PVP: Parallel Vector Processors

- MIMD ,UMA , large grain.
- A small number of powerful custom-designed Vector Processors(VP): ‡1G flops.
- A custom-designed high-bandwidth crossbar switch.
- A number of shared-memory modules.
- A large number of vector registers and instruction buffer without caches normally.
- Examples: Cray C-90/T-90, NEC SX-4, Galaxy-1 etc.
- **Typical Structure:**

SMP: Symmetric Multiprocessors

- MIMD, UMA, medium grain, higher DOP(Degree of Parallelism).
- Commodity microprocessors with on/off-chip caches.
- A high-speed snoopy bus or crossbar switch.
- Central shared memory.
- Symmetric: each processor has equal access to SM(Shared Memory), I/O and OS services.
- Unscalable due to SM and bus.
- Examples: SGI Power Challenge, DEC Alpha server 8400, Dawning-1 etc.
- **Typical Structure:**

Comparison of Five Commercial SMP Systems

System Characteristics	DEC Alphaserver 8400 5/440	HP 9000/ T600	IBM RS6000/R40	Sun Ultra Enterprise 6000	SGI Power Challenge XL	
No. processors	12	12	8	30		
Processor type	437 MHz Alpha 21164	180 MHz PA 8000	112 MHz PowerPC 604	167 MHz UltraSPARC I	195 MHz MIPS R10000	
Off-chip cache per processor	4 MB	8 MB	1 MB	512 KB	4 MB	
Max memory	28 GB	16 GB	2 GB	30 GB	16 GB	
Interconnect bandwidth	Bus 2.1 GB/s	Bus 960 MB/s	Bus + Xbar 1.8 GB/s	2.0		
Internal disk	192 GB	168 GB	38 GB	63 GB	144 GB	
I/O channels	12 PCI buses, each 133 MB/s	N/A	2 MCA, each 160 MB/s	30 Sbus, each 200 MB/s	6 Power Channel-2 HIO, each 320 MB/s	
I/O slots	slots 144 PCI 112 HP- slots PB slots 15 MCA 45 Sbus slots		12 HIO slots			
I/O bandwidth	1.2 GB/s	1 GB/s	320 MB/s	2.6 GB/s	320 MB per HIO slot	

MPP: Massively Parallel Processors

- MIMD, NUMA, medium/large grain.
- A large number of commodity microprocessors .
- A custom-designed high bandwidth, low latency communication network.
- Physically distributed memory(shared or not).
- May or may not have local disk.
- Synchronized through blocking message-passing operations.
- Examples: Intel Paragon, IBM SP2, Dawning-1000 etc.
- Typical Structure :

Comparison of three MPP systems

MPP Models	Intel/Sandia ASCI Option Red	IBM SP2	SGI/Cray Origin2000	
A Large sample configuration	9072 processors, 1.8 Tflop/s at SNL	400 processors,100 Gflop/s at MHPCC	128 processors, 51 Gflop/s at NCSA	
Available date	December 1996	September 1994	October 1996	
Processor type	200 MHz, 200 Mflop/s Pentium Pro	67 MHz, 267 Mflop/s POWER2	200 MHz, 400 Mflop/s MIPS R10000	
Node architecture and data storage	2 processors, 32 to 256 MB of memory, shared disk	1 processor, 64 MB to 2 GB local memory, 1-4.5GB Local disk	2 processors, 64 MB to 256 GB of DSM and shared disk	
Interconnect and Split 2D mesh, memory model NORMA		Multistage network, NORMA	Fat hypercube, CC-NUMA	
Node operating System Light-weighted kerner (LWK)		Complete AIX (IBM Unix)	Microkernel Cellular IRIX	
Native mechanism MPI based on PUMA Portals		MPI and PVM	Power C Power Fortran	
Other programming models	Nx, PVM, HPF	HPF, Linda	MPI, PVM	

ASCI Option-Red System

High-Performance CPU Chips for MPP

Attribute	Pentium Pro	PowerPC 620	Alpha 21164A	UltraSPARC II	MIPS R10000	
Technology	BiCMOS	CMOS	CMOS	CMOS	CMOS	
Transistors	5.5 M/15.5 M	7 M	9.6 M	5.4 M	6.8 M	
Clock Rate	150 MHz	133 MHz	417 MHz	200 MHz	200 MHz	
Voltage	age 2.9 V 3		2,2 V	2.5 V	3.3 V	
Power	20 W	30 W	20 W	28 W	30 W	
Word Length	32 bits	64 bits	64 bits	64 bits	64 bits	
I/D Cache	8KB/8KB	32 KB/32 KB	8 KB/8 KB	16 KB/16KB	32 KB/32KB	
L2 Cache	Cache 256 KB on a multi-chip module		96 KB on-chip	16 MB off-chip	16 MB off-chip	
Execution Units	5 units	6 units	4 units	9 units	5 units	
Superscalar	3 way	4 way	4 way	4 way	4 way	
Pipeline depth	cline depth 14 stages 4-1		7-9 stages 9 stages		5-7 stages	
SPECint92			>500	350	300	
SPECfp92	PECfp92 283 3		>750	550	600	
SPECint95			>11	NA	7.4	
SPECfp95	6.70	300	>17	NA	15	
Special CISC/RISC Sho		Short pipelines, large L1 caches	Highest clock rate and density with on-chip L2 cache	Multimedia and graphics instructions	MP cluster bus supports up to 4 CPUs	

Microprocessor Families and Representative CPU Chips

DSM: Distributed Shared-Memory

- MIMD, NUMA, NORMA, large grain.
- Memory physically distributed, but system hardware and software support a single address space to application users.
- DIR(Cache directory) is used to support distributed coherent caches.
- A custom-designed communication network.
- Shared-memory programming style.
- Examples: Stanford DASH, Cray T3D etc.
- **Typical Structure:**

COW: Cluster Of Workstations

- MIMD, NUMA, coarse grain.
- Distributed memory.
- Each node of COW is a complete computer (SMP or PC) sometimes called headless workstation.
- A low-cost commodity network.
- There is always a local disk.
- A complete OS resides on each node, whereas MPP only a microkernel exists.
- Examples: Berkeley NOW, Alpha Farm, FXCOW etc.
- Typical Sturcture :

Representative of COW Research Projects

Project/Reference	Special Features to Support Clustering			
Berkeley NOW Project	A serverless network of workstations featured with active messaging, cooperative filing, and global Unix extensions			
Princeton	Commodity components, efficient communication and shared			
SHRIMP	virtual memory through special network interfaces			
Karsruhe Parastaion	Efficient communication network and software development for distributed parallel processing			
Rice TreadMarks	Software-implemented distributed shared-memory cluster of workstations			
Wisconsin Wind Tunnel	Distributed shared memory on a cluster of workstations interconnected with a commodity network			
The NSCP	National Scalable Cluster Project for metacomputing			
http://nscp.upenn.edu	over three local clusters linked through Internet.			
Argonne	Developing metacomputing platform and software through			
Globus	an ATM-connected WAN of 17 sites in North America			
Syracuse	A World-Wide Virtual Machine for high-performance			
WWVM	computing with Internet and HPCC technologies			
PearlCluster	A research cluster for distributed multimedia			
http://pearl.cs.hku.hk	and financial digital library applications			
Virginia	Developing metacomputing software			
Legion	towards a national virtual computer facility			

Comparison of MPP,SMP, COW & DSM

System Characteristic	MPP	SMP	Cluster	Distributed System			
Number of nodes (N)	O(100)- O(1000)	O(10) or less	O(100) or less	O(10)- O(1000)			
Node complexity	Fine or medium grain	Medium or coarse grain	Medium grain	Wide range			
Internode communi- cation	Message passing or shared variables for DSM	Shared memory	Message passing	Shared files, RPC, message passing			
Job scheduling	Single run queue at host	Single run queue	Multiple queues but coordinated	Independent multiple queues			
SSI support	Partially		Partially Always	Always	Desired	No	
Node OS N (microkernel) copies and and 1 host OS Type (monolithic) (m		One (monolithic)	N (homogeneous desired)	N (heterogenous)			
Address Multiple space (single if DSM)		Single	Multiple	Multiple			
Internode security	Unnecessary Unnec		Required if exposed	Required			
Ownership One organization		One organization	One or more organizations	Many organizations			
Network protocol Nonstandard		Nonstandard	Standard or nonstandard	Standard			
System availability	Low to medium	Often low	Highly available or fault-tolerant	Medium			
Performance metric	Throughput and turnaround time	Turnaround time	Throughput and turnaround time	Response time			

Architectural Attributes

Attribute	PVP	SMP	DSM	MPP	COW
Example Systems	Cray C-90, Cray T-90	Cray CS6400, DEC 8000	DASH Cray T3D	Intel Paragon IBM SP2	Berkeley NOW, Alpha Farm
Processor Type	Custom Vector Processor	Commodity Microprocessor	Commodity Microprocessor	Commodity Microprocessor	Commodity Microprocessor
Memory model	Centralized Shared	Centralized Shared	Distributed Shared	Distributed Unshared	Distributed Unshared
Address Space	Single	Single	Single	Multiple	Multiple
Access Model	UMA	UMA	NUMA	NORMA or NUMA	MA
Interconnect	Custom Crossbar	Bus or Crossbar	Custom Network	Custom Network	Commodity Network

Uniform Memory Access (UMA)

- Physical memory is uniformly shared by all processors.
- All processors have equal access time to all memory words.
- UMA is suitable for general-purpose or time-sharing applications.
- UMA multiprocessor model is the following:

Non-Uniform Memory Access (NUMA)

- SM is collection of all LM of processors, i.e shared local memories.
- The access time varies with location of memory words: shorter to access processor own LM; longer to access remote LM of other processor.
- Shared local memory model is the following:

CC-NUMA System

CC-NUMA architecture (DIR: Cache Directory, NIC: Network Interface Circuitry, RC: Remote Cache)

Cache -Only Memory Access (COMA)

- COMA model is a special case of NUMA in which the distributed memories are converted to caches.
- All caches form a global address space.
- Remote cache access is assisted by the distributed cache directories.
- COMA multiprocessor model is the following:

NO-Remote Memory Access (NORMA)

- A distributed memory multicomputer system is called NORMA model if all memories are private and accessible only by local processors.
- Most of NUMA model supports no-remote memory access.
- In DSM system, NORMA will disappear.
- Generic model of message passing multicomputer is the following:

Architectures & Memory Access Models

Five Networking Environments

- Buses: including processor bus, memory bus, I/O bus etc.
 They are often built on a motherboard, backplane limited to 2m.
- SAN(System Area Network): to connect a number of nodes to form a single system within a short distance (3-25m).
- EXAN(Local Area Network): to confine within a building, a campus or an enterprise (25-500m), and to connect multiple systems.
- MAN(Metropolitan Area Network): to cover a whole district or within a city limit (£25km).
- WAN(Wide Area Network): to appear as an inter-network of a number of smaller networks to realize meta-computing.

Static-Connection Networks (1)

Network Topology: Linear array, Ring, Mesh, Tree, Hypercube, CCC.

Static-Connection Networks (2)

Comparison of Static-Connection Networks:

Network Type	Node Degree d	Network Diameter D	No. of Links <i>l</i>	Bisection Width <i>B</i>	Symme- try	Network Size and Remarks
Linear array	2	N-1	N-1	1	No	N nodes
Ring	2	N/2	N	2	Yes	N nodes
Completely connected	N-1	1	N(N-1) 2	$(N/2)^2$	Yes	N nodes
Binary tree	3	2(h-1)	N-1	1	No	Tree height h=Øong ₂ Nø
Star	N-1	2	N-1	N/2	No	N nodes
2D Mesh	4	2(r-1)	2N-2r	r	No	r rmesh for r=N ^{1/2}
Illiac Mesh	4	r-1	2N	2r	No	Chordal ring with $r=N^{1/2}$
2D Torus	4	2 Ø r ∕ 2 ∅	2N	2r	Yes	r rtorus for r=N ^{1/2}
Hypercube	n	n	nN/2	N/2	Yes	N=2 ⁿ nodes
ссс	3	2k-1 + Ø k∕2 ∅	3N/2	N/(2k)	Yes	N=k2 ^k nodes with cycle k‡3
k-ary n- cube	2n	n Øk∕ 2 ø	nΝ	2k ⁿ⁻¹	Yes	N=k ⁿ nodes

Dynamic-Connection Networks (1)

Bus:

- System bus (I/O bus): used for data transfer between master device (processor) and slave devices (memory etc.) on backplane or centerplane.
- Local bus: on a memory board is called memory bus.

Dynamic-Connection Networks (2)

Crossbar Switches:

- A single-stage switched network.
- Crosspoint switches provide dynamic connections between all (source, destination) pairs. The crosspoint switches can be set on or off dynamically upon program control.
- Two ways of using crossbar switches: inter-processor communication (ex. COW) and inter-processor-memory access (ex. SMP).

Dynamic-Connection Networks (3)

MIN (Multistage Interconnection Networks):

- The number of delay = $O(\log n)$ The number of building blocks = $O(n \log n)$
- Partial permutation between input and output.

Dynamic-Connection Networks (4)

Comparison of dynamic connection networks:

n: the number of connection taps

≈ k: the number of input in a building block

Interconnect Characteristics	System Bus	Multistage Network	Crossbar Switch
Hardware complexity	O(n+w)	$O(nw \log_k n)$	$O(n^2w)$
Per-processor bandwidth	O(wf/n) to $O(wf)$	O(wf)	O(wf)
Reported aggregate bandwidth	2.67 GB/s for Gigaplane bus in SunFire server	10.24 GB/s for 512- node HPS in IBM SP2	3.4 Gb/s for Digital's GIGAswitch

FDDI (Fiber Distributed Data Interface) Rings

- Two rings in opposite directions provide redundant paths for reliability purpose.
- FDDI provides 100-200 Mbps transmission.
- Distance: 100m over copper

 2km over multi mode fiber

 60km over single mode fiber
- Drawback : Inability to support multimedia traffic.
- Example of Dual FDDI rings as a backbone network:

Fast Ethernet and Gigabit Ethernet

Three generations of Ethernet:

Generation	Ethernet 10 BaseT	Fast Ethernet 100 BaseT	Gigabit Ethernet	
Year of introduction	1982	1994		
Bandwidth (speed)	10 Mbps	100 Mbps	1 Gbps	
UTP twisted pair	100 m	100 m	25-100 m	
STP/coaxial cable	500 m	100 m	25-100 m	
Multimode fiber	2 km	412 m in half duplex, 2 km in full duplex	500 m	
Single-mode fiber	25 km	20 km	2 km	
Major applications	File sharing, printer sharing	Workgroup computing, client- server architecture, large database access	Large image files, multimedia, Intranet Internet, data warehousing	

The construction of a Gigabit Ethernet LAN backbone:

Myrinet SAN & Myrinet LAN

Goal: to connect a commodity product for building clusters of computers: either in-cabinet SAN clusters or LAN-based clusters of desktop hosts and server farms.

- Myrinet is defined at the data link level. The use of wormhole crossbar switches routes packets. Following a deadlock-free routing scheme, multiple packets can flow through a Myrinet simultaneously.
- Myricom is shipping Myrinet/SBUS for SUN workstations and Myrinet/PCI for PCs. Optic-fiber interface is also underway.
- Myrinet's bus-dependent host interface still pose a limitation to connect a large variety of hosts to Myrinet.

ATM (Asynchronous Transfer Mode)

ATM is a medium-independent information transmission protocol that segments traffic into short fixed-length 53-byte cells.

- Shortcomings: ATM networks lack of a commonly accepted cell management and network protocols. Telephone and computer industry apply different standards at this time. Unless they agree to the same set of ATM standards, these shortcomings may outweigh the benefits of ATM technology.
- Four layers of ATM architecture :

Functionality of ATM Layers with Corresponding OSI Layers

OSI layer	ATM layer	ATM sublayer	Functionality		
A99.1	AAl (ATM	CS	Providing the standard interface (convergence)		
3/4	adaptation Layer)	SAR	Segmentation and reassembly		
2/3	ATM		Flow control, cell header generation/extration, virtual circuit/path management, cell multiplixing/ demultiplexing		
2	Physical	TC	Cell rate decoupling, header checksum generation and verification, cell generation, packing/ unpacking cells from the enclosing envelope		
1		PMD	Bit timing, physical network access		

SCI (Scalable Coherence Interface)

- Motivation: We have discussed the above networks that they are all connected to I/O bus of a node, and communication with passing message among the computer nodes. This type of I/O communication in inferior to SM communication in a bus-based SMP.
- SCI extends from conventional backplane bus to a fully duplex, point-to-point interconnect structure with low-latency (<1ms) and high-bandwidth (8GB/s) providing a coherent cache image of DSM.

Comparison of Network Technologies

Technology	Gigabit Ethernet	HiPPI	Fiber Channel	FDDI	SCI	ATM	Myrinet
Architecture	Shared media, switched	Switched	Shared media, switched	Shared media	Shared media	Switched	Switched
Media type	UTP, Coaxial, fiber	Fiber, 50-pair STP	STP, Coaxial, fiber	Fiber, copper	STP, fiber	UTP, STP, fiber	Electric links, fiber planned
Standard body	IEEE 802.3z, Gigabit Ethernet Alliance	ANSI X3.183, X3.210, X3.218, X3.222	ANSI X3T11	ANSI X3T9.5	IEEE 1596- 1992	ATM Forum, IETF, ITU-TSS	Myricom

UTP: unshielded twisted pair, STP: shielded twisted pair.

Amdahl's Law: Fixed Problem Size

- In real-time applications, the computational workload $W=W_p+W_s$ is fixed, as the number of processors increases, the computational time decreases.
- Amdahl's Law: Let $f=W_s/W$, then $S=W/(W_p/p+W_s)$ =f+(1-f)/(f+(1-f)/f) =p/(1+f(p-1)) =1/f (pfi\(\frac{1}{2}\)

Gustafson's Law: Fixed Time

- In large scientific computation applications, in order to increase accuracy, we have to increase workload. Correspondingly, we have to increase the number of processors to keep the execution time unchanged.
- Gustafson's Law:

$$S=(W_s+pW_p)/(W_s+pW_p/p)$$

$$=(W_p+pW_p)/(W_s+W_p)$$

$$=f+p(1-f)$$

$$=p+f(1-p)$$

$$=p-f(p-1)$$

Sun and Ni's Law: Memory Bounding

- This law generalizes Amdahl's and Gustafson's law to maximize the use of CPU and memory capacities. The idea is to solve the largest possible problem limited by memory space. This also demands a scaled workload, providing higher speedup, greater accuracy and better resource utilization.
- Assume that the parallel portion of the workload can be scaled up G(p) times. The factor G(p) reflects the increase in workload as the memory capacity increase p times.
- Sun and Ni's law:

$$S=(W_s+G(p)W_p)/(W_s+G(p)W_p/p)$$

=(f+G(p)(1-f))/(f+G(p)(1-f)/p)

Scalability

- Definition: A computer system (hardware, software, algorithms etc.) is called scalable, if it can scale up (increase its resources) to accommodate performance and functionality demand and/or scale down (decrease its resources) to reduce cost.
- Dimensions of scalability :
 - Scalability in Machine Size: This indicates how well the performance will improve with additional processors. This scalability measures the maximum number of processors a system can accommodate.
 - Scalability in Problem Size: This indicates how well the system can handle larger problems with larger data size and workload.
 - Technology Scalability: This indicates how well the performance improvement with the changed technology.
- How to measure the scalability:

 - **ℤ** Iso-speed
 - Average latency

Iso-Efficiency

Basic concept:

Iso-efficiency indicates how well a parallel system scales while maintaining a fixed efficiency.

Let T_1 be the sequential time on one processor (i.e. workload W), T_p be the parallel time, T_o be the total overhead, then $T_1+T_o=pT_p$, $S=T_1/T_p=p/(1+T_o/T_1)$, $E=S/p=1/(1+T_o/T_1)$. If we fix E, and solve the efficiency equation for workload W, the resulting function is called the iso-efficiency function of the system, i.e. $W=f_E(p)$.

Advantages:

The iso-efficiency function is the analytical method which provides a useful tool to predict the required workload growth rate with respect to the machine size.

Disadvantages:

For shared-memory architecture machine, to compute the iso-efficiency function is not too easy.

Iso-speed

Basic concept:

The basic concept is similar to iso-efficiency. Instead of maintaining a constant efficiency, one can preserve a constant average speed while scaling up both machine size from p to p' and problem size from W to W' at the same time.

Let the average speed $V=W/pT_p$, while from p to p' and from W to W', in order to maintain average speed unchanged, then define y $(p,p')=p'W/pW'=T_p/T_p$,

If p=1, then y (1,p')= $T_1/T_{p'}$

Advantages:

Speed is the real and normal physical quantity which is generally measured as float-point operations performed.

Disadvantages:

Some non-floating point operations can cause major performance changes.

Average Latency

Basic Concept:

Referring to the following figure, average latency L(W,p) is defined as an average amount of overhead time needed for each processor to complete the assigned work:

$$L(W,p) = S_{i=1 \text{fi} p} (T_{para} - T_i + L_i) / p$$

If the machine size changes from p to p', and the efficiency is kept to a constant, the average latency metric is defined as $F(E,p,p')=L_e(W,p)/L_e(W',p')$.

Advantages:

Average latency is the experimental metric which can more precisely evaluate performance at lower level system.

Disadvantages:

It needs specialized hardware and system software to measure the latency of the processors.

Conclusion:

Iso-efficiency metric is equivalent to iso-speed metric, average latency metric can be derived from iso-speed metric.