Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Idaho Water Supply Outlook Report January 1, 2012

aTD224.I2I33

The minus signs on this map represent the record or near record low Christmas snowpacks at many SNOTEL sites across Idaho and the West. Such dry conditions were surprising since cold ocean temperatures, that signal a La Nina, have been measured in the Pacific Ocean ever since last winter. La Nina conditions are often touted as producing cold and stormy winters in the Pacific Northwest. Last winter was a textbook example. While this year's La Nina is not as strong as last year, climate models are still predicting above average conditions in the coming months. The weather pattern shifted in late December bringing long anticipated snow to Idaho. Hopefully the snow will continue as a significant amount of catch-up is needed to get Idaho's snowpack back to above average amounts.

Basin Outlook Reports

and Federal - State - Private Cooperative Snow Surveys

For more water supply and resource management information, or to subscribe to this publication

Contact - - Your local county Natural Resources Conservation Service Office

or

Natural Resources Conservation Service Snow Surveys 9173 West Barnes Drive, Suite C Boise, Idaho 83709-1574 (208) 378-5740 Internet Web Address http://www.id.nrcs.usda.gov/snow/

To join a free email subscription list contact us by email at: IDBOISE-NRCS-SNOW@one.usda.gov

How forecasts are made

Most of the annual streamflow in the western United States originates as snowfall that has accumulated in the mountains during the winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when the snow melts. Measurements of snow water equivalent at selected manual snow courses and automated SNOTEL sites, along with precipitation, antecedent streamflow, and indices of the El Niño / Southern Oscillation are used in computerized statistical and simulation models to produce runoff forecasts. Unless otherwise specified, all forecasts are for flows that would occur naturally without any upstream influences.

Forecasts of any kind, of course, are not perfect. Streamflow forecast uncertainty arises from three primary sources: (1) uncertain knowledge of future weather conditions, (2) uncertainty in the forecasting procedure, and (3) errors in the data. The forecast, therefore, must be interpreted not as a single value but rather as a range of values with specific probabilities of occurrence. The middle of the range is expressed by the 50% exceedance probability forecast, for which there is a 50% chance that the actual flow will be above, and a 50% chance that the actual flow will be below, this value. To describe the expected range around this 50% value, four other forecasts are provided, two smaller values (90% and 70% exceedance probability) and two larger values (30%, and 10% exceedance probability). For example, there is a 90% chance that the actual flow will be more than the 90% exceedance probability forecast. The others can be interpreted similarly.

The wider the spread among these values, the more uncertainty is in the forecast. As the season progresses, forecasts become more accurate, primarily because a greater portion of the future weather conditions become known; this is reflected by a narrowing of the range around the 50% exceedance probability forecast. Users should take this uncertainty into consideration when making operational decisions by selecting forecasts corresponding to the level of risk they are willing to assume about the amount of water to be expected. If users anticipate receiving a lesser supply of water, or if they wish to increase their chances of having an adequate supply of water for their operations, they may want to base their decisions on the 90% or 70% exceedance probability forecasts, or something in between. On the other hand, if users are concerned about receiving too much water (for example, threat of flooding), they may want to base their decisions on the 30% or 10% exceedance probability forecasts, or something in between. Regardless of the forecast value users choose for operations, they should be prepared to deal with either more or less water. (Users should remember that even if the 90% exceedance probability forecast is used, there is still a 10% chance of receiving less than this amount.) By using the exceedance probability information, users can easily determine the chances of receiving more or less water.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).

To file a complaint of discrimination write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.".

IDAHO WATER SUPPLY OUTLOOK REPORT

JANUARY 1, 2012

SUMMARY

Idaho is waiting for the one-two punch to improve the snowpack and water supply outlook. The stage seemed set with a rerun of La Nina. The first 45 days of the new water year, which began on October 1, brought ample fall rains followed by early November snow. After mid-November, the only punch felt was cold temperatures with the exception of northern Idaho. Then, in late December moisture laden storms finally arrived for the next punch, but rain fell at elevations over 7,000 feet in central Idaho. Snowpacks are below average across the state with the Owyhee basin pushing near record low levels. The good news is that the soil moisture deficit has been nearly erased from the October rains and that reservoirs are storing near average to above average water levels across the state. Streamflow forecasts mirror the snowpacks and call for 30-75% of average April through July volumes for most of the state and near 85% of average in the Panhandle region. With more than half the winter still to come, conditions can improve by delivering the one-two punch: cold temperatures combined with Pacific moisture. Long-term climate forecasts still cite La Nina conditions in the Pacific Ocean, and predict above average precipitation for the coming months.

SNOWPACK

An extended dry spell since Thanksgiving left 22 SNOTEL sites with record or near record low snow amounts by Christmas Day. The last week of December brought a long, anticipated series of storms into the state. However, much of the moisture began falling as rain as high up as 7,000 feet and in places such as Jackson, Wyoming. The powerful storm finished with high winds followed by a sharp drop in temperatures and snow. The storm even brought some thunder and lightning to the Treasure Valley on December 30. As a result of the recent storm cycle, the number of record low snowpacks at SNOTEL sites decreased. On January 1, the record low snowpacks are located in the Owyhee and Bruneau basins at only near 26-35% of average. Elsewhere across southern Idaho the snowpacks range from 35-60% of average. Central Idaho snowpacks are 55-65% of average while the highest snowpacks remain in northern Idaho at 65-90% of average.

PRECIPITATION

The water year started in October with the state receiving 1 to 2.5 times the normal monthly precipitation amounts. This helped to erase the annual summer soil moisture deficit across most of the state. November brought an early snow storm before Thanksgiving, but then gave way to a stagnant weather pattern of blue skies during the day and clear skies at night for nearly 30 days. November precipitation ranged from half of average in southern Idaho to just over average in northern Idaho. December's precipitation would have been disappointing if not for the stormy last week of the month which raised monthly precipitation amounts to 40-60% across the state, except in southern Idaho which received less than one-third of average amounts. On the bright side, water year-to-date precipitation amounts are near average in the Little Wood, Big Lost and Little Lost basins and are 60-90% elsewhere in the state.

RESERVOIRS

Excellent carryover storage from last year will provide a relief for water users if snowpacks remain below average. Concern of too much water in storage faded with the extended period of blue skies. Current storage amounts range from 50-85% of capacity and are near average to well above average state-wide. Fortunately, minimal spring runoff is needed to provide adequate irrigation supplies in the Salmon Falls, Oakley and Bear River basins because of the carryover storage.

Note: NRCS reports reservoir information in terms of usable volumes, which includes both active, inactive and in some cases, dead storage. Other operators may report reservoir contents in different terms. For additional information, see the reservoir definitions in this report.

STREAMFLOW

Throughout Idaho, streamflow in most rivers was above average from last spring through this November, when the thermometer began to drop and the skies cleared. The sustained high streamflows highlight the impressive impact that last year's snowpack and precipitation had on baseflows. The late December precipitation thawed some streams and caused some short-lived stream peaks that have already subsided. Summer streamflow forecasts mirror the current snowpack conditions with the lowest flows forecast in the Owyhee and Bruneau basins at 30-50% of average and highest in northern Idaho at 75-89% of average. To honor a request, the NRCS will start forecasting the natural flow this year for Camas Creek at Camas near Mud Lake to assist water managers at Camas National Wildlife Refuge.

Note: Forecasts published in this report are NRCS forecasts. NRCS uses timely SNOTEL data to provide streamflow forecasts. Jointly coordinated published forecasts by the USDA NRCS and the NOAA NWS are available from the joint west-wide Water Supply Outlook for the Western US at http://www.wcc.nrcs.usda.gov/wsf/westwide.html. Water users may wish to use a lesser exceedance forecast to reduce the risk of coming up water short or greater volume to mitigate high flow potential.

RECREATION

If ice skating on glassy, snow-free lakes is your winter passion December 2011 may go down as your all-time favorite. Otherwise winter recreation has been pretty limited through Christmas for most of Idaho. Two-thirds of our SNOTEL sites had less than two feet of snow on the ground through December 27th. Only high elevation sites in Northern Idaho and western Wyoming saw more than 3 feet of snow. One note of caution, avalanche centers across the region are warning of a weak, faceted snowpack underlying the new snow. Check local advisories at www.avalanche.org and use caution before proceeding in the mountains.

Implementation of 1981–2010 Period Climate Normals Delayed until October 1, 2012

The NRCS Snow Survey and Water Supply Forecasting Program follows the World Meteorological Organization (WMO) conventional standard for climate normals when comparing current data to historic trends. The WMO has established a 30-year reference period "as it is long enough to filter out any interannual variation or anomalies, but also short enough to be able to show longer climatic trends".

(http://www.wmo.int/pages/themes/climate/climate_data_and_products.php). Climate normals are updated every ten years, and NRCS as well as other agencies like the National Weather Service are currently in the process of changing from the 1971–2000 period to the new 1981–2010 period. The most recent 30 year period is said to represent the current climatological conditions; that is why a 30 period is used instead of a longer period.

The full implementation of the "new" normals for all NRCS applications is planned for the beginning of the 2013 water year on October 1, 2012. In the meantime, all reports and products including streamflow forecasts for the current water year will continue using the 1971–2000 normals. Normal values of both medians and averages will be produced for all parameters and available to the public. Please contact the Idaho Snow Survey Office or watch our home Internet page for more information.

1981-2010 Climate Normals will use a Combination of Means and Median

The values presented as the "NRCS official" 1981-2010 30-year normals, whether daily, monthly, annual or seasonal (April – July period for example), will be the arithmetic mean (i.e., average) of the 30 individual yearly data for the following parameters: streamflow volume acrefeet, reservoir storage acre-feet, SNOTEL and NWS precipitation, and snow depth (manual snow courses only). SNOTEL sites do not have enough years of automated snow depth to produce reliable normals. However, the normal values presented for the snow water equivalent (SWE) parameter will be the statistical median of the 30 individual yearly data for both manual snow courses and daily SNOTEL data. This is a departure from previous years when all parameters used the average (mean) values.

Climate data specialists are nearly unanimous in the opinion that the SWE median better represents a normal condition for a parameter that accumulates and dissipates in a seasonal pattern with great variation. As an example, think of a site that hardly ever has snow water on the ground on June 1. The perception is that the "normal" condition is more or less zero snow for June 1. Now, if you add an extreme year, like June 2011, the arithmetic mean value might end up being a couple inches. In this case the mean does not represent the normal or most expected condition; however, the median which would probably be zero, makes a better normal. In 2001 when the averages were updated, the average Julian start and melt out dates were calculated and used to define the start and end points for the 1971-2000 SWE averages in Idaho. This new method of using medians now provides consistency West-wide.

The Surface Water Supply Index (SWSI) is a predictive indicator of surface water availability within a watershed for the spring and summer water use season. The index is calculated by combining pre-runoff reservoir storage (carryover) with forecasts of spring and summer streamflow. SWSI values are scaled from +4.0 (abundant supply) to -4.0 (extremely dry), with a value of zero indicating a median water supply as compared to historical occurrences. The SWSI analysis period is from 1971 to present.

SWSI values provide a more comprehensive outlook of water availability by combining streamflow forecasts and reservoir storage where appropriate. The SWSI index allows comparison of water availability between basins for drought or flood severity analysis. Threshold SWSI values have been determined for some basins to indicate the potential for agricultural irrigation water shortages.

BASIN or REGION	SWSI Value	Most Recent Year With Similar SWSI Value	Agricultural Water Supply Shortage May Occur When SWSI is Less Than
Northern Panhandle	-0.4	1995	NA
Spokane	-0.7	2010	NA
Clearwater	-1.7	2010	NA
Salmon	-1.4	2000	NA
Weiser	-1.7	2004	NA
Payette	-1.4	2004	NA
Boise	0.7	2007	-1.3 to -1.6
Big Wood	0.6	2011	0.5 to 0.7
Little Wood	0.7	2005	-1.3 to -1.6
Big Lost	-0.4	2010	0.3 to 0.5
Little Lost	-1.2	2008	1.0 to 1.3
Teton	-0.9	2005	NA
Henrys Fork	-0.8	2010	-3.4 to -3.6
Snake (Heise)	0.9	2008	-1.3 to -1.6
Oakley	1.4	2000	0.3 to 0.5
Salmon Falls	0.1	2010	-0.4 to -0.8
Bruneau	-2.4	2003	NA
Owyhee	0.4	2005	-3.0 to -3.5
Bear River	2.0	2011	-2.3 to -2.6

SWSI SCALE, PERCENT CHANCE OF EXCEEDANCE, AND INTERPRETATION

-4 	-3 	-2 	-1 	0 	1 	2 	3	4
99%	87%	75%	63% - -	50%	37%	25%	13%	1%
Much Below	Below Normal	 		Normal Supply		Above Normal	Much Above	

NA = Not Applicable, Note: The Percent Chance of Exceedance is an indicator of how often a range of SWSI values might be expected to occur. Each SWSI unit represents about 12% of the historical occurrences. As an example of interpreting the above scale, the SWSI can be expected to be greater than -3.0, 87% of the time and less than -3.0, 13% of the time. Half the time, the SWSI will be below and half the time above a value of zero. The interval between -1.5 and +1.5 described as "Near Normal Water Supply," represents three SWSI units and would be expected to occur about one-third (36%) of the time.

PANHANDLE REGION JANUARY 1, 2012

WATER SUPPLY OUTLOOK

The Idaho panhandle region's mountains have an 84% of average snowpack on January 1, while the rest of the state has snowpack levels lower than this. The best snow can be found in the Moyie and Priest River drainages at near 95% of average and the lowest in the St. Joe at 66% of average. Based on the current snowpack and the La Nina conditions expected, these mountains should be in good shape through the winter making water users happy in the spring. Reservoirs are about 40% of capacity and the rivers are expected to run about 80-90% of average from April through July. While any range of weather conditions are possible throughout the rest of the winter, the Panhandle region is leaning towards having an adequate summer water supply season even though it has seemed dry so far.

PANHANDLE REGION Streamflow Forecasts - January 1, 2012

		<< 	Drier =	- Future Co	onditions =	Wetter	·>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	5	Exceeding * = 50% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
Kootenai R at Leonia (1,2)	APR-JUL APR-SEP	4340 5170	5400 6240	5880 6730	84 83	6360 7220	7410 8290	7040 8120
Moyie R at Eastport	APR-JUL APR-SEP	215 230	295 310	350 365	86 87	405 420	485 500	405 420
Smith Ck nr Porthill	APR-JUL APR-SEP	67 66	92 94	109 113	89 88	126 132	151 160	123 129
Boundary Ck nr Porthill	APR-JUL APR-SEP	77 80	96 100	1 109 1 113	89 88	122 126	14 1 146	123 129
Clark Fork at Whitehorse Rpds (1,2)	APR-JUL APR-SEP	6410 7270	8670 9650	9700 10700	86 86	10700 11800	13000 14200	11300 12500
Pend Oreille Lake Inflow (2)	APR-JUL APR-SEP	7790 8670	9480 10400	 10600 11600	84 84	11800 12800	13500 14600	12700 13900
Priest R nr Priest River (1,2)	APR-JUL APR-SEP	415 445	555 595	 650 695	80 80	745 795	885 945	815 870
NF Coeur d'Alene R at Enaville	APR-JUL APR-SEP	305 330	480 510	 600 630	81 81	720 750	895 930	740 780
St. Joe R at Calder	APR-JUL APR-SEP	560 600	760 810	 900 950	79 79 79 	1040 1090	1240 1300	1140 1200
Spokane R nr Post Falls (2)	APR-JUL APR-SEP	1210 1280	1750 1830	2120 2200	83 83	2480 2570	3020 3120	2550 2650
Spokane R at Long Lake (2)	APR-JUL APR-SEP	1370 1530	1980 2160	2390 2590	84 84 	2800 3020	3410 3650	2850 3070
PANHANDI Reservoir Storage (1000	LE REGION) AF) - End	of Decembe	er	i I	Watershed Sno	PANHANDLE REG		cv 1, 2012

	e (1000 AF) - End	of Decem	ber		PANHANDLE REGION Watershed Snowpack Analysis - January 1, 2012				
Reservoir	Usable Capacity	*** Usa This	* Usable Storage		Watershed	Number of	This Yea	r as % of	
		Year	Year	Avg		Data Sites	Last Yr	Average	
PEND OREILLE	1561.3	641.0	880.5	673.4	Kootenai ab Bonners Fe	erry 8	90	84	
COEUR D'ALENE	238.5	50.9	134.2	110.1	Moyie River	1	125	111	
PRIEST LAKE	119.3	53.2	53.6	55.7	Priest River	4	95	96	
				ļ	Pend Oreille River	57	76	79	
					Rathdrum Creek	3	75	73	
				ļ	Coeur d'Alene River	6	73	72	
					St. Joe River	4	81	66	
					Spokane River	13	76	70	
					Palouse River	1	52	53	

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

CLEARWATER RIVER BASIN JANUARY 1, 2012

WATER SUPPLY OUTLOOK

La Nina hasn't produced the desired snowpack in the Clearwater basin yet this winter. As of January 1, the snowpack is 77% of normal and lagging behind the neighboring basins to the north. A powerful storm moved through before New Year's Day but more rain fell than snow below 6000 feet of elevation. Conversely, the higher elevation sites received almost 2 new feet of snow. The rain and warmer temperatures broke up some river ice and caused some mid-winter streamflow peaks; not near as intense as last January's runoff event. For instance, the Clearwater at Orofino was frozen on December 29th, and then jumped to a daily mean flow of 6,630 cfs on New Year's Eve. Last January, the River was not frozen but jumped from around 2,500 cfs to 28,900 cfs over a few days! Hopefully, La Nina will carry its weight and bring the expected snow this winter. If it lags, Dworshak Reservoir has 91% of average storage and is 65% of capacity. The streamflow forecasts call for 75% of average volumes for Dworshak Reservoir inflow and about 85% for the Clearwater, Lochsa and Selway Rivers for the April through July period. These forecasts will increase over the next few months as the finger crossing brings the snow.

CLEARWATER RIVER BASIN Streamflow Forecasts - January 1, 2012

		<<====	= Drier =]	Future C	onditions =	Wette	r ===>>	1
Forecast Point	Forecast Period	====== 90% (1000AF)	70% (1000AF)			Exceeding * = 50% (% AVG.)	30% (1000AF)	10% (1000AF)	 30-Yr Avg. (1000AF)
Selway R nr Lowell	APR-JUL APR-SEP	1280 1370	1580 1680		1790 1890	87 87	2000	2300 2410	2060 2170
Lochsa R nr Lowell	APR-JUL APR-SEP	915 985	1140 12 1 0	1	1300 1370	85 85	1460 1530	1680 1760	1530 1610
Dworshak Res Inflow	APR-JUL APR-SEP	955 1050	1670 1780		1990 2120	75 76	2310 2450	3030 3180	2640 2800
Clearwater R at Orofino (1)	APR-JUL APR-SEP	1810 2050	3330 3570		4020 4260	87 87	4710 4950	6230 6470	4650 4900
Clearwater R at Spalding (1,2)	APR-JUL APR-SEP	2410 2760	4980 5330		6150 6490	83 83	7320 7660	9890 10200	7430 7850
CLEARWATI Reservoir Storage (1	ER RIVER BASI 000 AF) — End		per				EARWATER RIVE nowpack Analy		ry 1, 2012
Reservoir	Usable Capacity 	*** Usak This Year	ole Storage Last Year	e *** Avg	 Wate 	rshed	Numb of Data S		Year as % of Yr Average
DWORSHAK	3468.0	2256.3	2333.8	2481.4	Nort	h Fork Clear	water 9	78	72

Lochsa River

Selway River

Clearwater Basin Total

95

99

79

4

16

90

91

75

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

SALMON RIVER BASIN JANUARY 1, 2012

WATER SUPPLY OUTLOOK

Every year is unique, but the hope is that the slow start to winter this year will be offset by the usual stormy weather that occurs during a La Nina year. Recall from a recent La Nina year such as 2009, where winter was delayed early in the season but the snowpack caught up to average later in the season before snowmelt began. Last year, the snowpack started off on a better note, lingered late into spring and ended up being the 2nd highest snowpack on SNOTEL records for June 1. The long dry spell this past December results in a 72% of average January 1st snowpack. The water year-to-date precipitation is slightly better on January 1 at 81% of average due to rainfall before the snow began accumulating. Any combination of big storms over the next few months or late lingering snowpacks similar to these historical La Nina years will leave behind a favorable water supply picture this spring. It is too early in the season to say for sure and there have been too many recent weather anomalies to be confident in the summer water supply outlook on this January 1. However, based on the current conditions, the streamflow forecasts call for about 65-75% of average volumes for the Salmon River and its tributaries; enough water for fun on the rivers this spring.

SALMON RIVER BASIN Streamflow Forecasts - January 1, 2012

		<<====	Drier ===	— Future Co	onditions —		>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	1	Exceeding * = 50% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
Salmon R at Salmon (1)	APR-JUL APR-SEP	256 308	524 615	645 755	75 76	766 895	1034 1202	855 1000
Lemhi R nr Lemhi	APR-JUL APR-SEP	25 33	42 52	55 68	64 65	70 86	96 115	86 105
MF Salmon R at MF Lodge	APR-JUL APR-SEP	233 273	431 488	565 635	72 73	699 782	897 997	785 875
SF Salmon R nr Krassel RS	APR-JUL APR-SEP	103 108	161 169	200	69 68	239 251	297 312	290 310
Johnson Ck at Yellow Pine	APR-JUL APR-SEP	77 80	116 120	142 148	69 69	168 176	207 216	205 215
Salmon R at White Bird (1)	APR-JUL APR-SEP	1876 2234	3474 3971	4200 4760	72 74 	4926 5549	6524 7286	5850 6480
SALM Reservoir Storage	ON RIVER BASIN (1000 AF) - End	of Decembe	er		SA Watershed Sno	ALMON RIVER E owpack Analys		y 1, 2012

	Reservoir Storage (1000 AF) - End	of Dec	ember	i	Watershed Snowpack	Analysis -	January 1	, 2012
Reservoir	Usable Capacity	*** U This	sable Storaç Last	ge *** 	Watershed	Number of	This Yea	r as % of
	1	Year	Year	Avg		Data Sites		Average
					Salmon River ab Salmon	8	70	76
					Lemhi River	6	63	69
					Middle Fork Salmon Rive	er 3	63	69
					South Fork Salmon River	3	59	68
					Little Salmon River	4	63	67
				! 	Salmon Basin Total	23	66	73

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

(2) - The value is natural volume - actual volume may be affected by upstream water management.

WEISER, PAYETTE, BOISE RIVER BASINS JANUARY 1, 2012

WATER SUPPLY OUTLOOK

The water year got off to a good start in October, but dry conditions in November and December have the West Central Mountains playing catch-up. Water year-to-date precipitation is 80% of normal. Monthly Precipitation was 153% of normal in October, 71% of normal in November and only 59% of normal for December. Through December 27th, 17 of 22 SNOTEL sites in the region had seen 0.2 inches or less precipitation for the month. Usual December precipitation at these sites is about 6 inches. These bone dry skies from Thanksgiving to Christmas produced record low Christmastime snow amounts when compared to 30 years of daily SNOTEL measurement at Mores Creek Summit and Deadwood Summit. A number of other sites ranked second lowest with only 1989 having less snow. Fortunately the large storm starting on December 28 increased snowpack amounts to 69% of average by January 1. Prior to that storm, the snowpack was only about 45% of normal. Although snowpacks are low, good reservoir storage provides some security for water users at this point. Reservoir storage amounts are above average in both the Boise and Payette basins. Summer streamflow forecasts call for 63-80% of average for the April-July period. Hopefully the recent storm cycle is an indication of what to expect in the coming months while there is still time for snowpacks to reach normal levels by April.

			w Forecas						
	1	<<====	= Drier =	l	Future Cor	nditions ——	= Wetter =	>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF	1		**************************************	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
Weiser R nr Weiser (1)	FEB-JUL APR-JUL APR-SEP	113 66 76	320 188 205		445 265 285	69 68 68	595 355 380	995 600 630	650 390 420
SF Payette R at Lowman	APR-JUL APR-SEP	210 245	275 320		330 380	75 77 	385 445	480 545	440 495
Deadwood Resv Inflow (1,2)	APR-JUL APR-SEP	38 40	78 84		97 104	72 73 	116 124	156 168	134 142
Lake Fork Payette R nr McCall	APR-JUL APR-SEP	43 44	54 56	 	63 65	74 73	72 75	87 90	85 89
NF Payette R at Cascade (1,2)	APR-JUL APR-SEP	117 112	290 295	 	370 380	71 70	450 465	625 650	520 540
NF Payette R nr Banks (2)	APR-JUL APR-SEP	245 240	380 385	 	470 480	70 69	560 575	695 720	675 700
Payette R nr Horseshoe Bend (1,2)	APR-JUL APR-SEP	490 555	955 1030	 	1170 1250	 71 71	1380 1470	1850 1950	1640 1760
Boise R nr Twin Springs (1)	APR-JUL APR-SEP	220 250	415 455	1 1 1	505 550	80 80	595 645	790 850	635 690
SF Boise R at Anderson Ranch Dam (1,	APR-JUL APR-SEP	101 117	305 330	 	395 425	73 73	485 520	690 735	540 580
Mores Ck nr Arrowrock Dam	APR-JUL APR-SEP	34 36	61 63	 	83 86	63 63	109 112	153 158	131 137
Boise R nr Boise (1,2)	APR-JUN APR-JUL APR-SEP	445 445 530	785 860 950	 	935 1050 1140	74 75 75	1090 1240 1330	1420 1650 1750	1260 1410 1530
WEISER, PAYETTE, Reservoir Storage (1000			per	1		WEISER, PAYE Watershed Snowp			
			ole Storag	e ***	1		Number	This	Year as % of
Reservoir	Capacity 	This Year	Last Year	Avg	Water: 	snea	of Data Site	es Last	Yr Average
MANN CREEK	11.1	1.7	2.2	3.3	Mann (Creek	1	39	50
CASCADE	693.2	489.7	438.9	456.4	 Weise:	r River	3	38	66
DEADWOOD	161.9	94.1	98.9	82.5	 North	Fork Payette	8	54	62
ANDERSON RANCH	450.2	373.8	320.2	296.8	 South	Fork Payette	5	58	64
ARROWROCK	272.2	192.9	168.5	173.1	 Payeti	te Basin Total	15	50	59
LUCKY PEAK	293.2	87.1	79.2	95.5	 Middle	e & North Fork	Boise 5	56	66
LAKE LOWELL (DEER FLAT)	165.2	120.3	122.6	98.4	South	Fork Boise Riv	er 9	53	66
					Mores	Creek	6	29	40

17

2

19

Boise Basin Total

Canyon Creek

57

34

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

WOOD and LOST RIVER BASINS JANUARY 1, 2012

WATER SUPPLY OUTLOOK

The Wood and Lost basins got off to the best start in the state this water year, but since October all bragging rights have been revoked. For a while it looked like La Nina was picking up right where it left off last spring. October brought 241% of the normal monthly precipitation to central Idaho, breaking a number of SNOTEL precipitation records for the month. After 72% of normal November precipitation and only 50% in December, the water year-to-date precipitation on January 1 is 96%. Snowpacks across these four basins currently range from 53-70% of normal with the highest amounts in the Big Wood basin. The fall rains helped to remove soil moisture deficits from last summer. Magic Reservoir is 142% of average, best since 1999; Little Wood is 167% of average while Mackay is 139% of average, all are about two-thirds full. Streamflow forecasts call for 50-85% of average summer streamflow volumes. Although streamflow forecasts are low, reservoir storage combined with a few good storms should provide adequate irrigation supplies.

WOOD AND LOST RIVER BASINS Streamflow Forecasts - January 1, 2012

		<<	Drier	— Future Co	nditions ===	Wetter	>> 	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)		xceeding * = 0% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
Big Wood R at Hailey (1)	APR-JUL APR-SEP	9.0 13.0	128 145	182 205	71 71	235 265	355 395	255 290
Big Wood R ab Magic Res	APR-JUL APR-SEP	33 33	69 73	104	55 55	149 166	240 270	190 205
Camas Ck nr Blaine	APR-JUL APR-SEP	6.0 6.0	27 27	50 50	50 50	80 80	137 137	100 101
Big Wood R bl Magic Dam (2)	APR-JUL APR-SEP	52 55	77 84	154 163	53 53	230 240	345 360	290 305
Little Wood R ab High Five Ck	MAR-JUL MAR-SEP	21 23	42 46	61 66	72 72	83 89	121 130	85 92
Little Wood R near Carey (2)	MAR-JUL MAR-SEP	11.0 13.0	44 48	66 71	69 68	88 94	121 129	96 104
Big Lost R at Howell Ranch	APR-JUL APR-SEP	61 68	96 108	125 140	72 71	157 176	21 0 240	173 197
Big Lost R bl Mackay Res	APR-JUL APR-SEP	15.0 21	60 74	 90 111	64 I 65 I	120 148	165 200	141 172
Little Lost R nr Howe	APR-JUL APR-SEP	12.1 15.4	17.6 22	22 28	71 72	27 34	35 44	31 39
Camas Ck at Camas	APR-JUL	1.5	5.6	 15.5 	52 1	25	40	30

	D AND LOST RIVER BASI rage (1000 AF) - End		ber		WOOD AND LO Watershed Snowpack			, 2012
Reservoir	Usable Capacity	*** Usal This	ble Storac Last	ge ***	Watershed	Number of	This Yea	r as % of
TOOCE VOLL	capacity	Year	Year	Avg		Data Sites	Last Yr	Average
MAGIC	191.5	113.2	80.3	79.7	Big Wood ab Hailey	8	66	73
LITTLE WOOD	30.0	23.5	16.3	14.1	Camas Creek	5	30	44
MACKAY	44.4	33.0	32.0	23.7	Big Wood Basin Total	13	54	65
					Fish Creek	0	0	0
					Little Wood River	4	43	55
					Big Lost River	5	41	53
					Little Lost River	3	46	53
					Birch-Medicine Lodge Cr	ee 2	58	70
				1	Camas-Beaver Creeks	4	40	49

^{*} 90%, 70%, 50%, 30%, and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

UPPER SNAKE BASIN JANUARY 1, 2012

WATER SUPPLY OUTLOOK

Like siblings with the same genes but polar opposite personalities, this year's La Nina is shaping up quite different than last winter's La Nina. Last winter came close to equaling maximum snow records in the Upper Snake; by comparison this winter has started with one of the lowest. Fall precipitation was above average in October (146% for the month) and near average in November (96%), however the clouds dried up for most of December which saw far below average amounts (52%). Water year-to-date precipitation since October currently stands at 89% of average. Snowpacks were on track until Thanksgiving when a ridge of high pressure blocked additional precipitation. Snowpacks held steady with a month of cold weather and very little accumulation until Christmas. Blind Bull SNOTEL, in the Greys River basin, and Phillips Bench, on Teton Pass, each recorded the least amount of snow ever measured on December 27 based on 31 years of daily data. Fortunately, the high pressure broke down and the winter's first big storm delivered abundant moisture totaling up to 4 inches of water at higher elevation SNOTEL sites. Currently, snowpacks across the watershed range from 60-64% of average in the Greys, Salt and Hoback basins to 90% above Jackson Lake. Although snow amounts are low for the most part in the basin, water users are pleased to see water in the bank accounts; combined storage for the 8 major reservoirs in the Upper Snake is 113% of average, 73% of capacity. Streams are forecast at 73-99% of average for the April-July period and should be enough for adequate irrigation supplies. Hopefully the La Nina we knew last year returns for the rest of this winter.

UPPER SNAKE RIVER BASIN Streamflow Forecasts - January 1, 2012

		<<=====	Drier ——	- Future Co	onditions —	Wetter	>>	
Forecast Point	Forecast Period	 90% (1000AF)	70% (1000AF)	= Chance Of E 5 (1000AF)	Exceeding * = 50% (% AVG.)	30% (1000AF)	10% (1000AF)	.30-Yr Avg. (1000AF)
Henrys Fork nr Ashton (2)	APR-JUL	307	389	450	79	515	620	570
	APR-SEP	435	533	605	79 I	682	803	765
Falls R nr Ashton (2)	APR-JUL	226	272	305	80	340	395	380
	APR-SEP	269	322	360	80	401	464	450
Teton R nr Driggs	APR-JUL	67	97	120	73	146	189	165
	APR-SEP	86	123	152	72	184	237	210
Teton R nr St. Anthony	APR-JUL	174	242	295	73	353	448	405
	APR-SEP	214	294	355	74	422	531	480
Henrys Fork nr Rexburg (2)	APR-JUL	925	1090	1210	78	1330	1500	1560
-	APR-SEP	1230	1420	1550	77	1680	1870	2010
Snake R at Flagg Ranch	APR-JUL	310	395	450	91	505	590	495
	APR-SEP	345	435	495	91	555	645	545
Snake R nr Moran (1,2)	APR-JUL	430	625	710	87	795	990	815
, , ,	APR-SEP	475	690	785	87 1	880	1090	905
Pacific Ck At Moran	APR-JUL	99	135	160	94	185	220	171
acille Ck At Moran	APR-SEP	105	142	167	94	192	230	178
Buffalo Fork ab Lava nr Moran	APR-JUL	210	255	285	95	315	360	301
	APR-SEP	240	290	325	95	360	410	344
Gros Ventre R at Kelly	APR-JUL	77	143	188	94	235	300	200
ores remark at the morely	APR-SEP	109	181	230	94	280	350	244
Snake R nr Alpine (1,2)	APR-JUL	1110	1730	2010	85 I	2290	2910	2370
	APR-SEP	1290	1990	2310	85 1	2630	3330	2730
Greys R Nr Alpine	APR-JUL	156	215	255	75	295	355	340
orcyo it it impino	APR-SEP	184	255	300	76	345	415	395
Salt R Nr Etna	APR-JUL	79	169	230	68	290	380	340
odie iv iti Bena	APR-SEP	114	220	290	69	360	465	420
Snake R nr Irwin (1,2)	APR-JUL	1690	2350	2650	80	2950	3610	3330
Diane it iii IIwiii (1,2)	APR-SEP	2010	2750	3090	80 i	3430	4170	3870
Snake R nr Heise (2)	APR-JUL	2030	2510	2830	80	3150	3630	3560
SHARE IN HE HELDE (Z)	APR-SEP	2410	2950	3320	80 1	3690	4230	4160
Willow Ck nr Ririe (2)	MAR-JUL	33	56	71	81	86	109	88
Blackfoot R ab Res nr Henry	APR-JUN	16.1	32	1 45	62	61	88	73
4	MAR-JUL	32	48	60	67 I	74	97	89
Portneuf R at Topaz	MAR-SEP	40	58	1 73	67	89	116	109
Challe B at Nooley (1 2)		735	1920	2460	76 I	3000	4190	3240
Snake R at Neeley (1,2)	APR-JUL APR-SEP	800	2090	2670	76 I	3250	4540	3510
	AFK-SEP	800	2090	2070	/0	3230	4040	3310

UPPER SNAKE RIVER BASIN
Reservoir Storage (1000 AF) - End of December

UPPER SNAKE RIVER BASIN Watershed Snowpack Analysis - January 1, 2012

	Usable		able Stora	age ***		Number	This Yea	r as % of
Reservoir	Capacity 	Capacity This Last Watershed Year Year Avg		Watershed	of Data Sites	Last Yr	Average	
HENRYS LAKE	90.4	87.2	86.4	82.5	Henrys Fork-Falls River	7	57	74
ISLAND PARK	135.2	111.9	91.7	96.1	Teton River	6	54	67
GRASSY LAKE	15.2	11.8	12.7	11.6	Henrys Fork above Rexbu	rg 13	55	71
JACKSON LAKE	847.0	631.1	658.1	481.7	Snake above Jackson Lake	e 5	69	89
PALISADES	1400.0	1236.5	811.4	1036.5	Pacific Creek	2	83	112
RIRIE	80.5	40.5	40.2	34.5	Gros Ventre River	3	56	74
BLACKFOOT	348.7	273.7	198.4	215.3	Hoback River	5	53	64
AMERICAN FALLS	1672.6	941.1	1059.5	986.6	Greys River	4	48	60
				i	Salt River	3	46	62
				ĺ	Snake above Palisades	18	58	75
				1	Willow Creek	7	56	80
				i	Blackfoot River	3	54	71
				ĺ	Portneuf River	3	34	50
				i	Snake abv American Fall	32	55	74

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

SOUTHSIDE SNAKE RIVER BASINS JANUARY 1, 2012

WATER SUPPLY OUTLOOK

With the exception of above normal precipitation in October, the Southside Snake basins have been very dry this water year and currently host the lowest snowpack in Idaho. The new water year started on the right foot, receiving 168% of average precipitation in October. November started to dry out with only 57% of average precipitation falling and got worse in December with only 25% falling across the region. The Owyhee was the driest basin in December with only 17% of normal precipitation for the month. Most SNOTEL sites had less than an inch of precipitation for the month. Snowpacks range from a low of 26% of average in the Owyhee basin to 35% in the Bruneau, 41% in the Salmon Falls basin and 51% in the Goose Creek basin. Streamflow forecasts mirror the snow and call for below average amounts ranging from 29-65% across the region. Despite below average conditions, reservoir storage across the region is excellent and provides water users a buffer for this summer. Owyhee Reservoir is 124% of average, 69% full and currently has over 450,000 acre-feet, which is the threshold needed to meet irrigation demand. Salmon Falls and Oakley reservoirs are also storing above average amounts and need only minimal runoff this spring to meet irrigation demands.

SOUTHSIDE SNAKE RIVER BASINS Streamflow Forecasts - January 1, 2012

		<< 	Drier —	— Future Co	Future Conditions ===		Wetter>>		
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)		Exceeding * = 50% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)	
Goose Ck ab Trapper Ck nr Oakley	MAR-JUL MAR-SEP	2.9 4.2	10.1 11.8	15.0 17.0	58 57	19.9 22	27 30	26 30	
Trapper Ck nr Oakley	MAR-JUL MAR-SEP	2.7 3.5	3.8 4.6	4.5 5.4	63 62	5.2 6.2	6.3 7.3	7.2 8.7	
Oakley Res Inflow	MAR-JUL MAR-SEP	7.2 8.5	13.8 15.8	19.5 22	57 60	26 29	38 42	34 37	
Salmon Falls Ck nr San Jacinto	MAR-JUN MAR-JUL MAR-SEP	11.4 11.4 13.0	23 24 26	 34 35 38	38 38 38 39	47 48 52	69 72 76	89 93 98	
Bruneau R nr Hot Springs	MAR-JUL MAR-SEP	43 45	79 83	110 115	47 46	146 152	210 215	235 250	
Owyhee R nr Gold Ck (2)	MAR-JUL MAR-SEP	2.3 1.7	5.7 4.6	 9.3 7.7	29 25	14.2 12.0	24 21	32 31	
Owyhee R nr Rome	FEB-JUL FEB-SEP APR-SEP	33 34 20	174 181 109	 330 340 220	50 50 50 55	485 500 330	715 735 495	655 675 400	
Owyhee R bl Owyhee Dam (2)	FEB-JUL FEB-SEP APR-SEP	119 133 79	250 270 169	365 385 250	52 53 58	505 525 345	745 765 515	700 730 430	
Snake R bl Lower Granite Dam (1,2)	APR-JUL	6250	13700	 17100	79 	20500	28000	21550	
SOUTHSIDE SNA Reservoir Storage (100			er	 		IDE SNAKE RIV owpack Analys		y 1, 2012	
Reservoir	Usable Capacity	*** Usabl This Year	e Storage * Last Year A	** Water	shed	Numbe of Data Si		Year as % of	

Reservoir	Usable Capacity	*** Usable Storage This Last		age ***	Watershed	Number of	This Year as % of	
ICSCI VOLI	capacity	Year			Watershed	Data Sites	Last Yr	Average
OAKLEY	75.6	31.9	15.5	25.7	Raft River	1	40	71
SALMON FALLS	182.6	84.6	36.6	52.6	Goose-Trapper Creeks	2	42	51
WILDHORSE RESERVOIR	71.5	48.2	29.5	37.8	Salmon Falls Creek	6	29	41
OWYHEE	715.0	492.4	214.9	398.1	Bruneau River	5	23	35
BROWNLEE	1420.0	1339.1	1311.1	1303.0	Reynolds Creek	0	0	0
					Owyhee Basin Total	7	18	26
				 	Owyhee Basin SNOTEL	7	18	26

^{*} 90%, 70%, 50%, 30%, and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

⁽¹⁾ - The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

⁽²⁾ - The value is natural volume - actual volume may be affected by upstream water management.

BEAR RIVER BASIN JANUARY 1, 2012

WATER SUPPLY OUTLOOK

Water year 2011 will be remembered as a stellar water year in the Bear River basin but this year may be remembered for the opposite. The April-July 2011 streamflow was 260% of average for the Bear River at Stewart Dam; this year Stewart Dam is forecast to be 65% of average for the same period. A year ago the lake was storing only 516,000 acre-feet. Today, the lake is storing 1,077,900 acre-feet, the highest January 1 amount since 1999. Minimal spring runoff is needed for reservoir storage water users. Monthly precipitation for October was 128% of average; November brought 86% and December saw only a quarter of its normal amount. As a result, snowpacks range from 40-60% of average across this region. Since 1991, 7 out of 16 years that had a below normal snowpack on January 1, increased to an April 1 snowpack of 80% of average or better. Hopefully, we can add another year to that record.

BEAR RIVER BASIN Streamflow Forecasts - January 1, 2012

		<<===	= Drier =	F	uture Co	nditions —	W	etter ==		
Forecast Point	Forecast Period	90% 70% (1000AF)		1	Chance Of Exceeding * 50% (1000AF) (% AVG.)			30% 10% (1000AF) (1000		30-Yr Avg. (1000AF)
Bear R nr UT-WY State Line	APR-JUL APR-SEP	43 47	69 75		87 95	77 76		.05 .15	131 143	113 125
Bear R ab Res nr Woodruff	APR-JUL APR-SEP	30 32	67 70		92 95	68 67 		.17	154 158	136 142
Big Ck nr Randolph	APR-JUL	0.6	2.1	 	3.2	65	4	1.3	5.8	4.9
Smiths Fk nr Border	APR-JUL APR-SEP	33 41	55 65		70 82	68 68		85 99	108 123	103 121
Bear R bl Stewart Dam	APR-JUL APR-SEP	9.0 21	66 88		130 160	56 61		.94 232	287 337	234 262
Little Bear R at Paradise	APR-JUL	1.0	18.9		31	67 I		43	61	46
Logan R nr Logan	APR-JUL	31	64		86	68	1	.08	141	126
Blacksmith Fork nr Hyrum	APR-JUL	5.9	21		32	67 		43	58	48
BEA Reservoir Storage	AR RIVER BASIN (1000 AF) - End	of Decemb	er		1	I Watershed Sno		ÆR BASIN Analysis -	- January	1, 2012
Reservoir	Usable Capacity 		le Storage Last Year	e *** Avg	Water	shed	Da	Number of ata Sites		ear as % of r Average
BEAR LAKE	1421.0	1077.9	516.1	907.5	Smith	s & Thomas Fo	orks	3	45	63
MONTPELIER CREEK	4.0	2.8	2.1	1.7	Bear :	River ab WY-1	ID line	9	35	58
				1	Montp	elier Creek		1	34	56
					Mink	Creek		1	29	46
					Cub R	iver		1	34	61
					Bear	River ab ID-U	JT line	15	35	56
					Malad	River		1	26	43

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Streamflow Adjustment List for All Forecasts Published in Idaho Water Supply Outlook Report:

Streamflow forecasts are projections of runoff volumes that would occur
without influences from upstream reservoirs or diversions. These values are referred to as natural, unregulated or adjusted flows. To make these adjustments, changes in reservoir
storage, diversions, and inter-basin transfers are added or subtracted from the observed (actual) streamflow volumes. The following list documents the adjustments made for each
forecast point. (Revised Dec 2011).

Panhandle River Basins

Kootenai R at Leonia, MT

+ Lake Koocanusa storage change Moyie R at Eastport – no corrections Smith Creek nr Porthill – no corrections Boundary Ck nr Porthill – no corrections Clark Fork R at Whitehorse Rapids

- + Hungry Horse storage change
- + Flathead Lake storage change
- + Noxon Rapids Res storage change

Pend Oreille Lake Inflow

- + Pend Oreille R at Newport, WA
- + Hungry Horse storage change
- + Flathead Lake storage change
- + Noxon Rapids storage change
- + Pend Oreille Lake storage change
- + Priest Lake storage change

Priest R nr Priest R

+ Priest Lake storage change

NF Coeur d'Alene R at Enaville - no corrections

St. Joe R at Calder- no corrections

Spokane R nr Post Falls

+ Coeur d'Alene Lake storage change

Spokane R at Long Lake, WA

- + Coeur d'Alene Lake storage change
- + Long Lake, WA storage change

Clearwater River Basin

Selway R nr Lowell - no corrections Lochsa R nr Lowell - no corrections Dworshak Res Inflow

- + Clearwater R nr Peck
- Clearwater R at Orofino
- + Dworshak Res storage change

Clearwater R at Orofino - no corrections

Clearwater R at Spalding

+ Dworshak Res storage change

Salmon River Basin

Salmon R at Salmon - no corrections
Lemhi R nr Lemhi - no corrections
MF Salmon R at MF Lodge - no corrections
SF Salmon R nr Krassel Ranger Station - no corrections
Johnson Creek at Yellow pine - no corrections
Salmon R at White Bird - no corrections

Weiser, Payette, Boise River Basins

Weiser R nr Weiser - no corrections SF Payette R at Lowman - no corrections

Deadwood Res Inflow

- + Deadwood R bl Deadwood Res nr Lowman
- + Deadwood Res storage change

Lake Fork Payette R nr McCall - no corrections

NF Payette R at Cascade

- + Cascade Res storage change
- + Payette Lake storage change

NF Payette R nr Banks

- + Cascade Res storage change
- + Payette Lake storage change

Payette R nr Horseshoe Bend

- + Cascade Res storage change
- + Deadwood Res storage change
- + Payette Lake storage change

Boise R nr Twin Springs - no corrections

SF Boise R at Anderson Ranch Dam

+ Anderson Ranch Res storage change

Mores Ck nr Arrowrock Dam – no corrections Boise R nr Boise

- + Anderson Ranch Res storage change
- + Arrowrock Res storage change
- + Lucky Peak Res storage change

Wood and Lost River Basins

Big Wood R at Hailey - no corrections

Big Wood R ab Magic Res

- + Big Wood R at Stanton Crossing nr Bellevue
- + Willow Ck

Camas Ck nr Blaine - no corrections

Big Wood R bl Magic Dam nr Richfield

+ Magic Res storage change

Little Wood R ab High Five Ck - no corrections

Little Wood R nr Carey

+ Little Wood Res storage change

Big Lost R at Howell Ranch - no corrections

Big Lost R bl Mackay Res nr Mackay

+ Mackay Res storage change

Little Lost R bl Wet Ck nr Howe - no corrections

Upper Snake River Basin

Henrys Fork nr Ashton

- + Henrys Lake storage change
- + Island Park Res storage change

Falls R nr Ashton

- + Grassy Lake storage change
- + Diversions from Falls R ab nr Ashton

Teton R nr Driggs - no corrections

Teton R nr St. Anthony

- Cross Cut Canal into Teton R
- + Sum of Diversions for Teton R ab St. Anthony
- + Teton Dam for water year 1976 only

Henrys Fork nr Rexburg

- + Henrys Lake storage change
- + Island Park Res storage change
- + Grassy Lake storage change
- + 7 Diversions from Henrys Fk btw Ashton to St. Anthony
- + 21 Diversions from Henrys Fk btw St. Anthony to Rexburg
- + 3 Diversions from Falls R ab Ashton
- + 6 Diversions from Falls R nr Ashton to Chester

Snake R nr Flagg Ranch, WY - no corrections

Snake R nr Moran, WY

+ Jackson Lake storage change

Pacific Ck at Moran, WY - no corrections

Buffalo Fork ab Lava nr Moran, WY - no corrections

Gros Ventre R at Kelly, WY - no corrections

Snake R ab Res nr Alpine, WY

+ Jackson Lake storage change

Greys R nr Alpine, WY - no corrections

Salt R R nr Etna, WY - no corrections

Snake R nr Irwin

- + Jackson Lake storage change
- + Palisades Res storage change

Snake R nr Heise

- + Jackson Lake storage change
- + Palisades Res storage change

Willow Ck nr Ririe

+ Ririe Res storage change

The forecasted natural volume for Willow Creek nr Ririe does not include an adjustment for Grays Lake water diverted from Willow Creek drainage through the Clarks Cut diversion and into Blackfoot Reservoir.

Blackfoot R ab Res nr Henry

+ Blackfoot Res storage change

The forecasted Blackfoot Reservoir Inflow <u>includes</u> Grays Lake water diverted from the Willow Creek drainage through the Clarks Cut diversion and into Blackfoot Reservoir.

Portneuf R at Topaz - no corrections

Snake R at Neeley

- + Jackson Lake storage change
- + Palisades Res storage change
- + American Falls storage change
- + Teton Dam for water year 1976 only

Southside Snake River Basins

Goose Ck nr Oakley - no adjustments

Trapper Ck nr Oakley - no adjustments

Oakley Res Inflow - flow does not include Birch Creek

- + Goose Ck
- + Trapper Ck

Salmon Falls Ck nr San Jacinto, NV - no corrections

Bruneau R nr Hot Springs - no corrections

Reynolds Ck at Tollgate - no corrections

Owyhee R nr Gold Ck, NV

+ Wildhorse Res storage change

Owyhee R nr Rome, OR - no Corrections

Owyhee R bl Owyhee Dam, OR

- + Owyhee Res storage change
- + Diversions to North and South Canals

Bear River Basin

Bear R nr UT-WY Stateline, UT- no corrections

Bear R abv Res nr Woodruff, UT- no corrections

Big Ck nr Randolph, UT - no corrections

Smiths Fork nr Border, WY - no corrections

Bear R bl Stewart Dam nr Montpelier

- + Bear R bl Stewart Dam
- + Rainbow Inlet Canal

Little Bear R at Paradise, UT - no corrections

Logan R nr Logan, UT - no corrections

Blacksmith Fk nr Hyrum, UT - no corrections

Reservoir Capacity Definitions (Units in 1,000 Acre-Feet, KAF)

Different agencies use various definitions when reporting reservoir capacity and contents. Reservoir storage terms include dead, inactive, active, and surcharge storage. This table lists these volumes for each reservoir, and defines the storage volumes NRCS uses when reporting capacity and current reservoir storage. In most cases, NRCS report usable storage, which includes active and inactive storage. (Revised Dec 2011)

Basin/	Dead	Inactive	Active	Surcharge	NRCS	NRCS Capacity
Reservoir	Storage	Storage	Storage	Storage	Capacity	Includes
Panhandle Regio						
Hungry Horse	39.73		3451.00		3451.0	Active
Flathead Lake	Unknown		1791.00		1791.0	Active
Noxon Rapids	Unknown		335.00		335.0	Active
Pend Oreille	406.20	112.40	1042.70		1561.3	Dead + Inactive + Active
Coeur d'Alene	Unknown	13.50	225.00		238.5	Inactive + Active
Priest Lake	20.00	28.00	71.30		119.3	Dead + Inactive + Active
Clearwater Basin						
Dworshak	Unknown	1452.00	2016.00		3468.0	Inactive + Active
Weiser/Boise/Pay						
Mann Creek	1.61	0.24	11.10		11.1	Active
Cascade	Unknown	46.70	646.50		693.2	Inactive + Active
Deadwood	Unknown		161.90		161.9	Active
Anderson Ranch	24.90	37.00	413.10		450.1	Inactive + Active
Arrowrock	Unknown		272.20		272.2	Active
Lucky Peak	Unknown	28.80	264.40	13.80	293.2	Inactive + Active
Lake Lowell	7.90	5.80	159.40		165.2	Inactive + Active
Wood/Lost Basin	<u>s</u>					
Magic	Unknown		191.50		191.5	Active
Little Wood	Unknown		30.00		30.0	Active
Mackay	0.13		44.37		44.4	Active
Upper Snake Bas	in					
Henrys Lake	Unknown		90.40		90.4	Active
Island Park	0.40		127.30	7.90	135.2	Active + Surcharge
Grassy Lake	Unknown		15.18		15.2	Active
Jackson Lake	Unknown		847.00		847.0	Active
Palisades	44.10	155.50	1200.00		1400.0	Dead + Inactive+Active
Ririe	4.00	6.00	80.54	10.00	80.5	Active
Blackfoot	Unknown		348.73		348.7	Active
American Falls	Unknown		1672.60		1672.6	Active
Southside Snake	Basins					
Oakley	0.00		75.60		75.6	Active
Salmon Falls	48.00	5.00	182.65		182.6	Active + Inactive
Wildhorse	Unknown		71.50		71.5	Active
Owyhee	406.83		715.00		715.0	Active
Brownlee	0.45	444.70	975.30		1420.0	Inactive + Active
Bear River Basin						
Bear Lake	5000.00	119.00	1302.00		1421.0	Active + Inactive:
					includes 119	that can be released
Montpelier Creek	0.21		3.84		4.0	Dead + Active

Interpreting Water Supply Forecasts

Introduction

Each month, five forecasts are issued for each forecast point and each forecast period. Unless otherwise specified, all streamflow forecasts are for streamflow volumes that would occur naturally without any upstream influences. Water users need to know what the different forecasts represent if they are to use the information correctly when making operational decisions. The following is an explanation of each of the forecasts.

90 Percent Chance of Exceedance Forecast. There is a 90 percent chance that the actual streamflow volume will exceed this forecast value, and there is a 10 percent chance that the actual streamflow volume will be less than this forecast value.

70 Percent Chance of Exceedance Forecast. There is a 70 percent chance that the actual streamflow volume will exceed this forecast value, and there is a 30 percent chance that the actual streamflow volume will be less than this forecast value.

50 Percent Chance of Exceedance Forecast. There is a 50 percent chance that the actual streamflow volume will exceed this forecast value, and there is a 50 percent chance that the actual streamflow volume will be less than this forecast value. Generally, this forecast is the middle of the range of possible streamflow volumes that can be produced given current conditions.

30 Percent Chance of Exceedance Forecast. There is a 30 percent chance that the actual streamflow volume will exceed this forecast value, and there is a 70 percent chance that the actual streamflow volume will be less than this forecast value.

10 Percent Chance of Exceedance Forecast. There is a 10 percent chance that the actual streamflow volume will exceed this forecast value, and there is a 90 percent chance that the actual streamflow volume will be less than this forecast value.

*Note: There is still a 20 percent chance that actual streamflow volumes will fall either below the 90 percent exceedance forecast or above the 10 percent exceedance forecast.

These forecasts represent the uncertainty inherent in making streamflow predictions. This uncertainty may include sources such as: unknown future weather conditions, uncertainties associated with the various prediction methodologies, and the spatial coverage of the data network in a given basin.

30-Year Average. The 30-year average streamflow for each forecast period is provided for comparison. The average is based on data from 1971-2000. The % AVG. column compares the 50% chance of exceedance forecast to the 30-year average streamflow; values above 100% denote when the 50% chance of exceedance forecast would be greater than the 30-year average streamflow.

AF - Acre-feet, forecasted volume of water are typically in thousands of acre-feet.

These forecasts are given to users to help make risk-based decisions. Users can select the forecast corresponding to the level of risk they are willing to accept in order to minimize the negative impacts of having more or less water than planned for.

To Decrease the Chance of Having Less Water than Planned for

A user might determine that making decisions based on a 50 percent chance of exceedance forecast is too much risk to take (there is still a 50% chance that the user will receive less than this amount). To reduce the risk of .having less water than planned for, users can base their operational decisions on one of the forecasts with a greater chance of being exceeded such as the 90 or 70 percent exceedance forecasts.

To Decrease the Chance of Having More Water than Planned for

A user might determine that making decisions based on a 50 percent chance of exceedance forecast is too much risk to take (there is still a 50% chance that the user will receive more than this amount). To reduce the risk of having more water than planned for, users can base their operational decisions on one of the forecasts with a lesser chance of being exceeded such as the 30 or 10 percent exceedance forecasts.

Using the forecasts - an Example

Using the 50 Percent Exceedance Forecast. Using the example forecasts shown below, there is a 50% chance that actual streamflow volume at the Boise River near Twin Springs will be less than 685 KAF between April 1 and July 31. There is also a 50% chance that actual streamflow volume will be greater than 685 KAF.

Using the 90 and 70 Percent Exceedance Forecasts. If an unexpected shortage of water could cause problems (such as irrigated agriculture), users might want to plan on receiving 610 KAF (from the 70 percent exceedance forecast). There is a 30% chance of receiving less than 610 KAF.

Alternatively, if users determine the risk of using the 70 percent exceedance forecast is too great, then they might plan on receiving 443 KAF (from the 90 percent exceedance forecast). There is 10% chance of receiving less than 443 KAF.

Using the 30 or 10 Percent Exceedance Forecasts. If an unexpected excess of water could cause problems (such as operating a flood control reservoir), users might plan on receiving 760 KAF (from the 30 percent exceedance forecast). There is a 30% chance of receiving more than 760 KAF.

Alternatively, if users determine the risk of using the 30 percent exceedance forecast is too great, then they might plan on receiving 927 KAF (from the 10 percent exceedance forecast). There is a 10% chance of receiving more than 927 KAF.

Users could also choose a volume in between any of these values to reflect their desired risk level.

Weiser, Payette, Boise River Basins Streamflow Forecasts – January 2006										
Forecast Point Forecast Period 90% 70% 50% 30% 10% (1000AF) (1000AF) (1000 AF) (% AVG.) (1000AF) (1000AF)										
SF PAYETTE RIVER at Lowman	APR-JUL APR-SEP	329 369	414 459	471 521	109 107	528	613 673	432 488		
BOISE RIVER near Twin Springs (1)	APR-JUL APR-SEP	443 495	610 670	685 750	109 109	760 830	927 1005	631 690		

^{*90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table

OFFICIAL BUSINESS

Issued by
Dave White, Chief
Natural Resources Conservation Service
Washington, DC

Released by
Jeff Burwell, State Conservationist
Rob Sampson, State Conservation Engineer
Natural Resources Conservation Service
Boise, Idaho

Prepared by
Idaho Snow Survey Staff
Ron Abramovich, Water Supply Specialist
Philip Morrisey, Data Collection Officer
Jeff Anderson, Hydrologist
Julie Koeberle, Hydrologist
Jeff Graham, Electronics Technician
Chad Gipson, Electronics Technician

Forecasts and Assistance provided by
Rashawn Tama, Forecast Hydrologist
Jolyne Lea, Forecast Hydrologist
NRCS, National Water and Climate Center, Portland, Oregon

Numerous other groups and agencies provide funding and/or cooperative support for the collection, operation and maintenance of the Cooperative Idaho Snow Survey Program. Their cooperation is greatly appreciated.

