

The centralisers of nilpotent elements in the classical Lie algebras

O.S. YAKIMOVA

INTRODUCTION

Let \mathfrak{g} be a Lie algebra over a field \mathbb{K} . Consider the coadjoint representation $\text{ad}^*(\mathfrak{g})$. The index of \mathfrak{g} is the minimum of dimensions of stabilisers \mathfrak{g}_α over all covectors $\alpha \in \mathfrak{g}^*$

$$\text{ind } \mathfrak{g} = \min_{\alpha \in \mathfrak{g}^*} \dim \mathfrak{g}_\alpha.$$

The definition of index goes back to Dixmier [3, 11.1.6]. This notion is important in Representation Theory and also in Invariant Theory. By Rosenlicht's theorem [12], generic orbits of an arbitrary action of a linear algebraic group on an irreducible algebraic variety are separated by rational invariants; in particular, $\text{ind } \mathfrak{g} = \text{tr.deg } \mathbb{K}(\mathfrak{g}^*)^G$.

The index of a reductive algebra equals its rank. Computing the index of an arbitrary Lie algebra seems to be a wild problem. However, there is a number of interesting results for several classes of non-reductive subalgebras of reductive Lie algebras. For instance, parabolic subalgebras and their "relatives" (nilpotent radicals, seaweeds) are considered in [4], [8], [13]. The centralisers of elements form another interesting class of subalgebras. The last topic is closely related to the theory of integrable Hamiltonian systems.

Let G be a semisimple Lie group (complex or real), $\mathfrak{g} = \text{Lie } G$, and Gx an orbit of a covector $x \in \mathfrak{g}^*$. Let \mathfrak{g}_x denote the stabiliser of x . It is well-known that the orbit Gx possesses a G -invariant symplectic structure. There is a family of commuting with respect to a Poisson bracket polynomial functions on \mathfrak{g}^* constructed by the argument shift method such that its restriction to Gx contains $\frac{1}{2} \dim(Gx)$ algebraically independent functions if and only if $\text{ind } \mathfrak{g}_x = \text{ind } \mathfrak{g}$, [1].

Conjecture (Élashvili). *Let \mathfrak{g} be a reductive Lie algebra. Then $\text{ind } \mathfrak{g}_x = \text{ind } \mathfrak{g}$ for each covector $x \in \mathfrak{g}^*$.*

Recall that if \mathfrak{g} is reductive, then the \mathfrak{g} -modules \mathfrak{g}^* and \mathfrak{g} are isomorphic. In particular, it is enough to prove the "index conjecture" for stabilisers of vectors $x \in \mathfrak{g}$.

Given $x \in \mathfrak{g}$, let $x = x_s + x_n$ be the Jordan decomposition. Then $\mathfrak{g}_x = (\mathfrak{g}_{x_s})_{x_n}$. The subalgebra \mathfrak{g}_{x_s} is reductive and contains a Cartan subalgebra of \mathfrak{g} . Hence, $\text{ind } \mathfrak{g}_{x_s} = \text{ind } \mathfrak{g} = \text{rk } \mathfrak{g}$. Thus, a verification of the "index conjecture" is reduced to the computation of $\text{ind } \mathfrak{g}_{x_n}$ for nilpotent elements $x_n \in \mathfrak{g}$. Clearly, we can restrict ourselves to the case of simple \mathfrak{g} .

Note that if x is a regular element, then the stabiliser \mathfrak{g}_x is commutative and of dimension $\text{rk } \mathfrak{g}$. The "index conjecture" was proved for subregular nilpotents and nilpotents of height 2 [9], and also for nilpotents of height 3 [10]. (The height of a nilpotent element e is the maximal number m such that $(\text{ad } e)^m \neq 0$.) Recently, Élashvili's conjecture was proved by Charbonnel [2] for $\mathbb{K} = \mathbb{C}$.

In the present article, we prove in an elementary way, that for any nilpotent element $e \in \mathfrak{g}$ of a simple classical Lie algebra the index of \mathfrak{g}_e equals the rank of \mathfrak{g} . We assume that the

ground field \mathbb{K} contains at least k elements, where k is the number of Jordan blocks of a nilpotent element $e \in \mathfrak{g}$. For the orthogonal and symplectic algebras, it is also assumed that $\text{char } \mathbb{K} \neq 2$. Note that if a reductive Lie algebra \mathfrak{g} does not contain exceptional ideals, then \mathfrak{g}_{x_s} has the same property. Thus, the “index conjecture” is proved for the direct sums of classical algebras.

By Vinberg’s inequality, which is presented in [9, Sect. 1], we have $\text{ind } \mathfrak{g}_x \geq \text{ind } \mathfrak{g}$ for each element $x \in \mathfrak{g}^*$. It remains to prove the opposite inequality. To this end, it suffices to find $\alpha \in (\mathfrak{g}_x)^*$ such that the dimension of its stabiliser in \mathfrak{g}_x is at most $\text{rk } \mathfrak{g}$. For $\mathfrak{g} = \mathfrak{gl}(V)$ and $\mathfrak{g} = \mathfrak{sp}(V)$, we explicitly indicate such a point $\alpha \in \mathfrak{g}^*$. In case of the orthogonal algebra, the proof is partially based on induction.

In the last two sections, \mathbb{K} is assumed to be algebraically closed and of characteristic zero. It is shown that the stabilisers $(\mathfrak{g}_e)_\alpha$ constructed for $\mathfrak{g} = \mathfrak{gl}(V)$ and $\mathfrak{g} = \mathfrak{sp}(V)$ are generic stabilisers for the coadjoint representation of \mathfrak{g}_e . For the orthogonal case, we give an example of a nilpotent element $e \in \mathfrak{so}_8$ such that the coadjoint action of \mathfrak{g}_e has no generic stabiliser. Similar results for parabolic and seaweed subalgebras of simple Lie algebras were obtained by Panyushev and also by Tauvel and Yu. In [13] there is an example of a parabolic subalgebra of \mathfrak{so}_8 having no generic stabilisers for the coadjoint representation. The affirmative answer for series A and C is obtained by Panyushev in [11].

In the last section, we consider the commuting variety of \mathfrak{g}_e and its relationship with the commuting variety of triples of matrices.

This research was supported in part by CRDF grant RM1–2543–MO–03.

1. PRELIMINARIES

Suppose \mathfrak{g} is a simple classical Lie algebra or a general linear algebra. Let $e \in \mathfrak{g}$ be a nilpotent element and $\mathfrak{z}(e)$ its centraliser in \mathfrak{g} . Note that there is no essential difference between $\mathfrak{g} = \mathfrak{gl}(V)$ and $\mathfrak{g} = \mathfrak{sl}(V)$. However, the first case is more suitable for calculations. In case of orthogonal and symplectic algebras, we need some facts from the theory of symmetric spaces.

Let $(\cdot, \cdot)_V$ be a non-degenerate symmetric or skew-symmetric form on a finite dimensional vector space V given by a matrix J , i.e., $(v, w)_V = v^t J w$, where the symbol t stands for the transpose. The elements of $\mathfrak{gl}(V)$ preserving $(\cdot, \cdot)_V$ are exactly the fixed vectors $\mathfrak{gl}(V)^\sigma$ of the involution $\sigma(\xi) = -J\xi^t J^{-1}$. There is the $\mathfrak{gl}(V)^\sigma$ -invariant decomposition $\mathfrak{gl}(V) = \mathfrak{gl}(V)^\sigma \oplus \mathfrak{g}_1$. The elements of \mathfrak{g}_1 multiply the form $(\cdot, \cdot)_V$ by -1 , i.e., $(\xi v, w)_V = (v, \xi w)_V$ for every $v, w \in V$.

Set $\mathfrak{g} = \mathfrak{gl}(V)^\sigma$, and let $e \in \mathfrak{g}$ be a nilpotent element. Denote by $\mathfrak{z}(e)$ and $\mathfrak{z}_{\mathfrak{gl}}(e)$ the centralisers of e in \mathfrak{g} and $\mathfrak{gl}(V)$, respectively. Since $\sigma(e) = e$, σ acts on $\mathfrak{z}_{\mathfrak{gl}}(e)$. Clearly, $\mathfrak{z}_{\mathfrak{gl}}(e)^\sigma = \mathfrak{z}(e)$. This yields the $\mathfrak{z}(e)$ -invariant decomposition $\mathfrak{z}_{\mathfrak{gl}}(e) = \mathfrak{z}(e) \oplus \mathfrak{z}_1$. Given $\alpha \in \mathfrak{z}_{\mathfrak{gl}}(e)^*$, let $\tilde{\alpha}$ denote its restriction to $\mathfrak{z}(e)$.

Proposition 1. *Suppose $\alpha \in \mathfrak{z}_{\mathfrak{gl}}(e)^*$ and $\alpha(\mathfrak{z}_1) = 0$. Then $\mathfrak{z}(e)_{\tilde{\alpha}} = \mathfrak{z}_{\mathfrak{gl}}(e)_\alpha \cap \mathfrak{z}(e)$.*

Proof. Take $\xi \in \mathfrak{z}(e)$. Since $[\xi, \mathfrak{z}_1] \subset \mathfrak{z}_1$, $\alpha([\xi, \mathfrak{z}(e)]) = 0$ if and only if $\alpha([\xi, \mathfrak{z}_{\mathfrak{gl}}(e)]) = 0$. In particular, $\mathfrak{z}(e)_{\tilde{\alpha}} = \mathfrak{z}(e)_{\alpha}$. \square

Suppose \mathfrak{h} is a Lie algebra and $\tau \in \text{Auth}$ an involution, which defines the decomposition $\mathfrak{h} = \mathfrak{h}_0 \oplus \mathfrak{h}_1$. Each point $\gamma \in \mathfrak{h}_0^*$ determines a skew-symmetric 2-form $\hat{\gamma}$ on \mathfrak{h}_1 by $\hat{\gamma}(\xi, \eta) = \gamma([\xi, \eta])$.

Lemma 1. *In the above notation, we have $\text{ind } \mathfrak{h} \leq \text{ind } \mathfrak{h}_0 + \min_{\gamma \in \mathfrak{h}_0^*} \dim(\text{Ker } \hat{\gamma})$.*

Proof. Consider γ as a function on \mathfrak{h} , which is equal to zero on \mathfrak{h}_1 . Then $\mathfrak{h}_\gamma = (\mathfrak{h}_0)_\gamma \oplus (\mathfrak{h}_\gamma \cap \mathfrak{h}_1) = (\mathfrak{h}_0)_\gamma \oplus (\text{Ker } \hat{\gamma})$. We have $\dim(\mathfrak{h}_0)_\gamma = \text{ind } \mathfrak{h}_0$ for generic points (= points of some Zariski open subset $U_1 \subset \mathfrak{h}_0^*$). The points of \mathfrak{h}_0^* , where $\text{Ker } \hat{\gamma}$ has the minimal possible dimension, form another open subset, say $U_2 \subset \mathfrak{h}_0^*$. For the points of the intersection $U_1 \cap U_2$, the dimension of the stabiliser in \mathfrak{h} equals the required sum. \square

2. GENERAL LINEAR ALGEBRA

Consider a nilpotent element $e \in \mathfrak{gl}(V)$, where V is an n -dimensional vector space over \mathbb{K} . Denote by $\mathfrak{z}(e)$ the centraliser of e . Let us show that the index of $\mathfrak{z}(e)$ equals n .

Let k be a number of Jordan blocks of e and $W \subset V$ a k -dimensional complement of $\text{Im } e$ in V . Denote by $d_i + 1$ the dimension of i -th Jordan block. Choose a basis w_1, w_2, \dots, w_k in W , where w_i is a generator of an i -th Jordan block, i.e., the vectors $e^{s_i} w_i$ with $1 \leq i \leq k$, $0 \leq s_i \leq d_i$ form a basis of V . Let $\varphi \in \mathfrak{z}(e)$. Since $\varphi(e^{s_i} w_i) = e^{s_i} \varphi(w_i)$, the map φ is completely determined by its values on w_i , $i = 1, \dots, k$. Each value $\varphi(w_i)$ can be written as

$$\varphi(w_i) = \sum_{j,s} c_i^{j,s} e^s w_j, \text{ where } c_i^{j,s} \in \mathbb{K}. \quad (1)$$

That is, φ is completely determined by the coefficients $c_i^{j,s} = c_i^{j,s}(\varphi)$. Note that $\varphi \in \mathfrak{z}(e)$ preserves the space of each Jordan block if and only if $c_i^{j,s}(\varphi) = 0$ for $i \neq j$.

The centraliser $\mathfrak{z}(e)$ has a basis $\{\xi_i^{j,s}\}$, where

$$\begin{cases} \xi_i^{j,s}(w_i) = e^s w_j, \\ \xi_i^{j,s}(w_t) = 0 \text{ for } t \neq i, \end{cases} \quad \begin{cases} d_j - d_i \leq s \leq d_j \text{ for } d_j \geq d_i, \\ 0 \leq s \leq d_i \text{ for } d_j < d_i \end{cases}$$

Consider a point $\alpha \in \mathfrak{z}(e)^*$ defined by the formula

$$\alpha(\varphi) = \sum_{i=1}^k a_i \cdot c_i^{i,d_i}, \quad a_i \in \mathbb{K},$$

where $c_i^{j,s}$ are the coefficients of $\varphi \in \mathfrak{z}(e)$ and $\{a_i\}$ are non-zero pairwise distinct numbers. We have $\alpha(\xi_i^{j,s}) = a_i$ if $i = j$, $s = d_i$ and zero otherwise.

Theorem 1. *The stabiliser $\mathfrak{z}(e)_\alpha$ of α in $\mathfrak{z}(e)$ consist of all maps preserving the Jordan blocks, i.e., $\mathfrak{z}(e)_\alpha$ is the linear span of the vectors $\xi_i^{i,s}$.*

Proof. Suppose $\varphi \in \mathfrak{z}(e)$ is defined by formula (1). (Some of $c_i^{j,s}$ have to be zeros, but this is immaterial here). For each basis vector $\xi_i^{j,b}$, we have

$$\alpha([\varphi, \xi_i^{j,b}]) = \alpha\left(\sum_{t,s} c_t^{i,s} \xi_t^{j,s+b} - \sum_{t,s} c_j^{t,s} \xi_i^{t,s+b}\right) = a_j \cdot c_j^{i,d_j-b} - a_i \cdot c_j^{i,d_i-b}.$$

The element φ lies in $\mathfrak{z}(e)_\alpha$ if and only if $\alpha([\varphi, \xi_i^{j,b}]) = 0$ for all $\xi_i^{j,b}$.

Note that if φ preserves the Jordan blocks, i.e., $c_i^{j,s} = 0$ for $i \neq j$, then $\alpha([\varphi, \mathfrak{z}(e)]) = 0$. Let us show that $\mathfrak{z}(e)_\alpha$ contains no other elements. Assume that $c_i^{j,s} \neq 0$ for some $i \neq j$. We have three different possibilities: $d_i < d_j$, $d_i = d_j$ and $d_i > d_j$.

If $d_j \leq d_i$, then put $\xi(w_j) = e^{(d_i-s)}w_i$ and $\xi(w_t) = 0$ for $t \neq j$. It should be noted that $0 \leq s \leq d_j \leq d_i$, hence the expression $e^{(d_i-s)}$ is well defined. One has to check that $e^{d_j+1}(\xi(w_j)) = 0$. Adding the powers of e , we get $e^{d_j+1}(\xi(w_j)) = e^{d_j+1+d_i-s}w_i = e^{d_j-s}(e^{d_i+1}w_i) = 0$. We have $\alpha([\varphi, \xi]) = a_i \cdot c_i^{j,s} - a_j \cdot c_i^{j,d_j-d_i+s}$. In case $d_j = d_i$, we obtain $(a_i - a_j) \cdot c_i^{j,s} \neq 0$. If $d_j > d_i$, then $s > d_j - d_i + s$. Choose the minimal s such that $c_i^{j,s} \neq 0$. For this choice, we get $\alpha([\varphi, \xi]) = a_i \cdot c_i^{j,s} \neq 0$.

Suppose now that $d_j > d_i$ and s is the minimal number such that $c_i^{j,s} \neq 0$. Set $\xi(w_j) = e^{(d_j-s)}w_i$ and $\xi(w_t) = 0$ for $t \neq j$. As in the previous case, we have $0 \leq s \leq d_j$. In particular, $d_j - s \geq 0$, $(d_j + 1 + d_i - s) > d_i + 1$ and, thereby, $e^{d_j+1}(\xi(w_j)) = 0$. We obtain

$$\alpha([\xi, \varphi]) = a_j \cdot c_i^{j,s} - a_i \cdot c_i^{j,d_i-d_j+s} = a_j \cdot c_i^{j,s} \neq 0.$$

Here $c_i^{j,d_i-d_j+s} = 0$, since $d_i - d_j + s < s$. □

Corollary. *The index of $\mathfrak{z}(e)$ equals n .*

Proof. The stabiliser $\mathfrak{z}(e)_\alpha$ consist of all maps preserving Jordan blocks. In particular, it has dimension n . Hence, $\text{ind } \mathfrak{z}(e) \leq n$. On the other hand, it follows from Vinberg's inequality that $\text{ind } \mathfrak{z}(e) \geq n = \text{rk } \mathfrak{gl}(V)$. □

Let us give another proof of the inequality $\text{ind } \mathfrak{z}(e) \leq n$.

Example 1. Let $e \in \mathfrak{gl}_n$ be a nilpotent element and $\mathfrak{h} = \mathfrak{z}(e)$ the centraliser of e . We may assume that the first Jordan block of e is of maximal dimension. Then $V = V_{d_1+1} \oplus V_{\text{others}}$ and $e = e_1 + e_2$, where V_{d_1+1} is the space of the first Jordan block and V_{others} is the space of all other Jordan blocks; $e_1 \in \mathfrak{gl}_{d_1+1}$, $e_2 \in \mathfrak{gl}_{n-d_1-1}$. Let $\tau \in \mathfrak{gl}(V)$ be the conjugation by a diagonal matrix of order two such that $\mathfrak{gl}(V)^\tau = \mathfrak{gl}_{d_1+1} \oplus \mathfrak{gl}_{n-d_1-1}$. The involution τ acts on $\mathfrak{h} = \mathfrak{z}(e)$ and induces the decomposition $\mathfrak{h} = \mathfrak{h}_0 \oplus \mathfrak{h}_1$, where $\mathfrak{h}_0 = \mathfrak{z}(e_1) \oplus \mathfrak{z}(e_2)$ (the centralisers are considered in the algebras \mathfrak{gl}_{d_1+1} and \mathfrak{gl}_{n-d_1-1} , respectively). Assume that the “index conjecture” is true for all $m < n$; in particular, $\text{ind } \mathfrak{z}(e_2) = n - d_1 - 1$. The subalgebra $\mathfrak{z}(e_1)$ is commutative and its index equals $d_1 + 1$. According to Lemma 1, $\text{ind } \mathfrak{z}(e) \leq \text{ind } (\mathfrak{z}(e_1) \oplus \mathfrak{z}(e_2)) + \min_{\gamma \in \mathfrak{h}_0^*} \dim(\text{Ker } \hat{\gamma}) \leq n + \min_{\gamma \in \mathfrak{z}(e_1)^*} \dim(\text{Ker } \hat{\gamma})$. Now, we make a special choice for γ . Set $\gamma(\xi_1^{1,d_1}) = 1$ and $\gamma(\xi_i^{j,s}) = 0$ for all other $\xi_i^{j,s}$. The subspace \mathfrak{h}_1 is

generated by the vectors $\xi_i^{1,s}$ and $\xi_1^{i,s}$ with $i \neq 1$. We have

$$\begin{cases} \hat{\gamma}(\xi_1^{i,s}, \xi_i^{1,d_1-s}) = 1, \\ \hat{\gamma}(\xi_1^{i,s}, \xi_i^{1,b}) = 0 \text{ if } s+b \neq d_1, \\ \hat{\gamma}(\xi_1^{i,s}, \xi_1^{i,b}) = \hat{\gamma}(\xi_1^{1,s}, \xi_1^{1,b}) = 0. \end{cases}$$

The form $\hat{\gamma}$ defines a non-degenerate pairing between the spaces $U_1^i := \langle \xi_1^{i,s} | 0 \leq s \leq d_i \rangle$ and $U_i^1 := \langle \xi_i^{1,s} | d_1 - d_i \leq s \leq d_1 \rangle$. Hence, $\hat{\gamma}$ is non-degenerate and $\text{ind } \mathfrak{z}(e) \leq n$.

3. SYMPLECTIC ALGEBRA

In this section $\mathfrak{g} = \mathfrak{sp}_{2n} = \mathfrak{sp}(V)$, where V is an $2n$ -dimensional vector space over \mathbb{K} . As above, $e \in \mathfrak{sp}_{2n}$ is a nilpotent element and $\mathfrak{z}(e) \subset \mathfrak{g}$ is the centraliser of e . Let $\{w_i\}$ be generators of Jordan blocks associated with e . We may assume that the space of each even-dimensional Jordan block is orthogonal to the space of all other Jordan blocks. If d_i is even, then the restriction of \mathfrak{sp}_{2n} -invariant form $(,)_V$ on the space of i -th Jordan block is zero. One can choose generators $\{w_i\}$ such that the odd-dimensional blocks are partitioned in pairs (i, i') , where i' is the number of the unique Jordan block which is not orthogonal to the i -th one. Note that $d_{i'} = d_i$.

Let $\mathfrak{z}_{\mathfrak{gl}}(e)$ be the centraliser of e in \mathfrak{gl}_{2n} . Recall that $\mathfrak{z}(e) = \mathfrak{z}_{\mathfrak{gl}}(e)^\sigma \oplus \mathfrak{z}_1$, where σ is an involutive automorphism of \mathfrak{gl}_{2n} . For elements of $\mathfrak{z}_{\mathfrak{gl}}(e)$ we use notation introduced in the previous section.

Let $\alpha \in \mathfrak{z}_{\mathfrak{gl}}(e)^*$ be a function determined just like in the previous case:

$$\alpha(\varphi) = a_1 \cdot c_1^{1,d_1} + a_2 \cdot c_2^{2,d_2} + \dots + a_{2n} \cdot c_k^{k,d_k},$$

where φ is given by its coefficients $c_i^{j,s}$, and $\{a_i\}$ are pairwise distinct non-zero numbers with $a_{i'} = -a_i$.

Lemma 2. *In the above notation, we have $\alpha(\mathfrak{z}_1) = 0$.*

Proof. Assume that there is $\psi \in \mathfrak{z}_1$ such that $\alpha(\psi) \neq 0$. Then there is a non-zero coefficient c_i^{i,d_i} of ψ . Recall that $\sigma(\psi) = -\psi$. The element ψ multiplies the \mathfrak{sp}_{2n} -invariant skew-symmetric form $(,)_V$ by -1 , in particular, $(\psi(w_i), v)_V = (w_i, \psi(v))_V$ for each vector $v \in V$. Clearly, $\psi(w_i)$ and w_i have to be orthogonal with respect to the skew-symmetric form. If d_i is odd, then $(w_i, e^{d_i} w_i)_V \neq 0$, hence, $c_i^{i,d_i} = 0$. If on the contrary d_i is even, then

$$\begin{aligned} c_i^{i,d_i} (e^{d_i} w_i, w_{i'})_V &= (\psi(w_i), w_{i'})_V = (w_i, \psi(w_{i'}))_V = c_{i'}^{i',d_i} (w_i, e^{d_i} w_{i'})_V = \\ &= (-1)^{d_i} c_{i'}^{i',d_i} (e^{d_i} w_i, w_{i'})_V = c_{i'}^{i',d_i} (e^{d_i} w_i, w_{i'})_V. \end{aligned}$$

Hence, $c_i^{i,d_i} = c_{i'}^{i',d_i}$. Combining this equality with defining formula of α we get a sum over pairs of odd-dimensional blocks

$$\alpha(\psi) = \sum_{(i,i')} (a_i + a_{i'}) c_i^{i,d_i},$$

which is zero since $a_i = -a_{i'}$. □

Denote by $\tilde{\alpha}$ the restriction of α to $\mathfrak{z}(e)$.

Theorem 2. *The dimension of the stabiliser $\mathfrak{z}(e)_{\tilde{\alpha}} = \mathfrak{z}_{\mathfrak{gl}}(e)_\alpha \cap \mathfrak{sp}_{2n}$ equals n .*

Proof. The stabiliser of α in $\mathfrak{z}_{\mathfrak{gl}}(e)$ consist of all maps preserving the spaces of the Jordan blocks. By Proposition 1, $\mathfrak{z}(e)_{\tilde{\alpha}} = \mathfrak{z}_{\mathfrak{gl}}(e)_\alpha \cap \mathfrak{z}(e)$. Describe the intersection of $\mathfrak{z}_{\mathfrak{gl}}(e)_\alpha$ with the symplectic subalgebra. If w_i is a generator of an even-dimensional block, then $\xi_i^{i,s}$ multiply the skew-symmetric form by $(-1)^{s+1}$, i.e., $(\xi_i^{i,s}(e^b w_i), e^t w_i) = (-1)^s (e^b w_i, \xi_i^{i,s}(e^t w_i))$. Consider a space of a pair (i, i') of odd-dimensional blocks. Set $d := d_i = d_{i'}$. Recall that $(w_i, e^d w_{i'}) = (-1)^s (e^s w_i, e^{d-s} w_{i'}) = -(w_{i'}, e^d w_i)$. Since $(e^s w_i, e^{d-s} w_{i'}) = (-1)^s (w_i, e^d w_{i'})$, the elements $\xi_i^{i,s} + (-1)^{s+1} \xi_{i'}^{i',s}$ preserve the skew-symmetric form, and the elements $\xi_i^{i,s} + (-1)^s \xi_{i'}^{i',s}$ multiply it by -1 . From each even-dimensional block i we get $(d_i + 1)/2$ vectors, and from a pair (i, i') we get $d_i + 1$ vectors. Thus the stabiliser of α in the whole of \mathfrak{sp}_{2n} is an n -dimensional subalgebra. \square

4. THE ORTHOGONAL CASE

In this section $\mathfrak{g} = \mathfrak{so}_n$. As above $e \in \mathfrak{so}_n$ is a nilpotent element, $\mathfrak{z}(e)$ is the centraliser of e in \mathfrak{g} . Let $\{w_i\}$ be generators of Jordan blocks associated with e . We may assume that the space of each odd-dimensional Jordan block is orthogonal to the space of all other Jordan blocks. If d_i is odd, then the restriction of \mathfrak{so}_n -invariant form $(,)_V$ on the space of i -th Jordan block is zero. One can choose generators $\{w_i\}$ such that the even-dimensional blocks are partitioned in pairs (i, i^*) , where i^* is the number of the unique Jordan block which is not orthogonal to the i -th one. Note that $d_{i^*} = d_i$.

Like the symplectic algebra, the orthogonal algebra is a symmetric subalgebra of \mathfrak{gl}_n . Denote by σ the involution defining it. Since $\sigma(e) = e$, we have $\mathfrak{z}_{\mathfrak{gl}}(e) = \mathfrak{z}(e) \oplus \mathfrak{z}_1$ similarly to the symplectic case. If d_i is even, set $i^* = i$. Assume that $(w_{i*}, e^{d_i} w_i)_V = \pm 1$ and $(w_i, e^{d_i} w_i)_V = 1$ for $i = i^*$. The algebra $\mathfrak{z}(e)$ is generated (as a vector space) by the vectors $\xi_i^{j,d_j-s} + \varepsilon(i, j, s) \xi_{j^*}^{i^*,d_i-s}$, where $\varepsilon(i, j, s) = \pm 1$ depending on i, j and s . In its turn, the subspace \mathfrak{z}_1 is generated by the vectors $\xi_i^{j,d_j-s} - \varepsilon(i, j, s) \xi_{j^*}^{i^*,d_i-s}$. Recall that $(e^s w_i, e^{d_i-s} w_{i^*})_V \neq 0$ if $e^s w_i \neq 0$.

We give some simple examples of linear functions with zero restrictions to \mathfrak{z}_1 . Let $\varphi \in \mathfrak{z}_{\mathfrak{gl}}(e)$ be a linear map defined by Formula (1). Set $\beta_i(\varphi) = c_i^{i,d_i-1}$, $\gamma_{i,j}(\varphi) = c_i^{j,d_j}$.

Lemma 3. *If $i = i^*$, $j = j^*$, $t \neq t^*$, then functions β_i , $\gamma_{i,j} - \gamma_{j,i}$ and $\gamma_{t,t} + \gamma_{t^*,t^*}$ are equal to zero on \mathfrak{z}_1 .*

Proof. Suppose $\psi \in \mathfrak{z}_1$ is defined by Formula (1). Since $\sigma(\psi) = -\psi$ and $(\psi(w_i), e w_i)_V = c_i^{i,d_i-1} (e^{d_i-1} w_i, e w_i)_V$, we have

$$(\psi(w_i), e w_i)_V = (w_i, \psi(e w_i))_V = (w_i, e \psi(w_i))_V = -(e w_i, \psi(w_i))_V = -c_i^{i,d_i-1} (e w_i, e^{d_i-1} w_i)_V.$$

The form $(,)_V$ is symmetric and $(e w_i, e^{d_i-1} w_i)_V \neq 0$, hence $\beta_i(\psi) = c_i^{i,d_i-1} = 0$.

Similarly,

$$\begin{aligned} c_i^{j,d_j} (e^{d_j} w_j, w_j)_V &= (\psi(w_i), w_j)_V = (w_i, \psi(w_j))_V = c_j^{i,d_i} (w_i, e^{d_i} w_i)_V; \\ c_t^{d_t,t} (e^{d_t} w_t, w_{t^*})_V &= (\psi(w_t), w_{t^*})_V = (w_t, \psi(w_{t^*}))_V = c_{t^*}^{t^*,d_t} (w_t, e^{d_t} w_{t^*})_V. \end{aligned}$$

Recall that by our choice $(e^{d_j} w_j, w_j)_V = (w_i, e^{d_i} w_i)_V = 1$, $(e^{d_t} w_t, w_{t*})_V = -(w_t, e^{d_t} w_{t*})_V$. Hence $c_i^{j,d_j} = c_j^{i,d_i}$, $c_t^{t,d_t} = -c_{t*}^{t*,d_t}$. \square

Let us prove the inequality $\text{ind } \mathfrak{z}(e) \leq \text{rk } \mathfrak{so}_n$ by the induction on n . In the following two cases, the induction argument does not go through. Therefore we consider them separately.

The first case. If $e \in \mathfrak{so}_{2m+1}$ is a regular nilpotent element, then $\mathfrak{z}(e)$ is a commutative m -dimensional algebra.

The second case. Let $e \in \mathfrak{so}_{4d}$ be a nilpotent element with two Jordan blocks of size $2d$ each. Set $\alpha(\varphi) = c_1^{1,2d-2} - c_2^{2,2d-2}$, where φ is defined by Formula (1). One can easily check that $\mathfrak{z}(e)_\alpha$ has a basis $\xi_1^{1,s} + (-1)^{s+1} \xi_2^{2,s}$ with $0 \leq s \leq 2d-1$ and that $\dim \mathfrak{z}(e)_\alpha = 2d$.

Order the Jordan blocks of e according to their dimensions $d_1 \geq d_2 \geq \dots \geq d_k$. Here $d_i + 1$ stands for the dimension of the i -th Jordan block, similarly to the case of \mathfrak{gl}_n . Note that the numbers n and k have the same parity. Assume that $k > 1$ and if $k = 2$, then both Jordan blocks are odd dimensional. Then we have the following three possibilities:

- (1) for some even number $2p < k$ the restriction of $(\cdot, \cdot)_V$ to the space of the first $2p$ Jordan blocks is non-degenerate;
- (2) the number d_i is even for $i = 1, k$ and odd for all other i ;
- (3) the number d_i is even if and only if $i = 1$.

Each of these three possibilities is considered separately. In the first two cases we make an induction step. In the third one a point $\alpha \in \mathfrak{z}(e)^*$ is given such that $\dim \mathfrak{z}(e)_\alpha \leq \text{rk } \mathfrak{so}_n$.

(1) Suppose the space V_{2m} of the first $2p$ Jordan blocks has dimension $2m$ and the restriction of $(\cdot, \cdot)_V$ to V_{2m} is non-degenerate. Then $V = V_{2m} \oplus V_{\text{oth}}$, $e = e_1 + e_2$, where $e_1 \in \mathfrak{so}_{2m}$, $e_2 \in \mathfrak{so}_{n-2m}$. Let τ be an involution of \mathfrak{gl}_n corresponding to these direct sum, i.e., $\mathfrak{gl}_n^\tau = \mathfrak{gl}(V_{2m}) \oplus \mathfrak{gl}(V_{\text{oth}})$. Set $\mathfrak{h} = \mathfrak{z}(e)$, $\mathfrak{h}_0 = \mathfrak{z}(e)^\tau$. Then $\mathfrak{h}_0 = \mathfrak{z}(e_1) \oplus \mathfrak{z}(e_2)$, where the centralisers of e_1 and e_2 are taken in \mathfrak{so}_{2m} and \mathfrak{so}_{n-2m} , respectively. By the inductive hypothesis, $\text{ind } \mathfrak{z}(e_1) = m$, $\text{ind } \mathfrak{z}(e_2) = [n/2] - m$. Hence, $\text{ind } \mathfrak{z}(e) \leq [n/2] + \min_{\gamma \in \mathfrak{h}_0^*} \dim(\text{Ker } \hat{\gamma})$. To conclude we have to point out a function $\gamma \in \mathfrak{h}_0^*$ such that $\hat{\gamma}$ is non-degenerate. Recall that the involutions σ and τ commute with each other, preserve e and determine the decomposition $\mathfrak{z}_{\mathfrak{gl}}(e) = (\mathfrak{z}(e_1) \oplus \mathfrak{z}(e_2) \oplus \mathfrak{h}_1) \oplus \mathfrak{z}_1$. If $\gamma(\mathfrak{z}_1) = \gamma(\mathfrak{h}_1) = 0$, then $\text{Ker } \hat{\gamma} = (\mathfrak{h}_1 \cap \mathfrak{z}_{\mathfrak{gl}}(e))_\gamma$.

Divide odd-dimensional Jordan blocks into pairs (i, i') (it is assumed that $i, i' \leq 2p$). Define a point γ by

$$\gamma(\varphi) = \sum_{(i,i'), i, i' \leq 2p} (c_i^{i',d_{i'}} - c_{i'}^{i,d_i}) + \sum_{j \leq 2p, (d_j+1) \text{ is even}} c_j^{j,d_j},$$

where $\varphi \in \mathfrak{z}_{\mathfrak{gl}}(e)$ is given by its coefficients $c_i^{j,s}$. The first summand is a sum of $(\gamma_{i,i'} - \gamma_{i',i})$ over pairs of odd-dimensional blocks, the second is the sum of $(\gamma_{j,j} + \gamma_{j^*,j^*})$ over pairs of even-dimensional blocks. According to Lemma 3, both summands are identical zeros on \mathfrak{z}_1 . Moreover, by the definition $\gamma(\mathfrak{h}_1) = 0$.

Set $j' := j$ for even-dimensional blocks. Assume that an element $\psi \in \mathfrak{h}_1$ determined by (1) lies in the kernel of $\hat{\gamma}$, i.e., $\gamma([\psi, \mathfrak{h}_1]) = 0$. Then $\gamma([\psi, \mathfrak{h}]) = \gamma([\psi, \mathfrak{z}_{\mathfrak{gl}}(e)]) = 0$. Since $\psi \in \mathfrak{so}_n$

and $\psi \neq 0$, we may assume that $c_i^{j,s} \neq 0$ for some $j > 2p \geq i$. We have

$$\gamma([\psi, \eta_i^{j',d_{j'}}]) = \pm c_i^{j,s} \neq 0.$$

Thus we have proved that $\hat{\gamma}$ is non-degenerate and $\text{ind } \mathfrak{z}(e) \leq [n/2]$.

(2) Consider a decomposition $V = V_{\text{oth}} \oplus V_{d_k+1}$, where the second summand is the space of the smallest (odd-dimensional) Jordan block and the first one is the space of all other blocks. As above $e = e_1 + e_2$, where nilpotent element e_2 corresponds to the smallest (odd-dimensional) Jordan block. We define an involution τ , algebras $\mathfrak{z}(e_1), \mathfrak{z}(e_2), \mathfrak{h}_0$ and a subspace \mathfrak{h}_1 in the same way as in case **(1)**. By the inductive hypothesis $\text{ind } \mathfrak{z}(e_1) = [(n - d_k - 1)/2]$, $\text{ind } \mathfrak{z}(e_2) = d_k/2$. Hence $\text{ind } \mathfrak{h}_0 = n/2 - 1$. By Lemma 1, $\text{ind } \mathfrak{z}(e) \leq \text{ind } \mathfrak{h}_0 + \min_{\gamma \in \mathfrak{h}_0^*} \dim(\text{Ker } \hat{\gamma})$.

Let γ be the following function

$$\gamma(\varphi) = c_1^{1,d_1-1} + \sum_{i=2}^{k-1} c_i^{i,d_i},$$

where φ is given by formula (1). The first summand is β_1 , the second summand is a sum of $(\gamma_{j,j} + \gamma_{j^*,j^*})$ over pairs of even-dimensional blocks. Due to Lemma 3, $\gamma(\mathfrak{z}_1) = 0$. Suppose $\psi \in \mathfrak{h}_1$ is given by its coefficients $c_i^{j,s}$. Then

$$\begin{cases} \gamma([\xi_1^{k,b}, \psi]) = c_k^{1,d_1-1-b}, \\ \gamma([\xi_i^{k,b}, \psi]) = c_k^{i,d_i-b} \quad \text{for } 1 < i < k. \end{cases}$$

One can see that the kernel of $\hat{\gamma}$ is one-dimensional and generated by $(\xi_k^{1,d_1} - \xi_1^{k,d_k})$. Hence, $\text{ind } \mathfrak{z}(e) \leq [n/2] - 1 + 1 = [n/2]$.

(3) In this case n and k are odd, and e has a unique odd-dimensional Jordan block whose size is maximal. Assume that $k = 2m + 1$. Enumerate the Jordan blocks by integers ranging from $-m$ to m . Let the unique odd-dimensional block has number zero. Suppose that pairs of blocks $(-i, i)$ and $(-j, j)$ are orthogonal to each other if $i \neq \pm j$, and dimensions of Jordan blocks are increasing from $-m$ to 0 and decreasing from 0 to m , i.e., if $|i| \leq |j|$, then $d_i \geq d_j$. Note that $d_i = d_{-i}$. Such enumeration is shown on Picture 1. Choose the generators w_i of Jordan blocks such that $i(w_i, e^{d_i} w_{-i})_V = |i|$ for $i \neq 0$ and $(w_0, e^{d_0} w_0)_V = 1$.

Picture 1.

Suppose $\varphi \in \mathfrak{z}_{\mathfrak{gl}}(e)$ is given by Formula (1). Consider the following point $\alpha \in \mathfrak{z}_{\mathfrak{gl}}(e)^*$:

$$\alpha(\varphi) = \sum_{i=-m+1}^m c_{i-1}^{i,d_i}.$$

One can check by direct computation that $c_{i-1}^{i,d_i}(\psi) = -c_{-i}^{1-i,d_{1-i}}(\psi)$ for each $\psi \in \mathfrak{z}_1$ and, hence, $\alpha(\mathfrak{z}_1) = 0$. Let $\tilde{\alpha} \in \mathfrak{z}(e)^*$ be the restriction of α . Let us describe the stabiliser $\mathfrak{z}(e)_{\tilde{\alpha}} = \mathfrak{z}_{\mathfrak{gl}}(e)_\alpha \cap \mathfrak{z}(e)$. Note that $\alpha([\varphi, \xi_i^{j,s}]) = c_{j-1}^{i,d_j-s}(\varphi) - c_j^{i+1,d_{i+1}-s}(\varphi)$.

Lemma 4. *Suppose $\varphi \in \mathfrak{z}(e)$ and $\text{ad}^*(\varphi)\alpha = 0$. Then $c_i^{j,s} = c_i^{j,s}(\varphi) = 0$ for $i < j$.*

Proof. Assume that the statement is wrong and take a maximal i for which there are $j > i$ and s such that $c_i^{j,s} \neq 0$. Because φ preserves $(\cdot, \cdot)_V$, $c_{-j}^{-i,d_i-d_j+s} = \pm c_i^{j,s} \neq 0$. Hence, $-j \leq i < j$, $j > 0$, $|i| \leq j$ and $d_i \geq d_j$. Moreover, $-j < (i+1) \leq j$ and $d_{i+1} \geq d_j$. Evidently, $d_{i+1} - s \geq d_j - s \geq 0$ and there is an element $\xi_j^{i+1,d_{i+1}-s} \in \mathfrak{z}_{\mathfrak{gl}}(e)$. We have

$$0 = \alpha([\varphi, \xi_j^{i+1,d_{i+1}-s}]) = c_i^{j,s} - c_{i+1}^{j+1,\delta} = c_i^{j,s}.$$

Here we do not give a precise value of δ . Anyway all coefficients $c_{i+1}^{j+1,b}$ are zeros, because $j+1 > i+1 > i$. We get a contradiction. Thus the lemma is proved. \square

Let us say that $\varphi \in \mathfrak{z}_{\mathfrak{gl}}(e)$ has a *step* l whenever $c_i^{j,s}(\varphi) = 0$ for $j \neq i+l$. Each vector $\varphi \in \mathfrak{z}_{\mathfrak{gl}}(e)$ can be represented as a sum $\varphi = \varphi_{-2m} + \varphi_{-2m+1} + \dots + \varphi_{2m-1} + \varphi_{2m}$, where the step of φ_l equals l . The notion of the step is well-defined on $\mathfrak{z}(e)$, due to an equality $(-i) - (-j) = j - i$. From the definition of α , one can deduce that $\alpha(\varphi_l, \varphi_t) \neq 0$ only if $l+t=1$. The stabiliser $\mathfrak{z}(e)_\alpha$ is a direct sum of its subspaces Φ_l , consisting of elements having step l . As we have seen, $\Phi_l = \emptyset$ if $l > 0$. It remains to describe elements with non-positive steps.

Example 2. Let us show that $\dim \Phi_0 \leq d_0/2$. Suppose $\varphi \in \Phi_0$, $\varphi \neq 0$ and $\varphi(w_0) = 0$. Take a minimal by the absolute value i such that $\varphi(w_i) \neq 0$. Since $\varphi \in \mathfrak{so}_n$, we have also $\varphi(w_{-i}) \neq 0$. Assume that $i > 0$ and a coefficient $c_i^{i,s}$ of φ is non-zero. Then $|i-1| < i$, $d_{i-1} \geq d_i$, there is an element $\xi_{i-1}^{i,d_i-s} \in \mathfrak{z}_{\mathfrak{gl}}(e)$ and $0 = \alpha([\xi, \varphi]) = c_i^{i,s} - c_{i-1}^{i-1,s} = c_i^{i,s}$. Hence, if $\varphi(w_0) = 0$, then also $\varphi = 0$. Thus, a vector $\varphi \in \Phi_0$ is entirely determined by its value on w_0 . In its turn $\varphi(w_0) = c_1 e w_0 + c_3 e^3 w_0 + \dots + c_{d_0-1} e^{d_0-1} w_0$.

Lemma 5. *If $q = 2l$ or $q = 2l-1$, where $0 < l \leq m$, then $\dim \Phi_{-q} \leq (d_l+1)/2$.*

Proof. Similarly to the previous example, we show that if $\varphi \in \Phi_{-q}$ and $\varphi(w_l) = 0$, then also $\varphi = 0$. Since $\varphi \in \mathfrak{so}_n$, if $\varphi(w_i) \neq 0$, then also $\varphi(w_{q-i}) \neq 0$. Suppose $\varphi(w_j) \neq 0$ for some j . If $j < l$, then $j-q \geq l$, but $\varphi(w_l) = 0$, hence $j > l$. Find the minimal $j > l$ such that $\varphi(w_j) \neq 0$. Suppose $c_j^{j-q,s} = c_j^{j-q,\delta}(\varphi) \neq 0$. We have $-j < -l \leq j-q-1 < j$, $d_j \leq d_{j-q-1}$, $d_{j-q} - s \geq 0$. Hence, there is an element $\xi := \xi_{j-q-1}^{j,d_{j-q}-s} \in \mathfrak{z}_{\mathfrak{gl}}(e)$. As above $0 = \alpha([\xi, \varphi]) = c_j^{j-q,s} - c_{j-1}^{j-q-1,\delta} = c_j^{j-q,s}$ (we do not give a precise value of δ , anyway, $\varphi(w_{j-1}) = 0$, since $l \leq j-1 < j$). To conclude we describe possible values $\varphi(w_l)$. If $q = 2l$, then $\varphi(w_l) = c_0 w_{-l} + c_2 e^2 w_{-l} + \dots + c_{d_l} e^{d_l} w_{-l}$. In case $q = 2l-1$ we get an equation on

coefficients of φ : $0 = \alpha[(\xi_{-l}^{l,b}, \varphi)] = c_l^{-l+1, d_{l-1}-b} - c_{l-1}^{-l, d_l-b}$, i.e., $c_l^{-l+1, d_{l-1}-b} = c_{l-1}^{-l, d_l-b}$. This is possible only for odd b . \square

Theorem 3. Suppose $e \in \mathfrak{so}_n$ is a nilpotent element. Then $\text{ind } \mathfrak{z}(e) = \text{rk } \mathfrak{so}_n = [n/2]$.

Proof. If possibility (3) takes place, i.e., only one Jordan block of e is odd-dimensional and it is also maximal, then, as we have seen, $\mathfrak{z}(e)_{\tilde{\alpha}} = \bigoplus_{q=0}^{2m} \Phi_{-q}$. Moreover, $\dim \Phi_q$ is at most half of dimension of the Jordan block with number $[(q+1)/2]$. Thereby, $\dim \mathfrak{z}(e)_{\tilde{\alpha}} \leq ((d_0+1)/2 + (\sum_{l=1}^m d_l)) = [n/2]$. On the other hand, according to Vinberg's inequality, $\text{ind } \mathfrak{z}(e) \geq [n/2]$.

In cases (1) and (2) the inequality $\text{ind } \mathfrak{z}(e) \leq \text{rk } \mathfrak{so}_n$ was proved by induction.

If none of these three possibilities takes place, then either $k = 1$ and e is a regular nilpotent element, or $k = 2$ and both Jordan blocks of e are even-dimensional. These two cases have been considered separately. \square

5. GENERIC POINTS

In this section we assume that \mathbb{K} is algebraically closed and of characteristic zero. Suppose we have a linear action of a Lie algebra \mathfrak{g} on a vector space V .

Definition. A vector $x \in V$ (a subalgebra \mathfrak{g}_x) is called a *generic point* (*a generic stabiliser*), if for every point $y \in U \subset V$ of some open in Zariski topology subset U algebras \mathfrak{g}_y and \mathfrak{g}_x are conjugated in \mathfrak{g} .

It is well known that generic points exist for any linear action of a reductive Lie algebra.

It is proved in [5, §1] that a subalgebra \mathfrak{g}_x is a generic stabiliser if and only if $V = V^{\mathfrak{g}_x} + \mathfrak{g}_x$, where $V^{\mathfrak{g}_x}$ is the subspace of all vectors of V invariant under \mathfrak{g}_x .

Tauvel and Yu have noticed that in case of a coadjoint representation $\mathfrak{g}_x = (\mathfrak{g}/\mathfrak{g}_x)^* = \text{Ann}(\mathfrak{g}_x)$, $(\mathfrak{g}^*)^{\mathfrak{g}_x} = \text{Ann}([\mathfrak{g}_x, \mathfrak{g}])$. From this observation they have deduced a simple and useful criterion.

Theorem 4. [13, Corollaire 1.8.] Let \mathfrak{g} be a Lie algebra and $x \in \mathfrak{g}^*$. The subalgebra \mathfrak{g}_x is a generic stabiliser of the coadjoint representation of \mathfrak{g} if and only if $[\mathfrak{g}_x, \mathfrak{g}] \cap \mathfrak{g}_x = \{0\}$.

Unfortunately, the authors of [13] were not aware of the aforementioned Élashvili's result and have proved it anew.

Let $e \in \mathfrak{gl}_n$ be a nilpotent element and $\mathfrak{z}(e)$ the centraliser of e . Set $\mathfrak{h} = \mathfrak{z}(e)_\alpha$, where $\alpha \in \mathfrak{z}(e)^*$ is the same as in Section 2.

Proposition 2. There is an \mathfrak{h} -invariant decomposition $\mathfrak{z}(e) = \mathfrak{h} \oplus \mathfrak{m}$, where \mathfrak{m} is generated by the vectors $\xi_i^{j,s}$ with $i \neq j$.

Proof. Recall that \mathfrak{h} is generated by the vectors $\xi_i^{i,s}$. The inclusion $[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$ follows immediately from the equality

$$[\xi_i^{i,s}, \xi_j^{t,b}] = \begin{cases} \xi_i^{t,s+b} & \text{if } i = j, i \neq t; \\ -\xi_j^{i,s+b} & \text{if } i = t, i \neq j; \\ 0 & \text{otherwise.} \end{cases}$$

□

There is a similar decomposition in the case of symplectic algebras. Let $e \in \mathfrak{sp}(V) \subset \mathfrak{gl}(V)$. Denote by $\mathfrak{z}_{\mathfrak{gl}}(e)$ and $\mathfrak{z}_{\mathfrak{sp}}(e)$ the centralisers of e in $\mathfrak{gl}(V)$ and $\mathfrak{sp}(V)$, respectively. We use notation of Section 3. Suppose $\mathfrak{z}_{\mathfrak{gl}}(e) = \mathfrak{h} \oplus \mathfrak{m}$. Evidently, this decomposition is σ -invariant and $\mathfrak{z}_{\mathfrak{sp}}(e) = \mathfrak{h}^\sigma \oplus \mathfrak{m}^\sigma$, where $\mathfrak{h}^\sigma = \mathfrak{z}_{\mathfrak{sp}}(e)_\alpha$.

Theorem 5. *The Lie algebras $\mathfrak{z}_{\mathfrak{gl}}(e)_\alpha$ and $\mathfrak{z}_{\mathfrak{sp}}(e)_\alpha$ constructed in Sections 2 and 3 in cases of general linear and symplectic algebras are generic stabilisers of the coadjoint actions of $\mathfrak{z}_{\mathfrak{gl}}(e)$ and $\mathfrak{z}_{\mathfrak{sp}}(e)$.*

Proof. Let us verify the condition of Theorem 4. Since $[\mathfrak{h}, \mathfrak{z}_{\mathfrak{gl}}(e)] = [\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$, we have $[\mathfrak{h}, \mathfrak{z}_{\mathfrak{gl}}(e)] \cap \mathfrak{h} = 0$. Similarly, $[\mathfrak{h}^\sigma, \mathfrak{z}_{\mathfrak{sp}}(e)] \subset \mathfrak{m}^\sigma$. □

In case of orthogonal algebras it can happen that a generic stabiliser of the coadjoint action of $\mathfrak{z}(e)$ does not exist.

Example 3. Let $e \in \mathfrak{so}_8$ be a subregular nilpotent element. Then it has two Jordan blocks of dimensions 3 and 5. Choose the generators w_1, w_2 of Jordan blocks such that $(w_1, e^2 w_1)_V = (w_2, e^4 w_2)_V = 1$. The dimension of $\mathfrak{z}(e)$ is 6 and $\mathfrak{z}(e)$ has a three-dimensional center, generated by the vectors $e, e^3 = \xi_2^{2,3}$ and $\varphi_3 = \xi_1^{2,4} - \xi_2^{1,2}$. Since $\text{ind } \mathfrak{z}(e) = 4$, we have $\dim \mathfrak{z}(e)_\alpha = 4$ for points of some open subset $U \subset \mathfrak{z}(e)^*$.

Assume that a generic stabiliser of the coadjoint action of $\mathfrak{z}(e)$ exists and denote it by \mathfrak{f} . Evidently, \mathfrak{f} contains the center of $\mathfrak{z}(e)$. Consider an element $\varphi_2 = \xi_1^{2,3} + \xi_2^{1,1} \in \mathfrak{z}(e)$. Clearly, the subspace $[\varphi_2, \mathfrak{z}(e)]$ is a linear span of e^3 and φ_3 . In particular, it is contained in the center of $\mathfrak{z}(e)$, and, hence, in \mathfrak{f} . Hence, $[\varphi_2, \mathfrak{f}] \subset \mathfrak{f}$, and, by Theorem 4, $\mathfrak{f} \subset \mathfrak{z}(e)_{\varphi_2}$. Since $\dim \mathfrak{z}(e)_{\varphi_2} = 4$, we have $\mathfrak{f} = \mathfrak{z}(e)_{\varphi_2}$. On the other hand, $\mathfrak{z}(e)_{\varphi_2} = \langle e, e^3, \varphi_3, \varphi_2 \rangle_{\mathbb{K}}$ is a normal, but not a central subalgebra of $\mathfrak{z}(e)$.

Consider the embedding $\mathfrak{so}_8 \subset \mathfrak{so}_9$ as the stabiliser of the first basis vector in \mathbb{K}^9 . By a similar argument one can show that a generic stabiliser does not exist for the coadjoint action of $\mathfrak{z}_{\mathfrak{so}_9}(e)$ either.

6. COMMUTING VARIETIES

Let \mathfrak{g} be a Lie algebra over an algebraically closed field \mathbb{K} of characteristic zero. A closed subset $Y = \{(x, y) | x, y \in \mathfrak{g}, [x, y] = 0\} \subset (\mathfrak{g} \times \mathfrak{g})$ is called the *commuting variety* of the algebra \mathfrak{g} . The question of whether Y is irreducible or not is of a great interest. In case of a reductive algebra \mathfrak{g} the commuting variety Y is irreducible and coincides with the closure of $G(\mathfrak{a}, \mathfrak{a})$, where $\mathfrak{a} \subset \mathfrak{g}$ is a Cartan subalgebra and G is a connected algebraic group with $\text{Lie } G = \mathfrak{g}$.

Let $e \in \mathfrak{gl}_n$ be a nilpotent element and $\mathfrak{z}(e)$ the centraliser of e . We use notation introduced in Section 2. Set $\mathfrak{h} = \mathfrak{z}(e)_\alpha$. Consider a subalgebra $\mathfrak{t} \subset \mathfrak{z}(e)$ generated by the vectors $\xi_i^{i,0}$. Evidently, $\mathfrak{t} \subset \mathfrak{h}$. Moreover, since $[\xi_i^{j,s}, t_i \xi_i^{i,0} + t_j \xi_j^{j,0}] = (t_j - t_i) \xi_i^{j,s}$, the algebra \mathfrak{h} coincides with the normaliser (= centraliser) of \mathfrak{t} in $\mathfrak{z}(e)$. Hence, \mathfrak{h} coincides with its normaliser in $\mathfrak{z}(e)$.

Let $Z(e)$ be the identity component of the centraliser of e in GL_n . Then $Y_0 = \overline{Z(e)(\mathfrak{h}, \mathfrak{h})}$ is an irreducible component of Y of maximal dimension. As in the reductive case, Y is irreducible if and only if $Y_0 = Y$. It is known that if a nilpotent element e has at most two Jordan blocks, then Y is irreducible [7]. In the general case, the statement is not true, since it would lead to the irreducibility of the commuting varieties of triples of matrices.

Example 4. Assume that $Y_0 = Y$ for all nilpotent elements $e \in \mathfrak{gl}_m$ with $m \leq n$. Consider the set of triples of commuting matrices

$$C_3 = \{(A, B, C) | A, B, C \in \mathfrak{gl}_n, [A, B] = [A, C] = [B, C] = 0\}.$$

Let $\mathfrak{a} \subset \mathfrak{gl}_n$ be a subalgebra of diagonal matrices. Clearly, $\overline{\mathrm{GL}_n(\mathfrak{a}, \mathfrak{a}, \mathfrak{a})}$ is an irreducible component of C_3 . Let us prove by induction that it coincides with C_3 . There is nothing to prove for $n = 1$. Let $n > 1$. We show that each triple (A, B, C) of commuting matrices is contained in the closure $\overline{\mathrm{GL}_n(\mathfrak{a}, \mathfrak{a}, \mathfrak{a})}$. Without loss of generality, we may assume that $A, B, C \in \mathfrak{sl}_n$. Let $A = A_s + A_n$ be the Jordan decomposition of A . If $A_s \neq 0$, consider the centraliser $\mathfrak{z}(A_s)$ of A_s in \mathfrak{gl}_n . Clearly, $A, B, C \in \mathfrak{z}(A_s)$ and $\mathfrak{z}(A_s)$ is a sum of several algebras \mathfrak{gl}_{n_i} with strictly smaller dimension. We may assume that $\mathfrak{a} \subset \mathfrak{z}(A_s)$. Then, by the inductive hypothesis

$$(A, B, C) \in \overline{Z(A_s)(\mathfrak{a}, \mathfrak{a}, \mathfrak{a})} \subset \overline{\mathrm{GL}_n(\mathfrak{a}, \mathfrak{a}, \mathfrak{a})}.$$

Suppose now that all three elements A, B, C are nilpotent and at least one of them, say A , is not regular. Consider the centraliser $\mathfrak{z}(A) \subset \mathfrak{gl}_n$. We have assumed that $Y_0 = Y$, i.e., the pair (B, C) lies in the closure of $Z(A)(\mathfrak{h}, \mathfrak{h})$. It will be enough to show that $(A, \mathfrak{h}, \mathfrak{h}) \subset \overline{\mathrm{GL}_n(\mathfrak{a}, \mathfrak{a}, \mathfrak{a})}$. Let $x \in \mathfrak{t} \subset \mathfrak{h}$ be a non-central semisimple element. Then $A \in (\mathfrak{gl}_n)_x$ and $\mathfrak{h} \subset (\mathfrak{gl}_n)_x$. Once again we can make an induction step, passing to a subalgebra $(\mathfrak{gl}_n)_x$.

If all three elements A, B, C are regular nilpotent, then there is a non-trivial linear combination A' of them, which is non-regular. In particular, the triple (A, B, C) is equivalent under the action of GL_n to some other triple (A', B', C') of commuting nilpotent matrices.

It is known that for $n > 31$ the variety C_3 is reducible, see [6]. Hence, the commuting variety Y is certainly reducible for some nilpotent elements. It will be interesting to find minimal (in some sense) nilpotent elements for which Y is reducible and/or describe some classes of nilpotent elements for which Y is irreducible.

REFERENCES

- [1] A.V. BOLSINOV, A completeness criterion for a family of functions in involution constructed by the argument shift method, *Soviet Math. Dokl.*, (1989) **38**, no. 1, 161–165.
- [2] J.-Y. CHARBONNEL. Propriétés (Q) and (C). Variété commutante, *Bull. Soc. Math. France*, (2004) **132**, 477–508.
- [3] J. DIXMIER, Algèbres enveloppantes, (Gauthier-Villars, 1974).
- [4] A.G. ELASHVILI, On the index of orispherical subslagebras of semisimple Lie algebras, *Proc. Razmadze Math. Institute, Tiflis*, (1985) **77**, 116–126.
- [5] A.G. ELASHVILI, Canonical form and stationary subalgebras of points in general position for simple linear Lie groups, *Funct. Anal. Appl.* **6**, no. 1 (1972), 44–53.

- [6] R.M. GURALNICK, A note on commuting pairs of matrices, *Linear and Multilinear Algebra*, (1992) **31**, 71–75.
- [7] M.G. NEUBAUER and B.A. SETHURAMAN, Commuting Pairs in the Centralizers of 2-Regular Matrices, *J. Algebra*, (1999) **214**, no. 1, 174–181.
- [8] D. PANYUSHEV, Inductive formulas for the index of seaweed Lie algebras, *Mosc. Math. J.*, (2001) **1**, no.2, 221–241.
- [9] D. PANYUSHEV, The index of a Lie algebra, the centralizer of a nilpotent element, and the normalizer of the centralizer, *Math. Proc. Cambr. Phil. Soc.*, (2003) **134**, no.1, 41–59.
- [10] D. PANYUSHEV, Some amazing properties of spherical nilpotent orbits, *Math. Z.*, (2003) **245**, no.3, 557–580.
- [11] D. PANYUSHEV, An extension of Raïs' theorem and seaweed subalgebras of simple Lie algebras. *Preprint*.
- [12] M. ROSENLIGHT, A remark on quotient spaces, *An. Acad. Brasil. Cienc.*, (1963) **35**, 487–489.
- [13] P. TAUVEL and R.W.T. YU, Indice et formes linéaires stables dans les algèbres de Lie, *J. Algebra*, (2004) **273**, no. 2, 507–516.