

Line Drivers/Receivers

LM1489/LM1489A quad line receiver

general description

The LM1489/LM1489A are quad line receivers designed to interface data terminal equipment with data communications equipment. They are constructed on a single monolithic silicon chip. These devices satisfy the specifications of EIA standard No. RS232C. The LM1489/LM1489A meet and exceed the specifications of MC1489/MC1489A and are pin-for-pin replacements. The LM1489/LM1489A are available in 14 lead ceramic dual-in-line package.

features

- Four totally separate receivers per package
- Programmable threshold
- Built-in input threshold hysteresis
- "Fail safe" operating mode
- Inputs withstand ±30V

schematic and connection diagrams

Dual-In-Line Package

Order Number LM1489J or LM1489AJ See Package 16

ac test circuit and voltage waveforms

typical applications

RS232C Data Transmission

MOS LOGIC

114 LIMITEDIA
LIMITEDIA

MOS to T²L/DTL Translator

absolute maximum ratings (Note 1)

The following apply for T_A = 25°C unless otherwise specified.

 Power Supply Voltage
 10V
 Power Dissipation (Note 2)
 1W

 Input Voltage Range
 ±30V
 Operating Temperature Range
 0°C to +75°C

 Output Load Current
 20 mA
 \$torage Temperature Range
 -65°C to +175°C

electrical characteristics (Note 3)

 $LM1489/LM1489A \quad \text{The following apply for V}_{CC} = 5 \text{ oV} \pm 1\%, \ 0^{\circ}C \leq T_{A} \leq +75^{\circ}C \text{ unless otherwise specified }$

PARAMETER	CONDITIONS	LM1489			LM1489A			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input High Threshold Voltage	$T_A = 25^{\circ}C$, $V_{OUT} \le 0.45V$; $I_{OUT} = 10 \text{ mA}$	10		15	1 75		2 25	٧
Input Low Threshold Voltage	$T_A = 25^{\circ}C$, $V_{OUT} \ge 25V$, $I_{OUT} = -05 \text{ mA}$	0 75		1 25	0 75		1 25	v
Input Current	V _{IN} = +25V	+36	+56	+8 3	+3 6	+5 6	+83	mA
	V _{IN} = -25V	-36	-56	-8.3	-36	-5 6	-83	
	V _{IN} = +3V	+0 43	+0 53		+0 43	+0 53		mA
	V _{IN} = -3V	-0 43	-0 53		-0 43	-0 53		
Output High Voltage	V _{IN} = 0 75V, t _{OUT} = -0 5 mA	26	38	50	26	38	50	V
	Input = Open, I _{OUT} = -0 5 mA	26	38	50	26	38	50	v
Output Low Voltage	V _{IN} = 3 0V, I _{OUT} = 10 mA		0 33	0 45	i	0 33	0 45	V
Output Short Circuit Current	V _{IN} = 0.75V		3.0			30		mA
Supply Current	V _{IN} = 5 0V		14	26		14	26	mA
Power Dissipation	V _{IN} = 5.0V		70	130		70	130	mW

LM1489/LM1489A: The following apply for $V_{CC} = 5 \text{ oV} \pm 1\%$, $T_A = 25^{\circ}\text{C}$

Input to Output "High" Propagation Delay (t _{pd1})	R _L = 3.9k (Figure 1) (AC Test Circuit)	28	85	28	85	ns	
Input to Output "Low" Propagation Delay (t _{pd0})	R _L = 390Ω (Figure 1) (AC Test Circuit)	20	50	20	50	ns	
Output Rise Time	R _L = 3 9k (Figure 1) (AC Test Circuit)	110	175	110	175	ns	
Output Fall Time	$R_L = 390\Omega$ (Figure 1) (AC Test Circuit)	9	20	9	20	ns	

Note 1: Voltage values shown are with respect to network ground terminal. Positive current is defined as current into the referenced pin.

Note 2: For operation at elevated temperatures, the device must be derated based on a 125°C maximum junction temperature and a thermal resistance of 85°C/W junction to case.

Note 3: These specifications apply for response control pin = open.