Geometric Algebra HW 4 (Geometric Product in \mathbb{R}^3) MultiV 2021-22 / Dr. Kessner

1. Let
$$w = e_1 + e_3$$
. Let $w' = (e_2e_1)w(e_1e_2)$

Show that
$$w' = -e_1 + e_3$$
.

Draw w and w'. Verify that w' is the result of reflecting w in e_1 , and then e_2 . Also verify that this equivalent to rotation by π in the e_1e_2 plane.

2. Let $w = e_1 + e_3$. Let $u = \frac{w}{\sqrt{2}}$ and $v = e_1$. Note that u and v are unit vectors in the e_1e_3 plane, and the angle between the two vectors is $\frac{\pi}{4}$.

Let
$$w' = (vu)w(uv)$$
.

Show that
$$w' = e_1 - e_3$$
.

Draw w and w'. Verify that w' is the result of rotating w by $\frac{\pi}{2}$ in the e_1e_3 plane.

3. Let $w = e_1 + e_3$. Find two vectors u and v to represent rotation by $-\frac{\pi}{4}$ in the e_2e_3 plane. (Clockwise 45° if you're on the positive e_1 axis looking at the origin). Let w' = (vu)w(uv).

Show that
$$w' = e_1 + e_2$$
.