2023年11月12日 8:58

1 CLRS 11.2-2

Consider a hash table with 9 slots and the hash function $h(k) = k \mod 9$. Demonstrate what happens upon inserting the keys 5, 28, 19, 15, 20, 33, 12, 17, 10 with collisions resolved by chaining.

假设hashtable为ht[1:9]

insert number	hash_number	is_collided	operation
5	5	false	ht[5] = Node(5)
28	1	false	ht[1] = Node(28)
19	1	true	N_19 := Node(19) N_19.next = ht[1] ht[1] = N_19
15	6	false	ht[6] = Node(15)
20	2	false	ht[2] = Node(20)
33	6	true	N_33 := Node(33) N_33.next = ht[6] ht[6] = N_33
12	3	false	ht[3] = Node(12)
17	8	false	ht[8] = Node(17)
10	1	true	N_10 := Node(10) N_10.next = ht[1] ht[1] = N_10

2 CLRS 11.4-1

Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash table of length m = 11 using open addressing. Illustrate the result of inserting these keys using linear probing with $h(k, i) = (k + i) \mod m$ and using double hashing with $h_1(k) = k$ and $h_2(k) = 1 + (k \mod (m - 1))$.

final result

hash_number	linear probing $h(k,i) = (k+i) \mod m$	double hashing $h(k,i) = h(k) + ih_2(k)$ od m $h_1(k) = k; h_2(k) = 1 + k \pmod{(m-1)}$		
0	22	22		
1	88	/		
2	/	59		
3	/	17		
4	4	4		
5	15	15		

6	28	28
7	17	88
8	59	/
9	31	31
10	10	10

3 CLRS 11.4-3 & 11.4-4

Consider an open-address hash table with independent uniform permutation hashing and no deletions.

- 1. Give upper bounds on the expected number of probes in an unsuccessful search and on the expected number of probes in a successful search when the load factor is 3/4 and when it is 7/8.
- 2. Show that the expected number of probes required for a successful search when $\alpha = 1$ (that is, when n = m), is H_m , the *m*th harmonic number.

$$unsuccess: E(N) \leq \frac{1}{1-\alpha} = 4 \left(when \alpha is \frac{3}{4} \right) = 8 \left(when \alpha is \frac{7}{8} \right)$$

$$success: E(N) \leq \frac{1}{\alpha} \ln \left(\frac{1}{1-\alpha} \right) = \frac{8}{3} \left(when \alpha is \frac{3}{4} \right) = \frac{24}{7} \left(when \alpha is \frac{7}{8} \right)$$

$$H_m = \sum_{n=1}^m \frac{1}{n}$$

$$when success, N_i = \frac{1}{1 - \frac{i-1}{m}},$$

$$E[X] = \frac{1}{n} \sum_{i=1}^n N_i = \frac{1}{n} \sum_{i=1}^n \frac{m}{m-i+1} = \sum_{k=1}^m \frac{1}{k} = H_m$$