Pages: 2

Traitement Numérique des Signaux Aléatoires

Série 1

Exercice 1

Soit la variable aléatoire continue X définie par la fonction de densité :

$$p_x(x) = \begin{cases} 2x & si \ x \in [0,1] \\ 0 & sinon \end{cases}$$

- 1. Déterminer la fonction de répartition de X. La représenter.
- 2. Calculer $P(\frac{1}{3} < X < \frac{1}{2})$
- 3. Calculer E(X); $E(X^2)$; $E(\frac{1}{2}X + 3)$
- 4. Déduire $\sigma_X^2 = var(X)$

Exercice 2

3 urnes A, B et C contiennent respectivement :

A: 1 boule blanche et 3 boules noires

B: 2 boules blanches et 2 boules noires

C: 3 boules blanches et 1 boule noire

On tire au hasard une boule de chacune des 3 urnes. X est le nombre total de boules blanches obtenues.

- 1. Donner la loi de probabilité de X
- 2. Donner la fonction de répartition de X, la représenter.

Exercice 3

Dans un supermarché, le temps d'attente X à la caisse, exprimé en minutes, suit une loi uniforme sur [1,11].

- 1. Déterminer la fonction densité de probabilité p de X.
- 2. Quelle est la probabilité que le temps d'attente soit compris entre 3 et 5mn ?
- 3. Quelle est la probabilité qu'un client attente plus de 8mn à la caisse ?
- 4. Préciser le temps d'attente moyen à la caisse.

Exercice 4

La variable X suit la loi normale $N(180; (10,5)^2)$. Les résultats seront arrondis à 10^{-3} près.

- 1. Déterminer les probabilités : $P(170 \le X \le 200)$; $P(X \le 150)$; $P(X \ge 160)$.
- 2. Déterminer le réel a tel que P(X < a) = 0.875
- 3. Déterminer le réel b tel que $P(X \ge b) = \frac{3}{4}$