3. Calcule el término general de la sucesión siguiente:

$$\frac{4 \cdot L5}{1}, \frac{5 \cdot L13}{3}, \frac{6 \cdot L23}{7}, \frac{7 \cdot L35}{13}, \dots$$

Este problema figura resuelto en la página 161 del volumen 2 de Problemas de Oposiciones de Editorial Deimos.

SOLUCIÓN: Se consideran las sucesiones

$$(a_n) = (5,13,23,35,...),$$
 $(b_n) = (1,3,7,13,...)$

La sucesión (x_n) del enunciado es la de término general

$$x_n = \frac{(n+3) L a_n}{b_n}$$

Calculamos las primeras diferencias finitas de ambas sucesiones:

a_{i}	5	13	3	23		35			$b_{_{i}}$	1		3		7		13	
Δa_{i}		8	10)	12		•••		$\Delta b_{_i}$		2		4		6		
$\Delta^2 a_i$		2	}	2					$\Delta^2 b_{_i}$			2		2 .			

Por tanto, (a_n) y (b_n) son progresiones aritméticas de segundo orden y

$$a_n = \begin{pmatrix} n-1 \\ 0 \end{pmatrix} a_1 + \begin{pmatrix} n-1 \\ 1 \end{pmatrix} \Delta a_1 + \begin{pmatrix} n-1 \\ 2 \end{pmatrix} \Delta^2 a_1 = 5 + 8(n-1) + (n-1)(n-2) = n^2 + 5n - 1$$

$$b_{n} = \begin{pmatrix} n-1 \\ 0 \end{pmatrix} b_{1} + \begin{pmatrix} n-1 \\ 1 \end{pmatrix} \Delta b_{1} + \begin{pmatrix} n-1 \\ 2 \end{pmatrix} \Delta^{2} b_{1} = 1 + 2(n-1) + (n-1)(n-2) = n^{2} - n + 1$$

luego

$$x_n = \frac{(n+3)L(n^2+5n-1)}{n^2-n+1}$$