

Anime Recommendation System

Authors: Ahmed Mehaisi, Mohammed Imtiaz, Dheeman Gangopadhyay

Instructor: Dr. Alex Aklson – April 30, 2025

Agenda: Introduction, EDA, Methodology, Results, Principles, Challenges,

Conclusion

Introduction

Anime

Hand-drawn and computer-generated animation originating in Japan; spans genres from comedy and romance to shonen and action.

Choice Overload

Over 20,000 titles across streaming platforms make discovery difficult for viewers.

Why Recommendations?

- Filter vast catalog into personalized shortlists.
- Help new users get started and expose veterans to hidden gems
- Enhance overall user enjoyment.

Data Acquisition and Preprocessing

Data Source

Extracted 3,000 anime titles and 1.5 million user ratings from MyAnimeList.

Cleaning & Engineering

Handled missing values, removed duplicates.

Engineered Feature

Engineered a feature that represents the average rating for an item

Methodology: Hybrid Approach

1

Non-Personalized Stage

Popular and Bayesian average scores provide initial recommendations.

2

Content-Based Filtering

Matches user with anime by synopsis keywords and genre similarity.

3

Collaborative Filtering

Integrates item-based and user-based filtering for personalization.

Hybrid Non-Personalized

Weighted Score (50%)

Bayesian Score (50%)

Cold-start: no user history

Hybrid Content-Based

TF-IDF (70%) +

Jaccard Genres (30%)

Few clicks / genre selections

Hybrid Collaborative Filtering

Item-CF (70%) +

User-CF (30%)

Rich rating history

Results: Evaluation Metrics

Metric	Evaluation	Interpretation
Content-Based	Manual subjective evaluation	Improves recommendation diversity while maintaining relevance
User-based CF	RMSE : 1.3639 (Out of 10)	Provides more varied, personalized suggestions
Item-based CF	RMSE : 1.2099 (Out of 10)	Achieves the highest predictive accuracy

Results: Evaluation Metrics

Content-Based

RMSE: N/A

Significant accuracy boost

User-Based CF

RMSE: 1.36

More varied recommendations

Item-Based CF

RMSE: 1.21

Highest predictive accuracy

Fundamental Principles

Personalization

Tailor recommendations using user ratings and interaction history for relevance.

Relevance

Prioritize items statistically likely to be enjoyed, reducing irrelevant suggestions.

Exploration vs. Exploitation

Balance popular diverse content with known preferences for discovery.

Fairness & Bias Mitigation

Exclude sensitive data and apply Bayesian smoothing to reduce bias and extremes.

Cold start problem

Integrating a Hybrid Non-Personalized model and an Hybrid content-based model so new users get relevant recommendations without prior data.

Key Challenges & Future directions

Computational Constraints

- Large pairwise similarities and model training strained
 CPU/memory.
- Optimized by limiting dataset
 size, precomputing & caching top k similarities

Content-Based Evaluation

- No direct RMSE/precision metric for text- & genre-based filtering.
- Developed indirect methods and ultimately relied on manual subjective validation

Hybrid Balancing

- Tuning mix of individual methods required extensive experimentation.
- Solved by stage-based switching: A well planned userpipeline

Conclusion

Development

Built a robust three-stage hybrid recommendation system.

Performance

Outperformed baseline models in accuracy and diversity.

Next Steps

Focus on improving overall model

