Basic description of BA-Sindy algorithm

Inputs: $X, \dot{X} \in \mathbb{R}^{m \times D}$, with $\Theta = [\theta_1, ... \theta_p]$, and $\theta_i : \mathbb{R}^d \to \mathbb{R}$

Paramaters: Pretrain epochs n_{pre} , outer loops epochs n_{train} , inner loop 'bagging' epochs n_{bag} , inner loop train epochs n_{sub} , refinement epochs n_{ref} Learning rates for pre-training, bagging and subtraining, lr_{pre} , lr_{bag} , lr_{sub} Bag size q and bag number p Loss weightings $\lambda_0, \lambda_1, \lambda_2, \lambda_3$

Activation and bagging thresholds ε_{act} and ε_{bagg} . Noise parameter α

1. Train regular Sindy autoencoder without sequential thresholding for n_{pre} epochs, learning rate lr_{pre} . This yields an encoder $\zeta_0: \mathbb{R}^D \to \mathbb{R}^d$, a decoder $\psi_0: \mathbb{R}^D \to \mathbb{R}^d$ and a Sindy coefficient matrix $\Xi_0 \in \mathbb{R}^{d \times p}$.

Set
$$\mathcal{L}_{bag} = \lambda_1 \mathcal{L}_{dx/dt} + \lambda_2 \mathcal{L}_{dz/dt} + \lambda_3 \mathcal{L}_{reg}$$

Set
$$\mathcal{L}_{full} = \lambda_0 \mathcal{L}_{encoder} + \lambda_1 \mathcal{L}_{dx/dt} + \lambda_2 \mathcal{L}_{dz/dt} + \lambda_3 \mathcal{L}_{reg}$$

Set coefficient mask $\Lambda^{(0)} = 1^{d \times p}$

2. Let $i_1, ... i_p \subset \{1, ... m\}$ and $|i_k| = q$. Choosen with replacement.

We typically choose q = int(1.5m/p) Use indexes $i_1, ... i_p$ to create data bags $X_{i_1},...X_{i_p}$, and $\dot{X}_{i_1},...\dot{X}_{i_p}$, where $X_{i_k},\dot{X}_{i_k}\in\mathbb{R}^{q\times D}$.

3. For $k = 0, ... n_{train}$:

For
$$j = 1, ...p$$
:

Get
$$\Xi_{rand} \in \mathbb{R}^{p \times d}$$
 with $(\Xi_{rand})_{i,j} \sim \mathcal{N}(0,1)$

$$\Xi^{(k,j)} = \operatorname{copy}(\Xi^{(k)}) + \alpha \Xi_{rand}$$

Update $\Xi^{(k,j)}$ using $\nabla_{\Xi} \mathcal{L}_{baq}(X_{i_j} \dot{X}_{i_j})$ for n_{baq} epochs, with lr_{baq}

Set
$$\Xi^{(k)} = \frac{1}{p} \sum_{j} \Xi^{(k,j)}$$
 and $\overline{\Lambda}_{i,j}^{(k)} = \mathbb{1}\{\sum_{h} \mathbb{1}\{|\Xi_{i,j}^{(k,h)}| > \varepsilon_{act}\} > \varepsilon_{bag}\}.$

Set
$$\Lambda^{(k+1)} = \overline{\Lambda}^{(k)} \odot \Lambda^{(k)}$$

Update $\Xi^{(k)}, \zeta^{(k)}, \psi^{(k)}$, using $\nabla_{\Xi,\zeta,\psi} \mathcal{L}_{full}(X,\dot{X})$, for n_{sub} epochs w lr_{sub} .

Set
$$\Xi^{(k+1)}, \zeta^{(k+1)}, \psi^{(k+1)} = \Xi^{(k)}, \zeta^{(k)}, \psi^{(k)}$$

4. Update $\Xi^{(n)}, \zeta^{(n)}, \psi^{(n)}$, using $\nabla_{\Xi,\zeta,\psi} \mathcal{L}_{full}(X,\dot{X})$, for n_{ref} epochs w lr_{sub} .

Preliminary results on Lorentz system

Train & test data was of dim 128×5000 , generated from Lorentz system. Loss and coefficient count for each averaged over 5 runs is given below

On some runs we uniformly beat regular auto encoder Sindy, achieving better test loss greater sparsity for the same # of epochs. Examples below:

