Rozšíření řídicího systému modelu letadla Skydog o podporu vzdáleného a samočinného řízení Android aplikací

Michal Boček

Vedoucí práce: Ing. Josef Strnadel, Ph.D.

Cíle práce

- Android aplikace pro vzdálené řízení modelu letadla
- Automatické vyhýbání se letadla překážkám
- Návrat letadla do oblasti se signálem

Model letadla

Skydog model fy Honeywell Aerospace - nedostupný **Skywalker** náhradní model použitý pro letové testy

Autopilot

Open-source platforma ArduPilot Mega (**APM**) vycházející z platformy Arduino

Bezdrátové spojení

2x radio modul 433 MHz

1,6 km & 250 kb/s

USB kabel

MAVLink protokol

Pro přenos parametrů potřebných pro řízení letu

Vzdálené řízení letadla

Mód Waypoint Follower

- 1. Uživatel vytyčí traťové body
- 2. Po aktivaci módu letadlo traťové body oblétává
 - 3. Vyhýbá se překážkám dle příkazů aplikace

Protisrážkový systém módu Waypoint Follower

Vzdálené řízení letadla

Mód Flight Director

- 1. Uživatel nastaví kurz, výšku, rychlost a vertikální rychlost
- 2. Po aktivaci módu letadlo dosáhne nastavených letových údajů a následně je udržuje
 - 3. Vyhýbá se překážkám dle příkazů aplikace

Udržování nastavených údajů

- Autopilotu jsou odeslány dva traťové body P a D směřující k dosažení nastavených letových údajů
- Jakmile letadlo dosáhne bodu P, jsou autopilotu odeslány další dva body P a D
 - 3. Bod 2 se opakuje do vypnutí módu Flight Director

Protisrážkový systém módu Flight Director

Reprezentace překážek

Model terénu NASA

GeoTIFF

Databáze překážek

XML

```
<?xml version="1.0" encoding="utf-8"?>
<obstacles>
    <obstacle>
        <coords>
            49.207568, 16.604625
            49.209018, 16.609067
            49.205009, 16.613187
            49.204224, 16.606578
        </coords>
        <elevation>400</elevation>
    </obstacle>
    <obstacle>
        <coords>
            49.237868, 16.557241
            49.237868, 16.557241
            49.237868, 16.557241
        </coords>
        <elevation>500</elevation>
    </obstacle>
</obstacles>
```

Detekce překážky

Vzdálenost pro kontrolu v nastavení aplikace

12 / 17

Algoritmus vyhnutí

- Rapidly-exploring random tree (RRT)
- Hledá cestu k cíli budováním binárního stromu
- Uzel stromu = souřadnice v prostoru
- Souřadnice jsou generovány v prostoru náhodně

Vyhledávací prostor

- Vyhledávací prostor ... modrá plocha
- Pozice letadla ... I

Návrat letadla do oblasti se signálem

- Autopilot APM umožňuje letový režim "Return To Launch" (RTL) – návrat letadla nad místo vzletu
- Výchozí spouštěcí akce: 20 vteřin ztracený signál
- Android aplikace: ztracený signál po dobu poloviny času ke kontrole překážky (jednotky sekund)

15 / 17

Ověření v praxi

- Ověřeno při letových testech:
 - Mód Waypoint Follower
 - o Přepnutí do režimu RTL 🗸
- Neověřeno při letových testech:
 - Mód Flight Director X

Simulace letových údajů

- Implementováno pro ověření módu Flight Director
- Simulace pozice, rychlosti, výšky letadla
- Směr letadla určován otáčením desky APM (magnetometr)

17 / 17

Děkuji za pozornost Prosím, Vaše dotazy

Michal Boček xbocek02@stud.fit.vutbr.cz

Otázky oponenta

Parafrázováno:

- 1. Vhodnou formou přibližte celkový rozsah Vašich implementačních aktivit. Z technické zprávy na to nemám jednoznačný názor.
- 2. Jaké vlastní modifikace algoritmu RRT jste navrhnul a realizoval?

Vývoj aplikace

Úkol	Odhadovaný čas [%]
Struktura aplikace / uživatelské rozhraní	35
Přijetí a zpracování údajů od autopilota	15
Flight Director / Waypoint Follower	15
Reprezentace překážek	10
Algoritmus vyhnutí	10
Testování / letové testy	5

Odhadovaný čas: 500 normohodin

SLOC: 7000 (Java), 1000 (XML)

Modifikace RRT 1.

- Ne všechny body v prostoru při budování stromu jsou generovány náhodně
- S pravděpodobností 30 % jsou generovány body co nejblíže k cíli
- Následek: rychlejší růst stromu směrem k cíli

Modifikace RRT 2.

Optimalizace nalezené bezkolizní trati letu:

Odstranění zbytečných traťových bodů

