${\bf Homework}\ 7$

Elliott Pryor

 $29~{\rm March}~2021$

Problem 1 7.6.3 Problem 2

If $|f_n(x) - f_n(y)| \le M|x - y|^{\alpha}$ for some fixed M and $\alpha > 0$ and all x, y in a compact interval. Show that $\{f_n\}$ is uniformly equicontinuous

Proof.

By definition of uniform equicontinuity we need to show: $\forall 1/m \; \exists 1/n \; st \; |x-y| < 1/n \implies |f_k(x)-f_k(y)| < 1/m \; \forall k$ We have from the definition of f_n that $|f_n(x)-f_n(y)| \leq M|x-y|^{\alpha}$, So $|f_k(x)-f_k(y)| \leq M|x-y|^{\alpha} \leq M(1/n)^{\alpha}$ which we need to be < 1/m. So we choose $1/n < \sqrt[\alpha]{\frac{1}{Mm}}$ since M, α are defined and $\alpha > 0$ we can compute this for any 1/m as required.

Problem 2 7.6.3 Problem 5

Give an example of a sequence that is uniformly equicontinuous but not uniformly bounded

 $f_n=x+n$. Is uniformly equicontinuous since can choose n=m. But is not uniformly bounded since $f_m\to\infty$ as $n\to\infty$.

Problem 3 7.6.3 Problem 6

Prove that the family of all polynomials of degree $\leq N$ with coefficients in [-1,1] is uniformly bounded and uniformly equicontinuous on any compact interval.

Hint: Let the compact interval be [a, b], and each polynomial in the family has the form

$$p(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_N x^N \quad x \in [a, b], \quad c_i \in [-1, 1], \quad 0 \le i \le N$$

To prove uniform equicontinuity, show that the derivatives of all polynomials in the family are uniformly bounded.

Proof.

Consider the derivatives of the family of functions: $p'(x) = c_1 + 2c_2x + 3c_3x^2 + \cdots + Nc_Nx^{N-1}$ Then let g be the polynomial with all coefficients = 1: $g(x) = 1 + x + x^2 + \cdots + x^N$, and $g'(x) = 1 + 2x + 3x^2 + \cdots + Nx^{N-1}$

Then clearly outside of (-1,1) $p \leq g$ and $p' \leq g'$ for any p in the family. And inside (-1,1), $p'(x) \leq \sum_{i=0}^n i$ since for any term $i \cdot c_i x^{i-1} \leq i \cdot x^{i-1} \leq i$ inside $x \in (-1,1)$. We call this summation $e = \sum_{i=0}^n i$. And let $f = \sup_{x \in [a,b]} g'(x)$ which we know exists since g' is continuous.

Then let $M = \max(e, f)$. So then clearly p' is uniformly bounded by M.

Then copied from the proof of Corollary 7.6.1: by MVT $\forall x,y \in [a,b] \ \forall k \ |f_k(x)-f_k(y)| = |f_k'(z)(x-y)| \leq |f_k'(z)||x-y| \leq M|x-y| < 1/m$ by choosing $1/n > \frac{1}{mM}$. Thus all p are equicontinuous

Problem 4 7.6.3 Problem 9

Give an example of a uniformly bounded and uniformly equicontinuous sequence of functions on the whole line that does not have any uniformly convergent subsequences.

Hint: Consider the following sequence of functions on \mathbb{R}

$$f_n(x) = \begin{cases} 0 & x \le n - 1 \\ x - (n - 1) & n - 1 < x \le n \\ 1 & x > n \end{cases}$$

PROOF.

Let $\{f_n\}$ be:

$$f_n(x) = \begin{cases} 0 & x \le n - 1 \\ x - (n - 1) & n - 1 < x \le n \\ 1 & x > n \end{cases}$$

Clearly f_n are uniformly bounded by M=1 for all $x \in \mathbb{R}$. Then we show that it is equicontinuous: $\forall 1/m \ \exists 1/n \ st \ |x-y| < 1/n \implies |f_k(x)-f_k(y)| < 1/m \ \forall k \text{ If } x,y \notin (n-1,n]$ then $|f_k(x)-f_k(y)|=0$. So then we only need to consider the middle portion. This is just a line of slope 1 with x-intercept at n-1, so it slants from 0, to 1 over interval [n-1,n]. If $x,y \in (n-1,n]$ then choose 1/n=1/m since: $|f_k(x)-f_k(y)|=|x-(n-1)-y+(n-1)|=|x-y|$ if only x or y are in (n-1,n] then also choose 1/n=1/m since (x,y) spans the 'corner' of the function, so $|f_k(x)-f_k(y)| \leq |x-y|$.

Consider any subsequence of f_n . Then suppose it meets the uniform convergence criteria. So then the Cauchy criteria is met: $\forall 1/m \ \exists N \ st \ \forall j,k \geq N \ \forall x \in \mathbb{R}|f_j(x)-f_k(x)| < 1/m$ Consider $k \geq j+4$ and x=j+2. Then $f_j(j+2)=1$ and $f_k(j+2)=0$ Thus $f_j(x)-f_k(x)=1>1/m$ for m>1. We can always do this for any j,k. So it violates the Cauchy criterion for any subsequence, thus there are no uniformly convergent subsequences.