

Análise Descritiva dos Dados

Luciano Barbosa

Contexto

- Proposta pelo estatístico John Tukey
- Etapa que deve preceder a criação de modelos

Motivação

- Entender os dados
- Encontrar problemas

Tipos de Dados

- Categórico
 - Binário: 2 categorias (ex: manhã ou noite)
 - Nominal: várias categorias (ex.: cores)
 - Ordinal: ordem importa (ex.: dia do mês)
- Contínuo
 - Ex.: peso, tempo para realizar uma tarefa etc.

Dimensionalidade dos Dados

- Univariado
- Bivariado
- Multi-variado

Resumos Numéricos dos Dados

- Medidas de valor central: ponto central ao redor do qual os dados estão distribuídos
 - Ex: média, mediana
- Medidas de variabilidade: descreve como os dados estão distribuídos ou quão distante estão do centro
 - Variância e desvio padrão
- Medidas relativas: descreve posições relativas de pontos nos dados
 - Quartil e percentil

Medidas de valor central: Média

$$\overline{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Medidas de valor central: Mediana

- Valor na metade dos valores ordenados
- Se o número de valores for ímpar, usa-se o valor médio
- Se for par, usam-se os dois valores na metade e calcule-se a média
- Ex: 17, 19, 21, 22, 23, 23, 23, 38
 - Mediana = (22+23)/2 = 22.5

Onde Usar Média ou Mediana?

- Média: distribuições simétricas sem outliers
- Mediana: distribuições não simétricas ou dados com outliers

Mac

Medidas de valor central: Moda

- Valor mais frequente de um atributo
- Usada para dados categóricos ou numéricos
- Bimodal: dois atributos mais frequentes
- Multimodal: muitos atributos mais frequentes

Comparação: Média, Mediana e Moda

Comparison of common averages of values { 1, 2, 2, 3, 4, 7, 9 }

Туре	Description	Example	Result
Arithmetic mean	Sum of values of a data set divided by number of values: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	(1+2+2+3+4+7+9) / 7	4
Median	Middle value separating the greater and lesser halves of a data set	1, 2, 2, 3 , 4, 7, 9	3
Mode	Most frequent value in a data set	1, 2 , 2 , 3, 4, 7, 9	2

Medidas de Variabilidade: Variância

 Média da diferença dos valores com relação à média

$$\sigma^2 = \frac{\sum (x_r - \mu)^2}{n}$$

- Elevado a 2 elimina números negativos
- Valores absolutos não possui boas propriedades matemáticas

Medidas de Variabilidade: Desvio Padrão

- Variância é difícil de interpretar
- O que significa uma variância de 10.8 ou 2.2
- Padronização da variância: desvio padrão
- Mesma unidade dos dados originais
- Raiz quadrada da variância

$$\sigma = \sqrt{\frac{\sum (\mathbf{x_r} - \boldsymbol{\mu})^2}{\mathbf{n}}}$$

Exemplo: Peso de Ovos

Weight (x)	(x - x̄)	$(x - \overline{x})^2$
60	1	1
56	-3	9
61	2	4
68	9	81
51	-8	64
53	-6	36
69	10	100
54	-5	25
472		320

$$S = \sqrt{\frac{\sum (x - \overline{x})^2}{n}}$$
$$= \sqrt{\frac{320}{8}}$$
$$= 6.32 \text{ grams}$$

Desvio Padrão

Se a distribuição é próxima à gaussiana

Medidas Relativas: Quantil

 Quantis: dividem os valores em intervalos com a mesma frequência (mesma quantidade de elementos)

Mediana: 2-quantil

Quartil: 4-quantil

Percentil: 100-quantil

• IQR (amplitude interquartile): Q₃ − Q₁

Exemplo: IQR

Medidas de Variabilidade: Covariância

- Avalia a variância conjunta de dois atributos (bivariada)
- Se a variação dos valores de um atributo acompanha a do outro
- Covariância positiva: valores altos para um atributo X estão associados a valores altos para outro atributo Y
- Covariância negativa: X aumenta Y diminui
- Zero: ausência de relação

Covariância

COVARIANCE

Cln.ufpe.br

Covariância

A covariância (amostral) entre dois atributos X
 e Y:

$$cov(X,Y) = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{N - 1}$$

Economic Growth % (x _i)	S & P 500 Returns % (y _i)
2.1	8
2.5	12
4.0	14
3.6	10

Exemplo

Economic Growth % (x _i)	S & P 500 Returns % (y _i)
2.1	8
2.5	12
4.0	14
3.6	10

$$\frac{\overline{x}}{\overline{y}} = 3.1$$

$$COV(x,y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

$$= \frac{(2.1 - 3.1)(8 - 11) + \dots}{4-1}$$

$$= \frac{(-1)(-3) + (-0.6)(1) + (0.9)(3) + \dots}{3}$$

$$= \frac{3 + (-0.6) + 2.7 + (-0.5)}{3}$$

$$= \frac{4.6}{3}$$

$$= 1.53$$

Correlação

- Covariância mostra se atributos se relacionam positivamente ou negativamente mas não o grau que eles se relacionam
- Correlação padroniza a medida de relacão entre os atributos:
 - Valores entre 1 e -1
 - 0: sem correlação

Cln.ufpe.br

Correlação de Pearson

- Normaliza a covariância pelo desvio padrão dos atributos
- Suposições:
 - Variáveis seguem uma gaussiana
 - Variáveis contínuas
 - Linearidade
- Quantifica a existência de uma relação linear entre as variáveis.

$$\rho(X,Y) = \frac{cov(X,Y)}{\sigma(X)\sigma(Y)}$$

Exemplo: Correlação de Pearson

Economic Growth % (x _i)	S & P 500 Returns % (y _i)
2.1	8
2.5	12
4.0	14
3.6	10

$$r_{(x,y)} = \frac{COV(x,y)}{s_x s_y}$$

$$r_{(x,y)} = \frac{1.53}{(.90)(2.58)}$$
= .66

Correlação de Spearman

- Não paramétrico: atributos são relacionados por qualquer função monotônica
- Variáveis podem ser ordinais

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

- d²: quadrado da diferença entre os ranqueamentos dos atributos
- n: número de instâncias

Exemplo: Correlação de Spearman

	Marks									
English	56	75	45	71	62	64	58	80	76	61
Maths	66	70	40	60	65	56	59	77	67	63

Correlação de Spearman

Ordeno cada atributo e gero um ranking

	Maths (mark)	Rank (English)	Rank (maths)	d	d ²
56	66	9	4	5	25
75	70	3	2	1	1
45	40	10	10	0	0
71	60	4	7	3	9
62	65	6	5	1	1
64	56	5	9	4	16
58	59	8	8	0	0
80	77	1	1	0	0
76	67	2	3	1	1
61	63	7	6	1	1

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

$$\rho = 1 - \frac{6 \times 54}{10(10^2 - 1)}$$

$$\rho = 1 - \frac{324}{990}$$

$$\rho = 1 - 0.33$$

$$\rho = 0.67$$

Uso em Dados Urbanos

Exercício

- Dataset: https://github.com/if1015-datascience/material/blob/ghpages/data/recife.csv
- Computar os valores abaixo para os campos numéricos:
 - Média: mean
 - Mediana: median
 - Moda: mode
 - Desvio padrão: std
 - Quantis: describe
- Computar covariância e correlações entre colunas:
 - Covariânca: cov
 - Correlação de pearson: corr(method=pearson)
 - Correlação de spearman: corr(method=spearman)
- Plotar
 - Histograma: df['col'].hist()
 - Boxplot: df.boxplot(column=['col'])
 - Scatterplot: df.plot.scatter(x='col1',y='col2')