

# Trafic Control System User Requirements Document

Agnes Wadee Coen Stange Wen Li Yongshi Liang

# **Background and Context**

This user requirements document specifies the software requirements for the "Traffic Control System". This application allows traffic to be simulated with the purpose of noticing traffic jams related to traffic lights.

#### **Definitions and abreviations**

| User<br>System | The person who is controlling this application.  The implementation of this application.                                                      |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Grid           | A place on the screen where a component can be added for the traffic situation.                                                               |
| Component      | A visible representation of an object on the screen of the user.                                                                              |
| Crossroad      | A component that can be used in the traffic simulation which has traffic lights.                                                              |
| Traffic light  | A component of the crossing which controlls the traffic by displaying colors red, yellow green. For which green the traffic is allowed to go. |
| Pedestrian     | A simulation of a pedestrian crossing a road from the traffic light.                                                                          |
| Lane           | A component that represent a piece of road.                                                                                                   |
| Group of lanes | A group of incoming lanes at a crossing which have green light at the same time.                                                              |
| Cars           | A component that represent a car on the road.                                                                                                 |

#### **Contents**

| 1 | Req | uirements                                         | 2  |
|---|-----|---------------------------------------------------|----|
|   | 1.1 | General requirements                              | 2  |
|   | 1.2 | Non functional requirements                       | 2  |
| 2 | Spe | ecification                                       | 3  |
|   | 2.1 | Main window                                       | 3  |
|   | 2.2 | Components                                        | 5  |
|   |     | 2.2.1 Crossroad                                   | 5  |
|   |     | 2.2.2 Road                                        | 6  |
|   |     | 2.2.3 Car                                         | 6  |
|   |     | 2.2.4 Pedestrian                                  | 6  |
|   | 2.3 | Traffic light groups                              | 7  |
|   |     | 2.3.1 Crossroad A                                 | 7  |
|   |     | 2.3.2 Crossroad B                                 | 8  |
| 3 | Use | e cases                                           | 9  |
|   | 3.1 | General Requirements with corresponding use cases | 17 |

# 1 Requirements

The following chapter describes the functionality that the application has to implement.

# 1.1 General requirements

| Rxx Code      | Requirement                                                                  |
|---------------|------------------------------------------------------------------------------|
| R01 GEN-010   | The program is compatible with Windows 7.                                    |
| R01 GEN-020   | The system allows to design a traffic situation.                             |
| R01 GEN-020A  | The traffic situation can be designed with the following components          |
|               | <ul> <li>Crossroad without pedestrian lane</li> </ul>                        |
|               | <ul> <li>Crossroad with pedestrian lane</li> </ul>                           |
|               | Straight road                                                                |
|               | Curved road                                                                  |
|               |                                                                              |
| R01 GEN-020B  | All crossroads have sensors for cars and pedestrians, traffic lights don't   |
|               | go green for no cars or pedestrians.                                         |
| R01 GEN-020C  | Components can be rotated.                                                   |
| R01 GEN-025   | Components can be dragged onto the grid.                                     |
| R01 GEN-025A  | The grid by default is 4x3 but it is possible to change the size of the grid |
|               | before adding components.                                                    |
| R01 GEN-030   | From the traffic lights of the crossroads it is possible to change the       |
|               | amount of time that traffic light is green.                                  |
| R01 GEN-040   | The system allows simulate traffic in realtime, and allow to change the      |
| D00 0511 0404 | simulation speed.                                                            |
| R02 GEN-040A  | The system can return a report in which it highlight where many traffic      |
|               | jams are in a graphical representation of the traffic situation. Which can   |
|               | be saved as an image file.                                                   |
| R01 GEN-050   | The system allows to open and save the traffic situation to a file.          |
| R01 GEN-060   | The system allows to specify for each open incoming lane to set the          |
|               | amount of traffic coming.                                                    |
| R01 GEN-200   | The sytem will be delivered as a standalone application (.exe file).         |

# 1.2 Non functional requirements

| Rxx Code    | Requirement                                                              |
|-------------|--------------------------------------------------------------------------|
| R01 NFR-010 | The system can run on a regular computer/notebook build less than 4      |
|             | years ago running Windows 7.                                             |
| R01 NFR-020 | The user interface of the system is straightforward and easy to learn    |
|             | according to the client.                                                 |
| R01 NFR-030 | The application can be used offline.                                     |
| R01 NFR-040 | The system is stable, and is not allowed to give unclear error messages. |
| R01 NFR-050 | The system is designed to be used with mouse and keyboard.               |

## 2 Specification

The following chapter describes the implementation of the application.

#### 2.1 Main window

The main window is divided into two parts, see figure 1. On the very top of the application is a menubar where the user can do actions like saving their work. Then the window is split up in two parts. On the left side is the menubar and on the right side the grid. The grid is the representation of the traffic situation. The components (see section 2.2) can be dragged from the sidebar to the grid. To remove a component right-click on it and press on Delete in the context-menu. All open incoming lanes have a text-box which allows the user to specify the amount of traffic coming. The simulation can simply be started by the play button and the simulation speed can simply be changed with a slider. With the button "Show Report" the user can get a report of that moment of the simulation. The report will contain a still image of the current situation. It highlights the traffic jams and the image can be saved.



Figure 1: Mockup of the Main window

Figure 2: Mockup of the Configuration window



| Rxx Code     | Specification                                                                  |
|--------------|--------------------------------------------------------------------------------|
| R01 MWS-010  | When the application just started it will create a new grid 4x3                |
| R01 MWS-020  | The main window has a menubar.                                                 |
| R01 MWS-020A | The menu bar has the following structure:                                      |
| HUT WWS-020A | File                                                                           |
|              | -                                                                              |
|              | - New                                                                          |
|              | <ul><li>Open</li></ul>                                                         |
|              | - Save                                                                         |
|              | - Save As                                                                      |
|              | Help                                                                           |
| R01 MWS-020B | A new simulation can be started by pressing on new, a window will              |
|              | prompt for the width and height for the size of the grid.                      |
| R01 MWS-020C | The manual can be opened by pressing on Help.                                  |
| R01 MWS-030  | The window has a sidebar on the left.                                          |
| R01 MWS-032  | The sidebar contains all the components described in section 2.2.              |
| R01 MWS-032A | The component can be added to the grid by dragging it to the desired location. |
| R01 MWS-034  | The sidebar contains a button which allows the simulation to start/stop.       |
| R01 MWS-035  | The sidebar contains a button which allows the simulation to pause.            |
| R01 MWS-036  | The simulation-speed can be changed by adjusting the slider.                   |
| R02 MWS-038  | In simulation the button "Show report" will generate a report.                 |
| R01 MWS-038A | The report is shown in a new window and contains the current traffic           |
|              | situation including cars and pedestrians.                                      |
| R01 MWS-038B | In the report the traffic jams are highlighted.                                |
| R01 MWS-038C | The report can be saved as an image file.                                      |

To change the amount of time each traffic light is green press right-click on the crossroad and click in the context-menu on "Traffic-light configuration". A new window will pop up which allows to set the time for each group of lanes.

| Rxx Code     | Specification                                                              |
|--------------|----------------------------------------------------------------------------|
| R01 MWS-100  | All open incoming lanes have a textbox to specify the amount of traffic    |
|              | coming in.                                                                 |
| R01 MWS-110  | When pressing right-click on any component placed on the grid a            |
|              | context-menu appears which allows to rotate or delete the component.       |
| R01 MWS-120  | When pressing right-click on a crossroad it gives an option "Traffic-light |
|              | configuration"                                                             |
| R01 MWS-120A | A new window will pop-up with a list of all the lane groups.               |
| R01 MWS-120B | The user can select a lane group and change the amount of time the         |
|              | traffic-light is green.                                                    |



(b) Crossroad with pedestrians.

Figure 3: Crossways

## 2.2 Components

#### 2.2.1 Crossroad

| Rxx Code     | Specification                                                            |
|--------------|--------------------------------------------------------------------------|
| R01 CWC-010  | All cossways are connected to 4 roads                                    |
| R01 CWC-020  | There are 2 different types of crossroads see figure 3.                  |
| R01 CWC-020  | Type A crossroad is without pedestrian lane.                             |
| R01 CWC-020A | From each side the crossroad A has 2 incoming lanes and 1 outgoing       |
|              | lane.                                                                    |
| R01 CWC-025  | Type B crossroad is with an pedestrian lane.                             |
| R01 CWC-025A | Type B has from 2 opposite sides a crossroad for pedestrians, which      |
|              | only has 1 incoming lane.                                                |
| R01 CWC-030  | Traffic light for cars have the colors red, orange and geen.             |
| R01 CWC-035  | Traffic light for pedestrians have the colors red and green.             |
| R01 CWC-040  | Traffic light for cars only turn orange after green.                     |
| R01 CWC-040A | Amount of time for the orange light is fixed, and is set to 2 seconds in |
|              | normal simulation time.                                                  |
| R01 CWC-045  | Traffic light for green are set to default for 4 seconds.                |
| R01 CWC-045A | The amount of time each light group of an crossroad can be changed.      |
| R01 CWC-050  | The order of the light groups are fixed.                                 |
| R01 CWC-050A | When there are no cars or pedestrians on the sensors for the according   |
|              | lightgroup it will be skipped in the simulation.                         |
| R01 CWC-060  | Unconnected incoming lanes have a textbox which allows to change the     |
|              | number of cars comming in when the simulation is running.                |



Figure 4: Crossways

#### 2.2.2 Road

| Rxx Code     | Specification                                                        |
|--------------|----------------------------------------------------------------------|
| R01 RCP-010  | There are two types of roads, a straight road and a curved road.     |
| R01 RCP-020  | All roads have 2 lanes, in both directions.                          |
| R01 RCP-030  | Unconnected incoming lanes have a textbox which allows to change the |
|              | number of cars comming in when the simulation is running.            |
| R01 RCP-030A | Just like crossroad see CWC-060.                                     |

#### 2.2.3 Car

| Rxx Code     | Specification                                                             |
|--------------|---------------------------------------------------------------------------|
| R01 CAR-010  | All cars run at the same speed, the speed allows 1 car to pass the green  |
|              | light per second.                                                         |
| R01 CAR-020  | Cars do not collide.                                                      |
| R01 CAR-020A | Cars hold distance from each other when driving.                          |
| R01 CAR-030  | No cars go through red light.                                             |
| R01 CAR-040  | Cars will not go through orange light, in case the car is in front of the |
|              | traffic light.                                                            |
| R01 CAR-050  | Cars will take a random direction on the crossroad.                       |
| R02 CAR-060  | Cars accerlate and break at a realistic speed.                            |

#### 2.2.4 Pedestrian

| Rxx Code    | Specification                                          |
|-------------|--------------------------------------------------------|
| R01 PED-010 | Pedestrians have 50% change on being at the crosswalk. |
| R01 PED-020 | Nothing can be configured of the pedestrians.          |



- (a) Crossroad A incoming lane numbers.
- (b) Crossroad B incoming lane numbers.

Figure 5: Crossways

### 2.3 Traffic light groups

The group of lanes which have green light at the same moment are defined in this section. The traffic lights follow the order as defined in this document, Traffic lights will skip a light group if no cars are present on the group of lanes.

#### 2.3.1 Crossroad A



#### 2.3.2 Crossroad B



#### 3 Use cases

| Use Case 1     | Positioning a lane                                    |
|----------------|-------------------------------------------------------|
| Level:         | User-goal                                             |
| Primary Actor: | End-User                                              |
| Preconditions: | The application is open and no simulation is running. |

#### Main Success Scenario:

- 1. User drags the lane from the sidebar.
- 2. User places the lane on the grid.
- 3. System sets the new placed lane and updates the grid.

#### Extensions:

- 2.a If the space where the new lane is put is already engaged, then the system will ignore the new lane and goes back to step 1.
  - 1. System informs end-user that the lane cannot be placed, because at that space already exists a lane.
  - 2. End of use case
- 2.b If the lane is placed outside the grid, then the system will ignore the new lane and goes back to step 1.
  - 1. System informs end-user that the lane must be placed inside the grid.
  - 2. End of use case

| Use Case 2     | Rotating the component                                           |
|----------------|------------------------------------------------------------------|
| Level:         | User-goal                                                        |
| Primary Actor: | End-User                                                         |
| Preconditions: | There is at least one lane on the grid. No simulaion is running. |

- 1. User right clicks on a lane.
- 2. System shows a menu with several options
- 3. User select "Rotate".
- 4. System turns the lane 90 degrees.
- 5. System updates the grid.

#### Extensions:

- 3 User does not want to execute any operation from the right click menu.
  - 1 User clicks on any space outside the right click menu area.
  - 2 End of use case.

Post condition: The program stays in "Rotating the lane" state.

| Use Case 3     | Positioning a crossroad                               |
|----------------|-------------------------------------------------------|
| Level:         | User-goal                                             |
| Primary Actor: | End-User                                              |
| Preconditions: | The application is open and no simulation is running. |

#### Main Success Scenario:

- 1. User drags the crossroad from the sidebar.
- 2. User places the crossroad on the grid.
- 3. System displays a pop-up window.
- 4. User sets the initial settings for the selected crossroad.
- 5. System sets the new placed crossroad and updates the grid.

#### Extensions:

- 2.a If the space where the new crossroad is put is already engaged, then the system will ignore the new crossroad and goes back to step 1.
  - 1. System informs end-user that the crossroad cannot be placed, because at that space already exists a crossroad.
  - 2. End of use case
- 2.b If the crossroad is placed outside the grid, then the system will ignore the new crossroad and goes back to step 1.
  - 1. System informs end-user that the crossroad must be placed inside the grid.
  - 2. End of use case
- 4.a User does not set any of the required crossroad attributes
  - (a) A system default value will be applied to undefined attributes.
- 4.b User does not want to set any settings.
  - 1. User clicks on "Cancel" button.
  - 2. System closes the setting window.

Post condition: The system displays the updated grid.

| Use Case 4     | Configurating traffic light timing                                        |
|----------------|---------------------------------------------------------------------------|
| Level:         | User-goal                                                                 |
| Primary Actor: | End-User                                                                  |
| Preconditions: | There is at least one crossroad on the grid and no simulation is running. |

- 1. User right clicks on a crossroad.
- 2. System shows a menu with several options.
- 3. User chooses "Traffic light configuration" from the menu.
- 4. System pops up a new window with configuration options.
- 5. User defines the amount of the time the traffic light is green.
- 6. User clicks on the "OK" button.
- 7. System closes the configuration window.
- 8. System updates the crossroad.

#### Extensions:

- 3. User doesn not want to configurate anything.
  - 1. User clicks on "Cancel" button.
  - 2. System closes the configuration window.
  - 3. End of use case.

Post condition: The system displays the updated grid.

| Use Case 5     | Deleting an crossroad                                                                            |
|----------------|--------------------------------------------------------------------------------------------------|
| Level:         | User-goal                                                                                        |
| Primary Actor: | End-User                                                                                         |
| Preconditions: | The application is open. There is at least one cross-road on the grid. No simulation is running. |

#### Main Success Scenario:

- 1. User right clicks on a crossroad.
- 2. System shows a menu of several options.
- 3. User clicks on "Delete".
- 4. System deletes the crossroad and updates the grid.

#### Extensions:

- 3 User does not want to execute any operation from the right click menu.
  - 1 User clicks on any space outside the right click menu area.
  - 2 End of use case.

Post condition: The system displays the updated grid.

| Use Case 6     | Setting up a simulation                                     |
|----------------|-------------------------------------------------------------|
| Level:         | User-goal                                                   |
| Primary Actor: | End-User                                                    |
| Preconditions: | There are components on the grid. No simulation is running. |

- 1. System displays input boxes of for each incoming lane which is not connected.
- 2. Users defines the amount of the cars coming through the lanes and fills in the input boxes.

Post condition: The system is ready for running the simulation.

| Use Case 7     | Running a simulation      |
|----------------|---------------------------|
| Level:         | User-goal                 |
| Primary Actor: | End-User                  |
| Preconditions: | The simulation is set up. |

#### Main Success Scenario:

- 1. User clicks on "Play" button.
- 2. System runs the simulation.

#### Extensions:

- 2 System detects errors.
  - 1. System stops running the simulation and gives an error message.

Post condition: The simulation is running.

| Use Case 8     | Stopping the simulation             |
|----------------|-------------------------------------|
| Level:         | User-goal                           |
| Primary Actor: | End-User                            |
| Preconditions: | The system is running a simulation. |

#### Main Success Scenario:

- 1. User clicks on "Stop" button.
- 2. System stops the simulation.

Post condition: The system is not running the simulation.

| Use Case 9     | Load file                                                                                                        |
|----------------|------------------------------------------------------------------------------------------------------------------|
| Level:         | User-goal                                                                                                        |
| Primary Actor: | End-User                                                                                                         |
| Preconditions: | The application is open. No simulation is running. There is at least one saved file with traffic control system. |

#### Main Success Scenario:

- 1. User selects file to open.
- 2. System closes previous project.
- 3. System loads the file.

#### Extensions:

- 2.a File can't be loaded.
  - 1. System informs user that file can't be loaded and given the choice to stop or choose another file.
  - 2. End of use case.
- 2.b Another project is open
  - 1. System asks if users wants, to save project, that is already open, before closing it and opening another project.
  - 2. End of use case.

Post condition: The system has loaded an existing file.

| Use Case 10    | Save file                                          |
|----------------|----------------------------------------------------|
| Level:         | User-goal                                          |
| Primary Actor: | End-User                                           |
| Preconditions: | The application is open. No simulation is running. |

#### Main Success Scenario:

- 1. User click the "Save" button
- 2. System saves the file.

#### Extensions:

- 2.a Project file has not been saved on the device yet.
  - 1. A saving dialogue window pops up.
  - 2. User chooses the directory where the file will be stored, and names the file.
  - 3. User clicks "OK".
  - 4. System saves the file.

Post condition: The system has saved a file.

| Use Case 11    | Save file as a new file                             |
|----------------|-----------------------------------------------------|
| Level:         | User-goal                                           |
| Primary Actor: | End-User                                            |
| Preconditions: | The application is open. Noo simulation is running. |

#### Main Success Scenario:

- 1. User clicks "Save as" button.
- 2. A saving dialogue window pops up.
- 3. User chooses the directory where the file will be stored, and names the file.
- 4. User clicks "OK".
- 5. System saves the file.

Post condition: The system has saved a file.

| Use Case 12    | Resizing the grid                                   |
|----------------|-----------------------------------------------------|
| Level:         | User-goal                                           |
| Primary Actor: | End-User                                            |
| Preconditions: | The application is open. Noo simulation is running. |

- 1. User clicks on "Edit" on the top bar.
- 2. System displays a menu with several options.
- 3. User clicks on "Document settings".
- 4. System shows document settings panel.
- 5. User defines the size of the grid by tying numbers in the width and height input boxes.
- 6. User clicks on "OK".
- 7. System updates and display the new grid.

#### Extensions:

- 5 Use wants to make the grid size smaller.
  - (a) System discards the objects placed outside of the new grid size.

Post condition: System displays the resized grid.

| Use Case 13    | Closing application      |
|----------------|--------------------------|
| Level:         | User-goal                |
| Primary Actor: | End-User                 |
| Preconditions: | The application is open. |
| Preconditions: | The application is open. |

#### Main Success Scenario:

1. User presses the close button of the window.

#### Extensions:

- 1 User has unsaved changes
  - (a) Ask if user wants to save changes, if so go to use case 10.
  - (b) Close application.

Post condition: System displays the resized grid.

## 3.1 General Requirements with corresponding use cases

This section elaborates more on the general requirements by illustrating the link between these requirement and their corresponding use cases.

| General Requirement | Corresponding Use Case                                              |
|---------------------|---------------------------------------------------------------------|
| GEN-010             | 9:Load file                                                         |
| GEN-020             | 9:Load file                                                         |
| GEN-020A            | 1:Positioning a lane, 3:Positioning a crossing, 2:Rotating the lane |
| GEN-020b            | 4:Configuring traffic light timing                                  |
| GEN-020C            | 2:Rotating the lane                                                 |
| GEN-025             | 1:Positioning a lane, 3:Positioning a crossing                      |
| GEN-025A            | 12: Resizing the grid                                               |
| GEN-030             | 4:Configuring traffic light timing                                  |
| GEN-040             | 7:Running a simulation                                              |
| GEN-040A            | 10:Save file                                                        |
| GEN-050             | 9:Load file, 10: Save file, 11:Save file a new file                 |
| GEN-060             | 3:Positioning a crossing, 6: Setting up a simulation                |
| GEN-200             | (N/a)                                                               |
| GEN-200             | (N/a)                                                               |