Processos de Decisão Markovianos

Processo de Decisão Markoviano (PDM) ⇒ Processo Estocástico no qual o estado do processo no futuro depende apenas do estado do processo e da decisão escolhida no presente. Em estado e tempo discretos fica:

$$P\{X(t+1) = x_{t+1} | X(t) = x_{t}, d_{x_{t}}(R) = k_{t}, X(t-1) = x_{t-1}, d_{x_{t-1}}(R) = k_{t-1}, ..., X(0) = x_{0}, d_{0}(R) = k_{0}\} = P\{X(t+1) = x_{t+1} | X(t) = x_{t}, d_{x_{t}}(R) = k_{t}\}$$

PDM é descrito por 4 tipos de informações:

- 1. Espaço de Estados \Rightarrow E = $\{0,1,...,M\}$
- 2. Conjunto de Decisões \Rightarrow para cada estado i, existe um conjunto de decisões possíveis $d_i(R) = \{1.2,...K\}$, sendo tomada apenas uma delas segundo uma política R. Assim $\{\Delta_t, t = 0,1,...\}$ é a seqüência de decisões tomadas. R é $\{d_0(R), d_1(R),...,d_M(R)\}$.
- 3. Probabilidades de Transição $\Rightarrow p_{ij}(k) = P\{X(t+1) = j | X(t) = i, d_i(R) = k\}$
- 4. Custos Esperados \Rightarrow C_{ik} é o custo esperado de se tomar a decisão k com o processo no estado i.

PDM \Rightarrow seqüência de estados X(0), X(1),.... e decisões tomadas Δ_0 , Δ_1 ,....

<u>Objetivo Principal</u> ⇒ Determinar a política R que minimize os custos a longo período (horizonte infinito). Obs: Problemas de Programação Dinâmica Não Determinísticos com Horizonte Infinito = PDM.

Exemplo Protótipo

Uma máquina engarrafadora de água em perfeitas condições pode no dia seguinte apresentar algum defeito com probabilidade 0.09 ou passar a uma situação de avaria total com probabilidade 0,01. Trabalhando com defeito, a máquina pode manter-se neste estado no dia seguinte com probabilidade 0,55 ou passar ao estado de avaria total com probabilidade 0,45.

Espaço de Estados
$$\Rightarrow$$
 E = $\{0,1,2\}$ \Rightarrow $\{\text{perfeito, defeito, a varia _total}\}$

Matriz de Transição \Rightarrow

$$\begin{array}{c}
0 & 0.9 & 0.09 & 0.01 \\
P = 1 & 0 & 0.55 & 0.45 \\
2 & 0 & 0 & 1
\end{array}$$

Considerando as seguintes ações possíveis para tomada de decisão:

Decisão	Ação
1	Não fazer nada
2	Reparar a máquina
3	Substituir a máquina

Algumas políticas possíveis com as decisões dadas são:

Política	$d_0(R)$	d ₁ (R)	d ₂ (R)
R_1	1	1	3
R_2	1	3	3
R_3	1	2	3
R_4	1	2	2

A substituição faz com que o processo retorne ao estado 0, mas a reparação se for feita no estado 1, em 80 % dos casos a máquina fica em perfeitas condições e no restante fica na mesma situação com defeito. Se a reparação for feita no estado 2, em 30 % dos casos a máquina fica em perfeitas condições e no restante fica na mesma situação com defeito. As matrizes de transição para cada política são:

Considerando que a reparação da máquina custa \$30,00 e perda de um dia de produção, a substituição custa \$60,00 e perda de um dia de produção, funcionando com defeito custa \$10,00 e o custo de um dia de produção perdida é \$20,00 os custos para cada estado são:

		C_{ik}	
Estado	Decisão		
	1	2	3
0	0	50	80
1	10	50	80
2	inf	50	80

Pode-se agora calcular o custo de cada política através de:

$$E(C) = \sum_{i=0}^{M} C_{ik} \pi_i$$

Política	(π_0, π_1, π_2)	E(C)	
R ₁	(0.7692,0.1539,0.0769)	7.6923	
R_2	(0.9091,0.0818,0.0091)	7.2727	
R ₃	(0.8909, 0.1002, 0.0089)	5.7238	
R ₄	(0.8840, 0.1072, 0.0088)	5.8011	

Mínimo

Determinação de Políticas Ótimas via Programação Linear \Rightarrow uma maneira possível de determinar política ótima sem enumeração exaustiva (força-bruta).

Representação matricial de uma política:

$$R = \begin{bmatrix} Decisão & 0 & 1 & ... & K \\ Estado & & & & & \\ 0 & \begin{bmatrix} D_{01} & D_{02} & ... & D_{0K} \\ D_{11} & D_{12} & ... & D_{1K} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ D_{M1} & D_{M2} & ... & D_{MK} \end{bmatrix} \quad \text{com} \quad 0 \leq D_{ik} \leq 1 \quad \text{e} \quad \text{para} \quad \text{cada} \quad i \Rightarrow \sum_{k=1}^K D_{ik} = 1 \\ D_{ik} = 0 \text{ ou } 1 \Rightarrow \text{política determinística}, \text{ caso contrário} \\ \text{política aleatória}$$

Decisão 1 2 3
Estado

$$R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 0.4 & 0.6 \end{bmatrix}$$
R aleatória

<u>Probabilidades Conjuntas Estacionárias</u> $\Rightarrow y_{ik}^{1} = P(estado = i e decisão = k)$

conjunta = priori (estacionária)*condicional
$$\begin{cases} y_{ik} = \pi_i.D_{ik} \\ \\ \pi_i = \sum_{i=1}^{K} y_{ik} \end{cases}$$
 priori i = somatória conjuntas variando k

$$\begin{aligned} &\text{conjunta = priori (estacionária)*condicional} \\ & priori i = \text{somatória conjuntas variando k} \end{aligned} \begin{cases} y_{ik} = \pi_i.D_{ik} \\ \pi_i = \sum_{k=1}^K y_{ik} \\ \end{cases} \Leftrightarrow D_{ik} = \frac{y_{ik}}{\pi_i} = \frac{y_{ik}}{\sum_{k=1}^K y_{ik}}$$

As restrições a que estão sujeitas as probabilidades conjuntas y_{ik} podem ser escritas em função das restrições a que estão sujeitas as probabilidades de estados estáveis π_i , como:

$$\begin{cases} \sum_{i=0}^{M} \pi_i = 1 \Rightarrow \sum_{i=0}^{M} \sum_{k=1}^{K} y_{ik} = 1 \\ \pi_j = \sum_{i=0}^{M} \pi_i.p_{ij} \Rightarrow \sum_{k=1}^{K} y_{jk} = \sum_{i=0}^{M} \sum_{k=1}^{K} y_{ik}.p_{ij}(k) \\ y_{ik} \geq 0, i = 0,1,...,M \end{cases} \quad \text{e} \quad k = 1,2,...,K$$

$$\begin{cases} O \text{ custo médio esperado por unidade de tempo fica:} \\ E(C) = \sum_{i=0}^{M} \sum_{k=1}^{K} \pi_i C_{ik} D_{ik} = \sum_{i=0}^{M} \sum_{k=1}^{K} C_{ik}.y_{ik} \end{cases}$$

O custo médio esperado por unidade de tempo fica:

$$E(C) = \sum_{i=0}^{M} \sum_{k=1}^{K} \pi_{i} C_{ik} D_{ik} = \sum_{i=0}^{M} \sum_{k=1}^{K} C_{ik} . y_{ik}$$

A determinação da Política Ótima torna-se um problema de Programação Linear:

$$Min \qquad \sum_{i=0}^{M} \sum_{k=1}^{K} C_{ik}.y_{ik}$$

$$\begin{cases} \sum_{i=0}^{M} \sum_{k=1}^{K} y_{ik} = 1 \\ \sum_{k=1}^{K} y_{jk} - \sum_{i=0}^{M} \sum_{k=1}^{K} y_{ik}.p_{ij}(k) = 0, & \text{para} \quad j = 0,1,...,M \\ y_{ik} \ge 0, i = 0,1,...,M & e \quad k = 1,2,...,K \end{cases}$$

política encontrada será determinística: para cada i, $y_{ik} > 0$ para pelo menos um k (ao menos uma decisão tem que ser tomada para cada i), o que implica que para cada i, $y_{ik} > 0$ para um único k (existem M+2 restrições e, portanto, M+2 variáveis básicas, sendo que uma restrição é redundante, o que faz com que existam M+1 variáveis com valores # 0), ou seja, $D_{ik} = 0$ ou 1.

Exemplo: Considerando que quando se toma a decisão 2 no estado 0, a probabilidade do sistema se manter nesse estado aumenta em 0.05 e de passar para o estado 1 diminui em 0.05. As demais probabilidades de transição continuam as mesmas já citadas:

Código MPL

 custo infinito

$$Min\ 0Y01 + 50Y02 + 80Y03 + 10Y11 + 50Y12 + 80Y13 + 100000Y21 + 50Y22 + 80Y23$$

Subject to

$$Y01 + Y02 + Y03 + Y11 + Y12 + Y13 + Y21 + Y22 + Y23=1$$
;

$$Y01 + Y02 + Y03 - (0.9Y01 + 0.95Y02 + 1Y03 + 0Y11 + 0.8Y12 + 1Y13 + 0Y21 + 0.3Y22 + 1Y23) = 0;$$

$$Y11 + Y12 + Y13 - (0.09Y01 + 0.04Y02 + 0Y03 + 0.55Y11 + 0.2Y12 + 0Y13 + 0Y21 + 0.7Y22 + 0Y23) = 0;$$

$$Y21 + Y22 + Y23 - (0.01Y01 + 0.01Y02 + 0Y03 + 0.45Y11 + 0Y12 + 0Y13 + 1Y21 + 0Y22 + 0Y23) = 0;$$

Solução Ótima

MIN Z = 5.7238

Constraint	Slack	Shadow Price	
c1	0.0000	5.7238	
c2	0.0000	-55.4352	1 restrição
c3	0.0000	0.0000 —	⊢ ▶ '
c4	0.0000	18.9310	redundante

Variable	Activity	Reduced Cost	
Y01	0.8909	0.0000	
Y02	0.0000	47.2327	
Y03	0.0000	74.2762	
Y11	0.0000	12.7951	
Y12	0.1002	0.0000	,
Y13	0.0000	18.9310	/
Y21	0.0000	99994.2762 /	
Y22	0.0000	8.7416	
Y23	0.0089	0.0000	

custo reduzido infinito Política Ótima $D_{01} = D_{12} = D_{23} = 1$, demais nulas.

Fernando Nogueira

Processos de Decisão Markovianos