CS340: Theory of Computation

Sem I 2017-18

Lecture Notes 21: Hierarchy Theorems

Raghunath Tewari IIT Kanpur

Definition 0.1. A function $f: \mathbb{N} \to \mathbb{N}$ is said to be *space constructible* if there exists a TM M that on input 1^n marks f(n) cells on the output tape and halts using O(f(n)) amount of work space.

Theorem 1 (Space Hierarchy Theorem). For every space constructible function $s(n) \ge \log n$ there exists a language that is in SPACE(s(n)) but not in SPACE(s'(n)), where $s'(n) \in o(s(n))$.

Proof. We will show that there is a TM D that runs in space O(s(n)) and for every TM M that runs in space o(s(n)), D disagrees with M on at least one input. Hence L(D) does not have any TM that runs in space o(s(n)).

Tentative design of D

Input: $\langle N \rangle$

- 1. Verify whether the input is a correct encoding of a TM. If not, reject.
- 2. Compute s(n).
- 3. Simulate N on the string $\langle N \rangle$ using the work space of D. If at any point the space bound exceeds s(n) then reject
- 4. If N halts then halt. Accept iff N rejects.

Clearly D runs in space O(s(n)). Moreover if N runs in space asymptotically smaller than s(n) then by the definition of D, N and D differs on the input $\langle N \rangle$.

However there are two problems with the above construction, that can fortunately be taken care of.

- Problem 1: Even if $t(n) \in o(s(n))$ it can happen that for some small values of n, $t(n) \ge s(n)$. Hence for some TMs N' (with a small description) it can happen that N' runs in asymptotically lesser space but N' and D do not differ on any input.

Solution: Pad the input with some redundant characters at the end. The input will be $\langle N \rangle 1^k$. This artificially increases the input length. If N runs in asymptotically lesser space than D then for some k the output of D and N will differ.

- Problem 2: What if N loops forever on the input $\langle N \rangle$ and does not halt?

Solution: Here we use the fact that a TM using space s(n) has at most $2^{k_1s(n)}$ distinct configurations for some constant k_1 . We simulate N for at most $2^{k_1s(n)}$ number of steps using a counter and halt and reject if it does not accept by then.

Modified design of D

Input: $\langle N \rangle 1^k$

- 1. Verify whether $\langle N \rangle$ is a correct encoding of a TM. If not, reject.
- 2. Compute s(n).
- 3. Simulate N on the string $\langle N \rangle$ using the work space of D. If at any point the space bound exceeds s(n) then reject
- 4. If N runs for more than $2^{k_1s(n)}$ number of steps then halt and reject.
- 5. If N halts then halt. Accept iff N rejects.

Similarly there is a hierarchy theorem for time as well. It is slightly weaker than its space analogue.

Definition 0.2. A function $f: \mathbb{N} \to \mathbb{N}$ is said to be *time constructible* if there exists a TM M that on input 1^n outputs the binary encoding of f(n) on the output tape and halts in O(f(n)) time.

Theorem 2 (Time Hierarchy Theorem). For every time constructible function $t(n) \ge n$ there exists a language that is in TIME(t(n)) but not in TIME(t'(n)), where $t'(n) \in o(t(n)/\log t(n))$.