In [1]: %run Latex_macros.ipynb

```
In [2]: # My standard magic ! You will see this in almost all my notebooks.

from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

# Reload all modules imported with %aimport
%load_ext autoreload
%autoreload 1

%matplotlib inline
```

Feature Importance

Given the n features in \mathbf{x} , which are the "most important"?

The multiple trees in a Random Forest offer several ways to answer this question.

Importance: Decrease in Impurity

Recall that the question that splits the examples corresponding to a node is chosen so as to maximize Information Gain.

One method of measuring the importance of \mathbf{x}_j is the amount of impurity decrease it creates.

- For each feature x_j
 - find each node ${\bf n}$ in any tree in the forest with question (j,v) for any v \circ compute the information gain of the split on (j,v)
 - average the information gain across all such nodes

That is, how much does impurity decrease when \mathbf{x}_j is used in a question.

- This is a biased method
 - lacksquare Recall the universe of possible values of \mathbf{x}_j is V_j
 - lacksquare Larger $|V_j|$ means \mathbf{x}_j is more likely to appear in a questions
 - \circ e.g., when \mathbf{x}_j is a continuous variable that has been made discrete
 - So \mathbf{x}_j will appear in more questions

Importance: Permutation importance

Let's consider building one tree from bootstrapped sample S.

Create another sample S', derived from S by permuting the values of \mathbf{x}_i .

- ullet maintains the unconditional distribution of ${f x}_j$
- breaks the correlation of \mathbf{x}_i with the target and other features

We can now measure the importance of \mathbf{x}_j as

• the change in out of bag accuracy of the tree built from S and S'.

That is, if \mathbf{x}_j is unimportant, then permuting its values should have little effect on accuracy.

Permutation Importance, feature j

X

 \mathbf{X}_{Perm}

\mathbf{x}_1	x ₂	•••	\mathbf{x}_{j}	 \mathbf{x}_n
$\mathbf{x}_{1}^{(1)}$	$\mathbf{x}_{2}^{(1)}$		$\mathbf{x}_{j}^{(1)}$	 $\mathbf{x}_n^{(1)}$
$\mathbf{x}_{1}^{(2)}$	$\mathbf{x}_{2}^{(2)}$		$\mathbf{x}_{j}^{(2)}$	 $\mathbf{x}_n^{(2)}$
÷	:		:	:
$\mathbf{x}_1^{(i)}$	$\mathbf{x}_2^{(i)}$		$\mathbf{x}_{j}^{(i)}$	 $\mathbf{x}_n^{(i)}$
:	:		:	:
$\mathbf{x}_1^{(n)}$	$\mathbf{x}_{2}^{(n)}$		$\mathbf{x}_{j}^{(n)}$	 $\mathbf{X}_{n}^{(n)}$

Scoreperm

Permutation importance also has issues

- may be biased if \mathbf{x}_j is strongly correlated with another feature $\mathbf{x}_{j'}$

In that case $\mathbf{x}_{j'}$ may compensate for the permuted \mathbf{x}_{j} , making \mathbf{x}_{j} seem unimportant.

```
In [4]: print("Done")
```

Done