机器学习第二次作业 ——决策树

2052902 韩意

一、 问题描述

试用 Python 编程实现基于 C4.5 决策树算法来进行最优划分属性选择的决策 树,并为表 4.3 西瓜数据集 3.0 中去掉"密度属性和编号为 9 的西瓜"以后的数据生成一棵决策树。

衣 4.3 四瓜级桩果 3.0									
编号	色泽	根蒂	敲声	纹理	脐部	触感	密度	含糖率	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	0.697	0.460	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	0.774	0.376	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	0.634	0.264	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	0.608	0.318	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	0.556	0.215	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	0.403	0.237	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	0.481	0.149	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	0.437	0.211	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	0.666	0.091	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	0.243	0.267	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	0.245	0.057	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	0.343	0.099	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	0.639	0.161	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	0.657	0.198	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	0.360	0.370	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	0.593	0.042	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	0.719	0.103	否

表 4.3 西瓜粉据集 3.0

二、 算法实现

本题使用 Python 实现,用到的库包括 Pandas,NumPy 和 Matplotlib,其中 Pandas 用于数据存储,Numpy 用于数据处理,Matplotlib 用于决策树的绘制。

分析题意可知数据包括离散(categorical)和连续(numerical)两种类型,与 sklearn 的输入要求不同,这里为了能够直接对字符串这样的离散特征进行处理,

选择 pandas 来存储这一表格,由于 pandas 有强大的数据处理 API,这样也便于后续决策树的计算生成。

代码中将决策树算法模型实现为了一个类,便于统一的管理与封装。其中,存储决策树的数据结构通过 Python 字典的嵌套结构实现,最终形成的决策树字典如下:

这样可以在可视化前较清晰地查看决策树的层次结构。

注意在使用决策树算法时,连续属性可以重复使用,而离散属性不能再使用,这一点通过 pandas 中 DataFrame 的 drop 方法实现。

C4.5 算法使用信息增益率准则,对可取值数目较少的属性有所偏好,可以看到根结点选择的是连续属性,正是因为连续属性离散化时,可取值数目仅为 2(小于等于和大于两种)。

经测试,该决策树对原始数据集的预测准确率为100%。

决策树的绘制基于 plt.annotate()函数实现,最终得到的决策树绘制如下,其中叶子结点的颜色稍深,以示区分:

