SOME TRICKS ON FUNCTIONAL EQUATION

- Injective at single point.
- · Inequality of FE.

Problem 1. Prove that the following non-constant functions $f: \mathbb{R} \to \mathbb{R}$ are injective at 0:

a)
$$f(x+xy^2f(x))+f(x^2yf(y)-y)=f(x)-f(y)+2x^2y^2$$
 for all $x,y \in \mathbb{R}$.

b)
$$2f(x)f(x+y)-f(x^2) = \frac{x}{2}f(2x)+2xf(f(y))$$
 for all $x, y \in \mathbb{R}$.

c)
$$f(x+2022f(xy)) = f(x)+2022xf(y)$$
 for all $x, y \in \mathbb{R}$.

Problem 2. Find all function $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that for x, y, z > 0 pairwise distinct then

$$f(x)^2 - f(y)f(z) \le f(xy)f(y)f(z)[f(yz) - f(zx)].$$

Problem 3.

a) Consider funnction $f: \mathbb{R} \to \mathbb{R}$ such that

$$x^2 f(x-y^2) \ge (x+2y+1) f(x)$$
 for all $x, y \in \mathbb{R}$.

Calculate f(2022).

b) Prove that there does not exist function $f: \mathbb{R} \to \mathbb{R}$ such that

$$f(x-f(y)) \le x - yf(x)$$
 for all $x, y \in \mathbb{R}$.

c) Find all function $f: \mathbb{R} \to \mathbb{R}$ such that

$$f(x+y)-x-f(y) \le f(xy)-yf(x)$$
 for all $x, y \in \mathbb{R}$.

Problem 4. Find all surjective function $f: \mathbb{R} \to \mathbb{R}$ such that

$$f(yf(x+y)+x) = f(y)^2 + f((x-1)f(y))$$
 for all $x, y \in \mathbb{R}$.

Problem 5. Find all function $f:[0;+\infty) \to [0;+\infty)$ such that

- i) $f(f(x)) = x^4 \text{ for all } x \ge 0$;
- ii) There exist some constant c such that $f(x) \le cx^2$ for all $x \ge 0$.

Problem 6. Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ satisfy the following conditions

- i) $f(2x) \ge 2f(x)$ for all x > 0;
- ii) f is strictly increasing $(0; +\infty)$.
- iii) f(f(x)f(y)+x) = f(xf(y))+f(x) for all x, y > 0.

Problem 7*. Consider the function $f: \mathbb{R} \to \mathbb{R}$ such that

$$(f(x)+y)(f(x-y)+1) = f(f(xf(x+1))-yf(y-1))$$
 for all $x, y \in \mathbb{R}$.

- a) Prove that f(x) is injective at 0.
- b) Find all functions f(x) satisfy the given condition.