Generalised Extreme Value (GEV) distribution

Parametrisation

The GEV distribution is defined through the cumulative distribution function

$$F(y; \eta, \tau, \xi) = \exp\left(-\left[1 + \xi\sqrt{\tau s}(y - \eta)\right]^{-1/\xi}\right)$$

for

$$1 + \xi \sqrt{\tau s}(y - \eta) > 0$$

and for a continuously response y where

 η : is the linear predictor

 τ : is the "precision"

s: is a fixed scaling, s > 0.

Link-function

The linear predictor is given in the parameterisation of the GEV distribution.

Hyperparameters

The GEV-models has two hyperparameters. The "precision" is represented as

$$\theta_1 = \log \tau$$

and the prior is defined on θ_1 . The shape parameter ξ is represented as

$$\xi = \xi_s \theta_2$$

where $\xi_s > 0$ is a chosen fixed scaling, and the prior is defined on θ_2^{-1}

Specification

- family = gev
- Required arguments: y and s (keyword scale)
- The scaling ξ_s is given by the argument gev.xi.scale and is default set to 0.01.

The weights has default value 1.

Hyperparameter spesification and default values

hyper

theta1

name log precision
short.name prec
initial 4
fixed FALSE

¹The ξ_s parameter is there for numerical reasons only, as the natural "scale" of ξ is small, and the scaling makes the natural scale of θ_2 similar to other θ 's. The output from INLA reports the parameter ξ .

```
prior loggamma
         param 1 5e-05
         to.theta
         from.theta
    theta2
         name gev parameter
         short.name gev
         initial 0
         fixed FALSE
         prior gaussian
         param 0 6.25
         to.theta
         from.theta
survival FALSE
discrete FALSE
link default identity
pdf gev
```

Example

In the following example, we estimate the parameters of the GEV distribution on some simulated data.

```
rgev = function(n=1, xi = 0, mu = 0.0, sd = 1.0) {
    u = runif(n)
    if (xi == 0) {
        x = -\log(-\log(u))
    } else {
        x = ((-log(u))^{-}(-xi) - 1.0)/xi
    return (x*sd + mu)
}
n = 100
z = rnorm(n)
sd.y = 0.5
xi = 0
y = 1+z + rgev(n, xi=xi, sd = sd.y)
formula = y ~ 1 + f(inla.group(z), model="rw1")
data = data.frame(y,z)
r = inla(formula, data = data, family = "gev",
        control.data = list(gev.scale.xi = 0.01,
                ## just to show how to set an initial value
                hyper = list(prec=list(initial=2))))
```

Notes

None.