Due at the beginning of class on 19 March 2024

- Your answers should be neatly written and logically organized.
- You may collaborate on solving the problems, but the solutions you turn in should be your own.
- You may use any resource you find online (or elsewhere), but you must cite any resource you use.

Reading: [Mal23, Sections 4.1 and 4.3] and the introduction to [Lew91].

(1) Define spectrum structure maps for a "fake smash product" \land_{fake} : $\$p \times \$p \to \$p$ with n-th space

$$(X \wedge_{fake} Y)_n = X_n \wedge Y_n.$$

Argue that, with your choice of structure maps, (Sp, \land_{fake}, S) is *not* a symmetric monoidal category.

(2) (a) Let ${\mathfrak C}$ be a category that is both additive and symmetric monoidal with product \otimes and unit I. Assume that \otimes preserves coproducts in each variable separately. Prove that the product induces bilinear maps

$$\mathcal{C}(A,B) \times \mathcal{C}(X,Y) \to \mathcal{C}(A \otimes X,B \otimes Y)$$

(b) Show that there is no natural transformation in the stable homotopy category $\delta \colon X \to X \wedge X$ that agrees with the diagonal on suspension spectra

$$\Sigma^\infty K \xrightarrow{\Sigma^\infty \Delta} \Sigma^\infty (K \wedge K) \cong \Sigma^\infty K \wedge \Sigma^\infty K.$$

Hint: argue by contradiction and apply δ *to* $\mathbb{S} \xrightarrow{2} \mathbb{S}$.

- (3) Assume that we are given a closed symmetric monoidal category of spectra $(\widehat{Sp}, \wedge, S)$ such that \wedge preserves colimits and weak equivalences in each variable separately, and for any pointed space K, $\Sigma^{\infty}K \wedge X \cong K \wedge X$. The right adjoint to $X \wedge -$ is the function spectrum F(X, -).
 - (a) Prove that for any integer $n \in \mathbb{Z}$, the smash product $\mathbb{S}^n \wedge X$ is stably equivalent to $\Sigma^n X$.
 - (b) Prove that for any integer $n \in \mathbb{Z}$, the function spectrum $F(\mathbb{S}^n, X)$ is stably equivalent to $\Sigma^{-n}X$.
- (4) Let X be an $H\mathbb{F}_p$ -module spectrum. What does this imply about the homotopy groups of X? Can you say anything about the homology groups?

REFERENCES

- [Lew91] L. Gaunce Lewis, Jr. Is there a convenient category of spectra? *J. Pure Appl. Algebra*, 73(3):233–246, 1991.
- [Mal23] Cary Malkiewich. Spectra and stable homotopy theory. http://people.math.binghamton.edu/malkiewich/spectra_book_draft.pdf, October 2023.