Durée 2 heures

Tout document interdit

Exercice I (5.5 points). Soient α et β et ϕ trois formules fermées telles que : α et ϕ valides et β non valide Soient α_S , β_S et ϕ_S leurs formes de Skolem respectives.

Question. Compléter les deux tableaux ci-dessous avec les symboles suivants :

- V: si vous considérez que la proposition est toujours vraie.
- **F**: si vous considérez que la proposition n'est jamais vraie.
- X : si vous considérez que la proposition peut être parfois vraie, parfois fausse. Justifier dans ce cas.

α satisfiable	β satisfiable	$\alpha \rightarrow \beta$ satisfiable ?	$ \alpha_S \rightarrow \beta_S $ satisfiable ?	$(\alpha \rightarrow \beta)_S$ satisfiable?

Commentaires:

- 1. α ne peut pas être non satisfiable
- 2. β n'est pas valide. Il peut être soit satisfiable soit non satisfiable.
- 3. Si β_S est satisfiable ssi β est satisfiable.

φ satisfiable	¬φ satisfiable ?	φ _s satisfiable ?	$\neg(\phi_S)$ satisfiable ?	(¬φ) _s satisfiable ?

Exercice II (1-1.5 points). Questions de cours.

Rappeler le théorème de complétude et le théorème de compacité.

Théorème de complétude. Si S est un ensemble non satisfiable alors S est inconsistant.

<u>Théorème de compacité</u>. Un ensemble S (fini ou infini) est satisfiable ssi tous ses sousensembles finis sont satisfiables.

Exercice III (1 - 0.5 – 1 – 1 – 1). Soient C1 : $P(f(x), y) \vee \neg Q(y, z)$ et C2 : $\neg P(u, f(v)) \vee Q(u, f(w))$ deux clauses.

Questions.

- 1. Trouver une clause résolvante à C1 et C2 (Indiquer le MGU). On désignera par R cette résolvante.
- 2. Donner une instance de base R_B de R telle que $= R_B$.
- 3. Existe-t-il des instances de base de R qui ne sont pas des tautologiques ? Si oui, donner un exemple.
- 4. L'ensemble $\{C_1, C_2\}$ est-il satisfiable?
- 5. La formule $C_1 \wedge C_2$ est-elle valide?

Exercice IV

Question 1 (1.5, 1.5, points). Ecrire les énoncés ci-dessous dans le langage des prédicats du 1^{ier} ordre.

E₁. *Un seul parle et tous les autres l'écoutent.*

E2. Personne n'écoute celui qui parle.

Question 2. (3 points). L'ensemble $\{E_1, E_2\}$ est-il satisfiable ?

<u>Question</u> 3 (1.5 points). Ecrire l'énoncé ci-dessous dans le langage des prédicats du 1^{ier} ordre. Es. *Un ensemble non satisfiable contient au moins un ensemble non satisfiable*.

CF 2023 Corrigé

Exercice I (5.5 points)

Soient α et β et ϕ trois formules fermées telles que : α et ϕ valides et β non valide Soient α_S , β_S et ϕ_S leurs formes de Skolem respectives.

Question. Compléter les deux tableaux ci-dessous avec les symboles suivants :

- V: si vous considérez que la proposition est toujours vraie.
- **F**: si vous considérez que la proposition n'est jamais vraie.
- X : si vous considérez que la proposition peut être parfois vraie, parfois fausse. Justifier dans ce cas.

α satisfiable	β satisfiable	$\alpha \rightarrow \beta$ satisfiable ?	$ \alpha_S \rightarrow \beta_S $ satisfiable ?	$(\alpha \rightarrow \beta)_S$ satisfiable?
V	X	X	X	X
V	X	X	X	X
α ne peut				
pas être non				
satisfiable				

Commentaires:

- 1. α ne peut pas être non satisfiable
- 2. β n'est pas valide. Il peut être soit satisfiable soit non satisfiable.
- 3. β_S est satisfiable ssi β est satisfiable.

α satisfiable	β satisfiable	α→β satisfiable ?	$\alpha_S \rightarrow \beta_S$ satisfiable?	$(\alpha \rightarrow \beta)_{S}$ satisfiable?
V	V	V	V	V
V	F	F	X	F

Tableau II

φ satisfiable	¬φ satisfiable ?	φ _s satisfiable ?	¬(φ _S) satisfiable ?	(¬φ) _s satisfiable ?
V	F	V	X	F
F				

Colonne 2. $\models \phi \Rightarrow \neg \phi$ non satisfiable.

Colonne 3. $\models \varphi \Rightarrow \varphi$ satisfiable $\Rightarrow \varphi_S$ satisfiable

Colonne 4. la réponse est X.

Considérons la formule valide $\alpha : (\exists x \neg P(x)) \lor \exists x P(x)$.

 $\alpha_S = \neg P(a) \lor P(b)$ $\Rightarrow \neg(\alpha_S) : P(a) \land \neg P(b)$ (satisfiable)

Considérons la formule valide α' : $\forall x(\neg P(x)) \lor P(x)$).

 $\alpha'_S = \forall x (\neg P(x)) \lor P(x)) \implies \neg(\alpha'_S) = \forall x (P(x)) \land \neg P(x))$ non satisfiable.

Colonne 5. La réponse est F

 $|= \phi \Rightarrow \neg \phi$ non satisfiable $\Rightarrow (\neg \phi)_S$ non satisfiable

Exercice III
$$(1 - 0.5 - 1 - 1 - 1)$$

Soient C1 : $\mathbf{P}(f(x), y) \vee \neg \mathbf{Q}(y, z)$ et C2 : $\neg \mathbf{P}(u, f(v)) \vee \mathbf{Q}(u, f(w))$ deux clauses.

Questions.

- 1. Trouver une clause résolvante à C1 et C2 (Indiquer le MGU). On désignera par R cette résolvante.
- 2. Donner une instance de base R_B de R telle que $\mid = R_B$.
- 3. Existe-t-il des instances de base de R qui ne sont pas des tautologiques ? Si oui, donner un exemple.
- 4. L'ensemble $\{C_1, C_2\}$ est-il satisfiable ?
- 5. La formule $C_1 \wedge C_2$ est-elle valide?

Réponses à la question 1

C₁:
$$P(f(x), y) \lor \neg Q(y, z)$$

C₂: $\neg P(u, f(v)) \lor Q(u, f(w))$
C₃: $P(f(x), u) \lor \neg Q(u, f(w))$
C₁[$u/y, f(w)/z$]
R₁: $\neg P(u, f(v)) \lor P(f(x), u)$
Res [C₂, C₃]

Réponses à la question 2

Instance de base $|= \mathbf{R}_{1B}$.

$$\neg P(f(x), f(x)) \lor P(f(x), f(x)) \quad [f(x)/u, x/v]$$

$$\neg P(f(a), f(a)) \lor P(f(a), f(a)) \quad [a/x, a/v]$$

Réponses à la question 3

$$R_1 : \neg P(a, f(a)) \lor P(f(a), a) [a/u, a/v, a/x]$$

Réponses à la question 4

C1: $P(f(x), y) \lor \neg Q(y, z)$ et C2: $\neg P(u, f(v)) \lor Q(u, f(w))$

L'ensemble E : { C_1, C_2 } est satisfiable. A titre d'exemple,

- toute interprétation de Herbrand contenant les instances de base de P(f(x), y) et de Q(u, f(w)) est un modèle de E: { $P(f(a), a), P(f(a), f(a)), \ldots, Q(a, f(a)), \ldots$ }
- toute interprétation de Herbrand contenant les instances de base de $\neg Q(y, z)$ et de $\neg P(u, f(v))$ est aussi un est un modèle de E.

Réponses à la question 5

La formule $C_1 \wedge C_2$ n'est pas valide. Toute interprétation de Herbrand qui falsifie C_1 ou C_2 donc une instance de base de C_1 ou C_2 falsifie $C_1 \wedge C_2$. Exemple : E : { $\neg P(f(a), a)$, Q(a, a), $\neg P(f(a), f(a))$, ..., } falsifie C_1 .

Exercice IV

<u>Question</u> 1 (1.5, 1.5 points). Ecrire les énoncés ci-dessous dans le langage des prédicats du 1^{ier} ordre. E₁. *Un seul parle et tous les autres l'écoutent*.

E₂. Personne n'écoute celui qui parle.

Réponse à la question 1

P(x) : x parle

E(x, y) : x écoute y

D(x, y) : x est différent de y

 $\beta_1 : \exists x (P(x) \land \forall y (D(y, x) \rightarrow E(y, x) \land \neg P(y))$

 $\beta_2: \forall x \forall y (P(x) \rightarrow \neg E(y, x))$

Réponse à la question 2

Question 2. (3 points). L'ensemble { E1, E2} est-il satisfiable ?

 $\{E_1, E_2\}$ est satisfiable ssi $\{\beta_1, \beta_2\}$ est satisfiable ssi $\{(\beta_1)s, (\beta_2)s\}$ est satisfiable.

 $(\beta_1)_P : \exists x \forall y (P(x) \land (D(y, x) \rightarrow E(y, x) \land \neg P(y))$

 $(\beta_2)_P : \forall u \forall v (P(u) \rightarrow \neg E(v, u))$

 $(\beta_1)_s : \forall y (P(a) \land (D(y, a) \rightarrow E(y, a) \land \neg P(y))$

 $(\beta_2)_S: \forall u \forall v (P(u) \rightarrow \neg E(v, u))$

Mise sous forme clausale:

S: { P(a), $\neg D(y, a) \lor E(y, a)$, $\neg D(y, a) \lor \neg P(y)$, $\neg P(u) \lor \neg E(v, u)$ }

Le domaine de Herbrand est formé du seul terme a. L'interprétation I_h : { P(a), $\neg D(a, a)$, $\neg E(a, a)$ } satisfait chaque instance de base des clauses de S et donc S.

Réponse à la question 3

E₃. Un ensemble non satisfiable contient au moins un ensemble non satisfiable.

E(x): x est un ensemble

S(x): x est satisfiable

C(x, y) : x contient y

 $\beta_3: \forall x(E(x) \land \neg S(x) \rightarrow \exists y(E(y) \land C(x, y) \land \neg S(y)))$