Midterm Project

106學年度第2學期

ALU Design

老師: 朱守禮 老師

學生: 10527130 陳少洋

10527132 林亞吟

10527135 張智欽

10527140 初 元

一、背景

本 Midterm Project 主要為設計一個 ALU、第三版除法器、Barrel Shifter、HiLo 暫存器以及 MUX 多工器,其目的主要為實現七項功能:AND、OR、ADD、SUB、SLT、SLL、DIVU。

本次 Project 我們使用 ModelSim 來 compiler 以及執行,透過模擬 waveform 來檢查是否與 Testbench 的計算結果相同。

本次 Project 須符合以下規範:

- (1) 一個 Module 一個檔案,同時檔案名稱需與 Module 名稱相同。
- (2) 須放置以 Visio、Word 或 PowerPoint 繪製的 Datapath 架構圖。
- (3) Testbench 須依助教所提供之參考設計。
- (4) 設計均以 Verilog 完成,且須通過 ModelSim 模擬執行。
- (5) Verilog 設計只能包含規定的七項功能。

Datapath

二、方法

(一) ALU(組合邏輯):

ALU 主要包含五項功能: 32-bits AND、OR、ADD、SUB、SLT。

1. 設計重點

我們先設計 1 bit 的 ALU, instance 32 次,達到 Ripple Carry 的效果。

2. 說明

● ADD、SUB、SLT 不可直接使用"+"、"-",必須以邏輯 閘撰寫設計。

• AND : 000 / 36 / 100100

OR : 001 / 37 / 100101

ADD : 010 / 32 / 100000

SUB : 110 / 34 / 100010

SLT : 111 / 42 / 101010

- AND:000第一位元為 Bit Invert,二、三位元為 Selection,36則為指令代碼,100100則為 6-bits Signal,為 36轉 binary後的值,我們讓他 1 bit 1 bit 做 AND 直到 32bit 結束,OR 也是一樣的操作。
- ADD: 010 第一位元為 Bit Invert,二、三位元為 Selection, 32 則為指令代碼,100000 則為 6-bits Signal,為 32 轉 binary 後的值,設計 ADD、SUB 時我們都是使用 Full Adder,差別 在於 Binvert,從 AND、OR、ADD、SUB、SLT 的 Signal 可以發現,只有 SUB、SLT 的 Signal[1]為 1,因此我們利用 Signal[1]來做判斷,決定 Binvert 是 0 或 1。
- 使用 SUB、SLT 時,兩指令都會有相減的動作,因此我們設計了一個 BinvertCarry,用來當成第一 bit 的 ALU 的輸入,若指令為 SUB、SLT,BinvertCarry 就設定為 1,其餘指令為 0。
- SLT會利用 SUB 判斷兩數的關係,若兩數相減大於等於 0, SUB 結果的最高位元為 0,反之,兩數相減小於 0為 1。最後 會將此最高位元設定成輸出值的最低位元。

(二) Shifter(組合邏輯):

1. 設計重點

Shifters 主要為實現 SLL, 邏輯左移的運算,用 in Shift 位移 in, 將結果紀錄在 out。

2. 說明

- 用 5-bits 控制位移量,因為 2 的 5 次方最多可位移 31 bits,故以 5-bits 做為控制位移的,若要位移 32 bits 則全部補 0。
- 以一個 5bits 的線接收 inputB 的前 5bits 判斷位移量,從第 1個 bits 判斷到第 5 個 bits 依序可位移 1、2、4、8、16

(三) DIVU:

1. 設計重點

DIVU主要使用第三版除法器。第一版除法器與第二版除法器差別在於 ALU 從 64-bits 變 32-bits,第二版則跟第三版沒太大差別,只差在第三版除法器將商數暫存器合併到餘數暫存器。

2. 說明

我們依照第三版除法器的流程圖設計,先直接左移 1-bit,若 reset 是 1,則初始化讓 REM 暫存器 64-bits 為 0,我們還設計了一個 32-bits 的 resultSub,用來暫時存放 REM 左半邊與除數相減的結果(不是餘數),利用 resultSub 的最高位元來判別相減結果, resultSub[31] = $1 \rightarrow$ 相減結果是負數,代表該階段不可除, resultSub[31] = $0 \rightarrow$ 相減結果正數或 0,代表該階段可除或整除, LSB 因為與 resultSub 結果相反,所以我們~resultSub 來設定 LSB LSB = $0 \rightarrow$ 不可除

LSB = 1 → 可除

將 resultSub 設定給 REM 暫存器左半邊,再往左移 1 位元補 LSB(商數)。

執行此動作直到第 32 次完成(我們設定變數紀錄 count = 32)後將 REM 左半邊右移 1 位元,餘數才會是正確結果。 再將結果(64-bits)分別存到 32-bits 的 Hi(=REM 左半邊)、 Lo(=REM 右半邊)。

(四) MUX(組合邏輯):

1. 設計重點

MUX 主要為整合所有結果,依據 ALU Control 給的訊號,決定輸出的結果。

2. 說明

● 當傳入訊號是除法時要暫時讓 dataout 為 0 , 因為除法器並不 會給予結果(結果將存至 HiLo 暫存器後 , 將訊號改為 Hi/Lo , 傳進 MUX 傳出正確結果) , 避免傳出上一道指令的計算結 果。

AND : 00 / 36 / 100100

OR : 00 / 37 / 100101

ADD : 00 / 32 / 100000

SUB : 00 / 34 / 100010

SLT : 00 / 42 / 101010

MFHI : 01 / 16 / 010000

MFLO : 10 / 18 / 010010

SLL : 11 / 0 / 000000

第一部分為 Selction,第二部分為其指令代碼,第三部分為 Signal,指令代碼轉 binary 後的值,我們利用 Signal 決定 Selection,再由 Selection 決定 dataout(輸出結果)。

(五) ALU_Control

ALU_Control 主要在控制 ALU、Shifter、MUX、DIVU,以輸入的 input 決定訊號,再傳至各元件,進行運算。

(六) TB_ALU

1. 設計重點

TB_ALU主要目的為一個測試平台,從 Testbench 輸入,驗證各功能的運算結果是否正確。

(七) TotalALU

將各項 module 建立並執行。

三、結果

第一個 clock 時, reset 初始化, 等到第二個 clock 後才進行邏輯運算。

• 當 ctrl = 36 時,做 AND 運算, inputA = 12, inputB = 10,做完 AND 運算後得到 out = 8,而正確答案 ans 也等於 8,所以確定運算結果正確。

• 當 ctrl = 37 時,做 OR 運算, inputA = 12, inputB = 10, 做完 OR 運算後得到 out = 14, 而正確答案 ans 也等於 14, 所以確定運算結果正確。

J/dk	1'd0					П	h.	П	hπ	hπ		ın	l.			ll.		M	M	
I/rst	1'd0																			
I/ctrl	6'd37			$\supset \Box$	1	_)		6'd	27											ij
J/inputA	32'd12		32'	$\supset \subset$	1	_)	32'0	d8												ij
I/inputB			32'	X	Ι	_)		32	d5											
J/ans	32'd14			$\supset \Box$	1	_)		32	d3										(_	
I/out	32'd14			\square	1	_)		32	d0											

• 當 ctrl = 32 時,做 ADD 運算, inputA = 3, inputB = 5,做完 ADD 運算後得到 out = 8,而正確答案 ans 也等於 8,所以確定運算結果正確。

I/dk	1'd0		d	T	L	Ū	П		ın	л	Л	Л	l I	תת	hπ		hπ							
/rst	1'd0				П																			
/ctrl	6'd32	- -(二		п	\equiv X	\equiv X	6'd	27															
/inputA	32'd3	 - -(32' .	.)[Ħ	<u> </u>	32'd	8																
/inputB	32'd5	- -(32' .	.)(п	\exists	\equiv X	32'c	15															
/ans	32'd8	 - (二		П		\equiv X	32'c	3															
/out	32'd8	 - (二		п	\exists	\equiv X	32'c	10															
					П																			

當 ctrl = 34 時,做 SUB 運算,inputA = 99999999,inputB = 88888888,做完
 SUB 運算後得到 out = 111111111,而正確答案 ans 也等於 111111111,所以確定運算結果正確。

/dk	1'd0	П								П	Л	Ш	U				תת						
/rst	1'd0				Ц																		
/ctrl	6'd34					X	I	(6	'd27				\equiv		#								
/inputA	32'd99999999		32'		Ц	χ	13	2'd8	#	F			\equiv										
/inputB	32'd88888888		32'		Ц	χ	1	(3	2'd5	I			\equiv										
/ans	32'd11111111				Ц	X	7	(3	2'd3				\equiv		#								
/out	32'd11111111				П	χ	7	3	2'd0														
/out	32'd11111111		\Box		H	Σ	Ŧ	(3	2'd0	Ŧ					#								i

• 當 ctrl = 42 時,做 SLT 運算,inputA = 0,inputB = 87875487,做完 SLT 運算後因為 A < B,所以得到 out = 1,而正確答案 ans 也等於 1,所以確定運算結果正確。

J/dk	1'd0	\Box	Л	Ш	ਪਾ	ப	Ш	J.	Tr.	hл	\Box	Γ	\Box	Γ		\Box		\Box	LL	
J/rst	1'd0		ш																	
J/ctrl	6'd42				ユ			(6'd	27											
J/inputA	32'd0	_	32)(13	2'd8												
J/inputB	32'd87875487	_	32)	工			32	d5											
J/ans	32'd1	_			=			32	d3											
J/out	32'd1	_						32	dO											
	=																		_	اصعد

• 當 ctrl = 0 時,做 SLL 運算, inputA = 8, inputB = 20, 做完 SLL 運算後得到 out = 8388608, 而正確答案 ans 也等於 8388608, 所以確定運算結果正確。

/dk	1'd0	ĺΩ	Л	П	Л	П	\prod	٦	\prod	ın	תת	hπ			TT.	\mathbf{n}	T.	ın	l l	TI.	TIL.	TIL.	
/rst	1'd0		Ш					Ц															
/ctrl	6'd0		Ų	二	\square				6'd	27													
/inputA	32'd8	-	32					324	d8														
/inputB	32'd20		32						32'	15													
/ans	32'd8388608	-	U	二					32'	13													
/out	32'd8388608	Н	U	口)				32'	10													

• 當 ctrl = 27 時,做除法運算,inputA = 8,inputB = 5,因為除法需要經過 32clk,才會得到最後運算結果(64-bits),但避免 out 擷取上一道指令運算的 結果,所以我們 out 暫時設定為 0,32 個 clk 後會再設定 ctrl。

/dk	1'd0	П		7	7	П	π	П			ப		<u>III</u>		LIL.		\mathbf{m}	П	Л	\mathbf{n}	h	Т	M	hπ	hπ	hπ	Ш	T		П	Л
/rst	1'd0							L						L																	
/ctrl	6'd27	Ь.					χ	Σ	(6	'd2	7	Ι		Ι		⇉						⇉						⇉		1	χ
/inputA	32'd8	Ь.	32'				X	13	2'd8	⇉																					
/inputB	32'd5	Ь.	32				X	Τ	(3	2'd	5																				
/ans	32'd3	Ь.					X	İ	(3	2'd	3																				X
/out	32'd0	ı —					Ϋ́	Ť	χ3	2'd)																				χ

• DIV 運算結束後會先將 ctrl 設定成 16,將 DIV 的結果前 32bit(餘數)設定給 Hi 暫存器,並將 out 設定為 3,而正確答案 ans 也等於 3,所以確定運算結 果正確。

I/dk	1'd1	Ш	П	Ц	Т	Ш	\Box	л	\prod		\mathbf{u}	LIT.	Л			\Box	\Box	\square \square	\Box	ħπ	Π	Ш	N.
l/rst	1'd0	Щ								4													
	6'd16		=X	二		=	(6)	d27															
l/inputA l/inputB	32'd8	32')	二	\equiv		32'd8			重													
l/inputB	32'd5	32')	二	$\equiv \chi$		(3	2'd5															
l/ans	32'd3	\Box		寸	\neg	T	χ3	2'd3															
l/out	32'd3	\Box	<u> </u>	T	-X		χ3	2'd0															

Hi 結束後會先將 ctrl 設定成 18,將 DIV 的結果後 32bit(商)設定給 Lo 暫存器,並將 out 設定為 1,而正確答案 ans 也等於 1,所以確定運算結果正確。

/dk	1'd0	m	u n	Jun.	hπ					T.				
/rst	1'd0													
/ctrl	6'd18			(6'0	27									
/inputA	32'd8	(32')		32'd8										
/inputB	32'd5	(32')		(32	d5									
/ans	32'd1	$-\Box$		(32	d3									
/out	32'd1			(32	'd0									

四、討論

我們一開始討論的想法是照著講義上給的架構圖,像 ALU、Shifters、 MUX、除法器則照著第三版除法器的流程圖,下去設計,接著利用老師上課所教的 verilog 內容,完成這次的 Midterm Project。

五、結論

我們的結論是在用 verilog 撰寫 ALU 時,遇到比較需要思考的問題像是構思要建立在 clock 時序邏輯上來實現循序邏輯,及 blocking 跟 non-blocking 的使用時機,還有要將思考方式從軟體的角度轉變成從硬體的角度等等,總而言

之,就是在過去寫 C和 C++時所不會接觸到的,這些關於在硬體方面執行所要考慮到的問題,都是需要我們跳出原本對於程式的既定框架,去了解何謂電路的同步執行,也就是 non-blocking 的運作方式。而遇到比較小的問題像是對於 verilog 語法的不熟悉、、Shifters 忘記考慮到位移大於 32bits 時的狀況以及 Sub 的計算結果需要加一…,而隨著我們更加理解各項元件的功能、運作,就能一步步修正上面提到的小錯誤。

心得

像上學期第一次學習組合語言一樣,接觸到一個全新的東西,多少有些不熟悉,儘管在電子實驗這門課已經操作過 verilog 以及 ModelSim,但在 coding 的難度上差距還是有點大,像電子實驗時我們寫過 Full Adder,而這次要寫的是一整個 ALU,難免會有些擔憂,不過上課時老師對於各項元件 的講解都很仔細,讓我們理解當中的運作,怎麼實現其功能等等…,對我們 Midterm Project 的幫助很大,另外,除法器最讓我們頭痛,因為對於循序邏輯的概念十分陌生,因此我們花了很多時間跟心力在於理解上,而在老師的耐心教導,與組員們一起討論、和同學們互相交流過後,對於除法器就比較能駕輕就熟了><。最後,因為第一次接觸計算機組織這門課,所以比較陌生而導致撰寫上有些小錯誤,但這些錯誤也讓我們收穫良多,幫助我們在之後的 final project 裡能避免重複失誤,而我們也在實作過後,更加熟悉這門課還有了解老師的上課內容。

一個人走得快,但一群人走的遠,有一群組員們可以互相幫忙、讓彼此 成長,是一件很棒的事。

六、未來展望

經過這次的 midterm project ,從一開始對這門科目完全不了解,到現在能夠設計出 ALU、Shifter…等各元件,感覺對計算機組織這門課又熟悉了點,希望未來在課堂上,能夠繼續學習更多計組相關的知識,也希望在未來能讓計算機組織成為我的一技之長。

七、分工

10527130 陳少洋:程式碼、Debug

10527140 初 元:部分程式碼、報告結果分析、Debug

10527132 林亞吟:撰寫報告分析、報告結果討論、Debug

10527135 張智欽:撰寫報告分析、報告結果討論、Debug