Practical No 1

Aim: Implementation of Logic programming using Prolog DFS for water jug problems.

Code:

```
water_jug(X,Y):- X>4,Y<3,write('4L jug overflow.'),nl.
water_jug(X,Y):- X<4,Y>3,write('3L jug overflow.'),nl.
water_jug(X,Y):- X>4,Y>3,write('Both jugs overflow.'),nl.
water jug(X,Y):- (X=:=0, Y=:=0,nl,write('4L:0 & 3L:3 (Action: Fill 3L jug.)'),YY is 3,
water_jug(X,YY));
(X=:=0, Y=:=0,nl,write('4L:4 & 3L:0 (Action: Fill 4L jug.)'),XX is 4,
water_jug(XX,Y));
(X=:=2, Y=:=0,nl,write('4L:2 & 3L:0 (Action: Goal State reached...)'));
(X=:=4, Y=:=0,nl,write('4L:1 & 3L:3 (Action: Pour water from 4L to 3L jug.)'),XX is
X-3,YY is 3,water_jug(XX,YY);
(X=:=0, Y=:=3,nl,write('4L:3 & 3L:0 (Action: Pour water from 3L to 4L jug.)'),XX is
3,YY is 0,water_jug(XX,YY));
(X=:=1, Y=:=3,nl,write('4L:1 & 3L:0 (Action: Empty 3L jug.)'),YY is 0,
water_jug(X,YY));
(X=:=3, Y=:=0,nl,write('4L:3 & 3L:3 (Action: Fill 3L jug.)'),YY is 3,
water iug(X,YY);
(X=:=3, Y=:=3,nl,write('4L:4 & 3L:2 (Action: Pour water from 3L jug to 4L jug
untill 4L jug is full.)'),XX is X+1,YY is Y-1, water_jug(XX,YY));
(X=:=1, Y=:=0,nl,write('4L:0 & 3L:1 (Action: Pour water from 4L jug to 3L
jug.)'),XX is Y,YY is X,water_jug(XX,YY));
(X=:=0, Y=:=1,nl,write('4L:4 & 3L:1 (Action: Fill 4L jug.)'),XX is 4,
```

```
water_jug(XX,Y));
(X=:=4, Y=:=1,nl,write('4L:2 & 3L:3 (Action: Pour water from 4L to 3L jug untill 3L
jug is full.)'),XX is X-2,YY is Y+2,water_jug(XX,YY));
(X=:=2, Y=:=3,nl,write('4L:2 & 3L:0 (Action: Empty 3L jug.)'),YY is 0,
water_jug(X,YY));
(X=:=4, Y=:=2,nl,write('4L:0 & 3L:2 (Action: Empty 4L jug.)'),XX is 0,
water_jug(XX,Y));
(X=:=0, Y=:=2,nl,write('4L:2 & 3L:0 (Action: Pour water from 3L jug to 4L
jug.)'),XX is Y,YY is X,water_jug(XX,YY)).
```

Output:

```
% d:/131_sakib_tamboli/waterjug_131_sakib_tamboli compiled 0.00 sec, -3 clauses
?- water_jug(3,3).
4L:4 & 3L:2 (Action: Pour water from 3L jug to 4L jug
untill 4L jug is full.)
4L:0 & 3L:2 (Action: Empty 4L jug.)
4L:2 & 3L:0 (Action: Pour water from 3L jug to 4L
jug.)
4L:2 & 3L:0 (Action: Goal State reached...)
true .
?- water_jug(5,5).
Both jugs overflow.
true
Unknown action: 0 (h for help)
Action?
Unknown action: 0 (h for help)
Action? .
?- water_jug(4,4).
false.
?- water_jug(2,2).
false.
?- water_jug(1,1).
false.
2- I
```

Practical No 2

Aim: Implementation of Logic programing using PROLOG BFS for tic-tac toe problem

Code: Tic TacToe % Minimal Tic Tac Toe game in Prolog (2-player, terminal-based) % Initial empty board board(['', '', '', % Display the board display_board([A,B,C,D,E,F,G,H,I]):format(' \sim w | \sim w | \sim w \sim n', [A,B,C]), format('--+---+n'), format(' \sim w | \sim w | \sim w \sim n', [D,E,F]), format('--+---+n'), format(' \sim w | \sim w | \sim w \sim n \sim n', [G,H,I]). % Make a move: replace N-th position (1-indexed) with X or O move(Board, Pos, Player, NewBoard):nth1(Pos, Board, ''), % Ensure the spot is empty replace(Board, Pos, Player, NewBoard). % Replace helper $replace([_|T], 1, X, [X|T]).$ replace([H|T], I, X, [H|R]) :-I > 1, I1 is I - 1, replace(T, I1, X, R). % Win conditions win(Board, Player):member([A,B,C], [[1,2,3], [4,5,6], [7,8,9], [1,4,7], [2,5,8], [3,6,9], [1,5,9], [3,5,7]]),nth1(A, Board, Player), nth1(B, Board, Player), nth1(C, Board, Player).

```
% Start game
play:-
  board(B), display_board(B),
  play_turn(B, 'X').
% Alternate turns
play_turn(Board, Player) :-
  write(Player), write("'s turn. Enter position (1-9): "),
  read(Pos),
  move(Board, Pos, Player, NewBoard),
  display_board(NewBoard),
  (win(NewBoard, Player) ->
    write(Player), write('wins!'), nl
  ; switch(Player, Next), play_turn(NewBoard, Next)
  ).
% Switch player
switch('X', 'O').
switch('O', 'X').
```

Output:

```
\% d:/131_sakib_tamboli/tictactoe compiled 0.00 sec, -3 clauses ?- play.
X's turn. Enter position (1-9): 3.
O's turn. Enter position (1-9): |: 2. | 0 | X
| X |
O's turn. Enter position (1-9): |: 9. | 0 | X
  | X |
 | | 0
X's turn. Enter position (1-9): |: 7.
 | O | X
 | X |
X | 0
X wins!
true
```

Practical No 3

Aim: Implementation of Logic programming using PROLOG Hillclimbing to solve 8-puzzle problem

Code: Prolog 8puzzle % Simple Prolog Planner for the 8 Puzzle Problem /* This predicate initialises the problem states. The first argument of solve is the initial state, the 2nd the goal state, and the third the plan that will be produced.*/ test(Plan):write('Initial state:'),nl, Init= [at(tile4,1), at(tile3,2), at(tile8,3), at(empty,4), at(tile2,5), at(tile6,6), at(tile5,7), at(tile1,8), at(tile7,9)], write_sol(Init), Goal= [at(tile1,1), at(tile2,2), at(tile3,3), at(tile4,4), at(empty,5), at(tile5,6), at(tile6,7), at(tile7,8), at(tile8,9)], nl, write('Goal state:'), nl, write(Goal),nl,nl, solve(Init,Goal,Plan). solve(State, Goal, Plan):solve(State, Goal, [], Plan). % Determines whether Current and Destination tiles are a valid move. is_movable(X1,Y1):- (1 is X1 - Y1); (-1 is X1 - Y1); (3 is X1 - Y1); (-3 is X1 - Y1). /* This predicate produces the plan. Once the Goal list is a subset of the current State the plan is complete and it is written to the screen using write sol */ solve(State, Goal, Plan, Plan):is subset(Goal, State), nl, write_sol(Plan). solve(State, Goal, Sofar, Plan):act(Action, Preconditions, Delete, Add), is subset(Preconditions, State), \+ member(Action, Sofar),

delete list(Delete, State, Remainder),

```
append(Add, Remainder, NewState),
  solve(NewState, Goal, [Action|Sofar], Plan).
/* The problem has three operators.
1st arg = name
2nd arg = preconditions
3rd arg = delete list
4th arg = add list. */
% Tile can move to new position only if the destination tile is empty & Manhattan distance = 1
act(move(X,Y,Z),
  [at(X,Y), at(empty,Z), is\_movable(Y,Z)],
  [at(X,Y), at(empty,Z)],
  [at(X,Z), at(empty,Y)]).
% Utility predicates.
% Check is first list is a subset of the second
is_subset([H|T], Set):-
  member(H, Set),
  is_subset(T, Set).
is_subset([], _).
% Remove all elements of 1st list from second to create third.
delete list([H|T], Curstate, Newstate):-
  remove(H, Curstate, Remainder),
  delete_list(T, Remainder, Newstate).
delete_list([], Curstate, Curstate).
remove(X, [X|T], T).
remove(X, [H|T], [H|R]):-
  remove(X, T, R).
write_sol([]).
write sol([H|T]):-
  write_sol(T),
  write(H), nl.
append([H|T], L1, [H|L2]):-
  append(T, L1, L2).
append([], L, L).
member(X, [X|_]).
```

```
member(X, [\_|T]):- member(X, T).
```

Output:

```
?-
% d:/131_sakib_tamboli/8puzzle compiled 0.00 sec, -3 clauses
?- test(plan).
Initial state:
at(tile7,9)
at(tile1,8)
at(tile5,7)
at(tile6,6)
at(tile2,5)
at(empty,4)
at(tile8,3)
at(tile8,3)
at(tile4,1)

Goal state:
[at(tile1,1),at(tile2,2),at(tile3,3),at(tile4,4),at(empty,5),at(tile5,6),at(tile6,7),at(tile7,8),at(tile8,9)]

false.
```

Practical No 4

Aim: Introduction to python libraries - basic python libraries numpy, pandas

```
# NUMPY
import numpy as np
x=np.array([1,2,3,4])
print("131 Sakib Tamboli")
print(type(x))
print(x)
 <class 'numpy.ndarray'>
 131 Sakib Tamboli
 [1 2 3 4]
x=np.array([1,2,'n',4])
X
 array(['1', '2', 'n', '4'], dtype='<U11')
x=np.array([1,2,'name',4])
 array(['1', '2', 'name', '4'], dtype='<U11')
#Generating array using arange
d=np.arange(1,11,2)
d
 array([1, 3, 5, 7, 9])
np.ones((3,4))
```

```
array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
```

np.random.rand(4)

```
array([0.01512685, 0.7664744 , 0.0110422 , 0.82456936])
```

np.zeros((3,4))

```
array([[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]])
```

np.random.rand(5,4)

```
array([[0.05504293, 0.52274772, 0.28453706, 0.06866304],
        [0.22054251, 0.53991789, 0.565261 , 0.13424126],
        [0.39523458, 0.1932152 , 0.74504561, 0.98108558],
        [0.96146691, 0.87538962, 0.37460555, 0.68020478],
        [0.40000506, 0.73520801, 0.95441392, 0.65584187]])
```

np.logspace(1,10,num=5,endpoint=True,base=10.0)

```
array([1.00000000e+01, 1.77827941e+03, 3.16227766e+05, 5.62341325e+07, 1.00000000e+10])
```

grid=np.arange(start=1,stop=10).reshape(3,3) grid

```
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
```

```
mat=np.array([[1,2,3],[4,5,6],[7,8,9]]) mat
```

```
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
```

mat.shape

```
(3, 3)
```

mat2=np.array([[10,20,30],[40,50,60],[70,80,90]]) mat2

```
array([[10, 20, 30],
[40, 50, 60],
[70, 80, 90]])
```

np.add(mat,mat2)

```
array([[11, 22, 33],
[44, 55, 66],
[77, 88, 99]])
```

np.multiply(mat,mat2)

```
array([[ 10, 40, 90],
[160, 250, 360],
[490, 640, 810]])
```

mat[1,2]

6

mat[1:2]

```
array([[4, 5, 6]])
```

arr1=np.array([[1,2,3],[4,5,6],[7,8,9]]) arr2=np.arange(10,19,1).reshape(3,3) arr1

```
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
```

arr2

```
array([[10, 11, 12],
       [13, 14, 15],
       [16, 17, 18]])
```

np.multiply(arr1,arr2)

```
array([[ 10, 22, 36],
      [52, 70, 90],
      [112, 136, 162]])
```

arr2[:,0]

```
array([10, 13, 16])
```

arr2[0,:]

```
array([10, 11, 12])
```

arr1_sub=arr1[:2,:2]

arr1_sub

arr1

```
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])
```

a_row=np.append(arr1,[[10,11,12]],axis=0)

a_row

```
array([[ 1, 2, 3],
      [4, 5, 6],
      [7, 8, 9],
      [10, 11, 12]])
```

#PANDAS

import pandas as pd

data1=pd.read_csv('D:/131_Sakib_Tamboli/mtcars.csv')

print("131 Sakib Tamboli")

data1.info()

```
131 Sakib Tamboli
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32 entries, 0 to 31
Data columns (total 12 columns):
    Column Non-Null Count Dtype
           -----
    model
           32 non-null
                          object
0
         32 non-null
                          float64
 1
  mpg
2 cyl
          32 non-null
                          int64
   disp 32 non-null
                          float64
3
          32 non-null
                          int64
4
  hp
  drat 32 non-null
wt 32 non-null
                          float64
 5
                          float64
 6
   qsec 32 non-null
 7
                          float64
         32 non-null
                          int64
 8
   VS
 9
           32 non-null
                          int64
    am
10 gear 32 non-null
                         int64
11 carb
         32 non-null
                          int64
dtypes: float64(5), int64(6), object(1)
memory usage: 3.1+ KB
```

data1.head()

[11]:													
		model	mpg	cyl	disp	hp	drat	wt	qsec	٧S	am	gear	carb
0)	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
1		Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
2		Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
3		Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
4	Н	lornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2

data1.tail()

	model	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	carb
27	Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.9	1	1	5	2
28	Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.5	0	1	5	4
29	Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.5	0	1	5	6
30	Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.6	0	1	5	8
31	Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.6	1	1	4	2

data1.isnull().sum()

model	0	
mpg	0	
cyl	0	
disp	0	
hp	0	
drat	0	
wt	0	
qsec	0	
VS	0	
am	0	
gear	0	
carb	0	
dtype:	int64	

data1.isnull()

	110110111	,										
	model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
0	False	False	False	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False	False	False
5	False	False	False	False	False	False	False	False	False	False	False	False
6	False	False	False	False	False	False	False	False	False	False	False	False
7	False	False	False	False	False	False	False	False	False	False	False	False
8	False	False	False	False	False	False	False	False	False	False	False	False
9	False	False	False	False	False	False	False	False	False	False	False	False
10	False	False	False	False	False	False	False	False	False	False	False	False
11	False	False	False	False	False	False	False	False	False	False	False	False
12	False	False	False	False	False	False	False	False	False	False	False	False
13	False	False	False	False	False	False	False	False	False	False	False	False
14	False	False	False	False	False	False	False	False	False	False	False	False
15	False	False	False	False	False	False	False	False	False	False	False	False

Data1.size

384

Data1.shape

(32, 12)

Data1.ndim

2

data1.at[4,'model']

'Hornet Sportabout'

Data1.iat[4,3]

360.0

data1.loc[:,'model']

```
Mazda RX4
            Mazda RX4 Wag
1
               Datsun 710
3
           Hornet 4 Drive
4
        Hornet Sportabout
5
                  Valiant
               Duster 360
6
7
               Merc 240D
8
                Merc 230
9
                 Merc 280
10
               Merc 280C
11
               Merc 450SE
              Merc 450SL
12
13
              Merc 450SLC
14
      Cadillac Fleetwood
15
     Lincoln Continental
        Chrysler Imperial
16
17
                 Fiat 128
18
              Honda Civic
          Toyota Corolla
19
20
           Toyota Corona
21
         Dodge Challenger
22
              AMC Javelin
23
               Camaro Z28
24
        Pontiac Firebird
25
                Fiat X1-9
26
            Porsche 914-2
27
             Lotus Europa
28
           Ford Pantera L
29
             Ferrari Dino
30
            Maserati Bora
31
               Volvo 142E
Name: model, dtype: object
```

data1.iloc[0:5,0:2]

```
        model
        mpg

        0
        Mazda RX4
        21.0

        1
        Mazda RX4 Wag
        21.0

        2
        Datsun 710
        22.8

        3
        Hornet 4 Drive
        21.4

        4
        Hornet Sportabout
        18.7
```

Data1['model'].dtype

```
dtype('0')
```

Data1.axes

data1.columns

data1['hp'].std()

```
68.56286848932059
```

data1['mpg'].mean()

```
20.090625000000003
```

data1['mpg'].median()

```
: 19.2
```

data1['hp'].describe()

```
count
         32.000000
mean
        146.687500
std
         68.562868
min
         52.000000
25%
         96.500000
50%
        123.000000
75%
        180.000000
max
        335.000000
Name: hp, dtype: float64
```

Data1.iloc[-1]

model	Volvo 142E
mpg	21.4
cyl	4
disp	121.0
hp	109
drat	4.11
wt	2.78
qsec	18.6
VS	1
am	1
gear	4
carb	2
Name:	31, dtype: object

Data1.iloc[:,-1]

```
4
1
2
      1
3
      1
4
      2
5
      1
6
7
      2
8
      2
9
10
      4
      3
11
12
      3
13
      3
14
      4
15
      4
16
      4
      1
17
18
19
      1
20
      1
      2
21
22
      2
23
      4
      2
24
25
      1
26
      2
      2
27
28
      4
29
      6
30
      8
31
Name: carb, dtype: int64
```

data1.iloc[-1]

	model	Volvo 142E
-	mpg	21.4
	cyl	4
	disp	121.0
	hp	109
	drat	4.11
	wt	2.78
	qsec	18.6
	vs	1
	am	1
	gear	4
	carb	2
	Name:	31, dtype: object

data1_sorted=data1.sort_values(by='mpg') data1_sorted

Out[46]:		model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
	15	Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
	14	Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
	23	Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
	6	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
	16	Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
	30	Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.60	0	1	5	8
	13	Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
	22	AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2
	21	Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2
	28	Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4
	11	Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
	12	Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
	10	Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
	5	Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
	4	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
	9	Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
	24	Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2
	29	Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6
	0	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
	1	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
	3	Homet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
	31	Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2
	20	Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
	8	Merc 230	22.8	4	140.8	96	3.92	3.150	22.90	- 1	0	4	2
	2	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
	7	Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	- 1	0	4	2
	26	Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2
	25	Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
	27	Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
	18	Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	-1	1	4	2
	17	Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
	19	Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1

data1_sorted.head()

	model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
15	Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
14	Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
23	Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
6	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
16	Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4

data1[data1['carb']==1]

	model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
2	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
3	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
5	Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
17	Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
19	Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
20	Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
25	Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1

data1[data1['carb']==1].count()

model	7
mpg	7
cyl	7
disp	7
hp	7
drat	7
wt	7
qsec	7
vs	7
am	7
gear	7
carb	7
dtype:	int64

Practical 5

Aim: Introduction to python libraries - basic python libraries matplotlib, scipy

#Matplotlib

```
import matplotlib.pyplot as plt
x=[3,1,3]
y=[3,2,1]

plt.plot(x,y)
plt.title("Line Chart")

plt.legend(["Line"])

Plt.show
print("131 Sakib Tamboli")
```



```
y=[3,2,1,4,5,3,7]

plt.bar(x,y)
plt.title("Bar Chart")

plt.legend(["Bar"])
plt.show()
```


x=[1,2,3,4,5,6,7,4]

plt.hist(x,bins=[1,2,3,4,5,6,7]) plt.title("Histogram")

plt.legend(["Bar"])
plt.show()

x=[3,1,3,12,2,4,4] y=[3,2,1,4,5,6,7]

plt.scatter(x,y)
plt.title("Scatter Chart")

plt.legend(["A"])
plt.show()

 $labels = \hbox{['Python','jAVA','c++','Javascript']}$

sizes=[40,30,20,10]

plt.pie(sizes,labels=labels, autopct='%1.1f%%') plt.show() print("131 Sakib Tamboli")

#SCIPY

import numpy as np from scipy import integrate, optimize, stats, linalg

print("131 Sakib Tamboli")
Example 1: Numerical Integration
Integrate the function f(x) = x^2 from 0 to 2
result, error = integrate.quad(lambda x: x**2, 0, 2)
print("Integral of x^2 from 0 to 2:", result)

Example 2: Optimization (Finding Minimum) # Minimize the function $f(x) = (x - 3)^2$ min_result = optimize.minimize(lambda x: (x - 3)**2, x0=0)

```
print("Minimum found at x = ", min result.x[0])
# Example 3: Statistics - Mean and Standard Deviation of a sample
data = np.array([2, 5, 8, 9, 4, 7])
mean = np.mean(data)
std_dev = np.std(data)
print("Mean:", mean)
print("Standard Deviation:", std_dev)
# Example 4: Linear Algebra - Solve a system of equations
#2x + 3y = 8 and 3x + 4y = 11
A = np.array([[2, 3], [3, 4]])
b = np.array([8, 11])
x = linalg.solve(A, b)
print("Solution of linear equations:", x)
# Example 5: Probability - PDF of Normal Distribution
pdf_val = stats.norm.pdf(0, loc=0, scale=1) # Standard normal at x=0
print("PDF of standard normal distribution at x=0:", pdf_val)
```

```
131 Sakib Tamboli
Integral of x^2 from 0 to 2: 2.66666666666667
Minimum found at x = 2.9999999840660854
Mean: 5.833333333333333
Standard Deviation: 2.4094720491334933
Solution of linear equations: [1. 2.]
PDF of standard normal distribution at x=0: 0.3989422804014327
```

Practical 6

Aim: Exploratory Data Analysis Using python.

import pandas as pd data1=pd.read_csv('D:/131_Sakib_Tamboli/mtcars.csv') print("131 Sakib Tamboli") data1.info()

```
131 Sakib Tamboli
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32 entries, 0 to 31
Data columns (total 12 columns):
     Column Non-Null Count Dtype
            -----
 0
     model
             32 non-null
                             object
                             float64
             32 non-null
 1
     mpg
            32 non-null
                             int64
 2
     cyl
                             float64
 3
     disp
            32 non-null
    hp
            32 non-null
 4
                             int64
 5
    drat
            32 non-null
                            float64
 6
            32 non-null
                             float64
 7
     gsec
            32 non-null
                            float64
 8
             32 non-null
                             int64
     VS
 9
                             int64
            32 non-null
            32 non-null
                             int64
 10
   gear
   carb
            32 non-null
                             int64
dtypes: float64(5), int64(6), object(1)
memory usage: 3.1+ KB
```

data1.head()

```
Out[11]:
                      model mpg cyl
                                      disp
                                             hp drat
                                                        wt
                                                           qsec vs am gear carb
                   Mazda RX4 21.0
                                   6 160.0 110 3.90 2.620 16.46
               Mazda RX4 Wag 21.0
                                   6 160.0 110 3.90 2.875 17.02
                  Datsun 710 22.8
                                   4 108.0
                                             93 3.85 2.320 18.61
                                                                                 1
                Hornet 4 Drive 21.4
                                   6 258.0 110 3.08 3.215 19.44
                                                                                 1
           4 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0
```

data1.tail()

	model	mpg	cyl	disp	hp	drat	wt	qsec	٧S	am	gear	carb
27	Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.9	1	1	5	2
28	Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.5	0	1	5	4
29	Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.5	0	1	5	6
30	Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.6	0	1	5	8
31	Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.6	1	1	4	2

data1.isnull().sum()

model	0	
mpg	0	
cyl	0	
disp	0	
hp	0	
drat	0	
wt	0	
qsec	0	
VS	0	
am	0	
gear	0	
carb	0	
dtype:	int64	

data1.isnull()

	model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
0	False											
1	False											
2	False											
3	False											
4	False											
5	False											
6	False											
7	False											
8	False											
9	False											
10	False											
11	False											
12	False											
13	False											
14	False											
15	False											

Data1.size

384

Data1.shape

(32, 12)

Data1.ndim

2

data1.at[4,'model']

'Hornet Sportabout'

Data1.iat[4,3]

360.0

data1.loc[:,'model']

```
Mazda RX4
1
            Mazda RX4 Wag
2
               Datsun 710
          Hornet 4 Drive
3
       Hornet Sportabout
5
                 Valiant
6
              Duster 360
7
                Merc 240D
8
                Merc 230
9
                Merc 280
10
               Merc 280C
11
              Merc 450SE
12
              Merc 450SL
13
             Merc 450SLC
      Cadillac Fleetwood
14
15
      Lincoln Continental
      Chrysler Imperial
16
                 Fiat 128
17
             Honda Civic
18
19
          Toyota Corolla
20
           Toyota Corona
21
        Dodge Challenger
22
             AMC Javelin
23
              Camaro Z28
24
      Pontiac Firebird
25
                Fiat X1-9
26
           Porsche 914-2
            Lotus Europa
27
28
           Ford Pantera L
29
            Ferrari Dino
30
            Maserati Bora
31
               Volvo 142E
Name: model, dtype: object
```

data1.iloc[0:5,0:2]

	model	mpg
0	Mazda RX4	21.0
1	Mazda RX4 Wag	21.0
2	Datsun 710	22.8
3	Hornet 4 Drive	21.4
4	Hornet Sportabout	18.7

Data1['model'].dtype

dtype('0')

Data1.axes

data1.columns

data1['hp'].std()

```
68.56286848932059
```

data1['mpg'].mean()

```
20.090625000000003
```

data1['mpg'].median()

```
19.2
```

data1['hp'].describe()

```
count
         32.000000
        146.687500
mean
std
         68.562868
min
         52.000000
25%
         96.500000
50%
        123.000000
75%
        180.000000
max
        335.000000
Name: hp, dtype: float64
```

Data1.iloc[-1]

model	Volvo 142E
mpg	21.4
cyl	4
disp	121.0
hp	109
drat	4.11
wt	2.78
qsec	18.6
VS	1
am	1
gear	4
carb	2
Name:	31, dtype: object

Data1.iloc[:,-1]

```
4
1
      4
2
      1
3
      1
4
      2
5
      1
6
      4
7
      2
      2
8
9
10
      4
      3
11
      3
12
      3
13
14
15
      4
16
      4
17
      1
18
      2
19
      1
20
      1
21
      2
      2
22
23
      4
24
      2
25
      1
      2
26
      2
27
28
      4
29
      6
30
      8
31
      2
Name: carb, dtype: int64
```

data1.iloc[-1]

:	model		
	mpg	21.4	
	cyl	4	
	disp	121.0	
	hp	109	
	drat	4.11	
	wt	2.78	
	qsec	18.6	
	vs	1	
	am	1	
	gear	4	
	carb	2	
	Name:	31, dtype: object	

data1_sorted=data1.sort_values(by='mpg')

data1_sorted

Out[46]:		model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
	15	Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
	14	Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
	23	Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
	6	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
	16	Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
	30	Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.60	0	1	5	8
	13	Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
	22	AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2
	21	Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2
	28	Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4
	11	Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
	12	Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
	10	Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
	5	Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
	4	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
	9	Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
	24	Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2
	29	Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6
	0	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
	1	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
	3	Homet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
	31	Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2
	20	Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
	8	Merc 230	22.8	4	140.8	96	3.92	3.150	22.90	1	0	4	2
	2	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
	7	Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
	26	Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2
	25	Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
	27	Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
	18	Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
	17	Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
	19	Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1

data1_sorted.head()

	model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
15	Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
14	Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
23	Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
6	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
16	Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4

data1[data1['carb']==1]

	model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
2	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
3	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
5	Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
17	Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
19	Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
20	Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
25	Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1

data1[data1['carb']==1].count()

model	7
mpg	7
cyl	7
disp	7
hp	7
drat	7
wt	7
qsec	7
vs	7
am	7
gear	7
carb	7
dtype:	int64

Practical 7

Aim: Implementation of perceptron Algorithm.

Code:

```
import numpy as np
def perceptron_or(x1,x2):
    w1=1
    w2=1
    b=-0.5
    result=w1*x1+w2*x2+b
    if result>=0:
        return 1
    else:
        return 0

print(perceptron_or(0,0))
print(perceptron_or(0,1))
print(perceptron_or(1,0))
print(perceptron_or(1,1))
print("131 Sakib Tamboli")
```

Output:

```
0
1
1
1
131 Sakib Tamboli
```

Practical 8

Aim: Implementation of Adaline algorithm for AND operation.

Code:

```
import numpy as np
class Adaline:
  def __init__(self, learning_rate=0.01, n_iter=100):
     self.learning_rate = learning_rate
     self.n_iter = n_iter
     self.weights = None
     self.bias = None
  def fit(self, X, y):
     # Initialize weights and bias
     self.weights = np.zeros(X.shape[1])
     self.bias = 0
     # Perform gradient descent
     for _ in range(self.n_iter): # Calculate net input (weighted sum of inputs)
       net_input = np.dot(X, self.weights) + self.bias
       # Calculate error (difference between prediction and actual)
       error = y - net_input
       # Update weights and bias using gradient descent
       self.weights += self.learning_rate * np.dot(X.T, error)
       self.bias += self.learning_rate * np.sum(error)
  def predict(self, X):
     # Calculate net input
     net input = np.dot(X, self.weights) + self.bias
     # Apply a threshold (0.0 for linear activation)
     return np.where(net_input \geq 0.0, 1, 0)
# Example Usage (AND operation)
X = \text{np.array}([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([0, 0, 0, 1])
ada =Adaline(learning_rate=0.1, n_iter=1000)
ada.fit(X, y)
# Make predictions
predictions = ada.predict(X)
print("Predictions:", predictions)
print("131 Sakib Tamboli")
```

Name:	Sak	cib	Ta	amb	oli
Roll	no	:13	31	Div	:B

Output:

Predictions: [0 1 1 1]

131 Sakib Tamboli

Practical 9

Aim: Implementation of gradient Descent Algorithm.

Code:

```
print("131 Sakib Tamboli")
def predict(row, weights):
  activation = weights[0]
  for i in range(len(row)-1):
    activation += weights[i + 1] * row[i]
  return 1.0 if activation \geq 0.0 else 0.0
# test predictions
dataset = [
  [2.7810836, 2.550537003, 0],
  [1.465489372, 2.362125076, 0],
  [3.396561688, 4.400293529, 0],
  [1.38807019, 1.850220317, 0],
  [3.06407232, 3.005305973, 0],
  [7.627531214, 2.759262235, 1],
  [5.332441248, 2.088626775, 1],
  [6.922596716, 1.77106367, 1],
  [8.675418651, -0.242068655, 1],
  [7.673756466, 3.508563011, 1]
weights = [-0.1, 0.20653640140000007, -0.23418117710000003]
for row in dataset:
  prediction = predict(row, weights)
  print("Expected=%d, Predicted=%d" % (row[-1], prediction))
```

```
131 Sakib Tamboli
  Expected=0, Predicted=0
  Expected=0, Predicted=0
  Expected=0, Predicted=0
  Expected=0, Predicted=0
  Expected=0, Predicted=0
  Expected=1, Predicted=1
  Expected=1, Predicted=1
  Expected=1, Predicted=1
  Expected=1, Predicted=1
  Expected=1, Predicted=1
# Estimate Perceptron weights using stochastic gradient descent
def train_weights(train, l_rate, n_epoch):
  weights = [0.0 \text{ for i in range}(\text{len}(\text{train}[0]))] # Initialize weights to 0.0
  for epoch in range(n_epoch):
    sum_error = 0.0
    for row in train:
      prediction = predict(row, weights) # Make a prediction using current weights
      error = row[-1] - prediction # Calculate the error as the difference between actual and
predicted
      sum_error += error ** 2 # Accumulate the sum of squared errors for this epoch
      weights[0] = weights[0] + 1_rate * error # Update the bias (weights[0])
      for i in range(len(row) - 1):
         weights[i + 1] = weights[i + 1] + l_rate * error * row[i] # Update weights for features
    print('>epoch=%d, lrate=%.3f, error=%.3f' % (epoch, l_rate, sum_error)) # Print epoch
details
  return weights # Return the trained weights after all epochs
# Function to make predictions using weights
def predict(row, weights):
  activation = weights[0]
  for i in range(len(row) - 1):
```

```
activation += weights[i + 1] * row[i]
  return 1.0 if activation \geq 0.0 else 0.0
# Function to train perceptron weights using stochastic gradient descent
def train_weights(train, l_rate, n_epoch):
  weights = [0.0 \text{ for i in range}(\text{len}(\text{train}[0]))] # Initialize weights to 0.0 for each feature
  for epoch in range(n_epoch):
     sum_error = 0.0
     for row in train:
       prediction = predict(row, weights) # Make prediction using current weights
       error = row[-1] - prediction # Calculate error as actual - predicted
       sum_error += error ** 2 # Accumulate squared error
       weights[0] = weights[0] + l_rate * error # Update bias (weights[0])
       for i in range(len(row) - 1):
          weights[i + 1] = weights[i + 1] + l_rate * error * row[i] # Update weights for features
     print('>epoch=%d, lrate=%.3f, error=%.3f' % (epoch, 1 rate, sum error)) # Print epoch
details
  return weights # Return trained weights
# Dataset for training
dataset = [
  [2.7810836, 2.550537003, 0],
  [1.465489372, 2.362125076, 0],
  [3.396561688, 4.400293529, 0],
  [1.38807019, 1.850220317, 0],
  [3.06407232, 3.005305973, 0],
  [7.627531214, 2.759262235, 1],
  [5.332441248, 2.088626775, 1],
  [6.922596716, 1.77106367, 1],
  [8.675418651, -0.242068655, 1],
  [7.673756466, 3.508563011, 1]
1
1 rate = 0.1 # Learning rate
n_epoch = 5 # Number of epochs for training
# Train weights using the dataset
weights = train weights(dataset, 1 rate, n epoch)
print(weights) # Print the trained weights
print("131 Sakib Tamboli")
```

```
>epoch=0, lrate=0.100, error=2.000
>epoch=1, lrate=0.100, error=1.000
>epoch=2, lrate=0.100, error=0.000
>epoch=3, lrate=0.100, error=0.000
>epoch=4, lrate=0.100, error=0.000
[-0.1, 0.20653640140000007, -0.23418117710000003]
131 Sakib Tamboli
```

Practical 10

Aim: Implementation of principal component analysis.

PCA

Code:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
print("131 Sakib Tamboli")
# Sample data (replace with your actual dataset)
data = {'Feature1': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
'Feature2': [10, 9, 8, 7, 6, 5, 4, 3, 2, 1],
'Feature3': [1, 3, 5, 7, 9, 2, 4, 6, 8, 10]
df = pd.DataFrame(data)
# Feature scaling
x = df.values
x = StandardScaler().fit_transform(x)
X
print("131 Sakib Tamboli")
# Apply PCA with 2 components
pca = PCA(n components=2)
principal_components = pca.fit_transform(x)
# Create a new DataFrame with the principal components
principal_df = pd.DataFrame(data=principal_components,
columns=['principal component 1', 'principal component 2'])
print(principal_df)
```

```
131 Sakib Tamboli
array([[-1.5666989 , 1.5666989 , -1.5666989 ],
       [-1.21854359, 1.21854359, -0.87038828],
       [-0.87038828, 0.87038828, -0.17407766],
       [-0.52223297, 0.52223297, 0.52223297],
       [-0.17407766, 0.17407766, 1.21854359],
       [ 0.17407766, -0.17407766, -1.21854359],
       [ 0.52223297, -0.52223297, -0.52223297],
       [ 0.87038828, -0.87038828, 0.17407766],
       [ 1.21854359, -1.21854359, 0.87038828],
       [ 1.5666989 , -1.5666989 , 1.5666989 ]])
131 Sakib Tamboli
   principal component 1 principal component 2
0
               -2.704116
                                      -0.226706
1
               -1.926645
                                       0.123740
2
               -1.149174
                                       0.474186
3
               -0.371704
                                       0.824632
4
                0.405767
                                       1.175078
5
                                      -1.175078
               -0.405767
                0.371704
                                      -0.824632
6
7
                1.149174
                                      -0.474186
8
                1.926645
                                      -0.123740
```

2.704116

Visualize the results

9

```
plt.figure(figsize=(8, 6))
plt.scatter(principal_df['principal component 1'], principal_df['principal component 2'])
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.title('PCA Visualization')
plt.show()
print("131 Sakib Tamboli")
```

0.226706

Explained variance ratio
explained_variance_ratio = pca.explained_variance_ratio_
print("Explained Variance Ratio:", explained_variance_ratio)
print("Total Explained Variance:", np.sum(explained_variance_ratio))

Explained Variance Ratio: [0.84317429 0.15682571]
Total Explained Variance: 1.0

Practical 11

Aim: Implementation of Normalization and transformation.

Normalization

Code:

import pandas as pd import numpy as np import matplotlib.pyplot as plt print("131 Sakib Tamboli")

 $hw_df = pd.read_csv("D:/131_Sakib_Tamboli/H-W-Index.csv") \\ hw_df.describe()$

131 Sa	akib Tamboli		
	Index	Height(Inches)	Weight(Pounds)
count	25000.000000	25000.000000	25000.000000
mean	12500.500000	67.993114	127.079421
std	7217.022701	1.901679	11.660898
min	1.000000	60.278360	78.014760
25%	6250.750000	66.704397	119.308675
50%	12500.500000	67.995700	127.157750
75%	18750.250000	69.272958	134.892850
max	25000.000000	75.152800	170.924000

from sklearn.preprocessing import minmax_scale import pandas as pd

hw_scaled=minmax_scale(hw_df[['Height(Inches)','Weight(Pounds)']],feature_range=(0,1))

hw_df['Height(Norm)']=hw_scaled[:,0]

hw_df['Weight(Norm)']=hw_scaled[:,1]

hw_df.describe()

	Index	Height(Inches)	Weight(Pounds)	Height(Norm)	Weight(Norm)
count	25000.000000	25000.000000	25000.000000	25000.000000	25000.000000
mean	12500.500000	67.993114	127.079421	0.518658	0.528092
std	7217.022701	1.901679	11.660898	0.127849	0.125508
min	1.000000	60.278360	78.014760	0.000000	0.000000
25%	6250.750000	66.704397	119.308675	0.432019	0.444454
50%	12500.500000	67.995700	127.157750	0.518832	0.528935 0.612190
75%	18750.250000	69.272958	2958 134.892850	0.604702	
max	25000.000000	75.152800	170.924000	1.000000	1.000000

Transformation

from sklearn import preprocessing import numpy as np x_array = np.array([2,3,5,6,7,4,8,7,6]) normalized_arr = preprocessing.normalize([x_array]) print(normalized_arr)

```
[[0.11785113 0.1767767 0.29462783 0.35355339 0.41247896 0.23570226 0.47140452 0.41247896 0.35355339]]
```

#Transformation

import pandas as pd import numpy as np

Sample data data = {'Name': ['Alice', 'Bob', 'Charlie', 'David'], 'Age': [25, 30, 22, 28],

'City': ['New York', 'London', 'Paris', 'Tokyo']} df = pd.DataFrame(data)

print("Original DataFrame:")
print(df)

Original DataFrame:										
	Name Age City									
0	Alice	25	New York							
1	Bob	30	London							
2	Charlie	22	Paris							
3	David	28	Tokyo							

1. #Adding a new column

df['Age_Group'] = pd.cut(df['Age'], bins=[18, 25, 30, 100], labels=['Young', 'Adult', 'Senior']) print("\nDataFrame with Age Group column:") print(df)

Da	DataFrame with Age Group column:									
	Name Age City Age_Group									
0	Alice	25	New York	Young						
1	Bob	30	London	Adult						
2	Charlie	22	Paris	Young						
3	David	28	Tokyo	Adult						

2. Creating dummy variables for categorical features df = pd.get_dummies(df, columns=['City']) print("\nDataFrame after creating dummy variables for City:") print(df)

Da	DataFrame after creating dummy variables for City:										
	Name	Age	Age_Group	City_New York	City_Paris	City_Tokyo					
0	Alice	25	Young	False	True	False	False				
1	Bob	30	Adult	True	False	False	False				
2	Charlie	22	Young	False	False	True	False				
3	David	28	Adult	False	False	False	True				

import pandas as pd from sklearn import metrics

df = pd.read_csv(''D:/131_Sakib_Tamboli/CreditRisk.csv')
print("DataFrame head:")

df.head()

- # Example feature extraction:
- # 1. Calculate the mean of a numerical column
- # if 'numerical_column' in df.columns:
- # mean_value = df['numerical_column'].mean()
- # print(f"\nMean of 'numerical_column': {mean_value}")
- 2.# Correlation method
 - # 3. One-hot encode categorical features
- # categorical_cols = ['categorical_column_1', 'categorical_column_2']
- # if all(col in df.columns for col in categorical_cols):
- # df = pd.get_dummies(df, columns=categorical_cols)
- # print("\nDataFrame after one-hot encoding:")
- # print(df.head())

DataFrame head:

2.0

import pandas as pd

df = pd.read_csv(''D:/131_Sakib_Tamboli/CreditRisk.csv')

print("DataFrame head:")
df.head()

D	ataFrame he	ead:										
	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property
0	LP001002	Male	No	0	Graduate	No	5849	0.0	0	360.0	1.0	
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128	360.0	1.0	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66	360.0	1.0	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120	360.0	1.0	
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141	360.0	1.0	

Df.	dty	pes

Loan_ID	object
Gender	object
Married	object
Dependents	object
Education	object
Self_Employed	object
ApplicantIncome	int64
CoapplicantIncome	float64
LoanAmount	int64
Loan_Amount_Term	float64
Credit_History	float64
Property_Area	object
Loan_Status	int64
dtype: object	

[#]Example feature extraction:

1. Calculate the mean of a numerical column #num_cols=df.select_dtypes(include=['number']).columns num_cols = df.select_dtypes(include=np.number) num_cols

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Loan_Status
0	5849	0.0	0	360.0	1.0	1
1	4583	1508.0	128	360.0	1.0	0
2	3000	0.0	66	360.0	1.0	1
3	2583	2358.0	120	360.0	1.0	1
4	6000	0.0	141	360.0	1.0	1
609	2900	0.0	71	360.0	1.0	1
610	4106	0.0	40	180.0	1.0	1
611	8072	240.0	253	360.0	1.0	1
612	7583	0.0	187	360.0	1.0	1
613	4583	0.0	133	360.0	0.0	0
614 rd	ows × 6 columns					

df['ApplicantIncome'].mean()

5403.459283387622

```
obj_cols = df.select_dtypes(exclude=['number']).columns
print("Categorical Columns:")
print(obj_cols)

X = df.drop('Loan_Status', axis=1)
y =df['Loan_Status']
y.value_counts()
```

pd.get dummies(df,'Gender')

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Loan_Status	Gender_LP001002	Gender_LP001003	Gender_LP001005	Gend
0	5849	0.0	0	360.0	1.0	1	True	False	False	
1	4583	1508.0	128	360.0	1.0	0	False	True	False	
2	3000	0.0	66	360.0	1.0	1	False	False	True	
3	2583	2358.0	120	360.0	1.0	1	False	False	False	
4	6000	0.0	141	360.0	1.0	1	False	False	False	
609	2900	0.0	71	360.0	1.0	1	False	False	False	
610	4106	0.0	40	180.0	1.0	1	False	False	False	
611	8072	240.0	253	360.0	1.0	1	False	False	False	
612	7583	0.0	187	360.0	1.0	1	False	False	False	
613	4583	0.0	133	360.0	0.0	0	False	False	False	
514 rc	ows × 635 columns									

correlation_matrix =num_cols.corr()

correlation matrix

on clation_mat						
	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Loan_Status
ApplicantIncome	1.000000	-0.116605	0.538290	-0.045306	-0.014715	-0.004710
CoapplicantIncome	-0.116605	1.000000	0.190377	-0.059878	-0.002056	-0.059187
LoanAmount	0.538290	0.190377	1.000000	0.040539	-0.002197	-0.010631
Loan_Amount_Term	-0.045306	-0.059878	0.040539	1.000000	0.001470	-0.021268
Credit_History	-0.014715	-0.002056	-0.002197	0.001470	1.000000	0.561678
Loan_Status	-0.004710	-0.059187	-0.010631	-0.021268	0.561678	1.000000

Practical 12

Aim: Implementation of Logistic Regression.

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

credit_df=pd.read_csv("D:/131_Sakib_Tamboli/CreditRisk.csv")
credit_df.shape

```
]: (614, 13)
```

print("131 Sakib Tamboli")
credit_df.info()

```
131 Sakib Tamboli
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):
# Column Non-Null Count Dtype
    Loan_ID 614 non-null object
Gender 601 non-null object
Married 611 non-null object
Dependents 599 non-null object
Education 614 non-null object
Self_Employed 582 non-null object
0 Loan_ID
1 Gender
2 Married
3 Dependents
 4 Education
 6 ApplicantIncome 614 non-null int64
     CoapplicantIncome 614 non-null float64
 7
                            614 non-null
 8
    LoanAmount
                                              int64
    Loan_Amount_Term 600 non-null float64
 9
10 Credit History 564 non-null
                                              float64
11 Property_Area 614 non-null
12 Loan Status 614 non-null
                                               object
 12 Loan Status
                                               int64
                            614 non-null
dtypes: float64(3), int64(3), object(7)
memory usage: 62.5+ KB
```

credit df.head()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property
0	LP001002	Male	No	0	Graduate	No	5849	0.0	0	360.0	1.0	
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128	360.0	1.0	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66	360.0	1.0	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120	360.0	1.0	
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141	360.0	1.0	
4												•

credit_df.tail()

	Lo	oan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Prope
6	09 LP0	002978	Female	No	0	Graduate	No	2900	0.0	71	360.0	1.0	
6	10 LPC	002979	Male	Yes	3+	Graduate	No	4106	0.0	40	180.0	1.0	
6	11 LPC	002983	Male	Yes	1	Graduate	No	8072	240.0	253	360.0	1.0	
6	12 LPC	002984	Male	Yes	2	Graduate	No	7583	0.0	187	360.0	1.0	
6	13 LP0	002990	Female	No	0	Graduate	Yes	4583	0.0	133	360.0	0.0	S
4													b/

credit_df.describe()

)]:	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Loan_Status
count	614.000000	614.000000	614.000000	600.00000	564.000000	614.000000
mean	5403.459283	1621.245798	141.166124	342.00000	0.842199	0.687296
std	6109.041673	2926.248369	88.340630	65.12041	0.364878	0.463973
min	150.000000	0.000000	0.000000	12.00000	0.000000	0.000000
25%	2877.500000	0.000000	98.000000	360.00000	1.000000	0.000000
50%	3812.500000	1188.500000	125.000000	360.00000	1.000000	1.000000
75%	5795.000000	2297.250000	164.750000	360.00000	1.000000	1.000000
max	81000.000000	41667.000000	700.000000	480.00000	1.000000	1.000000

$credit_df.Loan_Status.value_counts()$

1 422 0 192

Name: Loan_Status, dtype: int64

 $credit_df.groupby(['Education', 'Loan_Status']). Education.count()$

```
|: Education Loan_Status
Graduate 0 140
1 340
Not Graduate 0 52
1 82
Name: Education, dtype: int64
```

sns.barplot(y='Credit_History',x='Loan_Status',hue='Education',data=credit_df)

#Fill Null Values

100 * credit_df.isnull().sum() / credit_df.shape[0]

```
]: Loan ID
                         0.000000
   Gender
                         2.117264
   Married
                         0.488599
   Dependents
                         2.442997
                         0.000000
   Education
   Self Employed
                         5.211726
   ApplicantIncome
                         0.000000
   CoapplicantIncome
                         0.000000
   LoanAmount
                         0.000000
   Loan Amount Term
                         2.280130
   Credit_History
                         8.143322
   Property_Area
                         0.000000
   Loan_Status
                         0.000000
   dtype: float64
```

DF=credit_df.drop(credit_df.columns[0],axis=1)
DF.head()

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Lo
0	Male	No	0	Graduate	No	5849	0.0	0	360.0	1.0	Urban	
1	Male	Yes	1	Graduate	No	4583	1508.0	128	360.0	1.0	Rural	
2	Male	Yes	0	Graduate	Yes	3000	0.0	66	360.0	1.0	Urban	
3	Male	Yes	0	Not Graduate	No	2583	2358.0	120	360.0	1.0	Urban	
4	Male	No	0	Graduate	No	6000	0.0	141	360.0	1.0	Urban	
+												•

object_columns=DF.select_dtypes(include=['object']).columns numeric_columns=DF.select_dtypes(exclude=['object']).columns

for column in object_columns: majority=DF[column].value_counts().iloc[0] DF[column].fillna(majority, inplace=True)

for column in numeric_columns: mean=DF[column].mean() DF[column].fillna(majority, inplace=True)

DF.head()

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Lo
0	Male	No	0	Graduate	No	5849	0.0	0	360.0	1.0	Urban	
1	Male	Yes	1	Graduate	No	4583	1508.0	128	360.0	1.0	Rural	
2	Male	Yes	0	Graduate	Yes	3000	0.0	66	360.0	1.0	Urban	
3	Male	Yes	0	Not Graduate	No	2583	2358.0	120	360.0	1.0	Urban	
4	Male	No	0	Graduate	No	6000	0.0	141	360.0	1.0	Urban	
4												-

Categorical columns

DF[object_columns].Property_Area

```
0
           Urban
1
           Rural
2
           Urban
3
           Urban
4
           Urban
609
           Rural
           Rural
610
611
           Urban
           Urban
612
613
       Semiurban
Name: Property_Area, Length: 614, dtype: object
```

DF[object_columns].Property_Area.head()

```
: 0 Urban
1 Rural
2 Urban
3 Urban
4 Urban
Name: Property_Area, dtype: object
```

DF_dummy=pd.get_dummies(DF, columns=object_columns)
DF_dummy.shape

```
(614, 25)
```

DF_dummy.head()

ı	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Loan_Status	Gender_489	Gender_Female	Gender_Male	Married_398	D
0	5849	0.0	0	360.0	1.0	1	0	0	1	0 .	
1	4583	1508.0	128	360.0	1.0	0	0	0	1	0 .	
2	3000	0.0	66	360.0	1.0	1	0	0	1	0 .	
3	2583	2358.0	120	360.0	1.0	1	0	0	1	0 .	
4	6000	0.0	141	360.0	1.0	1	0	0	1	0 .	

#Model

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

 $X = DF_dummy.drop('Loan_Status', axis=1)$

 $y = DF_dummy.Loan_Status$

train_x, test_x, train_y, test_y = train_test_split(X, y, test_size=0.3, random_state=42)

train_x.shape, test_x.shape

model = LogisticRegression()
model.fit(train_x, train_y)

+ LogisticRegression
LogisticRegression()

train_y_hat = model.predict(train_x)
test_y_hat = model.predict(test_x)

```
print('train_accuracy', accuracy_score(train_y, train_y_hat))
print('test accuracy', accuracy_score(test_y, test_y_hat))
```

```
train_accuracy 0.703962703962704
test accuracy 0.6432432432432432
```

```
print(confusion_matrix(train_y, train_y_hat))
```

```
[[ 12 115]
[ 12 290]]
```

print(confusion_matrix(test_y, test_y_hat))

```
[[ 5 60]
[ 6 114]]
```

test_y.value_counts()

```
1 120
0 65
Name: Loan_Status, dtype: int64
```

pd.Series(test_y_hat).value_counts()

```
1 174
0 11
dtype: int64
```

Accuracy for train

```
(57 + 295) / train_y.shape[0]
```

0.8205128205128205

print(classification_report(test_y, test_y_hat))

	precision	recall	f1-score	support	
0	0.45	0.08	0.13	65	
	0.66	0.95	0.78	120	
accuracy macro avg	0.55	0.51	0.64 0.45	185 185	
weighted avg	0.58	0.64	0.55	185	

x = np.linspace(-10, 10, 100)y = 1 / (1 + np.exp(-x)) # sigmoid plt.plot(x, y)

 $test_y_hat_5 = (model.predict_proba(test_x)[:, 1] > 0.5).astype(int) \\ test_y_hat_7 = (model.predict_proba(test_x)[:, 1] > 0.7).astype(int) \\ test_y_hat_3 = (model.predict_proba(test_x)[:, 1] > 0.3).astype(int) \\ print(confusion_matrix(test_y, test_y_hat_5)) \\ print(confusion_matrix(test_y, test_y_hat_7)) \\ print(confusion_matrix(test_y, test_y_hat_3)) \\$

```
[[ 5 60]
[ 6 114]]
[[30 35]
[48 72]]
[[ 0 65]
[ 0 120]]
```

print(classification_report(test_y, test_y_hat_5))
print(classification_report(test_y, test_y_hat_7))
print(classification_report(test_y, test_y_hat_3))

print(classificatio	•	•			
	precision	recall	f1-score	support	
0	0.45	0.08	0.13	65	
1	0.66	0.95	0.78	120	
accuracy			0.64	185	
macro avg	0.55	0.51	0.45	185	
weighted avg	0.58	0.64	0.55	185	
	precision	recall	f1-score	support	
0	0.38	0.46	0.42	65	
1	0.67	0.60	0.63	120	
accuracy			0.55	185	
macro avg	0.53	0.53	0.53	185	
weighted avg	0.57	0.55	0.56	185	
	precision	recall	f1-score	support	
0	0.00	0.00	0.00	65	
1	0.65	1.00	0.79	120	
accuracy			0.65	185	
macro avg	0.32	0.50	0.39	185	
weighted avg	0.42	0.65	0.51	185	

Practical 13

Aim: Implementation of Support Vector Machine - RBF kernel

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

credit_df=pd.read_csv("D:/131_Sakib_Tamboli/CreditRisk.csv")
credit_df.shape

```
]: (614, 13)
```

print("131 Sakib Tamboli")
credit_df.info()

```
131 Sakib Tamboli
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):
                   Non-Null Count Dtype
   Column
    ____
   Loan ID
                                   object
0
                   614 non-null
    Gender
                   601 non-null
                                   object
1
2
   Married
                   611 non-null
                                   object
                   599 non-null
    Dependents
                                   object
                                   object
   Education
                   614 non-null
    Self_Employed 582 non-null
5
                                   object
   ApplicantIncome 614 non-null
                                   int64
    CoapplicantIncome 614 non-null
7
                                   float64
   LoanAmount 614 non-null
                                   int64
    Loan_Amount_Term 600 non-null
                                   float64
10 Credit_History 564 non-null
                                   float64
11 Property Area
                     614 non-null
                                   object
12 Loan Status
                     614 non-null
                                    int64
dtypes: float64(3), int64(3), object(7)
memory usage: 62.5+ KB
```

credit_df.head()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property
0	LP001002	Male	No	0	Graduate	No	5849	0.0	0	360.0	1.0	
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128	360.0	1.0	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66	360.0	1.0	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120	360.0	1.0	
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141	360.0	1.0	
4												•

credit_df.tail()

	Lo	oan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Prope
6	09 LP0	002978	Female	No	0	Graduate	No	2900	0.0	71	360.0	1.0	
6	10 LPC	002979	Male	Yes	3+	Graduate	No	4106	0.0	40	180.0	1.0	
6	11 LPC	002983	Male	Yes	1	Graduate	No	8072	240.0	253	360.0	1.0	
6	12 LPC	002984	Male	Yes	2	Graduate	No	7583	0.0	187	360.0	1.0	
6	13 LP0	002990	Female	No	0	Graduate	Yes	4583	0.0	133	360.0	0.0	S
4													b/

credit_df.describe()

)]:	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Loan_Status
count	614.000000	614.000000	614.000000	600.00000	564.000000	614.000000
mean	5403.459283	1621.245798	141.166124	342.00000	0.842199	0.687296
std	6109.041673	2926.248369	88.340630	65.12041	0.364878	0.463973
min	150.000000	0.000000	0.000000	12.00000	0.000000	0.000000
25%	2877.500000	0.000000	98.000000	360.00000	1.000000	0.000000
50%	3812.500000	1188.500000	125.000000	360.00000	1.000000	1.000000
75%	5795.000000	2297.250000	164.750000	360.00000	1.000000	1.000000
max	81000.000000	41667.000000	700.000000	480.00000	1.000000	1.000000

$credit_df.Loan_Status.value_counts()$

1 422 0 192

Name: Loan_Status, dtype: int64

 $credit_df.groupby(['Education', 'Loan_Status']). Education.count()$

```
|: Education Loan_Status
Graduate 0 140
1 340
Not Graduate 0 52
1 82
Name: Education, dtype: int64
```

sns.barplot(y='Credit_History',x='Loan_Status',hue='Education',data=credit_df)

#Fill Null Values

100 * credit_df.isnull().sum() / credit_df.shape[0]

```
]: Loan ID
                         0.000000
   Gender
                         2.117264
   Married
                         0.488599
   Dependents
                         2.442997
                         0.000000
   Education
   Self Employed
                         5.211726
   ApplicantIncome
                         0.000000
   CoapplicantIncome
                         0.000000
   LoanAmount
                         0.000000
   Loan Amount Term
                         2.280130
   Credit_History
                         8.143322
   Property_Area
                         0.000000
   Loan_Status
                         0.000000
   dtype: float64
```

DF=credit_df.drop(credit_df.columns[0],axis=1)
DF.head()

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Lo
0	Male	No	0	Graduate	No	5849	0.0	0	360.0	1.0	Urban	
1	Male	Yes	1	Graduate	No	4583	1508.0	128	360.0	1.0	Rural	
2	Male	Yes	0	Graduate	Yes	3000	0.0	66	360.0	1.0	Urban	
3	Male	Yes	0	Not Graduate	No	2583	2358.0	120	360.0	1.0	Urban	
4	Male	No	0	Graduate	No	6000	0.0	141	360.0	1.0	Urban	
+												•

object_columns=DF.select_dtypes(include=['object']).columns numeric_columns=DF.select_dtypes(exclude=['object']).columns

for column in object_columns: majority=DF[column].value_counts().iloc[0] DF[column].fillna(majority, inplace=True)

for column in numeric_columns: mean=DF[column].mean() DF[column].fillna(majority, inplace=True)

DF.head()

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Lo
0	Male	No	0	Graduate	No	5849	0.0	0	360.0	1.0	Urban	
1	Male	Yes	1	Graduate	No	4583	1508.0	128	360.0	1.0	Rural	
2	Male	Yes	0	Graduate	Yes	3000	0.0	66	360.0	1.0	Urban	
3	Male	Yes	0	Not Graduate	No	2583	2358.0	120	360.0	1.0	Urban	
4	Male	No	0	Graduate	No	6000	0.0	141	360.0	1.0	Urban	
4												-

Categorical columns

DF[object_columns].Property_Area

```
0
           Urban
1
           Rural
2
           Urban
3
           Urban
4
           Urban
609
           Rural
           Rural
610
611
           Urban
           Urban
612
613
       Semiurban
Name: Property_Area, Length: 614, dtype: object
```

DF[object_columns].Property_Area.head()

```
: 0 Urban
1 Rural
2 Urban
3 Urban
4 Urban
Name: Property_Area, dtype: object
```

DF_dummy=pd.get_dummies(DF, columns=object_columns)
DF_dummy.shape

```
(614, 25)
```

DF_dummy.head()

:	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Loan_Status	Gender_489	Gender_Female	Gender_Male	Married_398 .	De
0	5849	0.0	0	360.0	1.0	1	0	0	1	0	
1	4583	1508.0	128	360.0	1.0	0	0	0	1	0	
2	3000	0.0	66	360.0	1.0	1	0	0	1	0	
3	2583	2358.0	120	360.0	1.0	1	0	0	1	0	
4	6000	0.0	141	360.0	1.0	1	0	0	1	0	
5 rc	ows × 25 columns										

from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
X = credit_df_dummy.drop('Loan_Status', axis=1)
y = credit_df_dummy.Loan_Status
train_x, test_x, train_y, test_y = train_test_split(X, y, test_size=0.3, random_state=42)
train_x.shape, test_x.shape

svm_model = SVC(kernel='rbf', gamma=0.00001, C=1000)
svm_model.fit(train_x, train_y)

train_y_hat = svm_model.predict(train_x)
test_y_hat = svm_model.predict(test_x)
print('-'*20, 'Train', '-'*20)

print(classification_report(train_y, train_y_hat))
print('-'*20, 'Test', '-'*20)
print(classification_report(test_y, test_y_hat))

	Trair				
	precision	recall	f1-score	support	
0	0.97	0.94	0.96	127	
1	0.98	0.99	0.98	302	
accuracy			0.97	429	
macro avg	0.97	0.97	0.97	429	
weighted avg	0.97	0.97	0.97	429	
	Test				
	precision	recall	f1-score		
	•		11 30010	support	
		, , ,	11 30010	support	
0	0.33				
0 1	0.33 0.64		0.25		
		0.20	0.25	65	
		0.20	0.25	65	
1		0.20 0.78	0.25 0.71 0.58	65 120	
1 accuracy	0.64	0.20 0.78	0.25 0.71 0.58	65 120 185	

confusion_matrix(test_y, test_y_hat)

Practical 14

Aim: Implementing elbow method for choosing No. of clusters.

Elbow Code: import pandas as pd import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler df = pd.read csv('D:/131 Sakib Tamboli/driver-data.csv') features = ['mean_dist_day', 'mean_over_speed_perc'] X = df[features]X.fillna(X.mean(), inplace=True) scaler = StandardScaler() X_scaled = scaler.fit_transform(X) wcss = []for i in range(1, 11): # Test clusters from 1 to 10 kmeans = KMeans(n clusters=i, init='k-means++', random state=42,n init=10) kmeans.fit(X_scaled) wcss.append(kmeans.inertia_) print("131 Sakib Tamboli") # Plot the Elbow method graph plt.plot(range(1, 11), wcss) plt.title('Elbow Method') plt.xlabel('Number of Clusters') plt.ylabel('WCSS') # Within-Cluster Sum of Squares plt.show()

Output:

Practical 15

Aim: General Ensemble techniques - Implementing Bagging, Stacking, Voting technique.

Ensemble Learning using Random Forest, Bagging, and Voting Classifiers

import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt df=pd.read_csv("D:/131_Sakib_Tamboli/Titanic-Dataset.csv") print("131 Sakib Tamboli") df

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

print(df.shape)

(891, 12)

#checking for missing data
NAs=pd.concat([df.isnull().sum()],axis=1,keys=["Train"])
NAs[NAs.sum(axis=1)>0]

	Train
Age	177
Cabin	687
Embarked	2

df.pop("Cabin")
df.pop("Name")
df.pop("Ticket")

```
0
              A/5 21171
1
               PC 17599
2
       STON/02. 3101282
3
                 113803
4
                 373450
886
                 211536
887
                 112053
888
             W./C. 6607
889
                 111369
890
                 370376
Name: Ticket, Length: 891, dtype: object
```

```
#Filling missing Age value with mean
df["Age"]=df["Age"].fillna(df["Age"].mean())
#Filling missing
df["Embarked"]=df["Embarked"].fillna(df["Embarked"].mode()[0])
df["Pclass"]=df["Pclass"].apply(str)
# getting dummies
for col in df.dtypes[df.dtypes=="object"].index:
    for_dummy=df.pop(col)
    df=pd.concat([df,pd.get_dummies(for_dummy,prefix=col)],axis=1)
df.head()
```

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare	Sex_female	Sex_male	Embarked_C	Embarked_Q	Embarked_S
0	1	0	3	22.0	1	0	7.2500	0	1	0	0	1
1	2	1	1	38.0	1	0	71.2833	1	0	1	0	0
2	3	1	3	26.0	0	0	7.9250	1	0	0	0	1
3	4	1	1	35.0	1	0	53.1000	1	0	0	0	1
4	5	0	3	35.0	0	0	8.0500	0	1	0	0	1

labels=df.pop("Survived") from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test=train_test_split(df,labels,test_size=0.25)

from sklearn.ensemble import RandomForestClassifier rf=RandomForestClassifier(n_estimators=10) rf.fit(x_train,y_train)

RandomForestClassifier

RandomForestClassifier(n estimators=10)

y_pred = rf.predict(x_test)

#from sklearn.metrics import roc_curve, auc
from sklearn.metrics import accuracy_score
#false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred)
#roc_auc = auc(false_positive_rate, true_positive_rate)
#roc_auc

accuracy = accuracy_score(y_test, y_pred)
print(accuracy)

0.8161434977578476

from sklearn.ensemble import BaggingClassifier,VotingClassifier

print("131 Sakib Tamboli")

#1.Bagging (using RandomForestClassifier as base estimator)

bagging_model=BaggingClassifier(estimator=RandomForestClassifier(),n_estimators=10,random_state=42)

bagging_model.fit(x_train,y_train)

bagging_predictions=bagging_model.predict(x_test)

bagging_accuracy=accuracy_score(y_test,bagging_predictions)

print("Bagging Accuracy :", bagging_accuracy)

131 Sakib Tamboli

Bagging Accuracy : 0.820627802690583

print("131 Sakib Tamboli")

2. Voting (using RandomForestClassifier)

 $voting_model = VotingClassifier (estimators = [$

('rf', RandomForestClassifier()),

], voting='hard')

voting_model.fit(x_train,y_train)

 $voting_predictions = voting_model.predict(x_test)$

voting_accuracy=accuracy_score(y_test,voting_predictions)

print("Voting Accuracy:", voting_accuracy)

131 Sakib Tamboli

Voting Accuracy: 0.820627802690583

Implementation and Comparison of Ensemble Learning Techniques -Bagging, Boosting, Stacking, and Voting

from sklearn.ensemble import BaggingClassifier, AdaBoostClassifier, StackingClassifier,

VotingClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import train_test_split

from sklearn.datasets import load_iris

from sklearn.metrics import accuracy_score

iris=load_iris()

X, y=iris.data,iris.target

X.shape

(150, 4)

Y.shape

(150,)

#Split thet data inot training and testing sets

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)

#1.Bagging (using decision tree as base_estimator)

bagging_model=BaggingClassifier(estimator=DecisionTreeClassifier(),n_estimators=10,random _state=42)

bagging_model.fit(X_train,y_train)

bagging_predictions=bagging_model.predict(X_test)

bagging_accuracy=accuracy_score(y_test,bagging_predictions)

print("Bagging Accuracy :", bagging_accuracy)

Bagging Accuracy : 1.0

#2. Boosting (using Adaboost with decision tree)

boosting_model=AdaBoostClassifier(estimator=DecisionTreeClassifier(),n_estimators=50,rando m_state=42)

boosting_model.fit(X_train,y_train)

```
boosting predictions=boosting model.predict(X test)
boosting_accuracy=accuracy_score(y_test,boosting_predictions)
print("boosting Accuracy :", boosting_accuracy)
  boosting Accuracy: 1.0
# 3. Stacking (using decision tree, Logistic Regression, and KNN as base estimators)
estimator=[
  ('dt', DecisionTreeClassifier()),
  ('lr', LogisticRegression()),
  ('knn', KNeighborsClassifier())
stacking model=StackingClassifier(estimators=estimator,final estimator=LogisticRegression())
stacking model.fit(X train,y train)
stacking_predictions=stacking_model.predict(X_test)
stacking_accuracy=accuracy_score(y_test,stacking_predictions)
print("Stacking Accuracy :", stacking_accuracy)
 Stacking Accuracy: 1.0
# 3. Voting (using decision tree, Logistic Regression, and KNN as base estimators)
voting_model=VotingClassifier(estimators=[
  ('dt', DecisionTreeClassifier()),
  ('lr', LogisticRegression()),
  ('knn', KNeighborsClassifier())
], voting='hard')
voting_model.fit(X_train,y_train)
voting_predictions=voting_model.predict(X_test)
voting_accuracy=accuracy_score(y_test,voting_predictions)
print("Voting Accuracy :", stacking_accuracy)
 Voting Accuracy : 1.0
```

Practical 16

Aim: Implementing bagging algorithm taking random forest as the base estimator.

Basic Random Forest

import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
df=pd.read_csv("D:/131_Sakib_Tamboli/Titanic-Dataset.csv")
print("131 Sakib Tamboli")
Df

ved Pclass 0 3 1 1 1 3	Name Braund, Mr. Owen Harris	Sex male	Age	SibSp	Parch	Ticket	_		
1 1	Braund, Mr. Owen Harris	male				TICKET	Fare	Cabin	Embarked
			22.0	1	0	A/5 21171	7.2500	NaN	S
1 3	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
1 3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
1 1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
0 3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
0 2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
1 1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
0 3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
1 1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
0 3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

print("131 Sakib Tamboli")
print(df.shape)

131 Sakib Tamboli (891, 12)

	Train
Age	177
Cabin	687
Embarked	2

```
df.pop("Cabin")
df.pop("Name")
df.pop("Ticket")
```

```
0
               A/5 21171
                PC 17599
1
2
       STON/02. 3101282
3
                  113803
4
                  373450
886
                  211536
887
                  112053
             W./C. 6607
888
889
                  111369
890
                  370376
Name: Ticket, Length: 891, dtype: object
```

```
#Filling missing Age value with mean
df["Age"]=df["Age"].fillna(df["Age"].mean())

#Filling missing
df["Embarked"]=df["Embarked"].fillna(df["Embarked"].mode()[0])

df["Pclass"]=df["Pclass"].apply(str)

# getting dummies
for col in df.dtypes[df.dtypes=="object"].index:
    for_dummy=df.pop(col)
    df=pd.concat([df,pd.get_dummies(for_dummy,prefix=col)],axis=1)
df.head()
```

	Passengerld	Survived	Age	SibSp	Parch	Fare	Pclass_1	Pclass_2	Pclass_3	Sex_female	Sex_male	Embarked_C	Embarked_Q	Embarked_S
0	1	0	22.0	1	0	7.2500	0	0	1	0	1	0	0	1
1	2	1	38.0	1	0	71.2833	1	0	0	1	0	1	0	0
2	3	1	26.0	0	0	7.9250	0	0	1	1	0	0	0	1
3	4	1	35.0	1	0	53.1000	1	0	0	1	0	0	0	1
4	5	0	35.0	0	0	8.0500	0	0	1	0	1	0	0	1

labels=df.pop("Survived")
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(df,labels,test_size=0.25)

from sklearn.ensemble import RandomForestClassifier rf=RandomForestClassifier(n_estimators=100) rf.fit(x_train,y_train)

y_pred=rf.predict(x_test)

from sklearn.metrics import roc_curve,auc false_positive_rate, true_positive_rate, thresholds=roc_curve(y_test,y_pred) roc_auc=auc(false_positive_rate,true_positive_rate) roc_auc

0.8036425489545304

n_estimators=[1,2,4,8,16,32,64,100,200] train_results=[] test_results=[]

for estimator in n_estimators: rf=RandomForestClassifier(n_estimators=estimator,n_jobs=-1) rf.fit(x_train,y_train)

```
train_pred=rf.predict(x_train)
false_positive_rate,true_positive_rate,thresholds=roc_curve(y_train,train_pred)
roc_auc=auc(false_positive_rate,true_positive_rate)
train_results.append(roc_auc)
y_pred=rf.predict(x_test)
false_positive_rate, true_positive_rate,thresholds=roc_curve(y_test,y_pred)
roc_auc=auc(false_positive_rate, true_positive_rate)
test_results.append(roc_auc)
```

from matplotlib.legend_handler import HandlerLine2D line_1, = plt.plot(n_estimators, train_results, "b", label="Train AUC") line_2, = plt.plot(n_estimators, test_results, "r", label="Test AUC") plt.legend(handler_map={line_1: HandlerLine2D(numpoints=2), line_2: HandlerLine2D(numpoints=2)}) plt.ylabel("AUC Score") plt.xlabel("n_estimators") print("131 Sakib Tamboli")

from sklearn.ensemble import RandomForestClassifier rf=RandomForestClassifier(n estimators=200)

rf.fit(x_train,y_train)

RandomForestClassifier

RandomForestClassifier(n_estimators=200)

Bagging on Random Forest

import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
df=pd.read_csv("D:/131_Sakib_Tamboli/Titanic-Dataset.csv")
df

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q
891 r	ows × 12 colu	mns										

print(df.shape)

131 Sakib Tamboli (891, 12)

	Train
Age	177
Cabin	687
Embarked	2

df.pop("Cabin")
df.pop("Name")
df.pop("Ticket")

```
0
              A/5 21171
1
               PC 17599
2
       STON/02. 3101282
3
                 113803
4
                 373450
886
                 211536
887
                 112053
             W./C. 6607
888
889
                 111369
890
                 370376
Name: Ticket, Length: 891, dtype: object
```

```
#Filling missing Age value with mean
df["Age"]=df["Age"].fillna(df["Age"].mean())
#Filling missing
df["Embarked"]=df["Embarked"].fillna(df["Embarked"].mode()[0])
df["Pclass"]=df["Pclass"].apply(str)
# getting dummies
for col in df.dtypes[df.dtypes=="object"].index:
    for_dummy=df.pop(col)
    df=pd.concat([df,pd.get_dummies(for_dummy,prefix=col)],axis=1)
df.head()
```

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare	Sex_female	Sex_male	Embarked_C	Embarked_Q	Embarked_\$
0	1	0	3	22.0	1	0	7.2500	0	1	0	0	1
1	2	1	1	38.0	1	0	71.2833	1	0	1	0	0
2	3	1	3	26.0	0	0	7.9250	1	0	0	0	1
3	4	1	1	35.0	1	0	53.1000	1	0	0	0	1
4	5	0	3	35.0	0	0	8.0500	0	1	0	0	1

labels=df.pop("Survived")
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(df,labels,test_size=0.25)

from sklearn.ensemble import RandomForestClassifier

rf=RandomForestClassifier(n_estimators=10) rf.fit(x_train,y_train)

RandomForestClassifier
RandomForestClassifier(n_estimators=10)

 $y_pred = rf.predict(x_test)$

#from sklearn.metrics import roc_curve, auc
from sklearn.metrics import accuracy_score
#false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred)
#roc_auc = auc(false_positive_rate, true_positive_rate)
#roc_auc
accuracy = accuracy_score(y_test, y_pred)

print("131 Sakib Tamboli")
print(accuracy)

131 Sakib Tamboli 0.8430493273542601

from sklearn.ensemble import BaggingClassifier bagging_model= BaggingClassifier(estimator=RandomForestClassifier(),n_estimators=10) bagging_model.fit(x_train, y_train) bagging_predictions = bagging_model.predict(x_test) bagging_accuracy = accuracy_score(y_test, bagging_predictions) print("131 Sakib Tamboli") print("Bagging Accuracy: ", bagging_accuracy)

131 Sakib Tamboli

Bagging Accuracy: 0.8834080717488789

Practical 17

Aim: Implementation of AdaBoost algorithm.

Adaboost with Decision Tree

import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score

df=pd.read_csv("D:/131_Sakib_Tamboli/Titanic-Dataset.csv") print("131 Sakib Tamboli")

df

131	Sakib Tambol	i										
	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q
891 rd	ows × 12 colur	nns										

print(df.shape)

(891, 12)

	Train
Age	177
Cabin	687
Embarked	2

df.pop("Cabin")
df.pop("Name")
df.pop("Ticket")

```
A/5 21171
1
               PC 17599
2
       STON/02. 3101282
3
                 113803
4
                 373450
886
                 211536
887
                 112053
888
             W./C. 6607
889
                 111369
890
                 370376
Name: Ticket, Length: 891, dtype: object
```

#Filling missing Age value with mean
df["Age"]=df["Age"].fillna(df["Age"].mean())

#Filling missing
df["Embarked"]=df["Embarked"].fillna(df["Embarked"].mode()[0])

df["Pclass"]=df["Pclass"].apply(str)

getting dummies

for col in df.dtypes[df.dtypes=="object"].index:

for_dummy=df.pop(col)

 $df = pd.concat([df,pd.get_dummies(for_dummy,prefix=col)],axis=1)$

df.head()

	Passengerld	Survived	Age	SibSp	Parch	Fare	Pclass_1	Pclass_2	Pclass_3	Sex_female	Sex_male	Embarked_C	Embarked_Q	Embarked_\$
0	1	0	22.0	1	0	7.2500	0	0	1	0	1	0	0	1
1	2	1	38.0	1	0	71.2833	1	0	0	1	0	1	0	0
2	3	1	26.0	0	0	7.9250	0	0	1	1	0	0	0	1
3	4	1	35.0	1	0	53.1000	1	0	0	1	0	0	0	1
4	5	0	35.0	0	0	8.0500	0	0	1	0	1	0	0	1

labels=df.pop("Survived")

from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(df,labels,test_size=0.25)

df_model=DecisionTreeClassifier(max_depth=14)
df_model.fit(x_train,y_train)

▼ DecisionTreeClassifier DecisionTreeClassifier(max_depth=14)

train_y_hat=df_model.predict(x_train)
test_y_hat=df_model.predict(x_test)

y_pred=df_model.predict(x_test)

accuracy=accuracy_score(y_test,y_pred)
accuracy

0.7668161434977578

 $boosting_model = AdaBoostClassifier (estimator = DecisionTreeClassifier (), n_estimators = 50, random_state = 42)$

boosting_model.fit(x_train,y_train)

boosting_predictions=boosting_model.predict(x_test)

 $boosting_accuracy=accuracy_score(y_test,boosting_predictions)$

print("boosting Accuracy :", boosting_accuracy)

boosting Accuracy : 0.757847533632287

from sklearn.metrics import classification_report
print("\n Classification Report:\n" ,classification_report(y_test,y_pred))

Classification	on Report: precision	recall	f1-score	support
0 1	0.82 0.69	0.79 0.74	0.80 0.71	136 87
accuracy macro avg weighted avg	0.76 0.77	0.76 0.77	0.77 0.76 0.77	223 223 223

Practical 18

Aim: Implementation gradient boosting algorithm.

Stochastic Gradient Boosting

import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score,classification_report

df=pd.read_csv("D:/131_Sakib_Tamboli/titanic.csv")

print("131 Sakib Tamboli")
df

131	Sakib Tambol	i										
	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	C
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

print(df.shape)

print("131 Sakib Tamboli")

(891, 12) 131 Sakib Tamboli

	Train
Age	177
Cabin	687
Embarked	2

df.pop("Cabin")
df.pop("Name")
df.pop("Ticket")

```
A/5 21171
1
               PC 17599
2
       STON/02. 3101282
3
                 113803
4
                 373450
886
                 211536
887
                 112053
888
             W./C. 6607
889
                 111369
890
                 370376
Name: Ticket, Length: 891, dtype: object
```

#Filling missing Age value with mean

df["Age"]=df["Age"].fillna(df["Age"].mean())

#Filling missing

df["Embarked"]=df["Embarked"].fillna(df["Embarked"].mode()[0])

df["Pclass"] = df["Pclass"].apply(str)

getting dummies

for col in df.dtypes[df.dtypes=="object"].index:

for_dummy=df.pop(col)

 $df = pd.concat([df,pd.get_dummies(for_dummy,prefix=col)],axis=1)$

df.head()

	Passengerld	Survived	Age	SibSp	Parch	Fare	Pclass_1	Pclass_2	Pclass_3	Sex_female	Sex_male	Embarked_C	Embarked_Q	Embarked_\$
0	1	0	22.0	1	0	7.2500	0	0	1	0	1	0	0	1
1	2	1	38.0	1	0	71.2833	1	0	0	1	0	1	0	0
2	3	1	26.0	0	0	7.9250	0	0	1	1	0	0	0	1
3	4	1	35.0	1	0	53.1000	1	0	0	1	0	0	0	1
4	5	0	35.0	0	0	8.0500	0	0	1	0	1	0	0	1

labels=df.pop("Survived")

from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(df,labels,test_size=0.25)

131 Sakib Tamboli									
Classificati	on Report: precision	recall	f1-score	support					
0 1	0.88 0.79	0.87 0.80	0.87 0.79	139 84					
accuracy macro avg weighted avg	0.83 0.84	0.83 0.84	0.84 0.83 0.84	223 223 223					