logic pset3

Resources: Lecture 3 and Chapters 3 and 5 of How Logic Works. (Note that we are skipping over Chapter 4 for now.)

A. Proofs

Use any of the rules of inference, including reductio ad absurdum, to prove the following sequents.

1. $\neg (P \to Q) \vdash Q \to R$						
3 4 2 1,2 1,2	(6) (7) (8)	Q $\neg R$ P $P \to Q$ $(P \to Q) \land \neg (P \to Q)$ $\neg \neg R$	A A A A 4,2 CP 5,1 ∧I 3,6 RA 7 DN 2,8 CP			
$2. \ P \to Q \ \vdash$	$\neg P \lor Q$					
3 2,3 2 1,2 1,2 1,2	(2) (3) (4) (5) (6) (7) (8) (9) (10)	$\neg P \lor Q$ $(\neg P \lor Q) \land \neg (\neg P \lor Q)$ $\neg Q$ $\neg P$	A A A $3 \lor I$ $4,2 \land I$ 3,5 RA 1,6 MT $7 \lor I$ $8,2 \land I$ 2,9 RA 10 DN			

3.
$$P \to (Q \lor R) \vdash (P \to Q) \lor R$$

My strategy here is to assume the negation of the conclusion for reductio ad absurdum. Following the same pattern as DeMorgan's, we get $\neg(P \to Q)$ and $\neg R$. The former implies $P \land \neg Q$. So we have $P, P \to (Q \lor R), \neg Q$ and $\neg R$. These form an inconsistent set.

There are other strategies that might be more intelligible. For example, $P \to (Q \lor R)$ implies $\neg P \lor (Q \lor R)$, which implies $(\neg P \lor Q) \lor R$, which implies $(P \to Q) \lor R$. Similarly, we could first prove $P \lor \neg P$. The former plus the premise gives $Q \lor R$ which gives $(P \to Q) \lor R$. The latter gives $P \to Q$, which gives $(P \to Q) \lor R$.

1	(1)	$P \to (Q \lor R)$	A
2	(2)	$\neg((P \to Q) \lor R)$	A
3	(3)	$\neg P$	A
4	(4)	P	A
3,4	(5)	$P \wedge \neg P$	$3.4 \wedge I$
6	(6)	$\neg Q$	A
3,4	(7)	$\neg \neg Q$	6.5 RA
3,4	(8)	Q	7 DN
3	(9)	P o Q	4,8 CP
3	(10)	$(P \to Q) \vee R$	$9 \vee I$
2,3	(11)	$((P \to Q) \lor R) \land \neg ((P \to Q) \lor R)$	$10,2 \land I$
2	(12)	$\neg \neg P$	3,11 RA
2	(13)	P	12 DN
1,2	(14)	$Q \vee R$	1,13 MP
15	(15)	Q	A
15	(16)	$P \to Q$	4,15 CP
15	(17)	$(P \to Q) \vee R$	16 ∨I
18	(18)	R	A
18	(19)	$(P \to Q) \lor R$	18 ∨I
1,2	(20)	$(P \to Q) \vee R$	$14,15,17,18,19 \lor E$
1,2	(21)	$((P \to Q) \lor R) \land \neg ((P \to Q) \lor R)$	$20,2 \land I$
1	(22)	$\neg\neg((P\to Q)\vee R)$	2,21 RA
1	(23)	$(P \to Q) \vee R$	22 DN

B. Truth tables

1. Use truth table reasoning to show that $P \vee (Q \wedge R) \models P \vee Q$. You don't have to display a full truth table, but if you do, explain how the table demonstrates the result.

Consider a line L of the truth table on which $P \vee (Q \wedge R)$ is true. In this case either P is true on L, or $Q \wedge R$ is true on L. In the former case, $P \vee Q$ is true on L. In the latter case, Q is also true on L and hence $P \vee Q$ is true on L. In either case, $P \vee Q$

is true on L. Since L was an arbitrary line of a truth table, whenever $P \vee (Q \wedge R)$ is true, $P \vee Q$ is also true.

2. Use truth table reasoning to show that $P \to (Q \lor R) \not\models P \to Q$.

Consider the line L where P and R are true, but Q is false. In that case $Q \vee R$ is true, and hence $P \to (Q \vee R)$ is true. But since P is true while Q is false, $P \to Q$ is false. Thus, there is a scenario in which $P \to (Q \vee R)$ is true while $P \to Q$ is false.

3. Use truth table reasoning to show that the following "proof" must have a mistake.

1	(1)	$P \lor Q$	A
2	(2)	P	A
3	(3)	Q	A
2,3	(4)	$P \wedge Q$	$2,3 \land I$
2,3	(5)	P	$4 \wedge E$
1	(6)	P	$1,2,2,3,5 \lor E$

Consider line (6), which asserts that $P \vee Q \vdash P$. It is clear that $P \vee Q \not\vDash P$ since Q could be true while P is false. By the *soundness* of our proof system, $P \vee Q \not\vDash P$. Therefore line (6) cannot be part of any correctly written proof. (In fact, line (6) does not calculate dependency numbers correctly. An application of $\vee E$ to lines 1, 2, 2, 3, 5 should result in dependencies 1, 2.)