ID:	Name:	

DISCRETE MATHEMATICS

Midterm Exam T3 2021

Instruction

- Write your name
- Read the questions carefully.
- This exam is open book, open notes and open internet. You are however not allowed to get help from other human being on exam via any means. (Ex: Talking to a cat for moral support is allowed.)
- Upload the PDF on canvas by the deadline specified on canvas.
- There are 6 problems. Each problem worths 100 points. 600 points in total. You only need to get 540 points to get full score.
- Attempt all problems, state your reasons *clearly* and *legibly*, because partial credits will be given.

Question	Full Score	Your Score
1	100	
2	100	
3	100	
4	100	
5	100	
6	100	

Total: /540

Useful Formula and Definitions

Asymptotics

Definiton	Definition			Intuition
Asym. Equal	$f \sim g$	iff	$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$	$f \underbrace{\equiv}_{x \to \infty} g$
Big Oh	$f \in O(g)$	iff	$\lim_{x \to \infty} \frac{f(x)}{g(x)} < \infty$	$\int \underbrace{\leq}_{x \to \infty} g$
Little Oh	$f \in o(g)$	iff	$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$	$\int \underbrace{\zeta}_{x \to \infty} g$
Little Omega	$f \in \omega(g)$	iff	$\lim_{x \to \infty} \frac{f(x)}{g(x)} \to \infty$	$f \underset{x \to \infty}{\triangleright} g$
Big Omega	$f \in \Omega(g)$	iff	$\lim_{x \to \infty} \frac{f(x)}{g(x)} > 0$	$f \underset{x \to \infty}{\underbrace{\geq}} g$
Theta	$f \in \Theta(g)$	iff	$\lim_{x \to \infty} \frac{f(x)}{g(x)} = c, c \neq 0$	$f \underbrace{=}_{x \to \infty} g$

Sum

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$
$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

 ${\bf Integral}$

$$\int x^n dx = \frac{1}{n+1}x^{n+1}$$
 if $n \neq -1$
$$\int \frac{1}{x} dx = \ln(x)$$

Quadratic

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 1. Easy stuff(100 points. 20 each.)
 - (a) Draw truth table for

$$(P \to \sim R) \land (P \lor R)$$

(b) Asymptotic Behavior. $f(x) = x^3 + 3x^2 + 1$, $g(x) = 2x^3$. Indicate whether the following statements are true or false.

i.
$$f \in \Theta(g)$$

ii.
$$f \in O(g)$$

(c) Find the closed form formula for the following sum:

$$\sum_{i=0}^{n} (x^i + 5y^{i+1})$$

where x, y are constants.

TT	
111	•
117	

Name:

(d) Disprove the following theorem.

 $x^2 > x$ for all x in positive integer.

(e) Use integral bound to find the *lowerbound* for the following sum.

$$\sum_{x=1}^{n} \frac{1}{x^3}$$

-	\mathbf{T}	
- 1	1)	٠
1	ப	•

Name:

- 2. Easy Proof
 - (a) (50 points) For any $a,b\in I,\,a^2b+ab^2$ is always even.

(b) (50 points) Show that If a|b and b|c then a|c. Ex: a=3 b=54 c=108. 54 is divisible by 3 and 108 is divisible by 54 then 3 divides 108

ID:		

Name:

3. (100 points) Show that $\forall n \geq 2$

$$\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{4}\right)\dots\left(1 - \frac{1}{n}\right) = \frac{1}{n}$$

4. Any n-gon(loose definition is a closed shape with n corners) can be triangulate into n-2 triangles.

Ex: The figure below shows a 7-gon triangulated in to 5 triangles and a 12-gon triangulated into 10 triangles.

ID:	Name:	

5. (100 points) Consider a 2×2 black and white board show below.

Each turn you can pick a **side**(left, right, top, bottom) then flip color of the two squares on that side. Ex: if you pick left then the two squares on the left will be flipped.

Show that no matter what sequence of move you choose, you can't get it to have exactly 1 white square left.

6. (100 points)Solve the following recurrence. Just find the solution. No need to prove it using induction.:

(a)
$$(30 \text{ points})T(n) = T(n-1) + n; T(1) = 2$$

(b) $(30 \text{ points})T(n) = 3T\left(\frac{n}{2}\right) + 3; T(1) = 3$

ID: Name:

(c) (40 points)T(n) = 18T(n-1) - 77T(n-2); T(0) = 5, T(1) = 47