第5章 自底向上的分析

- 一、自顶向下分析方法
- 二、自底向上分析方法

自底向上分析的一般过程

- 从所要分析的终结符串开始进行归约;
- 每一步归约是在当前串中找到与某个产生式的右部相匹配的子串,然后将该子串用这一产生式的左部非终结符进行替换;如果找不到这样的子串,则回退到上一步归约前的状态,选择不同的子串或不同的产生式重试;
- 重复上一步骤, 直到归约至文法开始符号;
- —如果不存在任何一个这样的归约,则表明该 终结符串存在语法错误

自底向上分析的问题分析

例: 文法G[S]:

 $S \rightarrow cAd$

 $A \rightarrow ab$

 $A \rightarrow a$

识别输入串W=cabd是否该文法的句子.

归约过程构造的推导: cAd ⇒ cabd S ⇒ cAd

自底向上分析的问题分析

自底向上分析中的不确定性

- 在每一步归约中,选择哪一个产生式以及匹配哪
- 一个位置上的子串都可能是不确定的;
- 这些不确定性导致分析过程会有很高的复杂性;

自底向上分析法是如何工作的?

```
G[S] = {
       S→gAhBkC
       A→ab
       B \rightarrow cd
       C→ef
用自底向上法分析符号串(如串gabhcdkef)
```

自底向上的分析

问题:

G[A']:

$$A' \rightarrow A$$

 $A \rightarrow (A) \mid a$

分析事: ((a))

分析串: ((a))

LR(k)分析法

- "L"是指从左至右扫描输入符号串;
- "R"是指构造一个最右推导的逆过程;
- "k"是指向前看的输入符号的个数。
- · LR分析方法是当前最广义的无回溯的"移进-归约"方法。根据栈中的符号串和向右顺序 查看输入串的k(k≥0)个符号,就能唯一确定分 析器的动作是移进还是归约,以及用哪个产 生式进行归约。
- · LR(k)分析法knuth于1965年首先提出来的。

LR(0)分析在计算机上的实现

(1)LR(O)的存储结构

(2)LR(O)的分析算法

LR(0)项DFA的存储结构

- (1) 邻接矩阵
- (2) 链接表
- (3) 新二维表存储——LR(0)分析表

状态	动 作	规则	输 入			Goto
			(a)	A
0	移进		3	2		1
1	归约	$A' \rightarrow A$ $A \rightarrow \mathbf{a}$				
2	归约	$A \!\! o \! \mathbf{a}$				
3	移进		3	2		4
4	移进				5	
5	归约	$A \rightarrow (A)$				

状 态	动 作	规 则	输 入			Goto
			(a)	A
0	移进		3	2		1
1	归约	$A' \rightarrow A$ $A \rightarrow \mathbf{a}$				
2	归约	$A{ ightarrow}$ a				
3	移进		3	2		4
4	移进				5	
5	归约	$A \rightarrow (A)$				

下面讲述LR(O)分析算法是如何工作的。例子:用LR(O)分析方法分析上述文法的一串((a))。

步骤	分析栈	输入	动作
1 2 3 4	\$0(3(3	((a)) \$ (a)) \$ a)) \$	移进 移进 移进
5		A 4)) \$	用A→ a归约 - 移进 -
6 7	\$0(3(3 \$0(3 <i>A</i> 4	A4)5)\$	用 <i>A</i> → (<i>A</i>) 归约 移进
8 9	\$ 0 (3 A 4 \$ 0 A 1) 5	用 <i>A</i> → (<i>A</i>) 归约 接受

一个新例子

G[E]:

 $E \rightarrow E + n \mid n$

试用自底向上分析方法分析输入串:n+n+n

(1) 文法的扩充 E'→ E E → E + n | n

SLR(1)分析

· 简单LR(1)分析

· SLR(1)分析还是使用LR(0)项目集DFA。

• 只是在构造分析表时才考虑超前查看的符号。

- 重点考察状态1
- $Follow(E') = \{ \}$
- · E→E.+n 分隔符后的符号是终结符号+,因此在状态 1时,输入串当前符号为+则移进,而\$则规约.

· SLR(1)分析表如下表5-5:

状 态		Goto		
	n	+	\$	Е
0	s2			1
1		s3	接受	
2		$r(E \rightarrow n)$	接受 r (<i>E→</i> n)	
3	s4			
4		$r(E \rightarrow E + n)$	$r(E \rightarrow E + n)$	

注意:移进由表项中的字母5指出,归约由字母r 指出。

状 态	输 入			
	n	+	\$	Е
0	s2			1
1		s3	接受	
2		$r(E \rightarrow n)$	接受 r (<i>E</i> → n)	
3	s4			
4		$r(E \rightarrow E + n)$	$r(E \rightarrow E + n)$	

R

步骤	分析栈		输入	动作
1	\$ O	2 a + a + a	移进2	
2	\$ 0 n 2 + n	+ n \$	用₽→加归约	
3	\$ 0 F 1 + m	+ n \$	移进3	
4	\$ 0 E 1 + 3 m+	* n	移进4	
5	\$ 0 E 1 + 3 m 4	+ n \$	用码手上加归约	
6	\$ 0 F 1	+ n \$	移进3	
7	\$ 0 F 1 + 3	a \$	移进4	
8	\$ 0 F 1 + 3 m 4	\$	用刷光上加归约	
9	\$ 0 F 1	\$	接受	

括号匹配的问题

在一些表达式中通常会允许括号出现嵌套的现象,现在请采用LR方法检验下面式子的括号 是否匹配:

文法:

文法:

$$S' \rightarrow S$$

 $S \rightarrow (S) S \mid \varepsilon$

重点考察状态0,状态2,状态4:

- (1)规约项 5→. 其Follow (5) = {\$,)}
- (2)移进项 5→.(5) 5的下一个符号为(

Follow $(5) = \{\$, \}$

状 态	输 入			
	()	\$	S
0	s2	r (<i>S</i> → B)	r (S→ a)	1
1			接受	
2	s2	r (<i>S</i> → g)	r (<i>S</i> → e)	3
3		r (S→ 4) s4		
4	s2	r (S→ s)	r (<i>S</i> → z)	5
5		$r(S \rightarrow \mathbf{s})$ $r(S \rightarrow (S) S)$	$r(S \rightarrow \mathbf{z})$ $r(S \rightarrow (S) S)$	

状 态	输 入				
	()	\$	S	
0	s2	r (<i>S</i> → B)	r (<i>S</i> → a)	1	
1			接受		
2	s2	r (<i>S</i> → a)	r (<i>S</i> → e)	3	
3		s4			
4	s2	r (<i>S</i> → s)	r (<i>S</i> → ε)	5	
5		$r(S \rightarrow (S) S)$	$r(S \rightarrow \mathbf{z})$ $r(S \rightarrow (S) S)$		

步骤 分	析栈 输.	λ	动作
1 \$0	() () \$	移进2
2 \$ 0	(2)() \$	用≲→割約
3 \$ 0	(2 <i>5</i> 3)() \$	移进4
4 \$ 0	(253)4	() \$	移进2
5 \$ 0 (2	253)4(2) \$	用5→8归约
6 \$0 (2	253)4(2 <i>5</i> 3) \$	移进4
7 \$ 0 (2	53)4(2	53)4 \$	用≲→8归约
8 \$ 0 (2	53)4(2	<i>5</i> 3) 4 <i>5</i> 5	\$ 用∽(≲)≲归约
9 \$ 0 (2	53)455	\$	用5→(5)5归约
10 \$ 0 5 1	-	\$	接受

SLR(1)分析法的新问题1

例子:

if语句的文法:

statement → if-stmt | other if-stmt → if (exp) statement | if (exp) statement else statement exp → 0 | 1

试用SLR(1)分析方法进行输入串的分析。

• 步骤:

(1) 为了处理上的简单,我们先做文法的简化

 $S \rightarrow 1 \mid \text{other}$ $1 \rightarrow \text{if } S \mid \text{if } S \text{ else } S$

(2) 画出LR(O)项DFA图

- 状态5:对于规约项: Follow (/) = {\$, else}
- · 对于移进项的下一个符号为else
- 问题:移进-归约冲突
- 解决方法:只做移进不做归约
- ---消除二义性的新方法

为了在SLR(1)分析表中描述方便, 我们对文法规则进行编号:

(1)
$$S \rightarrow I$$
 (2) $S \rightarrow other$

(3)
$$/\rightarrow$$
 if S (4) $/\rightarrow$ if S else S

[该分析表已删除了分析冲突部分]

状 态	输 入					Goto	
	1f	Else	other	\$	s	1	
0	s4		s3		1	2	
1				接受			
2		r1		r1			
3		r2		r2			
4	s4		s3		5	2	
5		<u> </u>		r3			
6	s4		s3		7	2	
7		r4		r4			

SLR(1)分析法的新问题2

文法:

• 步骤:

• (1) 先简化文法:
S→ id | V:= E
V→ id
E→ V | n

(2) 文法的扩充: S'→S S→id S→V:= E V→id E→V

E→n

(3)构造DFA

Follow $(S) = \{\$\} \not\sim \text{Follow } (V) = \{:=, \$\}$

如何解决? 问题的根源在哪里?

SLR(1)分析法的缺陷在于构造LR(0)项DFA时不考虑先行符号,而在构造分析表的时候才加以考虑。

总结

(1)

$$S \rightarrow I \mid \text{other}$$

 $I \rightarrow \text{if } S \mid \text{if } S \text{ else } S$

$$I \longrightarrow if S.$$

$$I \longrightarrow if S.else S$$

$$\boxed{5}$$

Follow
$$(I) = \{\$, else\}$$

(2)
$$S \rightarrow id \mid V := E$$

$$V \rightarrow id$$

$$E \rightarrow V \mid n$$

SLR(1) 文法(SLR(1) grammar)

- 当且仅当对于任何状态5,以下的两个条件:
- 1)对于在5中的任何项目A→α.Xβ, 当X是一个终结符, 且X在Follow (B) 中时, 5中没有完整的项目B→γ.。 [移进-归约冲突]
- 2)对于在5中的任何两个完整项目A→α.和B→β., Follow(A)∩ Follow(B)为空。[归约-归约冲突]均满足时,文法为SLR(1)文法。

SLR(1)分析法的总结

- · SLR(1)分析是LR(0)分析的一个简单但有效的扩展,
- · SLR(1)分析的能力足以处理几乎所有实际的语言结构。

· 某些情况, SLR(1)分析能力并不太强

解决方法一

- · 超前查看K个符号——SLR(k)文法
- 当k>1时, SLR(k)分析此SLR(1)分析更强大,但由于分析表的大小将按k的指数倍增长,所以它又要复杂许多。
- · 上例不是简单SLR(1)文法而是SLR(2)文法。

解决方法二

在构造DFA的时候就超前考虑一个符号。

$$S \rightarrow id \mid V := E$$

$$E \rightarrow V \mid n$$

解决方法二

在构造DFA的时候就超前考虑一个符号。 $S \rightarrow id \mid V := E$ $V \rightarrow id$ _R(1)分析法 $E \rightarrow V \mid n$ [S' →.S, \$] [S→id., \$] [S→.id, \$] [V→id., :=] [S→.V := E, \$] [V→.id, :=]

· LR(1)项目DFA的构造示例

(1)首先改写为扩充文法
 A' → A A→ (A) | a

· LR(1)项DFA的存储结构

• 二维表

	状 态		Goto						
		(a)	\$		А		
25	0	s2	s3		4dx 502.		1		
	1 2	s5			接受		4		
	3	85	s6		<u>r2</u>		4		
	4			s7					
	5	s5	s6				8		
	6 7			r2	r1				
	8			s9	11				
	9			r1					
			$[A' \longrightarrow A, \$]$ $[A \longrightarrow (A), \$]$ $[A \longrightarrow a, \$]$ $[A \longrightarrow a, \$]$ $[A \longrightarrow (A), \$]$ $[A \longrightarrow (A),$						
		$\begin{bmatrix} [A \longrightarrow (.A),)] \\ [A \longrightarrow .(A),)] \\ [A \longrightarrow .a,)] \end{bmatrix} $ $\begin{bmatrix} [A \longrightarrow (A),)] \\ [A \longrightarrow .a,)] \end{bmatrix}$ $\begin{bmatrix} [A \longrightarrow (A),)] \\ [A \longrightarrow .a,)] \end{bmatrix}$							

R

LR(1)分析 过程

- (1) 与SLR(1)分析过程相似。
- (2) 步骤: 查表——分别处理

状 态	输入						
	(a)	\$		Α	
0 1	s2	s3		接受		1	
2 3	s5	s6		<u>r2</u>		4	
4 5	s5	s6	s7			8	
6 7			r2	rl			
8			s9 r1				

分析串: ((a))

LR(1)分析法之问题发现

LR(1)分析法之问题

状态2和5、状态4和8、状态7和9、状态3和6,只是先行的符号不一样,而核心是一样的。

解决方法

- · 压缩状态数——数目与LR(0)相仿
- 一个概念:
- · 状态的核心(core)是由状态中的所有LR(1)项目的第1个成分组成的LR(0)项目的集合。
- 压缩方法:

——核心一样就合并,先行符号就做并集

LALR(1)分析过程的步骤

- · (1) 先构造LALR(1) DFA,
- · (2)再构造出LALR(1)分析表,
- · (3)最后利用LALR(1)分析表对所要分析的符号串进行分析。
- · 例子: 使用LALR(1)分析方法分析符号串(a)

[只用LALR(1)DFA进行分析,而利用LALR(1)分析表的方法请自行完成。]

符号串: (a)

用LALR(1)分析方法分析符号串 a)

用LR(1)分析方法分析符号串 a)

总结

能力强

几乎所有CFG的语言结构都能用LR分析 不需要对文法附加条件 难点

几乎不可能用手工编写LR分析器 现实

有LR分析器的生成器

自底向上分析方法

- · LR(0)分析
- · SLR(1) 分析
- · LR(1)分析
- · LALR(1)分析

· yacc: LALR(1)语法分析程序的生成器

· Flex: 词法分析程序的生成器