Mys 20 2/27	
(1) Reflection vs Refraction	
3 Reflection Examples	
(3) Snell's Law/Refraction	
1) Ray model:-Light travels in	astraight line
- Speed of my	forever until
	montter ace: reflect or refrac
. within material	SCATTER O USES
angle angle	of reflection
incidence \	(nair-1)
9: 0,	n, interface (bound
	nz>ni
	(nute= 1.33)

Orefracted

The mirror in the following figure deflects a horizontal laser beam by 60°. What is the angle Φ? 9, · 9;

- 0; + 0, +60°=180°
- => 20;=120°

- 20° 1.
- 30°
- 40°
- 45°

A laser beam is incident on the left mirror in the following figure. If I want the reflected beam to be always parallel to the incident beam regardless of the direction of the incident beam, what should the angle θ be?

- 45° 1.
- 60°
- 90°
- 120°

parallelogian 2x+2x=180°

Now if θ is 80° , what is the angle ϕ of the reflected laser beam?

- 1. 15°
- 2. 30°
- 3 45°
- 4.) 20°

Joe sees the image of a book as shown from above. Where does Joe see the image. (Joe would see the object as being at the image point if he didn't know that the mirror existed.)

- 3) C
- 4. D
- 5. None of the above

A fish swims below the surface of the water at P. Where should a fisherman throw \underline{a} spear in order to catch it?

Air
$$(n_1 = 1.0)$$

- Toward where he sees the fish.
- 2. Above where he sees the fish.
- 3.) Below where he sees the fish.

A fish swims below the surface of the water at P. Now the fisherman decides to point a laser beam that hits the fish. What should he do?

Air
$$(n = 1.0)$$

- Point toward where he sees the fish
- 2. Point above where he sees the fish
- 3. Point below where he sees the fish

The fisherman stands above the water. A fish at P sees the fisherman's eye at

- 2.) Above where it really is.
 - 3. Below where it really is.

Your lecturer just drew the <u>incorrect</u> "refraction of light" sketch for light incident from air onto a blue glass plate, as shown below. What would you suggest to make it right?

- 1. Make θ_2 smaller.
- State that as drawn, n₂<n₁
- 3. Curve the ray in the lower medium.
- Figure all angles from the perpendicular dotted line.
- 5. None of the above.

9 Total Internal Reflection

$$n_2 \sin \Theta_c = n_1 \sin 90^\circ$$
 $n_2 \sin \Theta_c = n_1$
 $n_2 \sin \Theta_c = n_1$

Sin $\Theta_c = \frac{n_1}{n_2} < 1$

The $O_{inc} > O_{c}$ critical angle angle angle (good for optical fibers!)

core
$$n_1 = 1.48$$

core $n_1 = 1.60$
 $n_1 \sin \Theta_c = n_2 \sin 90^\circ$

$$\Theta_{c} = \arcsin\left(\frac{n_{1}}{n_{1}}\right) = \arcsin\left(\frac{n_{4}}{160}\right)$$

$$= 67.7^{\circ}$$

$$\phi = 90^{\circ} - \Theta_{c} = 22.3^{\circ}$$