RESUME DE COURS DU CHAPITRE 2

Le triangle du feu

Pour réaliser une combustion, il faut 3 choses :

- Le combustible (papier, bois, gaz, pétrole...)
- Comburant (dioxygène de l'air)
- Une source d'énergie (énergie sous forme thermique : étincelle, chaleur...)

Les dangers de l'énergie chimique

- Une réaction chimique peut être exothermique (elle dégage de l'énergie thermique)
- Une réaction chimique peut être endothermique (elle consomme de l'énergie thermique)
- Le pouvoir calorifique PC est l'énergie thermique dégagée lors de la réaction de combustion complète du combustible avec le dioxygène. Il s'exprime en $J.kg^{-1}$ ou $J.m^{-3}$
- La combustion incomplète d'un hydrocarbure donne des produits qui peuvent encore brûler, comme le monoxyde de carbone, gaz dangereux qui peut être mortel.
- La présence d'espèces soufrées dans les fiouls et les charbons est à l'origine des rejets de dioxyde de soufre SO₂.
- La combustion complète de certains combustibles comme le fioul dégage suffisamment d'énergie pour produire une combustion annexe, celle du diazote N₂ de l'air. Il se forme alors des oxydes d'azote.
- Un grand danger sont les chaudières/chauffe-eau mal entretenues rejetant du monoxyde de carbone, gaz inodore et incolore responsable de nombreuses intoxications.
- Une fuite de gaz réduit la concentration en oxygène de l'air d'une pièce.

Méthode pour équilibrer une équation de réaction

REGLES D'ECRITURE D'UNE EQUATION CHIMIQUE

- 1. Écrire les formules des réactifs séparées par le signe « + »
- 2. Indiquer par une flèche \rightarrow le sens d'évolution de la transformation chimique
- 3. Écrire à droite de la flèche les formules des produits séparées par le signe « + »
- 4. Exprimer la conservation des éléments, en nature et en nombre, en plaçant devant chaque formule des coefficients les plus simples possibles.

Cela s'appelle **équilibrer** une équation chimique.

Utilisation de l'équation bilan de réaction

Afin de connaître la quantité de molécules produites ou de réactifs consommés lors d'une réaction chimique, on utilise l'équation bilan de réaction :

Exemple avec la réaction de combustion du méthane :

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

Dans cette équation, on voit que pour 1 molécule de méthane consommé, on en consomme 2 de dioxygène et on produira 1 molécule de dioxyde de carbone et 2 molécule d'eau.

C'est identique en fonctionnant en quantité de matière :

Pour 1 mole de méthane consommé, on en consomme 2 de dioxygène et on produira 1 mole de dioxyde de carbone et 2 mole d'eau