PT - PT*

TD 1

Exercices d'application

TD d'informatique du Lycée Louis Legrand – Jean-Pierre Becirspahic http://info-llg.fr/

Savoirs et compétences :

☐ Alg – C15 : Récursivité : avantages et inconvénients.

Exercice 1

Soit l'algorithme suivant :

```
■ Python

def mult(n, p):

if p == 0:

return 0

else:

return n+mult(n,p-1)
```

Question 1 Énoncer un variant de boucle et montrer la terminaison de l'algorithme.

Question 2 Énoncer un invariant de boucle et montrer la correction de l'algorithme.

Question 3 Donner et justifier la complexité temporelle de la fonction mult.

Question 4 Donner et justifier la complexité spatiale de la fonction mult.

Exercice 2

Soit l'algorithme suivant :

```
■ Python

def puiss(x, n):

    if n == 0:
        return 1

    else:
        return x*puiss(x,n-1)
```

Question 1 Énoncer un variant de boucle et montrer la terminaison de l'algorithme.

Question 2 Énoncer un invariant de boucle et montrer la correction de l'algorithme.

Question 3 Donner et justifier la complexité temporelle de la fonction puiss.

Question 4 Donner et justifier la complexité spatiale de la fonction puiss.

Exercice 3

On démontre que sur l'ensemble $\mathbb{N} \times \mathbb{N}$ est dénombrable en numérotant chaque couple $(x, y) \in \mathbb{N}^2$ suivant le procédé suggéré par la figure ci-dessous.

Question 1 Rédiger une fonction récursive qui retourne le numéro du point de coordonnées (x, y).

Question 2 Rédiger la fonction réciproque, là encore de façon récursive.

Exercice 4

On suppose disposer d'une fonction polygon((xa, ya), (xb, yb), (xc, yc)) qui trace le triangle plein dont les sommets ont pour coordonnées $(x_a; y_a)$, $(x_b; y_b)$, $(x_c; y_c)$.

Question 1 Définir une fonction récursive permettant le tracé présenté figure suivante (tous les triangles sont équilatéraux).

Exercice 5

Question 1 *Écrire une fonction récursive qui calcule* a^n *en exploitant la relation :* $a^n = a^{n/2} \times a^{n/2}$.

Question 2 *Écrire une fonction qui utilise de plus la remarque suivante : n/2* = $\begin{cases} n/2 & \text{si } n \text{ est pair} \\ n/2+1 & \text{sinon} \end{cases}$

Question 3 Déterminer le nombre de multiplications effectuées dans le cas où n est une puissance de 2, et majo-

rer simplement ce nombre dans le cas général.

Exercice 6 - Fonction 91 de McCarthy

On considère la fonction récursive suivante :

```
Python
def f(n) :
    if n>100 :
        return n-10
    return f(f(n+11))
```

Question Prouver sa terminaison lorsque $n \in \mathbb{N}$ et déterminer ce qu'elle calcule (sans utiliser l'interpréteur de commande).