SI LV4 Linjär Algebra

Gustav Örtenberg | gusort@student.chalmers.se

2017-11-21

1

Låt vektorn
$$\vec{v} = \begin{bmatrix} -2 \\ -1 \\ 2 \\ 3 \\ 6 \end{bmatrix}$$
 och $\vec{u} = \begin{bmatrix} -2 \\ 4 \\ -3 \\ 4 \\ -1 \end{bmatrix}$.

- a) Beräkna $2 \cdot \vec{v} 3 \cdot \vec{u}$.
- b) Beräkna $3 \cdot \vec{v} + 2 \cdot \vec{u}$.
- c) Är \vec{v} och \vec{u} ? ortogonala
- d) Vad kallas det vektorrum som \vec{v} tillhör?

2

- a) Givet två vektorer \vec{u} och \vec{v} , vad blir resultatet av kryssprodukten $\vec{u} \times \vec{v}$?
- b) Beräkna kryssprodukten av $\vec{u} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$ och $\vec{v} = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$
- c) Beräkna kryssprodukten av $\vec{v} = \begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix}$ och $\vec{u} = \begin{bmatrix} -2 \\ 7 \\ 1 \end{bmatrix}$.
- d) Beräkna kryssprodukten av $\vec{e_x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{e_y} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$

Kan ni gissa vad resultatet kommer att bli på förhand?

e) Kan ni representera följande vektorer i R^3 och beräkna kryssprodukten av dem? $\vec{u}=\begin{bmatrix}1\\3\end{bmatrix},\,\vec{v}=\begin{bmatrix}2\\5\end{bmatrix}$

3

Låt vektorerna $\vec{u}=(2,2,5),\,\vec{v}=(-2,3,1).$

- a) $||\vec{u} \times \vec{v}||$
- $\vec{u} \times \vec{v}$
- $\vec{v} \times \vec{u}$
- Beräkna normalen till parallellogrammet som spänns upp av \vec{u} och \vec{v} .
- Beräkna också arean till parallellogrammet.

4

Låt
$$\vec{v} = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$$
 och $\vec{u} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$

- a) Beräkna $\vec{v} \cdot \vec{u}$.
- Beräkna $\vec{v} \times \vec{u}$.
- Beräkna vinkeln mellan \vec{v} och \vec{u} .
- Beräkna arean av det parrallellogram vektorerna spänner upp.
- Byt ut 0:an i \vec{v} så att \vec{v} och \vec{u} blir ortogonala.

5

Finn en positivt orienterad ON-bas $\vec{g_1}, \vec{g_2}$ och $\vec{g_3}$, där $\vec{g_2}$ har samma riktning som $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, och $\vec{g_3}$ har samma riktning som $\begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$. Beräkna koordinaterna för vektorn $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ i basen $\vec{g_1}, \vec{g_2}$ och $\vec{g_3}$.

6

Antag att
$$G = (\vec{g_1}, \ \vec{g_2}, \ \vec{g_3})$$
 är en bas där $||\vec{g_1}|| = 1, \ ||\vec{g_2}|| = \sqrt{2}, \ ||\vec{g_3}|| = 2$ och

vinkeln $\angle \vec{g_1} \vec{g_2}$ är $\pi/4$, vinkeln $\angle \vec{g_1} \vec{g_3}$ är $\pi/3$ och vinkeln $\angle \vec{g_2} \vec{g_3}$ är $\pi/2$. Låt \vec{u} och \vec{v} vara de vektorer som i basen G har koordinater

$$\vec{u_G} = \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \ \vec{v_G} = \begin{bmatrix} -1\\3\\1 \end{bmatrix}$$

Beräkna vinkeln $\angle \vec{u}\vec{v}$ mellan dessa vektorer \vec{u} och $\vec{v}.$