I Questions de cours

- 1 Montrer que si deux matrices A et B sont semblables, alors $\exp(A)$ et $\exp(B)$ sont semblables également.
- 2 Exercice 8 banque CCINP:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante positive de limite nulle.

a) Démontrer que la série $\sum_{n\in\mathbb{N}} (-1)^n u_n$ est convergente.

Indication: on pourra considérer $(S_{2n})_{n\in\mathbb{N}}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ avec $S_n = \sum_{k=0}^n (-1)^k u_k$.

- b) Donner une majoration de la valeur absolue du reste de la série $\sum_{n\in\mathbb{N}} (-1)^n u_n$.
- 3 Exercice 39 banque CCINP :

On note ℓ^2 l'ensemble des suites $x=(x_n)_{n\in\mathbb{N}}$ de nombres réels telles que la série $\sum_{n\in\mathbb{N}}x_n^2$ converge.

- a) Démontrer que, pour $x=(x_n)_{n\in\mathbb{N}}\in\ell^2$ et $y=(y_n)_{n\in\mathbb{N}}\in\ell^2$, la série $\sum_{n\in\mathbb{N}}x_ny_n$ converge.
- b) Démontrer que ℓ^2 est un sous-espace vectoriel de l'espace vectoriel des suites de nombres réels.

Dans la suite de l'exercice, on pose $(x|y) = \sum_{n=0}^{+\infty} x_n y_n$ et on admet que (\mid) est un produit scalaire dans ℓ^2 . On suppose que ℓ^2 est muni de ce produit scalaire et de la norme euclidienne associée, notée $\|\cdot\|$.

c) Soit $p \in \mathbb{N}$. Pour tout $x = (x_n)_{n \in \mathbb{N}} \in \ell^2$, on pose $\varphi(x) = x_p$. Démontrer que φ est une application linéaire et continue de ℓ^2 dans \mathbb{R} .

II Exercices axés sur le calcul

Exercice 1:

Soit $x \in \mathbb{R}^+$.

Montrer que le reste d'ordre n de la série $\sum_{n\geq 1} \frac{(-1)^n}{(n+x)^2}$ est le terme général d'une série convergente.

Exercice 2:

Pour $n \in \mathbb{N} \setminus \{0, 1\}$, on pose $u_n = \ln \left(1 - \frac{1}{n^2}\right)$.

Montrer la convergence de la série $\sum_{n\geq 2} u_n$ et calculer sa somme.

Exercice 3:

On considère la série $\sum_{n>0} \frac{(-1)^n}{\sqrt{n+1}}.$

- 1 Étudier la convergence et la convergence absolue de cette série.
- 2 Soient a, b deux réels tels que a < b. Pour $x \in [a; b]$, majorer (x a)(x b).
- 3 Montrer que le produit de Cauchy de la série par elle-même est une série divergente.

Exercice 4:

À l'aide d'une comparaison série-intégrale, montrer la divergence de la série $\sum_{n\geq 2} \frac{1}{n\ln(n)}$ et donner un équivalent de ses sommes partielles.

Exercice 5

Montrer que la série $\sum_{n\geq 1} \frac{\ln(n)}{n}$ diverge et donner un équivalent simple de $\sum_{k=1}^{n} \frac{\ln(k)}{k}$.

III Exercices axés sur le raisonnement

Exercice 6

Soit $p \in]-1;1[$.

Montrer que l'on a : $\sum_{n=0}^{+\infty} (n+1)p^n = \frac{1}{(1-p)^2}$.

Exercice 7:

Soit $\sum_{n\in\mathbb{N}}u_n$ une série à termes positifs convergente.

Montrer que la série $\sum_{n\in\mathbb{N}}u_n^2$ est également convergente.

Exercice 8:

Soit $f: \mathbb{N}^* \longrightarrow \mathbb{N}^*$ injective.

Démontrer que $\sum_{n\geq 1} \frac{f(n)}{n^2}$ est divergente.