System of Linear Equations

$$Ax = b$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Scope

- We've all solved three equations three unknown problems
 - What if we have a hundred or million equations and unknowns?
- A solution to a system of linear equations finds the the vector x (causes) that led to the vector of b (effects) under the action of a linear operator A
 - The solution may or may not exist
 - If there is a solution, it may not be unique
- General case:
 - A is an $m \times n$ matrix, x is an n-vector, b is an m-vector
 - m>n, overdetermined system
 - Linear least square, data fitting
 - m<n, underdetermined system
 - No solution, or infinite number of solutions
 - Incomplete, noisy data (e.g. image reconstruction)
- In this chapter we will focus on m=n (square systems)

Engineering Applications

Electric circuit analysis via loop method (KVL)

$$9i_1 - 4i_2 - 2i_3 = 24$$

$$-4i_1 + 17i_2 - 6i_3 - 3i_4 = -16$$

$$-2i_1 - 6i_2 + 14i_3 - 6i_4 = 0$$

$$-3i_2 - 6i_3 + 11i_4 = 18$$

Static Equilibrium in 8-member truss

$$\begin{array}{lll} 0.9231F_{AC} = 1690 & -F_{AB} - 0.3846F_{AC} = 3625 \\ F_{AB} - 0.7809F_{BC} = 0 & 0.6247F_{BC} - F_{BD} = 0 \\ F_{CD} + 0.8575F_{DE} = 0 & F_{BD} - 0.5145F_{DE} - F_{DF} = 0 \\ 0.3846F_{CE} - 0.3846F_{AC} - 0.7809F_{BC} - F_{CD} = 0 \\ 0.9231F_{AC} + 0.6247F_{BC} - 0.9231F_{CE} = 0 \end{array}$$

Solving linear PDEs

Poisson's equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \rho(x, y)$$

Finite difference method

$$x_j = x_0 + j\Delta,$$
 $j = 0, 1, ..., J$
 $y_l = y_0 + l\Delta,$ $l = 0, 1, ..., L$

Apply second order accurate central differencing formula

$$\Rightarrow u_{j+1,l} + u_{j-1,l} + u_{j,l+1} + u_{j,l-1} - 4u_{j,l} = \Delta^2 \rho_{j,l}$$

$$\Rightarrow A \cdot u = b$$

Existence and Uniqueness

- An $n \times n$ matrix ${\bf A}$ is nonsingular if it satisfies <u>any</u> one of the following
 - **A** has an inverse $AA^{-1} = I$ (identity matrix)
 - $\det(A) \neq 0$
 - rank(**A**) =n
 - For any nonzero vector $z \neq 0$, $Az \neq 0$
- Otherwise \rightarrow the matrix is singular
- The rank of a matrix is the maximum number of linearly independent rows or columns
 - There are methods to determine the rank of a matrix
 - If an $n \times n$ matrix **A** has a rank lower than n, it is not invertible, meaning A is singular.

Sensitivity and Conditioning of Ax = b

- How sensitive is solution x to changes/perturbations in A and b?
- We need a notion of "size" for a matrix A and a vector b
 - Hence the concept of "norms" ||·||
 - Size in the sense of magnitude or distance and not number of rows or columns

Common Vector Norms

1 - norm:
$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$$

2 - norm: $\|\mathbf{x}\|_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}} = \sqrt{\mathbf{x}^T \mathbf{x}}$

$$\infty - norm: \|\mathbf{x}\|_{\infty} = \max_{i=1...n} |x_i|$$

Properties of vector norms

- 1. $\|\mathbf{x}\| \geq 0$ for all $\mathbf{x} \in \mathbb{R}^n$
- 2. ||x|| = 0 if and only if x = 0
- 3. $\|\alpha x\| = |\alpha| \|x\|$ for any $x \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$
- 4. $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{R}^n$ (the triangle inequality)

$$||x|| - ||y|| \le ||x - y||$$

$$\|\mathbf{x}\|_{1} \ge \|\mathbf{x}\|_{2} \ge \|\mathbf{x}\|_{\infty}$$

$$\|\mathbf{x}\|_{1} \le \sqrt{n} \|\mathbf{x}\|_{2}, \quad \|\mathbf{x}\|_{2} \le \sqrt{n} \|\mathbf{x}\|_{\infty}, \quad \|\mathbf{x}\|_{1} \le n \|\mathbf{x}\|_{\infty}$$

Unit vector:
$$\|\mathbf{x}\| = 1$$
A unit vector can be obtained from any nonzero vector as $\frac{\mathbf{u}}{\|\mathbf{u}\|}$

Example:
$$u = [1 - 5 \ 3], \quad v = \begin{bmatrix} -2 \\ 2 \\ 0 \end{bmatrix}$$

Shape of vector doesn't matter

1-norm

$$||u||_1 = |1| + |-5| + |3| = 9$$
, $||v||_1 = |-2| + |2| + 0 = 4$

2-norm

$$||u||_2 = (|1|^2 + |-5|^2 + |3|^2)^{1/2} = \sqrt{35},$$

 $||v||_2 = (|-2|^2 + |2|^2 + 0)^{1/2} = \sqrt{8} = 2\sqrt{2}$

∞-norm

$$||u||_{\infty} = \max(|1|, |-5|, |3|) = 5$$

Matrix Norms

A: $m \times n$ matrix

$$1 - norm$$
: $||A||_1 = \max_j \sum_{i=1}^m |a_{ij}|$ Maximum absolute column sum

$$\infty - norm$$
: $||A||_1 = \max_i \sum_{j=1}^n |a_{ij}|$ Maximum absolute row sum

2-norm for a matrix is not easy to compute. Need to compute the largest singular value of the matrix

Example:
$$A = \begin{bmatrix} 1 & 3 \\ -5 & 8 \end{bmatrix}$$

$$||A||_1 = \max(1+5,3+8) = 11$$

 $||A||_{\infty} = \max(1+3,5+8) = 13$

Properties of Matrix Norms

For any $n \times n$ matrix **A** and induced matrix norm,

$$\begin{aligned} \|\mathbf{A}\mathbf{x}\| &\leq \|\mathbf{A}\| \cdot \|\mathbf{x}\|, \\ \|\mathbf{A}\mathbf{B}\| &\leq \|\mathbf{A}\| \cdot \|\mathbf{B}\|, \\ \|\mathbf{A}^k\| &\leq \|\mathbf{A}\|^k, \\ \|\mathbf{A} + \mathbf{B}\| &\leq \|\mathbf{A}\| + \|\mathbf{B}\| \\ \|\gamma\mathbf{A}\| &\leq |\gamma| \cdot \|\mathbf{A}\| \text{ for any scalar } \gamma \end{aligned}$$

```
for any \mathbf{x} \in \mathbb{R}^n,
for any \mathbf{B} \in \mathbb{R}^{n \times n},
for any integer k \ge 0.
```

Matrix Condition Number

- Consider a nonsingular square matrix A
- Condition number with respect to a given norm
 - $cond(A) = ||A|| \cdot ||A^{-1}||$
- Condition number would be infinity if A is singular
- Condition number bounds the ratio of the relative change in the solution of a linear system to a given relative change in the input data
- Condition number is a measure of how close a matrix is to being a singular matrix
- Computing the inverse of a matrix is more expensive than solving a linear system governed by the same matrix
 - Condition number is estimated within an order of magnitude in practice!

Matrix condition number

- We want to solve Ax = b
- We want to analyze how robust our answers are to perturbations of \boldsymbol{A} and \boldsymbol{b}
- To measure what happens to the sizes of vectors and matrices, use norms
- We know that $||b|| = ||Ax|| \le ||A|| ||x||$
- We also know that $x = A^{-1}b$,
 - $||x|| = ||A^{-1}b|| \le ||A^{-1}|| ||b||$
- If we change b to b+d, then the solution changes somewhat to x+h, say, such that A(x+h)=b+d
- But, using the original equation Ax = b, the first term on each side cancels

Matrix condition number

- We then have Ah = d
- Then $h = A^{-1}d$
- Compute norms and use property of norms

•
$$||h|| = ||A^{-1}d|| \le ||A^{-1}|| \cdot ||d||$$

- Let's now look at the relative change in the solution $\|h\|/\|x\|$ compared to the relative change in the right-hand side $\|d\|/\|b\|$
- Taking the ratio of those two

$$\frac{\frac{\|h\|}{\|x\|}}{\frac{\|d\|}{\|b\|}} = \frac{\|h\| \cdot \|b\|}{\|d\| \cdot \|x\|} \le \frac{\left(\|A^{-1}\| \|d\|\right) \left(\|A\| \|x\|\right)}{\|d\| \|x\|} = \|A^{-1}\| \|A\|$$

• The last quantity is the condition number $\operatorname{cond}(A) = ||A^{-1}||||A||$

Choose d such that $\frac{||h||}{||d||}$ is as large as possible to have a reasonable estimate of $||A^{-1}||$

Estimating the condition number

$$\operatorname{cond}(A) = \left| \left| A^{-1} \right| \right| \cdot \left| \left| A \right| \right|$$

- There are different approaches to compute the norm $\|\cdot\|$
 - 2-norm is common (use SVD)
- Condition number of a matrix is the ratio of the largest singular value of that matrix to the smallest singular value.

• cond(
$$A$$
) = $\frac{\sigma_{max}}{\sigma_{min}}$

- 2-norm might not be feasible for large matrices
 - · Use an estimate of the condition number

Triangular Systems

- Let's begin with simple systems to understand algorithms for solving Ax = b
- Consider lower triangular systems where elements above a_{ii} are zero

- Continue with $x_2 = \frac{5 (3)(2)}{-1} = 1$
- Then find x_3 , then x_4 , to get solution
- This is called forward substitution

$$x = \begin{bmatrix} 2 \\ 1 \\ 2/3 \\ 1/3 \end{bmatrix}$$

• Said another way,
$$a_{ij} = 0, j > i$$

• Solve by starting with $x_1 = \frac{8}{4} = 2$

$$\begin{bmatrix} 4 & 0 & 0 & 0 \\ 3 & -1 & 0 & 0 \\ -1 & 0 & 3 & 0 \\ 1 & -1 & -1 & 2 \end{bmatrix} x = \begin{bmatrix} 8 \\ 5 \\ 0 \\ 1 \end{bmatrix}$$

Triangular Systems

- For the more general system Lx = b where L is lower triangular, we can still do forward substitution
- L_{ij} are elements of \boldsymbol{L}
- No trouble here unless $L_{ii} = 0$, then we can divide by it
- Theorem 2.1: If at least one of the $L_{ii}=0$, then ${\bf \it L}$ is singular
- How to implement in MATLAB?

$$x_{1} = \frac{b_{1}}{L_{11}}$$

$$x_{2} = \frac{b_{2} - L_{21}x_{1}}{L_{22}}$$

$$x_{3} = \frac{b_{3} - L_{31}x_{1} - L_{32}x_{2}}{L_{33}}$$

$$x_{4} = \frac{b_{4} - L_{41}x_{1} - L_{42}x_{2} - L_{43}x_{3}}{L_{44}}$$

Upper Triangular Systems

- For the upper triangular system $\boldsymbol{U}\boldsymbol{x} = \boldsymbol{b}$ where \boldsymbol{U} has $U_{ij} = 0, j < i$
- That is elements below the main diagonal are zero this time
- Solve for last variable first this time and work backward
- No trouble here unless $U_{ii} = 0$, then we cannot divide by it
- Theorem 2.1: If at least one of the $U_{ii}=0$, then ${\pmb U}$ is singular

$$\begin{bmatrix} U_{11} & U_{12} & U_{13} & U_{14} \\ 0 & U_{22} & U_{23} & U_{24} \\ 0 & 0 & U_{33} & U_{34} \\ 0 & 0 & 0 & U_{44} \end{bmatrix} x = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

$$x_4 = \frac{b_4}{U_{44}}$$

$$x_3 = \frac{b_3 - U_{34}x_4}{U_{33}}$$

$$x_2 = \frac{b_2 - U_{23}x_3 - U_{24}x_4}{U_{22}}$$

$$x_1 = \frac{b_1 - U_{12}x_2 - U_{13}x_3 - U_{14}x_4}{U_{11}}$$

Gauss Elimination Method

- Gauss Elimination is a direct method to solve linear systems of equations.
- It converts the system into an upper triangular matrix.
- Solutions are then obtained using back substitution.
- Computational complexity is $\mathcal{O}(n^3)$
- Fast iterative solvers exist
 - Commonly used in practice when *n* is large
- Avoid solving a linear system by inverting A
 - $x = A^{-1}b$
 - Inverting A is costlier than G.E. and also less accurate!

Pivoting in Gauss Elimination

- Gauss elimination is often implemented with pivoting
 - Leading diagonal entry of the unreduced portion of the matrix can be zero
- Solution: Interchange rows
 - Does not alter the solution!
- Pivoting avoids division by zero or very small numbers.
- Pivoting improves numerical stability.
- Two types: Partial Pivoting and Complete Pivoting.
 - Partial Pivoting: Swap rows to get the largest element in the pivot position.
 - · Commonly adopted
 - Numerical stability is more than adequate in practice
 - Complete Pivoting: Swap both rows and columns.
 - Superior but much more expensive in terms of pivot search

Steps in Gauss Elimination with Partial Pivoting

- 1. Identify the pivot element
 - Choose the largest absolute value in the column
 - Rounding errors will not be amplified
 - Multipliers will never exceed 1 in magnitude
 - Leads to a numerically stable implementation of G.E. method
- 2. Swap rows to bring the pivot element to the diagonal.
- 3. Eliminate lower elements in the column.
- 4. Repeat for the next column.
- 5. Perform back substitution to find solutions.

Permitted Transformations

- Linear system, it can be written as matrix product:
 - T1: Multiplication of row/column with scalar
 - **T2**: Interchanging rows/columns
 - **T3**: Add/subtract scalar multiple of current row/column to another row/column, replace current row/column

Pivot coefficient

$$\begin{bmatrix} a_{11} \\ a_{21} \\ a_{22} \\ a_{23} \\ a_{24} \\ a_{31} \\ a_{32} \\ a_{33} \\ a_{34} \\ a_{41} \\ a_{42} \\ a_{43} \\ a_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ x_4 \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a'_{22} & a'_{23} & a'_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b'_2 \\ b_3 \\ b_4 \end{bmatrix}$$

$$m_{21} = a_{21}/a_{11}$$

$$- a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 = b_2$$

$$- m_{21}(a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4) = m_{21}b_1$$

$$0 + (a_{22} - m_{21}a_{12})x_2 + (a_{23} - m_{21}a_{13})x_3 + (a_{24} - m_{21}a_{14})x_4 = b_2 - m_{21}b_1$$

$$a'_{22} \qquad a'_{23} \qquad a'_{24} \qquad b'_{2}$$

T3 on rows 1 &
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a'_{22} & a'_{23} & a'_{24} \\ 0 & a'_{32} & a'_{33} & a'_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b'_2 \\ b'_3 \\ b_4 \end{bmatrix}$$

T3 on rows 1 &
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a'_{22} & a'_{23} & a'_{24} \\ 0 & a'_{32} & a'_{33} & a'_{34} \\ 0 & a'_{42} & a'_{43} & a'_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b'_2 \\ b'_3 \\ b'_4 \end{bmatrix}$$

Now continue with a_{22} as pivot to eliminate second column of rows 3 & 4

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a'_{22} & a'_{23} & a'_{24} \\ 0 & 0 & a''_{33} & a''_{34} \\ 0 & 0 & a''_{43} & a''_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b'_2 \\ b''_3 \\ b''_4 \end{bmatrix}$$

$$\Rightarrow$$

T3 on rows 3 & 4
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a'_{22} & a'_{23} & a'_{24} \\ 0 & 0 & a''_{33} & a''_{34} \\ 0 & 0 & 0 & a'''_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b'_2 \\ b''_3 \\ b'''_4 \end{bmatrix}$$

Transformed equation into Ux=b''', U is upper triangular

Complexity analysis for $n \times n$ matrix A

- In total (n-1)+(n-2)+...+1=n(n-1)/2 **T3** transformations (Adding multiple of a lower row to the pivot row)
 - Each T3 transformation requires O(n) multiplications & additions
- Total $\mathcal{O}(n^3)$ arithmetic operations for Gauss Elimination to solve for \mathbf{x}
 - Backsubstitution only needs $O(n^2)$ operations
 - Close to optimal for **general** matrices
 - Special matrices (very sparse) can be solved faster
 - e.g. Thomas algorithm for tri-diagonal systems

Example

Solve the system of equations:

$$2x + 3y + z = 1$$

 $4x + y - 2z = -2$
 $-2x + 2y + z = 7$

using Gauss Elimination with partial pivoting.

Step 1: Form the Augmented Matrix

The augmented matrix is:

```
[2 3 1 | 1]
[4 1-2 |-2]
[-2 2 1 | 7]
```

Step 2: Partial Pivoting and Row Swap

In column 1, the largest absolute value is 4 (Row 2). Swap Row 1 and Row 2 to make it the pivot row.

New matrix:

Step 3: Eliminate Elements Below Pivot

Eliminate elements below the pivot in column 1.

$$R2 = R2 - (1/2) * R1$$

 $R3 = R3 + (1/2) * R1$

New matrix:

Step 4: Continue to Upper Triangular Form

- Pivot on column 2. Largest is in Row 2 (no swap needed).
- Eliminate below the pivot: R3 = R3 R2

New matrix:

Step 5: Back Substitution

Start from the last row:

- Row 3:
$$-2z = 4 \rightarrow z = -2$$

- Row 2:
$$2y + 2(-2) = 2 \rightarrow y = 3$$

- Row 1:
$$4x + 1(3) - 2(-2) = -2 \rightarrow x = -1$$

Solution:

$$x = -1$$

$$y = 3$$
,

$$z = -2$$
.

LU factorization

• Those multipliers that we used to create zero in the columns can go right into the lower triangular matrix L!

$$L = \begin{bmatrix} 1 & 0 & 0 \\ m_{21} & 1 & 0 \\ m_{31} & m_{32} & 1 \end{bmatrix}$$

And, finally, we have

$$LU = A$$

ullet This shows that A can factored or factorized into a lower triangular L and upper triangular U

LU Factorization

• Given Ax = b

• Factor
$$\mathbf{L}\mathbf{U} = \mathbf{A}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} \ell_{11} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ \ell_{31} & \ell_{32} & \ell_{33} \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}.$$

L: Lower triangular **U**: upper triangular matrix

matrix

- Observe $(LU)x = b \rightarrow L(Ux) = b \rightarrow Ux = z \rightarrow Lz = b$
- Solve Lz = b for z by forward substitution
- Solve Ux = z for x by backward substution

Note that this algorithm is NOT stable

Prone to division by zero because there is no row swapping

How to Exploit LU Factorization

- Consider Ax = b
- If A is not changing, it can be factored into L and U triangular matrices once and stored!
- Complexity of Gauss elimination is $\mathcal{O}(n^3)$
 - Factorization step is $\mathcal{O}(n^3/3)$
 - Can be done once if A is not changing
 - Subsequent triangular solutions is $O(n^2)$
 - Substantial savings for large problems.

Gauss-Jordan Elimination

- More expensive than Gauss Elimination
- Motivated by the fact that diagonal linear systems are easier to solve
- Variation of the G.E. method such that the matrix A is transformed into a diagonal form rather than a triangular form
- The last stage is amenable to parallelization
 - No back substitution, which is serial