EXAME - 2ª Chamada Paradigmasda Programação I LMCC + LESI $3{\cdot} Fevereiro{\cdot}2003$ Duração: 2:30 horas NOME:___ ____NUM: ___ Ι Duas versões do Crivo de Eratosthenes para determinar a sequência de números primos sem_multiplos $p = filter (\x -> x 'mod' p /= 0)$ crivo [] = [] crivo (x:xs) = x : (crivo (sem_multiplos x xs)) crivo' [] = [] crivo' (x:xs) = x : (sem_multiplos x (crivo' xs)) primos = crivo [2..] $1. \ \ Exemplifique o funcionamento das duas funções de crivo apresentando a sequência$ de expressões intermédias que resultam dos cálculos de crivo [2..12] e crivo' [2..12]. 2. Justifique porque é que crivo é computacionalmente mais eficiente que crivo'.

zaçâ	ão por primos.
	Nota: Se $x < 2$ a factorização de x é a lista vazia. Se $x \geq 2$ a
	factorização de x é a lista cujo primeiro elemento é o primeiro primo p
	que divide x e o resto é a factorização do quociente x/p .

NOME:	
CURSO:	_NUM:
	II
ser univocamente deter pelos comprimentos do	adrados e rectângulos com os lados paralelos aos eixos podem rminados pelas coordenadas do vértice inferior esquerdo e s lados. Assim, para representar estas figuras geométricas, seguinte tipo de dados:
data Figura = Quadro Rectar type Ponto = (Float type Lado = Float	ngulo Ponto Lado Lado
1. Defina a função geométrica.	area :: Figura -> Float que calcula a área da figura
. D. 0	
2. Defina Figura comparticular de um	mo instância da classe Eq. Note que um quadrado é um caso rectângulo.

- 3. Uma forma alternativa de representar quadrados e rectângulos no plano cartesiano é indicando os seus 4 vértices.
 - (a) Defina um tipo de dados FigVert adequado para esta representação.
 - (b) Defina a função converte :: Figura -> FigVert que faz a conversão de dados entre as duas representações.

ionalidades fundamentais. As linhas 11-13 definem o tipo (ST s) como instância da classe Monad. (a) Para um monade genérico m diga qual o tipo dos dois construtores fundamentais da classe (return e >>=) e explique qual é a tarefa que se espera de cada um deles. (b) Explique como é que, nesta instância particular do tipo (ST s), as funções return e >>= apresentadas cumprem esses objectivos.	RSO:	NUM:
anexo apresenta-se uma implementação simplificada do monade ST com as suas ionalidades fundamentais. As linhas 11-13 definem o tipo (ST s) como instância da classe Monad. (a) Para um monade genérico m diga qual o tipo dos dois construtores fundamentais da classe (return e >>=) e explique qual é a tarefa que se espera de cada um deles. (b) Explique como é que, nesta instância particular do tipo (ST s), as funções return e >>= apresentadas cumprem esses objectivos. . Usando o construtor up (linhas 29-30) construa uma função raiz4 :: Integer -> Integer -> Maybe Integer} que, dados inteiros x e m calcula (se existir) um inteiro y tal que (y ⁴ - x) mod m = 0 Sugestão: recorde a construção da função que calcula a raiz quadrada		
 (a) Para um monade genérico m diga qual o tipo dos dois construtores fundamentais da classe (return e >>=) e explique qual é a tarefa que se espera de cada um deles. (b) Explique como é que, nesta instância particular do tipo (ST s), as funções return e >>= apresentadas cumprem esses objectivos. 2. Usando o construtor up (linhas 29-30) construa uma função raiz4 :: Integer -> Integer -> Maybe Integer} que, dados inteiros x e m calcula (se existir) um inteiro y tal que (y⁴ - x) mod m = 0 Sugestão: recorde a construção da função que calcula a raiz quadrada 		111
mentais da classe (return e >>=) e explique qual é a tarefa que se espera de cada um deles. (b) Explique como é que, nesta instância particular do tipo (ST s), as funções return e >>= apresentadas cumprem esses objectivos. 2. Usando o construtor up (linhas 29-30) construa uma função raiz4 :: Integer -> Integer -> Maybe Integer} que, dados inteiros x e m calcula (se existir) um inteiro y tal que (y ⁴ - x) mod m = 0 Sugestão: recorde a construção da função que calcula a raiz quadrada		
mentais da classe (return e >>=) e explique qual é a tarefa que se espera de cada um deles. (b) Explique como é que, nesta instância particular do tipo (ST s), as funções return e >>= apresentadas cumprem esses objectivos. 2. Usando o construtor up (linhas 29-30) construa uma função raiz4 :: Integer -> Integer -> Maybe Integer} que, dados inteiros x e m calcula (se existir) um inteiro y tal que (y ⁴ - x) mod m = 0 Sugestão: recorde a construção da função que calcula a raiz quadrada	1. As linhas 11-13	definem o tipo (ST s) como instância da classe Monad.
funções return e >>= apresentadas cumprem esses objectivos. 2. Usando o construtor up (linhas 29-30) construa uma função raiz4 :: Integer -> Integer -> Maybe Integer} que, dados inteiros x e m calcula (se existir) um inteiro y tal que $(y^4-x)\mod m=0$ Sugestão: recorde a construção da função que calcula a raiz quadrada	mentais da	a classe (return e >>=) e explique qual é a tarefa que se espera
funções return e >>= apresentadas cumprem esses objectivos. 2. Usando o construtor up (linhas 29-30) construa uma função raiz4 :: Integer -> Integer -> Maybe Integer} que, dados inteiros x e m calcula (se existir) um inteiro y tal que $(y^4-x)\mod m=0$ Sugestão: recorde a construção da função que calcula a raiz quadrada		
funções return e >>= apresentadas cumprem esses objectivos. 2. Usando o construtor up (linhas 29-30) construa uma função raiz4 :: Integer -> Integer -> Maybe Integer} que, dados inteiros x e m calcula (se existir) um inteiro y tal que $(y^4-x)\mod m=0$ Sugestão: recorde a construção da função que calcula a raiz quadrada		
funções return e >>= apresentadas cumprem esses objectivos. 2. Usando o construtor up (linhas 29-30) construa uma função raiz4 :: Integer -> Integer -> Maybe Integer} que, dados inteiros x e m calcula (se existir) um inteiro y tal que $(y^4-x)\mod m=0$ Sugestão: recorde a construção da função que calcula a raiz quadrada		
funções return e >>= apresentadas cumprem esses objectivos. 2. Usando o construtor up (linhas 29-30) construa uma função raiz4 :: Integer -> Integer -> Maybe Integer} que, dados inteiros x e m calcula (se existir) um inteiro y tal que $(y^4-x)\mod m=0$ Sugestão: recorde a construção da função que calcula a raiz quadrada		
funções return e >>= apresentadas cumprem esses objectivos. 2. Usando o construtor up (linhas 29-30) construa uma função raiz4 :: Integer -> Integer -> Maybe Integer} que, dados inteiros x e m calcula (se existir) um inteiro y tal que $(y^4-x) \mod m=0$ Sugestão: recorde a construção da função que calcula a raiz quadrada	(b) Explique	como é que, nesta instância particular do tipo (ST s), as
raiz 4 :: Integer -> Integer -> Maybe Integer} que, dados inteiros x e m calcula (se existir) um inteiro y tal que $(y^4-x)\mod m=0$ Sugestão: recorde a construção da função que calcula a raiz quadrada		
raiz 4 :: Integer -> Integer -> Maybe Integer} que, dados inteiros x e m calcula (se existir) um inteiro y tal que $(y^4-x)\mod m=0$ Sugestão: recorde a construção da função que calcula a raiz quadrada		
raiz 4 :: Integer -> Integer -> Maybe Integer} que, dados inteiros x e m calcula (se existir) um inteiro y tal que $(y^4-x)\mod m=0$ Sugestão: recorde a construção da função que calcula a raiz quadrada		
raiz 4 :: Integer -> Integer -> Maybe Integer} que, dados inteiros x e m calcula (se existir) um inteiro y tal que $(y^4-x)\mod m=0$ Sugestão: recorde a construção da função que calcula a raiz quadrada		
raiz 4 :: Integer -> Integer -> Maybe Integer} que, dados inteiros x e m calcula (se existir) um inteiro y tal que $(y^4-x)\mod m=0$ Sugestão: recorde a construção da função que calcula a raiz quadrada		
raiz 4 :: Integer -> Integer -> Maybe Integer} que, dados inteiros x e m calcula (se existir) um inteiro y tal que $(y^4-x)\mod m=0$ Sugestão: recorde a construção da função que calcula a raiz quadrada	2. Usando o const	rutor up (linhas 29-30) construa uma função
que, dados inteiros x e m calcula (se existir) um inteiro y tal que $(y^4-x)\mod m=0$ Sugestão: recorde a construção da função que calcula a raiz quadrada		
$(y^4-x) \mod m = 0$ Sugestão: recorde a construção da função que calcula a raiz quadrada		-
	- /	
		recorde a construção da função que calcula a raiz quadrada

Módulo ST

```
1
     module ST (module ST) where
3
     import Monad
4
     data ST s a = ST \{ st :: s \rightarrow Maybe (a,s) \}
6
7
     instance Functor (ST s)
8
          where
9
          fmap f m = ST (\s -> do { (a,s') \leftarrow st m s ; Just (f a,s') })
10
11
     instance Monad (ST s) where
           return x = ST (\s -> Just (x,s))
12
13
           m >>= f = ST (\s -> do \{ (a,s') <- st m s ; st (f a) s' \})
14
     instance MonadPlus (ST s) where
15
                        = ST (\_ -> Nothing)
16
17
              p 'mplus' q = ST (\s -> (st p s) 'mplus' (st q s))
18
19
     -- Funções no monade ST
     on :: (ST s a) -> s -> Maybe a
20
21
     on m s = do \{ (a, \_) \leftarrow st m s ; Just a \}
22
23
     set :: (s \rightarrow Maybe a) \rightarrow ST s a
     set w = ST (\s -> do \{ a <- w s ; Just (a,s) \})
^{24}
25
     and then :: (ST s a) \rightarrow (s \rightarrow a \rightarrow s) \rightarrow ST s a
^{26}
27
     and then m f = ST (\s -> do { (a,s') \leftarrow st m s ; Just (a, f s' a ) })
28
^{29}
     up :: (Enum a) => ST a a
30
           = ST (n \rightarrow Just (n, succ n))
31
32
     -- Classe Range
33
     class Range r where
         pick :: ST (r a) a
34
35
36
     instance Range [] where
          pick = ST (\s -> case s of { [] -> Nothing; (x:s') -> Just (x,s') })
37
38
     -- Funções utilitárias em monades
39
40
     till :: (Monad m) => (m a) -> (a -> Bool) -> (m a)
41
     r 'till' p = do { x <- r ; if p x then return x else r 'till' p }
42
     while :: (MonadPlus m) \Rightarrow m a \rightarrow (a \rightarrow Bool) \rightarrow m a
43
44
     r 'while' p = do \{ x \leftarrow r ; if p x then return x else mzero \}
45
     collect :: (MonadPlus m) => (m a) -> m [a]
46
47
     collect r = do \{ x < -r ; xs < -collect r ; return (x:xs) \} 'mplus' return []
48
49
     loop :: (MonadPlus m) \Rightarrow (a \rightarrow m a) \rightarrow a \rightarrow m a
     loop f x = do { y <- f x ; loop f y } 'mplus' return x</pre>
```