Università degli Studi di Padova – Department of Mathematics Master's Degree in Data Science Structural Bioinformatics, A.Y. 2022/23

Tanner Graves	2073559	tanner.graves@studenti.unipd.it
Marco Uderzo	2096998	${\it marco.uderzo@studenti.unipd.it}$
Nour Alhousseini	2081230	nour.alhousseini@studenti.unipd.it
Hazeezat Adebimpe Adebayo	2090254	hazeezatadebimpe.adebayo@studenti.unipd.it

Classification of Contacts in Protein Structures

1. Training Set and Data Retrieval

The first step of the project was retrieving the data from each .tsv file from the features_ring folder (1,807 PDBs in total) and storing it into a single DataFrame.

The data contained in each .tsv file consists in a tab-separated file available for each protein, in which each row represents a contact in the protein and each column represents a feature about that contact. The last column is the target label, specifying the interaction type.

Column position	Column name	Column meaning	Type of column	
1	pdb_id			
2	s_ch	chain		
3	s_resi	index	source residue identifier	
4	s_ins	insertion code		
5	s_resn	name		
6	s_ss8	secondary structure 8 states (DSSP)		
7	s_rsa	relative solvent accessibility		
8	s_up	half sphere exposure up		
9	s_down	half sphere exposure down	source residue features	
10	s_phi	phi angle		
11	s_psi	psi angle		
12	s_ss3	secondary structure 3 states (from angles)		
13	s_a1	Atchley feature 1		
14	s_a2	Atchley feature 2		
15	s_a3	Atchley feature 3		
16	s_a4	Atchley feature 4		
17	s_a5	Atchley feature 5		
18	t_ch	chain		
19	t_resi	index	target residue identifie	
20	t_ins	insertion code		

21	t_resn	name	
22	t_ss8	secondary structure 8 states (DSSP)	
23	t_rsa	relative solvent accessibility	
24	t_up	half sphere exposure up	
25	t_down	half sphere exposure down	
26	t_phi	phi angle	
27	t_psi	psi angle	.1
28	t_ss3	secondary structure 3 states (from angles)	target residue features
29	t_a1	Atchley feature 1	
30	t_a2	Atchley feature 2	
31	t_a3	Atchley feature 3	
32	t_a4	Atchley feature 4	
33	t_ a 5	Atchley feature 5	
34	Interaction	interaction type	

Table 1.1: Training set description

Interaction Type	Count
HBOND	333,346
VDW	155,789
PIPISTACK	10,403
IONIC	9,068
SSBOND	866
PICATION	626
Unclassified	225,412

Table 1.2: Number of examples by bond type.

2. Data Preprocessing

The preprocessing pipeline starts with removing all samples where the label is unavailable (to explain how we are reinputting them). Then, the missing values of each feature are replaced using the mode of the feature itself. (Numerical features?)

It was considered to perform best subset selection using Logistic Regression to determine which features are the most meaningful ones and the ones that are not influencing the decision much. However, all Atchley features are selected, so this step is skipped.

Scaling is then performed to standardize all the features to values between [0,1] to be then fed to the model.

The biggest criticality in the dataset is the heavy imbalance that is evident by looking at the number of contacts by interaction type. Notably, Hydrogen Bonds (HBOND) and Van der Waals contacts (VDW) are the most numerous, which makes them overrepresented in the training set. The remaining contact types, instead, are underrepresented. Training a model with such unbalanced datasets is sure to yield poor performance, especially when evaluating the model on new unseen data.

To mitigate this issue, a mixed approach of undersampling the most represented classes and oversampling the underrepresented ones is applied. It is to be noted, however, that altering the dataset, especially by oversampling, can yield overly optimistic results in the training performance, which don't necessarily transfer to as good performances at inference time on new data. Therefore, the balancing process of the training set is performed carefully and conservatively.

For undersampling, an InstanceHardnessThreshold undersampler with AdaBoost is used, which fits an estimator on the data and removes the most difficult data points to classify afterwards. The sampling strategy is {HBOND: 70'000, VDW: 80'000}. For oversampling, SMOTE (Synthetic Minority Oversampling TEchnique) is used, which uses interpolation between samples to create new artificial data points. The sampling strategy is {IONIC: 20'000, PIPISTACK: 10'000, PICATION: 20'000, SSBOND: 10'000}

3. Model

3.1. Deep Neural Network

The model created to classify residue-residue contacts is a Deep Neural Network for multiclass classification (if ensemble approach goes through, this becomes binary classification using OvO). The Deep Learning library of choice is *Keras*, a very commonly used open-source library that acts as an interface for *TensorFlow*.

The first step to be carried out is the encoding of the label of each sample into an identity vector, using a common practice called "One-Hot Encoding". This ensures that each class is uniquely identified and independent of the others. It helps the neural network to better understand the categorical nature of the data and prevents any ordinal relationship assumptions between the classes.

One-Hot Encoding is also performed to then set the number of neurons of the output layer to be equal to the number of classes in the dataset, in order to train each output neuron to determine the probability $P(C_i | \text{data})$, with $\sum P(C_i | \text{data}) = 1$. Therefore, the output layer represents the probability distribution of a contact being of a certain type. (again, if ensemble is used, this has to be revised, as well as the output csv)

Although the model is a relatively small Deep Neural Network with fully connected layers, overfitting is mitigated using L2 Regularization (Weight Decay) on each Dense layer, and Early Stopping monitoring the loss progression over the epochs. These two techniques provide better generalization performance. The use of random dropout of neurons after each hidden layer was also tested, without any meaningful improvement on final test performance.

After much experimentation with a single model, it was decided to use Ensemble Methods, implementing a *One vs. One* (*OvO*) approach, which assumes that grouping together multiple weaker models can yield better performance by leveraging the strengths of each predictor. Therefore, multiple models are trained to discriminate between pair of classes. The final prediction of the ensemble is decided through majority voting.

3.2. Model Details and Hyperparameters

Hyperparameters			
Batch Size	16'000		
Weight Initialization	$Xavier\;({\tt GlorotNormal})$		
Loss Function	Categorical Cross-Entropy		
Optimizer	Adam		
Hidden Layers: Activation Function	ReLU		
Output Layer: Activation Function	Softmax		

Table 3.2.1: Model's hyperparameters (Keras)

Layer Type	Output Shape	Param #
Dense	64	
Dense	128	
Dense	N	
# Total Parameters		174,918

Table 3.2.2: Model's architecture (Keras)

4. Results

4.1 Performance

Insert here:

- Loss plot over epochs (both training and validation)
- AUC curve (both training and validation)
- Precision-Recall Barplots (both training and validation)
- Average statistics at test time? Actual metrics evaluated by professor?

4.2 Issues

Implementing dataset balancing greatly improved model recall on minority classes. This would indicate that the model is effectively learning information about the classes. However, these classes still suffer from poor precision with resampling likely attributed to the relatively extremely low unique examples not allowing for a good representation of the class to be learned.

Through much experimentation it was found that more complex models with more parameters or lower dropout probabilities were better able to recall information about the minority classes, and simpler models would often not predict some of the minority classes at all, namely π -Cation interactions and SS-bonds.

The largest contributor to model inaccuracy was confusion between the two largest represented groups: hydrogen bonds and Van der Waals interactions.

5. Usage

To predict the contacts of a new PDB file using the pretrained model, run the following command in your terminal, using arguments:

```
python3 contact_net.py --inference --pdb your_pdb_id
```

To perform retraining or the model, instead, run:

```
python3 contact_net.py --train
```

The full documentation of the software is available in the GitHub repository at the following <u>link</u>.