Analysing inter-key intervals: Beyond means, medians and pause frequencies

Jens Roeser Sven De Maeyer Mark Torrance

Mariëlle Leijten Luuk Van Waes

jens.roeser@ntu.ac.uk

SIG 27 Conference University of Antwerp

Dec 15, 2020

The problem: what's a pause?

- Keystroke data are heavily skewed.
- Skew reflects cognitive processes.
- How can we distinguish between fluent and disfluent key transitions?
- ► Fixed thresholds: 0.5 or 2 secs?
- A key transition normal for learner might be longer than a pause of an experienced writer.

The problem: what's a pause?

- Keystroke data are heavily skewed.
- Skew reflects cognitive processes.
- How can we distinguish between fluent and disfluent key transitions?
- ► Fixed thresholds: 0.5 or 2 secs?
- A key transition normal for learner might be longer than a pause of an experienced writer.

- ► Pause size depends on:
- writing skills / style
- position in text, sentence, word
- experience with target language (in L2)
- process of interest (lexical, motor, semantic)
- writing task
- ..

Research focus

- ► How do we deal with the heavy tail statistically without losing information, trimming data, imposing pause thresholds?
- ...and extract pause frequencies in a principled way?
- ► Mixture of log-normals (Almond et al., 2012; Baaijen et al., 2012)
- ightarrow More than one underlying data-generating process; i.e. normal key transitions and disfluencies.
- Compared to standard log-normal treatment.
- \rightarrow One underlying data-generating process.

Method

- ▶ Implementation of the copy-typing process as statistical model in Stan (Carpenter et al., 2016); code based on Sorensen et al. (2016) and Vasishth et al. (2017).
- ▶ Bigram-keystroke interval data: Dutch subset of copy-task corpus (Van Waes et al., 2019; Van Waes et al., 2020)
- Lexical and non-lexical copy-typing context

Consonants task

tjxgfl pgkfkq dtdrgt npwdvf

een chaotische cowboy

een chaotische cowboy

 $\downarrow \downarrow$

 $e^{h^{-1}} c^{h^{-1}} a^{o^{+1}} i^{s} c^{h^{-1}} e^{-c^{-1}} a^{o^{+1}} i^{s} c^{h^{-1}} e^{-c^{-1}} a^{o^{+1}} i^{s} c^{h^{-1}} e^{-c^{-1}} e^{-c^{-1}} a^{o^{+1}} i^{s} c^{h^{-1}} e^{-c^{-1}} e^$

een chaotische cowboy

 $\downarrow \downarrow$

e^e^n c^h^a^o^t^i^s^c^h^e c^o^w^b^o^y

 \Downarrow

162 97 107 141 800 148 278 132 199 94 154 177 870 88 274 611

een chaotische cowboy

e^e^n c^h^a^o^t^i^s^c^h^e c^o^w^b^o^y

162 97 107 141 800 148 278 132 199 94 154 177 870 88 274 611

Disfluencies in a basic model of copy-typing

Density - observed

 $y_{ij} \sim LogNormal(\mu_{ij}, \sigma_e^2)$

Participant id: 1

Density - observed

$$y_{ij} \sim LogNormal(\mu_{ij}, \sigma_e^2)$$

 $\mu_{ij} = \alpha + u_i + w_j$

Participant id: 1

$$y_{ij} \sim LogNormal(\mu_{ij}, \sigma_e^2)$$

 $\mu_{ij} = \alpha + u_i + w_j$

- α: average IKI
- $ightharpoonup \sigma_e^2$: error variance
- ightharpoonup Participants: u_i
- ightharpoonup Bigrams: w_i

Participant id: 1

$$y_{ij} \sim LogNormal(\mu_{ij}, \sigma_e^2)$$

 $\mu_{ij} = \alpha + u_i + w_j$

- α: average IKI
- $ightharpoonup \sigma_e^2$: error variance
- ightharpoonup Participants: u_i
- ightharpoonup Bigrams: w_j

 $y \sim LogNormal(\mu, \sigma_e^2)$

 $y \sim LogNormal(\mu, \sigma_e^2)$

 $y \sim \theta \cdot LogNormal(\mu, \sigma_e^2)$ $\theta = 1$

$$y \sim \theta \cdot LogNormal(\mu_1, \sigma_{e_1}^2) +$$

 $(1 - \theta) \cdot LogNormal(\mu_2, \sigma_{e_2}^2)$
 $\theta = 0.81$

5.5

observed

Density

4.5

5.0

IKIs [in log(msecs)]

Participant id: 1

6.5

6.0

$$\begin{aligned} y_{ij} \sim \theta_i \cdot LogNormal(\mu_{ij} + \delta, \sigma_{e'}^2) + \\ (1 - \theta_i) \cdot LogNormal(\mu_{ij}, \sigma_e^2) \\ \mu_{ij} = \alpha + u_i + w_j \end{aligned}$$

- α: fluent IKI
- δ: slowdown
- \triangleright θ : disfluency probability
- $ightharpoonup \sigma_{e'}^2$: larger variance

$$y_{ij} \sim \theta_i \cdot LogNormal(\mu_{ij} + \delta, \sigma_{e'}^2) + \\ (1 - \theta_i) \cdot \frac{LogNormal(\mu_{ij}, \sigma_e^2)}{\mu_{ij} = \alpha + u_i + w_j}$$

- α: fluent IKI
- ▶ δ: slowdown
- \triangleright θ : disfluency probability
- $ightharpoonup \sigma_{e'}^2$: larger variance

$$y_{ij} \sim \theta_i \cdot \frac{LogNormal(\mu_{ij} + \delta, \sigma_{e'}^2)}{(1 - \theta_i) \cdot LogNormal(\mu_{ij}, \sigma_e^2)} + \mu_{ij} = \alpha + u_i + w_j$$

- α: fluent IKI
- δ: slowdown
- \triangleright θ : disfluency probability
- $ightharpoonup \sigma_{e'}^2$: larger variance

$$\begin{aligned} y_{ij} \sim & \begin{array}{c} \boldsymbol{\theta_i} \end{array} \cdot LogNormal(\boldsymbol{\mu_{ij}} + \boldsymbol{\delta}, \, \boldsymbol{\sigma_{e'}^2}) + \\ & (1 - \boldsymbol{\theta_i}) \cdot LogNormal(\boldsymbol{\mu_{ij}}, \, \boldsymbol{\sigma_{e}^2}) \\ & \boldsymbol{\mu_{ij}} = \boldsymbol{\alpha} + \boldsymbol{u_i} + \boldsymbol{w_j} \end{aligned}$$

α: fluent IKI

δ: slowdown

 \triangleright θ : disfluency probability

 $ightharpoonup \sigma_{e'}^2$: larger variance

Model comparisons

Predictive performance estimated as the *expected log predictive density* (*elpd*) (Vehtari et al., 2015, 2017). Models are ordered by predictive performance (model with highest predictive performance in top row). Standard error in parentheses.

		Consonants task		LF-bigrams task	
Models	Distribution	$\Delta \widehat{elpd}$	elpd	$\Delta \widehat{elpd}$	elpd
MoG	2 × Log-normal				
LMM	Log-normal				

Note. LMM = Linear mixed effects model; MoG = Mixture of Gaussians

Model comparisons

Predictive performance estimated as the *expected log predictive density* (*elpd*) (Vehtari et al., 2015, 2017). Models are ordered by predictive performance (model with highest predictive performance in top row). Standard error in parentheses.

		Consonants task		LF-bigrams task	
Models	Distribution	$\Delta \widehat{elpd}$	elpd	$\Delta \widehat{elpd}$	elpd
MoG	2 × Log-normal	_	-37,069 (101)	_	-33,178 (113)
LMM	Log-normal	-281 (25)	-37,350 (99)	-994 (63)	-34,173 (121)

Note. LMM = Linear mixed effects model; MoG = Mixture of Gaussians

Observed vs. predicted IKIs

Observed vs. predicted IKIs

Observed vs. predicted IKIs

By-participant fluent-typing intervals

By-participant fluent-typing intervals

By-participant disfluency probability

By-participant disfluency probability

Conclusion

- Better fit for mixture models over standard analysis.
- Data come from a mixture of processes reflected in fluent and disfluent keystroke transitions.
- Advantages for writing research:
 - 1. map on cascading models of writing (ask me why).
 - 2. represent the probabilistic nature of disfluencies.
 - 3. capture disfluencies in a principled way.
 - 4. provide reliable typing estimates and pause frequencies

Discussion

- Our statistical techniques need to align closely with the cognitive process we're trying to understand.
- ...and represent our current understanding of the underlying cognitive process.
- ► To achieve this we need to model the raw data possible rather than summary statistics.
- ▶ Otherwise we risk incorrect conclusions about our data.

Prospects

- ▶ Shiny-app: calculate disfluencies from keystroke data.
- Manuscript: extension to autoregression.
- Application of models for data in which pause frequencies play a central role: group comparisons, diagnostic tool?
- Application picture description data with spelling manipulation.

Thanks for listening!

email: jens.roeser@ntu.ac.uk nottinghamtrent.academia.edu/JensRoeser R-scripts, Stan-code, slides, preprint: https://github.com/jensroes/Typing-disfluency

References I

- Almond, R., Deane, P., Quinlan, T., Wagner, M. & Sydorenko, T. (2012). A preliminary analysis of keystroke log data from a timed writing task (tech. rep. Research Report No. RR-12-23). Princeton, NJ, Educational Testing Service.
- Baaijen, V. M., Galbraith, D. & de Glopper, K. (2012). Keystroke analysis: Reflections on procedures and measures. Written Communication, 29(3), 246–277.
- Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M. A., Guo, J., Li, P. & Riddell, A. (2016). Stan: A probabilistic programming language. *Journal of Statistical Software*, 20.
- Guo, H., Deane, P. D., van Rijn, P. W., Zhang, M. & Bennett, R. E. (2018). Modeling basic writing processes from keystroke logs. *Journal of Educational Measurement*, 55(2), 194–216.
- Sorensen, T., Hohenstein, S. & Vasishth, S. (2016). Bayesian linear mixed models using Stan: A tutorial for psychologists, linguists, and cognitive scientists. *Quantitative Methods for Psychology*, 12(3), 175–200.
- Van Waes, L., Leijten, M., Pauwaert, T. & Van Horenbeeck, E. (2019). A multilingual copy task: Measuring typing and motor skills in writing with inputlog. *Journal of open research software*, 7(30), 1–8.
- Van Waes, L., Leijten, M., Roeser, J., Olive, T. & Grabowski, J. (2020). Designing a copy task to measure typing and motor skills in writing research [submitted].

 Journal of Writing Research.

References II

- Vasishth, S., Chopin, N., Ryder, R. & Nicenboim, B. (2017). Modelling dependency completion in sentence comprehension as a Bayesian hierarchical mixture process: A case study involving Chinese relative clauses. *ArXiv e-prints*.
- Vehtari, A., Gelman, A. & Gabry, J. (2015). Pareto smoothed importance sampling. arXiv vrevrint arXiv:1507.02646.
- Vehtari, A., Gelman, A. & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. *Statistics and Computing*, 27(5), 1413–1432.

Estimated (fluent) keystroke transitions

Estimated (fluent) keystroke transitions

Estimated disfluency probability

Disfluency typing-speed trade-off

Disfluency typing-speed trade-off

Observed vs. predicted IKIs

Observed vs. predicted IKIs

Observed vs. predicted IKIs

Planning cascade in writing

Planning cascade in writing

Keystroke transitions are not normal distributed

Keystroke transitions are not normal distributed

Keystroke transitions are not normal distributed

Long intervals are not bigram specific

