Section 1: Vision, Mission, Objectives and Functions

Vision

Enhancing productivity and quality of Indian tobacco to make it more remunerative, globally competitive and promoting alternative uses to sustain the crop in the country

Mission

Developing economically viable and eco-friendly agro-technologies for enhancing productivity and quality, reducing harmful substances, developing value-added products for promoting exports and generating revenue and employment on a sustainable basis

Objectives

- 1. Tobacco Cultivar Improvement
- 2. Development of agro-technology for sustainable tobacco production and strengthening TOT
- 3. Identification of alternative crops and exploiting tobacco for alternative uses
- 4. Management of resource constraints for production efficiency and product quality
- 5. Development of integrated management strategies for biotic stresses

Functions

To conduct research on different types of tobacco, with greater emphasis on exportable types, on all phases of production management with a view of attaining economic advantage/ benefit to the tobacco growers through improvement in quality and quantity of tobacco; to conduct research on economically viable and sustainable cropping systems alternative to tobacco; to conduct research on diversified uses of tobacco and development of value-added products viz. phyto-chemicals; to produce and distribute quality seeds of notified varieties of tobacco; to publish and disseminate research findings and recommendations of latest technology for the benefit of the tobacco growers, scientific community, policy makers and development agencies.

Section 2: Inter se Priorities among Key Objectives, Success Indicators and Targets

Table 1: Format of the Results-Framework Document (RFD)

	Poor	%09	200								120			1								
/alue	Fair	%02	009								140			2								
riteria '	poog	%08	200								160			4								
Target/Criteria Value	Very	%06	800								180			9								
	Excellent	100%	006								200			8								
Weight			3.5								3.0			2.0								
Unit			Number								Number			Number 2.0								
Success Indicator			Segregating	materials,	promising	recombinants and	hybrids developed	through	conventional	breeding	Improved lines in	replicated	evaluation trials	Advanced	breeding lines	contributed for	Multilocation	testing under the	AINRP(T) /	varieties	identified or	released
Actions			1. Developing	tobacco	varieties/	hybrids	possessing	higher leaf	yield and	resistance to	biotic and	abiotic stresses	to stabilize	productivity								
Weight Actions			25.0																			
Objective			Tobacco	Cultivar	Improvement																	

T																
09		12000				1200			06	Ç	10		30			
70		14000				1400			100		70		40			
08		16000				1600			110	0	30		50			
06		18000				1800			130	ç	40		09			
100		20000				2100			150	C	20		20			
1.5		5.0				2.5			1.0	1	0.5		3.0			
Number		kg				Number			Number		Number		Number			
Promising germplasm accessions, advanced breeding lines/hybrids evaluated for seed yield potential/ high seed oil/high	protein/ nign solanesol / high nicotine contents.	Quantity produced				Germplasm	accessions	maintained in all forms	No. of lines	characterized	No. of accessions	added to gene bank	Genotypes used	for molecular	characterization/	genome analysis
2. Tailoring of tobacco plant type for optimizing the seed yield and phyto-chemicals		3. Production and distribution	of foundation	seed of ruling	tobacco varieties	4. Germplasm	Resource	Management					5. Biotechnology	for tobacco	improvement	

2	10	20	2	0	—
9	20	09	3	0	2
9	7)	(1)		
7	30	70	4	-	က
∞	40	80	2	2	4
6	50	06	9	m	9
4.	1.0	0.5	0.1	2.0	5.0
Number	Number	Number	Number	Number	Number
Molecular mapping populations developed with reference to traits viz., nicotine, solanesol and TSNA	Somaclones of varieties VT 1158 and Kanchan evaluated for yield and virus tolerance under field condition	Seed sterile and non-flowering tobacco clones micropropagated	Transgenics and transplastomic lines maintained and characterized	Technology interventions for production of healthy transplants	Technology interventions for input use
				1.Healthy seedling production	2.Optimisation of water and nutrient use for
				20.0	
				Development of agro-technology for sustainable	tobacco production and

		-							0				_					1					10		1		
		2							0				2					7					20		7		
		c							1				3					3					30		3		
		4							2				4					4					40		4		
		9							3				5					2					50		2		
		4.0							1.0				1.8					1.0					8.0		0.4		
		Number							Number				Number					Number					Number		Number		
efficiency		Production	practices for	advance breeding	lines / varieties				Technology	interventions	developed		1. Tobacco zone-	wise Resource	utilization and	adoption	constraints	2. Zone-wise	trends and	economics of	tobacco	cultivation	3. Farm women	empowered	1. Zone-wise	decision	support systems
productivity enhancement of different	tobacco types	3. Evolving site-	specific cultural	management	practices in	different agro-	ecological sub	regions	4.Post harvest	product	management	(PHPM)	Analysis of	socio-	economics for	stratification	and to	formulate	appropriate	strategies					Technology	outreach	activities
strengthening TOT																											

	10	2	10	3	_		1		3	~	_							0				0
	15	4	20	9	2		2		9	2	2							0				_
	20	9	30	6	3		3		6	3	3							1				2
	25	∞	9	12	4		4		12	4	2							2				æ
	30	10	20	15	2		2		15	2	7							ĸ				4
	0.7	0.2	4.0	0.3	0.3		0.3		0.5	1.3	12.0							4.0				4.0
	Number	Number	Number	Number	Number		Number		Number	Number	Number							Number				Number
for TOT	2. Training	3. FLD's	4. Focus through print media	5. Radio talks	6. Group	Communication methods	7. Mass	Communication methods	1. Diagnostic Visits	2. On Farm Trials	Identification of	systems / farming	systems for	tobacco				Technologies	evaluated/	developed		Phyto-chemicals
		1					1		Technology assessment		Alternative crops for FCV				6	ecological sub	regions	Agro-techniques		pu	seed yield	Identification of
											20.0											
											Identification of alternative	crops and	exploiting	tobacco for	alternative	nses						

	0	0	0	0	100
	0	0	0	0	200
	0	0	0	~	300
	~	~	1	2	400
	2	2	2	8	200
	3.0	3.0	2.0	2.0	3.0
	Number	Number	Number	Number	Number
evaluated	Diagnostic surveys made/Technology developed	Scientific interventions/ management options evaluated	Microbial cultures evaluated as bio- fertilizers	Genotypes /production practices evaluated for tobacco chemical /biochemical quality	Samples tested for leaf quality and
potential phytochemicals	1. Evaluation of soil fertility, water quality and plant nutrition constraints for tobacco and their management	2. Soil quality and nutrient use efficiency in relation to input management	3. Characteri- zation of soil biota and use of biofertilisers	4. Evaluation of tobacco leaf and product quality	
	15.0				
	Management of resource constraints for production efficiency and product quality				

			pesticide residues							
			Tobacco products	Number	2.0	25	70	15	10	2
			tested for smoke							
			constituents							
Integrated	15.0	Screening for	Genotypes/crosses							
management		host plant	screened							
of biotic		resistance to		O N	5.0	009	400	250	150	20
stresses		insect pests and								
		diseases								
		Development of	Technologies	Milmhor	7.0	V	3	7	1	c
		IPM technology	developed	ב ב ב ב	ţ. O.	t	า	7	_	>
		Evaluation of								
		new molecules	Laboratory/							
			greenhouse and	0	2.0	_	~	C	-	c
		٦Ę	field trials		0.0	t	า	7	_	>
		_	conducted							
		bio-efficacy								
		Monitoring of	Insect pests and							
		insect pests and	diseases	ON	3.0	2	c	2	_	0
		diseases	monitored							
Efficient	5.0	Timely submi-	On time	Date	2.0	31.3.2011				
function of		ssion of RFD	submission							
RFD system		Timely	On time	Date	3.0	31.3.2012				
		submission of	submission							
		results								
										7

Section 3: Trend values of the success indicators

Objective	Actions	Success Indicator	Unit	Actual	Actual	Target	Projected	Projected
				value for				
				2003-10	11-0107	71-1107	C1-7107	41-6107
Tobacco	Developing	Segregating materials,	Number	800	1050	1100	1100	1100
Cultivar	tobacco	promising recombinants,						
Improvement	varieties/	hybrids developed						
	hybrids	through conventional						
	possessing	breeding						
	higher leaf yield	Improved lines in	Number	201	219	220	220	220
	and resistance	replicated evaluation						
	to biotic and	trials						
	abiotic stresses	Advanced breeding lines	Number	10	12	8	12	10
	to stabilize	contributed for Multi-						
	productivity	location testing under						
		the AINRP(T) / varieties						
		identified or released						
	Tailoring of	Promising germplasm	Number	143	100	100	100	120
	tobacco plant	accessions, advanced						
	type for	breeding lines/hybrids						
	optimizing the	evaluated for seed yield						
	seed yield and	potential/ high seed						
	phyto-chemicals	oil/high protein/ high						
		solanesol / high nicotine						
		contents						
	Production and	Quantity produced and	kg	29,000	18,000	20,000	20,000	20,000
	distribution of	distributed						

	2450	100	50	80		10				30			120			9
	2,400	100	50	80		10				40			120			9
	2,350	150	20	80		10				20			100			9
	2,200	96	150	72		10				100			100			9
	2,000	171	96	75		10				100			100			9
	Number	Number	Number	Number		Number				Number			Number			Number
	Germplasm accessions maintained in all forms	No. of accessions characterized.	Number of accessions added to gene bank	Genotypes used for molecular	characterization/genome analysis	Molecular mapping	populations developed with reference to traits	viz., nicotine, solanesol	and ISNA	Somaclones of varieties VT 1158 and Kanchan	evaluated for yield and	virus tolerance under field condition	Seed sterile and non-	flowering tobacco clones	micropropagated	Transgenics and transplastomic lines
foundation seed of ruling tobacco varieties	Germplasm Resource	Management		Biotechnology for tobacco	improvement								1			

	0	9	9	2	5	5
	0	9	9	2	4	2
	2	9	9	2	2	4
	ĸ	9	10	2	4	4
	e.	9	9	2	2	2
	Number	Number	Number	Number	Number	Number
maintained and characterized	Technology interventions for production of healthy transplants	Technology interventions for input use efficiency	Production practices for advance breeding lines / varieties and cultural practices	Technology interventions developed	Tobacco zone-wise Resource utilization and adoption constraints	Zone-wise trends and economics of tobacco
	Healthy seedling production	Optimisation of water and nutrient use for productivity enhancement of different tobacco types	Evolving site- specific cultural management practices in different agro- ecological sub regions	Post-harvest product management (PHPM)	Analysis of socio-economics for	stratification and to formulate
	Development of agro-technology	for sustainable tobacco production and strengthening TOT				

appropriate Farm women empowered Number 40	25	support systems for TOT	activities Training Number 25	FLD's Number 10	Focus through print Number 42	Radio talks Number 12	Group Communication Number 4	methods	Mass Communication Number 4 methods	Technology Diagnostic Visits Number 12	<u> </u>	Alternative Identification of crops/ Number 7	<u>ک</u>	and non- FCV farming systems for	tobacco tobacco	practices in	different agro-	ecological sub	regions	niques	loi iiigilei developed hiomass and	seed vield	Identification of Chemicals/ oil evaluated Number 3	for alternative uses
50 50	4		28 30	10 8	46 45	12 15	5 5		5 5	12 15	9	7											3	
20	4		30	8	20	15	4		4	12	4	3								1			3	
20	4		30	10	20	15	5		5	12	5	3								1			3	

							1
m		en en	E	4	009	35	009
۳		2	3	æ	009	30	009
2		2	2	м	200	25	009
2		2	2	e.	200	25	1000
2		2	m m	m	200	25	006
Number		Number	Number	Number	Number	Number	No.
Diagnostic surveys made/Technology developed		Scientific interventions/ management options evaluated	Microbial cultures evaluated as bio- fertilizers	Management practices evaluated for tobacco chemical /biochemical quality	Samples tested for leaf quality and pesticide residues	Tobacco products tested for smoke constituents.	Genotypes/crosses screened
 Evaluation of soil fertility, water quality and plant 	nutrition constraints for tobacco and their	management. 2. Soil quality and nutrient use efficiency in relation to input	3. Characteriza- tion of soil biota and use of biofertilisers	4. Evaluation of tobacco leaf and product quality.		1	Screening for host plant resistance to
Management of resource constraints for	production efficiency and product quality						Integrated management of biotic

	I														
	4			•	4				9		31.3.13		31.3.14		
	4			•	4				9		31.3.12		31.3.13		
	4	4						7			31.3.11		31.3.12		
	9			Ц	n				6		ı		ı		
	9			Ц	n				6		ı				
	Number	No.						No.			Date		Date		
	Technologies developed Number		l aboratory/ greenbolise	Eaboratory/ greeninguse	and Held trials	collanciea			monitored	ווסווונסופמ	On time submission		On time submission		
insect pests and diseases	Development of IPM technology	Evaluation of	new molecules	and	formulations of	pesticides for	bio-efficacy	Monitoring of	insect pests and	diseases	Timely submiss-	ion of RFD	Timely	submission of	results
stresses											Efficient	function of	RFD system		

Section 4:

Description and Definition of Success Indicators and Proposed Measurement Methodology

Objective 1: Tobacco Cultivar Development

It is proposed to utilize both conventional and biotechnological means to develop tobacco cultivars/hybrids with higher productivity, quality and resistance to biotic and abiotic stresses. Germplasm management is aimed at acquisition, maintenance, evaluation and utilization of promising accessions in the development of improved cultivars for conventional and novel uses.

Objective 2: Development of agro-technology for sustainable tobacco production and strengthening TOT

Research is focused to produce healthy seedlings, optimisation of water and nutrient use for productivity enhancement of different tobacco types, evolving site-specific cultural management practices in different agro-ecological sub regions and post harvest crop management practices. Success indicators cover the number of technologies developed in each activity.

It is envisaged to strengthen extension through critical analysis of socio-economics, formulation of appropriate strategies, effective implementation of different technology outreach activities and evaluation & confirmation of technology performance by technology assessment. Success indicators cover tobacco zone-wise resource utilization and adoption constraints, trends and economics of tobacco cultivation, decision support systems for TOT, women empowerment, training, front-line demonstrations, print media coverage, radio talks, group and mass communication methods, diagnostic visits and on-farm trials

Objective 3: Identification of alternative crops and exploiting tobacco for alternative uses

Efforts are directed to identify alternative crops/farming systems for FCV and non- FCV tobacco and to develop package of practices in different agroecological sub regions and developing agro-techniques for higher biomass and seed yield.

It is envisaged to identify the potential phyto-chemicals/ seed oil and to promote their potential yield by suitable agro techniques to exploit tobacco for its non-conventional uses. Success indicators include identification of chemicals having potential for industrial /pharmaceutical applications, seed oil for edible

purpose and optimizing the agro-techniques to promote higher biomass and seed oil.

Objective 4: Management of resource constraints for production efficiency and product quality

It is envisaged to meet the objective by systematically diagnosing/ characterizing the resource (soil and water) constraints in terms of soil nutrient deficiency/ depletions, nutrient imbalances and excess, heavy metal accumulation, plant nutrient status and water deficits/excesses, and evaluating and identifying situation specific management options to promote resource conservation and efficient use. The success indicators cover number of diagnostic surveys made, scientific interventions/management options evaluated for their effects on soil quality and nutrient use efficiency, microbial cultures evaluated nutrient supplements, monitoring leaf as the quality/pesticide residues/ smoke constituents in tobacco grown in different production zones.

Objective 5: Development of Integrated management strategies for biotic stresses

With respect to integrated pest management, research efforts are focused on strengthening of components of IPM like host-plant resistance, need based chemical control, identification and effective utilization of bio-control agents, identification and evaluation of novel methods of pest population regulation and synthesis and demonstration of site specific IPM packages for which the performance indicators are genotypes/crosses screened for pest resistance, laboratory and field trial conducted for evaluation of new molecules/formulations, insect pests and diseases monitored and IPM technologies developed.

Section 5:

Specific Performance Requirements from other Departments

- Information on tobacco quality requirements of leaf from tobacco traders is essential to breed varieties that suit the domestic and international demand.
- Timely information on approved area for FCV tobacco production in AP and Karnataka are essential for Forecasting the production of the required foundation seed
- Evaluation of new molecules/formulations of pesticides for bio efficacy will depend upon the development and availability of new molecules/formulations from the industry and their suitability to tobacco as per international trade requirements