Série d'exercices 3

Exercice 1 Calculer lorsqu'elles existent les limites suivantes

a)
$$\lim_{x\to 0} \frac{x^2+2|x|}{x}$$

b)
$$\lim_{x\to-\infty}\frac{x^2+2|x|}{x}$$

a)
$$\lim_{x\to 0} \frac{x^2+2|x|}{x}$$
 b) $\lim_{x\to -\infty} \frac{x^2+2|x|}{x}$ c) $\lim_{x\to 2} \frac{x^2-4}{x^2-3x+2}$

$$d$$
) $\lim_{x\to\pi} \frac{\sin^2 x}{1+\cos x}$

e)
$$\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1+x^2}}{x}$$

d)
$$\lim_{x \to \pi} \frac{\sin^2 x}{1 + \cos x}$$
 e) $\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 + x^2}}{x}$ f) $\lim_{x \to +\infty} \sqrt{x + 5} - \sqrt{x - 3}$

g)
$$\lim_{x\to 0} \frac{\sqrt[3]{1+x^2}-1}{x^2}$$
 h) $\lim_{x\to 1} \frac{x-1}{x^n-1}$

$$h) \lim_{x \to 1} \frac{x-1}{x^n-1}$$

1. Démontrer que $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x} = 1$. Exercice 2

- 2. Soient m, n des entiers positifs. Étudier $\lim_{x\to 0} \frac{\sqrt{1+x^m}-\sqrt{1-x^m}}{x^n}$.
- 3. Démontrer que $\lim_{x\to 0} \frac{1}{x} (\sqrt{1+x+x^2}-1) = \frac{1}{2}$

Exercice 3 1. Montrer que toute fonction périodique et non constante n'admet pas de limite en $+\infty$.

2. Montrer que toute fonction croissante et majorée admet une limite finie en $+\infty$.

Exercice 4 Les fonctions suivantes sont-elles prolongeables par continuité sur \mathbb{R} ?

a)
$$f(x) = \sin x \cdot \sin \frac{1}{x}$$
; $\int h(x) = \frac{1}{1-x} - \frac{2}{1-x^2}$.

Exercice 5 Soit f une fonction de [a,b] dans [a,b] telle que pour tout x et x' $(x \neq x')$ de [a,b] on ait: |f(x) - f(x')| < |x - x'|.

- 1. Montrer que f est continue sur [a, b].
- 2. Montrer que l'équation f(x) = x admet une et une seule solution dans [a, b]. (On pourra introduire la fonction : $x \mapsto g(x) = f(x) - x$).

Exercice 6 Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction continue telle que f(a) = f(b). Montrer que la fonction $g(t) = f(t + \frac{b-a}{2}) - f(t)$ s'annule en au moins un point de $[a, \frac{a+b}{2}]$.

Application: une personne parcourt 4 km en 1 heure. Montrer qu'il existe un intervalle de 30 mn pendant lequel elle parcourt exactement 2 km.

Exercice 7 Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que $\lim_{-\infty} f = -\infty$ et $\lim_{+\infty} f = +\infty$. Montrer que f s'annule. Appliquer ceci aux polynômes de degré impair.

Exercice 8 Soient I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ continue, telle que pour chaque $x \in I$, $f(x)^2 = 1$. Montrer que f = 1 ou f = -1.

ection 1 1. $\frac{x^2+2|x|}{x} = x + 2\frac{|x|}{x}$. Si x > 0 cette expression vaut x + 2 donc la limite à droite en x = 0 est +2. Si x < 0 l'expression vaut -2 donc la limite à gauche en x = 0 est -2. Les limites à droite et à gauche sont différentes donc il n'y a pas de limite en x = 0.

2.
$$\frac{x^2+2|x|}{x} = x + 2\frac{|x|}{x} = x - 2 \text{ pour } x < 0.$$
 Donc la limite quand $x \to -\infty$ est $-\infty$.
3. $\frac{x^2-4}{x^2-3x+2} = \frac{(x-2)(x+2)}{(x-2)(x-1)} = \frac{x+2}{x-1}$, lorsque $x \to 2$ cette expression tend vers 4.

3.
$$\frac{x^2-4}{x^2-3x+2} = \frac{(x-2)(x+2)}{(x-2)(x-1)} = \frac{x+2}{x-1}$$
, lorsque $x \to 2$ cette expression tend vers 4.

4.
$$\frac{\sin^2 x}{1+\cos x} = \frac{1-\cos^2 x}{1+\cos x} = \frac{(1-\cos x)(1+\cos x)}{1+\cos x} = 1 - \cos x$$
. Lorsque $x \to \pi$ la limite est donc 2.

$$\begin{array}{l} \text{4.} \ \ \frac{\sin^2 x}{1+\cos x} = \frac{1-\cos^2 x}{1+\cos x} = \frac{(1-\cos x)(1+\cos x)}{1+\cos x} = 1-\cos x. \ Lorsque \ x \rightarrow \pi \ la \ limite \ est \ donc \ 2. \\ \text{5.} \ \ \frac{\sqrt{1+x}-\sqrt{1+x^2}}{x} = \frac{\sqrt{1+x}-\sqrt{1+x^2}}{x} \times \frac{\sqrt{1+x}+\sqrt{1+x^2}}{\sqrt{1+x}+\sqrt{1+x^2}} = \frac{1+x-(1+x^2)}{x(\sqrt{1+x}+\sqrt{1+x^2})} = \frac{x-x^2}{x(\sqrt{1+x}+\sqrt{1+x^2})} = \frac{1-x}{\sqrt{1+x}+\sqrt{1+x^2}}. \\ \text{Lorsque } x \rightarrow 0 \ la \ limite \ vaut \ \frac{1}{2}. \end{array}$$

6.
$$\sqrt{x+5} - \sqrt{x-3} = (\sqrt{x+5} - \sqrt{x-3}) \times \frac{\sqrt{x+5} + \sqrt{x-3}}{\sqrt{x+5} + \sqrt{x-3}} = \frac{x+5-(x-3)}{\sqrt{x+5} + \sqrt{x-3}} = \frac{8}{\sqrt{x+5} + \sqrt{x-3}}$$
. Lorsque $x \to +\infty$, la limite vaut 0.

7. Nous avons l'égalité $a^3 - 1 = (a-1)(1+a+a^2)$. Pour $a = \sqrt[3]{1+x^2}$ cela donne :

$$\frac{a-1}{x^2} = \frac{a^3 - 1}{x^2(1+a+a^2)} = \frac{1+x^2 - 1}{x^2(1+a+a^2)} = \frac{1}{1+a+a^2}.$$

Lors que $x \to 0$, alors $a \to 1$ et la limite cherchée est $\frac{1}{3}$.

Autre méthode : si l'on sait que la limite d'un taux d'accroissement correspond à la dérivée nous avons une méthode moins astucieuse. Rappel (ou anticipation sur un prochain chapitre) : pour une fonction f dérivable en a alors

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a).$$

Pour la fonction $f(x) = \sqrt[3]{1+x} = (1+x)^{\frac{1}{3}}$ ayant $f'(x) = \frac{1}{3}(1+x)^{-\frac{2}{3}}$ cela donne en a=0:

$$\lim_{x \to 0} \frac{\sqrt[3]{1+x^2} - 1}{x^2} = \lim_{x \to 0} \frac{\sqrt[3]{1+x} - 1}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0) = \frac{1}{3}.$$

8. $\frac{x^n-1}{x-1}=1+x+x^2+\cdots+x^n$. Donc si $x\to 1$ la limite de $\frac{x^n-1}{x-1}$ est n. Donc la limite de $\frac{x-1}{x^n-1}$ en

La méthode avec le taux d'accroissement fonctionne aussi très bien ici. Soit $f(x) = x^n$, $f'(x) = nx^{n-1}$ et a = 1. Alors $\frac{x^n - 1}{x - 1} = \frac{f(x) - f(1)}{x - 1}$ tend vers f'(1) = n.

Correction 2 Généralement pour calculer des limites faisant intervenir des sommes de racines carrées, il est utile de faire intervenir "l'expression conjuguée":

$$\sqrt{a} - \sqrt{b} = \frac{(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})}{\sqrt{a} + \sqrt{b}} = \frac{a - b}{\sqrt{a} + \sqrt{b}}.$$

Les racines au numérateur ont "disparu" en utilisant l'identité $(x-y)(x+y)=x^2-y^2$. Appliquons ceci sur un exemple :

$$f(x) = \frac{\sqrt{1 + x^m} - \sqrt{1 - x^m}}{x^n}$$

$$= \frac{(\sqrt{1 + x^m} - \sqrt{1 - x^m})(\sqrt{1 + x^m} + \sqrt{1 - x^m})}{x^n(\sqrt{1 + x^m} + \sqrt{1 - x^m})}$$

$$= \frac{1 + x^m - (1 - x^m)}{x^n(\sqrt{1 + x^m} + \sqrt{1 - x^m})}$$

$$= \frac{2x^m}{x^n(\sqrt{1 + x^m} + \sqrt{1 - x^m})}$$

$$= \frac{2x^{m-n}}{\sqrt{1 + x^m} + \sqrt{1 - x^m}}$$

Et nous avons

$$\lim_{x \to 0} \frac{2}{\sqrt{1 + x^m} + \sqrt{1 - x^m}} = 1.$$

Donc l'étude de la limite de f en 0 est la même que celle de la fonction $x \mapsto x^{m-n}$.

Distinguons plusieurs cas pour la limite de f en 0.

- $Si \ m > n \ alors \ x^{m-n}$, et $donc \ f(x)$, tendent vers 0.
- $Si m = n \ alors \ x^{m-n} \ et \ f(x) \ tendent \ vers \ 1.$
- Si m < n alors $x^{m-n} = \frac{1}{x^n-m} = \frac{1}{x^k}$ avec k = n-m un exposant positif. Si k est pair alors les limites à droite et à gauche de $\frac{1}{x^k}$ sont $+\infty$. Pour k impair la limite à droite vaut $+\infty$ et la limite à gauche vaut $-\infty$. Conclusion pour k = n-m > 0 pair, la limite de f en f vaut f et pour f f n'a pas de limite en f car les limites à droite et à gauche ne sont pas égales.

Correction 3 1. Soit p > 0 la période : pour tout $x \in \mathbb{R}$, f(x+p) = f(x). Par une récurrence facile on montre :

$$\forall n \in \mathbb{N} \qquad \forall x \in \mathbb{R} \qquad f(x+np) = f(x).$$

Comme f n'est pas constante il existe $a,b \in \mathbb{R}$ tels que $f(a) \neq f(b)$. Notons $x_n = a + np$ et $y_n = b + np$. Supposons, par l'absurde, que f a une limite ℓ en $+\infty$. Comme $x_n \to +\infty$ alors $f(x_n) \to \ell$. Mais $f(x_n) = f(a + np) = f(a)$, donc $\ell = f(a)$. De même avec la suite $(y_n) : y_n \to +\infty$ donc $f(y_n) \to \ell$ et $f(y_n) = f(b + np) = f(b)$, donc $\ell = f(b)$. Comme $f(a) \neq f(b)$ nous obtenons une contradiction.

2. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction croissante et majorée par $M \in \mathbb{R}$. Notons

$$F = f(\mathbb{R}) = \{ f(x) \mid x \in \mathbb{R} \}.$$

F est un ensemble (non vide) de \mathbb{R} , notons $\ell = \sup F$. Comme $M \in \mathbb{R}$ est un majorant de F, alors $\ell < +\infty$. Soit $\varepsilon > 0$, par les propriétés du \sup il existe $y_0 \in F$ tel que $\ell - \varepsilon \leqslant y_0 \leqslant \ell$. Comme $y_0 \in F$, il existe $x_0 \in \mathbb{R}$ tel que $f(x_0) = y_0$. Comme f est croissante alors:

$$\forall x \geqslant x_0$$
 $f(x) \geqslant f(x_0) = y_0 \geqslant \ell - \varepsilon$.

De plus par la définition de ℓ :

$$\forall x \in \mathbb{R} \quad f(x) \leqslant \ell.$$

Les deux propriétés précédentes s'écrivent :

$$\forall x \geqslant x_0 \qquad \ell - \varepsilon \leqslant f(x) \leqslant \ell.$$

Ce qui exprime bien que la limite de f en $+\infty$ est ℓ .

Correction 4 1. La fonction est définie sur \mathbb{R}^* t elle est continue sur \mathbb{R}^* . Il faut déterminer un éventuel prolongement par continuité en x = 0, c'est-à-dire savoir si f a une limite en 0.

$$|f(x)| = |\sin x| |\sin 1/x| \leqslant |\sin x|.$$

Donc f a une limite en 0 qui vaut 0. Donc en posant f(0) = 0, nous obtenons une fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ qui est continue.

2. h est définie et continue sur $\mathbb{R} \setminus \{-1, 1\}$.

$$h(x) = \frac{1}{1-x} - \frac{2}{1-x^2} = \frac{1+x-2}{(1-x)(1+x)} = \frac{-1+x}{(1-x)(1+x)} = \frac{-1}{(1+x)}.$$

Donc h a pour limite $-\frac{1}{2}$ quand x tend vers 1. Et donc en posant $h(1) = -\frac{1}{2}$, nous définissons une fonction continue sur $\mathbb{R} \setminus \{-1\}$. En -1 la fonction h ne peut être prolongée continuement, car en -1, h n'admet de limite finie.

- **Correction 5** 1. Pour toute suite x_n qui tend vers x, on a $|f(x_n) f(x)| < |x_n x'| \to 0$.
 - 2. On utilise le théorème des valeurs intermidiaires pour la fonction : $x \mapsto g(x) = f(x) x$).
- Correction 6 1. $g(a) = f(\frac{a+b}{2}) f(a)$ et $g(\frac{a+b}{2}) = f(b) f(\frac{a+b}{2})$. Comme f(a) = f(b) alors nous obtenons que $g(a) = -g(\frac{a+b}{2})$. Donc ou bien $g(a) \leqslant 0$ et $g(\frac{a+b}{2}) \geqslant 0$ ou bien $g(a) \geqslant 0$ et $g(\frac{a+b}{2}) \leqslant 0$. D'après le théorème des valeurs intermédiaires, g(a) = f(b) s'annule en g(a) = f(b) entre g(a) = f(b) et g(a) = f(b) ou bien g(a) = f(b) et g(a) = f(b) ou bien g(a) = f(b) et g(a) = f(b) ou bien g(a) = f(b) et g(a) = f(b) ou bien g(a) = f(b) et g(a) = f(b) et g(a) = f(b) ou bien g(a) = f(b) et g(a) = f(b) ou bien g(a) = f(b) ou bien g(a) = f(b) et g(a) = f(b) ou bien g(a) = f(b) et g(a) = f(b) et g(a) = f(b) ou bien g(a) = f(b) et g(a) = f(b) e
 - 2. Notons t le temps (en heure) et d(t) la distance parcourue (en km) entre les instants 0 et t. Nous supposons que la fonction $t \mapsto d(t)$ est continue. Soit f(t) = d(t) 4t. Alors f(0) = 0 et par hypothèse f(1) = 0. Appliquons la question précédente avec a = 0, b = 1. Il existe $c \in [0, \frac{1}{2}]$ tel que g(c) = 0, c'est-à-dire $f(c + \frac{1}{2}) = f(c)$. Donc $d(c + \frac{1}{2}) d(c) = 4(c + \frac{1}{2}) 4c = 2$. Donc entre c et $c + \frac{1}{2}$, (soit 1/2 heure), la personne parcourt exactement 2 km.

Correction 7 Il existe x < 0 tel que f(x) < 0 et y > 0 tel que f(y) > 0, d'après le théorème des valeurs intermédiaires, il existe $z \in]x,y[$ tel que f(z) = 0. Donc f s'annule. Les polynômes de degré impair vérifient les propriétés des limites, donc s'annulent. Ceci est faux, en général, pour les polynômes de degré pair, par exemple regardez $f(x) = x^2 + 1$.

Correction 8 Comme $f(x)^2 = 1$ alors $f(x) = \pm 1$. Attention! Cela ne veut pas dire que la fonction est constante égale à 1 ou -1. Supposons, par exemple, qu'il existe x tel que f(x) = +1. Montrons que f est constante égale à +1. S'il existe $y \neq x$ tel que f(y) = -1 alors f est positive en x, négative en y et continue sur I. Donc, par le théorème des valeurs intermédiaires, il existe z entre x et y tel que f(z) = 0, ce qui contredit $f(z)^2 = 1$. Donc f est constante égale à +1.