Définition géométrique d'une coque

Une coque est un solide limité par deux surfaces parallèles distante d'une épaisseur h

Surface Moyenne : C'est la surface à égale distance des deux surfaces extérieures

Pour être une coque au sens de la mécanique des structure l'épaisseur h doit être faible devant les autres dimensions de la coque

Surface moyenne d'une coque

Soit P(x,y,z) un point de la surface moyenne d'une coque que nous nommerons S. Nous pouvons représenter cette surface par des fonctions paramétriques du type suivant :

$$P(x, y, z) \begin{cases} x = x(\alpha_1, \alpha_2) \\ y = y(\alpha_1, \alpha_2) \\ z = z(\alpha_1, \alpha_2) \end{cases}$$

 α_1 et α_2 se nomment coordonnées curviligne de P sur S. L'ensemble des couples (α_1, α_2) auxquels correspondent les points P constituent un domaine D de \mathcal{R}^2

 α_1 et α_2 se nomment coordonnées curviligne de P sur S. L'ensemble des couples $(\alpha_{1,}\alpha_{2})$ auxquels correspondent les points P constituent un domaine D de S

Nous supposerons :

$$\begin{cases} x = x(\alpha_1, \alpha_2) \\ y = y(\alpha_1, \alpha_2) \\ z = z(\alpha_1, \alpha_2) \end{cases}$$

- Que l'application de D sur S définie par les formules ci-dessus est bijective.
- Que les fonctions x, y et z admettent des dérivées partielles par rapport à α_1 et α_2 d'ordre aussi élevé que nécessaire.

Si l'on fait varier α_1 à l'intérieur du domaine D, α_2 étant constant on va générer un ensemble de lignes que l'on nommera \mathcal{L}_1 Si l'on fait varier α_2 à l'intérieur du domaine D, α_1 étant constant on va générer un ensemble de lignes que l'on nommera \mathcal{L}_2 .

Par chaque point P de la surface passent deux lignes et deux lignes seulement de chacune des deux familles \mathcal{L}_1 et \mathcal{L}_2

Nous nommerons s_1 et s_2 les abscisses curvilignes du point P sur chacune des courbes \mathcal{L}_1 et \mathcal{L}_2

Enfin nous nommerons β_1 et β_2 les dérivées partielles des abscisses curvilignes par rapport aux coordonnées curvilignes.

$$\beta_1 = \frac{\partial s_1}{\partial \alpha_1}$$
 et $\beta_2 = \frac{\partial s_2}{\partial \alpha_2}$

Conséquence:

$$\begin{cases}
\frac{\partial \overrightarrow{OP}}{\partial s_{1}} = \overrightarrow{e_{1}} = \frac{\partial \overrightarrow{OP}}{\partial \alpha_{1}} \frac{\partial \alpha_{1}}{\partial s_{1}} = \frac{1}{\beta_{1}} \frac{\partial \overrightarrow{OP}}{\partial \alpha_{1}} \implies \frac{\partial \overrightarrow{OP}}{\partial \alpha_{1}} = \beta_{1} \cdot \overrightarrow{e_{1}} \\
\frac{\partial \overrightarrow{OP}}{\partial s_{2}} = \overrightarrow{e_{2}} = \frac{\partial \overrightarrow{OP}}{\partial \alpha_{2}} \frac{\partial \alpha_{2}}{\partial s_{2}} = \frac{1}{\beta_{2}} \frac{\partial \overrightarrow{OP}}{\partial \alpha_{2}} \implies \frac{\partial \overrightarrow{OP}}{\partial \alpha_{2}} = \beta_{2} \cdot \overrightarrow{e_{2}}
\end{cases}$$

Remarque : Dans la pratique nous choisirons des familles de courbes \mathcal{L}_1 et \mathcal{L}_2 qui seront orthogonales entre elles en chaque point.

Théorème du repère mobile

$$\frac{d}{ds} \begin{pmatrix} \vec{X}_1 \\ \vec{X}_2 \\ \vec{X}_3 \end{pmatrix} = \begin{bmatrix} 0 & A_{12} & A_{13} \\ -A_{12} & 0 & A_{23} \\ -A_{13} & -A_{23} & 0 \end{bmatrix} \begin{pmatrix} \vec{X}_1 \\ \vec{X}_2 \\ \vec{X}_3 \end{pmatrix}$$

Repère de Frenet

$$\vec{e} = \frac{dOM}{ds}$$

$$\frac{d\vec{e}}{ds} = \frac{\vec{n}}{R}$$

$$\vec{b} = \vec{e} \quad \Lambda \quad \vec{n}$$

$$\frac{d}{ds} \begin{pmatrix} \vec{e} \\ \vec{n} \\ \vec{b} \end{pmatrix} = \begin{bmatrix} 0 & \frac{1}{R} & 0 \\ -\frac{1}{R} & 0 & \frac{1}{T} \\ 0 & -\frac{1}{T} & 0 \end{bmatrix} \begin{pmatrix} \vec{e} \\ \vec{n} \\ \vec{b} \end{pmatrix}$$

Soit une courbe L_1 inscrite sur la surface moyenne d'une coque. Sur cette courbe nous pouvons repérer la position d'un point P par son abscisse curviligne s_1 . Nous savons construire en P un vecteur unitaire $\overrightarrow{e_1}$ tangent à la courbe :

$$\overrightarrow{e_1} = \frac{d\overrightarrow{OP}}{ds_1}$$

Le repère de Darboux Ribaucourt associé à la surface moyenne et à la courbe L_1 en P est formé par les trois vecteur de base suivants :

- $\overrightarrow{e_1}$ le vecteur unitaire tangent en P à la courbe L_1
- $\overrightarrow{g_1}$ le vecteur normal à $\overrightarrow{e_1}$ dans le plan tangent à la surface en P
- $\vec{k_1}$ obtenu par produit vectoriel pour disposer d'un repère direct. $\vec{k_1} = \vec{e_1} \Lambda \vec{g_1}$

Si nous appliquons le théorème du repère mobile au repère de Darboux Ribaucourt, nous obtenons :

$$\frac{d}{ds_{1}} \begin{pmatrix} \overrightarrow{e_{1}} \\ \overrightarrow{g_{1}} \\ \overrightarrow{k_{1}} \end{pmatrix} = \begin{bmatrix} 0 & \frac{1}{R_{g1}} & \frac{1}{R_{n1}} \\ -\frac{1}{R_{g1}} & 0 & \frac{1}{T_{g1}} \\ -\frac{1}{R_{n1}} & -\frac{1}{T_{g1}} & 0 \end{bmatrix} \begin{pmatrix} \overrightarrow{e_{1}} \\ \overrightarrow{g_{1}} \\ \overrightarrow{k_{1}} \end{pmatrix}$$

$$\begin{cases} \frac{1}{R_{g1}} & \text{Courbure g\'eod\'esique} \\ \frac{1}{R_{n1}} & \text{Courbure Normale} \\ \frac{1}{T_{g1}} & \text{Torsion g\'eod\'esique} \end{cases}$$

Nous pouvons définir au même point P de la surface moyenne, un deuxième repère de Darboux Ribaucourt, associé à une deuxième courbe passant par le point P

De la même façon que précédemment nous avons les relations suivante.

$$\frac{d}{ds_{2}} \begin{pmatrix} \overrightarrow{e_{2}} \\ \overrightarrow{g_{2}} \\ \overrightarrow{k_{2}} \end{pmatrix} = \begin{bmatrix} 0 & \frac{1}{R_{g2}} & \frac{1}{R_{n2}} \\ -\frac{1}{R_{g2}} & 0 & \frac{1}{T_{g2}} \\ -\frac{1}{R_{n2}} & -\frac{1}{T_{g2}} & 0 \end{bmatrix} \begin{pmatrix} \overrightarrow{e_{2}} \\ \overrightarrow{g_{2}} \\ \overrightarrow{k_{2}} \end{pmatrix}$$

$$\begin{cases} \frac{1}{R_{g2}} & \text{Courbure g\'eod\'esique} \\ \frac{1}{R_{n2}} & \text{Courbure Normale} \\ \frac{1}{T_{g2}} & \text{Torsion g\'eod\'esique} \end{cases}$$

Calcul des courbures

Pour calculer courbure normales et géodésique, ainsi que torsion il est utile de partir du repère de Frenet.

On défini les deux angles de calage ϕ_i de la façon suivante

Remarque:

L'orientation de l'angle φ_1 est donné par $\overrightarrow{e_2}$ L'orientation de l'angle φ_2 est donné par $\overrightarrow{e_1}$

$$\begin{cases} \boldsymbol{\varphi}_1 = \left(\overrightarrow{n}_1, \overrightarrow{k}\right) \\ \boldsymbol{\varphi}_2 = \left(\overrightarrow{n}_2, \overrightarrow{k}\right) \end{cases}$$

Calcul des courbures

Pour passer du repère de Frenet au repère de Darboux Ribaucourt nous utilisons les formules suivantes

$$\begin{pmatrix} \vec{e} \\ \vec{n} \\ \vec{b} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \sin \varphi & \cos \varphi \\ 0 & -\cos \varphi & \sin \varphi \end{bmatrix} \begin{pmatrix} \vec{e} \\ \vec{g} \\ \vec{k} \end{pmatrix}$$

Par ailleurs le théorème du repère mobile permet d'écrire
$$\begin{cases} \frac{d\vec{e}}{ds} = \frac{\vec{n}}{R} = \frac{\sin\varphi}{R} + \frac{\cos\varphi}{R} \neq \frac{1}{R} = \frac{\sin\varphi}{R} \\ \frac{d\vec{e}}{ds} = \frac{\vec{g}}{R_g} + \frac{\vec{k}}{R_n} \end{cases} = > \begin{cases} \frac{1}{R_g} = \frac{\sin\varphi}{R} \\ \frac{1}{R_n} = \frac{\cos\varphi}{R} \end{cases}$$

Exemple 1 : Sphère

Exemple 2 : Cylindre de Révolution

Exemple 3 : Cone de révolution

Exemple 4: Tore

Toutes les équations d'équilibres seront écrites dans un repère associé au point courant de la surface moyenne et formé par les directions $(\vec{e_1}, \vec{e_2}, \vec{K})$

De la même façon que nous avons défini des coupures pour les plaques nous pouvons définir des coupures pour des coques.

Equations d'équilibre : Système d'axe

$$\overrightarrow{e_2} = \overrightarrow{g_1}$$

$$\overrightarrow{e_1} = -\overrightarrow{g_2}$$

$$\overrightarrow{k_1} = \overrightarrow{k_2} = \overrightarrow{k}$$

$$\begin{cases}
\frac{d}{ds_{1}} \begin{pmatrix} \overrightarrow{e_{1}} \\ \overrightarrow{g_{1}} \\ \overrightarrow{k_{1}} \end{pmatrix} = \begin{bmatrix}
0 & \frac{1}{R_{g1}} & \frac{1}{R_{n1}} \\
-\frac{1}{R_{g1}} & 0 & \frac{1}{T_{g1}} \\
-\frac{1}{R_{n1}} & -\frac{1}{T_{g1}} & 0
\end{bmatrix} \begin{pmatrix} \overrightarrow{e_{1}} \\ \overrightarrow{g_{1}} \\ \overrightarrow{k_{1}} \end{pmatrix} = > \begin{cases}
\frac{d\overrightarrow{e_{1}}}{ds_{1}} = \frac{1}{R_{g1}} \overrightarrow{g_{1}} + \frac{1}{R_{n1}} \overrightarrow{k_{1}} \\
\frac{d\overrightarrow{k_{1}}}{ds_{1}} = -\frac{1}{R_{n1}} \overrightarrow{e_{1}} - \frac{1}{T_{g1}} \overrightarrow{g_{1}} \\
\frac{d\overrightarrow{k_{1}}}{ds_{1}} = -\frac{1}{R_{n1}} \overrightarrow{e_{1}} - \frac{1}{T_{g1}} \overrightarrow{g_{1}}
\end{cases}$$

$$with \begin{cases} \overrightarrow{e_2} = \overrightarrow{g_1} \\ \overrightarrow{e_1} = -\overrightarrow{g_2} \\ \overrightarrow{k_1} = \overrightarrow{k_2} = \overrightarrow{k} \end{cases} \Longrightarrow$$

$$\begin{cases}
\frac{d}{ds_{1}} \begin{pmatrix} \overrightarrow{e_{1}} \\ \overrightarrow{e_{2}} \\ \overrightarrow{k} \end{pmatrix} = \begin{bmatrix}
0 & \frac{1}{R_{g1}} & \frac{1}{R_{n1}} \\
-\frac{1}{R_{g1}} & 0 & \frac{1}{T_{g1}} \\
-\frac{1}{R_{n1}} & -\frac{1}{T_{g1}} & 0
\end{bmatrix} \begin{pmatrix} \overrightarrow{e_{1}} \\ \overrightarrow{e_{2}} \\ \overrightarrow{k} \end{pmatrix}$$

$$\begin{cases} \frac{d}{ds_{2}} \begin{pmatrix} \overrightarrow{e_{2}} \\ \overrightarrow{g_{2}} \\ \overrightarrow{k_{2}} \end{pmatrix} = \begin{vmatrix} 0 & \frac{1}{R_{g2}} & \frac{1}{R_{n2}} \\ -\frac{1}{R_{g2}} & 0 & \frac{1}{T_{g2}} \\ -\frac{1}{R_{n2}} & -\frac{1}{T_{g2}} & 0 \end{vmatrix} \begin{pmatrix} \overrightarrow{e_{2}} \\ \overrightarrow{g_{2}} \\ \overrightarrow{k_{2}} \end{pmatrix} = \begin{cases} \frac{d\overrightarrow{e_{2}}}{ds_{2}} = \frac{1}{R_{g2}} \overrightarrow{g_{2}} + \frac{1}{R_{n2}} \overrightarrow{k_{2}} \\ \frac{d\overrightarrow{k_{2}}}{ds_{2}} = -\frac{1}{R_{n2}} \overrightarrow{e_{2}} - \frac{1}{T_{g2}} \overrightarrow{g_{2}} \end{cases}$$

$$with \begin{cases} \overrightarrow{e_{2}} = \overrightarrow{g_{1}} \\ \overrightarrow{e_{1}} = -\overrightarrow{g_{2}} \\ \overrightarrow{k_{1}} = \overrightarrow{k_{2}} = \overrightarrow{k} \end{cases} \implies \begin{cases} \frac{d}{ds_{2}} \begin{pmatrix} \overrightarrow{e_{1}} \\ \overrightarrow{e_{2}} \\ \overrightarrow{k} \end{pmatrix} = \begin{bmatrix} 0 & \frac{1}{R_{g2}} & -\frac{1}{T_{g2}} \\ -\frac{1}{R_{g2}} & 0 & \frac{1}{R_{n2}} \\ \frac{1}{T_{g2}} & -\frac{1}{R_{n2}} & 0 \end{bmatrix} \begin{pmatrix} \overrightarrow{e_{1}} \\ \overrightarrow{e_{2}} \\ \overrightarrow{k} \end{pmatrix}$$

$$\frac{d}{ds_{1}}\begin{pmatrix}\vec{e}_{1}\\\vec{e}_{2}\\\vec{k}\end{pmatrix} = \begin{bmatrix}
0 & \frac{1}{R_{g1}} & \frac{1}{R_{n1}} \\
-\frac{1}{R_{g1}} & 0 & \frac{1}{T_{g1}} \\
-\frac{1}{R_{n1}} & -\frac{1}{T_{g1}} & 0
\end{bmatrix}\begin{pmatrix}\vec{e}_{1}\\\vec{e}_{2}\\\vec{k}\end{pmatrix} \implies \frac{1}{\beta_{1}}\frac{d}{d\alpha_{1}}\begin{pmatrix}\vec{e}_{1}\\\vec{e}_{2}\\\vec{k}\end{pmatrix} = \begin{bmatrix}
0 & \frac{1}{R_{g1}} & \frac{1}{R_{n1}} \\
-\frac{1}{R_{g1}} & 0 & \frac{1}{T_{g1}} \\
-\frac{1}{R_{n1}} & -\frac{1}{T_{g1}} & 0
\end{bmatrix}\begin{pmatrix}\vec{e}_{1}\\\vec{e}_{2}\\\vec{k}\end{pmatrix}$$

$$\frac{d}{ds_{2}} \begin{pmatrix} \vec{e_{1}} \\ \vec{e_{2}} \\ \vec{k} \end{pmatrix} = \begin{bmatrix} 0 & \frac{1}{R_{g2}} & -\frac{1}{T_{g2}} \\ -\frac{1}{R_{g2}} & 0 & \frac{1}{R_{n2}} \\ \frac{1}{T_{g2}} & -\frac{1}{R_{n2}} & 0 \end{bmatrix} \begin{pmatrix} \vec{e_{1}} \\ \vec{e_{2}} \\ \vec{k} \end{pmatrix} \implies \frac{1}{\beta_{2}} \frac{d}{d\alpha_{2}} \begin{pmatrix} \vec{e_{1}} \\ \vec{e_{2}} \\ \vec{k} \end{pmatrix} = \begin{bmatrix} 0 & \frac{1}{R_{g2}} & -\frac{1}{T_{g2}} \\ -\frac{1}{R_{g2}} & 0 & \frac{1}{R_{n2}} \\ \frac{1}{T_{g2}} & -\frac{1}{R_{n2}} & 0 \end{bmatrix} \begin{pmatrix} \vec{e_{1}} \\ \vec{e_{2}} \\ \vec{k} \end{pmatrix}$$

Visseur sur une coupure

De la même façon que pour les plaques on défini pour les coques 5 composants pour le visseur sur une coupure de normale \vec{n}

 N_n = Flux effort Normal sur une coupure de normale n

 T_n = Flux effort Tranchant sur une coupure de normale \vec{n}

 Q_n = Flux effort Tranchant sur une coupure de normale \vec{n}

 U_n = Flux moment torsion sur une coupure de normale \vec{n}

 M_n = Flux moment flexion sur une coupure de normale \vec{n}

Etude Facette de normale e_1

L'élément d'intégration se trouve à une distance z du point P appartenant à la surface moyenne de la coque.

Surface jaune

$$dS_2 = ds_2^* \cdot dz$$

$$ds_2^* = (R_2 + z) \cdot d\theta_2 = (-R_{n2} + z) \cdot d\theta_2$$

$$ds_2 = R_2 \cdot d\theta_2 = -R_{n2} \cdot d\theta_2$$

$$ds_2^* = \left(1 - \frac{z}{R_{n2}}\right) \cdot ds_2$$

Composante du visseur

N = Flux effort Normal sur une coupure de normale \vec{e} T = Flux effort Tranchant sur une coupure de normale \vec{e} Q = Flux effort Tranchant sur une coupure de normale \vec{e} U = Flux moment torsion sur une coupure de normale \vec{e} M = Flux moment flexion sur une coupure de normale \vec{e}

Les 10 composantes du visseur

Coupure de normale
$$\overrightarrow{e_1}$$
 $\begin{cases} N_1 \\ T_1 \\ Q_1 \end{cases}$ Coupure de normale $\overrightarrow{e_2}$ $\begin{cases} N_2 \\ T_2 \\ Q_2 \\ U_1 \\ M_1 \end{cases}$

Relation entre Visseur et Contraintes

$$\begin{cases} dN_{1} = \int_{-h/2}^{h/2} \sigma_{1} & ds_{2}^{*} \cdot dZ \\ dT_{1} = \int_{-h/2}^{h/2} \tau_{12} & ds_{2}^{*} \cdot dZ \end{cases} \\ dQ_{1} = \int_{-h/2}^{h/2} \tau_{12} & ds_{2}^{*} \cdot dZ \end{cases} \Rightarrow \begin{cases} N_{1} = \frac{dN_{1}}{ds_{2}} = \int_{-h/2}^{h/2} \sigma_{1} \left(1 - \frac{Z}{R_{N2}}\right) & dZ \end{cases} \\ Q_{1} = \frac{dT_{1}}{ds_{2}} = \int_{-h/2}^{h/2} \tau_{12} \left(1 - \frac{Z}{R_{N2}}\right) & dZ \end{cases} \\ Q_{1} = \frac{dQ_{1}}{ds_{2}} = \int_{-h/2}^{h/2} \tau_{12} \left(1 - \frac{Z}{R_{N2}}\right) & dZ \end{cases} \\ M_{1} = \frac{dM_{1}}{ds_{2}} = \int_{-h/2}^{h/2} \tau_{12} \left(1 - \frac{Z}{R_{N2}}\right) & dZ \end{cases} \\ M_{1} = \frac{dM_{1}}{ds_{2}} = \int_{-h/2}^{h/2} \tau_{12} \left(1 - \frac{Z}{R_{N2}}\right) & Z \quad dZ \end{cases} \\ U_{1} = \frac{dU_{1}}{ds_{2}} = -\int_{-h/2}^{h/2} \tau_{12} \left(1 - \frac{Z}{R_{N2}}\right) & Z \quad dZ \end{cases}$$

Relation entre Visseur et Contraintes

$$\begin{cases} dN_{2} = \int_{-h/2}^{h/2} \sigma_{2} & ds_{1}^{*} \cdot dZ \\ dT_{2} = \int_{-h/2}^{h/2} \tau_{21} & ds_{1}^{*} \cdot dZ \\ dQ_{2} = \int_{-h/2}^{h/2} \tau_{2z} & ds_{1}^{*} \cdot dZ \end{cases} \Rightarrow \begin{cases} N_{2} = \frac{dN_{2}}{ds_{1}} = \int_{-h/2}^{h/2} \sigma_{2} \left(1 - \frac{Z}{R_{N1}}\right) & dZ \\ Q_{2} = \int_{-h/2}^{h/2} \tau_{2z} & ds_{1}^{*} \cdot dZ \end{cases} \Rightarrow \begin{cases} Q_{2} = \frac{dQ_{2}}{ds_{1}} = \int_{-h/2}^{h/2} \tau_{2z} \left(1 - \frac{Z}{R_{N1}}\right) & dZ \\ Q_{2} = \frac{dQ_{2}}{ds_{1}} = \int_{-h/2}^{h/2} \tau_{2z} \left(1 - \frac{Z}{R_{N1}}\right) & dZ \end{cases}$$

$$M_{2} = \frac{dM_{2}}{ds_{1}} = -\int_{-h/2}^{h/2} \sigma_{2} \left(1 - \frac{Z}{R_{N1}}\right) & Z \quad dZ \end{cases}$$

$$U_{2} = \frac{dU_{2}}{ds_{1}} = \int_{-h/2}^{h/2} \tau_{1} 1 \left(1 - \frac{Z}{R_{N1}}\right) & Z \quad dZ \end{cases}$$

Equations d'équilibre

Bilan des forces sur les coupures de normales $-\vec{e_1}$ et $\vec{e_1}$

Coupure de normale
$$-\overrightarrow{e_1}: \{-\overrightarrow{R_1}(\alpha_1)ds_2 = -\overrightarrow{R_1}(\alpha_1)\cdot\beta_2(\alpha_1)\cdot d\alpha_2\}$$

Coupure de normale e_1 :

$$\left\{ \overrightarrow{R_1} (\alpha_1 + d\alpha_1) \beta_2 (\alpha_1 + d\alpha_1) \cdot d\alpha_2 = \left(\overrightarrow{R_1} (\alpha_1) + \frac{\partial \overrightarrow{R_1} (\alpha_1)}{\partial \alpha_1} d\alpha_1 \right) \left(\beta_2 + \frac{\partial \beta_2 (\alpha_1)}{\partial \alpha_1} \cdot d\alpha_1 \right) d\alpha_2 \right\}$$

La somme des forces sur les deux coupures se réduit à

$$\overrightarrow{R_1} \frac{\partial \beta_2}{\partial \alpha_1} \cdot d\alpha_1 \cdot d\alpha_2 + \frac{\partial \overrightarrow{R_1}}{\partial \alpha_1} \cdot \beta_2 \cdot d\alpha_1 \cdot d\alpha_2 + \frac{\partial \overrightarrow{R_1}}{\partial \alpha_1} \cdot \frac{\partial \beta_2}{\partial \alpha_1} (d\alpha_1)^2 \cdot d\alpha_2$$

Qui donne par passage à la limite :
$$\left[\overrightarrow{R_1} \frac{\partial \beta_2}{\partial \alpha_1} \cdot + \frac{\partial \overrightarrow{R_1}}{\partial \alpha_1} \cdot \beta_2 \right] d\alpha_1 \cdot d\alpha_2$$

Equations d'équilibre

Bilan des forces sur les coupures de normales $-\overrightarrow{e_2}$ et $\overrightarrow{e_2}$

Coupure de normale
$$-\overrightarrow{e_2}: \{-\overrightarrow{R_2}(\alpha_2)ds_1 = -\overrightarrow{R_2}(\alpha_2)\cdot \beta_1(\alpha_2)\cdot d\alpha_1\}$$

Coupure de normale e_2 :

$$\left\{ \overrightarrow{R_2} \left(\alpha_2 + d\alpha_2 \right) \beta_1 \left(\alpha_2 + d\alpha_2 \right) \cdot d\alpha_1 = \left(\overrightarrow{R_2} \left(\alpha_2 \right) + \frac{\partial \overrightarrow{R_1} \left(\alpha_2 \right)}{\partial \alpha_2} d\alpha_2 \right) \left(\beta_1 + \frac{\partial \beta_1 \left(\alpha_2 \right)}{\partial \alpha_2} \cdot d\alpha_2 \right) d\alpha_1 \right\} \right\}$$

La somme des forces sur les deux coupures se réduit à

$$\overrightarrow{R_2} \frac{\partial \beta_1}{\partial \alpha_2} \cdot d\alpha_2 \cdot d\alpha_1 + \frac{\partial \overrightarrow{R_2}}{\partial \alpha_2} \cdot \beta_1 \cdot d\alpha_2 \cdot d\alpha_1 + \frac{\partial \overrightarrow{R_2}}{\partial \alpha_2} \cdot \frac{\partial \beta_1}{\partial \alpha_2} (d\alpha_2)^2 \cdot d\alpha_1$$

Qui donne par passage à la limite :
$$\left[\overrightarrow{R_2} \frac{\partial \beta_1}{\partial \alpha_2} + \frac{\partial \overrightarrow{R_2}}{\partial \alpha_2} \cdot \beta_1 \right] d\alpha_1 d\alpha_2 =$$

Equations d'équilibre

Il ne faut as oublier les forces de surface dans le bilan des efforts

Force de Surface : $\overrightarrow{p} \cdot ds_1 ds_2$

Soit au total:
$$\left(\left[\overrightarrow{R_1} \frac{\partial \beta_2}{\partial \alpha_1} + \frac{\partial \overrightarrow{R_1}}{\partial \alpha_1} \cdot \beta_2 \right] + \left[\overrightarrow{R_2} \frac{\partial \beta_1}{\partial \alpha_2} + \frac{\partial \overrightarrow{R_2}}{\partial \alpha_2} \cdot \beta_1 \right] + \overrightarrow{p} \cdot \beta_1 \cdot \beta_2 \right) d\alpha_1 d\alpha_2 = \overrightarrow{0}$$

Cette relation qui traduit l'équilibre des forces sur une coupure infiniment déliée peut s'écrire sous une forme synhtétique :

$$\frac{\partial}{\partial \alpha_{1}} \left(\beta_{2} \cdot \overrightarrow{R_{1}} \right) + \frac{\partial}{\partial \alpha_{2}} \left(\beta_{1} \cdot \overrightarrow{R_{2}} \right) + \beta_{2} \beta_{2} \cdot \overrightarrow{p} = \overrightarrow{0}$$

Equations d'équilibre : Forces

Il suffit ensuite de développer cette relation et de la projeter sur les trois axes du système local en utilisant les relations suivantes :

cette relation et de la projeter sur
$$\overrightarrow{R_1} \frac{\partial \beta_2}{\partial \alpha_1} \cdot + \frac{\partial \overrightarrow{R_1}}{\partial \alpha_2} \cdot \beta_2 + \overrightarrow{R_2} \frac{\partial \beta_1}{\partial \alpha_2} + \frac{\partial \overrightarrow{R_2}}{\partial \alpha_2} \cdot \beta_1 + \overrightarrow{p} \cdot \beta_1 \cdot \beta_2 = \overrightarrow{0}$$

$$\overrightarrow{R_1} = N_1 \cdot \overrightarrow{e_1} + T_1 \cdot \overrightarrow{e_2} + Q_1 \cdot \overrightarrow{k}$$
 and $\overrightarrow{R_2} = T_2 \cdot \overrightarrow{e_1} + N_2 \cdot \overrightarrow{e_2} + Q_2 \cdot \overrightarrow{k}$

$$\frac{\partial}{\partial \alpha_{1}} \left(N_{1} \cdot \overrightarrow{e_{1}} + T_{1} \cdot \overrightarrow{e_{2}} + Q_{1} \cdot \right) = \frac{\partial N_{1}}{\partial \alpha_{1}} \cdot \overrightarrow{e_{1}} + N_{1} \cdot \frac{\partial \overrightarrow{e_{1}}}{\partial \alpha_{1}} + \frac{\partial T_{1}}{\partial \alpha_{1}} \cdot \overrightarrow{e_{2}} + T_{1} \cdot \frac{\partial \overrightarrow{e_{2}}}{\partial \alpha_{1}} + \frac{\partial Q_{1}}{\partial \alpha_{1}} \cdot \overrightarrow{k} + Q_{1} \cdot \frac{\partial \overrightarrow{k}}{\partial \alpha_{1}}$$

$$\frac{\partial}{\partial \alpha_{2}} \left(T_{2} \cdot \overrightarrow{e_{1}} + N_{2} \cdot \overrightarrow{e_{2}} + Q_{2} \cdot \overrightarrow{k} \right) = \frac{\partial T_{2}}{\partial \alpha_{2}} \cdot \overrightarrow{e_{1}} + T_{2} \cdot \frac{\partial \overrightarrow{e_{1}}}{\partial \alpha_{2}} + \frac{\partial N_{2}}{\partial \alpha_{2}} \cdot \overrightarrow{e_{2}} + N_{2} \cdot \frac{\partial \overrightarrow{e_{2}}}{\partial \alpha_{2}} + \frac{\partial Q_{2}}{\partial \alpha_{2}} \cdot \overrightarrow{k} + Q_{2} \cdot \frac{\partial \overrightarrow{k}}{\partial \alpha_{2}}$$

$$\frac{\partial \beta_2}{\partial \alpha_1} = \frac{\beta_1 \beta_2}{R_{g2}} \quad and \quad \frac{\partial \beta_1}{\partial \alpha_2} = -\frac{\beta_1 \beta_2}{R_{g1}}$$

and results slide 23

Equations d'équilibre : Forces

Equilibre des Forces

$$\begin{cases} p_{1} + \frac{\partial N_{1}}{\partial s_{1}} + \frac{\partial T_{2}}{\partial s_{2}} + \frac{N_{1} - N_{2}}{Rg_{2}} - \frac{T_{1} + T_{2}}{Rg_{1}} - \frac{Q_{1}}{Rn_{1}} = 0 \\ p_{2} + \frac{\partial N_{2}}{\partial s_{2}} + \frac{\partial T_{1}}{\partial s_{1}} + \frac{N_{1} - N_{2}}{Rg_{1}} + \frac{T_{1} + T_{2}}{Rg_{2}} - \frac{Q_{2}}{Rn_{2}} = 0 \\ p_{z} + \frac{\partial Q_{1}}{\partial s_{1}} + \frac{\partial Q_{2}}{\partial s_{2}} + \frac{N_{1}}{Rn_{1}} + \frac{N_{2}}{Rn_{2}} + \frac{Q_{1}}{Rg_{2}} - \frac{Q_{2}}{Rg_{1}} = 0 \end{cases}$$

Equations d'équilibre

Bilan des moments sur une fibre infiniment déliée

- Coupures de normale

$$\begin{cases} normale & \overrightarrow{-e_1} & -\overrightarrow{M_1} \cdot \beta_2 \cdot d\alpha_2 \\ normale & \overrightarrow{e_1} & \left(\overrightarrow{M_1} + \frac{\partial \overrightarrow{M_1}}{\partial \alpha_1} d\alpha_1 \right) \left(\beta_2 + \frac{\partial \beta_2}{\partial \alpha_1} d\alpha_1 \right) d\alpha_2 \end{cases}$$

- Coupures de normale

$$\begin{cases} normale & \overrightarrow{-e_2} & -\overrightarrow{M_2} \cdot \beta_1 \cdot d\alpha_1 \\ normale & \overrightarrow{e_2} & \left(\overrightarrow{M_2} + \frac{\partial \overrightarrow{M_2}}{\partial \alpha_2} d\alpha_2 \right) \left(\beta_1 + \frac{\partial \beta_1}{\partial \alpha_2} d\alpha_2 \right) d\alpha_1 \end{cases}$$

Equations d'équilibre

Bilan des moments sur une fibre infiniment déliée

$$\begin{cases}
\left(\overrightarrow{M}_{2}\frac{\partial \beta_{1}}{\partial \alpha_{2}} + \frac{\partial \overrightarrow{M}_{2}}{\partial \alpha_{2}}\beta_{1}\right) d\alpha_{1} d\alpha_{2} + \\
\left(\overrightarrow{M}_{1}\frac{\partial \beta_{2}}{\partial \alpha_{1}} + \frac{\partial \overrightarrow{M}_{1}}{\partial \alpha_{1}}\beta_{2}\right) d\alpha_{1} d\alpha_{2} + \\
\beta_{1} \cdot d\alpha_{1} \cdot \left(\overrightarrow{e_{1}}\Lambda \overrightarrow{R_{1}}\right) \cdot \beta_{2} \cdot d\alpha_{2} + \beta_{2} \cdot d\alpha_{2} \cdot \left(\overrightarrow{e_{2}}\Lambda \overrightarrow{R_{2}}\right) \cdot \beta_{1} \cdot d\alpha_{1} = \vec{0}
\end{cases}$$

Soit sous forme synthétique :

$$\frac{\partial \overrightarrow{M_1}}{\partial \alpha_1} \left(\beta_2 \cdot \overrightarrow{M_1} \right) + \frac{\partial}{\partial \alpha_2} \left(\beta_1 \cdot \overrightarrow{M_2} \right) + \beta_1 \beta_2 \left(\overrightarrow{e_1} \Lambda \overrightarrow{R_1} + \overrightarrow{e_2} \Lambda \overrightarrow{R_2} \right) = \overrightarrow{0}$$

Equations d'équilibre : Moment

$$\frac{\partial \overrightarrow{M_1}}{\partial \alpha_1} \left(\beta_2 \cdot \overrightarrow{M_1} \right) + \frac{\partial}{\partial \alpha_2} \left(\beta_1 \cdot \overrightarrow{M_2} \right) + \beta_1 \beta_2 \left(\overrightarrow{e_1} \Lambda \overrightarrow{R_1} + \overrightarrow{e_2} \Lambda \overrightarrow{R_2} \right) = \overrightarrow{0}$$

Il suffit ensuite de développer cette relation et de la projeter sur les trois axes du système local en utilisant les relations suivantes :

$$\overrightarrow{R_{1}} = N_{1} \cdot \overrightarrow{e_{1}} + T_{1} \cdot \overrightarrow{e_{2}} + Q_{1} \cdot \overrightarrow{k} \quad and \quad \overrightarrow{R_{2}} = T_{2} \cdot \overrightarrow{e_{1}} + N_{2} \cdot \overrightarrow{e_{2}} + Q_{2} \cdot \overrightarrow{k}$$

$$\frac{\partial}{\partial \alpha_{1}} \left(N_{1} \cdot \overrightarrow{e_{1}} + T_{1} \cdot \overrightarrow{e_{2}} + Q_{1} \cdot \right) = \frac{\partial N_{1}}{\partial \alpha_{1}} \cdot \overrightarrow{e_{1}} + N_{1} \cdot \frac{\partial \overrightarrow{e_{1}}}{\partial \alpha_{1}} + \frac{\partial T_{1}}{\partial \alpha_{1}} \cdot \overrightarrow{e_{2}} + T_{1} \cdot \frac{\partial \overrightarrow{e_{2}}}{\partial \alpha_{1}} + \frac{\partial Q_{1}}{\partial \alpha_{1}} \cdot \overrightarrow{k} + Q_{1} \cdot \frac{\partial \overrightarrow{k}}{\partial \alpha_{1}}$$

$$\frac{\partial}{\partial \alpha_{2}} \left(T_{2} \cdot \overrightarrow{e_{1}} + N_{2} \cdot \overrightarrow{e_{2}} + Q_{2} \cdot \overrightarrow{k} \right) = \frac{\partial T_{2}}{\partial \alpha_{2}} \cdot \overrightarrow{e_{1}} + T_{2} \cdot \frac{\partial \overrightarrow{e_{1}}}{\partial \alpha_{2}} + \frac{\partial N_{2}}{\partial \alpha_{2}} \cdot \overrightarrow{e_{2}} + N_{2} \cdot \frac{\partial \overrightarrow{e_{2}}}{\partial \alpha_{2}} + \frac{\partial Q_{2}}{\partial \alpha_{2}} \cdot \overrightarrow{k} + Q_{2} \cdot \frac{\partial \overrightarrow{k}}{\partial \alpha_{2}}$$

$$\frac{\partial \beta_{2}}{\partial \alpha_{1}} = \frac{\beta_{1} \beta_{2}}{R_{g2}} \quad and \quad \frac{\partial \beta_{1}}{\partial \alpha_{2}} = -\frac{\beta_{1} \beta_{2}}{R_{g1}}$$

$$and \quad results \quad slide \quad 26$$

Equations d'équilibre des moments

$$\frac{\partial}{\partial s_1} \left(M_1 \overrightarrow{e_2} + U_1 \overrightarrow{e_1} \right) + \frac{\partial}{\partial s_2} \left(M_2 \overrightarrow{e_1} + U_2 \overrightarrow{e_2} \right) + \overrightarrow{e_1} \Lambda \left(N_1 \cdot \overrightarrow{e_1} + T_1 \cdot \overrightarrow{e_2} + Q_1 \cdot \overrightarrow{k} \right) + \overrightarrow{e_2} \Lambda \left(T_2 \cdot \overrightarrow{e_1} + N_2 \cdot \overrightarrow{e_2} + Q_2 \cdot \overrightarrow{k} \right) = \overrightarrow{0}$$

$$\frac{d}{ds_{1}} \begin{pmatrix} \vec{e}_{1} \\ \vec{e}_{2} \\ \vec{k} \end{pmatrix} = \begin{bmatrix}
0 & \frac{1}{R_{g1}} & \frac{1}{R_{n1}} \\
-\frac{1}{R_{g1}} & 0 & \frac{1}{T_{g1}} \\
-\frac{1}{R_{n1}} & -\frac{1}{T_{g1}} & 0
\end{bmatrix} \begin{pmatrix} \vec{e}_{1} \\ \vec{e}_{2} \\ \vec{k} \end{pmatrix} \implies \begin{cases}
\frac{d\vec{e}_{1}}{ds_{1}} = \frac{\vec{e}_{2}}{R_{g1}} + \frac{\vec{k}}{R_{n1}} \\
\frac{d\vec{e}_{2}}{ds_{1}} = -\frac{\vec{e}_{1}}{R_{g1}} + \frac{\vec{k}}{T_{g1}} \\
\frac{d\vec{k}}{ds_{1}} = -\frac{\vec{e}_{1}}{R_{n1}} - \frac{\vec{e}_{2}}{T_{g1}}
\end{cases}$$

$$\frac{d}{ds_{2}} \begin{pmatrix} \overrightarrow{e_{1}} \\ \overrightarrow{e_{2}} \\ \overrightarrow{k} \end{pmatrix} = \begin{bmatrix} 0 & \frac{1}{R_{g2}} & -\frac{1}{T_{g2}} \\ -\frac{1}{R_{g2}} & 0 & \frac{1}{R_{n2}} \\ \frac{1}{T_{g2}} & -\frac{1}{R_{n2}} & 0 \end{bmatrix} \begin{pmatrix} \overrightarrow{e_{1}} \\ \overrightarrow{e_{2}} \\ \overrightarrow{k} \end{pmatrix} \implies \frac{d}{ds_{2}} \begin{pmatrix} \overrightarrow{e_{1}} \\ \overrightarrow{e_{2}} \\ \overrightarrow{k} \end{pmatrix} = \begin{bmatrix} 0 & \frac{1}{R_{g2}} & -\frac{1}{T_{g2}} \\ -\frac{1}{R_{g2}} & 0 & \frac{1}{R_{n2}} \\ \frac{1}{T_{g2}} & -\frac{1}{R_{n2}} & 0 \end{bmatrix} \begin{pmatrix} \overrightarrow{e_{1}} \\ \overrightarrow{e_{2}} \\ \overrightarrow{k} \end{pmatrix}$$

中国民航大学中欧航空工程师学院 2014年-2015年 - Coques

Equations d'équilibre : Moment

Equilibre des Moments

$$\begin{cases} \frac{\partial U_{1}}{\partial s_{1}} + \frac{\partial M_{2}}{\partial s_{2}} + \frac{U_{1} - U_{2}}{Rg_{2}} - \frac{M_{1} + M_{2}}{Rg_{1}} + Q_{2} = 0 \\ \frac{\partial U_{2}}{\partial s_{2}} + \frac{\partial M_{1}}{\partial s_{1}} + \frac{U_{1} - U_{2}}{Rg_{1}} + \frac{M_{1} + M_{2}}{Rg_{2}} - Q_{1} = 0 \\ \frac{U_{1}}{Rn_{1}} + \frac{U_{2}}{Rn_{2}} + T_{1} - T_{2} = 0 \end{cases}$$

Résolution d'un problème de coques

On se base sur trois hypothèses simplificatrices de la complexité de la réalité :

H1: Le champs de déplacement, somme d'une translation, d'une rotation et d'une déformation est approché par les deux premiers termes

H2 : On suppose que la contrainte sur une facette de normale z est nulle dans l'épaisseur de la coque

H3 : On approxime toutes les grandeurs du problèmes à un développement limité au

Terme constant : Théorie des membranes

Terme linéaire : Théorie linéaire

Terme quadratique: Théorie quadratique

C'est le cas:

- -Des coques lorsque l'épaisseur est très faible
- -Des réservoirs sphérique ou cylindrique travaillant sous pression

Le visseur possède seulement trois composantes non nulle N_1 , N_2 , T

$$\sigma_1$$
 = constant dans l'épaisseur σ_2 = constant dans l'épaisseur τ_{12} = constant dans l'épaisseur τ_{1z} = 0 τ_{2z} = 0

$$N_{1} = \int_{-h/2}^{h/2} \sigma_{1} \left(1 - \frac{Z}{R_{N2}} \right) dz = h \cdot \sigma_{1}$$

$$T_{1} = \int_{-h/2}^{h/2} \tau_{12} \left(1 - \frac{Z}{R_{N2}} \right) dz = h \cdot \tau_{12}$$

$$N_{2} = \int_{-h/2}^{h/2} \sigma_{2} \left(1 - \frac{Z}{R_{N2}} \right) dz = h \cdot \sigma_{2}$$

Les déformations sont immédiatement accessibles grâce à la loi de comportement du matériau

$$\varepsilon_{1} = \frac{1}{E}\sigma_{1} - \frac{v}{E}\sigma_{2}$$

$$\varepsilon_{2} = \frac{1}{E}\sigma_{2} - \frac{v}{E}\sigma_{1}$$

$$\varepsilon_{12} = \frac{1+v}{E}\varepsilon_{12}$$

C'est le cas:

- Des coques lorsque l'épaisseur est très faible
- Des coques soumissent à des flux de moments nuls
- Des réservoirs sphérique ou cylindrique travaillant sous pression

Le visseur possède seulement trois composantes non nulle N_1 , N_2 , T

$$\sigma_1$$
 = constant dans l'épaisseur σ_2 = constant dans l'épaisseur τ_{12} = constant dans l'épaisseur τ_{1z} = 0 τ_{2z} = 0

$$N_{1} = \int_{-h/2}^{h/2} \sigma_{1} \left(1 - \frac{Z}{R_{N2}} \right) dz = h \cdot \sigma_{1}$$

$$T_{1} = \int_{-h/2}^{h/2} \tau_{12} \left(1 - \frac{Z}{R_{N2}} \right) dz = h \cdot \tau_{12}$$

$$N_{2} = \int_{-h/2}^{h/2} \sigma_{2} \left(1 - \frac{Z}{R_{N2}} \right) dz = h \cdot \sigma_{2}$$

Les déformations sont immédiatement accessibles grâce à la loi de comportement du matériau

$$\varepsilon_{1} = \frac{1}{E}\sigma_{1} - \frac{v}{E}\sigma_{2}$$

$$\varepsilon_{2} = \frac{1}{E}\sigma_{2} - \frac{v}{E}\sigma_{1}$$

$$\varepsilon_{12} = \frac{1+v}{E}\varepsilon_{12}$$

Exemple 1:

Coques Linéaires

C'est le cas des coques travaillant en flexion et en torsion lorsque l'épaisseur est faible :

Le visseur possède seulement 10 composantes non nulle

$$N_1$$
, N_2 , T_1 , T_2 , M_1 , M_2 , U_1 , U_2 , Q_1 , Q_2 ,

 σ_1 = linéaire dans l'épaisseur

 σ_2 = linéaire dans l'épaisseur

 τ_{12} = linéaire dans l'épaisseur

 τ_{1z} = quadratique dans l'épaisseur

 τ_{2z} = quadratique dans l'épaisseur

$$\sigma_1(Z) = \overline{\sigma_1} + \overline{\overline{\sigma_1}} \cdot Z$$

$$\sigma_2(Z) = \overline{\sigma_2} + \overline{\overline{\sigma_2}} \cdot Z$$

$$\tau_{12}(Z) = \overline{\tau_{12}} + \overline{\overline{\tau_{12}}} \cdot Z$$

Coques Linéaires

Connaissant les composantes du visseur il ne reste plus qu'à intégrer les relations liant contraintes et visseur

$$N_{1} = \int_{-h/2}^{h/2} \left(\overline{\sigma_{1}} + Z \cdot \overline{\overline{\sigma_{1}}} \right) \left(1 - \frac{Z}{R_{N2}} \right) dZ = \frac{1}{R_{N2}} \overline{\sigma_{1}} + \overline{\overline{\sigma_{1}}}$$

$$M_{1} = \int_{-h/2}^{h/2} \left(\overline{\sigma_{1}} + Z \cdot \overline{\overline{\sigma_{1}}} \right) \left(1 - \frac{Z}{R_{N2}} \right) Z \cdot dZ \right) = h \overline{\sigma_{1}} - \frac{h^{3}}{12R_{N2}} \overline{\overline{\sigma_{1}}}$$

$$\begin{split} N_2 &= \int_{-h/2}^{h/2} \left(\overline{\sigma_2} + Z \cdot \overline{\overline{\sigma_2}} \right) \left(1 - \frac{Z}{R_{N1}} \right) \quad dZ = \frac{1}{R_{N1}} \overline{\sigma_2} + \overline{\overline{\sigma_2}} \\ M_2 &= \int_{-h/2}^{h/2} \left(\overline{\sigma_2} + Z \cdot \overline{\overline{\sigma_2}} \right) \left(1 - \frac{Z}{R_{N1}} \right) \quad Z \cdot dZ) = h \overline{\sigma_2} - \frac{h^3}{12 R_{N1}} \overline{\overline{\sigma_2}} \end{split}$$