$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	$\frac{2k^2}{(1+2k^2)^2t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{1}{(1+2k^2)^2t_1}$	0	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_1^{\#1}\!\!\!\!\!+\!\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\alpha\beta$	0	$\frac{\sqrt{2}}{t_1 + k^2 t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		- - -	<i>t</i> ₁	$+_{\alpha}$			

$-t_1\;\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$\omega_{\alpha\beta}^{\kappa}\partial_{\kappa}\omega^{\alpha\beta\theta} + rac{2}{3}r_1\partial_{\theta}\omega_{\alpha\beta}^{\kappa}\partial_{\kappa}\omega^{\theta\alpha\beta} +$	$_{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda}+r_{1}\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}\partial_{\kappa}\omega^{\kappa\lambda\theta}-2r_{1}\partial_{\theta}\omega_{\lambda}^{\alpha}_{\alpha}\partial_{\kappa}\omega^{\kappa\lambda\theta}-$	$rac{1}{2}t_1\partial^{lpha}f_{eta\kappa}\partial^{\kappa}f_{lpha}^{\ \ eta}-rac{1}{2}t_1\partial^{lpha}f_{\kappa heta}\partial^{\kappa}f_{lpha}^{\ \ \ \ \ \ \ \ \ }-rac{1}{2}t_1\partial^{lpha}f^{\lambda}_{\ \ \ \ }\partial^{\kappa}f_{lpha\lambda}+t_1\ \omega_{\kappalpha}^{\ \ \ \ \ \ \ \ }\partial^{\kappa}f'_{\ \ \ \ \ \ }+$	$t_1\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^\kappa f'_{\;\;\prime} + 2t_1\partial^lpha f_{\;\kappalpha}\;\partial^\kappa f'_{\;\;\prime} - t_1\partial_\kappa f^\lambda_{\;\;\lambda}\;\partial^\kappa f'_{\;\;\prime} + 2t_1\;\omega_{\;\kappa heta}\;\partial^\kappa f'^{\; heta} -$	$+rac{1}{2}t_{1}\partial^{lpha}f^{\lambda}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\epsilon_{\lambda\kappa} + \frac{2}{3} r_1 \partial_{\kappa} \omega^{\alpha\beta\theta} \partial^{\kappa} \omega_{\alpha\beta\theta} - \frac{2}{3} r_1 \partial_{\kappa} \omega^{\theta\alpha\beta} \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{2}{3} r_1 \partial_{\kappa} \omega^{\theta\alpha\beta} \partial^{\kappa} \omega_{\alpha\beta\theta} \partial^{\kappa} \omega$	$\frac{2}{3}r_{1}\partial^{\beta}\omega_{\alpha}^{\alpha\lambda}\partial_{\lambda}\omega_{\alpha\beta}^{\prime}-\frac{8}{3}r_{1}\partial^{\beta}\omega_{\lambda}^{\lambda\alpha}\partial_{\lambda}\omega_{\alpha\beta}^{\prime}-r_{1}\partial_{\alpha}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega_{\beta\kappa}^{\kappa}+r_{1}\partial_{\theta}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega_{\kappa}^{\kappa}$
	$^{\prime}+f^{lphaeta}$ $ au_{lphaeta}+\omega^{lphaeta\chi}$ $\sigma_{lphaeta\chi}+r_{1}\partial_{\prime}\omega^{\kappa\lambda}_{\kappa}\partial^{\prime}\omega_{\alpha}^{\alpha}$ -	$ -t_1 \omega_{,\alpha'}^{\alpha'} \omega_{\kappa\alpha}^{\kappa} -t_1 \omega_{,\kappa\lambda}^{\kappa\lambda} \omega_{\kappa\lambda}^{\prime} + f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + r_1 \partial_{,} \omega^{\kappa\lambda}_{\kappa} \partial_{,} \omega_{,\alpha}^{\alpha} - \frac{2}{3} r_1 \partial^{\beta} \omega^{\beta\alpha}_{\kappa} + \frac{2}{3} r_1 \partial_{\beta} \omega_{\alpha\beta}^{\kappa} + \frac{2}{3} r_1 \partial_{\beta} \omega_{\alpha\beta}$	$ -t_1 \omega_{\lambda}^{\alpha\prime} \omega_{\kappa\alpha}^{\ \ \kappa} -t_1 \omega_{\lambda}^{\ \kappa\lambda} \omega_{\kappa\lambda}^{\ \prime} + f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + r_1 \partial_{\iota} \omega^{\kappa\lambda}_{\ \kappa} \partial^{\iota} \omega_{\lambda}^{\ \alpha} - $ $ \frac{2}{3} r_1 \partial^{\beta} \omega^{\theta\alpha}_{\ \kappa} \partial_{\theta} \omega_{\alpha\beta}^{\ \kappa} - \frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha\beta}^{\ \kappa} \partial_{\kappa} \omega^{\alpha\beta\theta} + \frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha\beta}^{\ \kappa} \partial_{\kappa} \omega^{\theta\alpha\beta} + $ $ r_1 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\theta\kappa\lambda} - r_1 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\theta\kappa\lambda} + r_1 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\kappa\lambda\theta} - 2 r_1 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\kappa\lambda\theta} - $	$+ f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + r_1 \partial_{\nu} \omega^{\kappa\lambda} \partial_{\nu} \omega_{\lambda}^{\alpha} -$ $\nu_{\alpha\beta}^{\kappa} \partial_{\kappa} \omega^{\alpha\beta\theta} + \frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha\beta}^{\kappa} \partial_{\kappa} \omega^{\theta\alpha\beta} +$ $\partial_{\kappa} \omega^{\theta\kappa\lambda} + r_1 \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\kappa\lambda\theta} - 2 r_1 \partial_{\theta} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\kappa\lambda\theta} -$ $\partial^{\kappa} f^{\theta} - \frac{1}{2} t_1 \partial^{\alpha} f^{\lambda} \partial^{\kappa} f_{\alpha\lambda} + t_1 \omega_{\kappa\alpha}^{\alpha} \partial^{\kappa} f'_{\nu} +$	$+ f^{\alpha\beta} t_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + r_1 \partial_i \omega^{\kappa\lambda}_{\kappa} \partial^i \omega_{\lambda}^{\alpha} -$ $ \sigma_{\alpha\beta}^{\kappa} \partial_{\kappa} \omega^{\alpha\beta\theta} + \frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha\beta}^{\kappa} \partial_{\kappa} \omega^{\theta\alpha\beta} +$ $\partial_{\kappa} \omega^{\theta\kappa\lambda} + r_1 \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\kappa\lambda\theta} - 2 r_1 \partial_{\theta} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\kappa\lambda\theta} -$ $\partial^{\beta} f_{\alpha}^{\theta} - \frac{1}{2} t_1 \partial^{\alpha} f_{\lambda}^{\lambda} \partial^{\kappa} f_{\alpha\lambda} + t_1 \omega_{\kappa\alpha}^{\alpha} \partial^{\kappa} f_i^{\prime} +$ $ c'_{i} - t_1 \partial_{\kappa} f^{\lambda}_{\lambda} \partial^{\kappa} f'_{i} + 2 t_1 \omega_{i\kappa\theta} \partial^{\kappa} f'^{\theta} -$	$ \begin{split} -t_1 \omega_{,\alpha}^{ \alpha \prime} \omega_{\kappa\alpha}^{ \kappa} - t_1 \omega_{,\kappa}^{ \kappa \lambda} \omega_{\kappa\lambda}^{ \prime} + f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + r_1 \partial_{i} \omega^{\kappa\lambda}_{ \kappa} \partial^{i} \omega_{,\alpha}^{ \alpha} - \\ \frac{2}{3} r_1 \partial^{\beta} \omega^{\beta\alpha}_{ \kappa} \partial_{\theta} \omega_{\alpha\beta}^{ \kappa} - \frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha\beta}^{ \kappa} \partial_{\kappa} \omega^{\alpha\beta\theta} + \frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha\beta}^{ \kappa} \partial_{\kappa} \omega^{\theta\alpha\beta} + \\ r_1 \partial_{\alpha} \omega_{,\alpha}^{ \alpha} \partial_{\kappa} \omega^{\theta\kappa\lambda}_{ -r_1} \partial_{\theta} \omega_{,\alpha}^{ \alpha} \partial_{\kappa} \omega^{\theta\kappa\lambda}_{ +r_1} \partial_{\alpha} \omega_{,\alpha}^{ \alpha} \partial_{\kappa} \omega^{\kappa\lambda\theta}_{ -r_2} - \\ r_1 \partial_{\alpha} \omega_{,\alpha}^{ \alpha} \partial_{\kappa} f_{\alpha}^{ \alpha} - \frac{1}{2} t_1 \partial^{\alpha} f_{\alpha}^{ \beta} + r_1 \partial_{\alpha} \omega_{,\alpha}^{ \alpha} \partial_{\kappa} \psi^{\kappa\lambda\theta}_{ -r_2} - \\ r_1 \partial_{\alpha} f_{\beta\kappa}^{ \lambda} \partial^{\kappa} f_{\alpha}^{ -r_2} + r_1 \partial^{\alpha} f_{\alpha}^{ \lambda} \partial^{\kappa} f_{\alpha}^{ +r_1} + r_1 \omega_{\kappa\alpha}^{ \alpha} \partial^{\kappa} f_{\alpha}^{ +r_2} + \\ r_1 \omega_{,\alpha}^{ \lambda} \partial^{\kappa} f_{\alpha}^{ +r_2} + r_1 \partial^{\alpha} f_{\alpha}^{ \lambda} \partial^{\kappa} f_{\alpha}^{ +r_2} + r_1 \omega_{,\kappa\theta}^{ \alpha} \partial^{\kappa} f_{\alpha}^{ +r_2} + \\ r_1 \omega_{,\alpha}^{ \alpha} \partial^{\kappa} f_{\alpha}^{ +r_2} + r_1 \partial^{\alpha} f_{\alpha}^{ \lambda} \partial^{\kappa} f_{\alpha}^{ +r_2} + r_2 r_1 \omega_{,\kappa\theta}^{ +r_2} + r_2 r_2 \omega_{,\kappa\theta}^{ +r_2} + r_3 \omega_{,\kappa\theta}^{ +r_2} + r_3 r_3 \partial^{\kappa} f_{\alpha}^{ +r_2} + r_3 \sigma_{,\kappa\theta}^{ +r_2} + r_3 \omega_{,\kappa\theta}^{ +r_2} + r_3 \sigma_{,\kappa\theta}^{ +r_2} + r_3 \omega_{,\kappa\theta}^{ +r_2} + r_3 $	$ \begin{split} & -t_1 \; \omega_{,\alpha}^{\; a'} \; \omega_{\kappa\alpha}^{\; \; k'} - t_1 \; \omega_{,\kappa}^{\; \; k'} \; \omega_{\kappa\lambda}^{\; \; l'} + f^{\alpha\beta} \; t_{\alpha\beta} + \omega^{\alpha\beta\chi} \; \sigma_{\alpha\beta\chi} + r_1 \partial_i \omega_{\kappa\lambda}^{\; \; k'} \partial^l \omega_{,\alpha}^{\; \; \; a'} - \\ & \frac{2}{3} r_1 \partial^\beta \omega^{\theta\alpha}_{\; \; \kappa} \partial_\theta \omega_{\alpha\beta}^{\; \; k'} - \frac{2}{3} r_1 \partial_\theta \omega_{\alpha\beta}^{\; \; k'} \partial_\kappa \omega^{\theta\beta\theta} + \frac{2}{3} r_1 \partial_\theta \omega_{\alpha\beta}^{\; \; k'} \partial_\kappa \omega^{\theta\alpha\beta} + \\ & r_1 \partial_\alpha \omega_{,\alpha}^{\; \; \alpha} \partial_\kappa \omega^{\theta\kappa\lambda} - r_1 \partial_\theta \omega_{,\alpha}^{\; \; \alpha} \partial_\kappa \omega^{\theta\kappa\lambda} + r_1 \partial_\alpha \omega_{,\alpha}^{\; \; \alpha} \partial_\kappa \omega^{\kappa\lambda\theta} - 2 r_1 \partial_\theta \omega_{,\alpha}^{\; \; \alpha} \partial_\kappa \omega^{\kappa\lambda\theta} - \\ & \frac{1}{2} t_1 \partial^\alpha f_{ \; \alpha} \partial^\kappa f_{ \; \; \alpha'} - \frac{1}{2} t_1 \partial^\alpha f_{ \; \alpha'} \partial^\kappa f_{ \; \; \alpha'} + t_1 \omega_{,\alpha}^{\; \; \alpha} \partial^\kappa f_{ \; \; \gamma'} + \\ & t_1 \omega_{,\lambda}^{\; \; \lambda'} \partial^\kappa f_{ \; \; \; \gamma'} + 2 t_1 \partial^\alpha f_{ \; \alpha'} \partial^\kappa f_{ \; \; \gamma'} + 2 t_1 \omega_{,\kappa\theta}^{\; \; \alpha} \partial^\kappa f_{ \; \; \gamma'} + \\ & t_1 \omega_{,\alpha}^{\; \; \; \alpha'} \partial^\kappa f_{ \; \; \; \; \; \gamma'} + 2 t_1 \omega_{,\kappa}^{\; \; \lambda'} \partial^\kappa f_{ \; \; \gamma'} + 2 t_1 \omega_{,\kappa\theta}^{\; \; \alpha'} \partial^\kappa f_{ \; \; \gamma'} + \\ & t_1 \omega_{,\alpha}^{\; \; \; \alpha'} \partial^\kappa f_{ \; \; \; \; \; \; \gamma'} + 2 t_1 \omega_{,\kappa}^{\; \; \lambda'} \partial^\kappa f_{ \; \; \gamma'} + \frac{1}{2} t_1 \partial^\kappa f_{ \; \; \lambda'} + \frac{1}{2} t_1 \partial^\kappa f_{ $

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_2^{\#1}_{lpha eta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}\dagger^{lphaeta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

$\omega_{1}^{\#2}$ $\omega_{1}^{\#2}$ ω_{1}
0 0
0
0

	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_{0}^{#1}$
$\omega_{0}^{\sharp 1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0}^{#1}$ †	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_0^{\sharp 1}$ †	0	0	0	$-t_1$

 $\tau_1^{\#_1\alpha} == 0$

Total #:

 $\tau_{1+}^{\#1\,\alpha\beta} + i\,k\,\,\sigma_{1+}^{\#2\,\alpha\beta} == 0 \quad 3$

 $\frac{\tau_{2+}^{\#1}\alpha\beta}{\tau_{2+}^{\#1}\alpha\beta} = 0 \quad 5$

16

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$-\frac{1}{t_1}$

		Massive particl	е
	?	Pole residue:	$-\frac{1}{r_1} > 0$
= 2 -	<i>'</i>	Polarisations:	5
	· · · · · · · · · · · · · · · · · · ·	Square mass:	$-\frac{t_1}{2r_1} > 0$
	?	Spin:	2
		Parity:	Odd

(No massless particles)

Unitarity conditions