Exploração de espaço de parâmetros de modelos ecológicos

Paulo Inácio Prado André Chalom

LAGE

Depto Ecologia - IB - USP

O que são modelos?

Redescrições de uma situação de interesse, que são úteis para melhor entendê-la.

Ou seja, modelos têm **valor heurístico**

Peter Taylor, Univ. Massachusetts Boston

Heurística

Um modelo simples

$$N_{t+1} = N_t (a - b N_t)$$

$$a = 2,95$$

$$a = 3,20$$

$$a = 3,50$$

a = 3,99

Explorar é preciso

Nature Vol. 261 June 10 1976

review article

Simple mathematical models with very complicated dynamics

Robert M. May*

Motivação

Avaliação **sistemática** da:

- Incerteza do modelo: qual a probabilidade de se obter um certo resultado?
- Sensibilidade aos parâmetros: qual a influência de cada parâmetro do modelo e suas interações sobre os resultados?

Modelos como entrada/saída

Espaço de parâmetros

Como explorar?

Outra solução: exploração exaustiva

Amostragem

Hipercubo latino

- 1. Divida cada dimensão em intervalos
- 2. Tome um valor ao acaso dentro de cada intervalo
- 3. Combine os valores de modo que cada intervalo esteja representado uma vez apenas.

Um exemplo: dinâmica populacional estocástica

Uma simulação de processo estocástico de reação-difusão

Fecundidade denso-dependente

Parâmetros do modelo

Condições iniciais

N inicial: 1 - 200

Posição inicial: ao acaso

Tamanho da área: tal que capacidade suporte = 200

Resposta

Proporção das simulações que terminam com N = 0

estima

Probabilidade de extinção local

Delimitação do espaço de parâmetros

Damuth, Nature 1981

McCoy et al., Ecol Lett 2008

Resultados: regressão binomial

Interação com N inicial

Interação com mortalidade

Conclusões: Vantagens da PSE

- · Aplicáveis a qualquer tipo de modelo;
- Não dependem de soluções analíticas;
- Baseiam-se em princípios de amostragem e análise de dados bem conhecidos por biólogos.

Para saber mais

Chalom, A. & Prado, P.I. 2012. Parameter space exploration of ecological models. http://arxiv.org/abs/1210.6278

Renshaw, E. 1991. Modelling biological populations in space and time Cambridge University Press.

Códigos em R e tutorial em http://ecologia.ib.usp.br/l

OBRIGADO

