har to be amiliarious to B.Tech 5th Semester Exam., 2018

ANALOG ELECTRÓNICS

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsoru.
- 1. Choose the correct answer (any seven): 2×7=14
 - (a) For the BJT circuit (Fig. 1) shown below, assume that the $\boldsymbol{\beta}$ of the transistor is very large and $V_{BE} = 0.7 \text{ V}$:

http://www.akubihar.com

The small-signal gain of the amplifier V_C/V_S is

http://www.akubihar.com

- (i) -10
- (ii) 5.3
- fiii) 5·3
- (iv) 10
- The value of C required for sinusoidal oscillations of frequency 1 kHz in the circuit shown in Fig. 4 is

Fig. 4

AK9/147

(Qontinued)

http://www.akubihar.com

The mode of operation of the BJT is

(i) cut-off

http://www.akubihar.com

- (ii) saturation
- (iii) normal active >
- (iv) reverse active
- (b) Assuming $V_{CE, Sat} = 0.2 \text{ V}$ and $\beta = 50$, the minimum base current (I_B) required to drive the transistor in the given figure (Fig. 2) to saturation is

Fig. 2

- (i) 56 µA
- (ii) 140 µA
- (iii) 60 mA
- (tv) 3 mA

http://www.akubihar.com

In Fig. 4, transconductance in millisiemens (mS) and voltage gain of the amplifier are, respectively

(i) 1.875 mS and 3.41

(ii) 1.875 mS and -3.41

(iii) 3-3 mS and -6

(iv) 3.3 mS and 6

- (i) The cascade amplifier is a multistage configuration of
 - (9 CC-CB
 - (W) CE-CB
 - (iii) CB-CC
 - (iv) CE-CC &
 - Explain class B transformer-coupled amplifier with circuit diagram.
 - A transformer coupled class

http://www.akubihar.com $2M\Omega$ Fig. 5 http://www.akubihar.com $r_d = 20 \text{ k}\Omega$, $I_{DSS} = 10 \text{ mA}$, Given $V_p = -8V$, Z_i and Z_o of the circuit are, respectively (i) $2 M\Omega$ and $2 k\Omega$ (ii) 2 M Ω and $\frac{20}{11}$ k Ω (iii) infinity and $2 k\Omega$ (iv) infinity and $\frac{20}{11}$ k Ω — I_D and V_{DS} in Fig. 4 under DC conditions are, respectively (i) 5 625 mA and 8-75 V (ii) 7.5 mA and 5 V (iii) 4.5 mA and 11 V (iii) 6:250 mA and 7:5 V AK9/147 (Turn Over http://www.akubihar.com

quantature oscillator with circuit diagram.

In a BJT-based R-Cphase-shift oscillator, $R \approx 200 \text{ k}\Omega$ C = 200 PF Find the frequency of the BJT-based 7+7=14

Fig. 6

It is required to design a tuned amplifier of the type shown in Fig. 6, having $f_0 = 1 \text{ MHz}_s$ 3 dB bandwidth = 10 kHz, centre frequency gain = ~10 V/V. The FET available has at the bias point $g_m = 5 \text{ mA/V}$ and $r_0 = 10 \text{ k}\Omega$. The output capacitance is negligibly small. Determine R_L , C_L and L,

- Draw the small-signal equivalent circuit of common-emitter amplifier and derive the expression for (a) current gain, (b) input resistance and (c) voltage gain.
- Draw the hybrid-π model for a transistor in the CE configuration and discuss about each parameter.

AK9/147

(Turn Over)

14

http://www.akubihar.com

http://www.akubihar.com

(8)

Explain the effect of an emitter bypass capacitor on low frequency response of a BJT-based basic amplifier.

14

Explain the operation of common-base configuration of BJT and draw the inputoutput characteristics. Also explain the early effect.

14

- Write short notes on the following: 7+7=14
 - (a) Ideal voltage amplifier
 - Ideal transconductance amplifier

* * *

http://www.akubihar.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्य, Paytm or Google Pay ₹