Pradels Nicolas Note: 1/20 (score total : 1/20)

+162/1/2+

QCM THLR 4

Nor	n et prénom, lisibles :	Identifiant (de haut en bas):
1.1	TALEC	
10	licolas	
sieur plus pas p incor	ot que cocher. Renseigner les champs d'identit es réponses justes. Toutes les autres n'en ont qu restrictive (par exemple s'il est demandé si 0 de possible de corriger une erreur, mais vous pour prectes pénalisent; les blanches et réponses mu	i dans les éventuels cadres grisés « 🏖 ». Noircir les cases ité. Les questions marquées par « 🗶 » peuvent avoir plu- qu'une; si plusieurs réponses sont valides, sélectionner la est nul, non nul, positif, ou négatif, cocher nul). Il n'est avez utiliser un crayon. Les réponses justes créditent; les ultiples valent 0. plet: les 2 entêtes sont +162/1/xx+···+162/2/xx+.
Q.2	Le langage { $\bigcap^n \bigcap^m \forall n, m \in \mathbb{N}$ } est	
	non reconnaissable par automate fini	🗆 vide 🐞 fini 🖂 rationnel
Q.3	Le langage $\{ \stackrel{\bullet}{=}^n \stackrel{\bullet}{\cong}^n \mid \forall n \in \mathbb{N} \}$ est	
	🚳 fini 🛛 non reconnaissable pa	ar automate 🔲 rationnel 🔲 vide
Q.4	Un automate fini qui a des transitions spont	tanées
		ministe $\mathbf{\hat{w}}$ n'accepte pas $\mathbf{\varepsilon}$ \square accepte $\mathbf{\varepsilon}$
Q.5	Quels langages ne vérifient pas le lemme de	pompage?
	☐ Tous les langages reconnus par DFA☑ Certains langages non reconnus par DF	☐ Tous les langages non reconnus par DFA ☐ Certains langages reconnus par DFA
Q.6	Si un automate de n états accepte a^n , alors i	il accepte
*	$a^p(a^q)^*$ avec $p \in \mathbb{N}, q \in \mathbb{N}^* : p+q \le n$	\square $a^n a^m$ avec $m \in \mathbb{N}^*$ \square $(a^n)^m$ avec $m \in \mathbb{N}^*$ \square a^{n+1}
Q.7	Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si :	
		ont rationnels et $L_2 \subseteq L_1$ \square L_1 est rationnel est rationnel
Q.8 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):		
	$\frac{n(n+1)(n+2)(n+3)}{4} \qquad \qquad \square \text{Il I}$	n'existe pas. \square 4^n \boxtimes 2^n
Q.9	Déterminiser cet automate : $\xrightarrow{a,b} \xrightarrow{a,b}$	a,b $a \rightarrow 0$

2/2

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

0/2

 \square $Det(T(Det(T(\mathcal{A}))))$

 \square $Det(T(Det(T(Det(\mathcal{A})))))$

Fin de l'épreuve.