Univerza v Ljubljani Fakulteta za matematiko in fiziko Finančna matematika – 1. stopnja

Tilen Humar, Urban Rupnik

Iskanje bitonične rešitve problema potujočega trgovca

Projekt OR pri predmetu Finančni praktikum

1. Predstavitev problema

Problem potujočega trgovca oziroma problem trgovskega potnika je ponavadi zastavljen v naslednji obliki.

Obstaja n mest, za katera poznamo razdalje med poljubnim parom mest. Trgovec želi obiskati vsa mesta, pri čemer pot začne in konča v istem mestu in vsak kraj obišče natanko enkrat. Katera je najkrajša oziroma najcenejša pot, ki jo lahko izbere trgovec?

V matematičnem jeziku se problem torej prevede na iskanje najcenejšega Hamiltonovega cikla v polnem grafu K_n v ravnini, kjer ima vsaka povezava e znano utež (ceno) c_e . Ker pa je v osnovi dotični problem "NP-težek", to je, da bi za iskanje njegove rešitve potrebovali več kot polinomski čas, se omejimo na lažjo nalogo iskanja njegove najkrajše bitonične rešitve.

2. Bitonična pot

Definicija 2.1. Zaporedje $(x_n)_{n \in \mathbb{N}}$ je bitonično, ko obstaja tak $k, 1 \leq k < n$, da velja

$$x_1 \le x_2 \le \dots \le x_k \ge \dots \ge x_n$$
.

Bitonična rešitev problema, bo torej pot, kjer bomo začeli v skrajno levo ležečem vozlišču, nadaljevali strogo desno do najbolj desnega vozlišča in še strogo levo nazaj do izhodišča. Bitoničnost poti lahko na grafu preverimo z navpičnicami. Vsaka navpična črta seka pot največ dvakrat.

SLIKA 1. Primer bitonične in nebitonične poti na grafu

Iskanje najkrajše bitonične poti je standardna naloga v dinamičnem programiranju, rešljiva v polinomskem času $O(n^2)$, poznamo pa tudi hitrejši algoritem s časovno zahtevnostjo $O(n\log^2 n)$.

3. Dinamično programiranje

Imamo poln graf K_n z množico n vozlišč $\{v_1, v_2, \ldots, v_n\}$, urejenih po naraščajoči x koordinati. Cene povezav so enake (evklidski) razdalji med posameznima vozliščema. Naš problem iskanja najkrajše bitonične poti (po definiciji dinamičnega

programiranje) razdelimo na manjše probleme.

Naj bo $P_{i,j}$ (za $i \leq j$) najkrajša bitonična pot, ki se začne v vozlišču v_i , nadaljuje strogo levo do v_1 in nato strogo desno do v_j , kjer se konča. Slednja pot obišče vozlišča $\{v_1, v_2, \ldots, v_j\}$. Rešitev problema potujočega trgovca bo torej pot $P_{n,n}$ oziroma $P_{n-1,n} + e_{n-1,n}$, kjer je $e_{n-1,n}$ povezava med v_{n-1} in v_n . Razčlenimo do zdaj ugotovljeno na nekaj podprimerov, iz česar bomo izpeljali rekurzivno formulo.

Naj za pot $P_{i,j}$ velja i < j - 1. V slednji poti bo tako v_{j-1} predhodnik v_j , zato velja, če iz poti $P_{i,j}$ odstranimo povezavo $e_{j-1,j}$, dobimo rešitev $P_{i,j-1}$.

Na spodnji sliki 2 je izrisan primer poti $P_{5,8}$, kjer omenjena neenakost velja (5 < 8 - 1). Ko smo na poti odstranili povezavo $e_{7,8}$, nam je ostala ravno pot $P_{5,7}$ (desna slika).

SLIKA 2. Primer grafov poti $P_{i,j}$ za i < j - 1.

Poglejmo še primer, ko za $P_{i,j}$ velja i = j - 1. Na poti $P_{i,j}$ bo imela točka v_j predhodnika v_k za $1 \le k \le j - 2$. Če sedaj odstranimo povezavo $e_{k,j}$ nam ostane pot $P_{k,j-1}$.

SLIKA 3. Primer grafov poti $P_{i,j}$ za i = j - 1

Slednji primer je prikazan na sliki 3. Za pot $P_{6,7}$ velja enakost (6 = 7 - 1), torej ima vozlišče v_7 predhodnika v_k (za $1 \le k \le 7 - 2$). V našem primeru je k = 4 in ko iz

poti $P_{6,7}$ odstranimo povezavo $e_{4,7}$, dobimo ravno pot $P_{4,6}$.

V zadnji primer (i = j - 1) spada tudi skrajni dogodek i = 1 in j = 2. Imamo pot z le dvema vozliščema, torej je ta enaka kar njuni povezavi $P_{1,2} = e_{1,2}$.

Zgornje izpeljave lahko sedaj združimo v rekurzivno formulo.

$$P_{i,j} = \begin{cases} e_{1,2} & i = 1, j = 2\\ P_{i,j-1} + e_{j-1,j} & i < j-1\\ \min_{1 \le k \le j-2} P_{k,j-1} + e_{k,j} & i = j-1 \end{cases}$$

4. Program

V programskem jeziku R, sva pripravila program, ki vsebuje:

- \bullet funkcijo za generiranje točk v \mathbb{R}^2
- funkcijo za risanje točk
- funkcijo za izračun evklidske razdalje med točkama
- program za iskanje najkrajše bitonične poti
- funkcijo za izpis poti
- 4.1. **Generiranje podatkov.** Za generiranje podatkov oziroma točk v ravnini poskrbi pomožna funkcija **generiraj_tocke**, ki sprejme število želenih točk in koordinate pravokotnika (**zgornja_x**, **spodnja_x**, **zgornja_y**, **spodnja_y**) s katerim omejimo območje naših podatkov.

Predpostavila sva, da so x-koordinate točk različna cela števila znotraj izbranega pravokotnika (če je slednji premajhen za prej izbrano želeno število točk, funkcija vrne največje možno število točk znotraj pravokotnika), y-koordinate pa so naključna realna števila.

4.2. **Program za iskanje najkrajše bitonične poti.** Glavni del programa lahko, v rahlo poenostavljeni obliki, predstavimo z naslednjo psevdokodo.

```
 \begin{array}{l} {\rm Razvrsti~seznam\_tock} \\ {\rm Ustvari~tabeli~B[1...n,~1...n]~in~C[1...n,~1...n]} \\ {\rm B[1,2] = razdalja\,(seznam\_tock\,[1\,,]\,,~seznam\_tock\,[2\,,])} \\ {\rm C[1,2] = 1} \\ {\rm for~(j~in~3:n)} \\ {\rm for~(i~in~1:(j-2))} \\ {\rm ~B[i\,,j] = B[i\,,j-1] + razdalja\,(seznam\_tock\,[j-1\,,]\,,~seznam\_tock\,[j\,,])} \\ {\rm ~C[i\,,j] = j-1} \\ {\rm ~B[j-1,j] = B[i\,,j-1] + razdalja\,(seznam\_tock\,[i\,,]\,,~seznam\_tock\,[j\,,])} \\ {\rm ~C[j-1,j] = i} \\ {\rm ~for~(k~in~2:(j-2))} \\ {\rm ~B[j-1,j] = min(B[j-1,j]\,,B[k\,,j-1] + razdalja\,(seznam\_tock\,[k\,,]\,,seznam\_tock\,[j\,,]))} \\ {\rm ~C[j-1,j] = k} \\ {\rm ~B[n,n] = B[n-1,n] + razdalja\,(seznam\_tock\,[n-1\,,]\,,~seznam\_tock\,[n\,,])} \\ {\rm ~C[n,n] = n-1} \\ {\rm ~return~B~and~C} \\ \end{array}
```

Program sprejme generiran seznam točk (x, y), ki jih najprej razvrsti po naraščajoči x-koordinati. Matrika B vsebuje dolžine poti, kjer je element v i-ti vrstici in j-tem stolpcu (B[i,j]) dolžina najkrajše bitonične poti $P_{i,j}$ (od vozlišča v_i , strogo levo do v_1 in nato strogo desno do v_j). Matrika C pa na [i,j]-tem mestu vsebuje predzadnje vozlišče poti $P_{i,j}$, torej predhodnika vozlišča v_j na tej poti.

Program vrne celotni matriki B in C. Rezultat našega iskanja problema najkrajše bitonične poti, ki vsebuje vsa vozlišča $(P_{n,n})$, bo tako [n,n]-ti element matrike B. Matriko C pa bomo uporabili pri konstrukciji slednjega cikla.

5. Eksperimentiranje s programom

Sedaj opravimo nekaj konkretnih eksperimentov z napisanom programom.

5.1. **1. eksperiment.** Generirajmo 6 točk v zaprtem pravokotniku $[0, 10] \times [0, 10]$. Funkcija nam vrne naslednji seznam točk, ki jih tudi narišimo.

Generirane točke v ravnini

S slednjim generiranim seznamom točk poženemo pogram, ki nam vrne naslednji matriki B in C.

0	5.224022	6.276005	9.096789	11.10039	17.97388
0	0	10.424776	13.245560	15.24916	22.12265
0	0	0	13.854668	15.85827	22.73176
0	0	0	0	18.49453	25.36803
0	0	0	0	0	21.80152
0	0	0	0	0	28.67501

Matrika B

V matriki B na mestu [6,6] najdemo dolžino najkrajše bitonične poti za naš problem potujočega trgovca: B[6,6] = 28.67501.

Cikel najkrajše bitonične rešitve $P_{6,6}$ in matrika C

5.2. Čas izvajanja programa. Glavni program za iskanje najkrajše bitonične rešitve potujočega trgovca ima, kot smo enkrat že povedali, kvadratično časovno zahtevnost $O(n^2)$. Naslednji graf 4 prikazuje porabljen čas programa v odvisnosti od števila generiranih točk. Čas generiranja točk ni vštet. Rdeča krivulja pa je kvadratna funkcija, ki se točkam najbolje prilega.

SLIKA 4. Čas izvajanja programa (v sekundah) v odvisnosti od števila točk