Supplementary File for "A Two-stage Evolutionary Algorithm based on Global and Local Searches for Large-scale Constrained Multiobjective Optimization"

 $TABLE \ S-I \\ THE \ HV \ RESULTS \ OBTAINED \ BY \ TLCMEA \ AND \ SIX \ COMPARED \ ALGORITHMS \ ON \ MW \ TEST \ SUITE.$

Problem	D	CCMO	MTCMO	C_LMEA	C_LMOCSO	DPSEA	POCEA	TLCMEA
	100	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	4.9012e-1 (2.76e-5)
N 4337.1	200	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (83.33%)
MW1	500	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (3.33%)
	1000	NaN (0.00%) =	NaN (0.00%) =	NaN (0.00%) =	NaN (0.00%) =	NaN (0.00%) =	NaN (0.00%) =	NaN (0.00%)
	100	NaN (80.00%) -	NaN (66.67%) -	NaN (0.00%) -	NaN (0.00%) -	3.5721e-1 (8.80e-2) -	NaN (0.00%) -	5.8002e-1 (7.15e-4)
MW2	200	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (26.67%) -	NaN (0.00%) -	5.7986e-1 (1.27e-3)
IVI VV Z	500	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	5.7934e-1 (1.44e-3)
	1000	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	5.7859e-1 (1.43e-3)
	100	5.4010e-1 (1.44e-3) -	5.3866e-1 (1.94e-3) -	NaN (0.00%) -	5.3014e-1 (2.71e-3) -	5.4137e-1 (1.25e-3) -	5.2249e-1 (5.60e-3) -	5.4334e-1 (3.70e-4)
MW3	200	5.3571e-1 (2.41e-3) -	5.3416e-1 (2.19e-3) -	NaN (0.00%) -	5.2722e-1 (2.59e-3) -	5.3846e-1 (1.58e-3) -	5.1781e-1 (5.83e-3) -	5.4139e-1 (5.44e-4)
101 00 3	500	5.2325e-1 (2.89e-3) -	5.1545e-1 (1.39e-2) -	NaN (0.00%) -	5.2152e-1 (3.35e-3) -	5.2967e-1 (2.02e-3) -	4.8981e-1 (4.95e-3) -	5.3431e-1 (1.46e-3)
	1000	4.7621e-1 (4.77e-3) -	4.7344e-1 (6.27e-3) -	NaN (0.00%) -	5.0935e-1 (5.91e-3) -	\ /	4.7156e-1 (8.25e-3) -	. /
	100	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	8.3514e-1 (1.56e-3)
MW4	200	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	8.3555e-1 (1.83e-3)
141 44 -	500	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (13.33%)
	1000	NaN (0.00%) =	NaN (0.00%) =	NaN (0.00%) =	NaN (0.00%) =	NaN (0.00%) =	NaN (0.00%) =	NaN (0.00%)
	100	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (93.33%)
MW5	200	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (73.33%)
111113	500	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (26.67%)
	1000	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (6.67%)
	100	NaN (93.33%) -	NaN (83.33%) -	NaN (0.00%) -	NaN (0.00%) -	6.2550e-2 (5.96e-2) -	NaN (0.00%) -	3.2851e-1 (1.85e-5)
MW6	200	NaN (10.00%) -	NaN (10.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (40.00%) -	NaN (0.00%) -	3.2848e-1 (1.32e-4)
1,1,1,0	500	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	3.2845e-1 (1.41e-4)
	1000	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	3.2840e-1 (1.42e-4)
	100	4.0960e-1 (1.07e-3) -	4.0654e-1 (1.16e-3) -	NaN (0.00%) -	4.0463e-1 (1.69e-3) -	4.1016e-1 (9.12e-4) -	` ,	
MW7	200	4.0700e-1 (1.16e-3) -	4.0189e-1 (2.33e-3) -	NaN (0.00%) -	4.0023e-1 (1.88e-3) -	4.0728e-1 (8.89e-4) -	3.9684e-1 (3.76e-3) -	
	500	4.0088e-1 (1.78e-3) =	` '	NaN (0.00%) -		4.0272e-1 (9.02e-4) +	, ,	` ,
		3.9406e-1 (1.42e-3) +		NaN (0.00%) -		3.9620e-1 (1.63e-3) +		
	100	NaN (36.67%) -	NaN (40.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (73.33%) -	NaN (0.00%) -	5.5212e-1 (9.56e-4)
MW8	200	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (10.00%) -	NaN (0.00%) -	5.5227e-1 (8.80e-4)
	500 1000	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	5.5218e-1 (8.62e-4)
		NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	5.5234e-1 (8.67e-4)
	100	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (93.33%)
MW9	200	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (50.00%)
	500 1000	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) - NaN (0.00%) =	NaN (0.00%) -	NaN (0.00%) - NaN (0.00%) =	NaN (0.00%) - NaN (0.00%) =	NaN (16.67%)
	1000	NaN (0.00%) = NaN (10.00%) -	NaN (0.00%) = NaN (3.33%) =	NaN (0.00%) =	NaN (0.00%) = NaN (0.00%) -	NaN (30.00%) =	NaN (0.00%) =	NaN (0.00%)
		, ,	NaN (3.33%) = NaN (0.00%) -	(,	, ,		, ,	4.5492e-1 (2.89e-4)
MW10	200 500	NaN (0.00%) - NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) - NaN (0.00%) -	NaN (0.00%) - NaN (0.00%) -	NaN (0.00%) - NaN (0.00%) -	NaN (0.00%) - NaN (0.00%) -	4.5499e-1 (2.16e-4) NaN (83.33%)
	1000	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (63.33%)
	100	4.4833e-1 (5.01e-5) +	4.4840e-1 (5.21e-5) +	NaN (0.00%) -	4.3857e-1 (2.57e-3) -	4.4831e-1 (5.17e-5) +		
	200	4.4841e-1 (3.86e-5) +	4.4845e-1 (3.60e-5) +	NaN (0.00%) -	4.3588e-1 (3.41e-3) -	4.4842e-1 (3.84e-5) +		
MW11	500	4.4843e-1 (2.91e-5) =		NaN (0.00%) -	4.2966e-1 (3.03e-3) -	4.4845e-1 (4.84e-5) +		
		4.4844e-1 (3.63e-5) =		NaN (0.00%) -	4.2546e-1 (2.54e-3) -	4.4846e-1 (3.72e-5) =		
	100	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (93.33%)
	200	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (63.33%)
MW12	500	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (33.33%)
	1000	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (3.33%)
	1000	1.6228e-1 (7.01e-2) -	1.5393e-1 (9.00e-2) -	NaN (0.00%) -	. ,	2.9008e-1 (9.30e-2) -		4.7665e-1 (1.89e-4)
	200	9.3544e-3 (2.44e-2) -	1.6457e-2 (4.16e-2) -	NaN (0.00%) -	0.0000e+0 (0.00e+0) -	,	NaN (96.67%) -	4.7656e-1 (3.13e-4)
MW13	500	0.0000e+0 (0.00e+0) -		NaN (0.00%) -	NaN (0.00%) -	0.0000e+0 (0.00e+0) -	NaN (0.00%) -	4.7643e-1 (6.12e-4)
	1000	NaN (30.00%) -	NaN (3.33%) =	NaN (0.00%) -	NaN (0.00%) -	NaN (83.33%) -	NaN (0.00%) -	4.7642e-1 (3.45e-4)
	1000	3.8477e-1 (5.61e-2) -	\ /	3.4988e-2 (5.15e-3) -	· /	3.8952e-1 (5.29e-2) -	3.3031e-1 (6.77e-2) -	4.7232e-1 (1.53e-3)
	200	2.5228e-1 (2.37e-2) -		2.4322e-2 (7.46e-3) -				
MW14	500	1.5783e-1 (1.92e-2) -	1.7736e-1 (1.57e-2) -	NaN (93.33%) -	1.7245e-2 (1.52e-2) -		1.1996e-1 (7.53e-2) -	
		6.7415e-2 (3.26e-2) -	4.7315e-2 (2.04e-2) -	NaN (0.00%) -	1.6203e-2 (1.43e-2) -	` ,	1.0272e-1 (6.86e-2) -	
+/-/=		3/47/6	3/47/6	0/53/3	1/52/3	5/47/4	1/52/3	5 7050 1 (5.050-2)
17-7-	_	317110	3/4/10	013313	1/32/3	317117	113213	

The best value in each row is marked in gray. "NaN" indicates that the corresponding algorithm cannot continuously obtain feasible solutions in 30 runs, and only "(FR)" is given in this case.

1

TABLE S-II
THE IGD RESULTS OBTAINED BY TLCMEA AND SIX COMPARED ALGORITHMS ON DTLZ TEST SUITE.

Problem	D	ССМО	MTCMO	C_LMEA	C_LMOCSO	DPSEA	POCEA	TLCMEA
	100	4.8380e-2 (1.46e-2) -	3.2521e-2 (7.76e-3) -	NaN (0.00%) -	NaN (0.00%) -	9.0319e-2 (3.06e-2) -	NaN (0.00%) -	2.1656e-2 (7.64e-4)
G1 P.W. 71	200	5.2708e-2 (1.31e-2) -	3.9471e-2 (8.62e-3) -	NaN (0.00%) -	NaN (0.00%) -	1.2211e-1 (2.75e-2) -	NaN (0.00%) -	2.1434e-2 (1.44e-3)
C1_DTLZ1	500	8.8865e-2 (2.54e-2) -	6.7772e-2 (1.11e-2) -	NaN (0.00%) -	NaN (0.00%) -	2.1184e-1 (2.58e-2) -	NaN (0.00%) -	3.5113e-2 (6.74e-3)
	1000	6.9024e-2 (1.75e-2) =	7.3195e-2 (9.41e-3) -	NaN (0.00%) -	NaN (0.00%) -	1.4962e-1 (1.99e-2) -	NaN (0.00%) -	6.3585e-2 (1.69e-2)
	100	5.4839e-2 (2.02e-3) -	8.0063e+0 (1.74e-3) -	5.4655e-2 (1.02e-3) -	5.6286e+1 (1.44e+1) -	1.0948e-1 (7.37e-2) -	8.0712e+0 (6.40e-2) -	5.3401e-2 (8.39e-4)
	200	5.5669e-2 (1.03e-3) -	8.0051e+0 (1.18e-3) -	5.5442e-2 (1.94e-3) -	9.5789e+1 (2.24e+1) -	7.9755e-2 (4.27e-2) -	8.0772e+0 (5.80e-2) -	5.3179e-2 (4.90e-4)
C1_DTLZ3	500	1.6942e-1 (1.03e-1) -	8.0040e+0 (6.05e-4) -	5.5173e-2 (1.53e-3) -	2.0815e+2 (6.25e+1) -	4.8261e-1 (3.01e-1) -	8.1531e+0 (1.01e-1) -	5.3299e-2 (5.48e-4)
	1000	1.5511e-1 (1.04e-1) -	8.0036e+0 (6.52e-4) -	5.5117e-2 (1.19e-3) -	3.9325e+2 (8.42e+1) -	6.0027e-1 (5.04e-1) -	8.1251e+0 (7.17e-2) -	5.3515e-2 (5.97e-4)
-	100	4.2972e-2 (6.02e-4) -	4.2625e-2 (5.94e-4) =	NaN (13.33%) -	5.0247e-2 (4.92e-4) -	4.3173e-2 (5.60e-4) -	5.1179e-2 (1.77e-3) -	4.2478e-2 (3.72e-4)
G2 DEL 72	200	4.2938e-2 (4.80e-4) =	4.2487e-2 (5.43e-4) =	NaN (0.00%) -	4.9934e-2 (4.45e-4) -	4.3026e-2 (5.38e-4) =	5.0682e-2 (9.58e-4) -	4.2751e-2 (6.37e-4)
C2_DTLZ2	500	4.2787e-2 (5.54e-4) =	4.2721e-2 (4.86e-4) =	NaN (0.00%) -	4.9938e-2 (4.17e-4) -	4.3085e-2 (5.02e-4) -	5.1508e-2 (1.16e-3) -	4.2707e-2 (7.36e-4)
	1000	4.3175e-2 (6.31e-4) -	4.2513e-2 (5.60e-4) =	NaN (0.00%) -	4.9715e-2 (1.37e-5) -	4.3209e-2 (5.48e-4) -	5.1174e-2 (1.18e-3) -	4.2555e-2 (4.91e-4)
	100	2.1883e-1 (2.83e-1) =	1.4424e-1 (1.89e-1) =	5.9380e-1 (1.96e-1) -	1.2434e-1 (9.97e-2) -	1.1966e-1 (1.36e-1) =	1.0771e-1 (3.49e-3) +	1.1941e-1 (1.36e-1)
C2 DEL 74	200	2.1841e-1 (2.83e-1) =	1.4381e-1 (1.90e-1) =	4.6771e-1 (1.65e-1) -	9.1358e-2 (1.72e-4) +	9.4409e-2 (1.29e-3) =	1.3030e-1 (1.36e-1) -	9.4402e-2 (1.69e-3)
C3_DTLZ4	500	1.4355e-1 (1.90e-1) -	1.4419e-1 (1.89e-1) =	2.9512e-1 (1.20e-1) -	1.4180e-1 (1.92e-1) -	1.6928e-1 (2.28e-1) =	1.0317e-1 (4.13e-3) -	9.4733e-2 (1.11e-3)
	1000	1.1870e-1 (1.36e-1) +	1.1961e-1 (1.36e-1) =	2.6308e-1 (2.07e-1) -	9.1303e-2 (2.81e-6) +	9.4928e-2 (1.63e-3) =	1.2501e-1 (1.36e-1) +	1.4473e-1 (1.89e-1)
	100	6.5956e-2 (7.58e-2) -	2.8166e-2 (4.89e-3) -	1.2184e-2 (3.37e-4) -	3.1874e+2 (1.02e+2) -	4.8184e-2 (1.01e-2) -	1.5082e+1 (6.08e+0) -	1.1516e-2 (1.60e-4)
DC1_DTLZ1	200	1.2111e-1 (9.52e-2) -	4.7926e-2 (8.07e-3) -	1.2475e-2 (4.85e-4) -	6.6111e+2 (1.81e+2) -	4.1254e-1 (5.45e-1) -	2.6997e+1 (1.12e+1) -	1.1974e-2 (3.84e-4)
DCI_DILZI	500	8.0617e+0 (3.71e+0) -	1.5092e-1 (5.74e-2) -	1.3573e-2 (7.45e-4) +	1.1473e+3 (5.33e+2) -	3.9372e+1 (5.37e+0) -	5.7459e+1 (2.83e+1) -	1.4393e-2 (1.19e-3)
	1000	2.7221e+1 (7.96e+0) -	2.2840e-1 (1.26e-1) -	1.5282e-2 (8.57e-4) +	9.5067e+2 (9.48e+2) -	1.5054e+2 (1.38e+1) -	1.8237e+2 (2.14e+2) -	1.7596e-2 (2.36e-3)
	100	3.5138e-2 (6.71e-4) -	3.4453e-2 (4.35e-4) -	3.3810e-2 (5.22e-4) =	5.9933e+1 (1.66e+1) -	3.5993e-2 (9.79e-4) -	2.0374e+0 (8.18e-1) -	3.3915e-2 (4.04e-4)
DC1_DTLZ3	200	3.6939e-2 (8.63e-4) -	3.5170e-2 (4.55e-4) -	3.3919e-2 (5.90e-4) =	1.2332e+2 (2.49e+1) -	3.8642e-2 (1.21e-3) -	2.2421e+0 (9.68e-1) -	3.3790e-2 (2.46e-4)
DCI_DTLZ3	500	7.0257e-2 (2.89e-2) -	4.0591e-2 (1.33e-3) -	3.4039e-2 (7.17e-4) =	2.4231e+2 (5.82e+1) -	2.1153e-1 (1.36e-1) -	3.3708e+0 (1.34e+0) -	3.3864e-2 (3.60e-4)
	1000	9.7723e-2 (4.22e-2) -	3.9980e-2 (1.03e-3) -	3.4180e-2 (7.57e-4) =	4.1627e+2 (8.21e+1) -	1.0892e+0 (5.51e-1) -	1.9359e+0 (8.47e-1) -	3.3846e-2 (3.68e-4)
	100	NaN (20.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	2.0216e-2 (1.84e-4)
DC2 DTLZ1	200	NaN (0.00%) -	2.0603e-2 (3.21e-4)					
DC2_DTELT	500	NaN (0.00%) -	1.2141e-1 (6.62e-2)					
	1000	NaN (0.00%) -	1.6398e-1 (1.94e-4)					
	100	4.1283e-1 (2.32e-1) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	5.2633e-2 (3.42e-4)
DC2 DTLZ3	200	NaN (33.33%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	5.2674e-2 (4.44e-4)
DC2_DTELS	500	NaN (0.00%) -	5.2804e-2 (4.45e-4)					
	1000	NaN (0.00%) -	5.2837e-2 (4.12e-4)					
	100	4.5814e+0 (2.36e+0) -	1.7307e+1 (3.60e+0) -	5.6079e+2 (5.95e+1) -	5.4316e+2 (9.94e+1) -	2.1387e+0 (1.78e+0) -	2.2074e+2 (6.19e+1) -	6.9864e-3 (1.65e-4)
DC3 DTLZ1	200	1.4855e+1 (3.34e+0) -	4.3550e+1 (5.81e+0) -	1.4169e+3 (1.33e+2) -	8.8930e+2 (1.45e+2) -	1.8206e+1 (3.58e+0) -	4.7231e+2 (1.09e+2) -	7.8867e-3 (5.85e-4)
DC3_DTLZ1	500	9.9467e+1 (1.51e+1) -	1.6255e+2 (1.64e+1) -	4.3200e+3 (1.60e+2) -	1.9999e+3 (4.37e+2) -	2.0972e+2 (2.76e+1) -	1.6911e+3 (6.17e+2) -	1.2158e-2 (1.70e-3)
	1000	3.2620e+2 (2.72e+1) -	3.0403e+2 (1.82e+1) -	9.3868e+3 (2.52e+2) -	3.8449e+3 (8.26e+2) -	8.4392e+2 (5.67e+1) -	6.6872e+3 (1.70e+3) -	7.1628e-2 (7.53e-2)
	100	7.9799e-1 (4.26e-1) -	1.9068e+1 (1.62e+0) -	1.7100e+2 (2.44e+1) -	1.6583e+2 (2.74e+1) -	7.9077e-1 (3.94e-1) -	7.6898e+1 (2.33e+1) -	1.9924e-2 (2.12e-4)
DC3 DTLZ3	200	2.4942e+0 (9.34e-1) -	3.9659e+1 (2.84e+0) -	4.7417e+2 (3.48e+1) -	2.7107e+2 (4.61e+1) -	1.8708e+0 (6.40e-1) -	1.6271e+2 (3.62e+1) -	1.9921e-2 (2.22e-4)
2 00_D 1 D D	500	2.2277e+1 (2.45e+0) -	1.0119e+2 (3.81e+0) -	1.4057e+3 (6.88e+1) -	5.8381e+2 (7.72e+1) -	2.7447e+1 (2.18e+0) -	5.7897e+2 (2.63e+2) -	2.0060e-2 (2.21e-4)
	1000	6.7820e+1 (5.22e+0) -	2.0480e+2 (6.99e+0) -	3.1090e+3 (1.02e+2) -	1.0893e+3 (1.69e+2) -	1.0555e+2 (7.05e+0) -	2.0081e+3 (5.26e+2) -	2.0343e-2 (2.77e-4)
+/-/=		1/34/5	0/32/8	2/34/4	2/38/0	0/35/5	2/38/0	

Problem	D	ССМО	МТСМО	C_LMEA	C_LMOCSO	DPSEA	POCEA	TLCMEA
	100	6.9274e-1 (4.22e-2) -	7.4228e-1 (2.91e-2) -	NaN (0.00%) -	NaN (0.00%) -	5.9356e-1 (6.24e-2) -	NaN (0.00%) -	8.0829e-1 (8.19e-3)
G1 P.W. 71	200	6.7855e-1 (3.35e-2) -	7.1666e-1 (2.76e-2) -	NaN (0.00%) -	NaN (0.00%) -	5.2786e-1 (5.23e-2) -	NaN (0.00%) -	8.0191e-1 (1.40e-2)
C1_DTLZ1	500	5.9413e-1 (5.23e-2) -	6.3908e-1 (2.61e-2) -	NaN (0.00%) -	NaN (0.00%) -	3.6835e-1 (4.22e-2) -	NaN (0.00%) -	7.3110e-1 (2.41e-2)
	1000	6.3699e-1 (3.91e-2) =	6.2589e-1 (2.14e-2) -	NaN (0.00%) -	NaN (0.00%) -	4.7455e-1 (3.57e-2) -	NaN (0.00%) -	6.5063e-1 (4.25e-2)
-	100	5.4992e-1 (3.61e-3) -	0.0000e+0 (0.00e+0) -	5.5996e-1 (7.71e-4) -	0.0000e+0 (0.00e+0) -	4.4578e-1 (1.20e-1) -	0.0000e+0 (0.00e+0) -	5.6085e-1 (1.04e-3)
G1 P.W. 72	200	5.4436e-1 (3.57e-3) -	0.0000e+0 (0.00e+0) -	5.5966e-1 (1.01e-3) -	0.0000e+0 (0.00e+0) -	4.9356e-1 (7.46e-2) -	0.0000e+0 (0.00e+0) -	5.6128e-1 (8.10e-4)
C1_DTLZ3	500	3.5571e-1 (1.46e-1) -	0.0000e+0 (0.00e+0) -	5.5888e-1 (8.74e-4) -	0.0000e+0 (0.00e+0) -	1.2258e-1 (1.44e-1) -	0.0000e+0 (0.00e+0) -	5.6084e-1 (8.57e-4)
	1000	3.7705e-1 (1.44e-1) -	0.0000e+0 (0.00e+0) -	5.5777e-1 (8.60e-4) -	0.0000e+0 (0.00e+0) -	1.2917e-1 (1.84e-1) -	0.0000e+0 (0.00e+0) -	5.6040e-1 (1.14e-3)
	100	5.1581e-1 (1.44e-3) -	5.1732e-1 (1.54e-3) =	NaN (13.33%) -	5.1260e-1 (1.16e-4) -	5.1609e-1 (1.30e-3) =	5.0110e-1 (5.89e-3) -	5.1665e-1 (1.62e-3)
C2 DTLZ2	200	5.1402e-1 (1.63e-3) -	5.1684e-1 (1.14e-3) =	NaN (0.00%) -	5.1273e-1 (9.69e-5) -	5.1522e-1 (1.82e-3) -	5.0287e-1 (4.10e-3) -	5.1683e-1 (1.69e-3)
C2_D1LL2	500	5.1403e-1 (1.93e-3) -	5.1650e-1 (1.40e-3) =	NaN (0.00%) -	5.1252e-1 (8.92e-5) -	5.1474e-1 (1.80e-3) -	4.9977e-1 (3.83e-3) -	5.1607e-1 (1.68e-3)
	1000	5.1244e-1 (2.17e-3) -	5.1574e-1 (1.35e-3) =	NaN (0.00%) -	5.1275e-1 (7.66e-5) -	5.1353e-1 (1.32e-3) -	5.0119e-1 (3.19e-3) -	5.1607e-1 (1.44e-3)
	100	7.4864e-1 (9.55e-2) =	7.7376e-1 (6.39e-2) =	6.0206e-1 (1.15e-1) -	7.8432e-1 (3.58e-2) +	7.8162e-1 (4.59e-2) =	7.8221e-1 (2.22e-3) +	7.8187e-1 (4.60e-2)
C2 DTI 74	200	7.4870e-1 (9.56e-2) =	7.7412e-1 (6.40e-2) =	6.7760e-1 (8.13e-2) -	7.9617e-1 (3.70e-5) +	7.9017e-1 (1.38e-3) =	7.7461e-1 (4.86e-2) -	7.9072e-1 (1.21e-3)
C3_DTLZ4	500	7.7406e-1 (6.40e-2) =	7.7370e-1 (6.39e-2) =	7.1675e-1 (4.74e-2) -	7.7740e-1 (7.15e-2) -	7.6473e-1 (7.67e-2) -	7.8454e-1 (1.66e-3) -	7.9045e-1 (1.28e-3)
	1000	7.8278e-1 (4.61e-2) +	7.8136e-1 (4.58e-2) =	7.2646e-1 (8.28e-2) -	7.9622e-1 (6.91e-6) +	7.8982e-1 (1.69e-3) =	7.7738e-1 (4.86e-2) +	7.7328e-1 (6.38e-2)
	100	4.8560e-1 (1.27e-1) -	5.7072e-1 (1.43e-2) -	6.2468e-1 (4.37e-3) -	0.0000e+0 (0.00e+0) -	5.1241e-1 (3.01e-2) -	1.2698e-2 (6.96e-2) -	6.3044e-1 (2.01e-3)
DC1_DTLZ1	200	3.6143e-1 (1.31e-1) -	5.1224e-1 (2.36e-2) -	6.2121e-1 (7.08e-3) -	0.0000e+0 (0.00e+0) -	2.0427e-1 (1.73e-1) -	6.2132e-3 (3.40e-2) -	6.2670e-1 (3.07e-3)
DCI_DILZI	500	7.8289e-4 (4.29e-3) -	2.8187e-1 (6.08e-2) -	6.1458e-1 (6.88e-3) =	0.0000e+0 (0.00e+0) -	0.0000e+0 (0.00e+0) -	0.0000e+0 (0.00e+0) -	6.1456e-1 (5.36e-3)
	1000	0.0000e+0 (0.00e+0) -	1.8078e-1 (6.70e-2) -	6.0665e-1 (8.70e-3) +	0.0000e+0 (0.00e+0) -	0.0000e+0 (0.00e+0) -	0.0000e+0 (0.00e+0) -	6.0305e-1 (8.53e-3)
	100	4.6358e-1 (2.95e-3) -	4.6710e-1 (2.46e-3) -	4.7199e-1 (9.31e-4) -	0.0000e+0 (0.00e+0) -	4.6069e-1 (3.96e-3) -	0.0000e+0 (0.00e+0) -	4.7466e-1 (7.10e-4)
DC1_DTLZ3	200	4.5583e-1 (2.99e-3) -	4.6272e-1 (2.58e-3) -	4.7134e-1 (1.39e-3) -	0.0000e+0 (0.00e+0) -	4.5026e-1 (3.56e-3) -	3.2155e-4 (1.76e-3) -	4.7465e-1 (8.26e-4)
Del_Dibbs	500	3.8320e-1 (5.12e-2) -	4.4431e-1 (3.53e-3) -	4.7070e-1 (8.75e-4) -	0.0000e+0 (0.00e+0) -	2.0245e-1 (1.29e-1) -	0.0000e+0 (0.00e+0) -	4.7383e-1 (8.67e-4)
	1000	3.3438e-1 (7.12e-2) -	4.4573e-1 (2.87e-3) -	4.6906e-1 (9.08e-4) -	0.0000e+0 (0.00e+0) -	8.5612e-3 (2.71e-2) -	2.7269e-4 (1.42e-3) -	4.7292e-1 (9.38e-4)
	100	NaN (20.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	8.4095e-1 (1.17e-3)
DC2 DTLZ1	200	NaN (0.00%) -	8.3799e-1 (1.72e-3)					
D02_D122.	500	NaN (0.00%) -	5.8544e-1 (1.64e-1)					
	1000	NaN (0.00%) -	4.8013e-1 (9.96e-4)					
	100	1.6713e-1 (2.38e-1) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	5.6149e-1 (5.74e-4)
DC2 DTLZ3	200	NaN (33.33%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	5.6125e-1 (9.73e-4)
	500	NaN (0.00%) -	5.6033e-1 (1.10e-3)					
	1000	NaN (0.00%) -	5.5913e-1 (1.03e-3)					
	100	0.0000e+0 (0.00e+0) -	0.0000e+0 (0.00e+0) -	0.0000e+0 (0.00e+0) -	0.0000e+0 (0.00e+0) -	9.3985e-3 (2.88e-2) -	0.0000e+0 (0.00e+0) -	5.3353e-1 (2.29e-3)
DC3 DTLZ1	200	0.0000e+0 (0.00e+0) -	5.2664e-1 (3.94e-3)					
200_21221	500	0.0000e+0 (0.00e+0) -	5.0734e-1 (6.79e-3)					
	1000	0.0000e+0 (0.00e+0) -	3.5109e-1 (1.93e-1)					
	100	9.8107e-3 (5.37e-2) -	0.0000e+0 (0.00e+0) -	3.6891e-1 (5.82e-4)				
DC3_DTLZ3		, , ,	0.0000e+0 (0.00e+0) -		, , ,		, , ,	
		` '	0.0000e+0 (0.00e+0) -	` ′	` ′	` ′	` ′	` ` `
	1000		0.0000e+0 (0.00e+0) -					3.6429e-1 (1.76e-3)
+/-/=		1/35/4	0/32/8	1/38/1	3/37/0	0/36/4	2/38/0	

Fig. S-I. The population distribution of median IGD values obtained by seven algorithms on 1000-dimensional DC1-DTLZ3.

 ${\it TABLE~S-IV}$ The IGD Results Obtained by TLCMEA and Six Compared Algorithms on LIRCMOP Test Suite.

Problem Prob									
LIRCMOP 200 3.208ce (1.07e-2) 2.8702c (3.59c-3) (0.08c) 3.1575ce (1.05c-2) 3.1585ce (1.05c-2) 3.2985ce (1.06c-2) 3.1585ce (1.06c-2) 3.2985ce (1.06c-2) 3.2985ce (1.06c-2) 3.2985ce (1.06c-2) 2.1975c (1.05c-2) 3.0885ce (1.08c-2) 3.2975ce (2.08c-2) 2.1975c (1.05c-2) 3.0885ce (1.08c-2) 3.2975ce (2.38c-2) 3.0885ce (1.08c-2) 3.2975ce (2.38c-2) 3.0885ce (1.08c-2) 3.2985ce (2.38c-2) 3.0885ce (1.08c-2) 3.2985ce (2.38c-2) 3.2985ce (2.38c-2) 3.2885ce (1.08c-2) 3.2985ce (2.38c-2) 3.2885ce (2.38c-2)	Problem		CCMO			C_LMOCSO	DPSEA		
LIRCMOP 500 3.2996-1 (9.60-3) 3.1574-c1 (1.89-3) NaN (0.0076) 2.2156-2 (1.67-2) 3.2056-1 (1.18-2) 1.7252-1 (1.924-2) 1.3319-c1 (3.45-2) 1		100	, ,	, ,	, ,		` ′	, ,	, ,
Section Sect	LIRCMOP1				(/				
LIRCMOP 0.23702c1 (2.69c2) 2.1987c1 (3.11c.3) 3.0632c1 (3.74c.3) 1.211rc2 (9.79c.4) 2.6222c1 (1.74c.2) 5.7485c2 (2.18c.2) 3.0948c2 (5.96c.3) 3.0948c2 (2.18c.2) 3.0948c2 (2.96c.3) 3.0948c2 (2.18c.2) 3.0948c2 (2.96c.3) 3.0948c2 (2.18c.2)	Littenioi i		, ,	, ,	, ,		` ′	` '	, ,
LIRCMOP 200 2,6288-1 (1.68-2) 2,5035-1 (1.40-2) NAN (0.009) 1,5345-2 (1.37-2) 2,7345-2 (1.37-2) 3,9048-2 (2.68-2) 3,0002-2 (1.25-2) NAN (0.009) 2,7345-1 (1.10-2) 2,7330-1 (7.65-3) 3,3030-1 (9.66-3) 7,7415-2 (2.08-2) 3,415-1 (1.36-2) 3,415-1 (1.36-2) 2,7345-1 (1.10-2) 2,7345-1 (1.10-2) 2,7345-1 (1.10-2) 2,7345-1 (1.10-2) 2,7345-1 (1.10-2) 2,7345-1 (1.10-2) 2,7345-1 (1.10-2) 2,745-1			. ,	. ,	` '			. , ,	
LirkCMOP 500 288/16c (1.17c-2) 2.7735c (1.40c-3) NAN (0.00%) 1.5886c2 (1.30c-3) 2.7912c (1.55c-3) 7.3936c2 (1.52c-3) 6.12fc-2 (1.78c-2)									
100	LIRCMOP2		, ,	, ,				` '	
LIRCMOPS 100 30.2099-1 (1.24-2) x.389-1 (1.65-2) x.387-2 (1.65-2) x.387-2 (1.25-2) x.387-2 (1.			, ,	, ,	, ,				
LIRCMOPS 200 3.2079c-1 (2.14c-2) 3.2890c-1 (6.00c-4) NAN (0.00%) 3.3185c-1 (1.73c-3) 3.3063c-1 (1.57c-2) NAN (0.67%) 5.2575c-2 (1.23c-2) NAN (0.00%) 3.3185c-1 (2.43c-3) 3.366ac (3.63c-3) NAN (0.00%) 3.366ac (3.62c-3) 3.366ac (3.62			. ,	. ,	` /	. ,	` /	` /	
LIRCMOPF 100 3.4106e1 (7.54e-3) 3.2979e1 (1.52e-3) NAN (0.00%) 3.3136e1 (2.49e-3) 3.3640e1 (3.75e-3) NAN (0.667%) 5.2070e2 (5.45e-2)			, ,	, ,	, ,			` ,	
1000 3.4106c- (7.54c-3)	LIRCMOP3		, ,	, ,	(/	` ,	` '	` ,	
LIRCMOP 100 2.8471c- (3.19c-2) 2.2394c- (1.17c-2) 3.1629c- (4.97c-3) 2.173c- (8.42c-2) 3.0785c- (1.17c-2) NN (9.6578) 4.0984c-2 (1.63c-2) 3.0785c- (1.07c-2) 3.0785c- (1									
LIRCMOP 200 3.0992-e1 (2.08e-2) - 2.9755-e1 (190e-2) - NAN (0.0094) - 3.0756-e1 (2.12e-3) 3.0756-e1 (1.11e-2) - NAN (0.667%) - 4.084e-2 (1.63e-2) 1.000 3.158b-e1 (1.63e-2) - 3.088e-1 (1.71e-3) - 3.0812e-1 (2.15e-3) 3.0976-e1 (1.11e-2) - 3.0812e-1 (3.60e-2) - 7.7588e-2 (3.10e-2) - 3.0876-e1 (2.12e-3) - 3.0876-e1 (4.80e-3) - 3.1845-e1 (6.15e-3) - 8.2616-e2 (2.71e-2) - 2.0976-e1 (3.10e-2) - 3.0876-e1 (2.12e-3) - 3.1845-e1 (6.15e-3) - 8.2616-e2 (2.71e-2) - 2.0976-e1 (2.12e-1) - 2.1845-e1 (3.55e-3) - 3.0876-e1 (1.24e-2) - 1.1973-e0 (1.16e-1) - 1.288e-1 (3.92e-1) - 2.0986-e1 (2.12e-1) - 1.2184-e1 (2.55e-3) - 3.0876-e1 (1.92e-2) - 1.2256-e0 (4.61e-3) - 1.7798-e1 (7.65e-2) - 1.0986-e1 (2.12e-3) - 1.2184-e1 (3.65e-2) - 3.0366-e1 (1.92e-2) - 1.2256-e0 (3.61e-3) - 1.2798-e1 (2.65e-2) - 3.0366-e1 (1.92e-2) - 1.2256-e0 (3.61e-3) - 1.2798-e1 (2.65e-2) - 3.3796-e1 (2.12e-3) - 1.2798-e1 (2.65e-2) - 3.0366-e1 (1.92e-2) - 1.2256-e0 (3.61e-3) - 1.2798-e1 (2.65e-2) - 3.2796-e1 (2.65e-2) - 3.2796-e1 (2.65e-2) - 3.2796-e1 (2.65e-3) - 1.2475-e0 (3.65e-1) - 1.2476-e1 (1.06e-3) - 4.1798-e1 (1.06e-3) - 4.1					` /			` /	
LIRCMOP4 500 3.0198-c (1.63e-2) 3.0788-c (1.71e-3) NaN (0.00%) 3.0812e-1 (2.15e-3) 3.0937c-1 (9.40e-3) NaN (0.00%) 3.0812e-1 (2.15e-3) 3.0937c-1 (9.40e-3) NaN (0.00%) 3.0812e-1 (2.15e-3) 3.0937c-1 (3.40e-3) NaN (0.00%) 3.0812e-1 (2.15e-3) 3.0937c-1 (3.40e-3) NaN (0.00%) 3.0812e-1 (2.15e-3) 3.0505c-1 (2.42e-2) 1.1973e-0 (1.61e-1) 1.2488e-1 (2.5e-3) 3.0505c-1 (2.42e-2) 1.1973e-0 (1.61e-1) 1.2488e-1 (3.9e-2) (2.26e-3) (3.6505c-1 (3.9e-2) (2.256e-0) (4.61e-3) 1.797e-1 (1.61e-1) 1.2488e-1 (3.9e-2) (2.26e-3) (3.6505c-1 (3.9e-2) (2.256e-0) (4.61e-3) (3.7495c-1 (3.9e-2) (2.256e-0) (4.61e-3) (4.20e-1) (2.256e-0) (4.61e-3) (4.20e-1) (4.20e-1) (4.25e-1) (4.20e-1) (4.20			,	,				(,	
1000 3.5158e-1 (5.38e-3) 3.1329e-1 (3.61e-3) Nan (0.00%) 3.6874e-1 (2.12e-2) 3.1147e-1 (4.88e-3) 3.1845e-1 (6.15e-3) 8.2016e-2 (2.71e-2) 1010 3.6509e-1 (1.34e-2) 8.7818e-1 (4.25e-1) 9.9926e-1 (7.21e-1) 1.2172e-0 (1.97e-3) 3.6306e-1 (1.99e-2) 1.2256e-0 (4.61e-3) 1.7798e-1 (7.95e-2) 1010 3.7496e-1 (1.79e-2) + 1.2258e-0 (1.91e-3) 1.9444e-0 (7.33e-1) 1.2186e-0 (1.04e-3) 3.7038e-1 (1.37e-2) 1.2252e-0 (3.76e-3) 3.8259e-1 (3.45e-1) 1010 3.7496e-1 (1.70e-2) + 1.2258e-0 (1.25e-3) 1.9448e-0 (7.73e-1) 1.2193e-0 (9.94e-4) 3.7038e-1 (9.84e-3) 1.2274e-0 (3.26e-3) 9.8938e-1 (4.20e-1) 1010 4.2154e-1 (3.16e-2) 7.7986e-1 (4.77e-1) 1.74758e-1 (4.5e-1) 1.3446e-0 (1.05e-3) 4.3176e-1 (3.85e-2) 1.34976e-0 (1.46e-3) 1.2394e-0 (1.63e-3) 1010 4.2154e-1 (3.56e-2) 9.5990e-1 (4.49e-1) 1.0512e-0 (4.67e-1) 1.3476e-0 (9.92e-4) 4.3157e-1 (3.65e-2) 1.34976e-0 (1.63e-3) 2.2946e-1 (8.05e-2) 1010 4.2154e-1 (3.56e-2) 1.43916e-0 (1.2e-4) 1.2974e-0 (5.06e-1) 1.3476e-0 (9.92e-4) 4.3181e-1 (2.36e-2) 1.34916e-0 (1.63e-3) 1.2946e-0 (1.63e-3) 1010 1.4738e-1 (1.58e-2) 1.4688e-1 (1.58e-2) 1.4788e-1 (1.58e-2)	LIRCMOP4				, ,	` ,	` '	` ,	
LIRCMOPS 100 3,6569e-1 (3,15e-2) 8,1975e-1 (4,35e-1) 6,276e-1 (4,79e-1) 1,2184e-0 (2,55e-3) 3,6505e-1 (2,42e-2) 1,1973e-0 (1,61e-1) 1,2488e-1 (3,96e-2)			, ,	, ,	` '	, ,	` '	` '	
LIRCMOPS 200 3,2356c1 (1.194c2) - 8,2388c1 (4.23c1) 9,992cc1 (7.21c1) 1.2172c40 (1.97c3) - 3,6305c1 (1.199c2) 1.2255c40 (4.61c3) - 1.7798c1 (7.96c2)					· /				
LIRCMOP 500 3,7246c-1 (1.79c.2) + 1.2236c-0 (1.91c.3) - 1.9444c-0 (7.33c.1) - 1.2186c-0 (1.04c.3) - 3.7403c-1 (1.37c.2) + 1.2252c-0 (3.07c.3) - 3.8259c-1 (4.28c.1)					, ,	, ,	` '	,	
LIRCMOPP LIRCMO	LIRCMOP5								
LIRCMOP6 LIRCMOP6 LIRCMOP6 LIRCMOP6 LIRCMOP6 LIRCMOP6 LIRCMOP6 LIRCMOP6 LIRCMOP7 LIR									
LIRCMOPH 200 42739e-1 (286e-2) - 9.5990e-1 (4.49e-1) - 1.0512e-0 (4.67e-1) - 1.3475e-0 (9.39e-4) - 4.3135e-1 (3.04e-2) - 1.3496e-0 (1.31e-3) - 2.25464e-1 (8.08e-2) - 1.000 (4.3440e-1 (1.28e-2) - 1.3450e-0 (1.22e-4) - 1.3491e-0 (1.55e-3) - 1.3475e-0 (6.36e-2) - 4.3489e-1 (1.74e-2) + 1.3488e-0 (1.52e-3) - 7.4592e-1 (4.78e-1) - 1000 (4.3440e-1 (1.91e-2) + 1.3450e+0 (1.22e-4) - 1.3475e-0 (6.56e-4) - 4.3489e-1 (1.74e-2) + 1.3488e-0 (1.52e-3) - 1.0514e-0 (4.66e-1) - 1.0614e-0 (4.66e-1									
Sou 4.2944e1 (2.3842) + 1.345(e+0) (1.22e4) 1.439(e+0) (5.05e+1) 1.3475(e+0) (6.92e4) 4.3438(e+1) (1.78e-2) 7.4292e1 (4.78e+1)			, ,	, ,	, ,	, ,	` '	, ,	
1000 4,3440c-1 (1,91e-2) + 1,3451e+0 (1,12e-4) - 1,2979e+0 (5,06e-1) - 1,3470e+0 (5,56e-4) - 4,3489e-1 (1,74e-2) + 1,3488e+0 (1,52e-3) - 1,0514e+0 (4,66e-1)	LIRCMOP6								
LIRCMOPP 200 1.5344e-1 (1.56e-2)									
1.00	-	100	1.4738e-1 (1.82e-2) -	1.4684e-1 (1.85e-2) -	7.3518e-1 (5.77e-1) -	1.6854e+0 (1.41e-3) -	1.4576e-1 (1.25e-2) -	9.8008e-1 (7.70e-1) -	1.2624e-1 (4.81e-1)
1.534 1e-1 (7.88e-3) 1.7125e-1 (6.40e-3) 1.747 1e-1 (5.29e-1) 1.6844e+0 (8.34e-4) 1.5248e+1 (1.31e-2) 1.6382e+0 (2.71e-3) 1.186e+1 (3.05e-2)	I IDCMOD7	200	1.5314e-1 (1.56e-2) -	1.6055e-1 (1.17e-2) -	1.0512e+0 (5.83e-1) -	1.6844e+0 (1.00e-3) -	1.5013e-1 (1.09e-2) -	1.4386e+0 (5.67e-1) -	1.4850e-1 (4.42e-1)
LIRCMOP1 LIR	LIRCMOP/	500	1.5341e-1 (7.68e-3) +	1.6928e-1 (7.72e-3) +	1.4771e+0 (5.29e-1) -	1.6844e+0 (8.54e-4) -	1.5248e-1 (1.01e-2) +	1.6382e+0 (2.75e-1) -	1.9604e-1 (4.84e-1)
LIRCMOP16 20 2.4689e-1 (1.44e-2) - 2.6102e-1 (1.48e-2) - 1.0901e+0 (5.46e-1) - 1.6843e+0 (9.24e-4) - 2.5237e-1 (1.28e-2) - 1.6876e+0 (2.46e-3) - 8.7930e-2 (4.92e-2)		1000	1.5541e-1 (7.28e-3) -	1.7125e-1 (6.40e-3) -	1.9458e+0 (3.27e-1) -	1.6834e+0 (7.60e-4) -	1.5213e-1 (5.72e-3) -	1.6876e+0 (2.71e-3) -	1.1866e-1 (3.05e-2)
Solution		100	2.5314e-1 (2.30e-2) -	2.5457e-1 (3.30e-2) -	9.5931e-1 (5.52e-1) -	1.6849e+0 (1.37e-3) -	2.4428e-1 (1.82e-2) -	1.4066e+0 (5.74e-1) -	7.2234e-2 (8.60e-2)
1.000 2.562/e-1 (1.08e-2) - 2./32/e-1 (1.11e-2) - 1./6/4e+0 (2.43e-1) - 1.6840e+0 (8.76e-4) - 2.5398e-1 (7.6e-3) - 1.68/3e+0 (2.6f-6) - 1.2398e-1 (7.58e-3) - 2.8038e-1 (7.58e-3) - 2.202e-0 (6.91e-1) - 1.010133e-1 (1.35e-1) - 1.0410e+0 (1.32e-1) - 4.8870e-1 (9.76e-2) - 4.8488e-1 (4.76e-2) - 1.2831e+0 (6.04e-3) - 1.2671e+0 (6.81e-2) - 1.0471e-1 (2.91e-2) - 1.0293e+0 (7.13e-4) - 1.2891e+0 (1.56e-3) - 1.2831e+0 (6.04e-3) - 1.2671e+0 (6.81e-2) - 1.341e-1 (4.32e-2) - 1.0293e+0 (7.13e-4) - 1.2891e+0 (1.56e-3) - 1.2831e+0 (6.04e-3) - 1.2671e+0 (6.81e-2) - 1.341e-1 (4.32e-2) - 1.000	I IRCMOPS								8.7930e-2 (4.92e-2)
LIRCMOP9 100 1.733e+0 (1.35e-1) - 1.0410e+0 (1.32e-1) - 4.3870e-1 (9.33e-2) - 5.2134e-1 (9.36e-2) - 1.0449e+0 (2.53e-1) - 9.9688e-1 (3.10e-1) - 1.047re-1 (2.91e-2) - 200 1.2838e+0 (1.37e-2) - 1.1947e+0 (1.33e-1) - 4.6378e-1 (9.76e-2) - 4.8488e-1 (4.76e-2) - 1.2831e+0 (6.04e-3) - 1.2985e+0 (2.46e-3) - 2.6482e-1 (1.05e-1) 1000 1.2940e+0 (6.52e-4) - 1.2901e+0 (1.50e-3) - 5.6564e-1 (1.78e-1) - 7.6122e-1 (3.36e-1) - 1.2914e+0 (4.36-3) - 1.2985e+0 (2.46e-3) - 2.6483e-1 (1.05e-1) 1000 1.2940e+0 (6.52e-4) - 1.2901e+0 (1.81e-3) - 6.6682e-1 (2.51e-1) - 1.2014e+0 (2.37e-1) - 1.2933e+0 (3.22e-3) - 1.2394e+0 (6.62e-2) - 4.4066e-1 (1.90e-1) 100 2.8239e-1 (1.27e-2) - 4.1256e-1 (1.29e-1) - 3.4595e-1 (1.37e-1) - 6.3816e-1 (9.65e-2) - 4.1866e-1 (1.78e-1) - 8.1466e-1 (2.24e-1) - 2.9075e-2 (1.93e-2) 100 4.5481e-1 (1.51e-1) - 4.7624e-1 (1.50e-1) - 4.7875e-1 (1.23e-1) - 6.3914e-1 (4.67e-1) - 6.4776e-1 (2.73e-1) - 8.0465e-1 (1.90e-1) - 5.9388e-2 (2.90e-2) 100 6.0599e-1 (1.98e-1) - 7.4029e-1 (1.50e-1) - 6.4407e-1 (2.46e-1) - 1.0787e+0 (2.40e-2) - 9.6938e-1 (1.71e-1) - 7.9970e-1 (1.44e-1) - 1.7475e-1 (9.38e-2) 100 6.0599e-1 (1.98e-1) - 7.4029e-1 (1.52e-1) - 6.2525e-1 (1.07e-1) - 1.0698e+0 (3.46e-2) - 9.6336e-1 (1.66e-1) - 7.6487e-1 (9.94e-2) - 3.5842e-1 (1.61e-1) 100 1.5742e-1 (7.78e-2) - 4.9603e-1 (3.24e-1) - 4.4056e-1 (1.40e-1) - 5.3729e-1 (1.22e-1) - 1.6132e-1 (1.06e-1) - 1.0297e+0 (1.06e-1) - 6.0970e-3 (2.36e-3) 100 6.8826e-1 (2.17e-1) - 8.3455e-1 (2.80e-1) - 5.2153e-1 (1.94e-1) - 1.0947e+0 (4.93e-3) - 9.2085e-1 (2.70e-1) - 1.1472e+0 (8.06e-2) - 1.1437e-2 (6.44e-3) 100 6.8826e-1 (1.11e-1) - 7.3862e-1 (6.72e-2) - 4.5012e-1 (1.66e-1) - 2.6524e-1 (2.31e-2) - 8.5684e-1 (1.08e-1) - 1.1472e+0 (8.06e-2) - 1.4396e-1 (2.70e-1) 100 8.8846e-1 (1.11e-1) - 7.3862e-1 (6.72e-2) - 4.5012e-1 (1.66e-1) - 2.6524e-1 (2.31e-2) - 8.5684e-1 (1.08e-1) - 7.4566e-1 (2.70e-1) - 4.396e-1 (2.70e-1) 100 9.5796e-2 (9.70e-4) = 1.3147e+0 (1.97e-3) - 9.216e-2 (1.10e-3) - 1.3015e+0 (1.10e-4) - 9.5032e-1 (1.04e-3) - 9.5096e-1 (1.09e-1) - 6.0073e-2 (1.8e-3) 100 9.338	LIKCMOI								
LIRCMOP10 200 1.2838e+0 (1.37e-2) - 1.1947e+0 (1.33e-1) - 4.6378e-1 (9.76e-2) - 4.8488e-1 (4.76e-2) - 1.2831e+0 (6.04e-3) - 1.2671e+0 (6.81e-2) - 1.3141e-1 (4.32e-2) (500 1.2938e+0 (7.13e-4) - 1.2891e+0 (1.56e-3) - 5.6564e-1 (1.78e-1) - 7.612e-1 (3.26e-1) - 1.2914e+0 (4.40e-3) - 1.2985e+0 (2.46e-3) - 2.6483e-1 (1.05e-1) (1.000 1.2940e+0 (6.52e-4) - 1.2091e+0 (1.81e-3) - 6.6682e-1 (2.51e-1) - 1.2014e+0 (2.37e-1) - 1.2933e+0 (3.22e-3) - 1.2394e+0 (6.62e-2) - 4.4066e-1 (1.05e-1) (1.000 1.2940e+0 (6.52e-4) - 1.2091e+0 (1.81e-3) - 6.6882e-1 (2.51e-1) - 1.2014e+0 (2.37e-1) - 8.1466e-1 (1.78e-1) - 8.1466e-1 (2.24e-1) - 2.9075e-2 (1.93e-2) (1.93e									
LIRCMOP10 500 1.2938e+0 (7.13e-4) 1.2891e+0 (1.56e-3) 5.6564e-1 (1.78e-1) 7.6122e-1 (3.36e-1) 1.2914e+0 (4.40e-3) 1.2935e+0 (2.46e-3) 2.6483e-1 (1.05e-1) 1.000 1.2940e+0 (6.52e-4) 1.2901e+0 (1.81e-3) 6.6682e-1 (2.51e-1) 1.2014e+0 (2.37e-1) 1.2933e+0 (3.22e-3) 1.2394e+0 (6.62e-2) 4.4066e-1 (1.90e-1) 4.4066e-1 (1.90e-1) 1.2933e+0 (3.22e-3) 1.2394e+0 (6.62e-2) 4.4066e-1 (1.90e-1) 1.2933e+0 (3.22e-1) 1.2933e+0 (3.22e-3) 1.2394e+0 (6.62e-2) 4.4066e-1 (1.90e-1) 1.2936e-1 (1.60e-1) 1.2936e-1 (1.40e-1) 1.2936e-1 (1.40e									
1000 1.2948e+0 (6.52e-4) -1.2991e+0 (1.15e-3) - 5.6504e-1 (1.78e-1) - 7.6122e-1 (3.56e-1) - 1.2914e+0 (3.22e-3) - 1.2994e+0 (6.62e-2) - 4.4066e-1 (1.99e-1)	LIRCMOP9								
LIRCMOP10									
LIRCMOP10 200 4.5481e-1 (1.51e-1) - 4.7624e-1 (1.61e-1) - 4.7875e-1 (1.23e-1) - 9.0466e-1 (1.87e-1) - 6.4776e-1 (2.73e-1) - 8.0465e-1 (1.90e-1) - 5.9388e-2 (2.90e-2) - 500 5.1722e-1 (1.84e-1) - 5.6207e-1 (1.50e-1) - 6.4407e-1 (2.46e-1) - 1.0787e+0 (2.40e-2) - 9.6993e-1 (1.71e-1) - 7.9970e-1 (1.44e-1) - 1.7475e-1 (9.38e-2) - 100 1.5742e-1 (7.78e-2) - 4.9603e-1 (3.24e-1) - 4.4552e-1 (1.07e-1) - 1.0698e+0 (3.46e-2) - 9.6363e-1 (1.66e-1) - 7.6487e-1 (9.94e-2) - 3.5842e-1 (1.61e-1) - 1.0698e+0 (3.46e-2) - 9.6363e-1 (1.66e-1) - 1.0297e+0 (1.06e-1) -									
Table Control Substitution S			, ,	, ,	, ,	, ,	` '	` '	` ′
1000 6.0599e-1 (1.98e-1) - 7.4029e-1 (1.52e-1) - 6.2525e-1 (1.07e-1) - 1.0698e+0 (3.46e-2) - 9.6363e-1 (1.66e-1) - 7.6487e-1 (9.94e-2) - 3.5842e-1 (1.61e-1)	LIRCMOP10								
LIRCMOP11 100 1.5742e-1 (7.78e-2) - 4.9603e-1 (3.24e-1) - 4.4562e-1 (1.40e-1) - 5.3729e-1 (1.22e-1) - 1.6132e-1 (1.06e-1) - 1.0297e+0 (1.06e-1) - 6.0970e-3 (2.36e-3)			, ,	, ,	, ,	, ,	` '	` '	
LIRCMOP11 200 3.0988e-1 (2.60e-1) - 4.0089e-1 (2.69e-1) - 4.0096e-1 (1.11e-1) - 6.9534e-1 (2.32e-1) - 3.8169e-1 (3.23e-1) - 1.1080e+0 (9.30e-2) - 1.1437e-2 (6.44e-3)									
1.4396-1 (2.51e-1) 1.000			, ,	, ,	, ,	, ,	` '	, ,	
1000 6.8826e-1 (2.17e-1) - 8.3455e-1 (2.80e-1) - 5.9107e-1 (2.79e-1) - 1.1415e+0 (9.01e-2) - 9.9043e-1 (2.02e-1) - 1.1753e+0 (1.03e-1) - 1.6695e-1 (1.88e-1)	LIRCMOP11								
LIRCMOP12 LIRCMOP13 LIRCMOP14 LIRCMOP15 LIRCMOP15 LIRCMOP16 LIRCMOP16 LIRCMOP17 LIRCMOP17 LIRCMOP17 LIRCMOP17 LIRCMOP18 LIRCMO			, ,	, ,	, ,	, ,	` '	, ,	
LIRCMOP12 200 9.5194e-1 (4.53e-3) - 8.2000e-1 (9.07e-2) - 4.6057e-1 (1.69e-1) - 2.7412e-1 (3.61e-2) - 9.4034e-1 (5.85e-3) - 9.5095e-1 (1.09e-1) - 6.0073e-2 (1.42e-1) 500 9.5515e-1 (4.67e-3) - 9.4921e-1 (1.03e-3) - 5.2735e-1 (2.16e-1) - 4.5207e-1 (3.06e-1) - 9.5135e-1 (1.91e-3) - 9.7364e-1 (1.95e-2) - 1.1493e-1 (1.96e-1) 1000 9.5586e-1 (2.04e-3) - 9.5052e-1 (8.20e-4) - 6.1676e-1 (2.40e-1) - 7.6967e-1 (3.04e-1) - 9.5193e-1 (1.04e-3) - 9.8014e-1 (2.00e-2) - 2.0543e-1 (1.40e-1) 100 9.3070e-2 (9.70e-4) = 1.3147e+0 (1.79e-3) - 9.2176e-2 (1.01e-3) + 1.3015e+0 (1.02e-4) - 9.3084e-2 (1.20e-3) = 4.9351e-1 (5.68e-1) - 9.3096e-2 (1.16e-3) 100 9.3384e-2 (9.21e-4) = 1.3155e+0 (1.70e-3) - 9.2124e-2 (1.05e-3) + 1.3013e+0 (1.18e-4) - 9.3064e-2 (1.02e-3) = 4.9141e-1 (5.72e-1) - 9.3509e-2 (9.58e-4) 100 9.4163e-2 (1.04e-3) = 1.3152e+0 (1.85e-3) - 9.1948e-2 (9.27e-4) + 1.3012e+0 (2.19e-5) - 9.2631e-2 (9.30e-4) + 1.5361e-1 (2.78e-1) - 9.3829e-2 (9.69e-4) 100 9.5750e-2 (1.08e-3) - 1.2720e+0 (1.53e-3) - 1.4312e-1 (1.05e-2) - 1.25776e+0 (1.17e-4) - 9.6263e-2 (7.72e-4) - 5.2538e-1 (5.66e-1) - 9.5092e-2 (1.88e-3) 100 9.5634e-2 (1.02e-3) - 1.2720e+0 (1.74e-3) - 1.5082e-1 (1.25e-2) - 1.2575e+0 (1.17e-4) - 9.5811e-2 (1.00e-3) - 1.0795e-1 (1.50e-2) - 9.5047e-2 (1.20e-3) 100 9.5419e-2 (8.60e-4) - 1.2711e+0 (1.88e-3) - 1.4551e-1 (1.96e-2) - 1.2573e+0 (2.35e-5) - 9.5667e-2 (7.84e-4) - 1.0006e-1 (1.33e-3) - 9.4685e-2 (9.05e-4)									
1.493e-1 (1.96e-1) 1.493e-									
100 9.5586e-1 (2.04e-3) - 9.5052e-1 (8.20e-4) - 6.1676e-1 (2.40e-1) - 7.6967e-1 (3.04e-1) - 9.5193e-1 (1.04e-3) - 9.8014e-1 (2.00e-2) - 2.0543e-1 (1.40e-1)	LIRCMOP12								
LIRCMOP13 100 9.3070e-2 (9.70e-4) = 1.3147e+0 (1.97e-3) - 9.2176e-2 (1.01e-3) + 1.3015e+0 (1.02e-4) - 9.3084e-2 (1.20e-3) = 4.9351e-1 (5.68e-1) - 9.3096e-2 (1.16e-3) 200 9.3384e-2 (9.21e-4) = 1.3156e+0 (1.70e-3) - 9.2024e-2 (1.05e-3) + 1.3013e+0 (1.18e-4) - 9.3064e-2 (1.02e-3) = 4.9141e-1 (5.72e-1) - 9.3164e-2 (8.95e-4) 500 9.3519e-2 (1.18e-3) = 1.3149e+0 (1.71e-3) - 9.1843e-2 (9.68e-4) + 1.3012e+0 (3.69e-5) - 9.3232e-2 (9.77e-4) = 1.9442e-1 (3.15e-1) - 9.3509e-2 (9.75e-4) 1000 9.4163e-2 (1.04e-3) = 1.3152e+0 (1.85e-3) - 9.1948e-2 (9.27e-4) + 1.3012e+0 (2.19e-5) - 9.2631e-2 (9.30e-4) + 1.5361e-1 (2.78e-1) - 9.3829e-2 (9.69e-4) 100 9.5799e-2 (9.26e-4) - 1.2719e+0 (1.94e-3) - 1.3214e-1 (1.05e-2) - 1.2577e+0 (1.69e-4) - 9.6263e-2 (7.27e-4) - 5.2538e-1 (5.66e-1) - 9.5092e-2 (1.88e-3) 500 9.5634e-2 (1.02e-3) - 1.2720e+0 (1.74e-3) - 1.5362e-1 (1.88e-2) - 1.2573e+0 (5.96e-5) - 9.6035e-2 (1.00e-3) - 1.0795e-1 (1.50e-2) - 9.4729e-2 (7.73e-4) 1000 9.5419e-2 (8.60e-4) - 1.2711e+0 (1.88e-3) - 1.4551e-1 (1.96e-2) - 1.2573e+0 (2.35e-5) - 9.5667e-2 (7.84e-4) - 1.0006e-1 (1.33e-3) - 9.4685e-2 (9.05e-4)									
LIRCMOP13 200 9.3384e-2 (9.21e-4) = 1.3156e+0 (1.70e-3) - 9.2024e-2 (1.05e-3) + 1.3013e+0 (1.18e-4) - 9.3064e-2 (1.02e-3) = 4.9141e-1 (5.72e-1) - 9.3164e-2 (8.95e-4) (1.00e-3) = 4.9141e-1 (5.72e-1) - 9.3164e-2 (8.95e-4) (1.00e-3) = 1.3159e-2 (1.18e-3) = 1.3149e+0 (1.71e-3) - 9.1843e-2 (9.68e-4) + 1.3012e+0 (3.69e-5) - 9.3232e-2 (9.77e-4) = 1.9442e-1 (3.15e-1) - 9.3509e-2 (9.75e-4) (1.00e-3) = 1.3152e+0 (1.85e-3) - 9.1948e-2 (9.27e-4) + 1.3012e+0 (2.19e-5) - 9.2631e-2 (9.30e-4) + 1.5361e-1 (2.78e-1) - 9.3829e-2 (9.69e-4) (1.00e-3) - 9.5799e-2 (9.26e-4) - 1.2719e+0 (1.94e-3) - 1.3214e-1 (1.05e-2) - 1.2577e+0 (1.69e-4) - 9.6263e-2 (7.27e-4) - 5.2538e-1 (5.66e-1) - 9.5092e-2 (1.48e-3) (1.98e-2) - 1.2573e+0 (1.78e-3) - 1.2720e+0 (1.74e-3) - 1.	-			. ,		. ,	, ,	· /	
Substituting Subs	1 TD 60 1001								
1000 9.4163e-2 (1.04e-3) = 1.3152e+0 (1.85e-3) - 9.1948e-2 (9.27e-4) + 1.3012e+0 (2.19e-5) - 9.2631e-2 (9.30e-4) + 1.5361e-1 (2.78e-1) - 9.3829e-2 (9.69e-4) 100	LIRCMOP13								
LIRCMOP14 100 9.5799e-2 (9.26e-4) - 1.2719e+0 (1.94e-3) - 1.3214e-1 (1.05e-2) - 1.2577e+0 (1.69e-4) - 9.6263e-2 (7.27e-4) - 5.2538e-1 (5.66e-1) - 9.5092e-2 (1.48e-3) 200 9.5750e-2 (1.08e-3) - 1.2720e+0 (1.53e-3) - 1.4312e-1 (1.25e-2) - 1.2575e+0 (1.17e-4) - 9.5811e-2 (1.00e-3) - 4.3785e-1 (5.36e-1) - 9.5047e-2 (1.20e-3) 500 9.5634e-2 (1.02e-3) - 1.2720e+0 (1.74e-3) - 1.5082e-1 (1.88e-2) - 1.2573e+0 (5.96e-5) - 9.6035e-2 (1.00e-3) - 1.0795e-1 (1.50e-2) - 9.4729e-2 (7.73e-4) 100 9.5419e-2 (8.60e-4) - 1.2711e+0 (1.88e-3) - 1.4551e-1 (1.96e-2) - 1.2573e+0 (2.35e-5) - 9.5667e-2 (7.84e-4) - 1.0006e-1 (1.33e-3) - 9.4685e-2 (9.05e-4)									
LIRCMOP14 200 9.5750e-2 (1.08e-3) - 1.2720e+0 (1.53e-3) - 1.4312e-1 (1.25e-2) - 1.2575e+0 (1.17e-4) - 9.5811e-2 (1.00e-3) - 4.3785e-1 (5.36e-1) - 9.5047e-2 (1.20e-3) 9.5634e-2 (1.02e-3) - 1.2720e+0 (1.74e-3) - 1.5082e-1 (1.88e-2) - 1.2573e+0 (5.96e-5) - 9.6035e-2 (1.00e-3) - 1.0795e-1 (1.50e-2) - 9.4729e-2 (7.73e-4) 9.4685e-2 (9.05e-4) 9.4685e-2 (9.05e-4)					. ,		<u> </u>		
500 9.5634e-2 (1.02e-3) - 1.2720e+0 (1.74e-3) - 1.5082e-1 (1.88e-2) - 1.2573e+0 (5.96e-5) - 9.6035e-2 (1.00e-3) - 1.0795e-1 (1.50e-2) - 9.4729e-2 (7.73e-4) 1000 9.5419e-2 (8.60e-4) - 1.2711e+0 (1.88e-3) - 1.4551e-1 (1.96e-2) - 1.2573e+0 (2.35e-5) - 9.5667e-2 (7.84e-4) - 1.0006e-1 (1.33e-3) - 9.4685e-2 (9.05e-4)	I IDCMOD14	200							
	LIKCMOP14	500	9.5634e-2 (1.02e-3) -	1.2720e+0 (1.74e-3) -	1.5082e-1 (1.88e-2) -	1.2573e+0 (5.96e-5) -	9.6035e-2 (1.00e-3) -	1.0795e-1 (1.50e-2) -	
+/-/= 5/46/5 1/54/1 4/52/0 6/49/1 6/46/4 1/52/3		1000							9.4685e-2 (9.05e-4)
	+/-/=		5/46/5	1/54/1	4/52/0	6/49/1	6/46/4	1/52/3	

 $TABLE \ S-V \\ THE \ HV \ RESULTS \ OBTAINED \ BY \ TLCMEA \ AND \ SIX \ COMPARED \ ALGORITHMS \ ON \ LIRCMOP \ TEST \ SUITE.$

Problem	D	ССМО	MTCMO	C_LMEA	C_LMOCSO	DPSEA	POCEA	TLCMEA
	100	, ,	1.2794e-1 (3.85e-3) -	, ,		· · · · · · · · · · · · · · · · · · ·	2.0879e-1 (1.16e-2) +	, ,
LIRCMOP1	200	(1.1681e-1 (2.99e-3) -	NaN (0.00%) -	2.3100e-1 (7.61e-4) +		2.0643e-1 (1.51e-2) +	
	500		1.0802e-1 (1.82e-3) -	NaN (0.00%) -	2.2709e-1 (1.08e-2) +		1.5264e-1 (3.15e-2) -	
		1.0149e-1 (2.12e-3) -	. ,	NaN (0.00%) -		. ,	9.6458e-2 (2.80e-3) -	. ,
	100		2.4714e-1 (4.84e-3) -	2.0950e-1 (5.14e-3) -		2.2659e-1 (9.44e-3) -		
LIRCMOP2	200	2.2511e-1 (9.26e-3) -	, ,	NaN (0.00%) -		· · · · · · · · · · · · · · · · · · ·	3.3411e-1 (8.51e-3) -	, ,
	500	2.1679e-1 (5.20e-3) -	, ,	NaN (0.00%) -			3.2174e-1 (2.45e-2) =	
		2.1651e-1 (3.55e-3) -	` /	NaN (0.00%) -	2.2201e-1 (4.93e-3) -	` ,	2.1235e-1 (3.66e-3) -	3.1380e-1 (1.58e-2)
	100	, ,	1.1837e-1 (7.12e-3) -	, ,	1.4465e-1 (4.50e-2) -	` '	NaN (96.67%) -	1.9898e-1 (3.53e-3)
LIRCMOP3	200 500	9.7855e-2 (5.59e-3) -	9.6730e-2 (2.13e-3) - 9.6730e-2 (2.24e-3) -	NaN (0.00%) - NaN (0.00%) -	9.5297e-2 (7.40e-4) - 9.4837e-2 (9.25e-4) -	` '	NaN (96.67%) - NaN (96.67%) -	1.9358e-1 (4.97e-3) 1.8547e-1 (6.50e-3)
		9.3056e-2 (3.28e-3) -		NaN (0.00%) -		9.4828e-2 (2.20e-3) -		1.7196e-1 (1.28e-2)
	1000		2.1639e-1 (8.46e-3) -	1.8105e-1 (3.95e-3) -		1.8830e-1 (9.02e-3) -	NaN (93.33%) -	3.0767e-1 (3.24e-3)
	200	1.8778e-1 (9.64e-3) -		NaN (0.00%) -	1.8117e-1 (1.12e-3) -	(,	NaN (96.67%) -	2.9983e-1 (7.42e-3)
LIRCMOP4	500	1.8397e-1 (7.72e-3) -	, ,	NaN (0.00%) -	, ,	1.8440e-1 (5.40e-3) -	NaN (86.67%) -	2.8471e-1 (1.68e-2)
		1.8144e-1 (1.74e-3) -		NaN (0.00%) -	` /	, ,	, ,	` '
	1000		6.1797e-2 (6.75e-2) -	1.1443e-1 (8.23e-2) -	0.0000e+0 (0.00e+0) -			
	200		5.2137e-2 (6.53e-2) -	, ,	0.0000c+0 (0.00c+0) -	` '	, ,	` '
LIRCMOP5	500				0.0000e+0 (0.00e+0) -			
		, ,	, ,	, ,	0.0000e+0 (0.00e+0) -	. ,		. ,
	100	9.1261e-2 (1.65e-3) -			0.0000e+0 (0.00e+0) -			
	200		3.8562e-2 (4.49e-2) -	, ,	0.0000e+0 (0.00e+0) -	` '	, ,	` '
LIRCMOP6					0.0000e+0 (0.00e+0) -			
					0.0000e+0 (0.00e+0) -			
-	100	2.4070e-1 (5.08e-3) -			0.0000e+0 (0.00e+0) -			
I IDCMODZ	200	2.3904e-1 (4.36e-3) -	2.3739e-1 (3.32e-3) -	8.4208e-2 (7.34e-2) -	0.0000e+0 (0.00e+0) -	2.3980e-1 (3.35e-3) -	3.7821e-2 (8.61e-2) -	2.5878e-1 (5.59e-2)
LIRCMOP7	500	2.3921e-1 (2.19e-3) -	2.3505e-1 (2.20e-3) -	3.5301e-2 (6.11e-2) -	0.0000e+0 (0.00e+0) -	2.3890e-1 (2.76e-3) -	7.6825e-3 (4.21e-2) -	2.4682e-1 (5.42e-2)
	1000	2.3858e-1 (2.07e-3) -	2.3453e-1 (1.89e-3) -	0.0000e+0 (0.00e+0) -	0.0000e+0 (0.00e+0) -	2.3912e-1 (1.26e-3) -	0.0000e+0 (0.00e+0) -	2.5322e-1 (9.49e-3)
	100	2.1979e-1 (8.88e-4) -	2.2106e-1 (3.04e-3) -	1.0169e-1 (7.66e-2) -	0.0000e+0 (0.00e+0) -	2.2121e-1 (1.64e-3) -	4.3126e-2 (8.77e-2) -	2.6791e-1 (2.14e-2)
LIRCMOP8	200	2.1949e-1 (2.89e-4) -	2.1912e-1 (9.82e-4) -	8.3803e-2 (7.26e-2) -	0.0000e+0 (0.00e+0) -	2.1923e-1 (3.86e-4) -	0.0000e+0 (0.00e+0) -	2.6357e-1 (1.07e-2)
LIKCMOI					0.0000e+0 (0.00e+0) -			
					0.0000e+0 (0.00e+0) -			
	100	, ,	1.9590e-1 (3.75e-2) -	4.1199e-1 (4.55e-2) -			2.0212e-1 (7.96e-2) -	
LIRCMOP9	200		1.7591e-1 (8.36e-3) -				1.5313e-1 (2.26e-3) -	
Linconory			1.6203e-1 (1.55e-3) -		2.6743e-1 (1.03e-1) -			4.6309e-1 (4.23e-2)
					1.6951e-1 (5.87e-2) -			
	100	, ,	4.7049e-1 (1.01e-1) -	, ,	, ,	` '	1.8677e-1 (1.18e-1) -	6.8969e-1 (7.72e-3)
LIRCMOP10	200		4.1954e-1 (1.37e-1) -		1.3491e-1 (4.92e-2) -			6.7170e-1 (1.31e-2)
		, ,	3.4525e-1 (1.18e-1) -	3.2644e-1 (1.28e-1) -	, ,	` '	, ,	5.9973e-1 (6.09e-2)
			2.4177e-1 (1.24e-1) -				2.2916e-1 (4.93e-2) -	
	100	, ,	4.0932e-1 (1.61e-1) -	4.1722e-1 (6.51e-2) -	, ,	` '	1.7273e-1 (7.54e-2) -	6.9103e-1 (1.60e-3)
LIRCMOP11	200 500		4.5306e-1 (1.39e-1) - 2.3546e-1 (1.67e-1) -	4.5053e-1 (4.68e-2) - 3.7770e-1 (8.54e-2) -	2.4498e-1 (7.90e-2) - 1.2585e-1 (2.03e-3) -		1.8385e-1 (8.81e-2) -	6.8773e-1 (4.55e-3)
		, ,	2.2093e-1 (1.51e-1) -	, ,	1.2585e-1 (2.05e-5) - 1.1519e-1 (1.10e-2) -	` '	, ,	6.3315e-1 (9.05e-2) 6.2281e-1 (6.78e-2)
	1000	3.8220e-1 (1.66e-2) -		3.8749e-1 (7.85e-2) -			3.8633e-1 (2.88e-2) -	6.0622e-1 (5.14e-2)
	200	, ,	3.7483e-1 (3.05e-3) -	3.7568e-1 (8.21e-2) -			3.6677e-1 (9.85e-3) -	5.9937e-1 (3.82e-2)
LIRCMOP12	500		3.6933e-1 (8.29e-4) -	3.7522e-1 (9.72e-2) -			3.6022e-1 (4.89e-3) -	
			3.6826e-1 (6.79e-4) -	3.3244e-1 (9.75e-2) -			3.5637e-1 (6.14e-3) -	
	100	. ,	1.3419e-4 (1.28e-4) -		4.5389e-4 (3.71e-7) -		· /	
			1.7608e-4 (1.35e-4) -	5.6062e-1 (1.10e-3) +			3.6275e-1 (2.42e-1) -	
LIRCMOP13		5.5406e-1 (1.19e-3) =	, ,	5.6085e-1 (9.83e-4) +	` '	, ,	4.9657e-1 (1.37e-1) -	, ,
			1.7362e-4 (1.17e-4) -	5.6065e-1 (9.06e-4) +			5.2853e-1 (8.61e-2) -	
		5.5439e-1 (1.47e-3) =	· /	5.3369e-1 (8.77e-3) -			3.4073e-1 (2.47e-1) -	
I IDCMOR! (200		6.6733e-4 (3.23e-4) -		1.0069e-3 (9.87e-8) -			
LIRCMOP14		, ,	4.7685e-4 (3.64e-4) -	, ,	1.0070e-3 (1.47e-8) -	` '	, ,	` '
			5.6921e-4 (2.70e-4) -		1.0070e-3 (3.69e-8) -			
+/-/=		3/50/3	0/56/0	4/51/1	6/49/1	6/49/1	2/53/1	

Fig. S-II. The population distribution of median IGD values obtained by seven algorithms on 1000-dimensional LIRCMOP4.

Fig. S-III. The ranking results of the Friedman's test for IGD values of the compared algorithms.

Fig. S-IV. The distribution of the initial population obtained by the APR method on the LIRCMOP10 problem with different k.

TABLE S-VI The IGD comparison results of fixing δ to 0.05 and taking different values of g

Problem	$g = 5$ and $\delta = 0.05$	$g = 15$ and $\delta = 0.05$	$g = 25$ and $\delta = 0.05$	$g = 35$ and $\delta = 0.05$	$g = 45$ and $\delta = 0.05$
C1_DTLZ1	3.9030e-2 (9.97e-3) -	4.4978e-2 (1.34e-2) -	2.3397e-2 (6.70e-3) =	2.1656e-2 (7.64e-4)	2.1713e-2 (2.94e-4) =
C1_DTLZ3	6.6843e+0 (3.02e+0) -	5.8452e-1 (2.02e+0) =	5.3380e-2 (5.15e-4) =	5.3401e-2 (8.39e-4)	5.3316e-2 (6.19e-4) =
C2_DTLZ2	4.2617e-2 (5.32e-4) =	4.2610e-2 (6.19e-4) =	4.2674e-2 (5.37e-4) =	4.2478e-2 (3.72e-4)	4.2419e-2 (4.63e-4) =
C3_DTLZ4	1.1927e-1 (1.36e-1) =	9.4649e-2 (1.36e-3) =	1.1957e-1 (1.36e-1) =	1.1941e-1 (1.36e-1)	9.4438e-2 (1.32e-3) =
DC1_DTLZ1	2.8315e-2 (5.50e-3) -	2.1743e-2 (5.31e-3) -	1.2144e-2 (8.65e-4) -	1.1516e-2 (1.60e-4)	1.1427e-2 (1.24e-4) +
DC1_DTLZ3	3.4710e-2 (5.63e-4) -	3.4399e-2 (5.15e-4) -	3.3903e-2 (3.71e-4) =	3.3915e-2 (4.04e-4)	3.3734e-2 (4.30e-4) =
DC2_DTLZ1	NaN (0.00%) -	NaN (16.67%) -	4.9299e-2 (5.85e-2) -	2.0216e-2 (1.84e-4)	2.0132e-2 (1.34e-4) =
DC2_DTLZ3	NaN (6.67%) -	NaN (56.67%) -	8.6997e-2 (1.30e-1) -	5.2633e-2 (3.42e-4)	5.2703e-2 (4.04e-4) =
DC3_DTLZ1	9.3322e+0 (2.46e+0) -	9.1310e-1 (6.49e-1) -	8.1438e-3 (1.43e-3) -	6.9864e-3 (1.65e-4)	6.9100e-3 (1.33e-4) +
DC3_DTLZ3	9.1881e+0 (5.39e+0) -	8.1349e-1 (8.09e-1) -	1.9984e-2 (2.40e-4) =	1.9924e-2 (2.12e-4)	2.0018e-2 (2.09e-4) =
LIRCMOP1	6.4540e-2 (1.94e-2) -	5.5233e-2 (1.42e-2) =	5.6571e-2 (1.45e-2) =	4.9450e-2 (9.58e-3)	NaN (93.33%) -
LIRCMOP2	5.0605e-2 (1.77e-2) -	3.4057e-2 (5.47e-3) -	3.5638e-2 (6.21e-3) -	3.0733e-2 (4.39e-3)	3.0361e-2 (3.88e-3) =
LIRCMOP3	5.8278e-2 (2.47e-2) -	3.9536e-2 (1.46e-2) -	2.7342e-2 (8.08e-3) =	2.4964e-2 (1.01e-2)	NaN (80.00%) -
LIRCMOP4	8.0970e-2 (3.43e-2) -	3.6695e-2 (1.31e-2) -	2.5396e-2 (7.79e-3) =	2.4573e-2 (7.63e-3)	NaN (96.67%) -
LIRCMOP5	8.5466e-1 (4.92e-1) -	3.7155e-1 (3.92e-1) -	1.5868e-1 (5.36e-2) -	1.2488e-1 (3.96e-2)	1.0956e-1 (3.30e-2) =
LIRCMOP6	9.3532e-1 (5.15e-1) -	3.3357e-1 (2.41e-1) -	1.9881e-1 (9.89e-2) -	1.2337e-1 (6.38e-2)	1.2130e-1 (6.14e-2) =
LIRCMOP7	3.0643e-1 (5.49e-1) -	5.8753e-2 (2.68e-2) +	4.1953e-2 (1.82e-2) =	1.2624e-1 (4.81e-1)	NaN (96.67%) -
LIRCMOP8	1.9889e-1 (1.07e-1) -	1.0389e-1 (4.83e-2) -	8.4752e-2 (3.83e-2) -	7.2234e-2 (8.60e-2)	NaN (96.67%) -
LIRCMOP9	4.7043e-1 (2.65e-1) -	1.4956e-1 (8.74e-2) -	1.1025e-1 (3.05e-2) =	1.0477e-1 (2.91e-2)	9.9082e-2 (2.29e-2) =
LIRCMOP10	3.0497e-1 (1.33e-1) -	8.9363e-2 (6.24e-2) -	3.3781e-2 (2.03e-2) -	2.9075e-2 (1.93e-2)	2.4595e-2 (7.60e-3) =
LIRCMOP11	1.9910e-1 (2.18e-1) -	1.9535e-2 (2.23e-2) -	8.6784e-3 (6.39e-3) =	6.0970e-3 (2.36e-3)	7.7327e-2 (2.69e-1) =
LIRCMOP12	1.7780e-1 (2.15e-1) -	2.8672e-2 (1.58e-2) +	1.8059e-2 (7.63e-3) +	4.5125e-2 (1.78e-1)	7.4893e-2 (2.24e-1) =
LIRCMOP13	2.9703e-1 (4.64e-1) =	9.3074e-2 (9.05e-4) =	9.3421e-2 (9.63e-4) =	9.3096e-2 (1.16e-3)	9.3047e-2 (1.19e-3) =
LIRCMOP14	4.0903e-1 (5.29e-1) -	9.5154e-2 (1.02e-3) =	9.5119e-2 (9.94e-4) =	9.5092e-2 (1.48e-3)	9.5208e-2 (9.43e-4) =
MW1	2.5684e-3 (1.05e-3) -	1.7550e-3 (2.94e-4) -	1.6130e-3 (9.51e-6) =	1.6091e-3 (1.09e-5)	1.6131e-3 (1.17e-5) =
MW2	6.2620e-3 (2.86e-3) =	5.6069e-3 (5.37e-4) =	5.6570e-3 (9.03e-4) =	5.6942e-3 (5.97e-4)	5.6645e-3 (7.24e-4) =
MW3	6.1425e-3 (6.06e-4) -	5.7283e-3 (3.72e-4) -	5.6017e-3 (3.26e-4) =	5.4699e-3 (2.24e-4)	5.4166e-3 (3.00e-4) =
MW4	4.1991e-2 (2.68e-3) +	4.0588e-2 (1.15e-3) +	4.8852e-2 (1.46e-3) =	4.8342e-2 (1.61e-3)	4.8620e-2 (1.60e-3) =
MW5	NaN (66.67%) -	NaN (76.67%) -	NaN (90.00%) -	NaN (93.33%)	NaN (93.33%) =
MW6	1.0770e-2 (2.06e-2) -	2.7509e-3 (2.51e-5) =	2.7519e-3 (2.25e-5) =	2.7454e-3 (2.80e-5)	2.7541e-3 (1.97e-5) =
MW7	6.0524e-3 (8.55e-4) -	5.1882e-3 (3.69e-4) -	4.6162e-3 (2.49e-4) =	4.5148e-3 (2.16e-4)	4.4061e-3 (1.73e-4) +
MW8	4.3377e-2 (1.64e-3) =	4.2927e-2 (6.49e-4) =	4.2944e-2 (6.53e-4) =	4.2930e-2 (5.77e-4)	4.2852e-2 (5.70e-4) =
MW9	NaN (63.33%) -	NaN (83.33%) -	NaN (86.67%) -	NaN (93.33%)	NaN (83.33%) -
MW10	7.1587e-3 (1.01e-2) -	3.4105e-3 (4.23e-5) =	3.4176e-3 (3.31e-5) =	3.4078e-3 (4.88e-5)	3.4242e-3 (5.67e-5) =
MW11	5.8969e-3 (1.05e-4) =	5.9331e-3 (1.07e-4) =	5.8939e-3 (9.71e-5) =	5.9115e-3 (1.16e-4)	5.9404e-3 (1.12e-4) =
MW12	NaN (83.33%) -	NaN (80.00%) -	NaN (90.00%) -	NaN (93.33%)	NaN (86.67%) -
MW13	1.2660e-2 (8.92e-3) =	1.0654e-2 (1.67e-4) =	1.0816e-2 (8.91e-4) =	1.0715e-2 (1.66e-4)	1.0670e-2 (1.40e-4) =
MW14	1.2044e-1 (3.79e-2) -	9.8885e-2 (1.76e-3) -	9.8020e-2 (2.14e-3) =	9.7530e-2 (2.06e-3)	9.7031e-2 (1.96e-3) =
+/-/=	1/30/7	3/23/12	1/12/25		3/7/28

TABLE S-VII The IGD comparison results of fixing g to 35 and taking different values of δ

Problem	g = 35 and δ = 0.001	$g = 35$ and $\delta = 0.01$	g = 35 and δ = 0.05	$g = 35$ and $\delta = 0.1$	$g = 35$ and $\delta = 1$
C1_DTLZ1	2.1670e-2 (2.86e-4) =	2.1700e-2 (1.91e-4) =	2.1656e-2 (7.64e-4)	2.0476e-2 (8.80e-4) +	2.0938e-2 (1.08e-3) +
C1_DTLZ3	5.3381e-2 (7.34e-4) =	5.3282e-2 (7.49e-4) =	5.3401e-2 (8.39e-4)	5.3218e-2 (5.84e-4) =	5.3339e-2 (6.07e-4) =
C2_DTLZ2	4.2672e-2 (5.14e-4) =	4.2494e-2 (6.05e-4) =	4.2478e-2 (3.72e-4)	4.2651e-2 (5.86e-4) =	4.2604e-2 (5.65e-4) =
C3_DTLZ4	NaN (83.33%) -	2.1885e-1 (2.83e-1) =	1.1941e-1 (1.36e-1)	1.1942e-1 (1.36e-1) =	1.1943e-1 (1.36e-1) =
DC1_DTLZ1	1.1404e-2 (8.85e-5) +	1.1389e-2 (9.59e-5) +	1.1516e-2 (1.60e-4)	1.1800e-2 (3.57e-4) -	1.1589e-2 (1.84e-4) =
DC1_DTLZ3	3.3750e-2 (3.78e-4) =	3.3914e-2 (3.31e-4) =	3.3915e-2 (4.04e-4)	3.3786e-2 (3.37e-4) =	3.3724e-2 (3.13e-4) +
DC2_DTLZ1	2.0048e-2 (1.20e-4) +	2.0082e-2 (1.26e-4) +	2.0216e-2 (1.84e-4)	2.0290e-2 (2.01e-4) =	2.0254e-2 (1.52e-4) =
DC2_DTLZ3	5.2762e-2 (4.14e-4) =	5.2667e-2 (3.38e-4) =	5.2633e-2 (3.42e-4)	5.2753e-2 (4.19e-4) =	5.2717e-2 (3.92e-4) =
DC3_DTLZ1	6.8620e-3 (5.63e-5) +	6.8634e-3 (4.95e-5) +	6.9864e-3 (1.65e-4)	7.2675e-3 (3.44e-4) -	7.1961e-3 (2.36e-4) -
DC3_DTLZ3	1.9919e-2 (3.22e-4) =	1.9879e-2 (2.45e-4) =	1.9924e-2 (2.12e-4)	1.9986e-2 (2.26e-4) =	2.0009e-2 (2.96e-4) =
LIRCMOP1	NaN (0.00%) -	NaN (46.67%) -	4.9450e-2 (9.58e-3)	5.4047e-2 (1.18e-2) =	5.7387e-2 (9.83e-3) -
LIRCMOP2	NaN (3.33%) =	NaN (60.00%) -	3.0733e-2 (4.39e-3)	3.2775e-2 (4.31e-3) -	3.4528e-2 (6.34e-3) -
LIRCMOP3	NaN (0.00%) -	NaN (6.67%) -	2.4964e-2 (1.01e-2)	2.6496e-2 (8.75e-3) =	2.7442e-2 (8.72e-3) =
LIRCMOP4	NaN (0.00%) -	NaN (60.00%) -	2.4573e-2 (7.63e-3)	2.8375e-2 (1.07e-2) =	2.8771e-2 (1.07e-2) =
LIRCMOP5	6.6187e-2 (1.99e-2) +	7.7009e-2 (2.10e-2) +	1.2488e-1 (3.96e-2)	1.6062e-1 (3.23e-2) -	1.7154e-1 (3.21e-2) -
LIRCMOP6	5.5998e-2 (1.71e-2) +	5.9993e-2 (2.28e-2) +	1.2337e-1 (6.38e-2)	1.5077e-1 (6.41e-2) =	1.9798e-1 (7.38e-2) -
LIRCMOP7	NaN (66.67%) -	NaN (63.33%) -	1.2624e-1 (4.81e-1)	4.7234e-2 (1.76e-2) =	4.8294e-2 (2.21e-2) +
LIRCMOP8	NaN (66.67%) -	NaN (66.67%) -	7.2234e-2 (8.60e-2)	7.7961e-2 (3.51e-2) -	5.9238e-2 (2.90e-2) =
LIRCMOP9	1.0923e-1 (3.42e-2) =	1.0540e-1 (2.75e-2) =	1.0477e-1 (2.91e-2)	1.0461e-1 (2.55e-2) =	1.4240e-1 (4.49e-2) -
LIRCMOP10	2.4283e-2 (5.93e-3) =	2.5122e-2 (5.98e-3) =	2.9075e-2 (1.93e-2)	4.1652e-2 (2.53e-2) -	4.4582e-2 (2.58e-2) -
LIRCMOP11	NaN (90.00%) -	4.7149e-1 (5.22e-1) -	6.0970e-3 (2.36e-3)	6.5715e-3 (3.35e-3) =	8.4674e-3 (4.20e-3) -
LIRCMOP12	NaN (96.67%) -	4.7063e-1 (4.70e-1) -	4.5125e-2 (1.78e-1)	1.7796e-2 (8.02e-3) +	2.2981e-2 (1.20e-2) +
LIRCMOP13	9.3726e-2 (1.32e-3) =	9.3239e-2 (1.03e-3) =	9.3096e-2 (1.16e-3)	9.3086e-2 (1.05e-3) =	9.3240e-2 (1.01e-3) =
LIRCMOP14	9.4891e-2 (7.48e-4) =	9.5209e-2 (1.07e-3) =	9.5092e-2 (1.48e-3)	9.5400e-2 (1.14e-3) =	9.5233e-2 (9.83e-4) =
MW1	1.6130e-3 (1.40e-5) =	1.6131e-3 (1.12e-5) =	1.6091e-3 (1.09e-5)	1.6093e-3 (9.68e-6) =	1.6114e-3 (9.20e-6) =
MW2	5.4098e-3 (7.12e-4) =	5.5330e-3 (7.30e-4) =	5.6942e-3 (5.97e-4)	5.4221e-3 (6.26e-4) =	5.6099e-3 (4.37e-4) =
MW3	3.7112e-2 (2.41e-2) -	5.4801e-3 (3.65e-4) =	5.4699e-3 (2.24e-4)	5.4935e-3 (2.28e-4) =	5.4310e-3 (2.66e-4) =
MW4	4.8517e-2 (1.76e-3) =	4.8350e-2 (1.86e-3) =	4.8342e-2 (1.61e-3)	4.8778e-2 (1.64e-3) =	4.8318e-2 (1.59e-3) =
MW5	NaN (90.00%) -	NaN (86.67%) -	NaN (93.33%)	2.7636e-2 (1.34e-1) =	NaN (76.67%) -
MW6	2.7490e-3 (1.88e-5) =	2.7548e-3 (2.87e-5) =	2.7454e-3 (2.80e-5)	2.7462e-3 (2.21e-5) =	2.7504e-3 (3.16e-5) =
MW7	2.0216e-1 (8.94e-2) -	1.1077e-2 (3.62e-2) =	4.5148e-3 (2.16e-4)	4.6159e-3 (2.36e-4) =	4.5194e-3 (2.14e-4) =
MW8	4.3156e-2 (5.42e-4) =	4.3006e-2 (6.66e-4) =	4.2930e-2 (5.77e-4)	4.2962e-2 (6.04e-4) =	4.2833e-2 (5.53e-4) =
MW9	NaN (90.00%) -	NaN (80.00%) -	NaN (93.33%)	NaN (90%) -	NaN (93.33%) -
MW10	3.3965e-3 (3.73e-5) =	3.4133e-3 (8.96e-5) =	3.4078e-3 (4.88e-5)	3.4193e-3 (4.13e-5) =	3.4238e-3 (4.30e-5) =
MW11	NaN (6.67%) -	NaN (83.33%) -	5.9115e-3 (1.16e-4)	5.9215e-3 (1.07e-4) =	5.8850e-3 (9.55e-5) =
MW12	NaN (76.67%) -	NaN (93.33%) =	NaN (93.33%)	NaN (86.67%) -	NaN (96.67%) -
MW13	1.0709e-2 (1.76e-4) =	1.0703e-2 (1.41e-4) =	1.0715e-2 (1.66e-4)	1.0743e-2 (1.17e-4) =	1.1021e-2 (1.21e-3) =
MW14	1.8491e-1 (4.20e-2) -	1.1483e-1 (3.97e-2) =	9.7530e-2 (2.06e-3)	9.8019e-2 (1.51e-3) =	9.7703e-2 (1.92e-3) =
+/-/=	5/15/18	5/11/22		2/8/28	4/11/23

TABLE S-VIII THE IGD RESULTS OF TLCMEA WITH DIFFERENT k VALUES FOR DTLZ, LIRCMOP AND MW TEST SUITES ON 100D.

Problem	k = 0	k = 1	k = 10	k = 50	k = 80	k = 100
C1_DTLZ1	2.1264e-2 (7.29e-4) +	2.1243e-2 (9.79e-4) =	2.1192e-2 (9.17e-4) +	2.1457e-2 (5.91e-4) =	2.1545e-2 (8.57e-4) =	2.1656e-2 (7.64e-4)
C1_DTLZ3	5.3358e-2 (8.63e-4) =	5.3378e-2 (6.52e-4) =	5.3468e-2 (7.86e-4) =	5.3438e-2 (5.93e-4) =	5.3416e-2 (6.97e-4) =	5.3401e-2 (8.39e-4)
C2_DTLZ2	4.2936e-2 (5.34e-4) -	4.2455e-2 (4.76e-4) =	4.2567e-2 (6.33e-4) =	4.2404e-2 (5.01e-4) =	4.2762e-2 (7.03e-4) =	4.2478e-2 (3.72e-4)
C3_DTLZ4	1.4418e-1 (1.89e-1) =	1.1928e-1 (1.36e-1) =	1.9362e-1 (2.58e-1) =	1.1945e-1 (1.36e-1) =	9.4311e-2 (1.31e-3) =	1.1941e-1 (1.36e-1)
DC1_DTLZ1	1.1498e-2 (1.03e-4) =	1.1513e-2 (2.09e-4) =	1.1494e-2 (2.15e-4) =	1.1534e-2 (1.55e-4) =	1.1518e-2 (2.03e-4) =	1.1516e-2 (1.60e-4)
DC1_DTLZ3	3.3901e-2 (3.25e-4) =	3.3797e-2 (3.08e-4) =	3.3945e-2 (4.13e-4) =	3.3817e-2 (3.09e-4) =	3.3865e-2 (3.75e-4) =	3.3915e-2 (4.04e-4)
DC2_DTLZ1	2.0151e-2 (1.99e-4) =	2.0175e-2 (1.90e-4) =	2.0188e-2 (1.66e-4) =	2.0183e-2 (1.91e-4) =	2.0239e-2 (1.93e-4) =	2.0216e-2 (1.84e-4)
DC2_DTLZ3	5.2760e-2 (5.00e-4) =	5.2594e-2 (4.63e-4) =	5.2677e-2 (3.65e-4) =	5.2578e-2 (4.21e-4) =	5.2805e-2 (5.10e-4) =	5.2633e-2 (3.42e-4)
DC3_DTLZ1	6.9575e-3 (1.81e-4) =	7.0047e-3 (2.33e-4) =	7.0280e-3 (2.51e-4) =	7.0711e-3 (2.42e-4) =	7.0357e-3 (2.61e-4) =	6.9864e-3 (1.65e-4)
DC3_DTLZ3	1.9913e-2 (2.29e-4) =	1.9954e-2 (2.26e-4) =	2.0009e-2 (2.54e-4) =	2.0004e-2 (2.30e-4) =	1.9995e-2 (2.95e-4) =	1.9924e-2 (2.12e-4)
LIRCMOP1	5.5377e-2 (1.12e-2) =	4.8011e-2 (1.15e-2) =	6.1636e-2 (1.44e-2) -	5.1031e-2 (1.07e-2) =	5.2434e-2 (1.03e-2) =	4.9450e-2 (9.58e-3)
LIRCMOP2	3.0017e-2 (5.88e-3) =	2.9525e-2 (3.48e-3) =	2.8820e-2 (2.83e-3) =	2.9851e-2 (5.55e-3) =	3.2604e-2 (6.70e-3) =	3.0733e-2 (4.39e-3)
LIRCMOP3	2.1081e-2 (6.82e-3) =	1.8825e-2 (8.22e-3) +	2.5941e-2 (9.29e-3) =	2.1512e-2 (7.93e-3) =	2.5787e-2 (1.17e-2) =	2.4964e-2 (1.01e-2)
LIRCMOP4	2.3448e-2 (1.01e-2) =	2.1140e-2 (8.16e-3) =	2.2934e-2 (6.93e-3) =	2.7017e-2 (8.53e-3) =	2.6929e-2 (6.78e-3) =	2.4573e-2 (7.63e-3)
LIRCMOP5	1.6317e-1 (7.12e-2) -	1.5076e-1 (6.23e-2) =	1.3196e-1 (3.79e-2) =	1.3165e-1 (4.73e-2) =	1.2377e-1 (3.98e-2) =	1.2488e-1 (3.96e-2)
LIRCMOP6	1.6023e-1 (4.89e-2) -	1.8197e-1 (9.01e-2) -	1.4700e-1 (8.05e-2) =	1.3008e-1 (6.12e-2) =	1.4273e-1 (7.20e-2) =	1.2337e-1 (6.38e-2)
LIRCMOP7	4.1428e-2 (1.45e-2) =	3.6054e-2 (1.59e-2) =	3.3258e-2 (1.41e-2) =	5.7136e-2 (1.13e-1) =	3.5540e-2 (1.59e-2) =	1.2624e-1 (4.81e-1)
LIRCMOP8	6.6657e-2 (3.01e-2) =	7.5815e-2 (1.13e-1) =	6.7437e-2 (3.42e-2) =	6.2421e-2 (3.10e-2) =	1.5355e-1 (4.18e-1) =	7.2234e-2 (8.60e-2)
LIRCMOP9	3.4010e-1 (1.10e-1) -	2.7098e-1 (9.32e-2) -	1.2203e-1 (2.28e-2) -	1.0315e-1 (2.75e-2) =	1.0168e-1 (2.17e-2) =	1.0477e-1 (2.91e-2)
LIRCMOP10	1.4058e-1 (4.33e-2) -	1.3809e-1 (4.32e-2) -	4.0497e-2 (1.87e-2) -	2.9947e-2 (1.51e-2) -	3.0068e-2 (1.94e-2) =	2.9075e-2 (1.93e-2)
LIRCMOP11	6.2036e-2 (2.03e-1) -	3.7240e-2 (3.68e-2) -	1.9541e-2 (2.51e-2) -	7.2729e-3 (3.46e-3) =	6.5645e-3 (3.51e-3) =	6.0970e-3 (2.36e-3)
LIRCMOP12	1.2306e-1 (2.64e-2) -	1.4773e-1 (1.64e-1) -	2.0014e-2 (1.10e-2) +	1.4578e-2 (7.18e-3) =	1.3437e-2 (6.88e-3) =	4.5125e-2 (1.78e-1)
LIRCMOP13	9.3232e-2 (1.15e-3) =	9.3523e-2 (1.04e-3) =	9.3219e-2 (8.62e-4) =	9.3614e-2 (1.26e-3) =	9.3380e-2 (1.18e-3) =	9.3096e-2 (1.16e-3)
LIRCMOP14	9.4899e-2 (1.07e-3) =	9.5032e-2 (8.30e-4) =	9.5221e-2 (1.04e-3) =	9.4977e-2 (1.07e-3) =	9.5278e-2 (7.88e-4) =	9.5092e-2 (1.48e-3)
MW1	1.6130e-3 (9.82e-6) =	1.6132e-3 (1.18e-5) =	1.6145e-3 (1.28e-5) =	1.6124e-3 (9.09e-6) =	1.6152e-3 (1.37e-5) =	1.6091e-3 (1.09e-5)
MW2	5.5890e-3 (1.04e-3) =	5.4025e-3 (6.95e-4) =	4.7974e-3 (1.08e-3) +	5.3477e-3 (5.40e-4) +	5.3269e-3 (7.82e-4) +	5.6942e-3 (5.97e-4)
MW3	5.4219e-3 (2.89e-4) =	5.4715e-3 (3.29e-4) =	5.4426e-3 (2.70e-4) =	5.4369e-3 (3.19e-4) =	5.4171e-3 (2.89e-4) =	5.4699e-3 (2.24e-4)
MW4	4.8971e-2 (1.67e-3) =	4.8617e-2 (1.78e-3) =	4.8577e-2 (1.51e-3) =	4.8721e-2 (1.30e-3) =	4.8672e-2 (1.95e-3) =	4.8342e-2 (1.61e-3)
MW5	NaN (90.00%) -	NaN (93.33%) =	NaN (83.33%) -	NaN (86.67%) -	NaN (83.33%) -	NaN (93.33%)
MW6	6.9106e-3 (2.28e-2) =	2.7500e-3 (2.21e-5) =	2.7520e-3 (2.18e-5) =	2.7635e-3 (2.93e-5) -	2.7508e-3 (2.35e-5) =	2.7454e-3 (2.80e-5)
MW7	4.4572e-3 (2.35e-4) =	4.4304e-3 (2.29e-4) =	4.4856e-3 (2.01e-4) =	4.4949e-3 (2.27e-4) =	4.5326e-3 (2.38e-4) =	4.5148e-3 (2.16e-4)
MW8	4.2854e-2 (5.95e-4) =	4.2978e-2 (5.92e-4) =	4.2851e-2 (5.83e-4) =	4.3161e-2 (4.89e-4) =	4.2970e-2 (5.08e-4) =	4.2930e-2 (5.77e-4)
MW9	NaN (90.00%) -	NaN (86.67%) -	NaN (93.33%) =	NaN (93.33%) =	NaN (80.00%) -	NaN (93.33%)
MW10	3.4080e-3 (4.23e-5) =	3.4109e-3 (4.28e-5) =	3.4038e-3 (4.34e-5) =	3.4179e-3 (5.53e-5) =	3.4225e-3 (4.68e-5) =	3.4078e-3 (4.88e-5)
MW11	5.9146e-3 (1.05e-4) =	5.9187e-3 (1.17e-4) =	5.9537e-3 (1.06e-4) =	5.9074e-3 (9.91e-5) =	5.9270e-3 (1.15e-4) =	5.9115e-3 (1.16e-4)
MW12	NaN (86.67%) -	NaN (90.00%) -	NaN (93.33%) =	NaN (93.33%) =	NaN (83.33%) -	NaN (93.33%)
MW13	2.6522e-2 (8.67e-2) =	7.5564e-2 (1.64e-1) =	1.0699e-2 (1.58e-4) =	1.0651e-2 (1.40e-4) =	1.0892e-2 (8.72e-4) =	1.0715e-2 (1.66e-4)
MW14	1.2200e-1 (4.96e-2) =	1.1781e-1 (4.63e-2) =	9.7364e-2 (1.72e-3) =	9.7765e-2 (1.46e-3) =	9.7080e-2 (1.63e-3) =	9.7530e-2 (2.06e-3)
+/-/=	1/10/27	1/7/30	3/5/30	1/3/34	1/3/34	

 $\label{thm:table S-IX} The \ Comparison \ results \ of \ TLCMEA \ and \ TLCMEA-LMEA \ on \ IGD \ values$

Problem	TLCMEA-LMEA	TLCMEA
C1_DTLZ1	2.3441e-2 (7.60e-4) -	2.1656e-2 (7.64e-4)
C1_DTLZ3	5.4406e-2 (6.64e-4) -	5.3401e-2 (8.39e-4)
C2_DTLZ2	5.6314e-2 (1.54e-3) -	4.2478e-2 (3.72e-4)
C3_DTLZ4	NaN (0.00%) -	1.1941e-1 (1.36e-1)
DC1_DTLZ1	2.0896e-2 (1.23e-3) -	1.1516e-2 (1.60e-4)
DC1_DTLZ3	5.6859e-2 (2.58e-3) -	3.3915e-2 (4.04e-4)
DC2_DTLZ1	2.1191e-2 (3.51e-4) -	2.0216e-2 (1.84e-4)
DC2_DTLZ3	5.5142e-2 (2.90e-3) -	5.2633e-2 (3.42e-4)
DC3_DTLZ1	3.0771e-2 (6.79e-3) -	6.9864e-3 (1.65e-4)
DC3_DTLZ3	6.2996e-2 (7.07e-3) -	1.9924e-2 (2.12e-4)
LIRCMOP1	NaN (0.00%) -	4.9450e-2 (9.58e-3)
LIRCMOP2	NaN (0.00%) -	3.0733e-2 (4.39e-3)
LIRCMOP3	NaN (0.00%) -	2.4964e-2 (1.01e-2)
LIRCMOP4	NaN (0.00%) -	2.4573e-2 (7.63e-3)
LIRCMOP5	1.6921e-1 (4.26e-2) -	1.2488e-1 (3.96e-2)
LIRCMOP6	1.9349e-1 (5.59e-2) -	1.2337e-1 (6.38e-2)
LIRCMOP7	NaN (0.00%) -	1.2624e-1 (4.81e-1)
LIRCMOP8	NaN (0.00%) -	7.2234e-2 (8.60e-2)
LIRCMOP9	1.5730e-1 (5.57e-2) -	1.0477e-1 (2.91e-2)
LIRCMOP10	6.7891e-2 (5.14e-2) -	2.9075e-2 (1.93e-2)
LIRCMOP11	5.6897e-1 (2.73e-1) -	6.0970e-3 (2.36e-3)
LIRCMOP12	NaN (56.67%) -	4.5125e-2 (1.78e-1)
LIRCMOP13	9.2198e-2 (1.15e-3) +	9.3096e-2 (1.16e-3)
LIRCMOP14	NaN (0.00%) -	9.5092e-2 (1.48e-3)
MW1	4.3662e-3 (1.45e-3) -	1.6091e-3 (1.09e-5)
MW2	4.2330e-3 (1.51e-4) +	5.6942e-3 (5.97e-4)
MW3	5.3557e-2 (1.84e-3) -	5.4699e-3 (2.24e-4)
MW4	4.9491e-2 (2.00e-3) -	4.8342e-2 (1.61e-3)
MW5	NaN (80.00%) -	NaN (93.33%)
MW6	5.5720e-3 (7.10e-4) -	2.7454e-3 (2.80e-5)
MW7	2.0875e-1 (4.53e-3) -	4.5148e-3 (2.16e-4)
MW8	6.0716e-2 (2.12e-3) -	4.2930e-2 (5.77e-4)
MW9	NaN (20.00%) -	NaN (93.33%)
MW10	NaN (96.67%) -	3.4078e-3 (4.88e-5)
MW11	NaN (0.00%) -	5.9115e-3 (1.16e-4)
MW12	NaN (30.00%) -	NaN (93.33%)
MW13	9.5734e-2 (4.83e-2) -	1.0715e-2 (1.66e-4)
MW14	1.1196e-1 (2.27e-2) -	9.7530e-2 (2.06e-3)
+/-/=	2/36/0	

 $\label{thm:table s-x} \text{The Comparison results of TLCMEA and TLCMEA-upf on IGD values}$

Problem	TLCMEA-UPF	TLCMEA
C1_DTLZ1	2.1772e-2 (8.78e-4) =	2.1656e-2 (7.64e-4)
C1_DTLZ3	5.3360e-2 (7.22e-4) =	5.3401e-2 (8.39e-4)
C2_DTLZ2	4.2618e-2 (5.75e-4) =	4.2478e-2 (3.72e-4)
C3_DTLZ4	9.4637e-2 (1.63e-3) =	1.1941e-1 (1.36e-1)
DC1_DTLZ1	1.1583e-2 (2.59e-4) =	1.1516e-2 (1.60e-4)
DC1_DTLZ3	3.3798e-2 (2.68e-4) =	3.3915e-2 (4.04e-4)
DC2_DTLZ1	2.0338e-2 (3.68e-4) =	2.0216e-2 (1.84e-4)
DC2_DTLZ3	5.2709e-2 (3.25e-4) =	5.2633e-2 (3.42e-4)
DC3_DTLZ1	7.6371e-3 (2.45e-3) -	6.9864e-3 (1.65e-4)
DC3_DTLZ3	1.9947e-2 (2.32e-4) =	1.9924e-2 (2.12e-4)
LIRCMOP1	7.5703e-2 (3.08e-2) -	4.9450e-2 (9.58e-3)
LIRCMOP2	4.7472e-2 (1.46e-2) -	3.0733e-2 (4.39e-3)
LIRCMOP3	4.2959e-2 (1.52e-2) -	2.4964e-2 (1.01e-2)
LIRCMOP4	5.5334e-2 (1.25e-2) -	2.4573e-2 (7.63e-3)
LIRCMOP5	1.1445e-1 (3.27e-2) =	1.2488e-1 (3.96e-2)
LIRCMOP6	1.1883e-1 (5.95e-2) =	1.2337e-1 (6.38e-2)
LIRCMOP7	1.6780e-1 (4.45e-1) -	1.2624e-1 (4.81e-1)
LIRCMOP8	7.3040e-2 (3.94e-2) =	7.2234e-2 (8.60e-2)
LIRCMOP9	9.8108e-2 (1.76e-2) =	1.0477e-1 (2.91e-2)
LIRCMOP10	2.7911e-2 (1.64e-2) =	2.9075e-2 (1.93e-2)
LIRCMOP11	8.1480e-3 (1.20e-2) =	6.0970e-3 (2.36e-3)
LIRCMOP12	2.0741e-2 (1.83e-2) =	4.5125e-2 (1.78e-1)
LIRCMOP13	9.3184e-2 (1.10e-3) =	9.3096e-2 (1.16e-3)
LIRCMOP14	9.5146e-2 (1.09e-3) =	9.5092e-2 (1.48e-3)
MW1	1.6121e-3 (1.20e-5) =	1.6091e-3 (1.09e-5)
MW2	5.5009e-3 (3.32e-4) =	5.6942e-3 (5.97e-4)
MW3	5.3745e-3 (2.40e-4) =	5.4699e-3 (2.24e-4)
MW4	4.8631e-2 (1.73e-3) =	4.8342e-2 (1.61e-3)
MW5	NaN (86.67%) -	NaN (93.33%)
MW6	2.7523e-3 (2.64e-5) =	2.7454e-3 (2.80e-5)
MW7	4.4120e-3 (1.82e-4) =	4.5148e-3 (2.16e-4)
MW8	4.2973e-2 (4.08e-4) =	4.2930e-2 (5.77e-4)
MW9	NaN (80.00%) -	NaN (93.33%)
MW10	3.4146e-3 (4.45e-5) =	3.4078e-3 (4.88e-5)
MW11	5.9282e-3 (1.24e-4) =	5.9115e-3 (1.16e-4)
MW12	NaN (83.33%) -	NaN (93.33%)
MW13	1.0851e-2 (8.85e-4) =	1.0715e-2 (1.66e-4)
MW14	9.7588e-2 (1.85e-3) =	9.7530e-2 (2.06e-3)
+/-/=	0/9/29	,

 $\label{thm:table S-XI} The \ Comparison \ results \ of \ TLCMEA \ and \ TLCMEA-random \ on \ IGD \ values$

Problem	TLCMEA-random1	TLCMEA-random2	TLCMEA
C1_DTLZ1	2.1630e-2 (8.13e-4) =	2.1685e-2 (7.46e-4) =	2.1656e-2 (7.64e-4)
C1_DTLZ3	5.3464e-2 (6.16e-4) =	5.3432e-2 (8.02e-4) =	5.3401e-2 (8.39e-4)
C2_DTLZ2	4.2592e-2 (5.73e-4) =	4.2676e-2 (4.09e-4) -	4.2478e-2 (3.72e-4)
C3_DTLZ4	1.1910e-1 (1.36e-1) =	9.4422e-2 (1.38e-3) =	1.1941e-1 (1.36e-1)
DC1_DTLZ1	1.1554e-2 (2.27e-4) =	1.1595e-2 (2.75e-4) =	1.1516e-2 (1.60e-4)
DC1_DTLZ3	3.3867e-2 (3.62e-4) =	3.3940e-2 (3.88e-4) =	3.3915e-2 (4.04e-4)
DC2_DTLZ1	2.0238e-2 (2.29e-4) =	2.0195e-2 (2.37e-4) =	2.0216e-2 (1.84e-4)
DC2_DTLZ3	5.2776e-2 (3.73e-4) =	5.2682e-2 (3.28e-4) =	5.2633e-2 (3.42e-4)
DC3_DTLZ1	7.0316e-3 (1.87e-4) =	7.0410e-3 (4.08e-4) =	6.9864e-3 (1.65e-4)
DC3_DTLZ3	1.9939e-2 (1.82e-4) =	1.9936e-2 (1.89e-4) =	1.9924e-2 (2.12e-4)
LIRCMOP1	6.1079e-2 (1.49e-2) -	6.3579e-2 (1.69e-2) -	4.9450e-2 (9.58e-3)
LIRCMOP2	3.5019e-2 (5.42e-3) -	3.4410e-2 (7.96e-3) -	3.0733e-2 (4.39e-3)
LIRCMOP3	3.1555e-2 (1.23e-2) -	3.0753e-2 (8.16e-3) -	2.4964e-2 (1.01e-2)
LIRCMOP4	3.0828e-2 (1.12e-2) -	3.1739e-2 (8.06e-3) -	2.4573e-2 (7.63e-3)
LIRCMOP5	1.3151e-1 (4.10e-2) =	1.3342e-1 (4.13e-2) =	1.2488e-1 (3.96e-2)
LIRCMOP6	1.0410e-1 (5.42e-2) =	1.2622e-1 (5.51e-2) =	1.2337e-1 (6.38e-2)
LIRCMOP7	3.7998e-2 (1.65e-2) =	5.0644e-2 (2.57e-2) =	1.2624e-1 (4.81e-1)
LIRCMOP8	8.0821e-2 (1.20e-1) =	7.2723e-2 (3.94e-2) =	7.2234e-2 (8.60e-2)
LIRCMOP9	1.1258e-1 (3.55e-2) =	1.4298e-1 (4.95e-2) -	1.0477e-1 (2.91e-2)
LIRCMOP10	3.3359e-2 (2.34e-2) =	4.4116e-2 (2.81e-2) -	2.9075e-2 (1.93e-2)
LIRCMOP11	6.7313e-3 (3.39e-3) =	1.5014e-2 (2.21e-2) -	6.0970e-3 (2.36e-3)
LIRCMOP12	1.4594e-2 (6.83e-3) =	2.0024e-2 (1.74e-2) =	4.5125e-2 (1.78e-1)
LIRCMOP13	9.3264e-2 (1.11e-3) =	9.3275e-2 (1.22e-3) =	9.3096e-2 (1.16e-3)
LIRCMOP14	9.5292e-2 (7.63e-4) =	9.5245e-2 (1.01e-3) =	9.5092e-2 (1.48e-3)
MW1	1.6153e-3 (1.51e-5) =	1.6117e-3 (1.47e-5) =	1.6091e-3 (1.09e-5)
MW2	5.6226e-3 (7.21e-4) =	5.2578e-3 (7.21e-4) +	5.6942e-3 (5.97e-4)
MW3	5.3507e-3 (2.58e-4) =	5.3160e-3 (2.74e-4) +	5.4699e-3 (2.24e-4)
MW4	4.8245e-2 (1.73e-3) =	4.8400e-2 (1.74e-3) =	4.8342e-2 (1.61e-3)
MW5	NaN (86.67%) -	NaN (86.67%) -	NaN (93.33%)
MW6	2.7611e-3 (6.42e-5) =	2.7592e-3 (2.42e-5) =	2.7454e-3 (2.80e-5)
MW7	4.4396e-3 (2.25e-4) =	4.4242e-3 (1.95e-4) =	4.5148e-3 (2.16e-4)
MW8	4.2835e-2 (6.43e-4) =	4.2965e-2 (5.95e-4) =	4.2930e-2 (5.77e-4)
MW9	NaN (90.00%) -	NaN (83.33%) -	NaN (93.33%)
MW10	3.4290e-3 (3.49e-5) -	3.4130e-3 (4.89e-5) =	3.4078e-3 (4.88e-5)
MW11	5.9284e-3 (1.03e-4) =	5.9170e-3 (1.26e-4) =	5.9115e-3 (1.16e-4)
MW12	NaN (90.00%) -	NaN (83.33%) -	NaN (93.33%)
MW13	1.0666e-2 (1.80e-4) =	1.0671e-2 (1.66e-4) =	1.0715e-2 (1.66e-4)
MW14	9.8331e-2 (4.59e-3) =	9.7107e-2 (1.42e-3) =	9.7530e-2 (2.06e-3)
+/-/=	0/8/30	2/11/25	

 $TABLE\ S-XII$ The IGD Results Obtained By TLCMEA and Six Compared Algorithms on CLSMOP Test Suite.

Problem	D	CCMO	MTCMO	C_LMEA	C_LMOCSO	DPSEA	POCEA	TLCMEA
	100	9.3170e-1 (6.68e-2) -	9.2177e-1 (7.62e-2) -	6.9251e-1 (8.20e-2) =	7.0540e-1 (3.08e-4) +	9.2503e-1 (6.99e-2) -	7.0502e-1 (4.91e-3) +	7.4539e-1 (1.09e-1)
CLSMOP1	200	9.5903e-1 (9.52e-3) -	9.5548e-1 (1.18e-2) -	7.2839e-1 (6.47e-2) =	7.0539e-1 (4.81e-4) +	9.6925e-1 (6.47e-3) -	6.9225e-1 (6.48e-2) +	7.5388e-1 (1.16e-1)
CLOWOIT	500	9.5799e-1 (3.60e-3) -	9.5754e-1 (4.80e-3) -	6.5741e-1 (9.55e-2) =	7.0498e-1 (1.13e-3) +	9.6379e-1 (4.57e-3) -	6.8211e-1 (1.17e-1) +	7.4189e-1 (1.12e-1)
	1000	9.5693e-1 (3.90e-3) -	9.5502e-1 (3.82e-3) -	6.5053e-1 (1.21e-1) =	7.0416e-1 (7.50e-3) +	9.5408e-1 (3.64e-3) -	5.0216e-1 (1.48e-1) +	7.4160e-1 (1.09e-1)
CLSMOP2	100	4.2593e-2 (2.87e-3) =	4.1546e-2 (2.75e-3) =	9.6983e-2 (6.80e-2) -	4.6196e-2 (1.20e-2) =	4.5525e-2 (2.65e-3) -	3.1295e-2 (1.50e-2) +	3.9453e-2 (8.91e-3)
	200	4.9259e-2 (4.94e-3) -	4.8857e-2 (5.49e-3) -	7.5939e-2 (3.94e-2) -	2.0972e-2 (5.40e-3) +	3.5118e-2 (2.21e-3) =	2.6429e-2 (6.68e-3) +	3.7085e-2 (1.13e-2)
	500	2.5976e-2 (2.02e-4) =	2.5976e-2 (2.29e-4) =	5.0904e-2 (1.71e-2) -	1.5501e-2 (3.60e-3) +	2.5533e-2 (2.91e-4) =	2.1313e-2 (1.46e-3) +	2.3539e-2 (3.20e-3)
	1000	1.4932e-2 (1.21e-4) =	1.4960e-2 (1.24e-4) =	3.0629e-2 (7.89e-3) -	1.4322e-2 (1.68e-3) =	1.4452e-2 (1.28e-4) +	1.2816e-2 (5.95e-4) +	1.4933e-2 (4.77e-4)
	100	1.0834e+0 (5.29e-2) -	1.0801e+0 (5.01e-2) -	8.2892e-1 (3.01e-1) =	4.7564e+0 (1.86e+1) -	1.0989e+0 (4.67e-2) -	9.9215e-1 (3.82e-2) =	7.4740e-1 (3.75e-1)
GY GY COPA	200	1.0205e+0 (1.18e-2) =	1.0229e+0 (1.16e-2) -	2.3400e+0 (3.87e+0) -	1.4132e+0 (9.67e-1) =	1.0223e+0 (1.10e-2) -	9.7059e-1 (1.56e-1) -	8.7535e-1 (3.02e-1)
CLSMOP3	500	1.0018e+0 (1.89e-3) =	1.0034e+0 (5.57e-3) -	1.1193e+0 (1.73e+0) -	1.5072e+1 (7.20e+1) -	1.0026e+0 (2.20e-3) -	9.8660e-1 (5.28e-2) -	9.7257e-1 (1.27e-1)
	1000	9.9904e-1 (5.30e-4) -	9.9933e-1 (1.39e-3) -	1.2454e+0 (1.40e+0) -	6.1884e+1 (2.32e+2) -	9.9967e-1 (2.36e-3) -	9.9939e-1 (1.41e-3) -	9.4428e-1 (1.67e-1)
	100	6.1401e-1 (1.39e-2) =	6.1322e-1 (1.45e-2) =	5.6147e-1 (5.33e-2) +	6.8134e-1 (1.24e-3) -	6.0855e-1 (9.84e-3) =	6.9761e-1 (5.59e-3) -	6.1415e-1 (1.77e-2)
~~ ~~ ~~ .	200	6.1952e-1 (1.13e-2) +	6.2198e-1 (9.29e-3) +	6.4559e-1 (3.29e-2) -	6.9452e-1 (7.49e-4) -	6.2939e-1 (5.35e-3) +	7.0377e-1 (1.57e-3) -	6.3658e-1 (8.67e-3)
CLSMOP4	500	6.2106e-1 (9.48e-3) +	6.2195e-1 (9.21e-3) +	6.7601e-1 (2.10e-2) -	7.0167e-1 (2.25e-4) -	6.6430e-1 (3.77e-3) =	7.0516e-1 (4.86e-4) -	6.6152e-1 (1.26e-2)
	1000	6.4849e-1 (8.64e-3) +	6.5131e-1 (9.78e-3) +	6.9131e-1 (1.26e-2) -	7.0442e-1 (1.81e-4) -	6.6447e-1 (2.43e-3) +	7.0627e-1 (2.44e-4) -	6.7345e-1 (1.40e-2)
	100	3.4247e-1 (5.54e-5) -	3.4247e-1 (5.53e-5) -	4.5485e-1 (2.58e-1) -	5.4295e-2 (1.87e-1) +	3.4382e-1 (3.43e-3) -	5.3243e-1 (1.84e-1) -	1.6287e-1 (1.26e-1)
~~ ~~ ~~ ~	200	3.4248e-1 (9.22e-5) -	3.4246e-1 (3.90e-5) -	4.9730e-1 (2.38e-1) -	5.3952e-2 (1.87e-1) +	3.4828e-1 (2.11e-2) -	5.9889e-1 (1.58e-1) -	2.2336e-1 (1.24e-1)
CLSMOP5	500	3.4245e-1 (4.65e-5) -	3.4244e-1 (1.81e-5) -	4.8686e-1 (2.25e-1) -	2.5915e-1 (3.50e-1) +	3.4295e-1 (4.37e-4) -	7.4209e-1 (2.16e-5) -	2.9388e-1 (1.05e-1)
	1000	3.4240e-1 (2.24e-5) -	3.4240e-1 (1.69e-5) -	5.3818e-1 (1.81e-1) -	5.3612e-1 (3.19e-1) -	3.4252e-1 (1.04e-4) -	7.3808e-1 (2.20e-2) -	2.8330e-1 (1.14e-1)
+/-/=		3/11/6	3/13/4	1/14/5	9/8/3	3/13/4	8/11/1	,