John Fitzgerald Cláudio Gomes Peter Gorm Larsen *Editors*

The Engineering of Digital Twins

Contents

Pr	eface .		V
	Usin	g the Book	vii
	Acco	ompanying Web Site	viii
	Ackr	nowledgments	ix
	Refe	rences	ix
Li	st of Co	ontributing Authors	xvii
Ac	ronym	s	xxi
Pa	rt I Fo	oundations	
1	Engi	neering Digital Twins for Cyber-Physical Systems	3
	Peter	Gorm Larsen, John Fitzgerald and Cláudio Gomes	
	1.1	Introduction	
	1.2	Cyber-Physical Systems and Digital Twins	
	1.3	Aspects of DT Engineering	7
	1.4	The Transition to Digital Twins	13
	Refe	rences	15
2		Potential of Digital Twins: Four Industry Perspectives	19
		Fitzgerald, Peter Gorm Larsen, Cláudio Gomes, Rob Charlton,	
	Klau	s Kristensen, Stylianos Basagiannis and Jonas Åkeson	
	2.1	Round Table Discussion Structure	
	2.2	Introductions	20
	2.3	Businesses	20
	2.4	Where are you thinking of targeting DT technology?	22
	2.5	What does success look like?	26
	2.6	Why Digital Twins?	29
	2.7	Stakeholders, Developers and Users	30

xii Contents

	2.8 2.9 2.10 Refer	How would you expect to develop DTs? Do DTs help Dependability? Themes rences	38 41		
3		dational Concepts for Digital Twins of Cyber-Physical Systems .	45		
		dio Gomes, Bentley James Oakes, John Fitzgerald, Peter Gorm			
	Larse				
	3.1	Introduction			
	3.2	Running Example: the Tempeh Incubator System	46		
	3.3	Basic System Concepts	50		
	3.4	Models & Data	52		
	3.5	Digital Twin Services	55		
	3.6	Digital Twin Assets and Management	58		
	Refe	rences	62		
4	Digit	al Twin Engineering Processes	65		
	John	Fitzgerald, Ken Pierce and Klaus Kristensen			
	4.1	Introduction	65		
	4.2	DT Engineering as Systems Engineering	66		
	4.3	Stakeholders' Expectations, Needs and Requirements Processes	68		
	4.4	System Requirements and Architecture Processes	70		
	4.5	Realisation Processes	73		
	4.6	The DT-Enabled System in Operation	77		
	4.7	Tailoring Processes and Teams	80		
	4.8	Processes and Competencies	82		
	Refer	rences	86		
Pa	rt II N	fodels and Data			
5	Mod	elling for Digital Twins	89		
	Giuseppe Abbiati, Cláudio Gomes, Michael Sandberg, Zahra Kazemi,				
	Simon Thrane Hansen and Peter Gorm Larsen				
	5.1	Introduction	89		
	5.2	Overview of Modelling Formalisms			
	5.3	Models for the Incubator Example			
	5.4	Physics-based Models			
	5.5	Data-driven Models			
	5.6	Models for Computer-Based Systems	115		
	5.7	Coupling of Heterogeneous Models			
	Refer	rences			

Contents xiii

6	Cali	bration of Models for Digital Twins	129
	Cláu	dio Gomes, Hao Feng, Zahra Kazemi and Ken Pierce	
	6.1	Introduction	. 129
	6.2	What is Calibration?	. 130
	6.3	Calibration of Linear Algebraic Models	. 131
	6.4	Calibration of Non-Linear Algebraic Models	. 135
	6.5	Practical Considerations	. 144
	Refe	rences	. 146
7	Sens	sing and Communication of Data from the Physical Twin	147
	Cláu	dio Gomes, Daniel Enrique Lucani Rötter, Alexandros Iosifidis,	
	Hao	Feng, Henrik Ejersbo and Mirgita Frasheri	
	7.1	Introduction	. 147
	7.2	Sensors and Their Limits	. 148
	7.3	Network Communication	. 155
	7.4	Message-Based Communication	. 163
	7.5	Storing Data in Time-Series Databases	
	7.6	Software Sensing	
	Refe	rences	. 168
Pa 8		Services for Digital Twins ualisation in a Digital Twin Context	175
o		stian H. Bohlbro, Hugo Daniel Macedo, Daniella Tola, Lukas	173
		rle, and Peter Gorm Larsen	
	8.1	Introduction	175
	8.2	Visualisation	
	8.3	Visualisation Services in a Digital Twin	
	8.4	Frameworks used for DT Visualisation	
	8.5	Visualisation Examples	
		rences	
9	Syste	em Monitoring through a Digital Twin	189
	-	gita Frasheri, Panagiotis Katsaros, Alexandros Iosifidis, Simon	
	_	ne Hansen, Cláudio Gomes, Valdemar Tang, and Peter Gorm	
	Larse		
	9.1	Introduction	189
	9.2	Describing Desirable Properties	
	9.3	Monitoring using Runtime Verification	
	9.4	Data-driven Anomaly Detection	
		rences	

xiv Contents

10		nced Digital Twin Services	209		
	Cláud	io Gomes			
	10.1	Introduction	209		
	10.2	What-if Simulations	210		
	10.3	Fault Diagnosis and Resilience	217		
	10.4	Predictive Maintenance	218		
	10.5	Re-configuration, Robustness and Optimisation	219		
	Refere	ences	221		
Par	t IV R	ealising Digital Twins			
11	Realis	sing Digital Twins	225		
	Prasac	Prasad Talasila, Peter Høgh Mikkelsen, Santiago Gil and Peter Gorm			
	Larse	n			
	11.1	Introduction			
	11.2	Digital Twin Frameworks	226		
	11.3	Cloud and Virtualisation Technologies	229		
	11.4	Digital Twin Composition	230		
	11.5	Digital Twin and Physical Twin Configuration			
	11.6	Digital Twin Class and Instances			
	11.7	DTaaS: Reference Architecture for Digital Twin Platforms	240		
	11.8	DTaaS: the DT Execution Manager			
	11.9	Prototype Implementation	249		
	11.10	Support for DT Services	251		
	11.11	Fleet Analysis	252		
	Refere	ences	254		
12	Case	Studies in Digital Twins	257		
	Bentle	Bentley James Oakes, Houxiang Zhang, Lars Ivar Hatledal, Hao Feng,			
	Mirgita Frasheri, Michael Sandberg, Santiago Gil and Cláudio Gomes				
	12.1	Introduction	257		
	12.2	Summary of Characteristics	258		
	12.3	The Tempeh Incubator			
	12.4	The (Desktop) Robotti			
	12.5	The Flex-cell	287		
	12.6	The Research Vessel Gunnerus	297		
	Refere	ences	308		

Contents xv

Part V	Ad	vanced	Topi	ics
--------	----	--------	------	-----

13	Secu	rity and Privacy-related Issues in a Digital Twin Context	313
	Toma	s Kulik, Zahra Kazemi and Peter Gorm Larsen	
	13.1	Introduction	. 313
	13.2	DT Security Architecture	. 314
	13.3	Approaches to a DT Security and Privacy	. 319
	13.4	Intellectual Property Protection	. 339
	13.5	Security in the Real World	. 340
	Refer	ences	
14	Auto	nomous Reconfiguration Enabled by Digital Twins	345
	Luka	s Esterle, Mirgita Frasheri and Peter Gorm Larsen	
	14.1	Introduction	. 345
	14.2	Autonomous Systems and DTs	. 346
	14.3	Self-* properties	. 352
	14.4	Goals	. 356
	14.5	Collaboration between Systems	. 357
	14.6	Safety and uncertainty in reconfiguration	. 359
	14.7	Roadmap	. 360
	Refer	ences	. 360
15	Futu	re Directions and Challenges	363
	Peter	Gorm Larsen, John Fitzgerald, Cláudio Gomes, Jim Woodcock,	
	Stylia	nos Basagiannis, Alessandro Ulisse, Lukas Esterle, Daniel Enrique	
	Luca	ni Rötter, Simon Thrane Hansen and Bentley James Oakes	
	15.1	Introduction	. 363
	15.2	Firm Foundations for Digital Twin Engineering	. 364
	15.3	Digital Twin Platforms	. 370
	15.4	Increasing the Level of Autonomy for Digital Twins	. 375
	15.5	Supporting Composition of Digital Twins	. 378
	15.6	Novel Applications of Digital Twins	. 381
	15.7	Concluding Remarks	
	Refer	ences	

List of Contributing Authors

Giuseppe Abbiati Aarhus University, Aarhus, Denmark e-mail: abbiati@cae.au.dk Santiago Gil Arboleda Aarhus University, Aarhus, Denmark

e-mail: sgil@ece.au.dk

Stylianos Basagiannis

Int. Hellenic Univ./ Collins Aerospace, Greece/Ireland e-mail: stylianos.basagiannis@collins.com

Christian H. Bohlbro Bohlbro.dk, Denmark e-mail: hello@bohlbro.dk

Till Böttjer

Aarhus University, Aarhus, Denmark e-mail: till.boettjer@ece.au.dk

Rob Charlton

Space Group, Newcastle upon Tyne, United Kingdom e-mail: Rob.Charlton@spacegroup.co.uk

Henrik Ejersbo

Grundfos, Bjerringbro, Denmark e-mail: hejersbo@grundfos.com

Lukas Esterle

Aarhus University, Aarhus, Denmark e-mail: lukas.esterle@ece.au.dk

Hao Feng

Huawei, Shenzhen, People's Republic of China

e-mail: haof.au@outlook.com

John S Fitzgerald (editor)

Newcastle University, Newcastle upon Tyne, United Kingdom

e-mail: john.fitzgerald@newcastle.ac.uk

Mirgita Frasheri

Aarhus University, Aarhus, Denmark e-mail: mirgita.frasheri@ece.au.dk

Cláudio Gomes (editor)

Aarhus University, Aarhus, Denmark e-mail: claudio.gomes@ece.au.dk

Simon Thrane Hansen

Aarhus University, Aarhus, Denmark / University of Luxembourg, Luxembourg

City, Luxembourg

e-mail: simon.hansen@uni.lu

Lars Ivar Hatledal

Norwegian University of Science and Technology, Ålesund, Norway

e-mail: laht@ntnu.no

Alexandros Iosifidis

Aarhus University, Aarhus, Denmark

e-mail: ai@ece.au.dk

Panagiotis Katsaros

Aristotle University of Thessaloniki, Thessaloniki, Greece

e-mail: katsaros@csd.auth.gr

Zahra Kazemi

Aarhus University, Aarhus, Denmark (now working at Vestas, Denmark)

e-mail: zahrakazemi1991@gmail.com

Klaus Kristensen

Bang & Olufsen, Struer, Denmark e-mail: KRT@Bang-Olufsen.dk

Tomas Kulik

Sweet Geeks, Vejle, Denmark e-mail: tku@sweetgeeks.dk

Peter Gorm Larsen (editor)

Aarhus University, Aarhus, Denmark

e-mail: pgl@ece.au.dk

Hugo Daniel Macedo

Aarhus University, Aarhus, Denmark

e-mail: hdm@ece.au.dk

Peter Høgh Mikkelsen

Aarhus University, Aarhus, Denmark

e-mail: phm@ece.au.dk

Bentley James Oakes

Polytechnique Montréal, Montréal, Canada e-mail: bentley.oakes@polymtl.ca

Ken Pierce

Newcastle University, Newcastle upon Tyne, United Kingdom

e-mail: kenneth.pierce@newcastle.ac.uk

Daniel Enrique Lucani Rötter

Aarhus University, Aarhus, Denmark e-mail: daniel.lucani@ece.au.dk

Michael Sandberg

Aarhus University, Aarhus, Denmark

e-mail: ms@mpe.au.dk

Prasad Talasila

Aarhus University, Aarhus, Denmark e-mail: prasad.talasila@ece.au.dk

Valdemar Tang

Aarhus University, Aarhus, Denmark e-mail: valdemar.tang@ece.au.dk

Daniella Tola

Aalborg University, Denmark e-mail: dato@mp.aau.dk

Alessandro Ulisse

Collins Aerospace, Rome, Italy

e-mail: alessandro.ulisse@collins.com

Jim Woodcock

Aarhus University, Aarhus, Denmark / York University, York, United Kingdom

e-mail: jim.woodcock@york.ac.uk

Houxiang Zhang

Norwegian University of Science and Technology, Ålesund, Norway

e-mail: hozh@ntnu.no

Jonas Åkeson Grundfos, Bjerringbro, Denmark e-mail: jakeson@grundfos.com