Problematic Internet Use Classification

Michael Lu
December 13, 2024
Brown University, Department of Computer Science
https://github.com/mdlu02/InternetUseClassification

Background and Review

Problem & Goal

- Increased internet use associated with mental health problems.
- Predict severity of negative internet use.
- Tabular and time series data for ~5000 5-22 year-olds.
- Classification vs. Regression

Challenges

- Significant amount of missing data.
- Highly imbalanced dataset.
- Time series and tabular data.

Split + Crossfold Validation

Split + Crossfold Validation

Cross Validation

For each ML model and associated parameter set:

Mean k-fold quadratic weighted kappa score for each model + param set

Cross Validation - QWK

Quadratic Weighted Kappa:

- Ranges from -1 to 1
- Measures agreement between two outcomes
 - < 0 is worse than random</p>
 - 0 is random/baseline agreement
 - 1 is perfect agreement
 - Current 1st place achieves 0.5 QWK
- Baseline score is always 0 even if the data is unbalanced!

To compute the quadratic weighted kappa, we construct three matrices, O, W, and E, with N the number of distinct labels.

The matrix O is an $N \times N$ histogram matrix such that $O_{i,j}$ corresponds to the number of instances that have an actual value i and a predicted value j.

The matrix W is an $N \times N$ matrix of weights, calculated based on the squared difference between actual and predicted values:

$$W_{i,j} = \frac{(i-j)^2}{(N-1)^2}$$

The matrix E is an $N \times N$ histogram matrix of expected outcomes, calculated assuming that there is no correlation between values. This is calculated as the outer product between the actual histogram vector of outcomes and the predicted histogram vector, normalized such that E and O have the same sum.

From these three matrices, the quadratic weighted kappa is calculated as:

$$\kappa = 1 - \frac{\sum_{i,j} W_{i,j} O_{i,j}}{\sum_{i,j} W_{i,j} E_{i,j}}.$$

Cross Validation

For each ML model and associated parameter set:

Select best params for each model by val QWK.

Train on full CV data and test on hold out test set. Track:

- RMSE, QWK, Weighted F1
- Confusion matrix, AUC-ROC, and Precision-Recall Curves

548

Test

ML Models + Hyperparameters

XGBoost Regressor								
n_estimators	max_depth	learning_rate	subsample					
50	3	0.1	0.8					
100	5	0.01	1					
	7							

Neural Network								
layers	layer_sizes	learning_rate	epochs	batch_size	activation			
1	4	0.001	5	8	relu			
2	8	0.01	10	16				
4				32				

Results - Best Models

QWK Performance (larger is better)

RMSE Performance (smaller is better)

Results - Confusion Matrices

Elastic Net

XGBoost

Neural Network

Results - AUC-ROC Curves

Elastic Net

XGBoost

Neural Network

Results - Precision-Recall Curves

Elastic Net

XGBoost

Neural Network

Interpretation - Permutation Importance

Outlook

- Expand parameter grid to maximize performance of each model.
- Try classification approach to allow class weighting to help with imbalance.
- Use SHAP to investigate local performance.