P_3 double domination and matching cut

1 Introduction

Our goal is to design a $O(2^{2n/5})$ algorithm for matching cut. If G has a leaf vertex or two adjacent degree-two vertices, then G has a matching cut. Thus, we may assume that our input graph G does not have a leaf vertex or two adjacent degree-two vertices. One implication of this assumption is that $\gamma(G) \leq 3n/8$.

Strategies:

- 1. Let S be a set of vertices such that every P_3 of $G[V \setminus S]$ has a vertex with at least two neighbors in S. Then we have a $O(2^{|S|})$ algorithm to check if G has a matching cut; this is by a reduction to 2-SAT.
- 2. An approach is to consider the number k of edges in the matching cut. At one end, we have an algorithm for perfect matching (matching cut with n/2 matching edges) that runs in $O(2^{n/3})$ time. Thus, testing for a matching cut with n/2-k edges can be done in time $O\left(\binom{n}{2k}2^{(n-2k)/3}\right)$ time. For $2k=\alpha n$ with $\alpha \leq 1/2$, this gives us a bound of $2^{n\beta}$ where $\beta = H(\alpha) + (1-\alpha)/3$, which doesn't seem to help except for tiny values of α , beating 2n/5 at $\alpha \sim 1/11$.
- 3. Local search: The current best local search algorithm for 3-SAT runs in time $O(2.792^k)$; we have an independent $O(2.83^k)$ algorithm for matching cut, which it may be possible to improve. An improvement to 2.5^k would be interesting, although still not enough to beat the exact algorithm bound.
- 4. Improving the analyzsis (/algorithm) of PPSZ for matching cut. This needs an understanding of the details of PPSZ's correctness for general 3-SAT.

Another useful idea, which may not help in sparse graphs, is the following. Let $X = A \cup B$ such that the vertices of B can be ordered as w_1, w_2, \ldots, w_k , and every w_i has at least 3 neighbors in $A \cup \{w_1, \ldots, w_{i-1}\}$. Then the matching cut coloring for B is uniquely determined, once A is colored.

2 Bound on P_3 2-dominating sets

For a graph G = (V, E), let p(G) denote the size of the smallest subset S such that every P_3 in $G[V \setminus S]$ has a vertex with at least two neighbors in S.

Our goal is to prove the following proposition.

Proposition 1 Let G be a n-vertex graph without any leaf vertex and with no two adjacent vertices of degree two. Then $p(G) \leq 2n/5$.

The above proposition is tight for K_5 , $K_{2,3}$, and the Petersen graph.

Observation 2 Let T be a maximal induced forest; then every vertex outside T has at least two neighbors in T.

Lemma 3 Let G = (V, E) be a graph such that none of its connected components is an odd cycle or an isolated vertex. Then in polynomial time, we can partition V into two sets $V_0 \cup V_1$ with $V_i = C_i \cup I_i$ for $i \in \{0, 1\}$ such that he following hold for $i \in \{0, 1\}$.

- (i) Every vertex in C_i has at least two neighbors in V_{1-i} ;
- (ii) I_i is an independent set;
- (iii) If $v \in I_i$, then v has exactly one neighbor in V_{1-i} .

Corollary 4 If G is a connected n-vertex graph and not an odd cycle, then there is a set T of vertices such that $|T| \leq n/2$ and for every edge uv in $G[V \setminus T]$, one of u, v has at least two neighbors in T.

Proof Consider a partition of G as in Lemma 3, and let T be the smaller of V_0, V_1 .

To prove the proposition, we start with a good partition. We will try to find sets $S_0 \subseteq V_0$ and $S_1 \subseteq V_1$ such that the following holds. If $x \in C_i$ has at least two neighbors in I_i , then x has at least two neighbors in S_{1-i} . We know that if u, v are adjacent vertices in C_i , then u or v has at least two

neighbors in S_{1-i} . What we want is that $|S_i| \le 4/5|V_i|$. It is also sufficient that $|S_0| + |S_1| \le 4n/5$.

Q: Can we obtain a small fraction of X as a P_3 -double dominating set?

Let Y be a maximum size subset of $V \setminus X$ that induces a subgraph of minimum degree at least 3, and let $Z = V \setminus (X \cup Y)$. Let Y_1 be a 2-dominating set of G[Y] of size at most |Y|/2. Then $Y_1 \cup U$ is a P_3 -double-dominating set of size at most |Y|/2 + |Z| = n - |Y|/2 - |X|.

Other strategies:

- 1. Consider a maximum P-5 packing and let S be the set of second and fourth vertices. Does this work? Does picking the middle vertex of the P_5 give a P_3 -dominating set?
- 2. Prove the proposition for graphs of minimum degree at least 3 (or 4 or higher).
- 3. Prove the proposition for: 2-degenerate graphs; graphs of maximum degree 3; planar graphs; graphs without 4-cycles.
- 4. Consider a maximal collection of disjoint closed neighborhoods: $N[v_1], \ldots, N[v_k]$.
- 5. Let R be a maximal set of vertices such that every pair of them are at distance more than two. Three may also be useful.

3 Useful graph theory facts

The following facts should be useful.

- 1. Bounds on $\gamma(G)$: if $\delta(G) \geq 2$, then $\gamma(G) \leq 2n/5$, if $\delta(G) \geq 3$, then $\gamma(G) \leq 2n/5$. Further, if k denotes the number of vertices of degree two, then $\gamma(G) \leq (3n+k)/8$.
- 2. If $d(u)+d(v) \geq 5$ for every pair of adjacent vertices, then $\gamma(G) \leq 3n/8$ (Henning, Schiermeyer, Yeo). Also, if G is C_4, C_5 -free, then $\gamma(G) \leq 3n/8$;
- 3. Any connected graph of order $n \geq 6$ has a vertex-edge dominating set of size at most n/3. Further, this is obtained as the set of centers of a maximum P_3 matching. However, it is not clear how to efficiently find such a set.

- 4. A 2-degenerate graph on n vertices has a feedback vertex set of size at most 2n/5. [Proved by Boroweicki et al]
- 5. If G is a forest on n vertices, then G contains a subset S on at least 2n/3 vertices that induces a subgraph of maximum degree at most one.
- 6. Let G = (V, E) be a graph of degeneracy d. Then V can be partitioned as $V_1 \cup V_2$ such that $G[V_1]$ is $\lfloor d/2 \rfloor$ -degenerate and $G[V_2]$ is $\lceil d/2 \rceil$ -degenerate.
- 7. If G is connected and d-regular, then deleting any one vertex of G results in a graph which is (d-1)-degenerate.
- 8. $\gamma_2(G) \le 0.418n \text{ if } \delta \ge 9.$

Facts about cycles:

- A connected graph G has no even cycles if and only if every block of G is either an odd cycle or K_2 .
- A graph of minimum degree at least 3 must contain a cycle of length divisible by 3.
- A graph of minimum degree at least 3 must contain a cycle of length divisible by 4.
- A graph of minimum degree at least 2k-1 must contain a cycle of length divisible by k.
- $\chi(G) > k$ implies G has a cycle of length divisible by k.
- If $\delta(G) \geq k+1$, then G has a cycle of length 2 modulo k. If G contains neither K_k nor $K_{k,k}$ as an induced subgraph, then $\delta \geq k$ suffices. If G is 2-connected and is not a complete or complete bipartite graph, then also $\delta \geq k$ suffices.