Aufgabe 1.2 CAS: Optikerlogo

Gegeben sind die Funktionen f_a mit der Gleichung $f_a(x) = \sqrt{ax} - \frac{1}{2}x^2$; $a \in IR$, a > 0. Die Graphen dieser Funktionen sind G_a .

- a) Geben Sie den Definitionsbereich sowie das Verhalten der Funktionswerte von f_a für $x \to +\infty$ an. Berechnen Sie die Nullstellen von f_a .
- b) Ermitteln Sie die Koordinaten und die Art des lokalen Extrempunktes der Graphen G_a . Die Extrempunkte aller Graphen G_a liegen auf dem Graphen einer Funktion g. Bestimmen Sie eine Funktionsgleichung von g. Weisen Sie nach, dass die Graphen G_a keine Wendepunkte besitzen.
- c) Es existiert genau ein Graph G_a , dessen Tangente im Punkt $(1|f_a(1))$ mit den beiden Koordinatenachsen ein gleichschenkliges Dreieck einschließt. Ermitteln Sie den zugehörigen Parameterwert a.
- d) Die Gerade h mit der Gleichung y = -3x + 12 begrenzt mit den Koordinatenachsen eine Fläche. Der Graph G_{16} teilt diese Fläche. Bestimmen Sie die Bedeutung des Grahpen von h für G16.
- e) Ein Optiker hat eine Werbefirma damit beauftragt, ein Logo für sein Geschäft anzufertigen. Die Werbefirma hat ein brillenähnliches Logo entworfen, für das sie unter anderem im Intervall [0;2] den Graphen G₂ und im Intervall [0;3] den durch Spiegelung von G₂ an der x-Achse entstehenden Graphen K verwendet hat (siehe Abbildung).

Geben Sie eine Gleichung für die zu K gehörende Funktion k an.

*1

- f) Bestimmen Sie die Gleichungen der beiden Funktionen, deren Graphen im Intervall [-3;0] bzw. [-2;0] das Logo zu einer symmetrischen "Brille" vervollständigen. Begründen Sie am Beispiel von G₂ und K, dass die modellhaften "Brillengläser" im Koordinatenursprung keinen "Knick" haben, das heißt, dass die Graphen im Ubergangspunkt eine gemeinsame Tangente besitzen.
- *1 Im Punkt $P(1 \mid 0)$ soll die Pupille markiert werden. Berechnen Sie die Koordinaten des Punktes auf G2, der von p den kleinsten Abstand hat.

Verteilung der Bewertungseinheiten (BE) auf die Teilaufgaben							
Teilaufgabe	a)	b)	c)	d)	e)	f)	Summe
BE	7	13	4	6	5	5	40