Honours Analysis 3

Zachary Probst *

September 11, 2021

1 Borel Sets

We will work for some time on \mathbb{R} exclusively. Before beginning Measure Theory: a quick recap of Topology.

Definition 1.1 (Open Set). A subset $U \subset \mathbb{R}$ is called open if either $U = \emptyset$ or else

$$\forall x \in U, \exists r > 0 \text{ such that } (x - r, x + r) \subset U$$

Some examples of open sets: \emptyset , \mathbb{R} , (a,b), (a,∞) , $(-\infty,a)$. There are many more because any union of an open set is still open and any finite intersection of open sets is open.

Definition 1.2 (Closed Set). $F \subset \mathbb{R}$ is called closed if $\mathbb{R} \setminus F := F^c$ is open. F is closed \iff F contains all points $x \in \mathbb{R}$ which have the property that $\forall r > 0, (x - r, x + r) \cap F \neq \emptyset$.

If $F \subset \mathbb{R}$ is any set, the closure of F, denoted by \overline{F} , is the smallest closed set that contains F.

Definition 1.3 (Compact). A subset $G \subset \mathbb{R}$ is compact if given any collection $\{U_i\}_{i\in I}$ of open sets $U_i \subset \mathbb{R}$ with $G \subset \bigcup_{i\in I} U_i$, there exists $J \subset I$, J finite, such that $G \subset \bigcup_{i\in J} U_i$

Theorem 1.1 (Heine-Borel). $G \subset \mathbb{R}$ is compact \iff G is closed and bounded. To be bounded means $G \subset (a,b)$ for some $a,b \in \mathbb{R}$.

Corollary 1.1.1 (Nested Set Theorem). Let $\{F_n\}_{n=1}^{\infty}$ be a countable collection of non-empty, bounded, closed sets $F_n \subset \mathbb{R}$ with $F_{n+1} \subset F_n \forall n$, then

$$\cap_{n=1}^{\infty} F_n \neq \emptyset$$

^{*}Notes from the lectures of Valentino Tosatti

Proof. Suppose $\bigcap_{n=1}^{\infty} F_n = \emptyset$ so let $U_n = F_n^c$ be open sets, such that $\bigcup_{n=1}^{\infty} U_n = \mathbb{R}$. We also have that $U_n \subset U_{n+1}$, since the F_n were nested. Now F_1 is compact by Heine-Borel and $F_1 \subset \bigcup_{n=1}^{\infty} U_n \Rightarrow$ by compactness I can find a finite subcover of F_1 , say $F \subset \bigcup_{n=1}^{N} U_n = U_N = F_N^c$

On the other hand $F_N \subset F_1$ by the nested property which implies $F_N = \emptyset$ which is a contradiction.

2 Measure Theory

We want to measure the size of a set. We will deal with a subset of \mathbb{R} . It turns out that one needs to select a class of subsets of \mathbb{R} that one wants to measure. This class of subsets will have certain properties which are as follows.

Definition 2.1 (σ -algebra). A collection \mathcal{A} of subsets of \mathbb{R} is called a σ -algebra if it satisfies

- 1. $\emptyset \in \mathcal{A}$
- 2. If $A \in \mathcal{A}$ then $A^c \in \mathcal{A}$
- 3. If $\{A_n\}_{n=1}^{\infty} \subset \mathcal{A} \ then \cup_{n=1}^{\infty} A_n \in \mathcal{A}$

Observe the following:

- $\mathbb{R} \in \mathcal{A}$ always
- If $\{A_n\}_{n=1}^N \subset \mathcal{A}$ then $\bigcup_{n=1}^N A_n \in \mathcal{A}$ (just define $A_n = \emptyset$ for n > N)
- If $\{A_n\}_{n=1}^{\infty} \subset \mathcal{A}$ then $\bigcap_{n=1}^{\infty} A_n \in \mathcal{A}$ (since $(\bigcap_{n=1}^{\infty} A_n)^c = \bigcup_{n=1}^{\infty} A_n^c$)
- If $A, B \in \mathcal{A}$ then $A \setminus B \in \mathcal{A}$ too since $A \setminus B = A \cap B^c$

Examples:

- 1. $\mathcal{A} = \{\emptyset, \mathbb{R}\}$ "Minimal σ -algebra"
- 2. $\mathcal{A} = \mathcal{P}(\mathbb{R}) = \text{Collection of all subsets of } \mathbb{R}$. "Maximum σ -algebra"

In fact, if \mathcal{A} is any σ -algebra, then $\{\emptyset, \mathbb{R}\} \subseteq \mathcal{A} \subseteq \mathcal{P}(\mathbb{R})$

For better examples, let F be any collection of subsets of \mathbb{R} . I want to make F into a σ -algebra. Define $m = \{A \mid A \text{ is a } \sigma\text{-algebra that satisfies } F \subset A\}$. $m \neq \emptyset$ since it contains $\mathcal{P}(\mathbb{R})$

If $\mathcal{A}, \mathcal{B} \in m$, I can define $\mathcal{A} \cap \mathcal{B} = \{A \subset \mathbb{R} \mid A \in \mathcal{A} \text{ and } A \in \mathcal{B}\}$ and I can do the same for $\cap_{i \in I} \mathcal{A}$ arbitrary intersection of σ -algebra is still a σ -algebra

Define $\hat{F}_i = \cap_{A \in m} A$ as a σ -algebra and $F \subset \hat{F}$ and it is the minimal σ -algebra with these properties. If G is a σ -algebra with $F \subset G$, then $\hat{F} \subset G$. \hat{F} is the σ -algebra generated by F. Concretely, \hat{F} consists of all subsets of \mathbb{R} that can be constructed by applying countable unions, intersections, and complements to elements of F.

Definition 2.2 (Borel Sets). The σ -algebra \mathcal{B} of Borel Sets is the σ -algebra \hat{F} generated by

$$F = \{ U \subset \mathbb{R} \mid U \text{ open } \}$$

Remark. \mathcal{B} is also the σ -algebra generated by the family of all closed subsets of \mathbb{R}

Singletons $\{x\} \subset \mathbb{R}$ are closed so if $A \subset \mathbb{R}$ is at most countable then A is Borel. (e.g $\mathbb{Q} \subset \mathbb{R}$) (e.g $\mathbb{R} \setminus \mathbb{Q}$)

Not all Subsets of \mathbb{R} are Borel. One can actually show that the cardinality of \mathcal{B} is the same as the cardinality of \mathbb{R} . On the other hand $\mathcal{P}(\mathbb{R})$ has strictly larger cardinality.

3 Lebesgue Outer Measure

We are hoping to measure the size of subsets of \mathbb{R} . Ideally we would like to find or construct a function

$$m: \mathcal{P}(\mathbb{R}) \to \mathbb{R}_{\geq 0} \cup \{+\infty\} = [0, \infty]$$

Which satisfies the following:

- 1. If I = [a, b] or (a, b) or [a, b), or (a, b], $a, b \in \mathbb{R}$, $a \leq b$ then m(I) = b a = measure of interval
- 2. m is translation invariant. i.e if $E \subset \mathbb{R}$ and $x \in \mathbb{R}$, let $E + x = \{y + x \mid y \in E\}$ then m(E + x) = m(E)
- 3. If $\{E_j\}_{j=1}^n$ is a finite collection of pairwise disjoint $E_j \subset \mathbb{R}$ then

$$m\left(\bigcup_{j=1}^{n} E_j\right) = \sum_{j=1}^{n} m(E_j)$$

4. The same as (3) except for $n = \infty$

Theorem 3.1. There is no such m satisfying all 4 requirements

The proof for this will come later. The solution for this is that we do not try to measure all subsets of \mathbb{R} . So we have $m: \mathcal{P}(\mathbb{R}) \to [0, \infty]$ but now we will just be happy with $m: \mathcal{A} \to [0, \infty]$ where \mathcal{A} is a σ -algebra which has enough elements. For example $\mathcal{A} > \mathcal{B}$.

We will follow H. Lebesgue as we proceed in two steps.

Step 1: construct Lebesgue outer measure $m^*: \mathcal{P}(\mathbb{R}) \to [0, \infty]$ satisfying requirements 1,2, and 3.

Step 2: Use m^* to define \mathcal{A} and let $m \subset m^* \mid \mathcal{A}$

To create this Lebesgue outer measure on \mathbb{R} we satisfy weakened version of requirement (3) that can be called (3w). For any countably infinite collection $\{E_j\}_{j=1}^{\infty}$ of arbitrary subsets $E_j \subset \mathbb{R}$

$$m^{\star}(\cup_{j=1}^{\infty} E_j) \le \sum_{j=1}^{\infty} m(E_j)$$