183.605 Machine Learning for Visual Computing Assignment 2

Group 12: Hanna Huber (0925230) Lena Trautmann (1526567) Elisabeth Wetzer (0726681)

January 18, 2017

1 Assignment 2

1.1 The dual optimization problem

Tasks:

• Generate a suitable training set of linearly separable data

The training set is generated in generateTrainingData.m. The function generateTrainingData(N, xRange, yRange, linear) takes the number of sample points, the domains (defined by a lower and an upper bound) from which the x and y coordinates are sampled and a flag which indicates if the resulting data should be linearly separable. A set of random 2D coordinates is created using the MATLAB function rand. Linear separability is achieved by labelling the according to the condition $x_i + y_i > \bar{x} + \bar{y}$, where \bar{x} and \bar{y} denote the domain centers.

• Plot the input vectors in \mathbb{R}^2 and visualize corresponding target values (e.g. by using color).

The resulting training data is displayed in Figure 1. Sample points with class label 1 are marked red, points with label -1 are merked green.

Figure 1: Linearly separable data with color-coded class labels (1=red, -1=green) for N=100.

• Visualize the support vectors and plot the decision boundary.

Figure 2 shows the support vectors defined by trainSVM.

Figure 2: Training data with support vectors marked by blue circles and decision boundary plotted in blue.

Figure 3: Training data with support vectors marked by blue circles and decision boundary plotted in blue, for different values of the RBF parameter σ .

1.2 The kernel trick

Tasks:

• Try different values for σ (the RBF parameter).

The radial basis function kernel is defined by $K(x,y) = exp(-\frac{\|x-y\|^2}{\sigma^2})$. The corresponding support vectors are shown in Figure 3 for different values of the RBF parameter σ . In the lecture notes about RBF-networks, we discussed a selection of $\sigma = 2 * avgdist$, where avgdist denotes the average distance of the centers. Having distances between the data points of approximately 10 units (or slightly more), $\sigma = 25$ is then selected.

• Generate a non-linearly separable training set, plot the data, visualize the support vectors and plot the decision boundary.

See also Figure ??fig:sv