	Atmospheric Physics 2014 Q.1
0 8	
L	Mass of the atmosphere? Assuming hydrostatic balance PRAS dP dz = Since Proposition of the atmosphere? Assuming hydrostatic balance Proposition of the atmosphere? Assuming hydrostatic balance Proposition of the atmosphere?
	At the topot the atmosphere P= 0 & PTOA = 0.
	Integrating, assuming g ~ constant
	PTOA - PS =- (0-0) 900
	where o = density & of alayer of unit thickness /m?
	=> -Ps = 0g
	Mass of atmosphere, m= 0 A
	$A = 4\pi R^2$
	=>Ao = m = Ps 4reR2Ps
2	all
	R=6371 lum, Ps=1013 hPa, g=981 ms2
2	$m = 5.27 \times 10^{18} \text{ kg}$

pto

il Specific humidity, qv = 10 No ice/water 1 ex= R,T Pdxd = RdT Dalton => P = Polte $= \left(\frac{R_d + R_v}{Z_d}\right) - \frac{1}{Z_d}$ md = V 5) 9v = 1/2 - 1/2d - 1/2d + 1/2d (1)/(2)=) $\frac{\sqrt{e}}{\sqrt{d}} = \frac{R_v}{R_d} = \frac{1}{0.62}$ (given) 1 + 0.62 × 1000 0.0062 kg/kg = (6.2 g/kg

cu	
	The atmosphere rotates at a faster rate than
	The atmosphere rotates at a faster rate than the Earth ~23 hour / revolution rather than 24
#	hour revolution
	^
	Moment of inertia of atmosphere a solidsphere
	[1945] 이 기계
. 772	$I = \frac{2}{5}MR^2$
	Angular momentum
	$L = T\omega$
	A
-	Angular Kinetic energy
	$E = \frac{1}{2} I \omega^2.$
	Angular momentum of an air parcel
	1 Described B Described
	L= R cos & (u+ 12 R cos \$\phi)
	Reatitude To Del Amarcha de la
	=> If Ead atmosphere stopped retatingualative to suntare AL = R cos(0) U EdV
	Lepartel COS(P) a Par
	Integrating, assuming mass is concentrated at the surface = Ro Re Mass per unit angle for the surface = Ro Re
	17/2 Mass per unit angle for the grade
	1 Latin = S Rocos(b) upod
	$\phi = -\pi/2$

[Resin(peu] = 2Ru M

= 2Ru M

pto see later

for Ini anomy.

c) TOA: | OTe = (1-E) OT * 图 EOTa+OTs+=HANG+OTe+ 1** (Assuming no absention is short wars) Te = 255K d) If E=0.8 (*) (*) 0 Ts = Te JI-8 (*) => Ts = (381K) e) Cooling of surface via evaporation (tatent heat flux)
and convection (see + conduction (sensible heat
flux). Specific volume of air fr = 2 2P R 22e North 5 south velocity parcel Rate of change of prosum on East - West direction Conolis parameter f= 252 sin(1)

Angular Angular Velocity

of planet $0 = -9 - \sqrt{3}PA$ Rate of change with altitude Aceeleration due to granty.

	Q. (
i ü	i For a typical East-West wind speed u=10m/s
€	ΔL = 2Ru M 4 5.27×1018 kg from (i)
	= 6.75×1026 Nm.
	Because angular momentum is conserved the change on angular monientum of the Earth will be equal
7	$=>\Delta\omega$ $=\Delta L$
	Mass of Eath, M = 5.97×1024 kg.
	I = 3MRe
	= 9.78×10 ³⁷
	=> Da = 4.34×10-17 5-1 6.9×10-12 rods
	$\omega + \Delta \omega = \frac{2\pi}{T + \Delta T}$
e e	=> T+ DT = 2r W+Dew
	E TO (HEW)
3	
	= 414200 % ~ 8 ms
	=> Nechaible chance in leasth of den-

Atmospheric Physics 2014 Q. 3

Tropopause - the altitude at which the temperature is at a minimum.

$$Z_t = \frac{T_s - T_t}{I_t}$$

$$=\frac{288-210}{7 \, \text{K/km}}$$

ii If Hydrostatic equilibrium

$$\frac{dP}{dz} = - CB$$

Ideal gas law fordry cur

 $\frac{P_{+}}{P_{s}} = \frac{T_{s} - T_{z_{+}}}{T_{c}} + \frac{q}{r_{s}} \qquad \frac{g = 9.8 \, m/8^{2}}{r_{-} \, 7 \times 10^{-3} \, \text{K/m}}$ $R_{d} = \frac{287 \, \text{J kg}^{-1} \, \text{K}^{-1}}{r_{-}}$ Ts-12+= 78, 3=288 P = 1.7 hPa (vensmell) Ta = 9 Sd = Srey + Cpd ln(T/Tres) - Od ln (P/Pref) [2] Brunt - Vaisala $N^2 \equiv \frac{g}{c_{ed}} \frac{d_{id}}{dz}$ Differentiating $= g \left(\frac{C_{p,d}}{T} \frac{dT}{dZ} - \frac{R_d}{P} \frac{dP}{dZ} \right)$ $= \frac{9}{7} \left(-\frac{7}{4} - \frac{9}{600} \right)$ (Td-Tt)

$$v^i(a) \frac{d^2 z_p}{dt^2} = -N_t^2 z_p$$

where 2p is the altitude of the our parcel

$$\frac{d^2zp}{dt^2} = -\frac{9}{7}\left(\sqrt{1}d - \sqrt{s}\right)z_p$$

$$\frac{dw_{\rho}}{dt} = g \frac{\theta_{\rho} - \theta_{e}}{\theta_{e}} \qquad N_{s}^{2} = g \frac{d\theta_{e}}{dz}$$

In the stratosphere be decreases with height while it was a decreases until eventually on N2 < 0 at which ports convection will be stable. The parcel will lose kinetic energy as it does work all ainst the pressure gradient.

