Zusammenfassung Funktionalanalysis

Notation. Sei im Folgenden $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$

Definition. Ein **Prä-Hilbertraum** ist ein \mathbb{K} -Vektorraum mit einem Skalarprodukt $\langle \cdot, \cdot \rangle$.

Definition. Sei V ein \mathbb{K} -Vektorraum. Eine **Fréchet-Metrik** ist eine Funktion $\rho: V \to \mathbb{R}_{>0}$, sodass für $x, y \in V$ gilt:

- \bullet $\rho(x) = \rho(-x)$
- \bullet $\rho(x) = 0 \iff x = 0$
- $\rho(x+y) \le \rho(x) + \rho(y)$

Definition. Sei (X,d) ein metrischer Raum und $A_1,A_2\subset X$. Dann heißt

$$dist(A_1, A_2) := \inf\{d(x, y) \mid x \in A_1, y \in A_2\}$$

Abstand zwischen A_1 und A_2 .

Definition. Ein topologischer Raum ist ein paar (X, τ) , wobei X eine Menge und $\tau \subset \mathcal{P}(X)$ ein System von offenen Mengen, sodass gilt:

- $\bullet \quad \emptyset \in \tau$
- $\bullet \ \ \tilde{\tau} \subset \tau \implies \bigcup_{U \in \tilde{\tau}} U \in \tau$
- $U_1, U_2 \in \tau \implies U_1 \cap U_2 \in \tau$

Definition. Ein topologischer Raum (X, τ) heißt Haussdorff-Raum, wenn das Trennungsaxiom

$$\forall x_1, x_2 \in X : \exists U_1, U_2 \in \tau : x_1 \in U_1 \land x_2 \in U_2 \land U_1 \cap U_2 = \emptyset$$

erfüllt ist.

Definition. Sei (X, τ) ein topologischer Raum. Eine Menge $A \subset X$ heißt abgeschlossen, falls $X \setminus A \in \tau$, also das Komplement offen ist.

Definition. Sei (X,τ) ein topologischer Raum und $A\subset X.$ Dann heißen

$$A^{\circ} := \{ x \in X \mid \exists U \in \tau \text{ mit } x \in U \text{ und } U \subset A \}$$
$$\overline{A} := \{ x \in X \mid \forall U \in \tau \text{ mit } x \in U \text{ gilt } U \cap A \neq \emptyset \}$$

Abschluss bzw. Inneres von A.

Definition. Ist (X, τ) ein topologischer Raum und $A \subset X$, dann ist auch (A, τ_A) ein topologischer Raum mit der *Relativtopologie* $\tau_A := \{U \cap A \mid U \in \tau\}.$

Definition. Sei (X,τ) ein topologischer Raum. Eine Teilmenge $A\subset X$ heißt dicht in X, falls $\overline{A}=X$.

Definition. Ein topologischer Raum (X, τ) heißt separabel, falls X eine abzählbare dichte Teilmenge enthält. Eine Teilmenge $A \subset X$ heißt separabel, falls (A, τ_A) separabel ist.

Definition. Seien τ_1, τ_2 zwei Topologien auf einer Menge X. Dann heißt τ_2 **stärker** (oder feiner) als τ_1 bzw. τ_1 **schwächer** (oder gröber) als τ_2 , falls $\tau_1 \subset \tau_2$.

Definition. Seien d_1 und d_2 Metriken auf einer Menge X und τ_1 und τ_2 die induzierten Topologien. Dann heißt d_1 stärker als d_2 , falls τ_1 stärker ist als τ_2 .

Satz. Sind $\|\cdot\|_1$ und $\|\cdot\|_2$ zwei Normen auf dem \mathbb{K} -Vektorraum X. Dann gilt:

- $\|\cdot\|_2$ ist stärker als $\|\cdot\|_1 \iff \exists C > 0 : \forall x \in X : \|x\|_1 \le C\|x\|_2$
- $\|\cdot\|_1$ und $\|\cdot\|_2$ sind äquivalent $\iff \exists c,C>0: \forall x\in X: c\|x\|_1\leq \|x\|_2\leq C\|x\|_1$

Definition. Die *p*-Norm auf dem \mathbb{K}^n ist definiert als

$$||x||_p := \left(\sum_{i=1}^n |x_j|^p\right)^{\frac{1}{p}} \text{ für } 1 \le p < \infty$$
$$||x||_\infty := ||x||_m ax := \max_{1 \le i \le n} |x_i|.$$

Bemerkung. Alle p-Normen sind zueinander äquivalent.

Definition. Seien $S \subset X$ eine Menge, (X, τ_X) und (Y, τ_Y) Hausdorff-Räume sowie $x_0 \in S$. Eine Funktion $f: S \to Y$ heißt **stetig** in x_0 , falls gilt:

$$\forall V \in \tau_Y : f(x_0) \in V \implies \exists U \in \tau_X \text{ mit } x_0 \in U \land f(U \cap S) \subset V$$

Ist X = S, so heißt $f: X \to Y$ stetige Abbildung, falls f stetig in allen Punkten $x_0 \in X$ ist, d. h. $V \in \tau_Y \implies f^{-1}(V) \in \tau_X$.

 $Bemerkung.\$ In metrischen Räumen ist diese Definition äquivalent zur üblichen Folgendefinition.

Definition. Sei (X,d) ein metrischer Raum. Eine Folge $(x_k)_{k\in\mathbb{N}}$ heißt Cauchy-Folge, falls $d(x_k,x_l) \xrightarrow{k,l\to\infty} 0$. Ein Punkt $x\in X$ heißt Häufungspunkt der Folge, falls es eine Teilfolge $(x_{k_i})_{i\in\mathbb{N}}$ gibt mit $x_{k_i}-x\xrightarrow{i\to\infty}0$.

Definition. Ein metrischer Raum (X, d) heißt vollständig, falls jede Cauchy-Folge in X einen Häufungspunkt besitzt.

Definition. Ein normierter K-Vektorraum heißt Banachraum, falls er vollständig bzgl. der induzierten Metrik ist. Ein Banachraum heißt Banach-Algebra, falls er eine Algebra ist mit $\|x \cdot y\|_X \leq \|x\|_x \cdot \|y\|_X$.

Definition. Ein **Hilbertraum** ist ein **Prähilbertraum**, der vollständig bzgl. der vom Skalarprodukt induzierten Norm ist.

Definition. Sei $\mathbb{K}^{\mathbb{N}} := \{(x_n)_{n \in \mathbb{N}} \mid \forall i \in \mathbb{N} : x_i \in \mathbb{K}\}$ die Menge aller Folgen in \mathbb{K} . Mit der Fréchet-Metrik

$$\rho(x) := \sum_{i=1}^{\infty} 2^{-i} \frac{|x_i|}{1 + |x_i|} < 1$$

wird der Folgenraum $\mathbb{K}^{\mathbb{N}}$ zu einem Banachraum.

Satz. Sind $(x^k) = (x_i^k)_{i \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$ und $x = (x_i)_{i \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$, so gilt $o(x^k - x) \xrightarrow{k \to \infty} 0 \iff \forall i \in \mathbb{N} : x_i^k \xrightarrow{k \to \infty} x_i.$

Definition. Die Norm

$$\begin{split} \|x\|_{\ell^p} &:= \left(\sum_{i=1}^\infty |x_i|^p\right)^{\frac{1}{p}} \in [0,\infty], \text{ für } 1 \leq p < \infty \\ \|x\|_{\ell^\infty} &:= \sup_{i \in \mathbb{N}} |x_i| \in [0,\infty] \end{split}$$

heißt ℓ^p -Norm auf dem Raum $\ell^p(\mathbb{K}) := \{x \in \mathbb{K}^{\mathbb{N}} \mid ||x||_{\ell^p} < \infty\}.$

Satz. Der Raum $\ell^p(\mathbb{K})$ ist vollständig, also ein Banachraum.

Bemerkung. Im Fall p=2 wird $\ell^2(\mathbb{K})$ ein Hilbertraum mit dem Skalarprodukt $\langle x,y\rangle_{\ell^2}:=\sum_{i=0}^\infty x_i\overline{y_i}.$

Definition (Vervollständigung). Sei (X,d) ein metrischer Raum. Betrachte die Menge $X^{\mathbb{N}}$ aller Folgen in X und definiere

$$\tilde{X} := \{x \in X^{\mathbb{N}} \mid x \text{ ist Cauchy-Folge in } X\} / \sim$$

mit der Äquivalenzrelation

$$x \sim y \text{ in } \tilde{X} \iff d(x_i, y_i) \xrightarrow{j \to \infty} 0.$$

Diese Menge wird mit der Metrik

$$\tilde{d}(x,y) \coloneqq \lim_{i \to \infty} d(x_i, y_i)$$

zu einem vollständigen metrischen Raum. Die injektive Abbildung $J:X\to \tilde{X}$, welche $x\in X$ auf die konstante Folge $(x)_{i\in\mathbb{N}}$, ist isometrisch, d. h. sie erhält. Wir können also X als einen dichten Unterraum von \tilde{X} auffassen. Man nennt \tilde{X} Vervollständigung von X.

Definition (Raum der beschränkten Funktionen). Sei S eine Menge und Y ein Banachraum über \mathbb{K} mit Norm $y\mapsto |y|$. Dann ist $B(S;Y)\coloneqq \{f:S\to Y\,|\,f(S)\text{ ist eine beschränkte Teilmenge von }Y\}$ die Menge der beschränkten Funktionen von B nach Y. Diese Menge ist ein $\mathbb{K}\text{-Vektorraum}$ und wird mit der Supremumsnorm $\|f\|_{B(S)}\coloneqq\sup_{x\in S}|f(x)|$ zu einem Banachraum.

Satz. Ist (X, d) ein vollständiger metrischer Raum und $Y \subset X$ abgeschlossen, so ist auch (Y, d) ein vollständiger metrischer Raum.

Definition (Raum stetiger Funktionen auf einem Kompaktum). Sei $S \subset \mathbb{R}^n$ beschränkt und abgeschlossen (d. h. kompakt) und Y ein Banachraum über \mathbb{K} mit Norm $y \mapsto |y|$, so ist

$$\mathcal{C}^0(S;Y) := \mathcal{C}(S;Y) := \{f: S \to Y \mid f \text{ ist stetig }\}$$

die Menge der stetigen Funktionen von S nach Y. Sie ist ein abgeschlossener Unterraum von B(S;Y) mit der Norm $\|\cdot\|_{\mathcal{C}(S;Y)} = \|\cdot\|_{B(S;Y)}$, also ein Banachraum.

Bemerkung. Für $Y = \mathbb{K}$ ist $\mathcal{C}^0(S; \mathbb{K}) = \mathcal{C}(S)$ eine kommutative Banach-Algebra mit dem Produkt $(f \cdot g)(x) \coloneqq f(x) \cdot g(x)$.

Definition. Sei $S \subset \mathbb{R}^n$ und $(K_n)_{n \in \mathbb{N}}$ eine Folge kompakter Teilmengen des \mathbb{R}^n . Dann heißt (K_n) eine **Ausschöpfung** von S, falls

•
$$S = \cup_{n \in \mathbb{N}} K_n$$
,

- $\emptyset \neq K_i \subset K_{i+1} \subset S$ für alle $i \in \mathbb{N}$ und
- für alle $x \in S$ gibt es ein $\delta > 0$ und $i \in \mathbb{N}$, sodass $B_{\delta}(x) \subset K_i$.

Bemerkung. Zu offenen und abgeschlossenen $S\subset\mathbb{R}^n$ existiert eine Ausschöpfung.

Definition (Raum stetiger Funktionen auf Menge mit Ausschöpfung). Es sei $S \subset \mathbb{R}^n$ so, dass eine Ausschöpfung $(K_i)_{i \in \mathbb{N}}$ von S existiert und Y ein Banachraum. Dann bildet die Menge aller stetigen Funktionen

$$C^0(S;Y) := \{f: S \to Y \mid f \text{ ist stetig auf } S\}$$

einen K-Vektorraum und wird mit der Fréchet-Norm

$$\varrho(f) := \sum_{i \in \mathbb{N}} 2^{-i} \frac{\|f\|_{C^0(K_i)}}{1 + \|f\|_{C^0(K_i)}}$$

zu einem vollständigen metrischen Raum.

Bemerkung. • Die von dieser Metrik erzeugte Topologie ist unabhängig von der Wahl der Ausschöpfung.

• Ist $S \subset \mathbb{R}^n$ kompakt, so stimmt die Topologie mit der von $\|\cdot\|_{B(s)}$ überein.

Definition. Sei $S \subset \mathbb{R}^n$ und Y ein Banachraum. Für $f: S \to Y$ heißt

$$\operatorname{supp} f := \{ x \in S \mid f(x) \neq 0 \}$$

Träger (engl. support) von f.

Definition. Sei $S \subset \mathbb{R}^n$ und Y ein Banachraum. Dann ist

$$\mathcal{C}_0^0(S;Y) := \{ f \in \mathcal{C}^0(S;Y) \mid \text{supp} f \text{ ist kompakt in } S \}$$

die Menge der stetigen Funktionen mit kompaktem Träger von S nach Y.

Definition (Raum differenzierbarer Funktionen). Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt und $m \in \mathbb{N}$. Dann ist die Menge der differenzierbaren Funktionen von Ω nach Y

$$\mathcal{C}^m(\overline{\Omega},Y)\coloneqq \{f:\Omega\to Y\,|\,f\text{ ist m-mal stetig differenzierbar in }\Omega$$
 und für $k\le m$ und $s_1,...,s_k\in\{1,...,n\}$ ist $\partial_{s_1}...\partial_{s_k}f$ auf $\overline{\Omega}$ stetig fortsetzbar $\}$

ein Vektorraum und mit

$$||f||_{\mathcal{C}^m(\overline{\Omega})} = \sum_{|s| \le m} ||\partial^s||_{\mathcal{C}^0(\overline{\Omega})}$$

ein Banachraum

Bemerkung. In obiger Norm wird die Summe über alle k-fache partielle Ableitungen mit $k \le m$ gebildet.