Assignment -2

Assignment Date	17 September 2022
Student Name	Sivagama Sundari. V
Student Roll Number	211419104255
Maximum Marks	2 Marks

1. Download the dataset:

```
In [1]: #Downloaded

#importing the libraries

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np

import warnings
warnings.filterwarnings('ignore')
```

2. Load the dataset.

```
In [2]: #loading the dataset

d = pd.read_csv(r'Downloads/Churn_Modelling.csv')
```

3. Perform Below Visualizations.

• Univariate Analysis

```
In [3]: #Boxplot
sns.boxplot(d['CreditScore'])
Out[3]: <AxesSubplot:xlabel='CreditScore'>
```


Out[5]: [<matplotlib.lines.Line2D at 0x1fd895767c0>]

Out[7]: <AxesSubplot:xlabel='Age', ylabel='Density'>

• Bi - Variate Analysis

```
In [8]: #scatter plot
plt.scatter(d['RowNumber'].head(500),d['Age'].head(500))
```

Out[8]: <matplotlib.collections.PathCollection at 0x1fd89b27910>


```
In [9]: #bar plot

plt.bar(d['RowNumber'].head(10),d['CreditScore'].head(10))

#labelling of x,y and result

plt.title('Bar plot')
plt.xlabel('Row Number')
plt.ylabel('CreditScore')
```

Out[9]: Text(0, 0.5, 'CreditScore')


```
In [10]: #joint plot
sns.jointplot(d['RowNumber'].head(50),d['CreditScore'].head(50))
```

Out[10]: <seaborn.axisgrid.JointGrid at 0x1fd89bc0b80>

Out[11]: <AxesSubplot:xlabel='RowNumber', ylabel='CreditScore'>


```
In [12]: sns.lineplot(d['RowNumber'].head(),d['CreditScore'].head())
Out[12]: <AxesSubplot:xlabel='RowNumber', ylabel='CreditScore'>

850
800
750
800
600
```

• Multi - Variate Analysis

3.0

RowNumber

3.5 4.0

550

500

1.0 1.5 2.0 2.5

```
In [13]: #boxplot
sns.boxplot(d['RowNumber'].head(10),d['Age'].head(10),d['CreditScore'].head(10))
```

Out[13]: <AxesSubplot:xlabel='RowNumber', ylabel='Age'>


```
In [14]: #heat map
             sns.heatmap(d.head().corr(),annot=True)
Out[14]: <AxesSubplot:>
                                                                                       -1.00
                   RowNumber - 1 0.83 0.65 4e-16e-10.36 0.18 0 -0.29-0.690.58
                   Customerld -0.83 1 0.96-0.03-0.520 0530.36-0.110.14-0.92-0.75
                                                                                       - 0.75
                   CreditScore -0.68 0.96 1 0.14 -0.6 -0.11-0.570.0150.39 -0.96-0.67
                                                                                       - 0.50
                           Age -4e-10.030.14 1 0.36 0.6 0.220.84 0.54
                                                                                       - 0.25
                        Tenure -1e-10.52-0.6 0.36 1 0.68 0.81 0.56-0.53 0.45 0.68
                      Balance -0.360.0530.11 0.6 0.68 1 0.38 0.4-0.0760140.076
                                                                                       - 0.00
               NumOfProducts -0.18-0.36-0.57-0.22 0.81 0.38 1 0.1 -0.92 0
                                                                                       - -0.25
                    HasCrCard - 0 -0.110.0150.84 0.56 0.4 0.1 1 0.17 -0.15 0.67
                                                 0.530.0760.920.17 1 -0.240.17
                                                                                        -0.50
               EstimatedSalary -0.690.920.96-0.170.45 0.14 0.41-0.190.24 1
                                                                                         -0.75
                        Exited -0.580.75-0.67 0.36 0.680.0760.41 0.67-0.17
                                     Customerid
                                              Age
                                 RowNumber
                                          CreditScore
                                                            NumOfProducts
                                                                         EstimatedSalary
                                                                              Exited
```


4. Perform descriptive statistics on the dataset.

```
In [17]: #mean
         d.mean()
Out[17]: RowNumber
                             5.000500e+03
         CustomerId
                            1.569094e+07
         CreditScore
                             6.505288e+02
                            3.892180e+01
         Age
         Tenure
                            5.012800e+00
         Balance
                            7.648589e+04
         NumOfProducts
                            1.530200e+00
         HasCrCard
                            7.055000e-01
         IsActiveMember
                            5.151000e-01
         EstimatedSalary
                            1.000902e+05
         Exited
                             2.037000e-01
         dtype: float64
In [18]: #median
         d.median()
Out[18]: RowNumber
                             5.000500e+03
         CustomerId
                            1.569074e+07
         CreditScore
                             6.520000e+02
         Age
                             3.700000e+01
         Tenure
                             5.000000e+00
         Balance
                             9.719854e+04
         NumOfProducts
                            1.000000e+00
         HasCrCard
                            1.000000e+00
         IsActiveMember
                            1.000000e+00
         EstimatedSalary
                            1.001939e+05
                            0.000000e+00
         Exited
         dtype: float64
```

In [19]: #mode d.mode() Out[19]: RowNumber Customerld Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSala 0 24924 15565701 Smith 850.0 France Male 37.0 2.0 0.0 1.0 1.0 1.0 1 2 15565706 NaN N 2 3 15565714 NaN N 3 4 15565779 NaN Ν 4 5 15565796 NaN N 9995 9996 15815628 NaN N 9996 9997 15815645 NaN N 9997 15815656 NaN NaN NaN NaN NaN NaN 9998 NaN NaN NaN NaN N 9998 9999 15815660 NaN N 9999 10000 15815690 NaN 10000 rows × 14 columns In [20]: d.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 14 columns): # Column Non-Null Count Dtype 0 RowNumber 10000 non-null int64 1 CustomerId 10000 non-null int64 2 Surname 10000 non-null object 3 CreditScore 10000 non-null 4 10000 non-null object Geography 5 Gender 10000 non-null object 6 Age 10000 non-null int64 7 Tenure 10000 non-null int64 10000 non-null 8 Balance float64 NumOfProducts 10000 non-null 10 10000 non-null HasCrCard int64 11 IsActiveMember 10000 non-null 12 EstimatedSalary 10000 non-null float64 13 Exited 10000 non-null int64 dtypes: float64(2), int64(9), object(3)
memory usage: 1.1+ MB

In [21]: d.shape

Out[21]: (10000, 14)

```
In [22]: #kurtosis
         d.kurt()
Out[22]: RowNumber
                           -1.200000
         CustomerId
                           -1.196113
         CreditScore
                           -0.425726
                            1.395347
         Age
         Tenure
                           -1.165225
         Balance
                           -1.489412
         NumOfProducts
                            0.582981
         HasCrCard
                           -1.186973
         IsActiveMember
                           -1.996747
         EstimatedSalary
                           -1.181518
         Exited
                            0.165671
         dtype: float64
In [23]: #skewness
         d.skew()
Out[23]: RowNumber
                            0.000000
         CustomerId
                            0.001149
         CreditScore
                           -0.071607
         Age
                            1.011320
         Tenure
                            0.010991
         Balance
                           -0.141109
         NumOfProducts
                            0.745568
         HasCrCard
                           -0.901812
         IsActiveMember
                           -0.060437
         EstimatedSalary
                            0.002085
                            1.471611
         dtype: float64
In [24]: #standard deviation
         d.std()
Out[24]: RowNumber
                             2886.895680
         CustomerId
                            71936.186123
         CreditScore
                               96.653299
         Age
                               10.487806
         Tenure
                                2.892174
         Balance
                            62397.405202
         NumOfProducts
                                0.581654
         HasCrCard
                                0.455840
         IsActiveMember
                                0.499797
                            57510.492818
         EstimatedSalary
         Exited
                                0.402769
         dtype: float64
In [25]: #variance
         d.var()
Out[25]: RowNumber
                            8.334167e+06
         CustomerId
                            5.174815e+09
         CreditScore
                            9.341860e+03
         Age
                            1.099941e+02
         Tenure
                            8.364673e+00
                            3.893436e+09
         Balance
         NumOfProducts
                            3.383218e-01
                            2.077905e-01
         HasCrCard
         IsActiveMember
                            2.497970e-01
         EstimatedSalary
                            3.307457e+09
         Exited
                            1.622225e-01
         dtype: float64
```

```
In [26]: #statistical analysis
          d.describe()
Out[26]:
                 RowNumber
                             CustomerId
                                         CreditScore
                                                                     Tenure
                                                                                 Balance NumOfProducts
                                                                                                        HasCrCard IsActiveMember Estimated Salary
                                                           Age
          count 10000.00000 1.000000e+04 10000.000000 10000.000000 10000.000000 10000.000000
                                                                                            10000.000000 10000.00000
                                                                                                                     10000.000000
                                                                                                                                   10000.000000 1
                5000.50000 1.569094e+07
                                         650.528800
                                                       38.921800
                                                                    5.012800 76485.889288
                                                                                               1.530200
                                                                                                           0.70550
                                                                                                                        0.515100
                                                                                                                                  100090.239881
           mean
            std 2888.89568 7.193619e+04 96.653299 10.487806 2.892174 62397.405202
                                                                                             0.581654
                                                                                                        0.45584
                                                                                                                      0.499797 57510.492818
            min
                   1.00000 1.556570e+07 350.000000
                                                      18.000000
                                                                    0.000000
                                                                                 0.000000
                                                                                               1.000000
                                                                                                           0.00000
                                                                                                                        0.000000
                                                                                                                                     11.580000
                                                                 3.000000
                                                                                            1.000000
                                                                                                                     0.000000
                                                                                                                                  51002.110000
           25% 2500.75000 1.562853e+07 584.000000 32.000000
                                                                                0.000000
                                                                                                        0.00000
                5000.50000 1.569074e+07
                                                                   5.000000 97198.540000
                                                                                                                                   100193.915000
                                         652.000000
                                                      37.000000
                                                                                               1.000000
                                                                                                           1.00000
                                                                                                                         1.000000
           75%
                 7500.25000 1.575323e+07
                                         718.000000
                                                      44.000000
                                                                   7.000000 127644.240000
                                                                                               2.000000
                                                                                                           1.00000
                                                                                                                        1.000000
                                                                                                                                   149388.247500
            max 10000.00000 1.581569e+07
                                         850.000000
                                                       92.000000
                                                                   10.000000 250898.090000
                                                                                               4.000000
                                                                                                           1.00000
                                                                                                                         1.000000
                                                                                                                                   199992 480000
In [27]: #finding unique values for columns
          d['Gender'].unique()
Out[27]: array(['Female', 'Male'], dtype=object)
In [28]: d['Geography'].unique()
Out[28]: array(['France', 'Spain', 'Germany'], dtype=object)
In [29]: quantile= d['Age'].quantile(q=[0.75, 0.25])
          duantile
Out[29]: 0.75
                  44.0
          0.25
                  32.0
         Name: Age, dtype: float64
```

5. Handle the Missing values.

In [30]:	#finding missing values
	d.isna()
Out[30]:	

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Sa
0	False	False	False	False	False	False	False	False	False	False	False	False	F
1	False	False	False	False	False	False	False	False	False	False	False	False	Fi
2	False	False	False	False	False	False	False	False	False	False	False	False	F
3	False	False	False	False	False	False	False	False	False	False	False	False	Fi
4	False	False	False	False	False	False	False	False	False	False	False	False	F
9995	False	False	False	False	False	False	False	False	False	False	False	False	F
9996	False	False	False	False	False	False	False	False	False	False	False	False	Fi
9997	False	False	False	False	False	False	False	False	False	False	False	False	F
9998	False	False	False	False	False	False	False	False	False	False	False	False	F
9999	False	False	False	False	False	False	False	False	False	False	False	False	F

10000 rows × 14 columns


```
In [31]: d.isna().any()
Out[31]: RowNumber
                         False
        CustomerId
                          False
        Surname
                         False
        CreditScore
                          False
                         False
        Geography
        Gender
                         False
        Age
                          False
        Tenure
                         False
        Balance
                         False
        NumOfProducts
                         False
        HasCrCard
                         False
        IsActiveMember
                         False
        EstimatedSalary
                         False
        Exited
                          False
        dtype: bool
In [32]: d.isna().sum()
Out[32]: RowNumber
        CustomerId
        Surname
                          Я
        CreditScore
                          0
        Geography
                         0
        Gender
                          0
        Age
                          0
        Tenure
                         9
        Balance
        NumOfProducts
                         8
        HasCrCard
                         0
        IsActiveMember
        EstimatedSalary
                          0
        Exited
                          0
        dtype: int64
In [33]: d.isna().any().sum()
Out[33]: 0
In [34]: #no missing values
```

6. Find the outliers and replace the outliers

```
In [35]: #finding outliers
sns.boxplot(d['Age'])
```

Out[35]: <AxesSubplot:xlabel='Age'>

In [36]: #handling outliers
 qnt=d.quantile(q=[0.25,0.75])
 qnt

Out[36]:

	Rownumber	Customena	Creditscore	Age	renure	Balance	Numorroducts	Hascrcard	ISACtivemeniber	Estimated salary	Exited
0.25	2500.75	15628528.25	584.0	32.0	3.0	0.00	1.0	0.0	0.0	51002.1100	0.0
0.75	7500.25	15753233.75	718.0	44.0	7.0	127644.24	2.0	1.0	1.0	149388.2475	0.0

In [37]: iqr=qnt.loc[0.75]-qnt.loc[0.25]
iqr
Out[37]: RowNumber 4999.5000

CustomerId 124705.5000 134.0000 CreditScore Age 12.0000 Tenure 4.0000 127644.2400 Balance NumOfProducts 1.0000 1.0000 HasCrCard IsActiveMember 1.0000 EstimatedSalary 98386.1375 Exited 0.0000 dtype: float64

In [38]: lower=qnt.loc[0.25]-(1.5*iqr) lower

Out[38]: RowNumber -4.998500e+03 CustomerId 1.544147e+07 CreditScore 3.830000e+02 1.400000e+01 Age Tenure -3.000000e+00 Balance -1.914664e+05 NumOfProducts -5.000000e-01 -1.500000e+00 HasCrCard IsActiveMember -1.500000e+00 ${\sf EstimatedSalary}$ -9.657710e+04 0.000000e+00 Exited dtype: float64

```
1.499950e+04
1.594029e+07
9.190000e+02
Out[39]: RowNumber
          CustomerId
          CreditScore
                             6.200000e+01
          Age
          Tenure
                             1.300000e+01
          Balance
                              3.191106e+05
                            3.500000e+00
          NumOfProducts
          HasCrCard
                             2.500000e+00
          IsActiveMember
                              2.500000e+00
          EstimatedSalary 2.969675e+05
                              0.000000e+00
          Exited
          dtype: float64
In [40]: #replacing outliers
          d['Age']=np.where(d['Age']>57,39,d['Age'])
sns.boxplot(d['Age'])
```

Out[40]: <AxesSubplot:xlabel='Age'>

In [39]: upper=qnt.loc[0.75]+(1.5*iqr)

upper

7. Check for Categorical columns and perform encoding.

```
In [41]: #checking for categorical columns
          d.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 10000 entries, 0 to 9999
         Data columns (total 14 columns):
           # Column
                              Non-Null Count Dtype
          0 RowNumber 10000 non-null int64
1 CustomerId 10000 non-null int64
                               10000 non-null object
           2 Surname
           3 CreditScore 10000 non-null int64
4 Geography 10000 non-null object
5 Gender 10000 non-null object
           6 Age
7 Tenure
                               10000 non-null int64
10000 non-null int64
           8 Balance
                                 10000 non-null float64
              NumOfProducts 10000 non-null int64
HasCrCard 10000 non-null int64
           10 HasCrCard
          11 IsActiveMember 10000 non-null int64
12 EstimatedSalary 10000 non-null float64
          13 Exited
                                 10000 non-null int64
          dtypes: float64(2), int64(9), object(3)
          memory usage: 1.1+ MB
In [42]: d['Geography'].unique()
Out[42]: array(['France', 'Spain', 'Germany'], dtype=object)
In [43]: d['Gender'].unique()
Out[43]: array(['Female', 'Male'], dtype=object)
In [44]: d['Surname'].unique()
```

In [45]: #one hot encoding

d['Gender'].replace({'Male':1,'Female':0},inplace=True)
d

Out[45]:

		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedS
	0	1	15634602	Hargrave	619	France	0	42	2	0.00	1	1	1	1013
	1	2	15647311	Hill	608	Spain	0	41	1	83807.86	1	0	1	1125
	2	3	15619304	Onio	502	France	0	42	8	159660.80	3	1	0	1139
	3	4	15701354	Boni	699	France	0	39	1	0.00	2	0	0	938:
	4	5	15737888	Mitchell	850	Spain	0	43	2	125510.82	1	1	1	790
			***								•••		•••	
99	95	9996	15606229	Obijiaku	771	France	1	39	5	0.00	2	1	0	962
99	96	9997	15569892	Johnstone	516	France	1	35	10	57369.61	1	1	1	1016
99	97	9998	15584532	Liu	709	France	0	36	7	0.00	1	0	1	420
99	98	9999	15682355	Sabbatini	772	Germany	1	42	3	75075.31	2	1	0	928
99	99	10000	15628319	Walker	792	France	0	28	4	130142.79	1	1	0	381

10000 rows × 14 columns

In [46]: #using dummy variables to encode

d=pd.get_dummies(d,columns=['Geography'])

Out[46]:

	RowNumber	CustomerId	Surname	CreditScore	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	Hargrave	619	0	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	Hill	608	0	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	Onio	502	0	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	Boni	699	0	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	Mitchell	850	0	43	2	125510.82	1	1	1	79084.10	0
9995	9996	15606229	Obijiaku	771	1	39	5	0.00	2	1	0	96270.64	0
9996	9997	15569892	Johnstone	516	1	35	10	57369.61	1	1	1	101699.77	0
9997	9998	15584532	Liu	709	0	36	7	0.00	1	0	1	42085.58	1
9998	9999	15682355	Sabbatini	772	1	42	3	75075.31	2	1	0	92888.52	1
9999	10000	15628319	Walker	792	0	28	4	130142.79	1	1	0	38190.78	0
3 4 9995 9996 9997 9998	4 5 9996 9997 9998	15701354 15737888 15606229 15569892 15584532 15682355	Boni Mitchell Obijiaku Johnstone Liu Sabbatini	699 850 771 516 709 772	0 0 1 1 0	39 43 39 35 36 42	1 2 5 10 7 3	0.00 125510.82 0.00 57369.61 0.00 75075.31	2 1 2 1 1	1 1 1 0	0 1 0 1 1	93826.63 79084.10 96270.64 101699.77 42085.58 92888.52	

10000 rows × 16 columns

In [47]: d=pd.get_dummies(d,columns=['Surname']) Out[47]: RowNumber Customerld CreditScore Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember ... Surname_Zinachukwudi Surna 83807.86 1 ... 159660.80 0.00 2 125510.82 0 ... 0.00 57369.61 1 ... 0.00 75075.31 0 ... 4 130142.79 10000 rows × 2947 columns

8. Split the data into dependent and independent variables.


```
In [50]: y
Out[50]: array([619, 608, 502, ..., 709, 772, 792], dtype=int64)
In [51]: x=d.drop(columns= ['EstimatedSalary']).values
         y=d['EstimatedSalary'].values
         х
Out[51]: array([[1.0000000e+00, 1.5634602e+07, 6.1900000e+02, ..., 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00],
                [2.0000000e+00, 1.5647311e+07, 6.0800000e+02, ..., 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00],
                [3.0000000e+00, 1.5619304e+07, 5.0200000e+02, ..., 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00],
                [9.9980000e+03, 1.5584532e+07, 7.0900000e+02, ..., 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00],
                [9.9990000e+03, 1.5682355e+07, 7.7200000e+02, ..., 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00],
                [1.0000000e+04, 1.5628319e+07, 7.9200000e+02, ..., 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00]])
In [52]: y
Out[52]: array([101348.88, 112542.58, 113931.57, ..., 42085.58, 92888.52,
                 38190.78])
```

9. Scale the independent variables

10. Split the data into training and testing

```
In [57]: from sklearn.model_selection import train_test_split
In [58]: #spliting data to train and test
    x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.2)
    print(x_train.shape, x_test.shape)

(8000, 2946) (2000, 2946)
```