Machine Learning

Lecture 5 – Perceptron

Chen-Kuo Chiang (江 振 國) ckchiang@cs.ccu.edu.tw

中正大學 資訊工程學系

深度學習架構最基礎的模型 - Perceptron

- Perceptron (深度學習模型的單一節點)
 - Perceptron Hypothesis Set
 - Perceptron Learning Algorithm (PLA)
 - Guarantee of PLA
 - Dealing with Non-separable data

Deep Learning Neural Network Input Layer Hidden Layer Output Layer perceptron 2

Credit Approval Problem Revisited

Let's simplify our data to 2-dimension...

• If we only consider Credit Approval Problem by (age, salary)...

	Age	Salary	Approval
Customer 1	23	22,000	N
Customer 2	45	75,000	Y
Customer 3	31	60,000	Y
:	:	:	:
Customer n	26	25,000	N

Perceptron (感知器)

- customer features \mathbf{x} : points on the plane (or points in \mathbb{R}^d)
- labels *y*: \circ (+1), \times (-1)
- hypothesis h: lines (or hyperplanes in \mathbb{R}^d)
 —positive on one side of a line, negative on the other side
- different line classifies customers differently

perceptrons ⇔ linear (binary) classifiers

如何選出正確的Perceptron?

 $\mathcal{H} = \text{all possible perceptrons}, g = ?$

- want: $g \approx f$ (hard when f unknown)
- almost necessary: $g \approx f$ on \mathcal{D} , ideally $g(\mathbf{x}_n) = f(\mathbf{x}_n) = y_n$
- difficult: \mathcal{H} is of infinite size
- idea: start from some g_0 , and 'correct' its mistakes on \mathcal{D}

will represent g_0 by its weight vector \mathbf{w}_0

Recall line function and some properties...

- The line function in 2d space: ax + by + c = 0
 - (a, b) 為直線的法向量

- Property of Inner Product
 - 兩向量方向完全相同,向量的cos角度為1
 - 兩向量方向完全相反,向量的cos角度為-1
 - 兩向量方向垂直,向量的cos角度為0

設
$$\vec{v}_1 = (x_1, y_1), \vec{v}_2 = (x_2, y_2)$$
, 且 \vec{v}_1, \vec{v}_2 的夾角為 θ ,

則
$$\cos\theta = \frac{\vec{v}_1 \cdot \vec{v}_2}{|\vec{v}_1| |\vec{v}_2|} = \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + y_1^2} \sqrt{x_2^2 + y_2^2}} \circ$$

符號定義

- 原本的二維資料 (x, y), 重新寫成 (x₁, x₂)
- 原本的直線方程式 ax+by+c=0,重新寫成 $w_0+w_1x_1+w_2x_2=0$
- 直線方程式可以視為 (w_0, w_1, w_2) 與 $(1, x_1, x_2)$ 的內積=0。
 - $w_0 + w_1 x_1 + w_2 x_2 = (w_0, w_1, w_2) \cdot (1, x_1, x_2) = w \cdot x = 0$
- 平面上的點落在直線右邊, $w \cdot x > 0$; 否則 $w \cdot x < 0$
 - 分類器可以用 **sign**(w·x) 表示
 - 資料以x表示、資料的label以y表示

Perceptron Learning Algorithm

start from some \mathbf{w}_0 (say, $\mathbf{0}$), and 'correct' its mistakes on \mathcal{D}

For t = 0, 1, ...

1 find a mistake of \mathbf{w}_t called $(\mathbf{x}_{n(t)}, \mathbf{y}_{n(t)})$

$$sign\left(\mathbf{w}_{t}^{T}\mathbf{x}_{n(t)}\right)\neq y_{n(t)}$$

(try to) correct the mistake by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_{n(t)} \mathbf{x}_{n(t)}$$

... until no more mistakes return last \mathbf{w} (called \mathbf{w}_{PLA}) as g

一開始沒有任何線,任 取一點當錯誤點

Practical Implementation of PLA

start from some \mathbf{w}_0 (say, $\mathbf{0}$), and 'correct' its mistakes on \mathcal{D}

Cyclic PLA

For t = 0, 1, ...

1 find the next mistake of \mathbf{w}_t called $(\mathbf{x}_{n(t)}, \mathbf{y}_{n(t)})$

$$sign\left(\mathbf{w}_{t}^{T}\mathbf{x}_{n(t)}\right) \neq y_{n(t)}$$

correct the mistake by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_{n(t)} \mathbf{x}_{n(t)}$$

... until a full cycle of not encountering mistakes

next can follow naïve cycle $(1, \dots, N)$ or precomputed random cycle

Fun Time

Let's try to think about why PLA may work.

Let n = n(t), according to the rule of PLA below, which formula is true?

$$sign\left(\mathbf{w}_{t}^{T}\mathbf{x}_{n}\right) \neq y_{n}, \quad \mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} + y_{n}\mathbf{x}_{n}$$

- 2 sign($\mathbf{w}_{t+1}^T \mathbf{x}_n$) = y_n
- $y_n \mathbf{w}_{t+1}^T \mathbf{x}_n \geq y_n \mathbf{w}_t^T \mathbf{x}_n$
- $\mathbf{4} \ y_n \mathbf{w}_{t+1}^T \mathbf{x}_n < y_n \mathbf{w}_t^T \mathbf{x}_n$

Reference Answer: (3)

Simply multiply the second part of the rule by $y_n \mathbf{x}_n$. The result shows that the rule somewhat 'tries to correct the mistake.'

How About High-dimensional Data?

age	23 years	
annual salary	NTD 1,000,000	
year in job	0.5 year	
current debt	200,000	

• For $\mathbf{x} = (x_1, x_2, \dots, x_d)$ 'features of customer', compute a weighted 'score' and

approve credit if
$$\sum_{i=1}^{d} w_i x_i > \text{threshold}$$
 deny credit if $\sum_{i=1}^{d} w_i x_i < \text{threshold}$

deny credit if
$$\sum_{i=1}^{d} w_i x_i < \text{threshold}$$

• \mathcal{Y} : $\{+1(good), -1(bad)\}$, 0 ignored—linear formula $h \in \mathcal{H}$ are

$$h(\mathbf{x}) = \operatorname{sign}\left(\left(\sum_{i=1}^{d} \mathbf{w}_i x_i\right) - \operatorname{threshold}\right)$$

Vector Form of Perceptron Hypothesis

$$h(\mathbf{x}) = \operatorname{sign}\left(\left(\sum_{i=1}^{d} \mathbf{w}_{i} x_{i}\right) - \operatorname{threshold}\right)$$

$$= \operatorname{sign}\left(\left(\sum_{i=1}^{d} \mathbf{w}_{i} x_{i}\right) + \underbrace{\left(-\operatorname{threshold}\right) \cdot \left(+1\right)}_{\mathbf{w}_{0}}\right)$$

$$= \operatorname{sign}\left(\sum_{i=0}^{d} \mathbf{w}_{i} x_{i}\right)$$

$$= \operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}\right)$$

 each 'tall' w represents a hypothesis h & is multiplied with 'tall' x —will use tall versions to simplify notation

Fun Time

- Consider using a perceptron to detect spam messages.
- Assume that each email is represented by the frequency of keyword occurrence, and output +1 indicates a spam. Which keywords below shall have large positive weights in a **good perceptron** for the task?
- 1. coffee, tea, hamburger, steak
- 2. free, drug, fantastic, deal
- 3. machine, learning, statistics, textbook
- 4. national, Taiwan, university, courser

Reference Answer: (2)

The occurrence of keywords with positive weights increase the 'spam score', and hence those keywords should often appear in spams.

Some Remaining Issues of PLA

'correct' mistakes on \mathcal{D} until no mistakes

Algorithmic: halt (with no mistake)?

- naïve cyclic: ??
- random cyclic: ??
- other variant: ??

Learning: $g \approx f$?

- on \mathcal{D} , if halt, yes (no mistake)
- outside *D*: ??
- if not halting: ??

[to be shown] if (...), after 'enough' corrections, any PLA variant halts

Linear Separability

(linear separable)

- if PLA halts (i.e. no more mistakes),
 (necessary condition) D allows some w to make no mistake
- call such \mathcal{D} linear separable

(not linear separable)

(not linear separable)

assume linear separable \mathcal{D} , does PLA always halt?

PLA找出的解,真的越來越好嗎?

PLA Fact: \mathbf{w}_t Gets More Aligned with \mathbf{w}_f

linear separable $\mathcal{D} \Leftrightarrow \text{exists perfect } \mathbf{w}_f \text{ such that } y_n = \text{sign}(\mathbf{w}_f^T \mathbf{x}_n)$

• \mathbf{w}_f perfect hence every \mathbf{x}_n correctly away from line:

$$y_{n(t)}\mathbf{w}_{f}^{T}\mathbf{x}_{n(t)} \geq \min_{n} y_{n}\mathbf{w}_{f}^{T}\mathbf{x}_{n} > 0$$

• $\mathbf{w}_{t}^{T}\mathbf{w}_{t}$ \ \ \ by updating with any $(\mathbf{x}_{n(t)}, \mathbf{y}_{n(t)})$

$$\mathbf{w}_{f}^{T}\mathbf{w}_{t+1} = \mathbf{w}_{f}^{T} \left(\mathbf{w}_{t} + y_{n(t)}\mathbf{x}_{n(t)}\right)$$

$$\geq \mathbf{w}_{f}^{T}\mathbf{w}_{t} + \min_{n} y_{n}\mathbf{w}_{f}^{T}\mathbf{x}_{n}$$

$$> \mathbf{w}_{f}^{T}\mathbf{w}_{t} + \mathbf{0}.$$

 \mathbf{w}_t appears more aligned with \mathbf{w}_t after update (really?)

$$\vec{v}_1 \cdot \vec{v}_2 = |\vec{v}_1| |\vec{v}_2| \cos\theta$$

More about PLA

Guarantee

as long as linear separable and correct by mistake

- inner product of w_t and w_t grows fast; length of w_t grows slowly
- PLA 'lines' are more and more aligned with w_f ⇒ halts

Pros

simple to implement, fast, works in any dimension d

Cons

- 'assumes' linear separable $\mathcal D$ to halt
 - —property unknown in advance (no need for PLA if we know \mathbf{w}_f)
- not fully sure how long halting takes
 - —though practically fast

Learning with Noisy Data

how to at least get $g \approx f$ on noisy \mathcal{D} ?

Line with Noise Tolerance

- assume 'little' noise: $y_n = f(\mathbf{x}_n)$ usually
- if so, $g \approx f$ on $\mathcal{D} \Leftrightarrow y_n = g(\mathbf{x}_n)$ usually
- how about

$$\mathbf{w}_g \leftarrow \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n=1}^N \left[y_n \neq \operatorname{sign}(\mathbf{w}^T \mathbf{x}_n) \right]$$

—NP-hard to solve, unfortunately

can we modify PLA to get an 'approximately good' *g*?

Pocket Algorithm

modify PLA algorithm (black lines) by keeping best weights in pocket

initialize pocket weights ŵ

For $t = 0, 1, \cdots$

- 1 find a (random) mistake of \mathbf{w}_t called $(\mathbf{x}_{n(t)}, y_{n(t)})$
- (try to) correct the mistake by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_{n(t)} \mathbf{x}_{n(t)}$$

3 if w_{t+1} makes fewer mistakes than \hat{w} , replace \hat{w} by w_{t+1}

...until enough iterations return ŵ (called wpocket) as g

a simple modification of PLA to find (somewhat) 'best' weights

Fun Time

Should we use pocket or PLA?

Since we do not know whether \mathcal{D} is linear separable in advance, we may decide to just go with pocket instead of PLA. If \mathcal{D} is actually linear separable, what's the difference between the two?

- \bigcirc pocket on \mathcal{D} is slower than PLA
- $oldsymbol{2}$ pocket on \mathcal{D} is faster than PLA
- \odot pocket on \mathcal{D} returns a better g in approximating f than PLA
- 4 pocket on \mathcal{D} returns a worse g in approximating f than PLA

Reference Answer: (1)

Because pocket need to check whether \mathbf{w}_{t+1} is better than $\hat{\mathbf{w}}$ in each iteration, it is slower than PLA. On linear separable \mathcal{D} , \mathbf{w}_{POCKET} is the same as \mathbf{w}_{PLA} , both making no mistakes.

Summary

- Perceptron Hypothesis Set hyperplanes/linear classifiers in R^d
- Perceptron Learning Algorithm (PLA)
 correct mistakes and improve iteratively
- Guarantee of PLA
 no mistake eventually if linear separable
- Non-Separable Data hold somewhat 'best' weights in pocket

[助教飛飛的重點提示] 感知器到底是什麼?

①數學中二維平面上的一條直線、②高維空間的超平面、③線性二元分類器、④ML世界中最基礎的模型

