

Interior Permanent Magnet Machine For Use In The XM1124 Hybrid Electric HMMWV

Justin Owen
Mike Marcel, Ph.D.
DRS Test and Energy Management, LLC.
Huntsville, AL

maintaining the data needed, a including suggestions for redu	and completing and reviewing the scing this burden, to Washington s should be aware that notwithsta	e collection of information. Sen Headquarters Services, Directo	d comments regarding this trate for Information Opera	burden estimate or a tions and Reports, 12	ions, searching existing data sources, gathering and ny other aspect of this collection of information, 15 Jefferson Davis Highway, Suite 1204, Arlington ing to comply with a collection of information if it	
1. REPORT DATE 11 AUG 2009				3. DATES COVERED		
4. TITLE AND SUBTITLE Interior Permanent Magnet Maching For Use In The XM1124 Harbyid Flootric HMMY/V				5a. CONTRACT NUMBER DAAE07-02-C-L065		
6. AUTHOR(S) Justin Owen; Mike Marcel				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) DRS Test and Energy Management, LLC. Huntsville, AL				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA				10. SPONSOR/MONITOR'S ACRONYM(S) TACOM/TARDEC/RDECOM		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S) 20154		
	AILABILITY STATEME					
13. SUPPLEMENTARY The original doc	NOTES ument contains co	olor images.				
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION	18.	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	ь. ABSTRACT unclassified	c. THIS PAGE unclassified	OF ABSTRACT SAR	NUMBER OF PAGES 16		

Report Documentation Page

Form Approved OMB No. 0704-0188

- DRS-TEM was tasked in the Control Development, Testing, and Validation of a Prototype IPM suitable for use in the XM1124 HMMWV
 - IPM chosen due to special characteristics that make it desirable when compared to other ac machines (Specifically, SPM Machines)
 - Rotor design topology produces increased saliency ratio (Armature Axis) Inductance is larger than the Field Inductance)
 - Saliency makes the reluctance torque component available, in addition to the permanent magnet torque, for low speed torque boost as well as extended-speed operation under FW Control
 - Trajectory Control implemented in order to utilize unique machine characteristics and optimize performance

IPM Machine Modeling

Table 1 : XM1124 Prototype IPM Motor Parameters

Number of pole pairs – P	4		
Stator resistance – R	9.9e-3 Ω		
Magnet flux linkage – λ_f	0.098 Wb		
d -axis inductance $-L_d$	400e-6 H		
q -axis inductance — L_q	800e-6 H		
Maximum phase voltage $-V_{sm}$	230 V _{pk}		
Maximum dc-link voltage $-V_{dc-link}$	400 V _{dc}		
Maximum phase current – I _{sm}	600 A _{pk}		
Base Speed $-\omega_{\rm b}$	1500 RPM		
Crossover Speed – ω_c	5600 RPM		
Rated Power – P _R	100 kW		

IPM Governing Equations:

Voltage in the d-q rotating reference frame

$$\begin{bmatrix} v_d \\ v_q \end{bmatrix} = \begin{bmatrix} R + pL_d & -\omega_e L_q \\ \omega_e L_d & R + pL_q \end{bmatrix} \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_e \lambda_f \end{bmatrix}$$

Torque Developed

$$T = \frac{3}{2} P \left[\lambda_f i_q + \left(L_d - L_q \right) i_d i_q \right]$$

Permanent Magnet Component

Synchronous Reluctance Component

IPM Machine Modeling

- For successful control implementation, operating limits and stability criteria must be effectively defined and observed
- Current and voltage restraints are used in order to define the operating region for the Maximum Torque Per Amp (MTPA) Trajectory

Current Limit Circle

$$X^2 + Y^2 = r^2$$

Center Point Lying at zero with a radius of I_{sm}

 $(h,k) = \left(0, \frac{-\lambda_f}{I_{\perp}}\right)$

Voltage Limit Ellipses

$$\frac{(X-h)^2}{a^2} + \frac{(Y-k)^2}{b^2} = 1$$

Half Length of Major Axis

$$a = \left(\frac{V_{om}}{\omega_e * L_d}\right)$$

Half Length of Minor Axis

$$b = \left(\frac{V_{om}}{\omega_e * L_q}\right)$$

$$V_{sm} = \frac{V_{dc-link}}{\sqrt{3}}$$

Where
$$V_{om} = V_{sm} - I_{sm} * R$$
 and $V_{sm} = \frac{V_{dc-link}}{\sqrt{3}}$

$$V_{sm} = \frac{V_{dc-link}}{\sqrt{3}}$$

IPM Machine Modeling

- The MTPA Trajectory utilizes machine characteristics and system limitations in such a way as to maximize the torque/amp ratio while maintaining optimum efficiency.
- Intersecting point of MTPA Trajectory and current limit circle yields maximum operating point at base speed
 - Base Speed is defined as the speed at which the load generated CEMF reaches the inverter bus voltage

MTPA Trajectory
Maximum Operating Point
At Base Speed

$$i_{dA} = \frac{\lambda_f}{4(L_q - L_d)} - \sqrt{\frac{\lambda_f^2}{16(L_q - L_d)^2} + \frac{I_{sm}^2}{2}}$$

$$i_{qA} = \sqrt{I_{sm}^2 - i_{dA}^2}$$

Analytical Maximum $(i_{dA}, i_{qA}) = (-367A, 474A)$ Operating Point

Operational MTPA Trajectory d-axis current calculation

$$i_d^* = \frac{\lambda_f}{2(L_q - L_d)} - \sqrt{\frac{\lambda_f^2}{4(L_q - L_d)^2} + (i_q^*)^2}$$

d-axis Current command calculated based on q-axis current command (Indirect Torque Control, Speed Control Error)

Modeling and Simulation between Base Speed and Crossover Speed

- In order to safely operate the IPM beyond base speed and up to crossover speed, the controlling algorithm must be transitioned to MTPA + FW Control
 - Crossover speed is defined as the speed at which the no load PM generated EMF reaches the bus voltage
 - Beyond base speed, MTPA or FW control is selected based on the load condition
 - Required d-axis current is calculated using q-axis current command and FW equation
 - Great care must be taken to avoid stability criteria due to a non-real i_d calculation

FW Control d-axis Current Calculation $i_d^* = \frac{-\lambda_f}{L_d} + \frac{1}{L_d} \sqrt{\frac{V_{om}^2}{\omega^2} - \left(L_q i_q^*\right)^2} \qquad \qquad \qquad \qquad \qquad \qquad \begin{vmatrix} i_q^* | \leq \frac{V_{om}}{\omega L_q} \\ \downarrow & \\ i_d^* = \frac{-\lambda_f}{L_d} \end{vmatrix}$ If non-real solution $i_d^* = \frac{-\lambda_f}{L_d}$

MTPA Trajectory

MSTV MODELING AND SIMULATION, TESTING AND VALIDATION

Modeling and Simulation Below Base Speed

MATLAB® Simulink used to model IPM machine and controlling algorithm

Simulated Results

 Simulated Comparison of SPM machine and Id=0 Control

Simulated IPM Torque Comparison

- Extraction of individual torque components is very beneficial
- Sum of torque components is greater than either alone

GVSETS

Experimental Validation

 DRS System Integration Lab (SIL) used to test machine and controlling algorithm

 XM1124 Prototype IPM coupled directly to DRS Taylor Dynamometer Water Brake for load testing

Saturation Effects

- Significant saturation of the armature axis inductance observed at start of experimental testing
- Results in reduction of saliency ratio and limits overall output torque by reduction of synchronous reluctance torque component

Experimental Results with Saturation Effects

- Prototype IPM tested and controlled by DRS MCU using Trajectory Control
 - MCU introduces safety limitations not observed in initial simulation
 - Reduced DC-Link Voltage
 - Current Safety Margin for IGBT's
- Water Brake provided desired torque load while MCU controlled IPM in speed control mode
- Approximately 300 Nm of torque observed while using MTPA below base speed.
 - Torque reduction attributed to quadrature axis saturation at higher currents negating benefits of synchronous reluctance component

Experimental Results with Saturation Effects

Observed

Simulated (No Saturation)

Simulated (With Saturation

Prototype IPM Testing: Simulated Output Power vs. Actual

Conclusions

- Modeling and Simulation of XM1124 Prototype IPM show the distinct advantages of this new technology
- Unique motor characteristics produce advantages not seen in other ac machines (SPM in general)
- Actual testing revealed IPM torque output heavily dependent on quadrature axis inductance saturation
- Torque boost at lower current levels due to additional synchronous reluctance component is apparent
- Testing is ongoing
 - Motor power efficiency mapping
 - FW Control
 - Comparison with similar SPM traction machines

Acknowledgements/Contact

DRS-TEM would like to thank TARDEC for their continued support in the XM1124 program!

Contact Information:

Justin Owen

Dr. Mike Marcel, P.E.

DRS Test and Energy Management, LLC

110 Wynn Drive

Huntsville, AL 35801

jowen@drs-tem.com

mmarcel@drs-tem.com

