

input of the reduction alg is \$ in 3-CNF, with K

output of the reduction alg is an instance of the chiant problem (G,K).

· show that the alg. is a reduction:

of is 3-CNF-SAT iff 6 has a clique of size K

suppose & has a satisfying assignment. Show that G has a clique of size K.

d has a satisfying assignment => for this assignment, each clause evaluates to 1, thus each clause has at least one "true" literal

[-select one "true" literal from each clause h-let V'- set of vertices corresponding to the

"true" literals selected previously

- then V' forms a CLIQUE of size K in G

(vertices in V' correspond to literals which are

[example] consistent, thus they will be conneted by edges!
satisfying assignment (x,=1, x=1), x=1>
$C_1 : \times_{V}$
$C_2: \times_3$
C3: X1
soctisfying assignment < X,=1, X2=0, X3=1>
$C_1 = X_2$
C_2 : \times_3
C_3 : X_1
E) Suppose that G has a clique of size K. Show that
Phas a satisfying assignment.
reach vertex from the clique must be in a different triplet (corresponding to a different clourse)
triplet (corresponding to a different clause)
- set the literals corresponding to the vertices in the clique to I
clique to 1
- assign arbitrary values 0/1 to the other literals => this is a satisfying assignment for &
=) + us is a sansfigury oissignment for p
* Hu reduction alg. takes polynomial time

The Vertex-Cover (VC) problem

Let G(V, E) - undirected

A vertex-cover (VC) is a subset V' = V such that for every edge (u,v) EE either u e V'or v e V'or both u, v EV.

$$V' = \{a_1b_1d_1f\}$$
 $|V'| = 4$

Problem definition

Optimization problem: Given a graph G(V, E) undirected, find a VC of minimum size.

· <u>decision</u> problem: Given a graph G(V, E) undirected and a value K, does G have a VC of size K?

Theorem VC is NP-complete.

· VC ENP

- a certificate contains the set of vertices V'

revification algorithm (polynomial time)

ofor each edge (m, v), check if at least one vertex

u or v is in V'

check that all the vertices in V' are distinct

and that V' \(\subseteq \text{V}

· VC is NP-hard CLIQUE < P VC Given a graph $G(V_1E)$ we define the complement graph G(V, E) Where E = {(u,v); (u,v) ≠ E3 graph G reduction algorithm - takes an instance < Gik> of the CLiQUE pb. and outputs an instance (G, IVI-K) of the VC problem (bake <6, K) an instance of the clique problem · output is <6, IVI-K), an instance of the VC problem show that the alg. is a reduction: 6 has a clique of size K iff 6 has a VC of size graph 6 clique Sbicieif3 Said3 is a VC

El suppose Ghas a clique of size K. Show that G has a VC of size | VI-K

-let V' be a clique of sign k in G

let (u,v) \(\in \) \(\) \) \(\) \

E suppose 6 has a VC V' EV of size IVI-K. Show that 6 has a clique of size K.

· we'll show that V-V' is a clique in G · let $\mu_1 \sim \in V - V' \Rightarrow (\mu_1 v) \notin \vec{E} \Rightarrow (\mu_1 v) \in \vec{E}$

=> V-V' is a clique in 6 of size K

* reduction alg. takes polynomial time

The Hamiltonian-Cycle (HC) problem

· Optimization problem: Given a graph G(V, E) undirected, find a hamiltonian cycle (a simple cycle that contains all vertices in V).

· <u>Decision problem</u>: Given a graph G(V, E) undirected, does G

have a hamiltonian cycle?

Theorem

HC is NP- complete.

does NOT have a HC

The Traveling-Salesman Problem (TSP)

Given:
- graph (G,E) complete

- cost c(i,j) to travel from city i to city j

Optimization problem: find a minimum cost tour which

visits each city exactly once.

Decision problem (G,c,K)

(siven a graph 6 - complete, undirected

cost function c: V × V -> Z

bound value KEZ,

does 6 have a four with cost at most k?

Theorem

TSP is NP-complete.

proof

· TSP ENP

certificate: n-vertices in the tour <v, ,vz, -, vIVI verification alg (polynomial) (check if all vertices are distinct and in V) sum of the cost on the edges of the tour is & K · TSP is NP-hard HC ≤p TSP Reduction alg. - takes an instance of the HC problem, and outputs an instance of the TSP -let G(V,E) undirected by an instance of HC problem - construct (6', e, 0> an instance of TSP G'(V, E') - complete graph, undirected b a gaph G a graph G' define cost function c: c(i,j)= { 0 if (i,j) ∈ E 1 otherwise show that the alg. is a reduction: Ghas a HC iff G' has a tour with cost at most O.

E) suppose G has a HC. Show that G' has a four with cost ≤ 0 .

If G has a HC h, then in G' the four along h has cost O.

E) suppose G' has a four with cost ≤ 0 , Show that G has a HC.

if G' has a four h' with cost $\leq 0 \Rightarrow$ all edges on h' have cost $0 \Rightarrow$ all these edges are in E,

and they form a HC in G * Huis reduction alg. takes polynomial time.