13 הרצאה

רשתות זרימה

תת גרף צפוף ביותר.

בעיה

 $\frac{|E|}{|V|}$ היא הG = (V, E), מכוון, ארף אי גרף א גרף אפיפות). אפיפות

בהינתן גרף לא מכוון רוצים למצוא תת-גרף שלו צפוף ביותר. מה תת גרף כזה מייצג ברשת חברתית למשל?

דוגמה 1. מהי הצפיפות של הגרף הבא? מה התת-גרף הצפוף ביותר של הגרף הבא?

מציאת תת גרף צפוף ביותר על ידי חתך מינימום

 $D=(\{s,t\}\cup V, s imes V\cup \{uv,vu:$ כאשר כאשר את רשת הזרימה (בנה את רשת הזרימה G=(V,E), נבנה את כוון, G=(V,E) נבנה על מכוון, $uv\in E\}, V\times t)$

דוגמה 2. עבור הגרף מהדוגמה הקודמת, רשת הזרימה המתאימה היא:

עבור x כלשהו נגדיר את פונקציית הקיבול להיות

$$\forall i$$
 $c(s,i) = m$
 $\forall i$ $c(i,t) = m + x - d_G(i)$
 $\forall uv \in E$ $c(u,v) = 1$

 $\{s\} \cup S \text{ st-yol}$ של חתך של מה הערך אל ממים, אמתים, $S \subseteq V$ שמתים, של עבור תת קבוצה עבור א

.G[S] מסמן ב- $\frac{|E\cap(S imes S)|}{|S|}$ את הצפיפות של הגרף המושרה מסמן ב- nm+|S|(x-2D(S)) הוא $\{s\}\cup S$ החתך צמתים כך של- $G[S^*]$ בפיפות מקסימלית.

nm -שענה 1. עבור ערך $x < 2D(S^*)$ מתקיים שקיבול חתך מינימום ברשת הארימה הנ"ל קטן פ

- \square הוכחה. נובע מכך שקיבול החתך $\{s\} \cup S^*$ קטן מ-
- nm טענה 2. עבור ערך $x>2D(S^*)$ מתקיים שקיבול חתך מינימום ברשת הזרימה הנ"ל גדול או שווה ל
- \square . $S\subseteq V$ לכל אוכן לכל לכל אהביטוי שהביטוי שהביטוי אוכחה. נובע מכך שהביטוי אוכחה
 - nm טענה 3. עבור ערך $x=2D(S^*)$ מתקיים שקיבול חתך מינימום ברשת הזרימה הג"ל הוא
- \square . $|S^*|(x-2D(S^*))=0$ -ו $S\subseteq V$ לכל לכל $|S|(x-2D(S))\geq 0$ הוכחה. נובע מכך שהביטוי

אלגוריתם: מהטענות הנ"ל ומהעובדה שמספר הצפיפויות האפשרויות הוא פולינומי ניתן לגזור את האלגוריתם הבא:

- $\{s\}\cup S$ אחד, אחד, מער שמכיל וותר שמכיל ערך תובדוק שקיים חתך מינימום עם ערך תובדוק אחד, x בינרי) ערך x ובדוק שקיים חתך מינימום עם ערך וובדוק שקיים חתך מינימום אחד, x
 - .S את 2.