# Static system





# Dynamic system

$$C = \frac{F_{RES}}{m}$$

$$F_{RES}$$

#### Force directions and resultants

$$\begin{aligned}
F_{1} &= -F_{1} + F_{2} \cos(\alpha) \\
F_{3} &\leq F_{y} = -F_{3} + F_{2} \sin(\alpha)
\end{aligned}$$

Let's assume 
$$\alpha = 45^{\circ}$$
 and  $F_2 = 100 \text{ N}$ :

Ropes

Ropes only can tour tensile forces and Not compressive forces

· Isolated ropes

STATIC

F<sub>R</sub>

DYNAMIC (with wind)



STATIC from a D. State



let's assume:

$$\xi F_{x} = F_{\omega} - F_{R_{1}} \cos(-30^{\circ})$$

$$\mathcal{E}F_{x} = 50N - F_{R_{2}} \sin 30^{\circ} = 0$$

$$\Sigma F_y = F_{e_1} - F_s + F_{e_2} \cos 30^\circ =$$

# Moments and couple

Couple:





A couple is created by a force applied at a distance

A moment is created by an engine and acts at one single point

$$M_z = F_x d_x$$

$$Mz = Ty dy$$







# Free body diagram (FBD)

For each mechanical problem, drawing a FBD is needed!



Boundary - We need to replace the boundary condition by forces and moments

Boundary conditions can be created by:

- touching bodies
  hinges and fixations
- ninges and fixations
   environmental forces (pressure, provity)

In (1), we isolate the body:



$$\leq MB = MA - Ay \cdot dx = 0$$

$$\leq M_c = M_A - F \cdot \frac{1}{2} dx - Ay \cdot \frac{1}{2} dx$$

$$M_A - A \times d \times - B \times d \times$$

#### Supports

Every blocked degree of freedom (DOF) needs to be replaced by a force or a moment

- Rotation blocked -> M
  - · Translation blocked -> F

In 2Ds systems there are 3 DOF for each point:

- 1) Translation in × 2) Translation in y 3) Retation amound 2

types of supports

|    | Hinges fix x, y and allow rotation                    | A Ax |
|----|-------------------------------------------------------|------|
|    |                                                       | ↑ Ay |
| 0  | Rollers or two horizontal                             | A    |
| OF | surfaces fix y and allow rotation and traslation in x |      |
|    | rotation and traslation in x                          | And  |

Wall fixtures / Fixed supports fix x, y and rotations









# Multi-body systems

#### Two bodies can have several FBD's:



## Example

Let

F=2000 N, Q=7m,

b=2m, C=6m, d=3m.

### Step 1: Set up the FBD of the entire system:



# Step 2: Equilibrium equations for $F(A_y, B_y)$ seen from point B:

$$\Sigma F_{x} = F(A_{x}) + F(B_{x}) = 0$$

$$\Sigma F_y = F(Ay) + F(By) - F$$

#### where:

 $F(Ax) = F_A \cdot \omega S \alpha$ 

F(Ay) = FA. sind

$$\geq M_B = F(A_x) \cdot C - F(A_y)(\alpha + b) + F(\alpha - d) = 0$$

## Step 3: Magnitude / Direction:

$$tau \alpha = \frac{c}{b}$$

# Step 4: Final calculations:

$$F(A_x) = F_A \cos x = 381 N$$
  
 $F(A_y) = F_A \sin x = 1142,8 N$ 

$$\Sigma F_{x} = 0$$
  
 $F(A_{x}) + F(B_{x}) = 0$   
 $F(B_{x}) = -381 \text{ N}$ 

$$\Sigma F_{y} = 0$$
  
 $F(A_{y}) + F(B_{y}) - F = 0$   
 $F(B_{y}) = F - F(A_{y})$   
 $F(B_{y}) = 2000 N - 1142 | 3N = 857 | 1 N$ 

## Step 5: Forces in the joint



$$\Sigma F_x = F_{Ax} - F_{Cx} = 0$$
  
 $F_{Cx} = F_{Ax} = 381 \text{ N}$ 



$$\Sigma F_{x} = F_{Bx} + F_{Cx} = 0$$
  
 $F_{Cx} = -F_{Bx} = 381 \, \text{N}$ 

$$\Sigma Fy = F_{By} + F_{cy} - F$$
  
 $F_{cy} = F - F_{By} = 1/141,9N$ 

### Constrains and Statical Determinancy

#### Statically determinate:

No. of eq. = No. of unknowns Support forces = DOF

### Statically indeterminate:

No. of eq. < No. of unknowns support forces < DOF

Statically overdeterminated No. of eq. > No. of unknowns support forces > DOF

#### Examples:

a) Table with 4 legs. All 4 legs on rollers on a flat floor.

3DOF/leg 4 legs If Statically indet.



b) A rod supported by a hinge and a rope



c) A rod fixed on both sides 6 unk, 3DOF



d) A shoe on the ground without slipping (static)





300F = 3 UNK



Statically det.



Reactions with less unknowns than equations:

Missing Ni -

Missing Q:

Missing M:

What do we use for what?

- 1 System FBD and equilibrium: Determining external forces and support reactions
- ② Body isolation in a wulti-body system: Determining interface and reaction forces support reactions
- 3 Internal forces: Determining stress and evaluate the safety

# Shear/Moment/Tension diagnam

Procedure:

Step 1: FBD diagram, calculate support reactions

Step 2: Calculate internal forces and moment

### Example



Given:

$$F_1 = 100 \text{ N}$$
 $F_2 = 200 \text{ N}$ 
 $F_1 = 100 \text{ N}$ 



$$2F_{x} = -F_{AX} + F_{2} = 0 \implies F_{AX} = F_{2} = 200 \text{ N}$$
  
 $2F_{y} = F_{Ay} - F_{1} = 0 \implies F_{AY} = F_{1} = 100 \text{ N}$ 

$$N_1 = \overline{T}_{AX} = 200N$$

$$Q_1 = -\overline{T}_{AY} = -100N$$

$$\Sigma M = M_A + Q_1 \times$$

Cut 2: 
$$2m < X < 4m$$

Fax

Fay

 $N_2 = Fax = 200N$ 
 $Q_2 = -F_{Ay} + F_1 = 0N$ 
 $2M = M_A - M_{F_1} + Q_2 \times$ 



## Stress and bending

#### Stress:

- · It is needed to evaluate the safety
- · It is calculated differently for each load case
  - Tensile (pure tensile boad-stress)
  - Compressive (pure compressive load stress) the same way
  - Bending (tensile + compressive + shear stress)
  - Shear (pure shear stress)
  - Torsion (pure shear stress)

#### Tensile and compressive stress



Stress: internal boads incl. geometry

Strain

Strain: internal shape changes

$$F \leftarrow \bigcirc$$

$$D = E \cdot E$$

$$E = young's modulus [MPa] or [GPA]$$

$$\mathcal{E}_{\text{Tensile}} = \frac{\Delta \ell}{\ell_0} \quad [-]$$

$$\mathcal{E}_{\text{Compressive}} = \frac{\Delta \ell}{\ell_0} \quad [-]$$

$$\mathcal{E}_{\text{Shear}} = \frac{\Delta S}{\Delta h} \quad [-]$$

# Some young's modulus

# Sofety calculation