MT2213 - Group Theory

Nachiketa Kulkarni

Contents

1	Defi	nitions	
	1.1	Group	8
		1.1.1	Examples:
		1.1.2	Abelian Groups
			Conjugate
		1.1.4	Order of a Group
		1.1.5	Cyclic Group
		1.1.6	Sub-groups
			Cosets

Chapter 1

Definitions

1.1 Groups

A non-empty set G is a group, is considered to be a group with an operation \star if to every pair $(x,y) \in G \times G$ and element $x \star y \in G$ is assigned, satisfying the following axioms:

- 1. Associativity: $\forall x, y, z \in G$, $x \star (y \star z) = (x \star y) \star z = x \star y \star z$
- 2. Existence of Identity: There exists an element $e \in G$ such that $e \star g = g \star e = g$
- 3. **Existence of Inverse:** For every element $x \in G$ there exists an element $x^{-1} \in G$ such that $x \star x^{-1} = e = x^{-1} \star x$, where $e \in G$ is the identity element of the group.

It is represented as (G, \star) . Some properties of groups:

- 1. Uniqueness of Identity: The identity element of a group is unique. Consider $e_1, e_2 \in G, e_1 \neq e_2$ and both are identity elements. Let $x \in G$, then $e_1 \star x = e_2 \star x = x$. This also implies that $e_1 = e_2$, hence the identity element is unique.
- 2. Uniqueness of Inverse: The inverse of an element in a group is unique. Consider $x \in G$, and $y_1, y_2 \in G$ are inverses of x. Then, $x \star y_1 = e = y_1 \star x$ and $x \star y_2 = e = y_2 \star x$. Now, $y_1 = y_1 \star e = y_1 \star (x \star y_2) = (y_1 \star x) \star y_2 = e \star y_2 = y_2$. Hence, the inverse of an element is unique.

1.1.1 Examples:

- 1. $(\mathbb{Z},+)$ is a group:
 - (a) Associativity: Addition is associative.
 - (b) Identity: 0 is the identity. Let $x \in Z$. Now 0 + x = x + 0 = x. Hence, it is an identity.
 - (c) Inverse: Let $x \in \mathbb{Z}$. Now, x + (-x) = (-x) + x = 0, where 0 is the additive identity.
- 2. (\mathbb{Q}^+, \times) is a group:
 - (a) Associativity: Multiplication is associative.
 - (b) Identity: 1 is the identity: Let $x \in \mathbb{Q}^+$. Now, $1 \times x = x \times 1 = x$. Hence, it is an identity.
 - (c) Inverse: Let $x \in \mathbb{Q}^+$, Now, $x \times \frac{1}{x} = \frac{1}{x} \times x = 1$, where 1 is the multiplicative identity.

- 3. $(GL(n,\mathbb{R}),\times)$ is a group, where \times is matrix multiplication (or combination of linear transformations):
 - (a) Associativity: Matrix multiplication is associative.
 - (b) Identity: I_n is the identity matrix.
 - (c) Inverse: Let $A \in GL(n,\mathbb{R})$, then $A \times A^{-1} = A^{-1} \times A = I_n$.

Check if:

- 1. (\mathbb{R}, \times) is a group or not.
 - $0 \in \mathbb{R}$, 0 does not have an inverse. Hence, it is not a group.
- 2. (\mathbb{C}, \times) is a group or not.
 - $0 \in \mathbb{C}$, 0 does not have an inverse. Hence, it is not a group.
- 3. $(\mathbb{R}/\{0\}, \times)$ is a group or not.

Yes its a group:

- (a) Associativity: Multiplication is associative.
- (b) Identity: 1 is an identity: Let $x \in \mathbb{R}/\{0\}$. Now, $1 \times x = x \times 1 = x$. Hence, it is an identity.
- (c) Inverse: Let $x \in \mathbb{R}/\{0\}$, Now, $x \times \frac{1}{x} = \frac{1}{x} \times x = 1$, where 1 is the multiplicative inverse.
- 4. $(\mathbb{C}/\{0\}, \times)$ is a group or not.

Yes it is a group:

- (a) Associativity: Multiplication is associative.
- (b) Identity: 1 is an identity: Let $x \in \mathbb{C}/\{0\}$. Now, $1 \times x = x \times 1 = x$. Hence, it is an identity.
- (c) Inverse: Let $x \in \mathbb{C}/\{0\}$, Now, $x \times \frac{1}{x} = \frac{1}{x} \times x = 1$, where 1 is the multiplicative inverse.

1.1.2 Abelian Groups

A group (G,\star) is said to be abelian if the operation \star is commutative, i.e., $x\star y=y\star x$, $\forall x,y\in G$.

1.1.3 Conjugate

Consider a group (G, \star) . For $x, y \in G$, y is said to be conjugate of x if there exists an element $a \in G$ such that:

$$y = a \star x \star a^{-1}$$

Note: For a given a, the conjugate of x is unique. i.e., if we consider conjugate to be a function f_a , then f_a is a bijection.

1.1.4 Order of a Group

The order of a group G is the number of elements in the group. It is denoted by |G|. A group G is said to be finite if the number of elements in it is finite. Otherwise, it is said to be infinite.

1.1.5 Cyclic Group

A group (G, \star) is said to be cyclic if there exists an element $a \in G$ such that every element of G can be written as a power of a. Let, $G = \langle g \rangle$ by a cyclic group of order n. Then, $G = \{e, g, g^2, \dots, g^{n-1}\}$.

Properties of Cyclic Groups

- 1. All cyclic groups are abelian.
- 2. $n = \min \{ m \in \mathbb{N} | g^m = 1 \}$.

Proof: As the order of G is finite, there exists $a,b\in\mathbb{N}$ such that $g^a=g^b$. This implies: $g^{a-b}=1$.

$$\therefore \exists n := \min \{ m \in \mathbb{N} \, | \, g^m = 1 \}$$

3.

1.1.6 Sub-groups

Consider a group (G,\star) . A non-empty subset H is a subgroup of G if H is a group with the same operation \star as G. It is represented as $H \leq G$.

A few properties of subgroups:

- 1. **Identity**: The identity element of G is also the identity element of H.
- 2. Inverse: If $x \in H$, then $x^{-1} \in H$.

Minimal and Maximal Subgroups

The Minimal subgroup $U \neq 1$ is known as a minimal subgroup of group G if no other non-trivial subgroup of G is contained in U.

The Maximal subgroup $U \neq G$ is known as the maximal subgroup of group G if U is not contained in any other subgroup of G.

Theorem

Let A and B be subgroups of G. Then AB is a subgroup of G if and only if AB = BA.

Proof: From $AB \leq G$ we get:

$$(AB) = (AB)^{-1} = B^{-1}A^{-1} = BA$$

If BA = AB:

$$(AB)(AB) = A(BA)B = A(AB)B = AABB = AB$$

and

$$(AB)^{-1} = B^{-1}A^{-1} = BA = AB$$

Therefore, $AB \leq G$

Theorem

Let A and B be finite subgroups of G. Then,

$$|AB| = \frac{|A|\,|B|}{|A \cap B|}$$

Proof: If we consider an equivalence relation on the Cartesian Product $A \times B$:

$$(a_1, b_1) \sim (a_2, b_2) \Leftrightarrow a_1 b_1 = a_2 b_2$$

Then |AB| is the number of equivalence classes in $A \times B$. Let $(a_1, b_1) \in A \times B$. The equivalence class:

$$\{(a_2, b_2) \mid a_1b_1 = a_2b_2\}$$

which contains exactly $|A \cap B|$ elements:

$$\begin{split} a_2b_2 &= a_1b_1 \Leftrightarrow a_1^{-1}a_2 = b_1b_2^{-1} \\ &\Leftrightarrow a_2 = a_1d \text{ and } b_2 = db_1 \text{ for some } d \in A \cap B \end{split}$$

1.1.7 Cosets

FIEX