Institut für Regelungstechnik

TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG

Prof. Dr.-Ing. M. Maurer Prof. Dr.-Ing. W. Schumacher

Hans-Sommer-Str. 66 38106 Braunschweig Tel. (0531) 391-3840

Klausuraufgaben

Grundlagen der Elektrotechnik

Vorname:		Nachna	Nachname:				
MatrNr.:	Studiengang:						
Datum:	16. März 2019						
1:	2:	3:	4:	5:			
ID:	Summe: Note:						
Mit meiner Unterschrift gebe ich das Einverständnis, über meine TU E-Mail-Adresse kontaktiert zu werden (z.B. für HiWi-Jobs, studentische Arbeiten oder Stipendien):							

Allgemeine Hinweise:

- Alle Lösungen müssen nachvollziehbar bzw. begründet sein.
- Einheiten sind anzugeben.
- Für jede Aufgabe ein neues Blatt verwenden.
- Keine Rückseiten beschreiben.
- Keine Bleistifte oder Rotstifte verwenden.
- Lösungen auf Aufgabenblättern werden nicht gewertet.
- Lösen Sie die Aufgaben zunächst analytisch mit Symbolen und setzen Sie erst am Schluss Zahlenwerte ein.
- In dieser Klausur gibt es Hinweise, welche Aufgabenteile unabhängig von anderen Teilaufgaben gelöst werden können. Diese sind an der linken Seite jeweils mit einem Pfeil (=>) markiert und der zugehörige Hinweis ist fett gedruckt.
- Zugelassene Hilfsmittel:
 - Geodreieck
 - Zirkel
- Die Ergebnisse sind nur online über das QIS-Portal einsehbar.
- Diese Klausur besteht aus 5 Aufgaben auf insgesamt 16 Blättern.

1 Gleichstromnetzwerk

Gegeben ist das unten dargestellte, modellierte Gleichstromnetz eines Versuchsfahrzeugs des Instituts für Regelungstechnik, bestehend aus einer idealen Stromquelle I_{01} zum Starten des Motors sowie einer idealen Spannungsquelle U_{02} für die Messtechnik.

Für den Fall, dass die Stromquelle I_{01} nicht genug Energie zum Starten des Motors bereitstellen kann, können die beiden Teilnetze mittels des Schalters S_1 zusammengeschaltet werden.

Der Anlasser des Versuchsfahrzeugs sei durch den Widerstand R_L modelliert. Zum Starten des Motors muss dieser mindestens 1,2 kW aufwenden. Darüber hinaus besteht das Gleichstromnetzwerk aus den Widerständen R_1 , R_2 und R_3 .

Gegeben: $I_{01}=125\,\mathrm{A},\,U_{02}=15\,\mathrm{V},\,R_1=40\,\mathrm{m}\Omega,\,R_2=24\,\mathrm{m}\Omega,\,R_3=42\,\mathrm{m}\Omega,\,R_L=60\,\mathrm{m}\Omega$ Der Schalter S_1 sei zunächst geöffnet.

- a) Fertigen Sie eine Skizze des resultierenden Netzwerks an, in der Sie die Stromquelle I_{01} in eine Ersatzspannungsquelle U_{01} umwandeln. Tragen Sie relevante Größen ein. (1 Punkt)
- b) Berechnen Sie die Spannung U_{01} sowie die am Widerstand R_L umgesetzte Leistung. Kann das Fahrzeug bei geöffnetem Schalter S_1 gestartet werden? (2 Punkte)

Die Aufgabenteile c) und d) können unabhängig von den übrigen Aufgabenteilen gelöst werden.

Der Schalter S_1 sei für alle folgenden Teilaufgaben geschlossen.

c) Bestimmen Sie mit Hilfe des Superpositionsverfahrens den Strom I_{R_L} . Fertigen Sie für jeden Fall, den Sie betrachten, eine gesonderte Skizze an, in der Sie relevante Größen eintragen. (6 Punkte)

Hinweis: Nutzen Sie wenn möglich Strom- oder Spannungsteiler und Quellentransformationen.

d) Welche Leistung wird bei geschlossenem Schalter S_1 am Widerstand R_L umgesetzt? Kann das Fahrzeug in diesem Fall gestartet werden? (2 Punkte)

Die Aufgabenteile e) und f) können unabhängig von den übrigen Aufgabenteilen gelöst werden.

e) Zeigen Sie anhand der unten abgebildeten Schaltung, dass für $R_L = R_i$ die Leistung am Widerstand R_L maximal wird. (4,5 Punkte)

Hinweis:

Produktregel:	$f(x) = g(x) \cdot h(x)$		$f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x)$
Quotientenregel:	$f(x) = \frac{g(x)}{h(x)}$	\longmapsto	$f'(x) = \frac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{(h(x))^2}$
Kettenregel:	f(x) = g(h(x))	\longmapsto	$f'(x) = g'(h(x)) \cdot h'(x)$

f) Wie wird der in Teilaufgabe e) beschriebene Zustand bezeichnet? (0,5 Punkte)

2 Magnetfeld

Gegeben sind zwei unendlich lange unendlich dünne parallele Leiter L_1 und L_2 gemäß folgender Darstellung. Die Leiter werden von den Gleichströmen I_1 und I_2 durchflossen. Die Fließrichtung von I_1 im Leiter L_1 ist in der folgenden Darstellung gegeben. Die Fließ-

Betrachtet wird zunächst nur der Leiter L_1 .

richtung von I_2 im Leiter L_2 sei zunächst unbekannt.

a) Fertigen Sie eine Skizze des von dem Leiter L_1 erzeugten Magnetfelds an. Kennzeichnen Sie den Verlauf und die Richtung des Magnetfelds. (1 Punkt)

Im Folgenden soll der Verlauf der magnetischen Feldstärke und der magnetischen Flussdichte bestimmt werden.

- b) Nennen Sie zunächst das Durchflutungsgesetz und geben Sie die Aussage der Gleichung in eigenen Worten wieder. (1 Punkt)
- c) Bestimmen Sie die magnetische Feldstärke und Flussdichte in Abhängigkeit von der Stromstärke und der Entfernung r zum Leitermittelpunkt. Begründen Sie etwaige Vereinfachungen. (3 Punkte)

Sollten Sie nicht in der Lage gewesen sein B(r) zu bestimmen, verwenden Sie für die folgenden Teilaufgaben die Formel $B(r) = \frac{I}{N} \frac{\sqrt{2} \cdot \pi \cdot \mu_r}{r \cdot m}$.

Nehmen Sie nun Leiter L_2 in die Betrachtungen mit auf. Auf zwei stromdurchflossene Leiter wirken gegenseitige Kräfte, die dazu führen, dass sich die Leiter anziehen oder abstoßen.

- d) Um welche Kraft handelt es sich hier? Nennen Sie die Kraft, stellen Sie die Formel auf und geben Sie die Aussage der Gleichung in eigenen Worten wieder. (1 Punkt)
- e) In welche Richtung muss der Strom I_2 in Leiter L_2 fließen, damit die gegebenen Leiter sich gegenseitig anziehen? Begründen sie Ihre Wahl kurz. (1 Punkt)
- f) Berechnen Sie die auf den Leiter L_2 wirkende Kraft \overrightarrow{F}_2 pro Leiterstück mit der Länge l. (2 Punkte)

Hinweis: Achten Sie auf eine vektorielle Darstellung.

Der Leiter L_2 wird nun, wie in der nachfolgend dargestellten Draufsicht des oben gezeigten Aufbaus, in positiver x-Richtung zu einer als rechteckig angenommenen Leiterschleife mit der Länge l_2 und der Breite b_2 gebogen. Durch Leiter L_1 fließe weiterhin der Gleichstrom I_1 . Die Leiterschleife L_2 sei nun nicht mehr bestromt.

- g) Bestimmen Sie den magnetischen Fluss Φ durch die Leiterschleife L_2 . (3 Punkte)
- h) Bestimmen Sie die durch den Stromfluss I_1 in der Leiterschleife L_2 induzierte Spannung u_{ind} . (1 Punkt)

Durch den Leiter L_1 soll nun ein Strom fließen, der sich mit folgender Funktion in Abhängigkeit von der Zeit t beschreiben lässt:

$$i_1(t) = \hat{I}_1 \cdot \sin(\omega_1 \cdot t + \varphi_1)$$

Die Leiterschleife L_2 sei weiterhin nicht bestromt.

- i) Bestimmen Sie die durch den Stromfluss $i_1(t)$ in der Leiterschleife L_2 induzierte Spannung $u_{\rm ind}$ in Abhängigkeit von der Zeit t. (2 Punkte)
- j) Welche Arten von Induktion kennen Sie? Um welche Art handelt es sich in Teilaufgabe i)? (1 Punkt)

3 Komplexe Wechselstromrechnung

Eine Wechselspannungsquelle \underline{U}_0 speist das unten dargestellte Netzwerk aus mehreren kapazitiven, induktiven sowie ohmschen Impedanzen.

Gegeben: $L_1 = L_2 = 4 \,\text{mH}, \; L_3 = 8 \,\text{mH}, \; C_1 = C_2 = 200 \,\mu\text{F}, \; C_3 = 100 \,\mu\text{F}$

- a) Für die weiteren Berechnungen soll das gegebene Netzwerk vereinfacht werden. Dazu wird für die Spulen L_1 , L_2 und L_3 eine Ersatzinduktivität L_x sowie für die Kondensatoren C_1 , C_2 und C_3 eine Ersatzkapazität C_x verwendet. Berechnen Sie die Größe von L_x und C_x . (2 Punkte)
- b) Welche Voraussetzungen gelten zur Anwendung der komplexen Wechselstromrechnung für das gegebene Netzwerk? (1 Punkt)
- c) Um die Induktivität einer Spule zu erhöhen, kann im Inneren ein ferromagnetischer Spulenkern eingesetzt werden. Welche Motivation könnte eine Parallelschaltung von Induktivitäten in einer *realen* Schaltung haben? Begründen Sie. (1 Punkt)

Hinweis: Beachten Sie, dass die Magnetisierung des ferromagnetischen Spulenkerns von dem Strom durch die Spule abhängig ist. Überlegen Sie, welcher Effekt bei der Magnetisierung ferromagnetischer Materialien auftreten kann.

\Longrightarrow

Die Teilaufgabe d) lässt sich unabhängig von den übrigen Teilaufgaben lösen.

Das vereinfachte Netzwerk ergibt sich wie im Folgenden dargestellt und soll für alle nachfolgenden Teilaufgaben verwendet werden.

d) Sie haben den zeitlichen Verlauf der Spannung $u_{L_x}(t)$ (mittlerer Zweig) gemäß der nachfolgenden Abbildung gemessen. Zeigen Sie mithilfe des dargestellten zeitlichen Verlaufs, dass in der Zeigerdarstellung $\underline{U}_{L_x} = 2\,\mathrm{V} + \mathrm{j} \cdot 2\,\mathrm{V}$ gilt. Berechnen Sie hierzu \underline{U}_{L_x} als ruhenden $\underline{Effektivwert}$ zeiger in trigonometrischer Darstellung als Real- und Imaginärteil. (2 Punkte)

Hinweis:

α im Bogenmaß	$-\pi$	$-\frac{3\cdot\pi}{4}$	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\cdot\pi}{4}$	π
$\sin(\alpha)$	0	$-\frac{1}{\sqrt{2}}$	-1	$-\frac{1}{\sqrt{2}}$	0	$\frac{1}{\sqrt{2}}$	1	$\frac{1}{\sqrt{2}}$	0
$\cos(\alpha)$	-1	$-\frac{1}{\sqrt{2}}$	0	$\frac{1}{\sqrt{2}}$	1	$\frac{1}{\sqrt{2}}$	0	$-\frac{1}{\sqrt{2}}$	-1

Die Teilaufgaben e) bis h) lassen sich unabhängig von den übrigen Teilaufgaben lösen.

Die Schaltung wird mit einer festen Kreisfrequenz ω betrieben. Dabei wird über L_x eine Spannung $\underline{U}_{L_x} = 2 \, \mathrm{V} + \mathrm{j} \cdot 2 \, \mathrm{V}$ gemessen. Es gelte weiterhin:

$$R_1 = 4\,\Omega,\, R_2 = 5\,\Omega,\, L_x = 4\,\mathrm{mH},\, C_4 = 50\,\mathrm{\mu F},\, C_x = 200\,\mathrm{\mu F}\,\,\mathrm{und}\,\,\omega = 1000\,\mathrm{s}^{-1}$$

- e) Berechnen Sie den Strom \underline{I}_3 , der durch die Induktivität L_x fließt. (1 Punkt)
- f) Berechnen Sie den Strom \underline{I}_4 , der durch den Widerstand R_2 und die Kapazität C_x fließt, und die daraus resultierenden Spannungen \underline{U}_{R_2} und \underline{U}_{C_x} . (3 Punkte)
- g) Berechnen Sie den Strom \underline{I}_2 und die daraus resultierende Spannung $\underline{U}_{C_4}.$ (2 Punkte)
- h) Berechnen Sie die Spannung \underline{U}_0 und den Strom \underline{I}_0 . (3 Punkte)

 \Longrightarrow

Die Teilaufgabe i) lässt sich unabhängig von den übrigen Teilaufgaben lösen.

Es gelten unabhängig von den zuvor berechneten Spannungen die folgenden Vorgaben:

$$\underline{U}_{C_x} = 2 \,\mathrm{V} \cdot e^{j0^{\circ}}, \ |\underline{U}_{R_2}| = 2 \,\mathrm{V}, \ \underline{U}_{C_4} = 10.2 \,\mathrm{V} \cdot e^{j-101^{\circ}}$$

i) Konstruieren Sie das Zeigerdiagramm mit allen Spannungen ($Ma\beta stab$: 1 V $\hat{=}$ 1 cm). Aus dem Zeigerdiagramm sollen die im Netzwerk auftretenden Maschen nachvollziehbar sein. Wählen Sie \underline{U}_{C_x} als Bezugszeiger. (5 Punkte)

Die Teilaufgaben j) bis l) lassen sich unabhängig von den übrigen Teilaufgaben lösen.

Es gelten unabhängig von den anderen Teilaufgaben die folgenden Vorgaben:

$$\underline{I}_0 = 2 \,\mathrm{A} \cdot e^{j-75^{\circ}}, \, \underline{U}_0 = 8 \,\mathrm{V} \cdot e^{j-90^{\circ}}$$

Durch ein zur Spannungsquelle \underline{U}_0 parallel geschaltetes Bauelement soll der Phasenwinkel zwischen \underline{U}_0 und \underline{I}_0 zu $\varphi = 0^{\circ}$ kompensiert werden.

- j) Zeichnen Sie das resultierende Zeigerdiagramm mit den Zeigern \underline{U}_0 , \underline{I}_0 sowie dem Kompensationsstrom \underline{I}_{Komp} ($Ma\beta stab$: $1\,\mathrm{V} \, \hat{=}\, 1\,\mathrm{cm}$, $1\,\mathrm{A} \, \hat{=}\, 4\,\mathrm{cm}$). Zeigt die Schaltung induktives oder kapazitives Verhalten? (2 Punkte)
- k) Welches Bauteil zur Kompensation des Phasenwinkels zwischen \underline{U}_0 und \underline{I}_0 verwenden Sie? (0,5 Punkte)
- l) Bestimmen Sie anhand des Zeigerdiagramms die Größe des Bauteils. (1,5 Punkte) **Hinweis**: Runden Sie beim Ablesen aus dem Zeigerdiagramm auf ganze Zahlen.

Die Teilaufgaben m) bis p) lassen sich unabhängig von den übrigen Teilaufgaben lösen.

Das vereinfachte Netzwerk wird zwischen den Klemmen A und B als Schwingkreis aufgefasst und mit der variablen Kreisfrequenz ω betrieben. Es gelten die folgenden Werte:

$$R_1 = R_2 = 4 \Omega$$

In der nachstehenden Abbildung ist der Betrag des Stromes $|\underline{I}_0|$ logarithmisch als Funktion der Kreisfrequenz ω aufgetragen. Die durchgezogene Linie zeigt den Verlauf von $|\underline{I}_0|$ für den $verlust\underline{losen}$ Schwingkreis. Die zwei Resonanzkreisfrequenzen lassen auf zwei im Netzwerk enthaltene Teilschwingkreise schließen.

- m) Bestimmen Sie für den verlustbehafteten Schwingkreis den Betrag $|\underline{Z}_{AB}|$ der Impedanz des gegebenen Netzwerkes zwischen den Klemmen A und B für die beiden Grenzfälle $\omega=0$ und $\omega\to\infty$. (1 Punkt)
- n) Welche Bauteile sind an den beiden Teilschwingkreisen jeweils beteiligt? (1 Punkt)
- o) Zeigen Sie, dass für die Impedanz zwischen den Klemmen A und B unter Vernachlässigung von R_1 $(R_1 \to \infty)$ und R_2 $(R_2 = 0)$ gilt: (3 Punkte)

$$\underline{Z}_{AB} = -j \cdot \frac{1 - \omega^2 L_x C_x - \omega^2 L_x C_4}{\omega C_4 - \omega^3 L_x C_x C_4}$$

p) Bestimmen Sie ausgehend von der Impedanz \underline{Z}_{AB} die Kennkreisfrequenzen w_R und w_P des Reihen- beziehungsweise Parallelteilschwingkreises in symbolischer Form. **Hinweis**: Überlegen Sie, was für den Zähler bzw. den Nenner des Bruchs im jeweiligen Resonanzfall gilt. (2 Punkte)

4 Schaltvorgänge bei Kondensatoren Punkte: 16

Das unten dargestellte Netzwerk wird bei $\omega=0$ betrieben. Der Schalter S_2 sei geöffnet und der Schalter S_1 sei für sehr lange Zeit geschlossen. C_2 ist vollständig entladen. Nachdem das Netzwerk eingeschwungen ist, wird der Schalter S_1 geöffnet. Danach wird der Schalter S_2 zum Zeitpunkt t=0 geschlossen.

Zunächst wird die Ladung im Netzwerk betrachtet.

- a) Bestimmen Sie die Ladungen der Kondensatoren im Netzwerk direkt <u>vor</u> dem Schließen von Schalter S_2 . (1,5 Punkte)
- b) Bestimmen Sie die Ladungen der Kondensatoren und die Gesamtladung im Netzwerk nach dem Schließen von Schalter S_2 in Abhängigkeit von $u_{C_1}(t)$ und $u_{C_2}(t)$. (1 Punkt)
- c) Bestimmen Sie ausgehend von der Gesamtladung im Netzwerk die Spannung $u_{C_2}(t)$ in Abhängigkeit von $u_{C_1}(t)$. (1 Punkt)

Im Folgenden wird der zeitliche Verlauf der Spannung $u_{C_1}(t)$ betrachtet.

- d) Stellen Sie die Maschengleichung auf. (0,5 Punkte)
- e) Formen Sie die Maschengleichung um, sodass nur noch die zeitabhängige Variable $u_{C_1}(t)$ vorhanden ist. (1,5 Punkte)
- f) Formen Sie die Gleichung um, sodass Sie auf die Form $\frac{du}{dt} + a \cdot u(t) = b$ kommen. (0,5 Punkte)

g) Lösen Sie die inhomogene Differentialgleichung. (2 Punkte)

Nutzen Sie den Lösungsansatz:

$$\frac{du}{dt} + a \cdot u(t) = b$$

$$\Rightarrow u(t) = \int b \cdot e^{a \cdot t} dt \cdot e^{-a \cdot t}$$

- h) Lösen Sie das Anfangswertproblem aus Teilaufgabe g). (1 Punkt)
- i) Bestimmen Sie die Spannung $u_{C_2}(t)$. (0,5 Punkte)
- j) Bestimmen Sie allgemein den Endwert ($\lim_{t\to\infty}$) für $u_{C_1}(t)$ und $u_{C_2}(t)$. Betrachten Sie anschließend die Fälle (1) $C_1=C_2$, (2) $C_1<< C_2$ sowie (3) $C_1>> C_2$. (3 Punkte)
- k) Bestimmen Sie die Spannung $u_R(t)$. (1 Punkt)
- l) Zeichnen Sie qualitativ den zeitlichen Verlauf der Spannungen $u_{C_1}(t)$, $u_{C_2}(t)$ und $u_R(t)$ für $C_1=C_2$, $t\geq 0$. Geben Sie Kenngrößen an. (2,5 Punkte)

5 Elektrisches Feld

Gegeben ist ein Zylinderkondensator mit einer inneren stabförmigen **Metall**elektrode vom Radius R_1 und **zwei** rohrförmigen **Metall**elektroden mit den Radien R_2 und R_3 . Der Kondensator hat die Länge l. Zwischen der innersten und äußersten Elektrode befinden sich entsprechend der oberen Anordnung drei Dielektrika mit den Permittivitäten ε_1 , ε_2 und ε_3 . Der Kondensator wird über eine Spannungsquelle mit der Gesamtladung Q_z geladen. Gehen Sie, soweit nicht anders gefordert, für alle Berechnungen von einem idealen Kondensator aus.

Weiterhin gilt: $\varepsilon_1 = 2\varepsilon_2 = 2\varepsilon_3$

- a) Welchen Einfluss hat die **Metall**elektrode bei R_2 auf das elektrische Feld und das Feld der elektrischen Flussdichte innerhalb der Kondensatoranordnung? Zeichnen Sie jeweils in einer Skizze des Kondensatorquerschnittes das elektrische Feld und das Feld der elektrischen Flussdichte (Verschiebungsflussdichte). (4 Punkte)
- b) Zeichnen Sie das ideale Ersatzschaltbild des gegebenen Kondensators. Geben Sie an, bei welchen Teilen es sich um Parallel- bzw. Reihenschaltungen handelt. Bezeichnen Sie die Teilkapazitäten mit C_1 bis C_3 entsprechend der Indizes der Dielektrika. (2 Punkte)

- c) Geben Sie in Abhängigkeit von den Verschiebungsflussdichten D_1 und D_2 in den Dielektrika mit den Permittivitäten ε_1 bzw. ε_2 eine Gleichung für die Ladung Q_z an. Wenden Sie dabei das Gaußsche Gesetz der Elektrostatik an. (6 Punkte)
- d) Geben Sie die Stetigkeitsbedingungen des elektrischen Feldes und des Feldes der elektrischen Flussdichte an Grenzschichten an. Welche Größen sind in obiger Anordnung am Übergang der Dielektrika mit den Permittivitäten ε_1 und ε_2 stetig? (2 Punkte)
- e) Berechnen Sie die Feldstärke E_1 und E_2 in den Dielektrika mit den Permittivitäten ε_1 bzw. ε_2 . Beachten Sie dabei die Ergebnisse aus Aufgabenteil c) und d). (2 Punkte)
- f) Berechnen Sie die Feldstärke E_3 in dem Dielektrikum mit der Permittivität ε_3 . (2 Punkte)
- g) Berechnen Sie die Spannung U zwischen der innersten und äußersten Elektrode. (3 Punkte)