Relational Algebra

R & G, Chapter 4

By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more advanced problems, and, in effect, increases the mental power of the race.

-- Alfred North Whitehead (1861 - 1947)

Relational Query Languages

- <u>Query languages</u>: Allow manipulation and retrieval of data from a database.
- · Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for much optimization.
- Query Languages != programming languages!
 - QLs not expected to be "Turing complete".
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:

<u>Relational Algebra</u>: More operational, very useful for representing execution plans.

<u>Relational Calculus</u>: Lets users describe what they want, rather than how to compute it. (Non-procedural, <u>declarative</u>.)

☐ Understanding Algebra & Calculus is key to understanding SQL, query processing!

Preliminaries

- A query is applied to relation instances, and the result of a query is also a relation instance.
 - Schemas of input relations for a query are fixed (but query will run over any legal instance)
 - The schema for the result of a given query is also fixed. It is determined by the definitions of the query language constructs.
- · Positional vs. named-field notation:
 - Positional notation easier for formal definitions, named-field notation more readable.
 - Both used in SQL
 - Though positional notation is not encouraged

Relational Algebra: 5 Basic Operations

- <u>Selection</u> (σ) Selects a subset of *rows* from relation (horizontal).
- <u>Projection</u> (π) Retains only wanted **columns** from relation (vertical).
- <u>Cross-product</u> (×) Allows us to combine two relations.
- <u>Set-difference</u> () Tuples in r1, but not in r2.
- <u>Union</u> (∪) Tuples in r1 or in r2.

Since each operation returns a relation, operations can be *composed!* (Algebra is "closed".)

Example Instances R1

 sid
 bid
 day

 22
 101
 10/10/96

 58
 103
 11/12/96

<u>bid</u>	bname	color
	Interlake	
	Interlake	red
	Clipper	green
104	Marine	red

S1	<u>sid</u>	sname	rating	age
	22	dustin	7	45.0
	31	lubber	8	55.5
	58	rusty	10	35.0

<i>S</i> 2	<u>sid</u>	sname	rating	age
	28	yuppy	9	35.0
	31	lubber	8	55.5
	44	guppy	5	35.0
	58	rusty	10	35.0

Projection (π)

- Examples: $\pi_{age}(S2)$; $\pi_{sname,rating}(S2)$
- Retains only attributes that are in the "projection list".
- Schema of result:
 - exactly the fields in the projection list, with the same names that they had in the input relation.
- Projection operator has to eliminate duplicates (How do they arise? Why remove them?)
 - Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it. (Why not?)

Projection (π)

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

S2

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

 $\pi_{sname,rating}(S2)$

age
35.0
55.5

 $\pi_{age}(S2)$

Selection (σ)

- Selects rows that satisfy selection condition.
- · Result is a relation.
- Schema of result is same as that of the input relation.
- · Do we need to do duplicate elimination?

sid	l sname	rating	ag	e
28	yuppy	9	35	.0
31	lubber	8	55	.5
44	guppy	5	35	.0
58	rusty	10	35	5.0
	σ .	_c (S2)	

rating	$>8^{(S2)}$	2)	π_{sna}	me,rating	$\sigma_{rating>}$	·8 ^(S2))
rusty	10	35.0		rusty	10	
ubber	0 5	33.3		yuppy	9	
yuppy	9	55.0		sname	rating	

Union and Set-Difference

- Both of these operations take two input relations, which must be <u>union-compatible</u>:
 - Same number of fields.
 - `Corresponding' fields have the same type.
- For which, if any, is duplicate elimination required?

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

S2

|yuppy |9 $S1 \cup S2$

rating

10

5

age

45.0

55.5

35.0

35.0

35.0

sname

dustin

lubber

rusty

guppy

58

44

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

sid	sname	rating	age		
22	dustin	7	45.0		
S1-S2					

S1

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age			
28	yuppy	9	35.0			
44	guppy	5	35.0			
S2 – S1						

S2

Cross-Product

- S1 \times R1: Each row of S1 paired with each row of R1.
- Q: How many rows in the result?
- Result schema has one field per field of S1 and R1, with field names `inherited' if possible.
 - May have a naming conflict: Both S1 and R1 have a field with the same name.
 - In this case, can use the *renaming operator*.

$$\rho$$
 (C(1 \rightarrow sid1,5 \rightarrow sid2), S1×R1)

Cross Product Example

	<u>sid</u>	<u>bid</u>	<u>day</u>
ĺ	22	101	10/10/96
	58	103	11/12/96

R1

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

 $S1 \times R1 =$

	(sid)	sname	rating	age	(sid)	bid	day
ĺ	22	dustin	7	45.0	22	101	10/10/96
	22	dustin	7	45.0	58	103	11/12/96
	31	lubber	8	55.5	22	101	10/10/96
	31	lubber	8	55.5	58	103	11/12/96
	58	rusty	10	35.0	22	101	10/10/96
	58	rusty	10	35.0	58	103	11/12/96

Compound Operator: Intersection

- In addition to the 5 basic operators, there are several additional "Compound Operators"
 - These add no computational power to the language, but are useful shorthands.
 - Can be expressed solely with the basic ops.
- Intersection takes two input relations, which must be union-compatible.
- · Q: How to express it using basic operators?

$$R \cap S = R - (R - S)$$

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

S2

sname rating age lubber 55.5 10 35.0 58 rusty

 $S1 \cap S2$

Compound Operator: Join

- · Joins are compound operators involving cross product, selection, and (sometimes) projection.
- Most common type of join is a "natural join" (often just called "join"). R ⋈S conceptually is:
 - Compute $R \times S$
 - Select rows where attributes that appear in both relations have equal values
 - Project all unique atttributes and one copy of each of the common ones.
- Note: Usually done much more efficiently than this.

Natural Join Example

<u>sid</u>	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

R1

<u>sid</u>	sname	rating	age			
22	dustin	7	45.0			
31	lubber	8	55.5			
58	rusty	10	35.0			
	S1					

S1 ⋈R1 =

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

Other Types of Joins

• Condition Join (or "theta-join"): $R\bowtie_{\mathcal{C}} S = \sigma_{\mathcal{C}}(R\times S)$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	58	103	11/12/96

$$S1 \bowtie_{S1.sid < R1.sid} R1$$

- Result schema same as that of cross-product.
- May have fewer tuples than cross-product.
- <u>Equi-Join</u>: Special case: condition c contains only conjunction of equalities.

Examples

Reserves

<u>sid</u>	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

	l
Sailors	

	<u>s10</u>	sname	rating	age
s	22	dustin	7	45.0
	31	lubber	8	55.5
	58	rusty	10	35.0

aid anoma motina

Boats

<u>bid</u>	bname	color
		Blue
102	Interlake	Red
103	Clipper	Green
104	Marine	Red

Find names of sailors who've reserved boat #103

- Solution 1: $\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$
- Solution 2: $\pi_{sname}(\sigma_{bid=103}(\text{Reserves}\bowtie Sailors))$

Find names of sailors who've reserved a red boat

• Information about boat color only available in Boats; so need an extra join:

$$\pi_{sname}((\sigma_{color = 'red'}Boats) \bowtie Reserves \bowtie Sailors)$$

* A more efficient solution:

$$\pi_{\mathit{sname}}(\pi_{\mathit{sid}}((\pi_{\mathit{bid}}\sigma_{\mathit{color} = \mathit{red}}, \mathit{Boats}) \bowtie \mathsf{Res}) \bowtie \mathit{Sailors})$$

⊠ A query optimizer can find this given the first solution!

Find sailors who've reserved a red or a green boat

 Can identify all red or green boats, then find sailors who've reserved one of these boats;

$$\rho \; (\textit{Tempboats}, (\sigma_{color = 'red' \; \lor \; color = 'green'} \; \textit{Boats}))$$

 π_{sname} (Tempboats \bowtie Reserves \bowtie Sailors)

Find sailors who've reserved a red and a green boat

• Cut-and-paste previous slide?

 $\rho(Temeloats, (constraints))$

 π_{sname} emphoats \bowtie eserves \bowtie uilors)

Find sailors who've reserved a red and a green boat

 Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that sid is a key for Sailors):

$$\rho \; (\textit{Tempred}, \; \pi_{\textit{sid}}((\sigma_{\textit{color} = '\textit{red}'} \; \textit{Boats}) \bowtie \; \mathsf{Re} \textit{serves}))$$

$$\rho \; (Tempgreen, \; \pi_{sid}((\sigma_{color='green'} \textit{Boats}) \bowtie \mathsf{Reserves}))$$

 $\pi_{\mathit{sname}}((\mathit{Tempred} \cap \mathit{Tempgreen}) \bowtie \mathit{Sailors})$

Summary

- Relational Algebra: a small set of operators mapping relations to relations
 - Operational, in the sense that you specify the explicit order of operations
 - A *closed* set of operators! Can mix and match.
- Basic ops include: σ , π , \times , \cup , —
- Important compound ops: \cap , \bowtie