hy.	Page No.: Pate: YOUVA
	Experiment: 04
¥	Aim: To perform linear regression in Python.
*	Librariest- Numpy, matplot lib
*	Theory:
,	Regression searches for relationship among variables. In and other words, we need to find a function
	that make words, we need to give a guildren of
	that maps some features /variables to others sufficiently well.
,	The dependent features are called as dependent variables,
	outputs, responses.
	The independent features are called as independent
	variables, input, predictors.
	Algorithm.
	least square method- finding best fit line
-	Least squares is a statistical method used to
	determine the best fit dine or the regression line
	by minimizing the sum of squares created by a mathematical function.
	The "equare" function refers to squaring the distance
	between the data point & regression line.
-	between the data point & regression line. The line with minimum value of the sum
	of square is the best fit regression line.
4	Regression line: y=mx+c
	here, y= dependent variable
	2: Independent variable; c=y-intercept.
	$ \frac{\dot{x}: \text{ Independent } \text{ variable } ; c = y - \text{ intercept.}}{\underbrace{(x - \bar{x})(y - \bar{y})}} $ $ \frac{\dot{z}}{\dot{z}} (x - \bar{x})^2 $
	٤ (٧-٦)

```
import numpy as np
import matplotlib.pyplot as mtplt
def estimate_coeff(p, q):
# Here, we will estimate the total number of points or observation
    n1 = nmp.size(p)
# Now, we will calculate the mean of a and b vector
    m_p = nmp.mean(p)
    m_q = nmp.mean(q)
# here, we will calculate the cross deviation and deviation about a
    SS_pq = nmp.sum(q * p) - n1 * m_q * m_p
    SS_pp = nmp.sum(p * p) - n1 * m_p * m_p
# here, we will calculate the regression coefficients
    b_1 = SS_pq / SS_pp
    b_0 = m_q - b_1 * m_p
    return (b_0, b_1)
def plot_regression_line(p, q, b):
# Now, we will plot the actual points or observation as scatter plot
    mtplt.scatter(p, q, color = "m",
            marker = "o", s = 30)
# here, we will calculate the predicted response vector
    q_pred = b[0] + b[1] * p
# here, we will plot the regression line
    mtplt.plot(p, q_pred, color = "g")
# here, we will put the labels
    mtplt.xlabel('p')
    mtplt.ylabel('q')
# here, we will define the function to show plot
    mtplt.show()
def main():
# entering the observation points or data
    p = np.array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19])
    q = np.array([11, 13, 12, 15, 17, 18, 18, 19, 20, 22])
# now, we will estimate the coefficients
    b = estimate_coeff(p, q)
    print("Estimated coefficients are :\nb_0 = \{\} \setminus \text{nb}_1 = \{\}".format(b[0], b[1]))
# Now, we will plot the regression line
    plot_regression_line(p, q, b)
```

Estimated coefficients are : b_0 = -0.4606060606060609 \ b_1 = 1.16969696969697

Colab paid products - Cancel contracts here

✓ 0s completed at 12:19 PM

