Dataset: Iris Flower dataset

Note: Only two species of flower are displayed

In favor of null: $log_e(BF_{01}) = -10.31$, sampling = independent multinomial, a = 1.00

 $\chi^2_{\rm Pearson}(9) = 138.29, \, \rho = <0.001, \, V_{\rm Cramer} = 0.28, \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{100} \, [0.23, \, 0.31], \, n_{\rm$

In favor of null: $log_e(BF_{01}) = -56.78$, sampling = independent multinomial, a = 1.00

Fuel efficiency by type of car transmission

t(18.33) = -3.77, p = 0.001, g = -1.38, $Cl_{95\%}$ [-2.17, -0.51], $n_{obs} = 32$

Transmission (0 = automatic, 1 = manual)

In favor of null: $log_e(BF_{01}) = -4.46$, $r_{Cauchy}^{JZS} = 0.71$

Pairwise comparisons: Dwass-Steel-Crichtlow-Fligner test; Adjustment (p-value): Benjamini & Hochberg

AIC = 166, BIC = 173, log-likelihood = -78

Summary effect: β = 0.619, Cl_{95%} [0.407, 0.830], z = 5.736, se = 0.108, p = < 0.001

In favor of null: $log_e(BF_{01}) = -2.680$, $d_{mean}^{posterior} = 0.494$, $CI_{95\%}$ [0.158, 0.778] Heterogeneity: Q(4) = 109, p = < 0.001, $\tau_{REML}^2 = 0.056$, $I^2 = 96.81\%$

 \mathbf{X} = correlation non–significant at p < 0.05 Adjustment (p–value): None

X = correlation non-significant at <math>p < 0.05Adjustment (p-value): None

 $\mathbf{X} = \text{correlation non-significant at } p < 0.01$ Adjustment (p-value): None

Fuel economy data

t(14) = 1.47, p = 0.163, g = 0.36, $Cl_{99\%}$ [-0.33, 1.10], $n_{obs} = 15$

Source: EPA dataset on http://fueleconomy.gov

In favor of null: $log_e(BF_{01}) = 0.44$, $r_{Cauchy}^{JZS} = 0.71$

 $t(59) = 19.05, \, p = <0.001, \, g = 2.43, \, \mathsf{Cl}_{95\%} \, [1.96, \, 2.99], \, n_\mathsf{obs} = 60$ 12.5 10.0 median = 19.25 7.5 count 5.0 2.5 0.0

20 Tooth length

10

In favor of null: $log_e(BF_{01}) = -54.54$, $r_{Cauchy}^{JZS} = 0.71$

30

Note: Iris dataset by Fisher.

In favor of null: $log_e(BF_{01}) = -186.14$, $r_{Cauchy}^{JZS} = 0.80$

$$\chi^2_{\text{Pearson}}(2) = 21.34, p = < 0.001, V_{\text{Cramer}} = 0.82, Cl_{95\%} [0.57, 0.94], n_{\text{obs}} = 32$$

Engine 0 = V-shaped 1 = straight

In favor of null: $log_e(BF_{01}) = -10.31$, sampling = independent multinomial, a = 1.00

In favor of null: $log_e(BF_{01}) = -4.34$, $r_{Cauchy}^{JZS} = 0.71$

 $\chi^2(2) = 11.14$, p = 0.004, $W_{\text{Kendall}} = 0.82$, $\text{Cl}_{99\%}$ [0.82, 1.00], $n_{\text{pairs}} = 22$

Pairwise comparisons: Durbin-Conover test; Adjustment (p-value): Holm

pling = independent multinfavoriate a_{ell} and a_{ell} and a_{ell} a_{ell}

Quality: Very Good

$$\chi^2_{\text{Pearson}}(18) = 17.95, p = 0.459, V_{\text{Cramer}} = 0.11, Cl_{95\%} [0.02, 0.11], n_{\text{obs}} = 477$$

In favor of null: $log_e(BF_{01}) = 4.95$, sampling = poisson, a = 1.00

Н

G

F

Ε

color

Н

G

F

Ε

D

Quality: Ideal

$$\chi^2_{\text{Pearson}}(18) = 17.85, p = 0.466, V_{\text{Cramer}} = 0.09, \text{Cl}_{95\%}[0.02, 0.08], n_{\text{obs}} = 785$$

In favor of null: $log_e(BF_{01}) = 9.05$, sampling = poisson, a = 1.00

X = correlation non-significant at p < 0.05Adjustment (p-value): None

Adjustment (p-value): None

1.0

0.5

0.0

-0.5

-1.0

X = correlation non-significant at p < 0.05Adjustment (p-value): None

X = correlation non-significant at p < 0.05

Adjustment (p-value): Holm

= correlation non–significant at p < 0.05

Adjustment (p-value): Holm

cylinder count: 4

cylinder count: 6

In favor of null: $log_e(BF_{01}) = -6.20$, $r_{Cauchy}^{JZS} = 0.71$

In favor of null: $log_e(BF_{01}) = -0.23$, $r_{Cauchy}^{JZS} = 0.71$

cylinder count: 8

cty

In favor of null: $log_e(BF_{01}) = -4.24$, $r_{Cauchy}^{JZS} = 0.71$

am: 0

am: 1

In favor of null: $log_e(BF_{01}) = -0.16$, a = 1.00

In favor of null: $log_e(BF_{01}) = 0.85$, a = 1.00

Sex: Male

Sex: Female

Red

In favor of null: $log_e(BF_{01}) = -37.65$, a = 1.00

Red

Brown

Hair

Blond

Black Hair

Blond

In favor of null: $log_e(BF_{01}) = -30.42$, a = 1.00

Brown

Black

Quality: Fair

$$\chi^2_{\text{Pearson}}(42) = 55.71, p = 0.076, V_{\text{Cramer}} = 0.23, \text{Cl}_{95\%} [0.14, 0.22], n_{\text{obs}} = 172$$

vor of null: $log_e(BF_{01}) = -7.86$, sampling = poisson, a = 1.00

Quality: Very Good

$$\chi^2_{\text{Pearson}}(42) = 64.05, p = 0.016, V_{\text{Cramer}} = 0.09, \text{Cl}_{95\%} [0.05, 0.09], n_{\text{obs}} = 1187$$

vor of null: $log_e(BF_{01}) = 14.79$, sampling = poisson, a = 1.00

Quality: Ideal

$$\chi^2_{\text{Pearson}}(42) = 153.32, p = < 0.001, V_{\text{Cramer}} = 0.11, Cl_{95\%} [0.08, 0.11], n_{\text{obs}} = 2165$$

or of null: $log_e(BF_{01}) = -25.04$, sampling = poisson, a = 1.00

All movies have IMDB rating equal to 7.

