

Table 7.1 **Bootloader Status** 

| Register value | Status                  |  |  |  |  |  |
|----------------|-------------------------|--|--|--|--|--|
| 0xA5           | Bootloader is available |  |  |  |  |  |
| 0xEE           | No bootloader           |  |  |  |  |  |

<sup>\*</sup>Note the bootloader is available on the standard IQS5xx-B000 firmware; this could possibly unavailable on custom firmware versions.

### 7.9 Version Information

#### 7.9.1 Product Number

The different IQS5xx devices can be identified by their relevant product numbers.

**Table 7.2 Product Number** 

| Product Number (decimal) | Device |
|--------------------------|--------|
| 40                       | IQS550 |
| 58                       | IQS572 |
| 52                       | IQS525 |

### 7.9.2 Project Number

The project number for the generic B000 project is 15 (decimal) for all devices.

#### 7.9.3 Major and Minor Versions

These will vary as the B000 is updated, this datasheet relates to the version as indicated at the bottom of the Overview Section 1.

# 7.10 Unique ID

A 12-byte unique ID can be read from memory map address 0xF000 - 0xF00B. This number gives each individual IC a unique identifier.

# 7.11 Switch Input

The SW IN (switch input) pin, when enabled (SW INPUT), will display the state of the input pin to the master controller (SWITCH\_STATE). This state is updated before each I<sup>2</sup>C session.

LOW, an internal pull-up resistor (typical value section. of  $40k\Omega$ ) is connected to the SW IN pin.

A change in the state of the SW IN can also trigger an event, see Section 8.8.1. This input can be used as an additional switch or proximity sensor, and has the ability to wake the IQS5xx from the extreme (<1uA) low power suspend state.

#### I<sup>2</sup>C 8

The IQS5xx communicates via the standard I<sup>2</sup>C communication protocol.

Clock stretching can occur, thus monitoring the availability of the SCL is required, as per standard I<sup>2</sup>C protocol.

# 8.1 Data Ready (RDY)

An additional RDY I/O indicates (active HIGH) when the communication window is available with new data for optimal response. Polling however be used. but is recommended. RDY should be connected to interrupt-on-change input for implementation and optimal response time.

# 8.2 Slave Address

The default 7-bit device address is '1110100'. The device address can be modified during programming. The full address byte will thus be 0xE9 (read) or 0xE8 (write).

# 8.3 16-bit Addressing

The I<sup>2</sup>C employs a 16-bit address to access all individual registers in the memory map.

# 8.4 I<sup>2</sup>C Read

The master can read from the device at the current address if the address is already set up, or when reading from the default address.

Current Address Read



**Current Address Read** Figure 8.1

The master can perform a random read by specifying the address. A WRITE is The input can be configured as active LOW or performed to set up the address, and a active HIGH (SW\_INPUT\_SELECT). For active repeated start is used to initiate the READ



Figure 8.2 Random Read

#### 8.4.1 Default Read Address

When a new communication window begins, the configurable default read address is used if a current address read is performed (no address is specified). If an application will always read from a specific register, the IQS5xx can be configured to point to the required register, negating the need to specify the address at each new communication window, allowing for faster data reading.

### 8.5 I<sup>2</sup>C Write

The master uses a *Data Write* to write settings to the device. A 16-bit data address is always required, followed by the relevant data bytes to write to the device.



Figure 8.3 **Data Write** 

# 8.6 I<sup>2</sup>C Timeout

If the communication window is not serviced • within the FC timeout period (in milliseconds), the session is ended (RDY goes LOW), and processing continues as normal. This allows the system to continue and keep reference values up to date even if the master is not responsive.

# 8.7 End of Communication **Session / Window**

Unlike the previous A000 implementation, an  $I^2C$ **STOP** will terminate not communication window. When all required I<sup>2</sup>C transactions have been completed, the communication session must be terminated manually. This is achieved by sending the End Communication Window command, by 8.8.2 Force Communication writing a single byte (any data) to the address 0xEEEE, followed by a STOP. This will end

the communication window, RDY will go low and the IQS5xx will continue with a new sensing and processing cycle.

#### 8.8 Event Mode Communication

The device can be set up to bypass the communication window when no activity is sensed (EVENT MODE). This is usually enabled since the master does not want to be interrupted unnecessarily during every cycle if no activity occurred. The communication will resume (RDY will indicate available data) if an enabled event occurs. It is recommended that the RDY be placed on an interrupt-on-pinchange input on the master.

## **8.8.1 Events**

Numerous events can be individually enabled to trigger communication, they are:

- Trackpad events (TP EVENT): triggered if there is a change in X/Y value, or if a finger is added or removed from the trackpad
- Proximity events (PROX EVENT): event only triggers if a channel has a change in a proximity state
  - Touch events (TOUCH EVENT): event only triggers if a channel has a change in a touch state
- Snap (SNAP\_EVENT): event only triggers if a channel has a change in a snap state
- Re-ATI (*REATI EVENT*): one cycle is given indicate the Re-ATI occurred (REATI OCCURRED).
- Proximity on ALP (ALP PROX EVENT): event given on state change
- Switch input (SW\_INPUT\_EVENT): event triggers if there is a change in the input pin state.

The proximity/touch/snap events are therefore mostly aimed at channels that are used for traditional buttons, where you want to know only when a status is changed.

The master can initiate communication with the IQS5xx, even while RDY is LOW.





time to complete the I<sup>2</sup>C transaction. The and ACK the transaction. master firmware will not be affected (as long as clock stretching is correctly handled).

IQS5xx. and Event Mode is active.

**NOTE:** If the IQS5xx is in a low-power state when the master forces the communication, the first addressing will respond with a NACK. The master must repeat the addressing (wait a minimum of 150us after the I<sup>2</sup>C STOP

IQS5xx will clock stretch until an appropriate before retrying), and the IQS5xx will be ready

Figure 8.4 shows a forced communication transaction. Communication starts with RDY For optimal program flow, it is suggested that = LOW. The IQS5xx is in a low power state RDY is used to sync on new data from the on the first request, and a NACK is sent. After The forced method is only the second request the IQS5xx responds with recommended if the master must perform I<sup>2</sup>C an ACK. The IQS5xx clock stretches until an appropriate time to communicate (to prevent interference with the capacitive measurements). When appropriate, the clock is released and the transaction completes as RDY is not set during a forced communication transaction.



Figure 8.4 **Forced communication** 

# 8.9 Memory Map Registers

The registers available in the memory map, via I<sup>2</sup>C, are provided in this section. memory map starts with a READ-ONLY section, followed by a READ/WRITE section. The read/write permissions are indicated by these are highlighted also in the 'E2', column.

the shading in the 'R' (read) and/or 'W' (write) columns.

Certain registers in the memory map have defaults loaded from non-volatile memory, which can be configured during programming:





# Table 8.1 Direct-Addressable Memory Map

| Address            | Bit7                                   | Bit6                           | Bit5                  | Bit4                   | Bit3          | Bit2                     | Bit1                   | Bit0                 | Details             | R | W | E <sup>2</sup> |
|--------------------|----------------------------------------|--------------------------------|-----------------------|------------------------|---------------|--------------------------|------------------------|----------------------|---------------------|---|---|----------------|
| 0x0000 -<br>0x0001 | Product number (2 bytes)               |                                |                       |                        |               |                          |                        |                      |                     |   |   |                |
| 0x0002 -<br>0x0003 | Project number (2 bytes)               |                                |                       |                        |               |                          |                        |                      | (See <u>7.9</u> )   |   |   |                |
| 0x0004             | Major version                          |                                |                       |                        |               |                          |                        |                      |                     |   |   |                |
| 0x0005             | Minor version                          |                                |                       |                        |               |                          |                        |                      |                     |   |   |                |
| 0x0006             |                                        |                                |                       | Bootload               | ler status    |                          |                        |                      | (See <u>7.8.1</u> ) |   |   |                |
| 0x0007 -<br>0x000A |                                        |                                |                       |                        |               |                          |                        |                      |                     |   |   |                |
| 0x000B             | Max touch column Max touch row         |                                |                       |                        |               |                          |                        |                      | (See <u>3.5.5</u> ) |   |   |                |
| 0x000C             |                                        |                                | Pr                    | evious cy              | cle time [n   | ns]                      |                        |                      | (See <u>4.1.1</u> ) |   |   |                |
| 0x000D             | -                                      | -                              | SWIPE<br>_Y-          | SWIPE<br>_Y+           | SWIPE<br>_X+  | SWIPE<br>_X-             | PRESS<br>_AND_<br>HOLD | SINGLE<br>_TAP       | Gesture<br>Events 0 |   |   |                |
| 0x000E             | -                                      | -                              | -                     | -                      | -             | ZOOM                     | SCROLL                 | 2_<br>FINGER_<br>TAP | Gesture<br>Events 1 |   |   |                |
| 0x000F             | SHOW_<br>RESET                         | ALP_<br>REATI_<br>OCCUR<br>RED | ALP_<br>ATI_<br>ERROR | REATI_<br>OCCUR<br>RED | ATI_<br>ERROR | CHARGING_MODE            |                        |                      | System Info<br>0    |   |   |                |
| 0x0010             | -                                      | -                              | SWITCH<br>_STATE      | SNAP_<br>TOGGLE        | RR_<br>MISSED | TOO_<br>MANY_<br>FINGERS | PALM_<br>DETECT        | TP_<br>MOVE-<br>MENT | System Info<br>1    |   |   |                |
| 0x0011             |                                        |                                |                       | Number                 | of fingers    |                          |                        |                      | (See <u>5.2.1</u> ) |   |   |                |
| 0x0012 -<br>0x0013 | Relative X [pixels] (2 bytes)          |                                |                       |                        |               |                          |                        | (0 500)              |                     |   |   |                |
| 0x0014 -<br>0x0015 | Relative Y [pixels] (2 bytes)          |                                |                       |                        |               |                          |                        | (See <u>5.2.2</u> )  |                     |   |   |                |
| 0x0016 -<br>0x0017 | Absolute X position [pixels] (2 bytes) |                                |                       |                        |               |                          |                        |                      | (\$00.53.2)         |   |   |                |
| 0x0018 -<br>0x0019 | Absolute Y position [pixels] (2 bytes) |                                |                       |                        |               |                          |                        |                      | (See <u>5.2.3</u> ) |   |   |                |
| 0x001A -<br>0x001B | Touch strength (2 bytes)               |                                |                       |                        |               |                          |                        |                      | (See <u>5.2.4</u> ) |   |   |                |





| Address               | Bit7                            | Bit6                 | Bit5         | Bit4           | Bit3   | Bit2 | Bit1    | Bit0    | Details              | R | W | E <sup>2</sup> |
|-----------------------|---------------------------------|----------------------|--------------|----------------|--------|------|---------|---------|----------------------|---|---|----------------|
| 0x001C                |                                 | (See <u>5.2.5</u> )  |              |                |        |      |         |         |                      |   |   |                |
| 0x001D<br>:<br>0x0038 |                                 |                      |              |                |        |      |         |         |                      |   |   |                |
| 0x0039 -<br>0x0058    |                                 |                      |              |                |        |      |         |         |                      |   |   |                |
| 0x0059 -<br>0x0076    |                                 | (See <u>8.10.5</u> ) |              |                |        |      |         |         |                      |   |   |                |
| 0x0077 -<br>0x0094    |                                 |                      |              |                |        |      |         |         |                      |   |   |                |
| 0x0095 -<br>0x01C0    | Count values (300 bytes)        |                      |              |                |        |      |         |         | (0 0 10 0)           |   |   |                |
| 0x01C1 -<br>0x02EC    |                                 | (See <u>8.10.6</u> ) |              |                |        |      |         |         |                      |   |   |                |
| 0x02ED -<br>0x02EE    | ALP count value (2 bytes)       |                      |              |                |        |      |         |         | (\$00.2.2.2)         |   |   |                |
| 0x02EF -<br>0x0302    |                                 | (See <u>3.3.2</u> )  |              |                |        |      |         |         |                      |   |   |                |
| 0x0303 -<br>0x042E    | Reference values (300 bytes)    |                      |              |                |        |      |         |         | (See <u>8.10.6</u> ) |   |   |                |
| 0x042F -<br>0x0430    | ALP LTA (2 bytes)               |                      |              |                |        |      |         |         | (See <u>3.4.2</u> )  |   |   |                |
| 0x0431                | ACK_<br>RESET                   | -                    | AUTO_<br>ATI | ALP_<br>RESEED | RESEED | МС   | DE_SELE | ECT     | System<br>Control 0  |   |   |                |
| 0x0432                | -                               | -                    | -            | -              | -      | -    | RESET   | SUSPEND | System<br>Control 1  |   |   |                |
| 0x0433 -<br>0x0434    | Open (2 bytes)                  |                      |              |                |        |      |         |         |                      |   |   |                |
| 0x0435 -<br>0x043E    | ALP ATI compensation (10 bytes) |                      |              |                |        |      |         |         | (\$00.000)           |   |   |                |
| 0x043F -<br>0x04D4    | ATI compensation (150 bytes)    |                      |              |                |        |      |         |         | (See <u>3.6.2</u> )  |   |   |                |