INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE MATEMÁTICA

Álgebra Lineal para Computación (MA-2405)

Tiempo: 2 h. 20 m. Total: 40 puntos Fecha: 9 de enero de 2013

Segundo Examen Parcial (Verano 2012-2013)

1. En el conjunto $\mathbb{R} \times \mathbb{R}^*$ se define la operación \otimes como:

$$(a,b) \otimes (c,d) = (a+c-5,2bd)$$

Si se sabe que $(\mathbb{R} \times \mathbb{R}^*, \otimes)$ es grupo abeliano y $H = \{(5, t) / t \in \mathbb{R}^*\}$, pruebe que $H < \mathbb{R} \times \mathbb{R}^*$ (4 puntos)

- 2. En el grupo $(\mathbb{Z}_2 \times \mathbb{Z}_5^*, \odot)$ donde $(a, b) \odot (c, d) = (a + c, bd)$.
 - (a) Calcule los ocho elementos del grupo. (1 punto)
 - (b) Determine el elemento neutro y el inverso de cada elemento. (2 puntos)
 - (c) Calcule un subgrupo de orden 4 de este grupo. (2 puntos)
- 3. En el espacio vectorial P_2 se definen $H_1 = \{ax^2 + bx + c \in P_2 / a + 2b + 3c = 0\}$ y $H_2 = \{ax^2 + bx + c \in P_2 / 2a + 3b + 5c = 0\}.$
 - (a) Demuestre que H_1 es un subespacio de P_2 . (3 puntos)
 - (b) Determine una base para el subespacio vectorial H_2 . (3 puntos)
 - (c) Calcule $H_1 \cap H_2$. (3 puntos)
- 4. Si se sabe que $\{u, v, w\}$ es un conjunto linealmente independiente en el espacio vectorial V. Determine si el conjunto $\{u + v + 2w, v u, 3u + 2v w\}$ es linealmente independiente en V. (4 puntos)
- 5. Determine si el conjunto $\{(3, 2, -1), (2, 1, -1), (1, 1, 0), (1, 2, 1)\}$ genera o no al espacio vectorial \mathbb{R}^3 . (4 puntos)
- 6. En cada caso, determine si H es subespacio vectorial del espacio vectorial V indicado
 - (a) $H = \{(x, y, z) \in \mathbb{R}^3 / 2x + 4y + 6z 2 = 0\} \text{ donde } V = \mathbb{R}^3.$ (2 puntos)
 - (b) $H = \{ f \in V / \int_a^b f(x) dx = 1 \}$ donde V es el espacio vectorial sobre \mathbb{R} de todas las funciones continuas sobre el intervalo [a, b]. (2 puntos)
 - (c) $H = \{A \in M_2 / \det(A) \neq 0\} \text{ donde } V = M_2.$ (2 puntos)
- 7. Considere el subespacio de P_4 dado por $H = \{ p \in P_4 \ / \ p'(1) = 0 \land p(1) = 0 \}$. Determine una base de H y calcule su dimensión. (5 puntos)
- 8. Sean V algún espacio vectorial y $S = \{u_1, u_2, \dots, u_n\}$ un subconjunto de V, tal que S es linealmente independiente. Si $x \in V$, tal que $x \notin Gen(S)$, demuestre que el conjunto $H = \{x, u_1, u_2, \dots, u_n\}$ es, también, linealmente independiente. (4 puntos)