生成树协议配置实验

金舒原 jinshuyuan@mail.sysu.edu.cn 计算机学院

本章内容

- 生成树协议产生背景
- STP技术原理
- RSTP技术原理
- 生成树协议的配置

2

生成树协议产生背景

生成树协议的产生背景

3

生成树协议

- 生成树协议的分类 按产生的时间先后顺序为 STP 生成树协议 RSTP 快速生成树协议 MSTP 多生成树协议
- 生成树协议所遵循的IEEE802.1标准族,主要用于 防止以太网中的环路

STP IEEE 802.1d RSTP IEEE802.1W MSTP IEEE 802.1S

STP协议的作用

STP(spanning-tree-protocol)用于计算机网络中树形拓扑结构建立,主要作用是防止网桥网络中的冗余链路形成环路。是交换机通过某种特定算法来逻辑阻塞物理冗余网络中某些接口,以达到避免数据转发循环,生成无环路拓扑的一种二层协议。

STP技术原理

STP工作原理

- 基本思想
 - 定义了网桥协议数据单元(BPDU-Bridge Protocol Data Unit)的数据包,交换机或网桥用BPDU相互通信来确定 网络的拓扑结构:根据STP算法动态选择根网桥和备份 网桥,从而打破物理环路,建立一个无循环的逻辑拓扑。
- 交换机或网桥利用收到的配置消息,按照树的结构构造网络拓扑
 - 根桥ID(RootID)、根路径开销(RootPathCost)、指定桥ID (DesignatedBridgeID)、指定端口ID (DesignatedPortID)
 - 各台设备的各个端口在初始时生成以自己为根桥(Root Bridge)的配置消息,向外发送自己的配置消息
 - 网络收敛后,根桥向外发送配置BPDU,其他的设备对该配置BPDU进 行转发

Ь

根桥的选举

- 桥ID由桥优先级(BridgePriority)和桥MAC地址(BridgeMacAddress)组成
- · 桥ID小的桥被选举为根桥

根路径开销

● Path Cost的两种定义标准

Speed	Link type	802.1D cost	802.1t cost
10Mbps	Half Duplex	100	2,000,000
	Full Duplex	95	1,999,999
	Aggregated link	90	1,000,000
100Mbps	Half Duplex	19	200,000
	Full Duplex	18	199,999
	Aggregated Link	15	100,000
1000Mbps	Full Duplex	4	20,000
	Aggregated Link	3	10,000

- ●根路径开销 (RootPathCost) 是到达根的路径上所有链路开销 (Cost) 的代数和
- 非根桥进行根端口选举时,根路径开销最小的端口为根端口
- 物理段进行指定桥选举时,路径开销最小的桥为指定桥

端口角色的确定

- ●根桥上的所有端口为指定端口(Designated Port)
- ●在非根桥上选举根路径开销(RootPathCost)最小的 端口为根端口(Root Port)
- ●每个物理段选出根路径开销最小的桥作为指定桥 (Designated Bridge),连接指定桥的端口为指定端
- ●不是根端口和指定端口的其余端口被STP置为阻塞状 态,为AP端口(Alternated Port,替换端口)

确定非根交换机的根端口

每个非根交换机有且只有

判断对象: 非根网桥交换 机上的不同端口之间; 判断依据(依次为): (1)端口到根网桥路径开 销最小

(2)发送方网桥ID最小 (3)发送方端口ID最小 (端口ID有16位,它是由 8位端口优先级和8位端口 编号组成的, 其中端口优 先级的取值范围是0-240, 缺省值是128,可以修改,

但必须是16的倍数)

通过桥ID决定端口角色

确定非根交换机的指定端口:

判定对象: 在每一个物理网段 的不同端口之间选举出一个指 定端口。

判断依据:

- (1)网桥到根网桥路径开销最小
- (2)发送方网桥ID最小
- SWC (3)发送方端口ID最小

- ●在根路径开销相同时,所连网段指定桥ID最小的端口为根端口
- 在根路径开销相同时,桥ID最小的桥被选举为物理段上的指定桥, 连接指定桥的端口为指定端口

通过端口ID决定端口角色

- ●在根路径开销、指定桥ID都相同的情况下,所连指定端口ID小的端口为根端口
- ●端口ID有16位,它是由8位端口优先级和8位端口编号组成的,其中端口优先级的取值范围是0-240,缺省值是128,可以修改,但必须是16的倍数

STP初始化收敛

- 选择根网桥
- 在非根网桥上选择根端口
- 在每一个网段上选择一个指定端口
- 阻塞剩余端口

BPDU报文格式

●交换机或者网桥之间周期性地(每2秒)发送STP的BPDU

端口状态

端口角色	端口状态	端口行为	
未启用STP 功能的端口	Disabled	不收发任何BPDU报文	
非指定端口 或非根端口	Blocking	接收但不发送BPDU	
	Listening	接收并发送BPDU,确定网 桥及端口角色	
	Learning	接收并发送BPDU,进行地 址学习	
指定端口或 根端口	Forwarding	接收并发送BPDU,收发用 户数据	

拓扑结构变化带来的延迟

- 在交换机二层端口收敛过程中网络不能连通
 - 发生变化的交换机会在根端口上每隔hello time时间发送 TCN BPDU(拓扑变化通知BPDU),直到生成树上游的指 定网桥邻居确认了该TCN(拓扑变化通知)为止;
 - 当拓扑结构变化时,交换机必须重新计算STP,端口的状态会发生改变,重新收敛
 - 重新收敛的时间可能长达50s
- 拓扑结构变化后至少需要2倍 的转发延迟才能恢复联通性
- 若网络拓扑结构频繁变化, 网络会频繁失去连通性

RSTP技术原理

1.8

STP的不足

- 端口从阻塞状态进入转发状态必须经历两倍的 转发延迟时间,所以网络拓扑结构改变之后需 要至少两倍的转发延迟时间,才能恢复连通性
- 若网络中的拓扑结构变化频繁,网络会频繁的 失去连通性

RSTP协议概述

- RSTP(Rapid Spanning Tree Protocol,快速生成树协议)是从STP发展而来,实现的基本思想一致
- RSTP具备STP的所有功能
- RSTP目标是当网络拓扑结构发生变化时,尽可能快的恢复网络的连通性

RSTP的端口状态与端口角色

- 端口角色
 - Root Port: 与STP中的根端口概念一致
 - Designated Port: 与STP中的指定端口概念一致
 - Alternate Port: 替换端口,根端口的备份
 - backup Port: 备份端口,指定端口的备份

RSTP改进一

- 替换端口(Alternate Port): 根端口的备份口, 一旦根端口失效,该口就立刻变为根端口
- 当拓扑发生改变时,在拓扑中的根端口可以立刻进入转发状态

RSTP端口的状态

STP端口状态	RSTP端口状态	
Disabled		
Blocking	Discarding	
Listening		
Learning	Learning	
Forwarding	Forwarding	

RSTP改进一

- 备份端口(BackupPort): 指定端口的备份口
- 当一个网桥有两个端口都连在一个LAN上,高优先级的端口为指定端口,低优先级的端口为备份端口

RSTP改进二

● 指定端口:通过与相连的网桥进行一次握手,快速进入转发状态

RSTP的性能

- 第一种改进的效果:发现拓扑改变到恢复连通性的时间 可达数毫秒,并且无需传递配置消息。
- 第二种改进的效果: 网络连通性可以在交换两个配置消息的时间内恢复,即握手的延时。
- 第三种改进的效果:边缘端口的状态变化不会影响网络连通性,也不会造成环路,因此进入转发状态无延时。
- 若非根网桥在连续的三个hello time内接收不到根的BPDU则立即产生和发送自己的BPDU,以加快间接感知网络拓扑变化的时间。

RSTP改进三

- 网络边缘端口:直接与终端相连,而不是和其他网 桥相连的端口
- 边缘端口可以直接进入转发状态,不需要任何等待 时延

RSTP与STP的区别

- 协议版本不同
- 端口状态转换方式不同
- 配置消息报文格式不同
- 拓扑改变消息的传播方式不同

注意,RSTP也是在整个交换网络应用单生成树实例,不能解决由于网络规模增大带来的性能降低问题。建议网络直径最好不要超过7

RSTP交换机与STP交换机的互操作

- 在连续的两个hello time内RSTP交换机均收到 STPBPDU,则RSTP的接收端口会进入STP的 兼容模式,即回到STP协议下接收和处理STP BPDU
- 仅仅只是RSTP交换机上接收STP BPDU报文的 端口会回退,而不是整个交换机

注意: 在进行生成树协议迁移时, 所有端口会重新收敛。

RSTP与STP的兼容

● SW2换成了支持RSTP的SW3,但由于SW1仍 然发送STP BPDU,导致两台支持RSTP的交换机运行着STP。

RSTP与STP的兼容

- RSTP 协议可以与STP 协议完全兼容
 - RSTP 协议会根据收到的BPDU 版本号来自动判断与之相连的网桥是支持STP 协议还是支持RSTP协议
 - 如果是与STP 网桥互连就只能按STP 的转发方法, 过30 秒再转发,无法发挥RSTP 的最大功效

RSTP与STP的兼容

- RSTP提供了protocol-migration 功能来强制发RSTP BPDU
 - 例: SW1 强制发了RSTPBPDU, SW3 就发现与之 互连的网桥是支持RSTP 的,于是两台交换机开始 运行RSTP

clear spanning-tree detected-protocols interface interface-id

生成树协议的配置

33

生成树协议的配置(3)

- 配置交换机优先级
 - Switch(config)# spanning-tree priority <0-61440> 优先级为 "0" 或 "4096" 的倍数、共16个,缺省32768
 - Switch(config)# no spanning-tree priority 恢复到缺省值
- 配置交换机端口的优先级
 - Switch(config)#interface interface-type interface-number
 - Switch(config-if)#spanning-tree port-priority number 端口优先级可配置范围为0或16的整数倍,共16个,最大值为 240,默认优先级为128

生成树协议的配置(1)

- 开启生成树协议一默认生成树协议是关闭的
 - Switch(config)#spanning-tree
- 关闭生成树协议
 - Switch(config)#no spanning-tree
- 配置生成树协议的类型
 - Switch(config)#spanning-tree mode stp/rstp/mstp
 - 锐捷全系列交换机默认使用MSTP协议

生成树协议的配置(4)

- 配置Hello Time
 - Switch(config)# spanning-tree hello-time seconds 根交换机发送BPDU报文的默认时间是2秒,通过配置可修改,取值范围是1-10秒。
- 配置Forward-Delay Time
 - Switch(config)# spanning-tree forward-time seconds Forward-Delay Time为BPDU报文扩散到全网中的时间,默认时间 是15秒,通过配置可修改,取值范围是4到30秒
- 配置Max-Age Time
 - Switch(config)# spanning-tree max-age seconds
 Max-Age Time 为BPDU报文的最大生存时间,默认值是20秒,可以通过配置修改,取值范围是6到40秒

生成树协议的配置(5)

● 配置bpdu-guard

- Switch(config-if)# spanning-tree bpduguard enable bpdu-guard特性防止非法交换机的接入,保护拓扑。如果在配置了该特性的接口上收到了BPDU,则接口会进入Error-disabled状态,可通过手工配置errdisable recovery命令恢复接口。如启动了portfast的端口,一旦收到BPDU报文,那么BPDU保护功能将立即关闭该端口。

● 配置portfast

- Switch(config-if)# spanning-tree portfast
Portfast特性使端口直接进入转发状态,而不会有监听和学习两个状态。通常结合bpdu-guard特性使用。

生成树协议配置实验

- 熟悉并掌握生成树、快速生成树协议原理
- 熟悉并掌握生成树配置命令
- 尝试完成P204页实验6-8 快速生成树协议配置实验,尝试回答实验提出的问题及实验思考。

注:本实验报告不要求提交。

配置交换机优先级和端口优先级范例

Switch#configure terminal
Switch(config)#spanning-tree
Switch(config)#spanning-tree mode stp
Switch(config)#spanning-tree priority 4096
Switch(config)#interface fastethernet 0/1
Switch(config-if)#spanning-tree port-priority 16
Switch(config-if)#end