Optimalizace a teorie her Numerické metody optimalizace

Martin Bohata

Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz

Newtonova metoda v jednorozměrné optimalizaci

Je dána rovnice g(x)=0, kde $g\in C^1(\mathbb{R})$. Nechť $x_0\in\mathbb{R}$. Položme

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)},$$

 $k \in \mathbb{N}_0$.

- Předpokládáme, že $g'(x_k) \neq 0$ pro každé $k \in \mathbb{N}_0$.
- Pokud x_0 je dostatečně blízko řešení \hat{x} rovnice g(x), pak $x_k \to \hat{x}$.

Newtonova metoda v jednorozměrné optimalizaci

Je dána funkce $f\in C^2(\mathbb{R})$. Hledejme stacionární body funkce f, tj. řešme rovnici f'(x)=0. Z Newtonovy metody pro řešení rovnic plyne, že

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

Algoritmus

- ① Zvolíme $\varepsilon > 0$ a $x_0 \in \mathbb{R}$. Položíme k = 0.
- 2 Vypočítáme $f'(x_k)$ a $f''(x_k)$.
- **3** Je-li $|f'(x_k)| < \varepsilon$, pak algoritmus končí a x_k je hledaná aproximace stacionárního bodu. V opačném případě přejdeme na další krok.
- Položíme

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)},$$

(nutno zkontrolovat, že $f''(x_k) \neq 0$) hodnotu k zvýšíme o 1 a jdeme na krok ②.

Newtonova metoda v jednorozměrné optimalizaci

• Pro kvadratickou funkci dostaneme řešení v jediném kroku.

Příklad

Je dána funkce $f(x) = x^4 - 4x^2 + 2$.

- ① Zvolíme-li $x_0 = \frac{1}{2}$, pak $x_1 = -\frac{1}{5}$, $x_2 \approx 0,085$, $x_3 \approx -6 \cdot 10^{-7}$, ...
- 2 Zvolíme-li $x_0=1$, pak $x_1=2$, $x_2=\frac{8}{5}$, $x_3\approx 1,442$, . . .

Nepodmíněná optimalizace

V dalším se omezíme na minimalizační úlohy.

Chceme nalézt alespoň přibližně bod minima (alespoň lokálního) funkce $f:\mathbb{R}^n \to \mathbb{R}$.

Postup:

ullet Zvolíme x_0 a konstruujeme posloupnost, jejíž členy jsou dány

$$x_{k+1} = x_k + \alpha_k d_k,$$

kde $\alpha_k \geq 0$ je délka k-tého kroku a $d_k \in \mathbb{R}^n$ je směr k-tého kroku.

• Vhodnou volbou délky kroku a směru se snažíme dosáhnout toho, aby $f(x_{k+1}) < f(x_k)$.

Otázky:

- Jak volit x_0 , α_k a d_k , aby $(x_k)_{k=0}^{\infty}$ konvergovalo k bodu minima (alespoň lokálního)?
- Jak volit pravidlo pro zastavení algoritmu?

Nepodmíněná optimalizace – Metoda největšího spádu

V metodě největšího spádu předpokládáme, že $f \in C^1(\mathbb{R}^n)$.

Volba směru d_k :

- Chceme, aby $f(x_{k+1}) < f(x_k)$, a proto za směr d_k budeme volit směr poklesu, tj. prvek z $\mathcal{D}(f; x_k)$.
- Konkrétně volme $d_k = -\nabla f(x_k)$.
- Jestliže $\nabla f(x_k) \neq 0$, pak $d_k \in \mathcal{D}_0(f; x_k) \subseteq \mathcal{D}(f; x_k)$.
- Směr $d_k = -\nabla f(x_k)$ je směr největšího poklesu v bodě x_k .

Nepodmíněná optimalizace – Metoda největšího spádu

Jak volit délku kroku α_k ?

• Pevná volba kroku $\alpha_k=\alpha$ pro každé $k\in\mathbb{N}$. Příliš velké α může zkazit konvergenci.

(Je-li
$$f(x) = \frac{1}{2} \|x\|^2$$
, $\alpha = 11$ a $x_0 = (1,1)^T$, pak $x_k = ((-10)^k, (-10)^k)^T$.)

• $\alpha_k \in \operatorname{argmin}_{\alpha > 0} f(x_k - \alpha \nabla f(x_k)).$

Kritérium zastavení:

- $\|\nabla f(x_k)\| < \varepsilon$.
- Další možnosti jsou $||x_{k+1} x_k|| < \varepsilon$, $|f(x_{k+1}) f(x_k)| < \varepsilon$,...
- Možná je i kombinace více kritérií.

Nepodmíněná optimalizace – Metoda největšího spádu

Algoritmus

- **1** Zvolme $x_0 \in \mathbb{R}^n$, $\varepsilon > 0$. Položme k = 0.
- ullet Je-li $\|
 abla f(x_k) \| < arepsilon$, pak algoritmus končí a x_k je hledaná aproximace. V opačném případě přejdeme na další krok.
- Nalezneme $\alpha_k \in \operatorname{argmin}_{\alpha > 0} f(x_k \alpha \nabla f(x_k)).$
- § Položíme $x_{k+1} = x_k - \alpha_k \nabla f(x_k)$. Zvýšíme hodnotu k o 1 a jdeme na krok

Pro uvedenou verzi algoritmu platí:

- $x_{k+1} x_k \perp x_{k+2} x_{k+1}$ (díky volbě délky kroku pomocí minimalizační úlohy).
- Za vhodných předpokladů metoda konverguje ke stacionárnímu bodu.
- V blízkosti stacionárního bodu konverguje pomalu ("zig-zag efekt").

Nepodmíněná optimalizace – Newtonova metoda

Zobecnění jednorozměrného případu. Požadavek $f \in C^2(\mathbb{R}^n)$.

- Směr v k-tém kroku je $d_k = -[\nabla^2 f(x_k)]^{-1} \nabla f(x_k)$.
- Je d_k skutečně směr poklesu? Jestliže $\nabla f(x_k) \neq 0$ a $\nabla^2 f(x_k)$ je pozitivně definitní, pak ano (dokonce $d_k \in \mathcal{D}_0(f; x_k)$).
- Délka kroku $\alpha_k = 1$.
- V případě volby délky kroku pomocí minimalizační úlohy dostáváme tzv. Modifikovanou Newtonovu metodu.

Podmíněná optimalizace – Metoda projekce gradientu

- Metoda nevětšího spádu "přímočaře" zobecněná do podmíněné optimalizace.
- Předpoklady: $f \in C^1(\mathbb{R}^n)$ a $C \subseteq \mathbb{R}^n$ je neprázdná, uzavřená a konvexní.
- Nulovost gradientu již není vhodným kritériem pro zastavení.

Algoritmus

- **1** Zvolme $x_0 \in C$ a $\varepsilon > 0$. Položme k = 0.
- 2 Vypočteme $d_k = -\nabla f(x_k)$.
- Nalezneme $\alpha_k \in \operatorname{argmin}_{\alpha>0} f(x_k \alpha \nabla f(x_k)).$
- O Položíme $x_{k+1} = P_C(x_k \alpha_k \nabla f(x_k)).$
- **⑤** Je-li $|f(x_{k+1}) f(x_k)| < \varepsilon$, pak algoritmus končí a x_k je hledaná aproximace. V opačném případě zvýšíme hodnotu k o 1 a jdeme na krok **⑥**.

10 / 11

Podmíněná optimalizace – Metoda penalizačních funkcí

Nechť
$$f,g_1,\dots,g_k\in C^1(\mathbb{R}^n)$$
 a je dána úloha minimalizujte $f(x)$ za podmínek $g_1(x)\leq 0,$
$$\vdots \\ g_k(x)\leq 0.$$
 (U)

- Chceme nahradit (U) úlohami nepodmíněné optimalizace.
- $p(x) = \sum_{i=1}^{m} [\max\{0, g_i(x)\}]^2 \dots$ penalizační funkce.

Algoritmus

- **1** Zvolme $\varepsilon > 0$, $c_0 > 0$ a $\alpha > 1$. Položme k = 0.
- ② Nalezněme bod minima x_k funkce $f(x) + c_k p(x)$ na \mathbb{R}^n .
- **3** Je-li $c_k p(x_k) < \varepsilon$, pak algoritmus končí a x_k je hledaná aproximace. V opačném případě položíme $c_{k+1} = \alpha c_k$, zvýšíme hodnotu k o 1 a jdeme na krok **2**.