Solution of Math 2033 (Spring 2015) Midterm

So W= 3.

(1) inf A = 1 and sup A = 2 => A = [1,2]. For x ∈ (0, \frac{1}{3}] \cap Q, y \in A, we have $Jy \in [1, J_2]$, $Cos x \in [\frac{1}{2}, 1)$. So $\frac{1}{2} \leq Jy cos x \leq J2$, B is bounded. inf A= 1 ⇒ ∃ yn ∈ A such that limy n = 1 by infimum limit theorem. Sup A = 2 => I yn & A Such that lim yn = 2 by supreme limit theorem. Let xn= [10] ∈ (6,] nQ, then linx n=] Let $x'_n = \frac{1}{12} \in (0, \frac{\pi}{3}] \cap \mathbb{Q}$, then $\lim_{n \to \infty} x'_n = 0$. Then Jyncos Xn EB and lim Jyncos Xn = { Also, Jyn cos Xn EB, limy cos Xn = 12. Therefore, inf B= 1 and sup B= 12.

(a) Sketch $W_1 = 6$, $W_2 = 6 - \frac{9}{6} = 4.5$, $W_3 = 6 - \frac{9}{4.5} = 4$ $W = 6 - \frac{9}{W} \Rightarrow W^2 - 6W + 9 = 0 \Rightarrow (W - 3)^2 = 0 \Rightarrow W = 3$

Claim: Un=1,2,3,..., Wn > Wn+1 ≥ 3. For n=1, W1=6≥ W2=4,5≥3, Suppose Wn ≥ Wn+123, Then Wn (Wn+1 € 3. So Wn+1=6-9 = Wn+z=6-9 = 3. By M.I., the claim is true. Since (Wn) is decreasing and bounded below, linwn= w exists. Then W= lim Wat = lim (6- 2m)=6-2, which implies w-6w+8=0.

(b) Sketch x=60, x=8+120=10, x=8+120=20, x=8+120=14

Claim: For In=[xzn, xzn-1], we have Xzn < xzn+z < xzn+1 < xzn-1 for n=1,23,11. For n=1, $x_z=10 \le x_{\overline{q}}=14 \le x_{\overline{3}}=20 \le x_1=60$. Suppose $x_{zn} \le x_{zn+z} \le x_{zn+1} \le x_{zn+1}$. Then 120 > 120 > 120 > 120 X2n+1 > 120 X2n+1 > 120 X2n+1 = 8+120 > X2n+2 > 120 > X2n+1 > 120 > X2n+2 Then 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 1

By nested interval theorem, lim ten= and lim Xen= b laist. Then we have a=linxon=ling+ 120 = 8+ 120 and b=linxon+=lin(8+120)=8+120. So $8b+120=ab=8a+120 \Rightarrow a=b$. Then $\lim_{x\to \infty} x_1=x$ exists and $x\in [10,60]$ $x>0, x=\lim_{x\to \infty} x_1=\lim_{x\to \infty} (8+\frac{120}{x})=8+\frac{120}{x}\Rightarrow x^2-8x-(20=0)\Rightarrow x=\frac{8+\sqrt{544}}{2}$ (as $\frac{8-\sqrt{544}}{2}<0$). $\left|\frac{5}{y_{n-2}} - \frac{5}{2}\right| = \left|\frac{20 - 5y_{n}}{2(y_{n} - 2)}\right| = \frac{5|y_{n} - 4|}{2|y_{n} - 2|} \le \frac{5}{2}|y_{n} - 4| < \frac{5}{2} = \frac{3}{2}|y_{n} - 4| < \frac{5}{2}|y_{n} - 4| < \frac{5}{$ Since $\lim_{n\to\infty} z_n = 4$, $1>0 \Rightarrow \exists K_1 \in \mathbb{N}$ such that $n \geq K_1 \Rightarrow |z_n - 4| < 1 \Rightarrow z_n \in (3,5)$ Since limy=+, (>0=)=|KzEN Such that n=Kz=>|yu-4|<1=> YuE(3,5) Y € >0, 3 € >0 => 3 K3 € N Such that N ≥ K3 => (2n-4) < 3 € Yuze(1,3)

\$ >0 => 3 K4 € N Such that N ≥ K4 => (yu-4) < 5. Let K= max {K1, K2, K3, K4}. Then n ≥ K implies n ≥ K1, n ≥ K2, n ≥ K3, n ≥ K4 > | = | (= - 3 | = | (= - 1) + (5 - 5) | ≤ | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1) + | 5 - 5) | < | (= - 1

= 12x-161 + 51yn-41 < 12n+41/2n-41 + = 1yn-41 < 9 (2n-4)+ = 1yn-41 < 21yn-21 / + = 1yn-41 < 9 (2n-4)+ = 1yn-41 < 21yn-21 / = 2. see sketch