Lecture linalg1: Basic Gaussian Elimination

September 23, 2022

Summary: Triangular systems and Gaussian elimination, with 3-by-3 example.

Triangular systems

Diagonal systems are trivial to solve, so let us examine the easiest of nontrivial systems. Namely, triangular systems. An *upper triangular* system has form

$$U\mathbf{x} = \mathbf{b} \iff \begin{pmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ 0 & u_{22} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}. \tag{1}$$

Here $u_{jk}=0$ whenever j>k (the row index exceeds the column index). Solve system by **backward substitution**. Note last equation is $u_{nn}x_n=b_n \implies x_n=b_n/u_{nn}$ (provided $u_{nn}\neq 0$). Note second to last equation (implied but not shown) is $u_{n-1,n-1}x_{n-1}+u_{n-1,n}x_n=b_{n-1} \implies x_{n-1}=(b_{n-1}-u_{n-1,n}x_n)/u_{n-1,n-1}=(b_{n-1}-u_{n-1,n}b_n/u_{nn})/u_{n-1,n-1}$ (provided both $u_{n-1,n-1}$ and $u_{nn}\neq 0$). We have the algorithm

$$x_k = \left(b_k - \sum_{j=k+1}^n u_{kj} x_j\right) / u_{kk}, \quad \text{for } k = n, n-1, \dots, 1.$$
 (backward substitution). (2)

Note the only possible obstruction to solving the system this way is if one of the diagonal elements $u_{kk} = 0$. Fact: for an upper triangular matrix U, we have $\det U = u_{11}u_{22}\cdots u_{nn}$. You may compute the determinant of a triangular matrix as the product of its diagonal elements.

Similar formulas hold for lower triangular systems,

$$L\mathbf{x} = \mathbf{b} \iff \begin{pmatrix} \ell_{11} & 0 & \cdots & 0 \\ \ell_{21} & \ell_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \ell_{n1} & \ell_{n2} & \cdots & \ell_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}. \tag{3}$$

Now $\ell_{jk} = 0$ whenever k > j (column index exceeds row index), and $\det L = \ell_{11}\ell_{22}\cdots\ell_{nn}$. We may solve a lower triangular system via

$$x_k = \left(b_k - \sum_{j=1}^{k-1} \ell_{kj} x_j\right) / \ell_{kk}, \quad \text{for } k = 1, 2, \dots, n.$$
 (forward substitution), (4)

provided all $\ell_{kk} \neq 0$. Often the strategy is to put a general system into an upper triangular form (by convention, lower triangular would be equally good) using row operations. Let's see how to do that

Gaussian elimination

We will use row operations to simplify a general system. Consider the matrix

$$A = \begin{pmatrix} 1 & -1 & 3 \\ 2 & -2 & 2 \\ -4 & -4 & 1 \end{pmatrix},\tag{5}$$

here with entries chosen for easy algebra. Say we are interested in solving Ax = b and/or finding A^{-1} . Not unrelated problems, and both may be attacked using *augmented* matrices. We form

$$[A|b] = \begin{pmatrix} 1 & -1 & 3 & b_1 \\ 2 & -2 & 2 & b_2 \\ -4 & -4 & 1 & b_3 \end{pmatrix}, \qquad [A|I] = \begin{pmatrix} 1 & -1 & 3 & 1 & 0 & 0 \\ 2 & -2 & 2 & 0 & 1 & 0 \\ -4 & -4 & 1 & 0 & 0 & 1 \end{pmatrix}, \tag{6}$$

with the first augmented matrix appropriate for solving Ax = b, and the second for finding finding A^{-1} . Now consider the replacement matrices

$$R_1 = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad R_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{pmatrix}. \tag{7}$$

Note that $\det R_1 = 1 = \det R_2$ (each is triangular with a 1 for each diagonal entry). Upon multiplication from the left, R_1 replaces row2 with row2 - 2 row1, and R_2 replaces row3 with row3 + 4 row1. These matrices have been tailored to zero out the last two entries of the first column of A as follows:

$$[R_2 R_1 A | R_2 R_1 b] = \begin{pmatrix} 1 & -1 & 3 & b_1 \\ 0 & 0 & -4 & b_2 - 2b_1 \\ 0 & -8 & 13 & b_3 + 4b_1 \end{pmatrix},$$

$$[R_2 R_1 A | R_2 R_1 I] = \begin{pmatrix} 1 & -1 & 3 & 1 & 0 & 0 \\ 0 & 0 & -4 & -2 & 1 & 0 \\ 0 & -8 & 13 & 4 & 0 & 1 \end{pmatrix},$$
(8)

where $\det R_2 R_1 A = \det A$ (fact: $\det(AB) = \det A \det B$). Next, we introduce a permutation matrix,

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},\tag{9}$$

which exchanges row(2) and row(3). Therefore,

$$[PR_{2}R_{1}A|PR_{2}R_{1}b] = \begin{pmatrix} 1 & -1 & 3 & b_{1} \\ 0 & -8 & 13 & b_{3} + 4b_{1} \\ 0 & 0 & -4 & b_{2} - 2b_{1} \end{pmatrix},$$

$$[PR_{2}R_{1}A|PR_{2}R_{1}I] = \begin{pmatrix} 1 & -1 & 3 & 1 & 0 & 0 \\ 0 & -8 & 13 & 4 & 0 & 1 \\ 0 & 0 & -4 & -2 & 1 & 0 \end{pmatrix}.$$
(10)

Notice that $\det P = -1$, $\det(PR_2R_1A) = -\det A$. Since PR_2R_1A is upper triangular, we see that $\det A = -\det(PR_2R_1A) = -32$, whence A is an invertible matrix, and we can find a unique inverse A^{-1} . However, if our goal is only to solve Ax = b, it's less work for us to stop here, finishing off the job with backwards substitution,

$$x_{3} = -\frac{1}{4}(b_{2} - 2b_{1})$$

$$x_{2} = -\frac{1}{8}(b_{3} + 4b_{1} - 13x_{3}) = -\frac{1}{32}(4b_{3} + 13b_{2} - 10b_{1})$$

$$x_{1} = b_{1} + x_{2} - 3x_{3} = -\frac{1}{32}(6b_{1} - 11b_{2} + 4b_{3}).$$
(11)

Now, we could in fact "read-off" A^{-1} from these results. Indeed, since we left **b** general, the equation for x_1 , for example, tells us that the first row of A^{-1} is $\left[-\frac{3}{16}, \frac{11}{32}, -\frac{1}{8}\right]$. Nevertheless to explicitly get A^{-1} , we carry on and introduce the following diagonal *pivot* matrices

$$D_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{8} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad D_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{4} \end{pmatrix}, \tag{12}$$

where det $D_1 = -\frac{1}{8}$ and det $D_2 = -\frac{1}{4}$. Upon multiplication from the left, we then have

$$[D_2D_1PR_2R_1A|D_2D_1PR_2R_1I] = \begin{pmatrix} 1 & -1 & 3 & 1 & 0 & 0\\ 0 & 1 & -\frac{13}{8} & -\frac{1}{2} & 0 & -\frac{1}{8}\\ 0 & 0 & 1 & \frac{1}{2} & -\frac{1}{4} & 0 \end{pmatrix}.$$
(13)

Next, we use the matrix

$$R_3 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{14}$$

to replace row(1) with row(1) + row(2), with result

$$[R_3D_2D_1PR_2R_1A|R_3D_2D_1PR_2R_1I] = \begin{pmatrix} 1 & 0 & \frac{11}{8} & \frac{1}{2} & 0 & -\frac{1}{8} \\ 0 & 1 & -\frac{13}{8} & -\frac{1}{2} & 0 & -\frac{1}{8} \\ 0 & 0 & 1 & \frac{1}{2} & -\frac{1}{4} & 0 \end{pmatrix}. \tag{15}$$

Finally, we use

$$R_4 = \begin{pmatrix} 1 & 0 & -\frac{11}{8} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad R_5 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{13}{8} \\ 0 & 0 & 1 \end{pmatrix}$$
 (16)

to replace row(1) with row(1) $-\frac{11}{8}$ row(3), and to replace row(2) with row(2) $+\frac{13}{8}$ row(3). The result of all row operations is then the following:

$$[R_5 R_4 R_3 D_2 D_1 P R_2 R_1 A | R_5 R_4 R_3 D_2 D_1 P R_2 R_1 I] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{16} & \frac{11}{32} & -\frac{1}{8} \\ \frac{5}{16} & -\frac{13}{32} & -\frac{1}{8} \\ \frac{1}{2} & -\frac{1}{4} & 0 \end{pmatrix}. \tag{17}$$

Argument has shown that $A^{-1} = R_5 R_4 R_3 D_2 D_1 P R_2 R_1$ and, moreover, that

$$A^{-1} = \begin{pmatrix} -\frac{3}{16} & \frac{11}{32} & -\frac{1}{8} \\ \frac{5}{16} & -\frac{13}{32} & -\frac{1}{8} \\ \frac{1}{2} & -\frac{1}{4} & 0 \end{pmatrix}. \tag{18}$$

We also find

$$\det(A^{-1}) = \det(R_5) \det(R_4) \det(R_3) \det(R_3) \det(D_2) \det(D_1) \det(P) \det(R_2) \det(R_1) = -\frac{1}{32}, \quad (19)$$

as expected since $\det(AA^{-1}) = \det I = 1$.

Factorization $A = P^T L U$

Here we show how the matrix (5) can be factorized such that $PA = LU \iff A = P^T LU$, where P is a permutation matrix, L is lower triangular, and U is upper triangular. From the last equation in (10) we have PMA = U, where P is the permutation matrix in (9) and

$$U = \begin{pmatrix} 1 & -1 & 3 \\ 0 & -8 & 13 \\ 0 & 0 & -4 \end{pmatrix}, \qquad M = R_2 R_1 = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 4 & 0 & 1 \end{pmatrix}. \tag{20}$$

Since $P = P^T$ and $PP^T = I = P^2$, we have $MA = PU \implies A = M^{-1}PU \implies PA = PM^{-1}PU$. We now define $L \equiv PM^{-1}P$ and verify that it is indeed lower triangular. First, check that

$$M^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -4 & 0 & 1 \end{pmatrix}, \tag{21}$$

so the inverse M^{-1} of M (lower triangular) is also lower triangular. In general, the inverse of a lower triangular matrix is itself lower triangular. Since P swaps the second and third rows,

$$PM^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -4 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix} \implies PM^{-1}P = \begin{pmatrix} 1 & 0 & 0 \\ -4 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}. (22)$$

The last matrix is L, and in all PA = LU reads

$$\underbrace{\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}}_{P} \underbrace{\begin{pmatrix}
1 & -1 & 3 \\
2 & -2 & 2 \\
-4 & -4 & 1
\end{pmatrix}}_{A} = \underbrace{\begin{pmatrix}
1 & 0 & 0 \\
-4 & 1 & 0 \\
2 & 0 & 1
\end{pmatrix}}_{C} \underbrace{\begin{pmatrix}
1 & -1 & 3 \\
0 & -8 & 13 \\
0 & 0 & -4
\end{pmatrix}}_{C}.$$
(23)