Technische Universität München

BGCE Project: CAD – Integrated Topology Optimization

BGCE Final Milestone Meeting

S. Joshi, J.C. Medina, F. Menhorn, S. Reiz, B. Rüth, E. Wannerberg, A. Yurova February 26, 2016

Contents

1. Introduction

- 1.1 Motivation
- 1.2 Workflow Overview
- 1.3 Organization

2. Topology optimization

- 2.1 Internal structure
- 2.2 User view

3. Surface Extraction

- 3.1 Dual Contouring
- 3.2 Projection and Parametrization

4. B-Spline Fitting

- 4.1 Peters' scheme
- 4.2 Fitting pipeline
- 5. Summary & Outlook

Motivation

Current Design Process:

- Iterative and redundant
- Time consuming

Motivation

Current Design Process:

- · Iterative and redundant
- Time consuming

Topology optimization

 Promoted by additive manufacturing

Motivation

Current Design Process:

- · Iterative and redundant
- Time consuming

Topology optimization

 Promoted by additive manufacturing

Focus:

Convert optimized geometry to lightweight and scalable CAD formats

CAD design

STL interface

Voxelized topology

Specification of loads and fixtures

Optimized topology

Surface extraction

Parametrized CAD-geometries

Iterative design process

Schedule & Milestones

Schedule:

Schedule & Milestones

Schedule: (current)

Divide and Conquer

Project Manager

Team Leader

C++ Implementation

Friedrich Menhorn Saumitra Joshi Severin Reiz

Topology Optimization

Surface Extraction

Surface Fitting

Project management

Contents

1. Introduction

- 1.1 Motivation
- 1.2 Workflow Overview
- 1.3 Organization

2. Topology optimization

- 2.1 Internal structure
- 2.2 User view

3. Surface Extraction

- 3.1 Dual Contouring
- 3.2 Projection and Parametrization

4. B-Spline Fitting

- 4.1 Peters' scheme
- 4.2 Fitting pipeline
- 5. Summary & Outlook

Status

Last milestone

- Manual voxelization using CVMLCPP
- √ "Hard coded" script for ToPy input
- Topology optimized geometry using ToPy
- Recognition of boundary conditions

Today

- √ Voxelization with OpenCascade
- Extraction of loads, fixtures and active elements through colouring
- ✓ Automatic "one click" pipeline to surface reconstruction

But what does the user see?

But what does the user see?

Contents

1. Introduction

- 1.1 Motivation
- 1.2 Workflow Overview
- 1.3 Organization

2. Topology optimization

- 2.1 Internal structure
- 2.2 User view

3. Surface Extraction

- 3.1 Dual Contouring
- 3.2 Projection and Parametrization

4. B-Spline Fitting

- 4.1 Peters' scheme
- 4.2 Fitting pipeline
- 5. Summary & Outlook

Status

Last milestone

① Surface reconstruction with the VTK Toolbox

Today

- Extraction of voxel data from Topy
- 3D Dual Contouring implementation
- Coarsening and non-manifold edge treatment
- Projection of datapoints onto quads and respective parametrization
- (b) Interface to NURBS

From Voxel to Mesh Geometry

- Extract isosurface from voxel information
- Algorithms: Marching Cubes, Dual Contouring, Extended Models
- Problems with VTK's Marching Cube implementation

Figure : From [4],[5]

Dual Contouring

- Python implementation Use of powerful libraries, including VTK
- Output: Closed surface made out of quads
- Coarsening is needed for surface fitting algorithms

Dual Contouring

- Python implementation Use of powerful libraries, including VTK
- Output: Closed surface made out of quads
- Coarsening is needed for surface fitting algorithms

Dual Contouring — Problems

- Non–manifold edges appear
- One edge can only belong to two quads for the surface to be closed
- Special treatments in the implementation to avoid them

Dual Contouring — Problems

- Non–manifold edges appear
- One edge can only belong to two quads for the surface to be closed
- Special treatments in the implementation to avoid them

Dual Contouring — Input

- Interface between Topology Optimization and Surface Extraction
- Special implementation to use voxel data from ToPy as input

Demo

Projection and Parametrization

- Points from finer grid are projected to quads of the coarser grid
- Parameters u and v are found for each quad
- This information is needed for the algorithms in the last part of the pipeline

Contents

1. Introduction

- 1.1 Motivation
- 1.2 Workflow Overview
- 1.3 Organization

2. Topology optimization

- 2.1 Internal structure
- 2.2 User view

3. Surface Extraction

- 3.1 Dual Contouring
- 3.2 Projection and Parametrization

4. B-Spline Fitting

- 4.1 Peters' scheme
- 4.2 Fitting pipeline
- 5. Summary & Outlook

B–Spline

$$\vec{S}(u,v) = \sum_{i,j=1}^{n,m} \vec{C}_{i,j} N_i^{\rho}(u) N_j^{\rho}(v),$$

where p – degree of the B–Spline surface and n, m – number of control points in each direction.

B-Splines

- offer great flexibility for handling arbitrary shapes
- are CAD-standard

Engineers are working with CAD

B–Spline Fitting Pipeline [2]

Status

Last milestone

- Automatic patch selection
- Parametrization of obtained patches
- √ B—spline fitting using least squares
- (b) Smooth connection of patches
- Conversion back to CAD

Today

- Automatic patch selection moved to the surface extraction part
- √ Parametrization of obtained patches moved to the surface extraction part
- √ B—spline fitting using least squares modified
- √ Smooth connection of patches
- Conversion back to CAD

Control mesh

Refined control mesh

Bezier control points

B-Spline patch

Peters' surface

Long way to smoothness

Main ideas

- Use the mesh obtained from Dual Contouring as a control mesh
- Modify the fitting step to take advantage of the Peters' scheme

$$\downarrow$$

$$E_{dist}(V_x) = \sum_{i=1}^{N} ||P_i - y_i V_x||_2^2 \rightarrow min,$$

 y_i - coefficients obtained from the Peters' scheme theory.

Long way to smoothness

Main ideas

- Use the mesh obtained from Dual Contouring as a control mesh
- Modify the fitting step to take advantage of the Peters' scheme

$$\downarrow \\
E_{dist}(V_x) = \sum_{i=1}^{N} \parallel P_i - y_i V_x \parallel_2^2 \rightarrow min,$$

 y_i - coefficients obtained from the Peters' scheme theory.

What is achieved?

- Smoothness of the fitted surface is now guaranteed by construction
- Fitting of more complex shapes achieved

Improved pipeline[3]

Possible optimizations

- Introduction of the fairness functional in order to deal with more complex shapes
- Implementation of the adaptive refinement in order to control a maximum error tolerance
- Implementation of the parameter correction for the improved pipeline

Contents

1. Introduction

- 1.1 Motivation
- 1.2 Workflow Overview
- 1.3 Organization

2. Topology optimization

- 2.1 Internal structure
- 2.2 User view

3. Surface Extraction

- 3.1 Dual Contouring
- 3.2 Projection and Parametrization

4. B-Spline Fitting

- 4.1 Peters' scheme
- 4.2 Fitting pipeline

5. Summary & Outlook

What is done? What is next?

- Topology Optimization
 - √ Pipeline from CAD model to optimized voxel model
 - User input of boundary conditions
 - (b) Support for complex geometries
 - GUI for user interaction

What is done? What is next?

- Topology Optimization
 - ✓ Pipeline from CAD model to optimized voxel model
 - User input of boundary conditions
 - (b) Support for complex geometries
 - GUI for user interaction
- Surface Extraction
 - Dual Contouring for simple geometries
 - Provide necessary data for Surface Fitting
 - Unterfaces
 - Adaptive and topology safe Dual Contouring

What is done? What is next?

- Topology Optimization
 - √ Pipeline from CAD model to optimized voxel model
 - User input of boundary conditions
 - Support for complex geometries
 - GUI for user interaction
- Surface Extraction
 - Dual Contouring for simple geometries
 - Provide necessary data for Surface Fitting
 - Unterfaces
 - Adaptive and topology safe Dual Contouring
- Surface Fitting
 - √ B–spline fitting using least squares
 - Smooth connection of patches using Peters' scheme
 - Conversion back to CAD

Remaining questions

Python

- First part of the pipeline is in C++
- Second part of the pipeline is now in Python
- Easy to port from the original MATLAB prototypes

C++

- First part of the pipeline is in C++
- Second part of the pipeline is now in Python
- Cumbersome to implement

Remaining questions

Python

- First part of the pipeline is in C++
- Second part of the pipeline is now in Python
- Easy to port from the original MATLAB prototypes

ToPy Problem

Current implementation is using ToPy

C++

- First part of the pipeline is in C++
- Second part of the pipeline is now in Python
- Cumbersome to implement

Remaining questions

Python

- First part of the pipeline is in C++
- Second part of the pipeline is now in Python
- Easy to port from the original MATLAB prototypes

ToPy Problem

- Current implementation is using ToPy
- ⊖ ToPy is not available any more!

C++

- First part of the pipeline is in C++
- Second part of the pipeline is now in Python
- ⊖ Cumbersome to implement

Thank you for your attention!

Literature

- William Hunter. "Predominantly solid-void three-dimensional topology optimisation using open source software"
- Gerrit Becker, Michael Schäfer, Antony Jameson. "An advanced NURBS fitting procedure for post-processing of grid-based shape optimizations"
- Matthias Eck, Hugues Hoppe. "Automatic Reconstruction of B-Spline Surfaces of Arbitrary Topological Type"
- 4. Greg Turk, Marc Levoy "Stanford Bunny"
- Tao Ju, Frank Losasso, Scott Schaefer, Joe Warren. "Dual contouring of hermite data"

Projection and Parametrization on arbitrary quads

1. find least squares plane approximating quad

Figure: DC sphere

Figure: with plane quads

Projection and Parametrization on arbitrary quads

- 1. find least squares plane approximating quad
- 2. projection of datapoint onto plane

Coordinate transformation

system with basis

$$B_{BAD} = \left(\vec{n} \quad \vec{AB} \quad \vec{AD} \right)$$

yields

$$(B_{BAD})^{-1} P_1 = (\begin{array}{ccc} d & u & v \end{array})^T$$

Projection and Parametrization on arbitrary quads

- 1. find least squares plane approximating quad
- 2. projection of datapoint onto plane
- **3.** find corresponding parameters $[u, v] \in [0, 1]^2$

Problem:

$$\checkmark$$
 for P_1 : $(u, v) = (0.5, 0.4)$

$$\nearrow$$
 for P_2 : $(u, v) = (1, 1)$

Solution:

- **1.** if we get u + v > 1
- 2. use B_{BCD} instead of B_{BAD}
- 3. set u = 1 u, v = 1 v