

CSE 578: Computer Vision

Spring 2021: Projective Geometry and Camera Matrix

Anoop M. Namboodiri
Biometrics and Secure ID Lab, CVIT,
IIIT Hyderabad

General Camera Equation

- Camera and world are related by: $X_c = \begin{bmatrix} R & -RC \\ 0 & 1 \end{bmatrix} X_w$
- 2D projection x of a 3D point X_w given by:
 - $x = K[I | 0] X_c = K[R | -RC] X_w$
- $x = PX_w$; camera matrix $P = [KR \mid -KRC] = [M \mid p_4]$

$$\begin{array}{c|cccc}
f & 0 & x_0 \\
0 & f & y_0 \\
0 & 0 & 1
\end{array}$$

- Points represented by: $\mathbf{x} = [x \ y \ 1]^{\mathrm{T}}$.
- Consider the line equation: ax + by + c = 0.
- $[a b c][x y 1]^T = I.x = I^T x = 0$, where $I = [a b c]^T$.
- Lines are represented by 3-vectors, just like points.

Note: Overall scale is unimportant.

- What does $I^T x = 0$ describe?
 - All points x on a fixed line I?
 - All lines I passing through a fixed point, x?

Points/Line at Infinity

- $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$ represents $\begin{bmatrix} x_1/x_3 & x_2/x_3 \end{bmatrix}$
- What happens when $x_3 \rightarrow 0$?
- Becomes point at infinity, or vanishing point or ideal point in the direction (x_1, x_2) .
- Points at infinity can be handled like any other point in projective geometry
- $[x \ y \ 0]^T$ are all points at infinity on the plane.
- What do they form together?
- What is the representation of I_{∞} ?

$$l_{\infty} = [0 \ 0 \ 1]^{\mathrm{T}}$$

 $\begin{bmatrix} x_1/_1 & x_2/_1 \end{bmatrix}$

Visualizing Projective Geometry of a Plane

- $\mathbf{x} = [x_1 \ x_2 \ x_3]^T$ represents rays from the origin in 3space.
- The plane can be any cross section \perp^r to x_3 .
- Ideal points are rays on the $x_3 = 0$ plane.
- Lines are planes passing through the origin.
- Line at infinity, \mathbf{l}_{∞} , corresponds to $x_3 = 1$, $x_1, x_2 = 0$.

Line joining 2 points

- Let p and q be points. We have: $\mathbf{l}^T \mathbf{p} = \mathbf{l}^T \mathbf{q} = 0$.
- Equation of I: $y = y_1 + \frac{(y_2 y_1)}{(x_2 x_1)}(x x_1)$

or:
$$(y_2 - y_1)x - (x_2 - x_1)y + (x_2y_1 - x_1y_2) = 0$$

or:
$$\mathbf{l} = [(y_2 - y_1) - (x_2 - x_1) (x_2y_1 - x_1y_2)]^T$$

- Considering them as vectors in 3-space, we want to find a vector I orthogonal to both p and q.
- The cross-product $\mathbf{x} \times \mathbf{y}$ is a solution. Thus, $\mathbf{l} = \mathbf{p} \times \mathbf{q}$.

•
$$\mathbf{p} \times \mathbf{q} = [(y_2 - y_1) - (x_2 - x_1) (x_2 y_1 - x_1 y_2)]^{\mathrm{T}}$$

Example: Line connecting 2 points

• Line through (5,2) and (3,2):
$$\begin{bmatrix} i & j & k \\ 5 & 2 & 1 \\ 3 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}$$

- Ideal point of the line $[0 \ 1 \ -2]^T$ is $[1 \ 0 \ 0]^T$. This is same as $[0 \ 1 \ k]^T$ for any k.
- Line joining $[3 \ 4 \ 0]^T$ and $[2 \ 3 \ 0]^T$ is $[0 \ 0 \ 1]^T$ or I_{∞}

Point of Intersection of 2 lines

- Lines I, m intersect at a point x with $I^Tx = m^Tx = 0$.
- $\mathbf{x} = \mathbf{l} \times \mathbf{m}$.
- 1: $a_1 x + b_1 y + c_1 = 0$; and m: $a_2 x + b_2 y + c_2 = 0$.
- $x = (b_2c_1 b_1c_2)/(a_2b_1 a_1b_2)$.
- $y = (a_1c_2 a_2c_1)/(a_2b_1 a_1b_2).$
- $\mathbf{x} = [(b_2c_1 b_1c_2) (a_1c_2 a_2c_1) (a_2b_1 a_1b_2)]^T = \mathbf{l} \times \mathbf{m}.$
- Duality at work: points and lines are interchangeable.

Example: Intersection of Lines

- Intersection of x=1 and y=2:
- Same as: (1,2).

Intersection of x=1 and x=2:

$$\begin{bmatrix} i & j & k \\ 1 & 0 & -1 \\ 0 & 1 & -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} i & j & k \\ 1 & 0 & -1 \\ 1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

- Ideal point of the line $I = [a \ b \ c]^T$ is $[b \ -a \ 0]^T$
- This is $1 \times 1_{\infty}$, the intersection of I with line at infinity!

Conics: 2nd order Entities

General quadratic entity:

$$ax^2 + bxy + cy^2 + dx + ey + f = 0.$$

Rewrite using homogeneous coordinates as:

$$ax^2 + bxy + cy^2 + dxw + eyw + fw^2 = 0.$$

• Rewrite as:

$$[x \quad y \quad w] \begin{bmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} = 0$$

- A symmetric C represents a conic: $\mathbf{x}^T \mathbf{C} \mathbf{x} = \mathbf{0}$. Covers circle, ellipse, parabola, hyperbola, etc.
- Degenerate conics include a line (a = b = c = 0) and two lines when $C = \mathbf{lm}^{T} + \mathbf{ml}^{T}$.

General Camera Equation

General projection equation in world coordinates:

$$x = K [R | -RC] X_w = [KR | -KRC] X_w = [M | p_4] X_w$$

- 3x4 matrix P maps/projects World-C to Image-C
 - Left 3 × 3 submatrix is non-singluar for finite cameras
 - Orthographic projection: left submatrix is singular
- Any 3 × 4 matrix P with non-singular left submatrix represents a camera! It can be decomposed as:
 - A non-singular upper diagonal matrix K
 - An orthonormal matrix R and a vector C with the usual meanings!!

Camera Matrix Anatomy

$$P = [p_1 \ p_2 \ p_3 \ p_4] = [P^1 \ P^2 \ P^3]^T$$

- 4-vector \mathbf{C} with $\mathbf{PC} = \mathbf{0}$ is the camera center.
 - Camera center is the only point with no projection or projects to the vector 0, which is undefined in P².
- Columns p_1 , p_2 , p_3 are the images of vanishing points of the world X, Y and Z directions.
 - $\mathbf{p}_1 = \mathbf{P} \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^T$, the image of the ideal point in X direction and similarly the rest.
- \mathbf{p}_4 is the image of world origin: $\mathbf{p}_4 = \mathbf{P} \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}^T$.

Prove the Following

- Row vector P³ is the principal plane.
- Row vectors P¹ and P² are axis planes for image Y and X axes respectively.
- The principal point (or image center) is given by $x_0 = M m_3$, with $m_{3,}$ the third row vector of matrix M.

Thank You