Name:	•••••	• • • • • • • •	• • • • • • •		• • • • • • •	•••••	• • • • • • • • • • •	•••••	
Roll No.	:	• • • • • • • • • • • • • • • • • • • •		•••••		•••••			
Invigila	tor's S	ignatu	re :						

DATABASE MANAGEMENT SYSTEM

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following:

 $10 \times 1 = 10$

- i) In the relational mode, cardinality is termed as
 - a) number of tuples
 - b) number of attributes
 - c) number of tables
 - d) number of constraints.
- ii) Relational calculus is a
 - a) procedural language
 - b) non-procedural language
 - c) data definition language
 - d) high level language.

6102 Turn over

iii)	Cartesian product in relat	ional a	algebra is
	a) a unary operator	b)	a binary operator
	c) a ternary operator	d)	not defined.
iv)	DML is provided for		
	a) description of logical	struc	ture of database
	b) addition of new struc	ctures	in the database system
	c) manipulation & proc	essing	g of database
	d) definition of phys	ical	structure of database
	system.		
v)	In a relational model, rela	tions a	are termed as
	a) Tuples	b)	Attributes
	c) Tables	d)	Rows.
vi)	In case of entity integrity,	the p	rimary key may be
	a) not Null	b)	Null
	c) both Null & not Null	d)	any value.
6102	2		

vii)	In an E-R diagram an entity set is represented by a						
	a)	rectangle	b)	ellipse			
	c)	diamond box	d)	circle.			
viii)	Whi	ch of the following op	erati	ons is used if we are			
	interested in only cetain columns of a table?						
	a)	PROJECTION	b)	SELECTION			
	c)	UNION	d)	JOIN.			
ix)	Whi	ch of the following is	a c	comparison operator in			
	SQL?						
	a)	= 10	b)	LIKE			
	c)	BETWEEN	d)	All of these.			
x)	Usir	ng relat onal algebra the	quei	ry that finds customers,			
	who	have a balance of over	1000	O is			
	a)	∏Customer_name(σ ba	lanc	e > 1000 (Deposit))			
	b)	σCustomer_name(∏ ba	lanc	e > 1000 (Deposit))			
	c)	∏Customer_name(σ ba	lanc	e > 1000 (Borrow))			
	d)	σCustomer_name(∏ ba	lanc	e > 1000 (Borrow)).			
6102		3		[Turn over			

GROUP - B (Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Explain in brief 3-schema architecture of DBMS.
- 3. Explain with example super key, candidate key and primary key.
- 4. What is cardinality ratio ? What is the difference between procedural and non-procedural DML ? What is disjointness constraint ? 1+2+2
- 5. Describe three layer architecture of DBMS.
- 6. Indicate the advantage of DBMS over conventional file system.

GROUP - C (Long Answe Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) What do you mean by integrity constraint?
 - b) What is lossless decomposition?
 - c) What do you mean by closure?
 - d) Suppose that we decompose the schema,

R = (A, B, C, D) into (A, B, C) and (A, D, E).

Show that this decomposition is lossless decomposition, if the following set F of FDs holds —

$$A \rightarrow BC$$
, $CD \rightarrow E$, $B \rightarrow D$, $E \rightarrow A$. $2 + 2 + 2 + 9$

6102

- 8. a) State two-phase commit protocol and discuss the implications of a failure on the part of
 - i) the coordinator
 - ii) a participant, during each of the two phases.
 - b) Describe the wait-die and wound-wait protocols for deadlock prevention.
 - c) Define three concurrency problems : dirty read, nonrepeatable read, phantoms.
 - d) Let T1, T2 and T3 be transactions that operate on the same data items *A*, *B* and *C*. Let r1(A) mean that T1 reads A w1(A) means that T1 writes A and so on for T2 and T3.

Consider the following schedule:

S1: r2(c), r2(B), w2(b), r3(B), r3(C), r1(A), w1(A), w3(B), w3(C), r2(A), r1(B), w1(B), w2(A)

Is the schedule serializable?

e) What are the roles of Analysis, Redo and Undo phases in the recovery algorithm 'ARIES' ? 4 + 2 + 3 + 3 + 3

- 9. a) When do we call a relation is in 3NF?
 - b) Consider the relation assignment {worker_id, building_id, startdate, name skilltype} and FDs are {worker_id->name, (worker_id, building_id)->startdate}.

Is the relation in 2NF? If not, then make it in 2NF.

- c) Describe Boyce-Codd normal form with example.
- d) What is Query Tree ? Why we need query tree ?

 Consider the query "SELECT EMP_NAME FROM

 EMPLOYEE, WORK_ON, PROJECT WHERE

 PROJECT_NAME='ASSEMBLY' AND PRJ_NO='P1'AND

 JPOIN_DATE='21-12-12'. Construct a query tree for this query.

 1 + 4 + 3 + (1 + 2 + 4)
- 10. a) What is trnasacton?
 - b) What is ACID property?
 - c) Explain with example serial and serializable schedule.
 - d) What are the problems of concurrent execution of transaction?
 - e) Explain with the help of precedence graph the conflict and non-conflict serializability. 1 + 3 + 4 + 3 + 4

6102

11. Write short notes on any *three* of the following : 3×5

a) Functional dependency

b) Dead lock

c) Transaction state diagram

d) B-tree

e) Data Dictionary.

6102 7 [Turn over