Introducción a la Lógica y la Computación

Parte II: Lógica Proposicional

September 5, 2019

Ejes de Contenidos

- 1 Introducción: ¿qué es la Lógica Proposicional?
- Sintaxis de la Lógica proposicional: las proposiciones
- Semántica de la Lógica Proposicional
- 4 Noción de demostración
- Teorema de Corrección
- Teorema de Completitud

¿Qué es Lógica (proposicional)?

- La lógica se entiende, en término generales, como el análisis de los razonamientos correctos.
- A fines del siglo XIX y principios del XX, se despierta un interés por dar bases sólidas a la matemática: comienza el desarrollo de la lógica matemática.
- Para ello se introducen sistemas lógicos en los que las fórmulas y los razonamiento válidos están establecidos sin ninguna referencia a lenguajes naturales (son objetos matemáticos).
- De esta manera se puede comprobar la validez de razonamientos por medios puramente sintácticos.

Ejemplo de razonamiento correcto

- Premisa 1: Si P es un poset finito, entonces P tiene al menos un maximal.
- Premisa 2: $(D_{32}, |)$ es un poset finito.
- Conclusión: D₃₂ tiene al menos un maximal.

El patrón del ejemplo

El razonamiento tienen el siguiente esquema:

- Premisa 1: Si p_0 , entonces p_1 .
- Premisa 2: p₀
- Conclusión: p₁

Razonamiento incorrecto

- Premisa 1: Si L tiene un elemento con dos complementos, entonces L no es distributivo.
- Premisa 2: No hay elementos en L con dos complementos
- Conclusión: L es distributivo

Patrón del razonamiento incorrecto:

- Premisa 1: Si p_0 , entonces $\neg p_1$.
- Premisa 2: ¬p₀
- Conclusión: p₁

Sintaxis, semántica y noción de demostración

Para estudiar matemáticamente los razonamientos válidos debemos saber representar los mismos de manera matemática. El primer paso será definir un conjunto de proposiciones: la *sintaxis*.

Una proposición será una secuencia de caracteres. Por ejemplo,

$$(p_1 \rightarrow (p_1 \vee \neg p_3))$$

representará una proposición, pero no representa una proposición la secuencia:

$$(p_0 \vee)$$

Sintaxis, semántica y noción de demostración

Cada proposición tiene asociado un valor de verdad (semántica).

Por ejemplo, podemos condicionar el valor de verdad de

$$(p_1 \vee \neg p_3)$$

al de p_1 y p_3 : la proposición será verdadera si y sólo si p_1 es verdadera o p_3 es falsa.

Sintaxis, semántica y noción de demostración

Un conjunto de reglas puramente mecánicas nos permitirá definir la noción de demostración formal.

Por ejemplo,

$$\begin{array}{ccc} \underline{p_0} & p_0 o
eg p_4 \end{array} \qquad \longleftarrow ext{Hipótesis} \ \leftarrow \quad \leftarrow ext{Conclusión}$$

Sintaxis, semántica y noción de demostración

Emergerán dos nociones distintas de "validez" o "verdad":

- Si p₁ es verdadero entonces p₁ ∨ ¬p₃ es verdadero (noción de verdad dada por la tabla)
- Si las hipótesis p₀ y p₀ → ¬p₄ valen, entonces vale la conclusión ¬p₄ (noción de demostración)

Pregunta:

¿qué relación habrá entre lo verdadero y lo demostrable?

El alfabeto

- Asumimos un conjunto numerable V de variables proposicionales que representan las afirmaciones más básicas.
- A los elementos de V los escribiremos simplemente como p_0, p_1, \ldots
- Definimos $\mathcal{A}t = \mathcal{V} \cup \{\bot\}$, el símbolo \bot representa la afirmación "es falso". A este conjunto $\mathcal{A}t$ lo llamamos el conjunto de $\acute{A}tomos$.
- Las proposiciones serán ciertas palabras construidas sobre el alfabeto: $\Sigma = \mathcal{A}t \cup \{\neg, \lor, \land, \rightarrow\} \cup \{(,)\}$.

Palabras

- Al conjunto de palabras que se construyen con el alfabeto Σ lo denotamos con Σ*.
- Ejemplos de palabras sobre Σ son:

$$p_0 \wedge p_0(p_1 (p_{23} \wedge p_9) (\neg \bot)$$

• Ejemplos de cadenas que NO son palabras sobre Σ :

$$4+0$$
 $x \leq y \wedge z$ $A \vee B$

Pero no todas las palabras serán proposiciones.

Proposiciones

Algunos elementos de Σ* representan proposiciones:

$$p_2$$
 p_{35} $(\neg p_{35})$ $((\neg p_{35}) \land p_2)$

..., pero otras no:

$$\wedge p_0(p_1 \qquad p_{23} \wedge \neg p_9 \vee p_2$$

- En la última podemos descubrir la necesidad de utilizar paréntesis.
- Pero, cómo definir un sub-conjunto Prop ⊆ Σ* que sólo contenga proposiciones?

Proposiciones

Podemos definir conjuntos cada vez más grandes:

$$\begin{aligned} \textit{Prop}_0 = & \mathcal{A}t \\ \textit{Prop}_1 = & \textit{Prop}_0 \cup \{(\neg \phi) \mid \phi \in \textit{Prop}_0\} \\ & \cup \{(\phi \square \psi) \mid \phi, \psi \in \textit{Prop}_0\} \\ & \cdots \\ \textit{Prop}_{k+1} = & \textit{Prop}_k \cup \{(\neg \phi) \mid \phi \in \textit{Prop}_k\} \\ & \cup \{(\phi \square \psi) \mid \phi, \psi \in \textit{Prop}_k\} \end{aligned}$$

 El conjunto de proposiciones es la unión de todos esos conjuntos: Prop = ∪_{n∈ℕ} Prop_n

Proposiciones

Ahora daremos una definición inductiva del conjunto Prop.

$$\phi \in \mathcal{A}t$$
 Si $\phi \in \mathcal{A}t$, entonces $\phi \in Prop$;

$$(\neg \phi)$$
 Si $\phi \in Prop$, entonces $(\neg \phi) \in Prop$;

$$(\phi \lor \psi)$$
 Si $\phi \in Prop$ y $\psi \in Prop$, entonces $(\phi \lor \psi) \in Prop$.

$$(\phi \wedge \psi)$$
 Si $\phi \in Prop$ y $\psi \in Prop$, entonces $(\phi \wedge \psi) \in Prop$.

$$(\phi \to \psi)$$
 Si $\phi \in Prop$ y $\psi \in Prop$, entonces $(\phi \to \psi) \in Prop$.

Proposiciones

 Observación: podemos unificar las tres últimas cláusulas usando una meta-variable □ que puede ser ∨, ∧ ó →:

$$[(\phi \square \psi)]$$
 Si $\phi \in Prop$ y $\psi \in Prop$,

entonces
$$(\phi \square \psi) \in Prop$$

Recursión en los naturales

 Si queremos definir una función f: N → X de los naturales en algún conjunto X alcanza con:

$$n = 0$$
 elegir $a \in X$ y definir $f(0) = a$;
 $n = k + 1$ definir $f(n)$ en términos de $f(k)$:
 $f(k + 1) = \dots f(k) \dots$

- Es fácil ver que de esa manera tenemos bien definida la función f.
- Puesto que Prop también es un conjunto definido inductivamente, podemos utilizar un esquema semejante.

Recursión en Prop

- Supongamos ahora que queremos definir una función
 f: Prop → X.
- Ahora tenemos muchos casos base: ⊥, p₀, p₁, ...,
 p₂₃₅₆,... por lo tanto debemos definir:

$$f(\phi) = \dots \text{ si } \phi \in \mathcal{A}t$$

 Y tenemos varios casos recursivos, uno para cada conectivo; en el caso de la negación:

$$f((\neg \phi)) = \dots f(\phi) \dots$$

• Para las fórmulas de la forma $(\phi_1 \Box \phi_2)$, podemos utilizar la llamada recursiva tanto en ϕ_1 como en ϕ_2 :

$$f((\phi_1 \square \phi_2)) = \dots f(\phi_1) \dots f(\phi_2) \dots$$

Recursión, ejemplos

Cantidad de conectivos en una proposición:

$$con(-)\colon Prop o\mathbb{N}$$
 $con(\phi)=0 \quad \text{ si } \phi\in\mathcal{A}t$ $con((\neg\phi))=con(\phi)+1$ $con((\phi_1\ \Box\ \phi_2))=con(\phi_1)+con(\phi_2)+1$

Cantidad de símbolos "(" y ")" en una proposición:

$$egin{aligned} & extit{paren}(-)\colon extit{Prop} & \to \mathbb{N} \ & extit{paren}(\phi) = 0 & extit{si } \phi \in \mathcal{A}t \ & extit{paren}((\lnot \phi)) = extit{paren}(\phi) + 2 \ & extit{paren}((\phi_1 \ \Box \ \phi_2)) = extit{paren}(\phi_1) + extit{paren}(\phi_2) + 2 \end{aligned}$$

Inducción en sub-fórmulas

- Así como podemos definir funciones recursivamente, también podemos probar propiedades sobre *Prop* utilizando *inducción*.
- Para probar que todo φ ∈ Prop satisface un predicado A, entonces alcanza con probar:

```
\phi \in \mathcal{A}t \ A(\phi), para todo \phi \in \mathcal{A}t;

(\neg \phi) \ \text{Si } A(\phi), entonces A((\neg \phi));

(\phi \Box \psi) \ \text{Si } A(\phi) \ \text{y } A(\psi), entonces A((\phi \Box \psi)).
```

 Notemos que ese principio de inducción es análogo al principio de inducción para los naturales.

Inducción, ejemplo

Teorema Para toda $\phi \in Prop$, $paren(\phi) = 2 * con(\phi)$.

- Antes de intenar probarlo, enunciemos las hipótesis inductivas que tendremos a nuestra disposición:
- Si $\phi = (\neg \phi')$, entonces la hipótesis inductiva vale para ϕ' , es decir:

$$paren(\phi') = 2 * con(\phi')$$

• Si $\phi = (\phi_1 \square \phi_2)$, ahora disponemos de la hipótesis inductiva tanto sobre ϕ_1 como sobre ϕ_2 :

$$paren(\phi_1) = 2 * con(\phi_1)$$
 $paren(\phi_2) = 2 * con(\phi_2)$

Inducción, ejemplo

• Si $\phi \in \mathcal{A}t$, es fácil

$$paren(\phi) = 0 = 2 * 0 = 2 * con(\phi)$$

• Si $\phi = (\neg \phi')$, utilizando la hipótesis inductiva para ϕ' calculamos:

$$paren((\neg \phi'))$$

= $paren(\phi') + 2$
= $(2 * con(\phi')) + 2$
= $2 * (con(\phi') + 1)$
= $2 * con((\neg \phi'))$

Semántica de la Lógica Proposicional

- Las proposiciones representan afirmaciones, alcanza con utilizar 2.
- Por ejemplo, establecimos que ⊥ representaba la afirmación falsa.
- Para otras, hoy llueve (representada por alguna p_i) no podemos fijar su valor de verdad de una vez y para siempre.
- ¿Cuál es el valor de $(\neg p_1)$? $\begin{array}{c|c} p_1 & (\neg p_1) \\ 0 & 1 \\ 1 & 0 \end{array}$
- En general, el valor de $(\phi \Box \psi)$, dependerá del valor de ϕ y del de ψ .

Tabla de verdad

- En una tabla de verdad esa dependencia se hace patente.
- Cada línea de la tabla de verdad muestra una asignación de valores a las variables proposicionales:

p_0	p_1	p_2	$(\neg p_0)$	$((\neg p_0) \wedge p_1)$	$(((\neg p_0) \land p_1) \rightarrow p_2)$
0	0	0	1	0	1
0	0	1	1	0	1
0	1	0	1	1	0
1	0	0	0	0	1
0	1	1	1	1	1
1	0	1	0	0	1
1	1	0	0	0	1
1	1	1	0	0	1

Parte II: Lógica Proposicional

Completitud funcional

- Una función 2ⁿ → 2 puede describirse con una tabla de verdad.
- Dada una función F: 2ⁿ → 2, ¿existe una proposición φ tal que la tabla de verdad de φ sea justamente la función F?

p_0	p_1	p_2	$F(p_0, p_1, p_2)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
4	_	_	•

Completitud funcional

 Un conjunto de conectivos es funcionalmente completo, si toda función 2ⁿ → 2 se puede describir como la tabla de verdad de una proposición que sólo utilice esos conectivos.

Semántica

- Los valores de las columnas que no son variables, quedan determinados unívocamente por los valores que adoptan las columnas que corresponden a las variables p_i.
- **Definición:** Una *asignación* es una función $f: \mathcal{V} \to \mathbf{2}$.
- Notar que en una tabla de verdad, listamos todas las asignaciones (cada fila corresponde con una asignación)

Semántica

 Dada una asignación f, el valor de verdad de una proposición se define recursivamente:

$$[\![-]\!]_f \colon Prop \to \mathbf{2}$$

$$[\![p_i]\!]_f = f p_i$$

$$[\![\bot]\!]_f = 0$$

$$[\![(\neg \phi)]\!]_f = 1 - [\![\phi]\!]_f$$

$$[\![(\phi \land \psi)]\!]_f = \min([\![\phi]\!]_f, [\![\psi]\!]_f)$$

$$[\![(\phi \to \psi)]\!]_f = \max(1 - [\![\phi]\!]_f, [\![\psi]\!]_f)$$

$$[\![(\phi \lor \psi)]\!]_f = \max([\![\phi]\!]_f, [\![\psi]\!]_f)$$

Teorema de Coincidencia

Si $f, f' \colon \mathcal{V} \to \mathbf{2}$ coinciden en las variables que ocurren en ϕ , entonces $\llbracket \phi \rrbracket_f = \llbracket \phi \rrbracket_{f'}$.

La prueba es por inducción en ϕ .

Lema (de sustitución) Sea f una asignación, tal que $\llbracket \psi_1 \rrbracket_f = \llbracket \psi_2 \rrbracket_f$. Entonces $\llbracket \phi [\psi_1/p_i] \rrbracket_f = \llbracket \phi [\psi_2/p_i] \rrbracket_f$.

Validez

- La asignación f satisface ϕ si $\llbracket \phi \rrbracket_f = 1$.
- φ es una tautología (o es válida) si es satisfecha por toda asignación.
- Sea Γ ⊆ *Prop*, decimos que f es un modelo de Γ, si para toda φ ∈ Γ, f satisface φ.
- ¿Existe algún modelo de Prop?

Consecuencia lógica

- Si ϕ es una tautología, escribimos $\models \phi$.
- Decimos que φ es consecuencia lógica de Γ si todo modelo de Γ satisface φ. Lo escribimos Γ ⊨ φ.
- Como toda asignación es un modelo de \emptyset , entonces $\models \phi$ es lo mismo que $\emptyset \models \phi$.

Consecuencia lógica

- $\bullet \models (\phi \rightarrow \phi).$
- Si $\phi \in \Gamma$, entonces $\Gamma \models \phi$.
- $\{\phi, (\phi \to \psi)\} \models \psi$.
- $\bullet \not\models p_1$.

Teorema: (de sustitución) Si \models ($\psi_1 \leftrightarrow \psi_2$), entonces

$$\models (\phi[\psi_1/p_i] \leftrightarrow \phi[\psi_2/p_i]).$$

Noción de demostración

- Un razonamiento correcto es aquel que partiendo de ciertas hipótesis produce nuevos conocimientos.
- Para asegurarnos que las conclusiones son válidas debemos restringir las formas (las inferencias) en que producimos las conclusiones a partir de las premisas.
- Lo que vamos a dar a continuación es una serie de reglas de inferencia que nos aseguran que los razonamientos hechos usando esas reglas (y solo esas) son correctos.
- Por ahora nos vamos a restringir a los siguientes conectivos: ∧, →, ⊥.

Reglas de inferencia

 Representaremos gráficamente las reglas de la siguiente manera:

$$\frac{\phi_1}{\psi}$$
 $\frac{\phi_2}{\psi}$ nombre

• Recordemos que tanto las ϕ_i como ψ son metavariables que pueden ser reemplazadas por cualquier proposición.

Reglas para la Conjunción

- Si conocemos (las asumimos como hipótesis o ya tenemos una prueba) ϕ y ψ , entonces podemos concluir $\phi \wedge \psi$.
- La regla formal se llama introducción de la conjunción:

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge I$$

 Un ejemplo concreto del uso de esta regla es la siguiente prueba:

$$\frac{p_1}{p_1 \wedge p_2} \wedge I$$

• ¿Nos dice esa prueba que p₁ ∧ p₂ es válido?

Reglas para la Conjunción

- De saber $\phi \wedge \psi$ podemos deducir tanto ϕ como ψ .
- Tenemos entonces dos reglas para utilizar el conocimiento de una conjunción.
- La primera regla se llama eliminación de la conjunción:

$$\frac{\phi \wedge \psi}{\phi} \wedge E$$

 La segunda regla, que la llamamos con el mismo nombre, es:

$$\frac{\phi \wedge \psi}{\psi} \wedge E$$

Ejemplos

- ¿Podemos derivar la validez de χ a partir de la validez de $\phi \wedge (\psi \wedge \chi)$?
- Si decimos que sí, debemos poder construir una prueba, una derivación, donde podemos usar varias veces las reglas de inferencia:

$$\frac{\phi \wedge (\psi \wedge \chi)}{\frac{\psi \wedge \chi}{\chi} \wedge \mathcal{E}} \wedge \mathcal{E}$$

• A partir de ahora, usaremos la expresión existe una derivación de χ a partir de $\phi \wedge (\psi \wedge \chi)$.

Ejemplos

• ¿Podemos construir una derivación de $\phi \wedge (\psi \rightarrow \psi)$ a partir de ϕ y $(\psi \rightarrow \psi) \wedge \chi$? (Notar que tenemos varias premisas)

$$\frac{\phi \frac{(\psi \to \psi) \land \chi}{\psi \to \psi} \land I}{\phi \land (\psi \to \psi)} \land I$$

 Tanto en esta prueba como en la anterior, utilizamos la conclusión de una prueba como premisa para el uso de otra regla.

Premisas (hipótesis) y conclusión

- Llamamos premisas o hipótesis a todas las proposiciones que no fueron obtenidas como conclusión de una prueba.
- En el útimo ejemplo, las premisas son ϕ y $(\psi \to \psi) \land \chi$.
- Llamamos conclusión a la proposición que está en la raíz del árbol.
- A veces queremos referirnos a una derivación de ψ a partir de la premisa ϕ , entre otras:

• Entre las premisas de D está ϕ ; esto significa que esa proposición se ha utilizado 0, 1 o muchas veces (sin

Implicación

- Si D es una derivación de ψ a partir de φ, entonces D deberíamos poder obtener una derivación de φ → ψ.
- Pero cuando utilizamos la implicación (pensemos en el uso de "si ..., entonces ..."), queremos decir "si tuviéramos una prueba de φ".
- No queremos obligarnos a tener una prueba de ϕ , al menos hasta que queramos usar la implicación.
- Vemos entonces que cuando introducimos la implicación, quitamos la carga de la prueba sobre el antecedente.

Implicación

Formalmente la regla de introducción de la implicación es:

- Aquí hay una diferencia con las anteriores reglas porque encorchetamos hojas donde esté ϕ , si queremos.
- Esa es la manera en que indicamos que descargamos (o cancelamos) la hipótesis φ.

Ejemplo

$$\frac{\frac{[\phi \land \psi]_1}{\psi} \land E \quad \frac{[\phi \land \psi]_1}{\phi} \land E}{\frac{\psi \land \phi}{(\phi \land \psi) \rightarrow (\psi \land \phi)} \rightarrow I_1}$$

 Como podemos utilizar varias veces la regla → I, marcamos con un sub-índice aquellas hipótesis que cancelamos con cada uso de la regla.

Implicación

 La regla de eliminación de la implicación (¿cómo puedo usar una implicación?) es la conocida modus ponens:

$$\frac{\phi \qquad \phi \to \psi}{\psi} \to E$$

• Si definimos $\neg \phi$ como abreviatura de $\phi \rightarrow \bot$, entonces:

$$\frac{ \begin{array}{ccc} [\phi]_3 & \phi \to \psi \\ \hline & \begin{array}{c} \psi & \to \mathcal{E} \\ \hline & \begin{array}{c} -\psi \\ \hline \end{array} & \to \mathcal{I}_3 \end{array} \to \mathcal{E}$$

- En esta derivación, tenemos que las hipótesis no canceladas son $\phi \to \psi$ y $\neg \psi$.
- Pero podemos continuar con la derivación y cancelar todas las hipótesis

Parte II: Lógica Proposicional

Ejemplo

$$\frac{[\phi]_3 \qquad [\phi \to \psi]_1}{\psi} \to E \qquad [\neg \psi]_2} \to E$$

$$\frac{\frac{\bot}{\neg \phi} \to I_3}{\frac{\neg \psi \to \neg \phi}{\neg \psi \to \neg \phi} \to I_2} \to I_1$$

Bottom

- Para ⊥ no tenemos regla de introducción. ¿Por qué?
- Sin embargo, siempre que tengamos una prueba de ⊥, podemos concluir lo que se nos antoje: "ex falso quodlibet".

$$\frac{\perp}{\phi} \perp E$$

• Ejemplo, recordemos que $\neg \phi$ es $\phi \rightarrow \bot$:

$$\frac{\phi \qquad \neg \phi}{\frac{\bot}{\psi} \bot E} \rightarrow E$$

 Es decir, podemos construir una derivación de ψ a partir de φ y ¬φ.

Deducción natural

- La clase pasada introdujimos las reglas de inferencia que nos aseguran que si partimos de premisas válidas, entonces las conclusiones serán válidas.
- Si bien no lo explicitamos, mencionamos que las pruebas podían ser vistas como árboles.
- A las hojas (que no estaban entre corchetes) les llamábamos hipótesis o premisas; y a la raiz, conclusión.

Reducción al absurdo

- El uso habitual de reducción al absurdo es el siguiente: "para probar ϕ , asumí $\neg \phi$ y llegué a la conclusión \bot ".
- La regla "reducción al absurdo" entonces tendrá como conclusión a φ y podremos cancelar todas las veces que queramos a ¬φ:

$$[\neg \phi] \\ \vdots \\ \frac{\bot}{\phi} RAA$$

Reducción al absurdo: ejemplo

• Si tenemos como premisas $\neg \phi$ y $\neg \psi \rightarrow \phi$, entonces utilizando reducción al absurdo podremos concluir ψ

$$\frac{ [\neg \psi]_2 \qquad \neg \psi \to \phi}{ \qquad \qquad \phi \qquad \qquad \to E \qquad \qquad \neg \phi \\ \qquad \qquad \frac{\bot}{\psi} RAA_2 \rightarrow E$$

Razonamiento correcto sólo en la lógica clásica

• Si tenemos como premisa $\neg\neg\phi$, entonces utilizando reducción al absurdo podremos concluir ϕ

$$\frac{\neg \neg \phi \qquad [\neg \phi]_1}{\frac{\bot}{\phi} RAA_1} \to E$$

Más ejemplos

Derivaciones

- Decimos que ψ se derivaba de ϕ_1, \ldots, ϕ_n si existe una derivación con conclusión ψ y sus hipótesis no canceladas están entre ϕ_1, \ldots, ϕ_n .
- Para Γ ⊆ Prop y ψ ∈ Prop, decimos que ψ se deduce de Γ si existe una derivación D tal que las hipótesis están contenidas en Γ y su conclusión es ψ. La notación que utilizamos es la siguiente Γ ⊢ ψ.
- Si ψ se deduce del conjunto vacío, ∅ ⊢ ψ, entonces decimos que ψ es un teorema. Si ψ es un teorema nos ahorramos de escribir el conjunto vacío: ⊢ ψ.

Derivaciones

- Si tenemos $\{\phi\} \vdash \psi$, podemos construir una derivación $\vdash \phi \rightarrow \psi$?
- Si tenemos $\{\phi \land \psi\} \vdash \chi$, podemos construir una derivación $\vdash \phi \rightarrow (\psi \rightarrow \chi)$?
- Este tipo de manipulaciones de derivaciones las podemos expresar como meta-teoremas: Si $\{\phi \land \psi\} \vdash \chi$, entonces $\vdash \phi \rightarrow (\psi \rightarrow \chi)$.

El conjunto de derivaciones

Definiremos el conjunto de derivaciones, \mathcal{D} , como el menor conjunto que satisface (en varias filminas):

[(*Prop*)] Si $\phi \in Prop$, entonces $\phi \in \mathcal{D}$.

$$(\land E) \ \ \mathsf{Si} \ \ \underset{\phi \ \land \ \psi}{\overset{\vdots}{}} \ \in \mathcal{D}, \ \mathsf{entonces} \ \ D \ \underbrace{\overset{\vdots}{}}_{\begin{array}{c} \phi \ \land \ \psi \\ \hline \phi \end{array}} \land E \in \mathcal{D}$$

$$(\rightarrow \textit{I}) \ \ \text{Si} \ \ \underset{\psi}{\overset{\phi}{\underset{}}} \in \mathcal{D}, \ \text{entonces} \ \underset{\psi}{\overset{[\phi]}{\underset{}}} = \mathcal{D} \\ \frac{D \ \ \underset{\psi}{\overset{\vdots}{\underset{}}}}{\overset{\phi}{\underset{}}} \rightarrow \textit{I}} \in \mathcal{D}$$

$$(\perp E)$$
 Si $D \stackrel{\vdots}{\perp} \in \mathcal{D}$, entonces $D \stackrel{\vdots}{\stackrel{\perp}{\perp}} \perp E \in \mathcal{D}$

$$(\textit{RAA}) \hspace{.1cm} \text{Si} \hspace{.1cm} \begin{matrix} \neg \phi \\ \vdots \\ D \end{matrix} \overset{:}{\underset{\perp}{\bot}} \hspace{.1cm} \in \mathcal{D}, \hspace{.1cm} \text{entonces} \hspace{.1cm} D \overset{:}{\underset{\stackrel{\perp}{\smile}}{\longleftarrow}} \hspace{.1cm} RAA \end{array} \in \mathcal{D}$$

El conjunto \mathcal{D} y sus consecuencias

- Si quisiéramos justificar que un árbol está en D, entonces deberíamos mostrar cómo lo vamos construyendo a partir del uso de la regla *Prop*, utilizando las cláusulas que dimos recién.
- Eso es demasiado engorroso y no lo haremos explícitamente, pero tengamos en cuenta que podríamos hacerlo.
- Pero entonces, para qué introducir D? ¿Qué herramientas tenemos ahora a nuestra disposición?

El conjunto \mathcal{D} y sus consecuencias

- Por un lado tenemos un principio de definición de funciones por recursión.
- Por otro lado, podemos usar inducción en subderivaciones para probar que una propiedad es cierta para toda derivación.
- ¿Para qué podemos usar ese principio de inducción en subderivaciones? Para probar la corrección: es decir fundamentar nuestro eslogan de que las reglas de inferencia preservan la verdad.
- Esto es: si $\Gamma \vdash \phi$ entonces $\Gamma \models \phi$.

Más conectivos

- Puesto que el conjunto $\{\land, \rightarrow, \bot\}$ era funcionalmente completo podamos contentarnos con esos conectivos.
- En esta clase daremos reglas de inferencia para: la negación (¬), la doble implicación (↔) y la disyunción (∨).

La negación

- Las reglas de la negación son muy fáciles de comprender si pensamos en cómo la habíamos definido en términos de → y ⊥:
- Introducción:

Eliminación:

$$\frac{P - \neg P}{\mid} \neg E$$

La doble implicación, introducción

• Si pensamos que la doble implicación $\phi \leftrightarrow \psi$ se codifica como $(\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$, entonces no es sorprendente que la regla de introducción sea una combinación de las introducciones de \rightarrow y de \wedge :

$$\begin{bmatrix} \phi \end{bmatrix} \qquad \begin{bmatrix} \psi \end{bmatrix}$$

$$\vdots \qquad \vdots$$

$$\frac{\psi \qquad \phi}{\phi \leftrightarrow \psi} \leftrightarrow I$$

- Recordemos que las hipótesis que podemos descargar son ϕ en el sub-árbol de la izquierda y ψ en el sub-árbol de la derecha.
- NO podemos descargar ϕ en el sub-árbol de la derecha.

La doble implicación, eliminación

- Cuántas reglas habrá para eliminar la doble implicación?
- Puesto que lo codificamos como una conjunción, tendremos dos reglas de eliminación:

$$\frac{\phi \qquad \phi \leftrightarrow \psi}{\psi} \leftrightarrow E$$

$$\frac{\psi \qquad \phi \leftrightarrow \psi}{\phi} \leftrightarrow \mathcal{E}$$

La disyunción, introducción

- La disyunción es el dual de la conjunción: mientras que para introducir una conjunción necesitamos pruebas de ambos términos, para la disyunción nos alcanza con uno.
- Por ello tenemos dos reglas de introducción:

$$\frac{\phi}{\phi \vee \psi} \vee I \qquad \qquad \frac{\psi}{\phi \vee \psi} \vee I$$

Cuántas reglas de eliminación de la disyunción habrá?

La disyunción, eliminación

- Teniendo en cuenta la dualidad entre ∧ y ∨ es esperable tener una única regla de eliminación de la disyunción.
- Pero, cómo podemos usar una disyunción $\phi \lor \psi$?
- Si suponiendo ϕ podemos concluir χ y si suponiendo ψ también podemos concluir χ , entonces podemos concluir χ a partir de cualquiera de las dos:

$$\begin{array}{ccc} & [\phi] & [\psi] \\ & \vdots & \vdots \\ \frac{\phi \lor \psi & \chi & \chi}{\chi} \lor \mathcal{E} \end{array}$$

La disyunción, eliminación

- La regla de eliminación de la disyunción muestra cómo probar por casos χ:
- por un lado podemos suponer φ para probar χ y por lo tanto en el segundo sub-árbol podemos descargar φ;
- por otro lado podemos suponer ψ para probar χ , consecuentemente descargamos ψ del tercer sub-árbol.
- PERO no podemos descargar NI ϕ NI ψ en el primer sub-árbol, no al menos al usar esta regla!

Ejemplos de derivaciones con los nuevos conectivos

Teorema de Completitud

- $\bullet \ \{P \lor Q, \neg P\} \vdash Q$
- $\bullet \vdash P \lor \neg P$

Derivaciones

- Decimos que ψ se deriva de ϕ_1, \ldots, ϕ_n si existe una derivación con conclusión ψ y sus hipótesis no canceladas están entre ϕ_1, \ldots, ϕ_n .
- Para Γ ⊆ Prop y ψ ∈ Prop, decimos que ψ se deduce de Γ si existe una derivación D tal que las hipótesis están contenidas en Γ y su conclusión es ψ. La notación que utilizamos es la siguiente Γ ⊢ ψ.
- Si ψ se deduce del conjunto vacío, ∅ ⊢ ψ, entonces decimos que ψ es un teorema. Si ψ es un teorema nos ahorramos de escribir el conjunto vacío: ⊢ ψ.

Derivaciones

- Si tenemos $\{\phi\} \vdash \psi$, podemos construir una derivación $\vdash \phi \rightarrow \psi$?
- Si tenemos $\{\phi \land \psi\} \vdash \chi$, podemos construir una derivación $\vdash \phi \rightarrow (\psi \rightarrow \chi)$?
- Este tipo de manipulaciones de derivaciones las podemos expresar como meta-teoremas: Si $\{\phi \land \psi\} \vdash \chi$, entonces $\vdash \phi \rightarrow (\psi \rightarrow \chi)$.

El conjunto de derivaciones

Definiremos el conjunto de derivaciones, \mathcal{D} , como el menor conjunto que satisface (en varias filminas):

(*Prop*) Si
$$\phi \in Prop$$
, entonces $\phi \in \mathcal{D}$.

$$(\land \textit{I}) \;\; \text{Si} \;\; \underset{\phi}{D_1} \;\; \overset{\vdots}{\underset{\phi}{\cdot}} \; \in \mathcal{D} \; \text{y} \;\; \underset{\psi}{D_2} \;\; \overset{\vdots}{\underset{\psi}{\cdot}} \; \in \mathcal{D},$$
 entonces
$$D_1 \;\; \overset{\vdots}{\underset{\phi}{\cdot}} \;\; D_2 \;\; \overset{\vdots}{\underset{\psi}{\cdot}} \;\; \underset{\wedge}{U_2} \;\; \underset{\psi}{\vdots} \;\; \underset{\wedge}{U_2} \;\; \underset{\psi}{U_2} \;\; \underset{\psi}{U_2}$$

$$(\land E) \ \ \mathsf{Si} \ \ \underset{\phi \ \land \ \psi}{\overset{\vdots}{}} \ \in \mathcal{D}, \ \mathsf{entonces} \ \ D \ \underbrace{\overset{\vdots}{}}_{\begin{array}{c} \phi \ \land \ \psi \\ \hline \phi \end{array}} \land E \in \mathcal{D}$$

$$(\rightarrow \textit{I}) \ \ \text{Si} \ \ \underset{\psi}{\overset{\phi}{\underset{}}} \ \in \mathcal{D}, \ \text{entonces} \ \underset{\psi}{\overset{[\phi]}{\underset{}}} \ \ \underset{\psi}{\overset{}{\underset{}}} \ \ \underset{\psi}{\overset{}} \ \ \rightarrow \psi} \ \rightarrow \textit{I}$$

$$(\perp E)$$
 Si $D \stackrel{\vdots}{\perp} \in \mathcal{D}$, entonces $D \stackrel{\vdots}{\stackrel{\perp}{\perp}} \perp E \in \mathcal{D}$

$$(\textit{RAA}) \hspace{.1cm} \text{Si} \hspace{.1cm} \begin{matrix} \neg \phi \\ \vdots \\ D \end{matrix} \overset{:}{\overset{\cdot}{\perp}} \hspace{.1cm} \in \mathcal{D}, \hspace{.1cm} \text{entonces} \hspace{.1cm} D \overset{:}{\overset{\cdot}{\overset{\cdot}{\leftarrow}}} \hspace{.1cm} RAA \end{array} \in \mathcal{D}$$

El conjunto \mathcal{D} y sus consecuencias

- Si quisieramos justificar que un árbol está en D, entonces deberíamos mostrar cómo lo vamos construyendo a partir del uso de la regla *Prop*, utilizando las cláusulas que dimos recién.
- Eso es demasiado engorroso y no lo haremos explícitamente, pero tengamos en cuenta que podríamos hacerlo.
- Pero entonces, para qué introducir D? ¿Qué herramientas tenemos ahora a nuestra disposición?

El conjunto \mathcal{D} y sus consecuencias

- Por un lado tenemos un principio de definición de funciones por recursión.
- Por otro lado, podemos usar inducción en subderivaciones para probar que cierta propiedad es cierta para toda derivación.
- Para qué podemos usar ese principio de inducción en subderivaciones? Para probar la corrección: es decir fundamentar nuestro eslogan de que las reglas de inferencia preservan la validez (que si lo recuerdan lo denotábamos como =).

Ejemplo de función (no tan) recursiva

 Definamos ahora mismo una función concl: D → Prop, que dada una derivación dice cuál es la conclusión de esa derivación:

$$concl(\phi) = \phi$$
 (Prop)

$$concl\left(D_{1} \begin{array}{cc} \vdots & D_{2} & \vdots \\ \frac{\phi}{\phi \wedge \psi} \wedge I \end{array}\right) = \phi \wedge \psi \qquad (\wedge I)$$

$$concl\left(D \begin{array}{c} \vdots \\ \frac{\phi \wedge \psi}{\phi} \wedge E \end{array}\right) = \phi \qquad (\wedge E)$$

Parte II: Lógica Proposicional

Ejemplo de función recursiva

 Definamos ahora mismo una función hip: D → P(Prop), que dada una derivación dice cuáles son las hipótesis no canceladas de la derivación:

$$hip(\phi) = \{\phi\}$$
 (Prop)

$$hip\left(D_1 \begin{array}{cc} \vdots & D_2 & \vdots \\ \frac{\phi}{\phi \wedge \psi} & \wedge I \end{array}\right) = hip(D_1) \cup hip(D_2) \tag{\wedge} I)$$

$$hip\left(D \begin{array}{c} \vdots \\ \frac{\phi \wedge \psi}{\phi} \wedge E \end{array}\right) = hip(D) \tag{\wedgeE}$$

Parte II: Lógica Proposicional

Ejemplo de función recursiva

$$hipig(egin{array}{c} [\phi] \ hipig(egin{array}{c} D & dots \ rac{\psi}{\phi
ightarrow \psi}
ightarrow I \end{array}ig) = hip(D) \setminus \{\phi\} \ (
ightarrow I)$$

$$hip\left(D_1 \xrightarrow{\frac{\vdots}{\phi} D_2 \xrightarrow{\phi \to \psi} \to E} = hip(D_1) \cup hip(D_2) \qquad (\to E)$$

$$hip\left(D \stackrel{\vdots}{\underset{\triangle}{\bot}} \bot E\right) = hip(D) \tag{\botE}$$

Parte II: Lógica Proposicional

Lo que sigue: corrección

Teorema: Corrección

Si $\Gamma \vdash Q$, entonces $\Gamma \models Q$.

- Recordemos que Γ ⊢ Q significa que existe una derivación D tal que hip (D) ⊆ Γ y concl (D) = Q.
- El enunciado preciso que probaremos es:
 Para toda derivación D, si hip (D) ⊆ Γ y concl (D) = Q, entonces Γ ⊨ Q.
- Para la prueba utilizaremos inducción en derivaciones.

Luego: completitud

Teorema: Completitud

Si $\Gamma \models Q$, entonces $\Gamma \vdash Q$.

- Como $\Gamma \models Q$, entonces para todo modelo f de Γ , $[\![Q]\!]_f = 1$;
- por lo tanto no existe modelo de $\Gamma \cup \{\neg Q\}$.
- Si no existe modelo de Δ , entonces $\Delta \vdash \bot$.
- Con el punto anterior y RAA podemos concluir $\Gamma \vdash Q$.

Repaso: Semántica

- Una asignación f : V → 2, induce la semántica
 [-]_f: Prop → 2.
- La asignación f satisface la fórmula ϕ si $\llbracket \phi \rrbracket_f = 1$.
- f es modelo de $\Gamma \subseteq Prop$, si para toda $\psi \in \Gamma$, $\llbracket \psi \rrbracket_f = 1$.
- ϕ es consecuencia lógica de Γ si todo modelo de Γ satisface ϕ .

Repaso: Deducción natural

- Construcción de pruebas usando reglas de inferencias.
- Definición por inducción del conjunto \mathcal{D} de derivaciones.
- φ se deduce de Γ, Γ ⊢ φ, si existe una derivación D tal que hip(D) ⊆ Γ y concl(D) = φ.
- Pero, realmente las reglas nos permiten concluir proposiciones verdaderas a partir de hipótesis verdaderas?

Derivabilidad y contra-ejemplos

 De los siguientes pares de afirmaciones ¿cuáles son correctas?

$$\{p_0, p_1\} \vdash p_2 \qquad \{p_0, p_1\} \not\vdash p_2$$
 $\vdash \bot \qquad \not\vdash \bot$

Y de estos pares que siguen, cuáles son correctos?

$$\{p_0, p_1\} \models p_2 \qquad \{p_0, p_1\} \not\models p_2$$

 $\models \bot \qquad \not\models \bot$

Derivabilidad y contra-ejemplos

- ¿Cómo podemos probar o refutar las anteriores afirmaciones?
- Las segundas afirmaciones (aquellas que hablan de modelos) las podemos comprobar rápidamente construyendo las tablas de verdad.
- En cambio, para verificar la validez de una las primeras afirmaciones debemos o bien construir una derivación,
- o bien mostrar que no existe ninguna derivación con la conclusión esperada y las hipótesis permitidas.

Corrección

- Como la validez de las fórmulas está dada por su semántica, entonces podemos utilizar la noción de |= para expresar la corrección.
- Una derivación $D \in \mathcal{D}$ con $hip(D) \subseteq \Gamma$ y $concl(D) = \phi$ es correcta si todo modelo de Γ satisface ϕ .
- Nuestro trabajo será mostrar que toda derivación es correcta.

Derivabilidad y contra-ejemplos

 Volviendo a las pregunta del principio, suponiendo corrección, cómo podemos usar

$$\{p_0,p_1\} \not\models p_2 \qquad y \qquad \not\models \bot$$

para concluir

$$\{p_0, p_1\} \not\vdash p_2 \qquad y \qquad \not\vdash \bot$$

Derivabilidad y contra-ejemplos

- Si suponemos que existe una derivación para {p₀, p₁} ⊢ p₂, entonces para toda asignación f de {p₀, p₁}, tendríamos [p₂]_f = 1.
- Sin embargo la siguiente asignación es un contraejemplo:

$$f p_0 = 1$$

 $f p_1 = 1$ $f p_j = 0$ para $j > 1$

 Por lo tanto, estamos en una contradicción y la derivación que supusimos no puede existir.

Teorema de corrección

- Para probar este teorema usaremos inducción en sub-derivaciones, para ello establecemos el siguiente predicado A sobre derivaciones.
- Sea D $\stackrel{:}{\phi}$, entonces A(D) vale si y sólo si "para todo Γ tal que $hip(D) \subseteq \Gamma$, se da $\Gamma \models \phi$ ".

Teorema de corrección

• Por ejemplo, si D es la derivación $\frac{\phi \wedge \psi}{\phi} \wedge E$, entonces A(D) vale.

Tomemos Γ tal que $\phi \land \psi \in \Gamma$, comprobemos $\Gamma \models \phi$.

- Para ello tomemos un modelo f de Γ y verifiquemos $\llbracket \phi \rrbracket_f = 1$.
- Como f es modelo Γ y $\phi \wedge \psi \in \Gamma$, entonces $\llbracket \phi \wedge \psi \rrbracket_f = 1$, por lo tanto $\llbracket \phi \rrbracket_f = 1$.

Teorema de corrección

Teorema Si $\Gamma \vdash Q$, entonces $\Gamma \models Q$.

$$(Prop)$$
 Sea D la derivación P y sea $\{P\} \subseteq \Gamma$, es inmediato $\Gamma \models P$.

$$(\land E)$$
 Sea D la derivación $D' = \frac{\vdots}{P \land Q} \land E$

Puesto que D' es la subderivación de D, entonces podemos asumir la hipótesis inductiva para D': para todo $\Gamma' \supseteq hip(D')$, se da $\Gamma' \models P \land Q$.

Para mostrar A(D), tomamos $\Gamma \supseteq hip(D)$ y probamos $\Gamma \models P$. Sea f una asignación arbitraria de Γ , veamos $\llbracket P \rrbracket_f = 1$.

Como hip(D) = hip(D'), para Γ tenemos $\Gamma \models P \land Q$, es decir $\llbracket P \land Q \rrbracket_f = 1$. De lo cual concluimos $\llbracket P \rrbracket_f = 1$.

Teorema de corrección, cont.

(
$$\land I$$
) Sea D la derivación D_1 \vdots D_2 \vdots D_2 \vdots D_3 , veamos $A(D)$.

Asumimos la h.i. tanto para D_1 como para D_2
Sea $\Gamma \supseteq hip(D)$ y sea f una asignación de Γ .
Como $hip(D_i) \subseteq hip(D) \subseteq \Gamma$, tenemos, aplicando la h.i. en D_1 , $[\![P]\!]_f = 1$ y, análogamente usando la h.i. en D_2 sabemos $[\![Q]\!]_f = 1$. Por lo tanto,

tenemos $[P \land Q]_f = 1$.

Teorema de corrección, cont.

$$[P]$$
 $(\rightarrow I)$ Sea D la derivación $D' = Q$ $Q = A$

En este caso asumimos que la h.i. vale para D': para todo $\Gamma' \supseteq hip(D_1)$, $\Gamma' \models Q$.

Teorema de corrección, cont.

 $(\rightarrow I)$ Tomemos $\Gamma \supseteq hip(D)$ y f una asignación de Γ , probemos $[P \rightarrow Q]_f = 1$, es decir $\max(1 - [P]_f, [Q]_f) = 1.$ Como $hip(D) = hip(D') \setminus \{P\}$, que f sea de Γ no nos dice nada sobre el valor de $[P]_f$. Si $[P]_f = 0$. entonces $\max(1-[P]_f,[Q]_f)=\max(1-0,[Q]_f)=1.$ El otro caso es si $[P]_f = 1$; pero ahora f es una asignación de $\Gamma \cup \{P\}$; usando la hipótesis inductiva en D', con $\Gamma' = \Gamma \cup \{P\}$, deducimos $[Q]_f = 1$. De lo cual concluimos $\max(1 - [P]_f, [Q]_f) = \max(1 - [P]_f, 1) = 1.$

Parte II: Lógica Proposicional

Introducción a la Lógica y la Computación

Teorema de corrección, cont.

 D_2 .

$$(
ightarrow E)$$
 Sea D la derivación D_1 $\underbrace{\frac{\vdots}{P}}_{D_2}$ $\underbrace{\frac{\vdots}{P
ightarrow Q}}_{Q}
ightarrow E$. En este caso asumimos la h.i. sobre D_1 y sobre

Sea $\Gamma \supseteq hip(D)$, entonces $\Gamma \supseteq D_i$. Sea f una asignación de Γ ; por h.i., entonces $\llbracket P \rrbracket_f = 1$ y también $\llbracket P \to Q \rrbracket_f = 1$.

Es decir $1 = \max(1 - [\![P]\!]_f, [\![Q]\!]_f) = \max(0, [\![Q]\!]_f);$ por lo tanto, $[\![Q]\!]_f = 1.$

Teorema de corrección, cont.

$$[\neg P]$$

$$(RAA) \text{ Sea } D \text{ la derivación } D' \vdots \\ \frac{\bot}{P} RAA$$
Ahora podemos asumir la h.i. para D' :
$$\text{para todo } \Gamma' \supseteq hip(D'), \Gamma' \models \bot !$$

Teorema de corrección, cont.

(*RAA*) Sea $\Gamma \supseteq hip(D') \setminus \{\neg P\}$ y sea f una asignación de Γ . Veamos $\llbracket P \rrbracket_f = 1$.

Supongamos que para toda f de Γ , tenemos $\llbracket P \rrbracket_f = 0$. Es decir, $\llbracket \neg P \rrbracket_f = 1$; por lo tanto f es de $\Gamma \cup \{ \neg P \}$.

Eso nos permite utilizar la h.i. sobre D' y concluir $[\![\bot]\!]_f = 1$, lo cual es una contradicción. Por lo tanto se debe dar $[\![P]\!]_f = 1$.

Teorema de corrección, cont.

 $(\bot E)$ Sea *D* la derivación $D' \stackrel{\vdots}{\underset{P}{\longleftarrow}} \bot E$

En este caso asumimos la h.i. sobre D'.

Sea $\Gamma \supseteq hip(D)$, entonces $\Gamma \supseteq hip(D')$. Sea f una asignación de Γ ; por h.i., entonces $[\![\bot]\!]_f = 1$.

Lo útimo es absurdo y facilmente podemos concluir $[\![P]\!]_f = 1$.

Repaso

- El meta-teorema de corrección nos asegura que todo teorema es una tautología.
- Pero... sucederá lo recíproco? Es decir, podremos derivar todas las tautologías?
- En términos más generales: si $\Gamma \models P$, entonces $\Gamma \vdash P$?
- Es decir, se podrán hacer todas las derivaciones de premisas válidas a conclusiones válidas.

Semántica

- Una asignación f : V → 2, induce la semántica
 [-]_f: Prop → 2.
- La asignación f satisface la fórmula ϕ si $\llbracket \phi \rrbracket_f = 1$.
- f es modelo de $\Gamma \subseteq Prop$, si para toda $\psi \in \Gamma$, $\llbracket \psi \rrbracket_f = 1$.
- ϕ es consecuencia lógica de Γ si todo modelo de Γ satisface ϕ .

Deducción natural

- Construcción de pruebas usando reglas de inferencias.
- Definición por inducción del conjunto D de derivaciones.
- φ se deduce de Γ, Γ ⊢ φ, si existe una derivación D tal que hip(D) ⊆ Γ y concl(D) = φ.
- Pero, realmente las reglas nos permiten concluir proposiciones verdaderas a partir de hipótesis verdaderas?

El plan de la clase de hoy

- Queremos probar $\Gamma \models \phi$ implica $\Gamma \vdash \phi$.
- Si $\Gamma \models \phi$, entonces no existe ningún modelo $\Gamma \cup \{\neg \phi\}$.
- Si no existe f de $\Gamma \cup \{\neg \phi\}$, entonces $\Gamma \cup \{\neg \phi\} \vdash \bot$. ¡Esto es lo difícil!
- Por lo tanto, $\Gamma \vdash \phi$ por *RAA*.

InConsistencia

- Un conjunto $\Gamma \subseteq Prop$ es *inconsistente* si $\Gamma \vdash \bot$.
- Un conjunto $\Gamma \subseteq Prop$ es *consistente* si $\Gamma \not\vdash \bot$.
- Sea $\Gamma \subseteq Prop$, Γ es inconsistente si y sólo si

Existe
$$\phi \in Prop$$
 tal que $\Gamma \vdash \phi$ y $\Gamma \vdash \neg \phi$.

Para toda
$$\phi \in Prop$$
, $\Gamma \vdash \phi$.

Consecuencias de inconsistencia

- Si $\Gamma \cup \{\neg \phi\} \vdash \bot$, entonces $\Gamma \vdash \phi$.
- Si $\Gamma \cup \{\phi\} \vdash \bot$, entonces $\Gamma \vdash \neg \phi$.

Criterios de consistencia

- ¿Cómo podemos saber si un conjunto Γ es consistente?
- Para probar que ∅ es consistente (es decir ⊬ ⊥), usamos la contra-recíproca de corrección.
- Si existe un modelo Γ , entonces Γ es consistente.
 - Sea f un modelo de Γ y supongamos $\Gamma \vdash \bot$ (para llegar a una contradicción). Entonces $\llbracket \bot \rrbracket_f = 1$: la contradicción que buscábamos. Por lo tanto $\Gamma \not\vdash \bot$.
- ¿ $\{p_0, \neg p_1, p_2, \neg p_3, \dots, p_{2*k}, \neg p_{2*k+1}, \dots\}$ es consistente?
- Para ver que un conjunto Γ es inconsistente, debemos mostrar Γ ⊢ ⊥!

- ¿Será cierta la vuelta del criterio de consistencia?
- Sea Γ es consistente, ¿existe un modelo de Γ?
- Supongamos que $\Gamma \cup \{\neg \phi\}$ no tiene un modelo. Entonces $\Gamma \cup \{\neg \phi\}$ es inconsistente: $\Gamma \cup \{\neg \phi\} \vdash \bot$ Por lo tanto, $\Gamma \vdash \phi$.

- Un conjunto $\Gamma \subseteq Prop$ es consistente maximal si para todo Δ consistente, $\Gamma \subseteq \Delta$ implica $\Delta = \Gamma$.
- Prácticamente, Δ es consistente maximal si no existe $\psi \not\in \Delta$, tal que $\Delta \cup \{\psi\}$ siga siendo consistente.
- Los consistentes maximales son cerrados por derivación: si Δ es consistente maximal, entonces Δ ⊢ φ implica φ ∈ Δ.

- Sea Δ un conjunto maximal, entonces Δ realiza los conectivos.
 - 1 Para toda $\phi \in Prop$, $\phi \notin \Delta$ si y sólo si $\neg \phi \in \Delta$.
 - 2 $\phi \in \Delta$ y $\psi \in \Delta$ si y sólo si $\phi \land \psi \in \Delta$.
 - 3.a Si $\phi \in \Delta$ implica $\psi \in \Delta$, entonces $\phi \to \psi \in \Delta$.
 - 3.b Si $\phi \to \psi \in \Delta$, entonces $\phi \in \Delta$ implica $\psi \in \Delta$.
- En los tres casos concluimos que la proposición está en Δ, porque Δ es cerrado por derivaciones.

- Supongamos que Δ es consistente maximal.
- Si sabemos que ciertas proposiciones están en Δ, entonces podemos saber que otras tambií©n están.
- Ejemplo: Si $\phi \in \Delta$, entonces $\psi \to \phi \in \Delta$, para todo ψ .
- Si Γ es consistente, entonces pueden existir varios Δ_i y consistentes maximales tales que Γ ⊆ Δ_i.
- Ejemplo: ∅ es consistente (¿por qué?) y hay muuchos maximales que lo contienen.

Existencia de valuación

- Sea Δ consistente maximal, entonces para toda $\phi \in Prop$ o bien $\phi \in \Delta$ o bien $\neg \phi \in \Delta$.
- Si Δ es consistente maximal, entonces existe un modelo de Δ .

Definamos $f: \mathcal{V} \to \{0,1\}$ de la siguiente manera:

$$f p_i = 1$$
 $\operatorname{si} p_i \in \Delta$ $f p_i = 0$ $\operatorname{si} p_i \notin \Delta$

Probamos $\llbracket \psi \rrbracket_f = 1$ si y sólo si $\psi \in \Delta$, usando inducción en ψ .

Extension a maximales

 Para ver que todo conjunto consistente Γ tiene un modelo, lo extendemos a uno maximal Γ*.

Como las proposiciones son numerables, podemos pensarlas dadas por una lista infinita: $\phi_0, \phi_1, \phi_2, \dots$

$$\Gamma_0 = \Gamma$$

$$\Gamma_{n+1} = \begin{cases} \Gamma_n & \text{si } \Gamma_n \cup \{\phi_n\} \vdash \bot \\ \Gamma_n \cup \{\phi_n\} & \text{si } \Gamma_n \cup \{\phi_n\} \not\vdash \bot \end{cases}$$

$$\Gamma^* = \bigcup_{n \in \mathbb{N}} \Gamma_n$$

Γ* es consistente maximal.

Recapitulando

- Si f es modelo de Δ y $\Gamma \subseteq \Delta$, entonces f es modelo de Γ .
- Todo maximal tiene un modelo y todo consistente se extiende a uno maximal, por lo tanto todo consistente tiene un modelos.
- La contrarecíproca de lo anterior nos dice, si Γ no tiene un modelo, entonces Γ es inconsistente.

Teorema de completitud

```
Teorema Si \Gamma \models \phi, entonces \Gamma \vdash \phi.
```

Supongamos $\Gamma \models \phi$. Entonces no existe f de $\Gamma \cup \{\neg \phi\}$. Entonces, por criterio de consistencia, $\Gamma \cup \{\neg \phi\}$ es inconsistente.

Por lo tanto $\Gamma \vdash \phi$.