Universidade de Aveiro

Sistemas Multimédia

2018/2019

Aula Prática 03

I. Decomposição de Sinais em Série de Fourier

1. Mostre que as seguintes decomposições de um sinal periódico (de frequência ω_0) em Série de Fourier são equivalentes:

$$x(t) = \sum_{k=1}^{K} A_k \cos(k\omega_0 t + \varphi_k) = \sum_{k=1}^{K} a_k \cos(k\omega_0 t) + \sum_{k=1}^{K} b_k \sin(k\omega_0 t)$$

2. Determine a expressão de a_k e b_k correspondentes à representação do seguinte sinal em Série de Fourier:

Relembra-se que, para k > 0:

$$a_k = \frac{2}{T_0} \int_0^{T_0} x(t) \cos(k\omega_0 t) dt$$
 e $b_k = \frac{2}{T_0} \int_0^{T_0} x(t) \sin(k\omega_0 t) dt$, com $T_0 = \frac{2\pi}{\omega_0}$.

- 3. Desenvolva uma função em MATLAB que produza o sinal resultante da série de Fourier que é gerada a partir da seguinte informação:
 - T_a: Período de amostragem, em segundos;
 - f_0 : Frequência do sinal composto, em Hz;
 - N_p : Número de períodos a considerar para o sinal resultante;
 - a_k : Vetor (Kx1) com os valores de a_k da série;
 - b_k : Vetor (Kx1) com os valores de b_k da série.

Experimente esta função para os valores dos coeficientes da pergunta 2, e veja como progressivamente o resultado se vai aproximando do sinal representado nessa pergunta.

- 4. Use a função desenvolvida na pergunta 3 para verificar que um sinal periódico par (i.e., com simetria relativamente ao eixo das ordenadas) tem todos os coeficientes b_k nulos, e que um sinal periódico ímpar (i.e., simétrico relativamente à origem do referencial) tem todos os coeficientes a_k nulos.
- 5. Desenvolva uma função em MATLAB que calcule os coeficientes a_k e b_k de um sinal periódico x(n). Essa função deverá receber como argumentos de entrada:
 - T_a : Período de amostragem, em segundos;
 - T_0 : Período do sinal, em segundos;
 - -x: Vetor (Nx1) com as amostras sucessivas do sinal a decompor (deverá ser passado um número inteiro de períodos deste sinal, não devendo o último período ficar truncado);
 - K: Número de harmónicas a considerar na decomposição.
- 6. Teste a função desenvolvida na pergunta 5 para decompor os seguintes sinais (e, depois, reconstrua estes sinais usando a função desenvolvida na pergunta 3):

