Notebook 2

Moyens mis en oeuvre par les états

Introduction

Grace à la *World Health Organization*, nous avons pu récupérer des données sur les moyens mis en oeuvre par les états pour venir en aide aux personnes en situation de maladie mentale. En effet, la dépression est considérée comme une maladie mentale. Nous pensons donc que le nombre d'infrastructures liées à ces maladies peut être corrélés au nombres de suicides.

In [5]:

```
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
```

In [3]:

```
Gouv = pd.read_csv('./Data/gouv.csv', sep=',')
Gouv = Gouv[Gouv.Year == 2016]
Gouv.head()
```

Out[3]:

	Country	Year	Government expenditures on mental hospitals as a percentage of total government expenditures on mental health (%)	Stand- alone law for mental health	Year the law was enacted (latest revision)	Stand- alone policy or plan for mental health	Publication year of the policy or plan (latest revision)
0	Afghanistan	2016	NaN	Yes	1987	Yes	2016.0
2	Albania	2016	NaN	Yes	2012	Yes	2013.0
4	Algeria	2016	NaN	Yes	1905	No	NaN
6	Angola	2016	NaN	No	NaN	No	NaN
7	Antigua and Barbuda	2016	8.0	Yes	1957	Yes	2013.0

Sur ces données, on peut notamment ressortir les pays qui présentent ou non des lois pour protéger les personnes atteintes de maladie mentales. On peut donc légitimement penser que les personnes dépressives auront plus de chance d'être prises en charge ce qui y impliquerait un taux de suicide moins important.

```
In [7]:
```

```
Law = Gouv.iloc[:,[0,3]]#on récupère unquement la colonne qui nous intére sse.

Law.groupby(['Stand-alone law for mental health']).count()
```

Out[7]:

Country

Stand-alone law for mental health

No	43
Yes	73

On peut maintenant séparer les pays ayant voté une loi de protection des personnes atteintes de maladies mentales des autres pays. On exclut les pays dont on ne possède pas les données afin de pouvoir établir une corrélation.

In [8]:

```
dfYes = Law[Law['Stand-alone law for mental health'] == 'Yes']
dfNo = Law[Law['Stand-alone law for mental health'] == 'No']
```

Maintenant on compare les statistiques de suicide dans les pays ayant voté ou non des lois pour la protection de la santé mentale.

In [12]:

```
#On prépare le DataFrame pour le merge
Suicide = pd.read_csv('./Data/taux_sexe(age).csv', sep=',')
Suicide = Suicide.iloc[1:,0:3]
Suicide.columns=['Country','Sexe','Suicide rate (per 100k people)']
Suicide = Suicide[Suicide.Sexe == 'Both sexes'] #on récupère que les ligne
possédant "both sexe" afin de s'interessé
# à une population globale sans prendre ne compte le facteur du genre
Suicide = Suicide.iloc[:,[0,2]]
Suicide.head()
```

Out[12]:

Country Suicide rate (per 100k people)

1	Afghanistan	6.4
4	Albania	5.6
7	Algeria	3.3
10	Angola	8.9
13	Antigua and Barbuda	0.5

On procède donc à une spéaration de notre échantillon de pays en 2 catégorie :

-dans un premiers temps les pays ayant adopté des lois venant en aide au personne depressif regroupé dans "SuicideYes"

-les pays n'ayant pas adopté ces lois regroupé dans "SuicidesNo"

In [13]:

```
SuicideYes = Suicide.merge(dfYes, left_on = 'Country', right_on = 'Countr
```

```
y')
SuicideYes = SuicideYes.iloc[:,0:2]
SuicideYes.columns = ['Pays ayant voté une loi pour la protection de la sa nté mentale', 'Taux de suicide (pour 100k personnes)']
SuicideNo = Suicide.merge(dfNo, left_on = 'Country', right_on = 'Country')
SuicideNo = SuicideNo.iloc[:,0:2]
SuicideNo.columns = ["Pays n'ayant pas voté une loi pour la protection de la santé mentale", 'Taux de suicide (pour 100k personnes)']
SuicideNo.head()
```

Out[13]:

	Pays n'ayant pas voté une loi pour la protection de la santé mentale	Taux de suicide (pour 100k personnes)
0	Angola	8.9
1	Bangladesh	6.1
2	Belize	5.9
3	Bhutan	11.6
4	Bolivia (Plurinational State of)	12.9

résumé statistique des pays ayant adopté les lois

In [14]:

```
SuicideYes.describe()
```

Out[14]:

Taux de suicide (pour 100k personnes)

count	70.000000
mean	9.505714
std	6.004633
min	0.500000
25%	5.400000
50%	8.050000
75%	12.550000
max	30.200000

résumé statistique des pays n'ayant pas adopté les lois

In [15]:

```
SuicideNo.describe()
```

Out[15]:

Taux de suicide (pour 100k personnes)

count	43.00000
mean	9.60000

std	4.21686
min	2.40000
25%	6.70000
50%	9.30000
75%	12.55000
max	23.00000

In [16]:

```
import numpy as np
import matplotlib.pyplot as plt
SuicideYes.iloc[:,1].plot.hist(bins=50);
plt.xlabel('Taux de suicide dans les pays ayant voté');
```


In [17]:

```
SuicideNo.iloc[:,1].plot.hist(bins=50);
plt.xlabel("Taux de suicide dans les suicide n'ayant pas voté");
```


On remarque que les lois votées ou non ont peu d'impact sur le taux de suicide dans le pays. En effet, la moyenne des pays ayant voté en faveur d'une loi est à peine inférieur à celle des pays ne l'ayant pas voté.

Il est compliqué de démêler les deux influences suivantes :

- Les lois sont votées lorsque le taux de suicide est élevé : c'est un enjeu majeur
- Le taux de suicide diminue lorsque les lois sont votées et appliquées

Les lois ne sont pas les seuls moyen qu'ont les gouvernement d'aider, des aides hospitalières peuvent aussi être fournies, nous allons donc essayé de lier le taux de suicide au nombre de centre hospitalier pour un certain nombre de personne ainsi que le nombre de personne disponible pour aider les personnes dans le besoin psychologiquement que nous appellerons "day treatment"

In [21]:

```
Facilities = pd.read_csv('./Data/facilities.csv', sep=',')
Doctor = pd.read_csv('./Data/docteurs.csv', sep=',')
Facilities = Facilities.iloc[:,[0,3]]
Facilities=Facilities.dropna()
Facilities.columns = ['Country', 'Mental hospital per 100k population']
Facilities.head()
```

Out[21]:

Country Mental hospital per 100k population

0	Afghanistan	0.012
1	Albania	0.068
2	Algeria	0.068
5	Argentina	1.071
6	Armenia	0.069

In [22]:

```
FaciliSuicide = Facilities.merge(Suicide, left_on = 'Country', right_on =
'Country')
FaciliSuicide.columns = ['Country', 'Mental_Hospitals', 'Suicide_Rate']
FaciliSuicide.describe()
```

Out[22]:

	Mental_Hospitals	Suicide_Rate
count	136.000000	136.000000
mean	0.300684	9.417647
std	0.513116	5.169066
min	0.006000	0.400000
25%	0.042000	5.600000
50%	0.136000	9.050000
75%	0.397250	12.350000
max	4.542000	30.200000

On procède à une séparation en classe des différents pays selon leur taux de suicde

Classe 1 : 25% des pays avec le plus petit nombre de "mental hospital" Classe 2 : Pays entre 25% et 50% Classe 3 : Pays entre 50% et 75% Classe 4 : Pays entre 75% et 100%

In [23]:

```
FaciliSuicide=FaciliSuicide.sort values(by = 'Mental Hospitals')
Classe1 = FaciliSuicide.iloc[0:int(131*25/100),-1]
Classe2 = FaciliSuicide.iloc[int(131*25/100):int(131*50/100),-1]
Classe3 = FaciliSuicide.iloc[int(131*50/100):int(131*75/100),-1]
Classe4 = FaciliSuicide.iloc[int(131*75/100):int(131),-1]
dfClasse1=pd.DataFrame(Classe1.describe())
dfClasse1.columns=['Classe1']
dfClasse2=pd.DataFrame(Classe2.describe())
dfClasse2.columns = ['Classe2']
dfClasse3 = pd.DataFrame(Classe3.describe())
dfClasse3.columns = ['Classe3']
dfClasse4 = pd.DataFrame(Classe4.describe())
dfClasse4.columns = ['Classe4']
SPH=pd.concat([dfClasse1,dfClasse2],axis=1)
SPH=pd.concat([SPH,dfClasse3],axis=1)
SPH=pd.concat([SPH,dfClasse4],axis=1)
SPH
```

Out[23]:

	Classe1	Classe2	Classe3	Classe4
count	32.000000	33.000000	33.000000	33.000000
mean	9.312500	8.836364	9.112121	10.300000
std	5.161817	4.708955	5.783855	5.347955
min	2.400000	2.000000	0.400000	1.700000
25%	5.875000	5.600000	4.500000	6.100000
50%	8.650000	7.900000	8.600000	10.400000
75%	11.825000	11.500000	12.900000	13.800000
max	23.000000	21.400000	30.200000	25.700000

In [24]:

```
FaciliSuicide.plot(kind='line',x='Mental_Hospitals',y='Suicide_Rate',color
='salmon',logx=True);
plt.savefig('NB2_0.png')
```


On peut observer que le nombre de lieu d'acceuil pour personnes possédant des problème psychologique n'influe pas ou très peu sur le taux de suicide. Il reste sensiblement le même, même si on observe une augmentation entre la classe 1 à la classe 4 pouvant s'expliquer par un plus grand besoin d'infrastructure dans les pays ou le suicde est plus courant

On réitère le procédé pour les day treatment.

In [28]:

```
Faci = pd.read_csv('./Data/facilities.csv', sep=',')
Doctor = pd.read_csv('./Data/docteurs.csv', sep=',')
Faci = Faci.iloc[:,[0,4]]
Faci=Faci.dropna()
Faci.columns = ['Country', 'day treatment per 100k population']
Faci.head()
```

Out[28]:

Country day treatment per 100k population

0	Afghanistan	0.006
1	Albania	0.410
2	Algeria	0.048
5	Argentina	1.720
6	Armenia	1.371

In [29]:

```
FaciSuicide = Faci.merge(Suicide, left_on = 'Country', right_on = 'Countr
y')
FaciSuicide.columns = ['Country', 'day_treatment', 'Suicide_Rate']
FaciSuicide.describe()
```

day_treatment Suicide_Rate

count	135.000000	135.000000
mean	1.897778	9.378519
std	3.359574	5.482909
min	0.006000	0.400000
25%	0.128500	5.550000
50%	0.691000	8.400000
75%	2.180500	12.850000
max	20.475000	30.200000

In [30]:

```
FaciSuicide=FaciSuicide.sort_values(by ='day_treatment')
Classe12 = FaciSuicide.iloc[0:int(131*25/100), -1]
Classe22 = FaciSuicide.iloc[int(131*25/100):int(131*50/100), -1]
Classe32 = FaciSuicide.iloc[int(131*50/100):int(131*75/100), -1]
Classe42 = FaciSuicide.iloc[int(131*75/100):int(131), -1]
dfClasse12=pd.DataFrame(Classe12.describe())
dfClasse12.columns=['Classe1']

dfClasse22=pd.DataFrame(Classe22.describe())
dfClasse32 = pd.DataFrame(Classe32.describe())
dfClasse32 = pd.DataFrame(Classe32.describe())
dfClasse42 = pd.DataFrame(Classe42.describe())
dfClasse42 = pd.DataFrame(Classe42.describe())
dfClasse42 = pd.DataFrame(Classe42.describe())
```

In [31]:

```
SPD2=pd.concat([dfClasse12,dfClasse22],axis=1)
SPD2=pd.concat([SPD2,dfClasse32],axis=1)
SPD2=pd.concat([SPD2,dfClasse42],axis=1)
SPD2
```

Out[31]:

		Classe1	Classe2	Classe3	Classe4
	count	32.000000	33.000000	33.000000	33.000000
	mean	10.571875	8.909091	8.554545	9.309091
	std	4.665331	6.501508	4.061180	6.352330
	min	3.300000	1.600000	2.700000	0.400000
	25%	7.300000	3.700000	5.700000	4.500000
	50%	9.600000	7.200000	8.400000	8.700000
	75%	13.000000	11.500000	10.500000	13.300000
	max	23.000000	30.200000	20.000000	26.500000

In [32]:

```
FaciSuicide.plot(kind='line',x='day_treatment',y='Suicide_Rate',color='sal
mon', logx=True);
plt.savefig('NB2_1.png')
```


On peut observer une faible influence pour ce facteur seul cependant on peut noter que le minimum est très inferieur dans les pays avec le plus de day treatment ce qui peut vouloir dire que les day treatment ont un impact dans certain pays. De plus la moyenne de taux de suicide est plus élevé dans la classe 1 ce qui est cohérent puisque ce sont les pays ayant mis moins de moyen à disposition.

CONCLUSION

On peut conclure que les moyens apporté n'ont que très peu d'impact direct sur le taux de suicde mais sont plutot des réponses au problème du suicide il st donc compliqué de pouvoir analyser le réel impact qu'ont les moyens mis à disposition par le gouvrernement