Homework 1

Zachary DeStefano, 15247592 CS 274B: Spring & 2016

Due: April 15, 2016

Problem 1:

I will assume that each random variable can take on d values.

Part A

To satisfy p(W|X,Y,Z), we need d-1 parameters for values of W and each of those values are conditioned on d^3 possible configurations of X,Y,Z, thus we need $d^3(d-1)$ parameters.

To satisfy p(Z|X,Y), we need $d^2(d-1)$ parameters because we have d-1 parameter values each conditioned on d^2 configurations.

To satisfy p(Y|X), we need d(d-1) parameters because we have d-1 parameter values each conditioned on d configurations.

To satisfy p(X), we need d-1 parameters because we have d-1 parameter values.

Our total is thus

$$\frac{d^4-1}{d-1}(d-1)$$

Simplifying, our final total is

$$d^4 - 1$$

Thus this Bayesian network does not simplify the joint distribution

Figure 1: Minimal Directed Graphical Model for Part A

Part B

For each random variable, we need d-1 parameters. They are all independent Thus our total is just 4(d-1)

Figure 2: Minimal Directed Graphical Model for Part B

Part C

The variables p(Z|Y), p(W|Y), p(X|Y) each need d(d-1) parameters since we have d-1 parameter values conditioned on d configurations.

The factor p(Y) needs d-1 parameters

Thus our total is (3d+1)(d-1)

Figure 3: Minimal Directed Graphical Model for Part C

Part D

To satisfy p(X) and p(Y) we need d-1 parameters for each of them

To satisfy p(W|X) we need d(d-1) parameters since there are d-1 parameter values conditioned on d configurations.

To satisfy p(Z|X,Y) we need $d^2(d-1)$ parameters since there are d-1 parameter values conditioned on d^2 configurations.

Our total is thus

$$(d^2 + d + 2)(d - 1) = (d^2 + d + 1)(d - 1) + (d - 1) = (d^3 - 1) + (d - 1) = d^3 + d - 2$$

Figure 4: Minimal Directed Graphical Model for Part D

Part E

To satisfy p(Z) we need d-1 parameters

To satisfy p(Y|Z) we need d(d-1) parameters as there are d-1 values conditioned on d configurations.

To satisfy p(X|Y) we need d(d-1) parameters for same reason as p(Y|Z)

To satisfy p(W|X) we need d(d-1) parameters for same reason as p(Y|Z)

Our total is thus (3d+1)(d-1) parameters

Figure 5: Minimal Directed Graphical Model for Part E

Part F

To satisfy p(X) we need d-1 parameters

To satisfy the other three factors, we need d(d-1) parameters for each of them for the same reason as p(Y|Z) in part E

Our total is thus (3d+1)(d-1) parameters

Figure 6: Minimal Directed Graphical Model for Part F

Problem 2:

Part A

No

There is a "vee" structure between them and the variables are unobserved. Thus all paths are inactive and they are conditionally independent

Part B

Yes

This allows you to infer new values for $power_in_building$ This will in turn mean new probabilities for $Sam_reading_book$

Part C

Yes

Observing a value for $screen_lit_up$ lets you infer information about the probability of $power_in_wire$. Knowledge of $projector_plugged_in$ combined with the information about $power_in_wire$ will affect $power_in_building$. This will in turn affect $Sam_reading_book$ because it is connected through a chain to $power_in_building$.

Part D

If $lamp_works$ was observed, then we would update the probabilities for $projector_lamp_on$ We would then have to update the probabilities for $screen_lit_up$ This would cause us to update probabilities for $ray_says_screen_is_dark$

Part E

If we observe just *power_in_projector* then the same variables from Part D will have their probabilities changed.

We would also update the probability for $projector_switch_on$ We would also have to update $power_in_building$ and $power_in_wire$

Problem 3:

Part A

We need to solve the following

$$p(0,0;\theta) + p(0,1;\theta) + p(1,0;\theta) + p(1,1;\theta) = 1$$

This ends up being the following:

$$exp(-A(\theta)) + exp(-A(\theta)) + exp(\theta_x - A(\theta)) + exp(\theta_x + \theta_{xy} - A(\theta)) = 1$$

After doing some factoring

$$\frac{exp(\theta_x) + exp(\theta_{xy} + \theta_x) + 2}{exp(A(\theta))} = 1$$

After cross multiplying and solving for $A(\theta)$

$$A(\theta) = log(exp(\theta_x) + exp(\theta_{xy} + \theta_x) + 2)$$

Part B

After letting $\theta_{xy} = 1$ we have the following

$$A(\theta) = log(exp(\theta_x) + exp(1 + \theta_x) + 2)$$

After some factoring

$$A(\theta) = log(exp(\theta_x)(1 + exp(1)) + 2)$$

Figure 7: Plot for $A(\theta)$. It appears convex as expected

Part C

This is the partial with respect to θ_x

$$\frac{\partial A}{\partial \theta_x} = \frac{exp(\theta_x) + exp(\theta_x + \theta_{xy})}{exp(\theta_x) + exp(\theta_x + \theta_{xy}) + 2}$$

This is the partial with respect to θ_{xy}

$$\frac{\partial A}{\partial \theta_{xy}} = \frac{exp(\theta_x + \theta_{xy})}{exp(\theta_x) + exp(\theta_x + \theta_{xy}) + 2}$$

Thus we have

$$\nabla A(\theta) = \left[\frac{exp(1) + exp(3)}{exp(1) + exp(3) + 2}, \frac{exp(3)}{exp(1) + exp(3) + 2}\right]$$

Approximately

$$\nabla A(\theta) = [0.91937, 0.80978]$$

This is also the expected value of the distribution if $\theta = [1, 2]$