Chapter 4

Date: Mar 27 Made by Eric

In this note, \mathbb{Z}_n is always a ring, containing congruence classes of \equiv_n , or the cosets of $\mathbb{Z}/n\mathbb{Z}$ if you wish

In this note, p and for each $i \in \mathbb{Z}$, p_i is always a prime

Definitions and Theorems

Definition 1. Let $[a] \in \mathbb{Z}_n$ be a congruence class

[b] is the **inverse** of
$$[a]$$
, if $[a][b] = [1]$

Definition 2. A class $[a] \in \mathbb{Z}_n$ is a **unit** if [a] have an inverse

Definition 3. Euler's function $\varphi: \mathbb{N} \to \mathbb{N}$ is defined by $\varphi(x) = |\{y: y \le x | gcd(x,y) = 1\}|$

Definition 4. Let $R \subseteq \mathbb{Z}$. Let $\psi_n : R \to U_n$ defined by $\psi_n(x) = [x]$

R is a reduced set of residues mod (n) if ψ_n is bijective

Definition 5. Let $A \subseteq \mathbb{Z}$. Let $\psi_n : A \to \mathbb{Z}_n$ defined by $\psi_n(x) = [x]$

A is a completed set of residues mod (n) if ψ_n is bijective

Lemma 1. [a] is a unit in \mathbb{Z}_n , if and only if gcd(a,n)=1

Proof.
$$[a]$$
 is a unit in $\mathbb{Z}_n \iff \exists [b] \in \mathbb{Z}_n, [a][b] = [1] \iff \exists [b] \in \mathbb{Z}_n, [ab] = 1 \iff \exists b \in \mathbb{Z}, ab \equiv_n 1 \iff \gcd(a,n) = 1$

Theorem 2. Let U_n be the set of units $U_n = \{[x] \in \mathbb{Z}_n | \exists y \in \mathbb{Z}_n, xy = 1\}$

 U_n form a group under multiplication

Proof. Let $x, z \in U_n$ and xy = 1 = zr

Because \mathbb{Z}_n is commutative, so (xz)(yr)=(xy)(zr), which give us $xy\in U_n$

$$1 \in \mathbb{Z}_n$$

Let $x \in U_n$ and xy = 1

$$x^{-1}y^{-1} = (yx)^{-1} = 1$$

Corollary 2.1. $\forall a: gcd(a,n)=1, a^{\varphi(n)}\equiv_n 1$

Proof. We now prove $|U_n| = \varphi(n)$

Let
$$f: S = \{y: y < n | gcd(y, n) = 1\} \rightarrow U_n$$
 defined by $f(y) = [y]$

$$\forall y \in S, gcd(y, n) = 1 \implies [y] \in U_n$$

$$f(y) = f(x) \implies [y] = [x] \implies n|y-x \implies y = x$$
 Because $(y, x < n)$

For each $[x] \in U_n$, we do division algorithm on x with n to have a remainder r < n, such that [r] = [x], so f(r) = n (done)

$$\gcd(a,n)=1 \implies [a] \in U_n \implies [a]^{|U_n|}=[1] \implies [a]^{\varphi(n)}=[1] \implies a^{\varphi(n)}\equiv_n 1$$

Lemma 3. Let $n = p^e, \exists e \in \mathbb{N}$

$$\varphi(n) = p^e - p^{e-1}$$

Proof. There are exactly $p^{e-1}-1$ natural numbers $p,2p,\ldots,(p^{e-1}-1)p$ smaller than n and is divided by p

So there are exactly $p^e-1-(p^{e-1}-1)=p^e-p^{e-1}$ natural numbers samller than n is not divided by p

a < n and p do not divide $a \iff a < n, gca(a, n) = 1$

Lemma 4. If A is a complete set of residues mod (n), and if m and c are integers with m co-prime to n,then the set $Am + c = \{am + c | a \in A\}$ is also a completed set of residues mod (n)

Proof.
$$gcd(m,n) = 1 \implies m \in U_n \implies [m^{-1}] \in \mathbb{Z}_n$$

Because A is a complete set of residues mod (n), $\forall [x] \in \mathbb{Z}_n, \exists a \in A, [a] = [m^{-1}(x-c)]$

$$[am] = [a][m] = [m^{-1}(x-c)][m] = [x-c]$$

$$[am + c] = [am] + [c] = [x - c] + [c] = [x]$$

So
$$\forall [x] \in \mathbb{Z}_n, \exists a \in A, [am+c] = [x]$$

Let $\psi_n: Am + c \to \mathbb{Z}_n$ be defined by $\psi_n(am + c) = [am + c]$

 ψ_n is onto for we know

$$|Am + c| = |A| = |\mathbb{Z}_n|$$

Theorem 5. Let n, m be coprime

$$\varphi(nm) = \varphi(n)\varphi(m)$$

Proof. For all natural numbers q smaller than mn, we write q = xm + y

$$gcd(q, nm) = 1 \iff gcd(q, n) = 1 = gcd(q, m)$$

 $gcd(q, m) = 1 \iff gcd(xm + y, m) = 1 \iff gcd(y, m) = 1$

There are $\varphi(m)$ number amount of y we can choose so that gcd(y,m)=1, we let these y form a set $\{y_1,\ldots,y_{\varphi(m)}\}$

Let
$$X = \{x \in \mathbb{Z} | 0 \le x < n\}$$

For each fixed y, Xm + y is a completed set of residues mod (n)

$$gcd(q, n) = 1 \iff gcd(xm + y, n) = 1$$

For each fixed y, gcd(xm + y, n) = 1 have $\varphi(n)$ solution

Notice
$$xm + y = x'm + y' \iff x = x'$$
 and $y = y'$

Let $R \subseteq X$ and R be a reduced set of residues mod (n)

So there are
$$|\{y_1,\ldots,y_{\varphi(m)}\}| \times |R| = \varphi(m)\varphi(n)$$
 solutions

Theorem 6. Let $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$, where p_i are distinct

$$\varphi(n) = (p_1^{e_1} - p_1^{e_1-1}) \cdots (p_k^{e_k} - p_k^{e_k-1})$$

Proof. We prove by induction

$$\begin{array}{c} \text{Base step: } \varphi(p_1^{e_1}p_2^{e_2}) = (p_1^{e_1} - p_1^{e_1-1})(p_2 - p_2^{e_2-1}) \\ \varphi(p_1^{e_1}p_2^{e_2}) = \varphi(p_1^{e_1})\varphi(p_2^{e_2}) = (p_1^{e_1} - p_1^{e_1-1})(p_2 - p_2^{e_2-1}) \\ \text{Induction step: } \varphi(p_1^{e_1} \cdots p_n^{e_n}) = (p_1^{e_1} - p_1^{e_1-1}) \cdots (p_n^{e_n} - p_n^{e_n-1}) \implies \\ \varphi(p_1^{e_1} \cdots p_{n+1}^{e_{n+1}}) = (p_1^{e_1} - p_1^{e_1-1}) \cdots (p_{n+1}^{e_{n+1}} - p_{n+1}^{e_{n+1}-1}) \\ \varphi(p_1^{e_1} \cdots p_{n+1}^{e_{n+1}}) = \varphi(p_1^{e_1} \cdots p_n^{e_n})\varphi(p_{n+1}^{e_{n+1}}) = (p_1^{e_1} - p_1^{e_1-1}) \cdots (p_n^{e_n} - p_n^{e_n-1})(p_{n+1}^{e_{n+1}} - p_{n+1}^{e_{n+1}-1}) \\ = (p_1^{e_1} - p_1^{e_1-1}) \cdots (p_{n+1}^{e_{n+1}} - p_{n+1}^{e_{n+1}-1}) \end{array}$$

Exercises

5.3

Show that if R is a reduced set of residues mod (n), and if an integer a is a unit mod (n), then the set $aR = \{ar | r \in R\}$ is also a reduced set of residues mod (n)

Proof. We now prove $\psi_n[aR] \subseteq U_n$

$$\psi_n[aR] \subseteq U_n \iff \forall ar \in aR, [ar] \in U_n$$

Because a is a unit mod (n) and R is a reduced set of residues mod (n) , so we have $gcd(a,n)=1$ and $gcd(r,n)=1$, which give us $gcd(ar,n)=1$

$$gcd(ar, n) = 1 \implies [ar] \in U_n(done)$$

We now prove $|aR| = |U_n|$

Let $f: R \to aR$ be defined by f(r) = ar

$$f(r)=f(r') \implies ar=ar' \implies a(r-r')=0 \implies r=r'$$
 Notice f is from subset of $\mathbb Z$ to $\mathbb Z$ $\forall ar\in aR, f(r)=ar$

f is a one-to-one and onto function from R to aR, so $|aR| = |R| = |U_n|$ (done)

5.6

Compute $\varphi(42)$

Proof.
$$\varphi(42) = \varphi(2)\varphi(3)\varphi(7) = 1 * 2 * 6 = 12$$

5.8

Prove that for each integer m, there are only finitely many integer n satisfy $\varphi(n)=m$

Proof. We prove $\exists N \in \mathbb{N}, \forall n > N, \varphi(n) > m$

Let p_1, \ldots, p_{k-1} be all primes smaller than m, p_k be the smallest prime bigger than m

We pick $N=p_1^{e_1}\cdots p_k^{e_k}$, such that for all $1\leq i\leq k$, $p_i^{e_i}-p_i^{e_i-1}>m$

Let n > N

If the prime factorization of n contains only p_1, \ldots, p_k , then there exists $1 \leq i \leq k$, such that $e_i' > e_i$ and $p_i^{e_i'}$ is in the prime factorization, then $\varphi(p_i^{e_i'})|\varphi(n)$, where $\varphi(p_i^{e_i'}) = p_i^{e_i'} - p_i^{e_i'-1} > p_i^{e_i} - p_i^{e_i-1} > m$

If the prime factorization of n contains $p_l^{e_l}$, where $p_l>p_i, \forall 1\leq i\leq k$, which give us $\varphi(n)>m$

 $arphi(p_l^{e_l})|arphi(n)$, where the smallest $arphi(p_l^{e_l})=p_l-1>m$, which give us arphi(n)>m