VARIANT 1

Full name:	Group:

Task:	1	2	3	4	5	6	7	8	9	Total
Score:										

1. (1 point) For each of the following statements mark it as True or False. Justify each answer.

(a)
$$\det \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{bmatrix} = 0$$
 True / False

- (b) The result of Dot product operation is a vector. True / False
- (c) Inverse matrix (A^{-1}) is always exists. True / False
- (d) It is always possible to change one basis to any other basis of the same space. True / False
- (e) Multiplication vector by a scalar operation is always applicable. True / False
- 2. (2 points)
 - (a) Find the determinant of the following matrix: $\begin{bmatrix} 1 & 2 & 2 & 1 \\ 2 & 0 & 2 & 4 \\ 2 & 1 & 3 & 1 \end{bmatrix}$
 - (b) Let A be a square matrix. Prove that its left and right inverses are the same matrix.
- 3. (2 points) Find angles between vectors **a** and **b**, **b** and **c**, **a** and **c**.

$$\mathbf{a} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, \mathbf{c} = \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix}$$

4. (2 points) For which values x, vectors **a** and **b** are basis of some space? Explain your answers.

1

$$\mathbf{a} = \begin{bmatrix} x \\ 1 - x \end{bmatrix}, \, \mathbf{b} = \begin{bmatrix} x \\ 2 \end{bmatrix}$$

- 5. (2 points) Show that the result of a cross product $a \times b$ will not change if one adds to one of the vectors some vector \mathbf{x} which is collinear to another vector of the cross product.
- 6. (2 points) Let $\mathbf{b}_1 = \begin{bmatrix} 7 \\ 5 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -3 \\ -1 \end{bmatrix}$, $\mathbf{c}_1 = \begin{bmatrix} 1 \\ -5 \end{bmatrix}$, $\mathbf{c}_2 = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$, and consider the bases for \mathbb{R}^2 given by $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$. Find the change of coordinate matrix from \mathcal{B} to \mathcal{C} .
- 7. (2 points) Find all face areas of a parallelepiped, if its edges are:

$$\begin{bmatrix} 2 \\ 7 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$$

8. (2 points) Decompose the vector $\mathbf{p} = (1, 2, 3)$ into components parallel and perpendicular to the vector $\mathbf{q} = (1, -2, 2)$.

9. (Extra. 3 points) Point M is the intersection of medians of the equilateral triangle \overline{ABC} . The old coordinate system is given by origin A and two basis vectors \overline{AB} , \overline{AC} and the new coordinate system is given by origin M and two basis vectors \overline{MB} , \overline{MC} . Find the coordinates of a point in the old coordinate system given its coordinates x', y' in the new one.

End of Test 1