4. Wrangling DataFrames

Questions

- How can you select individual columns or rows from a DataFrame?
- How can you subset a DataFrame?
- How can you sort a DataFrame?

Objectives

- Learn how to select specific columns or rows from a DataFrame.
- Learn how to select rows based on conditions.
- Learn how to sort a DataFrame 's rows or columns.

What is Data Wrangling?

Data wrangling is the process of cleaning, transforming, and mapping data from various sources into a format that can be used for analysis or modeling. It involves various tasks such as handling missing or duplicate data, handling outliers, and combining data from different sources.

Subsetting, Selection and Sorting a DataFrame

- Selecting, subsetting, and sorting are essential aspects of data wrangling.
- Subsetting refers to extracting a portion of the data. For example,
 - Extract only columns 1 and 2 of the DataFrame
 - Give me only the rows with an even index (i.e., 2, 4, 6, ...)
- · Selecting consists of extracting rows based on some condition. For example,
 - Give me all the value for which the temperature is larger than 20
 - Give me all samples that start with ABC, etc.
- Sorting consists of reordering data using either the index or the values of one or more columns.

Subsetting

To illustrate subsetting, selection and sorting, we will be using the the following <code>DataFrame</code> stored in a value called <code>df</code>,

	date mmddyy	press dbar	temp ITS-90	csal PSS-78	coxy umol/kg	ph
Sample ID						
Sample-1	40610	239.8	18.9625	35.0636	NaN	7.951
Sample-2	40610	280.7	16.1095	34.6103	192.3	NaN
Sample-3	40610	320.1	12.9729	34.2475	190.8	NaN
Sample-4	40610	341.3	11.9665	34.1884	191.3	7.780
Sample-5	40610	360.1	11.3636	34.1709	203.5	NaN
Sample-6	40610	385.0	10.4636	34.1083	193.7	NaN
Sample-7	40610	443.7	8.5897	34.0567	156.5	NaN
Sample-8	40610	497.8	7.1464	34.0424	110.7	7.496

In [2]: import pandas as pd
 df = pd.read_csv("data/selection_dataframe.csv", index_col="Sample ID")
 df.head(2)

Out[2]:		date mmddyy	press dbar	temp ITS- 90	csal PSS- 78	coxy umol/kg	ph
	Sample ID						
	Sample-1	40610	239.8	18.9625	35.0636	NaN	7.951
	Sample- 8	40610	497.8	7.1464	34.0424	110.7	7.496

Subsetting Columns

- Selecting colums is trivial and follows the same notation as that used to with Python lists
- Selecting the 'ph' can be written as:

```
In [3]: df['ph']
Out[3]:
         Sample ID
         Sample-1
                     7.951
         Sample-8
                      7.496
         Sample-2
                       NaN
         Sample-4
                     7.780
         Sample-6
                       NaN
         Sample-5
                       NaN
         Sample-7
                       NaN
         Sample-3
                       NaN
         Name: ph, dtype: float64
```

Selecting Rows

- Subsetting on rows uses the .loc or .iloc operators
- Both .loc or .iloc require information abour the rows and column.
- Example, to extract subset consisting of the row 0 and column 2, we would write:

```
df.iloc[0, 2]
```

In [4]: df.iloc[0, 2]

Out[4]: 18.9625

Subsetting format using iloc

- In general, subsetting rows using .loc or .iloc can take of the following forms
- df.iloc[row_index(es), col_index(es)]
- As the notation indicates, we can provide a single or list of index.

Example:

```
df.iloc[1, 2]
```

In [5]: df.iloc[1, 2]

Out[5]: 7.1464

```
In [6]: df.iloc[1, [1,2,3]]
```

Out[6]: press dbar 497.8000 temp ITS-90 7.1464

csal PSS-78 34.0424

Name: Sample-8, dtype: float64

In [7]: df.iloc[[0,4,6], [1,2,3]]

Out[7]:		press dbar	temp ITS-90	csal PSS-78
	Sample ID			
	Sample-1	239.8	18.9625	35.0636
	Sample-6	385.0	10.4636	34.1083
	Sample-7	443.7	8.5897	34.0567

temp ITS-90 18.9625 csal PSS-78 35.0636 coxy umol/kg NaN ph 7.9510

Name: Sample-1, dtype: float64

Subsetting format using loc

- in general subsessing rows using .loc is written as
- df.loc[row_label(s), column_label(es)]
- As the notation indicates, we can provide a single or list of labels

INPUT

```
df.loc['Sample-1', df.columns]
```

Output

```
date mmddyy 40610.0000
press dbar 239.8000
temp ITS-90 18.9625
csal PSS-78 35.0636
coxy umol/kg NaN
ph 7.9510
Name: Sample-1, dtype: float64
```

The : Operator In Python (Refresher)

- In python the : operator is used for slicing ordered collections (e.g. lists).
- ": " can optionally take left and right operators:
 - X:Y means from X to and not including Y
 - x: means from X to the end of the list
 - Y means form the beginning all the way to and not including Y
 - the entire collection

```
In [9]: x = ['a', 'b', 'c', 'd', 'e']
 x[1:4]
```

Out[9]: ['b', 'c', 'd']

```
In [10]: x = ['a', 'b', 'c', 'd', 'e']
x[1:]
Out[10]: ['b', 'c', 'd', 'e']
```

```
In [11]: x = ['a', 'b', 'c', 'd', 'e']
x[:]
Out[11]: ['a', 'b', 'c', 'd', 'e']
```

Indexing Using Slicing operator

INPUT

Difference Between .loc and .iloc

Both used to subset of a DataFrame.

- .loc relies on the names of the indexes and headers
- .iloc relies instead on the index and header number
- df.loc['Sample-1', ["date mmddyy", "ph"]] means row index by the label 'Sample-1' and columns "date mmddyy", "ph"
- df.iloc[0, [0,1,2]] means row 0 and columns 0,1 and 2
- You cannot mix indexes and labels and the following is incorrect
 - df.iloc[0, ["date mmddyy", "ph"]] returns error
 - df.iloc[0, df.columns] returns error

```
In [15]: df.iloc[0, [0,1,2]]
```

Out[15]: date mmddyy 40610.0000 press dbar 239.8000

temp ITS-90 18.9625

Name: Sample-1, dtype: float64

```
In [16]:
         ### The following should return an error.
         df.iloc[0, df.columns]
          IndexError
                                                    Traceback (most recen
          t call last)
          Cell In[16], line 2
                1 ### The following should return an error.
          ---> 2 df.iloc[0, df.columns]
          File ~/miniconda3/envs/temp/lib/python3.9/site-packages/pandas/
          core/indexing.py:1067, in LocationIndexer. getitem (self, ke
          у)
                      if self. is scalar access(key):
             1065
                          return self.obj. get value(*key, takeable=self.
             1066
          takeable)
                      return self. getitem_tuple(key)
          -> 1067
             1068 else:
             1069
                      # we by definition only have the 0th axis
                      axis = self.axis or 0
             1070
          File ~/miniconda3/envs/temp/lib/python3.9/site-packages/pandas/
          core/indexing.py:1563, in iLocIndexer. getitem tuple(self, tu
          p)
             1561 def getitem tuple(self, tup: tuple):
          -> 1563
                      tup = self. validate tuple indexer(tup)
                      with suppress(IndexingError):
             1564
                          return self. getitem lowerdim(tup)
             1565
          File ~/miniconda3/envs/temp/lib/python3.9/site-packages/pandas/
          core/indexing.py:873, in LocationIndexer. validate tuple index
          er(self, key)
              871 for i, k in enumerate(key):
              872
                      try:
                          self. validate key(k, i)
          --> 873
              874
                   except ValueError as err:
                          raise ValueError(
              875
```

```
f"[{self. valid types}] types"
    877
    878
                ) from err
File ~/miniconda3/envs/temp/lib/python3.9/site-packages/pandas/
core/indexing.py:1477, in iLocIndexer. validate key(self, key,
axis)
   1475 # check that the key has a numeric dtype
  1476 if not is numeric dtype(arr.dtype):
-> 1477
           raise IndexError(f".iloc requires numeric indexers,
got {arr}")
   1479 # check that the key does not exceed the maximum size o
f the index
   1480 if len(arr) and (arr.max() >= len axis or arr.min() < -
len axis):
IndexError: .iloc requires numeric indexers, got ['date mmddyy'
'press dbar' 'temp ITS-90' 'csal PSS-78' 'coxy umol/kg'
 'ph']
```

Selecting using Conditional Expressions

In Pandas, comparison operations ("<" , ">" , "==" , ">=" , "<=" , "!=") works in a similar as in Python

• An applied series, then a series of booleans (True or False) are returned

	date mmddyy	press dbar	temp ITS-90	csal PSS-78	coxy umol/kg	ph
Sample ID						
Sample-1	40610	239.8	18.9625	35.0636	NaN	7.951
Sample-2	40610	280.7	16.1095	34.6103	192.3	NaN
Sample-3	40610	320.1	12.9729	34.2475	190.8	NaN
Sample-4	40610	341.3	11.9665	34.1884	191.3	7.780
Sample-5	40610	360.1	11.3636	34.1709	203.5	NaN
Sample-6	40610	385.0	10.4636	34.1083	193.7	NaN
Sample-7	40610	443.7	8.5897	34.0567	156.5	NaN
Sample-8	40610	497.8	7.1464	34.0424	110.7	7.496

• What does the following return?

```
df['press dbar'] < 380</pre>
```

```
In [17]: df['press dbar'] < 380</pre>
Out[17]:
          Sample ID
          Sample-1
                        True
          Sample-8
                       False
          Sample-2
                        True
          Sample-4
                        True
          Sample-6
                       False
          Sample-5
                        True
          Sample-7
                       False
```

True Name: press dbar, dtype: bool

Sample-3

Subsetting Based on Conditional Expressions

• It turns out that we can also subset a DataFrame using a list of booleans. For example:

INPUT

```
df[[True, True, False, False, False, False, False, False]]
OUTPUT
date mmddyy
                press dbar
                                temp ITS-90
                                                csal PSS-78
                                                                coxy
umol/kg ph
Sample ID
                                                        7.951
Sample-1
                40610
                        239.8
                                18.9625 35.0636 NaN
Sample-2
                40610
                        280.7
                                16.1095 34.6103 192.3
                                                        NaN
```

In [18]: df[[True, True, False, False, False, False, False]]

Out[18]:

	date mmddyy	press dbar	temp ITS- 90	csal PSS- 78	coxy umol/kg	ph
Sample ID						
Sample-1	40610	239.8	18.9625	35.0636	NaN	7.951
Sample-	40610	497.8	7.1464	34.0424	110.7	7.496

• The python input means return the first two row (associted with True) and ingnore the lines associated with False

Note that in when subsetting using Booleans, we don't need to use either .loc or
 loc

Subsetting Based on Conditional Expressions - Cont'd

• Conditional expression can be used directly in a <code>DataFrame</code> <code>INPUT</code>

```
df[ df['press dbar'] < 380 ]
OUTPUT</pre>
```

date mmddyy umol/kg ph Sample ID	press d	lbar	temp ITS	5-90	csal PS	S-78	coxy
Sample-1	40610	239.8	18.9625	35.0636	NaN	7.951	
Sample-2	40610	280.7	16.1095	34.6103	192.3	NaN	
Sample-3	40610	320.1	12.9729	34.2475	190.8	NaN	
Sample-4	40610	341.3	11.9665	34.1884	191.3	7.780	
Sample-5	40610	360.1	11.3636	34.1709	203.5	NaN	

In [19]: df[df['press dbar'] < 380]</pre>

Out[19]:

	date mmddyy	press dbar	temp ITS- 90	csal PSS- 78	coxy umol/kg	ph
Sample ID						
Sample-1	40610	239.8	18.9625	35.0636	NaN	7.951
Sample- 2	40610	280.7	16.1095	34.6103	192.3	NaN
Sample- 4	40610	341.3	11.9665	34.1884	191.3	7.780
Sample- 5	40610	360.1	11.3636	34.1709	203.5	NaN
Sample-	40610	320.1	12.9729	34.2475	190.8	NaN

Sorting

- Sorting is important aspect of data wrangling. For example:
 - In data analysis: sorting is used to identify patterns, trends, and outliers in the data.
 - in data cleaning, sorting can help to identify and remove duplicate entries,
 missing values, and other errors in the data.
 - etc.
- Data can sorted on the index using sort index()
- Data can sorted on of the columns using sort values()
 - Can take a single column or a list of columns to sort
- By default index and values are sorted in ascending order but the behavior can be changed by setting ascending=True as parameter to the function.

In [20]: df.sort_index()

Out[20]:

date mmddyy	press dbar	temp ITS- 90	csal PSS- 78	coxy umol/kg	ph
40610	239.8	18.9625	35.0636	NaN	7.951
40610	280.7	16.1095	34.6103	192.3	NaN
40610	320.1	12.9729	34.2475	190.8	NaN
40610	341.3	11.9665	34.1884	191.3	7.780
40610	360.1	11.3636	34.1709	203.5	NaN
40610	385.0	10.4636	34.1083	193.7	NaN
40610	443.7	8.5897	34.0567	156.5	NaN
40610	497.8	7.1464	34.0424	110.7	7.496
	40610 40610 40610 40610 40610 40610 40610	mmddyy dbar 40610 239.8 40610 280.7 40610 320.1 40610 341.3 40610 360.1 40610 385.0 40610 443.7	mmddyy dbar 90 40610 239.8 18.9625 40610 280.7 16.1095 40610 320.1 12.9729 40610 341.3 11.9665 40610 360.1 11.3636 40610 385.0 10.4636 40610 443.7 8.5897	mmddyy dbar 90 78 40610 239.8 18.9625 35.0636 40610 280.7 16.1095 34.6103 40610 320.1 12.9729 34.2475 40610 341.3 11.9665 34.1884 40610 360.1 11.3636 34.1709 40610 385.0 10.4636 34.1083 40610 443.7 8.5897 34.0567	mmddyy dbar 90 78 umol/kg 40610 239.8 18.9625 35.0636 NaN 40610 280.7 16.1095 34.6103 192.3 40610 320.1 12.9729 34.2475 190.8 40610 341.3 11.9665 34.1884 191.3 40610 360.1 11.3636 34.1709 203.5 40610 385.0 10.4636 34.1083 193.7 40610 443.7 8.5897 34.0567 156.5

In [21]: df.sort_values(by='press dbar')

Out[21]:

date mmddyy	press dbar	temp ITS- 90	csal PSS- 78	coxy umol/kg	ph
40610	239.8	18.9625	35.0636	NaN	7.951
40610	280.7	16.1095	34.6103	192.3	NaN
40610	320.1	12.9729	34.2475	190.8	NaN
40610	341.3	11.9665	34.1884	191.3	7.780
40610	360.1	11.3636	34.1709	203.5	NaN
40610	385.0	10.4636	34.1083	193.7	NaN
40610	443.7	8.5897	34.0567	156.5	NaN
40610	497.8	7.1464	34.0424	110.7	7.496
	40610 40610 40610 40610 40610 40610 40610	mmddyy dbar 40610 239.8 40610 280.7 40610 320.1 40610 341.3 40610 360.1 40610 385.0 40610 443.7	mmddyy dbar 90 40610 239.8 18.9625 40610 280.7 16.1095 40610 320.1 12.9729 40610 341.3 11.9665 40610 360.1 11.3636 40610 385.0 10.4636 40610 443.7 8.5897	mmddyy dbar 90 78 40610 239.8 18.9625 35.0636 40610 280.7 16.1095 34.6103 40610 320.1 12.9729 34.2475 40610 341.3 11.9665 34.1884 40610 360.1 11.3636 34.1709 40610 385.0 10.4636 34.1083 40610 443.7 8.5897 34.0567	mmddyy dbar 90 78 umol/kg 40610 239.8 18.9625 35.0636 NaN 40610 280.7 16.1095 34.6103 192.3 40610 320.1 12.9729 34.2475 190.8 40610 341.3 11.9665 34.1884 191.3 40610 360.1 11.3636 34.1709 203.5 40610 385.0 10.4636 34.1083 193.7 40610 443.7 8.5897 34.0567 156.5

In [22]: df.sort_values(by='press dbar', ascending=False)

Ο.		$\Gamma \cap$	2	١.
Uί	Jτ	LΖ	Ζ.	1 3

	date mmddyy	press dbar	temp ITS- 90	csal PSS- 78	coxy umol/kg	ph
Sample ID						
Sample- 8	40610	497.8	7.1464	34.0424	110.7	7.496
Sample-	40610	443.7	8.5897	34.0567	156.5	NaN
Sample- 6	40610	385.0	10.4636	34.1083	193.7	NaN
Sample- 5	40610	360.1	11.3636	34.1709	203.5	NaN
Sample- 4	40610	341.3	11.9665	34.1884	191.3	7.780
Sample-	40610	320.1	12.9729	34.2475	190.8	NaN
Sample-	40610	280.7	16.1095	34.6103	192.3	NaN
Sample-1	40610	239.8	18.9625	35.0636	NaN	7.951

In [23]: df.sort_values(by=['ph','press dbar'], ascending=False)

Out[23]:

	date mmddyy	press dbar	temp ITS- 90	csal PSS- 78	coxy umol/kg	ph
Sample ID						
Sample-1	40610	239.8	18.9625	35.0636	NaN	7.951
Sample- 4	40610	341.3	11.9665	34.1884	191.3	7.780
Sample- 8	40610	497.8	7.1464	34.0424	110.7	7.496
Sample- 7	40610	443.7	8.5897	34.0567	156.5	NaN
Sample- 6	40610	385.0	10.4636	34.1083	193.7	NaN
Sample- 5	40610	360.1	11.3636	34.1709	203.5	NaN
Sample- 3	40610	320.1	12.9729	34.2475	190.8	NaN
Sample- 2	40610	280.7	16.1095	34.6103	192.3	NaN

Key Points

- Select columns by using ["column name"] or rows by using the loc attribute.
- Sort based on values in a column by using the sort_values method.

Exercise

Try it yourself! Going back to our 20_sales_records.xlsx file, idenitfy which orders are Online and High Priority

- Read the first couple rows to get a sense of the data. Which column reflects

 Online or Offline Status.
- A High Priority order is denoted by H in one of the columns. Identify which column.
- HINT: Use the loc method