10/3/21 Last time. D(p) >6 and fxx(p) >0 = p a local min "daws like, D(7)0 and fxx(7) 00 } a a local max D(p) < 0 =) p is a saddle point HAIR D(P)=0 cont conclude anything! 2- could use fyy instead OF fxy · ex: Classify CP using 2nd dev test E(x,4,2) = X2+ X4+ 42+ A VF = < 2x+4, x+24+1> DE= 0 164 5x+1=0 x+2(x)+1=0 y+24+1=0--3x-1=0 9 · via second dec test, 9 fxx(\frac{1}{3}, \frac{-2}{3}) = 2 fyy(\frac{1}{3}, \frac{-2}{3}) = 2 fxy=1 9 Dx14 = fxx ·fyy -fxy2 - 2.2 = 72 = 3 Sat P= (\frac{1}{3}, \frac{-2}{3}), D(p) = 3 >0 + fxx (\frac{1}{3}, \frac{-2}{3}) = 2 >6 - a local minimum point 9 X3+43-3X3 9) ex: Classify confical points of f(x, W)= 342 94 0 VF=(3x2-6x, 342-64-9) X = 0 y = 3 $(y^2 - 3)$ $(y^3 - 3)$ $(y^4 + 1)$ **ጎ** = 3 (013) (2,3) y=3 y=-1 > Cp. (0,3), (2,3), y=-1 (0,-1) (2,-1) y=3 (0,-1), (2,-1) gnd for visual (0,-1) (2,-1) 0 · VIa second der test, 1 fxx=56x-67 fyy-66y-67 fxy=0 Dxy = fxx . fyy - fxy = 62(x-1)(y-1) @ (013): Do13 < 0 saddle e0171 (0,-1): D_{0,-1} > 0 fxx(0,-1)<0 so a local max f(0,-1)=13 9 @(2,3): D2,3>0 fxx(2,3)>0 so local min at f(2,3) = -3 9 @(2,-1): D2,-1<0 saddle point * calculate values at min/max not saddle points 9 9

· Ex. f(xy)= xy + e-xy 19-0 - 11-c-xy = 0 x=0 c 1 or x (1-e-x4)=0 x=0 6 +e-xy=0 iff e-xy=e0 06=0 iff 1=0 11 (x==0 11 2==0) X==0 11 4==0 x=0 11 (5==01) Ch liego exx = y2e=x4 fyx2e-x4 fxy= (1-exy)(1-xy) D(X14) = (X4) 2e- x4 - ((1-e-x4)(1-X4) D(0,4) = 0 - ((0×1-0))2=0 1 when D(XIV) WE FECT D(x,0)= 0 nothin 6 ?: La France Multipliers Goal: Build a method to systematically solve constrained optimization methods soptimize f(x) subject to g1(x)=g2(x)=...g1(x)=0 want to live on level set F(x) because 0 F(x, h, ..., h,) = f(x) - h, g, (x) - ... - h, g, (x) 0 because level set consideration (on website) • the solutions to f(x) occur only at CP of F(x) & therefore, only need to solve TF=0 and And min I max values · ex: Donnize +(xy) xe" where x2+y2=2 x2 +y2-2=0=g(x19) 6 2 F(x,4, 2) = f(x,4) - 2 g(x,4) = xe4-d(x2+42-2) -(x2+y2-2)>=0 VF = < e4 - 21x, xey - 214, 5 ding $y = y^2$ $y = y^2$ There are $y = y^2 + y^2 + y^2 = 0$ $y = y^2$ $y = y^2$ to and (-1/1)