

## Shading I

# Ed Angel Professor Emeritus of Computer Science University of New Mexico



## **Objectives**

- Learn to shade objects so their images appear three-dimensional
- Introduce the types of light-material interactions
- Build a simple reflection model---the Phong model--- that can be used with real time graphics hardware



## Why we need shading

• Suppose we build a model of a sphere using many polygons and color it with glcolor. We get something like







#### **Shading**

Why does the image of a real sphere look like



- Light-material interactions cause each point to have a different color or shade
- Need to consider
  - Light sources
  - Material properties
  - Location of viewer
  - Surface orientation



# **Scattering**

- Light strikes A
  - Some scattered
  - Some absorbed
- Some of scattered light strikes B
  - Some scattered
  - Some absorbed
- Some of this scattered light strikes A

and so on





#### **Rendering Equation**

- The infinite scattering and absorption of light can be described by the rendering equation
  - Cannot be solved in general
  - Ray tracing is a special case for perfectly reflecting surfaces
- Rendering equation is global and includes
  - Shadows
  - Multiple scattering from object to object



#### **Global Effects**





#### **Local vs Global Rendering**

- Correct shading requires a global calculation involving all objects and light sources
  - Incompatible with pipeline model which shades each polygon independently (local rendering)
- However, in computer graphics, especially real time graphics, we are happy if things "look right"
  - Exist many techniques for approximating global effects



#### **Light-Material Interaction**

- Light that strikes an object is partially absorbed and partially scattered (reflected)
- The amount reflected determines the color and brightness of the object
  - A surface appears red under white light because the red component of the light is reflected and the rest is absorbed
- The reflected light is scattered in a manner that depends on the smoothness and orientation of the surface



## **Light Sources**

General light sources are difficult to work with because we must integrate light coming from all points on the source





#### Simple Light Sources

#### Point source

- Model with position and color
- Distant source = infinite distance away (parallel)

#### Spotlight

- Restrict light from ideal point source
- Ambient light
  - Same amount of light everywhere in scene
  - Can model contribution of many sources and reflecting surfaces



#### **Surface Types**

 The smoother a surface, the more reflected light is concentrated in the direction a perfect mirror would reflected the light

A very rough surface scatters light in all

directions





rough surface



# **Phong Model**

- A simple model that can be computed rapidly
- Has three components
  - Diffuse
  - Specular
  - Ambient
- Uses four vectors
  - To source
  - To viewer
  - Normal
  - Perfect reflector





#### Ideal Reflector

- Normal is determined by local orientation
- Angle of incidence = angle of relection
- The three vectors must be coplanar

$$\mathbf{r} = 2 (\mathbf{l} \cdot \mathbf{n}) \mathbf{n} - \mathbf{l}$$





#### **Lambertian Surface**

- Perfectly diffuse reflector
- Light scattered equally in all directions
- Amount of light reflected is proportional to the vertical component of incoming light
  - reflected light  $\sim \cos \theta_i$
  - $\cos \theta_i = \mathbf{l} \cdot \mathbf{n}$  if vectors normalized
  - There are also three coefficients,  $k_{\rm r},\,k_{\rm b},\,k_{\rm g}$  that show how much of each color component is reflected



#### **Specular Surfaces**

 Most surfaces are neither ideal diffusers nor perfectly specular (ideal reflectors)

 Smooth surfaces show specular highlights due to incoming light being reflected in directions concentrated close to the direction of a perfect

reflection

specular

highlight



# **Modeling Specular Relections**

 Phong proposed using a term that dropped off as the angle between the viewer and the ideal reflection increased





#### The Shininess Coefficient

- Values of  $\alpha$  between 100 and 200 correspond to metals
- Values between 5 and 10 give surface that look like plastic

