

Approximation Algorithms

NP-completeness

[&]quot;I can't find an efficient algorithm, but neither can all these famous people."

Goping With NP-Hardness

Brute-force Algorithms.

- Develop clever enumeration strategies.
- Guaranteed to find optimal solution.
- No guarantees on running time.

Heuristics.

Develop intuitive algorithms.
Guaranteed to run in polynomial time.
No guarantees on quality of solution.

Approximation Algorithms.

- Guaranteed to run in polynomial time.
- Guaranteed to find "high quality" solution, say within 1% of optimum.

Obstacle: need to prove a solution's value is close to optimum, without even knowing what optimum value is!

4

Coping with NP-completeness

- Q. Suppose I need to solve an **NP**-hard optimization problem. What should I do?
- A. Sacrifice one of three desired features.
 - i. Runs in polynomial time.
 - ii. Solves arbitrary instances of the problem.
 - iii. Finds optimal solution to problem.

ρ-approximation algorithm.

- Runs in polynomial time.
- Solves arbitrary instances of the problem
- Finds solution that is within ratio ρ of optimum.

Challenge. Need to prove a solution's value is close to optimum, without even knowing what is optimum value.

Approximation Algorithms

- Up to now, the best algorithm for solving an NP-complete problem requires exponential time in the worst case. It is too timeconsuming.
- To reduce the time required for solving a problem, we can relax the problem, and obtain a feasible solution "close" to an optimal solution

 One compromise is to use heuristic solutions.

The word "heuristic" may be interpreted as "educated guess."

Approximation Algorithms

An algorithm that returns near-optimal solutions is called an *Approximation Algorithm*.

We need to find an *Approximation Ratio Bound* for an approximation algorithm.

We say an approximation algorithm for the problem has a ratio bound of $\rho(n)$ if for any input size n, the cost C of the solution produced by the approximation algorithm is within a factor of $\rho(n)$ of the C^* of the optimal solution:

$$\max\{\frac{C}{C^*}, \frac{C^*}{C}\} = \rho(n)$$

This applies for both minimization and maximization problems.

Pertormance Guarantees

ρ-approximation algorithm

• An approximation algorithm with an approximation ratio bound of ρ is called a ρ -approximation algorithm or a $(1+\epsilon)$ -approximation algorithm.

• Note that ρ is always larger than 1 and ϵ = ρ -1.

Vertex Cover Problem

- Let G=(V, E). The subset S of V that meets every edge of E is referred to as the Vertex Cover.
- The Vertex Cover Problem is solved for finding a vertex cover of the Minimum size. It is NP-hard Computational Problem or the Optimization Version of an NP-Complete Decision Problem.

Examples of Vertex Cover

APPROX_VERTEX_COVER(*G*)

- 1 $C \leftarrow \phi$
- $2 E' \leftarrow E(G)$
- 3 **while** $E' \neq \phi$
- **do** let (u,v) be an arbitrary edge of E'
- $C \leftarrow C \cup \{u,v\}$
- remove from E' every edge incident on either u or v
- 7 **return** C

Complexity: O(E)

Theorem: APPROX_VERTEX_COVER has ratio bound of 2.

Proof.

C*: optimal solution

C: approximate solution

A: the set of edges selected in

Let A be the set of selected edges.

|C|=2|A| When one edge is selected, 2 vertices are added

 $|A| \leq C^* |$ into C

No two edges in A share a common

 $|C| \le 2|C^*|$ endpoint.

Bin Packing Problem

- Given n items of sizes a_1 , a_2 , ..., a_n , $0 < a_i \le 1$ for $1 \le i \le n$, which have to be placed in bins of unit capability, the bin packing problem is solved for determining the minimum number of bins to accommodate all items.
- If we consider the items of different sizes to be the lengths of time of executing different jobs on a standard processor, then the problem becomes to use minimum number of processors which can finish all of the jobs within a fixed time. // We can assume the longest job takes one unit time, which equals

Example of Bin Packing Problem

Ex. Given n = 5 items with sizes 0.3, 0.5, 0.8, 0.2, 0.4, the optimal solution is 3 bins.

The bin packing problem is NP-hard optimization problem.

An Approximation Algorithm for the Bin Packing Problem

- An Approximation Algorithm: (First-Fit (FF))
 place the item i into the lowest-indexed bin
 which can accommodate the item i.
- OPT: The number of bins of the Optimal Solution
- FF: The number of bins in the First-Fit Algorithm
- C(B_i): The sum of the sizes of items packed in bin B_i in the First-Fit Algorithm
- Let FF=m.

An Approximation Algorithm for the Bin Packing Problem

- OPT $\geq \left|\sum_{i=1}^{n} a_{i}\right|$, ceiling of sum of sizes of all items
- $C(B_i) + C(B_{i+1}) \stackrel{C(Bi): the sum of sizes of items packed in bir <math>B_{i+1}$ will be put in B_i).
- $C(B_1) + C(B_m) > 1$ (b)(Otherwise, the items in B_m will be put in B_1 .)
- For m nonempty bins, $\sum_{i=1}^{n} a_i$ $C(B_1)+C(B_2)+...+C(B_m) > m/2$, (a)+(b) for i=1,...,m

20

$$\Rightarrow$$
 FF = m < 2 = 2 \leq 2 OPT

Load balancing

Input. m identical machines; $n \ge m$ jobs, job j has processing time t_j .

- Job j must run contiguously on one machine.
- · A machine can process at most one job at a time.

Def. Let S[i] be the subset of jobs assigned to machine i.

The load of machine i is $L[i] = \sum_{j \in S[i]} t_j$.

Def. The makespan is the maximum load on any machine $L = \max_i L[i]$.

Load balancing. Assign each job to a machine to minimize makespan.

Load balancing on 2 machines is NP-hard

Claim. Load balancing is hard even if m = 2 machines.

Pf. PARTITION $\leq p$ LOAD-BALANCE.

Load balancing: list scheduling

List-scheduling algorithm.

- Consider n jobs in some fixed order.
- Assign job j to machine i whose load is smallest so far.

```
LIST-SCHEDULING (m, n, t_1, t_2, ..., t_n)
FOR i = 1 TO m
       L[i] \leftarrow 0. \longleftarrow load on machine i
       S[i] \leftarrow \emptyset. \longleftarrow jobs assigned to machine i
FOR j = 1 TO n
       i \leftarrow \operatorname{argmin}_{k} L[k]. \longleftarrow machine i has smallest load
       S[i] \leftarrow S[i] \cup \{j\}. \leftarrow assign job j to machine i
       L[i] \leftarrow L[i] + t_i. \leftarrow update load of machine i
RETURN S[1], S[2], ..., S[m].
```

Implementation. $O(n \log m)$ using a priority queue for loads L[k].

Theorem. [Graham 1966] Greedy algorithm is a 2-approximation.

- First worst-case analysis of an approximation algorithm.
- Need to compare resulting solution with optimal makespan L^* .

Lemma 1. For all k: the optimal makespan $L^* \ge t_k$.

Pf. Some machine must process the most time-consuming job. •

Lemma 2. The optimal makespan $L^* \geq \frac{1}{m} \sum_k t_k$. Pf.

- The total processing time is $\Sigma_k t_k$.
- One of m machines must do at least a 1/m fraction of total work.

Theorem. Greedy algorithm is a 2-approximation.

- Pf. Consider load L[i] of bottleneck machine i. \longleftarrow machine that ends up with highest load
 - Let j be last job scheduled on machine i.
 - When job j assigned to machine i, i had smallest load. Its load before assignment is $L[i] - t_j$; hence $L[i] - t_j \le L[k]$ for all $1 \le k \le m$.

Theorem. Greedy algorithm is a 2-approximation.

- Pf. Consider load L[i] of bottleneck machine i. \longleftarrow machine that ends up with highest load
 - Let j be last job scheduled on machine i.
 - When job j assigned to machine i, i had smallest load. Its load before assignment is $L[i] - t_j$; hence $L[i] - t_j \le L[k]$ for all $1 \le k \le m$.
 - Sum inequalities over all k and divide by m:

$$L[i] - t_j \leq \frac{1}{m} \sum_k L[k]$$

$$= \frac{1}{m} \sum_k t_k$$
 Lemma 2 \longrightarrow \leq L^* .

• Now,
$$L=L[i]=(L[i]-t_j)+t_j\leq 2L^*$$

$$\leq L^* \leq L^*$$
 above inequality Lemma 1

- Q. Is our analysis tight?
- A. Essentially yes.

Ex: m machines, first m (m-1) jobs have length 1, last job has length m.

list scheduling makespan = 19 = 2m - 1

- Q. Is our analysis tight?
- A. Essentially yes.

Ex: m machines, first m (m-1) jobs have length 1, last job has length m.

19

Load balancing: LPT rule

Longest processing time (LPT). Sort n jobs in decreasing order of processing times; then run list scheduling algorithm.

```
LPT-LIST-SCHEDULING (m, n, t_1, t_2, ..., t_n)
SORT jobs and renumber so that t_1 \ge t_2 \ge ... \ge t_n.
FOR i = 1 TO m
       L[i] \leftarrow 0. \longleftarrow load on machine i
       S[i] \leftarrow \emptyset. \longleftarrow jobs assigned to machine i
FOR j = 1 TO n
       i \leftarrow \operatorname{argmin}_{k} L[k]. \longleftarrow machine i has smallest load
       S[i] \leftarrow S[i] \cup \{j\}. \leftarrow assign job j to machine i
       L[i] \leftarrow L[i] + t_j. update load of machine i
RETURN S[1], S[2], ..., S[m].
```

Load balancing: LPT rule

Observation. If bottleneck machine *i* has only 1 job, then optimal.

Pf. Any solution must schedule that job. •

Lemma 3. If there are more than m jobs, $L^* \ge 2t_{m+1}$. Pf.

- Consider processing times of first m+1 jobs $t_1 \ge t_2 \ge ... \ge t_{m+1}$.
- Each takes at least t_{m+1} time.
- There are m+1 jobs and m machines, so by pigeonhole principle, at least one machine gets two jobs. \blacksquare

Theorem. LPT rule is a 3/2-approximation algorithm.

Pf. [similar to proof for list scheduling]

- Consider load L[i] of bottleneck machine i.
- Let j be last job scheduled on machine i. \longleftarrow assuming machine i has at least 2 jobs, we have $j \ge m+1$

$$L = L[i] = (L[i] - t_j) + t_j \leq \frac{3}{2} L^*$$
 as before $\longrightarrow \le L^* \leq 1/2 L^* \longleftarrow$ Lemma 3 (since $t_{m+1} \ge t_j$)

Load balancing: LPT rule

- Q. Is our 3/2 analysis tight?
- A. No.

Theorem. [Graham 1969] LPT rule is a 4/3-approximation.

- Pf. More sophisticated analysis of same algorithm.
- Q. Is Graham's 4/3 analysis tight?
- A. Essentially yes.

Ex.

- m machines
- n = 2m + 1 jobs
- 2 jobs of length m, m+1, ..., 2m-1 and one more job of length m.
- Then, $L/L^* = (4m-1)/(3m)$

Generalized load balancing

Input. Set of m machines M; set of n jobs J.

- Job $j \in J$ must run contiguously on an authorized machine in $M_j \subseteq M$.
- Job $j \in J$ has processing time t_i .
- Each machine can process at most one job at a time.

Def. Let J_i be the subset of jobs assigned to machine i.

The load of machine i is $L_i = \Sigma_j \subset_{J_i} t_j$.

Def. The makespan is the maximum load on any machine = $\max_i L_i$.

Generalized load balancing. Assign each job to an authorized machine to minimize makespan.

Generalized load balancing: integer linear program and relaxation

ILP formulation. x_{ij} = time machine i spends processing job j.

(IP) min
$$L$$

s. t. $\sum_{i} x_{ij} = t_{j}$ for all $j \in J$
 $\sum_{i} x_{ij} \le L$ for all $i \in M$
 $x_{ij} \in \{0, t_{j}\}$ for all $j \in J$ and $i \in M_{j}$
 $x_{ij} = 0$ for all $j \in J$ and $i \notin M_{j}$

LP relaxation.

$$\begin{array}{lll} (LP) \ \, \min & L \\ & \mathrm{s.\ t.} & \sum\limits_i x_{ij} &=& t_j & \mathrm{for\ all}\ j \in J \\ & & \sum\limits_i x_{ij} &\leq & L & \mathrm{for\ all}\ i \in M \\ & & x_{ij} &\geq & 0 & \mathrm{for\ all}\ j \in J \ \mathrm{and}\ i \in M_j \\ & & x_{ij} &=& 0 & \mathrm{for\ all}\ j \in J \ \mathrm{and}\ i \notin M_j \\ \end{array}$$

Generalized load balancing: lower bounds

- Lemma 1. The optimal makespan $L^* \geq \max_j t_j$.
- Pf. Some machine must process the most time-consuming job. •

- Lemma 2. Let L be optimal value to the LP. Then, optimal makespan $L^* \ge L$.
- Pf. LP has fewer constraints than ILP formulation.

Generalized load balancing: structure of LP solution

Lemma 3. Let x be solution to LP. Let G(x) be the graph with an edge between machine i and job j if $x_{ij} > 0$. Then G(x) is acyclic.

Pf. (deferred)

can transform x into another LP solution where G(x) is acyclic if LP solver doesn't return such an x

job machine

Generalized load balancing: rounding

Rounded solution. Find LP solution x where G(x) is a forest. Root forest G(x) at some arbitrary machine node r.

- If job j is a leaf node, assign j to its parent machine i.
- If job j is not a leaf node, assign j to any one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines. Pf. If job j is assigned to machine i, then $x_{ij} > 0$. LP solution can only assign positive value to authorized machines.

machine

Generalized load balancing: analysis

Lemma 5. If job j is a leaf node and machine i = parent(j), then $x_{ij} = t_j$. Pf.

- Since *i* is a leaf, $x_{ij} = 0$ for all $j \neq parent(i)$.
- LP constraint guarantees $\Sigma_i x_{ij} = t_i$.

Lemma 6. At most one non-leaf job is assigned to a machine.

Pf. The only possible non-leaf job assigned to machine i is parent(i).

() job

machine

Generalized load balancing: analysis

Theorem. Rounded solution is a 2-approximation. Pf.

- Let J(i) be the jobs assigned to machine i.
- By LEMMA 6, the load L_i on machine i has two components:

• Thus, the overall load $L_i \leq 2L^*$. •

Generalized load balancing: flow formulation

Flow formulation of *LP*.

$$\begin{array}{lll} \sum\limits_{i} x_{ij} &=& t_{j} & \text{for all } j \in J \\ \sum\limits_{j} x_{ij} &\leq& L & \text{for all } i \in M \\ x_{ij} &\geq& 0 & \text{for all } j \in J \text{ and } i \in M_{j} \\ x_{ij} &=& 0 & \text{for all } j \in J \text{ and } i \notin M_{j} \end{array}$$

Observation. Solution to feasible flow problem with value L are in 1-to-1 correspondence with LP solutions of value L.

Generalized load balancing: structure of solution

Lemma 3. Let (x, L) be solution to LP. Let G(x) be the graph with an edge from machine i to job j if $x_{ij} > 0$. We can find another solution (x', L) such that G(x') is acyclic.

Pf. Let C be a cycle in G(x).

- Augment flow along the cycle C. \leftarrow flow conservation maintained
- At least one edge from C is removed (and none are added).
- Repeat until G(x') is acyclic. •

Conclusions

Running time. The bottleneck operation in our 2-approximation is solving one LP with mn + 1 variables.

Remark. Can solve LP using flow techniques on a graph with m+n+1 nodes: given L, find feasible flow if it exists. Binary search to find L^* .

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]

- Job j takes t_{ij} time if processed on machine i.
- 2-approximation algorithm via LP rounding.
- If $P \neq NP$, then no no ρ -approximation exists for any $\rho < 3/2$.