SC1004 Part 2

Lectured by Prof Guan Cuntai (teaching materials by Prof Chng Eng Siong)

Email: ctguan@ntu.edu.sg

Quiz 2 and Exam:

1. Quiz 2

- Coverage: Ch 6,7,8

- Time/Date: Week 13, last lecture time (10:30-11.20am, 17th April

2024)

2. Final Exam

- Coverage : Ch 6, 7, 8 (Q3 & Q4)

- Date/Time: 2 May 2024 (Thursday), 1.00-3.00pm

(Ch 9 will not be tested)

Syllabus for Part 2

Chapte r	Topics	Week (Lecture)	Week (Tut)
6	Orthogonality	8-9	9-10
7	Least Squares	9-10	10-11
8	EigenValue and Eigenvectors	11-12	12-13
9	Singular Value Decomposition (SVD)	13	

Table 1: schedule

Online Video learning Schedule

https://www.youtube.com/channel/UCBzG5jg3huxiPkCt-Serrjw

Week	Part	Topic	Notes
8	6.1.1-6.2.3	Orthogonality, Normalization, Dot-Product, Inequalities,	Lecture 1: 6.1.1 - 6.1.3 Lecture 2: 6.1.4 - 6.2.3
9	6.2.4-6.3.2	Orthogonal/Orthonormal Sets, Basis, Gram Schmidt and QR Decomposition	Lecture 3: 6.2.4 Lecture 4: 6.2.5 – 6.3.2
10	7.1.1-7.2.1	Least Squares and Normal Eqn, Projection Matrix, Applications	Lecture 5: 7.1.1 – 7.1.3 Lecture 6: 7.1.4 – 7.2.1
11	8.1.1-8.1.2	Eigenvectors, Eigen-values, Characteristics Eqn	Lecture 7: 8.1.1 Lecture 8: 8.1.2
12	8.1.3-8.1.5	Diagonalisation, Power of A, Change of basis	Lecture 9: 8.1.3 Lecture 10: 8.1.4 – 8.1.5
13	9.1.1-9.2	Introduction to SVD and PCA (Not examined in quiz/exam)	Lecture 11: 9.1.1 – 9.2 Lecture 12: Quiz 2

How will we conduct the course?

- 1) Before the lectures, watch the videos according to the schedule in Table 1
 - You can watch past years zoom video recordings at https://www.youtube.com/@linearalgebra1884/playlists?view=50&sort=dd&shelf_id=2

- 2) During lecture hours
 - We will summarize the lectures and highlight the key points
 - Q&A.

References

Linear Algebra and Its Applications by David Lay, Steven Lay, Judi McDonald

3Blue1Brown on YouTube

Essence of linear algebra preview

https://www.youtube.com/playlist?list=PLZ HQObOWTQDPD3MizzM2xVFitgF8hE_ab Lecture (Week 9)

(Chapter 6.2.3- 6.3.3)

Revision

<u>Key points – 6.1.3 Dot Product/Inner Product (2)</u>

Properties of dot product

Dot products have many of the same algebraic properties as products of real numbers.

THEOREM 3.2.2 If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k is a scalar, then:

(a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ [Symmetry property]

(b) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ [Distributive property]

(c) $k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v}$ [Homogeneity property]

(d) $\mathbf{v} \cdot \mathbf{v} \ge 0$ and $\mathbf{v} \cdot \mathbf{v} = 0$ if and only if $\mathbf{v} = \mathbf{0}$ [Positivity property]

Transformation on dot product

Explanation to transformation on dot product:

- Let's write the dot product in matrix form: $A \boldsymbol{u} \cdot \boldsymbol{v} = (A \boldsymbol{u})^T \boldsymbol{v}$
- Using $(AB)^T = B^T A^T$ $(A\mathbf{u})^T \mathbf{v} = (\mathbf{u}^T A^T) \mathbf{v}$
- Using the distributive property of matrix $(\boldsymbol{u}^T A^T) \boldsymbol{v} = \boldsymbol{u}^T (A^T \boldsymbol{v})$
- Write back to dot product format $\mathbf{u}^T(A^T\mathbf{v}) = \mathbf{u} \cdot A^T\mathbf{v}$

So we get: $A\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot A^T \mathbf{v}$

Revision

<u>Key points – 6.2.2 Orthogonal Projection</u>

- Projection theorem (projection from one vector to another)
 - Project vector y on to u:

$$\widehat{\mathbf{y}} = Proj_u \ \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$$

- Residual: $z = y \hat{y} = y \frac{y \cdot u}{u \cdot u} u$
- Explain
 - 1) Geometric approach:

 $\widehat{m{y}}$ is on the line of $m{u}$ with the length of $\|\widehat{m{y}}\|$

$$\widehat{y} = \|\widehat{y}\| \frac{u}{\|u\|}$$

From triangle (see figure on the right): $\|\hat{y}\| = \|y\| \cos \theta$ From $y \cdot u = \|y\| \|u\| \cos \theta$, we get: $\|y\| \cos \theta = \frac{y \cdot u}{\|u\|}$

So, we get
$$\widehat{y} = \|\widehat{y}\| \frac{u}{\|u\|} = \|y\| \cos\theta \frac{u}{\|u\|} = \frac{y \cdot u}{\|u\|} \frac{u}{\|u\|} = \frac{y \cdot u}{\|u\|^2} u = \frac{y \cdot u}{u \cdot u} u$$

2) Orthogonal approach:

As $\widehat{\boldsymbol{y}}$ is on the line of \boldsymbol{u} , so $\widehat{\boldsymbol{y}} = c\boldsymbol{u}$ (c is a scalar to be found)

$$\hat{y} = y - z = cu$$

Take the dot product with \boldsymbol{u} on both sides: $(\boldsymbol{y} - \boldsymbol{z}) \cdot \boldsymbol{u} = c\boldsymbol{u} \cdot \boldsymbol{u}$

We get: $cu \cdot u = y \cdot u - z \cdot u = y \cdot u$ (z is orthogonal to u!) $\Rightarrow c = \frac{y \cdot u}{u \cdot u}$

So we also get: $\hat{y} = cu = \frac{y \cdot u}{u \cdot u} u$

Example

Project
$$y = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$$
 onto vector $u = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

Revision

Key points – 6.2.3 Orthogonal Decomposition

- Project a vector y on to subpace spanned by $\{u_1, u_2 \cdots u_n\}$ in \mathbb{R}^n
 - \circ Let W be a subspace of \mathbb{R}^n . Then each \mathbf{y} in \mathbb{R}^n can be written **uniquely** in the form:

$$y = \hat{y} + z$$

where \hat{y} is in W and residual z is in W^{\perp} . If $\{u_1, u_2 \cdots u_p\}$ is any orthogonal basis of W, then

$$\widehat{\mathbf{y}} = Proj_w \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$$

- Explain:
 - o Since \hat{y} is in the subspace W spanned by $\{u_1, u_2 \cdots u_p\}$, we can write

$$\hat{\mathbf{y}} = \mathbf{y} - \mathbf{z} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_n \mathbf{u}_n$$

Take dot product with u_i on both sides:

$$(\mathbf{y} - \mathbf{z}) \cdot \mathbf{u}_i = (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_n \mathbf{u}_n) \cdot \mathbf{u}_i, i = 1, \dots, p$$

Since $\mathbf{u}_i \cdot \mathbf{u}_i = 0$, if $i \neq j$, and $\mathbf{z} \cdot \mathbf{u}_i = 0$, so we have

$$c_i \mathbf{u}_i \cdot \mathbf{u}_i = (\mathbf{y} - \mathbf{z}) \cdot \mathbf{u}_i = \mathbf{y} \cdot \mathbf{u}_i - \mathbf{z} \cdot \mathbf{u}_i = \mathbf{y} \cdot \mathbf{u}_i$$

$$\therefore \qquad c_i = \frac{\mathbf{y} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i}$$

Finally:
$$\hat{\mathbf{y}} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$$

<u>Key points – 6.2.4 Orthonormal Sets</u>

- Definition
 - o If $\{u_1, u_2 \cdots u_p\}$ is called an **orthonormal basis** for subspace W if the basis vectors are orthogonal with unit length $(u_i \cdot u_j = 0, if i \neq j, \text{ and } ||u|| = 1)$
 - o Let $U_{n \times p} = [\mathbf{u}_1 \ \mathbf{u}_2 \cdots \mathbf{u}_p], \ \mathbf{u}_i \in \mathbb{R}^n$ Then, $U^T U = I$ (I is a $p \times p$ identify matrix).

Explain:
$$U^T = \begin{bmatrix} \mathbf{u}_1^T \\ \vdots \\ \mathbf{u}_p^T \end{bmatrix}$$
 is a $p \times n$ matrix, So $U^T U = \begin{bmatrix} \mathbf{u}_1^T \\ \vdots \\ \mathbf{u}_p^T \end{bmatrix} \begin{bmatrix} \mathbf{u}_1 \ \mathbf{u}_2 \cdots \mathbf{u}_p \end{bmatrix} = \begin{bmatrix} \mathbf{u}_1^T \mathbf{u}_1 & \cdots & \mathbf{u}_1^T \mathbf{u}_p \\ \vdots & \ddots & \vdots \\ \mathbf{u}_p^T \mathbf{u}_1 & \cdots & \mathbf{u}_p^T \mathbf{u}_p \end{bmatrix} = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix} = I$

- Properties
 - a. ||Ux|| = ||x|| (preserve the length of vector)
 - b. $Ux \cdot Uy = x \cdot y$
 - c. $Ux \cdot Uy = 0$, if and only if $x \cdot y = 0$
- Re-write projection equation using $U: \hat{y} = Proj_w y = UU^T y$

Explain:
$$\hat{y} = Proj_w y = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \dots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p = (y \cdot u_1) u_1 + \dots + (y \cdot u_p) u_p$$

$$= (u_1^T y) u_1 + \dots + (u_p^T y) u_p = \begin{bmatrix} u_1 u_2 \cdots u_p \end{bmatrix} \begin{bmatrix} u_1^T y \\ \vdots \\ u_p^T y \end{bmatrix} = \begin{bmatrix} u_1 u_2 \cdots u_p \end{bmatrix} \begin{bmatrix} u_1^T y \\ \vdots \\ u_p^T \end{bmatrix} y = UU^T y$$

• Note: if U is a square, it is called "orthogonal matrix". In this case, $U^{-1} = U^T$

Key points – 6.2.5 Orthogonal Decomposition.

- Geometric interpretation of the orthogonal projection (see figure right-top)
- The best approximation theorem (see figure right-bottom)

$$\|y-\widehat{y}\|<\|y-v\|$$

 \hat{y} is the orthogonal projection of y onto W. v is any vector in W distinct from \hat{y} .

Explain:
$$y - v = (y - \hat{y}) + (\hat{y} - v)$$
,

So, according to Pythagorean theorem: $\|y - v\|^2 = \|y - \hat{y}\|^2 + \|\hat{y} - v\|^2 \implies \|y - \hat{y}\|^2 = \|y - v\|^2 - \|\hat{y} - v\|^2$

Therefore we have: $\|y - \widehat{y}\| < \|y - v\|$

• u_1 and u_2 are orthogonal?

•
$$\hat{y} = \frac{\begin{bmatrix} 3 \ 0 \ 1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ 9+1+1 \end{bmatrix}}{9+1+1} u_1 + \frac{\begin{bmatrix} 3 \ 0 \ 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}}{1+4+1} u_2 = \frac{9+0+1}{11} u_1 + \frac{-3+0+1}{1+4+1} u_2 = \frac{10}{11} \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 101/33 \\ 8/33 \\ 19/33 \end{bmatrix}$$

$$W = Span(\vec{u}, \vec{u}, \vec{u}, \vec{u}_p)$$

(1) $\{u_1, u_2 \cdots u_p\}$ is an **orthogonal basis** :

$$\widehat{\mathbf{y}} = Proj_{\mathbf{w}}\mathbf{y} = \underbrace{\frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1}}_{\mathbf{u}_1} \mathbf{u}_1 + \dots + \underbrace{\frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p}}_{\mathbf{u}_p} \mathbf{u}_p$$

(2) $\{v_1, v_2 \cdots v_p\}$ is an **orthonormal basis** :

$$\widehat{\mathbf{y}} = Proj_{w}\mathbf{y} = \underbrace{(\mathbf{y} \cdot \mathbf{v}_{1})\mathbf{v}_{1} + \dots + (\mathbf{y} \cdot \mathbf{v}_{p})\mathbf{v}_{p}}_{}$$

$$= \underbrace{(\boldsymbol{v}_{1}^{T}\boldsymbol{y})\boldsymbol{v}_{1} + \cdots + (\boldsymbol{v}_{p}^{T}\boldsymbol{y})\boldsymbol{v}_{p}}_{\boldsymbol{A}} = \underbrace{(\boldsymbol{v}_{1}^{T}\boldsymbol{y})\boldsymbol{v}_{1} + \cdots + (\boldsymbol{v}_{p}^{T}\boldsymbol{y})\boldsymbol{v}_{p}}_{\boldsymbol{A}} = \underbrace{[\boldsymbol{v}_{1}\boldsymbol{v}_{2}\cdots\boldsymbol{v}_{p}]}_{\boldsymbol{A}} \underbrace{\begin{bmatrix}\boldsymbol{v}_{1}^{T}\boldsymbol{y}\\ \vdots\\\boldsymbol{v}_{p}^{T}\boldsymbol{y}\end{bmatrix}}_{\boldsymbol{A}} = \underbrace{[\boldsymbol{v}_{1}\boldsymbol{v}_{2}\cdots\boldsymbol{v}_{p}]}_{\boldsymbol{A}} \underbrace{\begin{bmatrix}\boldsymbol{v}_{1}\boldsymbol{v}_{2}\cdots\boldsymbol{v}_{p}\\ \vdots\\\boldsymbol{v}_{p}^{T}\boldsymbol{y}\end{bmatrix}}_{\boldsymbol{A}} = \underbrace{[\boldsymbol{v}_{1}\boldsymbol{v}_{2}\cdots\boldsymbol{v}_{p}]}_{\boldsymbol{A}} \underbrace{\begin{bmatrix}\boldsymbol{v}_{1}\boldsymbol{v}_{2}\cdots\boldsymbol{v}_{p}\\ \vdots\\\boldsymbol{v}_{p}^{T}\boldsymbol{y}\end{bmatrix}}_{\boldsymbol{A}} = \underbrace{[\boldsymbol{v}_{1}\boldsymbol{v}_{2}\cdots\boldsymbol{v}_{p}]}_{\boldsymbol{A}} \underbrace{\begin{bmatrix}\boldsymbol{v}_{1}\boldsymbol{v}_{2}\cdots\boldsymbol{v}_{p}\\ \vdots\\\boldsymbol{v}_{p}^{T}\boldsymbol{y}\end{bmatrix}}_{\boldsymbol{A}} = \underbrace{[\boldsymbol{v}_{1}\boldsymbol{v}_{2}\cdots\boldsymbol{v}_{p}]}_{\boldsymbol{A}} \underbrace{[\boldsymbol{v}_{1}\boldsymbol{v}_{2}$$

$$\underbrace{\boldsymbol{v}_{1} \boldsymbol{v}_{2} \cdots \boldsymbol{v}_{p}}_{1} \underbrace{\begin{bmatrix} \boldsymbol{v}_{1} & \boldsymbol{y} \\ \vdots \\ \boldsymbol{v}_{p}^{T} \boldsymbol{y} \end{bmatrix}}_{\mathbf{A}}$$

$$\begin{bmatrix} \mathbf{v}_1^T \mathbf{y} \\ \vdots \\ \mathbf{v}_T^T \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_2 \cdots \\ \vdots \\ \mathbf{v}_T \end{bmatrix}$$

$$[\boldsymbol{v}_p] \begin{bmatrix} \boldsymbol{v}_1^T \\ \vdots \\ \boldsymbol{v}_p^T \end{bmatrix} \boldsymbol{y} =$$

$$y = UU^T y$$

$$W = Span \{ \vec{U}_{1} \}$$

$$= Span \{ \vec{U}_{1} \}$$

 $\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = \hat{\mathbf{y}}_1 + \hat{\mathbf{y}}_2$

<u>Key points – 6.3.1 QR Factorization (why)</u>

- Definition of QR factorization
 - \circ Given an $m \times n$ matrix A
 - o A can be factorized as A = QR,
 - o $Q(m \times n)$ has orthonormal columns (meaning $Q^TQ = I$)
 - o $R(n \times n)$ is an "up-triangle" square matrix
- Why QR factorization is useful
 - o After factorize A into Q and R, we can easily find the solution for system: Ax = b using back substitute only

Explain:
$$A\mathbf{x} = \mathbf{b} \Rightarrow QR\mathbf{x} = \mathbf{b} \Rightarrow Q^TQR\mathbf{x} = Q^T\mathbf{b} \Rightarrow R\mathbf{x} = Q^T\mathbf{b}$$

$$R\mathbf{x} = \mathbf{y}: \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix},$$

$$r_{33} x_3 = y_3 \rightarrow x_3 = y_3 / r_{33}$$
 $r_{22} x_2 + r_{23} x_3 = y_2 \rightarrow x_2 = (y_2 - r_{23} x_3) / r_{22}$
 $r_{11} x_1 + r_{12} x_2 + r_{13} x_3 = y_1 \rightarrow x_1 = (y_1 - r_{12} x_2 - r_{13} x_3) / r_{11}$

$$Ax = b$$

o QR factorization is an important tool for finding a Least Square solution ($\hat{x} = R^{-1}Q^Tb$, in week 10)

Key points – 6.3.2 QR Factorization (how)

- How do we find Q and R from A Gram—Schmidt Approach
 - o Given any set of p independent columns (basis of non-zero subspace W in R^n): $\{x_1, x_2 \cdots x_p\} \in R^n \ (A = [x_1 \ x_2 \cdots x_p])$
 - o Define the following orthogonal set $\{v_1, v_2 \cdots v_n\}$:

$$\begin{array}{l} \left\langle \boldsymbol{v}_{1}=\boldsymbol{x}_{1}\right\rangle \\ \left\langle \boldsymbol{v}_{2}=\boldsymbol{x}_{2}-\frac{\boldsymbol{x}_{2}\boldsymbol{v}_{1}}{\boldsymbol{v}_{1}\cdot\boldsymbol{v}_{1}}\boldsymbol{v}_{1} \text{ (so }\boldsymbol{v}_{2}\text{is orthogonal to }\boldsymbol{v}_{1})\right\rangle \\ \left\langle \boldsymbol{v}_{3}=\boldsymbol{x}_{3}-\frac{\boldsymbol{x}_{3}\cdot\boldsymbol{v}_{1}}{\boldsymbol{v}_{1}\cdot\boldsymbol{v}_{1}}\boldsymbol{v}_{1}-\frac{\boldsymbol{x}_{3}\cdot\boldsymbol{v}_{2}}{\boldsymbol{v}_{2}\cdot\boldsymbol{v}_{2}}\boldsymbol{v}_{2} \text{ (so }\boldsymbol{v}_{3}\text{is orthogonal to }\boldsymbol{v}_{2},\boldsymbol{v}_{1})\right\rangle \\ \vdots \\ \left\langle \boldsymbol{v}_{p}=\boldsymbol{x}_{p}-\sum_{i=1}^{p-1}\frac{\boldsymbol{x}_{p}\cdot\boldsymbol{v}_{i}}{\boldsymbol{v}_{i}\cdot\boldsymbol{v}_{i}}\boldsymbol{v}_{i} \text{ (so }\boldsymbol{v}_{3}\text{is orthogonal to }\boldsymbol{v}_{p-1},\cdots,\boldsymbol{v}_{2},\boldsymbol{v}_{1}) \end{array}$$

 \circ Form a orthonormal basis from $\{v_1, v_2, \cdots, v_p\}$

○ Finally, find R

Since
$$A = QR$$
 and $Q^TQ = I$,
from $Q^TA = Q^TQR$, we find $R = Q^TA$

$$R = \begin{bmatrix} \mathbf{u}_1 \ \mathbf{u}_2 \cdots \mathbf{u}_p \end{bmatrix}^T \begin{bmatrix} \mathbf{x}_1 \ \mathbf{x}_2 \cdots \mathbf{x}_p \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{u}_1^T \\ \vdots \\ \mathbf{u}_p^T \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \cdots \mathbf{x}_p \end{bmatrix} = \begin{bmatrix} \mathbf{u}_1^T \mathbf{x}_1 & \cdots & \mathbf{u}_p^T \mathbf{x}_p \\ \vdots & \ddots & \vdots \\ \mathbf{u}_p^T \mathbf{x}_p \end{bmatrix}$$

where

$$u_{2}^{T}x_{1} = \frac{v_{2}^{T}}{\|v_{2}\|}v_{1} = 0$$

$$u_{3}^{T}x_{1} = \frac{v_{3}^{T}}{\|v_{3}\|}v_{1} = 0, u_{3}^{T}x_{2} = \frac{v_{3}^{T}}{\|v_{3}\|}v_{2} = 0$$

Key points – 6.3.2 QR Factorization (how)

• Example:
$$A = \begin{bmatrix} 3 & 8 \\ 0 & 5 \\ -1 & -6 \end{bmatrix}$$
 $\mathbf{x}_1 = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} 8 \\ 5 \\ -6 \end{bmatrix}, \mathbf{x}_1 \text{ and } \mathbf{x}_2 \text{ are independent}$ Find \mathbf{v}_i : $\mathbf{v}_1 = \mathbf{x}_1 = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}, \mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_1 \cdot \mathbf{v}_3}{\mathbf{y}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \begin{bmatrix} 8 \\ 5 \\ -6 \end{bmatrix} - \frac{\begin{bmatrix} 8 & 5 & -6 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}}{9+1} \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 5 \\ -3 \end{bmatrix}$ Verify: $\mathbf{v}_1 \cdot \mathbf{v}_2 = \begin{bmatrix} 3 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 5 \\ -3 \end{bmatrix} = 0$ Normalize \mathbf{v}_1 and \mathbf{v}_2 : $\|\mathbf{v}_1\| = \sqrt{10}$, $\|\mathbf{v}_2\| = \sqrt{35}$, So we get $\mathbf{u}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \begin{bmatrix} 3/\sqrt{10} \\ 0 \\ -1/\sqrt{10} \end{bmatrix}, \mathbf{u}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} = \begin{bmatrix} -1/\sqrt{35} \\ 5/\sqrt{35} \\ -3/\sqrt{35} \end{bmatrix}$ $\Rightarrow 0 = \begin{bmatrix} 3/\sqrt{10} & -1/\sqrt{35} \\ 0 & 5/\sqrt{35} \\ -1/\sqrt{10} & -3/\sqrt{35} \end{bmatrix}$ Finally, find R : $R = Q^T A = \begin{bmatrix} 3/\sqrt{10} & 0 & -1/\sqrt{10} \\ -1/\sqrt{35} & 5/\sqrt{35} & -3/\sqrt{35} \end{bmatrix} \begin{bmatrix} 3 & 8 \\ 0 & 5 \\ -1 & -6 \end{bmatrix} = \begin{bmatrix} 10/\sqrt{10} & 30/\sqrt{10} \\ 0 & 35/\sqrt{35} \end{bmatrix}$ $\Rightarrow R = \begin{bmatrix} \sqrt{10} & 3\sqrt{10} \\ 0 & \sqrt{35} \end{bmatrix}$

Key points – 6.3.2 QR Factorization Properties

Properties of QR factorization

1)
$$Q^TQ = I \int \int P \times P$$

1)
$$W = \operatorname{span} \{u_1, u_2 \cdots u_p\} = \operatorname{span} \{x_1, x_2 \cdots x_p\}$$

- Columns of Q is equivalent to columns of A
 W = span {u₁, u₂ ··· u_p} = span {x₁, x₂ ··· x_p}
 Q forms an orthonormal basis to span the same subspace W
- 3) QQ^T is the projection matrix onto W (spanned by columns of A or Q)
- If A has independent columns, R is invertible, and all the values on the diagonal of R(is positive)

$$\hat{y} = uu^{T}\hat{y}$$

End