

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Geometría I Examen IV

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2023

Asignatura Geometría I.

Curso Académico 2022-23.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Juan de Dios Pérez Jiménez¹.

Descripción Convocatoria Ordinaria.

Fecha 23 de enero de 2023.

Duración 3 horas.

¹El examen lo pone el departamento

- 1. [2 puntos] Enuncia y demuestra el Teorema del Rango.
- 2. Sea $U = \{M \in \mathcal{M}_2(\mathbb{R}) : MA = AM\}$, donde $A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$.
 - a) [2 puntos] Demostrar que U es un espacio vectorial de $\mathcal{M}_2(\mathbb{R})$ y calcular un complementario.
 - b) [1 punto] Hallar una base de $\mathcal{M}_2(\mathbb{R})/U$ y calcular las coordenadas en esa base de $\begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} + U$.
 - c) [2 puntos] Construir una aplicación lineal $f: \mathcal{M}_2(\mathbb{R}) \to \mathbb{R}_3[x]$ cuyo núcleo sea U y su imagen tenga por sistema de generadores $\{1+x, 1-x\}$.
 - d) [1 punto] Calcular la matriz asociada a f respecto a las bases usuales $\mathcal{B}_u = \{E_{ij} : 1 \leq i, j \leq 2\}$ (con la ordenación que se escoja) de $\mathcal{M}_2(\mathbb{R})$ y $\mathcal{B}'_u = \{1, x, x^2, x^3\}$ de $\mathbb{R}_3[x]$.
 - e) [1 punto] Hallar, si es posible, bases \mathcal{B} de $\mathcal{M}_2(\mathbb{R})$ y \mathcal{B}' de $\mathbb{R}_3[x]$ tales que

sea la identidad.

f) [1 punto] Hallar bases de an(U) y $Ker(f^t)$.