cases	doc_1		doc_2		decision	id
	S. Yagiz Olmez authors Amirhossein Taghvaei		authors	S. Yagiz Olmez Amirhossein Taghvaei Prashant G. Mehta Deep FPF: Gain function approximation in high-dimensional setting		
	title	Prashant G. Mehta		2020-10-02 00:00:00		
			source	SupportedSources.INTERNET ARCHIVE		
		Deep FPF: Gain function approximation in high-dimensional setting.	journal	SupportedSourceS.IIVTERVET_INCTITYE		
	publication_date 2020-10-02 00:00:00		volume			
	source	SupportedSources.OPENALEX	doi		DUPLICATES 56	
	journal	arXiv (Cornell University)	urls	• https://web.archive.org/web/20201009095947/https://arxiv.org/pdf/2010.01183v1.pdf		56
	volume			1.1.70/22/0000215444200		
	doi	None	id	id-7062360908315444288		
	urls	https://openalex.org/W3091018929	abstract	In this paper, we present a novel approach to approximate the gain function of the feedback particle filter (FPF). The exact gain function is the solution of a Poisson equation involving a probability-weighted Laplacian. The numerical problem is to approximate the exact gain function using only finitely many particles sampled from the probability distribution. Inspired by the recent success of the deep learning methods, we represent the gain function as a gradient of the output of a neural network. Thereupon considering		
	id	id8456154421871721734		a certain variational formulation of the Poisson equation, an optimization problem is posed for learning the weights of the neural network. A stochastic gradient algorithm is		
	abstract			described for this purpose. The proposed approach has two significant properties/advantages: (i) The stochastic optimization algorithm allows one to process, in parallel, only a batch of samples (particles) ensuring good scaling properties with the number of particles; (ii) The remarkable representation power of neural networks means that the	a	
	versions					
				algorithm is potentially applicable and useful to solve high-dimensional problems. We numerically establish these two properties and provide extensive comparison to the existing approaches.		
			versions			1