Greedy Method

Activity Selection Problem

- Greedy Method General Method
- Elements of Greedy Method
- Greedy Algorithms
 - Activity Selection Problem
 - Huffman Coding
 - Fractional knapsack problem

Greedy Method

- A design strategy for solving Problems
 - Solves Optimization Problems
 - ► Requires min/max results

Greedy algorithms

- A greedy algorithm always makes the choice that looks best at the moment
 - The hope: a locally optimal choice will lead to a globally optimal solution
 - For some problems, it works
- greedy algorithms tend to be easier to code

Greedy Choice must be

Feasible

Satisfy the problem's constraints

Locally optimal

▶ Be the best local choice among all feasible choices

Irrevocable

Once made, the choice can't be changed on subsequent steps.

The General Method

- An algorithm that works in stages considering one input at a time
- At each stage a decision is made whether the input gives an optimal solution
- This is done by considering the inputs in an order determined by some selection procedure
- If the partial solution is not optimal then it is not added to the solution
- The selection procedure is based on some optimization measure, the measure may be the objective function

Greedy Algorithm

```
Algorithm Greedy (a, n)
{ Solution:=Ø
 for i:=1 to n do
    x:=Select(a);
    if Feasible (Solution, x)
     Solution:=Union(solution,x);
 return Solution;
```

Greedy Algorithm

- Select → The function Select selects an input from a [] and removes it. The selected value is assigned to x.
- Feasible → Is a Boolean-valued function that determines whether x can be included into the solution vector.
- ▶ Union → The function Union combines x with the Solution.

9 April 2024

An Activity Selection Problem (Conference Scheduling Problem)

- ▶ Input: A set of activities $S = \{a_1, ..., a_n\}$
- Each activity has start time and a finish time
 - $\rightarrow a_i = (s_i, f_i)$
- Two activities are compatible if and only if their interval does not overlap
- Output: a maximum-size subset of mutually compatible activities

The Activity Selection Problem

Here are a set of start and finish times

i	1	2	3	4	5	6	7	8	9	10	
$\overline{s_i}$	1	3	0	5	3	5	6	8	9 8	2	12
f_i	4	5	6	7	8	9	10	11	12	13	14

- What is the maximum number of activities that can be completed?
 - $\{a_3, a_9, a_{11}\}$ can be completed
 - But so can $\{a_1, a_4, a_8, a_{11}\}$ which is a larger set
 - But it is not unique, consider $\{a_2, a_4, a_9, a_{11}\}$

Early Finish Greedy

- Select the activity with the earliest finish
- Eliminate the activities that could not be scheduled
- Repeat!

Problem

Start Time (s)	Finish Time (f)	Activity Name
5	9	al
I	2	a2
3	4	a3
0	6	a4
5	7	a5
8	9	a6

Assuming activities are sorted by finish time

```
GREEDY-ACTIVITY-SELECTOR (s, f)
1 n \leftarrow length[s]
A \leftarrow \{a_1\}
3 \quad i \leftarrow 1
4 for m \leftarrow 2 to n
           do if s_m \geq f_i
                  then A \leftarrow A \cup \{a_m\}
                          i \leftarrow m
    return A
```

Why it is Greedy?

- Greedy in the sense that it leaves as much opportunity as possible for the remaining activities to be scheduled
- The greedy choice is the one that maximizes the amount of unscheduled time remaining

Elements of Greedy Strategy

- A greedy algorithm makes a sequence of choices, each of the choices that seems best at the moment is chosen
 - NOT always produce an optimal solution
- Two ingredients that are exhibited by most problems that lend themselves to a greedy strategy
 - Greedy-choice property
 - Optimal substructure

Greedy-Choice Property

- A globally optimal solution can be arrived at by making a locally optimal (greedy) choice
 - Make whatever choice seems best at the moment and then solve the sub-problem arising after the choice is made
 - The choice made by a greedy algorithm may depend on choices so far, but it cannot depend on any future choices or on the solutions to sub-problems
- A greedy choice at each step yields a globally optimal solution

Optimal Substructures

- A problem exhibits optimal substructure if an optimal solution to the problem contains within it optimal solutions to the sub-problems.
 - If an optimal solution A to S begins with activity I,

```
A'=A-\{1\} is optimal to S'=\{i \in S: si>=f_1\}
```


Greedy Algorithm Design

Comparison:

Dynamic Programming

- At each step, the choice is determined based on solutions of subproblems.
- Sub-problems are solved first.
- Bottom-up approach
- Can be slower, more complex

Greedy Algorithms

- At each step, we quickly make a choice that currently looks best.
 - --A local optimal (greedy) choice.
- Greedy choice can be made first before solving further sub-problems.
- Top-down approach
- Usually faster, simpler

