Simulation Result For Three-Level Intercept Model With Low Prevalence

The mean prevalence for this simulation is 12 %

Shafayet Khan Shafee

 $05 \ {\rm September} \ 2023$

Histograms for $log(\widehat{MOR})$

Figure 1: Hospitals = 20, Doctors = 10, Patients = 5

Figure 2: Hospitals = 40, Doctors = 20, Patients = 10

Simulation Result Table

								MOR_1						MOR_2						
L^1	M^2	N^3	$\widehat{eta_0}$	$\widehat{eta_1}$	$\widehat{eta_2}$	$\widehat{\sigma_{u_{jk}}^2}$	$\widehat{\sigma_{v_k}^2}$	\widehat{MOR}_1	$\begin{aligned} & \text{Rel.} \\ & Bias_1 \\ & (\%) \end{aligned}$	$\widehat{SE_1}_{MO}$	$\widehat{Sim}.$ $R \widehat{\widehat{SE}_1}_{MO}$	$Ratio_1^{\ 4}$	CI- $coverage$ $(95%)$	$e_1 \widehat{MOR}_2$	${\rm Rel.} \\ Bias_2 \\ (\%)$	$\widehat{SE_2}_{MO}$	$\stackrel{ ext{Sim.}}{R \widehat{SE_2}}_{MC}$	$Ratio_2^{\ 4}$	CI- $coverage$ $(95%)$	Model Con- ver- gence
20	10	5	-4.11	1.74	0.69	1.94	2.20	3.83	-0.70	1.33	1.35	0.99	0.94	7.18	-5.07	1.39	1.42	0.98	0.89	0.98
40	20	10	-4.08	1.74	0.67	1.84	2.27	3.64	-5.42	1.09	1.08	1.00	0.88	6.95	-8.12	1.16	1.18	0.99	0.83	1.00

Note:

$$^{4} \text{ Ratio} = \frac{\widehat{SE}_{MOR}}{Simulation \ \widehat{SE}_{MOR}}$$
 * The mean prevalence for this simulation is 12%

 $^{^{1}}$ Number of Hospital

² Number of Doctors

³ Number of patients

 $^{^\}dagger$ True MOR_1 is 3.85

[†] True MOR_2 is 7.56 § True $\sigma^2_{u_{jk}}$ is 2 ¶ True $\sigma^2_{v_k}$ is 2.5 ** True Values of $\beta_0=-4.1,\,\beta_1=1.75,\,\beta_2=0.67$