Survival of the Fittest Genome

Al Model Development

Time: 60 mins

Introduction

In this class, the student/s will learn to set sensor points in front of the car. Student/s will also learn to get the sensor information and navigate the car accordingly. The model will be trained until the car takes a lap around the track without hitting the sides. Student/s will learn to calculate the fitness of each genome created and find the fittest genome.

New Commands Introduced

pygame.draw.rect	Draws a rectangle on the screen
net.activate()	The neuron fires and takes up a positive value if the output value is above a specified threshold.

Vocabulary

- Sensor is a device that detects and reports physical properties such as distance, temperature, etc.
- Feedforward neural network is the simplest kind of neural network in which the connections do not form a cycle between the nodes.

Learning Objectives

Student/s should be able to:

- Recall how to add a car to a track and control it.
- **Demonstrate** how to create a model that would detect the track with sensors and keep the car within the track.
- **Evaluate and calculate** the fitness of a genome.
- Explain the steps required to create an Al model that navigates around a given track on its own.

Activities

- 1. Class Narrative: (2 mins)
 - Brief the student/s that in this class they will learn to train multiple genomes of a model. They
 will learn to calculate the fitness of the genome based on the time for which it survives on the
 track without hitting the sides.

2. Concept Introduction Activity: (5 mins)

- Let the student/s play the explore-activity to see how the genome trains itself until it successfully makes one lap around the track.
- Using the slides, explain that the student/s will learn:
 - o to set the sensors at equal distances from each other.
 - to get the information from the sensor to detect whether the car is running on the track or not
 - o to calculate the fitness of a genome

3. Activity 1: Set Sensor Points(14 mins)

Teacher Activity: (7 mins)

• Demonstrate how to calculate the midpoint of the car and set one sensor in front of the car.

Student Activity: (7 mins)

• Guide the student/s to use a for loop to set multiple sensors in front of the car at equal intervals

4. Activity 2: Get Sensor Data(12 mins)

Student Activity: (12 mins)

Guide the student/s to activate the model based on the sensor information returned.

5. Activity 3: Calculate the Fitness of a Genome(12 mins)

Student Activity: (12 mins)

- Explain num_inputs have to be changed from 2 to 9 since there are 9 sensor points set on the car.
- Guide the students on how to increase the fitness of a genome by 0.2 depending upon how long the genome survives on the track.

6. Introduce the Post class project: (2 min)

• Use the concepts learned in the class to train a genome to help the flappy bird avoid the obstacles.

7. Test and Summarize the class learnings: (5 mins)

- Check for understanding through quizzes and summarize learning after respective missions.
- Summarize the overall class learning towards the end of the class.

8. Additional activities:

- Encourage the student/s to try using only output to train the genome.
- Encourage the student/s to control the acceleration of the car..

9. State the Next Class Objective: (1 min)

• In the next class, student/s will learn to save the best-fit genome and test the genome model with a different track.

U.S. Standards:

CSTA: 2-AP-11, 2-AP-12, 2-AP-13, 2-AP-14, 2-AP-19

Links Table			
Activity	Activity Name	Link	
Class Presentation	Survival of the Fittest Genome	https://s3-whjr-curriculum-uploads. whjr.online/e1498d54-5b82-4784- be23-7dfcf7773e27.html	
Explore Activity	Survival of the Fittest Genome	https://github.com/Tynker-Computer-V ision/TNK-M10-PRO-C79-SAS-BP	
Teacher Activity 1	Set One Sensor Point	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C79-TAS-BP	
Teacher Reference: Teacher Activity 1 Solution	Set One Sensor Point: Solution	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C79-TAS	
Student Activity 1	Set Sensor Points	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C79-SAS-BP	
Teacher Reference: Student Activity 1 Solution	Set Sensor Points: Solution	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C79-SAS	
Student Activity 2	Get sensor data	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C79-SAS-BP	
Teacher Reference: Student Activity 2 Solution	Get sensor data: Solution	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C79-SAS	
Student Activity 3	Calculate the Fitness of a Gnome	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C79-SAS-BP	
Teacher Reference: Student	Calculate the Fitness of a Gnome:	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C79-SAS	

Activity 3 Solution	Solution	
Student's Additional Activity 1	Use Single Output	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C79-SAS-BP
Teacher Reference: Student's Additional Activity 1 Solution	Use Single Output: Solution	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C79-SAS
Student's Additional Activity 2	Control the acceleration of the Car	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C79-SAS-BP
Teacher Reference: Student's Additional Activity 2 Solution	Control the acceleration of the Car: Solution	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C79-SAS
Post Class Project	Flappy Bird	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C79-PCP-BP
Teacher Reference: Post Class Project Solution	Flappy Bird: Solution	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C79-PCP