Lista 3 - MAE0330

Guilherme N^oUSP : 8943160 e Leonardo N^oUSP : 9793436

Exercício 1

Considere a seguinte matriz de correlação

$$\rho = \begin{pmatrix}
1,000 & -0,488 & 0,150 \\
-0,488 & 1,000 & -0,130 \\
0,150 & -0,130 & 1,000
\end{pmatrix}$$

de três variáveis padronizadas Z_1 , Z_2 e Z_3 .

(a) Mostre que ρ pode ser decomposta segundo um modelo fatorial com m=1 fator dado por

$$Z_1 = 0.75F_1 + \epsilon_1$$

$$Z_2 = -0,65F_1 + \epsilon_2,$$

е

$$Z_3 = 0.20F_1 + \epsilon_3$$

com $Var(F_1)=1$ e $Cov(\epsilon_j,F_1)=0,\ j=1,2,3.$ Obtenha a matriz Ψ com as variâncias específicas.

Resolução

Como sabemos que a matrix ρ pode ser ser decomposta em $\rho = LL^T + \Psi$ onde $L = \begin{pmatrix} 0.75 \\ -0.65 \\ 0.20 \end{pmatrix}$, assim $\Psi = \rho - LL^T$ então:

$$\Psi = \begin{pmatrix} 1,000 & -0,488 & 0,150 \\ -0,488 & 1,000 & -0,130 \\ 0,150 & -0,130 & 1,000 \end{pmatrix} - \begin{pmatrix} 0.75 \\ -0.65 \\ 0.20 \end{pmatrix} \begin{pmatrix} 0.75 & -0.65 & 0.20 \end{pmatrix} = \begin{pmatrix} 1,000 & -0,488 & 0,150 \\ -0,488 & 1,000 & -0,130 \\ 0,150 & -0,130 & 1,000 \end{pmatrix} - \begin{pmatrix} 0,562 & 0,488 & 0,150 \\ 0,488 & 0,423 & 0,130 \\ 0,150 & 0,130 & 0,040 \end{pmatrix} \Rightarrow \Psi = \begin{pmatrix} 0,438 & 0 & 0 \\ 0 & 0,577 & 0 \\ 0 & 0 & 0,960 \end{pmatrix}$$

(b) Obtenha as comunalidades e interprete-as.

Resolução

Comulalidade de $Z_1: C_1^2 = 0.75^2 = 0.562$

Comulalidade de $Z_2: C_2^2 = (-0.65)^2 = 0.422$

Comulalidade de $Z_3: C_3^2=0.2^2=0.04$

Onde cada comulalidade representa a proporção de variabilidade da variável Z_j (j = 1, 2, 3) explicada pelo fator. Logo o fator explica, principalmente, a variabilidade das duas primeiras variáveis.

1

(c) Calcule a correlação entre Z_j e F_1 , j=1,2,3. Discuta.

Resolução

Sabe-se que $corr(Z_j, F_1) = l_{1j}, j=1,2,3, logo:$

$$Corr(Z_1, F_1) = 0.75$$

$$Corr(Z_2, F_1) = -0.65$$

$$Corr(Z_3, F_1) = 0.20$$

Utilizando o resultado do item (b), o fator explica principalmente Z_1 e Z_2 , nota-se então que as correlações dessas variáveis com o fator possuem sinais opostos, logo conclui-se que o fator explica a proporcionalidade inversa dessas variáveis.

Exercício 2

Considere ainda a matriz de correlação do exercício anterior.

(a) Obtenha os autovalores e autovetores correspondentes.

Resolução

Table 1: Autovalores

λ_1	λ_2	λ_3
1.558	0.93	0.512

Table 2: Autovetores

e_1	e_2	e_3
0.670	-0.214	-0.711
-0.663	0.259	-0.702
0.334	0.942	0.032

(b) Considerando um modelo fatorial com m=1 fator, obtenha a matriz de cargas fatoriais ${\bf L}$ e a matriz de variâncias específicas Ψ usando o método das componentes principais. Compare com os resultados do exercício anterior.

Resolução

Considerando um modelo fatorial com m=1 fator, a matriz de cargas fatoriais \mathbf{L} pode ser obtida pelo método de componentes principais $\hat{L}=\sqrt{\lambda_1}*e_1$, em que λ_1 é o primeiro autovalor e e_1 é o primeiro autovetor, assim

$$\hat{L} = \sqrt{(1.558)} \begin{pmatrix} 0.670 \\ -0.663 \\ 0.334 \end{pmatrix} \Rightarrow \hat{L} = \begin{pmatrix} 0.836 \\ -0.827 \\ 0.417 \end{pmatrix}$$

Além disso a matriz de variâncias específicas Ψ pode ser estimada por:

Como sabemos que a matrix ρ pode ser ser decomposta em $\rho = \hat{L}\hat{L}^T + \hat{\Psi}$ onde $\hat{L} = \begin{pmatrix} 0.836 \\ -0.827 \\ 0.417 \end{pmatrix}$, assim

$$\hat{\Psi} = \rho - \hat{L}\hat{L}^T$$
 então:

$$\hat{\Psi} = \begin{pmatrix} 0.20 & 0 & 0\\ 0 & 0.09 & 0\\ 0 & 0 & 0.07 \end{pmatrix}$$

Onde podemos notar que os valores de \hat{L} são maiores que o L dado no exercício anterior, o que resulta em uma maior variabilidade explicada pelo fator e uma correlação mais forte entre as variáveis e o fator. E pela matriz de variâncias específicas $\hat{\Psi}$ possui valores menores que a matriz Ψ dada no exercício anterior, representando que a variância não explicada pelo fator diminuiu.

(c) Obtenha a proporção da variabilidade total dos dados explicada pelo fator.

Resolução

A proporção da variabilidade total dos dados explicada pelo fator 1 é: $\frac{\lambda_1}{p} = \frac{1.558}{3} = 0.52 = 52\%$ Em que λ_1 é o primeiro autovalor e p é o número de variáveis originais no caso são 3.

Exercício 3

As cargas fatoriais associadas a 6 variáveis padronizadas e as cargas fatoriais rotacionadas (varimax) estão apresentadas a seguir:

	Fatores		Fatores Rotac	
Variáveis	F_1	F_2	F_1	F_2
$\overline{Y_1}$	0.602	0.2	0.484	0.411
Y_2	0.467	0.154	0.375	0.319
Y_3	0.926	0.143	0.603	0.717
Y_4	1	0	0.519	0.855
Y_5	0.874	0.476	0.861	0.499
Y_6	0.894	0.327	0.744	0.594

(a) Obtenha as comunalidades e as variâncias específicas para as cargas fatoriais sem e com rotação.

Resolução

Considerando primeiramente as cargas fatoriais sem a rotação temos:

Comulalidade de $Y_1: C_1^2 = 0.602^2 + 0.2^2 = 0.403$

Comulalidade de $Y_2: C_2^2 = 0.467^2 + 0.154^2 = 0.242$

Comulalidade de $Y_3: C_3^2 = 0.926^2 + 0.143^2 = 0.878$

Comulalidade de $Y_4: C_4^2=1^2+0^2=1$

Comulalidade de $Y_5: C_5^2 = 0.874^2 + 0.476^2 = 0.99$

Comulalidade de $Y_6: C_6^2 = 0.894^2 + 0.327^2 = 0.906$

Agora as variâncias especifícas, por se tratar de variáveis padronizadas, temos:

$$\Psi_1 = 1 - C_1^2 = 1 - 0.403 = 0.597$$

$$\Psi_2 = 1 - C_2^2 = 1 - 0.242 = 0.758$$

$$\Psi_3 = 1 - C_3^2 = 1 - 0.878 = 0.122$$

$$\Psi_4 = 1 - C_4^2 = 1 - 1 = 0$$

$$\Psi_5 = 1 - C_5^2 = 1 - 0.99 = 0.01$$

$$\Psi_6 = 1 - C_6^2 = 1 - 0.906 = 0.094$$

Agora com as cargas fatoriais com a rotação temos:

Comulalidade de $Y_1: C_1^2 = 0.484^2 + 0.411^2 = 0.403$

Comulalidade de $Y_2: C_2^2 = 0.375^2 + 0.319^2 = 0.242$

Comulalidade de $Y_3: C_3^2 = 0.603^2 + 0.717^2 = 0.878$

Comulalidade de $Y_4: C_4^2 = 0.519^2 + 0.855^2 = 1$

Comulalidade de $Y_5: C_5^2 = 0.861^2 + 0.499^2 = 0.99$

Comulalidade de $Y_6: C_6^2 = 0.744^2 + 0.594^2 = 0.906$

Agora as variâncias especifícas, analogamente ao caso sem rotação, temos:

$$\Psi_1 = 1 - C_1^2 = 1 - 0.403 = 0.597$$

$$\Psi_2 = 1 - C_2^2 = 1 - 0.242 = 0.758$$

$$\Psi_3 = 1 - C_3^2 = 1 - 0.878 = 0.122$$

$$\Psi_4 = 1 - C_4^2 = 1 - 1 = 0$$

$$\Psi_5 = 1 - C_5^2 = 1 - 0.99 = 0.01$$

$$\Psi_6 = 1 - C_6^2 = 1 - 0.906 = 0.094$$

Nota-se que as comunalidades e as variâncias específicas são iguais para as cargas fatoriais sem e com rotação.

(b) Qual é proporção da variância total dos dados explicada por cada fator?

Resolução

A proporção de variância total por cada fator (caso não rotacionado) é dado pela tabela abaixo:

Variável	l_{i1}^2	l_{i2}^{2}
Y_1	0.36	0.04
Y_2	0.22	0.02
Y_3	0.86	0.02
Y_4	1	0
Y_5	0.76	0.23
Y_6	0.80	0.11
$\overline{Y_j}$	4	0.42
%	40	4.2

A proporção de variância explicada por cada fator (caso rotacionado) é dado pela tabela abaixo:

Variável	l_{i1}^2	l_{i2}^2
Y_1	0.23	0.17
Y_2	0.14	0.1
Y_3	0.36	0.51
Y_4	0.27	0.73
Y_5	0.74	0.25
Y_6	0.55	0.35
$\overline{Y_j}$	2.29	2.11
%	22.9	21.1

Nota-se que com a rotação a proporção da variância total dos dados explicada por cada fator é maior que sem a rotação.

(c) Para uma observação com valores observados das variáveis originais (já padronizados) iguais a (0.8, -0.2, 1.3, -0.6, 1.5, -0.7), obtenha os escores fatoriais utilizando os fatores rotacionados.

Resolução

Os escores fatoriais utilizando os fatores rotacionados são:

$$\hat{F}_1 = 0.8 * 0.484 + (-0.2) * 0.375 + 1.3 * 0.603 + (-0.6) * 0.519 + 1.5 * 0.861 + (-0.7) * 0.744 = 1.5554$$

$$\hat{F}_2 = 0.8 * 0.411 + (-0.2) * 0.319 + 1.3 * 0.717 + (-0.6) * 0.855 + 1.5 * 0.499 + (-0.7) * 0.594 = 1.0168$$

Exercício 4

Os dados no arquivo **T1-9.dat** são referentes a recordes nacionais femininos de corrida para diversos países. As colunas são referentes aos tempos recordes nas seguintes modalidades, res- pectivamente:

- 100 m (segundos);
- 200 m (segundos);
- 400 m (segundos);
- 800 m (minutos);
- 1500 m (minutos);
- 5000 m (minutos);
- 10.000 m (minutos);
- Maratona (minutos).
- (a) Faça uma análise fatorial com a matriz de covariância dos dados.

Resolução

Fazendo a análise fatorial com a matriz de covariância dos dados, pelo método das componentes principais e sem rotação, temos:

Table 3: Matriz de Covariâncias

	$100 \mathrm{m}$	$200 \mathrm{m}$	$400 \mathrm{m}$	$800 \mathrm{m}$	$1500\mathrm{m}$	$3000 \mathrm{m}$	Maratona
100m	0.155	0.345	0.891	0.028	0.084	0.234	4.334
$200 \mathrm{m}$	0.345	0.863	2.193	0.066	0.203	0.554	10.385
$400 \mathrm{m}$	0.891	2.193	6.745	0.182	0.509	1.427	28.904
$800 \mathrm{m}$	0.028	0.066	0.182	0.008	0.021	0.061	1.220
$1500 \mathrm{m}$	0.084	0.203	0.509	0.021	0.074	0.216	3.540
$3000 \mathrm{m}$	0.234	0.554	1.427	0.061	0.216	0.665	10.706
Maratona	4.334	10.385	28.904	1.220	3.540	10.706	270.270

Scree Plot

Segundo o critério de Kaiser que considera que o número de fatores tem autovalores maiores que 1, assim observando o Scree plot acima, dois Fatores é suficiente para explicar a maior parte da variavilidade dos dados.

```
## Principal Components Analysis
## Call: principal(r = Cov, nfactors = 2, rotate = "none", covar = T)
  Unstandardized loadings (pattern matrix) based upon covariance matrix
              PC1
                    PC2
##
                             h2
                                      u2
                                           H2
## 100m
             0.27
                   0.23 1.2e-01 0.03072 0.80 2.0e-01
## 200m
             0.64
                   0.58 7.5e-01 0.11414 0.87 1.3e-01
## 400m
             1.79
                   1.88 6.7e+00 0.02015 1.00 3.0e-03
## 800m
             0.07
                   0.03 6.3e-03 0.00171 0.79 2.1e-01
             0.22
                   0.07 5.2e-02 0.02182 0.71 2.9e-01
## 1500m
## 3000m
             0.65
                   0.16 4.5e-01 0.21236 0.68 3.2e-01
##
  Maratona 16.44 -0.24 2.7e+02 0.00026 1.00 9.5e-07
##
##
                            PC1 PC2
                         274.36 4.02
## SS loadings
## Proportion Var
                           0.98 0.01
## Cumulative Var
                           0.98 1.00
## Proportion Explained
                           0.99 0.01
## Cumulative Proportion
                           0.99 1.00
```

```
##
##
   Standardized loadings (pattern matrix)
##
                  PC1
                        PC2
                              h2
## 100m
               1 0.68
                       0.58 0.80 2.0e-01
## 200m
               2 0.69
                       0.63 0.87 1.3e-01
## 400m
               3 0.69 0.72 1.00 3.0e-03
## 800m
                       0.30 0.79 2.1e-01
               4 0.83
## 1500m
               5 0.80
                       0.27 0.71 2.9e-01
## 3000m
               6 0.80 0.19 0.68 3.2e-01
## Maratona
               7 1.00 -0.01 1.00 9.5e-07
##
##
                    PC1 PC2
## SS loadings
                   4.38 1.46
## Proportion Var
                   0.63 0.21
## Cumulative Var
                   0.63 0.83
## Cum. factor Var 0.75 1.00
##
## Mean item complexity = 1.5
## Test of the hypothesis that 2 components are sufficient.
## The root mean square of the residuals (RMSR) is 0.02
## Fit based upon off diagonal values = 1
```

Onde podemos notar que pela variabilidade total dos dados, o primeiro fator representa uma variabilidade de 274.36 enquanto o segundo fator, apenas 4.02.

Sendo as comunalidades dadas por:

Table 4: Comunalidades

$\overline{100\mathrm{m}}$	200m	400m	800m	1500m	3000m	Maratona
0.124	0.749	6.725	0.006	0.052	0.453	270.27

Onde cada comulalidade representa a proporção de variabilidade de X_j (j = 1, ..., 7) explicada pelos fatores, em que a variável Maratona se destaca, obtendo uma grande parcela da variância explicada pelos fatores.

E as variâncias específicas:

Table 5: Variâncias especifícas

100m	200m	400m	800m	$1500 \mathrm{m}$	$3000 \mathrm{m}$	Maratona
0.031	0.114	0.02	0.002	0.022	0.212	0

Onde cada variância específica representa a parcela da variância não explicada pelos fatores, tendo destaque para a Maratona que teve toda a sua variância explicada.

(b) Faça uma análise fatorial com a matriz de correlação dos dados.

Resolução

Fazendo a análise fatorial com a matriz de correlação dos dados, pelo método das componentes principais e sem rotação, temos:

Table 6: Matriz de Correlações

	$100 \mathrm{m}$	$200 \mathrm{m}$	$400 \mathrm{m}$	$800 \mathrm{m}$	$1500\mathrm{m}$	$3000 \mathrm{m}$	Maratona
100m	1.000	0.941	0.871	0.809	0.782	0.728	0.669
$200 \mathrm{m}$	0.941	1.000	0.909	0.820	0.801	0.732	0.680
$400 \mathrm{m}$	0.871	0.909	1.000	0.806	0.720	0.674	0.677
$800 \mathrm{m}$	0.809	0.820	0.806	1.000	0.905	0.867	0.854
$1500 \mathrm{m}$	0.782	0.801	0.720	0.905	1.000	0.973	0.791
$3000 \mathrm{m}$	0.728	0.732	0.674	0.867	0.973	1.000	0.799
Maratona	0.669	0.680	0.677	0.854	0.791	0.799	1.000

Scree Plot

Segundo o critério de Kaiser que considera que o número de fatores tem autovalores maiores que 1, assim observando o Scree plot acima, um fator é suficiente para explicar a maior parte da variavilidade dos dados.

```
## Principal Components Analysis
## Call: principal(r = Cor, nfactors = 1, rotate = "none")
## Standardized loadings (pattern matrix) based upon correlation matrix
##
             PC1
                   h2
                         u2 com
            0.91 0.83 0.171
## 100m
## 200m
            0.92 0.85 0.147
                               1
## 400m
            0.89 0.79 0.213
                               1
## 800m
            0.95 0.91 0.095
                               1
  1500m
            0.94 0.88 0.120
                               1
            0.91 0.82 0.178
## 3000m
                               1
## Maratona 0.86 0.73 0.267
##
##
                   PC1
```

```
## SS loadings 5.81
## Proportion Var 0.83
##
## Mean item complexity = 1
## Test of the hypothesis that 1 component is sufficient.
##
## The root mean square of the residuals (RMSR) is 0.08
##
## Fit based upon off diagonal values = 0.99
```

Onde podemos notar que pela variabilidade total dos dados, o fator representa uma variabilidade de 5.81. Sendo as comunalidades dadas por:

Table 7: Comunalidades

100m	200m	400m	800m	$1500 \mathrm{m}$	$3000 \mathrm{m}$	Maratona
0.829	0.853	0.787	0.905	0.88	0.822	0.733

Onde cada comulalidade representa a proporção de variabilidade de X_j (j = 1, ..., 7) explicada pelos fatores, em que todas as variáveis possuem proporção entre 0.7 e 1.

E as variâncias específicas:

Table 8: Variâncias especificas

100m	200m	400m	800m	1500m	3000m	Maratona
0.171	0.147	0.213	0.095	0.12	0.178	0.267

Onde cada variância específica representa a parcela da variância não explicada pelos fatores, em que todas as variáveis possuem valores entre 0 e 0.3.

Exercício 5

Ainda com os dados do arquivo **T1-9.dat**, transforme os tempos recordes em velocidades (na unidade metros por segundo). A maratona corresponde a um percurso de 42.195 metros (ou 26,2 milhas). Faça análise fatorial com a matriz de covariância dos dados e com a matriz de correlação. Discuta os resultados.

Resolução

Fazendo a transformação dos tempos recordes em velocidades (m/s) então a análise fatorial com a matriz de covariâncias dos dados transformados pelo método das componentes principais e sem rotação, temos:

Table 9: Matriz de Covariâncias

	$100 \mathrm{m}$	$200 \mathrm{m}$	$400 \mathrm{m}$	800m	$1500 \mathrm{m}$	$3000 \mathrm{m}$	Maratona
100m	0.091	0.096	0.097	234.348	296.135	331.507	0.291
$200 \mathrm{m}$	0.096	0.115	0.114	269.823	345.748	379.740	0.336
$400 \mathrm{m}$	0.097	0.114	0.138	291.445	344.010	390.358	0.367
$800 \mathrm{m}$	234.348	269.823	291.445	952856.488	1120446.569	1292820.821	1222.148
$1500 \mathrm{m}$	296.135	345.748	344.010	1120446.569	1604971.690	1862543.296	1535.443
$3000 \mathrm{m}$	331.507	379.740	390.358	1292820.821	1862543.296	2288532.851	1899.923
Maratona	0.291	0.336	0.367	1222.148	1535.443	1899.923	2.162

Scree Plot

Segundo o critério de Kaiser que considera que o número de fatores tem autovalores maiores que 1, assim observando o Scree plot acima, três fatores é suficiente para explicar a maior parte da variavilidade dos dados.

```
## Principal Components Analysis
## Call: principal(r = Cov, nfactors = 3, rotate = "none", covar = T)
## Unstandardized loadings (pattern matrix) based upon covariance matrix
                        PC2
##
                PC1
                                 PC3
                                          h2
                                                  u2
                                                       H2
## 100m
               0.23
                       0.07
                                0.03 6.0e-02 3.1e-02 0.66 3.4e-01
  200m
               0.27
                       0.08
                                0.06 8.2e-02 3.3e-02 0.72 2.8e-01
                                0.00 8.9e-02 4.9e-02 0.65 3.5e-01
  400m
               0.28
                       0.12
## 800m
             907.05
                     357.27
                              -49.78 9.5e+05 3.8e-07 1.00 4.0e-13
                     -25.86
                             171.92 1.6e+06 3.1e-07 1.00 1.9e-13
## 1500m
            1254.89
  3000m
            1495.84 -194.95 -114.04 2.3e+06 4.3e-07 1.00 1.9e-13
                               -0.30 1.7e+00 4.4e-01 0.80 2.0e-01
## Maratona
               1.27
                       0.16
##
                                 PC1
                                           PC2
                                                    PC3
##
```

```
## SS loadings
                         4635006.64 166317.02 45039.32
## Proportion Var
                                          0.03
                               0.96
                                                   0.01
## Cumulative Var
                               0.96
                                          0.99
                                                   1.00
## Proportion Explained
                               0.96
                                          0.03
                                                   0.01
##
  Cumulative Proportion
                                0.96
                                          0.99
                                                   1.00
##
##
   Standardized loadings (pattern matrix)
##
            item PC1
                        PC2
                              PC3
                                             u2
## 100m
               1 0.77
                       0.23
                             0.11 0.66 3.4e-01
## 200m
               2 0.79
                       0.24
                             0.18 0.72 2.8e-01
## 400m
               3 0.74 0.31
                             0.01 0.65 3.5e-01
               4 0.93 0.37 -0.05 1.00 4.0e-13
## 800m
## 1500m
               5 0.99 -0.02 0.14 1.00 1.9e-13
## 3000m
               6 0.99 -0.13 -0.08 1.00 1.9e-13
               7 0.86 0.11 -0.20 0.80 2.0e-01
## Maratona
##
##
                    PC1 PC2 PC3
## SS loadings
                   5.34 0.37 0.11
## Proportion Var
                   0.76 0.05 0.02
## Cumulative Var
                   0.76 0.82 0.83
## Cum. factor Var 0.92 0.98 1.00
##
## Mean item complexity = 1.2
## Test of the hypothesis that 3 components are sufficient.
##
## The root mean square of the residuals (RMSR) is 0.01
##
## Fit based upon off diagonal values = 1
```

Onde podemos notar que com os 3 fatores a variabilidade total proporcional é de 100%.

Sendo as comunalidades dadas por:

Table 10: Comunalidades

100m	200m	400m	800m	1500m	3000m	Maratona
0.06	0.082	0.089	952856.5	1604972	2288533	1.724

Onde cada comulalidade representa a proporção de variabilidade de X_j (j = 1, ..., 7) explicada pelos fatores, em que as variáveis de 800m, 1500m e 3000m possuem valores muito maiores que os demais.

E as variâncias específicas:

Table 11: Variâncias especifícas

100m	200m	400m	800m	1500m	3000m	Maratona
0.0309	0.0325	0.0485	0	0	0	0.4383

Onde cada variância específica representa a parcela da variância não explicada pelos fatores, em que todas as variáveis possuem valores entre menores que 0.5, então a variabilidade foi quase toda explicada pelos fatores.

Fazendo o mesmo com a matriz de correlações, temos:

0

Comp.1

Comp.2

Table 12: Matriz de Correlações

	$100 \mathrm{m}$	$200 \mathrm{m}$	$400 \mathrm{m}$	$800 \mathrm{m}$	$1500 \mathrm{m}$	$3000 \mathrm{m}$	Maratona
100m	1.000	0.938	0.865	0.797	0.776	0.728	0.658
$200 \mathrm{m}$	0.938	1.000	0.905	0.816	0.805	0.741	0.675
$400 \mathrm{m}$	0.865	0.905	1.000	0.804	0.731	0.695	0.671
$800 \mathrm{m}$	0.797	0.816	0.804	1.000	0.906	0.875	0.852
$1500 \mathrm{m}$	0.776	0.805	0.731	0.906	1.000	0.972	0.824
$3000 \mathrm{m}$	0.728	0.741	0.695	0.875	0.972	1.000	0.854
Maratona	0.658	0.675	0.671	0.852	0.824	0.854	1.000

Scree Plot

Comp.3

Segundo o critério de Kaiser que considera que o número de fatores tem autovalores maiores que 1, assim observando o Scree plot acima, um fator é suficiente para explicar a maior parte da variavilidade dos dados.

Comp.4

Comp.5

Comp.6

Comp.7

```
## Principal Components Analysis
## Call: principal(r = Cor, nfactors = 1, rotate = "none")
## Standardized loadings (pattern matrix) based upon correlation matrix
                         u2 com
##
             PC1
                   h2
## 100m
            0.90 0.81 0.19
                              1
            0.92 0.85 0.15
## 200m
                              1
## 400m
            0.89 0.79 0.21
                              1
## 800m
            0.95 0.90 0.10
                              1
            0.94 0.89 0.11
## 1500m
                              1
## 3000m
            0.92 0.85 0.15
                              1
## Maratona 0.87 0.75 0.25
                              1
##
##
                    PC1
## SS loadings
                  5.83
## Proportion Var 0.83
##
```

```
## Mean item complexity = 1
## Test of the hypothesis that 1 component is sufficient.
##
## The root mean square of the residuals (RMSR) is 0.08
##
## Fit based upon off diagonal values = 0.99
```

Onde podemos notar que o fator possui uma proporção de variabilidade total de 0.83.

Sendo as comunalidades dadas por:

Table 13: Comunalidades

100m	200m	400m	800m	$1500 \mathrm{m}$	$3000 \mathrm{m}$	Maratona
0.814	0.848	0.787	0.899	0.889	0.845	0.749

Onde cada comulalidade representa a proporção de variabilidade de X_j (j = 1, ..., 7) explicada pelos fatores, em que os valores estão contidos no intervalo de 0.7 e 0.9.

E as variâncias específicas:

Table 14: Variâncias especifícas

100m	200m	400m	800m	1500m	3000m	Maratona
0.186	0.152	0.213	0.101	0.111	0.155	0.251

Onde cada variância específica representa a parcela da variância não explicada pelos fatores, onde os valores estão entre $0.1 \, \mathrm{e} \, 0.3$.

Exercício 6

Os vetores $X^{(1)}$ e $X^{(2)}$ apresentam os seguintes vetores de média e matriz de covariância:

$$\boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}^{(1)} \\ \boldsymbol{\mu}^{(2)} \end{bmatrix} = \begin{bmatrix} -3 \\ -\frac{2}{0} \\ 1 \end{bmatrix}$$

е

$$\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} = \begin{bmatrix} 8 & 2 & 3 & 1 \\ \frac{2}{3} - \frac{5}{1} & \frac{1}{6} - \frac{3}{2} \\ \frac{1}{3} & -2 & 7 \end{bmatrix}$$

(a) Calcule as correlações canônicas.

Resolução

As correlações canônicas em valor absoluto são:

Table 15: Correlações canônicas

$$0.552 \quad 0.49$$

Em que 0.552 é a correlação canônica entre U_1 e V_1 e 0.49 é a correlação canônica entre U_2 e V_2 .

(b) Obtenha os pares de variáveis canônicas (U_1, V_1) e (U_2, V_2) .

Resolução

Os pares de variáveis canônicas (U_1, V_1) e (U_2, V_2) são:

$$U_1 = 0.32X_{11} - 0.36X_{12}$$

$$U_2 = 0.19X_{11} + 0.3X_{12}$$

 \mathbf{E}

$$V_1 = 0.36X_{21} - 0.09X_{22}$$

$$V_2 = 0.23X_{21} + 0.38X_{22}$$

(c) Obtenha os autovalores de $\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$ e compare com os autovalores de $\Sigma_{11}^{-1/2}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}^{-1/2}$.

Resolução

Para a matriz $\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$ obtemos os seguintes autovalores:

Table 16: Autovalores

$$\frac{\lambda_1 \quad \lambda_2}{0.305 \quad 0.24}$$

Para a matriz $\Sigma_{11}^{-1/2}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}^{-1/2}$ obtemos os seguintes autovalores:

Table 17: Autovalores

$$\begin{array}{c|cc}
\lambda_1 & \lambda_2 \\
\hline
0.305 & 0.24
\end{array}$$

Em que podemos notar que os autovalores são identicos para as duas expressões.

Exercício 7

Quatro diferentes testes foram aplicados em n=140 crianças da sétima série nos Estados Unidos. Os testes aplicados foram:

- Leitura:
- $-X_1^{(1)}$: Velocidade
- $-X_2^{(1)}$: Capacidade de interpretação
 - Matemática:
- $-X_1^{(2)}$: Velocidade
- $-X_2^{(2)}$: Capacidade ou habilidade

A seguinte matriz de correlação foi obtida com os dados:

$$\boldsymbol{R} = \begin{bmatrix} \boldsymbol{R}_{11} & \boldsymbol{R}_{12} \\ \boldsymbol{R}_{21} & \boldsymbol{R}_{22} \end{bmatrix} = \begin{bmatrix} 1,0000 & 1,0000 \\ 0,6328 & 1,0000 \\ \overline{0,2412} & -0,\overline{0553} & 1,0000 \\ 0,0586 & 0,0655 & 0,4248 & 1,0000 \end{bmatrix}.$$

(a) Determine as correlações canônicas amostrais.

Resolução

As correlações canônicas em valor absoluto são:

Table 18: Correlações canônicas

(b) Teste a hipótese $H_0: \Sigma_{12} = 0$ com nível de significância de 5%. Se a hipótese nula for rejeitada, teste a hipótese da primeira correlação canônica apenas ser igual a zero.

Resolução

Testando a hipótese $H_0: \Sigma_{12} = 0$ utlizando a estatística de razão de verossimilhança, temos que:

$$-2ln\Lambda = nln(\frac{|S_{11}||S_{22}|}{|S|})$$

Em que S_{11} e S_{22} são as submatrizes que estimam as submatrizes populacionais Σ_{11} e Σ_{22} respectivamente e S é a matriz que estima a matriz Σ , assim:

$$|S_{11}| = 0.599$$
, $|S_{22}| = 0.819$ e $|S| = 0.413$

Obtendo a seguinte estatística de teste:

[1] 24.34903

Como visto em aula, a estatística $-2ln\Lambda \sim \chi^2_{p*q}$ quando $n\to\infty$ e como temos p e q varíaveis iguais a 2 temos o seguinte p-value do teste:

[1] 6.798461e-05

Assim, com un nível de significância de 5% temos evidências estatísticas para rejeitar H_0 .

Como o teste acima rejeitou H_0 , iremos testar se apenas a primeira correlação é igual a zero:

$$\begin{cases} H_0: \rho_1 = 0 \\ H_1: \rho_1 \neq 0 \end{cases}$$

Para testar a hipótese utilizaremos a estatística de teste:

$$t_{teste} = \frac{r}{\sqrt{\frac{1-r^2}{n-2}}}$$

que possui distribuição assintótica t student com n-2 graus de liberdade. logo,

$$t_{teste} = \frac{0.395}{\sqrt{\frac{1 - 0.395^2}{140 - 2}}} = 5.0509$$

Como n = 140, é possível aproximar para a normal, deste modo o p-valor é de:

[1] 4.572062e-07

Desse modo, rejeita-se H_0 , logo a primeira correlação canônica não é igual a 0 a um nível de significância de 5%.

(c) Obtenha as variávies canônicas (utilizando-se os dados padronizados).

Resolução

Os pares de variáveis canônicas (U_1, V_1) e (U_2, V_2) são:

$$U_1 = 1.26Z_{11} - 1.03Z_{12}$$

$$U_2 = 0.29Z_{11} + 0.78Z_{12}$$

E

$$V_1 = -1.10Z_{21} + 0.45Z_{22}$$

$$V_2 = 0.02Z_{21} - 1.01Z_{22}$$

(d) Obtenha um tabela com as correlações entre as variáveis canônicas e as variáveis originais.

Resolução

$$cor(U, X_1^{(1)}) = AR_{11}$$

 $cor(U, X_2^{(1)}) = AR_{12}$
 $cor(V, X_1^{(2)}) = BR_{21}$
 $cor(V, X_2^{(2)}) = BR_{22}$

resolvendo, respectivamente:

```
##
              [,1]
                          [,2]
## [1,] -0.4410068 -0.39673292
## [2,] 0.1713205 -0.07246798
##
               [,1]
## [1,] -0.06556456 -0.031419986
  [2,] 0.10405231 0.001466118
##
                 [,1]
                               [,2]
## [1,] -0.1012267305 0.005347241
## [2,] 0.0003200176 -0.030528241
##
               [,1]
## [1,] -0.46082726 -0.3812017
## [2,] -0.06883403 -0.3454383
```

(e) Interprete as variáveis canônicas.

Resolução

 U_1 representa a oposição entre a velocidade de leitura e a capacitação de interpretação, U_2 se refere a associação entre a velocidade de leitura e a capacitação de interpretação. V_1 explica a velocidade em matemática em oposição à sua capacidade ou habilidade. E por último, V_2 diz sobre a capacidade ou habilidade matemática.

Exercício 8

Os dados disponíveis no arquivo **T7-7.dat** são referentes a propriedades de polpa (ou pasta) de celulose utilizada para fabricação do papel e também algumas propriedades do papel produzido com a polpa. Os dados são de 62 observações e as variáveis observadas são:

• Propriedades do papel:

```
- X_1^{(1)}: BL (breaking length);

- X_2^{(1)}: EM (elastic modulus);

- X_3^{(1)}: SF (stress ar failure);

- X_4^{(1)}: BS (burst strength).
```

• Propriedades da polpa de celulose:

```
- X<sub>1</sub><sup>(2)</sup>: AFL (arithmetic fiber length);
- X<sub>2</sub><sup>(2)</sup>: LFF (long fiber fraction);
- X<sub>3</sub><sup>(2)</sup>: FFF (fine fiber fraction);
- X<sub>4</sub><sup>(2)</sup>: ZST (zero span tensile).
```

Obtenha os pares de variáveis canônicas e as correlações canônicas. O primeiro par de variáveis canônicas é uma boa medida sumária das variáveis que representam? Justifique a resposta. Teste a significância das correlações canônicas e interprete os pares de variáveis canônicas com correlações significativas com nível de significância igual a 5%.

Resolução

Os pares de de variáveis canônicas são:

U_1	V_1	$\overline{U_2}$	V_2
1.505*BL	0.159*AFL	-3.496*BL	0.689*AFL
0.212*EM	-0.632*LFF	-1.543*EM	1.003*LFF
-1.998*SF	-0.325*FFF	1.076*SF	0.005*FFF
-0.676*BS	-0.818*ZST	3.768*BS	-1.562*ZST

E as correlações canônicas são:

Table 19: Correlações Canônicas

0.917	0.817	0.265	0.092

Podemos notar que U_1 e U_2 explicam a diferença entre as propriedades BL e EM do papel e as propriedades SF e BS do papel. V_1 por sua vez, explica a diferença entre a propriedade AFL e as demais propriedades da polpa de celulose. Por fim, V_2 explica a diferença entre a variável ZST e as demais propriedades da polpa de celulose. Nota-se também que a correlação entre U_1 e V_1 é alta (0.917), assim como a correlação entre U_2 e V_2 (0.817).

Fazendo o teste de significância das correlações canônicas, temos:

```
##
##
  Canonical correlation analysis of:
##
            variables: BL, EM, SF, BS
##
     with
                    variables: AFL, LFF, FFF, ZST
##
##
        CanR
               CanRSQ
                         Eigen percent
                                                                        scree
  1 0.91733 0.841493 5.308872 71.7468
                                        71.75 ****
   2 0.81693 0.667370 2.006340 27.1147
                                         98.86
  3 0.26539 0.070429 0.075766
                               1.0239
                                        99.89
## 4 0.09168 0.008406 0.008477
                                0.1146 100.00
##
## Test of HO: The canonical correlations in the
## current row and all that follow are zero
```

```
##
##
       CanR LR test stat approx F numDF denDF
                                              Pr(> F)
## 1 0.91733
                 0.04860 17.5022
                                    16 165.61 < 2.2e-16 ***
## 2 0.81693
                 0.30660
                          9.3119
                                     9 134.01 6.688e-11 ***
## 3 0.26539
                 0.92176
                          1.1642
                                     4 112.00
                                                 0.3305
## 4 0.09168
                 0.99159
                          0.4832
                                     1 57.00
                                                 0.4898
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

E com o teste acima pode se notar que os dois primeiros pares de variáveis canônicas são significantes para a análise.