Calculabilité - Décidabilité (ICC)

Cours nº1

Stef Graillat

Sorbonne Université

Format du cours

Responsable du cours: Stef Graillat (bureau 26-00/313) stef.graillat@sorbonne-universite.fr

Évaluation des connaissances

• 3 ou 4 interrogations en cours/TD

Horaire

- Cours : le lundi de 13h45 à 15h45, salle (voir sur Ypareo toutes les semaines)
- TD: le vendredi de 13h45 à 15h45, salle (voir sur Ypareo toutes les semaines) les 20/09, 11/10, 25/10, 15/11, 29/11

Site web:

http://www-pequan.lip6.fr/~graillat/teach/icc/index.html

Objectifs du cours

Objectifs:

- automate, machine de Turing : quels sont les modèles simples d'ordinateur?
- calculabilité : quels sont les problèmes que l'on peut résoudre avec un ordinateur?
- complexité : qu'est-ce qui fait que certains problèmes sont durs à résoudre et d'autres faciles ?

Références principales

- Introduction to automata theory, languages and computation;
 Hopcroft, Motwani, Ullman; 3e édition; Addison-Wesley; 2006
- Introduction to the theory of computation; Sipser; 3e édition; Cengage Learning; 2012
- Introduction à la calculabilité; Wolper; 3e édition; Dunod; 2006
- Langages formels, calculabilité et complexité; Carton; Vuibert; 2014
- An introduction to formal languages and automata; Linz; 6e édition; Jones
 & Bartlett Learning; 2016
- Formal language, a practical introduction; Adam Webber; Franklin, Beedle & Associates; 2008
- Automata and Computability, A Programmer's Perspective; Ganesh Gopalakrishnan; CRC Press; 2019

Références principales

Outil pour la simulation

http://www.jflap.org/

Champs d'application

Les notions vues dans ce cours interviennent dans :

- Les parsers, pattern matching (filtrage par motif)
- La gestion des expressions régulières (voir emacs, grep)
- La compilation
- La preuve de logiciels
- Les questions de complexité (temps, espace, bornes inférieures)

Plan général du cours

Le cours est divisé en 5 parties :

- Automates finis et Langages réguliers
- Automates à piles, Grammaires hors-contexte, Langages hors-contexte
- Machines de Turing
- Décidabilité Indécidabilité
- Classes de complexité

Partie I : Automates finis et Langages réguliers

Concepts centraux : Alphabets – Mots

Un alphabet est un ensemble *fini* (non vide) de symboles.

En général, il est noté Σ ou \mathcal{A} .

- $\Sigma = \{0,1\}$ l'alphabet binaire
- $\Sigma = \{a, b, ..., z\}$ l'ensemble des lettres minuscules
- L'ensemble des caractères ASCII.

Un mot est une suite *finie* de symboles choisis dans un alphabet.

0011 est un mot construit à partir de l'alphabet binaire.

Le mot vide : il sera noté ε .

Longueur d'un mot : nombre de positions dans le mot.

|w| représente la longueur du mot w |0011| = 4, $|\varepsilon| = 0$

Concepts centraux : Langages

Puissance d'un alphabet : si Σ est un alphabet et $k \in \mathbb{N}$, on note Σ^k l'ensemble des mots de longueur k construits à partir de Σ .

```
Exemple: \Sigma = \{0, 1\}

\Sigma^{1} = \{0, 1\}

\Sigma^{2} = \{00, 01, 10, 11\}

\Sigma^{0} = \{\varepsilon\}
```

Question : combien de mots dans Σ^3 ?

Plus généralement : $\Sigma^0 = \{\varepsilon\}$

Concepts centraux : Langages (suite)

 $\Sigma^{\star} = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \cdots \cup \cdots \text{ est l'ensemble des mots construits à partir de } \Sigma.$

 Σ^+ = $\Sigma^1 \cup \Sigma^2 \cup \cdots \cup \cdots$ est l'ensemble des mots de longueur positive.

$$\Sigma^* = \Sigma^+ \cup \left\{\varepsilon\right\}$$

Concaténation de mots : soit $x = x_1 \cdots x_p$ et $y = y_1 \cdots y_q$ deux mots. La concaténation de x et y est notée $xy = x_1 \cdots x_p y_1 \cdots y_q$.

Exemple : si x = 01101, y = 110 alors xy = 01101110

Remarque : pour tout mot x, $x\varepsilon = x\varepsilon = x$

Langages : c'est un sous-ensemble L de Σ^* . On dit que L est construit sur Σ .

Concepts centraux : Langages (exemple)

- L'ensemble de tous les mots contenant n 0 suivis de n 1 pour $n \ge 0$: $\{\varepsilon, 01, 0011, 000111, \ldots\}$
- L'ensemble des mots contenant autant de 0 que de 1 :

$$\{\varepsilon, 01, 10, 0011, 0101, 1001, \ldots\}$$

 L'ensemble des codages binaires dont les entiers correspondant sont premiers.

$$\{10, 11, 101, 111, 1011, \ldots\}$$

- Le langage vide Ø
- le langage $\{\varepsilon\}$ restreint au mot vide.

Remarque : $\emptyset \neq \{\varepsilon\}$

Problématique centrale

Étant donné un mot, décider si celui-ci appartient à un certain langage.

Exemple: test de primalité.

Question : combien ce test de décision va-t-il coûter? (complexité)

Définition de notre problème un peu restreinte : penser à un compilateur C!

Mais très utile pour :

- des problèmes de décidabilité (le test est-il possible?)
- et des problèmes de calculabilité (bornes de complexité inférieure)

via des techniques de réduction.

Automates finis déterministes (AFD)

Un AFD est un 5-uplet (quintuplet) $A = (Q, \Sigma, \delta, q_0, F)$, où

- *Q* est un ensemble fini d'états
- ullet E est un ensemble fini de symboles d'entrées
- $\delta: Q \times \Sigma \to Q$ est une fonction de transition qui prend en argument un état et un symbole d'entrée et retourne un état.
- $q_0 \in Q$ est l'état initiale (ou de départ)
- $F \subset Q$ est l'ensemble d'états *finaux* (ou *acceptants*)

Notations d'un AFD

On peut décrire un AFD en donnant une description détaillée de la fonction de transition δ .

C'est difficile à lire et délicat d'identifier le langage reconnu

- Diagramme de transition : c'est un graphe
- Table de transition : liste tabulée de l'action de δ

Diagramme de transition

Soit $A = (Q, \Sigma, \delta, q_0, F)$ un AFD.

Un diagramme de transition représentant A est défini comme suit :

- ullet Chaque état q de Q est un nœud.
- Pour $q \in Q$ et $a \in \Sigma$, soit $\delta(q, a) = p$. On relie $q \nmid p$ par une flèche. Au-dessus de cette flèche, on mentionne que la transition se fait par le symbole a.
- Une flèche vers l'état de départ.
- Les nœuds correspondant à des états acceptants sont entourés par un double cercle

Table de transition

Table de transition : table représentant l'action de δ ; les lignes correspondent aux états, les colonnes aux symboles d'entrée.

L'état de départ est reconnu grâce à une flèche, les états acceptants grâce à une étoile.

	0	1
$\rightarrow q_0$	q_2	q_0
$\star q_1$	q_1	q_1
q_2	q_2	q_1

Fonctionnement d'un AFD

Entrée : un mot a_1, \ldots, a_n

État de départ : q_0

$$\begin{array}{cccc}
\delta(q_0, a_1) & \rightarrow & q_1 \\
\delta(q_1, a_2) & \rightarrow & q_2 \\
& \vdots & \\
\delta(q_{i-1}, a_i) & \rightarrow & q_i \\
& \vdots & \\
\delta(q_{n-1}, a_n) & \rightarrow & q_n
\end{array}$$

A-t-on
$$q_n \in F$$
?

Extension de la fonction de transition

Informellement : langage reconnu par un AFD = ensemble des mots menant à un état final.

Description plus rigoureuse : fonction de transition étendue $\widehat{\delta}$

Elle prend en argument un état q et un mot w et retourne un état p (atteint par action de l'automate).

Définition par induction:

- $\widehat{\delta}(q, \varepsilon) = q$
- Si w est un mot de la forme xa $(a \in \Sigma)$: $\widehat{\delta}(q, w) = \delta(\widehat{\delta}(q, x), a)$

Extension de la fonction de transition (suite)

Exemple : Construire un automate reconnaissant l'ensemble des mots dont le nombre de 0 et de 1 est pair. Calcul sur 110101.

Extension de la fonction de transition (suite)

•
$$\widehat{\delta}(q_0, \varepsilon) = q_0$$

•
$$\widehat{\delta}(q_0,1) = \delta(\widehat{\delta}(q_0,\varepsilon),1) = \delta(q_0,1) = q_1$$

•
$$\widehat{\delta}(q_0, 11) = \delta(\widehat{\delta}(q_0, 1), 1) = \delta(q_1, 1) = q_0$$

$$\bullet \ \widehat{\delta}(q_0, 110) = \delta(\widehat{\delta}(q_0, 11), 0) = \delta(q_0, 0) = q_2$$

•
$$\widehat{\delta}(q_0, 1101) = \delta(\widehat{\delta}(q_0, 110), 1) = \delta(q_2, 1) = q_3$$

•
$$\widehat{\delta}(q_0, 11010) = \delta(\widehat{\delta}(q_0, 1101), 0) = \delta(q_3, 0) = q_1$$

•
$$\widehat{\delta}(q_0, 110101) = \delta(\widehat{\delta}(q_0, 11010), 1) = \delta(q_1, 1) = q_0$$

Langage associé à un AFD

Soit $A = (Q, \Sigma, \delta, q_0, F)$ un AFD.

Le langage associé à A noté L(A) est défini par

$$L(A) = \{ w \mid \widehat{\delta}(q_0, w) \in F \}$$

Si L est égale à L(A) pour un AFD A, on dit que L est un langage régulier

Automates finis non-déterministes (AFN)

- Capacité d'être à différents états à la fois (pour deviner quelque chose sur l'entrée).
- Permet de d'écrire un automate reconnaissant un langage plus simplement.
- Calculateur in fine pas plus puissant que les AFD!

Description informelle : reconnaître le langage constitué des mots se terminant par 01.

AFN (suite)

Automate reconnaissant le langage constitué des mots se terminant par 01.

Que se passe-t'il si on a 00101 en entrée?

Définition d'un AFN

Un AFN est un 5-uplet $A = (Q, \Sigma, \delta, q_0, F)$ où

- *Q* est un ensemble fini d'états
- Σ est un alphabet (un ensemble fini de symboles)
- $\delta: Q \times \Sigma \to \mathcal{P}(Q)$ est une fonction de transition qui prend en argument un état de Q et un symbole de Σ et renvoie un **sous-ensemble** de Q.
- $q_0 \in Q$ est l'état initial.
- $F \subset Q$ est l'ensemble des états finaux

Exemple : $(\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$ et la table de transition :

Fonctions de transition étendues

Construction similaire à celle des AFD sauf que la sortie de δ est un sous-ensemble de Q!

Définition inductive :

- $\widehat{\delta}(q, \varepsilon) = \{q\}$
- Soit w = xa avec $a \in \Sigma$ et $\widehat{\delta}(q, x) = \{p_1, \dots, p_k\}$ et

$$\bigcup_{i=1}^k \delta(p_i, a) = \{r_1, \ldots, r_m\}$$

Alors, $\widehat{\delta}(q, w) = \{r_1, \ldots, r_m\}.$

Fonctions de transition étendues (suite)

Exemple:

Calcul de $\widehat{\delta}(q_0, 00101)$:

- $\widehat{\delta}(q_0, \varepsilon) = \{q_0\}$
- $\widehat{\delta}(q_0,0) = \delta(q_0,0) = \{q_0,q_1\}$
- $\widehat{\delta}(q_0, 00) = \delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$
- $\bullet \ \widehat{\delta}(q_0,001) = \delta(q_0,1) \cup \delta(q_1,1) = \{q_0\} \cup \{q_2\} = \{q_0,q_2\}$
- $\widehat{\delta}(q_0, 0010) = \delta(q_0, 0) \cup \delta(q_2, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$
- $\widehat{\delta}(q_0, 00101) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$

Langage associé à un AFN

Soit $A = (Q, \Sigma, \delta, q_0, F)$ un AFN.

Le langage associé à A noté L(A) est défini par

$$L(A) = \{ w \mid \widehat{\delta}(q_0, w) \cap F \neq \emptyset \}$$

 $\widehat{\delta}(q_0, w)$ doit contenir au moins un état acceptant.

Prouvons que le langage reconnu par l'AFN est $L = \{x01 : x \in \Sigma^*\}$ avec $\Sigma = \{0,1\}$

Par induction mutuelle sur la longueur du mot, on montre que

$$q_2 \in \widehat{\delta}(q_0, w) \Leftrightarrow w = x01$$

Base : si |w| = 0 alors $w = \varepsilon$. (1) est clair par définition et les deux côtés de (2) et (3) sont faux.

Induction : Supposons w = xa avec $a \in \{0,1\}$, |x| = n et les énoncés (1) - (3) vrais pour x. Montrons que (1) - (3) sont encore vrais pour w = xa

$$q_1 \in \widehat{\delta}(q_0, w) \Leftrightarrow w = x0$$

$$q_2 \in \widehat{\delta}(q_0, w) \Leftrightarrow w = x01$$

- On sait que $\widehat{\delta}(q_0, x)$ contient q_0 . Puisqu'il y a des transitions entre q_0 et lui-même en lisant 0 ou 1, on a $q_0 \in \widehat{\delta}(q_0, w)$
- ② (⇒) Supposons $q_1 \in \widehat{\delta}(q_0, w)$. On voit en lisant le diagramme que la seule façon d'atteindre l'état q_1 est de lire un mot w de la forme x_0 .
 - (⇐) Supposons que w se termine par 0 (c-à-d a=0). D'après (1), $q_0 \in \widehat{\delta}(q_0, x)$. Puisqu'il y a une transition entre q_0 et q_1 en lisant 0, on a $q_1 \in \widehat{\delta}(q_0, w)$

$$q_2 \in \widehat{\delta}(q_0, w) \Leftrightarrow w = x01$$

- **③** (⇒) Supposons $q_2 \in \widehat{\delta}(q_0, w)$. On voit en lisant le diagramme que la seule façon d'atteindre l'état q_2 est de lire un mot de la forme x1 avec $q_1 \in \widehat{\delta}(q_0, x)$. En appliquant (2) à x, on conclut que x se termine par 0. Par conséquent, w se termine par 01.
 - (\Leftarrow) Supposons que w se termine par 01. Alors si w = xa nous savons que a = 1 et que x se termine par 0. En appliquant (2) à x, on sait que $q_1 \in \widehat{\delta}(q_0, x)$. Puisqu'il y a une transition entre q_1 et q_2 en lisant 1, on conclut que $q_2 \in \widehat{\delta}(q_0, w)$.

Équivalence AFD-AFN

- les AFN sont souvent plus faciles à « programmer »
- De manière surprenante, pour tout AFN N, il existe un AFD D tel que L(D) = L(N)
- C'est un exemple générique de construction d'un automate B à partir d'un autre automate A
- Étant donné un AFN $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$, on va construire un AFD $D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ tel que

$$L(D) = L(N)$$

Les AFN ne reconnaissent pas plus de langage que les AFD!

Construction des sous-ensembles d'état d'un automate.

Soit $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ un AFN.

- → Construire un AFD $D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ reconnaissant le même langage que celui reconnu par N.
 - Q_D est l'ensemble des sous-ensembles de Q_N
 - F_D est l'ensemble des sous-ensembles S de Q_N tels que $S \cap F_N \neq \emptyset$.
 - Pour tout sous-ensemble *S* de Q_N et $a \in \Sigma$

$$\delta_D(S,a) = \bigcup_{p \in S} \delta_N(p,a)$$

Facile à construire à partir de la table de transition.

	0	1
Ø	Ø	Ø
$\rightarrow \{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_1\}$	Ø	$\{q_2\}$
$\star \{q_2\}$	Ø	Ø
$\{q_0,q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\star \{q_0,q_2\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\star \ \{q_1,q_2\}$	Ø	$\{q_2\}$
$\star \{q_0,q_1,q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$

Si $|Q_N| = n$, D peut avoir 2^n états! On peut éviter d'avoir trop d'états en ne construisant la table de transition que pour les états atteignables S définis par

- $S = \{q_0\}$ est atteignable dans D
- si S est atteignable alors pour chaque $a \in \Sigma$, $\delta_D(S, a)$ est aussi atteignable

L'automate D ainsi construit reconnaît le même langage que celui reconnu par N.

Théorème 1

Soit D l'AFD construit précédemment à partir de l'AFN N. Alors L(D) = L(N).

Preuve. On montre par induction sur la longueur du mot *w* que

$$\widehat{\delta}_D(\{q_0\}, w) = \widehat{\delta}_N(q_0, w)$$

Base : pour $w = \varepsilon$, clair d'après la définition.

Induction:

$$\widehat{\delta}_{D}(\{q_{0}\}, xa) = \delta_{D}(\widehat{\delta}_{D}(\{q_{0}\}, x), a)
= \delta_{D}(\widehat{\delta}_{N}(q_{0}, x), a)
= \bigcup_{p \in \widehat{\delta}_{N}(q_{0}, x)} \delta_{N}(p, a) = \widehat{\delta}_{N}(q_{0}, xa)$$

Par conséquent L(D) = L(N)

On en déduit le théorème suivant

Théorème 2

Un langage L est accepté par un AFD si et seulement si L est accepté par un AFN.

Automates finis et ε -transitions

On autorise un changement d'état (une transition) à la lecture du mot vide ε .

Les AFN à ε -transitions (ε -AFN) ne reconnaissent pas plus de langage que les AFD.

Exemple : reconnaître des nombres décimaux qui consistent en :

- Un signe optionnel + ou −
 - Une chaîne de chiffres
 - Un point décimal
 - Une autre chaîne de chiffres.

Une des chaînes (2) ou (4) est optionnelle.

Automates finis et ε -transitions (suite)

Comme pour un AFN sauf qu'on travaille sur $\Sigma \cup \{\varepsilon\}$!

Automates finis et ε -transitions (suite)

Exemple : un ε -AFN acceptant les mots-clé ebay, web

