Chapter 1

Introduction

blah, blah, blah

Chapter 2

Modelling Sequences

2.1 Random Processes

Consider, in general terms, a random process R that generates a sequence of variables, R_1, R_2, R_3, \ldots , where the index i gives the discrete stage in the sequence, and each variable R_i randomly takes a value $r_i \in \mathcal{R}$. Then, for some arbitrary sequence length n, we define

$$\vec{\mathbf{R}}_n = (R_1, R_2, \dots, R_n) \tag{2.1}$$

to be a length-n sequence of random variables, i.e. $|\overrightarrow{\mathbf{R}}_n| = n$, and further define

$$\overrightarrow{\mathbf{r}}_n = (r_1, r_2, \dots, r_n) \in \mathcal{R}^n \tag{2.2}$$

to be a corresponding length-n sequence of values. The probability (for a discrete-value process) or probability density (for a continuous-value process) of a given sequence $\overrightarrow{\mathbf{r}}_n$ is then defined as

$$P(\overrightarrow{\mathbf{R}}_{n} = \overrightarrow{\mathbf{r}}_{n}) = P(R_{1} = r_{1}, \dots, R_{n} = r_{n}) = p(r_{1}, \dots, r_{n}).$$
 (2.3)

Hence, note that if R is a discrete-value process then we must have

$$\sum_{\overrightarrow{\mathbf{r}}_n \in \mathcal{R}^n} P(\overrightarrow{\mathbf{R}}_n = \overrightarrow{\mathbf{r}}_n) = \sum_{r_1 \in \mathcal{R}} \cdots \sum_{r_n \in \mathcal{R}} p(r_1, \dots, r_n) = 1.$$
 (2.4)

Alternatively, if R is a continuous-value process, then we must similarly have

$$\int_{\mathcal{R}^n} P(\overrightarrow{\mathbf{R}}_n = \overrightarrow{\mathbf{r}}_n) d\overrightarrow{\mathbf{r}}_n = \int_{\mathcal{R}} \cdots \int_{\mathcal{R}} p(r_1, \dots, r_n) dr_1 \cdots dr_n = 1. \quad (2.5)$$

In other words, given the sequence length n, the set \mathbb{R}^n of all possible sequences $\overrightarrow{\mathbf{r}}_n$ covers the entire probability space.

This latter property causes modelling problems if we do not know in advance the exact length of a sequence; for example, the set of all length-1 and length-2 sequences already covers twice the entire probability space. In practice, suppose we have observed a given sequence $\overrightarrow{\mathbf{r}}_n$. How do we know if the underlying process R has terminated, or will instead continue to generate another observed value r_{n+1} , leading to the extended sequence $\overrightarrow{\mathbf{r}}_{n+1}$? Similarly, how do we know that the first observed value r_1 was not in fact part of a longer, unobserved sequence of values ..., r_{-2} , r_{-1} , r_0 ?

In order to handle such difficulties, we distinguish between a so-called *in-complete* sequence $\overrightarrow{\mathbf{r}}_n$, and a *complete* sequence $<\overrightarrow{\mathbf{r}}_n>$ that has definite stages of initiation and termination. Thus, we see that each length-2 incomplete sequence starts with a length-1 incomplete sequence, so that measuring the set of all length-1 and length-2 incomplete sequences amounts to double counting.

A complete sequence may be specified by introducing indicator variables that define the start and end of the sequence. Thus, indicator I_0 that takes a value of 1 if the sequence starts at stage 0 (i.e. just prior to value r_1 in the complete sequence), or a value of 0 if it does not. Similarly, indicator T_{n+1} that takes a value of 1 if the sequence terminates at stage n+1 (i.e. just after value r_n in the complete sequence), or a value of 0 if it does not. As one consequence, we may now also consider the two partially complete sequences, namely $\langle \vec{\mathbf{r}}_n \rangle$, which was initiated at stage 0 but not yet terminated (i.e. $I_0 = 1$ but $T_{n+1} = 0$), and $\vec{\mathbf{r}}_n \rangle$, which was terminated at stage n+1 but not initiated at stage 0 (i.e. $T_{n+1} = 1$ but $I_0 = 0$). As another consequence, these definitions of the indicator variables permit empty, or length-0, sequences. If this is not desirable, then we could replace indicators I_0 and I_{n+1} by new indicators I_1' and I_n' , respectively. Then I_1' takes the value 1 (or 0) if I_1 is (or is not) the first observation in a complete sequence, and I_n' takes the value 1 (or 0) if I_n is (or is not) the final observation in the complete sequence.

The probability or probability density of a given complete sequence $<\overrightarrow{\mathbf{r}}_n>$ is now defined as

$$P(\langle \overrightarrow{\mathbf{r}}_n \rangle) = P(I_0 = 1, R_1 = r_1 \dots, R_n = r_n, T_{n+1} = 1).$$
 (2.6)

Hence, for a discrete-value process we now obtain

$$\sum_{\vec{\mathbf{r}}_n \in \mathcal{R}^n} P(\langle \vec{\mathbf{r}}_n \rangle) = P(I_0 = 1, T_{n+1} = 1) \doteq P(N = n), \qquad (2.7)$$

where we have introduced the random variable N to denote the length of an arbitrary complete sequence. For the corresponding continuous-value process, we likewise deduce that

$$\int_{\mathcal{R}^n} P(\langle \vec{\mathbf{r}}_n \rangle) d\vec{\mathbf{r}}_n = P(I_0 = 1, T_{n+1} = 1) \doteq P(N = n). \quad (2.8)$$

We therefore deduce that the set $\mathcal{R}^* = \bigcup_{n=0}^{\infty} \mathcal{R}^n$ of all complete sequences of arbitrary length covers the entire probability space exactly once, since for the

discrete-value case we have

$$\sum_{\langle \overrightarrow{\mathbf{r}}_* \rangle \in \mathcal{R}^*} P(\langle \overrightarrow{\mathbf{r}}_* \rangle) = \sum_{n=0}^{\infty} \sum_{\overrightarrow{\mathbf{r}}_n \in \mathcal{R}^n} P(\langle \overrightarrow{\mathbf{r}}_n \rangle)$$
$$= \sum_{n=0}^{\infty} P(N=n) = 1, \qquad (2.9)$$

and for the continuous-value case we have

$$\int_{\mathcal{R}^*} P(\langle \overrightarrow{\mathbf{r}}_* \rangle) d\overrightarrow{\mathbf{r}}_* = \sum_{n=0}^{\infty} \int_{\mathcal{R}^n} P(\langle \overrightarrow{\mathbf{r}}_n \rangle) d\overrightarrow{\mathbf{r}}_n$$
$$= \sum_{n=0}^{\infty} P(N=n) = 1.$$
 (2.10)

2.2 Markov Processes

In the previous section we defined random processes and the sequences they generate. It is generally assumed that a random process R obeys strict causality, such that the values generated by the process form a temporal sequence, where the distribution of values for variable R_i , at stage i, depends only upon the values generated previously in the sequence at stages $i-1, i-2, \ldots, 1$. In addition, for a complete sequence the distribution of the variable R_1 at the initial stage depends strongly upon being first in the sequence, and likewise the distribution of the variable R_n , for a length-n sequence, depends strongly upon both the past values in the sequence and on the fact that it is the final stage.

Causality therefore indicates that a probability model of the sequences generated by a random process R can be factored in terms of conditioning, at each stage i, the random variable R_i on the values of the previous variables $R_{i-1}, R_{i-2}, \ldots, R_1$. Thus, for any given complete sequence $\langle \overrightarrow{\mathbf{r}}_n \rangle$, we obtain the model

$$P(\langle \overrightarrow{\mathbf{r}}_{n} \rangle) = P(I_{0} = 1) P(R_{1} = r_{1} \mid I_{0} = 1)$$

$$P(R_{2} = r_{2} \mid R_{1} = r_{1}, I_{0} = 1) \cdots$$

$$P(R_{n} = r_{n} \mid R_{n-1} = r_{n-1}, \dots, R_{1} = r_{1}, I_{0} = 1)$$

$$P(T_{n+1} = 1 \mid R_{n} = r_{n}, \dots, R_{1} = r_{1}, I_{0} = 1)$$

$$= P(I_{0} = 1) \prod_{i=1}^{n} P(R_{i} = r_{i} \mid \overrightarrow{\mathbf{R}}_{i-1} = \overrightarrow{\mathbf{r}}_{i-1}, I_{0} = 1)$$

$$P(T_{n+1} = 1 \mid \overrightarrow{\mathbf{R}}_{n} = \overrightarrow{\mathbf{r}}_{n}, I_{0} = 1).$$
(2.12)

Observe that we may adjust this model to allow for partially complete or incomplete sequences by modifying the corresponding boundary conditions I_0 and T_{n+1} .

In practice, this factored model is usually simplified further by limiting the conditional dependency on past values to a small number. In particular, one might assume the Markov property, such that the value at any stage i depends only upon the immediate past value at stage i-1, namely

$$P(\langle \overrightarrow{\mathbf{r}}_{n} \rangle) = P(I_{0} = 1) P(R_{1} = r_{1} \mid I_{0} = 1)$$

$$\prod_{i=2}^{n} P(R_{i} = r_{i} \mid R_{i-1} = r_{i-1})$$

$$P(T_{n+1} = 1 \mid R_{n} = r_{n}).$$
(2.13)

Alternatively, this 1st order Markov model may be generalised to an m-th order model by limiting the dependency of R_i to only the previous m values, namely

$$P(R_{i} = r_{i} \mid \overrightarrow{\mathbf{R}}_{i-1} = \overrightarrow{\mathbf{r}}_{i-1}, I_{0} = 1)$$

$$\doteq \begin{cases} P(R_{i} = r_{i} \mid \overrightarrow{\mathbf{R}}_{i-m,i-1} = \overrightarrow{\mathbf{r}}_{i-m,i-1}) & \text{if } i \geq m+1, \\ P(R_{i} = r_{i} \mid \overrightarrow{\mathbf{R}}_{1,i-1} = \overrightarrow{\mathbf{r}}_{1,i-1}, I_{0} = 1) & \text{if } i \leq m. \end{cases}$$
(2.14)

where

$$\overrightarrow{\mathbf{R}}_{i,j} = (R_i, R_{i+1}, \dots, R_j). \tag{2.15}$$