```
Example: Solve the systems of linear congruences
     x \equiv 1 \pmod{30}; x \equiv 13 \pmod{36}; x \equiv 11 \pmod{40}
      x = 11 \pmod{36}; x = 7 \pmod{40}; x = 32 \pmod{75}
(P)
                                                             3 . 25
(a) x \equiv 1 \pmod{2} x \equiv 13 \pmod{4} x \equiv 11 \pmod{8}
     x \equiv 1 \pmod{3}  x \equiv 13 \pmod{9}
     X = 1 (mod 5)
                                               x \equiv 11 \pmod{5}
p=5: x \equiv 1 \pmod{5} and x \equiv 11 \pmod{5}
\Rightarrow x = 1 \pmod{5}
p=3: x \equiv 1 \pmod{3} and x \equiv 13 \pmod{9}
=> x = 4 (mod 9)
p=2: x \equiv 1 \pmod{2} and x \equiv 13 \pmod{4} and x \equiv 11 \pmod{8}
x \equiv 11 \pmod{8} \implies x \equiv 11 \pmod{4} not compatible with
                                                  x=13 (mod 4)
incompatible
No solution.
```

(b)
$$X \equiv 11 \pmod{4}$$
; $X \equiv 7 \pmod{8}$
 $X \equiv 11 \pmod{9}$
 $X \equiv 32 \pmod{3}$
 $X \equiv 7 \pmod{5}$
 $X \equiv 32 \pmod{25}$

$$p=2: X \equiv 7 \pmod{8}$$

We are solving

(1)
$$x \equiv 7 \pmod{8}$$

$$(2) \quad x \equiv 2 \pmod{9}$$

(3)
$$X \equiv 7 \pmod{25}^{k}$$

(1) and (3):
$$x = 7 \pmod{8}$$
 => $x = 7 \pmod{200}$
 $x = 7 \pmod{25}$

Now we solve

 $\hat{1}$ $200 \text{ k} + 7 \equiv 2 \text{ (mod 9)}$

 \Rightarrow 200 $k = -5 \pmod{9}$

 \Rightarrow 2 k = 4 (mod 9)

⇒ k = 2 (mod 9)

x = 200 k + 7 = 200 (9l + 2) + 7 = 1800 l + 407 $x = 407 \pmod{1800}$.

Theorem: (CRT) The congruences $x \equiv a_1 \pmod{m_1}$, ..., $x \equiv a_k \pmod{m_k}$ has 0 or 1 solution in \mathbb{Z}_m , where $m = [m_1, m_2, ..., m_k]$.

Exercise: read Theorem 3.12 and its proof from the textbook. It says

solution exists \iff gcd $(m_i, m_j) | a_i - a_j$ for all $i \neq j$.

Some non-linear congruences

Solve $x^2 \equiv 1 \pmod{16}$.

 $O^{2} \equiv 0 \pmod{16}$, $I^{2} \equiv 1 \pmod{16}$ no need to check $3^{2} \equiv 9 \pmod{16}$, $5^{2} \equiv 25 \equiv 9 \pmod{16}$ even numbers $7^{2} \equiv 1 \pmod{16}$, $9^{2} \equiv 1 \pmod{16}$, $11^{2} \equiv 9 \pmod{5}$ $13^{2} \equiv 9 \pmod{16}$, $15^{2} \equiv 1 \pmod{16}$

$$\Rightarrow x \equiv 1, 7, 9, \text{ or } [5 \pmod{16}]$$
Solve $x^2 \equiv 1 \pmod{17}$

$$17 | x^2 - 1 \Rightarrow 17 | (x-1) \cdot (x+1)$$

$$\Rightarrow 17 | x - 1 \text{ or } |7| x + 1$$

$$\Rightarrow x \equiv 1 \text{ or } |6 \pmod{17}$$
Solve $x^2 \equiv -1 \pmod{35}$

$$x^2 \equiv -1 \pmod{5} \text{ and } x^2 \equiv -1 \pmod{7}$$

$$x \equiv 2, 3 \pmod{5}$$
no solution

=> no solution

Theorem: (CRT) If x has n_i possible values modulo m_i , for i=1,2,...,k and $(m_i,m_j)=1$ for all $i\neq j$, then x has $n_i n_2 ... n_k$ possible values modulo $m_i m_2 ... m_k$.

• How many solutions $x^2 \equiv l \pmod{p^{\alpha}}$ has? Case - I: p is odd. >> p cannot divide $p^{\alpha} \mid \chi^{2}-1 \implies p^{\alpha} \mid (\chi-1) \cdot (\chi+1)$ $\Rightarrow p^{\alpha} \mid x-1 \text{ or } p^{\alpha} \mid x+1$ => x = 1 or -1 (mod p) => Two solutions both of them even one of them 4k+2Case -II: p=2 $2^{\alpha} \mid x^{2} - 1 \implies 2^{\alpha} \mid (x - 1) \cdot (x + 1)$ \Rightarrow 2^{x-1} |x-1| and 2|x+12|x-1 and $2^{\alpha-1}|x+1$ $(\Rightarrow) \times \equiv 1 \text{ or } -1 \text{ (mod } 2^{\alpha-1})$ $\Rightarrow) \times \equiv 1, 2^{\alpha-1}, 2^{\alpha-1} + 1, 2^{\alpha} - 1 \text{ (mod } 2^{\alpha})$ => Four solutions

However, $\alpha = 1$ and $\alpha = 2$ are exceptional cases (why?) For $\alpha = 1$: one sol. $\alpha = 2$: two sol

Question: How many solutions does the congruence $x^2 \equiv 1 \pmod{n}$ have in \mathbb{Z}_n ? (Example 3.18)