Term Project Progress Presentation

MANSUR YEŞİLBURSA ABDULLAH YILDIZ CAN DEVECİ

Overview

- ➤ Part 1: Pre-processing and Baseline, Mansur Yeşilbursa
- ➤ Part 2: Performance Evaluations, Abdullah Yıldız
- ➤ Part 3: Future Work, Can Deveci

Preprocessing

≻ Dataset class

- ✓ Processes .a1 and .a2 files in the given set (train, dev or test)
- ✓ Stores Term number-Term name tuples and Term number-OBT tuples
- ✓ Stores position of terms in the txt files
- ✓ Creates a vocabulary if training set is given
- ✓ Has access to Ontology
- ✓ No case-folding

['T3', 'selective broths based on hypertonic strontium chloride']

['T3', '000360']

Baseline System

Exact Match

- ✓ On Training Set
 - Searches training set to find exact entity match
 - If finds, retrieves OBT of the matched entity
 - **Performance**: 22% correct normalization on dev set
- ✓ On Ontology
 - Searches Ontology file to find exact entity match
 - If finds, retrieves OBT of the matched entity
 - Improved performance by 11%
 - **Performance**: 33% correct normalization on dev set

Baseline System

Exact Match

- ✓ Lemmatization
 - For given test entities, lemmatization is applied
 - If lemmatized entity is different than original entity
 - Searches for both terms in Training set and Ontology
 - Improved performance by 4%
 - **Performance:** 37% correct normalization in dev set
- ✓ Abbreviation Resolution
 - Requires a comprehensive Biomedical Abbreviation Database
 - One that is used was messy and not comprehensive enough [1]
 - Didn't improved performance for now

Baseline System

- ➤ Cosine Similarity
 - > Used if exact match fails
 - ➤ Measures cosine similarity of given entity with all entities in the Training set
 - ➤ Binary vectors of Training set vocabulary size
 - ► Improves performance by 10%
 - > Performance: 47% correct normalization on dev set

Performance Problems

Normalized Term	True Normalized Term
phagocyte	lymphocyte
nutrient broth	lymphocyte
phagocyte	lymphocyte
	lymphocyte
	lymphocyte
	phagocyte

- Predicts phagocyte instead of lymphocyte although input containts lymphocytic.
- ►e.g. lymphocytic -> lymphocytic
- Lemmatization could not lemmatize scientific terms
- ➤ Cells -> phagocyte
- ...cytic -> nutrient broth

Performance Problems

	Normalized	
Input Term	Term	True Normalized Term
	elderly	
patients with atypical lymphoid infiltrates	person	patient
	elderly	
patients with low-grade MALT lymphoma	person	patient
patients with Helicobacter pylori-chronic	elderly	patient with infectious
active gastritis	person	disease
patients with high-grade primary gastric	elderly	
lymphoma	person	patient
	elderly	
patients with chronic active gastritis	person	patient

- Predicts elderly person instead of patient
- Associates certain words to certain entities

Performance Problems

	Normalized	
Input Term	Term	True Normalized Term
placenta of a 38-year-old secondary recurrent	experimental	
aborter	medium	placenta
	experimental	
38-year-old secondary recurrent aborter	medium	pregnant woman

- ► Lack of Part of Speech tagging
- ► Lack of phrases

Ontology

- There is an Ontology implementation in Python written by Martin Larralde
- ➤ github.com/althonos
- Given an .obo document
- Creates the graph representation of Ontology Terms by implementing the specifications of the Open Biomedical Ontologies 1.4

Ontology Library - Pronto

- >Starts from the Patient (OBT:003220) term
- ➤ Whole graph can be induced by following is_a and synonym relationships
- Pronto library has superclasses and subclasses functions to return relevant Ontology terms

Ontology Library - Pronto

Superclasses of 'Patient'

```
'root for extraction'
'microbial habitat'
'living organism'
'eukaryote host'
'animal'
'animal with disease'
'vertebrate'
'warm-blooded animal'
'mammalian'
'primate'
'human'
'ill person'
```

Ontology Library - Pronto

► K-Means Clustering

Nearest cluster can be selected for candidate text.

Future Work

- ➤ Bacteria Habitats Normalization Papers
- ➤ Biomedical Named Entity Normalization Papers
- ▶4 implementable ideas

Expanding Dictionaries

- ➤ Brenda Tissue Ontology (BTO)
 - >121,321 habitat synonyms [1]
- ➤ Prone to poor precision
- >Stop-word lists
 - ≥2381 stop-words for bacteria
 - E.g. unclassified, scales, root

TF-IDF

➤ Baseline TF-IDF

- ➤ Habitat names -> a document
 - > Represented habitat names a TF-IDF weighted vector
 - > Select habitat name -> highest cosine similarity

➤ Improving TF-IDF

➤ BOW model -> character-level, n-grams [2]

CRF

- ► Conditional Random Field
 - > used for tagging sequential data especially in Named Entity Recognition in NLP [3]
- > 3 types of features
 - Lexical features
 - > current word, its root, its POS tag etc.
 - Orthographic features
 - Substring features
 - first n-characters & the last-n characters
 - > already mentioned in classes
 - Word form features
 - case-folding
 - > normalizing numbers to '0'
 - Dictionary features
 - > presence & position of the word in the dictionary

Hybrid Architecture

➤ Hybrid (rule-based & ML) structure

Figure 1: Model Architecture Overview [4]

Our References

- >[1] A dictionary- and rule-based system for identification of bacteria and habitats in text
- >[2] End-to-End System for Bacteria Habitat Extraction
- >[3] Automatic extraction of microorganisms and their habitats from free text using text mining workflows
- >[4] An ensemble CNN method for biomedical entity normalization

Thanks