Белорусский государственный университет Факультет прикладной математики и информатики

Лабораторная работа №3

Метод наименьших квадратов Построение интерполяционного многочлена Ньютона Минимизация остатка интерполирования Вариант №7

Выполнил:

Студент 2 курса 7 группы ФПМИ Лубенько Алексей Анатольевич

Преподаватель:

Будник Анатолий Михайлович

Постановка задачи

Рассмотрим набор различных точек на отрезке [a,b] и обозначим их $x_0 < x_1 < \ldots < x_n \in [a,b]$. В этих точках задано $f(x_i) = f_i$, $i = \overline{0 \ldots n}$. Требуется восстановить значение f(x) в других точках отрезка [a,b].

$$[a,b] = [0.45, 1.45]$$

$$f(x) = 0.45e^{-x} + 0.55sinx$$

$$x^* = \frac{31}{60} = 0.51(6), x^{**} = 1, x^{***} = \frac{17}{12} = 1.41(6)$$

Методом наименьших квадратов построить аппроксимирующий многочлен степени m=5 предполагая $p(x)\equiv 1$. Вычислить приближения f(x) в x^*, x^{**}, x^{***} . Оценить погрешность.

Значения в таблицу внесены с точностью 10^{-6} . В программе значения считаются с точностью машинного эпсилона

i	0	0		1		2		3		4	
x_i	0.45	0.45		0.55		0.65		0.75		0.85	
f_i	0.501113	}	0.547105		0.567773		0.587466		0.6	0.605541	
i	5 6		6 7			8		9		0	
x_i	0.95	0.95 1.0		05 1.15		1.25		1.35		1.45	
f_i	0.621412 0.6		34555 0.644		507 0.650869		0.653306		0.651549		

Метод наименьших квадратов

Аппроксимирующий многочлен будем искать в виде:

$$\Phi(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + c_5 x^5$$

Скалярное произведение:

$$(f,g) = \sum_{i=0}^{10} f_i g_i$$

Коэффициенты многочлена будем находить методом Гаусса из СЛАУ вида:

$$\sum_{i=0}^{5} c_i \left(\sum_{j=0}^{10} x_j^{i+k} \right) = \sum_{j=0}^{10} f_i x_i^k, \quad k = \overline{0 \dots 5}$$

Погрешность находим по формуле:

$$\Delta f = \sqrt{\sum_{i=0}^{10} (f(x_i) - \Phi(x_i))^2}$$

И будем искать истинную погрешность в точках x^*, x^{**}, x^{***} по формуле $r(x) = f(x) - \Phi(x)$

Листинг программы

```
import kotlin.math.*
object Main {
   private var start = 0.45
   private var step = 0.1
   private var amount_of_segments = 10
   private var approx_polynomial: DoubleArray? = DoubleArray(6)
   private var point_of_build = Array0f(0.1 * 2 / 3 + 0.45, 1.0, 1.45 - 0.1 / 3)
   private fun f(x: Double) = 0.45 * exp(-x) + 0.55 * sin(x)
   private fun iScaleMultiJ(i: Int, j: Int): Double {
      var sum = 0.0
      for (k in 0..amount_of_segments) {
          sum += (start + k * step).pow((i + j).toDouble())
      return sum
   }
   private fun fScaleMultiI(i: Int): Double {
      var sum = 0.0
      for (k in 0..amount_of_segments) {
          sum += f(start + k * step) * (start + k * step).pow(i.toDouble())
      return sum
   }
   private fun pol(x: Double): Double {
      var sum = approx_polynomial!![approx_polynomial!!.size - 1]
      for (i in 4 downTo 0) {
          sum = sum * x + approx_polynomial!![i]
      return sum
   }
   private fun diverge(): Double {
      val sum = (0..amount_of_segments)
          .map { start + it * step }
          .sumOf { (f(it) - pol(it)).pow(2.0) }
      return sqrt(sum)
   }
   private fun gauss(matrix: Array<DoubleArray>, b: DoubleArray): DoubleArray {
      val size = matrix.size
      for (p in 0 until size) {
          var max = p
          for (i in p + 1 until size) {
             if (abs(matrix[i][p]) > abs(matrix[max][p])) {
                max = i
             }
          }
          val temp = matrix[p]
          matrix[p] = matrix[max]
          matrix[max] = temp
          val t = b[p]
```

```
b[p] = b[max]
          b[max] = t
          for (i in p + 1 until size) {
             val alpha = matrix[i][p] / matrix[p][p]
             b[i] -= alpha * b[p]
             for (j in p until size) {
                 matrix[i][j] -= alpha * matrix[p][j]
          }
      }
      val x = DoubleArray(size)
      for (i in size - 1 downTo 0) {
          var sum = 0.0
          for (j in i + 1 until size) {
             sum += matrix[i][j] * x[j]
          x[i] = (b[i] - sum) / matrix[i][i]
      return x
   }
   @JvmStatic
   fun main(args: Array<String>) {
       val matrix = Array(6) { DoubleArray(6) }
       val stool = DoubleArray(6)
      for (i in 0..5) {
          for (j in 0..5) {
             matrix[i][j] = iScaleMultiJ(i, j)
          stool[i] = fScaleMultiI(i)
      }
      approx_polynomial = gauss(matrix, stool)
      println("Коэффициенты многочлена: ")
      for (k in approx_polynomial!!) {
          print("$k ")
      println("\n\n3начения многочлена в точках восстановления: ")
      for (i in 0..2) {
          println(points_of_rebuilding[i].toString() + " : " +
pol(points_of_rebuilding[i]))
      println("\nПогрешность приближения: " + diverge())
      println("\nИстинная погрешность в указанных точках: ")
      for (i in 0..2) {
          println(points_of_rebuilding[i].toString() + " : " +
(f(points_of_rebuilding[i]) - pol(
             points_of_rebuilding[i])))
      }
   }
}
```

Вывод программы

Коэффициенты многочлена:

0.45012527942074637; 0.09912778173082121; 0.2273341715104189; -0.1695822161229186; 0.02017603152194313; 0.0011736039155255864

Значения многочлена в точках х*, х**, х***:

1.0 : 0.6283546519765366

Погрешность приближения: 4.3090421680747044Е-7

Истинная погрешность в указанных точках:

1.0 : 1.3819495559008743E-7

1.4166666666666665 : 2.223255555211523E-7

Интерполяционный многочлен Ньютона

Многочлен Ньютона имеет вид: $P_n(x) = f(x_0) + (x - x_0)f(x_0, x_1) + \dots +$ $(x-x_0)...(x-x_{n-1})f(x_0,x_1,...,x_n)$ где

$$f(x_0,x_1,\ldots,x_{k+1}) = \frac{f(x_1,x_2,\ldots,x_{k+1}) - f(x_0,x_1,\ldots,x_k)}{x_{k+1}-x_0}$$

$$f(x_i,x_j) = \frac{f(x_i) - f(x_j)}{x_i-x_j}$$
 Истинную погрешность в точках x^*,x^{**},x^{***} будем искать по формуле

 $r(x) = f(x) - P_n(x)$

Остаток интерполирования — по формуле

$$r_n(x^*) = w_{n+1}(x^*)f(x^*, x_0, x_1, ..., x_n)$$

Аналогичные формулы для x^{**}, x^{***} .

$$w_{n+1}(x) = (x - x_0)(x - x_1)...(x - x_n)$$

Таблица разделенных разностей:

I we will be a desired by the second of the											
0.45	0.5261	0.2091	-0.0136	-0.1167	0.0236	0.0016	-2.2E-4	-1.1E-4	1.5E-5	4.3E-7	-7.4E-8
0.55	0.5471	0.2067	-0.0487	-0.1073	0.0244	0.0014	-3.0E-4	-1.0E-4	1.6E-5	3.5E-7	
0.65	0.5677	0.1969	-0.0809	-0.0975	0.0252	0.0013	-3.7E-4	-9.1E-5	1.8E-5		
0.75	0.5874	0.1807	-0.1101	-0.0874	0.0258	0.0010	-4.4E-4	-7.9E-5			
0.85	0.6055	0.1581	-0.1364	-0.0770	0.0264	8.2E-4	-4.9E-4				
0.95	0.6214	0.1314	-0.1595	-0.0665	0.0268	5.2E-4					
1.05	0.6345	0.0995	-0.1794	-0.0557	0.0271						
1.15	0.6445	0.0636	-0.1962	-0.0449							
1.25	0.6508	0.0243	-0.2097								
1.35	0.6533	-0.0175									
1.45	0.6515										

В таблице k столбцу соответствует разделенная разность k-1 порядка. Значения в таблицу внесены с четырьмя знаками после запятой. В программе разделенные разности считаются с точностью машинного эпсилона.

Листинг программы

```
object Main {
   private var start = 0.45
   private var step = 0.1
   private var value = DoubleArray(11)
   private var newtonValues = DoubleArray(3)
   var\ point_of_build = doubleArrayOf(0.1 * 2 / 3 + 0.45, 1.0, 1.45 - 0.1 / 3)
   private var diffMatr = Array(11) { DoubleArray(11) }
   private fun calculateAllValues() {
      for (i in 0..10) {
          value[i] = start + i * step
          diffMatr[i][i] = f(value[i])}
      for (d in 1..10) {
          var i = 0
          while (i + d <= 10) {
             diffMatr[i][i + d] = (diffMatr[i + 1][i + d] - diffMatr[i][i + d -
1]) / (value[i + d] - value[i])
             i++}}}
   private fun f(x: Double): Double = 0.45 * exp(-x) + 0.55 * sin(x)
   private fun valueOfPolynomOfNewton(x: Double): Double {
      var sum = f(value[0])
      var mult = 1.0
      (0..9).forEach { i ->
          mult *= x - value[i]
          sum += mult * diffMatr[0][i + 1]
      }
      return sum
   private fun remainder(x: Double): Double {
      var r = valueOfPolynomOfNewton(x)
      for (i in 0..10) r = (r - diffMatr[0][i]) / (x - value[i])
      for (i in 0..10) r *= x - value[i]
      return abs(r)
   }
   @JvmStatic
   fun main(args: Array<String>) {
      calculateAllValues()
      for (i in 0..2) newtonValues[i] =
valueOfPolynomOfNewton(points_of_rebuilding[i])
      println("Приближенные значения функции в точках восстановления:")
      for (i in 0..2) println(points_of_rebuilding[i].toString() + " : " +
newtonValues[i])
      println("Погрешности функции в точках восстановления:")
      for (i in 0..2)
          println(points_of_rebuilding[i].toString() + " : " +
(f(points_of_rebuilding[i]) - newtonValues[i]))
      println("Остатки интерполирования в точках восстановления:")
      for (i in 0..2) println(points_of_rebuilding[i].toString() + " : " +
remainder(points_of_rebuilding[i]))
```

Вывод программы

Приближенные значения функции в точках восстановления:

1.0 : 0.6283547901714914

Истинные погрешности функции в точках восстановления:

0.5166666666666667 : -2.475797344914099E-14

1.0 : 7.771561172376096E-14

1.4166666666666665 : 4.807265696626928E-14

Остатки интерполирования в точках восстановления:

0.5166666666666667 : 1.78176691299843E-13

1.0 : 1.6271077885158906E-13

1.4166666666666665 : 7.618590589649444E-13

Минимизация остатка интерполирования

Для минимизации остатка выберем оптимальные узлы интерполирования по формуле:

$$x_k = \frac{a+b}{2} + \frac{b-a}{2}\cos\frac{(2k+1)\pi}{2(n+1)} \ k = \overline{0,n}$$

По посчитаннным узлам построим многочлен Ньютона. Вид многочлена и способ построения указан выше.

Значения в таблицу внесены с точностью 10⁻⁶ и перенумерованы. В программе значения считаются с точностью машинного эпсилона

 The state of the s											
<i>i</i> 0			1		2		3		4		
x_i	0.455089	0.455089 0		0.495184		0.572125		0.679679		0.809133	
f_i	0.527224	0.527224		0.535612		0.551727		0.573749		0.598388	
i 5		6		7		8		9	10	0	
x_i	0.950000	1.0	90866 1.220		0320 1.3278'		74 1.404815		1.	1.444910	
f_i	0.621411	0.634555		0.639031		0.653119		0.652876	0.	.651742	

Погрешность на всем отрезке вычислим по формуле

$$|r_n(x)| \leq rac{\displaystyle \max_{[a,b]} \left|f^{(n+1)}(x)
ight|}{(n+1)!} * rac{(b-a)^{n+1}}{2^{2n+1}}$$
 , где $n=10$ $f^{(11)}(x) = -0.45e^{-x} - 0.55cosx$ $\displaystyle \max_{[0.45,1.45]} \left|f^{(11)}(x)
ight| = 0.782$ $|r_n(x)| \leq rac{0.782}{11! * 2^{21}} = 9.341 * 10^{-15}$

Листинг программы

```
object Main {
       private var start = 0.45
       private var finish = 1.45
       private var value = DoubleArray(11)
      private var newtonValues = DoubleArray(3)
       var points_of_build = doubleArrayOf(0.1 * 2 / 3 + 0.45, 1.0, 1.45 - 0.1 / 3)
       private var diffMatr = Array(11) { DoubleArray(11) }
      private fun calculateAllValues() {
              for (i in 0..10) {
                      value[i] = (start + finish) / 2 + (finish - start) / 2 * cos((2 * i +
1) * PI / 2 / (10 + 1))
                     diffMatr[i][i] = f(value[i])
              for (d in 1..10) {
                      var i = 0
                      while (i + d <= 10) {
                             diffMatr[i][i + d] = (diffMatr[i + 1][i + d] - diffMatr[i][i + d - diffMatr[i]][i + d - diffMatr[i][i + d] - dif
1]) / (value[i + d] - value[i])
                             i++
                      }
              }
       }
       private fun f(x: Double): Double = 0.45 * exp(-x) + 0.55 * sin(x)
       private fun valueOfPolynomOfNewton(x: Double): Double {
              var sum = f(value[0])
              var mult = 1.0
              (0..9).forEach { i ->
                     mult *= x - value[i]
                     sum += mult * diffMatr[0][i + 1]
              return sum
       private fun remainder(x: Double): Double {
              var r = valueOfPolynomOfNewton(x)
              for (i in 0..10) r = (r - diffMatr[0][i]) / (x - value[i])
              for (i in 0..10) r *= x - value[i]
              return abs(r)
       @JvmStatic
       fun main(args: Array<String>) {
              calculateAllValues()
                                                                                                                   newtonValues[i]
                                        (i
                                                               in
valueOfPolynomOfNewton(points_of_rebuilding[i])
              println("Приближенные значения функции в точках восстановления:")
              for (i in 0..2) println(points_of_rebuilding[i].toString() + " : " +
newtonValues[i])
              println("Погрешности функции в точках восстановления:")
              for (i in 0..2)
                      println(points_of_rebuilding[i].toString()
(f(points_of_rebuilding[i]) - newtonValues[i]))
              println("Остатки интерполирования в точках восстановления:")
              for (i in 0..2) println(points_of_rebuilding[i].toString() + " : " +
remainder(points_of_rebuilding[i]))}}
```

Выходные данные

Приближенные значения функции в точках восстановления:

1.0 : 0.6283547901714868

Истинные погрешности функции в точках восстановления:

1.0 : 5.440092820663267E-17

1.4166666666666665 : 3.552713678800501E-16

Остатки интерполирования в точках восстановления:

0.5166666666666667 : 1.56443507842804E-16

1.0 : 1.451594698494982E-16

1.4166666666666665 : 8.455100081128709E-16

Погрешность интерполирования на всем отрезке:

9.341596964557373E-15

Выводы:

Сравним многочлен Ньютона и МНК. В МНК невязка в точках воостановления имела порядок 10^{-7} , что значительно больше полученной невязки, используя многочлен Ньютона. Это может быть связано с тем, что многочлен Ньютона имеет большую степень, чем многочлен, полученный МНК. Построив многочлен Ньютона по узлам Чебышева, мы добились увеличения точности и уменьшения остатков интерполирования. Истинные погрешности меньше, чем отстатки интерполирования, что соответствует теории.