<u>2004 г</u> 9 класс.

Задание 1. «Автокран»

массы $M = 15 \,\text{T}$ Автокран с габаритами кузова $a \times 2a = 3.0$ m $\times 6.0$ m имеет легкую выдвижную телескопическую стрелу максимальной длиной $l = 30 \,\mathrm{M}$, которая крепится в центре задней половины крана. В положении стрела крана горизонтально вдоль его оси симметрии. Поворот башни крана от оси симметрии будем характеризовать углом φ , который измеряется в горизонтальной плоскости. Угловую высоту стрелы крана будем характеризовать углом α , образуемым стрелой с плоскостью горизонта.

в) Для увеличения грузоподъемности и безопасности автокрана применяются боковые упоры «на грунт», выдвигаемые на расстояние Δa с боковых сторон крана. При какой длине упора кран сможет поднять груз равный собственной массе, если $\alpha = 45^{\circ}$? При решении считайте, что массой выдвижной телескопической стрелы и упоров крана можно пренебречь. Центр масс крана находится на оси его симметрии.

Ускорение свободно падения считайте равным $g = 9.8 \frac{M}{c^2}$.

Задание 2. «Пробирка»

В длинной вертикальной цилиндрической трубе, заполненной водой, находится цилиндрическая пробирка, диаметр которой немного меньше внутреннего диаметра трубки. Толщина стенок пробирки пренебрежимо мала. Если пробирка пуста, то она равномерно поднимается со скоростью v_0 , если пробирку полностью заполнить водой, то она будет равномерно опускаться со скоростью v_1 .

- 1. Качественно объясните характер движения пробирки. Как изменятся указанные скорости движения, если взять пробирку такой же массы и такого же внешнего радиуса, но в два раза длиннее?
- 2. Найдите зависимость скорости пробирки от степени ее наполнения η водой (под степенью наполнения следует понимать отношение высоты заполненной части пробирки h к ее длине l: $\eta = \frac{h}{l}$). Постройте график этой зависимости.