Bemerkung zu probabilistischer Modellierung

Zwischen korrelierten Variablen besteht oft

direkter kausaler Zusammenhang!

Beispiele

- Mitarbeiterzufriedenheit und Profit/Mitarbeiter
- Fernsehkonsum und Schulleistung
- Videospielhäufigkeit und Gewaltbereitschaft
- Kirchenbindung und Einkommen
- ... und <u>Tausende</u> weitere schauen Sie in Ihre Zeitung! ("Vermischtes" oder "Wissenschaft")

Die Verursachung wirkt über andere, verborgene Variablen!

Inferenz über (vollst.) gemeinsame W'keiten

Kommt ein Mann zum Arzt: "Herr Doktor, ich hab so Rückenschmerzen!"

Angenommen, wir suchen:

die (vollständige) gemeinsame Posteriori-Verteilung

- der Variablen Y (Ursache, z.B. Krankheit),
- gegeben Werte e der Variablen E ("Evidenz", z.B. Symptom)

$$P(Y|E=e) = \alpha P(Y, E=e) = \alpha \sum_{h} P(Y, E=e, H=h)$$

(α Normalisierung, **H** "verborgene" (*hidden*) Variablen)

Ginge über Ausrechnen aus der Tabelle der vollständigen gemeinsamen Verteilung, aber ...

- das ist ein wenig Rechnerei
- \odot wer sagt einem all die $O(m^{|Y|+|E|+|H|})$ W'keitswerte??

Ausnutzen von Unabhängigkeit

s.o.: Ereignisse a,b sind **unabhängig**, gdw: $P(a \cap b) = P(a) \cdot P(b)$

... also: <u>für unabhängige Variablen</u> A und B gilt:

$$P(A|B) = P(A)$$
 oder $P(B|A) = P(B)$ oder $P(A,B) = P(A) P(B)$

z.B.
$$\mathbf{P}(Sonnig|Zahnloch) = \mathbf{P}(Sonnig)$$

 $\mathbf{P}(A,B,C,D) = \mathbf{P}(A,C,D) \mathbf{P}(B)$

- ... also Reduktion des Aufwandes beim Rechnen und v.a. beim Repräsentieren:
- wenige kleinere W'keitstabellen (z.B. P(A,C,D), P(B))
- statt einer großen für die vollständige gemeinsame Verteilung (z.B. P(A,B,C,D))
- ... doch volle Unabhängigkeit ist ein (seltener) Spezialfall!

Bedingte Unabhängigkeit, Beispiel

Bspl: Heiße Zahnloch: Ich habe ein Loch im Zahn

Schmerz: Ich habe Zahnschmerzen

Haken: Der Stahlhaken beim Zahnarzt greift

gemeinsam nicht unabhängig!

Doch es gilt:

 $\mathbf{P}(Haken \mid Schmerz, Zahnloch) = \mathbf{P}(Haken \mid Zahnloch)$

(ob der Haken greift, hängt nicht vom Zahnschmerz ab)

Haken ist bedingt unabhängig von Schmerz, gegeben Zahnloch

entsprechend:

 $\mathbf{P}(Schmerz \mid Haken, Zahnloch) = \mathbf{P}(Schmerz \mid Zahnloch)$

 $\mathbf{P}(Schmerz,Haken|Zahnloch)=\mathbf{P}(Schmerz|Zahnloch)\mathbf{P}(Haken|Zahnloch)$

Bedingte Unabhängigkeit, Definition

Zwei Ereignisse *a*, *b* sind **bedingt unabhängig**, gegeben *c*, gdw.:

$$P(a,b \mid c) = P(a \mid c) P(b \mid c)$$

Zwei Zufallsvariable *A*, *B* sind **bedingt unabhängig**, geg. *C*, gdw.:

$$\mathbf{P}(A, B \mid C) = \mathbf{P}(A \mid C) \mathbf{P}(B \mid C)$$

Damit äquivalent sind die Formulierungen

$$P(A \mid B,C) = P(A \mid C)$$
 und $P(B \mid A,C) = P(B \mid C)$

→ kleinere Verteilungen ohne volle Unabhängigkeit!!

Die Bayessche Regel ("Satz von Bayes")

Erinnerung Produktregel: $P(a \cap b) = P(a|b)P(b) = P(b|a)P(a)$

Satz von Bayes
$$P(b \mid a) = \frac{P(a \mid b)P(b)}{P(a)} = \alpha \cdot P(a \mid b)P(b)$$
Konstante bei Normalisierung

Üblicher Trick: Normalisierung!

... oder für Verteilungen:

$$\mathbf{P}(Y \mid X) = \frac{\mathbf{P}(X \mid Y)\mathbf{P}(Y)}{\mathbf{P}(X)} = \frac{\mathbf{P}(X \mid Y)\mathbf{P}(Y)}{\mathbf{P}(X)}$$

... oder bei vorhandener Evidenz e:

$$\mathbf{P}(Y \mid X, \mathbf{e}) = \frac{\mathbf{P}(X \mid Y, \mathbf{e})\mathbf{P}(Y \mid \mathbf{e})}{\mathbf{P}(X \mid \mathbf{e})}$$

4.2 Bayes-Netze

Diagnose mit bedingten W'keiten

- Oft sind kausale Zusammenhänge (Ursache → Wirkung) besser bekannt als diagnostische (Wirkung → Ursache)
- Gesucht sind in der Regel aber Diagnosen (s. Arzt-Beispiel): gegeben Symptome (Evidenz, Wirkung), nenne mögliche Ursachen
- Daher nutze die Umformung:

$$P(Ursache \mid Wirkung) = \frac{P(Wirkung \mid Ursache)P(Ursache)}{P(Wirkung)}$$

Bedingte Unabhängigkeit + Bayessches Modell

... um W'tabellen weiter zu reduzieren

P(Zahnloch, Schmerz, Haken)

 $\Rightarrow \mathbf{P}(Schmerz, Haken \mid Zahnloch) \mathbf{P}(Zahnloch)$

 $\mathbf{P}(Schmerz \mid Zahnloch) \mathbf{P}(Haken \mid Zahnloch) \mathbf{P}(Zahnloch)$

Bed. W 'keit

Domänenwissen: Bed. Unabhängigkeit (s.o.)

allgemein: Naives Bayessches Modell:

 $\mathbf{P}(Ursache, Effekt_1, ..., Effekt_n)$ $= \alpha \mathbf{P}(Ursache) \prod_i \mathbf{P}(Effekt_i | Ursache)$

"Naiv" (= approximativ), wenn die E_i nicht wirklich/ nicht sicher unabhängig sind: streng genommen falsch!

Reduziert W'tabellen von $O(m^n)$ auf $O(m \cdot n)$!

Bayes-Netze

... repräsentieren effizient gemeinsame W'verteilungen und (bzw. mit Hilfe von)

(Schmerz,

Zahnloch

Haken

Propagation

Judea Pearl, ???

Aussagen zur bedingten Unabhängigkeit von ZVn

Ein Bayes-Netz ist ein gerichteter azyklischer Graph, wobei

Knoten entsprechen Zufallsvariablen (diskret, kontinuierlich)

Kanten entspr. <u>direkten</u> Abhängigkeiten zwischen Variablen;
 führt Kante von X nach Y, so heißt X ein <u>Elternknoten</u> von Y,

die Menge aller Elternknoten ist *Parents*(*Y*)

Jeder Knoten X trägt Anschrift P(X | Parents(X))

Und was soll das?

- Berechnung beliebiger Verteilungen
- basierend auf stark reduzierten W'tabellen durch Nutzung bedingter Unabhängigkeit
- korrekt und praktisch effizient

Beispie für Kalifornische Wissenschaffende

- Hausalarm geht an bei Einbruch und manchmal bei Erdbeben
- Nachbarn John und Mary sollen im Büro anrufen, wenn sie tagsüber Alarm hören
- John ruft im Büro an, aber nicht Mary. Wie wahrscheinlich ist es, dass gerade eingebrochen wird?

Modellierung

- Variablen <u>Burglary</u>, <u>EarthQuake</u>, <u>Alarm</u>, <u>JohnCalls</u>, <u>MaryCalls</u>
- Gesucht ist also $P(B \mid J=t, M=f)$, kurz notiert $P(B \mid j,-m)$
- Alarm hängt direkt ab von Burglary, Earthquake;
 JohnCalls und MaryCalls hängen direkt je nur ab von Alarm
- W'keiten wie nachfolgend angegeben

Beispiel-Bayes-Netz

Burglary

Beispiel

P(j,-m,a,b,-q)

= P(j|a)P(-m|a)P(a|b,-q)P(b)P(-q)

 $= 0.9 \times 0.3 \times 0.94 \times 0.001 \times 0.998$

= 0.0002532924

A	$\mathbf{P}(J A)$
t	.90
$\int f$.05

	В	Q	$\mathbf{P}(A B,Q)$
	t	t	.95
Alarm	t	f	.94
	\int	t	.29
	\int	f	.001
ohnCalls \		•	

MaryCalls

(Earthquake)

Doch eigentlich suchen wir ja **P**(*B* | *j*,-*m*)! (Fortsetzung folgt)

 $\mathbf{P}(M|A)$

.70

.01

 \boldsymbol{A}

Lokalitätseigenschaften in Bayes-Netzen

Ist es korrekt, gemeinsame W'keit P(j,-m,a,b,-q) über Produkt P(j|a)P(-m|a)P(a|b,-q)P(b)P(-q) lokaler W'keiten auszurechnen? \rightarrow ja, nach Bayes-Netz-Konstruktion! (Ertel 7.4.7, R./N. 14.2)

Zusätzlich gilt Satz: Knoten X ist bedingt unabhängig von

- 1. allen Nicht-Nachfolgern, gegeben seine Eltern
- 2. allen anderen Knoten, gegeben seine Markow-Hülle (die Eltern von X, die direkten Nachfolger von X und deren (andere) Eltern)

aispace.org/bayes

File Edit View Network Options Help

Make Observation Query P(e) Query Toggle Monitoring

Select V

Solve

 Tool zum Experimentieren mit kleinen Bayes-Netzen

Modus 1: Erstellen

Modus 2: Rechnen

 Möglichkeiten zum Abfragen und Monitoring von Variablen

 Möglichkeit zum Einfügen von "Beobachtungen"

siehe auch Übungen!

Click on an entity and drag the mouse to move it.

Create

Belief and Decision Network Tool Version 5.1.9 --- bayes.xml

