Question Number	Scheme	Marks
6.	(a) $p(-2) = 2(-2)^3 + 13(-2)^2 - 17(-2) - 70$ or $p(x) = (x+2)(2x^2 + 9x - 35)$ So $(x+2)$ is a factor of $p(x)$, Hence, by the factor theorem,	M1
	=-16+52+34-70=0 p(-2)=0*	A1
	(b) $(x+2)(2x^2+9x-35) = 0$ (x+2)(2x-5)(x+7) = 0 $x = -2, x = 2\frac{1}{2}, x = -7$	M1 A1 M1dep A1 (6)

Notes for Question 6

(a)

M1 for substituting x = -2 in the given function

A1cso for p(-2) = 0 * (-16 + 52 + 34 - 70 must be seen)

(b)

M1 for writing p(x) as $(x+2) \times a$ quadratic factor with at least 2 terms (by inspection) or dividing to obtain the quadratic factor (not necessarily correct). The quadratic must start with $2x^2$.

A1 for
$$(x+2)(2x^2+9x-35)$$
 or just $2x^2+9x-35$

M1dep for solving the quadratic (usual rules)

A1 for the **three** solutions, x = -2, $2\frac{1}{2}$, -7 Often -2 is missing.

NB: Do not penalise if " = 0" not seen.

Alternative:

(b)

M1 for using the factor theorem again with any one of $x = \pm 5, \pm 7, \pm \frac{5}{2}, \pm \frac{7}{2}$

A1 for a correct result for $x = \frac{5}{2}$ or -7

M1 finding a third value, any valid method

A1 for the **three** solutions, x = -2, $2\frac{1}{2}$, -7 Often -2 is missing.

NB: No working shown (ie calculator solution):

If all **three** solutions shown and correct 4/4

If one (or more) missing or incorrect 0/4