MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

Howard et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017.

Introduction

This paper proposed a compressing and accelerating method with trading of accuracy.

Method

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

Figure 2. The standard convolutional filters in (a) are replaced by two layers: depthwise convolution in (b) and pointwise convolution in (c) to build a depthwise separable filter.

https://blog.csdn.net/u011974639

Basic

Replace **standard convolution filters** with combination of **depthwise convolution filters** and **pointwise convolution filters** and the time complexity can be reduce:

- $\bullet \quad \hbox{Original Time Complexity: } D^2_K NMD^2_F$
- ullet Modified Time Complexity: $(D_K^2+N)MD_F^2$

Figure 3. Left: Standard convolutional layer with batchnorm and ReLU. Right: Depthwise Separable convolutions with Depthwise and Pointwise layers followed by batchnorm and ReLU.

https://blog.csdn.net/u011974639

Result

Model	ImageNet Accuracy	Mult-Add(Million)	Parameters(Million)
MobileNet	70%	569	4.2
GoogleNet	69%	1550	6.8
VGG16	71%	15300	138