4. 整数論

約数と倍数

任意の整数をaとし、任意の正整数をbとするとき、

$$a = bq+r$$
, $0 \le r \le b-1$

を満たすq,rが一意的に存在する。このとき、qを商、rを剰余という。

r=0 即ち、a=bq のとき、aはbの倍数、bはaの約数という。

公約数(common devisor):任意の2つの整数の共通の約数 最大公約数(greatest common devisor):公約数の中で最大の数

整数a、bの最大公約数を以下で表現

(a, b) または GCD(a, b)

(a, b) = 1の時、aとbは**互いに素である**という。

公倍数(common multiple):任意の2つの整数の共通の倍数 最小公倍数(least common multiple):公倍数の中で最小の数

整数a、bの最小公倍数を以下で表現

LCM(a, b)

約数に関する定理

定理1 任意の整数a(≠0。以降も同じ)に対して、aはaの約数、1はaの約数

定理2 aがbの約数、bがcの約数ならば、aはcの約数

定理3 aがbの約数、bがaの約数ならば、b=±a

証明 b=qa, a=q'b (q, q' は整数)

a=q'qa

補遺 aがbの約数、cがdの約数ならば、acはbdの約数

定理4 aがbとcの公約数ならば、aはb±cの約数

証明 b=qa, c=q'a (q, q' は整数)

 $b \pm c = qa \pm q'a = (q \pm q')a$

q ± q' は整数故、aはb±cの約数

最大公約数に関する定理

定理5 a<b の時、qを整数とすると、(a, b)= (a, b-qa)

証明

- ∴ 定理4より dはb-qaの約数
- ∴ dはaとb-qaの公約数d'はaとb-qaの最大公約数故、d≦d'・・・①

- ∴ d'は(b-qa)+qaの約数 即ち、d'はbの約数
- ∴ d'はaとbの公約数 dはaとbの最大公約数故、d'≦d···②

式①、②より、d=d' 即ち、(a,b)=(a,b-qa)

(6, 15) =
$$(6, 15-2 \cdot 6) = (6, 3)$$

ユークリッドの互除法

a と b の最大公約数 (a, b) を求める

定理5より
$$(a, b) = (a, b - q_1 a) = (a, r_1) = (r_1, a)$$
 $r_1 < a$

$$b=q_1a+r_1$$

 $a=q_2r_1+r_2$
 $r_1=q_3r_2+r_3$

$$r_{n-2} = q_n r_{n-1} + r_n$$

 $r_{n-1} = q_{n+1} r_n + 0$

$$b > a > r_1 > r_2 > \cdots > r_n > 0$$

$$(a, b) = (r_1, a) = (r_2, r_1) = \cdots = (r_n, r_{n-1}) = (0, r_n) = r_n$$

例:(85,204)を求める

 $34=2 \cdot 17+0$

最大公約数は17

例:(3,11)を求める

$$3=1 \cdot 2+1$$

$$2=2 \cdot 1+0$$

最大公約数は1

オイラーの関数

素数:1より大きい整数で、1とその整数以外の約数を持たない数

合成数: 1とその整数以外にも、約数を持つ正整数

(注)1は素数でも合成数でもない

定理6 合成数は素数の積で表される(素因数分解)

定理7 合成数を素数の積で表す仕方は1通りである(積の順序は対象外)

オイラーの関数 $\phi(n)$: 正整数n に対し、 $1 \le i \le n$ で、(n, i) = 1 を満たすi の総数

例: n=12 のとき、 $1 \le i \le 12$ を満たす集合 Z_{12} は

$$Z_{12} = \{1, 2, 3, \dots, 12\}$$

(12, i) = 1 を満たす i の集合 $Z_{12}^* = \{1, 5, 7, 11\}$ 故、 $\phi(n) = 4$

合同式

日	月	火	水	木	金	±
				1	2	ფ
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31

 \square : x mod 7 = 4

月: $x \mod 7 = 5$

火: $x \mod 7 = 6$

 \mathcal{K} : x mod 7 = 0

 \star : x mod 7 = 1

 $\pm : \mathbf{x} \bmod 7 = 2$

 \pm : x mod 7 = 3

2つの整数 a,b が同じ曜日を表すということは、7で割った余りが同一ということ このことを以下のように記述し、「a は7を法として b に合同である」という

合同式 $a \equiv b \mod 7$

反射律 $a \equiv a \mod n$ 但し、n は自然数

対称律 a ≡ b mod n ならば b ≡ a mod n

推移律 $a \equiv b \mod n$ かつ $b \equiv c \mod n$ ならば $a \equiv c \mod n$

例: 3 ≡ 10 mod 7 かつ 10 ≡ 17 mod 7 ならば 3 ≡ 17 mod 7

合同式の算法(1)

定理8
$$a \equiv b \mod n$$
、 $c \equiv d \mod n$ のとき、 $a+c \equiv b+d \mod n$ $a-c \equiv b-d \mod n$ $ac \equiv bd \mod n$

合同式の算法(2)

定理9 $a \equiv b \mod n$ ならば $a^k \equiv b^k \mod n$

$$a \equiv b \mod n$$

 $a \equiv b \mod n$
 $a \equiv b \mod n$
 k 個

両辺を掛け合わせると

$$a^k \equiv b^k \mod n$$

 $ac \equiv bc \mod n$ の時、 $a \equiv b \mod n$

$$ac-bc \equiv 0 \mod n$$

 $(a-b)c \equiv 0 \mod n$
 $(c, n)=1$ 故、 $a-b \equiv 0 \mod n$
即ち、 $a \equiv b \mod n$

剰余類

剰余類R(a): 自然数 n と整数 a に対して、n を法としてa と合同な整数の集合 **完全剰余系**R_n: 各剰余類R(i) (i=0,1,...,n-1) それぞれの要素から成る整数集合 **既約剰余系**R_n*: 完全剰余系R_n の整数のうち、n と互いに素となる((n, a_i)=1) 整数a_iの集合

例:
$$n=10$$
 を法とする剰余類
$$R(0) = \{..., -20, -10, 0, 10, 20, ...\}$$

$$R(1) = \{..., -19, -9, 1, 11, 21, ...\}$$

$$R(9) = \{..., -11, -1, 9, 19, 29, ...\}$$
 完全剰余系 $R_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ 既約剰余系 $R_{10} * = \{1, 3, 7, 9\}$ オイラーの関数 $(R_n * の要素数) \phi(10) = 4$

既約剰余系の乗算

完全剰余系 R₁₀: {0,1,2,3,4,5,6,7,8,9}

乗算結果

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

既約剰余系 R₁₀*: {1,3,7,9}

	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1

- ・任意の2つの数の乗算結果は元の既約 剰余系の要素
- 乗算表の行や列には、すべての要素が 繰り返しなしで現れる

乗算の対応は1対1

既約剰余系の乗算対応

定理11 $\mod n$ の既約剰余系 $R_n^* = \{a_1, a_2, \cdots, a_{\phi(n)}\}$ の各要素xに、 R_n^* のうちの1つの要素 a_i を掛けて

$$x \rightarrow a_i x$$

という対応を考えると、この対応は1対1である。

証明 $(a_i, n) = 1, (x, n) = 1$ 故、 $(a_i x, n) = 1$

従って、a_ix は既約剰余系 R_n* に属する

また、 $x_1 \rightarrow a_i x_1$, $x_2 \rightarrow a_i x_2$

で、 $a_i x_1 \equiv a_i x_2 \mod n$

ならば、定理8より $a_i(x_1-x_2) \equiv 0 \mod n$

即ち、nは $a_i(x_1-x_2)$ の約数

ここで、 $(a_i, n) = 1$ 故、n は $(x_1 - x_2)$ の約数

即ち、 $x_1 \equiv x_2 \mod n$

従って、対応は1対1

オイラーの定理

定理12 自然数n、整数aに対し、(a, n) = 1 ならば、以下の式が成立 $a^{\phi(n)} \equiv 1 \mod n$

証明 $R_n^* = \{a_1, a_2, \cdots, a_{\phi(n)}\}$ の各要素をx、 R_n^* のうちの1つの要素 a_i とした場合 $x \to a_i x$ は1対1対応

即ち、 $\{a_1, a_2, \cdots, a_{\phi(n)}\}$ と $\{a_i a_1, a_i a_2, \cdots, a_i a_{\phi(n)}\}$ は要素の並び順を除いては、同一の集合

従って、その積は同一。即ち、

$$a_1 a_2 \cdots a_{\phi(n)} \equiv (a_i a_1)(a_i a_2) \cdots (a_i a_{\phi(n)}) \mod n$$

$$a_1 a_2 \cdots a_{\phi(n)} \equiv a_i^{\phi(n)} a_1 a_2 \cdots a_{\phi(n)} \mod n$$

$$a_1 a_2 \cdots a_{\phi(n)} (a_i^{\phi(n)} - 1) \equiv 0 \mod n$$

 $a_1 a_2 \cdots a_{\phi(n)}$ は n と互いに素故、 $a_i^{\phi(n)} - 1 \equiv 0 \mod n$ $a_i^{\phi(n)} \equiv 1 \mod n$

付. オイラーの定理の例

定理12 自然数n、整数aに対し、(a, n) = 1 ならば、以下の式が成立

$$a^{\phi(n)} \equiv 1 \mod n$$

例

n = 12 のとき、(a, 12) = 1 を満たす既約剰余系 $R_{12}^* = \{1, 5, 7, 11\}$ オイラーの関数 $\phi(12) = 4$

 $1^4 \equiv 1 \mod 12$ $5^4 = 25^2 \equiv 1 \mod 12$ $7^4 = 49^2 \equiv 1 \mod 12$ $11^4 = 121^2 \equiv 1 \mod 12$

ab mod $p = (mp+r)b \mod p = (mpb+rb) \mod p = rb \mod p$

abに対する剰余は (aに対する剰余)・b に対する剰余に等しい

フェルマーの小定理

定理13 整数a に対し、p が素数で、(a, p) = 1 ならば、以下の式が成立 $a^{p-1} \equiv 1 \mod p$

pが素数故、オイラー関数 φ (p) = p−1

例
$$p = 5$$
 のとき
 $a = 1, 2, 3, 4$
 $p-1 = 4$
 $1^4 \equiv 1 \mod 5$
 $2^4 = 16 \equiv 1 \mod 5$
 $3^4 = 81 \equiv 1 \mod 5$
 $4^4 = 256 \equiv 1 \mod 5$

逆数

素数pの既約剰余系 $R_p^* = \{1, 2, \cdots, p-1\}$ の任意の要素 a に対して

$$ab \equiv 1 \mod p$$

となるb が存在する。

フェルマーの小定理

pが素数で、(a, p) = 1 ならば、以下の式が成立 $a^{p-1} \equiv 1 \mod p$

b をa の逆数(逆元)といい、a -1で表す。

a の逆数は唯一に定まる。

証明
$$ab \equiv 1 \mod p$$

 $ab' \equiv 1 \mod p$
とすると、 $a(b-b') \equiv 0 \mod p$
 $(a, p) = 1$ 故、 $b-b' \equiv 0 \mod p$
即ち、 $b \equiv b' \mod p$

ある数の逆数の逆数はその数自身 (a -1) -1 = a

逆数の計算(1)

例 mod 11での既約剰余系の逆数

b = a p-2 を計算

$$1^{-1} \equiv 1^{11-2} = 1^9 \equiv 1$$

$$2^{-1} \equiv 2^{11-2} = 2^9 = 512 \equiv 6$$

$$3^{-1} \equiv 3^{11-2} = 3^9 = (3^3)^3 = 27^3 \equiv 5^3 = 125 \equiv 4$$

$$4^{-1} \equiv 3$$

$$5^{-1} \equiv 5^{11-2} = 5^9 = (5^3)^3 = 125^3 \equiv 4^3 = 64 \equiv 9$$

$$6^{-1} \equiv 2$$

$$7^{-1} \equiv 7^{11-2} = 7^9 = (7^3)^3 = 343^3 \equiv 2^3 = 8$$

$$8^{-1} \equiv 7$$

$$9^{-1} \equiv 5$$

$$10^{-1} \equiv 10^{11-2} = 10^9 = (10^3)^3 = 1000^3 \equiv 10^3 = 1000 \equiv 10$$

逆数の計算(2)

例 3b ≡ 1 mod 11におけるb(3の逆数)の計算

ユークリッドの互除法の利用

 $3b \equiv 1 \bmod 11 \qquad (1)$

恒等的に成り立つ式 11b = 0 mod 11 (2)

11と3にユークリッドの互除法を適用

- $11=3\cdot 3+2$ (3)
- $3=1\cdot 2+1$ (4)
- 2=2-1

 $(3) より、<math>\times 3$ が必要 $3 \equiv 3 \mod 11$ (5)

- $(1) \times (5) \qquad 9b \equiv 3 \bmod 11 \tag{6}$
- (2) (6) $2b \equiv -3 \mod 11$ (7)
- (4)より、(1) (7) b $\equiv 4 \mod 11$