Quantile Functions and the Inversion Method

Mark M. Fredrickson (mfredric@umich.edu)

Computational Methods in Statistics and Data Science (Stats 406)

Quantile Functions

Distribution Functions and Quantile Functions

Recall: the distribution function for a random variable is

$$F_X(t) = \Pr(X \le t) = \begin{cases} \int_{-\infty}^t f(x) \, dx & \text{(continuous)} \\ \sum_{x=-\infty}^t \Pr(X = t) & \text{(discrete)} \end{cases}$$

Some properties of all F_X :

- $0 \le F_X(x) \le 1$ for all $x \in (-\infty, \infty)$
- F_X is non-decreasing and right continuous: $x_1 \ge x_2 \Rightarrow F_X(x_1) \ge F_X(x_2)$.

This allows defining the quantile function:

$$Q_X(u) = F_X^{-1}(x) = \inf\{x : F(x) \ge u\}, \quad u \in [0, 1]$$

(finds smallest x (or limit from the right) where F(x) is at least as large as u)

Quantile-Quantile Plots

Like distribution functions, quantile functions uniquely define RVs.

While two two RVs with F_X and F_Y might be on different scales, both Q_X and Q_Y map $(0,1) \to \mathbb{R}$.

The quantile-quantile plot computes all points $(Q_X(u), Q_Y(u))$ for many points $u \in (0,1)$.

If $F_X = F_Y$, the points fall on the 45 degree line.

Example QQ Plot: Same distribution

- > x <- rexp(100)
- > ggplot(data.frame(sample = x), aes(sample = sample)) +
- + $geom_qq(distribution = qexp)$ + $geom_qq_line(distribution = qexp)$

Example QQ Plot: Different distribution

> ggplot(data.frame(sample = x), aes(sample = sample)) +
+ geom_qq(distribution = qnorm) + geom_qq_line(distribution = qnorm)

Example: Uniform on $(0, \theta)$

Recall $X \sim U(0, \theta)$:

$$f(x) = \frac{1}{\theta}, \quad 0 < x < \theta, \theta > 0$$

The distribution function can be found by:

$$F(t) = \int_0^t \frac{1}{\theta} dx = \frac{x}{\theta} \Big|_0^t = \frac{t}{\theta}$$

Since X is continuous, we can just take the inverse:

$$u=rac{t}{ heta}\Rightarrow Q_{(0, heta)}(u)= heta u$$

Example: Triangular distribution

Suppose X has density function:

$$f(x) = \begin{cases} x & 0 \le x \le 1 \\ 2 - x & 1 < x \le 2 \end{cases}$$

Cumulative Distribution Function

To get the quantile function, we need to derive the cumulative distribution function (CDF). Consider these cases:

- t < 1: $F(t) = \int_0^t x \, dx = \frac{t^2}{2}$
- t = 1: $F(1) = \int_0^1 x \, dx = \frac{1}{2}$
- *t* > 1:

$$F(t) = \int_0^t f(x) dx = \int_0^1 f(x) dx + \int_1^t f(x) dx$$
$$= F(1) + \int_1^t 2 - x dx$$
$$= \frac{1}{2} + \left[2 - \frac{x^2}{2} \Big|_{x=1}^t \right] = 2t - \frac{t^2}{2} - 1$$

CDF

Triangular quantile function

We found a **piece-wise distribution** distribution function:

$$F(t) = \begin{cases} \frac{t^2}{2} & 0 \le x \le 1\\ 2t - \frac{t^2}{2} - 1 & 1 < x \le 2 \end{cases}$$

This implies the quantile function will also be piece-wise.

There was a break at x = 1, so there were be a break at F(1) = 1/2 = u:

$$u \le 1/2 : u = F(x) = x^2/2 \Rightarrow x = \sqrt{2u} = x$$

$$u > 1/2 : u = F(x) = 2x - x^2/2 - 1 \Rightarrow x = 2 - \sqrt{2 - 2u}$$

$$Q(u) = \begin{cases} \sqrt{2u} & 0 \le u \le 1/2 \\ 2 - \sqrt{2 - 2u} & 1/2 < x < 1 \end{cases}$$

Inversion Method

Connection to Monte Carlo Methods

When discussing psuedorandom number generation (PRNGs), we considered IID

$$U \sim U(0,1)$$

Notice: the domain of any quantile function is precisely (0,1)!

Question: What is the distribution of the random variable Q(U)?

Inversion Method, Continuous RVs

Suppose X is a continuous random variable with quantile function $Q_X(u)$.

For a uniform random variable $U \sim \text{Uniform}(0,1)$ the variable

$$Y = Q(U)$$

has the same distribution as X.

For example, as we already knew:

$$Q_{(0,\theta)}(U) = \theta U \sim U(0,\theta)$$

Observations

Before proceeding to the proof, let's make two observations:

Since X is continuous,

$$\inf \{x : F(x) \ge u\} = \inf \{x : F(x) = u\}$$

Therefore, for any u

$$F(\inf\{x:F(x)=u\})=u$$

The cumulative distribution function for $U \sim U(0,1)$ is

$$F_U(u) = P(U \le u) = \int_0^u 1 \, dx = u$$

Proof of Inversion Method

Goal: Show that $Q_X(U)$ has same distribution as X (for any continuous X).

$$\begin{aligned} \Pr(Q(U) \leq x) &= \Pr(\inf \left\{ x : F(x) \geq U \right\} \leq x) \\ &= \Pr(\inf \left\{ x : F(x) = U \right\} \leq x) \\ &= \Pr(F(\inf \left\{ x : F(x) = U \right\}) \leq F(x)) \end{aligned} &\text{(continuity)} \\ &= \Pr(U \leq F(x)) \\ &= F(x) \\ &= \Pr(X \leq x) \end{aligned} &\text{(def. } F_U) \end{aligned}$$

Interesting Corollary: Probability Integral Transformation

Recall: If for any t, $P(X \le t) = P(Y \le t)$, then X and Y have the same distribution.

For continuous X and $U \sim U(0,1)$, consider the following:

$$P(Q_X(U) \le t) = P(X \le t) \Rightarrow$$
 $P(F_X(Q_X(U)) \le F_X(t)) = P_X(F(X) \le F_X(t)) \Rightarrow$
 $P(U \le F_X(t)) = P(F_X(X) \le F_X(t)) \Rightarrow$
 $F_X(t) = P(F_X(X) \le F_X(t))$

Writing $u = F_X(t)$, $Y = F_X(X)$, we have $P(Y \le u) = u$, the uniform CDF!

For continuous X, $F_X(X) \sim U(0,1)$ (probability integral transformation).

Inv. Method for $U(0, \theta)$

Here is an implementation of the quantile function we found for $U(0,\theta)$:

```
> Q_theta <- function(u, theta) {
+          u * theta
+ }
> k <- 10e5
> u_0_3 <- Q_theta(runif(k), 3)</pre>
```


Inv. Method for Triangular RVs

Recall we found that for *X* with density function:

$$f(x) = \begin{cases} x & 0 \le x \le 1\\ 2 - x & 1 < x \le 2 \end{cases}$$

the quantile function is given by

$$Q(u) = \begin{cases} \sqrt{2u} & 0 \le u \le 1/2 \\ 2 - \sqrt{2 - 2u} & 1/2 < x \le 1 \end{cases}$$

R Implementation

```
> Q_tri <- function(u) {</pre>
      ifelse(u \le 1/2,
              sgrt(2 * u),
             2 - sqrt(2 - 2 * u))
+ }
> Q_{tri}(c(0.25, 0.5, 0.75, 1))
[1] 0.7071 1.0000 1.2929 2.0000
> triangulars <- Q_tri(runif(100000))</pre>
```

Triangular random variables

Estimating the variance

From inspection, we can realize that the triangular PDF is symmetric about 1, so the mean and median must be 1.

$$f(x) = \begin{cases} x & 0 \le x \le 1\\ 2 - x & 1 < x \le 2 \end{cases}$$

We could find the variance analytically, but we'll estimate it. Recall,

$$\operatorname{Var}(X) = \operatorname{E}(X^{2}) - \operatorname{E}(X)^{2}$$

- > x <- Q_tri(runif(10000))
- $> mean(x^2) 1^2$

[1] 0.1743

Example:
$$f(x) = \theta x^{\theta-1}$$

Suppose we have PDF:

$$f(x) = \theta x^{\theta-1}, \quad 0 \le x \le 1, 0 \le \theta$$

$$F(x) = \int_0^x \theta t^{\theta - 1} dt = t^{\theta} \Big|_0^x = x^{\theta}$$

For this function, we can simply solve for x in the expression $u = x^{\theta}$:

$$Q(u)=u^{1/\theta}$$

Implementing in R

```
> rx <- function(n, theta) {
+    runif(n)^(1/theta)
+ }
> xs_theta3<- rx(10000, 3)</pre>
```

QQ-plot

Comparing Estimators of θ

Suppose we have n observations and we think they follow F for some θ . What will be a good estimator of θ ?

During our statistical review we found two estimators of θ :

• Method of Moments:

$$ilde{ heta} = rac{ar{X}_n}{1 - ar{X}_n}$$

Maximum Likelihood:

$$\hat{\theta} = -\frac{n}{\sum_{i=1}^{n} \log(X_i)}$$

We will evaluate these for mean squared error.

Setup the Monte Carlo simulation

```
> mom <- function(x)  { mean(x) / (1 - mean(x))  }
> mle <- function(x) { - length(x) / sum(log(x)) }</pre>
> theta <- 3
> n < -50
> k <- 1000
> samples <- rerun(k, rx(n, theta = 3))
> moms <- map_dbl(samples, mom)</pre>
> mles <- map_dbl(samples, mle)</pre>
```

Dist. of Estimators

MSE

```
> mean((moms - theta)^2)
[1] 0.2074
> mean((mles - theta)^2)
[1] 0.1995
```

Inversion Method for Discrete

Random Variables

Discrete versus Continuous

In our proof of the inversion method for continuous random variables, we used the continuity of f(x) to imply the continuity of F(x) and make the equality:

$$Q(u) = \inf \{x : F(x) \ge u\} = \inf \{x : F(x) = u\}$$

(we knew that there must be at least one point where F(x) = u)

This does not hold for discrete distributions. E.g., $X \sim \text{Bin}(1, 0.5)$, $F(x) \neq 0.75$ for any x.

Note: Q(u) remains well defined in the discrete case (it is a "step-function").

Example: Binomial

For $X \sim \text{Bin}(n, p)$,

$$p(x) = \Pr(X = x) = \binom{n}{x} p^{x} (1 - p)^{n - x}$$

$$F(x) = \Pr(X \le x) = \sum_{i=0}^{x} p(i)$$

$$Q(u) = \min \{x : F(x) \ge u\}$$

Alternate Characterization

Since Q(u) is a **step function**, we have for **any discrete RV**:

$$Q(u) = \min \{x : F(x) \ge u\}$$
$$= \min \left\{x : \sum_{i=0}^{x} p(i) \ge u\right\}$$

Therefore we it must be that if Q(u) = x, then

$$\sum_{i=0}^{x} p(i) \ge u \quad \text{and} \quad \sum_{i=0}^{x-1} p(i) < u$$

In other words:

$$Q(u) = x$$
 such that $F(x - 1) < u \le F(x)$

Inversion Method, Discrete Case

Since Q(u) is a step function for the discrete case, we can skip computing it expressly and just use p(x).

- 1. Initialize v = 0
- 2. Generate $U \sim U(0,1)$
- 3. Walk up the values $(x_1 < x_2 < ...)$:
 - $v = v + p(x_i)$
 - If $v \ge u$, return $X = x_i$

Sometimes we can explicitly find X based on F(x) directly.

Binomial Q in R

```
function(t, n, p) {
  so_far <- 0
  for (i in 0:n) {
      so_far <- so_far + dbinom(i, n, p)</pre>
      if (so_far >= t) {
          return(i)
  return(n) # this shouldn't happen, but be safe!
<br/><bytecode: 0x7fdb8180cf98>
```

Inversion method with Binomial

> xs <- map_dbl(runif(10000), ~ Q_bin(.x, 5, 0.2)) # non-vectorized Q_bin

Example Revisited: Benford's Law

Recall the definition of Benford's Law for leading digits:

$$\mathsf{Pr}(D=d) = \mathsf{log}_{10}\left(rac{d+1}{d}
ight), \quad d=1,\ldots,9$$

Previously, we relied on R's method for sampling from a finite set. We'll reimplement using the inversion method.

Benford CDF

Notice that we can write the cumulative distribution function for *D* as:

$$\begin{aligned} \Pr(D \leq d) &= \sum_{i=1}^{d} \Pr(D = i) \\ &= \sum_{i=1}^{d} \log_{10} \left(\frac{i+1}{i} \right) \\ &= \log_{10} \left(\frac{\prod_{i=2}^{d+1} i}{\prod_{i=1}^{d} i} \right) \\ &= \log_{10} \left(\frac{2 \times 3 \times \dots \times d \times (d+1)}{1 \times 2 \times \dots \times d} \right) \\ &= \log_{10} \left(d+1 \right) \end{aligned}$$

Quantile Function of *D*

Since D is discrete, the quantile function is a step function with steps defined at F(d), for d = 1, ..., 9.

$$Q(u) = d$$
 s. t. $F(d-1) < u \le F(d)$
 $= d$ s. t. $\log_{10}(d) < u \le \log_{10}(d+1)$
 $= d$ s. t. $d < 10^u \le d+1$
 $= d$ s. t. $d-1 < 10^u - 1 \le d$
 $= \lceil 10^u - 1 \rceil$

Sampling from D

```
> rbenford <- function(n) { ceiling(10^runif(n) - 1) }</pre>
> k <- 10000
> rbind(log10((2:10) / (1:9)), # analytical P(D = d)
        table(rbenford(k)) / k) # empirical P(D = d)
[1.] 0.3010 0.1761 0.1249 0.09691 0.07918 0.06695 0.05799
[2,] 0.3093 0.1782 0.1150 0.09700 0.07420 0.07160 0.06230
           8
[1.] 0.05115 0.04576
[2,] 0.04660 0.04580
```

Saving results for speed

It can be expensive to compute the p(x), so if we are going to many RVs, it can help to pre-compute the CDF.

The **Poisson distribution** with mean λ , has PMF:

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!} = \frac{\lambda}{k} \frac{e^{-\lambda} \lambda^{k-1}}{(k-1)!} = \frac{\lambda}{k} P(X = k-1), \quad P(X = 0) = e^{-\lambda}$$

Strategy:

- Generate all the $U_i \sim U(0,1)$ we need
- Compute the CDF from F(0) to $F(k) > \max u$
- Use the table to connect U_i to X_i

Making the CDF

```
> makeCDFTable <- function(u, lambda) {</pre>
       maxu \leftarrow max(u)
+
       # base case: x=0
       fx \leftarrow exp(-lambda)
       cdf \leftarrow c(fx)
       x < -0
+
       # build table until F(k) >= \max_{k \in \mathbb{R}} f(k)
+
       while (last(cdf) < maxu) {</pre>
            x < -x + 1
            fx \leftarrow fx * lambda / x
            cdf \leftarrow c(cdf, last(cdf) + fx)
+
       return(cdf)
```

Checking our results

```
> makeCDFTable(c(0, 0.95), 3)
[1] 0.04979 0.19915 0.42319 0.64723 0.81526 0.91608 0.96649
> ppois(0:6, lambda = 3)
[1] 0.04979 0.19915 0.42319 0.64723 0.81526 0.91608 0.96649
```

Using the table

Checking our work

Summary

- Quantile functions "invert" the CDF to tell give us $Q(u) = \inf\{x : F(x) \ge u\}$ (smallest x that has CDF value of at least u).
- For RV X with quantile function Q_X , $Q_X(U) \sim X$. (inversion method)
- Useful trick: look for changes in CDF (e.g. x = 1), there will be regions in the quantile at same places (e.g., at u = F(1)).
- Discrete case: Can always fall back to using CDF directly, often opportunities to take short cuts.

Other Examples

Product failures

Suppose we want to model failure times of products.

Each of these products has a **usable lifespan**, say one year, after which it will be considered to have failed, but it might fail at **any time between 0 and 1** lifespans.

In other words, we can ask, "at what proportion of the usable life did the product fail?"

We can use our f(x) to model failure time probabilities. $\theta < 1$ indicates most products tend to early, whereas $\theta > 1$ indicates more products late failures.

Hypothesis test

Here are some observed data:

we will test the hypothesis:

$$H_0: \theta = 1/2$$
 vs $H_1: \theta = 1$ (uniform failure prob.)

- > n <- length(fail_times) # 20</pre>
- > k <- 1000
- > null_samples <- rerun(k, rx(n, theta = 1/2))
- > alt_samples <- rerun(k, rx(n, theta = 1))</pre>

Selecting a test statistic

We have two ready made test statistics: the MoM estimator and the MLE estimator for θ .

- > null_mle <- map_dbl(null_samples, mle)</pre>
- > null_mom <- map_dbl(null_samples, mom)</pre>
- > alt_mle <- map_dbl(alt_samples, mle)</pre>
- > alt_mom <- map_dbl(alt_samples, mom)</pre>

MLE distributions

MoM distributions

Picking rejection region, computing power

For both estimators, right tailed tests would be reasonable choices. We'll fix lpha=0.10

```
> cutoff_mle <- quantile(null_mle, 0.9)</pre>
> cutoff_mom <- quantile(null_mom, 0.9)</pre>
Power:
> mean(alt mle > cutoff mle)
[1] 0.964
> mean(alt mom > cutoff mom)
[1] 0.893
```

Performing the test

```
> (observed_mle <- mle(fail_times))
[1] 0.4235
> ## accept if true
> observed_mle <= cutoff_mle
90%
TRUE</pre>
```

One-sided confidence bound for θ

Let's use the **test inversion** method to create a confidence interval for θ .

```
> thetas <- seq(0.001, 1, length.out = 1000)
> test_theta <- function(theta) {
+    samples <- rerun(k, rx(n, theta))
+    null_mles <- map_dbl(samples, mle)
+    cutoff <- quantile(null_mles, c(0.025, 0.975))
+    cutoff[1] <= observed_mle & observed_mle <= cutoff[2]
+ }</pre>
```

```
> accepted <- map_lgl(thetas, test_theta)
> min(thetas[accepted])
[1] 0.247
> max(thetas[accepted])
[1] 0.634
```

Another quantile method example

Suppose we have X with the density function:

$$f(x)=\cos(x), 0\leq x\leq \frac{\pi}{2}$$

Then

$$F_X(t) = \int_0^t \cos(x) dx = \sin(x)|_0^t = \sin(t)$$

And

$$Q_X(p) = \sin^{-1}(t)$$

Density

Distribution

Quantile

Simulating from $f(x) = \cos(x)$

Example: Geometric distribution

The **geometric distribution** measure the number of Bernoulli random variables required for the first success (a special case of the negative binomial).

$$f(x) = \theta(1-\theta)^{x-1}, x = 1, 2, \dots$$

To get the CDF for x, observe that if $X \le x$, it must be the case that we observed at least one success in the first x trials. In other words, the complement of observing zero successes:

$$F(x) = 1 - (1 - \theta)^x$$

Therefore the quantile function finds x such that

$$1 - (1 - \theta)^{x - 1} < u \le 1 - (1 - \theta)^{x}$$

Writing this in closed form

From the previous slide, we are finding x such that

$$1 - (1 - \theta)^{x - 1} < u \le 1 - (1 - \theta)^x$$

or equivalently

$$(1-\theta)^x \le 1-u < (1-\theta)^{x-1}$$

Taking the log of each term and dividing by $\log(1-\theta)$ (which is negative), yields

$$x \geq \frac{\log(1-u)}{\log(1-\theta)} > x-1 \Rightarrow x = \left\lceil \frac{\log(1-u)}{\log(1-\theta)} \right\rceil$$

Implementing

```
> rgeo <- function(n, theta) {
+   ceiling(log(1 - runif(n)) / log(1 - theta))
+ }</pre>
```

Histogram of rgeo(10000, 0.25)

