Mining Time Series: Computing Similarity

Mining Massive Datasets

Prof. Carlos Castillo — https://chato.cl/teach

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (chapter 14)
- Introduction to Time Series Mining (2006) tutorial by Keogh Eamonn [alt. link]
- Time Series Data Mining (2006) slides by Hung Son Nguyen

Using Euclidean distance on time series

Euclidean distance for time series

Euclidean distance between series y and z

$$d(y,z) = \sqrt{\sum_{i=1}^{n} (y_i - z_i)^2}$$

- Sensitive to noise (see previous slides on how to fix this)
- Sensitive to different offsets, amplitudes, and trends

Offset translation: subtract the mean

 Series look different

 Series look similar

Amplitude scaling: normalize

Standardization

Range-based normalization

$$y_i' = \frac{y_i - \operatorname{avg}(y)}{\operatorname{std}(y)}$$

$$y_i' = \frac{y_i - \min(y)}{\max(y) - \min(y)}$$

Trend removal: remove linear trend

- 1. Find best straight line fitting data
- 2. Subtract that line from the data

Example: clustering of time series after using smoothing, offset translation, amplitude scaling, and trend removal

Clustering using euclidean distance on original series

Clustering using euclidean distance on processed series

Dynamic time warping

Dynamic time warping

"Warped" Time Axis Nonlinear alignments are possible.

Dynamic time warping example

Image credits: Lu et al. 2016

Computing DTW(X,Y)

- 1)Create a matrix M of size |X|×|Y|
- 2)Fill-in the matrix using dynamic programming

14 30

 $M(i,j) = d(y_i, x_j) +$ $\min\{M(i-1,j-1),$ M(i-1,j),M(i, j - 1)

Computing DTW(X,Y) (cont.)

- 1)Create a matrix M of size |X|×|Y|
- 2)Fill-in the matrix using dynamic programming
- 3)Find lighter path

[Source]

4)Cell (a,b) in path \Rightarrow points a,b should be aligned

11

16

10

3

Sequence X

Exercise: Dynamic Time Warping

- Compute DTW these two series
- Create the matrix using the formula (remember first row and first column will be different)
- t 1 2 3 4 5 6 Y_t 2 5 2 5 3 --X_t 0 3 6 0 6 1

Mark with color the minimum path

$$M(i,j) = d(y_i, x_j) + \min\{M(i-1, j-1), M(i-1, j), M(i, j-1)\}$$

Spreadsheet links: https://upfbarcelona.padlet.org/chato/hogch321o6pws1fd

Faster DTW through size reduction

- How to avoid having a large matrix?
- Use less points
 - Sub-sample from original series
 - Bin the original series
- If sampling was done, after doing DTW:
 - Interpolate warpings for intermediate points

Example: faster DTW through sub-sampling

How to avoid pathological warpings?

Assume original series cannot be so far apart from each other, using domain knowledge

Summary

Things to remember

Dynamic time warping

Solved exercise on DTW

• Blue series:

• Red series:

• First try to do it on your own, then you can watch the solution:

https://youtu.be/_K1OsqCicBY?t=125

Exercises for TT27-TT29

- Data Mining, The Textbook (2015) by Charu Aggarwal
 - Exercises $14.10 \rightarrow 1-6$