Neural gas algorithm

Algorithm:

- 1. Initialize:
- inputs, $\{X\}_1^N = \{x_1, x_2, ... x_N\}$,
- neurons, $\{U\}_1^K = \{u_1, u_2, ... u_K\}$, K < N // "U" stands for "unit"
- topology (connection matrix) $A=[\mathbf{0}]_{K,K}$

where $x_i, u_i \in \mathbb{R}^n$

- 2. Set maximum age for connections, au
- 3. Loop until maximum number of iterations M: // loop through inputs
- i. Randomly select an input x_i
- ii. Loop over neurons $\{U\}_1^K$:
 - Let current neuron be u_c
 - Find $|B_c|$ where $B_c = \{u_b \mid norm(u_b, x_i) < norm(u_c, x_i)\}$
- iii. Sort neurons by distance to x_i , $\{U_{sorted}\}=\{u_{i_0},u_{i_1}...u_{i_{K-1}}\}$
- iv. Update/replace all neurons with,

$$u_c = u_c + \epsilon.e^{-|B_c|/\lambda}(x_i - u_c)$$

for $c=\{1,2,...K\}$.

v. Make connections between closest neurons (u_{i_0},u_{i_1}) if connection doesn't exist already else increase connection age, $C_{u_{i_0},u_{i_1}}=C_{u_{i_0},u_{i_1}}+1$

vi. if
$$C_{u_{i_0},u_{i_1}} > au$$
 , set $C_{u_{i_0},u_{i_1}} = 0$

In the original paper, the parameters λ,ϵ, au were defined by a function of time (iteration),

$$g(t)=g_{i}rac{g_{f}}{g_{i}}^{rac{t}{t_{max}}}$$
 where,

$$\lambda_i = 30, \lambda_f = 0.01, \epsilon_i = 0.3, \epsilon_f = 0.05, au_i = 20, au_f = 200, t_{max} = 40000$$

Written with StackEdit.