ROAR!

Ricerca Operativa: Applicazione Reali

Alessandro Gobbi Alice Raffaele Gabriella Colajanni Eugenia Taranto

IIS Antonietti, Iseo (BS)

24 aprile 2021

Organizzazione della lezione

- · Parte 1: Introduzione (30 minuti):
 - Ripasso
 - · Correzione dei compiti
 - · Domande sui compiti autentici
- · Parte 2: Esercizi con Excel Solver (lavori di gruppo):
 - · Problema 1 (livello facile 20 minuti)
 - · Correzione (5 minuti)
 - · Pausa (10 minuti)
 - · Problema 2 (livello medio 35 minuti)
 - · Correzione (5 minuti)
 - · Pausa (10 minuti)
 - · Problema 3 (livello difficile 45 minuti)
 - · Correzione (10 minuti)
- · Conclusione (5 minuti):
 - · Sondaggio finale

Parte 1:

Introduzione

www.menti.com Codice: 5240 5570

Correzione compiti (I)

"Buongiornissimo! Kaffè?"

Una catena di bar ha stipulato un contratto commericale con un'industria di torrefazione per la fornitura esclusiva di caffè. L'industria ha a disposizione due impianti di torrefazione T_1 e T_2 con cui dovrà rifornire i tre bar B_1 , B_2 e B_3 della catena. Vista la differente distanza tra gli impianti e i bar e i differenti mezzi di trasporto utilizzati, i costi di trasporto euro/chilogrammo di caffè da un impianto ad un bar risultano differenti e sono riassunti nella seguente tabella:

Sapendo che gli impianti di torrefazione T_1 e T_2 possono produrre giornalmente al massimo 54 e 44 Kg di caffè e che i tre bar necessitano di 35, 30 e 33 Kg di caffè, qual è la quantità da trasportare da ogni impianto a ogni bar per minimizzare i costi?

3

Correzione compiti (II)

Trasporto di acqua minerale

Un'industria di acque minerali ha tre stabilimenti (Viterbo, Castelforte e Bagnoregio) e tre impianti di imbottigliamento (Napoli, Roma e Frosinone). L'industria ha la necessità di trasportare giornalmente l'acqua minerale dagli stabilimenti ai tre impianti di imbottigliamento che devono essere riforniti giornalmente rispettivamente di almeno 150, 50 e 90 ettolitri di acqua. Gli stabilimenti giornalmente possono disporre di 150, 50 e 90 ettolitri ciascuno. La tabella che segue riporta il costo (in euro) per trasportare un ettolitro di acqua minerale da ciascuno stabilimento a ciascun impianto di imbottigliamento.

	Napoli	Roma	Frosinone
Viterbo	250	100	85
Castelforte	120	80	150
Bagnoregio	100	100	100

Si costruisca un modello di Programmazione Lineare che permetta di determinare le quantità di acqua minerale da trasportare giornalmente da ciascuno stabilimento a ciascun impianto in modo da minimizzare il costo complessivo di trasporto, tenendo in considerazione che per motivi logistici almeno la metà dell'acqua all'impianto di Napoli deve provenire da Bagnoregio.

Parte 2:

(lavori di gruppo)

Esercizi con Excel Solver

Problema 1 – Parità domestica di genere

Anna e Mario sono appena andati a convivere e vogliono suddividere tra loro i principali lavori domestici: fare la spesa, cucinare, lavare i piatti, fare il bucato, stirare e buttare la spazzatura. La loro bravura nei vari lavori è tuttavia diversa, e si riflette sui tempi necessari per svolgerli, riportati nella tabella seguente (in minuti):

	Spesa	Cucinare	Piatti	Bucato	Stirare	Spazzatura
Anna	25	30	10	8,5	42	6
Mario	37	20	12	13	35	4

Come possono organizzarsi in modo tale che ognuno di loro svolga esattamente tre mansioni e che il tempo totale impiegato sia minimo?

www.menti.com Codice: 86 75 79 6

Problema 1 - Modello

```
Insieme delle mansioni J = \{Sp, C, P, B, St, Spa\}
X_{Anna,j} \in \{0,1\} = \begin{cases} 1 \text{ se Anna svolge la mansione } j; \\ 0 \text{ altrimenti} \end{cases}
X_{Mario,j} \in \{0,1\} = \begin{cases} 1 \text{ se Mario svolge la mansione } j; \\ 0 \text{ altrimenti} \end{cases}
             25x_{Anna,Sp} + 30x_{Anna,C} + 10x_{Anna,P} + 8, 5x_{Anna,B} + 42x_{Anna,St} + 6x_{Anna,Spa} +
  min
       +37x_{Mario,Sp} + 20x_{Mario,C} + 12x_{Mario,P} + 13x_{Mario,B} + 35x_{Mario,St} + 4x_{Mario,Spa}
                 X_{Anna,Sp} + X_{Anna,C} + X_{Anna,P} + X_{Anna,B} + X_{Anna,St} + X_{Anna,Spa} = 3
               X_{Mario,Sp} + X_{Mario,C} + X_{Mario,P} + X_{Mario,B} + X_{Mario,St} + X_{Mario,Spa} = 3
                                                 X_{Anna,Sp} + X_{Mario,Sp} = 1
                                                   X_{Anna.C} + X_{Mario.C} = 1
                                                   X_{Anna\ P} + X_{Mario\ P} = 1
                                                  X_{Anna,B} + X_{Mario,B} = 1
                                                  X_{Anna,St} + X_{Mario,St} = 1
                                                X_{Anna.Spa} + X_{Mario.Spa} = 1
```

Problema 1 – Risoluzione con Excel Solver (I)

Inseriamo	tutti i	dati	su u	n foglio	Excel:

	A	В	С	D	E	F	G	Н	1
1		Spesa	Cucinare	Piatti	Bucato	Stirare	Spazzatura		
2	Anna	25	30	10	8,5	42	6		
3	Mario	37	20	12	13	35	4		
4	N° persone che fanno il lavoro	0	0	0	0	0	0		
5	Variabili							Lavori assegnati	Lavori da assegnare
6	Anna	0	0	0	0	0	0	0	3
7	Mario	0	0	0	0	0	0	0	3
8									
9									
	Funzione obiettivo:								
10	minimizzare i tempi								
11	0								

Leghiamo il valore delle variabili ai vincoli come segue:

 Quante persone svolgono una data mansione? Dovrà essere solo una ma, all'inizio, quando le variabili sono a zero, nessuno le svolge:

В4	. ↑ × ✓ fx	=SOMMA	(06:07)										
D4	B4 V X V Jx (=SOMMA(B6:B7)												
	A	В	С	D	E	F	G	Н	1				
1		Spesa	Cucinare	Piatti	Bucato	Stirare	Spazzatura						
2	Anna	25	30	10	8,5	42	6						
3	Mario	37	20	12	13	35	4						
4	N° persone che fanno il lavoro	0	0	0	0	0	0						
5	Variabili		1					Lavori assegnati	Lavori da assegnare				
6	Anna	0	0	0	0	0	0	0	3				
7	Mario	0	/ 0	0	0	0	0	0	3				
8													
9													

Problema 1 – Risoluzione con Excel Solver (II)

 Quanti sono i lavori assegnati ad Anna e quanti quelli a Mario?
 Dovranno essere tre a testa ma, all'inizio, quando le variabili sono a zero, entrambi non hanno mansioni assegnate:

Definiamo la funzione obiettivo per minimizzare i tempi totali (all'inizio, quando le variabili sono a zero, vale anch'essa zero):

Problema 1 – Risoluzione con Excel Solver (III)

A questo punto possiamo impostare il risolutore:

Soluzione ottima: Anna si occuperà di fare la spesa, lavare i piatti e fare il bucato, mentre Mario cucinerà, stirerà e butterà la spazzatura; insieme impiegheranno così 102,5 minuti:

Problema 2 – Assegnazione di incarichi

Una compagnia finanziaria deve decidere chi assumere fra i tre candidati C1, C2 e C3. In base ai loro differenti curriculum, l'azienda sa che in caso di assunzione dovrà assicurare loro uno stipendio mensile fisso rispettivamente di 1450, 1600 e 1300 euro. Inoltre, nel mese corrente, la compagnia ha necessità di portare a termine tre progetti (LAV1, LAV2, LAV3) che richiedono diverse abilità ed esperienza. Al progetto LAV1 dovranno essere assegnate almeno 2 persone, agli altri due progetti almeno 1 persona ciascuno. In base all'assegnazione dei lavori ai candidati, la compagnia finanziaria dovrà retribuire i dipendenti con uno o più bonus in busta paga. La stima di tale bonus (€), riferito a ciascun candidato se fosse assegnato a ciascuno dei tre lavori, è riportata nella tabella seguente:

Costo bonus	LAV1	LAV2	LAV3	
C1	150	230	110	
C2	100	90	150	
C3	350	410	210	

Problema 2 – Assegnazione di incarichi

- 2A. Costruire un modello di Programmazione Lineare che decida quali persone assumere e come assegnare gli incarichi, minimizzando i costi che l'azienda dovrà sostenere nel mese corrente.
- 2B. Costruire un nuovo modello (o modificare opportunamente il precedente) che minimizzi sempre i costi di assunzione e assegnazione, ma che ora tenga anche in considerazione che:
 - · l'azienda non vuole spendere più di 3000 euro in stipendi;
 - l'azienda ha preventivato una spesa massima di 1000 euro per i bonus, dove questi 1000 euro comprendono anche l'eventuale somma non spesa per gli stipendi.

www.menti.com Codice: 1638 9572

Problema 2A – Variabili (I)

$$y_1 = \begin{cases} 0 \text{ se il candidato 1 viene assunto} \\ 1 \text{ se il candidato 1 non viene assunto} \end{cases}$$

$$y_2 = \begin{cases} 0 \text{ se il candidato 2 viene assunto} \\ 1 \text{ se il candidato 2 non viene assunto} \end{cases}$$

$$y_3 = \begin{cases} 0 \text{ se il candidato 3 viene assunto} \\ 1 \text{ se il candidato 3 non viene assunto} \end{cases}$$

Problema 2A – Variabili (II)

$$X_{11} = \begin{cases} 0 \text{ se il candidato 1 svolge il lavoro 1} \\ 1 \text{ se il candidato 1 non svolge il lavoro 1} \end{cases}$$

$$X_{12} = \begin{cases} 0 \text{ se il candidato 1 svolge il lavoro 2} \\ 1 \text{ se il candidato 1 non svolge il lavoro 2} \end{cases}$$

. .

$$x_{ij} = \begin{cases} 0 \text{ se il candidato i svolge il lavoro j} \\ 1 \text{ se il candidato i non svolge il lavoro j} \end{cases}$$

Quante variabili in totale sono necessarie?

Problema 2A – Modello

$$\begin{array}{ll} \text{min} & 1440y_1 + 1250y_2 + 1550y_3 + \\ \\ +400x_{11} + 470x_{12} + 800x_{13} + 720x_{21} + 360x_{22} + 580x_{23} + 240x_{31} + 610x_{32} + 710x_{33} \\ & x_{11} + x_{21} + x_{31} \geq 2 \\ & x_{12} + x_{22} + x_{32} \geq 1 \\ & x_{13} + x_{23} + x_{33} \geq 1 \\ & x_{11} + x_{12} + x_{13} \leq 3y_1 \\ & x_{21} + x_{22} + x_{23} \leq 3y_2 \\ & x_{31} + x_{32} + x_{33} \leq 3y_3 \end{array}$$

Problema 2A – Risoluzione con Excel Solver (I)

Inseriamo i parametri noti del problema e iniziamo a definire i primi vincoli, quelli sul numero di candidati necessari per ogni incarico (per esempio per LAV1 ne servono almeno due):

Problema 2A – Risoluzione con Excel Solver (II)

Ogni candidato potrà essere assegnato al massimo a tre incarichi...

Problema 2A – Risoluzione con Excel Solver (III)

...ma solo se sarà assunto! Per questo, dobbiamo legare le variabili x_{ij} relative al candidato i con la variabile y_i , che ci dirà se il candidato dovrà effettivamente svolgere qualche incarico:

Problema 2A – Risoluzione con Excel Solver (IV)

Impostiamo la funzione obiettivo:

Problema 2A – Risoluzione con Excel Solver (V)

Nelle impostazioni del risolutore, aggiungiamo tutti i vincoli e le variabili, imponendo che tutte le x_{ij} e le y_i siano binarie:

Clicchiamo su "Risolvi" per trovare una soluzione ottima.

Problema 2A – Risoluzione con Excel Solver (VI)

Soluzione ottima: l'azienda spende 3500 euro per assumere i candidati C1 e C2, incaricati rispettivamente di LAV1, LAV3 e LAV1, LAV2:

Problema 2B – Variabili aggiuntive

```
r \ge 0 = euro rimasti dal budget stipendi s \ge 0 = euro spesi per i bonus, oltre a r
```

Problema 2B - Modello

In rosso le modifiche al modello 2A per soddisfare i vincoli aggiuntivi:

$$\begin{aligned} & \min \quad 1440y_1 + 1250y_2 + 1550y_3 + \\ & + 400x_{11} + 470x_{12} + 800x_{13} + 720x_{21} + 360x_{22} + 580x_{23} + 240x_{31} + 610x_{32} + 710x_{33} \\ & x_{11} + x_{21} + x_{31} \ge 2 \\ & x_{12} + x_{22} + x_{32} \ge 1 \\ & x_{13} + x_{23} + x_{33} \ge 1 \\ & x_{11} + x_{12} + x_{13} \le 3y_1 \\ & x_{21} + x_{22} + x_{23} \le 3y_2 \\ & x_{31} + x_{32} + x_{33} \le 3y_3 \\ & 1440y_1 + 1250y_2 + 1550y_3 + r = 3000 \\ & s + r \le 1000 \\ \end{aligned}$$

Problema 2B – Risoluzione con Excel Solver (I)

Problema 2B - Risoluzione con Excel Solver (II)

Definiamo anche i vincoli in più che coinvolgono *r* e *s*, partendo da quello sul capitale per gli stipendi:

Problema 2B - Risoluzione con Excel Solver (III)

Imponiamo che la somma dei bonus pagati sia proprio uguale a s + r:

Problema 2B – Risoluzione con Excel Solver (IV)

Problema 2B – Risoluzione con Excel Solver (V)

Inseriamo le nuove variabili (continue) e i nuovi vincoli anche nel risolutore e poi risolviamo nuovamente:

Soluzione ottima: l'azienda spende 3590 euro assumendo in questo caso i candidati C1 e C3. C1 è incaricato di svolgere tutti e tre gli incarichi, mentre C3 solo LAV1.

Conclusione

Compito per giovedì 6 maggio – La dieta mediterranea (I)

Secondo un nutrizionista sostenitore della dieta mediterranea, le quantità minime di nutrienti che devono essere assunte ogni giorno sono 1700 chilocalorie, 200 g di carboidrati, 70 g di proteine, 60 g di grassi e 0,7 g di calcio. Generalmente, il nutrizionista è solito prescrivere una dieta composta da otto alimenti: pane, pasta, latte, uova, pollo, tonno, cioccolato e verdure. La seguente tabella mostra quante calorie (in Kcal), carboidrati, proteine, grassi (in grammi) e calcio (in mg) fornisce una porzione di ogni alimento:

	Pane	Pasta	Latte	Uova	Pollo	Tonno	Cioccolato	Verdure
Calorie (kcal)	150	390	70	70	150	150	112	45
Carboidrati (g)	30	75	5	0	2	0	7	8
Proteine (g)	5	11	5	6	36	25	2	3
Grassi (g)	2	3	3	6	5	15	10	2
Calcio (mg)	52	5	150	50	22	4	11	50

Compito per giovedì 6 maggio – La dieta mediterranea (II)

Il nutrizionista raccomanda anche almeno due porzioni di verdura al giorno, mentre il numero massimo di porzioni per ogni alimento è riportato nella tabella seguente:

	Pane	Pasta	Latte	Uova	Pollo	Tonno	Cioccolato	Verdure
N° max di porzioni	2	2	2	1	1	2	2	6

Il numero di porzioni di pane e pasta non può essere maggiore di 3, mentre quello delle porzioni di latte, pollo e tonno deve essere almeno 4. Inoltre, il nutrizionista vuole che nella dieta ci siano esattamente 7 degli otto alimenti proposti. Il costo (in €) di una porzione di ogni alimento è il seguente:

							Cioccolato	
Costo per porzione	0,50	3,50	1,00	1,50	4,50	2,00	1,50	4,00

Determinare quali alimenti dovranno essere mangiati in un giorno per rispettare tutte le prescrizioni della dieta indicata dal nutrizionista, in modo tale da minimizzare il costo totale.

Sondaggio finale

www.menti.com Codice: 3574 9700