We Claim:

 A polymeric material comprising alternate substituted fluorene and phenylene units, as represented by the following formula

wherein R_1 , R_2 , R_3 and R_4 , which may be identical or different, are each selected from the group consisting of H, a $(C_1 - C_{22})$ linear or branched alkyl, alkoxy or oligo (oxyethylene) group, a $(C_6 - C_{30})$ cycloalkyl group, and an unsubstituted or substituted aryl group, and n is from about 3 to about 5000.

- 2. A polymeric material according to claim 1 wherein R_1 and R_2 , which may be identical or different, are each selected from the group consisting of H, (C_1 C_{22}) linear or branched alkyl groups, oligo (oxyethylene) groups or unsubstituted or substituted aryl groups, and wherein R_3 and R_4 , which may be identical or different, are each selected from the group consisting of H, alkoxy groups, oligo (oxyethylene) groups, (C_6 C_{30}) cycloalkyl groups or unsubstituted or substituted aryl groups.
- A polymeric material according to claim 1 wherein R₁ and R₂ are dialkyl groups and wherein R₃ and R₄ are dialkoxyl groups.
- A polymeric material according to claim 1 wherein n is from about 5 to about 1000.

- A polymeric material according to claim 1 which emits visible light having a wavelength of between 350 and 550 nm.
- A polymeric material according to claim 5 which emits visible light having a wavelength of about 430 nm.
- A light emitting diode comprising a polymeric material in accordance with claim 1.
- A light emitting diode having an anode layer, a polymer layer comprising a polymeric material in accordance with claim 1 , and a metal cathode layer.
- A light emitting diode according to claim 7 having an additional hole transporting layer between the anode layer and the polymer layer.
- 10. A light emitting diode according to claim 9 wherein the hole transporting layer includes polyvinylcarbazole.
- 11. A light emitting diode according to claim 9 having an additional hole injection layer between the hole transporting layer and the polymer layer.
- 12. A light emitting diode according to claim 11 wherein the hole injection layer comprises copper phthalocyanine.

- 13. A light emitting diode according to claim 11 wherein the hole injection layer comprises polyaniline.
- A full color display incorporating a polymeric material in accordance with claim 1.
- 15. A full color display incorporating a light emitting diode in accordance with claim 7.
- A polymeric material according to claim 1 made in accordance with a Suzuki coupling process.
- 17. A polymeric material according to claim 16 wherein the monomers are 2, 7-diboronates of 9,9-disubstituted fluorenes and 1,4-dibromo-2,5-disubstituted benzenes.
- 18. A polymeric material according to claim 16 wherein the monomers are prepared using Grignard reagents.