«TalysLib v.0.1»

Содержание

1	Введ	цение		1	
2	Стр	уктура	библиотеки	6	
	2.1	Класс	TalysLibManager	6	
	2.2	Класс	Nucleus	8	
		2.2.1	string Name, Reaction, Projectile	8	
		2.2.2	vector <level> Levels</level>	8	
		2.2.3	OpticalModelParameters OMPN, OMPP	8	
		2.2.4	Deformation Def	8	
		2.2.5	TGraph ElacticTotTalys, ElasticDirectTalys, ElasticCompoundTalys	8	
		2.2.6	In elastic Tot Talys V, In elastic Direct Talys V, In elastic Compound Talys V,		
			ElasticTotTalysV, ElasticDirectTalysV, ElasticCompoundTalysV, TotTa	llysV 9)
		2.2.7	BNECS_gamma, BNECS_neutron, BNECS_proton, BNECS_deuteron	1,	
			BNECS_triton, BNECS_3He, BNECS_alpha	9	
		2.2.8	TEISGraphTot, TEISGraphCont, TEISGraphDiscr	9	
		2.2.9	void ReadElastic()	10	
		2.2.10	TGraph* GetElasticAngularDistribution(string type,string option) .	10	
		2.2.11	int WriteOMPOrUseKoningP, WriteOMPOrUseKoningN	10	
		2.2.12	void MergeLevels(float tolerancy)	11	
		2.2.13	SortingLevels()	11	
		2.2.14	FindProductsByReaction(string reaction)	11	
		2.2.15	FindProductByName(string _Name)	11	
		2.2.16	Nucleus* fMotherNucleus	11	
		2.2.17	Nucleus()	12	
		2.2.18	Nucleus(string Name,string Reaction=)	12	
		2.2.19	Nucleus(NucleusData ND)	12	

2.2.20	ReadENSDFFile(string filename=,string Nuclide=)	12
2.2.21	ReadLevelsFromTalysDatabase(string type="final")	12
2.2.22	SetProjectileEnergy(double E)	13
2.2.23	vector <level*>GetLevelsWithCorrespondingTransitions(float Energy</level*>	/ ,
	float tolerancy=1, float intensity=0)	13
2.2.24	Level* FindLevelFromTalys(float Energy, SpinParity JP)	13
2.2.25	Level* FindBestLevelByEJP(float Energy, SpinParity JP, float tolerance)	y=1) 13
2.2.26	FindLevelByEnergy(float Energy, float tolerancy=1)	13
2.2.27	Level* FindLevelByNumber(int number)	14
2.2.28	GammaTransition* GetBestTransition(float Energy, float tolerancy=1)	14
2.2.29	vector < Gamma Transition *> Get Gamma Transition (float Energy, float)	
	tolerancy=1, float intensity=0)	14
2.2.30	vector <gammatransition*>GetGammaTransitions(string option="Ta</gammatransition*>	lys int
	BetterThan=100, float tolerancy=1, float intensity=0)	14
2.2.31	vector <nucleus> Products</nucleus>	14
2.2.32	void GenerateProducts(string Projectile="n")	15
2.2.33	void ExecuteCalculationInTalys(string _Projectile="n")	15
2.2.34	void ReadTalysCalculationResult()	15
2.2.35	void AssignSimilarLevels(float Tolerancy=1.5)	15
2.2.36	void DrawLevelScheme(double MinTalysCS=0)	16
2.2.37	void AssignPointers()	16
2.2.38	void ErasePointers()	16
2.2.39	void AssignDeformationsToLevels()	16
2.2.40	void SetLevelDeformation(int LevelNumber,char LevT, int BandN=-	
	1, int BandL=-1, int NPhon=-1, int MagN=-1, vector <float> *Def=0)</float>	16
2.2.41	void SetLevelDeformation(double LevelEnergy,char LevT, int BandN=	=_
	1, int BandL=-1, int NPhon=-1, int MagN=-1, vector <float> *Def=0)</float>	17

	2.2.42	string PrintLevels()	17
	2.2.43	string PrintReactions()	17
	2.2.44	string ReactionToTalysNotation(char DataSelection=kExcitationCS)	17
	2.2.45	float GetMass()	18
	2.2.46	NucleusData ToNucleusData()	18
	2.2.47	void GenerateGammaSpectrum(TH1F *Spectrum, TF1* ResolutionFu	inction,
		int NEntries=100000)	18
	2.2.48	void SetTGraphNameAndTitle(string ValName)	18
	2.2.49	void AddPoint(double x_value, Nucleus* Nucl)	18
2.3	Класс '	TalysCalculation	19
	2.3.1	Results, FinalResult	19
	2.3.2	Target, Proj	19
	2.3.3	TalysOptions	19
	2.3.4	Variable	19
	2.3.5	Elastic, Inelastic, GeneratedGraphs	19
	2.3.6	VarValues	19
	2.3.7	GeneratedGraphs	20
	2.3.8	ProjectileEnergy	20
	2.3.9	void ReadParametersFromFile(string filename)	20
	2.3.10	void ExecuteCalculation(), void ExecuteCalculation(void (*VarChang	eFunction)(Nucleus
		*Nuclide, double value))	20
	2.3.11	void SetTarget(string _Target), void SetProjectile(string _Proj), void	
		SetVarValues(double min, double max, double step)	20
	2.3.12	void ExecuteCalculation(), ExecuteCalculation(void (*VarChangeFun	ction)(Nucleus
		*Nuclide,double value))	20
	2.3.13	void GenerateGraphs()	20

	2.3.14	TGraph* GetLevelExcitationCrossSection(double LevelEnergy, string
		NucleusName, string Option)
	2.3.15	TG raph * Get Gamma Transition Cross Sction (double Gamma Energy,
		string NucleusName)
	2.3.16	TMultiGraph * Get Angular Distributions For Level (double Level Energy, string)
		NucleusName, string type, string option, TLegend *leg) 21
	2.3.17	TMultiGraph* GetElasticAngularDistributions(string type, string option,
		TLegend *leg)
2.4	Класс	OMPStorageData
2.5	Класс	OMPStorage
	2.5.1	OMPStorageData ToOMPStorageData()
2.6	Класс	OpticalModelParametersData
	2.6.1	OMPStorageData PotentialData, PotentialDispData, PotentialKoningData 21
2.7	Класс	OpticalModelParameters
	2.7.1	OpticalModelParametersData ToOpticalModelParametersData() 22
	2.7.2	OMPStorage Potential, PotentialDisp, PotentialKoning 22
2.8	Класс	TalysFitter
	2.8.1	bool Calculated
	2.8.2	bool ParTrackingFlag
	2.8.3	bool ParChanged
	2.8.4	double x_val
	2.8.5	TalysFitter(string NuclName)
	2.8.6	Nucleus Nuclide
	2.8.7	void (*ParAssignmentFunction)(TalysFitter *PointetToTF) 24
	2.8.8	vector <double> PreviousParameters</double>
	2.8.9	vector <double> Parameters</double>
	2.8.10	vector <string> ParNames</string>

	2.8.11	TF1
	2.8.12	TF1
	2.8.13	void EnableParTracking()
	2.8.14	void DisableParTracking()
	2.8.15	void TrackParChanges()
	2.8.16	double Eval(double *x, double *p)
	2.8.17	double (*GetEvaluationResult)(double x_value,TalysFitter *PointetToTF) 24
	2.8.18	TF1 GenerateTF1(string name, double x_min,double x_max) 24
2.9	Класс	TalysFitterMT

1 Введение

Библиотека **TalysLib** представляет собой основанный на ROOT набор классов, облегчающий взаимодействие программ, создаваемых пользователем, с базами данных и результатами расчетов TALYS. Библиотека не требует вмешательства в исходный код TALYS, и предполагается, что это позволит обеспечить хорошую совместимость с разными версиями TALYS. Для получения параметров ядра (деформаций, оптических потенциалов, масс, наборов уровней с соответствующими квантовыми числами) производится чтение базы данных TALYS (расположена в директории structure), результаты расчета извлекаются из выдачи TALYS (обычно, перенаправляемой в файл output) путем поиска ключевых слов и считывания соответствующих значений. В основе библиотеки лежат 3 класса, соответствующих физическим объектам:

- Класс Nucleus, соответствующий атомному ядру и сохраняющий в себе информацию о его свойствах: заряду, массе, деформации, оптическом потенциале и т.д. Также, в этом объекте хранится список уровней в виде вектора объектов типа Level, о котором речь пойдет дальше.
- Класс Level, соответствующий отдельному возбужденному состоянию ядра и содержащий информацию об энергии, J^{π} , списке γ -переходов, сечениях возбуждения и угловых распределений рассеянных частиц. Каждый объект Level, кроме того, хранит список γ -переходов в виде вектора объектов GammaTransition.
- Класс GammaTransition, соответствующий γ -переходу и хранящий данные о об энергии, J^{π} и вычисленных сечениях.

Каждый из описанных классов также хранит указатели на объект, находящийся выше по иерархии. Так, класс GammaTransition содержит указатели на начальный и конечный уровни γ -перехода, каждый объект Level хранит указатели на Nucleus. В случае

Рис. 1: Иерархия классов библиотеки TalysLib.

реакции типа $a+A\to b+B$, объект Nucleus, соответствующий ядру B, содержит указатель на ядро A. Иерархия классов показана на Рис. 1.

Для ввода и вывода информации TALYS использует текстовые файлы, более того, с их помощью осуществляется коммуникация между кодом ECIS, выполняющим все расчеты в рамках оптической модели и подхода связанных каналов, и остальной программой, в которой происходят расчеты компаунд-процессов. Входной файл TALYS имеет простую и легкую для заполнения форму, в то же время, структура файлов, хранящих информацию о деформациях и оптических потенциалах конкретных ядер, довольно сложная и требует ввода параметров в формате с фиксированной шириной и положением полей данных. Применение библиотеки TalysLib позволяет существенно упростить заполнение входных файлов TALYS и уменьшить количество возможных ошибок. Файловый ввод-вывод позволяет достаточно просто реализовать запуск TALYS с помощью системных вызовов.

Считывание результатов вычислений производится из выходного файла TALYS, что, во-первых, упрощает контроль за правильностью получаемых результатов, а, вовторых, сокращает количество создаваемых после вычислений файлов, что увеличивает скорость работы. Кроме того, для ускорения вычислений файлы сохраняются на виртуальный диск в оперативной памяти, что исключает их запись на жесткий диск.

Изначально TalysLib создавалась для автоматизированной расшифровки и аппроксимации γ -спектров, получаемых при исследовании нейтрон-ядерных реакций.

Обычно для решения этих задач используются данные из ENSDF, но у данного подхода есть недостатки, связанные, во-первых, с достаточно сложной структурой файлов ENSDF, а, во-вторых, с невозможностью оценки выходов γ -линий непосредственно из информации, представленной в ENSDF, что может привести к ошибкам в идентификации фотопиков. Использование же результатов расчетов в TALYS имеет следующие преимущества:

- Структура выходного файла TALYS значительно более проста, чем файла ENSDF,
- В выходном файле TALYS записаны только возможные при данной энергии налетающего нейтрона γ -переходы,
- Для каждого γ -перехода вычисляется сечение, что позволяет, провести их отбор по интенсивности и избежать ошибок в идентификации близких по энергии фотопиков,
- Полученные на основе вычисленных сечений соотношения амплитуд близких γ -пиков могут быть использованы как начальные приближения при их аппроксимации.

Пример применения TalysLib для расшифровки γ -спектров показан на Рис. 2.

Другой областью применения TalysLib является подбор параметров моделей в TALYS для улучшения согласия результатов расчетов и экспериментальных данных. Для выполнения этой процедуры требуется проведение большого количества вычислений, которые необходимы для рассчета градиентов минимизируемой функции. Структура TalysLib позволяет выполнять подбор практически любого числового параметра модели к любому набору экспериментальных данных. Данный функционал реализован с помощью класса TalysFitterMT и минимизатора MINUIT, встроенного в ROOT. Для выполнения минимизации необходимы две задаваемые пользователем функции C и F, первая из которых сопоставляет набор подбираемых параметров

Рис. 2: Пример расшифровки спектра γ -лучей, полученного в эксперименте с железом, с помощью TalysLib. Красным выделены γ -переходы, ранее не наблюдавшиеся в реакциях $(n,x\gamma)$.

Рис. 3: Блок-схема процедуры минимизации.

с параметрами вычислений, а вторая описывает процедуру извлечения данных, соответствующих экспериментальным, из основных классов библиотеки. Блок-схема процедуры минимизации приведена на Рис. 3.

Саму минимизирующую процедуру можно описать следующим образом: для начала процедуры необходим некоторый начальный набор параметров, который может быть взят непосредственно из параметров модели «по-умолчанию», либо задан пользователем. Также нужна некоторая выборка экспериментальных данных, представимая в виде таблично заданной функции одной переменной D(x), например, дифференциальное сечение упругого и неупругого рассеяния на первом возбужденном состоянии может быть представлено как

$$D(x) = \begin{cases} \frac{d\sigma^{el}}{d\Omega}(x), & x \le 180; \\ \frac{d\sigma^{inl}}{d\Omega}(x - 180) & x > 180. \end{cases}$$
 (1)

Аналогичным образом могут быть заданы функции $D_x^{err}(x)$ и $D_y^{err}(x)$, описывающие ошибки эксперимента. Требуемые для сопоставления параметров модели и минимизируемых параметров, а также результатов расчета и экспериментальных данных функции C и F задаются пользователем, а указатели на них передаются в класс TalysFitterMT, где они используются для вычисления χ^2 и $\nabla \chi^2$:

$$\chi^2 = \sum_{i=0}^{N} \frac{((D(x_i) - F(x_i))^2}{(D_x^{err}(x_i))^2 + (D_y^{err}(x_i))^2}$$
 (2)

Процедура подбора параметров начинается с расчета χ^2 и $\nabla \chi^2$ для начального приближения, которые затем передаются в MINUIT. На основе вычисленного $\nabla \chi^2$ MINUIT определяет набор лежащих на градиенте точек, координаты которых с помощью функции C передаются в объект Nucleus, который создает новые входные файлы для TALYS. С их помощью в этих точках снова рассчитывается χ^2 , и определяется

набор параметров, для которого эта величина является наименьшей. Для него вычисляется $\nabla \chi^2$ и цикл повторяется. После прохождения некоторого количества циклов MINUIT инициирует завершение процедуры минимизации.

Расчеты в TALYS могут выполняться довольно продолжительное время, особенно, если используются отличные от DWBA подходы для описания прямых реакций. В случае задачи оптимизации N параметров требуется для каждого расчета $\nabla \chi^2$ требуется 2N запусков TALYS. К счастью, вычисление $\nabla \chi^2$ может быть легко выполнено в многопоточном режиме путем запуска нескольких копий TALYS одновременно, что ускоряет процедуру минимизации примерено в 6 раз для задачи с N=11.

За ходом процесса минимизации можно наблюдать: текущий результат расчета и величины χ^2 выводятся в реальном времени, как показано на Рис. 4. Выбросы на графике χ^2 (Рис. 4.) связаны с расчетами в разных точках, лежащих на градиенте, необходимых для выбора набора параметров, который будет использоваться на следующем шаге минимизации. Видно, что величина χ^2 , в среднем, убывает с каждой итерацией.

2 Структура библиотеки

Библиотека состоит из набора классов, описывающих различные физические свойства ядер, «классов управления» и классов хранения данных. В данном разделе перечислены и описаны созданные для библиотеки пользовательские классы.

2.1 Класс TalysLibManager

«Управляющий» класс

Рис. 4: Пример работы минимизирующей процедуры. Сверху — значения χ^2 , снизу — экспериментальные данные в виде D(x) (точки), результаты расчета (линия). Данные, соответствующие упругому и неупругому рассеянию, разделены пунктирной линией.

2.2 Класс Nucleus

Класс Nucleus включает в себя набор объектов и методов для работы со свойствами ядра. Описание методов и членов этого класса приведено ниже

2.2.1 string Name, Reaction, Projectile

Name – строка string, содержащая имя ядра вида "56Fe".

Reaction – строка string, содержащая реакцию, приводящая к образованию данного ядра, строка вида "(n,p)".

Projectile – строка string, содержащая, налетающую частица, строка вида "n". Возможные значения данного параметра: n, p, d, t, h, a, g.

2.2.2 vector<Level> Levels

Вектор, содержащий объекты типа Level-информацию о свойствах ядерных уровней.

2.2.3 OpticalModelParameters OMPN, OMPP

Объекты, класса OpticalModelParameters, содержащие в себе информацию об оптическом потенциале для нейтронов (OMPN) и протонов (OMPP).

2.2.4 Deformation Def

Объект, класса Deformation, содержащий в себе сведения о деформации ядра в основном и возбужденных состояниях, а так же о природе этих состояний.

2.2.5 TGraph ElacticTotTalys, ElasticDirectTalys, ElasticCompoundTalys

Графики углового распределения упруго рассеянных частиц: ElacticTotTalys – полное сечение, ElasticDirectTalys – прямая компонента упругого рассеяния, ElasticCompoundTalys

– компаунд-компонента. Данные графики заполняются функцией Nucleus::GetElasticAngularDistribution(type, string option) из векторов Angle, ElTot; Angle, ElCompound; Angle, ElDirect cooтветственно.

2.2.6 InelasticTotTalysV, InelasticDirectTalysV, InelasticCompoundTalysV, ElasticTotTalysV, ElasticDirectTalysV, ElasticCompoundTalysV, TotTalysV

Графики сечений в зависимости от некоторого, определяемого пользователем, параметра V. Заполняются функцией Nucleus::AddPoint(double x_value, Nucleus* Nucl) из значений TotInelastic, CompoundInelastic, DirectInelastic, TotElastic, CompoundElastic, DirectInelastic, TotTalys соответственно. Величины TotInelastic, CompoundInelastic, DirectInelastic, TotElastic, CompoundElastic, DirectElastic, TotTalys, в свою очередь, считываются непосредственно из оиtрut файла функцией Nucleus::ReadElastic().

2.2.7 BNECS_gamma, BNECS_neutron, BNECS_proton, BNECS_deuteron, BNECS_triton, BNECS_3He, BNECS_alpha

Данные графики представляют собой полные сечения рождения частиц γ , n, p, d, 3 H, 3 He, α соответственно, в выходном файле данные величины названы «Binary non-elastic cross sections (non-exclusive)». Заполнение этих графиков производится функцией Nucleus::AddPoint(double x_value, Nucleus* Nucl) из величин BNECS_g, BNECS_n, BNECS_p, BNECS_d, BNECS_t, BNECS_tau, BNECS_a соответственно, а они, в свою очередь, считываются из оutput файла функцией Nucleus::ReadElastic().

2.2.8 TEISGraphTot, TEISGraphCont, TEISGraphDiscr

Данные графики представляют собой сечения неупругого рассеяния, т.е., реакций вида (n, 1nx): полное, в континууме и на дискретных уровнях соответственно, в выходном файле данные величины названы «Total exclusive Inelastic scattering». Заполнение этих графиков производится функцией Nucleus::AddPoint(double x value,

Nucleus* Nucl) из величин TEISTot, TEISCont, TEISDiscr соответственно, а они, в свою очередь, считываются из output файла функцией Nucleus::ReadElastic().

2.2.9 void ReadElastic()

Функция, считывающая output файл и записывающая в переменные TOTGamProd, TOTNProd, TOTPProd, TOTDProd, TOTAProd полные сечения образования γ , n, p, d, α соответственно; в TotElastic, CompoundElastic, DirectElastic записываются сечения упругого рассеяния и вклады отдельных компонент, а в TotInelastic, CompoundInelastic, DirectInelastic - сечения неупругого рассеяния. В переменную TotTalys записываются значения полного сечения.

2.2.10 TGraph* GetElasticAngularDistribution(string type,string option)

Данная функция строит угловое распределение рассеянных нейтронов и возвращает указатель на соответствующий график. Переменная type задает возможные варианты графика. Возможные значения: "Total полное сечение, "Compound компаунд-компонента, "Direct прямая компонента. Аргумент option принимает 2 значения: (поумолчанию) и "new". В первом случае функция вернет уже построенный график, во втором-перестроит его.

2.2.11 int WriteOMPOrUseKoningP, WriteOMPOrUseKoningN

Данные переменные задают алгоритм работы с оптической моделью для протонов и нейтронов соответственно. Если значение переменной равно -1, то в расчете будет использован потенциал "по-умолчанию либо заданный в input файле, если WriteOMPOrUseKoning=0, то будет использован потенциал, считанный из базы TALYS. Этот потенциал может быть изменен пользователем. Если в базе потенциала для данного ядра нет, будет использован потенциал "по-умолчанию". В случае, если если WriteOMPOrUseKoning=1, то будет использован потенциал из базы, а если его

не окажется-то потенциал Кёнинга. Если WriteOMPOrUseKoning=2, то будет использован потенциал Кёнинга вне зависимости от наличия в базе потенциала для данного ядра.

2.2.12 void MergeLevels(float tolerancy)

Функция, используемая для слияния уровней, считанных из TALYS и NDS. Использование в дальнейшем не предполагается.

2.2.13 SortingLevels()

Функция, выполняющая сортировку вектора Levels по энергии уровня.

2.2.14 FindProductsByReaction(string reaction)

Функция, выполняющая поиск продукта по соответствующей реакции и возвращающая указатель на найденный продукт. В случае, если продукт не найден, возвращает NULL.

2.2.15 FindProductByName(string Name)

Функция, выполняющая поиск продукта по его имени и возвращающая указатель на найденный продукт. В случае, если продукт не найден, возвращает NULL.

2.2.16 Nucleus* fMotherNucleus

Указатель на начальное ядро, если рассматриваемое ядро является продуктом реакции и содержится в векторе Products. В случае, если рассматриваемое ядро является начальным ядром, он равен NULL. Устанавливается функцией AssignPointers().

2.2.17 **Nucleus()**

Конструктор по-умолчанию. Необходим для корректной работы динамических контейнеров.

2.2.18 Nucleus(string Name, string Reaction=)

Конструктор. Принимает как аргумент Name-название ядра, например, "56Fe и Reaction-реакцию, в которой данное ядро образовалось. В случае начального ядра этот аргумент остается, по умолчанию, пустым. В процессе создания ядра данным конструктором выполняются считывание из базы TALYS величин Z, A, распространенности изотопа, схемы уровней, параметорв деформации и оптических потенциалов, выполняется присваивание указателей на данное ядро для уровней, деформаций и оптических потенциалов.

2.2.19 Nucleus(NucleusData ND)

Конструктор, позволяющий создать объект Nucleus из более компактного объекта NucleusData. В силу технических ограничений, не удалось реализовать запись объекта Nucleus в .root файл, возможно, эта проблема связана с указателями. Объект NucleusData записывается в .root файл и считывается из него без каких-либо проблем.

2.2.20 ReadENSDFFile(string filename=,string Nuclide=)

Функция, считывающая ENSDF файлы и заполняющая уровни (Levels). Использование в дальнейшем не предполагается.

2.2.21 ReadLevelsFromTalysDatabase(string type="final")

Функция, считывающая параметры уровней из базы TALYS. В качестве аргумента принимает тип информации об уровнях. Возможные значения аргумента: "final "exp "hfb описание приведено в TALYS manual (v 1.9), p. 137.

2.2.22 SetProjectileEnergy(double E)

Функция, устанавливающая энергию начальной частицы в МэВ.

Функция, выполняющая поиск уровней с гамма-переходами энергии Energy, энергия гамма-перехода может отличаться от заданной на tolerancy, интенсивность должна быть не ниже intensity. Использовалась для поиска подходящих гамма-переходов в данных, считанных из ENSDF (ну, или, NDS). Использование в дальнейшем не предполагается.

2.2.24 Level* FindLevelFromTalys(float Energy, SpinParity JP)

Функция, выполняющая поиск уровня, полученного из базы TALYS с данной энергией и спин-четностью JP. В случае успеха возвращает указатель на найденный уровень, в противном случае-NULL.

2.2.25 Level* FindBestLevelByEJP(float Energy, SpinParity JP, float tolerancy=1)

Функция, выполняющая поиск уровня, лучше всего подходящего под заданные энергии. В случае, когда есть несколько уровней в пределах tolerancy от Energy, лучшим будет признан тот, который имеет спин-четности, совпадающие с JP. В случае успеха возвращает указатель на найденный уровень, в противном случае-NULL.

2.2.26 FindLevelByEnergy(float Energy, float tolerancy=1)

Функция, выполняющая поиск уровня с энергией Energy, энергия уровня может отличаться на tolerancy от величины Energy. В случае успеха возвращает указатель на

найденный уровень, в противном случае-NULL.

2.2.27 Level* FindLevelByNumber(int number)

Функция, выполняющая поиск уровня с данным порядковым номером (соответствует нумерации TALYS). Нумерация начинается с основного состояния, ему присвоен номер 0. В случае успеха возвращает указатель на найденный уровень, в противном случае-NULL.

2.2.28 GammaTransition* GetBestTransition(float Energy, float tolerancy=1)

Функция, выполняющая поиск гамма-перехода с энергией, наиболее близкой к Energy в пределах tolerancy. В случае успеха возвращает указатель на найденный уровень, в противном случае-NULL.

Функция, выполняющая поиск гамма-переходов с энергией, наиболее близкой к Energy в пределах tolerancy. Возвращает вектор указателей на найденные переходы.

2.2.30 vector<GammaTransition*>GetGammaTransitions(string option="Talys int BetterThan=100, float tolerancy=1, float intensity=0)

Функция, выполняющая поиск гамма-переходов с происхождением и надежностью, задаваемыми аргументами функции. Использование в дальнейшем не предполагается.

2.2.31 vector<Nucleus> Products

Вектор, содержащий объекты типа Nucleus. В случае, когда рассматриваемое ядро является начальным, содержит ядра-продукты, в случае же, когдя рассматривае-

мое ядро само является продуктом, пуст. Заполняется функцией Nucleus::GenerateProducts().

2.2.32 void GenerateProducts(string Projectile="n")

Функция, выполняющая создание продуктов. Заполняет вектор Products, вызывает функции, выполняющие создание input файла для TALYS, его запуск и считывание результатов вычислений. В качестве аргумента принимает название начальной частицы.

2.2.33 void ExecuteCalculationInTalys(string Projectile="n")

Функция, выполняющая создание входного файла для TALYS и запуск вычислений. В качестве аргумента принимает название начальной частицы. Во входной файл могут быть добавлены дополнительные команды, находящиеся в Nucleus::TalysOptions.

2.2.34 void ReadTalysCalculationResult()

Функция, выполняющая считывание результатов расчета TALYS. Считываются:

- 1. ADTot, ADDirect, ADCompound-угловые распределения неупруго рассеянных частиц и продуктов реакции и вклады прямых и компаунд-процессов
- 2. сечения излучения гамма-квантов

В теле данной функции выполняется приписывание гамма-переходов соответствующим уровням.

2.2.35 void AssignSimilarLevels(float Tolerancy=1.5)

Функция, выполняющая приписывание уровням близких по энергии. Была введена, чтобы перерабатывать огромное множество одинаковых уровней из ENSDF. Использование в дальнейшем не предполагается.

2.2.36 void DrawLevelScheme(double MinTalysCS=0)

Функция, отрисовывающая схему уровней на текущий Canvas. В качестве аргумента принимает сечение излучения гамма-кванта, переходы с сечением менее MinTalysCS отрисованы не будут.

2.2.37 void AssignPointers()

Функция, приписывающая указателям правильные значения. Присваивает fMotherNucleus указатель на начальное ядро, Level->fNucleus-указатель на ядро, к которому относится данный уровень. Необходимо вызывать при копировании и после окончания записи в контейнер.

2.2.38 void ErasePointers()

Функция, вызывающая стирание указателей.

2.2.39 void AssignDeformationsToLevels()

Функция, приписывающая уровням указатель на соответствующий объект LevelDeformation, содержащий информацию о деформации уровня и его происхождении. Приписывание деформаций осуществляется по номеру уровня.

2.2.40 void SetLevelDeformation(int LevelNumber,char LevT, int BandN=-1, int BandL=-1, int NPhon=-1, int MagN=-1, vector<float> *Def=0)

Функция, позволяющая установить деформацию для уровня с номером LevelNumber. В случае, если аргумент = -1, он будет пропущен при записи деформации в файл. Параметры деформации описаны в TALYS manual (v 1.9), р. 138, LevT соответствует типу уровня (type of collectivity), BandN-номер полосы (the number of band), BandL-момент полосы или мультипольность(?) (multipolarity), NPhon-число фононов (phonon

number of the level), MagN-магнитное квантовое число (magnetic quantum number). Значения деформации ($\beta_2...\beta_8$) передаются с помощью указателя на вектор *Def.

2.2.41 void SetLevelDeformation(double LevelEnergy,char LevT, int BandN=-1, int BandL=-1, int NPhon=-1, int MagN=-1, vector<float> *Def=0)

Функция, позволяющая установить деформацию для уровня с энергией LevelEnergy (точность задания энергии должна быть лучще 1 кэВ). В случае, если аргумент = -1, он будет пропущен при записи деформации в файл. Параметры деформации описаны в TALYS manual (v 1.9), р. 138, LevT соответствует типу уровня (type of collectivity), ВапdN-номер полосы (the number of band), BandL-момент полосы или мультипольность(?) (multipolarity), NPhon-число фононов (phonon number of the level), MagN-магнитное квантовое число (magnetic quantum number). Значения деформации ($\beta_2...\beta_8$) передаются с помощью указателя на вектор *Def.

2.2.42 string PrintLevels()

Функция, возвращающая список уровней данного ядра в виде строки.

2.2.43 string PrintReactions()

Функция, возвращающая список продуктов и реакций, если данное ядро является начальным.

2.2.44 string ReactionToTalysNotation(char DataSelection=kExcitationCS)

Функция, генерирующая ключевое слово, по которому сведения о реакции, которая привела к рождению данного ядра, можно найти в файле. В качестве аргумента принимает тип информации, для которого должно быть сгенерировано ключевое слово. Возможные значения аргумента: kExcitationCS-сечение образования кон-

кретного состояния, kAngularDistribution-угловое распределение частицы-продукта, kTotalInelasticCS-полное сечение образования данного продукта.

2.2.45 float GetMass()

Функция, возвращающая массу ядра в МэВ.

2.2.46 NucleusData ToNucleusData()

Функция, конвертирующая объект Nucleus в NucleusData, который может быть сохранен в .root файл.

2.2.47 void GenerateGammaSpectrum(TH1F *Spectrum, TF1* ResolutionFunction, int NEntries=100000)

Функция, позволяющая сгенерировать ожидаемый гамма-спектр на основе результатов вычислений в TALYS. Первый аргумент-указатель на гистограмму, куда будет записан спектр, второй-указатель на функцию (TF1), описывающую разрешение детектора, третий-число событий в спектре.

2.2.48 void SetTGraphNameAndTitle(string ValName)

Функция, задающая имена и подписи осей для графиков. В качестве аргумента принимает имя переменной, которая соответствует оси x.

2.2.49 void AddPoint(double x_value, Nucleus* Nucl)

Функция, выполняющая заполнение графиков InelasticTotTalysV, InelasticDirectTalysV, InelasticCompoundTalysV, ElasticTotTalysV, ElasticDirectTalysV, ElasticCompoundTalysV, TotTalysV, BNECS_gamma, BNECS_neutron, BNECS_proton, BNECS_deuteron, BNECS_triton, BNECS_3He, BNECS_alpha, TEISGraphTot, TEISGraphCont, TEISGraphDiscr значениями, находящимися в объекте, на который указывает указатель Nucleus* Nucl, в каче-

стве переменной x передается x_value . Вызывает аналогичную функцию для уровней (void Level::AddPoint(double x_value ,Level *level)). Используется классом TalysCalculation для построения графиков зависимости результатов вычислений от переменных, задаваемых пользователем.

2.3 Knacc TalysCalculation

Класс TalysCalculation включает в себя набор объектов и методов для работы с вычислениями в TALYS. Присутствуют методы для запуска расчётов, изменения параметров вычислений. Описание методов и членов этого класса приведено ниже

2.3.1 Results, FinalResult

B FinalResult хранится расчёт с максимальным значением параметра, в нем будут графики для неупругих сечений

- 2.3.2 Target, Proj
- 2.3.3 TalysOptions
- 2.3.4 Variable
- 2.3.5 Elastic, Inelastic, GeneratedGraphs

2.3.6 VarValues

Вектор значений параметров деформации, которые перебираются при вариации. Можно задать с помощью функции TalysCalculation::SetVarValues(min,max,step).

2.3.8	ProjectileEnergy
2.3.9	void ReadParametersFromFile(string filename)
	Функция,
2.3.10	void ExecuteCalculation(), void ExecuteCalculation(void (*VarChangeFunction)(Nucleus *Nuclide, double value))
	Функции,
2.3.11	void SetTarget(string_Target), void SetProjectile(string_Proj), void SetVarValues(double min, double max, double step)
	Функции,
2.3.12	void ExecuteCalculation(), ExecuteCalculation(void (*VarChangeFunction)(Nucleus *Nuclide,double value))
	Функции,
2.3.13	3 void GenerateGraphs()
	Функция,
2.3.14	TGraph* GetLevelExcitationCrossSection(double LevelEnergy, string NucleusName, string Option)
	Функция,
2.3.15	5 TGraph* GetGammaTransitionCrossSction(double GammaEnergy, string NucleusName)
	Функция,
	20

2.3.7 GeneratedGraphs

2.3.16 TMultiGraph* GetAngularDistributionsForLevel(double LevelEnergy,string NucleusName, string type, string option, TLegend *leg)

Функция,

2.3.17 TMultiGraph* GetElasticAngularDistributions(string type, string option, TLegend *leg)

GetElasticAngularDistributions возвращает TMultiGraph с угловыми распределениями, соответствующими значениям VarValues.

2.4 Класс OMPStorageData

Класс для хранения данных (выполняет роль структуры). Наследник класса TObject программы CERN ROOT, гарантированно может быть записан в root-файл.

2.5 Класс OMPStorage

Наследник класса OMPStorageData. Владеет своими гетерами и сеттерами для оптических параметров.

2.5.1 OMPStorageData ToOMPStorageData()

2.6 Knacc Optical Model Parameters Data

Наследник класса TObject программы CERN ROOT. Содержит в себе объекты класса OMPStorageData.

2.6.1 OMPStorageData PotentialData, PotentialDispData, PotentialKoningData

Объекты класса OMPStorageData, хранящие в себе наборы параметров для разных типов оптического потенциала:

PotentialData – текущий (рабочий) набор.

PotentialDispData – набор оптической дисперсионной модели.

PotentialKoningData – набор для глобальной параметризации Кёнинга.

2.7 Класс OpticalModelParameters

Основной класс для работы с оптическими параметрами. Наследник класса OpticalModelParameter Содержит в себе данные и методы работы с оптическими параметрами ядра. Владеет своими гетерами и сеттерами для оптических параметров, которые используют гетеры и сеттеры класса OMPStorage.

2.7.1 OpticalModelParametersData ToOpticalModelParametersData()

Объект класса OpticalModelParametersData

2.7.2 OMPStorage Potential, PotentialDisp, PotentialKoning

Объекты класса OMPStorage

2.8 Класс TalysFitter

Класс TalysFitter нужен для подбора параметров оптического потенциала, лучше всего описывающие экспериментальные сечения.

2.8.1 bool Calculated

=false;

2.8.2 bool ParTrackingFlag

=false;

2.8.3 bool ParChanged

=false;

2.8.4 double x_val

2.8.5 TalysFitter(string NuclName)

Конструктор класса

- 2.8.6 Nucleus Nuclide
- 2.8.7 void (*ParAssignmentFunction)(TalysFitter *PointetToTF)
- 2.8.8 vector<double> PreviousParameters
- 2.8.9 vector<double> Parameters
- 2.8.10 vector<string> ParNames
- 2.8.11 TF1
- 2.8.12 TF1
- 2.8.13 void EnableParTracking()
- 2.8.14 void DisableParTracking()
- 2.8.15 void TrackParChanges()
- 2.8.16 double Eval(double *x, double *p)
- 2.8.17 double (*GetEvaluationResult)(double x value, TalysFitter *PointetToTF)
- 2.8.18 TF1 GenerateTF1(string name, double x_min,double x_max)

2.9 Класс TalysFitterMT

Класс TalysFitterMT нужен для многопоточного подбора параметров оптического потенциала, лучше всего описывающие экспериментальные сечения.