ECE286 Probability and Statistics

Michael Boyadjian January 22, 2020

Contents

1	Introduction to Statistics and Data Analysis	3
	1.1 Definitions	3
	1.2 Set Theory	3
	1.3 Counting	3
2	Probability	5
	2.1 Sample Spaces	5
	2.2 Events	5
	2.3 Relative Frequency	5
	2.4 Axioms of Probability	5
	2.5 Properties	6
	2.6 Conditional Probability	6
	2.6.1 Independent Events	6
	2.6.2 Product Rule and Multiplicative Rule	6
	2.7 Bayes' Rule	7
3	Random Variables, Probability Distributions and Expectation	8
4	Discrete and Continuous Probability Distributions	8
5	Functions of Random Variables	8
6	Estimation Problems	8
7	Hypothesis Testing	8
8	Simple Linear Regression and Correlation	8

1 Introduction to Statistics and Data Analysis

1.1 Definitions

- **Probability:** Mathematical theory that models and analyses uncertainty based on 3 fundamental axioms
- **Statistics:** Empirical; based on data and measurements; we infer characteristics of a phenomenon

1.2 Set Theory

A set is a set of objects (or elements) represented using capital letters A, B, C, S

- Universal Set: Set of all elements or objects of interest
- Empty Set: Set without any elements, denoted \varnothing
- Compliment of a Set: $A' = \{x | x \notin A\}$
- Union of Two Sets: $A \cup B = \{x | x \in A \text{ or } x \in B\}$
- Intersection of Two Sets: $A \cap B = \{x | x \in A \text{ and } x \in B\}$
- **Disjoint Sets:** Also called mutually exclusive; A and B are disjoint iff $A \cap B = \emptyset$
- Subsets: Denoted $A \subset B$; A is a subset of B iff $x \in A \implies x \in B$

1.3 Counting

There are three different methods of counting

1. With Replacement, With Ordering

- Given n distinct objects pick one, note down its kind, and put it back
- \bullet Repeat k times
- Produces n^k possibilities
- ex. Number of 8-character passwords = 62^8

2. Without Replacement, With Ordering

- Same as previous, but no replacement
- Produces $\frac{n!}{(n-k)!}$ possibilities
- Describes number of **permutations**, denoted ${}_{n}P_{k}$
- ex. Number of 8-character passwords without repeating characters $=\frac{62!}{54!}$

3. Without Replacement, Without Ordering

- Ordering does not matter, two sequences with same objects count as the same
- Produces $\frac{n!}{k!(n-k)!}$ possibilities
- Describes number of **combinations**, denoted ${}_{n}C_{k}=\binom{n}{k}$
- ex. Number of ways to pick 5 good chips and 3 bad chips out of 90 good and 10 defective $=\binom{90}{5}\binom{10}{3}$

2 Probability

Probability theory rests on the notion of a random experiment. We don't know what the outcome will be until we actually run the experiment. There are three kinds of experiments:

- Designed
- Observational
- Retrospective

An experiment has a procedure and a measurement and always produces one outcome

2.1 Sample Spaces

The sample space describes the set of all possible outcomes (S). There are three different kinds of sample spaces

- Finite \rightarrow discrete
- Countably Infinite \rightarrow discrete
- Continuous

2.2 Events

An event is the set of outcomes we are interested in. This must be a subset of the sample space. The **event class** is the set of all subsets of the sample space. Probabilities will be assigned to the events in ε

2.3 Relative Frequency

We want to assign probabilities consistent with the idea of relative frequency, which is defined as

$$\lim_{n \to \infty} \frac{n_A}{n} = p_A$$

This is only useful to model the likelihood of events occurring, so probabilities are assigned using probability axioms

2.4 Axioms of Probability

- 1. For any event $A, P(A) \ge 0$
- 2. P(S) = 1
- 3. For any two events A and B such that $P(A \cap B) = \emptyset$, then $P(A \cup B) = P(A) + P(B)$

2.5 Properties

- 1. P(A') = 1 P(A)
- 2. $P(A) \leq 1$
- 3. $P(\emptyset) = 0$
- 4. For any events A and B: $P(A \cup B) = P(A) + P(B) P(A \cap B)$

2.6 Conditional Probability

Conditional probability describes the probability of some event B occurring given an event A has occurred. This is denoted as P(B|A), which is read as "the probability of B given A".

A conditional probability relative to a subspace A of S may also be calculated directly from the probabilities assigned to the elements of the original sample space S

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

2.6.1 Independent Events

Two events are said to be independent if and only if

$$P(B|A) = P(B)$$
 or $P(A|B) = P(A)$

A and B are otherwise dependent

2.6.2 Product Rule and Multiplicative Rule

If in an experiment, both events A and B can occur, then

$$P(A \cap B) = P(A)P(B|A)$$

We can use this to find another expression for the independence of events. Two events A and B are independent if and only if

$$P(A \cap B) = P(A)P(B)$$

This multiplicative rule can be extended to more than just two-event situations. If, in an experiment, the events $A_1, A_2, \dots A_k$ occur, then

$$P(A_1 \cap A_2 \cap \cdots \cap A_k) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \cdots P(A_k|A_1 \cap A_2 \cap \cdots \cap A_{k-1})$$

If these events are independent, then

$$P(A_1 \cap A_2 \cap \cdots \cap A_k) = P(A_1)P(A_2)P(A_3)\cdots P(A_k)$$

2.7 Bayes' Rule

Bayes' Rule tells us the following. If the events B_1 , B_2 , . . . , B_k constitute a partition of the sample space S such that $P(B_i) \neq 0$ for i = 1, 2, ..., k, then for any event A in S such that P(A)/neq0,

$$P(B_r|A) = \frac{P(B_r \cap A)}{\sum_{i=1}^k P(B_i \cap A)} = \frac{P(B_r)P(A|B_r)}{\sum_{i=1}^k P(B_i)P(A|B_i)}$$

- 3 Random Variables, Probability Distributions and Expectation
- 4 Discrete and Continuous Probability Distributions
- 5 Functions of Random Variables
- 6 Estimation Problems
- 7 Hypothesis Testing
- 8 Simple Linear Regression and Correlation