- 1. Лодочник пересекает реку шириной $d=200\,$ м за время $\tau=200\,$ с. За это время течение сносит лодку на $S=\sqrt{3}\cdot d$. В подвижной системе отсчета, связанной с водой, лодка движется со скоростью $u=1,3\,$ м/с. Снос— это расстояние, на которое сместится лодка вдоль реки к моменту достижения противоположного берега. В подвижной системе отсчета, связанной с водой, лодка движется с постоянной скоростью.
 - 1) Найдите скорость V течения реки.
 - 2) За какое время T лодка пересечет реку, двигаясь по кратчайшему (относительно берега) пути?
- **2.** На плоском склоне с уклоном $\alpha = 45^{\circ}$ бросают мяч с начальной скоростью $V_{\circ} = 20$ м/с перпендикулярной склону. Точка старта находится на поверхности склона. Ускорение свободного падения g = 10 м/с².
 - 1) Через какое время T после старта мяч будет находиться на максимальном расстоянии от склона?
 - 2) Найдите скорость V_1 мяча перед соударением со склоном.
 - 3) На каком расстоянии S_3 от точки старта мяч упадет на склон после двух абсолютно упругих ударов о склон?
- 3. Некоторые планеты (Венера, Земля, Нептун) движутся вокруг Солнца по орбитам «близким» к круговым. Венера совершает один оборот вокруг Солнца за время $T_{\scriptscriptstyle B}=0,615\cdot T_{\scriptscriptstyle 3}$, здесь $T_{\scriptscriptstyle 3}=365$ суток продолжительность земного года. Планеты движутся по орбитам в одной плоскости и в одном и том же направлении.
 - 1) Вычислите отношение $\frac{R_{_3}}{R_{_B}}$ радиуса земной орбиты к радиусу орбиты Венеры.
- 2) Через какой наименьший промежуток времени τ расстояние между Землей и Венерой достигает наименьшего значения?
- 4. На наклонной плоскости с углом наклона α к горизонту коэффициент трения скольжения шайбы по плоскости на высотах меньших некоторой неизвестной высоты h равен μ_1 (μ_1 >tg α), на больших высотах коэффициент трения скольжения шайбы равен μ_2 (μ_2 <tg α). По наклонной плоскости с высоты H шайба движется с нулевой начальной скоростью и останавливается у основания наклонной плоскости. Ускорение свободного падения g.
 - 1) Найдите высоту h.
 - 2) Найдите максимальную скорость $V_{\scriptscriptstyle MAX}$ шайбы в процессе движения.
 - 3) Найдите продолжительность T движения на участке разгона.
- **5.** На сопротивлениях R_1 , R_2 , R_3 при подаче на каждое из них одного и того же напряжения выделяются мощности P, 2P, 3P, соответственно.
 - 1) Какая мощность P_1 будет выделяться при подаче того же напряжения на эти три сопротивления, соединенные последовательно?
 - 2) Какая мощность P_2 будет выделяться при подаче того же напряжения на цепь, в которой эти сопротивления соединены по схеме, приведённой на рисунке?

