DERWENT-ACC-NO: 1992-102623

DERWENT-WEEK: 199213

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE: High permittivity dielectric ceramic

compsn. -

L . .

comprising lead magnesium niobium

titanate, lead oxide

and tungsten oxide

PATENT-ASSIGNEE: NIPPON STEEL CORP[YAWA]

PRIORITY-DATA: 1990JP-0155054 (June 15, 1990)

PATENT-FAMILY:

PUB-NO PUB-DATE LANGUAGE PAGES MAIN-IPC

JP 04048505 A February 18, 1992 N/A

003 N/A

APPLICATION-DATA:

PUB-NO APPL-DESCRIPTOR APPL-NO

APPL-DATE

JP 04048505A N/A

1990JP-0155054 June 15, 1990

INT-CL (IPC): C04B035/00, H01B003/12, H01G004/12

ABSTRACTED-PUB-NO: JP 04048505A

BASIC-ABSTRACT:

Compsn. comprises a main component compsn.

Pb (Mg1/3Nb2/3)1-xTixO3 (x =

0.01-0.12), and 0.5-5.0 wt. % PbO, and 0.5-5.0 wt. % WO3,

based on the main component compsn..

USE - Used for high permittivity ceramic capacitor material.

CHOSEN-DRAWING: Dwg.0/0

TITLE-TERMS: HIGH PERMITTIVITY DIELECTRIC CERAMIC
COMPOSITION COMPRISE LEAD
MAGNESIUM NIOBIUM TITANATE LEAD OXIDE TUNGSTEN
OXIDE

DERWENT-CLASS: LO3 R41 R42 VO1 X12

CPI-CODES: L02-G07C; L03-B03E;

EPI-CODES: V01-B03A1; X12-E01A;

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1992-048218 Non-CPI Secondary Accession Numbers: N1992-076635

· ® 日本国特許庁(JP)

① 特許出願公開

⑫ 公 開 特 許 公 報 (A) 平4-48505

@Int. Cl. 5 3/12 H 01 B 35/00 識別記号

4 1 5

庁内整理番号

❸公開 平成 4年(1992) 2月18日

C 04 B H 01 G 4/12 3 1 3

9059-5G 8924-4G 7135-5E

未請求 請求項の数 1 (全3頁) 審杳請求

60発明の名称 誘電体磁器組成物

頭 平2-155054 20特

22出 至 平2(1990)6月15日

20発 明 Œ 者 ш

神奈川県川崎市中原区井田1618番地 新日本製鐵株式會社 紀

幸 弘. @発 明 者 山 本

第 1 技術研究所内 新日本製鐵株式會社 神奈川県川崎市中原区井田1618番地

第1技術研究所内

@発 明 者 紘 神奈川県川崎市中原区井田1618番地 新日本製鐵株式會社

第1技術研究所内

勿出 願 人 新日本製鐵株式会社

弁理士 井上 70代 理 人 雅生 東京都千代田区大手町2丁目6番3号

1.発明の名称

誘電体磁器組成物

2. 特許請求の範囲

Pb(Ngya Nb2a);-x1ix0。で表され、0.01≤ x ≤ 0.12 である主成分組成物と、主成分組成物に対して 0.5~ 5.0重量%のPbO と 0.5~ 5.0重量%の WOsとからなる誘電体磁器組成物。

3 . 発明の詳細な説明

産業上の利用分野

本発用はコンデンサの材料として用いられ、比 誤電率が高く、此誤電率の温度特性が良好で、し かも低温で焼結できる誘電体磁器組成物に弱する ものである.

従来の技術

従来より、高誘電率系磁器コンデンサの材料と しては、BeTiOsを主成分とした誘電体磁器組成物 が用いられている。これは、室温での比請電率が 2000~15000 と高い材料であるが、焼成温度が 1300~1400℃と高温であった。このため、焼成コ

ストが高くつく上、積層磁器コンデンサにおい ては、生の磁器シートの上に電極をあらかじめ形 **成したものを複数枚枝屑してから焼焼するので、** その危権材料としては、1300℃以上の高温におい ても裕厳したり、酸化したり、誘電体と反応し たりしないような貴金属、例えば白金やパラジ ウムやそれらを含む合金などを用いなければな らなかった。それゆえ、似、ニッケル、倒など の安価な金属を内部電板として使用できるよう な低温で焼動する誘電体磁温組成物が望まれて いた。このような要請を満足する組成物として、 Pb(Ngia Nbza)03-PbTiOs系の材料が提示されてい る (特公昭81-5427、特公昭61-28619)。 これら の組成物は比請電率が 14000~30000 と高く、誘 電損失が小さく、1150℃程度で焼鯖するもので あった。しかし、これらの焼結製度は假の融点で ある 882℃、倒の触点である1085℃に比べると十 分低いとはいえず、さらに低温で焼結する材料が 望まれていた。

また、 Pb(Naus Nb2s)O3-PbtiO3系の誘電率の基

度変化率は、-25℃~85℃の範囲で20℃の基準値 に対して+20%以上または-80%以下と大きく、 JISのF特性を満足するのみであった。

発明が解決しようとする課題

Pb(Maus Nbas)Os-PbTiGs系の誘電体磁器組成物 は焼結製度が高く、誘電率の温度変化率が大きい という問題点があった。本発明は上記組成物の優 れた誘電特性をできるだけ損なうことなく、焼結 温度が低く、誘電率の温度変化率が良好な誘電体 磁器組成物を提供することを目的とする。

課題を解決するための手段

本発明は Pb(Ng_{1/3}Nb_{2/3})_{1-x}Ti_xQ₃ で 表 さ れ
0.01≤ x ≤ 0.12である主成分と主成分に対して
0.5~ 5.0重量%のPb0 と 0.5~ 5.0重量%の
NO₃ を副成分とする磁器組成物である。

その限定理由を具体的に述べる。

xが0.01未満では比誘電率の最大になる温度が低くなりすぎ、また、xが0.12を超えると比誘電率の最大になる温度が高くなりすぎるため、室温付近で高い比誘電率を得ることができず実用的で

PbO、 MgO、 Mb₂Os 、 TiO₂を所定登秤量し、エ タノールを加えてナイロンポットとジルコニア ボールを用いて混合した。乾燥後、850 ℃で仮焼 し、PhO およびWOs を終上表に示した割合で秤品 し、エタノールを加えナイロンポットとジルコニ アポールを用いて混合した。混合物を乾燥した後 に、ポリビニルアルコールを適量加えて2 t/cm² の圧力で直径10mm、厚さ2mmの円板上に成形し た。この成形体を蓋付きのマグネシアの角さやに 入れ、第1妻の焼鮎温度で2時間焼成した。焼鮎 体の密度はアルキメデス法で測定した。焼船密度 7.5g/cm3 以上の緻密な統結体について統結体を 厚さ約1mmに平行研修し金をスパッタして電極と して、インピーダンスアナライザで誘電特性の群 定を行った。制定は周被数1kHz 、電圧1Vrosで 行った。 訓定結果を第1表に示した。 焼結密度が 7.5g/cm3 未摘の焼結体については誘電特性を翻 定するための加工が困難であったり、測定値の 信頼性に欠けたりするので、測定を行わなかっ

t.

ない。また、PbO の抵加量が 5.0重量%を超えると比誘電平の低下が著しい。PbO の抵加量が 0.5 重量%未換では低温焼結性の効果がほとんど認められない。140s の添加量が 5.0重量%をこえると焼結時に素地の変形が起きるうえ、比誘電率が低下する。140s の添加量が 0.5重量%未満では低温焼結性の効果がほとんどが認められない上、比誘電平の温度特性の改善効果も小さい。

作用

Pb(Mg is Nb 2s) 1-x Ti x O 3 で表され 0.01 ≤ x ≤ 0.12 である主成分系において、PbO と WO 3 の副成分を含まない組成物では 1150 ℃以上の焼成温度を必要とするが、PbO と WO 3 の副成分を含む組成物では PbO と WO 3 の間で生じる液相が焼結を促進するため、800 ~1150 ℃の低温で焼成しても、 7.5 g/cm³以上焼結密度を得ることができる。また、PbO とWO 3 の副成分を加えることによって比誤電率の温度特性を JISのF特性からEおよび D特性に改善することができる。

実施例

第1妻

 其 料	×	РЬ0	¥03	焼成温度	焼箱密度	比詩電率	温度変化率 (\$)		誘電損失
No.		(wt%)	(wt%)	ซ	(g/cm ³)	2010	- 25℃	85 °C	(20°C, %)
1	0.01	1.0	1.0	1050	7.8	11000	- 20.1	-48.5	0.4
2	0.01	1.0	1.0	1100	7.8	14000	-24.1	-54.8	0.6
3	0.01	1.0	1.0	1150	7.8	13000	- 26.2	- 62.4	0.6
4 *	0.01	0.0	0.0	1000	5.4	_		-	-
5 *	0.03	0.0	1.0	1000	8.9	-	_	-	-
6	0.03	0.5	0.5	1000	7.8	10200	- 32.2	- 53.1	0.8
7	0.03	0.5	0.5	1150	7.8	15200	-48.2	-73.1	0.8
8	0.03	3.0	2.0	850	7.7	7500	- 27.3	- 49.0	0.9
9 *	0.03	6.0	3.0	800	7.5	2500	-3.2	- 35.0	0.8
10	0.06	0.5	0.5	1000	7.8	11000	-44.0	- 42.6	0.9
11	0.06	3.0	2.0	900	7.6	6800	- 39.2	- 35.4	2.1
12	0.06	3.0	2.0	1050	7.7	7800	- 42.2	-46.8	2.1
13	0.06	0.8	0.5	1150	7.8	13000	- 50.7	- 54.3	2.4
- 14	0.08	4.5	4.5	1000	7.8	4100	- 28.5	- 28.8	1.7
15*	0.06	1.0	0.0	1050	7.0	-	-	-	
16=	0.06	1.0	8.0	1050	7.1	-	-	-	-
17	0.10	3.0	2.0	950	7.7	7000	-44.1	-3.6	2.1
18	0.10	3.0	2.0	1100	7.0	8200	- 54.1	- 9.6	2.3
19*	0.15	1.0	1.0	1000	7.7	2100	-43.i	80.1	3.5

^{*} 印は、本発明外のものであり比較のために示した。

発明の効果

本発明によると、900~1150℃の焼成温度で、 依度が高く、比誘電率が3000以上と高く、比誘電 率の温度変化率が良好であり、 tan δ にも優れた 新規な磁器組成物が得られ、積層磁器コンデンサ に用いた場合、内部電極に銀、銀パラジウム合 金、斜のような低触点金属の使用が可能となる。

化厘人弁理士 非 上 雅 生