Modélisation de l'atomisation secondaire par fragmentation Comparaison CQMOM vs Monte Carlo Méthode des Moments avec terme source de fragmentation

Sébastien Beneteau

Polytechnique Montréal

August 7, 2025

Plan de la présentation

- 1 Introduction et objectifs
- Conditions initiales et paramètres
- Modèle physique pour la fragmentation
- Modèle de fragmentation Monte Carlo
- Terme source CQMOM
- Résultats et simulations
- Conclusions et perspectives

Contexte: Atomisation secondaire

Problématique :

- Injection de carburant
- Fragmentation des gouttes sous l'effet aérodynamique
- Prédiction de l'évolution temporelle de la distribution de gouttes

Objectifs:

- Modéliser un modèle de fragmentation
- Résoudre avec une méthode des moments et plus précisément avec CQMOM
- Valider la simulation avec une approche Monte Carlo

Configuration d'injection

Paramètres géométriques :

- Diamètre nozzle : $d_0 = 2 \text{ mm}$
- Rayon initial : $r_0 = 1 \text{ mm}$
- Vitesse injection : $u_0 = 100 \text{ m/s}$
- Vitesse gaz : $u_g = -20 \text{ m/s}$

Conditions thermodynamiques:

- ullet Température : $T=1200~{
 m K}$
- Pression : P = 5 bar
- Configuration haute pression

Propriétés physiques :

Propriété	Gaz	Liquide
Densité (kg/m³)	5.16	800
Viscosité (Pa·s)	1.9×10^{-5}	1.5×10^{-3}

Tension superficielle : $\sigma_I = 25 \text{ mN/m}$

Distribution initiale:

- $\mu = [r_0, u_0]$
- Écart-type 10% sur le rayon et 5% sur la vitesse
- 100 particules initiales, max 25000

Nombres sans dimension caractéristiques

Définitions :

We =
$$\frac{\rho_g |u_r|^2 (2r)}{\sigma_I}$$

Re = $\frac{\rho_g |u_r| (2r)}{\mu_g}$

$$\mathsf{Oh} = rac{\sqrt{\mathsf{We}}}{\mathsf{Re}}$$

où $u_r = u - u_g$ est la vitesse relative.

Critère de fragmentation :

$$We > We_{crit} = 12(1 + 1.0770h^{1.6})$$

Valeurs initiales :

- (1) We = 1673.1
 - Re = 19.9
- (2) Oh = 2.0530
 - $We_{crit} = 26.4$

Conclusion

(3)

 $We \gg We_{crit}$

⇒ Fragmentation attendue

Équations de transport des gouttes

Évolution du rayon : $\frac{dr}{dt}$

- Modèle Reitz-Diwakar (RD) avec fragmentation
- Deux modes : bag-mode et shear-mode
- Temps caractéristiques :

$$\tau_{bag} = \pi \sqrt{\frac{\rho_I r^3}{2\sigma_I}} \tag{4}$$

$$\tau_{shear} = 1.8 \cdot r \sqrt{\frac{\rho_I}{\rho_g}} \cdot \frac{1}{|u_r|} \tag{5}$$

Évolution de la vitesse : $\frac{du}{dt}$

$$\frac{du}{dt} = \frac{3}{8} C_D \frac{\rho_g}{\rho_l} \frac{1}{r} |u_g - u| (u_g - u)$$
 (6)

où C_D est le coefficient de traînée fonction du nombre de Reynolds.

Formules analytiques du modèle drdt

Rayon enfant :

$$r_{child} = 0.681 \cdot r \tag{7}$$

Modèle final:

$$\frac{dr}{dt} = H(\text{We} - \text{We}_{crit})(r_{child} - r) \left(\frac{H(\text{We} - 6)(1 - H(\xi - 0.5))}{\tau_{bag}} + \frac{H(\xi - 0.5)}{\tau_{shear}} \right)$$
(8)

avec
$$\xi = We/\sqrt{Re}$$

Fragmentation stochastique

Approche Monte Carlo pour la fragmentation :

• Détection de fragmentation pour une unique goutte :

- Critère fréquentiel : On autorise la fragmentation à une fréquence $\frac{1}{ au_{bag}}$ ou $\frac{1}{ au_{shear}}$ pour chaque goutte.
- Critère volumétrique : $\sum V_{current} \leq V_{initial}$
- Critère nombre : $N_{droplets} \le 200$ pour une seule goutte initiale
- Critère Weber : We > We_{crit}

Nombre de gouttes filles :

- Loi log-normale tronquée
- ullet Fragmentation en 2 ou 3 gouttes privilégiée : $\mu=2, \sigma=1$
- Domaine: [1,5] gouttes filles

Tailles des gouttes filles :

- Distribution log-normale des volumes : $\mu = V_{\it initial}/(N_{\it filles}+1), \sigma = \mu/12$
- Conservation de masse stricte
- Contrainte : $\sum V_{\it fille} < 0.95 \cdot V_{\it initial}$ pour assurer que la goutte actuelle ait un volume défini

Reset et boucle :

- Pour une goutte isolée, on conserve l'information du nombre de gouttes filles ainsi que leurs tailles respectives jusqu'à la fragmentation
- Lorsque la fragmentation s'est effectuée d'après le critère, on recalcule pour notre goutte initiale et toutes les gouttes filles leur nombre de gouttes enfants avec leurs tailles respectives
- On boucle ce processus, qui sera stoppé par le critère de fragmentation.

Méthode CQMOM avec terme source

Évolution des moments :

$$\frac{\partial M_{ij}}{\partial t} = \underbrace{\sum_{k} w_{k} f_{k}^{(i,j)} + \underbrace{S_{ij}}_{\text{Source fragmentation}}}_{\text{Transport}}$$
(9)

Terme source de fragmentation :

- Basé sur la quadrature CQMOM : $\{w_k, r_k, u_k\}$
- Taux de naissance et de mort aux nœuds
- Intégration sur distribution log-normale des produits

$$S_{ij} = \sum_{k} w_{k} \left[\underbrace{B_{ij}(r_{k}, u_{k}; t)}_{\text{Naissance}} - \underbrace{D(r_{k}, u_{k}; t)}_{\text{Mort}} \right]$$
(10)

Formules analytiques du terme source

Terme source de fragmentation :

$$S_{ij} = \sum_{k} w_{k} \left[\underbrace{B_{ij}(r_{k}, u_{k}; t)}_{\text{Naissance}} - \underbrace{D_{ij}(r_{k}, u_{k}; t)}_{\text{Mort}} \right]$$
(11)

Terme de naissance :

$$B_{ij}(r_k, u_k; t) = N_{frag} \cdot \Gamma(r_k, u_k; t) \cdot I_{ij}(r_k, u_k)$$
(12)

$$I_{ij}(u_k) = u_k^j \cdot \left(\frac{3}{4\pi}\right)^{i/3} e^{\frac{i\mu_{ln}}{3} + \frac{1}{2}\left(\frac{i\sigma_{ln}}{3}\right)^2}$$
 (13)

avec
$$V_{mean}=rac{V_k}{N_{frag}+1}$$
, $\sigma_V=rac{V_k}{(N_{frag}+1) imes 12}$, $V_k=rac{4}{3}\pi r_k^3$.

Taux de fragmentation :

$$\Gamma(r_k, u_k; t) = H(\text{We} - \text{We}_{crit}) \left(\frac{H(\text{We} - 6)(1 - H(\xi - 0.5))}{\tau_{bag}} + \frac{H(\xi - 0.5)}{\tau_{shear}} \right)$$
(14)

Paramètre : $N_{frag} \approx 3.4$ (valeur moyenne du nombre de gouttes générées)

Terme de mort :
$$D_{ij}(r_k, u_k; t) = r_k^i \cdot u_k^j \cdot \Gamma(r_k, u_k; t)$$

Paramètres de simulation

Configuration numérique :

ullet Pas de temps : $\Delta t = 0.5 \mu s$

• Durée totale : 3 ms

• Particules initiales: 100

• Particules max: 25000

Méthode : DOP853 (Runge-Kutta)

Moments calculés :

 \bullet M_{00} : nombre de gouttes

 \bullet M_{10} : Somme des tailles moyennes

• *M*₀₁ : Somme des vitesses moyennes

 \bullet M_{11} : moment mixte

Méthodes comparées :

- Monte Carlo (référence)
- CQMOM avec terme source

Résultats : Comparaison des moments

Résultats : Évolution des grandeurs caractéristiques

Résultats : Distribution finale des rayons.

Bilan des résultats

Succès de l'approche :

- ✓ Implémentation réussie du terme source CQMOM
- ✓ Validation par Monte Carlo
- ✓ Fragmentation physiquement réaliste
- ✓ Conservation de masse respectée
- ✓ Évolution cohérente des moments

Limitations identifiées :

- Pas de coalescence
- Pas d'évaporation
- Distribution des vitesses filles simplifiée

Conclusion principale

La méthode CQMOM avec terme source de fragmentation permet de modéliser efficacement l'atomisation secondaire tout en conservant un coût numérique raisonnable comparé aux approches Monte Carlo complètes.

Merci pour votre attention !

Questions?