Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory

Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory

Nicolás Luarte

22 de Octubre

Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory
Introducción

Introducción

Modelos de memoria

- Encoding, storage, retrieval
- Modelo repesentacionalista

Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory \sqcup Introducción

Recuperación de memoria y 'ripples'

- Hipótesis central
 - 'Coupled ripples may constitute neural mechanisms for actively retrieving memory representation in the human brain.'
- Mecánismo propuesto

Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory $\mathrel{\rell}{}\mathsf{M\acute{e}todo}$

Método

Tarea

- Aprender nuevas asociaciones entre pares de palabras ('encoding phase')
- Dada una palabra del par, debían decir el par correspondiente ('retrieval period'), mediante la voz
- Dos tipos de tareas muy similares
- 3.9 sesiones por participante, 60, 100 o 150 pares de palabras

Figure 1: Tarea

Mediciones

- Registros intracraneales ('iEEG')
 - Tasa de muestreo: [1000, 2000]Hz
 - \blacksquare 29.8 \pm 2.5 puntos de registro (aplicados al estudio)
- Localización
 - Lóbulo temporal medial ('MTL')
 - Lóbulo temporal anterior ('ATL')
 - Giro temporal medio ('MTG')
 - Control: corteza somatosensorial (menos conectividad hipocampal)

Figure 2: Densidad electrodos

Operacionalización de variables (1)

Ripples:

- Filtro paso banda (80-120 Hz)
- Butterworth filter
- 2 σ a 3 σ
- Hilbert transform
- Duración > 25ms
- Se unieron 'ripples' con distancia < 15ms
- Duración: diferencia entre fin e inicio

Operacionalización de variables (2)

- Coupled ripples:
 - Ripples sincronizados
 - Correlación cruzada [ATL, Primary Cortex] y MTL
 - 'Shift predictor'¹
 - Eventos localizados, su sincronización cae en los 2cm

Figure 3: Coupled ripples

¹Se considera una línea base por azar. Se crea mediante correlación cruzada entre un trial dado y el resto. Coincidencias por segundo por par de electrodos.

Operacionalización de las variables (3)

- Sincronización
 - Sumatoria ventana \pm 50ms / área por chance

Figure 4: Sincronización

Coupling (1)

- Unión ('coupling') áreas corteza temporal vs corteza primaria
 - Prueba de t pareada, compara versus distribución por 'chance'
- Unión ('coupling') áreas cerebrales por par de electrodos
 - Prueba de t pareada, p < 0.05 = 'coupled electrode'
- Probabilidades [ripples, coupled ripples]

Coupling (2)

- Probabilidad condicional
 - $\qquad p(electrodocortical|electrodoMTL) = p(m,c)/p(m)$
 - $\qquad p(electrodoMTL|electrodocortical) = p(m,c)/p(c)$

Con esto se determina que el incremento de 'coupled ripples' no se debe al aumento de probabilidad por el hecho de que el electrodo simplemente tenga mas ripples en total.

Reinstanciamiento (3)

- Reinstanciamiento ('reinstatement')
 - Vector de caractrísticas codificación ('encoding') $E_i = [Z_{1,1}(i) \dots Z_{1,E}(i) \dots Z_{1,E}(i)]$
 - Vector de caractrísticas evocación ('retrieval') $E_j = [Z_{1,1}(j) \dots Z_{1,F}(j) \dots Z_{L,F}(j)]$

Los sub-índices representan número de electrodo y número de la banda de frecuencia², respectivamente, en unidad de puntuación estandar. Se calculó la similitud de coseno para cada época del par de entradas en el vector.

$$C_n(i,j) = \frac{E_i \cdot R_j}{||E_i||||R_j||}$$

 Test de permutaciones (test de t) para diferencias entre correctos e incorrectos

²[delta, theta, alpha, beta, gamma, ripple band(80-120)]Hz

Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory

— Resultados

Resultados

'Coupled ripples'

- La corteza presenta un aumento de poder en la banda (80-120Hz, 'Ripple banda'), dentro de una ventana de 50ms luego de presencia de 'ripples' en el MTL versus 50ms antes. [t(13) = 2.41, p < 0.05, t-test pareado]
- Esto no sucede con la corteza primaria (control) [t(8) = -0.85, p > 0.05]
- \blacksquare 16.4 \pm 5.3% de electrodos de la corteza temporal están acoplados con el MTL
- ullet 3.3 \pm 2.8% de electrodos de la corteza primaria están acoplados con el MTL

'Coupled ripples' y tarea experimental

- El tasa de 'coupled ripples' entre MTL y la corteza temporal es más alta en trial correctos que incorrectos [t(13) = 3.33, p < 0.01]
- Para descartar que este acoplamiento sea por el hecho de aumentar la tasa de 'ripples' en el MTL:
 - Se calculó la probabilidad condicional p(m|c) y p(c|m), descartando el aumento por chanche
 - Se descarta efecto por conducción de volumen (del MTL al resto) con referencia bipolar y dada la distribución cuasi-uniforme de las diferencias de fase (se esperaría ~0 lag si fuese por conducción por volumen, y por lo mismo un 'peak' acentuado)

Sincronización

- La corteza temporal esta mas 'sincronizada' con el MTL [Sincronización = 1.26 ± 0.08 ; t(13)=3.19, p<0.01, versus 'línea base']
- Por otro lado, la corteza primaria no lo está [Sincronización = 1.07 ± 0.04 ; t(8) = 1.77, p > 0.05]

Sincronización y tarea experimental

- En trials correctos, en todas las épocas comparadas con la 'línea base', hubo mayor sincronizadad entre corteza temporal y MTL [Sincronización = 1.37 ± 0.11 ; t(13) = 2.83, p < 0.05, t-test pareado]
- Este efecto también se observa 500ms pre-vocalización (trial correctos versus incorrectos) [t(13) = 2.26, p < 0.05, t-test pareado]

Los 'coupled ripples' pueden re-instanciar representaciones neurales de los respectivos períodos de codificación

- Se realiza la operacionalización de una representación a nivel corteza mediante un vector de características compuesto por el puntaje z del poder por electrodo por banda de frecuencia
 - El reinstanciamento es mayor en trials correctos que incorrectos [p < 0.01, test de permutaciones]
 - El reinstanciamento medio es mayor en trials correctos que incorrectos, a través de participantes [t(13) = 3.83, p < 0.01]
 - **E**s 'ripple-locked' [asignación aleatoria de índices temporales, correctos versus incorrectos t(13) = 2.42, p < 0.05]
 - Son patrones especificos para cada memoria ('ripple locked').
 [condiciones verdaderas versus condiciones barajadas (p < 0.01)])]*

Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory
Conclusiones

Conclusiones

Conclusiones

- Existe un proceso activo para 'recuperar' memorias
- Se basa en el reinstanciamento de patrones previamente realizados en la corteza (que represento dicha memoria)
- Parece ser que un eje relevante de esto son los 'coupled ripples', esto es, sincronización entre MTL y corteza temporal de asociación en la banda 80-120Hz
- Aporta evidencia, a que codificación y recuperación son procesos discretos
- ¿Que tan bien se puede caracterizar la representación de una memoria? ¿A que punto es válido?

Figure 5: Coupled ripples