Projeto 1: Visualização de funções complexas

Funções Complexas de Variável Complexa

Neste projeto vamos programar uma aplicação que nos permitirá visualizar uma função complexa f() de variável complexa z. Uma função complexa tem a característica do seu resultado, w, ser um número complexo:

 $\mathbf{w} = f(\mathbf{z})$

Sendo os números complexos representados normalmente num plano cartesiano, a duas dimensões, para visualizarmos as nossas funções complexas de variável complexa necessitaríamos dum espaço a 4 dimensões (2 para o argumento e outras 2 para o resultado). Felizmente existe uma alternativa a essa forma de visualização, denominada por "Coloração do Domínio".

Coloração do Domínio

Como referimos anteriormente, um número complexo poderá corresponder a uma posição no plano cartesiano 2D. Vamos usar essa correspondência para o argumento z das nossas funções. Já para o resultado, w, vamos utilizar uma cor. Assim, ao aplicar a função a uma determinada região do plano obtemos um padrão colorido que representa o resultado da função numa parte do seu domínio.

Modelo de cor HSV

A especificação duma cor à custa das suas componentes primárias R, G e B é bastante útil para utilização em dispositivos que reproduzem a cor por adição de cores primárias (CRTs e LCDs). Contudo, existem outras formas de especificar cores, usando outros modelos de cor. Um modelo bastante utilizado, pois captura os atributos psico-fisiológicos da cor, é o modelo HSV (Hue, Saturation, Value). A cor é igualmente especificada usando 3 componentes independentes, mas agora com um significado mais perto da forma como nós a percepcionamos:

- Hue (Tom) a tonalidade da cor (vermelho, laranja, amarelo, verde, ...)
- Saturation (Saturação) quanto maior for a saturação, mais afastada a cor estará dos cinzentos. O valor da saturação varia entre 0 (para os cinzentos) e 1.
- Value (Valor) está relacionado com o brilho que a cor aparenta. O preto é a cor com menor valor (V=0). Por oposição, o branco (mas também as cores principais do arco-íris) têm V=1.

Mapeamento dum número complexo numa cor

Para mapearmos o resultado da nossa função complexa numa cor vamos fazê-lo usando coordenadas polares. Qualquer número complexo pode ser representado por coordenadas polares, visto corresponder a uma posição no plano. Assim sendo, dado um complexo w, resultado da nossa função, transformamos em primeiro lugar para um par (r, theta), onde r representa a distância do ponto à origem (o raio) e theta o ângulo formado com a horizontal quando ligamos o ponto \mathbf{w} à origem.

Finalmente o mapeamento para uma cor em HSV far-se-á usando os seguintes mapeamentos das componentes individuais da cor:

- **H** = theta
- \blacksquare S = 1
- V = frac(log2(r))

Exemplos de funções complexas

Descrição do trabalho

Pretende-se construir uma aplicação interativa que permita visualizar e explorar funções complexas de variável complexa. Cada pixel do canvas terá associada uma cor que resulta do mapeamento do valor da função complexa numa cor, conforme descrito anteriormente.

[(z+2)^2](z-1-2i)(z+i), para 2 iterações

O programa deverá permitir ajustar os seguintes parâmetros:

f4(z), para 6 iterações

- centro permite definir o ponto do plano dos números complexos que será mostrado no centro do canvas. Inicialmente será 0+0i. A operação deverá ser por arrasto (drag) sobre o canvas. A imagem deverá deslocar-se solidária com o movimento do ponteiro do rato.
- escala permite definir qual a dimensão do plano dos números complexos a visualizar no canvas.
- func um identificador inteiro que servirá para selecionar a função a aplicar (de entre um conjunto de funções previamente programadas)
- n permite ajustar o número de vezes que função será aplicada, como se duma potência se tratasse.

O trabalho deverá ser capaz de reproduzir qualquer das funções aqui referidas a título de ilustração, devendo cada uma delas estar disponível na interface de forma acessível. O utilizador poderá ainda escolher o número de vezes que a função será aplicada ao seu próprio resultado (parâmetro **n**).

Extras

O trabalho será avaliado para 18 valores, sendo os restantes 2 valores atribuídos à realização das seguintes componentes:

- Adição duma variável tempo que possa ser usada dentro das funções e assim criar animações
- Possibilidade de usar um canvas não quadrado que maximize a área disponível na janela do browser, mas sem deformar a imagem das funções.

Detalhes técnicos

Geometria a desenhar

A única primitiva a desenhar neste trabalho será um TRIANGLE_STRIP que cobrirá o espaço [-1,1]x[-1,1]. Todo o trabalho será executado ao nível do fragment shader. O papel do vertex shader nesta aplicação é mínimo.

Parâmetros/Variáveis obrigatórias do programa GLSL

Os parâmetros (variáveis uniform) necessários (e obrigatórios) neste programa são: um inteiro func

- um inteiro n
- um número complexo center
- a escala scale permite converter de pixels para unidades no plano cartesiano dos complexos (ou no sentido inverso)

Regras e Informação Adicional

Composição dos grupos

Os trabalhos práticos deverão ser realizados por grupos de 2 alunos dum mesmo turno prático. A entrega do trabalho a título individual terá que ser devidamente justificada e autorizada pelo respectivo docente do turno prático.

Entrega

O trabalho será entregue via Google Classroom, usando a classe do respectivo turno prático.

Avaliação

Os trabalhos serão avaliados pelo respetivo docente das aulas práticas e discutidos com os respetivos alunos em data a definir oportunamente.