CHAPTER TEN

Inequalities

10A Proving Inequalities by Algebra

Exercise 10A _

1. Suppose that a and b are real numbers.

Prove that
$$\frac{a^2+b^2}{2} \ge \left(\frac{a+b}{2}\right)^2$$
.

- **2.** If a > b, prove that $a^3 b^3 \ge a^2b ab^2$.
- **3.** (a) Given that x and y are non-negative, prove that $\frac{x+y}{2} \ge \sqrt{xy}$.
 - (b) Hence prove that $(x+y)(x+z)(y+z) \ge 8xyz$.
- 4. Suppose that p, q and r are real and distinct.
 - (a) Prove that $p^2 + q^2 > 2pq$.
 - (b) Hence prove that $p^2 + q^2 + r^2 > pq + qr + rp$.
 - (c) Given that p+q+r=1, prove that $pq+qr+rp<\frac{1}{3}$.
- **5.** Suppose that a, b and c are real numbers.
 - (a) Prove that $a^4 + b^4 + c^4 \ge a^2b^2 + a^2c^2 + b^2c^2$.
 - (b) Hence show that $a^2b^2 + a^2c^2 + b^2c^2 \ge a^2bc + b^2ac + c^2ab$.
 - (c) Deduce that if a+b+c=d, then $a^4+b^4+c^4\geq abcd$.
- **6.** Suppose that a, b and c are positive.
 - (a) Prove that $a^2 + b^2 \ge 2ab$.
 - (b) Hence prove that $a^2 + b^2 + c^2 \ge ab + bc + ca$.
 - (c) Given that $a^3 + b^3 + c^3 3abc = (a+b+c)(a^2+b^2+c^2-ab-bc-ca)$, prove that $a^3 + b^3 + c^3 \ge 3abc$.
 - (d) If x, y and z are positive, show that $x + y + z \ge 3(xyz)^{\frac{1}{3}}$.
 - (e) Suppose that (1+x)(1+y)(1+z)=8. Prove that $xyz \le 1$.

- 2 Chapter 10: Inequalities
 - 7. (a) Show that $a^2 + b^2 \ge 2ab$ for all real numbers a and b.
 - (b) Hence deduce that for all real numbers a, b and c:
 - (i) $(a+b+c)^2 \ge 3(ab+bc+ca)$
 - (ii) $ab(a+b) + bc(b+c) + ca(c+a) \ge 6abc$
 - (c) Suppose that a, b and c are the side lengths of a triangle.
 - (i) Explain why $(b-c)^2 \le a^2$.
 - (ii) Deduce that $(a+b+c)^2 \le 4(ab+bc+ca)$.
 - **8.** Suppose that a, b and c are positive.
 - (a) Prove that $\frac{a}{b} + \frac{b}{a} \ge 2$.
 - (b) Hence show that $(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq 9$.
 - (c) (i) Prove that $a^3 + b^3 \ge \left(\frac{a}{c} + \frac{b}{c}\right) abc$, and write down similar inequalities for $b^3 + c^3$ and $c^3 + a^3$.
 - (ii) Hence prove that $a^3 + b^3 + c^3 \ge 3abc$.
 - (iii) Deduce that $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ge 3$.
 - **9.** Suppose that a, b, c and d are positive. Use the fact that $\frac{a^2 + b^2}{2} \ge ab$ to show that $\frac{a^2 + b^2 + c^2 + d^2}{4} \ge \sqrt{abcd}$.
 - 10. Suppose that x and y are positive. Prove that:
 - (a) $\frac{1}{x} + \frac{1}{y} \ge \frac{4}{x+y}$

- (b) $\frac{1}{x^2} + \frac{1}{y^2} \ge \frac{8}{(x+y)^2}$
- 11. (a) Prove by induction that $2^n > n$, for all positive integers n.
 - (b) Hence show that $1 < \sqrt[n]{n} < 2$, if n is a positive integer greater than 1.
 - (c) Suppose that a and n are positive integers. It is known that if $\sqrt[n]{a}$ is a rational number, then it is an integer. Explain why $\sqrt[n]{n}$, where n is a positive integer greater than 1, is never a rational number.
- **12.** (a) (i) Prove by induction that $(1+c)^n > 1+cn$, for all integers $n \ge 2$, where c is a nonzero constant greater than -1.
 - (ii) Hence show that $(1 \frac{1}{2n})^n > \frac{1}{2}$, for all integers $n \ge 2$.
 - (b) (i) Solve the inequation $x^2 > 2x + 1$.
 - (ii) Hence prove by induction that $2^n > n^2$, for all integers $n \ge 5$.
 - (c) Suppose that a > 0, b > 0, and n is a positive integer.
 - (i) Divide the expression $a^{n+1} a^n b + b^{n+1} b^n a$ by a b, and hence show that $a^{n+1} + b^{n+1} > a^n b + b^n a$.
 - (ii) Hence prove by induction that $\left(\frac{a+b}{2}\right)^n \le \frac{a^n+b^n}{2}$.

- 13. (a) Given that $\sin x > \frac{2x}{\pi}$ for $0 < x < \frac{\pi}{2}$, show that:
 - (i) $e^{-\sin x} < e^{-\frac{2x}{\pi}}$ for $0 < x < \frac{\pi}{2}$,
 - (ii) $\int_0^{\frac{\pi}{2}} e^{-\sin x} \, dx < \int_0^{\frac{\pi}{2}} e^{-\frac{2x}{\pi}} \, dx.$
 - (b) Use the substitution $u = \pi x$ to show that

$$\int_0^{\frac{\pi}{2}} e^{-\sin x} \, dx = \int_{\frac{\pi}{2}}^{\pi} e^{-\sin x} \, dx \,.$$

- (c) Hence show that $\int_0^{\pi} e^{-\sin x} dx < \frac{\pi}{e} (e 1).$
- **14.** For $n = 0, 1, 2, \dots$ let $I_n = \int_0^{\frac{\pi}{4}} \tan^n \theta \, d\theta$.
 - (a) Show that $I_1 = \frac{1}{2} \ln 2$.
 - (b) Show that, for $n \ge 2$, $I_n + I_{n-2} = \frac{1}{n-1}$.
 - (c) For $n \geq 2$, explain why $I_n < I_{n-2}$, and deduce that

$$\frac{1}{2(n+1)} < I_n < \frac{1}{2(n-1)}.$$

- (d) Use the reduction formula in part (b) to find I_5 , and hence deduce that $\frac{2}{3} < \ln 2 < \frac{3}{4}$.
- **15.** Let $I_n = \int_0^1 \frac{x^{n-1}}{(x+1)^n} dx$, for $n = 1, 2, 3, \dots$
 - (a) Show that $I_1 = \ln 2$.
 - (b) Use integration by parts to show that $I_{n+1} = I_n \frac{1}{n \cdot 2^n}$.
 - (c) The maximum value of $\frac{x}{x+1}$, for $0 \le x \le 1$, is $\frac{1}{2}$. Use this fact to show that $I_{n+1} < \frac{1}{2}I_n$.
 - (d) Deduce that $I_n < \frac{1}{n 2^{n-1}}$.
 - (e) Use the reduction formula in part (b) and the inequality in part (d) to show that $\frac{2}{3} < \ln 2 < \frac{17}{24}$.

Inequalities Alg Geom 5/3/13

SGS March 2013

10B Proving Inequalities by Geometry

Exercise 10B

CHAPTER 10: Inequalities

- 1. (a) A regular hexagon is drawn inside a circle of radius 1 cm and centre O so that its vertices lie on the circumference, as shown in the first diagram.
 - (i) Show that $\triangle OAB$ is equilateral and hence find its area.
 - (ii) Hence find the exact area of this hexagon.
 - (b) A second regular hexagon is drawn so that each side is tangent to the circle, as shown.
 - (i) Find the area of $\triangle OGH$.
 - (ii) Hence find the exact area of the outer hexagon.
 - (c) By considering the results in parts (a) and (b), show that $\frac{3\sqrt{3}}{2} < \pi < 2\sqrt{3}\,.$

- **2.** The diagram shows the points A(0,1) and $B(1,e^{-1})$ on the curve $y=e^{-x}$.
 - (a) Show that the exact area of the region bounded by the curve, the x-axis and the vertical lines x=0 and x=1 is $(1-e^{-1})$ square units.
 - (b) Find the area of:
 - (i) rectangle PBRQ,
 - (ii) trapezium ABRQ.
 - (c) Use the areas found in the previous parts to show that $2 < e < \overline{3}$.

- **3.** The diagram shows the curve $y = \sin x$ for $0 \le x \le \frac{\pi}{2}$. The points $P(\frac{\pi}{2}, 1)$ and $Q(\frac{\pi}{6}, \frac{1}{2})$ lie on the curve.
 - (a) Find the equation of the tangent at O.
 - (b) Find the equation of the chord OP, and hence show that $\frac{2x}{\pi} < \sin x < x$, for $0 < x < \frac{\pi}{2}$.
 - (c) Find the equation of the chord OQ, and hence show that $\frac{3x}{\pi} < \sin x < x$, for $0 < x < \frac{\pi}{6}$.
 - (d) By integrating $\sin x$ from 0 to $\frac{\pi}{6}$ and comparing this to the area of $\triangle ORQ$, show that

$$\pi < 12(2 - \sqrt{3}) \doteq 3 \cdot 2.$$

- **4.** The points A, P and B on the curve $y = \frac{1}{x}$ have x-coordinates
 - 1, $1\frac{1}{2}$ and 2 respectively. The points C and D are the feet of the perpendiculars drawn from A and B to the x-axis. The tangent to the curve at P cuts AC and BD at M and N respectively.
 - (a) Show that the tangent at P has equation

$$4x + 9y = 12.$$

- (b) Find the coordinates of M and N.
- (c) Find the areas of trapezia ABDC and MNDC.
- (d) Hence show that $\frac{2}{3} < \ln 2 < \frac{3}{4}$.

- **5.** (a) Show, using calculus, that the graph of $y = \ln x$ is concave down throughout its domain.
 - (b) Sketch the graph of $y = \ln x$, and mark two points $A(a, \ln a)$ and $B(b, \ln b)$ on the curve, where 0 < a < b.
 - (c) Find the coordinates of the point P that divides the interval AB in the ratio 2:1.
 - (d) Using parts (b) and (c), deduce that $\frac{1}{3} \ln a + \frac{2}{3} \ln b < \ln(\frac{1}{3}a + \frac{2}{3}b)$.
- **6.** Let $f(x) = x^n e^{-x}$, where n > 1.
 - (a) Show that $f'(x) = x^{n-1}e^{-x}(n-x)$.
 - (b) Show that $(n, n^n e^{-n})$ is a maximum turning point of the graph of f(x), and hence sketch the graph for $x \ge 0$. (Don't attempt to find points of inflexion.)
 - (c) Explain why $x^n e^{-x} < n^n e^{-n}$ for x > n. Begin by considering the graph of f(x) for x > n,
 - (d) Deduce from part (c) that $(1 + \frac{1}{n})^n < e$.
- 7. The function f(x) is defined by $f(x) = x \log_e(1 + x^2)$.
 - (a) Show that f'(x) is never negative.
 - (b) Explain why the graph of y = f(x) lies completely above the x-axis for x > 0.
 - (c) Hence prove that $e^x > 1 + x^2$, for all positive values of x.
- **8.** Consider the function $y = e^x \left(1 \frac{x}{10}\right)^{10}$.
 - (a) Find the two turning points of the graph of the function.
 - (b) Discuss the behaviour of the function as $x \to \infty$ and as $x \to -\infty$.
 - (c) Sketch the graph of the function.
 - (d) From your graph, deduce that $e^x \le \left(1 \frac{x}{10}\right)^{-10}$, for x < 10.
 - (e) Hence show that $\left(\frac{11}{10}\right)^{10} \le e \le \left(\frac{10}{9}\right)^{10}$.
- **9.** Let A(1,1) and $B(k,\frac{1}{k})$, where k>1, be points on the hyperbola $y=\frac{1}{x}$.
 - (a) Show that the tangents to the hyperbola at A and B intersect at $T\left(\frac{2k}{k+1}, \frac{2}{k+1}\right)$.
 - (b) Suppose that A', B' and T' are the feet of the perpendiculars drawn from A, B and T to the x-axis.
 - (i) Show that the sum of the areas of the two trapezia AA'T'T and TT'B'B is $\frac{2(k-1)}{k+1}$ square units.
 - (ii) Hence prove that $\frac{2u}{u+2} < \log(u+1) < u$, for all u > 0.
- **10.** The diagram shows the curve $y = \frac{1}{t}$, for t > 0.
 - (a) If x > 1, show that $\int_1^{\sqrt{x}} \frac{1}{t} dt = \frac{1}{2} \log x$.
 - (b) Explain why $0 < \frac{1}{2} \log x < \sqrt{x}$, for all x > 1.
 - (c) Hence show that $\lim_{x \to \infty} \left(\frac{\log x}{x} \right) = 0$.

11. The diagram shows the curves

$$y = \log x$$
 and $y = \log(x - 1)$,

and k-1 rectangles constructed between x=2 and x=k+1, where $k\geq 2$.

(a) Show that:

(i)
$$\int_{2}^{k+1} \log(x-1) \, dx = k \log k - k + 1$$

(ii)
$$\int_{2}^{k+1} \log x \, dx = (k+1) \log(k+1) - \log 4 - k + 1$$

6

The diagram above shows the curve y = f(x) for $a \le x \le b$. Note that f''(x) is positive for $a \le x \le b$.

(a) Use areas to explain briefly why

$$(b-a) f\left(\frac{a+b}{2}\right) < \int_a^b f(x) dx < (b-a) \frac{f(a) + f(b)}{2}.$$

(b) Hence show that, for $n = 2, 3, 4, \ldots$

$$\frac{4}{(2n-1)^2} < \frac{1}{n-1} - \frac{1}{n} < \frac{1}{2} \left(\frac{1}{(n-1)^2} + \frac{1}{n^2} \right).$$

(c) Deduce that

$$4\left(\frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots\right) < 1 < \frac{1}{2} + \left(\frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots\right).$$

(d) Show that

$$\frac{1}{2}\left(\frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots\right) < \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$$

(e) Hence show that $\frac{3}{2} < \sum_{n=1}^{\infty} \frac{1}{n^2} < \frac{7}{4}$.

- **13.** (a) Show that $\int_{1}^{n} \ln x \, dx = n \ln n n + 1$.
 - (b) Use the trapezoidal rule on the intervals with endpoints $1, 2, 3, \ldots, n$ to show that

$$\int_{1}^{n} \ln x \, dx \doteq \frac{1}{2} \ln n + \ln(n-1)!$$

- (c) Hence show that $n! < n^{n+\frac{1}{2}}e^{1-n}$. Note: This is a preparatory lemma in the proof of Stirling's formula $n! = \sqrt{2\pi} n^{n+\frac{1}{2}} e^{-n}$, which gives an approximation for n! whose percentage error converges to 0 for large integers n.
- **14.** (a) Prove that $\log_e x \le x 1$ for x > 0.
 - (b) Suppose that $p_1, p_2, p_3, \ldots, p_n$ are positive real numbers whose sum is 1.

Prove that
$$\sum_{r=1}^{n} \log_e(np_r) \leq 0$$
.

(c) Let
$$x_1, x_2, x_3, \ldots, x_n$$
 be positive real numbers.
Prove that $\frac{x_1 + x_2 + x_3 + \cdots + x_n}{n} \geq (x_1 x_2 x_3 \dots x_n)^{\frac{1}{n}}$.

Inequalities Alg' Geom 5/3/13

SGS March 2013

Chapter Ten

2(b)(i)
$$e^{-1}$$
 (ii) $\frac{1}{2}(1+e^{-1})$

3(a)
$$y = x$$
 (b) $y = \frac{2x}{\pi}$ **(c)** $y = \frac{3x}{\pi}$

3(a)
$$y=x$$
 (b) $y=\frac{2x}{\pi}$ (c) $y=\frac{3x}{\pi}$
4(b) $M=(1,\frac{8}{9}),\ N=(2,\frac{4}{9})$ (c) $\frac{3}{4}$ and $\frac{2}{3}$ square units.

$$\mathbf{5(c)} \ \left(\tfrac{a+2b}{3}, \tfrac{\ln a + 2 \ln b}{3} \right)$$

8(a) (0,1) is a maximum turning point, (10,0) is a minimum turning point.

(b)
$$y \to \infty$$
 as $x \to \infty$, and $y \to 0$ as $x \to -\infty$.