Firewall et VLAN

Damien Gros

CEA

11 mars 2019

Plan du cours

NAT

NAT Statique NAT Dynamique Port forwarding et Port mapping

Firewall

Plan du cours

NAT

NAT Statique NAT Dynamique Port forwarding et Port mapping

Firewal

L'histoire du NAT

- Manque d'adresses IPv4 public;
- Introduction des adresses dites privée
 - Adresses non-routées : si un routeur (autre que votre box/passerelle)
 voit une adresse IP, il droppe le paquet.
 - Une seule adresse publique héberge des milliers de machines derrière un équipement réseau.
- ► RFC 1918
- Network Address Translation

L'histoire du NAT

Adresses privées (non routées)

- ► 10.0.0.0_{/8}
- ► 192.168.0.0_{/16}
- ► 172.16.0.0_{/12}

L'histoire du NAT

- ▶ Que se passe-t'il si on utilise une autre plage d'adresse pour le NAT ?
- ▶ Rien : si ce n'est que vous ne pourrez plus aller sur certains sites.

NAT Statique

- ► Association entre une adresse public (celle du routeur) et une adresse privée
- Tout se fait au niveau du routeur
- Remplacement dans l'entête IP de l'adresse source (adresse privée) par l'adresse publique (paquets sortant)
- ► Remplacement dans l'entête IP de l'adresse destination (adresse publique) par l'adresse privée (paquets entrant)
- Utilisation d'ARP pour renvoyer le paquet à la bonne personne sur le réseau privée.

NAT Dynamique

- Aussi appelé IP masquerading
- Association entre : 1 adresse publique et N adresses privées
- Modification par le routeur
 - Adresse IP des entêtes (comme pour le NAT statique)
 - Modification des ports! : PAT Port Address Translation
- Utilisation des ports (attribution de ses ports par le routeur, donc différents de ceux utiliser par les clients/serveurs) pour se souvenir de qui a fait la demande de connexion

Port forwarding et Port mapping

- ▶ Port forwarding :
 - Redirige un paquet vers une machine en fonction du port de destination
- Port mapping
 - Procédé similaire que le port forwarding
 - ► Redirige en plus vers un nouveau port (80 vers 8080 par exemple)

Plan du cours

NAT

NAT Statique NAT Dynamique Port forwarding et Port mapping

Firewall

Firewall

- ► Les pare-feux!
- C'est un concept (et non un logiciel ou un matériel)
- ▶ Définit une politique d'accès aux ressources sur le réseau
- ▶ Un vrai pare-feu agit sur les couches 2, 3 et 4 du modèle OSI.
- ▶ Pour les autres couches : pare-feu applicatif, socks, de proxy, etc.

Portée

- Évolution des pare-feux dans le temps :
 - Stateless firewall : pare-feu sans état, analyse les paquets indépendamment les uns des autres;
 - Statefull firewall : pare-feu avec état, prend en compte les séquences de paquets (communication TCP)
 - ▶ Pare-feu Applicatif : filtre les couches de 5 à 7.
 - ▶ Pare-feu identifiant : filtre en fonction de l'utilisateur.
- ▶ On s'intéresse aux pare-feux de couches 2, 3 et 4.

Pare-feux de couche 2 à 4

- Versions libres :
 - ▶ NetFilter/Iptables : pare-feu libre des noyaux linux 2.4 et 2.6 et 3.X
 - Packet Filter (PF): pare-feu libre OpenBSD;
 - ▶ IPFilter (IPF) : pare-feu libre BSD et Solaris 10.
- Versions propriétaires :
 - Checkpoint Firewall
 - Cisco Pix
 - Juniper Screen OS

Pare-feu et routeur

- Un pare-feu peut diviser un réseau en plusieurs sous-réseaux et y appliquer des politiques de sécurité différentes :
 - Il est donc capable de router les paquets entre différentes parties du réseau
- Il dessine des zones différentes
- Zones sécurisées complètement protégées
 - Zones privées, intranet
- Zones hébergeant des serveurs accessibles depuis Internet
 - Protection différente d'un réseau local, exposition aux attaques extérieures
 - Zones démilitarisées (DMZ) : zones entre Internet et le réseau local, où sont hébergés les services exposés à Internet.

Architecture réseau

schéma PF 1

Les rôles d'un pare-feu

- ▶ Être un point de passage obligatoire pour :
 - vérifier si les règles de sécurité spécifiées sont appliquées;
 - contrôler le trafic entre deux zones du réseau
 - auditer/traçer de façon centrale ce trafic;

Politique de sécurité

La seule politique de sécurité viable : On interdit tout et on autorise aux coups par coups

Politique de sécurité

Tout ce qui n'est pas explicitement autorisé dans la politique est donc interdit

Filtrage des paquets

- Chaque paquet IP contient des informations que le pare-feu va extraire et traiter :
 - Adresse de l'expéditeur
 - Adresse du destinataire
 - ▶ Port TCP/UDP du service demandé
 - Port TCP/UDP du poste demandeur
 - ▶ le FLAGS (pour TCP) : qui précise su le paquet est une initialisation de connexion, un ACK, ou tout autre chose.

Netfilter/iptables

Netfilter:

- ► Mécanisme du noyau Linux;
- Ensemble de 5 crochets (ou chaines);
- ▶ Utilisation des informations lorsqu'un paquet traverse la pile réseau iptables :
 - ▶ Interface de commande
 - ▶ Permet la communication avec le module Netfilter;
 - ▶ Mais ce n'est pas le seul, il existe aussi nufw par exemple.

Vue de netfilter

schéma PF 2

Types de tables

- Iptables utilise des tables pour gérer les connexions;
- ▶ 3 grandes tables :
 - Filter
 - NAT
 - MANGLE
- ▶ Ces tables définissent les crochets utilisables dans les scripts iptables

Table filter

- ▶ 3 chaînes :
 - ► INPUT : paquets rentrant vers des processus locaux ;
 - ► OUTPUT : paquets sortants des processus locaux
 - ► FORWARD : paquets passant d'une interface à une autre

schéma PF 3

Table NAT

- ▶ 3 chaînes :
 - ▶ PREROUTING : paquets rentrants dans la couche réseau
 - ▶ POSTROUTING : paquets sortants de la couche réseau
 - OUTPUT : paquets sortants des processus locaux

schéma PF 4

Table MANGLE

- ▶ Mangle : Mutilation des paquets...
- ► Application : Qualité de service (par exemple)

Iptables

toutes les lignes commences par la commande iptables

- Manipulation des tables : -t nom_table
- ► Cible (ou action) : DROP, ACCEPT, REJECT
- Manipulation des chaines : -F (flush), -X (eXtra), -P (policy), -N new, -A Append, -D delete, -L liste
- Critères : -i input, -o output, -d destination, -p protocole, -sport source port

Exemples

```
iptables -F
iptables -X
iptables -t nat -F
iptables -t nat -X
iptables -P INPUT DROP
iptables -P FORWARD DROP
iptables -P OUTPUT DROP
iptables -A OUTPUT -p udp -o eth1 -sport 69 -j ACCEPT
iptables -A INPUT -p tcp -i eth0 -dport 22 -j ACCEPT
```

Suivi de connexion

- Module noyau nommé conntrack;
- Connexions:
 - ▶ NEW : premier paquet d'une nouvelle connexion pas encore établie
 - ► ESTABLISHED : connexion déjà enregistré dans le noyau
 - RELATED (exemple FTP): pour une nouvelle connexion créée par une connexion plus ancienne et déjà établie
 - ► INVALID

IP masquerading

- ► Table NAT
- Voie montante
- Voie descendante
- Modules NAT
- ▶ Nécessite l'activation de l'ip forward dans le noyau

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

IP masquerading

- ▶ La commande qui suit active le NAT pour toutes les machines situées derrière l'interface ethernet eth0 et leur attribue l'adresse IP de la passerelle pour toute connexion sortante :
- ▶ iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
- ▶ La commande qui suit active le NAT pour toutes les machines situées derrière l'interface ethernet eth0 et leur attribue l'adresse IP routable 192.168.0.1 pour toute connexion sortante :
- ▶ iptables -t nat -A POSTROUTING -o eth0 -j SNAT -to 192.168.0.1
- ▶ But du TP : vous faire comprendre cette notion de masquerading!