Partial Order Reduction

Part 8

State Space Reduction

- reduce the number of explored states and transitions by exploiting redundancies in the state space
 - redundancies with respect to a property
- requirement on the reduction
 - the property holds in the reduced state space iff it holds in the full state space

Example

- exploit commutativity of concurrently enabled transitions
- ▶ property: ◊¬p

Concrete and Abstracted State Spaces

Figure 4.2 The Labeled Transition Systems T1 and T2

0,0,0 x = 1y = 11,0,0 0,1,0 g=g*2 g=g+21,1,0 1,0,2 0,1,0 v=1\ g = g + 2g=g*2 1,1,0 1,1,2 g = g * 2g = g + 21,1,4 1,1,2

Figure 4.3 Full and Reduced Depth-First Search for $T1 \times T2$ state labels: (x, y, g), reduced state graph = solid line arrows

 Properties valid in full and reduced state graph

$$\Box (g=0 \lor g>x)$$

$$\Diamond (g\geq 2)$$

$$(g=0) U (x=1)$$

 Property valid only in reduced state graph

Relevance of Order of Concurrent Transitions

Note

- order in which concurrent transitions are executed is often irrelevant with respect to the overall behaviour of the system
- yet, LTL permits to discriminate between otherwise equivalent sequences

$$-p \land Op \land \Diamond \neg p$$

take advantage of irrelevance of concurrent transitions when ordering doesn't matter for property to be checked

Depth First Search

On-the-fly DFS with Partial Order Reduction

```
procedure explore_statespace
         set on_stack(q<sub>0</sub>);
         dfs(q_0);
end procedure
procedure dfs(q)
         work_set(q) := ample(q)
         local q';
         hash(q);
         for all elements q' of work_set(q) do
                  if q' not in hashtable
                            then set on_stack(q');
                                     dfs(q');
                  end if;
         end do;
         set completed(q);
end procedure
```

Ample Set

Calculation of ample(q) Í enabled(q)

- include sufficiently many elements from enabled(q) so that model checking algorithm delivers correct results
- use of ample(q) should lead to a significantly smaller state graph (in terms of states and transitions)
- computation of ample(q) should be doable with acceptable computation overhead

State Transition System

State Transition System

- let AP a set of atomic propositions
- a state transition system is a tuple (S, T, S₀, L) where
 - S: finite set of states
 - $-S_0 \subseteq S$: finite set of inital states
 - L: S \rightarrow 2^{AP}: function that labels every state with the atomic propositions true in that state
 - T: finite set of transition relations so that for each $\alpha \in T$, $\alpha \subseteq S \times S$
- ▶ let $\alpha \in T$, s∈S, then
 - α∈ enabled(s) iff (∃s'∈ S)((s, s')∈ α)
 - α is deterministic if for every s, there is at most one s' so that (s, s') $\in \alpha$
 - henceforth we only consider deterministic transitions
 - we write s'= α (s) for (s, s')∈ α
- a path from a state s is a finite or infinite sequence

$$\pi = S_0 \rightarrow_{\alpha_0} S_1 \rightarrow_{\alpha_1} \dots$$

so that $s = s_0$ and for all i, $(s_i, s_{i+1}) \in \alpha_i$

Independence

Independence of transitions

- I ⊆ T × T is an independence relation if I is symmetric and antireflexive and the following conditions hold for each s∈ S and for each (α, β) ∈ I:
 - 1. if α , $\beta \in$ enabled(s) then $\alpha \in$ enabled(β (s)) enabledness: a pair of independent transtions do not enable each other when taken
 - 2. if α , $\beta \in$ enabled(s) then $\alpha(\beta(s)) = \beta(\alpha(s))$ communitativity: executing pair of independent transitions in any order results in same sate
- \triangleright D := (T × T) I (the dependence relation)

Correctness of Pruning

Elemination of one of the branches

- may deliver incorrect results if
 - 1. s₁ and s₂ may influence the outcome of the property check, i.e., the property is not insensitive to whether s₁ or s₂ is being reached
 - 2. s₁ or s₂ may have successor states other than r that would be pruned in case either of the two states did not belong to the reduced state space

Invisisbility

Invisibility

- Iet T=(S, T, S₀, L) a state transition system
- let AP' ⊆ AP
- \bullet $\alpha \in T$ is invisible wrt. AP' if

```
(\forall s, s' \in S \mid s' = \alpha(s)) ((L(s) \cap AP') = (L(s') \cap AP'))
```

(i.e., a transition is invisible with respect to some selected set of propositions if its execution dosn't change the truth value for the selected set of propositions.)

Invariance under Stuttering

Invariance under Stuttering

- relationship between identically labeled sequences of states along the path through a state transition system
- two path σ and ρ through a state transition system are stuttering equivalent (written as $\sigma \sim_{st} \rho$) if the following condition holds:
 - there are two infinite sequences of integers

$$0 = i_0 < i_1 < \dots$$

 $0 = j_0 < j_1 < \dots$

such that for every $k \ge 0$

$$L(s_{ik}) = L(s_{ik+1}) = L(s_{ik+1-1}) = L(r_{jk}) = L(r_{jk+1}) = L(r_{jk+1-1})$$

where all s_i are states from σ and all r_i are states from ρ .

identically labeled sequences of states are called blocks

Invariance under Stuttering

Invariance under Stuttering for LTL fomulae

- an LTL formula f is invariant under stuttering if
 - for each pair of paths π and π' such that $\pi \sim_{\rm st} \pi'$ $\pi \models {\sf f}$ iff $\pi' \models {\sf f}$

Theorem

- let LTL_χ denote the set of all LTL formulae free of the nexttime (Ο) operator
- any property expressible in LTL_χ is invariant under stuttering
- proof: by simple structural induction over the length of LTL_χ formulae

Invariance under Stuttering

Stutter Invariance for Transition Systems

- Let M and M' state transition systems. M and M' are stutter invariant iff
 - they have the same set of initial states
 - for each path σ of M that starts in an initial state of M there is a path σ' of M' that starts in an initial state of M' such that $\sigma\sim_{\rm st}\!\sigma'$
 - for each path σ' of M' that starts in an initial state of M' there is a path σ of M that starts in an initial state of M such that $\sigma' \sim_{\text{st}} \sigma$
- Theorem
 - Let M and M' two stuttering equivalent state transition systems. Then, for every property expressed by an LTL_ χ formula f and every initial state $s \in S_0$ the following holds true

$$(M, s) \models f \text{ iff } (M', s) \models f$$

 I.e., LTL_χ formulae cannot distinguish between stuttering equivalent state transition systems

Reduction

- exploit communitativity and invisibility for stutter invariant property specifications to reduce the size of the explored state space
- now: conditions for the construction of ample set
 - s is fully expanded, iff enabled(s) = ample(s)
 - otherwise, provide conditions for selecting ample(s) such that reduced state space satisfies property expressed by LTL_ χ formula f

C0: at-least-one-successor rule

C1: dependent-transition rule

C2: invisibility rule

C3: cycle condition

for LTL_χ property f, reduction depends on the set AP_f of atomic propositions occurring in f

- ◆ C0: At-Least-One-Successor Rule
 - \forall (\forall s \in S)(ample(s)= \emptyset iff enabled(s)= \emptyset)
 - i.e., if a state has at least one successor in the full state space, it has at least one successor in the reduced state space

◆ C1: Dependent-Transition Rule

- for all states s ∈ S
 - for all paths in the full state space starting at s, the following holds true:
 - a transition α' that is dependent on a transition α ∈ ample(s) cannot be executed without a transition from ample(s) occurring first

Theorem

- the transitions in enabled(s) ample(s) are all independent of those in ample(s)
- Poof: Let γ ∈ enabled(s) ample(s). Let $(\gamma, \delta) \in D$ with $\delta \in$ ample(s). Since $\gamma \in$ enabled(s), in the full state graph there is a path starting with γ . Then, a transition dependent on some other transition in ample(s) would be executed before transition in ample(s), contradicting C1.

Preservation of Correctness when Pruning Graph

- ensure that reduced DFS algorithm, when choosing the next transition to explore from ample(s), does not prune any parts of the graph that are essential to the property
- C1 implies such a graph will have any of the following two forms:
 - case 1: $β_0β_1...β_mα$, where α ∈ ample(s) and each $β_i$ is independent of all transitions in ample(s), including α, or
 - case 2: $\beta_0\beta_1...$ where β_i is independent of all transitions in ample(s)
- C1 also implies that
 - if along a finite sequence of transitions $\beta_0\beta_1...\beta_m$ starting from s none of the transitions of ample(s) have occurred, then all transitions in ample(s) remain enabled in all states reached by this transition sequence

Preservation of Correctness when Pruning Graph

- case 1: $\beta_0 \beta_1 ... \beta_m \alpha$
 - assume $\beta_0\beta_1...\beta_m\alpha$ leads to a state r and $\beta_0\beta_1...\beta_m\alpha$ is pruned
 - due to enabledness and commutativity applied m times, we can construct $\alpha\beta_0\beta_1...\beta_m$ that also leads from s into state r
- case 2: $\beta_0\beta_1$... c.f. later

Preservation of Correctness when Pruning Graph

Pruning of states based on independence of transitions

- $\sigma = s_0 s_1 ... s_m r$ can only be pruned if it is stuttering equivalent to $\rho = sr_0 r_1 ... r_m$
 - property must be unable to distinguish between σ and ρ
 - this is the case if α is invisible, i.e.,

$$L(s_i) = L(r_i)$$
 for all $0 \le i \le m$

♦ C2: Invisibility Rule

- for all states $s \in S$
 - if s is not fully expanded, then every $\alpha \in \text{ample(s)}$ is invisible

Preservation of Correctness when Pruning Graph

- case 2: $\beta_0\beta_1$...
 - $-\beta_0\beta_1$...does not include any transition from ample(s)
 - due to C2, all transitions in ample(s) are invisible
 - let α ∈ ample(s)
 - then $\alpha\beta_0\beta_1$...is stuttering equivalent to $\beta_0\beta_1$...
 - i.e., even though $\beta_0\beta_1$...is not included in the reduced state graph, a stuttering equivalent path $\alpha\beta_0\beta_1$...is included
 - since the property cannot distinguish between both transition sequences, the pruning of $\beta_0\beta_1$...does not matter

Preservation of Correctness when Pruning Graph

problem: transitions may get deferred forever, because of cycle in constructed state graph

2 concurrent processes

- β independent of α_1 , α_2 and α_3
- α_1 , α_2 and α_3 are interdependent and invisible
- β is visible

full state graph of composed system

Preservation of Correctness when Pruning Graph

- construction of reduced state graph
 - initial state s_1 : ample(s_1) := { α_1 }, satisfies C0, C1, C2
 - $-s_2 := \alpha_1(s_1)$, ample(s_2) := { α_2 }, satisfies C0, C1, C2
 - $-s_3 := \alpha_2(s_2)$, ample(s_3) := { α_3 }, satisfies C0, C1, C2
- problem
 - cycle s_1 s_2 , s_3 , s_4 does not execute visible transition β
 - β defered indefinitely

C3: Cycle Condition

the reduced state graph may not contain a cycle in which $\alpha \in$ enabled(s) for some state s of the cycle so that $\alpha \notin$ ample(s') for all states s'=s of the cycle

Correctness of Pruning

Elemination of one of the branches

- may deliver incorrect results if
 - 1. s₁ and s₂ may influence the outcome of the property check, i.e., the property is not insensitive to whether s₁ or s₂ is being reached
 - by C2, β must be invisible
 - consequently, s,s₁,r and s,s₂,r are stuttering equivalent
 - no LTL_χ property capable of discriminating between these sequences

Correctness of Pruning

Elemination of one of the branches

- may deliver incorrect results if
 - 2. s₁ or s₂ may have successor states other than r that would be pruned in case either of the two states did not belong to the reduced state space
 - show that γ is still enabled in r and that α , γ and β , α , γ correspond to stuttering equivalent state sequences
 - γ and β are independent (C1)
 - therefore γ enabled in r
 - assume γ leads to r' from r and to s₁' from s₁
 - since β invisible, s,s₁,s' and s,s₂,r,r' are stuttering invariant

Computing Ample Sets

◆ C1

- Theorem
 - checking condition C1 for some state s and a set T ⊆ enabled(s) is at least as hard as checking reachability for the full state space
 - proof (c.f. [Clarke, Grumberg and Peled] 10.5.1)
 - basically, you need to traverse all successor states to a state in which some transition is enabled to ensure ordering constraint
- solution: use of an approximating heuristics

Computing Ample Sets

♦ C3

- refers to complete reduced state graph, but cycle checking is important
- desire to compute C3 on-the-fly
- Theorem
 - a sufficient condition for C3 is that at least one state along each cycle in the reduced state graph is fully expanded
 - proof (c.f. [Clarke, Grumberg and Peled] 10.5.1)
- for depth-first search, this can be computed on-the fly

♦ C3'

- for all states s, if s is not fully expanded, then no transition in ample(s) may reach a state that is on the search stack
- over-approximates C3, i.e., this is a stronger condition than C3
 - leads potentially to less reduction

Bibliographic References

- [Clarke, Grumberg and Peled] E. Clarke, O. Grumberg and D. Peled,
 Model Checking, MIT Press, Cambridge, 1999, Chapter 10.
- [Holzmann 95] G. Holzmann, *The Verification of Concurrent Systems*, unpublished manuscript, AT&T Inc., 1995, Chapter 4.