# 2. Probeklausur in Experimentalphysik 2

Prof. Dr. C. Pfleiderer Sommersemester 2015 8. Juli 2015

Zugelassene Hilfsmittel:

- 1 Einseitig handbeschriebenes DIN A4 Blatt
- 1 nichtprogrammierbarer Taschenrechner

Die Bearbeitungszeit beträgt 90 Minuten. Es müssen nicht alle Aufgaben vollständig gelöst sein, um die Note 1,0 zu erhalten.

## Aufgabe 1 (6 Punkte)

Zwei Punktladungen  $q_1 = 10^{-9}$ C und  $q_2$  befinden sich auf der x-Achse bei  $x_1 = 0$ cm und  $x_2 = 3$ cm. Eine dritte Punktladung  $q_3 = 0, 5 \cdot 10^{-9}$  hat von der Ladung  $q_1$  und der Ladung  $q_2$  den gleichen Abstand r = 2, 5cm (und liegt zunächst nicht auf der x-Achse).

- (a) Wie groß ist die auf die Ladung  $q_3$  wirkende Kraft  $\vec{F}$ , wenn  $q_2 = -4q_1$  ist?
- (b) Wie groß ist  $\vec{F}$ , wenn  $q_2 = q_1$  ist?
- (c) Die Ladung  $q_3$  befindet sich nun auf der x-Achse. Skizzieren Sie den Verlauf der Kraft F(x) auf die Ladung  $q_3$  für die unter b) gegebenen Ladungen  $q_1 = q_2$ , wenn  $q_3$  entlang der x-Achse bewegt wird (von  $-\infty$  bis  $\infty$ ). Gibt es Stellen, an denen die resultierende Kraft auf die Ladung  $q_3$  Null ist? Wenn ja, berechnen Sie diese.

#### Lösung:

(a) Man benutzt das Superpositionsprinzip und erhält:

$$\vec{F} = \vec{F}_1 + \vec{F}_2 = \frac{1}{4\pi\varepsilon_0} \left( \frac{q_1 q_3}{r^3} \vec{r}_1 + \frac{q_2 q_3}{r^3} \vec{r}_2 \right) \tag{1}$$

mit

$$\vec{r}_1 = \begin{pmatrix} 1,5 \text{cm} \\ \sqrt{r^2 - (1,5 \text{cm})^2} \end{pmatrix}$$
 und  $\vec{r}_2 = \begin{pmatrix} -1,5 \text{cm} \\ \sqrt{r^2 - (1,5 \text{cm})^2} \end{pmatrix}$ 

 $[1,\!5]$ 

Mit r=2,5cm erhält man schließlich

$$\vec{F} = \frac{1}{4\pi\varepsilon_0 r^3} \left( \frac{1,5\text{cm} \cdot (q_1 q_3 - q_2 q_3)}{\sqrt{r^2 - (1,5\text{cm})^2} \cdot (q_1 q_3 + q_2 q_3)} \right)$$
(2)

Mit  $q_2 = -4q_1$  folgt dann für die resultierende Kraft:

$$\vec{F} = \begin{pmatrix} 2, 16 \\ -1, 73 \end{pmatrix} \cdot 10^{-5} \text{N} \tag{3}$$

bzw.

$$|\vec{F}| = 2,77 \cdot 10^{-5} \text{N} \tag{4}$$

[1]

(b) Mit  $q_1 = q_2$  folgt aus (2):

$$\vec{F} = \begin{pmatrix} 0 \\ 1, 15 \end{pmatrix} \cdot 10^{-5}$$
 (5)

bzw.

$$|\vec{F}| = 1,15 \cdot 10^{-5}$$
 (6)

[1]

(c) Jetzt befindet sich  $q_3$  auf der x-Achse und für die resultierende Kraft auf  $q_3$  am Ort x gilt:

$$F = F_1 + F_2 = -\frac{q_1 q_3}{4\pi\varepsilon_0 x^2} - \frac{q_1 q_3}{4\pi\varepsilon_0 |3cm - x|^2}$$
 (7)

Damit die resultierende Kraft auf  $q_3$  verschwindet, muss gelten:

$$0 = -\frac{q_1 q_3}{4\pi\varepsilon_0 x^2} - \frac{q_1 q_3}{4\pi\varepsilon_0 |3\operatorname{cm} - x|^2} \tag{8}$$

was sich vereinfacht zu

$$0 = -q_1(3cm - x)^2 - q_1x^2 \Rightarrow x = 1,5cm$$
(9)

[1]

Es ergibt sich folgender Graph für die Kraft auf  $q_3$  in Abhängigkeit vom Ort x.

[1,5]

## Aufgabe 2 (6 Punkte)

Betrachten Sie die in der Abbildung gezeigte Anordnung von 5 Widerständen als Vielfache von R. Durch die Anordnung fließe ein Strom I.

- (a) Stellen Sie die Gleichungen für das Gleichungssystem auf, wenn Sie die Ströme durch die verschiedenen Widerstände berechnen wollen. Sie müssen das Gleichungssystem nicht lösen!
- (b) Wenn man dieses Gleichungssystem löst erhält man folgende Ströme  $I_1=\frac{3}{5}I,\ I_2=\frac{1}{5}I,\ I_3=\frac{2}{5}I,\ I_4=\frac{3}{5}I,\ I_5=\frac{2}{5}I$  Welcher Anteil der gesamten Wärmeleistung wird in Widerstand 2 umgesetzt?
- (c) Wie groß ist der Gesamtwiderstand der Anordnung?





(a) Es gilt die Knotenregel:

$$I_1 + I_3 = I (10)$$

$$I_2 + I_5 = I_1 (11)$$

$$I_3 + I_2 = I_4 \tag{12}$$

$$I_5 + I_4 = I (13)$$

und die Maschenregel:

$$RI_1 + RI_2 - 2RI_3 = 0 \quad \Rightarrow I_1 + I_2 = 2I_3$$
 (14)

$$RI_1 + RI_2 - 2RI_3 = 0 \Rightarrow I_1 + I_2 = 2I_3$$
 (14)  
 $RI_2 + RI_4 - 2RI_5 = 0 \Rightarrow I_2 + I_4 = 2I_5$  (15)

[3]

(b) Die gesamte Wärmeleistung ist

$$P_{ges} = \sum_{i} P_{i}$$

$$= RI_{1}^{2} + RI_{2}^{2} + 2RI_{3}^{2} + RI_{4}^{2} + 2RI_{5}^{2}$$
(16)

$$=RI_1^2 + RI_2^2 + 2RI_3^2 + RI_4^2 + 2RI_5^2$$
(17)

$$= \left(\frac{9}{25} + \frac{1}{25} + \frac{8}{25} + \frac{9}{25} + \frac{8}{25}\right) RI^2$$

$$= \frac{7}{5} RI^2$$
(18)

$$=\frac{7}{5}RI^2\tag{19}$$

und für den Anteil von  $P_2$  erhält man

$$\frac{P_2}{P_{ges}} = \frac{\frac{1}{25}RI^2}{\frac{35}{25}RI^2} = \frac{1}{35} \approx 2,9\%$$
 (20)

[2]

(c) Der Ersatzwiderstand der Anordnung lässt sich direkt aus Teilaufgabe b) ablesen:

$$P_{ges} = R_{ges}I^2 \quad \Rightarrow R_{ges} = \frac{7}{5}R \tag{21}$$

[1]

## Aufgabe 3 (7 Punkte)

Ein Plattenkondensator (Plattenfläche 4  $cm^2$ , Plattenabstand 3mm) befindet sich im Vakuum. Zur Zeit t=0 sei keine Ladung auf den Platten. Für t>0 werden die Platten mit einem konstanten Strom  $I_C=2$  mA aufgeladen.

- (a) Berechnen Sie für die Zeit  $t = 5, 0 \cdot 10^{-6} s$  die Ladung auf den Platten, das elektrische Feld zwischen den Platten sowie die Potentialdifferenz zwischen den Platten.
- (b) Berechnen Sie die zeitliche Änderung  $\frac{dE}{dt}$  des elektrischen Feldes zwischen den Platten.
- (c) Wie groß ist die Verschiebungsstromdichte  $j_D$  zwischen den Platten? Berechnen Sie den Verschiebungsstrom  $I_D = j_D A$  und vergleichen Sie ihn mit  $I_C$ .
- (d) Nach weiteren  $5,0\cdot 10^{-6}s$  wird die Aufladung unterbrochen und der Kondensator wird über einen Widerstand R=1  $\Omega$  entladen. Durch welche Differentialgleichung wird die zeitliche Änderung der Ladung nach Schließen dieses Stromkreises beschrieben? Lösen Sie diese und geben Sie einen Ausdruck für Q=Q(t) als Funktion der Zeit nach Beginn des Entladevorganges an.
- (e) Nach welcher Zeit T ist die Ladung auf den 1/e-ten Teil ihres ursprünglichen Wertes abgesunken?

#### Lösung

(a)

$$Q = I_C \cdot t = 5.0 \cdot 10^{-6} s \cdot 2 \cdot 10^{-3} A = 1 \cdot 10^{-8} C$$

Mit  $U=E\cdot d,\, C=rac{Q}{U}$  und  $C=rac{\epsilon_0\cdot A}{d}$  erhält man für das elektrische Feld

$$E = \frac{Q}{C \cdot d} = \frac{Q}{\epsilon_0 \cdot A} = \frac{1 \cdot 10^{-8} C}{8,854 \cdot 10^{-12} A^2 s^2 N^{-1} m^{-2} \cdot 4 \cdot 10^{-4} m^2}$$
$$= 2.82 \cdot 10^6 N C^{-1}$$

und für die Spannung

$$U = E \cdot d = 2,82 \cdot 10^{6} NC^{-1} \cdot 3 \cdot 10^{-3} m$$
  
= 8,46 \cdot 10^{3} V.

[1]

$$\begin{split} \frac{dE}{dt} &= \frac{I_C}{\epsilon_0 \cdot A} = \frac{2 \cdot 10^{-3} A}{8,854 \cdot 10^{-12} A^2 s^2 N^{-1} m^{-2} \cdot 4 \cdot 10^{-4} m} \\ &= 5,65 \cdot 10^{11} \frac{N}{Cs} \end{split}$$

(c)

$$j_D = \epsilon_0 \frac{dE}{dt} = \frac{I_C}{A} = \frac{2 \cdot 10^{-3} A}{4 \cdot 10^{-4} m} = 5 A m^{-2}$$

$$I_D = j_D \cdot A = I_C = 2 m A$$

[1]

(d) Aufstellen der DGL.:

$$\frac{dQ}{dt} = \frac{-Q}{RC}.$$

Lösen der DGL durch Umstellen und Integration:

$$\int_{Q_0}^{Q} \frac{dQ'}{Q'} = \int_0^t -\frac{dt'}{RC}$$

$$\ln \frac{Q_0}{Q} = -\frac{t}{RC}$$

$$Q(t) = Q_0 e^{-\frac{t}{RC}}$$

Dabei gilt für C und  $Q_0$ :

$$C = \epsilon_0 \frac{A}{d} = 8,854 \cdot 10^{-12} A^2 s^2 N^{-1} m^{-2} \cdot \frac{4 \cdot 10^{-4} m^2}{3 \cdot 10^{-3} m} = 1,18 \cdot 10^{-12} CV - 1$$
 
$$Q_0 = I_C \cdot t = 2 \cdot 10^{-3} A \cdot 1 \cdot 10^{-5} s = 2 \cdot 10^{-8} C$$

[2]

(e)

$$Q(T) = Q_0 \cdot \frac{1}{e}$$

$$\Rightarrow T = RC = 1VA^{-1} \cdot 1, 18 \cdot 10^{-12} AsV^{-1} = 1, 18 \cdot 10^{-12} s$$

[1]

# Aufgabe 4 (4 Punkte)

Eine Gewitterwolke habe eine Ausdehnung von 100 km² und befinde sich in 1 km Höhe.

(a) Unter der Annahme, eine Wolke verhalte sich idealerweise wie ein Kondensator: Welche Ladung muss sich auf der Wolke befinden, damit es zu einem Blitz kommt?

**Hinweis:** Die Durchschlagfeldstärke von Luft beträgt  $10^4$  V/cm.

(b) Der Blitz entlade die Wolke vollständig, welche Energie wird auf die Erde übertragen?

(a) Die Kapazität der Wolke ist gegeben als

$$C = \epsilon_0 \frac{A}{d} = 8, 8 \cdot 10^{-7}$$
 (22)

[1]

Die für die Entladung nötige Spannung beträgt

$$U = 10^4 \text{V/cm} \cdot d = 10^9 \text{V}$$
 (23)

[1]

Man erhält als für eine Entladung notwendige Spannung

$$Q = CU = 8, 8 \cdot 10^{2}$$
 (24)

[1]

(b) Der Blitzt überträgt damit eine Energie von

$$E = \frac{1}{2}CU^2 = 4, 4 \cdot 10^{11}$$
 (25)

[1]

## Aufgabe 5 (5 Punkte)

Gegeben seien drei unendlich, lange, gerade, parallele Drähte. Draht 1 bilde die y-Achse eines kartesischen Koordinatensystems, Draht 2 liege in der (x,y)-Ebene bei x=+a, Draht 3 liege so, dass die Durchstoßpunkte der Drähte durch die (x,z)-Ebene ein gleichseitiges Dreieck bilden (siehe Skizze). Durch die Drähte fließen die Gleichströme  $I_1=I, I_2=\alpha \cdot I$  mit  $\alpha>0$  und  $I_3=5I$ . Die Stromrichtungen sind der Figur zu entnehmen.



- (a) Wie groß ist der Faktor  $\alpha$ , wenn die pro Meter Länge auf dem Draht 3 wirkende Kraft den Betrag  $\frac{|\vec{F}_3|}{l} = \frac{\mu_0}{4\pi} \cdot \frac{10I^2}{a} \cdot \sqrt{7}$  hat?
- (b) Wie lautet die Komponentendarstellung des Einheitsvektors in Richtung von  $\vec{F}_3$ ?

(a) Für die Kraft zwischen zwei geraden stromdurchflossenen Drähten gilt:

$$\vec{F}_{i,j} = \frac{\mu_0 l}{2\pi} I_i I_j \frac{\vec{r}_{i,j}}{r_{i,j}^2}$$

Hieraus folgt für die Kraft von Draht 2 auf Draht 3:

$$\vec{F}_{32} = \frac{\mu_0 l}{2\pi} 5I \cdot \alpha I \frac{1}{a^2} a \begin{pmatrix} -\frac{1}{2} \\ 0 \\ \frac{\sqrt{3}}{2} \end{pmatrix} = \frac{\mu_0}{2\pi} 5I^2 \cdot \alpha \frac{l}{a} \begin{pmatrix} -\frac{1}{2} \\ 0 \\ \frac{\sqrt{3}}{2} \end{pmatrix}$$

Hieraus folgt für die Kraft von Draht 1 auf Draht 3:

$$\vec{F}_{31} = \frac{\mu_0 l}{2\pi} 5I \cdot I \frac{1}{a^2} a \begin{pmatrix} \frac{1}{2} \\ 0 \\ \frac{\sqrt{3}}{2} \end{pmatrix} = \frac{\mu_0}{2\pi} 5I^2 \frac{l}{a} \begin{pmatrix} \frac{1}{2} \\ 0 \\ \frac{\sqrt{3}}{2} \end{pmatrix}$$

Die Gesamtkraft auf Draht 3 ist somit:

$$\vec{F}_{3} = \vec{F}_{32} + \vec{F}_{31} = \frac{\mu_{0}}{2\pi} 5I^{2} \frac{l}{a} \left( \alpha \begin{pmatrix} -\frac{1}{2} \\ 0 \\ \frac{\sqrt{3}}{2} \end{pmatrix} + \begin{pmatrix} \frac{1}{2} \\ 0 \\ \frac{\sqrt{3}}{2} \end{pmatrix} \right) = \frac{\mu_{0}}{2\pi} 5I^{2} \frac{l}{2a} \begin{pmatrix} 1 - \alpha \\ 0 \\ (\alpha + 1)\sqrt{3} \end{pmatrix}$$

[2]

Die Richtung der Kraft ist:

$$\vec{r}_3 = \begin{pmatrix} 1 - \alpha \\ 0 \\ (\alpha + 1)\sqrt{3} \end{pmatrix}$$
 und  $|\vec{r}_3| = 2\sqrt{\alpha^2 + \alpha + 1}$ 

Somit ist der Betrag der Gesamtkraft auf Draht 3:

$$\left| \vec{F}_3 \right| = \frac{\mu_0}{4\pi} 5I^2 \frac{l}{a} \cdot 2\sqrt{\alpha^2 + \alpha + 1}$$

[1]

Hieraus folgt die Kraft pro Meter:

$$\frac{\left|\vec{F}_3\right|}{l} = \frac{\mu_0}{4\pi} \frac{10I^2}{a} \cdot \sqrt{\alpha^2 + \alpha + 1}$$

Mit der in der Aufgabe gegebenen Kraft folgt:

$$7 = \alpha^2 + \alpha + 1 \Rightarrow \alpha_{1,2} = \frac{-1 \pm \sqrt{1 + 24}}{2} \Rightarrow \alpha_1 = 2, \alpha_2 = -3$$

[1]

(b) Für  $\alpha = 2$  wird die Richtung der Kraft auf Draht 3:

$$\vec{r}_3 = \begin{pmatrix} -2+1\\0\\(2+1)\sqrt{3} \end{pmatrix} = \begin{pmatrix} -1\\0\\3\sqrt{3} \end{pmatrix} \text{ und } |\vec{r}_3| = \sqrt{28}$$

Damit ist der Einheitsvektor:

$$\vec{r_3}0 = \frac{1}{2\sqrt{7}} \begin{pmatrix} -1\\0\\3\sqrt{3} \end{pmatrix}$$

[1]

## Aufgabe 6 (4 Punkte)

Gegeben seien zwei parallele Leiterschleifen im Abstand 2a (siehe Abbildung). Beide werden in gleicher Richtung vom Strom I durchflossen. Berechnen Sie mithilfe des Biot-Savart'schen Gesetzes das Magnetfeld auf der Achse senkrecht durch die beiden Leiterschleifen.



### Lösung

Zunächst berechne man das Magnetfeld auf der Achse senkrecht durch den Mittelpunkt einer stromdurchflossenen Leiterschleife. Hierzu wählen wir als Parametrisierung:

$$d\vec{s} = R \begin{pmatrix} -\sin\phi \\ \cos\phi \\ 0 \end{pmatrix} d\phi \qquad \vec{r} = R \begin{pmatrix} -\cos\phi \\ -\sin\phi \\ \frac{z}{R} \end{pmatrix}$$
 [1]

Also lautet das Biot-Savartsche Gesetz:

$$\begin{split} \vec{B}_i(z) &= \int \frac{\mu_0 I}{4\pi r^3} (d\vec{s} \times \vec{r}) \\ &= \int_0^{2\pi} \frac{\mu_0 I R^2}{4\pi r^3} \begin{pmatrix} z \cos \phi / R \\ z \sin \phi / R \\ (\sin^2 \phi + \cos^2 \phi) \end{pmatrix} d\phi \\ &= \frac{\mu_0 I R^2}{4\pi r^3} \begin{pmatrix} 0 \\ 0 \\ 2\pi \end{pmatrix} = \frac{\mu_0 I}{2} \frac{R^2}{\sqrt{R^2 + z^2}} \vec{e}_z \end{split}$$

Für das Magnetfeld von zwei Leiterschleifen gilt das Superpositionsprinzip. Wir setzen Schleife 1 auf z = -a und Schleife 2 auf z = +a. Also erhalten wir für das gesamte Magnetfeld:

$$\begin{split} \vec{B}_{ges}(z) &= \vec{B}_1(z) + \vec{B}_2(z) \\ &= \frac{\mu_0 I R^2}{2} \left( \frac{1}{\sqrt{R^2 + (z+a)^2}} \, {}_3^3 + \frac{1}{\sqrt{R^2 + (z-a)^2}} \, {}_3^3 \right) \vec{e_z} \end{split}$$

Hier ist auch  $z^2$  und  $(z-2a)^2$  im Nenner möglich bei anderer Wahl des Nullpunktes.

[1]

#### Aufgabe 7 (5 Punkte)

A und B seien Zwillinge. A reise mit einer Geschwindigkeit von 0,6c zum Stern Alpha Centauri (Abstand zur Erde: 4 Lichtjahre) und kehre sofort zur Erde zurück. Jeder Zwilling sende dem anderen im Abstand von 0,01 Jahren (im jeweiligen Ruhesystem gemessen) Lichtsignale.

- (a) Mit welcher Frequenz erhält B Signale, wenn A sich von ihm weg bewegt
- (b) Mit welcher Frequenz erhält B Signale, wenn A sich auf ihn zu bewegt?
- (c) Wie viele Signale sendet A auf seiner gesamten Reise aus?
- (d) Wie viele Signale sendet B während der Reise von A aus?

#### Lösung

(a) Ein von A gemessenes Zeitintervall  $\Delta t_A$  hat für B die Dauer  $\Delta t_B = \gamma \Delta t_A$ . Zudem entfernt sich A zwischen den Signalen um die Strecke  $v\Delta t_B$ . Für diesen zusätzlichen Weg benötigt das Lichtsignal die Zeit  $\frac{v}{c}\Delta t_B$ . Wenn A jeweils nach  $\Delta t_A = 0,01a$  ein Signal sendet, so empfängt B ein Signal nach jeweils

$$\Delta T = \Delta t_B + \frac{v}{c} \Delta t_B$$

$$= \gamma \left( 1 + \frac{v}{c} \right) \Delta t_A$$

$$= \sqrt{\frac{1 + \frac{v}{c}}{1 - \frac{v}{c}}} \Delta t_A = 0,02$$

Jahren.

[1,5]

(b) Der Unterschied im gemessenen Zeitintervall bleibt der gleiche. Allerdings verringert sich die Strecke zwischen dem Abschicken der Signale um  $\frac{v}{c}\Delta t_B$ . Also empfängt B ein Signal

nach jeweils

$$\Delta T = \Delta t_B - \frac{v}{c} \Delta t_B$$

$$= \gamma \left( 1 - \frac{v}{c} \right) \Delta t_A$$

$$= \sqrt{\frac{1 - \frac{v}{c}}{1 + \frac{v}{c}}} \Delta t_A = 0,005$$

Jahren.

[1,5]

(c) Für A beträgt die Entfernung zu Alpha Centauri  $l'=\frac{l}{\gamma}=3,2$  Lj. Somit ist die gesamte Reisezeit für A  $\frac{2l'}{0,6c}=10,66$  Jahre. Zwilling A sendet alle 0,01 Jahre ein Signal aus, somit sendet er insgesamt 1066 Signale (lässt sich auch mit Zeitdilatation rechnen).

[1]

(d) Für B dauert die Reise von A $\frac{2l}{0,6c}=13,33$  Jahre. Sendet er alle 0,01 Jahre ein Signal aus, ergibt das eine Gesamtzahl von 1333 Signalen.

[1]

## Aufgabe 8 (5 Punkte)

Ein Metallring mit Radius r=10 cm wird in ein räumlich homogenes Magnetfeld gehalten, wobei die Normale des Kreisrings parallel zum Magnetfeld  $\vec{B}$  gerichtet ist. Der Widerstand des Metallrings beträgt R=0,1  $\Omega$ . Das Magnetfeld hat die Zeitabhängigkeit  $B=B_0\exp\left(-t/\tau\right)$  mit  $B_0=1,5$  T und  $\tau=3$  s.



- (a) Geben Sie einen Ausdruck für den magnetischen Fluss durch den Metallring als Funktion der Zeit an.
- (b) Geben Sie einen Ausdruck für die im Metallring induzierte Spannung als Funktion der Zeit an.
- (c) Wie groß ist die maximale induzierte Spannung?
- (d) Der Ring wird nun geschlossen. Berechnen Sie den durch den Ring fließenden Strom. Wie groß ist der maximale Wert?
- (e) In welcher Richtung fließt der Strom? Markieren Sie diese in einer von Ihnen angefertigten Zeichnung des Versuchsaufbaus und begründen Sie Ihre Antwort.

(a)

$$\Phi(t) = \int \vec{B} \circ d\vec{A}$$
$$= \pi r^2 B_0 \exp\left(-\frac{t}{\tau}\right)$$

[1]

(b)

$$= \pi r^2 B_0 \exp\left(-\frac{t}{\tau}\right)$$
$$= 0.047 \text{Vs} \cdot \exp\left(-\frac{t}{3\text{s}}\right)$$

$$\begin{split} U_{ind}(t) &= -\frac{dQ(t)}{dt} = \frac{A \cdot B_0}{\tau} \exp\left(-\frac{t}{\tau}\right) \\ &= \frac{0,047 \text{Vs}}{3\text{s}} \exp\left(-\frac{t}{3\text{s}}\right) \\ &= 0,016 \text{V} \exp\left(-\frac{t}{3\text{s}}\right) \end{split}$$

[1,5]

(c) Die maximale Spannung liegt vor für t=0:

$$U_{ind,max} = 0,016V$$

[0,5]

(d)

$$\begin{split} I(t) &= \frac{U_{ind}(t)}{R} = \frac{0,016V}{0,1\Omega} \exp\left(-\frac{t}{\tau}\right) = 0,16\text{A} \cdot \exp\left(-\frac{t}{3\text{s}}\right) \\ I_{max} &= I(0) = 0,16\text{A} \end{split}$$

[1]

(e) Der Strom wirkt der Schwächung von  $\vec{B}$  entgegen (Lenz'sche Regel) und fließt gegen den Uhrzeigersinn.

[1]



# Konstanten

$$e = 1.6 \cdot 10^{-19} \text{C}$$
  
 $\epsilon_0 = 8.85 \cdot 10^{-12} \text{As/Vm}$ 

$$m_e = 9.11 \cdot 10^{-31} \text{kg}$$
  
 $\mu = 12.57 \cdot 10^{-7} \text{N/A}^2$