

Table of Contents

Introduction to Neural Architecture Search

Approach NAS with Evolutionary Algorithms (EAs)

- GeneticCNN
- NSGA-Net

NAS-Benchmarks

- MacroNAS
- NAS-Bench-101
- NAS-Bench-201

Table of Contents

Introduction to Neural Architecture Search

Approach NAS with Evolutionary Algorithms (EAs)

- GeneticCNN
- NSGA-Net

NAS-Benchmarks

- MacroNAS
- NAS-Bench-101
- NAS-Bench-201

Definition

NAS is a technique for automating the design of powerful deep neural networks on a specific task.

Why do we need NAS?

Requirement

- Manually design a normal network architecture (ignore the performance) → Easy
- Manually design a network architecture with high performance → Can perform (but requires a lot of experience and time-consuming)

Drawbacks of manual architecture design

- Experience requirement from experts and time-consuming for designing an effective architecture
- Much of the search space is unexplored → potential architectures can be neglected

Definition

NAS is a technique for automating the design of powerful deep neural networks architectures on a specified task.

Aim

Automatically search for architecture networks with strong performance.

NAS components

Search Strategy

- Some common search strategies:
 - □ Evolutionary Algorithms (Xie and Yuille, 2017; Lu et al., 2018; Real et al., 2018)
 - □ Reinforcement Learning (Zoph and Le, 2017; Wang et al., 2019)
 - **...**
- We can combine each one together.

- One of the optimization objectives for optimizers when searching is the test performance.
 - → However, the test performance is evaluated on the **unseen** data.
- To guide the optimizers in the search process, we need to have a strategy to calculate or estimate the test performance.

- Some common performance estimation strategies:
 - □ Full training and evaluating the performance (on the validation data).
 - → <u>Advantages</u>:
 - High-correlation → The final performance is usually good.
 - → <u>Drawbacks</u>:
 - Time-consuming.
 - Requires lot of computational resources.

- Some common performance estimation strategies:
 - □ Learning curve extrapolation (Early Stopping) (Ru et al., 2020; Zhou et al., 2020) (commonly-used approach)
 - → <u>Advantages</u>:
 - Shorten the searching time and reduce the computational resources.
 - → <u>Drawbacks</u>:
 - Need to determine the effective stopping epoch.
 - Requires time and computational resources to achieve the high-correlation.

- Some common performance estimation strategies:
 - □ Using training-free "proxy" metrics (Chen et al., 2021; Abdelfattah et al., 2021)
 - → <u>Advantages</u>:
 - Extremely effective in shorting the searching time and reducing the computational resources.
 - → <u>Drawbacks</u>:
 - Low-correlation.
 - Designing a high-correlation training-free "proxy" metric is a challenge.

- Some common performance estimation strategies:
 - ☐ Full training and evaluating the performance (on the validation data).
 - □ Learning curve extrapolation (Ru et al., 2020; Zhou et al., 2020)
 - □ Using training-free "proxy" metrics (Chen et al., 2021; Abdelfattah et al., 2021)
 - **u** ...

Search Space

- In fact, each solution in the search space is not the entire architecture. It is just a part of the architecture.
- Specifically, each solution is the arrangement of some components in the architecture (e.g., layers; operations in cells).
- Based on the components which are used to arrange, there are 2 types of search space:
 - Macro-level
 - Micro-level

Search Space

Macro-level

Micro-level

Macro-level

- Components for encoding → Layers
- A solution in search space \rightarrow An arrangement of layers in the architecture.
- Layers can be in the <u>same</u> type or <u>different</u> type.
- The layers can be arranged as the <u>chain structure</u> or <u>directed acyclic graph</u> (DAG).

Example of an arrangement as a chain structure

Example of an arrangement as a DAG

- Nodes represent layers; edges represent the flow of data.
- Edge e_{ij} (i < j) means that node j-th uses the output of node i-th as the input.
- A node can have more than 1 input node.

[Macro-level] Solution Encoding

Chain structure

Use 1 vector (e.g., string, integer numbers)

Example

[Macro-level] Solution Encoding (cont.)

Chain structure

Use 1 vector (e.g., string, integer numbers)

DAG

- Case 1: Layers in the same type
- → Represent the connections.
- → Use 1 binary vector (or upper-triangular binary matrix).

Encoded area

Encoded area

$$[e_{12}, e_{13}, e_{23}, e_{14}, e_{24}, e_{34}]$$

 $\rightarrow [1, 1, 0, 0, 1, 1]$

Encoded area

$$[e_{12}, e_{13}, e_{23}, e_{14}, e_{24}, e_{34}]$$

 $\rightarrow [1, 1, 0, 0, 1, 1]$

Encoded area

$$[e_{12}, e_{13}, e_{23}, e_{14}, e_{24}, e_{34}]$$

 $\rightarrow [1, 1, 0, 0, 1, 1]$

Encoded area

$$[e_{12}, e_{13}, e_{23}, e_{14}, e_{24}, e_{34}]$$

 $\rightarrow [1, 1, 0, 0, 1, 1]$

Encoded area

$$[e_{12}, e_{13}, e_{23}, e_{14}, e_{24}, e_{34}]$$

 $\rightarrow [1, 1, 0, 0, 1, 1]$

Encoded area

$$[e_{12}, e_{13}, e_{23}, e_{14}, e_{24}, e_{34}]$$

 $\rightarrow [1, 1, 0, 0, 1, 1]$

Encoded area

$$[e_{12}, e_{13}, e_{23}, e_{14}, e_{24}, e_{34}]$$

 $\rightarrow [1, 1, 0, 0, 1, 1]$

Encoded area

Binary vector

$$[e_{12}, e_{13}, e_{23}, e_{14}, e_{24}, e_{34}]$$

 $\rightarrow [1, 1, 0, 0, 1, 1]$

Upper-triangular binary matrix

$$[[e_{11}, e_{12}, e_{13}, e_{14}] \qquad [[1, 1, 1, 0]]$$

$$[0, e_{22}, e_{23}, e_{24}] \qquad [0, 1, 0, 1]$$

$$[0, 0, e_{33}, e_{34}] \qquad [0, 0, 1, 1]$$

$$[0, 0, 0, e_{44}] \qquad [0, 0, 0, 1]$$

[Macro-level] Solution Encoding (cont.)

Chain structure

Use 1 vector (e.g., string, integer numbers)

DAG

- Case 1: Layers in the same type
- → Represent the connections.
- → Use 1 binary vector (or upper-triangular binary matrix).
- Case 2: Layers in the different type
- Use 1 binary vector (or upper-triangular binary matrix) to represent the connections.

 Use 1 vector (e.g., string, interger numbers) to represent the type of layers.

Case 2: Layers in the different type

List of available layers

['MBConv3x3', 'MBConv5x5', 'Identity']

Represent the connections (edges)

$$[e_{12}, e_{13}, e_{23}, e_{14}, e_{24}, e_{34}]$$

 $\rightarrow [1, 1, 0, 0, 1, 1]$

Represent the types of layers (nodes)

$$[n_1, n_2, n_3, n_4]$$

$$\rightarrow$$
 [0, 1, 2, 0]

Case 2: Layers in the different type

List of available layers

['MBConv3x3', 'MBConv5x5', 'Identity']

Represent the connections (edges)

$$[e_{12}, e_{13}, e_{23}, e_{14}, e_{24}, e_{34}]$$

$$\rightarrow$$
 [1, 1, 0, 0, 1, 1]

Represent the types of layers (nodes)

$$[n_1, n_2, n_3, n_4]$$

$$\rightarrow [0, 1, 2, 0]$$

$$\rightarrow$$
 [1, 1, 0, 0, 1, 1, 0, 1, 2, 0]

Micro-level

- Components for encoding → Operations
- A solution in search space → An arrangement of operations in the cell of an architecture.
- Operations are usually in <u>different</u> types.
- Operations are usually arranged as <u>a DAG</u>.
- There are two commonly-used types of DAGs:
 - Normal DAGs
 - □ Fully connected DAGs

Normal DAGs

Nodes → operations

Edges → the flow of data

Encoded area

Normal DAGs

Nodes → the place to aggregate the output (data) from previous nodes

Fully connected DAGs

Nodes → the place to aggregate the output (data) from previous nodes

Edges → operations

[Micro-level] Solution Encoding

Normal DAG (Nodes \rightarrow operations, edges \rightarrow the flow of data)

Use the same encoding mechanism in macro-level search space.

Encoded area

List of available operations = ['Conv1x1', 'Conv3x3', 'MaxPool']

Represent the connections (edges)

 $[e_{I1}, e_{I2}, e_{I2}, e_{I3}, e_{I3}, e_{I3}, e_{I4}, e_{I4}, e_{I4}, e_{I4}, e_{I4}, e_{I0}, e_{I0}, e_{I0}, e_{I0}, e_{I0}, e_{I0}]$

- - Represent the type of operations (nodes)

['INPUT', Conv1x1', 'Conv3x3', 'Conv1x1', 'MaxPool', 'OUTPUT']

$$\rightarrow$$
 [-1, 0, 1, 0, 2, -1]

$$\rightarrow [0, 1, 0, 2]$$

Encoded area

List of available operations = ['Conv1x1', 'Conv3x3', 'MaxPool']

Represent the connections (edges)

 $[e_{I1}, e_{I2}, e_{I2}, e_{I3}, e_{I3}, e_{I3}, e_{I4}, e_{I4}, e_{I4}, e_{I4}, e_{I4}, e_{I6}, e_{I0}, e_{I0}, e_{I0}, e_{I0}, e_{I0}, e_{I0}]$

$$\rightarrow$$
 [1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1]

Represent the type of operations (nodes)

['INPUT', Conv1x1', 'Conv3x3', 'Conv1x1', 'MaxPool', 'OUTPUT']

$$\rightarrow$$
 [-1, 0, 1, 0, 2, -1]

$$\rightarrow \qquad [0, \quad 1, \quad 0, \quad 2]$$

[1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 2]

[Micro-level] Solution Encoding (cont.)

Normal DAG (Nodes → operations, edges → the flow of data)

Use the same encoding mechanism in macro-level search space.

Normal DAG (Nodes → the place to aggregate the output (data) from previous nodes, edges → operations)

- Represent both the type of operators and connections
 - → Use 1 vector of interger numbers

- 0: Conv1x1
- 1: Conv3x3
- 2: MaxPool
- -1: No connection

 $[e_{I1}, e_{I2}, e_{I2}, e_{I3}, e_{I3}, e_{I3}, e_{I4}, e_{I4}, e_{I4}, e_{I4}, e_{I4}, e_{I0}, e_{I0}, e_{I0}, e_{I0}, e_{I0}, e_{I0}]$

 $[2, \ 0, \ -1, \ -1, \ 1, \ 0, \ 1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ 2, \ 1]$

[Micro-level] Solution Encoding (cont.)

Normal DAG (Nodes \rightarrow operations, edges \rightarrow the flow of data)

Use the same encoding mechanism in macro-level search space.

Normal DAG (Nodes → the place to aggregate the output (data) from previous nodes, edges → operations)

- Represent both the type of operators and connections
 - → Use 1 vector of interger numbers

Fully connected DAG (Nodes \rightarrow the place to aggregate the output (data) from previous nodes, edges \rightarrow operations)

- Represent the type of operators.
 - → Use 1 vector of interger numbers

- 0: Conv1x1
- 1: Conv3x3
- 2: MaxPool

Search Space

- In fact, each solution in the search space is not the entire architecture. It is just a part of the architecture.
- More specifically, each solution is the arrangement of some components in the architecture (e.g., layers; operations in cells).
- Based on the components which are used to arrange, there are 2 types of search space:
 - Macro-level
 - Micro-level
- Some common search space: NASNet (<u>Zopl et al., 2018</u>); DARTS (<u>Liu et al., 2019</u>), NAS-Bench-101, NAS-Bench-201.

Table of Contents

Neural Architecture Search (NAS)

Approach NAS with Evolutionary Algorithms (EAs)

- GeneticCNN
- NSGA-Net

NAS-Benchmarks

- MacroNAS
- NAS-Bench-101
- NAS-Bench-201

Approach NAS with Evolutionary Algorithms (EAs)

Fomulate NAS as an optimization problem:

- n-objectives problem:
 - □ Single-Objective Problem (SOP):

Performance metrics (accuracy, error)

□ Multi-Objective Problem (MOP):

Performance metrics + Computational metrics (#GPUs, #params).

• Ideal solution:

A list of architectures (i.e., arrangement of architecture components) that maximize/minimize the objective values.

Example of desirable results in solving MONAS

Table of Contents

Neural Architecture Search (NAS)

Approach NAS with Evolutionary Algorithms (EAs)

- GeneticCNN
- NSGA-Net

NAS-Benchmarks

- MacroNAS
- NAS-Bench-101
- NAS-Bench-201

Genetic CNN

Some informations:

- Macro-level
- Single-objective
- Search strategy: Genetic Algorithm
- Fitness value: Validation accuracy
- Performance estimation strategy: Full training and evaluating on CIFAR-10 dataset.
- Transfer architectures found to another large-scale dataset (ILSVRC2012).

[GeneticCNN] Search Space

- A complete architecture includes a set of N stages S
 = {S₁; S_{2; ...;} S_N} with stage S_i has K_i nodes respectively.
- Each node (include 'Input' and 'Output' node)
 contains: Convolution
 operator, ReLU and BN.
 Each edge represents the flow of data.

Represent solution in EA's search space

- Each solution is a <u>binary</u> vector has length of 19.
 - 0: no connection
 - □ 1: have connection
- The size of search space: 524,288 (= 2¹⁹)

Crossover (approach 1)

$$X_1 = [1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1]$$

$$X_2 = [1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1]$$

Crossover (approach 1)

```
X_1 = [1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1]
X_2 = [1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1]
X_1 = [1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1]
X_2 = [1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1]
```


Crossover (approach 2)

$$X_1 = [1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1]$$

$$X_2 = [1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1]$$

Crossover (approach 2)

$$X_1 = [1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1]$$
 $X_2 = [1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1]$
 $X_1 = [1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1]$
 $X_2 = [1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1]$

Crossover (approach 3)

$$X_1 = [1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1]$$

$$X_2 = [1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1]$$

Crossover (approach 3)

$$X_1 = [1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1]$$
 $X_2 = [1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1]$
 $X_1 = [1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1]$
 $X_2 = [1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1]$

Mutation

• Idea: Change the value of the current element to the new value.

$$X = [1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1]$$

Mutation

• Idea: Change the value of the current element to the new value.

Table of Contents

Neural Architecture Search (NAS)

Approach NAS with Evolutionary Algorithms (EAs)

- GeneticCNN
- NSGA-Net

NAS-Benchmarks

- MacroNAS
- NAS-Bench-101
- NAS-Bench-201

NSGA-Net

Some informations:

- Macro-level & Micro-level
- Multi-objective
- Search Strategy: NSGA-II
- Fitness values = {FLOPs; Classification error (validation)}
- Performance Estimation Strategy: Partial training (training in few epochs) and evaluating on validation set (CIFAR-10).
- Transfer architectures found to another large-scale dataset (ImageNet).

[NSGA-Net] Search Space (Macro-level)

- Use the same search space in GeneticCNN paper.
- Set N = 3 stages and $(K_1; K_2; K_3) = (6; 6; 6)$
- The difference between NSGA-Net search space and GeneticCNN search space is that at each stage of solution in NSGA-Net search space, there may be have a connection between Input Node and Output Node.

The difference between two search space

Represent solution in EA's search space (Macro-level)

- Use the same mechanism in GeneticCNN paper.
- In each stage, adding a bit to represent the connection between Input Node and Output Node.
- The length of each solution: 48
- The size of search space: 2^{48}

e_{13} , e_{23} , e_{14} , e_{24} , e_{34} , e_{15} , e_{25} , e_{35} , e_{45} , e_{16} , e_{26} , e_{36} , e_{46} , e_{56} , e_{10}

 e_{13} , e_{23} , e_{14} , e_{24} , e_{34} , e_{15} , e_{25} , e_{35} , e_{45} , e_{16} , e_{26} , e_{36} , e_{46} , e_{56} , e_{IO}

 e_{12} , e_{13} , e_{23} ,

e₁₄, e₂₄, e₃₄,

 e_{15} , e_{25} , e_{35} , e_{45} , e_{16} , e_{26} , e_{36} , e_{46} , e_{56} , e_{IO}

 \mathbf{e}_{12} , \mathbf{e}_{13} , \mathbf{e}_{23} , \mathbf{e}_{14} , \mathbf{e}_{24} , \mathbf{e}_{34} , \mathbf{e}_{15} , \mathbf{e}_{25} , \mathbf{e}_{35} , \mathbf{e}_{45} , \mathbf{e}_{16} , \mathbf{e}_{26} , \mathbf{e}_{36} , \mathbf{e}_{46} , \mathbf{e}_{56} , \mathbf{e}_{1O}

$$e_{13}$$
, e_{23} , e_{14} , e_{24} , e_{34} , e_{15} , e_{25} , e_{35} , e_{45} , e_{16} , e_{26} , e_{36} , e_{46} , e_{56} , e_{1O}

$$\begin{array}{c} \mathbf{e_{12\prime}} \\ \mathbf{e_{13\prime}}, \mathbf{e_{23\prime}} \\ \mathbf{e_{14\prime}}, \mathbf{e_{24\prime}}, \mathbf{e_{34\prime}} \\ \mathbf{e_{15\prime}}, \mathbf{e_{25\prime}}, \mathbf{e_{35\prime}}, \mathbf{e_{45\prime}} \\ \mathbf{e_{16\prime}}, \mathbf{e_{26\prime}}, \mathbf{e_{36\prime}}, \mathbf{e_{46\prime}}, \mathbf{e_{56\prime}} \\ \mathbf{e_{IO}} \end{array}$$

[NSGA-Net] Search Space (Micro-level)

- Modified DARTS search space.
- Each solution is the arrangement of operations in two cells: normal cell; reduce cell
- The operations arrangement in each cell is presented as a normal DAG has 5 nodes. Each node is the place to aggregate the output (data) from 2 previous nodes (including 2 Input Nodes; can be duplicated). Each edge represents 1 out of 9 operations.

- 0: identity
- 1: avg 3x3
- 2: max 3x3
- 3: sep 3x3
- 4: sep 5x5
- 5: sep 7x7
- 6: dil 3x3
- 7: dil 5x5
- 8: conv 7x7

 \rightarrow [[[0, 2], [0, 0]], [[0, 7], [0, 2]], [[0, 3], [1, 3]], [[1, 7], [3, 3]], [[1, 2], [3, 4]]] \rightarrow Shape: [5, 2, 2]

Illustration of the encoding process in NSGA-Net search space (micro-level)

Represent solution in EA's search space (Micro-level)

- Convert matrix 4D to vector 1D.
- Length of the solution: 40

[[[[0, 2], [0, 0]], [[0, 7], [0, 2]], [[0, 3], [1, 3]], [[1, 7], [3, 3]], [[1, 2], [3, 4]]], [[[0, 2], [1, 6]], [[0, 1], [1, 3]], [[1, 7], [1, 6]], [[3, 0], [1, 1]], [[3, 0], [1, 7]]]]

[0, 2, 0, 0, 0, 7, 0, 2, 0, 3, 1, 3, 1, 7, 3, 3, 1, 2, 3, 4,

0, 2, 1, 6, 0, 1, 1, 3, 1, 7, 1, 6, 3, 0, 1, 1, 3, 0, 1, 7]


```
X_1 = [0, 2, 0, 0, 0, 7, 0, 2, 0, 3, 1, 3, 1, 7, 3, 3, 1, 2, 3, 4, 0, 2, 1, 6, 0, 1, 1, 3, 1, 7, 1, 6, 3, 0, 1, 1, 3, 0, 1, 7]
```

$$X_2 = [0, 2, 1, 6, 0, 1, 1, 3, 1, 7, 1, 6, 3, 0, 1, 1, 3, 0, 1, 7, 0, 2, 0, 0, 0, 7, 0, 2, 0, 3, 1, 3, 1, 7, 3, 3, 1, 2, 3, 4]$$


```
X_1 = [0, 2, 0, 0, 0, 7, 0, 2, 0, 3, 1, 3, 1, 7, 3, 3, 1, 2, 3, 4], 0, 2, 1, 6, 0, 1, 1, 3, 1, 7, 1, 6, 3, 0, 1, 1, 3, 0, 1, 7]
```

$$X_2 = [0, 2, 1, 6, 0, 1, 1, 3, 1, 7, 1, 6, 3, 0, 1, 1, 3, 0, 1, 7, 0, 2, 0, 0, 0, 7, 0, 2, 0, 3, 1, 3, 1, 7, 3, 3, 1, 2, 3, 4]$$

 $X_1 = [0, 2, 1, 6, 0, 1, 1, 3, 1, 7, 1, 6, 3, 0, 1, 1, 3, 0, 1, 7], [0, 2, 1, 6, 0, 1, 1, 3, 1, 7, 1, 6, 3, 0, 1, 1, 3, 0, 1, 7]$

 $X_2 = [0, 2, 0, 0, 0, 7, 0, 2, 0, 3, 1, 3, 1, 7, 3, 3, 1, 2, 3, 4], 0, 2, 0, 0, 0, 7, 0, 2, 0, 3, 1, 3, 1, 7, 3, 3, 1, 2, 3, 4]$


```
X_1 = [0, 2, 0, 0, 0, 7, 0, 2, 0, 3, 1, 3, 1, 7, 3, 3, 1, 2, 3, 4, 0, 2, 1, 6, 0, 1, 1, 3, 1, 7, 1, 6, 3, 0, 1, 1, 3, 0, 1, 7]
```

$$X_2 = [0, 2, 1, 6, 0, 1, 1, 3, 1, 7, 1, 6, 3, 0, 1, 1, 3, 0, 1, 7, 0, 2, 0, 0, 0, 7, 0, 2, 0, 3, 1, 3, 1, 7, 3, 3, 1, 2, 3, 4]$$


```
X_1 = [0, 2] 0, 0, 0, 0, 7, [0, 2] 0, 3, 1, 3, [1, 7] 3, 3, 1, 2, 3, 4, 0, 2, [1, 6] 0, 1, [1, 3] 1, 7, 1, 6, 3, 0, 1, 1, [3, 0] 1, 7]
```

$$X_2 = [0, 2] 1, 6, 0, 1, 1, 3, 1, 7, 1, 6, 3, 0, 1, 1, 3, 0, 1, 7, 0, 2, 0, 0, 0, 7, 0, 2, 0, 3, 1, 3, 1, 7, 3, 3, 1, 2, 3, 4$$

$$X_1 = [0, 2] 0, 0, 0, 1, 1, 3, 0, 3, 1, 3, 3, 0, 3, 3, 1, 2, 3, 4, 0, 2, 0, 0, 0, 1, 0, 2, 1, 7, 1, 6, 3, 0, 1, 1, 1, 2, 1, 7]$$

$$X_2 = [0, 2, 1, 6, 0, 7, 0, 2, 1, 7, 1, 6, 1, 7, 1, 1, 3, 0, 1, 7, 0, 2, 1, 6, 0, 7, 1, 3, 0, 3, 1, 3, 1, 7, 3, 3, 3, 0, 3, 4]$$


```
X_1 = [0, 2, 0, 0, 0, 7, 0, 2, 0, 3, 1, 3, 1, 7, 3, 3, 1, 2, 3, 4, 0, 2, 1, 6, 0, 1, 1, 3, 1, 7, 1, 6, 3, 0, 1, 1, 3, 0, 1, 7]
```

$$X_2 = [0, 2, 1, 6, 0, 1, 1, 3, 1, 7, 1, 6, 3, 0, 1, 1, 3, 0, 1, 7, 0, 2, 0, 0, 0, 7, 0, 2, 0, 3, 1, 3, 1, 7, 3, 3, 1, 2, 3, 4]$$


```
X_1 = [0, 2, 0, 0, 0, 7, 0, 2, 0, 3, 1, 3, 1, 7, 3, 3, 1, 2, 3, 4, 0, 2, 1, 6, 0, 1, 1, 3, 1, 7, 1, 6, 3, 0, 1, 1, 3, 0, 1, 7]
```

$$X_2 = [0, 2, 1, 6, 0, 1, 1, 3, 1, 7, 1, 6, 3, 0, 1, 1, 3, 0, 1, 7, 0, 2, 0, 0, 0, 7, 0, 2, 0, 3, 1, 3, 1, 7, 3, 3, 1, 2, 3, 4]$$


```
X_1 = [0, 2, 0, 0, 0, 7, 0, 2, 0, 3, 1, 3, 1, 7, 3, 3, 1, 2, 3, 4, 0, 2, 1, 6, 0, 1, 1, 3, 1, 7, 1, 6, 3, 0, 1, 1, 3, 0, 1, 7]
```

$$X_2 = [0, 2, 1, 6, 0, 1, 1, 3, 1, 7, 1, 6, 3, 0, 1, 1, 3, 0, 1, 7, 0, 2, 0, 0, 0, 7, 0, 2, 0, 3, 1, 3, 1, 7, 3, 3, 1, 2, 3, 4]$$


```
X_1 = [0, 2, 0, 0, 0, 7, 0, 2, 0, 3, 1, 3, 1, 7, 3, 3, 1, 2, 3, 4, 0, 2, 1, 6, 0, 1, 1, 3, 1, 7, 1, 6, 3, 0, 1, 1, 3, 0, 1, 7]

X_2 = [0, 2, 1, 6, 0, 1, 1, 3, 1, 7, 1, 6, 3, 0, 1, 1, 3, 0, 1, 7, 0, 2, 0, 0, 0, 7, 0, 2, 0, 3, 1, 3, 1, 7, 3, 3, 1, 2, 3, 4]
```


 $X_1 = [0, 2, 0, 0, 0, 7, 0, 2, 0, 3, 1, 3, 1, 7, 3, 3, 1, 2, 3, 4, 0, 2, 1, 6, 0, 7, 1, 3, 0, 3, 1, 6, 6, 0, 3, 3, 3, 0, 1, 7]$

 $X_2 = [0, 2, 1, 6, 0, 1, 1, 3, 1, 7, 1, 6, 3, 0, 1, 1, 3, 0, 1, 7, 0, 2, 0, 0, 0, 0, 1, 0, 2, 1, 7, 1, 3, 1, 7, 1, 1, 1, 2, 3, 4]$

Issues in NAS Research and Evaluations

- The final results reported in different papers are typically incomparable
 - Different training code
 - Different search space
 - □ Different evaluation schemes
- We may wait for a long time to see the effectiveness of a new idea/method.
- → Using NAS Benchmarks can solve these problems.

Definition

A NAS Benchmark consists of architectures in the same search space; performance' architectures were obtained by training and evaluating on the same dataset, same setting configurations.

When should we use NAS Benchmarks?

Comparison between NAS methods

How to use NAS Benchmarks?

1) Encode the solution to the required format

2)

Benefit of using NAS Benchmarks

- □ Fast
- Can compare our NAS methods to other NAS methods
- □ Only focus on "Search strategy" (NAS methods) and "Performance estimation strategy"

Drawbacks

- □ Not using for achieving the SoTA architecture
- □ Constraints on the search space

Some NAS Benchmarks:

- □ MacroNAS
- □ NAS-Bench-101
- □ NAS-Bench-201
- □ NAS-Bench-301
- □ NAS-Bench-NLP

Table of Contents

Neural Architecture Search (NAS)

Approach NAS with Evolutionary Algorithms (EAs)

- GeneticCNN
- NSGA-Net

NAS-Benchmarks

- MacroNAS
- NAS-Bench-101
- NAS-Bench-201

MacroNAS

Some informations:

- Macro-level
- □ Dataset: CIFAR-10; CIFAR-100
- □ Performance metrics: {Training accuracy; Validation Accuracy; Testing Accuracy}
- □ Computational metric: MMACs
- □ Seach space size: 4,784,969
- □ More detail: [2004.08996] Local Search is a Remarkably Strong Baseline for Neural Architecture Search (arxiv.org)

MacroNAS

Search space informations:

- □ Chain structure
- □ 14 layers. Each layer is 1 out of 3 types.

Table of Contents

Neural Architecture Search (NAS)

Approach NAS with Evolutionary Algorithms (EAs)

- GeneticCNN
- NSGA-Net

NAS-Benchmarks

- MacroNAS
- NAS-Bench-101
- NAS-Bench-201

NAS-Bench-101

Some informations:

- Micro-level
- □ Dataset: CIFAR-10
- □ Performance metrics: {Training accuracy; Validation Accuracy; Testing Accuracy}
- □ Computational metric: #Params
- □ Seach space size: $\approx 423,000$
- ☐ More details: [1902.09635] NAS-Bench-101: Towards Reproducible Neural Architecture

 Search (arxiv.org)

NAS-Bench-101

Search space informations:

- □ Normal DAG
- □ Nodes represent operations. Edges represent the flow of data.
- Each DAG has 7 nodes. There are 2 fixed nodes: Input Node; Output Node. Each remaining node is 1 of 3 operations.
- □ Maximum number of edges in DAG is 9.

Table of Contents

Neural Architecture Search (NAS)

Approach NAS with Evolutionary Algorithms (EAs)

- GeneticCNN
- NSGA-Net

NAS-Benchmarks

- MacroNAS
- NAS-Bench-101
- NAS-Bench-201

NAS-Bench-201

Some informations:

- □ Micro-level
- □ Dataset: CIFAR-10; CIFAR-100; ImageNet16-120
- □ Performance metrics: {Training accuracy; Validation Accuracy; Testing Accuracy}
- □ Computational metric: FLOPs, #Params
- □ Seach space size: 15,625
- □ More details: [2001.00326] NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search (arxiv.org)

NAS-Bench-201

Search space informations:

- □ Fully connected DAG
- □ Nodes is the place to aggregate the output (data) from previous nodes, edges represent operations.
- □ Each DAG has 4 nodes. Each edge is 1 of 5 operators.

I recommend you should consider these questions before experimenting:

- Which kind of problem would you want to solve (SOP; MOP)?
- Which EA would you choose (GA, NSGA-II, MO-GOMEA, MOEA/D, ...)?
 Is it suitable for the problem that you are solving?
- What are solutions in the NAS search space? How to represent the solution of NAS search space in the EA problem's search space? ⇒ Search space

• What are solutions in the NAS search space? How to represent the solution of NAS search space in the EA problem's search space?

How do you build a complete architecture? (PyTorch, Tensorflow, ...)

I recommend you should consider these questions before experimenting:

- Which kind of problem would you want to solve (SOP; MOP)?
- Which EA would you choose (GA, NSGA-II, MO-GOMEA, MOEA/D, ...)?
 Is it suitable for the problem that you are solving?
- What are solutions in the NAS search space? How to represent the solution of NAS search space in the EA problem's search space? ⇒ Search space
- What are fitness values? How to evalutate? ⇒ Performance Estimation Strategy
 - NAS-Benchmarks
 - \rightarrow Truly train \Rightarrow How do you build a complete architecture? (PyTorch, Tensorflow, ...)

I recommend you should consider these questions before experimenting:

- Which kind of problem would you want to solve (SOP; MOP)?
- Which EA would you choose (GA, NSGA-II, MO-GOMEA, MOEA/D, ...)? Search strategy Is it suitable for the problem that you are solving?
- What are solutions in the NAS search space? How to represent the solution of NAS search space in the EA problem's search space? ⇒ Search space
- What are fitness values? How to evalutate? ⇒ Performance Estimation Strategy
- How to perform crossover, mutation?

During the search process, you should log the results (e.g., the population; the best solution;
 the approximation front; the number of evaluations) at the end of each generation.