $\xi = (y_0, y_1, \dots, y_{n-1})$ un choix de points associé à $\sigma : \forall i \in [0, n-1], y_i \in [x_i, x_{i+1}].$

Posons

$$\Delta = \int_{a}^{b} f(t) dt - S_{f,\sigma,\xi}$$

$$= \int_{a}^{b} f - \sum_{ki=0}^{n-1} (x_{i+1} - x_i) f(y_i)$$

$$= \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} f - \sum_{i=0}^{n-1} (x_{i+1} - x_i) f(y_i) \quad \text{d'après Chasles}$$

$$= \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} (f(t) - f(y_i)) dt$$

Ainsi,

$$|\Delta| \leq \sum_{i=0}^{n-1} \left| \int_{x_i}^{x_{i+1}} (f(t) - f(y_i)) dt \right|$$

$$\leq \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} |f(t) - f(y_i)| dt$$

Soit $i \in [0, n-1]$, pour $t \in [x_i, x_{i+1}], |t-y_i| \leq x_{i+1} - x_i \leq \delta(\sigma) \leq \beta$ Ainsi,

$$|f(t) - f(y_i)| \le \frac{\beta}{b-a} \Rightarrow \int_{x_i}^{x_{i+1}} |f(t) - f(y_i)| dt \le \frac{\varepsilon}{b-a} (x_{i+1} - x_i)$$

Donc

$$|\Delta| \leq \sum_{i=0}^{n-1} \frac{\varepsilon}{b-a} (x_{i+1} - x_i)$$

$$\leq \frac{\varepsilon}{b-a} \sum_{i=0}^{n-1} (x_{i+1} - x_i)$$

$$\leq \varepsilon$$

D'où le résultat.

Conséquence sur les somme de RIEMANN Montrons que $U_n(f) \underset{n \to +\infty}{\longrightarrow} \int_a^b f$.

Soit $\varepsilon > 0$, d'après le théorème précédent, $\exists \alpha > 0$ tel que pour toute subdivision $\sigma = \text{de } [a,b]$ de pas plus petit que α , et pour tout choix de points ξ associé à σ ,

$$\left| S_{f,\sigma,\xi} - \int_{a}^{b} f \right| \leqslant \varepsilon$$

De plus, $\frac{b-a}{n} \xrightarrow[n \to +\infty]{} 0$ donc $\exists n_0 \in \mathbb{N}/\forall n \geqslant n_0$, $\frac{b-a}{n} \leqslant \varepsilon$. Soit $n \geqslant n_0$ et σ la subdivision régulière d'ordre n de [a,b]. Alors $\delta(\sigma) = \frac{b-a}{n} \leqslant \varepsilon$ et $U_n(f) = S_{f,\sigma,\xi_1}$ avec $\xi_1 = (x_0,x_1,\ldots,x_{n-1})$. $\delta(\sigma) \leqslant \varepsilon$ donc $\left|U_n(f) - \int_a^b f\right| \leqslant \varepsilon$. De même, $V_n(f) = S_{f,\sigma,\xi_2}$ où $\xi_2 = (x_1,x_2,\ldots,x_n)$ donc $\left|V_n(f) - \int_a^b f\right| \leqslant \varepsilon$.

On déduit des deux résultats précédents que $(U_n(f))$ et $(V_n(f))$ convergent toutes deux vers $\int_a^b f$.

5.3 Applications des somme de RIEMANN

Exemple Pour $n \in \mathbb{N}$, soit

$$u_n = \sum_{k=1}^{n} \frac{1}{n+k}$$
$$= \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1+\frac{k}{n}}$$

En posant $f: x \in [0,1] \longrightarrow \frac{1}{1+x}$ continue, $u_n = \frac{1-0}{n} \sum_{k=1}^n f\left(0+k\frac{1-0}{n}\right)$. u est donc une somme de Riemann associée à f d'où $u_n \underset{n \to +\infty}{\longrightarrow} \int_0^1 f$. Or :

$$\int_0^1 f(t) dt = [\ln(1+t)]_0^1$$
$$= \ln 2$$

Calcul d'une intégrale sans recherche de primitives Soit pour $x \in \mathbb{R} \setminus \{\pm 1\}$:

$$I(x) = \int_0^{2\pi} \ln\left(1 - 2x\cos\theta + x^2\right) d\theta$$

Posons pour $\theta \in \mathbb{R}$, $f(\theta) = x^2 - 2x \cos \theta + x^2$. Vérifions si cette intégrale est bien définie : fixons $\theta \in \mathbb{R}$, et soit $P(x) = x^2 - 2x \cos \theta + 1$. Son discriminant est :

$$4\cos^{2}\theta - 4 = 4(\cos^{2}\theta - 1)$$
$$= (2i\sin\theta)^{2}$$

Les racines de P sont donc $e^{i\theta}$ et $e^{-i\theta}$ donc $P(x) = (x - e^{i\theta})(x - e^{-i\theta}) = |x - e^{i\theta}|^2$. De plus, on ne peut par avoir $P(x) = 0 \Leftrightarrow x = e^{i\theta}$ car on a supposé $|x| \neq 1$. Ainsi, $\forall \theta \in \mathbb{R}, \forall x \in \mathbb{R}, P(x) > 0$ donc f est continue; son intégrale est bien définie.

f est 2π -périodique donc $\int_0^{2\pi} f = \int_{-\pi}^{\pi} f = 2\int_0^{\pi} f$. f est continue sur $[0,\pi]$ donc, en utilisant les sommes de RIEMANN,

$$\int_0^{\pi} f = \lim_{n \to +\infty} \frac{\pi}{n} \sum_{k=0}^{n-1} f\left(k\frac{\pi}{n}\right)$$

Étudions donc la suite définie pour $n \in \mathbb{N}$ comme $u_n = \frac{\pi}{n} \sum_{k=0}^{n-1} \ln\left(1 - 2x\cos\left(k\frac{\pi}{n}\right) + x^2\right)$. On a :

$$\begin{split} \sum_{k=0}^{n-1} \ln\left(1 - 2x\cos\left(k\frac{\pi}{n}\right) + x^2\right) &= \ln\left(\prod_{k=0}^{n-1} \left(1 - 2x\cos\left(k\frac{\pi}{n}\right) + x^2\right)\right) \\ &= \ln\left(\prod_{k=0}^{n-1} \left(x - \mathrm{e}^{i\frac{k\pi}{n}}\right) \left(x - \mathrm{e}^{-i\frac{k\pi}{n}}\right)\right) \end{split}$$

On se sert ici du résultat sur le polynôme T démontré en annexe : pour $z \in \mathbb{C} \setminus \{-1\}$,

$$z^{2n} - 1 = \prod_{u \in \mathbb{U}_{2n}} (z - u)$$

$$= \prod_{k=0}^{2n-1} \left(z - e^{i\frac{k\pi}{n}} \right)$$

$$= \prod_{k=0}^{n-1} \left(z - e^{i\frac{k\pi}{n}} \right) \cdot \prod_{k=n}^{2n-1} \left(z - e^{i\frac{k\pi}{n}} \right)$$

$$= \prod_{k=0}^{n-1} \left(z - e^{i\frac{k\pi}{n}} \right) \prod_{k=n}^{2n-1} \left(z - e^{i\left(\frac{k\pi}{n} - 2\pi\right)} \right)$$

$$= \prod_{k=0}^{n-1} \left(z - e^{i\frac{k\pi}{n}} \right) \prod_{k=n}^{2n-1} \left(z - e^{-i\frac{(2n-k)\pi}{n}} \right)$$

$$= \prod_{k=0}^{n-1} \left(z - e^{i\frac{k\pi}{n}} \right) \prod_{p=1}^{n} \left(z - e^{-i\frac{k\pi}{n}} \right)$$

$$= \frac{z - 1}{z + 1} \prod_{k=0}^{n-1} \left(z - e^{i\frac{k\pi}{n}} \right) \left(z - e^{-i\frac{k\pi}{n}} \right)$$

On en déduit que, pour $x \in \mathbb{R} \setminus \{\pm 1\}$ et $n \in \mathbb{N}^*$:

$$u_n = \frac{\pi}{n} \ln \left[\left(x^{2n} - 1 \right) \frac{x - 1}{x + 1} \right]$$

$$- \operatorname{Si} |x| < 1, \ x^{2n} \underset{n \to +\infty}{\longrightarrow} 0 \text{ donc } \ln \left[\left(x^{2n} - 1 \right) \frac{x - 1}{x + 1} \right] \underset{n \to +\infty}{\longrightarrow} \ln \left[\frac{x - 1}{x + 1} \right] \text{ donc } u_n \underset{n \to +\infty}{\longrightarrow} 0.$$

$$- \operatorname{Si} |x| > 1, \ x^2 > 1 \text{ d'où}$$

$$u_n = \frac{\pi}{n} \ln \left[\left(x^{2n} - 1 \right) \frac{x - 1}{x + 1} \right]$$

$$u_n = \frac{\pi}{n} \ln \left[\left(x^{2n} - 1 \right) \frac{x - 1}{x + 1} \right]$$

$$= \frac{\pi}{n} \left[\ln \left(x^{2n} - 1 \right) + \ln \left(\frac{x - 1}{x + 1} \right) \right]$$

$$= \frac{\pi}{n} \left[2n \ln \left(|x| \right) + \ln \left(1 + x^{-2n} \right) + \ln \left(\frac{x - 1}{x + 1} \right) \right]$$

$$= 2\pi \ln |x| + \underbrace{\frac{\pi}{n} \ln \left(1 - x^{-2n} \right) + \frac{\pi}{n} \ln \left(\frac{x - 1}{x + 1} \right)}_{n \to +\infty}$$

Donc $u_n \xrightarrow[n \to +\infty]{} 2\pi \ln |x|$.

On a donc le résultat final suivant :

$$I(x) = \begin{cases} 0 & \text{si } |x| < 1\\ 2\pi \ln|x| & \text{si } |x| > 1 \end{cases}$$

6 Approximations numériques de intégrales

6.1 Méthode des rectangles

Estimation de l'erreur Soient $a, b \in \mathbb{R}$, a < b, $f \in C^1([a,b],\mathbb{K})$, $M_1 = \sup_{[a,b]} |f'|$, $n \in \mathbb{N}^*$ et $\sigma_n = (x_0, x_1, \dots, x_n)$ la subdivision régulière d'ordre n de [a,b]. Pour tout $k \in [0,n]$, on a donc $x_k = a + k \frac{b-a}{n}$. Soit

 φ_n la fonction en escalier qui prend la valeur $f\left(x_k\right)$ sur $]x_k,x_{k+1}[$ pour $k\in[0,n-1]$. Posons :

$$\delta_n = \left| \int_a^b f - \int_a^b \varphi_n \right|$$

$$= \left| \int_a^b f - \sum_{k=0}^{n-1} f(x_k) (x_{k+1} - x_k) \right|$$

$$= \left| \int_a^b f - \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) \right|$$

D'après le théorème sur les sommes de RIEMANN, on sait que $\frac{b-a}{n}\sum_{k=0}^{n-1}f\left(a+k\frac{b-a}{n}\right)\underset{n\to+\infty}{\longrightarrow}\int_a^bf$, mais il s'agit là de majorer l'erreur δ_n . Ainsi, d'après la relation de Chasles :

$$\delta_{n} = \left| \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} f(t) dt - \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} f(x_{k}) dt \right|$$

$$= \left| \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} (f(t) - f(x_{k})) dt \right|$$

$$\leq \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} |f(t) - f(x_{k})| dt$$

Or, pour $k \in [0, n-1]$ et $t \in [x_k, x_{k+1}]$, $|f(t) - f(x_k)| = \left| \int_{x_k}^t f'(u) \, du \right|$ car f est une primitive de la fonction continue f'. Ainsi:

$$|f(t) - f(x_k)| \le \int_{x_k}^t |f'(u)| du$$

 $\le M_1(t - x_k)$

Donc

$$\int_{x_{k}}^{x_{k+1}} |f(t) - f(x_{k})| dt \leq M_{1} \int_{x_{k}}^{x_{k+1}} (t - x_{k}) dt$$

$$\leq \frac{M_{1}}{2} \left[(t - x_{k})^{2} \right]_{x_{k}}^{x_{k+1}}$$

$$\leq \frac{M_{1}}{2} (x_{k+1} - x_{k})^{2}$$

$$\leq \frac{M_{1} (b - a)^{2}}{2n^{2}}$$

On en déduit que :

$$\delta_n \leqslant \sum_{k=0}^{n-1} \frac{M_1}{2} \frac{(b-a)^2}{n^2}$$
$$\leqslant \frac{M_1}{2n} (b-a)^2$$

L'erreur diminue proportionnellement à $\frac{1}{n}$: on peut mieux faire!

Preuve du caractère optimal de la majoration Cette égalité est optimale car il y a des fonction pour lesquelles cette inégalité est une égalité.

Prenons
$$a=0, b=1$$
 et $f:t\in[0,1]\longrightarrow t$, ici $M_1=1$. Alors $\int_a^b f=\frac{1}{2}$ et

$$\frac{1-0}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) = \frac{1}{n^2} \sum_{k=0}^{n-1} k$$
$$= \frac{1}{n^2} \frac{n(n-1)}{2}$$
$$= \frac{1}{2} - \frac{1}{2n}$$

Dans ce cas:

$$\delta_n = \left| \frac{1}{2} - \left(\frac{1}{2} - \frac{1}{2n} \right) \right|$$

$$= \frac{1}{2n}$$

$$= \frac{1 \cdot (1 - 0)^2}{2n}$$

6.2 Méthode des rectangles médians

Estimation de l'erreur Soient $a, b \in \mathbb{R}$ avec $a < b, f \in C^2([a,b],\mathbb{K}), M_2 = \sup_{[a,b]} |f''|, n \in \mathbb{N}^*$ et $\sigma_n = (x_0, x_1, \dots, x_n)$ la subdivision régulière d'ordre n de [a,b]. On pose pour $k \in [[0, n-1]], y_k = \frac{x_{k+1} + x_k}{2}$ et φ_n la fonction en escalier égale à $f(y_k)$ sur $]x_k, x_{k+1}[$. Alors :

$$\delta_{n} = \left| \int_{a}^{b} f - \int_{a}^{b} \varphi_{n} \right|$$

$$= \left| \int_{a}^{b} n - \frac{b - a}{n} \sum_{k=0}^{n-1} f\left(a + \left(k + \frac{1}{2}\right) \frac{b - a}{n}\right) \right|$$

$$= \left| \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} f - \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} f(y_{k}) dt \right|$$

$$= \left| \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} (f(t) - f(y_{k})) dt \right|$$

Petite remarque Pour $\alpha, \beta \in \mathbb{R}$ avec $\alpha < \beta$ et $\gamma = \frac{\alpha + \beta}{2}$, on a $\int_{\alpha}^{\beta} (t - \gamma) dt = 0$. En effet,

$$\int_{\alpha}^{\beta} (t - \gamma) dt = \frac{1}{2} \left[(t - \gamma)^{2} \right]_{\alpha}^{\beta}$$
$$= \frac{1}{2} \left((\beta - \gamma)^{2} - (\alpha - \gamma)^{2} \right)$$
$$= 0$$

Ici, pour $k \in [0, n-1]$:

$$\int_{x_{k}}^{x_{k+1}} (f(t) - f(y_{k})) dt = \int_{x_{k}}^{x_{k+1}} [f(t) - f(y_{k}) - \underbrace{f'(y_{k})(t - y_{k})}_{x_{k}}] dt$$

$$\int_{x_{k}}^{x_{k+1}} (t - y_{k}) dt = 0$$

Donc $\delta_n \leqslant \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} \left| f\left(t\right) - \left[f\left(y_k\right) + f'\left(y_k\right)\left(t - y_k\right) \right] \right| \, \mathrm{d}t$. Soit $k \in [0, n-1]$ et $t \in [x_k, x_{k+1}]$, f est de classe \mathcal{C}^2 sur $[y_k, t]$ et $\forall u \in [y_k, t]$, $|f''\left(u\right)| \leqslant M_2$ donc , d'après l'inégalité de TAYLOR-LAGRANGE :

$$|f(t) - [f(y_k) + f'(y_k)(t - y_k)]| \le \frac{M_2}{2}(t - y_k)^2$$

On a donc:

$$\int_{x_{k}}^{x_{k+1}} \left| f(t) - \left[f(y_{k}) + f'(y_{k}) (t - y_{k}) \right] \right| dt \leqslant \frac{M_{2}}{2} \int_{x_{k}}^{x_{k+1}} (t - y_{k})^{2} dt$$

$$\leqslant \frac{M_{2}}{2} \left[\frac{(t - y_{k})^{3}}{3} \right]_{x_{k}}^{x_{k+1}}$$

$$\leqslant \frac{M_{2}}{6} \underbrace{\left[(x_{k+1} - y_{k})^{3} - (x_{k} - y_{k})^{3} \right]}_{2\left(\frac{x_{k+1} - x_{k}}{2}\right)^{3}}$$

$$\leqslant \frac{M_{2}}{24} \underbrace{\frac{(b - a)^{3}}{n^{3}}}$$

D'où

$$\delta_n \leqslant \frac{M_2 \left(b - a\right)^3}{24n^2}$$

Preuve du caractère optimal de la majoration Cette égalité est optimale car il y a des fonction pour lesquelles cette inégalité est une égalité.

En effet, prenons $f: [0,1] \longrightarrow \mathbb{R}$. f est de classe C^2 et $M_2 = 2$. $\int_0^1 f = \frac{1}{3}$ et de plus : $t \mapsto t^2$

$$\frac{1}{n} \sum_{k=0}^{n-1} \left(\frac{1}{2} \left(\frac{k}{n} + \frac{k+1}{n} \right) \right) = \frac{1}{4n^2} \sum_{k=0}^{n-1} (2k+1)^2$$

$$= \frac{1}{4n^2} \left[4 \sum_{k=0}^{n-1} k^2 + 4 \sum_{k=0}^{n-1} k + \sum_{k=0}^{n-1} 1 \right]$$

$$= \frac{1}{4n^2} \left[4 \frac{n(n-1)(2n-1)}{6} + 4 \frac{n(n-1)}{2} + n \right]$$

$$= \frac{1}{4n^2} \left(2 \frac{(n-1)(2n-1)}{3} + 2(n-1) + 1 \right)$$

$$= \frac{1}{12n^2} \left[2(n-1)(2n-1) + 6(n-1+3) \right]$$

$$= \frac{1}{12n^2} \left(4n^2 - 1 \right)$$

$$= \frac{1}{3} - \frac{1}{12n^2}$$

Ainsi:

$$\delta_n = \left| \frac{1}{3} - \left(\frac{1}{3} - \frac{1}{12n^2} \right) \right|$$

$$= \frac{1}{12n^2}$$

$$= \frac{2 \cdot (1 - 0)^3}{24n^2}$$

6.3 Méthode des trapèzes

Soient $a,b \in \mathbb{R}$ avec $a < b, f \in \mathcal{C}^2([a,b],\mathbb{K}), M_2 = \sup_{[a,b]} |f''|, \sigma_n = (x_0,x_1,\ldots,x_n)$ la subdivision régulière d'ordre n sur [a,b] et φ_n la fonction affine par morceaux qui, pour $k \in [0,n]$ coı̈ncide avec f en x_k . Posons là encore $\delta_n = \left| \int_a^b f - \int_a^b \varphi_n \right|$. On a $\int_a^b \varphi_n = \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} \varphi_n(t) \, dt$ d'après la relation de Chasles. Or pour $k \in [0,n-1]$:

$$\int_{x_{k}}^{x_{k+1}} \varphi_{n}(t) dt = (x_{k+1} - x_{k}) \frac{f(x_{k}) + f(x_{k+1})}{2} \quad \text{(aire d'un trapèze)}$$

De plus:

$$\delta_{n} = \left| \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} f(t) dt - \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} \varphi_{n}(t) dt \right|$$

$$= \left| \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} (f(t) - \varphi_{n}(t)) dt \right|$$

$$\leq \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} |f(t) - \varphi_{n}(t)| dt$$

Lemme Soient $\alpha < \beta$, $g \in C^2([a,b], \mathbb{K})$, M un majorant de g'' sur $[\alpha, \beta]$ et $\varphi : [\alpha, \beta] \longrightarrow \mathbb{K}$ telle que $\varphi(\alpha) = g(\alpha)$ et $g(\beta) = \varphi(\beta)$. Alors, $\forall t \in [\alpha, \beta]$:

$$|g(t) - \varphi(t)| \leq \frac{M}{2} (t - \alpha) (\beta - t)$$

$$- \mathbb{K} = \mathbb{R}. \text{ Soit } h(t) = g(t) - \varphi(t) - \frac{M}{2} (t - \alpha) (\beta - t), \text{ } h \text{ est de classe } \mathcal{C}^2 \text{ et } \forall t \in [\alpha, \beta],$$

$$h''(t) = g''(t) - \varphi''(t) + M$$

$$= g''(t) + M \geqslant 0$$

h est convexe sur $[\alpha, \beta]$ donc $\forall t \in [\alpha, \beta]$, $h(t) \leq u(t)$ où u est la fonction affine qui coïncide avec h en α et β . Or $h(\alpha) = h(\beta)$ donc $\forall t \in [\alpha, \beta]$, u(t) = 0 donc $h \leq 0$ donc:

$$g(t) - \varphi(t) \leqslant \frac{M}{2} (t - \alpha) (\beta - t)$$

En considérant $k: t \longrightarrow g(t) - \varphi(t) + \frac{M}{2}(t - \alpha)(\beta - t)$, on montre que $g(t) - \varphi(t) \le -\frac{M}{2}(t - \alpha)(\beta - t)$ d'où le résultat.

 $-\mathbb{K} = \mathbb{C}$. Utiliser le lemme fantastique ^a!

Ici, pour $k \in [[0, n-1]]$ et $t \in [x_k, x_{k+1}]$, $|f(t) - \varphi_n(t)| \leq \frac{M_2}{2} (t - x_k) (x_{k+1} - t)$ d'après le lemme. Par conséquent :

$$\int_{x_{k}}^{x_{k+1}} |f(t) - \varphi_{n}(t)| dt \leqslant \frac{M_{2}}{2} \int_{x_{k}}^{x_{k+1}} (t - x_{k}) (x_{k+1} - t) dt
\leqslant \frac{M_{2}}{2} \left(\left[\frac{(t - x_{k})^{2}}{2} (x_{k+1} - t) \right]_{x_{k}}^{x_{k+1}} + \frac{1}{2} \int_{x_{k}}^{x_{k+1}} (t - x_{k})^{2} dt \right)
\leqslant \frac{M_{2}}{4} \left[\frac{(t - x_{k})^{2}}{3} \right]_{x_{k}}^{x_{k+1}}
\leqslant \frac{M_{2}}{12} \frac{(b - a)^{3}}{n^{3}}$$

a. Voir section 4.3.2.2 du cours complet page 56.

D'où finalement:

$$\delta_n \leqslant \frac{M_2}{12} \frac{(b-a)^3}{n^2}$$

Cette inégalité est aussi optimale.

7 Complément : résultat sur les polynômes

7.1 Résultat

Pour $z \in \mathbb{C}$, soit $T(z) = z^{2n} - 1$. T est polynômiale de degré 2n et T admet 2n racines distinctes qui forment $\mathcal{R}_{2n}(z)^a$. On peut donc écrire :

$$T(z) = 1 \cdot \prod_{u \in \mathbb{U}_{2n}} (z - u)$$

Avec 1 le coefficient dominant de T.

7.2 Explication

– Soit S polynômiale non constante de degré . Si $u \in \mathbb{C}$ est racine de f, alors S(z) = (z - u) Q(z) avec Q polynômial de degré inférieur ou égal à celui de S moins 1. En effet,

$$S(z) = S(z) - S(u)$$

$$= \lambda_0 + \lambda_1 z + \dots + \lambda_d z^d - \left(\lambda_0 + \lambda_1 u + \dots + \lambda_d u^d\right)$$

$$= \sum_{k=1}^d \lambda_k \left(z^k - u^k\right)$$

$$= (z - u) \sum_{k=1}^d \lambda_k \sum_{l=1}^{k-1} z^k u^{k-1-l}$$

D'où le résultat, la double somme correspondant à Q.

- Soit S polynômiale non constante admettant r racines distinctes $a_0, a_1, \ldots, a_{r-1}$. Alors on peut écrire :

$$S(z) = (z - a_0)(z - a_1) \cdots (z - a_{r-1}) Q(z)$$

Avec Q polynômiale.

En effet, procédons par récurrence :

- o C'est vrai pour r = 1.
- o Supposons le résultat vrai pour r et montrons sa validité pour r+1. Soit S polynômiale admettant r+1 racines distinctes a_0, a_1, \ldots, a_r . Alors $S(z) = (z-a_r)U(z)$ avec U polynômiale. Or, pour $i \in [[0, r-1]]$, $0 = S(a_i) = (a_i a_r)U(a_i)$ avec $a_i a_r \neq 0$ donc U admet r racines distinctes donc U s'écrit $U(z) = (z-a_0)\cdots(z-a_{r-1})Q(z)$ avec Q polynômiale, d'où le résultat.
- Soit S polynômiale de degré m supérieur ou égal à 1 admettant m racines distinctes $a_0, a_1, \ldots, a_{m-1}$. Alors

$$S(z) = \lambda (z - a_0) \cdots (z - a_{m-1})$$
 où λ est le coefficient dominant de S

En effet, S s'écrit $S(z) = (z - a_0) \cdots (z - a_{m-1}) Q(z)$ avec Q polynômiale. L'égalité de degré impose que le degré de Q soit 1, c'est-à-dire que Q est une constante non nulle. Il est de plus clair que pour retrouver l'expression de f, il faut que Q soit le coefficient dominant de S.

a. Ensemble des racines 2n-ièmes de z : se reporter à la section 1.3.3.2 du cours complet page 22.