

Assumptions in Linear Regression

There should be *linear* and *additive* relationship between the dependent & independent variables!

Satisfies the assumption

Doesn't satisfy the assumption

Assumptions in Linear Regression

The residuals must have constant variance!

If there is no pattern, data is random and hence, satisfies the condition

If there is a pattern, the data is not random & hence, doesn't satisfy the condition

Assumptions in Linear Regression

The residuals must be *normally distributed!*

Build a normal probability plot, if the residuals are closer to the fit line, the more normal they are

Demo-Linear Regression

- We will be using the Boston House Prices Dataset, with 506 rows and 13 attributes with a target column.
- In this example we will train two models to predict the price.
- First, considering 'Istat' as independent and 'medv' as dependent variable.
- Second, considering 'medv' as dependent and the rest of the attributes as independent.

1	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N
1	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat	medv
2	0.00632	18	2.31	. 0	0.538	6.575	65.2	4.09	1	296	15.3	396.9	4.98	24
3	0.02731	0	7.07	Ø . 0	0.469	6.421	78.9	4.9671	2	242	217.8	396.9	9.14	21.6
4	0.02729	0	7.07		0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
5	0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
6	0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.9	5.33	36.2
7	0.02985	0	2.18	0	0.458	6.43	58.7	6.0622	3	222	18.7	394.12	5.21	28.7
8	0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.6	12.43	22.9
9	0.14455	12.5	7.87	0	0.524	6.172	96.1	5.9505	5	311	15.2	396.9	19.15	27.1
10	0.21124	12.5	7.87	0	0.524	5.631	100	6.0821	5	311	15.2	386.63	29.93	16.5
11	0.17004	12.5	7.87	0	0.524	6.004	85.9	6.5921	5	311	15.2	386.71	17.1	18.9
12	0.22489	12.5	7.87	0	0.524	6.377	94.3	6.3467	5	311	15.2	392.52	20.45	15
13	0.11747	12.5	7.87	0	0.524	6.009	82.9	6.2267	5	311	15.2	396.9	13.27	18.9
14	0.09378	12.5	7.87	0	0.524	5.889	39	5.4509	5	311	15.2	390.5	15.71	21.7
15	0.62976	0	8.14	0	0.538	5.949	61.8	4.7075	4	307	21	396.9	8.26	20.4
16	0.63796	0	8.14	0	0.538	6.096	84.5	4.4619	4	307	21	380.02	10.26	18.2
17	0.62739	0	8.14	0	0.538	5.834	56.5	4.4986	4	307	21	395.62	8.47	19.9
18	1.05393	0	8.14	0	0.538	5.935	29.3	4.4986	4	307	21	386.85	6.58	23.1
19	0.7842	0	8.14	0	0.538	5.99	81.7	4.2579	4	307	21	386.75	14.67	17.5

www.intellipaat.com

Loading the Boston dataset:

Having a glance at the shape:

2 In [4]: data.head()

Having a glance at the dependent and independent variables:

In [6]: data_ = data.loc[:,['lstat','medv']]
 data_.head(5)

	Istat	medv
0	4.98	24.0
1	9.14	21.6
2	4.03	34.7
3	2.94	33.4
4	5.33	36.2

Visualizing the change in the variables

In [10]: import matplotlib.pyplot as plt
 data.plot(x='lstat',y='medv',style='o')
 plt.xlabel('lstat')
 plt.ylabel('medv')
 plt.show()

www.intellipaat.c

Divide the data into independent and dependent variables:

```
In [13]: X = pd.DataFrame(data['lstat'])
y = pd.DataFrame(data['medv'])
```

Split the data into train and test set:

```
In [14]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
```

Shape of the train and test sets:

```
In [16]: print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
```

```
(404, 1)
(102, 1)
(404, 1)
(102, 1)
```


Train the algorithm:

```
In [11]: from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train, y_train)
```

Retrieve the intercept:

```
2 In [12]: print(regressor.intercept_) _____ [34.33497839]
```

Retrieve the slope:

Evaluating the Algorithm:

```
In [26]: from sklearn import metrics
import numpy as np
print('Mean Absolute Error:', metrics.mean absolute_error(y_test, y_pred))
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
```


Mean Absolute Error: 5.078127727696938 Mean Squared Error: 46.99482091954711

Root Mean Squared Error: 6.855276866731723

Intellipeet

Loading the Boston dataset again:

```
In [1]: import pandas as pd
import numpy as np
dataset = pd.read_csv('Boston1.csv')
dataset
```


Setting up the dependent and the independent variables:

```
In [3]: X = pd.DataFrame(dataset.iloc[:,:-1])
y = pd.DataFrame(dataset.iloc[:,-1])
```

Having a glance at the independent variable:

2 In [4]: X

Having a	glance	at	the	dependent
	vari	able	;	

3 In [5]: Intellifact Intellifact Intellifact

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14
2	0.02729	0.0	7.07	5 0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33
5	0.02985	0.0	2.18	0	0.458	6.430	58.7	6.0622	3	222	18.7	394.12	5.21
6	0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.60	12.43
7	0.14455	12.5	7.87	0	0.524	6.172	96.1	5.9505	5	311	15.2	396.90	19.15
8	0.21124	12.5	7.87	0	0.524	5.631	100.0	6.0821	5	311	15.2	386.63	29.93
9	0.17004	12.5	7.87	0	0.524	6.004	85.9	6.5921	5	311	15.2	386.71	17.10

www.intellipaat.c

Split the data into train and test sets:

```
In [6]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=5)
```

```
In [7]: print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_train.shape)
print(y_test.shape)
```

(404, 13) (102, 13) (404, 1) (102, 1)

Train the algorithm:

In [8]: from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train, y_train)

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

Having a look at the coefficients that the model has chosen:

In [9]: v = pd.DataFrame(regressor.coef_,index=['Co-efficient']).transpose()
w = pd.DataFrame(X.columns, columns=['Attribute'])

Concatenating the DataFrames to compare:

In [12]: coeff_df = pd.concat([w,v], axis=1, join='inner')
coeff_df

	_7/	ntelliPa	<u>at</u>	
		Attribute	Co-efficient	
	0	crim	-0.130800	
	1	zn	0.049403	
	2	indus	0.001095	
	3	chas	2.705366	
	4	nox	-15.957050	
	5	rm	3.413973	
	6	age	0.001119	
	7	dis	-1.493081	
770	8	rad	0.364422	
'elliPaat	9	tax	-0.013172	
	10	ptratio	-0.952370	
	11	black	0.011749	
	12	Istat	-0.594076	


```
In [15]: from sklearn import metrics
    print('Mean Absolute Error:', metrics.mean absolute_error(y_test, y_pred))
    print('Mean Squared Error:', metrics.mean squared_error(y_test, y_pred)))
    print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
```

Mean Absolute Error: 3.2132704958423757 Mean Squared Error: 20.86929218377072

Root Mean Squared Error: 4.568292042303198

www.intellipaat.c