Introduction to primer design concepts and tools

"Arboviral Genomic Surveillance in a Climate evolving world" Next Generation Sequencing (NGS) workshop Duke-NUS Medical School

Singapore

Presented by: Dr. Chanditha Hapuarachchi

03 Jul 2024

Next Generation Sequencing for genomic surveillance

Amplicon sequencing

Amplicon sequencing is a type of targeted next generation sequencing that uses multiplex PCR to create DNA sequences called amplicons

Advantages

- Fast turnaround time
- Low sequencing costs
- Low DNA input requirements up to 50-100 genome copies per reaction
- Supports multiplexing of multiple samples in a single sequencing reaction
- Amenable to a wide range of experimental designs, such as complete genome sequencing, allelic variant identification, marker gene sequencing for microbiome studies etc.

A successful PCR relies on well-designed primers

What makes a good primer?

High priming efficiency	High specificity
No homo/hetero dimers, esp. at 3' end (prevent self-extension)	Long enough and reasonably high melting temperature (T _m)
No hairpin stems esp. at 3' end (prevent self-priming)	Uniqueness of the sequence
No repetitive sequences & mismatches esp. at 3' end	Moderately stable 3' end

Characteristics of a "good" primer

Requirement	Feature
High priming efficiency	Approximate T _m values (±5°C between F & R)
	Equal proportions of A/Ts & G/Cs (50% ±5-10%)
	Includes G/Cs at the 3' end
	Lack of long repeats & runs- no more than 4 repeats & 3 bp runs
	Lack of duplexes and structures
High specificity	Length 18-22 bp
	Unique sequence esp. at 3' end but with moderate stability (ideally no more than 2 Gs or Cs in last 5 bases)

Other considerations

- Avoid regions with high secondary structures (hairpins) & GC islands
- Try to have the lowest level of degeneracy, if degenerate bases are needed

For difficult to amplify regions

- Select primers with high T_m and GC content (than usual)
- Add solvents/additives such as DMSO
- Increase primer concentration, but not more than 1 µmol (to avoid nonspecific primer-primer amplifications)

Designing probes

- Do not put Gs at the 5' end
- Keep the size of PCR product or amplicon to 50 150 bp. Shorter amplicons work most efficiently
- Probe should ideally be close to one of the primers without overlapping

Post-design analysis

OligoAnalyzer

Structures

structure	Image	ΔG (kcal.mole ⁻¹)	T _m (°C)	ΔH (kcal.mole ⁻¹)	ΔS (cal.K ⁻¹ mole ⁻¹)	Output
1	φÇ)-	-0.04	25.5	-21.9	-73.33	Ct Det
2	ď.	0.02	24.6	-14.7	-49.38	Ct Det
3	Ö	0.41	17.7	-16.5	-56.73	Ct Det

Homo-Dimer Analysis

The delta G is calculated by taking into account the longest stretch of complementary bases. These pairs of complementary bases are represented by a solid line. Dotted lines represent additional complementary bases for that dimer structure, but heir presence does not impact calculated delta G values. Actual delta G values may vary based on presence of additional complementary bases. The Maximum Delta G value refers to the free energy of the oligo sequence binding to its perfect complement.

Dimer Sequence: 5'-TACAACATGATGGGGAARAGAGARAA -3' Maximum Delta G: -46.01 kcal/mole

Delta G: -5.38 kcal/mole Base Pairs: 4 5' TACAACATGATGGGGAARAGAGARAA :: |||| :: 3' AARAGAGARAAGGGGTAGTACAACAT

Hetero-Dimer Analysis

The delta G is calculated by taking into account the longest stretch of complementary bases. These pairs of complementary bases are represented by a solid line. Dotted lines represent additional complementary bases for that dimer structure, but their presence does not impact calculated delta G values. Actual delta G values may vary based on presence of additional complementary bases. The Maximum Delta G value refers to the free energy of the oligo sequence binding to its perfect complement.

Primary Sequence: 5'- TACAACATGATGGGGAARAGAGARAA -3' Secondary Sequence: 5'- GTGTCCCAGCCGCGTGTCATCGC -3'

Maximum Delta G: -50.44 kcal/mole

Delta G: -8.09 kcal/mole Base Pairs: 4

5' TACAACATGATGGGGAARAGAGARAA

::: : !||| :

3' CGCTACTGTGCGCCGACCCTGTG

Primer designing for amplicon sequencing

- 'Primal Scheme' primer design tool (https://primalscheme.com/)
- Multiplex primer sets that are divided into two pools (pool 1 & 2)
- User-defined fragment length (default 400 bp; 200-2000 bp)
- Overlapping fragments tiling along the genome with overlapping regions (default 75 bp)
- High annealing temperature that is high enough to perform 2-step PCR (65-68°C)

Quick J et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat Protoc. 2017 Jun;12(6):1261-1276.

Example panels

1. DENV (Nathan Grubaugh)
https://www.protocols.io/view/dengueseq-a-pan-serotype-whole-genome-amplicon-seq-kqdg39xxeg25/v2?version_warning=no

2. ZIKV & CHIKV

Quick J et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat Protoc. 2017 Jun;12(6):1261-1276.

Primalscheme: Primer designing workflow

Design requirement - research question, target region etc

- FASTA format (>xx)
- Sequences of almost equal length
- Reference sequence at the top
- Sequence divergence <=5%
- No redundancy (>1% distance)

Panel design

- Determine the amplicon length
- Use High-GC mode if appropriate

- BED file Provides primer coordinates
- TSV file Provides primer sequences
- PDF file tiling plot

Output

Alignment

Primalscheme: Primer designing output files

BED file – Provides primer coordinates

AY618991(country	39	61	DENV-4_Revised_1_LEFT	1	+
AY618991(country	518	541	DENV-4_Revised_1_RIGHT	1	-
AY618991(country	444	466	DENV-4_Revised_2_LEFT	2	+
AY618991(country	904	926	DENV-4_Revised_2_RIGHT	2	-
AY618991(country	831	852	DENV-4_Revised_3_LEFT	1	+
AY618991(country	1312	1334	DENV-4_Revised_3_RIGHT	1	-

TSV file – Provides primer sequences

name	pool	seq	size	%gc	tm (use 65)
DENV-4_Revised_1_LEFT	1	ATGCTGAAACGCGAGAGAAACC	22	50	61.93
DENV-4_Revised_1_RIGHT	1	ACCAGCAATCAATGTCTTCAGGT	23	43.48	60.76
DENV-4_Revised_2_LEFT	2	CTTATTGCCATGGACCTGGGTG	22	54.55	61.46
DENV-4_Revised_2_RIGHT	2	CATCCTCCATGTTCTAGCACCA	22	50	60.01
DENV-4_Revised_3_LEFT	1	TACGGAATGCGATGCGTAGGA	21	52.38	61.79
DENV-4_Revised_3_RIGHT	1	GGGGTTATCGTAGCTGTCACTC	22	54.55	60.4

PDF file – tiling plot

Amplicon sequencing: Primer designing considerations

- Selection of sequences: to represent the true diversity of the pathogen/genomic region of interest
- No. of panels: based on the level of genetic divergence
- Quality of nucleic acids: Short amplicons for degraded samples

High variant diversity within a single clade of DENV-2

Dengue virus diversity cascade: Ideally needs panels to represent each genotype

Primer panels do not always generate ideal results!!

Drop-out regions

Design limitations

Amplicon sequencing: Primer designing troubleshooting

Improving the primers in drop-out regions

- Map the primers to determine the likely reason of their failure
 - Modify the primer if possible, while maintaining the same Tm
 - Choose a replacement primer from another panel
 - Redesign the panel using a different reference dataset
- If fails, fill-in gaps using Sanger sequencing

Our Environment

Safeguard • Nurture • Cherish

