Explorando o mundo dos dados

Análise e Visualização com R

Semana de Ensino,

Pesquisa, Extensão e Inovação da UFSC

01 - Dowload

02 - Introdução

03 - Mensuração

04 - Previsão

UFSC)

Sepex 2024

Redes Sociais

Youtube: @Lucasamorim0

Twitter: @amorimdf

LinkedIn: Lucas de Carvalho de Amorim

GitHub: @lucasamorimcp

SEPEX 2024: https://sepex.ufsc.br/ Inscrições minicurso Novembro/2024: https://sgsepex.ufsc.br/

AGENDAS ABERTAS PARA CONSULTORIA ACADÊMICA E DE PESQUISA

Lucas de Carvalho de Amorim

UFSC

Sepex 2024

Dowload R

R é uma poderosa linguagem de programação que é também gratuita e de código aberto.

Você pode fazer o download através do site R Project:

https://www.r-project.org/

Dowload R Studio

RStudio é uma interface conveniente para o R. É também gratuita para download:

https://posit.co/downloads/

01 - Introdução

Introdução ao R

said Hal Varian, chief economist at Google. "And you have a lot of prepackaged stuff that's already available, so

you're standing on the shoulders of giants"...

UFSC

SEPEX 2024

OPERAÇÕES ARITMÉTICAS

Podemos digitar, por exemplo, 5+3 e, em seguida, pressionar Enter no teclado.

Começamos utilizando o R **como uma calculadora** com operadores aritméticos padrão.

OPERAÇÕES ARITMÉTICAS

O R ignora os espaços, de modo que 5 + 3 retornará o mesmo resultado.

Começamos utilizando o R **como uma calculadora** com operadores aritméticos padrão.

OPERAÇÕES ARITMÉTICAS

A função **sqrt**() recebe um número não negativo e retorna sua raiz quadrada.

Começamos utilizando o R **como uma calculadora** com operadores aritméticos padrão.

OBJETOS

O R pode armazenar informações como um objeto com um nome à nossa escolha. Depois de criar um objeto, basta nos referirmos a ele pelo nome.

Ele não pode começar com um número (mas pode conter números). Os nomes de objetos também não devem conter espaços.

Devemos evitar caracteres especiais, como % e \$, que possuem significados específicos no R. Os nomes de objetos são sensíveis a maiúsculas e minúsculas.

OBJETOS

result <-5+3

result

print(result)

*Observe que, se atribuirmos um valor diferente ao mesmo nome de objeto, <u>o valor do objeto</u> <u>será alterado</u>

OBJETOS

Lucas <- "professor"

Lucas

Podemos armazenar uma sequência de caracteres usando aspas.

OBJETOS

Result <- "5"

Result

O R trata números como caracteres quando pedimos para fazê-lo. No entanto, **operações** aritméticas como adição e subtração não podem ser usadas para cadeias de caracteres.

OBJETOS

class(result)

class(Result)

class(sqrt)

O R reconhece diferentes tipos de objetos ao atribuir cada objeto a uma classe. Separar objetos em classes permite que o R execute operações apropriadas dependendo da classe dos objetos.

VETORES

Um vetor ou um array unidimensional simplesmente representa uma coleção de informações armazenadas em uma ordem específica. Usamos a função c(), que significa "concatenate", para inserir um vetor de dados contendo múltiplos valores, com vírgulas separando os diferentes elementos do vetor que estamos criando.

VETORES

world.pop <- c(2525779, 3026003, 3691173, 4449049, 5320817, 6127700, 6916183)

world.pop

Year	World population (thousands)
1950	2,525,779
1960	3,026,003
1970	3,691,173
1980	4,449,049
1990	5,320,817
2000	6,127,700
2010	6,916,183

Source: United Nations, Department of Economic and Social Affairs, Population Division (2013). World Population Prospects: The 2012 Revision, DVD Edition.

VETORES

```
pop.first <- c(2525779, 3026003, 3691173)
pop.second <- c(4449049, 5320817, 6127700, 6916183)
pop.all <- c(pop.first, pop.second)
pop.all
```

A função c() pode ser usada para combinar múltiplos vetores.

Year	World population (thousands)
1950	2,525,779
1960	3,026,003
1970	3,691,173
1980	4,449,049
1990	5,320,817
2000	6,127,700
2010	6,916,183

Source: United Nations, Department of Economic and Social Affairs, Population Division (2013). World Population Prospects: The 2012 Revision, DVD Edition.

VETORES

pop.million <- world.pop / 1000 pop.million

pop.rate <- world.pop / world.pop[1]
pop.rate</pre>

Uma vez que cada elemento deste vetor é um valor numérico, podemos aplicar operações aritméticas a ele. As operações serão repetidas para cada elemento do vetor.

Year	World population (thousands)
1950	2,525,779
1960	3,026,003
1970	3,691,173
1980	4,449,049
1990	5,320,817
2000	6,127,700
2010	6,916,183

Source: United Nations, Department of Economic and Social Affairs, Population Division (2013). World Population Prospects: The 2012 Revision, DVD Edition.

VETORES

pop.rate[c(2,3)] <- c(19.8, 46.1) pop.rate

Também podemos substituir os valores associados a índices específicos usando o operador de atribuição habitual (<-).

Year	World population (thousands)
1950	2,525,779
1960	3,026,003
1970	3,691,173
1980	4,449,049
1990	5,320,817
2000	6,127,700
2010	6,916,183

Source: United Nations, Department of Economic and Social Affairs, Population Division (2013). World Population Prospects: The 2012 Revision, DVD Edition.

FUNÇÕES

Funções são objetos importantes no R e realizam uma ampla variedade de tarefas. Uma função geralmente recebe múltiplos objetos de entrada e retorna um objeto de saída. Já vimos várias funções: sqrt(), print(), class() e c(). No R, uma função geralmente é executada como funcname (input), onde funcname é o nome da função e input é o objeto de entrada. Em programação (e em matemática), chamamos esses inputs de **argumentos**. Por exemplo, na sintaxe sqrt(4), sqrt é o nome da função e 4 é o argumento ou o objeto de entrada.

FUNÇÕES

length(world.pop)

min(world.pop)

max(world.pop)

range(world.pop)

mean(world.pop)

sum(world.pop) / length(world.pop)

Year	World population (thousands)
1950	2,525,779
1960	3,026,003
1970	3,691,173
1980	4,449,049
1990	5,320,817
2000	6,127,700
2010	6,916,183

Source: United Nations, Department of Economic and Social Affairs, Population Division (2013). World Population Prospects: The 2012 Revision, DVD Edition.

FUNÇÕES

```
year <- seq(from = 1950, to = 2010, by = 10)
year
```

seq(from = 2010, to = 1950, by = -10)

Podemos criar um objeto para a variável ano da tabela.

Year	World population (thousands)
1950	2,525,779
1960	3,026,003
1970	3,691,173
1980	4,449,049
1990	5,320,817
2000	6,127,700
2010	6,916,183

Source: United Nations, Department of Economic and Social Affairs, Population Division (2013). World Population Prospects: The 2012 Revision, DVD Edition.

FUNÇÕES

names(world.pop)

names(world.pop) <- year names(world.pop)

A função names() pode acessar e atribuir nomes aos elementos de um vetor. Os nomes dos elementos não fazem parte dos dados em si, mas são atributos úteis do objeto R.

Year	World population (thousands)
1950	2,525,779
1960	3,026,003
1970	3,691,173
1980	4,449,049
1990	5,320,817
2000	6,127,700
2010	6,916,183

Source: United Nations, Department of Economic and Social Affairs, Population Division (2013). World Population Prospects: The 2012 Revision, DVD Edition.

FUNÇÕES

Em muitas situações, queremos criar nossas próprias funções e usá-las repetidamente. Isso nos permite evitar a duplicação de conjuntos de códigos idênticos (ou quase idênticos), tornando nosso código mais eficiente e facilmente interpretável. A função function() pode criar uma nova função. A sintaxe tem a seguinte forma.

```
myfunction <- function(input1, input2, ..., inputN) {
    DEFINE "output" USING INPUTS
    return(output)
}</pre>
```


FUNÇÕES

```
my.summary <- function(x){
s.out <- sum(x)
l.out <- length(x)</pre>
m.out <- s.out / l.out
out <- c(s.out, l.out, m.out)
names(out) <- c("sum", "length", "mean")
return(out)
z <- 1:10
my.summary(z)
my.summary(world.pop)
```

Criando uma função para calcular um resumo de um vetor numérico.

ARQUIVOS DE DADOS

Até agora, os únicos dados que usamos foram inseridos manualmente no R. Mas, **na maioria das vezes, carregaremos dados de um arquivo externo.**

ARQUIVOS DE DADOS

setwd("~/Curso_R_2024") getwd()

É possível alterar o diretório de trabalho usando a função setwd() especificando o caminho completo para a pasta de nossa escolha como uma string de caracteres.

ARQUIVOS DE DADOS

UNpop <- read.csv("UNpop.csv") class(UNpop)

No RStudio, podemos ler ou carregar arquivos de dados.

ARQUIVOS DE DADOS

names(UNpop)
nrow(UNpop)
ncol(UNpop)
dim(UNpop)
summary(UNpop)

Um objeto data frame é uma coleção de vetores, mas podemos pensá-lo como uma planilha. Muitas vezes é útil inspecionar visualmente os dados.

ARQUIVOS DE DADOS

UNpop\$world.pop

O operador \$ é uma forma de acessar uma variável individual dentro de um objeto data frame. Ele retorna um vetor contendo a variável especificada.

ARQUIVOS DE DADOS

UNpop[, "world.pop"]

UNpop[c(1, 2, 3),]

UNpop[1:3, "year"]

Outra forma de recuperar variáveis individuais é usar indexação dentro de colchetes [], como feito para um vetor.

ARQUIVOS DE DADOS

UNpop\$world.pop[seq(from = 1, to = nrow(UNpop), by = 2)]

Ao extrair observações específicas de uma variável em um objeto data frame, fornecemos apenas um índice, uma vez que a variável é um vetor.

ARQUIVOS DE DADOS

UNpop\$world.pop[seq(from = 1, to = nrow(UNpop), by = 2)]

Ao extrair observações específicas de uma variável em um objeto data frame, fornecemos apenas um índice, uma vez que a variável é um vetor.

ARQUIVOS DE DADOS

world.pop <- c(UNpop\$world.pop, NA) world.pop mean(world.pop)

mean(world.pop, na.rm = TRUE)

No R, valores ausentes são representados por NA. Quando aplicadas a um objeto com valores ausentes, as funções podem ou não remover automaticamente esses valores antes de realizar operações.

SALVANDO OBJETOS

save.image("~/Curso_R_2024/Aula1.RData")

No RStudio, podemos salvar o ambiente de trabalho clicando no ícone de Salvar na janela Environment no canto superior direito. Como alternativa, na barra de navegação, clique em Session > Save Workspace As... e escolha um local para salvar o arquivo.

Certifique-se de usar a extensão de arquivo .RData. Para carregar o mesmo ambiente de trabalho na próxima vez que iniciarmos o RStudio, clique no ícone Abrir Arquivo na janela Environment no canto superior direito, selecione Session > Load Workspace... ou use a função load() como antes.

SALVANDO OBJETOS

save(UNpop, file = "UNpop.RData")

Às vezes, desejamos salvar apenas um objeto específico (por exemplo, um objeto data frame) em vez de todo o ambiente de trabalho.

01 - Introdução Introdução ao R

SALVANDO OBJETOS

write.csv(UNpop, file = "UNpop2.csv")

Em outros casos, podemos querer salvar um objeto data frame como um arquivo CSV em vez de um arquivo RData.

01 - Introdução Introdução ao R

SALVANDO OBJETOS

load("UNpop.RData")

Para acessar os objetos salvos no arquivo RData, basta usar a função load().

01 - Introdução

Introdução ao R

said Hal Varian, chief economist at Google. "And you have a lot of prepackaged stuff that's already available, so

you're standing on the shoulders of giants"...

UFSC

SEPEX 2024

01 - Introdução Introdução ao R

PACOTES

Uma das forças do R é a existência de uma grande comunidade de usuários que contribuem com diversas funcionalidades na forma de pacotes R. Esses pacotes estão disponíveis através da Comprehensive R Archive Network (CRAN; http://cran.r-project.org).

01 - Introdução Introdução ao R

PACOTES

install.packages("foreign")

library("foreign")

read.dta("WVS_Wave_7_Brazil_Stata_v 5.0.dta")

write.dta(UNpop, file = "UNpop.dta")

O pacote foreign é útil para lidar com arquivos de outros softwares estatísticos.

O que é econometria?

Econometria é uma área do conhecimento que utiliza métodos estatísticos e matemáticos para analisar dados e testar teorias. Ela serve para <u>medir e entender</u> relações entre variáveis, como o impacto de políticas públicas, o comportamento dos consumidores, e o desempenho do mercado. Basicamente, a econometria ajuda a transformar observações do mundo real em informações úteis para <u>prever</u> tendências e tomar decisões informadas.

UFSC

SEPEX 2024

Questões de mensuração frequentemente ocupam a interseção entre análises teóricas e empíricas no estudo do comportamento humano. Introduzimos um método básico de agrupamento, que permite aos pesquisadores conduzir uma análise exploratória dos dados, descobrindo padrões interessantes. Também aprendemos a <u>plotar dados</u> de diversas maneiras e a <u>calcular</u> estatísticas descritivas relevantes no

A mensuração desempenha um papel central na pesquisa em ciências sociais.

UFSC

SEPEX 2024

Explaining Support for Combatants during Wartime: A Survey Experiment in Afghanistan

Publication Year: 2013

Publisher: American Political Science Review

Author: Graeme Blair, Jason Lyall, Kosuke Imai

↓ Download ②

UFSC

SEPEX 2024

Como as atitudes de civis em relação aos combatentes são afetadas pela vitimização em tempos de guerra? Esses efeitos dependem de qual combatente infligiu o dano?

summary(data\$age)

summary(afghan\$educ.years)

summary(afghan\$employed)

table(afghan\$income)

Resumindo as características dos entrevistados em termos de idade, anos de escolaridade, emprego e renda mensal em afeganes (a moeda local).

prop.table(table(ISAF =
 afghan\$violent.exp.ISAF,
 Taliban = afghan\$violent.exp.taliban))

"No último ano, você ou alguém de sua família sofreu algum dano devido às ações das Forças Estrangeiras / do Talibã?". Os entrevistadores explicaram aos entrevistados que a palavra "dano" se refere tanto a lesões físicas quanto a danos materiais.

DADOS AUSENTES

head(afghan\$income, n = 10)

head(is.na(afghan\$income), n = 10)

Em muitas pesquisas, os pesquisadores podem se deparar com a não resposta, seja porque os entrevistados se recusam a responder algumas perguntas ou simplesmente não sabem a resposta. No R, dados ausentes são codificados como NA.

DADOS AUSENTES

afghan.sub <- na.omit(afghan) nrow(afghan.sub) length(na.omit(afghan\$income))

A função na.omit() oferece uma maneira simples de remover todas as observações com pelo menos um valor ausente de um conjunto de dados.

VISUALIZAÇÃO DE DISTRIBUIÇÃO UNIVARIADA

Até agora, estivemos resumindo a distribuição de cada variável em um conjunto de dados usando **estatísticas descritivas**, como a média, a mediana e os quantis. No entanto, muitas vezes **é útil visualizar a própria distribuição**.

VISUALIZAÇÃO DE DISTRIBUIÇÃO UNIVARIADA: BAR PLOT

```
ISAF.ptable <- prop.table(table(ISAF = afghan$violent.exp.ISAF, exclude = NULL))
```

```
barplot(ISAF.ptable,
names.arg = c("No harm", "Harm",
"Nonresponse"),
main = "Civilian victimization by the ISAF",
xlab = "Response category",
ylab = "Proportion of the respondents",
ylim = c(0, 0.7))
```


VISUALIZAÇÃO DE DISTRIBUIÇÃO UNIVARIADA: HISTOGRAM

```
ISAF.ptable <- prop.table(table(ISAF = afghan$violent.exp.ISAF, exclude = NULL))
```

```
barplot(ISAF.ptable,
names.arg = c("No harm", "Harm",
"Nonresponse"),
main = "Civilian victimization by the ISAF",
xlab = "Response category",
ylab = "Proportion of the respondents",
ylim = c(0, 0.7))
```


VISUALIZAÇÃO DE DISTRIBUIÇÃO UNIVARIADA: HISTOGRAM

```
hist(afghan$educ.years, freq = FALSE,
breaks = seq(from = -0.5, to = 18.5, by =
1),
xlab = "Years of education",
main = "Distribution of respondent's
education")
text(x = 3, y = 0.5, "median")
abline(v = median(afghan$educ.years))
```


VISUALIZAÇÃO DE DISTRIBUIÇÃO UNIVARIADA: BOXPLOT

boxplot(afghan\$age, main = "Distribution of age", ylab = "Age", ylim = c(10, 80))

boxplot(educ.years ~ province.id, data = afghan, main = "Education by province", ylab = "Years of education")

tapply(afghan\$violent.exp.taliban, afghan\$province.id, mean, na.rm = TRUE)

VISUALIZAÇÃO DE DISTRIBUIÇÃO UNIVARIADA: BOXPLOT (TRANSFORMAÇÃO LOG NATURAL

boxplot(population ~ village.surveyed, data = villages.balance, ylab = "log population", names = c("Nonsampled", "Sampled"))

RELAÇÕES BIVARIADAS

VOTEVIEW PROJECT - UCLA

O Voteview permite que os usuários vejam todos os registros de votos de cada sessão do Congresso na história americana em um mapa dos Estados Unidos e em um mapa ideológico liberalconservador, incluindo informações sobre as posições ideológicas dos senadores e representantes que votaram.

RELAÇÕES BIVARIADAS: SCATTER PLOT

```
rep <- subset(congress, subset = (party_code == 200))

dem <- congress[congress$party_code == 100, ]

rep80 <- subset(rep, subset = (congress == 80))

dem80 <- subset(dem, subset = (congress == 80))

rep112 <- subset(rep, subset = (congress == 112))

dem112 <- subset(dem, subset = (congress == 112))
```

xlab <- "Economic liberalism/conservatism" ylab <- "Racial liberalism/conservatism" lim <- c(-1.5, 1.5)

RELAÇÕES BIVARIADAS: SCATTER PLOT

```
plot(dem80$nominate_dim1,
dem80$nominate_dim2, pch = 16, col =
"blue",
  xlim = lim, ylim = lim, xlab = xlab, ylab =
ylab,
  main = "80th Congress")
points(rep80$nominate_dim1,
rep80$nominate_dim2, pch = 17, col =
"red")
text(-0.75, 1, "Democrats")
text(1, -1, "Republicans")
```


RELAÇÕES BIVARIADAS: SCATTER PLOT

dem.median <- tapply(dem\$dwnom1, dem\$congress, median) rep.median <- tapply(rep\$dwnom1, rep\$congress, median)

Calculando a mediana de cada partido em relação à ideologia no campo econômico em cada legislatura.

RELAÇÕES BIVARIADAS: SCATTER PLOT

```
plot(names(dem.median), dem.median, col = "blue", type = "l", xlim = c(80, 118), ylim = c(-1, 1), xlab = "Congress", ylab = "DW-NOMINATE score (first dimension)") lines(names(rep.median), rep.median, col = "red")
```

text(110, -0.6, "Democratic\n Party") text(110, 0.85, "Republican\n Party")

RELAÇÕES BIVARIADAS: CORRELAÇÃO

A correlação (coeficiente de correlação) mede o grau de associação entre duas variáveis. Ela é definida como

correlation of
$$x$$
 and $y = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{S_x} \times \frac{y_i - \bar{y}}{S_y} \right)$ or
$$\frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{S_x} \times \frac{y_i - \bar{y}}{S_y} \right),$$

RELAÇÕES BIVARIADAS: CORRELAÇÃO

```
plot(seq(from = 1855.5, to = 2023.5, by = 2),
    rep.median - dem.median, xlab = "Year",
    ylab = "Republican median - Democratic
median",
    main = "Political polarization")
```

Medindo a polarização política no congresso norte-americano

RELAÇÕES BIVARIADAS: CORRELAÇÃO

```
USGini$year <-
as.numeric(substr(USGini$DATE, 1, 4))
USGini$gini <-
as.numeric(USGini$SIPOVGINIUSA)
USGini <- USGini[,-(1:2)]
plot(USGini$year,
  USGini$gini, xlab = "Year",
  ylab = "Gini coefficient",
  main = "Income Inequality")
```

Medindo a desigualdade de renda (coeficiente de Gini)

RELAÇÕES BIVARIADAS: CORRELAÇÃO

```
cor(USGini$gini[seq(from = 1, to = nrow(USGini), by = 2)],
(rep.median - dem.median)[seq(from = 55, to = 84, by = 1)])
```

Medindo a correlação entre polarização política e desigualdade econômica

RELAÇÕES BIVARIADAS: Q-Q Plot

```
hist(dem112$nominate_dim2, freq = FALSE, main =
"Democrats",
  xlim = c(-1.5, 1.5), ylim = c(0, 1.75),
  xlab = "Racial liberalism/conservatism dimension")
hist(rep112$nominate_dim2, freq = FALSE, main =
"Republicans",
  x \lim = c(-1.5, 1.5), y \lim = c(0, 1.75),
  xlab = "Racial liberalism/conservatism dimension")
applot(dem112$nominate_dim2,
rep112$nominate_dim2, xlab = "Democrats",
   ylab = "Republicans", xlim = c(-1.5, 1.5), ylim = c(-1.5, 1.5)
1.5),
   main = "Racial liberalism/conservatism dimension")
abline(0, 1)
```


Embora muitos cientistas sociais vejam a inferência causal como o objetivo final da investigação acadêmica, <u>a previsão muitas vezes é</u> o primeiro passo para entender as complexas relações causais que estão por trás do comportamento humano. De fato, uma inferência causal válida requer a previsão precisa dos resultados contrafactuais.

A previsão é outro objetivo importante da análise de dados na pesquisa social quantitativa.

Regressão Linear

O modelo de regressão linear é definido como

$$Y = \alpha + \beta X + \epsilon$$

onde Y é a variável de resultado (ou resposta), X é a variável preditora ou independente (ou explicativa), é o termo de erro (ou distúrbio), e (α , β) são os coeficientes. O parâmetro de inclinação β representa o aumento no resultado médio associado a um aumento unitário na variável preditora. Uma vez que as estimativas dos coeficientes (α , $^{\hat{}}$) são obtidas a partir dos dados, podemos prever o resultado, usando um valor dado da variável preditora X = x, como Y = α ^ + β ^ x. A diferença entre o resultado observado e esse valor ajustado ou previsto Y é chamada de resíduo e é denotada por \hat{e} = Y - ^Y

UFSC

SEPEX 2024

UFSC

SEPEX 2024

As inferências de competência baseadas exclusivamente na aparência facial previram os resultados das eleições congressionais dos EUA melhor do que o acaso e também estavam linearmente relacionadas à margem de vitória.

REGRESSÃO LINEAR SIMPLES

```
face$d.share <- face$d.votes / (face$d.votes +
face$r.votes)
face$r.share <- face$r.votes / (face$d.votes +
face$r.votes)
face$diff.share <- face$d.share - face$r.share
plot(face$d.comp, face$diff.share, pch = 16,
  col = ifelse(face$w.party == "R", "red", "blue"),
  xlim = c(0, 1), ylim = c(-1, 1),
  xlab = "Competence scores for Democrats",
  ylab = "Democratic margin in vote share",
  main = "Facial competence and vote share")
cor(face$d.comp, face$diff.share)
fit <- Im(diff.share ~ d.comp, data = face)
summary(fit)
```

