

IST8303 3D Magnetometer Sensor

Datasheet

Table of Contents

1	GENERAL DESCRIPTION	3
2	BLOCK DIAGRAM, PACKAGE DIMENSION AND APPLICATION CIRCUIT	4
	2.1 Block diagram	4
	2.2 Package Dimensions and Pin Description	4
	2.3 Application Circuit	6
3	OPERATIONAL MODES AND FUNCTIONAL DESCRIPTIONS	7
	3.1 Three operational modes	7
	3.2 Interrupt function	7
	3.3 DRDY function	7
	3.4 IST8303 Read Process	8
4	ELECTRICAL SPECIFICATIONS	9
	4.1 Extreme Rating	9
	4.2 Recommended Operating Conditions	
	4.3 Electrical Specifications	9
	4.4 Magnetic Sensor Specifications	10
5	DIGITAL INTERFACE AND REGISTER	11
	5.1 I2C interface	11
	5.2 I2C Read Operation	11
	5.3 I2C Write Operation	12
	5.4 Register	13

1 General Description

The iSentek IST8303 is a 3-axis digital magnetometer sensor. It is an integrated chip with 3-axis magnetic sensors and controller ASIC. IST8303 provides an I2C digital output with fast mode up to 400kHz. The compact form factor is easy to surface mount for high-volume design and production.

Features

- Single chip 3-axis magnetic sensor
- I2C slave, Fast mode up to 400kHz
- Small form factor, 1.6x1.6x1.0mm, 12-pin BGA package
- Wide magnetic field range +/- 1600uT
- 14 bits data output
- Auto zero drift for anti magnetic interference
- Low power consumption
- Best performance/cost solution

Applications

Digital Compass
GPS/pedestrian Navigation
Augmented Reality Applications
Magnetometer

2 Block Diagram, Package Dimension and Application Circuit

2.1 Block diagram

Figure 2-1 Block Diagram

2.2 Package Dimensions and Pin Description

IST8303+ BGA Top view-

IST8303 BGA Side View₽

IST8303 Datasheet, Version 1.0

Pin	Name	Function
1	DRDY	Data ready
2	NC	Not use
3	SCL	I2C serial clock
4	SDA	I2C serial data
5	NC	Not use
6	DVDD	Power for I/O, 1.72~3.6
7	RSTN	Reset
8	C1	Set/Reset Function
9	CAD1	I2C Slave Address
10	CAD0	I2C Slave Address
11	VSS	GND
12	AVDD	Analog Power , 1.72~3.6V

2.3 Application Circuit

Figure 2-2 Application circuit

3 Operational Modes and Functional Descriptions

3.1 Operation modes

IST8303 has following operation modes:

- (1) Stand-By Mode
- (2) Single Measurement Mode
- (3) Continuous Measurement Mode

3.1.1 Stand-By Mode

In Stand-By mode, all internal circuit is turned off. All register can be accessed in Stand-By Mode. Data stored in Read/Write registers are remained. Register can be reset by soft reset.

3.1.1 Single Measurement Mode

In Single Measurement mode, the measured data stored to data registers. Then, IST8303 transits to stand-by mode automatically. On transition to stand-by mode, Control register 1(CNTL1[3:0]) turns to "0000". At the same time, DRDY bit in STAT1 turns to "1". This called "data ready". When any of measurement data register or STAT2 register is read, DRDY bit turns to "0".

3.1.1 Continuous Measurement Mode

When continuous measurement mode is set, sensor is measured periodically at different frequency. The measured data is stored in data registers and wait for the measurement period finish. When the next measurement timing comes, IST8303 automatically starts measurement again.

3.2 Interrupt function

Interrupt function is used for detect the extraordinary external magnetic field occur. When the measured output value is exceeding 16 Gauss, the INT register is enabled. INT register can be found in STAT2.

3.3 DRDY function

DRDY function is used to detect when the output data was updated. The DRDY pin is enabled to notice the data ready output. DRDY is changed to low after reading data in the output register.

3.4 IST8303 Read Process

(1) Read STAT1 register

- Polling STAT1 register bit 0
- DRDY: shows data ready or not
 - 0: no data ready
 - 1: data ready
- DOR: shows if any data has been skipped before the current data or not.
 - 0: no skipped data
 - 1: Skipped data

(2) Read Measurement Data

Read Register 0x03h~0x08h for X, Y and Z axis data. When data reading starts, DRDY bit and DOR bit turns to "0"

4 Electrical Specifications

4.1 Extreme Rating

For E compass

Parameter	Symbol	Limits	Unit
Storage Temperature	TSTG	-40 to +125	°C
Operating Temperature	TOPR	-20 to +85	°C
Analog Power Input Voltage	AVDD	+1.72 to +3.6	٧
I/O Power Voltage	DVDD	+1.72 to +3.6	V
Digital Input Voltage	VIN	-0.3 to DVDD+0.3	V
Electrostatic Discharge Voltage*1	VESD	-2000 to 2000	V
Latch Up Current	ALU	-100 to 100	mA

4.2 Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
Operating Temperature	TOPR	-20		+85	°C
Analog Power Input Voltage	AVDD	1.72	2.8	3.6	V
Digital Input Power Voltage	DVDD	1.72	1.80	3.6	V

4.3 Electrical Specifications

(Operating conditions: Ta=+25°C; AVDD=3.0V; VDDIO=1.8V; 1 μ F ceramic capacitors tied closely to VO and GND respectively.)

Parameter	Symbol	Conditions	Min.	Тур.	Max	Unit	
-----------	--------	------------	------	------	-----	------	--

IST8303

Operating current	IDD3A	Full operation, at				uA
		0.5 sps		18		
		1 sps		20		
		8 sps		72		
		10 sps		80		
		20sps		140		
		50 sps		320		
		100sps		600		
		200 sps		1200		
Standby current	ISTB			10		uA
Output data rate	ODR		8		200	Hz
(ODR)						
Input low voltage	VIL		0		VDDIO	V
					*30%	
Input high voltage	VIH		VDDIO		VDDIO	V
			*70%			
Output low voltage	VOL	IOL= +4mA	0		VDDIO	V
					*20%	
Output high voltage	VOH	IOH= -100uA	VDDIO		VDDIO	V
		(Except SCL and	*80%			
		SDA)				

4.4 Magnetic Sensor Specifications

(Operating conditions: Ta=+25 $^{\circ}$ C; AVDD=2.8V; VDDIO=2.8V; 4.7 μ F ceramic capacitors tied closely to C1 and GND respectively.)

Parameter	Symbol	Conditions	Min.	Тур.	Max	Unit
Dynamic Range	Mdr			±16		gauss
Linearity	Lin	within		1		%FS
		±3gauss				
Resolution	Reso			3		mG/LSB
Zero Guass Drift	ZGD			± 3		mG
Hystersis	HS			0.1		%FS

5 Digital Interface and Register

5.1 I2C interface

The interface for IST8303 follows the standard I2C definition guidelines with some additional protocol definitions. IST8303 support standard speed (100KHz) and fast speed (400KHz). Pull-up resistors (both in SDA and SCK lines) must be pulled up to 3.3K. The default I2C slave address is 0xE.

5.2 I2C Read Operation

Single Byte Read:

SA	Slave	ACK	Reg	ACK	SP	Slave	ACK	DATA	NA	ST
	Address+ RW		Address			Address+RW				

Figure 5-2-1 I2C Single Byte Read Operation

ACK: acknowledge, NA: not acknowledge, SA: START Condition, SP: Repeat Start Condition, ST: STOP Condition

Slave to Master

Master to Slave

Multiple Byte Reads:

SA	Slave	ACK	Reg	ACK	SP	Slave	ACK	DATA	ACK	DATA	NA	ST
	Address+		Address			Address+RW						
	RW											

Figure 5-2-2 I2C Multiple Byte Read Operation

ACK: acknowledge, NA: not acknowledge, SA: START Condition, SP: Repeat Start Condition, ST: STOP Condition ■:Slave to Master □:Master to Slave

5.3 I2C Write Operation

Single Byte Write:

SA	Slave Address +RW	ACK	Reg Address	ACK	DATA	ACK	ST

Figure 5-3-1 I2C Single Byte write Operation

ACK: acknowledge, NA: not acknowledge, SA: START Condition, SP: Repeat Start Condition, ST: STOP Condition ■:Slave to Master □:Master to Slave

Multiple Byte Writes:

SA	Slave Address	ACK	Reg Adderss	ACK	DATA	ACK	DATA	NA	ST
	+RW								

Figure 5-3-2 I2C Multiple Byte write Operation

ACK: acknowledge, NA: not acknowledge, SA: START Condition, SP: Repeat Start Condition, ST: STOP Condition

■:Slave to Master □:Master to Slave

5.4 Register

5.4.1 Customer Defined Register

Register name	Тур	I2C	Size	Info
		Addr	(bit)	
Who I am	R	00h	8	Device ID
More Info	R	01h	8	Information
Status Register 1	R	02h	8	Data Status
Output Value X_L	R	03h	8	Low byte for X-axis data
Output Value X_H	R	04h	8	High byte for X-axis data
Output Value Y_L	R	05h	8	Low byte for Y-axis data
Output Value Y_H	R	06h	8	High byte for Y-axis data
Output Value Z_L	R	07h	8	Low byte for Z-axis data
Output Value Z_H	R	08h	8	High byte for Z-axis data
Status Register 2	R	09h	8	Data Status
Control Register 1	R/W	0Ah	8	Chip Control setting 1
Control Register 2	R/W	0Bh	8	Chip Control setting 2
Output Value T_L	R	1Ch	8	Low byte for Temperature data
Output Value T_H	R	1Dh	8	High byte for Temperature data

Table 5.1 Control/Status Register Map defined by Customer

5.4.2 Who I Am Register

WLA(0x00)						
Bit		Description		Attr	Default	
7:0	Device ID			R	TBD	

This Register provides device ID information

5.4.3 More Info Register

INFO(0x01)					
Bit	Description	Attr	Default		
7:0	More Information	R	TBD		

This Register provides extra information about IST8303

5.4.4 Status Register 1

STAT1 (0x02)				
Bit	Description	Attr	Default	
7:2	Reserved			
1	DOR: Turns to 1 when data has been skipped. Bit is	R	0	
	release after any output data register read			
	0: no data overrun			
	1: data overrun			
0	DRDY: Data ready pin	R	0	
	0: no data ready			
	1: data is ready			
	This status bit is following physical signal appearance,			
	expect the polarity control (refer to DRP bit in CNTL2			
	register)			
	If data ready function enable bit is not set (refer to DREN			
	bit in CNTL2 register), this bit is zero			

5.4.4 Output data registers

The output register 0x03h~0x08h contain X, Y, Z Axis measurement data. Measurement data is stored in two's complement.

DATAXL(0x03)					
Bit	Description	Attr	Default		
7:0	Low Byte of X-axis data	R			

DATAXH(0x04)					
Bit	Description	Attr	Default		
7:0	High Byte of X-axis data	R			

DATAYL(0x05)					
Bit	Description	Attr	Default		
7:0	Low Byte of Y-axis data	R			

DATAYH(0x06)					
Bit	Description	Attr	Default		
7:0	High Byte of Y-axis data	R			

DATAZL(0x07)					
Bit	Description	Attr	Default		
7:0	Low Byte of Z-axis data	R			

DATAZH(0x08)						
Bit	Description	Attr	Default			
7:0	High Byte of Z-axis data	R				

5.4.5 Status register 2

This Register Control the ADC output resolution and also has INT register for customer use.

STAT2(0x09)					
Bit	Description	Attr	Default		
7	Reserved				
6	Reserved	R	0		
	Reserved				
5	Reserved	R	0		
4	Reserved	R	0		
3	INT : Interrupt bit. When interrupt event occurs, this bit will	R	0		
	set to 1				
2	Reserved	R	0		
1	Reserved	R	0		
0	Reserved	R	0		

5.4.6 Control setting register 1

Controls and adjusts main parameter.

	CNTL1(0x0A)					
Bit	Description	Attr	Default			
7:4	Reserved					
3:0	Mode: Operating mode setting	R/W	0			
	0: Stand-By mode					
	1: Single measurement mode					
	2: Continuous measurement mode with ODR 8Hz					
	3: Continuous measurement mode with ODR 10Hz					
	4: Reserved					
	5: Continuous measurement mode with ODR 20Hz					
	6: Continuous measurement mode with ODR 100Hz					
	7: Continuous measurement mode with ODR 50Hz					
	8: Reserved					
	9: Continuous measurement mode with ODR 0.5Hz					
	10: Continuous measurement mode with ODR 1Hz					
	11: Continuous measurement mode with ODR 200Hz					

		ı
12~15: Reserved		

5.4.7 Control setting register 2

Controls and adjusts main parameter set.

CNTL2(0x0B)						
Bit	Description	Attr	Default			
7:4	Reserved					
3	DREN : Data ready function enable:	R/W	1			
	0:disable					
	1:enable					
	Master switch for DRDY output pin					
2	DRP: DRDY signal active	R/W	1			
	0: Low					
	1: High					
1	Reserved					
0	SRST: Soft reset, perform the same routine as POR	R/W	0			
	0: no action					
	1: start immediately POR routine					
	This bit set to zero after POR routine					

5.4.9 Temperature sensor output register

Output Data Register use 2's complement format

DATATL(0x1C)							
Bit	Description	Attr	Default				
7:0	Low Byte of Temperature data	R	0				

DATATH(0x1D)						
Bit	Description	Attr	Default			
7:0	High Byte of Temperature data	R	0			