Deep Learning CS265 - Topics in Artificial Intelligence

January 31, 2018

Overview

Gradient Descent

Error Functions

Node Activation Functions

Back-Propagation

Gradient Descent

How do we find the minimum of a function?

Example

$$f(x) = x^4 + 3x^3 - 2x^2 - 20x$$

Derivative

$$f(x) = x^4 + 3x^3 - 2x^2 - 20x$$

$$f'(x) = 4x^3 + 9x^2 - 4x - 20$$

Properties of the derivative:

- ▶ Indicates if the function at x if increasing or decreasing
- ▶ When f(x) is at a minimum, the derivative is f'(x) = 0

Function and Derivative

How do we find the minimum

- 1. Start at a random location
- 2. If derivative is < 0 (red), then go right
- 3. If derivative is > 0 (green), then go left
- 4. If derivative is = 0, stop

Refined algorithm

- 1. Start at location x_0
- 2. Set
 - 2.1 iteration counter i = 0
 - 2.2 exit condition exit = False
 - 2.3 Error threshold θ
 - 2.4 Learning rate η
 - 2.5 Maximum number of iterations Max_{Iterations}
- 3. while exit is False
 - 3.1 Compute $f'(x_i)$
 - 3.2 Set $x_{i+1} = x_0 \eta \cdot f'(x_i)$
 - 3.3 If $||f'(x_i)|| < \theta$, set exit = True
 - 3.4 If $i > Max_{Iterations}$, set exit = True

Gradient descent steps

Gradient Descent in 2 dimensions

Now, we add one dimension $\mathbf{x} = (x_1, x_2)$

Gradient Descent

Extend the same algorithm to 2 dimensions

- Start at $\mathbf{x_0} = (x_0, x_1)_0$
- ▶ Compute the direction in which the function decreases
- ▶ Update $x_1 = x_0 + \eta \cdot f'(x_0)$

Gradient

What is $f'(x_0)$ for a multi-dimensional function?

Partial derivatives

$$abla f(\mathbf{x}) = \left(egin{array}{c} rac{\partial f(\mathbf{x})}{\partial x_1} \ rac{\partial f(\mathbf{x})}{\partial x_2} \ dots \ rac{\partial f(\mathbf{x})}{\partial x_n} \end{array}
ight)$$

Example: Rosenbrock Function

Function is given as

$$R_{a,b}(x,y) = (a-x)^2 + b(y-x^2)^2$$

usually a = 1, b = 100

Partial derivatives

$$R_{a,b}(x,y) = (a-x)^2 + b(y-x^2)^2$$

$$\frac{\partial}{\partial x} R_{a,b}(x,y) = -2a(1-x) - 4bx(y-x^2)$$

$$\frac{\partial}{\partial y} R_{a,b}(x,y) = 2b(y-x^2)$$

◆□▶◆圖▶◆臺▶◆臺▶ 臺 ∽9<

Gradient shows direction of largest increase

Gradient Descent Algorithm in n Dimensions

- 1. Set $\mathbf{x_0}$, θ , η , i = 0, $Max_{Iterations}$, exit = False
- 2. While exit is False
 - 2.1 set $\mathbf{x_{i+1}} = \mathbf{x_i} \eta \cdot \nabla f(\mathbf{x_i})$
 - 2.2 If $\|\nabla f(\mathbf{x_i})\| < \theta$, set exit = True
 - 2.3 If $i > Max_{Iterations}$, set exit = True

Gradient shows direction of largest increase

inNow we have a tool at our hands find local minima of a function (if the function can be differentiated).

How can we use this to train a neural network?

Consider a neural network with weights

$$x \rightarrow Wx \rightarrow h(Wx) \rightarrow W'h(Wx) \rightarrow o(W'h(Wx))$$

The neural network can be seen as a function with $w,\ w'$ as parameters

$$NN(w_{11}, w_{12}, w_{13}, \dots, w_{45}, w'_{11}, w'_{12}, \dots, w'_{52}; x)$$

Now, all the weights are parameters to a multidimensional function.

construct function E

$$E(w_{11}, w_{12}, w_{13}, \dots, w_{45}, w'_{11}, w'_{12}, \dots, w'_{52}; x, y)$$

Requirements:

- Weights as parameters
- Input value x
- Target output y
- Function E is differentiable
- ► The function value is minimal when an element is correctly classified

- E is called error function, or loss function
- Distance from the network output to the target output

$$E(w_{11}, \dots, w_{52}'; x, y) = d(y, NN(w_{11}, \dots, w_{52}', x))$$

- ▶ If we find the w that minimize E, the network output is closest to the target output
- Gradient Descent to find the values of w that minimize E

Some popular error functions

Quadratic loss function

Output layer activations

$$o_j(x) = NN(w_{11},\ldots,x)_j$$

- $o_j(x)$ is the value of node j in the output layer of the neural network
- Quadratic loss function is now

$$E_{QL}(w_{11},...; x,y) = \frac{1}{2} \sum_{j} (o_{j}(x) - y_{j})^{2}$$

- The square is positive
- Zero when the network output equals the target
- ▶ The further from the target, the larger the error
- Output can be anything

Some popular error functions

Cross entropy loss function

▶ Output layer activations $o_j(x)$ are normalized using softmax

$$s(o_j(x)) = \frac{\exp(o_j(x))}{\sum_k \exp(o_k(x))}$$

- Exponentiate each output and divide it by the sum of all output
 - strictly positive
 - bounded by 1
 - The sum of all node outputs is 1
- Thus, the output can be treated as a probability
- Cross entropy is a distance measure between probability distributions

Cross entropy

- ▶ The network output are now probabilities for classes.
- ▶ $s(o_j(x))$ indicates the probability that element x belongs to class C_j
- ▶ The true class is *C_i*, encoded as one-hot

$$y = (0, 0, \dots, 0, 1, 0, \dots, 0)$$

Cross entropy loss is now

$$L_{CE} = -\log \prod_{j} s(o_{j}(x))^{y_{j}} = -\sum_{j} \log (s(o_{j}(x))) \cdot y_{j}$$

Mathematically well founded

Cross Entropy

- ► The cross-entropy loss is basically never used directly
- Instead, consider softmax output layer and cross-entropy loss together
- Consider the derivative of the cross entropy loss wrt. to the input of the softmax layer

$$\frac{\partial}{\partial o_j(x)} L_{CE} = -\sum_j \frac{\partial}{\partial o_j(x)} \log (s(o_j(x))) \cdot y_j = -\sum_j y_j \frac{\partial}{\partial o_j(x)} \dots$$

$$= \dots \text{ (lines of boring math)}$$

$$= s(o_j(x)) - y_j$$

- Using softmax and cross entropy loss results makes the error gradient very simple:
 - ▶ The difference between the softmax output and the target

Usage hints:

- lacktriangle When target values should be unbounded ightarrow Quadratic Loss
- When target values represent a class probabilities (classification) → Cross Entropy Loss
- Other loss functions exist, but are less popular

Example Quadratic Loss

Estimate depth of each pixel in an image

Input Image

Coarse and refined output

target output

Example Cross Entropy Loss

Estimate class of each pixel in an image

Node Activation Functions

Let's look at a neural network in greater detail.

Network Overview

Non-Linear activation functions

Activation functions

- non-linear to make the network more powerful
- Need to be differentiable
- symmetric activation functions can be useful for some applications
- ► The derivative must be easy (runtime)

Binary Step Function

Activation:

$$bsf = \begin{cases} 1 & x > 0 \\ 0 & \text{otherwise} \end{cases}$$

Derivative:

$$bsf'(x) = 0$$

Min/Max:

[0:1]

Binary Step Function

Activation:

$$bsf = \begin{cases} 1 & x > 0 \\ 0 & \text{otherwise} \end{cases}$$

Derivative:

$$bsf'(x) = 0$$

Min/Max:

[0:1]

Logistic Sigmoid

Activation:

$$sig(x) = \frac{1}{1 + e^{-x}}$$

Derivative:

$$sig'(x) = rac{1}{1+e^x} - \left(rac{1}{1+e^x}
ight)^2$$

$$= sig(x) \cdot (1-sig(x))$$

Min/Max:

Tanh Function

Activation:

$$tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
$$= 2 \cdot sig(2x) - 1$$

Derivative:

$$tanh'(x) = 1 - tanh(x)^2$$

$$[-1:1]$$

Rectified Linear Unit

Activation:

$$ReLU(x) = \begin{cases} x & x > 0 \\ 0 & \text{otherwise} \end{cases}$$

Derivative:

$$ReLU'(x) = \begin{cases} 1 & x > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$[0:\infty]$$

Rectified Linear Unit 6

Activation:

$$ReLU(x) = \begin{cases} x & 0 < x < 6 \\ 0 & \text{otherwise} \end{cases}$$

Derivative:

$$ReLU'(x) = \begin{cases} 1 & 0 < x < 6 \\ 0 & \text{otherwise} \end{cases}$$

Leaky ReLU Function

Activation:

$$LReLU_{\alpha}(x) = \begin{cases} x & 0 < x \\ -\alpha x & \text{otherwise} \end{cases}$$

Derivative:

$$\mathsf{LReLU'}_{\alpha}(x) = \begin{cases} 1 & 0 < x \\ -\alpha & \mathsf{otherwise} \end{cases}$$

$$[-\infty:\infty]$$

Overview Activation Functions

Back-Propagation

How to compute $\frac{\partial}{\partial w} Error$ for each weight w in the network?

Applying a function: left to right

Derivative:

- ► Right to left
- Start with value 1
- Multiply all nodes along the way

Chaining 2 functions

Derivative:

- Start with value 1
- Multiply all nodes along the way

Basic rules of derivatives

Addition
$$\frac{\partial}{\partial x} (x+y) = 1$$
 Multiplication
$$\frac{\partial}{\partial x} xy = x$$

$$\frac{\partial}{\partial x} xy = x$$
 Composition
$$\frac{\partial}{\partial x} f (g(x)) = \frac{\partial}{\partial g(x)} f (g(x)) \frac{\partial}{\partial x} g(x)$$

$$(f (g(x)))' = f' (g(x)) g'(x)$$

A simple example:

A network with 2 inputs x, y two weights v, w and an activation function a to compute a(xw + vy)

A simple example:

A network with 2 inputs x, y two weights v, w and an activation function a to compute a(xw + vy)

A simple example:

A network with 2 inputs x, y two weights v, w and an activation function a to compute a(xw + vy)

Let x = 1, y = 3, w = -1, v = 2, $a = \tanh$, target output = 0

A simple example:

A network with 2 inputs x, y two weights v, w and an activation function a to compute a(xw + vy)

Let
$$x = 1$$
, $y = 3$, $w = -1$, $v = 2$, $a = \tanh$, target output $= 0$

$$(0.964 - 0)^2 = 0.9293$$

$$\frac{\partial}{\partial w}Error(x,y) = 0.262 \quad \frac{\partial}{\partial v}Error(x,y) = 0.1969$$

Back-propagation

A simple example:

A network with 2 inputs x, y two weights v, w and an activation function a to compute a(xw + vy)

Let
$$x = 1$$
, $y = 3$, $w = -1$, $v = 2$, $a = \tanh$, target output $= 0$

$$\frac{\partial}{\partial w} Error(x, y) = 0.262 \quad \frac{\partial}{\partial v} Error(x, y) = 0.1969$$

Following the gradient descent approach, and a learning rate of $\eta=0.1$, the new weights are

$$w' \leftarrow w - \eta \frac{\partial}{\partial w} Error(x, y) = -1 - 0.1 \cdot 0.262 = -1.0262$$

 $v' \leftarrow v - \eta \frac{\partial}{\partial v} Error(x, y) = 2 - 0.1 \cdot 0.197 = 1.98$

Back-propagation recap

The basic back-propagation steps are

- 1. Do the forward pass given a sample (x, y), i.e. evaluating
 - 1.1 the functions at each node
 - 1.2 the derivatives of the function at each node
- 2. Compute the error at the output layer E(x)
- 3. Feed the error value into the right side of the network
- 4. Compute the error gradient at each weight
 - ► The output activation of the node at the lower layer times the gradient at the input of the higher layer
- 5. Update the weights

$$w_{i+1} = w_i - \eta \frac{\partial}{\partial w} E(x)$$

Back-propagation strategies

Off-line Sum the gradients for each sample of the training set. Do one weight update after seeing the entire training set

On-line Perform the weight update after each forward-backward pass

Mini-batch Do the forward-backward pass for a small subset (usually up to a few hundred) before updating the weights.

Back-propagation strategies

Off-line

- ▶ (+) Robust against noise in the training set
- ► (-) Slow convergence

On-line

- ► (+) Faster convergence
- (-) Very sensitive to noise (outliers)
- ▶ (-) Not well suited to find the global minimum

Mini-batch

A good compromise between off-line and on-line

- ▶ (+) Faster than off-line learning
- ▶ (+) Better residual error than on-line learning
- ► (+) Suitable for parallelization (batch size can be tuned to architecture)

Training Strategies

Momentum

- Similarly to a ball rolling down a hill, a momentum parameter can be introduced to stabilize the gradient descent
- recall weight update

$$W_{i+1} = W_i - \eta \nabla E(x)$$

Now, with Momentum

$$V_{i+1} = \gamma V_i + \eta \nabla E(x)$$

$$W_{i+1} = W_i - V_i$$

- ▶ Momentum term γ usually close to 1 (e.g. 0.9)
- Reduces Oscillations
- ► Faster, stable convergence

Training Strategies

Learning Rate

- The learning rate is not easy to optimize
 - high values, the step size can be too large \rightarrow difficult to find the minimum
 - low values, the algorithm takes too long
- Often we want a high learning rate in the beginning and a lower learning rate afterwards
- Adagrad, AdaDelta, and ADAM are strategies to dynamically adapt the learning rate
- AdaDelta and ADAM do not even need a default learning rate

The End

Questions?