Loan Approval Prediction Model

Problem Statement:

Develop a machine learning model to predict **loan approval status** based on applicant features. The model will be trained on a dataset containing loan applications and their outcomes. It will help financial institutions automate and improve the accuracy of loan approval decisions.

Objective:

To predict Loan Approval Status using a Machine Learning Model.

Benefits:

The benefits of this solution include:

- Lenders can make faster and more accurate loan approval decisions, reducing manual effort.
- Applicants will get quicker responses and fairer evaluations based on objective data.
- **Financial institutions** can **minimize default risks** by identifying high-risk applicants more effectively.

```
#Importing Required Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train test split
from sklearn.linear model import LogisticRegression
from sklearn.metrics import accuracy score, classification report,
confusion matrix, roc curve, roc auc score
# Load the Dataset
df = pd.read csv('loan approval dataset.csv')
df.head()
                                   education self employed
   loan id
             no of dependents
income annum
                            2
                                     Graduate
                                                          No
         1
9600000
1
         2
                                Not Graduate
                                                         Yes
4100000
         3
                            3
                                     Graduate
                                                          No
9100000
```

3 8200000	4		3		Graduate		No	
4	5		5	Not	Graduate		Yes	
9800000 loan amount loan term cibil score								
resident	ial_assets_va			C1011_				
0 29	9900000	12			778			2400000
1 12	2200000	8			417			2700000
2 29	9700000	20			506			7100000
3 30	9700000	8			467			18200000
4 24	4200000	20			382			12400000
COMM	ercial_assets	: value		luxurv	/_assets_v	alue		
bank_asse	et_value \	7600000		caxary				000000
0						0000		8000000
1	2	2200000			880	0000		3300000
2	2	1500000			3330	0000		12800000
3	3	300000			2330	0000		7900000
4	3	3200000			2940	0000		5000000
loan_status 0								
# Getting shape of dataset df.shape								
(4269, 13	3)							
df.head()							
loan_: income_a		ependent	ts	E	education	self_emplo	oyed	
0	1		2		Graduate		No	
9600000 1 4100000	2		0	Not	Graduate		Yes	

2 9100000	3	3	Graduate	No				
3	4	3	Graduate	No				
8200000 4 9800000	5	5	Not Graduate	Yes				
	_amount lo ial_assets_v		cibil_score					
	9900000	12	778	2400000				
1 1	2200000	8	417	2700000				
2 2	9700000	20	506	7100000				
3 3	9700000	8	467	18200000				
4 2	4200000	20	382	12400000				
bank_ass	<pre>commercial_assets_value luxury_assets_value bank_asset_value \</pre>							
0		7600000	2270000					
1		2200000	880000					
2		4500000	3330000	0 12800000				
3		3300000	2330000	7900000				
4		8200000	2940000	5000000				
0 Ap 1 Re 2 Re 3 Re	status proved jected jected jected jected							
<pre>print(df.info())</pre>								
<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 4269 entries, 0 to 4268 Data columns (total 13 columns):</class></pre>								
1 no ed	n_id _of_dependen ucation lf_employed	ts	4269 non-null 4269 non-null	int64 int64 object object				

```
4
                                  4269 non-null
      income annum
                                                  int64
 5
      loan amount
                                  4269 non-null
                                                  int64
 6
      loan_term
                                  4269 non-null
                                                  int64
 7
      cibil score
                                  4269 non-null
                                                  int64
 8
      residential_assets_value
                                  4269 non-null
                                                  int64
 9
      commercial assets value
                                  4269 non-null
                                                  int64
      luxury assets value
 10
                                  4269 non-null
                                                  int64
 11
      bank asset value
                                  4269 non-null
                                                  int64
 12
      loan status
                                  4269 non-null
                                                  object
dtypes: int64(10), object(3)
memory usage: 433.7+ KB
None
# Statistical summary of numerical columns
df.describe()
                      no of dependents
           loan id
                                          income annum
                                                          loan amount
                           4269.000000
                                          4.269000e+03
                                                         4.269000e+03
count
       4269.000000
       2135.000000
                              2.498712
                                          5.059124e+06
                                                         1.513345e+07
mean
       1232.498479
                               1.695910
                                          2.806840e+06
                                                         9.043363e+06
std
          1.000000
                              0.000000
                                          2.000000e+05
                                                         3.000000e+05
min
25%
       1068.000000
                              1.000000
                                          2.700000e+06
                                                         7.700000e+06
       2135.000000
                                          5.100000e+06
50%
                              3.000000
                                                         1.450000e+07
       3202.000000
                              4.000000
                                          7.500000e+06
                                                         2.150000e+07
75%
       4269.000000
                              5.000000
                                          9.900000e+06
                                                         3.950000e+07
max
         loan term
                      cibil score
                                     residential assets value
                      4269.000000
count
       4269.000000
                                                  4.269000e+03
         10.900445
                       599.936051
                                                  7.472617e+06
mean
std
                       172.430401
                                                  6.503637e+06
          5.709187
min
          2.000000
                       300.000000
                                                 -1.000000e+05
          6.000000
                       453.000000
                                                  2.200000e+06
25%
50%
         10.000000
                       600.000000
                                                  5.600000e+06
75%
         16.000000
                       748,000000
                                                  1.130000e+07
         20.000000
                       900.000000
                                                 2.910000e+07
max
        commercial assets value
                                    luxury assets value
bank_asset_value
count
                    4.269000e+03
                                           4.269000e+03
4.269000e+03
                    4.973155e+06
                                           1.512631e+07
mean
4.976692e+06
std
                    4.388966e+06
                                           9.103754e+06
3.250185e+06
                    0.000000e+00
                                           3.000000e+05
min
0.000000e+00
                                           7.500000e+06
25%
                    1.300000e+06
2.300000e+06
50%
                    3.700000e+06
                                           1.460000e+07
4.600000e+06
```

```
75%
                   7.600000e+06
                                          2.170000e+07
7.100000e+06
max
                   1.940000e+07
                                          3.920000e+07
1.470000e+07
# Checking for Duplicate values
df.duplicated().sum()
np.int64(0)
# Dropping rows with null values
df.dropna(inplace=True)
#Removing Blank spaces from column names and values
df.columns = df.columns.str.strip()
df['loan status'] = df['loan status'].str.strip() # Remove spaces
df = df.apply(lambda x: x.str.strip() if x.dtype == 'object' else x)
# Data Transformation on Education, Self Employed Coloumns
df['education'] = df['education'].replace({'Not Graduate': 0,
'Graduate': 1})
df['self employed'] = df['self employed'].replace({'No': 0, 'Yes': 1})
df.head()
            no of dependents education self employed
   loan id
income annum
         1
                           2
                                       1
                                                      0
                                                              9600000
         2
                                                              4100000
         3
                                                              9100000
2
                                                      0
3
                           3
                                                              8200000
         5
                                                              9800000
   loan amount loan term
                           cibil score
                                         residential assets value \
0
      29900000
                                    778
                                                          2400000
                       12
1
      12200000
                        8
                                    417
                                                          2700000
2
                                    506
      29700000
                       20
                                                          7100000
3
      30700000
                        8
                                    467
                                                         18200000
      24200000
                       20
                                    382
                                                         12400000
   commercial_assets_value luxury_assets_value bank_asset_value
loan status
```

0	nroved	17600000		22	700000	8	000000	
1	proved	2200000			800000	3	3300000	
Rejected 2		4500000	4500000		33300000		12800000	
Rejected 3		3300000	3300000		23300000		7900000	
Rejected		8200000	8200000		400000	5	500000	
Re	jected							
#	Data Transform	nation on Lo	oan Stat	us Colo	umns			
df 0}	['loan_status')] = df['loa	an_statu	s'].map	({'Approved	d': 1, '	Rejected':	
df	.head()							
		f_dependent	ts educ	ation	self_employ	yed		
1n 0	come_annum \ 1		2	1		0	9600000	
1	2		0	0		1	4100000	
2	3		3	1		0	9100000	
3	4		3	1		0	8200000	
4	5		5	0		1	9800000	
	-					_		
0 1 2 3 4	loan_amount 29900000 12200000 29700000 30700000 24200000	loan_term 12 8 20 8 20	cibil_s	core 7 778 417 506 467 382	esidential ₋	24 27 71 182	value \ 00000 00000 00000 00000 00000	
commercial_assets_value luxury_assets_value bank_asset_value								
0	an_status	17600000		22	700000	8	000000	
1		2200000		8	800000	3.	300000	
0		4500000		33	300000	12	800000	
0		3300000		23	300000	7	900000	
0 4		8200000		29	400000	5	000000	
0								

Exploratory Data Analysis (EDA)

- Visualize relationships between features.
- Identify trends and patterns.

1.Univariate Analysis

It focuses on examining a single variable at a time. It helps in understanding the distribution of the data.


```
'luxury_assets_value', 'bank_asset_value', 'loan_status'],
   dtype='object')
```

2. Bivariate Analysis

It helps in understanding the relationship between two variables, and alows us to know how they are related with each other negatively or postively.

```
#Bivariate Analysis
numerical_columns = ['no_of_dependents', 'income_annum',
'loan amount', 'loan term'
                      'cibil score', 'residential assets value',
'commercial assets value',
                      'luxury assets value', 'bank asset value']
plt.figure(figsize=(15, 12))
```

```
for i, col in enumerate(numerical_columns, 1):
    plt.subplot(3, 3, i)
    sns.boxplot(data=df, x='loan_status', y=col)
    plt.title(f"{col} vs Loan Status")

plt.tight_layout()
plt.show()
```


3. Multivariate Analysis (Relation between multiple variables)

```
#MultiVariate Analysis

# Plot the heatmap of the correlation between each of the numerical features

plt.figure(figsize=(10, 8)) # Increase figure size sns.heatmap(df[numerical_columns].corr(), annot=True, cmap='Blues', linewidths=0.5)

plt.show()
```


Model Selection & Training:

```
#Adding all asset cols into one col.

df['total_assets'] = df['residential_assets_value'] +
    df['commercial_assets_value'] + df['luxury_assets_value'] +
    df['bank_asset_value']

#Dropping non required columns

df.drop(columns=['residential_assets_value',
    'commercial_assets_value', 'luxury_assets_value', 'bank_asset_value'],
    inplace=True)

df.head()
```

<pre>loan_id no_of_dependents education self_employed income_annum \</pre>							
0	1	2	1	Θ	9600000		
1	2	Θ	0	1	4100000		
2	3	3	1	0	9100000		
3	4	3	1	0	8200000		
4	5	5	0	1	9800000		
0 1 2 3 4	loan_amount 29900000 12200000 29700000 30700000 24200000	loan_term cibil 12 8 20 8 20	score loan 778 417 506 467 382	1 50 0 1 0 5 0 5	_assets 0700000 7000000 7700000 2700000 5000000		
<pre># Dropping the unwanted columns(Less Required Cols) df.drop(columns=['loan_id', 'no_of_dependents', 'education', 'self_employed'], inplace=True)</pre>							
<pre>#Removing Target Variable and creating the feature matrix `x`, which will be used for training the model. x = df.drop(columns=['loan_status'])</pre>							
<pre># Creating the Target matrix `y`, which contains target variable y = df['loan_status']</pre>							

Features (X) and Target (y) in Supervised Learning

- Features (X): Input variables used to predict the target. Examples:
 - CIBIL Score
 - Loan Amount
 - Total Assets
 - Loan Term
 - Income Annum
- Target (y): The output variable we want to predict, i.e., Loan Approval Status (Approved/Not Approved).

Why Split the Dataset?

• X (Features): Helps the model learn patterns influencing loan approval.

- **y (Target):** The value the model aims to predict.
- Separating features and target allows the model to understand relationships and make accurate predictions.

Split data into training and testing sets.

```
# Divide the dataset into training (80%) and testing (20%) subsets
x_train, x_test, y_train, y_test = train_test_split(x, y,
test_size=0.2, random_state=42)

scaler = StandardScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.transform(x_test)
```

Train the Regression Model

```
# Instantiate the Logistic Regression model
model = LogisticRegression()
# Fit the model using the training dataset
model.fit(x_train, y_train)
# Generate predictions on the test dataset
y pred = model.predict(x test)
# Display the first 10 predicted values
print('Predictions',y pred[:10])
Predictions [0 1 0 1 1 1 1 0 1 0]
#Getting Model Accuracy
print('Accuracy',accuracy score(y test,y pred))
print('Accuracy',classification report(y test,y pred))
Accuracy 0.9063231850117096
Accuracy
                                    recall f1-score
                       precision
                                                        support
           0
                   0.88
                             0.87
                                        0.87
                                                   318
           1
                   0.92
                             0.93
                                        0.93
                                                   536
                                        0.91
                                                   854
    accuracy
                                        0.90
                                                   854
   macro avq
                   0.90
                             0.90
weighted avg
                   0.91
                             0.91
                                        0.91
                                                   854
```

Model Evaluation

Evaluating Model Using

- **Confusion Matrix**: Displays the true positive, false positive, true negative, and false negative values to assess classification performance.
- **ROC Curve & AUC (Area Under Curve)**: Shows the trade-off between true positive rate and false positive rate, with AUC values closer to 1 indicating better performance.
- Feature Importance (Logistic Regression Coefficients): Highlights the most influential features in model predictions, helping in feature selection and interpretability.

```
#Confusion Matrix

cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=[0,1],
yticklabels=[0,1])
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Confusion Matrix")
plt.show()
```



```
# ROC Curve & AUC (Area Under Curve)

y_pred_prob = model.predict_proba(x_test)[:,1] # Probabilities for
class 1

fpr, tpr, _ = roc_curve(y_test, y_pred_prob)
auc_score = roc_auc_score(y_test, y_pred_prob)

plt.plot(fpr, tpr, label=f"AUC = {auc_score:.2f}")
plt.plot([0,1], [0,1], 'r--') # Random guess line
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve")
plt.legend()
plt.show()
```



```
#Feature Importance (Logistic Regression Coefficients)
importance = pd.Series(model.coef_[0], index=x.columns) # Use
original x DataFrame
importance.sort_values(ascending=False).plot(kind='bar')
plt.title("Feature Importance (Logistic Regression Coefficients)")
plt.show()
```


Model Evaluation Result

Confusion Matrix

- True Positives (498) and True Negatives (276) indicate good classification.
- False Positives (42) and False Negatives (38) should be analyzed for potential improvements.

ROC Curve (AUC = 0.97)

• A high AUC value suggests excellent model performance and strong discriminatory power.

Feature Importance

- **CIBIL Score** has the highest impact on predictions.
- Loan Amount also plays a significant role.
- Income Annum negatively influences predictions, indicating an inverse relationship.