Question 1 - Correlation Function in Redshift Space

In class, we saw that the correlation function in redshift space is anisotropic in space and given by

$$\xi_g^s(\mathbf{s}) = \xi_g^s(s_{\parallel}, s_{\perp}) = \xi_g^s(s, \mu_s) = b^2 \sum_{l=0,2,4} c_l(\beta) L_l(\mu_s) \xi_g^s(s)$$
 (1)

where $L_l(\mu_s)$ is the Legendre Polinomial of order l, $\mu_s = \cos(\theta_s)$ is the cosine of the angle between the vector \mathbf{s} and the line-of-sight $\hat{\mathbf{z}}$, the coefficients

$$c_{l}(\beta) = \frac{2l+1}{2} \int_{-1}^{1} (1+\beta x^{2})^{2} L_{l}(x) dx = \begin{cases} 1 + \frac{2}{3}\beta + \frac{1}{5}\beta^{2}, & l = 0\\ \frac{4}{3}\beta + \frac{4}{7}\beta^{2}, & l = 2\\ \frac{8}{35}\beta^{2}, & l = 4 \end{cases}$$
 (2)

where $\beta = f/b$, b is the galaxy bias and $f = \frac{\mathrm{d} \ln D}{\mathrm{d} \ln a}$, and the multipoles

$$\xi_l^s(s) = i^l \int \frac{k^2 \mathrm{d}k}{2\pi^2} j_l(ks) P^r(k)$$
(3)

Assume the fiducial cosmology from previous problem sets in the calculations below. a) From the real-space matter power spectrum $P^r(k)$ (e.g. from CAMB), use Eq. 3 to compute the multipoles $\xi_l^s(s)$ for l=0,2,4. Plot each multipole as a function of separation s in log-scale and appropriate ranges. Notice that if the spectrum has k in units of h/Mpc, the separation s will naturally be in units of Mpc/h. Similarly $P^r(k)$ is in units of $[\text{Mpc}/h]^3$, and therefore the multipoles are unitless. Note that $j_0(x) = \sin(x)/x$ and other values of l can be obtained by recurrence relations.

- b) Assuming b=1 compute explicitly the analytical integral in Eq. 2 to derive the coefficients $c_l(\beta)$. If you have a numerical growth function D(z) from the previous problem set 8, use it to compute f; otherwise use a fitting function [e.g. $f=\Omega_m^{\gamma}(z)$ where $\Omega_m(z)=\Omega_m(1+z)^3/E^2(z)$]. Then plot f(z) and $c_l[\beta(z)]$ (for l=0,2,4) as a function of redshift z.
- c) Finally, use Eq. 1 to obtain the redshift-space correlation function as a function of parallel and perpendicular directions at z=0. Make a 2D plot of your results, with $s_{\perp}=s\cos\theta_s$ in the y-axis, and a color coding for the value of $\xi^s(s_{\parallel},s_{\perp})$. Compare these results to a similar 2D plot for the isotropic real-space correlation $\xi^r(s)=\xi^s_{l=0}(s)$. Repeat the same plots at z=1.0.

Table 1: Standard cosmology values (without units of measure).

Parameter	Value
$\Omega_b h^2$	0.022
$\Omega_c h^2$	0.12
h	0.675
n_s	0.965
A_s	$2.1 \cdot 10^{-9}$
au	0.06
Ω_k	0.0
w	-1
$N_{ m eff}$	3.046
$T_{\rm CMB}$	2.7255

Here, we are considering $\Omega_{\Lambda}=0.7$ and $\Omega_{m}=0.3.$

Item a)

We can compute the multipoles $\xi_l^s(s)$ from the matter power spectrum.

Figure 1: Multipoles $\xi_l^s(s)$ for l=0,2,4.

Item b)

From the equations given by the problem, we get Figure 2.

Figure 2: c_l values for l = 0, 2, 4 (Compared with f(z)).

We can observe that c_l for l=4 grows slower than both l=0 and l=2. We can also see that as $c_{l=2}$ grows, it surpasses $c_{l=0}$, which indicates a significant level of anisotropy at this level.

Item c)

Calculating the Redshif-space correlation function, we can observe that both plots for l = 0, 2, 4 (Figure 3) and l = 0 (Figure 4) are similar.

Figure 3: Redshift-space correlation function values for l=0,2,4 at z=0.

Figure 4: Redshift-space correlation function values for l=0 at z=0.