Geometria da informação e algumas de suas aplicações

Fábio C. C. Meneghetti

IMECC (Unicamp)

31 de março de 2022

• uma variável aleatória X pode ser vista como uma variável que assume valores em $\mathcal{X} = \{x_1, \dots, x_{n+1}\}$ com probabilidades $p_i = P[X = x_i]$.

- uma variável aleatória X pode ser vista como uma variável que assume valores em $\mathcal{X} = \{x_1, \dots, x_{n+1}\}$ com probabilidades $p_i = P[X = x_i]$.
- necessariamente $p_1 + \cdots + p_{n+1} = 1$, isto é, a probabilidade total é 1.

- uma variável aleatória X pode ser vista como uma variável que assume valores em $\mathcal{X} = \{x_1, \dots, x_{n+1}\}$ com probabilidades $p_i = P[X = x_i]$.
- necessariamente $p_1 + \cdots + p_{n+1} = 1$, isto é, a probabilidade total é 1.
- ex: um dado honesto é uma variável aleatória que assume valores em $\{1, 2, 3, 4, 5, 6\}$, com probabilidades todas $p_i = 1/6$ para todo i. Esses valores poderiam ser diferentes se o dado fosse viciado.

- uma variável aleatória X pode ser vista como uma variável que assume valores em $\mathcal{X} = \{x_1, \dots, x_{n+1}\}$ com probabilidades $p_i = P[X = x_i]$.
- necessariamente $p_1+\cdots+p_{n+1}=1$, isto é, a probabilidade total é 1.
- ex: um dado honesto é uma variável aleatória que assume valores em $\{1,2,3,4,5,6\}$, com probabilidades todas $p_i=1/6$ para todo i. Esses valores poderiam ser diferentes se o dado fosse viciado.
- ullet o expaço que descreve todas as possíveis distribuições de variáveis aleatórias tomando n+1 valores é

$$\Delta^n=\left\{p=(p_1,\ldots,p_{n+1})\in\mathbb{R}^{n+1}\;\middle|\;0\leq p_i\leq 1,\;p_1+\cdots+p_{n+1}=1
ight\}$$

Esse espaço é chamado de simplexo padrão.

ullet o simplexo Δ^n pode ser parametrizado (por exemplo) pela função

$$\varphi(p_1,\ldots,p_n) = (p_1,\ldots,p_n,p_{n+1}), \qquad p_{n+1} = 1 - \sum_{i=1}^n p_i,$$

onde
$$\varphi \colon \Theta \to \Delta^n$$
 é definida sobre $\Theta = \{\theta = (p_1, \dots, p_n) \in \mathbb{R}^n \mid 0 \le p_1 + \dots + p_n \le 1\}$

• o simplexo Δ^n pode ser parametrizado (por exemplo) pela função

$$\varphi(p_1,\ldots,p_n)=(p_1,\ldots,p_n,p_{n+1}), \qquad p_{n+1}=1-\sum_{i=1}^n p_i,$$

onde $\varphi \colon \Theta \to \Delta^n$ é definida sobre $\Theta = \{ \theta = (p_1, \dots, p_n) \in \mathbb{R}^n \mid 0 \le p_1 + \dots + p_n \le 1 \}$

• queremos estudar a geometria natural desse espaço Δ^n

- queremos estudar a geometria natural desse espaço Δ^n
- ideia central da geometria da informação: introduzimos uma *métrica* Riemanniana chamada métrica da informação de Fisher, que fornece essa geometria

- ullet queremos estudar a *geometria* natural desse espaço Δ^n
- ideia central da geometria da informação: introduzimos uma métrica Riemanniana chamada métrica da informação de Fisher, que fornece essa geometria
- sejam $\mathcal{X} = \{x_1, \dots, x_n, x_{n+1}\}$ o espaço de X, $\varphi(\theta)$ uma parametrização de Δ^n e $p_{\theta}(x)$ a função massa de probabilidade de X dada por $p_{\theta}(x_i) = p_i$.

- ullet queremos estudar a *geometria* natural desse espaço Δ^n
- ideia central da geometria da informação: introduzimos uma métrica Riemanniana chamada métrica da informação de Fisher, que fornece essa geometria
- sejam $\mathcal{X} = \{x_1, \dots, x_n, x_{n+1}\}$ o espaço de X, $\varphi(\theta)$ uma parametrização de Δ^n e $p_{\theta}(x)$ a função massa de probabilidade de X dada por $p_{\theta}(x_i) = p_i$.
- a matriz da informação de Fisher com respeito a $\varphi(\theta)$ é a matriz $I(\theta) = [g_{ij}(\theta)]$ dada por

$$g_{ij}(\theta) = \sum_{i=1}^{n} p_{\theta}(x) \frac{\partial \log p_{\theta}(x)}{\partial \theta_{i}} \frac{\partial \log p_{\theta}(x)}{\partial \theta_{i}}$$

Por exemplo, se usarmos a parametrização

$$\varphi(p_1,\ldots,p_n) = (p_1,\ldots,p_n,p_{n+1}), \qquad p_{n+1} = 1 - \sum_{i=1}^n p_i,$$

já mostrada anteriormente, então obtemos a matriz de Fisher dada por $g_{ij}(p_1,\ldots,p_n)=rac{1}{p_{n+1}}+rac{\delta_{ij}}{p_i}$

Por exemplo, se usarmos a parametrização

$$\varphi(p_1,\ldots,p_n) = (p_1,\ldots,p_n,p_{n+1}), \qquad p_{n+1} = 1 - \sum_{i=1}^n p_i,$$

já mostrada anteriormente, então obtemos a matriz de Fisher dada por $g_{ij}(p_1,\ldots,p_n)=\frac{1}{p_{n+1}}+\frac{\delta_{ij}}{p_i}$

$$I(\theta) = \begin{bmatrix} \frac{1}{p_1} + \frac{1}{p_{n+1}} & \frac{1}{p_{n+1}} & \cdots & \frac{1}{p_{n+1}} \\ \frac{1}{p_{n+1}} & \frac{1}{p_2} + \frac{1}{p_{n+1}} & \cdots & \frac{1}{p_{n+1}} \\ \vdots & \vdots & \ddots & \frac{1}{p_{n+1}} \\ \frac{1}{p_{n+1}} & \frac{1}{p_{n+1}} & \cdots & \frac{1}{p_n} + \frac{1}{p_{n+1}} \end{bmatrix}$$

• isto é, $I(\theta) = \frac{1}{p_{n+1}} I_{n \times n} + \operatorname{diag}(\frac{1}{p_1}, \dots, \frac{1}{p_n})$

Para quê serve essa métrica?

• uma métrica Riemanniana, como a métrica de Fisher, nos permite definir produto interno e norma:

$$\langle v, w \rangle_{I(\theta)} = v^{\top} I(\theta) w, \qquad \|v\|_{I(\theta)} = \sqrt{v^{\top} I(\theta) v}$$

para vetores tangentes, de um jeito que é invariante por reparametrização.

Para quê serve essa métrica?

• uma métrica Riemanniana, como a métrica de Fisher, nos permite definir produto interno e norma:

$$\langle v, w \rangle_{I(\theta)} = v^{\top} I(\theta) w, \qquad \|v\|_{I(\theta)} = \sqrt{v^{\top} I(\theta) v}$$

para vetores tangentes, de um jeito que é invariante por reparametrização.

Com isso, conseguimos também falar de ângulos:

$$\angle(v, w) = \arccos \frac{\langle v, w \rangle_{I(\theta)}}{\|v\|_{I(\theta)} \|w\|_{I(\theta)}}.$$

Para quê serve essa métrica?

• uma métrica Riemanniana, como a métrica de Fisher, nos permite definir produto interno e norma:

$$\langle v, w \rangle_{I(\theta)} = v^{\top} I(\theta) w, \qquad \|v\|_{I(\theta)} = \sqrt{v^{\top} I(\theta) v}$$

para vetores tangentes, de um jeito que é invariante por reparametrização.

Com isso, conseguimos também falar de ângulos:

$$\angle(v, w) = \arccos \frac{\langle v, w \rangle_{I(\theta)}}{\|v\|_{I(\theta)} \|w\|_{I(\theta)}}.$$

 Com todas essas propriedades, podemos também calcular o comprimento de uma curva na métrica da informação! o comprimento de uma curva $\gamma \colon [0,1] \to \Delta^n$ é (assim como no espaço euclideano) dado pela integral do tamanho vetor velocidade:

000000

$$\ell(\gamma) = \int_0^1 \left\| \gamma'(t) \right\|_{I(\theta(t))} \mathsf{d}t$$

• o comprimento de uma curva $\gamma \colon [0,1] \to \Delta^n$ é (assim como no espaço euclideano) dado pela integral do tamanho vetor velocidade:

$$\ell(\gamma) = \int_0^1 \left\| \gamma'(t) \right\|_{I(\theta(t))} \mathrm{d}t$$

• dados dois pontos $p=(p_1,\ldots,p_{n+1})$ e $q=(q_1,\ldots,q_{n+1})$ em Δ^n , existem diversas curvas ligando p e q. Aquela de menor comprimento é chamada o segmento de geodésica ligando p e q. As geodésicas de uma variedade dão noção de "linha reta" naquela geometria

• quando "enchemos" esse triângulo para virar um quadrante (octante) de esfera, através do mapa $z_i = 2\sqrt{p_i}$, a métrica torna-se a métrica esférica, cuja geometria é bem conhecida

• quando "enchemos" esse triângulo para virar um quadrante (octante) de esfera, através do mapa $z_i = 2\sqrt{p_i}$, a métrica torna-se a métrica esférica, cuja geometria é bem conhecida

• na geometria esférica, as geodésicas são os grandes círculos e seu comprimento é dado por 2α (o dobro do ângulo entre os dois vetores)

• tendo a geometria de Fisher, podemos calcular a distância entre dois pontos $p,q\in\Delta^n$ como o comprimento da geodésica ligando esses pontos! No caso do simplexo, podemos calcular essa distância:

$$d_{\mathsf{FR}}(p,q) = 2 \arccos \left(\sum_{i=1}^{n+1} \sqrt{p_i q_i} \right)$$

• tendo a geometria de Fisher, podemos calcular a distância entre dois pontos $p,q\in\Delta^n$ como o comprimento da geodésica ligando esses pontos! No caso do simplexo, podemos calcular essa distância:

$$d_{\mathsf{FR}}(p,q) = 2 \arccos \left(\sum_{i=1}^{n+1} \sqrt{p_i q_i} \right)$$

 essa distância é chamada distância de Fisher-Rao, e é a distância natural da geometria de Fisher.

• uma <u>estatística suficiente</u> é um mapa $\kappa\colon \mathcal{X}\to \mathcal{Y}$ que preserva a estrutura estatística, e satisfaz

$$p_{\theta}(x) = \tilde{p}_{\theta}(k(x)) \cdot h(x)$$

• uma estatística suficiente é um mapa $\kappa \colon \mathcal{X} \to \mathcal{Y}$ que preserva a estrutura estatística, e satisfaz

$$p_{\theta}(x) = \tilde{p}_{\theta}(k(x)) \cdot h(x)$$

a métrica de Fisher é invariante por estatísticas suficientes!

• uma estatística suficiente é um mapa $\kappa\colon \mathcal{X} \to \mathcal{Y}$ que preserva a estrutura estatística, e satisfaz

$$p_{\theta}(x) = \tilde{p}_{\theta}(k(x)) \cdot h(x)$$

- a métrica de Fisher é invariante por estatísticas suficientes!
- <u>Teorema de Chentsov</u>: a métrica de Fisher é a única métrica Riemanniana (a menos de uma constante) invariante por estatísticas suficientes!

• uma <u>estatística suficiente</u> é um mapa $\kappa\colon \mathcal{X} \to \mathcal{Y}$ que preserva a estrutura estatística, e satisfaz

$$p_{\theta}(x) = \tilde{p}_{\theta}(k(x)) \cdot h(x)$$

- a métrica de Fisher é invariante por estatísticas suficientes!
- <u>Teorema de Chentsov</u>: a métrica de Fisher é a única métrica Riemanniana (a menos de uma constante) invariante por estatísticas suficientes!
 - este teorema nos mostra que, se queremos estudar a estrutura estatística dos espaços de probabilidades, a métrica de Fisher é a escolha natural

• um estimador do parâmetro θ é uma estimativa $\hat{\theta}(X)$ de θ usado, na ausência de conhecimento deste

- um estimador do parâmetro θ é uma estimativa $\hat{\theta}(X)$ de θ usado, na ausência de conhecimento deste
- dizemos que um estimador é *não-enviesado* se $\mathsf{E}[\hat{ heta}(X) heta] = 0$

- um estimador do parâmetro θ é uma estimativa $\hat{\theta}(X)$ de θ usado, na ausência de conhecimento deste
- ullet dizemos que um estimador é *não-enviesado* se $\mathsf{E}[\hat{ heta}(X) heta] = 0$
- <u>Limitante de Cramér-Rao</u>: a informação de Fisher (invertida) é um limitante inferior para a variância de um estimador não-enviesado:

$$V(\hat{\theta}) \ge I(\theta)^{-1}$$

- um estimador do parâmetro θ é uma estimativa $\hat{\theta}(X)$ de θ usado, na ausência de conhecimento deste
- ullet dizemos que um estimador é *não-enviesado* se $\mathsf{E}[\hat{ heta}(X) heta] = 0$
- <u>Limitante de Cramér-Rao</u>: a informação de Fisher (invertida) é um limitante inferior para a variância de um estimador não-enviesado:

$$V(\hat{\theta}) \geq I(\theta)^{-1}$$

• isso se generaliza para o caso multiparâmetros, trocando variância por matriz de covariância, e \geq pela ordem de Loewner ($A \geq B$ se A - B é positiva definida)

Distribuições normais

• toda a construção que fizemos também pode ser extendida para distribuições de probabilidade contínuas.

0000

Distribuições normais

- toda a construção que fizemos também pode ser extendida para distribuições de probabilidade contínuas.
- um dos principais exemplos é a família de distribuições normais (ou gaussianas), com média $\mu \in \mathbb{R}$ e desvio padrão $\sigma > 0$:

$$g_{\mu,\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Distribuições normais

- toda a construção que fizemos também pode ser extendida para distribuições de probabilidade contínuas.
- um dos principais exemplos é a família de distribuições normais (ou gaussianas), com média $\mu \in \mathbb{R}$ e desvio padrão $\sigma > 0$:

$$g_{\mu,\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

o espaço de parâmetros é o meio-plano

$$\mathbb{R} \times \mathbb{R}_+ = \{(\mu, \sigma) : \mu \in \mathbb{R}, \sigma > 0\}$$

• denotando os parâmetros por $\mu=\theta_1$ e $\sigma=\theta_2$, a métrica de Fisher é a matriz 2×2 dada por

$$g_{ij}(\mu, \sigma) = \int_{-\infty}^{\infty} g_{\mu, \sigma}(x) \frac{\partial \log g_{\mu, \sigma}(x)}{\partial \theta_i} \frac{\partial \log g_{\mu, \sigma}(x)}{\partial \theta_i} dx$$

• denotando os parâmetros por $\mu=\theta_1$ e $\sigma=\theta_2$, a métrica de Fisher é a matriz 2×2 dada por

$$g_{ij}(\mu, \sigma) = \int_{-\infty}^{\infty} g_{\mu, \sigma}(x) \frac{\partial \log g_{\mu, \sigma}(x)}{\partial \theta_i} \frac{\partial \log g_{\mu, \sigma}(x)}{\partial \theta_j} dx$$

• fazendo as contas, ela é dada por

$$I(\theta) = \begin{bmatrix} rac{1}{\sigma^2} & 0\\ 0 & rac{1}{2\sigma^2} \end{bmatrix}$$

• denotando os parâmetros por $\mu=\theta_1$ e $\sigma=\theta_2$, a métrica de Fisher é a matriz 2×2 dada por

$$g_{ij}(\mu, \sigma) = \int_{-\infty}^{\infty} g_{\mu, \sigma}(x) \frac{\partial \log g_{\mu, \sigma}(x)}{\partial \theta_i} \frac{\partial \log g_{\mu, \sigma}(x)}{\partial \theta_j} dx$$

• fazendo as contas, ela é dada por

$$I(\theta) = \begin{bmatrix} rac{1}{\sigma^2} & 0\\ 0 & rac{1}{2\sigma^2} \end{bmatrix}$$

 a geometria definida por essa métrica é chamada de geometria hiperbólica

Fig. 3. Elements to compute the distance $d_H(P, Q)$, in case the points $P, Q \in \mathbb{H}^2$ are vertically aligned (left) or not (right).

Fig. 4. Equidistant pairs in Fisher metric: $d_H(A, B) = d_F(C, D) = 2.37687$, where A = (1.5, 0.75), B = (3.5, 0.75) and C = (0.5, 1.5), D = (4.5, 1.5).

Divergência de Kullback-Leibler

 uma importante medida de dissimilaridade entre distribuições é a divergêngia de Kullback-Leibler (também chamada entropia relativa), dada por

$$D_{\mathsf{KL}}(p\|q) = \int_{\mathcal{X}} p(x) \log \frac{p(x)}{q(x)} \, \mathrm{d}x$$

no caso contínuo,

$$D_{\mathsf{KL}}(p\|q) = \int_{\mathcal{X}} p(x) \log \frac{p(x)}{q(x)} \, \mathrm{d}x$$

no caso contínuo, e

dada por

$$D_{\mathsf{KL}}(p\|q) = \sum_{i=1}^{n+1} p_i \log \frac{p_i}{q_i}$$

no caso discreto.

Divergências e aplicações

00000

• na teoria da informação, a entropia relativa D_{KL} nos diz a quantidade média de símbolos binários (0's ou 1's) necessários para codificar p usando um código otimizado para codificar q

- na teoria da informação, a entropia relativa D_{KL} nos diz a quantidade média de símbolos binários (0's ou 1's) necessários para codificar p usando um código otimizado para codificar q
- ullet D_{KL} não é uma distância (é assimétrica), mas satisfaz D_{KL} ≥ 0

Divergências e aplicações

00000

- na teoria da informação, a entropia relativa D_{KL} nos diz a quantidade média de símbolos binários (0's ou 1's) necessários para codificar p usando um código otimizado para codificar q
- ullet D_{KL} não é uma distância (é assimétrica), mas satisfaz D_{KL} ≥ 0
- existe relação com a métrica de Fisher:

$$g_{ij}(heta) = \left. rac{\partial^2 \mathsf{D}_{\mathsf{KL}}(p_{ heta} \| p_{\eta})}{\partial \eta_i \partial \eta_j}
ight|_{\eta = heta}$$

- na teoria da informação, a entropia relativa D_{KL} nos diz a quantidade média de símbolos binários (0's ou 1's) necessários para codificar p usando um código otimizado para codificar q
- ullet D_{KL} não é uma distância (é assimétrica), mas satisfaz D_{KL} ≥ 0
- existe relação com a métrica de Fisher:

$$g_{ij}(\theta) = \left. rac{\partial^2 \mathsf{D}_{\mathsf{KL}}(p_{ heta} \| p_{\eta})}{\partial \eta_i \partial \eta_j}
ight|_{\eta = heta}$$

 essencialmente, isso significa que a métrica de Fisher fornece uma aproximação de ordem 2 para a entropia relativa

uma importante aplicação é o método do gradiente natural

- uma importante aplicação é o método do gradiente natural
- no problema de aprendizado temos

- uma importante aplicação é o método do gradiente natural
- no problema de aprendizado temos
 - um conjunto de dados de treinamento $\{(x_i, y_i)\}_{i=1}^m$

- uma importante aplicação é o método do gradiente natural
- no problema de aprendizado temos
 - um conjunto de dados de treinamento $\{(x_i, y_i)\}_{i=1}^m$
 - uma família parametrizada de funções $f_{\theta}(x) = y$ (geralmente dadas por uma rede neural)

- uma importante aplicação é o método do gradiente natural
- no problema de aprendizado temos
 - um conjunto de dados de treinamento $\{(x_i, y_i)\}_{i=1}^m$
 - uma família parametrizada de funções $f_{\theta}(x) = y$ (geralmente dadas por uma rede neural)
- tomamos uma função perda L, e consideramos o problema de encontrar θ que minimize $J(\theta) = \frac{1}{m} \sum_i L(f_{\theta}(x_i), y_i)$

- uma importante aplicação é o método do gradiente natural
- no problema de aprendizado temos
 - um conjunto de dados de treinamento $\{(x_i, y_i)\}_{i=1}^m$
 - uma família parametrizada de funções $f_{\theta}(x) = y$ (geralmente dadas por uma rede neural)
- tomamos uma função perda L, e consideramos o problema de encontrar θ que minimize $J(\theta) = \frac{1}{m} \sum_{i} L(f_{\theta}(x_{i}), y_{i})$
 - isso costuma ser feito através de um método iterativo, usando a descida por gradiente:

$$\theta_{N} = \theta_{N-1} - \nabla_{\theta} J(\theta_{N-1})$$

ullet em geral, $\{f_{ heta}\}$ forma uma variedade estatística parametrizada por heta

- ullet em geral, $\{f_{ heta}\}$ forma uma variedade estatística parametrizada por heta
- podemos, então, substituir o gradiente usual $\nabla_{\theta}J$ pelo *gradiente* natural que considera a estrutura geométrica estatística:

$$\tilde{\nabla}_{\theta} J(\theta) := I(\theta)^{-1} \nabla_{\theta} J(\theta)$$

- ullet em geral, $\{f_{ heta}\}$ forma uma variedade estatística parametrizada por heta
- podemos, então, substituir o gradiente usual $\nabla_{\theta}J$ pelo *gradiente* natural que considera a estrutura geométrica estatística:

$$\tilde{\nabla}_{\theta} J(\theta) := I(\theta)^{-1} \nabla_{\theta} J(\theta)$$

 de fato, o gradiente natural funciona de forma eficiente, e aparenta evitar o "efeito platô" que ocorre com o gradiente usual

- ullet em geral, $\{f_{ heta}\}$ forma uma variedade estatística parametrizada por heta
- podemos, então, substituir o gradiente usual $\nabla_{\theta}J$ pelo *gradiente* natural que considera a estrutura geométrica estatística:

$$\tilde{\nabla}_{\theta} J(\theta) := I(\theta)^{-1} \nabla_{\theta} J(\theta)$$

- de fato, o gradiente natural funciona de forma eficiente, e aparenta evitar o "efeito platô" que ocorre com o gradiente usual
- Referência: Shun-ichi Amari. "Natural Gradient Works Efficiently in Learning". Em: Neural Computation 10.2 (1998)

- AMARI, S. Information Geometry and Its Applications. Tokyo: Springer Japan, 2016. v. 194
- CALIN, O.; UDRIȘTE, C. Geometric Modeling in Probability and Statistics. Cham: Springer International Publishing, 2014.
- COSTA, S. I. R.; SANTOS, S. A.; STRAPASSON, J. E. Fisher information distance: A geometrical reading. Discrete Applied Mathematics, v. 197, p. 59–69, 2015.
- NIELSEN, F. An Elementary Introduction to Information Geometry. Entropy, v. 22, n. 10, p. 1100, out. 2020.