Algorithmic Robotics

Question 1:We will write 5 configurations in a table [degrees]:

	q0	q1	q2	q3	q4	EE position
Conf' 0	0	0	0	0	0	(0,0.56,0.42)
Conf' 1	0	0	90	0	0	(0,0.06,0.92)
Conf' 2	45	45	0	0	0	(-0.13, 0.13, 0.72)
Conf' 3	90	90	90	90	0	(0.8,0,0.18)
Conf' 4	135	60	0	0	90	(0.179, 0.179, 0.682)
Conf' 5	180	30	30	30	30	(-0.05, -0.0636, 0.863)

Configuration 0:

We reorganized the robot xml file so it will fit configuration 0 as we derived from FK.py. The new NBEL.xml is in appendix 2.

The EE in NBEL is in (0,0.56,0.42)

Configuration 1:

We will write the configurationmatrixes for configurations 1:

$$\begin{split} T_{01} &= \begin{bmatrix} \cos(\theta_0) & -\sin(\theta_0) & 0 & 0 \\ \sin(\theta_0) & \cos(\theta_0) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos(0) & -\sin(0) & 0 & 0 \\ \sin(0) & \cos(0) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ T_{12} &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \cos(\theta_1) & -\sin(\theta_1) & 0 \\ 0 & \sin(\theta_1) & \cos(\theta_1) & L_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \cos(0) & -\sin(0) & 0 \\ 0 & \sin(0) & \cos(0) & L_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & \sin(0) & \cos(0) & L_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & \sin(\theta_0) & \cos(\theta_0) & -\sin(\theta_0) & L_3 \\ 0 & \sin(\theta_2) & \cos(\theta_2) & L_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \cos(90) & -\sin(90) & L_3 \\ 0 & \sin(\theta_0) & \cos(90) & L_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & L_3 \\ 0 & 0 & 1 & L_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ T_{34} &= \begin{bmatrix} \cos(\theta_3) & 0 & \sin(\theta_3) & 0 \\ 0 & 1 & 0 & L_4 \\ -\sin(\theta_3) & 0 & \cos(\theta_3) & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos(0) & 0 & \sin(0) & 0 \\ 0 & 1 & 0 & L_4 \\ -\sin(0) & 0 & \cos(0) & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & L_4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ T_{45} &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \cos(\theta_4) & -\sin(\theta_4) & L_5 \\ 0 & \sin(\theta_4) & \cos(\theta_4) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \cos(0) & -\sin(0) & L_5 \\ 0 & \sin(0) & \cos(0) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & L_5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ T_{56} &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & L_6 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ T_{60} &= T_{01} \cdot T_{12} \cdot T_{23} \cdot T_{34} \cdot T_{45} \cdot T_{56} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & L_3 & 0 \\ 0 & 0 & 0 & 1 & L_1 + L_2 + L_4 + L_5 + L_6 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

The position of the EE: [0, 0.06, 0.92]

Question 2:

The D-H parameters we defined are below. Pay attention to the special angle $\tan^{-1}\left(\frac{L_2}{L_3}\right)$ And its opposite side angle in the triangle formed by J2, J3 and the corner of the arm. We decided to define the J4 and J5 parameters in the same location, and the it means the L4+L5 could be added in d4.

i	α_{i-1}	a_{i-1}	d_i	ϕ_i
1	0	0	L_1	$\theta_1 + 90$
2	90	0	0	$\theta_2 + \tan^{-1}\left(\frac{L_2}{L_3}\right)$
3	0	$\sqrt{L_2^2 + L_3^2}$	0	$\theta_3 + \tan^{-1}\left(\frac{L_3}{L_2}\right)$
4	90	0	$L_4 + L_5$	$ heta_4$
5	-90	0	0	$ heta_5$
6	90	0	L_6	θ_6

Below is the comparison of results between the 2 ways of calculating the End Effectors location, it's very accurate for us.

	q0	q1	q2	q3	q4	Forward Kinematics	DH parameters
Conf' 0	0	0	0	0	0	(0,0.56,0.42)	(0,0.56,0.42)
Conf' 1	0	0	90	0	0	(0,0.06,0.92)	(0,0.06,0.92)
Conf' 2	45	45	0	0	0	(-0.13, 0.13, 0.72)	(-0.13,0.13,0.72)
Conf' 3	90	90	90	90	0	(0.8,0,0.18)	(0.8,0,0.18)
Conf' 4	135	60	0	0	90	(0.179, 0.179, 0.682)	(0.179, 0.179, 0.682)
Conf' 5	180	30	30	30	30	(-0.05, -0.0636, 0.863)	(-0.05, -0.0636, 0.863)