A Contextual Normalised Edit Distance

Colin de la Higuera ¹ and Luisa Micó ²

¹Laboratoire Hubert Curien Université de Saint-Etienne Colin.Delahiguera@univ-st-etienne.fr

²Dpto. Lenguajes y Sistemas Informáticos Universidad de Alicante mico@dlsi.ua.es

April 18, 2008

Summary

- Introduction
- 2 Edit distance
- 3 The contextual edit distance
- 4 Experiments
- 5 Conclusions and future work

Summary

- Introduction
- 2 Edit distance
- The contextual edit distance
- 4 Experiments
- 5 Conclusions and future work

Introduction

 In Pattern Recognition, Computational Biology, Data Mining, Machine Learning ... there are some applications where data are represented by strings.

• The edit (Levenshtein) distance is a good candidate in many cases.

The problem

- Sometimes, the edit distance is not very suitable for some applications.
- Why? ... it lacks some type of normalisation

Examples:

- as \leftrightarrow on
- sun ↔ say
- \bullet performer \leftrightarrow peforme
- $\bullet \ supercalifragilistic \textbf{expialidocious} \leftrightarrow \textbf{supercalifragilistic} \textbf{oespialidocious} \\$

Example: handwritten character recognition

Example: handwritten character recognition

Example: handwritten character recognition

Edit distance

	0	0	в	В	0	c	C	B
C	52	62	61	115	94	62	156	157

Normalised edit distance

	0	0	в	В	0	c	C	B
C	0.51	0.74	0.54	0.71	0.63	0.45	0.87	0.88

Summary

- Introduction
- 2 Edit distance
- The contextual edit distance
- 4 Experiments
- 5 Conclusions and future work

Edit distance

Definitions

- ullet An alphabet Σ is a finite nonempty set of symbols
- A string $x = x_1 \cdots x_n$ is any finite sequence of symbols
- Σ^* is the set of all the strings over Σ
- |x| denotes the length of x

Edit distance

Given $x, y \in \Sigma^*$, x rewrites into y in k steps $(x \xrightarrow{k} y)$ using k operations of single symbol deletion, insertion or substitution.

The **edit distance** between x and y, $d_E(x, y)$, is the **smallest** k such that $x \xrightarrow{k} y$. [Levenshtein, 65]

Edit distance

Internal edit distance

The **internal edit distance**, $d_E^I(x, y)$, between x and y, is defined as the distance where only internal edit operations are allowed.

Then
$$d_E(x, y) = d_F^I(x, y)$$

Example: $d_E(\overline{a}\overline{b}\overline{a}\overline{a},\underline{baab}) \leq 3$ with an internal path

$$\overline{a}\overline{b}\overline{a}\overline{a} \to \underline{b}\overline{b}\overline{a}\overline{a} \to \underline{b}\overline{a}\overline{a} \xrightarrow{0} \underline{b}\underline{a}\overline{a} \xrightarrow{0} \underline{b}\underline{a}\underline{a} \to \underline{b}\underline{a}\underline{b}$$

Length of the path $I_E(\pi) = 5$

Some normalised edit distances

$$\bullet \ d_{sum}(x,y) = \frac{d_E(x,y)}{|x|+|y|}$$

•
$$d_{max}(x,y) = \frac{d_E(x,y)}{\max(|x|,|y|)}$$

$$\bullet \ d_{min}(x,y) = \frac{d_E(x,y)}{\min(|x|,|y|)}$$

more normalised edit distances

•
$$d_{MV}(x, y) = \min_{\pi} \left(\frac{d_E(\pi)}{l_E(\pi)} \right)$$

•
$$d_{YB}(x,y) = \frac{2d_E(x,y)}{|x| + |y| + d_E(x,y)}$$

[Yujian & Bo, 2007]

Objective of this work

Definition of a new normalised edit distance...

- that is a metric
- whose computational cost is small
- that has a good behaviour when using in fast NNS algorithms
- which works well in classification tasks

Summary

- Introduction
- 2 Edit distance
- The contextual edit distance
- 4 Experiments
- **5** Conclusions and future work

The contextual edit distance

Idea: consider that the weight of each edit operation is context dependent.

More precisely, when transforming u in v with an elementary operation, $d_C(u,v)=\frac{1}{\max(|u|,|v|)}$

- substitution or deletion $\rightarrow \frac{1}{|u|}$
- insertion $\rightarrow \frac{1}{|u|+1}$

Example:

$$baabb \rightarrow bbaabb$$

Definition

Normalised contextual edit distance

The normalised contextual edit distance for a path $x = \omega_o \rightarrow \omega_1 \rightarrow ... \omega_k = y$ is $\sum_{i=1}^k d_c(\omega_{i-1}, \omega_i)$.

The normalised contextual edit distance between x and y is the **minimum** value $d_C(\pi)$ over all possible paths π from x to y.

Example: d(aabb, baa)

$$d(aabb, baa) = \frac{17}{20}$$

Properties

- the contextual edit distance is a metric
- $d_C(x,y) = d_C^I(x,y)$
- the best path for the contextual edit distance may not be optimal for the *usual* edit distance
- for a given length the best path maximises the number of insertions and first inserts, then substitutes and finally deletes

Key algorithmic idea

- computing, for each value k, the maximum number $n_i(k)$ of insertions on a path of length k leading from x to y, and
- 2 finding the minimum value

$$\sum_{i=|x|+1}^{i=|x|+n_i(k)} \frac{1}{i} + n_s(k) \cdot \frac{1}{|x|+n_i(k)} + \sum_{i=|y|+1}^{i=|y|+n_d(k)} \frac{1}{i}$$

with

- $n_d(k) = |x| |y| + n_i(k)$
- $n_s(k) = k n_i(k) n_d(k)$

Computational complexity

The complexity of the proposed algorithm is $O(|x| \cdot |y| \cdot (|x| + |y|))$

but

the minimum value is obtained very often for $k = d_E(x, y)$

This allows to consider a heuristic called $d_{C,h}$ which is in $O(|x| \cdot |y|)$

Summary

- Introduction
- 2 Edit distance
- The contextual edit distance
- 4 Experiments
- 5 Conclusions and future work

Experiments

- What about the intrinsic dimension?
- What about the behaviour with fast NNS algorithms?
- What about the error rate in classification tasks?

Datasets:

- a Spanish dictionary \approx 80,000 words*
- a set of 20,000 DNA sequences of genes*
- a set of 10,000 contour strings of handwritten digits from the NIST Special Database 3

*from http://sisap.org

Using a heuristic

Comparison of d_C and $d_{C,h}$ for the Spanish dictionary (8000 samples)

Analysis of the intrinsic dimensionality

Dataset: genes

Analysis of the intrinsic dimensionality

Normalisation

$$ho = rac{\mu^2}{2\sigma^2}$$
 [Chávez et al, 2001]

Analysis of the intrinsic dimensionality

	Datasets				
Distances	Spanish D.	hand. digits	genes		
d_{YB}	40.57	18.81	8.43		
d_{MV}	33.98	19.36	11.25		
d _{max}	30.25	19.48	14.13		
$d_{C,h}$	18.61	7.95	1.88		
d _E	8.75	4.91	0.99		

Experiments with NNS algorithms [LAESA]

Comparison of d_C and $d_{C,h}$ for the Spanish dictionary (1000 samples)

Experiments with NNS algorithms

Comparison of d_C and $d_{C,h}$ for the handwritten character dataset (1000 samples)

Experiments with NNS algorithms

Dataset: Spanish dictionary

Experiments with NNS algorithms

Dataset: Handwritten digits

Classification task

Dataset: Handwritten digits

Distances	Error rate (%)
d_{YB}	5.19
d_{MV}	5.04
d_C	5.30
$d_{C,h}$	5.30
d _{max}	4.85
d _E	6.19

Summary

- Introduction
- 2 Edit distance
- The contextual edit distance
- 4 Experiments
- **6** Conclusions and future work

Conclusions

To summarise, we have proposed a new extension of the edit distance with the following properties:

- is a metric
- can be computed in cubic time, although an approximation is obtained in quadratic time;
- have a good behaviour when is used in fast NNS algorithms
- the error rate in a handwritten digit classification task is good

Future work

- further analysis is needed in order to reduce the complexity of the algorithm
- an adaptation of the technique to the generalised edit distance will be considered.