Théorie des graphes et algèbre computationnelle Algèbre

Brandon LIN

November 10, 2023

Contents

Chapter 1	Théorie des groupes	Page 2
1.1	Définitions et premières propriétés	2
	Groupe — $2 \bullet$ Groupe symétrique — $3 \bullet$ Sous-groupes — 4	

Chapter 1

Théorie des groupes

1.1 Définitions et premières propriétés

1.1.1 Groupe

Definition 1.1.1: Groupe

On dit que (G, \times) est un **groupe** lorsque G est un ensemble non vide et \times une loi de composition interne sur G vérifiant :

• × associative :

$$\forall (x, y, z) \in G^3, \ (x \times y) \times z = x \times (y \times z) \tag{1.1}$$

• Existance d'un **élément neutre** $e \in G$ pour \times :

$$\forall x \in G, \ e \times x = x \times e = x \tag{1.2}$$

- Tout élément de G possède un inverse pour \times :

$$\forall x \in G, \exists y \in G, \ x \times y = y \times x = e \tag{1.3}$$

on note $x^{-1} \stackrel{Not}{=} y$ l'inverse de $x \in G$.

Definition 1.1.2: Abélien ou commutatif

 (G,\times) un groupe est **commutatif** ou **abélien** si x est commutative :

$$\forall (x, y) \in G^2, \ x \times y = y \times x \tag{1.4}$$

1.1.2 Groupe symétrique

Definition 1.1.3

- Soit E un ensemble. On note $\mathcal{S}(E)$ l'ensemble des bijections de E dans E qu'on appelle l'ensemble des **permutations** de E.
- $(S(E), \circ)$ est appelé le **groupe symétrique** de E.
- Si E = [[1, n]] où $n \in \mathbb{N}^*$ alors on note simplement \mathcal{S}_n le groupe symétrique de [[1, n]]. Son **ordre** est égal à card $(\mathcal{S}_n) = n!$.
- Pour tout $\psi \in \mathcal{S}_n$, on note

$$\psi = \begin{pmatrix} 1 & 2 & \dots & n \\ \psi(1) & \psi(2) & \dots & \psi(n) \end{pmatrix}$$
 (1.5)

Example 1.1.1

Pour n = 3, il y a 6 permutations de [1,3]:

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad \tau_{1,2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \quad \tau_{1,3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$
 (1.6)

$$\tau_{2,3} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \quad \sigma_{+} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad \sigma_{-} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$
(1.7)

Example 1.1.2

On peut calculer:

$$\tau_{1,2} \circ \tau_{2,3} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \sigma_{+}$$
 (1.8)

Proposition 1.1.1

Si $n \geq 3$, (\mathcal{S}_n, \circ) n'est pas abélien.

Proof: Soient $(a, b, c) \in [1, n]^3$ trois éléments distincts.

On considère des permutations φ et ψ de [1, n], telles que :

$$\begin{cases} \varphi(a) = b \\ \varphi(b) = a \\ \varphi(c) = c \end{cases} \qquad \begin{cases} \psi(a) = c \\ \psi(b) = b \\ \psi(c) = a \end{cases}$$
 (1.9)

(2)

Alors, $(\varphi \circ \psi)(a) = \varphi(\psi(a)) = \varphi(c) = c$ et $(\psi \circ \varphi)(a) = \psi(\varphi(a)) = \psi(b) = b \neq c$ Donc $\varphi \circ \psi \neq \psi \circ \varphi$, donc \mathcal{S}_n n'est pas abélien.

Example 1.1.3

Dans (\mathcal{S}_3, \circ) , on remarque que

$$\sigma_{+} \circ \tau_{1,2} = \tau_{1,3}, \quad \tau_{1,2} \circ \sigma_{+} = \tau_{2,3} \neq \tau_{1,3}$$
 (1.10)

Remarque:

• De même $\mathcal{S}(E)$ n'est pas abélien lorsque E est un ensemble infini.

• Le sous-ensemble $\{id, \sigma_+, \sigma_-\}$ a aussi une structure de groupe pour la composition \circ ($\{id, \sigma_+, \sigma_-\}$ est un groupe abélien fini d'ordre 3). Par contre $\{id, \tau_{1,2}, \tau_{2,3}, \tau_{1,3}\}$ n'a pas de structure de groupe.

Par exemple, $\tau_{1,2} \circ \tau_{2,3} = \sigma_+$ donc \circ n'est pas un loi de composition interne.

1.1.3 Sous-groupes

Definition 1.1.4: Sous-groupe

Soit (G,*) un groupe et $H \subset G$, alors on dit que H est un sous-groupe de (G,*) lorsque

- $e \in H$
- Stabilité par la loi de composition interne :

$$\forall (x,y) \in H, \quad x * y \in H \tag{1.11}$$

• Stabilité par passage au symétrie :

$$\forall x \in H, \ \bar{x} \in H \tag{1.12}$$

Proposition 1.1.2

H est un sous-groupe de (G,*) si et seulement si

- e ∈ H
- $\forall (x,y) \in H, \ x * \bar{y} \in H$

Proof: • (\Longrightarrow) Simple.

• (\iff) Soit $x \in H$, alors $\bar{x} = e * \bar{x} \in H$ car $(e, x) \in H^2$, donc 1.12 est vérifié. Soit $(x, y) \in H^2$, alors $x * y = x * \bar{y} \in H$ car $(x, \bar{y}) \in H^2$, donc 1.11 est vérifié.

Example 1.1.4

- \mathbb{Z} est un sous-groupe de $(\mathbb{Q}, +)$, de $(\mathbb{R}, +)$ et aussi de $(\mathbb{C}, +)$. C'est parce que \mathbb{Q} est un sous-groupe de $(\mathbb{R}, +)$ et \mathbb{R} est un sous-groupe de $(\mathbb{C}, +)$.
- Pour tout $n \in \mathbb{N}$, $n\mathbb{Z} = \{nk, k \in \mathbb{Z}\}$ est un sous-groupe de $(\mathbb{Z}, +)$

En particulier, l'ensemble $2\mathbb{Z}$ des entiers pairs est un sous-groupe de $(\mathbb{Z}, +)$.

Mais, l'ensemble $\{2k+1, k \in \mathbb{Z}\}$ des entiers impairs n'est pas un sous-groupe de $(\mathbb{Z}, +)$ (car il ne contient pas 0 et il n'est pas stable par addition)

• L'ensemble des fonctions réelles continues sur $I \subset \mathbb{R}$ est un sous-groupe additif de l'ensemble ds fonctions réelle définies sur I (car une somme de fonctions continues est continue)

De même l'ensemble des fonctions dérivables sur I est bien un sous-groupe additif.

Mais, l'ensemble des fonctions positives sur I n'est pas un sous-groupe additif car il n'est pas stable par passage à l'opposé.

• Le sous-ensemble des suites réelles croissantes n'est pas un sous-groupe additif de l'ensemble des suites réelles.

Mais, le sous-ensemble des suites réelles nulles à partir d'un certain rang est bien un sous-groupe additif.

Example 1.1.5

- Pour tout $n \in \mathbb{N}^*$, $\mathbb{U}_n = \{z \in \mathbb{C}, z^n = 1\}$ est un sous-groupe de $(\mathbb{U} = \{z \in \mathbb{C}, |z| = 1\}, \times)$. Ces deux groupes sont des sous-groupes de (\mathbb{C}^*, \times) .
 - De même \mathbb{R}^* et $]0,+\infty[$ sont des sous-groupes multiplicatifs de \mathbb{C}^* .
 - Mais, $i\mathbb{R} = \{iy, y \in \mathbb{R}\}$ n'est pas un sous-groupe multiplicatif de \mathbb{C}^* (car $1 \notin i\mathbb{R}$)
- {id, σ_+ , σ_- } est un sous-groupe de (\mathcal{S}_3 , \circ)
- Soit E un ensemble et $A \subset E$. On note $H = \{ \varphi \in \mathcal{S}(E), \ \varphi(A) \subset A \}$ l'ensemble des permutations de E qui laissent A stable, alors H est un sous-groupe de groupe symétrique $\mathcal{S}(E)$, en effet :
 - $\operatorname{id} \in H \operatorname{car} \operatorname{id}(A) = A$
 - Si $\varphi \in H$ alros φ est une bijection qui envoie $\varphi(A)$ dans A
 - Or $A \subset E$ est un ensemble fini donc card(φ(A)) = card(A).
 - Donc, $\varphi(A) = A$, $\varphi^{0-1}(A) = A$, donc H est stable par passage à symétrique. (la bijection réciproque de φ = le symétrique de φ par 0)
 - La stabilité de H par composition est immédiate.

Remarque : Soit (G,*) un groupe. Alors le plus petit sous-groupe est $\{e\}$ et le plus grand sous-groupe est G. Ces deux sous-groupes sont appelés les sous-groupes **triviaux** de G.

Proposition 1.1.3

Toute intersection de sous-groupes de (G,*) est un sous-groupe de (G,*). C'est en général faux pour l'union.

Proof: Intersection Soit $(H_i)_{i \in I}$ des sous-groupes de (G, *), on pose $H = \bigcap_{i \in I} H_i$, alors $\forall i \in I$, $e \in H_i$ car H_i est un sous-groupe donc $e \in H$.

Si $(x, y) \in H^2$, alors $\forall i \in I$, $(x, y) \in H_i^2$ donc $x * \bar{y} \in H_i$ car H_i est un sous-groupe donc $x * \bar{y} \in H$. Par conséquent, H est bien un sous-groupe.

Example 1.1.6

Dans $(\mathbb{Z}, +)$, $2\mathbb{Z} \cap 3\mathbb{Z} = 6\mathbb{Z}$ sont les sous-groupes.

Par exemple $2\mathbb{Z} \cup 3\mathbb{Z}$ n'est pas un sous-groupe de $(\mathbb{Z}, +)$ car $5 \notin 2\mathbb{Z} \cup 3\mathbb{Z}$

Definition 1.1.5

Soit (G,*) un groupe et $A \subset G$ alors l'intersection de tous les sous-groupes de (G,*) qui contiennant A est appelées le sous-groupe engendrée par A, on le note :

$$\langle A \rangle = \bigcap_{H \text{ sous-groupe de } (G,*), A \subset H} H$$
 (1.13)

(2)

Proposition 1.1.4

 $\langle A \rangle$ est le plus petit sous-groupe qui contient A.

Proof: • $\langle A \rangle$ est bien un sous-groupe comme intersection de sous-groupes.

• Il est immédiat que $A \subset \langle A \rangle$

• Si B est un sous-groupe qui contient A, alors $\langle A \rangle \subset H$ par définition.