The group G is isomorphic to the simple Mathieu group M11. Ordinary character table of $G\cong M11$:

	1a	2a	3a	4a	5a	6a	8a	8b	11a	11 <i>b</i>
χ_1	1	1	1	1	1	1	1	1	1	1
χ_2	10	2	1	2	0	-1	0	0	-1	-1
χ_3	10	-2	1	0	0	1	$E(8) + E(8)^3$	$-E(8) - E(8)^3$	-1	-1
χ_4	10	-2	1	0	0	1	$-E(8) - E(8)^3$	$E(8) + E(8)^{} 3$	-1	-1
χ_5	11	3	2	-1	1	0	-1	-1	0	0
χ_6	16	0	-2	0	1	0	0	0	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^10$
χ_7	16	0	-2	0	1	0	0	0	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^10$	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$
χ_8	44	4	-1	0	-1	1	0	0	0	0
χ_9	45	-3	0	1	0	0	-1	-1	1	1
χ_{10}	55	-1	1	-1	0	-1	1	1	0	0

Trivial source character table of $G \cong M11$ at p = 5

-												
$Normalisers N_i$						N_1					N_2	
$p-subgroups \ of \ G \ up \ to \ conjugacy \ in \ G$			P_1						P_2			
Representatives $n_j \in N_i$	1 <i>a</i>	2a	3a 4	a = 6a	8a	8b	11a	11b	1 <i>a</i>	2a	4a	$\overline{4a}$
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	45	5	0	1 2	1	1	1	1	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	10	2	1	2 - 1	0	0	-1	-1	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	10	-2	1	0 1	$E(8) + E(8)^3$	$-E(8) - E(8)^3$	-1	-1	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	10	-2	1	0 1	$-E(8) - E(8)^3$	$E(8) + E(8)^3$	-1	-1	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	55	7	1 -	-1 1	-1	-1	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	60	4	-3	0 1	0	0	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^10$	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	60	4	-3	0 1	0	0	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^10$	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10}$	45	-3	0	1 0	-1	-1	1	1	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10}$	55	-1	1 -	-1 -1	1	1	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	1	1	1	1 1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	11	3	2 -	-1 0	-1	-1	0	0	1	1	-1	-1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	16	0	-2	0 0	0	0	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^10$	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$	1	-1	E(4)	-E(4)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	16	0	-2	0 0	0	0	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^10$	1	-1	-E(4)	E(4)

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 11, 3, 8, 2)(4, 10, 7, 5, 9)]) \cong C5$

 $N_1 = Group([(1,4,3,8)(2,5,6,9),(2,10)(4,11)(5,7)(8,9)]) \cong M11$ $N_2 = Group([(2,8,11,3)(4,10,5,7),(1,11,3,8,2)(4,10,7,5,9)]) \cong C5: C4$