

Data Mining for Entity Relationship Associations

School of Engineering and Applied Science
Department of Computer Science CSCI 6443— Data Mining

Professor: A. Bellaachia

Student: R. Gross (G47667332)

Problem Definition

- Many chatbots are a combination of expert systems and machine learning.
- A knowledge base is often used as the "brain" of the chatbot due to its ability to perform inference.
- Traditionally knowledge bases perform inference based on inference rules, which are brittle and don't scale well.

IF <subject> has Child THEN <subject> is a Parent

Problem Definition Continued

- Unsupervised learning of entity relationships is difficult and supervised learning datasets are costly to create.
- Performance is subjective and language dependent.
- State-of-the-art NLP algorithms struggle to perform Relationship Extraction (RE) with the precision and recall of a person.

Java was originally developed by James Gosling at Sun Microsystems

https://corenlp.run/

Related Work

- Datasets (not all are free):
 - <u>https://paperswithcode.com/datasets?task=</u> relation-extraction
- Papers:
 - <u>https://paperswithcode.com/task/relation-</u> extraction#papers-list
- Notable Algorithms Types:
 - Open Information Extraction (OpenIE)
 - Convolutional Neural Network (CNN)
 - Sequence based networks (RNN, LSTM, GRU, Transformers)

Relation Extraction on TACRED

https://paperswithcode.com/task/relation-extraction

- Methods of doing RE :
 - OpenIE
 - Greedy search on dependency tree
 - Goal is to reduce sentence to utterance, and keep reducing until triple is all that is remaining

https://nlp.stanford.edu/pubs/2015angeli-openie.pdf

- Methods of doing RE:
 - Named Entity Extraction (NER) + Classification of relations between entities using neural networks
 - Text and/or Part of Speech (POS) tags are input features along with entities
 - Graph Convolutional Neural Networks (GCN)
 - Create graph from dependencies
 - GCN learns features and structures in graph that are associated to training data

 $\langle Tiger Woods \rangle_1$ has played in the $\langle PGA \rangle_2$ for many years.

NER Example

https://cloud.google.com/natural-language

- Methods of doing RE :
 - Applying language generation/translation techniques
 - RNN, LSTM, GRU, Transformers (Seq2Seq (BERT, ERNIE, GPT, BART))

https://translate.google.com/

LSTM

GRU

Output

https://www.microsoft.com/enus/research/uploads/prod/2021/06/Pre-training-Models-Xu-Tan.pdf

RNN

 $\underline{https://arxiv.org/pdf/1906.07510v8.pdf}$

- After RE, associations between relations occurs.
- Leading association algorithms are:
 - Apriori (Low Mem, Slow Speed)
 - Eclat (Medium Mem, Medium Speed)
 - FP Growth (High Mem, Fast Speed)

Evaluation Criteria	Apriori	FP Growth	Eclat		
1. Techniques	Breadth first search	Divide and Conquer	Depth first search		
			and intersection of		
			transaction id.		
2. Database Scan	Database is scanned	Database Id scanned	Database is scanned		
	each time a	two times only.	few times.		
	candidate item set is				
	generated				
3. Advantages	-Easy to implement.	Database scanned	No need to scan		
		two times only.	database each time.		
	-Use large item set				
	property.				
4. Disadvantages	-Require large	FP tree is expensive	It requires virtual		
	memory space.	to build consumes	memory to perform		
		more memory.	the transaction.		
	-Too many				
	candidate item set				
5. Data format	Horizontal	Horizontal	Vertical		
6. Storage Format	Array	Tree (FP tree)	Array		
7. Time	More execution	Less time as	Execution time is		
	time	compared to Apriori	less than Apriori		
		algorithm	algorithm.		
		//N 4			

Evaluation Criteria

https://www.semanticscholar.org/paper/Market-basket-analysis-for-improving-the-of-and-FP-Khan-Solaiman/99115afbb9202eba44c7522dccdf71fec8fd6b21

Proposed Approach

- Text already mined and transforming to JSON files
- Zipped text moved to AWS cloud environment
- This allows servers to access as needed with higher download speeds
- Download data
- Unzip
- Split into manageable data message sizes
- Publish text to queue

- High performance queue
- Allows consuming service to be parallel by ensuring only one consumer gets each message
- Perform Relation Extraction (RE) to convert unstructured data to structured data
- Write to DB

- Clean, Transform, and Filter Structured Data
- DB Scans and Queries
- Apply FP Growth

Amazon Simple Storage Service (Amazon S3)

Amazon Elastic Compute Cloud (Amazon EC2)

Amazon Simple Queue Service (Amazon SQS)

Amazon Elastic Compute Cloud (Amazon EC2)

Amazon Neptune

Selected Dataset

- Wikipedia
- 6.5M+ English articles as of 2022
- 10TB of data as of 2015
 - https://dumps.wikimedia.org/enwiki/latest/
 - https://www.kaggle.com/datasets/ltcmdrdata/plain-text-wikipedia-202011
 - https://github.com/daveshap/PlainTextWikipedia

https://en.wikipedia.org/wiki/WikipediaSize of Wikipedia

Date: October 2022 ▼

Current Progress

Estimated Total

\$13.50

Name 	Type	▽ Created		▽	Mes	sages available	∇
Articles.fifo	FIFO	10/20/2022, 17:04:48 EDT 100158			158		
Name	▼	Instance ID		Instance state	9 ▼	Instance type	▽
Article Queue Worker	i	i-091ebaa6da955fdaa		○ Terminate	d @ Q	t2.large	
Relation Extraction Worker	i	i-0ab1850889ef24422		⊘ Running	@ Q	c5.xlarge	
Relation Extraction Worker	i	i-0af5a562cb22ab67e		⊘ Running	@ Q	c5.xlarge	
Relation Extraction Worker	i	i-0d9e48489f40dcf72		⊘ Running	@ Q	c5.xlarge	
Relation Extraction Worker	i	i-0bf6d65705a462b48		⊘ Running	@ Q	c5.xlarge	
Relation Extraction Worker	i	i-0915356135ede0d01		⊘ Running	@ Q	c5.xlarge	
Relation Extraction Worker	i	i-0ca912cea7d0f9f5b		⊘ Running	@ Q	c5.xlarge	
Relation Extraction Worker	i	i-0f543502e49154966		⊘ Running	⊕Q	c5.xlarge	
Relation Extraction Worker	i	i-06771b02375ff6f29		⊘ Running	@ Q	c5.xlarge	
Relation Extraction Worker	i	i-0ca674c2d2d2d77f6		⊘ Running	@ Q	c5.xlarge	
Relation Extraction Worker	i	i-09daf15fce53d4b36		⊘ Running	⊕Q	c5.xlarge	

a. (John_E_Blaha birthDate 1942_08_26) (John_E_Blaha birthPlace San_Antonio) (John_E_Blaha occupation Fighter_pilot)

b. John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot

Future Work

https://webnlg-challenge.loria.fr/

- Generate a new set of training data
- Start with generated triples by determining how often entities and verbs/predicates appear in the same sentence
- Use transformer to generate sentences from generated triple
- This would give the algorithm a more direct triple to sentence training

dbp:yearpro • 1996 (xsd:integer)

https://dbpedia.org/page/Tiger_Woods

Woods turned professional in 1996 https://en.wikipedia.org/wiki/Tiger_Woods

Future Work Continued

- Investigate methods of factoring in POS tags and parse labels
 - Helps to generalize
 - Due to generalization could reduce training size needed

Typical text encoding

Can we do this?

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC