Devoir à la maison n°6

Problème 1 -

On note $\mathcal E$ l'ensemble des fonctions f continues sur $\mathbb R$ à valeurs dans $\mathbb R$ telles que

$$\forall (x, y) \in \mathbb{R}^2, \ f(xy) = xf(y) + yf(x)$$

- **1.** Soit $f \in \mathcal{E}$.
 - **a.** Déterminer les valeurs de f(0), f(1) et f(-1).
 - **b.** Démontrer que la fonction f est impaire.
- **2.** On suppose que f est dérivable sur \mathbb{R}_+^* .
 - a. Montrer que f est solution sur \mathbb{R}_+^* de l'équation différentielle xy'-y=kx où k est une constante dépendant de f que l'on précisera.
 - **b.** En déduire f(x) en fonction de k pour tout $x \in \mathbb{R}$.
- **3.** On note φ l'unique élément de \mathcal{E} vérifiant $\varphi'(1) = 1$.
 - a. ϕ est-elle dérivable en 0 ?
 - **b.** Déterminer les variations et les limites de ϕ en $+\infty$ et $-\infty$ puis tracer son graphe.
- **4.** On considère $f \in \mathcal{E}$ que l'on suppose seulement continue sur \mathbb{R} . On note alors F l'unique primitive de f s'annulant en 0.
 - **a.** Montrer que pour tout $(x,y) \in \mathbb{R}^2$, $F(xy) = x^2 F(y) + \frac{xy^2}{2} f(x)$.
 - **b.** En déduire que f est dérivable sur \mathbb{R}_+^* .
 - **c.** Déterminer l'ensemble \mathcal{E} .