Como Elaborar Gráficos Profissionais com Gnuplot

André Duarte Bueno, UENF-CCT-LENEP-LDSC email: bueno@lenep.uenf.br

January 30, 2021

Copyright(C) André Duarte Bueno.

Todos os direitos reservados e protegidos pela Lei 5.988 de 14/12/1973. É proibida a reprodução desta obra, mesmo parcial, por qualquer processo, sem prévia autorização, por escrito, do autor.

Editor: ANDRÉ DUARTE BUENO

Revisão técnica:

xxx

ISBN: XX-XXXX-XXX-X

Este livro foi desenvolvido na UENF/CCT/LENEP/LDSC Laboratório de Desenvolvimento de Software Científico - LDSC

http://www.lenep.uenf.br/~ldsc

do Laboratório de Engenharia e Exploração de Petróleo - LENEP

http://www.lenep.uenf.br

do Centro de Ciências e Tecnologia - CCT

http://www.cct.uenf.br

da Universidade Estadual do Norte Fluminense - Darcy Ribeiro - UENF

http://www.uenf.br

Chapter 1

Como Elaborar Gráficos Profissionais com Gnuplot

Apresenta-se neste capítulo o que é, como instalar e usar o software gnuplot.

1.1 O que é o gnuplot?

- é um dos programas livres mais utilizados para se fazer gráficos profissionais no mundo do software livre.
- é um programa compatível com diversas plataformas, como GNU/LINUX, UNIX, IBM OS/2, MS Windows, DOS, Apple Macintosh, VMS, Atari, etc.
- é um programa de linha de comando, altamente interativo, com uma série de funções e comandos internos que possibilitam a construção de gráficos avançados de forma rápida e produtiva.
- permite configurar todos os detalhes do gráfico; a construção de múltiplos gráficos; salvar em vários formatos; plotar dados de arquivos de disco.
- permite criar scripts para automatizar as atividades.
- maiores detalhes no site http://www.gnuplot.info/.

gnuplot é um programa de linha de comando que pode plotar os gráficos de funções matemáticas em duas ou três dimensões, e outros conjuntos de dados. O programa pode ser executado na grande maioria dos computadores e sistemas operacionais (Linux, UNIX, Windows, Mac OS X...). Ele é um programa com uma *fairly* longa história, datando de antes de 1986. Este software não é distribuido sob a licença GPL.

gnuplot pode gerar saídas diretamente na tela, ou em muitos formatos de arquivos gráficos, incluindo PNG, EPS, SVG, JPEG e muitos outros. Ele também é capaz de produzir código LaTeX que possa ser incluído diretamente nos documentos LaTeX, fazendo uso de fontes LaTeX e poderosas habilidades com fórmulas. O programa pode ser usado tanto interativamente quanto através de scripts em lote (batch mode). Para um script de exemplo e sua saída, veja esta espiral logarítmica. O

programa é bem suportado e documentado. Ajuda extensiva pode ser encontrada na internet

Fonte: Wikipedia

Homepage do gnuplot

Gnuplot in Action Second Edition by Philipp K. Janert

Updated for gnuplot 5

Manning Publications (2016) ISBN: 1633430189 ISBN-13: 9781633430181

gnuplot Cookbook

by Lee Phillips

Packt Publishing (2012) ISBN : 184951724X ISBN-13 : 9781849517249

Livros do gnuplot

1.1.1 Novidades do gnuplot 4.0

- Eventos do mouse e teclas de atalho (consulte "help bind").
- Novo terminal 'epslatex', possibilita inserção de figuras eps em documentos LATEX.
- O comando 'splot' é capaz de plotar mapas 2D e superfícies 3D em tons de cinza ou coloridas . Veja "help pm3d", "help palette", "help cbrange", 'set view map', 'set colorbox' and palette.
- Novo comando 'set datafile' permite setar informações de formato sobre o arquivo de dados.
- Outras novidades incluem: 'boxes', 'boxerrorbars', 'candlesticks', 'set style fill', 'frequency', 'unique', 'labels', 'history'.

1.1.2 Novidades do gnuplot 5.0

• Veja http://gnuplot.info/ReleaseNotes_5_0.html.

•

1.1.3 Instalando o gnuplot

- A opção mais simples é ir no site do gnuplot, http://www.gnuplot.info, e seguir as instruções para baixar e instalar e versão executável.
- Se você usa GNU/Linux pode usar o sistema de instalação de pacotes, no Fedora.

Exemplo:

```
dnf install gnuplot
dnf install gnuplot-doc
dnf install gnuplot-devel
```

- A opção para quem quer ter um programa mais rápido, mais eficiente, é baixar e instalar o gnuplot a partir do código fonte. Neste caso o gnuplot vai levar em conta todas as características de seu computador, como a versão específica do processador. O primeiro passo é obter uma cópia dos arquivos com o código fonte do gnuplot.
- Veja a seguir a sequência para fazer o download via ftp¹ no servidor ftp.gnuplot.info. Note que depois de estabelecida a conexão com o servidor, envio comandos para o servidor (ex: cd pub/gnuplot).

Exemplo:

```
ftp> open ftp.gnuplot.info

Connected to ftp.gnuplot.info (128.173.8.161).

220 ftp.gnuplot.info NcFTPd Server (unregistered copy) ready.

Name (ftp.gnuplot.info:andre): anonymous

331 Guest login ok, send your complete e-mail address as password.

Password: bueno@lenep.uenf.br

230-You are user #1 of 150 simultaneous users allowed.

230-Welcome to ftp.gnuplot.info!

230 Logged in anonymously.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> cd pub/gnuplot

ftp> get gnuplot-5.6.0.tar.gz

ftp> quit

221 Goodbye.
```

• Uma altenativa é usar o wget, como em:

```
wget ftp.qnuplot.info/pub/gnuplot/gnuplot-5.6.0.tar.gz
```

• A seguir basta descompactar o arquivo:

```
tar -xvzf gnuplot-5.6.0.tar.gz
```

• e executar a sequência

```
./configure # Configura para minha máquina
make # Compila, gerando o executável
make install # Instala o gnuplot (como usuário root).
```

1.2 Comandos Básicos

Veremos alguns comandos básicos e a seguir como fazer gráficos 2D e depois como modificar as propriedades do gráfico.

¹ftp é um programa que é usado para fazer a transferência de arquivos (File Transfer Protocol). É necessário um programa cliente ftp na sua máquina e um servidor ftp na máquina que será acessada.

1.2.1 Entrando e saindo do gnuplot

• Para entrar e sair do gnuplot é muito fácil, abra um terminal e execute o comando gnuplot. Note que aparece "gnuplot>"

Exemplo:

```
$gnuplot
GNUPLOT
Version 5.2 patchlevel 8 last modified 2019-12-01
Copyright (C) 1986-1993, 1998, 2004, 2007-2019
Thomas Williams, Colin Kelley and many others
gnuplot home: http://www.gnuplot.info
faq, bugs, etc: type "help FAQ"
immediate help: type "help" (plot window: hit 'h')
Terminal type is now 'qt'
```

• Para plotar um gráfico

```
gnuplot> plot sin(x)
```

• Para executar um comando de terminal de dentro do gnuplot digite !comando:

Protótipo:

```
gnuplot > !comando De Terminal \\
```

Exemplo:

```
gnuplot> !pwd
gnuplot> !ls
```

• Para sair digite quit:

```
gnuplot> quit
```

1.2.2 Pedindo ajuda

• Depois de entrar no gnuplot, você pode pedir ajuda:

```
help
help nome_do_comando
help plot
```

• Para ver as configurações atuais (variáveis e funções atuais)

```
gnuplot> show all
```

• Para obter uma lista completa dos comandos do gnuplot consulte o manual do usuário, veja os exemplos apresentados no diretório demo ou consulte o grupo de discussão comp.graphics.apps.gnuplot.

1.2.3 Uso do mouse

- Gráficos 2D
 - Ao mover o mouse sobre o gráfico, as coordenadas são apresentadas no canto esquerdo da tela.
 - Um click com o botão do meio do mouse coloca as coordenadas no gráfico.
 - Clicar e arrastar o mouse com o botão direito permite selecionar uma região para zoom.
 - Exemplo: Execute o comando abaixo e teste o uso do mouse.

```
gnuplot> plot sin(x)
```

- Graficos 3D
 - Use o botão esquerdo do mouse para rotacionar o gráfico.
 - O movimento na vertical na vertical do botão do meio do mouse altera a altura do gráfico.
 - O movimento na horizontal muda o tamanho do gráfico.
 - Exemplo: Execute o comando abaixo e teste o uso do mouse.

```
gnuplot> splot sin(x)*cos(x)
```

- Como mudar a visualização
 - A partir da versão 4.0 você pode alterar os angulos de visualização diretamente com o mouse (clicar com botão esquerdo e mover o mouse).
 - Nas versões anteriores ou nos scripts pode-se mudar a visualização com o parâmetro view.

Exemplo:

```
set view angulo_horizontal, angulo_vertical, zoom
```

1.2.4 Uso das teclas de atalho

• Para ver as teclas de atalho consulte "help bind", pressione 'h' para um help interativo.

```
ativa/desativa uso mouse
m
           grid
g
1
           escala logarítmica
           replot
е
           mostra eixos na posição do cursor (2D)
5
           para cordenadas polares
           para autoscale
labels
           botão do meio
           muda para linha de comando
space
```

1.3 Gráficos 2D

1.3.1 Como plotar gráficos 2D

• O comando plot é o comando básico para gerar gráficos 2D.

Syntaxe:

```
plot {[intervalo]} {[função] | {"[arquivoDeDados]" {modificadores-arquivo}}} {axes [eixos] } { title "titulo" } {with [estilos] } {, {definitions,} [função] ...}
```

Exemplo:

```
plot x*sin(x)
plot 5 + 2*x + x**2 + x**3
# Adicionando título
plot 5 + 2*x + x**2 + x**3 title "Função Parábola"
# Plotando duas funções
plot 5 + x**2 title "Função Parábola" with lines, tan(x) title "Função Tangente"
# Modificando vários parâmetros
plot [-2:2] cos(x) w l lt l lw 5 t
"[2:2] Intervalo, Função, With Lines, Linha tipo 1 (lt 1), largura 5 (lw 5) e titulo"
```


1.4 Como definir as propriedades do gráfico

- Você pode customizar absolutamente tudo em um gráfico do gnuplot.
- Para a lista completa de ítens que podem ser customizados, veja o manual.

Exemplo:

```
plot x**2 title "Parabola x^2"
set xrange [-2:2]
set title "titulo do gráfico"
replot
```

1.4.1 Títulos e mensagens

• Para definir o título

```
set title "titulo do gráfico"
```

• Para definir o título do eixo x

```
set xlabel "titulo do eixo x (unidade)"
```

• Para definir o título do eixo y

```
set ylabel "titulo do eixo y (unidade)"
```

• Para inserir um texto/mensagem numa posição específica do gráfico

```
set label "mensagem" at posição_x, posição_y
```

• Para remover todas as mensagens

```
unset label
```

1.4.2 **Eixos**

• Para definir o intervalo do eixo x

```
set xrange [x_min:x_máx]
```

• Para definir o intervalo do eixo y

```
set yrange [y_min:y_máx]
```

• Deixando o gnuplot definir o intervalo automaticamente

```
set autoscale
```

• Para incluir o eixo x0

```
set xzeroaxis unset xzeroaxis
```

• Para incluir o eixo y0

```
set yzeroaxis unset yzeroaxis
```

1.4.3 Escalas

• Para usar escala logarítmica

```
set logscale
```

• Para definir apenas o eixo y como sendo logarítmico

```
unset logscale; set logscale y
```

• Para usar escalas automaticas

```
set autoscale
unset autoscale
show autoscale
```

1.4.4 **Origem**

• Para definir a origem

```
set origin 0.5 , 0.5
```

1.4.5 Marcadores (tics)

• Para alterar o número de marcadores

```
set xtics (1, 2, 3, 4)
set xtics ("jan" 1, "fev" 2, "mar" 3,...)
```

• Para retornar o número de marcadores para o default

```
unset xtics;
set xtics
```

1.4.6 Bordas

• Para definir as bordas

```
set border
unset border
show border
```

1.4.7 Legenda

- Opções de posição da legenda:
 - inside/outside, left/center/right, top/center/bottom
- Opções de borda na legenda:
 - nobox/box
- Opção sem legenda:
 - nokey

Exemplo:

```
plot sin(x)
set key inside left top
replot
set key inside left top box
replot
set nokey
replot
set key at 25., 50. # posição específica
set key at graph 0.3, 0.7 # posição específica relativa a área gráfico
```

1.4.8 Estilos de linha

• Para definir o estilo da linha

Protótipo:

```
plot função with estilo da linha
```

Exemplo:

```
plot x**2 with points
plot x**2 with lines
plot x**2 with linespoints
plot x**2 with dots
plot x**2 with impulses
plot x**2 with steps
```

Outros estilos de linha incluem:

- filledcurves, fsteps, histeps, errorbar, boxes, boxerrorbar, vector, financebars, candlesticks, xerrorbar,
- xyerrorlines, errorlines, xerrorlines, yerrorbars, labels, xyerrorbars, yerrorlines, surface, vectors, parallelaxes.
- Também é possível definir o tipo de linha com 1t n, sendo n um número de 0-20.

```
plot x**2 lt 5
```

• É possível definir o tipo de cor com lc n

```
plot x**2 1c 5
```

• E a largura da linha com lw n. Veja o exemplo abaixo:

```
plot x**2 lc 3 lw 7
plot "Fluid-A.dat" using 1:3 title "C#REF-P#L-F#A-S#NR" with linespoints lt 2 lc 2,
"Fluid-A.dat" using 1:5 title "C#REF-P#W-F#A-S#NR" with linespoints lt 3 lc 4
```

• Outro exemplo:

```
plot [-2:2] cos(x) w l lt 1 lw 5 t \
"[2:2] Intervalo, Função, With Lines, Linha tipo 1 (lt 1), largura 5 (lw 5) e titulo"
```

1.4.9 Posição do cursor

• Para mover o cursor

```
set key 0.01,100
```

• Nome da função

```
set key top left
```

• Para eliminar o cursor

```
unset key
```

1.4.10 Ângulos

• Para definir o formato dos ângulos...

```
set angles {degrees | radians}
show angles
```

1.4.11 Codificação de caracteres

• Define codificação de caractere

```
set encoding iso_8859_1
```

1.4.12 Localidade

• Para definir a localidade (país)

```
set locale "pt_BR"
```

1.4.13 Para plotar gráficos com barras de erros

• Para plotar gráficos com barras de erros

```
plot "arq.dat" using 1:2:3:4 with errorbars
```

1.4.14 Para incluir data e hora no gráfico

• Para incluir a data e hora no canto esquerdo

```
set time
```

1.4.15 **Pausa**

• Para realizar uma pausa a espera de comandos do usuário

```
pause <tempoSegundos> ['mensagem'']
```

1.4.16 **Bordas**

• Para incluir bordas

```
set border unset border
```

• Para definir as margens

```
set lmargin 2
set rmargin 2
set bmargin 3
set tmargin 3
show margin
```

1.4.17 **Tics**

• Para incluir/eliminar tics

```
set tics / unset tics
set xtics / unset xtics
set ytics / unset ytics
```

1.4.18 Como definir o mapeamento e o tipo de coordenada

• Para definir as coordenadas de mapeamento

```
set mapping {cartesian | spherical | cylindrical}
```

• Para definir as coordenadas polar/cartesiana

```
set polar / unset polar
```

• Para definir o formato dos ângulos

```
set angles degrees
set angles radians
```

1.5 Funções

1.5.1 Funções internas do gnuplot

- Como você deve ter observado (uso da função seno), o gnuplot tem um conjunto de funções internas, que podem ser diretamente acessadas.
- As expresões matemáticas utilizadas nas linguagens C, FORTRAN, Pascal, e BASIC são aceitas.
- Os operadores são os mesmos da linguagem C (exceto exponenciação, que é realizada com **, como em fortran).
- A precedência dos operadores obedece a ordem da linguagem C.

```
Função
            Retorno
            valor absoluto de x, |x| (x pode ser complexo)
abs(x)
acos(x)
            arco-coseno de x
asin(x)
            arco-seno de x
atan(x)
            arco-tangente de x
\cos(x)
            coseno de x, x é um radiano
cosh(x)
            coseno hyperbólico de x, x é um radiano
erf(x)
            função erro de x
\exp(x)
            função exponential de x, base e
inverf(x)
            função erro invertida de x
invnorm(x) distribuição normal invertida de x
log(x)
            log de x, base e
log10(x)
            log de x, base 10
norm(x)
            função distribuição normal (ou Gaussiana)
            gerador de números pseudo-randômicos
rand(x)
sgn(x)
            1 \text{ se } x > 0, -1 \text{ se } x < 0, 0 \text{ se } x = 0
\sin(x)
            seno de x, x é um radiano
sinh(x)
            seno hyperbólico de x, x é um radiano
```

```
\operatorname{sqrt}(x) raiz quadrada de x \operatorname{tan}(x) tangente de x, x é um radiano \operatorname{tanh}(x) tangente hyperbólica de x, x é um radiano
```

• Outros exemplos incluem as funções Bessel, gamma, ibeta, igamma, lgamma e os operadores binários e unários (consulte o manual do gnuplot para obter uma lista completa e atualizada das funções internas).

1.5.2 Como definir e usar suas funções

- Os exemplo a seguir esclarecem como você deve proceder para criar suas funções.
- Para definir uma variável (obs: emissividade ceramica=0.93)

```
boltzmann=5.6697e-8 ec=0.93
```

• Para criar uma função $EmissaoRadiacao(T) = ec * boltzman * T^4$,

```
EmissaoRadiacao(T)=ec*boltzmann*T**4
plot EmissaoRadiacao(x)
```

• Para criar uma função $f3D(x,y) = x^2 + y^2$,

```
f3D(x,y) = x**2 + y**2
splot f3D(x,y)
```

1.6 Recursos avançados do gnuplot

Esta seção apresenta alguns usos avançados do gnuplot.

1.6.1 Como plotar vários gráficos em um terminal

• Você pode colocar mais de um gráfico em um mesmo terminal, para tal, basta setar o atributo multiplot.

Protótipo:

```
gnuplot> set multiplot;
```

Exemplo:

```
multiplot> set multiplot
multiplot> set size 1,0.5 # x=100% y=50%
multiplot> set origin 0.0,0.5 # parte superior
multiplot> plot sin(x)
multiplot> set origin 0.0,0.0 # parte inferior
multiplot> plot cos(x)*x
multiplot> unset multiplot
```


1.6.2 Como gerar gráficos 2D a partir de arquivos de dados armazenados em disco

- Embora o gnuplot possibilite o uso de suas funções internas e a criação de funções do usuário, muitas vezes é necessário fazer um gráfico com dados armazenados em um arquivo de disco.
- Veja a seguir um arquivo com dados de temperatura média anual, e os comandos do gnuplot para fazer o gráfico.
- Arquivo de dados (temperatura.dat)

• Comandos do gnuplot

Exemplo:

```
set xlabel "Ano"
set ylabel "Temperaturas (Graus Celsius)"
set yrange [20:40]
set xrange [1999:2005]
plot 'AnoXTemperatura.dat' using 1:2 title "Temp. médias anuais" with linespoint
```

1.6.3 Como exportar os gráficos em outros formatos

- Embora a saída padrão do gnuplot seja uma tela do X-Window, o gnuplot possibilita que os gráficos sejam diretamente gerados nos mais diferentes formatos.
- Os formatos de saída mais utilizados são:
 - -set term canvas #HTML Canvas object
 - -set term cgm #Computer Graphics Metafile
 - set term corel #EPS format for CorelDRAW
 - set term emtex #LaTeX picture environment with emTeX specials
 - set term epscairo #eps terminal based on cairo
 - set term epslatex #LaTeX picture environment using graphicx package
 - set term fig #FIG graphics language for XFIG graphics editor

```
set term gif #GIF images using libgd and TrueType fonts
set term jpeg #JPEG images using libgd and TrueType fonts
set term latex #LaTeX picture environment
set term pdfcairo #pdf terminal based on cairo
set term png #PNG images using libgd and TrueType fonts
set term pngcairo #png terminal based on cairo
set term postscript #PostScript graphics, including EPSF embedded files (*.eps)
set term pslatex #LaTeX picture environment with PostScript \specials
set term pstex #plain TeX with PostScript \specials
set term pstricks #LaTeX picture environment with PSTricks macros
set term qt #Qt terminal
set term texdraw #LaTeX texdraw environment
set term x11 X11 #Window System
set term xlib X11 #Window System (gnulib_x11 dump)
exemplo a seguir ilustra como proceder para carregar um gráfico de um script e a seguir enviar a
```

 O exemplo a seguir ilustra como proceder para carregar um gráfico de um script e a seguir enviar a saída para um arquivo no formato postscript (extensão ps).

```
Abre o gnuplot e gera o gráfico
$gnuplot
    load 'temperatura.gnuplot'
Define o nome do arquivo de saída
    set out 'temperatura.ps'
    set size 1, 0.5
Define o terminal (formato da saída)
    set term postscript portrait enhanced mono lw 2 "Helvetica" 14
Refaz o gráfico enviando-o para o arquivo de disco
    replot
    !display temperatura.ps
Você pode enviar o gráfico direto para a impressora padrão
    gnuplot> set out "|lpr"
    gnuplot> replot
Ou para impressora específica
    gnuplot> set out "|lpr -PnomeImpressora"
Deixa o terminal como sendo o X11
    gnuplot> set terminal X11
    gnuplot> set size 1,1
Deixa o terminal como sendo o qt (padrão)
    gnuplot> set terminal qt
```

1.6.4 Plotando gráficos com diferentes números de amostragens - tables

O exemplo a seguir mostra o uso de tables. Note que vai gerar arquivos de disco com a saída de dados, samples3.dat, samples6.dat, samples11.dat, e depois plotar todos eles simultaneamente.

• Para gerar o gráfico no gnuplot com diferentes amostragens:

```
set samples 3
set table 'samples3.dat'
plot [-2:2] 2 - 3*x + 4*x*x - 1*x*x*x with impulses
plot [-2:2] 'samples3.dat' with lines
set samples 6
set table 'samples6.dat'
```

```
plot [-2:2] 2 - 3*x + 4*x*x - 1*x*x*x with impulses
plot [-2:2] 'samples6.dat' with lines
set samples 11
set table 'samples11.dat'
plot [-2:2] 2 - 3*x + 4*x*x - 1*x*x*x with impulses
plot [-2:2] 'samples11.dat' with lines
unset table
set samples 101
plot [-2:2] 'samples3.dat' with lines title "2 - 3*x + 4*x*x - 1*x*x*x (amostragem 2)",'samples6.dat'
0 exemplo
```

Veja Figura 1.1 e 1.2.

Figure 1.1: Curva de terceiro grau com diferentes amostragens

Figure 1.2: Curva de terceiro grau com diferentes amostragens - comparação direta

1.7 Scripts

O uso de scrips torna o uso do gnuplot muito mais poderoso, pois poderemos criar arquivos com os comandos de plotagens. Estes arquivos podem ser lidos e executados pelo gnuplot. Também é possível tornar os mesmos executaveis.

1.7.1 Como criar e usar scripts (macros)

- Com certeza o uso interativo do gnuplot é extremamente útil, mas você pode automatizar tarefas repetitivas utilizando o conceito de scripts.
- Um script nada mais é do que uma sequência de comandos para o gnuplot armazenadas em um arquivo de texto.
- Exemplo, abra um editor de texto, digite o texto a seguir e salve como temperatura.gnuplot:

```
# !gnuplot
# Script do gnuplot para plotar os dados de
# temperatura do arquivo "temperatura.gnuplot"
    set title "Temperaturas médias anuais"
    set xlabel "Ano"
    set ylabel "Temperaturas (Graus Celsius)"
# set key 0.01,100
    set label "Máxima" at 2003,32
    set arrow from 2003,35 to 2003,33
    set xr [2000:2005]
    set yr [20:40]
    plot "AnoXTemperatura.dat" using 1:2 title "temp" with linespoints
```

Veja na listagem 1.1 como ficou o arquivo salvo.

Listing 1.1: Exemplo de script do gnuplot

```
1# !gnuplot
2# Script do gnuplot para plotar os dados de
3# temperatura do arquivo "temperatura.gnuplot"
4set title "Temperaturas_mÃ@dias_anuais"
5set xlabel "Ano"
6set ylabel "Temperaturas_(Graus_Celsius)"
7# set key 0.01,100
8set label "MÃ;xima" at 2003,32
9set arrow from 2003,35 to 2003,33
10set xr [200:2005]
11set yr [20:40]
12plot "AnoXTemperatura.dat" using 1:2 title 'temp' with linespoints
```

• Para executar o script basta abrir o gnuplot

\$ gnuplot

• e a seguir carregar o script:

gnuplot> load 'temperatura.gnuplot'

• Outra forma de executar o script é digitar diretamente no terminal o comando para abrir o gnuplot e já executar o script:

```
gnuplot AnoXTemperatura.gnuplot
```

- Note que digitamos o script diretamente no editor de texto, uma outra forma de montar o script é executar o gnuplot, executar a sequência de comandos necessários para gerar o gráfico e a seguir salvar o script em disco.
- Para salvar todos os dados atuais em um arquivo de script

```
gnuplot> save 'AnoXTemperatura.gnuplot'
```

Salva o script com o nome AnoXTemperatura-salvo.gnuplot.

• Para salvar as funções ou as variáveis ou ainda as definições, use:

```
save functions 'funções.gnuplot'
save var 'variáveis.gnuplot'
save set 'definições.gnuplot'
```

• Outra forma de gerar o script é fazer o gráfico no gnuplot e depois salvar o mesmo usando o comando save.

1.7.2 Exemplo

Veja na listagem 1.2 exemplo de arquivo de dados gerado por um software que simula as curvas de histerese em processos de embebição/drenagem de rochas reservatório de petróleo.

Listing 1	1.2:	Exemple	o de	arquivo	de	dado	\mathbf{s}
-----------	------	---------	------	---------	----	------	--------------

13Pase	Elisting 1.2. Exemple de arquivo de dados									
182 1 0.22168 97.7962 1.98217 0.22168 99.7783 21061 183 2 11.4342 79.3704 9.19541 11.4342 38.5658 29554 185 4 40.5001 6.58585 52.904 40.5001 59.4999 46460 186 5 41.9434 2.9703 55.0863 41.9434 58.0566 55486 207 6 42.7891 1.81277 55.3981 42.7891 57.2109 64237 218 7 43.4637 0.762024 55.7743 43.4637 56.5363 72212 229 8 43.4637 0.762024 55.7743 43.4637 56.5363 89387 2211 10 43.4637 0.762024 55.7743 43.4637 56.5363 98033 2212 11 43.4637 0.762024 55.7743 43.4637 56.5363 114513 2212 12 43.4637 0.762024 55.7743 43.4637 56.5363 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>										
183 2 11,4342 79,3704 9,19641 11,4342 88,5658 29554 174 3 37,7157 16,8426 45,4417 37,7157 62,2843 37527 185 4 40,5001 6,5959 52,904 40,5001 59,499 46460 196 5 41,9434 2,9703 55,0963 41,9434 58,0966 55486 197 6 42,7891 1,81277 55,3981 42,7891 57,2109 64237 218 7 43,4637 0,762024 55,7743 43,4637 56,5363 72212 219 8 43,4637 0,762024 55,7743 43,4637 56,5363 89378 210 9 43,4637 0,762024 55,7743 43,4637 56,5363 106129 211 10 43,4637 0,762024 55,7743 43,4637 56,5363 114513 212 11 43,4637 0,762024 55,7743 43,4637 56,5363			-			-				
124 3 37,7157 16.8426 45.4417 37,7157 62.2843 37527 185 4 40.5001 6.55595 52.904 40.5001 59.4999 46460 196 5 41.9434 2.9703 55.0663 41.9434 58.0566 55486 207 6 42.7891 1.81277 55.3981 42.7891 57.2109 64237 218 7 43.4637 0.762024 55.7743 43.4637 56.5363 72212 229 8 43.4637 0.762024 55.7743 43.4637 56.5363 80337 211 10 43.4637 0.762024 55.7743 43.4637 56.5363 80337 211 11 43.4637 0.762024 55.7743 43.4637 56.5363 19378 212 11 43.4637 0.762024 55.7743 43.4637 56.5363 19378 215 13 43.1355 56.8563 0.00722413 43.1407 56.8583 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
185 4 40.5001 6.58595 52.904 40.5001 59.4999 46460 196 5 41.9434 2.9703 55.0863 41.9434 58.0566 55486 207 6 42.7891 1.81277 55.3981 42.7891 57.2109 64237 218 7 43.4637 0.762024 55.7743 43.4637 56.5363 80387 210 9 43.4637 0.762024 55.7743 43.4637 56.5363 89378 211 10 43.4637 0.762024 55.7743 43.4637 56.5363 89378 2212 11 43.4637 0.762024 55.7743 43.4637 56.5363 106129 2213 12 43.4637 0.762024 55.7743 43.4637 56.5363 106129 2214 43.4637 0.762024 55.7743 43.4637 56.5363 112345 2215 11 43.4637 0.762024 55.7743 43.4637 56.5363 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
196 5 41,9434 2.9703 55,0863 41,9434 58,0866 55486 207 6 42,7891 1,1227 55,3881 42,7891 57,2109 64237 218 7 43,4637 0.762024 55,7743 43,4637 56,5363 80387 211 10 43,4637 0.762024 55,7743 43,4637 56,5363 98038 2111 10 43,4637 0.762024 55,7743 43,4637 56,5363 98033 2512 11 43,4637 0.762024 55,7743 43,4637 56,5363 98033 2512 11 43,4637 0.762024 55,7743 43,4637 56,5363 106129 2613 12 43,4637 0.762024 55,7743 43,4637 56,5863 103285 2816 13 43,1335 56,8566 0.00722413 43,1407 56,8583 123285 2816 13 43,1421 56,8786 0.00722413 43,14107										
207 6 42.7891 1.81277 55.3981 42.7891 57.2109 64237 218 7 43.4637 0.762024 55.7743 43.4637 56.5363 7212 229 8 43.4637 0.762024 55.7743 43.4637 56.5363 89378 211 10 43.4637 0.762024 55.7743 43.4637 56.5363 89378 211 11 43.4637 0.762024 55.7743 43.4637 56.5363 106129 2013 12 43.4637 0.762024 55.7743 43.4637 56.5363 106129 2013 12 43.4637 0.762024 55.7743 43.4637 56.5363 1123285 2016 13 43.1335 56.8563 0.00722413 43.1407 56.8563 123285 2016 12 43.1272 56.8666 0.00722413 43.1407 56.8566 152219 2017 11 43.1425 56.8786 0.00722413 43.1214	18 5		40.5001	6.59595	52.904	40.5001	59.4999	46460		
218 7 43.4637 0.762024 55.7743 43.4637 56.5363 72212 299 8 43.4637 0.762024 55.7743 43.4637 56.5363 80387 2a11 10 43.4637 0.762024 55.7743 43.4637 56.5363 89378 2a12 11 43.4637 0.762024 55.7743 43.4637 56.5363 106129 2a13 12 43.4637 0.762024 55.7743 43.4637 56.5363 114513 2a14 13 43.4637 0.762024 55.7743 43.4637 56.5363 114513 2a15 13 43.1335 56.8593 0.00722413 43.1407 56.8593 138140 2a16 12 43.1212 56.8656 0.00722413 43.1214 56.8666 152219 3a17 11 43.142 56.8786 0.0072413 43.1047 56.8978 179096 3a19 9 43.0465 56.8978 0.0072413 43.1047 </td <td>19 6</td> <td></td> <td>41.9434</td> <td></td> <td></td> <td></td> <td>58.0566</td> <td>55486</td>	19 6		41.9434				58.0566	55486		
229 8 43,4637 0.762024 55.7743 43.4637 56.5363 80387 211 10 43.4637 0.762024 55.7743 43.4637 56.5363 89378 2512 11 43.4637 0.762024 55.7743 43.4637 56.5363 106129 2613 12 43.4637 0.762024 55.7743 43.4637 56.5363 114513 2714 13 43.4637 0.762024 55.7743 43.4637 56.5363 114513 2714 13 43.4637 0.762024 55.7743 43.4637 56.5363 114513 2715 13 43.1335 56.8593 0.00722413 43.1407 56.8593 138140 2816 12 43.1272 56.8656 0.00722413 43.1047 56.8766 152219 3017 11 43.1412 56.8786 0.00722413 43.1022 56.8978 179096 3118 10 43.0465 56.9457 0.00721742 43.	20 7									
2110 9 43, 4637 0.762024 55.7743 43.4637 56.5363 89378 2411 10 43.4637 0.762024 55.7743 43.4637 56.5363 98033 2613 12 43.4637 0.762024 55.7743 43.4637 56.5363 114513 2714 13 43.4637 0.762024 55.7743 43.4637 56.5363 114513 2815 13 43.1335 56.893 0.00722413 43.1407 56.85693 138140 2916 12 43.1272 56.8656 0.00722413 43.1344 56.8766 152219 3017 11 43.142 56.8786 0.00722413 43.1524 56.8786 166340 318 10 43.095 56.8978 0.00722413 43.1047 56.8786 166340 318 10 43.095 56.8978 0.00725933 43.1042 56.8786 166340 318 10 43.0465 56.8978 0.00781742 42	21 8		43.4637			43.4637	56.5363			
2411 10 43.4637 0.762024 55.7743 43.4637 56.5363 98033 2612 11 43.4637 0.762024 55.7743 43.4637 56.5363 106129 2613 12 43.4637 0.762024 55.7743 43.4637 56.5363 114513 2714 13 43.4637 0.762024 55.7743 43.4637 56.5363 133140 2815 13 43.1335 56.8593 0.00722413 43.1407 56.8566 152219 2816 12 43.1272 56.8566 0.00722413 43.1214 56.8578 16640 3818 10 43.095 56.8978 0.00722413 43.1214 56.8566 152219 3017 11 43.0465 56.8787 0.00721413 43.1214 56.88786 166340 3118 10 43.095 56.8878 0.00721413 43.1214 56.88786 19056 322 6 42.9775 57.0447 0.00781742 <td< td=""><td>229</td><td></td><td>43.4637</td><td>0.762024</td><td>55.7743</td><td>43.4637</td><td>56.5363</td><td>80387</td></td<>	229		43.4637	0.762024	55.7743	43.4637	56.5363	80387		
25 12 11 43.4637 0.762024 55.7743 43.4637 56.5363 106129 26 13 12 43.4637 0.762024 55.7743 43.4637 56.5363 114513 27 14 13 43.4637 0.762024 55.7743 43.4637 56.5563 123285 28 15 13 43.1335 56.8563 0.00722413 43.1407 56.8566 152219 30 17 11 43.1142 56.8566 0.00722413 43.1214 56.8566 152219 30 17 11 43.095 56.878 0.00725903 43.1022 56.8978 179096 31 18 10 43.095 56.8978 0.00725903 43.1022 56.8978 179096 31 18 10 43.095 56.8978 0.00725903 43.1022 56.8978 179095 32 20 8 42.9775 57.0147 0.00781742 42.9853 57.0147 201329 34 21 7 42.8491 57.1427 0.00823621	23 10	9	43.4637	0.762024	55.7743	43.4637	56.5363	89378		
2a 13 12 43.4637 0.762024 55.7743 43.4637 56.5363 114513 27 14 13 43.4637 0.762024 55.7743 43.4637 56.5363 123285 28 15 13 43.1335 56.8593 0.00722413 43.1407 56.8593 138140 29 16 12 43.1272 56.8656 0.00722413 43.1244 56.85786 166340 31 18 10 43.095 56.8786 0.00722413 43.1214 56.8786 179096 32 19 9 43.0465 56.8978 0.0072412 43.0543 56.9457 191055 32 20 8 42.9775 57.0147 0.00781742 42.9853 57.0147 201329 34 21 7 42.8491 57.1427 0.0082394 42.2721 57.7279 20.2881 36 22 6 42.2632 57.7279 0.0082394 42.2721 57.7279 20.2891 37 24 4 40.0853 59.808 0.0338871	24 11	10	43.4637		55.7743	43.4637		98033		
2714 13 43.4637 0.762024 55.7743 43.4637 56.5363 123285 2815 13 43.1335 56.8593 0.00722413 43.1407 56.8593 138140 2916 12 43.1272 56.8656 0.00722413 43.1214 56.8786 166340 3017 11 43.1142 56.8786 0.00722413 43.1214 56.8786 166340 318 10 43.095 56.8878 0.00722903 43.1022 56.8978 179096 3219 9 43.0465 56.9457 0.00781742 43.0543 56.9457 191055 3220 8 42.9775 57.0147 0.00781742 42.9853 57.0147 201329 421 7 42.8491 57.1427 0.00823621 42.8573 57.1477 201329 422 6 42.2632 57.7279 0.00882949 42.2721 57.7279 222391 36 23 5 41.5083 58.808 0.0338871 40.1192 59.8808 241352 38 25 3 37.307 <	25 12	11	43.4637	0.762024	55.7743	43.4637	56.5363	106129		
28 15 13 43.1335 56.8593 0.00722413 43.1407 56.8593 138140 20 16 12 43.1272 56.8656 0.00722413 43.1344 56.8656 152219 30 17 11 43.1142 56.8786 0.00722413 43.1344 56.8786 16340 31 18 10 43.095 56.8978 0.00728903 43.1022 56.8978 179096 32 19 9 43.0465 56.9457 0.00781742 43.0543 56.9457 191055 32 20 8 42.9775 57.0147 0.00781742 42.9853 57.0147 201329 3421 7 42.8491 57.1427 0.00823621 42.8573 57.1427 211888 35 22 6 42.2632 57.7279 0.00823621 42.8573 57.1427 211888 32 23 5 41.5083 58.4791 0.0126335 41.529 58.4791 232069 37 24 4 40.0853 59.8808 0.3338871	26 13	12	43.4637	0.762024	55.7743	43.4637	56.5363	114513		
29 16 12 43.1272 56.8656 0.00722413 43.1344 56.8656 152219 30 17 11 43.1142 56.8786 0.00722413 43.1214 56.8786 166340 31 18 10 43.095 56.8978 0.0072503 43.1214 56.8786 179096 32 19 9 43.0465 56.9457 0.00781742 43.0543 56.9457 191055 33 20 8 42.9775 57.0147 0.00731742 42.9853 57.0147 201329 42 1 7 42.8491 57.1427 0.00823249 42.2721 57.7279 222391 36 22 6 42.2632 57.7279 0.00882949 42.2721 57.7279 22391 36 23 5 41.5083 58.4791 0.0126335 41.5209 58.4791 232069 37 24 4 40.0853 59.8808 0.0338871 40.1192 59.8808 24.1352 38 25 3 37.307 62.4632 20.29811 37.5368 62.4632 250827 39 26 2 12.9776	27 14	13	43.4637	0.762024	55.7743	43.4637	56.5363	123285		
30 17 11 43.1142 56.8786 0.00722413 43.1214 56.8786 166340 31 18 10 43.095 56.8978 0.00725903 43.1022 56.8978 179096 32 19 9 43.0465 56.9457 0.00781742 43.0543 56.9457 191055 32 0 8 42.9775 57.0147 0.00781742 42.9853 57.0147 201329 34 21 7 42.8491 57.1427 0.00823621 42.8573 57.1427 211888 32 2 6 42.2632 57.7279 0.00882949 42.2721 57.7279 222391 36 23 5 41.5083 58.4791 0.0126335 41.5209 58.4791 232069 37 24 4 40.0853 59.8808 0.0338871 40.1192 59.8808 241352 38 25 3 37.307 62.4632 0.299811 37.5568 62.4632 250827 30 26 2 12.9776 74.9533 12.0691	28 15	13	43.1335	56.8593	0.00722413	43.1407	56.8593	138140		
31 18 10 43.095 56.8978 0.00725903 43.1022 56.8978 179096 32 19 9 43.0465 56.9457 0.00781742 42.0843 56.9457 191055 32 0 8 42.9775 57.0147 0.00781742 42.8573 57.0147 201329 34 21 7 42.8491 57.1427 0.00823621 42.8573 57.1427 211888 35 22 6 42.2632 57.7279 0.00823621 42.8573 57.1427 222391 36 23 5 41.5083 58.4791 0.0162635 41.5209 58.4791 232069 37 24 4 40.0853 59.8808 0.0338871 40.1192 59.8808 241352 38 25 3 37.307 62.4632 0.229811 37.5368 62.4632 250627 39 26 2 12.9776 74.9533 12.0691 25.0467 74.95533 260495 40 27 1 0.818351 82.1077 17.0739	29 16	12	43.1272	56.8656	0.00722413	43.1344	56.8656	152219		
32 19 9 43.0465 56.9457 0.00781742 43.0543 56.9457 191055 32 0 8 42.9775 57.0147 0.00781742 42.9853 57.0147 201329 34 21 7 42.8491 57.1427 0.00823621 42.28573 57.1427 211888 35 22 6 42.2632 57.7279 0.00882949 42.2721 57.7279 222391 36 23 5 41.5083 58.4791 0.0126335 41.5209 58.4791 232069 37 24 4 40.0853 59.8808 0.0338871 40.1192 59.8808 241352 38 25 3 37.307 62.4632 0.229811 37.5368 62.4632 250827 39 26 2 12.9776 74.9533 12.0691 25.0467 74.9533 260495 40 27 1 0.818351 82.1077 17.0739 17.0739 82.9261 279830 41 28 0 0 0 82.9261 17.0739 <td>30 17</td> <td>11</td> <td>43.1142</td> <td>56.8786</td> <td>0.00722413</td> <td>43.1214</td> <td>56.8786</td> <td>166340</td>	30 17	11	43.1142	56.8786	0.00722413	43.1214	56.8786	166340		
33200 8 42.9775 57.0147 0.00781742 42.9853 57.0147 201329 3421 7 42.8491 57.1427 0.00823621 42.8573 57.1427 211888 3522 6 42.2632 57.7279 0.00882949 42.2721 57.7279 222391 3623 5 41.5083 58.4791 0.0126335 41.5209 58.4791 232069 3724 4 40.0853 59.8808 0.0338871 40.1192 59.8808 241352 38.25 3 37.307 62.4632 0.229811 37.5368 62.4632 250827 39.26 2 12.9776 74.9533 12.0691 25.0467 74.9533 260495 40.27 1 0.818351 82.1077 17.0739 17.0739 82.1077 270181 41.28 0 0 17.0739 17.0739 17.0739 82.9261 279830 42.29 0 17.0739 79.2418 3.68431 17.0739	31 18	10			0.00725903	43.1022	56.8978	179096		
34 21 7 42.8491 57.1427 0.00823621 42.8573 57.1427 211888 35 22 6 42.2632 57.7279 0.00823621 42.8573 57.7279 222391 36 23 5 41.5083 58.4791 0.0126335 41.5209 58.4791 232069 37 24 4 40.0853 59.8808 0.0338871 40.1192 59.8808 241352 38 25 3 37.307 62.4632 0.229811 37.5368 62.4632 250827 39 26 2 12.9776 74.9533 12.0691 25.0467 74.9553 260495 40 27 1 0.818351 82.1077 17.0739 17.8923 82.1077 270181 41 28 0 0 0 82.9261 17.0739 17.0739 82.9261 279830 42 29 0 17.0739 79.2418 3.68431 17.0739 82.9261 291105 44 33 3 6.24641 13.9419 23.5939 76.4061 308836 45 32 3 36.7926 16.6856	32 19	9	43.0465	56.9457	0.00781742	43.0543	56.9457	191055		
35 22 6 42 .2632 57 .7279 0 .00882949 42 .2721 57 .7279 222391 36 23 5 41 .5083 58 .4791 0 .0126335 41 .5209 58 .4791 232069 37 24 4 40 .0853 59 .8808 0 .0338871 40 .1192 59 .8808 241352 38 25 3 37 .307 62 .4632 0 .229811 37 .5368 62 .4632 250827 39 26 2 12 .9776 74 .9533 12 .0691 25 .0467 74 .9533 260495 40 27 1 0 .818351 82 .1077 17 .0739 17 .0739 82 .9261 279830 42 29 0 17 .0739 79 .2418 3 .68431 17 .0739 82 .9261 279830 43 30 1 17 .2954 78 .9684 3 .73624 17 .2954 82 .7046 299637 44 31 2 23 .5939 62 .4641 13 .9419 23 .5939 76 .4061 308836 45 32 3 36 .7926 16 .6856 <td>33 20</td> <td>8</td> <td>42.9775</td> <td>57.0147</td> <td>0.00781742</td> <td>42.9853</td> <td>57.0147</td> <td>201329</td>	33 20	8	42.9775	57.0147	0.00781742	42.9853	57.0147	201329		
3623 5 41.5083 58.4791 0.0126335 41.5209 58.4791 232069 3724 4 40.0853 59.8808 0.0338871 40.1192 59.8808 241352 38.25 3 37.307 62.4632 0.229811 37.5368 62.4632 250827 39.26 2 12.9776 74.9533 12.0691 25.0467 74.9533 260495 40.27 1 0.818351 82.1077 17.0739 17.8923 82.1077 270181 41.28 0 0 82.9261 17.0739 17.0739 82.9261 279830 42.29 0 17.0739 79.2418 3.68431 17.0739 82.9261 291105 43.30 1 17.2954 78.9684 3.73624 17.2954 82.7046 299637 44.31 2 23.5939 62.4641 13.9419 23.5939 76.4061 308836 45.32 3 36.7926 16.6856 46.5218 36.7926	34 21	7	42.8491	57.1427	0.00823621	42.8573	57.1427	211888		
3724 4 40.0853 59.8808 0.0338871 40.1192 59.8808 241352 38 25 3 37.307 62.4632 0.229811 37.5368 62.4632 250827 39 26 2 12.9776 74.9533 12.0691 25.0467 74.9533 260495 40 27 1 0.818351 82.1077 17.0739 17.8923 82.1077 270181 41 28 0 0 0 82.9261 17.0739 17.0739 82.9261 279830 42 29 0 17.0739 79.2418 3.68431 17.0739 82.9261 291105 43 30 1 17.2954 78.9684 3.73624 17.2954 82.7046 299637 44 31 2 23.5939 62.4641 13.9419 23.5939 76.4061 30836 45 32 3 36.7926 16.6856 46.5218 36.7926 63.2074 316610 46 33 4 39.4357 6.58031 53.984 39.4357 60.5643 325848 47 34 5 40.8652 2.9	35 22	6	42.2632	57.7279	0.00882949	42.2721	57.7279	222391		
38 25 3 37.307 62.4632 0.229811 37.5368 62.4632 250827 39 26 2 12.9776 74.9533 12.0691 25.0467 74.9533 260495 40 27 1 0.818351 82.1077 17.0739 17.8923 82.1077 270181 41 28 0 0 82.9261 17.0739 17.0739 82.9261 279830 42 29 0 17.0739 79.2418 3.68431 17.0739 82.9261 291105 43 30 1 17.2954 78.9684 3.73624 17.2954 82.7046 299637 44 31 2 23.5939 62.4641 13.9419 23.5939 76.4061 308836 45 32 3 36.7926 16.6856 46.5218 36.7926 63.2074 316610 46 33 4 39.4357 6.58031 53.984 39.4357 60.5643 325848 47 34 5 40.8652 2.96842 56.1663 40.8652 <	36 23	5	41.5083	58.4791	0.0126335	41.5209	58.4791	232069		
39 26 2 12.9776 74.9533 12.0691 25.0467 74.9533 260495 40 27 1 0.818351 82.1077 17.0739 17.8923 82.1077 270181 41 28 0 0 82.9261 17.0739 17.0739 82.9261 279830 42 29 0 17.0739 79.2418 3.68431 17.0739 82.9261 291105 43 30 1 17.2954 78.9684 3.73624 17.2954 82.7046 299637 44 31 2 23.5939 62.4641 13.9419 23.5939 76.4061 308836 45 32 3 36.7926 16.6856 46.5218 36.7926 63.2074 316610 46 33 4 39.4357 6.58031 53.984 39.4357 60.5643 325848 47 34 5 40.8652 2.96842 56.1663 40.8652 59.1348 334127 48 35 6 41.7094 1.81242 56.4782 41.7094 58.2906 343325 49 36 7 42.3837 0.762024	37 24	4	40.0853	59.8808	0.0338871	40.1192	59.8808	241352		
40 27 1 0.818351 82.1077 17.0739 17.8923 82.1077 270181 41 28 0 0 82.9261 17.0739 17.0739 82.9261 279830 42 29 0 17.0739 79.2418 3.68431 17.0739 82.9261 291105 43 30 1 17.2954 78.9684 3.73624 17.2954 82.7046 299637 44 31 2 23.5939 62.4641 13.9419 23.5939 76.4061 308836 45 32 3 36.7926 16.6856 46.5218 36.7926 63.2074 316610 46 33 4 39.4357 6.58031 53.984 39.4357 60.5643 325848 47 34 5 40.8652 2.96842 56.1663 40.8652 59.1348 334127 48 35 6 41.7094 1.81242 56.4782 41.7094 58.2906 343325 49 36 7 42.3837 0.762024 56.8543 42.3837 57.6163 361229 51 38 9 42.3837 0.762024	38 25	3	37.307	62.4632	0.229811	37.5368	62.4632	250827		
41 28 0 0 82.9261 17.0739 17.0739 82.9261 279830 42 29 0 17.0739 79.2418 3.68431 17.0739 82.9261 291105 43 30 1 17.2954 78.9684 3.73624 17.2954 82.7046 299637 44 31 2 23.5939 62.4641 13.9419 23.5939 76.4061 308836 45 32 3 36.7926 16.6856 46.5218 36.7926 63.2074 316610 46 33 4 39.4357 6.58031 53.984 39.4357 60.5643 325848 47 34 5 40.8652 2.96842 56.1663 40.8652 59.1348 334127 48 35 6 41.7094 1.81242 56.4782 41.7094 58.2906 343325 49 36 7 42.3837 0.762024 56.8543 42.3837 57.6163 351699 51 38 9 42.3837 0.762024 56.8543 42.3837 57.6163 369587 52 39 10 42.3837 0.762024	39 26	2	12.9776	74.9533	12.0691		74.9533	260495		
41 28 0 0 82.9261 17.0739 17.0739 82.9261 279830 42 29 0 17.0739 79.2418 3.68431 17.0739 82.9261 291105 43 30 1 17.2954 78.9684 3.73624 17.2954 82.7046 299637 44 31 2 23.5939 62.4641 13.9419 23.5939 76.4061 308836 45 32 3 36.7926 16.6856 46.5218 36.7926 63.2074 316610 46 33 4 39.4357 6.58031 53.984 39.4357 60.5643 325848 47 34 5 40.8652 2.96842 56.1663 40.8652 59.1348 334127 48 35 6 41.7094 1.81242 56.4782 41.7094 58.2906 343325 49 36 7 42.3837 0.762024 56.8543 42.3837 57.6163 351699 51 38 9 42.3837 0.762024 56.8543 42.3837 57.6163 369587 52 39 10 42.3837 0.762024	40 27	1	0.818351	82.1077	17.0739	17.8923	82.1077	270181		
4229 0 17.0739 79.2418 3.68431 17.0739 82.9261 291105 4330 1 17.2954 78.9684 3.73624 17.2954 82.7046 299637 4431 2 23.5939 62.4641 13.9419 23.5939 76.4061 308836 4532 3 36.7926 16.6856 46.5218 36.7926 63.2074 316610 4633 4 39.4357 6.58031 53.984 39.4357 60.5643 325848 4734 5 40.8652 2.96842 56.1663 40.8652 59.1348 334127 4835 6 41.7094 1.81242 56.4782 41.7094 58.2906 343325 4936 7 42.3837 0.762024 56.8543 42.3837 57.6163 351699 5037 8 42.3837 0.762024 56.8543 42.3837 57.6163 369587 5239 10 42.3837 0.762024 56.8543 42.3837 57.6163 378597 5340 11 42.3837 0.762024 <	41 28	0	0	82.9261	17.0739	17.0739	82.9261	279830		
4431 2 23.5939 62.4641 13.9419 23.5939 76.4061 308836 4532 3 36.7926 16.6856 46.5218 36.7926 63.2074 316610 4633 4 39.4357 6.58031 53.984 39.4357 60.5643 325848 4734 5 40.8652 2.96842 56.1663 40.8652 59.1348 334127 4835 6 41.7094 1.81242 56.4782 41.7094 58.2906 343325 4936 7 42.3837 0.762024 56.8543 42.3837 57.6163 351699 5037 8 42.3837 0.762024 56.8543 42.3837 57.6163 361229 5138 9 42.3837 0.762024 56.8543 42.3837 57.6163 378597 5239 10 42.3837 0.762024 56.8543 42.3837 57.6163 378597 5441 12 42.3837 0.762024 56.8543 42.3837 57.6163 386915 542 13 42.3837 0.762024	42 29	0	17.0739	79.2418	3.68431	17.0739	82.9261	291105		
4532 3 36.7926 16.6856 46.5218 36.7926 63.2074 316610 4633 4 39.4357 6.58031 53.984 39.4357 60.5643 325848 4734 5 40.8652 2.96842 56.1663 40.8652 59.1348 334127 4835 6 41.7094 1.81242 56.4782 41.7094 58.2906 343325 4936 7 42.3837 0.762024 56.8543 42.3837 57.6163 351699 5037 8 42.3837 0.762024 56.8543 42.3837 57.6163 361229 5138 9 42.3837 0.762024 56.8543 42.3837 57.6163 369587 5239 10 42.3837 0.762024 56.8543 42.3837 57.6163 378597 5441 12 42.3837 0.762024 56.8543 42.3837 57.6163 386915 542 13 42.3837 0.762024 56.8543 42.3837 57.6163 396053 5542 13 42.3837 0.762024	43 30	1	17.2954	78.9684	3.73624	17.2954	82.7046	299637		
46 33 4 39.4357 6.58031 53.984 39.4357 60.5643 325848 47 34 5 40.8652 2.96842 56.1663 40.8652 59.1348 334127 48 35 6 41.7094 1.81242 56.4782 41.7094 58.2906 343325 49 36 7 42.3837 0.762024 56.8543 42.3837 57.6163 351699 50 37 8 42.3837 0.762024 56.8543 42.3837 57.6163 361229 51 38 9 42.3837 0.762024 56.8543 42.3837 57.6163 369587 52 39 10 42.3837 0.762024 56.8543 42.3837 57.6163 378597 54 41 12 42.3837 0.762024 56.8543 42.3837 57.6163 386915 55 42 13 42.3837 0.762024 56.8543 42.3837 57.6163 396053 56 43 13 42.3837 0.762024 56.8543 42.3837 57.6163 396053 55 42 13 42.3837 0.7	44 31	2	23.5939	62.4641	13.9419	23.5939	76.4061	308836		
4734 5 40.8652 2.96842 56.1663 40.8652 59.1348 334127 4835 6 41.7094 1.81242 56.4782 41.7094 58.2906 343325 4936 7 42.3837 0.762024 56.8543 42.3837 57.6163 351699 5037 8 42.3837 0.762024 56.8543 42.3837 57.6163 361229 5138 9 42.3837 0.762024 56.8543 42.3837 57.6163 369587 5239 10 42.3837 0.762024 56.8543 42.3837 57.6163 378597 5340 11 42.3837 0.762024 56.8543 42.3837 57.6163 386915 5441 12 42.3837 0.762024 56.8543 42.3837 57.6163 396053 5542 13 42.3837 0.762024 56.8543 42.3837 57.6163 396053 5643 13 41.5233 57.9393 0.537378 42.0607 57.9393 420688 5744 12 41.517 57.9456	45 32	3	36.7926	16.6856	46.5218	36.7926	63.2074	316610		
48 35 6 41.7094 1.81242 56.4782 41.7094 58.2906 343325 49 36 7 42.3837 0.762024 56.8543 42.3837 57.6163 351699 50 37 8 42.3837 0.762024 56.8543 42.3837 57.6163 361229 51 38 9 42.3837 0.762024 56.8543 42.3837 57.6163 369587 52 39 10 42.3837 0.762024 56.8543 42.3837 57.6163 378597 53 40 11 42.3837 0.762024 56.8543 42.3837 57.6163 386915 54 41 12 42.3837 0.762024 56.8543 42.3837 57.6163 396053 55 42 13 42.3837 0.762024 56.8543 42.3837 57.6163 396053 56 43 13 41.5233 57.9393 0.537378 42.0607 57.9393 420688 57 44 12 41.517 57.9456 0.537378 42.0414 57.9456 434526 58 45 11 41.504	46 33	4	39.4357	6.58031	53.984	39.4357	60.5643	325848		
49 36 7 42.3837 0.762024 56.8543 42.3837 57.6163 351699 50 37 8 42.3837 0.762024 56.8543 42.3837 57.6163 361229 51 38 9 42.3837 0.762024 56.8543 42.3837 57.6163 369587 52 39 10 42.3837 0.762024 56.8543 42.3837 57.6163 378597 53 40 11 42.3837 0.762024 56.8543 42.3837 57.6163 386915 54 41 12 42.3837 0.762024 56.8543 42.3837 57.6163 396053 55 42 13 42.3837 0.762024 56.8543 42.3837 57.6163 396053 56 43 13 41.5233 57.9393 0.537378 42.0607 57.9393 420688 57 44 12 41.517 57.9456 0.537378 42.0414 57.9586 448123	47 34	5	40.8652	2.96842	56.1663	40.8652	59.1348	334127		
50 37 8 42.3837 0.762024 56.8543 42.3837 57.6163 361229 51 38 9 42.3837 0.762024 56.8543 42.3837 57.6163 369587 52 39 10 42.3837 0.762024 56.8543 42.3837 57.6163 378597 53 40 11 42.3837 0.762024 56.8543 42.3837 57.6163 386915 54 41 12 42.3837 0.762024 56.8543 42.3837 57.6163 396053 55 42 13 42.3837 0.762024 56.8543 42.3837 57.6163 396053 56 43 13 41.5233 57.9393 0.537378 42.0607 57.9393 420688 57 44 12 41.517 57.9456 0.537378 42.0544 57.9456 434526 58 45 11 41.504 57.9586 0.537378 42.0414 57.9586 448123	48 35	6	41.7094	1.81242	56.4782	41.7094	58.2906	343325		
5138 9 42.3837 0.762024 56.8543 42.3837 57.6163 369587 5239 10 42.3837 0.762024 56.8543 42.3837 57.6163 378597 5340 11 42.3837 0.762024 56.8543 42.3837 57.6163 386915 5441 12 42.3837 0.762024 56.8543 42.3837 57.6163 396053 5542 13 42.3837 0.762024 56.8543 42.3837 57.6163 405158 5643 13 41.5233 57.9393 0.537378 42.0607 57.9393 420688 5744 12 41.517 57.9456 0.537378 42.0544 57.9456 434526 5845 11 41.504 57.9586 0.537378 42.0414 57.9586 448123	49 36	7	42.3837	0.762024	56.8543	42.3837	57.6163	351699		
5239 10 42.3837 0.762024 56.8543 42.3837 57.6163 378597 5340 11 42.3837 0.762024 56.8543 42.3837 57.6163 386915 5441 12 42.3837 0.762024 56.8543 42.3837 57.6163 396053 5542 13 42.3837 0.762024 56.8543 42.3837 57.6163 405158 5643 13 41.5233 57.9393 0.537378 42.0607 57.9393 420688 5744 12 41.517 57.9456 0.537378 42.0544 57.9456 434526 5845 11 41.504 57.9586 0.537378 42.0414 57.9586 448123	50 37	8	42.3837	0.762024	56.8543	42.3837	57.6163	361229		
53 40 11 42.3837 0.762024 56.8543 42.3837 57.6163 386915 54 41 12 42.3837 0.762024 56.8543 42.3837 57.6163 396053 55 42 13 42.3837 0.762024 56.8543 42.3837 57.6163 405158 56 43 13 41.5233 57.9393 0.537378 42.0607 57.9393 420688 57 44 12 41.517 57.9456 0.537378 42.0544 57.9456 434526 58 45 11 41.504 57.9586 0.537378 42.0414 57.9586 448123	51 38	9	42.3837	0.762024	56.8543	42.3837	57.6163	369587		
53 40 11 42.3837 0.762024 56.8543 42.3837 57.6163 386915 54 41 12 42.3837 0.762024 56.8543 42.3837 57.6163 396053 55 42 13 42.3837 0.762024 56.8543 42.3837 57.6163 405158 56 43 13 41.5233 57.9393 0.537378 42.0607 57.9393 420688 57 44 12 41.517 57.9456 0.537378 42.0544 57.9456 434526 58 45 11 41.504 57.9586 0.537378 42.0414 57.9586 448123	52 39	10	42.3837	0.762024	56.8543	42.3837	57.6163	378597		
55 42 13 42.3837 0.762024 56.8543 42.3837 57.6163 405158 56 43 13 41.5233 57.9393 0.537378 42.0607 57.9393 420688 57 44 12 41.517 57.9456 0.537378 42.0544 57.9456 434526 58 45 11 41.504 57.9586 0.537378 42.0414 57.9586 448123	53 40	11	42.3837	0.762024	56.8543		57.6163	386915		
56 43 13 41.5233 57.9393 0.537378 42.0607 57.9393 420688 57 44 12 41.517 57.9456 0.537378 42.0544 57.9456 434526 58 45 11 41.504 57.9586 0.537378 42.0414 57.9586 448123	54 4 1	12	42.3837	0.762024	56.8543	42.3837	57.6163	396053		
57 44 12 41.517 57.9456 0.537378 42.0544 57.9456 434526 58 45 11 41.504 57.9586 0.537378 42.0414 57.9586 448123	55 42	13	42.3837	0.762024	56.8543	42.3837	57.6163	405158		
$_{58}45$ 11 41.504 57.9586 0.537378 42.0414 57.9586 448123	56 43	13	41.5233		0.537378	42.0607		420688		
$_{58}45$ 11 41.504 57.9586 0.537378 42.0414 57.9586 448123	5744	12	41.517	57.9456	0.537378	42.0544	57.9456	434526		
	58 45	11	41.504		0.537378	42.0414		448123		
	59 46	10	41.4848	57.9778		42.0222	57.9778	459879		

60 47	9	41.4363	58.0257	0.537971	41.9743	58.0257	470656
61 48	8	41.3673	58.0947	0.537971	41.9053	58.0947	481339
62 4 9	7	41.2389	58.2227	0.53839	41.7773	58.2227	490995
63 5 0	6	40.6531	58.808	0.538983	41.192	58.808	500400
64 5 1	5	39.8981	59.5591	0.542787	40.4409	59.5591	509638
65 5 2	4	38.4751	60.9609	0.564041	39.0391	60.9609	518466
66 5 3	3	35.6835	63.5432	0.773261	36.4568	63.5432	527241
67 5 4	2	11.2958	76.0298	12.6744	23.9702	76.0298	536738
68 5 5	1	0.818351	82.063	17.1186	17.937	82.063	544921
69 5 6	0	0	82.8814	17.1186	17.1186	82.8814	553841

Veja na listagem 1.3 exemplo de script do gnuplot.

Listing 1.3: Exemplo de arquivo script do gnuplot

```
70#!gnuplot
71# Linhas de comentarios comecam com #
72# Para gerar o grafico
73# gnuplot histereseC-png.gnuplot
74# load 'histereseC-png.gnuplot'
75
76 set title "Histerese"
77 set xlabel "Radius (pixel)"
78 set ylabel "Saturation (%)"
80 set size 1,1
81# set xrange [0:56]
82 # set yrange [0:100]
83 set label left
85# Define tipo arquivo saída
86# set terminal x11
87# set terminal qt
88# set terminal postscript landscape eps colour
89 set terminal png
91# Define nome arquivo
92!rm histereseC.png
93
94# Plota o gráfico no arquivo histereseC.png
95# Função do raio
96 set out "histereseC-raio.png"
97plot "TISCImbibition.dat" using 2:3 title 'Fluid_B' with linespoints , \
98 "TISCImbibition.dat" using 2:4 title 'Fluid_A' with linespoints , \
        "TISCImbibition.dat" using 2:5 title 'Fluid_Y' with linespoints
99
100# Mostra o gráfico usando programa display
101!display histereseC-raio.png &
102
103# Função do passo
104 set out "histereseC-passo.png"
105 plot "TISCImbibition.dat" using 1:3 title 'Fluid_B'with linespoints , \
       "TISCImbibition.dat"
                               using 1:4 title 'Fluid_A' with linespoints , \
       "TISCImbibition.dat" using 1:5 title 'Fluid_Y' with linespoints
107
108# Mostra o gráfico usando programa display
109!display histereseC-passo.png &
110
112# Repete a plotagem, agora numa janela
113 set size 1,1
114 set terminal qt
115 replot
```

Veja a seguir o gráfico gerado.

- Você encontra no site http://gnuplot.sourceforge.net/demo/ diversos exemplos de scripts. a dica é acessar o mesmo e ver qual script atende seu interesse.
- Se instalar o pacote gnuplot-doc terá acesso a diversos exemplos.

Exemplo:

dnf install gnuplot-doc
cd /usr/share/doc/gnuplot-doc/demo
gnuplot all.dem

1.8 Gráficos 3D

Syntaxe:

1.8.1 Como plotar gráficos 3D - superfícies

• O comando splot é o comando básico para gerar gráficos 3D.

```
splot {<intervalo>} <função> | "<arquivoDeDados>" {modificadores-arquivo}}
{title "titulo"} {with <estilos>} {, {definitions,} <função> ...}

Exemplo:
# Para plotar um gráfico em 3 Dimensões
set grid
splot x*sin(x)*cos(y)
```

Para melhorar a resolução
 set isosamples 100,100
 replot

1.8.2 Como fazer gráficos 3D avançados

• Veja a seguir alguns comandos avançados.

```
Exemplo:
```

```
splot x**2+y**2
```

• Para ocultar as linhas dos eixos

set hidden3d unset hidden3d

• Para adicionar isolinhas nas superfícies

set contour surface replot

• Para adicionar isolinhas na base

set contour base set surface show contour replot

Mon May 1018:13:11 2004

1.8.3 Como plotar gráficos 3D a partir de dados de um arquivo de disco

- Em muitos casos temos uma função do tipo z = f(x, y), em que, para cada par ordenado x, y temos um valor de z. Isto gera uma superfície em 3 dimensões (como a ilustrada na figura acima).
- Veja a seguir os dados armazenados no arquivo "listagens/dadosxy.dat"

• Para plotar usando o gnuplot use o comando abaixo:

Exemplo:

```
$ cd listagens && gnuplot
splot "dadosxy.dat" matrix with lines
set xtics ("100" 0, "200" 1, "300" 2)
replot
```

- Referências:
 - $-\ http://lowrank.net/gnuplot/plot3d2\text{-}e.html$
 - http://lowrank.net/gnuplot/datafile-e.html

1.8.4 Como plotar contornos

• Veja exemplo de como plotar contornos em: completar.....

1.8.5 Como plotar equações não paramétricas em 3D

• Veja exemplo de como plotar superfícies não paramétricas em: completar.....

1.8.6 Como plotar equações paramétricas em 3D

• Veja exemplo de como plotar superfícies paramétricas em: completar.....

Exemplo

```
splot u, u**2+v**2, u*v
set grid
splot u, u**2+v**2, u*v
set isosamples 30,30
set parametric
splot u, u**2+v**2, u*v
```


Mon May 10 16:01:06 2004

1.9 Exemplos de demonstração (demos)

 Verifique se foram instalados os tutoriais e demos do gnuplot (diretório /usr/share/doc/gnuplot-doc/demo no Fedora).
 Vá para o diretório de demos, abra o gnuplot e então execute todos os demos usando a sequência abaixo².

```
$cd /usr/share/doc/gnuplot-doc/demo
gnuplot> load "All.dem"
```

• No diretório que repassei tem uma cópia

```
$cd demos-do-gnuplot
$gnuplot
gnuplot> load "All.dem"
```

- Gnuplot 5.0 acesse o link abaixo:
 - http://gnuplot.sourceforge.net/demo 5.0/
- Procure na pasta distribuída para você pelo diretório "demos-do-gnuplot".

1.10 Usando bibliotecas computacionais - A classe CGnuplot

• Primeiro vimos que posso usar o gnuplot para fazer gráficos simples de forma prática e direta.

```
plot sin(x)
```

²Você pode acessar os resultados diretamente através do site http://gnuplot.sourceforge.net/demo/.

• A seguir vimos que posso incrementar meu gráfico colocando propriedades como título do gráfico, dos eixos, mudar título da função, espessura e cor da linha, tipo de linha e dezenas de outras propriedades das curvas e do gráfico.

```
plot 5 + x**2 title "Função Parábola'" with lines, tan(x) title "Função Tangente" plot cos(x) w l lt 1 lw 5 t "This is line type 1, thickness 5"
```

• Vimos que posso plotar arquivos externos, arquivos de dados. Note que os dados ou funções plotadas eram definidas dentro do terminal do gnuplot.

```
plot "Fluid-A.dat" using 1:3 title "C#REF-P#L-F#A-S#NR" with linespoints lt 2 lc 2, \ "Fluid-A.dat" using 1:5 title "C#REF-P#W-F#A-S#NR" with linespoints lt 3 lc 4.
```

• Finalmente vimos que posso fazer contas com as colunas do arquivo

```
plot 'arq.dat' using (3*$2):(sin($3+$1))
```

• Num outro momento aprendemos a criar scripts, um arquivo de texto que tem o passo a passo para criar meus gráficos. Vou usar scripts sempre que tiver de plotar muitos gráficos.

```
gnuplot
load "script"
```

- Vimos que o diretório "demo" tem vários scripts prontos, que posso ver ali qual tem a sequência que preciso e mudar a mesma para fazer o gráfico que quero.
- Mas note que os comandos eram digitados num editor de texto e interpretados pelo gnuplot. O programa gnuplot lê a linha do script e a executa, uma a uma.
- Em resumo, rodo um simulador que gera, no formato ASCII, o arquivo de dados/resultados; Depois, crio um script que o gnuplot vai executar para gerar o gráfico.

```
./Simulador dados1.dat
./Simulador dados2.dat
...
./Simulador dadosn.dat
gnuplot
load script1
load script2
```

- Note que existe uma evolução, a cada etapa estou usando novos recursos de forma a facilitar o meu dia a dia, minhas tarefas de rotina.
- Veremos agora que existem biblioteca computacionais escritas em C/Fortran/C++ que permitem que eu envie comandos do meu programa diretamente para o gnuplot. Ou seja, eu não necessariamente preciso criar um arquivo de dados, os dados(vetores) que estão na memória do programa que estou executando são enviados diretamente para o gnuplot. Também posso fazer tudo o que faria com o gnuplot, enviando comandos do meu programa para o gnuplot. Meu programa, mesmo sendo em modo terminal, vai fazer gráficos.

1.10.1 Exemplo de código em C++ que usa o gnuplot

• Na imagem a seguir a classe Gnuplot contém métodos/funções que podem ser chamadas pelo meu programa. A função

```
Gnuplot& Title (const std::string& title = "");
```

• retorna um gráfico, se chama Title, e recebe como parâmetro uma string com o título do gráfico.

```
class Gnuplot
{public:
  Gnuplot & Title (const std::string & title = "");
  Gnuplot & YLabel (const std::string & label = "y");
  Gnuplot & XLabel (const std::string & label = "x");
  Gnuplot & XRange (const int iFrom, const int iTo);
  Gnuplot & YRange (const int iFrom, const int iTo);
  Gnuplot & PlotFile (const std::string & filename,
  const int column = 1, const std::string & t = "");
  Gnuplot & PlotVector (const std::vector<double>&x,
  const std::string & title = "");
  Gnuplot & PlotVector (const std::vector<double>&x,
  const std::vector < double >&y,
  const std::string & title = "");
  Gnuplot & PlotSlope (const double a, const double b,
  const std::string & title = "");
  Gnuplot & PlotEquation (const std::string & eq,
  const std::string & title = "");
  Gnuplot & Replot ();
```

```
Gnuplot
+ Terminal(type : const std::string&)
+ Gnuplot(style : const std::string&)
+ Gnuplot(x : const std::vector< double > &, title : const std::string&, style : const std::string&, labelx : const std::string&, labely : const std::string&) + Cmd(cmdstr : const std::string&) : Gnuplot&
+ operator <<(cmdstr : const std::string&) : Gnuplot&
+ SaveTops(filename : const std::string&) : Gnuplot&
+ Style(stylestr : const std::string&) : Gnuplot&
+ Surface(_fsurface : int) : Gnuplot&
+ Legend(position : const std::string&) : Gnuplot&
+ Title(title : const std::string&) : Gnuplot&
+ XLabel(label : const std::string&) : Gnuplot&
+ XRange(iFrom : const int, iTo : const int) : Gnuplot&
+ XAutoscale() : Gnuplot&
+ YAutoscale() : Gnuplot&
+ XLogscale(base : const double) : Gnuplot&
+ PlotFile(filename : const std::string&, column : const int, title : const std::string&) : Gnuplot&
+ PlotVector(x : const std::xector< double >&, title : const std::string&, column_x : const int, column_y : const int, title : const std::string&) : Gnuplot&
+ PlotVector(x : const std::xector< double >&, title : const int, title : const std::string&) : Gnuplot&
+ PlotVector(x : const std::xector< double >&, y : const std::vector< double >&, title : const std::string&) : Gnuplot&
+ PlotFile(filename : const std::string&, column_x : const int, column_y : const int, column_z : const int, title : const std::string&) : Gnuplot&
+ PlotVector(x : const std::vector< double >&, y : const std::vector< double >&, title : const std::string&) : Gnuplot&
+ PlotSlope(a : const double, b : const double, bitle : const std::string&) : Gnuplot&
+ PlotEquation(equation : const std::string&, title : const std::string&) : Gnuplot&
+ PlotEquation3d(equation : const std::string&, title : const std::string&) : Gnuplot&
+ Replot() : Gnuplot&
+ ResetPlot() : Gnuplot&
```

Veja na listagem 1.5 exemplo de programa em C++ que usa a classe CGnuplot. Não se preocupe com a linguagem em sí, apenas note como as instruções são passadas para o gnuplot de forma bastante direta.

Listing 1.4: Exemplo de código pequeno em C++ que usa a classe CGnuplot

```
117// Programa de teste da classe CGnuplot.
118 #include <iostream >
119 #include "CGnuplot.h"
               // Usando espaco de nomes da std
121 using namespace std;
123 void wait_for_key ();
124
125 int main(int argc, char* argv[]) {
126
128
   129
   << "\n========
130
   << "\nUSO:"
   << "\n./cgnuplot.teste.min"
132
   << "\n==
133
134
   Gnuplot::Terminal("qt");
                     // Tipo de terminal gráfico
135
    // ----- Graficos 2D ------
137
```

```
Gnuplot g2d ("lines");
                                         // Construtor
138
      g2d.Legend("inside").Legend("left").Legend("bottom").Legend("box");
139
      g2d.Title("Tituloudougrafico"); // Titulo do grafico
140
      g2d.XLabel("rotulo_eixo_x");
                                         // Rotulo eixo x
141
      g2d.YLabel("rotulo⊔eixo⊔y");
                                         // Rotulo eixo v
142
      g2d. XRange (-10,10);
                                         // Seta intervalo do eixo x.
143
      g2d.PlotEquation( "x*x*sin(x)");// Plota uma determinada equacao
144
145
      wait_for_key();
                                           // Usando os diferentes estilos de graficos
147
148
       // Muda o estilo da funcao para linhas e replota
      cout << "g2d.Style(\"points\")" << endl;
149
      g2d.Style("points");
                               // Muda estilo linha
150
      g2d.PlotEquation( "x*x*x*sin(x)");// Plota uma determinada equacao
151
      wait_for_key();
152
153
       // Muda o estilo da funcao para impulsos, muda titulo e plota nova equacao
      cout << "Style(\"impulses\")" << endl;</pre>
155
      g2d.Style("impulses").Title("Style(_impulses__)").PlotEquation( "x*x+_15");
156
       wait_for_key();
157
158
159
       // Vou mudar o terminal, que é o dispositivo de saída
      g2d << "set_term_png_\n"; // seta o terminal para imagem no formato png
160
      g2d << "set_output_\"imagemGrafico.png\""; // seta o nome do arquivo
161
      g2d.replot();// plota o grafico no arquivo png
      wait_for_key();
163
164
                                         // Reseta estado do grafico
165
      g2d.Reset();
      cout << "\n***_Fim_do_exemplo\n";
166
167 return 0;
168}
169
170 void wait_for_key ()
171 {
       cout << endl << "Pressione_ENTER_para_continuar..." << endl;
172
173
      std::cin.clear();
                                                        // Zera estado de cin
      std::cin.ignore(std::cin.rdbuf()->in_avail());// Ignora
174
175
      std::cin.get();
                                                        // Espera o pressionamento do enter
176
      return;
177 }
```

Veja a seguir o gráfico gerado.


```
181// Esta interface usa pipes e nao ira funcionar em sistemas que nao suportam
182// o padrao POSIX pipe.
183 / /
184// O mesmo foi testado em sistemas Windows (MinGW e Visual C++) e GNU/Linux(GCC/G++)
185 / /
186// Este programa foi originalmente escrito por:
187// Historico de versoes:
188// O. Interface para linguagem C
        por N. Devillard (27/01/03)
190// 1. Interface para C++: tradução direta da versao em C
           por Rajarshi Guha (07/03/03)
191 / /
192// 2. Correcoes para compatibilidadde com Win32
por V. Chyzhdzenka (20/05/03)
194// 3. Novos métodos membros, correcoes para compatibilidade com Win32 e Linux
       por M. Burgis (10/03/08)
195 / /
196// 4. Traducao para Portugues, documentacao e modificacoes na interface
197 //
          por Bueno.A.D. (30/07/08)
198 / /
200 / /
201// Requisitos:
202// - O programa gnuplot deve estar instalado (veja http://www.gnuplot.info/download.html)
203// - No Windows: setar a Path do Gnuplot (i.e. C:/program files/gnuplot/bin)
             ou setar a path usando: Gnuplot::set_GNUPlotPath(const std::string &path);
204 / /
205 //
             antes de criar qualquer objeto da classe.
206 / /
209// ----- Inclusão de arquivos -----
210 #include <iostream>
_{212}/// A classe CGnuplot usa pipes no estilo POSIX para se comunicar com o gnuplot.
213 // POSIX - Pipe - communikation.
214 #include "CGnuplot.h"
215
216// Se estamos no windows
217#if defined(WIN32) || defined(_WIN32) || defined(_WIN32__) || defined(__TOS_WIN__)
220 void sleep(int i) { Sleep(i*1000); }
221 # endif
222
223// ----- Variaveis globais -----
224 const int SLEEP_LGTH = 2; // Tempo de espera em segundos
225 const int NPOINTS = 50;
                                       // Dimensao do array (vetor)
226//#define SLEEP_LGTH 2
227//#define NPOINTS 50
228
                                      // Usando espaco de nomes da std
229 using namespace std;
231// ----- Funcoes globais -----
232/// @brief O programa para ate o pressionamento de uma tecla.
233 void wait_for_key();
234
               ----- Funcao Principal ------
236/// @brief Funcao principal
237 int main(int argc, char* argv[])
238 {
241
        242
        << "\nUSO:"
243
        << "\n./cgnuplot.min"
244
       << "\n======\n";
245
246
     // Se a variavel do gnuplot nao esta setada, faca isto antes de
247
     // criar objetos da classe CGnuplot, usando o método publico e estatico:
     // Gnuplot::set_GNUPlotPath("C:/program files/gnuplot/bin/");
249
250
     // Seta o terminal padrao para visualizacao dos graficos (normalmente nao necessario),
251
     // Usuarios de Mac devem usar a opcao "aqua", e nao x11.
252
     // Gnuplot::set_terminal_std("x11");
253
254
            << "-->_{\sqcup} Plotando_{\sqcup} graficos_{\sqcup} do_{\sqcup} gnuplot_{\sqcup} usando_{\sqcup} a_{\sqcup} classe_{\sqcup} CGnuplot_{\sqcup} <-- \\ \setminus n "
255
            << "-->_{\sqcup} Exemplo_{\sqcup} de_{\sqcup} controle_{\sqcup} do_{\sqcup} gnuplot_{\sqcup} us and o_{\sqcup} C++_{\sqcup \sqcup} us use the controleum of the contro
             << "-->uOsutitulosudougraficouilustramuauoperacaourealizadauuu<--\n"
257
                                                                          -----\n" << endl:
258
```

```
// Controla a ocorrencia de excessoes, usa a classe GnuplotException
     try
261
262
263
         // Teste geral
264
         // Terminal padrao do gnuplot no fedora 9
265
         // Se nao funcionar em seu sistema, comente a linha
266
         Gnuplot::Terminal("qt");//Gnuplot::Terminal("wxt");
267
268
            ----- Graficos 2D -----
269
         Gnuplot g2d = Gnuplot("lines"); // Construtor
270
                                              // Escala o tamanho do ponto usado na plotagem
         g2d.PointSize(0.8);
271
                                              // Legenda
272
         g2d.Legend("inside").Legend("left").Legend("bottom").Legend("box");
273
         g2d.Title("Tituloudougrafico"); // Titulo do grafico
274
                                             // Rotulo eixo x
         g2d.XLabel("rotulo_eixo_x");
275
276
         g2d.YLabel("rotulo_leixo_ly");
                                             // Rotulo eixo y
                                             // Seta intervalo do eixo x.
         g2d.XRange(-10,10);
277
         g2d.PlotEquation( "x*x*sin(x)");// Plota uma determinada equacao
278
279
                                              // Usando os diferentes estilos de graficos
280
         cout << "Style(\"lines\")" << endl;</pre>
281
         g2d.Style("Style(ulinesu)").Replot();
282
283
         wait_for_key();
         g2d.Reset();
                                             // Reseta estado do grafico
285
         cout << "Style(\"points\")" << endl;</pre>
286
         g2d.Style("points").Title("Style(\( points \( \) )").PlotEquation( "x");
287
         wait_for_key();
288
289
         g2d.Reset();
290
         cout << "Style(\"linespoints\")" << endl;</pre>
291
292
         g2d.Style("linespoints").Title("Style(\( \lefta linespoints \( \lefta \) )").PlotEquation( "x*x");
         wait_for_key();
293
294
         g2d.Reset();
295
         cout << "Style(\"impulses\")" << endl;</pre>
296
         g2d.Style("impulses").Title("Style(_impulses_i)").PlotEquation( "x*x+_15");
297
         wait_for_key();
298
299
         g2d.Reset();
         cout << "Style(\"dots\")" << endl;</pre>
301
         g2d.Style("dots").Title("Style(\( \dots\( \) )").PlotEquation( "x*x*x");
302
         wait for kev():
303
         g2d.Reset();
304
305
         cout << "Style(steps)" << endl;</pre>
306
         \tt g2d.Style("steps").Title("Style(\_steps\_)").PlotEquation("x*x*x*x");
307
308
         wait_for_key();
         g2d.Reset();
309
310
         cout << "Style(\"fsteps\")" << endl;</pre>
311
         \tt g2d.Style("fsteps").Title("Style( {\it `lfsteps}_{\it `l})").PlotEquation( "x*x*sin(x)");
312
         wait_for_key();
313
314
         g2d.Reset();
315
         cout << "Style(\"histeps\")" << endl;</pre>
316
         g2d.Style("histeps").Title("Style(_histeps_)").PlotEquation( "x*x*sin(x)");
317
         wait for kev():
318
319
         // Legendas, posicoes possiveis cout << "Legend(\"inside_left_top_nobox\")" << endl;
320
321
         \tt g2d.Legend("inside_{\sqcup}left_{\sqcup}top_{\sqcup}nobox").Title("Legend(_{\sqcup}inside_{\sqcup}left_{\sqcup}top_{\sqcup}nobox_{\sqcup})").Replot();
322
323
         wait_for_key();
324
         cout << "Legend(\"inside_center_center_nobox\")" << endl;</pre>
325
         g2d.Legend("inside_center_center_nobox").Title("Legend(cinside_center_center_nobox_c)").Replot
326
              ();
         wait_for_key();
327
328
         cout << "Legend(\"insideurightubottomubox\")" << endl;</pre>
329
         g2d.Legend("insideurightubottomubox").Title("Legend(uinsideurightubottomuboxu)").Replot();
330
         wait_for_key();
331
332
         cout << "Legend(\"outside\right\top\box\")" << endl;</pre>
333
334
         \tt g2d.Legend("outside\_right\_top\_box").Title("Legend(\_outside\_right\_top\_box\_)").Replot();
         wait_for_key();
335
336
         // ----- Graficos 3D -----
337
```

```
Gnuplot g3d = Gnuplot("lines"); // Construtor
          g3d.Grid(1);
                                                 // Ativa/Desativa o grid
339
          g3d.Samples(50);
                                                 // Seta taxa de amostragem
340
          g3d.IsoSamples(50);
                                                    Seta densidade de isolinhas
341
          g3d.Hidden3d();
                                                 // Ativa/Desativa remocao de linhas ocultas
342
          g3d.Surface();
                                                 // Ativa/Desativa a visualizacao da superficie
343
          g3d.Title("Tituloudougrafico"); // Titulo do grafico
344
          g3d.XLabel("rotulo_eixo_x");
                                                 // Rotulo eixo x
345
          g3d.YLabel("rotulo_{\square}eixo_{\square}y");
                                                 // Rotulo eixo y
          g3d.ZLabel("rotulo_ueixo_uz");
                                                 // Rotulo eixo z
347
                                                 // Seta intervalo do eixo {\tt x.}
348
          g3d.XRange(-10,10);
                                                 // Seta autoescala de z
          g3d.ZAutoscale();
349
          g3d.PlotEquation3d( "x*sin(x)*sin(y)+4" );
350
          wait_for_key();
351
352
                                                 // Suavizacao
353
354
          cout << "Smooth(0)" << endl;</pre>
          g3d.Smooth(0).Title("Smooth(0)").Replot();
                                                                       // Desativa suavizacao
355
          wait_for_key();
356
          cout << "Smooth(1)" << endl;</pre>
357
          g3d.Smooth(1).Title("Smooth(1)").Replot();
                                                                        // Ativa suavizacao
358
          wait_for_key();
359
360
                                                 // Ativar/desativar grid
361
          cout << "Grid()" << endl;</pre>
          g3d.Grid().Title("Grid()").Replot();
363
          wait_for_key();
364
          cout << "Grid(0)" << endl;</pre>
365
          g3d.Grid(0).Title("Grid(0)").Replot();
366
367
          wait_for_key();
368
369
                                                 // Ocultar linhas escondidas
          cout << "Hidden3d(0)" << endl;</pre>
370
          g3d.Hidden3d(0).Title("Hidden3d(0)").Replot();
371
372
          wait_for_key();
373
          cout << "Hidden3d()" << endl;</pre>
          g3d.Hidden3d().Title("Hidden3d()").Replot();
374
375
          wait_for_key();
376
                                                 // Taxa amostragem
377
          cout << "Samples(10)" << endl;</pre>
          g3d.Samples(10).Title("Samples(10)").Replot();
379
          wait_for_key();
380
          cout << "Samples(50)" << endl;</pre>
381
          g3d.Samples(50).Title("Samples(50)").Replot();
382
383
          wait_for_key();
384
385
                                                 // Densidade de isolinhas
          cout << "IsoSamples(10)" << endl;</pre>
386
          g3d. IsoSamples (10). Title ("IsoSamples (10)"). Replot();
387
388
          wait_for_key();
          cout << "IsoSamples(50)" << endl;</pre>
389
          g3d. IsoSamples (50). Title ("IsoSamples (50)"). Replot();
390
          wait_for_key();
391
392
                                                 \ensuremath{//} Contorno em superficies, base, surface, both.
393
          cout << "Contour(\"base\")" << endl;</pre>
394
          g3d.Contour("base").Title("Contour(base)").Replot();
395
          wait_for_kev();
396
          cout << "Contour(\"surface\")" << endl;</pre>
397
          g3d.Contour("surface").Title("Contour(surface)").Replot();
398
399
          wait_for_key();
          cout << "Contour(\"both\")" << endl;</pre>
400
          g3d.Contour("both").Title("Contour(both)").Replot();
401
          wait_for_key();
402
403
404
          // ----- A seguir exemplos do codigo original -----
405
          Gnuplot g1 = Gnuplot("lines");
406
407
          \verb|cout| << "*** \square Plota \square uma \square equacao \_ da \_ forma \_ y \_ = \_ ax \_ + \_ b; \_ com \_ a = 1, \_ b = 0" << endl;
          g1. Title ("PlotSlope_{\sqcup}y_{\sqcup}=_{\sqcup}x");
408
                                                                     // Seta o titulo.
                                                                     // Plota Reta
          g1.PlotSlope(1.0,0.0,"PlotSlope_{\sqcup}y_{\sqcup}=_{\sqcup}x");
409
          wait_for_key();
410
411
          \verb|cout| << "*** \square Plota \square uma \square equacao \square da \square forma \square y \square = \square ax \square + \square b; \square com \square a = 2, \square b = 0" << endl;
412
413
          cout << "PlotSlope_{\square}y_{\square}=_{\square}2*x" << endl;
          g1.PlotSlope(2.0,0.0,"y_{\sqcup}=_{\sqcup}2x");
414
415
          wait_for_key();
416
```

```
cout << "***uPlotauumauequacaoudauformauyu=uaxu+ub;ucomua=-1,ub=0" << endl;
417
                    cout << "PlotSlope _y = _ -x" << endl;
418
                    g1.PlotSlope(-1.0,0.0,"y_{\sqcup}=_{\sqcup}-x");
419
                    wait_for_key();
420
421
                   g1.Title();
422
                                                                                                                 // Equacoes
423
                                                                                                                 // Reseta o grafico
                    g1.ResetPlot():
424
                    cout << endl << endl << "***
| Plotando | Equacoes " << endl;
425
426
427
                    cout << "***_{\perp}PlotEquation_{\perp}y_{\perp}=_{\perp}sin(x)" << endl;
                   g1.PlotEquation("sin(x)","PlotEquationusine,usin(x)");
                                                                                                                                                                  // Plota uma equação
428
                    wait_for_key();
429
430
                    cout << "***_{\sqcup}y_{\sqcup}=_{\sqcup}\log(x)" << endl;
431
                    {\tt g1.Legend("box").Legend("left").PlotEquation("log(x)","PlotEquation_logarithm,_log(x)");} \ //
432
                             Plota uma equacao
                    wait_for_key();
433
434
                    cout << "***_{\perp}y_{\perp}=_{\perp}\sin(x)_{\perp}*_{\perp}\cos(2*x)" << endl;
435
                    {\tt g1.PlotEquation("sin(x)*cos(2*x)","PlotEquation,\_sin(x)*cos(2*x)");} \ // \ {\tt Plota \ uma \ equacao}
436
                    wait_for_key();
437
438
439
                                                                                                                   // Controlando estilos de graficos - styles
                    g1.ResetPlot();
440
                    cout << endl << endl << "***uMostrandouestilosu-uustyles" << endl;
441
442
                    cout << "***_{\perp}sin(x)_{\perp}usando_{\perp}PointSize(0.8).Style(\"points\")" << endl;
443
                    g1.PointSize(0.8).Style("points");
444
                    g1.PlotEquation("sin(x)","PlotEquationusin(x),usandoupoints");
445
                    wait_for_key();
446
447
                    cout << "***usineuusandouestiloudeuimpulses" << endl;
                    g1.Style("impulses");
449
                    g1.PlotEquation("sin(x)","PlotEquation_{\sqcup}sin(x),_{\sqcup}usando_{\sqcup}impulses");
450
451
                    wait for kev():
452
                    cout << "***usineuusandouestiloudeusteps" << endl;
453
                    g1.Style("steps");
454
                    g1.PlotEquation("sin(x)","PlotEquation_{\sqcup}sin(x),_{\sqcup}usando_{\sqcup}steps");
455
                    wait_for_key();
457
                                                                                                                        // Salvando para arquivo postscript - ps
458
                    g1.ResetAll();
                                                                                                                        // Reseta todos os dados
459
                    cout << endl << endl << "***uSalvandouparauarquivoupostscriptu-ups" << endl;
460
461
                    \verb|cout| << "y_{\sqcup} = ||\sin(x)_{\sqcup} + \sin(x)_{\sqcup} 
462
                    g1.SaveTops("test_output");
463
464
                    g1.Style("lines").Samples(300).XRange(0,5);
                   g1.PlotEquation("\sin(12*x)*\exp(-x)").PlotEquation("\exp(-x)");
465
466
                    cout << "*** Plotando novamente em uma janela" << endl;
467
                   g1.ShowOnScreen();
                                                                                                                       // Ativa janela de saida grafica
468
469
470
                                                                                                                        // Usando vetores do usuario (conjunto de dados)
                    \verb|cout| << "***_{\sqcup} Criando_{\sqcup} vetores_{\sqcup} x \,, _{\sqcup} y \,, _{\sqcup} y \,, _{\sqcup} u \,, _{\sqcup} z_{\sqcup} a_{\sqcup} serem_{\sqcup} plotados" << endl; \\
471
                    std::vector < double > x, y, y2, dy, z;
472
473
                   for (int i = 0: i < NPOINTS: i++)</pre>
                                                                                                                        // Preenche os vetores x, y, z
474
475
                        {
                            x.push_back((double)i);
                                                                                                                        // x[i] = i
476
                             y.push_back((double)i * (double)i);
                                                                                                                        // y[i] = i^2
477
                             z.push_back( x[i]*y[i] );
                                                                                                                        // z[i] = x[i]*y[i] = i^3
478
                             dy.push_back((double)i * (double)i / (double) 10); // dy[i] = i^2 / 10
479
480
                   y2.push_back(0.00); y2.push_back(0.78); y2.push_back(0.97); y2.push_back(0.43);
481
                   y2.push_back(-0.44); y2.push_back(-0.98); y2.push_back(-0.77); y2.push_back(0.02);
482
483
                    g1.ResetAll();
484
485
                    \verb|cout| << \verb|endl| << \verb|"***| | Plota | | vetor | | y | | de | | doubles | | << \verb|endl|; |
                    g1.Style("impulses").PlotVector(y, "PlotVector_{\sqcup}y, _{\sqcup}usando_{\sqcup}impulses");
486
487
                    wait_for_key();
488
                    g1.ResetPlot();
489
                    \verb|cout| << \verb|endl| << \verb|"***| Plota_{\sqcup} vetores_{\sqcup} x_{\sqcup} e_{\sqcup} y, _{\sqcup} pares_{\sqcup} ordenados_{\sqcup} (x,y) " << \verb|endl|; 
490
491
                    g1.Grid();
                    g1.Style("points").PlotVector(x,y,"PlotVector_\u00e4x_\u00beloup oints");
492
493
                    wait_for_key();
494
```

```
g1.ResetPlot();
495
         cout << endl << endl << "***" Plota vetores xue yue z, valores ordenados (x,y,z)" << endl;
496
         g1.Grid(0);
497
         g1.PlotVector(x,y,z,"PlotVector(x,y,z),usanddopoints");
498
499
         wait_for_key();
500
         g1.ResetPlot();
501
         cout << endl << endl << "***uPlotauvetoresux,uyueudy,uvaloresuordenadosueubarraudeuerrou(x,y,
502
             dy)" << endl;</pre>
         503
             ,y,dy)");
         wait_for_key();
504
505
                                                        // Usando multiplas janelas de saida
506
         cout << endl << endl;</pre>
507
508
         cout << "***umultipleuoutputuwindows" << endl;</pre>
         g1.ResetPlot();
510
         g1.Style("lines");
511
         cout << "window_1:_sin(x)" << endl;
512
         g1.Grid(1).Samples(600).XRange(0,300);
513
         g1. PlotEquation ("sin(x)+sin(x*1.1)", "PlotEquation Grid(1). Samples (600). XRange (0,300)");
514
         wait_for_key();
515
516
         g1.XAutoscale().Title("XAutoscale()").replot();
517
         wait_for_key();
518
519
520
         Gnuplot g2;
         cout << "Janela_2:_plotando_vetores" << endl;
521
         g2.PlotVector(y2, "Pontosudeuy2");
522
         g2.Smooth().PlotVector(y2, "Smooth(cspline)");
523
         g2.Smooth("bezier").PlotVector(y2, "Smooth(bezier)");
524
525
         g2.Smooth();
         wait_for_key();
526
527
528
         cout << "Janelau3:uplotandouequacoes,ulog(x)/x" << endl;</pre>
         Gnuplot g3("lines");
529
530
         g3.Grid(1);
         g3.PlotEquation("log(x)/x","log(x)/x");
531
         wait_for_key();
532
         cout << "Janela_4:_splot_x*x+y*y" << endl;</pre>
534
         Gnuplot g4("lines");
535
         g4.ZRange(0,100);
536
         g4.XLabel("x-axis").YLabel("y-axis").ZLabel("z-axis");
537
         g4.PlotEquation3d("x*x+y*y");
538
         wait_for_key();
539
540
         cout << "Janela_{\square}5:_{\square}splot_{\square}usando_{\square}Hidden3d" << endl;
541
         Gnuplot g5("lines");
542
         g5. IsoSamples (25). Hidden3d();
543
         g5.PlotEquation3d("x*y*y");
         wait_for_kev();
545
546
547
         Gnuplot g6("lines");
         cout << "Janela_{\sqcup}6:_{\sqcup}splot_{\sqcup}usando_{\sqcup}Contour" << endl;
548
         g6. IsoSamples (60). Contour();
549
         g6.Surface().PlotEquation3d("sin(x)*sin(y)+4");
550
         wait_for_key();
551
         g6.Surface().Replot();
553
554
         wait_for_key();
555
         Gnuplot g7("lines"); cout << "Janela_{\perp}7:_{\perp}usando_{\perp}Samples" << endl;
556
557
         g7. XRange (-30,20). Samples (40);
558
         g7.PlotEquation("besj0(x)*0.12e1").PlotEquation("(x*besj0(x))-2.5");
559
         wait_for_key();
560
561
         g7.Samples(400).Replot();
562
         wait_for_key();
563
564
         Gnuplot g8("filledcurves");
565
         cout << "Janelau8:ufilledcurves" << endl;
566
         g8.Legend("outside_right_top").XRange(-5,5);
567
568
         g8.PlotEquation("x*x").PlotEquation("-x*x+4");
569
                                                     // Plota uma imagem
570
         Gnuplot g9;
571
```

```
cout << "Janela_9: plot_image" << endl;
572
         const int iWidth = 255;
573
574
         const int iHeight = 255;
         g9.XRange(0,iWidth).set_yrange(0,iHeight).CBRange(0,255);
575
         g9.Command("set\squarepalette\squaregray");
576
577
         unsigned char ucPicBuf[iWidth*iHeight];
                                                      // Gera imagem em tons dde cinza
578
         for(int iIndex = 0; iIndex < iHeight*iWidth; iIndex++)</pre>
579
580
             ucPicBuf[iIndex] = iIndex % 255;
581
582
           7
         g9.plot_image(ucPicBuf,iWidth,iHeight,"greyscale");
583
         wait_for_key();
584
585
         g9.PointSize(0.6).Legend(0).PlotSlope(0.8,20);
586
587
         wait_for_key();
                                                      // Controle manual
589
590
         Gnuplot g10;
         cout << "Janela_10:_controle_manual" << endl;
591
         g10.Cmd("set_{\sqcup}samples_{\sqcup}400").Cmd("plot_{\sqcup}abs(x)/2"); // Usando Cmd()
592
                                                             // Usando operador
         g10 << "replotusqrt(x)" << "replotusqrt(-x)";
593
         wait_for_key();
594
595
       }
596
     catch (GnuplotException ge)
597
598
         cout << ge.what() << endl;</pre>
599
600
601
     cout << endl << "***uFimudouexemplou" << endl;
602
603
604
    return 0;
605 }
606
607 void wait_for_key ()
608 {
609// Todos as teclas serao considedadas, inclusive as setas
610 #if defined(WIN32) || defined(_WIN32) || defined(__WIN32__) || defined(__TOS_WIN__)
    \verb|cout| << \verb|endl| << \verb|"Pressione|| qualquer|| tecla|| para|| continuar... | << \verb|endl|; 
611
    FlushConsoleInputBuffer(GetStdHandle(STD_INPUT_HANDLE));
     _getch();
613
614#elif defined(unix) || defined(__unix) || defined(__unix__) || defined(__APPLE__)
   cout << endl << "Pressione_ENTER_para_continuar..." << endl;
615
    std::cin.clear();
                                                        // Zera estado de cin
616
    std::cin.ignore(std::cin.rdbuf()->in_avail());// Ignora
617
                                                        // Espera o pressionamento do enter
    std::cin.get();
618
619#endif
620
    return;
621 }
```

Veja a seguir alguns gráficos gerados.

1.10.2 Sentenças adicionais

- Um gráfico do gnuplot tem outros atributos, podendo-se citar: arrow, border, clip, contour, grid, mapping, polar, surface, time, view.
- Para obter uma lista completa dos comandos do gnuplot, consulte o manual do usuário, veja os exemplos apresentados no diretório demo ou ainda consulte o grupo de discussão comp.graphics.apps.gnuplot.
- O arquivo ~/.gnuplot, é um arquivo oculto/escondido, que fica no seu diretório (~) e que contém configurações que são executadas automaticamente quando o gnuplot é inicializado. É possível modificar este arquivo para setar rapidamente as coisas que você usa com mais frequência.
- Para converter o formato das imagens use o programa convert

Exemplo:

convert imagemOriginal.pdf imagemFinal.jpg

convert -verbose -density 150 -trim imagemOriginal.pdf -quality 100 -flatten -sharpen 0x1.0 in

• É possível usar o programa convert para gerar vídeos a partir de um conjunto de gráficos. Por exemplo, um simulador gera dezenas de gráficos e quero gerar um vídeo mostrando a evolução dos gráficos. Para maiores detalhes veja o manual do programa convert.

Exemplo:

convert -delay 5 *.png -quality 100% -compress None -loop 0 video.mpeg

1.11 Interfaces gráficas para o gnuplot

- Você encontra no site do gnuplot informações atualizadas sobre interfaces gráficas para o gnuplot.
- Veja o kile, http://kile.sourceforge.net.
- Veja o Unignuplot, http://unicalculus.sourceforge.net.

1.12 Leituras adicionais

• Iniciante:

- Site do gnuplot: http://www.gnuplot.info.
- Tutorial iniciante: file:gnuplot/tutorial1.ps.
- Guia de referência: file:/gnuplot/Manual-lunardi/gpcard.ps.

• Intermediário:

- Tutorial intermediário: http://www.cs.uni.edu/Help/gnuplot/TOC.html.
- FAQ: http://www.gnuplot.info/faq.html, file:/gnuplot/faq/gnuplot-faq.html.

• Avançado:

- $-\ {\it Plot} and o\ contornos:\ {\tt file:gnuplot/Manual-lunardi/contours.ps}.$
- Plotando superfícies: file:gnuplot/Manual-lunardi/surface1.ps, file:gnuplot/Manual-lunardi/surface2.ps.
- Plotando gráficos para o latex: file:gnuplot/Manual-lunardi/tutorial.ps.
- Perl e gnuplot como ferramentas computacionais no ensino de ciências exatas: http://www.revistadolinux.com.br/artigos/005,030,3,118,855.html.
- Manual:
 - file:gnuplot/Manual-lunardi/manual.ps.
- Manual oficial: file:gnuplot/gnuplot-v3.7.pdf.
- Links adicionais: http://www.gnuplot.info/links.html.
- Gnuplot em real time: https://www.youtube.com/watch?v=GgO55NzBBgs.