# Shield: DoS Filtering Using Traffic Deflection

Erik Kline UCLA

icebeast@lasr.cs.ucla.edu

Coauthors: Alexander Afanasyev, Peter Reiher



# DoS: Still a problem?

- Denial-of-Service attacks still prevalent in today's Internet.
  - □ But there are several good filtering techniques!
- Deployment is the problem.
  - □ Where to deploy filters?
  - □ How to convince people to deploy defenses?
- Over-provisioning and CDNs are good options, but can be expensive.



## Near the Victim





### Near the Attacker





# Where to deploy filters?

- Near the victim
  - Requires each possible victim to deploy filters
  - May be "too late"
- Near the attacker
  - Requires all edge networks to filter egress traffic.
  - May not be enough traffic volume to detect.
- In the core...



#### Problem

- Most filtering locations are poor
  - □ Infeasible
  - Limited protection
- Lack of proper incentives to deploy filters



#### Our Solution: Shield

- Instead of bringing the filter to the traffic, bring the traffic to the filter.
  - Redirect traffic to filtering nodes using routing techniques
  - □ Deliver filtered traffic to legitimate nodes
- Incentivize deployment via Insurance-like deployment model.



#### **Traffic Deflection**

- Two mechanisms
  - □ IXP-based nodes advertising false paths.
    - All nodes at the IXP send traffic to the filter
    - Filter sends legitimate traffic to the host
  - Filtering nodes legitimately announcing a prefix
    - All traffic is redirected to filtering nodes.
    - Send legitimate traffic to the host.



#### On Demand

- Service requested only during an attack
  - Automated
  - Manual Request
- Return to service after attack
  - □ Victim may request termination of service at anytime.



#### IXP Traffic Deflection





#### IXP Problems

- Has to be deployed at an IXP
  - Limited deployment options is not much an improvement
- Only protects against DoS traffic that transits an IXP



#### General Traffic Deflection





# Advantages of Traffic Deflection

- Can be deployed anywhere!
  - □ IP Anycast allows traffic to be redirected wherever you want it to.
- Agnostic to filtering technique
- Filters can protect multiple victims
  - Traffic redirection makes it possible to defend anyone
- Multiple filters can protect one victim



# Deployment Incentives

- Everything previously mentioned
- On-demand Service
  - □ Only use resources during an attack
  - Can protect more possible victims than resources allow.
- Lends itself to a Insurance-Style Business Model



# Wait! How does the traffic get delivered?

- Destination has withdrawn its route!
- Possible Delivery methods
  - ☐ Hidden IP addresses
  - □ Source Routing
  - New Advanced Routing techniques
  - □ ISP agreements
  - □ Overlay networks



# **Delivery Problems**

- Hidden IP Addresses
  - □ Relies on a secret, single point of failure
  - Could use multiple hidden IP addresses or automatic IP changing.
- Source Routing
  - □ Generally, not widely deployed
  - □ Adversaries could also use Source Routing



# Delivery Problems Cont.

- New Advanced Routing Techniques
  - ☐ Still in developmental stages
- ISP Agreements
  - Requires ISP agreements, limiting deployability.
- Overlay Networks
  - Requires the existence of a large, well distributed overlay.



#### Other Possible Problems

- Attackers purposely causing route flapping
- Attackers trying to do more damage than filters can keep up with.
  - □ Run on the bank!
- Attackers as insiders



# Open Research Questions

- How quickly can this service respond to an attack?
- How quickly can you return to nominal service?
- What is the effect on legitimate traffic?



# Questions?