

Northwest Airline Flight

Computer Network Or Internet

Application

Traveling Saleman

☐ Find the shortest path that connects all cities without a loop.

Concepts of Graphs

Graph Definition

A graph G = (V,E) is composed of:

V: set of vertices (nodes)

E: set of edges (arcs) connecting the vertices in V

■ An edge e = (u,v) is a pair of vertices

Example:

Undirected vs. Directed Graph

Undirected Graph

edge has no oriented vertex

Directed Graph

– edge has oriented vertex

Degree of a Vertex

- The degree of a vertex is the number of edges to that vertex
- For directed graph,
 - □ the in-degree of a vertex v is the number of edges that have v as the head
 - □ the out-degree of a vertex v is the number of edges that have v as the tail
 - □ if *di* is the degree of a vertex *i* in a graph *G* with *n* vertices and *e* edges, the number of edges is

$$e = (\sum_{i=0}^{n-1} d_i)/2$$

Hint: Adjacent vertices are counted twice.

Degree of a Vertex

Degree(A)=?

Degree(B)=?

Degree(C)=?

Degree(D)=?

In-degree(A)=? Out-degree(A)=?

In-degree(B)=? Out-degree(B)=?

In-degree(C)=? Out-degree(C)=?

In-degree(D)=?

Subgraph

- Subgraph:
 - subset of vertices and edges

Simple Path

A simple path is a path such that all vertices are distinct, except that the first and the last could be the same.

□ *ABCD* is a simple path

Cycle

A cycle is a path that starts and ends at the same point. For undirected graph, the edges are distinct.

□ CBDC is a cycle

Connected vs. Unconnected Graph

Unconnected Graph

Directed Acyclic Graph

 Directed Acyclic Graph (DAG): directed graph without cycle

Weighted Graph

- Weighted graph: a graph with numbers assigned to its edges
- Weight: cost, distance, travel time, hop, etc.

Representation Of Graph

Two representations

□ Adjacency Matrix

□ Adjacency List

Adjacency Matrix

- Assume N nodes in graph
- Use 2D Matrix A[0...N-1][0...N-1]
 - □ if vertex i and vertex j are adjacent in graph,
 A[i][j] = 1,
 - \Box otherwise A[i][j] = 0
 - □ if vertex i has a loop, A[i][i] = 1
 - □ if vertex i has no loop, A[i][i] = 0

A[i][j]	0	1	2	3
0	0	1	1	0
1	1	0	1	1
2	1	1	0	1
3	0	1	1	0

So, Matrix A =
$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

So, Matrix A = ?

A[i][j]	0	1	2	3
0	1	1	1	0
1	1	0	1	1
2	1	1	0	1
3	0	1	1	1

So, Matrix A =
$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

A[i][j]	0	1	2	3
0	0	1	1	1
1	0	0	0	1
2	0	0	0	1
3	0	0	0	0

So, Matrix A =
$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Undirected vs. Directed

- Undirected graph
 - □ adjacency matrix is symmetric
 - □ A[i][j]=A[j][i]
- Directed graph
 - □ adjacency matrix may not be symmetric
 - □ A[i][j]≠A[j][i]

Weighted Graph

A[i][j]	0	1	2	3
0	0	20	10	1
1	20	0	0	5
2	10	0	0	4
3	1	5	4	0

So, Matrix A =
$$\begin{pmatrix} 0 & 20 & 10 & 1 \\ 20 & 0 & 0 & 5 \\ 10 & 0 & 0 & 4 \\ 1 & 5 & 4 & 0 \end{pmatrix}$$

Adjacency List

- An array of list
- the ith element of the array is a list of vertices that connect to vertex i

vertex 0 connect to vertex 1, 2 and 3 vertex 1 connects to 3 vertex 2 connects to 3

Weighted Graph

Weighted graph: extend each node with an addition field: weight

Comparison Of Representations

Cost	Adjacency Matrix	Adjacency List
Given two vertices u and v: find out whether u and v are adjacent	O(1)	degree of node O(N)
Given a vertex u: enumerate all neighbors of u	O(N)	degree of node O(N)
For all vertices: enumerate all neighbors of each vertex	O(N ²)	Summations of all node degree O(E)

Complete Graph

There is an edge between any two vertices

Total number of edges in graph:

$$E = N(N-1)/2 = O(N^2)$$

Sparse Graph

• There is a very small number of edges in the graph

For example:

$$E = N-1 = O(N)$$

Space Requirements

- Memory space:
 - □ adjacency matrix
 - □ adjacency list
- Sparse graph
 - □ adjacency list is better

 $O(N^2)$

O(E)

- Dense graph
 - □ same running time

Graph Traversal

List out all cities that United Airline can reach from Hartford Airport

Graph Traversal

- From vertex u, list out all vertices that can be reached in graph G
- Set of nodes to expand
- Each node has a flag to indicate visited or not

Traversal Algorithm

- Step 1: { Hartford }
 - ☐ find unvisited neighbors of Hartford

Traversal Algorithm

- Step 2: { Hartford, NYC, CHI }
 - ☐ find unvisited neighbors of NYC, CHI
 - □ { Hartford, NYC, CHI, LA, SF }

Traversal Algorithm

- Step 3: {Hartford, NYC, CHI, LA, SF }
 - ☐ find unvisited neighbors of LA, SF

□ no other new neighbors

7

Traversal Algorithm

- Finally, we get all cities that United
 Airline can reach from Hartford Airport
 - □{Hartford, NYC, CHI, LA, SF}

Algorithm of Graph Traversal

- Mark all nodes as unvisited
- Pick a starting vertex u, add u to probing list
- While (probing list is not empty)
 {
 Remove a node v from probing list
 Mark node v as visited
 For each neighbor w of v, if w is unvisited,
 add w to the probing list
 }

Graph Traversal Algorithms

- Two algorithms
 - Depth First Traversal
 - □ Breadth First Traversal

Depth First Traversal

- Probing List is implemented as stack (LIFO)
- Example
 - □ A's neighbor: B, C, E
 - □ B's neighbor: A, C, F
 - □ C's neighbor: A, B, D
 - □ D's neighbor: E, C, F
 - □ E's neighbor: A, D
 - ☐ F's neighbor: B, D
 - □ start from vertex A

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D

Initial State

- □ Visited Vertices { }
- □ Probing Vertices { A }
- □ Unvisited Vertices { A, B, C, D, E, F }

stack

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D
- Peek a vertex from stack, it is A, mark it as visited
- Find A's first unvisited neighbor, push it into stack
 - □ Visited Vertices { A }
 - □ Probing vertices { A, B }
 - □ Unvisited Vertices { B, C, D, E, F }

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D
- Peek a vertex from stack, it is B, mark it as visited
- Find B's first unvisited neighbor, push it in stack
 - □ Visited Vertices { A, B }
 - □ Probing Vertices { A, B, C }
 - □ Unvisited Vertices { C, D, E, F }

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D
- Peek a vertex from stack, it is C, mark it as visited
- Find C's first unvisited neighbor, push it in stack
 - □ Visited Vertices { A, B, C }
 - □ Probing Vertices { A, B, C, D }
 - □ Unvisited Vertices { D, E, F }

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D
- Peek a vertex from stack, it is D, mark it as visited
- Find D's first unvisited neighbor, push it in stack
 - □ Visited Vertices { A, B, C, D }
 - □ Probing Vertices { A, B, C, D, E }
 - □ Unvisited Vertices { E, F }

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D
- Peek a vertex from stack, it is E, mark it as visited
- Find E's first unvisited neighbor, no vertex found, Pop E
 - □ Visited Vertices { A, B, C, D, E }
 - □ Probing Vertices { A, B, C, D }
 - □ Unvisited Vertices { F }

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D
- Peek a vertex from stack, it is D, mark it as visited
- Find D's first unvisited neighbor, push it in stack
 - □ Visited Vertices { A, B, C, D, E }
 - □ Probing Vertices { A, B, C, D, F}
 - □ Unvisited Vertices { F }

В

stack

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D
- Peek a vertex from stack, it is F, mark it as visited
- Find F's first unvisited neighbor, no vertex found, Pop F
 - □ Visited Vertices { A, B, C, D, E, F }
 - □ Probing Vertices { A, B, C, D}
 - □ Unvisited Vertices { }

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D
- Peek a vertex from stack, it is D, mark it as visited
- Find D's first unvisited neighbor, no vertex found, Pop D
 - □ Visited Vertices { A, B, C, D, E, F }
 - □ Probing Vertices { A, B, C }
 - □ Unvisited Vertices { }

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D
- Peek a vertex from stack, it is C, mark it as visited
- Find C's first unvisited neighbor, no vertex found, Pop C
 - □ Visited Vertices { A, B, C, D, E, F }
 - □ Probing Vertices { A, B }
 - □ Unvisited Vertices { }

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D
- Peek a vertex from stack, it is B, mark it as visited
- Find B's first unvisited neighbor, no vertex found, Pop B
 - □ Visited Vertices { A, B, C, D, E, F }
 - □ Probing Vertices { A }
 - □ Unvisited Vertices { }

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D
- Peek a vertex from stack, it is A, mark it as visited
- Find A's first unvisited neighbor, no vertex found, Pop A
 - □ Visited Vertices { A, B, C, D, E, F }
 - □ Probing Vertices { }
 - □ Unvisited Vertices { }

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D
- Now probing list is empty
- End of Depth First Traversal
 - □ Visited Vertices { A, B, C, D, E, F }
 - □ Probing Vertices { }
 - □ Unvisited Vertices { }

Breadth First Traversal

- Probing List is implemented as queue (FIFO)
- Example
 - □ A's neighbor: B C E
 - □ B's neighbor: A C F
 - □ C's neighbor: A B D
 - □ D's neighbor: E C F
 - □ E's neighbor: A D
 - ☐ F's neighbor: B D
 - □ start from vertex A

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D

Initial State

- □ Visited Vertices { }
- □ Probing Vertices { A }
- □ Unvisited Vertices { A, B, C, D, E, F }

queue

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D

- Delete first vertex from queue, it is A, mark it as visited
- Find A's all unvisited neighbors, mark them as visited, put them into queue
 - □ Visited Vertices { A, B, C, E }
 - □ Probing Vertices { B, C, E }
 - □ Unvisited Vertices { D, F }

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D

- Delete first vertex from queue, it is B, mark it as visited
- Find B's all unvisited neighbors, mark them as visited, put them into queue
 - □ Visited Vertices { A, B, C, E, F }
 - □ Probing Vertices { C, E, F }
 - □ Unvisited Vertices { D }

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D

- Delete first vertex from queue, it is C, mark it as visited
- Find C's all unvisited neighbors, mark them as visited, put them into queue
 - □ Visited Vertices { A, B, C, E, F, D }
 - □ Probing Vertices { E, F, D }
 - □ Unvisited Vertices { }

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D

- Delete first vertex from queue, it is E, mark it as visited
- Find E's all unvisited neighbors, no vertex found
 - □ Visited Vertices { A, B, C, E, F, D }
 - □ Probing Vertices { F, D }
 - □ Unvisited Vertices { }

queue

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D

- Delete first vertex from queue, it is F, mark it as visited
- Find F's all unvisited neighbors, no vertex found
 - □ Visited Vertices { A, B, C, E, F, D }
 - □ Probing Vertices { D }
 - □ Unvisited Vertices { }

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D

- Delete first vertex from queue, it is D, mark it as visited
- Find D's all unvisited neighbors, no vertex found
 - □ Visited Vertices { A, B, C, E, F, D }
 - □ Probing Vertices { }
 - □ Unvisited Vertices { }

queue

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D

- Now the queue is empty
- End of Breadth First Traversal
 - □ Visited Vertices { A, B, C, E, F, D }
 - □ Probing Vertices { }
 - □ Unvisited Vertices { }

v

Difference Between DFT & BFT

- Depth First Traversal (DFT)
 - □ order of visited: A, B, C, D, E, F

- Breadth First Traversal (BFT)
 - □ order of visited: A, B, C, E, F, D

