# Towards a General Theory of Elimination (and Optimization?)

TC Fraser, Tobias Fritz Perimeter Institute for Theoretical Physics June 7th, 2019

## 1 Preliminaries

#### 1.1 Hom-Functors

For a locally small category  $\mathscr{C}$ , the hom-functor of  $\mathscr{C}$  is a functor  $\operatorname{Hom}_{\mathscr{C}}: \mathscr{C}^{\operatorname{op}} \times \mathscr{C} \to \mathbf{Set}$  constructed in the following manner. Given objects  $a, b, c, \ldots \in \mathscr{C}_0$  of  $\mathscr{C}$ , the hom-functor  $\operatorname{Hom}_{\mathscr{C}}$  maps a pair of objects  $(a, b) \in (\mathscr{C}^{\operatorname{op}} \times \mathscr{C})_0 = \mathscr{C}_0 \times \mathscr{C}_0 = \mathscr{C}_0^2$  into the set  $^1$  of morphisms  $\mathscr{C}_1$  of  $\mathscr{C}$  with source a and target b. Therefore,  $\operatorname{Hom}_{\mathscr{C}^{\operatorname{op}}}(a, b)$  is the set of morphisms in  $\mathscr{C}$  of type  $a \to b$ . Given morphisms  $g^{\operatorname{op}} \in \operatorname{Hom}_{\mathscr{C}^{\operatorname{op}}}(a, c)$  and  $h \in \operatorname{Hom}_{\mathscr{C}}(b, d)$ , the hom-functor  $\operatorname{Hom}_{\mathscr{C}}$  constructs a function

$$\operatorname{Hom}_{\mathscr{C}}(g^{\operatorname{op}},h): \operatorname{Hom}_{\mathscr{C}}(a,b) \to \operatorname{Hom}_{\mathscr{C}}(c,d)$$

which takes a morphism  $f: a \to b \in \operatorname{Hom}_{\mathscr{C}}(a,b)$  and produces the morphism  $h \circ f \circ g: c \to d \in \operatorname{Hom}_{\mathscr{C}}(c,d)$ . Graphically,

$$\operatorname{Hom}_{\mathscr{C}}(g^{\operatorname{op}}, h) \left( \begin{array}{c} a \xrightarrow{f} b \end{array} \right) = c \xrightarrow{g} a \xrightarrow{f} b \xrightarrow{h} d$$

# 1.2 Adjoint Functors

Given two categories  $\mathscr C$  and  $\mathscr D$ , a pair of functors  $L:\mathscr C\to\mathscr D,R:\mathscr D\to\mathscr C$  are called an adjoint pair, denoted  $L\dashv R$  or

$$\mathscr{C} \xrightarrow{\perp} \mathscr{D}$$

if there exists a natural isomorphism  $\alpha$  between the following pair of hom-functors of type  $\mathscr{C}^{op} \times \mathscr{D} \to \mathbf{Set}$ :

$$\operatorname{Hom}_{\mathscr{D}}(L^{\operatorname{op}}(-),-) \stackrel{\alpha}{\simeq} \operatorname{Hom}_{\mathscr{C}}(-,R(-))$$

<sup>&</sup>lt;sup>1</sup>The collection of morphisms of type  $a \to b$  forms a set because  $\mathscr C$  is locally small.

This relationship can be depicted graphically as 2-cell (and its inverse) in Cat,

$$\mathcal{C}^{\mathrm{op}} \times \mathcal{D} \xrightarrow{I_{\mathscr{C}^{\mathrm{op}}} \times R} \mathcal{C}^{\mathrm{op}} \times \mathcal{C}$$

$$L^{\mathrm{op}} \times I_{\mathscr{D}} \xrightarrow{\alpha^{-1}} \operatorname{Hom}_{\mathscr{D}} \times \operatorname{\mathbf{Set}}$$

Concretely, the naturality of  $\alpha$  means that for every morphism  $(f^{\text{op}}:b\to a,g:c\to d)\in (\mathscr{C}^{\text{op}}\times\mathscr{D})_1$  the components  $\alpha_{(b,c)}$  and  $\alpha_{(a,d)}$  of  $\alpha$  make the following square commute:

## 1.3 Beck-Chevalley Conditions

The Beck-Chevalley Conditions are conditions that may or may not be satisfied by a quadruplet of functors F, H, G, K which form a natural isomorphism  $\alpha : KF \Rightarrow HG$  square:

$$\mathcal{A} \xrightarrow{F} \mathcal{B}$$

$$G \middle| \begin{array}{c} \alpha \middle/ & \downarrow \\ \downarrow & \downarrow \\ \mathcal{C} \xrightarrow{H} \mathcal{D}$$

To define the *left* Beck-Chevalley condition, one needs functors  $F_L: \mathscr{B} \to \mathscr{A}$  and  $H_L: \mathscr{D} \to \mathscr{A}$  which are respectively left adjoint functors to F and H,

$$\mathscr{A} \underbrace{\downarrow}_{F} \mathscr{B}, \qquad \mathscr{C} \underbrace{\downarrow}_{H} \mathscr{D}.$$

Using these left adjoint functors, it becomes possible to construct a natural transformation  $\beta: KH_L \Rightarrow GF_L$  from  $\alpha^2$ . Graphically,  $\beta$  can be identified as the outer cell of the following

<sup>&</sup>lt;sup>2</sup>The natural transformations  $\alpha$  and  $\beta$  are known as mates or conjugates.

diagram:



Although the natural transformation  $\alpha$  is assumed to be a natural isomorphism, the natural transformation  $\beta$  need not be; if  $\beta$  happens to be a natural isomorphism, then we say that the original square satisfies the *left* Beck-Chevalley condition<sup>3</sup>. The *right* Beck-Chevalley condition is defined analogously with functors  $F_R$ ,  $H_R$  which are respectively right adjoints  $F \dashv F_R$  and  $H \dashv H_L$ .

## 1.4 Cartesian Morphism

A morthpism  $\phi: e' \to e$  in  $\mathscr E$  is *cartesian* with respect to a functor  $P: \mathscr E \to \mathscr B$  if for every  $\psi: e'' \to e$  in  $\mathscr E$  and for every  $s: P(e'') \to P(e)$  such that  $P(\phi) \circ_{\mathscr B} g = P(\psi)$  (i.e. such that the second diagram commutes), there exists a unique morphism  $\sigma: e'' \to e'$  in  $\mathscr E$  such that  $\phi \circ_{\mathscr E} \sigma = \psi$  (i.e. such that the first diagram commutes):<sup>4</sup>



#### 1.5 Grothendieck Fibrations

A functor  $P: \mathscr{E} \to \mathscr{B}$  is a *Grothendieck fibration* if it satisfies the following "lifting" property that for every morphism  $f: b \to P(e)$  of  $\mathscr{B}$  (i.e. if the codomain of f is contained in the image of P), there exists a *cartesian* morphism  $\phi: e' \to e$  of  $\mathscr{E}$  in the fibered category  $\mathscr{E}_{P(e)}$  (i.e.  $P(\phi) = f$ ).

<sup>&</sup>lt;sup>3</sup>Are the left adjoints  $F_L$ ,  $H_L$  unique? If not, it might be better to say the original square satisfies the left Beck-Chevalley condition with respect to  $F_L$ ,  $H_L$ .

<sup>&</sup>lt;sup>4</sup>The definition and treatment of Cartesian morphisms found in the *Reformulations* section of https://ncatlab.org/nlab/show/Cartesian+morphism#CartInOrdCatReformulation is probably better suited here.

## 1.6 The Equivalence of Puesdofunctors and Fibrations

Given a functor  $P: \mathscr{E} \to \mathscr{B}$  which is also a Grothendieck fibration equipped with a clevage (i.e. a choice of cartesian morphism  $\phi \in \operatorname{Hom}_{\mathscr{E}}(e',e)$  for each  $f \in \operatorname{Hom}_{\mathscr{B}}(a,P(e))$  such that  $P(\phi) = f$ ), it is possible to construct a pseudofunctor (read weak 2-functor between weak 2-categories)  $\pi: \mathscr{B}^{\operatorname{op}} \to \mathbf{Cat}$ . In particular, for each object  $b \in \mathscr{B}_0$  is mapped to the sub-category  $\pi(b) = \mathscr{E}_b$  of  $\mathscr{E}$  whose objects are those which map to b under b and whose morphism are those which map to b under b; b is the fibre category over b with respect to b. For each morphism b in b, the pseudofunctor b maps b in b and onto a functor b in b in b which is defined accordingly:



Given an object  $e \in (\mathscr{E}_b)_0$ , the functor  $f^*$  finds the unique cartesian morphism  $\phi \in \operatorname{Hom}_{\mathscr{E}}(e', e)$  as specified by the cleavage and assigns  $f^*(e) = e'$ . Next, given a morphism  $\psi \in \operatorname{Hom}_{\mathscr{E}_b}(e, e'')$ , the functor  $f^*$  first finds the unique cartesian morphisms  $\phi \in \operatorname{Hom}_{\mathscr{E}}(e', e)$  and  $\phi' \in \operatorname{Hom}_{\mathscr{E}}(e''', e'')$ . Then, because  $g = \operatorname{id}_a$  completes the following diagram



and because  $\phi'$  is cartesian, there must exist a unique  $\psi' \in \operatorname{Hom}_{\mathscr{E}_a}(e',e''')$  such that  $\psi \circ \phi = \phi' \circ \psi'$ . For each  $\psi \in \operatorname{Hom}_{\mathscr{E}_b}(e,e'')$ , the functor  $f^*$  selects this unique morphism  $f^*(\psi) = \psi'$ . In summary, the pseudofunctor  $\pi : \mathscr{B}^{\operatorname{op}} \to \mathbf{Cat}$  induced by  $P : \mathscr{E} \to \mathscr{B}$  is defined on objects  $b \in \mathscr{B}_0$  as  $\pi(b) = \mathscr{E}_b$  and on morphisms  $f \in \mathscr{B}_1$  as  $\pi(f) = f^*$  and forms a functor [TODO: figure out the 'pseudo' part of the pseudofunctorality.].

# 1.7 Slice and Coslice Categories

Given a category  $\mathscr{C}$  and an object  $c \in \mathscr{C}_0$  of  $\mathscr{C}$  the *slice category* (or *over category*)  $\mathscr{C}/c$  is the "stuff in  $\mathscr{C}$  that is on top of c". Specifically, the objects of  $\mathscr{C}/c$  are all the morphisms  $f \in \mathscr{C}_1$  from  $\mathscr{C}$  whose codomain is  $\operatorname{cod}(f) = c$  (alternatively you could write

 $(\mathscr{C}/c)_0 = \operatorname{Hom}_{\mathscr{C}}(-,c)$ ). A morphism of  $\mathscr{C}/c$  between objects  $f: a \to c, g: b \to c \in (\mathscr{C}/c)_0$  is a commuting triangle completed by a third morphism  $h: a \to b \in \mathscr{C}_1$ :

$$a \xrightarrow{h} b$$

Composition of morphisms in  $\mathscr{C}/c$  is induced by the composition of morphisms in  $\mathscr{C}$ :

$$\begin{pmatrix}
y & \xrightarrow{n} z \\
f & \swarrow h
\end{pmatrix} \circ_{\mathscr{C}/c} \begin{pmatrix}
x & \xrightarrow{m} y \\
g & \swarrow f
\end{pmatrix} = g \downarrow f h$$

The assignment of an overcategory  $\mathscr{C}/c$  to each object c can be extended to a *slice functor*  $\mathscr{C}/(-):\mathscr{C}\to\mathbf{Cat}$  in the following sense. For objects  $c\in\mathscr{C}_0$ , the slice functor takes c to the slice category  $\mathscr{C}/c$ ; for morphisms  $f:a\to b\in\mathscr{C}_1$ , the slice functor takes f to the functor  $\mathscr{C}/f:\mathscr{C}/a\to\mathscr{C}/b$  defined graphically; for every morphism of  $\mathscr{C}/a$  (commuting triangle in  $\mathscr{C}$  over a), contruct the morphism of  $\mathscr{C}/b$  (commuting triangle in  $\mathscr{C}$  over b) as follows:



where the inner triangle is a morphism of  $\mathscr{C}/a$  and the outer triangle is a morphism of  $\mathscr{C}/b$  given by the functor  $\mathscr{C}/f$ .

Given a category  $\mathscr C$  and an object  $c \in \mathscr C_0$  of  $\mathscr C$  the coslice category (or under category)  $c/\mathscr C$  is the "stuff in  $\mathscr C$  that is underneath c". Specifically, the objects of  $c/\mathscr C$  are all the morphisms  $f \in \mathscr C_1$  from  $\mathscr C$  whose domain is  $\mathrm{dom}(f) = c$  (alternatively you could write  $(c/\mathscr C)_0 = \mathrm{Hom}_{\mathscr C}(c,-)$ ). A morphism of  $c/\mathscr C$  between objects  $f: c \to a, g: c \to b \in (c/\mathscr C)_0$  is a commuting triangle completed by a third morphism  $h: a \to b \in \mathscr C_1$ :

$$\begin{array}{c}
c\\
f\\
a \xrightarrow{h} b
\end{array}$$

Everything about coslice categories is defined as expected analogously to that of a slice categories. [TODO: determine how the details of the Grothendieck construction transform the slice (pseudo-)functor  $\mathscr{C}/(-):\mathscr{C}\to\mathbf{Cat}$  into the codomain fibration.]

### 1.8 The Pullback and Pushforward Functors

Given a category  $\mathscr{C}$  and a morphism  $f: a \to b \in \mathscr{C}_1$ , the image of f under the slice functor  $\mathscr{C}/(-)$  produces a functor  $\mathscr{C}/f: \mathscr{C}/a \to \mathscr{C}/b$  between slice categories of  $\mathscr{C}$  in the "same direction" as f TODO: confirm that  $\mathscr{C}/f$  is the pushforward functor  $f_!$  of  $f \in \mathscr{C}_1$ .

If the given category  $\mathscr{C}$  admits pullbacks, in becomes possible to define, for a morphism  $f: a \to b$  a pullback functor  $f^*: \mathscr{C}/b \to \mathscr{C}/a$ . Given a morphism in  $\mathscr{C}/b$  (commuting triangle in  $\mathscr{C}$  with base at b),



the pullback functor  $f^*: \mathscr{C}/b \to \mathscr{C}/a$  associated with f takes the objects  $g: c \to b, h: d \to b$  of  $\mathscr{C}/b$  (morphisms in  $\mathscr{C}$ ) completes the pullback squares associated with f



where a subscript notation  $g_f$  means "the pullback of g along f". Defining the action of  $f^*: \mathscr{C}/b \to \mathscr{C}/a$  on objects to be  $f^*g = g_f$  and  $f^*h = h_f$ , the action on morphisms in  $\mathscr{C}/b$  is defined by composing the pullback squares with the commuting triangle morphism:



The commuting triangle in  $\mathscr{C}/a$  appearing at the bottom is completed by a unique morphism [TODO: why does this morphism need to be unique and exist?] denoted to be  $f^*k$  ( $\neq k_f$  obviously). The functoriality of  $f^*$  has a simple proof found here https://proofwiki.org/wiki/Pullback\_Functor\_is\_Functor.

# 1.9 Functors of Monoidal Categories

[TODO]

# 1.10 Frobenius Reciprocity

[TODO]