Instituto Federal do Norte de Minas Gerais - IFNMG - Campus Januária Bacharelado em Sistemas de Informação - BSI

INSTITUTO FEDERAL

Norte de Minas Gerais Campus Januária

Redes de Computadores - Padrões LAN -

Ethernet

Características Ethernet

- Definido pelo IEEE 802.3
- Acesso ao Meio: CSMA/CD (se necessário)
- Serviço não orientado a conexão / sem confirmação.
- Detecção de erros pelo algoritmo CRC-32.
- Compatibilidade com o TCP/IP e padrão IEEE 802.11 Wi-Fi.
- Mídias metálicas (par-trançado) ou ópticas (fibras ópticas).

Equipamentos Ethernet

- HUB (Repetidores)
 - HUB é um equipamento utilizado como ponto concentrador em uma topologia estrela, permitindo isolar problemas que ocorrem nos hosts ou links.
 - Também, devido a atenuação dos sinais em um meio físico, os HUBs realizam a regeneração do sinal e a replicação do sinal para todos os demais links da rede.

Equipamentos Ethernet

- HUBs possuem a função de concentrar e facilitar a expansão da rede.
- Contudo, ao receber um frame em uma porta, o HUB realiza o broadcasting para todas as outras.

- A transmissão de dados em uma rede baseada em HUB's sempre ocorre em modo *broadcast*.
- O sinal é difundido para toda a rede, e isso implica na ocorrência de colisões de dados, diminuindo o desempenho da rede.
- Quanto maior for o tráfego gerado, maior será a ocorrência de colisões...

Dúvida... Qual a topologia dessa rede?

Dúvida... Qual a topologia dessa rede?

Mova Dúvida... É melhor ter MAIS ou MENOS domínios de colisão em uma mesma rede?

O grande questão é que HUBs permitem segmentar enlaces (*links*) mas não conseguem segmentar **Domínios de Colisão**.

Colisões aumentam
exponencialmente à
medida que a rede
cresce, e com isso, a
performance é
seriamente
comprometida.

E SE...

Switch / Bridge

- Eliminar a possibilidade de colisões ou, no mínimo, aumentar a quantidade de domínios de colisão reduzindo suas áreas, é muito benéfico para o desempenho de uma rede.
- Este é o papel de um Switch, Bridge ou Comutador

Switch / Bridge

Um switch/bridge cria domínios de colisão equivalentes ao número de portas que possui, e elimina a possibilidade de colisão entre essas portas.

Isso é possível porque um switch realiza a comutação virtual dos circuitos entre as portas de origem e destino, isolando as demais deste processo.

*Comutação = Processo de interligar dois pontos ou mais pontos entre si.

Switch / Comutador

HUB vs. Switch

HUB vs. Switch

Switch / Bridge

- Switch registra endereços MAC associados a cada uma de suas interfaces físicas, em uma tabela FIB (Forwarding Information Base), criando um MAC Table.
- Quando frames chegam ao switch, verifica-se para qual MAC destino está endereçado, consulta-se a FIB, e encaminha (por comutação) o frame somente para a interface correspondente, isolando as demais do processo de transmissão.

Switch / Bridge

 O processo de aprendizado é baseado nos endereços MAC de origem dos frames.

Tabela de Comutação

1,1	
Address	Port
71:2B:13:45:61:41	1
71:2B:13:45:61:42	1
64:2B:13:45:61:12	2
64:2B:13:45:61:13	2

Bridge Table

Tabela de Comutação

Tabela de comutação

Endereço	Porta
71:2B:13:45:61:41	1
71:2B:13:45:61:42	2
64:2B:13:45:61:12	3
64:2B:13:45:61:13	4

Operação Switch/Bridge

- Redes LAN cabeadas modernas são integralmente baseadas em Switches.
- Também denominada Ethernet Comutada.

Uma Ethernet Comutada é livre de colisões, e pode operar em modo full-duplex.

Uma Ethernet Comutada é livre de colisões, e pode operar em modo full-duplex.

Evolução Ethernet

VLANs

Virtual LANs

VLANs

Switch with VLAN software

VLANs

