

ELEC 1111 - Electric Circuits Tutorial 8 - AC Analysis II

Australia's Global University

Faculty of Engineering

School of Electrical Engineering and Telecommunications

1. Using nodal analysis, calculate the voltage ${f V}$ in the following circuit.

2. Using mesh analysis, calculate i_o in the following circuit.

3. Using the principle of superposition, calculate v_x in the following circuit, if $v_s=50\sin 2t$ V and $i_s=12\cos(6t+10^\circ)$ A.

4. Using source transformation, calculate the current $\mathbf{I}_{\mathbf{x}}$ in the following circuit.

5. Calculate the Thevenin and Norton equivalent circuits at terminals a and b of the following circuit.

6. For the integrator of the following figure, calculate $V_{\circ}/v_{\rm s}.$

7. Evaluate the voltage gain $A_v = V_{\circ}/v_s$ in the following circuit. Find the gain when $\omega = 0$ and when $\omega \to \infty$.

