menentukan Jumlah Produksi Kain Batik Lumajang dengan metode Fuzzy Tsukamoto

Perhitungan Manual

Data Permintaan, Persediaan dan Produksi Kain Batik

No	Tanggal	Permintaan	Persediaan	Produksi
1	04/07/2013	5164	774	5428
2	05/07/2013	2979	700	4393
3	06/07/2013	3517	1142	3928
4	07/07/2013	2227	628	5545
5	08/07/2013	3043	1452	4020
6	09/07/2013	4777	1018	4741
7	10/07/2013	3148	1147	6769
8	11/07/2013	5766	1419	4951
9	12/07/2013	7493	1332	5501
10	13/07/2013	4935	863	5369
11	14/07/2013	2049	1152	6029
12	15/07/2013	4778	617	4887
13	16/07/2013	6176	711	5775
14	17/07/2013	5821	567	5161
15	18/07/2013	6632	1237	6496
16	19/07/2013	2847	1223	3867
17	20/07/2013	7198	927	4948
18	21/07/2013	2360	1285	3719
19	22/07/2013	2925	1249	6705
20	23/07/2013	4861	1175	4768
21	24/07/2013	6510	1248	5433
22	25/07/2013	5070	926	4876
23	26/07/2013	7147	695	6180

24	27/07/2013	4254	667	4460
25	28/07/2013	4971	550	4785
		Minimal = 2049	Minimal = 550	Minimal = 3719
		Maksimal = 7493	Maksimal = 1285	Maksimal = 6769
		Median = 4861		

Mendefinisikan Variabel

a. Variable Permintaan

terdiri dari atas 3 himpunan fuzzy, yaitu "Turun", "Tetap" dan "Naik".

- → pmt Turun [o] = (o_med o / o_med o_min)
- → pmt Naik [o] = (o o_med / o_max o_med)
- → pmt Tetap [o] = (o_max o / o_max o_med) atau (o - o_min / o_med - o_min)

0 = 5662

b. Variable Persediaan

terdiri dari 2 himpunan fuzzy, yaitu "sedikit"dan "banyak".

- psd Sedikit [k] = (k_max k / k_max k_min)
- psd Banyak [k] = (k k min / k max k min)

k = 630

c. Variable Produksi terdiri dari 2 himpunan fuzzy, yaitu "**kurang**" dan "**tambah**".

- kurang [m] = (m_max m / m_max s_min)
 kurang [m] = (6769 m / 6769 3719)
- tambah [m] = (m m_min / s_max s_min)
 tambah [m] = (m 3719 / 6769 3719)

Inferensi

dari uraian diatas terbentuk 6 himpunan fuzzy dan diperoleh 6 aturan fuzzy sebagai berikut :

[Y1] jika Permintaan **TURUN**, dan Persediaan **BANYAK**, maka Produksi Barang **BERKURANG**.

```
= min(pmt tutun[5662], psd banyak[630])
```

- = min([0.28485064], [0.108843537])
- = 0.108843537

Menurut fungsi keanggotaan himpunan Produksi Barang BERKURANG pada persamaan di atas maka diperoleh persamaan berikut.

```
Y1 = Mmax-α 1( Mmax-Mmin)
Y1 = 6769-0.108843537(6769-3719)
Y1 = 6769 - 331.97278785
Y1 = 6437.03
```

[Y2] jika Permintaan **TURUN**, dan Persediaan **SEDIKIT**, maka Produksi Barang **BERKURANG**.

```
= min(pmt turun [5662], psd Sedikit[630])
```

- = min([0.28485064], [0.891156563])
- = 0.28485064

Menurut fungsi keanggotaan himpunan Produksi Barang BERKURANG pada persamaan di atas maka diperoleh persamaan berikut.

```
Y2 = Mmax-\alpha 2( Mmax-Mmin)
Y2 = 6769-0.28485064(6769-3719)
```

[Y3] jika Permintaan **NAIK**, dan Persediaan **BANYAK**, maka Produksi Barang **BERTAMBAH**.

- = min(pmt Naik [5662], psd Banyak[630])
- = min([0.3043313067], [0.108843537])
- = 0.108843537

Menurut fungsi keanggotaan himpunan Produksi Barang BERTAMBAH pada persamaan di atas maka diperoleh persamaan berikut.

Y3 = α 3(Mmax-Mmin)+ Mmin Y3 = 0.108843537(6769 - 3719) + 3719 Y3 = 331.97278785 + 1000

Y3 = 1331.97

[Y4] jika Permintaan **NAIK**, dan Persediaan **SEDIKIT**, maka Produksi Barang **BERTAMBAH**.

- = min(pmt Naik [5662], psd Banyak[630])
- = min([0.3043313067], [0.891156563])
- = 0.3043313067

Menurut fungsi keanggotaan himpunan Produksi Barang BERTAMBAH pada persamaan di atas maka diperoleh persamaan berikut.

 $Y4 = \alpha 4(Mmax-Mmin) + Mmin$ Y4 = 0.3043313067(6769 - 3719) + 3719

Y4 = 928.210485435 + 1000

Y4 = 1928.2

[Y5] jika Permintaan **TETAP**, dan Persediaan **SEDIKIT**, maka Produksi Barang **BERTAMBAH**.

- = min(pmt Tetap[5662], psd Sedikit[630])
- = min([0.695668693], [0.891156563])
- = 0.695668693

Menurut fungsi keanggotaan himpunan Produksi Barang BERTAMBAH pada persamaan di atas maka diperoleh persamaan berikut.

Y5 = Zmax-α 5(Zmax-Zmin) Y5 = 6769-0.695668693(6769-3719) Y5 = 6769 -2121.78951365 Y5 = 4647.2

[Y6] jika Permintaan **TETAP**, dan Persediaan **BANYAK**, maka Produksi Barang **BERKURANG**.

- = min(pmt Tetap[5662], psd Banyak[630])
- = min([0.695668693], [0.108843537])
- = 0.108843537

Menurut fungsi keanggotaan himpunan Produksi Barang BERKURANG pada persamaan di atas maka diperoleh persamaan berikut.

Y6 = Zmax-α 6(Zmax-Zmin) Y6 = 6769-0.108843537(6769-3719) Y6 = 6769 -331.97278785 Y6 = 6437

Defuzifikasi

Pada metode tsukamoto, untuk menentukan output crisp, digunakan defuzifikasi rata-rata terpusat, yaitu :

Υ= α 1*y 1+ α 2*y 2+α 3*y 3+ α 4*y 4+α 5*y 5+ α 6*y 6 / α 1+α 2+ α 3+α 4+ α 5+α 6

Y= 0.108843537*6437.03+0.28485064*5900+ 0.108843537*1331.97 +0.3043313067*1928.2+ 0.695668693*4647.2 +0.108843537*6437 /

0.108843537+0.28485064+0.108843537+ 0.3043313067 +0.695668693+ 0.108843537

Y= 700.629112975+1680.618776+144.976325978 +586.811625579 + 3232.91155011 + 700.625847669 / 1.6113812507

Y=7046.57323831 / 1.6113812507

Y=4373.00187975