Even or Odd Spanning Tree

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

> Oddly, even I find it odd that even though this seems like a natural rule to consider, I haven't even been able to find a single example of it existing previously. The odd problem here and there even resembles it a little bit, but even so, none of them are quite the same. How odd. Or even.

> > — Sam Cappleman-Lynes

You are given an undirected graph with n vertices and m edges. Assume T is a spanning tree of this graph, and let's denote Cost(T) as the total weights of all the edges in T. Please find T_1 and T_2 such that:

- $Cost(T_1)$ is even, and $Cost(T_1)$ is minimized.
- $Cost(T_2)$ is odd, and $Cost(T_2)$ is minimized.

Input

The first line contains a single integer T ($1 \le T \le 10^4$), the number of test cases. For each test case:

The first line contains two integers n and m ($2 \le n \le 2 \cdot 10^5$, $1 \le m \le 5 \cdot 10^5$), denoting the number of vertices and the number of edges.

Each of the following m lines contains three integers u_i, v_i and w_i $(1 \le u_i, v_i \le n, u_i \ne v_i, 1 \le w_i \le 10^9)$, describing an undirected edge.

It is guaranteed that the sum of all n is at most $2 \cdot 10^5$, and the sum of all m is at most $5 \cdot 10^5$.

Output

For each test case, output a single line containing two integers: $Cost(T_1)$ and $Cost(T_2)$. Note that if you can't find such a spanning tree, please print "-1" as the cost instead.

Example

standard input	standard output
3	-1 5
2 1	-1 -1
1 2 5	4 3
3 1	
1 3 1	
4 4	
1 2 1	
1 3 1	
1 4 1	
2 4 2	