Closest Pair

input: 2D points $P = (p_1, p_2, \dots, p_n)$ where each $p_i = (x_i, y_i) \in \mathbb{R}^2$

output: the minimum Euclidean distance $\delta = \min\{d(p_i, p_j) : 1 \le i < j \le n\}$ between any two of the points. Here $d((x_i, y_i), (x_j, y_j)) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$. For $n \le 1$, the answer is ∞ .

The obvious algorithm (compare all points) takes time $O(n^2)$. We want time $O(n \log n)$.

We'll assume the points are sorted by x-coordinate. If not, we can sort them in $O(n \log n)$ time in a pre-processing step. For simplicity, for now, we also assume that the x-coordinates are distinct. We use a divide-and-conquer approach, something like this:

```
closest-pair-1(P=(p_1,p_2,\ldots,p_n)) (p_i=(x_i,y_i)\in\mathbb{R}^2,\ with\ x_1< x_2<\cdots< x_n)
1. if n\leq 1: return \infty
2. if n=2: return d(p_1,p_2)
3. let m=\lfloor n/2\rfloor
4. let L=(p_1,p_2,\ldots,p_m); let R=(p_{m+1},\ldots,p_n) (partition P into left and right halves by x-coordinate)
5. let \delta_L= closest-pair-1(L); let \delta_R= closest-pair-1(R)
6. let \delta=\min(\delta_L,\delta_R)
7. return \delta (WRONG! See below)
```

The running time of this algorithm satisfies T(n) = 2T(n/2) + O(n), so is $O(n \log n)$, as desired. But the algorithm is wrong, because it doesn't consider the pairs (p_i, p_j) such that $i \leq m < j$. That is, $(p_i, p_j) \in L \times R$. To fix it, we need to consider those pairs. But among those pairs, it is enough to consider only those with $d(p_i, p_j) < \delta$ (as δ is defined in Step 6). (Why?)

Let $X = x_m$ be the median x-coordinate (separating L from R) and let $M = \{p_i : |x_i - X| \le \delta\}$ contain the points lying in a vertical strip of width 2δ centered at X. Any $p_i \in L \setminus M$ has distance at least δ from any point in R. Likewise any $p_i \in R \setminus M$ has distance at least δ from any point in L. So we only need to consider pairs $(p_i, p_j) \in M \times M$.

Further, within M, it is enough to compare each point p_i in M only to those points p_j above p_i in M such that $y_i \leq y_j < y_i + \delta$. (Any other points above p_i in M has distance at least δ to p_i .) And there are at most eight such points:

Lemma 1. Assume δ_L and δ_R are calculated correctly. For any point $p_i \in M$, there are at most 8 points p_j above p_i in M such that $y_i \leq y_j \leq y_i + \delta$.

Proof. We use that any $\delta \times \delta$ square contains at most 4 points in L and at most 4 points in R. To prove this observation, imagine partitioning the square into its four $(\delta/2) \times (\delta/2)$ quadrants. Within each quadrant, every pair of points has distance at most $\sqrt{(\delta/2)^2 + (\delta/2)^2} = \delta/\sqrt{2} < \delta$. So R has at most one point in each quadrant (otherwise R would have a pair with distance less than $\delta \leq \delta_R$, contradicting the correctness of δ_R). Likewise for L.

Now, consider any $p_i \in M$. Consider the two $\delta \times \delta$ squares $S_L = [X - \delta, X] \times [y_i, y_i + \delta]$ and $S_R = [X, X + \delta] \times [y_i, y_i + \delta]$. Any point p_j in M with $y_i \leq y_j \leq y_i + \delta$ must lie in either S_L or S_R . S_L contains no points from R, and (by the observation above) contains at most four points from L. So S_L contains at most four points from P. Likewise S_R contains at most four points from P. The lemma follows.

Summarizing, it is enough to compare each point p_i in M with the points p_j in M such that $y_i \leq y_j \leq y_i + \delta$, and there are at most eight such points (per p_i). To fix the algorithm, we have it

sort the points in M by y-coordinate, then have it compare each point p_i in M to the points p_j in M such that $y_i \leq y_j \leq y_i + \delta$:

```
closest-pair(P=(p_1,p_2,\ldots,p_n)) (p_i=(x_i,y_i)\in\mathbb{R}^2,\ with\ x_1< x_2<\cdots< x_n)
1. if n\leq 1: return \infty
2. if n=2: return d(p_1,p_2)
3. let m=\lfloor n/2\rfloor
4. let L=(p_1,p_2,\ldots,p_m); let R=(p_{m+1},\ldots,p_n) (partition P into left and right halves by x-coordinate)
5. let \delta_L=\operatorname{closest-pair}(L); let \delta_R=\operatorname{closest-pair}(R)
6. let \delta=\min(\delta_L,\delta_R)
7. let M=\{p_i:|x_i-x_m|\leq\delta\} (compute this in O(n) time)
8. let \delta_M=\min\{d(p_i,p_j):p_i,p_j\in M,\ y_i\leq y_j\leq y_j+\delta\}. (compute this as described below)
9. return \min(\delta,\delta_M)
```

Compute δ_M efficiently as follows. Sort the points in M by y-coordinate, then enumerate the points p_i in M in order of increasing y-coordinate. For each such p_i , consider the points p_j in the list after p_i , such that $y_j \leq y_i + \delta$. There will be at most eight of these for each p_i , so the total time (after sorting) is O(n).

As described, this would give time $T(n) = 2T(n/2) + \Theta(n \log n)$, which gives $T(n) = \Theta(n \log^2 n)$.

To save a log n factor, instead of sorting the points in M by y-coordinate within each recursive call, do the following. Along with P, pass in a second list P' of the points in P, this one sorted by y-coordinate. From P', the sorted list of points in M can be computed in O(n) time. For the recursive calls on L and R, let L' and R' denote the lists L and R sorted by y-coordinate. Compute each of these (from P' again) in time O(n), then pass L' with L, and pass R' with R, to each recursive call.

The time to preprocess all the points to sort them by x and y coordinate (before any recursion) is $O(n \log n)$. The remaining time then satisfies T(n) = 2T(n/2) + O(n), which gives $T(n) = O(n \log n)$.

External resources on Closest Pair

• CLRS Chapter 9.2; Dasgupta et al. Problem 2.32 (draft). Kleinberg & Tardos Chapter 5.4.