Package 'pct'

March 5, 2025

```
Type Package
Title Propensity to Cycle Tool
Version 0.10.0
Description Functions and example data to teach and
      increase the reproducibility of the methods and code underlying
      the Propensity to Cycle Tool (PCT), a research project and web application
      hosted at <https://www.pct.bike/>.
      For an academic paper on the methods,
      see Lovelace et al (2017) <doi:10.5198/jtlu.2016.862>.
Depends R (>= 3.5.0)
License GPL-3
URL https://itsleeds.github.io/pct/, https://github.com/ITSLeeds/pct
BugReports https://github.com/ITSLeeds/pct/issues
Encoding UTF-8
LazyData true
Imports boot, stplanr (>= 0.2.8), readr, sf, crul
Suggests covr, curl, dplyr, ggplot2, knitr, leaflet, pbapply, remotes,
      rmarkdown, tmap, bookdown
VignetteBuilder knitr
RoxygenNote 7.2.3
Language en-GB
NeedsCompilation no
Author Robin Lovelace [aut, cre] (<a href="https://orcid.org/0000-0001-5679-6536">https://orcid.org/0000-0001-5679-6536</a>),
      Layik Hama [aut] (<a href="https://orcid.org/0000-0003-1912-4890">https://orcid.org/0000-0003-1912-4890</a>),
      Nathanael Sheehan [ctb] (<a href="https://orcid.org/0000-0002-2779-0976">https://orcid.org/0000-0002-2779-0976</a>)
Maintainer Robin Lovelace <rob00x@gmail.com>
Repository CRAN
Date/Publication 2025-03-05 08:40:07 UTC
```

2 desire_lines_leeds

Contents

wight_routes_30 wight_zones zones leeds	22
wight_lines_30	21
uptake_pct_govtarget	
santiago_zones	
santiago_routes_cs	15
santiago_lines	
routes_fast_leeds	14
pct_regions_lookup	
pct_regions	13
mode_names	
model_pcycle_pct_2020	11
get_pct_zones	10 11
get_pct_routes_quiet	9
get_pct_routes_fast	7 8
get_pct_lines	7
get_pct_centroids	6
get_od	4 5
get_desire_lines	3
get_centroids_ew	3

desire_lines_leeds

Cycle route desire lines for Leeds

Description

Cycle route desire lines for Leeds

Examples

see data-raw folder for generation code
desire_lines_leeds

get_centroids_ew 3

get_centroids_ew	Download MSOA centroids for England and Wales

Description

Downloads and processes data on where people live in England and Wales. See geoportal.statistics.gov.uk.

Usage

```
get_centroids_ew()
```

Description

This function generates "desire lines" from census 2011 data. By default gets all desire lines from census in region, but can get the top n.

Usage

```
get_desire_lines(region = NULL, n = NULL, omit_intrazonal = FALSE)
```

Arguments

region The PCT region or local authority to download data from (e.g. west-yorkshire or Leeds). See View(pct_regions_lookup) for a full list of possible region names.

n top n number of destinations with most trips in the 2011 census within the region.

omit_intrazonal should intrazonal OD pairs be omited from result? FALSE by default.

```
if(curl::has_internet()) {
  desire_lines = get_desire_lines("wight")
  plot(desire_lines)
  intra_zonal = desire_lines$geo_code1 == desire_lines$geo_code2
  plot(desire_lines[intra_zonal, ])
}
```

get_od

get_od

Get origin destination data from the 2011 Census

Description

This function downloads a .csv file representing movement between MSOA zones in England and Wales. By default it returns national data, but region can be set to subset the output to a specific local authority or region.

Usage

```
get_od(
  region = NULL,
  n = NULL,
  type = "within",
  omit_intrazonal = FALSE,
  base_url = paste0("https://s3-eu-west-1.amazonaws.com/",
        "statistics.digitalresources.jisc.ac.uk", "/dkan/files/FLOW/"),
  filename = "wu03ew_v2",
  u = NULL
)
```

Arguments

region	The PCT region or local authority to download data from (e.g. west-yorkshire or Leeds). See View(pct_regions_lookup) for a full list of possible region names.	
n	top n number of destinations with most trips in the 2011 census within the region.	
type	the type of subsetting: one of from, to or within, specifying how the od dataset should be subset in relation to the region.	
omit_intrazonal		
	should intrazonal OD pairs be omited from result? FALSE by default.	
base_url	the base url where the OD dataset is stored	
filename	the name of the file to download, if not the default MSOA level data.	
u	full url of file to download	

Details

OD datasets available include wu03uk_v3 and others listed on the Wicid website.

get_pct 5

Examples

```
get_od("wight", n = 3)
get_od()
get_od(filename = "wu03uk_v3")
u = "https://www.nomisweb.co.uk/output/census/2011/wf02ew_oa.zip"
# get_od(u = u)
```

get_pct

Generic function to get regional data from the PCT

Description

This function gets data generated for the Propensity to Cycle Tool project and returns objects in the modern sf class.

Usage

```
get_pct(
  base_url = "https://github.com/npct/pct-outputs-regional-notR/raw/master",
  purpose = "commute",
  geography = "lsoa",
  region = NULL,
  layer = NULL,
  extension = ".geojson",
  national = FALSE
)
```

Arguments

base_url	Where the data is stored.
purpose	Trip purpose (typically school or commute)
geography	Geographic resolution of outputs, msoa or lsoa (the default)
region	The PCT region or local authority to download data from (e.g. west-yorkshire or Leeds). See View(pct_regions_lookup) for a full list of possible region names.
layer	The PCT layer of interest, z, c, 1, rf, rq or rnet for zones, centroids, desire lines, routes (fast or quiet) and route networks, respectively
extension	The type of file to download (only .geojson supported at present)
national	Download nationwide data? FALSE by default

get_pct_centroids

Examples

```
## Not run:
rf = get_pct(region = "isle-of-wight", layer = "rf")
names(rf)[1:20]
vars_to_plot = 10:13
plot(rf[vars_to_plot])
z = get_pct(region = "isle-of-wight", layer = "z")
rf = get_pct(region = "west-yorkshire", layer = "rf")
z_all = get_pct(layer = "z", national = TRUE)
## End(Not run)
```

get_pct_centroids

Get centroid results from the PCT

Description

Wrapper around [get_pct()] that gets centroid data from the PCT.

Usage

```
get_pct_centroids(
  region = NULL,
  purpose = "commute",
  geography = "lsoa",
  extension = ".geojson"
)
```

Arguments

region The PCT region or local authority to download data from (e.g. west-yorkshire

or Leeds). See View(pct_regions_lookup) for a full list of possible region

names.

purpose Trip purpose (typically school or commute)

geography Geographic resolution of outputs, msoa or 1soa (the default)

extension The type of file to download (only .geojson supported at present)

```
## Not run:
# don't test to reduce build times
c = get_pct_centroids("isle-of-wight")
plot(c)
## End(Not run)
```

get_pct_lines 7

get_pct_lines

Get desire lines results from the PCT

Description

Wrapper around [get_pct()] that gets l (lines) data from the PCT.

Usage

```
get_pct_lines(
  region = NULL,
  purpose = "commute",
  geography = "lsoa",
  extension = ".geojson"
)
```

Arguments

region The PCT region or local authority to download data from (e.g. west-yorkshire

or Leeds). See View(pct_regions_lookup) for a full list of possible region

names.

purpose Trip purpose (typically school or commute)

geography Geographic resolution of outputs, msoa or 1soa (the default)

extension The type of file to download (only .geojson supported at present)

Examples

```
## Not run:
# don't test to reduce build times
1 = get_pct_lines("isle-of-wight")
plot(1)
## End(Not run)
```

get_pct_rnet

Get route network results from the PCT

Description

Wrapper around [get_pct()] that gets route road network data from the PCT.

8 get_pct_routes_fast

Usage

```
get_pct_rnet(
  region = NULL,
  purpose = "commute",
  geography = "lsoa",
  extension = ".geojson"
)
```

Arguments

region The PCT region or local authority to download data from (e.g. west-yorkshire

or Leeds). See View(pct_regions_lookup) for a full list of possible region

names.

purpose Trip purpose (typically school or commute)

geography Geographic resolution of outputs, msoa or 1soa (the default)

extension The type of file to download (only .geojson supported at present)

Examples

```
## Not run:
# don't test to reduce build times
rnet = get_pct_rnet("isle-of-wight")
plot(rnet)
## End(Not run)
```

get_pct_routes_fast

Get fast road network results from the PCT

Description

Wrapper around [get_pct()] that gets rf data from the PCT.

Usage

```
get_pct_routes_fast(
  region = NULL,
  purpose = "commute",
  geography = "lsoa",
  extension = ".geojson"
)
```

get_pct_routes_quiet 9

Arguments

region The PCT region or local authority to download data from (e.g. west-yorkshire

or Leeds). See View(pct_regions_lookup) for a full list of possible region

names.

purpose Trip purpose (typically school or commute)

geography Geographic resolution of outputs, msoa or lsoa (the default)

extension The type of file to download (only .geojson supported at present)

Examples

```
## Not run:
# don't test to reduce build times
rf = get_pct_routes_fast("isle-of-wight")
plot(rf)
## End(Not run)
```

get_pct_routes_quiet Get quiet road network results from the PCT

Description

Wrapper around [get_pct()] that gets rq data from the PCT.

Usage

```
get_pct_routes_quiet(
  region = NULL,
  purpose = "commute",
  geography = "lsoa",
  extension = ".geojson"
)
```

Arguments

region The PCT region or local authority to download data from (e.g. west-yorkshire

or Leeds). See View(pct_regions_lookup) for a full list of possible region

names.

purpose Trip purpose (typically school or commute)

geography Geographic resolution of outputs, msoa or 1soa (the default)

extension The type of file to download (only .geojson supported at present)

10 get_pct_zones

Examples

```
## Not run:
# don't test to reduce build times
rq = get_pct_routes_quiet("isle-of-wight")
plot(rq)
## End(Not run)
```

get_pct_zones

Get zone results from the PCT

Description

Wrapper around [get_pct()] that gets zone data from the PCT.

Usage

```
get_pct_zones(
  region = NULL,
  purpose = "commute",
  geography = "lsoa",
  extension = ".geojson"
)
```

Arguments

region The PCT region or local authority to download data from (e.g. west-yorkshire

or Leeds). See View(pct_regions_lookup) for a full list of possible region

names.

purpose Trip purpose (typically school or commute)

geography Geographic resolution of outputs, msoa or 1soa (the default)

extension The type of file to download (only .geojson supported at present)

```
## Not run:
# don't test to reduce build times
z = get_pct_zones("isle-of-wight")
plot(z)
## End(Not run)
```

leeds_uber_sample 11

leeds_uber_sample

Top 15 min mean journy times within Leeds from Uber

Description

Data downloaded 4th March 2019. According to Uber, the dataset is from: 1/1/2018 - 1/31/2018 (Every day, Daily Average)

Examples

```
# see data-raw folder for generation code
leeds_uber_sample
```

model_pcycle_pct_2020 Model cycling levels as a function of explanatory variables

Description

Model cycling levels as a function of explanatory variables

Usage

```
model_pcycle_pct_2020(pcycle, distance, gradient, weights)
```

Arguments

pcycle The proportion of trips by bike, e.g. 0.1, meaning 10%

distance Vector distance numeric values of routes in km (switches to km if more than 100).

gradient Vector gradient numeric values of routes.

weights The weights used in the model, typically the total number of people per OD pair

```
# 1 = get_pct_lines(region = "isle-of-wight")
# 1 = get_pct_lines(region = "cambridgeshire")
1 = wight_lines_pct
pcycle = l$bicycle / l$all
pcycle_dutch = l$dutch_slc / l$all
m1 = model_pcycle_pct_2020(
    pcycle,
    distance = l$rf_dist_km,
    gradient = l$rf_avslope_perc - 0.78,
    weights = l$all
    )
m2 = model_pcycle_pct_2020(
```

mode_names

```
pcycle_dutch, distance = l$rf_dist_km,
  gradient = l$rf_avslope_perc - 0.78,
  weights = 1$all
)
m3 = model_pcycle_pct_2020(
  pcycle_dutch, distance = 1$rf_dist_km,
  gradient = 1$rf_avslope_perc - 0.78,
  weights = rep(1, nrow(1))
)
m1
plot(1\rf_dist_km, pcycle, cex = 1\all / 100, ylim = c(0, 0.5))
points(l$rf_dist_km, m1$fitted.values, col = "red")
points(l$rf_dist_km, m2$fitted.values, col = "blue")
points(l$rf_dist_km, pcycle_dutch, col = "green")
cor(1$dutch_slc, m2$fitted.values * 1$all)^2 # 95% captured
# identical means:
mean(1$dutch_slc)
mean(m2$fitted.values * 1$all)
pct_coefficients_2020 = c(
  alpha = -4.018 + 2.550,
  d1 = -0.6369 - 0.08036,
  d2 = 1.988,
  d3 = 0.008775
  h1 = -0.2555,
  i1 = 0.02006,
  i2 = -0.1234
pct_coefficients_2020
m2$coef
plot(pct_coefficients_2020, m2$coeff)
cor(pct_coefficients_2020, m2$coeff)^2
cor(pct_coefficients_2020, m3$coeff)^2 # explains 95%+ variability in params
```

mode_names

Mode names in the Census

Description

And conversion into R-friendly versions

Examples

mode_names

od_leeds 13

od_leeds

Example OD data for Leeds

Description

od_leeds contains the 100 most travelled work desire lines in Leeds, according to the 2011 Census.

Examples

```
# see data-raw folder for generation code
od_leeds
```

pct_regions

PCT regions from www.pct.bike

Description

See data-raw folder for generation code

Examples

```
pct_regions
```

pct_regions_lookup

Lookup table matching PCT regions to local authorities

Description

For matching pct_regions object with local authority names in England and Wales.

Examples

```
names(pct_regions_lookup)
head(pct_regions_lookup)
```

rnet_leeds

Route network for Leeds

Description

Route network for Leeds

```
# see data-raw folder for generation code
rnet_leeds
```

14 santiago_od

routes_fast_leeds

Fastest cycle routes for the desire_lines_leeds

Description

Fastest cycle routes for the desire_lines_leeds

Examples

```
# see data-raw folder for generation code
routes_fast_leeds
```

santiago_lines

Desire lines in central Santiago

Description

See https://github.com/pedalea/pctSantiago folder for generation code

Examples

```
# u = "https://github.com/pedalea/pctSantiago/releases/download/0.0.1/od_agg_zone_sub.Rds"
# download.file(u, destfile = "od_agg_zone_sub.Rds")
# desire_lines = readRDS("od_agg_zone_sub.Rds")
santiago_zones
```

santiago_od

OD data in central Santiago

Description

See https://github.com/pedalea/pctSantiago folder for generation code

```
# u = "https://github.com/pedalea/pctSantiago/releases/download/0.0.1/santiago_od.Rds"
# download.file(u, destfile = "santiago_od.Rds", mode = "wb")
# santiago_od = readRDS("santiago_od.Rds")
santiago_od
```

santiago_routes_cs 15

santiago_routes_cs

200 cycle routes in central Santiago, Chile

Description

This data was obtained using code shown in the International application of the PCT methods vignette.

Examples

```
library(sf)
names(santiago_routes_cs)
head(santiago_routes_cs)
plot(santiago_routes_cs)
```

santiago_zones

Zones in central Santiago

Description

See https://github.com/pedalea/pctSantiago folder for generation code

Examples

```
# u = "https://github.com/pedalea/pctSantiago/releases/download/0.0.1/z_centre.Rds"
# download.file(u, destfile = "z_centre.Rds", mode = "wb")
# santiago_zones = readRDS("z_centre.Rds")
santiago_zones
```

 ${\tt uptake_pct_godutch}$

Calculate cycling uptake for UK 'Go Dutch' scenario

Description

This function implements the uptake model described in the original Propensity to Cycle Tool paper (Lovelace et al. 2017): https://doi.org/10.5198/jtlu.2016.862

16 uptake_pct_godutch

Usage

```
uptake_pct_godutch(
   distance,
   gradient,
   alpha = -3.959 + 2.523,
   d1 = -0.5963 - 0.07626,
   d2 = 1.866,
   d3 = 0.00805,
   h1 = -0.271,
   i1 = 0.009394,
   i2 = -0.05135,
   verbose = FALSE
)
```

Arguments

distance	Vector distance numeric values of routes in km (switches to km if more than 100).
gradient	Vector gradient numeric values of routes.
alpha	The intercept
d1	Distance term 1
d2	Distance term 2
d3	Distance term 3
h1	Hilliness term 1
i1	Distance-hilliness interaction term 1
i2	Distance-hilliness interaction term 2
verbose	Print messages? FALSE by default.

Details

See uptake_pct_govtarget().

```
# https://www.jtlu.org/index.php/jtlu/article/download/862/1381/4359
# Equation 1B:
distance = 15
gradient = 2
logit = -3.959 + 2.523 +
   ((-0.5963 - 0.07626) * distance) +
   (1.866 * sqrt(distance)) +
   (0.008050 * distance^2) +
   (-0.2710 * gradient) +
   (0.009394 * distance * gradient) +
   (-0.05135 * sqrt(distance) * gradient)
logit
# Result: -3.144098
```

uptake_pct_govtarget 17

```
pcycle = exp(logit) / (1 + exp(logit))
# Result: 0.04132445
boot::inv.logit(logit)
uptake_pct_godutch(distance, gradient,
    alpha = -3.959 + 2.523, d1 = -0.5963 - 0.07626,
    d2 = 1.866, d3 = 0.008050, h1 = -0.2710, i1 = 0.009394, i2 = -0.05135
)
# these are the default values
uptake_pct_godutch(distance, gradient)
l = routes_fast_leeds
pcycle_scenario = uptake_pct_godutch(l$length, l$av_incline)
plot(l$length, pcycle_scenario)
```

uptake_pct_govtarget Calculate cycling uptake for UK 'Government Target' scenario

Description

Uptake model that takes distance and hilliness and returns a percentage of trips that could be made by cycling along a desire line under scenarios of change. Source: appendix of pct paper, hosted at: www.jtlu.org which states that: "To estimate cycling potential,the Propensity to Cycle Tool (PCT) was designed to use the best available geographically disaggregated data sources on travel patterns."

Usage

```
uptake_pct_govtarget(
  distance.
  gradient,
  alpha = -3.959,
 d1 = -0.5963,
 d2 = 1.866,
 d3 = 0.00805,
 h1 = -0.271,
  i1 = 0.009394,
  i2 = -0.05135,
 verbose = FALSE
)
uptake_pct_govtarget_2020(
  distance,
  gradient,
  alpha = -4.018,
 d1 = -0.6369,
 d2 = 1.988,
 d3 = 0.008775,
 h1 = -0.2555,
 h2 = -0.78,
```

uptake_pct_govtarget

```
i1 = 0.02006,
  i2 = -0.1234,
  verbose = FALSE
uptake_pct_godutch_2020(
  distance,
  gradient,
  alpha = -4.018 + 2.55,
 d1 = -0.6369 - 0.08036,
 d2 = 1.988,
 d3 = 0.008775,
 h1 = -0.2555,
 h2 = -0.78,
  i1 = 0.02006,
  i2 = -0.1234,
  verbose = FALSE
)
uptake_pct_ebike_2020(
  distance,
  gradient,
 alpha = -4.018 + 2.55,
 d1 = -0.6369 - 0.08036 + 0.05509,
 d2 = 1.988,
 d3 = 0.008775 - 0.000295,
 h1 = -0.2555 + 0.1812,
 h2 = -0.78,
 i1 = 0.02006,
 i2 = -0.1234,
  verbose = FALSE
)
uptake_pct_govtarget_school2(
  distance,
  gradient,
  alpha = -7.178,
 d1 = -1.87,
  d2 = 5.961,
 h1 = -0.529,
 h2 = -0.63,
  verbose = FALSE
uptake_pct_godutch_school2(
  distance,
  gradient,
  alpha = -7.178 + 3.574,
```

uptake_pct_govtarget 19

```
d1 = -1.87 + 0.3438,
d2 = 5.961,
h1 = -0.529,
h2 = -0.63,
verbose = FALSE
```

Arguments

distance	Vector distance numeric values of routes in km (switches to km if more than 100).
gradient	Vector gradient numeric values of routes.
alpha	The intercept
d1	Distance term 1
d2	Distance term 2
d3	Distance term 3
h1	Hilliness term 1
i1	Distance-hilliness interaction term 1
i2	Distance-hilliness interaction term 2
verbose	Print messages? FALSE by default.
h2	Hilliness term 2

Details

The functional form of the cycling uptake model used in the PCT is as follows: (Source: npct.github.io)

```
logit (pcycle) = -3.959 + # alpha
  (-0.5963 * distance) + # d1
  (1.866 * distancesqrt) + # d2
  (0.008050 * distancesq) + # d3
  (-0.2710 * gradient) + # h1
  (0.009394 * distance * gradient) + # i1
  (-0.05135 * distancesqrt *gradient) # i2
pcycle = exp ([logit (pcycle)]) / (1 + (exp([logit(pcycle)]))
```

uptake_pct_govtarget_2020() and uptake_pct_godutch_2020() approximate the uptake models used in the updated 2020 release of the PCT results.

If the distance parameter is greater than 100, it is assumed that it is in m. If for some reason you want to model cycling uptake associated with trips with distances of less than 100 m, convert the distances to km first.

```
distance = 15
gradient = 2
logit_pcycle = -3.959 + # alpha
 (-0.5963 * distance) + # d1
  (1.866 * sqrt(distance)) + # d2
  (0.008050 * distance^2) + # d3
  (-0.2710 * gradient) + # h1
  (0.009394 * distance * gradient) + # i1
  (-0.05135 * sqrt(distance) * gradient) # i2
boot::inv.logit(logit_pcycle)
uptake_pct_govtarget(15, 2)
1 = routes_fast_leeds
pcycle_scenario = uptake_pct_govtarget(l$length, l$av_incline)
pcycle_scenario_2020 = uptake_pct_govtarget_2020(1$length, 1$av_incline)
plot(1$length, pcycle_scenario, ylim = c(0, 0.2))
points(1$length, pcycle_scenario_2020, col = "blue")
# compare with published PCT data:
## Not run:
l_pct_2020 = get_pct_lines(region = "isle-of-wight")
# test for another region:
# l_pct_2020 = get_pct_lines(region = "west-yorkshire")
l_pct_2020$rf_avslope_perc[1:5]
l_pct_2020$rf_dist_km[1:5]
govtarget_slc = uptake_pct_govtarget(
 distance = l_pct_2020$rf_dist_km,
 gradient = l_pct_2020$rf_avslope_perc
) * l_pct_2020$all + l_pct_2020$bicycle
govtarget_slc_2020 = uptake_pct_govtarget_2020(
 distance = l_pct_2020$rf_dist_km,
 gradient = l_pct_2020$rf_avslope_perc
) * l_pct_2020$all + l_pct_2020$bicycle
mean(l_pct_2020$govtarget_slc)
mean(govtarget_slc)
mean(govtarget_slc_2020)
godutch_slc = uptake_pct_godutch(
 distance = l_pct_2020$rf_dist_km,
 gradient = l_pct_2020$rf_avslope_perc
) * l_pct_2020$all + l_pct_2020$bicycle
godutch_slc_2020 = uptake_pct_godutch_2020(
 distance = l_pct_2020$rf_dist_km,
 gradient = l_pct_2020$rf_avslope_perc
) * l_pct_2020$all + l_pct_2020$bicycle
mean(l_pct_2020$dutch_slc)
mean(godutch_slc)
mean(godutch_slc_2020)
## End(Not run)
# Take an origin destination (OD) pair between an LSOA centroid and a
# secondary school. In this OD pair, 30 secondary school children travel, of
# whom 3 currently cycle. The fastest route distance is 3.51 km and the
```

wight_lines_30

```
# gradient is 1.11%. The
# gradient as centred on Dutch hilliness levels is 1.11 - 0.63 = 0.48%.
# The observed number of cyclists is 2. ... Modelled baseline= 30 * .0558 = 1.8.
uptake_pct_govtarget_school2(3.51, 1.11)
# pcycle = exp ([logit (pcycle)])/(1 + (exp([logit(pcycle)]))).
# pcycle = exp(1.953)/(1 + exp(1.953)) = .8758, or 87.58%.
uptake_pct_godutch_school2(3.51, 1.11)
```

wight_lines_30

Desire lines from the PCT for the Isle of Wight

Description

This data was obtained using code shown in the introductory pct package vignette.

Examples

```
names(wight_lines_30)
plot(wight_lines_30)
```

wight_od

Official origin-destination data for the Isle of Wight

Description

This data was obtained using code shown in the introductory pct package vignette.

Examples

```
names(wight_od)
head(wight_od)
```

wight_routes_30

Cycle route data for the Isle of Wight

Description

This data was obtained using code shown in the introductory pct package vignette.

```
library(sf)
names(wight_routes_30)
head(wight_routes_30)
plot(wight_routes_30)
```

zones_leeds

 $wight_zones$

Zones and centroid data from the PCT for the Isle of Wight

Description

This data was obtained using code shown in the introductory pct package vignette.

Examples

```
library(sf)
names(wight_lines_30)
plot(wight_lines_30)
```

zones_leeds

Zone data for Leeds

Description

Zones in Leeds

```
# see data-raw folder for generation code
zones_leeds
```

Index

* datasets	rnet_leeds, 13	
<pre>desire_lines_leeds, 2</pre>	routes_fast_leeds, 14	
leeds_uber_sample, 11		
mode_names, 12	santiago_lines, 14	
od_leeds, 13	santiago_od, 14	
pct_regions, 13	santiago_routes_cs, 15	
pct_regions_lookup, 13	santiago_zones, 15	
<pre>rnet_leeds, 13</pre>		
routes_fast_leeds, 14	uptake_pct_ebike_2020	
santiago_lines, 14	(uptake_pct_govtarget), 17	
santiago_od, 14	uptake_pct_godutch, 15	
santiago_routes_cs, 15	uptake_pct_godutch_2020	
santiago_zones, 15	(uptake_pct_govtarget), 17	
wight_lines_30,21	uptake_pct_godutch_school2	
wight_od, 21	(uptake_pct_govtarget), 17	
wight_routes_30,21	uptake_pct_govtarget, 17	
wight_zones, 22	uptake_pct_govtarget(), 16	
zones_leeds, 22	uptake_pct_govtarget_2020	
	(uptake_pct_govtarget), 17	
desire_lines_leeds, 2	uptake_pct_govtarget_school2	
	(uptake_pct_govtarget), 17	
get_centroids_ew, 3	winds contacted (winds) 22	
<pre>get_desire_lines, 3</pre>	wight_centroids (wight_zones), 22	
get_od, 4	wight_lines_30,21	
get_pct, 5	wight_lines_pct (wight_lines_30), 21	
get_pct_centroids, 6	wight_od, 21	
<pre>get_pct_lines, 7</pre>	wight_rnet (wight_routes_30), 21	
<pre>get_pct_rnet, 7</pre>	wight_routes_30, 21	
<pre>get_pct_routes_fast, 8</pre>	wight_routes_30_cs (wight_routes_30), 21	
<pre>get_pct_routes_quiet, 9</pre>	wight_zones, 22	
get_pct_zones, 10	zones_leeds, 22	
leeds_uber_sample, 11	Zones_reeus, ZZ	
<pre>mode_names, 12 model_pcycle_pct_2020, 11</pre>		
od_leeds, 13		
<pre>pct_regions, 13 pct_regions_lookup, 13</pre>		