UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Deleksamen i MAT1110 — Kalkulus og lineær algebra.

Eksamensdag: Torsdag 7. april 2016.

Tid for eksamen: 13:00-15:00.

Oppgavesettet er på 5 sider.

Vedlegg: Formelark

Tillatte hjelpemidler: Ingen.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

K_{Λ}	NDIDATNR.	
r\ A	NDIDATNE.	

Eksamen består av 15 oppgaver. De 10 første teller 3 poeng hver, mens de 5 siste teller 4 poeng hver slik at den totale poengsummen er 50. Det er bare ett riktig alternativ på hver oppgave. Dersom du svarer feil eller lar være å svare på en oppgave, får du 0 poeng. Du blir altså ikke "straffet" for å gjette. Svarene fører du inn på dette svararket. Krysser du av mer enn ett alternativ på en oppgave, får du 0 poeng. Lykke til!

Oppgave	Alt. a)	Alt. b)	Alt. c)	Alt. d)	Alt. e)	Poengverdi
1	X					3 poeng
2					X	3 poeng
3	X					3 poeng
4			X			3 poeng
5					X	3 poeng
6					X	3 poeng
7				X		3 poeng
8	X					3 poeng
9			X			3 poeng
10		X				3 poeng
11			X			4 poeng
12		X				4 poeng
13			X			4 poeng
14					X	4 poeng
15			X			4 poeng

(Fortsettes på side 2.)

Oppgave 1. (3 poeng) La $\mathbf{F}: \mathbb{R}^2 \to \mathbb{R}^2$ være en avbildning slik at $\mathbf{F}(1,1) = (2,3)$ og $\mathbf{F}'(1,1) = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$. La $g: \mathbb{R}^2 \to \mathbb{R}$ være en funksjon slik at $\left(\frac{\partial g}{\partial x}(2,3), \frac{\partial g}{\partial y}(2,3)\right) = (1,1)$. Da blir $\left(\frac{\partial h}{\partial x}(1,1), \frac{\partial h}{\partial y}(0,0)\right)$ for den sammensatte funksjonen $h(x,y) = g(\boldsymbol{F}(x,y))$:

b)
$$(1,0)$$

d)
$$(1,-1)$$

(3 poeng) En parametrisert kurve er gitt ved Oppgave 2.

$$\boldsymbol{r}(t) = \cos t \, \boldsymbol{i} + \sin t \, \boldsymbol{j} + t^2 \, \boldsymbol{k}.$$

Baneakselerasjonen a(t) er da

b)
$$-\sin t \, \boldsymbol{i} + \cos t \, \boldsymbol{j} + 2t \, \boldsymbol{k}$$

c)
$$-\cos t \, \boldsymbol{i} - \sin t \, \boldsymbol{j} + 2 \, \boldsymbol{k}$$

d)
$$\sqrt{1+4t^2}$$

e)
$$4t/\sqrt{1+4t^2}$$

Oppgave 3. (3 poeng) Lengden til kurven

$$r(t) = t^2 i + t^3 j + t^2 k$$
, $0 \le t \le 1$.

er

a)
$$\frac{1}{27}(17\sqrt{17} - 16\sqrt{2})$$
 b) $\frac{1}{27}(\sqrt{17} - \sqrt{2})$ c) $\sqrt{17}$ d) $\frac{2}{3}(3\sqrt{7} - 1)$ e) $6\sqrt{2} - 1$

b)
$$\frac{1}{27}(\sqrt{17}-\sqrt{2})$$

c)
$$\sqrt{17}$$

d)
$$\frac{2}{3}(3\sqrt{7}-1)$$

e)
$$6\sqrt{2} - 1$$

(3 poeng) En potensialfunksjon ϕ til vektorfeltet Oppgave 4.

$$F(x, y, z) = (y + 2z)i + (x + 3z)j + (2x + 3y)k$$

er gitt ved

a)
$$\phi(x, y, z) = 2xy + 3xz + yz$$

b)
$$\phi(x, y, z) = 3xy + xz + 2yz$$

c)
$$\phi(x, y, z) = xy + 2xz + 3yz$$

d)
$$\phi(x, y, z) = xy + xz + yz$$

e)
$$\phi(x, y, z) = x^2 + y^2 + z^2$$

(Fortsettes på side 3.)

Oppgave 5. (3 poeng) Tangentplanet til funksjonen

$$f(x,y) = xe^y + y\cos(\pi x) + 3$$

i punktet (1,0) er gitt ved

a)
$$z = 4 + 2(x - 1)$$

b)
$$z = 3 + (x - 1) + y$$

c)
$$z = 4 + (x - 1) + y$$

d)
$$z = 4 + y$$

e)
$$z = 4 + (x - 1)$$

Oppgave 6. (3 poeng) Hvis R er rektangelet $R = [0, 2] \times [-1, 1]$ så er dobbeltintegralet $\iint_R (x + xy + 1) dx dy$ lik:

a)
$$-8$$

b)
$$-4$$

e) 8

Oppgave 7. (3 poeng) Skjæringen mellom kurven $z = \sqrt{x^2 + y^2}$ og planet z = 2x + 1gir en

a) Sirkel

- b) Ellipse
- c) Parabel
- d) Hyperbel
- e) Tom mengde

Oppgave 8. (3 poeng) La \mathbf{F} være affinavbildningen

$$\mathbf{F}(x,y) = \begin{pmatrix} 1 & 4 \\ -6 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

og la R vï; $\frac{1}{2}$ re rektanglet der $1 \le x \le 3$, $2 \le y \le 4$. Da vil arealet til parallellogrammet F(R) vï; $\frac{1}{2}$ re

a) 100

- b) 50
- c) 25
- d) $25\sqrt{2}$
- e) 75

Oppgave 9. (3 poeng) La A være området i \mathbb{R}^2 gitt ved $0 \le y \le \pi$ og $0 \le x \le \sin y$. Dobbeltintegralet $\iint_A x \cos y \, dx \, dy$ er lik:

a) -2

b) -1

c) 0

d) 1

e) 2

(Fortsettes på side 4.)

Oppgave 10. (3 poeng) Når vi skifter integrasjonsrekkefølge i integralet

$$\int_0^1 \left[\int_{e^x}^{(e-1)x+1} f(x,y) \, \mathrm{d}y \right] \, \mathrm{d}x$$

får vi

a)
$$\int_{1}^{e} \left[\int_{\ln y}^{(y-1)/(e-1)} f(x,y) \, \mathrm{d}x \right] \, \mathrm{d}y$$

b)
$$\int_{1}^{e} \left[\int_{(y-1)/(e-1)}^{\ln y} f(x,y) \, \mathrm{d}x \right] \, \mathrm{d}y$$

c)
$$\int_0^1 \left[\int_{(y-1)/(e-1)}^{\ln y} f(x,y) \, dx \right] dy$$

d)
$$\int_{1}^{e} \left[\int_{y/e}^{e^{y}} f(x, y) \, \mathrm{d}x \right] \, \mathrm{d}y$$

e)
$$\int_0^e \left[\int_{y/(e-1)}^{\ln y} f(x,y) \, \mathrm{d}x \right] \, \mathrm{d}y$$

Oppgave 11. (4 poeng) Vi har gitt vektorfeltet

$$F(x, y, z) = yz \, \boldsymbol{i} + xz \, \boldsymbol{j} + xy \, \boldsymbol{k}.$$

Hvis kurven \mathcal{C} er parametrisert ved

$$r(t) = \cos t \, i + \sin t \, j + t^2 k, \, \pi/4 < t < 9\pi/4,$$

så blir $\int_{\mathcal{C}} \boldsymbol{F} \cdot d\boldsymbol{r}$

a)
$$1 + \pi$$

b)
$$\pi$$

c)
$$5\pi^2/2$$

e) 3

Oppgave 12. (4 poeng) La R være rektangelet $R = [0, 1] \times [1, 2]$ og la $f(x, y) = x + \sqrt{2}y$. Arealet til grafen $\{(x, y, z) \mid z = f(x, y)\}$ over R er

a) 1

b) 2

c) 3

d) 4

e) 5

(Fortsettes på side 5.)

Oppgave 13. (4 poeng) Hva slags kjeglesnitt får vi som løsningen på ligningen

$$3x^2 - 12x + 2y^2 - 4y + 8 = 0?$$

- a) En hyperbel med sentrum i (1,2), med brennpunkter (1,1) og (3,1).
- b) En hyperbel med sentrum i (2,1), med brennpunkter (2,0) og (2,2).
- c) En ellipse med sentrum i (2,1) med brennpunkter (2,0) og (2,2).
- d) En ellipse med sentrum i (2,1) med brennpunkter (1,1) og (3,1).
- e) En parabel med sentrum i (1,2) og brennpunkt (1,3).

Oppgave 14. (4 poeng) Volumet til området avgrenset av sylinderen $x^2 + 2x + y^2 = 0$, (x, y)-planet og planet z = 1 - y er:

a)
$$8\pi$$

b)
$$\frac{32\pi}{3}$$

c)
$$4\pi$$

d)
$$\frac{24\pi}{5}$$

e)
$$\pi$$

Oppgave 15. (4 poeng) La C være den parametriserte kurven $\mathbf{r}(\theta) = 2\cos\theta\,\mathbf{i} + 2\sin\theta\,\mathbf{j}$, hvor $\theta \in [0, 2\pi]$. Regn ut integralet

$$\int_{\mathcal{C}} (x + 2y + \sin^2 x) \, dx + (2x + y + e^{2y}) \, dy$$

a)
$$-2$$

b)
$$-1$$

e) 2

SLUTT.