RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU) III Semester B. E. Examinations Nov/Dec-19

Common to CS / IS

DISCRETE MATHEMATICAL STRUCTURES

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A, which is compulsory. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1	1.1	Find the number of 5 digit positive integers such that each of them	
		every digit is greater than the digit to the right.	01
	1.2	Determine the coefficient of x^{12} in the expansion of $x^3(1-2x)^{10}$.	02
	1.3	What is the contrapositive of the conditional statement: "The home	
		team misses whenever it is drizzling"?	01
	1.4	Let S be a set of n elements. What is the number of ordered pair in the	
		largest and the smallest equivalence relations on S?	02
	1.5	For the equivalence relation	
		$R = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,3), (3,3), (4,4)\}$ defined on the set	
		$A = \{1,2,3,4\}$, determine the partition induced.	02
	1.6	If the function f is defined by $f(x) = x^2 + 1$ on a set $A = \{-2, -1, 0, 1, 2\}$,	
		find the range of f .	02
	1.7	Find the recurrence relation with initial condition for the sequence	
		and find the general term of the sequence.	
		2,10,50,250	02
	1.8	If $T(x)$ denotes x is a trigonometric function, $P(x)$ denotes x is a	
		periodic function and $C(x)$ denotes x is a continuous function then	
		write the given statement in symbolic form.	
		"It is not the case that some trigonometric functions are not periodic".	01
	1.9	Show that $(Z_6, +)$ is an abelian group	02
	1.10	Obtain a DFA to accept string of $a's \& b's$ having exactly one a .	02
	1.11	Check the validity of the following statement:	
		If I drive to work, then I will be tired.	
		I do not drive to work	
			0.1
	1 10	∴ I will not arrive tired	01
	1.12	Define the extended transition function for $\varepsilon - NFA$	01
	1.13	The word $c = 1010110$ is transmitted through a binary symmetric	0.1
		channel. If $e = 0101101$ is the error pattern, find the word 'r' received.	01

PART-B

2	a b c d	Find and solve a recurrence relation for the number of binary sequence of length $n \ge 1$ that have no consecutive $0's$. Find the number of integer solutions of $x_1 + x_2 + x_3 + x_4 + x_5 = 20$ where $x_1 \ge 3, x_2 \ge 2, x_3 \ge 4, x_4 \ge 6, x_5 \ge 0$. By Mathematical Induction, prove that $n! \ge 2^{n-1}$ for all integers $n \ge 1$. A string of length n is a sequence of form $x_1x_2x_3 \dots x_n$, where each x_i is a digit. The sum $x_1 + x_2 + x_3 \dots + x_n$ is called the weight of the string. If each x_i can be one of 0,1 or 2, Find the number of string of length $n = 10$. Of these, find the number of strings whose weight is an even number.	04 04 04
2		Erroming whather the common demonstries	
3	a	Examine whether the compound proposition	0.4
	1	$[(p \lor q) \to r] \leftrightarrow [\sim r \to \sim (p \lor q)] \text{ is a tautology.}$	04
	b	Verify whether the following argument is valid or not:	
		$\forall x[p(x) \forall q(x)]$	
		$\forall x [(\neg p(x) \land q(x)) \rightarrow r(x)]$	
		$: [(\neg r(x) \to p(x)] $	06
	c	Simplify the following compound proposition using laws of logic:	
		i) $(p \lor q) \land [\sim \{(\sim p) \lor q\}]$	
		ii) $\sim [\sim \{(p \lor q) \land r\} \lor \sim q]$	06
		OR	
4	0	Drove the fellowing legical equivelence without using touth tables.	
4	а	Prove the following logical equivalence without using truth tables: i) $[(p \lor q) \land (p \lor \sim q)] \lor q \leftrightarrow p \lor q$	
		,	06
	L.	ii) $(p \to q) \land [\sim q \land (r \lor \sim q)] \leftrightarrow \sim (q \lor p)$	06
	b	Test the validity of the following argument:	04
	•	$(\sim p \lor q) \to r, r \to (s \lor t), \sim s \land \sim u, \sim u \to \sim t /-p$	04
	С	Find the following:	
		i) Negations of the statement	
		$[\exists x, [p(x) \lor q(x)]$ $\vdots $ Negations of the statement	
		ii) Negations of the statement	
		For all integers n , if n is not divisible by 2, then n is odd.	
		iii) Proposition in symbolic form	06
-		Every integer is either even or odd	00
5	a	Let $f: R \to R$ be defined by	
	u		
		$f(x) = \begin{cases} 3x - 1, & x > 0 \\ -3x + 1 & x \le 0 \end{cases}$	
		What are $f^1([-5,5])$ and $f^1([-6,5])$?	04
	b	For the poset (A,R) represented for the following Hasse diagram	
		shown in fig 5b, find:	
		i) $GLb\{b,c\},$	
		ii) $GLB\{b,w\},$	
		iii) $LUB\{c,e\}$ and	
		iv) $LUB\{a, v\}$.	

	c d	Fig 5b For a fixed integer $n > 1$, prove that the relation "congruent modulo n " is an equivalence relation on the set of all integers Z . A function $f: A \to B$ is invertible if and only if it is one to one and onto. OR	04 04 04
6	a b c d	Let $A = B = C$, and $f: A \to B$ and $g: B \to C$ be defined by $f(a) = 2a + 1$ and $g(b) = b/3$, $\forall a \in A, \forall b \in B$. Compute gof and show that gof is invertible. What is $(g \circ f) - 1$? Let $A = \{1,2,3,4,5,6\}$ and $B = \{6,7,8,9,10\}$. If a function $f: A \to B$ is defined by $f = \{(1,7), (2,7), (3,8), (4,6), (5,9), (6,9)\}$. If $B_1 = \{7,8\}$ and $B_2 = \{8,9,10\}$, then find $f^{-1}(B_1)$ and $f^{-1}(B_2)$. Consider the sets $A = \{1,2,3,4\}$ and A, C are a relation on A defined by $A = \{(1,2), (1,3), (2,4), (4,4)\}$ and $A = \{(1,1), (1,2), (1,3), (1,4), (2,3), (2,4)\}$. Find $A \circ S, S \circ A, A \circ S$ and write down their matrices. On the set $A = \{1,2,3,4\}$ and $A \in A$ is defined by $A \in A$ if and only if $A \circ S$ is defined by this relation. Determine the partition induced by this relation.	04 04 04 04
7	a b	Convert the following NFA to DFA a,b a,b a,b a,b a,b a,b a,b a,	08
8	а	The encoding function $E: \mathbb{Z}_2^2 \to \mathbb{Z}_2^5$ is given by the generator matrix. $G = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$ i) Determine all code words. What can we say about the error-detection capability of this code? What about its error-correcting capacity? ii) Find the associated parity-check matrix H . iii) Use H to decode the received words: 11101,11011.	06

b	If $f: G \to H$ and $g: H \to K$ are homomorphism, prove that	
	$g \circ f: G \to K$ defined by $(g \circ f)(x) = g\{f(x)\}$ is an homomorphism.	05
С	Prove that a group G is abelien if and only if $(ab)^{-1} = a^{-1}b^{-1}$ for all	
	$a,b \in G$	05