SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

IV B. Tech I Semester (SVEC-20) Regular Examinations 3D VISUALIZATION TECHNIQUES

Time: 3 hours Max. Marks: 70

		UNIT-I				
1.	a)	Explain the core principles of 3D animation and how they differ from traditional 2D animation.	7 Marks	L2	CO1	PO1
	b)	Discuss the evolution of the 3D animation industry from its inception to its current state. How has the industry diversified	7 Marks	L4	CO1	PO2
		into entertainment, advertising, and scientific visualization?				
	1	(OR)		1	1	
2.	a)	Compare and contrast the use of 3D animation in entertainment and scientific visualization.	7 Marks	L1	CO1	PO1
	b)	Analyze the impact of technological advancements on the evolution of 3D animation techniques and workflows.	7 Marks	L4	CO1	PO2
		UNIT-II				
3.	a)	Explain the role of topology in polygonal modeling and discuss how edge loops contribute to a well-constructed 3D model.	7 Marks	L3	CO2	PO2
	b)	Compare and contrast different polygon modeling techniques, such as box modeling and edge extrusion. What are the advantages and disadvantages of each approach?	7 Marks	L4	CO2	PO2
		(OR)				
4.	a)	Explain the process of digital image formation, discussing how image sensors capture light and convert it into digital signals.	7 Marks	L4	CO2	PO2
	b)	How does pixel density (measured in PPI or DPI) affect the quality and clarity of digital images? Discuss its significance in both print and display media.	7 Marks	L2	CO2	PO2
	1	UNIT-III)			I.	
5.	a)	Compare and contrast raster and vector graphics, providing examples where each is more suitable. Discuss their advantages and limitations.	7 Marks	L4	CO3	PO5
	b)	What is anti-aliasing in digital images, and why is it important? Explain the different methods used to achieve anti-aliasing and their impact on image quality.	7 Marks	L4	CO3	PO2
		(OR)				
6.	a)	Compare the following graphic file formats: JPEG, PNG, GIF, and TIFF. Discuss the scenarios where each format is most effective and the trade-offs involved in their use.	7 Marks	L2	CO3	PO1
	b)	What are image channels in digital graphics? Explain the roles of different types of channels (RGB, CMYK, Alpha) and how they contribute to image manipulation.	7 Marks	L2	CO3	PO1
		UNIT-IV				
7.	a)	Describe the basic workflow for lighting a scene in a VFX pipeline. How does the choice of light types and attributes influence rendering times and final quality?	7 Marks	L4	CO4	PO1

	b)	Compare and contrast ray tracing and rasterization as rendering	7 Marks	L2	CO4	PO4
		methods for VFX. Discuss the advantages and limitations of				
		each method.				
		(OR)				
8.	a)	Explain how global illumination (GI) improves the realism of	7 Marks	L2	CO4	PO1
		rendered scenes. What techniques are used to calculate GI, and				
		how do they impact performance?				
	b)	Discuss the basic rendering workflow in VFX, focusing on the	7 Marks	L1	CO4	PO2
		role of shaders, materials, and lighting in producing the final				
		rendered image. How do advanced shader functions contribute				
		to realistic rendering?				
		UNIT-V				
9.	a)	Explain the critical factors to consider when selecting a	7 Marks	L2	CO5	PO1
		computer for 3D visualization and animation work. How do				
		hardware specifications affect performance in 3D applications?				
	b)	Discuss the importance of color accuracy, resolution, and	7 Marks	L4	CO5	PO2
		refresh rates when choosing monitors for 3D visualization.				
		How do these factors impact the quality of work?				
		(OR)				
10.	a)	Evaluate the advantages of using graphics tablets over	7 Marks	L2	CO5	PO3
		traditional input devices for creating detailed 3D models. How				
		do pressure sensitivity and stylus features enhance workflow?				
	b)	Describe the process of using 3D scanners for capturing real-	7 Marks	L4	CO5	PO2
		world objects. What are the key considerations in terms of				
		accuracy, resolution, and compatibility with 3D software?				

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

IV B. Tech I Semester (SVEC-20) Regular Examinations 3D VISUALIZATION TECHNIQUES

Time: 3 hours Max. Marks: 70

		UNIT-I				
	1 .			1	I	
1.	a)	Describe the essential skills and tools required for 3D	7 Marks	L2	CO1	PO1
		animation production. How do advanced techniques such as				
		motion capture and physics simulations enhance the realism of				
	b)	animations?	7 Marks	1.2	CO1	PO1
	b)	What is the significance of layout design in 3D animation? How does a well-constructed layout contribute to the	/ Marks	L2	COI	POI
		storytelling and overall visual impact of an animation?				
		(OR)				
2.	a)	Explain the role of pre-production, production, and post-	7 Marks	L3	CO1	PO2
2.	(a)	production phases in 3D animation production. Why is	/ Warks		COI	102
		collaboration between departments essential for successful				
		project delivery?				
	b)	Discuss the current trends and future prospects of the 3D	7 Marks	L2	CO1	PO1
		animation industry, focusing on job opportunities and				
		technological innovations.				
		UNIT-II				
3.	a)	Describe the basic principles of NURBS (Non-Uniform	7 Marks	L2	CO2	PO1
		Rational B-Splines) modeling. How does NURBS differ from				
		polygonal modeling in terms of surface creation and control?				
	b)	Discuss how polygonal modeling can affect the overall	7 Marks	L2	CO2	PO1
		performance of a real-time rendering engine. What				
		optimization techniques can be applied to reduce polygon count				
		while maintaining model detail?				
		(OR)			T	
4.	a)	Discuss the advantages and disadvantages of using subdivision	7 Marks	L2	CO2	PO1
		surfaces compared to NURBS in the context of creating organic				
		models.				
	b)	Explain how subdivision surfaces work, and describe how	7 Marks	L2	CO2	PO1
		applying different subdivision levels can affect the appearance				
		of a model.				
		(UNIT-III)		1	T	T
5.	a)	Describe the concept of color depth (or bit depth) in digital	7 Marks	L4	CO3	PO2
		images. How does increasing the bit depth affect the range and				
		accuracy of colors in an image?			~ -	7.0
	b)	Discuss the process and importance of color calibration in	7 Marks	L4	CO3	PO2
		digital imaging. How does improper calibration affect digital				
		artwork, photography, and video?				
6	(2)	(OR)	7 Marks	1.4	CO2	DO2
6.	a)	Outline the fundamental steps involved in capturing and processing digital video. How do digital and analog video	/ IVIATKS	L4	CO3	PO2
		processing digital video. How do digital and analog video				

		capture methods differ?				
	b)	±	7 Marks	L3	CO3	PO2
	(D)	Explain the significance of resolution in both digital images and	/ Marks	L3	COS	PO2
		video. How does changing the resolution impact image and				
		video quality, and what are the trade-offs?				
		(UNIT-IV)			ı	
7.	a)	Explain how attributes such as intensity, color, and falloff are	7 Marks	L2	CO4	PO1
		controlled in lighting to create realistic or stylized effects.				
		Provide examples of their use in visual effects.				
	b)	Discuss how volumetric lighting is used to enhance visual	7 Marks	L2	CO4	PO5
İ		effects scenes. What are the key attributes that need to be				
		adjusted to achieve realistic light scattering and rays?				
		(OR)				
8.	a)	Explain the three-point lighting technique and its importance in	7 Marks	L2	CO4	PO4
		creating visually appealing and clear renderings. How is it used				
		in both character and environment lighting?				
	b)	Discuss the challenges and techniques involved in lighting a	7 Marks	L2	CO4	PO2
		complex VFX scene with both practical (live-action) and CG				
		elements.				
		UNIT-V				
9.	a)	Explain the role of a render farm in 3D animation production.	7 Marks	L2	CO5	PO3
		What are the hardware and network requirements for setting up				
		an efficient render farm?				
	b)	Analyze different data storage options (e.g., SSDs, HDDs,	7 Marks	L2	CO5	PO3
		cloud storage) for large 3D animation projects. How does				
		storage speed and capacity affect workflow efficiency?				
	•	(OR)				
10.	a)	Compare and contrast different 3D animation software	7 Marks	L4	CO5	PO3
		packages (e.g., Blender, Maya, 3ds Max). What factors should				
		be considered when choosing software for specific project				
		requirements?				
	b)	Discuss the key features of comprehensive 3D animation	7 Marks	L1	CO5	PO3
		packages and their importance in handling all stages of the				
		animation process, from modeling to rendering.				

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

IV B. Tech I Semester (SVEC-20) Regular Examinations 3D VISUALIZATION TECHNIQUES

Time: 3 hours Max. Marks: 70

		UNIT-I				
1.	a)	Explain the role of lighting and rendering in achieving photorealism in 3D animation. What are the challenges faced in rendering complex scenes, and how can they be addressed?	7 Marks	L4	CO1	PO1
	b)	Describe the interrelationship between modeling, texturing, and rigging in 3D animation. How do these stages collectively contribute to the creation of believable animated characters or objects?	7 Marks	L2	CO1	PO1
		(OR)	T	•		
2.	a)	Discuss the importance of compositing in 3D animation post- production. How does integrating 2D visual effects or motion graphics into a 3D scene enhance the final output?	7 Marks	L2	CO1	PO1
	b)	What role does color correction play in the post-production process of 3D animation? How does it influence the mood, tone, and consistency of the final output?	7 Marks	L4	CO1	PO2
		UNIT-II				
3.	a)	Explain the process of retopology and its importance in creating efficient models for animation or real-time rendering. How does it fit into a typical modeling workflow?	7 Marks	L4	CO2	PO2
	b)	Evaluate the use of procedural modeling workflows in environments like cityscapes or natural landscapes. What are the key benefits and challenges?	7 Marks	L2	CO2	PO1
	•	(OR)		•		
4.	a)	Outline the typical workflow of creating a complex character model, from concept to final model, including all essential steps such as blocking, refinement, and detailing.	7 Marks	L3	CO2	PO2
	b)	Compare and contrast the different types of UV mapping techniques, such as planar, cylindrical, and automatic mapping. When would you use each technique?	7 Marks	L1	CO2	PO1
		UNIT-III				
5.	a)	Differentiate between device aspect ratio and pixel aspect ratio. Explain how incorrect pixel aspect ratios can distort images and videos during playback.	7 Marks	L3	CO3	PO5
	b)	What are safe areas in digital video production? Discuss their significance in ensuring proper display of content on various screens.	7 Marks	L2	CO3	PO1
	1.	(OR)		I	963	D.C. (
6.	a)	Explain the differences between interlaced and progressive scanning methods. Which method is more effective for modern digital displays, and why?	7 Marks	L4	CO3	PO4

	b)	Compare lossy and lossless compression methods in digital	7 Marks	L2	CO3	PO1
		imaging and video. How do these compression techniques affect				
		file size and image quality?				
		UNIT-IV				
7.	a)	Detail the basic workflow of a VFX production pipeline, from	7 Marks	L4	CO4	PO2
		concept to final rendering. Highlight the roles of different				
		departments and their contributions to the final shot.				
ļ	b)	Explain the importance of pre-visualization (previs) in the VFX	7 Marks	L2	CO4	PO1
		workflow. How does it influence the planning and execution of				
		visual effects?				
	_	(OR)				
8.	a)	Discuss the challenges faced when integrating live-action footage	7 Marks	L2	CO4	PO1
		with CG elements in a VFX workflow. What techniques are used				
		to ensure seamless integration?				
	b)	Compare and contrast different light types (e.g., point, spot,	7 Marks	L2	CO4	PO1
		directional, area) in the context of visual effects lighting. How				
		does each type contribute to the final look of a scene?				
		UNIT-V				
9.	a)	Explain how CAD software integrates with 3D animation	7 Marks	L3	CO5	PO2
		techniques. What are the benefits and limitations of using CAD				
		tools in 3D visualization workflows?				
	b)	Define the process of compositing in 3D animation. How does	7 Marks	L4	CO5	PO2
		combining multiple layers and elements enhance the final visual				
		output?				
		(OR)	T	•		T
10.	a)	Describe the role of digital imaging in enhancing textures,	7 Marks	L2	CO5	PO3
		lighting, and post-production effects in 3D visualization. What				
		tools are essential for high-quality image manipulation?				
	b)	Explore the various specialty areas within 3D visualization (e.g.,	7 Marks	L2	CO5	PO1
		character modeling, environmental design). What skills and tools				
		are required to excel in each specialty?				

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

IV B. Tech I Semester (SVEC-20) Regular Examinations 3D VISUALIZATION TECHNIQUES

Time: 3 hours Max. Marks: 70

		UNIT-I				
1.	a)	Compare the role of 3D animation in entertainment and scientific fields, providing examples of its application in both industries.	7 Marks	L3	CO1	PO2
	b)	Explain the fundamental concepts of 3D animation and	7 Marks	L2	CO1	PO1
		differentiate it from 2D animation with relevant examples.				
		(OR)	.	1	T	
2.	a)	Discuss the current trends and future prospects of the 3D animation industry, focusing on job opportunities and technological innovations.	7 Marks	L1	CO1	PO1
	b)	Analyze the impact of technological advancements on the	7 Marks	L4	CO1	PO2
		evolution of 3D animation techniques and workflows.				
		UNIT-II				
3.	a)	Describe the UV unwrapping process and its significance in texture mapping. How would you approach unwrapping a complex model with multiple components?	7 Marks	L4	CO2	PO2
	b)	Describe the difference between diffuse, normal, and specular texture maps. Provide examples of how each is applied in a shader to achieve realistic surface appearances.	7 Marks	L4	CO2	PO2
		(OR)				
4.	a)	Discuss how UV layout impacts the quality of texturing and shading in a 3D model. What steps can you take to ensure an efficient and clean UV layout?	7 Marks	L3	CO2	PO2
	b)	Discuss how the use of displacement maps can enhance a low-poly model's visual complexity. What are the advantages and disadvantages of using displacement maps in a workflow?	7 Marks	L2	CO2	PO1
		(UNIT-III)	1	•		
5.	a)	How does frame rate impact the perception of motion in digital video? Discuss the trade-offs between using higher and lower frame rates in different types of video production.	7 Marks	L4	CO3	PO2
	b)	Explain the concept of timecode in digital video editing. How does timecode help in the synchronization and organization of video and audio tracks?	7 Marks	L2	CO3	PO1
		(OR)		1	1	
6.	a)	Describe the process of capturing digital images using a camera sensor. How do factors like sensor size, resolution, and lens quality affect the final image?	7 Marks	L3	CO3	PO2
	b)	How does color calibration affect digital video production? Discuss the impact of poor color calibration on the final output and the steps to ensure accurate colors across devices.	7 Marks	L2	CO3	PO1

		(UNIT-IV)				
7.	a)	Discuss the role of viscosity, surface tension, and turbulence in	7 Marks	L2	CO4	PO1
		simulating fluids for visual effects. How do these attributes				
		impact the final output?				
	b)	Compare and contrast rigid body and soft body dynamics in	7 Marks	L2	CO4	PO1
		visual effects. How do these two systems simulate different				
		materials and behaviors?				
		(OR)				
8.	a)	Describe the process of simulating a destruction sequence	7 Marks	L1	CO4	PO1
		involving both rigid and soft body dynamics. How do you				
		ensure accurate interaction between these systems?				
	b)	Explain the workflow for creating a physically accurate	7 Marks	L2	CO4	PO4
		simulation of cloth using soft body dynamics. What are the key				
		attributes you need to adjust to ensure realism?				
		UNIT-V				
9.	a)	Discuss the integration of point-cloud data from laser scans into	7 Marks	L3	CO5	PO2
		3D visualization. What challenges arise during the process, and				
		how can they be overcome?				
	b)	Explain the importance of real-time rendering capabilities in	7 Marks	L3	CO5	PO5
		modern 3D software. How do these capabilities improve the				
		production workflow?				
		(OR)				
10.	a)	Compare real-time rendering with traditional rendering	7 Marks	L2	CO5	PO2
		techniques. What are the advantages and disadvantages of using				
		real-time rendering in 3D projects?				
	b)	Discuss the impact of real-time animation technologies on	7 Marks	L2	CO5	PO3
		project timelines and creative flexibility. How does real-time				
		feedback influence decision-making in animation?				

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

IV B. Tech I Semester (SVEC-20) Regular Examinations 3D VISUALIZATION TECHNIQUES

Time: 3 hours Max. Marks: 70

		All questions carry equal marks				
		(UNIT-I)				
1.	a)	How has 3D animation revolutionized the entertainment industry,	7 Marks	L2	CO1	PO1
		particularly in film and video games? Provide case studies to				
		support your answer.				
	b)	Examine the role of 3D animation in creating immersive	7 Marks	L1	CO1	PO1
		experiences in virtual reality (VR) and augmented reality (AR)				
		applications.				
	Ι,	(OR)	734 1	T 1	GO1	DO 1
2.	a)	Discuss how 3D animation is used in scientific visualization and	7 Marks	L1	CO1	PO1
		education. Provide specific examples of its applications in				
	b)	medicine or engineering.	7 Marks	L2	CO1	PO1
	b)	Analyze the role of 3D animation in simulating complex	/ Warks	L2	COI	POI
		phenomena for scientific research and exploration.				
	1 .	(UNIT-II)	T =		T	T
3.	a)	Outline a typical workflow for creating detailed textures for a	7 Marks	L4	CO2	PO2
	L.	character model, from UV unwrapping to final texture maps.				
	b)	Evaluate the role of procedural texturing in modern texturing	7 Marks	L1	CO2	PO1
		workflows. How does it compare to traditional hand-painted				
		textures in terms of flexibility and control?				
1		(OR)	0 M 1	1.0	CO2	DO 1
4.	a)	Explain how you would approach texturing a large, complex asset	8 Marks	L2	CO2	PO1
		(e.g., a building or vehicle) while ensuring consistency and				
	1- \	minimizing texture stretching or seams.	(M1	1.0	CO2	DO 1
	b)	Discuss the process of setting up Inverse Kinematics (IK) and	6 Marks	L2	CO2	PO1
		Forward Kinematics (FK) in a character rig. When would you use				
		one over the other in animation?				
	Ι,		736 1	T 4	000	DOS
5.	a)	What is pixel aspect ratio in video production, and why is it	7 Marks	L4	CO3	PO2
		important to account for it during video editing and playback on				
	1- \	different devices?	7 Ml	1.0	CO2	DO 1
	b)	Discuss the advantages and disadvantages of interlacing in digital	/ Marks	L2	CO3	PO1
		video. In what scenarios would interlacing still be used despite the				
		widespread adoption of progressive scanning?				
	(a)	(OR)	7 Montro	1.2	CO2	PO1
6.	a)	Explain the process of rasterizing vector graphics. How does this conversion affect image quality and scalability, especially when	7 Marks	L2	CO3	PO
		enlarging images?				
	b)	How does video compression influence file size, quality, and	7 Marks	L1	CO3	PO
	0)	transmission bandwidth? Compare popular video codecs (e.g.,	/ IVIAIKS			101
		H.264, H.265) and their uses.				
	1			<u> </u>		<u> </u>
		(UNIT-IV)				

7.	a)	Discuss the challenges of rendering realistic hair and fur in VFX	7 Marks	L1	CO4	PO1
		and explain how grooming tools and shaders help solve these				
		challenges.				
	b)	Explain the process of using a particle-based hair system for	7 Marks	L3	CO4	PO4
		creating fur on a creature in a film or game. Include the steps				
		involved in simulation and rendering.				
		(OR)				
8.	a)	Outline the key techniques used in fluid simulation for visual	7 Marks	L4	CO4	PO2
		effects. How do you ensure fluid effects, such as water or lava,				
		interact realistically with their environment?				
	b)	Explain the differences between particle-based fluid simulation	7 Marks	L2	CO4	PO1
		(e.g., SPH) and grid-based fluid simulation (e.g., FLIP). Discuss				
		scenarios where each would be ideal.				
		UNIT-V				
9.	a)	Analyze how real-time motion capture systems work in 3D	7 Marks	L4	CO5	PO3
		animation production. What are the key benefits and limitations of				
		using real-time motion performance?				
	b)	Evaluate the use of virtual studios in 3D animation production.	7 Marks	L4	CO5	PO2
		How do virtual studios enhance collaboration and reduce				
		production costs?				
		(OR)				
10.	a)	Explain the importance of load balancing and resource	7 Marks	L2	CO5	PO5
		management in render farm setups for 3D animation. What				
		strategies can be used to optimize performance?				
	b)	Explore the role of plugin architecture in 3D software. How do	7 Marks	L4	CO5	PO2
		plugins extend the functionality of 3D animation tools and				
		contribute to more efficient workflows?				

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

IV B. Tech I Semester (SVEC-20) Regular Examinations 3D VISUALIZATION TECHNIQUES

Time: 3 hours Max. Marks: 70

		UNIT-I				
1.	a)	Trace the key milestones in the history of 3D animation and analyze the technological breakthroughs that have shaped its development.	7 Marks	L2	CO1	PO1
	b)	Evaluate the contribution of major 3D animation studios in advancing the art and technology of animation over the decades.	7 Marks	L4	CO1	PO2
		(OR)				
2.	a)	Explain the essential tools and software used in 3D animation production, focusing on the role of modeling, texturing, and animation software.	7 Marks	L1	CO1	PO1
	b)	Discuss the significance of the pre-production phase in 3D animation and how it impacts the overall success of an animation project.	7 Marks	L4	CO1	PO2
	•	(UNIT-II)				
3.	a)	Describe the importance of skinning in the rigging process. What challenges arise when assigning weights to a model, and how can you address them?	7 Marks	L3	CO2	PO2
	b)	Explain the key components of a basic rigging system for a character, including joints, constraints, and controllers. How does rigging impact the animation process?	7 Marks	L4	CO2	PO2
	•	(OR)				
4.	a)	Describe the importance of skinning in the rigging process. What challenges arise when assigning weights to a model, and how can you address them?	7 Marks	L4	CO2	PO2
	b)	Explain the concept of parenting in 3D modeling and animation. How does the hierarchical relationship between objects influence their transformation and animation?	7 Marks	L2	CO2	PO2
		(UNIT-III)		•		
5.	a)	Discuss the role of pivot positions in modeling and animation workflows. How can adjusting pivot points affect the movement and manipulation of an object?	7 Marks	L4	CO3	PO1
	b)	Describe a situation where re-positioning the pivot point of an object is necessary for correct animation or modeling. How would you go about adjusting the pivot to achieve the desired effect?	7 Marks	L4	CO3	PO2
	1	(OR)			T	
6.	a)	Discuss the role of bit depth in video color representation. How does bit depth influence the color grading process in video production?	6 Marks	L2	CO3	PO1
	b)	Compare digital image capture with traditional film	7 Marks	L2	CO3	PO1

		photography. Discuss the advantages and limitations of each				
		method in terms of quality, flexibility, and post-processing.				
		UNIT-IV				
7.	a)	Explain the process of creating particle effects for a destruction	7 Marks	L4	CO4	PO4
		sequence, detailing the role of particle emitters, forces, and				
		collision objects.				
	b)	Discuss how you can use particle systems to simulate natural	7 Marks	L2	CO4	PO1
		phenomena such as rain, fire, or smoke. Provide examples of				
		the techniques used to enhance realism.				
	1	(OR)		1	ı	1
8.	a)	Compare and contrast the use of instancing with particle	7 Marks	L2	CO4	PO1
		systems for the creation of large-scale environmental effects in				
		visual effects production.				
	b)	Describe the techniques involved in generating and animating	7 Marks	L1	CO4	PO2
		realistic hair and fur for a character. How do dynamics like				
		wind and gravity influence the outcome?				
		(UNIT-V)				
9.	a)	Discuss how 3D animation packages handle complex	7 Marks	L2	CO5	PO1
		simulations (e.g., fluid dynamics, particle effects). What are the				
		hardware and software requirements for running these				
		simulations effectively?				
	b)	Examine the use of CAD software in industries such as	7 Marks	L4	CO5	PO2
		architecture and engineering for 3D visualization. How do				
		CAD tools contribute to accurate and efficient project design?				
	,	(OR)		_	ı	1
10.	a)	Analyze the impact of touch-sensitive displays and multi-touch	7 Marks	L2	CO5	PO5
		gestures in modern graphics tablets for 3D animation. How do				
		these features improve user interaction and creative output?				
	b)	Discuss the key features of comprehensive 3D animation	7 Marks	L4	CO5	PO2
		packages and their importance in handling all stages of the				
		animation process, from modeling to rendering.				

