ASSIGNMENT 1

JONAS TREPIAKAS - HVN548

Problem 0.1 (1). Let $\pi: \mathbb{R} \to \operatorname{GL}(\mathbb{R}^2)$ by $\pi(t) = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}$ with respect to the standard basis $\{e_1, e_2\}$ of \mathbb{R}^2 . Consider the tensor product

$$\pi \otimes \pi \colon \mathbb{R} \to \mathrm{GL}\left(\mathbb{R}^2 \otimes \mathbb{R}^2\right)$$
.

Identify $\mathbb{R}^2 \otimes \mathbb{R}^2 \to M_{2 \times 2}(\mathbb{R})$ via $e_i \otimes e_j \mapsto E_{ij}$.

(1) Fix the following basis $\mathcal{B} = \{A_1, A_2, A_3, A_4\}$ of $M_{2\times 2}(\mathbb{R}) \cong \mathbb{R}^2 \otimes \mathbb{R}^2$:

$$A_1 = I_2, \quad A_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_4 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Compute $(\pi \otimes \pi)_{\mathcal{B}} : \mathbb{R} \to GL_4(\mathbb{R})$.

(2) Compute the decomposition of $M_{2\times 2}(\mathbb{R})$ into minimal invariant subspaces (with respect to the representation $\pi\otimes\pi$) and prove that the stated subspaces are indeed minimal.

Proof. (1) Let $\varphi_{\mathcal{B}} \colon \mathbb{R}^4 \to \mathbb{R}^4$ be the change of basis given by $\varphi_{\mathcal{B}}(A_i) = e_i$. By definition,

$$(\pi \otimes \pi)_{\mathcal{B}}(t)e_{i} = \varphi_{\mathcal{B}}(\pi \otimes \pi(t)A_{i})$$

Now,

$$A_1 = e_1 \otimes e_1 + e_2 \otimes e_2$$

$$A_2 = e_1 \otimes e_1 - e_2 \otimes e_2$$

$$A_3 = e_2 \otimes e_1 + e_1 \otimes e_2$$

$$A_4 = e_1 \otimes e_2 - e_2 \otimes e_1$$

SO

$$\pi \otimes \pi(t) A_1 = \pi(t) e_1 \otimes \pi(t) e_1 + \pi(t) e_2 \otimes \pi(t) e_2$$

$$= (\cos t e_1 - \sin t e_2) \otimes (\cos t e_1 - \sin t e_2) + (\sin t e_1 + \cos t e_2) \otimes (\sin t e_1 + \cos t e_2)$$

$$= \cos^2 t e_1 \otimes e_1 + \sin^2 t e_2 \otimes e_2 - \sin t \cos t (e_1 \otimes e_2 + e_2 \otimes e_1)$$

$$+ \sin^2 t e_1 \otimes e_1 + \cos^2 t e_2 \otimes e_2 + \cos t \sin t (e_1 \otimes e_2 + e_2 \otimes e_1)$$

$$= e_1 \otimes e_1 + e_2 \otimes e_2$$

$$= A_1$$

$$\pi \otimes \pi(t) A_2 = \pi(t) e_1 \otimes \pi(t) e_1 - \pi(t) e_2 \otimes \pi(t) e_2$$

$$= (\cos t e_1 - \sin t e_2) \otimes (\cos t e_1 - \sin t e_2) - (\sin t e_1 + \cos t e_2) \otimes (\sin t e_1 + \cos t e_2)$$

$$= \cos^2 t e_1 \otimes e_1 + \sin^2 t e_2 \otimes e_2 - \cos t \sin t (e_1 \otimes e_2 + e_2 \otimes e_1)$$

$$= \cos^2 t e_1 \otimes e_1 - \cos^2 t e_2 \otimes e_2 - \sin t \cos t (e_1 \otimes e_2 + e_2 \otimes e_1)$$

$$= \cos(2t) e_1 \otimes e_1 - \cos(2t) e_2 \otimes e_2 - \sin(2t) (e_1 \otimes e_2 + e_2 \otimes e_1)$$

$$= \cos(2t) A_2 - \sin(2t) A_3$$

$$\pi \otimes \pi(t) A_3 = (\sin t e_1 + \cos t e_2) \otimes (\cos t e_1 - \sin t e_2) + (\cos t e_1 - \sin t e_2) \otimes (\sin t e_1 + \cos t e_2)$$

$$= \cos t \sin t e_1 \otimes e_1 - \cos t \sin t e_2 \otimes e_2 + \cos^2 t e_2 \otimes e_1 - \sin^2 t e_1 \otimes e_2$$

$$+ \cos t \sin t e_1 \otimes e_1 - \sin t \cos t e_2 \otimes e_2 + \cos^2 t e_2 \otimes e_1 - \sin^2 t e_1 \otimes e_2$$

$$+ \cos t \sin t e_1 \otimes e_1 - \sin t \cos t e_2 \otimes e_2 + \cos^2 t e_1 \otimes e_2 - \sin^2 t e_2 \otimes e_1$$

$$= \sin(2t) e_1 \otimes e_1 - \sin t \cos t e_2 \otimes e_2 + \cos^2 t e_1 \otimes e_2 - \sin^2 t e_2 \otimes e_1$$

$$= \sin(2t) A_2 + \cos(2t) A_3$$

$$\pi \otimes \pi(t) A_4 = (\cos t e_1 - \sin t e_2) \otimes (\sin t e_1 + \cos t e_2) - (\sin t e_1 + \cos t e_2) \otimes (\cos t e_1 - \sin t e_2)$$

$$= \cos t \sin t e_1 \otimes e_1 - \sin t e_2 \otimes (\sin t e_1 + \cos t e_2) - (\sin t e_1 + \cos t e_2) \otimes (\cos t e_1 - \sin t e_2)$$

$$= \cos t \sin t e_1 \otimes e_1 - \cos t \sin t e_2 \otimes e_2 + \cos^2 t e_1 \otimes e_2 - \sin^2 t e_2 \otimes e_1$$

$$= \sin(2t) A_2 + \cos(2t) A_3$$

$$\pi \otimes \pi(t) A_4 = (\cos t e_1 - \sin t e_2) \otimes (\sin t e_1 + \cos t e_2) - (\sin t e_1 + \cos t e_2) \otimes (\cos t e_1 - \sin t e_2)$$

$$= \cos t \sin t e_1 \otimes e_1 - \cos t \sin t e_2 \otimes e_2 + \cos^2 t e_1 \otimes e_2 - \sin^2 t e_2 \otimes e_1$$

$$= \cos t \sin t e_1 \otimes e_1 - \cos t \sin t e_2 \otimes e_2 + \cos^2 t e_1 \otimes e_2 - \sin^2 t e_2 \otimes e_1$$

$$= \cos t \sin t e_1 \otimes e_1 - \cos t \sin t e_2 \otimes e_2 + \sin^2 t e_1 \otimes e_2 - \sin^2 t e_2 \otimes e_1$$

$$= \cos t \sin t e_1 \otimes e_1 - \cos t \sin t e_2 \otimes e_2 + \sin^2 t e_1 \otimes e_2 - \sin^2 t e_2 \otimes e_1$$

$$= \cos t \sin t e_1 \otimes e_1 - \cos t \sin t e_2 \otimes e_2 + \sin^2 t e_1 \otimes e_2 - \sin^2 t e_2 \otimes e_1$$

$$= e_1 \otimes e_2 - e_2 \otimes e_1$$

$$= e_1$$

Thus the matrix for $(\pi \otimes \pi)_{\mathcal{B}}$ with respect to the standard basis becomes

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(2t) & \sin(2t) & 0 \\ 0 & -\sin(2t) & \cos(2t) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(2) It suffices to decompose $(\pi \otimes \pi)_{\mathcal{B}}$ into irreducible subspaces. Now since $(\pi \otimes \pi)_{\mathcal{B}}(e_i) = e_i$ for i = 1, 4, we have that $\operatorname{span}(e_1)$ and $\operatorname{span}(e_4)$ are $(\pi \otimes \pi)_{\mathcal{B}}$ invariant subspaces. Furthermore, since they are 1-dimensional, they are irreducible. Let $W = \operatorname{span}(e_2, e_3)$. On W, $(\pi \otimes \pi)_{\mathcal{B}}$ restricts to the representation

$$\begin{pmatrix} \cos(2t) & \sin(2t) \\ -\sin(2t) & \cos(2t) \end{pmatrix}$$

which is a rotation matrix. By example 1.20, this representation is irreducible since it is irreducible for all s when we insert $s = \frac{1}{2}t$, hence also for all t. Hence $\operatorname{span}(e_1), \operatorname{span}(e_2, e_3)$ and $\operatorname{span}(e_4)$ are the minimal invariant subspaces of \mathbb{R}^4 with respect to $(\pi \otimes \pi)_{\mathcal{B}}$. By changing back in bases, we find that $\operatorname{span}(A_1), \operatorname{span}(A_2, A_3)$ and $\operatorname{span}(A_4)$ are the minimal invariant subspaces of $\pi \otimes \pi$.

Problem 0.2 (2). Let $\pi \colon \mathbb{R} \to \mathrm{GL}_2(\mathbb{R})$ be given by $\pi(t) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ and let $\pi_0 \colon \mathbb{R} \to \mathbb{R}$

 $GL_1(\mathbb{R}) = \mathbb{R}^{\times}$ be given by $\pi_0(t) = 1$ be the one-dimensional trivial representation of \mathbb{R} . Find non-zero intertwining operators from π_0 to π and from π to π_0 .

Solution. An intertwining operator from π_0 to π is a linear map $\varphi \colon \mathbb{R} \to \mathbb{R}^2$ such that $\pi(g) \circ \varphi = \varphi \circ \pi_0(g)$ for all g. Thus we want to find φ such that for all t

$$\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \circ \varphi = \varphi \circ I$$

For this, we can simply choose $\varphi(e_1) = e_1$, giving $[\varphi] = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Now, an intertwining operator from π to π_0 is a linear map $\psi \colon \mathbb{R}^2 \to \mathbb{R}$ such that

$$\pi_0(t) \circ \psi = \psi \circ \pi(t) = \psi \circ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$

If we define $\psi(e_1) = 0$ and $\psi(e_2) = e_1$ so $[\psi] = (0 \quad 1)$, we get $\pi_0(t) \circ \psi(e_1) = 0 = \psi \circ \pi(t)(e_1)$, while $\pi_0(t) \circ \psi(e_2) = e_1 = \psi \circ \pi(t)e_2$. So ψ is an intertwining operator from π to π_0 .

Problem 0.3 (3). Suppose that π, σ_1, σ_2 are finite dimensional completely reducible representations of a group G. Show that if $\pi \oplus \sigma_1$ is equivalent to $\pi \oplus \sigma_2$, then σ_1 is equivalent to σ_2 .

Solution. Suppose $\pi\colon G\to \mathrm{GL}(V),\ \sigma_1\colon G\to \mathrm{GL}(U_1)$ and $\sigma_2\colon G\to \mathrm{GL}(U_2)$ are the representations.

Now, by assumption, there exists an isomorphism $\varphi \colon V \oplus U_1 \to V \oplus U_2$ such that $\pi \oplus \sigma_2 = \varphi \circ (\pi \oplus \sigma_1) \circ \varphi^{-1}$. Note that since π, σ_1, σ_2 are completely reducible, we can write $\pi \simeq \pi_1 \oplus \ldots \oplus \pi_n, \sigma_1 \simeq \sigma_{1,1} \oplus \ldots \oplus \sigma_{1,m}$ and $\sigma_2 \simeq \sigma_{2,1} \oplus \ldots \oplus \sigma_{2,k}$. Then

$$\pi \oplus \sigma_1 \simeq \bigoplus_{i=1}^n \pi_i \oplus \bigoplus_{j=1}^m \sigma_{1,j}$$

and

$$\pi \oplus \sigma_2 \simeq \bigoplus_{i=1}^n \pi_i \oplus \bigoplus_{j=1}^k \sigma_{2,j}$$

are also completely reducible by theorem 3.7 (as well as the direct sum of two irreducible representations again being irreducible). Furthermore, by corollary 3.10, m = k.

Now, φ must take an irreducible subspace of $V \oplus U_1$ to an irreducible subspace of $V \oplus U_2$. So φ induces a bijection using Corollary 3.10:

 $\tilde{\varphi}$: $\{V_1, \dots, V_n, U_{1,1}, \dots, U_{1,m}\} \to \{V_1, \dots, V_n, U_{2,1}, \dots, U_{2,m}\}$ where V_i is the irreducible subspace of π_i , $U_{1,i}$ of $\sigma_{1,i}$ and $U_{2,i}$ of $\sigma_{2,i}$. Thus, for each i, $\varphi \circ \sigma_{1,i} \circ \varphi^{-1}$ must be one of the π_j or $\sigma_{2,j}$. Now, note that if it is π_j , then in the decomposition of $\pi \oplus \sigma_1$, we have 2 irreducible representations equivalent to $\sigma_{1,i}$. Hence in the decomposition of $\pi \oplus \sigma_2$, we must also have two, so there must be another irreducible factor also equivalent to $\sigma_{1,i}$. The same argument applies as above, and after a finite number of steps, we find that there must be some $\sigma_{2,j}$ equivalent to $\sigma_{1,i}$, since otherwise we would obtain at least n+1 irreducible factors equivalent to $\sigma_{1,i}$ in $\pi \oplus \sigma_1$, but only n in $\pi \oplus \sigma_2$, giving a contradiction. Let φ_{i,j_i} be the isomorphism

 $U_{1,i} \to U_{2,j_i}$ such that $\varphi_{i,j_i} \circ \sigma_{1,i} \circ \varphi_{i,j_i}^{-1} = \sigma_{2,j_i}$. Applying this argument to each $\sigma_{1,i}$, we obtain isomorphisms $\varphi_{1,j_1}, \ldots, \varphi_{m,j_m}$. But then pasting these together by letting $\varphi(x) = \varphi_{i,j_i}(x)$ when $x \in U_{1,i}$, we get an isomorphism $\varphi \colon U_1 \to U_2$ such that $\varphi \circ \sigma_{1,i} \circ \varphi^{-1} = \sigma_{2,j_i}$ for all i, so $\varphi \circ \sigma_1 \circ \varphi^{-1} = \sigma_2$. Thus $\sigma_1 \simeq \sigma_2$.

Problem 0.4 (4). Let G be a finite group and π_1, π_2 two one-dimensional representations of G. Let $\pi = \pi_1 \oplus \pi_2$. Compute $\pi \otimes \pi$ and $\operatorname{Sym}^2 \pi$, that is, find a decomposition of those representations into irreducible ones.

Solution. Suppose $\pi_1, \pi_2 \colon G \to \operatorname{GL}(V)$ where V is a one-dimensional vector space over a field k. Fix an isomorphism $V \cong k$, so that we can from now assume V = k. Then since $\operatorname{GL}(k) \cong k^{\times} = k - \{0\}$, we have that $\pi_1(g) = c_g$ and $\pi_2(g) = d_g$ where c_g and d_g are non-zero constants. Since π_1, π_2 are one-dimensional, π is two-dimensional, hence $\pi \otimes \pi$ is four-dimensional.

$$\pi \otimes \pi(g) = \pi(g) \otimes \pi(g) = (\pi_1(g), \pi_2(g)) \otimes (\pi_1(g), \pi_2(g)) = (c_g, d_g) \otimes (c_g, d_g)$$

Thus

$$\pi \otimes \pi(q)((x,y) \otimes (v,w)) = \pi(q)(x,y) \otimes \pi(q)(v,w) = (c_ax,d_ay) \otimes (c_av,d_aw)$$

Hence, if we let $v_1 = e_1 \otimes e_1$, $v_2 = e_1 \otimes e_2$, $e_3 = e_2 \otimes e_1$ and $e_4 = e_2 \otimes e_2$, a matrix representation for $\pi \otimes \pi(g)$ in the basis $\mathcal{B} = \{v_1, v_2, v_3, v_4\}$ becomes

$$\begin{pmatrix} c_g^2 & 0 & 0 & 0 \\ 0 & c_g d_g & 0 & 0 \\ 0 & 0 & c_g d_g & 0 \\ 0 & 0 & 0 & d_g^2 \end{pmatrix}$$

Another way to see this is as follows: By example 3.13, $\pi \otimes \pi$ is equivalent to $\prod : G \to \operatorname{GL}_{2\times 2}(V)$ given by $\prod (g)A = (\pi)_{\mathcal{B}}(g)A(\pi)_{\mathcal{B}}(g)^t$. Choosing any basis \mathcal{B} , we find that $\pi(g) = (\pi_1(g), \pi_2(g))$ and each $\pi_i(g)$ is constant nonzero, so its matrix representation becomes

$$\pi(g) = \begin{pmatrix} c & 0 \\ 0 & d \end{pmatrix}$$

Hence if $A = \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix}$, we get

$$\pi(g)A\pi(g)^t = \begin{pmatrix} c & 0 \\ 0 & d \end{pmatrix} \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} c & 0 \\ 0 & d \end{pmatrix} = \begin{pmatrix} c & 0 \\ 0 & d \end{pmatrix} \begin{pmatrix} \alpha_{11}c & \alpha_{12}d \\ \alpha_{21}c & \alpha_{22}d \end{pmatrix} = \begin{pmatrix} \alpha_{11}c^2 & \alpha_{12}cd \\ \alpha_{21}cd & \alpha_{22}d^2 \end{pmatrix}$$

Hence each subspace $V_i \subset M_{2\times 2}(F)$ where V_i is spanned by the matrix which has entry 1 in the *i* th entry and 0 elsewhere, where we just enumerate the entries using a lexicographic ordering, for example. So

$$V_1 = \operatorname{span} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
$$V_2 = \operatorname{span} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
$$V_3 = \operatorname{span} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
$$V_4 = \operatorname{span} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

These are all 1-dimensional hence irreducible. As shown above, they are also invariant under \prod . So

$$\pi \otimes \pi = (\pi \otimes \pi)_{V_1} \oplus \ldots \oplus (\pi \otimes \pi)_{V_4}$$

is a decomposition of $\pi \otimes \pi$ into irreducible components.

Now we wish to find $\operatorname{Sym}^2 \pi$. Recall that

$$\operatorname{Sym}^2 k^2 = k^2 \otimes k^2 / I$$

where I is generated by elements of the form

$$v \otimes w - w \otimes v$$
.

Thus we get the following identification in $\operatorname{Sym}^2 k^2$:

$$(0,1) \otimes (1,0) = (1,0) \otimes (0,1)$$

So in fact,

$$\operatorname{Sym}^2 k^2 \cong \operatorname{span}((1,0) \otimes (1,0)) \oplus \operatorname{span}((0,1) \otimes (1,0)) \oplus \operatorname{span}((0,1) \otimes (0,1))$$

Now, since $\operatorname{Sym}^2\pi$ is simply the descent of $\pi\otimes\pi$ to the quotient $k^2\times k^2/I$, V_1 and V_4 remain invariant. Furthermore, $\operatorname{Sym}^2\pi\left((1,0)\otimes(0,1)\right)=(1,0)\otimes(0,1)$, so $W_2:=\operatorname{span}\left((0,1)\otimes(1,0)\right)$ is also invariant. Let $W_1:=V_1$ and $W_3:=V_4$. Then we have shown that W_1,W_2 and W_3 are invariant under $\operatorname{Sym}^2\pi$. Furthermore, each is 1-dimensional, and Sym^2k^2 decomposes to a direct sum $\operatorname{Sym}^2k^2\cong W_1\oplus W_2\oplus W_3$. Since each $\operatorname{Sym}^2\pi|_{W_i}$ is invariant, this gives a decomposition of $\operatorname{Sym}^2\pi$ into three irreducible representations.