

KUET CCC Digital Skills for Students Training Final Examination

Final Examination
Course Title: Machine Learning with Python (ML-4)
Batch No. KUETEDGE33

Time: 01 hour N.B (i) Answer All the questions below. (ii) Figures in the right margin indicate full marks. (iii) Once you have answered the question, save the file as your _ID.ipyn and emedgeexam@kuet.ac.bd Q1 Implement Linear Regression Dataset: Use the Advertising.csv (https://raw.githubusercontent.com/selva86/datasets/master/Advertising.csv) Task: I. Load the dataset and use TV, Radio, and Newspaper as features to predict II. Split the data into training and testing sets. III. Implement and train a Linear Regression model using scikit-learn. IV. Calculate and print the Mean Squared Error (MSE) and R-squared (R²) sectors test set. Q2 Implement Logistic Regression Dataset: Use the Iris Dataset from (https://raw.githubusercontent.com/uiuc-cse/dafa14/gh-pages/data/iris.csv) Task: I. Load the dataset and classify whether the flower is "Iris-setosa" (binary classification).	
Ol Implement Linear Regression Dataset: Use the Advertising.csv (https://raw.githubusercontent.com/selva86/datasets/master/Advertising.csv) Task: I. Load the dataset and use TV, Radio, and Newspaper as features to predict II. Split the data into training and testing sets. III. Implement and train a Linear Regression model using scikit-learn. IV. Calculate and print the Mean Squared Error (MSE) and R-squared (R²) sectors set. Q2 Implement Logistic Regression Dataset: Use the Iris Dataset from (https://raw.githubusercontent.com/uiuc-cse/data14/gh-pages/data/iris.csv) Task: I. Load the dataset and classify whether the flower is "Iris-setosa" (binary)	Full Marks: 50
Dataset: Use the Advertising.csv (https://raw.githubusercontent.com/selva86/datasets/master/Advertising.csv) Task: I. Load the dataset and use TV, Radio, and Newspaper as features to predict II. Split the data into training and testing sets. III. Implement and train a Linear Regression model using scikit-learn. IV. Calculate and print the Mean Squared Error (MSE) and R-squared (R²) sectors set. Q2 Implement Logistic Regression Dataset: Use the Iris Dataset from (https://raw.githubusercontent.com/uiuc-cse/dafa14/gh-pages/data/iris.csv) Task: I. Load the dataset and classify whether the flower is "Iris-setosa" (binary)	
 I. Load the dataset and use TV, Radio, and Newspaper as features to predict II. Split the data into training and testing sets. III. Implement and train a Linear Regression model using scikit-learn. IV. Calculate and print the Mean Squared Error (MSE) and R-squared (R²) sectors set. Q2 Implement Logistic Regression Dataset: Use the Iris Dataset from (https://raw.githubusercontent.com/uiuc-cse/dafa14/gh-pages/data/iris.csv) Task: I. Load the dataset and classify whether the flower is "Iris-setosa" (binary 	(10)
IV. Calculate and print the Mean Squared Error (MSE) and R-squared (R²) sectors test set. Q2 Implement Logistic Regression Dataset: Use the Iris Dataset from (https://raw.githubusercontent.com/uiuc-cse/dafa14/gh-pages/data/iris.csv) Task: I. Load the dataset and classify whether the flower is "Iris-setosa" (binary)	Sales.
Q2 Implement Logistic Regression Dataset: Use the Iris Dataset from (https://raw.githubusercontent.com/uiuc-cse/dafa14/gh-pages/data/iris.csv) Task: I. Load the dataset and classify whether the flower is "Iris-setosa" (binary	ore for the
I. Load the dataset and classify whether the flower is "Iris-setosa" (binary	(10) data-
Classification).	
 II. Use sepal length and sepal width as features. III. Train a Logistic Regression model using scikit-learn. IV. Visualize the decision boundary. 	
Q3 Load the dataset using the python command "from sklearn.datasets import load_breast_cancer", Then do the following tasks:	(10)
 I. Load the dataset and perform standard scaling on the features. II. Apply PCA to reduce the dimensionality to 2 components. III. Visualize the data in 2D with PCA components as axes. 	
IV. Explain the explained variance ratio.V. Implement Probabilistic PCA using FactorAnalysis from sklearn.decomposition	osition.
Q4 Compute and Plot AUC-ROC Dataset: Use the following python command to get data: from sklearn.datasets import load_breast_cancer data = load_breast_cancer() X = data.data y = data.target Task:	(10)

- I. Train a Logistic Regression model to classify cancer
- II. Compute the probabilities of the positive class.

KUET CCC Digital Skills for Students Training Final Examination

Course Title: Machine Learning with Python (ML-4) Batch No. KUETEDGE33

- III. Plot the AUC-ROC curve using sklearn.metrics.roc_curve and calculate the AUC score.
- Q5 Implement a Simple Neural Network
 Dataset: Use the following command to get data:
 from tensorflow.keras.datasets import mnist
 (x_train, y_train), (x_test, y_test) = mnist.load_data()
 Task:

(10)

- I. Load and preprocess the MNIST dataset (flatten and normalize the images).
- II. Build a Neural Network using Sequential from tensorflow.keras.Input layer: Flatten the image to a vector.Hidden layers: Two layers with 128 neurons each, ReLU activation.Output layer: 10 neurons with softmax activation.
- III. Compile the model using adam optimizer and sparse_categorical_crossentropy loss.
- IV. Train the model for 5 epochs and evaluate its accuracy on the test set.