$$\begin{split} \frac{h(t) - h(t_0)}{t - t_0} &= \frac{f(x(t), y(t), z(t)) - f(x(t_0), y(t_0), z(t_0))}{t - t_0} \\ &= \frac{f(x(t), y(t), z(t)) - f(x(t_0), y(t), z(t))}{t - t_0} \\ &+ \frac{f(x(t_0), y(t), z(t)) - f(x(t_0), y(t_0), z(t))}{t - t_0} \\ &+ \frac{f(x(t_0), y(t_0), z(t)) - f(x(t_0), y(t_0), z(t_0))}{t - t_0}. \end{split}$$

Ahora aplicamos el teorema del valor medio del cálculo de una variable, que establece: $si\ g\colon [a,b]\to\mathbb{R}$ es continua y diferenciable en el intervalo abierto (a,b), entonces existe un punto c en (a,b) tal que g(b)-g(a)=g'(c)(b-a). Aplicando lo anterior a f como función de x, podemos afirmar que, para algún c entre x y x_0 ,

$$f(x, y, z) - f(x_0, y, z) = \left[\frac{\partial f}{\partial x}(c, y, z)\right](x - x_0).$$

De la misma forma, calculamos

$$\begin{split} \frac{h(t) - h(t_0)}{t - t_0} &= \left[\frac{\partial f}{\partial x}(c, y(t), z(t)) \right] \frac{x(t) - x(t_0)}{t - t_0} \\ &+ \left[\frac{\partial f}{\partial y}(x(t_0), d, z(t)) \right] \frac{y(t) - y(t_0)}{t - t_0} \\ &+ \left[\frac{\partial f}{\partial z}(x(t_0), y(t_0), e) \right] \frac{z(t) - z(t_0)}{t - t_0}, \end{split}$$

donde c, d y e se encuentran entre x(t) y $x(t_0)$, entre y(t) e $y(t_0)$ y entre z(t) y $z(t_0)$, respectivamente. Tomando el límite cuando $t \to t_0$, teniendo en cuenta la continuidad de las derivadas parciales $\partial f/\partial x$, $\partial f/\partial y$, $\partial f/\partial z$, y el hecho de que c, d y e convergen a $x(t_0)$, $y(t_0)$ y $z(t_0)$, respectivamente, obtenemos la Ecuación (2).

Segundo caso especial de la regla de la cadena

Sea $f: \mathbb{R}^3 \to \mathbb{R}$ y sea $g: \mathbb{R}^3 \to \mathbb{R}^3$. Escribimos

$$g(x, y, z) = (u(x, y, z), v(x, y, z), w(x, y, z))$$

v definimos $h: \mathbb{R}^3 \to \mathbb{R}$ mediante

$$h(x, y, z) = f(u(x, y, z), v(x, y, z), w(x, y, z)).$$

En este caso, la regla de la cadena establece que