Разработка USB устройства ввода в Linux

Михаил Белкин

19 августа 2021 г.

Содержание

1.	Cxe	емотехника.	2				
	1.1.	Выбор редактора.	2				
	1.2.	Установка редактора и библиотек	2				
	1.3.	Выбор элементной базы.	3				
		1.3.1. Микроконтроллер	3				
		1.3.2. Стабилизатор	3				
		1.3.3. Мелочь	4				
	1.4.		5				
	1.5.	Схема устройства	5				
2 .	Программное обеспечение.						
	2.1.	Тулчейн	7				
	2.2.		7				
	2.3.	Структура проекта	7				
	2.4.	Опрос кнопок	7				
	2.5.	Периферия USB	7				
	2.6.	Дескрипоры USB	7				
	2.7.		7				
	2.8.	USB HID	7				
		Отладка	7				

1. Схемотехника.

1.1. Выбор редактора.

Разработка схемы производится в KiCAD, это очень легковесный и компактный opensource редактор. Но при этом несмотря на его внешнюю простоту редактор как будто бы кричит нам "Я ничем не хуже чем этот ваш Altium и уж тем более Eagle". Поддерживается редактирование многослойных плат, так же используется профессиональный подход, при котором схема устройства и печатная плата редактируются отдельно. Так же он очень нетребователен к ресурсам компьютера.

К редактору имеется собственная библиотека компонентов, которая включает в себя компоненты всех популярных производителей. Но если вы принесли с китайского базара какую то экзотику, компонент придется разработать самостоятельно.

Вывод шаблона печатной платы возможен во всех удобный форматах, включая pdf. Так же и Gerber и векторный svg, последнее очень удобно для печати шаблона на принтере. Единственное неудобство это не возможность сразу выводить схему в растровом формате, приходится самостоятельно конвертировать из svg.

1.2. Установка редактора и библиотек.

Установка редактора в Ubuntu Linux производится очень просто, имеется отдельный рра репозиторий с последней стабильной версией. В то время как наиболее полный набор библиотек компонентов можно скачать с гитхаба.

Набор команд для установки KiCAD:

sudo add-apt-repository —yes ppa:kicad/kicad-5.1-releases sudo apt update

sudo apt install —install-recommends kicad

Надеюсь устанавливать git вы умеете и про команду git clone вы тоже знаете. Вот ссылки на репозитории с библиотеками компонентов KiCAD:

https://github.com/KiCad/kicad-library

https://github.com/KiCad/kicad-footprints

https://github.com/KiCad/kicad-symbols

https://github.com/KiCad/kicad-packages3D

Установив редактор и добавив библиотеки вы сможете открыть проект

со схемой устройства по аресу

1.3. Выбор элементной базы.

1.3.1. Микроконтроллер

Для наиболее аккуратной реализации нужен современный микроконтроллер (МК) с полноценным аппаратным USB. Совершенно понятно, что таким микроконтроллером окажется STM32F103C8T6. Мощное ядро ARM Cortex-M3 с их фирменным вложенным контроллером прерываний (NVIC) позволит с легкостью справиться с любой задачей. А с такой простой как USB геймпад уж тем более. На борту имеется 64 килобайта FLASH и 20 килобайт SRAM. И этого настолько много, что можно вовсе не думать об оптимизации. Теперь о стоимости, когда то я покупал такой за 60 рублей, сейчас цена приблизилась к 200, что по прежнему сравнимо по стоимости с остальными морально устаревшими микроконтроллерами. Так же в пользу данного микроконтроллера говорит наличие подробной документации. О том, почему именно F103, тут все просто, это самый дешевый МК с USB из тех что может предложить компания ST microelectronics.

1.3.2. Стабилизатор

В шине USB, как известно, 5В, а номинальное напряжение питания МК 3.3В. Поэтому необходим понижающий стабилизатор напряжения. Я рассматривал три марки стабилизаторов. Они приведены в таблице ниже:

марка	U_{inmax}	корпус	производитель	особенности
L78L33	30	SOT-89	ST microelectronics	
AMS1117-3.3	15	SOT-223	AMS semitech	термозащита
XC6206-33	7	SOT-23	TOREX	CMOS

И если первый давно знаком многим радиолюбителям. То последние два это стабилизаторы от китайских производителей, которые появились

недавно. В целом гораздо больше доверия к старому 78l, как минимум из за его большого входного напряжения. К тому же AMS1117 мне попадались нерабочими, и очень легко пробивались от скачков напряжения, не спасая нагрузку. Но хотелось бы компактней и подешевле, к тому же компьютер сам по себе стабильный источник питания. Поэтому я выбрал XC6206. Довольно необычный новодел на полевых транзисторах, в то время как другие два на биполярных. Ниже приведена его структурная схема, на которой видны еще и защитные антистатические стабилитроны.

1.3.3. Мелочь

На форумах можно услышать совет не ставить кварц в целях экономии. Я же советую ставить кварц всегда, когда имеем дело с асинхронной шиной для стабильной работы устройства. Микроконтроллер можно настроить на работу от самого распространенного кварца на 8мГц. Не удивительно что на алиэкспресс сразу же нашелся не только планарный, но и очень компактный вариант. Размером как 1206 чип резистор.

Резисторы размером 0402 я успел заказать заранее. А вот шунтирующие конденсаторы пришлось выпаивать с донорских плат, потому они не такие компактные, как хотелось бы (0805).

Расчетный ток потребления десятки миллиампер, потому для стабилизации питания хватит и чип керамики, благо такая есть даже на 10 мкФ. На всякий случай установлю токоограничивающий резистор по питанию. Основная его цель обезопасить компьютер от случайного короткого замыкания. Хотя в дорогих флешках на его месте можно встретить чип предохранитель. Продолжу экономить и на разъемах, попросту ограни-

1.4. Особенность схемотехники USB.

На сайте можно скачать целый документ, посвященный вопросу распайки USB разъема. Основной вопрос заключается в возможности программного отключения устройства от ПК. Моё же устройство будет всегда включено, поэтому подтяжка линии DP к питанию будет постоянной, и осуществляться резистором, а не управляться транзистором и портом микроконтроллера. Также важно не забыть про защитные резисторы. Провод у меня используется готовый от клавиатуры, потому разъем на плате не нужен.

1.5. Схема устройства.

А вот и схема целиком, как видите, все шины питания подключены и заземлены защитными конденсаторами. Кварц со стабилизирующими конденсаторами, так же подтянут к земле и порт сброса, все как советует официальная документация. Кнопки джойстика, как видно, подключены к портам напрямую, т.к. внутри МК уже имеются резисторы подтяжки к 3.3В. Так же не обошлось и без так называемого "грязного хака", для упрощения трассировки платы один из портов ввода-вывода (28 вывод) использован как вывод земли. Но в этом нет ничего плохого, ведь порты после сброса находятся в состоянии с высоким входным сопротивлением.

Так же на схеме вы можете увидеть и стандартный разъем SWD для прошивки и отладки ПО. Ровно как и подключенный на землю вывод BOOT0 означает запуск прошивки из основной flash памяти.

- 2. Программное обеспечение.
- 2.1. Тулчейн.
- 2.2. Базовые библиотеки для микроконтроллера.
- 2.3. Структура проекта.
- 2.4. Опрос кнопок.
- 2.5. Периферия USB.
- 2.6. Дескрипоры USB.
- 2.7. Стандартный протокол USB.
- 2.8. USB HID
- 2.9. Отладка.