Zusammenfassung ETiT II SS12

Maximilian Reuter

24. September 2012

Inhaltsverzeichnis

Ι	Elektrostatisches Feld	5					
1	Konstanten	5					
2	Ladungsformen	5					
3	Das Coulombsche Gesetz / Gravitationsgesetz	5					
4	Elektrisches Feld	5					
5	Elektrischer Fluss	6					
6	Potentialfunktionen 6.1 Punktladung	7 7 7 7					
7	Influenz 7.1 Feldmühle	8					
8	Kapazität 8.1 Kugelkondensator	8 9 9 10 10					
9	Feldbilder	10					
10	Energie im elektrischen Feld	11					
11	I Kräfte im elektrostatischen Feld 1						

12	Bedingungen an Grenzflächen geschichteter Dielektrika	12
	12.1 Quer geschichtete Dielektrika	12
	12.2 Längs geschichtete Dielektrika	13
	12.3 Schräg geschichtetes Dielektrikum	13
II	Stationäres elektrisches Strömungsfeld	13
13	Basics	13
14	Ohmsches Gesetz	14
15	Leistungsdichte im Strömungsfeld	14
16	Relaxationszeitkonstante	14
17	Berechnung von Widerständen	15
	17.1 Methode 1: Allgemeingültige Methode	15
	17.2 Methode 2: Alternative für homogene Strömungen	15 15
	17.5 Methode 5. Duren 7 (bei bekannter Kapazitati)	10
18	Bedingungen an Grenzflächen	15
	18.1 Quer geschichtete Leiter	15 16
	18.3 Verschiebungsdichte	16
II	I Stationäre Magnetfelder	16
19	Basics	16
20	Bauarten von Magneten	17
2 1	Magnetische Flussdichte	17
22	Relative Permeabilität	18
	22.1 Diamagnetische Stoffe	18
	22.2 Paramagnetische Stoffe	18 18
	22.5 Perfollaghetische Stolle	10
23	Kraft auf Leiter im Magnetfeld	18
	23.1 Kraft auf zwei parallele Leiter	18 18
	23.2 Kraite auf andere Leiter	18
	23.4 Hall-Effekt	19

23.5	magnetische Spannung V	
24 Dure	chflutungsgesetz	20
25 Gese	etz von Biot-Savart (unvollständig)	20
26 Mag	netischer Fluss	2
27 Bedi	ngungen an Grenzflächen	2
28 Quei	geschichtete Materialien	2
29 Schr	äg geschichtete Materialien	2
30.1 30.2 30.3	netischer Kreis Ohmsches Gesetz des magnetischen Kreises	2: 2: 2: 2: 2:
31 Sche	rung	22
	rung eitlich veränderliche magnetische Felder	25 25
IV Z		23
IV Z 32 Indu	eitlich veränderliche magnetische Felder ktionsgesetz	
IV Z 32 Indu 33 Gene	eitlich veränderliche magnetische Felder ktionsgesetz	2; 2; 2;
32 Indu 33 Gene 34 Ener 35 Selbs 35.1 35.2 35.3 35.4	eitlich veränderliche magnetische Felder ktionsgesetz erator	25

36.5 Die Materialgleichungen	 28
9	

Teil I

Elektrostatisches Feld

1 Konstanten

$$c_0=299792458\frac{m}{8}$$

$$\mu_0=4\pi\cdot 10^{-7}\frac{V_s^s}{Am}$$

$$\epsilon_0=8,854\cdot 10^{-12} \text{ (durch } \epsilon_0\cdot \mu_0\cdot c_0^2=1\text{)}$$

$$K=\frac{1}{4\pi\epsilon_0}=10^{-7}\cdot c_0^2$$

$$\epsilon_r: \text{temperaturunabhängig, oberhalb der ferroelektrischen Curie-Temperatur starkes absirbly starkers.}$$

Ladungsformen 2

Raumladungsdichte: $\rho = \lim_{\Delta V \to 0} \frac{\Delta Q}{\Delta V} = \frac{dQ}{dV}$ Ladung durch Ortsfunktion $\rho(x,y,z)$ berechnen: $Q = \int\limits_V \rho \ dV = \iiint\limits_V \rho(x,y,z) \ dx \ dy \ dz$

Flächenladungsdichte: $\sigma = \lim_{\Delta A \to 0} \frac{\Delta Q}{\Delta A}$ Bei einem Leiter mit $Lange >> Durchmesser \to$ Linienladungs. Linienladungsdichte: $\lambda = \lim_{\Delta l \to 0} \frac{\Delta Q}{\Delta l} = \frac{dQ}{dl}$

3 Das Coulombsche Gesetz / Gravitationsgesetz

Kraftwirkung zwischen zwei Ladungen Q_1 und Q_2 :

$$\vec{F} = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q_1 \cdot Q_2}{r^2} \cdot d\vec{r_0}$$

Kraftwirkung zwischen zwei Massen m_1 und m_2 :

$$F_m = G \cdot \frac{m_1 \cdot m_2}{r^2}$$

4 Elektrisches Feld

Elektrische Feldstärke:

$$\vec{E} = \frac{\vec{F}}{Q}$$

Elektrische Verschiebungsdichte:

$$\vec{D} = \epsilon_0 \cdot \vec{E} = \frac{\Delta \Psi}{\Delta A} = \frac{Q}{4\pi r^2} \cdot \vec{r}$$

E-Feld um Punktladung (Abnahme $\frac{1}{r^2}$):

$$\vec{E} = \frac{Q}{4\pi\epsilon_0 r^2} \cdot \vec{r}$$

Arbeit um Ladung im Feld zu verschieben:

$$\Delta W_{mech} = F \cdot \Delta s = q \cdot E \cdot \Delta s$$

Potentielle Energie der Ladung nimmt um gleichen Betrag ab $\to \Delta U = E \cdot \Delta s$ Verschiebung in beliebige Richtung:

$$\Delta W_{mech} = F \cdot \Delta s \cdot cos\alpha = \left| \vec{F} \right| \cdot \left| \Delta \vec{s} \right| \cdot cos(\vec{F}, \Delta \vec{s})$$

Linienintegral:

$$W_{mech} = q \int_{A}^{B} \vec{E} \cdot d\vec{s}$$

Bei geschlossenem Weg ist das Feld Wirbelfrei, wenn:

$$\oint_{L} \vec{E} \cdot d\vec{s} = 0$$

Das Linienintegral der E-Feldstärke ist weg-unabhängig. Es kommt nur auf den Anfangsund Endpunkt an!

$$U_{AB} = \int_{A}^{B} \vec{E} \cdot d\vec{s}$$

Potential in Bezug auf Punkt 0:

$$\varphi_v = U_{v0} = \int\limits_v^0 \vec{E} \cdot d\vec{s} = -\int\limits_0^v \vec{E} \cdot d\vec{s}$$

Gradient:

$$E_x = -\frac{d\varphi}{dx}, \ E_y = -\frac{d\varphi}{dy}, \ E_z = -\frac{d\varphi}{dz} \to \vec{E} = -grad\varphi$$

5 Elektrischer Fluss

Elektrischer Fluss $\Delta \Psi = \Delta Q$:

$$\Delta \Psi = D \cdot A (= \left| \vec{D} \right| \left| \vec{A} \right| \cdot \cos(\vec{D}), \Delta \vec{A})$$

Bei beliebiger, jedoch nicht geschlossener Fläche

$$\Psi = \int\limits_A \vec{D} \cdot dA$$

Gaußscher Satz der Elektrostatik:

$$Q = \oint_{\Lambda} \vec{D} \cdot d\vec{A}$$

6 Potentialfunktionen

6.1 Punktladung

Spannung

$$U_{PB} = \frac{Q}{4\pi\epsilon} \left(\frac{1}{r_P} - \frac{1}{r_B}\right) = \varphi(P) - \varphi(B)$$

Ohne Festlegung eines Bezugspunkts: $\varphi(P) = \frac{Q}{4\pi\epsilon} \frac{1}{r} + const$ (bei weit entferntem oder geerdetem Bezugspunkt: const = 0)

6.2 Dipol

b: Abstand zwischen den Ladungsschwerpunkten

$$\varphi(P) = \frac{Q}{4\pi\epsilon} \cdot \frac{r_{-} - r_{+}}{r_{-} r_{+}}$$

Näherung für sehr kleines b:

$$\varphi(P) = \frac{p \cdot \cos\theta}{4\pi\epsilon r^2}$$

mit elektrischem Dipolmoment

$$p = Q \cdot b$$

Punktladung: Potentialabnahme mit $\frac{1}{r}$

Dipol: Potentialabnahme mit $\frac{1}{r^2}$, da sich die beiden Wirkungen zunehmend aufheben.

6.3 Linienladung

$$dQ = \lambda \cdot ds \to d\varphi(P) = \frac{\lambda ds}{4\pi\epsilon r}$$

$$\varphi(P) = \frac{\lambda}{4\pi\epsilon} \int_{l}^{+l} \frac{1}{\sqrt{\rho^2 + (z-s)^2}} ds = \left[\frac{\lambda}{4\pi\epsilon} \cdot \operatorname{arsh}\left(\frac{s-z}{\rho}\right)\right]_{-l}^{+l}$$

mit

$$\operatorname{arsh}(x) = \ln(x + \sqrt{x^2 + 1})$$

Besser (für Zylindersymmetrische Anordnungen):

$$Q = \lambda l = \int_{Mantel} \vec{D} \cdot d\vec{A} = D(\rho) 2\pi \rho l$$

Feldstärke um die Ladung:

$$E(\rho) = \frac{\lambda}{2\pi\epsilon\rho}$$

Aus

$$U_{PB} = \int_{\rho_P}^{\rho_B} E(\rho) d\rho = \frac{\lambda}{2\pi\epsilon} [ln(\rho)]_{\rho_P}^{\rho_B}$$

folgt:

$$\varphi(\rho) = \frac{\lambda}{2\pi\epsilon} ln \frac{\rho_B}{\rho}$$

7 Influenz

Flächenladungsdichte:

$$\sigma = \frac{dQ}{dA} = \frac{d\Psi}{dA} = D$$

7.1 Feldmühle

$$\sigma = D = \epsilon_0 \cdot E$$

Ladung auf Fläche A:

$$Q = \int_{(A)} \sigma dA = \int_{(A)} \epsilon_0 E dA = \epsilon_0 E A$$

8 Kapazität

$$C = \frac{Q}{U}$$

Spannung zwischen Ladungen:

$$U = Ed$$

8.1 Kugelkondensator

Kapazität:

$$C = 4\pi\epsilon \frac{r_1 r_2}{r_2 - r_1}$$

Spannung zwischen den Elektroden:

$$U_{12} = \int_{r_1}^{r_2} E dr = \frac{Q}{4\pi\epsilon} (\frac{1}{r_1} - \frac{1}{r_2})$$

Maximal auftretende Feldstärke (am inneren Rand des Dielektrikums):

$$E_{max} = \frac{U}{r_1} \frac{r_2}{r_2 - r_1}$$

Minimum der maximalen Feldstärke ($E_{max,min}$):

$$\frac{dE_{max}}{dr_1} = 0 \to r_{1,opt} = \frac{r_2}{2}$$

Sonderfall, Kapazität einer Kugel frei im Raum:

$$C = 4\pi\epsilon r_1$$

Dabei auftretende Feldstärke direkt an der Hülle: $E_{max} = \frac{U}{r}$

8.2 Koaxialer Zylinder

 $\rho = \text{Radius}$

Ladung auf dem Kondensator

$$Q = \lambda z = \oint_A \vec{D} \cdot d\vec{A} = D(\rho) \cdot A(\rho) = D(\rho) \cdot 2\pi \rho z$$

Feldstärke um im Zylinder

$$E(\rho) = \frac{\lambda}{2\pi\epsilon\rho}$$

Längenbezogene Kapazität:

$$C' = \frac{C}{z} = \frac{\lambda}{U} = \frac{2\pi\epsilon}{\ln\frac{\rho_2}{\rho_1}}$$

Minimum der Maximalen Feldstärke:

$$\frac{dE_{max}}{d\frac{\rho_2}{\rho_1}} = 0 \to \rho_{1,opt} = \frac{\rho_2}{e}$$

8.2.1 Geschichtete Dielektrika

Geschichtete Dielektrika $(\epsilon_1, \rho_1...\rho_2 \text{ und } \epsilon_2, \rho_2...\rho_3)$:

$$U_{ges} = U_{\rho_1 \rho_2} + U_{\rho_2 \rho_3} = \frac{\lambda}{2\pi} \left(\frac{1}{\epsilon_1} ln \frac{\rho_2}{\rho_1} + \frac{1}{\epsilon_2} ln \frac{\rho_3}{\rho_2} \right)$$

Längenbezogene Kapazität:

$$C' = \frac{\lambda}{U_{ges}} = \frac{2\pi}{\frac{1}{\epsilon_1} ln \frac{\rho_2}{\rho_1} + \frac{1}{\epsilon_2} ln \frac{\rho_3}{\rho_2}}$$

Feldstärkeverhältnisse:

$$\frac{E_2(\rho_2)}{E_1(\rho_2)} = \frac{\epsilon_1}{\epsilon_2}$$

Das Maximum der Feldstärke tritt jeweils am Innenradius des Dielektrikums auf!

$$\frac{E_{max1}}{E_{max2}} = \frac{\epsilon_2 \rho_2}{\epsilon_1 \rho_1}$$

8.3 Superposition von Potentialen

Zwei parallele Linienladungen, ungleichen Vorzeichens, mit Radius ρ_0 , Punkt P mit φ_+ , φ_- :

$$C' = \frac{\lambda}{\varphi_+ - \varphi_-} = \frac{\pi \epsilon}{\ln \frac{f}{\rho_0}}$$

Potential:

$$\varphi(P) = \frac{\lambda}{2\pi\epsilon} ln \frac{\rho_{-}}{\rho_{+}}$$

Maximal auftretende Feldstärke (an der Leiteroberfläche):

$$E_{max} = \frac{U}{2\rho_0 \ln \frac{d}{\rho_0}}$$

(Gleiche Vorzeichen:

$$\varphi(P) = \frac{\lambda}{2\pi\epsilon} \cdot \ln \frac{\rho_B}{\rho_1} + \frac{\lambda}{2\pi\epsilon} \cdot \ln \frac{\rho_B}{\rho_2} = \frac{\lambda}{2\pi\epsilon} \ln \frac{\rho_B^2}{\rho_1 \rho_2}$$

9 Feldbilder

d = Abstand zwischen zwei Äquipotentiallinien.

$$\Delta U = d \cdot E$$

b: Abstand zwischen zwei Feldlinien.

 ΔQ : Ladung auf den Elektroden.

$$\Delta Q = D \cdot \Delta A = \epsilon E \cdot \Delta A = \epsilon E bz$$

 ΔC : Teilkapazität pro Kästchen mit Seitenlängen d und b.

$$\Delta C = \frac{\Delta Q}{\Delta U} = \frac{\epsilon E b z}{dE} = \epsilon z \frac{b}{d} = const.$$

Längebezogene Kapazität:

$$\Delta C' = \frac{\Delta C}{z} = \epsilon \frac{b}{d} = const.$$

Der gesamte Feldraum kann als Reihen- und Parallelschaltung gleicher (Längen-bezogener) Teilkapazitäten $\Delta C'$ verstanden werden, für die gilt:

$$\Delta C' = \frac{\epsilon b}{d}$$

Für $\frac{b}{d} = 1$ (Quadrate) gilt:

$$\Delta C' = \epsilon \to C' = \epsilon \frac{n}{m-1}$$

mit n = Anzahl der Feldlinien und m = Zahl der Äquipotentiallinien (inc Oberfläche). Nur gültig für 2D Felder.

10 Energie im elektrischen Feld

Allgemein:

$$W_e = \int_{0}^{\infty} u(t)i(t)dt = \int_{0}^{Q_e} udQ$$

Plattenkondensator mit Abstand d:

$$W_e = \int_0^{Q_e} udQ = \int_0^{D_e} EdAdD = Ad \int_0^{D_e} EdD$$

mit Ad = V ist das vom Feld durchsetzte Volumen:

$$W_e = V \int_0^{D_e} E dD = \frac{1}{2} C U^2$$

Energiedichte:

$$w_e = \frac{W_e}{V} = \int_{0}^{D_e} E dD = \frac{1}{2} \cdot \frac{D_e^2}{\epsilon} = \frac{1}{2} DE$$

Aufzuwendende Kraft bei Vergrößerung der Kapazität:

$$F_x = -\frac{dW_e^{(Q)}}{dx} = \frac{Q^2}{2\epsilon A}$$

11 Kräfte im elektrostatischen Feld

Energieinhalt:

$$W_e = \frac{1}{2} \frac{Q^2 \cdot (d-x)}{2\epsilon A}$$

Fremdfeld einer Platte:

$$Q = \oint_A \vec{D} \cdot dA = D2A = \epsilon E2A$$

Kraft auf eine Kondensatorplatte:

$$F = \frac{DEA}{2} = \frac{Q^2}{2\epsilon A} = \frac{1}{2}Q \cdot E = \frac{U^2 \epsilon A}{2d^2}$$

Kraftdichte σ :

$$\sigma = \frac{1}{2}\epsilon E^2 = \frac{1}{2}DE$$

Energiedichte w_e :

$$w_e = \sigma$$

Kinetische Energie von Probeladungen im Feld:

$$W_{kin} = \frac{1}{2}mv^2 = QU$$

12 Bedingungen an Grenzflächen geschichteter Dielektrika

$$\vec{D} = \epsilon \cdot \vec{E}$$

$$D_{1normal} = D_{2normal}$$

$$E_{1tangential} = D_{2tangential}$$

12.1 Quer geschichtete Dielektrika

$$D_1 = D_2 (= D_{1normal} = D_{2normal})$$

$$\frac{E_1}{E_2} = \frac{\epsilon_{r2}}{\epsilon_{r1}}$$

$$E_2 = E_1 \frac{\epsilon_{r1}}{\epsilon_{r2}}$$

$$U = U_1 + U_2 = E_1 d_1 + E_1 d_2 \frac{\epsilon_{r1}}{\epsilon_{r2}}$$

12.2 Längs geschichtete Dielektrika

$$\frac{D_1}{D_2} = \frac{\epsilon_{r1}}{\epsilon_{r2}}$$

$$E_1 = E_2$$

12.3 Schräg geschichtetes Dielektrikum

Wie bekannt:

$$E_{1t} = E_{2t}$$

$$D_{1n} = E_{2n}$$

Winkel $\alpha = \measuredangle(\vec{E_n}, \vec{E})$:

$$\frac{\tan \alpha_1}{\tan \alpha_2} = \frac{\epsilon_{r1}}{\epsilon_{r2}}$$

Feldlininen werden beim Übergang in ein Dielektrikum mit größerer relativer Dielektrizitätszahl von der Normalen weg, also zur Grenzfläche hin gebrochen.

Teil II

Stationäres elektrisches Strömungsfeld

13 Basics

Zusammenhang zwischen Strom und Stromdichte:

$$\Delta I = \vec{J} \cdot \Delta \vec{A}$$

Betrag:

$$\rightarrow |\Delta I| = J_n \Delta A = J \Delta A \cdot \cos \alpha$$

Für eine beliebige gekrümmte Fläche gilt:

$$I = \int\limits_A \vec{J} \cdot d\vec{A}$$

Analog zu $\sum I = 0$:

$$\oint_{A} \vec{J} \cdot d\vec{A} = 0$$

Ohmsches Gesetz 14

Das Feldbild der Stromdichte in Leitern entspricht dem der Feldstärke in Dielektrika für Leitwert und Widerstand konstant:

$$\vec{E} = \rho \vec{J}$$

und

$$\vec{J} = \gamma \vec{E}$$

mit rho = spez. Widerstand und gamma = spez. Leitwert

Leistungsdichte im Strömungsfeld 15

Im homogenen Feld:

$$\begin{split} P &= I^2 R \\ \Delta P &= (\Delta I)^2 \frac{\Delta l}{\gamma \Delta A} = J^2 \frac{\Delta l \Delta A}{\gamma} \\ p &= \frac{\Delta P}{\Delta V} = \frac{J^2}{\gamma} = E J = \gamma E^2 \end{split}$$

16 Relaxationszeitkonstante

Zeitkonstante τ :

$$\tau = RC = \frac{epsilon}{\gamma}$$

$$u = U_0 e^{\frac{-t}{\tau}}$$

Entscheidung ob ein langsam veränderliches Feld als Strömungsfeld oder elektro(quasi)statisches Feld zu behandeln ist:

elektro(quasi)statisch:

$$\frac{T}{4} << \tau$$

 $T_a \ll \tau$

Strömungsfeld:

$$\frac{T}{4} >> \tau$$
 $T_a >> \tau$

mit T= Periodendauer periodischer Größen und $T_a=$ Anstiegszeit transienter Größen.

17 Berechnung von Widerständen

17.1 Methode 1: Allgemeingültige Methode

$$R = \frac{U}{I} = \frac{\int\limits_{a}^{b} \vec{E} d\vec{s}}{\int\limits_{A}^{d} \vec{J} d\vec{A}} = \frac{\int\limits_{a}^{b} \vec{E} d\vec{s}}{\gamma \int\limits_{A}^{d} \vec{E} d\vec{A}}$$

Bei Kenntnis der Potentialfunktion:

$$R = \frac{U}{I} = \frac{\varphi_+ - \varphi_-}{I}$$

17.2 Methode 2: Alternative für homogene Strömungen

über dR oder dG integrieren, z.B koaxiale Zylinderanordnung:

$$R = \int_{\rho_1}^{\rho_2} dR = \int_{\rho_1}^{\rho_2} \frac{d\rho}{\gamma 2\pi \rho l_{Zyl}} = \frac{1}{\gamma 2\pi l_{Zyl}} \cdot ln \frac{\rho_2}{\rho_1}$$

oder stromdurchflossener Bügel (b = Breite):

$$dG = \frac{\gamma A}{l} = \frac{\gamma b d\rho}{\pi \rho}$$

$$G = \int_{0}^{\rho_2} dG = \int_{0}^{\rho_2} \frac{\gamma b \cdot d\rho}{\pi \rho} = \frac{\gamma b}{\pi} ln \frac{\rho_2}{\rho_1}$$

17.3 Methode 3: Durch τ (bei bekannter Kapazität)

$$\tau = RC = \frac{\epsilon}{\gamma} \to R = \frac{\epsilon}{\gamma C}$$

18 Bedingungen an Grenzflächen

18.1 Quer geschichtete Leiter

 \vec{E} und \vec{J} weisen nur Tangentialkomponenten auf.

$$\frac{E_1}{E_2} = \frac{\gamma_1}{\gamma_2}$$

$$E_2 = E_1 \frac{\gamma_1}{\gamma_2}$$

$$U = U_1 + U_2 = E_1 d_1 + E_2 d_2 = E_1 d_1 + E_1 d_2 \frac{\gamma_1}{\gamma_2}$$

18.2 Schräg geschichtete Leiter

 \vec{E} und \vec{J} schneiden die Grenzflächen schräg.

$$J_{xn} = \gamma_x E_{xn}$$

$$E_{1t} = E_{1t}$$

$$J_{1n} = J_{2n}$$

Winkel $\alpha = \measuredangle(\vec{E_n}, \vec{E})$:

$$\frac{\tan \alpha_1}{\tan \alpha_2} = \frac{\gamma_1}{\gamma_2}$$

D.h. Feld- und Strömungslinien werden beim Übergang in einen Leiter mit größerer Leitfähigkeit von der Normalen weg zur Grenzfläche hin gebrochen.

18.3 Verschiebungsdichte

Grundsätzlich:

$$J_{1n} = J_{2n}$$

$$\gamma_1 \frac{D_{1n}}{2} = \gamma_2 \frac{D_{2n}}{2}$$

$$\gamma_1 \frac{D_{1n}}{\epsilon_1} = \gamma_2 \frac{D_{2n}}{\epsilon_2}$$

Bedingung für $D_{1n} = D_{2n}$:

$$\frac{\epsilon_1}{\epsilon_2} = \frac{\gamma_1}{\gamma_2}$$

Falls $D_{1n} \neq D_{2n}$ Ausbildung einer Flächenladung:

$$D_{2n} - D_{1n} = \sigma$$

Teil III

Stationäre Magnetfelder

Basics 19

Ein Magnet besitzt zwei Pole (Nordpol und Südpol) die sich nicht voneinander trennen lassen. Ein Elementarmagnet ist ein magnetischer Dipol (Abstand lzwischen den Polstärken P). Magnetisches Dipolmoment:

$$m = P \cdot l$$

mit Polstärke P (analog zur el. Ladung Q). Jeder Strom von bewegten Ladungen erzeugt ein Magnetfeld.

Die magnetischen Feldlinien umschließen den Richtungssinn des Stromes im Rechtsschraubensinn (Wirbelfeld!)

Darstellung: Feldlinie geht bei Kreuz nach vorne in die Ebene und kommt bei Kreis auf den Betrachter zu.

20 Bauarten von Magneten

Bauarten:

- Stabmagnet
- Zylindermagnet
- Kernmagnet eines Drehspulmesswerks
- Vierpoliger Läufermagnet eines Kleinmotors
- ...

21 Magnetische Flussdichte

Mag. Flussdichte B([B] = H) ist die Kraft, verursacht vom Strom I_1 auf einen Leiter der Länge l durchflossen von dem Strom I_2 .

$$B_1 = \frac{F}{I_2 l} = \frac{\mu I_1}{2\pi \rho}, [B] = \frac{VS}{m^2} = T$$

Magnetische Feldstärke:

$$H = \frac{B}{\mu} = \frac{I}{2\pi\rho}, [H] = \frac{A}{m}$$

In isotropem Medium:

$$\vec{B}=\mu\vec{H}$$

mit

$$\mu = \mu_0 \mu_r$$

 μ_r ist oft keine Konstante!

$$\mu_0 = 4\pi \cdot 10^{-7} \frac{Vs}{Am} = 4\pi \cdot 10^{-7} \frac{H}{m}$$
$$K = 2 \cdot 10^{-7} \frac{Vs}{Am} = \frac{\mu_0}{2\pi}$$

22 Relative Permeabilität

22.1 Diamagnetische Stoffe

Für Diamagnetische Stoffe gilt:

$$\mu_r \leq 1$$

Der Stoff entwickelt ein Gegenfeld zum angelegten Magnetfeld, das proportional zu diesem ist, und das angelegte Feld abschwächt.

22.2 Paramagnetische Stoffe

$$\mu_r > 1$$

Stoff besteht aus kleinen Dauermagneten die durch chaotische Anordnung kein Feld bilden. Durch Magnetisierung werden die kleinen Dauermagnete ausgerichtet und verstärken das Feld.

22.3 Ferromagnetische Stoffe

$$\mu_r >> 1$$

Kleine Dauermagnete sind in Weißschen Bezirken zusammen ausgerichtet, insgesamt heben sich die Wirkungen aller Weißschen Bezirke allerdings im Normalfall auf. Abhängig von angelegtem Magnetfeld richten sich immer mehr Bezirke aus \rightarrow nicht linear! Wenn alle Bezirke ausgerichtet sind tritt die magnetische Sättigung ein.

Oberhalb der Curie-Temperatur verschwindet der Ferromagnetismus und der Stoff wird Paramagnetisch (reversibel)

23 Kraft auf Leiter im Magnetfeld

23.1 Kraft auf zwei parallele Leiter

Formel:

$$F = \frac{\mu I_1 I_2 l}{2\pi \rho}$$

mit $\frac{1}{2\pi\rho}$ aus der Zylindersymmetrie.

23.2 Kräfte auf andere Leiter

Kraft auf einen geraden Leiter:

$$\vec{F} = I\vec{l} \times \vec{B}$$

(Achtung: $\vec{l} \times \vec{B} = -\vec{B} \times \vec{l}$)

Wenn das Magnetfeld senkrecht auf einem geraden Leiter der Länge l durchflossen von I steht gilt:

$$F = BIl$$

Für Winkel α zwischen geradem Leiter und Magnetfeldlinien:

$$F = BIl \cdot \sin \alpha$$

Allgemein gilt für gekrümmte Leiter:

$$\vec{F} = I \int_{I} d\vec{s} \times \vec{B}$$

Kraft auf elektrische Strömung in infinitesimal kleinem Volumene
lement (\vec{B} und \vec{J} können als konstant angenommen werden):

$$\Delta \vec{F} = \Delta V \vec{J} \times \vec{B}$$

Kraft auf punktförmige bewegte Ladung in inhomogenem Magnetfeld:

$$\vec{F} = Q\vec{v} \times \vec{B}$$

23.3 Drehmoment Drehspulinstrument

$$M_1 = NAIB$$

23.4 Hall-Effekt

Stromdichte mit n_e = Elektronendichte in $\frac{1}{m^3}$:

$$J = ven_e$$

Driftgeschwindigkeit:

$$v = \frac{I}{en_ebd}$$

Hallspannung (K_{B0} = Leerlaufempfindlichkeit):

$$U_H = EB = vBb = \frac{IB}{en_e d} = K_{B0}IB$$

23.5 magnetische Spannung V

Magnetische Spannung V mit [V] = A:

$$V = Hl$$

24 Durchflutungsgesetz

Integriert man die magnetische Feldstärke H über eine geschlossene Feldlinie der Länge L, erhält man den verursachenden Strom I (Theta = Durchflutung):

$$(N \cdot)I = \Theta = \oint_{L} \vec{H} \cdot d\vec{s} = \int_{A} \vec{J} \cdot d\vec{A}$$

z. B. Zylinderförmiger Leiter:

$$H(\rho) = \frac{I}{2\pi\rho}$$

für die Durchflutung außerhalb und:

$$H(\rho) = \frac{I\rho}{2\pi\rho_0^2}$$

für die Durchflutung innerhalb des Leiters. Durchflutung am Plattenkondensator: Während dem Ladestrom entsteht um den Leiter ein Magnetfeld:

$$\oint_{I} \vec{H} d\vec{s} = i$$

Zwischen den Platten setzt sich der Strom als Verschiebungsstromdichte

$$\vec{J} = \frac{d\vec{D}}{dt}$$

fort. Um den Verschiebungsstrom entsteht ein Magnetfeld. 1. Maxwell'sche Gleichung:

$$\oint\limits_L \vec{H} d\vec{s} = \int\limits_A (\vec{J} + \frac{d\vec{D}}{dt}) d\vec{A}$$

25 Gesetz von Biot-Savart (unvollständig)

Gesetz von Biot-Savart gibt an, welchen Beitrag ein stromdurchflossenes Leiterelement irgendeines Stromkreises zur magnetischen Flussdichte in einem beliebigen Aufpunkt Pliefert.

$$\Delta \vec{B}(P) = \frac{\mu I}{4\pi} \frac{\Delta \vec{s} \times \vec{r}}{r^2}$$

aufintegriert:

$$\vec{B}(P) = \frac{\mu I}{4\pi} \oint\limits_{I} \frac{d\vec{s} \times \vec{r}}{r^2}$$

mir \vec{r} als Einheitsvektor.

26 Magnetischer Fluss

$$\Phi = \int\limits_A \vec{B} \cdot d\vec{A}$$

Für B senkrecht auf ebener Fläche A:

$$\Phi = B \cdot A$$

Die Summe der Teilflüsse die in ein Volumen austreten ist gleich der Summe derer, die austreten:

$$\oint_{A} \vec{B} \cdot d\vec{A} = 0$$

27 Bedingungen an Grenzflächen

28 Quer geschichtete Materialien

Analog zu Elektrostatik und Strömungsfeld:

$$B_{1n} = B_{2n}$$

$$H_{1t} = H_{2t}$$

29 Schräg geschichtete Materialien

Winkel $\alpha = \measuredangle(\vec{H_n}, \vec{H})$:

$$\frac{\tan \alpha_1}{\tan \alpha_2} = \frac{\mu_1}{\mu_2}$$

 \rightarrow Feldlinien werden von dem Material mit hoher Permeabilität geführt (z.B im Eisen laufen sie unabhängig vom Eintrittswinkel fast parallel zur Oberfläche und weisen eine hohe Dichte auf).

30 Magnetischer Kreis

30.1 Ohmsches Gesetz des magnetischen Kreises

Magnetischer Widerstand ($[R_m] = \frac{A}{Vs}$):

$$R_m = \frac{l}{\mu A}$$

Magnetischer Leitwert:

$$\Lambda = \frac{1}{R_m} = \frac{\mu \cdot A}{l}$$

Magnetische Spannung:

$$V = R_m \cdot \Phi$$

30.2 Magnetischer Kreis mit Verzweigung

Vorgehen:

- 1. Zählpfeile für Flüsse und Feldstärken festlegen
- 2. Entscheidung für Umlaufrichtungen; Durchflutungen zählen bei den gewählten Richtungen nur dann positiv, wenn sie sich im Sinne der Rechtsschraubenregel verhalten.

danach durch

$$\sum \Phi = 0$$

Widerstände etc. berechnen. Das magnetische Feld ist Quellenfrei!

Problem: nichtlinearer Zusammenhang zwischen Φ bzw B und H. μ und damit R_m hängen vom gesuchten H ab!

30.3 Hystereseschleife

Abhängigkeit zwischen B und H ist in ferromagnetischem Material nicht linear. Außerdem ist die Zuordnung B = f(H) nicht eindeutig, d.h. beim ansteigen von H ergeben sich andere Werte für B als beim absinken. Es ergibt sich die Hystereseschleife.

30.4 Magnetisierungskennlinie

Die Magnetisierungskennlinie entsteht durch Verbindung der Umkehrpunkte einer Hystereseschleife. Der Sättigungsbereich wird in der Praxis vermieden, da eine Steigerung der Flussdichte eine sehr hohe Steigerung der Feldstärke bedingt.

31 Scherung

Scherung bedeutet Einführung eines Luftspalts im Eisenkreis zur linearisierung der Magnetisierungskennlinie (v.A Vermeidung von Sättigung).

$$H_E l_E + \frac{B}{\mu_0} l_L = \Theta$$

Gleichung umformen zu:

$$\frac{B}{\mu_0}l_L = \Theta - H_E l_E$$

Scherungsgerade:

$$B = \frac{\Theta \mu_0}{l_L} - H_E \frac{\mu_0 l_E}{l_L}$$

Wichtige Punkte:

für $H_E = 0$:

$$B = \frac{\Theta \mu_0}{l_L}$$

für B=0:

$$H_E = \frac{\Theta}{l_E}$$

Teil IV

Zeitlich veränderliche magnetische Felder

32 Induktionsgesetz

Lorenzkraft:

$$\vec{F_L} = Q(\vec{v} \times \vec{B})$$

entgegen wirkende Coulombkraft im Leiter:

$$\vec{F_C} = Q\vec{E}$$

Es entsteht ein Gleichgewichtszustand:

$$\vec{F_L} = -\vec{F_L}$$

Daraus ergibt sich die Feldstärke von + nach -:

$$\vec{E} = -(\vec{v} \times \vec{B})$$

Integriert man die Feldstärke erhält man die induzierte Spannung in einem bewegten Leiter:

$$U_{12} = \int_{1}^{2} \vec{E} d\vec{l} = \int_{1}^{2} -(\vec{v} \times \vec{B}) d\vec{l} = -\frac{d\Phi}{dt}$$

mit

$$\Phi = \int \vec{B} d\vec{A}$$

Daraus entsteht die zweite Maxwell'sche Gleichung (nicht wirbelfrei):

$$\oint\limits_{L} \vec{E} d\vec{s} = -\frac{d}{dt} \int\limits_{A} \vec{B} d\vec{A}$$

Sonderfall für die Abwesenheit zeitlich sich ändernder magnetischer Felder (wirbelfreiheit):

$$\oint_{T} \vec{E} d\vec{s} = 0$$

Achtung: Linienintegral $\int\limits_L \vec{E} d\vec{s}$ ist nicht mehr wegunabhängig im elektrischen Wirbelfeld:

$$\oint\limits_{A}\vec{E}d\vec{s}=\int\limits_{A}^{B}\vec{E}d\vec{s}+\int\limits_{B}^{A}\vec{E}d\vec{s}=-\frac{d\Phi}{dt}$$

Das bedeutet das Potential im Raum ist nicht mehr eindeutig festgelegt.

33 Generator

Leiterschleife im Magnetfeld:

$$\Phi = BA \cdot \sin(\omega t)$$

Daraus ergibt sich die induzierte Spannung:

$$u(t) = -\frac{d\Phi}{dt} = -\omega BA \cdot \cos(\omega t)$$

weitere Zusammenhänge:

$$i(t) = \frac{u(t)}{R} = -\frac{\omega BA}{R}\cos(\omega t)$$
$$P(t) = u(t) \cdot i(t) = \frac{(\omega BA)^2}{R}\cos^2(\omega t)$$

Drehmoment:

$$M(t) = \frac{P(t)}{\omega} = \frac{\omega}{R} (BA)^2 \cos^2(\omega t)$$

34 Energie im magnetischen Feld

$$dW_m = Nid\Phi = NiAdB = V \cdot H \cdot A \cdot dB$$

mit z. B $2\pi\rho A=V=$ Volumen eines Ringkerns. Auf
integriert mit $B_e=$ Endwert der Flussdichte nach Aufbau
 des Magnetfeldes:

$$W_m = V \int_{0}^{B_e} H \cdot dB$$

Energie pro Volumen:

$$w_m = \frac{W_m}{V}$$

für konstante Permeabilität $(B = \mu H)$ gilt:

$$w_m = \int_{0}^{B_e} H dB = \frac{1}{2} \frac{B_e^2}{\mu}$$

35 Selbstinduktivität und Gegeninduktivität

Oft besteht ein linearer Zusammenhang zwischen Φ und i (nach dem ohmschen Gesetz):

$$-u + iR - u_{ind} = 0$$

Proportionalitätsfaktor L:

$$(N \cdot)\Phi = Li$$

deshalb:

$$-u + iR + L\frac{di}{dt} = 0$$

Spannung an der Induktivität:

$$u_L = L \frac{di}{dt}$$

Ohmsches Gesetz des magnetischen Kreises ($\Lambda = \frac{\mu A}{l}$):

$$N\Phi = N^2\Lambda i = Li$$

daher ist die Selbstinduktivität

$$L = N^2 \Lambda$$

Magnetische Energie in einer Spule gespeichert:

$$W_m = \frac{1}{2}LI^2$$

35.1 Zwei magnetisch gekoppelte Spulen

Gegeninduktivität bei zwei Induktivitäten (magnetisch gekoppelt)

$$L_{12} = L_{21} = M = N_1 N_2 \Lambda$$

Die Flüsse dabei betragen:

$$\Phi_{12} = L_{12}i_2 = Mi_2 = N_1\Phi_{12}$$

Spannungen an den Spulen:

$$u_{1} = L_{1} \frac{di_{1}}{dt} + L_{12} \frac{di_{2}}{dt}$$
$$u_{2} = L_{2} \frac{di_{2}}{dt} + L_{21} \frac{di_{2}}{dt}$$

Gesamtenergie (in Spule 1 gespeicherte Energie) wenn $i_1 = I_1, di_1 = 0$ und in Spule zwei steigt der Strom von 0 auf I_2 :

$$W_{ges} = \frac{1}{2}L_1I_1^2 + L_{12}I_1I_2 + \frac{1}{2}L_2I_2^2$$

auch für den umgekehrten Fall gültig (Indizes verändern sich jeweils). Daher gilt:

$$L_{12} = L_{21}$$

Magnetische Energie des Systems mit $L_{12} = L_{21} = M$:

$$W_m = \frac{1}{2}L_1I_1^2 + MI_1I_2 + \frac{1}{2}L_2I_2^2$$

Allgemein für n stromdurchflossene Leiterschleifen:

$$W_m = \frac{1}{2} \sum_{\mu=1}^{n} \sum_{\mu=1}^{n} L_{\mu\nu} I_{\mu} I_{\nu}$$

35.2 Methoden zur Berechnung von Induktivitäten

35.2.1 Induktivität über magnetischen Fluss berechnen

Strom in der betrachteten Leiterschleife vorgeben. Danach Fluss über $\Phi=BA\cdot\cos\phi$ berechnen. Selbstinduktivität:

$$L = \frac{\Phi}{i}$$

Strom in einer der betrachteten Leiterschleifen vorgeben, danach Fluss in der anderen Leitschleife berechnen. Gegeninduktivität:

$$M = \frac{\Phi_{12}}{i_2}$$

35.3 Selbstinduktivität über magnetische Feldenergie berechnen

Strom in betrachteter Leiterschleife vorgeben, und Formel aus folgender Beziehung formen:

$$w_m = \frac{W_m}{V} = \frac{1}{2}\mu H^2 = \frac{1}{2}BH = \frac{1}{2}\frac{B^2}{\mu}$$

daraus folgt:

$$L = \frac{2W_m}{I^2}$$

35.4 Induktivitätsbelag bei bekanntem Kapazitätsbelag von Leitungen

35.4.1 Doppelleitung

Induktivitätsbelag:

$$L' = \frac{\mu_0}{\pi} ln \frac{d}{\rho_0}$$

Kapazitätsbelag:

$$C' = \frac{\pi \epsilon}{\ln \frac{d}{\rho_0}}$$

Gilt für beliebige Leitungsanordnungen:

$$L'C' = \mu \epsilon$$

35.4.2 Koaxialleitung

Induktivitätsbelag:

$$L' = \frac{\mu}{2\pi} ln \frac{\rho_2}{\rho_1}$$

Kapazitätsbelag:

$$C' = \frac{2\pi\epsilon}{\ln\frac{\rho_2}{\rho_1}}$$

Gilt für beliebige Leitungsanordnungen:

$$L'C' = \mu \epsilon$$

36 Die Maxwell'schen Gleichungen

36.1 1. Gleichung: Verallgemeinertes Durchflutungsgesetz

Ein elektrischer Strom (Durchflutung) verursacht ein magnetisches Wirbelfeld.

$$\oint\limits_L \vec{H} d\vec{s} = \int\limits_A (\vec{J} + \frac{d\vec{D}}{dt}) d\vec{A}$$

36.2 2. Gleichung: Induktionsgesetz

Ein zeitlich veränderlicher magnetischer Fluss induziert ein elektrisches Wirbelfeld.

$$\oint\limits_{L} \vec{E} d\vec{s} = -\frac{d}{dt} \int\limits_{a} \vec{B} d\vec{A}$$

Bei abwesenheit zeitlich veränderlicher magnetischer Felder:

$$\oint_{L} \vec{E} d\vec{s} = 0$$

Das elektrostatische Feld ist wirbelfrei.

36.3 3. Gleichung: Kontinuitätsgleichung für die magnetische Flussdichte

Das magnetische Feld ist quellenfrei.

$$\oint_{A} \vec{B} d\vec{A} = 0$$

36.4 4. Gleichung: Kontinuitätsgleichung für die elektrische Stromdichte

Das elektrische Strömungsfeld ist quellenfrei.

$$\oint_{A} (\vec{J} + \frac{d\vec{A}}{dt})d\vec{A} = 0$$

Umformung:

$$\oint\limits_{A}\frac{d\vec{D}}{dt}d\vec{A} = -\oint\limits_{A}\vec{J}d\vec{A} = i(t)$$

Integration:

$$\oint \vec{D}d\vec{A} = \int i(t)dt = Q$$

Die Quellen des elektrischen Feldes sind die elektrischen Ladungen.

36.5 Die Materialgleichungen

Elektrische Verschiebungsdichte, Permittivität, elektrische Feldstärke:

$$\vec{D} = \epsilon \vec{E}$$

Elektrische Stromdichte, elektrische Leitfähigkeit, elektrische Feldstärke:

$$\vec{J} = \gamma \vec{E}$$

Magnetische Flussdichte, Permeabilität, magnetische Feldstärke:

$$\vec{B}=\mu\vec{H0}$$