

SD Specifications Part 1 microSD Card Specification Version 4.00 February 20, 2012

Addendum to:

SD Specifications
Part 1 Physical Layer Specifications
Version 4.00 May 30, 2011

Technical Committee SD Card Association

CONFIDENTIAL

Revision History

Date	Version	Changes compared to previous issue			
May 18, 2005	1.00	Initial Release			
June 7, 2006	1.10	Optional two RF Antenna pins are newly added.			
January 30,2007	2.00	Support SDHC microSD card.			
		Two figures are added that indicate Nonconductive Area.			
		Change reference to the Physical Layer Specification.			
March 27, 2008	2.01	Mechanical Specification described in Application Notes is merged.			
		Test methods are described in Appendix.			
February 18, 2010	3.00	Card Fly-out Specification and measurement method are added.			
		Section 3.6 Thermal Specification for UHS-I Card is added.			
February 20, 2012	4.00	Applied following modifications:			
		Defines microSD UHS-II Card mechanical specification			
		Modified Non-conductive Area Specification			
		Merged Requirement of Printable Area, described in the microSD			
		Version 3.00 Supplementary Notes			

To the extent this proposed specification, which is being submitted for review under the IP Policy, implements, incorporates by reference or refers to any portion of versions 1.0 or 1.01 of the SD Specifications (including Parts 1 through 4), adoption of the proposed specification shall require Members utilizing the adopted specification to obtain the appropriate licenses from the SD-3C, LLC, as required for the utilization of those portion(s) of versions 1.0 or 1.01 of the SD Specifications.

For example, implementation of the SD Specifications in a host device under versions 1.0 or 1.01 and under the adopted specification requires the execution of a SD Host Ancillary License Agreement with the SD-3C, LLC; and implementation of the SD Specifications under versions 1.0 or 1.01 and under the proposed specification in a SD Card containing any memory storage capability (other than for storage of executable code for a controller or microprocessor within the SD Card) requires the execution of a SD Memory Card License Agreement with the SD-3C, LLC.

Conditions for publication

Publisher and Copyright Holder:

SD Card Association 2400 Camino Ramon, Suite 375 San Ramon, CA 94583 USA Telephone: +1 (925) 275-6615,

Fax: +1 (925) 886-4870 E-mail: office@sdcard.org

Confidentiality:

The contents of this document are deemed confidential information of the SD-3C LLC and/or the SD Card Association (the "Disclosers"). As such, the contents and your right to use the contents are subject to the confidentiality obligations stated in the written agreement you entered into with the Disclosers which entitled you to receive this document, such as a Non-Disclosure Agreement, the License Agreement for SDA Memory Card Specifications (also known as "LAMS"), the SD Host/Ancillary Product License Agreement (also known as "HALA") or the IP Policy.

Disclaimers:

The information contained herein is presented only as a standard specification for SD Card and SD Host/Ancillary products. No responsibility is assumed by SD Card Association for any damages, any infringements of patents or other right of the third parties, which may result from its use. No license is granted by implication or otherwise under any patent or rights of SD Card Association or others.

Conventions Used in This Document

Naming Conventions

• Some terms are capitalized to distinguish their definition from their common English meaning. Words not capitalized have their common English meaning.

Numbers and Number Bases

- Hexadecimal numbers are written with a lower case "h" suffix, e.g., FFFFh and 80h.
- Binary numbers are written with a lower case "b" suffix (e.g., 10b).
- Binary numbers larger than four digits are written with a space dividing each group of four digits, as in 1000 0101 0010b.
- · All other numbers are decimal.

Key Words

- May: Indicates flexibility of choice with no implied recommendation or requirement.
- Shall: Indicates a mandatory requirement. Designers shall implement such mandatory requirements to ensure interchangeability and to claim conformance with the specification.
- Should: Indicates a strong recommendation but not a mandatory requirement. Designers should give strong consideration to such recommendations, but there is still a choice in implementation.

Application Notes

Some sections of this document provide guidance to the host implementers as follows:

Application Note:

This is an example of an application note.

Table of Contents

1. General Description	1
1.1 Scope	
1.2 Primary Reference Document	1
1.3 Concept	
1.4 Naming of microSD Memory Card	
1.5 UHS-II Card Definition	
2. Pin Assignment	2
2.1 Pin Assignment of microSD Card (Non UHS-II)	2
2.1.1 ANT1 and ANT2 Pins	
2.2 Pin Assignment of UHS-II microSD	4
3. Mechanical Specification for microSD Memory Card	5
3.1 Card Package	
3.1.1 Design and Format	5
3.1.2 Reliability and Durability	
3.1.3 Electrical Static Discharge (ESD) Requirement	
3.1.4 External Signal Contacts (ESC)	
3.1.5 Discontinuity and Micro-Interrupt	
3.2 Mechanical Form Factor	
3.3 Via Hole Keep Out Zone	
3.4 Surface Roughness	
3.5 Nonconductive Area	
3.6 Thermal Specification for UHS-I Card	
3.6.1 Thermal Specification Based on Ambient Temperature	
3.6.2 Thermal Specification Based on Card Case Temperature	
3.6.3 Storage Temperature	
3.6.4 UHS-II Card	
3.7 Requirement of Printable Area	
3.8 Mechanical Specification for UHS-II microSD	
3.8.1 Mechanical Form Factor for UHS-II microSD	
3.8.1.1 In the case that B18 is less than B17(MIN)	
3.8.1.2 In the case that B18 is larger than or equal to B17(MIN)	
3.8.2 VIA Hole Keep Out Zone	
3.8.3 Exposed Metal Keep Out Zone	
4. microSD Card Connecter	26
4.1 microSD Connector Reliability	
4.1.1 microSD Connector Mechanical Performance	
4.1.2 microSD Connector Electrical Performance	
4.1.3 microSD Connector Environmental Performance	
4.1.4 microSD Connector Environmental Resistance	
4.1.5 microSD Connector Environmental Durability	
4.1.6 Connector Pin Spacing	
4.1.7 Card Over-travel in Push-Push Connector.	33
4.1.7.1 The first row contact pins, pin 9 and pin 10	
action actions have been a suite but to	

4.1.7.2 The second row contact pins	34
VDD2 Switch Inside Connector	35
Appendix A (Normative) : Reference	36
A.1 Reference	
Appendix B (Normative) : Special Terms	37
B.1 Terminology	
B.2 Abbreviations	
Appendix C (Informative) Card Detection Switch	38
C.1 Use of Card Detection Switch in the Connector	38
Appendix D (Informative) :ESD Test Method	41
D.1 Contact Discharge Test	
D.2 Air Discharge Test	
Appendix E (Informative) : Mechanical Testing Methods	44
E.1 Bend Test Fixture Example	44
E.2 Torque Test Fixture Example	
E.3 Card Warpage Testing Fixture Example	
E.4 Card Friction Test Method Example	
E.5 Measurement Method of the Insertion Force	
E.6 Measurement Method of the Pulling Force	
E.7 Measurement Method of the Card Fly-out	
E.7.1 Cad Fly-out (Vertical Direction)	
E.7.2 Cad Fly-out (Horizontal Direction)	

Table of Figures

Figure 2-1 : Contact Area (Top View)	
Figure 3-1: Mechanical Description: Top View	7
Figure 3-2: Mechanical Description: Bottom View	8
Figure 3-3: Mechanical Description: Second Contact Row	9
Figure 3-4: Mechanical Description: Keep Out Area	9
Figure 3-5 : Via-Hole (Through Hole) Keep Out Zone	11
Figure 3-6: microSD Memory Card Roughness Areas	
Figure 3-7: microSD Memory Card Nonconductive Area	13
Figure 3-8: Nonconductive Area on Sides of Card	
Figure 3-9: Maximum size of each conductive on Sides of Card	
Figure 3-10 : Example Heat Removal Path for UHS-I	
Figure 3-11 : Printable Area - Bottom Keep Out Area	
Figure 3-12 : UHS-II microSD Mechanical Description: Top View	
Figure 3-13 : UHS-II microSD Mechanical Description: Bottom View	
Figure 3-14: UHS-II microSD Mechanical Description: Bottom View, Second Row Pads	
Figure 3-15 : UHS-II microSD Thermal Contact Area: Top View	
Figure 3-16 : UHS-II microSD VIA Hole Keep Out Zone	
Figure 3-17 : UHS-II microSD Exposed Metal Keep Out Zone	
Figure 4-1 : Contact Resistance Measurement Method	
Figure 4-2 : Connector Pin Spacing	
Figure 4-3 : Example of Over-travel Condition	33
Fi	
Figure C- 1: Example of Recommended Card Detection Switch Circuit	
Figure C- 2 : Example of Not Recommended Card Detection Switch Circuit	40
Figure D. 1 : Ten Face Discharge Decitions	40
Figure D. 1: Top Face Discharge Positions	
Figure D- 2 : Bottom Face Discharge Positions	
rigule D- 3. Cald Side Discharge Positions	43
Figure E- 1 : Bend Test Fixture Example	44
Figure E- 2 : Torque Test Fixture Example	
Figure E- 3 : Card Warpage Testing Fixture Example, Insert and Drop	
Figure E- 4 : Card Warpage Testing Fixture Example, Pass Through	
Figure E- 5 : Card Friction Test Jig Example	
Figure E- 6 : Measurement Method of the Insertion Force	
Figure E- 7: Measurement Method of the Pulling Force	
Figure E- 8 : Test jig specification	
Figure E- 9 : Measurement Method of the Card Fly-out (Vertical Direction)	
Figure E- 10 : Measurement Method of the Card Fly-out (Horizontal Direction)	
Figure F. 11: Test lig for Printable Area	

Table of Tables

2
3
4
<u>5</u>
5
6
10
12
12
16
17
22
23
38

1. General Description

1.1 Scope

This chapter describes the mechanical and electromechanical features of the microSD memory card. The microSD is functionally compatible with the SD Memory card but is smaller in dimensions. The microSD can be inserted into a passive SD or miniSD Memory Card Adapter and operate as an SD Memory card. All technical drafts follow DIN ISO standard.

1.2 Primary Reference Document

This addendum refers extensively to any released version of the Part 1 Physical Layer Specification and the related Supplementary Notes except for contents specified in this document.

1.3 Concept

The functions of the microSD package are:

- Protecting the chip
- Easy handling for the end user
- Reliable electrical interconnection
- Bearing textual information and image
- Customer appeal

The functions of the microSD Connector are:

- Attaching and fixing the card
- Electrical interconnecting the card to the system board
- Protection against card inverse insertion

1.4 Naming of microSD Memory Card

The name microSD has been defined by the Marketing Committee. In the microSD Specifications issued by the MSTG, there are three (3) names used: microSD Memory Card, microSD Card, and microSD. These three (3) names all refer to the same thing.

The logo mark design is defined by the SD/SDA Logo Guideline Version 2.00 issued by the SDA Marketing Committee.

1.5 UHS-II Card Definition

This Version defines UHS-II microSD Card Mechanical Specification (Chapter 2 and Chapter 3) but UHS-II Connector Specification (Chapter 4) will be defined in later versions.

2. Pin Assignment

2.1 Pin Assignment of microSD Card (Non UHS-II)

Figure 2-1 : Contact Area (Top View)

Pin#	SD Mode			SPI Mode		
	Name	Type ¹ Description		Name	Type ¹	Description
1	DAT2 ^{2,5}	I/O/PP	Data Line [Bit 2]	RSV		
2	CD/DAT3 ²	I/O/PP ³	Card Detect / Data Line [Bit 3]	CS		Chip Select (neg true)
3	CMD	PP	Command/Response	DI	1	Data In
4	V_{DD}	S	Supply voltage	V_{DD}	S	Supply voltage
5	CLK	1	Clock	SCLK	1	Clock
6	V_{SS}	S	Supply voltage ground	V_{SS}	S	Supply voltage ground
7	DAT0	I/O/PP	Data Line [Bit 0]	DO	O/PP	Data Out
8	DAT1 ^{2,4}	I/O/PP	Data Line [Bit 1]	RSV⁴		
9	ANT1 ⁶	Antenna	RF Antenna	ANT1 ⁶	Antenna	RF Antenna
10	ANT2 ⁶	Antenna	Antenna RF Antenna		Antenna	RF Antenna

- 1) S: power supply; I: input; O: output using push-pull drivers; PP: I/O using push-pull drivers;
- 2) The extended DAT lines (DAT1-DAT3) are input on power up. They start to operate as DAT lines after SET_BUS_WIDTH command. The Host shall keep its own DAT1-DAT3 lines in input mode, as well, while they are not used.
- 3) At power up this line has a 50KOhm pull up enabled in the card. This resistor serves two functions Card detection and Mode Selection. For Mode Selection, the host can drive the line high or let it be pulled high to select SD mode. If the host wants to select SPI mode it should drive the line low. For Card detection, the host detects that the line is pulled high. This pull-up should be disconnected by the user, during regular data transfer, with SET_CLR_CARD_DETECT (ACMD42)
- 4) DAT1 line may be used as Interrupt Output (from the Card) in SDIO mode during all the times that it is not in use for data transfer operations (refer to "SDIO Card Specification" for further details).
- 5) DAT2 line may be used as Read Wait signal in SDIO mode (refer to "SDIO Card Specification" for further details).
- 6) Optional pads: If antenna function is not being used then these pads are not required or should be NC (no connect) internally.

Table 2-1: microSD Contact Pad Assignment

2.1.1 ANT1 and ANT2 Pins

The card should never be destroyed when the ANT1 and ANT2 are connected to contactless antenna and exposed to a magnetic field. And also the card should be guaranteed hot insertion (connect ANT1 and ANT2 to the antenna which is already exposed in a magnetic field) and hot removal (disconnected in a magnetic field).

The testing environment, which guarantees the card, is defined by the antenna dimension and the intensity of the magnetic field described in Table 2-2. These values are compliant with the ISO/IEC 10373-6, which defines the electrical characteristics of contactless smart cards.

Parameter	Symbol	Min	Max.	Unit	Condition
Intensity of magnetic	H _{ANT1-ANT2}	-	10	A/m(rms)	13.56MHz
field (ANT1, ANT2) 1,2					

- 1) Using standard antenna is defined in ISO/IEC10373-6.
- 2) The card should be guaranteed not only statically connected to this antenna but also hot insertion and hot removal.

Table 2-2: Parameter of intensity of magnetic field

2.2 Pin Assignment of UHS-II microSD

Figure 2-2: microSD Card Contact Area for UHS-II

Pin#	SD Mode			UHS-II Mode		
	Name	Type	Description	Name	Type	Description
1	DAT2	I/O/PP	Data Line [Bit 2]	-		Not used
2	CD/DAT3	I/O/PP	Card Detect / Data Line [Bit 3]	-		Not used
3	CMD	PP	Command/Response	-		Not used
4	$V_{DD}(3.3v)$	S	Supply voltage	$V_{DD1}(3.3v)$	S	Supply voltage
5	CLK		Clock	-		Not used
6	V_{SS}	S	Supply voltage ground	V_{SS}	S	Supply voltage ground
7	DAT0	I/O/PP	Data Line [Bit 0]	RCLK +		
8	DAT1	I/O/PP	Data Line [Bit 1]	RCLK -		
9	-		Not used	V _{DD2} (1.8v)	S	Supply voltage
10	-		Not used	V_{SS}	S	Supply voltage ground
11	-		Not used	D0+		
12	-		Not used	D0 -		
13	-		Not used	V_{SS}	S	Supply voltage ground
14	-		Not used	D1 -		
15	-		Not used	D1+		
16			Not used	V_{SS}	S	Supply voltage ground

Table 2-3: UHS-II microSD Contact Pad Assignment

3. Mechanical Specification for microSD Memory Card

3.1 Card Package

Every card package shall have the characteristics described in the following sections.

3.1.1 Design and Format

Dimensions, microSD	11 mm x 15 mm; (min. 10.9mm x 14.9mm; max.11.1mm x 15.1 mm)			
package	Other dimensions: Refer to Figure 3-1 through Figure 3-4 for Non-UHS-II Ca			
	and refer to Figure 3-12 through Figure 3-15 for UHS-II card.			
	Testing according to MIL STD 883, Method 2016			
Thickness	'Inter Connect Area': 0.7mm+/-0.1mm refer to Figure 3-1 (C1)			
	'Card Thickness': 0.95mm Max refer to Figure 3-1 (C1 + C3)			
	'Pull Area': 1.0mm +/-0.1mm refer to Figure 3-1 (C)			
	Refer to Figure 3-12 as well for UHS-II card.			
Printable area	For printable area requirement, refer to Section 3.7			
Surface	plain (except contact area)			
Edges	smooth edges			
Inverse insertion	protection on right corner (top view)			
Position of ESC contacts	along middle of shorter edge. Refer to Table 3-3.			

Note: ESC stands for External Signal Contacts

Table 3-1: microSD - Dimensions Summary

3.1.2 Reliability and Durability

Card Ambient	Operation Temperature: -25 to 85 deg.C					
Temperature (T _a)	Storage Temperature : -40 to 85 deg.C					
(Note 1)	Storage Temperature test condition:					
, ,	-40 deg.C (168h)/85 deg.C (500 h)					
Moisture and	Operation: 25 deg.C /95% relative humidity					
Corrosion	Storage: 40 deg.C /93% relative humidity					
	Storage Temperature test condition:					
	40 deg.C /93% relative humidity/500h					
	salt water spray:					
	3% NaCl/35C; 24h acc. MIL STD Method 1009					
Durability	10000 mating cycles.					
Bending	10N (Note 2: Appendix E.1)					
Torque	0.10Nm, +/-2.5 deg. max. (Note 2: Appendix E.2)					
Drop Test	1.5m free fall					
UV Light Exposure	UV: 254nm, 15Ws/cm² according to ISO 7816-1					
Visual Inspection	No mold skin; complete form; no cavities; surface smoothness					
Shape and Form	<= -0.1 mm/cm² within contour; no cracks; no pollution (fat, oil					
	dust, etc.) (Note 2: Appendix E.3 and E.4)					

Note 1: Refer to Section 3.6 for thermal specification of UHS-I Card

Note 2: The test methods are shown in Appendix E.

Table 3-2: Reliability and Durability

Note: Connecter Durability, Card Thermal Conditions, Card Mechanical Performance Torque, Bend, etc for UHS-II Card will be revised in next version.

3.1.3 Electrical Static Discharge (ESD) Requirement

Refer to the Physical Layer Version 4.00 or later about ESD requirements. The ESD test methods are shown in Appendix D.

3.1.4 External Signal Contacts (ESC)

	Non UHS-II Card	UHS-II Card
Number of ESC	8 minimum	16 minimum
Distance from front edge	1.1 mm	Refer to Figure 3-12 through Figure 3-14
ESC grid	1.1 mm	Refer to Figure 3-12 through Figure 3-14
Contact dimensions	0.8mm x 2.9 mm	Refer to Figure 3-12 through Figure 3-14
Electrical resistance	30m-ohm (worst case: 100m-ohm)	30m-ohm (worst case: 100m-ohm)

Table 3-3: microSD Package - External Signal Contacts

3.1.5 Discontinuity and Micro-Interrupt

Refer to Section 4.1.1 Vibration and Shock about discontinuity and micro-interrupt when the card is inserted to a connector.

3.2 Mechanical Form Factor

Figure 3-1: Mechanical Description: Top View

Figure 3-2: Mechanical Description: Bottom View

Note:

Use of TYPE B is not recommended. There is a risk that a microSD TYPE B label may damage UHS-II connectors.

Figure 3-3: Mechanical Description: Second Contact Row

Figure 3-4: Mechanical Description: Keep Out Area

	COM	MON DIMEN	SION	
SYMBOL	MIN	NOM	MAX	NOTE
A	10.90	11.00	11.10	NOTE
A1	9.60	9.70	9.80	
A2	-	3.85	3.00	BASIC
A3	7.60	7.70	7.80	DAGIC
A3 A4	7.00	1.10	-	BASIC
A5	0.75	0.80	0.85	BASIC
A6	-		8.50	
A7	0.90	-	-	
A8	0.60	0.70	0.80	
A9	0.80	-	-	
A10	1.35	1.40	1.45	
A11	6.50	6.60	6.70	
A12	0.50	0.55	0.60	
A12	0.40	0.35	0.50	
B	14.90	15.00	15.10	
B1'	6.13	6.23	6.33	
B2	1.64	1.84	2.04	
B3	1.30	1.50	1.70	
B4	0.42	0.52	0.62	
B5	2.80	2.90	3.00	
B6	5.50	-	-	
B7	0.20	0.30	0.40	
B8	1.00	1.10	1.20	
B9	-	-	9.00	
B10	7.80	7.90	8.00	
B11	1.10	1.20	1.30	
B12	3.60	3.70	3.80	
B13	2.80	2.90	3.00	
B14	8.20	-	-	
B15	-	-	6.20	
С	0.90	1.00	1.10	
C1	0.60	0.70	0.80	
C2	0.20	0.30	0.40	
C3	0.00	-	0.15	
C4	0.80	-	1.10	
C5	0.15	-	-	
D1	1.00	-	-	
D2	1.00	-	-	
D3	1.00	-	-	
R1	0.20	0.40	0.60	
R2	0.20	0.40	0.60	
R3	0.70	0.80	0.90	
R4	0.70	0.80	0.90	
R5	0.60	0.80	0.90	
R6	0.60	0.80	0.90	
R7	29.50	30.00	30.50	
R10		0.20	-	
R11		0.20	-	
R17	0.10	0.20	0.30	
R18	0.20	0.40	0.60	
R19	0.05	-	0.20	
R20	4	-	0.15	
α	133°	135°	137°	
aaa	-	-	0.10	
- / """ 				

Notes:

- 1. DIMENSIONING and TOLERANCING per ASME Y14.5M-1994.
- 2. Dimensions are in millimeters.
- 3. COPLANARITY is additive to C1 MAX thickness.
- 4. All edges shall not be sharp as tested per UL1439 "Test for Sharpness of Edges on Equipment."
- 5. Refer to Appendix E about test method of warpage.
- 6. As measurement point is changed, symbol B1 is changed to symbol B1'.
- 7. C4 and C5 are added from Version 4.00.

Table 3-4: microSD Package: Dimensions

3.3 Via Hole Keep Out Zone

The following mechanical requirements are mandatory for the microSD Memory Card.

Note:

- 1. The via-hole (through hole) should not be positioned within hatched area.
- 2. All surfaces of the microSD Memory Card, except SD contact pads, shall be of nonconductive material.

Figure 3-5: Via-Hole (Through Hole) Keep Out Zone

3.4 Surface Roughness

Every card package shall meet the roughness requirement as specified in this section. Surface roughness as defined per ASTM B46.1-2002.

Figure 3-6: microSD Memory Card Roughness Areas

Surfaces	AB	CDE	F	G	
Ra	3.10	9.00	1.40	1.80	Units in
Rt	27.00	90.00	18.00	16.00	micrometers

Table 3-5: Maximum Roughness Values

Parameter	Measurement Type ¹	Cut-off	Cut-off Length (mm)	Evaluation Length (mm)
Po	line	yes	0.80	4.0
Ra	area	no	-	-
Di	line	no	-	4.0
Rt	area	no	-	-

¹⁾ Measurement may be performed by either line method or area method.

Table 3-6: Measurement Parameters

3.5 Nonconductive Area

Figure 3-7: microSD Memory Card Nonconductive Area

Figure 3-8: Nonconductive Area on Sides of Card

Hatched areas in Figure 3-7 and Figure 3-8 indicate non-conductive area of microSD card. Conductive materials shall not exist in this area.

Figure 3-9: Maximum size of each conductive on Sides of Card

Hatched area in Figure 3-9 indicates the maximum size of each conductive material. There shall be no standing out shape from the surface. Concaved portion may exist within the hatched area.

microSD card that has conductive materials for either side (excluding the front and back area) shall be complied with all the conditions specified below.

- One or more conductive materials may exist. However, they shall not exist in the non-conductive area specified in Figure 3-8.
- The conductive materials shall have no electrical voltage (electrically floating) and there shall be no electrical connection between the conductive materials.
- Each conductive material shall be smaller than the size specified in Figure 3-9.
- The conductive materials shall not stand out from the side surface. They shall not stand out from the surface neither after the connector insertions/extractions described in Section 4.1.1.
- Each conductive material and their circumferences may have concaved portions from the side surface. Each concaved portions shall be smaller than the size specified in Figure 3-9.
- Conductive materials exposed at the side surface shall meet the surface roughness requirements specified in Section 3.4. However for the concaved portions, the surface roughness specification is not specified as frictional effect caused by this portion is less than the others (the area is too small to measure the surface roughness as well).
- Conductive materials exposed shall meet the ESD requirements specified in the Physical Layer Specification and refer to Appendix D.2 for measurement method of this document.
- The rest of the specifications other than this section shall be also satisfied.

3.6 Thermal Specification for UHS-I Card

The thermal specification in Table 3-2 is defined with the condition of current consumption up to 200mA implicitly (the maximum current in High Speed mode). The temperature requirement is specified by the Ambient Temperature (T_a) , presuming that heat dissipated by a card is to ambient air around a card without air blow. In this case, Ambient Temperature should be interpreted as internal temperature of a host device.

The UHS-I card has several operating modes with different current consumption. Host system needs to support another effective heat removal method when UHS-I card is used in higher performance operating mode more than 200mA. For the system supporting a new heat removal method, the thermal specification should be defined by "Card Case Temperature (T_c) ", in another word, a card surface temperature. Heat removal performance of a host can be calculated by using thermal resistance between various surfaces in the system and card case temperature T_c .

Figure 3-10 shows an example heat removal path to use UHS-I card. T_{ai} stands for Ambient Temperature of internal to host device. T_{ae} stands for Ambient Temperature of external to host device. The heat removal method shown in this figure is based on heat transfer through materials of host - heat dissipated by a card is to external ambient air through connector, PCB and body of host. If T_c is kept under the defined value, T_{ai} can be more than T_c up to 85 deg.C. The characteristics of a connector have a great influence on heat removal performance of the system. The minimum operating temperature is T_{ai} >-25 deg.C. The range of T_{ae} depends on host specification.

Figure 3-10: Example Heat Removal Path for UHS-I

 θ_{con} : Thermal Resistance of a Connector θ_{pcb} : Thermal Resistance of a PCB θ_{body} : Thermal Resistance of a Host Body

 $\theta_{\text{con-ai}}$: Thermal resistance between a connector and ambient air internal to a host $\theta_{\text{body-ae}}$: Thermal resistance between host body and ambient air external to a host

 $\theta_{\text{con-pcb}}$: Thermal resistance between a connector and PCB $\theta_{\text{c-con}}$: Thermal resistance between card case and connector

 $\begin{array}{ll} \theta_{\text{pcb-body}}\text{:} & \text{Thermal resistance between PCB and host body} \\ T_{\text{ai}}\text{ :} & \text{Temperature of Ambient Air internal to host device} \\ T_{\text{ae}}\text{ :} & \text{Temperature of Ambient Air external to host device} \end{array}$

T_C: Maximum Card Case Temperature

P_F: Power consumption dissipated from front side P_B: Power consumption dissipated from back side

P: Total power consumption $P = P_F + P_B$

3.6.1 Thermal Specification Based on Ambient Temperature

The host system supporting the heat removal method based on Ambient Temperature can use any card in Default Speed mode or High Speed mode (3.3V signaling). When using UHS-I card in one of UHS-I modes (1.8V signaling), host shall select an operating mode up to 200mA (SDR12, SDR25 or using current limit function). High performance feature is not available in this host system even if UHS-I card is used. The thermal specification based on Ambient Temperature is defined by Table 3-2.

3.6.2 Thermal Specification Based on Card Case Temperature

The host system supporting the heat removal method based on Card Case Temperature (T_c) can use UHS-I card in a higher performance operating mode. The maximum current a host can supply depends on the level of heat removal method taken by the host and power supply capability to a card. The card current consumption can be controlled by Current Limit function in CMD6 Function Group 4. So host system needs to set an appropriate current limit value to use SDR50, SDR104 or DDR50.

By defining T_c , thermal design of card and host can be separated. Heat generated in a card is removed through the card surface. In case of thin card (whose front and back surface area is much larger than surface area of sides), the heat is considered to be mainly removed through two surfaces: front and back (contact pads may also play the role of removing some). Host system needs to implement a heat removal method to maintain Card Case Temperature on front and back surfaces. Forced convection, where heat is removed by air flow or the use of heat fins are possible ways of maintaining to T_c

The maximum Card Case Temperatures are defined by Table 3-7 depends on card current consumption of UHS-I modes. The minimum operating temperature is defined by ambient temperature (T_{ai} >-25 deg.C).

Card Current Consumption [mA]	200	400	600	800
Card Case Temperature [deg.C]	87	80	TBD	TBD

Table 3-7: Maximum Card Case Temperature

Note: The maximum current is defined as 500mA in the Physical Layer Specification Version 2.00 and then most existing connectors are designed to be able to use up to 500mA. As further consideration is required to support more than 400mA, Card Case Temperatures for 600mA and 800mA are TBD in this version of mechanical Addendum and will be defined in the later version.

3.6.3 Storage Temperature

Storage temperature is defined by Table 3-2 for all types of cards including UHS-I cards. Long term storage without operation is presumed to be at storage temperature.

3.6.4 UHS-II Card

Basically the UHS-I Card thermal specification is also applied to UHS-II Card but this section will be revised for UHS-II Card in next version.

3.7 Requirement of Printable Area

The printable area shall meet all the requirements of the microSD Card Specification including the requirements specified in this section.

Top Area - Printing on the full top area, including the "Keep Out Area" defined in Figure 3-4, is acceptable if the printing meets the requirements as described in Table 3-8. Do not print in the "Keep Out Area" if the printing does not meet these requirements.

Bottom Area - Printing on the bottom area is acceptable if the printing meets the requirements as described in Table 3-8. Printing shall not be inside the bottom keep out area as defined in Figure 3-11.

thickness	All card dimensions as defined in Table 3-4 shall apply to the card after printing.			
adhesion	Print adhesion shall meet class 3B to class 4B according to ASTM D3359 –			
	Crosshatch Tape Test			
hardness	Print hardness shall meet 1H or higher pencil hardness according to ASTM B3363.			
cycles*	Card shall be functional and the print shall be readable after insertion/extraction			
	cycling of "office environment test" with connector or jig which is defined in the			
	following notes. The test method as defined in Appendix E.8 and the test condition			
	as defined in Section 4.1.1. Office Environment.			
insertion	Card insertion force with connector operation shall be 40N maximum with			
force*	connector or jig which is defined in the following notes. The test condition as			
	defined in Section 4.1.1. Total Insertion Force.			
pulling force*	Card extracting force with connector operation shall be 0.5N minimum to 40N			
	maximum with connector or jig which is defined in the following notes. The test			
	condition as defined in Section 4.1.1. Total Pulling Force.			

Note: *Verifying printable area performance of "cycles, insertion force, and pulling force" shall be performed using one of the following methods.

- a) Using connector which has a metal case with brakes that applies a load of 0.5N minimum onto the "keep out area" of the card top surface.
- b) Using jig as shown in Figure 3-11 that applies a load of 0.5N minimum onto the "keep out area" of the card top surface.

Table 3-8: Printable Area - Reliability and Durability

Figure 3-11 : Printable Area - Bottom Keep Out Area

3.8 Mechanical Specification for UHS-II microSD

3.8.1 Mechanical Form Factor for UHS-II microSD

Figure 3-12: UHS-II microSD Mechanical Description: Top View

Figure 3-13: UHS-II microSD Mechanical Description: Bottom View

Figure 3-14: UHS-II microSD Mechanical Description: Bottom View, Second Row Pads

Figure 3-15: UHS-II microSD Thermal Contact Area: Top View

	COM	MON DIMEN	SION	
SYMBOL	MIN	NOM	MAX	NOTE
Α	10.90	11.00	11.10	
A1	9.60	9.70	9.80	
A2	=	3.85	=	BASIC
A3	7.60	7.70	7.80	
A4	-	1.10	-	BASIC
A5	0.75	0.80	0.85	
A6	_	_	8.50	
A7	0.90	-	-	
A8	0.60	0.70	0.80	
A9	0.05	_	-	
A10	0.25	0.35	0.45	
A11	1.01	1.11	1.21	
A12	1.16	1.26	1.36	
A13	1.92	2.02	2.12	
A14	2.07	2.17	2.27	
A15	2.83	2.93	3.03	
A16	2.98	3.08	3.18	
A17	3.74	3.84	3.94	
A18	3.89	3.99	4.09	
A19	4.65	4.75	4.85	
A20	4.80	4.90	5.00	
A21	5.56	5.66	5.76	
A22	5.71	5.81	5.91	
A23	6.47	6.57	6.67	
A24	7.75	7.85	7.95	
A25	8.55	8.65	8.75	
B	14.90	15.00	15.10	
B1'	6.13	6.23	6.33	
B2	1.64	1.84	2.04	
B3	1.30	1.50	1.70	
B4	0.42	0.52	0.62	
B5	2.80	2.90	3.00	
B6	5.80	5.90	6.00	
B7	0.20	0.30	0.40	
B8	1.00	1.10	1.20	
B9	-	3.20	-	REF
B10	7.80	7.90	8.00	1 (2)
B11	1.10	1.20	1.30	
B12	0.20	0.30	0.40	
B13	1.90	2.00	2.10	
B14	9.00		-	
B15	0.10	-	_	
B16	TBD	TBD	TBD	
B17	8.70	8.80	8.90	
B18	7.80	8.80	8.90	
C	7.00	1.00	1.10	
C1	0.60	0.70	0.80	
C2	0.20	0.30	0.40	
C3	0.00	-	0.15	
C4	0.80	_	1.10	
C5	0.15	_	-	
	5.10		I	

Notes:

- DIMENSIONS and TOLERANCING per ASME Y14.5M-1994.
- 2. Dimensions are in millimeters.

COPLANARITY is additive to C1 MAX thickness.

4. All edges shall not be sharp as tested per UL1439 "Test for Sharpness of Edges on Equipment"

5. As B16 is related to connector specification, this length will be defined in next version.

Table 3-9: UHS-II microSD Package: Dimensions (1 out of 2)

R1	0.20	0.40	0.60	
R2	0.20	0.40	0.60	
R3	0.70	0.80	0.90	
R4	0.70	0.80	0.90	
R5	0.60	0.80	0.90	
R6	0.60	0.80	0.90	
R7	29.50	30.00	30.50	
R10	-	0.20	Ī	
R11	-	0.20	-	
R17	0.10	0.20	0.30	
R18	0.20	0.40	0.60	
R19	0.05	-	0.20	
R20	4	-	0.15	
α	133°	135°	137°	
β	43°	45°	47°	
aaa	-	-	0.10	

Table 3-10: UHS-II microSD Package: Dimensions (2 out of 2)

3.8.1.1 In the case that B18 is less than B17(MIN)

It requires attention to VSS connections inside the card to prevent a latch-up event due to power interruption.

3.8.1.2 In the case that B18 is larger than or equal to B17(MIN)

It prevents power interruption and is also acceptable to prevent latch-up. VSS pads do not need to be connected together inside card.

3.8.2 VIA Hole Keep Out Zone

The following mechanical requirement is mandatory for the UHS-II SD Memory Card. The via-hole (through hole) should not be positioned within the hatched area.

Figure 3-16: UHS-II microSD VIA Hole Keep Out Zone

3.8.3 Exposed Metal Keep Out Zone

The following mechanical requirement is mandatory for the UHS-II SD Memory Card. There should be no exposed metal (circuit trace, via-hole, pad, etc.) within the hatched area.

Figure 3-17: UHS-II microSD Exposed Metal Keep Out Zone

4. microSD Card Connecter

There are 8 contact springs for contacting the first row (all microSD connectors) and 8 contact springs for contacting second Row of UHS-II Card (only UHS-II connector). In case of UHS-II Connecter, the connecter scratches SD card first row pads twice when the card is inserted because contact springs of second row pass through the first row. Consequently, UHS-II connector will deteriorate Durability Cycles of insertion and removable.

The detail of the durability of UHS-II interconnect system will be defined after observations. UHS-II connector specification will be defined in next version.

4.1 microSD Connector Reliability

The microSD Connector shall meet or exceed all reliability test requirements of this section. Unless otherwise specified, all test measurements shall be made at:

Temperature 15deg.C to 35deg.C Air pressure 86 to 106 kPa Relative humidity 25% to 85%

If above conditions are too moderate to obtain reproducible results, the following conditions should be used.

Temperature 23deg.C +/- 1deg.C Air pressure 86 to 106 kPa Relative humidity 50% +/- 2%

Note: You may use either a real microSD Card or/and a dummy test card if it complies with the microSD Card specification.

Office Environment [cycles] 10,000 minimum Harsh Environment [cycles] 3,000 minimum

Note: These numbers are defined for non UHS-II microSD connector.

4.1.1 microSD Connector Mechanical Performance

The microSD Connector mechanical performance is specified as follows.

Office Environment

STANDARD	TESTING
Guaranteed number of insertions/extractions	Refer to Section 4.1.5 Office Environment
=10,000 minimum	

Harsh Environment

STANDARD	TESTING
Guaranteed number of insertions/extractions	Refer to Section 4.1.5 Harsh Environment
= 3.000 minimum	

Total Insertion Force

STANDARD	TESTING
40 N maximum	Insert at speed of 25 mm/minute Except influence of the force for eject and card lock mechanism

Total Pulling Force

STANDARD	TESTING
0.5N minimum and 40N maximum	Extract at speed of 25 mm/minute Except influence of the force for eject and card lock
	mechanism

Insertion Force for Card Lock Mechanism

STANDARD	TESTING
8 N maximum	Insert at speed of 25 mm/minute
(Refer to following Notes 1.2.3.5.6)	

Pulling Force for Card Lock Mechanism

STANDARD	TESTING
8 N maximum	Extract at speed of 25 mm/minute
(Refer to following Notes 1.2.4.5.6)	

Notes

- 1. This section is not applicable for the hinge type connector.
- 2. This section shall be applicable to the connector with card lock mechanism.
- 3. This section specifies the insertion force that is produced by friction of the card lock mechanism. Therefore, the friction force between card and contact shall be removed from the results.
- 4. This section specifies the pulling force that is produced by card lock mechanism. Therefore, the friction force between card and contact shall be removed from the results. Also, this section is applicable for card slant condition.
- 5. Refer to the Appendix E for the recommended test method.
- 6 The connector or adapter lock mechanism shall be either following a) or b).
 - a). Metal material where it is sliding against the card surface.
 - b). Other material if mechanism can release.

Vibration

STANDARD	TESTING
a. No mechanical damage shall occur on the	IEC 60512-6-4 20 m/s^2 peak amplitude, 10 Hz to
parts	2000 Hz,
Y The second sec	5 minutes per 1 cycle, 10 cycle per 1 axis total 30
b. Shall not cause current interruption greater	cycles per 3 axis.
than 100 ns	

Note: Method of measuring discontinuity associated with connector: At DC 5V and 150mA Max.; decent of voltage more than 50% (= less than 2.5V) as discontinuity. Discontinuity specification for the connector: Maximum 100nsec. of discontinuity period.

Shock

STANDARD	TESTING
a. No mechanical damage shall occur on the parts	IEC 60512-6-3 Acceleration 490 m/s^2 Standard holding time 11 ms, semi-sine wave, velocity change 3.44m/s.
b. Shall not cause current interruption greater than 100 ns	

Note: Method of measuring discontinuity associated with connector: At DC 5V and 150mA Max.; decent of voltage more than 50% (= less than 2.5V) as discontinuity. Discontinuity specification for the connector: Maximum 100nsec. of discontinuity period.

Card Fly-out(Vertical Direction)

STANDARD	TESTING
Card fly-out distance from the connector	Measure the card fly-out distance from the connector in
Level A: 0cm	the vertical direction. Refer to the Appendix for the
Level B: 15cm maximum	recommended test equipment.
Level C: 30cm maximum	
Level D: 120cm maximum	

Card Fly-out(Horizontal Direction)

STANDARD	TESTING
Card fly-out distance from the connector	Measure the card fly-out distance from the connector in
Level A: 0cm	the horizontal direction. Refer to the Appendix for the
Level B: 30cm maximum	recommended test equipment.
Level C: 60cm maximum	
Level D: 180cm maximum	

4.1.2 microSD Connector Electrical Performance

The microSD Connector electrical performance is specified as follows.

Contact Resistance-Millivolt Level Method

STANDARD	TESTING
	IEC 60512-2-1, Open voltage 20 mV Test current 1 mA
a. Initially 100 milli-ohm maximum	a. Measure and record the initial resistance (Ri) of the
	separate connector contact interface. Refer to
	Figure 4-1 : Contact Resistance Measurement
	Method.
	Ri 100 milli-ohm
b. After test 40 milli-ohm maximum change	b. Measure and record the resistance after test (Rf) of
	the microSD connector. Resistance value after test:
	Rf = Ri +/- 40 milli-ohm

Figure 4-1: Contact Resistance Measurement Method

Voltage Proof

STANDARD	TESTING
a. No shorting or other damages when 500	IEC 60512-4-1
Vrms AC is applied for 1 minute	
b. Current leakage 1 mA maximum	

Insulation Resistance

STANDARD	TESTING
a. Initially 1000 M-ohm minimum	IEC 60512-3-1. Measure within 1 minute after applying
b. After test 100 M-ohm minimum	500V DC.

Temperature Rise

STANDARD	TESTING
0.5 A per contact	IEC 60512-5-1. Based upon 30deg.C rise above
	ambient temperature.

4.1.3 microSD Connector Environmental Performance

Operating Environment

STANDARD
Operating Temperature: -25deg.C to +85deg.C
Relative humidity: 95% maximum (non-condensing)

Storage Environment

STANDARD
Storage Temperature: -40deg.C to +85deg.C
Relative humidity: 95% maximum (non-condensing)

4.1.4 microSD Connector Environmental Resistance

Damp Heat, Cyclic

STANDARD	TESTING
Per Contact Resistance (low level) Section,	IEC 60512-11-12 10 cycles (1 cycle = 24 hours) with
Part b Per Insulation Resistance Section, Part b	connectors engaged

Rapid Change of Temperature

STANDARD	TESTING
No physical damage shall occur during testing	IEC 60512-11-4 -55deg.C to +85deg.C 5 minute
Per Contact Resistance (low level) Section,	transition time (max) 5 cycles (1 cycle = 1 hour) with
Part b Per Insulation Resistance Section, Part b	connectors engaged

Dry Heat

STANDARD	TESTING
,	IEC 60512-11-9 85deg.C, 96 hours with connectors
Part b	engaged. Exclude load and insulation resistance measurements

Cold

STANDARD	TESTING
Per Contact Resistance (low level) Section,	IEC 60512-11-10 -25deg.C, 96 hours with connectors
Part b	engaged

Damp Heat, Steady State

STANDARD	TESTING
Per Contact Resistance (low level) Section, Part b	IEC 60512-11-3 Steady State 40deg.C, 90 to 95% RH 96 hours with connectors engaged
Per Insulation Resistance Section, Part b	

Hvdrogen Sulfide

STANDARD	TESTING	
Per Contact Resistance (low level) Section,	JEIDA 38 3 PPM hydrogen sulfide 40deg.C, approx.	
Part b	80% RH 96 hours, with connectors engaged	

4.1.5 microSD Connector Environmental Durability

The micro SD Connector shall meet below environmental requirements.

Test conditions for the mate/unmate cycles are:

Cycle Rate 400-600 cycles per hour Temperature 15deg.C to 35deg.C Relative Humidity 25% to 85% Air Pressure 86 to 106 kPa

Office Environment

The office environment is defined in EIA-364-B Class 1.1 - year round air conditioning (non-filtered) with humidity control.

Contact resistance - Part a	
Mate and unmate the connector for a total of 10,000	cycles Note
Contact resistance - Part b	

Note: After each 10 cycles stop the insertion and rest the connector for 5 to 10 minutes.

Air blow card (dry air) for 3secs:

at each 100 cycle interval (10 times) from start to 1000 cycles.

at each 1000 cycle interval (9 times) from 1001 to 10,000 cycles.

Mate and unmate speed is less than 10cycles per 1 minute.

Harsh Environment

The harsh environment is defined in EIA-364-B Class 1.3—no air conditioning, no humidity control with normal heating and ventilation:

Contact resistance - Part a	
Mate and unmate the connector 500 cycles Note	TOTAL CYCLES = 500
Damp heat, cyclic Section (1 cycle=24hours)	Total 1 damp heat cycle
Mate and unmate the connector 500 cycles Note	TOTAL CYCLES = 1,000
Damp heat, cyclic Section (1 cycle=24hours)	Total 2 damp heat cycles
Mate and unmate the connector 2,000 cycles Note	TOTAL CYCLES = 3,000
Damp heat, cyclic Section (1 cycle=24hours)	Total 3 damp heat cycles
Hydrogen sulfide per Hydrogen Sulfide Section	96 hours
Contact resistance - Part b	

Note: After each 10 cycles stop the insertion and rest the connector for 5 to 10 minutes. Air blow card (dry air) for 3secs:

at each 100 cycle interval (10 times) from start to 1000 cycles.

at each 1000 cycle interval (2 times) from 1001 to 3,000 cycles.

Mate and unmate speed is less than 10cycles per 1 minute.

4.1.6 Connector Pin Spacing

This drawing indicates position of the connector pin. The card dimension allowance and inclination are not necessary to be considered.

"Card Detect Position" means where the card detection switch detects the existence of the card. Refer to Appendix C about implementation of the card detection switch on the connector.

Type B
Single Row Contacts without
Card Detection Switch

Figure 4-2: Connector Pin Spacing

In the case of UHS-II microSD Card, all the positions (distance from the tip of a card) of the 2nd row connector pins are the same.

Confidential

4.1.7 Card Over-travel in Push-Push Connector

For push-push connectors the following over-travel conditions shall apply.

4.1.7.1 The first row contact pins, pin 9 and pin 10

For VDD2, pin 9, and all of the first row contact pins, pin 1 through pin 9, and VSS pin 10 in the case that the dimension B18 is larger than or equal to B17(MIN), shall not over-travel the contact pads on the card.

Figure 4-3: Example of Over-travel Condition

Required for VDD2 and all of the first row contacts and VSS pin 10 contact in the case that the dimension B18 is larger than equal B17(MIN)

4.1.7.2 The second row contact pins

For the second row pins, pin 10 in the case that the dimension B18 is less than B17(MIN), and pin 11 through pin 16, it is acceptable for pins to over-travel the contact pads on the card.

Figure 4-4: Acceptable Over-travel Condition

Applies to second row except VDD2 and VSS pad 10 in the case that the dimension B18 is less than B17(MIN)

VDD2 Switch Inside Connector

In case of Host System supports hot insertion / removal, the UHS-II connector requires a mechanical switch to control the power on / off of VDD2 contact spring. Figure 4-5 shows schematic view of VDD2 Switch circuit of a microSD connector. VDD2 Switch avoids providing VDD2 voltage on the first row pads. The connector needs to control VDD2 Switch on / off at the appropriate timing.

If host system does not support hot insertion / removal, it is not necessary to use this type of connector with VDD2 switch.

UHS-II microSD Connector Specification is not defined in this document and will be defined in next version. Then this is supplemental information for microSD Connector.

Figure 4-5: UHS-II microSD VDD2 Switch Circuit

The connector needs to detect insertion and removal location of a card to control VDD2 Switch on / off timing. The power shall not be provided on VDD2 contact spring while VDD2 contact spring is in the area of the 1st row pads. VDD2 Switch is on after the VDD2 contact spring is passing through in the area of the 1st row pads and before the VDD2 contact spring is getting through the area of 2nd row pad (VDD2). The contact sequence to 2nd row pads is as follows: VDD2 and GND are connected in the first place and the signals are connected after that.

Appendix A (Normative) : Reference

A.1 Reference

(21) MIL STD 883, Method 2016

(22) MIL STD 883, Method 1009

(23) ASTM B46.1-2002

(24) UL1439

This specification refers the following documents.

- (1) SD Specifications Part 1 Physical Layer Specifications Version 3.01 and Version 4.00
- SD Specifications Part 1 UHS-II Addendum Version 1.00

(3)	SD/SDA Logo Guideline Version 2.00 May 9, 2006		
(4)	ASME Y14.5M-1994	Geometric dimensioning and tolerancing	
(5)	EIA-364-B	EIA Standard Acceleration Test Procedure for Electrical Connectors	
(6)	ISO/IEC10373-6	Electrical connectors Electrical characteristics of contactless smart cards	
(7)	ISO 7816-1	UV light exposure	
(8)	IEC 60512 (all parts)	Connectors for electronic equipment – Tests and measurements	
(9)	IEC 60512-2-1 Ed. 1.0:2002 (IEC 512-2-2a)	Electrical continuity and contact resistance tests - Test 2a: Contact resistance - Millivolt level method	
(10)	IEC 60512-3-1 Ed. 1.0:2002 (IEC 512-2-3a)	Insulation tests - Test 3a: Insulation resistance	
(11)	IEC 60512-4-1 Ed. 1.0:2003 (IEC 512-2-4a)	Voltage stress tests - Test 4a: Voltage proof	
(12)	IEC 60512-5-1 Ed. 1.0:2002 (IEC-512-3-5a)	Current-carrying capacity tests - Test 5a: Temperature rise	
(13)	IEC 60512-6-3 Ed. 1.0:2002 (IEC 512-4-6c)	Dynamic stress tests - Test 6c: Shock	
(14)	IEC 60512-6-4 Ed. 1.0:2002 (IEC 512-4-6d)	Dynamic stress tests - Test 6d: Vibration (sinusoidal)	
(15)	IEC 60512-11-3 Ed. 1.0:2002 (IEC 512-6-11c)	Climatic tests - Test 11c: Damp heat, steady state	
(16)	IEC 60512-11-4 Ed. 1.0:2002 (IEC 512- 6-11d)	Climatic tests - Test 11d: Rapid change of temperature	
(17)	IEC 60512-11-9 Ed. 1.0:2002 (IEC 512-5-11i)	Climatic tests - Test 11i: Dry heat	
(18)	IEC 60512-11-10 Ed. 1.0:2002 (IEC 512-6-11j)	Climatic tests - Test 11j: Cold	
(19)	IEC 60512-11-12 Ed. 1.0:2002 (IEC 512-6-11m)	Climatic tests - Test 11m: Damp heat, cyclic	
(20)	JEIDA 38	Hydrogen sulfide test	

Confidential

Physical dimensions

and Lay)

Salt atmosphere corrosion test

Surface Texture (Surface Roughness, Waviness,

Test for Sharpness of Edges on Equipment

Appendix B (Normative) : Special Terms

B.1 Terminology

Damp heat Condition where temperature and humidity are controlled.

Keep Out Area Where shall not print marks.
Via Hole Keep Out Zone Where shall not place via hole.
warpage Card condition out of flatness

Discontinuity Mechanical disconnection when a card is inserted in a connector Micro-interrupt Signal disconnection when a card is inserted in a connector

B.2 Abbreviations

ANT1,ANT2 Antenna pins
CLK Clock Input Pin
CMD Command Pin
DAT Data Pin

ESC External Signal Contacts. Contact pads of a card.

ESD Electrical Static Discharge MSTG microSD Task Group

Appendix C (Informative) Card Detection Switch

C.1 Use of Card Detection Switch in the Connector

This chapter describes how to use the card detection switch on the host connector. The microSD card detection switch is used to detect whether the microSD is inserted to the host connector or not.

The host manufactures can choose either following a) or b) design method by host system requirements such as to achieve low power consumption, etc.

There are two types of the microSD card detection switch implementations on the host connecter.

a) Normally Open

The Card Detection Switch is open, while the microSD is removed.

b) Normally Closed

The Card Detection Switch is closed while the microSD is removed.

Table C- 1 shows the card detection switch types and its status:

Card Detection Switch Types	microSD is Removed	microSD is Inserted
Normally open	OFF (open)	ON (closed)
Normally closed	ON (closed)	OFF (open)

Table C-1: Card Detect Switch Function

The card insertion and removal sequence of microSD should take the following procedures:

a) microSD insertion sequence

Normally open type: The card detection switch should be turned on after all microSD contact

pads are connected to the host connector contact pads.

Normally closed type: The card detection switch should be turned off after all microSD contact

pads are connected to the host connector contact pads.

b) microSD removal sequence

Normally open type: The card detection switch should be turned off when the microSD is just

going to be removed and before any microSD contact pad is

disconnected from the host connector contact pad.

Normally closed type: The card detection switch should be turned on when the microSD is just

going to be removed and before any microSD contact pad is

disconnected from the host connector contact pad.

The microSD card detection switch with above insertion and removal sequence can be used for the microSD host slot power control.

Figure C- 1 shows an example of recommended implementation of the card detection switch and related circuit.

Figure C-1: Example of Recommended Card Detection Switch Circuit

Figure C- 2 shows an example of NOT recommended implementation of the microSD card detection switch and related circuit. It is recommended that the microSD card detection switch is not connected to Vdd directly for safety reasons. If the microSD card detection switch is connected to Vdd, it may increase probability of Vdd-Vss short circuit when some foreign substance is inserted into the host connector, or microSD card is inserted while the host connecter pin is broken, for some reason, and may cause the Vdd of the card detection switch line to accidentally contact the Vss line.

Figure C- 2: Example of Not Recommended Card Detection Switch Circuit

Appendix D (Informative) :ESD Test Method

This section provides two ESD test methods that conform to the ESD requirements given in Section 3.1.3.

D.1 Contact Discharge Test

The following ESD test recommendation relates to the ESD requirement for contact pads 6.8.2 (1)(c) given in the Physical Layer Specification Version 4.00.

- 1) Testing Conditions
 - IEC 61000-4-2, contact discharge +/-2kV and +/-4kV150pF, 330Ohm
 - Five (5) times per voltage and polarity for each contact pad.
- 2) Test Procedure
 - Write Test Data into the SD Memory Card.
 - Set the discharge voltage to +2kV
 - Discharge to the pad (Five (5) times each pad, removing residual charge on the card between every contact discharge.)
 - Repeat with -2kV, +4kV and -4kV.
 - Check the Data and SD Memory Card Function.
- 3) Test Result
 - The SD Memory Card shall operate as specified.
 - The SD Memory Card shall retain the Data.

D.2 Air Discharge Test

The following ESD test recommendation relates to the ESD requirement for non contact pads 6.8.2 (2) given in the Physical Layer Specification Version 4.00.

- 1) Testing Conditions
 - IEC 61000-4-2, air discharge up to +/-15kV150pF, 330Ohm
- 2) Test Procedure
 - Write Test Data into the microSD Memory Card.
 - Mask the contact pads by insulating tape to avoid discharge (Figure D- 1).
 - set voltage for 4kV
 - Discharge toward the position (1) to (4) and (1) to (5) in order, each face. (Four (4) times top face as Figure D- 1 and five (5) times bottom face as Figure D- 2.) Remove residual charge on the card between each zap. Discharge toward the conductive material exposed portions on both sides of the card if they exist.
 - Repeat with -4kV, 8kV, -8kV, 15kV, -15kV.
 - Remove the insulating tape
 - Check the Data and microSD Memory Card Function.
- 3) Test Result
 - The microSD Memory Card shall operate as specified.
 - The microSD Memory Card shall retain the Data.

Confidential

Figure D-1: Top Face Discharge Positions

Figure D- 2: Bottom Face Discharge Positions

Figure D- 3: Card Side Discharge Positions

Appendix E (Informative): Mechanical Testing Methods

This Appendix describes examples of test methods recommended by the SDA to be used for the compliance tests.

E.1 Bend Test Fixture Example

The Bend test relates to the Bending specification – given in Table 3-2: Reliability and Durability.

Place the microSD Memory Card on the fixture with surface facing upward. Apply 10 N to the center of the surface of the card as shown in Figure E- 1. Hold time = 60 Sec.

Test card on both surfaces.

Figure E- 1 : Bend Test Fixture Example

E.2 Torque Test Fixture Example

The Torque test relates to the Torque specification – given in Table 3-2: Reliability and Durability.

Apply torque to the unfixed end of the microSD Memory Card.

Torque = 0.10 Nm.

Hold time = 30 Sec.

The maximum angle displacement is +/- 2.5 degrees on measurement.

Figure E- 2: Torque Test Fixture Example

E.3 Card Warpage Testing Fixture Example

The Warpage test relates to the Visual Inspection Shape and Form specification – given in Table 3-2: Reliability and Durability.

The microSD Memory Card shall pass through or be inserted and dropped out by its own weight.

Figure E- 3 : Card Warpage Testing Fixture Example, Insert and Drop

15.1 +0.01

(Unit: mm)

Figure E- 4: Card Warpage Testing Fixture Example, Pass Through

E.4 Card Friction Test Method Example

This Section provides an example of a card friction test to ensure that the card has better performance and durability.

- 1) Test Procedure
 - Contact force of each pin in the Jig is 0.4±0.04N.
 - Extraction speed is less than 1mm/minute.
 - Condition: 20 to 25deg. C and 30% maximum humidity.
 - Each pin in the Jig is finished gold over nickel plating.
- 2) Test Results
 - The card extraction force shall be 2.2 N maximum as measured in the Jig.

Figure E- 5: Card Friction Test Jig Example

E.5 Measurement Method of the Insertion Force

This measurement method is defined to test Section 4.1.1 Insertion Force for Card Lock Mechanism. Card insertion force shall be measured by pushing with flat plate.

Figure E- 6: Measurement Method of the Insertion Force

E.6 Measurement Method of the Pulling Force

This measurement method is defined to test Section 4.1.1 Pulling Force for Card Lock Mechanism. Card pulling force shall be measured by pulling a wire threaded through one of three holes in the top of the card. Repeat measurement for each hole.

Figure E-7: Measurement Method of the Pulling Force

E.7 Measurement Method of the Card Fly-out

This measurement method is defined to test Section 4.1.1 Cad Fiy-out (Vertical Direction) and Cad Fiy-out (Horizontal Direction).

Test Jig is indicated as following figure and it is designed for card fly-out with activating card stopper for press and release the card.

<Test jig specification>

Dimension A: Stopper Diameter: φ5.00±0.3

Dimension B: Dimension from Card to stopper Tip: 4.00±2.00

Dimension C: Chamfering Dimension: C1.00±0.5

Stopper Moving Speed: 1000±300mm/s

Materials of a Stopper: steel

Surface roughness of a Stopper: Ra 0.4, Rmax.1.6

Figure E-8: Test jig specification

E.7.1 Cad Fly-out (Vertical Direction)

Fly-out dimension is defined as distance of card come-out from connector in vertical direction. Requirement shall be met under card stopper set in the range of +/-3.00mm from card center.

Figure E- 9: Measurement Method of the Card Fly-out (Vertical Direction)

E.7.2 Cad Fly-out (Horizontal Direction)

Fly-out dimension is defined as distance of card come-out from connector in horizontal direction. Card location is at a height of 50cm.

Requirement shall be met under card stopper set in the range of +/-3.00mm from card center.

Figure E- 10 : Measurement Method of the Card Fly-out (Horizontal Direction)

E.8 Measurement Method of Printable Area

Figure E- 11 shows the test jig for printable area. Applies a load of 0.5N minimum onto the "keep out area" of the card top surface. Check "cycles" in Table 3-8.

Figure E- 11 : Test Jig for Printable Area