Сравнения по модулю разности

Определение. Два целых числа a и b называются cpaвнимыми по натуральному модулю n, если их разность делится на n.

Обозначение сравнимости a и b по модулю n. $a \equiv b \pmod n$ или $a \equiv b$.

Ключевая идея. $a \equiv b \pmod{a-b}$ и $a \equiv -b \pmod{a+b}$.

Свойства сравнимости. Если $a \equiv b \pmod{n}, \ c \equiv d \pmod{n}$, то:

- $a + c \equiv b + d \pmod{n}$
- $a c \equiv b d \pmod{n}$
- $a \cdot c \equiv b \cdot d \pmod{n}$
- $a^m \equiv b^m \pmod{n}$ для любого натурального m
- $a \equiv b \pmod{\frac{n}{k}}$, если n делится на k
- $\frac{a}{k} \equiv \frac{b}{k} \pmod{\frac{n}{k}}$, если a, b, n делятся на k
- $\frac{a}{k} \equiv \frac{b}{k} \pmod{n}$, если a и b делятся на взаимно простое с n число k
- **0.** $(n^2-n+1)^2$ делится на mn-1. Найдите выражение меньшей степени (чем 4), которое делится на mn-1.
- **1.** Сколько есть целых n, для которых $5n^5 + 4n^4 + 3n^3 + 2n^2 + n$ делится на n+1?
- **2.** a, b и m натуральные числа. Докажите, что если числа a + b и $a^2 + b$ делятся на m, то $a^n + b$ делится на m при любом натуральном n.
- **3.** Натуральное число n таково, что для любых различных натуральных a и b число $a^2 + b^2 nab$ делится на a b. Чему может быть равно n?
- **4.** Натуральные числа $a,\ b,\ x$ и y таковы, что ax+by делится на a^2+b^2 . Докажите, что x^2+y^2 и a^2+b^2 не взаимно просты.
- **5.** Найдите все пары натуральных a и b таких, что a^2+b кратно b^2+a , причём b^2+a простое число в натуральной степени (возможно, первой).
- **6.** Найдите все пары натуральных чисел x, y такие, что $x^3 + 1$ делит $(x+1)^y$.
- 7. Найдите какие-нибудь числа b>a>1000, для которых a^b-1 делится на b^a-1 .