第九章 信号的运算与处理电路

9.1 求题 9.1 图所示电路中的 u_{01} 、 u_{02} 和 u_o 。

解: A₁构成反相比例电路

$$u_{01} = -\frac{100}{10}u_L = -10u_I = -10u_I$$

A2构成同相比例电路

$$u_{02} = (1 + \frac{100}{10})u_I = 11u_I$$

$$u_0 = u_{01} - u_{02} = -21u_I$$

9.2 试证明题 9.2 图所示电路的输出电压 $u_o = (1 + \frac{R_1}{R_2})(u_{I2} - u_{I1})$ 。

题9.2图

解: A₁构成同相比例电路

$$u_{01} = (1 + \frac{R_2}{R_1})u_{I1}$$

由虚短可得 u₂.=u₁₂

由虚断可得
$$\frac{u_{01}-u_2}{R_2} = \frac{u_{2-}-u_0}{R_1}$$

将前二式代入上式可得

$$u_0 = (1 + \frac{R_1}{R_2})(u_{I2} - u_{I1})$$

9.3 求题 9.3 图所示运算电路的输入输出关系。

解 A1 构成反相比例电路, A2 则构成反相加法电路

$$u_{01} = -\frac{100}{10}u_{I1} = -10u_{I1}$$

$$u_{0} = -(\frac{10}{10}u_{01} + \frac{10}{5}u_{I2}) = 10u_{I1} - 2u_{I2}$$

9.4 求题 9.4 图所示运算电路的输出电压。设 $R_1=R_2=10 k \Omega$, $R_3=R_F=20 k \Omega$ 。解:由虚断可得

$$u_{+} = \frac{\frac{u_{/2}}{R_{2}} + \frac{u_{/3}}{R_{3}}}{\frac{1}{R_{2}} + \frac{1}{R_{3}}} = \frac{R_{3}u_{/2} + R_{2}u_{/3}}{R_{2} + R_{3}} = \frac{2u_{/2} + u_{/3}}{3}$$

$$u_{13} = \frac{R_{3}u_{/2} + R_{2}u_{/3}}{R_{3}} = \frac{R_{3}u_{/2} + R_{2}u_{/3}}{R_{2} + R_{3}} = \frac{2u_{/2} + u_{/3}}{3}$$

$$u_{13} = \frac{R_{3}u_{/2} + R_{3}u_{/3}}{R_{3}} = \frac{R_{3}u_{/2} + R_{2}u_{/3}}{R_{3}} = \frac{R_{3}u_{/2} + R_{3}u_{/3}}{R_{3}} = \frac{R_{3}u_{/2} + R_{3}u$$

$$u - = \frac{R_F u_{I1} + R_1 u_0}{R_1 + R_E} = \frac{2u_{I1} + u_0}{3}$$

由虚短 u+=u. 得

$$u_0 = -2u_{11} + 2u_{12} + u_{13}$$

9.5 用二个运放设计一个实现 $u_o = 3u_{I1} - 5u_{I2} + 8u_{I3}$ 的运算电路,画出电路图,标出各电阻值,电阻的阻值限在(1~500) $k\Omega$ 之间。

解:运算可通过二级反相加法电路实现,如图所示

$$u_{01} = -R_{F1}(\frac{u_I}{R_1} + \frac{u_{I3}}{R_3})$$
,

$$u_0 = -R_{F2}(\frac{u_{I2}}{R_2} + \frac{u_{01}}{R_4}) = \frac{R_{F1}R_{F2}}{R_1R_4}u_{I1} - \frac{R_{F2}}{R_2}u_{I2} + \frac{R_{F1}R_{F2}}{R_3R_4}u_{I3}$$

与要求比较得 $\frac{R_{F2}}{R_2}$ = 5 , 取 R_{F2} =100k Ω , R_2 =20k Ω

又取 $R_4=R_{F2}=100k\Omega$, 则

$$\frac{R_{F1}}{R_1} = 3$$
, $\frac{R_{F1}}{R_3} = 8$

取 $R_{\text{F1}}\text{=}240\,k\,\Omega$,则 $R_{\text{1}}\text{=}80\,k\,\Omega$, $R_{\text{3}}\text{=}30\,k\,\Omega$ 。

这样,除 R_1 不是标称电阻外, R_2 、 R_3 、 R_{F1} 、 R_{F2} 均是标称电阻。平衡电阻

$$R_5 = R_1 ||R_3||R_{F1} = 80||30||240 = 30||60 = 20 \text{ k}\ \Omega$$

$$R_6 = R_2 ||R_4||R_{F2} = 20||100||100 = 20||50 = 14.3 \text{ k}\ \Omega$$

9.6 求题 9.6 图所示电路的输出电压。

解:两运放均接成负反馈,故工作在线性工作区。由虚短可得

$$u_I=u_{AB}=u_{R1}+u_{R2}$$

由虚断可得

$$u_0=2u_{R1}+2u_{R2}=2(u_{R1}+u_{R2})=2u_{I}$$

9.7 求题 9.7 图所示电路中各运放输出电压的表示式。

解: A1 为反相比例电路

$$u_{o1} = -\frac{R_{F1}}{R_1} u_{F1}$$

A₂为同相比例电路

$$u_{o2} = (1 + \frac{R_{F2}}{R_3})u_{I2}$$

A₃为减法电路

$$u_{o3} = \frac{R_6}{R_5} (u_{o2} - u_{o1}) = \frac{R_6}{R_5} \left[(1 + \frac{R_{F2}}{R_3}) u_{I2} + \frac{R_{F1}}{R_1} u_{I1} \right]$$

9.8 求题 9.8 图所示电路中的 u_{01} 、 u_{02} 和 u_{0} 。设 R_1 = R_2 = $10 k \Omega$, R_3 = R_4 = $5k \Omega$ 。

解: A_1 、 A_2 均成电压跟随器,因此, $u_{01}=u_{11},u_{02}=u_{12}$ 同相输入端虚断,由弥漫定理可得

$$u_{A} = \frac{\frac{u_{I1}}{R_{1}} + \frac{u_{I2}}{R_{2}}}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3} + R_{4}}} = \frac{u_{I1} + u_{I2}}{3}$$

由虚短和虚断得

$$u_0 = u_+ = \frac{R_4}{R_3 + R_4} u_A = \frac{u_{I1} + u_{I2}}{6}$$

9.9 求题 9.9 图所示电路输出电压与输入电压的关系式。

解:(a)图电路是一积分加法电路,由虚短可得 u=0

由虚断得

$$\begin{split} &\frac{u_{I1}}{10 \times 10^{3}} + \frac{u_{I2}}{5 \times 10^{3}} = i_{f} = C \frac{du_{C}}{dt} = -C \frac{du_{o}}{dt} = -0.1 \times 10^{-6} \frac{du_{0}}{dt} \\ &- \frac{du_{0}}{dt} = 1000u_{I1} + 2000u_{I2} \\ &u_{o} = -1000 \int (u_{I1} + 2u_{I2}) dt \, \mathrm{V} \end{split}$$

(b) 图是一微分电路,由虚短和虚断可得

$$i_C = C \frac{du_I}{dt} = i_f = \frac{-u_0}{R_F}$$

$$u_0 = -R_F C \frac{du_I}{dt} = -20 \times 10^3 \times 0.1 \times 10^{-6} \frac{du_I}{dt} = -2 \times 10^{-3} \frac{du_I}{dt}$$

9.10 题 9.10 图所示电路为一波形转换电路,输入信号为矩形波,设电容的初始电压为零,试计算 t=0、10s、20s 时 u_{01} 和 u_{0} 的值,并画出 u_{01} 和 u_{0} 的波形。

解: A₁构成积分电路

A2构成反相加法电路

$$u_0 = -10(\frac{u_{01}}{10} + \frac{-1}{20}) = 0.5 - u_{01}$$

$$t=0$$
, $u_{01}=u_{c}=0$, $u_{o}=0.5V$

$$0 \le t \le 10s$$
, $u_t = -1V$, $\partial u_{01} = t + u_{01}(0) = t$ V
 $u_o = 0.5 - u_{o1} = (0.5 - t)V$
 $t = 10s$, $u_{01} = 10V$, $u_0 = -9.5V$
 $10 \le t \le 20s$, $u_t = 1V$, $u_{01} = -(t - 10) + u_{01}(0) = -t + 20V$
 $u_0 = 0.5 - (-t + 20) = (t - 19.5)V$

t=20s, $u_{01}=-20+20=0$, $u_{0}=0.5V$

各输出波形如图形示。

9.11 在题 9.11 图所示电路中, T_1 、 T_2 、 T_3 为相同的三极管,输入信号大于零,求输出电压 u_0 ,说明此电路完成何种运算功能。

解: A₁、A₂构成对数运算电路, A₃成反相加法电路, A₄构成指数运算电路,

$$u_{01} = -U_T \ln \frac{u_{I1}}{RI_S}$$
 $u_{02} = -U_T \ln \frac{U_{I2}}{RI_S}$

$$u_{03} = -(u_{01} + u_{02}) = U_T \ln \frac{U_{I1}U_{I2}}{R^2 I_S^2}$$

$$u_0 = -RI_S e^{u_{o3}/U_T} = -RI_S \frac{U_\Pi U_{I2}}{R^2 I_S^2} = -\frac{U_\Pi U_{I2}}{RI_S}$$

由于输入信号大于零,故是一反相乘法电路。

9.12 题 9.12 图为同相除法电路,试写出输出电压与输入电压的函数关系,并分析电路正常工作时,输入电压极性和 k 值正负的要求。

解: 乘法器输出 $u_{01}=ku_{12}u_{0}$,

而 $u_{-}=\frac{R_{2}}{R_{2}+R_{3}}u_{01}=u_{/1}$ 故 $u_{0}=\frac{u_{o1}}{ku_{/2}}=(\frac{R_{2}+R_{3}}{kR_{2}})\frac{u_{/1}}{u_{/2}}$ 题9. 12图

为使运放正常工作,引入的反馈应是负反馈,这要求 u_{01} 与 u_0 的极性相同,即要求 $ku_{12}>0$,因此,当输入电压 $u_{12}>0$ 时,应选用同相乘法器,而当 $u_{12}<0$ 时,应选用反相乘法器

9.13 求题 9.13 图所示电路的输出电压 u_o 。解: $u_{01}=k_1u_o^2$, $u_{02}=k_1k_2u_o^3$, 若引入的反馈是负反馈,即 u_{02} 与 u_0 极性相同, $k_1k_2>0$,则

$$u_{-} = \frac{R_{2}u_{1} + R_{1}u_{02}}{R_{1} + R_{2}} = u_{+} = 0$$

由此得:

$$u_0 = -(\frac{R_2}{R_1} \frac{u_I}{K_1 K_2})^{\frac{1}{3}}$$

9.14 试判断题 9.14 图中各电路是什么类型的滤波器(是低通、高通、带通、还是带阻滤波器,是有源还是无源滤波,几阶滤波?)。

题9.13图

题9.14图

解:(a)是二阶低通滤波器,(b)是双T带阻滤波器,(c)是一阶高通滤波器,(d) 是二阶带通滤波器。

9.15 题 9.15 图所示电路为一个一阶低通滤波电路。试推导电路的电压放大倍数,并 求出-3dB 截止频率。

解:这是一阶有源低通滤波器,截止频率即-3dB 频率

$$f_0 = \frac{1}{2\pi RC} = \frac{1}{2\times 3.14 \times 10 \times 10^3 \times 0.015 \times 10^{-6}} = 1.06 \times 10^3 \, Hz$$

$$\dot{U}_{+} = \frac{-j\frac{1}{\omega C}}{R - j\frac{1}{\omega C}}\dot{U}i = \frac{\dot{U}_{i}}{1 + j\omega RC} = \frac{\dot{U}_{i}}{1 + j\frac{f}{f_{0}}}$$

$$\dot{U}_0 = 3\dot{U}_+ = \frac{3}{1 + if/f}\dot{U}_i$$

$$A_u = \frac{U_o}{U_i} = \frac{3}{1 + jf/f_o}, \qquad A_u = \frac{3}{\sqrt{1 + (f/f_0)^2}}$$

题9.15图

- 9.16 在图 9.2.4 所示的二阶低通滤波器中,设 $R=R_1=10$ $L\Omega$, $C=0.1\mu F$, $R_F=10L\Omega$ 。
 - (1) 计算通带截止频率 允和通带电压放大倍数 Аш;
 - (2) 示意画出电压放大倍数的对数幅频特性。

解: (1) 特征频率

$$f_0 = \frac{1}{2\pi RC} = \frac{1}{2\times 3.14\times 10\times 10^3 \times 0.1\times 10^{-6}} = 159Hz$$

通带电压放大倍数

$$A_{up} = A_0 = 1 + \frac{R_F}{R_1} = 1 + \frac{10}{10} = 2$$

电路的等效品质因数 $Q = \frac{1}{3 - A_0} = 1$,由 $\dot{A}_u = \frac{A_{up}}{1 - (\frac{f}{f})^2 + j\frac{1}{Q}\frac{f}{f}}$ 得

$$A_{u}(f) = \frac{2}{1 - (\frac{f}{f_0})^2 + j\frac{f}{f_0}}$$

设-3dB 截止频率 $f_p = kf_0$,则有

$$\left|1 - k^2 + jk\right| = \sqrt{2}$$

由此解得 k=1.27, 故: $f_p=1.27\times159=202$ Hz

(2) 在 f=f₀处, A_u=A_{up}=2, 增益为 20 lg|A_u|=6dB

在10f₀处, 增益为-40+6=-34dB

在 100f₀处 增益为-80+6=-74dB

对数幅频特性曲线如图所示,曲线以40dB/十倍频的速度下降。

9.17 在题 9.17 图所示电路中, $u_j = 6 \sin tV$,试画出电路的电压传输特性和输出电压 波形。

解: (a) u_i >4V 时, u_o =6V, u_i <4V 时, u_o =-6V,电压传输特性和输出电压波形如图所示。

(b)
$$u_{-}=0$$
, $u_{+}=\frac{\frac{u_{f}}{5}+\frac{4}{10}}{\frac{1}{5}+\frac{1}{10}}=\frac{2}{3}u_{f}+\frac{4}{3}=0$ 时,输出跳变,因此门限电压 $U_{T}=-2V_{o}$

由于输入端接在同相端,因此,当 $u_i>U_T$ 时, $u_0=+6V$, $u_I<U_T$ 时, $u_0=-6V$,电压传输特性和输出电压波形如图所示。

9.18 在题 9.18 图所示电路中,设 $u_I=6\sin\omega tV$,求门限电压和回差电压,并画出电 路的电压传输特性和输出电压波形。

$$\mathbb{H}: (a) \ u_{+} = \frac{15}{15+30} u_{0} = \frac{1}{3} \times (\pm 6) = \pm 2V$$

门限电压 $U_{71}=2V, U_{72}=-2V$,回差电压 $\Delta U_{7}=4V$,电压传输特性和输出电压波形如图(a) 所示。

(b) 由叠加定理可得

$$u_{+} = \frac{30}{30 + 15} u_{I} + \frac{15}{30 + 15} u_{0} = \frac{2}{3} u_{I} + \frac{1}{3} u_{0} = \frac{2}{3} u_{I} \pm 2$$

门限电压满足方程

$$\frac{2}{3}U_T \pm 2 = 1$$

$$U_T = \frac{3}{2} \pm 3$$

门限电压 $U_{r_1}=4.5V$, $U_{r_2}=-1.5V$,回差电压 $\Delta U_T=6V$,传输特性和输出波形如图(b)所示。

9.19 在题 9.19 图所示的窗口比较器中,设 $U_A=10V$, $U_B=-10V$, $u_I=15\sin\omega tV$,二极管的正向压降为 0.7V,运放的最大输出电压 $U_{opp}=\pm 12V$,试画出输出电压的波形。

解: $u_I>U_A=10V$ 时, A_1 输出 12V, A_2 输出-12V, D_1 导通, D_2 截止, $u_0=12-0.7=11.3V$, $u_I<U_B=-10V$ 时, A_1 输出-12V, A_2 输出 12V, D_1 截止, D_2 导通, $u_0=12-0.7=11.3V$ $U_B<u_I<U_A$ 时, A_1 、 A_2 均输出-12V, D_1 、 D_2 均截止, $u_0=0$,输出电压波形如图所示。

9.20 题 9.20 图 (a) 所示电路中,输入电压 u_1 的波形如图 (b) 所示,已知电容的初始电压为零。(1) 指出 A_1 、 A_2 、 A_3 各组成何种电路; (2) 画出各输出电压 u_{01} 、 u_{02} 和 u_o 的波形,标出有关电压值。

解:运放 A_1 构成积分电路, $RC=10\times10^3\times0.1\times10^6=10^3$ s,如时间以 ms 计,则

$$u_{01} = -\int_{t_0}^{t} u_I dt + u_{01}(t_0) = -u_I(t - t_0) + u_{o1}(t_0)$$

 $0 \le t \le 1ms$, $u_{01} = -4t$, t = 1ms, $u_{01} = -4V$ $1 \le t \le 3ms$, $u_{01} = 4(t-1) + (-4) = 4t - 8$, t = 3ms, $u_{01} = 4V$ $3 \le t \le 5ms$, $u_{01} = -4(t-3) + 4 = -4t + 16$, t = 5ms, $u_{01} = -4V$

u01的波形如图(c)所示。

运放 \mathbf{A}_2 构成滞回比较器,由于 $u_{o2}=\pm 6V$,故

$$u_{+} = \frac{100}{20 + 100} u_{01} + \frac{20}{20 + 100} u_{02} = \frac{5}{6} u_{01} \pm 1$$

门限电压

$$U_{T1} = 1.2V, \ U_{T2} = -1.2V$$

 $u_{o1}>u_{T1}$ 时, $u_{o2}=6V$, $u_{o1}< u_{T2}$ 时 $u_{o2}=-6V$

运放 A₃构成一电压跟随器, u₀=u₀₂。波形如图(c)所示。

