

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
 United States Patent and Trademark Office
 Address: COMMISSIONER FOR PATENTS
 P.O. Box 1450
 Alexandria, Virginia 22313-1450
www.uspto.gov

U.S. APPLICATION NUMBER NO.	FIRST NAMED APPLICANT	ATTY. DOCKET NO.
10/577,893	Steven W. Ludmerer	21564Y P
INTERNATIONAL APPLICATION NO.		
PCT/US04/36575		
210 MERCK AND CO., INC P O BOX 2000 RAHWAY, NJ 07065-0907	I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450, on the date appearing below. MERCK & CO., INC. By <u>Shelley Kier</u> Date <u>1-24-07</u>	I.A. FILING DATE PRIORITY DATE 11/03/2004 11/05/2003
CONFIRMATION NO. 9691 371 FORMALITIES LETTER *OC000000021849232*		

Date Mailed: 01/05/2007

NOTIFICATION TO COMPLY WITH REQUIREMENTS FOR PATENT APPLICATIONS CONTAINING NUCLEOTIDE AND/OR AMINO ACID SEQUENCE DISCLOSURES

Applicant is given **TWO MONTHS FROM THE DATE OF THIS NOTICE** within which to file the items indicated below to avoid abandonment. Extensions of time may be obtained under the provisions of 37 CFR 1.136(a).

- A copy of the "Sequence Listing" in computer readable form has been submitted. However, the content of the computer readable form does not comply with the requirements of 37 CFR 1.822 and/or 1.823, as indicated on the attached copy of the marked -up "Raw Sequence Listing." Applicant must provide a substitute computer readable form (CRF) copy of the "Sequence Listing" and a statement that the content of the sequence listing information recorded in computer readable form is identical to the written (on paper or compact disc) sequence listing and, where applicable, includes no new matter, as required by 37 CFR 1.821(e), 1.821(f), 1.821(g), 1.825(b), or 1.825(d).

Applicant is cautioned that correction of the above items may cause the specification and drawings page count to exceed 100 pages. If the specification and drawings exceed 100 pages, applicant will need to submit the required application size fee.

For questions regarding compliance to 37 CFR 1.821-1.825 requirements, please contact:

- **For Rules Interpretation, call (571) 272-0951**
- **For Patentin Software Program Help, call Patent EBC at 1-866-217-9197 or directly at 703-305-3028 / 703-308-6845 between the hours of 6 a.m. and 12 midnight, Monday through Friday, EST.**
- **Send e-mail correspondence for Patentin Software Program Help @ ebc@uspto.gov**

Applicant is reminded that any communications to the United States Patent and Trademark Office must be mailed to the address given in the heading and include the U.S. application no. shown above (37 CFR 1.5)

Registered users of EFS-Web may alternatively submit their reply to this notice via EFS-Web.
<https://sportal.uspto.gov/authenticate/AuthenticateUserLocalEPF.html>

For more information about EFS-Web please call the USPTO Electronic Business Center at 1-866-217-9197 or visit our website at <http://www.uspto.gov/ebc>.

If you are not using EFS-Web to submit your reply, you must include a copy of this notice.

DEBORAH D WILLIAMS

Telephone: (703) 308-9140 EXT 205

PART 1 - ATTORNEY/APPLICANT COPY

U.S. APPLICATION NUMBER NO.	INTERNATIONAL APPLICATION NO.	ATTY. DOCKET NO.
10/577,893	PCT/US04/36575	21564Y

FORM PCT/DO/EO/922 (371 Formalities Notice)

STIC Biotechnology Systems Branch

RAW SEQUENCE LISTING ERROR REPORT

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) detected errors when processing the following computer readable form:

Application Serial Number: 10/577,893
Source: IPW/P
Date Processed by STIC: 05/11/2006

THE ATTACHED PRINTOUT EXPLAINS DETECTED ERRORS.

PLEASE FORWARD THIS INFORMATION TO THE APPLICANT BY EITHER:

- 1) **INCLUDING A COPY OF THIS PRINTOUT IN YOUR NEXT COMMUNICATION TO THE APPLICANT, WITH A NOTICE TO COMPLY or,**
- 2) **TELEPHONING APPLICANT AND FAXING A COPY OF THIS PRINTOUT, WITH A NOTICE TO COMPLY**

FOR CRF SUBMISSION AND PATENTIN SOFTWARE QUESTIONS, PLEASE CONTACT MARK SPENCER, TELEPHONE: 571-272-2510; FAX: 571-273-0221

TO REDUCE ERRORED SEQUENCE LISTINGS, PLEASE USE THE CHECKER VERSION 4.4.0 PROGRAM, ACCESSIBLE THROUGH THE U.S. PATENT AND TRADEMARK OFFICE WEBSITE. SEE BELOW FOR ADDRESS:

<http://www.uspto.gov/web/offices/pac/checker/chkrnote.htm>

Applicants submitting genetic sequence information electronically on diskette or CD-Rom should be aware that there is a possibility that the disk/CD-Rom may have been affected by treatment given to all incoming mail.

Please consider using alternate methods of submission for the disk/CD-Rom or replacement disk/CD-Rom.

Any reply including a sequence listing in electronic form should NOT be sent to the 20231 zip code address for the United States Patent and Trademark Office, and instead should be sent via the following to the indicated addresses:

1. EFS-Bio (<http://www.uspto.gov/ebc/efs/downloads/documents.htm>), EFS Submission User Manual - ePAVE)
2. U.S. Postal Service: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450
3. Hand Carry, Federal Express, United Parcel Service, or other delivery service (EFFECTIVE 01/14/05): U.S. Patent and Trademark Office, Mail Stop Sequence, Customer Window, Randolph Building, 401 Dulany Street, Alexandria, VA 22314

Revised 01/10/06

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450, on the date appearing below.

MERCK & CO., INC.

By Susan Aler Date 1-24-07

BEST AVAILABLE COPY

IFWP

RAW SEQUENCE LISTING
PATENT APPLICATION: US/10/577,893

DATE: 05/11/2006
TIME: 11:07:16

Input Set : A:\21564Y SEQ 05 01 06.TXT
Output Set: N:\CRF4\05112006\J577893.raw

4 <110> APPLICANT: Merck & Co., Inc.
 5 Istituto di Ricerche di Biologia Molecolare P. Angeletti S.p.A.
 7 <120> TITLE OF INVENTION: HCV REPLICONS CONTAINING NS5B FROM
 8 GENOTYPE 2B
 10 <130> FILE REFERENCE: 21564Y PCT
 C--> 12 <140> CURRENT APPLICATION NUMBER: US/10/577,893
 C--> 12 <141> CURRENT FILING DATE: 2006-05-01
 12 <150> PRIOR APPLICATION NUMBER: 60/517,605
 13 <151> PRIOR FILING DATE: 2003-11-05
 15 <160> NUMBER OF SEQ ID NOS: 28
 17 <170> SOFTWARE: FastSEQ for Windows Version 4.0
 19 <210> SEQ ID NO: 1
 20 <211> LENGTH: 591
 21 <212> TYPE: PRT
 22 <213> ORGANISM: Artificial Sequence
 24 <220> FEATURE:
 25 <223> OTHER INFORMATION: modified NS5B
 W--> 27 <221> NAME/KEY: VARIANT
 28 <222> LOCATION: (5)...(5)
 29 <223> OTHER INFORMATION: Xaa = threonine or serine
 W--> 31 <221> VARIANT
 32 <222> LOCATION: (24)...(24)
 33 <223> OTHER INFORMATION: Xaa = asparagine or serine
 W--> 35 <221> VARIANT
 36 <222> LOCATION: (31)...(31)
 37 <223> OTHER INFORMATION: Xaa = methionine or isoleucine
 W--> 39 <221> VARIANT
 40 <222> LOCATION: (376)...(376) → at this location 'Se'
 41 <223> OTHER INFORMATION: Xaa = isoleucine or leucine → at this location
 W--> 43 <400> 1
 W--> 44 Ser Met Ser Tyr Xaa Trp Thr Gly Ala Leu Ile Thr Pro Cys Gly Pro
 45 1 5 10 15
 W--> 46 Glu Glu Glu Lys Leu Pro Ile Xaa Pro Leu Ser Asn Ser Leu Xaa Arg
 47. 20 25 30
 48 Phe His Asn Lys Val Tyr Ser Thr Thr Ser Arg Ser Ala Ser Leu Arg
 49 35 40 45
 50 Ala Lys Lys Val Thr Phe Asp Arg Val Gln Val Leu Asp Ala His Tyr
 51 50 55 60
 52 Asp Ser Val Leu Gln Asp Val Lys Arg Ala Ala Ser Lys Val Ser Ala
 53 65 70 75 80
 54 Arg Leu Leu Thr Val Glu Glu Ala Cys Ala Leu Thr Pro Pro His Ser
 55 85 90 95
 56 Ala Lys Ser Arg Tyr Gly Phe Gly Ala Lys Glu Val Arg Ser Leu Ser

Does Not Comply
Corrected Diskette Needed
(pg 1,2,6,7)

392

RAW SEQUENCE LISTING
PATENT APPLICATION: US/10/577,893.

DATE: 05/11/2006
TIME: 11:07:16

Input Set : A:\21564Y SEQ 05 01 06.TXT
Output Set: N:\CRF4\05112006\J577893.raw

57	100	105	110
58	Arg Arg Ala Val Asn His Ile Arg Ser Val Trp Glu Asp Leu Leu Glu		
59	115	120	125
60	Asp Gln His Thr Pro Ile Asp Thr Thr Ile Met Ala Lys Asn Glu Val		
61	130	135	140
62	Phe Cys Ile Asp Pro Thr Lys Gly Gly Lys Pro Ala Arg Leu Ile		
63	145	150	155
64	Val Tyr Pro Asp Leu Gly Val Arg Val Cys Glu Lys Met Ala Leu Tyr		
65	165	170	175
66	Asp Ile Ala Gln Lys Leu Pro Lys Ala Ile Met Gly Pro Ser Tyr Gly		
67	180	185	190
68	Phe Gln Tyr Ser Pro Ala Glu Arg Val Asp Phe Leu Leu Lys Ala Trp		
69	195	200	205
70	Gly Ser Lys Lys Asp Pro Met Gly Phe Ser Tyr Asp Thr Arg Cys Phe		
71	210	215	220
72	Asp Ser Thr Val Thr Glu Arg Asp Ile Arg Thr Glu Glu Ser Ile Tyr		
73	225	230	235
74	Gln Ala Cys Ser Leu Pro Gln Glu Ala Arg Thr Val Ile His Ser Leu		
75	245	250	255
76	Thr Glu Arg Leu Tyr Val Gly Gly Pro Met Thr Asn Ser Lys Gly Gln		
77	260	265	270
78	Ser Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Phe Thr Thr Ser		
79	275	280	285
80	Met Gly Asn Thr Met Thr Cys Tyr Ile Lys Ala Leu Ala Ala Cys Lys		
81	290	295	300
82	Ala Ala Gly Ile Val Asp Pro Val Met Leu Val Cys Gly Asp Asp Leu		
83	305	310	315
84	Val Val Ile Ser Glu Ser Gln Gly Asn Glu Glu Asp Glu Arg Asn Leu		
85	325	330	335
86	Arg Ala Phe Thr Glu Ala Met Thr Arg Tyr Ser Ala Pro Pro Gly Asp		
87	340	345	350
88	Leu Pro Arg Pro Glu Tyr Asp Leu Glu Leu Ile Thr Ser Cys Ser Ser		
89	355	360	365
90	Asn Val Ser Val Ala Leu Asp Ser Arg Gly Arg Arg Tyr Phe Leu		
91	370	375	380
W-->	92 Thr Arg Asp Pro Thr Thr Pro Xaa Thr Arg Ala Ala Trp Glu Thr Val		
93	385	390	395
94	Arg His Ser Pro Val Asn Ser Trp Leu Gly Asn Ile Ile Gln Tyr Ala		
95	405	410	415
96	Pro Thr Ile Trp Val Arg Met Val Ile Met Thr His Phe Phe Ser Ile		
97	420	425	430
98	Leu Leu Ala Gln Asp Thr Leu Asn Gln Asn Leu Asn Phe Glu Met Tyr		
99	435	440	445
100	Gly Ala Val Tyr Ser Val Asn Pro Leu Asp Leu Pro Ala Ile Ile Glu		
101	450	455	460
102	Arg Leu His Gly Leu Glu Ala Phe Ser Leu His Thr Tyr Ser Pro His		
103	465	470	475
104	Glù Leu Ser Arg Val Ala Ala Thr Leu Arg Lys Leu Gly Ala Pro Pro		
105	485	490	495

? X98

RAW SEQUENCE LISTING

PATENT APPLICATION: US/10/577,893

DATE: 05/11/2006

TIME: 11:07:16

Input Set : A:\21564Y SEQ 05 01 06.TXT
 Output Set: N:\CRF4\05112006\J577893.raw

106 Leu Arg Ala Trp Lys Ser Arg Ala Arg Ala Val Arg Ala Ser Leu Ile
 107 500 505 510
 108 Ala Gln Gly Ala Arg Ala Ala Ile Cys Gly Arg Tyr Leu Phe Asn Trp
 109 515 520 525
 110 Ala Val Lys Thr Lys Leu Lys Leu Thr Pro Leu Pro Glu Ala Ser Arg
 111 530 535 540
 112 Leu Asp Leu Ser Gly Trp Phe Thr Val Gly Ala Gly Gly Asp Ile
 113 545 550 555 560
 114 Tyr His Ser Val Ser His Ala Arg Pro Arg Leu Leu Leu Cys Leu
 115 565 570 575
 116 Leu Leu Leu Ser Val Gly Val Gly Ile Phe Leu Leu Pro Asp Arg
 117 580 585 590
 120 <210> SEQ ID NO: 2
 121 <211> LENGTH: 1776
 122 <212> TYPE: DNA
 123 <213> ORGANISM: Artificial Sequence
 125 <220> FEATURE:
 126 <223> OTHER INFORMATION: modified NS5B
 W--> 128 <221> NAME/KEY: variation
 129 <222> LOCATION: (3)...(3)
 130 <223> OTHER INFORMATION: n = A or T
 W--> 132 <221> variation
 133 <222> LOCATION: (9)...(9)
 134 <223> OTHER INFORMATION: n = C or A
 W--> 136 <221> variation
 137 <222> LOCATION: (13)...(13)
 138 <223> OTHER INFORMATION: n = A or T
 W--> 140 <221> variation
 141 <222> LOCATION: (15)...(15)
 142 <223> OTHER INFORMATION: n = A or C
 W--> 144 <221> variation
 145 <222> LOCATION: (21)...(21)
 146 <223> OTHER INFORMATION: n = A or G
 W--> 148 <221> variation
 149 <222> LOCATION: (24)...(24)
 150 <223> OTHER INFORMATION: n = C or G
 W--> 152 <221> variation
 153 <222> LOCATION: (28)...(28)
 154 <223> OTHER INFORMATION: n = T or C
 W--> 156 <221> modified_base
 157 <222> LOCATION: (30)...(30)
 158 <223> OTHER INFORMATION: n = G or C
 W--> 160 <221> variation
 161 <222> LOCATION: (33)...(33)
 162 <223> OTHER INFORMATION: n = C or A
 W--> 164 <221> variation
 165 <222> LOCATION: (71)...(71)
 166 <223> OTHER INFORMATION: n = A or G
 W--> 168 <221> variation

RAW SEQUENCE LISTING

DATE: 05/11/2006

PATENT APPLICATION: US/10/577,893

TIME: 11:07:16

Input Set : A:\21564Y SEQ 05 01 06.TXT
 Output Set: N:\CRF4\05112006\J577893.raw

```

169 <222> LOCATION: (83)...(83)
170 <223> OTHER INFORMATION: n = G or T
W--> 172 <221> variation
173 <222> LOCATION: (1174)...(1174)
174 <223> OTHER INFORMATION: n = A or C
W--> 176 <400> 2
W--> 177 tcnatgtcnt acncntggac nggngccntn atnacaccat gtggggccga agaggagaag 60
W--> 178 ttacccgatca nccctctgag taattcgcctc atncgggttcc ataataaggt gtactccaca 120
  179 acctcgagga gtgcctctct gaggggcaaag aagggtgactt ttgacaggggt gcagggtgctg 180
  180 gacgcacact atgactcagt cttgcaggac gttaaagcggg ccgcctctaa ggtagtgcg 240
  181 aggttcctca cggttagagga agcctgcgcg ctgacccccc cccactccgc caaatcgca 300
  182 tacggattt gggcaaaaaga ggtgcgcagc ttatcttagga gggccgttaa ccacatccgg 360
  183 tccgtgtggg aggacctcct ggaagaccaa cataccccaa ttgacacaac tatcatggct 420
  184 aaaaatgagg tgttctgcat tgatccaact aaagggtgggaaa aaaaagccagc tcgcctcatc 480
  185 .gtataaccccg.accttgggt.cagggtgtgc gaaaagatgg.ccctctatga.catcgcacaa 540.
  186 aagcttccca aagcgataat gggggccatcc tatgggttcc aatactctcc cgcagaacgg 600
  187 gtcgattttcc tcctcaaagc ttggggaaat aagaaggacc caatgggggtt ctcgtatgac 660
  188 acccgctgtct ttgactcaac cgtcacggag agggacataa gaacagaaga atccatatat 720
  189 caggcttgtt ctctgcctca agaagccaga actgtcatac actcgctcac tgagagactt 780
  190 .tacgttaggag.ggccatgac.aaacagcaa gggcaatcct.gcggtctacag.gcgttgcgc 840.
  191 gcaagcggtg ttttaccac cagcatgggg aataccatga catgttacat caaagccctt 900
  192 gcagcggtta aggctgcagg gatcggttcc cctgttatgt tgggtgtgtgg agacgacctg 960
  193 gtcgtcatct cagagagcca aggttaacgag gaggacgagc gaaacacctgag agcttacacg 1020
  194 gaggctatga ccaggtattc cggccctccc ggtgaccttc ccagacccggaa atatgacttg 1080
  195 gagcttataaa catctgcctc ctcaaacgta tcggtagcgc tggactctcg gggtcgcgc 1140
W--> 196 cggtaacttcc taaccagaga cccttaccact ccantcaccc gagctgtttt ggaaacagta 1200
  197 agacactccc ctgtcaattt ttggctggc aacatcatcc agtacgcccc cacaatctgg 1260
  198 gtccggatgg tcataatgac tcacttcttc tccatactat tggcccgagga cactctgaac 1320
  199 caaatctca atttttagat gtacggggca gtatactcggt tcaatccatt agaccttaccc 1380
  200 gccataattt aaaggctaca tgggcttggaa gcctttcac tgcacacata ctctccccac 1440
  201 gaactctcac ggggtggcagc aactctcaga aaacttggag cgcctccct tagagegtgg 1500
  202 aagagtcggg cgcgtgccgt gagagcttca ctcatcgccc aaggagcggag ggcggccatt 1560
  203 tgtggccgct accttcttca ctggggcggtg aaaacaaagc tcaaaactcac tccattgccc 1620
  204 gaggcgagcc gcctggattt atccgggtgg ttcaccgtgg ggcggggcggg gggcgacatt 1680
  205 tatcacagcg tgtcgcatgc cggacccccc ctattactcc tttgcctact cctactttagc 1740
  206 gtaggagtag gcatctttt actccccat cgtga 1776
  208 <210> SEQ ID NO: 3
  209 <211> LENGTH: 1394
  210 <212> TYPE: PRT
  211 <213> ORGANISM: Artificial Sequence
  213-<220>-FEATURE:
  214 <223> OTHER INFORMATION: modified NS3-5A
W--> 216 <221> NAME/KEY: VARIANT
  217 <222> LOCATION: (1215)...(1215)
  218 <223> OTHER INFORMATION: Xaa = asparagine or serine
W--> 220-<221>-VARIANT
  221 <222> LOCATION: (904)...(904)
  222 <223> OTHER INFORMATION: Xaa = valine or alanine
W--> 224 <400> 3

```

RAW SEQUENCE LISTING
PATENT APPLICATION: US/10/577,893

DATE: 05/11/2006
TIME: 11:07:16

Input Set : A:\21564Y SEQ 05 01 06.TXT
Output Set: N:\CRF4\05112006\J577893.raw

225 Met Ala Pro Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu Leu Gly
 226 1 5 10 15
 227 Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu Gly
 228 20 25 30
 229 Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala Thr Cys
 230 35 40 45
 231 Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser Lys Thr
 232 50 55 60
 233 Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn Val Asp
 234 65 70 75 80
 235 Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser Leu Thr
 236 85 90 95
 237 Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg His Ala
 238 100 105 110
 239 Asp Val Ile Pro Val Arg Arg Arg Gly Asp Ser Arg Gly Ser Leu Leu
 240 115 120 125
 241 Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly Pro Leu
 242 130 135 140
 243 Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala Val Cys
 244 145 150 155 160
 245 Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu Ser Met
 246 165 170 175
 247 Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser Pro Pro
 248 180 185 190
 249 Ala Val Pro Gln Thr Phe Gln Val Ala His Leu His Ala Pro Thr Gly
 250 195 200 205
 251 Ser Gly Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln Gly Tyr
 252 210 215 220
 253 Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly Phe Gly
 254 225 230 235 240
 255 Ala Tyr Met Ser Lys Ala His Gly Ile Asp Pro Asn Ile Arg Thr Gly
 256 245 250 255
 257 Val Arg Thr Ile Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr Tyr Gly
 258 260 265 270
 259 Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp Ile Ile
 260 275 280 285
 261 Ile Cys Asp Glu Cys His Ser Thr Asp Ser Thr Thr Ile Leu Gly Ile
 262 290 295 300
 263 Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu Val Val
 264 305 310 315 320
 265 Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His Pro Asn
 266 325 330 335
 267 Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe Tyr Gly
 268 340 345 350
 269 Lys Ala Ile Pro Ile Glu Ala Ile Arg Gly Gly Arg His Leu Ile Phe
 270 355 360 365
 271 Cys His Ser Lys Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu Ser Gly
 272 370 375 380
 273 Leu Gly Ile Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val Ser Val

10/577,893

6

<210> 24

<211> 19

<212> DNA

<213> Artificial Sequence

<400> 24

gtctaccgtg agcgaggaa

If L₂₁₃ Responses are
Artificial or Unknown.

Pls Explain the Source
of genetic Material.

See Items 11 on Error
Summary Sheet.

10/577,893

7

<210> 27

<211> 783

<212> DNA

<213> modified NS4B

<400> 27

22137 Responses can only
be Artificial, Unknown
or Genus Species. See
Item 10 on Error Summary
Sheet.

RAW SEQUENCE LISTING ERROR SUMMARY DATE: 05/11/2006
PATENT APPLICATION: US/10/577,893 TIME: 11:07:17

Input Set : A:\21564Y SEQ 05 01 06.TXT
Output Set: N:\CRF4\05112006\J577893.raw

Please Note:

Use of n and/or Xaa have been detected in the Sequence Listing. Please review the Sequence Listing to ensure that a corresponding explanation is presented in the <220> to <223> fields of each sequence which presents at least one n or Xaa.

Seq#:1; Xaa Pos. 5,24,31,392
Seq#:2; N Pos. 3,9,13,15,21,24,28,30,33,71,93,1174
Seq#:3; Xaa Pos. 904,1215
Seq#:4; N Pos. 3644

Use of <220> Feature (NEW RULES):

Sequence(s) are missing the <220> Feature and associated headings.
Use of <220> to <223> is MANDATORY if <213> ORGANISM is "Artificial Sequence"
or "Unknown". Please explain source of genetic material in <220> to <223>
section (See "Federal Register," 6/01/98, Vol. 63, No. 104, pp. 29631-32)
(Sec.1.823 of new Rules)

Seq#:1,2,3,4,24

VERIFICATION SUMMARY

DATE: 05/11/2006

PATENT APPLICATION: US/10/577,893

TIME: 11:07:17

Input Set : A:\21564Y SEQ 05 01 06.TXT
Output Set: N:\CRF4\05112006\J577893.raw

L:12 M:270 C: Current Application Number differs, Replaced Current Application No
L:12 M:271 C: Current Filing Date differs, Replaced Current Filing Date
L:27 M:281 W: Numeric Fields not Ordered, <221> Sort in ascending order!
L:31 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:1
L:35 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:1
L:39 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:1
L:43 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:1
L:44 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:1 after pos.:0
L:46 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:1 after pos.:16
L:92 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:1 after pos.:384
L:128 M:281 W: Numeric Fields not Ordered, <221> Sort in ascending order!
L:132 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:2
L:136 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:2
L:140 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:2
L:144 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:2
L:148 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:2
L:152 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:2
L:156 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:2
L:160 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:2
L:164 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:2
L:168 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:2
L:172 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:2
L:176 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:2
L:177 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:2 after pos.:0
L:178 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:2 after pos.:60
L:196 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:2 after pos.:1140
L:216 M:281 W: Numeric Fields not Ordered, <221> Sort in ascending order!
L:220 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:3
L:224 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:3
L:337 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:3 after pos.:896
L:375 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:3 after pos.:1200
L:411 M:281 W: Numeric Fields not Ordered, <221> Sort in ascending order!
L:415 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:4
L:419 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:4
L:480 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:4 after pos.:3600
L:703 M:220 C: Keyword misspelled or invalid format, <213> ORGANISM for SEQ ID#:24
L:705 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ#:24, <213>
ORGANISM:Artificial Sequence
L:705 M:258 W: Mandatory Feature missing, <223> Tag not found for SEQ#:24, <213>
ORGANISM:Artificial Sequence
L:705 M:258 W: Mandatory Feature missing, <223> Blank for SEQ#:24, Line#:705

21564YP

SEQUENCE LISTING

<110> Ludmerer, Steven W.
Graham, Donald J.
LaFemina, Robert L.
Flores, Osvaldo A.
Pizzuti, Maura
Traboni, Cinzia

<120> HCV REPLICONS CONTAINING NS5B FROM
GENOTYPE 2B

<130> 21564YP

<140> 10/577,893
<141> 2006-05-01

<150> PCT/US2004/036575
<151> 2004-11-03

<150> 60/517,605
<151> 2003-11-05

<160> 28

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 591
<212> PRT
<213> Artificial Sequence

<220>
<223> modified NS5B

<221> VARIANT
<222> (5)...(5)
<223> Xaa = threonine or serine

<221> VARIANT
<222> (24)...(24)
<223> Xaa = asparagine or serine

<221> VARIANT
<222> (31)...(31)
<223> Xaa = methionine or isoleucine

<221> VARIANT
<222> (392)...(392)
<223> Xaa = isoleucine or leucine

<400> 1
Ser Met Ser Tyr Xaa Trp Thr Gly Ala Leu Ile Thr Pro Cys Gly Pro
1 5 10 15

Glu	Glu	Glu	Lys	Leu	Pro	Ile	Xaa	Pro	Leu	Ser	Asn	Ser	Leu	Xaa	Arg
20								25							30
Phe	His	Asn	Lys	Val	Tyr	Ser	Thr	Thr	Ser	Arg	Ser	Ala	Ser	Leu	Arg
35							40							45	
Ala	Lys	Lys	Val	Thr	Phe	Asp	Arg	Val	Gln	Val	Leu	Asp	Ala	His	Tyr
50						55					60				
Asp	Ser	Val	Leu	Gln	Asp	Val	Lys	Arg	Ala	Ala	Ser	Lys	Val	Ser	Ala
65						70			75					80	
Arg	Leu	Leu	Thr	Val	Glu	Glu	Ala	Cys	Ala	Leu	Thr	Pro	Pro	His	Ser
							85		90					95	
Ala	Lys	Ser	Arg	Tyr	Gly	Phe	Gly	Ala	Lys	Glu	Val	Arg	Ser	Leu	Ser
						100		105						110	
Arg	Arg	Ala	Val	Asn	His	Ile	Arg	Ser	Val	Trp	Glu	Asp	Leu	Leu	Glu
						115		120						125	
Asp	Gln	His	Thr	Pro	Ile	Asp	Thr	Thr	Ile	Met	Ala	Lys	Asn	Glu	Val
						130		135			140				
Phe	Cys	Ile	Asp	Pro	Thr	Lys	Gly	Gly	Lys	Lys	Pro	Ala	Arg	Leu	Ile
145						150			155					160	
Val	Tyr	Pro	Asp	Leu	Gly	Val	Arg	Val	Cys	Glu	Lys	Met	Ala	Leu	Tyr
						165		170						175	
Asp	Ile	Ala	Gln	Lys	Leu	Pro	Lys	Ala	Ile	Met	Gly	Pro	Ser	Tyr	Gly
						180		185			190				
Phe	Gln	Tyr	Ser	Pro	Ala	Glu	Arg	Val	Asp	Phe	Leu	Leu	Lys	Ala	Trp
						195		200			205				
Gly	Ser	Lys	Lys	Asp	Pro	Met	Gly	Phe	Ser	Tyr	Asp	Thr	Arg	Cys	Phe
						210		215			220				
Asp	Ser	Thr	Val	Thr	Glu	Arg	Asp	Ile	Arg	Thr	Glu	Glu	Ser	Ile	Tyr
225						230			235					240	
Gln	Ala	Cys	Ser	Leu	Pro	Gln	Glu	Ala	Arg	Thr	Val	Ile	His	Ser	Leu
						245		250			255				
Thr	Glu	Arg	Leu	Tyr	Val	Gly	Gly	Pro	Met	Thr	Asn	Ser	Lys	Gly	Gln
						260		265			270				
Ser	Cys	Gly	Tyr	Arg	Arg	Cys	Arg	Ala	Ser	Gly	Val	Phe	Thr	Thr	Ser
						275		280			285				
Met	Gly	Asn	Thr	Met	Thr	Cys	Tyr	Ile	Lys	Ala	Leu	Ala	Ala	Cys	Lys
						290		295			300				
Ala	Ala	Gly	Ile	Val	Asp	Pro	Val	Met	Leu	Val	Cys	Gly	Asp	Asp	Leu
						305		310			315			320	
Val	Val	Ile	Ser	Glu	Ser	Gln	Gly	Asn	Glu	Glu	Asp	Glu	Arg	Asn	Leu
						325		330			335				
Arg	Ala	Phe	Thr	Glu	Ala	Met	Thr	Arg	Tyr	Ser	Ala	Pro	Pro	Gly	Asp
						340		345			350				
Leu	Pro	Arg	Pro	Glu	Tyr	Asp	Leu	Glu	Leu	Ile	Thr	Ser	Cys	Ser	Ser
						355		360			365				
Asn	Val	Ser	Val	Ala	Leu	Asp	Ser	Arg	Gly	Arg	Arg	Arg	Tyr	Phe	Leu
						370		375			380				
Thr	Arg	Asp	Pro	Thr	Thr	Pro	Xaa	Thr	Arg	Ala	Ala	Trp	Glu	Thr	Val
385						390			395					400	
Arg	His	Ser	Pro	Val	Asn	Ser	Trp	Leu	Gly	Asn	Ile	Ile	Gln	Tyr	Ala
						405		410			415				
Pro	Thr	Ile	Trp	Val	Arg	Met	Val	Ile	Met	Thr	His	Phe	Phe	Ser	Ile
						420		425			430				
Leu	Leu	Ala	Gln	Asp	Thr	Leu	Asn	Gln	Asn	Leu	Asn	Phe	Glu	Met	Tyr
						435		440			445				

Gly Ala Val Tyr Ser Val Asn Pro Leu Asp Leu Pro Ala Ile Ile Glu
450 455 460
Arg Leu His Gly Leu Glu Ala Phe Ser Leu His Thr Tyr Ser Pro His
465 470 475 480
Glu Leu Ser Arg Val Ala Ala Thr Leu Arg Lys Leu Gly Ala Pro Pro
485 490 495
Leu Arg Ala Trp Lys Ser Arg Ala Arg Ala Val Arg Ala Ser Leu Ile
500 505 510
Ala Gln Gly Ala Arg Ala Ala Ile Cys Gly Arg Tyr Leu Phe Asn Trp
515 520 525
Ala Val Lys Thr Lys Leu Lys Leu Thr Pro Leu Pro Glu Ala Ser Arg
530 535 540
Leu Asp Leu Ser Gly Trp Phe Thr Val Gly Ala Gly Gly Asp Ile
545 550 555 560
Tyr His Ser Val Ser His Ala Arg Pro Arg Leu Leu Leu Leu Cys Leu
565 570 575
Leu Leu Leu Ser Val Gly Val Gly Ile Phe Leu Leu Pro Asp Arg
580 585 590

<210> 2
<211> 1776
<212> DNA
<213> Artificial Sequence

<220>
<223> modified NS5B

<221> variation
<222> (3)...(3)
<223> n = A or T

<221> variation
<222> (9)...(9)
<223> n = C or A

<221> variation
<222> (13)...(13)
<223> n = A or T

<221> variation
<222> (15)...(15)
<223> n = A or C

<221> variation
<222> (21)...(21)
<223> n = A or G

<221> variation
<222> (24)...(24)
<223> n = C or G

<221> variation
<222> (28)...(28)
<223> n = T or C

```

<221> modified_base
<222> (30)...(30)
<223> n = G or C

<221> variation
<222> (33)...(33)
<223> n = C or A

<221> variation
<222> (71)...(71)
<223> n = A or G

<221> variation
<222> (83)...(83)
<223> n = G or T

<221> variation
<222> (1174)...(1174)
<223> n = A or C

<400> 2
tcnatgtcnt acncntggac ngngccntn atnacaccat gtgggcccga agaggagaag 60
ttaccgatca nccctctgag taattcgctc atncggttcc ataataaggt gtactccaca 120
acctcgagga gtgcctctct gagggcaaaag aaggtgactt ttgacagggt gcaggtgctg 180
gacgcacact atgactcagt cttgcagagc gttaagcggg ccgcctctaa ggtagtgcg 240
aggctcctca cggtagagga agcctgcgcg ctgacccgc cccactccgc caaatgcga 300
tacggatttg gggcaaaaga ggtgcgcagc ttatcttaga gggccgttaa ccacatccgg 360
tccgtgtggg aggacctcct ggaagaccaa catacccaa ttgacacaac tatcatggct 420
aaaaatgagg tttctgcattt tgatccaact aaaggtgggaaa aaaaaggccagc tcgcctcattc 480
gtataccccg accttggggt cagggtgtgc gaaaagatgg ccctctatga catcgaccaa 540
aagcttccca aagcgataat gggccatcc tatgggttcc aatactctcc cgcagaacgg 600
gtcgatttcc tcctcaaagc ttggggaaagt aagaaggacc caatgggtt ctcgtatgac 660
acccgctgtt ttgactcaac cgtcacggag agggacataa gaacagaaga atccatatat 720
caggcttggt ctctgcctca agaagccaga actgtcatac actcqctcac tgagagactt 780
tacgttaggag gccccatgac aaacagcaaa gggcaatctt gcggctacag gcgttgcgc 840
gcaagcgggt ttttaccac cagcatgggg aataccatga catgttacat caaaggccct 900
gcagcgtgtt aggctgcagg gatcgtggac cctgttatgt tggtagtgg agacgacctg 960
gtcgtcatct cagagagcca aggttaacggag gaggacgagc gaaacctgag agctttcacg 1020
gaggctatga ccaggatttc cggccctccc ggtgaccttc ccagaccgga atatgactt 1080
gagcttataa catcctgctc ctcaaacgta tcgttagcgc tggactctcg gggtcgcgc 1140
cggtacttcc taaccagaga ccctaccact ccantcaccc gagctgctt gggaaacagta 1200
agacactccc ctgtcaattt ttggctggc aacatcatcc agtacgcccc cacaatctgg 1260
gtccggatgg tcataatgac tcacttcttc tccatactat tggcccagga cactctgaac 1320
caaatctca attttagat gtacggggca gtatactcgg tcaatccatt agacctaccg 1380
gccataattt aaaggctaca tgggcttggaa gcctttcac tgcacacata ctctccccac 1440
gaactctcac gggtggcagc aactctcaga aaacttggag cgccctccct tagagcgtgg 1500
aagagtcggg cgcgtccgt gagagcttca ctcatcgccc aaggagcggag ggcggccatt 1560
tgtggccgtt acctttcaa ctgggcgggtt aaaacaaagc tcaaactcac tccattgcgg 1620
gaggcgagcc gcctggattt atccgggtgg ttccacgtgg ggcggccgg gggcgacatt 1680
tatcacagcg tgcgtcatgc ccgacccgc ctattactcc tttgcctact cctacttagc 1740
gtaggagtag gcatttttt actccccat cgatga 1776

```

<210> 3
<211> 1394
<212> PRT

<213> Artificial Sequence

<220>

<223> modified NS3-5A

<221> VARIANT

<222> (1215)...(1215)

<223> Xaa = asparagine or serine

<221> VARIANT

<222> (904)...(904)

<223> Xaa = valine or alanine

<400> 3

Met	Ala	Pro	Ile	Thr	Ala	Tyr	Ser	Gln	Gln	Thr	Arg	Gly	Leu	Leu	Gly
1								5		10			15		
Cys	Ile	Ile	Thr	Ser	Leu	Thr	Gly	Arg	Asp	Lys	Asn	Gln	Val	Glu	Gly
								20		25			30		
Glu	Val	Gln	Val	Val	Ser	Thr	Ala	Thr	Gln	Ser	Phe	Leu	Ala	Thr	Cys
								35		40			45		
Val	Asn	Gly	Val	Cys	Trp	Thr	Val	Tyr	His	Gly	Ala	Gly	Ser	Lys	Thr
	50						55			60					
Leu	Ala	Gly	Pro	Lys	Gly	Pro	Ile	Thr	Gln	Met	Tyr	Thr	Asn	Val	Asp
	65						70			75			80		
Gln	Asp	Leu	Val	Gly	Trp	Gln	Ala	Pro	Pro	Gly	Ala	Arg	Ser	Leu	Thr
								85		90			95		
Pro	Cys	Thr	Cys	Gly	Ser	Ser	Asp	Leu	Tyr	Leu	Val	Thr	Arg	His	Ala
								100		105			110		
Asp	Val	Ile	Pro	Val	Arg	Arg	Gly	Asp	Ser	Arg	Gly	Ser	Leu	Leu	
		115					120			125					
Ser	Pro	Arg	Pro	Val	Ser	Tyr	Leu	Lys	Gly	Ser	Ser	Gly	Gly	Pro	Leu
							130		135			140			
Leu	Cys	Pro	Ser	Gly	His	Ala	Val	Gly	Ile	Phe	Arg	Ala	Ala	Val	Cys
	145						150			155			160		
Thr	Arg	Gly	Val	Ala	Lys	Ala	Val	Asp	Phe	Val	Pro	Val	Glu	Ser	Met
							165		170			175			
Glu	Thr	Thr	Met	Arg	Ser	Pro	Val	Phe	Thr	Asp	Asn	Ser	Ser	Pro	Pro
							180		185			190			
Ala	Val	Pro	Gln	Thr	Phe	Gln	Val	Ala	His	Leu	His	Ala	Pro	Thr	Gly
							195		200			205			
Ser	Gly	Lys	Ser	Thr	Lys	Val	Pro	Ala	Ala	Tyr	Ala	Ala	Gln	Gly	Tyr
	210					215				220					
Lys	Val	Leu	Val	Leu	Asn	Pro	Ser	Val	Ala	Ala	Thr	Leu	Gly	Phe	Gly
	225					230				235			240		
Ala	Tyr	Met	Ser	Lys	Ala	His	Gly	Ile	Asp	Pro	Asn	Ile	Arg	Thr	Gly
							245		250			255			
Val	Arg	Thr	Ile	Thr	Thr	Gly	Ala	Pro	Val	Thr	Tyr	Ser	Thr	Tyr	Gly
							260		265			270			
Lys	Phe	Leu	Ala	Asp	Gly	Gly	Cys	Ser	Gly	Gly	Ala	Tyr	Asp	Ile	Ile
							275		280			285			
Ile	Cys	Asp	Glu	Cys	His	Ser	Thr	Asp	Ser	Thr	Thr	Ile	Leu	Gly	Ile
							290		295			300			
Gly	Thr	Val	Leu	Asp	Gln	Ala	Glu	Thr	Ala	Gly	Ala	Arg	Leu	Val	Val
	305						310			315			320		

Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His Pro Asn
 325 330 335
 Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe Tyr Gly
 340 345 350
 Lys Ala Ile Pro Ile Glu Ala Ile Arg Gly Gly Arg His Leu Ile Phe
 355 360 365
 Cys His Ser Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu Ser Gly
 370 375 380
 Leu Gly Ile Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val Ser Val
 385 390 395 400
 Ile Pro Thr Ile Gly Asp Val Val Val Ala Thr Asp Ala Leu Met
 405 410 415
 Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Thr Cys
 420 425 430
 Val Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu
 435 440 445
 Thr Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly
 450 455 460
 Arg Thr Gly Arg Gly Arg Met Gly Ile Tyr Arg Phe Val Thr Pro Gly
 465 470 475 480
 Glu Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys Tyr
 485 490 495
 Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr Ser Val
 500 505 510
 Arg Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys Gln Asp
 515 520 525
 His Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp
 530 535 540
 Ala His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe Pro Tyr
 545 550 555 560
 Leu Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala Pro Pro
 565 570 575
 Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro Thr
 580 585 590
 Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val Gln Asn
 595 600 605
 Glu Val Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala Cys Met
 610 615 620
 Ser Ala Asp Leu Glu Val Val Thr Ser Thr Trp Val Leu Val Gly Gly
 625 630 635 640
 Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Thr Thr Gly Ser Val Val
 645 650 655
 Ile Val Gly Arg Ile Ile Leu Ser Gly Arg Pro Ala Ile Val Pro Asp
 660 665 670
 Arg Glu Phe Leu Tyr Gln Glu Phe Asp Glu Met Glu Glu Cys Ala Ser
 675 680 685
 His Leu Pro Tyr Ile Glu Gln Gly Met Gln Leu Ala Glu Gln Phe Lys
 690 695 700
 Gln Lys Ala Leu Gly Leu Leu Gln Thr Ala Thr Lys Gln Ala Glu Ala
 705 710 715 720
 Ala Ala Pro Val Val Glu Ser Lys Trp Arg Ala Leu Glu Thr Phe Trp
 725 730 735
 Ala Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln Tyr Leu Ala Gly
 740 745 750

Leu Ser Thr Leu Pro Gly Asn Pro Ala Ile Ala Ser Leu Met Ala Phe
 755 760 765
 Thr Ala Ser Ile Thr Ser Pro Leu Thr Thr Gln Ser Thr Leu Leu Phe
 770 775 780
 Asn Ile Leu Gly Gly Trp Val Ala Ala Gln Leu Ala Pro Pro Ser Ala
 785 790 795 800
 Ala Ser Ala Phe Val Gly Ala Gly Ile Ala Gly Ala Ala Val Gly Ser
 805 810 815
 Ile Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala Gly Tyr Gly Ala
 820 825 830
 Gly Val Ala Gly Ala Leu Val Ala Phe Lys Val Met Ser Gly Glu Met
 835 840 845
 Pro Ser Thr Glu Asp Leu Val Asn Leu Leu Pro Ala Ile Leu Ser Pro
 850 855 860
 Gly Ala Leu Val Val Gly Val Val Cys Ala Ala Ile Leu Arg Arg His
 865 870 875 880
 Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu Ile Ala
 885 890 895
 Phe Ala Ser Arg Gly Asn His Xaa Ser Pro Thr His Tyr Val Pro Glu
 900 905 910
 Ser Asp Ala Ala Ala Arg Val Thr Gln Ile Leu Ser Ser Leu Thr Ile
 915 920 925
 Thr Gln Leu Leu Lys Arg Leu His Gln Trp Ile Asn Glu Asp Cys Ser
 930 935 940
 Thr Pro Cys Ser Gly Ser Trp Leu Arg Asp Val Trp Asp Trp Ile Cys
 945 950 955 960
 Thr Val Leu Thr Asp Phe Lys Thr Trp Leu Gln Ser Lys Leu Leu Pro
 965 970 975
 Gln Leu Pro Gly Val Pro Phe Phe Ser Cys Gln Arg Gly Tyr Lys Gly
 980 985 990
 Val Trp Arg Gly Asp Gly Ile Met Gln Thr Thr Cys Pro Cys Gly Ala
 995 1000 1005
 Gln Ile Thr Gly His Val Lys Asn Gly Ser Met Arg Ile Val Gly Pro
 1010 1015 1020
 Lys Thr Cys Ser Asn Thr Trp His Gly Thr Phe Pro Ile Asn Ala Tyr
 1025 1030 1035 1040
 Thr Thr Gly Pro Cys Thr Pro Ser Pro Ala Pro Asn Tyr Ser Arg Ala
 1045 1050 1055
 Leu Trp Arg Val Ala Ala Glu Glu Tyr Val Glu Val Thr Arg Val Gly
 1060 1065 1070
 Asp Phe His Tyr Val Thr Gly Met Thr Thr Asp Asn Val Lys Cys Pro
 1075 1080 1085
 Cys Gln Val Pro Ala Pro Glu Phe Phe Thr Glu Val Asp Gly Val Arg
 1090 1095 1100
 Leu His Arg Tyr Ala Pro Ala Cys Arg Pro Leu Leu Arg Glu Glu Val
 1105 1110 1115 1120
 Thr Phe Gln Val Gly Leu Asn Gln Tyr Leu Val Gly Ser Gln Leu Pro
 1125 1130 1135
 Cys Glu Pro Glu Pro Asp Val Ala Val Leu Thr Ser Met Leu Thr Asp
 1140 1145 1150
 Pro Ser His Ile Thr Ala Glu Thr Ala Lys Arg Arg Leu Ala Arg Gly
 1155 1160 1165
 Ser Pro Pro Ser Leu Ala Ser Ser Ser Ala Ile Gln Leu Ser Ala Pro
 1170 1175 1180

Ser Leu Lys Ala Thr Cys Thr His His Val Ser Pro Asp Ala Asp
 1185 1190 1195 1200
 Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu Met Gly Gly Xaa Ile
 1205 1210 1215
 Thr Arg Val Glu Ser Glu Asn Lys Val Val Val Leu Asp Ser Phe Asp
 1220 1225 1230
 Pro Leu Arg Ala Glu Glu Asp Glu Arg Glu Val Ser Val Pro Ala Glu
 1235 1240 1245
 Ile Leu Arg Lys Ser Lys Lys Phe Pro Ala Ala Met Pro Ile Trp Ala
 1250 1255 1260
 Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Ser Trp Lys Asp Pro Asp
 1265 1270 1275 1280
 Tyr Val Pro Pro Val Val His Gly Cys Pro Leu Pro Pro Ile Lys Ala
 1285 1290 1295
 Pro Pro Ile Pro Pro Arg Arg Lys Arg Thr Val Val Leu Thr Glu
 1300 1305 1310
 Ser Ser Val Ser Ser Ala Leu Ala Glu Leu Ala Thr Lys Thr Phe Gly
 1315 1320 1325
 Ser Ser Glu Ser Ser Ala Val Asp Ser Gly Thr Ala Thr Ala Leu Pro
 1330 1335 1340
 Asp Gln Ala Ser Asp Asp Gly Asp Lys Gly Ser Asp Val Glu Ser Tyr
 1345 1350 1355 1360
 Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly Asp Pro Asp Leu Ser
 1365 1370 1375
 Asp Gly Ser Trp Ser Thr Val Ser Glu Glu Ala Ser Glu Asp Val Val
 1380 1385 1390
 Cys Cys

<210> 4
 <211> 4182
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> modified NS3-5A

<221> variation
 <222> (2711)...(2711)
 <223> n = T or C

<221> variation
 <222> (3645)...(3645)
 <223> n = A or G

<400> 4
 atggcgccca tcacggccta ctcccaacag acgcggggcc tacttggtt catcatcact 60
 agccttacag gcccggacaa gaaccaggc gagggagagg ttccagggtt ttccaccgca 120
 acacaatcct tcctggcgac ctgcgtcaac ggcgtgtttt ggaccgttta ccatgggtct 180
 ggctcaaaga ccttagccgg cccaaagggg ccaatcaccc agatgtacac taatgtggac 240
 caggacctcg tcggctggca ggcgcgggggg ggggcgcgtt ccttgacacc atgcacactgt 300
 ggcagctcg acctttaattt ggtcacgaga catgctgacg tcattccgtt ggcgcggcg 360
 ggcgacagta gggggagcct gctctcccccc aggcctgtct cctactgaa gggctttcg 420
 ggtggtccac tgctctgccc ttcggggcac gctgtggca tcttccggc tgccgtatgc 480
 acccgggggg ttgcgaaggc ggtggacttt gtgcccgtag agtccatgga aactactatg 540

cggctccgg tcttacgga caactcatcc cccccggccg taccgcagac atttcaagt 600
 gcccacctac acgctccac tggcagcggc aagagtacta aagtgcggc tgcatatgc 660
 gcccaagggt acaagggtct cgtcctcaat ccgtccgttg ccgctacctt agggtttggg 720
 gcgtatatgt ctaaggcaca cggtattgac cccaaacatca gaactgggt aaggaccatt 780
 accacaggcg cccccgtcac atactctacc tatggcaagt ttcttgcga tggtggttgc 840
 tctggggcg cttatgacat cataatatgt gatgagtgcc attcaactga ctgcactaca 900
 atcttggca tcggcacagt cctggaccaa gcggagacgg ctggagcgcg gcttgtcgtg 960
 ctcgccaccg ctacgcctcc gggatcggtc accgtgcac acccaaacat cgaggaggtg 1020
 gccctgtcta atactggaga gatcccctt tatggcaag ccateccccat tgaagccatc 1080
 agggggggaa ggcatctcat tttctgtcat tccaagaaga agtgcgacga gtcgcccga 1140
 aaactgtca gctcggaaat caacgctgtg gcgtattacc gggggctcga tgggtccgtc 1200
 ataccaacta tcggagacgt cgttgcgtg gcaacagacg ctctgatgac gggctatacg 1260
 ggcgactttg actcaigtat cgactgtaac acatgtgtca cccagacagt cgacttcagc 1320
 ttggatccca cttcaccat tgagacgacg accgtgcctc aagacgcagt gtcgcccgt 1380
 cagcggcggg gtaggactgg cagaggtagg atgggcattt acaggtttgt gactccggg 1440
 gaacggccct cgggcatgtt cgatccctcg gtcctgtgtg agtgctatga cgcgggctgt 1500
 gcttggtagc agctcacccc cggcggagacc tcggttaggt tgcgggctta cctgaacaca 1560
 ccagggttgc ccggttgcga ggaccacctg gagttctggg agagtgtctt cacaggcctc 1620
 acccacatag atgcacactt cttgtccca accaagcagg caggagacaa cttccctac 1680
 ctggtagcat accaagccac ggtgtgcgcc aggctcagg ccccacctcc atcatggat 1740
 caaatgtgga agtgcgtcat acggctgaaa cctacgctgc acgggccaac acccttgctg 1800
 tacaggctgg gagccgtcca aatgaggtc accctcaccc accccataac caaatacatac 1860
 atggcatgca tggcgctga cctggagggtc gtcaactagca cctgggtgt ggtggcgga 1920
 gtccttgcag ctctggccgc gtattgcctg acaacaggca gtgtggcat tgggttagg 1980
 attatcttgc cggggaggcc ggctattgtt cccgacacagg agtttctcta ccaggagttc 2040
 gatgaaatgg aagagtgcgc ctcgcaccc ctttacatcg agcagggaaat gcaactcgcc 2100
 gagcaattca agcagaaagc gctcggttta ctgcaaacag ccaccaaaca agcggaggct 2160
 gctgctcccg tggggagtc caagtggcga gcccctgaga cattctggc gaagcacatg 2220
 tggaaattca tcagcggtat acagttacta gcaggcttat ccactctgcc tgggaacccc 2280
 gcaatagcat cattgtatggc attcacagcc tctatcacca gcccgtcaca cacccaaagt 2340
 accctctgt ttaacatctt ggggggggtgg gtggctgcctt aactcgcccc ccccagcgcc 2400
 gcttcggctt tcgtggcgcc cggcatcgcc ggtgcggctg ttggcagcat aggccttggg 2460
 aaggtgttgc tggacattct ggcgggttat ggagcaggag tggccggcgc gtcgtggcc 2520
 ttcaagggtca tgagcggtca gatgccctcc accgaggacc tggtaatctt acttcctgcc 2580
 atccctcttc ctggcgccct ggtcgctggg gtgcgtgtg cagcaatact ggcgtcgacac 2640
 gtgggtccgg gagagggggc tggcgtgtt atgaaccggc tgatagcggt cgcctcgccg 2700
 ggtaatcatg ttccccccac gcactatgtg cctgagagcg acgcccgcgc gctgtttact 2760
 cagatcctct ccagccttac catcaactcg ctgctgaaaa ggctccacca gtggattaat 2820
 gaagactgtc ccacaccgtg ttccggctcg tggctaaaggg atgtttgggat cttggatatgc 2880
 acgggtttga ctgacttcaa gacctggctc cagtcacgcgc tcctgcgcga gtcaccggg 2940
 gtccttttt tctcgccca acgcgggtac aaggggagtct ggcggggaga cggcatcatg 3000
 caaaccaccc gcccattgtgg agcacagatc accggacatg tcaaaaacgg ttccatgagg 3060
 atcgctggc ctaagacctg cagcaacacg tggcatggaa cattccccat caacgcatac 3120
 accacggggcc cctgcacacc ctctccagcg ccaaactatt cttagggcgct gtggcggtg 3180
 gccgctgagg agtacgtgg agtcacgcgg gtgggggatt tccactacgt gacgggcattg 3240
 accactgaca acgtaaagtg cccatgccc gttccggctc ctgaattctt cacggagggt 3300
 gacggaggtc ggttgcacag gtacgctccg gcgtgcaggc ctctccatcg ggaggaggt 3360
 acattccagg tcgggctcaa ccaataccctg gttgggtcac agctaccatg cgagcccga 3420
 ccggatgttag cagtgcgtcac ttccatgctc accgaccctt cccacatcac agcagaaacg 3480
 gctaaggcgtg ggttggccag ggggtctccc ccctcccttgg ccagctttc agctatccag 3540
 ttgtctgcgc ttcccttgcgaa ggcgacatgc actaccaccat atgtcttcc ggacgctgac 3600
 ctcatcgagg ccaacctccct gtggcgccag gagatgggcg ggancatcac ccgcgtggag 3660
 tcggagaaca aggtgttagt cctggactct ttgcacccgc ttgcagcggaa ggaggatgag 3720
 aggaagttat ccgttccggc ggagatccctg cgaaaatcca agaagtcccc cgacgcgtat 3780
 cccatctggg cgcccccggaa ttacaaccct ccactgttag agtcctggaa ggaccggac 3840

tacgtccctc cggtggtgca cgggtgcccc ttgccaccta tcaaggcccc tccaataccca 3900
 cctccacgga gaaagaggac ggttgcctta acagagtctt ccgtgtcttc tgcccttagcg 3960
 gagctcgcta ctaagacctt cggcagctcc gaatcatcg ccgtcgacag cgacgacggcg 4020
 accgccccttc ctgaccaggc ctccgacgac ggtgacaaag gatccgacgt ttagtcgtac 4080
 tcctccatgc ccccccgtga gggggAACCG gggggACCCG atctcagtga cgggtcttgg 4140
 tctaccgtga gcgaggaagc tagtgaggat gtcgtctgct gc 4182

<210> 5
 <211> 34
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> primer

<400> 5
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 34

<210> 6
 <211> 23
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> primer

<400> 6
 atggagaaga aggtcattgt gtg 23

<210> 7
 <211> 23
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> primer

<400> 7
 gctcccatta ctgcctacac tca 23

<210> 8
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> primer

<400> 8
 ccgctctacc gagcggggag t 21

<210> 9
 <211> 25
 <212> DNA
 <213> Artificial Sequence

<220>	
<223> primer	
<400> 9	
ctctcctcaa gcgtattcaa caagg	25
<210> 10	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 10	
ccgtgcagcg tagtttcag ccgta	25
<210> 11	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 11	
cccattgtat gggatctgat ctgg	24
<210> 12	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 12	
caagctgaag tcgactgtct gggtgaca	28
<210> 13	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 13	
tacctggtca cgagacatgc tgacgtcat	29
<210> 14	
<211> 19	
<212> DNA	
<213> Artificial Sequence	

<220>		
<223> primer		
<400> 14		
ggagaggata gcagggagt		19
<210> 15		
<211> 29		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 15		
cgtatatgtc taaggcacac ggtattgac		29
<210> 16		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 16		
ggctggtgat agaggctgtg aatgccat		28
<210> 17		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 17		
ggatcaaatg tggaagtgtc tcatacgg		28
<210> 18		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 18		
tcgagggttgt ggagtacac		19
<210> 19		
<211> 29		
<212> DNA		
<213> Artificial Sequence		

<220>	
<223> primer	
<400> 19	
gcaatagcat cattgatggc attcacagc	29
<210> 20	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 20	
ggcctcgatg aggtcagcgt	20
<210> 21	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 21	
cttcctcaa gcgtattcaa caagg	25
<210> 22	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 22	
gtaaagtgcc cgtgtcaggt	20
<210> 23	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 23	
catgatagtt gtgtcaattt g	21
<210> 24	
<211> 19	
<212> DNA	
<213> Artificial Sequence	

```

<220>
<223> primer

<400> 24
gtctaccgtg agcgaggaa 19

<210> 25
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 25
atactcctgg acaggggccc t 21

<210> 26
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 26
gcgcgcgcat cgatcgaaaa gtaaaaaagat gcctac 36

<210> 27
<211> 783
<212> DNA
<213> Artificial Sequence

<220>
<223> modified NS4B

<400> 27
gcctccaaag ccgcctcat tgaggaaggg cagcgatgg cgagatgct caaatctaag 60
atacaaggcc tcctacaaca ggccacaagg caagctcaag acatacagcc agtatacac 120
tcatcatggc ccaagcttga acaattttgg gccaaacaca tgtgaaactt catcagtgg 180
atacagtacc tagcaggact ctccacccta cggggaaatc ctgcagtagc atcaatgat 240
gcttttagcg ccgcgtgac tagccacta cccaccagca ccaccatctt cttgaacatc 300
atgggaggat gttggctc tcagattgcc cccccctggc gagccactgg cttcgttg 360
agtggcttag tggggcgcc cgtcggaagc ataggcctgg gtaagatact ggtggacgtt 420
ttggccgggt acggcgcagg catttcaggc gccctcgtag ctttaagat catgagcg 480
gagaagccca cggtagaaga cgttgtgaat ctccctgcctg ctattctgtc tcctggcgc 540
ttggtagtgg gagtcatctg tgcaagcaatc ctgcgtcgac acgtgggtcc gggagagg 600
gctgtgcagt ggtgaaccc gctgatagcg ttgcctcgc gggtaatca tgcttcccc 660
acgcactatg tgcctgagag cgacggccca ggcgtgtta ctcagatctt ctccagcctt 720
accatcaactc agctgctgaa aaggctccac cagtggttta atgaagactg ctccacaccg 780
tgt 783

<210> 28
<211> 261

```

<212> PRT
<213> Artificial Sequence

<220>
<223> modified NS4B

<400> 28
Ala Ser Lys Ala Ala Leu Ile Glu Glu Gly Gln Arg Met Ala Glu Met
1 5 10 15
Leu Lys Ser Lys Ile Gln Gly Leu Leu Gln Gln Ala Thr Arg Gln Ala
20 25 30
Gln Asp Ile Gln Pro Ala Ile Gln Ser Ser Trp Pro Lys Leu Glu Gln
35 40 45
Phe Trp Ala Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln Tyr Leu
50 55 60
Ala Gly Leu Ser Thr Leu Pro Gly Asn Pro Ala Val Ala Ser Met Met
65 70 75 80
Ala Phe Ser Ala Ala Leu Thr Ser Pro Leu Pro Thr Ser Thr Thr Ile
85 90 95
Leu Leu Asn Ile Met Gly Gly Trp Leu Ala Ser Gln Ile Ala Pro Pro
100 105 110
Ala Gly Ala Thr Gly Phe Val Val Ser Gly Leu Val Gly Ala Ala Val
115 120 125
Gly Ser Ile Gly Leu Gly Lys Ile Leu Val Asp Val Leu Ala Gly Tyr
130 135 140
Gly Ala Gly Ile Ser Gly Ala Leu Val Ala Phe Lys Ile Met Ser Gly
145 150 155 160
Glu Lys Pro Thr Val Glu Asp Val Val Asn Leu Leu Pro Ala Ile Leu
165 170 175
Ser Pro Gly Ala Leu Val Val Gly Val Ile Cys Ala Ala Ile Leu Arg
180 185 190
Arg His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu
195 200 205
Ile Ala Phe Ala Ser Arg Gly Asn His Ala Ser Pro Thr His Tyr Val
210 215 220
Pro Glu Ser Asp Ala Ala Ala Arg Val Thr Gln Ile Leu Ser Ser Leu
225 230 235 240
Thr Ile Thr Gln Leu Leu Lys Arg Leu His Gln Trp Ile Asn Glu Asp
245 250 255
Cys Ser Thr Pro Cys
260