GEOMETRY

Through Algebra

G. V. V. Sharma

Copyright ©2022 by G. V. V. Sharma.

 ${\rm https://creative commons.org/licenses/by-sa/3.0/}$

and

 $\rm https://www.gnu.org/licenses/fdl-1.3.en.html$

Contents

Intro	duction		iii
1 T	riangle		1
1.1	Vectors .		. 1
1.2	Median .		. 11
1.3	Altitude .		. 20
1.4	Perpendic	cular Bisector	. 24
1.5	Angle Bise	ector	. 29
1.6	Matrices		. 33
	1.6.1	Vectors	. 33
	1.6.2	Median	. 35
	1.6.3	Altitude	. 36
	1.6.4	Perpendicular Bisector	. 36
	1.6.5	Angle Bisector	. 37
2 L	inear Equ	ations	39
2.1	9		. 39
	2.1.1	9.3.3	. 39
	2.1.2	9.4.1	. 39

		2.1.3	9.4.2	 40
		2.1.4	9.4.3	 41
2.2	10			 44
		2.2.1	Examples:-1-19 (10.3)	 44
		2.2.2	10.3.1	 48
		2.2.3	10.3.2	 48
		2.2.4	10.3.3	 52
		2.2.5	10.3.4	 54
		2.2.6	10.3.5	 55
		2.2.7	10.3.6	 58
		2.2.8	10.3.7	 61
3 (Quad	dratic I	Equations	65
3.1	10			 65
		3.1.1	Examples:-1-18 (10.4)	 65
		3.1.2	10.4.1	 68
		3.1.3	10.4.2	 69
		3.1.4	10.4.3	 70
		3.1.5	10.4.4	 72
4 (Coor	rdinate	Geometry	75
4.1				
4.1	10		Examples:-1-15 (10.7)	75
		4.1.1	LX4111D162:-1-13 (10.1)	 -60

	4.1.2	10.7.1				 		 •	•	 	. 77
	4.1.3	10.7.2				 				 	. 79
	4.1.4	10.7.3				 				 	81
	4.1.5	10.7.4				 				 	81
5 St	raight Liı	nes									87
5.1	11					 				 	. 87
	5.1.1	Examples:-1-25	(1	L. 10)	١.	 			•	 	. 87
	5.1.2	11.10.1				 				 	91
	5.1.3	11.10.2				 				 	. 92
	5.1.4	11.10.3				 				 	. 95
	5.1.5	11.10.4				 				 	. 97
6 Ci	rcles										101
6.1	11					 				 	101
	6.1.1	11.11.1				 				 	101
7 3E) Geomet	ry									103
7.1	11					 				 	103
	7.1.1	Examples:-1-13	(1)	l.12)	١.	 				 	. 103
	7.1.2	11.12.1				 				 	105
	7.1.3	11.12.2				 				 	106
	7.1.4	11.12.3				 				 	. 107
	7.1.5	11.12.4				 				 	. 107

8	Mat	rices		109
8.1	12			109
		8.1.1	Examples:-1-28 (12.3)	109
		8.1.2	12.3.1	115
		8.1.3	12.3.2	117
		8.1.4	12.3.3	122
		8.1.5	12.3.5	125
8.2	De	etermina	nnts	128
		8.2.1	Examples:-1-34 (12.4)	128
9	Vect	or Alge	ebra	135
10	Trig	onomet	ry	137
	Ü		ry	
10.	1 Ra	itios	·	137
10. 10.	1 Ra 2 Th	itios ne Baudl		137
10. 10. 10.	1 Ra 2 Th 3 Ar	ntios ne Baud ea of a	hayana Theorem	137
10. 10. 10. 10.	1 Ra 2 Th 3 Ar 4 Ar	ntios ne Baudle ea of a ngle Bise	hayana Theorem	137 138 141 145
10. 10. 10. 10.	1 Ra 2 Th 3 Ar 4 Ar 5 Ci	ntios ne Baudlea ea of a ngle Bise rcumrad	hayana Theorem	137 138 141 145 149
10. 10. 10. 10. 10.	1 Ra 2 Th 3 Ar 4 Ar 5 Cir 6 Ta	ntios ne Baud ea of a ngle Bise rcumrad	hayana Theorem	137 138 141 145 149 151
10. 10. 10. 10. 10. 10. 10.	1 Ra 2 Th 3 Ar 4 Ar 5 Ci 6 Ta 7 Ido	ne Baudles of a ngle Bisercumrad ngent entities	hayana Theorem	137 138 141 145 149 151
10. 10. 10. 10. 10. 11.	1 Ra 2 Th 3 Ar 4 Ar 5 Ci 6 Ta 7 Ide	ne Baudlea of a ngle Bise rcumrad ngent entities	hayana Theorem	

11.3 Matrices: Cosine Formula	165
11.4 Area of a Triangle: Cross Product	168
11.5 Parallelogram	169
11.6 Altitudes of a Triangle:Line Equation	169
11.7 Circumcircle: Circle Equation	172
11.8 Tangent	177
12 Triangle	183
13 Quadrilateral	197
14 Circle	209
15 Miscellaneous	217

Introduction

This book shows how to solve problems in geometry using trigonometry and coordinate geometry.

Chapter 1

Triangle

Consider a triangle with vertices

$$\mathbf{A} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \, \mathbf{B} = \begin{pmatrix} -4 \\ 6 \end{pmatrix}, \, \mathbf{C} = \begin{pmatrix} -3 \\ -5 \end{pmatrix}$$
 (1.1)

1.1. Vectors

h

1.1.1. The direction vector of AB is defined as

$$\mathbf{B} - \mathbf{A} \tag{1.1.1.1}$$

Find the direction vectors of AB, BC and CA.

Solution:

(a) The Direction vector of AB is

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} -4 \\ 6 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -4 - 1 \\ 6 - (-1) \end{pmatrix} = \begin{pmatrix} -5 \\ 7 \end{pmatrix} \quad (1.1.1.2)$$

(b) The Direction vector of BC is

$$\mathbf{C} - \mathbf{B} = \begin{pmatrix} -3 \\ -5 \end{pmatrix} - \begin{pmatrix} -4 \\ 6 \end{pmatrix} = \begin{pmatrix} -3 - (-4) \\ -5 - 6 \end{pmatrix} = \begin{pmatrix} 1 \\ -11 \end{pmatrix}$$

$$(1.1.1.3)$$

(c) The Direction vector of CA is

$$\mathbf{A} - \mathbf{C} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \begin{pmatrix} -3 \\ -5 \end{pmatrix} = \begin{pmatrix} 1 - (-3) \\ -1 - (-5) \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \quad (1.1.1.4)$$

1.1.2. The length of side BC is

$$c = \|\mathbf{B} - \mathbf{A}\| \triangleq \sqrt{(\mathbf{B} - \mathbf{A})^{\top} (\mathbf{B} - \mathbf{A})}$$
 (1.1.2.1)

where

$$\mathbf{A}^{\top} \triangleq \begin{pmatrix} 1 & -1 \end{pmatrix} \tag{1.1.2.2}$$

Similarly,

$$b = \|\mathbf{C} - \mathbf{B}\|, a = \|\mathbf{A} - \mathbf{C}\|$$
 (1.1.2.3)

Find a, b, c.

(a) Since,

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 5 \\ -7 \end{pmatrix},\tag{1.1.2.4}$$

$$c = \|\mathbf{A} - \mathbf{B}\| = \sqrt{\left(5 - 7\right) \left(\frac{5}{-7}\right)} = \sqrt{(5)^2 + (7)^2} \quad (1.1.2.5)$$

$$=\sqrt{74} (1.1.2.6)$$

(b) Similarly,

$$\mathbf{B} - \mathbf{C} = \begin{pmatrix} -1\\11 \end{pmatrix} \tag{1.1.2.7}$$

$$\implies a = \|\mathbf{B} - \mathbf{C}\| = \sqrt{\begin{pmatrix} -1 & 11 \end{pmatrix} \begin{pmatrix} -1 \\ 11 \end{pmatrix}} = \sqrt{(1)^2 + (11)^2}$$

(1.1.2.8)

$$=\sqrt{122} \tag{1.1.2.9}$$

and

(c)

$$\mathbf{A} - \mathbf{C} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$

$$\Rightarrow b = \|\mathbf{A} - \mathbf{C}\| = \sqrt{\left(4 \quad 4\right) \left(\frac{4}{4}\right)} = \sqrt{(4)^2 + (4)^2}$$

$$= \sqrt{32}$$

$$(1.1.2.11)$$

$$= (1.1.2.12)$$

1.1.3. Points A, B, C are defined to be collinear if

$$\operatorname{rank} \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} = 2 \tag{1.1.3.1}$$

Are the given points in (1.1) collinear?

Solution: From (1.1),

$$\begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -4 & -3 \\ -1 & 6 & -5 \end{pmatrix} \stackrel{R_3 \leftarrow R_3 + R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -4 & -3 \\ 0 & 2 & -8 \end{pmatrix}$$

$$(1.1.3.2)$$

$$\stackrel{R_2 \leftarrow R_1 - R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 5 & 4 \\ 0 & 2 & -8 \end{pmatrix} \stackrel{R_3 \leftarrow R_3 - \frac{2}{5}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 5 & 4 \\ 0 & 0 & \frac{-48}{5} \end{pmatrix}$$

$$(1.1.3.3)$$

There are no zero rows. So,

$$\operatorname{rank} \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} = 3 \tag{1.1.3.4}$$

Hence, the points $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are not collinear. This is visible in Fig. 1.1.

Figure 1.1: $\triangle ABC$

1.1.4. The parameteric form of the equation of AB is

$$\mathbf{x} = \mathbf{A} + k\mathbf{m} \tag{1.1.4.1}$$

where

$$\mathbf{m} = \mathbf{B} - \mathbf{A} \tag{1.1.4.2}$$

is the direction vector of AB. Find the parameteric equations of AB, BC and CA.

Solution: From (1.1.4.1) and (1.1.1.2), the parametric equation for AB is given by

$$AB: \mathbf{x} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} + k \begin{pmatrix} -5 \\ 7 \end{pmatrix} \tag{1.1.4.3}$$

Similarly, from (1.1.1.3) and (1.1.1.4),

$$BC: \mathbf{x} = \begin{pmatrix} -4\\6 \end{pmatrix} + k \begin{pmatrix} 1\\-11 \end{pmatrix} \tag{1.1.4.4}$$

$$CA: \mathbf{x} = \begin{pmatrix} -3 \\ -5 \end{pmatrix} + k \begin{pmatrix} 4 \\ 4 \end{pmatrix} \tag{1.1.4.5}$$

1.1.5. The normal form of the equation of AB is

$$\mathbf{n}^{\top} \left(\mathbf{x} - \mathbf{A} \right) = 0 \tag{1.1.5.1}$$

where

$$\mathbf{n}^{\mathsf{T}}\mathbf{m} = \mathbf{n}^{\mathsf{T}} \left(\mathbf{B} - \mathbf{A} \right) = 0 \tag{1.1.5.2}$$

or,
$$\mathbf{n} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{m}$$
 (1.1.5.3)

Find the normal form of the equations of AB, BC and CA.

Solution:

(a) From (1.1.1.3), the direction vector of side **BC** is

$$\mathbf{m} = \begin{pmatrix} 1 \\ -11 \end{pmatrix} \tag{1.1.5.4}$$

$$\implies \mathbf{n} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -11 \end{pmatrix} = \begin{pmatrix} -11 \\ -1 \end{pmatrix} \tag{1.1.5.5}$$

from (1.1.5.3). Hence, from (1.1.5.1), the normal equation of side BC is

$$\mathbf{n}^{\top} \left(\mathbf{x} - \mathbf{B} \right) = 0 \tag{1.1.5.6}$$

$$\implies \begin{pmatrix} -11 & -1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -11 & -1 \end{pmatrix} \begin{pmatrix} -4 \\ 6 \end{pmatrix} \qquad (1.1.5.7)$$

$$\implies BC: \quad \begin{pmatrix} 11 & 1 \end{pmatrix} \mathbf{x} = -38 \tag{1.1.5.8}$$

(b) Similarly, for AB, from (1.1.1.2),

$$\mathbf{m} = \begin{pmatrix} -5\\7 \end{pmatrix} \tag{1.1.5.9}$$

$$\implies \mathbf{n} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} -5 \\ 7 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix} \tag{1.1.5.10}$$

and

$$\mathbf{n}^{\top} (\mathbf{x} - \mathbf{A}) = 0 \tag{1.1.5.11}$$

$$\implies AB: \quad \mathbf{n}^{\top}\mathbf{x} = \begin{pmatrix} 7 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \tag{1.1.5.12}$$

$$\implies \left(7 \quad 5\right)\mathbf{x} = 2\tag{1.1.5.13}$$

(c) For CA, from (1.1.1.4),

$$\mathbf{m} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{1.1.5.14}$$

$$\implies \mathbf{n} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad (1.1.5.15)$$

(1.1.5.16)

$$\implies \mathbf{n}^{\top} (\mathbf{x} - \mathbf{C}) = 0 \tag{1.1.5.17}$$

$$\implies \begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} -3 \\ -5 \end{pmatrix} = 2 \tag{1.1.5.18}$$

1.1.6. The area of $\triangle ABC$ is defined as

$$\frac{1}{2} \| (\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C}) \| \tag{1.1.6.1}$$

where

$$\mathbf{A} \times \mathbf{B} \triangleq \begin{vmatrix} 1 & -4 \\ -1 & 6 \end{vmatrix} \tag{1.1.6.2}$$

Find the area of $\triangle ABC$.

Solution: From (1.1.1.2) and (1.1.1.4),

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 5 \\ -7 \end{pmatrix}, \mathbf{A} - \mathbf{C} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$
 (1.1.6.3)

$$\implies (\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C}) = \begin{vmatrix} 5 & 4 \\ -7 & 4 \end{vmatrix}$$
 (1.1.6.4)

$$= 5 \times 4 - 4 \times (-7) \tag{1.1.6.5}$$

$$=48$$
 (1.1.6.6)

$$\implies \frac{1}{2} \| (\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C}) \| = \frac{48}{2} = 24 \tag{1.1.6.7}$$

which is the desired area.

1.1.7. Find the angles A, B, C if

$$\cos A \triangleq \frac{(\mathbf{B} - \mathbf{A})^{\top} \mathbf{C} - \mathbf{A}}{\|\mathbf{B} - \mathbf{A}\| \|\mathbf{C} - \mathbf{A}\|}$$
(1.1.7.1)

(a) From (1.1.1.2), (1.1.1.4), (1.1.2.6) and (1.1.2.12)

$$(\mathbf{B} - \mathbf{A})^{\top} (\mathbf{C} - \mathbf{A}) = \begin{pmatrix} -5 & 7 \end{pmatrix} \begin{pmatrix} -4 \\ -4 \end{pmatrix}$$
 (1.1.7.2)

$$= -8$$
 (1.1.7.3)

$$\implies \cos A = \frac{-8}{\sqrt{74}\sqrt{32}} = \frac{-1}{\sqrt{37}} \tag{1.1.7.4}$$

$$\implies A = \cos^{-1} \frac{-1}{\sqrt{37}}$$
 (1.1.7.5)

(b) From (1.1.1.2), (1.1.1.3), (1.1.2.6) and (1.1.2.9)

$$(\mathbf{C} - \mathbf{B})^{\top} (\mathbf{A} - \mathbf{B}) = \begin{pmatrix} 1 & -11 \end{pmatrix} \begin{pmatrix} 5 \\ -7 \end{pmatrix}$$
 (1.1.7.6)

$$= 82 (1.1.7.7)$$

$$\implies \cos B = \frac{82}{\sqrt{74}\sqrt{122}} = \frac{41}{\sqrt{2257}}$$
 (1.1.7.8)

$$\implies B = \cos^{-1} \frac{41}{\sqrt{2257}}$$
 (1.1.7.9)

(c) From (1.1.1.3), (1.1.1.4), (1.1.2.9) and (1.1.2.12)

$$(\mathbf{A} - \mathbf{C})^{\top} (\mathbf{B} - \mathbf{C}) = \begin{pmatrix} 4 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ 11 \end{pmatrix}$$
 (1.1.7.10)

$$= 40 (1.1.7.11)$$

$$\implies \cos C = \frac{40}{\sqrt{32}\sqrt{122}} = \frac{5}{\sqrt{61}}$$
 (1.1.7.12)

$$\implies C = \cos^{-1} \frac{5}{\sqrt{61}}$$
 (1.1.7.13)

All codes for this section are available at

codes/triangle/sides.py

1.2. Median

1.2.1. If **D** divides BC in the ratio k:1,

$$\mathbf{D} = \frac{k\mathbf{C} + \mathbf{B}}{k+1} \tag{1.2.1.1}$$

(1.2.1.2)

Find the mid points \mathbf{D} , \mathbf{E} , \mathbf{F} of the sides BC, CA and AB respectively. Solution: Since \mathbf{D} is the midpoint of BC,

$$\implies \mathbf{D} = \frac{\mathbf{C} + \mathbf{B}}{2} = \frac{1}{2} \begin{pmatrix} -7\\1 \end{pmatrix} \tag{1.2.1.3}$$

k=1,

Similarly,

$$\mathbf{E} = \frac{\mathbf{A} + \mathbf{C}}{2} = \begin{pmatrix} -1 \\ -3 \end{pmatrix} \tag{1.2.1.4}$$

$$\mathbf{F} = \frac{\mathbf{A} + \mathbf{B}}{2} = \frac{1}{2} \begin{pmatrix} -3\\ 5 \end{pmatrix} \tag{1.2.1.5}$$

1.2.2. Find the equations of AD, BE and CF.

Solution: :

(a) The direction vector of AD is

$$\mathbf{m} = \mathbf{D} - \mathbf{A} = \begin{pmatrix} \frac{-7}{2} \\ \frac{1}{2} \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -9 \\ 3 \end{pmatrix} \equiv \begin{pmatrix} -3 \\ 1 \end{pmatrix} \quad (1.2.2.1)$$

$$\implies \mathbf{n} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \quad (1.2.2.2)$$

Hence the normal equation of median AD is

$$\mathbf{n}^{\top} \left(\mathbf{x} - \mathbf{A} \right) = 0 \tag{1.2.2.3}$$

$$\implies \begin{pmatrix} 1 & 3 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = -2 \tag{1.2.2.4}$$

(b) For BE,

$$\mathbf{m} = \mathbf{E} - \mathbf{B} = \begin{pmatrix} -1 \\ -3 \end{pmatrix} - \begin{pmatrix} -4 \\ 6 \end{pmatrix} = \begin{pmatrix} 3 \\ -9 \end{pmatrix} \equiv \begin{pmatrix} 1 \\ -3 \end{pmatrix} \quad (1.2.2.5)$$

$$\implies \mathbf{n} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \quad (1.2.2.6)$$

Hence the normal equation of median BE is

$$\mathbf{n}^{\top} \left(\mathbf{x} - \mathbf{B} \right) = 0 \tag{1.2.2.7}$$

$$\implies \left(3 \quad 1\right)\mathbf{x} = \left(3 \quad 1\right) \begin{pmatrix} -4\\6 \end{pmatrix} = -6 \tag{1.2.2.8}$$

(c) For median CF,

$$\mathbf{m} = \mathbf{F} - \mathbf{C} = \begin{pmatrix} \frac{-3}{2} \\ \frac{5}{2} \end{pmatrix} - \begin{pmatrix} -3 \\ -5 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \\ \frac{15}{2} \end{pmatrix} \equiv \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$
 (1.2.2.9)
$$\implies \mathbf{n} = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$$
 (1.2.2.10)

Hence the normal equation of median CF is

$$\mathbf{n}^{\top} \left(\mathbf{x} - \mathbf{C} \right) = 0 \tag{1.2.2.11}$$

$$\implies \left(5 \quad -1\right)\mathbf{x} = \left(5 \quad -1\right) \begin{pmatrix} -3\\ -5 \end{pmatrix} = -10 \qquad (1.2.2.12)$$

1.2.3. Find the intersection G of BE and CF.

Solution: From (1.2.2.8) and (1.2.2.12), the equations of BE and CF are, respectively,

$$\begin{pmatrix} 3 & 1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -6 \end{pmatrix} \tag{1.2.3.1}$$

$$\begin{pmatrix} 5 & -1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -10 \end{pmatrix} \tag{1.2.3.2}$$

From (1.2.3.1) and (1.2.3.2) the augmented matrix is

$$\begin{pmatrix} 3 & 1 & -6 \\ 5 & -1 & -10 \end{pmatrix} \xrightarrow{R_1 \leftarrow R_1 + R_2} \begin{pmatrix} 8 & 0 & -16 \\ 5 & -1 & -10 \end{pmatrix} \tag{1.2.3.3}$$

$$\stackrel{R_1 \leftarrow R_1/8}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & -2 \\ 5 & -1 & -10 \end{pmatrix} \stackrel{R_2 \leftarrow R_2 - 5R_1}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & -2 \\ 0 & -1 & 0 \end{pmatrix}$$
(1.2.3.4)

$$\stackrel{R_2 \leftarrow -R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \end{pmatrix} \quad (1.2.3.5)$$

using Gauss elimination. Therefore,

$$\mathbf{G} = \begin{pmatrix} -2\\0 \end{pmatrix} \tag{1.2.3.6}$$

1.2.4. Verify that

$$\frac{BG}{GE} = \frac{CG}{GF} = \frac{AG}{GD} = 2 \tag{1.2.4.1}$$

Solution:

(a) From (1.2.1.4) and (1.2.3.6),

$$\mathbf{G} - \mathbf{B} = \begin{pmatrix} 2 \\ -6 \end{pmatrix}, \ \mathbf{E} - \mathbf{G} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$
 (1.2.4.2)

$$\implies \mathbf{G} - \mathbf{B} = 2\left(\mathbf{E} - \mathbf{G}\right) \tag{1.2.4.3}$$

$$\implies \|\mathbf{G} - \mathbf{B}\| = 2\|\mathbf{E} - \mathbf{G}\| \tag{1.2.4.4}$$

or,
$$\frac{BG}{GE} = 2$$
 (1.2.4.5)

(b) From (1.2.1.5) and (1.2.3.6),

$$\mathbf{F} - \mathbf{G} = \frac{1}{2} \begin{pmatrix} 1 \\ 5 \end{pmatrix}, \, \mathbf{G} - \mathbf{C} \qquad = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \qquad (1.2.4.6)$$

$$\implies \mathbf{G} - \mathbf{C} = 2(\mathbf{F} - \mathbf{G}) \tag{1.2.4.7}$$

$$\implies \|\mathbf{G} - \mathbf{C}\| = 2\|\mathbf{F} - \mathbf{G}\| \tag{1.2.4.8}$$

or,
$$\frac{CG}{GF} = 2$$
 (1.2.4.9)

(c) From (1.2.1.3) and (1.2.3.6),

$$\mathbf{G} - \mathbf{A} = \begin{pmatrix} -3\\1 \end{pmatrix}, \mathbf{D} - \mathbf{G} = \frac{1}{2} \begin{pmatrix} -3\\1 \end{pmatrix} \qquad (1.2.4.10)$$

$$\mathbf{G} - \mathbf{A} = 2\left(\mathbf{D} - \mathbf{G}\right) \tag{1.2.4.11}$$

$$\implies \|\mathbf{G} - \mathbf{A}\| = 2\|\mathbf{D} - \mathbf{G}\| \tag{1.2.4.12}$$

or,
$$\frac{AG}{GD} = 2$$
 (1.2.4.13)

From (1.2.4.5), (1.2.4.9), (1.2.4.13)

$$\frac{BG}{GE} = \frac{CG}{GF} = \frac{AG}{GD} = 2 \tag{1.2.4.14}$$

1.2.5. Show that \mathbf{A}, \mathbf{G} and \mathbf{D} are collinear.

Solution: Points A, D, G are defined to be collinear if

$$\operatorname{rank} \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{D} & \mathbf{G} \end{pmatrix} = 2 \quad (1.2.5.1)$$

$$\implies \begin{pmatrix} 1 & 1 & 1 \\ 1 & -\frac{7}{2} & -2 \\ -1 & \frac{1}{2} & 0 \end{pmatrix} \xleftarrow{R_3 \leftarrow R_3 + R_2} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -\frac{7}{2} & -2 \\ 0 & -3 & -2 \end{pmatrix} \quad (1.2.5.2)$$

$$\stackrel{R_2 \leftarrow R_2 - R_1}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 1 \\ 0 & -\frac{9}{2} & -3 \\ 0 & -3 & -2 \end{pmatrix} \stackrel{R_3 \leftarrow R_3 - \frac{2}{3}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 1 \\ 0 & -\frac{9}{2} & -3 \\ 0 & 0 & 0 \end{pmatrix} (1.2.5.3)$$

Thus, the matrix (1.2.5.1) has rank 2 and the points are collinear. Thus, the medians of a triangle meet at the point G. See Fig. 1.2.

1.2.6. Verify that

$$\mathbf{G} = \frac{\mathbf{A} + \mathbf{B} + \mathbf{C}}{3} \tag{1.2.6.1}$$

G is known as the centroid of $\triangle ABC$.

Figure 1.2: Medians of $\triangle ABC$ meet at **G**.

Solution:

$$\mathbf{G} = \frac{\begin{pmatrix} 1 \\ -1 \end{pmatrix} + \begin{pmatrix} -4 \\ 6 \end{pmatrix} + \begin{pmatrix} -3 \\ -5 \end{pmatrix}}{3}$$

$$= \begin{pmatrix} -2 \\ 0 \end{pmatrix}$$
(1.2.6.2)

1.2.7. Verify that

$$\mathbf{A} - \mathbf{F} = \mathbf{E} - \mathbf{D} \tag{1.2.7.1}$$

The quadrilateral AFDE is defined to be a parallelogram.

Solution:

$$\mathbf{A} - \mathbf{F} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \begin{pmatrix} \frac{-3}{2} \\ \frac{5}{2} \end{pmatrix} = \begin{pmatrix} \frac{5}{2} \\ \frac{-7}{2} \end{pmatrix}$$
 (1.2.7.2)

$$\mathbf{E} - \mathbf{D} = \begin{pmatrix} -1 \\ -3 \end{pmatrix} - \begin{pmatrix} \frac{-7}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{5}{2} \\ \frac{-7}{2} \end{pmatrix}$$
 (1.2.7.3)

$$\implies \mathbf{A} - \mathbf{F} = \mathbf{E} - \mathbf{D} \tag{1.2.7.4}$$

See Fig. 1.3,

Figure 1.3: AFDE forms a parallelogram in triangle ABC

1.3. Altitude

1.3.1. \mathbf{D}_1 is a point on BC such that

$$AD_1 \perp BC \tag{1.3.1.1}$$

and AD_1 is defined to be the altitude. Find the normal vector of AD_1 . **Solution:** The normal vector of AD_1 is the direction vector BC and is obtained from (1.1.1.3) as

$$\mathbf{n} = \begin{pmatrix} 1 \\ -11 \end{pmatrix} \tag{1.3.1.2}$$

1.3.2. Find the equation of AD_1 .

Solution: The equation of AD_1 is

$$\mathbf{n}^{\top}(\mathbf{x} - \mathbf{A}) = 0 \tag{1.3.2.1}$$

$$\implies \begin{pmatrix} -1 & 11 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -1 & 11 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = -12 \tag{1.3.2.2}$$

1.3.3. Find the equations of the altitudes BE_1 and CF_1 to the sides AC and AB respectively.

Solution:

(a) From (1.1.1.4), the normal vector of CF_1 is

$$\mathbf{n} = \begin{pmatrix} -5\\7 \end{pmatrix} \tag{1.3.3.1}$$

and the equation of CF_1 is

$$\mathbf{n}^{\top} \left(\mathbf{x} - \mathbf{C} \right) = 0 \tag{1.3.3.2}$$

$$\implies \left(-5 \quad 7\right) \left(\mathbf{x} - \begin{pmatrix} -3\\ -5 \end{pmatrix}\right) = 0 \tag{1.3.3.3}$$

$$\implies \left(5 \quad -7\right)\mathbf{x} = 20,\tag{1.3.3.4}$$

(b) Similarly, from (1.1.1.2), the normal vector of BE_1 is

$$\mathbf{n} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{1.3.3.5}$$

and the equation of BE_1 is

$$\mathbf{n}^{\top} \left(\mathbf{x} - \mathbf{B} \right) = 0 \tag{1.3.3.6}$$

$$\implies \left(1 \quad 1\right) \left(\mathbf{x} - \begin{pmatrix} -4\\6 \end{pmatrix}\right) = 0 \tag{1.3.3.7}$$

$$\implies \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = 2, \tag{1.3.3.8}$$

1.3.4. Find the intersection **H** of BE_1 and CF_1 .

Solution: The intersection of (1.3.3.8) and (1.3.3.4), is obtained from the matrix equation

$$\begin{pmatrix} 1 & 1 \\ 5 & -7 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 2 \\ 20 \end{pmatrix} \tag{1.3.4.1}$$

which can be solved as

$$\begin{pmatrix} 1 & 1 & 2 \\ 5 & -7 & 20 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - 5R_1} \begin{pmatrix} 1 & 1 & 2 \\ 0 & -12 & 10 \end{pmatrix}$$
 (1.3.4.2)

$$\stackrel{R_2 \leftarrow \frac{R_2}{-12}}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & \frac{-5}{6} \end{pmatrix} \stackrel{R_1 \leftarrow R_1 - R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & \frac{17}{6} \\ 0 & 1 & \frac{-5}{6} \end{pmatrix}$$
(1.3.4.3)

yielding

$$\mathbf{H} = \frac{1}{6} \begin{pmatrix} 17 \\ -5 \end{pmatrix}, \tag{1.3.4.4}$$

See Fig. 1.4

1.3.5. Verify that

$$(\mathbf{A} - \mathbf{H})^{\top} (\mathbf{B} - \mathbf{C}) = 0 \tag{1.3.5.1}$$

Figure 1.4: Altitudes BE_1 and CF_1 intersect at ${\bf H}$

Solution: From (1.3.4.4),

$$\mathbf{A} - \mathbf{H} = -\frac{1}{6} \begin{pmatrix} 11\\1 \end{pmatrix}, \, \mathbf{B} - \mathbf{C} = \begin{pmatrix} -1\\11 \end{pmatrix} \qquad (1.3.5.2)$$

$$\implies (\mathbf{A} - \mathbf{H})^{\top} (\mathbf{B} - \mathbf{C}) = \frac{1}{6} \begin{pmatrix} 11 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 11 \end{pmatrix} = 0 \qquad (1.3.5.3)$$

1.4. Perpendicular Bisector

1.4.1. The equation of the perpendicular bisector of BC is

$$\left(\mathbf{x} - \frac{\mathbf{B} + \mathbf{C}}{2}\right) (\mathbf{B} - \mathbf{C}) = 0 \tag{1.4.1.1}$$

Substitute numerical values and find the equations of the perpendicular bisectors of AB, BC and CA.

Solution: From (1.1.1.2), (1.1.1.3), (1.1.1.4), (1.2.1.3), (1.2.1.4) and (1.2.1.5),

$$\frac{\mathbf{B} + \mathbf{C}}{2} = \frac{1}{2} \begin{pmatrix} -7\\1 \end{pmatrix}, \mathbf{B} - \mathbf{C} = \begin{pmatrix} -1\\11 \end{pmatrix}$$
 (1.4.1.2)

$$\frac{\mathbf{A} + \mathbf{B}}{2} = \frac{1}{2} \begin{pmatrix} -3 \\ 5 \end{pmatrix}, \mathbf{A} - \mathbf{B} = \begin{pmatrix} 5 \\ -7 \end{pmatrix}$$
 (1.4.1.3)

$$\frac{\mathbf{C} + \mathbf{A}}{2} = \begin{pmatrix} -1 \\ -3 \end{pmatrix}, \ \mathbf{C} - \mathbf{A} = \begin{pmatrix} -4 \\ -4 \end{pmatrix}$$
 (1.4.1.4)

(1.4.1.5)

yielding

$$(\mathbf{B} - \mathbf{C})^{\top} \left(\frac{\mathbf{B} + \mathbf{C}}{2} \right) = \begin{pmatrix} -1 & 11 \end{pmatrix} \begin{pmatrix} -\frac{7}{2} \\ \frac{1}{2} \end{pmatrix} = 9$$
 (1.4.1.6)

$$(\mathbf{A} - \mathbf{B})^{\top} \begin{pmatrix} \mathbf{A} + \mathbf{B} \\ 2 \end{pmatrix} = \begin{pmatrix} 5 & -7 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{5}{2} \end{pmatrix} = -25$$
 (1.4.1.7)

$$(\mathbf{C} - \mathbf{A})^{\top} \begin{pmatrix} \mathbf{C} + \mathbf{A} \\ 2 \end{pmatrix} = \begin{pmatrix} -4 & -4 \end{pmatrix} \begin{pmatrix} -1 \\ -3 \end{pmatrix} = 16$$
 (1.4.1.8)

Thus, the perpendicular bisectors are obtained from (1.4.1.1) as

$$BC: \quad \begin{pmatrix} -1 & 11 \end{pmatrix} \mathbf{x} = 9 \tag{1.4.1.9}$$

$$CA: \quad \left(5 \quad -7\right)\mathbf{x} = -25 \tag{1.4.1.10}$$

$$AB: \quad \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = -4 \tag{1.4.1.11}$$

1.4.2. Find the intersection \mathbf{O} of the perpendicular bisectors of AB and AC.

Solution:

The intersection of (1.4.1.10) and (1.4.1.11), can be obtained as

$$\begin{pmatrix} 5 & -7 & -25 \\ 1 & 1 & -4 \end{pmatrix} \xleftarrow{R_2 \leftarrow 5R_2 - R_1} \begin{pmatrix} 5 & -7 & -25 \\ 0 & 12 & 5 \end{pmatrix} \quad (1.4.2.1)$$

$$\stackrel{R_1 \leftarrow \frac{12}{7}R_1 + R_2}{\longleftrightarrow} \begin{pmatrix} \frac{60}{7} & 0 & \frac{-265}{7} \\ 0 & 12 & 5 \end{pmatrix} \stackrel{R_2 \leftarrow \frac{1}{12}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & \frac{-53}{12} \\ 0 & 1 & \frac{5}{12} \end{pmatrix} \quad (1.4.2.2)$$

$$\implies \mathbf{O} = \begin{pmatrix} \frac{-53}{12} \\ \frac{5}{12} \end{pmatrix} \quad (1.4.2.3)$$

1.4.3. Verify that **O** satisfies (1.4.1.1). **O** is known as the circumcentre.

Solution: Substituting from (1.4.2.3) in (1.4.1.1), when substituted in the above equation,

$$\left(\mathbf{O} - \frac{\mathbf{B} + \mathbf{C}}{2}\right)^{\top} (\mathbf{B} - \mathbf{C})$$

$$= \left(\frac{1}{12} \begin{pmatrix} -53 \\ 5 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -7 \\ 1 \end{pmatrix}\right)^{\top} \begin{pmatrix} -1 \\ 11 \end{pmatrix}$$

$$= \frac{1}{12} \begin{pmatrix} -11 & -1 \end{pmatrix} \begin{pmatrix} -1 \\ 11 \end{pmatrix} = 0 \quad (1.4.3.1)$$

1.4.4. Verify that

$$OA = OB = OC (1.4.4.1)$$

Figure 1.5: Circumcircle of $\triangle ABC$ with centre **O**.

1.4.5. Draw the circle with centre at ${\bf O}$ and radius

$$R = OA \tag{1.4.5.1}$$

This is known as the circumradius.

Solution: See Fig. 1.5.

1.4.6. Verify that

$$\angle BOC = 2\angle BAC. \tag{1.4.6.1}$$

Solution:

(a) To find the value of $\angle BOC$:

$$\mathbf{B} - \mathbf{O} = \begin{pmatrix} \frac{5}{12} \\ \frac{67}{12} \end{pmatrix}, \mathbf{C} - \mathbf{O} = \begin{pmatrix} \frac{17}{12} \\ \frac{-65}{12} \end{pmatrix} \quad (1.4.6.2)$$

$$\implies (\mathbf{B} - \mathbf{O})^{\top} (\mathbf{C} - \mathbf{O}) = \frac{-4270}{144} \qquad (1.4.6.3)$$

$$\implies \|\mathbf{B} - \mathbf{O}\| = \frac{\sqrt{4514}}{12}, \|\mathbf{C} - \mathbf{O}\| = \frac{\sqrt{4514}}{12} \quad (1.4.6.4)$$

Thus,

$$\cos BOC = \frac{(\mathbf{B} - \mathbf{O})^{\top} (\mathbf{C} - \mathbf{O})}{\|\mathbf{B} - \mathbf{O}\| \|\mathbf{C} - \mathbf{O}\|} = \frac{-4270}{4514}$$
(1.4.6.5)

$$\implies \angle BOC = \cos^{-1}\left(\frac{-4270}{4514}\right) \tag{1.4.6.6}$$

$$= 161.07536^{\circ} \text{ or } 198.92464^{\circ}$$
 (1.4.6.7)

(b) To find the value of $\angle BAC$:

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} -5 \\ 7 \end{pmatrix}, \mathbf{C} - \mathbf{A} = \begin{pmatrix} -4 \\ -4 \end{pmatrix} \quad (1.4.6.8)$$

$$\implies (\mathbf{B} - \mathbf{A})^{\top} (\mathbf{C} - \mathbf{A}) = -8 \tag{1.4.6.9}$$

$$\|\mathbf{B} - \mathbf{A}\| = \sqrt{74} \|\mathbf{C} - \mathbf{A}\| = 4\sqrt{2}$$
 (1.4.6.10)

Thus,

$$\cos BAC = \frac{(\mathbf{B} - \mathbf{A})^{\top} (\mathbf{C} - \mathbf{A})}{\|\mathbf{B} - \mathbf{A}\| \|\mathbf{C} - \mathbf{A}\|} = \frac{-8}{4\sqrt{148}}$$
 (1.4.6.11)

$$\implies \angle BAC = \cos^{-1}\left(\frac{-8}{4\sqrt{148}}\right) \tag{1.4.6.12}$$

$$= 99.46232^{\circ} \tag{1.4.6.13}$$

From (1.4.6.13) and (1.4.6.7),

$$2 \times \angle BAC = \angle BOC \tag{1.4.6.14}$$

1.4.7. Let

$$\mathbf{P} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \tag{1.4.7.1}$$

Find θ if

$$\mathbf{C} - \mathbf{O} = \mathbf{P} \left(\mathbf{A} - \mathbf{O} \right) \tag{1.4.7.2}$$

1.5. Angle Bisector

1.5.1. Let $\mathbf{D}_3, \mathbf{E}_3, \mathbf{F}_3$, be points on AB, BC and CA respectively such that

$$BD_3 = BF_3 = m, CD_3 = CE_3 = n, AE_3 = AF_3 = p.$$
 (1.5.1.1)

Obtain m, n, p in terms of a, b, c obtained in Problem 1.1.2.

Solution: From the given information,

$$a = m + n, (1.5.1.2)$$

$$b = n + p, (1.5.1.3)$$

$$c = m + p \tag{1.5.1.4}$$

which can be expressed as

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} m \\ n \\ p \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 (1.5.1.5)

$$\implies \begin{pmatrix} m \\ n \\ p \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} a \\ b \\ c \end{pmatrix} \tag{1.5.1.6}$$

Using row reduction,

$$\begin{pmatrix}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{R_3 \leftarrow R_3 - R_1}
\begin{pmatrix}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & -1 & 1 & -1 & 0 & 1
\end{pmatrix}$$
(1.5.1.7)

yielding

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix}$$
(1.5.1.10)

Therefore,

$$p = \frac{c+b-a}{2} = \frac{\sqrt{74} + \sqrt{32} - \sqrt{122}}{2}$$

$$m = \frac{a+c-b}{2} = \frac{\sqrt{74} + \sqrt{122} - \sqrt{32}}{2}$$

$$n = \frac{a+b-c}{2} = \frac{\sqrt{122} + \sqrt{32} - \sqrt{74}}{2}$$
(1.5.1.11)

upon substituting from (1.1.2.6), (1.1.2.9) and (1.1.2.12).

1.5.2. Using section formula, find

$$\mathbf{D}_3 = \frac{m\mathbf{C} + n\mathbf{B}}{m+n}, \ \mathbf{E}_3 = \frac{n\mathbf{A} + p\mathbf{C}}{n+p}, \ \mathbf{F}_3 = \frac{p\mathbf{B} + m\mathbf{A}}{p+m}$$
 (1.5.2.1)

- 1.5.3. Find the circumcentre and circumradius of $\triangle D_3 E_3 F_3$. These are the incentre and inradius of $\triangle ABC$.
- 1.5.4. Draw the circumcircle of $\triangle D_3 E_3 F_3$. This is known as the <u>incircle</u> of $\triangle ABC$.

Solution: See Fig. 1.6

Figure 1.6: Incircle of $\triangle ABC$

1.5.5. Using (1.1.7.1) verify that

$$\angle BAI = \angle CAI. \tag{1.5.5.1}$$

AI is the bisector of $\angle A$.

1.5.6. Verify that BI, CI are also the angle bisectors of $\triangle ABC$.

1.6. Matrices

The matrix of the veritices of the triangle is defined as

$$\mathbf{P} = \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} \tag{6.1}$$

1.6.1. **Vectors**

1.6.1.1. Obtain the direction matrix of the sides of $\triangle ABC$ defined as

$$\mathbf{M} = \begin{pmatrix} \mathbf{A} - \mathbf{B} & \mathbf{B} - \mathbf{C} & \mathbf{C} - \mathbf{A} \end{pmatrix} \tag{1.6.1.1.1}$$

Solution:

$$\mathbf{M} = \begin{pmatrix} \mathbf{A} - \mathbf{B} & \mathbf{B} - \mathbf{C} & \mathbf{C} - \mathbf{A} \end{pmatrix} \tag{1.6.1.1.2}$$

$$\mathbf{M} = \begin{pmatrix} \mathbf{A} - \mathbf{B} & \mathbf{B} - \mathbf{C} & \mathbf{C} - \mathbf{A} \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$

$$(1.6.1.1.2)$$

where the second matrix above is known as a circulant matrix. Note that the 2nd and 3rd row of the above matrix are circular shifts of the 1st row.

1.6.1.2. Obtain the normal matrix of the sides of $\triangle ABC$

Solution: Considering the roation matrix

$$\mathbf{R} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \tag{1.6.1.2.1}$$

the normal matrix is obtained as

$$\mathbf{N} = \mathbf{RM} \tag{1.6.1.2.2}$$

1.6.1.3. Obtain a, b, c.

Solution: The sides vector is obtained as

$$\mathbf{d} = \sqrt{\operatorname{diag}(\mathbf{M}^{\top}\mathbf{M})} \tag{1.6.1.3.1}$$

1.6.1.4. Obtain the constant terms in the equations of the sides of the triangle.

 ${\bf Solution:}$ The constants for the lines can be expressed in vector form

as

$$\mathbf{c} = \operatorname{diag}\left\{ \left(\mathbf{N}^{\top} \mathbf{P} \right) \right\} \tag{1.6.1.4.1}$$

1.6.2. Median

1.6.2.1. Obtain the mid point matrix for the sides of the triangle

Solution:

$$\begin{pmatrix} \mathbf{D} & \mathbf{E} & \mathbf{F} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
(1.6.2.1.1)

1.6.2.2. Obtain the median direction matrix.

Solution: The median direction matrix is given by

$$\mathbf{M}_1 = \begin{pmatrix} \mathbf{A} - \mathbf{D} & \mathbf{B} - \mathbf{E} & \mathbf{C} - \mathbf{F} \end{pmatrix}$$
 (1.6.2.2.1)

$$= \left(\mathbf{A} - \frac{\mathbf{B} + \mathbf{C}}{2} \quad \mathbf{B} - \frac{\mathbf{C} + \mathbf{A}}{2} \quad \mathbf{C} - \frac{\mathbf{A} + \mathbf{B}}{2}\right) \tag{1.6.2.2.2}$$

$$= \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & 1 \end{pmatrix}$$
 (1.6.2.2.3)

1.6.2.3. Obtain the median normal matrix.

1.6.2.4. Obtian the median equation constants.

1.6.2.5. Obtain the centroid by finding the intersection of the medians.

1.6.3. Altitude

1.6.3.1. Find the normal matrix for the altitudes

Solution: The desired matrix is

$$\mathbf{M}_2 = \begin{pmatrix} \mathbf{B} - \mathbf{C} & \mathbf{C} - \mathbf{A} & \mathbf{A} - \mathbf{B} \end{pmatrix} \tag{1.6.3.1.1}$$

$$\mathbf{M}_{2} = \begin{pmatrix} \mathbf{B} - \mathbf{C} & \mathbf{C} - \mathbf{A} & \mathbf{A} - \mathbf{B} \end{pmatrix}$$
 (1.6.3.1.1)
$$= \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$
 (1.6.3.1.2)

1.6.3.2. Find the constants vector for the altitudes.

Solution: The desired vector is

$$\mathbf{c}_2 = \operatorname{diag}\left\{ \left(\mathbf{M}^{\top} \mathbf{P} \right) \right\} \tag{1.6.3.2.1}$$

1.6.4. Perpendicular Bisector

1.6.4.1. Find the normal matrix for the perpendicular bisectors

Solution: The normal matrix is M_2

1.6.4.2. Find the constants vector for the perpendicular bisectors.

Solution: The desired vector is

$$\mathbf{c}_3 = \operatorname{diag} \left\{ \mathbf{M}_2^{\top} \begin{pmatrix} \mathbf{D} & \mathbf{E} & \mathbf{F} \end{pmatrix} \right\} \tag{1.6.4.2.1}$$

1.6.5. Angle Bisector

1.6.5.1. Find the points of contact.

Solution: The points of contact are given by

$$\left(\frac{n\mathbf{A}+p\mathbf{C}}{n+p} \quad \frac{p\mathbf{B}+m\mathbf{A}}{p+m} \quad \frac{m\mathbf{C}+n\mathbf{B}}{m+n}\right) = \left(\mathbf{A} \quad \mathbf{B} \quad \mathbf{C}\right) \begin{pmatrix} \frac{n}{b} & \frac{m}{c} & 0\\ 0 & \frac{p}{c} & \frac{n}{a}\\ \frac{p}{b} & 0 & \frac{m}{a} \end{pmatrix}$$
(1.6.5.1.1)

Chapter 2

Linear Equations

2.1. 9

2.1.1. 9.3.3

- In which quadrant or on which axis do each of the points(-2,4),(3,-1),(-1,0),(1,2) and (-3,-5) lie? Verify your answer by locating them on the Cartesian plane.
- 2. Plot the points (x, y) given in the following table on the plane, choosing the suitable units of distance on the axes.

Х	-2	-1	0	1	3
у	8	7	-1.25	3	-1

Table 2.1: table of values

2.1.2. 9.4.1

1. The cost of a notebook is twice the cost of a pen. Write a linear equation in two variables to represent this statement. (Take the Cost of a

notebook to be x and that of a pen to be y).

- 2. Express the following linear equation in the form ax + by + c = 0 and indicate the values of a, b and c in each case:
 - (i) $2x + 3y = 9.3\overline{5}$
 - (ii) $x \frac{y}{5} 10 = 10$
 - (iii) -2x + 3y = 6
 - (iv) x = 3y
 - (v) 2x = -5y
 - (vi) 3x + 2 = 0
 - (vii) y 2 = 0
 - (viii) 5 = 2x

2.1.3. 9.4.2

- 1. Which one of the following options is true, and why? y = 3x + 5 has
 - (i) a unique solution
 - (ii) only two solutions
 - (iii) infinitely many solutions
- 2. Write four solutions for each of the following equations
 - (i) 2x + y = 7
 - (ii) $\pi x + y = 9$

(iii)
$$x = 4y$$

- 3. Check which of the following are solutions of the equation x 2y = 4 and which are not
 - (i) (0,2)
 - (ii) (2,0)
 - (iii) (4,0)
 - (iv) $(\sqrt{2}, 4\sqrt{2})$
 - (v) (1,1)
- 4. Find the value of k if $x=2,\,y=1$ is a solution of the equation 2x+3y=4

2.1.4. 9.4.3

- 1. Draw the graph of each of the following linear equations in two variables:
 - (i) x + y = 4
 - (ii) x y = 2
 - (iii) y = 3x
 - (iv) 3 = 2x + y
- 2. Give the equations of two lines passing through (2,14). How many more such lines are there and why?

- 3. If the point(3,4) lies on the graph of the equation 3y = ax + 7 find the value of a
- 4. The taxi fare in the city is as follows: for te first kilometre, the fare is ₹ 8 and for the subsquent distance is ₹ 5 per km. Taking the distance Covered as x km and total fare as ₹ y. Write a linear equation for this information, and draw its graph.
- 5. From the choices given below, choose the equation whose graphs are given Fig 4.6 Fig 4.7

For fig-4.6

- (i) y = x
- (ii) x + y = 0
- (iii) y = 2x
- (iv) 2 + 3y = 7x

For fig-4.7

- (i) y = x + 2
- (ii) y = x 2
- (iii) y = -x + 2
- (iv) x + 2y = 6
- 6. If the work done by a body of a constant force is directly proportional to the distance travelled by the body, express this in the form of an equation and draw the graph of the same by taking the variables and

Figure 2.1: Graph

draw the graph of the same by taking the constant force as 5*units*. Also read from the graph the work done when the distance travelled by the body is

- (i) 2Units
- (ii) 0Unit
- 7. Yamini and Fatima, two students of class IX of a school, together contributed ₹ 100 towards the prime minister's reief fund to help the earhquake victims. Write a linear equation which satisfies this data. (you may take their contributions ₹ x and ₹ y.Draw the graph of the same.
- 8. In Countries like USA and Canada temperature is measured in Celsius. Here is a linear equation that converts Farenheit to celsius: $F=\frac{9}{5}C+32$

- (i) Draw the graph of the linear equation above using Celsius for x axis and Farenheit for y axis
- (ii) If the temperature is $30^{\circ}C$, what is the temperature in farenheight?
- (iii) If the temperature is $95^{\circ}F$, what is the temperature in celsius?
- (iv) If the temperature is $0^{\circ}C$. What is the temperature in Farenheit and if the temperature in celsius?
- (v) Is there a temperature Which is numerically same in both Farenheit and Celsius? If yes find it.

2.2. 10

2.2.1. Examples:-1-19 (10.3)

- Let us take the example given in Section 3.1. Akhila goes to a fair with
 ₹ 20 and wants to have rides on the Giant Wheel and play Hoopla.

 Represent this situation algebraically and graphically (geometrically).
- 2. Romila went to a stationary shop and purchased 2 pencils and 3 erasers for ₹ 9. Her friend Sonali saw the new variety of pencils and erasers with Romila, and she also bought 4 pencils and 6 erasers of the same kind for ₹ 18. Represent this situation algebraically and graphically.
- 3. Two rails are represented by the equations x + 2y 4 = 0 and 2x + 4y 12 = 0. Represent this situation geometrically.

4. Check graphically whether the pair of equations.

$$x + 3y = 6 \tag{4.1}$$

and
$$2x - 3y = 12$$
 (4.2)

is consistent. If so, Solve them graphically.

5. Graphically, find whether the following pair of equatons has no solution, unique solution or infinitely many solutions.

$$5x - 8y + 1 = 0 (5.1)$$

$$3x - \frac{24}{5}y + \frac{3}{5} = 0\tag{5.2}$$

- 6. Champa went to a "Sale" to purchase some pants and skirts. When her friends asked her how many of each she had boughte she answered, "The number of skirts is two less than twice the number of pants purchased. Also, the number of skirts is four less than four times the number of pants purchased". Help her friends to find how many pants and skirts Champa bought.
- 7. Solve the following pair of equations by substitution method:

$$7x - 15y = 2 (7.1)$$

$$x + 2y = 3 \tag{7.2}$$

8. Solve Q.1 of Exercise 3.1 by the method of substitution.

Aftab tells his daughter, "Seven years ago, I was seven times as old as you were then. Also, three years from now, I shall be three times as old as you will be." (Isn't this interesting?) Represent this situation algebraically and graphically.

- 9. Let us consider Example 2 in Section 3.3 i.e., the cost of 2 pencils and 3 erasers is ₹ 9 and the cost of 4 pencils and 6 erasers is ₹ 18. Find the cost of each pencil and each eraser.
- 10. Let us consider the Example 3 of Section 3.2. Will the rails cross each other? Two rails are represented by the equations x + 2y 4 = 0 and 2x + 4y 12 = 0. Represent this situation geometrically.
- 11. The ratio of incomes of two persons is 9:7 and the ratio of their expenditures is 4:3. If each of them manages to save ₹ 2000 per month, find their monthly incomes.
- 12. Use elimination method to find all possible solutions of the following pair of linear equations:-

$$2x + 3y = 8 (12.1)$$

$$4x + 6y = 7 (12.2)$$

- 13. The sum of a two digit number and the number obtained by reversing the digits is 66. If the digits of the number differ by 2, find the number. How many such numberes are there?
- 14. From a bus stand in Bangalore, if we buy 2 tickets to Malleshwaram

and 2 tickets to yeshwanthpur the total cost is ₹ 74. Find the fare from the bus stand to Malleshwaram, and to Yeshwanthpur.

15. For which values p does the pair of equations given below has unique solution.

$$4x + py + 8 = 0 (15.1)$$

$$2x + 2y + 2 = 0 (15.2)$$

16. For what values of k will the following pair of linear equations have infinitely many solutions.

$$kx + 3y - (k - 3) = 0 (16.1)$$

$$12x + ky - k = 0 (16.2)$$

17. Solve the pair of equations:

$$\frac{2}{x} + \frac{3}{y} = 13\tag{17.1}$$

$$\frac{5}{x} + \frac{4}{y} = -2\tag{17.2}$$

18. Solve the following pair of linear equations by reducing them to a pair of linear equations

$$\frac{5}{x-1} + \frac{1}{y-2} = 2\tag{18.1}$$

$$\frac{6}{x-1} - \frac{3}{y-2} = 1\tag{18.2}$$

19. A boat goes 30 km upstream and 44 km downstream in 10 hours. In 13 hours, it can go 40 km upstream and 55 km down-stream. Determine the speed of the stream and that of the boat in still water.

2.2.2. 10.3.1

- 1. Aftab tells his daughter, "Seven years ago, I was seven times as old as you were then. Also, 3 years from now, I shall be 3 times as old as you will be. "(Isn't it interesting? Represent this situation algebraically and graphically.
- 2. The coach of a cricket team buys 3 bats and 6 balls for Rs.3900. Later, she buys another bat and 3 more balls of the same kind for Rs.3300. Represent this situation algebraically and geometrically.
- 3. The cost of 2kg of apples and 1kg of grapes on a day was found to be Rs.160. After a month, the cost of 4kg of apples and 2kg of grapes is Rs.300. Represent this situation algebraically and geometrically.

2.2.3. 10.3.2

- 1. Form the pair of linear equations in the following problems and find their solutions graphically:
 - (i) 10 students of Class X took part in a Mathematics quiz. If the number of girls is 4 more than the number of boys, find the number of boys and girls who took part in the quiz.

- (ii) 5 pencils and 7 pens together cost Rs.50 whereas 7 pencils and 5 pens together cost Rs.46. Find the cost of one pencil and that of one pen.
- 2. On comparing the ratios $\frac{a_1}{a_2}$, $\frac{b_1}{b_2}$ and $\frac{c_1}{c_2}$, find out whether the lines representing the following pairs of linear equations intersect at a point, are parallel or coincident:

(i)

$$5x - 4y + 8 = 0 (2.1)$$

$$7x + 6y - 9 = 0 (2.2)$$

(ii)

$$9x + 3y + 12 = 0 (2.3)$$

$$18x + 6y + 24 = 0 (2.4)$$

(iii)

$$6x - 3y + 10 = 0 (2.5)$$

$$2x - y + 9 = 0 (2.6)$$

3. On comparing the ratios $\frac{a_1}{a_2}$, $\frac{b_1}{b_2}$ and $\frac{c_1}{c_2}$, find out whether the following equations are consistent, or inconsistent:

(i)

$$3x + 2y = 5;$$
 (3.1)

$$2x - 3y = 7 \tag{3.2}$$

(ii)

$$2x - 3y = 8; (3.3)$$

$$4x - 6y = 9 (3.4)$$

(iii)

$$\frac{3}{2}x + \frac{5}{3}y = 7; (3.5)$$

$$9x - 10y = 14 (3.6)$$

(iv)

$$5x - 3y = 11; (3.7)$$

$$-10x + 6y = -22 (3.8)$$

(v)

$$\frac{4}{3}x + 2y = 8; (3.9)$$

$$2x + 3y = 12 (3.10)$$

4. Which of the following pairs of linear equations are consistent/inconsistent? If consistent, obtain solution graphically:

(i)

$$x + y = 5; (4.1)$$

$$2x + y = 10 (4.2)$$

(ii)

$$x - y = 8; (4.3)$$

$$3x - 3y = 16 (4.4)$$

(iii)

$$2x + y - 6 = 0; (4.5)$$

$$4x - 2y + 4 = 0 (4.6)$$

(iv)

$$2x - 2y - 2 = 0; (4.7)$$

$$4x - 4y - 5 = 0 (4.8)$$

- 5. Half the perimeter of a rectangular garden, whose length is 4m, more than its width, is 36m. Find the dimensions of the garden.
- 6. Given the linear equation 2x+3y-8=0, write another linear equation

in two variables such that geometrical representation of the pair so formed is:

- (i) intersecting lines
- (ii) parallel lines
- (iii) coincident lines
- 7. Draw the graphs of the equations x y + 1 = 0 and 3x + 2y 12 = 0. Determine the coordinates of the vertices of the triangle formed by these lines and the axis and shade the triangular region.

2.2.4. 10.3.3

1. Solve the following pair of linear equations by the substitution method.

(i)

$$x + y = 14 \tag{1.1}$$

$$x - y = 4 \tag{1.2}$$

(ii)

$$s - t = 3 \tag{1.3}$$

(iii)

$$3x - y = 3 \tag{1.4}$$

$$9x - 3y = 9 \tag{1.5}$$

$$0.2x + 0.3y = 1.3 \tag{1.6}$$

$$0.4x + 0.5y = 23 (1.7)$$

(iv)

$$\sqrt{2x} + \sqrt{3y} = 0 \tag{1.8}$$

$$\sqrt{3x} - \sqrt{8y} = 0 \tag{1.9}$$

(v)

$$\frac{3x}{2} - \frac{5y}{2} = -2\tag{1.10}$$

$$\frac{x}{3} + \frac{y}{2} = \frac{13}{6} \tag{1.11}$$

- 2. Solve 2x + 3y = 11 and 2x + 4y = -24 and hence find the value of m for which y = mx + 3
- 3. Form the pair of linear equations for the following problems and find their solutions by the substitution method
 - (I) The difference between two numbers is 26 and one number is three times the other. Find them.

- (II) The larger of two supplementary angles exceeds the smaller by 18 degrees. Find them.
- (III) The coach of a cricket team buys 7 balls and 6 balls for ₹ 3800. Later, she buys 3 bats and 5 balls for ₹ 1750. Find the cost of each bat and each ball.
- (IV) The taxi charges in a city consist of a fixed charge together with the charges for the distance covered. For a distance of 10 km, the charge paid is ₹ 105 and for a distance of 15 km, the charge paid is ₹ 155. What are the fixed charges and the charge per km? How much does a person have to pay for travelling a distance of 25 km?
- (V) A fraction becomes $\frac{9}{11}$ if 2 is added to both the numerator and the denominator. If 3 is added to both the numerator and the denominator, it becomes $\frac{5}{6}$. Find the fraction.
- (VI) Five years hence, the age of Jacob will be three times that of his son. Five years ago, Jacob's age was seven times that of his son. What are their present ages?

2.2.5. 10.3.4

- 1. Solve the following pair of linear equations by the elimination method and the substitution method:
 - (i) x + y = 5 and 2x 3y = 4
 - (ii) 3x + 4y = 10 and 2x 2y = 2

(iii)
$$3x - 5y - 4 = 0$$
 and $9x = 2y + 7$

(iv)
$$\frac{x}{2} + \frac{2y}{3} = -1$$
 and $x - \frac{y}{3} = 0$

- 2. Form the pair of linear equations in the following problem, and find their solutions (if they exist) by the elimination method:
 - (i) If we add 1 to the numerator and subtract 1 from the denominator, a fraction reduces to 1. It becomes $\frac{1}{2}$ if we only add 1 to the denominator. What is the fraction?
 - (ii) Five years ago, Nuri was thrice as old as sonu. Ten years later, Nuri will be twice as old as sonu. How old are Nuri and sonu?
 - (iii) The Sum of the digits of a two-digit number is 9. Also, nine times this number is twice the number obtained by reversing the order of the digits. Find the number.
 - (iv) Meena Went to a bank to withdraw ₹ 2000. She asked the cashier to give her ₹ 50 and ₹ 100 notes only. Meena got 25 notes in all. Find how many notes ₹ 50 and ₹ 100 she received.
 - (v) A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Sarita paid ₹ 27 for seven days, While susy paid ₹ 21 for the book she paid for five days. Find the fixed charge and the charge for each extra day.

2.2.6. 10.3.5

1. Which of the following pairs of linear equations has unique solution, no solution or infinitely many solutions. In case there is a unique solu-

tion, find it by using cross multiplication method:

(i)

$$x - 3y - 3 = 0 (1.1)$$

$$3x - 9y - 2 = 0 (1.2)$$

(ii)

$$2x + y = 5 \tag{1.3}$$

$$3x + 2y = 8$$
 (1.4)

(iii)

$$3x - 5y = 20 (1.5)$$

$$6x - 10y = 40 (1.6)$$

(iv)

$$x - 3y - 7 = 0 (1.7)$$

$$3x - 3y - 15 = 0 (1.8)$$

2. (i) For which values of a and b does the following pair of linear

equations have an infinite number of solutions?

$$2x + 3y = 7 (2.1)$$

$$(a-b)x + (a-b)y = 3a + b - 2 (2.2)$$

(ii) For which value of k will the following pair of linear equation have no solution?

$$3x + y = 1 \tag{2.3}$$

$$(2k-1)x + (k-1)y = 2k+1 (2.4)$$

3. Solve the following pair of linear equations by the substituions and cross multiplication method:

$$8x + 5y = 9 (3.1)$$

$$3x + 2y = 4 (3.2)$$

- 4. Form the pair of linear equations in the following problems and find their solutions by any algebraic method:
 - (i) A part of monthly hostel charges is fixed and the remaining depends on the number of days one has taken food in the mess. When a student A takes food for 20 days she has to pay Rs.1000 as hostel charges whereas a student B who takes food for 26 days, pays Rs.1180 as hostel charges. Find the fixed charges and the cost of food per day.

- (ii) A fraction becomes $\frac{1}{3}$ when 1 is subtracted from the numerator and it becomes $\frac{1}{4}$ when 8 is added to the denominator. Find the fraction.
- (iii) Yash scored 40 marks in a test, getting 3 marks for each right answer and losing 1 mark for each wrong answer. Had 4 marks been awarded for each correct answer and 2 marks been deducted for each incorrect answer, then Yash would have scored 50 marks. How many questions were there in the test?
- (iv) Places A and B are 100km apart on a highway. One car starts from A and another from B at the same time. If the car travel in the same direction at different speeds, they meet in 5hrs. If they travel towards each other, they meet in 1hr. What are the speeds of the two cars?
- (v) The area of rectangle gets reduced by 9 square units, if its length is reduced by 5 units and breadth is increased by 3 units. If we increase the length by 3 units and the breadth by 2 units, the area increases by 67 square units. Find the dimensions of the rectangle.

2.2.7. 10.3.6

1. Solve the following pair of equations by reducing them to a pair of linear equations:

(i)

$$\frac{1}{2x} + \frac{1}{3y} = 2\tag{1.1}$$

$$\frac{1}{3x} + \frac{1}{2y} = \frac{13}{6} \tag{1.2}$$

(ii)

$$\frac{2}{\sqrt{x}} + \frac{3}{\sqrt{y}} = 2$$
 (1.3)

$$\frac{2}{\sqrt{x}} + \frac{3}{\sqrt{y}} = 2$$

$$\frac{4}{\sqrt{x}} - \frac{9}{\sqrt{y}} = -1$$
(1.3)

(iii)

$$\frac{4}{x} + 3y = 14\tag{1.5}$$

$$\frac{3}{x} - 4y = 23\tag{1.6}$$

(iv)

$$\frac{5}{x-1} + \frac{1}{y-2} = 2$$

$$\frac{6}{x-1} - \frac{3}{y-2} = 1$$
(1.7)

$$\frac{6}{x-1} - \frac{3}{y-2} = 1\tag{1.8}$$

(v)

$$\frac{7x - 2y}{xy} = 5\tag{1.9}$$

$$\frac{7x - 2y}{xy} = 5 (1.9)$$

$$\frac{8x + 7y}{xy} = 15 (1.10)$$

(vi)

$$6x + 3y = 6xy \tag{1.11}$$

$$2x + 4y = 5xy \tag{1.12}$$

(vii)

$$\frac{10}{x+y} + \frac{2}{x-y} = 4\tag{1.13}$$

$$\frac{10}{x+y} + \frac{2}{x-y} = 4$$
 (1.13)
$$\frac{15}{x+y} - \frac{5}{x-y} = -2$$
 (1.14)

(viii)

$$\frac{1}{3x+u} + \frac{1}{3x-u} = \frac{3}{4} \tag{1.15}$$

$$\frac{1}{3x+y} + \frac{1}{3x-y} = \frac{3}{4}$$

$$\frac{1}{2(3x+y)} - \frac{1}{2(3x-y)} = \frac{-1}{8}$$
(1.15)

- 2. Formulate the following problems as a pair of equations, and hence find their solutions:
 - (i) Ritu can row downstream 20km in 2 hours, and upstream 4kmin 2 hours. Find her speed of rowing in still water and the speed of the current.
 - (ii) 2 women and 5 men can together finish an embroidery work in 4 days, while 3 women and 6 men can finish it in 3 days. Find the time taken by 1 women along to finish the work, and also that taken by 1 men alone.

(iii) Roohi travels 300km to her home partly by train and partly by bus. She takes 4 hours if she travels 60km by train and the remaining by bus. If she travels 100km by train and the remaining by bus, she takes 10 minutes longer. Find the speed of the train and the bus separately.

2.2.8. 10.3.7

- The ages of two friends ani and Biju differ by 3 years. Ani's father dharam is twice as old as Ani and Biju is twice as old as sister cathy. The ages of cathy and dharam differ by 30 years. Find the ages of Ani and Biju.
- 2. One says, "Give me a hundred, Friend! I shall then become twice as rich as you". The other "if you give me ten, i shall be six times as rich as you". Tell me What is the amount of their (respective) capital? [From the bijaganita of bhaskara II]

$$[Hint: X + 100 = 2(y - 100), y + 10 = 6(x - 10)]$$

- 3. A train Covered a certain distance at a uniform speed. If the train would have been 10 km/h faster, it would have taken 2 hours less than the scheduled time. And, if the train were slower by 10 km/h; it would have taken 3 hours more than the scheduled time. Find the distance covered by the train.
- 4. The students of a class are made to stand in rows. If 3 Students are extra in a row, there would be 1 row less. If 3 students are less in a

row, there would be 2 rows more. Find the number of stuents in the class.

- 5. In a $\triangle ABC$, $\angle C=3\angle B=2(\angle A+\angle B)$. Find the three angles
- 6. Draw the graphs of the equations 5x-y=5 and 3x-y=3. Determine the Co-ordinates of the vertices of the triangle formed by these lines and the y axis.
- 7. Solve the following pair of linear equations;

(a)

$$px + qy = p - q \tag{7.1}$$

$$qx - py = p + q \tag{7.2}$$

(b)

$$ax + by = c (7.3)$$

$$bx + ay = 1 + c \tag{7.4}$$

(c)

$$\frac{x}{a} - \frac{y}{b} = 0 \tag{7.5}$$

$$ax + by = a^2 + b^2$$
 (7.6)

(d)

$$(a-b)x + (a+b)y = a^2 - 2ab - b^2$$
 (7.7)

$$(a+b)(x+y) = a^2 + b^2 (7.8)$$

(e)

$$152x - 378y = -74 \tag{7.9}$$

$$-378x + 152y = -604 \tag{7.10}$$

8. ABCD is a cyclic quadrilateral [see Fig. 2.2]. Find the angles of the cyclic quadrilateral.

Figure 2.2: 3.7

Chapter 3

Quadratic Equations

3.1. 10

3.1.1. Examples:-1-18 (10.4)

- 1. Represent the following situation mathematically:
 - (i) John and Jevanti together have 45 marbles. Both of them lost 5 marbles each, and the product of the number of marbles they now have is 124. We would like to find out how many marbles they had to start with.
 - (ii) A cottage industry produces a certain number of toys a day. The cost of production of each toy (in Rupees) was found to be 55 minus the number of toys produced in a day. On a particular day, the total cost of production was ₹ 750. We would like to find out the number of toys produced on that day.
- 2. Check whether the following are quadratic equations:

(i)
$$(x-2)^2 + 1 = 2x - 3$$

(ii)
$$x(x+1) + 8 = (x+2)(x-2)$$

(iii)
$$x(2x+3) = X^2 + 1$$

(iv)
$$(x+2)^3 = x^3 - 4$$

- 3. Find the roots of the equation $2x^2 5x + 3 = 0$ by factorisation.
- 4. Find the roots of the quadratic equation $6x^2 x 2 = 0$.
- 5. Find the roots of the quadratic equation $3x^2 2\sqrt{6}x + 2 = 0$
- 6. Find the dimensions of the prayer hall discussed in Section 4.1. A charity trust decides to build a prayer hall having a carpet area of 300 square metres with its length one metre more than twice its breath.

 What should be the length and breadth of the hall?
- 7. Solve the equation given in Example 3 by the method of completing the square.
- 8. Find the roots of the equation $5x^2 6x 2 = 0$ by the method of completing the square.
- 9. Find the roots of $4x^2 + 3x + 5 = 0$ by the method of completing the square.
- 10. Solve Q.2(i) of exercise 4.1 by using the quadratic formula.
 - (i) The area of a rectangle plot is $528m^2$. The length of the plot (in metres) is one more than twice its breadth. We need to find the length and breadth of the plot.

- 11. Find two consecutive odd positive integers, sum of whose squares is 290.
- 12. A rectangular park is to be designed whose breadth is 3 m less than its length. Its are is to be 4 square metres than the area of a park that has already been made in the shape of a isoceles triangle with its base as the breadth of the rectangular park and of altitude 12 m (see Fig. 3.1). Find its length and breadth.
- 13. Find the roots of the following quadratic equations, if they exist, using the quadratic formula.

(i)
$$3x^2 - 5x + 2 = 0$$

(ii)
$$x^2 + 4x + 5 = 0$$

(iii)
$$2x^2 - 2\sqrt{2}x + 1 = 0$$

14. Find the roots of the following equations:

(i)
$$x + \frac{1}{x} = 3, x \neq 0$$

(ii)
$$\frac{1}{x} - \frac{1}{x-2} = 3, x \neq 0, 2$$

- 15. A motor boat whose speed is 18 km/h in still water takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream.
- 16. Find the discriminant of the quadratic equation $2x^2 4x + 3 = 0$, and hence find the nature of its roots.
- 17. A pole has to be erected at a point on the boundary of a circular park of diameter 1.3 metres in such a way that the difference of its distances

from two diametrically opposite fixed gates A and B on the boundary is 7 metres. Is it possible to do so? If yes, at what distances from the two gatees should the pole be erected?

18. Find the discriminant of the equation $3x^2 - 2x + \frac{1}{3} = 0$ and hence find the nature of its roots. Find them, if they are real.

3.1.2. 10.4.1

1. Check whether the following are quadratic equations:

(i)
$$(x+1)^2 = 2(x-3)$$

(ii)
$$x^2 - 2x = (-2)(3 - x)$$

(iii)
$$(x-2)(x+1) = (x-1)(x+3)$$

(iv)
$$(x-3)(2x-1) = x(x+5)$$

(v)
$$(2x-1)(x-3) = (x+5)(x-1)$$

(vi)
$$x^2 + 3x + 1 = (x - 2)^2$$

(vii)
$$(x+2)^3 = 2x(x^2-1)$$

(viii)
$$x^3 - 4x^2 - x - 1 = (x - 2)^3$$

2. Represent the folloing situations in form of quadratic equations:

- (i) The area of rectangulr plot is $528m^2$. The length of the plot (in metres) is one more than twice its breadth. We need to find the length and breadth of the plot.
- (ii) The product of two consecutive positive integers is 306. We need to find the integers.

- (iii) Rohan's mother is 26 years older than him. The product of their ages(in years) 3 years from now will be 360. We would like to find Rohan's present age.
- (iv) A train travels a distance of 480km at a unifom speed. If the speed had been 8km/h less, then it would have taken 3hours more to cover the same distance. We need to find the speed of the train.

3.1.3. 10.4.2

- 1. Find the roots of the following quadratic equations by factorisation:
 - (i) $x^2 3x 10 = 0$
 - (ii) $2x^2 + x 6 = 0$
 - (iii) $\sqrt{2}x^2 + 7x + 5\sqrt{2} = 0$
 - (iv) $2x^2 x + \frac{1}{8} = 0$
 - (v) $100x^2 20x + 1 = 0$
- 2. Represent the following situations mathematically;
 - (i) John and Jivanti together have 45 marbles. Both of them lost 5 marbles each, and the product of the number of marbles they have is 124. We would like to find out how many marbles they had to start with.
 - (ii) A cottage industry produces a certain number of toys in a day. The cost of production of each toy (in rupees) was found to be 55 minus the number of toys produced in a day. On a particular

day, the total cost of production was ₹ 750. We would like to find out the number of toys produced on that day.

- 3. Find two numbers whose sum is 27 and product is 182.
- 4. Find two consecutive positive integers, sum of whose squares is 365.
- 5. The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, find the other two sides.
- 6. A cottage industry produces a certain number of pottery articles in a day. It was observed on a particular day that the cost of production of each article (in rupees) was 3 more than twice the number of articles produced on that day. If the total cost of production on that day was ₹ 90, find the number of articles produced and the cost of each article.

3.1.4. 10.4.3

- 1. Find the roots of the following quadratic equations, if they exist, by the method of completing the square:
 - (i) $2x^2 7x + 3 = 0$
 - (ii) $2x^2 + x 4 = 0$
 - (iii) $4x^2 + 4\sqrt{3}x + 3 = 0$
 - (iv) $2x^2 + x + 4 = 0$
- 2. Find the roots of the quadratic equations given in Q.1 above by applying the quadratic formula.

3. Find the roots of the following equations:

(i)

$$x - \frac{1}{x} = 3, x \neq 0 \tag{3.1}$$

(ii)

$$\frac{1}{x+4} - \frac{1}{x-7} = \frac{11}{30}, x \neq -4, 7 \tag{3.2}$$

- 4. The sum of the reciprocals of Rehman's ages, (in years) 3 years ago and 5 years from now is $\frac{1}{3}$. Find his present age.
- 5. In a class test, the sum of shefali's marks in Mathematics and english is 30. Had she got 2 marks more in Mathematics and 3 marks less in English, the product of their marks would have been 210. Find her marks in the two subjects.
- 6. The diagonal of a rectangular field is 60 metres more than the Shorter side. If the longer side is 30 metres more than the shorter side, find the sides of the field.
- 7. The difference of squares of two numbers is 180. The square of the smaller number is 8 times the larger number. Find the two numbers.
- 8. A train travels 360 km at a uniform speed. If the speed had been 5 km/hr more, it would have taken 1 hour less for the same journey. Find the speed of the train.

- 9. Two Water taps together can fill a tank in $9\frac{3}{8}$ hours. The tap of larger diameter takes 10 hours. The tap of larger diameter takes 10 hours less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank.
- 10. An express train takes 1 hour less than a passenger train to travel 132 km between mysore and bangalore (without taking into consideration the time they stop at intermediate statioons). If the average speed of the express train is 11 Km/h more than that of the passenger train, find the average speed of the two trains.
- 11. Sum of the areas of two square is $468m^2$. If the difference of their perimeter is 24m, find the sides of the two squares.

3.1.5. 10.4.4

1. Find the nature of the roots of the following quadratic equations. If real roots exist, find them:

(i)
$$2x^2 - 3x + 5 = 0$$

(ii)
$$3x^2 - 4sqrt3x + 4 = 0$$

(iii)
$$2x^2 - 6x + 3 = 0$$

2. Find the values of k for each of the following quadratic equations, so that they hav equal roots:

(i)
$$2x^2 = kx - 3 = 0$$

(ii)
$$kx(x-2) + 6 = 0$$

- 3. Is it possible to design a rectangular mango grove whose length is twice its breadth, and the area is $800m^2$? If so, find its length and breadth.
- 4. Is the following situation possible? If so, determine their present ages.

 The sum of the ages of the two friends is 20 years. Four years ago, the product of their ages in years was 48.
- 5. Is it possible to design a rectangular park of perimeter 80m and area of $400m^2$. If so, find its length and breadth.

Chapter 4

Coordinate Geometry

4.1. 10

4.1.1. Examples:-1-15 (10.7)

- 1. Do the points (3,2), (-2,-3) and (2,3) form a triangle? If so, name the type of triangle formed.
- 2. Show that the points (1,7), (4,2), (-1,-1) and (-4,4) are the vertices of a square.
- 3. Fig. 4.1 shows the arrangement of desks in a classroom. Ashima, Bharti and Camella are seated at A(3,1), B(6,4) and C(8,6) respectively. Do you think they are seated in a line? Give reasons for your answer.
- 4. Find a relation between x and y such that the point (x, y) is equidistant from the points (7, 1) and (3, 5).
- 5. Find a point on the Y-axis which is equidistant from the points A(6,5) and B(-4,3).

Figure 4.1: 7.6

- 6. Find the coordinates of the point which divides the line segment joining the points (4, -3) and (8, 5) in the ratio 3:1 internally.
- 7. In what ratio does the point (-4,6) divide the line segment joining the points A(-6,0) and B(3,-8)?
- 8. Find the coordinates of the points of trisection (i.e. points dividing to three equal parts) of the line segment joining the points A(2, -2) and B(-7, 4).
- 9. Find the ratio in which the Y-axis divides the line segment joining the

points (5, -6) and (-1, -4). Also find the point of intersection.

- 10. If the points A(6,1), B(8,2), C(9,4) and D(p,3) are the vertices of a parallelogram, taken in order, find the value of p.
- 11. Find the area of the triangle whose vertices are (1, -1), (-4, 6) and (-3, 5).
- 12. Find the area of a triangle formed by the points A(5,2), B(4,7) and (7,-4).
- 13. Find the area of the triangle formed by the points P(-1.5,3), Q(6,-2) and R(-3,4).
- 14. Find the values of k if the points A(2,3), B(4,k) and C(6,-3) are collinear.
- 15. If A(-5,7), B(-4,-5), C(-1,-6) and D(4,5) are the vertices of a quadrilateral, find the area of quadrilateral ABCD.

4.1.2. 10.7.1

- 1. Find the distance between the following pairs of points:
 - (i) (2,3),(4,1)
 - (ii) (-5,7), (-1,3)
 - (iii) (a, b), (-a, b)
- 2. Find the distance between the points (0,0) and (36,15). Can you now find the two town A and B discussed in section 7.2.

- 3. Determine if the points (1,5), (2,3) and (-2,11) are collinear.
- 4. Check whether (5,2),(6,4) and (7,2) are the vertices of an isoceles triangle.
- 5. In a classroom, 4 friends are seated at the points A, B, C and D as shown Fig. 4.2 in Champa and chameli walk into the class and after observing for a fwe minutes champa asks chameli, "Don't you think ABCD is a square?" Chameli disagrees Using distance formula, find which of them is correct.
- 6. Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer:

(i)
$$(-1,2),(1,0),(-1,2),(3,0)$$

(ii)
$$(-3,5), (3,1), (0,3), (-1,-4)$$

(iii)
$$(4,5), (7,6), (4,3), (1,2)$$

- 7. Find the point on the x axis which is equidistant from (2,5) and (2,9).
- 8. Find the values of y for which the distance between the points P(2, -3) and Q(10, y) is 10 units.
- 9. Q(0,1) is equidistant from P(5,-3) and R(x,6), find the values of x. Also find the distances QR and PR.
- 10. Find a relation between x and y such that (x, y) is equidistant from the point (3, 6) and (-3, 4).

Figure 4.2: 7.8

4.1.3. 10.7.2

- 1. Find the coordinates of the point which divides the join of (-1,7) and (4,-3) in the ratio 2:3.
- 2. Find the coordinates of the points of trisection of the line segment joining (4,-1) and (-2,3).
- 3. To conduct Sports Day activities, in your rectangular shaped school

ground ABCD, lines have been drawn with chalk powder at a distance of 1m each. 100 flower pots have been placed at a distance of 1m from each other along AD, as shown in Fig. 4.3. Niharika runs $\frac{1}{4}th$ distance AD on the 2nd line and posts a green flag. Preet runs $\frac{1}{5}th$ the distance AD on the eighth line and posts a red flag. What is the distance between both the flags? If Rashmi has to post a blue flag exactly halfway between the line segment joining the two flags, where should she post her flag?

- 4. Find the ratio in which the line segment joining the points (-3, 10) and (6, -8) is divided by (1, -6).
- 5. Find the ratio in which the line segment joining A(1, -5) and B(-4, 5) is divided by the x-axis. Also find the coordinates of the point of division.
- 6. If (1,2), (4,y), (x,6) and (3,5) are the vertices of parallelogram taken in order, find x and y.
- 7. Find the coordinates of a point A, where AB is the diameter of a circle whose centre is (2, -3) and B is (1, 4).
- 8. If A and B are (-2, -2) and (2, -4) respectively, find the coordinates of P such that $AP = \frac{3}{7}$ AB and P lies on the line segment AB.
- 9. Find the coordinates of the points which divide the line segment joining A (2, -2) and B (2, 8) into four equal parts.

10. Find the area of a rhombus if its vertices are (3,0),(4,5),(1,-4) and (-2,-1) taken in order.

4.1.4. 10.7.3

- 1. Find the area of the triangles whose vertices are:
 - (i) (2,3), (-1,0), (2,-4)
 - (ii) (-5,1), (3,-5), (5,2)
- 2. In each of the following value of 'K', for which the points are collinear.
- 3. Find the area of the triangle by joining the mid-points of the sides of the triangle whose vertices are (0,1),(2,1) and (0,3). Find the ratio of this area to the area of the given triangle.
- 4. Find the area of the quadrilateral whose vertices, taken in order, are (-4, -2), (-3, -5), (3, -2) and (2, 3).
- 5. You have studied in class IX (chapter 9, Example 3),that a median of a triangle divides in two triangles of equal areas. Verify this result for $\triangle ABC$ whose vertices are A(4,-6), B(3,-2) and C(5,2).

4.1.5. 10.7.4

1. Determine the ratio in which the line 2x + y - 4 = 0 divides the line segment joining the points A(2, -2) and B(3, 7).

- 2. Find a relation between x and y if the points (x, y), (1, 2) and (7, 0) are collinear.
- 3. Find the centre of a circle passing through the points (6,-6), (3,-7) and (3,3).
- 4. The two opposite vertices of a square are (-1,2) and (3,2). Find the coordinates of the two other vertices.
- 5. The Class X students of a secondary school in Krishinagar have been allotted a rectangular plot of land for their gardening activity. Sapling of Gulmohar are planted on the boundary at a distance of 1m from each other, there is a triangular grassy lawn in the plot as shown in Fig. 4.4. The students are to sow seeds of flowering plants on the remaining area of the plot.
 - (i) Taking A as origin, find the coordinates of the vertices of the triangle.
 - (ii) What will be the coordinates of the vertices of $\triangle PQR$ if C is the origin Also calculate the areas of the triangles in these cases. What do you observe?
- 6. The vertices of a $\triangle ABC$ are A(4,6), B(1,5) and C(7,2). A line is drawn to intersect sides AB and AC at D and E respectively, such that $\frac{AD}{AB} = \frac{AE}{AC} = \frac{1}{4}$. Calculate the area of the $\triangle AD$ and compare it with he area of $\triangle ABC$.
- 7. Let A(4,2), B(6,5) and C(1,4) be the vertices of $\triangle ABC$.

- (i) The median from A meets BC at D. Find the coordinates of the points D.
- (ii) Find the coordinates of the point P on AD such that AP:PD=2:1.
- (iii) Find the coordinates of points Q and R on medians BE and CF respectively such that BQ: QE=2:1 and CR: RF=2:1.
- (iv) What do you observe?
- (v) If $A(x_1, y_1), B(x_2, y_2)$ and $C(x_3, y_3)$ are the vertices of $\triangle ABC$, find the coordinates of the triangle.
- 8. ABCD is a rectangle formed by the points A(-1, -1), B(-1, 4), C(5, 4) and D(5, -1). P, Q, R and S are the mid points of AB, BC, CD and DA respectively. Is the quadrilateral PQRS a square? a rectangle? or a rhombus? Justify your answer.

Figure 4.3: 7.12

Figure 4.4: 7.14

Chapter 5

Straight Lines

5.1. 11

5.1.1. Examples:-1-25 (11.10)

- 1. Find the slope of lines:
 - (a) Passing through the points (3, -2) and (-1, 4)
 - (b) Passing through the points (3,-2) and (7,-2)
 - (c) passing through the points (3, -2) and (3, 4)
 - (d) Making inclination of 60° with the positive direction of x-axis.
- 2. If the angle between two lines is $\frac{\pi}{4}$ and slope of one of the lines is $\frac{1}{2}$, find the slope of the other line.
- 3. Line through the points (-2,6) and (4,8) is perpendicular to the line through the points (8,12) and (x,24). Find the value of x.
- 4. Three points $(h, k), Q(x_1, y_1)$ and $R(x_2, y_2)$ lie on a line. Show that $(h x_1)(y_2 y_1) = (k y_1)(x_2 x_1)$.

5. In Fig. 5.1, time and distance graph of a linear motion is given. Two positions of line and distance are recorded as, when T=0, D=2 and when T=3, D=8. Use the concept of slope, find law of motion i.e, how distance depends upon time.

Figure 5.1: 10.9

- 6. Find the equations of the lines parallel to axes and passing through (2,3).
- 7. Find the equation of the line through (-2,3) with slope -4
- 8. Write the equation of the line through the points (1, -1) and (3, 5).
- 9. Write the equation of the lines for which $\tan \theta = \frac{1}{2}$, where θ is the

inclination of the line and

- (i) y-intercepts is $\frac{-3}{2}$
- (ii) x-intercept is 4.
- Find the equation of the lines which makes intercepts −3 and 2 on the
 x- and y-axes respectively.
- 11. Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with positive direction of x-axis is 15°.
- 12. The Fahrenheit temperature F and absolute temperature K satisfy a linear equation. Given that K=273 when F=32 and that K=373 when F=212. Express K in terms of F and find the value of F, when K=0.
- 13. Equation of a line is 3x 4y + 10 = 0, Find its
 - (i) Slope
 - (ii) x and y-intercepts.
- 14. Reduce the equation $\sqrt{3}x+y-8=0$ into normal form. Find the values of p and ω .
- 15. Find the angle between the lines $y \sqrt{3}x 5 = 0$ and $\sqrt{3}y x + 6 = 0$.
- 16. Show that two lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ where $b_1b 2 \neq 0$ are:
 - (a) parallel if $\frac{a_1}{b_1} = \frac{a_2}{b_2}$ and

- (b) Perpendicular if $a_1a_2 b_1b_2 = 0$.
- 17. Find the equation of a line perpendicular to the line x + 2y + 3 = 0 and passing through the point (1, -2).
- 18. Find the distance of the point (3, -5) from the line 3x 4y 26 = 0.
- 19. Find the distance between the parallel lines 3x 4y + 7 = 0 and 3x 4y + 5 = 0.
- 20. If the lines 2x + y 3 = 0, 5x + ky 3 = 0 and 3x y 2 = 0 are concurrent, find the value of k.
- 21. Find the distance of the line 4x-y-0 from the point p(4,1) measured along the line making an angle of 135° with the positive x-axis.
- 22. Assuming that straight lines work as the plane mirror for a point, find the image of the point (1,2) in the line x-3y+4=0.
- 23. Show that the area of the triangle formed by the lines $y=m_1x+c_1,y=m_2x+c_2$ and x=0 is $\frac{c_1-c_2^2}{2|m_1-m_2|}$
- 24. A line is such that its segment between the lines 5x y + 4 = 0 and 3x + 4y 4 = 0 is bisected at the point (1,5). Obtain its equation.
- 25. Show that the path of a moving point such that its distances from two lines 3x 2y = 5 and 3x + 2y = 5 are equal is a straight line.

5.1.2. 11.10.1

- 1. Draw a quadrilateral in the Cartesian plane, whose vertices are (-4,5), (0,7), (5,-5) and (-4,-2). Also, find its area.
- 2. The base of an equilateral triangle with side 2a lies along the y-axis such that the mid-point of the base is at the origin. Find vertices of the triangle.
- 3. Find the distance between $P(x_1, y_1), Q(x_2, y_2)$ when:
 - (i) PQ is parallel to the y-axis.
 - (ii) PQ is parellel to the x-axis.
- 4. Find the point x-axis, which is equidistant from the points (7,6) and (3,4).
- 5. Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points P(0, -4) and B(8, 0).
- 6. Without using the Pythagoras thorem, show that the points (4,4), (3,5) and (-1,-1) are the vertices of a right angled triangle.
- 7. Find the slope of the line, which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.
- 8. Find the value of x for which the points (x, -1), (2, 1) and (4, 5) are collinear.
- 9. Without using distance formula, show that points (-2, -1), (4, 0), (3, 3) and (-3, 2) are the vertices of the parallelogram.

- 10. Find the angle between the x-axis and the line joining the points (3,-1) and (4,-2).
- 11. The slope of a line is double of the slope of another line. If tangent of the angle between them is $\frac{1}{3}$, find the slopes of the lines.
- 12. A line passes through (x_1, y_1) and (h, k). If slope of the line is m, show that:
- 13. $k y_1 = m(h x_1)$
- 14. If three points (h,0),(a,b) and (0,k) lie on a line, show that $\frac{a}{h} + \frac{b}{k} = 1$.
- 15. Consider the following population and year graph Fig. 5.2, find the slope of the line AB and using it, find what will be the population in the year 2010?

5.1.3. 11.10.2

In excercises 1 to 8, find the equation of the line which satisfy the given conditions:

- 1. Write the equations for x and y axes.
- 2. Passing through the point (-4,3) with slope $\frac{1}{2}$.
- 3. Passing through (0,0) with slope m.
- 4. Passing through $(2, \sqrt{3})$ and inclined with x axis at an angle of 75°.
- 5. Intersecting the x axis at a distance of 3 units to the left of the origin with slope -2.

Figure 5.2: 10.10

- 6. Intersecting the y axis at a distance of 2 units above the origin and making an angle of 30 with positive direction of the x axis.
- 7. Passing through the points (-1,1) and (2,-4).
- 8. Perpendicular distance from the origin is 5 units and the angle made by the perpendicular with the positive x axis is 30.
- 9. The vertices of $\triangle PQR$ are P(2,1), Q(-2,3) and R(4,5). Find equation of the median through the vertex R.
- 10. Find the equation of the line passing through (-3,5) and perpendicular to the line through the points (2,5) and (-3,6).

- 11. A line perpendicular to the line segment joining the points (1,0) and (2,3) divides it in the ratio 1:n. Find the equation of the line.
- 12. Find the equation of the line that cuts off equal axes and passes through the point (2,3).
- 13. Find equation of the line passing through the point (2,2) and cutting off intercepts on the axes whose sum is 9.
- 14. Find equation of the line through the point (0,2) making an angle $\frac{2\pi}{3}$ with the positive x axis. Also, find the equation of the parallel to it and crossing the y axis at a distance of 2 units below the origin.
- 15. The perpendicular from the origin to a line meets it at the point (-2,9), find the equation of the line.
- 16. The length L [in centimetre of a copper rod is a linear function of its celsius temperature C]. In an experiment, if L=124.942. When C=20 and L=125.134 When C=110, express L in terms of C.
- 17. The owner of a milk store finds that, he can sell 980 litres of milk each week at ₹ 14/litre and 1220 litres of milk each week at ₹ 16/litre. Assuming a linear relationship between selling price and demand, how many litres could he sell weekly at ₹ 17/ litre?
- 18. P(a,b) is the mid-point of a line segment between axes. Show that equation of the line is $\frac{x}{a} + \frac{y}{b} = 2$
- 19. Point R(h, k) divides a line segment between the axes in the ratio 1:2. find equation of the line.

20. By Using the concept of equation of a line, prove that the three points (3,0), (-2,-2) and (8,2) are collinear.

5.1.4. 11.10.3

- 1. Reduce the following equations into slope-intercept form and find their slopes and the y-intercepts:
 - (i) x + 7y = 0
 - (ii) 6x + 3y 5 = 0
 - (iii) y = 0
- 2. Reduce the following equations into intercept form and find their intercepts on the axes:
 - (i) 3x + 2y 12 = 0
 - (ii) 4x 3y = 6
 - (iii) 3y + 2 = 0
- 3. Reduce the following equations into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis:
 - (i) $x \sqrt{3}y + 8 = 0$
 - (ii) y 2 = 0
 - (iii) x y = 4
- 4. Find the distance of the point (-1,1) from the line 12(x+6) = 5(y-2).

- 5. Find the points on the x-axis, whose distances from the line $\frac{x}{3} + \frac{y}{4} = 1$ are 4 units.
- 6. Find the distance between parallel lines:

(i)

$$15x + 8y - 34 = 0$$
 and $15x + 8y + 31 = 0$ (6.1)

(ii)

$$l(x+y) + p = 0$$
 and $l(x+y) - r = 0$ (6.2)

- 7. Find equation of the line parallel to the line 3x 4y + 2 = 0 and passing through the point (-2,3).
- 8. Find equation of the line perpendicular to the line x 7y + 5 = 0 and having x intercept 3.
- 9. Find angles between the lines $\sqrt{3}x + y = 1$ and $x + \sqrt{3}y = 1$.
- 10. The line through the points (h,3) and (4,1) intersects the line 7x 9y 19 = 0 at right angle. Find the value of h.
- 11. Prove that the line through the point (x,y) and parallel to the line Ax + By + C = 0 is $A(x x_1) + B(y y_1) = 0.$
- 12. Two lines passing through the point (2,3) intersects each other at an angle at 60° . If the shape of one line is 2, find equation of the other

line.

- 13. Find the equation of the right bisector of the line segment joining the point (3,4) and (-1,2).
- 14. Find the coordinates of the foot of perpendicular from the point (-1,3) to the line 3x+4y-16=0
- 15. The perpendicular from the origin to the line y = mx + c meets it at the point (-1, 2). Find the values of m and c.
- 16. If p and q are the lengths of perpendiculars from the origin to the lines $x\cos\theta y\sin\theta = k\cos2\theta$ and $x\sec\theta + y\csc\theta = k$ respectively, prove that $p^2 + 4q^2 = k^2$.
- 17. In the triangle ABC ith vertices A(2,3), B(4,-1) and C(1,2), find the equation and length of altitude from the vertex A.
- 18. If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$.

5.1.5. 11.10.4

- 1. Find the values of k for which the line $(k-3), x-(4-k^2)y+k^2-7k+6=0$ is
 - (a) Parallel to the x axis.
 - (b) Parallel to the y axis.
 - (c) Passing through the origin.

- 2. Find the values of θ and p, if the equation $x \cos \theta + y \sin \theta = p$ is the normal form of the line $\sqrt{3}x + y + 2 = 0$.
- 3. Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and -6, respectively.
- 4. What are the points on the y axis whose distance from the line $\frac{x}{3} + \frac{y}{4} = 1$ is 4 units.
- 5. Find perpendicular distance from the origin to the line joining the points $(\cos \theta, \sin \theta)$ and $(\cos \phi, \sin \phi)$.
- 6. Find the equation of the line parallel to y axis and drawn through the point of intersection of the lines x 7y + 5 = 0 and 3x + y = 0.
- 7. Find equation of a line drawn perpendicular to the line $\frac{x}{4} + \frac{y}{6} = 1$ through the point, where it meets the y axis.
- 8. Find the area of the triangle formed by the lines y x = 0, x + y = 0and x - k = 0.
- 9. Find the value of p so that the three lines 3x+y-2=0, px+2y-3=0 and 2x-y-3=0, px+2y-3=0 and 2x-y-3=0 may intersect at one point.
- 10. If three lines when equation are $y = m_1x + c_1y = m_2x + c_2$ and $y = m_1x + c_1$ are concurrent, then show that $m_1(c_2 c_3) + m_2(c_1 c_2) = 0$
- 11. Find the equation of the lines through the point (3,2) which make an angle of 45° with the line x 2y = 3

- 12. Find the equation of the line passing through the point of intersection of the lines 4x + 7y 3 = 0 and 2x 3y + 1 = 0 that has equal interceptson the axes.
- 13. Show that the equation of the line passing through the origin and making an angle θ with the line y = mx + c is $\frac{y}{x} = \frac{m \pm \tan \theta}{1 \mp m \tan \theta}$.
- 14. In what ratio, the line joining (-1,1) and (5,7) is divided by the line x+y=4?
- 15. Find the distance of the line 4x = 7y + 5 = 0 from the point (1,2) along the line 2x y = 0.
- 16. Find the direction in which a straight line must be drawn through the point (-1,2) so that the point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.
- 17. The hypothesis of a right angled triangle has its ends at the points (1,3) and (-4,1). Find an equation of the legs (perpendicular sides of the triangle.
- 18. Find the image of the point (3,8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.
- 19. If the lines y = 3x + 1 and 2y = x + 3 are equally inclined to the line y = mx + 4. Find the value of m.
- 20. If sum of the perpendicular distance of a variable point P(x, y) from the lines x + y 5 = 0 and 3x 2y + 7 = 0 is always 10. Show that P must move on a line.

- 21. Find equation of the line which is equidistant from parallel lines 9x + 6y = -7 and 3x + 2y + 6 = 0.
- 22. A ray of the light passing through the point (1,2) reflects on the x axis at point A and the reflected ray passes through the point (5,3). Find the coordinates of A.
- 23. Prove that the product of the lengths of the perpendiculars drawn from the points $(\sqrt{a^2-b^2},0)$ and $(-\sqrt{a^2-b^2},0)$ to the line $\frac{x}{a}\cos\theta+\frac{y}{b}\sin\theta=1$ is b^2
- 24. A person standing at the junction (crossing) of two straight paths represented by the equations 2x 3y + 4 = 0 and 3x + 4y 5 = 0 and 3x + 4y 5 = 0 wants to reach the path whose equation is 6x 7y + 8 = 0 in the least time. Find the equation of the path that he should follow.

Chapter 6

Circles

6.1. 11

6.1.1. 11.11.1

In each of the following exercise 6.1.1.1 to 6.1.1.5, find the equation of the circle with:

- 1. centre (0,2) and radius 2
- 2. centre (-2,3) and radius 4
- 3. centre $\frac{(}{1}2,\frac{1}{4})$ and radius $\frac{1}{!2}$
- 4. centre (1,1) and radius 2
- 5. centre (-a, -b) and radius $\sqrt{a^2 b^2}$

In each of the following exercise 6 to 9, find the centre and radius of the circles

6.
$$(x-5)^2 + (y-3)^2 = 36$$

7.
$$x^2 + y^2 - 4x - 8y - 45 = 0$$

8.
$$x^2 + y^2 - 8x + 10y - 12 = 0$$

9.
$$2x^2 + 2y^2 - x = 0$$

- 10. Find the equation of the circle passing through the points (4,1) and (6,5) and whose centre is on the line 4x + y = 16.
- 11. Find the equation of the circle passing through the points (2,3) and (-1,1) and whose centre is on the line x-3y-11=0.
- 12. Find the equation of the circle with radius 5 whose centre lies on x-axis and passes through the point (2,3).
- 13. Find the equation of the circle passing through (0,0) and making intercepts a and b on the coordinate axes.
- 14. Find the equation of a circle with centre (2,2) and passes through the point (4,5).
- 15. Does the point (-2.5, 3.5) lie inside, outside or on the circle $x^2 + y^2 = 25$.

Chapter 7

3D Geometry

7.1. 11

7.1.1. Examples:-1-13 (11.12)

- 1. In Fig. 7.1, if P is (2,4,5), find the coordinates of F.
- 2. Find the octant in which the points (-3, 1, 2) and (-3, 1, -2) lie.
- 3. Find the distance between the origin O and any point $Q(x_2, y_2, z_2)$.
- 4. Show that the points P(-2,3,5), Q(1,2,3) and R(7,0,-1) are collinear.
- 5. Are the points A(3,6,9), B(10,20,30) and C(24,-41,5) the vertices of a right angled triangle?
- 6. Find the equation of set of points P such that $PA^2 + PB^2 = 2k^2$, where A and B are the points (3,4,5) and (-1,3,-7), respectively.
- 7. Find the coordinates of the point which divides the line segment joining the points (1, -2, 3) and (3, 4, -5) in the ratio 2:3
 - (i) internally, and

Figure 7.1: 12.3

- (ii) externally
- 8. Using section formula, prove that the three points (-4,6,10), (2,4,6) and (14,0,-2) are collinear.
- 9. Find the coordinates of the centroid of the triangle whose vertices are $(x_1, y_1, z_1), (x_2, y_2, z_2)$ and (x_3, y_3, z_3) .
- 10. Find the ratio in which the line segment joining the points (4, 8, 10) and (6, 10, -8) is divided by the YZ- plane.
- 11. Show that the points A(1,2,3), B(-1,-2,-1), C(2,3,2) and D(4,7,6)

are the vertices of a parallelogram ABCD, but it is not a rectangle.

- 12. Find the equation of the set of the points P such that its distances from the points A(3,4,-5) and B(-2,1,4) are equal.
- 13. The centroid of a triangle ABC is at the point (1,1,1). If the coordinates of A and B are (3,-5,7) and (-1,7,-6), respectively find the coordinates of the point C.

7.1.2. 11.12.1

- 1. A points is on the axis. What are its y coordinate and z coordinates?
- 2. A point in the XZ-plane. What can you say about its y coordinates?
- 3. Name the octants in which the following points lie:

$$(1,2,3), (4,-2,3), (4,-2,-5), (4,2,-5), (-4,2,-5), (-4,2,-5), (-3,-1,6), (-2,-4,-7)$$

$$(3.1)$$

- 4. Fill in the blanks:-
 - (i) The x axis and y axis taken together determine a plane known as _____ .
 - (ii) The coordinates of points in the XY. plane are of the form _____.
 - (iii) Coordinate plane divide the space into _____ octants.

7.1.3. 11.12.2

- 1. Find the distance between the following pairs of points:
 - (i) (2,3,5) and (4,3,1)
 - (ii) (-3,7,2) and (2,4,-1)
 - (iii) (-1,3,-4) and (1,-3,4)
 - (iv) (2,-1,3) and (-2,1,3)
- 2. Show that the points (-2,3,5), (1,2,3) and (7,0,-1) are collinear.
- 3. Verify the following:
 - (i) (0,7,-10),(1,6,-6) and (4,9,-6) are the vertices of an isoceles triangle.
 - (ii) (0,7,10), (-1,6,6) and (-4,9,6) are the vertices of a right angled triangle.
 - (iii) (-1, 2, 1), (1, -2, 5), (4, -7, 8) and (2, -3, 4) are the vertices of a parallelogram.
- 4. Find the equation of the set of points which are equidistant from the points (1,2,3) and (3,2,-1).
- 5. Find the equation of the set of points P, the sum of whose distances from A(4,0,0) and B(-4,0,0) is equal to 10.

7.1.4. 11.12.3

- 1. Find the coordinates of the point which divides the line segment joining the points which divides the line segment joining the points (-2,3,5) and (1,-4,6) in the ratio
 - (a) 2:3 internally,
 - (b) 2:3 externally
- 2. Given that P(3, 2, -4), Q(5, 4, -6) and R(9, 8, -10) are Collinear. Find the ratio in which Q divides PR.
- 3. Find the ratio in which the yz plane divides the line segment formed by joining the points (-2, 4, 7) and (3, -5, 8).
- 4. Using section formula, show that the points A(2, -3, 4), B(-1, 2, 1) and $C(0, \frac{1}{3}, 2)$ are collinear.
- 5. Find the coordinates of the points which triset the line segment joining the points P(4,2,-6) and Q(10,-16,6).

7.1.5. 11.12.4

- 1. Three vertices of a parallelogram ABCD are A(3, -1, 2), B(1, -2, 4) and C(-1, 1, 2). Find the coordinates of the fourth vertex.
- 2. Find the lengths of the medians of the triangle with vertice A(0,0,6), B(0,4,0) and (6,0,0).

- 3. If the origin is the centroid of the triangle PQR with vertices P(2a, 2, 6), Q(-4, 3b, -10) and R(8, 14, 2c), then find the values of a, b and c.
- 4. Find the coordinates of a point on y-axis which are at a distance of $5\sqrt{2}$ from the point P(3, -2, 5).
- 5. A point R with x-coordinate 4 lies on the line segment joining the points P(2, -3, 4) and Q(0, 0, 10). Find the coordinates of the point R.
- 6. If A and B be the points (3,4,5) and (-1,3,-7) respectively, find the equation of the set of the points P such that $PA^2 + PB^2 = K^2$ where K is a constant.

Chapter 8

Matrices

8.1. 12

8.1.1. Examples:-1-28 (12.3)

1. Consider the following information regarding the number of men ad women workers in three factories I, II and III

	Men Workers	Women Workers
I	30	27
II	25	31
III	27	26

Table 8.1:

Represent the above information in the form of a 3×2 matrix. What does the entry in the third row and second column represent?

- 2. If a matrix has 8 elements, what are the possible orders it can have?
- 3. Construct a 3×2 matrix whose elements are given by $a_{ij} = \frac{1}{2} |1 3j|$

4. If
$$\begin{pmatrix} x+3 & z+4 & 2y-7 \\ -6 & a-1 & 0 \\ b-3 & -21 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 6 & 3y-2 \\ -6 & -3 & 2c+2 \\ 2b+4 & -21 & 0 \end{pmatrix}$$
. Find the values of a, b, c, x, y and z .

5. Find the values of a, b, c and d from the following equation:

$$\begin{pmatrix} 2a+b & a-2b \\ 5c-d & 4c+d \end{pmatrix} = \begin{pmatrix} 4 & -3 \\ 11 & 24 \end{pmatrix}$$
 (5.1)

6. Given
$$A = \begin{pmatrix} \sqrt{3} & 1 & -1 \\ 2 & 3 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & \sqrt{5} & 1 \\ -2 & 3 & \frac{1}{2} \end{pmatrix}$, find $A + B$.

7. If
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 3 & -1 & 3 \\ -1 & 0 & 2 \end{pmatrix}$, then find $2A - B$.

8. If
$$A = \begin{pmatrix} 8 & 0 \\ 4 & -2 \\ 3 & 6 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & -2 \\ 4 & 2 \\ -5 & 1 \end{pmatrix}$ then find that X , such that $A = \begin{bmatrix} 2 & -2 \\ 4 & 2 \\ -5 & 1 \end{bmatrix}$

9. Find X and Y, if
$$X + Y = \begin{pmatrix} 5 & 2 \\ 0 & 9 \end{pmatrix}$$
 and $X - Y = \begin{pmatrix} 3 & 6 \\ 0 & -1 \end{pmatrix}$

10. Find the values of x and y from the following equations:

$$2\begin{pmatrix} x & 5 \\ 7 & y - 3 \end{pmatrix} + \begin{pmatrix} 3 & -4 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 7 & 6 \\ 15 & 14 \end{pmatrix}$$
 (10.1)

11. Two farmers Ramkishan and Gurucharan Singh cultivate only three varities of rice namely Basmati, Permal and Naura. The sale (in Rupees) of these three varities of rice by both the farmers in the month of September and October are given by the following matrices A and B.

September Sales (in Rupees)

$$A = \begin{pmatrix} \text{Basmati Permal Naura} \\ 10000 & 20000 & 30000 \\ 50000 & 30000 & 10000 \end{pmatrix} \begin{array}{c} \text{Ramkishan} \\ \text{Gurucharan Singh} \\ \end{array}$$
 (11.1)

October Sales (in Rupees)

$$B = \begin{pmatrix} \text{Basmati Permal Naura} \\ 5000 & 10000 & 6000 \\ 20000 & 10000 & 10000 \end{pmatrix} \begin{array}{c} \text{Ramakishan} \\ \text{Gurucharan Singh} \\ \end{array}$$
 (11.2)

- (i) Find the combined sales in Sepember and October for each farmer in each variety.
- (ii) Find the decrease in sales from September to October.
- (iii) If both farmers receive 2% profit on gross sales, compute the profit for each farmer and for each variety sold in October.

12. Find
$$AB$$
, if $A = \begin{pmatrix} 6 & 9 \\ 2 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 6 & 0 \\ 7 & 9 & 8 \end{pmatrix}$.

13. If
$$A = \begin{pmatrix} 1 & -2 & -3 \\ -4 & 2 & 5 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{pmatrix}$, then find AB, BA . Show that $AB \neq BA$.

14. If
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, then $AB = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $BA = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ clearly $AB \neq BA$. Thus matrix multiplication is not commutative.

15. Find
$$AB$$
, if $A = \begin{pmatrix} 0 & -1 \\ 0 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} 3 & 5 \\ 0 & 0 \end{pmatrix}$.

16. If
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & 3 \\ 3 & -1 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 \\ 0 & 2 \\ -1 & 4 \end{pmatrix}$ and $C = \begin{pmatrix} 1 & 2 & 3 & -4 \\ 2 & 0 & -2 & 1 \end{pmatrix}$ find $A(BC)$, $(AB)C$ and show that $(AB)C = A(BC)$.

17. If
$$A = \begin{pmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 3 \\ -2 \\ 3 \end{pmatrix}$ Calculate AC, BC and $(A+B)C$. Also, verify that $(A+B)C = AC + BC$.

18. If
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{pmatrix}$$
, then show that $A^3 - 23A - 40I = 0$.

19. In a legislative assembly election, a political group hired a public relations firm to promote its candidate in three ways: telephone, housecalls

and letters. The cost per contact (in paise) is given in matrix A as cost per contact

$$A = \begin{pmatrix} 40 \\ 100 \\ 50 \end{pmatrix}$$
 Telephone Housecall (19.1)
$$Letter$$

.

The number of contacts of each type made in two cities X and Y is given by

$$B = \begin{pmatrix} \text{Telephone Housecall Letter} & X \\ 1000 & 500 & 5000 \\ 3000 & 1000 & 10000 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$$
 (19.2)

.

Find the total amount spent by the group in the two cities X and Y.

20. If
$$A = \begin{pmatrix} 3 & \sqrt{3} & 2 \\ 4 & 2 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & -1 & 2 \\ 1 & 2 & 4 \end{pmatrix}$, verify that

(a)
$$(A')' = A$$

(b)
$$(A+B)' = A' + B'$$

(c) (kB)' = kB', where k is any constant.

21. If
$$A = \begin{pmatrix} -2\\4\\5 \end{pmatrix}$$
, $B = \begin{pmatrix} 1&3&-6 \end{pmatrix}$, verify that $(AB)' = B'A'$.

- 22. Express the matrix $B=\begin{pmatrix}2&-2&-4\\-1&3&4\\1&-2&-3\end{pmatrix}$ as the sum of symmetric and a skew symmetric matrix.
- 23. By using elementary operations, find the inverse of the matrix $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$.
- 24. Obtain the inverse of the following matrix using elementary operations.

$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{pmatrix} \tag{24.1}$$

- 25. Find P^{-1} , if it exists, given $P = \begin{pmatrix} 10 & -2 \\ -5 & 1 \end{pmatrix}$.
- 26. If $A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$, then prove that $A^n = \begin{pmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{pmatrix}$, $n \in \mathbb{N}$.
- 27. If A and B are symmetric matrices of the same order, then show that AB is symmetric if and only if A and B commute, that is AB = BA.
- 28. Let $A = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 5 & 2 \\ 7 & 4 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix}$. Find a matrix D such that CD AB = 0.

8.1.2. 12.3.1

- 1. In the matrix $A = \begin{pmatrix} 2 & 5 & 19 & -7 \\ 25 & -2 & \frac{5}{2} & 12 \\ \sqrt{3} & 1 & -5 & 17 \end{pmatrix}$, write:
 - (i) The order of the matrix
 - (ii) The number of elements
 - (iii) Write the elements $a_{13}, a_{21}, a_{33}, a_{24}, a_{23}$
- 2. If a matrix has 24 elements, what are the possible order it can have? What if, it has 13 elements?
- 3. If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?
- 4. Construct a 2×2 matrix, $A = [a_{ij}]$, whose elements are given by:

(i)
$$[a_{ij}] = \frac{(i+j)^2}{2}$$

(ii)
$$[a_{ij}] = \frac{i}{j}$$

(iii)
$$[a_{ij}] = \frac{(i+2j)^2}{2}$$

5. Construct a 3×4 matrix, whose elements are given by:

(i)
$$[a_{ij}] = \frac{1}{2} |-3i + j|$$

(ii)
$$[a_{ij}] = 2i - j$$

6. Find the values of x, y and z from the following equations:

(i)
$$\begin{pmatrix} 4 & 3 \\ x & 5 \end{pmatrix} = \begin{pmatrix} y & z \\ 1 & 5 \end{pmatrix}$$

(ii)
$$\begin{pmatrix} x+y & 2\\ 5+z & xy \end{pmatrix} = \begin{pmatrix} 6 & 2\\ 5 & 8 \end{pmatrix}$$

(iii)
$$\begin{pmatrix} x+y+z \\ x+z \\ y+z \end{pmatrix} = \begin{pmatrix} 9 \\ 5 \\ 7 \end{pmatrix}$$

7. Find the value of a, b, c and d from the equation:

$$\begin{pmatrix} a-b & 2a-c \\ 2a-b & 3c+d \end{pmatrix} = \begin{pmatrix} -1 & 5 \\ 0 & 13 \end{pmatrix}$$
 (7.1)

- 8. $A = [a_{ij}]_{m \times n}$ is a square matrix, if:
 - (a) $m \leq n$
 - (b) $m \ge n$
 - (c) m = n
 - (d) None of these
- 9. Which of the given values of x and y make the following pair of matrices equal:

$$\begin{pmatrix} 3x+7 & 5\\ y+1 & 2-3x \end{pmatrix}, \begin{pmatrix} 0 & y-2\\ 8 & 4 \end{pmatrix}$$
 (9.1)

- (a) $x = \frac{1}{3}, y = 7$
- (b) Not possible to find
- (c) $y = 7, x = \frac{2}{3}$

(d)
$$x = \frac{1}{3}, y = \frac{2}{3}$$

- 10. The number of all possible matrices of order 3×3 with each entry 0 or 1 is:
 - (a) 27
 - (b) 81
 - (c) 18
 - (d) 512

8.1.3. 12.3.2

- 1. Let $A = \begin{pmatrix} 2 & 4 \\ 3 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 3 \\ -2 & 5 \end{pmatrix}$, $C = \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix}$. Find each of the following:
 - (i) A + B
 - (ii) A B
 - (iii) 3A C
 - (iv) AB
 - (v) *BA*
- 2. Compute the following:

(i)
$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$
(ii)
$$\begin{pmatrix} a^2 + b^2 & b^2 + c^2 \\ a^2 + c^2 & a^2 + b^2 \end{pmatrix} + \begin{pmatrix} 2ab & 2ac \\ -2ac & -2ab \end{pmatrix}$$

(iii)
$$\begin{pmatrix} -1 & 4 & -6 \\ 8 & 5 & 16 \\ 2 & 8 & 5 \end{pmatrix} + \begin{pmatrix} 12 & 7 & 6 \\ 8 & 0 & 5 \\ 3 & 2 & 4 \end{pmatrix}$$

(iv)
$$\begin{pmatrix} \cos^2 x & \sin^2 x \\ \sin^2 x & \cos^2 x \end{pmatrix} + \begin{pmatrix} \sin^2 x & \cos^2 x \\ \cos^2 x & \sin^2 x \end{pmatrix}$$

3. Compute the following products:

(i)
$$\begin{pmatrix} a & b \\ b & -a \end{pmatrix} \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

(ii)
$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \begin{pmatrix} 2 & 3 & 4 \end{pmatrix}$$

(iii)
$$\begin{pmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & -3 & 5 \\ 0 & 2 & 4 \\ 5 & 0 & 5 \end{pmatrix}$$

(iv)
$$\begin{pmatrix} 2 & 1 \\ 3 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \end{pmatrix}$$

$$(v) \begin{pmatrix} 3 & -1 & 3 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 2 & -3 \\ 1 & 0 \\ 3 & 1 \end{pmatrix}$$

4. If
$$A = \begin{pmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{pmatrix}$ and $C = \begin{pmatrix} 4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3 \end{pmatrix}$,

then compute (A + B) and (B + C). Also, verify that A + (B - C) = (A + B) - C.

5. If
$$A = \begin{pmatrix} \frac{2}{3} & 1 & \frac{5}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{pmatrix}$$
 and $B = \begin{pmatrix} \frac{2}{5} & \frac{3}{5} & 1 \\ \frac{1}{5} & \frac{2}{5} & \frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{pmatrix}$, then compute $3A - 5B$.

6. Simplify
$$\cos \theta \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} + \sin \theta \begin{pmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{pmatrix}$$
.

7. Find X and Y, if:

(i)
$$X + Y = \begin{pmatrix} 7 & 0 \\ 2 & 5 \end{pmatrix}$$
 and $X - Y = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}$.

(ii)
$$2X + 3Y = \begin{pmatrix} 2 & 3 \\ 4 & 0 \end{pmatrix}$$
 and $3X + 2Y = \begin{pmatrix} 2 & -2 \\ -1 & 5 \end{pmatrix}$

8. Find X, if
$$Y = \begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}$$
 and $2X + Y = \begin{pmatrix} 1 & 0 \\ -3 & 2 \end{pmatrix}$.

9. Find
$$x$$
 and y , if $2 \begin{pmatrix} 1 & 3 \\ 0 & x \end{pmatrix} + \begin{pmatrix} y & 0 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ 1 & 8 \end{pmatrix}$.

10. Solve the equation for
$$x, y, z$$
 and t , if $2 \begin{pmatrix} x & y \\ z & t \end{pmatrix} + 3 \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix} = 3 \begin{pmatrix} 3 & 5 \\ 4 & 6 \end{pmatrix}$.

11. If
$$x \begin{pmatrix} 2 \\ 3 \end{pmatrix} + y \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 10 \\ 5 \end{pmatrix}$$
, find the values of x and y .

12. Given
$$3 \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} x & 6 \\ -1 & 2w \end{pmatrix} + \begin{pmatrix} 4 & x+y \\ z+w & 3 \end{pmatrix}$$
, find the values of x, y, z and w .

13. If
$$F(x) = \begin{pmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, show that $F(x) + F(y) = F(x+y)$.

14. Show that:

(i)
$$\begin{pmatrix} 5 & -1 \\ 6 & 7 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \neq \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & -1 \\ 6 & 7 \end{pmatrix}$$
.
(ii) $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{pmatrix} \neq \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$

15. Find
$$A^2 - 5A + 6I$$
, if $A = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix}$.

16. If
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
, prove that $A^3 - 6A^2 + 7A + 2I = 0$.

17. If
$$A = \begin{pmatrix} 3 & -2 \\ 4 & -2 \end{pmatrix}$$
 and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, find k so that $A^2 = kA - 2I$.

- 18. If $A = \begin{pmatrix} 0 & -\tan\frac{\alpha}{2} \\ \tan\frac{\alpha}{2} & 0 \end{pmatrix}$ and I is the identity matrix of order 2, show that $I + A = (I A) \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix}$.
- 19. A trust fund has ₹ 30000 that must be invested in two different types of bonds. The first bomd pays 5% interest per year, and the secon bond pays 7% interest per year. Using matrix multiplication, determine how to divide ₹ 30000 among the 2 types of bonds. If the trust fund must obtain an annual total interest of:
 - (a) ₹ 1800
 - (b) ₹ 2000
- 20. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are \mathfrak{T} 80, \mathfrak{T} 60 and \mathfrak{T} 40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra. Assume X, Y, Z, W and P are matrices of order $2 \times n, 3 \times k, 2 \times p, n \times 3$ and $p \times k$, respectively. Choose the correct answer in 21 and 22.
- 21. The restriction on n, k and p so that PY + WY will be defined are:
 - (a) k = 3, p = n
 - (b) k is arbitrary, p = 2.
 - (c) p is arbitrary, k = 3
 - (d) k = 2, p = 3

22. If n = p, then order of the matrix 7X - 5Z is:

- (a) $p \times 2$
- (b) $2 \times n$
- (c) $n \times 3$
- (d) $p \times n$

8.1.4. 12.3.3

1. Find the transpose of eaach of the following matrices:

$$\begin{pmatrix}
5 \\
\frac{1}{2} \\
-1
\end{pmatrix}$$

(ii)
$$\begin{pmatrix} 1 & -1 \\ 2 & -3 \end{pmatrix}$$

(iii)
$$\begin{pmatrix} -1 & 5 & 6 \\ \sqrt{3} & 5 & 6 \\ 2 & 3 & 1 \end{pmatrix}$$

2. If
$$A = \begin{pmatrix} -1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 3 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} -4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1 \end{pmatrix}$, then verify that

(a)
$$(A+B) = A' + B'$$

(b)
$$(A - B)' = A' - B'$$

3. If
$$A = \begin{pmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} -1 & 0 \\ 1 & 2 \end{pmatrix}$, then find $(A + 2B)'$

4. If
$$A = \begin{pmatrix} -2 & 3 \\ 1 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} -1 & 0 \\ 1 & 2 \end{pmatrix}$, then find the $(A + 2B)'$

5. For the matrices A and B, Verify that (AB)' = B'A', where

(i)
$$A = \begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix}$$
, $B = \begin{pmatrix} -1.2 & 1 \end{pmatrix}$

(ii)
$$A = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 5 & 7 \end{pmatrix}$$

6. If

(i)
$$A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$$
, then verify that $A + A' = I$

(ii)
$$A = \begin{pmatrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{pmatrix}$$
, then verify that $A + A' = I$

7. (i) Show that the matrix
$$A=\begin{pmatrix}1&-1&5\\-1&2&1\\5&1&3\end{pmatrix}$$
 is a symmetrical matrix.

- (ii) Show that the matrix $A=\begin{pmatrix}0&1&-1\\-1&0&1\\1&-1&0\end{pmatrix}$ is a skew symmetric matrix.
- 8. For the matrix $A = \begin{pmatrix} 1 & 5 \\ 5 & 7 \end{pmatrix}$, verify that
 - (i) (A + A) is a symmetric matrix.
 - (ii) (A A) ia a skew symmetric matrix.
- 9. Find $\frac{1}{2}(A + A')$ and $\frac{1}{2}(A A')$, when $A = \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix}$
- 10. Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

(i)
$$\begin{pmatrix} 3 & 5 \\ 1 & -1 \end{pmatrix}$$

(ii)
$$\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$$

(iii)
$$\begin{pmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{pmatrix}$$

(iv)
$$\begin{pmatrix} 1 & 5 \\ -1 & 2 \end{pmatrix}$$

11. If A, B are symmetric matrices of same order, then AB - BA is a

- (a) Skew symmetric matrix
- (b) Symmetric matrix
- (c) Zero matrix
- (d) Identity matrix

12. If
$$A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$
 and $A + A' = 1$ then the value of α is

- (a) $\frac{\pi}{6}$
- (b) $\frac{\pi}{3}$
- (c) π
- (d) $\frac{3\pi}{2}$

8.1.5. 12.3.5

1. Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, show that $(aI + bA)^n = a^nI + na^{n-1}bA$, where I is

the identity matrix of order 2 and $n \in N$.

2. If
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
, Prove that $A^n = \begin{pmatrix} 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \end{pmatrix}$, $n \in \mathbb{N}$.

3. If
$$A = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}$$
, then prove that $A^n = \begin{pmatrix} 1+2n & -4n \\ n & 1-2n \end{pmatrix}$, Where n is any positive integer.

Market	Product X	Product Y	Product Z
I	10,000	2,000	18,000
II	6,000	20,000	8,000

Table 8.2:

- 4. If A and B are symmetric matrices prove that AB BA is a skew symmetric matrix.
- 5. Show that the matrix B'AB is a symmetric or skew symmetric according as A is symmetric or skew symmetric.
- 6. Find the value of x, y, z if the matrix $A = \begin{pmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{pmatrix}$ satisfy the equation A'A = I.
- 7. For what values of $x : \begin{pmatrix} 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ x \end{pmatrix} = 0$
- 8. If $A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$, show that $A^2 5A + 7I = 0$.
- 9. Find x, if $\begin{pmatrix} x & -5 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ 4 \\ 1 \end{pmatrix} = 0$.
- 10. A manufacturer produces three products x, y, z which he sells in two markets. Annual Sales are indicated below:
 - (a) If unit sale Prices of x, y and z are \gtrless 2.50, \gtrless 1.50 and \gtrless 1.00,

respectively. Find the total revenue in each market with the help of matrix algebra.

- (b) If the unit costs of the above three commodities are ₹ 2.00, ₹ 1.00 and 50 paise respectively. Find the gross profit.
- 11. Find the matrix X so that $X \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{pmatrix}$
- 12. If A and B are square matrices of the same order such that AB = BA, then prove by induction that $(AB)^n = B^n A^n$. Further prove that $(AB)^n = A^n B^n$ for all $n \in N$. Choose the correct answer in the following questions:
- 13. If $A = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix}$ is such that $A^2 = I$, then

(a)
$$1 + \alpha^2 + \beta \gamma = 0$$

(b)
$$1 - \alpha^2 + \beta \gamma = 0$$

(c)
$$1 - \alpha^2 - \beta \gamma = 0$$

(d)
$$1 + \alpha^2 - \beta \gamma = 0$$

- 14. If the matrix A is both symmetric and skew symmetric, then
 - (a) A is a diagonal matrix
 - (b) A is a Zero matrix
 - (c) A is a Square matrix
 - (d) None of these
- 15. If A is square matrix such that $A^2 = A$, then $(I + A)^3 7A$ is equal to

- (a) A
- (b) I A
- (c) *I*
- (d) 3A

8.2. Determinants

8.2.1. Examples:-1-34 (12.4)

- 1. Evaluate $\begin{vmatrix} 2 & 4 \\ -1 & 2 \end{vmatrix}$
- 2. Evaluate $\begin{vmatrix} x & x+1 \\ x-1 & x \end{vmatrix}$
- 3. Evaluate the determinant $\Delta = \begin{vmatrix} 1 & 2 & 4 \\ -1 & 3 & 0 \\ 4 & 1 & 0 \end{vmatrix}$
- 4. Evaluate $\Delta = \begin{vmatrix} 0 & \sin \alpha & -\cos \alpha \\ -\sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0 \end{vmatrix}$
- 5. Find the values of x for which $\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$.

6. Verify Property 1 for
$$\Delta = \begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}$$

7. Verify Property 2 for
$$\Delta = \begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}$$

8. Evaluate
$$\Delta = \begin{vmatrix} 3 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 2 & 3 \end{vmatrix}$$

9. Evaluate
$$\begin{vmatrix} 102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6 \end{vmatrix}$$
.

10. Show that
$$\begin{vmatrix} a & b & c \\ a+2x & b+2y & c+2z \\ x & y & z \end{vmatrix} = 0$$

11. Prove that
$$\begin{vmatrix} a & a+b & a+b+c \\ 2a & 3a+2b & 4a+3b+2c \\ 3a & 6a+3b & 10a+6b+3c \end{vmatrix} = a^3$$

12. Without expanding, prove that
$$\Delta = \begin{vmatrix} x+y & y+z & z+x \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix} = 0$$

13. Evaluate
$$\Delta \begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix}$$

14. Prove that
$$\begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} = 4abc.$$

15. If x, y, z are different and $\Delta = \begin{vmatrix} x & x^2 & 1+x^3 \\ y & y^2 & 1+y^3 \\ z & z^2 & 1+z^3 \end{vmatrix} = 0$, then show that 1+xyz=0.

16. Show that
$$\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1+c \end{vmatrix} = abc \left| 1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right| = abc + bc + ca + ab.$$

- 17. Find the area of the triangle whose vertices are (3,8), (-4,2) and (5,1).
- 18. Find the equation of the line joining A(1,3) and B(0,0) using determinants and find k if D(k,0) is a point such that area of triangle ABD is 3 sq. units.

19. Find the minor of element 6 in the determinant
$$\Delta = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$$
.

20. Find minors and cofactors of all the elements of the determinant

$$\begin{vmatrix} 1 & -2 \\ 4 & 3 \end{vmatrix}$$

21. Find minors and cofactors of the elements a_{11}, a_{21} in the determinant

$$\delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}.$$

- 22. Find minors and cofactors of the elements of the determinant $\begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}$ and verify that $a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33} = 0$.
- 23. Find adj A for $A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$.
- 24. If $A = \begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix}$, then verify that A adj A = |A|. Also find A^{-1} .
- 25. If $A = \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}$, then verify that $(AB)^{-1} = B^{-1}A^{-1}$.
- 26. Show that the matrix $A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$ satisfies the equation $A^2 4A + I = O$, where I is 2×2 identity matrix and O is 2×2 zero matrix. Using this equation, find A^{-1} .

27. Solve the system of equations

$$2x + 5Y = 1, (27.1)$$

$$3x + 2y = 7 (27.2)$$

.

28. Solve the following system of equations by matrix method.

$$3x - 2y + 3z = 8 \tag{28.1}$$

$$2x + y - z = 1 (28.2)$$

$$4x - 3y + 2z = 4 \tag{28.3}$$

- 29. The sum of three numbers is 6. If we multiply third number by 3 and add second number to it, we get 11. By adding first and third numbers, we get double of the second number. Represent it algebraically and find the numbers using matrix method.
- 30. If a, b, c are positive and unequal, show that value of the determinant

$$\Delta = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$$
 is negative.

31. If a, b, c are in A.P find the value of $\begin{vmatrix} 2y+4 & 5y+7 & 8y+a \\ 3y+5 & 6y+8 & 9y+b \\ 4y+6 & 7y+ & 10y+c \end{vmatrix}$.

32. Show that
$$\Delta = \begin{vmatrix} (y+z)^2 & xy & zx \\ xy & (x+z)^2 & yz \\ xz & yz & (x+y)^2 \end{vmatrix} = 2xyz(x+y+z)^3.$$

33. Use product $\begin{vmatrix} 1 & 1 & 2 & 2 & 0 & 1 \\ 0 & 2 & 3 & 9 & 2 & 3 \\ 3 & 2 & 4 & 6 & 1 & 2 \end{vmatrix}$ to solve the system of equations.

$$x - y + 2z = 1 (33.1)$$

$$2z - 3z = 1 (33.2)$$

$$3x - 2y + 4z = 2 \tag{33.3}$$

34. Prove that
$$\Delta = \begin{vmatrix} a + bx & c + dx + p + qx \\ ax + b & cx + d + px + q \\ u & v & w \end{vmatrix} = (1 - x^2) \begin{vmatrix} a & c & p \\ b & d & q \\ u & v & w \end{vmatrix}.$$

Chapter 9

Vector Algebra

Chapter 10

Trigonometry

10.1. Ratios

A right angled triangle looks like Fig. 10.1. with angles $\angle A, \angle B$ and $\angle C$ and

Figure 10.1: Right Angled Triangle

sides a, b and c. The unique feature of this triangle is $\angle B$ which is defined to be 90° .

10.1.1. For simplicity, let the greek letter $\theta = \angle C$. We have the following definitions.

$$\sin \theta = \frac{c}{b} \qquad \cos \theta = \frac{a}{b}$$

$$\tan \theta = \frac{c}{a} \qquad \cot \theta = \frac{1}{\tan \theta} \qquad (10.1.1.1)$$

$$\csc \theta = \frac{1}{\sin \theta} \quad \sec \theta = \frac{1}{\cos \theta}$$

10.1.2. Show that

$$\cos \theta = \sin \left(90^{\circ} - \theta\right) \tag{10.1.2.1}$$

Solution: From (10.1.1.1),

$$\cos \angle BAC = \cos \alpha = \cos (90^{\circ} - \theta) = \frac{c}{b} = \sin \angle ABC = \sin \theta$$
(10.1.2.2)

10.2. The Baudhayana Theorem

Use Fig. 10.2 for all problems in this section.

10.2.1. Show that

$$b = a\cos\theta + c\sin\theta \tag{10.2.1.1}$$

Solution: We observe that

$$BD = a\cos\theta \tag{10.2.1.2}$$

$$AD = c\cos\alpha = c\sin\theta \quad \text{(From (10.1.2.2))} \tag{10.2.1.3}$$

Figure 10.2: Baudhayana Theorem

Thus,
$$BD + AD = b = a\cos\theta + c\sin\theta \eqno(10.2.1.4)$$

10.2.2. From (10.2.1.1), show that

$$\sin^2 \theta + \cos^2 \theta = 1 \tag{10.2.2.1}$$

Solution: Dividing both sides of (10.2.1.1) by b,

$$1 = \frac{a}{b}\cos\theta + \frac{c}{b}\sin\theta\tag{10.2.2.2}$$

$$\Rightarrow \sin^2 \theta + \cos^2 \theta = 1$$
 (from (10.1.1.1)) (10.2.2.3)

10.2.3. In a right angled triangle, the hypotenuse is the longest side.

Solution: From (10.2.2.1),

$$0 \le \sin \theta, \cos \theta \le 1 \tag{10.2.3.1}$$

Hence,

$$b\sin\theta \le b \implies c \le b \tag{10.2.3.2}$$

Similarry,

$$a \le b \tag{10.2.3.3}$$

10.2.4. Using (10.2.1.1), show that

$$b^2 = a^2 + c^2 (10.2.4.1)$$

(10.2.4.1) is known as the Baudhayana theorem. It is also known as the Pythagoras theorem.

Solution: From (10.2.1.1),

$$b = a\frac{a}{b} + c\frac{c}{b}$$
 (from (10.1.1.1)) (10.2.4.2)

$$\implies b^2 = a^2 + c^2 \tag{10.2.4.3}$$

10.3. Area of a Triangle

Figure 10.3: Area of a Triangle

10.3.1. Show that the area of ΔABC in Fig. 10.3 is $\frac{1}{2}ab\sin C.$

Solution: We have

$$ar(\Delta ABC) = \frac{1}{2}ah = \frac{1}{2}ab\sin C \quad (\because \quad h = b\sin C).$$
 (10.3.1.1)

10.3.2. Show that

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \tag{10.3.2.1}$$

Solution: Fig. 10.3 can be suitably modified to obtain

$$ar(\Delta ABC) = \frac{1}{2}ab\sin C = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B$$
 (10.3.2.2)

Dividing the above by abc, we obtain

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \tag{10.3.2.3}$$

This is known as the sine formula.

10.3.3. Show that

$$\alpha > \beta \implies \sin \alpha > \sin \beta$$
 (10.3.3.1)

Solution: In Fig. 10.4,

$$ar\left(\triangle ABD\right) < ar\left(\triangle ABC\right)$$
 (10.3.3.2)

$$\implies \frac{1}{2}lc\sin\theta_1 < \frac{1}{2}ac\sin\left(\theta_1 + \theta_2\right) \tag{10.3.3.3}$$

$$\implies \frac{l}{a} < \frac{\sin(\theta_1 + \theta_2)}{\sin \theta_1} \tag{10.3.3.4}$$

or,
$$1 < \frac{l}{a} < \frac{\sin(\theta_1 + \theta_2)}{\sin \theta_1}$$
 (10.3.3.5)

$$\implies \frac{\sin(\theta_1 + \theta_2)}{\sin \theta_1} > 1 \tag{10.3.3.6}$$

from Theorem 10.2.3. This proves (10.3.3.1).

Figure 10.4:

10.3.4. Using Fig. 10.4, show that

$$\sin \theta_1 = \sin (\theta_1 + \theta_2) \cos \theta_2 - \cos (\theta_1 + \theta_2) \sin \theta_2 \qquad (10.3.4.1)$$

Solution: The following equations can be obtained from the figure

using the forumula for the area of a triangle

$$ar\left(\Delta ABC\right) = \frac{1}{2}ac\sin\left(\theta_1 + \theta_2\right) \tag{10.3.4.2}$$

$$= ar \left(\Delta BDC \right) + ar \left(\Delta ADB \right) \tag{10.3.4.3}$$

$$= \frac{1}{2}cl\sin\theta_1 + \frac{1}{2}al\sin\theta_2$$
 (10.3.4.4)

$$= \frac{1}{2}ac\sin\theta_1 \sec\theta_2 + \frac{1}{2}a^2\tan\theta_2$$
 (10.3.4.5)

 $(:: l = a \sec \theta_2)$. From the above,

$$\sin(\theta_1 + \theta_2) = \sin\theta_1 \sec\theta_2 + \frac{a}{c} \tan\theta_2 \tag{10.3.4.6}$$

$$= \sin \theta_1 \sec \theta_2 + \cos (\theta_1 + \theta_2) \tan \theta_2 \qquad (10.3.4.7)$$

Multiplying both sides by $\cos \theta_2$,

$$\sin(\theta_1 + \theta_2)\cos\theta_2 = \sin\theta_1 + \cos(\theta_1 + \theta_2)\sin\theta_2 \qquad (10.3.4.8)$$

resulting in (10.3.4.1).

10.3.5. Find Hero's formula for the area of a triangle.

Solution: From (10.3.1), the area of $\triangle ABC$ is

$$\frac{1}{2}ab\sin C = \frac{1}{2}ab\sqrt{1-\cos^2 C} \quad \text{(from (10.2.2.1))}$$
 (10.3.5.1)

$$= \frac{1}{2}ab\sqrt{1 - \left(\frac{a^2 + b^2 - c^2}{2ab}\right)^2}$$
 (from (11.3.3.1)) (10.3.5.2)

$$= \frac{1}{4}\sqrt{(2ab)^2 - (a^2 + b^2 - c^2)}$$
 (10.3.5.3)

$$= \frac{1}{4}\sqrt{(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)}$$
 (10.3.5.4)

$$= \frac{1}{4} \sqrt{\left\{ (a+b)^2 - c^2 \right\} \left\{ c^2 - (a-b)^2 \right\}}$$
 (10.3.5.5)

$$= \frac{1}{4}\sqrt{(a+b+c)(a+b-c)(a+c-b)(b+c-a)}$$
 (10.3.5.6)

Substituting

$$s = \frac{a+b+c}{2} \tag{10.3.5.7}$$

in (10.3.5.6), the area of $\triangle ABC$ is

$$\sqrt{s(s-a)(s-b)(s-c)}$$
 (10.3.5.8)

This is known as Hero's formula.

10.4. Angle Bisectors

10.4.1. In Fig. 10.4.1.1, the bisectors of $\angle B$ and $\angle C$ meet at **I**. Show that IA bisects $\angle A$.

Figure 10.4.1.1: Incentre I of $\triangle ABC$

Solution: Using sine formula in (10.3.2.3)

$$\frac{l_1}{\sin\frac{C}{2}} = \frac{l_3}{\sin(A - \theta)}$$
 (10.4.1.1)

$$\frac{l_3}{\sin \frac{B}{2}} = \frac{l_2}{\sin \frac{C}{2}}$$

$$\frac{l_1}{\sin \frac{B}{2}} = \frac{l_2}{\sin \theta}$$
(10.4.1.2)

$$\frac{l_1}{\sin\frac{B}{2}} = \frac{l_2}{\sin\theta} \tag{10.4.1.3}$$

Multiplying the above equations,

$$\sin \theta = \sin (A - \theta) \implies \theta = \frac{A}{2}$$
 (10.4.1.4)

10.4.2. In Fig. 10.4.2.1,

$$ID \perp BC, IE \perp AC, IF \perp AB.$$
 (10.4.2.1)

Show that

Figure 10.4.2.1: In radius r of $\triangle ABC$

$$ID = IE = IF = r \tag{10.4.2.2}$$

Solution: In \triangle s IDC and IEC,

$$ID = IE = \frac{l_3}{\sin\frac{C}{2}}$$
 (10.4.2.3)

Similarly, in \triangle s IEA and IFA,

$$IF = IE = \frac{l_1}{\sin\frac{A}{2}}$$
 (10.4.2.4)

yielding (10.4.2.2)

10.4.3. In Fig. 10.4.2.1, show that

$$BD = BF, AE = AF, CD = CE$$
 (10.4.3.1)

Solution: From Fig. 10.4.2.1, in \triangle s IBD and IBF,

$$x = BD = BF = r \cot \frac{B}{2}$$
 (10.4.3.2)

Similarly, other results can be obtained.

10.4.4. The circle with centre ${\bf I}$ and radius r in Fig. 10.4.4.1 is known as the incircle. Find the radius r.

Figure 10.4.4.1: Incircle of $\triangle ABC$

Solution: In $\triangle IBC$,

$$a = x + y = r \cot \frac{B}{2} + r \cot \frac{C}{2}$$

$$\implies r = \frac{a}{\cot \frac{B}{2} + \cot \frac{C}{2}}$$
(10.4.4.1)

$$\implies r = \frac{a}{\cot \frac{B}{2} + \cot \frac{C}{2}} \tag{10.4.4.2}$$

10.5. Circumradius

10.5.1. In Fig. 10.5.1.1,

Figure 10.5.1.1: Isosceles Triangle

$$OB = OC = R \tag{10.5.1.1}$$

Such a triangle is known as an isosceles triangle. Show that

$$\angle B = \angle C \tag{10.5.1.2}$$

Solution: Using (10.3.2.3),

$$\frac{\sin B}{R} = \frac{\sin C}{R} \tag{10.5.1.3}$$

$$\implies \sin B = \sin C \tag{10.5.1.4}$$

or,
$$\angle B = \angle C$$
. (10.5.1.5)

10.5.2. In Fig. 10.5.1.1, show that

$$a = 2R\sin\frac{\theta}{2} \tag{10.5.2.1}$$

Solution: In $\triangle OBC$, using the cosine formula from (11.3.3.1),

$$\cos \theta = \frac{R^2 + R^2 - a^2}{2R^2} = 1 - \frac{a^2}{2R^2}$$
 (10.5.2.2)

$$\implies \frac{a^2}{2R^2} = 2\sin^2\frac{\theta}{2} \tag{10.5.2.3}$$

yielding (10.5.2.1).

10.5.3. In Fig. 11.7.2.1, show that

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R.$$
 (10.5.3.1)

Solution: From (11.7.6.1) and (10.5.2.1)

$$a = 2R\sin A \tag{10.5.3.2}$$

10.6. Tangent

10.6.1. In Fig. 11.8.2.1, show that $PA.PB = PC^2$.

Solution: In \triangle s *APC* and *BPC*, using (11.8.2.1),

$$\frac{AP}{\sin \theta} = \frac{AC}{\sin P}$$

$$\frac{PC}{\sin \theta} = \frac{BC}{\sin P}$$
(10.6.1.1)

$$\frac{PC}{\sin \theta} = \frac{BC}{\sin P} \tag{10.6.1.2}$$

$$\implies \frac{PC}{AP} = \frac{BC}{AC} \left(= \frac{BP}{CP} \right) \tag{10.6.1.3}$$

which gives the desired result. \triangle s APC and BPC are said to be similar.

10.7. Identities

10.7.1. Show that

$$\cos 90^{\circ} = 0 \tag{10.7.1.1}$$

Solution: Using (11.3.3.1) in Fig. 10.1,

$$\cos 90^{\circ} = \frac{a^2 + c^2 - b^2}{2ac} = 0 \tag{10.7.1.2}$$

upon substituting from (10.2.4.1).

10.7.2. Show that

$$\sin 90^{\circ} = 1 \tag{10.7.2.1}$$

Solution: Trivial from (10.1.2.1).

10.7.3. Prove the following identities

(a)
$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta. \tag{10.7.3.1}$$

(b)
$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta. \tag{10.7.3.2}$$

Solution: In (10.3.4.1), let

$$\theta_1 + \theta_2 = \alpha$$

$$\theta_2 = \beta$$
(10.7.3.3)

This gives (10.7.3.1). In (10.7.3.1), replace α by $90^{\circ} - \alpha$. This results in

$$\sin(90^{\circ} - \alpha - \beta) = \sin(90^{\circ} - \alpha)\cos\beta - \cos(90^{\circ} - \alpha)\sin\beta$$

(10.7.3.4)

$$\implies \cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta \qquad (10.7.3.5)$$

10.7.4. Using (10.3.4.1) and (10.7.3.2), show that

$$\sin(\theta_1 + \theta_2) = \sin\theta_1 \cos\theta_2 + \cos\theta_1 \sin\theta_2 \tag{10.7.4.1}$$

$$\cos(\theta_1 - \theta_2) = \cos\theta_1 \cos\theta_2 \sin\theta_1 \sin\theta_2 \qquad (10.7.4.2)$$

Solution: From (10.3.4.1),

$$\sin(\theta_1 + \theta_2)\cos\theta_2 = \sin\theta_1 + \cos(\theta_1 + \theta_2)\sin\theta_2 \qquad (10.7.4.3)$$

Using (10.7.3.2) in the above,

$$\sin(\theta_1 + \theta_2)\cos\theta_2 = \sin\theta_1 + (\cos\theta_1\cos\theta_2 - \sin\theta_1\sin\theta_2)\sin\theta_2 \quad (10.7.4.4)$$

which can be expressed as

$$\sin(\theta_1 + \theta_2)\cos\theta_2 = \sin\theta_1$$

$$+\cos\theta_1\cos\theta_2\sin\theta_2 - \sin\theta_1\sin^2\theta_2 \quad (10.7.4.5)$$

Since

$$\sin^2 \theta_2 = 1 - \cos^2 \theta_2, \tag{10.7.4.6}$$

we obtain

$$\sin(\theta_1 + \theta_2)\cos\theta_2 = \cos\theta_1\cos\theta_2\sin\theta_2 + \sin\theta_1\cos^2\theta_2 \quad (10.7.4.7)$$

resulting in

$$\sin(\theta_1 + \theta_2) = \cos\theta_1 \sin\theta_2 + \sin\theta_1 \cos\theta_2 \tag{10.7.4.8}$$

after factoring out $\cos \theta_2$. Using a similar approach, (10.7.4.2) can also be proved.

10.7.5. Show that

$$\sin \theta_1 + \sin \theta_2 = 2 \sin \left(\frac{\theta_1 + \theta_2}{2} \right) \cos \left(\frac{\theta_1 - \theta_2}{2} \right) \tag{10.7.5.1}$$

$$\cos \theta_1 + \cos \theta_2 = 2\cos \left(\frac{\theta_1 + \theta_2}{2}\right) \cos \left(\frac{\theta_1 - \theta_2}{2}\right) \tag{10.7.5.2}$$

$$\sin \theta_1 - \sin \theta_2 = 2 \sin \left(\frac{\theta_1 - \theta_2}{2} \right) \cos \left(\frac{\theta_1 + \theta_2}{2} \right)$$
 (10.7.5.3)

$$\cos \theta_1 - \cos \theta_2 = 2 \sin \left(\frac{\theta_1 + \theta_2}{2} \right) \cos \left(\frac{\theta_2 - \theta_1}{2} \right)$$
 (10.7.5.4)

Solution: Let

$$\theta_1 = \alpha + \beta$$

$$\theta_2 = \alpha - \beta$$
(10.7.5.5)

From (10.7.4.1),

$$\sin \theta_1 + \sin \theta_2 = \sin (\alpha + \beta) + \sin (\alpha - \beta) \tag{10.7.5.6}$$

$$= \sin \alpha \cos \beta + \cos \alpha \sin \beta \tag{10.7.5.7}$$

$$+\sin\alpha\cos\beta - \cos\alpha\sin\beta$$
 (10.7.5.8)

$$= 2\sin\alpha\cos\beta \tag{10.7.5.9}$$

resulting in (10.7.5.1)

$$\therefore \alpha = \frac{\theta_1 + \theta_2}{2} \tag{10.7.5.10}$$

$$\beta = \frac{\theta_1 - \theta_2}{2} \tag{10.7.5.11}$$

from (10.7.5.5). Other identities may be proved similarly.

10.7.6. Show that

$$\sin 2\theta = 2\sin\theta\cos\theta\tag{10.7.6.1}$$

$$\cos 2\theta = 1 - 2\sin^2 \theta = 2\cos^2 \theta - 1 \tag{10.7.6.2}$$

$$=\cos^2\theta - \sin^2\theta \tag{10.7.6.3}$$

Chapter 11

Analytic Geometry

11.1. Vectors

11.1.1. A matrix of the form

$$\mathbf{A} \triangleq \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \tag{11.1.1.1}$$

is defined be <u>column vector</u>, or simply, vector. In Fig. 10.1 the point vectors $\mathbf{A}, \mathbf{B}, \mathbf{C}$ can be defined as

$$\mathbf{A} = \begin{pmatrix} 0 \\ c \end{pmatrix}, \, \mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \, \mathbf{C} = \begin{pmatrix} a \\ 0 \end{pmatrix} \tag{11.1.1.2}$$

11.1.2.

$$\lambda \mathbf{A} \triangleq \begin{pmatrix} \lambda a_1 \\ \lambda a_2 \end{pmatrix} \tag{11.1.2.1}$$

11.1.3. For

$$\mathbf{B} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix},\tag{11.1.3.1}$$

$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \end{pmatrix}$$
 (11.1.3.2)

11.1.4. The transpose of \mathbf{A} is the row vector defined as

$$\mathbf{A}^{\top} = \begin{pmatrix} a_1 & a_2 \end{pmatrix} \tag{11.1.4.1}$$

11.1.5. The inner product or dot product is defined as

$$\mathbf{A}^{\top}\mathbf{B} \equiv \mathbf{A} \cdot \mathbf{B} = \begin{pmatrix} a_1 & a_2 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = a_1b_1 + a_2b_2$$
 (11.1.5.1)

In Fig. 10.1,

$$\mathbf{A}^{\top}\mathbf{C} = 0 \tag{11.1.5.2}$$

11.1.6. The norm of A is defined as

$$\|\mathbf{A}\| = \sqrt{\mathbf{A}^{\top}\mathbf{A}} = \sqrt{a_1^2 + a_2^2}$$
 (11.1.6.1)

11.1.7. In Fig. 10.1, it is easy to verify that

$$\|\mathbf{A} - \mathbf{C}\|^2 = \begin{pmatrix} -c & a \end{pmatrix} \begin{pmatrix} -c \\ a \end{pmatrix} = a^2 + c^2 = b^2$$
 (11.1.7.1)

from (10.2.4.1). Thus, the distance betwen any two points $\bf A$ and $\bf B$ is given by

$$\|\mathbf{A} - \mathbf{B}\| \tag{11.1.7.2}$$

11.1.8. Show that

$$\|\lambda \mathbf{A}\| = |\lambda| \|\mathbf{A}\| \tag{11.1.8.1}$$

11.2. Collinear Points

11.2.1. The direction vector of the line AB is

$$\mathbf{A} - \mathbf{B} \equiv \mathbf{B} - \mathbf{A} \equiv \kappa \begin{pmatrix} 1 \\ m \end{pmatrix}, \tag{11.2.1.1}$$

where m is defined to be the slope of AB. In Fig. 10.1,

$$\mathbf{A} - \mathbf{C} = \begin{pmatrix} -c \\ a \end{pmatrix} \equiv \begin{pmatrix} 1 \\ -\frac{a}{c} \end{pmatrix} = \begin{pmatrix} 1 \\ -\tan\theta \end{pmatrix}$$
 (11.2.1.2)

the slope of AC is $-\tan \theta$

11.2.2. Points A, B and C are on a line if they have the same direction vector, i.e.

$$p(\mathbf{B} - \mathbf{A}) + q(\mathbf{C} - \mathbf{B}) = 0 \implies p, q \neq 0.$$
 (11.2.2.1)

 $(\mathbf{A} - \mathbf{B}), (\mathbf{C} - \mathbf{B})$ are then said to be <u>linearly dependent</u>.

11.2.3. If points **A**, **B** and **C** are collinear,

$$\mathbf{B} = \frac{k\mathbf{A} + \mathbf{C}}{k+1} \tag{11.2.3.1}$$

Solution: From (11.2.2.1),

$$p(\mathbf{A} - \mathbf{B}) + q(\mathbf{A} - \mathbf{C}) = 0 \implies \mathbf{B} = \frac{p\mathbf{A} + q\mathbf{C}}{p + q}$$
 (11.2.3.2)

yielding (11.2.3.1) upon substituting

$$k = \frac{p}{q}. (11.2.3.3)$$

This is known as section formula.

11.2.4. Consequently, points **A**, **B** and **C** form a triangle if

$$p\left(\mathbf{A} - \mathbf{B}\right) + q\left(\mathbf{C} - \mathbf{B}\right) \tag{11.2.4.1}$$

$$= (p+q)\mathbf{B} - p\mathbf{A} - q\mathbf{C} = 0 (11.2.4.2)$$

$$\implies p = 0, q = 0 \tag{11.2.4.3}$$

11.2.5. In Fig. 11.2.5.1

$$AF = BF, AE = BE, \tag{11.2.5.1}$$

and the medians BE and CF meet at G. Show that

$$\frac{GB}{GE} = \frac{GC}{GF} = 2 (11.2.5.2)$$

Solution: From (11.2.3.1),

Figure 11.2.5.1: $k_1 = k_2 = 2$.

$$\mathbf{G} = \frac{k_1 \mathbf{E} + \mathbf{B}}{k_1 + 1} = \frac{k_2 \mathbf{F} + \mathbf{C}}{k_2 + 1}$$
 (11.2.5.3)

$$\implies \frac{k_1 + 1}{k_1 + 2} + \frac{k_2 + 1}{k_2 + 2} + \mathbf{C}$$

$$\implies \frac{k_1 \left(\frac{\mathbf{A} + \mathbf{C}}{2}\right) + \mathbf{B}}{k_1 + 1} = \frac{k_2 \left(\frac{\mathbf{A} + \mathbf{B}}{2}\right) + \mathbf{C}}{k_2 + 1}$$
(11.2.5.4)

$$\implies (k_2 + 1) \{k_1 (\mathbf{A} + \mathbf{C}) + 2\mathbf{B}\} = (k_1 + 1) \{k_2 (\mathbf{A} + \mathbf{B}) + 2\mathbf{C}\}$$
(11.2.5.5)

which can be expressed as

$$\{2 + k_2 - k_1 k_2\} \mathbf{B} - (k_2 - k_1) \mathbf{A} - \{k_1 + 2 - k_1 k_2\} \mathbf{C} = 0 \quad (11.2.5.6)$$

and is of the form (11.2.4.3) with

$$p = k_2 - k_1, q = k_1 + 2 - k_1 k_2. (11.2.5.7)$$

Thus, from (11.2.4.3)

$$k_2 - k_1 = 0, (11.2.5.8)$$

$$k_1 + 2 - k_1 k_2 = 0 (11.2.5.9)$$

Thus, from (11.2.5.9)

$$k_1 = k_2 \tag{11.2.5.10}$$

and substituting the above in (11.2.5.9) results in the quadratic

$$k_1^2 - k_1 - 2 = 0 (11.2.5.11)$$

$$\implies (k_1 - 2)(k_1 + 1) = 0$$
 (11.2.5.12)

admitting $k_1 = k_2 = 2$ as the only possible solution.

11.2.6. Substituting $k_1 = 2$ in (11.2.5.3)

$$\mathbf{G} = \frac{\mathbf{A} + \mathbf{B} + \mathbf{C}}{3} \tag{11.2.6.1}$$

11.2.7. In Fig. 11.2.7.1, AG is extended to join BC at \mathbf{D} . Show that AD is also a median.

Solution: Considering the ratios in Fig. 11.2.7.1,

$$\mathbf{G} = \frac{k_3 \mathbf{D} + \mathbf{A}}{k_3 + 1} \tag{11.2.7.1}$$

$$\mathbf{D} = \frac{k_4 \mathbf{C} + \mathbf{B}}{k_4 + 1} \tag{11.2.7.2}$$

Substituting from (11.2.6.1) in the above,

$$(k_3+1)\left(\frac{\mathbf{A}+\mathbf{B}+\mathbf{C}}{3}\right) = k_3\left(\frac{k_4\mathbf{C}+\mathbf{B}}{k_4+1}\right) + \mathbf{A}$$
(11.2.7.3)

$$\implies (k_3 + 1)(k_4 + 1)(\mathbf{A} + \mathbf{B} + \mathbf{C}) = 3\{k_3(k_4\mathbf{C} + \mathbf{B}) + (k_4 + 1)\mathbf{A}\}$$
(11.2.7.4)

Figure 11.2.7.1: $k_3 = 2, k_4 = 1$

which can be expressed as

$$(k_3k_4 + k_3 - 2k_4 - 2) \mathbf{A}$$

 $- (-k_3k_4 - k_4 + 2k_3 - 1) \mathbf{B}$
 $- (-k_3 - k_4 - 1 + 2k_3k_4) \mathbf{C} = \mathbf{0}$ (11.2.7.5)

Comparing the above with (11.2.4.3),

$$p = -k_3k_4 - k_4 + 2k_3 - 1, q = -k_3 - k_4 - 1 + 2k_3k_4$$
 (11.2.7.6)

yielding

$$-k_3k_4 - k_4 + 2k_3 - 1 = 0 (11.2.7.7)$$

$$-k_3 - k_4 - 1 + 2k_3k_4 = 0 (11.2.7.8)$$

Subtracting (11.2.7.7) from (11.2.7.8),

$$3k_3(k_4 - 1) = 0 (11.2.7.9)$$

$$\implies k_4 = 1 \tag{11.2.7.10}$$

which upon substituting in (11.2.7.7) yields

$$k_3 = 2 (11.2.7.11)$$

11.3. Matrices: Cosine Formula

11.3.1. The determinant of the 2×2 matrix

$$\mathbf{M} = \begin{pmatrix} \mathbf{A} & \mathbf{B} \end{pmatrix} = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$
 (11.3.1.1)

is defined as

$$\begin{vmatrix} \mathbf{M} \end{vmatrix} = \begin{vmatrix} \mathbf{A} & \mathbf{B} \end{vmatrix}$$

$$= \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1$$
(11.3.1.2)
(11.3.1.3)

11.3.2. In Fig. 11.3.2.1, show that

$$\begin{pmatrix} 0 & c & b \\ c & 0 & a \\ b & a & 0 \end{pmatrix} \begin{pmatrix} \cos A \\ \cos B \\ \cos C \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 (11.3.2.1)

Solution: From Fig. 11.3.2.1,

Figure 11.3.2.1: The cosine formula

$$a = x + y = b\cos C + c\cos B = \begin{pmatrix} \cos C & \cos B \end{pmatrix} \begin{pmatrix} b \\ c \end{pmatrix}$$
 (11.3.2.2)

$$= \begin{pmatrix} 0 & b & c \end{pmatrix} \begin{pmatrix} \cos A \\ \cos C \\ \cos B \end{pmatrix} \tag{11.3.2.3}$$

Similarly,

$$b = c \cos A + a \cos C = \begin{pmatrix} c & 0 & a \end{pmatrix} \begin{pmatrix} \cos A \\ \cos C \\ \cos B \end{pmatrix}$$

$$c = b \cos A + a \cos B = \begin{pmatrix} b & a & 0 \end{pmatrix} \begin{pmatrix} \cos A \\ \cos C \\ \cos B \end{pmatrix}$$

$$(11.3.2.4)$$

$$c = b\cos A + a\cos B = \begin{pmatrix} b & a & 0 \end{pmatrix} \begin{pmatrix} \cos A \\ \cos C \\ \cos B \end{pmatrix}$$
 (11.3.2.5)

The above equations can be expressed in matrix form as (11.3.2.1).

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} \tag{11.3.3.1}$$

Solution: Using the properties of determinants,

$$\cos A = \frac{\begin{vmatrix} a & c & b \\ b & 0 & a \\ c & a & 0 \end{vmatrix}}{\begin{vmatrix} c & a & 0 \\ 0 & c & b \\ c & 0 & a \\ b & a & 0 \end{vmatrix}} = \frac{ab^2 + ac^2 - a^3}{abc + abc} = \frac{b^2 + c^2 - a^2}{2abc}$$
(11.3.3.2)

11.4. Area of a Triangle: Cross Product

- 11.4.1. The <u>cross product</u> or <u>vector product</u> defined as $\mathbf{A} \times \mathbf{B}$ is given by (11.3.1.2) for 2×1 vectors.
- 11.4.2. The area of the triangle with vertices A, B, C is given by

$$\frac{1}{2} \| (\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C}) \| = \frac{1}{2} \| \mathbf{A} \times \mathbf{B} + \mathbf{B} \times \mathbf{C} + \mathbf{C} \times \mathbf{A} \| \quad (11.4.2.1)$$

11.4.3. If

$$\|\mathbf{A} \times \mathbf{B}\| = \|\mathbf{C} \times \mathbf{D}\|, \text{ then } (11.4.3.1)$$

$$\mathbf{A} \times \mathbf{B} = \pm \left(\mathbf{C} \times \mathbf{D} \right) \tag{11.4.3.2}$$

where the sign depends on the orientation of the vectors.

11.5. Parallelogram

11.5.1. If ABCD be a parallelogram,

$$\mathbf{B} - \mathbf{A} = \mathbf{C} - \mathbf{D} \tag{11.5.1.1}$$

11.5.2. The area of the parallelogram with vertices A, B, C and D is given by

$$\|(\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{D})\| = \|\mathbf{A} \times \mathbf{B} + \mathbf{B} \times \mathbf{C} + \mathbf{C} \times \mathbf{A}\| \quad (11.5.2.1)$$

11.6. Altitudes of a Triangle:Line Equation

11.6.1. Find the equation of the line BC.

Solution: Let \mathbf{x} be any point on BC. Using section formula, for some k,

$$\mathbf{x} = \frac{k\mathbf{C} + \mathbf{B}}{k+1} = \frac{(k+1)\mathbf{C} + (\mathbf{B} - \mathbf{C})}{k+1}$$
 (11.6.1.1)

$$\implies \mathbf{x} = \mathbf{C} + \lambda \mathbf{m} \tag{11.6.1.2}$$

where

$$\mathbf{m} = \frac{\mathbf{B} - \mathbf{C}}{k+1} \equiv \mathbf{B} - \mathbf{C} \tag{11.6.1.3}$$

Figure 11.6.1.1: Drawing the altitude

11.6.2. The normal vector to \mathbf{m} is defined as

$$\mathbf{n}^{\mathsf{T}}\mathbf{m} = 0 \tag{11.6.2.1}$$

$$\mathbf{n} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{m} \tag{11.6.2.2}$$

11.6.3. From (11.6.2.1) and (11.6.1.2), it can be verified that

$$\mathbf{n}^{\top}\mathbf{x} = \mathbf{n}^{\top}\mathbf{C} + \lambda \mathbf{n}^{\top}\mathbf{m}$$
 (11.6.3.1)

$$\implies \mathbf{n}^{\top} \mathbf{x} = \mathbf{n}^{\top} \mathbf{C} \tag{11.6.3.2}$$

(11.6.3.2) is defined to be the normal form of the line BC.

- 11.6.4. In Fig. 11.6.5.1, $AD \perp BC$ and $BE \perp AC$ are defined to be the altitudes of $\triangle ABC$.
- 11.6.5. Let **H** be the intersection of the altitudes AD and BE as shown in Fig. 11.6.5.1. CH is extended to meet AB at **F**. Show that $CF \perp AB$.

Figure 11.6.5.1: Altitudes of a triangle meet at the orthocentre H

Solution: From (11.6.1.3) (11.6.2.1), (11.1.5.2) and (11.6.3.2), the equations of AD and BE are

$$(\mathbf{B} - \mathbf{C})^{\top} (\mathbf{x} - \mathbf{A}) = 0 \tag{11.6.5.1}$$

$$(\mathbf{C} - \mathbf{A})^{\top} (\mathbf{x} - \mathbf{B}) = 0 \tag{11.6.5.2}$$

 \therefore H lies on both AD and BE, it satisfies the above equations, and

$$(\mathbf{B} - \mathbf{C})^{\top} (\mathbf{H} - \mathbf{A}) = 0 \tag{11.6.5.3}$$

$$(\mathbf{C} - \mathbf{A})^{\top} (\mathbf{H} - \mathbf{B}) = 0 \tag{11.6.5.4}$$

Adding both the above and simplifying,

$$(\mathbf{B} - \mathbf{A})^{\top} (\mathbf{H} - \mathbf{C}) = 0 \tag{11.6.5.5}$$

 $\implies CH \perp AB \text{ from } (11.1.5.2), \text{ or } CF \perp AB.$

11.6.6. Altitudes of a \triangle meet at the orthocentre H.

11.7. Circumcircle: Circle Equation

11.7.1. In Fig. 11.7.1.1,

$$OB = OC = R, BD = DC.$$
 (11.7.1.1)

Show that $OD \perp BC$.

Solution:

$$\|\mathbf{O} - \mathbf{C}\| = \|\mathbf{O} - \mathbf{B}\| = R$$
 (11.7.1.2)

$$\implies \|\mathbf{O} - \mathbf{C}\|^2 = \|\mathbf{O} - \mathbf{B}\|^2 \tag{11.7.1.3}$$

Figure 11.7.1.1: Perpendicular bisector.

which can be expressed as

$$(\mathbf{O} - \mathbf{C})^{\top} (\mathbf{O} - \mathbf{C}) = (\mathbf{O} - \mathbf{B})^{\top} (\mathbf{O} - \mathbf{B})$$
 (11.7.1.4)

$$\|\mathbf{O}\|^2 - 2\mathbf{O}^{\mathsf{T}}\mathbf{C} + \|\mathbf{C}\|^2 = \|\mathbf{O}\|^2 - 2\mathbf{O}^{\mathsf{T}}\mathbf{B} + \|\mathbf{B}\|^2$$
 (11.7.1.5)

$$\implies (\mathbf{B} - \mathbf{C})^{\top} \mathbf{O} = \frac{\|\mathbf{B}\|^2 - \|\mathbf{C}\|^2}{2}$$
 (11.7.1.6)

which can be simplified to obtain

$$(\mathbf{B} - \mathbf{C})^{\top} \left\{ \mathbf{O} - \left(\frac{\mathbf{B} + \mathbf{C}}{2} \right) \right\} = 0$$
 (11.7.1.7)

or,
$$(\mathbf{B} - \mathbf{C})^{\mathsf{T}} \{ \mathbf{O} - \mathbf{D} \} = 0$$
 (11.7.1.8)

which proves the give result using (11.2.3.1) and (11.1.5.2).

11.7.2. The equation of the circle in Fig. 11.7.2.1, is

$$\|\mathbf{x} - \mathbf{O}\| = R \tag{11.7.2.1}$$

Figure 11.7.2.1: Circumcircle of $\triangle ABC$

This is known as the <u>circumcircle</u> of $\triangle ABC$.

11.7.3. In Fig. 11.3.2.1 show that

$$\cos A = \frac{(\mathbf{A} - \mathbf{B})^{\top} (\mathbf{A} - \mathbf{C})}{\|\mathbf{A} - \mathbf{B}\| \|\mathbf{A} - \mathbf{C}\|}$$
(11.7.3.1)

Solution: From (11.3.3.1), using (11.1.7.2),

$$\cos A = \frac{\|\mathbf{A} - \mathbf{B}\|^2 + \|\mathbf{A} - \mathbf{C}\|^2 - \|\mathbf{B} - \mathbf{C}\|^2}{2\|\mathbf{A} - \mathbf{B}\|\|\mathbf{A} - \mathbf{C}\|}$$
(11.7.3.2)

$$= \frac{\|\mathbf{A}\|^2 - \mathbf{A}^{\mathsf{T}}\mathbf{B} - \mathbf{A}^{\mathsf{T}}\mathbf{C} + \mathbf{B}^{\mathsf{T}}\mathbf{C}}{\|\mathbf{A} - \mathbf{B}\| \|\mathbf{A} - \mathbf{C}\|}$$
(11.7.3.3)

which can be expressed as (11.7.3.1).

11.7.4. Any point on the circle can be expressed as

$$\mathbf{x} = \mathbf{O} + R \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}, \quad 0 \in [0, 2\pi].$$
 (11.7.4.1)

11.7.5. Let

$$R = 1, \mathbf{O} = \mathbf{0}, \mathbf{A} = \begin{pmatrix} \cos \theta_1 \\ \sin \theta_1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} \cos \theta_2 \\ \sin \theta_2 \end{pmatrix},$$
 (11.7.5.1)

Show that

$$\|\mathbf{A} - \mathbf{B}\| = 2\sin\left(\frac{\theta_1 - \theta_2}{2}\right) \tag{11.7.5.2}$$

Solution: From (11.7.4.1).

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} \cos \theta_1 - \cos \theta_2 \\ \sin \theta_1 - \sin \theta_2 \end{pmatrix}$$
 (11.7.5.3)

$$\implies \|\mathbf{A} - \mathbf{B}\|^2 = (\cos \theta_1 - \cos \theta_2)^2 + (\sin \theta_1 - \sin \theta_2)^2 \qquad (11.7.5.4)$$
$$= 2\{1 - \cos(\theta_1 - \theta_2)\} = 4\sin^2\left(\frac{\theta_1 - \theta_2}{2}\right) \qquad (11.7.5.5)$$

yielding (11.7.5.2) from (10.7.6.3).

11.7.6. In Fig. 11.7.2.1, show that

$$\theta = 2A. \tag{11.7.6.1}$$

Solution: Let

$$\mathbf{C} = \begin{pmatrix} \cos \theta_3 \\ \sin \theta_3 \end{pmatrix} \tag{11.7.6.2}$$

Then, substituting from (11.7.5.2) in (11.7.3.2),

$$\cos A = \frac{4\sin^2\left(\frac{\theta_1 - \theta_2}{2}\right) + 4\sin^2\left(\frac{\theta_1 - \theta_3}{2}\right) - 4\sin^2\left(\frac{\theta_2 - \theta_3}{2}\right)}{8\sin\left(\frac{\theta_1 - \theta_2}{2}\right)\sin\left(\frac{\theta_1 - \theta_3}{2}\right)}$$
(11.7.6.3)

$$= \frac{2\sin^2\left(\frac{\theta_1 - \theta_2}{2}\right) + \cos\left(\theta_2 - \theta_3\right) - \cos\left(\theta_1 - \theta_3\right)}{4\sin\left(\frac{\theta_1 - \theta_2}{2}\right)\sin\left(\frac{\theta_1 - \theta_3}{2}\right)}$$
(11.7.6.4)

from (10.7.6.3). : from (10.7.5.4),

$$\cos A = \frac{2\sin^2\left(\frac{\theta_1 - \theta_2}{2}\right) + 2\sin\left(\frac{\theta_1 - \theta_2}{2}\right)\sin\left(\frac{\theta_1 + \theta_2}{2} - \theta_3\right)}{4\sin\left(\frac{\theta_1 - \theta_2}{2}\right)\sin\left(\frac{\theta_1 - \theta_3}{2}\right)}$$
(11.7.6.5)

$$= \frac{\sin\left(\frac{\theta_1 - \theta_2}{2}\right) + \sin\left(\frac{\theta_1 + \theta_2}{2} - \theta_3\right)}{2\sin\left(\frac{\theta_1 - \theta_3}{2}\right)}$$
(11.7.6.6)

From (10.7.5.1), the above equation can be expressed as

$$\cos A = \frac{2\sin\left(\frac{\theta_1 - \theta_3}{2}\right)\cos\left(\frac{\theta_2 - \theta_3}{2}\right)}{2\sin\left(\frac{\theta_1 - \theta_3}{2}\right)} = \cos\left(\frac{\theta_2 - \theta_3}{2}\right) \quad (11.7.6.7)$$

$$\implies 2A = \theta_2 - \theta_3 \tag{11.7.6.8}$$

Similarly,

$$\cos \theta = \frac{1 + 1 - 4\sin^2\left(\frac{\theta_2 - \theta_3}{2}\right)}{2} = \cos(\theta_2 - \theta_3) = \cos 2A \quad (11.7.6.9)$$

11.8. Tangent

11.8.1. In Fig. 11.8.1.1, OC is the radius and PC touches the circle at C. Show that

$$OC \perp PC$$
. (11.8.1.1)

Figure 11.8.1.1:

Solution: The equation of PC can be expressed as

$$\mathbf{x} = \mathbf{C} + \mu \mathbf{m} \tag{11.8.1.2}$$

and the equation of the circle is

$$\|\mathbf{x} - \mathbf{O}\| = R \tag{11.8.1.3}$$

Substituting (11.8.1.2) in (11.8.1.3),

$$\|\mathbf{C} + \mu\mathbf{m} - \mathbf{O}\|^2 = R^2 \quad (11.8.1.4)$$

$$\implies \mu^2 \|\mathbf{m}\|^2 + 2\mu \mathbf{m}^{\top} (\mathbf{C} - \mathbf{O}) + \|\mathbf{C} - \mathbf{O}\|^2 - R^2 = 0 \qquad (11.8.1.5)$$

The above equation has only one root. Hence the discriminant of the above quadratic should be zero. So,

$$\left\{ \mathbf{m}^{\top} \left(\mathbf{C} - \mathbf{O} \right) \right\}^{2} - \|\mathbf{m}\|^{2} \left\{ \|\mathbf{C} - \mathbf{O}\|^{2} - R^{2} \right\} = 0$$
 (11.8.1.6)

Since C is a point on the circle,

$$\|\mathbf{C} - \mathbf{O}\|^2 - R^2 = 0 \tag{11.8.1.7}$$

$$\implies \mathbf{m}^{\mathsf{T}} \left(\mathbf{C} - \mathbf{O} \right) = 0 \tag{11.8.1.8}$$

upon substituting in (11.8.1.6). Using the definition of the direction vector from (11.2.1.1)

$$\mathbf{m} = \mathbf{P} - \mathbf{C} \tag{11.8.1.9}$$

$$\implies (\mathbf{P} - \mathbf{C})^{\top} (\mathbf{C} - \mathbf{O}) = 0 \tag{11.8.1.10}$$

which is equivalent to (11.8.1.1).

11.8.2. In Fig. 11.8.2.1 show that

$$\theta = \alpha \tag{11.8.2.1}$$

Figure 11.8.2.1: $\theta = \alpha$.

Solution: Let Let

$$\mathbf{O} = \mathbf{0}\mathbf{A} = \begin{pmatrix} \cos \theta_1 \\ \sin \theta_1 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} \cos \theta_2 \\ \sin \theta_2 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} \cos \theta_3 \\ \sin \theta_3 \end{pmatrix}$$
(11.8.2.2)

Without loss of generality, let

$$\theta_3 = \frac{\pi}{2} \tag{11.8.2.3}$$

Then,

$$\mathbf{C} - \mathbf{O} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{11.8.2.4}$$

From from (11.8.1.10),

$$\mathbf{C} - \mathbf{P} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \tag{11.8.2.5}$$

From (11.7.3.1) and (11.8.2.5),

$$\cos \theta = \frac{\left(\cos \theta_3 - \cos \theta_1 + \sin \theta_3 - \sin \theta_1\right) \begin{pmatrix} 1\\0 \end{pmatrix}}{2\sin\left(\frac{\theta_1 - \theta_3}{2}\right)}$$

$$= \sin\left(\frac{\theta_1 + \theta_3}{2}\right) = \cos\left(\frac{\pi}{2} - \frac{\theta_1 + \theta_3}{2}\right) = \cos\left(\frac{\pi}{4} - \frac{\theta_1}{2}\right)$$
(11.8.2.7)

upon substituting from (11.8.2.3). Similarly, from (11.7.6.7),

$$\cos \alpha = \cos \left(\frac{\theta_1 - \theta_3}{2}\right) = \cos \left(\frac{\pi}{4} - \frac{\theta_1}{2}\right) = \cos \theta$$
 (11.8.2.8)

Chapter 12

Triangle

- 1. Each angle of an equilateral triangle is of 60° .
- 2. Triangles on the same base (or equal bases) and between the same parallels are equal in area.
- 3. Triangles on the same base (or equal bases) and having equal areas lie between the same parallels.
- 4. In △ABC, D, E and F are respectively the mid-points of sides AB, BC and CA. Show that △ABC is divided into four congruent triangles by joining D, E and F.
- 5. The line-segment joining the mid-points of any two sides of a triangle is parallel to the third side and is half of it.
- 6. A line through the mid-point of a side of a triangle parallel to another side bisects the third side.
- 7. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that (i) D is the mid-point of AC (ii) $MD \perp AC$ (iii) $CM = MA = \frac{1}{2}AB$

- 8. Sides opposite to equal angles of a triangle are equal.
- 9. Each angle of an equilateral triangle is of 60° .
- 10. Using cosine formula in an equilateral \triangle , show that $\cos 60^{\circ} = \frac{1}{2}$.
- 11. Using (10.2.2.1), show that $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$.
- 12. Find $\sin 30^{\circ}$ and $\sin 30^{\circ}$ using (10.1.2.2).
- 13. Triangles on the same base (or equal bases) and between the same parallels are equal in area.
- 14. Triangles on the same base (or equal bases) and having equal areas lie between the same parallels.
- 15. In $\triangle ABC$, the bisector AD of $\angle A$ is perpendicular to side BC. Show that AB = AC and $\triangle ABC$ is isosceles.
- 16. E and F are respectively the mid-points of equal sides AB and AC of $\triangle ABC$. Show that BF = CE.
- 17. In an isosceles $\triangle ABC$ with AB = AC, D and E are points on BC such that BE = CD. Show that AD = AE.
- 18. AB is a line-segment. P and Q are points on opposite sides of AB such that each of them is equidistant from the points A and B. Show that the line PQ is the perpendicular bisector of AB.
- 19. P is a point equidistant from two lines l and m intersecting at point A. Show that the line AP bisects the angle between them.

- 20. D is a point on side BC of $\triangle ABC$ such that AD = AC. Show that AB > AD
- 21. AB is a line segment and line l is its perpendicular bisector. If a point P lies on l, show that P is equidistant from A and B.
- 22. Line-segment AB is parallel to another line-segment CD. O is the mid-point of AD. Show that
 - (a) $\triangle AOB \cong \triangle DOC$
 - (b) O is also the mid-point of BC.
- 23. In quadrilateral ACBD, AC = AD and AB bisects $\angle A$. Show that $\triangle ABC \cong \triangle ABD$. What can you say about BC and BD?
- 24. ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$. Prove that
 - (a) $\triangle ABD \cong \triangle BAC$
 - (b) BD = AC
 - (c) $\angle ABD = \angle BAC$.
- 25. l and m are two parallel lines intersected by another pair of parallel lines p and q to form the quadrilateral ABCD. Show that $\triangle ABC \cong \triangle CDA$.
- 26. Line l is the bisector of $\angle A$ and B is any point on l. BP and BQ are perpendiculars from B to the arms of $\angle A$. Show that:
 - (a) $\triangle APB \cong \triangle AQB$

- (b) BP = BQ or B is equidistant from the arms of $\angle A$.
- 27. ABCE is a quadrilateral and D is a point on BC such that, AC = AE, AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE.
- 28. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B. Show that:
 - (a) $\triangle AMC \cong \triangle BMD$
 - (b) $\angle DBC$ is a right angle.
 - (c) $\triangle DBC \cong \triangle ACB$
 - (d) $CM = \frac{1}{2}AB$
- 29. In an isosceles $\triangle ABC$, with AB = AC, the bisectors of $\angle B$ and $\angle C$ intersect each other at O. Join A to O. Show that :
 - (a) OB = OC
 - (b) AO bisects $\angle A$
- 30. In $\triangle ABC$, AD is the perpendicular bisector of BC. Show that $\triangle ABC$ is an isosceles triangle in which AB = AC.
- 31. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively. Show that these altitudes are equal.
- 32. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal. Show that

- (a) $\triangle ABE \cong \triangle ACF$
- (b) AB = AC, i.e., ABC is an isosceles triangle.
- 33. ABC and DBC are two isosceles triangles on the same base BC. Show that $\angle ABD = \angle ACD$.
- 34. $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC. If AD is extended to intersect BC at P, show that
 - (a) $\triangle ABD \cong \triangle ACD$
 - (b) $\triangle ABP \cong \triangle ACP$
 - (c) AP bisects $\angle A$ as well as $\angle D$.
 - (d) AP is the perpendicular bisector of BC.
- 35. AD is an altitude of an isosceles $\triangle ABC$ in which AB = AC. Show that
 - (a) AD bisects BC
 - (b) AD bisects $\angle A$.
- 36. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of $\triangle PQR$. Show that:
 - (a) $\triangle ABM \cong \triangle PQN$
 - (b) $\triangle ABC \cong \triangle PQR$

- 37. BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.
- 38. ABC is an isosceles triangle with AB = AC. Draw $AP \perp BC$ to show that $\angle B = \angle C$.
- 39. $\triangle ABC$ is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB. Show that $\angle BCD$ is a right angle.
- 40. ABC is a right angled triangle in which $\angle A = 90^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$.
- 41. Show that in a right angled triangle, the hypotenuse is the longest side.
- 42. Sides AB and AC of $\triangle ABC$ are extended to points P and Q respectively. Also, $\angle PBC < \angle QCB$. Show that AC > AB.
- 43. Line segments AD and BC intersect at O and form $\triangle OAB$ and $\triangle ODC$. $\angle B < \angle A$ and $\angle C < \angle D$. Show that AD < BC.
- 44. AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD. Show that $\angle A > \angle C$ and $\angle B > \angle D$.
- 45. In $\triangle PQR, PR > PQ$ and PS bisects $\angle QPR$. Prove that $\angle PSR > \angle PSQ$.
- 46. Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

- 47. ABCD is a trapezium with $AB \parallel DC$. E and F are points on non-parallel sides AD and BC respectively such that EF is parallel to AB. Show that $\frac{AE}{ED} = \frac{BF}{FC}$.
- 48. ST is a line joining two points on PQ and PR in $\triangle PQR$. If $\frac{PS}{SQ} = \frac{PT}{TR}$ and $\angle PST = \angle PRQ$, prove that PQR is an isosceles triangle.
- 49. If $LM \parallel CB$ and $LN \parallel CD$, prove that $\frac{AM}{AB} = \frac{AN}{AD}$.
- 50. D is a point on AB and E, F are points on BC such that $DE \parallel AC$ and $DF \parallel AE$. Prove that $\frac{BF}{FE} = \frac{BE}{EC}$.
- 51. O is a point in the interior of $\triangle ABC$. D is a point on OA. If $DE \parallel OB$ and $DF \parallel OC$. Show that $EF \parallel BC$.
- 52. O is a point in the interior of $\triangle PQR$. A, BandC are points on OP, OQ and OR respectively such that $AB \parallel PQ$ and $AC \parallel PR$. Show that $BC \parallel QR$.
- 53. ABCD is a trapezium in which $AB \parallel DC$ and its diagonals intersect each other at the point O. Show that $\frac{AO}{BO} = \frac{CO}{DO}$
- 54. The diagonals of a quadrilateral ABCD intersect each other at the point O such that $\frac{AO}{BO} = \frac{CO}{DO}$. Show that ABCD is a trapezium.
- 55. $PQ \parallel RS$ and PS intersects QR at O. Show that $\triangle OPQ \sim \triangle ORS$.
- 56. CM and RN are respectively the medians of $\triangle ABC$ and $\triangle PQR$. If $\triangle ABC \sim \triangle PQR$, prove that
 - (a) $\triangle AMC \sim \triangle PNR$

- (b) $\frac{CM}{RN} = \frac{AB}{PQ}$
- (c) $\triangle CMB \sim \triangle RNQ$
- 57. Diagonals AC and BD of a trapezium ABCD with $AB \parallel DC$ intersect each other at the point O. Using a similarity criterion for two triangles, show that $\frac{OA}{OC} = \frac{OB}{OD}$
- 58. In $\triangle PQR$, QP is extended to T and S is a point on QR such that $\frac{QR}{QS} = \frac{QT}{PR}$. If $\angle PRQ = \angle PQS$, show that that $\triangle PQS \sim \triangle TQR$.
- 59. S and T are points on sides PR and QR of $\triangle PQR$ such that $\angle P = \angle RTS$. Show that $\triangle RPQ \sim \triangle RTS$.
- 60. In $\triangle ABC$, D and E are points on the sides AB and AC respectively. If $\triangle ABE \cong \triangle ACD$, show that $\triangle ADE \sim \triangle ABC$.
- 61. Altitudes AD and CE of $\triangle ABC$ intersect each other at the point P. Show that:
 - (a) $\triangle AEP \sim \triangle CDP$
 - (b) $\triangle ABD \sim \triangle CBE$
 - (c) $\triangle AEP \sim \triangle ADB$
 - (d) $\triangle PDC \sim \triangle BEC$
- 62. E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Show that $\triangle ABE \sim \triangle CFB$.
- 63. ABC and AMP are two right triangles, right angled at B and M respectively. M lies on AC and AB is extended to meet P. Prove that:

- (a) $\triangle ABC \sim \triangle AMP$
- (b) $\frac{CA}{PA} = \frac{BC}{MP}$
- 64. CD and GH are respectively the bisectors of $\angle ACB$ and $\angle EGF$ such that D and H lie on sides AB and FE of $\triangle ABC$ and $\triangle EFG$ respectively. If $\triangle ABC \sim \triangle FEG$, show that:
- 65. $\frac{CD}{GH} = \frac{AC}{FG}$
- 66. $\triangle DCB \sim \triangle HGE$
- 67. $\triangle DCA \sim \triangle HGF$
- 68. E is a point on side CB produced of an isosceles $\triangle ABC$ with AB = AC. If $AD \perp BC$ and $EF \perp AC$, prove that $\triangle ABD \sim \triangle ECF$.
- 69. Sides AB and BC and median AD of a $\triangle ABC$ are respectively proportional to sides PQ and QR and median PM of $\triangle PQR$. Show that $\triangle ABC \sim \triangle PQR$.
- 70. D is a point on the side BC of a $\triangle ABC$ such that $\angle ADC = \angle BAC$. Show that $CA^2 = CB.CD$.
- 71. Sides AB and AC and median AD of a $\triangle ABC$ are respectively proportional to sides PQ and PR and median PM of another $\triangle PQR$. Show that $\triangle ABC \sim \triangle PQR$.
- 72. If AD and PM are medians of $\triangle sABC$ and PQR, respectively where $\triangle ABC \sim \triangle PQR$, prove that $\frac{AB}{PQ} = \frac{AD}{PM}$

- 73. The line segment XY is parallel to side AC of $\triangle ABC$ and it divides the triangle into two parts of equal areas. Find the ratio $\frac{AX}{AB}$
- 74. Diagonals of a trapezium ABCD with $AB \parallel DC$ intersect each other at the point O. If AB = 2CD, find the ratio of the areas of $\triangle sAOB$ and COD.
- 75. ABC and DBC are two triangles on the same base BC. If AD intersects BC at O, show that $\frac{ar(ABC)}{ar(DBC)} = \frac{AO}{DO}$.
- 76. If the areas of two similar triangles are equal, prove that they are congruent.
- 77. D, E and F are respectively the mid-points of sides AB, BC and CA of $\triangle ABC$. Find the ratio of the areas of $\triangle DEF$ and $\triangle ABC$.
- 78. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.
- 79. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.
- 80. ABC and BDE are two equilateral triangles such that D is the midpoint of BC. Find the ratio of the areas of triangles ABC and BDE.
- 81. The sides of two similar triangles are in the ratio 4:9. Find the ratio the area of these triangles are in the ratio
- 82. In $\triangle ABC$, $\angle ACB = 90^{\circ}$ and $CD \perp AB$. Prove that $\frac{BC^2}{AC^2} = \frac{BD}{AD}$.

- 83. In $\triangle ABC$, if $AD \perp BC$, prove that $AB^2 + CD^2 = BD^2 + AC^2$.
- 84. BL and CM are medians of a $\triangle ABC$ right angled at A. Prove that $4(BL^2+CM^2)=5BC^2 \ .$
- 85. O is any point inside a rectangle ABCD. Prove that $OB^2 + OD^2 = OA^2 + OC^2$.
- 86. PQR is a triangle right angled at P and M is a point on QR such that $PM \perp QR$. Show that $PM^2 = QM.MR$.
- 87. ABD is a triangle right angled at A and $AC \perp BD$. Show that
 - (a) $AB^2 = BC.BD$
 - (b) $AC^2 = BC.DC$
 - (c) $AD^2 = BD.CD$
- 88. ABC is an isosceles triangle right angled at C. Prove that $AB^2 = 2AC^2$.
- 89. ABC is an isosceles triangle with AC = BC. If $AB^2 = 2AC^2$, prove that ABC is a right triangle.
- 90. ABC is an equilateral triangle of side 2a. Find each of its altitudes.
- 91. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.
- 92. O is a point in the interior of a $\triangle ABC, OD \perp BC, OE \perp AC$ and $OF \perp AB$. Show that

(a)
$$OA^2 + OB^2 + BD^2 - OD2 - OE2 - OF2 = AF^2 + BD^2 + CE^2$$
.

(b)
$$AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2$$
.

- 93. D and E are points on the sides CA and CB respectively of a $\triangle ABC$ right angled at C. Prove that $AE^2 + BD^2 = AB^2 + DE^2$.
- 94. The perpendicular from A on side BC of a $\triangle ABC$ intersects BC at D such that DB = 3CD. Prove that $2AB^2 = 2AC^2 + BC^2$.
- 95. In an equilateral $\triangle ABC$, D is a point on side BC such that $BD = \frac{1}{3}BC$. Prove that $9AD^2 = 7AB^2$.
- 96. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.
- 97. PS is the bisector of $\angle QPR$ of $\triangle PQR$. Prove that $\frac{QS}{SR}=\frac{PQ}{PR}$
- 98. D is a point on hypotenuse AC of $\triangle ABC$, such that $BD \perp AC$, $DM \perp BC$ and $DN \perp AB$. Prove that :
 - (a) $DM2 = DN \cdot MC$
 - (b) $DN2 = DM \cdot AN$
- 99. ABC is a triangle in which $\angle ABC > 90^\circ$ and $AD \perp CB$ produced. Prove that $AC^2 = AB^2 + BC^2 + 2BC.BD$.
- 100. ABC is a triangle in which $\angle ABC < 90^{\circ}$ and $AD \perp BC$. Prove that $AC^2 = AB^2 + BC^2 2BC.BD$.
- 101. AD is a median of a $\triangle ABC$ and $AM \perp BC$. Prove that :

(a)
$$AC^2 = AD^2 + BC.DM + \left(\frac{BC}{2}\right)^2$$

(b)
$$AB^2 = AD^2 - BC.DM + \left(\frac{BC}{2}\right)^2$$

(c)
$$AC^2 + AB^2 = 2AD^2 + \frac{1}{2}BC^2$$

- 102. Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.
- 103. D is a point on side BC of $\triangle ABC$ such that $\frac{BD}{CD}\frac{AB}{AC}$. Prove that AD is the bisector of $\angle BAC$.

Chapter 13

Quadrilateral

- 1. Parallelograms on the same base (or equal bases) and between the same parallels are equal in area.
- 2. If a parallelogram and a triangle are on the same base and between the same parallels, then area of the triangle is half the area of the parallelogram.
- 3. The quadrilateral formed by joining the mid-points of the sides of a quadrilateral, in order, is a parallelogram.
- 4. Two parallel lines l and m are intersected by a transversal p. Show that the quadrilateral formed by the bisectors of interior angles is a rectangle.
- 5. Show that the bisectors of angles of a parallelogram form a rectangle.
- 6. ABCD is a parallelogram in which P and Q are mid-points of opposite sides AB and CD. If AQ intersects DP at S and BQ intersects CP at R, show that:
 - (a) APCQ is a parallelogram.

- (b) DPBQ is a parallelogram.
- (c) PSQR is a parallelogram.
- 7. l, m and n are three parallel lines intersected by transversals p and q such that l, m and n cut off equal intercepts AB and BC on p. Show that l, m and n cut off equal intercepts DE and EF on q also.
- 8. Parallelograms on the same base (or equal bases) and between the same parallels are equal in area.
- Area of a parallelogram is the product of its base and the corresponding altitude.
- 10. Parallelograms on the same base (or equal bases) and having equal areas lie between the same parallels.
- 11. If a parallelogram and a triangle are on the same base and between the same parallels, then area of the triangle is half the area of the parallelogram.
- 12. In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ, show that
 - (a) $\triangle APD \cong \triangle CQB$
 - (b) AP = CQ
 - (c) $\triangle AQB \cong \triangle CPD$
 - (d) AQ = CP
 - (e) APCQ is a parallelogram

- 13. ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD. Show that
 - (a) $\triangle APB \cong \triangle CQD$
 - (b) AP = CQ
- 14. In $\triangle ABC$ and $\triangle DEF$, AB = DE, $AB \parallel DE$, BC = EF and $BC \parallel EF$. Vertices A, B and C are joined to vertices D, E and F respectively. Show that
 - (a) quadrilateral ABED is a parallelogram
 - (b) quadrilateral BEFC is a parallelogram
 - (c) $AD \parallel CF$ and AD = CF
 - (d) quadrilateral ACFD is a parallelogram
 - (e) AC = DF
 - (f) $\triangle ABC \cong \triangle DEF$.
- 15. ABCD is a trapezium in which $AB \parallel CD$ and AD = BC. Show that
 - (a) $\angle A = \angle B$
 - (b) $\angle C = \angle D$
 - (c) $\triangle ABC \cong \triangle BAD$
 - (d) diagonal AC = diagonal BD
- 16. ABCD is a quadrilateral in which P,Q,R and S are mid-points of the sides AB,BC,CD and DA AC is a diagonal. Show that
 - (a) $SR \parallel AC$ and $SR = \frac{1}{2}AC$

- (b) PQ = SR
- (c) *PQRS* is a parallelogram.
- 17. ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.
- 18. ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.
- 19. ABCD is a trapezium in which $AB \parallel DC, BD$ is a diagonal and E is the mid-point of AD. A line is drawn through $E \parallel AB$ intersecting BC at F. Show that F is the mid-point of BC.
- 20. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively . Show that the line segments AF and EC trisect the diagonal BD.
- 21. Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.
- 22. ABCD is a parallelogram in which P and Q are mid-points of opposite sides AB and CD. If AQ intersects DP at S and BQ intersects CP at R, show that:
 - (a) APCQ is a parallelogram.
 - (b) DPBQ is a parallelogram.
 - (c) PSQR is a parallelogram.

- 23. l,m and n are three parallel lines intersected by transversals p and q such that l,m and n cut off equal intercepts AB and BC on p. Show that l,m and n cut off equal intercepts DE and EF on q also.
- 24. Diagonal AC of a parallelogram ABCD bisects $\angle A$. show that
 - (a) it bisects $\angle C$ also,
 - (b) ABCD is a rhombus.
- 25. ABCD is a rhombus. Show that diagonal AC bisects $\angle A$ as well as $\angle C$ and diagonal BD bisects $\angle B$ as well as $\angle D$.
- 26. ABCD is a rectangle in which diagonal AC bisects $\angle A$ as well as $\angle C$. Show that
 - (a) ABCD is a square
 - (b) diagonal BD bisects $\angle B$ as well as $\angle D$.
- 27. If E, F, G and H are respectively the mid-points of the sides of a parallelogram ABCD, show that

$$ar\left(EFGH\right) = \frac{1}{2}ar\left(ABCD\right). \tag{13.0.0.27.1}$$

- 28. P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that ar(APB) = ar(BQC).
- 29. P is a point in the interior of a parallelogram ABCD. Show that

(a)
$$ar(APB) + ar(PCD) = \frac{1}{2}ar(ABCD)$$

(b)
$$ar(APD) + ar(PBC) = ar(APB) + ar(PCD)$$

- 30. PQRS and ABRS are parallelograms and X is any point on side BR. show that
 - (a) ar(PQRS) = ar(ABRS)
 - (b) $ar(AXS) = \frac{1}{2}ar(PQRS)$
- 31. A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q. In how many parts the fields is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it?
- 32. ABCD is a quadrilateral and $BE \parallel AC$ and also BE meets DC produced at E. Show that area of $\triangle ADE$ is equal to the area of the quadrilateral ABCD.
- 33. E is any point on median AD of a $\triangle ABC$. Show that ar(ABE) = ar(ACE).
- 34. In a $\triangle ABC$, E is the mid-point of median AD. Show that $ar(BED) = \frac{1}{4}ar(ABC)$.
- 35. Show that the diagonals of a parallelogram divide it into four triangles of equal area.
- 36. ABC and ABD are two triangles on the same base AB. If line-segment CD is bisected by AB at O, show that ar(ABC) = ar(ABD).

- 37. D, E and F are respectively the mid-points of the sides BC, CA and AB of a $\triangle ABC$. show that
 - (a) BDEF is a parallelogram.
 - (b) $ar(BDEF) = \frac{1}{2}ar(ABC)$
- 38. Diagonals AC and BD of quadrilateral ABCD intersect at O such that OB = OD. If AB = CD, then show that
 - (a) ar(DOC) = ar(AOB)
 - (b) ar(DCB) = ar(ACB)
 - (c) $ar(DEF) = \frac{1}{4}ar(ABC)$
- 39. D and E are points on sides AB and AC respectively of $\triangle ABC$ such that ar(DBC) = ar(EBC). Prove that $DE \parallel BC$.
- 40. XY is a line parallel to side BC of a $\triangle ABC$. If $BE \parallel AC$ and $CF \parallel AB$ meet XY at E and F respectively, show that ar(ABE) = ar(ACF).
- 41. The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q and then parallelogram PBQR is completed. Show that ar(ABCD) = ar(PBQR).
- 42. Diagonals AC and BD of a trapezium ABCD with $AB \parallel DC$ intersect each other at O. Prove that ar(AOD) = ar(BOC).
- 43. ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F. Show that

- (a) ar(ACB) = ar(ACF)
- (b) ar(AEDF) = ar(ABCDE).
- 44. A villager Itwaari has a plot of land of the shape of a quadrilateral. The Gram Panchayat of the village decided to take over some portion of his plot from one of the corners to construct a Health Centre. Itwaari agrees to the above proposal with the condition that he should be given equal amount of land in lieu of his land adjoining his plot so as to form a triangular plot. Explain how this proposal will be implemented.
- 45. ABCD is a trapezium with $AB \parallel DC$. A line parallel to AC intersects AB at X and BC at Y. Prove that ar(ADX) = ar(ACY).
- 46. $AP \parallel BQ \parallel CR$. Prove that ar(AQC) = ar(PBR).
- 47. Diagonals AC and BD of a quadrilateral ABCD intersect at O in such a way that ar(AOD) = ar(BOC). Prove that ABCD is a trapezium.
- 48. $AB \parallel DC \parallel RP$. ar(DRC) = ar(DPC) and ar(BDP) = ar(ARC). Show that both the quadrilaterals ABCD and DCPR are trapeziums.
- 49. Parallelogram ABCD and rectangle ABEF are on the same base AB and have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle.
- 50. In $\triangle ABC$, D and E are two points on BC such that BD = DE = EC. Show that ar(ABD) = ar(ADE) = ar(AEC).
- 51. ABCD, DCFE and ABFE are parallelograms. Show that ar(ADE) = ar(BCF).

- 52. ABCD is a parallelogram and BC is produced to a point Q such that AD = CQ. If AQ intersect DC at P, show that ar(BPC) = ar(DPQ). ABC and BDE are two equilateral triangles such that D is the midpoint of BC. If AE intersects BC at F, show that
 - (a) $ar(BDE) = \frac{1}{4}ar(ABC)$
 - (b) $ar(BDE) = \frac{1}{2}ar(BAE)$
 - (c) ar(ABC) = 2ar(BEC)
 - (d) ar(BFE) = ar(AFD)
 - (e) ar(BFE) = 2ar(FED)
 - (f) $ar(FED) = \frac{1}{8}ar(AFC)$
- 53. Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that $ar(APB) \times ar(CPD) = ar(APD) \times ar(BPC)$.
- 54. P and Q are respectively the mid-points of sides AB and BC of a $\triangle ABC$ and R is the mid-point of AP, show that
 - (a) $ar(PRQ) = \frac{1}{2}ar(ARC)$
 - (b) ar(PBQ) = ar(ARC)
 - (c) $ar(RQC) = \frac{3}{8}ar(ABC)$
- 55. ABC is a right triangle right angled at $A.\ BCED, ACFG$ and ABMN are squares on the sides BC, CA and AB respectively. Line segment $AX \perp DE$ meets BC at Y. Show that
 - (a) $\triangle MBC \cong \triangle ABD$

(b)
$$ar(BYXD) = ar(ABMN)$$

(c)
$$ar(CYXE) = 2ar(FCB)$$

(d)
$$ar(BYXD) = 2ar(MBC)$$

(e)
$$\triangle FCB \cong \triangle ACE$$

(f)
$$ar(CYXE) = ar(ACFG)$$

(g)
$$ar(BCED) = ar(ABMN) + ar(ACFG)$$

- 56. L is a point on the diagonal AC of quadrilateral ABCD. If LM ——CB and LN ——CD, prove that $\frac{AM}{AB} = \frac{AN}{AD}$
- 57. The angles of quadrilateral are in the ratio 3:5:9:13. Find all the angles of the quadrilateral.

Solution: Let the measure of angles $\underline{A}, \underline{B}, \underline{C}, \underline{D}$ of a quadrilateral are 3x, 5x, 9x and 13x respectively, where x is a real number.

Using angle sum property, the sum of interior angles of a quadrilateral is 360 degree.

$$3x + 5x + 9x + 13x = 360^{\circ} \tag{13.0.0.57.1}$$

$$30x = 360^{\circ} \tag{13.0.0.57.2}$$

$$x = 12^{\circ} \tag{13.0.0.57.3}$$

From the above calculations,

$$\angle A = 3x = 3(12) = 36^{\circ}$$
 (13.0.0.57.4)

$$\underline{B} = 5x = 5(12) = 60^{\circ}$$
 (13.0.0.57.5)

$$\angle C = 9x = 9(12) = 108^{\circ}$$
 (13.0.0.57.6)

$$\underline{D} = 13x = 13(12) = 156^{\circ}$$
 (13.0.0.57.7)

Chapter 14

Circle

- 1. Equal chords of a circle (or of congruent circles) subtend equal angles at the centre.
- 2. If the angles subtended by two chords of a circle (or of congruent circles) at the centre (corresponding centres) are equal, the chords are equal.
- 3. The perpendicular from the centre of a circle to a chord bisects the chord.
- 4. The line drawn through the centre of a circle to bisect a chord is perpendicular to the chord.
- 5. There is one and only one circle passing through three non-collinear points.
- 6. Equal chords of a circle (or of congruent circles) are equidistant from the centre (or corresponding centres).
- 7. Chords equidistant from the centre (or corresponding centres) of a circle (or of congruent circles) are equal.

- 8. If two arcs of a circle are congruent, then their corresponding chords are equal and conversely if two chords of a circle are equal, then their corresponding arcs (minor, major) are congruent.
- 9. Congruent arcs of a circle subtend equal angles at the centre.
- 10. The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.
- 11. Angles in the same segment of a circle are equal.
- 12. Angle in a semicircle is a right angle.
- 13. If a line segment joining two points subtends equal angles at two other points lying on the same side of the line containing the line segment, the four points lie on a circle.
- 14. The sum of either pair of opposite angles of a cyclic quadrilateral is 180° .
- 15. If sum of a pair of opposite angles of a quadrilateral is 180°, the quadrilateral is cyclic.
- 16. AB is a diameter of the circle, CD is a chord equal to the radius of the circle. AC and BD when extended intersect at a point E. Prove that $\angle AEB = 60^{\circ}$.
- 17. ABCD is a cyclic quadrilateral in which AC and BD are its diagonals. If $\angle DBC = 55^{\circ}$ and $\angle BAC = 45^{\circ}$, find $\angle BCD$

- 18. Two circles intersect at two points A and B. AD and AC are diameters to the two circles. Prove that B lies on the line segment DC.
- 19. Prove that the quadrilateral formed (if possible) by the internal angle bisectors of any quadrilateral is cyclic.
- 20. Equal chords of a circle (or of congruent circles) subtend equal angles at the centre.
- 21. If the angles subtended by two chords of a circle (or of congruent circles) at the centre (corresponding centres) are equal, the chords are equal.
- 22. The perpendicular from the centre of a circle to a chord bisects the chord.
- 23. The line drawn through the centre of a circle to bisect a chord is perpendicular to the chord.
- 24. There is one and only one circle passing through three non-collinear points.
- 25. Equal chords of a circle (or of congruent circles) are equidistant from the centre (or corresponding centres).
- 26. Chords equidistant from the centre (or corresponding centres) of a circle (or of congruent circles) are equal.
- 27. If two arcs of a circle are congruent, then their corresponding chords are equal and conversely if two chords of a circle are equal, then their corresponding arcs (minor, major) are congruent.

- 28. Congruent arcs of a circle subtend equal angles at the centre.
- 29. The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.
- 30. Angles in the same segment of a circle are equal.
- 31. Angle in a semicircle is a right angle.
- 32. If a line segment joining two points subtends equal angles at two other points lying on the same side of the line containing the line segment, the four points lie on a circle.
- 33. The sum of either pair of opposite angles of a cyclic quadrilateral is 180° .
- 34. If sum of a pair of opposite angles of a quadrilateral is 180°, the quadrilateral is cyclic.
- 35. AB is a diameter of the circle, CD is a chord equal to the radius of the circle. AC and BD when extended intersect at a point E. Prove that $\angle AEB = 60^{\circ}$.
- 36. Two circles intersect at two points A and B. AD and AC are diameters to the two circles. Prove that B lies on the line segment DC.
- 37. Prove that the quadrilateral formed (if possible) by the internal angle bisectors of any quadrilateral is cyclic.
- 38. If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the

other chord.

- 39. If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords.
- 40. If a line intersects two concentric circles (circles with the same centre) with centre O at A, B, C and D, prove that AB = CD.
- 41. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.
- 42. If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.
- 43. If the non-parallel sides of a trapezium are equal, prove that it is cyclic.
- 44. Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively. Prove that $\angle ACP = \angle QCD$.
- 45. If circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side.
- 46. ABC and ADC are two right triangles with common hypotenuse AC. Prove that $\angle CAD = \angle CBD$.
- 47. Prove that a cyclic parallelogram is a rectangle.

- 48. Prove that the line of centres of two intersecting circles subtends equal angles at the two points of intersection.
- 49. Let the vertex of an angle ABC be located outside a circle and let the sides of the angle intersect equal chords AD and CE with the circle. Prove that $\angle ABC$ is equal to half the difference of the angles subtended by the chords AC and DE at the centre.
- 50. Prove that the circle drawn with any side of a rhombus as diameter, passes through the point of intersection of its diagonals.
- 51. ABCD is a parallelogram. The circle through A, B and C intersect CD (produced if necessary) at E. Prove that AE = AD.
- 52. AC and BD are chords of a circle which bisect each other. Prove that(i) AC and BD are diameters, (ii) ABCD is a rectangle.
- 53. Bisectors of angles A, B and C of a $\triangle ABC$ intersect its circumcircle at D, E and F respectively. Prove that the angles of the $\triangle DEF$ are $90^{\circ} \frac{A}{2}, 90^{\circ} \frac{B}{2}$ and $90^{\circ} \frac{C}{2}$.
- 54. Two congruent circles intersect each other at points A and B. Through A any line segment PAQ is drawn so that P, Q lie on the two circles. Prove that BP = BQ.
- 55. In any $\triangle ABC$, if the angle bisector of $\angle A$ and perpendicular bisector of BC intersect, prove that they intersect on the circumcircle of the $\triangle ABC$.

- 56. The lengths of tangents drawn from an external point to a circle are equal.
- 57. Prove that in two concentric circles, the chord of the larger circle, which touches the smaller circle, is bisected at the point of contact.
- 58. Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that $\angle PTQ = 2\angle OPQ$.
- 59. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.
- 60. Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.
- 61. A quadrilateral ABCD is drawn to circumscribe a circle. Prove that AB + CD = AD + BC.
- 62. XY and X'Y' are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and X'Y' at B. Prove that $\angle AOB = 90^{\circ}$
- 63. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.
- 64. Prove that the parallelogram circumscribing a circle is a rhombus.
- 65. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

- 66. Find the area of a sector of angle p (in degrees) of a circle with radius R.
- 67. Two chords AB and CD intersect each other at the point P. Prove that :
 - (a) $\triangle APC \sim \triangle DPB$
 - (b) AP.PB = CP.DP
- 68. Two chords AB and CD of a circle intersect each other at the point P (when produced) outside the circle. Prove that
 - (a) $\triangle PAC \sim \triangle PDB$
 - (b) PA.PB = PC.PD

Chapter 15

Miscellaneous

- 1. ABCD is a cyclic quadrilateral in which AC and BD are its diagonals. If $\angle DBC=55^\circ$ and $\angle BAC=45^\circ$, find $\angle BCD$
- 2. Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chord.
- 3. A,B and C are three points on a circle with centre O such that $\angle BOC = 30^{\circ}$ and $\angle AOB = 60^{\circ}$. If D is a point on the circle other than the arc ABC, find $\angle ADC$.
- 4. $\angle PQR = 100^{\circ}$, where P,Q and R are points on a circle with centre O. Find $\angle OPR$.
- 5. A, B, C, D are points on a circle such that $\angle ABC = 69^{\circ}, \angle ACB = 31^{\circ}$, find $\angle BDC$.
- 6. A, B, C and D are four points on a circle. AC and BD intersect at a point E such that $\angle BEC = 130^{\circ}$ and $\angle ECD = 20^{\circ}$. Find $\angle BAC$.
- 7. ABCD is a cyclic quadrilateral whose diagonals intersect at a point

- E. If $\angle DBC = 70^{\circ}$, $\angle BAC$ is 30° , find $\angle BCD$. Further, if AB = BC, find $\angle ECD$.
- 8. Two chords AB and CD of lengths 5 cm and 11 cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between AB and CD is 6 cm, find the radius of the circle.
- 9. The lengths of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chord is at distance 4 cm from the centre, what is the distance of the other chord from the centre?
- 10. A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that OQ = 12 cm. Find the length of PQ.
- 11. PQ is a chord of length 8 cm of a circle of radius 5 cm. The tangents at P and Q intersect at a point T. Find the length TP.
- 12. From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm. Find the radius of the circle is
- 13. If TP and TQ are the two tangents to a circle with centre O so that $\angle POQ = 110^{\circ}$, then find $\angle PTQ$
- 14. If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle of 80 $^{\circ}$, then find $\angle POA$
- 15. The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm. Find the radius of the circle.

- 16. Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.
- 17. A $\triangle ABC$ is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively. Find the sides AB and AC.
- 18. The radii of two circles are 19 cm and 9 cm respectively. Find the radius of the circle which has circumference equal to the sum of the circumferences of the two circles.
- 19. The radii of two circles are 8 cm and 6 cm respectively. Find the radius of the circle having area equal to the sum of the areas of the two circles.
- 20. A circular archery target is marked with its five scoring regions from the centre outwards as Gold, Red, Blue, Black and White. The diameter of the region representing Gold score is 21 cm and each of the other bands is 10.5 cm wide. Find the area of each of the five scoring regions.
- 21. The wheels of a car are of diameter 80 cm each. How many complete revolutions does each wheel make in 10 minutes when the car is travelling at a speed of 66 km per hour?
- 22. Find the area of the sector of a circle with radius 4 cm and of angle 30 $^{\circ}$. Also, find the area of the corresponding major sector.

- 23. Find the area of the segment AYB, if radius of the circle is 21 cm and $\angle AOB = 120^{\circ}$.
- 24. Find the area of a sector of a circle with radius 6 cm if angle of the sector is 60 $^{\circ}$.
- 25. Find the area of a quadrant of a circle whose circumference is 22 cm.3. The length of the minute hand of a clock is 14 cm. Find the area swept by the minute hand in 5 minutes.
- 26. A chord of a circle of radius 10 cm subtends a right angle at the centre. Find the area of the corresponding:
 - (a) minor segment
 - (b) major sector.
- 27. In a circle of radius 21 cm, an arc subtends an angle of 60 $^{\circ}$ at the centre. Find:
 - (a) the length of the arc
 - (b) area of the sector formed by the arc
 - (c) area of the segment formed by the corresponding chord
- 28. A chord of a circle of radius 15 cm subtends an angle of 60 $^{\circ}$ at the centre. Find the areas of the corresponding minor and major segments of the circle.
- 29. A chord of a circle of radius 12 cm subtends an angle of 120 $^{\circ}$ at the centre. Find the area of the corresponding segment of the circle.

- 30. A horse is tied to a peg at one corner of a square shaped grass field of side 15 m by means of a 5 m long rope. Find
 - (a) the area of that part of the field in which the horse can graze.
 - (b) the increase in the grazing area if the rope were 10 m long instead of 5 m.
- 31. A brooch is made with silver wire in the form of a circle with diameter 35 mm. The wire is also used in making 5 diameters which divide the circle into 10 equal sectors. Find:
 - (a) the total length of the silver wire required.
 - (b) the area of each sector of the brooch
- 32. An umbrella has 8 ribs which are equally spaced. Assuming umbrella to be a flat circle of radius 45 cm, find the area between the two consecutive ribs of the umbrella.
- 33. A car has two wipers which do not overlap. Each wiper has a blade of length 25 cm sweeping through an angle of 115 $^{\circ}$. Find the total area cleaned at each sweep of the blades.
- 34. To warn ships for underwater rocks, a lighthouse spreads a red coloured light over a sector of angle 80 $^{\circ}$ to a distance of 16.5 km. Find the area of the sea over which the ships are warned.
- 35. Two circular flower beds are located on opposite sides of a square lawn ABCD of side 56 m. If the centre Of each circular flower bed is the

- point of intersection O of the diagonals of the square lawn, find the sum of the areas of the lawn and the flower beds.
- 36. Four circles are inscribed inside a square ABCD of side 14 cm such that each one touches exernally two adjacent sides of the square and two other circles. Find the region between the circles and the square.
- 37. ABCD is a square of side 10 cm and semicircles are drawn with each side of the square as diameter. Find the area enclosed by the circular arcs.
- 38. P is a point on the semi-circle formed with diameter QR. Find the area between the semi-circle and $\triangle PQR$ if PQ = 24 cm, PR = 7 cm and O is the centre Of the circle.
- 39. AC and BD are two arcs on concentric circles with radii 14 cm and 7 cm respectively, such that $\angle AOC = 40^{\circ}$. Find the area of the region ABDC.
- 40. Find the area between a square ABCD of side 14cm and the semicircles APD and BPC.
- 41. Find the area of the region enclosed by a circular arc of radius 6 cm drawn with vertex O of an equilateral triangle OAB of side 12 cm as centre.
- 42. From each corner of a square of side 4 cm a quadrant of a circle of radius 1 cm is cut and also a circle of diameter 2 cm is cut. Find the area of the remaining portion of the square.

- 43. In a circular table cover of radius 32 cm, a design is formed leaving an equilateral $\triangle ABC$ in the middle. Find the area of the design.
- 44. ABCD is a square of side 14 cm. With centres A, B, C and D, four circles are drawn such that each circle touches externally two of the remaining three circles. Find the area within the square that lies outside the circles.
- 45. The left and right ends of a racing track are semicircular. The distance between the two inner parallel line segments is 60 m and they are each 106 m long. If the track is 10 m wide, find:
 - (a) the distance around the track along its inner edge
 - (b) the area of the track.
- 46. AB and CD are two diameters of a circle (with centre O) perpendicular to each other and OD is the diameter of a smaller circle inside. If OA = 7 cm, find the area of the smaller circle.
- 47. The area of an equilateral $\triangle ABC$ is 17320.5 cm^2 . With each vertex of the triangle as centre, a circle is drawn with radius equal to half the length of the side of the triangle. Find the area of region within the triangle but outside the circles.
- 48. On a square handkerchief, nine circular designs are inscribed touching each other, each of radius 7 cm. Find the area of the remaining portion of the handkerchief.

- 49. OACB is a quadrant of a circle with centre O and radius 3.5 cm. D is a point on OA. If OD = 2 cm, find the area of the
 - (a) quadrant OACB,
 - (b) the region between the quadrant and $\triangle OBD$.
- 50. A square OABC is inscribed in a quadrant OPBQ. If OA = 20 cm, find the area between the square and the quadrant.
- 51. AB and CD are respectively arcs of two concentric circles of radii 21 cm and 7 cm and centre O. If $\angle AOB = 30^{\circ}$, find the area of the region ABCD.
- 52. ABC is a quadrant of a circle of radius 14 cm and a semicircle is drawn with BC as diameter. Find the area of the crescent formed.
- 53. Find the area common between the two quadrants of circles of radius 8 cm each if the centres of the circles lie on opposite sides of a square.
- 54. Find the area of the sector of a circle with radius 4 cm and of angle 30°. Also, find the area of the corresponding major sector.
- 55. A pole has to be erected at a point on the boundary of a circular park of diameter 13 metres in such a way that the differences of its distances from two diametrically opposite fixed gates A and B on the boundary is 7 metres. Is it possible to do so? If yes, at what distances from the two gates should the pole be erected?
- 56. Draw a triangle whose sides are 8cm and 11cm and the perimeter is 32 cm and find its area.

- 57. The sides of a triangular plot are in the ratio of 3:5:7 and its perimeter is 300 m. Draw the plot and find its area.
- 58. A tower stands vertically on the ground. From a point on the ground, which is 15m away from the foot of the tower, the angle of elevation of the top of the tower is found to be 60°. Find the height of the tower.
- 59. An electrician has to repair an electric fault pole of height 5m. She needs to reach a point 1.3m below the top of the pole to undertake the repair work. What should be the length of the ladder that she should use which, when inclined at an angle of 60° to the horizontal, would enable her to reach the required position? Also, how far from the foot of the pole should she place the foot of the ladder?
- 60. An observer 1.5m tall is 28.5m away from a chimney. The angle of elevation of the top of the chimney from her eyes is 45°. What is the height of the chimney?
- 61. From a point **P** on the ground the angle of elevation of the top of a 10m tall building is 30°. A flag is hoisted at the top of the building and the angle of elevation of the top of the flagstaff from **P** is 45°. Find the length of the flagstaff and the distance of the building from the point **P**.
- 62. The shadow of a tower standing on a level ground is found to be 40m longer when the Sun's altitude is 30° than when it is 60°. Find the height of the tower.

- 63. The angles of depression of the top and the bottom of an 8m tall building from the top of a multi-storeyed building are 30° and 45° respectively. Find the height of the multi-storeyed building and the distance between the two buildings.
- 64. A traffic signal board, indicating 'SCHOOL AHEAD', is an equilateral triangle with side 'a'. Find the area of the signal board, using Heron's formula. If its perimeter is 180 cm, what will be the area of the signal board?
- 65. There is a slide in a park. One of its side walls has been painted in some colour with a message "KEEP THE PARK GREEN AND CLEAN". If the sides of the wall are 15 m, 11 m and 6 m, find the area painted in colour.
- 66. Find the area of a triangle two sides of which are 18cm and 10cm and the perimeter is 42cm.
- 67. Sides of a triangle are in the ratio of 12:17:25 and its perimeter is 540cm. Find its area.
- 68. An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm. Find the area of the triangle.
- 69. A girl walks 4km west, then she walks 3km in a direction 30° east of north and stops. Determine the girl's displacement from her initial point of departure.
- 70. A circus artist is climbing a 20m long rope, which is tightly stretched

- and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30°.
- 71. A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle of 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8m. Find the height of the tree.
- 72. A contractor plans to install two slides for the children to play in a park. For the children below the age of 5 years, she prefers to have a slide whose top is at a height of 1.5m, and is inclined at an angle of 30° to the ground, whereas for elder children she wants to have a steep slide at a height of 3m, and inclined at an angle of 60° to the ground. What should be the length of the slide in each case?
- 73. The angle of elevation of the top of a tower from a point on the ground, which is 30m away from the foot of the tower, is 30°. Find the height of the tower.
- 74. A kite is flying at a height of 60m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.
- 75. A 1.5m tall boy is standing at some distance from a 30m tall building. The angle of elevation from his eyes to the top of the building increases from 30° to 60° as he walks towards the building. Find the distance he walked towards the building.

- 76. From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower.
- 77. A statue, 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of elevation of the top of the pedestal is 45°. Find the height of the pedestal.
- 78. The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 50 m high, find the height of the building.
- 79. Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30°, respectively. Find the height of the poles and the distances of the point from the poles.
- 80. A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°. From another point 20 m away from this point on the line joing this point to the foot of the tower, the angle of elevation of the top of the tower is 30°. Find the height of the tower and the width of the canal.
- 81. From the top of a 7 m high building, the angle of elevation of the top

- of a cable tower is 60° and the angle of depression of its foot is 45° . Determine the height of the tower.
- 82. As observed from the top of a 75 m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships.
- 83. A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60°. After some time, the angle of elevation reduces to 30°. Find the distance travelled by the balloon during the interval.
- 84. A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30°, which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car is found to be 60°. Find the time taken by the car to reach the foot of the tower from this point.
- 85. The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is 6 m.
- 86. E and F are points on the sides PQ and PR respectively of a $\triangle PQR$. For each of the following cases, state whether $EF \parallel QR$

(a)
$$PE = 3.9cm, EQ = 3cm, PF = 3.6cm \text{ and } FR = 2.4cm$$

- (b) PE = 4cm, QE = 4.5cm, PF = 8cm and RF = 9cm
- (c) PQ = 1.28cm, PR = 2.56cm, PE = 0.18cm and PF = 0.36cm
- 87. A girl of height 90 cm is walking away from the base of a lamp-post at a speed of 1.2 m/s. If the lamp is 3.6 m above the ground, find the length of her shadow after 4 seconds.
- 88. $\triangle ODC \sim \triangle OBA, \angle BOC = 125^{\circ}$ and $\angle CDO = 70^{\circ}$. Find $\angle DOC, \angle DCO$ and $\angle OAB$.
- 89. Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, how much string does she have out? If she pulls in the string at the rate of 5 cm per second, what will be the horizontal distance of the fly from her after 12 seconds?
- 90. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.
- 91. Let $\triangle ABC \sim \triangle DEF$ and their areas be, respectively, 64 cm^2 and 121 cm^2 . If EF=15.4cm, find BC.
- 92. A ladder is placed against a wall such that its foot is at a distance of 2.5 m from the wall and its top reaches a window 6 m above the ground. Find the length of the ladder.

- 93. Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse.
 - (a) 7 cm, 24 cm, 25 cm
 - (b) 3 cm, 8 cm, 6 cm
 - (c) 50 cm, 80 cm, 100 cm
 - (d) 13 cm, 12 cm, 5 cm
- 94. A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.
- 95. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?
- 96. An aeroplane leaves an airport and flies due north at a speed of 1000 km per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1200 km per hour. How far apart will be the two planes after $1\frac{1}{2}$ hours?
- 97. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is 12 m, find the distance between their tops.
- 98. In $\triangle ABC$, $AB=6\sqrt{3}cm$, AC=12cm and BC=6cm. Find the angle B.
- 99. A park, in the shape of a quadrilateral ABCD, has $\angle C=90^\circ, AB=9m, BC=12m, CD=5m$ and AD=8m. How much area does it

- occupy? 2. Find the area of a quadrilateral ABCD in which AB=3cm, BC=4cm, CD=4cm, DA=5cm and AC=5cm.
- 100. A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are 26 cm, 28 cm and 30 cm, and the parallelogram stands on the base 28 cm, find the height of the parallelogram.
- 101. A rhombus shaped field has green grass for 18 cows to graze. If each side of the rhombus is 30 m and its longer diagonal is 48 m, how much area of grass field will each cow be getting?
- 102. A field is in the shape of a trapezium whose parallel sides are 25 m and 10 m. The non-parallel sides are 14 m and 13 m. Find the area of the field.
- 103. ABCD is a parallelogram, $AE \perp DC$ and $CF \perp AD$. If AB = 16cm, AE = 8 cm and CF = 10 cm, find AD.
- 104. Kamla has a triangular field with sides 240 m, 200 m, 360 m, where she grew wheat. In another triangular field with sides 240 m, 320 m, 400 m adjacent to the previous field, she wanted to grow potatoes and onions. She divided the field in two parts by joining the mid-point of the longest side to the opposite vertex and grew patatoes in one part and onions in the other part. Draw the figure for this problem. How much area (in hectares) has been used for wheat, potatoes and onions? (1 hectare = $10000 \ m^2$).
- 105. Students of a school staged a rally for cleanliness campaign. They walked through the lanes in two groups. One group walked through

the lanes AB, BC and CA; while the other through AC, CD and DA. Then they cleaned the area enclosed within their lanes. If AB = 9 m, BC = 40 m, CD = 15 m, DA = 28 m and $\angle B = 90^{\circ}$, which group cleaned more area and by how much? Draw the corresponding figure. Find the total area cleaned by the students (neglecting the width of the lanes).

- 106. Sanya has a piece of land which is in the shape of a rhombus. She wants her one daughter and one son to work on the land and produce different crops. She divided the land in two equal parts. If the perimeter of the land is 400 m and one of the diagonals is 160 m, how much area each of them will get for their crops? Draw the rhombus.
- 107. Three girls Reshma, Salma and Mandip are playing a game by standing on a circle of radius 5m drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6m each, what is the distance between Reshma and Mandip?
- 108. A circular park of radius 20m is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.
- 109. The longest side of a triangle is 3 times the shortest side and the third side is 2 cm shorter than the longest side. If the perimeter of the triangle is at least 61 cm, find the minimum length of the shortest

side.

- 110. A rectangular park is to be designed whose breadth is 3 m less than its length. Its area is to be 4 square metres more than the area of a park that has already been made in the shape of an isosceles triangle with its base as the breadth of the rectangular park and of altitude 12 m. Find its length and breadth.
- 111. The area of a rectangular plot is $528\ m^2$. The length of the plot (in metres) is one more than twice its breadth. We need to find the length and breadth of the plot.
- 112. The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, find the other two sides.
- 113. The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more than the shorter side, find the sides of the field.
- 114. Is it possible to design a rectangular mango grove whose length is twice its breadth, and the area is 800 m^2 ? If so, find its length and breadth.
- 115. Is it possible to design a rectangular park of perimeter 80 m and area $400 m^2$ If so, find its length and breadth.
- 116. On an open ground, a motorist follows a track that turns to his left by an angle of 600 after every 500 m. Starting from a given turn, specify the displacement of the motorist at the third, sixth and eighth turn.

Compare the magnitude of the displacement with the total path length covered by the motorist in each case.

- 117. A passenger arriving in a new town wishes to go from the station to a hotel located 10 km away on a straight road from the station. A dishonest cabman takes him along a circuitous path 23 km long and reaches the hotel in 28 min. What is
 - (a) the average speed of the taxi,
 - (b) the magnitude of average velocity? Are the two equal?
- 118. An aircraft is flying at a height of 3400 m above the ground. If the angle subtended at a ground observation point by the aircraft positions 10.0 s apart is 30°, what is the speed of the aircraft?