More Fault Tolerant Consensus

Radu Nicolescu Department of Computer Science University of Auckland

21 Oct 2020

1 TurpinCoan Sync Multi

Outline

1 TurpinCoan Sync Multi

TurpinCoan Sync Multi

- General agreement, over arbitrary finite set V, $|V| \ge 2$
- TurpinCoan: two extra rounds + binary Byz

TurpinCoan Init aka Round 0 (Process #i)

- Initial choice: $x \in V$
 - determined by other means, or
 - received from outside
- Proposal: $y \in V \cup \bot = \bot$
- Candidate: $z \in V \cup \bot = \bot$
- Vote: $\hat{v} \in \{0,1\} = 0$

TurpinCoan Init aka Round 0 (Process #i)

- Initial choice: $x \in V$
 - determined by other means, or
 - received from outside
- Proposal: $y \in V \cup \bot = \bot$
- Candidate: $z \in V \cup \bot = \bot$
- Vote: $\hat{v} \in \{0,1\} = 0$

- Send x to all processes
- Let $W \subseteq V \cup \bot =$ multiset of all received messages
- |W| = N: sync, \perp
- If $\exists v \in V, |W|_v \ge N F = 2F + 1$, then y = v
- Else, keep $y = \perp$
- $y \in V \cup \bot$ is our proposal
- Note: all non-faulty processes select the same $y \in V \cup \bot$
 - $aaa\underline{b} \Rightarrow y = a$, $aaa\underline{c} \Rightarrow y = a$
 - $aa\underline{a}b \Rightarrow y = a$, $aa\underline{c}b \Rightarrow y = \bot$

- Send x to all processes
- Let $W \subseteq V \cup \bot =$ multiset of all received messages
- |W| = N: sync, \perp
- If $\exists v \in V, |W|_v \ge N F = 2F + 1$, then y = v
- Else, keep $y = \perp$
- $y \in V \cup \bot$ is our proposal
- Note: all non-faulty processes select the same $y \in V \cup \bot$
 - $aaa\underline{b} \Rightarrow y = a$, $aaa\underline{c} \Rightarrow y = a$
 - $aa\underline{a}b \Rightarrow y = a$, $aa\underline{c}b \Rightarrow y = \bot$

- Send x to all processes
- Let $W \subseteq V \cup \bot =$ multiset of all received messages
- |W| = N: sync, \perp
- If $\exists v \in V, |W|_v \ge N F = 2F + 1$, then y = v
- Else, keep $y = \perp$
- $y \in V \cup \bot$ is our proposal
- Note: all non-faulty processes select the same $y \in V \cup \bot$
 - $aaa\underline{b} \Rightarrow y = a$, $aaa\underline{c} \Rightarrow y = a$
 - $aa\underline{a}b \Rightarrow y = a$, $aa\underline{c}b \Rightarrow y = \bot$

- Send x to all processes
- Let $W \subseteq V \cup \bot =$ multiset of all received messages
- |W| = N: sync, \perp
- If $\exists v \in V, |W|_v \ge N F = 2F + 1$, then y = v
- Else, keep $y = \perp$
- $y \in V \cup \bot$ is our proposal
- Note: all non-faulty processes select the same $y \in V \cup \bot$
 - $aaa\underline{b} \Rightarrow y = a$, $aaa\underline{c} \Rightarrow y = a$
 - $aa\underline{a}b \Rightarrow y = a$, $aa\underline{c}b \Rightarrow y = \bot$

- Send $y \in V \cup \bot$ to all processes
- Let $W \subseteq V \cup \bot = \mathsf{multiset}$ of all received messages
- |W| = N: sync, \perp
- If $\exists v \in V, |W|_v \ge N F = 2F + 1$, then $z = v, \hat{v} = 1$
 - We vote for candidate $z \in V$
- Else if $\exists v \in V$, arg $\max_v |W|_v$, arbitrary tie break, then z = v $(\hat{v} = 0)$
 - We do NOT vote for candidate z ∈ V, but this may be the final decision
- Else i.e. $|W| \cap V = \emptyset$. $(z = \perp, \hat{v} = 0)$
 - No candidate, no vote

TurpinCoan Round 3, ... (Process #i)

- Binary Byz agreement on $\hat{v} \in \{0,1\}$, for the candidate $z \in V \cup \bot$
- If this Byz decision is 1 and $z \in V$ (i.e. $z \neq \bot$), then final decision z
- Else, final decision $v_0 \in V$

TurpinCoan Round 3, ... (Process #i)

- Binary Byz agreement on $\hat{v} \in \{0,1\}$, for the candidate $z \in V \cup \bot$
- If this Byz decision is 1 and $z \in V$ (i.e. $z \neq \perp$), then final decision z
- Else, final decision $v_0 \in V$

- Variant agreement: $z = a \in V$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110 \Rightarrow 1$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110 \implies 1$
 - $aab\underline{b} \Rightarrow y = \perp$, $aa \perp \underline{b} \Rightarrow z = a$, $\hat{v} = 0$, $110 \Rightarrow 1$
- Variant agreement: $z = v_0 \in V$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110\underline{0} \Rightarrow 0$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $1100 \Rightarrow 0$
 - $aab\underline{b} \Rightarrow y = \perp$, $aa \perp \underline{b} \Rightarrow z = a$, $\hat{v} = 0$, $110\underline{0} \Rightarrow 0$

- Variant agreement: $z = a \in V$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110 \implies 1$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110 \implies 1$
 - $aab\underline{b} \Rightarrow y = \perp$, $aa \perp \underline{b} \Rightarrow z = a$, $\hat{v} = 0$, $110 \Rightarrow 1$
- Variant agreement: $z = v_0 \in V$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110\underline{0} \Rightarrow 0$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110\underline{0} \Rightarrow 0$
 - $aab\underline{b} \Rightarrow y = \perp$, $aa \perp \underline{b} \Rightarrow z = a$, $\hat{v} = 0$, $110\underline{0} \Rightarrow 0$

- Variant agreement: $z = a \in V$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110_{_} \Rightarrow 1$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110_{_} \Rightarrow 1$
 - $aab\underline{b} \Rightarrow y = \perp$, $aa \perp \underline{b} \Rightarrow z = a$, $\hat{v} = 0$, $110 \Rightarrow 1$
- Variant agreement: $z = v_0 \in V$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110\underline{0} \Rightarrow 0$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110\underline{0} \Rightarrow 0$
 - $aab\underline{b} \Rightarrow y = \perp$, $aa \perp \underline{b} \Rightarrow z = a$, $\hat{v} = 0$, $110\underline{0} \Rightarrow 0$

- Variant agreement: $z = a \in V$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110_{_} \Rightarrow 1$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110_{_} \Rightarrow 1$
 - $aab\underline{b} \Rightarrow y = \perp$, $aa \perp \underline{b} \Rightarrow z = a, \hat{v} = 0, 110_- \Rightarrow 1$
- Variant agreement: $z = v_0 \in V$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110\underline{0} \Rightarrow 0$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110\underline{0} \Rightarrow 0$
 - $aab\underline{b} \Rightarrow y = \perp$, $aa \perp \underline{b} \Rightarrow z = a$, $\hat{v} = 0$, $110\underline{0} \Rightarrow 0$

- Variant agreement: $z = a \in V$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110_{_} \Rightarrow 1$
 - $aab\underline{a}\Rightarrow y=a$, $aa\perp\underline{a}\Rightarrow z=a, \hat{v}=1$, $110_\Rightarrow 1$
 - $aab\underline{b} \Rightarrow y = \perp$, $aa \perp \underline{b} \Rightarrow z = a$, $\hat{v} = 0$, $110_{_} \Rightarrow 1$
- Variant agreement: $z = v_0 \in V$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110\underline{0} \Rightarrow 0$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110\underline{0} \Rightarrow 0$
 - $aab\underline{b} \Rightarrow y = \perp$, $aa \perp \underline{b} \Rightarrow z = a$, $\hat{v} = 0$, $110\underline{0} \Rightarrow 0$

- Variant agreement: $z = a \in V$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110_{_} \Rightarrow 1$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110_{_} \Rightarrow 1$
 - $aab\underline{b} \Rightarrow y = \perp$, $aa \perp \underline{b} \Rightarrow z = a$, $\hat{v} = 0$, $110 \Rightarrow 1$
- Variant agreement: $z = v_0 \in V$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110\underline{0} \Rightarrow 0$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110\underline{0} \Rightarrow 0$
 - $aab\underline{b} \Rightarrow y = \perp$, $aa \perp \underline{b} \Rightarrow z = a$, $\hat{v} = 0$, $110\underline{0} \Rightarrow 0$

- Variant agreement: $z = a \in V$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110_{_} \Rightarrow 1$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110_{_} \Rightarrow 1$
 - $aab\underline{b} \Rightarrow y = \perp$, $aa \perp \underline{b} \Rightarrow z = a$, $\hat{v} = 0$, $110_{_} \Rightarrow 1$
- Variant agreement: $z = v_0 \in V$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110\underline{0} \Rightarrow 0$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110\underline{0} \Rightarrow 0$
 - $aab\underline{b} \Rightarrow y = \perp$, $aa \perp \underline{b} \Rightarrow z = a$, $\hat{v} = 0$, $110\underline{0} \Rightarrow 0$

- Variant agreement: $z = a \in V$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110_{_} \Rightarrow 1$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110_{_} \Rightarrow 1$
 - $aab\underline{b} \Rightarrow y = \perp$, $aa \perp \underline{b} \Rightarrow z = a$, $\hat{v} = 0$, $110_{_} \Rightarrow 1$
- Variant agreement: $z = v_0 \in V$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110\underline{0} \Rightarrow 0$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110\underline{0} \Rightarrow 0$
 - $aab\underline{b} \Rightarrow y = \perp$, $aa \perp \underline{b} \Rightarrow z = a$, $\hat{v} = 0$, $110\underline{0} \Rightarrow 0$

- Variant agreement: $z = a \in V$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110_{_} \Rightarrow 1$
 - $aab\underline{a}\Rightarrow y=a$, $aa\perp\underline{a}\Rightarrow z=a, \hat{v}=1$, $110_\Rightarrow 1$
 - $aab\underline{b} \Rightarrow y = \perp$, $aa \perp \underline{b} \Rightarrow z = a$, $\hat{v} = 0$, $110_{_} \Rightarrow 1$
- Variant agreement: $z = v_0 \in V$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110\underline{0} \Rightarrow 0$
 - $aab\underline{a} \Rightarrow y = a$, $aa \perp \underline{a} \Rightarrow z = a$, $\hat{v} = 1$, $110\underline{0} \Rightarrow 0$
 - $aab\underline{b} \Rightarrow y = \perp$, $aa \perp \underline{b} \Rightarrow z = a$, $\hat{v} = 0$, $110\underline{0} \Rightarrow 0$

- Agreement: $z = v_0 \in V$
 - $abc\underline{a} \Rightarrow y = \perp$, $\perp \perp \perp \perp \underline{d} \Rightarrow z = d$, $\hat{v} = 0$, $000_{_} \Rightarrow 0$
 - $abc\underline{a} \Rightarrow y = \bot$, $\bot\bot\bot\underline{e} \Rightarrow z = e$, $\hat{v} = 0$, $000_ \Rightarrow 0$
 - $abc\underline{b} \Rightarrow y = \perp$, $\perp \perp \perp \underline{e} \Rightarrow z = f$, $\hat{v} = 0$, $000_{_} \Rightarrow 0$
- Agreement may be impossible with just one extra (second) round
 - $aaba \cdots \Rightarrow z = a, \hat{v} = 1, 1101 \Rightarrow 1$
 - $aab\underline{a} \cdots \Rightarrow z = a, \hat{v} = 1, 110\underline{1} \Rightarrow 1$
 - $aabb \cdots \Rightarrow z = b, \hat{v} = 0, 1101 \Rightarrow 1$

- Agreement: $z = v_0 \in V$
 - $abc\underline{a} \Rightarrow y = \perp$, $\perp \perp \perp \underline{d} \Rightarrow z = d$, $\hat{v} = 0$, $000_{_} \Rightarrow 0$
 - $abc\underline{a} \Rightarrow y = \perp$, $\perp \perp \perp \underline{e} \Rightarrow z = e, \hat{v} = 0, 000 \Rightarrow 0$
 - $abc\underline{b} \Rightarrow y = \perp$, $\perp \perp \perp \underline{e} \Rightarrow z = f$, $\hat{v} = 0$, $000_{_} \Rightarrow 0$
- Agreement may be impossible with just one extra (second) round
 - $aaba \cdots \Rightarrow z = a, \hat{v} = 1, 1101 \Rightarrow 1$
 - $aab\underline{a} \cdots \Rightarrow z = a, \hat{v} = 1, 110\underline{1} \Rightarrow 1$
 - $aabb \cdots \Rightarrow z = b, \hat{v} = 0, 1101 \Rightarrow 1$

- Agreement: $z = v_0 \in V$
 - $abc\underline{a} \Rightarrow y = \perp$, $\perp \perp \perp \underline{d} \Rightarrow z = d$, $\hat{v} = 0$, $000_{_} \Rightarrow 0$
 - $abc\underline{a} \Rightarrow y = \perp$, $\perp \perp \perp \underline{e} \Rightarrow z = e, \hat{v} = 0, 000_- \Rightarrow 0$
 - $abc\underline{b} \Rightarrow y = \perp$, $\perp \perp \perp \underline{e} \Rightarrow z = f$, $\hat{v} = 0$, $000_{_} \Rightarrow 0$
- Agreement may be impossible with just one extra (second) round
 - $aaba \cdots \Rightarrow z = a, \hat{v} = 1, 1101 \Rightarrow 1$
 - $aab\underline{a} \cdots \Rightarrow z = a, \hat{v} = 1, 110\underline{1} \Rightarrow 1$
 - $aabb \cdots \Rightarrow z = b, \hat{v} = 0, 1101 \Rightarrow 1$

- Agreement: $z = v_0 \in V$
 - $abc\underline{a} \Rightarrow y = \perp$, $\perp \perp \perp \perp \underline{d} \Rightarrow z = d$, $\hat{v} = 0$, $000_{_} \Rightarrow 0$
 - $abc\underline{a} \Rightarrow y = \perp$, $\perp \perp \perp \underline{e} \Rightarrow z = e$, $\hat{v} = 0$, $000_{_} \Rightarrow 0$
 - $abc\underline{b} \Rightarrow y = \perp$, $\perp \perp \perp \underline{e} \Rightarrow z = f$, $\hat{v} = 0$, $000_{_} \Rightarrow 0$
- Agreement may be impossible with just one extra (second) round
 - $aaba \cdots \Rightarrow z = a, \hat{v} = 1, 1101 \Rightarrow 1$
 - $aab\underline{a} \cdots \Rightarrow z = a, \hat{v} = 1, 110\underline{1} \Rightarrow 1$
 - $aabb \cdots \Rightarrow z = b, \hat{v} = 0, 1101 \Rightarrow 1$

- Agreement: $z = v_0 \in V$
 - $abc\underline{a} \Rightarrow y = \perp$, $\perp \perp \perp \perp \underline{d} \Rightarrow z = d$, $\hat{v} = 0$, $000_{_} \Rightarrow 0$
 - $abc\underline{a} \Rightarrow y = \perp$, $\perp \perp \perp \underline{e} \Rightarrow z = e, \hat{v} = 0, 000_{-} \Rightarrow 0$
 - $abc\underline{b} \Rightarrow y = \perp$, $\perp \perp \perp \underline{e} \Rightarrow z = f$, $\hat{v} = 0$, $000_{_} \Rightarrow 0$
- Agreement may be impossible with just one extra (second) round
 - $aaba \cdots \Rightarrow z = a, \hat{v} = 1, 1101 \Rightarrow 1$
 - $aab\underline{a} \cdots \Rightarrow z = a, \hat{v} = 1, 110\underline{1} \Rightarrow 1$
 - $aabb \cdots \Rightarrow z = b, \hat{v} = 0, 1101 \Rightarrow 1$

- Agreement: $z = v_0 \in V$
 - $abc\underline{a} \Rightarrow y = \perp$, $\perp \perp \perp \underline{d} \Rightarrow z = d$, $\hat{v} = 0$, $000_{_} \Rightarrow 0$
 - $abc\underline{a} \Rightarrow y = \perp$, $\perp \perp \perp \perp \underline{e} \Rightarrow z = e$, $\hat{v} = 0$, $000_{-} \Rightarrow 0$
 - $abc\underline{b} \Rightarrow y = \perp$, $\perp \perp \perp \underline{e} \Rightarrow z = f$, $\hat{v} = 0$, $000_{_} \Rightarrow 0$
- Agreement may be impossible with just one extra (second) round
 - $aab\underline{a} \cdots \Rightarrow z = a, \hat{v} = 1, 110\underline{1} \Rightarrow 1$
 - $aab\underline{a} \cdots \Rightarrow z = a, \hat{v} = 1, 110\underline{1} \Rightarrow 1$
 - $aabb \cdots \Rightarrow z = b, \hat{v} = 0, 1101 \Rightarrow 1$

- Agreement: $z = v_0 \in V$
 - $abc\underline{a} \Rightarrow y = \perp$, $\perp \perp \perp \perp \underline{d} \Rightarrow z = d$, $\hat{v} = 0$, $000_{_} \Rightarrow 0$
 - $abc\underline{a} \Rightarrow y = \perp$, $\perp \perp \perp \underline{e} \Rightarrow z = e, \hat{v} = 0, 000_{-} \Rightarrow 0$
 - $abc\underline{b} \Rightarrow y = \perp$, $\perp \perp \perp \underline{e} \Rightarrow z = f$, $\hat{v} = 0$, $000_{_} \Rightarrow 0$
- Agreement may be impossible with just one extra (second) round
 - $aab\underline{a}\cdots\Rightarrow z=a, \hat{v}=1, 110\underline{1}\Rightarrow 1$
 - $aab\underline{a} \cdots \Rightarrow z = a, \hat{v} = 1, 110\underline{1} \Rightarrow 1$
 - $aabb \cdots \Rightarrow z = b, \hat{v} = 0, 1101 \Rightarrow 1$

- Agreement: $z = v_0 \in V$
 - $abc\underline{a} \Rightarrow y = \perp$, $\perp \perp \perp \underline{d} \Rightarrow z = d$, $\hat{v} = 0$, $000_{_} \Rightarrow 0$
 - $abc\underline{a} \Rightarrow y = \perp$, $\perp \perp \perp \perp \underline{e} \Rightarrow z = e$, $\hat{v} = 0$, $000_{-} \Rightarrow 0$
 - $abc\underline{b} \Rightarrow y = \perp$, $\perp \perp \perp \underline{e} \Rightarrow z = f$, $\hat{v} = 0$, $000_{_} \Rightarrow 0$
- Agreement may be impossible with just one extra (second) round
 - $aaba \cdots \Rightarrow z = a, \hat{v} = 1, 1101 \Rightarrow 1$
 - $aab\underline{a} \cdots \Rightarrow z = a, \hat{v} = 1, 110\underline{1} \Rightarrow 1$
 - $aab\underline{b} \cdots \Rightarrow z = b, \hat{v} = 0, 110\underline{1} \Rightarrow 1$

- Agreement: $z = v_0 \in V$
 - $abc\underline{a} \Rightarrow y = \perp$, $\perp \perp \perp \underline{d} \Rightarrow z = d$, $\hat{v} = 0$, $000_{_} \Rightarrow 0$
 - $abc\underline{a} \Rightarrow y = \perp$, $\perp \perp \perp \underline{e} \Rightarrow z = e$, $\hat{v} = 0$, $000_{_} \Rightarrow 0$
 - $abc\underline{b} \Rightarrow y = \perp$, $\perp \perp \perp \underline{e} \Rightarrow z = f$, $\hat{v} = 0$, $000_{_} \Rightarrow 0$
- Agreement may be impossible with just one extra (second) round
 - $aaba \cdots \Rightarrow z = a, \hat{v} = 1, 1101 \Rightarrow 1$
 - $aab\underline{a} \cdots \Rightarrow z = a, \hat{v} = 1, 110\underline{1} \Rightarrow 1$
 - $aab\underline{b}\cdots\Rightarrow z=b, \hat{v}=0, 110\underline{1}\Rightarrow 1$

Outline

1 TurpinCoan Sync Multi

- FLP: no agreement in the async model, even if one single stopping failure
- Still, this is a fundamental problem that needs solutions!
- Way around: stronger model, and weaker termination
- Stronger model: processes use randomisation
- Weaker termination: eventual termination with probability=1

- FLP: no agreement in the async model, even if one single stopping failure
- Still, this is a fundamental problem that needs solutions!
- Way around: stronger model, and weaker termination
- Stronger model: processes use randomisation
- Weaker termination: eventual termination with probability=1

- Initial choice: $x \in \{0, 1\}$
 - determined by other means, or
 - received from outside
- Proposal: $y \in \{0, 1, \bot\} = \bot$
- Step: $s \ge 0 = 0$, unbounded
- Each step has two rounds

- Initial choice: $x \in \{0, 1\}$
 - determined by other means, or
 - received from outside
- Proposal: $y \in \{0, 1, \bot\} = \bot$
- Step: $s \ge 0 = 0$, unbounded
- Each step has two rounds

- Initial choice: $x \in \{0, 1\}$
 - determined by other means, or
 - received from outside
- Proposal: $y \in \{0, 1, \bot\} = \bot$
- Step: $s \ge 0 = 0$, unbounded
- Each step has two rounds

- Initial choice: $x \in \{0, 1\}$
 - determined by other means, or
 - received from outside
- Proposal: $y \in \{0, 1, \bot\} = \bot$
- Step: $s \ge 0 = 0$, unbounded
- Each step has two rounds

BenOr Step s, Round 1 (Process #i)

- Send (I, s, x) to all processes
- Let M =multiset of first N F = 2F + 1 received messages (I, s, *)
- If all $m \in M$ have same value $v \in \{0, 1\}$, then y = v
- Else, $y = \perp$

BenOr Step s, Round 1 (Process #i)

- Send (I, s, x) to all processes
- Let M =multiset of first N F = 2F + 1 received messages (I, s, *)
- If all $m \in M$ have same value $v \in \{0, 1\}$, then y = v
- Else, $y = \perp$

BenOr Step s, Round 2 (Process #i)

- Send (II, s, y) to all processes
- Let M =multiset of first N F = 2F + 1 received messages (II, s, *)
- If all $m \in M$ have same value $v \in \{0, 1\}$, then x = v, decide v (if not already), and continue
- If at least N-2F=F+1 $m\in M$ have same value $v\in\{0,1\}$, then x=v, but do not decide
- Else i.e. $x = \text{random} \in \{0, 1\}$.

BenOr Step s, Round 2 (Process #i)

- Send (II, s, y) to all processes
- Let M = multiset of first N F = 2F + 1 received messages (II, s, *)
- If all $m \in M$ have same value $v \in \{0, 1\}$, then x = v, decide v (if not already), and continue
- If at least N-2F=F+1 $m\in M$ have same value $v\in\{0,1\}$, then x=v, but do not decide
- Else i.e. $x = \text{random} \in \{0, 1\}$.

BenOr Step s, Round 2 (Process #i)

- Send (II, s, y) to all processes
- Let M = multiset of first N F = 2F + 1 received messages (II, s, *)
- If all $m \in M$ have same value $v \in \{0,1\}$, then x = v, decide v (if not already), and continue
- If at least N 2F = F + 1 $m \in M$ have same value $v \in \{0, 1\}$, then x = v, but do not decide
- Else i.e. $x = \text{random} \in \{0, 1\}$.