

Description

The vs100N08-Tc uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- V_{DS} =80V, I_{D} =100A $R_{DS(ON)}$ < 8.5mΩ @ V_{GS} =10V (Typ:6.8mΩ)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Automotive applications
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic diagram

Package Marking and Ordering Information

De	vice Marking	Device	Device Package	Reel Size	Tape width	Quantity
VS	100N08-TC	VS100N08-TC	TO-220-3L	-	-	-

Absolute Maximum Ratings (T_C=25℃unless otherwise noted)

7 110 0 0 110 0 110 110 110 110 110 110					
Parameter	Symbol	Limit	Unit		
Drain-Source Voltage	V DS	80	V		
Gate-Source Voltage	V _G s	±20	V		
Drain Current-Continuous	I _D	100	А		
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	74	Α		
Pulsed Drain Current	I _{DM}	420	А		
Maximum Power Dissipation	P _D	200	W		
Derating factor		1.33	W/°C		

Single pulse avalanche energy (Note 5)	E _{AS}	800	mJ	
Operating Junction and Storage Temperature Range	T_J, T_{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	R _{eJC}	0.75	°C/W
---	------------------	------	------

Electrical Characteristics (T_c=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	ource Breakdown Voltage BV _{DSS} V _{GS} =0V I _D =250μA		80	86	-	V
Zero Gate Voltage Drain Current	Gate Voltage Drain Current I _{DSS} V _{DS} =80V,V _{GS} =0V		-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			'			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =40A	-	6.8	8.5	mΩ
Forward Transconductance	g FS	V _{DS} =25V,I _D =40A	80	-		S
Dynamic Characteristics (Note4)			•			
Input Capacitance	C _{lss})/ -05\/\/ -0\/	E	4522	-	PF
Output Capacitance	Coss	V_{DS} =25V, V_{GS} =0V, F=1.0MHz	-	396	: - :	PF
Reverse Transfer Capacitance	C _{rss}	F=1.UIVIM2	_	339	-	PF
Switching Characteristics (Note 4)			1			
Turn-on Delay Time	t _{d(on)}		-	20	-	nS
Turn-on Rise Time	t _r	V_{DD} =40V, I_D =2A, R_L =15 Ω ,	-	19	-	nS
Turn-Off Delay Time	t _{d(off)}	$R_G=2.5\Omega, V_{GS}=10V$	-	70		nS
Turn-Off Fall Time	t _f		=	30	-	nS
Total Gate Charge	Qg		-	117	-	nC
Gate-Source Charge	Q _{gs}	I _D =55A,V _{DD} =40V,V _{GS} =10V	-	24	-	nC
Gate-Drain Charge	Q _{gd}		=	43	-	nC
Drain-Source Diode Characteristics	-	1	1			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =40A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	100	Α
Reverse Recovery Time	t _{rr}	Tj=25℃,IF=75A,	-	37		nS
Reverse Recovery Charge	Qrr	di/dt=100A/uS ^(Note3)	=	58		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition: Tj=25 $^{\circ}\text{C}$,VDD=40V,VG=10V,L=0.5mH,Rg=25 Ω

Test circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Vds Drain-Source Voltage (V) **Figure 8 Safe Operation Area**

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 Current vs Junction Temperature

1000

Figure 11 Normalized Maximum Transient Thermal Impedance

Vseei Semiconductor Co., Ltd