Exercises on the Elvis Problem - Part I

2 The *polar* of a set

Exercise 2.1. Show the following.

- (a) For any nonempty set $F \subseteq \mathbb{R}^n$, one has F° belonging to \mathcal{C} .
- (b) $F \in \mathcal{C}$ is bounded if and only if $\mathbf{0} \in \operatorname{int}(F^{\circ})$.
- (c) $F \in \mathcal{C}_0$ if and only if $F^{\circ} \in \mathcal{C}_0$.
- (d) If $F = r\overline{\mathbb{B}}$ for some r > 0, then $F^{\circ} = \frac{1}{r}\overline{\mathbb{B}}$.
- (a) *Proof.* Assume that F is nonempty. Then for every $v \in F$ we have that $\langle \mathbf{0}, v \rangle = 0 < 1$ so that $\mathbf{0} \in F^{\circ}$ therefore F° is nonempty. Assume that $\zeta_0, \zeta_1 \in F^{\circ}$. Let $0 \leq \lambda \leq 1$, so that

$$\langle \lambda \zeta_0 v \rangle \leq 1, \langle \zeta_1, v \rangle \leq 1, \text{ and } \langle \lambda \zeta_1, v \rangle \leq 1.$$

Then

$$\langle \lambda \zeta_0 + (1 - \lambda)\zeta_1, v \rangle = \langle \lambda \zeta_0, v \rangle + \langle \zeta_1, v \rangle - \langle \lambda \zeta_1, v \rangle \le 1.$$

so $\lambda \zeta_0 + (1 - \lambda)\zeta_1 \in F^{\circ}$ and F° is convex. ** F° closed**

- (b) Proof.
 - (⇒) Let $F \in \mathcal{C}$ be bounded. Then there exists some $m \geq 0$ such that for all $v \in F$, |v| < m. Let $\zeta \in \mathbb{R}^n$ such that $|\zeta| < 1/m$, then by the Cauchy Schwarz inequality,

$$\langle \zeta, v \rangle \le |\zeta| |v| \le \frac{1}{m} m \le 1.$$

Therefore the open ball centered at the origin with radius $\frac{1}{m}$ is contained in F° meaning that $\mathbf{0} \in \mathrm{int}(F^{\circ})$.

 (\Leftarrow) Let $\mathbf{0} \in \operatorname{int}(F^{\circ})$ and $\epsilon > 0$. Then there is open ball centered at the origin with radius ϵ contained in F° . Let $\zeta \in \mathbb{B}(0, \epsilon)$. If $v \in F$ with $v \neq 0$, then $\zeta = \epsilon \frac{v}{|v|} \in F^{\circ}$. Furthermore,

$$\langle \zeta, v \rangle = \frac{\epsilon}{|v|} |v|^2 \le 1 \Rightarrow |v| \le \frac{1}{\epsilon}.$$

Thus, F is bounded.

- (c) Proof.
 - (⇒) Let $F \in \mathcal{C}_0$, then $F \in \mathcal{C}$ is bounded and $\mathbf{0} \in \text{int} F$. By part (a), since $F \in \mathcal{C}$ it is nonempty thus $F^{\circ} \in \mathcal{C}$. By part (b), $F \in \mathcal{C}$ is bounded if and only if $\mathbf{0} \in \text{int}(F^{\circ})$.

All that is left to show is that F° is bounded. Assume that it is not. Suppose $\zeta_k \in F^{\circ}$ with $\zeta_k \to +\infty$. Without lost of generality, let $\frac{\zeta_k}{|\zeta_k|} \to \bar{\zeta}$ so that $|\bar{\zeta}| = 1$. Let $v \in F$. Then

$$\langle \frac{\zeta_k}{|\zeta_k|}, v \rangle = \frac{1}{|\zeta_k|} \langle \zeta_k, v \rangle \le \frac{1}{|\zeta_k|} \to 0.$$

This implies that $\langle \bar{\zeta}, v \rangle \leq 0$ for every $v \in F$.

But for small $\delta > 0$, $\delta \bar{\zeta} \in F$. Which implies that $\langle \bar{\zeta}, \delta \bar{\zeta} \rangle = \delta > 0$. So F° is bounded.

- (⇐) Let $F^{\circ} \in \mathcal{C}_0$, then $F^{\circ} \in \mathcal{C}$ is bounded and $\mathbf{0} \in \text{int}(F^{\circ})$. Then by part (b), $F \in \mathcal{C}$ is bounded. Now all that is left to show is that ** $\mathbf{0} \in \text{int}(F)$ **.
- (d) Proof. Let $F = r\overline{\mathbb{B}}$ and r > 0. Consider an $x \in \overline{\mathbb{B}}$ so that $|x| \leq 1$. Then $rx \in F$ and $\langle rx, \frac{x}{r} \rangle = |x|^2 \leq 1$. This implies that $\frac{x}{r} \in F^{\circ}$. So for every $x \in \overline{\mathbb{B}}$, $rx \in F$ and $\frac{x}{r} \in F^{\circ} = \frac{1}{r}\overline{\mathbb{B}}$.

Exercise 2.2. Suppose $\ell(\cdot)$ is a linear functional. Show \exists a unique $\zeta \in \mathbb{R}^n$ with $\ell(\cdot) = \ell_{\zeta}(\cdot)$.

Proof. Let $\ell(\cdot)$ be a linear functional. Then let x_i be a basis vector of \mathbb{R}^n . Define $\ell(x_i) = \zeta_i \in \mathbb{R}$. Then for any $x = (a_1, ..., a_n) \in \mathbb{R}^n$ and $\zeta = (\zeta_1, ..., \zeta_n)$,

$$\ell(x) = a_1\zeta_1 + \dots + a_n\zeta_n = \langle x, \zeta \rangle = \ell_{\zeta}(x).$$