4. Differential calculus for vector valued functions

We solve the problems together in the exercise sessions. Note that these problems are optional and for learning purposes: solving these does not provide extra points. Actual home assignments (giving you extra points) are given separately.

It is advised to take a look of the problems beforehand. Note that some of the problems might be very challenging, so do not feel bad if you are unable to solve them independently: we will go through the solutions together!

Problems for the session

- **4.1** Determine the values of a such that f(x,y) = (x + ay, 2x + 3y) is injective.
- **4.2** Is the function $f(x,y)=(u,v)=(x^2-y^2,2xy)$ bijective in a neighbourhood of $(x_0,y_0)=(1,1)$? Determine $\frac{\partial u}{\partial x}(1,1)$ and $\frac{\partial x}{\partial u}(0,2)$.
- **4.3** Show that the equation $x^y + \sin y = 1$ defines a function y = f(x) in a neighbourhood of $(x_0, y_0) = (1, 0)$, and determine f'(x).
- **4.4** Show that the equation $y^3 y = x$ defines a function y = f(x) in a neighbourhood of $(x_0, y_0) = (0, 0)$. With implicit derivation, determine the coefficients a_0, a_1, a_2 in the second order Taylor approximation

$$f(x) \approx a_0 + a_1 x + a_2 x^2.$$

Problems for individual practice

In addition to the problems below, one can get routine by solving similar exercises from the exercise-book "övningar i flerdimensionell analys".

4.1 Let $f: \mathbb{R}^n \to \mathbb{R}^p$ and $g: \mathbb{R}^m \to \mathbb{R}^n$. Verify the chain rule for the Jacobians

$$(f \circ g)'(x) = f'(g(x))g'(x).$$

4.2 Determine all the points (x_0, y_0) such that $x^2 + y^2 = 1$ defines a function y = f(x) in the neighbourhood of (x_0, y_0) . What about points for which x = g(y)?

- **4.3** Show that for a < 1 the equation $x^3 3ax + 2 = 0$ has a solution x(a). Find x'(0).
- **4.4** Let $f(x,y) = (u,v) = (x^2 + y, xy^2 x^3)$. Determine the Jacobian of f and find the linear approximation at point $(x_0, y_0) = (1, 2)$.
- **4.5** Prove that, in the neighbourhood of (0,0,0), the equation $x^3 + y^3 + z^3 + x^2z yz z = 0$ defines a function z = f(x,y). Find f'_x and f'_y .