

TRIGONOMETRY Chapter 03

SECTOR CIRCULAR

No tienes que ser un genio, un visionario o graduado para tener éxito. Todo lo que necesitas es perspectiva y un sueño

MICHAEL DELL

SECTOR CIRCULAR - LONGITUD DE ARCO

Fórmul

Sector Circular AOB AOB):

Es la región circular limitada por dos radios y el arco correspondiente.

R: longitud del radio

L: longitud del arco AB

0: número de radianes de la medida del

ángulo central.

$$0 < \theta \le 2\pi$$

Propiedades:

HELICOPRÁCTICA

1) En un sector circular, el ángulo central mide 40° y su

radio mide 18 m. Calcule su longitud de arco.

Medida
$$\neq$$
 central = 40° <> 40° $\left(\frac{\pi \text{ rad}}{180^{\circ}}\right)$ = $\frac{2\pi}{9}$ rad = θ rad

$$R = 18 \text{ m}$$

$$L = \theta R = \frac{2\pi}{9} (18 \text{ m})$$

$$\therefore$$
 L = 4 π m

2) En un sector circular, su radio mide 8m y su longitud

de arco mide 24m. Calcule la medida de su

ángulo central.

<u>RESOLUCIÓN</u>

Datos

$$R = 8 m$$

$$L = 24 \text{ m}$$

$$L = \theta R$$

$$\theta$$
 (8 m) = 24 m
 θ = 3

∴ m ∢ central = 3 rad

3) Del gráfico, calcule el valor de L.

RESOLUCIÓN

Se observa que:

$$L_1 = 4 m$$
; $L_2 = L$
 $R_1 = 2 m$; $R_2 = 7 m$

Propiedad:
$$\frac{L_1}{L_2} = \frac{R_1}{R_2}$$

$$\frac{4 \text{ m}}{L} = \frac{2 \text{ m}}{7 \text{ m}}$$

4) Del gráfico, calcule el valor de θ.

RESOLUCIÓ

Se observa que:

$$L_1 = 4\pi \text{ m}; L_2 = 8\pi \text{ m}; h = 12$$

m Propiedad:

$$\theta = \frac{L_2 - L_1}{h}$$

$$\theta = \frac{8\pi \, m - 4\pi \, m}{12 \, m} = \frac{4\pi \, m}{12 \, m}$$

$$\therefore \theta = \frac{\pi}{3} \text{rad}$$

5) Del gráfico, reduzca M = $\frac{2L_2 + 3L_1}{L_3}$

RESOLUCIÓN

Propiedad:

 $L_1 = L$

$$L_2=2L$$

$$L_3 = 3L$$

Reemplazando

$$M = \frac{2(2L) + 3(L)}{3L} = \frac{7L}{3L}$$

$$\therefore \mathbf{M} = \frac{7}{3}$$

6) El péndulo de un reloj tiene 20 cm de longitud y recorre un arco de 25^g por segundo. ¿Cuántos centímetros recorre la punta del péndulo en un segundo?

RESOLUCIÓN

Se observa

$$que: \frac{1}{200\%} \times \left(\frac{\pi \, rad}{200\%}\right) \quad \Rightarrow \quad \theta = \left(\frac{\pi}{8}\right) rad$$

Usamos:
$$L = \theta R$$

$$L = \left(\frac{\pi}{8}\right) \left(20 \, cm\right)$$

$$\therefore L = \frac{5\pi}{2} \text{ cm}$$

7) Observe los siguientes relojes de péndulo e indique cuántos centímetros recorre la punta de cada péndulo.

RESOLUCIÓN

Se observa
$$R_1 = 20 cm; R_2 = 15 cm$$

$$que: \frac{1}{50} \times \left(\frac{\pi \, rad}{200}\right) \qquad \qquad \theta_1 = \left(\frac{\pi}{4}\right) \, rad$$

$$\theta_2 = \frac{1}{40} \times \left(\frac{\pi \, rad}{200}\right) \qquad \qquad \theta_2 = \left(\frac{\pi}{5}\right) \, rad$$

Usamos:
$$L = \theta R$$

$$L_1 = \left(\frac{\pi}{200}\right) \left(2000\right)$$

$$L_2 = \left(\frac{\pi}{5}\right) \left(\frac{15}{5}cm\right)$$

$$\therefore L_1 = 5\pi \text{ cm}$$

$$\therefore L_2 = 3\pi \text{ cm}$$