ECS7024 Statistics for Artificial Intelligence and Data Science

Topic 14: Hypothesis Testing using χ^2

William Marsh

Outline

- Aim: understand how to compare proportions using Chi-squared (χ^2)
- Recap
 - Principle of hypothesis testing
- Testing difference between proportions
 - $-\chi^2$ distribution
 - Degrees of freedom
- An experiment with p-values

Recap: Principles of Hypothesis Testing

Inferential Statistics

- We have a sample
- We calculate a statistic from the sample
- What do we reliably know about the population?

Inferential Statistics

- We have a sample
- We calculate a statistic from the sample
- What do we reliably know about the population?
- We assume that the sample is unbiased
- Is the sample statistic an unbiased estimate?
 - Take account of degrees of freedom
- We know that there is a potential 'error' in the sample statistic
 - Given the error, decide what we know

Sample Statistics & Distribution

Sample Statistic

- The sample mean (when variance known)
- The sample mean when variance estimated

Sample Distribution

Normal

Student's

Confidence Intervals

alpha is the significance threshold – choose it

Some Issues

- You have to know
 - The test statistics
 - The correct distribution
 - The assumptions
- Cls and p-value can be mis-understood
 - p-value is not the probability you want
- Hypothesis testing does not consider effect size

Testing Proportions in a Contingency Table

Test statistics
New distribution - χ^2

Problem We Are Solving

- Contingency table
 - Type of jobs
 - City region
 - Sample

	Α	В	С	D	Total
White collar	90	60	104	95	349
Blue collar	30	50	51	20	151
No collar	30	40	45	35	150
Total	150	150	200	150	650

- Question: is the distribution of jobs the same in each region?
 - Null hypothesis: it is the same

Assuming Equal Proportions

	Α	В	С	D	Total
White collar	90	60	104	95	349
Blue collar	30	50	51	20	151
No collar	30	40	45	35	150
Total	150	150	200	150	650

Overall proportions

White collar: 349 / 650

Blue collar: 151 / 650

No collar: 150 / 650

What if we assume each region has these proportions?

Assuming Equal Proportions

		Α	В	С	D	Total
White coll	ar	90	60	104	95	349
Blue colla	r	30	50	51	20	151
No colla		30	40	45	35	150
Total		150	150	200	150	650

Region A – 150 people

- Expect
 - 150 x 349 / 650 white collar
 - 150 x 151 / 650 ...

–

	Α	В	С	D
White collar	80.5	80.5	107.4	80.5
Blue collar	34.8	34.8	46.5	34.8
No collar	34.6	34.6	46.2	34.6

349 / 650

151 / 650

150 / 650

Test Statistic

Observed

	Α	В	O	D
White collar	90	60	104	95
Blue collar	30	50	51	20
No collar	30	40	45	35

Expected

Assuming null hypothesis

	Α	В	С	D
White collar	80.5	80.5	107.4	80.5
Blue collar	34.8	34.8	46.5	34.8
No collar	34.6	34.6	46.2	34.6

$$\sum_{All \ cells} \frac{(Observed - Expected)^2}{Expected}$$

Test Statistic

Observed

	Α	В	С	D
White collar	90	60	104	95
Blue collar	30	50	51	20
No collar	30	40	45	35

- Expected
 - Assuming null hypothesis

	Α	В	С	D
White collar	80.5	80.5	107.4	80.5
Blue collar	34.8	34.8	46.5	34.8
No collar	34.6	34.6	46.2	34.6

(Observed – Expected)² / Expected

 \sum

	Α	В	С	D
White collar	1.11	5.24	0.11	2.60
Blue collar	0.67	6.59	0.44	6.33
No collar	0.62	0.84	0.03	0.00

= 24.57

Chi-Squared Distribution

- Parameter: degrees of freedom
 - (number of rows 1) * (number of columns 1)

Our Test has 6 Degrees of Freedom

p-value is area under curve beyond the test statistics.

It is obtained from the CDF (rather than PDF shown here)

Issues and Limitations

- We have described Pearson's χ^2 test
- It's an approximation
 - Acceptable when numbers in most cells >= 5
- Many alternatives
 - E.g. different test statistic: G-test

	Α	В	С	D
White collar	80.5	80.5	107.4	80.5
Blue collar	34.8	34.8	46.5	34.8
No collar	34.6	34.6	46.2	34.6

Expected values not possible!!

Quiz 1

Initial Review of C/W 1

Some Areas for Improvement I

Commenting on descriptive statistics tables and plots such as histograms (part 2):

- Less good answers: tend to describe what we can already see in the table or graphs, repeating numerical values, telling us what the table or graph is
- **Better answers**: try to understand the situation that results in these tables and graphs instead of describing what's seen in the table or graph

Examples

Which is better?

Most tube stations have a similar amount of exits in the morning but a small number of stations have a much larger percentage of their overall exits in the morning. The most intuitive explanation for this is that stations with a high percentage of overall exits in the morning are located near to areas of work.

AM Peak Proportion has a mean of 0.21 and a median of 0.17. That means the average AM Peak Proportion is 0.21, but half of the stations have a proportion of 0.17 or under. PM Peak Proportion has a mean of 0.30 and a median of 0.31. That means the average

mean of 0.30 and a median of 0.31. That means the average PM Peak Proportion is 0.30, and half of the stations have a proportion of 0.31 or under.

Some Areas for Improvement II

- Title Formatting
 - Inconsistent numbering of headings
 - No table of contents

- Classification thresholds (part 3):
 - Less good: thresholds without justification
 - Better: thresholds selected based on the descriptive statistics of the parameter used (difference or ratio), e.g. first and third quartiles

Example: Headings

```
### Content
### **Section 1: Creating a relevant dataframe with selected vari
#### Section 1.A. Finding AM & PM hour exit counts for each stati
#### Section 1.B. Calculating AM & PM proportions
#### Section 1.C. Describing the newly created dataframe and its
### **Section 2: Plotting and Analysing Distributions**
#### Section 2.A. Histogram of AM proportion and Statistics
#### Section 2.B. Histogram of PM proportion and Statistics
#### Section 2.C. Assumptions about stations
### Section 3: A Simple Classification of Stations
#### Section 3.A. Categories for classifying stations
#### Section 3.B. Justifying the thresholds of categories
#### Section 3.C. Reporting classification on a set of Northern L
```

Example: Thresholds

Those stations that have a higher AM_proportion than the 75% Quartile (=0.26) and those that have a lower PM_proportion than the 25% Quartile (=0.24). However, the former was rounded up to 0.3 (due to skewed distribution; more on this under 'Residential' category') and round down the latter to 0.2 (more on this under 'Residential' category.)

```
(Assumed ratio > 1.1)
(Assumed ratio < 0.9)
(Assumed ratio between 0.9 and 1.1)
```

An Experiment with p-values

Simulated a Fair Dice

Create many samples with 12 rolls

Test	Counts							
Num	1	2	3	4	5	6		
1	4	1	1	2	1	3	= 12	
2	2	2	2	1	3	2	= 12	
3	1	2	2	3	2	2	= 12	
4	2	1	4	2	1	2	= 12	
5	1	2	0	3	2	4	= 12	

- Null hypothesis "dice fair"
- Test, with alpha 1%
- As expected, 1% of tests reject null hypothesis

Question?

 What happens if we increase the number of rolls from 12 to 120 or 1200?

Test	Observed Frequency								
Num	1	2	3	4	5	6			
1	33.3%	8.3%	8.3%	16.7%	8.3%	25.0%			
2	16.7%	16.7%	16.7%	8.3%	25.0%	16.7%			
3	8.3%	16.7%	16.7%	25.0%	16.7%	16.7%			
4	16.7%	8.3%	33.3%	16.7%	8.3%	16.7%			
5	8.3%	16.7%	0.0%	25.0%	16.7%	33.3%			

- We expect the observed frequencies to be closer to 16.66%
- What about the reject rate?

Answer: Reject Rate Same

- Distribution of the reject rate
 - Different numbers of rolls

 This what we should expect!

See Notebook

Discussion

- A statistically significant difference is not (necessarily) a significant (i.e. large, important) difference
- Hypothesis testing does not consider 'effect size'
- As the sample size grows
 - The sample variance reduces
 - I.e. the sample distribution becomes narrower
 - Small difference (from the null hypothesis) become 'statistically significant'
- If you use α = 1%, then the null hypothesis should be incorrectly rejected 1% of the time

Danger of misinterpretation, especially with big data

Summary

- Use chi-squared test for proportions in a contingency table
 - Other uses as well
- Test statistics depends on differences between observed and expected (assuming uniformity)
- Hypothesis testing does not consider effect size