Nom:	Matricule:
INCHII.	Manicule.

Mardi le 17 septembre 1996; Durée: 14h40 à 15h20 Aucune documentation permise; aucune calculatrice permise.

Problème 1 (1 point sur 5)

Quels sont les coefficients complexes de Fourier pour l'équation suivante?

$$2 + 2\sin(2\pi t) - 4\cos(2\pi t) + 6\sin(3\pi t)$$

1.
$$F(0) = 2$$
 $F(2) = -2$ $F(-2) = -2$ $F(3) = 3j$ $F(-3) = -3j$

2.
$$F(0) = 2$$
 $F(2) = -2 - j$ $F(-2) = -2 - j$ $F(3) = -3j$ $F(-3) = 3j$

3.
$$F(0) = 2$$
 $F(2) = -2 - j$ $F(-2) = -2 + j$ $F(3) = -3j$ $F(-3) = 3j$

4.
$$F(0) = 2$$
 $F(2) = -j$ $F(-2) = j$ $F(3) = -3j$ $F(-3) = 3j$

5.
$$F(0) = 2$$
 $F(1) = -2 - j$ $F(-1) = -2 + j$ $F(2) = -3j$ $F(-2) = 3j$

Nom:	Matricule:	

Problème 2 (1 point sur 5)

Pour chacun des 4 énoncés suivants encadrez la bonne réponse (vrai ou faux).

La fonction $f_p(t)$ admet un développement en série de Fourier F(n) = A(n) + jB(n).

$$f_p(t) = \begin{cases} 0 & -3 < t < -2 \\ Sinc(t/2) & -2 < t < 2 \\ 0 & 2 < t < 3 \end{cases}, \quad f_p(t+6) = f_p(t)$$

Aucun crédit partiel.

1.
$$F^*(n) = F(-n)$$
 VRAI FAUX

2.
$$A(n)$$
 est impair VRAI FAUX

3.
$$F(n)$$
 est imaginaire pure VRAI FAUX

4.
$$B(n) = 0 \quad \forall n$$
 VRAI FAUX

Nom: Matricule: .

Problème 3 (3 points sur 5)

a) **1 point**

Quelle est l'expression analytique de cette fonction périodique? Quelle est la période fondamentale et la fréquence fondamentale?

b) 2 points

Quels sont les coefficients complexes de Fourier pour cette fonction périodique?

Nom:	Matricule:	•