Number Systems

Md. Rokanujjaman Associate Professor Dept. of Computer Science and Engineering University of Rajshahi Rokon_cstru@yahoo.com, 01712043386

Number Systems & Codes

Part I: Number Systems

- Information Representations
- Positional Notations
- Decimal (base 10) Number System
- Other Number Systems & Base-R to Decimal Conversion
- Decimal-to-Binary Conversion
 - Sum-of-Weights Method
 - Repeated Division-by-2 Method (for whole numbers)
 - Repeated Multiplication-by-2 Method (for fractions)

Lecture 2: Number Systems & Codes

- Conversion between Decimal and other Bases
- Conversion between Bases
- Binary-Octal/Hexadecimal Conversion
- Binary Arithmetic Operations
- Negative Numbers Representation
 - Sign-and-magnitude
 - 1s Complement
 - 2s Complement
- Comparison of Sign-and-Magnitude and Complements

Lecture 2: Number Systems & Codes

- Complements
 - Diminished-Radix Complements
 - Radix Complements
- 2s Complement Addition and Subtraction
- 1s Complement Addition and Subtraction
- Overflow
- Fixed-Point Numbers
- Floating-Point Numbers
- Excess Representation
- Arithmetics with Floating-Point Numbers

Information Representation (1/4)

- Numbers are important to computers
 - represent information precisely
 - can be processed

For example:

- to represent yes or no: use 0 for no and 1 for yes
- to represent 4 seasons: 0 (autumn), 1 (winter), 2(spring) and 3 (summer)
- matriculation number (8 alphanumeric) to represent individual students

Information Representation (2/4)

Elementary storage units inside computer are electronic switches. Each switch holds one of two states: on (1) or off (0).

We use a bit (binary digit), 0 or 1, to represent the state.

Information Representation (3/4)

 Storage units can be grouped together to cater for larger range of numbers. Example: 2 switches to represent 4 values.

Information Representation (4/4)

- In general, N bits can represent 2^N different values.
- For M values, $\lceil \log_2 M \rceil$ bits are needed.

```
1 bit \rightarrow represents up to 2 values (0 or 1)

2 bits \rightarrow rep. up to 4 values (00, 01, 10 or 11)

3 bits \rightarrow rep. up to 8 values (000, 001, 010. ..., 110, 111)

4 bits \rightarrow rep. up to 16 values (0000, 0001, 0010, ..., 1111)

32 values \rightarrow requires 5 bits

64 values \rightarrow requires 6 bits

1024 values \rightarrow requires 10 bits

40 values \rightarrow requires 6 bits

100 values \rightarrow requires 7 bits
```

Positional Notations (1/3)

- Position-independent notation
 - each symbol denotes a value independent of its position: Egyptian number system
- Relative-position notation
 - Roman numerals symbols with different values: I (1), V (5), X (10), C (50), M (100)
 - Examples: I, II, III, IV, VI, VI, VII, VIII, IX
 - Relative position important: IV = 4 but VI = 6
- Computations are difficult with the above two notations

Positional Notations (2/3)

- Weighted-positional notation
 - Decimal number system, symbols = { 0, 1, 2, 3, ..., 9 }
 - Position is important
 - \star Example: $(7594)_{10} = (7x10^3) + (5x10^2) + (9x10^1) + (4x10^0)$
 - The value of each symbol is dependent on its type and its position in the number
 - * In general, $(a_n a_{n-1} ... a_0)_{10} = (a_n \times 10^n) + (a_{n-1} \times 10^{n-1}) + ... + (a_0 \times 10^0)$

Positional Notations (3/3)

Fractions are written in decimal numbers after the decimal point.

*
$$2^{\frac{3}{4}} = (2.75)_{10} = (2 \times 10^{0}) + (7 \times 10^{-1}) + (5 \times 10^{-2})$$

* In general,
 $(a_{n}a_{n-1}...a_{0}.f_{1}f_{2}...f_{m})_{10} =$
 $(a_{n} \times 10^{n}) + (a_{n-1} \times 10^{n-1}) + ... + (a_{0} \times 10^{0}) +$
 $(f_{1} \times 10^{-1}) + (f_{2} \times 10^{-2}) + ... + (f_{m} \times 10^{-m})$

The radix (or base) of the number system is the total number of digits allowed in the system.

Decimal (base 10) Number System

Weighting factors (or weights) are in powers-of-10:

```
... 103 102 101 100.10-1 10-2 10-3 10-4 ...
```

■ To evaluate the decimal number 593.68, the digit in each position is multiplied by the corresponding weight:

$$5\times10^2 + 9\times10^1 + 3\times10^0 + 6\times10^{-1} + 8\times10^{-2}$$

= $(593.68)_{10}$

Other Number Systems & Base-R to Decimal Conversion (1/3)

- Binary (base 2): weights in powers-of-2.
 - Binary digits (bits): 0,1.
- Octal (base 8): weights in powers-of-8.
 - Octal digits: 0,1,2,3,4,5,6,7.
- Hexadecimal (base 16): weights in powers-of-16.
 - Hexadecimal digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.
- Base R: weights in powers-of-R.

Other Number Systems & Base-R to Decimal Conversion (2/3)

$$(1101.101)_2 = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-3}$$

$$= 8 + 4 + 1 + 0.5 + 0.125 = (13.625)_{10}$$

$$(572.6)_8 = 5 \times 8^2 + 7 \times 8^1 + 2 \times 8^0 + 6 \times 8^{-1}$$

$$= 320 + 56 + 2 + 0.75 = (378.75)_{10}$$

$$(2A.8)_{16} = 2 \times 16^{1} + 10 \times 16^{0} + 8 \times 16^{-1}$$

$$= 32 + 10 + 0.5 = (42.5)_{10}$$

$$(341.24)_5 = 3 \times 5^2 + 4 \times 5^1 + 1 \times 5^0 + 2 \times 5^{-1} + 4 \times 5^{-2}$$

$$= 75 + 20 + 1 + 0.4 + 0.16 = (96.56)_{10}$$

Other Number Systems & Base-R to Decimal Conversion (3/3)

- Counting in Binary
- Assuming non-negative values, $n \ bits \rightarrow largest \ value \ 2^n 1.$

Examples: 4 bits \rightarrow 0 to 15;

6 bits \rightarrow 0 to 63.

■ range of m values $\rightarrow \log_2 m$ bits

Decimal Number	Binary Number			
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

Decimal-to-Binary Conversion

- Method 1: Sum-of-Weights Method
- Method 2:
 - * Repeated Division-by-2 Method (for whole numbers)
 - * Repeated Multiplication-by-2 Method (for fractions)

Sum-of-Weights Method

Determine the set of binary weights whose sum is equal to the decimal number.

$$(9)_{10} = 8 + 1 = 2^{3} + 2^{0} = (1001)_{2}$$

 $(18)_{10} = 16 + 2 = 2^{4} + 2^{1} = (10010)_{2}$
 $(58)_{10} = 32 + 16 + 8 + 2 = 2^{5} + 2^{4} + 2^{3} + 2^{1} = (111010)_{2}$
 $(0.625)_{10} = 0.5 + 0.125 = 2^{-1} + 2^{-3} = (0.101)_{2}$

Repeated Division-by-2 Method

■ To convert a whole number to binary, use successive division by 2 until the quotient is 0. The remainders form the answer, with the first remainder as the *least significant bit (LSB)* and the last as the *most significant bit (MSB)*.

$$(43)_{10} = (101011)_2$$

2	43		
2	21	rem 1	← LSB
2	10	rem 1	
2	5	rem 0	
2	2	rem 1	
2	1	rem 0	
	0	rem 1	← MSB

Repeated Multiplication-by-2 Method

To convert decimal fractions to binary, repeated multiplication by 2 is used, until the fractional product is 0 (or until the desired number of decimal places). The carried digits, or *carries*, produce the answer, with the first carry as the MSB, and the last as the LSB.

$$(0.3125)_{10} = (.0101)_2$$

	Carry	
$0.3125 \times 2 = 0.625$	0	←MSB
$0.625 \times 2 = 1.25$	1	
$0.25 \times 2 = 0.50$	0	
$0.5 \times 2 = 1.00$	1	←LSB

Conversion between Decimal and other Bases

- Base-R to decimal: multiply digits with their corresponding weights.
- Decimal to binary (base 2)
 - whole numbers: repeated division-by-2
 - fractions: repeated multiplication-by-2
- Decimal to base-R
 - whole numbers: repeated division-by-R
 - fractions: repeated multiplication-by-R

Conversion between Bases

In general, conversion between bases can be done via decimal:

Shortcuts for conversion between bases 2, 8, 16.

Binary-Octal/Hexadecimal Conversion

- Binary \rightarrow Octal: Partition in groups of 3 (10 111 011 001 . 101 110)₂ = (2731.56)₈
- Octal \rightarrow Binary: reverse (2731.56)₈ = (10 111 011 001 . 101 110)₂
- Binary \rightarrow Hexadecimal: Partition in groups of 4 (101 1101 1001 . 1011 1000)₂ = (5D9.B8)₁₆
- Hexadecimal \rightarrow Binary: reverse (5D9.B8)₁₆ = (101 1101 1001 . 1011 1000)₂

Binary Arithmetic Operations (1/6)

ADDITION

Like decimal numbers, two numbers can be added by adding each pair of digits together with carry propagation.

$$(11011)_{2}$$
 $(647)_{10}$ $+ (10011)_{2}$ $+ (537)_{10}$ $- (1184)_{10}$

Binary Arithmetic Operations (2/6)

Digit addition table:

BINARY	DECIMAL	
0 + 0 + 0 = 0 0	0 + 0 + 0 = 0 0	
0 + 1 + 0 = 0 1	0 + 1 + 0 = 0 1	
1 + 0 + 0 = 01	0 + 2 + 0 = 02	
1 + 1 + 0 = 10		
0 + 0 + 1 = 0 1	1 + 8 + 0 = 09	
0 + 1 + 1 = 10	1 + 9 + 0 = 10	
1 + 0 + 1 = 10		
1 + 1 + 1 = 1 1	9 + 9 + 1 = 1 9	
Carry in Carry out		

Binary Arithmetic Operations (3/6)

SUBTRACTION

 Two numbers can be subtracted by subtracting each pair of digits together with borrowing, where needed.

Binary Arithmetic Operations (4/6)

Digit subtraction table:

BINARY	DECIMAL	
0 - 0 - 0 = 0 0	0 - 0 - 0 = 0 0	
0 - 1 - 0 = 1 1	0 - 1 - 0 = 19	
1 - 0 - 0 = 0 1	0 - 2 - 0 = 18	
1 - 1 - 0 = 0 0		
0 - 0 - 1 = 1 1	0 - 9 - 1 = 10	
0 - 1 - 1 = 10	1 - 0 - 1 = 0 0	
1 - 0 - 1 = 0 0		
1 - 1 - 1 = 1 1	9 - 9 - 1 = 1 9	
<u> </u>		
Borrow		

Binary Arithmetic Operations (5/6)

- MULTIPLICATION
- To multiply two numbers, take each digit of the multiplier and multiply it with the multiplicand. This produces a number of partial products which are then added.

Binary Arithmetic Operations (6/6)

Digit multiplication table:

BINARY	DECIMAL
0 X 0 = 0	0 X 0= 0
0 X 1= 0	0 X 1= 0
1 X 0 = 0	
1 X 1= 1	1 X 8 = 8
	1 X 9= 9
	9 X 8 = 72
	9 X 9 = 81

Negative Numbers Representation

- Unsigned numbers: only non-negative values.
- Signed numbers: include all values (positive and negative).
- Till now, we have only considered how unsigned (non-negative) numbers can be represented. There are three common ways of representing signed numbers (positive and negative numbers) for binary numbers:
 - Sign-and-Magnitude
 - 1s Complement
 - 2s Complement

Negative Numbers: Sign-and-Magnitude (1/4)

- Negative numbers are usually written by writing a minus sign in front.
 - * Example:

```
-(12)_{10}, -(1100)_2
```

In sign-and-magnitude representation, this sign is usually represented by a bit:

```
0 for +
```

1 for -

Negative Numbers: Sign-and-Magnitude (2/4)

Example: an 8-bit number can have 1-bit sign and 7-bit magnitude.

Negative Numbers: Sign-and-Magnitude (3/4)

- Largest Positive Number: 0 1111111 +(127)₁₀
 Largest Negative Number: 1 1111111 -(127)₁₀
 Zeroes: 0 0000000 +(0)₁₀
 1 0000000 -(0)₁₀
- Range: -(127)₁₀ to +(127)₁₀
- Question: For an n-bit sign-and-magnitude representation, what is the range of values that can be represented?

Negative Numbers: Sign-and-Magnitude (4/4)

- To negate a number, just invert the sign bit.
- Examples:
- $-(0.0100001)_{sm} = (1.0100001)_{sm}$
- $-(10000101)_{sm} = (00000101)_{sm}$

1s and 2s Complement

- Two other ways of representing signed numbers for binary numbers are:
 - 1s-complement
 - 2s-complement
- They are preferred over the simple sign-andmagnitude representation.

1s Complement (1/3)

 Given a number x which can be expressed as an n-bit binary number, its negative value can be obtained in 1s-complement representation using:

$$-x = 2^n - x - 1$$

Example: With an 8-bit number 00001100, its negative value, expressed in 1s complement, is obtained as follows:

$$-(00001100)_{2} = - (12)_{10}$$

$$= (28 - 12 - 1)_{10}$$

$$= (243)_{10}$$

$$= (11110011)_{1s}$$

1s Complement (2/3)

Essential technique: invert all the bits.

Examples: 1s complement of $(00000001)_{1s} = (111111110)_{1s}$

1s complement of $(011111111)_{1s} = (10000000)_{1s}$

■ Largest Positive Number: 0 1111111 +(127)₁₀

■ Largest Negative Number: 1 0000000 -(127)₁₀

Zeroes:
0 0000000
1 1111111

- **Range:** $-(127)_{10}$ to $+(127)_{10}$
- The most significant bit still represents the sign:

$$0 = +ve; 1 = -ve.$$

1s Complement (3/3)

Examples (assuming 8-bit binary numbers):

$$(14)_{10} = (00001110)_2 = (00001110)_{1s}$$
 $-(14)_{10} = -(00001110)_2 = (11110001)_{1s}$
 $-(80)_{10} = -(?)_2 = (?)_{1s}$

2s Complement (1/4)

 Given a number x which can be expressed as an n-bit binary number, its negative number can be obtained in 2s-complement representation using:

$$-X=2^n-X$$

Example: With an 8-bit number 00001100, its negative value in 2s complement is thus:

$$-(00001100)_{2} = -(12)_{10}$$

$$= (2^{8} - 12)_{10}$$

$$= (244)_{10}$$

$$= (11110100)_{2s}$$

2s Complement (2/4)

Essential technique: invert all the bits and add 1.

Examples:

```
2s complement of  (00000001)_{2s} = (111111110)_{1s}  (invert)  = (111111111)_{2s}  (add 1)  2s  complement of  (01111110)_{2s} = (10000001)_{1s}  (invert)  = (10000010)_{2s}  (add 1)
```

2s Complement (3/4)

- Largest Positive Number: 0 1111111 +(127)₁₀
- Largest Negative Number: 1 0000000 -(128)₁₀
- Zero:
 0 0000000
- **Range:** $-(128)_{10}$ to $+(127)_{10}$
- The most significant bit still represents the sign:

$$0 = +ve; 1 = -ve.$$

2s Complement (4/4)

Examples (assuming 8-bit binary numbers):

$$(14)_{10} = (00001110)_2 = (00001110)_{2s}$$
 $-(14)_{10} = -(00001110)_2 = (11110010)_{2s}$
 $-(80)_{10} = -(?)_2 = (?)_{2s}$

Comparisons of Sign-and-Magnitude and Complements (1/2)

Example: 4-bit signed number (positive values)

Value	Sign-and-	1 s	2s
	Magnitude	Comp.	Comp.
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000

Important slide!
Mark this!

Comparisons of Sign-and-Magnitude and Complements (2/2)

Example: 4-bit signed number (negative values)

Value	Sign-and-	1s	2s
	Magnitude	Comp.	Comp.
-0	1000	1111	-
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
-7	1111	1000	1001
-8	-	-	1000

Important slide!
Mark this!

2s Complement Addition/Subtraction (1/3)

- Algorithm for addition, A + B:
- 1. Perform binary addition on the two numbers.
- 2. Ignore the carry out of the MSB (most significant bit).
- 3. Check for overflow: Overflow occurs if the 'carry in' and 'carry out' of the MSB are different, or if result is opposite sign of A and B.
- Algorithm for subtraction, A B:

$$A - B = A + (-B)$$

- 1. Take 2s complement of B by inverting all the bits and adding 1.
- 2. Add the 2s complement of B to A.

2s Complement Addition/Subtraction (2/3)

Examples: 4-bit binary system

+3	0011
+ +4	+ 0100
+7	0111
+6	0110
+ -3	+ 1101
+3	10011

-2	1110
+ -6	+ 1010
-8	1 1000
+4	0100
+4 + -7	0100 + 1001
+ -7	+ 1001

Which of the above is/are overflow(s)?

2s Complement Addition/Subtraction (3/3)

More examples: 4-bit binary system

+5	0101
+ +6	+ 0110
+11	1011

Which of the above is/are overflow(s)?

1s Complement Addition/Subtraction (1/2)

- Algorithm for addition, A + B:
- 1. Perform binary addition on the two numbers.
- 2. If there is a carry out of the MSB, add 1 to the result.
- 3. Check for overflow: Overflow occurs if result is opposite sign of A and B.
- Algorithm for subtraction, A B:

$$A - B = A + (-B)$$

- 1. Take 1s complement of B by inverting all the bits.
- 2. Add the 1s complement of B to A.

1s Complement Addition/Subtraction (2/2)

Examples: 4-bit binary system

+3	0011
+ +4	+ 0100
+7	0111

+5	0101
+ -5	+ 1010
- 0	1111

```
-2 1101
+-5 + 1010
---- -7 10111
---- + 1
----- 1000
```


Overflow (1/2)

- Signed binary numbers are of a fixed range.
- If the result of addition/subtraction goes beyond this range, overflow occurs.
- Two conditions under which overflow can occur are:
 - (i) positive add positive gives negative
 - (ii) negative add negative gives positive

Overflow and Carry Conditions

- Carry flag: set when the result of an addition or subtraction exceeds fixed number of bits allocated
- *Overflow*: result of addition or subtraction overflows into the sign bit

Overflow/Carry Examples

- Example 1:
 - Correct result
 - No overflow, no carry
- Example 2:
 - Incorrect result
 - Overflow, no carry

$$0100 = (+4)$$

$$0010 = +(+2)$$

$$0110 = (+6)$$

$$0100 = (+4)$$

$$0110 = +(+6)$$

1010 = (-6)

Overflow/Carry Examples

- Example 3:
 - Result correct ignoring the carry
 - Carry but no overflow
- Example 4:
 - Incorrect result
 - Overflow, carry ignored

$$\begin{array}{r}
 1100 & = & (-4) \\
 1110 & = & +(-2) \\
 \hline
 11010 & = & (-6) \\
 \hline
 1100 & = & (-4) \\
 1010 & = & +(-6) \\
 \hline
 10110 & = & (+3) \\
 \end{array}$$

Overflow (2/2)

- Examples: 4-bit numbers (in 2s complement)
- **Range**: $(1000)_{2s}$ to $(0111)_{2s}$ or $(-8_{10}$ to $7_{10})$
 - (i) $(0101)_{2s} + (0110)_{2s} = (1011)_{2s}$ (5)₁₀ + (6)₁₀ = -(5)₁₀ ?! (overflow!)
 - (ii) $(1001)_{2s} + (1101)_{2s} = (\underline{1}0110)_{2s}$ discard end-carry = $(0110)_{2s}$ $(-7)_{10} + (-3)_{10} = (6)_{10}$?! (overflow!)

Fixed Point Numbers (1/2)

- The signed and unsigned numbers representation given are fixed point numbers.
- The binary point is assumed to be at a fixed location, say, at the end of the number:

Can represent all integers between –128 to 127 (for 8 bits).

Fixed Point Numbers (2/2)

In general, other locations for binary points possible.

Examples: If two fractional bits are used, we can represent:

$$(001010.11)_{2s} = (10.75)_{10}$$

 $(111110.11)_{2s} = -(000001.01)_2$
 $= -(1.25)_{10}$

Floating Point Numbers (1/5)

- Fixed point numbers have limited range.
- To represent very large or very small numbers, we use floating point numbers (cf. scientific numbers). Examples:

```
0.23 x 10<sup>23</sup> (very large positive number)
```

0.5 x 10-32 (very small positive number)

-0.1239 x 10⁻¹⁸ (very small negative number)

Floating Point Numbers (2/5)

- Floating point numbers have three parts: sign, mantissa, and exponent
- The base (radix) is assumed (usually base 2).
- The sign is a single bit (0 for positive number, 1 for negative).

Floating Point Numbers (3/5)

- Mantissa is usually in normalised form:
 (base 10) 23 x 10²¹ normalised to 0.23 x 10²³
 (base 10) -0.0017 x 10²¹ normalised to -0.17 x 10¹⁹
 (base 2) 0.01101 x 2³ normalised to 0.1101 x 2²
- Normalised form: The fraction portion cannot begin with zero.
- More bits in exponent gives larger range.
- More bits for mantissa gives better precision.

Floating Point Numbers (4/5)

- Exponent is usually expressed in complement or excess form (excess form to be discussed later).
- Example: Express $-(6.5)_{10}$ in base-2 normalised form $-(6.5)_{10} = -(110.1)_2 = -0.1101 \times 2^3$
- Assuming that the floating-point representation contains 1-bit sign, 5-bit normalised mantissa, and 4-bit exponent.
- The above example will be represented as

1	11010	0011
---	-------	------

Floating Point Numbers (5/5)

Example: Express (0.1875)₁₀ in base-2 normalised form

$$(0.1875)_{10} = (0.0011)_2 = 0.11 \times 2^{-2}$$

- Assuming that the floating-pt rep. contains 1-bit sign, 5-bit normalised mantissa, and 4-bit exponent.
- The above example will be represented as

0	11000	1101	If exponent is in 1's complement
0	11000	1110	If exponent is in 2's complement
0	11000	0110	If exponent is in excess-8.

Excess Representation (1/2)

- The excess representation allows the range of values to be distributed <u>evenly</u> among the positive and negative value, by a simple translation (addition/subtraction).
- Example: For a 3-bit representation, we may use excess-4.

	1
Excess-4 Representation	Value
000	-4
001	-3
010	-2
011	-1
100	0
101	1
110	2
111	3

Excess Representation (2/2)

Example: For a 4-bit representation, we may use excess-8.

Excess-8 Representation	Value
0000	-8
0001	-7
0010	-6
0011	-5
0100	-4
0101	-3
0110	-2
0111	-1

Excess-8 Representation	Value
1000	0
1001	1
1010	2
1011	3
1100	4
1101	5
1110	6
1111	7

Arithmetics with Floating Point Numbers (1/2)

- Arithmetic is more difficult for floating point numbers.
- MULTIPLICATION

```
Steps: (i) multiply the mantissa
(ii) add-up the exponents
(iii) normalise
```

Example:

```
(0.12 \times 10^{2})_{10} \times (0.2 \times 10^{30})_{10}
= (0.12 \times 0.2)_{10} \times 10^{2+30}
= (0.024)_{10} \times 10^{32} (normalise)
= (0.24 \times 10^{31})_{10}
```

Arithmetics with Floating PointNumbers (2/2)

ADDITION

```
Steps: (i) equalise the exponents
(ii) add-up the mantissa
(iii) normalise
```

Example:

```
(0.12 \times 10^3)_{10} + (0.2 \times 10^2)_{10}
= (0.12 \times 10^3)_{10} + (0.02 \times 10^3)_{10} (equalise exponents)
= (0.12 + 0.02)_{10} \times 10^3 (add mantissa)
= (0.14 \times 10^3)_{10}
```

Can you figure out how to do perform SUBTRACTION and DIVISION for (binary/decimal) floating-point numbers?

Number Systems & Codes

Part II: Codes

- Binary Coded Decimal (BCD)
- Gray Code
 - Binary-to-Gray Conversion
 - Gray-to-Binary Conversion
- Other Decimal Codes
- Self-Complementing Codes
- Alphanumeric Codes
- Error Detection Codes

Binary Coded Decimal (BCD) (1/3)

- Decimal numbers are more natural to humans. Binary numbers are natural to computers. Quite expensive to convert between the two.
- If little calculation is involved, we can use some coding schemes for decimal numbers.
- Represent each decimal digit as a 4-bit binary code.

Binary Coded Decimal (BCD) (2/3)

0100
0100
9
1001

- Some codes are unused, eg: $(1010)_{BCD}$, $(1011)_{BCD}$, ..., $(1111)_{BCD}$. These codes are considered as errors.
- Easy to convert, but arithmetic operations are more complicated.
- Suitable for interfaces such as keypad inputs and digital readouts.

Binary Coded Decimal (BCD) (3/3)

Decimal digit	10	1	12	3	4
BCD	0000	0001	0010	0011	0100
Decimal digit	5	6	7	8	9
BCD	0101	0110	0111	1000	1001

Examples:

$$(234)_{10} = (0010\ 0011\ 0100)_{BCD}$$

 $(7093)_{10} = (0111\ 0000\ 1001\ 0011)_{BCD}$
 $(1000\ 0110)_{BCD} = (86)_{10}$
 $(1001\ 0100\ 0111\ 0010)_{BCD} = (9472)_{10}$

Notes: BCD is not equivalent to binary.

Example: $(234)_{10} = (11101010)_2$

The Gray Code (1/3)

- Unweighted (not an arithmetic code).
- Only a single bit change from one code number to the next.
- Good for error detection.

Decimal	Binary	Gray Code	Decimal	Binary	Gray code
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000

- Q. How to generate 5-bit standard Gray code?
- Q. How to generate *n*-bit standard Gray code?

The Gray Code (2/3)

0000	Q 100
0001	0101
00 0 1	0111
$\Theta \Theta \Phi \Theta$	0110
0010	0010
0010	0011
0 0 11	
0 0 01	0001
$\Theta 0 \Theta \Theta$	Q 000

Generating <u>4-bit standard</u> Gray code.

Binary-to-Gray Code Conversion

- Retain most significant bit.
- From left to right, add each adjacent pair of binary code bits to get the next Gray code bit, discarding carries.
- Example: Convert binary number 10110 to Gray code.

$$(10110)_2 = (11101)_{Gray}$$

Gray-to-Binary Conversion

- Retain most significant bit.
- From left to right, add each binary code bit generated to the Gray code bit in the next position, discarding carries.
- Example: Convert Gray code 11011 to binary.

$$(11011)_{\text{Gray}} = (10010)_2$$

Alphanumeric Codes (1/3)

- Apart from numbers, computers also handle textual data.
- Character set frequently used includes:

```
alphabets: 'A' .. 'Z', and 'a' .. 'z'
```

digits: '0' .. '9'

special symbols: '\$', '.', ',', '@', '*', ...

non-printable: SOH, NULL, BELL, ...

 Usually, these characters can be represented using 7 or 8 bits.

Alphanumeric Codes (2/3)

ASCII: 7-bit, plus a parity bit for error detection (odd/even parity).

Character	ASCII Code		
0	0110000		
1	0110001		
9	0111001		
:	0111010		
A	1000001		
В	1000010		
Z	1011010		
[1011011		
\	1011100		

Alphanumeric Codes (3/3)

ASCII table:

	MSBs							
LSBs	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	Р	`	р
0001	SOH	DC_1	!	1	Α	Q	a	q
0010	STX	DC_2	"	2	В	R	b	r
0011	ETX	DC_3	#	3	С	S	С	S
0100	EOT	DC_4	\$	4	D	Т	d	t
0101	ENQ	NAK	%	5	E	U	е	u
0110	ACK	SYN	&	6	F	V	f	V
0111	BEL	ETB	í	7	G	W	g	W
1000	BS	CAN	(8	Н	X	h	X
1001	HT	EM)	9	1	Υ	i	У
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	,	K	[k	{
1100	FF	FS	,	<	L	\	- 1	- 1
1101	CR	GS	-	=	M]	m	}
1110	0	RS		>	Ν	^	n	~
1111	SI	US	1	?	0	_	0	DEL

Error Detection Codes (1/4)

- Errors can occur data transmission. They should be detected, so that re-transmission can be requested.
- With binary numbers, usually single-bit errors occur.
 - Example: 0010 erroneously transmitted as 0011, or 0000, or 0110, or 1010.
- Biquinary code uses 3 additional bits for errordetection. For single-error detection, one additional bit is needed.

Error Detection Codes (2/4)

- Parity bit.
 - Even parity: additional bit supplied to make total number of '1's even.

Odd parity: additional bit supplied to make total number of '1's odd.

Example: Odd parity.

Character	ASCII Code	
0	0110000 1	
1	0110001 0	
		Parity bits
9	0111001 1	- Failty bits
÷	0111010 <mark>1</mark>	
A	1000001 1	
В	1000010 1	
Z	1011010 <mark>1</mark>	
[1011011 <mark>0</mark>	
\	1011100 <mark>1</mark>	

Error Detection Codes (3/4)

Parity bit can detect odd number of errors but not even number of errors.

```
Example: For odd parity numbers, 10011 \rightarrow 10001 (detected) 10011 \rightarrow 10101 (non detected)
```

Parity bits can also be applied to a block of data:

Error Detection Codes (4/4)

- Sometimes, it is not enough to do error detection. We may want to do error correction.
- Error correction is expensive. In practice, we may use only single-bit error correction.
- Popular technique: Hamming Code (not covered).

Thank You