Домашня робота з курсу "Теорія Ймовірності"

Студента 3 курсу групи МП-31 Захарова Дмитра

30 жовтня 2023 р.

Завдання 1.

Умова. Дано таблицю розподілу двовимірного випадкового вектору $[\xi,\eta]^{\top}$. Перевірити, чи є незалежними ξ та η .

_	$\eta = 0$	$\eta = 1$	$\eta = 2$
$\xi = 0$	0.1	0.1	0.2
$\xi = 1$	0.1	0.1	0.1
$\xi = 2$	0.2	0.1	0.0

Розв'зок. Покажемо, що $p(\xi=0,\eta=0) \neq p(\xi=0)p(\eta=0)$. Помітимо, що:

$$p(\xi=0) = p(\xi=0, \eta=0) + p(\xi=0, \eta=1) + p(\xi=0, \eta=2) = 0.1 + 0.1 + 0.2 = 0.4$$

$$p(\eta = 0) = p(\xi = 0, \eta = 0) + p(\xi = 1, \eta = 0) + (\xi = 2, \eta = 0) = 0.1 + 0.1 + 0.2 = 0.4$$

Проте, добре видно, що $p(\xi=0,\eta=0)=0.1\neq0.4\times0.4=0.16.$ Отже, η та ξ не ε незалежними.

Завдання 2.

Умова. Випадкові величини ξ, η незалежні, причому випадкова величина ξ приймає кожне значення 0, 1, 2 з ймовірностями 0.2, 0.1, 0.7, а випадкова величина η приймає значення -1, 0, 1 з ймовірностями 0.3, 0.3, 0.4, відповідно. Побудувати таблицю розподілу випадкового вектор $[\xi, \eta]^{\top}$. Знайти розподіл суми $\xi + \eta$.

Розв'язок. Оскільки випадкові величини незалежні, $p(\xi = \alpha, \eta = \beta) = p(\xi = \alpha)p(\eta = \beta)$ за означенням. Таким чином, розподіл $[\xi, \eta]^{\top}$ має наступний вигляд:

_	$\eta = -1$	$\eta = 0$	$\eta = 1$
$\xi = 0$	0.06	0.06	0.08
$\xi = 1$	0.03	0.03	0.04
$\xi = 2$	0.21	0.21	0.28

Знайдемо розподіл $\xi + \eta$. Якщо перебрати усі суми, то множина можливих значень $\{-1,0,1,2,3\}$. Скористаємось тим фактом, що

$$p(\xi + \eta = \zeta) = \sum_{(\alpha,\beta): \alpha + \beta = \zeta} p(\xi = \alpha, \eta = \beta)$$

Таким чином,

$$p(\xi + \eta = -1) = p(\xi = 0, \eta = -1) = 0.06$$

$$p(\xi + \eta = 0) = p(\xi = 0, \eta = 0) + p(\xi = 1, \eta = -1) = 0.09$$

$$p(\xi + \eta = 1) = p(\xi = 0, \eta = 1) + p(\xi = 1, \eta = 0) + p(\xi = 2, \eta = -1) = 0.32$$

$$p(\xi + \eta = 2) = p(\xi = 1, \eta = 1) + p(\xi = 2, \eta = 0) = 0.25$$

$$p(\xi + \eta = 3) = p(\xi = 2, \eta = 1) = 0.28$$

Таким чином, маємо наступний розподіл:

ζ	-1	0	1	2	3
$p(\xi + \eta = \zeta)$	0.06	0.09	0.32	0.25	0.28

Завдання 3.

Умова. Двічі кинуто монету. Нехай ξ — число гербів, які випали при першому кидку, η — число гербів, які випали при двох кидках. Чи є незалежними випадкові величини ξ, η ?

Розв'язок. Якщо ξ,η незалежні, то має місце $p(\xi=0,\eta=0)=p(\xi=0)p(\eta=0)$. Проте, $p(\eta=0)=p(\xi=0,\eta=0)$, оскільки якщо б $\xi=1$, то і $\eta>0$. Звідси випливає $p(\xi=0)=1$ або $p(\eta=0)=0$ – протиріччя. Отже ξ,η є залежними.

Завдання 4.

Умова. З колоди гральних карт вилучають дві карти. Нехай X – число тузів, Y – число карт червоного кольору серед вилучених карт. Чи є незалежними випадкові величини X та Y?

Розв'язок. Всього дві карти можна вибрати C_{36}^2 способами. Розглянемо три ймовірності: p(X=0,Y=0), p(X=0), p(Y=0).

p(X=0) відповідає ймовірності не отримати жодного туза. Кількість способів вибрати 2 "не туза" це C_{32}^2 , тому ймовірність $p(X=0)=\frac{C_{32}^2}{C_{2c}^2}$.

p(Y=0) відповідає ймовірності не отримати жодної карти червого кольору. Аналогічно, $p(Y=0)=\frac{C_{18}^2}{C_{36}^2}$.

p(X=0,Y=0) відповідає ймовірності не отримати жодного туза і жодної карти червого кольору. Всього тузів 4, а червоних карт 18, проте оскільки два тузи є червоними, то кількість карт, що є ані тузами, ані картами червого кольору, дорівнює 16. Тому $p(X=0,Y=0)=\frac{C_{16}^2}{C_{36}^2}$.

Оскільки $C_{32}^2C_{18}^2 \neq C_{16}^2$, то і $p(X=0,Y=0) \neq p(X=0)p(Y=0)$, що означає, що випадкові величини X,Y є залежними.

Завдання 5.

Умова. 2 білі та 3 чорні кулі навмання розкладають по двом ящикам. Нехай ξ — число білих куль у першому ящику, η — номер ящика, в якому лежить більшість чорних куль. Чи є незалежними випадкові величини ξ та η ?

Розв'язок. Розглянемо $p(\xi = n, \eta = m), n \in \{0, 1, 2\}, m \in \{1, 2\},$ тобто ймовірність, що у першому ящику буде n білих куль, а у mому ящику буде більшість чорних куль.

Достатньо легко бачити, що $p(\xi=n,\eta=m)=p(\xi=n)p(\eta=m)$. Дійсно, події "у першому ящику n білих куль" (що відповідає $\xi=n$) та "у mому ящику більшість чорних куль" $(\eta=m)$ є незалежними, оскільки на те, в якому ящику більшість чорних куль не впливає кількість білих куль у першому ящику і навпаки. Тому випадкові величини також є незалежними.