

Student Number

Semester 2 Assessment, 2018

School of Mathematics and Statistics

MAST20022 Group Theory and Linear Algebra

Writing time: 3 hours

Reading time: 15 minutes

This is NOT an open book exam

This paper consists of 5 pages (including this page)

Authorised Materials

- Mobile phones, smart watches and internet or communication devices are forbidden.
- Calculators, tablet devices or computers must not be used.
- No handwritten or print materials may be brought into the exam venue.

Instructions to Students

- You must NOT remove this question paper at the conclusion of the examination.
- The paper is in two sections. The questions in section A are shorter and more routine than those in Section B. It is recommended that students attempt the questions in Section A first. You should attempt all questions.
- Number the questions and question parts clearly. Start each question on a new page.
- Please give complete explanations in all questions and show all your calculations and working. Give careful statements of any results from the notes or lectures that you use.
- There are 14 questions with marks as shown. The total number of marks available is 95.

Instructions to Invigilators

• Students must NOT remove this question paper at the conclusion of the examination.

MAST20022

Semester 2, 2018

Section A: 50 marks total

Question 1 (5 marks)

- (a) Find the multiplicative inverse of $[9]_{14}$ in $\mathbb{Z}/14\mathbb{Z}$.
- (b) What can be said about the multiplicative inverse of $[6]_{14}$ in $\mathbb{Z}/14\mathbb{Z}$?
- (c) Using the Euclidean Algorithm, find gcd(299, 377).

Question 2 (5 marks)

- (a) Show that $\mathbb{Q}(i) = \{a + bi \mid a, b, \in \mathbb{Q}\} \subset \mathbb{C}$ is a field (using the usual operations on \mathbb{C}). (Hint: You may use that \mathbb{C} is a field.)
- (b) (i) Give the definition of what it means to say that a field is algebraically closed.
 - (ii) Show that the field $\mathbb{Q}(i)$ is not algebraically closed.

Question 3 (5 marks)

Consider the matrix $M = \begin{bmatrix} i & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & i \end{bmatrix} \in M_3(\mathbb{C}).$

- (a) Find the minimal polynomial of M.
- (b) Use your answer for part (a) to determine whether M is diagonalizable. (Be sure to give a justification.)

Question 4 (5 marks)

Find all possible Jordan normal forms (up to permutation of Jordan blocks) for a matrix whose characteristic polynomial is $(X+2)^2(X-5)^3$

Question 5 (5 marks)

Let V be an inner product space and $f: V \to V$ a linear transformation.

- (a) Give the definition of the adjoint f^* .
- (b) Show that if $f = f^*$, then all eigenvalues of f are real.

MAST20022 Semester 2, 2018

Question 6 (5 marks)

Let V be a vector space and $U, W \leq V$ two subspaces of V.

(a) Give the definition of what it means to say that $V = U \oplus W$.

(b) Suppose that $V = U \oplus W$. Show that for all $v \in V$ there exist unique vectors $u \in U$ and $w \in W$ such that v = u + w.

Question 7 (5 marks)

Let G be a group and $H, K \leq G$ two subgroups.

- (a) Prove that $H \cap K$ is a subgroup of G.
- (b) Give and example to show that $H \cup K$ need not be a subgroup of G.

Question 8 (5 marks)

For each of the following pairs decide whether or not the two groups are isomorphic. You should justify your answers.

(a)
$$(\mathbb{F}_5^{\times}, \times)$$
 and $(\mathbb{Z}/5\mathbb{Z}, +)$

(c)
$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$$
 and D_5

(b)
$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$$
 and $\mathbb{Z}/6\mathbb{Z}$

(d)
$$\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z})$$
 and $\mathbb{Z} \times (\mathbb{Z}/4\mathbb{Z})$

Question 9 (5 marks)

- (a) Let G be a finite group and $\varphi: G \to H$ a homomorphism. Prove that the order of $\varphi(G)$ divides the order of G.
- (b) How many homomorphisms are there from $\mathbb{Z}/3\mathbb{Z}$ to $S_3 \times \mathbb{Z}$? Be careful to justify your answer.

Question 10 (5 marks)

Let $s, r \in D_6$ be the symmetries of a regular hexagon corresponding to reflection across the line shown and rotation by $2\pi/3$ respectively. Consider the subgroup $H \leq D_6$ generated by $\{s, r\}$.

- (a) Find the orbit and stabilizer of the vertex A under the action of H. (Label the vertices of the hexagon A, B, C, D, E, F clockwise from the vertex A shown.)
- (b) Is the action of H transitive?

Section B: 45 marks total

Question 11 (10 marks)

- (a) State the Orbit-Stabilizer relation.
- (b) Let G be a group of size 16 and X a set having 25 elements. Show that every action of G on X has a fixed point.
- (c) Suppose that a finite group G acts non-trivially on a finite set X. Let n = |G| and r = |X|. Prove that if n > r! then G has a normal subgroup $N \triangleleft G$ satisfying both $N \neq \{e\}$ and $N \neq G$.

Question 12 (10 marks)

Let V be a K-vector space and let $f: V \to V$ be a linear transformation.

- (a) Give the definition of an f-invariant subspace of V.
- (b) Let $p(X) \in K[X]$. Prove that $W = \ker(p(f))$ is an f-invariant subspace of V.
- (c) Suppose now that p(f) = 0 and that $p(X) = q_1(X)q_2(X)$ for some relatively prime $q_1(X), q_2(X) \in K[X]$. Show that $V = (\ker(q_1(f))) \oplus (\ker(q_2(f)))$.

Question 13 (10 marks)

- (a) Let V be an inner product space. Show that if $f: V \to V$ is a normal linear transformation, then f(v) = 0 if and only if $f^*(v) = 0$.
- (b) State the Spectral Theorem for linear transformations on a finite dimensional inner product space.
- (c) Let $A = \begin{bmatrix} 2 & i \\ i & 2 \end{bmatrix}$.
 - (i) Show that A is normal.
 - (ii) Find a unitary matrix U such that U^*AU is diagonal.
 - (iii) Show that there exists a matrix B such that $B^2 = A$.

MAST20022 Semester 2, 2018

Question 14 (15 marks)

The set

$$Q = \{1, -1, i, -i, j, -j, k, -k\}$$

has the structure of a group in which 1 is the identity element and the multiplication satisfies:

$$i^2 = j^2 = k^2 = -1,$$
 $(-1)^2 = 1$
 $ij = k,$ $jk = i,$ $ki = j$
 $-i = (-1)i,$ $-j = (-1)j,$ $-k = (-1)k$

(You do not have to prove that this is a group.)

- (a) Show that ji = -k in Q.
- (b) Find the order of each element in Q.
- (c) Is Q isomorphic to D_4 ? Justify your answer.
- (d) Calculate the centre Z(Q) of Q.
- (e) Determine which of the following groups is isomorphic to the quotient Q/Z(Q):
 - (i) $\mathbb{Z}/2\mathbb{Z}$

(iii) $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$

(ii) $\mathbb{Z}/4\mathbb{Z}$

(iv) $\mathbb{Z}/8\mathbb{Z}$

End of Exam—Total Available Marks = 95