Advanced Methods Homework 1

Bohao Tang

September 7, 2017

1 Vector spaces and inner products

1. Proof. Denote $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k\}$ be a basis of W. And we can expand them to a basis of \mathbb{R}^n as $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k, \mathbf{a}_{k+1}, \dots, \mathbf{a}_n\}$. Then we do Gram-Schmidt orthogonalization to the basis and get $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k, \mathbf{b}_{k+1}, \dots, \mathbf{b}_n\}$. It's easy to see that $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k\}$ become an othogonal basis of W (they are othogonal, hence linear independent, and k is the dimension of W). Now we assert that $V = \mathbf{span}\{\mathbf{b}_{k+1}, \dots, \mathbf{b}_n\}$ will be W^{\perp} .

First, for every vector \mathbf{x} in W^{\perp} , it has a representation $\mathbf{x} = \sum_{i=1}^{n} \omega_i \mathbf{b}_i$ for some $\omega_i \in \mathbb{R}^n$. Since $\mathbf{x} \in W^{\perp}$, we have $\langle \mathbf{x}, \mathbf{b}_j \rangle = 0$, for all $j = 1, 2, \dots, k$. Therefore $\omega_j = 0$ for $1 \leq j \leq k$, which means $\mathbf{x} \in V$ and $W^{\perp} \subset V$.

In the other side, for every vector $\mathbf{y} = \sum_{t=k+1}^{n} \gamma_t \mathbf{b}_t \in V$, it's quite direct to see that $\langle \mathbf{y}, \mathbf{b}_j \rangle = 0$, for all $j = 1, 2, \dots, k$, hence $\langle \mathbf{y}, \mathbf{w} \rangle = 0$, for all $\mathbf{w} \in W$. Therefore $\mathbf{y} \in W^{\perp}$ and $W^{\perp} \subset V$.

Now we get $W^{\perp} = V$, hence $\dim(W^{\perp}) = n - k$. Also we can see that W^{\perp} is unique. If not, we can merge the two different W^{\perp} and get a higher dimensional subspace Z that is orthogonal to W. Then $Z \oplus W \subset \mathbb{R}^n$ but $\dim(Z \oplus W) \geq n + 1 > n$, a contradiction.

- 2. (a) *Proof.* According to Cauchy inequality, $(\sum u_i v_i)^2 \leq \sum u_i^2 \sum v_i^2$. It's equivalent here that $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}|| ||\mathbf{v}||$.
 - (b) Proof.

$$||\mathbf{u} + \mathbf{v}||^2 + ||\mathbf{u} - \mathbf{v}||^2 = (\mathbf{u} + \mathbf{v})'(\mathbf{u} + \mathbf{v}) + (\mathbf{u} - \mathbf{v})'(\mathbf{u} - \mathbf{v})$$
(1)

$$= \mathbf{u}'\mathbf{u} + 2\mathbf{u}'\mathbf{v} + \mathbf{v}'\mathbf{v} + \mathbf{u}'\mathbf{u} - 2\mathbf{u}'\mathbf{v} + \mathbf{v}'\mathbf{v}$$
(2)

$$= 2\mathbf{u}'\mathbf{u} + 2\mathbf{v}'\mathbf{v} = 2||\mathbf{u}||^2 + 2||\mathbf{v}||^2$$
(3)

3. In the definition of projection in Lecture 2, $\mathbf{y} - \Pi(\mathbf{y} - \mathbf{x})$ should be orthogonal to \mathbf{x} . So there is nothing need to be proved. Maybe we should changed the definition here that (suppose $\mathbf{x} \neq \mathbf{0}$, or there is no meaningful projection)

$$\Pi(\mathbf{y} - \mathbf{x}) \triangleq \underset{\mathbf{u} \in \text{span}\{\mathbf{x}\}}{\text{argmin}} ||\mathbf{y} - \mathbf{u}||^2$$

Proof. (This proof contains the part to assert that projection above is well defined) Suppose $\mathbf{u} = b\mathbf{x}$, then $||\mathbf{y} - \mathbf{u}||^2 = \mathbf{y}'\mathbf{y} - 2b\mathbf{x}'\mathbf{y} + b^2\mathbf{x}'\mathbf{x}$. It's a quadratic function

with highest coefficient $\mathbf{x}'\mathbf{x} > 0$, therefore have a unique minimizer. Differentiate it with b, let it be zero and we get the normal equation $\mathbf{x}'\mathbf{y} = b\mathbf{x}'\mathbf{x}$, which means (since $\Pi(\mathbf{y}-\mathbf{x}) = b\mathbf{x}$): $\langle \Pi(\mathbf{y}-\mathbf{x}), x \rangle = \langle \mathbf{y}, x \rangle$ and therefore $\mathbf{y} - \Pi(\mathbf{y}-\mathbf{x}) \perp \mathbf{x}$.

2 Regression

- 1. Slope $\hat{\beta}_{yx}$ of regressing \mathbf{y} on \mathbf{x} is $\hat{\rho}_{xy} \frac{\hat{\sigma}_y}{\hat{\sigma}_x}$, where $\hat{\rho}_{xy}$ is the sample correlation coefficient and $\hat{\sigma}_y, \hat{\sigma}_x$ are the sample standard deviation of y and x. So, slope $\hat{\beta}_{xy}$ of \mathbf{x} on \mathbf{y} is $\hat{\rho}_{yx} \frac{\hat{\sigma}_x}{\hat{\sigma}_y}$. We have that $\hat{\rho}_{xy} = \hat{\rho}_{yx}$, so $\hat{\beta}_{xy}\hat{\beta}_{yx} = \hat{\rho}_{xy}^2$.
- 2. Proof. In the setting of mean only regression of \mathbf{y} , we have $\hat{\mu} = \overline{\mathbf{y}} = \sum_{i=1}^{n} y_i/n$. And the residual is $\mathbf{r} = \mathbf{y} \overline{\mathbf{y}} \mathbf{J}_n$, therefore sum of residual is $\sum r_i = \sum_{1}^{n} y_i n \cdot \sum_{1}^{n} y_i/n = 0$.
- 3. *Proof.* In the setting of mean only regression of \mathbf{y} on \mathbf{x} , we have $\hat{\beta} = \frac{\langle \mathbf{y}, \mathbf{x} \rangle}{\langle \mathbf{x}, \mathbf{x} \rangle}$. Therefore residual is $\mathbf{r} = \mathbf{y} \frac{\langle \mathbf{y}, \mathbf{x} \rangle}{\langle \mathbf{x}, \mathbf{x} \rangle} \mathbf{x}$, therefore $\langle \mathbf{r}, \mathbf{x} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle \frac{\langle \mathbf{y}, \mathbf{x} \rangle}{\langle \mathbf{x}, \mathbf{x} \rangle} \cdot \langle \mathbf{x}, \mathbf{x} \rangle = 0$, $\mathbf{r} \perp \mathbf{x}$.
- 4. Notation as above, when $\mathbf{y} \perp \mathbf{x}$, we find that the residual $\mathbf{r} = \mathbf{y}$, which of course need not sum to zero.
- 5. Proof. In this setting of regressing y on x, we get the normal equation that:

$$\mathbf{J}_{n}'\mathbf{y} = \hat{\beta}_{0}\mathbf{J}_{n}'\mathbf{J}_{n} + \hat{\beta}_{1}\mathbf{J}_{n}'\mathbf{x} \tag{4}$$

$$\mathbf{x}'\mathbf{y} = \hat{\beta}_0 \mathbf{x}' \mathbf{J}_n + \hat{\beta}_1 \mathbf{x}' \mathbf{x} \tag{5}$$

and also the residual $\mathbf{r} = \mathbf{y} - \hat{\beta}_0 \mathbf{J}_n - \hat{\beta}_1 \mathbf{x}$. Then:

$$\langle \mathbf{r}, \mathbf{J}_n \rangle = \mathbf{J}_n' \mathbf{y} - \hat{\beta}_0 \mathbf{J}_n' \mathbf{J}_n + \hat{\beta}_1 \mathbf{J}_n' \mathbf{x} = 0$$

and

$$\langle \mathbf{r}, \mathbf{x} \rangle = \mathbf{x}' \mathbf{y} - \hat{\beta}_0 \mathbf{x}' \mathbf{J}_n + \hat{\beta}_1 \mathbf{x}' \mathbf{x} = 0$$

So we get the residual $\mathbf{r} \perp \mathbf{J}_n$ and $\mathbf{r} \perp \mathbf{x}$.

3 Least squares

- 1. Proof. Given $\mathbf{H}^2 = \mathbf{H}$, then $(\mathbf{I} \mathbf{H})^2 = \mathbf{I}^2 2\mathbf{H} + \mathbf{H}^2 = \mathbf{I} 2\mathbf{H} + \mathbf{H} = \mathbf{I} \mathbf{H}$.
- 2. After calculating, I think the method mentioned to estimate β_2 in this question is:
 - First, regressing \mathbf{y} on \mathbf{x}_1 through origin and get the residual \mathbf{r}_1 .
 - Second, regressing \mathbf{x}_2 on \mathbf{x}_1 through origin and get the residual \mathbf{r}_2 .
 - Finally, regressing \mathbf{r}_1 on \mathbf{r}_2 through origin and get the estimation $\hat{\beta}_2$.

Proof. To minimize $||\mathbf{y} - \beta_1 \mathbf{x}_1 - \beta_2 \mathbf{x}_2||^2$, we can first suppose β_2 be a constant and minimize through β_1 (it will be a function of β_2), and then minimize through β_2 to get the estimation. So the goal is firstly to find the $\operatorname{argmin}_{\beta_1} ||(\mathbf{y} - \beta_2 \mathbf{x}_2) - \beta_1 \mathbf{x}_1||^2$. This is simply a regression through origin and we can get that $\beta_1^{min} = \frac{\langle \mathbf{y} - \beta_2 \mathbf{x}_2, \mathbf{x}_1 \rangle}{\langle \mathbf{x}_1, \mathbf{x}_2 \rangle}$.

Therefore, the second step is to find the argmin of:

$$||\mathbf{y} - \beta_2 \mathbf{x}_2 - \frac{\langle \mathbf{y} - \beta_2 \mathbf{x}_2, \mathbf{x}_1 \rangle}{\langle \mathbf{x}_1, \mathbf{x}_2 \rangle} \mathbf{x}_1||^2 = ||(\mathbf{y} - \frac{\langle \mathbf{y}, \mathbf{x}_1 \rangle}{\langle \mathbf{x}_1, \mathbf{x}_1 \rangle} \mathbf{x}_1) - \beta_2 (\mathbf{x}_2 - \frac{\langle \mathbf{x}_2, \mathbf{x}_1 \rangle}{\langle \mathbf{x}_1, \mathbf{x}_1 \rangle} \mathbf{x}_1)||^2$$

Also, we can find that:

$$\mathbf{r}_1 = \mathbf{y} - \frac{\langle \mathbf{y}, \mathbf{x}_1 \rangle}{\langle \mathbf{x}_1, \mathbf{x}_1 \rangle} \mathbf{x}_1 \tag{6}$$

$$\mathbf{r}_2 = \mathbf{x}_2 - \frac{\langle \mathbf{x}_2, \mathbf{x}_1 \rangle}{\langle \mathbf{x}_1, \mathbf{x}_1 \rangle} \mathbf{x}_1 \tag{7}$$

Therefore, $\hat{\beta}_2$ comes from minimizing $||\mathbf{r}_1 - \beta_2 \mathbf{r}_2||^2$, which is just doing regression through origin of \mathbf{r}_1 on \mathbf{r}_2 . Then we finish the proof that the procedure described in the question is valid.

3. Proof. Suppose that **X** is of size $m \times n$, where $m \leq n$ (or we replace **X** by **X**', and we just need to prove the same thing). Then consider the singular value decomposition of **X** is **X** = **USV**, where **U**, **V** are orthogonal matrices and **S** = $(diag\{\lambda_1, \lambda_2, \dots, \lambda_r, 0, \dots, 0\}, \mathbf{0}): \lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \dots \geq \lambda_r > 0$. Here $r = rank(\mathbf{X})$. Now consider the svd of $\mathbf{X}', \mathbf{X}'\mathbf{X}, \mathbf{X}\mathbf{X}'$, we have:

$$\mathbf{X}' = \mathbf{V}'\mathbf{S}'\mathbf{U}' \tag{8}$$

$$\mathbf{X}'\mathbf{X} = \mathbf{V}' \begin{pmatrix} diag\{\lambda_1^2, \lambda_2^2, \cdots, \lambda_r^2, 0, \cdots, 0\} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \mathbf{V}$$
(9)

$$\mathbf{XX'} = \mathbf{U} \operatorname{diag}\{\lambda_1^2, \lambda_2^2, \cdots, \lambda_r^2, 0, \cdots, 0\} \mathbf{U'}$$
(10)

Therefore we can see that the three matrices above all have and only have r nonzero singular values, which means they are all of rank r. Then we get $rank(\mathbf{X}') = rank(\mathbf{X}') = rank(\mathbf{X}\mathbf{X}')$.

4. If the design matrix is orthogonal, then we have:

$$\mathbf{J} = ||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||^2 = \mathbf{y}'\mathbf{y} - 2\mathbf{y}'\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\beta}'\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \mathbf{y}'\mathbf{y} - 2\mathbf{y}'\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\beta}'\boldsymbol{\beta}$$

And then we get the normal equation as:

$$\frac{\partial \mathbf{J}}{\partial \boldsymbol{\beta}} = 2\boldsymbol{\beta} - 2\mathbf{X}'\mathbf{y} = 0$$

So we have $\hat{\beta} = \mathbf{X}'\mathbf{y}$.

4 Computing and analysis

Code is shown below and we simulate the data ourselves and test the L_1 norm of the differences of $\hat{\beta}$, fitted_value and residuals from two results.

2.

```
test.X = cbind(sample(1:100), sample(1:100), sample(1:100))
beta = c(5,-1,4,2)
test.y = cbind(1,test.X) %*% beta + rnorm(100)
model = lm(test.y~test.X)
mymodel = mylm(test.y,test.X)
c(sum(abs(model$coefficients - mymodel$beta)),
    sum(abs(model$fitted.values - mymodel$fitted)),
    sum(abs(model$residuals - mymodel$residuals))
)
```

```
## [1] 1.096900e-13 2.499334e-11 2.488536e-11
```