

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

GCSE MATHEMATICS

Н

Higher Tier

Paper 2 Calculator

Monday 6 November 2017 Morning Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a calculator
- mathematical instruments.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper.
 These must be tagged securely to this answer book.

Advice

• In all calculations, show clearly how you work out your answer.

For Examiner's Use		
Pages	Mark	
2–3		
4–5		
6–7		
8–9		
10–11		
12–13		
14–15		
16–17		
18–19		
20–21		
22–23		
24–25		
26–27		
28–29		
TOTAL	ľ	

Answer all questions in the spaces provided

1 Circle the fraction that is equivalent to 3.875

[1 mark]

$$\frac{15}{4}$$

$$\frac{31}{8}$$

2 What is 50 as a percentage of 20? Circle your answer.

[1 mark]

Circle the point that does **not** lie on the curve $y = x^3$ 3

[1 mark]

$$\left(-\frac{1}{2}, -\frac{1}{8}\right)$$
 (5, 125)

$$\left(\frac{1}{3},\,\frac{1}{9}\right) \qquad \qquad (-1,\,-1)$$

4 Which **one** of these is a unit of density?

Circle your answer.

[1 mark]

kg/m²

m²/kg

kg/m³

m³/kg

5 Solve 4(3x-2) = 2x-5

[3 marks]

x = _____

Turn over for the next question

7

6 The graph shows information about prisms with the same volume.

6	(a)	Give one example to show the volume is 24 cm ³
•	(w <i>)</i>	Cive Cite example to chew the volume is 2 i dill

Г1	m	2	rl	k٦

6 (b) The diagram shows a prism with volume 24 cm 3 The height of the triangular cross section is h.

Work out the height, h.

[3 marks]

Answer _____ cm

Turn over for the next question

4

7 Describe fully the **single** transformation that maps triangle *A* to triangle *B*.

[3 marks]

The table shows information about the distances walked by 120 students on their way to school one week.

Distance, x (miles)	Frequency	
0 < <i>x</i> ≤ 5	20	
5 < <i>x</i> ≤ 10	48	
10 < <i>x</i> ≤ 15	30	
15 < <i>x</i> ≤ 20	22	
	Total = 120	

Work out an estimate for the mean distance.	[3 marks]

miles

Turn over for the next question

Answer _____

9	Work out the size of angle x .	
		Not drawn accurately
	3 cm	
		[2 marks]
	Answer	degrees

10 Work out the next term of this quadratic sequence.

[2 marks]

5

8

14

23

Answer

Circle the expression that is equivalent to 11

[1 mark]

$$\frac{x^2}{2x^2+3}$$

$$\frac{x^2}{2x^2+3} \qquad \frac{x^2}{6x^2+1} \qquad \frac{x^2}{2x^2+1} \qquad \frac{1}{2} + x^2$$

$$\frac{x^2}{2x^2+1}$$

$$\frac{1}{2} + x^2$$

Turn over for the next question

12 The table shows information about the UK and Germany.

	Population Area	
UK	64 000 000	95 000
Germany	82 000 000	140 000

Population density = population area

Compare the population densities of the UK and Germany.

[3 marks]

13 Two straight lines intersect at point P.

Circle the coordinates of P.

[1 mark]

$$(-3, -1)$$
 $\left(-1, -\frac{1}{3}\right)$ $\left(-1, -3\right)$ $\left(-\frac{1}{3}, -1\right)$

$$\left(-\frac{1}{3}, -1\right)$$

Turn over for the next question

14 A ball is thrown from a height of 15 metres. It bounces to height h_1 , then to height h_2 as shown.

 $\it h_{\rm 1}$ is three quarters of the original height.

14 (a) Jack expects h_2 to be three quarters of h_1

Work out the value of h_2 that he expects.

]	[2 marks]	
-		
-		

14 (b)	In fact, h_2 is two thirds of h_1 How does this affect the answer to part (a)?	
	Tick a box. The ball bounced higher than he expected	
	The ball bounced lower than he expected	
	Show working to support your answer.	[2 marks]

Turn over for the next question

15	Mirek invests £6000 at a compound interest rate of 1.5% per year. He wants to earn more than £1000 interest.	
	Work out the least time, in whole years, that this will take.	[3 marks]
	Answer years	

16 (a)	Factorise fully $9y^3 - 6y$	[2 marks]
	Answer	
16 (b)	Factorise $3x^2 - 22x + 7$	[2 marks]

Turn over for the next question

Answer_____

7

17	Work out the area of	of the parallelogra	am.		
		12 cm	—16 cm ———		Not drawn accurately
					[3 marks]
		Answer		cm ²	

18 (a)

Which of these represents the shaded region? Circle your answer.

[1 mark]

Α

 B'

 $\mathsf{A}\cap\mathsf{B}'$

 $A \cup B'$

18 (b)

Which of these represents the shaded region? Circle your answer.

[1 mark]

 $(A \cup B)'$ $(A \cap B)'$

 $A' \cap B$

A' U B'

19	The length of a rectangle is five times the width. The area of the rectangle is 1620 cm ²	Not drawn accurately
	Work out the width of the rectangle.	
	Answer	m

A	A stone is thrown upwards with a speed of v metres per second.
	The stone reaches a maximum height of h metres.
1	h is directly proportional to v^2
١	When $v = 10$, $h = 5$
١	Work out the maximum height reached when $v = 24$ [4 marks]
_	
_	
_	
_	
_	
_	
_	
_	
	Answer m

Turn over for the next question

7

Meera is using a **graphical** method to solve $2x^2 - 3x = 0$ 21 (a)

She draws the graph of $y = 2x^2$ and a straight line graph on the same grid.

Here is the graph of $y = 2x^2$

Complete her method to solve $2x^2 - 3x = 0$

[2 marks]

Answer

21 (b) Levi is solving $2x^2 + 5x = 0$

He uses this method.

$$2x^2 + 5x = 0$$
 subtract $5x$ from both sides

$$2x^2 = -5x$$
 divide both sides by x

$$2x = -5$$
 divide both sides by 2

$$x = -2.5$$

Evaluate his method and his answer.

[2 marks]

Turn over for the next question

4

The cross section of an earring is a semicircle, centre *C*, radius 25 mm. The earring is black and white.

The shaded area is black.

Not drawn accurately

Sector BCD is white and has radius 12 mm

Not drawn accurately

You must show you	ur working.	TE
		[5
	Answer	
	Turn over for the next question	

23 Here is some information about a tennis club.

Members of a tennis club

There are 30 members with A < 20

There are 12 members with $65 \leqslant A < 80$

There are no members with $A \ge 80$

23	(a) Comp	lete :	the	hist	ogram.
----	----	--------	--------	-----	------	--------

·	•		[3 marks]

	25	
23 (b)	Work out the total number of members of the club.	[2 marks]
	Answer	
	Turn over for the next question	

5

Beth ran a 200 metre race.

Here is a graph of the first 8 seconds of her race.

She completed the race at a constant speed of 9 m/s

Speed-time graph for Beth

Amy completed the race in 27 seconds.

Did Beth finish before Amy?

You must show your working.

[3 marks]

Answer

25	The dimensions of a rectangular floor are to the nearest 0.1 metres.	
	2.6 m	Not drawn accurately
	A force of 345 Newtons is applied to the floor.	
	The force is to the nearest 5 Newtons.	
	$pressure = \frac{force}{area}$	
	Work out the upper bound of the pressure.	
	Give your answer to 4 significant figures.	
	You must show your working.	[5 marks]
	Answer N/m ²	

_

26 ABCDE is a pentagon.

Show that <i>BCDE</i> is a parallelogram.	[3 marks]	

27	Solve $\frac{x}{4} - \frac{2x}{x+2} = 1$	
	Give your solutions to 2 decimal places.	
	You must show your working.	
		[6 marks]
	<u> </u>	
	Angwar	
	Answer	

END OF QUESTIONS

9

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 AQA and its licensors. All rights reserved.

GCSE Mathematics

Paper 2 Higher Tier

Mark scheme

8300 November 2017

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments		
	31 8	B1			
1	Ad	dditional C	Buidance		
	250%	B1			
2	Additional Guidance				
3	$\left(\frac{1}{3}, \frac{1}{9}\right)$	B1			
3	Ad	ditional C	Guidance		
	kg/m ³	B1			
4		ditional C	Suidance		

Question	Answer	Mark	Comments		
	Alternative method 1				
	12 <i>x</i> – 8	M1	May be seen in a grid		
	their $12x - 2x = -5$ + their 8 or $10x = 3$ or their $-8 + 5 = 2x$ - their $12x$ or $-3 = -10x$	M1	Collecting two terms in x and two constant terms correctly oe eg $10x - 3 = 0$		
	0.3 or $\frac{3}{10}$	A1ft	ft M1M0 or M0M1 with exactly one error		
	Alternative method 2				
5	$\frac{x}{2} - \frac{5}{4}$	M1			
	$3x - \text{their } \frac{x}{2} = \text{their } -\frac{5}{4} + 2$		Collecting two terms in <i>x</i> and two constant terms correctly		
	or $\frac{5}{2}x = \frac{3}{4}$		oe eg $\frac{5}{2}x - \frac{3}{4} = 0$		
	or $-2 + \text{their } \frac{5}{4} = \text{their } \frac{x}{2} - 3x$	M1			
	or $-\frac{3}{4} = -\frac{5}{2} x$				
	0.3 or $\frac{3}{10}$	A1ft	ft M1M0 or M0M1 with exactly one error		

	Additional Guidance					
	12x - 2 = 2x - 5	МО				
	10x = -3	M1				
	x = -0.3	A1ft				
	12x - 8 = 2x - 5	M1				
	10x = -5	MO				
	$x = \frac{-5}{10}$	A1ft				
	12x - 8 = 2x - 5	M1				
	14x = 3	MO				
5	$x = \frac{3}{14}$	A1ft				
	12x - 8 = 2x - 5	M1				
	14x = -13	MO				
	$x = -\frac{13}{14} $ (two errors)	A0ft				
	12x - 8 = 8x - 20	M1M0A0				
	Any ft answer must be exact or rounded or truncated to at least 2 dp					
	The last two marks can be implied without the collection of terms seen eg $12x - 6 = 2x - 5$ and answer 0.1	M0M1A1ft				
	Collecting terms before the bracket has been expanded	Zero				

Question	Answer	Mark	Comme	nts
	Correct product using a point on the curve or correct division using a point on the curve	B1	eg 2 × 12 (= 24) or 3 × 8 (= 24) or 5 × 4.8 (= 24) or 6 × 4 (= 24) or 10 × 2.4 (= 24) or 24 ÷ 2 = 12 or 24 ÷ 6 = 4	
	Additional Guidance			
	1 × 24 (= 24)			В0
6(a)	12 + 12 (= 24)			В0
	$3 \times 4 \times 2 = 24$			В0
	For multiplication, 24 does not have to be shown			
	Ignore any units seen			
	Ignore any lines on the graph			
	8 x 3 = 24 and 12 + 12 = 24 (choice)			В0
	area 6 and length 4 and volume 24			В0

Question	Answer	Mark	Comments
	Alternative method 1		
	Reading from 5 on the graph to give [4.7, 4.9]	M1	
	$\frac{1}{2} \times 6 \times h = [4.7, 4.9]$	M1dep	oe
	or $[4.7, 4.9] \div (\frac{1}{2} \times 6)$	wruep	
	[1.56, 1.64]	A1	
	Alternative method 2		
	24 ÷ 5 or 4.8 or $\frac{1}{2} \times 6 \times h$	N44	oe
6(b)	or $\frac{1}{2} \times 6 \times h \times 5$	M1	
	$\frac{1}{2} \times 6 \times h = 24 \div 5$		oe
	or $24 \div 5 \div (\frac{1}{2} \times 6)$		
	or $\frac{1}{2} \times 6 \times h \times 5 = 24$	M1dep	
	or $15h = 24$		
	or $24 \div (\frac{1}{2} \times 6 \times 5)$		
	or 24 ÷ 15		
	1.6	A1	
	Ac	Iditional C	Guidance
			I

Question	Answer	Mark	Comme	nts
	Enlargement	B1		
	Scale factor (x) $\frac{1}{3}$	B1		
	Centre (5, 1)	B1		
	Additional Guidance			
7	Enlarge (x) $\frac{1}{3}$ (5, 1)			B1B1B1
	Reduction or makes bigger or unenlargement or increase or negative enlargement			1st B0
	Any other transformation mentioned or implied such as reflection, rotation or translation loses the mark for enlargement			
	eg enlarged and moved up 4 or enlarged and $\begin{pmatrix} -2\\2\end{pmatrix}$			1st B0
	Do not accept ÷ 3 for scale factor			2nd B0

	$[0, 5] \times 20 + [5, 10] \times 48$ + $[10, 15] \times 30 + [15, 20] \times 22$ or 1170	M1	Must add 4 products	
	their 1170 ÷ 120	M1dep		
8	9.75 or $\frac{39}{4}$ or $9\frac{3}{4}$	A1		
	Ade	ditional G	uidance	
	1170 ÷ 120 or 9.75 with 5 < x ≤ 10 on	answer lin	e	M2A0
	Do not allow M1 for working in the tal working lines	ble if a diffe	erent method is used in	

Question	Answer	Mark	Commen	ts	
	$\tan x = \frac{3}{7} \text{ or } \tan^{-1} \frac{3}{7}$ $\operatorname{or } \sin x = \frac{3(\sin 90)}{\sqrt{3^2 + 7^2}}$ $\operatorname{or } \sin x = \frac{3(\sin 90)}{\sqrt{58}}$ $\operatorname{or } \cos x = \frac{7}{\sqrt{3^2 + 7^2}}$ $\operatorname{or } \cos x = \frac{7}{\sqrt{58}}$ $\operatorname{or } 90 - \tan^{-1} \frac{7}{3}$ $\operatorname{or } 90 - [66.7, 66.81]$ $\operatorname{or } 90 - 67$	M1	eg $\cos x = \frac{7^2 + \left(\sqrt{7^2 + 3}\right)}{2 \times \sqrt{3^2 + 3}}$ Any letter	$\frac{\overline{3^2}}{\overline{7^2} \times 7}$	
9	[23, 23.3]	A1			
	Additional Guidance				
	$\tan = \frac{3}{7}$ or $\tan \frac{3}{7}$ or $\tan^{-1} = \frac{3}{7}$ (up	nless reco	overed)	MO	
	Answer [23, 23.3] (possibly coming f	rom scale	drawing)	M1A1	
	If using sine rule must rearrange to	$\sin x = f$	or M1		
	If using cosine rule must rearrange to	$\cos x =$	for M1		
	Allow [0.42, 0.43] for $\frac{3}{7}$				
	Allow 2.33 for $\frac{7}{3}$				
	Allow [7.6, 7.62] for $\sqrt{3^2 + 7^2}$				

Question	Answer	Mark	Comments	
10	3 6 9 or 23 + 12 or $1.5n^2$	M1 A1 ditional G	uidance	
	Answer line blank with 35 as next term	M1A1		
	Answer line has attempt at term to te	M1A0		
	35 seen on dotted line in sequence but a different answer given eg 50			M1A0

11	$\frac{x^2}{2x^2+1}$	B1		
	Ac	Iditional G	uidance	

Question	Answer	Mark	Commen	ts	
	64 000 000 ÷ 95 000 or 673.() or 674 or $\frac{12\ 800}{19}$ or 82 000 000 ÷ 140 000 or 585.() or 586 or $\frac{4100}{7}$	M1	oe population ÷ area Accept a pair of consiste eg 64 ÷ 95 or 0.673 o and 82 ÷ 140 or 0.585	or 0.674	
673.() or 674 or 670 and 585.() or 586 or 590 or $\frac{89\ 600}{133}$ and $\frac{77\ 900}{133}$		A1	Correct comparable values from consistent divisions eg 0.674 and 0.586 Accept 700 with division seen for UK Accept 600 with division seen for Germany		
12	12 A1ft 0.673 and 0.58 ft M1A0 and co		eg 673 and 585 and greate 0.673 and 0.585 and gre ft M1A0 and comparable Ignore further work	and greater for UK parable values	
	Additional Guidance				
	Comparable values means both must be in the same form eg fractions with common denominators				
	64 000 000 ÷ 95 000 = 67.4 82 000 000 ÷ 140 000 = 5857 Germany is higher		M1 A0 A1ft		
	Ignore subtraction of results				
	673 and 585 and UK has more people per square mile			M1A1A1ft	
	673 and 585 and Germany has more space for their population			M1A1A1ft	
	673 and 585 and UK's population is less spread out			M1A1A1ft	
	673 and 585 and UK is more than Ge	rmany		M1A1A1ft	
	673 and 585 and UK is 78 more than	Germany	(ignore further work)	M1A1A1ft	

	673 and 585 and the difference is 88	M1A1A0ft
	673 and 585 and UK population is bigger	M1A1A0ft
	673 and 586 and UK	M1A1A0ft
12 cont	673 and 585 and Germany has more space	M1A1A0ft
	673 > 585 (unless links to countries in working)	M1A1A0ft
	$\frac{12\ 800}{19}$ and $\frac{4100}{7}$ and UK is greater (fractions not comparable)	M1A0A0ft

Question	Answer	Mark	Co	omments	
	$\left(-\frac{1}{3},-1\right)$	B1			
13	Ad	ditional G	uidance		
	$\frac{3}{4} \times \frac{3}{4} \times 15$ or $\frac{3}{4} \times 15$ or 11.25 and $\frac{3}{4} \times$ their 11.25 8.4(375) or 8.44 or 8.438	M1	oe		
14(a) -	or $\frac{135}{16}$ or $8\frac{7}{16}$	A1			
	Additional Guidance				
	8.43 or 8.437			M1A1	
	8.4 seen, answer 8	M1A1			
	$\frac{3}{4}$ of 11.25 (unless correctly evaluate	MO			
	$\frac{3}{4}$ × 8.4375, answer 6.328 (further work)			M1A0	
	11.25 + 8.4375, answer 19.6875 (further work)			M1A0	

Question	Answer	Mark	Comments		
	Alternative method 1				
	Ticks second box and [7.425, 7.5375]		ft correct box ticked for comparing with their answer to (a)		
	or		B1ft [7.425, 7.5375]		
	Ticks second box		with no or incorrect decision		
	and correctly evaluates	B2ft	or		
	$\frac{2}{3}$ × their 11.25		Correctly evaluates $\frac{2}{3}$ × their 11.25		
			with no or incorrect decision		
	Alternative method 2				
	Ticks second box and valid comparison		eg $\frac{8}{12}$ and $\frac{9}{12}$		
14(b)			0.66 or 0.67 and 0.75		
			66.()% or 67% and 75%		
			$\frac{9}{16}$ and $\frac{8}{16}$		
			clear diagrams showing $\frac{2}{3}$ and $\frac{3}{4}$		
			B1 Ticks second box		
		B2	and incomplete comparison		
			eg $\frac{8}{12}$ and $\frac{3}{4}$		
			two thirds is less than three quarters		
			$\frac{3}{4} \times \frac{3}{4} = \frac{9}{16}$ and $\frac{3}{4} \times \frac{2}{3} = \frac{6}{12}$		
			or		
			Valid comparison (that would score B2) with no or incorrect decision		

Additional Guidance	
In Alt 1 only follow through their answer to (a) for the comparison, the working for $\frac{2}{3}$ × their 11.25 must be correct	
(a) answer 6.5 (b) Ticks first box and 7.5 seen	B2ft
Accept 0.66 or 0.67 for $\frac{2}{3}$	
Using 0.6 for $\frac{2}{3}$	В0

Question	Answer	Mark	Comments		
	Alternative method 1				
	1.015	M1	oe eg 101.5% or 1 + $\frac{1.5}{100}$		
			Implied by 6090		
	6000×1.015^n for any positive integer $n > 1$	M1dep	oe Implied by 6181.()		
15	11	A1	If showing trials for 10 and/or 11 years, must have $6000 \times 1.015^{10} = 6963.()$ and/or $6000 \times 1.015^{11} = 7067.() \text{ or } 7068$ If showing totals from year on year for 10 and/or 11 years, must have $(Y10) \ [6963.21, 6963.30]$ and/or $(Y11) \ [7067.65, 7067.75]$		
	Alternative method 2				
	1.015	M1	oe eg 101.5% or 1 + $\frac{1.5}{100}$ Implied by 6090		
	Evaluates 1.015^n for any positive integer $n > 1$ and $7000 \div 6000$ or 1.166 or 1.167 or 1.17	M1dep			
	11	A1	If showing trials for $n = 10$ and/or 11 must have $1.015^{10} = [1.160, 1.161]$ and/or $1.015^{11} = [1.177, 1.178]$		

	Additional Guidance	
	Values for working year on year	
	Y1 6000 × 1.015 = 6090	
	Y2 6090 × 1.015 = 6181.35	
	Y3 6181.35 × 1.015 = [6274.07, 6274.08]	
	Y4 [6274.07, 6274.08] × 1.015 = [6368.18, 6368.20]	
	Y5 [6368.18, 6368.20] × 1.015 = [6463.70, 6463.73]	
15	Y6 [6463.70, 6463.73] × 1.015 = [6560.65, 6560.69]	
	Y7 [6560.65, 6560.69] × 1.015 = [6659.05, 6659.11]	
	Y8 [6659.05, 6659.11] × 1.015 = [6758.93, 6759.00]	
	Y9 [6758.93, 6759.00] × 1.015 = [6860.31, 6860.39]	
	Y10 [6860.31, 6860.39] × 1.015 = [6963.21, 6963.30]	
	Y11 [6963.21, 6963.30] × 1.015 = [7067.65, 7067.75]	
	Answer 11 with no working	M2A1
	1000 ÷ 90 = 11.1 Answer 11	Zero

Question	Answer	Mark	Comme	nts
	$3y(3y^2 - 2)$ or $-3y(2 - 3y^2)$	B2	B1 $3(3y^3 - 2y)$ or $y(9y^2)$ or $-3(2y - 3y^3)$ or $-y(6y^2)$	•
	Ad	ditional G	uidance	
	$3y(3y^2-2)$ or $-3y(2-3y^2)$ followed by incorrect further work eg $3y(3y^2-2)=3y^2(3y-2)$			B1
16(a)	$3y(3y^2 - 2) = 3y(\sqrt{3}y + 2)(\sqrt{3}y - 2)$			B2
	$3y(3y^2 - 2) = 9y^3 - 6y$ (checking)			B2
	$3y \times (3y^2 - 2)$			B2
	$3 \times (3y^3 - 2y)$			B1
	$y3(3y^2-2)$			B1
	(3x-1)(x-7) or $(1-3x)(7-x)$		B1 $(3x + a)(x + b)$ where $ab = 7$ or $a + 3b$	
		B2	= -22 = 22	
	Additional Guidance			
	(3x+1)(x+7)			B1

16(b)

(3x+1)(x+7)	B1
(3x-1)(x-7)	B1
(3x-4)(x-6)	B1
(7-3x)(1-x)	B1
(10-3x)(4-x)	B1
$(3x-1)\times(x-7)$	B2
Ignore any 'solutions' seen eg $(3x-1)(x-7)$ in working with $\frac{1}{3}$ and 7 on answer line	B2

Question	Answer	Mark	Commer	nts	
	Alternative method 1				
	$\sin 72 = \frac{h}{12}$ or $12 \sin 72$ or $\cos (90 - 72) = \frac{h}{12}$ or $12 \cos (90 - 72)$ or $\frac{h}{\sin 72} = \frac{12}{\sin 90}$ or 11.4	M1	oe Any letter		
	16 × their 11.4	M1dep			
	[182.4, 182.603] or 183	A1			
	Alternative method 2				
17	$h^2 + (12\cos 72)^2 = 12^2$ or $h^2 + (12\sin (90 - 72))^2 = 12^2$ or $\sqrt{12^2 - (12\cos 72)^2}$ or $\sqrt{12^2 - (12\sin (90 - 72))^2}$ or 11.4	M1	oe Any letter		
	16 × their 11.4	M1dep			
	[182.4, 182.603] or 183	A1			
	Alternative method 3				
	0.5 × 16 × 12 × sin 72 or 91.3	M1	oe eg 0.5 x 16 x 12 x si	n 108	
	2 × their 91.3	M1dep			
	[182.4, 182.603] or 183	A1			
	Additional Guidance				
	2 × 16 × 12 × sin 72			M1M0A0	
	$\sin = \frac{h}{12}$ or $\sin \theta = \frac{h}{12}$ (unless reco	overed)		МО	

Question	Answer	Mark	Commer	nts	
	A ∩ B'	B1			
18(a)	Ad	ditional G	Buidance		
	(A U B)'	B1			
18(b)	Ad	ditional G	Guidance		
	Alternative method 1				
	$5w \times w$ or $5w^2$		oe		
	or 1620 ÷ 5 or 324	M1	Any letter		
	or trials a value of w for $5w^2$		eg 5 × 12 × 12 or 50 ×	10	
	$\sqrt{\frac{1620}{5}}$ or $\sqrt{324}$	M1dep			
	18	A1	A0 if –18 also given		
	Alternative method 2				
	$l \times \frac{l}{5}$ or $\frac{l^2}{5}$		oe		
19			Any letter		
	or 1620 × 5 or 8100	M1	00.00		
	or trials a value of l for $\frac{l^2}{5}$		eg $\frac{60 \times 60}{5}$ or 80×16		
	$\sqrt{1620 \times 5}$ or $\sqrt{8100}$ or 90	M1dep			
	18	A1	A0 if –18 also given		
	Additional Guidance				
	Answer 18			M2A1	
	18 in working with 90 on answer line			M2A0	
	Trials for $5w^2$ or $\frac{l^2}{5}$ without answer 18			M1M0A0	

Question	Answer	Mark	Comments	
	Alternative method 1			
	$h = kv^2$ or $5 = k \times 10^2$ or $5 \div 10^2$ or $5 : 10^2$	M1	ое	
	$(k =) \frac{1}{20}$ or $(k =) 0.05$ or $h = \frac{1}{20}v^2$ or $h = 0.05v^2$	A1	oe Correct value for k or correct equation in h and v	
	their $\frac{1}{20} \times 24^2$	M1dep	oe $\frac{1}{20} \times 24^2 \text{ implies M1A1M1}$	
20	28.8	A1ft	ft their k and M1A0M1	
	Alternative method 2			
	$kh = v^2$ or $k \times 5 = 10^2$ or $10^2 \div 5$ or $10^2 : 5$	M1	oe	
	$(k =) 20 \text{ or } 20h = v^2$	A1	oe Correct value for k or correct equation or correct equation in h and v	
	24 ² ÷ their 20	M1dep	oe 24 ² ÷ 20 implies M1A1M1	
	28.8	A1ft	ft their k and M1A0M1	

Mark scheme continues on the next page

Additional Guidance is on the next page

Question	Answer	Mark	Commer	nts	
	Alternative method 3				
	$\left(\frac{24}{10}\right)^2$ or $\frac{576}{100}$ or $24^2:10^2$	M1	ое		
	$\frac{h}{5} = \left(\frac{24}{10}\right)^2$	A1	oe Correct equation in h		
	$5 \times \text{their} \left(\frac{24}{10}\right)^2$	M1dep	oe $5 \times \left(\frac{24}{10}\right)^2 \text{ implies M1A1}$	M1	
	28.8	A1ft	ft their $\left(\frac{24}{10}\right)^2$ and M1A0N	M1	
	Alternative method 4				
	$\left(\frac{10}{24}\right)^2$ or $\frac{100}{576}$ or $10^2:24^2$	M1	oe		
20	$\frac{5}{h} = \left(\frac{10}{24}\right)^2$	A1	oe Correct equation in h		
	$5 \div \text{their} \left(\frac{10}{24}\right)^2$	M1dep	oe $5 \div \left(\frac{10}{24}\right)^2 \text{ implies M1A1}$	M1	
	28.8	A1ft	ft their $\left(\frac{24}{10}\right)^2$ and M1A0N	M1	
	Additional Guidance				
	$h \propto v^2$ with no further valid working			Zero	
	$h = kv$ or $h = kv^3$ or $h = \frac{k}{v^2}$ etc not recovered			Zero	
	Up to first two marks can be awarded for correct working even if not subsequently used				
	Allow use of other letters				

Question	Answer	Mark	Comme	nts
	Draws $y = 3x$ and $(x =) [-0.1, 0.1]$ and $(x =) [1.4, 1.6]$	B2	B1 Draws $y = 3x$ or state $\pm \frac{1}{2}$ square tolerance for Graph must be seen for from 0 to 1.5	drawing graph
21(a)	Ade			
	Ignore any y values seen			
	Solutions from a non-graphical method			В0
	Ignore other lines drawn on grid			

Question	Answer	Mark	Comme	nts
21(b)	Full evaluation of method and answer	B2	eg1 Cannot divide by <i>x</i> and eg2 Should have factorism would have also found the eg3 Should have used at then he would have also eg4 Should have also eg5 Should have completed then he would have also eg5 Should have also should have also eg1 <i>x</i> = 0 has been omitted eg2 Should have factorism eg3 Should have used the eg4 Should have drawn eg5 Only found one solue eg6 Cannot divide by zet	sed and then he hat $x = 0$ he formula and found that $x = 0$ a graphical method found that $x = 0$ eted the square found that $x = 0$ tted sed he formula a graph tion
	Additional Guidance			
	For B2 there needs to be an evaluation that $x = 0$ has been omitted from the an		ethod and an indication	
	x(2x + 5) = 0 x = 0 and $x = -2.5$			B2
	Should be two solutions			B1
	What about $x = 0$			B1
	The answer is wrong			В0
	Ignore non-contradictory further work			

Question	Answer	Mark	Comments
	Alternative method 1		
	$(\frac{1}{2} \times) \pi \times 25 \times 25$ or 625π or 312.5π or $[1962.5, 1964]$ or $[981, 982]$ or $\pi \times 12 \times 12$ or 144π or $[452, 452.45]$	M1	oe Area of circle or semicircle radius 25 or area of circle radius 12
	$\frac{150}{360}$ or $\frac{5}{12}$ or 0.41(6) or 0.417 or 0.42 or $\frac{360}{150}$ or $\frac{12}{5}$ or 2.4	M1	May be seen in two steps eg × 150 ÷ 360
22	their $\frac{150}{360} \times \pi \times 12 \times 12$ or $\pi \times 12 \times 12 \div \text{their } \frac{360}{150}$ or 60π or [188.4, 188.52]	M1dep	oe dep on M2 Area of sector
	their [188.4, 188.52] (x 100) their [981, 982] or [0.19, 0.1922] or [19, 19.22]	M1dep	oe dep on M3 their [981, 982] must be the area of semicircle radius 25
	[19, 19.22] and No or [0.19, 0.1922] and 0.2 and No	A1	

Question	Answer	Mark	Comments
	Alternative method 2		
	$(\frac{1}{2} \times) \pi \times 25 \times 25$ or 625π or 312.5π or $[1962.5, 1964]$ or $[981, 982]$ or $\pi \times 12 \times 12$ or 144π or $[452, 452.45]$	M1	oe Area of circle or semicircle radius 25 or area of circle radius 12
22	$\frac{150}{360}$ or $\frac{5}{12}$ or 0.41(6) or 0.417 or 0.42 or $\frac{360}{150}$ or $\frac{12}{5}$ or 2.4	M1	May be seen in two steps eg × 150 ÷ 360
	their $\frac{150}{360} \times \pi \times 12 \times 12$ or $\pi \times 12 \times 12 \div$ their $\frac{360}{150}$ or 60π or [188.4, 188.52]	M1dep	oe dep on M2 Area of sector
	their [188.4, 188.52] × 5 or [942, 942.6]	M1dep	oe dep on M3
	[942, 942.6] and [981, 982] and No	A1	oe eg 300π and 312.5π and No

Mark scheme continues on the next page

Additional Guidance is on the next page

Question	Answer	Mark	Comments
	Alternative method 3		
	$(\frac{1}{2} \times) \pi \times 25 \times 25$ or 625π or 312.5π or $[1962.5, 1964]$ or $[981, 982]$ or $\pi \times 12 \times 12$ or 144π or $[452, 452.45]$	M1	oe Area of circle or semicircle radius 25 or area of circle radius 12
	$0.2 \times \text{their} [981, 982]$ or 62.5π or $[196.2, 196.4]$	M1dep	oe dep on 1st M1 their [981, 982] must be the area of semicircle radius 25
22	$\frac{150}{360}$ or $\frac{5}{12}$ or 0.41(6) or 0.417 or 0.42 or $\frac{360}{150}$ or $\frac{12}{5}$ or 2.4	M1	May be seen in two steps eg × 150 ÷ 360
	their $\frac{150}{360} \times \pi \times 12 \times 12$ or $\pi \times 12 \times 12 \div \text{their } \frac{360}{150}$ or 60π or [188.4, 188.52]	M1dep	oe dep on 1st M1 and 3rd M1 Area of sector
	[188.4, 188.52] and [196.2, 196.4] and No	A1	oe eg 60π and 62.5π and No
	Ad	ditional G	uidance
	Alt 3 20% of [981, 982] does not sco correctly	re 2nd M1	unless evaluated

Question	Answer	Mark	Comments	
	Alternative method 1			
	30 ÷ 20 or 1.5	M1	May be implied by correct labelling on vertical axis	
	12 ÷ 15 or 0.8	M1		
	Draws block for $65 \le x < 80$ with height 8 small squares	A1	Mark intention	
	Alternative method 2			
	12 ÷ (30 ÷ 6) or 12 ÷ 5 or 2.4	M1		
	their 2.4 ÷ 1.5 or 1.6	M1dep		
	Draws block for $65 \le x < 80$ with height 8 small squares	A1	Mark intention	
23(a)	Alternative method 3			
, ,	12 ÷ (30 ÷ 150) or 12 ÷ 0.2 or 60	M1		
	their 60 ÷ 7.5 or 8	M1dep		
	Draws block for $65 \le x < 80$ with height 8 small squares	A1	Mark intention	
	Alternative method 4			
	$1.5 \times (30 \div 6)$ or 1.5×5 or 7.5	M1		
	12 ÷ their 7.5 or 1.6	M1dep		
	Draws block for $65 \le x < 80$ with height 8 small squares	A1	Mark intention	
	Additional Guidance			
	Draws block for $65 \leqslant x < 80$ with heig	squares 3 marks		
	Draws block for $65 \le x < 80$ with height 8 small squares 3 mark			

Question	Answer	Mark	Comments
23(b)	$10 \times 4.5 \text{ or } 9 \times 30 \div 6$ or $225 \div (30 \div 6) \text{ or } 45$ or $10 \times 3.6 \text{ or } 7.2 \times (30 \div 6)$ or $180 \div (30 \div 6) \text{ or } 36$ or $25 \times 2 \text{ or } 10 \times (30 \div 6)$ or $250 \div (30 \div 6) \text{ or } 50$ or $34.6 \times 30 \div 6$ or $865 \div (30 \div 6)$	M1	oe May be seen on histogram
	173	A1	
	Additional Guidance		

Question	Answer	Mark	Comments		
	Alternative method 1				
	0.5 × 8 × 9 or 36 or (27 – 8) × 9 or 19 × 9 or 171	M1	May be seen on graph		
	$0.5 \times 8 \times 9 + (27 - 8) \times 9$ or 207	M1dep	M2 0.5 × (27 + 19) × 9		
	207 and Yes	A1			
	Alternative method 2				
	0.5 × 8 × 9 or 36	M1	May be seen on graph		
	$\frac{200 - \text{their } 36}{9}$ or $\frac{164}{9}$ or 18.2	M1dep			
	26.2 and Yes or 18.2 and 19 and Yes	A1			
24	Alternative method 3				
	0.5 × 8 × 9 or 36	M1	May be seen on graph		
	$\frac{200 - \text{their } 36}{27 - 8}$ or $\frac{164}{19}$ or 8.6	M1dep			
	8.6 and Yes	A1			
	Alternative method 4				
	0.5 × 8 × 9 or 36	M1	May be seen on graph		
	Attempt at total distance for Beth for 26.2 ≤ total time < 27	M1dep	eg (time 26.5s) $0.5 \times 8 \times 9 + (26.5 - 8) \times 9$		
	Correct total distance for Beth for 26.2 ≤ total time < 27 and Yes	A1	eg (time 26.5s) 202.5 and Yes		
	Additional Guidance				

Question	Answer	Mark	Comme	nts
	342.5 or 347.5	B1	Allow 347.49 for 347.5	
	6.35 or 6.45 or 2.55 or 2.65	B1	Allow 6.44 9 for 6.45 Allow 2.64 9 for 2.65	
	their 6.35 × their 2.55 or 16.1925	M1	Must use their lower bounds for lengths their 6.35 must be [6.3, 6.4) their 2.55 must be [2.5, 2.6)	
25	their 347.5 ÷ their 16.1925	M1dep	Must use their upper bound for force their 347.5 bound must be (345, 350]	
	21.46	A1	Must come from $347.5 \div (6.35 \times 2.55)$ or $347.49 \div (6.35 \times 2.55)$	
	Additional Guidance			
	$347.49 \div (6.35 \times 2.55) = 21.46$			B0B1M1M1A0
	21.4 or 21.5 does not score any marks if no working is seen			

Question	Answer	Mark	Comments	
	Alternative method 1 Shows that	CB (or BC	C) is equal and parallel to DE (or ED)	
	$(\overrightarrow{CB} =) -(\mathbf{b} - 2\mathbf{a}) - 2\mathbf{b} - \mathbf{a}$ or $(\overrightarrow{BC} =) \mathbf{b} - 2\mathbf{a} + 2\mathbf{b} + \mathbf{a}$	M1	oe method	
	$(\overrightarrow{CB} =) \mathbf{a} - 3\mathbf{b}$ or $(\overrightarrow{BC} =) 3\mathbf{b} - \mathbf{a}$	A1	Must see correct method for \overrightarrow{CB} or \overrightarrow{BC}	
	CB is equal and parallel to DE	A1	Must see a correct vector for first A1 and have a statement	
		Ai	oe eg CB is equal and parallel to ED	
	Alternative method 2 Shows that BE (or EB) is equal and parallel to CD (or DC)			
26	$(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ or $(\overrightarrow{CD} =) -(\mathbf{b} - 2\mathbf{a}) - (\mathbf{a} - 3\mathbf{b})$ or $(\overrightarrow{EB} =) -\mathbf{a} - 2\mathbf{b}$ or $(\overrightarrow{DC} =) (\mathbf{a} - 3\mathbf{b}) + (\mathbf{b} - 2\mathbf{a})$	M1	oe method	
	$(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ and $(\overrightarrow{CD} =) \mathbf{a} + 2\mathbf{b}$ or $(\overrightarrow{EB} =) -\mathbf{a} - 2\mathbf{b}$ and $(\overrightarrow{DC} =) -\mathbf{a} - 2\mathbf{b}$	A1	Must see correct method for \overrightarrow{CD} or \overrightarrow{DC} oe eg (\overrightarrow{BE} =) a + 2 b and (\overrightarrow{DC} =) - a - 2 b	
	BE is equal and parallel to CD	A1	Must see two correct vectors for first A1 and have a statement oe eg <i>BE</i> is equal and parallel to <i>DC</i>	

Question	Answer	Mark	Comments
	Alternative method 3 Shows that	two pairs	of opposite sides are parallel
	$(\overrightarrow{CB} =) -(\mathbf{b} - 2\mathbf{a}) - 2\mathbf{b} - \mathbf{a}$ or $(\overrightarrow{BC} =) \mathbf{b} - 2\mathbf{a} + 2\mathbf{b} + \mathbf{a}$ or $(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ or $(\overrightarrow{CD} =) -(\mathbf{b} - 2\mathbf{a}) - (\mathbf{a} - 3\mathbf{b})$ or $(\overrightarrow{EB} =) -\mathbf{a} - 2\mathbf{b}$ or $(\overrightarrow{DC} =) (\mathbf{a} - 3\mathbf{b}) + (\mathbf{b} - 2\mathbf{a})$	M1	oe method
26	$(\overrightarrow{CB} =) \mathbf{a} - 3\mathbf{b}$ or $(\overrightarrow{BC} =) 3\mathbf{b} - \mathbf{a}$ or $(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ and $(\overrightarrow{CD} =) \mathbf{a} + 2\mathbf{b}$ or $(\overrightarrow{EB} =) -\mathbf{a} - 2\mathbf{b}$ and $(\overrightarrow{DC} =) -\mathbf{a} - 2\mathbf{b}$	A1	Must see correct method for \overrightarrow{CB} or \overrightarrow{BC} or \overrightarrow{CD} or \overrightarrow{DC} oe eg (\overrightarrow{BE} =) \mathbf{a} + 2 \mathbf{b} and (\overrightarrow{DC} =) $-\mathbf{a}$ - 2 \mathbf{b}
	$(\overrightarrow{CB} =) \mathbf{a} - 3\mathbf{b}$ and $(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ and $(\overrightarrow{CD} =) \mathbf{a} + 2\mathbf{b}$ and CB is parallel to DE and BE is parallel to CD	A1	Must see three correct vectors and have two statements oe eg $(\overrightarrow{BC}=)$ 3b – a and $(\overrightarrow{BE}=)$ a + 2b and $(\overrightarrow{DC}=)$ –a – 2b and BC is parallel to DE and BE is parallel to DC

Mark scheme continues on the next page Additional Guidance is on the next page

Question	Answer	Mark	Commer	nts
	Alternative method 4 Shows that two pairs of opposite sides are equal			
	$(\overrightarrow{CB} =) -(\mathbf{b} - 2\mathbf{a}) - 2\mathbf{b} - \mathbf{a}$ or $(\overrightarrow{BC} =) \mathbf{b} - 2\mathbf{a} + 2\mathbf{b} + \mathbf{a}$ or $(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ or $(\overrightarrow{CD} =) -(\mathbf{b} - 2\mathbf{a}) - (\mathbf{a} - 3\mathbf{b})$ or $(\overrightarrow{EB} =) -\mathbf{a} - 2\mathbf{b}$ or $(\overrightarrow{DC} =) (\mathbf{a} - 3\mathbf{b}) + (\mathbf{b} - 2\mathbf{a})$	M1	oe	
26	$(\overrightarrow{CB} =) \mathbf{a} - 3\mathbf{b}$ or $(\overrightarrow{BC} =) 3\mathbf{b} - \mathbf{a}$ or $(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ and $(\overrightarrow{CD} =) \mathbf{a} + 2\mathbf{b}$ or $(\overrightarrow{EB} =) -\mathbf{a} - 2\mathbf{b}$ and $(\overrightarrow{DC} =) -\mathbf{a} - 2\mathbf{b}$	A1	Must see correct method or \overrightarrow{CD} or \overrightarrow{DC} oe eg (\overrightarrow{BE} =) \mathbf{a} + 2 \mathbf{b} and	
	$(\overrightarrow{CB} =) \mathbf{a} - 3\mathbf{b}$ and $(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ and $(\overrightarrow{CD} =) \mathbf{a} + 2\mathbf{b}$ and CB is equal to DE and BE is equal to CD	A1	Must see three correct vertwo statements oe eg $(\overrightarrow{BC}=)$ 3b - a and $(\overrightarrow{BE}=)$ a + 2b and $(\overrightarrow{DC}=)$ -a - 2b and BC is equal to DE and BE is equal to DC	ectors and have
	Additio		Buidance	
	Choose the method that gives most marks			
	Ignore incorrect vectors if not contrad	Ignore incorrect vectors if not contradictory		
	For parallel allow in the same direction or in the opposite direction			
	For equal to allow = or the same as			
	Condone incorrect notation if unambigues $CB = -(b - 2a) - 2b - a$	guous		M1

Question	Answer	Mark	Comments
	Alternative method 1		
	$x(x + 2)$ or $x^2 + 2x$ or $2x \times 4$ or $8x$ or 4(x + 2) or $4x + 8$	M1	
	$x(x + 2)$ or $x^2 + 2x$ and $2x \times 4$ or $8x$ and 4(x + 2) or $4x + 8$	M1dep	oe eg $\frac{x(x+2)-2x\times 4}{4(x+2)}$
27	$x(x + 2) - 2x \times 4 = 4(x + 2)$	M1dep	oe equation with fractions eliminated dep on M2
	$x^2 - 10x - 8 (= 0)$	A1	oe 3-term quadratic equation with terms collected
	$\frac{10 \pm \sqrt{(-10)^2 - 4 \times 1 \times -8}}{2 \times 1}$ or $\frac{10 \pm \sqrt{100 + 32}}{2} \text{ or } \frac{10 \pm \sqrt{132}}{2}$ or $5 \pm \sqrt{5^2 + 8} \text{ or } 5 \pm \sqrt{33}$ or $[10.744, 10.745] \text{ and } [-0.745, -0.744]$	M1	oe Correct for their 3-term quadratic Allow correct factorisation of their 3-term quadratic
	10.74 and -0.74 with $x^2 - 10x - 8$ (= 0) oe seen	A1	Must both be to 2 decimal places

Question	Answer	Mark	Comments		
	Alternative method 2 (from $\frac{x}{4} = 1 + \frac{2x}{x+2}$)				
27	$x(x + 2)$ or $x^2 + 2x$ or (x + 2) + 2x or $3x + 2or12x + 8$	x+2			
	$\frac{x(x+2)}{4} \text{ or } \frac{x^2+2x}{4}$ and $\frac{x+2+2x}{x+2} \text{ or } \frac{3x+2}{x+2}$	M1dep			
	x(x + 2) = 4(x + 2 + 2x) or x(x + 2) = 4(3x + 2)	M1dep	oe equation with fractions eliminated dep on M2		
	$x^2 - 10x - 8 (= 0)$	A1	oe 3-term quadratic equation with terms collected		
	$\frac{10 \pm \sqrt{(-10)^2 - 4 \times 1 \times -8}}{2 \times 1}$ or $\frac{10 \pm \sqrt{100 + 32}}{2} \text{ or } \frac{10 \pm \sqrt{132}}{2}$ or $5 \pm \sqrt{5^2 + 8} \text{ or } 5 \pm \sqrt{33}$ or $[10.744, 10.745] \text{ and } [-0.745, -0.744]$	M1	oe Correct for their 3-term quadratic Allow correct factorisation of their 3-term quadratic		
	10.74 and -0.74 with $x^2 - 10x - 8$ (= 0) oe seen	A1	Must both be to 2 decimal places		

Comments

Mark

	Alternative method 3 (from $\frac{x}{4} - 1 = \frac{2x}{x+2}$)						
27	$\frac{x-4}{4}$	M1					
	$(x-4)(x+2)$ or $x^2-4x+2x-8$ or x^2-2x-8 and $2x \times 4$ or $8x$	M1dep					
	$(x-4)(x+2) = 2x \times 4$ or $x^2 - 4x + 2x - 8 = 8x$	M1dep	oe equation with fractions eliminated dep on M2				
	$x^2 - 10x - 8 (= 0)$	A1	oe 3-term quadratic equation with terms collected				
	$\frac{-10 \pm \sqrt{(-10)^2 - 4 \times 1 \times -8}}{2 \times 1}$ or $\frac{10 \pm \sqrt{100 + 32}}{2}$ or $\frac{10 \pm \sqrt{132}}{2}$ or $5 \pm \sqrt{5^2 + 8}$ or $5 \pm \sqrt{33}$ or $[10.744, 10.745]$ and $[-0.745, -0.744]$	M1	oe Correct for their 3-term quadratic Allow correct factorisation of their 3-term quadratic				
	10.74 and -0.74 with $x^2 - 10x - 8$ (= 0) oe seen	A1	Must both be to 2 decimal places				
	Additional Guidance						
	10.74 and -0.74 from T & I or with no working			6 marks			
	10.74 or -0.74 from T & I or with no working			Zero			
	In quadratic formula, do not allow -10^2 for $(-10)^2$ unless recovered						

Question

Answer