

BT4014 Final Presentation

Movie Recommendation System

Toh Hui Shan Alicia (A0204411B)

Vinessa Christabella (A0240431X)

ROLL SCENE

MOVIE

CUT

01

Introduction

Q

9

Background / Problem

- Online community where users can rate movies, write movie reviews and receive movie recommendations
- Problem of under-contribution
- Inaccurate recommendation, decrease in users' satisfaction & willingness to use the platform

recommendations

MovieLens helps you find movies you will like. Rate movies to build a custom taste profile, then MovieLens recommends other movies for you to watch.

Proposed Solution

- Bandit Algorithms
 - Epsilon decay bandit algorithm combined with a content-based recommendation system
 - Contextual bandit algorithm which considers user features
- Goal: Increase user satisfaction by recommending high-quality movies

Content Based Recommendation System

Dataset

Dataset Description

- MovieLens dataset obtained from the grouplens website
- 100K variant of the data set, consisting of 100,000 ratings from 943 users on 1682 movies and each user has rated at least 20 movies
- 3 tables of interest:
 - Users data: Includes user ID with corresponding user demographics
 - Movies data: Includes information about movies based on their genres
 - User Movie Ratings: Contains users' ratings (1-5) for a movie

روي

Context Features

- Performing data binning on "age"
- 6 age group buckets: <20, 20-29, 30-39, 40-49, 51-60, >60
- Conduct one-hot encoding on categorical variables

Rewards

- Create binary reward label
- Ratings less than 4 are labeled as 0 and 1 otherwise

Filter

• Only include 30 movies with most ratings on the website

Epsilon Decay

ىوى

Q

9

M

Epsilon Decay Modifications

U

Exploitation

Decay Function

Original decay function

$$epsilon = \frac{1}{(\frac{number\ of\ play}{number\ of\ arms} + 1)}$$

Modified decay function

$$epsilon = \frac{1}{(\frac{number\ of\ movies\ watched\ by\ a\ user}{number\ of\ arms} + 1)}$$

MOVIE

Decay Function

epsilon =
$$\frac{1}{\frac{(\frac{number\ of\ movies\ watched\ by\ a\ user}{number\ of\ arms} + 1)}}$$

User A 10 movies

User B
2 movies

Lower epsilon value **Exploit more**

Higher epsilon value **Exploit less**

6

Exploitation

Content Based Recommendation

suggests a movie which has similar characteristics to the movies a user has previously enjoyed

Exploitation

Content Based Recommendation

movie_id		movie_title	release_date	genres
0	1	Toy Story (1995)	01-Jan-1995	Animation Children's Comedy
1	7	Twelve Monkeys (1995)	01-Jan-1995	Drama Sci-Fi
2	50	Star Wars (1977)	01-Jan-1977	Action Adventure Romance Sci-Fi War
3	56	Pulp Fiction (1994)	01-Jan-1994	Crime Drama
4	69	Forrest Gump (1994)	01-Jan-1994	Comedy Romance War
5	79	Fugitive, The (1993)	01-Jan-1993	Action Thriller
6	98	Silence of the Lambs, The (1991)	01-Jan-1991	Drama Thriller
7	100	Fargo (1996)	14-Feb-1997	Crime Drama Thriller

User A liked these movies (gave high ratings)

Recommend this to user A

Content Based Recommendation

	action	adventure	animation	children	comedy	crime	drama
0	0	0	1	1	1	0	0
1	0	0	0	0	0	0	1
2	1	1	0	0	0	0	0
3	0	0	0	0	0	1	1
4	0	0	0	0	1	0	0

How we achieve this:

- Prepare data: Matrix of token counts for movie genres
- Algorithm: Nearest neighbour algorithm with cosine distance metric
 - most similar to the history of movies that the user enjoyed hefore
- Filter: the user has not watched that movie before

*if no result, then recommend overall best movie so far

Exploration

Recommend recent movie

Method

Pick a random movie from 'k' most recent movies among the arms

Rationale

Recent movies are more likely to be appealing and relevant to viewers

Hyperparameter

 $k \to controls$ the number of top recent movies selected for exploration We explored 3 values of k (5, 15, 25)

Implementation:

 A class object for the content based recommendation system (called Recommender) that is used for exploitation part

```
class Recommender:
```

• For each k value, a function that contains epsilon decay algorithm

```
def epsilon_decay_k_5(user_history, history):
    def epsilon_decay_k_15(user_history, history):
    def epsilon_decay_k_25(user_history, history):
```

Bootstrap resampling using 3 bootstrap samples

Epsilon Decay Algorithm

Cumulative reward over time:

- **k = 25** has **highest** cumulative rewards
- k = 15 has the lowest cumulative rewards
- k = 5 is higher than k = 15, lower k doesn't mean lower cumulative rewards

ROLL SCENE CUT

DIRECTOR

04

Contextual Bandit

روي

Q

9

Contextual Bandit

- Additional context vector is used during learning
- Information such as **user's demographics** (age, gender, occupation)
- Ability to make different recommendations to different groups of users with different tastes & preferences

Hyperparameter

- α , controls balance between exploration & exploitation
- **Higher** value of α , wider the confidence bound, **greater emphasis** on **exploration**

Contextual Bandit

Linear Upper Confidence Bound

Linear Upper **Confidence Bound**

Disjoint

LinUCB Disjoint

- Arms (movies) are **distinct** from each other
- Each time step:
 - Select arm with greatest UCB value
 - Observe reward for selected arm only
- Strength:
 - Ability to explore arms with potential but uncertain returns
 - While **exploiting** arms that are known to have high returns

روي

LinUCB Disjoint

3 Objects For Implementation:

- A class object to represent a LinUCB disjoint arm
- A class object for the policy with the specified number of LinUCB disjoint arms
- A function that implements bootstrap replay using the LinUCB policy created above

```
class linucb_disjoint_arm():
    class linucb_disjoint_policy():
    def disjoint_bootstrap_replay(K_arms, d, alpha, top_movies_index, bootstrap_resample):
```


LinUCB Disjoint

Time Step < 5000:

 α = 1.0 has slowest increase in cumulative rewards due to greater emphasis on exploring arms with high uncertainty

Time Step > 5000:

- Cumulative reward of α = 1.0 \bigcirc surpass that of α = 0.25
- α = 0.5 has **greatest** amount of cumulative rewards

LinUCB Hybrid

- Arms (movies) are **not mutually exclusive** in properties
- Each time step:
 - Select arm with greatest UCB value
 - Observe reward for selected arm & similar arms
- Strength:
 - We account for shared features between arms
 - Reward payoff is a linear function of both non-shared and shared components

LinUCB Hybrid

3 Objects For Implementation:

- A class object to represent a LinUCB hybrid arm
- A class object for the policy with the specified number of LinUCB hybrid arms
- A function that implements bootstrap replay using the LinUCB policy created above

```
class linucb_hybrid_arm():
    class linucb_hybrid_policy():
    def hybrid_bootstrap_replay(K_arms, d, k, alpha, top_movies_index, top_movies_features, bootstrap_resample):
```


LinUCB Hybrid

- α = 0.25 has greatest amount of cumulative rewards at all time step
- Lower weightage of exploration
- Significantly slower performance for $\alpha = 1.0$

LinUCB Disjoint vs Hybrid

- Hybrid models had greater cumulative rewards than disjoint models
- Advantage: utilizes shared features of the arms to help model the reward function for arms with similar features

05

Limitations

9

 \mathcal{M}

Overall project

Due to resource constraints, we **filtered** the dataset to include only **a subset** of the available movies.

ε-Decay

- We only experimented with 3 k values (5, 15, 25) but other values could work better in the exploration phase
- We employed content-based recommender system as part of exploitation phase. There could be other recommender system to be integrated.

Contextual Bandit

- We only experimented with 3 α values (0.25, 0.5, 1.0) but other values could work better
- We could explore more variations of contextual information such as creating interaction terms from the existing covariates

06 Conclusion

Q

9

- **Best performing** model is LinUCB Hybrid, α = 0.25 with greatest cumulative reward of 8293.33
- Epsilon decay, k = 25
 performed significantly
 worse than LinUCB with
 cumulative reward of
 6075.67

Thank You