PRUEBA DE HEMOLISIS DE ERITROCITOS HUMANOS

Germán Alberto Téllez Ramírez, Lily Johanna Toro, Diana Carolina Henao, Juan David Rivera, Jhon Carlos Castaño Osorio

Abstract

Esta prueba evalúa la actividad hemolítica de péptidos o moleculas sobre eritrocitos humanos como criterio de selectividad ante las células eucariotas.

La realización de este protocolo fue posible gracias al apoyo del departamento administrativo de ciencia tecnología e innovación, Colciencias a traves del proyecto 111356933173 convocatoria569-2012.

Citation: Germán Alberto Téllez Ramírez,Lily Johanna Toro,Diana Carolina Henao,Juan David Rivera,Jhon Carlos Castaño Osorio PRUEBA DE HEMOLISIS DE ERITROCITOS HUMANOS. **protocols.io**

dx.doi.org/10.17504/protocols.io.jh9cj96

Published: 20 Oct 2017

Guidelines

Este procedimiento consta de la extracción de la sangre, lavado y dilución de eritrocitos y finalmente de la preparación de la muestra que se va a poner en contacto con los eritrocitos para evaluar su actividad hemolítica.

El tiempo estimado es de 4 a 5 horas contabilizando desde el momento en el que se extraen los eritrocitos hasta el momento en el que se lee la placa en el espectrofotometro por turbidez.

Before start

Preparar solución de lavado:

Buffer PBS 1X: 130 mM NaCl, 3 mM KCl, 8 mM Na2HPO4 y 1,5mM KH2PO4 pH 7,4.

Se puede utilizar como solución alternativa: 150mMKCl, 5mM Tris-HCl, pH 7.4

Solución de control hemolisis: Tritón X100 solución al 1% o al 0,1%.

Blanco del ensayo: Utilizar solución de lavado o diluyente de la muestra.

Preparar las muestras a evaluar.

Materials

- ✓ Incubator Light, humidity and temperature controlled by Contributed by users.
- ✓ syringes, 20ml by Contributed by users.
- 1.5 mL Eppendorf tubes by Contributed by users
- P1000 micropipet and Tips by Contributed by users
 96-well microtiter plates polypropilene 650201 by greiner bio-one
 BD Vacutainer E.D.T.A Tubes 367861 by BD Biosciences
 Centrifuge Heraeus Megafuge 11R by Thermo Fisher Scientific
 Spectrophotometer EPOCH by Biotek

Protocol

Preparación de solución madre de Eritrocitos

Step 1.

Tomar 2 ml de sangre heparinisada y centrifugar a 800 gravedades durante 10 minutos a temperatura ambiente.

Se retira el sobrenadante y el pellet (eritrocitos), se lava con solución de lavado (solución normotónica) tres veces por centrifugación a 800 g durante 10 minutos cada vez.

Finalmente los eritrocitos se resuspenden, en el mismo volumen inicial de sangre utilizando solución de lavado.

NOTES

Grupo de Inmunología Molecular Universidad del Quindio 22 Aug 2017

Utilizar una solución de lavado normotónica con el fin de evitar hemolisis

Preparación de solución de trabajo de Eritrocitos

Step 2.

Preparar una dilución con la solución madre de eritrocitos a una relación 1:250 con PBS 1X e incube la solución de trabajo por 15 minutos a 37°C.

Preparación de las moléculas a evaluar (muestras)

Step 3.

Generalmente a partir de una solución madre de la muestra de 1 mg/mL a 5 mg/mL (depende de la muestra), preparar una dilución 10 veces mas concentrado (10X) con respecto a la concentración final que se evaluara por cada tratamiento y luego realizar diluciones seriadas proporción 1:1 partiendo de la muestra mas concentrada hasta llegar a la mas diluida que se requiera.

Por ejemplo: si se quiere evaluar un péptido a una concentración máxima de 250 μ g/mL hasta n μ g/mL según diluciones seriadas (ver tabla de distribución de muestras). Se debe preparar una solución a 10X (2500 μ g/mL); si la solución madre esta a 5000 μ g/mL y se quieren preparar 50 μ L a 2500 μ g/mL, se deben tomar 25 μ L de solución 10X con 25 μ L de PBS 1X (tubo 1) y realizar diluciones seriadas 1:1 de 25 μ L de péptido tubo 1 más 25 μ L de diluyente y asi sucesivamente hasta completar la cantidad de concentraciones a evaluar por ejemplo: 1250 μ g/mL, 625 μ g/mL, 312,5 μ g/mL, etc.

Controles

Step 4.

Control positivo: adicionar 10uL de solución de 0,1% v/v de tritón X 100 a las celdas de control positivo, para una concentración final de 0,01%

Control negativo: adicionar 10uL de diluyente (PBS 1X) en las celdas de control negativo.

Preparación de placa con muestras

Step 5.

Adicionar 10uL por triplicado de cada concentración de la muestra a 10X en cada pozo de una microplaca de 96 pozos, según corresponda.

Tratamiento de eritrocitos para evaluar hemolisis

Step 6.

En cada uno de los pozos de la microplaca del paso 5 adicionar 90ul de solución de trabajo de eritrocitos e incubar la placa durante 2 horas a 37 °C

NOTES

Grupo de Inmunología Molecular Universidad del Quindio 20 Oct 2017

Adicionar los eritrocitos en cada pozo en dirección de menor concentración a mayor concentración para reutilizar puntas y evitar contaminación cruzada.

Preparación de las muestras antes de leer

Step 7.

Centrifugar la placa a 800 g durante 5 minutos, extraer el sobrenadante cuidadosamente (aprox. 80 μ L/pozo) y transferir a otra microplaca

Lectura de absorbancia

Step 8.

Leer absorbancias de sobrenadantes del paso anterior en espectrofotómetro a 540 nm

Análisis de resultados

Step 9.

Calcular mediana del blanco (absorbancia diluyente) y restar (delta) a todos los valores de absorbancia en cada uno de los pozos de la placa, sacar la mediana de cada uno de estos valores por cada tratamiento o concentración evaluada. Después de la resta, utilizar como referente la mediana del control de 100% de hemólisis o control positivo, para calcular el porcentaje de hemólisis en cada uno de los pozos, multiplicando el delta de la absorbancia de cada uno de los pozos por 100% y dividiendo el resultado entre la mediana de la absorbancia del control positivo de hemólisis.

DATASET

Plantilla hemólisis 🖂

Warnings

Maneje todas las normas de bioseguridad a tener en cuenta para el manejo de materiales y reactivos de laboratorios de biología molecular.