Dumbo, Jumbo, and Delirium: Parallel AEAD for the Lightweight Circus

Tim Beyne¹, Yu Long Chen¹, Christoph Dobraunig², Bart Mennink²

 1 KU Leuven (Belgium)

² Radboud University (The Netherlands)

NIST Lightweight Cryptography Workshop 2019 November 6, 2019

Encryption

• No outsider can learn anything about data

Encryption

• No outsider can learn anything about data

Authentication

• No outsider can manipulate data

- ullet Ciphertext C encryption of message M
- \bullet Tag T authenticates associated data A and message M

- ullet Ciphertext C encryption of message M
- \bullet Tag T authenticates associated data A and message M
- ullet Nonce N randomizes the scheme

- Authenticated decryption needs to satisfy that
 - Message disclosed if tag is correct
 - Message is not leaked if tag is incorrect

- Authenticated decryption needs to satisfy that
 - Message disclosed if tag is correct
 - Message is not leaked if tag is incorrect

- Authenticated decryption needs to satisfy that
 - Message disclosed if tag is correct
 - Message is not leaked if tag is incorrect
- Correctness: $AD_k(N, A, AE_k(N, A, M)) = M$

Lightweight Authenticated Encryption

Lightweight Authenticated Encryption

Our goal: minimize state size and complexity of design while still meeting expected security strength 2^{112} and limit on online complexity 2^{50} bytes

What Primitive?

Tweakable Block Cipher

Block Cipher

Permutation

What Primitive?

Tweakable Block Cipher

Block Cipher

Permutation

Permutation is the best suited choice

What Mode?

Established Approach

- Keyed duplex/sponge [BDPV11,MRV15,DMV17]
- Inherently sequential

What Mode?

Established Approach

- Keyed duplex/sponge [BDPV11,MRV15,DMV17]
- Inherently sequential

Our Approach

- Parallel evaluation of the permutation
 → requires proper masking
- Evaluating it in forward direction only
 → requires proper mode of use
- Goal: minimize permutation size

What Mask?

Simplified Version of MEM [GJMN16]

- φ_1 is fixed LFSR, $\varphi_2 = \varphi_1 \oplus \mathrm{id}$
- $\bullet \ \operatorname{mask}_K^{a,b} = \varphi_2^b \circ \varphi_1^a \circ \operatorname{P}(K\|0^{n-k})$

What Mask?

Simplified Version of MEM [GJMN16]

- ullet $arphi_1$ is fixed LFSR, $arphi_2=arphi_1\oplus \operatorname{id}$
- $\bullet \ \operatorname{mask}^{a,b}_K = \varphi^b_2 \circ \varphi^a_1 \circ \operatorname{P}(K \| 0^{n-k})$

Features

- Constant-time
- Simple to implement
- More efficient than alternatives

Encryption

- ullet Nonce N input to all P calls
- ullet K and counter in mask
- Padding $M_1 \dots M_{\ell_M} \xleftarrow{n} M$
- Ciphertext $C \leftarrow \lfloor C_1 \dots C_{\ell_M} \rfloor_{|M|}$

Encryption

- ullet Nonce N input to all P calls
- K and counter in mask
- Padding $M_1 \dots M_{\ell_M} \xleftarrow{n} M$
- Ciphertext $C \leftarrow \lfloor C_1 \dots C_{\ell_M} \rfloor_{|M|}$

Authentication

- Padding $A_1 \dots A_{\ell_A} \stackrel{r}{\leftarrow} N \|A\| 1$
- Padding $C_1 \dots C_{\ell_C} \stackrel{^n}{\leftarrow} C \| 1$
- ullet K and counter in mask
- ullet Tag T truncated to t bits

Mode Properties

- Encrypt-then-MAC
 - CTR encryption
 - Wegman-Carter-Shoup
- Fully parallelizable
- Uses single primitive P
- P in forward direction only

Mode Properties

- Encrypt-then-MAC
 - CTR encryption
 - Wegman-Carter-Shoup
- Fully parallelizable
- Uses single primitive P
- P in forward direction only

Mask Properties

Mask can be easily updated

Mode Properties

- Encrypt-then-MAC
 - CTR encryption
 - Wegman-Carter-Shoup
- Fully parallelizable
- Uses single primitive P
- P in forward direction only

Mask Properties

- Mask can be easily updated
- $\bullet \ \operatorname{mask}_K^{i,0} = \varphi_1 \circ \operatorname{mask}_K^{i-1,0}$

Mode Properties

- Encrypt-then-MAC
 - CTR encryption
 - Wegman-Carter-Shoup
- Fully parallelizable
- Uses single primitive P
- P in forward direction only

Mask Properties

- Mask can be easily updated
- $\bullet \ \operatorname{mask}_K^{i,0} = \varphi_1 \circ \operatorname{mask}_K^{i-1,0}$
- $\bullet \ \operatorname{mask}_K^{i-1,0} \oplus \operatorname{mask}_K^{i-1,1} = \operatorname{mask}_K^{i,0}$

Security of Mode

$$\mathbf{Adv}^{\mathrm{ae}}_{\mathsf{Elephant}}(\mathcal{A}) \lesssim rac{4\sigma p}{2^n}$$

- ullet σ is online complexity, p is offline complexity
- Assumptions:
 - P is random permutation
 - φ_1 has maximal length and $\varphi_2^b\circ\varphi_1^a\neq \varphi_2^{b'}\circ\varphi_1^{a'}$ for $(a,b)\neq (a',b')$
 - ullet ${\cal A}$ is nonce-based adversary

Security of Mode

$$\mathbf{Adv}^{\mathrm{ae}}_{\mathsf{Elephant}}(\mathcal{A}) \lesssim rac{4\sigma p}{2^n}$$

- ullet σ is online complexity, p is offline complexity
- Assumptions:
 - P is random permutation
 - φ_1 has maximal length and $\varphi_2^b \circ \varphi_1^a \neq \varphi_2^{b'} \circ \varphi_1^{a'}$ for $(a,b) \neq (a',b')$
 - A is nonce-based adversary

Parameters of NIST lightweight call can be met with a 160-bit permutation!

Instantiation

Dumbo

- Spongent- $\pi[160]$
- Minimalist design
 - Time complexity 2^{112}
 - ullet Data complexity 2^{46}

Instantiation

Dumbo

- $\bullet \ \mathsf{Spongent}\text{-}\pi[160]$
- Minimalist design
 - ullet Time complexity 2^{112}
 - ullet Data complexity 2^{46}

Jumbo

- Spongent- $\pi[176]$
- Conservative design
 - Time complexity 2^{127}
 - ullet Data complexity 2^{46}
- ISO/IEC standardized

Instantiation

Dumbo

- Spongent- $\pi[160]$
- Minimalist design
 - Time complexity 2^{112}

 - ullet Data complexity 2^{46}

Jumbo

- Spongent- $\pi[176]$
- Conservative design
 - Time complexity 2^{127}
 - Data complexity 2^{46}
- ISO/IEC standardized

Delirium

- Keccak-f[200]
- High security
 - Time complexity 2^{127}
 - Data complexity 2⁷⁰
- NIST standardized

Technical Specification of Instances

instance	k	m	n	t	P	$arphi_1$	expected security strength	limit on online complexity
Dumbo Jumbo Delirium	128 128 128	96 96 96	160 176 200	64 64 128	$\begin{array}{c} 80\text{-round Spongent-}\pi[160] \\ 90\text{-round Spongent-}\pi[176] \\ 18\text{-round Keccak-}f[200] \end{array}$	arphiDumbo $arphi$ Jumbo $arphi$ Delirium	$2^{112} \\ 2^{127} \\ 2^{127}$	$2^{50}/(n/8) 2^{50}/(n/8) 2^{74}/(n/8)$

• All LFSRs operate on 8-bit words:

$$\varphi_{\mathsf{Dumbo}} \colon (x_0, \dots, x_{19}) \mapsto (x_1, \dots, x_{19}, x_0 \lll 3 \oplus x_3 \ll 7 \oplus x_{13} \gg 7)$$

$$\varphi_{\mathsf{Jumbo}} \colon (x_0, \dots, x_{21}) \mapsto (x_1, \dots, x_{21}, x_0 \lll 1 \oplus x_3 \ll 7 \oplus x_{19} \gg 7)$$

$$\varphi_{\mathsf{Delirium}} \colon (x_0, \dots, x_{24}) \mapsto (x_1, \dots, x_{24}, x_0 \lll 1 \oplus x_2 \lll 1 \oplus x_{13} \ll 1)$$

• All have maximal length and $\varphi_2^b\circ \varphi_1^a \neq \varphi_2^{b'}\circ \varphi_1^{a'}$ for $(a,b) \neq (a',b')$

Conclusion

Elephant

- Parallel lightweight AE with small state
- Mode: provably secure in random permutation model
- Primitives: standardized and well-studied
- Dumbo and Jumbo for hardware
- Delirium for software

Thank you for your attention!