Building a real-time image classification web app with Python and MLDB.ai

François Maillet Head of Al

mldb.ai

- Intros
- High level overview of MLDB
- Building blocks
- Training an image classifier in a Notebook
- Creating an image classification web app with a plugin

- Head of AI at mldb.ai, previously at Datacratic
- Have been doing machine learning for almost 10 years
- Studied ML at UdeM: music recommendation, playlist generation

15 minutes of fame: Epic NHL goal celebration hack with a hue light show and real-time machine learning

blog.francoismaillet.com/epic-celebration

- Montréal machine learning company
- Team of 8; all ML or developers
- Building The Machine Learning Database
- Solved ML problems in many verticals
- In the middle of a pivot
 - ML + Lidar

SELECT what_happened() FROM historical_data

VS

SELECT what_will_happen() FROM new_data

- End-to-end solution to solving production ML problems
 - Data ingestion
 - Model training and data science
 - Model deployment and real-time predictions

Better workflow to do machine learning

- SQL data interface
- Written in c++. Extensible with plugins
- JSON-over-REST: talk to it from any language or platform
- Vertical scalability
 - Process billions of data points on machines that cost \$1/hr.
- Train models faster than H20, Spark MLlib or scikit-learn
- Easy deployment
 - As soon as a model is trained, it's available as a REST endpoint
- Runs on the Raspberry Pi

Data Model

3-d sparse matrix: named rows, named columns, timestamps, values

Timestamp	Row Name	Column Name	Value
2013-04-20 10:02:01	User123	First Name	"Bob"
2013-04-20 10:02:01	User123	Test Score 1	0.78
2013-04-20 10:03:33	User456	First Name	"Jill"
2013-04-20 10:03:33	User456	Test Score 1	0.45
2013-04-22 11:10:22	User123	Test Score 1	0.0
2013-04-22 11:10:22	User123	Revision Reason	"Cheating"

- Sparse and Flexible schema: can add rows/columns/timestamps
- Records time on every value, can slice on time
- Doubly-indexed: by row and column
- Matrix operations are easy and efficient
 - Enables world-class SVD performance

Data Model

- Exploits redundancy in typical dataset for extreme compression
- 2-4 bytes per timestamped datapoint on real-world datasets
- 1-2 billion data points can fit in 250GB of RAM:
 - 100-million-row dataset with 150 non-null columns on average
- For reference, a 244GB AWS r3.8xlarge machine costs \$1/hour

```
____
```

```
Many columns:
```

```
SELECT a* EXCLUDING (ab) as c* FROM x
```

• Time dimension:

```
SELECT * FROM x WHEN timestamp(a) < timestamp(b)
```

Row operations:

```
Tow operations
```

```
SELECT horizontal_sum( {a*} ), tokenize( text ) FROM x
```

Fancy aggregates:

SELECT pivot(movie_id, rating) FROM x GROUP BY user_id

Out[3]:		output.mult	output.name
	_rowName		
	result	10	Bonjour! Hello!

More in: Executing JavaScript Code Directly in SQL Queries Using the jseval Function Tutorial

Predictions via REST:

GET /v1/functions/my_predictor/application?input={features:<new_data>}

or via SQL:

SELECT my_predictor({features: {*}) FROM new_data

- Efficient multithreaded implementations:
 - Classifiers: GLM, Decision Trees, SVM, Neural Nets, k-NN, Naive Bayes
 - Deep learning: TensorFlow integration
 - Ensembles: Bagging, Boosting
 - Calibration: Probabilizer
 - Insight: feature importance for all classifiers including ensembles
 - Clustering: k-Means
 - Dimensionality reduction: Singular Value Decomposition (SVD)
 - Visualization: t-SNE
 - Feature extraction: bag-of-words, feature hashing, word2vec, stats tables

- Open-source!
- Free trial of all features at http://mldb.ai/ with cool demos
- Runs on Linux with Docker or AWS with an AMI
- Mac/Windows support via VirtualBox OVA

On to the hub: mldb.ai

Training an image classifier in

a Notebook

- Deep convolutional neural networks are really powerful
 - Require lots of training data, lots of GPUs
- Transfer learning: take a model that was trained on one task and use it on another task
- We use the Inception-v3 model that was trained on the ImageNet task
 - 1000 labels (ex: badger, freight car, cheeseburger)
 - Released as a trained TensorFlow graph
- More info: Tensorflow Image Recognition Tutorial

The Inception Architecture (GoogLeNet, 2014)

Going Deeper with Convolutions

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich

ArXiv 2014, CVPR 2015

Let's train a model!

mldb.aiversion 2016.10	.05.0		
Notebooks & Files	Active Notebooks	Query Runner	
Select items to perform actions	on them.		
□ ▼	_latest		
<u>.</u>			
☐ B KDNuggets Transfe	r Learning Blog Post.ipynb	_	

Creating a web app

with a plugin

Client vs Server-side Python API

Server-side

Anatomy of a Python Plugin

- mldb.log(message) basic logging facility
 View output at the http://host:port/logs/mldb route
- mldb.plugin.serve_static_folder(route, dir) serve up static content under dir on the given plugin route GET /v1/plugins/<id>/routes/<route>
- HTTP calls, when using wrapper: mldb = mldb_wrapper.wrap(mldb)
 - mldb.get(url)
 - mldb.put(url, payload)
 - mldb.post(url, payload)
 - mldb.delete(url)

Server-side Python API: Handling a custom route

- Calling /v1/plugins/<id>/routes/<route> triggers the execution of routes.py
- Must handle the (verb, remaining) tuple, available in the mldb.plugin.rest_params object.
- If it represents a valid route, the mldb.plugin.set_return function must be called with a non-null body, which will be returned in the response.
- If the function is not called or called with a null body, the HTTP response code will be 404.

mldb.plugin.rest_params: object available within routes.py which represents an HTTP REST call. It has the following fields and methods:

- verb, remaining, rest_params: route and query-string details such that for
 - GET /v1/plugins/X/routes/hello?who=you
 - verb = GET
 - o remaining = hello
 - o rest_params = [['who', 'you'], ['yes','you']

mldb.plugin.set_return(body): available within routes.py, function called to write to HTTP response body and HTTP return code

- Work off a plugin folder placed in mldb_data
- Plugin creation loads main.py
 - Reload if main.py is modified (ie new static route needs to be created)
- Each custom route call loads routes.py, taking into account any modification that was made
- Static contents is served as is on disk

main.py

routes.py

Static folder

main.py

- Load trained model & inception function
- Create pipeline function
- Serve static folder containing UI

routes.py

 Handle custom routes call to run an SQL query and return the top label

Static folder

- Create index.html page allowing the user to run a prediction by calling one of 2 MLDB routes:
 - sql.expression function returning us the raw predictions
 - Custom python route that will run an SQL query and return the top label

Working version here: https://github.com/mldbai/pyconca-2016

Let's build the plugin!

- Check out a more complex plugin using the same concepts:
 - DeepTeach: http://blog.mldb.ai/blog/posts/2016/10/deepteach
- Come talk to us on Gitter: https://gitter.im/mldbai/mldb
- Get started with MLDB: http://mldb.ai

François Maillet
@mailletf - francois@mldb.ai
blog.francoismaillet.com

mldb.ai