Assignment

Name: Jie Wang **ZID:** z5119770

Question 1

(1)The result:

	Location	Time	Item	Quantity
0	Sydney	2005	PS2	1400
1	Sydney	2005	ALL	. 1400
2	Sydney	2006	Wii	. 500
3	Sydney	2006	PS2	1500
4	Sydney	2006	ALL	. 2000
5	Sydney	ALL	Wii	. 500
6	Sydney	ALL	PS2	2900
7	Sydney	ALL	ALL	. 3400
8	Melbourne	2005	Xbox 360	1700
9	Melbourne	2005	ALL	. 1700
10	Melbourne	ALL	Xbox 360	1700
11	Melbourne	ALL	ALL	. 1700
12	ALL	2005	Xbox 360	1700
13	ALL	2005	PS2	1400
14	ALL	2005	ALL	. 3100
15	ALL	2006	Wii	. 500
16	ALL	2006	PS2	1500
17	ALL	2006	ALL	. 2000
18	ALL	ALL	Wii	. 500
19	ALL	ALL	Xbox 360	1700
20	ALL	ALL	PS2	2900
21	ALL	ALL	ALL	5100

(2)The code:

SELECT Location, Time, Item, SUM(Quantity) FROM R GROUP BY Location, Time, Item

UNION ALL

SELECT Location, Time, ALL, SUM(Quantity) FROM R GROUP BY Location, Time

UNION ALL

SELECT Location, ALL, Item, SUM(Quantity) FROM R GROUP BY Location, Item

UNION ALL

SELECT ALL, Time, Item, SUM(Quantity) FROM R GROUP BY Time, Item

UNION ALL

SELECT Location, ALL, ALL, SUM(Quantity) FROM R

GROUP BY Location
UNION ALL
SELECT ALL, Time, ALL, SUM(Quantity) FROM R
GROUP BY Time
UNION ALL
SELECT ALL, ALL, Item, SUM(Quantity) FROM R
GROUP BY Item
UNION ALL
SELECT ALL, ALL, ALL, SUM(Quantity) FROM R

(3)The result:

	Location	Time	Item	Quantity
0	Sydney	2006	ALL	2000
1	Sydney	ALL	PS2	2900
2	Sydney	ALL	ALL	3400
3	ALL	2005	ALL	3100
4	ALL	2006	ALL	2000
5	ALL	ALL	PS2	2900
6	ALL	ALL	ALL	5100

(4)

From the week2 lecture ,we know that how to count the property of each element: When we know the Location, the conditions of Time ,Item and Quantity are: 3*4 When we know the Time ,the conditions of Item and Quantity are: 4 So the correct function is: h(L,T,I) = 12L + 4T + I

So we change the content to number and count the map index ,the result:

	Location	Time	Item	Quantity	Map index
0	1	1	1	1400	17
1	1	1	0	1400	16
2	1	2	3	500	23
3	1	2	1	1500	21
4	1	2	0	2000	20
5	1	0	3	500	15
6	1	0	1	2900	13
7	1	0	0	3400	12
8	2	1	2	1700	30
9	2	1	0	1700	28
10	2	0	2	1700	26
11	2	0	0	1700	24
12	0	1	2	1700	6
13	0	1	1	1400	5
14	0	1	0	3100	4
15	0	2	3	500	11
16	0	2	1	1500	9

17	0	2	0	2000	8
18	0	0	3	500	3
19	0	0	2	1700	2
20	0	0	1	2900	1
21	0	0	0	5100	0

So we can get the MOLAP architecture:

index	value
17	1400
16	1400
23	500
21	1500
20	2000
15	500
13	2900
12	3400
30	1700
28	1700
26	1700
24	1700
6	1700
5	1400
4	3100
11	500
9	1500
8	2000
3	500
2	1700
1	2900
0	5100

Question 2

(1) We define the logOdds:
$$Odds = \frac{Pr[y=1|\mu]}{Pr[y=0|\mu]}$$

If the Odds larger than 1,that means it is in class(y=1),else in class(y=0),so if we add a log method:

$$\log Odds = \log(\frac{\Pr[y=1|\mu]}{\Pr[y=0|\mu]})$$

If it is larger than 0, then the prediction is positive class; otherwise, the classification is the negative class,so:

$$\begin{split} \log \text{Odds} &= \log(\frac{\Pr[y=1|\mu]}{\Pr[y=0|\mu]}) \\ &= \log(\Pr[y=1|\mu]) - \log(\Pr[y=0|\mu]) \\ &= \log(\prod_{i=1}^{d} \Pr[x_i = \mu_i|y = 1] + \log(\Pr[y=1]) - (\log(\prod_{i=1}^{d} \Pr[x_i = \mu_i|y = 0] \\ &+ \log(\Pr[y=0]) \\ &= \sum_{i=1}^{d} \log(\Pr[x_i = \mu_i|y = 1]) + \log(\Pr[y=1]) - \sum_{i=1}^{d} \log(\Pr[x_i = \mu_i|y = 0]) \\ &- \log(\Pr[y=0]) \\ &= \sum_{i=1}^{d} \log(\Pr[x_i = \mu_i|y = 1]) - \log(\Pr[x_i = \mu_i|y = 0]) + \log(\Pr[y=1]) \\ &- \log(\Pr[y=0]) \\ &= \sum_{i=1}^{d} \log \frac{\Pr[x_i = \mu_i|y = 1]}{\Pr[x_i = \mu_i|y = 0]} + \log \frac{\Pr[y=1]}{\Pr[y=0]} \end{split}$$

We let the α , β , δ , λ to separate the result:

Define:

$$\alpha(i, \mu i) = \log \frac{\Pr[x_i = \mu_i | y = 1]}{\Pr[x_i = \mu_i | y = 0]}$$

$$\beta = \log \frac{\Pr[y=1]}{\Pr[y=0]}$$

Then:

$$\begin{split} \log \text{Odds} &= \sum_{i=1}^{d} \alpha(\mathbf{i}, \mu_{i}) + \beta \\ &= \sum_{i=1}^{d} (\alpha(\mathbf{i}, 1)^{*} \mu_{i} + \alpha(\mathbf{i}, 0)^{*} (1 - \mu_{i})) + \beta \\ &= \sum_{i=1}^{d} \alpha(\mathbf{i}, 0) + (\alpha(\mathbf{i}, 1) - \alpha(\mathbf{i}, 0))^{*} \mu_{i} + \beta \\ &= \delta + \sum_{i=1}^{d} \lambda * \mu_{i} \end{split}$$

So the feature that naive bayes learn is that:

$$\boldsymbol{\omega}^T\!=[\delta,\,\lambda_1,\,\lambda_2.....,\!\lambda_d]$$

(2)The reason:

In the logistic regression, it has to learn the whole, but in the naïve bayes, every feature in vector is learned independently.

Question 3

(1)From the question:
$$h_w(x) = \frac{1}{1+e^{-w^Tx}}$$

$$= \frac{e^{w^Tx}}{e^{w^Tx}+1}$$

$$1-h_w(x) = 1 - \frac{e^{w^Tx}}{e^{w^Tx}+1}$$

$$= \frac{1}{e^{w^Tx}+1}$$

The likelihood Function is that:

$$L(w) = \prod_{i=1}^{n} h_{w}(x_{i})^{y_{i}} (1 - h_{w}(x_{i}))^{1-y_{i}}$$

From the lecture notes, we can get the loss function from likelihood function using: -ln(likelihood function), so:

Loss function =
$$-\ln(L(w))$$

= $-\ln(\prod_{i=1}^{n} h_{w} (x_{i})^{y_{i}} (1 - h_{w}(x_{i}))^{1-y_{i}})$
= $-\sum_{i=1}^{n} (y_{i} * \ln(\frac{e^{w^{T}x_{i}}}{e^{w^{T}x_{i+1}}}) + (1 - y_{i}) * \ln(\frac{1}{e^{w^{T}x_{i+1}}}))$
= $-\sum_{i=1}^{n} (y_{i} * (w^{T}x_{i} - \ln(e^{w^{T}x_{i}} + 1)) + (1 - y_{i}) * (0 - \ln(e^{w^{T}x_{i}} + 1))$
= $\sum_{i=1}^{n} -[y_{i} * w^{T}x_{i} - y_{i} * \ln(e^{w^{T}x_{i}} + 1) - \ln(e^{w^{T}x_{i}} + 1) + y_{i} * \ln(e^{w^{T}x_{i}} + 1)$
= $\sum_{i=1}^{n} (-y_{i} * w^{T}x_{i} + \ln(e^{w^{T}x_{i}} + 1))$
= $\sum_{i=1}^{n} (-y_{i} * w^{T}x_{i} + \ln(exp^{w^{T}x_{i}} + 1))$

(2) When the function is:

$$P[y = 1 \mid \mathbf{x}] = f(\mathbf{w}^{\mathsf{T}} \mathbf{x})$$

So the likelihood function is:

$$L(w) = \prod_{i=1}^{n} f(w^{T} x_{i})^{y_{i}} (1 - f(w^{T} x_{i}))^{1-y_{i}}$$

Loss function:

$$\begin{split} &= -\log(\mathsf{L}(\mathsf{w}) \\ &= -\log(\prod_{i=1}^{n} f(w^{T} x_{i})^{y_{i}} (1 - f(w^{T} x_{i}))^{1 - y_{i}}) \\ &= -\sum_{i=1}^{n} y_{i} * \log f(w^{T} x_{i}) + (1 - y_{i}) * \log(1 - f(w^{T} x_{i})) \\ &= -\sum_{i=1}^{n} y_{i} * \log f(w^{T} x_{i}) + \log(1 - f(w^{T} x_{i})) - y_{i} * \log(1 - f(w^{T} x_{i})) \\ &= -\sum_{i=1}^{n} y_{i} * \log \frac{f(w^{T} x_{i})}{1 - f(w^{T} x_{i})} + \log(1 - f(w^{T} x_{i})) \end{split}$$