PhytoProm:

mineração e processamento de DNA para análise de enriquecimento de elementos cis regulatórios

Sobre mim Filipe Medeiros

- Ciência da computação UNICAP
- Iniciação científica Lab. Gen.
 Biotecnologia Veg. UFPE
- Estagiário CIn/Motorola

Genoma = conjunto de genes

Eficiência energética

Estrutura de um gene

Fator de transcrição

Processo de sínteze de RNA

Mineração dos dados

Jaspar

A [13 13 03 01 54 01 01 01 00 03 02 05]
C [13 39 05 53 00 01 50 01 00 37 00 17]
G [17 02 37 00 00 52 03 00 53 08 37 12]
T [11 00 09 00 00 00 00 52 01 06 15 20]

Matriz de peso e posição

Tamanho: 489 matrizes

PhytoMine API

>Vigun04g127700 5000 upstream
TTTAATCCTTCATCTTTCGAAATACGTG
AATTTAATCATTTTTAATCAAATTTTGTTA
AATTTGTTTGATATTTTGTACGTATTTC
ACGATTATATTTGAATTGTTTAATAGTGT
TTAACACATTTTTGCTTTAATATTAAGTT
AAATACTATTATAA...

FASTA em JSON

Tamanho: 29.722 promotores

Dados obtidos

Limpeza dos dados

```
In [12]: 1 df['Matrix'] = df['Matrix'].apply(lambda x: probability(x))
2 df['Matrix'] = df['Matrix'].apply(lambda x: x.transpose())
3 df
```

Matri	T	G	С	Α	Name	ID	
[[1.0, 1.0, 1.0, 0.0 0.14285714285714285 0.3.	[0, 0, 0, 0, 2, 5]	[0, 0, 0, 21, 2, 3]	[0, 0, 0, 0, 14, 6]	[21, 21, 21, 0, 3, 7]	Dof2	0 >MA0020.1	
[[1.0, 1.0, 1.0, 0.0, 0.0 0.2857142857142857].	[0, 0, 0, 0, 8, 0]	[0, 0, 0, 21, 3, 9]	[0, 0, 0, 0, 10, 6]	[21, 21, 21, 0, 0, 6]	Dof3	1 >MA0021.1	
[[0.16, 0.4, 0.12, 0.92, 1.0 0.04, 0.12, 0.24.	[4, 3, 9, 0, 0, 0, 2, 0, 4, 0]	[11, 7, 0, 1, 0, 0, 6, 19, 0, 1]	[6, 5, 13, 1, 0, 24, 14, 0, 11, 19]	[4, 10, 3, 23, 25, 1, 3, 6, 10, 5]	Gam1	2 >MA0034.1	
[[0.0, 0.0, 0.0, 0.0, 0.0, 0.0 0.46153846153846156.	[0, 10, 9, 1, 12, 3, 5, 10, 4]	[8, 3, 0, 10, 0, 3, 0, 2, 1]	[5, 0, 4, 2, 1, 1, 5, 1, 8]	[0, 0, 0, 0, 0, 6, 3, 0, 0]	HMG-1	3 >MA0044.1	
[[0.2142857142857142 0.5, 0.6428571428571429.	[2, 4, 3, 1, 0, 1, 1, 6, 1, 1, 0, 1, 3, 0, 0, 5]	[4, 3, 1, 4, 3, 2, 2, 2, 8, 6, 1, 4, 2, 0, 3, 0]	[5, 0, 1, 6, 0, 0, 0, 3, 1, 4, 5, 1, 0, 5, 0, 7]	[3, 7, 9, 3, 11, 11, 11, 3, 4, 3, 8, 8, 9, 9,	HMG-I/Y	4 >MA0045.1	
[[1.0, 1.0, 1.0, 0.0, 0.2], [0.0 0.0, 0.0, 0.	[0, 0, 0, 0, 3]	[0, 0, 0, 15, 0]	[0, 0, 0, 0, 9]	[15, 15, 15, 0, 3]	MNB1A	5 >MA0053.1	
[[0.2714285714285714 0.9142857142857143, 0.9,.	[46, 3, 5, 1, 17, 5, 49, 49, 41]	[2, 2, 2, 3, 16, 53, 0, 1, 0]	[3, 1, 0, 62, 27, 2, 8, 17, 1]	[19, 64, 63, 4, 10, 10, 13, 3, 28]	myb.Ph3	6 >MA0054.1	

Extrair elementos cis regulatórios

```
In [14]: 1 lista = combinatoria(df['A'][0], df['C'][0], df['G'][0], df['T'][0])
2 print (lista)
['AAAGAA', 'AAAGCA', 'AAAGGA', 'AAAGAC', 'AAAGCC', 'AAAGCC', 'AAAGGC', 'AAA
```

430=1,15.1018

Impraticável

Problemas

Grande número de elementos cis regulatórios

A busca de um grande número de sub-strings torna o processamento do modelo inviável mesmo para um único promotor.

Dupla fita do DNA

Um DNA possui duas fitas gênicas: uma positiva e outra negativa. A análise se concentra apenas na fita positiva para poupar processamento. Isso implica que deve ser feita a busca pelo elemento cis regulatório em forma de complemento reverso para emular a busca na fita negativa.

Solução

Gray code	Base	IUPAC	Gray code	Base	IUPAC
0000	-	#	1100	A C	M
0001	T	T	1101	A C T	Н
0011	G T	K	1111	A C G T	N
0010	G	G	1110	A C G	V
0110	C G	S	1010	A G	R
0111	C G T	В	1011	A G T	D
0101	C T	Y	1001	A T	W
0100	C	C	1000	A	A

Modelo de consenso da IUPAC (International Union of Pure and Applied Chemistry)

Aplicando ao novo modelo

1 #Cria uma coluna no data frame para o complemento reverso (a coluna só recebe o motivo reverso) 2 df['ReverseComplement'] = df['Motifs'].apply(lambda x: x[::-1]) 3 #Calcula o complemento do motivo (para resultar no complemento reverso) 4 df.ReverseComplement.apply(lambda x: reverseComplement(x)) 5 df Out[24]: ID C T Motifs ReverseComplement Name Matrix [[1.0, 1.0, 1.0, 0.0, [A, A, A, G, 0 >MA0020.1 [0, 0, 0, 0, 14, 6] [0, 0, 0, 21, 2, 3] [0, 0, 0, 0, 2, 5] 0.14285714285714285, [T, G, C, T, T, T] C, A] 0.3... [21, 21, 21, 0, 0, 6] [[1.0, 1.0, 1.0, 0.0, 0.0, [A, A, A, G, [C, R, C, T, T, T] 1 >MA0021.1 [0, 0, 0, 0, 10, 6] [0, 0, 0, 21, 3, 9] 0.2857142857142857]... [G, A, Y, A, [4, 10, 3, 23, 25, [6, 5, 13, 1, 0, [11, 7, 0, 1, 0, 0, [4, 3, 9, 0, 0, 0, [[0.16, 0.4, 0.12, 0.92, 1.0, [G, K, C, G, G, T, T, R, 2 >MA0034.1 Gam1 A, C, C, G, 1, 3, 6, 10, 5] 24, 14, 0, 11, 19] 6, 19, 0, 1] 2, 0, 4, 0] 0.04, 0.12, 0.24... T, C] M, C] [0, 0, 0, 0, 0, 6, [5, 0, 4, 2, 1, 1, [8, 3, 0, 10, 0, 3, [0, 10, 9, 1, 12, [S, T, Y, G, T, [R, A, R, T, A, C, R, A, [[0.0, 0.0, 0.0, 0.0, 0.0, 3 >MA0044.1 HMG-1 3, 0, 0] 3, 5, 10, 4] 0.46153846153846156... 5, 1, 8] 0, 2, 1] A, Y, T, Y] [C, A, A, C, [3, 7, 9, 3, 11, [5, 0, 1, 6, 0, 0, [4, 3, 1, 4, 3, 2, [2, 4, 3, 1, 0, 1, [[0.21428571428571427. A, A, A, T, G, [R, T, K, T, T, K, C, C, HMG-I/Y 11, 11, 3, 4, 3, 8, 0, 3, 1, 4, 5, 1, 0, 2, 2, 8, 6, 1, 4, 2, 4 >MA0045.1 1, 6, 1, 1, 0, 1, 0.5, G, M, A, A, A, T, T, T, G, T, T, G] 8, 9, 9, ... 5, 0, 7] 0, 3, 0] 3, 0, 0, 5] 0.6428571428571429... M. A. Y. [[1.0, 1.0, 1.0, 0.0, 0.2], [A, A, A, G, 5 >MA0053.1 MNB1A [15, 15, 15, 0, 3] [0, 0, 0, 0, 9] [0, 0, 0, 15, 0] [0, 0, 0, 0, 3] [G, C, T, T, T] [0.0, 0.0, 0.0, 0....

Pré-processamento

In [30]:		archLog = ecrM archLog	liner(genome,	df)						
	757970	>MA0021.1	Dof3	[A, A, A, G, Y, G]	[C, R, C, T, T, T]	VigunL002200	[435, 1972]	[413]	940.000000	;
	757971	>MA0053.1	MNB1A	[A, A, A, G, C]	[G, C, T, T, T]	VigunL002200	[1972]	[153, 1785]	1303.333333	
	757972	>MA0064.1	PBF	[A, A, A, G, Y]	[R, C, T, T, T]	VigunL002200	[160, 435, 713, 859, 1289, 1393, 1597, 1972]	[153, 349, 414, 780, 1308, 1624, 1785, 1870]	1043.812500	1
	757973	>MA0121.1	ARR10	[A, G, A, T, Y, Y, K, C]	[G, K, R, R, A, T, C, T]	VigunL002200	[1328, 1499]	П	1413.500000	- 5
	757974	>MA0562.1	PIF5	[T, C, A, C, R, T, G, S]	[S, C, A, Y, G, T, G, A]	VigunL002200	[1334]	0	1334.000000	
	757975	>MA0932.1	AHL12	[A, A, W, W, W, W, T, T]	[A, A, W, W, W, W, T, T]	VigunL002200	[83, 126, 127, 178, 179, 180, 204, 246, 650, 6	[83, 126, 127, 178, 179, 180, 204, 246, 650, 6	624.684211	3
	757976	>MA0933.1	AHL20	[A, A, T, T, A, A, W, T]	[A, W, T, T, A, A, T, T]	VigunL002200	[1514, 1518]	[613, 1510, 1514]	1333.800000	
	757977	>MA0934.1	AHL25	[A, W, T, T, A, A, W,	[A, W, T, T, A, A, W, T]	VigunL002200	[338, 613, 1510, 1514, 1518]	[338, 613, 1510, 1514, 1518]	1098.600000	1

Processamento

In [7]: 1 df

Out[7]:

	ID	Name	Matrix	Motifs	ReverseComplement	Genome	Cluster
0	>MA0020.1	Dof2	[[1. 1. 1. 0	['A', 'A', 'A', 'G', 'C', 'A']	['T', 'G', 'C', 'T', 'T', 'T']	5	1
1	>MA0021.1	Dof3	[[1. 1. 1. 0	['A', 'A', 'A', 'G', 'Y', 'G']	['C', 'R', 'C', 'T', 'T', 'T']	1	1
2	>MA0034.1	Gam1	[[0.16 0.4 0.12 0.92 1. 0.04 0.12 0.24 0.4	['G', 'A', 'Y', 'A', 'A', 'C', 'C', 'G', 'M',	['G', 'K', 'C', 'G', 'G', 'T', 'T', 'R', 'T',	91	1
3	>MA0044.1	HMG-1	[[0. 0. 0. 0	['S', 'T', 'Y', 'G', 'T', 'A', 'Y', 'T', 'Y']	['R', 'A', 'R', 'T', 'A', 'C', 'R', 'A', 'S']	21726	31
4	>MA0045.1	HMG-I/Y	[[0.21428571 0.5 0.64285714 0.21428571	['C', 'A', 'A', 'C', 'A', 'A', 'A', 'T', 'G',	['R', 'T', 'K', 'T', 'T', 'K', 'C', 'C', 'A',	25575	36
5	>MA0053.1	MNB1A	[[1. 1. 1. 0. 0.2]\n [0. 0. 0. 0. 0. 6]	['A', 'A', 'A', 'G', 'C']	['G', 'C', 'T', 'T', 'T']	79	1
6	>MA0054.1	myb.Ph3	[[0.27142857 0.91428571 0.9 0.05714286	['T', 'A', 'A', 'C', 'C', 'G', 'T', 'T', 'W']	['W', 'A', 'A', 'C', 'G', 'G', 'T', 'T', 'A']	7181	12
7	>MA0064.1	PBF	[[1. 1. 1. 0. 0.0625]\n [0	['A', 'A', 'A', 'G', 'Y']	['R', 'C', 'T', 'T', 'T']	2	1
8	>MA0082.1	squamosa	[[0.36666667 0. 0.8 0.533333333	['M', 'C', 'A', 'W', 'A', 'W', 'A', 'T', 'R',	[A', T', T, W', C', Y', A', T', W',	27431	35
9	>MA0096.1	bZIP910	[[0.42857143 0. 0. 1	['M', 'T', 'G', 'A', 'C', 'G', 'T']	['A', 'C', 'G', 'T', 'C', 'A', 'K']	957	5
10	>MA0097.1	bZIP911	[[0.03030303 0.51515152 0. 0	['G', 'R', 'T', 'G', 'A', 'C', 'G', 'T', 'G',	['G', 'K', 'K', 'C', 'A', 'C', 'G', 'T', 'C',	29717	39
11	>MA0120.1	id1	[[0.04166667 0.125 0.04166667 0	['T', 'T', 'K', 'Y', 'C', 'C', 'Y', 'T', 'W',	['C', 'G', 'A', 'W', 'A', 'R', 'G', 'G', 'R',	178	2

Análise exploratória

```
In [9]:
               model = smf.ols("Cluster ~ Name + Genome", data=df)
            2 result = model.fit()
            1 enrichment = pd.concat([result.params,result.bse,result.tvalues,result.pvalues],
In [10]:
                           axis=1, keys=['coef','SE','t','p-value'])
            3 enrichment
Out[10]:
                                                                  p-value
                                          coef
                                      0.820827 0.029267 28.045759 0.001269
                        Name[T.ABF2]
                                      -0.390783 0.043082
                                                        -9.070662 0.011937
                        Name[T.ABF3]
                                      0.116875 0.040392
                                                        2.893482 0.101569
                         Name[T.ABI3]
                                      0.178659 0.040756
                                                        4.383645 0.048300
                         Name[T.ABI5]
                                      0.177114 0.040745
                                                        4.346908 0.049060
                        Name[T.ABR1]
                                      0.178659 0.040756
                                                       4.383645 0.048300
                          Name[T.AG]
                                      0.168361 0.040685
                                                        4.138179 0.053732
                        Name[T.AGL1]
                                      0.178144 0.040752 4.371403 0.048551
                       Name[T.AGL13]
                                      0.168876 0.040688
                                                        4.150483 0.053439
                       Name[T.AGL15]
                                      1.942850 0.040184 48.348710 0.000428
                       Name[T.AGL16]
                                      0.159094 0.040625
                                                       3.916191 0.059449
```

Análise de enriquecimento

In [12]: 1 enrichment[enrichment['p-value']<=le-04]</pre>

Out[12]:

	coef	SE	t	p-value
Name[T.AT3G10113]	6.664307	0.042325	157.453743	0.000040
Name[T.AT5G56840]	5.989832	0.057072	104.952791	0.000091
Name[T.At2g38090]	5.989832	0.057072	104.952791	0.000091
Name[T.CMTA2]	9.520789	0.071711	132.765330	0.000057
Name[T.HAT2]	6.664307	0.042325	157.453743	0.000040
Name[T.TCP14]	5.961515	0.057887	102.986225	0.000094

As famílias de elementos cis regulatórios CAMTA,
Homeobox, Myb-related e TCP na espécie da planta Vigna
unguiculata (Feijão macassar) são fortes candidatos a
regulação da via metabólica dos fenilpropanóides,
responsável pela produção de óleos essenciais, produto
largamente utilizado na indústria no controle de fungos, e
portanto, de grande interesse biotecnológico.

Muito obrigado!

- Github.com/filipecmedeiros
- in LinkedIn/in/filipecmedeiros