Bootstrap

Erik Helmers

$March\ 16,\ 2023$

Contents

1	Minimal calculus			
	1.1	Syntax	2	
			2	
	1.3	Evaluation	2	
		Typing		
2	Interlude : booleans			
	2.1	Syntax	4	
	2.2	Evaluation	5	
	2.3	Typing	5	
3	Enumerations			
	3.1	Syntax	6	
	3.2	Evaluation		
	3.3	Typing	7	

1 Minimal calculus

1.1 Syntax

$$e, \sigma, \kappa ::= e : \sigma$$
 annotated term $| x |$ variable $| \lambda x \mapsto e |$ lambda $| e e' |$ application $| (x : \sigma) \to \sigma' |$ pi type $| (e, e') |$ tuple $| \text{fst } e |$ fst $| \text{snd } e |$ snd $| (x : \sigma) \times \sigma' |$ sigma type $| \star |$ type of types

where e, σ, κ represent general expressions, types and kinds respectively.

1.2 Context

$$\Gamma ::= \epsilon \qquad \text{empty context}$$

$$\mid \Gamma, x : \tau \qquad \text{adding a variable}$$

$$\frac{\text{valid}(\epsilon)}{\text{valid}(\Gamma)} \frac{\text{valid}(\Gamma) \qquad \Gamma \vdash \tau \Leftarrow \star}{\text{valid}(\Gamma, x : \tau)}$$

1.3 Evaluation

$$\frac{e \Downarrow \nu}{\lambda x \mapsto e \Downarrow \lambda x \mapsto \nu} \text{ (LAM)} \qquad \frac{e \Downarrow \nu}{(e, e')(\Downarrow, \nu)\nu'} \text{ (TUPLE)}$$

$$\frac{e \Downarrow \lambda x \mapsto \nu}{e e' \Downarrow \nu'} \text{ (APP)} \qquad \frac{e \Downarrow n \quad e' \Downarrow \nu'}{e e' \Downarrow n \nu'} \text{ (NAPP)}$$

$$\frac{e \Downarrow (\nu, \nu')}{\text{fst } e \Downarrow \nu} \text{ (FST)} \qquad \frac{e \Downarrow (\nu, \nu')}{\text{snd } e \Downarrow \nu'} \text{ (SND)} \qquad \frac{e \Downarrow n}{\text{fst } e \Downarrow \text{fst } n} \text{ (NFST)}$$

$$\frac{e \Downarrow n}{\text{snd } e \Downarrow \text{snd } n} \text{ (NSND)} \qquad \frac{\sigma \Downarrow \tau \quad \sigma' \Downarrow \tau'}{(x : \sigma) \to \sigma' \Downarrow (x : \tau) \to \tau'} \text{ (PI)}$$

1.4 Typing

In the following, $e\Rightarrow \tau$ is an expression whose type synthesises to τ while $e\Leftarrow \tau$ is checkable.

$$\frac{\Gamma \vdash e \Rightarrow \tau}{\Gamma \vdash e \Leftarrow \tau} \text{ (CHK)} \qquad \frac{\Gamma \vdash \sigma \Leftarrow \star \qquad \sigma \Downarrow \tau \qquad \Gamma \vdash e \Leftarrow \tau}{\Gamma \vdash (e : \sigma) \Rightarrow \tau} \text{ (Ann)}$$

$$\frac{\Gamma \vdash e \Rightarrow \tau}{\Gamma \vdash \star \Leftarrow \star} \text{ (STAR)} \qquad \frac{\Gamma(x) = \tau}{\Gamma \vdash x \Rightarrow \tau} \text{ (VAR)}$$

$$\frac{\Gamma \vdash e \Leftrightarrow \tau}{\Gamma \vdash \lambda x \mapsto e \Leftarrow (x : \tau) \to \tau'} \text{ (LAM)}$$

$$\frac{\Gamma \vdash e \Leftrightarrow \tau}{\Gamma \vdash (e, e') \Leftarrow (x : \tau) \times \tau'} \text{ (TUPLE)}$$

$$\frac{\Gamma \vdash e \Rightarrow (x : \tau) \to \tau'}{\Gamma \vdash e \Leftrightarrow \tau'} \qquad \Gamma \vdash e' \Leftarrow \tau \qquad \tau' [x \mapsto e'] \Downarrow \tau''} \text{ (APP)}$$

$$\frac{\Gamma \vdash e \Rightarrow (x : \tau) \times \tau'}{\Gamma \vdash \text{ fst } e \Rightarrow \tau} \text{ (FST)}$$

$$\frac{\Gamma \vdash e \Rightarrow (x : \tau) \times \tau'}{\Gamma \vdash \text{ snd } e \Rightarrow \tau''} \text{ (SND)}$$

$$\frac{\Gamma \vdash \sigma \Leftarrow \star \qquad \sigma \Downarrow \tau \qquad \Gamma, x : \tau \vdash \sigma' \Leftarrow \star}{\Gamma \vdash (x : \sigma) \to \sigma' \Leftarrow \star} \text{ (PI)}$$

$$\frac{\Gamma \vdash \sigma \Leftarrow \star \qquad \sigma \Downarrow \tau \qquad \Gamma, x : \tau \vdash \sigma' \Leftarrow \star}{\Gamma \vdash (x : \sigma) \times \sigma' \Leftarrow \star} \text{ (SIGMA)}$$

2 Interlude: booleans

2.1 Syntax

$$e, \sigma, \kappa ::= \dots$$
| true
| false
| cond $e [x.\sigma] e' e''$ condition
| boolty type of a bool

2.2 Evaluation

2.3 Typing

$$\frac{1}{\text{true} \Leftarrow \text{bool}} \text{ (True)} \qquad \frac{1}{\text{false} \Leftarrow \text{bool}} \text{ (False)}$$

$$\frac{\Gamma \vdash e \Leftarrow \text{bool} \qquad \Gamma, x : \text{bool} \vdash B \Leftarrow \star \qquad B[x \mapsto e] \Downarrow \tau}{\Gamma \vdash \text{cond } e \ [x.B] \ e' \ e'' \Rightarrow \tau} \text{ (Cond)}$$

$$\frac{1}{\text{boolty} \Leftarrow \star} \text{ (BoolTy)}$$

3 Enumerations

3.1 Syntax

$$e, \sigma, \kappa$$
 ::= ...

| nil
| unit
| 't label
| label label type
| nil
| [t l]
| labels labels type

3.2 Evaluation

$$\frac{l \Downarrow \text{nil}}{\text{record } l \text{ as } x \text{ return } B \Downarrow \text{unit}} \text{ (RecordNil)}$$

$$\frac{l \Downarrow [t \ l']}{B[x \mapsto 0] \Downarrow \tau \quad \text{record } l' \text{ as } x \text{ return } B[x \mapsto 1 + \ x] \Downarrow \tau'}{\text{record } l \text{ as } x \text{ return } B \Downarrow (_:\tau) \times \tau'} \text{ (RecordCons)}$$

$$\frac{l \Downarrow n}{\text{record } l \text{ as } x \text{ return } B \Downarrow \text{record } n \text{ as } x \text{ return } B} \text{ (NRecord)}$$

$$\frac{e \Downarrow 0 \quad \text{ fst cs} \Downarrow \nu}{\text{case } e \text{ as } x \text{ return } B \text{ with cs} \Downarrow \nu} \text{ (CaseZe)}$$

$$\frac{e \Downarrow 1 + e'}{\text{snd cs} \Downarrow \text{cs'}} \frac{\text{case } e' \text{ as } x \text{ return } B[x \mapsto 1 + x] \text{ with cs'} \Downarrow \nu}{\text{case } e \text{ as } x \text{ return } B \text{ with cs} \Downarrow \nu}$$
(CASESUC)

$$\frac{e \Downarrow n \qquad \text{cs} \Downarrow \nu}{\text{case e as x return B with $c$$} \Downarrow \text{case n as x return B with ν}} \text{ (CaseZe)}$$

3.3 Typing