#### Vliv kvantování



Kurz: Signálové procesory

**Autor:** Petr Sysel

**Lektor:** Petr Sysel











VLIV KVANTOVÁNÍ

Signálové procesory

#### Obsah přednášky

#### Analýza vlivu kvantování

Stochastický způsob Deterministický způsob

Kvantování vstupního signálu

#### Kvantování mezivýsledků

Mezní cykly z kvantování Mezní cykly z přetečení

#### Kvantování koeficientů

Rozdělení na sekce 2. řádu

VLIV KVANTOVÁNÍ

Signálové procesory

#### Možnosti analýzy vlivu kvantování

- Statistické metody:
  - kvantování je nahrazeno jednoduchým součtovým modelem,
  - předpokladem je statistická nezávislost kvantovacích šumu v různých místech algoritmu a nekorelovanost kvantovacího šumu a užitečného signálu,
  - lze určit odezvu na kvantovací šumy.
- Deterministické metody:
  - kvantování popisují jako nelineární operaci,
  - pro řešení nelze použít lineární metody,
  - používají se pro odhady mezí kvantovacích chyb.

Signálové procesory

#### Stochastický způsob vyjádření kvantování

Graf signálových toků doplním o zdroj kvantovacího šumu



• výhodou je, že obvod zůstane lineární.

VLIV KVANTOVÁNÍ

Signálové procesory

# Stochastický model vyjádření kvantování

- Nemusíme znát přesné hodnoty zpracovávaného signálu x[n],
- a tedy neznáme ani přesné hodnoty chybového signálu e[n],
- musí však být splněny následující předpoklady:
  - posloupnost chybových vzorků e[n] je stacionární náhodný proces,
  - jednotlivé vzorky e[n] nejsou vzájemně korelovány,
  - chybový signál e[n] není korelován se vstupním signálem x[n],
  - rozložení hustoty pravděpodobnosti chybového signálu je rovnoměrné v celém rozsahu kvantovací chyby (-q/2; q/2), resp. (-q; 0).
- Předpoklady jsou nejlépe splněny pro vstupní signály, které mají charakter blízký náhodným signálům, např. akustické signálu (řeč, hudba).

Signálové procesory

# Deterministický způsob vyjádření kvantování

Graf signálových toků doplním o nelineární blok kvantování



• nevýhodou je, že obvod se stane nelineárním a musí se používat metody řešení nelineárních obvodů.

VLIV KVANTOVÁNÍ

Signálové procesory

# Místa vzniku problémů vlivem pevné délky slova

Kvantování projeví u algoritmů číslicového zpracování při:

- Kvantování vstupního signálu:
  - vstupní signál má známé parametry,
  - přesnost lze upravit použitým převodníkem.
- Kvantování koeficientů:
  - kvantování koeficientů musí být součástí návrhu,
  - ovlivňuje přenosovou funkci a stabilitu algoritmu.
- Kvantování mezivýsledků:
  - · má náhodný charakter, protože závisí na konkrétním vstupním signálu,
  - nejvíce vadí přetečení a následná saturace nebo nulování.

#### Kvantování vstupního signálu

- Střední hodnota kvantovací chyby je rovna: zaokrouhlení usekávání  $m_{\rm R}=0$   $m_{\rm T}=-rac{q}{2}$ .
- Rozptyl kvantovacího šumu je roven:

$$\sigma_{\rm R}^2 = \int_{-q/2}^{q/2} (x - m_{\rm R})^2 p(x) dx = \frac{q^2}{12} = \sigma_{\rm T}^2.$$

Poměr signálu od kvantovacího šumu je roven:

$$SNR = 10 \log_{10} \frac{\sigma_x^2}{\sigma_R^2} = 10 \log_{10} \frac{\sigma_x^2}{\frac{q^2}{12}} = 6,02N + 10,79 + 10 \log_{10} \sigma_x^2.$$

## Kvantování vstupního signálu

- Poměr signálu od kvantovacího šumu vzrůstá s počtem bitů,
- poměr signálu od kvantovacího šumu vzrůstá s rozptylem (energií) vstupního signálu,
- rozptyl hodnot vstupního signálu je však omezen rozsahem čísel,
- navíc u některých algoritmů může mít výstupní signál větší rozptyl než vstupní,
- v takovém případě je nutné vstupní signál zeslabit vážením (scaling) koeficientem  $\beta < 1$ ,
- potom

$$SNR = 10 \log_{10} \frac{\beta^2 \sigma_x^2}{\sigma_R^2} = 10,79 + 6,02N + 10 \log_{10} \sigma_x^2 + 20 \log_{10} \beta.$$

- Protože  $\beta < 1$ , tak poslední člen má záporné znaménko,
- vážení snižuje hodnotu odstupu signálu od kvantovacího šumu.

Signálové procesory

## Kvantování mezivýsledků

 Po každé operaci násobení nebo součtu dochází ke kvantování a případně i k saturaci

 největší problémy kvantování a saturace způsobuje u rekurzivních algoritmů, protože kvantovací šum se vrací do algoritmu a může způsobovat až vznik mezních (limitních) cyklů.

# Mezní cykly

 U rekurzivních algoritmů může díky kvantování být výstup nenulový i v případě nulového vstupu,

• 
$$y[n] = x[n] - \frac{6}{8}y[n-1] + \frac{1}{8}y[n-2], x[n] = \frac{7}{8}\delta[n]$$

| n | x[n]                  | $-\frac{6}{8}y[n-1]$                             | $\frac{1}{8}y[n-2]$        | <i>y</i> [ <i>n</i> ]  |
|---|-----------------------|--------------------------------------------------|----------------------------|------------------------|
| 0 | $\frac{7}{8} = 0.111$ | 0.000000                                         | 0.000000                   | $0.111 = \frac{7}{8}$  |
| 1 | 0.000                 | $-\frac{42}{64} = 1.010110$                      | 0.000000                   | $1.011 = -\frac{5}{8}$ |
| 2 | 0.000                 | $\frac{\frac{64}{60}}{\frac{30}{60}} = 0.011110$ | $\frac{7}{64} = 0.000111$  | $0.101 = \frac{5}{8}$  |
| 3 | 0.000                 | =1.100010                                        | $-\frac{5}{64} = 1.111011$ | $1.100 = -\frac{4}{8}$ |
| 4 | 0.000                 | $\frac{\frac{64}{64}}{\frac{24}{64}} = 0.011000$ | $\frac{5}{64} = 0.000101$  | $0.100 = \frac{4}{8}$  |
| 5 | 0.000                 | $-\frac{24}{64} = 1.101000$                      | $-\frac{4}{64} = 1.111100$ | $1.101 = -\frac{3}{8}$ |
| 6 | 0.000                 | $\frac{18}{64} = 0.010010$                       | $\frac{4}{64} = 0.000100$  | $0.011 = \frac{3}{8}$  |
| 7 | 0.000                 | =1.101110                                        | $-\frac{3}{64} = 1.111101$ | $1.101 = -\frac{3}{8}$ |
| 8 | 0.000                 | $\frac{18}{64} = 0.010010$                       | $\frac{3}{64} = 0.000011$  | $0.011 = \frac{3}{8}$  |

 u nerekurzivních algortimů mezní cykly nastat nemohou, protože neobsahují zpětné vazby.

#### Mezní cykly z kvantování

V případě rekurzivního algoritmu 1. řádu je výstup dán

$$y[n] = -[ay[n-1]]_{Q} + x[n],$$

v případě zaokrouhlení platí

$$|[ay[n-1]]_{\mathsf{R}} - ay[n-1]| \le 0.5q,$$

tedy aby došlo k mezním cyklům musí platit

$$|[ay[n-1]]_{\mathsf{R}}| = |y[n-1]|.$$

• Vlivem kvantování dojde jakoby k posunutí pólu na jednotkovou kružnici |a|=1,

## Mezní cykly z kvantování

 Po dosazení do první rovnice lze zjistit maximální hodnotu amplitudy mezního cyklu jako

$$|y[n-1]| \le \frac{0.5q}{1-|a|},$$

- čím blíže bude pól jednotkové kružnici, tím větší amplitudu budou mezní cykly mít,
- v případě |a| < 0.5 mezní cykly nenastanou,
- perioda bude podle znaménka a:
  - a > 0 pak perioda je rovna 1,
  - a < 0 pak perioda je rovna 2.</li>

#### Mezní cykly z kvantování

 V případě rekurzivního algoritmu druhého řádu bude amplituda mezních cyklů rovna

$$|y[n-2]| \le \frac{0.5q}{1-|a_2|},$$

- vlivem kvantování dojde k jakoby posunu pólu na jednotkovou kružnici,
- · perioda mezních cyklů bude dána polohou původního pólu,
- čím blíže bude pól jednotkové kružnici, tím větší amplitudu budou mezní cykly mít,
- v případě  $|a_2| < 0.5$  mezní cykly nenastanou.
- V případě usekávání by v předchozím příkladě nenastaly. Obecně však mohou mít dvakrát větší velikost z důvodu dvojnásobné kvantovací chyby.

#### Mezní cykly z přetečení

Pokud nebudeme uvažovat saturaci je výstup roven

$$y[n] = [-a_1y[n-1] - a_2y[n-2] + x[n]]_{OV},$$

aby nemohlo dojít k přetečení, musí platit

$$|a_1y[n-1] + a_2y[n-2]| < 1,$$

tedy musí platit

$$|a_1| + |a_2| < 1$$
,

 pokud podmínka platit nebude, mohou nastat mezní cykly z přetečení s amplitudou

$$|y[n]| \le \frac{2}{1-a_1-a_2}, a_1 < 0, a_2 < 0,$$

nebo

$$|y[n]| \le \frac{2}{1+a_1-a_2}, a_1 > 0, a_2 < 0.$$

#### Mezní cykly z přetečení

- V některých případech může dojít k mezním cyklům i při použití saturace.
- Amplituda je vždy mnohonásobně větší než v případě mezních cyklů z kvantování.

VLIV KVANTOVÁNÍ Signálové procesory

#### Kvantování koeficientů

- Kvantování koeficientů způsobí změnu přenosové funkce,
- dojde ke změně kmitočtové charakteristiky,
- dojde ke změně polohy nulových bodů a pólů,
- uvažujme systém 2. řádu s komplexně sdruženými póly  $p_{1,2}=re\pm \mathbf{j}im$

$$(z - p_1)(z - p_2) = (z - (re + jim))(z - (re - jim)) =$$
  
=  $z^2 - (re + jim)z - (re - jim)z +$   
+  $(re + jim)(re - jim) =$   
=  $z^2 - 2rez + (re^2 + im^2)$ 

po kvantování musí být

$$|2re| = k \cdot 2^{-b},$$
  
 $|re^2 + im^2| = k \cdot 2^{-b},$   
 $k \in [0, 1, ..., 2^b - 1].$ 

VLIV KVANTOVÁNÍ

Signálové procesory

# Poloha nulových bodů a pólů



#### Poloha nulových bodů a pólů

- V případě vazební struktury však platí, že koeficienty jsou přímo reálná a imaginární složka pólu,
- proto rozložení nulových bodů a pólů bude jiné

$$re = k 2^{-b},$$
  
 $im = k 2^{-b}.$ 



#### Rozdělení na sekce druhého řádu

- Filtry vyššího řádu jsou mnohem citlivější na vlivy kvantování, protože hodnoty koeficientů jsou závislé i na součinech reálných nebo imaginárních složek dvou nebo více pólů,
- proto se vyšší řády rozkládají do sekcí 2. řádu,
- vždy dva komplexně sdružené póly a dva komplexně sdružené nulové body sloučím do jedné přenosové funkce,
- aby se zabránilo vzniku přetečení, je mezi sekcemi signál násoben konstantou  $k_i < 1$ .

$$\times [n] \xrightarrow{k_1} H_1(e^{j\omega}) \xrightarrow{k_2} H_2(e^{j\omega}) \xrightarrow{} y[n]$$

VLIV KVANTOVÁNÍ

Signálové procesory

# Určení váhovací konstanty k

- Uvažujme, že vstupní signál x[n] je omezen v rozsahu zlomkového čísla |x[n]| < 1
- uvažujme, že číslicový filtr má vzorky impulsní charakteristiky h[n],
- potom absolutní hodnota výstupního signálu

$$|y[n]| = \left| \sum_{m=-\infty}^{\infty} h[m]x[n-m] \right| \le \sum_{m=-\infty}^{\infty} |h[m]| |x[n-m]|$$

$$|y[n]| \le \sum_{m=-\infty}^{\infty} |h[m]|$$

• nutnou a postačující podmínkou, aby byl výstupní signál omezen v rozsahu zlomkového čísla |y[n]| < 1, je, že vstupní signál musí být vynásoben konstantou

$$k_1 = \frac{1}{\sum_{m=-\infty}^{\infty} |h[m]|}.$$

#### Určení váhové konstanty k

- Uvedená podmínka je sice nutná a postačující, ale je až příliš přísná pro reálné signály (vystihuje nejhorší případ |x[n]| = 1, který je málo pravděpodobný),
- pro úzkopásmové signály je vhodnější určit váhový koeficient na základě maximální hodnoty modulové kmitočtové charakteristiky  $|H(\mathbf{e}^{\mathbf{j}\omega})|$  (maximální zesílení pro nějaký kmitočet  $\omega$ )

$$k_2 = \frac{1}{A_x \max_{0 \le \omega \le \pi} |H(e^{j\omega})|},$$

tento výpočet je nejpoužívanější.

Signálové procesory

#### Určení váhové konstanty k

 Poslední a nejméně přísnou podmínkou je, že omezíme nikoliv absolutní hodnotu, ale energii výstupního signálu

$$\sum_{n=-\infty}^{\infty} |y[n]|^2 \le k_3^2 \sum_{n=-\infty}^{\infty} |x[n]|^2,$$

• s použitím Parsevalova teorému lze odvodit

$$k_3 = \frac{1}{\sqrt{\sum_{n=-\infty}^{\infty} |h[n]|^2}}.$$

Zřejmě platí

$$k_1 \leq k_2 \leq k_3$$
.