第八章 欧拉图与哈密顿图

8.1

证明:由于 G 是欧拉图,所以存在欧拉回路 $C=e_{i_1}e_{i_2}\cdots e_{i_m}$ 。由定义, G 中所有顶点都在 C上,且对任意 $e \in E(G)$,存在唯一的 $1 \le k \le m$,使得 $e_{ik} = e$ 。从 C 中删除 e_{ik} 后,得到一条通 过所有顶点的通路 $\Gamma = e_{i_{k+1}} \cdots e_{i_m} e_{i_1} \cdots e_{i_{k-1}}$ 。显然,这条通路在 G - e 中,从而 G - e 是连通 图。由 e 的任意性可知 $\lambda(G) \geq 2$,从而 G 是 2 边-连通的。

8.2 先证明一些有关"块"的性质。

引理 8.1 设 G 为无向连通图, $\mathscr{B} = \{B_1, B_2, \cdots, B_k\}$ 为 G 中所有不同的块的集合,记 $V_i =$ $V(B_i)$, $E_i = E(B_i)$, $i = 1, 2, \dots, k$. 设 $B_i, B_i \in \mathcal{B}$, $B_i \neq B_i$ 是 G 的两个不同的块,则

- (1) $B_i = G[V_i];$
- (2) $V_i \not\subseteq V_j$;
- (3) $|V_i \cap V_i| \leq 1$;
- (4) 对 G 的任意阶数不小于 2 的子图 $H = \langle V', E' \rangle$, 若 H 中不含割点,则 H 必被包含于唯一的
- (5) $E_i \cap E_j = \{(v, v) \mid v \in V_i \cap V_j \land (v, v) \in E(G)\};$
- (6) $G = \cup \mathscr{B}$.

证明:

- (1) 当顶点集不变的情况下,向一个图中加入新边不会降低图的连通度,从而由块的极大性即可 得证。
- (2) 反设 $V_i \subseteq V_i$,则由结论 (1) 可知, $B_i = G[V_i] \subseteq G[V_i] = B_i$,又由于 $B_i \neq B_i$,所以有 $B_i \subset B_j$, 即, B_j 是比 B_i 更大的 2-连通子图, 这与 B_i 的极大性矛盾。
- (3) 若不然, 不妨设 $v_1, v_2 \in V_i \cap V_i$, $v_1 \neq v_2$ 。此时, 对任意 $u \in V_i \{v_1, v_2\}$ 和 $w \in V_i \{v_1, v_2\}$, 必存在从 u 到 w 且不经过 v_1 的通路 Γ_1 和从 u 到 w 且不经过 v_2 的通路 Γ_2 。这是因为,由教材定 理 7.20 (注意到, 教材定理 7.20 的前提 " $|V_i| \ge 3$ " 和 " $|V_i| \ge 3$ " 必然成立。否则, 不妨设 $|V_i| \le 2$, 则由假设 $|V_i \cap V_j| \ge 2$ 就可推出 $V_i = V_i \cap V_j \subseteq V_j$, 这与结论 (2) 矛盾)可知, 在 B_i 中存在由 u到 v_2 而不过 v_1 的通路, 在 B_i 中存在由 v_2 到 w 而不经过 v_1 的通路, 连接两段通路即得 Γ_1 , 同 理可以得到 Γ_2 。因此, $B_i \cup B_j$ 是 2-连通的(因为从 $B_i \cup B_j$ 删除任意顶点后, B_i 和 B_j 内部必 然仍是连通的,而由于 v_1 和 v_2 不可能同时被删去,所以 B_i 和 B_i 之间仍有通路,从而 $B_i \cup B_j$ 仍是连通的)。但由结论 (2) 可知, V_i 和 V_i 都是 $V_i \cup V_i$ 的真子集(由习题 1.32 第 (2) 小题可知, $V_i \cup V_j = V_i$ 当且仅当 $V_j \subseteq V_i$, $V_i \cup V_j = V_j$ 当且仅当 $V_i \subseteq V_j$,而由结论 (2) 可知,以上两种情 况都不可能出现),从而 $B_i \cup B_i$ 是比 B_i 和 B_i 都大的 2-连通子图,这与 B_i , B_i 的极大性矛盾。 (4) 由于 H 中不含割点, 所以由 H 的顶点集导出的子图 G[V'] 也不含割点。如果存在某个顶点
- $v \in V(G) V'$, 使得 $G[V' \cup \{v\}]$ 仍无割点, 则将 v 加入 V' 中, 直止不再存在这样的 v。此时, G[V'] 就是 G 的一个块且 $H \subseteq G[V']$, 记 $B_s = G[V']$ 。