Lecture I

MALI, 2025

CLASSIC ALGORITHM DESIGN

is based on unambiguous algorithms

CLASSIC ALGORITHM DESIGN

is based on unambiguous algorithms

MACHINE LEARNING

is based on learning from examples

the model is **decoupled from data** but the **algorithm is preserved**

In this course, you will learn ...

- Who survived Titanic?
- The machine learning methodology
- Types of machine learning problems
- k-nearest neighbor
- Course overview

WHO SURVIVED TITANIC?

- Who survived Titanic?
- The machine learning methodology
- Types of machine learning problems
- k-nearest neighbor
- Course overview

- Who survived Titanic?
- The machine learning methodology
- Types of machine learning problems
- k-nearest neighbor
- Course overview

THE DATA WE HAVE

LABELED

and

UNLABELED

we only have

THE DATA WE HAVE

Variables

Predictors

Covariates

Regressors

Dimensions

Attributes

Features

Inputs

Independent Variables

Outcome

lion

Target

Class

Label

Output

Dependent Variable

TYPES OF MACHINE LEARNING PROBLEMS

LABELED DATA

SUPERVISED

LEARNING

CLASSIFICATION

REGRESSION

y 15 a category y is a number

predictions

UNLABELED DATA
UNSUPERVISED LEARNING

CLUSTERING

in data

DIMENSIONALITY REDUCTION

identify structure in data

patterns

CLASSIFICATION

fraud detection speech recognition diagnostics

REGRESSION

weather forecasts stock market predictions dependency insights

CLUSTERING

targeted marketing anomaly detection image segmentation

DIMENSIONALITY REDUCTION

compression structure discovery big data visualization

- Who survived Titanic?
- The machine learning methodology
- Types of machine learning problems
- k-nearest neighbor
- Course overview

k-NEAREST NEIGHBOR

ba classi fier

find the k (=3) nearest neighbours and assign to majority class

Hyperparameters

(1) The value of k

1) How distance is measured

THE VALUE OF k

THE DISTANCE METRIC

$$d(p,q) = \sqrt{(p,-q,)^2 + (p_2-q_2)^2 + \dots}$$

- Who survived Titanic?
- The machine learning methodology
- Types of machine learning problems
- k-nearest neighbor
- Course overview

COURSE OVERVIEW

Uhat? 12 sessions 6 portfolio assignments the heart and soul of the course I oral exam

Who?

Frederik Thorning Bjørn frbj@via.dk
Lessons I and 3-9

will also be your MAL1-in-SEP4 supervisor

Richard Brooks
rib@via.dk
Lessons 2 and 10-12

COURSE OVERVIEW

- I. Introduction to everything
- 2. Mathematical background
- 3. Regression
- 4. Preprocessing and feature engineering
- 5. Tree-based methods
- 6. Validation methods and performance metrics
- 7. Logistic regression and gradient descent
- 8. Support vector machines
- 9. Neural networks
- 10. Dimensionality reduction
- 11. Clustering
- 12. Recap

Portfolio assignment n will be handed out in session 2n - 1 and handed in before session 2n + 1

Explain what machine learning is

- Distinguish between supervised and unsupervised learning
- Explain and implement the kNN classifier