ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Работа 3.6.1. Спектральный анализ электрических сигналов

Работу выполнил: Долгов Александр Алексеевич, группа Б01-106

Долгопрудный, 2022

Содержание

1	Аннотация	3
2	Теоретические сведения	3
3	Экспериментальная установка	6
4	Измерения и обработка их результатов	6
	4.1 Исследование спектра периодической последовательности прямо- угольных импульсов	7
	4.2 Исследование спектра периодической последовательности цугов гармонических колебаний	8
	4.3 Исследование спектра амплитудно-модулированных гармонических сигналов	8
5	Вывод	9
6	Приложения	10
	6.1 Таблицы	10
	6.2 Графики	12

1 Аннотация

В данной работе изучается спектральный состав периодических электрических сигналов различной формы: последовательности прямоугольных импульсов, последовательности цугов и амплитудно-модулированных гармонических колебаний. Спектры этих сигналов наблюдались с помощью анализа спектра и сравнивались с рассчитанными теоретически.

2 Теоретические сведения

Всякая непрерывная периодическая функция f(t) может быть представлена в виде ряда Фурье:

$$f(t) = \sum_{n=-\infty}^{+\infty} c_n e^{in\omega_0 t} = \sum_{n=0}^{+\infty} a_n \cos (n\omega_0 t + \phi_n)$$

где $\omega_0=\frac{2\pi}{T}$, T - период функции f. При этом коэффициенты $\{c_n\}$ могу быть найдены по формуле:

$$c_n = \frac{1}{T} \int_0^T f(t) e^{-in\omega_0 t} dt$$

Также коэффициенты для действительной формы разложения находятся по формулам:

$$a_n = 2|c_n|, \ \phi_n = \arg c_n$$

Рис. 1. RLC-контур

Рассмотрим RLC-контур. Для него справедливо второе правило Кирхго-фа:

$$L\ddot{q} + R\dot{q} + \frac{q}{C} = e^{i\omega t}$$

Входной сигнал - напряжение на резисторе, т.е. $g(t) = R\dot{q}$. Продифференцируем уравнение вынужденных колебаний:

$$L\ddot{I} + R\dot{I} + \frac{I}{C} = i\omega e^{i\omega t}$$

$$\begin{split} L\frac{\ddot{g}}{R} + \dot{g} + \frac{g}{RC} &= i\omega e^{i\omega t} \\ \ddot{g} + \frac{R}{L}\dot{g} + \frac{g}{LC} &= i\frac{\omega R}{L}e^{i\omega t} \end{split}$$

Введём обозначения: $\gamma:=\frac{R}{2L},\ \omega_0:=\frac{1}{\sqrt{LC}}.$

$$\ddot{g} + 2\gamma \dot{g} + \omega_0^2 g = i \frac{\omega R}{I} e^{i\omega t}$$

Характеристическое уравнение:

$$\lambda^2 + 2\gamma\lambda + \omega_0^2 = 0$$

$$\lambda = -\gamma \pm \sqrt{\gamma^2 - \omega_0^2}$$

Нас интересует лишь случай, когда в контуре возможны колебания, то есть $\gamma < \omega_0$. Таким образом:

$$\lambda = -\gamma \pm \mathrm{i}\Omega,$$
 где $\Omega = \sqrt{\omega_0^2 - \gamma^2}$

Тогда общее комплексное решение однородного уравнения имеет вид:

$$g(t)=e^{-\gamma}(A_1e^{i\Omega t}+A_2e^{-i\Omega t}),$$
 где $A_1,A_2\in\mathbb{C}$

Выделим действительные решения:

$$g(t)=e^{-\gamma}(B_1\cos\Omega t+B_2\sin\Omega t),$$
 где $B_1,B_2\in\mathbb{R}$

В высокодобротном контуре общее решение однородного уравнения быстро затухнет, и им можно будет пренебречь, говоря, что рассматривается стационарные режим работы контура. Частное решение неоднородного уравнения ищем в виде:

$$\begin{split} g(t) &= \lambda(\omega) e^{i\omega t} \\ -\omega^2 \lambda + i \cdot 2\gamma \lambda \omega + \omega_0^2 \lambda = i \frac{\omega R}{L} e^{i\omega t} \implies \lambda(\omega) = \frac{i\omega R}{L(\omega_0^2 - \omega^2 + i \cdot 2\gamma \omega)} \\ \lambda(\omega) &= \frac{\omega R(2\gamma \omega + i(\omega_0^2 - \omega^2))}{L((\omega_0^2 - \omega^2)^2 + 4\gamma^2 \omega^2)} \end{split}$$

Окончательно получаем:

$$|\lambda(\omega)| = \frac{\omega R}{L} \frac{1}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\gamma^2 \omega^2}}$$
(1)

$$\varphi(\omega) = \arctan \frac{2\gamma \omega}{\omega^2 - \omega_0^2} \tag{2}$$

Найдём максимум функции $|\lambda(\omega)|$:

$$\begin{split} \frac{L}{R} \frac{d}{d\omega}(|\lambda(\omega)|) &= \frac{(\omega_0^2 - \omega^2)^2 + 4\gamma^2\omega^2 - \omega(-2(\omega_0^2 - \omega^2)\omega + 4\gamma^2\omega)}{((\omega_0^2 - \omega^2)^2 + 4\gamma^2\omega^2)^{3/2}} = \\ &= \frac{(\omega_0^2 - \omega^2)^2 + 4\gamma^2\omega^2 + 2(\omega_0^2 - \omega^2)\omega^2 - 4\gamma^2\omega^2}{((\omega_0^2 - \omega^2)^2 + 4\gamma^2\omega^2)^{3/2}} = \\ &= \frac{(\omega_0^2 - \omega^2)(\omega_0^2 + \omega^2)}{((\omega_0^2 - \omega^2)^2 + 4\gamma^2\omega^2)^{3/2}} \implies \frac{d}{d\omega}(|\lambda(\omega)|) = 0 \iff \omega = \omega_0 \end{split}$$

Таким образом, величина $|\lambda(\omega)|$ достигает максимума при $\omega=\omega_0$. Так как $|\lambda(\omega)|$ - коэффициент пропорциональности между входным и выходным сигналами, то делаем вывод, что рассматриваемый колебательный контур усиливает лишь частоты, близкие к резонансной. С точки зрения преобразования гармоник контур является узкополосным фильтром с шириной пропускания порядка

$$\Delta\omega\sim \frac{\omega_0}{O},\,\,$$
где $Q=rac{1}{R}\sqrt{rac{L}{C}}$ — добротность контура

Поскольку амплитуда колебаний в контуре пропорциональна амплитуде гармоники в спектре функции f(t), то, меняя резонансную частоту контура, можно исследовать весь спектр входящего сигнала.

У описанной выше схемы есть существенный недостаток: при изменении L или C меняется также и добротность, а значит, и ширина полосы пропускания. Кроме того, проще изготовить высокодобротный контур с фиксированными параметрами, нежели с настраиваемой частотой. В связи с этим, как правило, для фильтрации сигнала применяется другая схема.

Отметим также, что для периодических сигналов существует связь между длительностью сигнала (Δt) и шириной его спектра (Δv):

$$\Delta v \cdot \Delta t = 1 \tag{3}$$

3 Экспериментальная установка

Рис. 2. Экспериментальная установка

Схема экспериментальной установки изображена на Рисунке 2. Исследуемый сигнал f(t) и синусоидальный сигнал от вспомогательного генератора, называемого генератора, подаются на вход смесителя - элемента, преобразующего колебания с частотами v_1 и v_2 в колебания на комбинированных частотах: $v_1 + v_2$ и $v_1 - v_2$. Раз-

ностный сигнал смесителя поступает на фильтр - высокодобротный колебательный контур, настроенный на некоторую фиксированную резонансную частоту ν_0 . Таким образом, если f(t) содержит гармонику $\nu = \nu_{\rm ret} - \nu_0$ ($\nu_{\rm ret}$ - частота гетеродина), она будет усилена, а отклик будет пропорционален её амплитуде. Отметим, что смешение частот исследуемого сигнала и частоты гетеродина лежит в основе большинства современных радиоприёмных устройств — супергетеродинов.

В спектральном анализаторе частота гетеродина пропорциональна напряжению, подаваемому на развёртку по оси X встроенного в анализатор осциллографа. Выходной сигнал подаётся на канал Y . На экране анализатора возникает, таким образом, график, изображающий зависимость амплитуды гармоник исходного сигнала от частоты, т. е. его спектр (информация о фазах гармоник при этом теряется).

4 Измерения и обработка их результатов

Погрешности прямых измерений в данной работе считаются пренебрежимо малыми.

4.1 Исследование спектра периодической последовательности прямоугольных импульсов

Введём некоторые используемые далее обозначения: $\nu_{\text{повт}}$ - частота повторения импульсов, $T=(\nu_{\text{повт}})^{-1};~\tau$ - длительность одного импульса; $\delta\nu$ - расстояние между соседними гармониками (частота первой гармоники); $\Delta\nu$ - ширина спектра (расстояние от главного максимума до первого нуля огибающей).

 $\delta \nu = \frac{a(\nu)}{\delta \nu} \propto \frac{\sin x}{x}$ $0 \sim \frac{1}{\nu_1} \frac{\Delta \nu}{\nu_2} \frac{1}{\tau} \frac{3}{\tau}$

Рис. 3. Периодическая последовательность импульсов

Рис. 4. Спектр последовательности импульсов (расчёт для $\tau = T/7$)

При изменении параметров сигнала ($\nu_{\text{повт}}, \tau$) его спектр меняется. В ходе работы было рассмотрено 3 случая: 1) ($\nu_{\text{повт}}, \tau$) = (1 к Γ ц, 100 мкс), 2) ($\nu_{\text{повт}}, \tau$) = (2 к Γ ц, 100 мкс), 3) ($\nu_{\text{повт}}, \tau$) = (1 к Γ ц, 200 мкс). При переходе от параметров 1 к параметрам 2 ширина спектра уменьшается в 2 раза. При переходе от параметров 1 к параметрам 3 расстояние между соседними гармониками $\delta\nu$ увеличивается в 2 раза.

Далее была измерена зависимость ширины спектра от длительности импульсов при постоянной частоте повторения импульсов $\nu_{\text{повт}}=1$ к Γ ц. Результаты представлены в Таблице 1. По ним также построен Γ рафик 1, позволяющий. Из соотношения неопределённости (3) следует, что угловой коэффициент наклона прямой должен быть порядка 1000, что, как видно из графика, выполняется в хорошей точностью.

Затем были проведены непосредственные измерения спектров при $\tau=50$ мкс и $\tau=50$ мкс. Результаты представлены в Таблице 2 ($U_{\rm m}$ - амплитуда сигнала). По ним построены График 2 и График 3.

4.2 Исследование спектра периодической последовательности цугов гармонических колебаний

При увеличении длительности импульса т вдвое от 100 до 200 мкс ширина спектра уменьшается, а высота увеличивается вдвое. Если же менять несущую частоту ν_0 , то вид спектра не меняется, а лишь параллельно переносится вдоль оси абсцисс.

Далее в работе измерялось расстояние между соседними гармониками при различных частотах повторения цугов. Длительность импульса τ была установлена в 100 мкс, и измерения проводились для $\nu_{\text{повт}}=0.5,1,2,4,5$ к Γ ц. В каждом из измерений оказалось, что $\delta\nu=\nu_{\text{повт}}$. Таким образом, результат соответствует соотношению неопределённости (3).

Затем были проведены непосредственные измерения спектров при $\tau=100$ мкс, $\nu_{\text{повт}}=1$ к Γ ц и $\tau=100$ мкс, $\nu_{\text{повт}}=2$ к Γ ц. Результаты представлены в Таблице 3 (U_{m} - амплитуда сигнала). По ним построены График 4 и График 5.

4.3 Исследование спектра амплитудно-модулированных гармонических сигналов

На канал 2 осциллографа подавался синусоидальный сигнал с двойной амплитудой 1 В и частотой $\nu_0=25$ кГц (несущая частота). На канал 1 осциллографа подавался синусоидальный сигнал с двойной амплитудой 0.2 В, частотой $\nu_{\text{мод}}=1$ кГц (частота модуляции) и смещением на 1 В. В работе измерялись максимальная A_{max} и минимальная A_{min} амплитуды результирующих колебаний, а также амплитуды $A_{\text{осн}}$ и $A_{\text{бок}}$ несущего колебания и боковых гармоник, соответственно. По этим данным находилась глубина модуляции $\mathbf{m}=(A_{\text{max}}-A_{\text{min}})/(A_{\text{max}}+A_{\text{min}})$ и отношение амплитуд спекъральных составляющих колебаний $\mathbf{k}=A_{\text{бок}}/A_{\text{осн}}$. При этих измерениях двойная амплитуда канала 1 изменялась от 0.2 В до 2 В. Результаты измерений представлены в Таблице 4. Также построен график зависимости $\mathbf{k}(\mathbf{m})$ (График 6).

Аппроксимацией точек графика 6 получаем, что $\frac{k}{m}=0.484\approx0.5$, что соответствует теоретическим выводам.

5 Вывод

В ходе работы были изучены спектры некоторых периодических сигналов и проверены соотношения, их описывающие, в частности, соотношение неопределённости. Исследованы амплитудно-модулированные сигналы, для которых проверено справедливость теоретического вывода о связи глубины модуляции с отношением амплитуд боковых и несущего колебаний.

6 Приложения

6.1 Таблицы

Таблица 1. Зависимость ширины спектра от длительности импульса при частоте повторения импульсов 1 к Γ ц.

т, мкс	40	60	80	100	120	140	160	180	200
$\Delta \nu$, к Γ ц	25	17.5	12.5	10	8	7	6	5.5	5

Таблица 2. Спектр сигналов с длительностью одного импульса 50 и $100~\rm{mkc}$

	$\tau = 0$	50 мкс	au=100 мкс		
№ гармоники	ν, кГц	Um, мВ	ν, кГц	Um, мВ	
0	0	148.6	0	251.4	
1	1	70.15	1	139.1	
2	2	68.9	2	129.7	
3	3	67.67	3	118.4	
4	4	64.19	4	102.1	
5	5	60.11	5	83.9	
6	6	56.3	6	65.71	
7	7	52.8	7	47.51	
8	8	47.32	8	29.32	
9	9	42.95	9	13.64	
10	10	40.32	10	0	
11	11	37.62			
12	12	33.32			
13	13	29.38			
14	14	25.44			
15	15	20.63			
16	16	16.03			
17	17	11.44			
18	18	7.716			
19	19	3.777			
20	20	0			

Таблица 3. Спектр цугов с частотой повторения 1 и 2 к Γ ц

	$\nu_{\text{повт}}$ =	= 50 мкс	$ u_{\text{повт}} = 100 \text{ мкс} $		
№ гармоники	ν, кГц	Um, мВ	ν, кГц	Um, мВ	
-10	20	0			
-9	21	7.59			
-8	22	15.49			
-7	23	24.21			
-6	24	31.43			
-5	25	41.15	20	0	
-4	26	45.23	22	30.48	
-3	27	52.76	24	63.11	
-2	28	54.01	26	91.34	
-1	29	59.97	28	107.6	
0	30	68.75	30	124.6	
1	31	58.09	32	99.49	
2	32	49.93	34	75.65	
3	33	48.08	36	48.68	
4	34	38.33	38	22.33	
5	35	35.82	40	0	
6	36	24.52			
7	37	20.13			
8	38	10.72			
9	39	5.39			
10	40	0			

Таблица 4. Амплитудная модуляция

A ₁ , B	A _{max} , мВ	A _{min} , мВ	А _{осн} , мВ	А _{бок} , мВ	m	k
0.2	549.3	448.9	324	14.69	0.101	0.045
0.5	619.6	373.7	324	39.16	0.248	0.121
0.8	687.3	305.9	324	63	0.384	0.194
1.1	762.6	230.6	324	88.09	0.536	0.272
1.4	845.4	155.3	324.6	113.2	0.690	0.349
1.7	920.7	82.57	324.6	132.3	0.835	0.408
2	1008	74.69	349.2	141.4	0.862	0.405

6.2 Графики

График 1. Зависимость ширины спектра от длительности импульса при частоте повторения импульсов 1 к Γ ц.

График 2. Спектр прямоугольных сигналов при $\tau=50$ мкс

График 3. Спектр прямоугольных сигналов при au = 100 мкс

График 4. Спектр цугов при $\nu_{\text{повт}}=1$ к Гц

График 5. Спектр цугов при $\tau=1$ к Γ ц

График 6. Зависимость отношения амплитуды боковых колебаний к амплитуде несущего колебания от глубины модуляции

