A

北京航空航天大学 2018-2019 学年 第一学期期末

《工程力学》

考试A卷参考答案

班	级	学号	
			_
64	≯	네: 4호	

2019年1月14日

班号_		_ 学号	y	生名	成绩
	«	工程力学	》期末	泛考试卷	:
注意事项: 1	l、学生应试 定的座位		生证,以备	·查对,学生	E必须按监考教师指
2		须用的笔、橡 笔记、草稿纸		定的考试用	月具外,不得携带任
3		住互借文具(包 手请监考老师)		题纸上如有	了字迹不清等问题,
4		立答卷,严禁 为,如有违反,			抄袭或看别人答卷 答卷作废;
5		时间内答卷, ² 监考教师收卷/			」,学生须在原座位
题目:					
一、填空题· 分)	••••••		•••••	• • • • • • • • • • • • • • • • • • • •	(10
二、单选题·· 分)	*******	•• ••• ••• •••	••••••	•••••••	(15
三、计算题··· 分)	• • • • • • • • • • • • • • • • • • • •		•••••••	•••••••	(75

一、填空题(每空1分,共10分)	一、	填空题	(毎空)	分,	共10	分)
------------------	----	-----	------	----	-----	----

1、低碳钢的拉伸力学性能曲线可以分为<u>线性阶段</u>,<u>屈服阶</u>段, 硬化阶段和缩颈阶段。

- 2、作用于刚体上的两个力为平衡力系的充分必要条件是此二力<u>等值、反向、共</u>线。
- 3、构件在外载荷作用下具有抵抗破坏的能力称为构件的强度___;具有一定的抵抗变形的能力称为构件的______;保持其原有平衡状态的能力称为构件的______;保持其原有平衡状态的能力称为构件的________;
- 4、广义胡克定律成立的条件是: <u>材料各向同性</u> 和 处于线 弹性范围 。
- 5、在观察对称纯弯梁的变形时,根据实验现象,对梁内的变形与受力作了两个假设: 1)变形后,横截面仍保持为平面且仍与纵线正交,称为<u>弯曲平面</u>假设; 2)梁内各纵向"纤维"仅承受轴向拉应力或压应力,称为<u>单向受力</u>假设。
- 二、选择题(每题3分,共15分)
- I、如下图所示桁架,零力杆一共有____C__。

A.3 个

B.4 个

C. 5 个

D.6个

2、下列各系统受力分析错误的是______B____。

A.

C.

D.

3、 处于下图所示的受力状态的矩形截面梁,梁内 K 点的应力状态所对应的应力圆为____。

4、图示铸铁 T 字形截面悬臂梁,自由端承受集中力 F, 危险截面的危险点有 A、B、C、D 四点,其中 C 为截面形心。B、D 两点的强度分别适宜于用_D___强度理论校核。

- A. 第一,第一
- C. 第一, 第二

- B. 第二, 第二
- D. 第二, 第一
- 5、如下图所示等截面梁,左右两部分分别由两种不同材料构成,左边材料弹性 模量大于右边,则在截面 1 和截面 2 处的应力应变关系是________。

- A. 截面 1 应力大于截面 2, 截面 1 应变大于截面 2
- B. 截面 1 应力等于截面 2, 截面 1 应变等于截面 2
- C. 截面1应力小于截面2, 截面1应变大于截面2
- D. 截面 1 应力等于截面 2, 截面 1 应变小于截面 2

三、计算题(共5题,每小题15分,共75分)

1、如下图所示两杆组成的桁架,杆 1 竖直放置,长度为 I ,两杆夹角为 60° ,节点 A 受竖直向下载荷 F 作用。已知两杆材料相同,许用应力为 $[\sigma]$,弹性模量为 E,截面积均为 A。试求:

- (1) 许用载荷[F];
- (2) 在载荷 F 作用下, 节点 A 的水平与铅垂位移。

解: (1) 杆 2 为零力杆

 $[F]=[\sigma]A$

(2) 杆 1 的垂直位移为
$$\Delta l_1 = \frac{Fl}{EA}$$

所以,A 点铅垂位移
$$\Delta y = \Delta I_1 = \frac{FI}{EA}$$

水平位移
$$\Delta x = \Delta I_1 \tan 30^\circ = \frac{\sqrt{3}FI}{3EA}$$

A

2、图示矩形截面压杆,有两种支持方式。杆长 $I=300~{\rm mm}$,截面宽度 $b=20~{\rm mm}$,高度 $h=12~{\rm mm}$,弹性模量 $E=70~{\rm GPa}$, $\lambda_p=50$,试计算上述两种压杆的临界载荷。

解: 惯性半径:
$$i = \sqrt{\frac{I}{A}} = \sqrt{\frac{bh^3/12}{bh}} = \frac{h}{\sqrt{12}} = 3.464mm$$

柔度
$$\lambda = \frac{\mu l}{l}$$

对于左图,
$$\mu = 2$$
, $\lambda = \frac{\mu I}{i} = \frac{2 \times 300}{3.464} = 173 > \lambda_s$, 是大柔度杆

则临界载荷
$$F_{cr} = \frac{\pi^2 E A}{\lambda^2} = \frac{\pi^2 \times 70 \times 10^9 \times 20 \times 12 \times 10^{-6}}{173^2} = 5.5 kN$$

对于右图,
$$\mu = 1$$
, $\lambda = \frac{\mu l}{i} = \frac{300}{3.464} = 86.6 > \lambda_p$, 是大柔度杆

则临界载荷
$$F_{cr} = \frac{\pi^2 EA}{\lambda^2} = \frac{\pi^2 \times 70 \times 10^9 \times 20 \times 12 \times 10^{-6}}{86.6^2} = 22 kN$$

A

3、如图所示悬臂梁 AB,BD 段承受均布载荷 q,梁 AB 中点 C 处承受集中载荷 qa,其承受载荷情况如图所示,试画出剪力、弯矩图。

解:

4、如图所示钢架, 承受均布载荷 q 和集中载荷 F 的作用, 且 F=qa, 弯曲刚度 El 为常数, 试求自由端形心 C 点的水平和铅垂位移。

解:钢化梁 AB,
$$\Delta_{C,y,F} = \frac{Fl^3}{3El} = \frac{qa^4}{3El}$$
, $\Delta_{C,y,F} = 0$

钢化梁 BC 段,
$$\Delta_{B,x,M} = \frac{MI^2}{2EI} = \frac{qa^4}{2EI}$$
, $\Delta_{B,g,M} = \frac{MI}{EI} = \frac{qa^3}{EI}$

$$\Delta_{B,x,q} = \frac{qa^4}{8EI}, \quad \Delta_{B,\theta,q} = \frac{qa^3}{6EI}$$

所以,C 点的水平位移是
$$\Delta_{Cx} = \Delta_{Bx,M} + \Delta_{Hx,q} = \frac{ga^4}{2EI} + \frac{ga^4}{8EI} = \frac{5ga^4}{8EI}$$
 (→)

C点的铅垂位移是
$$\Delta_{C,r} = \Delta_{C,r,F} + a \cdot \Delta_{B,\theta,M} + a \cdot \Delta_{B,\theta,q} = \frac{qa^4}{3EI} + a \cdot \frac{qa^3}{EI} + a \cdot \frac{qa^3}{6EI} = \frac{3qa^4}{2EI}$$

 $_{5}$ 、图示传动轴,转速 $_{n=100r/min}$,传递功率 $_{P=11kW}$,胶带的紧边张力为松边张力的 $_{3}$ 倍。若许用应力[$_{\sigma}$]=70MPa,试用第四强度理论确定该传动轴外伸段的许可长度 $_{1}$ 。

$$\left\{M\right\}_{N=m} = 9549 \frac{\left\{P\right\}_{kW}}{\left\{n\right\}_{r/min}}$$

解: 扭矩
$$T = 9549 \times \frac{P}{n} = 9549 \times \frac{11}{100} = 1050 N.m$$

由 $(3F - F) \cdot \varphi / 2 = T$ 得,松边张力F = 1.75kN

则紧边张力 $F_1 = 3F = 5.25kN$

扭转切应力
$$\tau = \frac{T}{W_p} = \frac{T}{\pi d^3/16} = \frac{16 \times 1050}{\pi \times 80^3 \times 10^{-9}} = 10.4 MPa$$

最大弯矩 M = 4FI

$$\sigma = \frac{4Fl}{W} = \frac{4 \times 1.75 \times 10^{3} \times l}{\pi \times 80^{3} \times 10^{-9} / 32} = 139 lMPa$$

$$\sigma_{r4} = \sqrt{\sigma^2 + 3\tau^2} = \sqrt{(139l)^2 + 3(10.4)^2} < [\sigma] = 70 \text{ M Pa}$$

则,外伸长度
$$I < \frac{\sqrt{70^2 - 3 \times (10.4)^2}}{139} = 0.487 m$$