# POLYTECH°

# Supervised machine learning Connecting local models The case of chains



#### Romain Raveaux

romain.raveaux@univ-tours.fr

Maître de conférences

Université de Tours

Laboratoire d'informatique (LIFAT)

Equipe RFAI





### Content:

- This presentation is a follow up to « Supervised machine learning : the case of independent samples »
  - <a href="http://romain.raveaux.free.fr/document/courssupervisedmachinelearningRaveaux.pdf">http://romain.raveaux.free.fr/document/courssupervisedmachinelearningRaveaux.pdf</a>
- The case of a chain :
  - Probabilistic models connected to form a chain:
    - A first step beyond Independent and Identically Distributed (I.I.D)
  - Models
  - Inference
  - Learning
  - Directed and undirected models

## Independent and Identically Distributed

- A set of samples :  $\{x_i\}_{i=1}^M = x_1, \dots, x_M$ 
  - This set is described by a single distribution. Pr(x)
    - Each sample is drawn from Pr(x)
  - Each sample is independent  $Pr(x_i|x_{i-1}) = Pr(x_i)$
  - The joint distribution  $Pr(x_1, ..., x_M)$  is the product over all data points of the probability distribution evaluated at each data point.

$$Pr(x_1, \cdots, x_M) = \prod_{i=1}^{M} Pr(x_i)$$









• • • • •

## Beyond: Independent and Identically Distributed

- For many applications, however, the i.i.d. assumption will be a poor one.
  - Describe sequential data (time series)
    - the rainfall measurements on successive days at a particular location
    - the sequence of characters in an English sentence
    - the daily values of a currency exchange rate

$$Pr(x_1, \dots, x_M) = \prod_{i=1}^{M} Pr(x_i | x_1, \dots, x_{M-1})$$

## A first-order Markov chain

- Markov Assumption :
  - The future depends only on the present.

$$Pr(x_1, \dots, x_M) = Pr(x_1) \prod_{i=2}^{M} Pr(x_i|x_{i-1})$$



$$Pr(x_i|x_1,\cdots,x_{M-1}) = Pr(x_i|x_{i-1})$$

## Ok let's go back on a generative model.

• The product rule gives us : Pr(Y,X)= Pr(X|Y)Pr(Y)

$$Pr(y_1, \dots, y_M; x_1, \dots, x_M) = Pr(x_1, \dots, x_M | y_1, \dots, y_M).Pr(y_1, \dots, y_M)$$

$$Pr(x_1, \cdots, x_M | y_1, \cdots, y_M) = \prod_{i=1}^M Pr(x_i | y_i)$$

$$Pr(y_1, \cdots, y_M) = Pr(y_1) \prod_{i=2}^{M} Pr(y_i|y_{i-1})$$

## Ok let's go back on a generative model.

• Let's put it together

$$Pr(y_1, \dots, y_M; x_1, \dots, x_M) = Pr(x_1, \dots, x_M | y_1, \dots, y_M).Pr(y_1, \dots, y_M)$$

$$Pr(y_1, \dots, y_M; x_1, \dots, x_M) = \left[\prod_{i=1}^{M} Pr(x_i|y_i)\right] \left[Pr(y_1) \prod_{i=2}^{M} Pr(y_i|y_{i-1})\right]$$



## I know this model

- This is known as a
  - Hidden Markov model (HMM) when  $y_i$  is discrete
  - Kalman Filter model when  $y_i$  is continuous

## Inference for HMM: maximum a posteriori (MAP)

Inference with a generative model:

Use the baye's rule to obtain the posterior distribution

$$Pr(y_1, \dots, y_M | x_1^{new}, \dots, x_M^{new}) = \frac{Pr(x_1^{new}, \dots, x_M^{new} | y_1, \dots, y_M).Pr(y_1, \dots, y_M)}{Pr(x_1^{new}, \dots, x_M^{new})}$$

### Inference for HMM

#### Where

- Ui is a **unary** term and depends only on a single variable  $y_i$  and
- Pi is a **pairwise** term, depending on two variables  $y_i$  and  $y_{i-1}$ .

How can we solve this optimization problem?

- can be solved in polynomial time using the Viterbi algorithm which is an example of dynamic programming.
- We consider that all the distributions are known

$$\begin{split} Pr(y_{1},\cdots,y_{M}|x_{1}^{new},\cdots,x_{M}^{new}) &= \frac{Pr(x_{1}^{new},\cdots,x_{M}^{new}|y_{1},\cdots,y_{M}).Pr(y_{1},\cdots,y_{M})}{Pr(x_{1}^{new},\cdots,x_{M}^{new})} \\ &\hat{y_{1}},\cdots,\hat{y_{M}} = arg\max_{y_{1},\cdots,y_{M}} \left[ Pr(y_{1},\cdots,y_{M}|x_{1}^{new},\cdots,x_{M}^{new}) \right] \\ &\hat{y_{1}},\cdots,\hat{y_{M}} = arg\max_{y_{1},\cdots,y_{M}} \left[ Pr(x_{1}^{new},\cdots,x_{M}^{new}|y_{1},\cdots,y_{M}).Pr(y_{1},\cdots,y_{M}) \right] \\ &\hat{y_{1}},\cdots,\hat{y_{M}} = arg\max_{y_{1},\cdots,y_{M}} \left[ \prod_{i=1}^{M} Pr(x_{i}^{new}|y_{i}).Pr(y_{1}) \prod_{i=2}^{M} Pr(y_{i}|y_{i-1}) \right] \\ &\hat{y_{1}},\cdots,\hat{y_{M}} = arg\min_{y_{1},\cdots,y_{M}} -\log \left[ Pr(x_{1}^{new},\cdots,x_{M}^{new}|y_{1},\cdots,y_{M}).Pr(y_{1},\cdots,y_{M}) \right] \\ &\hat{y_{1}},\cdots,\hat{y_{M}} = arg\min_{y_{1},\cdots,y_{M}} \left[ -\sum_{i=1}^{M} Pr(x_{i}^{new}|y_{i}) - Pr(y_{1}) - \sum_{i=2}^{M} Pr(y_{i}|y_{i-1}) \right] \\ &\hat{y_{1}},\cdots,\hat{y_{M}} = arg\min_{y_{1},\cdots,y_{M}} \left[ \sum_{i=1}^{M} U_{i}(y_{i}) + \sum_{i=2}^{M} P_{i}(y_{i},y_{i-1}) \right] \\ &U_{i}(y_{i}) = -\log[Pr(x_{i}^{new}|y_{i})] \\ &P_{i}(y_{i},y_{i-1}) = -\log[Pr(y_{i}|y_{i-1})] \end{split}$$

## Inference for HMM: MAP

- Case of K classes :  $y_i \in [1,2,3,4,5]$
- Build a graph
  - The set of vertices  $\{V_{i,k}\}_{i=1,k=1}^{M,5}$
  - Each vertex  $V_{i,k}$  has a set of edges  $(V_{i-1,l}, V_{i,k})_{l=1}^5$
  - Each vertex  $V_{i,k}$  has a cost  $U_i(y_i = k)$
  - Each edge  $(V_{i-1,l}, V_{i,k})$  has a cost  $P_i(y_i = k, y_{i-1} = l)$
- Find the shortest path between left to right
  - Where the notion of distance :  $d((V_{i-1,l}, V_{i,k})) = U_{i-1} + P_i$
  - Dijkstra can be used

#### Picure taken from:

## Inference for HMM: Viterbi in short

- For this slide only: Change of notation y variables become w
- For this slide only: Change of notation n=i





• Find the shortest path from left to right  $S_{1,k} = U_1(w_1 = k)$ 

$$S_{2,k} = U_2(w_2 = k) + \min_{l} \left[ S_{1,l} + P_2(w_2 = k, w_1 = l) \right] \qquad S_{n,k} = U_n(w_n = k) + \min_{l} \left[ S_{n-1,l} + P_n(w_n = k, w_{n-1} = l) \right]$$

## Inference for HMM: Complexity

- MAP inference:
  - Brute force approach :  $O(K^M)$ 
    - Enumerating all the combinations
      - Sequence of length 3, K=5:111; 112; 113; 114; 115; 121; 122; ....
  - Viterbi :  $O(MK^2)$

## Learning with HMM

- So far there is no learning.
  - We just give a sequence (x) and output the labeled sequence (y)
- Where learning can be introduced?
  - Where are the parameters?
  - The measurements (x) have a normal distribution
  - The class variable (y) follows a categorical law.
  - This hidden Markov model has parameters  $\{\mu_k, \sigma_k, \lambda_k\}_{k=1}^K$



$$Pr(x_i|y_i = k) = Pr(x_i|y_i = k; W_1) = \mathcal{N}(\mu_k, \sigma_k^2)$$
  
 $Pr(y_i|y_{i-1}) = Pr(y_i|y_{i-1} = k; W_2) = Cat[\lambda_k]$ 

## Learning with HMM

- Supervised learning
  - Relatively simple. We first isolate the part of the model that we want to learn.
  - For example, we might learn the parameters  $Pr(x_i|y_i=k;W_1) = \mathcal{N}(\mu_k, \sigma_k^2)$ 
    - from paired examples of xi and yi.
  - We can learn these parameters in isolation using the ML, MAP, or Bayesian methods.
  - The same apply for  $Pr(y_i|y_{i-1}=k;W_2)=Cat[\lambda_k]$

## Learning with HMM

- Unsupervised learning
  - More challenging
  - Beyond the scope of this presentation (dedicated to supervised learning)
  - Require notion such as:
    - Expectation Maximization method
    - Forward-Backward method
    - Baum-Welch algorithm

## Limit of HMM

- Parameters ( $W_1$  et  $W_2$ ) of the distributions are shared through time
  - All time steps have the same parameters
  - Corresponding to the assumption of a stationary time series.
- HMM are generative models
  - Discriminative models are more efficient to infer information on the world state (y)
- Although this is more general than the independence model, it is still very restrictive.

## Directed and Undirected model

- HMM is a directed model
  - The tendency to observe the measurements  $x_i$  given that state  $y_i$  takes value k.  $\rightarrow$   $\Pr(x_i|y_i=k)$
  - The current state is dependent on the previous one  $Pr(y_i|y_{i-1})$
- Undirected model
  - $Pr(x_i|y_i=k)$  is replaced by  $\phi(x_i,y_i)$ : similarity function
    - Returns larger values when the measurements  $x_i$  and the world state are more compatible  $y_i$ .
    - Example :  $\phi(x_i, y_i) = x_i$ .  $y_i$  with  $x_i \in \{-1,1\}$  and  $y_i \in \{-1,1\}$
  - $\Pr(y_i|y_{i-1})$  is replaced by  $\zeta(y_i,y_{i-1})$  : similarity function
    - Example :  $\zeta(y_i, y_{i-1}) = y_i \cdot y_{i-1}$  and  $y_i \in \{-1, 1\}$
    - Returns larger values when the adjacent states are more compatible.

## 1D Markov Random Field (MRF)



$$Pr(y_1, \dots, y_M; x_1, \dots, x_M) = \frac{1}{Z} \left[ \prod_{i=1}^{M} \phi(x_i, y_i) \right] \left[ \prod_{i=2}^{M} \zeta(y_i, y_{i-1}) \right]$$

Z is a normalizing factors which form the partition function

## Equivalence of models : HMM = 1D MRF

$$Z = \left[\prod_{i=1}^{M} z_i\right] \left[\prod_{i=2}^{M} z_i'\right]$$
$$z_i = \frac{\phi(x_i, y_i)}{Pr(x_i|y_i)}$$
$$z_i' = \frac{\zeta(y_i, y_{i-1})}{Pr(y_i|y_{i-1})}$$

## Conditional Random Field (CRF): A special case of MRF

$$Pr(y_1, \dots, y_M | x_1, \dots, x_M) = \frac{1}{Z} \left[ \prod_{i=1}^M \phi(x_i, y_i) \right] \left[ \prod_{i=2}^M \zeta(y_i, y_{i-1}) \right]$$
$$Z = \sum_{y_1 \in \mathcal{Y}} \sum_{y_2 \in \mathcal{Y}} \sum_{y_3 \in \mathcal{Y}} \dots \sum_{y_M \in \mathcal{Y}} \left[ \prod_{i=1}^M \phi(x_i, y_i) \right] \left[ \prod_{i=2}^M \zeta(y_i, y_{i-1}) \right]$$
$$\mathcal{Y} = \{1, 2, 3, 4, 5\}$$

The x variables are given (observed/fixed).

### Conclusion

- We have seen :
  - How to take into account dependencies from a data set
    - Sequential dependencies (time dependencies)
    - HMM model
      - A generative model
  - How to infer world states (labels y) from a given sequence x
    - Thanks to the maximum of the posterior distribution (Maximum A Posteriori : MAP)
  - How supervised learning could be achieved