

STUDENT ID:

	Office Use Only					
Ī						

Semester Two 2022

Examination Period Faculty of Information Technology EXAM CODES: FIT3003 TITLE OF PAPER: Business Intelligence and Data Warehousing - SAMPLE 3 **EXAM DURATION:** 2 hours 10 minutes or 130 minutes THIS PAPER IS FOR STUDENTS STUDYING AT: (tick where applicable) ☐ Caulfield **☒** Clayton ☐ Parkville □ Peninsula ☐ Off Campus Learning ☒ Malaysia ☐ Sth Africa ☐ Monash Extension ☐ Other (specify) During an exam, you must not have in your possession any item/material that has not been authorised for your exam. This includes books, notes, paper, electronic device/s, mobile phone, smart watch/device, calculator, pencil case, or writing on any part of your body. Any authorised items are listed below. Items/materials on your desk, chair, in your clothing or otherwise on your person will be deemed to be in your possession. No examination materials are to be removed from the room. This includes retaining, copying, memorising or noting down content of exam material for personal use or to share with any other person by any means following your exam. Failure to comply with the above instructions, or attempting to cheat or cheating in an exam is a discipline offence under Part 7 of the Monash University (Council) Regulations, or a breach of instructions under Part 3 of the Monash University (Academic Board) Regulations. **AUTHORISED MATERIALS OPEN BOOK** \square YES \boxtimes NO **CALCULATORS** \square YES **⋈** NO SPECIFICALLY PERMITTED ITEMS \square YES **⋈** NO if yes, items permitted are: Candidates must complete this section if required to write answers within this paper

DESK NUMBER:

Ouestion 1:

Consider the following Student Enrolment star schemas: Star Schema Version-1 does not have a dimension hierarchy, whereas Star Schema Version-2 has a dimension hierarchy: from country to state, and to campus.

Questions:

- a. In contrasting both star schemas, is there any mistake in any of the two star schemas (Note that Star Schema Version-1 does not have a hierarchy, and Star Schema Version-2 does have)?
 - If yes, state which star schema, and explain your reason.
 - If no, also explain your reason.
- b. Compare both star schemas.
 - If there are mistakes in any (or both) star schemas, you need to draw the correct schema(s) first before comparing between each other.
 - If there are no mistakes in both star schemas, you can immediately compare the two star schemas.

Also, when you compare the two star schemas, you need to use some sample data (in the fact and in certain dimensions) to support your arguments

Write your answers here:

(a) There is a mistake in Star Schema Version-2; the mistake is in the hierarchy. The hierarchy should start from the most detail (e.g. Campus) to the most general (e.g. Country). Hence, the correct hierarchy should be CampusDIM→StateDIM→CountryDIM, and not in the opposite direction. Consequently, the fact should have CampusName, instead of CountryID.

There is no mistake in Star Schema Version-1.

Continue your answers here:

(b) The correct star schema for version-2 is as follows: Note: the FK must also be correct.

Continue your answers here:

Data duplication or Normalization

Star Schema-1: unnormalized, has data duplication The corrected (new) Star Schema-2: normalized, minimized data duplication

Minimise Join

Star Schema-1: need only one join between Fact and CampusDIM The corrected (new) Star Schema-2: need three join operations between Fact, CampusDIM, StateDIM, and CountryDIM

For example: when we answer a query "how many students from campus in Australia", Star Schema-1 needs to join Fact with CampusDIM only, whereas Star Schema-2 needs to join tables Fact, CampusDIM, StateDIM, and CountryDIM.

This question is taken from the *Bookshop* Case Study on Temporal Data Warehousing. The following shows a star schema shows a fact table (number of books sold) and three dimensions (e.g. Month, Branch, and Book). The Book dimension is temporal dimension, which contains a temporal attribute, called Price, which is book price.

The tables for this star schema have been created and populated from the operational database. The sample data is as follows:

Month_DIM Table

- · · · · -	
Month_ID	
201503	
201502	
201501	
201412	
etc	

Branch DIM Table

Dianci_Divi Table					
Branch_ID Branch_Address					
City	Melbourne Central Shopping Centre, Melbourne				
Chadstone 285 Dandenong Road, Chadstone					
Camberwell 199 Burke Road, Camberwell					
etc					

Book_DIM Table

Book_ID	Book_Title	Author
C1	CSIRO Diet	CSIRO Team
Н6	Harry Potter 6	Rowling
DV	Da Vinci Code	Dan Brown

Book_Price_DIM Table

Book_ID	Start_Date	End_Date	Price	Remarks	
C1	201401	201407	\$45.95	Full Price	
C1	201408	201410	\$36.75	20% Discount	
C1	201411	201501	\$23.00	Half Price	
C1	201502	201512	\$45.95	Full Price	
Н6	201401	201403	\$21.95	Launching	
Н6	201404	201501	\$30.95	Full Price	
Н6	201502	201512	\$10.00	End of Product Sale	
DV	201401	201512	\$27.95	Full Price	
•••					

BookSales_Fact Table

Month_ID	Branch_ID	Book ID	Number_Books_Sold
201503	City	C1	5
201503	City	Н6	15
201503	City	DV	23
201503	City		
201503	Chadstone	C1	15
201503	Chadstone	Н6	3
201503	Chadstone	DV	2
201503	Chadstone		
201503	Camberwell	C1	1
201503	Camberwell	Н6	1
201503	Camberwell	DV	2
201503	Camberwell		
201503			
•••	•••	•••	
201412	City	C1	15
201412	City	Н6	6
201412	City	DV	6
201412	City	•••	
201412	Chadstone	C1	10
201412	Chadstone	Н6	8
201412	Chadstone	DV	1
201412	Chadstone		
201412	Camberwell	C1	18
201412	Camberwell	Н6	3
201412	Camberwell	DV	2
201412	Camberwell		
201412	•••	•••	
•••		•••	

Question: Write the SQL command to produce the following report (10 marks):

Month_ID	Branch_ID	Book_ID	Book_Title	Author	Price	Number_Books Sold
201702	~.	~1	GGTD C D I	GGTD 0 T	* 4 * 0 *	_
201503	City	C1	CSIRO Diet	CSIRO Team	\$45.95	5
201503	City	Н6	Harry Potter 6	Rowling	\$10.00	15
201503	City	DV	Da Vinci Code	Dan Brown	\$27.95	23
201503	City		•••			
201503	Chadstone	C1	CSIRO Diet	CSIRO Team	\$45.95	15
201503	Chadstone	H6	Harry Potter 6	Rowling	\$10.00	3
201503	Chadstone	DV	Da Vinci Code	Dan Brown	\$27.95	2
201503	Chadstone		•••			
201503	Camberwell	C1	CSIRO Diet	CSIRO Team	\$45.95	1
201503	Camberwell	Н6	Harry Potter 6	Rowling	\$10.00	1
201503	Camberwell	DV	Da Vinci Code	Dan Brown	\$27.95	2
201503	Camberwell		•••			
201503	•••		•••			
•••			•••			
	•••		•••			
201412	City	C1	CSIRO Diet	CSIRO Team	\$23.00	15
201412	City	H6	Harry Potter 6	Rowling	\$30.95	6
201412	City	DV	Da Vinci Code	Dan Brown	\$27.95	6
201412	City		•••			
201412	Chadstone	C1	CSIRO Diet	CSIRO Team	\$23.00	10
201412	Chadstone	Н6	Harry Potter 6	Rowling	\$30.95	8
201412	Chadstone	DV	Da Vinci Code	Dan Brown	\$27.95	1
201412	Chadstone					
201412	Camberwell	C1	CSIRO Diet	CSIRO Team	\$23.00	18
201412	Camberwell	Н6	Harry Potter 6	Rowling	\$30.95	3
201412	Camberwell	DV	Da Vinci Code	Dan Brown	\$27.95	2
201412	Camberwell					
201412	•••		•••			
			•••			

The structures of the above tables are as follows:

SQL> desc Month_DIM; Name	Null?	Туре
MONTH_ID		VARCHAR2(6)
SQL> desc Branch_DIM;		
Name	Null?	Туре
BRANCH_ID BRANCH ADDRESS		VARCHAR2 (15) VARCHAR2 (50)

SQL> desc Book_DIM;	110	_
Name	Null?	Type
BOOK_ID		VARCHAR2(5)
BOOK_TITLE		VARCHAR2(20)
AUTHOR		VARCHAR2(20)
SQL> desc Book Price DIM;		
Name	Null?	Туре
BOOK_ID		VARCHAR2(5)
START_DATE		VARCHAR2(6)
END_DATE		VARCHAR2(6)
PRICE		NUMBER (6,2)
REMARKS		VARCHAR2(20)
SQL> desc BookSales_Fact;		
Name	Null?	Туре
MONTH ID		VARCHAR2(6)
BRANCH ID		VARCHAR2 (15)
BOOK_ID		VARCHAR2 (5)
NUMBER BOOKS SOLD		NUMBER

Write your answer here:

```
Select
   F.Month_ID,
   F.Branch_ID,
   F.Book_ID,
   B.Book_Title,
   B.Author,
   P.Price,
   F.Number_Books_Sold
From BookSales_Fact F, Book_DIM B, Book_Price_DIM P
```

Where F.Book_ID = B.Book_ID
And B.Book_ID = P.Book_ID
And F.Month_ID >= P.Start_Date
And F.Month ID <= P.End Date;</pre>

MONTH_ID	BRANCH_ID	воок_	AUTHOR		NUMBER_BOOKS_SOLD
201503	City	C1	CSIRO Team	45.95	5
201503	-	н6	Rowling	10	15
201503	City	DV	Dan Brown	27.95	23
201503	Chadstone	C1	CSIRO Team	45.95	15
201503	Chadstone	н6	Rowling	10	3
201503	Chadstone	DV	Dan Brown	27.95	2
201503	Camberwell	C1	CSIRO Team	45.95	1
201503	Camberwell	н6	Rowling	10	1
201503	Camberwell	DV	Dan Brown	27.95	2
201412	City	C1	CSIRO Team	23	15
201412	City	н6	Rowling	30.95	6
MONTH_ID	BRANCH_ID	BOOK_	AUTHOR		NUMBER_BOOKS_SOLD
201412	City	DV	Dan Brown	27.95	6
201412	Chadstone	C1	CSIRO Team	23	10
201412	Chadstone	н6	Rowling	30.95	8
201412	Chadstone	DV	Dan Brown	27.95	1
201412	Camberwell	C1	CSIRO Team	23	18
201412	Camberwell	н6	Rowling	30.95	3
201412	Camberwell	DV	Dan Brown	27.95	2

¹⁸ rows selected.

This question is taken from the *Product-Sales-Supplier* Case Study.

The director of a company is interested in analyzing the statistics of its product sales history. The analysis is needed for identifying which products are popular, which suppliers supply those products, when is the best time to purchase more stock, etc. You are required to design a small Data Warehouse to keep track of the statistics.

The director is particularly interested in analyzing the *total sales* (Quantity * Price) by *product*, *customer locations* (*suburbs and postcodes*), *sales time periods* (monthly and yearly), and *supplier*.

The operational database currently has the following tables:

Your snowflake schema will have a Bridge Table connecting Product Dimension and Supplier Dimension. A snowflake schema with a Bridge Table as shown below:

The above snowflake schema is missing two attributes: **WeightFactor** attribute, and **ListAGG** attribute.

Questions:

- a **Draw a new snowflake schema** (call it Snowflake Schema version 2) for the above case study, but this new snowflake schema must **use a WeightFactor attribute** (**without ListAGG attribute**). You also need to **show sample records** in the Product Dimension, the Bridge Table, and the Supplier Dimension. The sample data must show the correct values for the Weight attribute. Make sure that in your snowflake schema, the attributes are clearly shown.
- b. **Draw another snowflake schema** (call it Star Schema version 3), which also has a Bridge Table and a WeightFactor attribute. But version-3 snowflake schema has the **ListAGG** attribute. You also need to **show sample records** in the Product Dimension, the Bridge Table, and the Supplier Dimension. The sample data must show the correct values for the Weight and ListAGG attributes.
- c. Write the **SQL query** to create the ProductDim table for the Star Schema version 3.

Write your answer here:

Snowflake Schema Version 2

ProductDIM Table

Trouble Table							
ProductNo	ProductType	WeightFactor					
P1	Shoes	0.5					
P2	Jeans	0.33					
etc							

ProdSup_Bridge Table

ProductNo		SupplierID
P1		S1
P1		S2
P2		S2
P2		S3
P2	/	S4
etc		

SupplierDIM Table

Supplied First Tuble		
SupplierID	SupplierName	
S1	Supplier-1	
S2	Supplier-2	
S3	Supplier-3	
S4	Supplier-4	
etc		

Continue your answer here:

Snowflake Schema Version 3

ProductDIM Table

ProductNo	ProductType	WeightFactor	SupplierGroupList	
P1	Shoes	0.5	S1_S2	
P2	Jeans	0.33	S2_S3_S4	
etc				

ProdSup Bridge Table

ProductNo	Sup	SupplierID		
P1	S1			
P1	S2			
P2	S2			
P2	S 3			
P2	S4			
etc				

SupplierDIM Table

SupplierID	SupplierName
S1	Supplier-1
S2	Supplier-2
S3	Supplier-3
S4	Supplier-4
etc	

Continue your answer here:

This question is based on the Robcor case study. The following is the E/R diagram of the operational database in the Robcor case study:

A star schema for the above operational database is shown as follows:

Questions:

a. Is it possible to determine which level Robcor Star Schema-1 is? If it is possible, state the level and also give the reason. If it is not possible to state the level, then give the reason.

b. Let's have a look at the following star schema (Robcor Star Schema-2). Between the two star schemas (Robcor Star Schema-1 and Robcor Star Schema-2), which one has a higher level of aggregation? State the name of the star schema, whether it is Robcor Star Schema-1 or Robcor Star Schema-2, and explain the reason.

Write your answers here:

(a)

It is not possible to determine whether this star schema is on level-2 or on level-3 or on a higher level. What we know is that Robcor Star Schema-1 is not on level-1.

Reason: Robcor Star Schema-1 is not on the lowest level, because some of the dimensions on a higher level of aggregation (e.g. time id which is based on month, instead of the actual charter date).

However, it is not possible to name whether this is level 2 or level 3, because there can be any schemas in between Robcor star-schema-1 and level-1.

If there is no star schema in between level-1 and Robcor star schema-1, then Robcor star schema-1 becomes level 2.

If there is a star schema in between level-1 and Robcor star schema-1, then Robcor star schema-1 is level 3.

If there are two star schemas in between level-1 and Robcor star schema-1, then obviously Robcor star schema-1 becomes level 4.

(b)

Robcor star schema-1 has a higher level of aggregation than Robcor star schema-2.

Reason: one Model can have multiple Aircrafts. Hence a star schema using Model as a dimension has a higher level of aggregation than a star schema using Aircraft as a dimension

Given the following star schema:

The tables (e.g. Fact and three dimensions) have been created and have also been populated with an adequate number of records. The table names and attributes are shown in the star schema above.

Write the SQL for the following OLAP queries:

- a. Display the top 10 average prices by suburb of property
- b. Display the average price of properties by property type description and suburb. It is not required to show the subtotals or group totals or grand total

Write your answer here:

Solution a

Solution b:

```
SELECT T.TypeName, L.Suburb,

Sum(F.TotalPrice)/Sum(F.NumberOfProperties) as AveragePrice

FROM PropertyFACT F, PropertyTypeDIM T, LocationDIM L

WHERE F.TypeID = T.TypeID

AND F.LocationID = L.LocationID

GROUP BY T.TypeName, L.Suburb;
```

This question is about Top n% and Top k (such as Top 10% and Top 3) in OLAP. The tables are based on the ROBCOR data warehouse case study, which consists of one fact and three dimension tables: charter_fact, time, pilot, and model.

SQL> desc charter_fact;	116	_
Name	Null?	Type
TIME ID		VARCHAR2(6)
MOD CODE		CHAR(10)
EMP_NUM		NUMBER (10)
TOT_CHAR_HOURS		NUMBER
TOT_FUEL		NUMBER
REVENUE		NUMBER
SQL> desc time;		
Name	Null?	Type
TIME_ID		CHAR(6)
TIME_YEAR		CHAR(4)
TIME_MONTH		CHAR(2)
SQL> desc pilot;		
Name	Null?	Type
EMP NUM		NUMBER (10)
PIL LICENSE		CHAR (25)
PIL RATINGS		CHAR (25)
PIL_MED_TYPE		CHAR(1)
PIL_MED_DATE		DATE
PIL_PT135_DATE		DATE
SQL> desc model;		
Name	Null?	Type
MOD_CODE		CHAR (10)
MOD_MANUFACTURER		CHAR (15)
MOD_NAME		CHAR (20)
MOD_SEATS		FLOAT (126)
MOD_CHG_MILE MOD_CRUISE		NUMBER (19,4) FLOAT (126)
MOD_CROISE		FLOAT (126)

Questions:

a. Write the SQL command to display the time periods which had the revenue in the top 10% of the months.

The result should be like this:

TIME_ID	TOTAL	PERCENT_RANK
199503	51144.16	1
199408	49775.51	.975609756
199510	48538.01	.951219512
199409	47647.75	.926829268
199703	45872.32	.902439024

b. Write the SQL command to display the mod_code and mod_name of the two airplanes that have the largest total fuel used.

The result should look like this:

MOD_CODE	MOD_NAME	TOTAL	MYRANK
PA31-350	Navajo Chieftain	83790.5	1
C-90A	KingAir	61708.4	2

Write your answer here:

```
a:
SELECT dw.time.time_id, Total, percent_rank
FROM (
  SELECT
   time id,
   SUM(revenue) AS Total,
   PERCENT RANK () OVER (ORDER BY SUM(revenue)) AS percent rank
 FROM dw.charter fact
 GROUP BY time id
) t, dw.time
WHERE t.time_id = dw.time.time_id
AND percent_rank >= 0.9
ORDER BY percent rank DESC;
b:
SELECT *
FROM (
     SELECT m.mod code, m.mod name,
       SUM(f. tot fuel) AS total,
        RANK() OVER (ORDER BY SUM(f. tot fuel) DESC) AS myrank
     FROM dw.charter_fact f, dw.model m
     WHERE f.mod code = m.mod code
     GROUP BY m.mod code, m.mod name
WHERE myrank <=2;
```

THE END