Badania operacyjne i komputerowe wspomaganie decyzji - laboratorium 9 zadanie 2

Paweł Gałka

9 grudnia 2019

c_b	c_j	60	30	20	0	0	0	Rozw.
	x_b	x_1	x_2	x_3	x_4	x_5	x_6	TOZW.
0	x_4	0	-2	0	1	1	-4	480
20	x_3	0	-2	1	0	1	-2	160
60	x_1	1	1.25	0	0	-0.25	0.75	40
	z_{j}	60	35	20	0	5	5	5600
	$c_j - z_j$	0	-5	0	0	-5	-5	

ad. 1 Cena ławek: c_2

$$c_2' = c_2 + \delta_2$$

Wtedy tabela przyjmuje postać:

c_b	c_{j}	60	$30 + \delta_2$	20	0	0	0	Rozw.
	x_b	x_1	x_2	x_3	x_4	x_5	x_6	1tozw.
0	x_4	0	-2	0	1	1	-4	480
20	x_3	0	-2	1	0	1	-2	160
60	x_1	1	1.25	0	0	-0.25	0.75	40
	z_{j}	60	35	20	0	5	5	5600
	$c_j - z_j$	0	$-5 + \delta_2$	0	0	-5	-5	

Zależności c_j-z_j dla \boldsymbol{x}_2 spełniają warunek:

$$-5 + \delta_2 \le 0 \Rightarrow \delta_2 \le 5$$

$$\delta_2 \in (-\infty; 5)$$

$$c_2 \in (-\infty; 35)$$

Odpowiedź: Wzrost ceny do 40 zł spowoduje przekroczenie przedziału dla którego rozwiązanie jest optymalne.

ad. 2 Cena stołów x_1 , cena krzeseł x_1

$$c_1' = c_1 + \delta_1$$

Wtedy tabela przyjmuje postać:

c_b	c_j	$60 + \delta_1$	30	20	0	0	0	Rozw.
C6	x_b	x_1	x_2	x_3	x_4	x_5	x_6	TOZW.
0	x_4	0	-2	0	1	1	-4	480
20	x_3	0	-2	1	0	1	-2	160
60	x_1	1	1.25	0	0	-0.25	0.75	40
	z_{j}	$60 + \delta_1$	$35 + 1.25\delta_1$	20	0	5 - $0.25\delta_1$	$5 + 0.75\delta_1$	5600
	$c_i - z_i$	0	$-5 - 1.25\delta_1$	0	0	$-5+0.25~\delta_1$	$-5 - 0.75\delta_1$	

Zależności c_j-z_j dla $x_2,\,x_5,\,x_6$ spełniają warunek:

$$\begin{cases}
-5 - 1.25\delta_1 & \leq 0 \\
-5 + 0.25\delta_1 & \leq 0 \\
-5 - 0.75\delta_1 & \leq 0
\end{cases} \Rightarrow \begin{cases}
\delta_1 & \geq -4 \\
\delta_1 & \leq 20 \\
\delta_1 & \geq -6.666
\end{cases}$$

$$\delta_1 \in \langle -4; 20 \rangle$$

$$c_1 \in \langle 56; 80 \rangle$$

$$c_3' = c_3 + \delta_3$$

Wtedy tabela przyjmuje postać:

	c_i	60	30	$20 + \delta_3$	0	0	0	D
c_b	x_b	x_1	x_2	x_3	x_4	x_5	x_6	Rozw.
0	x_4	0	-2	0	1	1	-4	480
20	x_3	0	-2	1	0	1	-2	160
60	x_1	1	1.25	0	0	-0.25	0.75	40
	z_j	60	$35 - 2\delta_3$	20	0	$5+\delta_3$	$5 - 2\delta_3$	5600
	$c_j - z_j$	0	$-5 + 2\delta_1$	0	0	-5 - δ_3	$-5 + 2\delta_3$	

Zależności c_j-z_j dla $x_2,\,x_5,\,x_6$ spełniają warunek:

$$\left\{ \begin{array}{ll} -5 + 2\delta_3 & \leq 0 \\ -5 - \delta_3 & \leq 0 \\ -5 + 2\delta_3 & \leq 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{ll} \delta_3 & \leq 2.5 \\ \delta_3 & \geq -5 \\ \delta_3 & \leq 2.5 \end{array} \right.$$

$$\delta_3 \in \langle -5; 2.5 \rangle$$

$$c_3 \in \langle 15; 22.5 \rangle$$

Odpowiedź : $c_1 \in \langle 56; 80 \rangle$, $c_3 \in \langle 15; 22.5 \rangle$

$$F(x_1, x_2, x_3) = 60x_1 + 30x_2 + 20x_3 \rightarrow max$$

Ograniczenia PL:

$$8x_1 + 6x_2 + 1x_3 \le 960$$

$$8x_1 + 4x_2 + 3x_3 \le 800$$

$$4x_1 + 3x_2 + 1x_3 \le 320$$

- b_1 czas obróbki wstępnej
- b_2 czas stolarni
- b_3 czas wykańczalni

Macierz
$$B^{-1}$$
:
$$\begin{bmatrix} 1 & 1 & -4 \\ 0 & 1 & -2 \\ 0 & -0.25 & 0.75 \end{bmatrix}$$
Macierze b'_i : $b = \begin{bmatrix} 960 \\ 800 \\ 320 \end{bmatrix} b'_1 = \begin{bmatrix} 960 + \epsilon_1 \\ 800 \\ 320 \end{bmatrix} b'_2 = \begin{bmatrix} 960 \\ 800 + \epsilon_2 \\ 320 \end{bmatrix} b'_3 = \begin{bmatrix} 960 \\ 800 \\ 320 + \epsilon_3 \end{bmatrix}$
Dla b'_1 :
$$B^{-1} \cdot b'_1 = \begin{bmatrix} 1 & 1 & -4 \\ 0 & 1 & -2 \\ 0 & -0.25 & 0.75 \end{bmatrix} \cdot \begin{bmatrix} 960 + \epsilon_1 \\ 800 \\ 320 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} 480 + \epsilon_1 & \ge 0 \\ 160 & \ge 0 \Rightarrow \epsilon_1 & \ge -480 \end{cases}$$

$$\epsilon_1 \in \langle -480; +\infty \rangle$$

 $b_1 \in \langle 480; +\infty \rangle$

Dla
$$b_2'$$
:

Bia
$$b_2$$
:
$$B^{-1} \cdot b_2' = \begin{bmatrix} 1 & 1 & -4 \\ 0 & 1 & -2 \\ 0 & -0.25 & 0.75 \end{bmatrix} \cdot \begin{bmatrix} 960 \\ 800 + \epsilon_2 \\ 320 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} 480 + \epsilon_2 \ge 0 & \epsilon_2 \ge -480 \\ 160 + \epsilon_2 \ge 0 \Rightarrow \epsilon_2 \ge -160 \\ 40 + \epsilon_2 \ge 0 & \epsilon_2 \le 160 \end{cases}$$

$$\epsilon_2 \in \langle -160; 160 \rangle$$

$$b_2 \in \langle 640; 960 \rangle$$

Dla b_3' :

$$B^{-1} \cdot b_3' = \begin{bmatrix} 1 & 1 & -4 \\ 0 & 1 & -2 \\ 0 & -0.25 & 0.75 \end{bmatrix} \cdot \begin{bmatrix} 960 \\ 800 \\ 320 + \epsilon_3 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} 480 - 4\epsilon_3 & \geq 0 & \epsilon_3 \leq 120 \\ 160 - 2\epsilon_3 & \geq 0 \Rightarrow \epsilon_3 \leq 80 \\ 40 + 0.75\epsilon_3 & \geq 0 & \epsilon_3 \geq -53.333 \end{cases}$$

$$\epsilon_3 \in \langle -53.333; 80 \rangle$$

$$b_3 \in \langle 266.667; 400 \rangle$$

Odpowiedź : $b_1 \in \langle 480; +\infty \rangle$, $b_2 \in \langle 640; 960 \rangle$, $b_3 \in \langle 266.667; 400 \rangle$

ad. 4

Czas wykończenia - 400h
$$\Rightarrow b_3 = 400 \Rightarrow b' = \begin{bmatrix} 960 \\ 800 \\ 400 \end{bmatrix}$$

$$x^* = \begin{bmatrix} x_4^* \\ x_3^* \\ x_1^* \end{bmatrix} = B^{-1} \cdot b' = \begin{bmatrix} 1 & 1 & -4 \\ 0 & 1 & -2 \\ 0 & -0.25 & 0.75 \end{bmatrix} \cdot \begin{bmatrix} 960 \\ 800 \\ 400 \end{bmatrix} = \begin{bmatrix} 160 \\ 0 \\ 100 \end{bmatrix}$$

$$F(x_1^*, x_2^*, x_3^*) = 60 \cdot 100 + 30 \cdot 0 + 20 \cdot 0 = 6000$$

Odpowiedź : To rozwiązanie to
$$x^* = \begin{bmatrix} x_4^* \\ x_3^* \\ x_1^* \end{bmatrix} = \begin{bmatrix} 160 \\ 0 \\ 100 \end{bmatrix}$$