

EXERCISE #6 - Regression

1. A plant manager wants to study the relationship between daily temperatures and plant output. What are the dependent and independent variables?

2. The general formula for linear regression is $\hat{y}=b_0+b_1x$ Describe each of the variables \hat{y} , b_0 , b_1 , and x

3. What determines that a line is the "best fit" for the given data?

4. An engineer wants to study the relationship of several independent variables against soil acidity in a particular region. Why might you avoid putting both annual rainfall and depth of the water table in the same linear regression formula?

5. A company wants to determine the linear relationship between the selling price of their product in US dollars and the number of units sold in thousands. Perform a linear regression on the following data to determine the linear predictor function

$$\hat{y} = b_0 + b_1 x$$

Price (USD)	Units Sold (thousands)	$(x-\overline{x})$	$(y-\overline{y})$	$(x-\overline{x})(y-\overline{y})$	$(x-\overline{x})^2$
12	54				
14	57				
16	49				
18	48				
20	42				
			Sum:		

Sum:

$\overline{x} =$	$\overline{y} =$

$$b_1 = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

