Introduction + The big picture

Climate macroeconomics & finance course 2022/23 - Lecture 1

Emanuele Campiglio

University of Bologna
Department of Economics (DSE)

Welcome to the course!

- Climate macroeconomics and finance (98724)
 - Formal title: 'Climate and transition risks: Uncertainties, complexity, and implications for economic and financial dynamics'
 - First module of integrated course 'Climate-related risks and commodity markets'
- Course teachers:
 - Lecturer: Emanuele Campiglio (emanuele.campiglio@unibo.it)
 - TA: Gabriele Cortini (gabriele.cortini3@unibo.it)
- Course online presence
 - Virtuale (course material and submissions)
 - Panopto (recordings)
 - UniBo course page (description and timetable)

Aim of the course

- Main aim:
 - Understand climate-economy interactions
- Main research questions
 - Present/future economic impacts of climate change?
 - Macro-financial implications of low-carbon transition?
 - Optimal climate mitigation/adaption strategies?
- Functional objectives:
 - Expand knowledge on facts, empirical evidence, theories
 - Familiarise with current scientific/policy research (focus on climate/transition economic modelling)
 - Develop and present original critical analysis

Course overview

- 1. Introduction and the big picture
- 2. Climate change: drivers, impacts, scenarios
- 3. Climate mitigation and adaptation
- 4. Climate-related policies and commitments
- 5. Modelling climate-economy interactions
- 6. Climate economics and Integrated Assessment Models
- 7. Macroeconomic modelling of climate and transitions
- 8. Climate, finance and money
- 9. Climate-related international implications
- 10. Student presentations and course wrap-up

Lecture structure

- Ten 3-hour lectures
 - Frontal lectures (except Lecture 10)
 - .. but open discussion very welcome
- Five 2-hour tutorial classes
 - Solution to problem sets and discussion
 - Discussion of advancements of groupworks
- Lecture/tutorial classes timing
 - Starts 5 mins past the hour (sharp)
 - 50-min blocks with 10-min breaks

Students' role

- Come to lecture/class
 - Lecture content key to pass the course
 - Recordings posted on Panopto with 2-week delay
- Participate
 - Diversity of backgrounds, knowledge and interests
 - ullet \to Lots to learn from and teach to each other
 - Raise your hand for questions, comments, news...
- Be on time
 - We start 5 mins, we end 5 mins to
- Stay focused
 - Laptops limited to note-taking
 - Mobile phones: please, no

Readings

Main readings

- Scientific and policy articles/reports
 - Key reading: IPCC Assessment Report 6
 - Other useful readings flagged on syllabus/slides/Virtuale
 - Readings available on Virtuale, through UniBo subscriptions or open access online
- No textbook. However, useful related textbooks
 - Economides, G., Papandreou, A., Sartzetakis, E. and Xepapadeas A. (2018) 'The economics of climate change', Bank of Greece (freely available at this link)
 - Tol, R. (2019) 'Climate Economics', 2nd edition, Edward Elgar Publishing (teaching material available at this link)
 - Keohane, N.O., and Olmstead, S.M. (2016) 'Markets and the Environment', 2nd edition, Island Press

Key reading resource: IPCC AR6

- UN Intergovernmental Panel on Climate Change (IPCC)
 - Aim: assess state of the knowledge on climate change, its impact and societal response options
 - No original research
- Periodic Assessment Reports (AR)
 - First IPCC report in 1990
 - Latest: AR6 (2021-22)
- Three Working Groups:
 - WGI: Physical science of climate system and climate change
 - WGII: Climate impacts, vulnerability, adaptation options
 - WGIII: Climate mitigation options
- Each WG publishes
 - Summary for Policy-Makers (SPM)
 - Technical Summary (TS)
 - Full report (with focused chapters)

Stay at the frontier of research

- Functional aim of course
 - Make you able to read some of the frontier papers, ongoing research shaping international debate on the topic
 - Tool: read recent papers on key journals or from key authors/institutions
 - Tool: show some of research inner workings
- Research applications during course
 - Where possible, I will refer to some paper I'm currently working on
 - Ideally, you will be able to read and understand their main assumptions and messages by the end of the course
 - Food for thought for your future research

Where is climate macro/finance research published?

Academic journals

- Interdisciplinary journals: Nature/Science journals (in part. Nature CC), PNAS, Glob. Environ. Change, Climate Policy,...
- Field econ journals: JEEM, JAERE, EcolEc, ERE, EDE, ...
- General econ journals: Some key papers in top journals (AER, Econometrica, JPE, etc.)
- Field review journals: REEP, ARRE, ARER, WIREs CC
- Generic review journals: JEL, JEP, JoES

Gray literature

- Policy/technical reports, working papers, etc.
- International institutions: World Bank, IMF, UNEP, ...
- Central banks: NGFS, ECB, ..
- Research centres, think tanks, NGOs...

Assessment

Assessment overview

- Course (module I) assessment methods
 - Problem sets (25%)
 - Groupwork (35%)
 - Exam (40%)
- Final grade scaling from 0 to 30
 - Lower than $18 \rightarrow fail$
 - Particularly excellent work \rightarrow 'laude' (30L \approx 33).
- Intermediate grading
 - Each assessment method assigns percentage points
 - Final 100-score translated into a 33-score (eg. 91*33/100≈30)
- Overall grade for integrated course:
 - Unweighted average of the two modules

Problem sets (25%)

- Five empirical problem sets
 - Each 5% of total grade
- Timing
 - Each problem set will be given few days before tutorial class
 - Submission on Virtuale
 - Submission deadline: 23.59 of the day before tutorial
 - Problem sets will then be corrected during tutorial classes
 - Late submissions only via email (25% penalty)
- Submission/assessment is individual
 - Group-work is fine but free-riding is not
 - ullet o Active participation required in tutorials
- Problem set 1 on the IPCC WGI Interactive Atlas available on Virtuale

Group-work (35%)

- Groups
 - Self-allocation via Virtuale
 - 3-5 members per group
- Topics
 - Each group will address a specific research-oriented topic
 - List of group-work topic sugggestions (see next slide)...
 - .. but alternative bottom-up proposals possible
 - Group choice on Virtuale, closes Sunday 25 Sept. 23.59
- Tasks
 - Give a presentation during Lecture 10 (24 October 2022): 20%
 - Submit an essay by 30 October 2022 via Virtuale (no word constraints): 15%

Group-work topic suggestions

- The role of policy uncertainty in shaping investment decisions
- Metrics to evaluate country-level climate-related risks
- Strategies to incentivise long-termist policy-making
- Strategies to incentivise long-termist financial behaviour
- Can we use experiments to find the right climate policies?
- Climate-related expectations/beliefs of financial investors
- International equity implications of low-carbon transition
- The political discourse on climate change and the transition
- Obstacles and strategies to finance low-carbon innovation
- Is inflation good or bad for climate mitigation?

Written exam (40%)

- Exam structure (1 hour time)
 - Broad essay-style questions
 - Choose one out of two available questions
- Essay-style answers expected
 - Showcase knowledge of concepts and literature..
 - .. but also develop substantiated critical analysis
- Exam preparation
 - Exam preparation slides on Virtuale
 - Last tutorial class
 - Mock exam also possible (tbc)
- Exam date
 - 2 November 2022, 10.00am
- Full exam alternative
 - Partial Module I exam is compulsory
 - If unsatisfied with grade \rightarrow full exam (19 Dec 2022)
 - Module I problem-set and group-work grades will remain valid

Introductions

A bit more about me

- Current affiliations
 - Associate Professor, UniBo Department of Economics (DSE)
 - Scientist, RFF-CMCC European Institute on Economics and the Environment (EIEE)
 - Visiting Fellow, London School of Economics and Political Science, Grantham Research Institute
- Previous work
 - Assistant prof. at WU Vienna: 2016-2020
 - Postdoc at LSE: 2012-2016
 - PhD in Economics in Pavia: 2008-2012
 - Researcher at New Economics Foundation: 2010-2012
 - MSc Intl. development & cooperation (Pavia: 2005-2007)
 - BSc Economics for intl. institutions (Bocconi: 2000-2005)

A bit more about my work

- Main research focus at the moment:
 - Dynamic links between low-carbon transitions and macro-financial dynamics
 - Policies and institutions for a rapid and smooth decarbonisation
- Main thread: SMOOTH project
 - ERC Starting Grant (2020-25)
 - University of Bologna and European Institute on Economics and the Environment
 - 'Sustainable finance for a smooth low-carbon transition'
 - Link to project website
- Personal research profiles:
 - Personal website
 - Google Scholar
 - ResearchGate

A bit more about UniBo

- Department of Economics
 - Environmental and resources econ cluster. See research profiles
 - Several econ/finance people incorporating climate in their work (e.g. sustainable finance econometricians)
 - Host of the EAERE2022 conference!
 - Teaching: RESD Master programme; other Bologna-based courses (e.g. Environmental Economics and Policy)
- Lots of other climate research at/around UniBo
 - STAT → GrEnFin master programme!
 - AlmaClimate interdepartmental centre
 - UniBo research project by SDG
 - Bologna Business School: Initiative for Sustainable Society and Business
 - Euro-Mediterranean Centre on Climate Change (CMCC)
- Strong advice
 - Go explore, meet faculty, attend events

A bit more about you!

- Who are you? What did you study before?
- How much do you know already about climate economics?
- How familiar are you with quantitative methods?
- What are you looking for in this course?

The big picture

Overall object of study

- We will study the interaction between two main 'systems'
 - The climate system
 - The economic system
- Climate system
 - Dynamic planetary system connecting atmosphere, water, ice, land and ecosystems → Wider Earth system
 - Existed and evolved even without humans
 - Is climate system changing very rapidly? Yes.
 - Is this change driven by humans? Yes, mostly
- 'Climate'
 - IPCC AR6 definition: Statistical description in terms of mean and variability of relevant quantities over period of time (WMO: 30 years). In wider sense: state of the climate system.

Climatic variables of interest

- Temperature
 - Key variable: mean global temperature
 - Observe change w.r.t. a baseline (e.g. 'pre-industrial levels')
 - Maximum/minimum temperatures
 - Δ Temperature → short/long-term feedback effects (e.g. ice melting + ocean warming → sea level rise (SLR) for centuries)
- Concentration of greenhouse gases (GHGs)
 - Key GHGs: CO2, CH4, N20
 - ullet Atmospheric GHGs affect Earth's energy balance o warming
- Precipitations and humidity
 - Water dynamics: rain, rivers, glaciers
 - Precondition for life, health, agriculture, ecosystems
 - Extreme events: droughts, floods, cyclones
- Oceans
 - Temperature, sea ice concentration, SLR, acidity

How do we study climate?

- Paleoclimatology
 - Tree rings, ice drilling (up to 800ka), marine sediments (up to 100Ma), geomorphology
 - Paleoclimate Modelling Intercomparison Project (PMIP)
- More recently: Instrumental observation
 - Surface stations, weather balloons, satellites..
 - Temperature, GHG concentration, precipitations, sea
- Dynamic models
 - Investigate future scenarios, replicate the past to explain it
 - Several families/generations of climate modelling approaches
 - Strategy: address same questions across models
 - ullet \to Reference scenarios: RCPs, SSPs, etc.
 - Coupled Model Intercomparison Project (CMIP)

Evidence on climate change

- Key IPCC AR6 conclusions
 - Recent decades: rapid acceleration in climate system changes
 - Unprecedented increase in temperature (1.09°C wrt 1850-1900)
 - Other changes: sea level rise, increase in extreme events, etc.
 - + other Earth system changes ('planetary boundaries')
 - ullet \to Impacts on human systems
- Where could this lead us?
 - Deep uncertainty about the future
 - Several socio-economic and policy scenarios possible
 - Plus model uncertainty
 - But general scientific consensus: unmitigated climate change might be negative/catastrophic for human societies
 - Current policy consensus: keep temperature below 1.5-2°C

Why is this happening?

- Anthropogenic drivers
 - Observed climate changes cannot be explained by natural phenomena (attribution studies)
 - • GHG emissions \to GHG atmospheric concentration rises \to Temperature rise \to Wider climate change
- Where do GHG come from?
 - CO2: combustion of fossil fuels (energy, transport, industry)
 - CH4: livestock and rice production; gas leaks; landfills
 - N20: nitrogen fertilizer use
- Strong increase in GHG emissions
 - Clean technological progress, but..
 - ..overcome by expansion of population and income

How can we adapt to climate change?

- Adaptation
 - React to actual climate changes
 - e.g. how do we protect cities from sea leavel rise?
 - e.g. how do we protect humans/labour from excessive heat?
- Market adaptation strategies
 - Individual market reactions, e.g. install air conditioning
 - Relocation choices: migration, firm relocation
 - Productive links: changing international supply chains
- Adaptation policies
 - Large infrastructure spending, incentivising adaptation choices
 - Problem: technically challenging, expensive, possibly useless
 - e.g. is Miami doomed?
- ullet In any case, still soon to give up o mitigation!

How can we mitigate climate change?

- Main goal now:
 - Stabilise GHG concentration in the atmosphere
- Two main ways to achieve this:
 - Stop emitting GHGs
 - Sequester GHGs currently in the atmosphere
- Sequestering GHGs
 - Natural (eg. forests) vs technological (eg. direct air capture)
 - Hard or still far from technological/economic viability
- So, main strategy: reduce GHG emissions
 - First, where do GHG emissions come from?
 - Mainly from combustion of carbon stored in fossil fuels
 - Huge issue: fossil fuels at the very basis of modern human civilization (industry, electricity, transport, etc)

The big project: global decarbonisation

- Transition from carbon-based to carbon-free technologies
 - E.g. electricity productions from coal/gas to solar/wind
 - E.g. vehicle transport from oil to electricity
- Not the first technological transition
 - Many past technological transitions (e.g. lighting: gas—electricity; heating: coal—gas)
 - Generally beneficial for humans: some lose, some win, society progresses
- However, this transition might be different
 - ullet Strong time constraint o more rapid transition
 - Not market-driven: no new more efficient/profitable emerging technology
 - Rather society-driven: painfully pushed via policies
 - Close to technological tipping point?

Do we have alternative technologies available?

- General status: tech still to be improved
 - Some exist, others possibly to come (CCS, fusion, SRM?)
 - Some compete with incumbents, some still not viable
 - Most advanced: Electricity generation from clean renewables
 - .. but: hard-to-abate industry: steel, cement, aluminium, chemicals, shipping, trucking, aviation..
- Key role of technological innovation in low-carbon transition
 - Innovation comes in different forms: market vs state
 - How do make sure it happens?
 - But also: without disrupting an already fragile socio-economic system? → transition risks

So, how do we make it happen?

- Push the transition via policies
 - Force/induce individuals to make desired choices
 - Affect all relevant economic choices: consumption, investment spending, financial investments etc.
 - Justified by economic theory when market failures present
- What kind of policies?
 - Command&control: introduce, monitor and enforce rules
 - Change monetary incentives: put a price on it
 - Nudge individuals/firms into desired directions (non-monetary)
- Focus on carbon pricing
 - Key policies: carbon taxes/markets, subsidies
 - Positive but spotty implementation so far
- Focus on finance-related policies
 - Monetary policy, financial regulation
 - New role of central banks and supervisors

What could go wrong?

- Rapid transition comes with its risks
 - Several firms/sectors/countries still very dependent on fossils
 - Changing productive basis can be very costly: new investment expenditure + loss of assets
 - ullet Firms defaulting o occupational and demand impacts
 - Financial sector also potentially affected, mainly via firms
- Transition risk research
 - Conceptual frameworks and qualitative research
 - Empirical analysis (data collection, exposure, econometrics)
 - Modelling: find optimal strategies, explore future scenarios
 - Policy and political economy research: who should do what?
- Societal aim:
 - Avoid generalised disruption (a 'Climate Minsky moment' or 'Green Swan')

The big trade-off

- Two seemingly contrasting objectives
 - Limit chances of disruptive climate-driven impacts
 - Limit chances of prosperity loss due to technological transition
- Two extreme scenarios
 - ullet BAU: we continue with fossil-based technologies o climate damages
 - ullet Immediate transition: we stop using fossil fuels today ightarrow economic disruptions and asset stranding
- Window of opportunity
 - A rapid and smooth transition: is it possible?

Who works on climate macro & finance?

- The scientific community
 - Climate/natural scientists, energy modellers, economists and social scientists,...
 - IPCC scientific framework
- Governments
 - Rapid diffusion of climate policies but several obstacles
 - Policy (and societal) short-termism
 - Geopolitical frictions
 - Dependence on materials and energy
- Now also central banks on the macro/financial aspects:
 - Network for Greening the Financial System (NGFS)
 - Technical research from ECB and national EU/non-EU CBs
 - Focus on climate-related financial stability so far

How can economist help?

Topics

- Socio-economic/financial impacts of climate change
- How do we finance a low-carbon transition?
- Best and feasible policies to implement
- Socio-economic/financial implications of a transition
- .. and many variations around this

Methods

- Empirical analysis, econometrics
- Prospective modelling
- Policy and political economy analysis
- Behavioural: surveys, experiments, text analysis

Our focus: economic modelling

- Climate economic modelling
 - The father of all IAMs: Nordhaus and the DICE model
 - Large-scale numerical Integrated Assessment Models (IAMs)
 - Computable General Equilibrium (CGE) models
 - Analytical IAMs and economic theory
- Macro-financial modelling of climate/transitions
 - Neoclassical macro applications: Dynamic Stochastic General Equilibrium (DSGE), CAPM, VARs, analytical IAMs again
 - Heterodox macro applications: Stock-Flow Consistent (SFC), Agent-Based Models (ABM)
 - Stress testing and other financial modelling
 - Models with heterogeneous dynamic expectations/beliefs
 - Model ensembles

A number of moving parts to study (I)

- Main economy-climate interactions
 - Economy

 Climate: GHG emissions affect climate system dynamics
 - Climate→Economy: Climate impacts (damage functions)
- Zoom in the Economy: 'real' and financial subsystems
 - Non-financial firms combine inputs to produce, invest in new physical capital, requires external finance
 - Financial firms create or reallocate existing credit to non-financial firms, earn a return
 - Both have the shape of large heterogeneous dynamic networks
 - Both can be affected in non trivial ways by climate impacts or transition dynamics

A number of moving parts to study (II)

- Zoom further into the 'real' economic system
 - Dependence on material flows (Daly's pyramid)
 - Long-lived physical capital assets (→ stranding?)
 - Availability of external finance for new investments
 - How do firms invest?
- Market vs state:
 - Policy-makers and regulators: governments, central banks, financial supervisors etc.
 - Policies for a rapid transition and related obstacles
 - Policy uncertainty and impact on investment decisions
 - Evolving institutional relations

Focus on investment behaviour

- How do individuals/firms invest?
 - Investments in both new capital stock and R&D
 - In principle, cost-benefit analysis of investment options → choose the most profitable option, under existing constraints
 - However, future is uncertain! CBA based on expectations
- How do individuals/firms form expectations about the future?
 - Ideally, based on the best available info, but..
 - Incomplete information
 - Behavioural biases
 - And future still uncertain
- Other important choice realms
 - Individuals: consumption, investment of savings, housing
 - Non-financial firms: input providers
 - Financial firms: bank lending, portfolio management
 - State: lending, spending

Focus on financial system

- No finance → no transition
 - Investments almost always require external finance
 - Private vs public finance: both necessary
- Key financial system actors
 - Households: accumulate/invest savings; mortgages
 - Banks: lend to households/firms (credit creation)
 - Financial firms: invest money on behalf of clients
 - The ESG craze
- Financial system guardians
 - Central banks: delegation for price/financial stability (or more)
 - Financial supervisors: delegation for consumer protection
 - Nowadays increasingly active in climate-related matters

Conclusions

Conclusions

- Challenging but interesting object of study
 - How do mitigate/adapt to climate change..
 - .. while ensuring human prosperity?
- An economist's perspective
 - Application to economics methods to the topics..
 - .. while keeping an eye on other disciplines (interdisciplinarity)
- Suggestions
 - Follow closely course advancement (attendance, problem sets)
 - Go beyond the course: research, internet, news
 - Ask yourself question, develop your understanding
- Next lecture
 - The past, present and future of climate change