

CONNECTIONS ON METRIPLECTIC MANIFOLDS

DANIEL FISH

ABSTRACT. In this note we discuss conditions under which a linear connection on a manifold equipped with both a symmetric (Riemannian) and a skew-symmetric (almost-symplectic or Poisson) tensor field will preserve both structures.

If (M, g) is a (pseudo-)Riemannian manifold, then classical results due to T. Levi-Civita, H. Weyl and E. Cartan [7] show that for any $(1, 2)$ tensor field T_{jk}^i which is skew-symmetric by lower indices, there exists a unique linear connection Γ preserving the metric ($\nabla^\Gamma g = 0$), with T as its torsion tensor: $T_{kj}^i = \frac{1}{2}(\Gamma_{jk}^i - \Gamma_{kj}^i)$.

It has also been shown [4] that given any symmetric (by lower indices) $(1, 2)$ tensor S_{jk}^i on a symplectic manifold (M, ω) , there exists a unique linear connection preserving ω which has S as its symmetric part, i.e., $S_{jk}^i = \frac{1}{2}(\Gamma_{jk}^i + \Gamma_{kj}^i)$. Moreover, it is known [9] that if ω is a regular Poisson tensor on M , then there always exists a linear connection on M with respect to which ω is covariantly constant. Such connections are called *Poisson* connections, and can be chosen to coincide with the Levi-Civita connection of the metric g (if g is Riemannian) in certain cases.

Considering these results, one is naturally led to the question: Given a skew-symmetric $(0, 2)$ tensor ω , and a (pseudo-)Riemannian metric g on a manifold M , when do there exist linear connections preserving ω and g simultaneously:

$$\nabla^\Gamma \omega + \nabla^\Gamma g = 0 ? \quad (1)$$

Motivated by the terminology of P.J. Morrison [6], we call the a manifold equipped with both a (pseudo-)Riemannian metric g and a skew-symmetric $(2, 0)$ tensor P a *metriplectic* manifold, and a connection which preserves both tensors will be called a *metriplectic connection*. In the first section we restrict ourselves to the case in which both $\omega = P^{-1}$ and g are nondegenerate, that is ω is almost-symplectic and g is Riemannian. We combine the results from [7] and [4] to derive a necessary condition for a connection Γ to be a metriplectic connection. We also discuss the form of Γ in the almost-Hermitian and symplectic cases. The main result of this section is the following

Proposition *Any connection Γ with symmetric part Π and torsion T that preserves both a Riemannian metric g and an (almost-)symplectic form ω has the form $\Gamma = \Pi + T$*

$$\Pi = L(g) + \bar{g}(T), \quad T = \omega^{-1} \nabla^g \omega - (1/2) \omega^{-1} d\omega - \bar{\omega} \bar{g}(T),$$

where $L(g)$ is the Levi-Civita connection defined by the metric g , and the “bar” operators $\bar{g}(T)$ and $\bar{\omega} \bar{g}(T)$ are related to the symmetries of the torsion T .

In the second section we give the proof of a theorem due to Shubin [8] which states that if M admits a metriplectic connection, and $P = \omega^{-1}$ is nondegenerate, then M is a Kähler manifold. We also formulate an observation made by Vaisman [9] as a generalization of Shubin’s theorem in the case that P is degenerate.

1. Necessary Conditions on the Metriplectic Connection Γ

We consider here the case where $\omega = P^{-1}$ is skew-symmetric and nondegenerate (not necessarily closed), and g is Riemannian. Suppose that $\Gamma = \Pi + T$ is a connection on the Poisson-Riemannian manifold (M, g, ω) with Π and T symmetric and skew-symmetric (torsion) tensors respectively. Assume that Γ satisfies (1). Since $\nabla^\Gamma g = 0$, we know from [4] that the symmetric tensor Π must have local components

$$\Pi_{jk}^i = L(g)_{jk}^i + g^{is}(T_{sj}^q g_{qk} + T_{sk}^q g_{jq}), \quad (2)$$

where $L(g)_{jk}^i = (1/2)g^{is}(g_{js,k} + g_{ks,j} - g_{jk,s})$ is the Levi-Civita connection for g . On the other hand, since $\nabla^\Gamma \omega = 0$, we have ([7])

$$T_{jk}^i = L(\omega)_{jk}^i - \omega^{is}(\Pi_{sj}^q \omega_{qk} + \Pi_{sk}^q \omega_{jq}), \quad (3)$$

where $L(\omega)_{jk}^i = (1/2)\omega^{is}(\omega_{js,k} + \omega_{sk,j} + \omega_{jk,s})$. We introduce the following operator: for any nondegenerate $(0, 2)$ tensor h define the linear operator \bar{h} on $(1, 2)$ tensors by

$$\bar{h}(B)_{jk}^i = h^{is}(B_{sj}^q h_{qk} + B_{sk}^q h_{jq}).$$

With this definition, we can write (2) and (3) as

$$\Pi = L(g) + \bar{g}(T) \quad \text{and} \quad T = L(\omega) - \bar{\omega}(\Pi).$$

Thus, the original connection Γ has the form

$$\begin{aligned} \Gamma &= L(g) + L(\omega) - \bar{\omega}(\Pi) + \bar{g}(T), \\ &= L(g) + L(\omega) - \bar{\omega}(L(g)) - \bar{\omega}(\bar{g}(T)) + \bar{g}(T). \end{aligned} \quad (4)$$

Notice that when \bar{h} operates on a connection form A , the result is related to the covariant derivative of h with respect to A as follows:

$$\nabla^A h = \partial h - h(\bar{h}(A)) \quad \text{or} \quad \bar{h}(A) = h^{-1} \partial h - h^{-1} \nabla^A h. \quad (5)$$

In particular, $\bar{\omega}(L(g)) = \omega^{-1}(\partial\omega - \nabla^g \omega)$ where ∇^g is the covariant derivative with respect to g . So we have

$$\Gamma = L(g) + L(\omega) - \omega^{-1}(\partial\omega - \nabla^g \omega) - \bar{\omega}(\bar{g}(T)) + \bar{g}(T).$$

Rewriting $L(\omega)$ as $\omega^{-1}\partial\omega - (1/2)\omega^{-1}d\omega$, we have the following

PROPOSITION. *Any connection Γ that preserves both a Riemannian metric g and an (almost-)symplectic form ω has the form $\Gamma = \Pi + T$ with*

$$\Pi = L(g) + \bar{g}(T), \quad T = \omega^{-1}\nabla^g \omega - (1/2)\omega^{-1}d\omega - \bar{\omega}\bar{g}(T).$$

If ω is closed (i.e. (M, ω) is symplectic), then $\Gamma = L(g) + \bar{g}(T) + \omega^{-1}\nabla^g \omega - \bar{\omega}\bar{g}(T)$.

1.1. ALMOST-HERMITIAN CONNECTIONS WITH TOTALLY SKEW TORSION. Suppose now that g and ω are related by an almost-complex structure $J = g^{-1}\omega$ satisfying $J^2 = -I$. Observe that $\bar{g}(T) = 0$ if and only if T is *totally skew-symmetric* with respect to the metric g (that is, $T_{ijk} = T_{ij}^q g_{qk}$ is an exterior 3-form). In this case,

$$T = \omega^{-1}\nabla^g \omega - (1/2)\omega^{-1}d\omega. \quad (6)$$

Thus Γ reduces to the canonical almost-hermitian connection with totally skew torsion (see e.g. [3] [5]). Indeed, the torsion 3-form $T(X, Y, Z) = \langle T(X, Y), Z \rangle_g$ can be expressed in terms of the Nijenhuis tensor $N(X, Y, Z) = \langle N(X, Y), Z \rangle_g$ of the almost-complex structure J (see [2]) as follows.

PROPOSITION. *If the torsion of an almost-Hermitian connection Γ is totally skewsymmetric, then*

$$T(X, Y, Z) = (1/2)N(X, Y, Z) - (1/2)d\omega(JX, JY, JZ)$$

for all X, Y, Z .

Proof.

$$\begin{aligned} 2T_{ijk} &= (2\omega^{qn}\nabla_n^g\omega_{ij} - \omega^{qn}d\omega_{ijn})g_{qk} \\ &= 2J_k^n\nabla_n^g\omega_{ij} - J_k^n(\nabla_n^g\omega_{ij} + \nabla_j^g\omega_{ni} + \nabla_i^g\omega_{jn}) \\ &= J_k^n\nabla_n^g\omega_{ij} - J_k^n\nabla_j^g\omega_{ni} - J_k^n\nabla_i^g\omega_{jn} \\ &= J_k^n\nabla_n^g\omega_{ij} - J_i^n\nabla_j^g\omega_{kn} + J_j^n\nabla_i^g\omega_{kn} \\ &= -J_k^n\nabla_n^g\omega_{ji} - J_i^n\nabla_n^g\omega_{kj} - J_j^n\nabla_n^g\omega_{ik} + J_i^n\nabla_n^g\omega_{kj} - J_j^n\nabla_n^g\omega_{ki} - J_i^n\nabla_j^g\omega_{kn} + J_j^n\nabla_i^g\omega_{kn} \\ &= -J_k^n\nabla_n^g\omega_{ji} - J_i^n\nabla_n^g\omega_{kj} - J_j^n\nabla_n^g\omega_{ik} + N_{ijk}. \end{aligned}$$

Using the fact that $\omega_{in}\nabla_q^gJ_j^n = -J_j^n\nabla_q^g\omega_{in}$, we have

$$J_k^n\nabla_n^g\omega_{ji} = J_k^n g_{jr}\nabla_r^gJ_i^r = J_k^n (J_j^s\omega_{sr})\nabla_n^gJ_i^r = -J_k^n J_j^s J_i^r \nabla_n^g\omega_{sr}.$$

Permuting the indices i, j, k gives us

$$\begin{aligned} 2T_{ijk} &= (\nabla_t^q\omega_{sr} + \nabla_r^q\omega_{ts} + \nabla_s^q\omega_{rt})J_i^r J_j^s J_k^t + N_{ijk} \\ &= -d\omega_{rst}J_i^r J_j^s J_k^t + N_{ijk}. \end{aligned}$$

□

Using this expression for T together with (6), it is easy to see that M is:

Hermitian (J is integrable) $\leftrightarrow T(X, Y, Z) = -(1/2)d\omega(JX, JY, JZ)$,

Symplectic (ω is closed) $\leftrightarrow T = (1/2)N$, and

Kähler (ω is closed and g -parallel) $\leftrightarrow \Gamma$ is the Levi-Civita connection determined by g .

1.2. THE SYMPLECTIC CASE. As mentioned above, if M, ω is symplectic, then the connection Γ takes the form

$$\Gamma = L(g) + \bar{g}(T) + \omega^{-1}\nabla^g\omega - \bar{\omega}\bar{g}(T). \quad (7)$$

Applying (5) to ω and Γ , we see that the condition $\nabla^\Gamma\omega = 0$ is equivalent to

$$\begin{aligned} 0 &= \partial\omega - \omega(\bar{\omega}(\Gamma)) \\ &= \partial\omega - \omega(\bar{\omega}(\Pi)) - \omega(\bar{\omega}(T)) \\ &= \partial\omega - \omega(\bar{\omega}(L(g))) - \omega(\bar{\omega}(\bar{g}(T))) - \omega(\bar{\omega}(T)) \\ &= \nabla^g\omega - \omega(\bar{\omega}(\bar{g}(T))) - \omega(\bar{\omega}(T)). \end{aligned}$$

However, $0 = \nabla^g\omega - \omega(\bar{\omega}(\bar{g}(T))) - \omega(T)$. Thus we obtain the following condition on T :

$$\bar{\omega}(T) = T \quad \text{or} \quad (\bar{\omega} - I)T = 0.$$

REMARK. *This result can be derived directly from the condition $\nabla^\Gamma\omega = 0$ together with the Jacobi condition for ω , and is easily seen to be equivalent to the following cyclic condition on the indices of the tensor $T\omega$,*

$$T_{ij}^s\omega_{sk} + T_{ki}^s\omega_{sj} + T_{jk}^s\omega_{si} = 0.$$

Thus, we may substitute $\bar{g}(\bar{\omega}(T))$ for $\bar{g}(T)$ in (7). Writing the difference $\bar{g}(\bar{\omega}(T)) - \bar{\omega}(\bar{g}(T))$ as $[\bar{g}, \bar{\omega}](T)$, we arrive at the following

PROPOSITION. *A linear connection Γ on a symplectic-Riemannian manifold (M, g, ω) which preserves both g and ω has the form*

$$\Gamma = L(g) + \omega^{-1} \nabla^g \omega + [\bar{g}, \bar{\omega}](T).$$

2. Necessary Conditions on the structure of (M, g, P)

It is known [5] that if M is a Kähler manifold, then the Kähler form is parallel with respect to the Levi-Civita connection L on M defined by the Kähler metric, in which case (1) clearly holds (with $\Gamma = L$). In this section we will discuss a partial converse to this fact due to M. Shubin.

2.1. SHUBIN'S THEOREM. On a manifold M , let g_0 be a Riemannian metric and let $\omega = P^{-1}$ be an almost-symplectic form (non-degenerate and skew-symmetric). Let $L(g_0)$ denote the Levi-Civita connection associated with g_0 , and let $K = g_0 + \omega$. We denote the covariant derivatives with respect to $L(g_0)$ by ∇^0 . The following theorem is a reformulation of a result by Shubin [8], and its proof follows Shubin's proof, with some variations.

THEOREM. *If (M, g_0, ω) is an almost-symplectic Riemannian manifold, and $\nabla^0 K = 0$, then there exists a complex structure J on M such that the metric g defined by $g(X, Y) = \omega(X, JY)$ is parallel with respect to g_0 (thus $L(g) = L(g_0)$), and defines a Kähler structure on M .*

Proof. First note that if $\nabla^0 K = 0$, then $\nabla^0 \omega = 0$. Since ∇^0 is symmetric, it follows (see remark 1.4 in [4]) that $d\omega = 0$, and so ω is symplectic. Now, any symplectic manifold [8] admits an almost-complex structure J defined by $J = A(-A^2)^{-1/2}$, where A is the linear operator defined by

$$g_0(AX, Y) = \omega(X, Y).$$

Since both g_0 and ω are parallel with respect to ∇^0 , it is clear that the operator A will also be parallel, thus $\nabla^0 J = 0$. The integrability of J then follows from the expression

$$N_J(X, Y) = (\nabla_{JX}^0 J)Y - (\nabla_{JY}^0 J)X + J(\nabla_X^0 J)X - J(\nabla_Y^0 J)Y$$

for the Nijenhuis torsion of J (see [1]).

The metric $g(X, Y) = \omega(X, JY)$ is Hermitian with respect to J . Therefore, it defines a Kähler structure on M . Furthermore, the equality $g_{ij} = \omega_{ik} J_j^k$ shows that $\nabla^0 g = 0$. The connection $L(g_0)$ is symmetric and compatible with g , so it must coincide with the Levi-Civita connection $L(g)$. \square

2.2. GENERALIZATION TO A DEGENERATE P . If the tensor P is degenerate, then we cannot construct the covector $\omega = P^{-1}$ on M . In order to deal with this possibility, we change setting from the cotangent to the tangent bundle.

With g_0 and ∇^0 as above, suppose that M is equipped with a (possibly degenerate) Poisson tensor P , and let $K = g_0^{-1} + P$. If $\nabla^0 K = 0$, then $\nabla^0 P = 0$ and M is a regular Poisson manifold with symplectic foliation $\mathcal{S}(M)$ defined by the kernel of P (see [9]). The restriction P_S of P to a symplectic leaf S is nondegenerate, and S is endowed with a symplectic form $\omega = P_S^{-1}$.

A classical result of Lichnerowicz [5] states that there exist local coordinates x^i along $\mathcal{S}(M)$ and y^i along \mathcal{N} (the transverse foliation orthogonal to $\mathcal{S}(M)$) in which

g_0 and ω have the form $g_0 = g' + g''$ where

$$g' = (g_0)_{ij}(y)dy^i dy^j, \quad g'' = (g_0)_{ij}(x)dx^i dx^j, \quad \omega = \omega_{ij}(x)dx^i \wedge dx^j.$$

By restricting ω and g'' to a symplectic leaf S , we are in the situation described by Shubin's Theorem above. Thus, we have a complex structure J which defines a Hermitian metric $g_s = g_{ij}(x)dx^i dx^j$ on S which is parallel with respect to g'' (and, therefore, with respect to g_0). We can extend J by 0 to all of M , and define a new metric \tilde{g} on M by the formula $\tilde{g} = g' + g_s$.

This metric is called a *partially Kähler* metric. It is parallel with respect to g_0 and, when restricted to the symplectic leaf S , is a Hermitian metric on S . In his book [9], Vaisman concludes from these remarks that “the parallel Poisson structures of a Riemannian manifold (M, g_0) are exactly those defined by the Kähler foliation of the g_0 -parallel partially-Kähler metrics of M (if any)”. One can view this statement as the following generalization of Shubin's Theorem.

THEOREM. *If $\nabla^0 K = 0$, then M is a regular Poisson manifold (with the Poisson tensor P), and there exists a complex structure J on the symplectic leaves of M such that the metric \tilde{g} defined above is parallel with respect to g_0 (thus $\nabla^{\tilde{g}} = \nabla^0$), and the restriction of \tilde{g} to the symplectic leaf S defines a Kähler foliation on M .*

3. Related Questions

We have shown that the preservation of both Riemannian and Poisson structures on M by a linear connection imposes certain conditions on the connection itself, as well as on the structure of the manifold (M, g, P) . In future work we will address some related questions, including: When can one guarantee the existence of a metriplectic connection on a manifold M , and is there an optimal or canonical choice of such a connection, similar to the canonical connection given in [3]?

REFERENCES

- [1] M. DeLeon and P. Rodrigues. *Methods of Differential Geometry in Analytical Mechanics*. Elsevier Science Pub., 1989.
- [2] T. Friedrich and S. Ivanov. *Parallel Spinors and Connections with Skew-Symmetric Torsion in String Theory*. Asian J. Math. 6 303-336, math.dg/0102142, 2002.
- [3] P. Gauduchon. *Hermitian Connections and Dirac Operators*. Bollettino U.M.I. (7) 11-B, Suppl. fasc. 2, 257-288, 1997.
- [4] I. Gelfand, V. Retakh, and M. Shubin. *Fedosov Manifolds*. Adv.Math. 136, 104-140, 1998.
- [5] A. Lichnerowicz. *Global Theory of Connections and Holonomy Groups*. Noordhoff Int'l Pub., 1976.
- [6] P. J. Morrison. *A Paradigm for Joined Hamiltonian and Dissipative Systems*. Physica 18D, 410-419, 1986.
- [7] J. A. Schouten. *Ricci-Calculus*. Springer-Verlang, Berlin, 1954.
- [8] M. Shubin. *A sequence of connections and a Characterization of Kahler Manifolds*. Contemporary Mathematics, AMS vol231, 265-270, 1999.
- [9] I. Vaisman. *Lectures on the Geometry of Poisson Manifolds*. BirkhauserVerlag, 1994.

DEPARTMENT OF MATHEMATICS & STATISTICS, PORTLAND STATE UNIVERSITY, PORTLAND, OR, U.S.

E-mail address: djf@pdx.edu