Concentration analysis of multivariate elliptic diffusions

Lukas Trottner (Aarhus University)

joint work with: Cathrine Aeckerle-Willems (University of Mannheim) and Claudia Strauch (Aarhus University)

Setup and aims of the paper

We consider a (weak) solution X of the SDE

$$dX_t = b(X_t) dt + \sigma(X_t) dW_t,$$

 $b \in \operatorname{Lip}_{\operatorname{loc}}(\mathbb{R}^d; \mathbb{R}^d), \sigma \in \operatorname{Lip}(\mathbb{R}^d; \mathbb{R}^{d \times d})$ and bounded, uniformly elliptic diffusion matrix $a \coloneqq \sigma \sigma^{\top}$, given the drift condition

$$\langle b(x), x/||x|| \rangle \le -r||x||^{-q}, \quad ||x|| > A, q \in [-1, 1). \quad (\mathcal{D}(q))$$

The smaller the parameter q, the faster the (sub)exponential speed of ergodicity towards the invariant distribution π of X.

We quantify the concentration around the ergodic mean $\pi(f) := \int f(x) \, \pi(\mathrm{d}x)$ of both the continuous-time MC estimator and its discrete version

$$\widehat{\pi}_T(f) \coloneqq \frac{1}{T} \int_0^T f(X_t) dt, \quad \widehat{\pi}_{n,\Delta}(f) \coloneqq \frac{1}{n} \sum_{k=1}^n f(X_{k\Delta}),$$

for polynomially growing functions f.

Strategy: Martingale approximation

For the generator $L = b^{\top} \nabla + \frac{1}{2} \sum_{i,j} a_{i,j} \partial_{x_i} \partial_{x_j}$ the Poisson equation Lg = f

has a nice solution $L^{-1}[f]$ if f is π -centered and grows polynomially. The Itō–Krylov formula then gives

$$\int_0^t f(X_s) ds$$

$$= \underbrace{\int_0^t (-\nabla L^{-1}[f](X_s))^\top \sigma(X_s) dW_s}_{\text{(loc.) martingale}} + \underbrace{L^{-1}[f](X_t) - L^{-1}[f](X_0)}_{\text{remainder}}$$

use polynomial growth bounds on on $L^{-1}[f]$, $\nabla L^{-1}[f]$ from [4] precise understanding of the tails of π given $(\mathcal{D}(q))$ then allows to control all L^p -norms of the centered statistic $\widehat{\pi}_T(f) - \pi(f)$

Main results

Theorem 1. Assume $(\mathcal{D}(q))$, $||b(x)|| \le 1 + ||x||^{\kappa}$ and $|f(x)| \le 2(1 + ||x||^{\eta})$. Let

$$\rho(\eta, \kappa, q) := \begin{cases} 1/(1-q_+), & \eta = 0 \\ \frac{1}{2} + \frac{\eta + \kappa + 1 + q}{1-q_+}, & \eta > 0. \end{cases}$$

Then, there exists a constant c > 0 s.t. for any $x \ge 2/\sqrt{T}$,

$$\mathbb{P}^{\pi}(|\widehat{\pi}_{T}(f) - \pi(f)| > x) \leq \exp\left(-c\left(\frac{x\sqrt{T}}{\Omega}\right)^{1/\rho(\eta,\kappa,q)}\right).$$

This translates into the following PAC-bounds

Poincaré, $\eta = 0$ log-Sobolev, $\eta \le 2$ subexponential, $\eta > 0$

$$\frac{\log(1/\delta)}{\varepsilon}$$
 $\frac{\log(1/\delta)}{\varepsilon}$ $\frac{\log(1/\delta)^{2\rho(\eta,\kappa,\delta)}}{\varepsilon}$

sample complexity s.t. (ε, δ) -PAC-bound $\mathbb{P}^{\pi}(|\widehat{\pi}_{\mathcal{T}}(f) - \pi(f)| \le \varepsilon) \ge 1 - \delta$ holds

By relating the discrete estimator with sampling frequency Δ to the continuous estimator, we obtain concentration bounds for $\widehat{\pi}_{n,\Delta}(f)$:

Theorem 2. Assume $(\mathcal{D}(q))$, $||b(x)|| \le 1 + ||x||^{\kappa}$ and $||D^k f(x)|| \le 1 + ||x||^{\eta_k}$, k = 0, 1, 2. Define $\alpha := (\kappa + \eta_1) \vee \eta_2$, and let $\widetilde{\gamma} > 1 + q$, r > 1, s.t. $\widetilde{\gamma} - (1 + q) > r(\alpha \vee (1 + q)/(r - 1))$. Then, for $p \ge 2$,

$$\|\widehat{\pi}_{n,\Delta}(f) - \pi(f)\|_{L^{p}(\mathbb{P}^{\pi})}$$

$$\leq \mathfrak{D}\left(\Delta + \sqrt{\frac{\Delta}{n}} p^{\frac{\max\{(\widetilde{\gamma}+2\alpha+1-q_{+})/2,\eta_{1}+1-q_{+}\}}{1-q_{+}}} + \frac{1}{\sqrt{n\Delta}} p^{\frac{1}{2} + \frac{\eta+\kappa+1+q}{1-q_{+}}}\right)$$
sampling error

 $=: \Phi(n, \Delta, p),$

and

 $\mathbb{P}^{\pi}\Big(|\widehat{\pi}_{n,\Delta}(f) - \pi(f)| > e\Phi(n,\Delta,x)\Big) \le e^{-x}, \quad x \ge 2.$

Sample complexities for heavy-tailed Langevin MCMC

Under mild assumptions on the potential U, the Langevin diffusion

$$dX_t = -\nabla U(X_t) dt + \sqrt{2} dW_t,$$

has invariant density $\pi(x) \propto \exp(-U(x))$

e.g., Euler scheme with $(\xi_n) \sim \mathcal{N}(0, \mathbb{I}_d)$:

$$\vartheta_{n+1}^{(\Delta)} = \vartheta_n^{(\Delta)} - \Delta \nabla U(\vartheta_n^{(\Delta)}) + \sqrt{2\Delta} \xi_{n+1}, \quad \vartheta_0^{(\Delta)} \sim X_0.$$

abundant literature on sampling precision in TV or Wasserstein distance for U strongly convex or modifications thereof [1, 2, 3] $\rightsquigarrow \pi(x) \, \mathrm{d} x$ is sub-Gaussian

Assume instead that for $q \in (0, 1)$

$$\langle \nabla U(x), x/||x|| \rangle \ge r||x||^{-q}, \quad ||x|| > A.$$
 (\mathcal{U}(q))

 \rightsquigarrow prototypical example: $\pi(x) \propto \exp(-\beta \|x\|^{1-q})$ is heavy-tailed and U is non-convex

Proposition 3.			
	step length Δ	sample size <i>n</i>	burn-in <i>m</i>
arepsilon-prec. sampling	$\frac{\varepsilon^2}{d(\log(\mathfrak{C}/\varepsilon))^{(1-q)/(1+q)})}$	$\frac{d(\log(\mathfrak{C}/\varepsilon))^{2(1-q)/(1+q)}}{\varepsilon^2}$	
(ε,δ) -PAC bound	$\frac{(\delta \varepsilon)^2}{d(\log(1/\delta))^{2(\eta_0 + (q+3)/2)/(1-q)}}$	$\frac{d\mathfrak{D}^{2}(\log(1/\delta))^{(4(\eta_{0}+(q+3)/2))/(1-q)}}{\delta^{2}\varepsilon^{4}}$	$\frac{d(\log(1/\delta))^{2(\eta_0+q+2)/(1-q)}}{(\delta\varepsilon)^2}$
Order of sufficient sampling frequency Δ , sample size n and burn-in m for $(arepsilon,\delta)$ -PAC bounds and sampling			
within $arepsilon$ -TV margin			

References

- [1] A. S. Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave densities. J. R. Stat. Soc. Ser. B. Stat. Methodol., 79(3):651–676, 2017.
- [2] A. Durmus, S. Majewski, and B. a. Miasojedow. Analysis of Langevin Monte Carlo via convex optimization. J. Mach. Learn. Res., 20:Paper No. 73, 46, 2019.
- [3] A. Durmus and E. Moulines. Nonasymptotic convergence analysis for the unadjusted Langevin algorithm. *Ann. Appl. Probab.*, 27(3):1551–1587, 2017.
- [4] E. Pardoux and A. Y. Veretennikov. On the Poisson equation and diffusion approximation. I. *Ann. Probab.*, 29(3):1061–1085, 2001.

