



### **Describe Model**

Rob Reider
Adjunct Professor, NYU-Courant
Consultant, Quantopian

## Mathematical Decription of MA(1) Model

$$R_t = \mu + \epsilon_t 1 + \theta \epsilon_{t-1}$$

- Since only one lagged error on right hand side, this is called:
  - MA model of order 1, or
  - MA(1) model
- MA parameter is  $\theta$
- Stationary for all values of  $\theta$

## Interpretation of MA(1) Parameter

$$R_t = \mu + \epsilon_t + \theta \epsilon_{t-1}$$

- Negative  $\theta$ : One-Period Mean Reversion
- Positive  $\theta$ : One-Period Momentum
- Note: One-period autocorrelation is  $heta/(1+ heta^2)$ , not heta

## Comparison of MA(1) Autocorrelation Functions





• 
$$\phi = -0.9$$



$$ullet$$
  $\phi=0.5$ 



• 
$$\phi = -0.5$$





## Example of MA(1) Process: Intraday Stock Returns





## Autocorrelation Function of Intraday Stock Returns



## Higher Order MA Models

MA(1)

$$R_t = \mu + \epsilon_t - heta_1 \; \epsilon_{t-1}$$

MA(2)

$$R_t = \mu + \epsilon_t - \theta_1 \; \epsilon_{t-1} - \theta_2 \; \epsilon_{t-2}$$

MA(3)

$$R_t = \mu + \epsilon_t - \theta_1 \; \epsilon_{t-1} - \theta_2 \; \epsilon_{t-2} - \theta_3 \; \epsilon_{t-3}$$

• ...



## Simulating an MA Process

```
from statsmodels.tsa.arima_process import ArmaProcess
ar = np.array([1])
ma = np.array([1, 0.5])
AR_object = ArmaProcess(ar, ma)
simulated_data = AR_object.generate_sample(nsample=1000)
plt.plot(simulated_data)
```



# Let's practice!



# Estimation and Forecasting an MA Model

Rob Reider
Adjunct Professor, NYU-Courant
Consultant, Quantopian



## Estimating an MA Model

Same as estimating an AR model (except order=(0,1))

```
from statsmodels.tsa.arima_model import ARMA
mod = ARMA(simulated_data, order=(0,1))
result = mod.fit()
```



## Forecasting an MA Model

```
from statsmodels.tsa.arima_model import ARMA
mod = ARMA(simulated_data, order=(0,1))
res = mod.fit()
res.plot_predict(start='2016-07-01', end='2017-06-01')
plt.show()
```





# Let's practice!





### **ARMA** models

Rob Reider
Adjunct Professor, NYU-Courant
Consultant, Quantopian

### ARMA Model

• ARMA(1,1) model:

$$R_t = \mu + \phi R_{t-1} + \epsilon_t + \theta \epsilon_{t-1}$$

### Converting Between ARMA, AR, and MA Models

Converting AR(1) into an MA(infinity)

$$R_{t} = \mu + \phi R_{t-1} + \epsilon_{t}$$

$$R_{t} = \mu + \phi(\mu + R_{t-2} + \epsilon_{t-1}) + \epsilon_{t}$$

$$R_{t} = \mu + \phi(\mu + \phi(\mu + R_{t-3} + \epsilon_{t-2}) + \epsilon_{t-1}) + \epsilon_{t}$$

$$\vdots$$

$$R_{t} = \mu + \epsilon_{t} + \phi \epsilon_{t-1} + \phi^{2} \epsilon_{t-2} + \phi^{3} \epsilon_{t-3} + \phi^{4} \epsilon_{t-4} + \cdots$$



# Let's practice!