Table 9-5 on page 63 shows reset and Interrupt Vectors placement for the various combinations of BOOTRST and IVSEL settings. If the program never enables an interrupt source, the Interrupt Vectors are not used, and regular program code can be placed at these locations. This is also the case if the Reset Vector is in the Application section while the Interrupt Vectors are in the Boot section or vice versa.

Table 9-5. Reset and Interrupt Vectors Placement in ATmega168P⁽¹⁾

BOOTRST	IVSEL	Reset Address	Interrupt Vectors Start Address
1	0	0x000	0x002
1	1	0x000	Boot Reset Address + 0x0002
0	0	Boot Reset Address	0x002
0	1	Boot Reset Address	Boot Reset Address + 0x0002

Note: 1. The Boot Reset Address is shown in Table 24-7 on page 289. For the BOOTRST Fuse "1" means unprogrammed while "0" means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in ATmega168P is:

Address Label	s Code		Comments
0x0000	jmp	RESET	; Reset Handler
0x0002	jmp	EXT_INTO	; IRQ0 Handler
0x0004	jmp	EXT_INT1	; IRQ1 Handler
0x0006	jmp	PCINT0	; PCINTO Handler
0x0008	jmp	PCINT1	; PCINT1 Handler
0x000A	jmp	PCINT2	; PCINT2 Handler
0x000C	jmp	WDT	; Watchdog Timer Handler
0x000E	jmp	TIM2_COMPA	; Timer2 Compare A Handler
0x0010	jmp	TIM2_COMPB	; Timer2 Compare B Handler
0x0012	jmp	TIM2_OVF	; Timer2 Overflow Handler
0x0014	jmp	TIM1_CAPT	; Timer1 Capture Handler
0x0016	jmp	TIM1_COMPA	; Timer1 Compare A Handler
0x0018	jmp	TIM1_COMPB	; Timer1 Compare B Handler
0x001A	jmp	TIM1_OVF	; Timer1 Overflow Handler
0x001C	jmp	TIMO_COMPA	; TimerO Compare A Handler
0x001E	jmp	TIMO_COMPB	; TimerO Compare B Handler
0x0020	jmp	TIMO_OVF	; TimerO Overflow Handler
0x0022	jmp	SPI_STC	; SPI Transfer Complete Handler
0x0024	jmp	USART_RXC	; USART, RX Complete Handler
0x0026	jmp	USART_UDRE	; USART, UDR Empty Handler
0x0028	jmp	USART_TXC	; USART, TX Complete Handler
0x002A	jmp	ADC	; ADC Conversion Complete Handler
0x002C	jmp	EE_RDY	; EEPROM Ready Handler
0x002E	jmp	ANA_COMP	; Analog Comparator Handler
0x0030	jmp	TWI	; 2-wire Serial Interface Handler
0x0032	jmp	SPM_RDY	; Store Program Memory Ready Handler
;			
$0 \times 0033 $ RESET:	ldi	r16, high(RAM	END); Main program start

