Modelowanie urządzenia hamującego lądujący samolot

Sprawozdanie

Akademia Górniczo-Hutnicza im. Stanisława Staszica

Modelowanie Systemów Dynamicznych 2022 WEAliIB, Automatyka i Robotyka

Data wykonania ćwiczenia: 16.11.2022r.

Data oddania sprawozdania: 29.11.2022r.

Spis Treści

- 1. Cel ćwiczeń
- 2. Wstęp teoretyczny
- 3. Wykonanie zadania
- 4. Wnioski
- 5. Bibliografia

1. Cel ćwiczeń

Celem laboratorium jest zaprojektowanie układu odpowiedzialnego za hamowanie lądującego samolotu w taki sposób, aby samolot zatrzymał się w obszarze lądowania oraz aby uzyskać jak najmniejsze przeciążenia.

2. Wstęp teoretyczny

Poniżej znajduję się obraz przedstawiający schemat instalacji hamującej lądujący samolot.

Schemat układu, którego zadaniem jest hamowanie lądującego samolotu

Oznaczenia na powyższym rysunku:

- m₁ masa samolotu
- m₂ masa przesuwna
- m₃ masa tłumika wodnego
- k₁ współczynnik sprężystości pierwszej sprężyny
- *k*₂ współczynnik sprężystości drugiej sprężyny
- h odległość między połową układu hamującego samolot a punktem zaczepienia cięgna o samolot
- x droga pokonana przez samolot
- y₁ przemieszczenie cięgna
- y₂ droga pokonana przez bloczek przesuwny
- y₃ droga przebyta przez tłok tłumika
- f_{ki} siła sprężystości pochodząca od sprężyny k_i

Równanie dynamiki dla samolotu o masie m_1 :

$$m_1\ddot{x} = -2f_{k1}\sin\theta$$
,

gdzie:

$$f_{k1} = \begin{cases} k_1(y_1 - 2y_2); \ y_1 \ge 2y_2 \\ 0; \ y_1 < 2y_2 \end{cases},$$
$$\sin \theta = \frac{x}{\sqrt{x^2 + h^2}},$$
$$y_1 = \sqrt{x^2 + h^2} - h$$

W pierwszym równaniu czynnik 2 jest związany z faktem, że układ hamujący jest dwustronny.

Równanie dynamiki dla masy przesuwnej m2:

$$m_2\ddot{y}_2 = 2f_{k1} - f_{k2},$$

gdzie:

$$f_{k2} = \begin{cases} k_2(y_2 - y_3); \ y_2 \ge y_3 \\ 0; \ y_2 < y_3 \end{cases}.$$

Równanie dynamiki dla tłumika wodnego m3:

$$m_3\ddot{y_3} = f_{k2} - f_b$$

gdzie f_b – czyli siła tłumiąca jest opisana wzorem:

$$f_h = f(y_3)(\dot{y_3})^2$$

w którym zależność $f(y_3)$ jest opisana za pomocą poniższej tabeli.

$y_3[m]$	$f(y_3)$	$y_3[m]$	$f(y_3)$
0	833	80	1070
10	400	90	1600
20	160	94	2100
30	320	98	2800
40	520	102	4100
50	520	104	5000
60	660	107	9000
70	830	120	9000

3. Wykonanie zadania

W ramach zadania przyjęto podane dane:

- $m_1 = 14000 \text{ kg}$,
- $m_2 = 450.28 \text{ kg}$,
- $m_3 = 200 \text{ kg}$,
- $k_1 = 54.7 \text{ kN/m}$,
- $k_2 = 303.6 \text{ kN/m}$,
- h = 42 m

oraz warunki początkowe:

- x(0) = 0 m
- x'(0) = 67 m/s
- $y_2(0) = 0 \text{ m}$
- $y_2'(0) = 0 \text{ m/s}$
- $y_3(0) = 0 \text{ m}$
- $y_3'(0) = 0 \text{ m/s}$

Schemat blokowy realizujący zadaną logikę przedstawia poniższy rysunek.

Układ hamujący samolot wykonany w Simulinku

Funkcje $\sin \theta$ oraz y_1 zostały zrealizowana przy użyciu bloczka *MATLAB Function*.

```
function y = sin_theta(u, h)
    y = u/sqrt(u^2 + h^2);
end

Funkcja sin_theta

function y = y1(u, h)

y = sqrt(h^2+u^2) - h;
end
```

Funkcja y1

Zależność $f(y_3)$ została zawarta na schemacie za pomocą bloku 1-D Lookup Table.

```
y3_table = [0:10:90, [94 98 102 104 107 120]];
f_y3_table = [833 400 160 320 520 520 660 830 1070 1600 2100 2800 4100 5000 9000 9000];
```

Zmienne użyte do poprawnego ustawienia bloczku 1-D Lookup Table

Parametry bloku 1-D Lookup Table

Po dokonaniu symulacji na oscyloskopie otrzymano ukazane przebiegi dla przemieszczenia, prędkości oraz przyspieszenia działające na samolot (oraz pilota) w trakcie hamowania maszyny.

Wykresy przemieszczenia, prędkości i przyspieszenia samolotu podczas hamowania pojazdu przy pomocy zaimplementowanego układu

Bazując na powyższych wynikach można stwierdzić, że samolot zatrzyma się w momencie, gdy pokona drogę troszeczkę dłuższą, niż 250 m (dokładnie ok. 260 m). Prędkość po pewnym okresie czasu zrównuje się do zera, co świadczy o charakterze modelu. Osoba sterująca pojazdem latającym doświadczy w dwóch momentach największych co do wartości przyspieszeń równych (nie uwzględniając zwrotu wektora) ok. 14.25 m/s² i ok. 16.8 m/s².

4. Wnioski

- Simulink umożliwia tworzenie układów w postaci schematów bloczkowych, które symulują zachowanie zadanych obiektów.
- Blok *MATLAB F*unction pozwala na zaimplementowanie utworzonej przez użytkownika logiki potrzebnej w ramach realizacji projektu.
- Z schematu blokowego 1-D Lookup Table można skorzystać w momencie, gdy wzór danej zależności nie jest znany, lecz jej wartości w stosunku do zadanego argumentu można wyznaczyć doświadczalnie.

5. Bibliografia

 Przygotowane materiały do zajęć zatytułowanych "Modelowanie urządzenia hamującego lądujący samolot"