CENTROS DE PROCESAMIENTO DE DATOS

Práctica 10: Proyecto personal

Juan José García Melgar Curso 4º, Grupo A - 2018/2019

Descripción

En esta práctica se trata de utilizar las diversas herramientas, conocimientos y recursos que permitan crear un sistema con las siguientes características:

- > Al menos 3 nodos.
- Debe permitir que puedan aumentarse o disminuirse el número de servidores de forma dinámica.
- Algún recurso que permita redundancia en el almacenamiento (GlusterFS) o BBDD redundante (MongoDB, Cassandra).
- > Algún mecanismo de control de seguridad (Fail2ban).

Elementos adicionales:

- Monitorización del sistema.
- Balanceo de carga.
- Recursos disponibles que ofrezca el proveedor cloud.
- Diagramas describiendo el sistema: https://www.yworks.com/products/yed

Desarrollo

Para el desarrollo se puede utilizar AWS Educate o algún sistema equivalente.

Descripción del proyecto

Para todo el proceso, se ha contado con los servicios de Microsoft Azure https://azure.microsoft.com/es-es, que nos brinda todo lo necesario para llevarlo a cabo. Se ha desarrollado un sistema compuesto por: un clúster de 4 nodos, que pueden aumentarse o disminuirse según necesidad, bajo Ubuntu Server. Incluye un sistema redundante de almacenamiento Gluster File System, con un factor de replicación de 2. Además, cada nodo tiene una IP pública y 2 discos dispuestos en RAIDO.

Recursos añadidos

Para dotar a la infraestructura de mayor seguridad, se ha optado por incluir un Firewall de Azure y Fail2ban. Este último, implementado a través de consola, desde los repositorios de Ubuntu. Por otro lado, también se ha optado por añadir un Balanceador de Equilibrio a dicha infraestructura, con un back-end determinado, regla de equilibrio de carga, NAT de entrada y sondeo de estado, a través de un monitor de conexión Network Watcher, que nos permite configurar y realizar el seguimiento de los cambios en la topología de red, la latencia y el alcance de la conexión. Si surge un problema, nos indica porqué se produjo y cómo solucionarlo.

A continuación, se adjuntan algunas capturas, que nos orientan sobre el desarrollo y puesta en marcha de dicha infraestructura:

Descripción del sistema

Grupo de recursos utilizados

CUENTA DE ALMACENAMIENTO	
tarsot	
DIRECCIÓN IP PÚBLICA	
azureFirewalls-ip	INTERFAZ DE RED
pip0	
pip1	nic0
pip2	nic1
pip3	nic2
DISCO	nic3
arsot0_DataDisk1	in inco
tarsot0_DataDisk2	MÁQUINA VIRTUAL
tarsot0_OSDisk	arsot0
arsot1_DataDisk1	tarsot1
arsot1_DataDisk2	
tarsot1_OSDisk	tarsot2
tarsot2_DataDisk1	tarsot3
tarsot2_DataDisk2	RED VIRTUAL
tarsot2_OSDisk	
tarsot3_DataDisk1	< → gfs-vnet
arsot3_DataDisk2	
arsot3_OSDisk	
EQUILIBRADOR DE CARGA	
balancer	

Nodos

A modo de ejemplo, se detallan algunos parámetros de monitorización de los servidores, durante un periodo de actividad equivalente a doce horas:

Servidor 1 (tarsot0)

Servidor 2 (tarsot1)

Servidor 3 (tarsot2)

Servidor 4 (tarsot3)

Network watcher

Fail2ban

```
tarsot@tarsot0:-$ ps aux | grep -i fail2ban | grep -v grep
root 6748 0.2 0.7 488616 13184 ? Sl 09:43 0:03 /usr/bin/python /usr/bin/fail2ban-server -b -s /var/run/fail2ban/fail2ban.sock -p /var/run/fail2ban/fail2ban.pid
```

```
INFO Changed logging target to /var/log/fail2ban.log for Fail2ban v0.8.11
INFO Jail 'ssh' uses pyinotify
INFO Initiated 'pyinotify' backend
INFO Set maxRetry = 2
INFO Set findtime = 600
INFO Creating new jail 'dropbear'
INFO Jail 'dropbear' uses pyinotify
INFO Initiated 'pyinotify' backend
INFO Added logfile = /var/log/auth.log
INFO Set maxRetry = 2
INFO Set jail 'ssh-ddos'
INFO Creating new jail 'ssh-ddos'
INFO Creating new jail 'ssh-ddos'
INFO Jail 'ssh-dsos' uses pyinotify
INFO Initiated 'pyinotify' backend
INFO Added logfile = /var/log/auth.log
INFO Set maxRetry = 2
INFO Set findtime = 600
INFO Set findtime = 600
INFO Set findtime = 600
INFO Set banTime = 600
INFO Jail 'ssh' started
INFO Jail 'ssh-ddos' started
INFO Jail 'ssh-ddos' started
```