Tiago da Silva

tdsh97@gmail.com | github.com/tiagodsilva | tiagodsilva.github.io | linkedin.com/in/tiagodasilvah

Education

MSc and PhD in Applied Mathematics

2024/03 - 2024/12

School of Applied Mathematics, Brazil. Advisor: Prof. Diego Mesquita.

- Thesis title: Streaming, Distributed, and Asynchronous Amortized Inference.
- Eligible for fast-track graduation due to recognized academic excellence and scientific productivity.

BSc in Data Science 2020/03 – 2023/12

School of Applied Mathematics, Brazil

• GPA: 9.9/10.0. 1st in class and 1st in the entrance exam. Received a fully-funded scholarship.

Selected Publications

1. When do GFlowNets learn the right distribution?

ICLR 2025 (spotlight)

- da Silva, T., Silva, E., Alves, R., Souza, A., Garg, V., Kaski, S., Mesquita, D.
- TL;DR: We show that a GFlowNet's learning objective may have an unattainable global minimum, which is undetectable by standard evaluation protocols. To address this, we propose the first tractable metric for assessing GFlowNets.

2. Generalization and Distributed Learning of GFlowNets?

ICLR 2025

- da Silva, T., Souza, A., Rivasplata, O., Garg, V., Kaski, S., Mesquita D.
- TL;DR: We devise the first PAC-Bayesian generalization bounds for GFlowNets. Inspired by them, we also introduce the first general-purpose distributed learning algorithm for GFlowNets, drastically accelerating training convergence.

3. Streaming Bayes GFlowNets

NeurIPS 2024

- da Silva, T., Souza, D., and Mesquita, D.
- TL;DR: We design a method to update GFlowNets trained on a streaming Bayesian posterior. Experiments show a drastic reduction in training time when compared against learning from scratch a model based on the entire dataset.

4. On Divergence Measures for Training GFlowNets

NeurIPS 2024

- da Silva, T., Silva, E., and Mesquita, D.
- TL;DR: We empirically show that the inefficacy of divergence-based objectives for GFlowNets is due to their large gradient variance. We then develop variance reduction techniques that significantly accelerate training convergence.

5. Embarrassingly Parallel GFlowNets

ICML 2024

- da Silva, T., Souza, A., Carvalho, L., Kaski, S., and Mesquita, D.
- TL;DR: We propose a divide-and-conquer approach to train a log-pool of GFlowNets in an embarrassingly parallel fashion. Results show a significant speed up in learning when the unnormalized target is expensive to evaluate.

6. Exploring scientific literature by textual and image content using DRIFT

Computer & Graphics 2022

- Pocco, X., da Silva, T., Poco, J., Nonato, L. G., Gomez-Nieto, E.
- TL;DR: We developed a text- and image-driven visualization-based search engine for scientific literature.

Preprints & Workshops

1. Human-aided Causal Discovery of Ancestral Graphs

LatinX @ NeurIPS 2024

- da Silva, T., Silva, E., Góis, A., Heider, D., Kaski, S., Mesquita, D., Ribeiro, A.
- TL;DR: We devise a Bayesian human-in-the-loop algorithm for causal discovery under latent confounding.

Research Experience

Green AI Lab, Brazil

2022/08 - ongoing

Working with probabilistic ML. My recent efforts were mostly directed towards leveraging GFlowNets for asynchronous and approximate Bayesian inference. I have also worked on geometric deep learning, learning theory, variational autoencoders, diffusion probabilistic models, and PINNs. Our current research led to publications at <u>ICML</u> and <u>NeurIPS</u>.

Aalto University, Finland

2024/07 - 2024/10

I was a visiting scholar on the Probabilistic Machine Learning group under the supervision of Prof. Vikas Garg and Prof. Sami Kaski. I worked on developing (non-vacuous) statistical guarantees for GFlowNets and on geometric deep learning.

Research assistant supervised by Prof. Jorge Poco. I assisted the development of a framework for reverse engineering of visualizations (see the open-source library <u>REV</u>) and of a platform for image-based literature search (see our <u>C&G paper</u>).

Honors & Awards

Award for Academic Excellence, Brazilian Society of Applied and Computational Mathematics.	2023
First place, School of Applied Mathematics entrance exam.	2020
I was awarded 19 prizes in scientific competitions during high school, including:	
William Glenn Whitley Prize for achieving the highest score on the State Mathematical Olympiad.	2019
Top score in the country, Brazilian Mathematical Olympiad of Public Schools.	2019
Top score in the country, Brazilian Mathematical Olympiad of Public Schools.	2018
Gold medal, Brazilian Chemistry Olympiad.	2018
Gold medal, Brazilian Mathematical Olympiad of Public Schools.	2017
Gold medals, State Chemistry Olympiad. Highest score in 2019.	2016-2019

Employment

Rei do Pitaco (largest fantasy sports company in Brazil)

2023/01 - 2023/07

- Data Science intern.
 - Designed predictive models to define the opening lines of bets on the outcomes of sport events (bookmaking).
 - ► Deployed and upheld the created models within applications serving thousands of concurrent users.

Teaching

I have worked as a teaching assistant (TA) for over three years in the School of Applied Mathematics. I was a TA in the courses of Exploratory Data Analysis (2021.1), Linear Algebra (2021.2), Probability (2022.1), Statistical Inference (2022.2), Machine Learning (2023.1), Time Series (2023.2, 2024.2), and in the graduate-level course of Machine Learning (2024.1). I assisted the professors with preparing and grading both homework and exams, and held office hours to support students.

Languages

Portuguese (Native), English

Skills

Computer languages: Proficient with Python and SQL. Competent with R and Stan. Familiar with C++ and JavaScript.

Scientific computing frameworks: PyTorch, PyTorch Geometric, GPyTorch, NumPy, SciPy.

Technologies: Git, Linux.

Data visualization: Matplotlib, Altair, Vega-lite, D3.

Computer vision libraries: OpenCV, YOLOv5, SAM.

References

Diego Mesquita <u>diego.mesquita@fgv.br</u>
Amauri Souza <u>amauri.souza@aalto.fi</u>