Attenuator/Switch

50Ω Bi-Phase 2 to 400 MHz

Maximum Ratings

Operating Temperature	-40°C to 85°C
Storage Temperature	-55°C to 100°C
Control Current	30mA

Pin Connections

INPUT	1
OUTPUT	2
CONTROL	3
GROUND	4.5.6

Outline Dimensions (inch)

Α	В	С	D	Е	F	G	Н	J	K
.38	.50	.23	.020	.075	.250	.425	.187	.050	.050
9.65	12.70	5.84	0.51	1.91	6.35	10.80	4.75	1.27	1.27
L	М	N	Р	Q	R	S	Т		wt.
_		N .540				_			wt. grams

suggested control port biasing configuration

Demo Board MCL P/N: TB-12 Suggested PCB Layout (PL-079)

TRACE WIDTH IS SHOWN FOR ROOERS ROAS508 WITH DIELECTRIC THICKNESS OSO** ± 0.02°. COPPER: 1/2 O. EACH SIDE. FOR OTHER MATERIALS TRACE WIDTH MAY NEED TO BE MODIFIED. THE USE OF SOLDER MASK OVER THE GROUND AREA UNDER THE UNIT AS SHOWN IS RECOMMENDED TO PREVENT POTENTIAL SHORTI IF USER CHOOSES TO EXPOSE METAL UNDER THE ENTIRE UNIT GROUND FAD FOR IMPOVED GROUNDING. IT IS RECOMMENDED FOR THE PROVIDED FAD FOR IMPOVED GROUNDING. IT IS RECOMMENDED FOR THE PROVIDED FAD TO MEDICAL PROVIDED FAD FOR MEDICAL PROVIDED FAD FOR MEDICAL PROVIDED FAD FOR THE PROVIDED FAD TO BE OF THE POB IS CONTINUOUS GROUND PLANE.

DENTIES PEC COPPER LAVOUT WITH SADOC (SOLDER MASK OVER BARE COPPER), SEE NOTE 2.

Features

- low conversion loss, 1.6 dB typ.
- · excellent amplitude and phase unbalance

Applications

electronic attenuator

SYAS-1+ **SYAS-1**

CASE STYLE: TTT167 PRICE: \$9.95 ea. QTY. (1-9)

+RoHS Compliant

The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

Attenuator/Switch Electrical Specifications

FREQUENCY INSERTION (dB) ±20 m			B)	oss	MAX. P\ (dE ±20	IN-OUT ISOLATION (dB) 0 mA						BI-PHASE X (±20 mA) Typ. Δ AMP Phase (deg deviation from 180°						
	IN	CON	Mid-Band Total m Range		1 dB	no		L M		M U		ر		Total		Total		
	f_L - f_U		Тур.	Max.	Тур.	Max.	compr.	damage	Тур.	Min.	Тур.	Min.	Тур.	Min.	m	Range	m	Range
	2-400	DC-0.05	1.4	2.0	1.6	3.0	20*	25	65	45	45	33	35	25	0.1	0.1	1.0	2.0

 $M = mid range [10 f_i to f_i/2]$ $U = upper range [f_i/2 to f_i]$ $m = [2 f_i to f_i/2]$ L = low range [f, to 10 f,]

Performance specifications apply for input power up to 10 dB below stated 1 dB compression.

Typical Performance Data

Freq.							Control	Atte	nuatio	n (dB)	Phase Δ ref at 15mA Ctrl				Input VSWR		
(MHz)		IB) 0mA	∆AMP (dB)	∆Phase (deg.)	(in-out)	(in-con)	R. Loss (dB)	Current (mA)	2 MHz	200 MHz	400 MHz	2 MHz	200 MHz	400 MHz	2 MHz	200 MHz	400 MHz
	x	σ	x	x	x	x	x					deg.	deg.	deg.			
2.0	1.67	0.000	0.01	179.9	78	54	18.1	0.0000	72.7	39.0	30.6	27.2	-87.7	-95.3	7.7	7.2	4.4
7.0	1.16	0.001	0.00	180.0	68	43	15.4	0.0003	64.4	39.2	30.7	22.2	-86.0	-94.6	7.7	7.2	4.4
10.0	1.16	0.001	0.00	180.0	66	40	27.6	0.0005	56.5	39.0	30.8	28.6	-84.3	-93.7	7.6	7.2	4.4
21.9	1.16	0.001	0.00	180.0	58	33	31.0	0.0012	50.4	39.0	30.7	17.6	-80.5	-92.0	7.6	7.2	4.4
39.8	1.19	0.001	0.00	180.1	53	28	31.9	0.0019	47.8	39.0	30.7	14.1	-77.4	-90.3	7.5	7.2	4.4
59.7	1.23	0.001	0.00	180.1	50	25	32.1	0.0054	42.5	37.9	30.6	8.2	-56.2	-79.9	7.4	7.0	4.3
61.7	1.23	0.001	0.00	180.1	50	25	32.1	0.0100	38.4	35.8	30.1	7.6	-37.3	-67.6	7.2	6.9	4.3
81.6	1.24	0.001	0.00	180.2	47	22	32.2	0.0157	35.1	33.1	29.0	8.8	-25.3	-55.1	7.1	6.7	4.2
99.5	1.27	0.001	0.00	180.2	46	21	32.3	0.0284	30.6	28.7	26.3	8.8	-12.8	-37.6	6.7	6.3	4.0
121.4	1.31	0.001	0.01	180.3	44	19	32.4	0.0433	27.3	25.3	23.7	9.2	-7.2	-26.9	6.3	5.9	3.8
141.3	1.32	0.001	0.01	180.4	42	18	32.4	0.0722	23.2	21.2	20.0	9.3	-3.1	-17.7	5.6	5.3	3.5
181.1	1.37	0.001	0.01	180.6	39	16	32.2	0.1012	20.7	18.6	17.6	9.0	-1.4	-13.2	5.2	4.9	3.3
200.0	1.40	0.001	0.01	180.6	39	15	32.0	0.1898	16.1	14.1	13.3	8.2	0.4	-8.0	4.1	3.9	2.8
220.9	1.39	0.001	0.01	180.8	38	15	31.6	0.3008	13.1	11.2	10.6	7.4	0.9	-5.5	3.4	3.2	2.4
240.8	1.39	0.001	0.01	180.9	36	14	30.3	0.4259	10.9	9.2	8.8	6.7	1.1	-4.2	2.9	2.7	2.1
280.6	1.52	0.001	0.05	181.1	35	13	26.6	0.7017	8.3	6.9	6.6	5.4	1.1	-2.8	2.2	2.1	1.7
300.5	1.52	0.001	0.04	181.1	35	14	24.8	0.9968	6.8	5.6	5.4	4.4	0.9	-2.1	1.9	1.8	1.5
340.3	1.56	0.001	0.03	181.4	33	13	21.4	1.7486	4.8	3.9	4.0	3.0	0.7	-1.3	1.5	1.5	1.3
360.2	1.64	0.002	0.06	181.6	32	13	19.8	5.6920	2.5	2.1	2.3	0.9	0.2	-0.3	1.2	1.1	1.2
400.0	1.78	0.003	0.09	181.7	31	14	17.1	15.1258	1.8	1.5	1.8	0.0	0.0	0.1	1.3	1.1	1.3

electrical schematic

- Notes
 A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
 B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
 C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

¹⁵ dBm from 2-10 MHz.