# Mathematical models of action potentials

Part 2





#### **Outline: Part 2**

#### **Biology**

The challenges in understanding neuronal electrophysiology
The importance of the voltage-clamp technique
Separating Na<sup>+</sup> and K<sup>+</sup> currents

#### **Theme**

Voltage clamp was the key advance that made the Hodgkin-Huxley model possible

## Voltage changes result from ion movements



## Why do we call this the Hodgkin-Huxley model?

Sir Alan Hodgkin



1914-1998 Nobel Prize 1963

**Sir Andrew Huxley** 



1917-2012 Nobel Prize 1963

## What if Hodgkin & Huxley knew the currents?



Imagine that we can magically separate Na<sup>+</sup> and K<sup>+</sup> currents

## What if Hodgkin & Huxley knew the currents?



#### Change in current could result from:

change in conductance  $g_X$ , or change in driving forcre V-E<sub>X</sub>

Now let's plot V,  $I_K$ , and  $I_{Na}$  all on the same scale

## What if Hodgkin & Huxley knew the currents?



#### So the problem is:

- (1) a change in voltage causes a change in current
- (2) a change in current causes a change in voltage

This makes it difficult to separate

#### **Brief historical note**

#### Action potential recorded at Marine Biological Association at Plymouth



Hodgkin & Huxley (1939) *Nature* 144:710-711

Hodgkin & Huxley left Plymouth: August 30, 1939

Hitler invaded Poland: September 1, 1939

"We published this result in a letter in *Nature* (1939) with no discussion or explanation. In a full paper (1945) we gave four possible explanations, all wrong."

| Huxley (2002) | Physiol 539:2

## Voltage clamp of squid giant axon



Current I required to keep V<sub>command</sub>=V<sub>i</sub> is equal in magnitude to current flowing across the membrane

## Voltage clamp as 1D dynamical system



Command voltage therefore constitutes a stable fixed point

## Currents recorded under voltage clamp



How can  $I_{Na}$  and  $I_{K}$  be separated?

# A clever technique for separating I<sub>Na</sub> and I<sub>K</sub>



Assume that changing [Na<sup>+</sup>]<sub>o</sub> only affects I<sub>Na</sub>, not I<sub>K</sub>

# A clever technique for separating I<sub>Na</sub> and I<sub>K</sub>



## I<sub>Na</sub> and I<sub>K</sub> at different membrane potentials



How do we go from these recordings to the famous equations?

## Summary

Membrane voltage and ionic currents in neurons are interdependent, which makes it difficult to develop mathematical representations.

The voltage clamp method, pioneered by Hodgkin and Huxley, allows for the currents to be recorded while voltage is controlled.

Voltage clamp was the key advance that made the Hodgkin-Huxley model possible.