One Nine

September 27, 2024

Contents

1	Recall	1
2	Objectives	1
3	Notes	2
4	Examples	2
5	Example	2
6	Prove that the composition of two rotations in $\ensuremath{\mathbb{R}}^2$ is commutative	3
7	Reflecting a Vector across the line y=x	3
8	If $T_A: \mathbb{R}^n \to \mathbb{R}^n$ is a matrix operator whose standard matrix A is invertible, then we say that T_A is invertible, and we define the inverse T_A as	3

1 Recall

College algebra $f \circ g(x) = f(g(x))$

2 Objectives

Compose linear transformations Compute the compositions of reflection and rotation transformations Compute the inverse of a transformation

3 Notes

Given a linear transofmration $TA : \mathbb{R}^n \to m$ and $T_B : \mathbb{R}^m \to \mathbb{R}^k$ define the composition $(T_B \circ T_A)(x)$ to be the function $T_B(TA(x))$

• In fact $T_B \circ T_A = T_{BA}$

4 Examples

find the standard matrix for each of the following transformation, and find the standard matrix for the compositie functions $T_1 \circ T_2$ and $T_2 \circ T_1$

$$T_1(e_1) = T_1(1,0) = (1+0,1-0) = (1,1)$$

$$T_1(e_2) = T_1(0,1) = (0+1,0-1) = (1,-1)$$

$$T_1 \Rightarrow A = \begin{bmatrix} T(e_1) & T(e_2) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$T_2(e_1) = T_2(1,0) = (2(1),-3(0)) = (2,0) T_2(e_2) = T_2(0,1) = (2(0),-3(1)) = (0,-3)$$

$$T_2 \Rightarrow B = \begin{bmatrix} T_2(e_1) & T_2(e_2] \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}$$

$$T_1 \circ T_2 \Rightarrow AB = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ 2 & 3 \end{bmatrix}$$

$$T_2 \circ T_1 \Rightarrow BA = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ -3 & 3 \end{bmatrix}$$
Transpose of each other

5 Example

$$T_{1}: \mathbb{R}^{2} \to \mathbb{R}^{3} \text{ by } T_{1}(x,y) = (-2,2y,y)$$

$$T_{1}(e_{1}) = T_{1}(1,0) = (-1,0,0), T_{1}(e_{2}) = T_{1}(0,1) = (0,2,1) \Rightarrow T_{1} \Rightarrow$$

$$A = \begin{bmatrix} T_{1}(e_{1}) & T_{1}(e_{2}) \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 2 \\ 0 & 1 \end{bmatrix} T_{2}(e_{1}) = T_{2}(1,0,0) = (-1,0,0), T_{2}(e_{2}) =$$

$$T_{2}(0,1,0) = (0,-1,1), T_{2}(e_{3}) = T_{2}(0,0,1) = (0,0,1) \Rightarrow T_{2} \Rightarrow B = \begin{bmatrix} T_{2}(e_{1}) & T_{2}(e_{2}) & T_{3}(e_{3}) \end{bmatrix} =$$

$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

- 6 Prove that the composition of two rotations in \mathbb{R}^2 is commutative
 - $\alpha + \beta$ degrees

Recall, supposed we rotate the vector α & β ccw

can, supposed we rotate the vector
$$\alpha$$
 & β cew
$$\alpha = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix} \beta = \begin{bmatrix} \cos\beta & -\sin\beta \\ \sin\beta & \cos\beta \end{bmatrix}$$

$$\alpha + \beta \Rightarrow \begin{bmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) \end{bmatrix}$$
wts $AB = BA$

$$\$ = \begin{bmatrix} \cos(\alpha + \beta) \& -\sin(\alpha + \beta) & \cos(\alpha + \beta) \end{bmatrix} \$$$

- 7 Reflecting a Vector across the line y=x
- $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ Transpose if you switch the order of the mat mul
- 8 If $T_A : \mathbb{R}^n \to \mathbb{R}^n$ is a matrix operator whose standard matrix A is invertible, then we say that T_A is invertible, and we define the inverse T_A as

$$T_A^{-1} = T_{A^{-1}}$$

1. Given the operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$w_1 = 2x_1 + 5x_2w_2 = -x_1 + 7x_2$$

compute $T^{-1}(w_1, w_2)$

WTF A⁻¹. So we need to find A first.
$$T(1,0)=(2(1)+5(0),-1+7(0)=(2,-1))$$
 $T(0,1)=(5,7)$ $\begin{bmatrix} 2 & 5 \\ -1 & 7 \end{bmatrix} \Rightarrow \frac{1}{19} \begin{bmatrix} 7 & -5 \\ 1 & 2 \end{bmatrix} (\frac{7}{19}w_1 - \frac{5}{19}w_2, \frac{1}{19}w_1 + \frac{2}{19}w_2)$