PCA using R: Calculation and Visualization

Rei Sanchez-Arias, Ph.D.

Principal Component Analysis (PCA)

Pre-requisites

Checklist

☑ Load the tidyverse package

library(tidyverse)

PCA calculation and visualization

To perform Principal Component Analysis (PCA) you will be using the function prcomp() from the stats package (you don't need to install any package to use it, since it comes with your R installation)

☑ For data visualization you will be using the factoextra package

library(factoextra)

Example: Boston Housing

House prices in Boston

For each neighborhood, a number of variables are given, such as the crime rate, the student/teacher ratio, and the median value of a housing unit in the neighborhood.

The file BostonHousing.csv contains information collected by the US Bureau of the Census concerning housing in the area of Boston, Massachusetts. The dataset includes information on 506 census housing tracts in the Boston area.

housing <- read_csv("https://raw.githubusercontent.com/reisanar/datasets/master/BostonHousing

Boston dataset

Variables	Description								
CRIM	Crime rate								
ZN	Percentage of residential land zoned for lots over 25,000 ft2								
INDUS	Percentage of land occupied by non-retail business								
CHAS	Ooes tract bound Charles River (= 1 if tract bounds river, = 0 otherwise)								
NOX	Nitric oxide concentration (parts per 10 million)								
RM	Average number of rooms per dwelling								
AGE	Percentage of owner-occupied units built prior to 1940								
DIS	Weighted distances to five Boston employment centers								
RAD	Index of accessibility to radial highways								
TAX	Full-value property tax rate per \$10,000								
PTRATIO	Pupil-to-teacher ratio by town								
LSTAT	Percentage of lower status of the population								
MEDV	Median value of owner-occupied homes in \$1000s								

Explore the dataset

	CRIM \$	ZN \$	INDUS \$	CHAS \$	NOX \$	RM \$	AGE \$	DIS \$	RAD \$	TAX ÷	PTRATIO	LSTAT \$	MEDV \$	CAT_MED
1	0.00632	18	2.31	0	0.538	6.575	65.2	4.09	1	296	15.3	4.98	24	
2	0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	9.14	21.6	
3	0.02729	0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	4.03	34.7	
4	0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	2.94	33.4	
								Previous	s 1	2	3 4	5	. 127	Next

The first row represents the first neighborhood, which had an average per capita crime rate of 0.006, 18% of the residential land zoned for lots over 25,000 ft2, 2.31% of the land devoted to non-retail business, no border on the Charles River.

Continuous variables subset

Let us consider a smaller data set of continuous variables only:

Are there any missing values?

```
red_boston %>%
  is.na() %>%
  sum()
```

```
## [1] 0
```

Other summaries

Summaries R Code

```
## # A tibble: 14 x 5
      var_name var_mean var_sd var_median var_miss
##
                  <dbl>
                           <dbl>
##
      <chr>
                                      <dbl>
                                                <dbl>
    1 CRIM
                 3.61
                           8.60
                                      0.257
                                                    0
    2 ZN
                11.4
                          23.3
                11.1
                           6.86
                                      9.69
    3 INDUS
                                                    0
    4 CHAS
                 0.0692
                          0.254
                                      0
    5 NOX
                 0.555
                           0.116
                                      0.538
    6 RM
                 6.28
                           0.703
                                      6.21
    7 AGE
                68.6
                          28.1
                                     77.5
    8 DIS
                 3.80
                                      3.21
                          2.11
                                                    0
    9 RAD
                 9.55
                           8.71
## 10 TAX
                        169.
                                    330
               408.
## 11 PTRATIO
                18.5
                           2.16
                                     19.0
## 12 LSTAT
                12.7
                           7.14
                                     11.4
                                                    0
## 13 MEDV
                22.5
                           9.20
                                     21.2
                                                    0
## 14 CAT MEDV
                 0.166
                           0.372
                                                    0
                                      0
```

Matrix of correlations

	CRIM \$	INDUS +	NOX \$	RM ÷	AGE \$	
CRIM	1	0.406583411406259	0.420971711392456	-0.219246702862514	0.352734250901364	-0.3796700869
INDUS	0.406583411406259	1	0.763651446920915	-0.391675852656844	0.644778511355256	-0.7080269887
NOX	0.420971711392456	0.763651446920915	1	-0.302188187849594	0.731470103785959	-0.7692301132
RM	-0.219246702862514	-0.391675852656844	-0.302188187849594	1	-0.240264931047751	0.2052462129
AGE	0.352734250901364	0.644778511355256	0.731470103785959	-0.240264931047751	1	-0.7478805408
DIS	-0.379670086951024	-0.708026988742768	-0.769230113225828	0.205246212930055	-0.747880540868632	
PTRATIO	0.28994557927952	0.383247556428888	0.188932677112767	-0.355501494559085	0.261515011671958	-0.2324705424
LSTAT	0.455621479447946	0.603799716476621	0.590878920880846	-0.613808271866396	0.60233852872624	-0.4969958308
MEDV	-0.388304608586812	-0.483725160028373	-0.427320772373283	0.695359947071539	-0.376954565004596	0.2499287340

PCA Calculation

Using R to perform PCA

We use the proomp() function to perform principal component analysis (PCA) on the Boston housing dataset:

The first 5 principal component explain ~90% of the variation in the collection of 506 data points.

PCA results

```
pca_boston$rotation[ , 1:5] # check the loadings for 5 components
```

```
##
                  PC1
                               PC2
                                           PC3
                                                        PC4
                                                                    PC5
## CRIM
            0.2653555
                       0.005326466
                                    0.69615209 -0.63199277 -0.09225548
## INDUS
            0.3858040 -0.161284875
                                   -0.02754606
                                                0.17735055
                                                            -0.52587819
## NOX
            0.3776718 - 0.315809534 - 0.13507662 - 0.05651541 - 0.18264780
## RM
           -0.2721135 -0.486149250
                                    0.40513709
                                                0.10361741
                                                             0.35581083
## AGE
            0.3591693 -0.313625989 -0.09037383
                                                0.12853860
                                                             0.58955195
## DIS
           -0.3473877
                       0.415947651
                                    0.01111363 - 0.14784380
                                                             0.11806503
## PTRATIO
           0.2322728
                       0.356013692
                                    0.53264090
                                                             0.03822821
                                                0.68418539
## LSTAT
            0.3863031 0.183393397 -0.17524468 -0.20216886
                                                             0.40169556
## MEDV
           -0.3334643 -0.454014830
                                    0.09758974
                                                0.08854101 - 0.17506546
```

- PC1 largest loadings come from LSTAT (percentage of lower status of the population), INDUS (percentage of land occupied by non-retail business), NOX (nitric oxide concentration)
- PC2 largest loadings come from (positive) DIS (weighted distances to 5 Boston employment centers), and (negative) MEDV (median value of owner-occupied homes), (negative) RM (average number of rooms)

PCA Visualization

Biplots

A **biplot** is a plot which aims to represent both the observations and variables of a matrix of multivariate data on the same plot. There are many variations on biplots.

A loading plot shows *how strongly* each characteristic influences a principal component. The angles between the vectors tell us how characteristics *correlate with one another*.

When two vectors are close, forming a small angle, the two variables they represent are positively correlated. If they meet each other at a right angle, they are not likely to be correlated. When they diverge and form a large angle (close to 180 degrees), they are negative correlated.

Scree-plot

A **scree-plot** can be easily generated to show the contribution of each component to explain the variation in the data.

library(factoextra)

fviz_screeplot(pca_boston)

Biplot

Biplots can be generated using

```
factoextra::fviz_pca().
```


Loadings

The location of the loading vectors for each feature in the PC1-PC2 plane can be found by looking at the rotation list element of the PCA object

```
pca_boston$rotation[ , 1:2]
```

```
pca_boston$rotation[ , 1:2]
```

```
##
                  PC1
                               PC2
## CRIM
            0.2653555
                       0.005326466
## INDUS
            0.3858040 -0.161284875
## NOX
            0.3776718 - 0.315809534
##
  RM
           -0.2721135 -0.486149250
## AGE
            0.3591693 -0.313625989
## DIS
           -0.3473877 0.415947651
## PTRATIO
            0.2322728 0.356013692
## LSTAT
            0.3863031 0.183393397
## MEDV
           -0.3334643 -0.454014830
```

Correlations

Does it make sense that the loading vectors for DIS and NOX point in opposite directions?

```
# check correlation for DIS and NOX
red_boston %>%
  select(DIS, NOX) %>%
  cor()
```

```
## DIS NOX
## DIS 1.0000000 -0.7692301
## NOX -0.7692301 1.0000000
```

Similarly for PTRATIO and MEDV which are negatively correlated variables:

```
# check correlation for PTRATIO and MEDV
red_boston %>%
  select(PTRATIO, MEDV) %>%
  cor()
```

```
## PTRATIO MEDV
## PTRATIO 1.0000000 -0.5077867
## MEDV -0.5077867 1.0000000
```

Contributions to principal components

Contribution of variables to Dim-1

Contribution of variables to Dim-2

