Доц. д-р инж. Румен Б. Пранчов Гл. ас. инж. Димитър Г. Рашков

Гл. ас. д-р инж. Боянка М. Николова Гл. ас. инж. Месроб Х. Палабикян

РЪКОВОДСТВО ЗА ЛАБОРАТОРНИ УПРАЖНЕНИЯ ПО МАТЕРИАЛОЗНАНИЕ В ЕЛЕКТРОНИКАТА

Издателство НОВИ ЗНАНИЯ София, 2005 г.

освен че имат по-малки загуби, феритите притежават много по-разнообразни свойства в сравнение с металните магнитни материали. Според функцията, която изпълняват, феритите се разделят на магнитномеки, с правоъгълен хистерезисен цикъл, СВЧ-ферити и магнитнотвърди. Феритите се разделят на групи и съобразно състава им – никел-цинкови (Ni-Zn), манган-цинкови (Mn-Zn), манган-магнезиеви (Mn-Mg), манган-медни (Mn-Cu), литий-никелови (Li-Ni) и др.

Упражнение № 3

І. Тема: "Изследване на магнитни материали"

II. Задание

- 1. Да се снеме експериментално и да се построи графично за всеки един от изследваните магнитни материали основната крива на намагнитване $B_m = f(H_m)$.
- 2. Да се определят коерцитивният интензитет H_c и остатъчната магнитна индукция B_r и да се начертае граничния хистерезисен цикъл за всеки един от образците.
- 3. Да се изчисли за всяка мостра динамичната относителна магнитна проницаемост μ_r като получените зависимости $\mu_r = f(H_m)$ се представят графично.

III. Указания за изпълнение на заданието

<u>По т. 1</u>: За да се снеме експериментално основната крива на намагнитване, трябва:

Да се свърже коректно опитната постановка за съответния магнитен материал.

Да се еталонира (калибрира) "X" — усилвателя на осцилоскопа (виж Инструкцията за работа с осцилоскоп). Определянето на k_X се прави еднократно за всички мостри и за всички стойности на тока I.

С помощта на генератора Γ и амперметъра A да се зададе желания ток.

От екрана на осцилоскопа да се отчетат точките X_m и Y_m с помощта на дадените по-долу указания. Стойностите на B_m и H_m се изчисляват с помощта на формули (1a) и (1б).

<u>По т. 2</u>: Отчитането на X_{Hc} и Y_{Br} става чрез описаните по-долу указания, след което по формули (2) се изчисляват H_c и B_r .

<u>По т. 3</u>: Изчисляването на динамичната относителна магнитна проницаемост μ , става по формула (3).

Резултатите от измерванията и изчисленията да се нанесат в приложената таблица. Графичното представяне на резултатите от точки 1, 2 и 3 става за дадена мостра в обща координатна система, имаща обща абсцисна ос за интензитета на магнитното поле H и две отделни числени ординатни оси – едната за магнитната индукция B, а другата за относителната магнитна проницаемост μ_r .

ІУ. Схема на опитната постановка

Г – нискочестотен генератор на напрежение

А – променливотоков амперметър (стрелкови или цифров)

 $R_{\rm E}$ – еталонен резистор

 N_1 ; N_2 — първична и вторична намотки

R; C – резистор и кондензатор, които образуват интегрираща верига

ЕЛО - електронно-лъчев осцилоскоп

Показаната схема на опитната постановка има за цел да изобрази върху екрана на двуканален осцилоскоп динамичните хистерезисни криви B = f(H) на изследвания магнитен материал. Образците от този материал са най-често с тороидална форма, което означава, че магнитният поток в тях е затворен. Върху тороида са навити две намотки със съответния брой навивки - N_1 и N_2 .

Чрез генератора на синусоидален сигнал Γ в изследвания материал се създава магнитно поле, чийто интензитет H е пропорционален на тока, протичащ през първичната намотка I съгласно закона за пълния ток на Ампер:

$$H(t).l_{
m cp} = N_1.I(t)$$
 или $H(t) = rac{N_1}{l_{
m cp}}\,I(t)$,

където $l_{\rm cp}$ е дължината на средната магнитна силова линия.

Чрез амперметъра A се следи промяната на тока I, а оттам и промяната на интензитета H.

Като се има предвид, че на входа "X" на осцилоскопа трябва да се подаде напрежение, най-лесния начин за преобразуването на тока I в напрежение U_X е чрез резистора R_E . От закона на Ом се получава, че:

$$U_X(t) = R_E J(t) = R_E \frac{l_{cp}}{N_1} H(t)$$
.

По този начин подаденото на входа "X" на осцилоскопа напрежение е правопропорционално на интензитета на магнитното поле H чрез константата

$$k_1 = R_{\rm E} \frac{l_{\rm cp}}{N_1} \,.$$

За преобразуване на магнитната индукция в материала B в напрежение се използва следния подход. Във вторичната намотка на образеца се индуцира напрежение e_2 , което съгласно закона на Фарадей е пропорционално на ско-

ростта на изменение на индукцията $\frac{dB}{dt}$:

$$e_2(t) = N_2 S \frac{dB(t)}{dt}$$
,

където S е напречното сечение на магнитопровода.

За да може да се получи напрежение пропорционално на магнитната индукция B, имайки предвид горният израз, трябва e_2 да се интегрира във времето t. За целта се използва интегрираща верига, съставена от резистора R и кондензатора C. Ако е спазено условието стойностите на съпротивлението R

и на капацитета C да са достатъчно големи, изходното напрежение U_Y на RC веригата е интеграл на входното e_2 :

$$U_{Y}(t) = \frac{1}{RC} \int_{0}^{t} e_{2}(t)dt = \frac{N_{2}S}{RC}.B(t).$$

По този начин напрежението на вход "Y" на осцилоскопа е правопропорционално на магнитната индукция в изследвания материал B чрез константата $k_2 = \frac{N_2 S}{RC}$.

V. Методически указания за снемане на хистерезисен цикъл с осцилоскоп

Кривата на първоначалното намагнитване $B_m = f(H_m)$ е разположена в $\Gamma^{\text{ви}}$ квадрант на координатната система "H - B" и представлява геометрично място на точки, всяка една от които е връх на частен хистерезисен цикъл, снет при съответната стойност на задавания променлив ток I. Тъй като наблюденията на студента стават върху екрана на осцилоскопа, т. е. в координатната система "X - Y", явно е че снетите експериментално стойности в деления за H_m и B_m следва да се прехвърлят посредством коефициентите на подобие C_1 и C_2 от едната координатна система в другата. Или с други думи деленията следва да се прехвърлят в A/m за интензитета H и в T за магнитната индукция B (виж фиг. 4.5) според дадените по-долу формули.

Фиг. 4.5

Класическият начин за снемане на основната крива на намагнитване $B_m = f(H_m)$ предполага прецизно симетриране (центриране) спрямо началото на координатната система (т. "0") на получения върху екрана на осцилоскопа частен хистерезисен цикъл и визуалното отчитане на координатите на върха му, разположен в $\Gamma^{\text{ви}}$ квадрант, т. е. на X_m и Y_m , респ. H_m и B_m (другият връх, намиращ се в $\Pi^{\text{ти}}$ квадрант, е със симетрични координати: $-X_m$ и $-Y_m$). Така се получават и координатите на отделните точки, съставляващи кривата на първоначално намагнитване: т. 0 (0; 0); т. 1 (H'_m ; B'_m); т. 2 (H''_m ; B''_m) и т. н. (виж фиг. 4.5).

За по-удобно, по-точно и по-бързо отчитане на координатите на тези точки може да се процедира и по следния начин. Ако е необходима абсцисата на даден връх (примерно X_m'), след като е зададена необходимата стойност на тока $I = I_1 \neq 0$, се изключва сигнала към входа "Y" на осцилоскопа (достатъчно е да се прекъсне само "активния" проводник) и на екрана на уреда остава светлинна отсечка, равна на удвоената абсциса, т. е. на $2X_m'$. Аналогично се постъпва и при определянето на ординатата Y_m' . Този метод покрай останалите си предимства не изисква и симетриране на светлинната отсечка спрямо началото на координатната система, а само отчитане на нейната дължина (виж фиг. 4.6).

Коерцитивният интензитет на магнитното поле H_c и остатъчната магнитна индукция B_r се дефинират за граничен хистерезисен цикъл, т. е. при максимален ток $I = I_{\text{max}}$. Тук вече, задължително трябва получения на екрана хистерезисен цикъл да се симетрира спрямо началото на координатната система и да се отчетат съответните пресечни точки с двете оси X_{Hc} и Y_{Br} (виж фиг. 4.5). Симетрирането става посредством съответните регулатори на осцилоскопа, преместващи образа върху екрана му по осите "X" и "Y".

Използвани формули и означения

(1*a*)
$$H_m = C_1 X_m$$
, където $C_1 = k_H k_X$ и $k_H = \frac{N_1}{R_E l_{cp}}$;

(16)
$$B_m = C_2 Y_m$$
, където $C_2 = k_B k_Y$ и $k_B = \frac{R.C}{N_2 S}$;

(2)
$$H_c = C_1.X_{H_c}$$
 $B_r = C_2.Y_{B_r};$

$$\mu_r = \frac{B_m}{\mu_0 H_m},$$

където H е интензитетът на магнитното поле, A/m;

B – магнитната индукция в изследвания материал, Т;

 X_m и Y_m — максималното отклонение на лъча съответно по абсцисата и по ординатата при дадена стойност на електрическия ток I, дел. ;

 k_X и k_Y – константите, съответно на "X" – канала и на "Y" – канала на използвания осцилоскоп, V/дел;

 k_H – константа на изследвания образец и на макета, $(\Omega.m)^{-1}$;

 $k_{\rm B}$ – константа на изследвания образец и на макета, T/V;

 C_1 и C_2 – коефициентите на подобие, чрез които става преминаването от координатна система "X-Y", т. е. от геометричната равнина върху екрана на осцилоскопа, в координатната система "H-B";

 N_1 и N_2 – навивките на първичната и вторичната намотки на изследвания образец;

 l_{cp} – дължината на средната магнитна силова линия, m;

S – напречното сечение на магнитопровода, m^2 ;

 $R_{\rm E}$ – еталонен резистор, Ω ;

R – интегриращ резистор, Ω ;

С – интегриращ кондензатор, F;

 $\mu_0 = 4\pi . 10^{-7}$, H/m – магнитната константа.

5. РЕЗИСТОРИ И КОНДЕНЗАТОРИ

Кратки теоретични бележки

Резисторите са едни от най-употребяваните в електронните апаратури пасивни електронни елементи. Главното предназначение на резисторите е да намаляват енергията на сигнала и по този начин участват в разпределението и регулирането й в многобройните вериги и елементи на схемата.

Резисторите могат да бъдат класифицирани по различни признаци.

В зависимост от конструктивното изпълнение на токопровеждащия елемент 2 (фиг. 5.1) резисторите се разделят на:

- слойни (фиг. 5.1 a);
- обемни (фиг. 5.1 *б*);
- жични (фиг. 5.1 *в*).

За изработването на токопровеждащия елемент на резистора се използват пиролитичен въглерод, метали, сплави, метални оксиди, полупроводникови и композиционни материали.

Друга класификация на резисторите е по обединен признак – конструкция на токопровеждащия елемент и използван материал. Според тази класификация се различават:

- въглеродослойни;
- металослойни;
- ◆ композиционни слойни и обемни;
- полупроводникови слойни и обемни;
- жични.

Основните параметри на резисторите са:

- номинално съпротивление и допустими отклонения (толеранс);

- номинална мощност;
- температурен коефициент на съпротивлението на резистора.

Съпротивлението на всеки резистор зависи от геометричните размери и свойствата на материала на токопровеждащия елемент и се изчислява по известния израз:

$$R = \rho \frac{l}{S},$$

където ρ е специфичното електрическо съпротивление на материала на токопровеждащия елемент, Ω .m;

l – дължината на токопровеждащия елемент, m;

S – площта на напречното му сечение, m^2 .

Проводниковите материали за слойни резистори са отложени като тънки слоеве и имат зърнеста структура, която зависи от технологията на производство и микрорелефа на изолационната основа, върху която са нанесени. При тях специфичното съпротивление ρ зависи освен от използвания материал и от дебелината на слоя d. Затова за изчисляването на съпротивлението на такива резистори вместо ρ се използва съпротивлението на повърхностен слой от проводниковия материал с форма на квадрат – повърхностно съпротивление R_{\square} , Ω/\square . Тогава съпротивлението на слойния резистор се изчислява по израза:

$$R=R_{\square}\frac{l}{b},\Omega,$$

където l е дължината на слоя, m;

b – широчината на слоя, m.

Резисторите се произвеждат с номинални стойности на съпротивлението и толеранси съгласно параметричните редове Е6 до Е192.

За маркиране на номиналните стойности на съпротивленията и толерансите им се използват буквено-цифров или цветен код. Съгласно БДС 7024-80 буквено-цифровият код се състои от цифри, показващи номиналното съпротивление и от две букви – първата от тях показва единицата за измерване на съпротивлението, а втората – толеранса. В табл. 5.1 и 5.2 е даден буквеноцифровия код.

Под номинална мощност на резистора се разбира най-голямата мощност, която резисторът може да разсейва продължително време при дадени експлоатационни условия със запазване на параметрите в допустимите граници. Разсейваната в резистора мощност се превръща в топлина, която се предава в околното пространство.

Температурният коефициент на съпротивлението α_R характеризира температурната стабилност на резистора и се определя по израза

$$\alpha_R = \frac{dR}{RdT}$$
, °C⁻¹.

Таблица 5.1 Буквено-цифров код

Единица за	Означение на	Пълно	Съкратено
измерване	единицата	означение	означение
		0,15 Ω	R15
Ом	R	1,5 Ω	1R5
		15 Ω	15R
		0,15 kΩ	K15
Килоом	К	1,5 kΩ	1K5
		15 kΩ	15K
		0,15 ΜΩ	M15
Мегаом	M	1,5 ΜΩ	1M5
		15 ΜΩ	15M

Таблица 5.2 Код на толерансите

Толеранс,%	±0,1	±0,25	±0,5	±1	±2	±5	±10	±20	±30
Код	В	C	D	F	G	J	K	M	N

Като се има предвид израза за съпротивлението на резистора се получава, че

$$\alpha_R = \alpha_o + \alpha_l - \alpha_s,$$

където α_p е температурният коефициент на специфичното съпротивление на резистивния материал, с който е изграден резистора;

 α_{l} , α_{s} – температурни коефициент на линейно разширение на резистора.

Двата коефициента са приблизително равни – $\alpha_l \approx \alpha_S$ и тогава се получава, че $\alpha_R \approx \alpha_p$, т.е. съпротивлението на резистора се изменя под влияние на температурата, защото проводниковия материал, от който е изграден токопровеждащия елемент на резистора се характеризира с определен температурен коефициент на специфичното съпротивление. В зависимост от избрания проводников материал температурният коефициент на резисторите може да бъде положителен или отрицателен и има стойности от $\pm 10.10^{-6}$ до $\pm 2000.10^{-6}$ °C⁻¹.

В таблица 5.3 са дадени стойностите на α_R на някои типове резистори.

Таблица 5.3

	$\alpha_{R}.10^{+6}, {^{\circ}C^{-1}}$				
Тип на резистора	Температурен интервал				
	-60 °C ÷ +20 °C	+20 °C ÷ +125 °C			
РПМ (металослойни)	± 1200	± 700			
Ж1 и Ж2 (жични)	(-200 ÷ +400)				
Слоен композиционен	± 20				

Термисторите са полупроводникови резистори, които изменят значително съпротивлението си от температурата. Те се разделят на термистори с отрицателен температурен коефициент на съпротивлението (NTC – Negative Temperature Coefficient) и с положителен температурен коефициент на съпротивлението (PTC – Positive Temperature Coefficient).

Термисторите (NTC) се характеризират с голям, отрицателен температурен коефициент. Тъй като зависимостта на съпротивлението на термистора от температурата е нелинейна, в каталозите е прието да се указва стойността на α_R , изчислена със съпротивленията, измерени при 292,5К и 293,5К. Тази стойност е 5÷14 пъти по-голяма от стойностите на температурните коефициенти на обикновените резистори.

Зависимостта на съпротивлението от температурата термистора се описва с формулата

$$R_T = A \exp\left(\frac{B}{T}\right),\,$$

където R_T е съпротивлението при температура T;

А - константа, определена от физическите свойства на материала;

B – коефициент на температурна чувствителност, изразяващ изменението на концентрацията на носителите на заряди от температурата.

Стойността на коефициента В се определя по израза

$$B = \frac{T_1 T_2}{T_2 - T_1} \ln \frac{R_1}{R_2},$$

където R_1 и R_2 са стойностите на съпротивлението на термистора, измерени при температури T_1 и T_2 , K.

За различни материали B може да има стойности от 2000 до 5500 K.

Определянето на константата A е елементарно при известна стойност на B.

Температурният коефициент на термистора, се изчислява по израза

$$\alpha_R = \frac{dR}{RdT} = -\frac{B}{T^2}$$
.

Забележка: В горните формули температурата Т задължително се замества в К.

Кондензаторите, заедно с резисторите са основни градивни пасивни електронни електронни електронните апаратури. Техните свойства да не пропускат постоянен и пропускат променлив ток, да натрупват електрически заряди и по този начин да съхраняват енергия, с индуктивни бобини да образуват трептящи кръгове определят и приложението им. Кондензаторите се използват за изграждане на трептящи кръгове за ниски и високи честоти, за честотни и фазови коректори, като блокиращи и разделителни елементи, за получаване на импулси с голяма мощност, като постоянни и променливи капацитивни делители на напрежение, в искрогасителни схеми и др.

Кондензаторите с постоянен капацитет могат да се класифицират по два основни признака:

- по вида на диелектрика;
- по конструктивни показатели.

Класификацията по вида на диелектрика е основна. Според нея, кондензаторите се разделят на следните видове:

- 1. Кондензатори с газообразен диелектрик: въздушни, газонапълнени, вакуумни.
 - 2. Кондензатори с течен диелектрик.
- 3. Кондензатори с твърд органичен диелектрик: полимерни (полистиролни, полиетилентерефталатови, полиестерни, полипропиленови, поликарбонатни и др.).
 - 4. Кондензатори с твърд неорганичен диелектрик керамични.
- 5. Кондензатори с оксиден диелектрик (електролитни и оксидно-полупроводникови): алуминиеви, танталови, ниобиеви.

Основните параметри на постоянните кондензатори са:

- номинален капацитет и допустими отклонения (толеранс);
- номинално напрежение;
- температурен коефициент на капацитета на кондензатора;
- изолационно съпротивление;
- коефициент на загубите;

Кондензаторът представлява система от два електрода, разделени с диелектричен материал (фиг. 5.2). Капацитетът на такава система се изчислява по израза

$$C = \varepsilon_r \varepsilon \frac{S}{d}$$
,

където є, е относителната диелектрична проницаемост на диелектрика;

S е повърхнината на взаимно припокриване на двата електрода;

d е дебелината на диелектрика.

Кондензаторите се произвеждат с номинални стойности на капацитета и толеранси съгласно параметричните редове Е6 до Е192.

Номиналното напрежение е постоянното напрежение или ефективната стойност на променливото синусоидално напрежение с номинална честота, което може да бъде приложено непрекъснато към изводите на кондензатора, при която и да е температура от температурния обхват на съответната климатична категория.

Температурният коефициент на капацитета на кондензатора α_C е мярка за температурната му стабилност. α_C се изчислява по известния израз

$$\alpha_C = \frac{dC}{CdT}$$
, °C⁻¹.

Като се има предвид израза за капацитета на кондензатора, лесно може да се получи, че

$$\alpha_C = \alpha_{\varepsilon} + \alpha_S - \alpha_d$$
.

където С е температурният коефициент на диелектричната проницаемост на диелектрика, с който е изграден кондензатора;

 α_d и α_S – температурни коефициенти на линейно разширение на кондензатора.

Тъй като $\alpha_S \approx \alpha_d$, следва че $\alpha_C \approx \alpha_\varepsilon$, т.е. температурният коефициент на кондензатора зависи от температурния коефициент на диелектричната проницаемост диелектрика, от който е изграден.

За кондензатори с линейна зависимост C = f(T) в работния температурен интервал, температурният коефициент е постоянна величина и може да се изчисли по израза

$$\alpha_C = \frac{C_2 - C_1}{C_1 (T_2 - T_1)},$$

където C_1 е капацитетът на кондензатора при температура T_1 ;

 C_2 – капацитетът на кондензатора при температура T_2 .

Очевидно температурният коефициент може да има положителни или отрицателни стойности, доколкото αε на използваните диелектрични материали може да бъде положителен или отрицателен. Произвеждат се и кондензатори с нулев температурен коефициент – $\alpha_C = 0 \pm 30.10^{-6} \, {}^{\circ}\text{C}^{-1}$.

За кондензатори с нелинейна зависимост C = f(T) в работния температурен интервал се посочва зависимостта на относителното изменение от температурата $\Delta C/C = f(T)$ (фиг. 5.3).

В таблица 5.4 са дадени стойностите на α_C на някои керамични кої затори.

Таблица 5.4

Тип на кондензатора	Стойност на α _C .10 ⁺⁶ , °C ⁻¹					
Керамични монолитни – Клас I						
КрМП-ІВ или ЧМ-ІВ						
NPO	(0 ± 30)					
N150	(-150 ± 30)					
N750	(-750 ± 120)					
Керамични монолитни – Клас II						
$KpM\Pi$ - IIC_1 или $4M$ - IIC_1	(+2000 ÷ -2000)					
КрМП-IIE₂	(+13000 ÷ -7000)					
Керамични дискови – КласI – КрД-IВ						
NPO	(±30)					
N150	(-150 ± 30)					
N750	(-750 ± 120)					
N450	(-450 ± 120)					
N1200	(-1200 ± 250)					
N1500	(-1500 ± 250)					
Керамични дискови – Клас II						
КрД-ІІВ	(+2500 ÷ -2500)					
КрД-IID ₁	(+5000 ÷ -5000)					
КрД-IIF ₂	(+22000 ÷ -22000)					
Полиетилентерефталатни	(+600 ÷ +800)					
Стирофлексни	(-60 ÷ -220)					

Изолационното съпротивление е електрическото съпротивление ми изводите на кондензатора, измерено при определено постоянно напрежи след като процесите на поляризация в диелектрика са завършили, т.е. из ционното съпротивление на кондензатора се измерва при условията за из ване на изолационното съпротивление на диелектричните материали.

Коефициентът на загубите $tg\delta$ характеризира загубите на енергия в дензатора. При определянето му трябва да се има предвид, че освен загу от поляризация на диелектрика, има и загуби в металните електроди следствие на изолационното съпротивление на кондензатора.

Упражнение № 4

І. Тема: "Изследване на температурните коефициенти на параметрите на пасивни електронни елементи".

II. Задание

- 1. Да се изследва зависимостта на съпротивлението от температурата на различни видове резистори в температурен интервал от стайна температура T_A до 70°С. Да се определят температурните коефициенти на съпротивлението на изследваните резистори и въз основа на тях да се изчислят стойностите на съпротивленията при 0 °С и при 100 °С. Да се представи графично зависимостта $\frac{\Delta R}{R} = f_1(T)$.
- 2. Да се изчислят коефициентът на температурна чувствителност B и константата A на термистор (NTC). Да се определят температурният коефициент на термистора при 20 °C и стойностите на съпротивлението на термистора при 0 °C и при 100 °C.
- 3. Да се определят температурните коефициенти на капацитета на различни видове кондензатори в температурен интервал от стайна температура T_A до 70 °C. Да се представи графично зависимостта $\frac{\Delta C}{C} = f_2(T)$.

III. Указания за изпълнение

Измерването на стойността на съпротивлението R на изследваните резистори се прави с прецизен цифров омметър, а на капацитета на кондензаторите – с цифров LCR измервателен уред. Указанията за работа с посочените уреди са дадени отделно.

Изчисленията на параметрите α_X и ΔX се прави по следните формули:

$$(\alpha_X)_{T_n} = \frac{X_{n+1} - X_n}{X_n} \cdot \frac{1}{T_{n+1} - T_n}; \left(\frac{\Delta X}{X}\right)_{T_n} = \frac{X_n - X_{20}}{X_{20}} \times 100, \%.$$

Резултатите от измерванията и изчисленията се нанасят в таблица 5.5

Таблица 5.5

	Образец					
	№ 1			№ 2		
Температура	X	$\Delta X/X$	$\alpha_{X}.10^{+6}$ °C ⁻¹			
°C	[X]	%	°C ⁻¹			
T_A						
•••						
T_{max}			·			
0						
100			<u> </u>			

Теоретичното прогнозиране на стойностите на резисторите за температури 0 °C и 100 °C се извършва чрез линейна екстраполация, а за термистора – като се заместят съответните температури (изразени задължително в К) във формула (4.4), чийто константи A и B се предполага, че вече са уточнени.

За линейната екстраполация е необходимо да се преобразува формулата за α_R :

$$(\alpha_R)_{T_n} = \frac{R_{n+1} - R_n}{R_n} \cdot \frac{1}{T_{n+1} - T_n}.$$

Горната формула се развива в явен вид за R_{n+1} :

$$R_{n+1} = R_n [1 + \alpha_{R_n} (T_{n+1} - T_n)] = R_n (1 + \alpha_{R_n} \Delta T).$$

За прогнозиране на $R_{0^{\circ}\text{C}}$ се използва измерената стойност на съпротивлението при най-близката до 0 °C температура, т. е. стайна R_{T_A} , а за $R_{100 \, ^{\circ}\text{C}}$ — при най-високата достигната температура, т. е. $R_{70 \, ^{\circ}\text{C}}$:

$$R_{0^{\circ}C} = R_{T_A} \left(1 + \alpha_{R_{T_A}} \Delta T \right),$$

където $\Delta T = 0 - T_A$.

$$R_{100 \,^{\circ}\text{C}} = R_{70} (1 + \alpha_{R_{70}} \Delta T),$$

където $\Delta T = 100 - 70 = 30$ °C.

Забележка: Величините α_R и ΔT са алгебрични, т.е. те участват в горните формули със своя знак ("+" или "-").

КОНТРОЛНИ ВЪПРОСИ

Към упражнение № 1

- 1. Избройте основните свойства на проводниковите материали.
- 2. Обяснете физически електропроводимостта в чистите метали.
- 3. Напишете израза за изчисляване на специфичното съпротивление ρ според закона на Ом.
- 4. Напишете израза, даващ връзката между специфичната проводимост σ и специфичното съпротивление ρ .
- 5. Как се променя специфичното съпротивление ρ на чистите метали при увеличаване на температурата и защо?
- 6. Каква е общата формула за изчисляване на температурния коефициент на специфичното съпротивление α_{ρ} ? Каква е дименсията на α_{ρ} ?
- 7. Каква е стойността на температурния коефициент на специфичното съпротивление $\alpha_{\rm p}$ на проводници от чисти метали в работния температурен интервал?
- 8. Когато зависимостта $\rho = f(T)$ е линейна и α_{ρ} може да се изчисли по формулата $\alpha_{\rho} = \frac{\rho_T \rho_A}{\rho_A (T T_A)}$, изведете израза за ρ_T .
- 9. Какъв по знак може да е температурният коефициент на специфичното съпротивление на сплав от метали?
- 10. Какъв е механизма за предаване на топлина в чистите метали?
- 11. Опишете закона, по който се определя коефициентът на топлопроводност на металните проводници.
- 12. Избройте някои от основните приложения на медта в електрониката.
- 13. Какви са основните приложения на проводникови материали с малък температурен коефициент на специфичното им съпротивление α_{ρ} ?

Към упражнение № 2

- 1. Дайте дефиницията за процеса на поляризация в диелектричните материали.
- 2. Кои са основните видове поляризации?
- 3. Как температурата влияе върху основните видове поляризации?
- 4. Дайте дефиниция за диелектрични загуби.
- 5. Избройте видовете диелектрични загуби.
- 6. Какво представлява ъгълът на диелектричните загуби δ според векторната диаграма на напрежението и тока?
- 7. Могат ли диелектричните загуби, които се наблюдават в постоянно електрическо поле да се оценят с tgδ?
- 8. От какво се определя температурната зависимост на tgδ?
- 9. Как зависят загубите от електропроводимост от температурата?
- 10. В кои диелектрици и при какви условия могат да се наблюдават йонизационни загуби?

- 11. Какви основни параметри трябва да притежава материал, който ще се използва като високочестотен кондензаторен диелектрик?
- 12. Какви основни параметри трябва да притежава диелектрик, който ще се използва като изолационен материал?

Към упражнение № 3

- 1. Напишете изразът за магнитната индукция B, създадена от магнитно поле с интензитет H в материална среда.
- 2. Кои параметри и характеристики описват поведението на материалите в магнитно поле?
- 3. Обяснете доменната структура на магнитните материали.
- 4. Избройте основните феромагнитни материали.
- 5. Опишете двата процеса на намагнитване, които настъпват в магнитния материал при прилагане на външно магнитно поле.
- 6. Начертайте кривата на първоначалното намагнитване и означете върху нея основните й области.
- 7. Какви процеси настъпват в магнитен материал при прилагане на външно магнитно поле с малък интензитет?
- 8. Какво представлява параметъра индукция на насищане B_s ?
- 9. Дайте израза за диференциалната магнитна проницаемост μ_{rd} .
- 10. Каква е разликата между параметрите диференциална магнитна проницае-мост μ_{rd} и амплитудна магнитна проницаемост μ_{ra} ?
- 11. Начертайте в обща координатна система кривата на първоначалното намагнитване B = f(H) и зависимостта на диференциалната магнитна проницаемост е $\mu_{rd} = f(H)$.
- 12. Начертайте и обяснете получаването на хистерезисен цикъл в магнитните материали.
- 13. Кой хистерезисен цикъл се нарича граничен?
- 14. Начертайте и обяснете кривата на размагнитване.
- 15. Направете класификация на материалите съобразно магнитната им енергия.
- 16. Каква е стойността на индукцията на насищане B_s на магнитномеките материали спрямо тази на магнитнотвърдите?
- 17. В какъв честотен обхват може да се използват ферити с тесен хистерезисен цикъл?
- 18. Избройте някои основни приложения на магнитномеките ферити.

Към упражнение № 4

- 1. Какво е главното предназначение на резисторите?
- 2. Направете класификация на резисторите според конструктивното изпълнение на токопровеждащия елемент.
- 3. Начертайте и обяснете конструкцията на слоен резистор.
- 4. Избройте материалите, от които се изработват токопровеждащите елементи на резисторите.

- 5. Кои са основните параметри на постоянните резистори?
- 6. Дайте израза съгласно, който се изчислява съпротивлението на резистора.
- 7. Дайте израза, съгласно, който се изчислява съпротивлението на слоен резистор.
- 8. Напишете израза съгласно, който се изчислява температурният коефициент на съпротивлението на резистора α_R .
- 9. Може ли температурният коефициент на съпротивлението α_R на резистор да бъде отрицателен?
- 10. Как влияе температурата върху съпротивлението на термисторите?
- 11. Какво е главното предназначение на кондензаторите с постоянен капацитет?
- 12. Направете класификация на кондензаторите според вида на диелектрика.
- 13. Дайте израза съгласно, който се изчислява капацитета на кондензатор.
- 14. Възможно ли е температурният коефициент на капацитета на кондензатор α_C да има нулева стойност?
- 15. Кой параметър или характеристика определя температурната стабилност на кондензатори с нелинейна зависимост C = f(T) в работния температурен интервал?

ПРИЛОЖЕНИЕ

Представки и техните означения, използвани за означаване на някои десетични кратни и дробни

Множител	Представка	Означе- ние	Множи- тел	Представка	Означение
10^{24}	йота	Y	10-1	деци	d
10^{21}	сета	Z	10 ⁻²	санти	С
10 ¹⁸	екса	E	10-3	мили	m
10 ¹⁵	пета	P	10^{-6}	микро	μ
1012	тера	T	10-9	нано	n
10 ⁹	гига	G	10 ⁻¹²	пико	p
10^{6}	мега	M	10 ⁻¹⁵	фемто	f
10 ³	кило	К	10-18	ато	a
10^2	хекто	h	1021	септо	z
10 ¹	дека	da	10 ⁻²⁴	йокто	у

Наименования и означения на основните единици SI

	Единица		
Величина	специално наименование	означение	
Дължина	метър	m_	
Maca	килограм	kg	
Време	секунда	S	
Електричен ток	ампер	A	
Термодинамична температура	келвин	K	
Количество вещество	мол	mol	
Интензитет на светлината	кандела	cd	

Наименования, означения и изразяване на допълнителните единици SI и на производните единици SI

	Едиг	ница	Изразяване		
Величина	специално наименова- ние	означение	в други единици SI	като функция на основни или допълнителни единици SI	
Равнинен ъгъл	радиан	rad	-	1 m/m = 1	
Пространствен ъгъл	стерадиан	sr	-	$1 \text{ m}^2/\text{m}^2 = 1$	
Честота	херц	Hz	•	s ⁻¹	
Сила	нютон	N	-	m.kg.s ⁻²	
Налягане, механично напрежение	паскал	Pa	N.m ⁻²	m ⁻¹ .kg.s ⁻²	
Енергия, работа, количест- во топлина	джаул	J	N.m	m ² .kg.s ⁻²	
Мощност, поток енергия	ват	W	J.s ⁻¹	m ² .kg.s ⁻³	
Количество електричество, електричен заряд	кулон	С	-	s.A	
Електричен потенциал, по- тенциална разлика, елект- родвижещо напрежение	волт	V	W.A ⁻¹	m ² .kg.s ⁻³ .A ⁻¹	
Електрично съпротивление	ОМ	Ω	V.A ⁻¹	m ² .kg.s ⁻³ .A ⁻²	
Проводимост (електрична)	сименс	S	A.V ⁻¹	$m^{-2}.kg^{-1}.s^3.A$	
Капацитет (електричен)	фарад	F	C.V ⁻¹	m ⁻² .kg ⁻¹ .s ⁴ .A ²	
Магнитен поток	вебер	Wb	V.s	$m^2.kg.s^{-2}.A^{-1}$	
Магнитна индукция	тесла	Т	Wb.m ⁻²	kg.s ⁻² .A ⁻¹	
Индуктивност	хенри	Н	Wb.A ⁻¹	m ² .kg.s ⁻² .A ⁻²	
Светлинен поток	лумен	lm	-	cd.sr	
Осветеност	лукс	lx	lm.m ⁻²	m ⁻² .cd.sr	
Активност (на радионуклид)	бекерел	Bq	-	s ⁻¹	
Погълната доза, специфич- на енергия на предаване, керма, индекс на погълната доза	грей	Gy	J.kg ⁻¹	m ² .s ⁻²	
Еквивалентна доза	сиверт	Sv	J.kg ⁻¹	$m^2.s^{-2}$	

Наредба за единиците за измерване (2002 г.), ПМС №275 от 29.11.2002 г., обн. В ДВ, бр. 115 от 10.12.2002 г.

ЛИТЕРАТУРА

- 1. Пранчов, Р. Материалознание в електрониката. Изд. Нови знания, София, 2005.
- 2. Хлебаров, З. и Р. Даскалов. Ръководство за лабораторни упражнения по радиоелектронни материали. Печатна база на ВМЕИ, София, 1981.
- 3. Кънчев, П. и др. Физика. София, Печатна база на ВМЕИ, 1980.
- 4. Миндова, Н. Физични величини и измерителни единици. София, Техника, 1985.
- 5. Taylor, B.N. Guide for the use of the International System of Units (SI). NIST Special Publication 811, 1995.
- 6. Föll, H. Electronic materials Hyperscript. Kiel, University of Kiel, 2003.

РЪКОВОДСТВО ЗА ЛАБОРАТОРНИ УПРАЖНЕНИЯ ПО МАТЕРИАЛОЗНАНИЕ В ЕЛЕКТРОНИКАТА

Автори: Доц. д-р инж. Румен Борисов Пранчов Гл. ас. д-р инж. Боянка Маринова Николова Гл. ас. инж. Димитър Георгиев Рашков Гл. ас. инж. Месроб Хампик Палабикян

Българска. І издание. 2005 г. Формат 70/100/16. Печатни коли 3.

ISBN 954-9315-40-1

Издателство НОВИ ЗНАНИЯ 1125, София бул. "Г. М. Димитров" 54 тел. 02/971 95 39, факс: 02/971 36 00

e-mail: btel_eng@netbg.com