The Quantum Virtual Machine

Andrés Paz anpaz@cs.Washington.edu

$$|\phi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle = \begin{bmatrix} \alpha_0\\ \alpha_1 \end{bmatrix}$$

$$\alpha_i \in \mathbb{C} \qquad |\alpha_0|^2 + |\alpha_1|^2 = 1$$

yes!

- IBM <u>Heron 133</u> qubit processor
- Google <u>Bristlecone 72</u> qubit processor
- IonQ Forte 32 qubit processor
- Quantinuum H2 32 qubit processor
- Rigetti Ankaa 84 qubit processor
- QuEra <u>Aquila 256</u> qubit processor

instruction set

- each device implements a different instruction set:
 - <u>ibm</u>: U1(λ), RX(π /2), CX
 - <u>ionq</u>: $GPI(\phi)$, $VirtualZ(\theta)$, $MS(\phi 0, \phi 1)$, $ZZ(\theta)$
 - quantinuum: U1(λ , ϕ), RZ(π /2), ZZ(), RZZ(θ)

connectivity

google

• quantinuum:

noise

- ibm: 99.812 (avg), 93.21 (readout)
- google: 99.9 (1q), 99.4 (2q), 99 (readout)
- ionq: 99.98 (1q), 99.3 (2q)
- quantinuum: 99.997 (1q), 99.8 (2q)

a formal definition

- A QVM is triplet (I, N, T) where:
 - *I* is the instruction set: the set of supported instructions
 - *N* is the noise model: a random variable that given an instruction, returns another instruction representing the noise based on some probability distribution
 - *T* is the topology: a graph representing connectivity among qubits

benefits

- theoretical complexity calculations
- provides definitions for compilers
- create software emulators
- model fault-tolerant devices

thanks!

anpaz@cs.washington.edu