Surface Binding Energy Prediction using Machine Learning Models

Under Guidance of Prof. Ali Haider Dr. Tuhin Khan

Shivanshu Verma 2015CH70186

Why Machine Learning?

- According to Sabatier Principle, binding energy is a good descriptor for catalytic activity.
- Using DFT calculations to find adsorbate binding energies on the surface takes a lot of time and computation even on HPC.
- Machine learning can predict the results based on previous results training in few minutes. More the data, more accurate the results.

Extracted Data (88, 587 reactions)

Equation	Chemical Composition	Facet	Reaction Energy
0.5N2(g) + * -> N*	Sc3V9	111	-2.810391181
0.5H2(g) + * -> H*	Pt9Ti3	111	-0.292809865
CH4(g) - 2.0H2(g) + * -> C*	Ag6Pd6	211	4.541566089

Filtered Data

Equation	Chemical Composition	Facet	Reaction Energy
CH4(g) + 5* -> C* + 4H*	Au3Cu	111	5.805189557
CH4(g) + 5* -> C* + 4H*	Au3Pb	111	5.419068456
CH4(g) + 5* -> C* + 4H*	Au3Pd	111	4.925831102

AIM

To predict carbon binding energy on 111 surfaces using catalyst atoms' properties as feature vector.

Feature Vector [AN, AM, group, period, radius, EN, MP, BP, H_FUS, density, IE, SE, same for second atom]

Linear Regression

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

Percentage Train Error 21.53735417606063 % with 8 outliner points
Percentage Test Error 30.934410272375384 % with 3 outliner points
RMSE Test_error: 0.8875567696515375 eV
RMSE Train_error: 0.5520982254578807 eV
R square score for test data is 0.8429051804630732
R square score for train data is 0.9235168915460406

Support Vector Regression

Support Vectors

Kernels

Percentage Train Error 19.369857561553 % with 10 of 56 outliner points
Percentage Test Error 23.270042167292488 % with 5 of 15 outliner points
RMSE Test_error: 1.0316915932174389 eV
RMSE Train_error: 0.8094243571324792 eV
R square score for test data is 0.8264718698190099
R square score for train data is 0.8468466755479362

Optimised with a set of

[Rbf, poly, linear, sigmoid]

kernels

Gradient Boosting Regressor

Gradient boosting adds sub-models incrementally to minimize a loss function

```
Percentage Train Error 8.174628494774993 % with 0 of 56 outliner points
Percentage Test Error 5.53857972665733 % with 1 of 15 outliner points
RMSE Test_error: 0.6508331058742077 eV
RMSE Train_error: 0.04295257966966715 eV
R square score for test data is 0.9533205958009017
R square score for train data is 0.999580761529814
```

Feature Importance

Comparison b/w Models

Comparison b/w Models

Comparison b/w Models

THANK YOU