Sveučilište u Zagrebu Geotehnički fakultet

	Riješ	Ocjena			
1	2	3	4	5	

Ponovljeni 1. kolokvij iz kolegija Fizika I

Akademska godina 2023./2024.

03. lipanj 2024.

Obavezno ispuniti:

Prezime: .			
Ime:			
Vlastoruči	ni potpis:		

1. Zadani su vektori $\vec{a}=-4\vec{i}-5\vec{j}+6\vec{k},$ $\vec{b}=2\vec{i}-3\vec{j}-7\vec{k}$ i $\vec{c}=-2\vec{i}+4\vec{j}-3\vec{k}.$ Izračunajte $[(\vec{a}\times\vec{b})-\vec{c}]\cdot\vec{b}.$

Rješenje: -5

2. Materijalna točka (MT) giba se u xy-ravnini tako da joj se vektor položaja mijenja u vremenu prema izrazu

$$\vec{r}(t) = te^{-2t}\vec{i} + \sqrt{t}\vec{j} \ [m].$$

Izračunajte vektor i iznos trenutnog ubrzanja MT u trenutku $t_1=0,\!3~s.$

Rješenje:

a)
$$\vec{v}(t=0,3\ s)=0.220\vec{i}+0.913\vec{j},\ |\vec{v}(t=0,3\ s)|=0.939\ [ms^{-1}]$$

b) $\vec{a}(t=0,3\ s)=-1.537\vec{i}-1.521\vec{j},\ |\vec{a}(t=0,3\ s)|=2.162\ [ms^{-2}]$

b)
$$\vec{a}(t=0.3 \text{ s}) = -1.537\vec{i} - 1.521\vec{j}, |\vec{a}(t=0.3 \text{ s})| = 2.162 \text{ } [ms^{-2}]$$

3. Lopta koje se u početnom trenutku t=0 s nalazi u točki A: $\vec{r_A}=3\vec{i}+4\vec{j}-3\vec{k}$ bačena je vertikalno prema gore brzinom iznosa $14ms^{-1}$. Kolika je udaljenost lopte od ishodišta koordinatnog sustava u trenutku $t_1=1,7$ s? (Otpor zraka se zanemaruje!)

Rješenje: d = 8.3m

4. Užetom pod kutom od $\alpha=10^\circ$ prema horizontali potrebno je po parketu vući sanduk mase m=20~kg, pri čemu je koeficijent kinetičkog trenja između parketa i sanduka $\mu_k=0,2$. Izračunajte iznos sile potreban da bi sanduk vukli jednoliko po pravcu.

Rješenje: $F_0 = 38,49 N$

$$F_0 = \frac{\mu mg}{\cos \alpha + \mu \sin \alpha}$$

5. Vanjska sila iznosa $F_0=42~N$ djeluje pod kutem od $\vartheta=30^\circ$ prema horizontali na blok A mase $m_A=5~kg$ koji gura blok B mase $m_B=2~kg$ (vidjeti skicu). Izračunajte iznos ubrzanja blokova A i B kada je kinetičko trenje između blokova i podloge $\mu_k=0,3$.

Rješenje: $a = 1.353 \ ms^{-2}$

Iznos sile kojom blok A djeluje na blok B jednaka je iznosu sile kojom blok B djeluje na blok A

$$|\vec{F}_{AB}| = |\vec{F}_{BA}|.$$

Zapisujemo sve sile na tijelo A

A:
$$\vec{F}_0 + \vec{G}_A + \vec{R}_A + \vec{F}_{tr,A} + \vec{F}_{BA} = m_A \vec{a} / \vec{k} / \vec{j}$$

i radimo projekcije na os z i y.

A,z:
$$F_0 \cos(\frac{\pi}{2} + \vartheta) - m_A g + R_A + 0 + 0 = 0$$

Funkciju $\cos(\frac{\pi}{2}+\vartheta)$ možemo raspisati preko funkcije zbroja

$$\cos(\frac{\pi}{2} + \vartheta) = \cos\frac{\pi}{2}\cos\vartheta - \sin\frac{\pi}{2}\sin\vartheta = -\sin\vartheta$$

$$-F_0 \sin \vartheta - m_a g + R_A = 0 \implies R_A = m_A g + F_0 \sin \vartheta$$

Što ćemo ursti u izraz za y os.

A,y:
$$F_0 \cos \vartheta + 0 + 0 - F_{tr,A} - F_{BA} = m_A a$$

$$F_0 \cos \vartheta - \mu_k R_A - F_{BA} = m_A a$$

$$F_0 \cos \vartheta - \mu_k (m_A g + F_0 \sin \vartheta) - F_{BA} = m_A a \tag{1}$$

Zapisujemo sve sile na tijelo B

B:
$$\vec{G}_B + \vec{R}_B + \vec{F}_{tr,B} + \vec{F}_{AB} = m_B \vec{a} / \vec{k} / \vec{j}$$

i radimo projekcije na os z i y.

B,z:
$$-m_B q + R_B + 0 + 0 = 0 \implies R_B = m_B q$$

B,y: $0+0-F_{tr,B}+F_{AB}=m_Ba \implies F_{AB}=m_Ba+\mu_kR_B$ Spajanjem posljednja dva izraza dobivamo:

$$F_{AB} = m_B a + \mu_k m_B g. (2)$$

U izraz 1 umjesto F_{BA} uvrstimo 2 dobivamo:

$$F_0 \cos \vartheta - \mu_k (m_A g + F_0 \sin \vartheta) - m_B a - \mu_k m_B g = m_A a.$$

$$a(m_A + m_B) = F_0 \cos \vartheta - \mu_k \left[(m_A + m_B)g + F_0 \sin \vartheta \right]$$

$$a = \frac{F_0 \cos \vartheta - \mu_k \left[(m_A + m_B)g + F_0 \sin \vartheta \right]}{m_A + m_B}$$

$$a = \frac{42N \cos 30^\circ - 0.3 \left[(5kg + 2kg)9.81ms^{-2} + 42N \sin 30^\circ \right]}{5kg + 2kg} = 1,353 \ ms^{-2}$$