SPRAWOZDANIE Z LABORATORIUM LOGIKI UKŁADÓW CYFROWYCH								
Numer ćwiczenia 203 Temat ćwiczenia Układy sekwencyjne								
Numer grupy	5	Termin zajęć	03.11.2016, 7:30					
Skład grupy			Prowadzący	Ocena				
Sebastian Korniewicz, 226183			Man int Antoni Ctorno					
Bartosz F	Rodziew	icz, 226105	Mgr inż. Antoni Sterna					

1. Cel ćwiczenia

Celem ćwiczenia jest zapoznanie się z podstawowymi elementami sekwencyjnych – przerzutnikami – układów logicznych oraz metodami syntezy złożonych układów sekwencyjnych – rejestrów, układów licznikowych i sumatorów szeregowych.

2. Przebieg ćwiczenia

Licznik synchroniczny rewersyjny: 6,4,2,0,7,5,3,1,6,4,...
 Do stworzenia tego licznika potrzebowaliśmy 3 przerzutników JK (2,1,0) i jednego wejścia dodatkowego na wybór kierunku zliczania P. Poniżej w tabelce znajduje się tabela prawdy do tego układu:

Р		t			t+1			V	,	V		V
P	Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	J ₂	K ₂	J ₁	K ₁	J ₀	K ₀
0	0	0	0	1	1	1	1	-	1	-	1	-
0	0	0	1	1	1	0	1	1	1	ı	ı	1
0	0	1	0	0	0	0	0	ı	ı	1	0	-
0	0	1	1	0	0	1	0	-	-	1	-	0
0	1	0	0	0	1	0	-	1	1	1	0	-
0	1	0	1	0	1	1	ı	1	1	ı	ı	0
0	1	1	0	1	0	0	ı	0	ı	1	0	-
0	1	1	1	1	0	1	-	0	-	1	-	0
1	0	0	0	0	1	0	0	-	1	-	0	-
1	0	0	1	0	1	1	0	-	1	-	ı	0
1	0	1	0	1	0	0	1	1	ı	1	0	-
1	0	1	1	1	0	1	1	1	ı	1	ı	0
1	1	0	0	1	1	0	ı	0	1	ı	0	-
1	1	0	1	1	1	1	ı	0	1	ı	•	0
1	1	1	0	0	0	1	ı	1	ı	1	1	-
1	1	1	1	0	0	0	ı	1	-	1	-	1

Potem tą tabelkę prawdy zminimalizowaliśmy używając metody Karnaugh z czego powstały tabelki poniżej:

						1/			
	J ₂		1			K ₂		1	
Q_1,Q_0	00	01	11	10	Q_1,Q_0	00	01	11	10
P,Q_2					P,Q_2				
00	1	1	0	0	00	-	-	-	-
01	-	-	-	-	01	. 1	1	0	0
11	-	-		-	11	0	0	1	1
10	0	0	.1.	1.	10	-	-	•	
J_1					K ₁				
Q_1,Q_0		01			Q_1,Q_0	00	01	11	10
P,Q ₂	00		11	10	P,Q ₂				
00	1	1	-	-	00	-	-	1	1
01	1	1	-	-	01	-	-	1	1
11	1	1	-	-	11	-	-	1	1
10	•.1	1			10	•	.	1	1.
	J_0					K ₀			
Q ₁ ,Q ₀	00	01	11	10	Q_1,Q_0	00	01	11	10
P,Q ₂					P,Q ₂				
00	1		-	0	00		1	0	-
01	0	-	_	0	01	-	0	0	_
11	0	-		1	11	-	0	1	
10	0	-	-	0	10	-	0	0	-

Z tego otrzymaliśmy następujące równania, które przekształciliśmy aby móc wykonać na dostępnych w pracowni bramkach:

$$J_{2} = \overline{P} \ \overline{Q_{1}} + P \ Q_{1} = \overline{(\overline{P} \ \overline{Q_{1}})} \ \overline{(P \ Q_{1})}$$

$$K_{2} = \overline{P} \ \overline{Q_{1}} + P \ Q_{1} = \overline{(\overline{P} \ \overline{Q_{1}})} \ \overline{(P \ Q_{1})} \ \overline{(P \ Q_{1})}$$

$$J_{1} = 1$$

$$K_{1} = 1$$

$$J_{0} = \overline{P} \ \overline{Q_{2}} \ \overline{Q_{1}} + P \ Q_{2} \ Q_{1} = \overline{(\overline{P} \ \overline{Q_{2}} \ \overline{Q_{1}})} \ \overline{(P \ Q_{2} \ Q_{1})} \ \overline{(P \ Q_{2} \ Q_{1})}$$

$$K_{0} = \overline{P} \ \overline{Q_{2}} \ \overline{Q_{1}} + P \ Q_{2} \ Q_{1} = \overline{(\overline{P} \ \overline{Q_{2}} \ \overline{Q_{1}})} \ \overline{(P \ Q_{2} \ Q_{1})} \ \overline{(P \ Q_{2} \ Q_{1})}$$

I tutaj jest schemat:

Układ podłączyliśmy i działał poprawnie.

2. Licznik asynchroniczny modulo 9/13

Schemat do tego układu powstał poprzez łączenie kabelków w symulatorze. Wyszliśmy od schematu zwykłego licznika asynchronicznego 0-15 i zaczęliśmy projektować układ resetujący. Do reseta podłączyliśmy bramkę OR do które planowaliśmy podłączyć małe układy, których zadaniem było wykrycie odpowiedniego stanu (odpowiednio 9 i 13) oraz zadziałanie gdy była odpowiednia wartość na przełączniku.

Pierwszy układ to był zwykły AND podpięty do stanu pierwszego i ostatniego przerzutnika (stan 9) i przełącznika. Drugi układ był podpięty do przełącznika i stanów przerzutników pierwszego, drugiego i ostatniego. Łącząc te 3 małe układy ze sobą wykorzystaliśmy kilka negacji, tak aby wszystko pasowało.

Potem otrzymany układ zamieniliśmy na układ składający się z bramek dostępnych w pracowni i otrzymaliśmy taki o to schemat:

Jedynym mankamentem tego sposobu dojścia do rozwiązania było to, że nie zwróciliśmy uwagi na działanie tego układu resetującego w momencie przejściowym, które okazało się (niestety dopiero w pracowni) na niekonsekwentne.

Poprawnie schemat układu resetującego należało wyznaczyć z takiej oto tabelki prawdy:

Р	Q3	Q2	Q1	Q0	Υ
0	0	0	0	0	1
0	0	0	0	1	1
0	0	0	1	0	1
0	0	0	1	1	1
0	0	1	0	0	1
0	0	1	0	1	1
0	0	1	1	0	1
0	0	1	1	1	1
0	1	0	0	0	1
0	1	0	0	1	0

0	1	0	1	0	0
0	1	0	1	1	0
0	1	1	0	0	0
0	1	1	0	1	0
0	1	1	1	0	ı
0	1	1	1	1	ı
1	0	0	0	0	1
1	0	0	0	1	1
1	0	0	1	0	1
1	0	0	1	1	1
1	0	1	0	0	1
1	0	1	0	1	1
1	0	1	1	0	1
1	0	1	1	1	1
1	1	0	0	0	1
1	1	0	0	1	1
1	1	0	1	0	1
1	1	0	1	1	1
1	1	1	0	0	1
1	1	1	0	1	0
1	1	1	1	0	•
1	1	1	1	1	-

To minimalizujemy używając metody Karnaugh:

Q2,Q1,Q0	000	001	011	010	110	111	101	100
P,Q3								
00	1	1	1	_1_	_1_	_1_	_1_	_1
01	1	0	0	0	-	ı	0	0
11	Γ	1	1	1	-	ı	0	1
10	 ,	1	1	1	1	1	1	1

Z tej siatki otrzymujemy takie równanie, które przekształcamy do postaci pozwalającej podłączyć się w pracowni:

$$Y = \overline{Q_2} \, \overline{Q_1} \, \overline{Q_0} + \overline{Q_3} + P \overline{Q_1} \, \overline{Q_0} + P Q_2 = \overline{(\overline{\overline{Q_2}} \, \overline{Q_1} \, \overline{Q_0}) Q_3 + (\overline{P} \overline{Q_1} \, \overline{Q_0}) (\overline{PQ_2})}$$

I dostajemy następujący schemat:

W schemacie tym jest tylko jedna różnica od podanych wyżej równań – ostateczny NOT został zastąpiony przez NOR2 do którego podłączyliśmy przycisk pozwalający na ręczny reset licznika.

Schemat powyżej został przetestowany w symulatorze i działał (w tym również sprawdziliśmy konsekwencję w momencie przejściowym).

3. Wnioski

- Oba układy (drugi w błędnej wersji) zostały podłączone i działały tak jak powinny
- Układ należy wykonywać za pomocą tabeli prawdy, a nie łączenia kabelków na symulatorze