OVERVIEW OF THE DATASET

	Outlook 🗸	Temperature 🗸	Humidity 🗸	Wind 🗸	Golf ∨
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	0vercast	Hot	High	Weak	Yes
4	Rainy	Mild	High	Weak	Yes
5	Rainy	Cool	Normal	Weak	Yes
6	Rainy	Cool	Normal	Strong	No
7	0vercast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rainy	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	0vercast	Mild	High	Strong	Yes
13	0vercast	Hot	Normal	Weak	Yes
14	Rainy	Mild	High	Strong	No
15	Sunny	Hot	High	Weak	No

The dataset gives us 15 decisions whether to play golf or not given the information of weather condition. In this dataset, the target attribute that needs forecasting is the Yes/No values in the Golf column. The explanatory attributes are **Outlook**, **Temperature**, **Humidity and Wind**.

The job of the ID3 algorithm is **to select the most suitable attribute to be used as nodes in our decision tree.** To determine a node, I follow a 3-step approach:

- 1. Compute the Entropy for dataset Entropy
- 2. Calculate the Average Entropy and Information Gain of Each Attribute
- 3. The highest-gain attribute will act as the node.

Using this approach, I find the Root Node, Decision Node and Leaf Node in order.

```
/** STEP 1: FIND THE ATTRIBUTE FOR ROOT NODE **/

/* Calculate Average Entropy of each attribute */

-- Calculate the frequency of each value

SELECT 'Outlook' Col, * INTO OtherAttribute FROM (SELECT DISTINCT Outlook Val, Golf, COUNT(*) Frequency FROM Golf GROUP BY Outlook, Golf) A

UNION SELECT 'Temperature', * FROM (SELECT DISTINCT Temperature, Golf, COUNT(*) Frequency FROM Golf GROUP BY Temperature, Golf) A

UNION SELECT 'Humidity', * FROM (SELECT DISTINCT Humidity, Golf, COUNT(*) Frequency FROM Golf GROUP BY Humidity, Golf) A

UNION SELECT 'Wind', * FROM (SELECT DISTINCT Wind, Golf, COUNT(*) Frequency FROM Golf GROUP BY Wind, Golf) A

SELECT * FROM OtherAttribute

SELECT * FROM OtherAttribute
```

Results Messages

	Col	√ Val	✓ Golf	~	Frequency	~
1	Humidity	High	No		5	
2	Humidity	High	Yes		3	
3	Humidity	Normal	No		1	
4	Humidity	Normal	Yes		6	
5	Outlook	0vercas	t Yes		4	
6	Outlook	Rainy	No		2	
7	Outlook	Rainy	Yes		3	
8	Outlook	Sunny	No		4	
9	Outlook	Sunny	Yes		2	
10	Temperatur	e Cool	No		1	
11	Temperatur	e Cool	Yes		3	
12	Temperatur	e Hot	No		3	

In order to implement the Entropy formula, I calculated the components in the formula and store them in tables.

First, I created 'OtherAttribute' table, which counts the number of Yes/No decisions associated with each value of each attribute.

```
32 — Caculate entropy for each values of each attribute
33 SELECT Col, Val, TotalFreq, -SUM(CAST(Frequency AS FLOAT)/ TotalFreq * LOG(CAST(Frequency AS FLOAT)/ TotalFreq )/LOG(2)) AS AttributeEntropy
34 INTO #AttributeEntropy
35 FROM AverageEntropy
36 GROUP BY Col, Val, TotalFreq
37
38 SELECT * FROM #AttributeEntropy
```

Results Messages

	Col 🗸	Val 🗸	TotalFreq 🗸	AttributeEntropy 🗸
1	Humidity	High	8	0,954434002924965
2	Humidity	Normal	7	0,5916727785823274
3	Outlook	0vercast	4	-0
4	Outlook	Rainy	5	0,9709505944546688
5	Outlook	Sunny	6	0,9182958340544896
6	Temperature	Cool	4	0,8112781244591328
7	Temperature	Hot	5	0,9709505944546688
8	Temperature	Mild	6	0,9182958340544896
9	Wind	Strong	6	1
10	Wind	Weak	9	0,9182958340544896

Next, I calculated the Entropy of each attribute value using the formula:

$$Entropy(S) = rac{-p}{p+n}log_2(rac{p}{p+n}) - rac{n}{p+n}log_2(rac{n}{p+n})$$


```
/* Calculate the gain for each attribute */
     -- Calculate the Dataset Entropy
     SELECT 'Outlook' Col, * INTO Probability FROM (SELECT DISTINCT Outlook Val, COUNT(*) Frequency, 15 Sum FROM Golf GROUP BY Outlook) A
50
     UNION SELECT 'Temperature', * FROM (SELECT DISTINCT Temperature , COUNT(*) Frequency, 15 Sum FROM Golf GROUP BY Temperature) A
51
     UNION SELECT 'Humidity', * FROM (SELECT DISTINCT Humidity , COUNT(*) Frequency, 15 Sum FROM Golf GROUP BY Humidity) A
     UNION SELECT 'Wind', * FROM (SELECT DISTINCT Wind , COUNT(*) Frequency, 15 Sum FROM Golf GROUP BY Wind) A
52
     UNION SELECT 'Golf', * FROM (SELECT DISTINCT Golf , COUNT(*) Frequency, 15 Sum FROM Golf GROUP BY Golf) A
53
54
     SELECT 'Golf' Col, * INTO TargetAttribute FROM (SELECT DISTINCT Golf , COUNT(*) Frequency, 15 Sum FROM Golf GROUP BY Golf) A
55
57
     --- Calculate the gain
     DECLARE @DatasetEntropy VARCHAR(20)
     SELECT @DatasetEntropy = -SUM(CAST(Frequency AS FLOAT)/ 15 * LOG(CAST(Frequency AS FLOAT)/ 15)/LOG(2)) FROM TargetAttribute
59
60
     SELECT Col, @DatasetEntropy - CAST(AverageInformationEntropy AS FLOAT) AS Gain
     FROM #AverageInformationEntropy
61
62
     /* The information gain of attributes are: Humidity - 0.19; Outlook - 0.28; Temperature - 0.06; Wind = 0.02.
63
64
     Thus, we choose Outlook - the highest-gain attribute as our Decision Tree Root Node */
65
```

Results Messages

	Col ~	Gain ~		
1	Humidity	0,18580556843493257		
2	Outlook	0,27998246822664796		
3	Temperature	0,06364163503754583		
4	Wind	0,01997349956730632		

Finally, I calculated the Information Gain of each attribute by using:

$$Gain = Entropy(S) - I(Attribute)$$

Filter the dataset where Outlook takes value of 'Sunny' to be used in this part.

```
78 -- Calculate Average Entropy of each attribute
      SELECT 'Temperature' Col, * INTO OutlookS2Attributes FROM (SELECT DISTINCT Temperature Val, Golf, COUNT(*) Frequency FROM OutlookS2 GROUP BY Temperature, Golf)
 80 UNION SELECT 'Humidity', * FROM (SELECT DISTINCT Humidity, Golf , COUNT(*) Frequency FROM OutlookS2 GROUP BY Humidity, Golf) A
     UNION SELECT 'Wind', * FROM (SELECT DISTINCT Wind, Golf , COUNT(*) Frequency FROM OutlookS2 GROUP BY Wind, Golf) A
      SELECT * FROM OutlookS2Attributes
 85 SELECT DISTINCT Col, Val, SUM(Frequency) AS TotalFreq
 86 INTO #OutlookS2Total
      FROM OutlookS2Attributes GROUP BY Col, Val
      SELECT * FROM #OutlookS2Total
      SELECT OutlookS2Attributes.*, #OutlookS2Total.TotalFreq INTO OutlookS2AverageEntropy
      FROM OutlookS2Attributes
      LEFT JOIN #OutlookS2Total ON OutlookS2Attributes.Col = #OutlookS2Total.Col AND OutlookS2Attributes.Val = #OutlookS2Total.Val
      SELECT * FROM OutlookS2AverageEntropy
      SELECT Col, Val, TotalFreq, -SUM(CAST(Frequency AS FLOAT)/ TotalFreq * LOG(CAST(Frequency AS FLOAT)/ TotalFreq )/LOG(2)) AS AttributeEntropy
      INTO #OutlookS2AttributeEntropy
     FROM OutlookS2AverageEntropy
      GROUP BY Col, Val, TotalFreq
      SELECT * FROM #OutlookS2AttributeEntropy
104 SELECT Col, SUM((CAST(TotalFreq AS FLOAT)/15) * AttributeEntropy) AS AverageInformationEntropy into #OutlookS2AverageInformationEntropy
105 FROM #OutlookS2AttributeEntropy
      GROUP BY Col
      SELECT * FROM #OutlookS2AverageInformationEntropy
Results Messages
   Col

∨ Val ∨ Golf ∨ Frequency ∨ TotalFreq ∨
    Humidity
                  High
                          No
                                    2
                                                   2
    Humidity
                  Normal
                         Yes
                                                   1
    Temperature Cool
                           Yes
                                    3
                                                   3
    Temperature Hot
                          No
    Temperature Mild
                          No
```

Following the same steps and formula in the first part.

```
-- Calculate the Dataset Entropy in Scenario 2
      SELECT 'Temperature' Col, * INTO OutlookS2Prob FROM (SELECT DISTINCT Temperature Val, COUNT(*) Frequency, 6 Sum FROM OutlookS2 GROUP BY Temperature) A
110
      UNION SELECT 'Humidity', * FROM (SELECT DISTINCT Humidity , COUNT(*) Frequency, 6 Sum FROM OutlookS2 GROUP BY Humidity) A
111
      UNION SELECT 'Wind', * FROM (SELECT DISTINCT Wind , COUNT(*) Frequency, 6 Sum FROM OutlookS2 GROUP BY Wind) A
112
      UNION SELECT 'Golf', * FROM (SELECT DISTINCT Golf , COUNT(*) Frequency, 6 Sum FROM OutlookS2 GROUP BY Golf) A
113
114
115
      SELECT 'Golf' Col, * INTO OutlookS2TargetAttribute FROM (SELECT DISTINCT Golf , COUNT(*) Frequency, 6 Sum FROM OutlookS2 GROUP BY Golf) A
116
117
      SELECT * FROM OutlookS2TargetAttribute
118
119
      --- Calculate the gain
120
      DECLARE @OutlookS2DatasetEntropy VARCHAR(20)
      SELECT @OutlookS2DatasetEntropy = -SUM(CAST(Frequency AS FLOAT)/ 6 * LOG(CAST(Frequency AS FLOAT)/ 6)/LOG(2)) FROM OutlookS2TargetAttribute
121
122
      SELECT Col, @OutlookS2DatasetEntropy - CAST(AverageInformationEntropy AS FLOAT) AS Gain
      FROM #OutlookS2AverageInformationEntropy
123
124
125
       /* The information gain of attributes are: Humidity - 0.92; Temperature - 0.78; Wind = 0.57.
       Thus, we choose Humidity - the highest-gain attribute as our Decision Node in Scenario 2: Outlook = Sunny */
126
127
Results
        Messages
```

Results grid

	Col 🗸	Gain 🗸	
1	Humidity	0,918296	
2	Temperature	0,7849626666666667	
3	Wind	0,5686218334775646	

These are results of Information Gain of the rest attributes when Outlook is Sunny.

3. CREATE A STORED PROCEDURE

```
/* ID3 Algorithm Implementation:
Step 1: Find the Root Node by calculating entropy and information gain of each attribute and choose the one with the most gain
Step 2: Given the Root Node, continue finding the Decision Nodes by repeating the same mechanism */
GO
CREATE PROCEDURE ID3Algo
AS
BEGIN
```

```
CREATE - PROCEDURE - ID3Algo
 10
 11
 12
 13
       SELECT 'Outlook' Col, * INTO OtherAttribute FROM (SI
 14
 15
       UNION SELECT 'Temperature', * FROM (SELECT DISTINCT
       UNION SELECT 'Humidity', * FROM (SELECT DISTINCT Hum
 17
       UNION SELECT 'Wind', * FROM (SELECT DISTINCT Wind, G
 18
lessages
  9:30:20 PM
                 Started executing query at Line 8
                 Commands completed successfully.
                 Total execution time: 00:00:00.032
```

Successfully created a stored procedure.