

Overview

- I. Technology background
- II. Experimental design: Hybridization
- III. Diferential expression analysis
- IV. Experimental design: Power and sample size

I. Technology background

Two-color

- Spotted cDNA
- Agilent spotted probes

One-color

- Affymetrix GeneChip
- NimbleGene
- Illumina BeadChip

Spot separated by block associated to pins

Agilent printed oligo arrays

Agilent Mouse Whole-Genome Oligo Array

Multiple arrays per slide

HumanHT-12

HumanRef-8 and HumanWG-6

II. Experimental design: Hybridization

Conclusions

- Technical artifacts tend to have larger effects than biological factors (genotype, treatment).
- Technical variation may arise from array technology or lab protocols.
- Confounding of experimental and technical factors creates false positives.
- Statistical modeling cannot correct for confounding.
- Randomization is critical, regardless of technology.

III. Diferential expression
analysis

Ajuste de un modelo estadístico

Gene by gene One-way ANOVA

$$y_{ij} = \mu + A_i + \varepsilon_{ij}$$

where,

 y_{ij} general logarithm of the gene expression

in ith treatment group of the jth replicate

 μ mean

 A_i effect of the ith treatment (i=1->5)

 \mathcal{E}_{ij} residual effect

Sums of squares in a One-way ANOVA

$$SS(A) = r \sum_{i=1}^{a} (\overline{y}_{i.} - \overline{y}_{..})^2$$

$$SSE = \sum_{j=1}^{r} \sum_{i=1}^{a} (y_{ij} - \overline{y}_{i.})^2$$

$$SS(Total) = \sum_{j=1}^{r} \sum_{i=1}^{a} (y_{ij} - \overline{y}_{..})^{2}$$

SS(Total)=SS(A)+SSE

Statistical model in a Factorial design

Gene by gene ANOVA $y_{ij} = \mu + A_i + B_i + AxB_i + \mathcal{E}_{ijk}$

where,

general logarithm of the gene expression \mathbf{y}_{ij} in ith treatment group of the jth replicate

mean μ

effect of the ith treatment (i=1->2) A_i

 B_j effect of the jth treatment (i=1->2) AxB_{ij} effect of the ijth treatment

residual effect $\mathcal{E}_{\mathsf{iik}}$

Gene expression for one gene

Factor A i=1 i=2 6,7 3,0 8,3 5,4 j=1 2,0 5,2 9.1 1,4 **Factor** B 1.5 2,3 2,0 1,5 j=2 3,2 4,0 4,1 1,9

Gene expression for one gene							
Factor A							
		i=1	i=2				
Factor B	j=1	y111	y121				
		y112	y122				
		y113	y123				
		y114	y124				
	j=2	y121	y221				
		y122	y222				
		y123	y223				
		y124	y224				

Sums of squares in a factorial design

$$SS(A) = rb \sum_{i=1}^{a} (\overline{y}_{i..} - \overline{y}_{...})^{2}$$

$$SS(B) = ra \sum_{j=1}^{b} (\overline{y}_{.j.} - \overline{y}_{...})^{2}$$

$$SS(AB) = r \sum_{j=1}^{b} \sum_{i=1}^{a} (\overline{y}_{ij.} - \overline{y}_{i..} - \overline{y}_{.j.} + \overline{y}_{...})^{2}$$

$$SSE = \sum_{k=1}^{r} \sum_{j=1}^{b} \sum_{i=1}^{a} (y_{ijk} - \overline{y}_{ij.})^{2}$$

$$SS(Total) = \sum_{k=1}^{r} \sum_{j=1}^{b} \sum_{i=1}^{a} (y_{ijk} - \overline{y}_{...})^{2}$$

SS(total)=SS(A)+SS(B)+SS(AB)+SSE

ANOVA table for an a x b factorial design

Source	SS	df	Mean Square
Factor A	SS(A)	(a-1)	SS(A)/(a-1)
Factor B	SS(B)	(b-1)	SS(B)/(b-1)
Interaction	SS(AB)	(a-1)(b-1)	SS(AB)/((a-1)(b-1))
Error	SSE	(N-ab)	SSE/(N-ab)
Total (Corrected)	SS(Total)	(N-1)	

Hypothesis testing

■ Ho : Effect of A = o

 $F(A) = \frac{MS(A)}{MSF}$

H1: Effect of A ≠ o

■ Ho : Effect of B = o

• H1: Effect of B ≠ o

 $F(B) = \frac{MS(B)}{MSE}$

■ Ho : Effect of AxB = o

■ H1: Effect of AxB ≠ o

 $F(AxB) = \frac{MS(AxB)}{MSE}$

Reject Ho if $P < \alpha$

Reject Ho if fdr<FDR

IV. Experimental design: Power and sample size

- What is appropriate *n* to detect DE?
- Find the power of a test at a given *n*

$$F = \frac{MS_{genotype}}{MS_{error}} = \frac{SS_{genotype}/df1}{SS_{error}/df2}$$

•
$$\beta = Pr(F_{H_1} | df_1, df_2, \lambda)$$

$$\lambda = \frac{\text{(k-1) } n \, \sigma_{\text{genotype}}^2}{\sigma_{\text{error}}^2}$$

Power from an F test

Mouse Illumina Tissue Survey

- Illumina Sentrix Mouse-6 V1.1 R1 (46,643 probes + 14 labeling controls)
- C₅₇BL/6J
- sample 1: pancreas, brain, duodenum, jejunum, ileum, colon, stomach, spleen. Two technical replicates were hybridized for the kidney
- sample 2: liver, heart, lung, kidney, adrenals, muscle, testes, gonadal fat, and brown fat
- five biological replicates

Theoretical Genetic Variance (treatment effect)

FC
$$\frac{\tau_1}{(a)}$$
 $\frac{\tau_2}{(a)}$ $\frac{\tau_3}{(-a)}$ $\sigma^2_{genotype}$
1.2 0.09 0 -0.09 0.006 $\tau = \log(FC)/2$
1.5 0.20 0 -0.20 0.027
2.0 0.35 0 -0.35 0.080 $\sigma^2_{genotype} = \frac{\sum_k \tau_i^2}{k}$
4.0 0.69 0 -0.69 0.320
6.0 0.90 0 -0.90 0.535
8.0 1.05 0 -1.05 0.721

Power calculation for ANOVA

- k = 3, n = 4, $\alpha = 0.05$
- $\sigma^2_{\text{genotype}(FC_2)}$ = 0.08
- $\sigma^2_{\text{error}} = \text{median}() + 4 + \text{median}() = 0.029$
- $\lambda = \frac{\text{(k-1) } n \sigma^2_{\text{genotype}}}{\sigma^2_{\text{error}}} = \frac{2 * 4 * 0.08}{0.029} = 22.07$
- $F_0 = qf(1-0.05, 3-1, 3(4-1)) = 4.3$
- $\beta = Pr(F_{H_1} | df_1, df_2, \lambda)$
- $= pf(F_{0i}, 3-1, 3(4-1), 22.07) = 0.05$
- $Power = 1 \beta = 0.95$

Power from F test by FC

Accounting for multiple comparisons: Liu and Hwang 2007

$$\left(\frac{FDR}{1-FDR}\right)\left(\frac{1-\pi_0}{\pi_0}\right) = \frac{\alpha}{1-\beta}$$

 π_o is the proportion of non-differentially expressed genes ssize.F function from the ssize.fdr R package

Bioinformatics 23: 739

Erratum: Bioinformatics 24: 149

Accounting for multiple comparisons: Pounds and Cheng 2005

- Alternative method, equivalent results
- It can calculate FC from data
- Bioinformatics (2005) 21(23): 4263
- Erratum: Bioinformatics (2009) 25(5): 698

Sample size in mouse Illumina experiments

- m = 28000 (number of genes)
- FDR = 0.1
- $\pi_0 = 0.90, 0.95, 0.99$
- k = 3
- σ^2_{error} = 0.026
- FC = 2

ssize.fdr R code

```
> des <- matrix(c(1,0,0,0,1,0,0,0,1),
  ncol=k,byrow=TRUE)
> des
     [,1] [,2] [,3]
[1,]
        1
             0
[2,]
                  0
[3,]
        0
             0
                  1
> b <- c(-log(FC)/2, 0, log(FC)/2)
> df.f <- function(n) 3*(n-1)</pre>
 liu_ssize <- ssize.F(X=des, beta=b, dn=df.f,
  sigma=sqrt(0.026), fdr=0.1, power=0.8,
  pi0=c(.9,.95, .99), maxN=30)
```

ssize.fdr output

```
> liu_ssize
$ssize
      pi0 ssize
                    power
[1,] 0.90
             4 0.8485756
[2,] 0.95
[3,] 0.99
              5 0.9341481
              6 0.9238113
$power
               0.9
                        0.95
                                   0.99
 [1,] 2 0.0000000 0.0000000 0.0000000
 [2,] 3 0.3013482 0.0427180 0.0000000
 [3,] 4 0.8485756 0.6939236 0.2062821
 [4,] 5 0.9741036 0.9341481 0.7123410
 [5,] 6 0.9963947 0.9885850 0.9238113
 [6,] 7 0.9995848 0.9983811 0.9837162
```


Conclusions

- Power to detect DE depends on both technical and biological factors
- Technical sources of variation can offset biological factors
- Variation is affected by technology, site, and protocols, and tissue (dissection)
- Pilot projects are essential to estimate variance, power, and replication
- 5 animals per condition is a good starting point