Exercises for Course: Elementary Geodesy

- 1. Find the length of Equator when a = 6378137 m.
- 2. Consider a levelling line observed from point A at latitude $\phi=56^\circ$ to point B at latitude $\phi=57^\circ$ both at elevation $0\,\mathrm{m}$. The points A and B are on the geoid; hence the potential difference is 0.

Now increase the potential at latitude $\phi=56^\circ$ by $C=1\,000\,\mathrm{m}^2/\mathrm{s}^2$; and we arrive at point E. We do a similar thing at latitude $\phi=57^\circ$ and arrive at point D. The potential difference along the closed curve A-B-D-E is zero. When moving around this curve no work is performed: the field is *conservative*.

However, if we convert the potential difference of $1000 \,\mathrm{m^2/s^2}$ to meters at the different latitudes we get different orthometric heights H!

Compute the orthometric height of points E and D.

Hints: $\gamma_0=9.780\,490\left(1+0.005\,288\,4\sin^2\phi-0.000\,005\,9\sin^2(2\phi)\right)$. We have $f=1/298.257\,223\,563$, and $m=\frac{(7\,292\,115\cdot10^{-11})^26\,378\,137^3}{3\,986\,004.418\cdot10^8}$, and $H=C/\gamma_h$ where $\gamma_h=\gamma_0\left(1-(1+f+m-2f\sin^2\phi)H/a\right)$.

- 3. The datum ED 50 is based on the international ellipsoid of 1924 with $a=6\,378\,388\,\mathrm{m}$. The datum WGS 84 has $a=6\,378\,137\,\mathrm{m}$. Adding the $251\,\mathrm{m}$ to the semi-axis a, changes the position $\phi=57^\circ$ North, and $\lambda=10^\circ$ East. But loosely how?
- 4. The different position of ED 50 with respect to WGS 84 is decribed by the translational vector t=(-87,-98,-121). Can you loosely describe the influence of t on the position $\phi=57^\circ$ North, and $\lambda=10^\circ$ East.
- 5. Find the length along a meridian from Equator to a point at latitude $\phi = 57^{\circ}$.
- 6. According to Figure 1 the latitude and the longitude components of the differential line element ds on the ellipsoid are $M d\phi$ and $N \cos \phi d\lambda$.

$$N\cos\phi d\lambda$$

 $M d\phi$ ds

Figure 1: Differential line element on the ellipsoid.

Compute the metric length of a line element of 1'' in the direction of the meridian and the parallel at points $(\phi, \lambda) = (0^{\circ}, 0^{\circ})$ and $(57^{\circ}, 10^{\circ})$.

7. Direct problem. Given a point with $\phi=57^\circ$, $\lambda=10^\circ$ and three different values of s=1000 m, $10\,000$ m, and $30\,000$ m.

Compute (ϕ_2, λ_2) and A_2 in all three cases. Hint: Use gauss_di.

- 8. Inverse problem. Given the results form Ex. 1: (ϕ_2, λ_2) and A_2 . Find the distances S and azimuths between (ϕ_1, λ_1) and (ϕ_2, λ_2) . Hint: Use gauss_in.
- 9. Given a point with $(\phi, \lambda, h) = (57^{\circ}, 10^{\circ}, 60 \, \text{m})$ in WGS 84. Find the Cartesian coordinates (X, Y, Z). Hint: Use geo2cart.
- 10. Given a point with the (X, Y, Z) from Ex. 3. Find the geographical coordinates of the point in WGS 84. Hint: Use cart2geo.
- 11. Given the same (X,Y,Z) as in Ex. 4, but compute the geographical coordinates now relative to the international ellipsoid 1924. Comment the result! Hint: Use cart2geo.
- 12. Find the changes in (ϕ,λ,h) at the point $\phi=57^\circ$, and $\lambda=10^\circ$ when we shift by $(t_x,t_y,t_z)=(-87,-98,-121)$, deminish a by 251 m (da=-251) and change f by df=1/297-1/298.257223563. Realize that this is the transformation from ED 50 to WGS 84. Hint: Use da-
- 13. Which changes do we experience for the point with coordinates $\phi=56^\circ$, and $\lambda=10^\circ$.

tumch.

- 14. Convert the coordinates X = 3429122.662, Y = 604646.845, and Z = 5325950.420 into (N, E) in UTM, zone 32. Hint: Use **cart2utm**.
- 15. Convert N=6318036.28, E=560828.13 into geographical coordinates (ϕ,λ) . Hint: Use utm2geo.
- 16. Convert $\phi = 57^{\circ}$, $\lambda = 10^{\circ}$ into (N, E) in UTM, zone 32. Hint: Use geo2utm.
- 17. Convert the UTM coordinates $N=6317972.081, \ {\rm and}\ E=560749.622$ into geographical coordinates. Hint: Use utm2geo.